

Résolution pratique des équations différentielles linéaires

Cours			2
1	Équations différentielles linéaires scalaires d'ordre 1		2
	1.1	Position du problème, structure des solutions	2
	1.2	Résolution : première méthode	2
	1.3	Résolution : seconde méthode	3
	1.4	Résolution sur un intervalle sur lequel l'équation n'est pas normalisable	3
2	Équations différentielles linéaires scalaires d'ordre 2		3
	2.1	Position du problème, structure des solutions	3
	2.2	Étude de l'équation homogène — Wronskien	4
	2.3	Méthode de variation des constantes	4
	2.4	Recherche de solutions développables en séries entières	5
3	Systèmes différentiels linéaires homogènes à coefficients constants		5
	3.1	Position du problème	5
	3.2	Résolution théorique à l'aide de l'exponentielle de matrice	6
	3.3	Problème de Cauchy	7
	3.4	Résolution effective dans le cas de diagonalisabilité	7
	3.5	Exemples de résolution effective en dimension 2	8
4	Annexes		9
	4.1	Rappel : Équations différentielles linéaires scalaires d'ordre 2 à coefficients constants	9
	4.2	Complément : utilisation du wronskien pour les EDL scalaires d'ordre 2	9
	4.3	Complément : méthode de Lagrange pour les EDL scalaires d'ordre 2	10
	4.4	Complément : résolution des EDL scalaires homogènes d'ordre n	10
Exerci			11
Ex	ercices e	et résultats classiques à connaître	11
	Utilis	sation des séries entières	11
	Résol	Résolution par changement de fonction inconnue	
	Un changement de variable, c'est un changement de fonction inconnue		
Ex			12
Ex	ercices		12
Pe	tits prob	blèmes d'entrainement	13

Sauf mention contraire, I désigne un intervalle de \mathbb{R} et E un espace vectoriel normé de dimension finie.

1 Équations différentielles linéaires scalaires d'ordre 1

1.1 Position du problème, structure des solutions

Définition. Une équation différentielle linéaire scalaire d'ordre 1 est une équation de la forme :

$$y' + a(x)y = b(x) \tag{E}$$

et l'équation homogène associée est :

$$y' + a(x)y = 0 (H)$$

où a et b sont des applications continues sur I intervalle.

Remarque. L'équation peut être proposée sous la forme :

$$\alpha(x)y' + \beta(x)y = \gamma(x)$$

Il importe dans ce cas de travailler sur un **intervalle** sur lequel α **ne s'annule pas** : l'équation doit être **normalisable** sur I.

Structure des solutions. Si a et b sont continues et I est un intervalle, alors

- \circ S_H est une droite vectorielle
- S_E est une droite affine dirigée par S_H :

$$S_E = y_{\text{part}} + S_H$$

1.2 Résolution : première méthode

Méthode.

- 1. On qualifie l'équation différentielle, en précisant la continuité des coefficients, le fait qu'on travaille sur un intervalle et on écrit l'équation sous forme normalisée.
- 2. On trouve une solution particulière notée y_{part} de (E), par exemple en la cherchant sous une forme particulière.
- 3. On utilise le résultat exprimant S_H : notant A une primitive de a sur I, $S_H = \text{Vect}(x \mapsto e^{-A(x)})$.
- 4. On conclut:

$$S_E = y_{part} + \text{Vect}(x \mapsto e^{-A(x)})$$

Remarque. La méthode de variation de la constante, vue en première année, permet de déterminer une solution particulière lorsque l'on a déterminé S_H . Voir aussi la section suivante.

Exemple. Résoudre l'équation :

$$x' + x = t^2$$

Exemple. Résoudre sur $]0, +\infty[$ l'équation :

$$xy' - y = x^3$$

1.3 Résolution : seconde méthode

Méthode.

- 1. Au brouillon, on calcule A une primitive de a sur I.
- 2. On effectue le changement de fonction inconnue :

$$y(x) = z(x)e^{-A(x)}$$

en raisonnant bien par équivalence.

Exemple. Résoudre l'équation :

$$(1+x^2)y' - 2xy = 1 + x^2$$

1.4 Résolution sur un intervalle sur lequel l'équation n'est pas normalisable

<u>Méthode</u>. Si l'équation n'est pas normalisable sur l'intervalle I de résolution, on partage I en sous-intervalles sur lesquels l'équation est normalisable. On résout sur chacun de ces intervalles, puis on effectue un **recollement** des solutions.

Exemple. Représenter quelques courbes intégrales et déterminer les solutions sur \mathbb{R} des équations différentielles :

$$xy' - y = 0$$
 $xy' - 2y = 0$ $xy' - \frac{1}{2}y = 0$

2 Équations différentielles linéaires scalaires d'ordre 2

2.1 Position du problème, structure des solutions

Définition. Une équation différentielle linéaire scalaire d'ordre 2 est une équation de la forme :

$$x'' + a(t)x' + b(t)x = c(t)$$
(E)

et l'équation homogène associée est :

$$x'' + a(t)x' + b(t)x = 0 \tag{H}$$

où a, b et c sont des applications continues sur I intervalle.

Remarque. L'équation peut être proposée sous la forme :

$$\alpha(t)x'' + \beta(t)x' + \gamma(t)x = \delta(t)$$

Il importe dans ce cas de travailler sur un **intervalle** sur lequel α **ne s'annule pas** : l'équation doit être **normalisable** sur I.

Remarque. Contrairement aux équations d'ordre 1 ou aux équations d'ordre 2 à coefficients constants, il n'y a pas de formule de résolution. Il n'est donc pas utile d'avoir une équation normalisée, mais il est important qu'elle soit normalisable : α ne doit pas s'annuler sur I.

Remarque. On présente au § 4.3 une méthode de résolution lorsqu'une solution de (H) est connue.

Structure des solutions. Si α , β et γ continues, I est un intervalle et α ne s'annule pas sur I, alors

- S_H est un plan vectoriel
- S_E est un plan affine dirigé par S_H :

$$S_E = x_{\text{part}} + S_H$$

Définition. Un problèmde de Cauchy donné par :

$$\begin{cases} \alpha(t)x'' + \beta(t)x' + \gamma(t)x = \delta(t) \\ x(t_0) = x_0x'(t_0) = x'_0 \end{cases}$$

où α , β , γ et δ sont continues sur I intervalle, α ne s'annule pas sur I, $t_0 \in I$. Il admet une et une seule solution.

Remarque. Avec la seule condition $x(t_0) = x_0$, ou avec des conditions aux limites comme $\begin{cases} x(t_0) = x_0 \\ x(t_1) = x_1 \end{cases}$, on ne peut garantir l'existence et l'unicité.

2.2 Étude de l'équation homogène — Wronskien

Étude. On suppose que a, b et c sont des applications continues sur I intervalle, et on note

$$x'' + a(t)x' + b(t)x = 0 \tag{H}$$

l'équation différentielle linéaire homogène scalaire étudiée. On a

$$\begin{split} (H) &\iff \begin{cases} x' &= x' \\ x'' &= -a(t)x' - b(t)x \end{cases} \\ &\iff \begin{pmatrix} x \\ x' \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -a(t) & -b(t) \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix} \\ &\iff X' = A(t)X \quad \text{système différentiel noté H_{mat}} \end{split}$$

où
$$X=\begin{pmatrix} x \\ x' \end{pmatrix}$$
 et $A(t)=\begin{pmatrix} 0 & 1 \\ -a(t) & -b(t) \end{pmatrix}$

où $X = \begin{pmatrix} x \\ x' \end{pmatrix}$ et $A(t) = \begin{pmatrix} 0 & 1 \\ -a(t) & -b(t) \end{pmatrix}$. Un couple (ϕ, ψ) est un système fondamental de solutions de (H), i.e. une base de \mathcal{S}_H , si et seulemement

 $\begin{pmatrix} \begin{pmatrix} \phi \\ \phi' \end{pmatrix}, \begin{pmatrix} \psi \\ \psi' \end{pmatrix} \end{pmatrix}$ est un système fondamental de solutions de H_{mat}

Définition. Si ϕ et ψ sont deux solutions de (H) sur I, on définit leur **wronskien** en posant :

$$W: t \mapsto \begin{vmatrix} \phi(t) & \psi(t) \\ \phi'(t) & \psi'(t) \end{vmatrix} = \phi(t)\psi'(t) - \psi(t)\phi'(t)$$

Théorème.

Soit ϕ et ψ sont deux solutions de (H) sur I et W le wronskien de ϕ et ψ . Les propriétés suivantes sont équivalentes :

- (i) (ϕ, ψ) est une base de \mathcal{S}_H
- (ii) $\forall t \in I, W(t) \neq 0$
- (iii) $\exists t \in I, W(t) \neq 0$

2.3 Méthode de variation des constantes

Méthode de variation des constantes. On suppose connu un système fondamental (ϕ, ψ) de solutions de (H). Il reste donc à déterminer une solution particulière de (E). Appliquer la méthode de variations des constantes, c'est rechercher une solution particulière de (E) sous la forme :

$$x(t) = \lambda(t)\phi(t) + \mu(t)\phi(t)$$

avec la condition additionnelle:

$$\lambda'(t)\phi(t) + \mu'(t)\phi(t)\forall t \in I$$

Remarque.

- $S_H = \text{Vect}(\phi, \psi) = \{t \mapsto \lambda \phi(t) + \mu \psi(t), \ \lambda, \mu \in \mathbb{K}\}$. Ici, on fait varier les constantes » λ et μ .
- On peut se souvenir de la condition additionnelle en disant que n'apparaissent pas de dérivées secondes des « constantes » λ et μ .

2.4 Recherche de solutions développables en séries entières

<u>Méthode</u>. On a vu, lors de l'étude des séries entières, comment rechercher des solutions développables en séries entières d'une équation différentielle linéaire, par exemple d'ordre 1 ou 2.

On note $x(t) = \sum_{n=0}^{+\infty} a_n t^n$, on suppose le rayon de convergence > 0 (c'est l'analyse). Dire que x est solution

de l'équation différentielle se traduit (si tout va bien) en une condition sur les a_n (ici, on raisonne par équivalence sous l'hypothèse R > 0). On vérifie que les séries obtenues ont bien un rayon de convergence > 0 (c'est la synthèse).

Exemple. Utiliser une série entière pour déterminer l'unique solution au problème de Cauchy :

$$\begin{cases} y'' + xy' + y = 1\\ y(0) = y'(0) = 0 \end{cases}$$

Exemple. On considère l'équation différentielle :

$$t^2x' - 4tx' + (t^2 - 6)x = 0 (E)$$

- 1. Trouver les solutions de cette équation différentielle qui sont somme d'une série entière autour de 0.
- 2. Déterminer la dimension de l'espace des fonctions qui sont solutions de l'équation sur \mathbb{R} .

3 Systèmes différentiels linéaires homogènes à coefficients constants

3.1 Position du problème

Définition.

• On appelle système différentiel linéaire à coefficients constants :

$$X' = AX + B(t) \tag{S}$$

où $A \in \mathcal{M}_n(\mathbb{K})$ et $B : I \to \mathcal{M}_{n1}(\mathbb{K})$ est continue.

• Résoudre (S), c'est déterminer les fonctions $X: I \to \mathcal{M}_{n1}(\mathbb{K})$ de classe \mathcal{C}^1 telles que :

$$\forall t \in I, \ X'(t) = AX(t) + B(t)$$

• On appelle système différentiel homogène associé à (S):

$$X' = A(t)X \tag{H}$$

Remarque. Un système différentiel linéaire à coefficients constant s'écrit aussi :

$$\begin{cases} x'_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}a_n + b_1(t) \\ x'_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}a_n + b_2(t) \\ \vdots \\ x'_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}a_n + b_n(t) \end{cases}$$

où les a_{ij} sont des scalaires (constantes) et les b_i des fonctions continues sur I intervalle.

Proposition.

- L'ensemble S_H des solutions de (H) est un espace vectoriel de dimension n.
- L'ensemble S_E des solutions de (E) est un espace affine de dimension n, dirigé par S_H :

$$S_E = X_{\text{part}} + S_H$$

Écriture vectorielle. Un sysème différentiel linéaire à coefficients constant peut être vu comme la traduction matricielle d'une équation différentielle linéaire :

$$x' = a \cdot x + b(t) \tag{E}$$

où $a \in \mathcal{L}(E)$ et $b : I \to E$ est continues, et où on note $a \cdot x$ l'image a(x) du vecteur x par l'endomorphisme a.

Remarque. On pourrait présenter les résultats de ce paragraphe sous forme vectorielle.

3.2 Résolution théorique à l'aide de l'exponentielle de matrice

Rappel sur l'exponentielle de matrice. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

• Pour $t \in \mathbb{R}$, on définit :

$$\exp(tA) = \sum_{n=0}^{+\infty} \frac{t^n}{n!} A^n$$

- $t \mapsto \exp(tA)$ est de classe \mathcal{C}^{∞} et sa dérivée est $t \mapsto A \exp(tA) = \exp(tA)A$.
- $\exp(A)$ est inversible, et $(\exp(A))^{-1} = \exp(-A)$.
- Si A et B sont deux matrices qui commutent :

$$\exp(A + B) = \exp(A)\exp(B) = \exp(B)\exp(A)$$

Résultat : solutions du système différentiel homogène.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les solutions du système différentiel homogène :

$$X' = AX$$

sont les applications :

$$t \mapsto \exp(tA)C$$

où
$$C \in \mathcal{M}_{n1}(\mathbb{K})$$

Remarque. Dans l'écriture précédente, $\exp(tA)$ désigne une matrice carrée, C une matrice colonne. On peut rapprocher l'expression des solutions de :

$$t \mapsto \lambda e^{ta}, \ \lambda \in \mathbb{K}$$

qui est l'expression des solutions de l'équation scalaire y'=ay, mais la généralisation doit se faire correctement.

Résultat : obtention d'une solution particulière par variation de la constante.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $B : I \to \mathcal{M}_{n1}(\mathbb{K})$ continue. Pour résoudre le système différentiel à coefficients constants :

$$X' = AX + B(t) \tag{E}$$

on a intérêt à effectuer le changement de fonction inconnue :

$$X(t) = \exp(tA)C(t)$$

où $C: I \to \mathcal{M}_{n1}(\mathbb{K})$ est \mathcal{C}^1 .

Preuve. En effet, $X'(t) = A \exp(tA)C(t) + \exp(tA)C'(t)$ et donc :

$$X$$
 solution de (E) $\forall t \in I, X'(t) = AX(t) + B(t)$

$$\forall t \in I, \ \exp(tA) C'(t) = B(t)$$

$$\forall t \in I, C'(t) = \exp(-tA) B(t)$$

Notant F une primitive sur I de $t\mapsto \exp(-tA)B(t)$, on peut dire que $t\mapsto \exp(tA)F(t)$ est une solution particulière de (E).

3.3 Problème de Cauchy

<u>Définition.</u> Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathcal{M}_{n1}(\mathbb{K})$ continue. Soit $t_0 \in I$ et $X_0 \in \mathcal{M}_{n1}(\mathbb{K})$. On appelle **problème** de Cauchy le problème :

$$\begin{cases} X' = AX + B(t) \\ X(t_0) = X_0 \end{cases}$$

Théorème de Cauchy linéaire.

Le problème de Cauchy admet une et une seule solution définie sur I.

Preuve.

$$X \text{ est solution } \iff \begin{cases} \forall t \in I, \ X'(t) = AX(t) + B(t) \\ X(t_0) = X_0 \end{cases}$$

$$\iff \begin{cases} \forall t \in I, \ \exp(-tA)X'(t) - \exp(-tA)AX(t) = \exp(-tA)B(t) \\ X(t_0) = X_0 \end{cases}$$

$$\iff \begin{cases} \forall t \in I, \ \frac{\mathrm{d}}{\mathrm{d}t} \Big(\exp(-tA) \\ X(t) \Big) = \exp(-tA)B(t)X(t_0) = X_0 \end{cases}$$

$$\iff \begin{cases} \forall t \in I, \ \exp(-tA)X(t) = \exp(-t_0A)X(t_0) + \int_{t_0}^t \exp(-uA)B(u) \, \mathrm{d}u \\ X(t_0) = X_0 \end{cases}$$

$$\iff \forall t \in I, \ X(t) = \exp((t-t_0)A)X_0 + \int_{t_0}^t \exp((t-u)A)B(u) \, \mathrm{d}u \end{cases}$$

3.4 Résolution effective dans le cas de diagonalisabilité

On suppose dans ce paragraphe que A est diagonalisable :

$$A = PDP^{-1}$$
 où $D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ et $P = (V_1 | \dots | V_n)$

Les λ_i sont les valeurs propres de A, et les V_i forment une base de vecteurs propres associés.

Méthode : résolution du système différentiel homogène (H).

$$X \text{ solution de } (H) \iff \forall t \in I, \ X'(t) = AX(t)$$

$$\iff \forall t \in I, \ X'(t) = PDP^{-1}X(t)$$

$$\iff \forall t \in I, \ Y'(t) = DY(t) \qquad \text{où, pour tout } t, \ X(t) = PY(t)$$

$$\iff \forall t \in I, \ \begin{cases} y'_1(t) = \lambda_1 y_1(t) \\ \vdots \\ y'_n(t) = \lambda_n y_n(t) \end{cases}$$

$$\iff \exists c_1, \dots, c_n \in \mathbb{K}, \ \forall t \in I, \ \begin{cases} y_1(t) = c_1 e^{\lambda_1 t} \\ \vdots \\ y_n(t) = c_n e^{\lambda_n t} \end{cases}$$

$$\iff \exists c_1, \dots, c_n \in \mathbb{K}, \ \forall t \in I, \ Y(t) = \begin{pmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{pmatrix}$$

$$\iff \exists c_1, \dots, c_n \in \mathbb{K}, \ \forall t \in I, \ X(t) = (V_1 | \dots | V_n) \begin{pmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{pmatrix}$$

$$\iff X \in \text{Vect} \left(t \mapsto e^{\lambda_i t} V_i \right) 1 \leqslant i \leqslant n$$

2024-2025 http://mpi.lamartin.fr **7/15**

On a déterminé un système fondamental de solutions de (H).

Méthode : recherche d'une solutions particulière.

Par variation de la constante, on cherche une solution sous la forme :

$$X(t) = \sum_{i=1}^{n} c_i(t) e^{\lambda_i t} V_i$$

où les c_i sont des fonctions inconnues supposées de classe \mathcal{C}^1 . On calcule :

$$X'(t) = \sum_{i=1}^{n} c'_{i}(t) e^{\lambda_{i}t} V_{i} + \sum_{i=1}^{n} c_{i}(t) \lambda_{i} e^{\lambda_{i}t} V_{i}$$
et $AX(t) = A\left(\sum_{i=1}^{n} c_{i}(t) e^{\lambda_{i}t} V_{i}\right)$

$$= \sum_{i=1}^{n} c_{i}(t) e^{\lambda_{i}t} AV_{i}$$

$$= \sum_{i=1}^{n} c_{i}(t) e^{\lambda_{i}t} \lambda_{i} V_{i} \text{ car } V_{i} \text{ vecteur propre associé à la v.p. } \lambda_{i}$$

Ainsi:

$$X \text{ solution } \iff \forall t \in I, \ X'(t) = AX(t) + B(t)$$

$$\iff \forall t \in I, \ \sum_{i=1}^n c_i'(t) \mathrm{e}^{\lambda_i t} V_i = B(t)$$

$$\iff \forall t \in I, \ \sum_{i=1}^n c_i'(t) \mathrm{e}^{\lambda_i t} V_i = \sum_{i=1}^n \beta_i(t) V_i$$
 où $(\beta_1(t), \dots, \beta_n(t))$ sont les coordonnées de $B(t)$ dans (V_1, \dots, V_n)
$$\iff \forall i, \ \forall t \in I, \ c_i'(t) = \mathrm{e}^{-\lambda_i t} \beta_i(t)$$

ce qui définit les $c_i(t)$, à une constante additive près.

3.5 Exemples de résolution effective en dimension 2

Exemple. Résoudre le système différentiel X' = AX où :

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} \qquad A = \begin{pmatrix} -29 & -50 \\ 18 & 31 \end{pmatrix}$$

Exemple. Résoudre :

$$\begin{cases} x'(t) = x(t) + y(t) + t \\ y'(t) = 3x(t) - y(t) \end{cases}$$

4 Annexes

4.1 Rappel : Équations différentielles linéaires scalaires d'ordre 2 à coefficients constants

Étude. Soit $a, b, c \in \mathbb{K}$, avec $a \neq 0$ et $f : \mathbb{R} \to \mathbb{K}$. On s'intéresse à :

$$ay'' + by' + cy = f(t) \tag{E}$$

qui est une **équation différentielle linéaire** d'ordre 2 à coefficients constants. L'équation homogène associée s'écrit, sous forme matricielle :

$$X' = AX (H_{\text{mat}})$$

où
$$X(t) = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$
 et $A = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}$.

Le polynôme caractéristique de A est :

$$\chi_A(X) = \frac{1}{a}(aX^2 + bX + c)$$

 $\frac{ \mbox{\sf D\'efinition.} \quad \mbox{On appelle \'equation caract\'eristique } }{ \mbox{de } (H) \mbox{ l'\'equation :} }$

$$ar^2 + br + c = 0$$

Théorème.

On conserve les notations précédentes.

 Si le polynôme caractéristique a deux racines distinctes r₁ et r₂, alors :

$$S_H = \text{Vect} (t \mapsto e^{r_1 t}, t \mapsto e^{r_2 t})$$

• Si le polynôme caractéristique a une racine double r_0 , alors :

$$S_H = \text{Vect} (t \mapsto e^{r_0 t}, t \mapsto t e^{r_0 t})$$

Remarque. Dans le cas particulier, mais fréquent en physique, où $\mathbb{K} = \mathbb{R}$ et où l'équation caractéristique admet deux racines distinctes complexes conjuguées $r \pm \mathrm{i}\omega$, on a :

$$S_0 = \operatorname{Vect} \left(t \mapsto e^{rt} \cos(\omega t), t \mapsto e^{rt} \sin(\omega t) \right)$$
$$= \left\{ t \mapsto A e^{rt} \cos(\omega t + \varphi), \ A, \varphi \in \mathbb{R} \right\}$$

 $\underline{\text{M\'ethode.}}$ On recherche une solution particulière de l'équation :

$$ay'' + by' + cy = Ae^{\lambda t}$$

avec a, b, c, λ, A des scalaires.

• Si λ n'est pas racine de l'équation caractéristique, on cherche une solution sous la forme :

$$t \mapsto Be^{\lambda t}$$

• Si λ est racine simple de l'équation caractéristique, on cherche une solution sous la forme :

$$t \mapsto Bte^{\lambda t}$$

• Si λ est racine double de l'équation caractéristique, on cherche une solution sous la forme :

$$t \mapsto Bt^2 e^{\lambda t}$$

<u>Méthode</u>. On recherche une solution particulière de l'équation :

$$ay'' + by' + cy = A\cos(\omega t)$$
 (resp. $A\sin(\omega t)$)

avec a, b, c des coefficients réels et $\omega \neq 0$.

• Si $i\omega$ (et donc $-i\omega$) n'est pas racine de l'équation caractéristique, on cherche une solution sous la forme :

$$t \mapsto \lambda \cos(\omega t) + \mu \sin(\omega t)$$

• Si $i\omega$ (et donc $-i\omega$) est racine simple de l'équation caractéristique, on cherche une solution sous la forme :

$$t \mapsto \lambda t \cos(\omega t) + \mu t \sin(\omega t)$$

4.2 Complément : utilisation du wronskien pour les EDL scalaires d'ordre 2

Résultat. Dans le contexte des équations différentielles linéaires scalaires d'ordre 2 :

$$y'' + a(t)y' + b(t)y = 0 (H)$$

Si l'on connaît ϕ une solution particulière de l'équation homogène (H), on peut utiliser le

wronskien pour déterminer une deuxième solution de (H), indépendante de ϕ .

Preuve. Analyse

Si ψ est une autre solution de (H), et W le wronskien de (ϕ, ψ) ,

on a, pour tout $t \in I$:

$$W(t) = \phi(t)\psi'(t) - \phi'(t)\psi(t)$$
et $W'(t) = \phi(t)\psi'(t) - \phi''(t)\psi(t)$

$$= \phi(t)(-a(t)\psi'(t) - b(t)\psi(t))$$

$$-\psi(t)(-a(t)\phi'(t) - b(t)\phi(t))$$

$$\operatorname{car} \phi, \psi \in \mathcal{S}_{H}$$

$$= -a(t)W(t)$$

donc W est solution de l'équation différentielle linéaire homogène d'ordre $\mathbf 1$:

$$y' + a(t)y = 0$$

En notant $A(t)=\int a(t)\,\mathrm{d}t$ une primitive sur I de a(t), il existe donc $K\in\mathbb{K}$ tel que :

$$W(t) = Ke^{-A(t)}$$

 ${\bf Synth\`ese}$

On résout l'équation différentielle linéaire du premier ordre :

$$\phi(t)y' - \phi'(t)y = e^{-A(t)}$$

où l'on a choisit arbirtrairement K=1. Cela nous fournit une solution de (H): l'observation du calcul ci-avant montre que W est solution de y'+a(t)y=0 si et seulement si ψ est solution de (H).

4.3 Complément : méthode de Lagrange pour les EDL scalaires d'ordre 2

 $\underline{\text{Méthode.}}$ Dans le contexte des équations différentielles linéaires scalaires d'ordre 2:

$$\alpha(t)y'' + \beta(t)y' + \gamma(t)y = \delta(t) \tag{E}$$

Si l'on connaît y_0 une solution particulière de l'équation homogène (H), on a intérêt à effectuer le changement de fonction inconnue :

$$y(t) = z(t)y_0(t)$$

 $\label{eq:explication} Explication. \quad \text{On mène les calculs suivants}:$

$$\begin{aligned} y(t) &= z(t)y_0(t) \\ y'(t) &= z'(t)y_0(t) + z(t)y_0'(t) \\ y''(t) &= z''(t)y_0(t) + 2z'(t)y_0'(t) + z(t)y_0''(t) \end{aligned}$$

Pour traduire que y est solution de (E), on fait une combinaision linéaire de ces trois égalités. Comme y_0 est solution de (H), les termes en z(t) se simplifient toujours. On regroupe les termes en z''(t) et ceux en z''(t):

$$y \text{ solution } \iff \forall t \in I, \ \alpha(t)y_0(t)z''(t) \\ + \big(2\alpha(t)y_0'(t) + \beta y_0(t)\big)z'(t) = \gamma(t)$$

Il s'agit d'une EDL1 en y_0' , pour laquelle on a donc des formules de résolution.

Exemple. On veut résoudre sur $]0, +\infty[$ l'équation :

$$t^2x'' + tx' + (t^2 - v^2)x = 0$$

où v est un réel positif.

 Montrer qu'il existe une unique solution de la forme :

$$J_v = t^v \sum_{n=0}^{+\infty} a_n t^n \tag{E}$$

où $a_0=1.$ Sur quel intervalle cette solution estelle définie?

2. Dans le cas où $v = \frac{1}{2}$, exprimer toutes les solutions de (E) à l'aide des fonctions usuelles.

4.4 Complément : résolution des EDL scalaires homogènes d'ordre n

Proposition. On considère (H) une équation différentielle linéaire homogène d'ordre n à coefficients constants :

$$y^n = \sum_{i=0}^{n-1} a_i y^{(i)} \tag{H}$$

de fonction inconnue y nécessairement \mathcal{C}^{∞} sur I intervalle de \mathbb{R} .

On note $D: f \mapsto f'$ endomorphisme de $\mathcal{C}^{\infty}(I,\mathbb{K}),$ et $P = X^n - \sum_{i=0}^{n-1} a_i X^i.$

L'équation (H) s'écrit alors :

$$P(D)(y) = 0 (H)$$

et donc
$$S_H = \text{Ker } P(D)$$
.
Si $P = (X - r_1)^{m_1} \dots (X - r_n)^{m_p}$ est scindé sur \mathbb{K} ,

alors:

$$S_H = \left\{ t \mapsto P_1(t) e^{r_1 t} + \dots + P_p(t) e^{r_p t}, \\ \forall i, \ P_i \in \mathbb{K}_{m_i - 1}[X] \right\}$$

Preuve. Par le lemme de décomposition des noyaux :

$$\operatorname{Ker} P(D) = \bigoplus_{i=1}^{p} \operatorname{Ker} (D - r_i \operatorname{Id})^{m_i}$$

On va donc montrer que, pour $r\in\mathbb{K}$ et $m\in\mathbb{N}^*$:

$$\operatorname{Ker}(D-r\operatorname{Id})^m = \left\{ t \mapsto P(t)e^{rt}, \ P \in \mathbb{K}_{m-1}[X] \right\}$$

Raisonnons par récurrence sur m.

• Si m=1, $\operatorname{Ker}(D-r\operatorname{Id})$ est l'ensemble des solutions de l'équation y'-ry=0. On sait que c'est $\{t\mapsto \lambda \mathrm{e}^{rt},\ \lambda\in\mathbb{R}\}$.

• Soit $m \in \mathbb{N}^*$. On suppose que : $\operatorname{Ker}(D - r\operatorname{Id})^m = \left\{t \mapsto P(t)e^{rt}, \ P \in \mathbb{K}_{m-1}[X]\right\}$ On a alors :

$$y \in \text{Ker}(D - r\text{Id})^{m+1}$$

 $\iff y' - ry \in \text{Ker}(D - r\text{Id})^m$
 $\iff \exists P \in \mathbb{K}_{m-1}[X], \ y' - ry = P(t)e^{rt}$

Il s'agit d'une équation différentielle linéaire d'ordre 1. On effectue le changement de fonction inconnue

$$y(t) = z(t)e^{rt}, y'(t) = z'(t)e^{rt} + rz(t)e^{rt}$$

Alors:

$$y \in \operatorname{Ker}(D - r\operatorname{Id})^{m+1}$$

$$\iff \exists P \in \mathbb{K}_{m-1}[X], \ z' = P(t)$$

$$\iff \exists Q \in \mathbb{K}_m[X], \ z = Q(t)$$

$$\iff \exists Q \in \mathbb{K}_m[X], \ y = Q(t)e^{rt}$$

donc
$$ker(D - r\mathrm{Id})^{m+1} = \{t \mapsto Q(t)e^{rt}, Q \in \mathbb{K}_m[X]\}$$

On a établi le résultat annoncé.

Exercices et résultats classiques à connaître

Utilisation des séries entières

69.1

On considère sur]0,1[l'équation :

$$x(1-x)y'' + (1-3x)y' - y = 0$$

- (a) Déterminer une solution non nulle, développable en série entière, notée y_0 .
- (b) Résoudre l'équation en effectuant le changement de fonction inconnue :

$$y(x) = z(x)y_0(x)$$

Résolution par changement de fonction inconnue

69.2

Résoudre sur \mathbb{R} l'équation :

$$(1 + e^x)y'' + 2e^xy' + (2e^x + 1)y = e^x$$

en effectuant le changement de fonction inconnue :

$$z(x) = (1 + e^x)y(x)$$

Un changement de variable, c'est un changement de fonction inconnue

69.3

Résoudre sur $]0, +\infty[$ l'équation :

$$x^2y'' + 3xy' + y = 0$$

en effectuant le changement de variable $x = e^t$.

- 1. Déterminer une primitive de $x \mapsto \cos^4 x$.
- 2. Résoudre sur \mathbb{R} l'équation différentielle : $y'' + y = \cos^3 x$ en utilisant la méthode de variation des constantes.

69.5 32

Soit l'équation différentielle : x(x-1)y'' + 3xy' + y = 0.

- 1. Trouver les solutions de cette équation différentielle développables en série entière sur un intervalle]-r,r[de \mathbb{R} , avec r>0. Déterminer la somme des séries entières obtenues.
- 2. Est-ce que toutes les solutions de x(x-1)y'' + 3xy' + y = 0 sur]0;1[sont les restrictions d'une fonction développable en série entière sur]-1,1[?

69.6 A2

On considère les deux équations différentielles suivantes :

$$2xy' - 3y = 0 (H)$$
$$2xy' - 3y = \sqrt{x} (E)$$

- 1. Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
- 2. Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$.
- 3. L'équation (E) admet-elle des solutions sur l'intervalle $[0, +\infty[$?

Exercices

69.7

Résoudre l'équation différentielle :

$$y' + \frac{2x}{1+x^2}y = 1$$

Résoudre sur $\mathbb R$ l'équation différentielle :

- (a) y'' 3y' + 2y = 0
- (b) y'' + 4y' + 4y = 0
- (c) y'' 2y' + 5y = 0
- (d) y'' + y = 0

69.9

Déterminer les solutions réelles de l'équation différentielle :

- (a) $y'' + 2y' + 2y = \sin x$
- (b) $y'' + y = 2\cos^2 x$

69.10

Résoudre sur $\mathbb R$ l'équation :

$$(t-1)y'' - ty' + y = 0$$

On pourra intuiter deux solutions particulières, polynomiale et exponentielle.

69.11

On s'intéresse à l'équation :

$$t^2y'' + ty' - y = 0 (E)$$

- (a) Rechercher des solutions particulières de la forme $y(t) = t^{\alpha}$.
- (b) Résoudre (E) sur \mathbb{R} .

69.12

Résoudre sur $\mathbb R$ l'équation :

$$(t^2 + 2t + 2)y'' - 2(t+1)y' + 2y = 0$$

en recherchant des solutions polynomiales.

69. Résolution pratique des équations différentielles linéaires

Petits problèmes d'entrainement

69.13

Soit f continue et bornée sur $]0,+\infty[$. On considère l'équation différentielle :

$$xy' - y + f(x) = 0$$

Montrer qu'elle admet une unique solution y_0 telle que y_0' ait une limite nulle en $+\infty$.

69.14

Résoudre sur $]0, +\infty[$ l'équation :

$$t\ln(t)y' + y = 0$$

69.15

(a) Pour $n \in \mathbb{N}^*$, résoudre l'équation différentielle :

$$y'' + 2y' + y = \frac{1}{n^3} e^{inx}$$

(b) Démontrer la continuité sur $\mathbb R$ de la fonction définie par :

$$g(x) = \sum_{n=1}^{+\infty} \frac{1}{n^3} e^{inx}$$

(c) Déterminer les fonctions $\mathbb{R} \to \mathbb{C}$ solutions de :

$$y'' + 2y' + y = g(x)$$

69.16

Déterminer les solutions complexes de l'équation différentielle :

$$y'' - (1+3i)y' - 4y = 0$$

69.17

Résoudre sur des intervalles à préciser, par la méthode de variation des constantes, l'équation :

$$y'' + y = \frac{1}{\cos x}$$

69.18

Résoudre sur $]0, +\infty[$ l'équation :

$$x^2y'' + xy' - \left(x^2 + \frac{1}{4}\right)y = 0$$

en effectuant le changement de fonction inconnue :

$$y(x) = x^{\alpha} z(x)$$

où α est choisi judicieusement.

69.19

On considère sur]0,1[l'équation :

$$x(1-x)y'' + (1-3x)y' - y = 0$$

- (a) Déterminer une solution non nulle, développable en série entière, notée $y_0.$
- (b) Résoudre l'équation en effectuant le changement de fonction inconnue :

$$y(x) = z(x)y_0(x)$$

69.20

Résoudre sur $]0, +\infty[$ l'équation :

$$x^2y'' + 3xy' + y = 0$$

en effectuant le changement de variable $x = e^t$.

69.21

Soit q une fonction continue et intégrable sur $[0,+\infty[.$ On considère l'équation différentielle :

$$y'' + q(t)y = 0 (E)$$

- (a) Montrer que, si f est une solution de (E) bornée sur $[0, +\infty[$, alors $f'(t) \xrightarrow[t \to +\infty]{} 0$.
- (b) Soit (h_1, h_2) un système fondamental de solutions de (E). Montrer que le wronskien de (h_1, h_2) est constant.
- (c) Montrer que (E) admet des solutions non bornées sur $[0, +\infty[$.

69.22

On s'intéresse à l'équation différentielle :

$$y'' + e^{-x}y = 0 \qquad (E)$$

On considère f une solution bornée de (E) sur $[0, +\infty[$.

- (a) Montrer que f' admet une limite finie en $+\infty$.
- (b) Quelle est la valeur de cette limite.
- (c) Soit g une autre solution bornée. En étudiant le wronskien de f et g, montrer que les fonctions f et g sont liées. Qu'en déduire?

69.23

On note \mathcal{B} la base canonique de $\mathcal{M}_{21}(\mathbb{R})$.

(a) Soit $f \in \mathcal{L}(\mathcal{M}_{21}(\mathbb{R}))$. On définit, pour $u, v \in \mathcal{M}_{21}(\mathbb{R})$:

$$\varphi(u, v) = \det_{\mathcal{B}}(f(u), v) + \det_{\mathcal{B}}(u, f(v))$$

Montrer que φ est bilinéaire alternée, et en déduire que, pour $u,v\in\mathcal{M}_{21}(\mathbb{R})$:

$$\varphi(u,v) = \operatorname{tr}(f) \det_{\mathcal{B}}(u,v)$$

(b) Soit $c_1, c_2 \in \mathcal{M}_{21}(\mathbb{R})$ telles que $\det_{\mathcal{B}}(c_1, c_2) = 1$, et $M \in \mathcal{M}_2(\mathbb{R})$. On considère le système différentiel :

$$Y' = MY \qquad (S)$$

et on note U (resp. V) la solution de (S) telle que $U(0) = c_1$ (resp. $V(0) = c_2$).

Déterminer :

$$W: t \mapsto \det_{\mathcal{B}}(U(t), V(t))$$

69.24

Donner une équation différentielle linéaire du premier ordre dont les fonctions solutions sont :

$$x \mapsto \frac{x+\lambda}{1+x^2}, \ \lambda \in \mathbb{R}$$

69.25

Résoudre sur \mathbb{R} :

$$y' - y = \operatorname{Max}(x, 0)$$

69.26

Soit $a:[0,+\infty[\to \mathbb{R}_+$ une fonction continue à valeurs positives, et A sa primitive qui s'annule en 0. Soit $f:[0,+\infty[\to \mathbb{R}$ une fonction dérivable.

(a) On suppose que:

$$\forall x \geqslant 0, \ f'(x) \leqslant a(x) f(x)$$

Montrer que :

$$\forall x \geqslant 0, \ f(x) \leqslant f(0)e^{A(x)}$$

(b) On suppose que:

$$\forall x \geqslant 0, \ f(x) \leqslant f(0) + \int_0^x a(t)f(t) dt$$

Montrer encore que :

$$\forall x \geqslant 0, \ f(x) \leqslant f(0)e^{A(x)}$$

69.27

Soit a>0 et f : $[0,+\infty[$ $\to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que :

$$f'(x) + af(x) \xrightarrow[x \to +\infty]{} 0$$

Montrer que :

$$f(x) \xrightarrow[x \to +\infty]{} 0$$

69.28

Soit q vérifiant, au voisinage de 0, l'équation différentielle :

$$y' = \left(\sum_{k=1}^{+\infty} \frac{x^{k-1}}{k}\right) y$$

Montrer que g est développable en série entière, et en déduire que $x\mapsto \exp\left(\sum_{k=0}^{+\infty}\frac{x^k}{k^2}\right)$ l'est aussi.

69.29

Déterminer les valeurs de $a, b \in \mathbb{R}$ pour que les solutions de :

$$y'' + ay' + by = 0$$

soient toutes bornées sur \mathbb{R}_+ .

69.30

Déterminer les fonctions $f:[0,1]\to\mathbb{R}$ dérivables telles que :

$$\forall x \in [0, 1], \ f'(x) - f(x) = f(0) + f(1)$$

69.31

Résoudre sur \mathbb{R} l'équation :

$$(x^2+1)^2y'' + 2x(x^2+1)y' + 4y = 0$$

en effectuant le changement de variable $t = \operatorname{Arctan} x$.

69.32

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction continue. Exprimer à l'aide d'une intégrale la solution de l'équation différentielle :

$$y'' + y = f(x)$$

vérifiant les conditions initiales :

$$y(0) = 0$$
 et $y'(0) = 0$

69.33

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 telle que :

$$f + f'' \geqslant 0$$

Montrer que :

$$\forall x \in \mathbb{R}, \ f(x+\pi) + f(x) \geqslant 0$$

69.34

Soit $p,q:[0,1]\to\mathbb{R}$ deux fonctions continues. On s'intéresse à l'équation :

$$y'' + p(t)y' + q(t)y = 0$$
 (E)

Montrer que si une solution sur [0,1] de (E) possède une infinité de racines, c'est la fonction nulle.

69.35

On s'intéresse à l'équation :

$$y'' + e^{-x}y = 0 \qquad (E)$$

et on considère f une solution bornée de (E) sur $[0, +\infty[$.

- (a) Montrer que f' admet une limite finie en $+\infty$.
- (b) Quelle est la valeur de cette limite?
- (c) Soit g une autre solution borné de (E) sur $[0, +\infty[$. En étudiant le wronskien de f et g, établir que les fonctions f et g sont liées. Que peut-on en conclure?

Exercices

69.1

(a) Déterminer une solution particulière, puis résoudre sur $]0,+\infty[$ l'équation :

$$2x^2y' + xy = 1$$

(b) Utiliser la méthode de variation de la constante pour résoudre :

$$xy' - y = x \ln x$$

(c) Déterminer les solutions définies sur \mathbb{R} de :

$$xy' + 2y = \frac{x}{1+x^2}$$

69.2

(a) Résoudre:

$$x'' + 2x' + x = e^{-t}$$

(b) Résoudre:

$$x'' + x' + x = t^2 + e^t$$

(c) Utiliser le changement de variable $t = e^x$ pour résoudre sur $]0, +\infty[$:

$$t^2y'' + 4ty' + 2y = 1$$

69.3

Déterminer les solutions développables en série entière de :

$$x^2y'' + 4xy' + 2y = \ln(1+x)$$

69. Résolution pratique des équations différentielles linéaires

69.36

On s'intéresse au système différentiel :

(S)
$$X' = AX$$
 où $A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 4 & -3 \\ 1 & 3 & 0 \end{pmatrix}$

- (a) Montrer que $A I_3$ est nilpotente.
- (b) Calculer, pour tout $t \in \mathbb{R}$, $\exp(tA)$.
- (c) Résoudre (S) avec la condition initiale $X(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

69.37

Résoudre le système différentiel :

$$\begin{cases} x' = 4x - 3y \\ y' = 2x - 3y \end{cases}$$

69.38

Résoudre le système différentiel :

$$\begin{cases} x' = \cos(t)x - \sin(t)y \\ y' = \sin(t)x + \cos(t)y \end{cases}$$

69.39

On considère le problème de Cauchy suivant :

$$\begin{cases} x' = x + y + z \\ y' = x - y + z \\ z' = x + y - z \end{cases} \text{ avec } \begin{cases} x(0) = 3 \\ y(0) = 1 \\ z(0) = 1 \end{cases}$$

Sans résoudre, montrer que l'unique solution est un arc paramétré tracé dans un plan de \mathbb{R}^3 que l'on précisera. Exprimer ensuite cette solution.

69.40

Résoudre le système différentiel :

$$\begin{cases} x' = 4x - 2y + e^t \\ y' = 3x - y + 2e^t \end{cases}$$

69.41

On considère I un intervalle, et le systèm différentiel linéaire homogène :

$$\forall t \in I, \ X'(t) = A(t)X(t) \ (E)$$

où $A: I \to \mathcal{M}_n(\mathbb{K})$ est continue. On note S_H l'ensemble des solutions de (E).

(a) Pourquoi, à $t_0 \in I$ fixé, $\Phi_{t_0} : X \mapsto X(t_0)$ est un isomorphisme de S_H sur $\mathcal{M}_{n_1}(\mathbb{K})$.

Pour $t, t_0 \in I$, on note :

$$R(t, t_0) = \Phi_t \circ \Phi_{t_0}^{-1}$$

On l'appelle **résolvante** en (t, t_0) de (E).

- (b) Expliquer pour quoi $R(t, t_0)$ est un isomorphisme. Quelle est sa réciproque?
- (c) Comment utiliser $R(t, t_0)$ pour résoudre (E)?
- (d) Expliciter la résolvante $R(t, t_0)$ pour l'équation différentielle scalaire :

$$x'(t) = a(t)x(t)$$