Math 415 - Lecture 19

Orthonormal basis, orthogonal complement

Friday October 9th 2015

Textbook reading: Ch 3.1

Suggested practice exercises: Ch 3.1: 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22

Khan Academy videos:

Strang lectures: Lec 10: The Four Fundamental Subspaces / Lec 14: Orthogonal Vectors and Subspaces

1 Review

- $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 + \dots + v_n w_n$ is the **inner product** of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
 - The length of \mathbf{v} , $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.
 - The **distance** between points \mathbf{v}, \mathbf{w} is $\|\mathbf{v} \mathbf{w}\|$.
- $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are **orthogonal** if $\mathbf{v} \cdot \mathbf{w} = 0$.

Definition. A vector $\mathbf{u} \in \mathbb{R}^n$ is called a *unit vector* if

- This simple criterion is equivalent to Pythagoras' theorem.

2 Unit Vectors and Orthonormal basis

Example 1. The standard basis vectors $\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}$ of \mathbb{R}^n are all unit vectors.
Example 2. If $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then is \mathbf{x} a unit vector?
Solution.
Definition. • A bunch of vectors $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_p}$ is called <i>orthogonal</i> if they are
$ullet$ Orthogonal vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_p}$ are called <i>orthonormal</i>
Grenogorial vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p$ are called <i>Grenomormus</i>
Example 3. Let $\mathbf{x_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Are they orthonormal?

Let $\mathcal{B} := (\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n})$ be an orthonormal basis for \mathbb{R}^n , so a basis consisting of unit vectors that are all perpendicular. Let \mathbf{x} in \mathbb{R}^n . Is there an easy way to find the coordinate vector $\mathbf{x}_{\mathcal{B}}$: ie. find c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \dots + c_n \mathbf{u_n}.$$

Example 4. $\mathbf{u_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{u_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an orthonormal basis for \mathbb{R}^2 . Let $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
Solution.
Theorem 1. Let $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ be non-zero and mutually orthogonal. Then $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$
are linearly independent.
Solution.

3 Orthogonality and the Fundamental subspaces

Example 5. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$
. Find $Nul(A)$ and $Col(A^T)$.

Solution.

Example 6. Repeat for $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

Solution.

4 Fundamental Theorem of Linear Algebra (Revisited)

Definition. Let W be a subspace of \mathbb{R}^n and $\mathbf{v} \in \mathbb{R}^n$.

- **v** is **orthogonal** to W if $\mathbf{v} \cdot \mathbf{w} = 0$ for all $\mathbf{w} \in W$. (\iff **v** is orthogonal to each vector in a basis for W.)
- Another subspace V is **orthogonal** to W if every vector in V is orthogonal to W.
- The **orthogonal complement** of W is the space W^{\perp}

Example 7. Let $V = \operatorname{Span} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $W = \operatorname{Span} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Is $V \perp W$? Is $V^{\perp} = W$?

Example 8. In the last example, $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$. We found that

$$Nul(A) = span \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}, \quad Col(A^T) = span \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

are orthogonal subspaces. Indeed, Nul(A) and $Col(A^T)$ are orthogonal complements. Why?

Solution.

Remark. In the last example, Nul(A) and Col(A) both happen to be subspaces of \mathbb{R}^3 (because A was a square 3×3 matrix).

$$Nul(A) = span \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}, \quad Col(A) = span \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

However, these spaces are **not** orthogonal. Why?

Solution.

Theorem 2. Let A be an $m \times n$ matrix of rank r.

•
$$dim\ Col(A) = r$$
 (subspace of \mathbb{R}^m)

•
$$dim\ Col(A^T) = r$$
 (subspace of \mathbb{R}^n)

•
$$dim\ Nul(A) = n - r$$
 (subspace of \mathbb{R}^n)

•
$$dim \ Nul(A^T) = m - r$$
 (subspace of \mathbb{R}^m)

•
$$Nul(A)^{\perp} = Col(A^T)$$
 (both subspaces of \mathbb{R}^n) Note that $dim\ Nul(A) + dim\ Col(A^T) = n$.

•
$$Nul(A^T)^{\perp} = Col(A)$$

Example 9. Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
.

