Project Overview

CO Detector

Project Overview

TGS5342 Carbon Monoxide Sensor

Reference Circuit

Carbon Monoxide Detector (Marine)

Safety Certifications

System Diagram

Generic Data Acquisition System

System Diagram

CO Detector Black Box

CO Detector System Diagram

CO Sensor Circuit

Sensor Equivalent Circuit

Simple Single-Ended Op-Amp Circuit

Signal Path Implementation

Signal Path Implementation Improvements

Signal Path Implementation Improvements

Guarded Traces

Example In-Amp with Guarded Inputs

Image: https://www.ti.com/lit/ds/sbos034/sbos034.pdf?ts=1588264952402

INA116

Ultra Low Input Bias Current INSTRUMENTATION AMPLIFIER

FEATURES

- LOW INPUT BIAS CURRENT: 3fA typ
- BUFFERED GUARD DRIVE PINS
- LOW OFFSET VOLTAGE: 2mV max
- HIGH COMMON-MODE REJECTION: 84dB (G = 10)
- LOW QUIESCENT CURRENT: 1mA
- INPUT OVER-VOLTAGE PROTECTION: ±40V

DESCRIPTION

The INA116 is a complete monolithic FET-input instrumentation amplifier with extremely low input bias current. *Difet** inputs and special guarding techniques yield input bias currents of 3fA at 25°C, and only 25fA at 85°C. Its 3-op amp topology allows gains to be set from 1 to 1000 by connecting a single external resistor.

Guard pins adjacent to both input connections can be used to drive circuit board and input cable guards to

Signal Path Implementation Improvements

Analog Ground Plane

Image: https://www.analog.com/media/en/training-seminars/design-handbooks/designers-guide-instrument-amps-chl.pdf

Image: https://www.teledyne-e2v.com/content/uploads/2014/09/Board-Layout.pdf

Decoupling Caps with Complimentary Frequency Response

Isolation of Analog and Digital Ground Return Current

Non-Ideal Capacitors

Images: https://www.analog.com/en/analog-dialogue/studentzone/studentzone-may-2017.html

Signal Path Implementation Improvements

Self Test

Sensor Circuit

Mechanical relay enables connection to self-test current source.

ADC

Physical Restrictions

Cypress PSoC1 CY8C24223A

DELSIG8 8-Bit Delta Sigma ADC

Time [s]

Physical Restriction: Power

Restriction	Value	Units
Energy capacity of two AA batteries	7.8	Wh
Energy capacity of two AA batteries (90% efficiency)	7.0	Wh
Current capacity at 3.3V	2.1	Ah
MCU current draw while active	6.0	mA
MCU current draw while in sleep	25	uA
Minimum interval between battery replacements	1	year
Max seconds with MCU active	1.15E+06	sec
Min seconds with MCU in sleep	30.39E+06	sec
Percent active	3.6	%

Time [s]

Physical Restriction: Time

Restriction	Value	Units
Minimum ADC sample conversion time 31.25		us
Minimum MCU wake + sample time (estimated) 100		us
Sleep time (from ratio)	2.74	ms
Minimum sample interval time (100us + 2.74ms) 2.75 m		ms
Maximum sample rate	352	Hz

Time [s]

Sampling Rate & Nyquist-Shannon Theorem

Anti-Aliasing Option 1: Precision Analog

High-order analog "anti-aliasing" filter before ADC

Anti-Aliasing Option 2: Oversampling

Low-order analog "anti-aliasing" filter before ADC

High-order digital filter after ADC

Decay time-constant for stable sensor reading:

 $\tau \approx 10 \text{ seconds}$ $f \approx 0.1 \text{ Hz}$

Signal Band of Interest

Image: https://www.figaro.co.jp/en/product/docs/tgs5141-p00_technical%20infomation%28en%29_rev05.pdf

Sensor Curves from Datasheet

Physical Restriction: Resolution

Restriction	Value	Units
ADC bit resolution	8	bit
Band of interest	0.3	Hz
Maximum sample frequency	352	Hz
Percent size of least significant bit (1 / 2^8)	0.39	%
Amplitude of least significant bit	-48	dB

Digital Signal Processing

FIR vs. IIR Filters

Finite Impulse Response (FIR)

- Function of input only: unconditionally stable.
- High-order FIR filters require large number of taps.
- Introduces larger phase delay than IIR filter.

Infinite Impulse Response (IIR)

- Function of both input and output; can be unstable.
- High-order FIR filter requires low number of taps.

Digital Signal Processing

FIR Filter

Moving Average Filter

- Simplest FIR filter.
- Flat time-domain response.

Image:https://ptolemy.berkeley.edu/eecs20/week12/freqResponseRA.html

Windowed Sinc Filter

 Coefficients of a sinc function scaled by a window function.

Image: https://tomroelandts.com/articles/how-to-create-a-simple-low-pass-filter

Logic Implementation

Logic Implementation

CO Detector Algorithm

0 ppm	Recommended Safe Level
6 ppm	WHO 24 Hour Average
9 ppm	ASHRA 8 Hour Average EPA 8 hour 8 Hour Average NAAQS 8 Hour Average WHO 8 Hour Average
25 ppm	ACGIH 8 Hour Average
30 ppm	WHO 1 Hour Average
35 ppm	NIOSH 8 Hour Average NAAQS 1 Hour Average
50 ppm	OSHA 8 hour Average (PEL)
30-69 ppm	UL 30 Day Alarm
87 ppm	WHO 15 Minute Average
70-149 ppm	UL 1-4 Hour Alarm
200 ppm	NIOSH 15 minute STEL
150-399 ppm	UL 10-50 Minute Alarm
400+ ppm	UL 4 Minute Alarm
800 ppm	
1,600 ppm	
3,200 ppm	
6.400 ppm	
12,800 ppm	

Image: https://gaslab.com/blogs/articles/carbon-monoxide-levels-chart

Review & Questions