

SUPERVISED LEARNING - CLASSIFICATION

GLOSSARY

- Supervised
- Unsupervised
- Reinforcement Learning
- Regression
- Overfitting
- Underfitting
- Learning Rate
- Loss Function

- Feature Engineering
- Normalisation
- Regularisation
- Trainen van een model

WAT IS CLASSIFICATIE?

genture 1 inguls

lales targets joutputs

Supervised learning

Input omzetten naar klasse

Classifier genoemd

Regressor = model dat
regressie doet

WAT IS CLASSIFICATIE?

Gezichtsherkenning

Geschriftherkenning

Kwaliteitscontroles

Medische diagnoses

TYPES CLASSIFIERS - BINARY

Twee verschillende klassen

Rlane A of Rlane B

Voorboold: Goods of clasket I III III III Voorbeeld: Goede of slechte kwaliteit, man of vrouw, Goed- of kwaadaardig

TYPES CLASSIFIERS - MULTICLASS

N>2 verschillende klassen (maar 1 mogelijk voor elke input)

Voorbeeld: Gezichtsherkenning (1 klasse per persoon), Hondenrasherkenning, ...

TYPES CLASSIFIERS - MULTILABEL

N>2 verschillende klassen maar meerdere mogelijk per input

Voorbeeld: Beeldherkenning, Meerdere genres mogelijk voor een film, ...

Binary Classification

- Spam
- · Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish

KAN HET MET LINEAIRE REGRESSIE?

		name	diameter	weight	red	green	blue
name							
grapefruit	9995	grapefruit	15.35	253.89	149	77	20
	9996	grapefruit	15.41	254.67	148	68	7
	9997	grapefruit	15.59	256.50	168	82	20
	9998	grapefruit	15.92	260.14	142	72	11
	9999	grapefruit	16.45	261.51	152	74	2
orange	0	orange	2.96	86.76	172	85	2
	1	orange	3.91	88.05	166	78	3
	2	orange	4.42	95.17	156	81	2
	3	orange	4.47	95.60	163	81	4
	4	orange	4.48	95.76	161	72	9

KAN HET MET LINEAIRE REGRESSIE?

KAN HET MET LINEAIRE REGRESSIE?

Ongebalanceerde klassen

=> Geen lineaire regressie mogelijk

CLASSIFICATION - MULTICLASS

CLASSIFICATION – ONE VS ALL

multiclas clanifica CLASSIFICATION – ONE VS ONE -> altjol een antwoord -> maar man classifier ,

VOORBEELD CONFUSION MATRIX

Je wilt vissen uit een vijver waar ook flessen in drijven

- In totaal 8 vissen en 4 flessen

Na het vissen heb je 8 vissen en 1 fles opgevist

Hoe goed is je resultaat?

CLASSIFICATIE - EVALUATIE

Accuraatheid
$$\frac{\sqrt[6]{2}}{\sqrt{2}}$$

Precisie
$$\frac{TP}{TP+FP}$$
Specificiteit $\frac{TN}{TN+FP}$

Recall
$$\frac{TP}{TP+FN}$$

F1-Score
$$2\frac{Precisie*Recall}{Precisie+Recall} = \frac{2TP}{2TP+FP+FN}$$

True Class

True Class		
Positive	Negative	
6 TP	FP /	
2 FN	TN 3	

https://towards datascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9 aa 3 bf7826

Predicted (

VOORBEELD CONFUSION MATRIX

Accuraatheid = 9/12 + 34

Sensitiviteit/Recall = 6/8

- Weinig positieve samples gemist

Specificiteit = 3/4 -> negatione

- Weinig negatieve samples gemist

Precision = 6/7 - in de positref voorspelde ruten er roveel

- Weinig negatieve samples als positieve geclassificeerd

WANNEER WELKE METRIEK GEBRUIKEN?

- Precision
 - Als de kost van een false positive hoog is
 - Spam detectie: verlies van een mail is erger dan een mogelijke spam mail doorlaten
- Recall
 - Als de kost van een false negative hoog is
 - Fraude detecteren of corona testen: Het is beter er een aantal te veel te detecteren dan besmettingen te negeren

WANNEER WELKE METRIEK GEBRUIKEN?

- Accuracy
 - Kijkt naar alle voorbeelden
 - Combinatie van precision en recall maar houdt geen rekening met gebalanceerdheid van de Kanbertest -7 9, 1%. Deeft Bonker -> test regtaltijt gen Bonker-> ace 99,9% dataset
- F1-score
 - Combinatie van precison en recall rekening houdend met de gebalanceerdheid van de dataset
 - Gebruik deze als je dataset niet gebalanceerd is en zowel precision als recall belangrijk is

Dortaset

-> 12 apples

-> 12 oronges

-> 13 manyos

		True Class	;
	Apple	Orange	Mango
lass Apple	7	8	9
Predicted Class ango Orange Apple	1	2	3
Prec Mango	3	2	1

au = 10

		True Class	L
	Apple	Orange	Mango
Procine all Apple	7	8 F.A	9 Fs
Victed C		2	3
Prec	Q Eh	2	1

Class	Precision	Recall	F1-score
Apple	7/24 0.29	7 170.64	0.40
Orange	2/6 0.33	2/120.17	0.22
Mango	1/ 0.17	1/20.08	0.11

Porblame micro L- globraal: { macro weighted

Micro-F1 (Precision/Recall)

Bereken totaal aantal TP/TN/...

Bereken hieruit de nodige metrieken

•
$$Total\ TP = (7+2+1) = 10$$

•
$$Total FP = (8+9)+(1+3)+(3+2) = 26$$

•
$$Total FN = (1+3)+(8+2)+(9+3) = 26$$

	True Class			
	Apple	Orange	Mango	
lass Apple	7	8	9	
Predicted Class ngo Orange App	1	2	3	
Prec Mango	3	2	1	

Doordat er geen verschil is tussen P en N bij Micro scores

Precision = Recall = Micro F1 = Accuracy

0,257

Macro-F1 (Precision/Recall)

Class	Precision	Recall	F1-score
Apple	0.29	0.64	0.40
Orange	0.33	0.17	0.22
Mango	0.17	0.08	0.11

Bereken per klasse TP/TN/...

Neem gemiddelde van de scores van elke klasse

Gemiddelde is unweighted

Voor Apple:

•
$$TP = 7$$

•
$$TN = (2+3+2+1) = 8$$

•
$$FP = (8+9) = 17$$

•
$$FN = (1+3) = 4$$

https://towards datascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9 aa 3 bf7826 and the state of the sta

Weighted-F1 (Precision/Recall)

Class	Precision	Recall	F1-score
Apple	0.29	0.64	0.40
Orange	0.33	0.17	0.22
Mango	0.17	0.08	0.11

Weighted average in macro F1

11-0,4 + 12.	0,22+13.0,11
	6

	True Class		
	Apple	Orange	Mango
lass Apple	7	8	9
Predicted Class ngo Orange App	1	2	3
Prec Mango	3	2	1

Micro - F1: Globale waarden

Macro – F1: Gemiddelde F1 – scores

Weighted F1: Gew. Gemiddelde
- Gewichten = # samples

Class	Precision	Recall	F1-score
Apple	0.29	0.64	0.40
Orange	0.33	0.17	0.22
Mango	0.17	0.08	0.11

GLOSSARY

- Classificatie
- Binary classifier
- Multi-class classifier
- Multi-label classifier
- True/False Positive/Negative
- Accuraatheid / Specificiteit / ...

- One-vs-All
- One-vs-One
- Confusion matrix