סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

1	
	מטריצות דומות 1.1
2	לכסון
	2.1 וקטורים עצמיים
	פולינום אופייני
3	

1 דברים חשובים מלינארית 1

1.1 מטריצות דומות

 $A=P^{-1}\cdot B\cdot P$ יהיו $A,B\in M_n\left(\mathbb{F}
ight)$ היו דומות אם קיימת מטריצה ו־B דומות כי $A,B\in M_n\left(\mathbb{F}
ight)$ משפט: נתון $A,B\in M_n\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

- . דומות A, B
- $[T]_C=A,[T]_{C'}=B$ של על כך ש־C,C' ובסיסים T:V o V פיימת .2
- $[T]_{C'}=B^{-}$ ע כך של C' סיים בסיס אז קיים על עכך עד ער כך עד ער כך עד ער אז קיים בסיס אז לכל T:V o V.

ואם A,B דומות אז:

- $.\operatorname{Rank}(A) = \operatorname{Rank}(B), \mathcal{N}(A) = \mathcal{N}(B) . \mathbf{1}$
- .tr $(A)=\sum_{i=1}^{n}{(A)_{i,i}}$ באשר $\operatorname{tr}(A)=\operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

2 לכסון

נגדיר מטריצה אלכסונית להיות מטריצה ריבועית $A\in M_n\left(\mathbb{F}\right)$ שבה עבור להיות מטריצה להיות מטריצה היבועית לחיות מטריצה ריבועית היבועית Diag $(\lambda_1,\dots,\lambda_n)$

מטריצה לכסינה היא מטריצה שדומה למטריצה אלכסונית, ו
העתקה לכסינה היא מטריצה שדומה למטריצה אלכסונית. בסי
ס $[T]^B_B$ אלכסונית.

אם T העתקה לכסינה (כלומר מטריצה מייצגת כלשהי לכסינה) אז כל מטריצה מייצגת שלה היא לכסינה.

1.1 וקטורים עצמיים

נגדיר נגדיר עצמי של A לערך עצמי להיות \overline{v} כך ש־ \overline{v} . באופן הפוך, ערך עצמי של A לערך עצמי להיות \overline{v} להיות לערך עצמי לארך עצמי לערך עצמי לערך עצמי לארך עצמי לערך עצמי לארך עצמי ליים וקטור עצמי לארך עצמי לארך עצמי ליים וקטור עצמי לארך עצמי ליים ו

הערכים העצמיים הם האיברים שנמצאים על האלכסון במטריצה האלכסונית שדומה ל-A, עד כדי סידורם על האלכסון.

המרחב של הוקטורים העצמיים הוא $V_{\lambda}=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של המרחב של הוקטורים העצמיים הוא $V_{\lambda}=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של .V

. הסכום של ה־ V_{λ} השונים הוא סכום ישר

2.2 פולינום אופייני

נסמן ב־ $|\lambda I - A|$ את הפולינום האופייני של $P_A(\lambda) = |\lambda I - A|$. מתקיים:

- זה פולינום מתוקן, כלומר המקדם המוביל הוא 1.
 - $P_A(\lambda)$ שורש של $\lambda \iff A$ שורש של $\lambda \bullet$
 - $.P_A=P_B$ אם A,B דומות אז

 $A\in M_{n}\left(\mathbb{F}
ight)$ משפט 1.2 משפט המרכזי: תהא

נגדיר את $(\lambda-\alpha)$ מופיע בפולינום ($\lambda-\alpha)$ להיות כמות הפעמים (רו), להיות $(\lambda-\alpha)$ מופיע בפולינום (ρ_{α} , ρ_{α} , ρ_{α} (רו), להיות כמות הפעמים ש־ $(\lambda-\alpha)$ מופיע בפולינום $(\lambda-\alpha)$ אם הפולינום הוא $(\lambda-\alpha)$ אם הפולינום הוא $(\lambda-\alpha)$ או $(\lambda-\alpha)$ או $(\lambda-\alpha)$ או בפולינום הוא $(\lambda-\alpha)$

 $\dim(V_{\lambda})$ להיות להיות , μ_{λ} , α להיות הגיאומטרי את בנוסף נגדיר את

:מעל \mathbb{F} אמ"ם: A

- \mathbb{F} מתפרק לגורמים לינאריים מעל $P_{A}\left(\lambda\right)$.1
 - $.
 ho_{\lambda}=\mu_{\lambda}$,A של λ ערך עצמי.

 $\mu_{\lambda} \leq \rho_{\lambda}$, משפט 2.2 לכל ערך עצמי,

משפט 3.2 עבור $P_A(\lambda)$ מתפרק לגורמים לינאריים אז $\rho_{\lambda_1}+\ldots+\rho_{\lambda_k}\leq n$ משפט $\lambda_1,\ldots,\lambda_k$ מתפרק לגורמים לינאריים אז $.\rho_{\lambda_1}+\ldots+\rho_{\lambda_k}=n$ גם

A שמורכב מוקטורים עצמיים של $B\subseteq \mathbb{F}^n$ פיים בסיס היים לכסינה לכסינה לכסינה אורכב מוקטורים עצמיים של

3 אינווריאנטיות

תהא $T:V \to U$ אם אם (ד-שמור) נקרא נקרא לינארית, תת מרחב ע $U\subseteq V$ מרחב מרחב לינארית, תת מרחב אונן שקול אם $T:V \to V$ אונן שקול אם T מצומצם ל־U ט"ל.

. λ לכל V_{λ} ו ו
י $\ker\left(T\right),Im\left(T\right)$ הן לכל לכל לכל אינווריאנטים הן למרחבים למרחבים למרחבים ל

 $W_1,W_2
eq \{\overline{0}\}$ בנוסף נגדיר תת מרחב T־אינווריאנטי להיות תת פריק להיות עובריק עובריק עובריק להיות תת מרחב $U=W_1 \oplus W_2$ בנוסף נגדיר תת מקיימים $U=W_1 \oplus W_2$

מטריצה מייצגת: אם $U\subseteq V$ אינווריאנטי, יהי B בסיס של U. יהי C השלמה לבסיס של U. אינווריאנטי, יהי U בסיס של U יהי U השלמה לבסיס של U יהי U המקדמים שלמטה לא מופיעים בU ולכן גם לא בתמונה של U (כי U ולכן גם לא בתמונה של U יהי מוכלת בU.

$$.[T]_{B_1 \cap B_2} = \left(egin{array}{c|c} [T\lceil_U]_{B_1} & 0 & 0 \\\hline 0 & [T\lceil_U]_{B_2} \end{array}
ight)$$
 ואם $V=U_1 \oplus U_2$ כאשר $V=U_1 \oplus U_2$ האינ הפולינום אז P_{T} מחלק את P_{T} , ואם $V=U_1 \oplus U_2$ עבור $V=U_1 \oplus U_2$ אינ הפולינום אז P_{T} מחלק את P_{T} , ואם P_{T} ואם אוי הפולינום אינוריאנטיים אז P_{T} מחלק את P_{T} ואם אוי ביינוריאנטיים אז P_{T} אינ הפולינום אוי ביינוריאנטיים אז P_{T} ואם אוי ביינוריאנטיים אז P_{T} ואם אוי ביינוריאנטיים אז ביינוריאנטיים אז P_{T} ואם ביינוריאנטיים אז ביינוריאנטיים אונייאנטיים אונייאנטייט אונייאנטיים אונייאנטיים אונייאנטיים אונייאנטיים אונייאנטיים אונייאנטיים אונייאנטיים אונייט אונייאנטיים אונייטיים אונייאנטיים אונייאנטיים אונייאנטיים אונייטיים אונייאנטיים אונייאנטיים אונייטיים אונייאנטיים אונייאנטיים אונייטיים אונייטיטים אונייטיים אונייטיט

 $P_T=P_{T\lceil_{U_1}}\cdot P_{T\lceil_{U_2}}$ אזי הפולינום $P_{T\lceil_{U_2}}$ מחלק את $P_{T\lceil_{U_1}}$, ואם $P_{T}=V_1$ עבור $P_{T}=V_2$ עבור $P_{T}=V_2$ מחלינום אז $P_{T}=V_2$ מחלינום בנוסף באופן מוכלל אם $P_{T}=V_1$ כאשר כל $P_{T}=V_2$ הוא $P_{T}=V_3$ הוא $P_{T}=V_4$ מתקיים $P_{T}=V_4$ מתקיים $P_{T}=V_4$ מחלינו וויישור אונטי אז יהי הבסיס וויישור אונטי איז יהי הבסיס וויישור וויישור אונטי איז יהי הבסיס וויישור וויישור אונטי איזי וויישור וו