Assessing the clinical utility of cancer genomic and proteomic data across tumour types

Yuan et al, 2014

Karina Isaev Journal Club, January 22nd

Introduction

- Systematic study integrating molecular data with clinical variables
- Retrospectively predict patient survival
- Build reliable prognostic and therapeutic methods that incorporate patient molecular data

Clinical Utility of TCGA Data

- Improve accuracy of prognosis
 - Stratify patients into risk groups to provide best treatment and surveillance strategies
- Age and tumour stage are common clinical prognostic variables
 - Can we incorporate molecular data to improve prognosis?

Molecular Biomarkers

- ER, PR, HER2 protein levels and HER2 amplification in breast cancer
 - Small number of selected genes studied using limited platforms
- Patients getting selected for clinical trials based on presence of mutation
 - Current studies: catalogue alterations in clinically actionable genes

Purpose of Study

- Address how and to what degree, TCGA molecular data could impact oncology practice
- Prognostic Utility
 - Predict patient survival using various types of highthroughput molecular data across tumours
- Therapeutic Utility
 - Identify spectrum of somatic alterations in clinically actionable genes to eventually improve treatment selection

Purpose of Study

- Evaluate performance of SCNA, DNA methylation and mRNA, microRNA and protein expression alone or in combination with clinical variables in predicting survival
- Investigate spectrum of potentially actionable clinical alterations across 12 tumour types

Establishing Data Sets

- 4 cancer types (KIRC, GBM, OV, LUSC)
 - TCGA datasets with survival information and enough samples characterized by multiple molecular data
- **SCNA**: ~ 100 arm of focal alterations SNP Array
- **DNA Methylation**: ~20,000 genes microarray
- mRNA Expression ~ 20,000 genes
- miRNA Expression > 500 microRNAs
- **Protein Expression** ~ 170 proteins (reverse phase protein array)

Core sample set: each sample has information for survival time, clinical variables

and at least 4/5 types of

molecular data

- 1. For each core set, applied Monte Carlo cross-validation to assess the predictive power of each molecular data type and clinical variables
 - Concordance Index (C-index), nonparametric measure to quantify the discriminatory power of predictive model
 - C-index = 1 indicates perfect prediction accuracy
 - C-index = 0.5 as good as random guess
- Compiled candidate features and randomly split the core set into training and test sets 100 times

1. C-index

- Rank order statistic for predictions against true outcomes
- Ratio of the concordant pairs to the total comparable pairs
- When comparing two people in a pair, one with longer survival time should have lower HR = concordance

- 3. Predictive model built from training set using:
 - Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)
 - 2. Random survival forest (RSF)
- 4. Predictive models integrating molecular data (both gene-level and molecular subtype features) and clinical data

- 3. Predictive model built from training set using:
 - 1. Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)
 - 2. Random survival forest (RSF)
- 4. Predictive models integrating molecular data (both gene-level and molecular subtype features) and clinical data

Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)

Cox model is expressed by the hazard function:

$$h(t) = h_0(t) \times exp(b_1x_1 + b_2x_2 + \dots + b_px_p)$$

- h0 is the baseline hazard corresponding to the hazard if all the variable coefficients are set to 0
- exp(bi) are the hazard ratios (HR)
- A covariate with HR > 1 is called a bad prognostic factor
- A covariate with HR < 1 is called a good prognostic factor

Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)

- LASSO forces the sum of absolute value of regression coefficients to be less than a fixed value
- · Forces some coefficients to be zero, allowing for a simpler model
- Performs both variable selection and regularization

- 3. Predictive model built from training set using:
 - Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)
 - 2. Random survival forest (RSF)
- Predictive models integrating molecular data (both gene-level and molecular subtype features) and clinical data

- 3. Predictive model built from training set using:
 - Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)
 - 2. Random survival forest (RSF)
- 4. Predictive models integrating molecular data (both gene-level and molecular subtype features) and clinical data

Random survival forest (RSF)

- Randomization is introduced in two forms:
 - Randomly drawn bootstrap sample of the data is used to grow a tree
 - At each node of the tree, randomly selected subset of variables chosen as candidate variables for splitting
 - Maintains generalization

- 3. Predictive model built from training set using:
 - Cox-proportional hazards model with L1 penalized log partial likelihood (LASSO, feature selection)
 - 2. Random survival forest (RSF)
- 4. Predictive models integrating molecular data (both gene-level and molecular subtype features) and clinical data

KIRC ($N_{\text{total}} = 243$)

Median Somers' D = 4.0%, 7.4%, 2.2%

$$OV (N_{total} = 379)$$

Figure 1

GBM ($N_{\text{total}} = 210$)

Figure 1

LUSC ($N_{\text{total}} = 121$)

Biological Insights from top-performing prognostic models

- Molecular data in five integrative models conferred additional prognostic power
 - In 4/5, only non-clinical contributor feature was the molecular subtype derived from expression
 - Used consensus non-negative matrix factorization (NMF)
 - "Molecular subtypes can be regarded as higher-level assemblies of individual gene features and therefore may act as a more robust predictor than an individual marker"

Biological Insights from top-performing prognostic models

Biological Insights from top-performing prognostic models

pMEK1 and pMAPK top markers expressed at higher levels in patients with shorter survival (clusters 2+3)

low DNA repair in clusters 2+3

Patient survival prediction using crosstumour models

Figure 3

Somatic Alterations in Clinically Relevant Genes

- Final assessment of therapeutic utility using TCGA data
- Analyzed somatic mutations and indels in 3,277 patients across 12 tumour types
- Scored the clinical importance of each alteration in 121 <u>clinically relevant</u> genes
 - Somatic alteration may predict response to therapy or have diagnostic or prognostic relevance
 - Highlight that "relevant" != driver
 - Majority of these genes remain of uncertain clinical significance and require further evaluation

b

- Mutation —> Mutation specific therapy
- "tail" of low frequency alterations

Figure 5

Discussion

 One key issue author described —> statistical significance versus magnitude difference

Limitations:

- Purely data-mining approaches to prognostic modelling versus candidate gene approach driven by some prior knowledge
- Did not analyze somatic mutation presence for prognostic utility since sparse across cohorts
- Combining multiple types of data —> overfitting?
- Feature selection methods

Figure 4: Predictive performance of clinical variables, molecular data and their combination on dichotomized survival data.

