TXIXI TO 4	\mathbf{L}	T	P	C
IV Year - I Semester	4	0	0	3

FINITE ELEMENT METHODS

(Elective – I)

Course Learning Objectives:

The objective of this course is:

- Equip the students with the fundamentals of Finite Element Analysis
- Enable the students to formulate the design problems into FEA.
- Enable the students to solve Boundary value problems using FEM

Course Outcomes:

Upon completion of the course, the student will be able to

- Solve simple boundary value problems using Numerical technique of Finite element method
- Develop finite element formulation of one and two dimensional problems and solve them.
- Assemble Stiffness matrices, Apply boundary conditions and solve for the displacements
- Compute Stresses and Strains and interpret the result.

SYLLABUS:

UNIT-I Introduction: Review of stiffness method- Principle of Stationary potential energy-Potential energy of an elastic body- Rayleigh-Ritz method of functional approximation.

UNIT-II Principles of Elasticity- Equilibrium Equations- Strain Displacement relationships-Constitutive relationship for plane stress, plane stain and axi symmetric bodies of revolution with axi symmetric loading.

UNIT-III Finite Element formulation of truss element: Stiffness matrix- properties of stiffness matrix –Selection of approximate displacement functions- solution of a plane truss-transformation matrix- Galerkin's method for 1-D truss – Computation of stress in a truss element.

UNIT-IV Finite element formulation of Beam elements: Beam stiffness- assemblage of beam stiffness matrix- Examples on Analysis of beams Subjected to Concentrated and Distributed loading.

UNIT-V Finite element formulation for plane stress and plane strain problems- Derivation of CST and LST stiffness matrix and equations-treatment of body and surface forces

UNIT-VI Iso-parametric Formulation: An isoparametric bar element- plane bilinear isoparametric element – quadratic plane element - shape functions, evaluation of stiffness matrix, consistent nodal load vector - Gauss quadrature for performing numerical integrations.

Text Books

- 1. A first course in the Finite Element Method, Daryl L. Logan, Thomson Publications.
- 2. Introduction to Finite Elements in Engineering, Tirupati R. Chandrupatla, Ashok D. Belgundu, PHI publications.,
- 3. Introduction to Finite Element Method, Desai & Abel CBS Publications

References:

1. Concepts and applications of Finite Element Analysis, Robert D. Cook, Michael E Plesha, John Wiley & sons Publication