

Atividade: Menino Gauss

#### Habilidades

EM12MT09 Reconhecer função quadrática e suas representações algébrica e gráfica, compreendendo o modelo de variação determinando domínio, imagem, máximo e mínimo, e utilizar essas noções e representações para resolver problemas como os de movimento uniformemente variado.

### Para o professor

# Objetivos específicos

OE1 Reconhecer a função quadrática na expressão que dá a soma dos primeiros termos de uma progressão aritmética.

OE2 Resolver o problema de somar os primeiros termos de uma progressão aritmética com as ferramentas da função quadrática.

#### Atividade

No livro Antologia Matemática de Malba Tahan, conta um episódio cuja personagem principal seria o "príncipe da matemática" Carl Frederick **Gauss** ( $\star$ 1777 - †1855). Não se sabe se o episódio é real, mas conta-se que aos sete anos de idade, chegando para mais um dia de aula, Gauss e seus colegas teriam encontrado o professor com pouca paciência. Assim, o professor, com o intuito de entreter seus alunos por longo tempo e não precisar dar-lhes qualquer atenção, pediu para que todos somassem os números naturais desde 1 até 100. Contudo, o jovem Gauss em pouco tempo levou o resultado do exercício para o professor e este, incrédulo do feito, teria mandado Gauss para a direção. Mais tarde, tudo se esclareceu e o professor reconheceu o acerto no método e no resultado dado pelo jovem e desculpou-se.

Como o jovem Gauss teria obtido este resultado por um método aparentemente desconhido do enfurecido professor e com tanta rapidez?

Com a finalidade de responder a essa pergunta sugerimos uma atividade. Ela necessitará de uma fita métrica.



Figura 1: Imagem de Pastorius CC-BY

Realização: OLIMPÍADA BRASILEIRA Patrocínio:



Como as fitas métricas comercializadas tem um tamanho padrão, em nossa atividade vamos entender como o jovem *Gauss* fez a soma começando por somar os números da fita métrica, ou seja, vamos começar resolvendo a expressão

$$1+2+3+4+5+\cdots+147+148+149+150$$

- a) De posse da fita métrica, perceba que ela tem os dois lados numerados. Cada um desses lados tem todos os números que queremos somar?
- b) Qual o número que corresponde ao verso (outro lado da fita) do número 1? E quais são os números dos versos correspondentes de 18 e 75?
- c) Agora, vamos fazer algumas somas de um número com o seu correspondente no verso da fita. Faça:
  - I) 1+ seu correspondente;
  - II) 15+ seu correspondente:
  - III) 31+ seu correspondente;
  - IV) 49+ seu correspondente;
  - V) 75+ seu correspondente.
- d) Qual o resultado obtido sempre que se soma um número com o seu correspondente no verso desta fita?
- e) Com base na resposta do item anterior, qual o resultado da soma de todos os números dos dois lados dessa fita?
- f) A soma de todos os números em ambos os lados da fita é o resultado que queríamos obter?
- g) Que operação devemos fazer com a soma de todos os números da fita para que ele seja o resultado da expressão

$$1+2+3+4+5+\cdots+147+148+149+150$$
?

Qual é o valor dessa expressão?

h) Imagine agora uma outra fita que tenha em cada lado, todos os números de 1 até 100.



Utilizando o mesmo raciocício, tente responder a mesma pergunta feita para a turma do jovem *Gauss*, ou seja, quanto dá  $1+2+3+\cdots+97+98+99+100$ ?

i) E se a fita fosse até o número natural n?



Realização:

77 OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

Com o que foi aprendido, obtenha uma expressão para o resultado da soma dos n primeiros números naturais. Ou seja, tente expressar em função de n, o resultado de  $1+2+3+4+5+\cdots+(n-3)+(n-2)+(n-1)+n$ .

# Solução:

- a) Sim.
- b) 150; 133 e 76.
- c) l) 1 + 150 = 151;
  - ||) 15 + 136 = 151;
    - III) 31 + 120 = 151;
    - |V| 49 + 102 = 151;
    - $\forall) 75 + 76 = 151.$
- d) 151.
- e)  $150 \cdot 151 = 22650$ .
- f) Não.
- g) Devemos dividir a soma obtida por 2;  $22650 \div 2 = 11325$ .
- h) As somas de cada número com seu correspondente no verso dá, agora, 101. Com isso, a soma de todos os números de ambos os lados dessa fita será  $100 \cdot 101$  e  $(100 \cdot 101) \div 2 = 10100 \div 2 = 5050$ .
- i) As somas de cada número com seu correspondente no verso dá, agora, n+1. Com isso, a soma de todos os números de ambos os lados dessa fita será  $n \cdot (n+1)$  e

$$1 + 2 + 3 + 4 + 5 + \dots + (n - 3) + (n - 2) + (n - 1) + n = \frac{n \cdot (n + 1)}{2} = \frac{n^2 + n}{2} = \frac{n^2}{2} + \frac{n}{2}$$



Patrocínio: