

BIG Thanks to SQLSatMadrid sponsors

devscope

Venue

About us

Pablo Corral

Data Scientist @ SolidQ

- Email: pcorral@solidq.com
- Twitter: @pcorral23
- LinkedIn: <u>https://www.linkedin.com/in/pablo-corral-llorca</u>

Pau Sempere

- Working with SQL Server since 2009
- Microsoft Machine Learning MCSA
- Mentor @ SolidQ
- Email: psempere@solidq.com
- Twitter: @pausempere
- LinkedIn: <u>https://www.linkedin.com/in/pausempere/</u>

Agenda

- What is Churn?
- In balance there is virtue
- KISS
- How did we get here?

Increasing customer retention rates by 5% increases profits by 25% to 95%

https://www.invespcro.com/blog/customer-acquisition-retention/

It costs five times as much to attract a new customer, than to keep an existing one

https://www.invespcro.com/blog/customer-acquisition-retention/

Key concepts about Churn

CLEAR DEFINITION

HISTORICAL DATA

CONTEXT

DEMO Basic Churn

Looking for a better model

Random forest has:

N_estimators

Max_Depth

Max_leaf_nodes

• • •

We need to find a better model exploring such combinations

DEMO Tuned Churn

Churn is an unlikely event

Extra techniques (algorithm based)

WEIGHT VECTORS

BALANCED EXPLORATION

DEMO Balanced Churn

KISS

KISS

Tree-based methods

Decision Trees

Random Forests

Boosted Trees (lightgbm, xgboost, rxFastTrees...)

GAIN COVER FREQUENCY

DISCARD THE LESS USED FEATURES

Recursive Feature Elimination

Different combinations of features are tried iteratively and

performance data is gathered

Requires an estimator (model)

DEMO A simpler Churn

How did we get here?

How did we get here?

Churn is a **business problem**

Business is key

If our model is ONLY precise, is not enough

Why do we need to interpret?

To understand the results we are receiving from our models

Debug and improve models

Avoid bias

Prescriptive analytics

What can we see?

Returned values

Regression

Classification

Measures Can we rely ONLY in measures?

Partial dependency plots

DEMO

Show me the model!

QUESTIONS?

THANK YOU!

