MSFC ANALYSES OF ISS AURORAL AND SOLAR ARRAY CHARGING ENVIRONMENTS AND EFFECTS

5th Space Weather & NASA Robotic Mission Operations Workshop

E. Willis and J. Minow

NASA, MSFC

Environment versus Operations

Space Weather Events

Space Weather Events
Space Environment
Solar Array Operations

Space Environment Solar Array Operations

Charging Mosaic

Floating Potential Measurement Unit (FPMU)

Instruments

FPP: Floating Potential Probe

WLP: Wide-sweep Langmuir Probe

NLP: Narrow-sweep Langmuir Probe

PIP: Plasma Impedance Probe

Sensor	Parameter	Rate (Hz)	Effective Range
FPP	V _F	128	-180 V to +180 V
WLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5x10 ¹² m ⁻³ 500 K to ~10,000 K -20 V to 80 V
NLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5x10 ¹² m ⁻³ 500 K to ~10,000 K -180V to +180 V
PIP	N	1	1.1x10 ¹⁰ m ⁻³ to 4x10 ¹² m ⁻³

[Wright et al., 2008; Barjatya et al., 2009]

ISS Solar Array Data

Normal Eclipse Exit Charging

Auroral Charging June 28 2013

Auroral Charging March 26 2008

joseph.minow@nasa.gov 11th SCTC, Albuquerque, NM 20-24 Sep 2010

[adapted from Craven et al., 2009]

Positive Charging Peaks

Normal Charging + Positive Peaks

Summary

- Analysis on-going to differentiate charging due to environment and operations
- Analysis requires a combination of FPMU data, ISS systems data, and other data sources.
- Results will be important for current ISS operations as well as future spacecraft programs

Backup

Applicable ISS Data

- Shunt currents
- SSU output current
- SSU Shunt Currents
- SSU/BCDU regulation handover
- Solar Array String Voltage
- BGA, SARJ Angles/Biasing

Types of ISS Charging

- Normal and Rapid Eclipse Exit
- Magnetic Induction
- Eclipse Entry
- Auroral
- Equatorial Depletions
- Docked Vehicles
- Positive Peaks
- Combination Peaks/Multi-Peaks
- Extreme Rapid Events (Shunt Experiments)

Floating Potential Measurement Unit (FPMU)

- FPMU instrument suite provides redundant measurements of plasma environments and vehicle charging along ISS orbit:
 - Ionosphere electron density, electron temperature, and ion density (WLP, NLP, PIP)
 - ISS floating potential and plasma potential (FPP, WLP, NLP)
 - ISS floating potential response to variations in space plasma environment (FPP, WLP, NLP)
 - Charging behavior due to electrical power system interactions with plasma environment (FPP, WLP, NLP)

ISS engineering applications:

- Characterizing US high voltage (160 V) solar array interactions with ionosphere plasma
- ISS charging due to visiting vehicles
- ISS charging due to energetic auroral electrons during geomagnetic storms
- US and Russian extravehicular activity (EVA) plasma hazard support
- Anomaly investigations

Science applications:

- Collaborative ionospheric research with other spacecraft and ground based facilities
- Incoherent scatter radar World Day periods
- ISS payload science support
- Validating empirical and physics based ionosphere models