Основы Мехатроники и Робототехники

Лекция 3

Описание кинематики механизма

Степени свободы механизма

Степень свободы (подвижности) механизма показывает, сколько надо задать независимых координат, чтобы характеризовать положение любого звена механизма относительно стойки.

Оценка степеней свободы необходима чтобы определить минимальное количество приводов для управления механизмом

Сингулярное положение механизма — особое положение, в котором невозможно определить один или несколько параметров кинематической конфигурации.

Частный случай – положение в котором количество степеней свободы механизма меняется.

Попадание в положение сингулярности усложняет управление механизмом. Такие положения следует избегать, предусматривать или использовать механизмы не имеющие сингулярных положений.

Формула Чебышёва — Граблера — Кутцбаха

Рассмотрим механизм, состоящий из N звеньев, причем земля также рассматриваетсякак звено.

Пусть J - количество стыков,

т - количество степеней свободы жесткого тела

(m = 3 для плоских механизмов и)

m = 6 для пространственных механизмов),

 f_i - количество степеней свободы, предоставляемых сочленением i,

 c_i - количество ограничений, предоставляемых сочленениемі,

где
$$f_i + c_i = m$$
 для всех i .

Тогда формула для количества степеней свободы робота имеет вид:

$$N_{dof} = m \cdot (N-1) - \sum_{i=1}^{J} c_i = m \cdot (N-J-1) + \sum_{i=1}^{J} f_i$$

Эта формула справедлива только в том случае, если все ограничения сочленений являются независимыми. Если они зависимы, то формула обеспечивает нижнюю границу для количества степеней свободы.

Используя формулу Чебышева можно определить возможности механизма

Скамья Чебышева

4 звена (считая землю), 4 сустава, каждый с одной степенью свободы

$$N_{dof} = m \cdot (N - J - 1) + \sum_{i=1}^{J} f_i =$$

$$= 3 \cdot (4 - 4 - 1) + 4 \cdot 1 =$$

$$= -3 + 4 = 1$$

Состояние механизма однозначно определяется любым одним суставом

Кривошип

3 звена (считая землю, направляющая считается частью сустава), 2 сустава, каждый с одной степенью свободы и 1 с двумя степенями

$$N_{dof} = m \cdot (N - J - 1) + \sum_{i=1}^{J} f_i =$$

$$= 3 \cdot (3 - 3 - 1) + (2 \cdot 1 + 1 \cdot 2) =$$

$$= -3 + 4 = 1$$

Цепь

5 звеньев (считая землю), 4 сустава, каждый с одной степенью свободы

$$N_{dof} = m \cdot (N - J - 1) + \sum_{i=1}^{J} f_i =$$

$$= 3 \cdot (5 - 4 - 1) + 4 \cdot 1 =$$

$$= 0 + 4 = 4$$

Состояние механизма определяется всеми суставами. Перемещение в каждом суставе по разному перемещает последний элемент

Пример с сингулярностью

Пятисвязная цепь

5 звеньев (считая землю), 5 суставов, каждый с одной степенью свободы

$$N_{dof} = m \cdot (N - J - 1) + \sum_{i=1}^{J} f_i =$$

$$= 3 \cdot (5 - 5 - 1) + 5 \cdot 1 =$$

$$= -3 + 5 = 2$$

Состояние механизма определяется парой суставов.

Сингулярное положение – при складывании суставов центральная часть может свободно вращаться.

Сингулярное положение – если центральный сустав будет в положении 180, механизм может продолжить движение в одном из двух направлений

Описание кинематической цепи Концепция

Сложный механизм будем рассматривать как цепь из звеньев соединенных суставами.

Каждое звено это твердое тело определяющее и фиксирующее взаимное расположение суставов

Для описания звена достаточно описать взаимное расположение его суставов

Каждый сустав это кинематическая пара с одной степенью свободы. Суставы с большими степенями свободы рассматриваются как одностепенные, соединенные звеньями нулевой длинны. Для описания сустава достаточно описать его ось вращения / смещения и начальное

Задача: Придумать максимально простое и однозначное описание звеньев и суставов

Описание взаимного расположения двух осей

Идея: Для описания объектов в пространстве удобно задействовать механизм описания систем координат. Т.е. каждой оси поставим в соответствие систему координат. Их взаимное положение будет описанием звена

Идея: Описание поворота СК звена вокруг шарнира будет наиболее простым если ось шарнира будет совпадать с одной из осей СК.

Для однозначности лучше чтобы все повороты были вокруг одноименных осей

Описание взаимного расположения двух осей

Идея: Две оси можно однозначно описать через кратчайший перпендикуляр и угол между осями. Такое описание будет единственным Исключение: если оси параллельны, перпендикуляров будет бесконечно много. Можно использовать любой.

Описание взаимного расположения двух осей

Идея: Описание $\mathbf{CK_i}$ на базе $\mathbf{CK_{i-1}}$ это описание поворота и сдвига $\mathbf{CK_{i-1}}$ Оператор поворота будет простейшим если ось поворота будет совпадать с ортом

Оператор сдвига будет простейшим (из одной переменной если сдвиг будет вдоль орта)

Для однозначности лучше чтобы орты вокруг которых выполняются все повороты и орты вдоль которых выполняются сдвиги были закреплены на уровне соглашения

Учет следующего звена

Идея: СК полученная путем поворота и сдвига СК_{i-1} вдоль ее ортов может не соответствовать положению кратчайшего перпендикуляра осей і и i+1 (следующего звена).

Чтобы СК_і соответствовала запросам следующего звена, ее необходимо дополнительно повернуть сдвинуть (также вдоль одного из ортов) Эти поворот и сдвиг описываются переменными величинами

^{*} Порядок операций может быть и обратным

Соглашение Денавита — Хартенберга (вариант) (Denavit–Hartenberg parameters)

Система координат звена создается согласно следующим правилам:

- 1. Ось Z соответствует направлению оси шарнира
- 2. Ось X параллельна нормали с предидушей осью шарнира $X_i = Z_i \times Z_{i-1}$
- 3. Ось Y составляют с осями X и Z правую систему координат

Система координат однозначно определяется 4мя параметрами:

 r_{i} (иначе a_{i}) — расстояние от Z_{i} до Z_{i+1} вдоль X_{i}

 α_i – угол между Z_i до Z_{i+1} , измеряется вокруг X_i

 d_i – расстояние от X_{i-1} к X_i вдоль Z_i

 θ_{i} – угол между X_{i-1} и X_{i} , измеряется вокруг Z_{i}

Особые случаи:

Если оси Z_i и Z_{i+1} паралельны, параметр di может задаваться произвольно, удобным образом.

0-е звено (фундамент) и последнее звено не связаны с предидущим / следующим шарниром.

Параметры r_i и α_i для этих звеньев не имеет смысла и задаются равными 0

Матрицы последовательных переходов по параметрам ДХ

Матрица совместного поворота и смещения по Z

$$_{i}^{i-1}T_{Z} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i}) & 0 & 0 \\ \sin(\theta_{i}) & \cos(\theta_{i}) & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Матрица совместного поворота и смещения по Х

$${}^{i-1}T_Z = \begin{bmatrix} \cos\left(\theta_i\right) & -\sin\left(\theta_i\right) & 0 & 0 \\ \sin\left(\theta_i\right) & \cos\left(\theta_i\right) & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{i-1}T_X = \begin{bmatrix} 1 & 0 & 0 & r_{i-1} \\ 0 & \cos\left(\alpha_{i-1}\right) & -\sin\left(\alpha_{i-1}\right) & 0 \\ 0 & \sin\left(\alpha_{i-1}\right) & \cos\left(\alpha_{i-1}\right) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Полная матрица перехода ДХ

$${}_{i-1}^{i-1}T = {}_{i}^{i-1}T_X \cdot {}_{i}^{i-1}T_Z = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & r_{i-1} \\ \sin(\theta_i) \cdot \cos(\alpha_{i-1}) & \cos(\theta_i) \cdot \cos(\alpha_{i-1}) & -\sin(\alpha_{i-1}) & -d_i \cdot \sin(\alpha_{i-1}) \\ \sin(\theta_i) \cdot \sin(\alpha_{i-1}) & \cos(\theta_i) \cdot \sin(\alpha_{i-1}) & \cos(\alpha_{i-1}) & d_i \cdot \cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Пример PUMA 560

i	$\alpha_i - 1$	$a_i - 1$	d_i	θi
1	0	0	0	θ_1
2	-90°	0	0	θ_2
3	0	a ₂	d ₃	θ_3
4	-90°	a ₃	d_4	θ_4
5	90°	0	0	θ_5
6	-90°	0	0	θ_6

Пример PUMA 560

i	$\alpha_i - 1$	$a_i - 1$	d_i	θi
1	0	0	0	θ_1
2	-90°	0	0	θ_2
3	0	<i>a</i> ₂	d_3	θ_3

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} 1 & 0 & 0 & r_{1} \\ 0 & c\alpha_{1} & -s\alpha_{1} & 0 \\ 0 & s\alpha_{1} & c\alpha_{1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}T = \begin{bmatrix} 1 & 0 & 0 & r_{2} \\ 0 & c\alpha_{2} & -s\alpha_{2} & 0 \\ 0 & s\alpha_{2} & c\alpha_{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & 0 \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & r_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{1}T = {}_{2}^{1}T \cdot {}_{3}^{2}T = \begin{bmatrix} c\theta_{23} & -s\theta_{23} & 0 & r_{2} \cdot c\theta_{2} \\ 0 & 0 & 0 & d_{3} \\ -s\theta_{23} & -c\theta_{23} & 1 & -r_{2} \cdot s\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c\theta_{23} = c\theta_{2} \cdot c\theta_{3} - s\theta_{2} \cdot s\theta_{3} \qquad s\theta_{23} = c\theta_{2} \cdot s\theta_{3} + s\theta_{2} \cdot c\theta_{3}$$

Пример PUMA 560

3	0	a ₂	d ₃	θ_3
4	-90°	a ₃	d_4	θ ₄
5	90°	0	0	θ_5
6	-90°	0	0	θ_6

$${}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & r_{3} \\ 0 & 0 & 0 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{4}_{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{5}_{6}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0\\ 0 & 0 & -1 & 0\\ s\theta_{5} & c\theta_{5} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{5}T = \begin{vmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$${}^{3}T = {}^{3}T \cdot {}^{4}T = \begin{bmatrix} c\theta_4 \cdot c\theta_5 \cdot c\theta_6 - s\theta_4 \cdot s\theta_6 & -c\theta_4 \cdot c\theta_5 \cdot s\theta_6 - s\theta_4 \cdot c\theta_6 & -c\theta_4 \cdot s\theta_5 & r_3 \\ c\theta_5 \cdot s\theta_6 & -s\theta_5 \cdot s\theta_6 & c\theta_5 & d_4 \\ -s\theta_4 \cdot c\theta_5 \cdot c\theta_6 - c\theta_4 \cdot s\theta_6 & s\theta_4 \cdot c\theta_5 \cdot s\theta_6 - c\theta_4 \cdot c\theta_6 & s\theta_4 \cdot s\theta_5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Пример PUMA 560 Итоговые формулы

$${}_{6}^{0}T = {}_{1}^{0}T \cdot {}_{3}^{1}T \cdot {}_{4}^{3}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} r_{11} &= c_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_5] + s_1(s_4c_5c_6 + c_4s_6), \\ r_{21} &= s_1[c_{23}(c_4c_5c_6 - s_4s_6) - s_{23}s_5c_6 - c_1(s_4c_5c_6 + c_4s_6), \\ r_{31} &= -s_{23}(c_4c_5c_6 - s_4s_6) - c_{23}s_5c_6, \\ r_{12} &= c_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] + s_1(c_4c_6 - s_4c_5s_6), \\ r_{22} &= s_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] - c_1(c_4c_6 - s_4c_5s_6), \\ r_{32} &= -s_{23}(-c_4c_5s_6 - s_4c_6) + c_{23}s_5s_6, \\ r_{13} &= -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5, \\ r_{23} &= -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5, \\ r_{23} &= s_{23}c_4s_5 - c_{23}c_5, \\ p_x &= c_1[a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\ p_y &= s_1[a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \end{split}$$

 $p_{r} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}$.

Формат URDF

URDF, унифицированный формат описания робота — это формат XML для представления модели робота.

URDF обычно используется в инструментах операционной системы робота, таких как симулятор rviz и Gazebo

Пример фаила URDF (описание кинематики и массы)

```
<?xml version="1.0" ?>
                                                                   <!-- ******* INERTIAL PROPERTIES (LINKS) ******** -->
<robot name="ur5">
<!-- ****** KINEMATIC PROPERTIES (JOINTS) ******* -->
                                                                   k name="world"/>
<joint name="world_joint" type="fixed">
                                                                    k name="base link">
       <parent link="world"/>
                                                                           <inertial>
       <child link="base link"/>
                                                                                  <mass value="4.0"/>
       <origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>
                                                                                  <origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
</joint>
                                                                                  <inertia ixx="0.00443333156" ixy="0.0" ixz="0.0"</pre>
<joint name="joint1" type="continuous">
                                                                                  iyy="0.00443333156" iyz="0.0" izz="0.0072"/>
       <parent link="base link"/>
                                                                           </inertial>
       <child link="link1"/>
                                                                   </link>
       <origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.089159"/>
                                                                    k name="link1">
       <axis xyz="0 0 1"/>
                                                                         <inertial>
</ioint>
                                                                               <mass value="3.7"/>
<joint name="joint2" type="continuous">
                                                                               <origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
       <parent link="link1"/>
                                                                               <inertia ixx="0.010267495893" ixy="0.0" ixz="0.0"
       <child link="link2"/>
                                                                               iyy="0.010267495893" iyz="0.0" izz="0.00666"/>
       <origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.13585</pre>
                                                                         </inertial>
       0.0"/>
                                                                   </link>
       <axis xyz="0 1 0"/>
                                                                   </robot>
</joint>
```

preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org