LAK - ćwiczenia nr 2

Szeregi, liczby harmoniczne, rząd zbieżności

Celem zajęć jest przypomnienie oraz zastosowanie podstawowych pojęć wykorzystywanych w analizie matematycznej (zbieżność szeregów, szereg harmoniczny, szereg Dierichleta, logarytm), matematyce dyskretnej (liczby harmoniczne, równania różnicowe), statystyce matematycznej (metoda najmniejszych kwadratów) oraz metodach numerycznych (rząd zbieżności).

1. Rząd zbieżności

1.1. Sens rzędu zbieżności

Na poprzednich zajęciach badaliśmy dwie metody obliczania stałej π , wykorzystujące szeregi skończone. Widzieliśmy, że choć obie prowadziły do poprawnych wyników, to jedna z nich (oparta na szeregu naprzemiennym) dawała zdecydowanie lepsze wyniki przy tej samej liczbie n zsumowanych elementów, w tym sensie, że dawała wartości bliższe wartości ścisłej (generowała mniejszy błąd). Innymi słowy, w celu osiągnięcia tej samej dokładności lepsza z metod wymagała mniejszej liczby sumowanych elementów szeregu. Możemy zapytać: ile przybędzie poprawnych cyfr w obliczonej wartości, jeśli odpowiednio zwiększymy liczbę n, np. 10-krotnie.

Odpowiedzią na to pytanie jest wprowadzenie pojęcia **rzędu zbieżności**. Idea jest następująca. Zakłada się, że wraz ze wzrostem rozmiaru zadania n błąd maleje potęgowo, mianowicie:

$$blad(n) = c \cdot n^{-r} = \frac{c}{n^r}, r > 0,$$
 (1)

gdzie r jest właśnie poszukiwanym rzędem zbieżności, zaś c pewną dodatnią stałą, której wartość w dalszej procedurze okazuje się w praktyce nieistotna. Wartość r określa zatem tempo spadku wartości błędu przy wzroście n. Interpretujemy to następująco następująco: zwiększenie rozmiaru zadania n o jeden rząd wielkości (czyli 10-krotne) spowoduje uzyskanie kolejnych r "poprawnych" cyfr w rozwinięciu dziesietnym poszukiwanej wartości (dlaczego?).

1.2. Sposób wyznaczania rzędu zbieżności

Zauważmy teraz, że logarytmując obie strony równania (1) otrzymujemy:

$$\log(blad(n)) = \log(c \cdot n^{-r})$$

$$= \log(n^{-r}) + \log(c)$$

$$= -r \cdot \log(n) + \log(c).$$

Jeśli teraz wprowadzimy oznaczenia: $Y = \log(blad(n)), X = \log(n)$ oraz $b = \log(c)$, to otrzymamy prostą zależność liniową:

$$Y = -r \cdot X + b,$$

czyli że poszukiwane r (z dokładnością do znaku) jest współczynnikiem kierunkowym prostej Y(X).

Procedura obliczania wartości n wygląda następująco:

- tworzymy wektor rosnących wartości n oraz wektor odpowiadających im błedów,
- logarytmujemy oba wektory,
- wykorzystując metodę najmniejszych kwadratów obliczamy współczynnik kierunkowy uzyskanej w ten sposób prostej.

Zadanie 1

Oblicz rzędy zbieżności funkcji MojePi1(n) oraz MojePi2(n) (patrz poprzednie zajęcia). Porównaj uzyskane wyniki.

Wskazówka - wykorzystaj udostępnioną przez prowadzącego funkcję mnkw.sci.

2. Szereg harmoniczny i liczby harmoniczne

2.1. Szereg harmoniczny i szereg Dierichleta

Szereg harmoniczny¹ definiuje się następująco:

$$S(n) = \sum_{k=1}^{n} \frac{1}{k} .$$

Jak wiadomo z analizy matematycznej (patrz udostępniony w UBIK dokument z przypomnieniem) szereg ten jest rozbieżny, tzn. że:

$$\lim_{n \to \infty} S(n) = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

Zbieżny jest natomiast szereg Dierichleta, wykorzystywany przy badaniu zbieżności szeregów:

$$D(n,x) = \sum_{k=1}^{n} \frac{1}{k^x}, x > 1.$$
 (2)

2.2. Liczby harmoniczne i stała γ

Dokładnie w taki sam sposób jak szereg harmoniczny definiuje się liczby harmoniczne:

$$H(n) = \sum_{k=1}^{n} \frac{1}{k} \,. \tag{3}$$

Liczby harmoniczne są bliskimi "kuzynami" funkcji logarytmicznej². Ta zgodność pozwala obliczyć bardzo ważną stałą matematyczną, mianowicie stałą Eulera γ :

$$\gamma = \lim_{n \to \infty} H(n) - \ln n. \tag{4}$$

 $^{^1}$ Zauważ,
że każdy składnik $\frac{1}{k}$ szeregu harmonicznego jest średnią harmoniczną elementu poprzedzającego
 $(\frac{1}{k-1})$ oraz następnego $(\frac{1}{k+1})$ - stąd nazwa.

² Można pokazać, że liczby te spełniają w matematyce dyskretnej (konkretnie w dziale równań różnicowych - odpowiedniku równań różniczkowych) analogiczną rolę, co funkcja logarytm w analizie matematycznej.

Zadanie 2

- 1. Opierając się na definicji (3) skonstruuj funkcję $\mathtt{harm}(\mathtt{n})$ zwracającą n-tą liczbę harmoniczną H(n).
- 2. Przedstaw na wspólnym wykresie pierwsze sto liczb harmonicznych oraz odpowiadające im wartości funkcji logarytm.
- 3. Opierając się na wzorze (4) oblicz przybliżenie stałej Eulera γ dla $n=10^4$.
- 4. Znajdź rząd zbieżności metody obliczania przybliżenia stałej γ opartej na wzorze (4). Jako wartość "dokładną" przyjmij: $\gamma=0.5772156649$.

Zadanie 3

Sporządź wykres funkcji Dierichleta (wzór (2)) dla $x \in <1.1, 5.0>$ oraz $n=10^4.$