$1.5 \mathrm{em} \ \mathrm{0pt}$

CS218, Spring 2025, Due: 11:59pm, Fri. 06/05, 2025

Assignment #5 1 Training Programming Due: 11:59pm, Fri. 05/30, 2025 Name: Lakhan Kumar Sunilkumar Stu-

dent ID: 862481700

1 (1.5 pt) Union-Find

In the **union-by-height** strategy, we always attach the root of the *shallower tree* to the root of the *deeper tree*. Ties are broken arbitrarily (e.g., incrementing the height by one if heights are equal). Our goal is to prove that the height of any resulting tree after a sequence of unions is bounded by $O(\log n)$, where n is the total number of nodes.

So we know that any tree of height h has at least 2^h nodes. Since a tree cannot contain more than n nodes, this implies $2^h \le n$, or equivalently, $h \le \log_2 n$. We prove this formally via induction.

Base case: At the beginning, each node is in its own singleton tree of height 0 and size 1. This satisfies $1 = 2^0$.

Inductive Hypothesis: Assume that all trees of height up to h contain at least 2^h nodes.

Now, consider performing a union between two trees T_1 and T_2 with heights h_1 and h_2 , respectively, and let $h = \max(h_1, h_2)$.

• Case 1: $h_1 \neq h_2$. Without loss of generality, assume $h_1 < h_2$. In this case, the shorter tree T_1 is attached under the taller tree T_2 , and the new height remains $h = h_2$. By the inductive hypothesis,

$$|T_2| \ge 2^{h_2}, \quad |T_1| \ge 2^{h_1} \ge 1, \quad \Rightarrow \quad |T| = |T_1| + |T_2| \ge 2^{h_2} = 2^h.$$

• Case 2: $h_1 = h_2 = h$. We attach one tree under the other, and the resulting height increases by one to h + 1. By the inductive hypothesis:

$$|T_1| \ge 2^h$$
, $|T_2| \ge 2^h$ \Rightarrow $|T| = |T_1| + |T_2| \ge 2^{h+1}$.

Hence, the new tree of height h+1 has at least 2^{h+1} nodes.

This completes the inductive proof: every tree of height h has size at least 2^h .

Final conclusion: Since the number of nodes in any tree cannot exceed n, the height of the tallest tree is bounded by:

$$2^h \le n \implies h \le \log_2 n \implies h = O(\log n).$$

Thus, union-by-height ensures that the depth of any node in the forest is at most $O(\log n)$, completing the proof.

¹Some of the problems are adapted from existing problems from online sources. Thanks to the original authors.

$2 \quad (1.5 \text{ pt}) \text{ Network Flow}$

1. (0.3pts) One possible augmenting path is

$$P = s \to 4 \to 8 \to t.$$

Along this path the residual capacities are

$$c(s,4) = 6$$
, $c(4,8) = 3$, $c(8,t) = 5$,

so the flow increment is

$$\Delta f = \min\{6, 3, 5\} = 3.$$

2. (0.6pts)

Figure 1: Residual network after augmenting along $s \to 4 \to 8 \to t$ by $\Delta f = 3$.

3. (0.6pts) Maximum flow via Ford–Fulkerson

Apply Ford–Fulkerson to the network shown above. We exhibit five augmenting paths and their increments:

Path	Edges	Δf	Bottleneck
P_1	$s \to 4 \to 8 \to t$	3	$\min\{3, 3, 2\} = 3$
P_2	$s \to 4 \to 7 \to t$	2	$\min\{1,1,2\}=2$
P_3	$s \to 2 \to 6 \to t$	1	$\min\{2,1,4\}=1$
P_4	$s \to 3 \to 5 \to 7 \to 8 \to t$	1	$\min\{1,1,2,3,2\}=1$
P_5	$s \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow t$	1	$\min\{1, 1, 1, 1, 2\} = 1$

After P_5 , no augmenting path remains in the residual graph. Therefore the maximum flow is

$$f_{\text{max}} = 3 + 2 + 1 + 1 + 1 = 8.$$

3 (1 pt) Bipartite Graph Matching

1. (0.5pts) Augmenting path.

Start from the free vertex 3, follow an unmatched edge to b, then the matched edge back to 1, and finally an unmatched edge to the free vertex a:

$$3 \xrightarrow{\text{unmatched}} b \xrightarrow{\text{matched}} 1 \xrightarrow{\text{unmatched}} a.$$

2. (0.5pts) Updated matching.

Flip the status of edges along that path. The new matching becomes

$$\{1-a, 2-c, 3-b, 4-d\}.$$

Graphically (solid = matched, dashed = other edges):

4 (1.5 pt) Strongly Connected Components

1. (0.3 pt) **Definition of SCC**

A strongly connected component (SCC) of a directed graph G = (V, E) is a maximal subset $C \subseteq V$ such that for every pair of vertices $u, v \in C$, there is a directed path from u to v and a directed path from v to u.

2. (0.4 pt) SCC containing vertex X.

The strongly connected component that contains X is

$$\{A, C, X\},\$$

since

$$X \to C \to A \to X$$

forms a directed cycle.

3. (0.6 pt) BGSS partition around vertex X.

First compute two reachability sets in plain LaTeX (no custom macros):

$$R_{\mathrm{out}}(X) = \{ v \in V \mid \text{there is a directed path } X \to v \}, \qquad R_{\mathrm{in}}(X) = \{ v \in V \mid \text{there is a directed path } v \to X \}.$$

Then the four parts are

$$S_{1} = R_{\text{out}}(X) \setminus R_{\text{in}}(X),$$

$$S_{2} = R_{\text{in}}(X) \setminus R_{\text{out}}(X),$$

$$S_{3} = R_{\text{in}}(X) \cap R_{\text{out}}(X),$$

$$S_{4} = V \setminus (R_{\text{in}}(X) \cup R_{\text{out}}(X)).$$

For the given graph one finds

$$R_{\text{out}}(X) = \{A, B, C, D, E, F, H, X\}, \quad R_{\text{in}}(X) = \{I, J, A, B, C, D, E, F, H, X\},$$

$$S_1 = \emptyset, \qquad S_2 = \{I, J\},$$

$$S_3 = \{A, B, C, D, E, F, H, X\}, \qquad S_4 = \{G\}.$$

4. (0.2 pt) There are 4 strongly connected components in the graph:

$${A,B,C,D,E,F,H,X}, {I}, {J}, {G}.$$