Métaheuristique : Algorithme BVNS

Guillaume Desquesnes & Florian Benavent

13 février 2015

- Présentation
- 2 Structures de voisinage
- 3 Intégration dans Incop
- 4 Demo
- 6 Résultats

Basic Variable Neighborhood Search

- Fonction de voisinage est très importante pour la recherche globale
- Utilisation plusieurs fonctions de voisinage pour améliorer la recherche

Incop

- Librairie C++ de résolution de problème d'optimisation
- Possède des méthodes de recherche locale
- Peut lire les instances DIMACS

- Présentation
- 2 Structures de voisinage
- 3 Intégration dans Incop
- 4 Demo
- 6 Résultats

Structures de voisinage

- p-Flip On modifie au plus la valeur de p variable en conflit par une autre valeur aléatoire de leur domaine.
- swap Échange les valeurs d'une variable en conflit et de la variable la précédent ou la suivant dans la représentation des solutions.
- 2-Exchange Échange les valeurs d'une variable en conflit et d'une autre choisit aléatoirement parmis les variable restantes.
- Kempe chain À partir d'une arête possédant une variable en conflit, on construit la composante connexe des variables de valeur identique à un des noeuds de l'arête. On échange ensuite les valeurs des variable de la composante connexe.

- Présentation
- ② Structures de voisinage
- 3 Intégration dans Incop
- 4 Demo
- 6 Résultats

Structure de voisinage

- Fait le shaking
- Retourne une nouvelle solution (Configuration) du problème

BVNS

- Surcharge d'IncompleteAlgorithm
- Utilise une recherche locale d'Incop spécifiée en argument

- Présentation
- 2 Structures de voisinage
- 3 Intégration dans Incop
- Oemo
- 6 Résultats

- Présentation
- 2 Structures de voisinage
- 3 Intégration dans Incop
- 4 Demo
- 6 Résultats

Description

- 4 recherche de solution par instance
- Recherche locale taboue
- Voisinage pFlip puis Swap puis 2-Exchange puis Kempe chain
- Arrêt de recherche au bout de 30 secondes ou de solution.
- Affiche le nombre d'arcs en conflit

Fichier DSJC

Nombre de couleurs	5	6	7	9
DSJC125.5	300	234	188	129
DSJC250.5	1 344	1 073	887	630
DSJC500.5	5 716	4 640	3 884	2 894
DSJC1000.5	23 571	19 309	16 313	12 344

Fichier Flat

Nombre de couleurs	28	29	30	32	
flat300_28_0	155	135	98	117	
Nombre de couleurs	50	51		52	54
Flat1000_50_0	1458	140	0 1	390	1328
Nombre de couleurs	60	61		62	64
Flat1000_60_0	1171	113	9 1	089	1087

Fichier Le

Nombre de couleurs	25	26	27	29
le450_25a	0 (9.42s)	0 (0.99s)	0 (0.27s)	0 (0,12s)
le450_25b	0 (3.75s)	0 (0.43s)	0 (0.13s)	0 (0.08s)
le450_25c	84	68	57	31
le450_25d	89	75	62	34