

Autonomous UAV Capstone Status Presentation IV

1/c Domenico Bulone 1/c Cody Meyers

1/c Matthew Kim 1/c Jacob Schellman

1/c Gavin McGahey 1/c Ryan Von Brock

Advisors:

Professor Hartnett

Lieutenant Blanco

Professor Swaszek

February 15th, 2022

Mission Needs Statement

- To design a low cost, open architecture, and cooperative autonomous quadcopter.
 - USCG Missions
 - Supplement success of ScanEagle
- Key Performance Parameters:
 - Stable, autonomous flight
 - Transporting small payloads
 - Coordinate objectives with the ASV
 - Takeoff and landing from the ASV

Major Developmental Systems

Computer Vision

Drone Control

GNSS w/ RTK

Landing Assembly

Payload Delivery

Platform Requirements

Requirement	Solution
Weigh less than 10 pounds (T), ideally 5 pounds (O).	Small Platform: 3.4 pounds.
Be capable of precision navigation, ideally 10cm (O).	Equipped with GPS-RTK, Lidar, and a camera.
Capable of transporting small objects.	Servo Actuated close/release scoop mechanism.
Positively buoyancy in water for 120 seconds (T), or indefinitely (O).	Foam outriggers underneath propellers. 5.1 lbs of buoyant force.
Safety guidelines: remote kill switch, not exceed 60 V DC.	Remote kill switch configured on RC transmitter. Utilizes an 11.1 V LiPo battery.
Total cost to reproduce less than \$1,000 (O).	Current sum of components is approximately \$900.

Pixhawk & PX4

- Connects the 6 major systems
- Pixhawk Flight Controller
 - Hardware
- PX4 Autopilot
 - Software
- Flight Modes
- Testing

Communications

- Digi DigiMesh®
 - Mesh Networking
 - Communication with ASV
 - RTCM Corrections
- Digi XBee 3 DigiMesh 2.4 RF Modules

Camera Selection

Raspberry Pi + PiCam	Oak 1 AI Camera + Raspberry Pi
Near 100% CPU utilization	0% RPi CPU Utilization
Bottlenecks processing	Integrated processing
Inefficient	Built for AI processing
Tested 480p @ 15 FPS	Capable of 4k @ 60 FPS

Satellite Navigation with RTK

- Improved accuracy for ASV
 - Control finely tuned

movements

Not location,

but accuracy on ASV

RTK Testing Development

- Test processes and risks
 - GPS: +/- 60 cm
 - RTK: +/- 6 cm
- Utilizing
 - QGroundControl
- Increasing reliability

GPS: +/- 60 cm

RTK: +/- 6 cm

Dual AruCo Marker Landing Solution

- 30" x 30" plywood
- 2' x 2' Velcro AruCo Marker
 - Smaller 4" x 4" marker in center
- Common Base, Allowing for innovation in future
- Successful small-scale test
- 2'x2' detectable at up to 150'
- 4"x4" detectable at up to 13'
 - With pi cam improvements expected with OAK

Computer Vision Based Landing

Autonomous Search to Landing

Autonomous Search to Landing

Autonomous Search to Landing

Computer Vision Based Landing

- Software in the Loop
 - Virtual world, virtual drone.
 - Identify states of the landing sequence.
 - Low risk, rapid testing.
- Hardware in the Loop
 - Virtual world, real drone.
 - Identify hardware limitations (RasPi Cam).
 - Low risk, time-consuming testing.

SITL Testing

Primary Risk: Real-World Flight Tests

- Computer vision-controlled flight tests pose the greatest risk to the drone, persons and property.
 - Uncontrolled flight due to false detection.

• Mitigation:

- Extensive SITL/HITL testing: delayed real-world flights.
- Additional safety shutdown mechanisms.
- Incremental testing hierarchy, from static target to moving vessel.

Schedule of Events

- Upcoming Testing
 - Continuous Simulation Testing
 - 16 20 Feb: Dual Aruco Marker detection, Autonomous waypoint flight
 - 21 Feb 04 Mar: Autonomous landing using dual AruCo marker

Expected Completion Dates

- February 21st: Demonstration of Autonomous waypoint flight with RTK
- March 5th: Demonstration of Autonomous landing with dual AruCo marker
- March 14th: Demonstration of computer vision payload delivery.
- March 14th: Completion of Landing Platform
- April 11th: Demonstration of successful search, payload delivery, landing. From start to finish

Questions?

Budget

Major Costs:

- S500 Frame: \$59
- Motors: \$100
- Raspberry Pi 3B+: \$55
- Pixhawk 2.4.8: \$75
- RTK: \$350
- Oak I Camera: \$180

Future Costs:

- No anticipated additions to drone
- Maintenance costs

Approximate Drone Cost: \$900

The RoboBoat Competition

- RoboBoat is an international competition where an autonomous surface vessel performs navigating and docking tasks.
- Each ASV is allowed to cooperate with a UAV.
- Our role as the UAV:
 - Takeoff from and land on the ASV.
 - Locate and deliver a payload.
 - Fly desired search patterns.
 - Communicate findings with the ASV.

