世界知的所有権機関 務

Fride

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 213/89, 213/82, 239/26, 239/34, 239/42, 237/24, 239/52, A01N 43/54, 43/40, 43/58

A1

(11) 国際公開番号

WO99/44992

(43) 国際公開日

1999年9月10日(10.09.99)

(21) 国際出願番号

PCT/JP99/01048

JP

JP

JP

(22) 国際出願日

1999年3月4日(04.03.99)

(30) 優先権データ

特願平10/53485

1998年3月5日(05.03.98)

特願平10/165661

1998年6月12日(12.06.98)

特願平10/268025

1998年9月22日(22.09.98)

(71) 出願人(米国を除くすべての指定国について)

日座化学工業株式会社

(NISSAN CHEMICAL INDUSTRIES, LTD.)[JP/JP]

〒101-0054 東京都千代田区神田錦町3丁目7番地1 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

秋山茂明(AKIYAMA, Shigeaki)[JP/JP]

近藤康夫(KONDO, Yasuo)[JP/JP]

安達倫明(ADACHI, Michiaki)[JP/JP]

水越隆司(MIZUKOSIII, Takashi)[JP/JP]

〒274-8507 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

渡邊重臣(WATANABE, Shigeomi)[JP/JP]

秋吉千秋(AKIYOSHI, Chiaki)[JP/JP]

大木 亨(OHKI, Tooru)[JP/JP]

中平国光(NAKAHIRA, Kunimitsu)[JP/JP]

〒349-0218 埼玉県南埼玉郡白岡町大字白岡1470

日産化学工業株式会社 生物科学研究所内 Saitama, (JP)

(74) 代理人

弁理士 小川利春, 外(OGAWA, Toshiharu et al.)

〒101-0042 東京都千代田区神田東松下町38番地

鳥本鋼業ビル Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (ANI, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54) Title: ANILIDE COMPOUNDS AND HERBICIDE

(54)発明の名称 アニライド化合物及び除草剤

(57) Abstract

Compounds represented by formula (I) or salts thereof, which are useful as a herbicide, wherein ring Z represents 3,4-substituted pyridine, pyrimidine, or pyrazine which are optionally substituted with alkyl, etc.; R³ represents H, C_{1.6} alkyl, (substituted) phenylalkyl, etc.; R4 represents H, halogeno, nitro, cyano, C1-6 alkyl, etc.; and X represents alkoxycarbonyl, alkylaminoaminocarbonyl, cyano, alkylcarbonyl, (substituted) oxadiazolyl, etc.

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

[式中、環 Z は、3,4-置換ピリジン、ピリミジン、ピラジンであり、これらは、さらにアルキル等で置換されていてもよく、R³は、H、C₁~C₆アルキル、(置換)フェニルアルキル等、R¹は、H、ハロゲン、ニトロ、シアノ、C₁~C₆アルキル等、X はアルコキシカルボニル、アルキルアミノアミノカルボニル、シアノ、アルキルカルボニル、(置換)オキサジアゾリル等を示す。]で表される化合物またはその塩は、除草剤として有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

		•	
AE アラブ首長国連邦	DM ドミニカ	KZ カザフスタン	SD スーダン
AL TUKET	EE エストニア	LC セントルシア	SE スウェーデン
AM アルメニア	ES スペイン	し! リヒテンシュタイン	SG シンガポール
ハT オーストリア	FI フィンランド	LK スリ・ランカ	SI スロヴェニア
Λυ オーストラリア	FR フランス	LR リベリア	SK スロヴァキア
A2 アゼルバイジャン	GA ガポン	LR リベリア LS レント LT リトアニア	SL シエラ・レオネ
BA ポズニア・ヘルツェゴビナ	GB 英国	LT リトアニア	SN セネガル
BB バルバドス	GD グレナダ	LU ルクセンブルグ	S2 スワジランド
BE ベルギー	GE グルジア	LV ラトヴィア MC モナコ	TD チャード
BF ブルギナ・ファソ .	GH ガーナ	MC モナコ	TG トーゴー
BG ブルガリア	GM ガンピア	· MD モルドヴァ	TJ タジキスタン
B] ベナン	GN ギニア	MG マダガスカル	T2 タンザニア
BR ブラジル	GW ギニア・ピサオ	MK マケドニア旧ユーゴスラヴィア	TM トルクメニスタン
BY ベラルーシ	GR ギリシャ	共和国	TR トルコ
CA カナダ	HR クロアチア	ML マリ	TT トリニダッド・トバゴ
CF 中央アフリカ	HU ハンガリー	MN モンゴル	UA ウクライナ
CG コンゴー	ID インドネシア IE アイルランド	MR モーリタニア	UG ウガンダ
CH スイス	1 E アイルランド	MW マラウイ	US 米国
じィ コートジボアール	IL イスラエル	MX メキシコ	UZ ウズベキスタン
CM カメルーン	しい インド	NE ニジェール	VN ヴィエトナム
CN 中国	IS アイスランド	NL オランダ	YU ユーゴースラピア
CR コスタ・リカ	IT イタリア	NO ノールウェー	乙A 南アフリカ共和国
Cじ キューバ	JP 日本	NZ ニュー・ジーランド	2W ジンバブエ
CY キプロス	KE ケニア	PL ボーランド	
CZ チェッコ	KG キルギスタン	PT ポルトガル	
DE ドイツ	KP 北朝鮮	RO ルーマニア	
│ DK デンマーク	KR 韓国	RU ロシア	

明細書

アニライド化合物及び除草剤

技術分野

本発明は、アニライド化合物及びそれを有効成分として含有する除草剤に関するものである。

背景技術

従来から、重要作物、例えば大豆、トウモロコシ、小麦、棉、イネ、ビート等を雑草害から守り、これらの重要作物の生産性を高める為に多くの除草剤が実用化されてきたが、依然として既存の薬剤は求められる機能をすべて満たしているものではない。

ところで、特開昭63-198670号公報には、ある種のピリミジン-5-カルボン酸アニライド化合物が、植物成長抑制作用を有することが開示されている。しかし、ピリミジン環4位の置換基として、例えばエステル基、アミド基、シアノ基、アシル基などを有するピリミジン-5-カルボン酸アニライド化合物に関しては、開示されていない。

また、特開平9-323974号公報には、ある種のピリジン3-カルボン酸アニライド化合物が除草作用を有することが開示されている。しかし、ピリジン環2位の置換基として、水素原子、アルキル基、アルコキシ基、アルキルチオ港などを有するピリジン3-カルボン酸アニライド化合物に関しては開示されていない。

発明の開示

本発明者らは、新規な酸アニライド化合物の除草作用について鋭意検討した結果、下記式で示される本発明化合物が優れた除草作用を有することを見出し、本発明を完成するに至った。

即ち、本発明は式(I):

$$Z_{2} \xrightarrow{Z_{1}} X \xrightarrow{R^{3}} R^{4}$$

$$Z_{3} \xrightarrow{Z_{4}} X \qquad (I)$$

[式中、 $=Z^{1}\sim Z^{4}=$ は=C (R^{2}) -C (R^{22}) =N-N=、=C (R^{2}) -N =C (R^{1}) -C (R^{23}) =、=C (R^{2}) -N (\rightarrow O) =C (R^{1}) -C (R^{23}) =、=C (R^{2}) -N=C (R^{2}) -N=N-C (R^{23}) =、=N-N=C (R^{1}) -C (R^{23}) =Xは=N-C (R^{23}) =Xもし、

R¹, R², R²²及びR²³は同一でも相異なっていてもよく、水素原子、C₁~C εアルキル基、C₃~Cεシクロアルキル基、C₁~Cεハロアルキル基、C₃~Cεハ ロシクロアルキル基、C2~C6アルケニル基、C2~C6ハロアルケニル基、C2~ C6アルキニル基、C2~C6ハロアルキニル基、Aで置換されていてもよいフェニ ル基、フェニル基がAで置換されていてもよいフェニルCı~Cィアルキル基、フ ェニル基がAで置換されていてもよいフェニルC₂~C₄アルケニル基、フェニル 基がAで置換されていてもよいフェニルC₂~C₄アルキニル基、ハロゲン原子、 シアノ基、Cı~CεアルコキシCı~Cεアルキル基、Cı~CεハロアルコキシC ı~C。アルキル基、Cı~C。アルコキシCı~C。ハロアルキル基、Cı~C。ハロ アルコキシCı~C6ハロアルキル基、Cı~C6アルキルチオCı~C6アルキル基、 .Cı~CεハロアルキルチオCı~Cεアルキル基、Cı~CεアルキルチオCı~Ce ハロアルキル基、Cı~CeハロアルキルヂオCı~Ceハロアルキル基、-CO2R '基、- (C (R⁵) R⁶) - CO₂R'基、- (C (R⁵) R⁶) 2-CO₂R'基、-(C(R⁵) R⁶) 3-CO₂R⁷基、-(C(R⁵) R⁶) 4-CO₂R⁷基、-CN基、 - (C(R⁵) R⁶) - CN基、- (C(R⁵) R⁶) 2- CN基、- (C(R⁵) R f) 3-CN基、- (C (R5) R6) 4-CN基、-N (R6) R9基、- (C (R 5) R 6) - N (R 8) R 8基、- (C (R 5) R 6) 2-N (R 8) R 4基、- (C (R 5) R 6) 3-N (R 8) R 9基、- (C (R 5) R 6) 1-N (R 8) R 9基、-L-R

「¹⁰基、C₁~C₆アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキルカルボニル基、C₁~C₆ジアルキルカルバモイル基、C₁~C₆ジアルキルスルファモイル基を表わし、

R³は水素原子、C₁~C₀アルキル基、フェニル基がAで置換されていても良いフェニルC₁~C₃アルキル基、C₁~C₀アルキルカルボニル基、フェニル基がAで置換されていてもよいベンゾイル基、C₁~C₀アルコキシC₁~C₀アルキル基又はC₁~C₀アルコキシカルボニル基を表わし、

Aは水素原子、ハロゲン原子、ニトロ基、シアノ基、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₁~C₆ハロアルコキシ基、C₁~C₆ハロアルコキシ基、C₁~C₆アルコキシカルボニル基、C₁~C₆アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルコキシカルボニルアミノ基、C₁~C₆アルキルチルチャンスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R・は水素原子、ハロゲン原子、ニトロ基、シアノ基、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₁~C₆ハロアルコキシ基、C₁~C₆ハロアルコキシ基、C₁~C₆アルコキシカルボニル基、C₁~C₆アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルキルスルコキシカルボニルアミノ基、C₁~C₆アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R⁵及びR⁶は同一でも相異なっていてもよく、水素原子又はC₁~C₁アルキル基を表わし、

R'は水素原子、C₁~C₆アルキル基又はC₁~C₆シクロアルキル基を表わし、 R⁶及びR⁹は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルキル基、C₂~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₅~C₁₀シクロアルキル基、C₃~C₁₀ハロシクロアルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₁アルキルカルボニル基、C₁~C₁アルコキシカルボニル基、C₁~C₁アルコキシカルボニル基、フェニル基がAで置換されていてもよいフェニ ルC₁~C₁アルキルカルボニル基、シアノ基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキニル基、C₁~C₁アルキルスルホニル基又はC₁~C₁ジアルキルスルファモイル基を表わし、

R *及びR *は結合する窒素原子とともに3~9 員環を形成していてもよく、1若しくは2の酸素原子又は1若しくは2の硫黄原子を含む5~8 員環を形成していてもよく、

しは酸素原子又はイオウ原子を表わし、

 R^{10} は水素原子、 $C_1 \sim C_6 7$ ルキル基、 $C_1 \sim C_6 N$ ロアルキル基、 $C_1 \sim C_6 > 0$ クロアルキル基、 $C_2 \sim C_6 7$ ルケニル基、 $C_2 \sim C_6 N$ ロアルケニル基、 $C_2 \sim C_6 N$ ロアルケニル基、 $C_2 \sim C_6 N$ ロアルキニル基、 $C_1 \sim C_1 7$ ルコキシ $C_1 \sim C_1 7$ ルキル基、 $C_1 \sim C_1 7$ ルキルチオ $C_1 \sim C_1 7$ ルキル基、 $C_1 \sim C_1 7$ ルキル 基、 C_1

Xは-CO-L-R''基、-C (=L) N (R'') R''3基、-C (=L) -N (R'') -OR''3基、-C (=L) N (R'') -N (R'') R''3基、-C (=L) N (R'') -N (R'') R''3基、-C (=L) N (R'') - (C (R'') R'') -CO₂R''8基、-C (=L) N (R'') - (C (R'') R'') 2-CO₂R''8基、-C (=L) N (R'') - (C (R'') R'') 3-CO₂R''8基、-C (R'') =N -O-R''9基、-C (=L) NH-G基、シアノ基、-CO-R''9基、J (a)、J (b)、J (c) 又はJ (d)

を表わし、

R¹¹は水素原子、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₃~C₆シ クロアルキル基、C₂~C₆アルケニル基、C₂~C₆ハロアルケニル基、C₂~C₆ アルキニル基、C₂~C₆ハロアルキニル基、Aで置換されていてもよいフェニル 基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基又はC₁~C₆アルコキシカルボニルC₁~C₄アルキル基を表わし、

R¹², R¹³, R¹⁴及びR¹⁵は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀シクロアルキル基、C₃~C₁₀シクロアルキル基、C₃~C₁₀シクロアルキル基、C₃~C₁₀ンクロアルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₆アルコキシカルボニル基、C₁~C₆アルキルカルボニル基、C₁~C₁アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキルカルボニル基、シアノ基、Aで置換されていても良いフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキニル基、C₁~C₄アルキルスルホニル基又はC₁~C₄ジアルキルスルファモイル基を表わし、

R¹²及びR¹³は結合する窒素原子又は酸素原子とともに3~9員環を形成していてもよく、1若しくは2の酸素原子又は若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

R16及びR17は同一でも相異なっていてもよく、水素原子、C1~C1アルキル

基、Aで置換されていてもよいフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基又はC₁~C₁アルキルチオC₁~C₁アルキル基を表わし、

R¹⁶及びR¹⁷は結合する炭素原子とともに4~9員環を形成していてもよく、 R¹⁸は水素原子又はC₁~C₁アルキル基を表わし、

R¹ºは水素原子、C₁~C。アルキル基、C₃~C。シクロアルキル基、C₁~C。ハロアルキル基、C₂~C。アルケニル基、C₂~C。アルキニル基、Aで置換されていてもよいフェニル基又はフェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基を表わし、

 R^{20} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ アルキニル基、シアノ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ アルキル基を表わし、

GはG(a), G(b), G(c)又はG(d)のいずれかの構造

を表わし、

R²¹は水素原子、C₁~C₆アルキル基又はC₁~C₆シクロアルキル基を表わす。]で示される新規なアニライド化合物(以下、本発明化合物を称す)及びその塩、そしてそれらを有効成分として含有することを特徴とする農薬、特に除草剤に関するものである。但し、以上の化合物に光学異性体、ジマステレオマー、幾何異性体が存在する場合は、それぞれの混合物及び単離された双方を包含する。

発明を実施するための最良の形態

 $C(R^{23}) = = C(R^2) - N(\rightarrow O) = C(R^1) - C(R^{23}) = = C(R^2) - N = C(R^1) - N = C(R^2) - N = N - C(R^{23}) = = N - N = C(R^1) - C(R^2) = N - C(R^2) = N - C(R^2) = N - C(R^2) = N + C($

R¹, R², R²²及びR²³としては、水素原子、メチル基、エチル基、プロピル 基、i-プロピル基、i-ブチル基、t-ブチル基、シクロプロピル基、シクロ ペンチル基、シクロヘキシル基、トリクロロメチル基、トリフルオロメチル基、 ジフルオロメチル基、ジフルオロクロロメチル基、フルオロメチル基、フルオロ エチル基、トリフルオロエチル基、フルオロプロピル基、ビニル基、アリル基、 クロチル基、メタリル基、3-クロロアリル基、エチニル基、プロパルギル基、 1-メチルプロパルギル基、3-メチルプロパルギル基、3-クロロプロパルギ ル基、フェニル基、ベンジル基、2-フェニルエチル基、1-フェニルエチル基、 スチリル基、シンナミル基、2-フェニルエチニル基、塩素原子、臭素原子、フ ッ素原子、シアノ基、メトキシメチル基、エトキシメチル基、メトキシエチル基、 エトキシエチル基、メトキシジフルオロメチル基、メチルチオメチル基、エチル チオメチル基、メチルチオジフルオロメチル基、アセチル基、ベンゾイル基、ジ メチルカルバモイル基、メタンスルホニル基、エタンスルホニル基、ジメチルス ルファモイル基、ピロリジノ基、ピペリジノ基、ヘキサメチレンイミノ基又はモ ルホリノ基が挙げられ、好ましくは水素原子、メチル基、エチル基、プロピル基、 iープロピル基、iープチル基、シクロプロピル基、トリフルオロメチル基、ジ フルオロメチル基、フェニル基、塩素原子、フッ素原子、シアノ基、メトキシメ チル基、メチルチオメチル基、メタンスルホニル基又はピロリジノ基が挙げられ る。

R³としては水素原子、メチル基、エチル基、イソプロピル基、ベンジル基、アセチル基、ピバロイル基、ベンゾイル基、4-メトキシベンゾイル基、メトキシメチル基、エトキシメチル基、メトキシカルボニル基又はエトキシカルボニル基が挙げられ、好ましくは、水素原子、ピバロイル基、4-メトキシベンゾイル基

又はエトキシカルボニル基が挙げられる。

Aとしては、水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、iーブチル基、トリクロロメチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシ基、エトキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、メトキシカルボニル基、アセチル基、フェニル基、フェノキシ基、ベンジル基、アセチルアミノ基、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられ、好ましくは水素原子、塩素原子、フッ素原子、シアノ基、メチル基、エチル基、トリフルオロメチル基、メトキシ基又はメチルチオ基が挙げられる。

Aの置換位置としては、フェニル基が結合した位置に対して 2 位、 3 位又は 4 位が挙げられ、好ましくは、 2 位又は 4 位が挙げられる。

Aの置換する数としては1ないし5の整数が挙げられ、好ましくは1,2又は3が挙げられる。

1置換のR'としては、例えば水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、tープチル基、トリクロロメチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシ基、エトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、メトキシカルボニル基、エトキシカルボニル基、フェニル基、フェノキシ基、ベンジル基、アセチルアミノ基、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、エトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられ、好ましくは、水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、tープチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシカルボニル基、エトキシカルボニル基、アセチルアミノ基、メトキシカルボニルスミノを、ベンジル表、アセチルアミノ基、メトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられる。

またR'の置換位置としてはアニライド結合に対して2位、3位又は4位が挙げ

られ、好ましくは2位又は4位が挙げられる。

2置換ないし5置換のR'としては例えば以下に示すものが挙げられる。

$$F_{3}C \qquad Me \qquad F_{3}C \qquad F \qquad F_{3}C \qquad CI \qquad F_{3}C \qquad Br$$

$$F_{3}C \qquad I \qquad F_{3}C \qquad SO_{2}Me \qquad F_{3}C \qquad NO_{2} \qquad F_{3}C \qquad CF_{3}$$

$$F_{3}C \qquad CN \qquad F_{3}C \qquad CO_{2}Me \qquad F_{3}C \qquad OMe \qquad F_{3}C \qquad NHCOMe$$

$$F_{3}C \qquad NHCO_{2}Me$$

$$MeO \qquad Me \qquad MeO \qquad F \qquad MeO \qquad CI \qquad MeO \qquad Br$$

$$MeO \qquad I \qquad MeO \qquad SO_{2}Me \qquad MeO \qquad NO_{2} \qquad MeO \qquad CF_{3}$$

$$MeO \qquad CN \qquad MeO \qquad CO_{2}Me \qquad MeO \qquad OMe \qquad MeO \qquad NHCOMe$$

$$MeO \qquad NHCO_{2}Me$$

$$MeO \qquad NHCO_{2}Me$$

$$F_3C$$
 MeO
 MeO

Me

またR'の置換位置としては、アニライド結合に対して 2, 6 - 位、 2, 3 - 位、 2, 5 - 位、 2, 3, 6 - 位、 2, 3, 5 - 位、 2, 4, 6 - 位または 2, 3, 4, 6 - 位が挙げられ、好ましくは 2, 6 位、 2, 3 - 位、 2, 5 - 位、 2, 3, 6 - 位又は 2, 4, 6 位が挙げられる。

R[®]及びR[®]としては、水素原子、メチル基、エチル基又はイソプロピル基が挙 げられ、好ましくは水素原子又はメチル基が挙げられる。

R'としては、水素原子、メチル基、エチル基、プロピル基、シクロプロピル基 又はシクロペンチル基が挙げられ、好ましくはメチル基又はエチル基が挙げられ る。

R®及びR®としては、水素原子、メチル基、エチル基、プロピル基、ビニル基、アリル基、メタリル基、クロチル基、エチニル基、プロパルギル基、1-メチルプロパルギル基、3-メチルプロパルギル基、トリクロロメチル基、ジフルオロメチル基、ジフルオロクロロメチル基、トリフルオロエチル基、3-クロロアリル基、3-クロロプロパルギル基、シクロプロピル基、シクロペンチル基、2,2-ジクロロシクロプロピル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシメチル基、メトキシエチル基、エトキシメチル基、メトキシカルボニル基、ベンゾイル基、シアノ基、ベンジル基、1-フェニルエチル基、スチリル基、シンナミル基、3-フェニルプロバルギル基、メタンスルホニル基、エタンスルホニル基又はジメチルスルファモイル基が挙げられ、好ましくは水素原子、メチル基、エチル基、アリル基、プロパルギル基、アセチル基、エトキシカルボニル基又はメタンスルホニル基が挙げられる。

Lとしては、酸素原子又はイオウ原子が挙げられ、好ましくは酸素原子が挙げられる。

R¹ºとしては、水素原子、メチル基、エチル基、イソプロピル基、ジフルオロメチル基、トリフルオロメチル基、ジフルオロブロモメチル基、シクロプロピル基、アリル基、3-クロロアリル基、プロパルギル基、3-メチルプロパルギル基、1-メチルプロパルギル基、3-クロロプロパルギル基、メトキシメチル基、エトキシメチル基、メチルチオメチル基、エトキシメチル基、メチルチオメチル基、

メトキシカルボニルメチル基、エトキシカルボニルメチル基、フェニル基、ベンジル基、シアノメチル基、シアノエチル基又はジメチルカルバモイルメチル基が挙げられ、好ましくは水素原子、メチル基、エチル基、ジフルオロメチル基、トリフルオロメチル基、アリル基、プロパルギル基又はメトキシメチル基が挙げられる。

R''としては、水素原子、メチル基、エチル基、トリクロロメチル基、トリフルオロメチル基、トリフルオロエチル基、シクロプロピル基、アリル基、プロパルギル基、フェニル基、ベンジル基又はエトキシカルボニルメチル基が挙げられ、好ましくは、水素原子、メチル基又はエチル基が挙げられる。

R¹²及びR¹³としては、水素原子、メチル基、エチル基、プロピル基、i‐プ ロピル基、ブチル基、iーブチル基、sーブチル基、tーブチル基、ペンチル基、 ヘキシル基、ヘプチル基、オクチル基、アリル基、メタリル基、クロチル基、3 ーメチルー2ーブテニル基、1ーメチルー2ープロペニル基、1.1ージメチル プロペニル基、プロパルギル基、1-メチルプロパルギル基、1,1-ジメチル プロパルギル基、2-ブチニル基、ホモプロパルギル基、ジフルオロメチル基、 トリフルオロエチル基、クロロエチル基、クロロプロピル基、ブロモプロピル基、 フルオロプロピル基、2-クロロアリル基、3-クロロアリル基、3,3-ジク. ロロアリル基、3-クロロプロパルギル基、シクロプロピル基、シクロブチル基、 シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2,2-ジクロロシ クロプロピルメチル基、ヒドロキシエチル基、3-ヒドロキシプロピル基、メト キシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、メチ ルチオメチル基、アセチル基、プロピオニル基、ピバロイル基、メトキシカルボ ニル基、エトキシカルボニル基、ベンゾイル基、4-メトキシベンゾイル基、シ アノ基、フェニル基、ベンジル基、4-メトキシベンジル基、1-フェニルエチ ル基、2-フェニルエチル基、スチリル基、シンナミル基、2-フェニルエチニ ル基、3-フェニルプロパルギル基、メチルスルホニル基、エチルスルホニル基、 ジメチルスルファモイル基、テトラヒドロフルフリル基又はテトラヒドロチエニ ル基が挙げられ、好ましくは水素原子、メチル基、エチル基、プロピル基、ブチ ル基、イソブチル基、シクロペンチル基、アリル基又はプロパルギル基が挙げら

れる。

 R^{12} と R^{13} が一緒になったものとしてはー(CH_2)、 $_1$ – 基、 – (CH_2)。 – 基又は – (CH_2)。 – 基才学げられる。

Rいとしては、水素原子、メチル基、エチル基、イソプロピル基、アリル基、フェニル基又はベンジル基が挙げられ、好ましくは、水素原子、イソプロピル基又はアリル基が挙げられる。

R¹⁵としては、水素原子、メチル基又はエチル基が挙げられ、好ましくは水素原子が挙げられる。

R''及びR''としては、水素原子、メチル基、エチル基、イソプロピル基、フェニル基、ベンジル基又はメチルチオエチル基が挙げられ、好ましくは水素原子、メチル基、エチル基又はイソプロピル基が挙げられる。

 R^{16} 及び R^{17} が一緒になったものとしては、-(CH₂), -基または-(CH₂), -基または-(CH₂), -基が挙げられる。

R¹゚としては、水素原子、メチル基又はエチル基が挙げられ、好ましくはメチル基又はエチル基が挙げられる。

R''としては水素原子、メチル基、エチル基、トリフルオロメチル基、トリクロロメチル基、アリル基、プロバルギル基、フェニル基又はベンジル基が挙げられ、好ましくは水素原子又はメチル基が挙げられる。

R²⁰としては、水素原子、メチル基、エチル基、プロピル基、イソプチル基、アリル基、3-クロロアリル基、プロパルギル基、シアノメチル基、メトキシメチル基又はメチルチオメチル基が挙げられ、好ましくは水素原子、メチル基、エチル基又はアリル基が挙げられる。

Gとしては、G(a)、G(b)、G(c)又はG(d)

のいずれかの基が挙げられる。

R²¹としては水素原子、メチル基、エチル基、シクロプロピル基又はターシャリープチル基が挙げられる。

本発明化合物は、たとえばスキーム $1 \sim 9$ に示す方法によって合成することが出来る。スキーム $1 \sim 9$ の R^1 , R^2 , R^3 , R^4 , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{22} , R^{23} , G、 L はそれぞれ前記と同様の意味を表わし、また L e はハロゲン基を表わし、Q は 0, 1, 2、または 3 を表わす。

(スキーム1)

ピリミジンー4, 5ージカルボン酸ジエステル (II) を加水分解し、ジカルボン酸 (III) とした後、再び脱水してジカルボン酸無水物 (IV) とする。次いでアニリン化合物 (VII) と反応させてアニライド化合物 (V) とし、再び脱水閉環してNーフェニルイミド体 (VI) とする。最後に各種の求核試剤 (VIII) と反応させて、本発明化合物 (I: XがCO-L-R''、 $CON(R'^2)$ R'^3 、 $CON(R'^2)$ $OON(R'^2)$ $OON(R'^3)$ $OON(R'^3)$ OON

化合物(II)から化合物(III)への加水分解反応で使用出来る溶媒としては例えばメタノール、エタノールなどのアルコール類、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはメタノール、エタノールなどのアルコール類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

加水分解の触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基類、塩酸、硫酸等の鉱酸類が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムを使用することが出来る。これらの触媒の使用量は、化合物 (II) に対して 0. 1~等モルないし過剰モルを使用するのが良く、好ましくは 2~2.5倍モル使用するのが良い。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段に より精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来 る。

化合物 (II) のピリミジンー4, 5ージカルボン酸ジエステルは、例えば<u>I.</u> Chem. Soc., Perkin Transl, <u>1980</u>, 1667-1670; <u>J. Heterocycl. Chem.</u>, <u>14</u>, 695-696 (1977) <u>J. Heterocycl. Chem.</u>, <u>2</u>, 202-204 (1965) <u>又はTetrahedron Letters</u>、<u>39</u>, 3853 (1998) 等を参考にして合成することが出来る。

化合物(III)から化合物(IV)への脱水閉環反応で使用出来る溶媒としては、 反応の進行を阻害しないものが良く、例えばジクロロメタン、クロロホルムなど のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 N, N-ジメチルホルムアミド等の非プロトン性極性溶媒類、酢酸、トリフルオ 口酢酸等の有機酢酸を使用することが出来る。また以下に例示する脱水剤をその まま溶媒として用いてもよい。

脱水剤としては例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、ジシクロヘキシルカルボジイミド等の脱水剤を使用することが出来、その使用量は化合物(III)に対して等モルないし過剰モル使用することが出来、また溶媒として用いてもよい。反応温度は室温ないしは溶媒の沸点域から選択すれば良く、反応時間は反応温度、反応規模により一定しないが、数分ないし48時間の範囲で行えば良い。好ましくは30分から5時間の範囲が良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのまま次の反応に供してもよい。

化合物(IV)から化合物(V)のアニライド化合物への合成反応で使用出来る 溶媒としては、例えば化合物(II)から化合物(III)への合成反応で例示した。 溶媒の他に必要に応じてピリジンも使用することが出来る。

反応は化合物(IV)に対し化合物(VII)のアニリン化合物を等モルないし過剰モル使用することが出来る。好ましくは等モルないし2倍モルの範囲である。またアニリン化合物の塩を用いてもよい。使用出来る塩基としては、例えば化合物(II)から化合物(III)への合成反応で例示した無機塩基類の他に、例えば水素

化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8-ジア ザビシクロ〔5,4,0〕-7-ウンデセンなどの有機塩基類、ナトリウムメト キシドなどのアルコキシド類を加えて反応を行ってもよい。

反応温度は-10℃ないし不活性溶媒の沸点域から適宜選択すれば良く、好ま しくは0℃ないし150℃の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのまま次の反応に供してもよい。

化合物(V)から化合物(VI)への脱水閉環反応は、先に化合物(III)から化合物(IV)への脱水閉環反応に関して例示した条件に準じて、同様に反応を行うことが出来る。

また化合物 (VI) から化合物 (I) への合成反応については、先に化合物 (I , V) から化合物 (V) への反応に関して例示した条件に準じて行い、目的化合物である (I) へと導くことが出来る。

スキーム2

(スキーム2)

ピリミジンー4, 5ージカルボン酸ー6ーモノエステル(IX)をハロゲン化して酸ハライド(X)とし、次いでアニリン化合物(VII)と反応させてアニライド化合物(XI)とする。これを加水分解することにより、スキーム1の化合物(V)へと導くことが出来る。

化合物(IX)から化合物(X)へのハロゲン化で使用出来る不活性溶媒としては、反応の進行を阻害しないものが良く、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N,Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエンなどの芳香族炭化水素類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。さらに以下に例示するハロゲン化剤をそのまま溶媒として用いても良い。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温-120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

用いるハロゲン化剤としては、例えば塩化チオニル、オキシ塩化リン、シュウ酸ジクロロ、3塩化リン又は5塩化リンなどが挙げられ、好ましくは塩化チオニルが挙げられる。

化合物 (IX) のピリミジンー4, 5ージカルボン酸ー6ーモノエステルは、例えば<u>J. Chem. Soc.</u>, Perkin Transl, <u>1980</u>, 1667-1670; <u>J. Heterocycl. Chem.</u>、<u>14</u>, 695-696 (1977) <u>J. Heterocycl. Chem.</u> , <u>2</u>, 202-204 (1965) 又は<u>Tetrahedron Letters</u>, <u>39</u>, 3853 (19

98) 等を参考にして合成することが出来る。

化合物(X)から化合物(XI)の反応で使用出来る不活性溶媒としては、例えばスキーム2の化合物(IX)から化合物(X)への合成反応で例示した溶媒の他にピリジン類も使用することが出来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温-120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

反応は化合物(X)に対し、アニリン(VII)を等モルないし過剰モル使用することが出来る。好ましくは等モルないし2倍モルの範囲である。また適当な塩基を用いて反応を行っても良い。

使用出来る塩基としては、例えば化合物(II)から化合物(III)への合成反応で例示した無機塩基類の他に、例えば水素化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8-ジアザビシクロ〔5,4,0〕-7-ウンデセンなどの有機塩基類、ナトリウムメトキシドなどのアルコキシド類を加えて反応を行ってもよい。

反応は化合物(X)に対し、塩基を等モルないし過剰モル使用することが出来る。好ましくは等モルないし2倍モルの範囲である。

化合物(XI)から化合物(V)への加水分解反応においては、例えばスキーム 1の化合物(II)から化合物(III)への加水分解で用いた条件で同様に反応を行うことが出来る。また目的物は必要に応じて抽出、再結晶、カラムクロマトグラフィー等の精製手段により精製出来る。

(スキーム3)

スキーム 2 で用いた酸ハライド(X)をアミノ化し化合物(XII)とし、次いで脱水することによりニトリル化合物(XIII)とする。これを加水分解してカルボン酸(XIV)とし、ハロゲン化、アニリンとの縮合反応により、本発明化合物($IX=CN,Z'=C(R^2),Z'=N,Z'=C(R^1),Z'=N,R'=Hの場合)へ導くことが出来る。$

スキーム3

化合物(X)から化合物(XII)へのアミノ化反応は、例えばスキーム2の化合物(X)から化合物(XI)への反応に用いた条件で、同様に反応を行うことが出

来る。反応は化合物 (X) に対してアンモニアを等モルないし過剰モル使用することが出来る。好ましくは等モルないし、3倍モルの範囲である。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XII)から化合物(XIII)への脱水反応は、例えばスキーム1の化合物(II)から化合物(IV)への脱水反応に用いた条件で、同様に反応を行うことが出来る。

また上の反応で例示した脱水剤の他に、3塩化リン、5塩化リン等のハロゲン化リン類、パラトルエンスルホン酸等の有機酸類又は塩酸、硫酸等の鉱酸類を用いてもよい。その使用量は化合物(XI)に対して等モルないし過剰モル使用することが出来る。また脱水剤をそのまま溶媒として使用することも出来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶蒸留、カラムクロマトクラフィー等の精製手段により目的化合物を精製出来る。

また、化合物(XIII)から化合物(XIV)への加水分解反応については、例えばスキーム1の化合物(II)から化合物(III)への加水分解で用いた条件で反応を行うことが出来る。

更に、化合物(XIV)から本発明化合物1への合成反応についても、例えばスキーム2の化合物(IX)から化合物(XI)への合成反応に用いた条件で、同様に反応を行うことが出来る。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来る。

スキーム4

(スキーム4)

ピリジンカルボン酸無水物(XVI)をアニリン化合物(VII)と反応させ、アニライド化合物(XVII)とし、脱水閉環してN-フェニルイミド体(XVIII)とする。次いで各種の求核試剤(VIII)と反応させて、本発明化合物($1:X=COL-R^{11}$, $CON(R^{12})$ R^{13} , $CON(R^{12})$ $-OR^{13}$, $CON(R^{14})$ $-N(R^{12})$ R^{13} , $(-CON(R^{15}))$ $-[C(R^{16})]$ R^{17}] $_{\circ}-O_{2}R^{15}$ 又は $_{\circ}-CONH$ -G, $Z^{1}=C(R^{2})$, $Z^{2}=N$, $Z^{3}=C(R^{1})$, $Z^{4}=CH$ 、 $R^{3}=H$ の場合)へ導くことが出来る。

化合物(XVI)から化合物(XVII)のアニライド化合物への合成反応においては、例えばスキーム1の化合物(IV)から化合物(V)への合成反応で用いた条件で同様に反応を行うことが出来る。

- 反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製出来るが、目的物を単離せず、 そのままの反応に供してもよい。

また化合物(XVII)から目的化合物(I)への合成反応についても、スキーム 1の化合物(V)から目的化合物(I)への反応に関して例示した条件に準じて、 同様に反応を行うことが出来る。

$$R^4$$
 酸化 R^4 ND R^4 ND

(スキーム5)

N-フェニルイミド体 (XVIII, R'=R'=H)を酸化剤と反応させてN-オキ シド化合物(XIX)とし、次いでハロゲン化剤と反応させることにより、ハロゲン 化体(XX)を得る。化合物(XX)を各種の求核試剤と反応させることにより化合 物(XVIII)とし、引き続き求核試剤(VIII)との反応により、本発明化合物(1 $: X h^{i} - COL - R^{11}, CON(R^{12}) R^{13}, CON(R^{12}) - OR^{13}, CON$ $(R^{14}) - N (R^{12}) R^{13}, (-CON (R^{15}) - [C (R^{16}) R^{17}]_{0} - CO_{2}$ R^{18} 又は-CONH-G, $Z^{1}=CH$, $Z^{2}=N$, $Z^{3}=C$ (R^{1}), $Z^{4}=CH$ 又は Z'=C(R'), Z'=N, Z'=CH, Z'=CHの場合)へ導くことが出来る。 化合物 (XVIII, R'=R'=H) から化合物 (XIX) への酸化反応で使用出来る 溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素等のハロゲン 化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニ トリル、N,Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエ ーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオ 口酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、 好ましくは、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、又は、 酢酸、トリフルオロ酢酸等の有機酸類が挙げられる。これらの溶媒は単独あるい は混合して使用することも出来る。使用する酸化剤としては、例えば過酢酸、m ークロロ過安息香酸等の有機過酸化物又は過酸化水素等の過酸化物を使用するこ とが出来る。酸化剤の使用量は化合物(XVIII, R'=R2=H)に対して等モルないし過剰 モルを使用するのが良く、好ましくは等モルから1.5倍モル使用するのが良い。 また必要に応じて、酸や塩基を加えて反応を行うことが出来る。使用する酸と しては、例えば塩酸、硫酸などの鉱酸類、酢酸、トリフルオロ酢酸などの有機酸 類が挙げられる。また塩基としては例えば水酸化ナトリウム、水酸化カリウム、 炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウム等の 無機塩基類が挙げられる。

反応温度は-10℃から不活性溶媒の沸点までの間から選択すれば良く、好ま しくは0℃から室温で行うのがよい。

反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の

範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XIX)から化合物(XX)へのハロゲン化において使用出来る溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルムが挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。また、無溶媒で反応を行ってもよい。

使用するハロゲン化剤としては、例えば塩化スルフリル、三塩化リン、オキシ 塩化リン又は五塩化リンが挙げられ、好ましくはオキシ塩化リンが挙げられる。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XX)から化合物(XVIII)への求核試剤との反応で使用出来る溶媒としては、例えばメタノール、エタノール等のアルコール類、ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニトリル、N、Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはN、Nージメチルホルムアミドが挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

反応は化合物(XX)に対し求核試剤を等モルないし過剰モル使用することが出来る。好ましくは等モルないし2倍モルの範囲である。使用出来る塩基としては、

例えばスキーム1の化合物(II)から化合物(III)への合成反応で例示した無機塩基類の他に、例えば水素化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンなどの有機塩基類、ナトリウムメトキシドなどのアルコキシド類を加えて反応を行ってもよい。

反応温度は-10℃ないし不活性溶媒の沸点域から適宜選択すれば良く、好ま しくは0℃ないし150℃の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのままの反応に供してもよい。

また化合物(XVIII)から化合物(I)への合成反応については、スキーム1の化合物(IV)から化合物(V)への反応に関して例示した条件に準じて行い、目的化合物である(I)へと導くことが出来る。

$$R^{22}$$
 CO_2Et $加水分解$ R^{22} CO_2H $脱水$ CO_2H R^{22} CO_2H R^{23} CO_2H R^{24} CO_2H

(スキーム6)

化合物(XXI)から化合物(XXII)への加水分解反応で使用出来る溶媒としては例えばメタノール、エタノールなどのアルコール類、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはメタノール、エタノールなどのアルコール類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

加水分解の触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基類、塩酸、硫酸等の鉱酸類が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムを使用することが出来る。これらの触媒の使用量は、化合物(XXI)に対して0.1~等モルないし過剰モルを使用するのが良く、好ましくは2~2.5倍モル使用するのが良い。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温-120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。 化合物(XXI)は、たとえば J. Heterocyclic Chem.、27, 579 (1990) などを参考にして合成することが出来る。

化合物(XXII)から化合物(XXIII)への脱水閉環反応で使用出来る溶媒としては、たとえばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、たとえば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミドなどが挙げられ、好ましくは塩化チオニルが挙げられる。

これらの試薬の使用量としては、化合物(XXII)に対して等モルないし過剰モルが好ましく、等モルないし2.5当量がさらに好ましい。また、それ自体を溶媒として用いてもよい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XXIII)から化合物(XXIV)への反応で使用出来る溶媒としては、たとえばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N,Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

反応は化合物(XXIII)に対し、化合物(VII)のアニリン化合物を好ましくは等モ

ルないし過剰モル、より好ましくは等モルないし2当量を使用して行うことが出来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは室温-120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XXIV)から化合物(I)への合成反応においては、たとえばスキーム1の化合物(V)から化合物(I)への合成反応で用いた条件で同様に反応を行うことが出来る。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製することが出来る。

(スキーム7)

スキーム 6 に従って合成したアニライド化合物(XXVI)と各種のアミンと脱水縮合させることにより、本発明化合物($I: X=CON(R^{12})R^{13}, Z^1, Z^2=N, Z^3=C(R^1), Z^1=C(R^2)$ の場合)へ導くことが出来る。

化合物(XXVI)から化合物(I)への反応で使用出来る溶媒としては、例えば ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベン ゼン、トルエン、キシレンなどの芳香族炭化水素類、アトセニトリル、N, N-ジメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミドなどが挙げられ、好ましくは1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミドが挙げられる。

これらの試薬の使用量としては、化合物 (XXVI) に対して過剰モルが好ましく、 等モルないし2当量がさらに好ましい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来る。

(スキーム8)

ピリダジンー3, 4ージカルボン酸(XXVII)を脱水してジカルボン酸無水物(XXVIII)とする。次いでアニリン化合物(VII)と反応させてアニライド化合物(XXIX)とし、再び脱水閉環してN-フェニルイミド体(XXX)とする。最後に各種の求核試剤(VIII)と反応させて、本発明化合物(I:Xが $-CO-L-R^{11}$, $-CON(R^{12})$ R^{13} , $-CON(R^{12})$ $-O-R^{13}$, $-CON(R^{14})$ -N(R^{12}) R^{13} , $-CON(R^{15})$ $-[C(R^{16})]$ R^{17}] $Q-CO_2R^{18}$ 又は $-CON(R^{12})$ $-CON(R^{13})$ $-CON(R^{14})$ $-CON(R^{15})$ $-[C(R^{16})]$ $-CON(R^{17})$ $-CON(R^{18})$ $-CON(R^{18})$

化合物(XXVII)から化合物(I)への合成反応については、先に例示したスキーム1の条件に準じて行い、目的化合物(I)へと導くことが出来る。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製出来る。

化合物(XXVII)のピリダジンー3, 4-ジカルボン酸は、例えば \underline{J} . \underline{Hete} $\underline{rocyclic}$ Chem.、 $\underline{30}$, 1597(1993)等を参考にして合成することが出来る。

$$R^{22}$$
 NH R^4 $HN(R^{12})R^{13}$ R^{22} N NH R^4 $(VIII)$ 脱水 R^{23} $(XXXI)$ R^{23} R^{24} R^{24} R^{24} R^{25} $R^$

(スキーム9)

スキーム1の方法に従い合成したアニライド化合物 (XXXI) を各種の求核試剤

(VIII) と脱水縮合し、本目的化合物(1:Xが $CON(R^{12})$ $R^{13})$ 、 $Z^1=N$ 、 $Z^2=C(R^{22})$, $Z^3=N$, $Z^4=C(R^{23})$, $R^3=H$ の場合)へ導くことが出来る。

化合物(XXXI)から化合物(I)への反応で使用出来る溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N,Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミド、1- (3-ジメチルアミノプロピル) -3-エチルカルボジイミドなどが挙げられ、好ましくは1- (3-ジメチルアミノプロピル) -3-エチルカルボジイミドが挙げられる。

これらの試薬の使用量としては、化合物 (XXXI) に対して過剰モルが好ましく、 等モルないし2当量がさらに好ましい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温-120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来る。

以下に本発明化合物及び中間体の合成例を実施例として具体的に述べるが、本 発明はこれらによって限定されるものではない。

(実施例1)

(1-1)

2-メチルピリミジン-4,5-ジカルボン酸の合成

2-メチルピリミジンー4, 5-ジカルボン酸ジエチル8. 5g (35.7m mol)を水酸化ナトリウム3. 3g (82.5mmol)のエタノール (40ml)一水 (40ml)混合溶液中で3時間加熱還流した。反応液を放冷した後、濃塩酸を加え酸性溶液とし、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した。得られた結晶をジエチルエーテルで洗浄し、減圧下で乾燥することにより2-メチルピリミジンー4, 5-ジカルボン酸1. 95g (10.7mmol)を得た。融点260.0

[1-2]

2-メチルピリミジン-4,5-ジカルボン酸無水物の合成

2-メチルピリミジンー4, 5-ジカルボン酸1. 8g (9.9 mmol)を無水酢酸20 ml中で130~135 $\mathbb C$ に加熱し、1.5時間撹拌した。放冷後、反応液から溶媒を減圧留去し、残渣にジエチルエーテルを加え、析出した結晶を濾過、乾燥することにより、2-メチルピリミジンー4, 5-ジカルボン酸無水物1.2 g (7.3 mmol) を得た。なお得られた無水物は、そのまま次の反応に用いた。

(1-3)

2-メチル-4-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル)

ピリミジンー5ーカルボン酸の合成

2-メチルピリミジンー4, 5-ジカルボン酸無水物 0.6g(3.7mmo1) 及びジクロロメタン 1.5ml の溶液に 3-クロロー2, 6-ジエチルアニリン 0.7g(3.8mmo1) をジクロロメタン 5ml に溶かした溶液を室温下で加え、その後 1 時間撹拌した。反応液に水 5.0ml 及び濃塩酸 1ml を加え、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥した。その後溶媒を減圧留去し、残渣にジエチルエーテルを加え、析出した結晶を濾過し、乾燥することにより、2-メチルー4ー(3-クロロー2, 6-ジエチルフェニル) アミノカルボニルピリミジンー5-カルボン酸 0.8g(2.3mmo1) を得た。融点 2.16-218 \mathbb{C}

(1-4)

2-メチル-N-(3-クロロ-2, 6ジエチルフェニル)ピリミジン-4, 5 -ジカルボキシイミドの合成

2-メチルー4-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー5-カルボン酸0.5g(1.4mmol)、酢酸ナトリウム0.1g(1.2mmol)及び無水酢酸10mlの混合物を110 $\mathbb C$ に加熱し、1時間撹拌した。減圧下で溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加

え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。 溶媒を留去し、そのまま次の反応に用いた。

(1-5)

2-メチルー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー4-カルボン酸 i-ブチルアミド(化合物No. 1-1)の合成

 $\{1-4\}$ で得られた 2-メチル-N-(3-クロロ-2, 6-ジエチルフェニル)ピリミジン-4, 5-ジカルボキシイミドをジオキサン10 m 1に溶かし、そこにイソプチルアミン0. 11 g(1. 5 m m o 1)を加え、室温で一晩撹拌した。反応終了後、溶媒を減圧下で留去し、シリカゲルカラムクロマトグラフィー(酢酸エチル)により精製した。溶媒を減圧下で留去し、ジエチルエーテルで結晶を洗浄し減圧下で乾燥することにより、2-メチル-5-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル)ピリミジン-4-カルボン酸イソブチルアミド0. 15 g(0. 37 m m o 1)を得た。

融点160-162℃

(実施例2)

[2-1]

2-メチルチオピリミジン-4,5-ジカルボン酸ジエチルの合成

$$\begin{pmatrix}
SMe \\
H_2N \\
NH
\end{pmatrix}_2 \cdot H_2SO_4$$

$$MeS \\
N \\
CO_2Et$$

硫酸メチルイソチオ尿素 8.63g(31mmol)のエタノール120ml 懸濁溶液に28%ナトリウムメトキシドのメタノール溶液12.2g(63.2 mmol)を加え、室温で30分間撹拌した。その後、この懸濁溶液にエトキシ メチレンオキサル酢酸ジエチル15g(61mmol)を加え、室温で1晩撹拌 した。反応終了後、大部分のエタノールを減圧下留去し、これに水を加え、クロ ロホルムで抽出した。クロロホルム層を希塩酸及び飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥した。溶媒を減圧留去することにより2-メチルチオピリジ ン-4,5-ジカルボン酸ジエチル14.97g(55mmol)を得た。この ジエステル体は、そのまま次の反応に用いた。

(2-2)

2-メチルチオピリミジン-4,5-ジカルボン酸の合成

[2-1]で得られた2-メチルチオピリミジン-4, 5-ジカルボン酸ジエチル14. 92g (55 mm o I)のエタノール120 m I 溶液にNaOH/H 2O [4. 44g (111 mm o I)/80 m I)を加え、室温で1. 5 時間搅拌した。反応終了後、大部分のエタノールを減圧留去し不溶物を減圧濾過した。濾液(水溶液)にp H 1 になるまで濃塩酸を加え、酢酸エチルにより抽出した。酢酸エチル層を飽和食塩水により洗浄し、硫酸マグネシウムにより乾燥した後、溶媒を減圧留去した。析出した結晶を、ジエチルエーテルで洗浄し、減圧濾過、乾

燥することにより、2-メチルピリミジン-4, 5-ジカルボン酸の白色結晶 7. 2 1 g (34 mm o I) を得た。

融点 181-184℃分解

(2-3)

2-メチルチオピリミジン-4,5-ジカルボン酸無水物の合成

2-メチルチオピリミジン-4,5-ジカルボン酸2g(9.3 mmol)の無水酢酸20ml溶液を、120℃(オイルバス温度)で1時間加熱撹拌した。反応液から過剰の無水酢酸及び酢酸を減圧留去して、2-メチルチオピリミジン-4,5-ジカルボン酸無水物を得た。このジカルボン酸無水物は精製することなく次の反応に用いた。

[2-4]

2-メチルチオー4-(3-クロロ-2, 6-ジエチルフェニルアミノカルボ ニル)ピリミジン-5-カルボン酸の合成

〔2-3〕で得られた、2-メチルチオピリミジン-4, 5-ジカルボン酸無水物にTHF20ml及び3-クロロ-2, 6-ジエチルアニリン1. 72g (9. 4mmol)を加え(発熱)室温で2時間撹拌した。反応終了後減圧下で

WO 99/44992

溶媒を留去し、水及び濃塩酸を加え $pH1\sim2$ とした。酢酸エチルにより抽出し、有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。析出した結晶をジエチルエーテルで洗浄し、減圧濾過、乾燥することにより 2-メチルチオー4ー(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジン-5-カルボン酸1. 79g(4. 7mmol) を得た。

融点 214-218℃ (分解)

(2-5)

2-メチルチオーN-(3-クロロー2, 6-ジエチルフェニル) ピリミジンー4, 5-ジカルボキシイミドの合成

2-メチルチオー4-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー5-カルボン酸1 g(2.6 mm o 1)、酢酸ナトリウム0.1 g(1.2 mm o 1)及び無水酢酸5 0 m 1 の混合液を1 3 0 $\mathbb C$ (オイルバス温)で 1 時間加熱撹拌した。反応終了後、過剰の無水酢酸を減圧留去し酢酸エチルを加えた。これを飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。残渣をヘキサンにて結晶化し、減圧濾過、乾燥することにより 2-メチルチオーN-(3-クロロー2、6-ジエチルフェニル)ピリミジンー4, 5-ジカルボキシイミド0.89 g(2.5 mm o 1)を得た。

融点 141-143℃

(2-6)

2-メチルチオー5- (3-クロロー2,6-ジエチルフェニルアミノカルボニル)ピリミジン-4-カルボン酸 i-ブチルオキシアミド (化合物 No.1-14)の合成

融点 174-176℃

(実施例3)

2-メチルチオー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー4-カルボン酸i-プロピルヒドラジド(化合物No.1-13)の合成

融点 161-163℃

(実施例4)

3- (3-クロロー2, 6-ジエチルフェニルアミノカルボニル) ピリジンー4-カルボン酸 i - ブチルアミド (化合物 No. 2-1) の合成

イソプチルアミン 0. 18g (2.5 mm o 1)、ジオキサン 15 m l 及び N - (3-クロロー 2,6-ジエチルフェニル)ピリジン - 3,4-ジカルボキシイミド 0.5 g (1.6 mm o 1)の混合液を室温で 2日間撹拌した。反応終了後溶媒及び過剰のイソブチルアミンを減圧留去し、ジエチルエーテルで結晶化させ、減圧濾過、乾燥することにより、3-(3-クロロー 2,6-ジエチルフェニルアミノカルボニル)ピリジン - 4-カルボン酸 i - ブチルアミド 0.5 g (1.3 mm o 1)を得た。

融点 183-186℃

(実施例5)

[5-1]

N-(3-クロロ-2, 6-ジエチルフェニル) ピリジン-3, 4-ジカルボ キシイミド1-オキサイドの合成

N-(3-クロロー2,6-ジエチルフェニル)ピリジンー4,5-ジカルボキシイミド1.5gをクロロホルム15mlに溶解し、次いで3-クロロ過安息香酸1.7gを加え還流下5時間反応を行った。反応終了後、反応溶液を室温に戻した後酢酸エチルを加え有機層を飽和重ソウ水で3回洗浄し、硫酸マグネシウムで乾燥し、減圧下に濃縮し、得られた残留物にジエチルエーテルを加え、注意深く撹拌すると結晶が析出し、これを濾別することにより目的物0.85gを得た。これはそのまま次の反応に用いた。

(5-2)

6-クロロ-N-(3-クロロ-2, 6-ジエチルフェニル) ピリジン-3, 4-ジカルボキシイミドの合成

N-(3-クロロ-2,6-ジエチルフェニル)ピリジン-3,4-ジカルボキシイミド-1-オキサイド500mgをオキシ塩化リン5mlに溶解し、徐々に加熱を行い、還流下に3時間反応を行った。反応終了後、反応溶液を室温に戻した後、減圧下に過剰のオキシ塩化リンを留去した後、残留物に酢酸エチルを加

え有機層を注意深く飽和重ソウ水で洗浄し、硫酸マグネシウムで乾燥し、減圧下 に濃縮した。得られた結晶を少量のジエチルエーテルで洗浄することにより、目 的物 5 0 0 m g を得た。これはそのまま次の反応に用いた。

$$(5-3)$$

6-メチルチオーN-(3-クロロー2, 6-ジエチルフェニル)ピリジンー 3, 4-ジカルボキシイミドの合成

6-クロローN-(3-クロロー2,6-ジエチルフェニル)ピリジンー3,4-ジカルボキシイミド500mgをジメチルホルムアミド3mlに溶解した溶液に、メチルメルカプタンナトリウム水溶液(15%水溶液、0.75ml)を0℃でゆっくり加え、1時間反応を行い、原料化合物の消失を確認した後、水を加え、酢酸エチルで反応系より目的物を抽出し、無水硫酸マグネシウムで乾燥後、減圧下に溶媒を留去し、得られた残渣を少量のエーテルで洗浄することにより目的物300mgを得た。これはそのまま次の反応に用いた。

$$[5-4]$$

6-メチルチオー3-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)-ピリジンー4-カルボン酸i-ブチルアミド(化合物No. 2-2)の合成

6-メチルチオーN-(3-クロロー2, 6-ジエチルフェニル)ピリジンー 3, 4-ジカルボキシイミド300 mgをジオキサン3mlに溶解し、該溶液に i-ブチルアミン125 mgを加えて、室温下に12 時間反応を行った。反応終了後、反応液を減圧下に留去し、得られた残渣を酢酸エチル/n- \wedge キサンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、白色結晶として目的物 180 mgを得た。

融点 238-242℃

(実施例6)

[6-1]

3-(3-クロロー2,6-ジエチルフェニルアミノカルボニル)ピリダジンー4-カルボン酸の合成

ピリダジンー3, 4ージカルボン酸1. 4g(8.3mmol)をベンゼン20mlに懸濁し、塩化チオニル10mlを加え1時間加熱還流した。放冷後、減圧下で溶媒を留去し、ピリダジンー3, 4ージカルボン酸無水物を得た。

ついで、このものをジクロロメタン30mlに溶解し、水冷下で3-クロロ-2.6-ジエチルアニリン1g(5.4mmol)を滴下した。

この反応混合物を室温で一晩攪拌した後、10%塩酸に注ぎ込み、クロロホルムにて抽出した。クロロホルム層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥させた後、減圧下で溶媒を留去した。

得られた結晶をヘキサンーエーテルの混合溶媒にて洗浄し、濾取して乾燥させることにより、目的とする3-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル)ピリダジン-4-カルボン酸1.35gを得た。

融点 166-172℃ (分解)

[6-2]

 $4-(3-\rho - 1 - 2, 6-i)$ エチルフェニルアミノカルボニル) ピリダジンー 3- カルボン酸イソブチルアミド(化合物 N_0 . 4-1) の合成

 $3-(3-\rho \Box \Box -2, 6-i)$ エチルフェニルアミノカルボニル)ピリダジンー4ーカルボン酸 1 g(3 mm o 1)をトリフルオロ酢酸 1 5 m 1 に溶解し、無水トリフルオロ酢酸 0. 6 3 g(3 mm o 1)を加え 3 0 分間加熱還流した。放冷後、減圧下で溶媒を留去すると、 $N-(3-\rho \Box \Box -2, 6-i)$ エチルフェニルアミノカルボニル)ピリダジンー 3, 4-i カルボキシイミドが粗物で得られた。

ついでこのものをジオキサン10mlに溶解し、10mlのジオキサンに溶解

したイソプチルアミン 0.4g (5.47 mm o 1) を滴下した。この反応液をそのまま 1 時間攪拌し、減圧下で溶媒を留去した。得られた残渣をプレパラティブ薄層クロマトグラフィー(ヘキサン/酢酸エチル= 1 / 2) にて精製し、得られた結晶をイソプロピルエーテルにて洗浄し、濾取することにより、4 - (3 - クロロー 2,6 - ジエチルフェニルアミノカルボニル) ピリダジンー 3 - カルボン酸イソプチルアミド 0.44g を得た。

融点 127-129℃

(実施例7)

3 - (3 - クロロー2, 6 - ジエチルフェニルアミノカルボニル) ピリダジン - 4 - カルボン酸イソブチルアミド(化合物 N o . 5 - 1) の合成

3-(3-クロロ-2,6-ジエチルフェニルアミノカルボニル)ピリダジン-4-カルボン酸0.7g(2.1mmol)、イソプチルアミン0.31g(4.2mmol)4-ジメチルアミノピリジン10mg(0.08mmol)及び塩化メチレン30mlの混合溶液に、室温で1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩1g(5.2mmol)を加え、5時間攪拌した。反応液に水及び濃塩酸を加え、pH2とした。有機を分離後、水層をクロロホルムで抽出し、有機層と合わせ、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した。シリカゲルカラムクロマトグラフィー(PTLC)(ヘキサン/酢酸エチル=1/1)にて精製した後、ヘキサン/ジエチルエーテルにて結晶化させ濾取、減圧乾燥により、3-(3-クロロー2,6-ジエチルフェニルアミノカルボニル)ピリダジン-4-カルボン酸イソプチルアミド0.24g(0.6mmol)を得た。融点135~137℃(実施例8)

[8-1]

ピリダジンー4,5-ジカルボン酸無水物の合成

$$\begin{array}{c}
N \\
N \\
CO_2H
\end{array}$$

ピリダジンー4,5ージカルボン酸1gとDCC1.23gをTHF20mlに溶解し、一晩室温にて攪拌した。反応終了後、反応液を濾過し、それ以上精製することなく濾液を次の反応に供した。

[8-2]

4-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル) -ピリダジ ン-5-カルボン酸の合成

前述濾液に3-クロロ-2,6-ジエチルアニリン1.1 gを加え、室温で一 晩攪拌した。反応終了後、反応液を濾過、結晶をジエチルエーテルで洗浄し、粗 結晶として1.3 gを得た。それ以上精製することなく次の反応に供した。

[8 - 3]

前述粗結晶 0.65 g と D C C 0.4 g を T H F 10 m 1 に溶解し、室温で一晩攪拌した。反応終了後、反応液を濾過し、濾液を濃縮後カラムクロマトグラフィー(ヘキサン:酢酸エチル、4:1)に供し、目的物 500 m g を得た。融点 $148 \sim 150$ \mathbb{C})

[8-4]

N- (3-2)000-2, 6-325 アンステルフェニル) ピリダジンー4, 5-33カルボキシイミド 0. 25 g とイソプチルアミン 0. 12 g をジオキサン 10 m 1 に溶解し、室温にて一晩攪拌した。反応終了後反応液を濃縮し、ジエチルエーテルで洗浄し目的物を 10 2 5 g 得た。融点 1 7 7 ~ 1 8 0 1

(実施例9)

2-メチルチオー6-(3-クロロ-2,6-ジエチルフェニルアミノカルボニル)ピリミジン-5-カルボン酸i-ブチルアミド(化合物No.8-1)の合成

2-x チルチオー $6-(3-\rho \Box \Box - 2, 6-i)$ エチルフェニルアミノカルボニル)ピリミジン-5- カルボン酸 0.5g (1.3 mmo 1) 、イソプチルアミン0.15g (2 mmo 1) 、4-i メチルアミノピリジン (触媒量)及びトルエン10m1 の混合液を70 $\mathbb C$ に加熱した。そこに1- エチル-3-(3-i) メチルアミノプロピル)- カルボジイミド塩酸塩(WSC)0.5g (2.6 mmo 1) を加え、1 時間撹拌した。反応液を室温になるまで放置した後、希塩酸水溶液に注ぎクロロホルムにて抽出した。 $NaSO_4$ にて乾燥後減圧下で溶媒を留去した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=3:2)により精製した後結晶化(ヘキサン、ジエチルエーテル)し、減圧濾過、乾燥することによって(化合物No.8-1)を0.13g得た。融点179-183 $\mathbb C$ (実施例10)

[10-1]

2 - メチルー6 - t - ブチルー5 - メトキシカルボニルー4 - ピリミジンカルボン酸クロライドの合成

$$N$$
 CO_2Me
 N
 CO_2H
 N
 CO_2Me
 N
 $COCI$

2-メチルー6-t-ブチルー5-メトキシカルボニルー4-ピリミジンカルボン酸5g(22mmol)、塩化チオニル5g(42mmol)及びベンゼン50mlの混合物を、1時間加熱還流した。室温まで放置した後、過剰の塩化チ

オニル及び溶媒を減圧下で留去することにより、2-メチル-6-t-ブチル-5-メトキシカルボニル-4-ピリミジンカルボン酸クロライドの粗物を油状物 として得た。得られたピリミジンカルボン酸クロライドは、そのまますぐに次の 反応に用いた。

[10-2]

2-メチル-6-t-ブチル-4-(2,6-ジエチル-3-クロロフェニルアミノカルボニル)-5-ピリミジンカルボン酸メチルエステルの合成

[10-1]で得られた2-メチルー6-t-ブチルー5-メトキシカルボニルー4-ピリミジンカルボン酸クロライドのジクロロメタン (50 ml) 溶液を氷水で冷却し、そこに、2,6-ジエチルー3-クロロアニリン5g(27 mm ol)、トリエチルアミン3g(30 mm ol)及びジクロロメタン20 mlの混合物をゆっくり加え、室温までもどし室温で3時間撹拌した。

その後反応液を希塩酸水溶液及び、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1)により上記化合物の粗物 9.3 gを油状物として得た。得られた粗物は、それ以上精製せず次の反応に用いた。

(実施例10-3)

2-メチルー6-t-ブチルー4-(2,6-ジエチルー3-クロロフェニル)アミノカルボニルー5-ピリミジンカルボン酸の合成

(実施例10-2)で得られた2-メチルー6-tert-ブチルー4-(2,6-ジエチルー3-クロロフェニル)アミノカルボニルー5-ピリミジンカルボン酸メチルエステルの粗物9.3gのエタノール(20ml)溶液に、水酸化ナトリウム1g(23mmol)の水溶液30mlを加え、室温で15時間攪拌した。その後減圧下で大部分のエタノールを留去し、残った水溶液をクロロホルムで洗浄した。水溶液に濃塩酸を加え、pH2とし、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残査をエチルエーテルーへキサン溶液にて結晶化し、減圧濾過乾燥することによって上記ピリミジンカルボン酸を2.8g(6.9mmol)得た。融点142~144℃分解

[10-4]

2-メチルー6-tープチルーN(3-クロロー2, 6-ジエチルフェニル) ピリミジンー4, 5-ジカルボキシイミドの合成

2-メチル-6-t-ブチル-4-(2,6-ジエチル-3-クロロフェニル)アミノカルボニル-5-ピリミジンカルボン酸2.4g(5.9mmol)、酢酸ナトリウム(触媒量)及び無水酢酸20mlの混合物を110℃に加熱下、45分間攪拌した。減圧下で溶媒を留去し、クロロホルムを加えた。クロロホル

ム溶液を、飽和炭酸水素ナトリウム溶液にゆっくり注ぎ、30分間攪拌した。クロロホルム層と水層を分離し、水層をクロロホルムにて抽出し、前のクロロホルム層と合わせて、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、エチルエーテルーへキサン混合溶液を加え、不溶物を除去した。溶媒を減圧留去することによって、イミド体を1.8g(4.7mmol)得た。これはそのまま次の反応に用いた。

[10-5]

2-メチルー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)-6-tープチルピリミジンー4-カルボン酸i-プチルアミド (化合物No. 3-29) の合成

イミド体0.6g(1.6mmol)の1.4-ジオキサン(20ml)溶液にイソプチルアミン0.2g(2.7mmol)を加え、室温で2時間攪拌した。過剰のアミン及び溶媒を減圧留去し、析出した結晶をエチルエーテルで洗浄し、減圧下で乾燥させることにより、目的化合物を0.4g(0.9mmol)得た。融点217~219 $\mathbb{C}(分解)$

前記実施例に準じて合成した本発明化合物の構造式と物性を前記実施例を含め、 それぞれ第1表~第8表に示す。 [第1表]

$$R^1$$
 N X R^4

表】

			····	
化合物 N o.	R '	X	R ⁴	物性値
1 - 1	Н	CONHiBu	2-Me-3-C1	mp181-182℃
1 - 2	Me	CO ₂ H	2, 6-Et 2-3-C1	mp155-157℃
1 - 3	Me	CO₂Me	2, 6-Et ₂ -3-Cl	mp165-168℃
1 - 4	Me	CONH i Bu	2, 6-Et 2-3-C1	mp160-162℃
1 - 5	i-Pr	CONH i Bu	2-Me-3-C1	mp190-194℃
1 - 6	i-Pr	CONHcPen	2-Me-3-C1	mp170-172℃
1 - 7	i-Pr	CONH i Bu	2, 6-Et ₂ -3-Cl	mp126-129℃
1 - 8	i-Pr	CONHcPen	2, 6-Et ₂ -3-C1	mp 87- 90℃
1 - 9	SMe	CONHiBu	2, 6-Et ₂ -3-Cl	mp134-135℃
1 - 1 0	SMe	CONHcPen,	2, 6-Et ₂ -3-C1	mp121-123℃
1 - 1 1	SMe	CONHiBu	2-Me-3-C1	mp168-169℃
1 - 1 2	SMe	CONHcPen	2-Me-3-C1	mp163-167℃
$1 - 1 \ 3$	SMe	CONHNHiPr	2, 6-Et ₂ -3-Cl	mp161-163℃
$1 - 1 \ 4$	SMe	CONHOiBu	2, 6-Et 2-3-C1	mp174-176℃
1 - 1 5	SMe	CONH i Bu	2-Me-5-C1	mp205-210℃
1 - 1 6	Ph	CONH i Bu	2, 6-Et 2-3-C1	mp188-192℃
1 - 17	Ph	CONHcPen	2, 6-Et ₂ -3-Cl	mp207-210℃
1 - 1 8	Ph	CONHiBu	2-Me-3-C1	mp230-234℃
1 - 19	Ph	CONHcPen	2-Me-3-C1	mp239-241℃
1 - 2 0	Ph	CONHNHiPr	2, 6-Et ₂ -3-C1	mp195-198℃
1 - 2 1	OMe	CONH i Bu	2, 6-Et ₂ -3-Cl	mp165-170℃
1 - 2 2	OEt .	CONH i Bu	2, 6-Et 2-3-Cl	mp150-153℃
1 - 2 3	Me ₂ N	CONH i Bu	2-Me-3-C1	mp203-205℃

表 2

化合物 N o .	R '	X	R 1	物性値
1 - 2 4	Me ₂ N	CONHcPen	2-Me-3-Cl	mp174~175℃
1 - 25	Me ₂ N	CONH i Bu	2, 6-Et ₂ -3-C1	mp150-151℃
1 - 26	Me ₂ N	CONHcPen	2, 6-Et ₂ -3-Cl	mp131-133℃
1 - 27	i BuNH	CONH i Bu	2, 6-Et ₂ -3-Cl	mp228-232℃
1 - 2 8	MeSO ₂	CONHiBu	2, 6-Et ₂ -3-Cl	mp177-180℃
1 - 2 8	MeNH	CONH i Bu	2, 6-Et ₂ -3-Cl	mp180-191℃
1 - 29	SCH2CO2Et	. CONHiBu	2, 6-Et ₂ -3-Cl	mp164-167℃
1 - 3 0	OCH2CO2Et	CONH i Bu	2, 6-Et ₂ -3-Cl	mp161-163℃
1 - 3 1	SMe	CONHG(b)	2, 6-Et ₂ -3-Cl	mp178-181℃
1 - 3 2	SMe	CONHCH(Me)Ph	2, 6-Et ₂ -3-Cl	mp170-171℃
1 - 3 3	OPh	CONHiBu	2,6-Et ₂ -3-Cl	mp165-167℃
1 - 3 4	SMe	CONH(CH ₂) ₂ OH	2,6-Et ₂ -3-Cl	mp185-188℃
$1 - 3 \ 5$	MeSO₂NH	CONH i Bu	2,6-Et ₂ -3-Cl	mp200℃<(dec)
1 - 36	F	CONHiBu	2,6-Et ₂ -3-Cl	mp150-152℃
1 - 37	Me	CONHcPen	2,6-Et ₂ -3-Cl	mp164-166℃
1 - 3 8	Me ₂ N	CONH(CH₂)₂OH	2-Me-3-C1	mp142-144℃
1 - 39	EtSO₂NMe	CONHiBu	2, 6-Et 2-3-C1	mp180-183℃
1 - 4 0	OH	CONH i Bu	2,6-Et ₂ -3-Cl	mp200-202℃
1 - 4 1	OCH ₂ C≡CH	CONH i Bu	2,6-Et ₂ -3-Cl	mp168-169℃
1 - 4 2	OCH2CF3	CONHiBu	2,6-Et ₂ -3-Cl	mp156-159℃
$1 - 4 \ 3 \ OPh$	(4-CF ₃ -2-C1)	CONHiBu	2,6-Et ₂ -3-Cl	mp187-189℃
$1 - 4 \ 4$	c-Pr	CONH i Bu	2,6-Et ₂ -3-Cl	mp174-176℃
1 - 4 5	c-Pr	CONHcPen	2, 6-Et ₂ -3-Cl	mp148-150℃

表 3

化合物N	o. R'	X	R ⁴	物性値
1 - 4 6	CN	CONHiBu	2, 6-Et 2-3-Cl	mp217-219℃
1 - 47	c-Pr	CONH i Bu	2-Me-3-C1	mp156-158℃
1 - 4 8	c-Pr	CONHcPen	2-Me-3-C1	mp167-169℃
1 - 49	Me	CONHcPr	2, 6-Et 2-3-Cl	mp205-206℃
1 - 50	(CH ₂) ₁ N	CONHiBu	2, 6-Et ₂ -3-Cl	mp154-156℃
1 - 5 1	Et 2N	CONHiBu	2, 6-Et ₂ -3-Cl	mp176-178℃
1 - 5 2	(CH ₂) ₃ N	CONH i Bu	2, 6-Et ₂ -3-Cl	mp187-190℃
1 - 5 3	MeS	CONH i Bu	2,6-Et ₂	mp164-167℃
1 - 5 4	MeS	CONHcPen	2,6-Et ₂	mp175-177℃
1 - 5 5	MeS	CONH i Bu	2-F-4-C1	mp172-174℃
1 - 56	MeS	CONHcPen	2-F-4-C1	mp195-197℃
1 - 57	F(CH ₂) 20	CONHiBu	2, 6-Et ₂ -3-Cl	mp151-153℃
1 - 5 8	CI(CH ₂) ₂ 0	CONHiBu	2, 6-Et ₂ -3-Cl	mp136-138℃
1 - 59	c-PrNH	CONHiBu	2,6-Et ₂ -3-Cl	mp214-216℃
1 - 6 0	PhCH ₂ O	CONH i Bu	2, 6-Et ₂ -3-Cl	mp143-145℃
1 - 6 1	(EtO) 2 CHCH 2 NH	CONHiBu	2, 6-Et ₂ -3-Cl	mp196-198℃
1 - 6 2	Pr	CONHiBu	2,6-Et ₂ -3-Cl	mp130-133℃
1 - 6 3	Pr	CONHiBu	2-Me-3-C1	mp148-150℃
1 - 6 4	Pr	CONHcPen	2-Me-3-C1	mp160-162℃
1 - 6 5	Et	CONH i Bu	2, 6-Et 2-3-C1	mp146-148℃
1 - 6 6	Et	CONHcPen	2, 6-Et ₂ -3-Cl	mp135-138℃
1 - 6 7	Et	CONHiBu	2-Me-3-C1	mp145-147℃
1 - 6 8	Et	CONHcPen	2-Me-3-C1	mp159-160℃

表 4

————— 化合物 N	o. R¹	Х	R +	物性値
1 - 6 9	t Bu	CONH i Bu	2, 6-Et 2-3-Cl	mp148-150℃
1 - 70	tBu	CONHcPen	2, 6-Et ₂ -3-Cl	mp155-157℃
1 - 7 1	tBu	CONHcPen	2-Me-3-Cl	mp229-231℃
1 - 7 2	tBu	CONHcPen	2-Me-3-C1	mp214-217℃
1 - 73	CF ₃	CONHiBu	2, 6-Et ₂ -3-Cl	mp210-212°C
1 - 7 4	CF ₃	CONHcPr	2, 6-Et ₂ -3-Cl	mp261-262℃
1 - 75	CF ₃	CONH i Bu	2-Me-3-C1	mp198-200℃
1 - 76	CF ₃	CONHcPen	2-Me-3-C1	mp233-234℃
1 - 77	CF ₃	CONHcPen	2,6-Et ₂ -3-Cl	mp217-219℃
1 - 7 8	CF ₃	CONHCH 2 CH=CH 2	2,6-Et ₂ -3-Cl	mp234-236℃
1 - 7 9	CF 3	CONHCH₂C≡CH	2, 6-Et ₂ -3-Cl	mp234℃

[第2表]

$$R^1$$
 R^2
 X
 R^2
 X
 R^4

表 5

化合物No.	R '	R ²	R ^{2 3}	X	R 1	物性値
2 - 1	Н	Н	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp183-186℃
2 - 2	MeS	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp238-242℃
2 - 3	Me	Н	Me0	CONH i Bu	2-Me-3-C1	mp173-175℃
2 - 4	C1	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp235-237℃
2 - 5	Me₂N	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp222-224℃
2 - 6	MeO	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp258-260℃
2 - 7	Н	Me₂N	Н	CONHiBu	2,6-Et ₂ -3-Cl	mp212-214℃
2 - 8	MeS0	Н	Н	CONHiBu	2,6-Et ₂ -3-Cl	mp205-206℃
2 - 9	Н	ОН	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp259-262℃
2 - 1 0	Me	Н	MeO	CONH i Bu	2, 6-Et ₂ -3-Cl	mp235-237℃
2 - 1 1	Н	ОН	Н	CONHcPen	2, 6-Et ₂ -3-Cl	mp227-239℃
2 - 1 2	Н	MeS	Н	CONHiBu	2,6-Et ₂ -3-Cl	mp247-250℃
$2 - 1 \ 3$	Н	MeS	Н	CONHcPen	2, 6-Et ₂ -3-Cl	mp228-230℃
2 - 1 4	CN	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp242-243℃

[第3表]

表 6

化合物No.	. R¹	R ²	. X	R 1	物性値
3 - 1	Ме	Me	CONHcPen	2, 6-Et 2-3-Cl	mp249-253℃
3 - 2	Me	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp245-247℃
3 - 3	Me	Me	CONHiBu	2-Me-3-C1	mp197-200℃
3 - 4	Me	Me	CONHcPen	2-Me-3-C1	mp180-182℃
3 - 5	Me	Et	CONHiBu ·	2, 6-Et ₂ -3-Cl	mp235-238℃
3 - 6	Me	Et	CONHiBu	2-Me-3-Cl	mp210-212℃
3 - 7	Me	Et	CONHcPen	2-Me-3-Cl	mp225-227℃
3 - 8	Me	Et	CONHcPen	2, 6-Et 2-3-C1	mp221-224℃
3 - 9	Мe	Ph	CONHiBu	2, 6-Et ₂ -3-Cl	mp241-243℃
3 1.0	Me	Ph	CONHcPen	2, 6-Et ₂ -3-C1	mp253-256℃
3 - 1 1	Me	Ph	CONHiBu	2-Me-3-C1	mp210-214℃
3 - 1 2	Me	Ph	CONHcPen	2-Me-3-C1	mp227-229℃
3 - 1 3	Et	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp235-238℃
$3 - 1 \ 4$	Et	Me	CONHcPen	2, 6-Et 2-3-C1	mp238-242℃
3 - 1 5	Et	Me	CON(CH ₂) ₄	2, 6-Et ₂ -3-Cl	mp172-174℃
3 - 16	Me	iPr	CONH i Bu	2, 6-Et ₂ -3-Cl	mp230-233℃
3 - 1 7	Me	Ph(2-F)	CONHiBu	2, 6-Et ₂ -3-C1	mp210-212℃
3 - 1 8	Me	Ph(2-F)	CONHcPen	2, 6-Et ₂ -3-C1	mp208-210℃
3 - 19	Н	Me	CONHiBu ·	2, 6-Et 2-3-C1	mp250-252℃
3 - 2 0	Н	Me	CONHcPen	2, 6-Et ₂ -3-Cl	mp232-235℃
3 - 2 1	Н	Me	CONHiBu	2-Me-3-C1	mp209-212℃
3 - 2 2	Н	Me	CONHcPen	2-Me-3-Cl	mp218-220℃
3 - 2 3	Me	CF 3	CONHiBu	2, 6-Et ₂ -3-Cl	mp285-288℃

表 7

化合物No.	R ¹	R²	Х	R +	物性値
3 - 2 4	Me	CF ₃	CONHcPen	2, 6-Et 2-3-Cl	 mp280-285℃
3 - 25	Me	Pr	CONH i Bu	2-Me-3-C1	mp204-205.5℃
3 - 26	Me	Pr	CONHcPen	2-Me-3-C1	mp207-209℃
3 - 27	Me	Pr	CONHiBu	2, 6-Et ₂ -3-Cl	mp254-255℃
3 - 2 8	Me	Pr	CONHcPen	2,6-Et ₂ -3-Cl	mp251-252℃
3 - 29	Me	t -Bu	CONHiBu	2,6-Et ₂ -3-Cl	mp217-219℃
3 - 3 0	Me	t –Bu	CONHcPen	2,6-Et ₂ -3-Cl	mp207-210℃
3 - 3 1	Me	t –Bu	CONHPr	2,6-Et ₂ -3-Cl	mp214-216℃
3 - 3 2	CF ₃	Me	CONHiBu	2,6-Et ₂ -3-Cl	mp249-251℃
$3 - 3 \ 3$	CF ₃	Me	CONHcPen	2,6-Et ₂ -3-Cl	mp245-247℃
$3 - 3 \ 4$	CF ₃	Me	CON(CH ₂) ₄	2,6-Et ₂ -3-Cl	mp228-230℃
3 - 3 5	Me	Me	CONHMe	2, 6-Et ₂ -3-C1	mp279-280℃
3 - 36	Me	Me	CONHEt	2,6-Et ₂ -3-Cl	mp279-280℃
3 - 37	Me	Me	CONHPr	2,6-Et ₂ -3-Cl	mp277-278℃
3 - 3 8	Me	CF ₃	CON(CH ₂) ₄	2,6-Et ₂ -3-Cl	mp247-250℃
3 - 3 9	Me [·]	MeOCH₂	CONHiBu	2,6-Et ₂ -3-Cl	mp220-222℃
3 - 4 0	Ме	MeOCH₂	CONHiBu	2-Me-3-C1	mp197-200℃

$$R^2$$
 0 H R^4

表 8

化合物 N o .	R ²	X	R 1	物性値
4 - 1 $4 - 2$ $4 - 3$	н н н	CONHiBu CONHcPen CONHiBu	2,6-Et ₂ -3-Cl 2,6-Et ₂ -3-Cl 2-Et-6-Me	mp127-129℃ mp120-121℃ mp153-156℃
4 - 4	Н	CON(Me)iBu	2-Me-3-C1	mp109-111℃

[第5表]

表 9

化合物 N o	. R'	R ^{2 3}	X	R 4	物性値、
5 – 1	Н	Н	CONH i Bu	2, 6-Et 2-3-C1	mp135-137℃

[第6表]

$$\begin{array}{c|c}
R^2 & O \\
N & NH \\
R^{23} & NH
\end{array}$$

表 1 0

化合物Na	o. R²	R ^{2 3}	X	R '	物性値
6 - 1	Н	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp177-180℃
6 - 2	Н	Н	CONHcPen	2, 6-Et ₂ -3-Cl	mp145-150℃
6 - 3	Н	Н	CONHiBu	2-Me-3-C1	mp189-190℃
6 - 4	Н	Н	CONHcPen	2-Me-3-C1	mp164-166℃
6 - 5	Н	Н	CONH i Bu	2-Et-6-Me	mp205-207℃

[第7表]

$$\begin{array}{c|c}
 & R^2 & O \\
 & N & NH \\
 & R^1 & X
\end{array}$$

$$\begin{array}{c|c}
 & R^4 \\
 & R^2 & X
\end{array}$$

表11

化合物 N o.	R¹	R²	R 23	X	R ·	物性値
7 – 1	Н	Н	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp204-206℃

$$R^{22}$$
 N
 N
 N
 N
 N
 N
 N
 N
 N

表 1 2

化合物 N o.	R 2 2	R ^{2 3}	X	R +	物性値
8 – 1	MeS	Н	CONH i Bu	2, 6-Et 2-3-C1	mp179-183℃

前記スキームあるいは実施例に準じて合成される本発明化合物群を、前記実施 例で合成した化合物も含めて第9表~第14表に例示するが、本発明はこれらに 限定されるものではない。

なお、第9表~第14表の表中、Ph (R¹) は以下に示す構造を表わす。

$$F_3C$$
 F_3C
 F_3C

CI CI CI CI CI CI CI
$$O_2N$$
 , F_3C , O_2N ,

MeQ

MeQ

MeQ

MeQ

[第9表]

表13

R١

H. Me, Et, Pr, i-Pr, c-Pr, CF3, MeSCH2, CF3CH2, MeOCH2, Ph, Me2NCH2, F, CI, Br, CN, MeSO2, MeO,

EtO、CHF2O、CF3O、PhO、MeS、EtS、CHF2S、CF3S、 PhS、 Me_2N 、 Et_2N 、 $(CH_2)_4N$ 、 $(CH_2)_5N$

[第10表]

$$R^{2}$$
 O $NH-Ph(R^{4})$ $NH-Ph(R^{12})$ $NH-Ph(R^{13})$

$$R^{2}$$
 O NH-Ph(R^{4})
$$CF_{3}$$
 N $N(R^{12})R^{13}$

$$R^{2}$$
 O NH-Ph(R^{4})

$$R^{2}$$
 O $NH-Ph(R^{4})$ $NH-Ph(R$

表 1 4

R ²	L	R 1 2	R ' 3	
Н	0	Н	Н	····
Н	Ο	Ме	Н	
Н	Ο	E t	Н	
Н	Ο	Pr	Н	
Н	Ο	i — P r	Н	
Н	0	Вu	Н	
Н	Ο	s — B u	Н	
Н	. O	i — B u	Н	
Н	Ο	t — B u	Н	
· H	Ο	Pen	Н	
Н	Ο	Нех	Н	
Н	Ο	Нер	Н	
Н	Ο	$C H_2 C H = C H_2$	Н	
H .	Ο	$C H_2 C (M e) = C H_2$	Н	
Н	Ο	$CH_2CH=CHMe$	Н	
Н	Ο.	$C H_2 C H = C M e_2$	Н	
H	Ο	$CH (Me) CH = CH_2$	H	
Н	Ο	C (Me) $_2$ C H = C H $_2$	Н	
Н	Ο	$C H_2 C \equiv C H$	Н	
Н	Ο	$C H_2 C \equiv C M e$	Н	
Н	Ο	$CH (Me) C \equiv CH$	Н	
Н	Ο	$C (Me)_2 C \equiv CH$	Н	
Н	Ο	$(C H_2)_2 C \equiv C H$	Н	

表 1 5

R ²	L	R 1 2	R 13	
Н	Ο	CH ₂ CF ₃	Н	
Н	Ο	(CH ₂) ₂ C 1	H	
Н	Ο	(CH ₂) ₃ C ₁	Н	
Н	Ο	(CH ₂) ₃ Br	Н	
Н	Ο	(CH ₂) ₃ F	Н	•
Н	0	$C H_2 C H = C H C I$	Н	
Н	Ο	$C H_2 C H = C C I_2$	Н	
Н	Ο	c - P r	H	
Н	Ο	c - B u	H	
Н	Ο	c — P e n	· H	
Н	Ο	c — H e x	Н	
Н	O	с — Нер	Н	
Н	0	CH ₂ OH	H	
Н	0	(CH ₂) ₂ OH	Н	
Н	Ο	C H 2 O M e	Н	
Н	0	CH2OEt	Н.	
H	Ο	$(CH_2)_2OMe$	Н	
Н	O	(CH ₂) ₂ OE t	Н	
H	Ο	$(CH_2)_3OMe^{-}$	Н	
Н	Ο	(CH ₂) 3OE t	Н	
Н	Ο	C H ₂ S M e	Н	
Н	Ο.	CN	Н	
Н	0	Ρh	Н	

表 1 6

R ²	L	R 1 2	R 13	
Н	Ο	CH ₂ Ph (4-OMe)	Н	
Н	Ο	CH (Me) Ph	Н	
Н	Ο	$(CH_2)_2Ph$	Н	
Н	Ο	CH = CHPh	Н .	
Н	Ο	$CH_2CH=CHPh$	Н	
H	Ο	$C \equiv C P h$	Н	
Н	Ο	$C H_2 C \equiv C P h$	Н	
Н	Ο	G (a)	Н	
Н	Ο	G (b)	Н	
Н	Ο	G (c)	Н	
Н	Ο	G (d)	H	
Н	Ο	Ме	M e	
Н	Ο	E t	Ме	
Н	Ο	Ρr	Ме	
Н	Ο	i - P r	Ме	
Н	Ο.	Ви	M e	
Н	Ο	s — B u	Ме	
Н	0	i — B u	M e	
Н	Ο	t - B u	M e	
Н	Ο	Pen	M e	
Н	0	Нех	Ме	
Н .	0	Нер	Ме	

表 1 7

R ²	L .	R 1 2	R 13
Н	Ο	$CH_2CH=CH_2$	M e
Н	Ο	$C H_2 C (M e) = C H_2$	Ме
Н	0	$CH_2CH=CHMe$	Ме
H	Ο	$CH_2CH=CMe_2$	Ме
Н	Ο	$CH (Me) CH = CH_2$	Ме
H	Ο	$C (Me) _{2}CH = CH_{2}$	Ме
H	Ο	$C H_2 C \equiv C H$	Ме
Н	Ο	$C H_2 C \equiv C M e$	Ме
Н	Ο	$CH (Me) C \equiv CH$	Ме
Н	Ο	C (Me) $_{2}$ C \equiv C H	Ме
Н	0	$(C H_2)_2 C \equiv C H$	Ме
Н	0	CH2CF3	Ме
H	Ο	(CH ₂) ₂ Cl	Ме
H	0	(CH ₂) ₃ Cl	Ме
Н	0	(CH ₂) ₃ Br	Ме
Н	Ο.	(CH ₂) ₃ F	Ме
Н	Ο	$CH_{2}CH=CHCI$	Ме
Н	0	$C H_2 C H = C C I_2$	Ме
Н	Ο	c — P r	Ме
Н	Ο	c — B u	Ме
Н	Ο	c - P e n	Ме
Н	0	с—Нех	Ме
Н	0	с — Нер	Ме

表18

		212	
R ²	L 	R 1 2	R 13
Н	Ο	C H 2 O H	Ме
Н	Ο	(CH ₂) ₂ OH	Ме
Н	Ο.	CH2OMe	Ме
Н	Ο	CH2OE t	Ме
Н	Ο	(CH ₂) ₂ OM e	Ме
Н	0	(CH ₂) ₂ OE t	Ме
Н	0	(CH ₂) ₃ OM e	Ме
H	Ο	$(CH_2)_3OEt$	Ме
· H	Ο	CH2SMe	M e
Н	Ο	C N	Ме
Н	Ο	P h	Ме
Н	Ο	$CH_2Ph(4-OMe)$	Ме
Н	0	CH (Me) Ph	Ме
Н	Ο	$(CH_2)_2Ph$	Ме
Н	Ο	CH = CHPh	Ме
Н	Ο.	$C H_2 C H = C H P h$	Ме
Н	Ο	$C \equiv C P h$	M.e
Н	Ο	$C H_2 C \equiv C P h$	M e
Н	Ο	G (a)	Ме
Н	Ο	G (b)	Ме
Н	Ο	G (c)	M e
H.	Ο	G (d)	Ме

表 19

R ²	L	R 1 2	R 13
Н	0	E t	E t
Н	Ο	Pr	E t
Н	0	i - P r	E t
Н	Ο	Вu	E t
Н	0	s — B u	E t
Н	· O	i — B u	E t
H	0	t — B u .	E t
Н	Ο	Pen	E t
Н	Ο	Нех	E t
Н	. O	Нер	E t
Н	0	$C \cdot H \cdot 2 \cdot C \cdot H = C \cdot H \cdot 2$	E t
H	Ο	$C H_2 C (M e) = C H_2$	E t
H	Ο	$C H_2 C H = C H M e$	E t
Н	O	$C H _{2} C H = C M e_{12}$	E t
Н	Ο	$CH (Me) CH = CH_2$	E t
Н	Ο	$C (Me) _{2}CH = CH_{2}$	E t
Н	Ο	$C H_2 C \equiv C H$	E t
Н	Ο	$C H_2 C \equiv C M e$	Et
Н	Ο	$CH (Me) C \equiv CH$	E t
Н	Ο	C (Me) $_{2}$ C \equiv C H	Εt
Н	Ο	$(CH_2)_2C\equiv CH$	E t
Н	. О	CH2CF3	E t

表 2 0

R ²	L	R 1 2	R 13
Н	0	(CH ₂) ₂ C ₁	E t
Н	0	(CH ₂) ₃ Cl	E t
Н	0	$(CH_2)_3Br$	E t
Н	· O	$(CH_2)_3F$	E t
Н	0	$CH_2CH=CHCI$	E t
Н	0	$C H_2 C H = C C I_2$	E t
Н	Ο	c - P r	Εt
Н	Ο	c — B u	Εt
Н	Ο	c — P e n	E t
Н	Ο	c — H e x	E t
Н	0	с—Нер	E t
Н	Ο	CH ₂ OH	E t
Н	Ο	(CH ₂) ₂ OH	E t
Н	Ο	CH2OMe	E t
Н	Ο	CH2OEt	E t
Н	Ο	(CH ₂) ₂ OM _e	E t
H	Ο	(CH ₂) ₂ OE t	E t
H	0	(C H 2) 3 O M e	Εt
Н	Ö	(CH ₂) ₃ OE t	E t
H	Ο	C H₂S M e	E t
Н	Ο	CN	E t
Н	Ο	Ρh	E t
Н	0	C H 2 P h (4 − O M e)	E t

表 2 1

R ²	L	R ' 2	R 1 3
Н	0	CH (Me) Ph	E t
Н	Ο	(CH2) 2Ph	Εt
Н	Ο	CH = CHPh	E t
Н	О	$C H_2 C H = C H P h$	Εt
Н	Ο	$C \equiv C P h$	E t
H	Ο	$C H_2 C \equiv C P h$	E t
Н	Ο	G (a)	E t
Н	O	G (b)	E t
Н	Ο	G (c)	E t
H	Ο	G (d)	E t
H	0	Pr	$CH_2CH=CH_2$
H	, O	i — P r	$C H_2 C H = C H_2$
H	O	Вu	$C H_2 C H = C H_2$
Н	Ο	s — B u	$C H _{2} C H = C H _{2}$
Н	Ο	i — B u	$C H _{2} C H = C H _{2}$
H	0	t — B u	C.H2C.H = C.H2
Н	O	Pen	$C H_2 C H = C H_2$
Н	Ο	Нех	$C H_2 C H = C H_2$
Н	0	Нер	$C H_2 C H = C H_2$
Н	O.	$C H_2 C H = C H_2$	$C H_2 C H = C H_2$

表 2 2

R ²	L	R 1 2	R 13
Н	O	$CH_2C (Me) = CH_2$	C H 2 C H = C H 2
Н	Ο	$C H_2 C H = C H M e$	$C H_2 C H = C H_2$
Н	Ο	$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
Н	· O	$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
Н	Ο	C (Me) $_2$ C H = C H $_2$	$C H_2 C H = C H_2$
Н	Ο	$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
Н	Ο	$C H_2 C \equiv C M e$	$C H _{2} C H = C H _{2}$
H	0	$CH (Me) C \equiv CH$	$C H _{2}C H = C H _{2}$
Н	Ο	C (Me) $_2$ C \equiv C H	$C H_2 C H = C H_2$
Н	Ο	$(C H_2)_2 C \equiv C H$	$C H _{2} C H = C H _{2}$
Н	Ο	CH2CF3	$C H_2 C H = C H_2$
Н	Ο .	(CH ₂) ₂ C ₁	$C H_2 C H = C H_2$
Н	O	(CH ₂) ₃ C ₁	$C H_2 C H = C H_2$
H	Ο	(CH ₂) ₃ Br	$C H_2 C H = C H_2$
Н	Ο	(CH ₂) ₃ F	$C H_2 C H = C H_2$
Н	Ο.	$C H_2 C H = C H C I$	$C H_2 C H = C H_2$
Н	Ο	$C H_2 C H = C C I_2$	$C H _{2} C H = C H _{2}$
Н	Ο	c — P r	$CH_2CH=CH_2$
Н	Ο	c — B u	$C H_2 C H = C H_2$
Н	Ο	c — P e n	$CH_2CH=CH_2$
Н	Ο	c - H e x	$C H_2 C H = C H_2$
Н	Ο	с — Н е р	$C H_2 C H = C H_2$
Н	. 0	C H 2 O H	$C H_2 C H = C H_2$

表 2 3

R ²	L	R 1 2	R 13
Н	0	(CH ₂) ₂ OH	C H 2 C H = C H 2
Н	Ο	· CH2OMe	$C H_2 C H = C H_2$
Н	Ο	CH2OEt	$C H_2 C H = C H_2$
Н	Ο	(CH ₂) ₂ OM e	$CH_2CH=CH_2$
Н	Ο	(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
Н	0	(CH ₂) ₃ OM e	$CH_2CH=CH_2$
H	Ο	(CH ₂) ₃ OE t	$C H _{2} C H = C H _{2}$
H	0	CH ₂ SMe	$C H _{2} C H = C H _{2}$
Н	0	CN	$CH_2CH=CH_2$
Н	Ο	Ρh	$C H _{2} C H = C H _{2}$
Н	Ο	$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
Н	Ο	CH (Me) Ph	$C H_2 C H = C H_2$
H	Ο	$(CH_2)_2Ph$	$C H_2 C H = C H_2$
Н	Ο.	CH = CHPh	$C H_2 C H = C H_2$
Н	0	$CH_2CH=CHPh$	$C H_2 C H = C H_2$
Н	Ο.	$C \equiv C P h$	$C H_2 C H = C H_2$
Н	0	$C H_2 C \equiv C P h$	$C H_2 C H = C H_2$
Н	Ο	G (a)	$C H_2 C H = C H_2$
Н	Ο	G (b)	$C H_2 C H = C H_2$
Н	Ο	G (c)	$CH_2CH=CH_2$
Н	0	G (d)	$C H_2 C H = C H_2$
Н	Ο	Н	СОМе
Н	Ο	Ме	СОМе

表 2 4

R ²	L	R 1 2	R 13
Н	0	E t	СОМе
Н	0	Ρr	СОМе
Н	Ο	i — P r	СОМе
Н	Ο	Bu	СОМе
Н	Ο	s — B u	СОМе
Н	Ο	i — B u	СОМе
Н	Ο	t — B u	СОМе
Н	Ο	Pen	СОМе
Н	0	Нех	СОМе
Н	Ο	Нер	СОМе
Н	Ο	$C H_2 C H = C H_2$	СОМе
Н	Ο .	$C H_2 C (M e) = C H_2$	СОМе
Н	Ο	$CH_{2}CH=CHMe$	СОМе
Н	Ο	$C H_2 C H = C M e_2$	СОМе
. H	Ο	$CH (Me) CH = CH_2$	СОМе
Н	Ο.	C (Me) $_2$ C H = C H $_2$	C.OM e
Н	0	$C H_2 C \equiv C H$	СОМе
Н	0	$C H_2 C \equiv C M e$	СОМе
Н	Ο	$CH (Me) C \equiv CH$	СОМе
Н	0	C (Me) $_2$ C \equiv C H	СОМе
Н	. 0	$(C H_2)_2 C \equiv C H$	СОМе
Н	Ο	CH2CF3	СОМе
Н	0	(CH ₂) ₂ C l	СОМе

表 2 5

R ²	L	R 1 2	R 13	
Н	0	(CH ₂) ₃ C l	СОМе	
Н	O	(CH ₂) ₃ B r	СОМе	
Н	Ο	(CH ₂) ₃ F	СОМе	
Н	Ο	$CH_2CH=CHCI$	СОМе	
Н	Ο	$C H_2 C H = C C I_2$	СОМе	
Н	Ο	c - P r	СОМе	
Н	Ο	c — B u	СОМе	
Н	0	c - P e n	СОМе	
Н	0	c - H e x	СОМе	•
H	. 0	с—Нер	СОМе	
Н	Ο	C H ₂ O H	СОМе	
H	Ο	(CH ₂) ₂ OH	СОМе	
Н	Ο	CH2OMe	СОМе	
Н	Ο	CH₂OE t	СОМе	
Н	0	(CH2) 2OM e	СОМе	
H	Ο.	(CH ₂) ₂ OE t	СОМе	
H	Ο	(CH ₂) ₃ OM e	СОМе	
Н	Ο	$(CH_2)_3OEt$	СОМе	
Н	Ο -	CH2SMe	СОМе	
Н	Ο	CN	СОМе	
Н	Ο	Ρh	СОМе	
Н	0	$CH_2Ph(4-OMe)$	СОМе	
Н	О	CH (Me) Ph	СОМе	

表 2 6

R ²	L	R 1 2	R 13
Н	0	(CH ₂) ₂ P h	СОМе
Н	Ο	CH = CHPh	СОМе
Н	Ö	$CH_2CH=CHPh$	СОМе
Н	0	$C \equiv C P h$	СОМе
Н	. О	$C H_2 C \equiv C P h$	СОМе
Н	Ο	G (a)	СОМе
Н	Ο	G (b)	СОМе
Н	Ο	G (c)	СОМе
Н	Ο	G (d)	СОМе
H	Ο	H	CO-t-Bu
H	Ο	Ме	CO-t-Bu
Н	Ο	Εt	C O - t - B u
Н	Ο	Pr	CO - t - Bu
Н	Ο	i — P r	CO-t-Bu
Н	Ο	Bu	CO-t-Bu
Н	Ο.	s – B u	CO - t - Bu
H	Ο	i — B u	CO - t - Bu
Н	Ο	t — B u	C O - t - B u
Н	· O	Pen	CO-t-Bu
Н	O	Hex	CO-t-Bu
Н	Ο	Нер	C O - t - B u
Н	Ö	$C H_2 C H = C H_2$	C O - t - B u
Н	0 .	$C H_2 C (M e) = C H_2$	C O - t - B u

表 2 7

R ²	L	R 1 2	R 13
Н	O	C H 2 C H = C H M e	C O - t - B u
Н	. 0	$CH_2CH=CMe_2$	CO-t-Bu
Н	Ο	$CH (Me) CH = CH_2$	CO-t-Bu
H	Ο	$C (Me) _{2}CH = CH_{2}$	CO - t - Bu
H	Ο	$C H_2 C \equiv C H$	CO-t-Bu
H	Ο	$C H_2 C \equiv C M e$	CO-t-Bu
\mathbf{H}_{-2}	Ο	$CH (Me) C \equiv CH$	CO-t-Bu
H	Ο	C (Me) $_2$ C \equiv C H	CO-t-Bu
Н	Ο	$(C H_2)_2 C \equiv C H$	CO-t-Bu
Н	Ο	CH ₂ CF ₃	CO-t-Bu
Н	Ο	(CH ₂) ₂ C ₁	CO-t-Bu
Н	Ο	$(CH_2)_3CI$	CO-t-Bu
Н	Ο	(CH ₂) ₃ Br	CO - t - Bu
Н	Ο	$(CH_2)_3F$	CO - t - Bu
H	Ο	$CH_2CH=CHCI$	CO - t - Bu
H	0	$CH_2CH=CCI_2$	C.O - t - B u
Н	Ο	c — P r	CO - t - Bu
Н	Ο	c — B u	CO - t - Bu
H	Ο	c - P e n	CO-t-Bu
H	Ο	с—Нех	CO-t-Bu
Н	0	с — Нер	CO-t-Bu
Н	Ο	C H 2 O H	CO-t-Bu
Н	Ο.	(CH2) 2OH	CO - t - Bu

120

==	2	c
तर		C

R²	L	R 12	R 13
Н	0	C H ₂ O M e	C O - t - B u
Н	Ο	CH2OE t	CO-t-Bu
Н	О	(CH ₂) ₂ OM e	CO-t-Bu
Н	Ο	(CH ₂) ₂ OE t	CO-t-Bu
Н	0	(CH ₂) ₃ OM e	CO-t-Bu
Н	Ο	(CH ₂) ₃ OE t	CO-t-Bu
Н	0	C H ₂ S M e	CO-t-Bu
Н	Ο	C N	CO-t-Bu
Н	Ο	P h	CO-t-Bu
Н	0	$CH_2Ph(4-OMe)$	CO-t-Bu
Н	Ο	CH (Me) Ph	CO-t-Bu
Н	. О	(CH ₂) ₂ Ph	CO-t-Bu
Н	Ο	CH = CHPh	CO-t-Bu
Н	0	$CH_2CH=CHPh$	CO - t - Bu
Н	Ο	$C \equiv C P h$	CO - t - Bu
Н	Ο.	$C H_2 C \equiv C P h$	CO - t - Bu
Н	Ο	G (a)	CO-t-Bu
Н	O	G (b)	CO-t-Bu
Н	Ο	G (c)	CO - t - Bu
Н	Ο	G (d)	CO-t-Bu
Н	Ο	Н	COPh (4-OMe)
Н	Ο	M e	COPh (4-OMe)
Н	Ο	E t	COPh (4-OMe)

表 2 9

R ²	L	R 1 2	R 1 3
Н	O	P r	C O P h (4 - O M e)
Н	Ο	i — P r	COPh (4-OMe)
Н	Ο	B u	$C_{1}OPh(4-OMe)$
Н	Ο	s — B u	COPh (4-OMe)
Н	Ο	i — B u	COPh (4-OMe)
Н	Ο	t — B u	COPh (4-OMe)
H	Ο	Реп	COPh(4-OMe)
H	Ο	Нех	COPh (4-OMe)
H	· O	Нер	COPh (4-OMe)
Н	Ο	$C H_2 C H = C H_2$	COPh(4-OMe)
H	O	CH_2C (Me) = CH_2	COPh(4-OMe)
Н	Ο	$CH_{2}CH=CHMe$	C O P h (4 - O M e)
Н	O	$C H_2 C H = C M e_2$	COPh (4-OMe)
H	Ο	CH (Me) CH = CH2	COPh (4-OMe)
Н	Ο	$C (Me) _{2}CH = CH_{2}$	COPh (4-OMe)
Н	Ο.	$C H_2 C \equiv C H$	COPh(4-OMe)
Н	Ο	$C H_2 C \equiv C M e$	COPh (4-OMe)
Н	0	$CH (Me) C \equiv CH$	COPh(4-OMe)
Н	Ο	C (Me) $_{2}$ C \equiv C H	COPh (4-OMe)
Н	Ο	$(C H_2)_2 C \equiv C H$	COPh(4-OMe)
Н	Ο	CH_2CF_3	COPh (4-OMe)
Н	О	$(CH_2)_2CI$	COPh (4-OMe)
.H	0	(CH ₂) ₃ Cl	COPh (4-OMe)

表30

R ²	L .	R 1 2	R 13
Н	O	(CH ₂) ₃ B r	COPh (4-OMe)
Н	. О	$(CH_2)_{5}F$	COPh (4-OMe)
Н	О	$^{\circ}$ C H $_{2}$ C H = C H C 1	COPh(4-OMe)
Н	0	$CH_2CH=CCl_2$	COPh(4-OMe)
Н	Ο	c - P r	COPh(4-OMe)
H	Ο	c - B u	COPh (4-OMe)
Н	Ο	c — P e n	COPh(4-OMe)
Н	Ο	c-Hex	COPh (4-OMe)
H	0	с—Нер	COPh (4-OMe)
Н	Ο	CH ₂ OH	COPh (4-OMe)
H	Ο	(CH ₂) ₂ OH	COPh (4-OMe)
Н	Ο	CH ₂ OM e	COPh (4-OMe)
Н	Ο	CH ₂ OE t	COPh (4-OMe)
Н	Ο	(CH ₂) ₂ OMe	COPh (4-OMe)
Н	Ο	$(CH_2)_2OEt$	COPh (4-OMe)
Н	Ο.	$(CH_2)_3OMe$	C.OPh (4-OMe)
Н	Ο	$(CH_2)_3OEt$	COPh~(4-OMe)
Н	Ο	CH2SMe	COPh (4-OMe)
H ·	Ο	C N	COPh (4-OMe)
Н	Ο	Ρh	COPh (4-OMe)
Н	Ο	$CH_2Ph(4-OMe)$	COPh(4-OMe)
Н	Ο	CH (Me) Ph	COPh (4-OMe)
Н.	0	(CH ₂) ₂ Ph	COPh (4-OMe)

表 3 1

			
.R ²	L	R 1 2	R 1 3
Н	0	CH = CHPh	COPh (4-OMe)
Н	0	$CH_2CH=CHPh$	COPh(4-OMe)
Н	0	$C \equiv C P h$	COPh(4-OMe)
Н	Ο	$C H_2 C \equiv C P h$	COPh(4-OMe)
Н	Ο	. G (a)	COPh(4-OMe)
Н	Ο	G (b)	COPh(4-OMe)
Н	· O	G (c)	COPh(4-OMe)
H	Ο	G (d)	COPh (4-OMe)
Н	0	Н	CO ₂ M e
Н	Ο	Me,	CO ₂ M e
Н	О	E t	C O ₂M e
Н	Ο	Рr	CO ₂ M e
H	Ο	i — P r	C O ₂M e
Н	Ο	Вu	C O ₂M e
H	Ο	s — B u	C O ₂M e
H	Ο.	i — B u	C O ₂ M e
H	Ο	t — B u	C O ₂M e
Н	0	Pen	CO₂Me
Н	Ο	Нех	C O ₂M e
Н	Ο	Нер	C O ₂M e
Н	Ο	$C H_2 C H = C H_2$	C O ₂M e
Н	Ο	$C H_2 C (M e) = C H_2$	C O ₂M e
Н	Ο	$C H_2 C H = C H M e$	CO ₂ M e

表32

<u> </u>	· · · · · · · · · · · · · · · · · · ·		
R ²	L	R 1 2	R 1 3
Н	0	$C H_2 C H = C M e_2$	C O ₂M e
Н	Ο	$CH (Me) CH = CH_2$	C O₂M e
Н	Ο	$C (Me) _{2}CH = CH_{2}$	C O₂M e
Н	Ο	$C H_2 C \equiv C H$	CO ₂ M e
Н	Ο	$C H_2 C \equiv C M e$	CO ₂ M e
Н	. О	$CH (Me) C \equiv CH$	CO ₂ M e
H	Ο	$C (Me)_2 C \equiv CH$	C O ₂M e
Н	Ο.	$(C H_2)_2 C \equiv C H$	C O ₂M e
Н	Ο	CH ₂ CF ₃	C O ₂ M e
Н	Ο	(CH ₂) ₂ C ₁	C O ₂M e
Н	0	(CH ₂) ₃ C ₁	C O ₂M e
Н	Ο	(CH ₂) ₃ B r	CO ₂ M e
Н	Ο	(CH ₂) ₃ F	CO ₂ M e
Н	Ο	$CH_2CH=CHCI$	C O ₂M e
H	Ο	$C H _{2}C H = C C I _{2}$	C O ₂M e
Н	Ο.	c - P r	C O ₂M e
Н	0	c — B u	C O ₂M e
Н	0	c — P e n	C O ₂M e
Н	Ο	с — H е x	C O ₂M e
H -	Ο	с—Нер	CO ₂ M e
Н	Ο	C H 2 O H	CO ₂ M e
Н	Ο	(CH2) 2OH	C O₂M e
Н	Ο	CH2OMe	C O ₂ M e

表33

R 2 .	L	R 1 2	. R 13
Н	0	CH2OE t	C O ₂M e
Н	Ο	(CH ₂) ₂ OM e	C O₂M e
Н	О	(CH ₂) ₂ OE t	C O ₂M e
Н	0	(CH ₂) ₃ OM e	C O ₂M e
Н	0	(CH ₂) ₃ OE t	C O ₂M e
Н	Ο	C H ₂ S M e	C O ₂M e
Н	Ο	CN	C O ₂M e
Н	O	P h	CO ₂ M e
H	O	$CH_2Ph(4-OMe)$	CO ₂ M e
H	Ο	CH (Me) Ph	C O ₂M e
Н	Ο	$(CH_2)_2Ph$	CO ₂ M e
Н	0	CH = CHPh	C O ₂M e
Н	0	$CH_2CH=CHPh$	C O ₂M e
Н	0	$C \equiv C P h$	C O ₂M e
Н	Ο	$C H_2 C \equiv C P h$	C O ₂M e
Н	Ο.	G (a)	C _. O ₂ M _e
Н	Ο	G (b)	C O₂M e
Н	Ο	G (c)	C O ₂M e
Н	Ο	G (d)	C O₂M e
Н	Ο	Н	S O₂M e
Н	Ο	Ме	S O₂M e
Н	О	E t	S O₂M e
Н	О	Рr	S O₂M e

表34

			·
R²	L .	R 1 2	R 13
Н	0	i – P r	S O 2M e
Н	Ο	Вu	S O₂M e
Н	0	s — B u	S O₂M e
H	Ο	i — B u	S O₂M e
Н	0	t — B u	S O 2 M e
Н	O	Pen	SO ₂ M e
Н	O	Нех	S O 2M e
H	Ο	Нер	S O 2M e
Н	Ο	$C H_2 C H = C H_2$	S O₂M e
Н	0	$C H_2 C (M e) = C H_2$	S O₂M e
Н	0	$CH_2CH=CHMe$	S O₂M e
Н	Ο	$C H_2 C H = C M e_2$	S O₂M e
H	Ο	$CH (Me) CH = CH_2$	S O₂M e
Н	0	$C (Me) _{2}CH = CH_{2}$	S O₂M e
Н	Ο	$C H_2 C \equiv C H$	S O₂M e
H	Ο.	$C H_2 C \equiv C M e$	S O ₂M e
Н	Ο	$CH (Me) C \equiv CH$	S O ₂M e
Н	Ο	$C (Me)_2 C \equiv CH$	SO ₂ Me
Н	Ο	$(C H_2)_2 C \equiv C H$	S O 2M e
Н	Ο	CH2CF3	S O 2 M e
Н	0	(CH ₂) ₂ CI	S O₂M e
Н	Ο	(CH ₂) ₃ Cl	SO₂Me
Н	Ο	(CH ₂) ₃ B r	S O₂M e

表 3 5

		<u> </u>	
R²	L	R 1 2	R 13
Н	0	(CH ₂) ₃ F	S O ₂M e
Н	. O	$C H_2 C H = C H C I$	SO ₂ M e
Н	Ο	$C H _{2} C H = C C I _{2}$	S O₂M e
Н	Ο	c — P r	S O ₂M e
Н	0	c — B u	SO ₂ M e
Н	0	c — P e n	S O 2M e
Н	Ο	c - H e x	S O ₂M e
Н	0	с—Нер	SO ₂ Me
Н	0	C H 2 O H	S O ₂M e
Н	0	$(CH_2)_{2}OH$	S O₂M e
Н	Ο	C H ₂ O M e	S O₂M e
Н	Ο	C H 2 O E t	S O₂M e
H	Ο	(CH2) 2OMe	S O₂M e
Н	Ο	(CH2) 2OE t	S O ₂ M e
Н	O	(CH ₂) ₃ OMe	SO₂Me
Н	Ο.	(CH2) 3 OEt	SO ₂ Me
Н	0	CH ₂ SM e	SO ₂ M e
Н	0	CN	SO ₂ M e
Н	Ο.	Ρh	SO ₂ M e
Н	Ο	$CH_2Ph(4-OMe)$	S O ₂M e
Н	O	CH (Me) Ph	S O₂M e
Н	Ο	$(CH_2)_2Ph$	S O₂M e
H ·	Ο	CH = CHPh	S O₂M e

表 3 6

R ²	L	R 1 2	R 13	
Н	0	$C H_2 C H = C H P h$	S O 2M e	
Н	Ο	$C \equiv C P h$	S O₂M e	
Н	Ο	$C H_2 C \equiv C P h$	S O₂M e	
Н	Ο	G (a)	S O₂M e	
Н	Ο	G (b)	S O₂M e	
Н	Ο	G (c)	S O₂M e	
Н	Ο	G (d)	SO₂Me	
M^{\cdot} e	0	Н	Н	
Ме	Ο	M e	Н	
Ме	. 0	E t	Н	
Ме	Ο	Pr	Н	
Ме	Ο	i – P r	Н	
Ме	Ο	Вů	Н	٠
Ме	Ο	s — B u	Н	
Ме	. 0	i — B u	Н	
Ме	O.	t - B u	H.	
Ме	Ο	Pen	Н	
Ме	Ο	Нех	Н	
Ме	Ο	Нер	Н	
Ме	0	$C H_2 C H = C H_2$	Н	
Ме	Ο	$C H_2 C (M e) = C H_2$	Н	
Ме	, O	$CH_2CH=CHMe$	Н	
Ме	Ο	$C H_2 C H = C M e_2$	Н	

表 3 7

R ²	L	R 1 2	R 1 3	
———— М е	0	C H (M e) C H = C H ₂	Н	
Ме	0	$C (Me)_2 CH = CH_2$	Н	
Ме	O	$C H_2 C \equiv C H$	Н	
Ме	Ο	$C H_2 C \equiv C M e$	H	
Ме	Ο	$CH (Me) C \equiv CH$	Н	
Ме	Ο	$C (Me)_2 C \equiv CH$	Н	
Ме	0	$(C H_2)_2 C \equiv C H$	Н	
Ме	Ο	CH2CF3	Н	
Ме	O	(CH ₂) ₂ Cl	Н	
Ме	O	(CH ₂) ₃ C1	Н	
Ме	Ο	(C H ₂) ₃ B r	Н	
Ме	Ο	(CH ₂) ₃ F	H	
Ме	Ο	$CH_2CH=CHCI$	Н	
Ме	Ο	$CH_2CH=CCI_2$	Н	
M e	, O	c-Pr	Н	
Ме	Ο.	c — B u	Н	
Ме	Ο	c — P e n	Н	
Ме	Ο	с—Нех	Н	
Ме	Ο	с — Н е р	Н	
Ме	Ο	C H 2 O H	Н	
Ме	Ο	(CH ₂) ₂ OH	Н	
Ме	Ο	CH ₂ OM e	Н	
Ме	Ο	CH ₂ OE t	Н	

表38

R ²	L	R 1 2	R 13	
Ме	0	(CH ₂) ₂ OM e	Н .	
Ме	Ο	(CH ₂) ₂ OE t	Н	
M e	0	$(CH_2)_3OMe$	Н	•
Ме	Ο	(CH ₂) ₃ OE t	Н	
Ме	Ο	CH ₂ SMe	Н	
Ме	Ο	CN	Н	
Ме	Ο	Ρh	Н	
Ме	Ο	$CH_2Ph(4-OMe)$	Н	
Ме	Ο	CH (Me) Ph	Н	
Ме	. O	$(CH_2)_2Ph$	Н	
M e	Ο	CH = CHPh	Н	
Ме	Ο	$CH_2CH=CHPh$	Н	
Ме	Ο	$C \equiv C P h$	Н	
Ме	Ο	$C H_2 C \equiv C P h$	Н	
Ме	Ο	G (a)	Н	
Ме	Ο.	G (b)	Н	
Ме	Ο	G (c)	Н	
Ме	Ο	G (d)	Н	
Ме	0	M e	Ме	
Ме	0	E t	Ме	
Ме	Ο	Pr	Ме	
Ме	Ο	i - P r	Ме	

表 3 9

R ²	L	R 1 2	R 13	
M e	0	В и	М е	
Ме	Ο	s — B u	Ме	
Ме	0	i — B u	Ме	
Ме	Ο	t — B u	Ме	
M e	Ο	P e n	Ме	
Ме	Ο	Нех	Ме	
Ме	Ο	Нер	Ме	
Ме	Ο	$C H_2 C H = C H_2$	Ме	
Ме	Ο	$C H_2 C (M e) = C H_2$	Ме	
M e	0	$C H_2 C H = C H M e$	Ме	
Ме	Ο	$C H_2 C H = C M e_2$	Ме	
Ме	Ο	$CH (Me) CH = CH_2$	Ме	
Ме	Ο	C (Me) $_2$ CH = CH $_2$	Ме	
Ме	0	$C H_2 C \equiv C H$	Ме	
Ме	0	$C H_2 C \equiv C M e$	Ме	
Ме	Ο.	$CH (Me) C \equiv CH$	M. e	
M e	Ο	C (Me) $_2$ C \equiv C H	Ме	
Ме	Ο	$(C H_2)_2 C \equiv C H$	M e	
Ме	0	CH2CF3	M e	
Ме	Ο	(CH ₂) ₂ C ₁	Ме	
Ме	Ο	(CH ₂) ₃ C 1	Ме	
Ме	O	(CH ₂) ₃ B r	Ме	
Ме	Ο	(CH ₂) ₃ F	Ме	

表 4 0

R ²	L	R 1 2	R 13
Ме	0	C H 2 C H = C H C I	М е
Ме	Ο	$CH_2CH=CCI_2$	Ме
Ме	Ο	c - P r	M e
Ме	Ο	c — B u	Ме
Ме	0	c-P e n	Ме
Ме	0	c - H e x	Ме
Ме	Ο	c-Hep	Ме
Ме	Ο	C H ₂ O H	Ме
Ме	Ο	(CH ₂) ₂ OH	Ме
Ме	O	CH2OMe	Ме
Ме	Ο	CH2OE t	M e
М́е	Ο	(CH ₂) ₂ OMe	Ме
Ме	Ο	(CH ₂) ₂ OE t	Ме
Ме	Ο .	(CH ₂) ₃ OMe	Ме
Ме	Ο	(CH ₂) ₃ OE t	Ме
Ме	Ο	C H ₂ S M e	Ме
Ме	Ο	C N	Ме
Ме	Ο	Ρh	Ме
Ме	Ο	$CH_2Ph(4-OMe)$	M e
M e	Ο	CH (Me) Ph	Ме
Ме	Ο	$(CH_2)_2Ph$	Ме
Ме	0	CH = CHPh	M e
Ме	Ο	$CH_{2}CH=CHPh$	Ме

表 4 1

R ²	L	R 12	R ' 3	
М е	0	$C \equiv C P h$	М е	·
Ме	Ο	$C H_2 C \equiv C P h$	Ме	
Ме	O	G (a)	Ме	
Ме	Ο	G (b)	Ме	
Ме	Ο	G (c)	Ме	
Ме	О	G (d)	Ме	
Ме	Ο	E t	Εt	
Ме	Ο	Pr	Εt	
Ме	0	i - Pr	Εt	
Ме	Ο	Bu,	Εt	
Ме	0	s — B u	Εt	
Ме	. 0	i — B u	E t	
Ме	Ο	t — B u	Εt	
Ме	0 .	Pen	E t	
Ме	Ο	Нех	Εt	
Ме	Ο.	Нер	Εt	
Ме	Ο	$C H_2 C H = C H_2$	Εt	
Ме	0	$C H_2 C (M e) = C H_2$	Εt	
Ме	o o	$C H_2 C H = C H M e$	E t	
Ме	Ο	$C H_2 C H = C M e_2$	E t	
Ме	Ο	$CH (Me) CH = CH_2$	E t	

表 4 2

R ²	L	R 1 2	R 13
Ме	0	C (Me) $_2$ C H = C H $_2$	E t
Ме	· O	$C H_2 C \equiv C H$	E t
Ме	Ο	$C H_2 C \equiv C M e$	E t '
Ме	Ο	$CH (Me) C \equiv CH$	E t
M e	Ο	$C (Me)_2 C \equiv CH$	E t
Ме	Ο	$(C H_2)_2 C \equiv C H$	E t
Ме	0	CH2CF3	E t
Ме	Ο	(CH ₂) ₂ C ₁	E t
Me.	Ο	(CH ₂) ₃ C ₁	Εt
Ме	Ο	(CH ₂) ₃ B r	E t
Ме	O	(CH ₂) ₃ F	E t
Ме	0	$CH_2CH=CHCI$	Εt
Ме	0	$CH_2CH=CCl_2$	E t
Ме	0	c — P r	E t
Ме	0	c — B u	E t
Ме	O.	c — P e n	E.t
Ме	Ο	с — Н е х	E t
Ме	O	с—Нер	E t
Ме	Ο	C H 2 O H	E t
Ме	Ο	(CH ₂) ₂ OH	Εt
Ме	Ο	C H ₂OM e	E t
Ме	0	CH2OE t	E t
Ме	Ο	(CH ₂) ₂ OMe	E t

表 4 3

R 2	L	. R 1 7	R 13
Ме	0	(CH ₂) 2OE t	E t
_, M e	0	(CH ₂) ₃ OM e	Εt
Ме	0	(CH ₂) ₃ OE t	Εt
Ме	0	CH ₂ SM e	E t
Ме	Ο	CN	E t
Ме	Ο	Ρh	E t
Ме	Ο	$CH_2Ph(4-OMe)$	E t
Ме	Ο	CH (Me) Ph	E t
Ме	Ο	(CH ₂) ₂ Ph	E t
Ме	Ο	CH = CHPh	E t
Ме	Ο	$CH_2CH=CHPh$	E t
Ме	Ο	$C \equiv C P h$	E t
Ме	Ο .	$C H_2 C \equiv C P h$	E t
Ме	Ο	G (a)	E t
Ме	Ο	G (b)	E t ·
Ме	Ο.	G (c)	E t
Ме	Ο	G (d)	E t
Ме	О	Рr	$C H_2 C H = C H_2$
Ме	О	i - P r	$C H_2 C H = C H_2$
Ме	O	Вu	$C H_2 C H = C H_2$

表 4 4

R ²	L	R 1 2	R 13
Ме	0	s — B u	$CH_2CH=CH_2$
M e	0	i — B u	$CH_2CH=CH_2$
Me	0	t — B u	$C H_2 C H = C H_2$
Мe	Ο	Pen	$C H _{2} C H = C H _{2}$
Ме	Ο	Нех	$C H_2 C H = C H_2$
Ме	0.	Нер	$C H_2 C H = C H_2$
Ме	Ο	$C H_2 C H = C H_2$	$C H_2 C H = C H_2$
Ме	Ο	$C H_2 C (M e) = C H_2$	$C H_2 C H = C H_2$
Мe	Ο	$CH_2CH=CHMe$	$C H_2 C H = C H_2$
Ме	. O	$C H_2 C H = C M e_2$	$CH_2CH=CH_2$
Ме	Ο	$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
Ме	Ο	$C (Me) _{2}CH = CH_{2}$	$CH_2CH=CH_2$
Ме	0	$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
Ме	Ο	$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
Ме	O	$CH (Me) C \equiv CH$	$CH_2CH=CH_2$
Ме	Ο.	$C (Me)_z C \equiv CH$	$C H_2 C H = C H_2$
Ме	0	$(C H_2)_2 C \equiv C H$	$C H_2 C H = C H_2$
Ме	Ο	CH ₂ CF ₃	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₂ C ₁	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₃ C 1	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₃ B r	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₃ F	$C H_2 C H = C H_2$
Ме	0	$C H_2 C H = C H C I$	$C H_2 C H = C H_2$ $C H_2 C H = C H_2$

表 4 5

R ²	L	R 1 2	R 1 3
Ме	O .	$CH_2CH=CCI_2$	C H 2 C H = C H 2
Ме	Ο	c - P r	$C H_2 C H = C H_2$
Ме	О	c — B u	$C H_2 C H = C H_2$
Ме	0	c — P e n	$C H_2 C H = C H_2$
Ме	Ο	c - H e x	$C H_2 C H = C H_2$
Ме	0	c-Hep	$C H_2 C H = C H_2$
Ме	Ο	C H 2 O H	$C H_2 C H = C H_2$
Ме	Ο	(CH2) 2OH	$C H_2 C H = C H_2$
Ме	Ο	CH2OMe	$C H_2 C H = C H_2$
Ме	0	CH2OE t	$C H _{2} C H = C H _{2}$
Ме	0	(CH ₂) ₂ OMe	C H z C H = C H z
Ме	0	(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₃ OM e	$C H _{2} C H = C H _{2}$
Ме	Ο	(CH ₂) ₃ OE t	$C H_2 C H = C H_2$
Ме	Ο	C H₂SM e	$C H_2 C H = C H_2$
Ме	Ο	C N	$C H_2 C H = C H_2$
Ме	0	Ph .	$C H_2 C H = C H_2$
Ме	Ο	$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
Ме	0	CH (Me) Ph	$C H_2 C H = C H_2$
Ме	Ο	$(C H_2)_2 P h$	$C H_2 C H = C H_2$
Ме	Ο	CH = CHPh	$C H_2 C H = C H_2$
Ме	0	$CH_2CH=CHPh$	$C H_2 C H = C H_2$
Ме	0 .	$C \equiv C P h$	$C H_2 C H = C H_2$

表 4 6

R²	L	· R 1 2	R 13
Ме	0	$C H_2 C \equiv C P h$	C H 2 C H = C H 2
Ме	0	G (a)	$C H_2 C H = C H_2$
Ме	0	G (b)	$C H_2 C H = C H_2$
Ме	0	G (c)	$C H_2 C H = C H_2$
Ме	Ο	G (d)	$C H_2 C H = C H_2$
Ме	Ο	Н	СОМе
Ме	0	Ме	СОМе
Ме	Ö	E t	СОМе
Ме	Ο	Рr	СОМе
Ме	Ο	i - P r	СОМе
· M e	0	Ви	СОМе
Ме	Ο	s — B u	СОМе
Ме	Ο	i — B u	СОМе
Ме	Ο	t — B u	СОМе
Ме	Ο	Pen	СОМе
Ме	Ο.	Hex	СОМе
Ме	Ο	Нер	СОМе
Ме	Ο	$C H_2 C H = C H_2$	СОМе
Ме	Ο	$CH_2C(Me) = CH_2$	СОМе
Ме	Ο	$C H_2 C H = C H M e$	СОМе
Ме	Ο	$C H_2 C H = C M e_2$	СОМе
Ме	Ο	$CH (Me) CH = CH_2$	СОМе
Ме	Ο	C (Me) $_2$ C H = C H $_2$	СОМе

表 4 7

R ²	L	R 1 2	R 1 3	
Ме	0	C H ₂ C ≡ C H	СОМ е	
Ме	0	$C H_2 C \equiv C M e$	СОМе	
Ме	Ο	$CH (Me) C \equiv CH$	СОМе	
Ме	Ο	$C (Me)_2 C \equiv CH$	СОМе	
Ме	Ο	$(C H_2)_2 C \equiv C H$	СОМе	
Ме	Ο	CH2CF3	СОМе	
Ме	Ο	(CH ₂) ₂ C ₁	СОМе	
Ме	Ο	$(CH_2)_3Cl$	СОМе	
Ме	Ο	(CH ₂) ₃ B r	СОМе	
Ме	. O	(CH ₂) ₃ F	СОМе	
M e .	O	$CH_2CH=CHCI$	СОМе	
Ме	Ο	$C H_2 C H = C C I_2$	СОМе	
Ме	Ο	c — P r	СОМе	
Ме	Ο	c — B u	СОМе	
Ме	О	c - P e n	СОМе	
Ме	Ο	с—Нех	СОМе	
Ме	0	с—Нер	СОМе	
Ме	Ö	CH2OH	СОМе	
Ме	Ο	(CH ₂) ₂ OH	СОМе	
Ме	0	C H ₂ O M e	СОМе	
Ме	0	C H 2 O E t	СОМе	
Ме	0	(CH ₂) ₂ OM e	СОМе	
Ме	0	(CH ₂) ₂ OE t	СОМе	

表48

R ²	L	R 1 2	R 13
Ме	0	(CH ₂) ₃ OM e	СОМе
M e	Ο	(CH ₂) ₃ OE t	СОМе
Ме	Ο	C H ₂ S M e	СОМе
M e	Ο	CN	СОМе
Ме	Ο	P h	СОМе
Ме	Ο	$CH_2Ph(4-OMe)$	СОМе
Ме	Ο	CH (Me) Ph	СОМе
Ме	Ο	(CH ₂) ₂ Ph	СОМе
Ме	Ο	CH = CHPh	СОМе
Ме	0	$C H_2 C H = C H P h$	СОМе
Ме	Ο	$C \equiv C P h$	СОМе
Ме	Ο	$C H_2 C \equiv C P h$	СОМе
Ме	Ο	G (a)	СОМе
Ме	Ο	G (b)	СОМе
Ме	Ο	G (c)	СОМе
Ме	, O.	G (d)	C. O M e
Ме	0	Н	CO-t-Bu
Ме	. O	M e	CO-t-Bu
Ме	Ο	Εt	CO-t-Bu
Ме	Ο	Pr	CO-t-Bu
Ме	Ο	i - P r	CO - t - Bu
Ме	Ο	Вu	CO-t-Bu
Ме	Ο	s — B u	CO-t-Bu

表 4 9

R ²	L	R 1 2	R 13
Ме	0	i — B u	C O - t - B u
Ме	Ο	t – B u	CO-t-Bu
Ме	Ο	Pen	CO - t - Bu
Ме	0	H e x	CO-t-Bu
Ме	0	Нер	CO-t-Bu
Ме	Ο	$C H_2 C H = C H_2$	CO-t-Bu
Ме	Ο	$C H_2 C (M e) = C H_2$	CO-t-Bu
Ме	Ο	$CH_2CH=CHMe$	CO-t-Bu
Ме	Ο	$C H_2 C H = C M e_2$	CO-t-Bu
Ме	Ο	$CH (Me) CH = CH_2$	CO-t-Bu
Ме	. O	C (Me) $_2$ C H = C H $_2$	CO-t-Bu
Ме	Ο	$C H_2 C \equiv C H$	CO-t-Bu
Ме	Ο	$C H_2 C \equiv C M e$	CO-t-Bu
Ме	О	$CH (Me) C \equiv CH$	CO-t-Bu
Ме	Ο .	$C (Me)_2 C \equiv CH$	CO-t-Bu
Ме	Ο.	$(C H_2)_2 C \equiv C H$	CO-t-Bu
Ме	Ο	CH ₂ CF ₃	CO-t-Bu
Ме	Ο	(CH ₂) ₂ Cl	CO - t - Bu
Ме	Ο	(CH ₂) ₃ C ₁	CO-t-Bu
M ė	Ο	(C H ₂) ₃ B r	CO-t-Bu
Ме	Ο	$(CH_2)_3F$	CO-t-Bu
Ме	Ο	$CH_2CH=CHCI$	CO - t - Bu
Ме	Ο	$C H_2 C H = C C I_2$	CO-t-Bu

表50

R ²	L	R 1 2	R 13
Ме	0	c — P r	C O - t - B u
Ме	0	c — B u	CO-t-Bu
Ме	0	c — P e n	CO-t-Bu
Ме	Ο	c - H e x	CO-t-Bu
Ме	Ο	с—Нер	CO - t - Bu
Ме	Ο	C H 2 O H	CO-t-Bu
M e	Ο	(CH ₂) ₂ OH	CO-t-Bu
Ме	Ο	C H ₂ O M e	CO - t - B u
Ме	Ο	CH ₂ OE t	C O - t - B u
Ме	Ο	(CH ₂) ₂ OMe	CO-t-Bu
Ме	Ο	(CH ₂) ₂ OE t	CO-t-Bu
Ме	Ο	$(CH_2)_3OMe$	CO-t-Bu
Ме	Ο	$(CH_2)_3OEt$	CO-t-Bu
Ме	Ο	CH ₂ SM e	CO-t-Bu
Ме	Ο	C N	CO - t - Bu
Ме	0.	Ρh	CO-t-Bu
Ме	Ο	$C H_{2} P h (4 - O M e)$	CO-t-Bu
Ме	0	CH (Me) Ph	CO - t - Bu
Ме	Ο	$(CH_2)_2Ph$	CO-t-Bu
Ме	Ο	CH = CHPh	CO-t-Bu
Ме	Ο	$CH_2CH=CHPh$	CO-t-Bu
Ме	0	$C \equiv C P h$	CO-t-Bu
Ме	Ο	$C H_2 C \equiv C P h$	CO - t - Bu

表 5 1

R ²	L	R 1 2	R 1 3
Ме	0	G (a)	C O - t - B u
Ме	0	G (b)	CO-t-Bu
Ме	Ο	G (c)	CO-t-Bu
Ме	Ο	G (d)	C O - t - B u
M e	Ο	Н	COPh(4-OMe)
Ме	Ο	Ме	COPh (4-OMe)
Ме	Ο	E t	COPh(4-OMe)
Ме	Ο	Pr	COPh(4-OMe)
Ме	Ο	i – P r	COPh(4-OMe)
Ме	Ο	Bu	COPh(4-OMe)
Ме	О	s — B u	C O P h (4 - O M e)
Ме	Ο	i — B u	C O P h (4 - O M e)
Ме	Ο	t - B u	C O P h (4 - O M e)
Ме	Ο	Pen	COPh(4-OMe)
Ме	Ο	Нех	COPh(4-OMe)
Ме	Ο.	Нер	C O P h (4 - O M e)
Ме	Ο	$C H_2 C H = C H_2$	COPh(4-OMe)
Ме	Ο	$C H_2 C (M e) = C H_2$	COPh(4-OMe)
Ме	Ο	$C H_2 C H = C H M e$	COPh(4-OMe)
Ме	Ο	$C H_2 C H = C M e_2$	COPh(4-OMe)
Ме	Ο	$CH (Me) CH = CH_2$	C O P h (4 - O M e)
Ме	Ο	C (Me) $_2$ C H = C $_1$ H $_2$	COPh (4-OMe)
Ме	Ο	$C H_2 C \equiv C H$	COPh(4-OMe)

表 5 2

R ²	L	R 1 2	R 13
Ме	О	$C H_2 C \equiv C M e$	COPh (4-OMe)
Ме	Ο	$CH (Me) C \equiv CH$	C O P h (4 - O M e)
Ме	Ο	$C (Me)_2 C \equiv CH$	C O P h (4 - O M e)
Ме	0	$(C H_2)_2 C \equiv C H$	COPh (4-OMe)
Ме	0	CH_2CF_3	COPh (4-OMe)
Ме	0	(CH ₂) ₂ Cl	COPh(4-OMe)
Ме	Ο	(CH ₂) ₃ Cl	COPh(4-OMe)
Ме	Ο	(CH ₂) ₃ B r	COPh(4-OMe)
Ме	Ο	(CH ₂) ₃ F	COPh(4-OMe)
Ме	Ο	$CH_2CH=CHCI$	COPh(4-OMe)
Ме	Ο	$C H_2 C H = C C I_2$	COPh(4-OMe)
Ме	Ο	c - P r	COPh(4-OMe)
M e	0	c — B u	COPh(4-OMe)
Ме.,	О	c - P e n	COPh (4-OMe)
Ме	Ο	c - H e x	COPh(4-OMe)
Ме	Ο.	с—Нер	COPh(4-OMe)
Ме	Ο	C H 2 O H	COPh(4-OMe)
Ме	Ο	(CH ₂) ₂ OH	COPh(4-OMe)
Ме	Ο	C H ₂ O M e	COPh(4-OMe)
Ме	Ο	CH2OEt	COPh (4-OMe)
Ме	Ο	(CH ₂) ₂ OM e	COPh (4-OMe)
Ме		(CH ₂) ₂ OE t	COPh(4-OMe)
М е	0	(CH ₂) ₃ OM e	COPh (4-OMe)

表 5 3

R ²	L	R 12	R 13
Ме	0 .	(CH ₂) ₃ OE t	COPh (4-OMe)
Ме	Ο.	CH ₂ SMe	COPh(4-OMe)
Ме	Ο	ĊN	COPh (4-OMe)
Ме	0	Ρh	COPh (4-OMe)
Ме	O	$CH_2Ph(4-OMe)$	C _. OPh (4-OMe)
M e	Ο	CH (Me) Ph	COPh (4-OMe)
Ме	Ο	(CH ₂) ₂ Ph	COPh (4-OMe)
Ме	Ο	CH = CHPh	COPh (4-OMe)
Ме	0	$C H_2 C H = C H P h$	COPh (4-OMe)
Ме	0	$C \equiv C P h$	COPh (4-OMe)
Ме	. O	$C H_2 C \equiv C P h$	COPh (4-OMe)
Ме	Ο	G (a)	COPh(4-OMe)
Ме	0	G (b)	COPh (4-OMe)
Ме	Ο	G (c)	COPh (4-OMe)
Ме	Ο	G (d)	COPh (4-OMe)
Ме	Ο.	Н	CO ₂ M e
Ме	0	M e	C O ₂M e
Ме	0	E t	C O ₂M e
Ме	0	Pr	C O ₂M e
Ме	Ο .	i – P r	C O ₂M e
Ме	Ο	Вu	C O₂M e
Ме	Ο	s — B u	C O ₂M e
Ме	O	i — B u	C O ₂M e

表 5 4

R ²	L	R 1 2	R 13
Ме	Ο	t — B u	C O 2 M e
Ме	Ο	Реп	C O₂M e
Ме	Ο	H e x	C O ₂M e
Ме	Ο	Нер	C O₂M e
Ме	Ο	$C H_2 C H = C H_2$	C O ₂M e
Ме	Ο	$C H_2 C (M e) = C H_2$	CO ₂ M e
Ме	Ο	$CH_2CH=CHMe$	CO ₂ M e
Ме	Ο.	$C H_2 C H = C M e_2$	C O ₂M e
Ме	Ο	$CH (Me) CH = CH_2$	C O ₂M e
Ме	Ο	C (Me) $_{2}$ CH = CH $_{2}$	C O ₂M e
Ме	Ο	$C H_2 C \equiv C H$	C O₂M e
Ме	Ο	$C H_2 C \equiv C M e$	C O ₂M e
Ме	Ο	$CH (Me) C \equiv CH$	C O ₂M e
Ме	O	$C (Me)_2 C \equiv CH$	C O₂M e
Ме	Ο	$(C H_2)_2 C \equiv C H$	C O₂M e
Ме	Ο.	CH ₂ CF ₃	C. O 2 M e .
Ме	Ο	(CH ₂) ₂ C ₁	CO ₂ M e
Ме	Ο	(CH ₂) ₃ C ₁	C O ₂M e
Ме	0	(CH ₂) ₃ B r	C O ₂M e
Ме	Ο	(CH ₂) ₃ F	C O ₂M e
Ме	Ο	$CH_2CH=CHCI$	C O ₂M e
Ме	О .	$CH_2CH=CCI_2$	CO ₂ M e
M e	0	c - P r	C O ₂M e

表 5 5

R ²	· L	R 12	R 13	
Ме	0	c — B u	C O 2M e	_
Ме	Ο	c - P e n	C O₂M e	•
Ме	Ο	c - H e x	C O₂M e	
Ме	Ο	с — Нер	C O ₂M e	
Ме	0	C H 2 O H	C O ₂M e	
Ме	Ο	(CH ₂) ₂ OH	C O ₂M e	
Ме	Ο	C H 2 O M e	C O ₂M e	
Ме	Ο	CH2OEt	C O ₂M e	
Ме	O	(CH ₂) ₂ OM e	C O ₂M e	
Ме	Ο	(CH ₂) ₂ OE t	C O₂M e	
Ме	0	(CH ₂) ₃ OM e	C O ₂M e	
Ме	Ο	(CH ₂) ₃ OE t	C O ₂M e	
Ме	0	C H ₂ S M e	C O ₂M e	
Ме	Ο	C N	C O ₂ M e	
Ме	Ο	Ρh	C O ₂M e	
Ме	Ο.	$CH_2Ph(4-OMe)$	CO ₂ M e	
Ме	Ο,	CH (Me) Ph	CO ₂ M e	
Ме	Ο	$(CH_2)_2Ph$	CO ₂ M e	
Ме	Ο	CH = CHPh	C O ₂M e	
M e	Ο	$C H_2 C H = C H P h$	C O ₂M e	
Ме	Ο	$C \equiv C P h$	C O₂M e	
Ме	Ο	$C H_2 C \equiv C P h$	C O ₂M e	
Ме	Ο	G (a)	C O ₂M e	

	_	^
7.7	~	h
1.	.,	

R ²	L	R 1 2	R 13
Ме	0	G (b)	C O ₂ M e
Ме	Ο	G (c)	C O ₂M e
Ме	Ο	G (d)	C O ₂M e
Ме	0	Н	S O₂M e
Ме	Ο	Ме	S O₂M e
Ме	Ο	E t	S O₂M e
Ме	Ο	Pr	S O₂M e
Ме	Ο	i - P r	S O₂M e
Ме	Ο	Ви	S O ₂M e
Ме	Ο	s — B u	S O ₂M e
Ме	Ö	i — B u	S O ₂M e
Ме	Ο	t — B u	S O ₂M e
Ме	Ο	Pen	S O₂M e
Ме.	Ο	Нех	S O₂M e
Ме	Ο	Нер	S O₂M e
Ме	Ο.	$CH_{2}CH=CH_{2}$	S O₂M e
Ме	Ο	$C H_2 C (M e) = C H_2$	S O₂M e
Ме	Ο	$C H_2 C H = C H M e$	S O₂M e
Ме	Ο	$CH_2CH=CMe_2$	S O₂M e
Ме	Ο	$CH (Me) CH = CH_2$	S O₂M e
Ме	Ο	C (Me) $_2$ C H = C H $_2$	S O 2M e
Ме	Ο	$C H_2 C \equiv C H$	S O ₂M e
Ме	Ο	$C H_2 C \equiv C M e$	S O 2 M e

表 5 7

R²	L	R 1 2	R 13	
Ме	0	C H (M e) C ≡ C H	S O₂M e	
Ме	0	C (Me) $_2$ C \equiv C H	S O 2 M e	
Ме	Ο	$(C H_2)_2 C \equiv C H$	S O₂M e	
Ме	Ο	CH_2CF_3	S O₂M e	
Ме	Ο	$(CH_2)_2Cl$	S O₂M e	
Ме	0	$(CH_2)_3Cl$	S O₂M e	
Ме	0	$(CH_2)_3Br$	S O 2 M e	
Ме	Ο	(CH ₂) ₃ F	S O₂M e	
Ме	0 .	$CH_2CH=CHCI$	S O 2M e	
Ме	Ο	$C H_2 C H = C C I_2$	S O₂M e	
Ме	О	c - P r	S O ₂M e	
Ме	Ο	c — B u	S O₂M e	
Ме	Ο	c — P e n	S O₂M e	
Ме	Ο	с—Нех	S O ₂M.e	
Ме	Ο	с—Нер	S O 2 M e	
Ме	Ο	C H 2 O H	S _O ₂ M _e	
Ме	Ο	(CH ₂) ₂ OH	SO₂Me	
Ме	Ο	CH2OMe	S O ₂M e	
Ме	Ο	CH2OE t	S O ₂M e	
Ме	O	(C H 2) 2 O M e	S O ₂M e	
Ме	Ο	(CH ₂) ₂ OE t	S O ₂M e	
Ме	Ο	(CH ₂) ₃ OM e	S O₂M e	
Ме	Ο	(CH ₂) ₃ OE t	S O 2 M e	

表 5 8

R ²	L	R 1 2	R 1 3
M e	Ο	CH ₂ SMe	S O 2M e
Ме	0	C N	S O₂M e
Ме	0	P h	S O 2 M e
Ме	0	$CH_2Ph(4-OMe)$	S O₂M e
Ме	0	CH (Me) Ph	S O₂M e
Ме	Ο	$(CH_2)_2Ph$	S O₂M e
Ме	0	CH = CHPh	S O 2M e
Ме	Ο	$CH_2CH=CHPh$	S O ₂M e
Ме	Ο	$C \equiv C P h$	S O ₂M e
Ме	Ο	$C H_2 C \equiv C P h$	S O₂M e
Ме	Ο	G (.a)	S O₂M e
Ме	Ο	G (b)	S O 2 M e
Ме	Ο	G (c)	S O₂M e
Ме	Ο	G (d)	S O₂M e
Н	Ο	- (CH ₂) ₋₃ -	
Н	Ο.	- (CH ₂) ₄ -	
Н	Ο	- (CH ₂) ₅ -	
Н	Ο	- (CH ₂) ₆ -	
Н	Ο	- (CH ₂) ₇ -	
Н	Ο	- (CH2)2 - O - (CH2)) 2—
Н	0	- (CH2)2 - S - (CH2)) 2-
Ме	Ο	- (CH ₂) ₃ -	
Ме	0	- (CH ₂) ₁ -	

表 5 9

R ²	L	R 1 2	R 1 3
M e	Ο	- (CH ₂) ₅ -	
Ме	Ο	- (CH ₂) ₆ -	
Ме	O	- (CH ₂) ₇ -	
Ме	Ο	- (CH2)2 - O - (CH2)	H ₂) ₂ -
Ме	Ο	- (CH2)2 - S - (CH2)2	I ₂) ₂ –
Н	S	Н	H
Н	S	Ме	Н
Н	S	E t	Н
Н	S	Ρr	Н
Н	S	i - P r	Н
Н	S	Ви	Н
Н	S	s — B u	Н
Н	S	i — B u	Н
Н	S	t — B u	Н
·H	S	Pen	Н
Н	S	Hex	Н
Н	S	Нер	Н
Н	S	$C H_2 C H = C H_2$	Н
Н	S	$C H_2 C (M e) = C H_2$	Н
Н	S	$C H_2 C H = C H M e$	Н
Н	S	$C H_2 C H = C M e_2$	Н
Н	S	$CH (Me) CH = CH_2$	Н
Н	S	C (Me) $_{2}$ C H = C H $_{2}$	Н

表 6 0

R²	L	R 1 2	R 13	-
Н	S	$C H_2 C \equiv C H$	Н	
H	S	$C H_2 C \equiv C M e$	Н	
Н	S	$CH (Me) C \equiv CH$	Н	
Н	S	$C (Me)_2 C \equiv CH$	Н	
Н	S	$(CH_2)_2C \equiv CH$	H	
Н	S	CH ₂ CF ₃	Н	
Н	S	(CH ₂) ₂ C ₁	Н	
Н	S	(CH ₂) ₃ Cl	Н	
Н	S	(C H ₂) ₃ B r	Н	
Н	S	(CH ₂) ₃ F	Н	
Н	S	$CH_2CH=CHCI$	Н	
Н	S	$CH_2CH=CCI_2$	Н	
Н	S	c — P r	Н	
Н	S	c — B u	Н	
Н	S	c — P e n	Н	
Н	S.	c - H e x	Н	
Н	S	с — Нер	Н	
H	S	C H 2 O H	Н	
Н	S	(CH ₂) ₂ OH	Н	
Н	S	CH2OMe	Н	
Н	S	CH2OE t	Н	
Н	S	(CH ₂) ₂ OMe	Н	
Н	S	$(CH_2)_2OEt$	Н	

表 6 1

R ²	L	R 1 2	R 13	
Н	S	(CH ₂) ₃ OM e	Н	
Н	S	(CH ₂) ₃ OE t	Н	
Н	S	C H ₂ S M e	. Н	
Н	S	CN	Н	
Н	S	P h	Н	
Н	S	$CH_2Ph(4-OMe)$	Н	
Н	S	CH (Me) Ph	Н	
Н	S	$(CH_2)_2Ph$	Н	
Н	S	CH = CHPh	Н	
Н	S	$CH_2CH=CHPh$	\mathbf{H}_{-}	
Н	S	$C \equiv C P h$	Н	
Н	S	$C H_2 C \equiv C P h$	Н	
Н	S	G (a)	Н	
Н	S	G (b)	Н	
H	S	G (c)	Н	
H	S	G (d)	Н	
Ме	S	Н	Н	
Ме	S	M e	Н	
Ме	S	E t	Н	
Ме	S	Pr	Н	
Ме	S	i - P r	Н	
Ме	S	Вu	Н	
Ме	S	s — B u	Н	

表 6 2

R ²	L	R 1 2	R 1 3	
Ме	S	i — B u	Н	
Ме	S	t — B u	Н	
Ме	S	Pen	Н	•
Ме	S	H e x	Н	
Ме	S	Нер	Н	
Ме	S	$C H_2 C H = C H_2$	Н	
Ме	S	CH_2C $(Me) = CH_2$	Н	
Ме	S	$CH_2CH=CHMe$	Н	
Ме	S	$C H_2 C H = C M e_2$	Н	
Ме	·S	$CH (Me) CH = CH_2$	Н	
Ме	S	C (Me) $_2$ C H = C H $_2$	Н	
Ме	S	$C H_2 C \equiv C H$	Н	
Ме	S	$C H_2 C \equiv C M e^{-1}$	Н	
Ме	S	$CH (Me) C \equiv CH$	Н	
Ме	S	$C (Me)_2 C \equiv CH$	Н	
M e	S.	$(C H_2)_2 C \equiv C H$	Н	
Ме	S	CH_2CF_3	Н	
Ме	S	(CH ₂) ₂ C ₁	Н	
Ме	S	(CH ₂) ₃ C	Н	
Ме	S	$(CH_2)_3B_r$	Н	
Ме	S	$(CH_2)_3F$	Н	
Me	S	$CH_2CH=CHCI$	Н	
Ме	S	$C H_2 C H = C C I_2$	Н	

表 6 3

R ²	L	R 1 2	R 1 3	·
<u></u> М е		c – P r	Н	
Ме	S	c — B u	Н	
Ме	S	c - P e n	H .	
Ме	S	с — Нех	Н	
Ме	S	с—Нер	Н	
Ме	S	CH2OH	Н	•
Ме	S	(CH ₂) ₂ OH	Н	
Ме	S	CH2OMe	Н	
Ме	S	CH2OE t	Н	
Ме	S	(CH ₂) ₂ OM e	Н	
Ме	S	(CH ₂) ₂ OE t	Н	
Ме	S	(CH ₂) ₃ OM e	Н	
Ме	S	(CH ₂) ₃ OE t	Н	
Ме	S	C H ₂ S M e	Н	
Ме	S	CN	Н	
Ме	S	Ph .	Η.	
Ме	S	$CH_2Ph(4-OMe)$	Н	
Ме	S	CH (Me) Ph	Н	
Ме	S	$(CH_2)_2Ph$	Н	
Ме	S	CH = CHPh	Н	
Ме	S	$CH_2CH=CHPh$	Н	
Ме	S	$C \equiv C P h$	Н	
Ме	S	$C H_2 C \equiv C P h$	Н	

表64

R ²	L	R 1 2	R 1 3
Ме	S	G (a)	Н
Ме	S	G (b)	Н
Ме	S	G (c)	.H
Мę	S	G (d)	Н
Н	S	- (0	C H ₂) ₃ —
Н	S	- (C	C H 2) 4-
Н	S	- (C	C H ₂) ₅ —
· H	S	- (C	CH ₂) ₆ —
Н	S	- (C	C H 2) 7—
Н	S	- (CH ₂) _{,2} -	O- (CH ₂) ₂ -
Н	S	- (CH ₂) ₂ -	S - (C H ₂) ₂ -
Ме	S	- (C	$(H_2)_3 -$
Ме	S	. – (C	H ₂) ₄ -
Ме	S	- (C	H ₂) ₅ —
Ме	S	- (C	H ₂) ₆ —
Ме	S.	- (C	H ₂) ₇ -
Ме	S	- (CH ₂) ₂ -	O - (C H ₂) ₂ -
Ме	S	- (CH ₂) ₂ -	S - (C H ₂) ₂ -

(第11表)

OMe

$$NH-Ph(R^{4})$$

表 6 5

R 12	R 13			
Н	Н	 -		
Ме	H [*]	•		
E t	Н			
Pr	Н			
i - P r	Н			
B u	Н			
s - B u	Н			
i — B u	Н			
t - B u	Н			
Pen	H		·	
Нех	Н			
Нер	Н			•
$C H _{2}C H = C H _{2}$	Н			
$C H_2 C (M e) = C H_2$	Н			
$C H_2 C H = C H M e$	Н			
$C H_2 C H = C M e_2$	Н			
CH (Me) CH = CH2	Н			
$C (Me) _{2}CH = CH_{2}$	Н			
$C H_2 C \equiv C H$	Н			
$C H_2 C \equiv C M e$	Н			
$CH (Me) C \equiv CH$	Н		•	
$C (Me)_2 C \equiv CH$	Н			
$(C H_2)_2 C \equiv C H$	Н			

表66

R 1 2	R 13		
CH ₂ CF ₃	H		
(CH ₂) ₂ Cl	Н		
(CH ₂) ₃ Cl	Н		
(CH ₂) ₃ B r	Н		
(CH ₂) ₃ F	Н		
$C H {}_{2}C H = C H C I$	Н		
$C H _{2} C H = C C I _{2}$	Н		
c — P r	Н		
c — B u	Н		
c - P e n	Н		
c — H e x	Н		
с—Нер	Н		
C H 2 O H	Н		
$(CH_2)_2OH$	Н		
CH2OMe	Н		
CH2OE t	Н		
(CH ₂) ₂ OM e .	Н		
(CH ₂) ₂ OE t	Н		
(CH ₂) ₃ OM e	Н		•
(CH ₂) ₃ OE t	Н		
CH ₂ SMe	Η .		
CN	Н		
Ρh	Н		

表 6 7

R 12	R 13
C H 2 P h (4 - O M e)	H
CH (Me) Ph	Н
(CH ₂) ₂ Ph	Н
CH = CHPh	Н
$C H_2 C H = C H P h$	Н
$C \equiv C P h$	Н
$C H_2 C \equiv C P h$	Н
G (a)	H
G (b)	Н
G (c)	H ,
G (d)	Н
M e	Ме
E t	Ме
Pr	Ме
i — P r	Ме
Bu	Ме
s — B u	Ме
i — B u	Ме
t - B u	Ме
Pen	Ме
Нех	Ме
Нер	Ме

表 6 8

R 12	. R 13	
C H 2 C H = C H 2	Ме	
$C H_2 C (M e) = C H_2$	Ме	
$CH_2CH=CHMe$	Ме	
$C H_2 C H = C M e_2$	Ме	
$CH (Me) CH = CH_2$	Ме	•
C (Me) $_2$ CH = CH $_2$	Ме	
$C H_2 C \equiv C H$	Ме	
$C H_2 C \equiv C M e$	Ме	
$CH (Me) C \equiv CH$	Ме	
$C (Me)_2 C \equiv CH$	Ме,	
$(C H_2)_2 C \equiv C H$	Ме	
CH2CF3	Ме	
(CH ₂) ₂ C ₁	Ме	
(CH ₂) ₃ CI	Ме	
(CH ₂) ₃ Br	Ме	
(CH ₂) ₃ F	Ме	
$CH_2CH=CHCI$	Ме	
$C H_2 C H = C C I_2$	Ме	
c – P r	Ме	
c - B u	Ме	
c - P e n	Ме	
c — Нех	Ме	
c — Нер	Ме	

表 6 9

R 1 2	R 13		 	
			 	·
C H 2 O H	Ме			
(CH ₂) ₂ OH	Ме			
CH ₂ OM e	Ме			
CH2OE t	Ме		•	
(CH ₂) ₂ OM e	Ме.	•		
(CH2) 2OE _t	Ме			
(CH ₂) ₃ OM e	Ме			
(CH ₂) ₃ OE t	Me			
C H₂S M e	Ме			
CN	Me.			
P h	Ме			
$CH_2Ph(4-OMe)$	M e			
CH (Me) Ph	Ме			
$(CH_2)_2Ph$	Ме			
CH = CHPh	Ме			
$CH_2CH=CHPh$	Ме			
$C \equiv C P h$	Ме			
$C H_2 C \equiv C P h$	Ме			
G (a)	Ме			
G (b)	Ме		٠	
G ('c)	Ме			
G (d)	Ме			

表70

R 13
E t
E t
E t
E t
E t
E t
E t
E t
E t
Et.
E t
E t
E t
E t
E t
E t
E t
E t
E t
E t
E t
E t

表71

R 12 .	R 13
(CH ₂) ₂ C I	E t
(CH ₂) ₃ C l	E t
(CH ₂) ₃ B r	E t
(CH ₂) ₃ F	E t
$CH_2CH=CHCI$	E t
$C H_2 C H = C C I_2$	E t
c - P r	E t
c — B u	E t
$c-P\ e\ \vec{n}$	E t
c - H e x	E t .
с—Нер	E t
C H 2 O H	E t
(CH ₂) ₂ OH	E t
C H ₂ O M e	E t
CH2OE t	E t
(CH ₂) ₂ OM e	E t
$(CH_2)_2OEt$	E t
(CH ₂) ₃ OM e	E t
(CH ₂) ₃ OE t	E t
C H ₂ S M e	E t
CN	E t
P h	E t
CH ₂ Ph (4 – OMe)	E t

表72

R 1 2	R 13
CH (Me) Ph	E t
(CH ₂) ₂ Ph	E t
CH = CHPh	E t
$CH_2CH=CHPh$	E t
$C \equiv C P h$	E t
$C H_2 C \equiv C P h$	E t
G (a)	E t
G (b)	E t
G (c)	E t
G (d)	Et.
Ρr	$C H_2 C H = C H_2$
i — P r	$C H_2 C H = C H_2$
Bu	$C H_2 C H = C H_2$
s - B u	$C H_2 C H = C H_2$
i - B u	$C H_2 C H = C H_2$
t — B u	$C H_2 C H = C H_2$
Pen	$C H_2 C H = C H_2$
Нех	$C H_2 C H = C H_2$
Нер	$C H_2 C H = C H_2$
$C H_2 C H = C H_2$	$C H_2 C H = C H_2$

表73

	R 1 2	R 13
	$C H_2 C (Me) = C H_2$	C H ₂ C H = C H ₂
	$CH_2CH=CHMe$	$C H_2 C H = C H_2$
	$C H_2 C H = C M e_2$	$CH_2CH=CH_2$
	$CH (Me) CH = CH_2$	$C H _{2} C H = C H _{2}$
	C (Me) $_2$ C H = C H $_2$	$C H_2 C H = C H_2$
	$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
	$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
	$CH (Me) C \equiv CH$	$C H_2 C H = C H_2$
	C (Me) $_{2}$ C \equiv C H	$C H_2 C H = C H_2$
	$(CH_2)_2C\equiv CH$	$C H_2 C H = C H_2$
	CH2CF3	$C H_2 C H = C H_2$
	(CH ₂) ₂ C l	$C H_2 C H = C H_2$
	(CH ₂) ₃ C ₁	$C H_2 C H = C H_2$
	(CH ₂) ₃ Br	$C H_2 C H = C H_2$
	(CH ₂) ₃ F	$C H_2 C H = C H_2$
	$CH_2CH=CHC^{\prime}I$	$C H_2 C_1 H = C H_2$
	C H 2 C H = C C I 2	$C H_2 C H = C H_2$
	c - P r	$C H_2 C H = C H_2$
	c — B u	$C H_2 C H = C H_2$
	c — P e n	$C H_2 C H = C H_2$
	с — Нех	$C H_2 C H = C H_2$
	с—Нер	$C H_2 C H = C H_2$
(C H 2 O H	$C H_2 C H = C H_2$

表 7 4

R 1 2	R 13
(CH ₂) ₂ OH	C H 2 C H = C H 2
CH₂OMe·	$C H_2 C H = C H_2$
C H ₂O E t	$CH_2CH=CH_2$
(CH2) 2OMe	$C H_2 C H = C H_2$
(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
(CH ₂) ₃ OMe	$C H_2 C H = C H_2$
(CH ₂) ₃ OE t	$C H_2 C H = C H_2$
CH ₂ SMe	$C H_2 C H = C H_2$
CN	$CH_2CH=CH_2$
Ρh	$CH_2CH=CH_2$
$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
CH (Me) Ph	$C H_2 C H = C H_2$
$(CH_2)_2Ph$	$C H_2 C H = C H_2$
CH = CHPh	$C H_2 C H = C H_2$
$C H_2 C H = C H P h$	$C H_2 C H = C H_2$
$C \equiv C P h$	$C H_2 C H = C H_2$
$C H_2 C \equiv C P h$	$C H_2 C H = C H_2$
G (a)	$C H_2 C H = C H_2$
G (b)	$C H_2 C H = C H_2$
G (c)	$C H_2 C H = C H_2$
G (d)	$CH_2CH=CH_2$
- (CH ₂) ₃ -	
- (CH ₂) ₄ -	

表 7 5

 $R^{12} \qquad R^{13}$ $- (CH_2)_5 - \\
- (CH_2)_6 - \\
- (CH_2)_7 - \\
- (CH_2)_2 - O - (CH_2)_2 - \\
- (CH_2)_2 - S - (CH_2)_2 - \\$

[第12表]

表 7 6

R 12	R 13		
E t	Н	 	
Pr	Н		
i - P r	H		
B u	Н		•
s - B u	Н		
i – B u	Н	•	
t — B u	Н		
Pen	Н		
Нех	Н		
$C H_2 C H = C H_2$	H .		
$C H_2 C \equiv C H$	Н		
$CH (Me) C \equiv CH$	Н		
C (Me) $_2$ C \equiv C H	Н		
$(CH_2)_2C \equiv CH$	Н		
c - P r	Н		
c - P e n	H		
с—Нех	. H		
- (CH ₂) ₃ -			
- (CH ₂) ₄ -			
- (CH ₂) ₅ -			
- (CH ₂) ₆ -			
- (CH ₂) ₂ -O- (CH	2) 2—		
- (CH ₂) ₂ -S- (CH	2) 2—		

[第13表]

$$R^{2}$$
 $NH-Ph(R^{4})$
 R^{1}
 $NHOH$
 $NHOH$

$$R^{2}$$
 O $NH-Ph(R^{4})$ $NHCH_{2}CH_{2}CO_{2}Me$ O .

$$R^{2}$$
 O NH-Ph(R^{4})
 N NHC(Me)₂CO₂Me

$$R^{2}$$
 O NH-Ph(R^{4})
 R^{1} NHC(Me)₂CN

====	7	
7	- /	- 1

R'	R ²	
Н	Н	
Ме	Н	
E t	Н	•
CF ₃	Н	•
CF_3CH_2	Н	
M e O	Н	
ΕtΟ	Н	
CHF2O	Н	
MeS	Н	
E t S	Н	
Me 2 N	Н	
CN	Н	
MeOCH2	Н	
MeSCH $_2$	Н	
Н	M e	
M e	. M e	
E t	M e	
CF3	M e	
CF_3CH_2	M e	
M e O	M e	
E t O	M e	•
CHF2O	Ме	
M e S	М е	·

	_	_
===	.,	×
44		()

R '	R ²		
		·	
E t S	M e	,	
Me 2 N	Ме		
CN	M e		
MeOCH2	Ме		
MeSCH2	M e		-

[第14表]

表 7 9

R¹

H. Me, Et, MeO, EtO, MeS, EtS, Me $_2$ N, CF $_3$, CN

[第15表]

表80

R 12	R 13	
Н	H	
Ме	Н	
E t	Н	
Pr.	Н	
i - P r	Н	
Вu	Н	
s — B u	Н	
i — B u	Н	
t — B u	Н	
Pen	Н ,	
Нех	Н	
Нер	Н	
$C H_2 C H = C H_2$	Н	
$C H_2 C (M e) = C H_2$	Н	
$C H_2 C H = C H M e$	Н	
$C H _{2} C H = C M e _{2}$	Н	
CH (Me) CH = CH2	Н	
C (Me) $_2$ C H = C H $_2$	Н	•
$C H_2 C \equiv C H$	Н	
$C H_2 C \equiv C M e$	Н	
$CH (Me) C \equiv CH$	Н	
C (Me) $_2$ C \equiv C H	Н	
$(\dot{C} H_2)_2 C \equiv C H$	Н	

表81

R 1 2	R 1 3	
CH ₂ CF ₃	Н	
(CH ₂) ₂ C ₁	Н	
(CH ₂) ₃ C ₁	Н	
(CH ₂) ₃ B r	Н	
(CH ₂) ₃ F	Н	
$CH_2CH=CHCI$	Н	
$CH_2CH=CCl_2$	Н	
c - P r	Н	
c — B u	Н	
c-Pen	Н	
c - H e x	Н	·
c — H e p	Н	
C H 2 O H	Н	
(CH ₂) ₂ OH	Н	
CH ₂ OM e	H	
CH ₂ OE t	H	
(CH ₂) ₂ OMe	Н	
(CH ₂) ₂ OE t	Н	
(CH ₂) ₃ OM e	Н	
(CH ₂) ₃ OE t	Н	
CH ₂ SMe	Н	
C N	Н	
Рh	Н	

表 8 2

R 1 2	R 13					
C H 2 P h (4 - O M e)	H					
CH (Me) Ph	Н					
(CH2) ,Ph	Н					
CH = CHPh	Н					
$CH_2CH=CHPh$	Н					
$C \equiv C P h$	Н					
$C H_2 C \equiv C P h$	Н					
G (a)	Н					
G (b)	Н					
G (c)	Н .	·				
G (d)	Н					
M e	Ме				•	
E t	Ме					
Pr	Ме					
i - P r	Ме			•		
B u	Ме					
s – B u	Ме					
i — B u	Ме					
t — B u	Ме				,	
Pen	Ме				•	
Нех	Ме					
Нер	Ме					

表 8 3

R 12	R 1 3
C H 2 C H = C H 2	M e
$CH_2C(Me) = CH_2$	Ме
$C H_2 C H = C H M e$	Ме
$C H_2 C H = C M e_2$	M e
CH (Me) $CH = CH_2$	M e
$C (Me)_2 CH = CH_2$	M e
$C H_2 C \equiv C H$	Me.
$C H_2 C \equiv C M e$	Ме
$CH (Me) C \equiv CH$	M e
C (Me) $_2$ C \equiv C H	M e ,
$(C H_2)_2 C \equiv C H$	Ме
CH ₂ CF ₃	Ме
(CH ₂) ₂ C l	M e
(CH ₂) ₃ Cl	M e
(CH ₂) ₃ B r	M e
(CH ₂) ₃ F	M e
$CH_2CH=CHCI$	Ме
$CH_2CH=CCI_2$	Ме
c - P r	M e
c — B u	Ме
c - P e n	Ме
с — H е x	M e
с—Нер	M e

表 8 4

	
R 1 2	R 13
CH ₂ OH	Ме
(CH ₂) ₂ OH	Мe
CH2OMe	Ме
CH ₂ OE t	Ме
(CH ₂) ₂ OMe	Ме
(CH ₂) 20E t	Ме
(CH ₂) ₃ OM e	Ме
(CH ₂) ₃ OE t	Ме
CH ₂ SMe	Ме
CN	Ме
Ρh	Ме
C H z P h (4 - O M e)	Ме
CH (Me) Ph	Ме
(CH ₂) ₂ Ph	Ме
CH = CHPh	Ме
$CH_2CH=CHPh$	Ме
$C \equiv C P h$	Ме
$C H_2 C \equiv C P h$	Ме
G (a)	Ме
G (b)	Ме
G (c)	Ме
G (d)	Ме

表85

R 12	R 13
E t	E t
Pr	E t
i — P r	E t
Вu	E t
s — B u	E t
i — B u	E t
t — B u	E t
Pen	E t
Нех	E t
Нер	Et.
$C H _{2} C H = C H _{2}$	E t
$C H_2 C (M e) = C H_2$	E t
$C H_2 C H = C H M e$	E t
$C H _{2}C H = C M e _{2}$	E t
$CH (Me) CH = CH_2$	E t
C (Me) $_2$ C H = C H $_2$	E t
$C H_2 C \equiv C H$	E t
$C H_2 C \equiv C M e$	E t
$CH (Me) C \equiv CH$	E t
$C (Me)_2 C \equiv CH$	E t
$(CH_2)_2C \equiv CH$	E t
CH2CF3	E t

表 8 6

R 12	R 13				
(CH ₂) ₂ C l	E t	 			
(CH ₂) ₃ Cl	Εt				
(CH ₂) ₃ B r	Εt				
(CH ₂) ₃ F	Εt				
$CH_2CH=CHCI$	Εt				
$CH_2CH=CCI_2$	Εt				
c - P r	Εt				
c — B u	Εt				
c - P e n	Εt				
c - H e x	E t				
с—Нер	Εt				
C H 2 O H	Εt				
(CH ₂) ₂ OH	Εt				
C H ₂OM e	Εt			•	
CH₂OE t	Εt				
(CH ₂) ₂ OM _e	Εt				
(CH ₂) ₂ OE t	Εt				
(CH ₂) ₃ OM e	Εt				
(CH ₂) ₃ OE t	Εt				
C H ₂ S M e	Εt				
CN	Εt				
P h	Εt				
CH2Ph (4-OMe)	Εt		•		

表87

R 1 2	.R 13
CH (Me) Ph	E t
(CH ₂) ₂ Ph	E t
CH = CHPh	E t
$C H_2 C H = C H P h$	E t
$C \equiv C P h$	E t
$C H_2 C \equiv C P h$	E t
G (a)	E t
G (b)	E t
G (c)	E t
G (d)	Et.
P r	$C H_2 C H = C H_2$
i - P r	$C H_2 C H = C H_2$
B u	$C H_2 C H = C H_2$
s — B u	$C H_2 C H = C H_2$
i — B u	$C H_2 C H = C H_2$
t -B u	$CH_2CH=CH_2$
Pen	$C H_2 C H = C H_2$
Нех	$C H_2 C H = C H_2$
Нер	$C H_2 C H = C H_2$
C H 2 C H = C H 2	$C H_2 C H = C H_2$

表88

R 1 2	R 13
$C H_2 C (M e) = C H_2$	$C H_2 C H = C H_2$
$C H_2 C H = C H M e$	$C H_2 C H = C H_2$
$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
C (Me) $_2$ CH = CH $_2$	$C H_2 C H = C H_2$
$C H_2 C \equiv C H$	$CH_2CH=CH_2$
$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
$CH (Me) C \equiv CH$	$C H_2 C H = C H_2$
C (Me) $_2$ C \equiv C H	$C H_2 C H = C H_2$
(CH_{2}) $_{2}C \equiv CH$	$C H_2 C H = C H_2$
CH2CF3	$C H_2 C H = C H_2$
(CH ₂) ₂ C ₁	$C H_2 C H = C H_2$
(CH ₂) ₃ CI	$C H_2 C H = C H_2$
(CH ₂) ₃ Br	$C H_2 C H = C H_2$
(CH ₂) ₃ F	$C H_2 C H = C H_2$
$CH_2CH=CHCI$	$C H_2 C H = C H_2$
$C H_2 C H = C C I_2$	$C H_2 C H = C H_2$
c - P r	$C H_2 C H = C H_2$
c — B u	$C H_2 C H = C H_2$
c - P e n	$C H_2 C H = C H_2$
c - H e x	$C H_2 C H = C H_2$
с—Нер	$C H_2 C H = C H_2$
C H 2 O H	$C H_2 C H = C H_2$

表89

R 12	R ' 3
(CH ₂) ₂ OH	C H 2 C H = C H 2
CH ₂ OMe	$C H_2 C H = C H_2$
CH ₂ OE t	$C H_2 C H = C H_2$
(CH ₂) ₂ OM e	$C H_2 C H = C H_2$
(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
(CH ₂) ₃ OM e	$C H_2 C H = C H_2$
(CH ₂) 3 OE t	$C H_2 C H = C H_2$
C H ₂ S M e	$C H_2 C H = C H_2$
CN	$C H_2 C H = C H_2$
Ρh	$C H_2 C H = C H_2$
CH ₂ Ph (4-OMe)	$C H_2 C H = C H_2$
CH (Me) Ph	$C H_2 C H = C H_2$
(CH ₂) ₂ Ph	$C H_2 C H = C H_2$
CH = CHPh	$C H_2 C H = C H_2$
$C H_2 C H = C H P h$	$C H_2 C H = C H_2$
$C \equiv C P h$	$C H_2 C H = C H_2$
$C H_2 C \equiv C P h$	$C H_2 C H = C H_2$
G (a)	$C H_2 C H = C H_2$
G (b)	$C H_2 C H = C H_2$
G (c)	$C H_2 C H = C H_2$
G (d)	$C H_2 C H = C H_2$
Н	СОМе
√l e	СОМе

	_	_
===	α	$-\alpha$
ブブ	ч	
1	_	v

R 1 2	R 13					
E t	СОМе					
Pr	СОМе					
i - P r	СОМе					
Вu	СОМе					
s — B u	СОМе					
i — B u	СОМе					
t — B u	СОМе					٠
Pen	СОМе					
Нех	СОМе					
Нер	СОМе					
$C H _{2} C H = C H _{2}$	СОМе			•		
$C H_2 \cdot C (M e) = C H_2$	СОМе			•		
$C H_2 C H = C H M e$	СОМе					
$C H _{2} C H = C M e _{2}$	СОМе					
$CH (Me) CH = CH_2$	СОМе					
C (Me) $_2$ C H = C H $_2$	СОМе					
$C H_2 C \equiv C H$	СОМе		•			
$C H_z C \equiv C M e$	СОМе					
$CH (Me) C \equiv CH$	СОМе					
C (Me) $_2$ C \equiv C H	СОМе					
$(C H_2)_2 C \equiv C H$	СОМе			•		
CH2CF3	СОМе	,				
(CH ₂) ₂ C ₁	СОМе					

表91

R 1 2	R 1 3
(CH ₂) ₃ C l	СОМ е
(CH ₂) ₃ Br	СОМе
(CH ₂) ₃ F	СОМе
$CH_{2}CH=CHCI$	СОМе
$CH_2CH=CCl_2$	СОМе
c - P r	СОМе
c — B ų	СОМе
c — P e n	COM e
c-Hex	COM e
с—Нер	СОМе
CH ₂ OH	СОМе
(CH ₂) ₂ OH	СОМе
C H ₂ O M e	СОМе
CH ₂ OE t	СОМе
(CH ₂) ₂ OM e	СОМе
(CH2) 2 OE t	СОМе
(CH ₂) ₃ OM e	СОМе
(CH ₂) 3 OE t	C O M e
C H 2 S M e	C O M e
CN	COMe
Ρh	СОМе
CH ₂ Ph (4-OMe)	СОМе
CH (Me) Ph	СОМе

表92

R 12	R 13
(CH ₂) ₂ Ph	СОМе
CH = CHPh	СОМе
$C H_2 C H = C H P h$	СОМе
$C \equiv C P h$	СОМе
$C H_2 C \equiv C P h$	СОМе
G (a)	СОМе
G (b)	СОМе
G (c)	СОМе
G (d)	C O M e
Н	CO - t - Bu
Ме	CO - t - Bu
E t	CO-t-Bu
Pr	CO - t - Bu
i – P r	CO-t-Bu
Bu	CO - t - Bu
s — B u	CO-t-Bu
i — B u	CO - t - Bu
t — B u	CO-t-Bu
Pen	CO - t - Bu
Нех	CO - t - Bu
Нер	CO-t-Bu
$C H_2 C H = C H_2$	CO-t-Bu
$C H_2 C (M e) = C H_2$	CO-t-Bu

表93

R 1 2	R 13
C _. H ₂ CH=CHMe	C O - t - B u
$C H_2 C H = C M e_2$	CO-t-Bu
$CH (Me) CH = CH_2$	CO-t-Bu
C (Me) $_2$ C H = C H $_2$	CO-t-Bu
$C H_2 C \equiv C H$	CO - t - Bu
$C H_2 C \equiv C M e$	CO-t-Bu
$C H (M e) C \equiv C H$	CO-t-Bu
C (Me) $_2$ C \equiv C H	CO-t-Bu
$(C H_2)_2 C \equiv C H$	CO-t-Bu
CH ₂ CF ₃	CO - t - Bu
(CH ₂) ₂ C	CO-t-Bu
(CH ₂) ₃ C ₁	CO-t-Bu
(·C H 2) 3 B r	CO-t-Bu
(CH ₂) ₃ F	CO-t-Bu
$CH_2CH=CHCI$	CO-t-Bu
$CH_2CH=CCI_2$	CO-t-Bu
c — P r	CO-t-Bu
c — B u	CO-t-Bu
c-Pen	CO-t-Bu
c — H e x	CO-t-Bu
с — Нер	CO-t-Bu
C H ₂ O H	CO-t-Bu
(CH ₂) ₂ OH	CO-t-Bu

表 9 4

R 1 2	R 1 3
C H 2 O M·e	C O - t - B u
CH2OE t	CO-t-Bu
(CH ₂) ₂ OMe	CO - t - Bu
$(CH_2)_2OEt$	CO-t-Bu
(CH ₂) ₃ OM e	CO-t-Bu
(CH ₂) ₃ OE t	CO-t-Bu
CH ₂ SMe	CO-t-Bu
CN	CO - t - Bu
Ph .	CO-t-Bu
$CH_2Ph(4-OMe)$	CO - t - Bu
CH (Me) Ph	CO - t - Bu
(CH ₂) ₂ Ph	CO-t-Bu
CH = CHPh	CO - t - Bu
$C H_2 C H = C H P h$	CO-t-Bu
$C \equiv C P h$	CO-t-Bu
$C H_2 C \equiv C P h$	CO-t-Bu
G (a)	CO-t-Bu
G (b)	CO-t-Bu
G (c)	$CO - t - B \cdot u$
G (d)	CO - t - Bu
Н	COPh (4-OMe)
Ме	COPh (4-OMe)
E t	COPh (4-OMe)

表 9 5

R 1 2	R 13
Рr	COPh (4-OMe)
i - P r	COPh (4-OMe)
Вu	C O P h (4 - O M e)
s — B u	COPh (4-OMe)
i — B u	COPh(4-OMe)
t — B u	COPh(4-OMe)
Pen	COPh (4-OMe)
Нех	COPh(4-OMe)
Нер	COPh(4-OMe)
$C H _{2}C H = C H _{2}$	COPh(4-OMe)
$C H_2 C (M e) = C H_2$	COPh(4-OMe)
$C H_2 C H = C H M e$	COPh(4-OMe)
$C H_2 C H = C M e_2$	COPh (4-OMe)
$CH(Me)CH=CH_2$	COPh(4-OMe)
$C (Me)_2 CH = CH_2$	COPh (4-OMe)
$C H_2 C \equiv C H$	COPh(4-OMe)
$C H_2 C \equiv C M e$	COPh(4-OMe)
$C H (M e) C \equiv C H$	COPh(4-OMe)
C (Me) $_{2}$ C \equiv C H	COPh(4-OMe)
$(C H_2)_2 C \equiv C H$	COPh (4-OMe)
CH2CF3	COPh (4-OMe)
(CH ₂) ₂ C ₁	COPh (4-OMe)
(CH ₂) ₃ C	C O P h (4 - O M e)

表 9 6

R 12	R 13
(CH ₂) ₃ B r	COPh (4-OMe)
(CH ₂) ₃ F	COPh (4-OMe)
$CH_2CH=CHC1$	COPh (4-OMe)
$C H_2 C H = C C I_2$	COPh (4-OMe)
c - P r	COPh(4-OMe)
с — В и	COPh (4-OMe)
c-Pen	COPh(4-OMe)
$c-H\ e\ x$	COPh (4-OMe)
c.— H e p	COPh (4-OMe)
CH2OH	COPh(4-OMe)
(CH ₂) ₂ OH	COPh(4-OMe)
C H 2 O M e	COPh(4-OMe)
CH2OE t	COPh(4-OMe)
(CH ₂) ₂ OM e	COPh(4-OMe)
(CH ₂) ₂ OE t	COPh(4-OMe)
(CH ₂) 3 OM e	COPh (4-OMe)
(CH ₂) ₃ OE t	COPh(4-OMe)
CH2SMe	COPh (4-OMe)
CN	COPh(4-OMe)
P h	COPh (4-OMe)
$CH_2Ph(4-OMe)$	COPh (4-OMe)
CH (Me) Ph	COPh(4-OMe)
(CH ₂) ₂ Ph	C O P h (4 - O M e)

表 9 7

R 1 2	R 13
CH = CHPh	COPh (4-OMe)
$C H_2 C H = C H P h$	COPh (4-OMe)
$C \equiv C P h$	COPh (4-OMe)
$C H_2 C \equiv C P h$	COPh(4-OMe)
G (a)	COPh(4-OMe)
G (b)	COPh(4-OMe)
G (c)	C O P h (4 - O M e)
G (d)	COPh (4-OMe)
Н	C O ₂M e
M e	C O ₂M e
E t	C O ₂M e
Pr	C O ₂M e
i - P r	C O ₂M e
Вu	C O ₂ M e
s — B u	CO ₂ M e
i — B u	CO ₂ M e
t — B u	CO ₂ M e
Pen.	CO ₂ M e
Нех	C O ₂M e
Нер	C O ₂M e
$C H_2 C H = C H_2$	C O ₂M e
$C H_2 C (M e) = C H_2$	C O ₂M e
C H ₂ C H = C H M e	C O ₂M e

表98

R 12	R 13
C H 2 C H = C M e 2	C O ₂M e
$CH (Me) CH = CH_2$	C O ₂M e
C (Me) $_2$ C H = C H $_2$	C O ₂M e
$C H_2 C \equiv C H$	C O ₂M e
$C H_2 C \equiv C M e$	C O ₂M e
$CH (Me) C \equiv CH$	C O ₂M e
C (Me) $_2$ C \equiv C H	C O ₂M e
$(C H_2)_2 C \equiv C H$	CO ₂ M e
CH ₂ CF ₃	C O ₂M e
(CH ₂) ₂ C1	C O ₂M e
(CH ₂) ₃ C ₁	C O ₂M e
(CH ₂) ₃ B r	CO ₂ M e
(CH ₂) ₃ F	C O ₂ M e
$CH_2CH=CHCI$	CO ₂ M e
$CH_2CH=CCl_2$	C O ₂M e
c - P r	C O ₂M e
c - B u	CO ₂ M e
c — P e n	CO ₂ M e
с—Нех	CO ₂ M e
с—Нер	C O 2M e
C H 2 O H	CO ₂ M e
(CH ₂) ₂ OH	CO ₂ M e
CH2OMe	CO ₂ M e

表 9 9

R 12	R 13
CH ₂ OE t	CO ₂ M e
(CH ₂) ₂ OM e	CO ₂ M e
(CH ₂) ₂ OE t	C O ₂M e
(CH ₂) ₃ OM e	C O ₂M e
(CH ₂) ₃ OE t	C O ₂M e
CH ₂ SMe	C O ₂M e
CN	C O ₂ M e
Ρh	CO ₂ M e
CH ₂ Ph (4-OMe)	C O ₂ M e
CH (Me) Ph	C O ₂ M e
$(CH_2)_2Ph$	C O ₂ M e
CH = CHPh	C O ₂ M e
$CH_2CH=CHPh$	C O ₂M e
$C \equiv C P h$	C O ₂M e
$C H_2 C \equiv C P h$	C O ₂M e
G (a)	C O ₂M e
G (b)	C O ₂M e
G (c)	C O ₂M e
G (d)	C O ₂M e
Н	S O ₂M e
M e	SO ₂ M e
€ t	S O 2 M e
P r	SO ₂ M e

表100

	
R 12	R 13
i – P r	S O ₂M e
Вu	S O ₂M e
s - B u	S O ₂M e
i — B u	S O ₂M e
t — B u	SO ₂ Me
Pen	SO ₂ M e
Нех	SO ₂ M e
Нер	S O 2 M e
$C H_2 C H = C H_2$	S O ₂M e
$C H_2 C (M e) = C H_2$	S O ₂ M e
$C H_2 C H = C H M e$	SO ₂ M e
$C H_2 C H = C M e_2$	SO ₂ M e
$CH (Me) CH = CH_2$	S O 2 M e
C (Me) $_2$ CH = CH $_2$	S O 2 M e
$C H_2 C \equiv C H$	SO ₂ Me
$C H_2 C \equiv C M e$	SO ₂ Me
$CH (Me) C \equiv CH$	SO ₂ M e
C (Me) $_2$ C \equiv C H	S O ₂M e
$(C H_2)_2 C \equiv C H$	S O₂M e
CH2CF3	SO ₂ Me
(CH ₂) ₂ Cl	SO ₂ Me
(CH ₂) ₃ Cl	SO ₂ Me
(CH ₂) ₃ B r	S O 2 M e

表101

R 1 2	R 1 3
(CH ₂) ₃ F	S O ₂M e
$CH_2CH=CHCI$	S O ₂M e
$CH_2CH=CCI_2$	S O ₂M e
c - P r	S O ₂M e
c — B u	SO ₂ M e
$c-P\ e\ n$	SO ₂ M e
c-Hex	SO ₂ M e
с—Нер	S O 2 M e
C H 2 O H	SO ₂ M e
(CH ₂) ₂ OH	S O ₂M e
CH2OMe	SO ₂ M e
CH2OE t	S O 2M e
(CH ₂) ₂ OM e	S O ₂M e
(CH ₂) ₂ OE t	S O ₂M e
(CH ₂) ₃ OM e	S O ₂M e
(CH ₂) ₃ OE t	S O ₂ M e
CH ₂ SM e	S O 2 M e
CN	S O ₂ M e
P h	SO ₂ Me
C H 2 P h (4 - O M e)	SO ₂ Me
CH (Me) Ph	S O 2M e
(CH ₂) ₂ Ph	SO ₂ Me
CH = CHPh	S O 2M e

表102

R 1 2	R 13
$C H_2 C H = C H P h$	S O 2 M e
$C \equiv C P h$	S O ₂M e
$C H_2 C \equiv C P h$	SO ₂ Me
G (a)	SO ₂ M e
G (b)	S O 2 M e
G (c)	S O 2 M e
G (d)	S O 2 M e

[第16表]

表10.3

R 1 2	R 13	
	· · · · · · · · · · · · · · · · · · ·	
Н	H	
Н	Ме	
Н	E t	
Н	i — P r	
Н	i — B u	
Н	$C_1 H_2 C H = C H_2$	
Н	CH2Ph	
Ме	M e	
M e	E t	

[第17表]

表104

R 1 2	R 13	R 1 4
M e	Н	Н
E t	Н	Н
i — P r	Н	Н
Н	H	Ме
Н	Н	E t
Н	Н	i - P r
Ме	Ме	Н
- (CH ₂) ₄		Н
- (CH ₂)	5 —	Н
- (CH ₂) ₂ -O-	(CH ₂) ₂ -	Н
M e	Н	Ме
CO ₂ E t	Н	Н

第9表~第17表中、「c-」とあるのはシクロを、「i-」とあるのはイソを、「s-」とあるのはセカンダリーを、「t-」はとあるのはターシャリーを、Meはメチル基を、Etはエチル基を、Ptはプロピル基を、Buはプチル基を、Ptはフェニル基を、Hexはヘキシル基を、Hepはヘプチル基を、Phはフェニル基をそれぞれ表わす。また、G(a)、G(b)、G(c) 及びG(d) は、それぞれ前述の構造を表わす。

本発明化合物のあるものは畑地、非耕地用除草剤として、土壌処理、茎葉処理のいずれの処理方法に於いても、イヌホウズキ(Solanum nigrum)、チョウセンアサガオ(Datura stramonium)等に代表されるナス科(Solanaceae)雑草、イチビ(Abutilon theophrasti)、アメリカキンゴジカ(Sida spinosa)等に代表されるアオイ科(Malvaceae)雑草、マルバアサガオ(Ipomoea purpurea)等のアサガオ類(Ipomoea spps.)やヒルガオ類(Calvstegia spps.)等に代表されるヒル

ガオ科 (Convolvulaceae) 雑草、イヌビユ (Amaranthus lividus) 、アオビユ (<u>Amaranthus retroflexus</u>) 等に代表されるヒユ科 (Amaranthaceae)雑草、オナ モミ (Xanthium pensylvanicum) 、ブタクサ (Ambrosia artemisiaefolia) 、ヒ マワリ (<u>Helianthus annuus)</u>、ハキダメギク (<u>Galinsoga ciliata)</u>、セイヨウト ゲアザミ(<u>Cirsium arvense)</u>、ノボロギク(<u>Senecio vulgaris</u>)、ヒメジョン (Erigeron annus) 等に代表されるキク科 (Compositae) 雑草、イヌガラシ (Ro <u>rippa indica</u>)、ノハラガラシ(<u>Sinapis arvensis</u>)、ナズナ(<u>Capsella Bursa</u> pastoris) 等に代表されるアブラナ科 (Cruciferae) 雑草、イヌタデ (Polygonu m Blumei) 、ソバカズラ (Polygonum convolvulus)等に代表されるタデ科 (Poly gonaceae) 雑草、スベリヒユ(<u>Portulaca oleracea</u>)等に代表されるスベリヒユ 科 (Portulacaceae)雑草、シロザ (<u>Chenopodium album)</u>、コアカザ (<u>Chenopodiu</u> m ficifolium)、ホウキギ (Kochia scoparia)等に代表されるアカザ科 (Chenop odiaceae) 雑草、ハコベ (<u>Stellaria media)</u>等に代表されるナデシコ科 (Caryop hyllaceae)雑草、オオイヌノフグリ(<u>Veronica persica</u>)等に代表されるゴマノ ハグサ科(Scrophulariaceae)雑草、ツユクサ(Commelina communis)等に代表 されるツユクサ科 (Commelinaceae)雑草、ホトケノザ (Lamium amplexicaule)、 ヒメオドリコソウ(Lamium purpureum)等に代表されるシソ科(Labiatae)雑草、 コニシキソウ(Euphorbia supina)、オオニシキソウ(Euphorbia maculata)等 に代表されるトウダイグサ科 (Euphorbiaceae)雑草、ヤエムグラ (Calium spuri <u>um</u>)、アカネ(<u>Rubia akane</u>)等に代表されるアカネ科 (Rubiaceae)雑草、スミレ (<u>Viola mandshurica</u>)等に代表されるスミレ科 (Violaceae)雑草、アメリカツノ クサネム (<u>Sesbania exaltata</u>)、エビスグサ (<u>Cassia obtusifolia</u>) 等に代表さ れるマメ科(Leguminosae)雑草等の広葉雑草(Broad leaved weeds)、野生ソル ガム (Sorgham bicolor)、オオクサキビ (Panicum dichotomiflorum)、ジョンソ ングラス (Sorghum halepense)、イヌビエ (Echinochloa crus galli var. crus <u>gall</u>i)、ヒメイヌビエ <u>(Echinochloa crus gal</u>li var<u>. praticol</u>a)、栽培ビエ (Echinochloa utilis)、メヒシバ (Digitaria adscendens) 、カラスムギ (Av enafatua) 、オヒシバ (Eleusine indica)、エノコログサ (Setaria viridis)、 スズメノテッポウ(Alopecurus aegualis)等に代表されるイネ科雑草(Craminac

eous weeds)、ハマスゲ (<u>Cyperus rotundus. Cyperus esculentus</u>) 等に代表されるカヤツリグサ科雑草 (Cyperaceous weeds)等の各種畑地雑草 (Cropland weeds) に低薬量で高い殺草力を有する。

又、水田用除草剤として湛水下の土壌処理及び茎葉処理のいずれの処理方法に 於いても、ヘラオモダカ (Alisma canaliculatum) 、オモダカ (Sagittaria tri folia)、ウリカワ (Sagittaria pygmaea) 等に代表されるオモダカ科 (Alismata ceae) 雑草、タマガヤツリ (Cyperus difformis)、ミズガヤツリ (Cyperus sero tinus)、ホタルイ(<u>Scirpus juncoides</u>)、クログワイ(<u>Eleocharis kuroguwai)</u> 等に代表されるカヤツリグサ科(Cyperaceae)雑草、アゼナ(Lindernia pyxida ria)等に代表されるゴマノハグサ科(Scrothulariaceae)雑草、コナギ(Monoc horia vaginalis)等に代表されるミズアオイ科 (Potenderiaceae) 雑草、ヒルム シロ (Potamogeton distinctus) 等に代表されるヒルムシロ科 (Potamogetonace) ae) 雑草、キカシグサ(Rotala indica)等に代表されるミソハギ科(Lythracea e) 雑草、タイヌビエ(<u>Echinochloa oryzicola)</u>、ヒメタイヌビエ(<u>Echinochloa</u> _crus_galli var._formosensis)、イヌビエ (Echinochloa crus_galli var. cru s galli) 雑草等、各種、水田雑草 (Paddy weeds)に低薬量で高い殺草力を有する。 さらに本発明化合物のあるものは、重要作物であるイネ、コムギ、オオムギ、 ソルゴー、落花生、トウモロコシ、大豆、棉、ビート等に対して高い安全性を有 する。

本発明化合物を除草剤として施用するにあたっては、一般には適当な担体、例えばクレー、タルク、ベントナイト、尿素、硫酸アンモニウム、クルミ粉、珪藻土、ホワイトカーボン等の固体担体あるいは水、アルコール類(イソプロパノール、プタノール、エチレングリコール、ベンジルアルコール、フルフリルアルコール等)、芳香族炭化水素類(トルエン、キシレン、メチルナフタレン等)、エーテル類(アニソール等)、植物油(大豆油、綿実油等)、ケトン類(シクロヘキサノン、イソホロン等)、エステル類(酢酸プチル等)、酸アミド類(Nーメチルピロリドン等)又はハロゲン化炭化水素類(クロロベンゼン等)などの液体担体と混用して適用することができ、所望により界面活性剤、乳化剤、分散剤、浸透剤、展着剤、増粘剤、凍結防止剤、固結防止剤、安定剤などを添加し、液剤、

乳剤、水和剤、ドライフロアブル剤、フロアブル剤、粉剤、粉剤等任意の剤型に て実用に供することが出来る。

また、本発明化合物は必要に応じて製剤又は散布時に他種の除草剤、各種殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、植物生長調節剤、共力剤、肥料、土壌改良剤などと混合施用してもよい。

特に他の農薬と混合施用することにより、施用薬量の減少による低コスト化、混合薬剤の相乗作用によるスペクトラムの拡大や、より高い除草効果が期待出来る。この際、同時に複数の公知農薬との組み合わせも可能である。本発明化合物と混合使用する農薬の種類としては、例えば、ファーム・ケミカルズ・ハンドブック(Farm Chemicals Handbook)1998年版に記載されている化合物などがある。

本発明化合物の施用薬量は適用場面、施用時期、施用方法、気象条件、製剤形態、土壌条件、栽培作物等により差異はあるが一般には有効成分量としてヘクタール(ha)当たり0.001~10kg程度、好ましくは0.001~5kg程度が適当である。

次に具体的に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、これらのみに限定されるものではない。なお、以下の配合例において「部」は重量部を意味する。

本発明化合物を使用するにあたっては、通常適当な固体担体又は液体担体と混合し、更に所望により界面活性剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固結防止剤、崩壊剤、消泡剤、防腐剤及び分解防止剤等を添加して、液剤、乳剤、水和剤、水溶剤、顆粒水和剤、顆粒水溶剤、懸濁剤、乳濁剤、サスポエマルジョン、マイクロエマルジョン、粉剤、粒剤及びゲル剤等任意の剤型の製剤にて実用に供することが出来る。また、省力化及び安全性向上の観点から、上記任意の剤型の製剤を水溶性包装体に封入して供することも出来る。なお必要に応じて、製剤又は散布時に複数の他の除草剤、殺虫剤、殺菌剤、植物生長調整剤、肥料等と混合使用することも可能である。

固体担体としては、例えば石英、カオリナイト、パイロフィライト、セリサイト、タルク、ベントナイト、酸性白土、アタパルジャイト、ゼオライト及び珪藻

土等の天然鉱物質類、炭酸カルシウム、硫酸アンモニウム、硫酸ナトリウム及び 塩化カリウム等の無機塩類、合成珪酸ならびに合成珪酸塩が挙げられる。

液体担体としては、例えばエチレングリコール、プロピレングリコール及びイソプロパノール等のアルコール類、キシレン、アルキルベンゼン及びアルキルナフタレン等の芳香族炭化水素類、ブチルセロソルブ等のエーテル類、シクロヘキサノン等のケトン類、γーブチロラクトン等のエステル類、Nーメチルピロリドン及びNーオクチルピロリドン等の酸アミド類、大豆油、ナタネ油、綿実油及びヒマシ油等の植物油ならびに水が挙げられる。

これら固体及び液体担体は、単独で用いても2種以上を併用してもよい。

界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンプロックコポリマー、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル及びポリオキシエチレンソルビタン脂肪酸エステル等のノニオン性界面活性剤、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルキルナフタレンスルホン酸のホルマリン縮合物の塩、アルキルナフタレンスルホン酸のホルマリン縮合物の塩、ボリオキシエチレンアルキルアリールエーテル硫酸及び燐酸塩、ポリオキシエチレンスチリルフェニルエーテル硫酸及び燐酸塩、ポリカルボン酸塩及びポリスチレンスルホン酸塩等のアニオン性界面活性剤、アルキルアミン塩及びアルキル4級アンモニウム塩等のカチオン性界面活性剤ならびにアミノ酸型及びベタイン型等の両性界面活性剤が挙げられる。

これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤 100重量部に対し、通常0.05~20重量部の範囲が望ましい。また、これ ら界面活性剤は、単独で用いても2種以上を併用してもよい。

次に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、 これらのみに限定されるものではない。なお、以下の配合例において「部」は重 量部を意味する。

[水和剂]

本発明化合物

0.1~80部

固体担体

5~98.9部

界面活性剤

1~10部

その他

0~5部

その他として、例えば固結防止剤、分解防止剤等があげれらる。

[乳 剤]

本発明化合物

0.1~30部

液体担体

45~95部

界面活性剤

4. 9~15部

その他

0~10部

その他として、例えば展着剤、分解防止剤等が挙げられる。

〔懸濁剤〕

本発明化合物

0.1~70部

液体担体

15~98.89部

界面活性剤

1~12部

その他

0.01~30部

その他として、例えば凍結防止剤、増粘剤等が挙げられる。

〔顆粒水和剤〕...

本発明化合物

0.1~90部

固体担体

0~98.9部

界面活性剤

1~20部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

〔液 剤〕

本発明化合物

0.01~70部

液体担体

20~99.99部

その他

0~10部

その他として、例えば凍結防止剤、展着剤等が挙げられる。

〔粒 剤〕

本発明化合物

0:01~80部

固体担体

10~99.99部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

[粉 剤]

本発明化合物

0.01~30部

固体担体

65~99.99部

その他

0~5部

その他として、例えばドリフト防止剤、分解防止剤等が挙げられる。

使用に際しては上記製剤を水で $1\sim10000$ 倍に希釈して又は希釈せずに、有効成分が $1\sim20$ (ha) 当たり $0.001\sim50$ kg、好ましくは $0.01\sim10$ kgになるように散布する。

製剤例

次に具体的に本発明化合物を有効成分とする農薬製剤例を示すがこれらのみに限定されるものではない。なお、以下の配合例において「部」は重量部を意味する。

〔配合例1〕水和剤

本発明化合物 No. 1

20部

パイロフィライト

7 4 部

ソルポール5039

4部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株)商品名)

カープレックス#80D

2部

(合成含水珪酸:塩野義製薬 (株) 商品名)

以上を均一に混合粉砕して水和剤とする。

〔配合例2〕乳 剂

本発明化合物 No. 1-1

5 部

キシレン

75部

Nーメチルピロリドン

15部

ソルポール2680

5 部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株)商品名)

以上を均一に混合して乳剤とする。

〔配合例3〕懸濁剤(フロアブル剤)

本発明化合物 No. 1-1

25部

アグリゾール S - 710

10部

(非イオン性界面活性剤:花王(株)商品名)

ルノックス1000C

0.5部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

キサンタンガム

0.2部

水

64.3部

以上を均一に混合した後、湿式粉砕して懸濁剤とする。

〔配合例4〕顆粒水和剤 (ドライフロアブル剤)

本発明化合物 No. 1-1

75部

ハイテノールNE 15

5 部

(アニオン性界面活性剤:第一工業製薬(株)商品名)

バニレックスN

10部

(アニオン性界面活性剤:日本製紙(株)商品名)

カープレックス#80D

10部

(合成含水珪酸:塩野義製薬(株)商品名)

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、乾燥して顆粒水和剤とする。

〔配合例5〕粒 剤

本発明化合物 No. 1-1

5 部

ベントナイト

5 0 部

タルク

4 5 部

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、乾燥して粒剤とする。

〔配合例6〕粉 剤

本発明化合物 No. 1-1

3部

カープレックス#80D

0.5部

(合成含水珪酸:塩野義製薬(株)商品名)

カオリナイト

9 5 部

リン酸ジイソプロピル

1.5部

以上を均一に混合粉砕して粉剤とする。

使用に際しては上記水和剤、乳剤、フロアブル剤、粒状水和剤は水で50~1000倍に希釈して、有効成分が1ヘクタール(ha)当たり0.001~10kgになるように散布する。

次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に 説明する。

〔試験例-1〕湛水条件における雑草発生前処理による除草効果試験

内径3.2 cm、深さ9 cmの円筒形プラスチックカップ中に沖積土壌を入れた後、水を入れて混和し、水深4 cmの湛水条件とする。上記のポットに2 葉期のイネを移植し、更にノビエ、ホタルイ、コナギの種子を混播した。ポットを25~30℃の温室内において植物を育成し、播種後1日目に水面へ所定の薬量になるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目に各種雑草に対する除草効果及びイネに及ぼす影響について下記の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第18表に示す。

なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

A:ノビエ、B:ホタルイ、C:コナギ、a:イネ 判定基準

- 5…殺草率90%以上(ほとんど完全枯死)
- 4 … 殺草率 7 0 %以上 9 0 %未満
- 3 … 殺草率 4 0 %以上 7 0 %未満
- 2 … 殺草率 2 0 %以上 4 0 %未満

- 1 … 殺草率 5 %以上 2 0 %未満
- 0…殺草率5%未満(ほとんど効果なし)

〔試験例-2〕湛水条件における雑草発生後処理による除草効果試験

内径3.2 cm、深さ9 cmの円筒形プラスチックカップ中に沖積土壌を入れた後、水を入れて混和し、水深4 cmの湛水条件とする。上記のボットにノビエ、ホタルイ、コナギの種子を混播した。ボットを $25\sim30$ Cの温室内において植物を育成し、播種後14日目に水面へ所定の薬量になるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目に各種雑草に対する除草効果について試験例-1の判定基準に従い目視により調査した。結果を第19表に示す。なお、各表中のNo.は実施例に記載した化合物No.に対応し、記号は次の意味を示す。

A:ノビエ、B:ホタルイ、C:コナギ

〔試験例-3〕土壌処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土 壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブ タクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモ ロコシ、ダイズ、ワタ、コムギ、ビートの種子を混播、約1.5cm覆土した後、 所定の薬量になるように、配合例に準じて調製した本発明化合物を土壌表面へ均 ーに散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ぼ す影響について試験例-1の判定基準に従い目視により調査した。0は影響なし、 5は完全枯死を示す5段階評価である。結果を第20表に示す。

なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

D: X E Y E Y \mathsf

〔試験例-4〕茎葉処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土

壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビートの種子を混播、約1.5 c m覆土した後、25~30℃の温室において植物を14日間育成し、所定の薬量になるように、配合例に準じて調製した本発明化合物を茎葉部へ均一に散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ぼす影響について試験例−1の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第21表に示す。

なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

D: X E Y \mathsf

[試験例-5] 土壌処理による除草効果比較試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土 壌を入れ、メヒシバ、エノコログサ、シャターケーン、カップグラス、イチビ、 ブタクサ、アオゲイトウ、シロザ、イヌタデ、オナモミ、アメリカアサガオ、チョウセンアサガオ、アメリカツナクサネム、トウモロコシ、ダイズ、ワタの種子 を混播、約1.5cm覆土した後、所定の薬量になるように、配合例に準じて調 製した本発明化合物を土壌表面へ均一に散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ぼす影響について試験例-1の判定基準に従い 目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第22表に示す。

なお、表中の化合物 A は本発明化合物 N o. 1-1を、化合物 B は特願 平 9-3 2 3 9 7 4 号公報に記載の化合物 N o. 2 3 3 を表わし、記号は次の意味を示す。 D:メヒシバ、E:エノコログサ、O:シャターケーン、P:カップグラス、H:イチビ、I:ブタクサ、J:アオゲイトウ、K:シロザ、L:キハマスゲ、():オナモミ、R:アメリカアサガオ、S:チョウセンアサガオ、T:アメリカッ

ナクサネム、b:トウモロコシ、c:ダイズ、d:ワタ [第18表]

化合物	菜量					
N o .	g / a	Α	В	С	а	
1 – 1	2. 52	5	4	5	0	
1 - 3	0.64	5	5	5	1	
1 - 4	0.64	5	5	5	1	
1 - 5	2.52	5	5	5	0	
1 - 6	2.52	5	5	5 .	0	
1 - 7	2. 52	5	.5	5	0	
1 - 8	2.52	, 5	5	5	0	
1 - 9	2.52	5	5	5	1	
1 - 1 0	0.64	5	5	5	3	
1 - 1 1	0.64	5	5	5	3	
1 - 1 2	0.64	5	5	5	2	
1 - 1 3	2. 5 2	5	2	5	0.	
$1 - 1 \ 4$	2.52	5	1	.5	Ō	
1 - 1 5	0.64	5	4	5	0	
1 - 1 6	2.52	5	1	1	0	
1 - 1 7	2.52	5	4	4	0 .	
1 - 2 0	2. 52	4	3	1	0 .	
1 - 2 1	0.64	.5	5	5	3	
1 - 2 2	0.64	5	5	5	1	
1 - 3 2	0.64	1	0	2	0	
1 - 3 3	0.64	5	1 .	5	0	

表106

化合物	薬量				
No.	g / a	Α	В	С	a
1 - 3 4	0.64	5	3	5	1
1 - 3 5	0.64	3	2	3	0
1 - 36	2.52	4	0	4	0
1 - 37	0.64	5	5	5	4
1 - 39	0.64	4	0	4	0
1 - 4 1	0.64	5	0	5	0
1 - 4 2	2.52	5	4	5	0
1 - 4 4	0.64	5	4	5	0
$1 - 4 \ 5$	0.64	. 5	5	5	0
1 - 46	0.64	5	2	5	0
1 - 47	2. 52	5	5	5	0
1 - 4 8	0.64	5	3	5	0
1 - 49	0.64	5	5	5	4
1 - 50	0.64	5	3	5	0
1 - 5 1	2.52	5	3 ·	5	0
1 - 52	0.64	3	5	5	0
$1 - 5 \ 3$	0.64	5	5	5	0
1 - 5 4	0.64	5 ·	5	5	5
1 - 57	0.64	5	4	5	0
1 - 5 8	2. 5 2	5	5	5	. 1
1 - 5 9	2. 52	4	3	4	0
1 - 6 0	0.64	5	5	5	0

表107

						
化合物	菜量					
No.	g / a	Α	В	С	a	
1 - 6 1	2. 5 2	1	1	4	0	
1 - 6 2	0.64	5	5	5	0	
1 - 6 3	2. 52	4	0	5	0	
$1 - 6 \ 4$	2.52	5	4	5	0	
1 - 65	2. 52	5	5	5	5	
1 - 6 6	2. 52	5	5	5	5	
1 - 67	2. 52	5	5	5	1 .	
1 - 6 8	2.52	5	5	5	3	
1 - 69	2. 52	, 0	0	4	0	
1 - 7 0	2.52	2	4	5	0	
1 - 7 1	2. 52	0	0	1	0	
1 - 7 2	2. 5 2	2	_	0	0	
$1 - 7 \ 3$	2. 52	5	5	5	1	
2 - 1	2. 52	3	0	5	0	
2 - 2	0.64	5	3	5	1	
2 - 3	2 0	5	5	5	0	
2 - 4	2. 52	5	5	5	0	
2 - 5	2. 52	5	4	5	0	
2 - 6	2. 52	5	4	5	0	
2 - 7	18.0	5	5	5	5	
2 - 8	2. 5 2	3	0	4	0	
2 - 9	2.52	3	3	5	0	

表108

化合物	薬量	•	T.	6	
No.	g / a	A 	B 	C	a
2 - 1 0	2. 52	2	4	5	. 0
2 - 1 1	1 0	5	5	5	4
2 - 1 2	1 0	4	3	5	0
$2 - 1 \ 3$	1 0	5	5	5	0
$2 - 1 \ 4$	1 0	4	4	5	3
3 - 1	2.52	5	5	5	5
3 - 2	2. 52	5	5	5	5
3 – 3	2. 52	5	5	5	4
3 - 4	2.52	. 5	5	5	5
3 - 5	2. 52	5	5	5	5
3 - 6	2. 52	5 ·	5	5	5
3 - 7	2.52	5	5	5	5
3 - 8	2. 52	5	-5	5	5
3 — 9	2. 52	5	5	5	4
3 - 1 0	2.52	5	5	.5	4
3 - 1 1	2.52	5	5 .	5	4
3 - 1 2	2. 5 2	5	5	5.	2
3 - 1 3	2.52	5 ·	5	5	5
3 - 1 4	2. 52	5	5	5	5
3 - 1 5	2. 52	5	5	5	5
3 - 1 6	1 0	5	5	5	2
3 - 1 7	1 0	5	5	5	5

表109

化合物	· 菜量				
No.	g / a	A·	В	С	a
		<u> </u>		,	 _
3 - 1 8	1 0	5	5	5	4
3 - 1 9	1 0	5	5	5	2
3 - 2 0	1 0	5	5	5	4
3 - 2 1	1 0	5	5	5	1
3 - 2 2	1 0	5	5	5	2
$3 - 2 \ 3$	2. 52	4	5	5	0
$3 - 2 \ 4$	2.52	4	5	5	1
4 - 1	2 0	5	5	5	0
4 - 2	1 0	5	5	5	5
4 - 3	2. 5 2	3	0	3	1
4 - 4	1 0	3	1	2	2
5 - 1	1 0	5	4	5	3
6 - 1	2. 5 2	2	2	5	0
6 - 2	2. 5 2	2	3	5	0
6 - 3	1 0	5	1	5	1
6 - 4	1 0	5	3.	5	4
6 - 5	1 0	1	0	1	1
7 - 1	1 0	1 .	3	5	2

[第19	衣	J
------	---	---

化合物	菜量				
N o .	g / a	Α	В	С	
1 – 1	2. 52	0	. 0	5	
1 - 3	0.64	5 .	5	5	
1 - 4	0.64	5	5	5	
1 - 6	2.52	5	1	4	
1 - 7	2.52	5	3	4	
1 - 8	2.52	5	5	5	
1 - 9	2.52	5	0	5	
1 - 1 0	0.64	, 5	0	5	
1 - 1 1	0.64	5	0	4	
1 - 1 2	0.64	5	0	4	
$1 - 1 \ 3$	2.52	5	4	5	
$1 - 1 \ 4$	2.52	2	2	3	
1 - 1 5	0.64	4	3	3	
1 - 1 7	2. 5.2	2	1	1	
1 - 2 1	0.64	5	5	5	
1 - 2 2	0.64	5	3	5	•
1 - 3 4	0.64	4	3	_a 5	
1 - 35	0.64	3	0	0	
1 - 37	0.64	5	3	5	
1 - 4 1	2. 5 2	5	4	5	
$1 - 4 \ 4$	2. 52	4	2	3	•
1 - 4 5	0.64	5	3	4	

表111

化合物	菜量				
N o .	g/a	A 	B 	C	
1 - 4 6	2. 52	4	3`	3	
1 - 4 7	2.52	5	3	4	
1 - 4 8	2.52	5	4	5	
1 - 49	0.64	5	4	4	
1 — 5 0	2.52	3	0	0	
1 - 5 1	2. 52	3	0	0	·
1 - 5 2	2.52	3	3	0	
1 - 5 3	0.6.4	5	4	. 5	
1 - 5 4	0.64	. 5	3	5	
1 - 57	2. 52	4	_	4	
1 - 60	2.52	4		3	
1 - 6 2	2.52	1	_	4	•
1 - 6 4	2.52	2	.—	1	
1 - 6 5	2. 52	- 5	_	4	
1 - 6 6	2.52	5	_	. 5	
1 - 67	2. 5.2	5	3	4	
1 - 6 8	2. 52	5	. 3	4	
$1 - 7 \ 3$	1 0	5 ·	4	4	
2 - 1	2.52	0	0	5	
2 - 2	2. 5 2	5	3	5	
2 - 3	. 2 0	5	3	5	
2 - 4	2. 52	3	_	5	

表112

化合物	菜量				
N o .	g / a	Α	В	C *	
2 - 5	1 0	5	4	5	
2 - 6	1 0	4	2	5	
2 - 7	17.96	5	2	4	
2 - 8	1 0	3	0	3	
2 - 9	2. 52	0	0	1	
2 - 1 1	1 0	5	3	4	
$2 - 1 \ 2$	1 0	0	0	2	
$2 - 1 \ 3$	1 0	0	0	3	
$2 - 1 \ 4$	1 0	0	4	3	
3 – 1	2.52	5.	5	5	•
3 - 2	2. 5 2	5	3	5	
3 - 3	2.52	5	4	5	
3 - 4	2.52	5	4	5	
3 - 5	2. 5 2	5	3	5	
3 - 6	2.52	5	4	4	
3 - 7	2. 5 2	5	4	4	
3 - 8	2.52	5 .	3	4	
3 - 9	2. 52	5 ·	5	4	
3 - 1 0	2. 52	5	5	5	
3 - 1 1	2.52	5	4	4	
3 - 1 2	2. 52	5	4	5	
3 - 1 3	2.52.	5	3	5	

表113

化合物	菜量				
No.	g / a	Α	В	C .	
3 - 1 4	2. 52	5	3	5	
3 - 1 5	2.52	5	4	5	
3 - 1 6	1 0	5	4	5	
3 - 1 7	1 0	5	4	5	
3 — 1 8	1 0	5	4	5	
3 - 1 9	1 0	5	5	5	
3 - 2 0	1 0	5	5	5	
3 - 2 1	1 0	.5	5	4	
$3 - 2 \ 2$	1 0	, 5	5	4	
$3 - 2 \ 3$	2.52	3	2	3	
$3 - 2 \ 4$	2.52	2	2	. 4	
4 - 1	2 0	5	4	5	
4 – 2	1 0	5	5	5	
5 — 1	1 0	4	4	4	
6 – 1	1 0	1	0	3	
6 - 2	1 0	0	0	4	
6 - 3	1 0	0	0	3	
6 - 4	1 0	3 ·	0	3	
7 – 1	1 0	1	2	2	

[第20表]

表 1 1 4

化合物 No.	薬量 g/a) E	F	 G	Н	I I		ŀ	ζ I	. N	1 1	1 1	o (C (i (e f	
1-1	6.3	5	5	0	1	5	5	0	5	3	0	0	1	0	0	0	1	
1-3	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
1-4	1.6	5	5	5	5	5	5	5	5	5	5	5	4	0	0	5	5	
1-5	6.3	5	5	5	5	0	4	2	5	5	5	5	0	0	0	4	4	
1-6	6.3	5	5	5	5	2	5	5	5	5	5	5	1	0	0	4	5	
1-7	6.3	5	5	2	5	5	5	5	5	5	5	5	4	1	0	1	5	-
1-8	6.3	5	5	3	-	4	5	5	5	5	_	5	1	0	. 3	1	5	
1-9	1.6	5	5	1	1	5,	4	5	5	5	4	5	0	1	1	0	5	
1-10	1.6	5	5	1	2	5	5	5	5	5	4	5	0	0	0	0	5	
1-11	1.6	5	5	0	3	5	5	5	5	5	5	4	0	0	0	0	.5	
1-12	1.6	5	5		1	5	4	5	5	5	5	0	0	0	0	0	5	
1-13	6.3	0	0	0	0	2	0	4	4	0	0	-	0	0	0	0	0	
1-14	6.3	0	4	0	0	0	0	3	5	0	5	4	0	0	0	0	5	
1-15	6.3	5	5	0	0	4	4	5	5	5	0	0	. 0	0	0	. 0	1	
1-16	6.3	5	4	1	1	0	2	5	5	5	1	5	2	1	0	0	5	
1-17	6.3	2	0	0	0	0	4	3	4	0	3	5	0	l	0	0	5	
1-19	6.3	0	0	0	0	0	0	0 .	2	4	-	5	0	0	0	0	5	
1-20	6.3	0	0	0	0	0	0	4	5	3	0	1	0	0	0	0	0	
1-21	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
1-22	1.6	5	5	-	5	5	4	5	5	5	5	5	2	0	0	0	5	
1-33	6.3	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	
1-34	6.3	5	5	3	2	5	4	4	5	5	0	5	3	l	1	0	5	

表115

化合物 N o .	薬量 g/a		D	E	F	G .	н	I	J	К	L	М	N	b	c	d	e f	
1-35	6.3	4	4	1	1	5	5	2	5	. 1	5	5	0	0	2	_	2	
1-36	6.3	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1-37	1.6	5	5	3	5	5	5	5	5	5	5	5	2	0	0	0	5	
1-38	6.3	0	-	-	_	0	0	-	-	-	-	5	0	0	0	0	0	
1-39	6.3	0	2	-	-	4	4	5	-	5	1	4	0	0	0	0	5	
1-40	25	1	2	-	0	0	4	0	-	5	5	5	0	0	0	0	5	
1-41	1.6	2	5	0	_	5	4	5	-	5	5	5	1	0	0	0	5	
1-42	6.3	0	2	5	0	2	3	5	-	0	5	5	0	0	0	0	5	
1-44	6.3	3	5	0	2	5	,5	5	-	5	3	5	0	0	0	0	3	
1-45	6.3	4	5	3	4	5	5	5	-	5	5	5	1	0	0	0	5	
1-46	1.6	5	5	0	0	3	5	5	-	5	5	5	0	0	0	0	0	
1-47	6.3	5	5	0	4	0	5	5	_	5	5	0	0	0	0	0	0	
1-48	6.3	5	5	4	4	1	. 5	4	_	5	5	5	0	0	0	0	5	
1-49	1.6	5	5	5	5	5	5	5	5	5	5	5	5	3	2	5	5	
1-50	6.3	0	1	2	5	0	2	2	0	-	5	5	0	0	0	.0	5	
1-51	6.3	3	4	0	0	0	0	2	5	-	0	5	0	0	0	0	0	
1-52	6.3	l	5	0	-	0	2	4	5	5	0	0	0	0	0	0	0	
1-53	1.6	5	5	1	-	5	2	5	5	5	3	0	4	0	0	0	2	
1-54	1.6	5	5	4	5	5	4	5	5	3	3	5	3	1	2	0	5	
1-56	6.3	1	4	0	0	0	0	0	5	5	0	0	0	0	0	0	0	
1-57	6.3	4		2	5	5	5	5	5	5	5	5	4	0	1	1	5 .	
1-58	6.3	4	3	0	3	1	3	5	5	5	4	5	0	0	0	0	5	

表116

化合物 N o .	薬量 g/a	1) E	E 1	F (; }	ł :	I .	J	K	L I	VI i	N	b	С	d	e f
1-59	6.3	2	5	0	0	1	0	2	5	5	0	5	2	0	0	0	5
1-60	6.3	2	1	3	5	4	-	5	5	5	1	4	0	0	0	0	5
1-61	6.3	0	0	0	0	0	1	3	3	5	2	1	0	0	0	0	0
1-62	6.3	5	5	4	0	2	2	4	5	_	5	5	0	0	0	0	5
1-63	6.3	5	5	0	4	3	2	5	5	5	5	5	2	0	0	1	5
1-64	6.3	5	5	1	4	5	4	4	5	5	5	4	1	0	0	1	5
1-65	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	5	5
1-66	6.3	5	5	5	5	5	5	5	5	5	5	. 5	5	4	4	4	5
1-67	6.3	5	5	5	5	5,	5	5	5	5	5	5	5	3	3	5	5
1-68	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	4	5
1-69	6.3	0	0	0	0	1	0	0	-	0	0	0	0	0	0	0	0
1-70	6.3	0	0	0	0	1	1	0	0	3	0	0	0	0	0	0	0
1-73	25	5	5	1	4	5	4	5	5	5	5	4	3	1	3	0	5
2-1	6.3	1	1	1	0	5	5	0	5	3	4	4	0	0	0	0	5
2-2	6.3	4	5	0	. 4	5	5	4	5	0	5	5	0	0	0	0	3
2-3	50 ⁻	5	5	5	5	5	5	5	5	5	5	5	4	0	1	1	5
2-4	6.3	4	5	1	2	5	5	5	-	4	5	5	3	0	2	0	5
2-5	6.3	3	4	1	1	5	5	5 ·	-	5	5	5	0	0	4	0	4
2-6	6.3	0	-	2	1	l	2	0	-	0	5	5	0	0 -	0	0	5
2-7	44.9	5	5	5	5	5	5	5	5	5	5	5	4	0	0	4	5
2-8	6.3	0	2	-	0	2	5	2	4	-	5	5	0	0	0	-	5
2-9	6.3	0	2	0	0	1	3	2	5	5	2	4	0	0	0	0	5
•																	

表117

化合物 N o .	薬量 g/a	I	D 1	E I	F 0	G F	· -	Ι [j 1	Κ	L	М	N	b	С	d	e f
2-10	6.3	0	0	0	_	0	1	0	5	2	0	1	0	0	0	0	0
2-11	25	4	4	3	3	5	5	5	5	5	, 5	4	5	2	2	3	5
2-12	25	2	2	0	2	5	4	4	4	4	5	5	2	0	0	1	5
2-13	25	4	4	0	0	5	5	5	5	4	5	5	3	0	1	2	5
2-14	25	4	1	0	0	5	3	4	5	5	4	4	0	0	0	0	2
3-1	1.6	5	5	3	5	5	5	5	5	5	5	5	5	0	0	1	5
3-2	6.3	5	5	2	4	5	5	3	5	5	5	5	3	2	3	2	5
3-3	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3-4	6.3	5	5	3	5	5	5	5	5	5	5	5	5	4	5	3	5
3-5	6.3	5	5	1	2	5	5	5	5	5	5	5	5	1	2	_	5
3-6	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	5	5
3-7	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3-8	6.3	5	5	1	1	5	5	5	5	5	3	4	5	1	1	1	5
3-9	6.3	4	4	-	2	4	3	5	5	4	5	5	. 0	0	0	0	5
3-10	6.3	5	5	2	5	5	5	5	5	5	5	5	. 1	0	3	. 1	5
3-11	6.3	5	4	5	5	5	5	4	5	4	5	4	2	0	1	4	5
3-12	6.3	4	4	4	5	5	4	3	5	5	5	5	3	1	2	4	5
3-13	6.3	5	5	4	5	5	5	5	5	5	5	5	5	2	3	3	5
3-14	6.3	5	5	5	4	5	5	5	5	5	5	5	5	1	3	3	5
3-15	6.3	5	5	4	5	5	5	4	5	5	5	5	5	3	5	3	5
3-16	25	5	5	2	4	5	5	5	5	5	5	5	4	1	3	1	5
3-17	25	5	5	4	3	5	5	5	5	5	5	5	l	2		2	5

		0
		×
ィく		

化合物	薬量																
No.	g/a]) E		G —	H 		J 	K 		. M 	N	b 		: d		f
3-18	25	5	5	3	2	5	5	5	5	5	5	5	3	2	4	3	5
3-19	25	5	5	5	4	5	5	4	5	-	5	5	4	0	2	4	5
3-20	25	5	5	4	4	5	5	5	5	-	5	5	4	0	1	4	5
3-21	25	5	5	4	4	5	5	5	5	5	5	5	4	1	1	1	5
3-22	25	5	5	4	5	5	5	5	5	5	5	5	4	1	1	4	5
3-23	6.3	4	3	0	0	5	2	4	4	4	1	1	0	0	0	0	5
3-24	6.3	4	1	0	0	5	3	5	5	5	1	1	0	0	0	0	2
4-1	50	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4-2	25 ·	. 5	5	5	5	5,	5	5	-	5	5	5	5	2	5	5	5
4-3	6.3	1	1	0	0	3	2	1	5	_	1	2	0	1	1	0	2
4-4	25	4	3	0	0	2	2	0	4	5	3	4	0	0	0	0	4
5-1	25	4	4	1	2	5	5	4	5	4	5	5	2	0 -	0	. 1	5
6-1	6.3	2	1	0	0	5	1	3	5	-	1	5	0	0	0	0	5
6-2	6.3	0	0	0	0	3	5	1	5	1	5	5	0	0	0	0	5
6-3	25	5	4	1	4	5	4	4	5	5	5	5	1	1	1	0	5
6-4	25	5	4	0	3	5	5	5	5	5	5	4	4	1	0	0	5
6-5	25	2	2	0	0	4	3	3	4	0	2	5	0	0	0	0	5
7-1	25	1	0	0	0	3	4	3 ·	5	-	4	4	0	0	0	0	2

[第21表]

_																			
	化合物 N o .	菜量 g/a	·]	O 1	E F	F G	-	i]	[]	[]	ζ Ι		1 N	۱۰۱)	С	d	e f	
_	1-1	6.3	4	5	1	2	5	5	1	5	4	5	3	2	2	1	0	0	
	1-3	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
	1-4	1.6	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	5	
	1-5	6.3	5	5	4	4	1	4	0	4	4	5	3	4	0	1	3	1	
	1-6	6.3	5	5	5	4	5	5	2	5	5	5	5	4	2	1	4	3	
	1-7	6.3	4	3	2	3	5	4	5	5	3	5	5	3	2	2	3	3	
	1-8	6.3	4	4	5	3	5	-5	5	5	3	5	5	2	3	4	2	5	
	1-9	1.6	5	5	4	4	5	. 5	5	5	5	5	5	2	4	5	2	5	
	1-10	1.6	5	5	3	4	5	5	5	5	5	5	5	.1	3	5	2	5	
	1-11	1.6	5	5	2	4	5	5	5	5	5	5	5	1	2	5	0	5	
	1-12	1.6	5	5	5	5	5	5	5	5	5	5	5	2	3	5	2	5	
	1-13	6.3	4	4	1	2	5	5	5	5	5	5	5	0	2	5	0	5	
	1-14	6.3	3	5	1	3	5	5	5	5	5	5	5	2	2	4	1	5	
	1-15	6.3	4	4	1	1	5	3	3	5	3	2	1	1	0	0	0	0	
	1-16	6.3	0	0	3	2	2	3	3	5	3	5	5	1	0	0	1	2	
	1-17	6.3	0	0	1	3	0	3	3	5	2	5	5	0	0	0	0	5	
	1-18	6.3	0	0	l	1	3	0	0 .	2	_	4	5	0	0	0	0	1	
	1-19	6.3	0	0	1	2	0	1	2	2	1	0	5	0	0	0	0	1	
	1-20	1.6	l	2	l	l	4	3	4	4	4	5	5	2	0	0	0	3	
	1-21	1.6	5	5	5	5	5	5	5	5	5	5	5	5	2	4	2	3	
	1-22	1.6	5	5	1	2	5	5	5	5	5	5	5	1	1	3	0	3	
	1-32	6.3	0	0	0	0	0	0	0	0	0	0	3	0	1	0	0	2	

薬量 g/a	D) E	F	Ģ	Н	I	J	K	C L	. M	N	! b) (: (i ε	e f
6.3	4	4	1	l	5	5	3	5	2	3	5	2	0	0	-	0
1.6	5	5	1	l	5	5	4	5	5	5	4	2	4	5	-	4
6.3	4	4	1	1	5	5	2	5	1	5	5	0	0	2	-	2
6.3	1	1	l	2	5	5	4	5	3	5	5	0	0	1	0	1
1.6	5	5	5	5	5	5	5	5	5	5	5	2	5	5	0	5
1.6	2	2	·2	1	5	2	3	5	3	5	5	0	0	5	0	1
6.3	2	2	4	2	5	5	5	_	4	5	5	1	3	2	0	0
6.3	0	1	1	4	5	5	5	-	2	5	4	0	0	4	0	1
1.6	5	5	4	4	5	5	5	_	5	5	5	3	5	5	3	5
6.3	2	3	1	4	5	5	5	-	5	5	5	0	-	1	0	2
6.3	0	0	0	0	4	4	1	-	2	0	1	0	0	0	0	1
6.3	2	5	2	2	5	5	4	-	5	-	4	1	1	2	1	0
1:6	2	3	2	0	5	5	5	-	5	5	5	0	0	5	0	1
6.3	5	5	2	2	5	5	2	-	5	5	2	1	1	1	-	1
1.6	3	5	2	3	5	4 .	4	-	5	5	2	.0	1	1	. 0	1
1.6	4	5	2	3	5	5	4	-	5	4	3	0	1	5	0	4
1.6	5	5	5	5	5	5	5	5	5	5	5	4	5	5	1	5
1.6	1	5	2	2	4	5	5 ·	5	2	5	5	0	0	2	0	5
1.6	2	2	0	1	4	5	4	4	4	5	5	0	0	0	0	0
6.3	1	1	0	0	5	5	4	5	-	3	5	0	1	1	0	0
1.6	4	4	1	3	5	_	4	5	5	5	5	1	1	2	0	1
1.6	5	5	3	5	5	5	5	5	5	5	5	2	1	5	0	2
	g/a 6.3 1.6 6.3 1.6 1.6 6.3 1.6 6.3 1.6 6.3 1.6 1.6	g/a D 6.3 4 1.6 5 6.3 1 1.6 2 6.3 2 6.3 2 6.3 2 6.3 2 6.3 2 1.6 3 1.6 3 1.6 4 1.6 5 1.6 1 1.6 2 6.3 1 1.6 4 1.6 4 1.6 4 1.6 4	g/a D E 6.3 4 4 1.6 5 5 6.3 1 1 1.6 5 5 1.6 2 2 6.3 2 2 6.3 2 3 6.3 2 3 6.3 2 3 6.3 2 3 1.6 3 5 1.6 3 5 1.6 4 5 1.6 5 5 1.6 5 5 1.6 5 5 1.6 5 5 1.6 2 2 6.3 1 5 1.6 2 2 6.3 1 1 1.6 4 4	g/a D E F 6.3 4 4 1 1.6 5 5 1 6.3 4 4 1 6.3 1 1 1 1.6 5 5 5 1.6 2 2 2 6.3 2 2 4 6.3 1 1 1.6 5 5 4 6.3 2 3 1 6.3 2 5 2 1.6 2 3 2 6.3 5 5 2 1.6 3 5 2 1.6 4 5 2 1.6 5 5 5 1.6 5 5 5 1.6 2 2 0 6.3 1 1 0 1.6 4 4 1	g/a D E F G 6.3 4 4 1 1 1.6 5 5 1 1 6.3 1 1 1 2 1.6 5 5 5 5 1.6 2 2 2 1 6.3 2 2 4 2 6.3 0 1 1 4 1.6 5 5 4 4 6.3 2 3 1 4 6.3 2 3 2 0 6.3 2 3 2 0 6.3 5 5 2 2 1.6 3 5 2 2 1.6 4 5 2 3 1.6 5 5 5 5 1.6 1 5 2 2 1.6 2 2 0 1 1.6 3 1 0 0 1	g/a D E F G H 6.3 4 4 1 1 5 1.6 5 5 1 1 5 6.3 1 1 1 2 5 1.6 5 5 5 5 5 1.6 2 2 2 1 5 6.3 2 2 4 2 5 6.3 0 1 1 4 5 6.3 2 3 1 4 5 6.3 2 3 1 4 5 6.3 2 3 2 2 5 1.6 2 3 2 0 5 6.3 5 5 2 2 5 1.6 3 5 2 3 5 1.6 4 5 2 3 5 1.6 1 5 5 5 5 1.6 1 5	g/a D E F G H I 6.3 4 4 1 1 5 5 1.6 5 5 1 1 5 5 6.3 1 1 1 2 5 5 1.6 5 5 5 5 5 5 1.6 2 2 2 1 5 5 6.3 2 2 4 2 5 5 6.3 0 1 1 4 5 5 6.3 2 3 1 4 5 5 6.3 2 3 1 4 5 5 6.3 2 3 2 2 5 5 6.3 2 3 2 2 5 5 1.6 3 5 2 2 5 5 1.6 3 5 2 2 5 5 1.6 4 5 2<	g/a D E F G H I J 6.3 4 4 1 1 5 5 3 1.6 5 5 1 1 5 5 4 6.3 4 4 1 1 5 5 2 6.3 1 1 1 2 5 5 4 1.6 2 2 2 1 5 2 3 6.3 2 2 4 2 5 5 5 6.3 0 1 1 4 5 5 5 6.3 2 3 1 4 5 5 5 6.3 2 3 1 4 5 5 5 6.3 2 3 1 4 5 5 5 6.3 2 3 2 2 5 5 4 1.6 3 5 2 2 5 5 5	g/a D E F G H I J H 6.3 4 4 1 1 5 5 3 5 1.6 5 5 1 1 5 5 4 5 6.3 4 4 1 1 5 5 2 5 6.3 1 1 1 2 5 5 5 5 5 5 1.6 5 5 5 5 5 5 5 5 5 6.3 2 2 2 2 1 5 5 5 5 6.3 2 2 4 2 5 5 5 - 6.3 0 1 1 4 5 5 5 - 6.3 2 3 1 4 5 5 5 - 6.3 2 3 2 2 5 5 5 - 6.3 5 <	g/a D E F G H I J K L 6.3 4 4 1 1 5 5 3 5 2 1.6 5 5 1 1 5 5 4 5 5 6.3 4 4 1 1 5 5 4 5 3 1.6 5 5 5 5 5 5 5 5 5 1 1.6 2 2 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <td>g/a D E F G H I J K L M 6.3 4 4 1 1 5 5 3 5 2 3 1.6 5 5 1 1 5 5 4 5 5 5 6.3 1 1 1 2 5 5 4 5 5 5 1.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>g/a D E F G H I J K L M N 6.3 4 4 1 1 5 5 3 5 2 3 5 1.6 5 5 1 1 5 5 4 5 5 5 4 6.3 4 4 1 1 2 5 5 4 5 3 5 5 6.3 1 1 1 2 5 5 4 5 3 5 5 1.6 2 2 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <</td> <td>g/a D E F G H I J K L M N E 6.3 4 4 1 1 5 5 3 5 2 3 5 2 6.3 4 4 1 1 5 5 4 5 5 5 0 6.3 1 1 1 2 5 5 4 5 5 5 0 6.3 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 6 6 3 5 5 0 6 3 5 5 5 5 5 5 5 5 5 5 5 5 <td< td=""><td>g/a D E F G H I J K L M N b c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 6.3 2 2 4 2 5 5 5 - 5 5 5 0 0 1.6</td><td>g/a D E F G H I J K L M N b c c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 5 6.3 1 1 1 2 5 5 4 5 5 5 0 0 0 2 6.3 1 1 1 2 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>g/a D E F G H I J K L M N b c d e 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 - 6.3 4 4 1 1 5 5 2 5 1 5 0 0 2 - 6.3 1 1 1 2 5 5 4 5 5 0 0 1 0 1.6 5 5 5 5 5 5 5 5 0 0 0 1 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td></td<></td></td<></td>	g/a D E F G H I J K L M 6.3 4 4 1 1 5 5 3 5 2 3 1.6 5 5 1 1 5 5 4 5 5 5 6.3 1 1 1 2 5 5 4 5 5 5 1.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	g/a D E F G H I J K L M N 6.3 4 4 1 1 5 5 3 5 2 3 5 1.6 5 5 1 1 5 5 4 5 5 5 4 6.3 4 4 1 1 2 5 5 4 5 3 5 5 6.3 1 1 1 2 5 5 4 5 3 5 5 1.6 2 2 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <	g/a D E F G H I J K L M N E 6.3 4 4 1 1 5 5 3 5 2 3 5 2 6.3 4 4 1 1 5 5 4 5 5 5 0 6.3 1 1 1 2 5 5 4 5 5 5 0 6.3 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 6 6 3 5 5 0 6 3 5 5 5 5 5 5 5 5 5 5 5 5 <td< td=""><td>g/a D E F G H I J K L M N b c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 6.3 2 2 4 2 5 5 5 - 5 5 5 0 0 1.6</td><td>g/a D E F G H I J K L M N b c c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 5 6.3 1 1 1 2 5 5 4 5 5 5 0 0 0 2 6.3 1 1 1 2 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>g/a D E F G H I J K L M N b c d e 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 - 6.3 4 4 1 1 5 5 2 5 1 5 0 0 2 - 6.3 1 1 1 2 5 5 4 5 5 0 0 1 0 1.6 5 5 5 5 5 5 5 5 0 0 0 1 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td></td<></td></td<>	g/a D E F G H I J K L M N b c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 6.3 1 1 1 2 5 5 4 5 3 5 5 0 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 6.3 2 2 4 2 5 5 5 - 5 5 5 0 0 1.6	g/a D E F G H I J K L M N b c c 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 1.6 5 5 1 1 5 5 4 5 5 4 2 4 5 6.3 1 1 1 2 5 5 4 5 5 5 0 0 0 2 6.3 1 1 1 2 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>g/a D E F G H I J K L M N b c d e 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 - 6.3 4 4 1 1 5 5 2 5 1 5 0 0 2 - 6.3 1 1 1 2 5 5 4 5 5 0 0 1 0 1.6 5 5 5 5 5 5 5 5 0 0 0 1 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td></td<>	g/a D E F G H I J K L M N b c d e 6.3 4 4 1 1 5 5 3 5 2 3 5 2 0 0 - 6.3 4 4 1 1 5 5 2 5 1 5 0 0 2 - 6.3 1 1 1 2 5 5 4 5 5 0 0 1 0 1.6 5 5 5 5 5 5 5 5 0 0 0 1 0 1.6 2 2 2 1 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <

表 1 2 1

_																		·	
	化合物	薬量																	
	No.	g/a	D) E	F	Ġ	Н	I. I	J	K	ı	_ N	A N	b	C	: d	l e	f	
_										—-									
	1-55	6.3	0	0	l	1	5	2	4	5	2	4	4	1	0	2.	0	2	
	1-56	6.3	2	2	0	0	0	1	2	5	0	-	.0	0	0	0	0	5	
	1-57	1.6	2	-	0	3	5	5	5	5	5	5	5	0	1	4	0	5	
	1-58	1.6	1	0	4	5	5	5	5	5	5	5	5	0	0	5	0	5	
	1-59	6.3	4	5	3	0	5	5	5	5	5	5	5	2	1	5	0	5	
	1-60	6.3	1	-	1	2	5	5	5	5	5	5	5	2	0	5	0	5	
	1-61	6.3	1	1	0	0	0	1	2	5	1	4	3	0	0	0	0	2	
	1-62	1.6	2	-	2	0	5	3	5	5	5	5	5	0	1	5	0	5	
	1-63	6.3	4	4	2	5	5.,	5	2	5	3	5	5	1	1	1	1	5	
	1-64	6.3	5	5	1	4	5	4	4	5	5	5	4	1	0	0	1	5	
	1-65	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	
	1-66	6.3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
	1-67	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	
•	1-68	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	
	1-69	6.3	0	0	0	0	0	1	0	4	0	0	0	0	0	0	0	0	
	1-70	6.3	0	0	0	0	2	2	1.	2	1	1	4	0	0	0	0	1	
	1-73	25	5	5	1	4	5	4	5	5	5	5	4	3	1	3	0	5	
	2-1	1.6	4	4	1	1	5	5	4 ·	5	4	5	5	2	2	3	0	2	
	2-2	6.3	4	4	3	3	5	5	4	5	5	5	5	4	2	5	1	5	
	2-3	50	5	5	5	5	5	5	5	5	5	5	5	1	1	4	0	2	
	2-4	6.3	4	5	2	3	5	5	5	-	5	5	5	1	5	5	0	2	
	2-5	6.3	1	4	2	3	5	5	5	5	5	5	5	5	2	5	0	5	

表122

化合物 N o .	薬量 g/a	D	E	F	G _.	Н	I	J	·K	L	М	N	b	· c	d	e	f
2-6	6.3	3	4	1	1	5	_	3	_	3	5	4	0	1	5	0	3
-2-7	44.9	5	5	5	5	5	5	5	5	5	5	5	4	2	5	4	5
2-8	6.3	2	2	1	2	4	5	2	5	5	2	5	0	0	0	0	0
2-9	6.3	2	5	1	0	5	5	4	5	5	2	5	0	0	1	0	5
2-10	6.3	1	3	0	3	4	5	3	5	5	5	5	0	0	2	0	5
2-11	25	. 3	4	4	5	5	5	4	5	5	5	5	4	2	2	3	5
2-12	25	1	1	1	1	5	5	2	5	4	4	5	1	1	2	1	5
2-13	25	2	1	1	1	5	5	3	5	4	4	5	3.	3	2	1	5
2-14	25	3	2	0	0	5 ,	4	3	5	2	4	5	0	2	2	0	5
3-1	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	5
3-2	6.3	5	5	2	4	5	5	3	5	5	5	5	3	2	3	2	5
3-3	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3-4	6.3	5	5	4	5	5	5	5	5	5	5	5	5	5	5	3	5
3-5	6.3	5	5	2	3	5	5	2	5	3	5	5	3	2	3	2	5
3-6	6.3	5	5	5	5	5	5	3	5	5	5	5	4	4	3	4	5
3-7	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	5
3-8	6.3	4	4	1	4	5	5	3	5	5	3	5	4	2	2	1	5
3-9	6.3	5	5	2	1	5	5	5 ·	5	5	5	5	2	2	5	0	5
3-10	6.3	4	4	3	3	5	5	5	5	5	5	5	3	4	5	2	5
3-11	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3-12	6.3	5	5	5	5	5	5	5	5	5	5	5	4	4	5	5	5
3-13	6.3	5	5	4	5	5	5	5	5	5	5	5	5	4	5	4	5

-	•	_	_
⇉÷		٠,	٠,
てて	1		ູ

														—-			
化合物	薬量																
No.	g/a		D	E I	F	G 1	Н	I .	J	K	L	М	N	b	С	d	e f
3-14	6.3	5	5	4	5	5	5	5	5	5	- 	 5		4	5	4	5
3-15	6.3	5	5	5	5	5	5	5	5	5	5	. 5	5	5	5	4	5
3-16	25	5	5	4	3	5	4	4	5	5	5	5	4	4	5	1	5
3-17	25	5	5	2	4	5	5	5	5	5	5	5	4	5	5	3	5
3-18	25	5	5	5	5	5	5	5	5	5	. 5	5	3	5	5	3	5
3-19	25	5	5	4	3	5	5	4	5	5	5	5	4	3	4	1	4
3-20	25	5	5	4	4	5	5	5	5	5	5	5	4	2	5	3	5
3-21	25	5	5	4	4	5	5	4	5	5	5	5	4	4	4	2	4
3-22	25	5	5	5	5	5 -	. 5	4	5	5	5	5	5	3	5	3	5
3-23	6.3	3	3	0	0	5	3	4	5	3	1	4	. 1	1	1	0	5
3-24	6.3	3	2	0	0	5	3	4	4	5	2	2	1	1	1	0	5
4-1	50	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4-2	25	5	5	5	5	5	5	5	_	5	5	5	5	5	5	4	5
4-3	6.3	2	1	0	1	5	2	3	5	-	5	5	1	3	5	1	4
4-4	25 .	4	2	Ò	1	5	3	3	5	4	5	5	. 2	2	4	. 1	5
5-1	25	5	4	1	4	5	5	5	5	5	5	5	1	3	5	1	5
6-1	6.3	1	1	1	2	5	5	5	5	-	5	5	1	3	5	1	5
6-2	6.3	1	1	1	3	5	5	3 ·	5	5	5	5	2	3	5	l	5
6-3	25	4	4	2	4	5	4	4	5	4	5	5	1	2	5	0	5
6-4	25	4	4	2	5	5	5	5	5	5	5	5	2	3	5	1	5
6-5	25	l	1	0	0	4	4	1	4	1	l	5	l	2	2	0	5
7-1	25	2	1	0	0	5	5	4	5	3	5	5	0	2	1	1	5

[第22表]

化合物 N o .	薬量 g/a	D	E	0	Р	Н	Ι	J	K	L	Q	R	S	Т	b	С	d
	0.4			5 0							_		_	_		_	

請求の範囲

1. 式(I):

$$Z_{2} Z_{1} \downarrow Q R^{3} \downarrow R^{4} \qquad (I)$$

$$Z_{3} \downarrow Z_{4} \downarrow X$$

[式中、 $=Z^1 \sim Z^1 = lt = C$ (R^2) -C (R^{22}) = N - N =、=C (R^2) -N =C (R^1) -C (R^{23}) = 、=C (R^2) -N (\rightarrow O) =C (R^1) -C (R^{23}) = 、=C (R^2) -N = C (R^2) -N = N - C (R^2) -N = N - C (R^2) = N - N = C (R^2) -C (R^2) = N - C (R^2

R¹, R², R²²及びR²³は同一でも相異なっていてもよく、水素原子、C₁~C 。アルキル基、C₃~C。シクロアルキル基、C₁~C。ハロアルキル基、C₃~C。ハ ロシクロアルキル基、C2~C6アルケニル基、C2~C6ハロアルケニル基、C2~ C。アルキニル基、C2~C6ハロアルキニル基、Aで置換されていてもよいフェニ ル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フ ェニル基がAで置換されていてもよいフェニルCz~C,アルケニル基、フェニル 基がAで置換されていてもよいフェニルC₂~C₁アルキニル基、ハロゲン原子、 シアノ基、Cı~C。アルコキシCı~C。アルキル基、Cı~C。ハロアルコキシC ı~C。アルキル基、Cı~C。アルコキシCı~C。ハロアルキル基、Cı~C。ハロ アルコキシCı~C゚ハロアルキル基、Cı~C゚アルキルチオCı~C゚アルキル基、 C₁~C₆ハロアルキルチオC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆ ハロアルキル基、C1~C6ハロアルキルチオC1~C6ハロアルキル基、一CO2R ⁷基、- (C (R⁵) R⁶) - CO₂R⁷基、- (C (R⁵) R⁶) 2-CO₂R⁷基、-(C(R⁵) R⁶) 3-CO₂ R '基、-(C(R⁵) R⁶) 4-CO₂ R '基、-CN基、 - (C(R⁵) R⁶) - CN基、- (C(R⁵) R⁶) 2-CN基、- (C(R⁵) R ") 3-CN基、-(C(R5)R6)4-CN基、-N(R8)R9基、-(C(R

5) R⁶) -N (R⁸) R⁹基、- (C (R⁵) R⁶) :-N (R⁸) R⁹基、- (C (R⁵) R⁶) :-N (R⁸) R⁹基、- (C (R⁵) R⁶) :-N (R⁸) R⁹基、-L-R '⁹基、C₁~C₆アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキルカルボニル基、C₁~C₆ジアルキルカルバモイル基、C₁~C₆ジアルキルスルファモイル基を表わし、

R³は水素原子、Cı~C。アルキル基、フェニル基がAで置換されていても良いフェニルCı~C。アルキル基、Cı~C。アルキルカルボニル基、フェニル基がAで置換されていてもよいベンゾイル基、Cı~C。アルコキシCı~C。アルキル基又はCı~C。アルコキシカルボニル基を表わし、

Aは水素原子、ハロゲン原子、ニトロ基、シアノ基、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₁~C₆アルコキシ基、C₁~C₆ハロアルコキシ基、C₁~C₆アルコキシカルボニル基、C₁~C₆アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、C₁~C₆アルキルカルボニルアミノ基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₆アルキルスルコキシカルボニルアミノ基、C₁~C₆アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R・は水素原子、ハロゲン原子、ニトロ基、シアノ基、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₁~C₆ハロアルコキシ基、C₁~C₆ハロアルコキシ基、C₁~C₆アルコキシカルボニル基、C₁~C₆アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルキルカルボニルアミノ基、C₁~C₁アルキルスルコキシカルボニルアミノ基、C₁~C₆アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R⁵及びR⁶は同一でも相異なっていてもよく、水素原子又はC₁~C₁アルキル基を表わし、

R'は水素原子、C₁~C₆アルキル基又はC₁~C₆シクロアルキル基を表わし、 R⁸及びR'は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、 C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルキル基、C 2~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀シクロアルキル基、 ル基、C₃~C₁₀ハロシクロアルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、 C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₁アルキルカルボニル基、C₁~C₁アルコキシカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキルカルボニル基、シアノ基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキニル基、フェニル基がAで置換されていてもよいフェニルスーへC₄アルキニル基、C₁~C₄アルキルスルホニル基又はC₁~C₄ジアルキルスルファモイル基を表わし、

R[®]及びR[®]は結合する窒素原子とともに3~9員環を形成していてもよく、1 若しくは2の酸素原子又は1若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

しは酸素原子又はイオウ原子を表わし、

 R^{10} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_1 \sim C_6$ シクロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ ハロアルケニル基、 $C_2 \sim C_6$ アルキル基、 $C_1 \sim C_4$ アルコキシ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルコキシ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルキルチオ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルキルチオ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ $C_1 \sim$

Xは-CO-L-R''基、-C(=L) N (R^{12}) R^{13} 基、-C (=L) -N (R 12) $-OR^{13}$ 基、-C (=L) N (R^{14}) -N (R^{12}) R^{13} 基、-C (=L) N (R^{15}) $-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (C (R^{16}) R^{17}) $_2-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (C (R^{16}) R^{17}) $_3-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (=L) =L) =L0 =L1 =L1 =L2 =L3 =L3 =L4 =L5 =L5 =L6 =L7 =L8 =L9 =L9 =L9 =L9 =L9 =L1 =L1 (=L1 =L2 =L1 (=L2 =L3 =L3 =L4 =L5 =L6 =L9 =L1 =L1 (=L1 =L2 =L1 =L2 =L3 =L4 =L5 =L5 =L6 =L1 =L1 =L1 =L1 =L2 =L1 =L2 =L3 =L4 =L5 =L9 =L1 =L9 =L1 =L9 =L9 =L9 =L9 =L9 =L9 =L9 =L9 =L9

を表わし、

R''は水素原子、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₃~C₆シ クロアルキル基、C₂~C₆アルケニル基、C₂~C₆ハロアルケニル基、C₂~C₆ アルキニル基、C₂~C₆ハロアルキニル基、Aで置換されていてもよいフェニル 基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基又はC₁~C₆アルコキシカルボニルC₁~C₄アルキル基を表わし、

R¹², R¹³, R¹¹及びR¹⁵は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀ハロアルキニル基、C₃~C₁₀ハロアルキル基、C₃~C₁₀ハロアルキル基、C₁~C₁のハロアルキル基、C₁~C₁のハロアルキル基、C₁~C₁でC₁のアルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₁アルコキシカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキルカルボニル基、シアノ基、Aで置換されていても良いフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキール基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキール基、C₁~C₁アルキルスルカアモイル基を表わし、

R¹²及びR¹³は結合する窒素原子又は酸素原子とともに3~9員環を形成していてもよく、1若しくは2の酸素原子又は若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

R¹6及びR¹7は同一でも相異なっていてもよく、水素原子、'C₁~C₁アルキル基、Aで置換されていてもよいフェニル基、フェニル基がAで置換されていても

よいフェニルC₁~C₁アルキル基又はC₁~C₁アルキルチオC₁~C₁アルキル基を表わし、

R^{1°}は水素原子、C₁~C₆アルキル基、C₃~C₆シクロアルキル基、C₁~C₆ハロアルキル基、C₂~C₆アルケニル基、C₂~C₆アルキニル基、Aで置換されていてもよいフェニル基又はフェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基を表わし、

 R^{20} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルキニル基、シアノ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ アルキル基を表わし、

GはG(a), G(b), G(c)又はG(d)のいずれかの構造

を表わし、

 R^{2} は水素原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ シクロアルキル基を表わす。]

で示される化合物、及びその塩。

2. = Z¹~Z¹=が=C(R²)-N=C(R¹)-N=の結合様式を表わし、

R¹がC₁~C。アルキル基、C₁~C。ハロアルキル基、Aで置換されていてもよいフェニル基、ハロゲン原子、シアノ基、C₁~C。アルキルチオ基、C₁~C。アルコキシ基、C₁~C。アルケニル基又はC₂~C。アルキニル基を表わし、

 R^2 が水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_3 \sim C_6$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ $C_1 \sim C_6$ アルキルチオ

C₁~C₆アルキル基、ハロゲン原子、シアノ基、-N(R⁵) R⁹基、-L-R¹⁰ 基又はAで置換されていてもよいフェニル基を表わし、

R³が水素原子を表わし、

R⁺が同一でも相異なっていてもよく、水素原子、C₁~C₆アルキル基、C₁~ C₆ハロアルキル基、ハロゲン原子、C₁~C₆アルコキシ基又はC₁~C₆ハロアルコキシ基を表わし、

Xが-C (= O) N (R^{12}) R^{13} 基 (R^{12} 及び R^{13} は同一でも相異なっていてもよく、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルキニル基又は $C_3 \sim C_6$ シクロアルキル基を表わす。)、-C (= O) N (R^{12}) $-OR^{13}$ 基又は、-C (= O) -N (R^{14}) -N (R^{12}) R^{13} 基を表わす請求項1記載の化合物。

3. = Z¹~ Z¹=が= C (R²) - N = C (R¹) - C (R²³) = の結合様式を表わし、

 R^2 が水素原子、 $C_1 \sim C_6$ アルキル基、ハロゲン原子、シアノ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_6$ アルコキシ基又は-N (R^8) R^9 基(R^8 及び R^9 は同一でも相異なっていてもよく、水素原子又は $C_1 \sim C_6$ アルキル基を表わす。)を表わし、

R¹及びR²³が同一でも相異なっていてもよく、水素原子、ハロゲン原子、C₁ ~C₀アルコキシ基又はC₁~C₀アルキル基を表わし、

Xが-C (=O) N (R^{12}) R^{13} 基を表わす請求項1記載の化合物。

4. = Z '~ Z '= が= C (R²) - C (R²²) = N - N = の結合様式を表わし、

R²及びR²が同一でも相異なっていてもよく、水素原子、C₁~C₆アルキル基、 ハロゲン原子、シアノ基、C₁~C₆アルキルチオ基、C₁~C₆アルコキシ基又は -N(R⁸) R⁹基(R⁸及びR⁹は同一でも相異なっていてもよく、水素原子又は C₁~C₆アルキル基を表わす。)を表わし、

Xが-C(=0)N(R'2)R'3基を表わす請求項1記載の化合物。

5. R が水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基又は-N (R) R 基を表わす請求項 2 記載の化合物。

- 6. R'がメチル基、トリフルオロメチル基、メチルチオ基、メトキシ基、エトキシ基、シアノ基又はジメチルアミノ基を表わす、請求項5記載の化合物。
- 7. 請求項1記載の化合物を含有することを特徴とする農薬。
- 8. 請求項1記載の化合物を含有することを特徴とする除草剤。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/01048

•			
Int	SIFICATION OF SUBJECT MATIER .Cl ⁶	A01N43/54, A01N43/40, A	
	to International Patent Classification (IPC) or to both r	national classification and IPC	
1	S SEARCHED		·
	locumentation searched (classification system followers: C1 ⁶ C07D213/00-89, C07D239/00		1N43/00-58
Documenta	tion searched other than minimum documentation to the	he extent that such documents are include	d in the fields scarched
	lata base consulted during the international search (na ISTRY (STN), CAPLUS (STN), WPI		earch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
Х	EP, 422456, A2 (BASF A.G.), 17 April, 1991 (17. 04. 91)	(Family: none)	1-8
A	JP, 9-323974, A (Nihon Nohy 16 December, 1997 (16. 12. 9 & EP, 799825, A1 & US, 584	7)	1-8
A	JP, 1-180804, A (Daicel Chem 18 July, 1989 (18. 07. 89)		1-8
х	Chemical Abstracts, Abstract HUSSEIN, S.H.; AHMED, B.A.; AL J.M.A. A new metod for the s disubstituted picolinic amid Vol. 3, No. 1, p.52-57 (1991)	-KATTAN, W.T.; AL-RAWI, ynthesis of N,N'- les. Asian J. Chem.,	1, 3
	See Registry No. 94301-64- pyridinedicarboxanilide), bis(4-ethylphenyl)-3,4-pyr 134852-19-0(N,N'-bis(2,5-d pyridine-dicarboxamide)	134852-18-9(N,N'- idine-dicarboxamide),	
× Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume conside "E" earlier docume cited to special docume means "P" docume docume means	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed	"T" later document published after the interr date and not in conflict with the applicat the principle or theory underlying the in "X" document of particular relevance; the checonsidered novel or cannot be considered when the document is taken alone "Y" document of particular relevance; the checonsidered to involve an inventive step to combined with one or more other such the being obvious to a person skilled in the adocument member of the same patent factors.	ion but cited to understand vention aimed invention cannot be d to involve an inventive step aimed invention cannot be when the document is ocuments, such combination ort
24 M	actual completion of the international search ay, 1999 (24. 05. 99)	Date of mailing of the international scar 8 June, 1999 (08. (
Name and m Japa	nailing address of the ISA/ nese Patent Office	Authorized officer	
Facsimile No	o.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/01048

•	<u>-</u>		
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	·	
Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim No
х	CHIMICHI, S.; NESI, R.; NERI, M. Pyridazine-4,5-dicarboxylic anhydride:vesatile synthon for the preparation of 1,3,7,8-tetraazaspiro[4.5]decanederivatives with nitrogen 1,3-binucleopholes. J. Chem. Soc., Perkin Trans. I, No. 11, p.2491-2495 (1984)		
X A	OHTA, H.; SUZUKI, S.; WATANABE, H; JIKIHARA, T.; MATSUYA, K.; WAKABAYASHI, K. Structure-activity relationship of cyclic imide herbicides. I.N-substituted phenyl-3,4,5,6-tetrahydro-phthalimides and related compounds. Agric. Biol. Chem., Vol. 40, No. 4, p.745-751 (1976)		1 7, 8
	•		
	•		
	•		

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl. 6 C07D213/89, C07D213/82, C07D239/26, C07D239/34, C07D239/42, C07D237/24, C07D239/52, A01N43/54, A01N43/40, A01N43/58

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. 6 C07D213/00-89, C07D239/00-52, C07D237/00-24, A01N43/00-58

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) REGISTRY (STN), CAPLUS (STN), WPIDS (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の簡所が関連するときは、その関連する簡所の表示	関連する 請求の範囲の番号	
X	EP, 422456, A2 (BASF A. G.) 17. 4月. 1991 (17. 04. 91) ファミリーなし	1-8	
A	JP, 9-323974, A(日本農薬株式会社) 16. 12月. 1997(16. 12. 97) &EP, 799825, A1 &US, 5843868, A	1-8	
A	JP, 1-180804, A(ダイセル化学工業株式会社) 18.7月.1989(18.07.89) ファミリーなし	1-8	

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日
24.05.99

国際調査機関の名称及びあて先
日本国特許庁(1SA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

国際調査報告の発送日
08.06.99

特許庁審査官(権限のある職員)
国際 恵
印

国際調查報告

C(続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の簡所が関連するときは、その関連する箇所の表示	請求の範囲の番号 1,3
X	Chmical Abstracts, Abstract No. 115:49341 HUSSEIN, S. H.; AHMED, B. A.; AL-KATTAN, W. T.; AL-RAWI, J. M. A. A new method for the synthesis of N, N'-disubstituted	1, 3
	picolinic amides. Asian J. Chem., Vol. 3, No. 1, p. 52-57 (1991)	
	See Registry No. 94301-64-1(3, 4-pyridinedicarboxanilide), 134852-18-9(N, N'-bis(4-ethylphenyl)-3, 4-pyridinedicarboxamide), 134852-19-0(N, N'-bis(2, 5-dimethoxyphenyl)-3, 4-pyridinedicarboxamide)	
X	CHIMICHI, S.; NESI, R.; NERI, M. Pyridazine-4, 5-dicarboxylic anhydride:vesatile synthon for the preparation of 1, 3, 7, 8-tetraazaspiro[4.5]decane-derivatives with nitrogen 1, 3-binucleopholes. J. Chem. Soc., Perkin Trans. I, No. 11, p. 2491-2495 (1984)	1
X	OHTA, H.; SUZUKI, S.; WATANABE, H.; JIKIHARA, T.; MATSUYA, K.;	7,8
А	WAKABAYASHI, K. Structure-activity reraltionship of cyclic imide herbicides. I. N-substituted phenyl-3, 4, 5, 6-tetrahydro- phthalimides and related compounds. Agric. Biol. Chem., Vol. 40, No. 4, p. 745-751(1976)	
;		
	·	
`		