FALL 2025

CE 3354 Engineering Hydrology Exercise Set 9

Exercises

1. Figure 1 is a plan view of a waste cell at a solid waste disposal site. Two borings are completed in the water table aquifer underlying the disposal site property.

Figure 1: Plan View of an Waste Disposal Cell

The ground surface elevation at borehole BH-1 is 263.75 ft. The ground surface elevation at borehole BH-2 is 249.75 ft. The water table elevation in borehole BH-1 is 223.25 ft. The water table elevation in borehole BH-2 is 229.75 ft. The soil types in the area are silty-clay with a hydraulic conductivity of $K = 3 \times 10^{-5} \frac{ft}{sec}$ and an effective porosity of n = 0.40. A 100 x 500 foot waste cell is located between the two boreholes as shown. The bottom of the waste cell must be at least 5 feet above the water table.

Determine:

- a) The hydraulic gradient (magnitude) from the provided information. •••• 39
- b) The direction of groundwater flow from the provided information. From BH2->BH2
- c) The average linear (pore) velocity of groundwater. 2.725-10⁻⁷ ft/sec
- d) The minimum allowable elevation of the bottom of the waste cell. 227.58 ft
- e) The anticipated travel time for contaminated leachate to reach the downstream borehole if the waste cell liner fails.

ES9 Page 1 of 5

BH-2

BH-I

L = 1529.7ft

LAND AT WY = 249.25 + (263:75-249.25) · <u>V</u> 3 = 254,08ft WATER TABLE A L/3 Zur = 229.75 - (229.75-223.25) / -227.58 ZLAND - ZWT = 254.08 - 227.58 = 29.5 ft 000 ZBOTTOM = (ZLAND Zwr) 75 = ZLAND - (ZLAND - ZWT) + 5 = 254.08 -= 229,58ft TRAVEL TIME t = XX = [2.925-10-7++/sec (3) 1529,7ft = 1.7432.109 sec (86400 sec = 2.017.104 Lays = 55,2 years

2. Figure 2 is a contour map of head in an aquifer system.

Figure 2: Elevation View of an Aquifer

The aquifer medium is isotropic and inflow equals outflow. The hydraulic conductivity of area A is $K=1\times 10^{-6}~\frac{m}{sec}$

Determine:

(2) a) The hydraulic conductivity in area B 1.318.10 5 L₁ = 22/40 (1)
(3) b) The hydraulic conductivity in area C 1.455.10 6 5 L₂ = 29/40 (1)
(3) C) The hydraulic conductivity in area D D.455.10 6 5 L₃ = 32/40 (1)
(4) L₄ = 10/40 (1)

CONTINUMITY
$$\Rightarrow Q_1 = Q_2 = Q_3 = Q_4$$

$$\frac{Q_1}{A} = K_1 \frac{h_5 - h_4}{L_1} = K_2 \frac{h_4 - h_3}{L_2} = K_3 \frac{h_3 - h_3}{L_3} = K_4 \frac{h_2 - h_1}{L_4}$$

$$= K_1 \frac{1}{22} = K_2 \cdot \frac{1}{2q} = K_3 \cdot \frac{1}{32} = K_4 = \frac{1}{10}$$

$$K_2 = K_1 \frac{2q}{22} = 1.318.10^{-6} \text{ m/s} \text{ (b)}$$

$$K_3 = K_1 \frac{32}{22} = 1.455.10^{-6} \text{ m/s} \text{ (l)}$$

$$K_4 = K_1 \frac{10}{22} = 0.455.10^{-6} \text{ m/s} \text{ (l)}$$

ES9

3. Figure 3 is a profile (elevation) view of an aquifer system.

Figure 3: Elevation View of an Aquifer

The vertical hydraulic conductivity of the clay layer is $K_v = 1 \times 10^{-7} \frac{cm}{sec}$ Determine:

- a) The distance (in meters) from the datum to the water level in the left piezometer.
- b) The distance (in meters) from the datum to the water level in the right piezometer.
- c) The vertical hydraulic gradient in the clay layer. 1.10 cm (given)
- d) The specific discharge across the clay layer in cm/sec.
- c) The direction of leakage.

Page 3 of 5

4. Table 1 is a list of observations of piezometric heads in three observation wells that penetrate the same homogeneous, isotropic, confined aquifer of thickness B = 20 m

Table 1: Noname USA	A Aquifer Data
---------------------	----------------

Well ID	Easting (m)	Northing (m)	Head (m)
LJ-65-21-226	100.0	110.0	12.0
LJ-65-21-227	400.0	100.0	13.5
LJ-65-21-228	100.0	310.0	10.4

Drilling cuttings from the wells indicate that the effective porosity is n=0.20, the hydraulic conductivity is $K=15 \, \frac{m}{day}$. The piezometric surface between the wells can be approximated as a plane.

GRAPHICAL ANACYSIS

A	В	С	D	Е	F	G	Н	l	J
1	Instructions	s: Enter	data for t	hree we	ells in sha	ded are	a above left.		
2	1						dient. Plot sh	ows	
3]								
4									
5									
6	Groundwat	er Hydro	logy Gra	dient Sp	readshe	e†		1	
7	Field Data	from Thre	ee Wells				У		
8		х	у	head				[
9	Well A	100	110	12		350 T			
10	Well B	400	100	13.5		300 250		Ī	
11	Well C	100	310	10.4		200 +			
12						150 +		100.000	
13	Hydraulic	-0.005	<-i.			100 + 50 +		•	
14	Gradient	0.008				1 0 I			
15	3.5.5.5.10	3.000	J.			0		500	9
16	A-Matrix			h-vecto	x-vector			1	
17	100	110	1	12	0.0047			-	- 180- 19
18	400	100	1	13.5		H	y 1 –	1	
19	100		1	10.4	12.407		•		
20	A-Inverse						Q.5		
21	-0.0035	0.0033	0.0002					×	
22	-0.005		0.005			1	0)		
23	1.9	1	-0.567			-1	2.5	1	
24			0,00.				-0.5		
25	Head	+	8.2833	1750	<-Y		₋₁ \		
26	Function	+	-17	2125					
27	- Griodion	+	12.407		,				
28		•	3.69	<= h(x	(.V)				
29			2.23	.,,,,	131			9.0	
30	This spread	dsheet or	repared b	DV					
31									
32	Fall, 1996.								
33		3							
34	Hydraulic G	Fradient \	/ector M	agnitude	е				
35	Magnitude=								
36	i=	j=							
37	0	-	Hydrauli	c Gradie	ent				
38	-0.509212								
39			x-dir.=>		_				
40			y-dir.=>	0.861					

5. Table 2 is a list piezometric heads measured simultaneously in 13 wells penetrating an isotropic confined aquifer of thickness B=50~m, hydraulic conductivity $K=20~\frac{m}{day}$, and effective porosity n=0.23.

Table 2: Somewhere USA Aquifer Data

Well ID	Easting (m)	Northing (m)	Head (m)
MW-01	4300	1000	34.6
MW-02	16500	3500	35.1
MW-03	7000	5100	32.8
MW-04	3000	6500	32.1
MW-05	11000	7000	31.5
MW-06	22000	6500	34.5
MW-07	8000	9000	33.3
MW-08	3200	11800	34.4
MW-09	18100	10000	34.3
MW-10	13500	12900	35.2
MW-11	4000	15500	35.2
MW-12	8700	16100	37.3
MW-12	19500	16300	36.3

Determine:

a) A contour map of the head distribution (1-meter contour intervals)

b) Specific discharge (direction and magnitude) at location A = (10000, 4000)

c) Specific discharge (direction and magnitude) at location B = (16000, 11000) d) An estimate of total flow through the aquifer between wells MW-10 and MW-9.

e) An estimate of travel time for a conservative tracer introduced near well MW-12 to

reach MW-5 x 760 years

Filled Contour Plotting (Using Python and R)

Machine Name : 54.243.252.9 (AWS East) Run Date : Mon Aug 4 17;11:21 2025

Return Code: 0

OLDIT GOOD . V				
INPUT VALUES				
Gridding Exponent =	2.0			
Smoothing Parameter =	2.0			
Grid Lines X =	15.0			
Grid Lines Y =	15,0			
Plot Title =	Somewhere USA Water Elevation Map			
X-Axis Label =	Easting (meters)			
Y-Axis Label =	Northing (meters)			
XYZ Filename =	groundwatermap.txt			
COMMAND TO RUN:	/usr/bin/Recript XYZ2Contour R			
COMPUTED RESULT				
XYZ Absolute Path	/var/www/atkaws/toolbox/ordinarytools/FilledContourMapAvorking_files/groundwatermap.txt			
Echo Input Parameter File	/var/www/atkaws/toolbox/ordinarytools/FilledContourMap/working_files/echoparms.bd			

