Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Merge Sort

Divide and Conquer Approach to Sorting

- **Divide** the problem into a number of sub-problems.
- **Conquer** the sub-problems by solving them recursively. For small sizes, recursive call could be replaced by other straightforward alternatives.
- **Combine** the solutions to the sub-problems into the solution for the original problem.

Divide and Conquer Approach to Sorting

- **Divide** the problem into a number of sub-problems.
 - lackbox Divide the n-element sequence to be sorted into two sub-sequences of $\frac{n}{2}$ elements each
- **Conquer** the sub-problems by solving them recursively. For small sizes, recursive call could be replaced by other straightforward alternatives.
 - Sort the two subsequences recursively using merge sort.
- **Combine** the solutions to the sub-problems into the solution for the original problem.
 - Merge the two sorted subsequences to produce the sorted answer.

Merge Sort Algorithm

```
Algorithm MergeSort(S)
```

Input: Sequence S

Output: Sequence S sorted in increasing order

if S.length > 1 then

- 1. $(S_1, S_2) \leftarrow \mathsf{partition}(S, \frac{n}{2})$
- 2. MergeSort(S_1)
- 3. MergeSort(S_2)
- 4. $S \leftarrow \mathsf{Merge}(S_1, S_2)$

end if

Figure: In-place Merge Sort

Merge Subroutine

```
Algorithm Merge(S)
Input: Sorted Sequence S_1 and S_2 with \frac{n}{2} elements each
Output: Sorted Sequence S union of S_1 and S_2
S \leftarrow \text{empty sequence}
while not(S_1.isEmpty()) \wedge not(S_2.isEmpty()) do
    if S_1.firstElement() < S_2.firstElement() then
        S.append(S_1.removeFirstElement())
    else
        S.append(S_2.removeFirstElement())
    end if
end while
```

Figure: In-place Merge Sort

Merge Subroutine

Figure: In-place Merge Sort

- Each recursive call means division into two tasks of half original size \Rightarrow Height h of tree $= O(\log n)$
- Amount of work done at any height $i=2^i$ (number of sequences) $\times \frac{n}{2^i}$ (size of each sequence) =O(n)
- \blacksquare \Longrightarrow total runtime $= O(n \log n)$

- Each recursive call means division into two tasks of half original size \Rightarrow Height h of tree $= O(\log n)$
- Amount of work done at any height $i=2^i$ (number of sequences) $\times \frac{n}{2^i}$ (size of each sequence) =O(n)
- $\blacksquare \implies \mathsf{total} \; \mathsf{runtime} = O(n \log n)$

- Each recursive call means division into two tasks of half original size \Rightarrow Height h of tree $= O(\log n)$
- Amount of work done at any height $i=2^i$ (number of sequences) $\times \frac{n}{2^i}$ (size of each sequence) =O(n)
- \blacksquare \Longrightarrow total runtime $= O(n \log n)$

- Each recursive call means division into two tasks of half original size \Rightarrow Height h of tree $= O(\log n)$
- Amount of work done at any height $i=2^i$ (number of sequences) $\times \frac{n}{2^i}$ (size of each sequence) =O(n)
- \blacksquare \Longrightarrow total runtime $= O(n \log n)$

- Each recursive call means division into two tasks of half original size \Rightarrow Height h of tree $= O(\log n)$
- Amount of work done at any height $i=2^i$ (number of sequences) $\times \frac{n}{2^i}$ (size of each sequence) =O(n)

■ Next Session: Quick Sort

Thank you