MA0505 - Análisis I

Lección IV: Continuidad

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Continuidad
 - Continuidad en números reales
 - Continuidad en Espacios Métricos

Recordemos...

Si $f: I \to \mathbb{R}$ decimos que $\lim_{x \to a} f(x) = \ell$ si para $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|x-a|<\delta\Rightarrow |f(x)-\ell|<\varepsilon.$$

Note que d(x, a) = |x - a| en el espacio de partida X. Además $|f(x) - \ell| = \rho(f(x), \ell)$ en el espacio de llegada Y. Es decir

$$d(x, a) < \delta \Rightarrow \rho(f(x), \ell) < \varepsilon.$$

La definición...

Sean $(X, d), (Y, \rho)$ dos espacios métricos y $f: X \to Y$. Decimos que $\lim_{z \to a} f(z) = \ell$ si para $\varepsilon > 0$, existe $\delta > 0$ tal que

$$d(z,a) < \delta \Rightarrow \rho(f(z),\ell) < \varepsilon.$$

Note que para definir el límite en de f en a no es necesario que f esté definida en a.

Definición

La función $f: X \to Y$ es continua en a si $\lim_{z \to a} f(z) = f(a)$. En general f es continua si es es continua en todo punto de X. En este caso

$$d(z, a) < \delta \Rightarrow \rho(f(z), \ell) < \varepsilon.$$

Si comenzamos con

$$\{z: d(z,a) < \delta\} \subseteq X$$

y aplicamos f, llegamos a

$$\{ y : \rho(f(a), y) < \varepsilon \} \subseteq Y.$$

$$\therefore f(B_{x}(a,\delta)) \subseteq B_{y}(f(a),\varepsilon).$$

Ahora un ejemplo

Si (X, d) es un espacio métrico y $a \in X$, tomemos f(x) = d(x, a). Sabemos que

$$|d(x,a)-d(y,a)| \leq d(x,y)$$

y de esta desigualdad extraemos que *f* es continua. Esta función de hecho es un ejemplo de una función 1-Lipschitz.

Definición

Una función $f: X \to Y$ es λ -Lipschitz si para $x, y \in X$ vale

$$\rho(f(x), f(y)) \leqslant \lambda d(x, y).$$

Ejercicio

Para $A \subseteq X$, verifique que f(x) = d(x, A) es 1-Lipschitz.

No nos olvidemos de las bolas

- Sea $G \subseteq Y$ abierto y $y_0 = f(x_0) \in G$.
- Entonces existe $\varepsilon > 0$ tal que $B(y_0, \varepsilon) \subseteq G$.
- Si f es continua, existe
 δ > 0 tal que

$$f(B_x(x_0,\delta))\subseteq B_y(y_0,\varepsilon)\subseteq G.$$

No nos olvidemos de las bolas

- Sea $G \subseteq Y$ abierto y $y_0 = f(x_0) \in G$.
- Entonces existe $\varepsilon > 0$ tal que $B(y_0, \varepsilon) \subseteq G$.
- Si f es continua, existe
 δ > 0 tal que

$$f(B_x(x_0,\delta))\subseteq B_y(y_0,\varepsilon)\subseteq G.$$

No nos olvidemos de las bolas

- Sea $G \subseteq Y$ abierto y $y_0 = f(x_0) \in G$.
- Entonces existe $\varepsilon > 0$ tal que $B(y_0, \varepsilon) \subseteq G$.
- Si f es continua, existe δ > 0 tal que

$$f(B_x(x_0,\delta))\subseteq B_y(y_0,\varepsilon)\subseteq G.$$

Esclareciendo la Relación

Si $y_0 \in G$, existe $\delta > 0$ tal que si $z \in B_x(x_0, \delta)$ se tiene que $f(z) \in G$. Es decir,

$$B_X(x_0, \delta) \subseteq \{ z \in X : f(z) \in G \} = f^{-1}(G).$$

Por tanto si $x_0 \in f^{-1}(G)$, existe $\delta > 0$ tal que

$$B_X(x_0,\delta)\subseteq f^{-1}(G)$$
.

Lema

Si $f: X \to Y$ es continua y $G \subseteq Y$ es abierto, entonces $f^{-1}(G)$ es abierto.

No Olvidemos a los Cerrados

Por otro lado si $F \subseteq Y$ es un cerrado, entonces

$$f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$$

es un abierto. Entonces $f^{-1}(F)$ es un cerrado. En general recuerde que $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.

El Teorema Resumen

Teorema

Sea $f: X \rightarrow Y$, son equivalentes:

- f es continua
- ② $f^{-1}(G)$ para todo $G \subseteq Y$ abierto.
- **③** $f^{-1}(F)$ es cerrado para todo $F \subseteq Y$ cerrado.
- $f(\overline{B}) \subseteq \overline{f(B)}$ para todo $B \subseteq X$. Donde la primera cerradura es respecto a X y la segunda respecto a Y.

Probando el resultado

- La primera implicación de 1 a 2 está lista.
- $(2 \Rightarrow 1)$ Dado $\varepsilon > 0$ y $a \in X$, $B(f(a), \varepsilon))$ abierto implica que $f^{-1}(B(f(a), \varepsilon))$ es abierto. Así $\exists \delta > 0$ tal que $B(a, \delta) \subseteq f^{-1}(B(f(a), \varepsilon)) \Rightarrow f(B(x_0, \delta)) \subseteq B(f(x_0), \varepsilon)$.
- Las demás equivalencias son ejercicios

Probando el resultado

- La primera implicación de 1 a 2 está lista.
- $(2 \Rightarrow 1)$ Dado $\varepsilon > 0$ y $a \in X$, $B(f(a), \varepsilon))$ abierto implica que $f^{-1}(B(f(a), \varepsilon))$ es abierto. Así $\exists \delta > 0$ tal que $B(a, \delta) \subseteq f^{-1}(B(f(a), \varepsilon)) \Rightarrow f(B(x_0, \delta)) \subseteq B(f(x_0), \varepsilon)$.
- Las demás equivalencias son ejercicios

Probando el resultado

- La primera implicación de 1 a 2 está lista.
- $(2 \Rightarrow 1)$ Dado $\varepsilon > 0$ y $a \in X$, $B(f(a), \varepsilon))$ abierto implica que $f^{-1}(B(f(a), \varepsilon))$ es abierto. Así $\exists \delta > 0$ tal que $B(a, \delta) \subseteq f^{-1}(B(f(a), \varepsilon)) \Rightarrow f(B(x_0, \delta)) \subseteq B(f(x_0), \varepsilon)$.
- Las demás equivalencias son ejercicios

Caracterización por sucesiones

Teorema

Sea $f: X \to Y$, f es continua en a si y sólo si para cualquier sucesión $(x_n)_{n \in \mathbb{N}} \subseteq X$ tal que $x_n \to a$ se tiene que $f(x_n) \to f(a)$.

Si f no fuese continua, existe $\varepsilon > 0$ tal que para todo δ , existe $x_{\delta} \in X$ que satisface

$$d(x_{\delta}, a) < \delta \wedge \rho(f(x_{\delta}), f(a)) > \varepsilon.$$

En particular si $n \in \mathbb{N}$, existe x_n tal que

$$d(x_n,a)<\frac{1}{n},\ \rho(f(x_n),f(a))\geqslant \varepsilon.$$

Es decir, encontramos (x_n) tal que $x_n \to a$ pero $f(x_n) \not\to a$.

Homeomorfismos

Definición

Llamamos a $f: X \to Y$ un homeomorfismo si es continua y biyectiva. Además debe cumplir que f^{-1} es continua. En este caso diremos que X y Y son homeomorfos.

Si $A \subseteq X$ es abierto, entonces $f(A) = (f^{-1})^{-1}(A)$ es un abierto. Es decir f envía abiertos en abiertos.

Ejercicio

En este caso muestre que $f(A^o) = (f(A))^o$.

Resumen

- Funciones continuas en espacios métricos. 1
- Funciones Lipschitz continuas. 2
- El teorema resumen sobre continuidad 1
- Equivalencia en continuidad secuencial y métrica. 2
- Definición de homeomorfismo. 3

Ejercicios

- Lista 4
 - La distancia a conjuntos es Lipschitz. 1
 - Las demás equivalencias del teorema resumen. 1
 - Interiores y homeomorfismos 2

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.