Database Technology

Exercise 7: Review

Q1: Which of the following is a valid condition rule in the grammar for simple subset of SQL?

Select all that apply. Wrong answers subtract partial points. The minim	um grade is 0.
A. <condition> ::= <attribute> AVAILABLE <pattern></pattern></attribute></condition>	
☐ B. <condition> ::= <condition> AND <condition></condition></condition></condition>	
C. <condition> ::= <attribute> IN (<query>)</query></attribute></condition>	
D. <condition> ::= <attribute> NOT FOUND IN <pattern></pattern></attribute></condition>	

Q2: Is the following a valid algebraic law?

$$\sigma_{C1 \text{ AND } C2}(R) = \sigma_{C2}(\sigma_{C1}(R))$$

Assume that the relation R is a set.

True

Q3: How many tuples are selected by the selection σ_{a≠75 AND b=20}(R)?

Given is the table R(a, b) with the following tuple and attribute domain cardinalities:

- T(R) = 172800
- V(R,a) = 80
- V(R,b) = 40

Assume that:

- 1 / (3 * V(R,f)) tuples satisfy the comparison when an attribute is equated to a constant (e.g., $\sigma_{f=15}$)
- Inequality (e.g., $\sigma_{f<90}$) tends to retrieve one-fourth of the tuples
- For not equals (e.g., $\sigma_{f\neq 90}$), a fraction of 4 / V(R,f) number of the tuples will fail to meet the condition

```
Total tuples = Ceil(T(R)*(1-4/V(R,\sigma_{a\neq75}))*(1/3*V(R,\sigma_{b=20})) = Ceil(172800*(1-(4/80))*(1/(3*40))) = 1368
```

Q4: How many tuples are selected by the selection $\sigma_{a\neq 19 \text{ OR b}=28}(R)$?

Given is the table R(a,b) with the following tuple and attribute domain cardinalities:

- T(R) = 37800
- V(R,a) = 70
- V(R,b) = 30

Assume that:

- 1 / V(R,f) tuples satisfy the comparison when an attribute is equated to a constant (e.g., $\sigma_{f=15}$)
- Inequality (e.g., σ_{f<90}) tends to retrieve half of the tuples
- For not equals (e.g., $\sigma_{f\neq 90}$), a fraction of 6 / V(R,f) number of the tuples will fail to meet the condition
- · The conditions are independent

```
\begin{split} m1(\sigma_{a\neq 19}) &= \text{Ceil}(37800^*(1\text{-}6/70)) = 34560 \\ m2(\sigma_{b=28}) &= \text{Ceil}(37800^*1/30) = 1260 \\ \\ \text{Total tuples} &= \text{Ceil}(n^*(1\text{-}(1\text{-}m1/n)^*(1\text{-}m2/n))) \\ &= \text{Ceil}(37800^*(1\text{-}(1\text{-}34560/37800)^*(1\text{-}1260/37800))) \\ &= 34668 \end{split}
```

Q5: How many tuples are selected by the join R_∞σs2=51(S)?

Given are the tables $R(r_1, s_1)$ and $S(s_1, s_2)$. $R. s_1$ is a foreign key to $S. s_1$. The tables have the following tuple and attribute domain cardinalities:

- T(R) = 600
- T(S) = 400
- $V(S, s_2) = 30$

Assume that 1 / V(R,f) tuples satisfy the comparison when an attribute is equated to a constant (e.g., $\sigma_{f=15}$)

R Join S = T(R) = 600 due to foreign key relationship

$$T(R)*1/V(S_{\sigma s2=51}) = 600*1/30 = 20$$

Q6: What is the estimated size of the natural join?

Consider the natural join $R(a,d)\bowtie S(d,e)\bowtie U(a,c,e)$, and the following important statistics:

R(a, d)	S(d, e)	U(a, c, e)
T(R) = 1200	T(S) = 2400	T(U) = 18000
V(R,a) = 20		V(U,a) = 450
		V(U,c) = 450
V(R,d) = 40	V(S,d) = 20	
	V(S, e) = 80	V(U, e) = 450

Size of R(a,d) \bowtie S(d,e) = T(R)*T(S)/max[V(R,d),V(S,d)] as d is the join key = 1200*2400/40 = 7200

Size of (R(a,d) ⋈ S(d,e)) ⋈ U(a,c,e) = T(R⋈ S)*T(U)/((max[V(R⋈S,a),V(U,a)])*(max[V(R⋈S,a),V(U,a)]))
as "a" and "e" are the join keys
= 7200*18000/(450*450) = 6400

Q7: What is the cost of the following join order ((T⋈U)⋈R)⋈S?

Consider four relations R(c,d), S(a,d), T(b,c), and U(a,b). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(c, d)	S(a, d)	T(b, c)	U(a, b)
	V(S,a) = 20		V(U,a) = 500
XXXIII		V(T,b)=40	V(U,b)=20
V(R,c) = 50		V(T,c) = 100	
V(R,d) = 10	V(S,d) = 50		

```
Cost of (((T(b,c) \bowtie U(a,b)) \bowtie R(c,d)) \bowtie S(a,d)) = Cost of ((T\bowtie U)\bowtieR)) + Cost of (S)

= Cost of ((T\bowtie U)\bowtieR)) + 0

= Cost of intermediate (T\bowtieU) + Size of ((T\bowtie U)\bowtieR))

= Size of (T\bowtieU)+Cost(T)+Cost(U)+Size of ((T\bowtie U)\bowtieR))

= 25000 + 0 + 0 +250000 = 275000
```

Size of T(b,c) \bowtie U(a,b) = 1000*1000/max[V(T,b),V(U,b)] as b is the join key = 1000*1000/40 = 25000 Size of (T(b,c) \bowtie U(a,b)) \bowtie R(c,d) = T(T \bowtie U)*T(R)/max[V(T \bowtie U,c),V(R,c)] as "c" is the join key = 25000*1000/100 = 250000

Q8: What is the size of the following join order ((S⋈R)⋈U)?

Consider four relations R(c,d), S(a,b), T(a,d), and U(b,c). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(c, d)	S(a, b)	T(a, d)	U(b, c)
	V(S,a)=10	V(T,a) = 50	/
	V(S,b)=250		V(U,b)=50
V(R,c) = 100			V(U,c) = 200
V(R,d) = 100		V(T,d) = 10	· · · · · · · · · · · · · · · · · · ·

Size of S(a,b)
$$\bowtie$$
 R(c,d) = T(S)*T(R) as no join key = 1000000

Q9: When determining the optimal join order, which join orders can be ignored because they contain a cross product?

Consider four relations R(c,d), S(a,b), T(b,c), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(c, d)	S(a, b)	T(b, c)	U(a, d)
	V(S,a) = 250		V(U,a)=20
	V(S,b) = 250	V(T,b) = 250	
V(R, c) = 400		V(T, c) = 40	
V(R,d) = 50			V(U,d)=200

A.	$(R\bowtie S)\bowtie U$
B.	$(R\bowtie S)\bowtie T$
_ C.	$(R\bowtie T)\bowtie S$
D.	$(R\bowtie U)\bowtie S$
E.	$(R\bowtie T)\bowtie U$
F.	$(S \bowtie R) \bowtie T$

Q10: From the options below, select the best join order (i.e., the one with the lowest cost):

Consider four relations R(a,d), S(b,c), T(a,b), and U(c,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, d)	S(b, c)	T(a, b)	U(c, d)
V(R,a) = 1000		V(T,a) = 10	334
	V(S, b) = 200	V(T,b) = 200	
	V(S,c)=40		V(U,c)=200
V(R,d) = 100			V(U, d) = 250

```
Cost of Cost of (((T\bowtieR)\bowtieU)\bowtieS) = Cost of ((T\bowtieR)\bowtieU) + Cost of (S)
= Cost of ((T\bowtieR)\bowtieU) + 0
= Cost of intermediate (T\bowtieR) + Size of ((T\bowtieR)\bowtieU))
= Size of (T\bowtieR)+Cost(T)+Cost(R)+Size of ((T\bowtieR)\bowtieU))
= 1000 + 0 + 0 +4000 = 5000
```

Size of T(a,b) \bowtie R(a,d) = 1000*1000/max[V(T,a),V(R,a)] as a is the join key = 1000*1000/1000 = 1000 Size of (T(a,b) \bowtie R(a,d)) \bowtie U(c,d) = T(T \bowtie R)*T(U)/max[V(T \bowtie R,d),V(U,d)] as "d" is the join key = 1000*1000/250 = 4000