Team Selection

Author:

Time limit: 1 second **Memory limit:** 256 megabytes

For an upcoming International Programming Contest, IIUC needs a strong team of *3* members. To accomplish this, IIUC's Competitive Programming Community arranged an Intra-University programming contest for all the competitive coders of IIUC.

After the contest, the top n coders with the maximum scores have been selected. Among the n coders, 3 coders will be chosen to form a team. The selection process is based on two criteria:

- 1. The team must have the maximum total score, which is calculated as the sum of the scores of the i^{th} , j^{th} , and k^{th} coder $(1 \le i, j, k \le n)$.
- 2. The team's combined programming skills must cover *10* specific programming concepts, namely: String, Stack, Queue, Hashing, Searching, Recursion, DP, Graph, Tree, and Maths.

Your task is to find the maximum total score of such a team. A team that fulfills the given criteria always exists. The selected team will be eligible to participate in the International Programming Contest.

Input

The first line contains t, the number of test cases ($1 \le t \le 10$).

For each test case:

- The first line contains n, the number of top participants after the contest $(3 \le n \le 20)$.
- The second line contains two integers s_i ($1 <= s_i <= 100$) and c_i ($1 <= c_i <= 10$), where s_i represents the score of the i^{th} (1 <= i <= n) participant, and c_i represents the number of programming concepts he/she is proficient at.
- \bullet The last line contains c space-separated topics indicating the programming concepts the participant is skilled in.

Output

For each test case, print the total maximum score of the team.

Example

Input	Output
1	270
5	
100 4	
String Stack Queue Hashing	
100 2	
Hashing Searching	
80 4	
Recursion DP Graph Tree	
70 5	
Recursion DP Graph Tree Maths	
90 1	
Maths	

Explanation

The maximum total score is achieved by selecting coders 1, 2, and 4. Their total score is 100 + 100 + 70 = 270, and they collectively have 10 programming concepts (String, Stack, Queue, Hashing, Searching, Recursion, DP, Graph, Tree, and Maths).