Location: 19.0.1C Date: 07-11-2025

Contract:

Filename:

grid5

SN: Revision:

Engineer: Study Case: LF

Base

Config.: Normal

Electrical Transient Analyzer Program

Load Flow Analysis

Loading Category (1): Design

Generation Category (1): Design

Load Diversity Factor: None

	Swing	V-Control	Load	Total
Number of Buses:	1	2	6	9

				Line/Cable/				
	XFMR2	XFMR3	Reactor	Busway	Impedance	Tie PD	Total	
Number of Branches:	5	0	0	3	0	0	8	

Method of Solution: Adaptive Newton-Raphson Method

Maximum No. of Iteration: 99

Precision of Solution: 0.0001000

System Frequency: 60.00 Hz
Unit System: English

Project Filename: grid5

 Project: ETAP Page: 2 19.0.1C Location: Date: 07-11-2025 SN: Contract: Engineer: Revision: Base Study Case: LF Filename: Config.: grid5 Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	
Cable / Busway Resistance:	Yes	Individual	

Location: 19.0.1C Date: 07-11-2025

Contract:

Engineer: Study Case: LF Revision: Base

Filename: grid5 Config.: Normal

Bus Input Data

	91

SN:

Bus			Initial Vo	oltage	Constan	nt kVA	Constant Z		Constant I		Generic	
ID	kV	Sub-sys	% Mag.	Ang.	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar
Bus1	11.000	1	100.0	0.0	0.272	0.169	0.068	0.042				
Bus2	129.400	1	100.0	0.0								
Bus3	129.500	1	100.0	0.0								
Bus4	129.400	1	100.0	0.0								
Bus5	10.760	1	100.0	0.0	1.360	0.843	0.325	0.202				
Bus6	10.760	1	102.2	0.0	0.068	0.042	0.016	0.010				
Bus7	129.400	1	100.0	0.0	0.007	0.004	0.002	0.001				
Bus8	10.800	1	101.9	0.0	0.586	0.343	0.115	0.071				
Bus9	0.414	1	100.0	0.0	0.041	0.025	0.008	0.005				
Total Number of Buses: 9					2.333	1.426	0.534	0.331	0.000	0.000	0.000	0.000

G	Generation Bus						Generation		Mvar Limits		
ID	kV	Туре	Sub-sys	% Mag.	Angle	MW	Mvar	% PF	Max	Min	
Bus1	11.000	Swing	1	100.0	0.0						
Bus6	10.760	Voltage Control	1	102.2	0.0	0.000			0.000	0.000	
Bus8	10.800	Voltage Control	1	101.9	0.0	0.000			37.211	0.000	
						0.000	0.000				

ETAP 4 Project: Page: 19.0.1C Location: Date: 07-11-2025 Contract: SN: Engineer: Revision: Base Study Case: LF Filename: grid5 Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens/1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Length	Length					
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R	X	Y
Linel		477	5280.0	0.0	1	75	0.044604	0.157749	0.0000010
Line3		477	5280.0	0.0	1	75	0.044604	0.157749	0.0000010
Line7		477	5280.0	0.0	1	75	0.044604	0.157749	0.0000010

Line / Cable / Busway resistances are listed at the specified temperatures.

Project: ETAP Page: 5 19.0.1C Location: Date: 07-11-2025 SN: Contract: Engineer: Revision: Base Study Case: LF Config.: Filename: grid5 Normal

2-Winding Transformer Input Data

Transformer		Rating				Z Variation			% Tap Setting		Adjusted Phase		Shift	
ID	Phase	MVA	Prim. kV	Sec. kV	% Z1	X1/R1	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Туре	Angle
T1	3-Phase	10.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.0000	YNd	0.000
T3	3-Phase	100.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.0000	YNd	0.000
T7	3-Phase	15.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.0000	YNd	0.000
T10	3-Phase	0.500	11.000	0.415	5.20	5.10	0	0	0	0	0	5.2000	Dyn	0.000
T12	3-Phase	0.400	11.000	132.000	9.00	2.47	0	0	0	0	0	9.0000	YNd	0.000

Location: 19.0.1C Date: 07-11-2025

SN:

Contract:

Engineer: Study Case: LF Revision: Base

Filename: grid5 Config.: Normal

Branch Connections

CKT/Bran	ch	Con	nnected Bus ID	% Impe	% Impedance, Pos. Seq., 100 MVA Base						
ID	Туре	From Bus	To Bus	R	Х	Z	Y				
T1	2W XFMR	Busl	Bus2	33.77	83.42	90.00					
T3	2W XFMR	Bus5	Bus4	3.38	8.34	9.00					
T7	2W XFMR	Bus8	Bus3	22.52	55.61	60.00					
T10	2W XFMR	Bus8	Bus9	200.11	1020.57	1040.00					
T12	2W XFMR	Bus6	Bus7	844.36	2085.56	2250.00					
Line1	Line	Bus3	Bus2	0.14	0.48	0.50	0.0895860				
Line3	Line	Bus3	Bus4	0.14	0.48	0.50	0.0895860				
Line7	Line	Bus5	Bus6	19.46	68.84	71.53	0.0006221				

Location: 19.0.1C Date: 07-11-2025

SN:

Contract:

Engineer: Study Case: LF Revision: Base

Filename: grid5 Config.: Normal

LOAD FLOW REPORT

	Bus		Volt	age	Gener	ation	Lo	ad			Load Flow				XFMR
	ID	kV	% Mag.	Ang.	MW	Mvar	MW	Mvar		ID	MW	Mvar	Amp	%PF	%Тар
* Bus1		11.000	100.000	0.0	2.912	-0.119	0.340	0.211	Bus2		2.572	-0.330	136.1	-99.2	
Bus2		129.400	101.430	-1.3	0.000	0.000	0.000	0.000	Bus3		2.549	-0.386	11.3	-98.9	
									Bus1		-2.549	0.386	11.3	-98.9	
Bus3		129.500	101.350	-1.3	0.000	0.000	0.000	0.000	Bus2		-2.549	0.298	11.3	-99.3	
									Bus4		1.790	1.023	9.1	86.8	
									Bus8		0.759	-1.321	6.7	-49.8	
Bus4		129.400	101.421	-1.3	0.000	0.000	0.000	0.000	Bus3		-1.790	-1.111	9.3	85.0	
									Bus5		1.790	1.111	9.3	85.0	
Bus5		10.760	101.483	-1.4	0.000	0.000	1.695	1.050	Bus6		0.093	0.057	5.8	85.2	
									Bus4		-1.788	-1.108	111.2	85.0	
Bus6		10.760	101.424	-1.4	0.000	0.000	0.085	0.053	Bus5		-0.093	-0.058	5.8	85.0	
									Bus7		0.008	0.005	0.5	84.9	
Bus7		129.400	101.018	-1.5	0.000	0.000	0.008	0.005	Bus6		-0.008	-0.005	0.0	85.0	
* Bus8		10.800	101.852	-1.7	0.000	1.782	0.705	0.417	Bus3		-0.754	1.334	80.4	-49.2	
									Bus9		0.049	0.031	3.0	84.8	
Bus9		0.414	99.829	-2.0	0.000	0.000	0.049	0.030	Bus8		-0.049	-0.030	80.8	85.1	

^{*} Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

[#] Indicates a bus with a load mismatch of more than 0.1 MVA

19.0.1C Location: Date: 07-11-2025

Contract:

Engineer: Revision: Base Study Case: LF

Filename: Config.: grid5 Normal

Bus Loading Summary Report

Directly Connected Load

Total Bus Load

SN:

	Bus			Constar	nt kVA	Const	ant Z	Con	stant I	Ge	neric				Percent
	ID	kV	Rated Amp	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar	MVA	% PF	Amp	Loading
Bus1		11.000		0.272	0.169	0.068	0.042					2.931	99.4	153.8	
Bus2		129.400										2.578	98.9	11.3	
Bus3		129.500										2.871	88.8	12.6	
Bus4		129.400										2.107	85.0	9.3	
Bus5		10.760		1.360	0.843	0.335	0.208					2.104	85.0	111.2	
Bus6		10.760		0.068	0.042	0.017	0.010					0.110	85.0	5.8	
Bus7		129.400		0.007	0.004	0.002	0.001					0.010	85.0	-	
Bus8		10.800		0.586	0.343	0.119	0.074					1.935	39.0	101.6	
Bus9		0.414		0.041	0.025	0.008	0.005					0.058	85.1	80.8	

^{*} Indicates operating load of a bus exceeds the bus critical limit (100.0% of the Continuous Ampere rating). # Indicates operating load of a bus exceeds the bus marginal limit (95.0% of the Continuous Ampere rating).

Project: ETAP Page: 9 19.0.1C Location: Date: 07-11-2025 SN: Contract: Engineer: Revision: Base Study Case: LF Filename: grid5 Config.: Normal

Branch Loading Summary Report

CKT / Branch			D	/C-bl- @ D	_4	Transformer						
	CK1/Br	ancn		/ Cable & Rea	ctor	6 199	Loading (input)	Loading (output)		
	ID	Туре	Ampacity (Amp)	Loading Amp	%	Capability (MVA)	MVA	%	MVA	%		
T1		Transformer				10.000	2.593	25.9	2.578	25.8		
Т3		Transformer				100.000	2.107	2.1	2.104	2.1		
T7		Transformer				15.000	1.532	10.2	1.524	10.2		
T10		Transformer				0.500	0.058	11.6	0.058	11.6		
T12		Transformer				0.400	0.010	2.5	0.010	2.5		

^{*} Indicates a branch with operating load exceeding the branch capability.

Project:		ETAP	Page:	10
Location:		19.0.1C	Date:	07-11-2025
Contract:			SN:	
Engineer:		Study Case: LF	Revision:	Base
Filename:	grid5		Config.:	Normal

Branch Losses Summary Report

	From-To	Bus Flow	To-From	Bus Flow	Los	ses	% Bus '	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Line1	2.549	-0.386	-2.549	0.298	0.1	-88.3	101.4	101.4	0.00
Line3	1.790	1.023	-1.790	-1.111	0.1	-88.4	101.4	101.4	0.01
Line7	0.093	0.057	-0.093	-0.058	0.0	-0.5	101.5	101.4	0.06
T1	2.572	-0.330	-2.549	0.386	22.7	56.1	100.0	101.4	0.57
T10	0.049	0.031	-0.049	-0.030	0.1	0.3	101.9	99.8	0.42
T12	0.008	0.005	-0.008	-0.005	0.0	0.0	101.4	101.0	0.19
T3	1.790	1.111	-1.788	-1.108	1.5	3.7	101.4	101.5	0.16
T7	0.759	-1.321	-0.754	1.334	5.3	13.1	101.4	101.9	0.58
					29.8	-103.9			

^{*} This Transmission Line includes Series Capacitor.

Project: ETAP Page: 11 19.0.1C Location: Date: 07-11-2025 SN: Contract: Engineer: Revision: Base Study Case: LF Config.: Filename: grid5 Normal

Alert Summary Report

% Alert Settings

	Critical	Marginal
Loading		
Bus	100.0	95.0
Cable / Busway	100.0	95.0
Reactor	100.0	95.0
Line	100.0	95.0
Transformer	100.0	95.0
Panel	100.0	95.0
Protective Device	100.0	95.0
Generator	100.0	95.0
Inverter/Charger	100.0	95.0
Bus Voltage		
OverVoltage	105.0	102.0
UnderVoltage	95.0	98.0
Generator Excitation		
OverExcited (Q Max.)	100.0	95.0
UnderExcited (Q Min.)	100.0	

Critical Report

Device ID	Type	Condition	Rating/Limit	Unit	Operating	% Operating	Phase Type
Gen1	Generator	Under Excited	0.000	Mvar	-0.119	0.0	3-Phase
Gen2	Generator	Under Excited	0.000	Mvar	0.000	0.0	3-Phase
Gen2	Generator	Under Power	0.000	MW	0.000	0.0	3-Phase
Gen3	Generator	Under Power	0.000	MW	0.000	0.0	3-Phase

Project: ETAP Page: 12 19.0.1C Location: Date: 07-11-2025 SN: Contract: Engineer: Revision: Base Study Case: LF Filename: Config.: grid5 Normal

SUMMARY OF TOTAL GENERATION, LOADING & DEMAND

	MW	Mvar	MVA	% PF
Source (Swing Buses):	2.912	-0.119	2.914	99.92 Leading
Source (Non-Swing Buses):	0.000	1.782	1.782	0.00 Lagging
Total Demand:	2.912	1.663	3.353	86.84 Lagging
Total Motor Load:	2.333	1.426	2.735	85.32 Lagging
Total Static Load:	0.549	0.340	0.646	85.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Generic Load:	0.000	0.000	0.000	
Apparent Losses:	0.030	-0.104		
System Mismatch:	0.000	0.000		

Number of Iterations: 2

Location: 19.0.1C Date: 07-11-2025

Contract:

Engineer: Study Case: SM
Filename: grid5

Config.: Normal

Base

SN:

Revision:

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1/2 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	2	6	9			
Number of Branches:	XFMR2 5	XFMR3	Reactor	Line/Cable/ Busway	Impedance 0	Tie PD	Total 8
Number of Machines:	Synchronous Generator 3	Power Grid 0	Synchronous Motor 0	Induction Machines 2	Lumped Load 6		

System Frequency: 60.00
Unit System: English

Project Filename: grid5

Output Filename: C:\Users\owner's\Desktop\PSA PBL\grid5\Untitled.SQ1S

2 Project: ETAP Page: 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	
Cable / Busway Resistance:	Yes	Individual	

3 Project: **ETAP** Page: 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Bus Input Data

	Initial V	oltage				
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWNG	11.000	11.000	1	100.00	0.00
Bus2	Load	129.400	132.000	1	100.00	30.00
Bus3	Load	129.500	132.000	1	100.00	30.00
Bus4	Load	129.400	132.000	1	100.00	30.00
Bus5	Load	10.760	11.000	1	100.00	0.00
Bus6	Gen.	10.760	11.000	1	102.23	0.00
Bus7	Load	129.400	132.000	1	100.00	30.00
Bus8	Gen.	10.800	11.000	1	101.85	0.00
Bus9	Load	0.414	0.415	1	100.00	-30.00

9 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP .

Project: **ETAP** Page: 4 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway	Length											
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y0
Line1		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005
Line3		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005
Line7		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

2-Winding Transformer Input Data

Transformer		Rating					Z Variation			% Tap Setting		Adjusted	Phase Shift	
	ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Type	Angle
T1		10.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
Т3		100.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
T7		15.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
T1	0	0.500	11.000	0.415	5.20	5.10	0	0	0	0	0	5.20	Dyn	30.00
T1	2	0.400	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00

2-Winding Transformer Grounding Input Data

Grounding

Transformer		Rating				Primary			Secondary				
ID	MVA	Prim. kV	Sec. kV	Туре	Туре	kV	Amp	ohm	Туре	kV	Amp	ohm	
T1	10.000	11.000	132.000	D/Y					Solid				
T3	100.000	11.000	132.000	D/Y					Solid				
T7	15.000	11.000	132.000	D/Y					Solid				
T10	0.500	11.000	0.415	D/Y					Solid				
T12	0.400	11.000	132.000	D/Y					Solid				

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base
Filename: grid5 Config.: Normal

Branch Connections

CKT/Bra	nch	Cor	nnected Bus ID	% Impedance, Pos. Seq., 100 MVAb					
ID	Туре	From Bus	To Bus	R	X	Z	Y		
T1	2W XFMR	Bus1	Bus2	33.77	83.42	90.00			
T3	2W XFMR	Bus5	Bus4	3.38	8.34	9.00			
T7	2W XFMR	Bus8	Bus3	22.52	55.61	60.00			
T10	2W XFMR	Bus8	Bus9	200.11	1020.57	1040.00			
T12	2W XFMR	Bus6	Bus7	844.36	2085.56	2250.00			
Linel	Line	Bus3	Bus2	0.14	0.48	0.50	0.0895860		
Line3	Line	Bus3	Bus4	0.14	0.48	0.50	0.0895860		
Line7	Line	Bus5	Bus6	19.46	68.84	71.53	0.0006221		

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Synchronous Generator Input Data

Positive Seq. Impedance

Synchronous Generator			Rating			% Xd"					Grounding			Zero Seq. Impedance		
	ID	Туре	MVA	kV	RPM	X"/R	% R	Adj.	Tol.	% Xd'	Conn.	Туре	Amp	X/R	% R0	% X0
Gen1		Steam Turbo	70.588	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00
Gen2		Steam Turbo	35.294	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00
Gen3		Steam Turbo	70.588	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00

Total Connected Synchronous Generators (= 3): 176.471 MVA

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Induction Machine Input Data

Induction Mac	Rating (Base)			Positive Seq. Imp.					Grounding	3	Zero Seq. Imp.				
ID	Туре	Qty	kVA	kV	RPM	X"/R	% R	% X"	% X'	Conn.	Type	Amp	X/R	% R0	% X0
Mtr1	Motor	1	119.89	11.000	1800	8.56	2.158	18.46	46.15	Wye	Open		8.56	2.16	18.46
Mtr2	Motor	1	7.91	0.415	1800	2.02	13.802	27.83	9999.00	Wye	Open		2.02	13.80	27.83

Total Connected Induction Machines (= 2): 127.8 kVA

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

				Impedance									
Rating		% Load		Loading		X/R Ratio		(Machine Base)			Grounding		
kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
2000.0	11.000	80	20	1360.0	842.9	10.00	10.00	1.538	15.38	23.08	Delta		
100.0	11.000	80	20	68.0	42.1	6.67	6.67	2.307	15.38	23.08	Delta		
10.0	132.000	80	20	6.8	4.2	6.67	6.67	2.307	15.38	23.08	Delta		
700.0	11.000	80	20	476.0	295.0	6.67	6.67	2.307	15.38	23.08	Delta		
400.0	11.000	80	20	272.0	168.6	6.67	6.67	2.307	15.38	23.08	Delta		
50.0	0.415	80	20	34.0	21.1	2.38	2.38	8.403	20.00	50.00	Delta		
	kVA 2000.0 100.0 10.0 700.0 400.0	kVA kV 2000.0 11.000 100.0 11.000 10.0 132.000 700.0 11.000 400.0 11.000	kVA kV MTR 2000.0 11.000 80 100.0 11.000 80 10.0 132.000 80 700.0 11.000 80 400.0 11.000 80	kVA kV MTR STAT 2000.0 11.000 80 20 100.0 11.000 80 20 10.0 132.000 80 20 700.0 11.000 80 20 400.0 11.000 80 20	kVA kV MTR STAT kW 2000.0 11.000 80 20 1360.0 100.0 11.000 80 20 68.0 10.0 132.000 80 20 6.8 700.0 11.000 80 20 476.0 400.0 11.000 80 20 272.0	kVA kV MTR STAT kW kvar 2000.0 11.000 80 20 1360.0 842.9 100.0 11.000 80 20 68.0 42.1 10.0 132.000 80 20 6.8 4.2 700.0 11.000 80 20 476.0 295.0 400.0 11.000 80 20 272.0 168.6	kVA kV MTR STAT kW kvar X"/R 2000.0 11.000 80 20 1360.0 842.9 10.00 100.0 11.000 80 20 68.0 42.1 6.67 10.0 132.000 80 20 6.8 4.2 6.67 700.0 11.000 80 20 476.0 295.0 6.67 400.0 11.000 80 20 272.0 168.6 6.67	kVA kV MTR STAT kW kvar X"/R X'/R 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 100.0 11.000 80 20 68.0 42.1 6.67 6.67 10.0 132.000 80 20 6.8 4.2 6.67 6.67 700.0 11.000 80 20 476.0 295.0 6.67 6.67 400.0 11.000 80 20 272.0 168.6 6.67 6.67	Rating % Load Loading X/R Ratio (M) kVA kV MTR STAT kW kvar X"/R X'/R % R 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307	Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X/R % R % X" 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38	Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 23.08 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38 23.08	Rating % Load Loading X/R Ratio (Machine Base) € kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 Delta 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 Delta 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 23.08 Delta 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 Delta 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38 23.08 Delta	Rating % Load Loading X/R Ratio (Machine Base) Grounding kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. Type 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 Delta 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 Delta 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 Delta 400.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 Delta

Total Connected Lumped Loads (= 6): 3260.0 kVA

19.0.1C 07-11-2025 Location: Date:

Contract: SN:

Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus3

Prefault voltage = 129.500 kV = 100.00 % of nominal bus kV (129.500 kV)

= 98.11 % of base kV (132.000 kV)

Con	ntribution	3-Phas		Line-T	o-Ground	Fault	Positive & Zero Sequence Impedances Looking into "From Bus"						
From Bus	From Bus To Bus		kA	% Voltage at From Bus			kA Sym	m. rms	% Impedance on 100 MVA base				
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus3	Total	0.00	1.228	0.00	86.48	88.72	1.658	1.658	9.09E+000	3.38E+001	2.89E+000	7.60E+000	
Bus2	Bus3	0.43	0.369	0.56	86.54	88.80	0.381	0.147	3.53E+001	1.11E+002	3.41E+001	8.49E+001	
Bus4	Bus3	0.42	0.359	1.87	86.17	88.71	0.752	1.287	2.23E+001	1.18E+002	3.67E+000	9.81E+000	
Bus8	Bus3	70.01	0.501	83.58	77.89	99.44	0.526	0.225 *	2.39E+001	8.22E+001	2.25E+001	5.56E+001	
Busl	Bus2	76.42	0.369	86.18	81.91	97.75	0.381	0.147 *	3.52E+001	1.10E+002	3.38E+001	8.34E+001	
Bus5	Bus4	7.96	0.359	53.76	50.58	99.80	0.752	1.287 *	2.21E+001	1.17E+002	3.38E+000	8.34E+000	
Bus9	Bus8	69.47	0.003	94.54	72.86	89.92	0.003	0.000	5.66E+004	7.40E+004			
Gen3	Bus8	98.11	5.943	98.11	98.11	98.11	4.634	0.000	1.42E+000	2.69E+001	1.42E+000	9.92E+000	
Mtr1	Bus8	98.11	0.010	98.11	98.11	98.11	0.008	0.000	1.80E+003	1.54E+004			
Lump4	Bus8	98.11	0.058	98.11	98.11	98.11	0.045	0.000	4.12E+002	2.75E+003			
Genl	Bus1	98.11	4.408	98.11	98.11	98.11	3.437	0.000	1.42E+000	2.69E+001	1.42E+000	9.92E+000	
Lump5	Bus1	98.11	0.024	98.11	98.11	98.11	0.019	0.000	7.21E+002	4.81E+003			
Bus6	Bus5	61.05	3.814	77.92	73.18	99.66	2.978	0.000	4.74E+001	1.18E+002			
Lumpl	Bus5	98.11	0.491	98.11	98.11	98.11	0.383	0.000	9.62E+001	9.62E+002			
Mtr2	Bus9	98.11	0.011	98.11	98.11	98.11	0.005	0.000	1.75E+005	3.52E+005			
Lump6	Bus9	98.11	0.077	98.11	98.11	98.11	0.035	0.000	2.10E+004	5.00E+004			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

Project: **ETAP** Page: 11 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus		3	3-Phase Fault			Line-to-Ground Fault			Line-to-Line Fault			*Line-to-Line-to-Ground		
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	
Bus3	129.500	0.319	-1.185	1.228	0.462	-1.593	1.658	1.030	0.288	1.069	-1.389	0.923	1.668	

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

12 Project: ETAP Page: 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Sequence Impedance Summary Report

Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero Seq. Imp. (ohm)			Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus3	129.500	15.84017	58.80910	60.90502	16.78235	57.85316	60.23815	5.03376	13.23538	14.16030	0.00000	0.00000	0.00000

Project: ETAP Page: 13 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Sequence-of-Operation Event Summary Report

Symmetrical 3-Phase Fault at Bus3.

Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition
2.1	Relayl	4.432	2.1		Phase - OC1 - 50
20.0	Relayl		20.0		Phase - 87
85.4	CB4		83.3		Tripped by Relay1 Phase - OC1 - 50
85.4	CB5		83.3		Tripped by Relay1 Phase - OC1 - 50
99.4	Relayl	4.432	99.4		Phase - OC1 - 51
103	CB4		83.3		Tripped by Relay1 Phase - 87
103	CB5		83.3		Tripped by Relay1 Phase - 87
183	CB4		83.3		Tripped by Relay1 Phase - OC1 - 51
183	CB5		83.3		Tripped by Relay1 Phase - OC1 - 51