

artem harsow

Algorithm 2021, Qualification

② 28 ноя 2021, 17:40:33 старт: 3 окт 2021, 14:12:29 финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

А. НольОдин

Ограничение времени	1 секунда
Ограничение памяти	1Gb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Полное решение будет оценено в 2 балла.

Сравните два числа в двоичной системе счисления. Числа представлены последовательностью слов без пробелов, обозначающих цифры $(0-{\sf zero},1-{\sf one})$.

Формат ввода

Первая строка содержит запись первого числа s_1 ($3 \le |s_1| \le 1000$).

Вторая строка содержит запись второго числа s_2 ($3 \le |s_2| \le 1000$).

Числа не содержат лидирующих нулей.

Формат вывода

Выведите символ > (ASCII 62), если первое число больше второго, символ < (ASCII 60), если второе число больше первого, иначе выведите символ = (ASCII 61).

Пример 1

Ввод	Вывод 🗇
oneone	<
onezerozero	

Пример 2

Ввод 🗇	Вывод 🗇
zero	=
zero	

Пример 3

тправить

Следующая

artem.barsow

Algorithm 2021, Qualification

② 28 ноя 2021, 17:46:26 старт: 3 окт 2021, 14:12:29 финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

В. Плитки 2х2

Ограничение времени	2 секунды
Ограничение памяти	1Gb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Решение, корректно работающее с картиной и плитками, покрашенными в белый и черный цвета, будет оценено в 2 балла.

Полное решение, корректно работающее с картиной и плитками, покрашенными в белый, черный и красный цвета, будет оценено в 3 балла (включая 2 балла за подзадачу выше).

Дан набор плиток 2×2 . У каждой плитки четыре квадрата покрашены в один из трех цветов: белый (W), черный (B) или красный (R).

Определите, можно ли из набора плиток составить пиксельную картину $n \times m$ (стороны картины имеют четный размер), если плитки при выкладывании не должны перекрываться и не могут выходить за пределы картины. При выкладывании плитки можно поворачивать, но нельзя ломать.

Плитка непрозрачная, и краска нанесена только с одной стороны плитки.

Формат ввода

В первой строке дано число k ($1 \le k \le 10^5$) — количество плиток в наборе.

В следующих 2k строках даны описания плиток. Описание каждой плитки занимает две строки по два символа, они задают цвета квадратов плитки.

Далее даны два числа n и m ($2 \le n, m \le 512, n$ и m четные) — размеры картины. В каждой из следующих n строк дано описание очередного вяда картины.

При описании плиток и пикселей картины используются только символы W, B и R.

Формат вывода

В единственной строке выведите Yes, если из набора плиток можно собрать картину, иначе выведите No.

Пример 1

Ввод	Вывод 🗇
1	Yes
WW	
BW	
2 2	
WB	
WW	
Пример 2	
Ввод 🗇	Вывод 🗊
2	Yes
WW	
BB	
WB	
WB	
2 4	
WBBW	
WBBW	
Пример 3 Ввод 🗖	Вывод 🗇
3	No
WW	
WW	
WW	
WW	
BB	
BB	
4 2 WW	
BB	
BB	
WW	
Пример 4	
• •	
Ввод 🗇	

Ввод 🗇	Вывод 🗇
4	No
WW	
WB	
WW	
WB	
WW	
WB	
WW	
WB 2 2	
2 2	
BB	
BB	

Пример 5

Ввод	Вывод 🗇
2	No
BW	
WB	
BW	
WB 2 2	
2 2	
WW	
BB	

Пример 6

Ввод 🗇	Вывод 🗇
4	Yes
RR	
RR	
WW	
WW	
BB	
BB	
WW	
WW	
4 4	
WWBB	
WWBB	
RRWW	
RRWW	

Пример 7

Ввод	a	Вывод	₽	

Примечания

- В первом и втором примерах необходимо повернуть имеющиеся плитки.
- В третьем примере можно было бы собрать картину, если бы было разрешено выкладывать плитки поверх размещенных.
- В четвертом примере можно было бы собрать картину, если бы было разрешено ломать плитки или выходить за пределы картины.

© 2013-2021 ООО «Яндекс»

Яндекс Контест Yandex Cup

artem.barsow

Algorithm 2021, Qualification

⊘ 28 ноя 2021, 17:47:49
старт: 3 окт 2021, 14:12:29
финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

С. Шары и коробки

Ограничение времени	2 секунды
Ограничение памяти	1Gb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Полное решение будет оценено в 4 балла.

Есть цветные шарики k цветов (a_i шариков цвета i). Нужно разложить все шарики в коробки с выполнением следующих условий:

- во всех коробках должно совпадать суммарное количество шариков;
- в каждой коробке шариков цвета i должно быть не менее b_i ($0 \le b_i \le a_i$).

Максимизируйте количество коробок, в которые будут разложены шарики.

Формат ввода

Первая строка входных данных содержит число k ($1 \le k \le 10^5$) — число цветов.

Во второй строке дано k чисел a_i ($1 \leq a_i \leq 10^5$, $\sum_{i=1}^k a_i \leq 10^5$) — количество шариков цвета i.

В третьей строке дано k чисел b_i ($0 \le b_i \le a_i$) — нижнее ограничение на количество шариков в каждой коробке.

Формат вывода

В первой строке выведите два числа: n — количество коробок, которые можно наполнить, и m — количество шариков в каждой коробке

Далее выведите n строк по m чисел в каждой — цвета шариков, которые лежат в очередной коробке.

Суммарное количество шариков цвета i во всех коробках должно быть равно a_i .

Пример 1

Ввод 🗇	Вывод 🗇
5	1 15
1 2 3 4 5	1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
1 2 3 4 5	

Пример 2

Ввод 🗇	Вывод 🗇
1	10 1
10	1
0	1
	1
	1
	1
	1
	1
	1
	1
	1

Пример 3

Ввод 🗇	Вывод 🗇
5	4 6
4 5 5 5 5	1 2 3 4 5 5
11111	1 2 3 4 5 4
	1 2 3 4 5 3
	1 2 3 4 5 2

Примечания

В первом примере все шарики первого цвета должны находиться в одной коробке.

Во втором примере любое количество шариков может быть в одной коробке, поэтому можно положить в каждую коробку по одному

В третьем примере нельзя использовать более четырех коробок, так как шариков первого цвета всего четыре.

Яндекс Контест Yandex Cup artem.barsow

Algorithm 2021, Qualification

28 ноя 2021, 17:48:23

старт: 3 окт 2021, 14:12:29 финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

D. Матрица

Ограничение времени	1 секунда
Ограничение памяти	1Gb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Решение, корректно работающее в ограничениях $1 \leq nm \leq 2^4$, будет оценено в 2 балла.

Полное решение будет оценено в 4 балла (включая 2 балла за подзадачу выше).

Дана матрица $n \times m$ (n, m — степени двойки), заполненная целыми числами от 1 до nm (числа по возрастанию по строкам).

Например, для n=4 и m=8 матрица имеет следующий вид:

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32

За один шаг мы «складываем» матрицу пополам, как лист бумаги, поперек большей стороны (по горизонтали или по вертикали) и суммируем числа, которые накладываются друг на друга, до тех пор, пока не останется один элемент. Квадрат складываем по

Элементы всех полученных матриц (в том числе и исходной) выписываем в одну последовательность.

Найдите количество различных выписанных чисел.

Формат ввода

В единственной строке входных данных записаны два числа n и m ($1 \le n \times m \le 2^{30}$). Оба числа являются степенями двойки.

Формат вывода

Выведите единственное число — количество различных выписанных чисел.

Пример 1

Ввод	Вывод 🗇
1.1	1

Пример 2

Ввод 🗇	Вывод 🗇
1 8	11
Пример 3	
Ввод	Вывод 🗇
4 4	21

© 2013-2021 ООО «Яндекс»

Яндекс Контест Yandex Cup artem.barsow

Algorithm 2021, Qualification

28 ноя 2021, 17:48:39

старт: 3 окт 2021, 14:12:29 финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

Е. Сортировка матрицы

Язык	Ограничение времени	Ограничение памяти	Ввод	Вывод
Все языки	2 секунды	1Gb		
Python 3.7.3	7 секунд	1Gb		
Python 3.7 (PyPy 7.3.3)	7 секунд	1Gb		стандартный вывод или output.txt
C# (MS .Net 5.0)+ASP	3 секунды	1Gb		
Kotlin 1.4.30 (JRE 11)	3 секунды	1Gb		
OpenJDK Java 11	3 секунды	1Gb		
Golang 1.16	3 секунды	1Gb		

Решение, корректно работающее в ограничениях $1 \le n, m \le 10$, будет оценено в 2 балла.

Полное решение будет оценено в 6 баллов (включая 2 балла за подзадачу выше).

Дана матрица n imes m, состоящая из нулей и единиц. За один ход можно выбрать любую пару ячеек и обменять значения в этих ячейках.

Нужно за минимальное количество ходов получить матрицу, в которой будут выполнены оба условия:

- в каждой строке сначала идут нули, а потом единицы (строка может содержать только нули или только единицы);
- в каждом столбце сначала идут нули, а потом единицы (столбец может содержать только нули или только единицы).

Формат ввода

В первой строке даны два числа n и m ($1 \le n, m \le 100$) — размеры матрицы. В последующих n строках заданы по m символов, каждый из которых 0 или 1.

Формат вывода

Выведите целое число — минимальное количество обменов, для получения необходимой матрицы.

Пример 1

Ввод 🗇	Вывод 🗇
2 2	1
10	
00	

Пример 2

Ввод	Вывод 🗇
4 4	1
1000	
0000	
0000	
0011	

Пример 3

Ввод 🗇	Вывод 🗇
4 3	2
011	
000	
000	
100	

Примечания

В первом примере единицу из первой позиции первой строки следует поменять с нулем из второй позиции второй строки.

Во втором примере единицу из первой позиции первой строки можно поменять местами с последним нулем из третьей строки или вторым нулем из последней строки.

В третьем примере единицы из первой строки следует поменять местами с нулями из последней строки.

© 2013-2021 ООО «Яндекс»

artem.barsow

Algorithm 2021, Qualification

② 28 ноя 2021, 17:48:56 старт: 3 окт 2021, 14:12:29 финиш: 3 окт 2021, 16:12:29

длительность: 02:00:00

начало: 27 сен 2021, 12:00:00 конец: 3 окт 2021, 23:59:00

F. Переворот пути

Язык	Ограничение времени	Ограничение памяти	Ввод	Вывод
Все языки	2 секунды	1Gb		стандартный вывод или output.txt
Python 3.7.3	7 секунд	1Gb		
Python 3.7 (PyPy 7.3.3)	7 секунд	1Gb	стандартный ввод или input.xt	
C# (MS .Net 5.0)+ASP	3 секунды	1Gb		
Kotlin 1.4.30 (JRE 11)	3 секунды	1Gb		
OpenJDK Java 11	3 секунды	1Gb		
Golang 1.16	3 секунды	1Gb		

Решение, корректно работающее в ограничениях $n \le 2000$, будет оценено в 2 балла.

Решение, корректно работающее для случая, когда максимальная степень вершины не превосходит 2, будет оценено в 2 балла.

Полное решение будет оценено в 7 баллов (включая 4 балла за подзадачи выше).

Дано дерево из n вершин. В нем выбрали две случайные различные вершины p и q (каждая пара вершин могла быть выбрана с одинаковой вероятностью) и перевернули путь между ними со всеми внутренними отростками, не включая отростки от самих p и q (смотрите примеры для лучшего понимания).

Найдите математическое ожидание расстояния между вершинами 1 и n.

Формат ввода

В первой строке дано целое число n ($2 \le n \le 200\,\,000$) — количество вершин в дереве.

В следующих n-1 строках даны два числа u_i, v_i ($1 \leq u_i, v_i \leq n, u_i \neq v_i$) — ребра дерева.

Формат вывода

Выведите целое число — математическое ожидание расстояния между вершинами 1 и n, умноженное на $\frac{n(n-1)}{2}$.

Пример 1

Ввод 🗇	Вывод	a

Ввод	Вывод 🗇
4	12
1 2	
2 3	
3 4	

Пример 2

Ввод	Вывод 🗇
4	10
1 2	
2 3	
2 /	

Пример 3

Ввод 🗇	Вывод 🗇
4	8
1 4	
2 4	
3 4	

Примечания

Предположим, изначально дерево выглядело так:

Если $p=3,\,q=6,$ то после переворота оно преобразуется в следующее дерево:

Обратите внимание, что ребро 4–9 осталось, так как это внутренний отросток на пути между 3 и 6.