

Bag of Visual Words

Computer Vision

Carnegie Mellon University (Kris Kitani)

'Classical' Image Classification Pipeline

What object do these parts belong to?

Some local feature are very informative

a collection of local features (bag-of-features)

- deals well with occlusion
- scale invariant
- rotation invariant

(not so) crazy assumption

spatial information of local features can be ignored for object recognition (i.e., verification)

CalTech6 dataset

class	bag of features	bag of features	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

Works pretty well for image-level classification

Bag-of-features

... represent an image as a histogram over visual features.

Bag-of-features

... represent an image as a histogram over visual features.

an old idea...

Textons

Julesz. Textons, the elements of texture perception, and their interactions. Nature 1981

Texture is characterized by the repetition of basic elements or *textons*

For stochastic textures, it is the identity of the *textons*, not their spatial arrangement, that matters

Textures can be represented as <u>histograms</u> of textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Histogram representations are convenient for data retrieval...

Vector Space Model

(aka Bag-of-Words)

A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$
 ocunts the number of occurrences just a histogram over words

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

$$n(\cdot) \ ext{counts the number of occurrences} ext{just a histogram over words}$$

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$d(\boldsymbol{v}_i, \boldsymbol{v}_j) = \cos \theta$$

$$= \frac{\boldsymbol{v}_i \cdot \boldsymbol{v}_j}{\|\boldsymbol{v}_i\| \|\boldsymbol{v}_j\|}$$

