Теорема 0.0.1. Скінчено-станова ізометрія кільця Z_2 є дифференційовною в раціональній точці тоді і лише тоді, коли вона є лінійною в певному околі цієї точки.

Доведення. Нехай x - кінець дерева T_2 . $x_{(n)}$ - початок довжини $n, x^{(n)}$ - хвіст кінця x.

$$x = x^{(n)} x_{(n)}.$$

a - скінчено-становий автоморфізм, що відповідає деякій скінчено-становій ізометрії. Означимо:

$$F_a(x,y) = \frac{a(x) - a(y)}{x - y}$$

Дифференційовність ізометріїї a в точці x рівносильно існуванню границі в ультраметриці:

$$\lim_{y \to x} F_a(x, y)$$

Нехай $b_0(a,x), b_1(a,x),...,b_n(a,x)...$ -послідовність станів вздовж кінця $x, b_n(x)=a_{x_{(n)}},$ а $y_0(x),y_1(x),...,y_n(x)...$ -послідовність кінців $y_n(x)=x^{(n)}$.

Оскільки a - скінчено-становий, а x раціональний, то послідовності $b_n(a,x)$ та $y_n(x)$ є квазіперіодичними. Отже послідовність пар $(b_n(a,x),y_n(x))$ є квазіперіодичною і існує пара, яка зустрічається нескінчену кількість разів. Позначимо її як (a_c,x_c) .

Далі B(x,r) - шар радіусу r з центром в кінці x. Означимо D(a,x,r) як множину значень $F_a(x,y)$, де x - фіксований кінець, а $y\in B(x,r)$:

$$D(a,x,r) = B(x,r) \circ F_a(x,*)$$

Оскільки має місце рівність

$$F_a(x^{(n)}x_{(n)}, y^{(n)}x_{(n)}) = F_{a_{(n)}}(x, y)$$

ТО

$$\exists c \forall r D(a, x, r) \supseteq D(a_c, x_c, 1)$$
 (1)

Отже, згідно з (1) для існування границі

$$\lim_{y \to x} \frac{a(x) - a(y)}{x - y}$$

необхідно, щоб множина $D(a_c, x_c, 1)$ складалась з єдиного елемента, тому

$$\frac{a(x) - a(x_c)}{x - x_c} = const \Rightarrow a(x) = const * (x - x_c) + a(x_c).$$

Лема 0.0.1. Якщо скінченно-станова ізометрія кільця Z_2 є дифференційовною в раціональній точці, то вона є дифференційовною в кожній точці деякого її околу.

Доведення. Дійсно, функція, що є лінійною в певному околі є дифференційовною в кожній точці цього околу. \Box

Теорема 0.0.2. Скінченно-станова ізометрія f кільця Z_2 ϵ дифференційовною тоді і лише тоді, коли вона ϵ кусочно-лінійною функцією.

Доведення. Оскільки ультраметричний простір Z_2 є компактним, а множина раціональних 2-адичних чисел є всюди щільною в Z_2 , то з покриття околами з теореми 0.0.1 можна виділити скінчене підпокриття. Оскільки простір є ультраметричним, то з цього підпокриття можна виділити підпокриття, що складається з куль, що не перетинаються. На кожній такій кулі ізометрія f є лінійною, отже f - кусочно-лінійна функція.