2022-2023 MP2I

16. Dérivabilité, corrigé

Exercice 1. Soit f dérivable sur \mathbb{R} .

1) Supposons f paire. Soit $a \in \mathbb{R}$. Montrons que f'(-a) = -f'(a). On a pour $x \neq -a$:

$$\frac{f(x) - f(-a)}{x - (-a)} = -\frac{f(-x) - f(a)}{-x - a}.$$

On peut alors passer à la limite quand x tend vers -a (ce qui revient dans le membre de droite à faire tendre -x vers a). Les différentes limites existent car f est dérivable. On en déduit que f'(-a) = -f'(a). a étant pris quelconque dans \mathbb{R} , f' est impaire.

2) Supposons f impaire. Soit $a \in \mathbb{R}$. Montrons que f'(-a) = f'(a). On a pour $x \neq -a$:

$$\frac{f(x) - f(-a)}{x - (-a)} = -\frac{-f(-x) + f(a)}{-x - a} = \frac{f(-x) - f(a)}{-x - a}.$$

On peut alors passer à la limite quand x tend vers -a (ce qui revient dans le membre de droite à faire tendre -x vers a). Les différentes limites existent car f est dérivable. On en déduit que f'(-a) = f'(a). a étant pris quelconque dans \mathbb{R} , f' est impaire.

3) Supposons f T-périodique. Soit $a \in \mathbb{R}$. Montrons que f'(a) = f'(a+T). On a pour $x \neq a+T$:

$$\frac{f(x) - f(a+T)}{x - (a+T)} = \frac{f(x-T) - f(a)}{x - T - a}$$
 (par *T*-périodicité)
$$= \frac{f(y) - f(a)}{y - a}$$

où l'on a posé y = x - T. On peut alors passer à la limite quand x tend vers T + a (ce qui revient dans le membre de droite à faire tendre y vers a). Les différentes limites existent car f est dérivable. On en déduit que f'(a + T) = f'(a). a étant pris quelconque dans \mathbb{R} , f est T-périodique.

Exercice 3. Soit $f(x) = x^{\alpha} \sin\left(\frac{1}{x}\right)$ si x > 0 et f(0) = 0. On va procéder à chaque fois par double implication. Il est déjà clair que f est infiniment dérivable sur $]0, +\infty[$

Supposons $\alpha > 0$. On a alors $f(x) \to 0$ quand $x \to 0$ (on fait le produit d'une fonction qui tend vers 0 avec une fonction bornée). La fonction f est donc continue en 0.

Supposons à présent $\alpha \leq 0$. Si $\alpha = 0$, on a pour x > 0, $f(x) = \sin\left(\frac{1}{x}\right)$ qui n'admet pas de limite quand x tend vers 0 (on peut prendre la suite $x_n = \frac{1}{\frac{\pi}{2} + n\pi}$ où $x_n \to 0$ et $f(x_n) = (-1)^n$. f n'est donc pas continue en 0. Si $\alpha < 0$, on prend la même suite et on a $f(x_n) = (-1)^n (x_n)^{\alpha}$. Puisque $\alpha < 0$, on a $x_n^{\alpha} \to +\infty$, et la fonction f n'admet donc pas de limites en 0.

On a donc montré l'équivalence voulue (on a raisonné par la contraposée pour le second point).

De la même manière, on peut montrer que f est dérivable sur \mathbb{R}_+ ssi $\alpha > 1$. En effet, pour montrer la dérivabilité de f en 0, il faut étudier la limite pour x > 0 de $\frac{f(x)}{x} = x^{\alpha - 1} \sin\left(\frac{1}{x}\right)$. Or, d'après la

preuve ci-dessus, cette expression admet une limite finie en 0 si et seulement si $\alpha - 1 > 0$. On a alors dans ce cas f'(0) = 0.

Il reste à montrer la dernière équivalence. Pour cela, on calcule pour x > 0:

$$f'(x) = \alpha x^{\alpha - 1} \sin\left(\frac{1}{x}\right) - x^{\alpha - 2} \sin\left(\frac{1}{x}\right).$$

Puisque l'on veut trouver une condition pour que f soit de classe \mathcal{C}^1 , il faut déjà au moins que f soit dérivable en 0 et donc que $\alpha > 1$. On veut alors que cette expression tend vers f'(0) = 0 en 0. Or, une étude similaire à celle du début de l'exercice montre que $f'(x) \to 0$ quand $x \to 0$ si et seulement si $\alpha - 2 > 0$ (le terme de gauche tend vers 0 par une étude similaire à celle du début de l'exercice). On en déduit que f est \mathcal{C}^1 sur \mathbb{R}_+ ssi $\alpha > 2$.

Exercice 5. Soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$ telle que f(a) = f(b) = f'(a) = f'(b) = 0. On va appliquer le théorème de Rolle à la bonne fonction. Posons pour tout $x \in [a,b]$, $g(x) = e^x(f(x) - f'(x))$. Cette fonction est de classe \mathcal{C}^1 sur [a,b]. On a de plus g(a) = g(b) = 0. On peut donc appliquer le théorème de Rolle à cette fonction sur [a,b]. Il existe donc $c \in [a,b]$ tel que g'(c) = 0. Or, on a :

$$g'(c) = e^{c}(f(c) - f'(c) + f'(c) - f''(c)) = e^{c}(f(c) - f''(c)).$$

Puisque l'exponentielle est strictement positive, on en déduit que f(c) = f''(c).

Exercice 7. Puisque f est continue sur [0,1] et dérivable sur]0,1[(car f est \mathcal{C}^2 sur [0,1]) et que f(0) = f(1), on a d'après le théorème de Rolle qu'il existe $a \in]0,1[$ tel que f'(a) = 0. On a bien 0 < a. On a alors f' continue sur [0,a] et f' dérivable sur]0,a[(toujours car f est \mathcal{C}^2 sur [0,1] et f'(0) = f'(a). D'après le théorème de Rolle, il existe $b \in]0,a[$ tel que f''(b) = 0. La fonction f'' s'annule donc.

Exercice 10. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe \mathcal{C}^1 telle que f(0) = 0 et $\lim_{x \to +\infty} f(x) = 0$.

Si il existe un $b \in \mathbb{R}_+$ tel que f(b) = 0, alors on peut utiliser le théoreme de Rolle sur le segment [0, b] (car f(0) = f(b) = 0 et f est bien continue sur le segment, dérivable sur l'intervalle ouvert) donc il existe c > 0 tel que f'(c) = 0.

Supposons donc que pour tout x > 0, $f(x) \neq 0$. Puisque f est continue, on en déduit d'apres le théoreme des valeurs intermédiaires que f garde un signe constant sur \mathbb{R}_+^* (elle ne peut pas changer de signe sinon elle s'annulerait). Supposons donc que pour tout x > 0, f(x) > 0 (la preuve est similaire si pour tout x > 0, f(x) < 0).

Montrons que f admet un maximum sur \mathbb{R}_+ . On a f(1)>0. En utilisant la définition de la limite en $\varepsilon=\frac{f(1)}{2}>0$, on a qu'il existe $b\geq 1$ tel que $\forall x\geq b,\ f(x)\leq \varepsilon < f(1)$. Sur le segment $[0,b],\ f$ étant continue, elle admet un maximum d'apr $\tilde{\mathbf{A}}$ "s le théoreme des bornes atteintes. Puisque $b\geq 1$, on a ce maximum supérieur ou égal $\tilde{\mathbf{A}}$ f(1). On en déduit que f admet donc un maximum sur \mathbb{R}_+ .

Puisque f(0) = 0, ce maximum n'est pas atteint en 0. On a donc le maximum atteint sur \mathbb{R}_+^* qui est un intervalle ouvert et on peut donc utiliser la condition nécessaire d'extremum local pour affirmer que f' s'annule en l'abscisse ou ce maximum est atteint.

Exercice 11.

1) Soit 0 < a < b. La fonction $x \mapsto \ln(x)$ est continue sur [a,b], dérivable sur]a,b[. D'après le théorème des accroissements finis, il existe $c \in]a,b[$ tel que $\frac{\ln(b)-\ln(a)}{b-a}=\frac{1}{c}$. On en déduit alors,

par stricte décroissance de la fonction $x \mapsto \frac{1}{x}$ que :

$$\frac{1}{b} < \frac{\ln(b) - \ln(a)}{b - a} < \frac{1}{a}.$$

On peut alors appliquer la fonction $x\mapsto \frac{1}{x}$ à ces inégalités puisqu'elle est strictement croissante et que tous les termes dans l'inégalité sont strictements positifs. On en déduit que :

$$a < \frac{b-a}{\ln(b) - \ln(a)} < b.$$

Soit $x \neq 1$. Si x > 1, on peut appliquer le premier encadrement trouvé en a = 1 et b = x. On trouve alors que $\frac{1}{x} < \frac{\ln(x)}{x-1} < 1$. On en déduit que :

$$1 - \frac{1}{x} < \ln(x) < x - 1.$$

Si 0 < x < 1, alors on peut appliquer les inégalités à a = x et b = 1. On a alors $1 < \frac{-\ln(x)}{1-x} < \frac{1}{x}$. On en déduit alors le même encadrement. On a bien montré l'encadrement voulu.

2) Si 0 < x < 1, alors, puisque la fonction $t \mapsto \arcsin(t)$ est continue sur [0,x] et dérivable sur]0,x[, on peut utiliser l'égalité des accroissements finis. On en déduit qu'il existe $c \in]0,x[$ tel que $\frac{\arcsin(x)}{x} = \frac{1}{\sqrt{1-c^2}}$. Or, la fonction $t \mapsto \frac{1}{\sqrt{1-t^2}}$ étant strictement croissante sur]0,1[, on en déduit qu'elle est majorée par $\frac{1}{\sqrt{1-x^2}}$. On a donc :

$$\arcsin(x) < \frac{x}{\sqrt{1-x^2}}.$$

3) Si 0 < x, la fonction $t \mapsto \arctan(t)$ étant continue sur [0,x] et dérivable sur]0,x[, on peut utiliser le théorème des accroissements finis. Il existe donc $c \in]0,x[$ tel que $\frac{\arctan(x)}{x} = \frac{1}{1+c^2}$. Puisque la fonction $t \mapsto \frac{1}{1+t^2}$ est strictement décroissante sur [0,x], on a donc, en passant le terme en x de l'autre côté que :

$$\frac{x}{1+x^2} < \arctan(x).$$

Exercice 12.

Posons $f: x \mapsto xe^{1/x}$. Cette fonction est infiniment dérivable sur \mathbb{R}_+^* . En particulier, si on fixe x > 0, on peut utiliser l'égalité des accroissements finis qui affirment qu'il existe $c_x \in]x, x+1[$ tel que :

$$\frac{f(x+1) - f(x)}{x+1 - x} = f'(c_x).$$

Puisque $c_x \in]x, x+1[$, on a $\lim_{x\to +\infty} c_x = +\infty$. Enfin, puisque $f'(c_x) = e^{1/c_x} - \frac{1}{c_x} e^{1/c_x}$, on a donc $\lim_{x\to +\infty} f'(c_x) = 1$ par composition de limites. On a donc :

$$\lim_{x \to +\infty} \frac{f(x+1) - f(x)}{x+1 - x} = \lim_{x \to +\infty} (x+1)e^{1/(x+1)} - xe^{1/x} = 1.$$

Exercice 14. f est continue sur le segment [a,b] donc elle y admet un minimum et un maximum. S'ils sont atteints sur l'intérieur du segment, alors d'après la condition nécessaire d'extremum local, la dérivée de f s'annule en ces points. Supposons donc que le maximum de f soit atteint au bord du segment.

Si le maximum de f est atteint en a, alors, pour x > a, on a $\frac{f(x) - f(a)}{x - a} \le 0$ (le numérateur est négatif et le dénominateur est positif). En passant à la limite quand x tend vers a, on a alors $f'(a) \le 0$: absurde!

Si le maximum de f est atteint en b, alors, pour x < b, on a $\frac{f(x) - f(b)}{x - b} \ge 0$ (le numérateur est négatif et le dénominateur est négatif). En passant à la limite quand x tend vers b, on a alors $f'(b) \ge 0$: absurde!

Le maximum est donc atteint sur l'intérieur du segment, d'où l'existence d'un $x_0 \in]a, b[$ tel que $f'(x_0) = 0$.

Exercice 15. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ dérivable en 0 telle que |f'(0)| < 1 et $\forall x \in]0,1], |f(x)| < x$.

Définissons la fonction
$$g: \left\{ \begin{array}{ll} [0,1] & \to & \mathbb{R} \\ x & \mapsto & \dfrac{f(x)}{x} \text{ si } x \in]0,1] \\ 0 & \mapsto & f'(0) \end{array} \right.$$

Cette fonction est continue sur]0,1] en tant que composée de fonctions continues et elle est continue en 0. En effet, puisque l'inégalité |f(x)| < x est vraie sur]0,1] et que f est continue, en passant à la limite quand x tend vers 0, on trouve par continuité de f que f(0) = 0. On en déduit alors, puisque f est dérivable en 0, que :

$$\lim_{x \to 0} \frac{f(x)}{x} = f'(0).$$

On en déduit que la fonction g est continue sur [0,1]. La fonction |g| est donc également continue sur le segment [0,1]. Elle admet donc un maximum sur ce segment, qui est atteint en $c \in [0,1]$. Notons k ce maximum. Si c=0, on a k=|f'(0)|<1. Si $c\in]0,1]$, on a k=|g(c)|<1 par hypothèse sur f. On en déduit dans tous les cas qu'il existe $k\in [0,1[$ tel que $\forall x\in]0,1[$, $|f(x)|\leq kx$. Cette inégalité étant toujours vraie en x=0 (on obtient $0\leq 0$), on en déduit qu'elle est valable quelque soit $x\in [0,1]$ ce qui montre bien la propriété voulue.

Exercice 17. Soit f définie par $f(x) = e^x$ si x < 0 et par $f(x) = ax^2 + bx + c$ sinon. Remarquons que sur $]-\infty, 0[$ et sur $]0, +\infty[$, f est de classe \mathcal{C}^{∞} . On en déduit, d'après le théorème de prolongement, qu'elle est prolongeable en une fonction de classe \mathcal{C}^2 sur \mathbb{R} ssi elle est prolongeable par continuité en 0 et que ses dérivées première et seconde admettent des limites finies en 0 (par valeurs distinctes). Ceci revient à admettre la même limite à gauche et à droite en 0. On trouve donc que f est \mathcal{C}^2 si et seulement si :

$$\begin{cases} 1 = c \\ 1 = b \\ 2a = 1 \end{cases}$$

La CNS demandée est donc c = 1, b = 1 et $a = \frac{1}{2}$. f n'est alors pas de classe \mathcal{C}^3 puisque sa dérivée troisième ne tend pas vers la même limite à gauche et à droite en 0 (respectivement 1 et 0).

Exercice 19. Posons pour $x \in \mathbb{R} \setminus \{-1,1\}$, $f(x) = \frac{1}{1-x^2}$. f est alors de classe \mathcal{C}^{∞} sur chacun des intervalles qui composent son domaine de définition (que l'on notera D_f dans la suite). De plus, pour tout $x \in D_f$, on a :

$$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)}$$
$$= \frac{1}{2} \cdot \left(\frac{1}{1-x} + \frac{1}{1+x}\right).$$

On peut alors calculer la dérivée n-ième de f en calculant la dérivée n-ième de chacun des termes

de la somme. On montre en effet par récurrence sur n que :

$$\left(\frac{1}{1-x}\right)^{(n)} = \frac{n!}{(1-x)^{n+1}} \text{ et } \left(\frac{1}{1+x}\right)^{(n)} = \frac{(-1)^n n!}{(1+x)^{n+1}}.$$

On en déduit que pour tout $x \in D$, $f^{(n)}(x) = \frac{n!}{2} \cdot \left(\frac{1}{(1-x)^{n+1}} + \frac{(-1)^n}{(1+x)^{n+1}}\right)$.

Exercice 20.

1) Remarquons que f_n est C^{∞} sur \mathbb{R}_+^* comme produit de fonctions infiniment dérivables. On procède par récurrence (dans toute la suite, x > 0). La propriété est vraie pour n = 1 car $f_1(x) = x \ln(x)$ et $f'_1(x) = \ln(x) + x \frac{1}{x} = \ln(x) + 1$.

Supposons la propriété vraie au rang $n \in \mathbb{N}*$ fixé. On a alors $f_{n+1} = x^{n+1} \ln(x) = x(x^n \ln(x)) = xf_n(x)$. En utilisant la formule de Leibniz, on en déduit que :

$$f_{n+1}^{(n+1)}(x) = \sum_{k=0}^{n+1} {n+1 \choose k} x^{(k)} f_n^{(n+1-k)}(x)$$
$$= x f_n^{(n+1)}(x) + (n+1) f_n^{(n)}(x) + 0.$$

On utilise alors l'hypothèse de récurrence pour obtenir :

$$f_{n+1}^{(n+1)}(x) = xn!\frac{1}{x} + (n+1)n!(\ln(x) + \sum_{k=1}^{n} \frac{1}{k}) = (n+1)!(\ln(x) + \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1})$$

La propriété est donc vraie au rang n+1.

2) D'après la question précédente, on a $f_n^{(n)}(1) = n! \sum_{k=1}^n \frac{1}{k}$. On va à présent calculer $f_n^{(n)}$ avec la formule de Leibniz. On a pour x > 0:

$$f_n^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} (\ln^{(k)}(x)) (x^n)^{(n-k)}$$

$$= n! \ln(x) + \sum_{k=1}^n \binom{n}{k} \left(\frac{1}{x}\right)^{(k-1)} \frac{n!}{k!} x^k$$

$$= n! \ln(x) + \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k-1} (k-1)!}{x^k} \times \frac{n!}{k!} x^k$$

$$= n! \ln(x) + \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k-1}}{k} \times n!.$$

En évaluant en 1 et en divisant par n!, on obtient alors l'égalité demandée!

Exercice 21. Soient a et b deux réels et $f(x) = (x-a)^n(x-b)^n$. Remarquons tout d'abord que f est de classe \mathcal{C}^{∞} en tant que produit de fonction de classes \mathcal{C}^{∞} . On va utiliser la formule de Leibniz pour calculer $f^{(n)}$. Soit $k \in [0,n]$. On sait que $(x^n)^{(k)} = \frac{n!}{(n-k)!}x^{n-k}$. On en déduit que $((x-a)^n)^{(k)} = \frac{n!}{(n-k)!}(x-a)^{n-k}$. De même, on a :

$$((x-b)^n)^{(n-k)} = \frac{n!}{(n-(n-k))!}(x-b)^{n-(n-k)} = \frac{n!}{k!}(x-b)^k.$$

On en déduit d'après la formule de Leibniz que :

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} (x-a)^{n-k} \cdot \frac{n!}{k!} (x-b)^{k}$$
$$= n! \sum_{k=0}^{n} \binom{n}{k}^{2} (x-a)^{n-k} (x-b)^{k}.$$

On remarque qu'en a = b = 0, on obtient :

$$f^{(n)}(x) = n! \sum_{k=0}^{n} {n \choose k}^2 x^{n-k} x^k$$
$$= \left(n! \sum_{k=0}^{n} {n \choose k}^2\right) x^n.$$

Or, quand a=b=0, on a $f(x)=x^{2n}$. On peut donc calculer sa dérivée n-ième directement. On a :

$$f^{(n)}(x) = \frac{(2n)!}{n!} x^n.$$

En évaluant en x=1, on trouve alors que $n! \sum_{k=0}^{n} \binom{n}{k}^2 = \frac{(2n)!}{n!}$. On a donc :

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$