PO-CHUN CHIEN

RESEARCH INTERESTS

Formal Verification: Soft/Hard-ware Model Checking, QBF/SAT Solving, Automata Theory Electronic Design Automation (EDA): Logic Synthesis & Optimization, Computation Models Machine Learning (ML): Decision Tree, Deep Learning (DL), Machine Comprehension

SKILLS

Programming: proficient in C/C++, Python, VerilogHDL, Cadence Skill, MATLAB Language: Mandarin Chinese, English (IELTS 7.5, TOEFL 103, GRE 155/170/4.0)

EDUCATION

Received both B.S. and M.S. degree from **National Taiwan University** (NTU). Taipei, Taiwan

M.S. in Graduate Institute of Electronics Engineering (GIEE)

Sep. 2018 - June 2020

- · Major in EDA, instructed by Prof. Jie-Hong Roland Jiang of ALCom Lab
- · Overall GPA: 4.22 / 4.30

B.S. in Department of Electrical Engineering

Sep. 2015 - June 2018

· Overall GPA: 4.16 / 4.30

ACADEMIC/CONTEST AWARDS

2020 Institute of Information & Computing Machinery Master's Thesis Exce	ellence Award	Mar. 2021
2020 Lam Research Master's Thesis Excellence Award at NTU		Nov. 2020
1 st place in the 2020 Chinese Institute of Electrical Engineering Thesis Aw	ard	Oct. 2020
1 st place in 2019 ICCAD CADathlon		Nov. 2019
1 st place in Formosa Grand Challenge "Taking with AI"		Mar. 2019
GIEE scholarship * 4 semesters	Sep. 2018	- June 2020
TSMC-NTU scholarship * 2 semesters	Sep. 2017	- June 2018
NTU Presidential Award * 2 semesters	Sep. 2016	- June 2017

PUBLICATIONS

- · S. Rai et al., Logic Synthesis Meets Machine Learning: Trading Exactness for Generalization, In Proc. of the Design, Automation and Test in Europe Conference (DATE), 2021.
- · P.-C. Chien and J.-H. R. Jiang. Time Multiplexing via Circuit Folding. In Proc. of the Design Automation Conference (DAC), 2020.
- · P.-C. Chien. Circuit Folding: From Combinational to Sequential Circuits. Master's Thesis, National Taiwan University, 2020.
- · P.-C. Chien and J.-H. R. Jiang. Time-frame Folding: Back to the Sequentiality. In Proc. of the International Conference of Computer-Aided Design (ICCAD), 2019.

WORK EXPERIENCE

Research Assistant in ALCom Lab at NTU	July 2020 - present
Teaching Assistant of "Introduction to EDA" at NTU	Spring 2019 & 2020
Teaching Assistant of "DL for Human Language Processing" at NTU	Fall 2018
Teaching Assistant of "Advanced Deep Learning" at NTU	Spring 2018
Summer Intern at MediaTek ADCT/PDK Dept.	Hsinchu, July - Aug. 2018

Compatible Equivalence Checking of X-valued Circuits

July 2020 - present

- · Verify the equivalence of 2 X-valued (ternary logic) netlists, with the X-values serving as don't cares.
- · Construct the miter circuit with dual-rail encoding, and adopt various optimization techniques.
- · Identify and utilize the compatible equivalence relations of internal signals to guide the SAT solver.

Machine Learning + Logic Synthesis

May -Dec. 2020

- · Learn an unknown Boolean function from a training set consisting of input-output pairs.
- The learned function is in the form of And-Inverter Graph with strict hardware cost (≤ 5000 gates).
- · Methods: decision tree with fringe-feature detection, and neural network with pruning and quantization.
- · Our team achieved the highest testing accuracy in most cases in the IWLS 2020 Programming Contest.

Time Multiplexing (TM) via Circuit Folding

Nov. 2019 - July 2020

- · The research manuscript was accepted and published by **DAC 2020**.
- · TM is an important technique to overcome the I/O bandwidth bottleneck of FPGAs.
- · Our new formulation achieves TM through structural and functional circuit folding at the logic level.
- · Experiments show the effectiveness of the structural method and improved optimality of the functional method on look-up-table and flip-flop usage.

Time-Frame Folding (TFF): Back to the Sequentiality

Sep. 2018 - Nov. 2019

- · The research manuscript was accepted and published by ICCAD 2019.
- · TFF is the reverse operation of time-frame expansion. It constructs a sequential circuit from an k-iterative combinational circuit.
- \cdot The constructed circuit is equivalent to the original circuit within the bounded k time-frames.
- · Empirical evaluation demonstrates its ability in circuit size compaction and suggests potential use in testbench generation and bounded strategy generalization.

Formosa Grand Challenge "Taking with AI"

June 2018 - Mar. 2019

- · A nationwide ML competition hosted by Taiwan Ministry of Science and Technology.
- · The goal is to build a conversational AI agent that understands Mandarin Chinese.
- · Our team ranked 1st in the competition and won the final prize.

Deep Neural Network using Stochastic Computing

Sep. 2017 - June 2018

- · Implement Multiply-Accumulate (MAC) and various operations via stochastic computation.
- · Build a neural network with lower hardware cost in terms of power consumption area-delay product on FPGA boards (Altera DE10-nano).
- · Regional Finalist in Greater China of Innovate FPGA 2018.

RELATED COURSE

Verif. SoC Verification, Logic Synthesis & Verification, Algorithms

EDA VLSI Testing, Physical Design, Data Structure & Programming

ML & have it deep and structured, Advanced DL, DL for Human Language Processing

Others Advanced Computer Architecture, Digital Signal Processing, Introduction to Cryptography

PERSONAL TRAITS

Highly motivated and eager to learn new things.

Capable of working as an individual as well as in groups.

Hard-working and good at time management.