Calcul Différentiel et Intégral

Examen final - lundi 13 janvier 2014

Durée: 2h

Aucun document (ni calculatrice, ni téléphone, etc.) n'est autorisé. On accordera un soin particulier à la rédaction. Il n'est pas nécessaire de traiter le sujet dans l'ordre, mais veillez à toujours bien préciser le numéro de la question à laquelle vous répondez.

Exercice 1. On considère l'application

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x, y, z) & \mapsto & \left(xye^z, \cos(yz) \right) \end{array} \right.$$

- **1.** Justifier que f est de classe C^{∞} sur \mathbb{R}^3 .
- **2.** Donner la différentielle de f au point (1,2,3).

Exercice 2. On considère sur \mathbb{R}^2 la forme différentielle $\omega = xy \, dx + y \, dy$. On considère les points A = (-1,0), B = (1,0), C = (0,1), et Γ le triangle ABC orienté dans le sens trigonométrique.

- 1. Calculer l'intégrale $\int_{\Gamma} \omega$
 - a. directement,
 - b. puis en utilisant la formule de Green-Riemann.
- **2.** La forme ω est-elle exacte? Si oui, en donner une primitive.

Exercice 3. Déterminer les extréma locaux des fonctions suivantes :

- 1. $f:(x,y)\mapsto 2x+y-x^4-y^4$,
- **2.** $g:(x,y)\mapsto \exp\left(\left(2x+y-x^4-y^4\right)^3\right)$, **3.** $h:(x,y)\mapsto 1-\sqrt{x^2+y^2}$.

Exercice 4. On considère dans \mathbb{R}^3 l'ensemble E d'équation

$$((x^2 - 1)^2 + y^2)^2 + z^2 = \frac{1}{4}.$$

- 1. L'ensemble E est-il une sous-variété de \mathbb{R}^3 ? Si oui, le démontrer et préciser la dimension. Si non, on ne demande pas de justification.
- **2.** Même question pour $E \cap P$, où P est le plan d'équation z = 0.

Exercice 5. Soient a et f deux fonctions de classe C^1 de \mathbb{R} dans \mathbb{R} . On s'intéresse à l'équation aux dérivées partielles (équation de Burgers)

$$a(u)\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0 \tag{B}$$

avec condition initiale

$$u(x,0) = f(x). (C.I.)$$

L'inconnue est la fonction $u:(x,t)\mapsto u(x,t).$

1. Montrer que l'équation

$$u = f(x - ta(u))$$

définit localement (autour de $(x_0,0)$ pour tout $x_0 \in \mathbb{R}$) une fonction u des variables (x,t) qui est solution du problème (B)-(C.I.).

 ${\bf 2.}$ Donner une solution (sur un domaine à préciser) du problème

$$\begin{cases} u \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0, \\ u(x,0) = 1 - x. \end{cases}$$

Corrigé

Exercice 1. 1. L'application $(x,y,z)\mapsto xye^z$ est de classe C^∞ comme produit de fonctions usuelles C^∞ . De même $(x,y,z)\mapsto yz$ est C^∞ et donc $(x,y,z)\mapsto\cos(yz)$ est C^∞ comme composée de fonctions C^∞ . Cela prouve que f est de classe C^∞ sur \mathbb{R}^3 .

2. Pour tout $(x, y, z) \in \mathbb{R}^3$ on a

$$\frac{\partial f}{\partial x}(x,y,z) = (ye^z,0), \quad \frac{\partial f}{\partial y}(x,y,z) = (xe^z,-z\sin(yz)), \quad \frac{\partial f}{\partial z}(x,y,z) = (xye^z,-y\sin(yz)).$$

En particulier, la differentielle de f au point (1,2,3) est l'application linéaire

$$(u, v, w) \in \mathbb{R}^3 \mapsto (2e^3u + e^3v + 2e^3w, 3\sin(6)v, 2\sin(6)w) \in \mathbb{R}^2.$$

Exercice 2. 1. a. On utilise les paramétrages suivants :

$$\gamma_1: t \in [-1, 1] \mapsto (t, 0),$$
 $\gamma_2: t \in [0, 1] \mapsto (1 - t, t),$
 $\gamma_3: t \in [0, 1] \mapsto (-t, 1 - t).$

On a alors

$$\int_{\Gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega + \int_{\gamma_3} \omega$$

$$= 0 + \int_0^1 \left(-t(1-t) + t \right) dt + \int_0^1 \left(t(1-t) - (1-t) \right) dt$$

$$= 0.$$

b. On a $d\omega = -x\,dx \wedge dy$ Si on note T le triangle ABC on a d'après la formule de Green-Riemann

$$\int_{\Gamma} \omega = \int_{\partial T} \omega = -\iint_{T} x \, dx \, dy = -\int_{u=0}^{1} \left(\int_{x=-1+u}^{1-y} x \, dx \right) dy = 0.$$

2. On a vu à la question précédente que $d\omega \neq 0$, ce qui signifie que la forme ω n'est pas fermée. Elle ne peut donc pas être exacte car une forme exacte (de classe C^1) est toujours fermée.

Exercice 3. 1. La fonction f est polynômiale donc de classe C^{∞} sur \mathbb{R}^2 . Pour tout $(x, y) \in \mathbb{R}^2$ on a

$$\nabla f(x,y) = (0,0) \iff \begin{cases} 2 - 4x^3 = 0 \\ 1 - 4y^3 = 0 \end{cases} \iff \begin{cases} x = 2^{-\frac{1}{3}} \\ y = 4^{-\frac{1}{3}} \end{cases}$$

Ainsi f admet un unique point critique, au point $\left(2^{-\frac{1}{3}},4^{-\frac{1}{3}}\right)$. Pour tout $(x,y)\in\mathbb{R}^2$ on a d'autre part

det Hess
$$f(x,y) = \begin{vmatrix} -12x^2 & 0\\ 0 & -12y^2 \end{vmatrix} = 144x^2y^2$$
.

En particulier

$$\det \operatorname{Hess} f(2^{-\frac{1}{3}}, 4^{-\frac{1}{3}}) > 0.$$

Cela prouve que f admet un extremum local en $(2^{-\frac{1}{3}}, 4^{-\frac{1}{3}})$. Puisque

Tr Hess
$$f(2^{-\frac{1}{3}}, 4^{-\frac{1}{3}}) < 0$$
,

f admet un maximum local en ce point (et c'est le seul extremum local de f).

2. On a $g = \varphi \circ f$ où

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & \exp(t^3) \end{array} \right.$$

La fonction φ est strictement croissante (comme composée de deux fonctions strictement croissantes), donc g admet des extrema locaux aux mêmes points que f, et ils sont de même nature. Ainsi g admet un unique extremum local, il s'agit d'un maximum au point $(2^{-\frac{1}{3}}, 4^{-\frac{1}{3}})$. 3. La fonction h est de classe C^{∞} sur $\mathbb{R}^2 \setminus \{(0,0)\}$ comme composée de la fonction polynômiale

$$\left\{ \begin{array}{ccc} \mathbb{R}^2 \setminus \{(0,0)\} & \to & \mathbb{R}_+^* \\ (x,y) & \mapsto & x^2 + y^2 \end{array} \right.$$

et la fonction racine qui est de classe C^{∞} sur \mathbb{R}_{+}^{*} . En outre pour tout $(x,y) \in \mathbb{R}^{2} \setminus \{(0,0)\}$ on a

$$\nabla h(x,y) = \left(-\frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}}\right) \neq (0,0).$$

Cela prouve que h n'admet pas de point critique et donc pas d'extremum local sur $\mathbb{R}^2 \setminus \{(0,0)\}$. D'autre part, pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ on a

$$h(x, y) < 1 = h(0, 0).$$

Cela prouve que h admet un maximum global strict (en particulier c'est un maximum local) en (0,0).

Exercice 4. 1. Pour $(x, y, z) \in \mathbb{R}^3$ on note

$$F(x, y, z) = ((x^2 - 1)^2 + y^2)^2 + z^2 - \frac{1}{4} \in \mathbb{R}.$$

F est polynômiale donc de classe C^{∞} sur \mathbb{R}^3 et pour tout $(x,y,z)\in\mathbb{R}^3$ on a

$$(x, y, z) \in E \iff F(x, y, z) = 0.$$

Pour tout $(x, y, z) \in \mathbb{R}^3$ on a

$$\nabla F(x, y, z) = (8x(x^2 - 1)((x^2 - 1)^2 + y^2), 4y((x^2 - 1)^2 + y^2), 2z)$$

Ce gradient ne s'annule qu'aux points (0,0,0), (1,0,0) et (-1,0,0), qui ne sont pas des points de E car F(1,0,0)=F(-1,0,0)=-1/4 et F(0,0,0)=3/4. Ainsi, en tout point de E la différentielle de F est de rang maximal 1, ce qui prouve que E est une sous-variété de dimension 3-1=2 dans \mathbb{R}^3 .

2. Pour $(x, y, z) \in \mathbb{R}^3$ on note

$$G(x, y, z) = \left(\frac{(x^2 - 1)^2 + y^2}{z}\right)^2 + z^2 - \frac{1}{4} \in \mathbb{R}^2.$$

G est polynômiale donc de classe C^{∞} sur \mathbb{R}^3 et pour tout $(x,y,z)\in\mathbb{R}^3$ on a

$$(x, y, z) \in E \cap P \iff G(x, y, z) = 0.$$

Pour tout $(x, y, z) \in \mathbb{R}^3$ on a

$$\operatorname{Jac} G(x, y, z) = \begin{pmatrix} 8x(x^2 - 1)\left((x^2 - 1)^2 + y^2\right) & 4y\left((x^2 - 1)^2 + y^2\right) & 2z\\ 0 & 0 & 1 \end{pmatrix}$$

Ce jacobien est de rang 2 partout sauf aux points de la forme (0,0,z), (1,0,z) et (-1,0,z) pour $z \in \mathbb{R}$. Aucun de ces points n'appartient à $E \cap P$ (c'est clair si $z \neq 0$, et si z = 0

on retrouve les trois points de la question précédente), donc $E \cap P$ est une sous-variété de dimension 3-2=1 dans \mathbb{R}^3 .

Exercice 5. 1. Pour $(x, t, v) \in \mathbb{R}^3$ on note

$$F(x,t,v) = f(x - ta(v)) - v.$$

F ainsi définie est de classe C^1 et pour tout $(x,t,v) \in \mathbb{R}^3$ on a

$$\nabla F(x, t, v) = (f'(x - ta(v)), -a(v)f'(x - ta(v)), -ta'(v)f'(x - ta(v)) - 1).$$

Soit $x_0 \in \mathbb{R}$. On a en particulier $F(x_0, 0, f(x_0)) = 0$ et

$$\nabla F(x_0, 0, f(x_0)) = (f'(x), -a(f(x_0))f'(x), -1) \neq 0.$$

D'après le théorème des fonctions implicites, il existe des voisinages Ω_x de x_0 , Ω_t de 0 et \mathcal{V} de $f(x_0)$ dans \mathbb{R} , ainsi qu'une fonction u de classe C^1 de $\Omega_x \times \Omega_t$ dans \mathcal{V} tels que pour tous $(x,t,v) \in \Omega_x \times \Omega_t \times \mathcal{V}$ on a

$$F(x,t,v) = 0 \iff v = u(x,t).$$

Montrons que la fonction u ainsi définie est solution sur $\Omega_x \times \Omega_t$ du problème (B)-(C.I.). Pour tout $(x,t) \in \Omega_x \times \Omega_t$ on a

$$F(x, t, u(x, t)) = 0$$

donc en dérivant par rapport à x et t on obtient

$$\partial_x F(x, t, u(x, t)) + \partial_v F(x, t, u(x, t)) \partial_x u(x, t) = 0$$

et

$$\partial_t F(x,t,u(x,t)) + \partial_v F(x,t,u(x,t)) \partial_t u(x,t) = 0.$$

On sait que $\partial_z F(x_0,0,u(x_0,0)) \neq 0$ donc par continuité, quitte à réduire Ω_x et Ω_t , on peut supposer que c'est encore le cas pour tout $(x,t) \in \Omega_x \times \Omega_t$. Pour tout $(x,t) \in \Omega_x \times \Omega_t$ on a alors

$$a(u(x,t))\partial_x u(x,t) + \partial_t u(x,t)$$

$$= -\frac{1}{\partial_v F(x,t,u(x,t))} \left(a(u(x,t))\partial_x F(x,t,u(x,t)) + \partial_t F(x,t,u(x,t)) \right)$$

$$= -\frac{1}{\partial_v F(x,t,u(x,t))} \left(a(u(x,t))f'(x - ta(u(x,t)) - a(u(x,t))f'(x - ta(u(x,t))) \right)$$

$$= 0.$$

Cela prouve que u vérifie (B) sur $\Omega_x \times \Omega_t$. En outre il est clair que pour tout $x \in \Omega_x$ on a bien

$$u(x,0) = f(x - 0 \times a(u(x,0))) = f(x),$$

donc (C.I.) est également vérifiée.

2. Dans ce cas particulier, l'équation F(x,t,u)=0, s'écrit

$$1 - (1 - tu) - u = 0,$$

dont on tire

$$u = \frac{1-x}{1-t}.$$

Il est facile de vérifier que la fonction $(x,t) \mapsto u(x,t) = \frac{1-x}{1-t}$ est bien solution du problème (B)-(C.I.) sur $\mathbb{R} \times (\mathbb{R} \setminus \{1\})$.