

II Protocollo HDLC

HDLC High-level Data Link Control

- □ Standard ISO degli anni 60
- Caratteristiche:
 - Orientato al bit
 - Può operare in molti modi differenti e con diversi meccanismi di controllo d'errore e di flusso
 - Half-duplex o full-duplex
 - Master-slave o peer-to-peer

Livello di collegamento dati

- ☐ Tipo di stazione
 - Primaria: responsabile del collegamento, emette comandi
 - Secondaria: asservita alla primaria, emette risposte
 - Combinata: emette sia comandi, sia risposte
- Configurazione del collegamento
 - Sbilanciata: 1 primaria, ≥1 secondarie
 - Bilanciata: 2 stazioni combinate
- Modi di trasferimento
 - Asynchronous Balanced Mode (ABM): configurazione bilanciata
 - 2 stazioni combinate
 - ☐ Trasmissione di tipo full-duplex
 - Normal Response Mode (NRM): configurazione sbilanciata
 - □ 1 stazione primaria e almeno 1 stazione secondaria
 - ☐ Trasmissione di tipo half-duplex
 - Asynchronous Response Mode (ARM): configurazione sbilanciata
 - □ Come NRM ma il secondario può iniziare la trasmissione senza permesso

HDLC: Modalità di funzionamento

- □ Normal Response Mode (NRM)
 - Una stazione primaria è collegata a una o più stazioni secondarie in modalità half-duplex.
 - Solo la stazione primaria può inviare i comandi e le stazioni secondarie trasmettono solo a seguito di un permesso (polling) esplicito inviato dalla stazione primaria: half-duplex

HDLC: Modalità di funzionamento

- □ Asynchronous Response Mode (ARM)
 - Anche in questo caso come nel NRM il colloquio è di tipo sbilanciato, ma la stazione secondaria ha la possibilità di iniziare una trasmissione senza il permesso esplicito della stazione primaria iniziando così un colloquio full-duplex. (poco usata)

HDLC: Modalità di funzionamento

- □ *Asynchronous Balanced Mode* (ABM)
 - Fornisce una modalità di funzionamento bilanciato su configurazioni punto-punto tra stazioni combinate che possono, in modalità full-duplex, inviare informazioni in modo indipendente ed asincrono.

Trama HDLC:Flag

1 byte					1 byte
Flag	Address	Control	Information	FCS	Flag
F	A	C	Info		F

- □ Flag: 01111110
- Uso del bit stuffing
- Di solito in caso di mancanza di informazione si esegue l'invio continuo dei flag

Trama HDLC: Indirizzo

- □ Normalmente di 8 bit, ma può essere esteso a *n* byte (modalità EXTENDED)
- L'ultimo bit di ogni byte è usato per indicare se segue un ulteriore byte del campo A

Trama HDLC: indirizzo

1	1 ÷ n				1
Flag	Address	Control	Information	Frame Check Sequence FCS	Flag
F	A	C	Info		F

- L'indirizzo contenuto può essere quello della stazione destinataria o quello della stazione sorgente
 - Nelle modalità sbilanciate (NRM, ARM) è sempre quello della stazione secondaria
 - Nella modalità ABM è quello della stazione destinataria

Trama HDLC: Campo di controllo

SN - Send Number

RN - Request Number

P/F - Polling bit

SS - indicatore trame di supervisione

M - Modificatore di funzione

Trame di informazione (I)

- Sono trame numerate per la trasmissione di informazione d'utente contenuta nel campo Info
- Consentono il riscontro delle trame ricevute in modalità piggybacking
- □ Consentono il polling (bit P alzato)
- ... e la chiusura (bit F (Final) alzato) della controparte

Trame di supervisione (S)

- □ Sono trame numerate per il controllo dell'invio del flusso di informazione: ACK, NAK e controllo di flusso.
- □ Usate per ACK e NAK quando una stazione non ha nulla da trasmettere
- □ Non c'è il campo Info

Comandi		SS
RR	Receiver Ready	00
RNR	Receiver Not Ready	10
REJ	Reject	01
SRJ	Selective Reject	11

Trame di supervisione (S)

- RR (Receiver Ready), è normalmente usato come ACK e il campo RN contiene la prossima trama attesa (riscontro delle trame fino a RN-1)
- RNR (Receiver Not Ready), serve a bloccare l'invio di trame da parte dell'altra stazione (controllo di flusso) e, contemporaneamente a riscontare le trame fino a RN-1
- □ REJ (Reject), serve a richiedere la ritrasmissione delle trame da RN in avanti e, contemporaneamente, a riscontrare le trame fino a RN-1 (NAK)
- ☐ SREJ (Selective Reject), è usato per richiedere la ritrasmissione della sola trama con numero RN (NAK)

Trame non numerate (U)

1 8 9 16

Non numerata 1 1 MM P/F MMM X

- □ Sono usate per l'invio di informazione di controllo (ad esempio per l'instaurazione delle connessioni) o per l'invio di informazione in modalità senza connessione.
- Bit MM indicano il tipo di trama

Trame non numerate (U)

Utilizzate per l'instaurazione e il controllo della connessione

Comandi	Risposte
SNRM Set Normal Response Mode SARM Set Asynchronous Response Mode SABM Set Asynchronous balanced Mode SNRME SNRM estesa SARME SARM estesa SABME SABM estesa SIM Set Initialization Mode DISC Disconnect	UA Unnumbered Ack DM Disconnect RIM Request Inizialization Mode
RSET Reset	FRMR Frame
XID Exchange Identification	XID Exchange Identification RD RejectRequest Disconnect

Utilizzate per scambio di informazione

UI Unnumbered Information UP Unnumbered Poll	UI Unnumbered Information
--	---------------------------

Trama HDLC: campo di informazione

1	1 ÷ n	1 ÷ 2	≥ 0		1
Flag	Address	Control	Information	Frame Check Sequence FCS	Flag
F	A	C	Info		F

- Contiene l'informazione d'utente (dei livelli superiori)
- □ Può non essere presente
 - E' presente solo nella trame I e nella trame UI usate per trasferimento di informazione in modalità connectionless
- Lunghezza variabile

Trama HDLC: campo di parità

1	1 ÷ n	1 ÷ 2	≥ 0	2	1
Flag	Address	Control	Information	Frame Check Sequence FCS	Flag
F	A	C	Info		F

□ Contiene il codice rivelatore d'errore usato per riconoscere le trame errate

HDLC Funzioni

- □ Frame check sequence: verifica la correttezza degli altri campi eccetto i flags
 - \blacksquare Campo da proteggere P(X) a n bit
 - Campo FCS a k bit
 - Trama trasmessa P'(X) a n+k bit
 - Rivelazione di errore basata sull'aritmetica modulo 2

•
$$\frac{P(X) \cdot X^{k}}{D(X)} = Q(X) + \frac{R(X)}{D(X)}$$
 CCITT-ITU:
Trama TX • $P'(X) = P(X) \cdot X^{k} + R(X)$ D(X) = $X^{16} + X^{12} + X^{5} + 1$ con $K = 16$
Trama RX • $\frac{P'(X)}{D(X)} = \frac{P(X) \cdot X^{k}}{D(X)} + \frac{R(X)}{D(X)} = Q(X) + 2\frac{R(X)}{D(X)} = Q(X)$ USA:
D(X) = $X^{16} + X^{15} + X^{2} + 1$ con $K = 16$

- Errore rivelato se la divisione in ricezione produce resto ≠ 0
- Protezione da
 - Errori su singolo bit se D(X) ha almeno due termini
 - Errori su un numero dispari di bit se D(X) è esprimibile come fattore di X +1
 - □ Errori a burst con lunghezza di burst < k</p>

Instaurazione della connessione: modalità NRM

Modalità NRM (half-duplex)

Esempi di trasferimento dell'informazione: modalità NRM

Instaurazione della connessione modalità ABM

Esempi di trasferimento dell'informazione: modalità ABM

Modalità full-duplex

Esempi di trasferimento dell'informazione: modalità ABM

Limitazioni di HDLC

- Non presenta identificatore di sessione
 - No sessioni multiple tra due endpoints
- Non presenta identificatori dei SAP per il livello superiore
 - Non consente la multiplazione
- Non consente di identificare la coppia mittente-destinatario
 - Problemi di sicurezza

Il protocollo PPP (Point to Point Protocol)

□ E' nato in ambito IETF per connessioni puntopunto su collegamenti senza errori e per consentire procedure di ingresso in Internet

Il PPP su modem

□ Viene anche usato con connessioni fisiche ottenute attraverso i modem e la rete telefonica

II PPP su ADSL

☐ Viene anche usato per accesso ADSL con router in modalità MPOA

Il protocollo PPP

- E' in realtà un insieme di protocolli diversi per supporto ai protocolli di livello 3 ed effettuare la negoziazione degli indirizzi IP e l'autenticazione
- ☐ Fanno uso di incapsulamento HDLC, utilizzato solo come tramatura
- Con aggiunta di un livello (header) per multiplare vari flussi di livello superiore
- La gestione della linea è effettuata da un protocollo diverso da HDLC: LCP

PPP: architettura protocollare

PPP-Trama e Incapsulamento

- ☐ Il campo address contiene (praticamente) sempre 11111111
- □ Il campo Control contiene sempre 11000000 ovvero l'indicazione di trama UI (datagram e niente recupero d'errore)
- Information: campo protocol + PDU degli altri protocolli

PPP-Link Control Protocol

Usa i seguenti messaggi di comando

- 1. Configure-Request
- 2. Configure-ACK
- 3. Configure-NAK
- 4. Configure-Reject
- 5. Terminate-Request
- 6. Terminate-ACK

- 7. Code-Reject
- 8. Protocol-Reject
- 9. Echo-Request
- 10. Echo-Replay
- 11. Discard-Request

PPP: uso dei diversi protocolli

PPP: protocolli ausiliari

Dopo la connessione si hanno le seguenti possibilità

c023 Password Authentication Protocol

c025 Link Quality Report

c223 Challenge Handshake Authentication Protocol

poi si passa ai NCP per i protocolli di livello 3

NCP: IP Control Protocol (IPCP)

- □ E' il protocollo NCP che gestisce il trasporto e il controllo di IP
- □ Il protocollo di controllo stabilisce una connessione in cui si decide
 - L'assegnazione dinamica dell'indirizzo IP
 - ☐ (Opzionalmente) L'assegnamento del DNS server
 - □ Il tipo di compressione
- □ Il protocollo di trasporto incapsulato:
 - 0021 IP non compresso
 - □ 002d TCP/IP compresso
 - □ 002f TCP non compresso