

Supported Functions

This is a list of TeX functions supported by KaTeX. It is sorted into logical groups.

There is a similar Support Table, sorted alphabetically, that lists both supported and unsupported functions.

Accents

a' a'	$ ilde{a}$ \tilde{a}	\mathring{g} \mathring{g}
$a^{\prime\prime}$ a''	\widetilde{ac} \widetilde{ac}	\widehat{AB} \overgroup{AB}
a' a^{\prime}	\widehat{AB} \utilde{AB}	AB \undergroup{AB}
$cute\{a\}$	$ec{F}$ \vec{F}	$\overrightarrow{\overline{AB}}$ \Overrightarrow{AB}
$ar{y}$ \bar{y}	\overleftarrow{AB} \overleftarrow{AB}	\overrightarrow{AB} \overrightarrow{AB}
$reve{a}$ \breve{a}	$AB \setminus AB$	$AB \longrightarrow \{AB\}$
\check{a} \check{a}	\overline{ac} \overleftharpoon{ac}	\overrightarrow{ac} \overrightharpoon{ac}
\dot{a} \dot{a}	\overleftrightarrow{AB} \overleftrightarrow{AB}	\widehat{AB} \overbrace{AB}
\ddot{a} \ddot{a}	$\stackrel{AB}{\longleftrightarrow}$ \underleftrightarrow{AB}	AB \underbrace{AB}
\grave{a} \grave{a}	\overline{AB} \overline{AB}	\overrightarrow{AB} \overlinesegment{AB}
$\hat{ heta}$ \hat{\theta}	\underline{AB} \underline{AB}	AB \underlinesegment{AB}
\widehat{ac} \widehat{ac}	\widecheck{ac} \widecheck{ac}	\underline{X} \underbar{X}

See also letters and unicode.

Delimiters

()()	() \lparen \rparen		\langle \langle \rceil	↑ \uparrow
[][]	[] \lbrack \rbrack		\lfloor \rfloor	↓ \downarrow
{} \{ \}	{} \lbrace \rbrace	∬ ∏	\lmoustache \rmoustache	↓ \updownarrow
()()	<pre>\\angle \rangle</pre>	() ()	() \lgroup \rgroup	↑ \Uparrow
	\vert	Г Л [Г]	\ulcorner \urcorner	↓ \Downarrow
	\Vert	LJ L J	\llcorner	↑ \Updownarrow
\lvert	\lVert \rVert	\left.	\right.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
<pre>\lang \rang</pre>	< > \lt		[]\llbracket\rrbracket	{[]} \lBrace \rBrace

Delimiter Sizing

(AB) \left(\LARGE{AB}\right)

Environments

$egin{array}{ccc} a & b & & & & & & & & & & & & & & & & &$	<pre>\begin{matrix} a & b \\ c & d \end{matrix}</pre>	$egin{array}{ccc} a & b & \ c & d & \end{array}$	<pre>\begin{array}{cc} a & b \\ c & d \end{array}</pre>
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$	<pre>\begin{pmatrix} a & b \\ c & d \end{pmatrix}</pre>	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	<pre>\begin{bmatrix} a & b \\ c & d \end{bmatrix}</pre>
$egin{array}{c c} a & b \ c & d \end{array}$	<pre>\begin{vmatrix} a & b \\ c & d \end{vmatrix}</pre>	$egin{array}{c c} a & b \ c & d \ \end{array}$	<pre>\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}</pre>
$ \left\{ \begin{array}{cc} a & b \\ c & d \end{array} \right\} $	<pre>\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}</pre>	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	<pre>\def\arraystretch{1.5} \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array}</pre>
$x = $ $\begin{cases} a & \text{if } b \\ c & \text{if } d \end{cases}$	<pre>x = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases}</pre>	$\left. egin{array}{c} a & ext{if } b \ c & ext{if } d \end{array} \right\} \Rightarrow \cdots$	<pre>\begin{rcases} a &\text{if } b \\ c &\text{if } d \end{rcases}⇒</pre>

KATEX			Q	
Try	Docs	v0.16.0	Users	GitHub
	sma±±matr	TX}	suba	array}}

The auto-render extension will render the following environments even if they are not inside math delimiters such as \$\$...\$\$. They are display-mode only.

a = b + c $= e + f $ (1)	<pre>\begin{equation} \begin{split} a &=b+c\\ &=e+f \end{split} \end{equation}</pre>	a=b+c (2) $d+e=f$ (3)	<pre>ali a&=b+c \' d+e&=f \end{align</pre>
$a=b \qquad (4) \ e=b+c (5)$	<pre>\begin{gather} a=b \\ e=b+c \end{gather}</pre>	10x + 3y = 2 (6) 3x + 13y = 4 (7)	ali 10&x+&3&\\ 3&x+&13&\\ align
$egin{array}{cccc} A & \stackrel{a}{} & B & & & \\ b & & & & & & \uparrow^c & & \\ C & = & & & D & & \end{array}$	<pre>\begin{CD} A @>a>> B \\ @VbVV @AACA \\ C @= D \end{CD}</pre>		

Other KaTeX Environments

Environments	How they differ from those shown above
darray , dcases , drcases	apply displaystyle
<pre>matrix* , pmatrix* , bmatrix* Bmatrix* , vmatrix* ,</pre>	take an optional argument to set column alignment, as in \begin{matrix*}[r]
<pre>equation* , gather* align* , alignat*</pre>	have no automatic numbering. Alternatively, you can use \nonumber or \notag to omit the numbering for a spec row of the equation.

K	AT_EX			Q	
	Try	Docs	v0.16.0	Users	GitHub
	allgneu ,	111	ust be inside matir de	IIIIII(EIS III	
	alignedat	orde	r to be rendered by the	e auto-render	
		exter	nsion.		

Acceptable line separators include: \\ , \cr , \\[distance] , and \cr[distance] . Distance can be written with any of the KaTeX units.

```
The {array} environment supports | and : vertical separators.

The {array} environment does not yet support \cline or \multicolumn.

\tag can be applied to individual rows of top-level environments ( align , align* , alignat , alignat* , gather* ).
```

HTML

The following "raw HTML" features are potentially dangerous for untrusted inputs, so they are disabled by default, and attempting to use them produces the command names in red (which you can configure via the errorColor option). To fully trust your LaTeX input, you need to pass an option of trust: true; you can also enable just some of the commands or for just some URLs via the trust option.

$K^{A}T_{E}X$	\href{https://katex.org/}{\KaTeX}
https://katex.org/	<pre>\url{https://katex.org/}</pre>
•	<pre>\includegraphics[height=0.8em, totalheight=0.9em, width=0.9em, alt=KA logo]{https://katex.org/img/khan- academy.png}</pre>
<pre>x x</pre>	<pre>\htmlId{bar}{x}</pre>
x x	<pre>\htmlClass{foo}{x}</pre>
<pre>x x</pre>	<pre>\htmlStyle{color: red;}{x}</pre>

\includegraphics supports height, width, totalheight, and alt in its first argument. height is required.

HTML extension (\html -prefixed) commands are non-standard, so loosening strict option for htmlExtension is required.

Letters and Unicode

Greek Letters

Direct Input: $AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Sigma T\Upsilon\Phi X\Psi\Omega \ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi o\pi \\ \rho\sigma\tau\upsilon\phi\chi\psi\omega\varepsilon\vartheta\varpi\varrho\varsigma\varphi\digamma$

A \Alpha	B \Beta	Γ \Gamma	Δ \Delta
E \Epsilon	Z \Zeta	H \Eta	Θ \Theta
I \Iota	К \Карра	Λ \Lambda	M \Mu
N \Nu	Ξ\xi	O \Omicron	∏ \Pi
P \Rho	Σ \Sigma	T \Tau	Υ \Upsilon
Φ \Phi	X \Chi	Ψ \Psi	Ω \Omega
arGamma	$arDelta$ \varDelta	Θ \varTheta	$arLambda$ \varLambda
\mathcal{Z} \varXi	$arHatharpoonup$ \varPi	arSigma	Υ \varUpsilon
Φ \varPhi	Ψ \varPsi	$arOmega$ \varOmega	
$lpha$ \alpha	eta \beta	γ \gamma	δ \delta
ϵ \epsilon	ζ \zeta	η \eta	$ heta$ \theta
ι \iota	κ \kappa	λ \lambda	μ \mu
$ u$ \nu	ξ\xi	o \omicron	π \pi
$ ho$ \rho	σ \sigma	$ au$ \tau	v \upsilon
ϕ \phi	χ \chi	ψ \psi	ω \omega

Other Letters

≀ \imath	$ abla$ \nabla	\$ \Im	\mathbb{R} \Reals	Œ \text{\OE}
\jmath \jmath	∂ \partial	⟨S \image Image Image	Ø /wp	Ø \text{\o}
X \aleph	○ \Game	k \Bbbk	℘\weierp	\emptyset \text{\0}
ℵ \alef	∃ \Finv	N \N	$\mathbb{Z}\setminus z$	ß \text{\ss}
	\mathbb{C} \cnums	\mathbb{N} \natnums	å \text{\aa}	1 \text{\i}
□ \beth	\mathbb{C} \Complex	\mathbb{R} \R	\mathring{A} \text{\AA}	<pre>J \text{\j}</pre>
] \gimel	ℓ \ell	ℜ \Re	æ \text{\ae}	
\daleth	ħ \hbar	ℜ \real	在 \text{\AE}	
ð \eth	ħ \hslash	\mathbb{R} \reals	œ \text{\oe}	

Direct Input: $\partial \nabla \Im \exists \aleph \exists \exists \exists \exists \partial \hbar \eth - *$

ÀÁÂÃÄÅÆÇÈÉÊËÌÍĨÏĐÑÒÓÔÕÖÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóôöùúûüýþÿ

Math-mode Unicode (sub|super)script characters will render as if you had written regular characters in a subscript or superscript. For instance, A^{2+3} will render the same as A^{2+3} .

Unicode Mathematical Alphanumeric Symbols

Item	Range	Item	Range
Bold	A-Z a-z 0-9	Double-struck	A-Z k
Italic	A- Z a - z	Sans serif	A-Z a-z 0-9
Bold Italic	A- Z a - z	Sans serif bold	A-Z a-z 0-9
Script	A-Z	Sans serif italic	A-Z a-z
Fractur	A-3 a-3	Monospace	A-Z a-z 0-9

 $⁺⁻⁼⁽⁾⁰¹²³⁴⁵⁶⁷⁸⁹aehijklmnoprstuv \times \beta \gamma \rho \phi \chi \\ +-=()0123456789abcdeghijklmnoprstuw \times yzv \beta \gamma \delta \phi \chi \\ +-=()0123456789aehijklmnoprstuw \times \beta \gamma \rho \phi \chi \\ +-=()012345678aehijklmnoprstuw \times \beta \gamma \rho \phi \chi \\ +-=()012345678aehijklmnoprstuw \times \beta \gamma \rho \phi \chi \\ +-=()012345678aehijklmnoprstuw \times \beta \gamma \rho \phi \chi \\ +-=()01234676aehijklmnoprstuw \times \beta \gamma \rho \phi \chi \\ +-=()01234676aehi$

always accepted in text mode. However, these glyphs will be rendered from system fonts (not KaTeX-supplied fonts) so their typography may clash. You can provide rules for CSS classes .latin_fallback , .cyrillic_fallback , .brahmic_fallback , .georgian_fallback , .cjk_fallback , and .hangul_fallback to provide fallback fonts for these languages. Use of these glyphs may cause small vertical alignment issues: KaTeX has detailed metrics for listed symbols and most Latin, Greek, and Cyrillic letters, but other accepted glyphs are treated as if they are each as tall as the letter M in the current KaTeX font.

If the KaTeX rendering mode is set to strict: false or strict: "warn" (default), then KaTeX will accept all Unicode letters in both text and math mode. All unrecognized characters will be treated as if they appeared in text mode, and are subject to the same issues of using system fonts and possibly using incorrect vertical alignment.

For Persian composite characters, a user-supplied plug-in is under development.

Any character can be written with the \char function and the Unicode code in hex. For example \char"263a will render as ©.

Layout

Annotation

	$\overbrace{a+b+c}^{\rm note} \\ \land a+b+c \ \land \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
5 \bcancel{5}	$\underbrace{a+b+c}_{\mathrm{note}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
ABC \xcancel{ABC}	≠ \not =
<pre>abc \sout{abc}</pre>	$\boxed{\pi = \frac{c}{d}} \ \texttt{\boxed{\pi c d}}$
$a_{\overline{\mathbf{n}}}$ \$a_{\angl n}	$a_{\overline{\mathbf{n}}}$ a_\angln
$\underline{/-78^\circ}$ \phase{-78^\circ}	

 $\text{tag}\{\text{hi}\}\ x+y^{2x}\}$

Line Breaks

KaTeX 0.10.0+ will insert automatic line breaks in inline math after relations or binary operators such as "=" or "+". These can be suppressed by \nobreak or by placing math inside a pair of braces, as in \{F=ma\}. \allowbreak will allow automatic line breaks at locations other than relations or operators.

Hard line breaks are \\ and \newline .

In display math, KaTeX does not insert automatic line breaks. It ignores display math hard line breaks when rendering option strict: true.

Vertical Layout

x_n x_n	! 	$egin{array}{c} a & \text{a \ (atop b)} \end{array}$
e^x	<pre>!</pre>	a^bc a\raisebox{0.25em}{\$b\$}c
o u _u^o	<u> </u>	$a+\left(rac{a}{b} ight)$ a+\left(\vcenter{\hbox{\$\frac{\frac}{\frac}}}\right)
		$\sum_{\substack{0 < i < m \ 0 < j < n}}$
		$\sum_{\substack\{0 < i < m \setminus 0 < j < n\}\}}$

\raisebox and \hbox put their argument into text mode. To raise math, nest \$...\$ delimiters inside the argument as shown above.

\vcenter can be written without an \hbox if the strict rendering option is false. In that case, omit the nested \$...\$ delimiters.

Overlap and Spacing

\neq {=}\mathllap{/}	$(x^2) \left(x^{\infty} \right) \left(x^{\infty} \right)$
\neq \mathrlap{/}{=}	$\sqrt{y} \operatorname{sqrt}\{\operatorname{smash[b]}\{y\}\}$

KATEX			Q	
Try	Docs	v0.16.0	Users	GitHub

Spacing

Function	Produces	Function	Produces
	³ / ₁₈ em space	\kern{distance}	space, width = distance
\thinspace	³ / ₁₈ em space	\mkern{distance}	space, width = distance
\>	4/18 em space	\mskip{distance}	space, width = distance
\:	4/18 em space	\hskip{distance}	space, width = distance
\medspace	4/18 em space	\hspace{distance}	space, width = distance
\;	5/18 em space	\hspace*{distance}	space, width = distance
\thickspace	⁵∕₁8 em space		space the width and height of content
\enspace	½ em space	\hphantom{content}	space the width of content
	1 em space	\vphantom{content}	a strut the height of content
\qquad	2 em space	\!	− ³ ⁄ ₁₈ em space
~	non-breaking space	\negthinspace	− ³ ⁄ ₁₈ em space
\ <space></space>	space	\negmedspace	− ⁴⁄18 em space
\nobreakspace	non-breaking space	\negthickspace	– ⁵∕18 em space
\space	space	\mathstrut	<pre>\vphantom{(}</pre>

Notes:

distance will accept any of the KaTeX units.

\kern , \mkern , \mskip , and \hspace accept unbraced distances, as in: \kern1e^
\mkern and \mskip will not work in text mode and both will write a console warning

KATEX				Q	
Try	Docs	v0.16.0	Users		GitHub
∀	C \complemen	\therefore	<pre>∅ \emptyset</pre>		
∃ \exists		: \because	Ø \empty		
∃	⊃\supset	→ \mapsto	<pre></pre>		
∄ \nexist s	\mid	\rightarrow \to	⇒ \implies		
$\in \setminus in$	\land \land	← \gets	← \impliedby		
€\isin	V \lor		<⇒ \iff		
∉ \notin	∋ \ni	∌ \notni	¬ \neg or \land		
	\$ x \	x<\frac 1 2 }\$ ` x \	x<\frac 1 2 }`	\$x\	x<5}\$ `x\

Macros

$x^2 + x^2$	$\def\foo\{x^2\} \foo + \foo$
y^2+y^2	$\gdef\bar#1{#1^2} \bar{y} + \bar{y}$
	\edef\macroname#1#2{definition to be expanded}
	\xdef\macroname#1#2{definition to be expanded}
	\let\foo=\bar

Macros can also be defined in the KaTeX rendering options.

Macros accept up to nine arguments: #1, #2, etc.

Macros defined by \gdef , \xdef , \global\def , \global\edef , \global\let , and \global\futurelet will persist between math expressions. (Exception: macro persistence may be disabled. There are legitimate security reasons for that.)

KaTeX has no \par, so all macros are long by default and \long will be ignored.

Available functions include:

```
\char \mathchoice \TextOrMath \@ifstar \@ifnextchar \@firstoftwo
\@secondoftwo \relax \expandafter \noexpand
```

@ is a valid character for commands, as if \makeatletter were in effect.

Operators

Big Operators

\Sum	∏ \prod		<pre>V \bigvee</pre>
\int \setminus int	∐ \coprod	→ \bigoplus	∧ \bigwedge
∬ \iint	\int \intop	○ \bigodot	∩ \bigcap
∭ \iiint	\int \smallint	+ \biguplus	
∮ \oint	∯ \oiint	∰ \oiiint	☐ \bigsqcup

Binary Operators

Fractions and Binomials

 $\frac{a}{b}$ \frac{a}{b} \ \frac{a}{b} \ \left(\frac{a}{a}\)\ \left(\frac{a}{a+1}\right] \ \left(\frac{a}{a+1}\right] \ \left(2pt)\{1}a\{a+1}\right)

 $\begin{bmatrix} n \\ k \end{bmatrix}$ {n\brack k}

 $\binom{n}{k} \setminus \mathsf{tbinom}\{\mathsf{n}\}\{\mathsf{k}\}$

Math Operators

 $\binom{n}{k}$ {n \choose k}

arcsin \arcsin	cosec \cosec	deg \deg	sec \sec
arccos \arccos	cosh \cosh	dim \dim	sin \sin
arctan \arctan	cot \cot	exp \exp	sinh \sinh
arctg \arctg	cotg \cotg	hom	sh \sh
arcctg \arcctg	coth \coth	ker \ker	tan \tan
arg \arg	CSC \csc	lg \lg	tanh \tanh
ch \ch	ctg \ctg	ln \ln	tg \tg
cos \cos	cth \cth	log \log	th \th
<pre>f \operatorname{f}</pre>			
arg max ∖argmax	inj lim \injlim	min \min	\varinjlim
arg min \argmin	lim \lim	plim \plim	<u>lim</u> \varliminf
det \det	lim inf \liminf	Pr \Pr	lim \varlimsup
gcd \gcd	lim sup \limsup	projlim	lim \varpro

Functions in the bottom six rows of this table can take \limits.

\sqrt

$$\sqrt{x} \setminus \operatorname{sqrt}\{x\}$$

$$\sqrt[3]{x}$$
 \sqrt[3]{x}

Relations

$$\stackrel{!}{=}$$
 \stackrel{!}{=}

= =	<pre></pre>	≲ ≈ \lessapprox	✓ \smile
< <	≖ \eqcirc	<pre></pre>	
> >	-: \eqcolon or \minuscolon	≦ > \lesseqqgtr	<pre></pre>
::	-:: \Eqcolon or \minuscoloncolon	≶ \lessgtr	□ \sqsupset
≈ \approx	=: \eqqcolon or \equalscolon	\lesssim \lesssim	<pre> ☐ \sqsupseteq</pre>
≈: \approxcolon	=:: \Eqqcolon or \equalscoloncolon	≪ \11	⟨ \Subset
≈:: \approxcoloncolon	\sim \eqsim		<pre>\subset or \sub</pre>
$pprox$ \approxeq	> \eqslantgtr	<pre></pre>	<pre></pre>
	⟨ \eqslantless	< \lt	<pre> \subseteqq </pre>
€ > \backepsilon	≡ \equiv	\mid	≻ \succ

KATEX			Q		Q
Try	Doo	cs	v0.16.0	Users	GitHub
⊣ \dashv		≤ \1€		\simcoloncolo n	├ \vdash
:: \dblcolor \coloncolor		≤ \le	eq	\simeq \simeq	
÷ \doteq		\leq \le	eqq	\smallfrown	├ \Vdash
<pre>∴ \Doteq</pre>		< \le	eqslant	\smallsmile	∥⊢ \Vvdash

Negated Relations

$$\neq$$
 \not =

≷ \gnapprox		⊈ \nsubseteq	≱ \precneqq
≥ \gneq	≯ \ngtr	⊈ \nsubseteqq	پر ∖precnsim
<pre></pre>	≰ \nleq		⊊ \subsetneq
⟨Sim Sim Si	≰ \nleqq		<pre></pre>
≩ \gvertneqq	≰ \nleqslant	⊉ \nsupseteq	≿ \succnapprox
≨ \lnapprox		⊉ \nsupseteqq	<pre></pre>
<pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	∤ \nmid	√ \ntriangleleft	≿ \succnsim
≨ \lneqq	∉ \notin		⊋\supsetneq
\lesssim \lnsim	∌ \notni		⊋ \supsetneqq
≨ \lvertneqq	∦ \nparallel		

KATEX				
Try	Docs	v0.16.0	Users	GitHub
≠ \neq	∤ \nshortmid	⊮ \nVDash	₹ \	varsupsetneqq
≱ \ngeq	村 \nshortpara	⊮ \nVdash		
	<pre></pre>	⊋ \precnaμ	pprox	

Direct Input: $\notin \not\exists \nmid \not \parallel \sim \not\cong \neq$

Arrows

	∠ \leftharpoonup	⇒ \rArr
		\rightarrow \rarr
✓ \curvearrowleft	\leftrightarrow \leftrightarrow	\restriction
	⇔ \Leftrightarrow	$ ightarrow$ \rightarrow
↓ \Darr	$\stackrel{\longleftarrow}{\longrightarrow}$ \leftrightarrows	⇒ \Rightarrow
↓ \dArr		→ \rightarrowtail
↓ \darr	<pre></pre>	→ \rightharpoondown
← \dashleftarrow	← \Lleftarrow	→ \rightharpoonup
→ \dashrightarrow	< \longleftarrow	$ ightarrow$ \rightleftarrows
↓ \downarrow	← \Longleftarrow	ightharpoons
↓ \Downarrow	\longleftrightarrow \longleftrightarrow	→ \rightrightarrows
↓ \downdownarrows	\iff \Longleftrightarrow	
\ \downharpoonleft	→ \longmapsto	⇒ \Rrightarrow
\\downharpoonright	\longrightarrow \longrightarrow	↑ \Rsh
← \gets	⇒ \Longrightarrow	\(\searrow \)

Try	Docs	v0.16.0	Users GitHub
(/ ((((((((((((((((((`	/ CET COLO	· · · · · · · · · · · · · · · · · · ·
← \hookle	eftarrow	→ \lrArr	→ \twoheadrightarrow
\hookrightarrow \hookri	.ghtarrow	→ \lrarr	↑ \Uarr
<⇒ \iff	÷	\Lsh	↑ \uArr
← \impl	liedby	→ \mapsto	↑ \uarr
\Longrightarrow \imp	lies	√ \nearrow	↑ \uparrow
← \Larr	+	∠ \nleftarrow	↑ \Uparrow
<= \lArr	<	≠ \nLeftarrow	↑ \updownarrow
← \larr	+		
√ \leadst	0 <	<pre>⇒ \nLeftrightarrow</pre>	1 \upharpoonleft
← \leftar	row -	→ \nrightarrow	\upharpoonright
← \Leftar	row		↑ \upuparrows
← \leftar	rowtail	\\nwarrow	
	rpoondown =	→ \Rarr	

Extensible Arrows

$\stackrel{abc}{\longleftarrow}$ \xleftarrow{abc}	$\xrightarrow{over} $
$\stackrel{abc}{\longleftarrow}$ \xLeftarrow{abc}	\xrightarrow{abc} \xRightarrow{abc}
$\stackrel{abc}{\longleftrightarrow}$ \xleftrightarrow{abc}	$\stackrel{abc}{\Longleftrightarrow}$ \xLeftrightarrow{abc}
$\stackrel{abc}{\longleftarrow}$ \xhookleftarrow{abc}	$\stackrel{abc}{\longleftrightarrow}$ \xhookrightarrow{abc}
$\stackrel{abc}{\longleftarrow}$ \xtwoheadleftarrow{abc}	\xrightarrow{abc} \xtwoheadrightarrow{abc}

Extensible arrows all can take an optional argument in the same manner as \xrightarrow[under]{over}.

Special Notation

Bra-ket Notation

$\langle \phi $ \bra{\phi}	$ \psi angle$ \ket{\psi}	$\langle \phi \psi angle$ \braket{\phi hi \vert\psi}			
$\langle \phi $ \Bra{\phi}	$ \psi angle$ \Ket{\psi}	\$ φ \	\frac{\partial^2}{\partial} t^2} \	ψ }\$ ` φ \	\frac{\partial^2}{\partial} t^2} \

Style, Color, Size, and Font

Class Assignment

\mathbin	\mathclose	\mathinner	\mathop
\mathopen	\mathord	\mathpunct	\mathrel

Color

$$F=ma$$
 \color{blue} F=ma

Note that \color acts like a switch. Other color functions expect the content to be a function argument:

$$F=ma$$
 \textcolor{blue}{F=ma} $F=ma$ \textcolor{#228B22}{F=ma} $F=ma$ \colorbox{aqua}{\$F=ma\$}

KAT_EX			Q	
Try	Docs	v0.16.0	Users	GitHub

For color definition, KaTeX color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexadecimal style. The "#" is optional before a six-digit specification.

Font

$Ab0 \mathrm{Ab0}$	${f Ab0}$ \mathbf{Ab0}	$Ab0$ \mathit{Ab0}
Ab o \mathnormal{Ab0}	${f Ab0}$ \textbf{Ab0}	Ab0 Ab0
Ab0	${f Ab0}$ \bf Ab0	$Ab0$ \it Ab0
${ m Ab0}$ \rm ${ m Ab0}$	${f Ab0}$ \bold{Ab0}	$Ab0 \setminus textup\{Ab0\}$
$Ab0 \ \texttt{\ } \ $	$m{Ab0}$ \boldsymbol{Ab}	\mathbb{AB} \Bbb{AB}
$Ab0 \setminus \text{text}\{Ab0\}$	$m{Ab0}$ \bm{Ab0}	\mathbb{AB} \mathbb{AB}
Ab0 Ab0	$Ab0 \setminus textmd\{Ab0\}$	Abo \frak{Ab0}
Ab0 \textsf{Ab0}	AbO \mathtt{Ab0}	Abo \mathfrak{Ab0}
Ab0 \sf Ab0	AbO \texttt{Ab0}	$\mathcal{AB}0$ \mathcal{AB0}
	AbO \tt Ab0	$\mathcal{AB}0$ \cal AB0
		AB \mathscr{AB}

One can stack font family, font weight, and font shape by using the $\t ext xx$ versions of the font functions. So $\t ext f{H}$ will produce \mathbf{H} . The other versions do not stack, e.g., $\t ext f{H}$ will produce \mathbf{H} .

In cases where KaTeX fonts do not have a bold glyph, $\protect\protec$

Size

AB \Huge AB	AB \normalsize AB
AB \huge AB	AB \small AB

Style

```
\sum_{i=1}^{n} \text{$\operatorname{\sum}_{i=1}^{n} \operatorname{\sum}_{i=1}^{n} \operatorname{\sum}
```

\text{...} will accept nested \$...\$ fragments and render them in math mode.

Symbols and Punctuation

% comment	\dots	KATEX \KaTeX
% \%	··· \cdots	IATEX \LaTeX
# \#	·· \ddots	T _E X \TeX
& \&	\ldots	$ abla$ \nabla
_ _	: \vdots	∞ \infty
_ \text{\textunderscore}	··· \dotsb	∞ \infin
<pre>- </pre>	\dotsc	√ \checkmark
<pre>- \text{\textendash}</pre>	··· \dotsi	† \dag
	··· \dotsm	† \dagger

Try	Docs	v0.16	.0	Users	GitHub
(,	excusorror oung	\t	extellipsis}	‡ \t	text{\textdaggerdbl
<pre>text{</pre>	xtquoteleft}	□ \Box		‡	\Dagger
'\lq		□ \squa	re		\angle
'\te	extquoteright}	\blac	ksquare	4	\measuredangle
'\rq		△ \tria	ngle	⋖	\sphericalangle
<pre>" \text{\text{\text}</pre>	<pre>xtquotedblleft}</pre>	∇ \trian	ngledown	Т	\top
27 11		<pre>⟨ \trian</pre>	gleleft	1	\bot
<pre>" \text{\tex }</pre>	ktquotedblright	▷ \trian	gleright	\$	\\$
: \colon		√ \bigt	riangledown	\$	<pre>\text{\textdollar}</pre>
\\backprin	me	\triangle \bigt	riangleup	£	\pounds
/ \prime		▲ \black	ctriangle	£	\mathsterling
< \\	textless}	▼ \black	ktriangledown	£	text{\textsterling}
> \'	textgreater}	√blacktr	iangleleft	¥	\yen
\te	extbar}	► \blacktr	iangleright		\surd
\t	extbardbl}	♦ \diamo	nd	٥	\degree
<pre>{ \t</pre>	extbraceleft}	♦ \Diamo	ond	٥	\textdegree
<pre>} \t</pre>	extbraceright}	♦ \lozer	ige	Ω	\mho
\\t	extbackslash}	♦ \black	clozenge	\	\diagdown ^

KATEX					Q	•	
Try	Docs		v0.16.0	U	sers		GitHub
3 100×01 1000	-)	J.	(OTUBOUT C		y macai	a.	
© \copyrigh	nt	.	\clubs		#\sharp	0	
R \circledR	2	\Diamond	\diamondsuit		♡ \hear	rtsuit	
<pre>R \textr</pre>	registered}	\Diamond	\diamonds		♡ \hear	rts	
		•	\spadesuit		♠ \spac	des	
<pre>a \text{\text{\text}</pre>	extcircled a}	×	\maltese		↔ \minu	JS0	

Direct Input: § ¶ £\forall \nabla \infty \langle \delta \delta \nabla \delta \

Units

In KaTeX, units are proportioned as they are in TeX. KaTeX units are different than CSS units.

KaTeX Unit	Value	KaTeX Unit	Value
em	CSS em	bp	1/72 inch × F × G
ех	CSS ex	рс	12 KaTeX pt
mu	1/18 CSS em	dd	1238/1157 KaTeX pt
pt	1/72.27 inch × F × G	СС	14856/1157 KaTeX pt
mm	1 mm × F × G	nd	685/642 KaTeX pt
cm	1 cm × F × G	nc	1370/107 KaTeX pt
in	1 inch × F × G	sp	1/65536 KaTeX pt

where:

F = (font size of surrounding HTML text)/(10 pt)

G = 1.21 by default, because KaTeX font-size is normally $1.21 \times 1.21 \times 1.21$

The effect of style and size:

