MusicBox App Churn Analysis & Prediction

Tianyi Fang 03/18/2018

- Pre-process Data Preparation
- Exploratory Data Analysis
- Feature Engineering
- Prediction Model Evaluations
- Improvement & Recall

Pre-process Data Preparation

- Loading --Spark
- Cleaning
 - play_time:
 - song_length
 - robot user(outliers:>5400(99%)
 - song_id
- Extracting
 - Drop song_name/singer..etc
- Churn Label Definition
 - Based on play.log
 (Churn if no play after 4/29)
- Down-sampling
 - Balance Churn/Active

```
uid_label.groupBy('Churn').count().show()

+----+
|Churn|count|
+----+
| 1|51419|
| 0|89216|

-----+
sampled_uid = uid_label.sampleBy('Churn', fractions = {1:0.086, 0:0.05})
sampled_uid.groupBy('Churn').count().show()

+----+
|Churn|count|
+----+
| 1| 4358|
| 0| 4504|
```

```
def parseLine(line):
                                          schema = StructType([StructField('uid', FloatType(), False),
   fields = line.split("\t")
                                                                  StructField('device', StringType(), True),
   if len(fields) == 10:
                                                                  StructField('song_id', FloatType(), False),
       try:
                                                                  StructField('song type', FloatType(), True),
           uid = float(fields[0])
           device = str(fields[1])
                                                                  StructField('song name', StringType(), True),
           song_id = float(fields[2])
                                                                  StructField('singer', StringType(), True),
           song_type = float(fields[3])
                                                                  StructField('play time', FloatType(), False),
           song name = str(fields[4])
                                                                  StructField('song length', FloatType(), True),
           singer = str(fields[5])
           play time = float(fields[6])
                                                                  StructField('paid_flag', FloatType(), True),
           song_length = float(fields[7])
                                                                  StructField('file_name', StringType(), True),])
           paid flag = float(fields[8])
           file_name = str(fields[9])
           return Row(uid, device, song_id, song_type, song_name, singer,
                     play time, song_length, paid_flag, file_name)
       except:
           return Row(None)
   else:
       return Row(None)
```

Pre-process Data Preparation

My cleaning principle is:

Assumption: each record only record one play time(not cumulative), if user play one song iteratively, the records will show multiple records, thus play_time should be ≤ song_length

play_time:

- if >10E5(only (20/4235452) no sense)(user = 17) or play_time == 0(user skipped play or clicked by error), drop them(user =
- if >10E4, devided by 1000. Since it's possible play_time was recorded as miliseconds
- if > song_length, check its correctness, impute by the above way or song_length-1

song_length:

• if >10E6(no sense) or = 0, impute with play_time this step is done in Spark; by later check, find there is no song_length >10E4, wnicn means existed song_length are reasonable, and imputed song_length has reasonable play_time. Play_time can be derived by song_length

[Notice]song_id:

- song_id ==0, with multiple song_length and play_time by different users, which means it's not a unique song, it's happened possibly due to mislocation of song_type(with value=0,1,2). There are nearly 10%(346692/4235452) of song_id =0. It's OK to just leave them as original, since we are now doing Churn prediction. However, if we want to do song_recommendation in the future, we should find better way to impute them.
- song id = -1(177/4235452), with 9 users. Also keep.

Summary of the amount change of user

original user is 141644

valid user is 140635 with active user 89216, churn user 51419

downsampled user is 8862, with active 4504, churn 4358

	uid	song_id	date
24	49423096	4348548.0	2017-04-05
25	49423096	4348548.0	2017-04-05
77	49423096	4348548.0	2017-04-06
78	49423096	4348548.0	2017-04-06
151	49423096	4348548.0	2017-04-07
4955453	168915904	6611804.0	2017-04-27

4955454 168915904 6611804.0 2017-04-27

Exploratory Data Analysis

The Lifelong Learning Platfo

Exploratory Data Analysis

Feature Engineering

1500

avg playtime last 3 days

avg playtime last 7 days

- Frequency
 - Time window =[1,3,7,14,21,30]
 - Events = ['play', 'search', 'download']
- Average playtime within time window
 - Sum(play_time in time_window)/time_window
- Recency
- Play complete degree

- feature_dd(frequency + recency + average_playtime + dummy device)
- feature_total(feature_dd + complete precent)_ifelong Learning Platform of Silicon Valley

	Prediction Model			
		parameters	Best_param_PeValuate	
Decision Tree	DecisionTreeClassifier(criterion='gini',max_depth =None, max_features =None,max_leaf_nodes=None,min_impurity_decrea se=0.0,min_impurity_split=None,min_samples_leaf= 1,min_samples_split=2, splitter='best')	criterion='gini' max_depth =10 max_features =5 min_samples_leaf=1 min_samples_split=2	0.9443736053554351 {'max_depth': 6, 'max_features': 5}	
Random Forest	RandomForestClassifier(bootstrap=True, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)	bootstrap=True criterion='gini' max_depth=15 max_features='sqrt' min_samples_leaf=7 min_samples_split=3 n_estimators=50 oob_score=True	0.9073631365049007 {'max_depth': 15, 'min_samples_leaf': 7, 'min_samples_split': 3, 'n_estimators': 50}	
AdaBoost	AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1.0, n_estimators=50, random_state=None)	algorithm='SAMME.R' base_estimator=adaboost learning_rate=0.2 n_estimators=50	0.9891265547094553 {'learning_rate': 0.2, 'n_estimators': 50}	
Default Model	RandomizedSearchCV	GridSearchCV	Best Model	

Prediction Model Tree

Prediction Model Confusion Matrix

Decision Tree Adaboost Predicted Active Predicted Chu Predicted Active Predicted Churn 77 True Active 1035 **True Active** 1021 feature_dd **True Churn** 72 True Churn 64 Predicted Active Predicted Churn Predicted Active Predicted Chu feature_total **True Active** 1038 True Active 1060 **True Churn** 91 **True Churn** 73

	10 The certain operating characteristic of the best
	0.8
	0.4 -
	0.2
	Valid AUC = 0.99
urn	False Positive Rate
63	Receiver Operating Characteristic of Ada_best for total feature
038	0.8 -
urn	Title 0 0 0 4 -
61	and od -
006	0.2 - Training AUC = 1.00
	Valid AUC = 0.93 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

Receiver Operating Characteristic of RF best

	train_dt	valid_dt	train_ada	valid_ada	train_ada_best	valid_ada_best	train_dt_total	valid_dt_total	train_ada_total	valid_ada_total	train_ada_total_best	valid_ada_total_best
Accuracy	0.974498	0.930688	0.948996	0.933556	0.946605	0.936902	0.983264	0.926386	0.949793	0.940727	0.943736	0.940727
Precision	0.958923	0.916746	0.940288	0.931170	0.941502	0.935039	0.975635	0.919355	0.939507	0.935354	0.936033	0.938900
Recall	0.986833	0.942913	0.949411	0.932087	0.942481	0.935039	0.988683	0.924949	0.953361	0.939148	0.943416	0.935091
f1_score	0.972678	0.929646	0.944828	0.931628	0.941991	0.935039	0.982115	0.922144	0.946383	0.937247	0.939710	0.936992
AUC	0.975412	0.931029	0.949027	0.933515	0.946300	0.936851	0.983621	0.926308	0.950028	0.940641	0.943715	0.940421
Matthews	0.949121	0.861704	0.897444	0.867007	0.892531	0.873701	0.966466	0.852349	0.899268	0.881094	0.886994	0.881042

- feature_dd(frequency + recency + average_playtime + dummy device)
- feature_total(feature_dd + complete precent) The Lifelong Learning Platform of Silicon Valley

Prediction Model Feature Importance


```
'freq_search_last_1_days' 'freq_search_last_14_days' 'freq_search_last_7_days' 'last_play' 'freq_search_last_21_days' 'freq_search_last_3_days' 'avg_playtime_last_7_days' 'freq_play_last_21_days' 'freq_play_last_7 days'
```

```
'last_play' 'freq_search_last_14_days'
'freq_search_last_7_days' 'freq_search_last_21_days'
'freq_search_last_3_days' 'avg_playtime_last_14_days'
'freq_play_last_7_days' 'avg_playtime_last_7_days'
'freq_play_last_14_days'

Ig Platform of Silicon Valley
```

Prediction Model Feature Importance

Prediction Model Feature Importance


```
'last_play'
'freq_search_last_1_days'
'freq_play_last_21_days'
'avg_playtime_last_1_days'
'avg_playtime_last_7_days'
```

Improvement & Recall of Churn User

- Specify Main Business Goal for Churn(prevent churn/recall churn)
 Refined Definition of Churn: churn_type based on key action/ time_window..
- User portfolio(region, age, gender, membership, survey, email, ...)
- Better technical support(accurate data provides more useful information)
 platform/account/API/version/latency
- Churn Reason Analysis(AARRR& survey)
 Product? Design? Function? Operation? Competitor? Availability?
- Improvement
- user segmentation(model/ business insights)>> model: impute data/ more features potential churn user/churned user: promotion push, coupon, ads

Thank You for Joining Us!

