Practice 12

Elena Tuzhilina

April 4, 2023

Question 1 You are given information about 15 Titanic passengers.

	PassengerId	Sex	Age	Class	Survived
773	773	female	57	2	no
698	698	female	NA	3	yes
652	652	female	18	2	yes
548	548	male	NA	2	yes
890	890	$_{\mathrm{male}}$	26	1	yes
875	875	female	28	2	yes
392	392	$_{\mathrm{male}}$	21	3	yes
788	788	$_{\mathrm{male}}$	8	3	no
330	330	female	16	1	yes
183	183	$_{\mathrm{male}}$	9	3	no
680	680	$_{\mathrm{male}}$	36	1	yes
560	560	female	36	3	yes
104	104	$_{\mathrm{male}}$	33	3	no
136	136	$_{\mathrm{male}}$	23	2	no
37	37	male	NA	3	yes

- 1. Compute the contingency table for Sex and Class variables.
- 2. Compute marginal frequencies for Sex and Class variables.
- 3. Compute joint probabilities for P(Sex = ..., Class = ...). Six probabilities in total.
- 4. Compute joint probabilities for P(Class = ... | Sex = ...). Six probabilities in total.
- 5. Draw a stacked barplot. Do you think there is an association between these two variables?

Question 2

You are given Sex vs Class contingency table for all Titanic passengers, and you want to test these two variables for the independence.

```
tab = table(data$Class, data$Sex)
kable(tab)
```

female	male
94	122
76	108
144	347

- 1. State H_0 and H_a .
- 2. Find expected and observed counts for this table.
- 3. Find the test statistic.
- 4. Find the p-value.
- 5. Draw the conclusion at significance level 0.01.

Question 3

The iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris (150 flowers in total). The species are Iris setosa, versicolor, and virginica.

Here are summary statistics for Sepal and Petal lengths.

```
mean(Sepal.Length)

## [1] 5.843333

mean(Petal.Length)

## [1] 3.758

sd(Sepal.Length)

## [1] 0.8280661

sd(Petal.Length)

## [1] 1.765298
```

[1] 0.8717538

cor(Sepal.Length, Petal.Length)

- 1. Do you think there is an association between Sepal and Petal lengths?
- 2. You want to fit the regression line to the following scatterplot plot.

State the regression line equation.

- 3. Find regression coefficients.
- 4. What is the interpretation of the regression coefficients?
- 5. Check if point Sepal.Length = 6 and Petal.Length = 3 lies on the regression line.
- 6. Find the residual for point Sepal.Length = 6 and Petal.Length = 3. Does this point lie below or above the regression line?
- 7. Check that $Sepal.Length = \bar{x}$ and $Petal.Length = \bar{y}$ point lies on the regression line.
- 8. Use the regression line to predict the value of Petal length if Sepal length is 6 and 7.
- 9. Add the regression line to the scatterplot.
- 10. Find TSS from the provided information.
- 11. Find \mathbb{R}^2 from the provided information. Do you think linear model fits the data well?
- 12. Find RSS from the provided information.
- 13. Find ESS from the provided information.