

Predicting Transcription Levels of Bacterial Promoters Using Deep Learning

Sergio Salgado Briegas

Data Science and Machine Learning Bootcamp
31 July 2024

Central Biology Dogma

Transcription

RNA polymerase. Sigma Factors (σ)

- 10 BOX

Promoter

Coding Sequence

Sequence conservation is related to promoter strength

RNA polymerase. Regulators

Repressors

15-25 nucleotides

Non-specific location

Activators

15-25 nucleotides

Before the promoter

Decreased transcription Increased transcription

For what purpose??

Bacteria can be modified to produce relevant compounds...

...through metabolic pathways (sometimes quite complex)

Regulate the concentration of each enzyme by controlling gene expression combining promoters

Objectives

Predict *in vivo* transcription levels using bacterial promoter sequences

Correlate -35 and -10 boxes sequences with RNA concentration

Identify activator and repressor sequences

Dataset construction

E. coli genes

iModulonDB

4257 genes 166 conditions

Preprocessing

Promoter's sequences

 σ_{70} promoters

Genes controlled by single promoters

Dataset of 660 σ_{70} promoters

Transcription levels

Differential transcription levels of genes

Mode of each gene as value

Categorize as 'Low', 'Medium' and 'Strong'

Exploratory Data Analysis

ATACATATAATAATTTAATCTTAAATGAAATTTATTAAAATTTGCAAAC<mark>TATAAT</mark>TTTGTGTATAAAAAATATAAATGCACA appYp3

50

TTATTCACCTTTTGGCTACTTATTGTTTGAAATCACGGGGGCGCACCG**TATAAT**TTGACCGCTTTTTGATGCTTGACTCTA atplp

Needs for a model for pattern recognition

Convolutional Neural Network. Results

Convolutional Neural Network. Results

Loss: 1.05 Accuracy: 0.59

Loss: 0.31 Accuracy: 0.95

Very little data on 'Strong' promoters

Reducing complexity

Random mutations in pTrc promoter – 3140 sequences

Loss: 0.30 Accuracy: 0.87 Loss: 0.40 Accuracy: 0.85

Reducing complexity

Random mutations in pTrc promoter – 3140 sequences

- 35 BOX - 10 BOX Repressor

Regression with a Sequential Neural Network

Train

MSE: 0.014

R² score: 0.645

Test

MSE: 0.021

R² score: 0.525

Reducing complexity. Machine Learning Model

Random mutations in pTrc promoter – 3140 sequences

- 35 BOX Repressor

Regressions with a Machine Learning Algorithms

Model	R ² score Train	R ² score Test
Linear	0.53	0.47
KNN	0.62	0.40
DecisionTree	1.0	0.30
RandomForest	0.92	0.52
GBoost	0.54	0.48
XGBoost	0.83	0.52

XGBoost hyperparameter tuning using GridSearch CV

Train MSE: 0.009

R² score: 0.741

Test MSE: 0.020 R² score: 0.548

Reducing complexity. Machine Learning Model

Random mutations in pTrc promoter – 3140 sequences

Conclusions

- Convolutional Neural Networks allow for the identification of patterns that facilitate the classification of promoters using their sequence and transcription data.
- Unbalanced classes lead to the incorrect identification of the underrepresented classes
- Localizing the problem in a single gene and increasing the data amount would allow for the identification of contributing nucleotides in promoter strength.

Future ideas

- Use Convolutional Neural Networks for the identification of regulators.
- Quantify the effect that regulators have on transcription.
- Incorporate regulator's transcription data into the X.

Predicting Transcription Levels of Bacterial Promoters Using Deep Learning

Sergio Salgado Briegas

Data Science and Machine Learning Bootcamp

31 July 2024

- in linkedin.com/in/salgado-sergio
- @ salgado.sergio@protonmail.com