

Universidad de Valparaíso Instituto de Física y Astronomía

Tarea 1

Introducción a la Relatividad Numérica

Fecha: 17 de abril de 2025

Fecha de Entrega: 30 de abril (hasta la medianoche) Profesor: Cristian Barrera H.

Nombre: ____

Instrucciones

Responder las preguntas a mano, en forma legible y argumentando claramente. Puede entregar su tarea en papel, o bien enviar su versión escaneada por email a cristian.barrera@uv.cl.

1. Considere una esfera uniforme de radio R y densidad de masa ρ constante. Resuelva la ecuación de Poisson

$$\nabla^2 \Phi = 4\pi G \rho$$

para encontrar el potencial gravitacional asociado en todo el espacio.

Pregunta 1: 1 puntos

2. Calcule el tensor de marea R_{ij} asociado al campo gravitacional producido por una partícula puntual de masa M.

Pregunta 2: 1 puntos

3. En sus propias palabras, explique el experimento mental del Ascensor de Einstein, y su relación con el Principio de Equivalencia.

Pregunta 3: 1 puntos

- 4. Deduzca la Ecuación de Poisson, a partir de la validez de los siguientes supuestos:
 - La ley de gravitación de Newton.
 - La definición del campo gravitacional como $\mathbf{g} = -\nabla \Phi$.
 - La ley de Gauss para la gravedad en su forma integral.

Pregunta 4: 1 puntos

5. En el electromagnetismo, el tensor de campo electromagnético se define como:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

donde $A^{\mu}=(\phi,\vec{A})$ es el cuadri-potencial electromagnético.

- (a) Argumente si $F_{\mu\nu}$ es simétrico, antisimétrico, o ninguno de estos.
- (b) Exprese las componentes del tensor $F_{\mu\nu}$ en términos de los campos eléctricos y magnéticos. Específicamente, muestre que:

$$F_{0i} = -E_i, \quad F_{ij} = -\epsilon_{ijk}B^k$$

donde ϵ_{ijk} es el símbolo de Levi-Civita.

(c) Considere un potencial escalar nulo $\phi=0,$ y un potencial vector dado por:

$$\vec{A} = \left(0, \frac{B_0 x}{2}, -\frac{B_0 y}{2}\right)$$

donde B_0 es constante. Calcule las componentes no nulas del tensor $F_{\mu\nu}$ en este caso.

(d) Usando la expresión:

$$B^i = \frac{1}{2} \epsilon^{ijk} F_{jk}$$

calcule explícitamente el campo magnético \vec{B} . Verifique que su resultado coincide con la expresión usual:

$$\vec{B} = \nabla \times \vec{A}$$

Pregunta 5: 2 puntos