Notas de análisis numérico para ecuaciones diferenciales

Jorge Alfredo Álvarez Contreras

30th August 2023

1 Métodos de un paso

1.1 Estabilidad absoluta

Ejemplo 1. Consideremos el PVI

$$\begin{cases} y' = -2y\\ y(0) = 1 \end{cases} \tag{1}$$

La solución es, claramente, $y(t) = e^{-2t}$.

El método de Euler es

$$\begin{cases} u_{n+1} = u_n + hf(t_n, u_n) \\ u_0 = 1 \end{cases}$$
 (2)

Es decir, la función de incremento es simplemente $\Phi = f$. Como $\Phi(t,y) = f(t,y) = -2y$ es Lipschitz en su segundo argumento podemos concluir que el método es consistente (de orden 1). También es convergente.

$$\begin{cases} u_{n+1} = u_n + -2u_n h = (1-2h)u_n \\ u_0 = 1 \end{cases}$$
 (3)

Observación 1. No todos los métodos implicitos son inconcidionalmente estables.

1.2 Ecuaciones en diferencias

Consideremos ecuaciones en diferencias de la forma

$$u_{n+k} + \alpha_{k-1}u_{n+k-1} + \dots + \alpha_1u_{n+1} + \alpha_0u_n = \phi_{n+k}, \quad \alpha_0 \neq 0; n = 0, 1, \dots$$
 (4)

(dados $u_0, u_1, \ldots, u_{k-1}$). Si $\phi_{n+k} = 0, n = 0, 1, \ldots$, decimos que la ecuación en diferencias es homogénea. Si $\alpha_{k-1}, \alpha_{k-2}, \ldots, \alpha_0$ son constantes, decimos que es una ecuación en diferencias con coeficientes constantes.

Dados los valores iniciales $u_0, u_1, \ldots, u_{k-1}$, se puede determinar u_n directamente a partir de la ecuación en diferencias, sustituyendo sucesivamente.

Consideremos el problema homogéneo y busquemos soluciones de la forma $u_n = r^n$. Entonces

$$r^{n+k} + \alpha_{k-1}r^{n+k-1} + \dots + \alpha_1r^{n+1} + \alpha_0r^n = 0.$$
 (5)

Para r=0, obtenemos la solución trivial, así que supondremos que $r\neq 0$, de modo que al cancelar r^n obtenemos

$$r^{k} + \alpha_{k-1}r^{k-1} + \dots + \alpha_{1}r^{1} + \alpha_{0} = 0.$$
 (6)

El lado izquierdo de esta ecuación se es un polinomio de grado k y se llama el polinomio característico de la ecuación en diferencias (4) Se denota con $\pi(r)$. Si $\pi(r)$ tiene k raíces distintas, digamos $r_0, r_1, \ldots, r_{k-1}$, entonces la solución general de la ecuación en diferencias es

$$u_n = \gamma_0 r_0^n + \dots + \gamma_{k-1} r_{k-1}^n \tag{7}$$

y, dados u_0, \ldots, u_{k-1} , existe un conjunto único de constantes $\gamma_0, \ldots, \gamma_{k_1}$ tal que (7).