分支限界法

1. 分支限界法和回溯法

1 求解目标的区别

1. 回溯法: 求出解空间树所有满足约束的解

2. 分支限界法: 找出满足约束的一个解OR在满足约束的解中找出一个最优

2 搜索方式的区别:回溯法以**深度优先**搜索解空间树,分支界限法以**广度优先或最小耗费优先**

3 结点扩展模式

1. 每个活结点只有一次机会成为扩展结点

2. 成为扩展结点后,就会一次性产生所有子节点

3. 舍弃导致不可行解OR非最优解的子节点,剩下的子节点加入活结点队列

4. 该结点扩展完成后,再从列表中取下一活结点扩展,循环往复

☑如何从活结点列表中选择活结点: FIFO, 优先队列

2. 示例: 0-1背包问题

2.1. 问题概述

1条件: 四个物品, 重量分别为w=[3,5,2,1], 价值分别为v=[9,10,7,4], 背包总重量为7

2解空间: $(x_1, x_2, x_3, x_4), x_i = 0/1$ 表示物品选择与否,用四层的子集树表示

3 限界条件:当前价值cp+剩余所有价值总和rp<当前最优bestp,直接裁掉该子树

2.2. FIFO队列分支界限法

1 初始化与更新: cp = bsetp = 0, rp = 30, $\exists cp > bestp$ 时更新bestp = cp

2 解空间

3 过程概述

结点	先考虑 $x_i=1$ 子节点	再考虑 $x_i=0$ 子节点	活结点队列
А	B(bestp=cp=9, cp+rp=9+21>bestp)	C(bestp=9, cp+rp=0+21>bestp)	→BC
В	背包载重量不足 <mark>舍</mark>	D(bestp=9, cp+rp=9+11>bestp)	→CD
С	E(bestp=cp=10, cp+rp=10+11>bestp)	F(bestp=10, cp+rp=0+11>bestp)	→DEF
D	G(bestp=cp=16, cp+rp=16+4>bestp)	bestp=16, cp+rp=9+4 <bestp<mark>舍</bestp<mark>	→EFG
Е	l(bestp=cp=17, cp+rp=17+4>bestp)	bestp=17, cp+rp=10+4 <bestp<mark>舍</bestp<mark>	→FGI
F	K(bestp=17, cp+rp=7+4 <bestp) <mark>舍</mark></bestp) 	bestp=17, cp+rp=0+4 <bestp<mark>舍</bestp<mark>	→GI
G	M(bestp=cp=20, cp+rp=20+0>bestp)	bestp=20, cp+rp=16+0 <bestp<mark>舍</bestp<mark>	→IM
I	背包载重量不足 <mark>舍</mark>	背包载重量不足 <mark>舍</mark>	$\rightarrow M$
M	物品全部选完, 再无子节点	物品全部选完,再无子节点	\rightarrow

2.3. 优先队列分治界限法

1 优先队列法概述

- 1. 假设当前结点有 a_1,a_2,\ldots,a_n 子节点,估算通过 a_i 继续搜索时目标函数所能达到的上界/下界
- 2. 将符合要求的子结点加入活结点队列,按照上一步中的估值为他们排列
- 3. 从队列中选取估值最大/最小的结点,作为下一个要考察的结点
- 4. 一直到达叶节点,如果当前的目标函数值已经是当前已知最值,那么这个便是最优解

2解空间

3 过程概述:以结点的价值上界作为优先级

结点	先考虑 $x_i=1$ 子节点	再考虑 $x_i=0$ 子节点	队列+估价
A	B(bestp=cp=9, cp+rp=9+21>bestp)	C(bestp=9, cp+rp=0+21>bestp)	B(20)C(17)
В	背包载重量不足 <mark>舍</mark>	D(bestp=9, cp+rp=9+11>bestp)	D(20)C(17)
D	E(bestp=cp=16, cp+rp=16+4>bestp)	bestp=16, cp+rp=9+4 <bestp<mark>舍</bestp<mark>	E(20)C(17)
Е	G(bestp=cp=20, cp+rp=20+0=bestp)	bestp=20, cp+rp=16+0 <bestp<mark>舍</bestp<mark>	G(20)C(17)

- 1. 重量w = [3, 5, 2, 1], 价值v = [9, 10, 7, 4]
- 2. 估价当作优先级

结点	已确定的装入选 择	背包剩余空 间	能使估价最优的操 作	最优估价
В	装1	4kg	再装物品4+物品3	9+7+4=20
С	不装1	7kg	再装物品2+物品3	10+7=17
D	装1不装2	4kg	再装物品3+物品4	9+7+4=20
Е	装1不装2装3	2kg	再装物品4	9+7+4=20

3. 当来到了叶节点G时,队列为 \rightarrow G(20)C(17),按照优先级应该接下来考虑G,但由于其实叶节点无法再分下去,所以就认为其时最优解

3. 单源最短路径问题

求有向图中两点间的最短距离,贪心策略采用Dijikstra算法

3.1. 优先队列式分支限界策略

1 某点的优先级:基于原点到该点已知的最短距离,距离越短优先级越高

2 算法操作:

1. 初始化:确定原点 8和空的优先队列

2. 扩展结点:

○ 原点s: 考察所有与s直接相连的顶点, 计算他们间的距离, 然后全部加入优先队列

。 其他结点 v_i : 考察与之相连的顶点 v_j ,如果存在 $s \xrightarrow{\text{Add} v_i} v_j$,则更新 v_j 的最短距离并加入队列

3. 优先队列使用:根据结点当前路径长度来排序,每次取出最小路径长的结点,进行下一轮扩展

4. 结束: 一直到优先队列变空

3.2. 算法实例

1分支限界的过程

扩展结点	源到各顶点的已知最短距离	优先队列
1(邻接2,3,4)	2(2)+3(3)+4(4)	2(2)+3(3)+4(4)
2(邻接3,5,6)	2(2)+3(3)+4(4)+5(9)+6(4)	3(3)+4(4)+6(4)+5(9)
3(邻接6,7)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)	4(4)+6(4)+7(5)+5(9)
4(邻接7)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)	6(4)+7(5)+5(9)
6(邻接7,9)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+9(7)	7(5)+9(7)+5(9)
7(邻接9,10)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+9(7)+10(7)	10(7)+9(7)+5(9)
10(邻接11)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+9(7)+10(7)+11(9)	9(7)+5(9)+11(9)
9(邻接11)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+9(7)+10(7)+11(9)	5(9)+11(9)
5(邻接8,9)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+8(11)+9(7)+10(7)+11(9)	11(9)+8(11)
11(无邻接)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+8(11)+9(7)+10(7)+11(9)	8(11)
8(11)	2(2)+3(3)+4(4)+5(9)+6(4)+7(5)+8(11)+9(7)+10(7)+11(9)	null

所以1→11最短距离为9

2 子集树表示以上过程

4. 作业分配问题

4.1. 问题描述

1有n个操作员,要完成n个不同作业

2 数据结构

1. 矩阵c[i][j]: 操作员i完成任务j所耗的时间

2. 向量x[i]: 操作员i所分得的作业编号

3 问题: 让n个作业在最短时间内完成

4.2. 算法设计

4.2.1. 基本方法

- 1人根节点开始,每遇到一个扩展结点,就计算其子节点的下界,并登记再节点表中
- 2 选取下界最小的子节点再扩展
- 3 一直搜索到叶子结点
 - 1. 当叶结点的下界是节点表中最小的, 那么这个就是最优解
 - 2. 否则就继续对下届最小的结点扩展

4.2.2. 下界的确认

- 1 初始阶段:搜索深度为0时的下界, $t=c_{i0}+\sum\limits_{j=1}^{n-1}\left(\min_{l\neq i}c_{lj}
 ight)$
 - 1. 让操作员i完成作业0, 耗时 c_{i0}

 - 3. 示例: 0作业分给0操作员后, 1作业交给2或3, 2作业交给6, 3作业交给2

操作员\作业	0	1	2	3
0	3	8	4	12
1	9	12	13	5
2	8	7	9	3
3	12	7	6	8

- 2 搜索深度为k时的下界: $t=\sum\limits_{l=0}^k c_{i_l l}+\sum\limits_{l=k+1}^{n-1}\left(\min\limits_{i\in S-m_k}c_{i,l}
 ight)$
 - 1. $1 \rightarrow k$ 编号的作业已分配,让操作员 i_l 完成作业l且 $l \in [1,k]$,则耗时 $\sum\limits_{l=0}^k c_{i_l l}$
 - 2. 对于未分配的作业,令操作员集合S减去已分配操作员集合 m_k 即 $S-m_k$ 为未分配操作员集合,则剩余n-k个作业耗时最短为 $\sum\limits_{l=k+1}^{n-1} \left(\min\limits_{i\in S-m_k} c_{il}\right)$

4.3. 算法实例

1第一层: 啥都没有, 让第0/1/2/3个操作员选择0四个作业, 即00/10/20/30, 扩展出第二层

2第二层:有四个结点,00结点的下界最小,所以选择00结点扩展

结点	作业0	作业1	作业2	作业3	下界
00	<mark>0操作员,耗时</mark> 3	2操作员,耗 时7	3操作员,耗 时6	2操作员,耗 时3	19
10	<mark>1操作员,耗时</mark> 9	2操作员,耗 时7	0操作员,耗 时4	2操作员,耗 时3	23
20	<mark>2操作员,耗时</mark> 8	3操作员,耗 时7	0操作员,耗 时4	1操作员,耗 时5	24

结点	作业0	作业1	作业2	作业3	下界
30	3操作员,耗时 12	2操作员,耗 时7	0操作员,耗 时4	2操作员,耗 时3	26

优先队列→

由于0操作员已经用过了,所以考虑1/2/3操作员完成任务1,即11/21/31,扩展出第三层

3 第三层:有三个结点,21结点的下界最小,所以选择21结点扩展

结点	作业0	作业1	作业2	作业3	下界
11	0操作员,耗 时3	1操作员,耗时 12	3操作员,耗 时6	2操作员,耗 时3	24
21	0操作员,耗 时3	<mark>2操作员,耗时</mark> 7	3操作员,耗 时6	1操作员,耗 时5	21
31	0操作员,耗 时3	<mark>3操作员,耗时</mark> 7	2操作员, 耗 时9	2操作员,耗 时3	22

1 优先队列→[21] [31] [11]

2 下界 21 22 24

由于0/2操作员已经用过了,所以考虑1/3操作员完成任务2,即12/32,扩展出第四层

9 第四层:有两个节点,32下界最小,再扩展32结点

结点	作业0	作业1	作业2	作业3	下界
12	0操作员,耗 时3	2操作员,耗 时7	1操作员,耗时 13	3操作员,耗 时8	31
32	0操作员,耗 时3	2操作员,耗 时7	3操作员,耗时 6	1操作员,耗 时5	21

 1
 优先队列→[32] [31] [11] [12]

 2
 下界
 21
 22
 24
 31

由于0/2/3操作员已经用过了, 所以考虑1操作员完成任务3, 即13

5 第五层:终于来到了叶节点

结点	作业0	作业1	作业2	作业3	下界
13	0操作员,耗 时3	2操作员,耗 时7	3操作员,耗 时6	1操作员,耗 时5	21

1 优先队列→[13] [31] [11] [12] 2 下界 21 22 24 31

当一个结点达到优先队列的队首,且为叶节点时,这个结点就是最优值