

1. COMBINATIONS

 $\binom{n}{r}$ =The number of combinations of *n* distinct objects taken *r* at a time (*r* objects in each combination)

- = The number of different selections of r objects from n distinct objects.
- = The number of different ways to select r objects from n distinct objects.
- = The number of different ways to divide a set of n distinct objects into 2 subsets; one subset contains r objects and the other subset contains the rest.

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

0! = 1

Q1. Compute:

(a)
$$\begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$.

Q2. Compute:

(a)
$$\binom{n}{0}$$
, (b) $\binom{n}{1}$, (c) $\binom{n}{n}$

DISCRETE UNIFORM DISTRIBUTION:

Q1. Let the random variable X have a discrete uniform with parameter k=3 and with values 0,1, and 2.

Then:

(a) P(X=1) is

(A) 1.0

(B) 1/3

(C) 0.3

(D) 0.1

(E) None

(b) The mean of X is:

(A) 1.0

(B) 2.0

(C) 1.5

(D) 0.0

(E) None

(c) The variance of X is:

(A) 0/3=0.0

(B) 3/3=1.0 (C) 2/3=0.67 (D) 4/3=1.33 (E) None

BINOMIAL DISTRIBUTION:

Q1. Suppose that 4 out of 12 buildings in a certain city violate the building code. A building engineer

randomly inspects a sample of 3 new buildings in the city.

(a) Find the prol	babili	ty distributio	n func	tion of the rai	ndom	variable X re	epresei	nting the
	number of b	uildir	ngs that violat	e the b	ouilding code	in the	e sample.		
(b) Find the pro	babili	ty that:						
	(i) none	of the	buildings in	the sa	mple violatin	g the	building cod	e.	
	(ii) one b	ouildi	ng in the sam	ple vio	olating the bu	ıilding	code.		
	(iii) at le	ase o	ne building ir	the sa	ample violati	ng the	building cod	de.	
(c) Find the exp	ected	number of bu	uilding	gs in the samp	ole tha	t violate the	buildii	ng code (E(X)).
(d) Find σ^2 =Var	(X).							
Q2. A mi	ssile detection	n syst	tem has a pro	obabili	ty of 0.90 of	f detec	cting a missi	le atta	ack. If 4 detection
systems a	re installed in	the sa	ame area and	operat	te independer	ntly, th	nen		
(a) The	probability th	nat at	least two syst	ems d	etect an attac	k is			
(A)	0.9963	(B)	0.9477	(C)	0.0037	(D)	0.0523	(E)	0.5477
(b) The	e average (mea	ın) nu	mber of syste	ems de	tect an attack	c is			
(A)	3.6	(B)	2.0	(C)	0.36	(D)	2.5	(E)	4.0
Q3. Supp	ose that the pr	robab	ility that a pe	rson d	lies when he	or she	e contracts a	certair	n disease is 0.4. A
sample of	10 persons w	ho co	entracted this	diseas	e is randomly	chos	en.		
(1) What is the 6	expec	ted number o	f perso	ons who will	die in	this sample?	•	

- 3 -

(2) What is the variance of the number of persons who will die in this sample?

	(3) What	is the probabil	ity tha	at exactly 4 per	sons v	will die among	g this	sample?
	(4) What	is the probabil	ity tha	at less than 3 po	ersons	will die amo	ng this	s sample?
	(5) What	is the probabil	ity tha	at more than 8	persor	ns will die am	ong th	nis sample?
Q4. Su	ppose that	t the percentag	ge of	females in a c	ertain	population is	50%	. A sample of 3 people is
selected	d randoml	y from this pop	oulati	on.				
(a)	The prol	bability that no	fema	ales are selected	d is			
	(A)	0.000	(B)	0.500	(C)	0.375	(D)	0.125
(b)	The prol	bability that at	most	two females ar	e sele	cted is		
	(A)	0.000	(B)	0.500	(C)	0.875	(D)	0.125
(c)	The exp	ected number	of fen	nales in the san	nple is	S		
	(A)	3.0	(B)	1.5	(C)	0.0	(D)	0.50
(d)	The vari	ance of the nu	mber	of females in the	he san	nple is		
	(A)	3.75	(B)	2.75	(C)	1.75	(D)	0.75
Q5. 20°	% of the to	rainees in a cer	rtain p	program fail to	comp	lete the progr	am. If	5 trainees of this program
are sele	ected rando	omly,						
	(i) Find th	ne probability of	listrib	oution function	of the	random varia	ıble X	, where:
	X = nu	ımber of the tra	ainees	s who fail to co	mplet	e the program		
	(ii) Find t	he probability	that a	ll trainees fail	to con	nplete the prog	gram.	
	(iii) Find	the probability	that	at least one trai	nee w	rill fail to com	plete	the program.
	(iv) How	many trainees	are ex	expected to fail	compl	eting the prog	gram?	
	(v) Find the	he variance of	the n	umber of traine	es wh	o fail complet	ting th	ne program.

Q6. In a certain industrial factory, there are 7 workers working independently. The probability of accruing accidents for any worker on a given day is 0.2, and accidents are independent from worker to worker.

(a) The probability that at most two workers will have accidents during the day is

(A) 0.7865

(B) 0.4233

(C) 0.5767

(D) 0.6647

(b) The probability that at least three workers will have accidents during the day is:

(A) 0.7865

(B) 0.2135

(C) 0.5767

(D) 0.1039

(c) The expected number workers who will have accidents during the day is

(A) 1.4

(B) 0.2135

(C) 2.57

(D) 0.59

Q7. From a box containing 4 black balls and 2 green balls, 3 balls are drawn independently in succession, each ball being replaced in the box before the next draw is made. The probability of drawing 2 green balls and 1 black ball is:

(A) 6/27

(B) 2/27

(C) 12/27

(D) 4/27

Q8. The probability that a lab specimen is contaminated is 0.10. Three independent samples are checked.

1) the probability that none is contaminated is:

(A) 0.0475

(B) 0.001

(C) 0.729

(D) 0.3

2) the probability that exactly one sample is contaminated is:

(A) 0.243

(B) 0.081

(C) 0.757

(D) 0.3

Q9. If $X \sim Binomial(n,p)$, E(X)=1, and Var(X)=0.75, find P(X=1).

Q10. Suppose that $X\sim Binomial(3,0.2)$. Find the cumulative distribution function (CDF) of X.

Q11. A traffic	contro	l engineer repo	orts that 75%	of the cars pas	ssing through a checkpoint a	re from
Riyadh city. If a	at this o	checkpoint, fiv	e cars are selec	ted at random.		
(1) The	probab	ility that none	of them is fron	n Riyadh city e	quals to:	
((A) 0.0	0098	(B) 0.9990	(C) 0.2373	(D) 0.7627	
(2) The	probab	ility that four o	of them are from	n Riyadh city e	equals to:	
((A)	0.3955	(B) 0.6045	(C) 0	(D) 0.1249	
(3) The	probab	ility that at lea	st four of them	are from Riyao	th city equals to:	
((A)	0.3627	(B) 0.6328	(C) 0.3955	(D) 0.2763	
(4) The	expect	ed number of c	ars that are fro	m Riyadh city	equals to:	
((A) 1		(B) 3.7	(C) 3	(D) 0	

HYPERGEOMETRIC DISTRIBUTION:

Q1. A shipment of 7 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of

the sets.

(i)

(i) Find the	e probability distr	ibution function	of the	e random varia	able X	Trepresenting the number					
of defea	ctive sets purchase	ed by the hotel.									
(ii) Find th	ne probability that	the hotel purcha	ased n	o defective te	levisio	on sets.					
(iii) What	is the expected nu	ımber of defectiv	ve tele	evision sets pu	rchas	ed by the hotel?					
(iv) Find th	he variance of X.										
Q2. Suppose that a family has 5 children, 3 of them are girls and the rest are boys. A sample of 2											
children is selected	d randomly and w	ithout replacem	ent.								
(a) The probability that no girls are selected is											
(A)	0.0 (B)	0.3	(C)	0.6	(D)	0.1					
(b) The prob	ability that at mos	st one girls are so	electe	d is							
(A)	0.7 (B)	0.3	(C)	0.6	(D)	0.1					
(c) The expe	ected number of gi	irls in the sample	e is								
(A)	2.2 (B)	1.2	(C)	0.2	(D)	3.2					
(d) The varia	ance of the numbe	er of girls in the	sampl	e is							
(A)	36.0 (B)	3.6	(C)	0.36	(D)	0.63					
Q3. A random cor	nmittee of size 4	is selected from	2 che	mical enginee	rs and	8 industrial engineers.					

representing the number of chemical engineers in the committee.

Write a formula for the probability distribution function of the random variable X

- (ii) Find the probability that there will be no chemical engineers in the committee.
- (iii) Find the probability that there will be at least one chemical engineer in the committee.
- (iv) What is the expected number of chemical engineers in the committee?
- (v) What is the variance of the number of chemical engineers in the committee?

Q4. A box contains 2 red balls and 4 black balls. Suppose that a sample of 3 balls were selected randomly and without replacement. Find,

- 1. The probability that there will be 2 red balls in the sample.
- 2. The probability that there will be 3 red balls in the sample.
- 3. The expected number of the red balls in the sample.

Q5. From a lot of 8 missiles, 3 are selected at random and fired. The lot contains 2 defective missiles that will not fire. Let X be a random variable giving the number of defective missiles selected.

- 1. Find the probability distribution function of X.
- 2. What is the probability that at most one missile will not fire?
- 3. Find $\mu = E(X)$ and $\sigma^2 = Var(X)$.

Q6. A particular industrial product is shipped in lots of 20 items. Testing to determine whether an item is defective is costly; hence, the manufacturer samples production rather than using 100% inspection plan. A sampling plan constructed to minimize the number of defectives shipped to consumers calls for sampling 5 items from each lot and rejecting the lot if more than one defective is observed. (If the lot is rejected, each item in the lot is then tested.) If a lot contains 4 defectives, what is the probability that it will be accepted.

Q7. Suppose that $X\sim h(x;100,2,60)$; i.e., X has a hypergeometric distribution with parameters N=100, n=2, and K=60. Calculate the probabilities P(X=0), P(X=1), and P(X=2) as follows:

- (a) exact probabilities using hypergeometric distribution.
- (b) approximated probabilities using binomial distribution.

Q8. A particular industrial product is shipped in lots of 1000 items. Testing to determine whether an item is defective is costly; hence, the manufacturer samples production rather than using 100% inspection plan. A sampling plan constructed to minimize the number of defectives shipped to consumers calls for sampling 5 items from each lot and rejecting the lot if more than one defective is observed. (If the lot is rejected, each item in the lot is then tested.) If a lot contains 100 defectives, calculate the probability that the lot will be accepted using:

- (a) hypergeometric distribution (exact probability.)
- (b) binomial distribution (approximated probability.)

Q9. A shipment of 20 digital voice recorders contains 5 that are defective. If 10 of them are randomly chosen (without replacement) for inspection, then:

(1	The	probability	that 2	will	he	defective	is.
•	1	1 110	probability	mat 2	VV 111	UC	uciccuvc	15.

(A) 0.2140

(B) 0.9314

(C) 0.6517

(D) 0.3483

(2) The probability that at most 1 will be defective is:

(A) 0.9998

(B) 0.2614

(C) 0.8483

(D) 0.1517

(3) The expected number of defective recorders in the sample is:

(A) 1

(B) 2

(C) 3.5

(D) 2.5

(4) The variance of the number of defective recorders in the sample is:

(A) 0.9868

(B) 2.5

(C) 0.1875

(D) 1.875

Q10. A box contains 4 red balls and 6 green balls. The experiment is to select 3 balls at random. Find the probability that all balls are red for the following cases:

(1) If selection is without replacement

(A) 0.216

(B) 0.1667

(C) 0.6671

(D) 0.0333

(2) If selection is with replacement

(A) 0.4600

(B) 0.2000

(C) 0.4000

(D) 0.0640

POISSON DISTRIBUTION:

Q1. On	average,	a certain	intersec	tion results	s in 3 to	raffic acc	idents pe	er day. A	Assuming	Poisson
distribution	on,									
(i)	what is	the probabi	lity that	at this inter	rsection:					
	(1)	no acciden	ts will o	ccur in a gi	ven day?					
	(2)	More than	3 accide	ents will occ	cur in a g	iven day?				
	(3)	Exactly 5 a	accidents	s will occur	in a peri	od of two	days?			
(ii) what is	s the averag	e numbe	er of traffic	accidents	s in a perio	od of 4 da	ıys?		
Q2. At a	checko	ut counter,	custom	ers arrive	at an av	erage of	1.5 per r	ninute. A	Assuming	Poisson
distributio	on, then									
(1) The	probabil	lity of no ar	rival in	two minutes	s is					
(A)	0.0	(B)	0.2231	(C)	0.4463	(D)	0.0498	(E)	0.2498	
(2) The	variance	e of the num	iber of a	rrivals in tv	vo minut	es is				
(A)	1.5	(B)	2.25	(C)	3.0	(D)	9.0	(E)	4.5	
Q3. Supp	ose that	the number	of telep	phone calls	received	per day h	as a Pois	son distri	ibution w	ith mean
of 4 calls	per day.									
(a) T	The prob	ability that	2 calls v	vill be recei	ved in a	given day	is			
	(A)	0.546525	(B)	0.646525	(C)	0.146525	(D)	0.74652	.5	
(b)	The exp	ected numb	er of tel	lephone call	ls receive	ed in a giv	en week i	İs		
	(A)	4	(B)	7	(C)	28	(D)	14		

(c)	The pro	bability that	at least	2 calls will b	oe recei	ved in a peri	od of 1	2 hours is
	(A)	0.59399	(B)	0.19399	(C)	0.09399	(D)	0.29399
Q4. The a	verage r	number of car	r accid	ents at a spec	cific tra	ffic signal is	s 2 per a	a week. Assuming Poisson
distributio	n, find t	he probabilit	y that:					
(i)	there wi	ill be no acci	dent in	a given weel	k.			
(ii)) there w	vill be at least	t two a	ccidents in a	period	of two week	S.	
Q5. The	average	number of	airplan	e accidents	at an a	irport is tw	o per a	a year. Assuming Poisson
distributio	n, find							
1.	the prob	ability that th	nere wi	ll be no accid	dent in	a year.		
2.	the avera	age number o	of airpl	ane accidents	s at this	airport in a	period	of two years.
3.	the prob	ability that th	nere wi	ll be at least	two acc	eidents in a p	eriod o	f 18 months.
Q6. Suppo	ose that	X~Binomial((1000,0	0.002). By us	ing Poi	sson approx	imation	P(X=3) is approximately
equal to (choose th	ne nearest nu	mber to	o your answe	er):			
(A	0.6251	1 (B) 0.72	511	(C) 0.82511	(D) 0	.92511 (E	0.180	45
Q7. The p	robabili	ty that a pers	on dies	s when he or	she co	ntracts a cer	tain dis	ease is 0.005. A sample of
1000 perso	ons who	contracted tl	nis dise	ease is randor	mly cho	osen.		
(1)) What is	s the expected	d numb	per of person	s who v	vill die in thi	is samp	le?
(2)) What is	s the probabil	lity tha	t exactly 4 pe	ersons v	will die amo	ng this	sample?
Q8. The n	umber o	f faults in a f	iber op	otic cable foll	lows a l	Poisson distr	ibution	with an average of 0.6 per
100 feet.								

(1) The probability of 2 faults per 100 feet of such cable is:												
(A) 0.0988	(B) 0.9012	(C) 0.3210	(D) 0.5									
(2) The probability of less than 2 faults per 100 feet of such cable is:												
(A) 0.2351	(B) 0.9769	(C) 0.8781	(D) 0.8601									
(3) The probability of 4 f	aults per 200 feet of s	uch cable is:										
(A) 0.02602	(B) 0.1976	(C) 0.8024	(D) 0.9739									

NORMAL DISTRIBUTION:

	() 1.	(A	Suppo	se that	Zis	distributed	according t	to the	e standard	normal	distribution.
--	---	-------------	----	-------	---------	-----	-------------	-------------	--------	------------	--------	---------------

1) the area under the curve to the left of z = 1.43 is:

(A) 0.0764

(B) 0.9236

(C) 0 (D) 0.8133

2) the area under the curve to the left of z = 1.39 is:

(A) 0.7268

(B) 0.9177

(C) .2732

(D) 0.0832

3) the area under the curve to the right of z = -0.89 is:

(A) 0. 7815

(B) 0.8133

(C) 0.1867

(D) 0.0154

4) the area under the curve between z = -2.16 and z = -0.65 is:

(A) 0.7576

(B) 0.8665

(C) 0.0154

(D) 0.2424

5) the value of k such that P(0.93 < Z < k) = 0.0427 is:

(A) 0.8665

(B) -1.11

(C) 1.11

(D) 1.00

(B) Suppose that Z is distributed according to the standard normal distribution. Find:

1) P(Z < -3.9)

2) P(Z > 4.5)

1) P(Z < 3.7)

2) P(Z > -4.1)

Q2. The finished inside diameter of a piston ring is normally distributed with a mean of 12 centimeters and a standard deviation of 0.03 centimeter. Then,

1) the proportion of rings that will have inside diameter less than 12.05 centimeters is:

(A) 0.0475 (B) 0.9525 (C) 0.7257 (D) 0.8413

2) the proportion of rings that will have inside diameter exceeding 11.97 centimeters is:

(A) 0.0475 (B) 0.8413 (C) 0.1587 (D) 0.4514

3) the probability that a piston ring will have an inside diameter between 11.95 and 12.05 centimeters is:

(A) 0.905 (B) -0.905 (C) 0.4514 (D) 0.7257

Q3. The average life of a certain type of small motor is 10 years with a standard deviation of 2 years. Assume the live of the motor is normally distributed. The manufacturer replaces free all motors that fail while under guarantee. If he is willing to replace only 1.5% of the motors that fail, then he should give a guarantee of :

(A) 10.03 years (B) 8 years (C) 5.66 years (D) 3 years

Q4. A machine makes bolts (that are used in the construction of an electric transformer). It produces bolts with diameters (X) following a normal distribution with a mean of 0.060 inches and a standard deviation of 0.001 inches. Any bolt with diameter less than 0.058 inches or greater than 0.062 inches must be scrapped. Then

(1) The proportion of bolts that must be scrapped is equal to

(A) 0.0456 (B) 0.0228 (C) 0.9772 (D) 0.3333 (E) 0.1667

(2) If P(X>a) = 0.1949, then a equals to:

(A) 0.0629 (B) 0.0659 (C) 0.0649 (D) 0.0669 (E) 0.0609

Q5. The diameters of ball bearings manufactured by an industrial process are normally distributed with a mean $\mu=3.0$ cm and a standard deviation $\sigma=0.005$ cm. All ball bearings with diameters not within the specifications $\mu\pm d$ cm (d > 0) will be scrapped.

- (1) Determine the value of d such that 90% of ball bearings manufactured by this process will not be scrapped.
- (2) If d = 0.005, what is the percentage of manufactured ball bearings that will be scraped?

Q6. The weight of a large number of fat persons is nicely modeled with a normal distribution with mean of 128 kg and a standard deviation of 9 kg.

- (1) The percentage of fat persons with weights at most 110 kg is
 - (A) 0.09 %
- (B) 90.3 %
- (C) 99.82 %
- (D) 2.28 %
- (2) The percentage of fat persons with weights more than 149 kg is
 - (A) 0.09 %
- (B) 0.99 %
- (C) 9.7 %
- (D) 99.82 %
- (3) The weight x above which 86% of those persons will be
 - (A) 118.28
- (B) 128.28
- (C) 154.82
- (D) 81.28
- (4) The weight x below which 50% of those persons will be
 - (A) 101.18
- (B) 128
- (C) 154.82
- (D) 81

Q7. The random variable X, representing the lifespan of a certain electronic device, is normally distributed with a mean of 40 months and a standard deviation of 2 months. Find

1. P(X<38).

(0.1587)

2. P(38<X<40).

(0.3413)

3. P(X=38).

(0.0000)

(41.24)

4. The value of x such that P(X < x) = 0.7324.

Q8. If the random	m variable X has	a normal distr	ribution with th	ne mean µ	and the variance σ^2	² , then
$P(X<\mu+2\sigma)$ equa	ls to					
(A) 0.877	2 (B) 0.4772	(C) 0.5772	(D) 0.	.7772 (E	0.9772	
OO If the randor	m vorioblo V bos	a normal distr	ibution with th	o maan u d	and the verience 1	and if
		a normal distr	ibution with th	іе теап µ г	and the variance 1,	and 11
P(X<3)=0.877, th	en μ equals to					
(A) 3.84	(B) 2.84	(C) 1.84	(D) 4.84	(E) 8.84		
Q10. Suppose that	at the marks of th	e students in a	certain course	are distribu	ted according to a n	ormal
distribution with	the mean 70 and	the variance 2	5. If it is know	vn that 33%	of the student fail	ed the
exam, then the pa	ssing mark x is					
(A) 67.8	(B) 60.8	(C) 57.8	(D) 50	0.8 (E	70.8	
Q11. If the rando	m variable X has a	a normal distrib	ution with the r	mean 10 and	the variance 36, the	en
	ue of X above wh					
(A	.) 14.44 (B) 1	6.44 (C) 10).44	(D) 18.44	(E) 11.44	
2. The pro	bability that the v	alue of X is gre	ater than 16 is			
•	•	.1587 (C) 0.		(D) 0.058°	7 (E) 0.5587	
((=) =	(5)		(-) *****	(_) :::::::	
Q12. Suppose that	at the marks of th	e students in a	certain course	are distribu	ted according to a n	ormal
distribution with	the mean 65 and	the variance 16	6. A student fai	ils the exam	if he obtains a mar	rk less
than 60. Then the	percentage of stu	dents who fail t	he exam is			
(A) 20.56	% (B) 90.56%	(C) 50.56%	(D) 10	0.56%	(E)40.56%	

Q13. The average rainfall in a certain city for the month of March is 9.22 centimeters. Assuming a normal distribution with a standard deviation of 2.83 centimeters, then the probability that next March, this city will receive:

(1) less than 11.84 centimeters of rain is:

(A) 0.8238

(B) 0.1762

(C) 0.5

(D) 0.2018

(2) more than 5 centimeters but less than 7 centimeters of rain is:

(A) 0.8504

(B) 0.1496

(C) 0.6502

(D) 0.34221

(3) more than 13.8 centimeters of rain is:

(A) 0.0526

(B) 0.9474

(C) 0.3101

(D) 0.4053

Areas under the Standard Normal Curve

							Ž			
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0007	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0003	0.0003	0.0003	0.0012	0.0000	0.0001	0.0001	0.0007	0.0010
-2.9	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1777	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.4	0.3440	0.3783	0.3745	0.3330	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
	0.3621		0.3743	0.4090	0.3009	0.3032	0.3394	0.3936	0.3320	0.3463
-0.2		0.4168								
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9909	0.9909	0.9993	0.9993
3.1	0.9990		0.9991		0.9992	0.9992	0.9992	0.9992		0.9995
		0.9993		0.9994					0.9995	
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Percentage Points of the *t* Distribution; $t_{V,\alpha}$ {P(T> $t_{V,\alpha}$) = α }

	l		01 01		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ω (- ($\frac{1 > \iota_{V, \alpha_{j}}}{\alpha}$, .,					
ν	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
∞	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

Summary of Confidence Interval Procedures

Summary of Comidence Interval Procedures					
Problem Type	Point Estimate	Two-Sided 100(1-α)% Confidence Interval			
Mean μ variance σ² known, normal distribution, or any distribution with n>30	\overline{X}	$\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text{or} \overline{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$			
Mean μ normal distribution, variance σ ² unknown	\overline{X}	$\overline{X} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$ or $\overline{X} \pm t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$ (df: v=n-1)			
Difference in two means μ_1 and μ_2 variances σ_1^2 and σ_2^2 are known, normal distributions, or any distributions with n_1 , $n_2 > 30$	$\overline{X}_1 - \overline{X}_2$	$(\overline{X}_1 - \overline{X}_2) - Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$			
		or $(\overline{X}_1 - \overline{X}_2) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$			
Difference in means μ_1 and μ_2 normal distributions, variances $\sigma_1^2 = \sigma_2^2$ and unknown	$\overline{X}_1 - \overline{X}_2$	$(\overline{X}_1 - \overline{X}_2) - t_{\frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + t_{\frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$			
		or $(\overline{X}_1 - \overline{X}_2) \pm t_{\frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$			
		$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} ; (df: v = n_1 + n_2 - 2)$			
Proportion <i>p</i> (or parameter of a binomial distribution)	\hat{p}	$\hat{p} - Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$			
Difference in two proportions p_1-p_2 (or difference in two binomial	$\hat{p}_1 - \hat{p}_2$	$\left (\hat{p}_1 - \hat{p}_2) - Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} < p_1 - p_2 < (\hat{p}_1 - \hat{p}_2) + Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right $			
parameters)		or $(\hat{p}_1 - \hat{p}_2) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$			

Summary of Hypotheses Testing Procedures

Null Hypothesis	Test Statistic	Alternative Hypothesis	Critical Region (Rejection Region)
H_o : $\mu = \mu_o$	$Z = \frac{\overline{X} - \mu_{0}}{\sigma / \sqrt{n}}$	H_1 : $\mu \neq \mu_0$	$ Z > Z_{\alpha/2}$
variance σ^2 is known,		$H_1: \mu > \mu_0$	$Z > Z_{\alpha}$
Normal distribution, or any distribution with n>30		H_1 : $\mu < \mu_0$	$Z < -Z_{\alpha}$
H_o : $\mu = \mu_o$	$T = \frac{\overline{X} - \mu_{o}}{S / \sqrt{n}}; \text{ df: } v = n-1$	H_1 : $\mu \neq \mu_0$	$ T > t \alpha/2$
Normal distribution, variance σ^2 is unknown		$H_1: \mu > \mu_0$	$T > t_{\alpha}$
		H_1 : $\mu < \mu_o$	$T < -t_{\alpha}$
H_0 : $\mu_1 = \mu_2$	$Z = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$	H_1 : $\mu_1 \neq \mu_2$	$ \mathbf{Z} > \mathbf{Z} \alpha/2$
Variances σ_1^2 and σ_2^2 are known, Normal distributions, or any distributions with n_1 , $n_2 > 30$		$H_1: \mu_1 > \mu_2$	$Z > Z_{\alpha}$
1 vormal distributions, of any distributions with hi, h2 > 30		H_1 : $\mu_1 < \mu_2$	$Z < -Z_{\alpha}$
H_0 : $\mu_1 = \mu_2$	$T = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}; \text{ df: } v = n_1 + n_2 - 2$	H_1 : $\mu_1 \neq \mu_2$	$ T > t \alpha/2$
Normal distributions, variances $\sigma_1^2 = \sigma_2^2$ and unknown		$H_1: \mu_1 > \mu_2$	$T > t_{\alpha}$
variances of $-$ o ₂ and unknown		H_1 : $\mu_1 < \mu_2$	T< -t α
	$S_p^2 = [(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2]/(n_1 + n_2 - 2)$		
H_{o} : $p=p_{o}$	$Z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o q_o}{n}}} = \frac{X - np_o}{\sqrt{np_o q_o}}$	H_1 : $p \neq p_0$	$ Z > Z_{\alpha/2}$
Proportion or parameter of a binomial distribution <i>p</i>		$H_1: p > p_0$	$Z > Z_{\alpha}$
(q=1-p)		H ₁ : $p < p_0$	$Z < -Z_{\alpha}$
$H_0: p_1 = p_2$	$Z = \frac{\hat{p}_1 - \hat{p}_2}{-}$	$H_1: p_1 \neq p_2$	$ \mathbf{Z} > \mathbf{Z} \alpha/2$
Difference in two proportions or two hipomial personators	$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$		
Difference in two proportions or two binomial parameters $p_1 - p_2$		$H_1: p_1 > p_2$	$Z > Z_{\alpha}$
	$\hat{n} = X_1 + X_2 = n_1 \hat{p}_1 + n_2 \hat{p}_2$	H ₁ : $p_1 < p_2$	$Z < -Z_{\alpha}$
	$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	$111. p_1 < p_2$	$\mathbf{Z} \setminus -\mathbf{Z} \alpha$