

General information

Designation

CY9

Typical uses

High temperature corrosion resistant applications.

Composition overview

Compositional summary

С

Material family

Base material

Ceramic (technical)

C (Carbon)

Composition detail (metals, ceramics and glasses)

C (carbon)	100	%

Price

Price	* 5.08	- 7.71	USD/lb
1 1100	0.00	7.7	000/10

Physical properties

Density	0.0582	-	0.0603	lb/in^3
Porosity (closed)	* 0.06	-	0.13	%
Porosity (open)	0.15	-	0.21	%

Mechanical properties

Young's modulus	0.566	-	0.595	10^6 psi
Yield strength (elastic limit)	* 0.624	-	0.682	ksi
Tensile strength	* 0.624	-	0.682	ksi
Elongation	* 0.1	-	0.12	% strain
Compressive strength	* 6.24	-	6.82	ksi
Flexural modulus	* 0.566	-	0.595	10^6 psi
Flexural strength (modulus of rupture)	3.19	-	3.55	ksi
Shear modulus	* 0.232	-	0.247	10^6 psi
Bulk modulus	* 0.319	-	0.334	10^6 psi
Poisson's ratio	* 0.17	-	0.23	
Shape factor	15			
Hardness - Vickers	12.8	-	14.2	HV
Fatigue strength at 10^7 cycles	* 0.528	-	0.616	ksi
Mechanical loss coefficient (tan delta)	* 0.002	-	0.02	

Impact & fracture properties

Fracture	tougl	hness			* 0.273	-	0.364	ksi.in^0.5
----------	-------	-------	--	--	---------	---	-------	------------

Thermal properties

Melting point	6.39e3	-	6.66e3	°F
Maximum service temperature	* 4.68e3	-	4.87e3	°F
Minimum service temperature	-459			°F
Thermal conductivity	25.5	-	27.9	BTU.ft/hr.ft^2.°F
Specific heat capacity	* 0.203	-	0.225	BTU/lb.°F
Thermal expansion coefficient	0.744	-	0.811	µstrain/°F
Latent heat of fusion	* 843	-	950	BTU/lb

Electrical properties

Graphite (extruded)

Electrical resistivity	* 158	-	501	µohm.cm
Galvanic potential	0.2	-	0.28	V

Optical properties

Color	Black
Transparency	Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

10 (20) bomphant grades.

Durability

Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Excellent
Strong acids	Acceptable
Weak alkalis	Excellent
Strong alkalis	Unacceptable
Organic solvents	Excellent
Oxidation at 500C	Limited use
UV radiation (sunlight)	Excellent
Halogens	Acceptable
Metals	Acceptable
Flammability	Non-flammable

Primary production energy, CO2 and water Embodied energy, primary production

Embodied energy, primary production	8.99e4	-	9.89e4	BTU/lb
Sources				
198 MJ/kg (Jungbluth, 2008); 240 MJ/kg (Jungbluth, 2008)				
CO2 footprint, primary production	15.8	-	17.4	lb/lb
Sources				
14.8 kg/kg (Jungbluth, 2008); 18.3 kg/kg (Jungbluth, 2008)				
NOx creation	* 0.0196	-	0.0216	lb/lb
SOx creation	* 0.0392	-	0.0433	lb/lb
Water usage	* 8.05e3	-	8.91e3	in^3/lb

Processing energy, CO2 footprint & water

Grinding energy (per unit wt removed)	* 2.44e3	-	2.7e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.426	-	0.471	lb/lb

Recycling and end of life

Recycling and end of me				
Recycle	×			
Recycle fraction in current supply	4.73	-	5.22	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 1.37e4	-	1.44e4	BTU/lb
Combustion CO2	* 3.58	-	3.76	lb/lb
Landfill	✓			
Biodegrade	×			

Geo-economic data for principal component

Principal component	Carbon		
Typical exploited ore grade	0.19 -	0.21	%

Graphite (extruded)

Minimum economic ore grade
Abundance in Earth's crust
Abundance in seawater
Annual world production
Reserves

Main mining areas (metric tonnes per year)

Brazil, 76e3 Canada, 25e3 China, 600e3 India, 140e3 Madagascar, 5e3 Mexico, 7e3 North Korea, 30e3 Norway, 2e3 Romania, 20e3 Sri Lanka, 8e3 Ukraine, 6e3 Other countries, 6e8

Links

ProcessUniverse

Producers

Reference

Shape

0.1 - 0.3 % 456 - 504 ppm 23.8 - 26.3 ppm 1e6 - 1.1e6 ton/yr 7.11e7 - 7.85e7 I. ton