Hyungjin Chung

Email: hj.chung@kaist.ac.kr GitHub: github.com/HJ-harry Office: KAIST N5 2219

Phone: (+82)10-7175-0466 **Homepage**: hj-chung.com

Research interests Deep Learning, Diffusion models, Energy-based models,

Inverse problems, Computational Imaging, Compressed-sensing MRI

Education KAIST Daejeon, Korea

PhD in Bio & Brain Engineering 2021.03 – Present

Advisor: Professors Jong Chul Ye

KAIST Daejeon, Korea MA in Bio & Brain Engineering 2019.03 – 2021.02

Thesis: TomoGAN: Unsupervised Learning-based

Reconstruction of Tomography Advisor: Professors Jong Chul Ye

Korea University Seoul, Korea BA in Biomedical Engineering 2015.03 – 2019.02

Work Experience Los Alamos National Laboratory 2022.06 – Present

Research intern, Applied math & Plasma physics devision (T-5)

Advisor: Michael T. Mccann, Marc Klasky

Honors and KAIST Scholarship 2021.02 - Present scholarships Korea Government Scholarship 2019.03 - 2021.02

Awards **2020, 2021 BISPL Best Researcher Award** 2020, 2021.12

Invited talks Deep learning-based MR reconstruction 2022.06

45th meeting, The Korean Society of Abdominal Radiology, 2022

Professional Advisory board member 2021.05 – Present

Experience SNUHRad-AICON: SNUH-Radiology AI Collaboration Network

Reviewer (selected)

IEEE TPAMI, IEEE TMI, IEEE TCI, Medical Image Analysis

Top ML conferences Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Mod-

els for Inverse Problems through Stochastic Contraction

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

Publications

Low-dose sparse-view HAADF-STEM-EDX tomography of nanocrystals using unsupervised deep learning

Eunju Cha*, Hyungjin Chung*, Jaeduck Jang, Junho Lee, Eunha Lee, Jong Chul Ye

ACS Nano, 2022 (in press) (*First author)

Score-based diffusion models for accelerated MRI

Hyungjin Chung and Jong Chul Ye *Medical Image Analysis*, 2021

Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement

Mehmet Akçakaya, Burhaneddin Yaman, Hyungjin Chung, Jong Chul Ye, *IEEE SPM*, 2021

A Deep Learning Model for Diagnosing Gastric Mucosal Lesions Using Endoscopic Images: Development, Validation, and Method Comparison

Joon Yeul Nam*, Hyungjin Chung*, Kyu Sung Choi*, Hyuk Lee*, Seung Jun Han, Tae Jun Kim, Hosim Soh, Eun Kang, Soo-Jeong Cho, Jong Chul Ye, Jong Pil Im, Sang Gyun Kim, Yoon Jun Kim, Joo Sung Kim, Jung-Hwan Yoon, Hyunsoo Chung, Jeong-Hoon Lee *Gastrointestinal Endoscopy, 2021*

Feature Disentanglement in generating three-dimensional structure from two-dimensional slice with sliceGAN

Hyungjin Chung, Jong Chul Ye Nature Machine Intelligence, 2021

Missing Cone Artifacts Removal in ODT using Unsupervised Deep Learning in Projection Domain

Hyungjin Chung*, Jaeyoung Huh*, Geon Kim, Yong Keun Park, Jong Chul Ye *IEEE Transactions on Computational Imaging*

Two-Stage Deep Learning for Accelerated 3D Time-of-Flight MRA without Matched Training Data

Hyungjin Chung, Eunju Cha, Leonard Sunwoo, Jong Chul Ye *Medical Image Analysis*, 2021.

Deep learning STEM-EDX tomography of nanocrystals

Yoseob Han*, Jaeduck Jang*, Eunju Cha*, Junho Lee*, Hyungjin Chung*,

Myoungho Jeong, Tae-Gon Kim, Byeong Gyu Chae, Hee Goo Kim, Shinae Jun, Sungwoo Hwang, Eunha Lee, Jong Chul Ye

Nature Machine Intelligence, 2021.

Selected as 2021 March Issue Cover

Unpaired training of deep learning tMRA for flexible spatio-temporal resolution

Eunju Cha, Hyungjin Chung, Eung Yeop Kim, Jong Chul Ye. *IEEE Transactions on Medical Imaging*, 2020.

Unpaired deep learning for accelerated MRI using optimal transport driven cycleGAN

Gyutaek Oh, Byeongsu Sim, Hyungjin Chung, Leonard Sunwoo, Jong Chul Ye. *IEEE Transactions on Computational Imaging*, 2020.

Preprints

Improving Diffusion Models for Inverse Problems using Manifold Constraints

Hyungjin Chung*, Byeongsu Sim*, Dohoon Ryu, Jong Chul Ye arXiv preprint arXiv:2206.00941

MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion

Hyungjin Chung, Eun Sun Lee, Jong Chul Ye arXiv preprint arXiv:2203.12621

Simultaneous super-resolution and motion artifact removal in diffusion-weighted MRI using unsupervised deep learning

Hyungjin Chung, Jaehyun Kim, Jeong Hee Yoon, Jeong Min Lee, Jong Chul Ye arXiv preprint arXiv:2105.00240

International Confernce

Deep learning fast MRI using channel attention in magnitude domain

Joonhyung Lee*, Hyunjong Kim*, Hyungjin Chung*, Jong Chul Ye *IEEE International Symposium on Biomedical Imaging, 2020.*

Unsupervised Merge-Residual Learning for Time-of-Flight MRI

Hyungjin Chung, Eunju Cha, Leonard Sunwoo, Jong Chul Ye IEEE International Symposium on Biomedical Imaging Workshop, 2020.

Patent

Accelerating method of conditional diffusion models for inverse problems using stochastic contraction and the apparatus thereof

Jong Chul Ye, Hyungjin Chung, Byeongsu Sim Korea patent application, 2021.

Score-based Diffusion Model for Accelerated MRI and Apparatus thereof

Jong Chul Ye, Hyungjin Chung Korea patent application, 2021.

Task-agnostic image processing method and apparatus using transformer and federated split learning

Jong Chul Ye, Hyungjin Chung, Gyutaek Oh, Sangjoon Park, Boah Kim, Jeongsol Kim

Korea patent application, 2021.

Crowd Deep Learning Method of Medical Artificial Intelligence and Apparatus thereof

Jong Chul Ye, Hyungjin Chung, Gyutaek Oh, Sangjoon Park Korea patent application, 2021.

Unsupervised deep learning method for tomography for complete removal of missing cone artifact and apparatus therefore

Jong Chul Ye, Hyungjin Chung, JaeYoung Huh Korea patent application, 2020.

Two-Stage unsupervised learning method for 3D Time-of-flight MRA reconstruction and the apparatus therefore

Jong Chul Ye, Hyungjin Chung, Eunju Cha, Leonard Sunwoo Korea patent application, 2020.

Research experience

Unsupervised deep learning for compressed sensing MRI reconstruction

KAIST 2020.04 – 2021.02

Research project conducted in collaboration with Seoul National University Bundang Hospital.

Deep learning-based performance prediction of deep learning

KAIST 2020.03 – 2021.02

Project presented in VRPGP 2020

Development of reconstruction algorithm of STEM-EDX tomography

Samsung Electronics 2019.12 – 2020.11

Teaching experience

Head Teaching assistant, KAIST

Fall 2021

BiS 800: Machine Learning for Medical Image Analysis

BiS 301: Bioengineering Laboratory I

Teaching assistant, KAIST

Fall 2020

BiS 452: Biomedical Imaging

Teaching assistant, KAIST

Spring 2020

BiS 400, MAS 480: Advanced Intelligence

Teaching assistant, KAIST

Fall 2019

BiS 452: Biomedical Imaging

Teaching assistant, KAIST

Spring 2020

BiS 301, : Bioengineering Laboratory I

Skills Computational Imaging

- Inverse problems in vision
- Compressed sensing MRI (CS-MRI)
- Computational tomography (CT)
- Optical diffraction tomography (ODT)
- Microscopy
- Phase Retrieval

Deep Learning Framework

PyTorch, JAX, Tensorflow

Programming

Python, MATLAB, C++.