House Price Prediction

▼ Data

>	head(house))												
	id		date	price	bedro	ooms	bathrooms	sqft_li	iving	sqft_lot	floors	waterfront	view	condition
1	7129300520	20141013	T000000	221900		3	1.00		1180	5650	1	0	0	3
2	6414100192	20141209	T000000	538000		3	2.25		2570	7242	2	0	0	3
3	5631500400	20150225	T000000	180000		2	1.00		770	10000	1	0	0	3
4	2487200875	20141209	T000000	604000		4	3.00		1960	5000	1	0	0	5
5	1954400510	20150218	T000000	510000		3	2.00		1680	8080	1	0	0	3
6	7237550310	20140512	T000000	1225000		4	4.50		5420	101930	1	0	0	3
	grade sqft.	_above sq	ft_basen	nent yr_	built	yr_r	renovated :	zipcode	1	at lo	ong sqf	t_living15 :	sqft_l	.ot15
1	7	1180		0	1955		0	98178	47.51	12 -122.2	257	1340		5650
2	7	2170		400	1951		1991	98125	47.72	10 -122.3	319	1690		7639
3	6	770		0	1933		0	98028	47.73	79 -122.2	233	2720		8062
4	7	1050		910	1965		0	98136	47.52	08 -122.3	393	1360		5000
5	8	1680		0	1987		0	98074	47.61	68 -122.6	945	1800		7503
6	11	3890	1	L530	2001		0	98053	47.65	61 -122.0	005	4760	10	1930

▼ EDA

▼ EDA 1. 집의 위치와 가격의 관계 알아보기

- ⊀ Hypothesis 1 집의 위치가 집의 가격에 영향을 미칠 것이다.
 - ●● 위도, 경도에 따른 집 값의 분포를 시각화

ldea 근처에 있는 집들끼리는 가격이 비슷하다 🡉 어떤 집과 가깝다면 그 집의 가격과는 상관관계가 크고, 멀다면 상 관관계가 작게 모델링

ldea 강을 근처에서 주변의 다른 집들보다 높은 가격대 형성 👉 강 근처인지 여부를 구별해줄 수 있는 변수만들기

▼ view 변수를 이용해서 주변에 비해 높은 값을 가지는 집 찾기

view	0	1	2	3	4	
count	19489	332	963	510	319	

- view가 0이 아니라면 모두 동일하게 빨간색으로 시각 화
- view의 그룹별로 다른 색깔을 보이도록 시각화

• view가 0이 아닌 값을 가진다면 근처의 view가 0인 집과 비교했을 때, 상대적으로 높은 가격대를 형성한다는 것을 알수 있다.

▼ EDA 2. 집의 면적과 가격의 관계 알아보기

- ♥ Hypothesis 2 집의 면적이 집의 가격에 영향을 미칠 것이다.
 - ●● 집의 면적에 따른 집 값의 분포를 시각화

Figure 2. log(sqft_living) vs. log(price)

- Insight 4
 면적이 증가할수록 가격도 증가하는 경향을 보이지만 같은 면적에서의 가격의 분산이 매우 크다
 ⇒ 비슷한

 면적일때의 가격의 분산을 설명해줄 다른 변수가 필요

▼ •• grade 그룹별 집의 면적과 집 값의 분포 시각화

• grade 그룹별 count table

grade	1	3	4	5	6	7
count	1	3	29	242	2038	8981

- grade가 1 또는 3인 집의 개수가 5개 이하로 매우 적기 때문에 grade가 1, 3, 4인 집을 합쳐 다시 그룹화한 변수
 grade2를 만든다
- grade2 별 count table

grade	4	5	6	7	8	9
count	33	242	2038	8981	6068	2615

Scatter plot for each grade2 group

V

Conclusion 그룹별로 봐도 여전히 point들이 뭉쳐있기 때문에 grade2 변수는 같은 면적 내에서의 가격의 변동 성을 설명해주지 못한다.

▼ •• view 그룹별 집의 면적과 집 값의 분포 시각화

• view 그룹별 count table & scatter plot

view	0	1	2	3	4
#	19489	332	963	510	319

▼ ••• condition 그룹별 집의 면적과 집 값의 분포 시각화

• condition 그룹별 count table & scatter plot & regression plot

condition	1	2	3	4	5
#	30	172	14031	5679	1701

▼ 👀 lat 값을 고려한 집의 면적과 집 값의 분포 시각화

P

Insight point의 색깔이 위아래로 구분되어 보임 🧽 차이를 좀 더 구분해서 보기위해 lat 변수를 그룹화해서 다시 시각화

- ▼ 👀 lat 을 그룹화한 변수 lat_group 을 생성한후 lat_group 그룹별 집의 면적과 집 값의 분포 시각화
 - ▼ 위도의 Histogram을 참고해서 그룹화

• lat_group 변수 만들기

📌 lat_group1 : 4개의 그룹으로 그룹화

• 위도에 따른 집의 분포가 정규분포 여러개가 혼합된 형태를 보이므로 각 분포가 겹친다고 생각되는 부분을 기준으로 4개의 그룹으로 그룹화했다.

• 더 많은 정규분포가 혼합되었다고 가정하고 더 세분화된 9개의 그룹으로 그룹화했다.

▼ lat_group 그룹별 scatter plot & regression plot

• lat_group1 그룹별

• lat_group2 그룹별

Conclusion 각 그룹별로 기울기의 차이는 많이 없고 intercept 간의 차이가 더 뚜렷해보인다. 그룹별 로 나누지 않았던 figure2 에 비해 더 직선에 가까운 형태를 보인다.

- ▼ Linear Regression 결과를 이용해 lat_group의 유의성 확인
 - 전체 그룹의 회귀 직선에 대한 regression summary

$$y = m * \log(\text{sqft_living}) + b$$

	Estimate	Std. Error	t value	p value	significance
b	6.7300	0.0471	143.0	<2e-16	***
m	0.8368	0.0062	134.5	<2e-16	***
Multiple \mathbb{R}^2	0.4555	Adjusted ${\cal R}^2$	0.4555		

- lat1_gruop 별 회귀 직선에 대한 regression summary
- lat2_group 별 회귀 직선에 대한 regression summary

	Estimate	Std. Error	t value	p value	signifi	cance
b	6.4646	0.0432	149.48	Estimate	Э	Std. Error
m	0.8198	0.0050	164.42 b	⁶ 6.8273	***	0.0364
m_2	-0.0425	0.0232	-1.834 _m	⁷ 0.7733		0.0042
m_3	0.3681	0.0229	16.077 m_2	6-0.0896	***	0.0237
m_4	0.6043	0.0229	26.42 m_3	⁶ -0.1060	***	0.0196
$\operatorname{Multiple} R^2$	0.6513	Adjusted ${\cal R}^2$	0.651: m ₄	-0.0199		0.0192
			m_5	0.0934		0.0198

 m_6

 m_7

 m_8

 m_9

0.7684 0.0191 m_{10} 0.6604 0.0188 m_{11} m_{12} 0.3923 0.0192 0.3191 0.0202 m_{13} $\operatorname{Multiple} R^2$ $\operatorname{Adjusted} R^2$ 0.7543

0.1349

0.4364

0.5859

0.6370

0.0192

0.0191

0.0197

0.0200

▼ lat_group에 따른 random intercept model 적합

```
> summary(model1)
Linear mixed model fit by REML ['lmerMod']
Formula: log(price) ~ log(sqft_living) + (1 + log(sqft_living) | lat_group1)
                                                                                                                                                                                                    > summary(model2)
Linear mixed model fit by REML ['lmerMod']
Formula: log(price) - log(sqft_living) + (1 + log(sqft_living) | lat_group2)
Scaled residuals:

Min 1Q Median 3Q Max

-3.8515 -0.6433 -0.0479 0.5806 4.4055
                                                                                                                                                                                                   Scaled residuals:

Min 1Q Median 3Q Max

-4.9526 -0.5972 -0.0440 0.5347 5.1528
                                                                                                                                                                                                    Random effects:
 Random effects:

        Random effects:
        Variance
        Std.Dev. Corr

        Groups
        Name
        Variance
        Std.Dev. Corr

        lat_group1
        (Intercept)
        0.73680
        0.8584

        log(sqft_living)
        0.01792
        0.1339
        -0.95

        Residual
        0.09596
        0.3098

        Number of obs: 21613, groups:
        lat_group1, 4

                                                                                                                                                                                                  Random effects:

Groups Name Variance Std.Dev. Corr

lat_group2 (Intercept) 0.18463 0.42968

log(sqft_living) 0.00406 0.06371 -0.78

Residual 0.06752 0.25985

Number of obs: 21613, groups: lat_group2, 13
Fixed effects: Estimate Std. Error t value (Intercept) 7.24995 0.44330 16.35 log(sqft_living) 0.74523 0.06859 10.87
                                                                                                                                                                                                  Correlation of Fixed Effects:
                                                                                                                                                                                                   Correlation of Fixed Effects:
(Intr)
lg(sqft_lv) -0.956
                                                                                                                                                                                                   (Intr)
lg(sqft_lv) -0.800
```


🖕 ldea 면적과 위도는 집 값에 함께 영향을 미침 👉 면적은 위치와 함께 고려해서 모형에 반영

▼ Modeling

강 근처인지 여부를 구별해줄 수 있는 변수만들기: good_view

강을 근처에서 주변의 다른 집들보다 높은 가격대를 형성하는 경향을 반영해줄 수 있음

Gaussian Process(GP) 의 Multivariate Nonparametric Regression을 이용하고, covariance function으로 Isotropic covariance function을 사용

- 👉 Isotropic covariance function을 사용함으로써 위도와 경도 각각의 차이가 아닌 거리의 차이를 이용하여 correlation을 handling
- 🧽 경도와 위도를 이용해 거리를 계산하는 방법인 Haversine formula를 covariance function으로 사용하여 두 집사이의 실제 거리를 이용하여 correlation을 handling

log(sqft_living) 변수를 이용한 선형모형을 추가

🧽 GP를 이용해 위치에 따른 집 값의 변화를 고려한 후, 면적에 관한 변수를 이용해 면적에 따른 집 값의 변화를 capture할 수있음

Model

· Variables setting

Variable	Description
$y_i \in \mathbb{R}$	i 번째 집의 가격 $(i=1,\ldots,n)$
$\mathbf{z}_i = (z_{i1}, z_{i2}) \in \mathbb{R}^2$	i 번째 집의 경도 (z_{i1}) 와 위도 (z_{i2})
$x_{1i} \in \{0,1\}$	i 번째 집의 good_view
$x_{2i} \in \mathbb{R}$	i 번째 집의 $\log(\operatorname{sqft_living})$

- $\circ \ y_i \in \mathbb{R} \,:\, i$ 번째 집의 가격 $(i=1,\ldots,n)$
- ullet $\mathbf{z}_i = (z_{i1}, z_{i2}) \in \mathbb{R}^2 : i$ 번째 집의 경도 (z_{i1}) 와 위도 (z_{i2})
- $\circ x_{1i} \in \{0,1\}: i$ 번째 집의 good_view

 $\circ \;\; x_{2i} \in \mathbb{R}$: i 번째 집의 log(sqft_living)

Model

$$y_i = f(\mathbf{z}_i) + eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + \epsilon_i, \quad \epsilon_i \sim \mathrm{N}(0, \ \sigma^2)$$
 $f(\mathbf{z}_i) \sim \mathrm{N}\left(\mu(\mathbf{z}_i), \ \sigma^2\right), \quad i = 1, \ldots, n_k, \ k = 1, \ldots, K$
 $(\mu(\mathbf{z}_1), \ldots \mu(\mathbf{z}_n)) \sim \mathrm{GP}\left(\left(m(\mathbf{z}_1), \ldots, m(\mathbf{z}_n)\right), \ K(\mathbf{z}_1, \ldots, \mathbf{z}_n)\right)$
 $\mathrm{where} \ k(\mathbf{z}_i, \ \mathbf{z}_j) = \tau^2 \exp\left(-\frac{d(\mathbf{z}_i, \ \mathbf{z}_j)}{l^2}\right)$
 $d(\mathbf{z}_i, \ \mathbf{z}_j) = R \cdot c_{ij}, \ R = 6371.0,$
 $a_{ij} = \sin^2\left(\frac{z_{i2} - z_{j2}}{2}\right) + \cos(z_{i2}) \cdot \cos(z_{j2}) \cdot \sin^2\left(\frac{z_{i1} - z_{j1}}{2}\right)$
 $c_{ij} = 2 \cdot \mathrm{atan2}(\sqrt{a_{ij}}, \sqrt{1 - a_{ij}})$
 $\operatorname{arctan}\left(\frac{y}{x}\right) \quad \text{if} \ x > 0$
 $\operatorname{arctan}\left(\frac{y}{x}\right) + \pi \quad \text{if} \ x < 0, y \geq 0$
 $\operatorname{arctan}\left(\frac{y}{x}\right) - \pi \quad \text{if} \ x < 0, y < 0$
 $+\frac{\pi}{2} \quad \text{if} \ x = 0, y < 0$
 $\operatorname{undefined} \quad \text{if} \ x = 0, y < 0$
 $\operatorname{undefined} \quad \text{if} \ x = 0, y = 0$
 $\sigma^2 \sim \mathrm{inv\text{-}Gamma}(a_\sigma, b_\sigma),$
 $p(\sigma^2) \propto 1,$