

Nucli d'activitat 3.4

Nucli d'activitat 3.4

El model de referència OSI: estructura de capes, comunicació entre capes, serveis, primitives, entitats i interfícies.

Història

Inicis

- Les xarxes van néixer sense una forma de fer comuna.
- A principis dels 80, es va disparar la existència de xarxa i van començar a sorgir grans problemes de compatibilitats.
- Organització Internacional para la Estandarització (ISO)
 - Aquesta organització va decidir posar ordre establint un model estàndard de referència --> Model ISO basat en SNA.
 - El model TCP/IP es va desplegar més ràpid.
 - Tot i això OSI s'utilitza com a model de referència per ensenyar xarxes.

Model OSI

Crèdit 2: Gestió de xarxes d'àrea local

Model OSI. Bits, Paquets, tramas ...

Crèdit 2: Gestió de xarxes d'àrea local

Serveis, Primitives, Interficies i entitats

FIs nivells inferiors ofereixen serveis als superiors a través dels anomenats Service **Acces Points SAPS**

Cada servei es detalla en una sèrie de primitives de servei que permeten establi un diàleg entre les dos capes.

PRIMITIVES

REQUEST **INDICATION RESPONSE CONFIRM**

INTERFICIE CAPES 3,4

INTERFICIE CAPES 3,4

Ε

R

V

Ε

S

Entitats pares. Protocol de la capa 3 (P. ex. IP)

Network

Crèdit 2: Gestió de xarxes d'àrea local

Unitats de dades

- Cada capa té un tipus de dades
 - Unitats de dades
 - Dades pures
 - · Segments
 - · Packets
 - · Frames
 - · bits
- Overhead
 - Les comunicacions son "més lentes" del que haurien de ser.

OSI Model

Avantatges i Inconvenients

Avantatges del model de capes

- Divideix i venç. El problema de la comunicacio es divideix en subproblemas (capes) més senzills de resoldre.
- Permet als diferents dispositius de maquinari o programari de xarxa comunicar-se d'una forma completament definida.
- Independitza de les implementacions de maquinàri o programari entre capes. (P. ex. un router cisco pot comunicarse amb un Switch SysLink)
- El fet que les capes estiguin separades evita la propagació d'errors o canvis entre capes i facilita el desenvolupament (similar al que succeïx en programació modular)

Crèdit 2: Gestió de xarxes d'àrea local

Avantatges i Inconvenients

Inconvenients

- Cada capa que s'introdueix augmenta la complexitat del sistema.
- El model TCP/IP te menys capes es va orientar més a les capes baixes (físic/enllaç i xarxa) i va deixar menys normativitzat les capes altes (transport i aplicació)
- Es impossible cobrir tots els casos amb capes. Cas de les subcapes MAC i subcapa d'enllaç del nivell dos en xarxes amb medi compartit (P.ex Ethernet).

Importància del model OSI

 Què succeiria si no haguessin models i estàndards en les comunicacions?

EL CAOS!
simbolitzat
per la història
bíblica de la
TORRE DE BABEL

Protocols

NIVELL D'APLICACIÓ

DNS, TLS/SSL, TFTP, FTP, HTTP, IMAP, IRC, NNTP, POP3, SIP, SMTP, SNMP, SSH, TELNET, BitTorrent, RTP, rlogin,

NIVELL DE PRESENTACIÓ

ASN.1, Videotex, Unicode, MIME, HTML, XML, ...

NIVELL DE SESSIÓ

RTSP, H.323, H.248, SIP, RPC, NetBT, SMB, SSL, TLS, ...

NIVELL DE TRANSPORT

TCP, UDP, SCTP, RTP, SPX, TCAP, DCCP, ...

Crèdit 2: Gestió de xarxes d'àrea local

Protocols

NIVELL DE XARXA

NetBEUI, OSPF, RIP, EIGRP, IP, IPX, .

NIVELL D'ENLLAÇ

Ethernet, Token Ring, LocalTalk, FDDI, X.21, X.25, Frame Relay, BitNet, CAN, ATM, Wi-Fi, HDLC, SDLC, CSMA/CD, CSMA/CA, ...

NIVELL FÍSIC

Codigos NRZ, Codificación Manchester, Cable coaxial, Par trenzado,10Base2, 10BASE5, 10BASE-T, 100BASE-TX, PDH, SDH, Tcarrier, E-carrier, SONET, DSSS, FHSS

Crèdit 2: Gestió de xarxes d'àrea local

Reconeixement-CompartirIgual 2.5

Sou lliure de:

- copiar, distribuir i comunicar públicament l'obra
- fer-ne obres derivades
- fer un ús comercial de l'obra

Amb les condicions següents:

Reconeixement. Heu de reconèixer els crèdits de l'obra de la manera especificada per l'autor o el llicenciador.

Compartir amb la mateixa llicència. Si altereu o transformeu aquesta obra, o en genereu obres derivades, només podeu distribuir l'obra generada amb una llicència idèntica a aquesta.

- Quan reutilitzeu o distribuïu l'obra, heu de deixar ben clar els termes de la llicència de l'obra.
- Alguna d'aquestes condicions pot no aplicar-se si obteniu el permís del titular dels drets d'autor.

Els drets derivats d'usos legítims o altres limitacions reconegudes per llei no queden afectats per l'anterior

Això és un resum fàcilment llegible del text legal (la llicència completa).

Advertiment 🗖

http://creativecommons.org/licenses/by-sa/2.5/deed.ca

Crèdit 2: Gestió de xarxes d'àrea local

