ECON 616: Lecture Three: The Spectrum

Ed Herbst

Background

▶ Overview: Chapters 6 from Hamilton (1994).

➤ Technical Details: Chapter 4 from Brockwell and Davis (1987).

▶ Other stuff: You might want to look at a digital signals processing textbook, for example: here.

Cycles as Frequencies

Starting In the 19th Century, economists and others recognized <u>cyclical</u> patterns in economic activity.

Schmupeter distinguished between cycles at different frequencies

- ➤ Kondratieff Cycles Longwave cycles lasting 50 years (caused by fundamental innovations.)
- ▶ Juglar Cycles medium cycle (8 years) associated with changes in credit condition.
- ► Kitchin Cycles short run cycles (40 moths) associated with information diffusion.
- => model economic activity as a linear combination of periodic function with different frequencies.

A model of frequencies

Consider the following model for quarterly observations

$$X_{t} = 2\sum_{j=1}^{m} a_{j} cos(\omega_{j} t + \theta_{j})$$

where θ_j is iidU[$-\pi,\pi$] and $0 \le \omega_j < \omega_{j+1} \le \pi$. The random variables θ_j are determined in the infinite past and simply cause a phase shift. According to Schumpeter's hypothesis m should be equal to three. The frequencies ω_j can be determined as follows.

Cycle	Duration	Frequency
Kondratieff	200 quarters	$\omega_1 = (2\pi)/200 = 0.03$
Juglar	32 quarters	$\omega_2 = (2\pi)/32 = 0.20$
Kitchin	13.3 quarters	$\omega_3 = (2\pi)/13.3 = 0.47$

A Time Series of this process

$$A = [5, 2, 1], \theta = [0.03, 0.20, 047].$$

The Spectrum

► The coefficients a₁ to a₃ are the amplitudes of the different cycles

▶ If a₁ and a₂ are small then most of the variation in X_t is due to the Kitchin cycles.

▶ The plot of a_j^2 versus ω is called the <u>spectrum</u> of X_t .

Some math

$$\cos(x + y) = \cos x \cos y - \sin x \sin y \tag{1}$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$
 (2)

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$
 (3)

$$2\sin^2 x = 1 - \cos(2x) \tag{4}$$

$$\sin x \cos x = \frac{1}{2} \sin(2x) \tag{5}$$

Moreover, $\sin^2 x + \cos^2 x = 1$.

We consider real-valued stochastic processes X_t , complex numbers will help us summarize sine and cosine expressions using exponential functions.

More Math

Let
$$i = \sqrt{-1}$$
.

Euler's formula:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

The formula becomes less mysterious if you rewrite $e^{i\varphi}$, $\sin\varphi$, and $\cos\varphi$ as power series.

The Plan

► Rewrite Schumpeter Model

▶ Define spectral distribution / density function

Examine relationship between autocovariances $\{\gamma_h\}_{h=-\infty}^{\infty}$ and the spectrum.

 Discuss very general spectral representation for a stationary stochastic process X_t.

Schumpeter Model

$$X_{t} = 2\sum_{j=1}^{m} a_{j} \cos \theta_{j} \cos(\omega_{j} t) - a_{j} \sin \theta_{j} \sin(\omega_{j} t)$$

where $a_j \cos \theta_j$ and $a_j \sin \theta_j$ can be regarded as random coefficients.

Eulers formula implies

$$X_t = \sum_{j=-m}^{m} A(\omega_j) e^{i\omega_j t}$$

where $\omega_{-j} = -\omega_j$. Let $a_{-j} = a_j$ and

This means that

$$A(\omega_j) = \begin{cases} a_j(\cos\theta_{|j|} + i\sin\theta_{|j|}) & \text{if } j > 0 \\ a_j(\cos\theta_{|j|} - i\sin\theta_{|j|}) & \text{if } j < 0 \end{cases}$$

We can verify that:

$$A(\omega_j)e^{i\omega_jt} + A(\omega_{-j})e^{-i\omega_jt} = 2\left[a_j\cos\theta_j\cos(\omega_jt) - a_j\sin\theta_j\sin(\omega_jt)\right]$$

Moments of Linear Cyclical Models

$$\mathbb{E}[\cos \theta_{j}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos \theta_{j} d\theta_{j} = 0$$
 (6)

$$\mathbb{E}[\sin \theta_{j}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin \theta_{j} d\theta_{j} = 0$$
 (7)

Result: The expectation of X_t in the linear cyclical model is equal to zero. \square

Autocovariances

To obtain the autocovariances $\gamma_h = \mathbb{E}[X_t X_{t-h}]$ we have to calculate the moments $\mathbb{E}[A(\omega_j)A(\omega_k)]$.

Let $j \neq k$, $j \neq -k$. Suppose that j, k > 0.

$$\begin{split} \mathbb{E}[A(\omega_j)A(\omega_k)] &= a_j a_k \mathbb{E}[(\cos\theta_j + i\sin\theta_j)(\cos\theta_k + i\sin\theta_k)] \\ &= a_j a_k \mathbb{E}[\cos\theta_j \cos\theta_k + i\cos\theta_j \sin\theta_k i\cos\theta_k \sin\theta_j - \sin\theta_k] \\ &= 0 \end{split}$$

Since ϕ_j and ϕ_k are independent. Similar arguments can be made if j and k have different signs.

Covariance

Let j = k. Suppose that j, k > 0.

$$\begin{split} \mathbb{E}[A(\omega_{j})A(\omega_{k})] &= a_{j}^{2}\mathbb{E}[(\cos\theta_{j} + i\sin\theta_{j})^{2}] \\ &= a_{j}^{2}\mathbb{E}[(\cos^{2}\theta_{j} - \sin^{2}\theta_{j} + i2\cos\theta_{j}\sin\theta_{j}] \\ &= a_{j}^{2}\mathbb{E}[1 - 2\sin^{2}\theta_{j} + i2\cos\theta_{j}\sin\theta_{j}] \\ &= a_{j}^{2}\mathbb{E}[\cos(2\theta_{j}) + i\sin(2\theta_{j})] \\ &= 0 \end{split} \tag{9}$$

In the last step we use the fact that sine and cosine integrate to zero over two cycles. A similar argument can be made for the case j,k<0

Let j = -k. Now $A(\omega_j)$ and $A(\omega_k)$ are complex conjugates.

$$\mathbb{E}[A(\omega_j)A(\omega_{-j})] = a_j^2 \mathbb{E}[\cos^2 \theta_j + \sin^2 \theta_j] = a_j^2$$

The upshot

Result: The autocovariances of the process X_t generated by the linear cyclical model are given by

$$\gamma_{h} = \mathbb{E}[X_{t}X_{t-h}]
= \sum_{j=-m}^{m} \sum_{k=-m}^{m} \mathbb{E}[A(\omega_{j})A(\omega_{k})]e^{i\omega_{j}t}e^{i\omega_{k}(t-h)}
= \sum_{j=-m}^{m} \mathbb{E}[A(\omega_{j})\overline{A(\omega_{j})}]e^{i\omega_{j}h} = \sum_{j=-m}^{m} a_{j}^{2}e^{i\omega_{j}h}$$
(10)

Since X_t is a real valued process the autocovariances can also be written as

$$\gamma_{
m h} = 2 \sum_{
m i=1}^{
m m} {
m a}_{
m j}^2 \cos(\omega_{
m j} {
m h}) \quad \Box$$

The Spectral Distribution

The spectral distribution function for the process X_t , defined on the interval $\omega \in (-\pi, \pi)$, is

$$S(\omega) = \sum_{i=-m}^{m} \mathbb{E}[A(\omega_{j})\overline{A(\omega_{j})}]\{\omega_{j} \leq \omega\}$$

where $\{\omega_j \leq \omega\}$ denotes the indicator function that is one if $\omega_j \leq \omega$. \square

Remarks

The spectral distribution is non-negative and continuous from the right.

If the spectral distribution function is evaluated at $\omega=\pi$ we obtain

$$S(\pi) = \sum_{j=-m}^{m} \mathbb{E}[A(\omega_j)\overline{A(\omega_j)}] = \sum_{j=-m}^{m} a_j^2 = \mathbb{E}[X_t^2]$$
 (11)

The spectral distribution function is symmetric in the sense that for $\omega > 0$

$$S(-\omega) = S(\pi) - \lim_{n \to \infty} S((\omega - 1/n))$$
 (12)

Autocovariances, again

The representation of the autocovariances can be expressed as a Riemann-Stieltjes integral. Define a sequence of grids

$$[\omega]^{(n)} = \{\omega_k^{(n)} = 2\pi k/n - \pi\}$$

and $\Delta_n \omega = \omega_{k+1}^{(n)} - \omega_k^{(n)} = 2\pi/n$. Moreover, let

$$\Delta_{\mathrm{n}}\mathrm{S}(\omega) = \mathrm{S}(\omega) - \mathrm{S}(\omega - \Delta_{\mathrm{n}}\omega)$$

Roughly,

$$\sum_{k=0}^n e^{i\omega_k^{(n)}h} \Delta_n S(\omega_k^{(n)}) \longrightarrow \sum_{j=-m}^m a_j^2 e^{i\omega_j h}$$

as $n \to \infty$.

The Upshot

Thus, we can express the autocovariance γ_h as the following integral

$$\gamma_{\rm h} = \int_{(-\pi,\pi]} e^{i\omega h} dS(\omega)$$

By using a similar argument, we can also obtain a integral representation for the stochastic process X_t . Define the stochastic process

$$Z(\omega) = \sum_{j=-m}^{m} A(\omega_j) \{ \omega_j \le \omega \}$$

with orthogonal increments $\Delta_n Z(\omega) = Z(\omega) - Z(\omega - \Delta_n \omega)$. Note that the increments are now random variables.

Very roughly,

$$\sum_{k=0}^{n} e^{i\omega_{k}^{(n)}t} \Delta_{n} Z(\omega_{k}^{(n)}) \longrightarrow \sum_{j=-m}^{m} A(\omega_{j}) e^{i\omega_{j}t}$$

almost surely as $n \to \infty$. Thus, we can express the stochastic process X_t , generated from the linear cyclical model, as the stochastic integral

$$X_t = \int_{(-\pi,\pi]} e^{i\omega t} dZ(\omega)$$

Spectral Representation for Stationary Processes

Every zero-mean stationary process has a representation of the form

$$X_t = \int_{(-\pi,\pi]} e^{i\omega h} dZ(\omega)$$

where $Z(\omega)$ is a orthogonal increment process. Correspondingly, its autocovariance function γ_h can be expressed as

$$\gamma_{\rm h} = \int_{(-\pi,\pi]} e^{i\omega h} dS(\omega)$$

where $S(\omega)$ is a non-decreasing right continuous function with $S(\pi) = \mathbb{E}[X_t^2] = \gamma_0$.

Spectral Density Function

Suppose the spectral distribution function is differentiable with respect to ω on the interval $(-\pi, \pi]$. The spectral density function is defined as

$$s(\omega) = dS(\omega)/d\omega$$

If a process has a spectral density function $s(\omega)$ then the covariances can be expressed as

$$\gamma_{\rm h} = \int_{(-\pi,\pi]} e^{ih\omega} s(\omega) d\omega$$

The spectral density uniquely determines the entire sequence of autocovariances. Moreover, the converse is also true. Consider the sum

$$s_{n}(\omega)^{*} = \frac{1}{2\pi} \sum_{h=-n}^{n} \gamma_{h} e^{-i\omega h}$$

$$= \frac{1}{2\pi} \sum_{h=-n}^{n} \left[\int_{(-\pi,\pi]} e^{i\tau h} s(\tau) d\tau \right] e^{-i\omega h}$$
(13)

The sum $s_n^*(\omega)$ is a Fourier series. If the spectral density $s(\omega)$ is piecewise smooth then

$$s_n^*(\omega) \longrightarrow s(\omega)$$

Thus, the spectral density can be obtained by evaluating the autocovariance generating function of X_t at $z = e^{-i\omega}$.

$$s(\omega) = \frac{1}{2\pi} \gamma(e^{-i\omega}) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h}$$

where

$$\gamma(z) = \sum_{j=-\infty}^{\infty} \gamma_j z^j$$

Filter

Suppose $s_X(\omega)$ is the spectral density function of a process X_t . Filters are used to dampen or amplify the spectral density at certain frequencies. The spectrum of the filtered series Y_t is given by

$$s_{Y}(\omega) = f(\omega)s_{X}(\omega).$$

where $f(\omega)$ is the filter function.

Frequency domain trend/cycle analogue

 $X_t = low$ frequency component + high frequency component Example: For Schumpeter, Kitchin cycle was shortest with $\omega = 0.47$. To remove the effects of other cycles from data, we could use the filter

$$f(\omega) = \begin{cases} 0 & \text{if } \omega < 0.4\\ 1 & \text{otherwise} \end{cases}$$

Hodrick Prescott filter

A popular filter in the real business cycle literature in macro-economics is the so-called Hodrick Prescott filter.

$$f^{HP}(\omega) = \left[\frac{16 \sin^4(\omega/2)}{1/1600 + 16 \sin^4(\omega/2)} \right]^2.$$

This filter basically kills long cycles and attenuates medium term ones.

(See Soderlind, 1994.)

HP Filter

More on Filters

Subsquently we will consider filters that are linear in the time domain, namely, filters of the form,

$$Y_t = \sum_{h=1}^J c_h X_{t-h} = C(L) X_t$$

where C(z) is the polynomial function $\sum_{h=1}^{J} c_h z^h$. Recall that

$$X_{t} = \sum_{i=-m}^{m} A(\omega_{j}) e^{i\omega_{j}t}$$

This means that

Hence,

$$X_{t-h} = \sum_{i=1}^{m} A(\omega_j) e^{i\omega_j t} e^{-i\omega_j h}$$

$$\begin{aligned} Y_t &= C(L)X_t &= \sum_{h=1}^J c_h X_{t-h} \\ &= \sum_{j=-m}^m \left[A(\omega_j) e^{i\omega_j t} \sum_{h=1}^J c_h e^{-i\omega_j h} \right] \\ &= \sum_{j=-m}^m A(\omega_j) C(e^{-i\omega_j}) e^{i\omega_j t} \\ &= \sum_{j=-m}^m \tilde{A}(\omega_j) e^{i\omega_j t} \end{aligned}$$

(14)

Autocovariance

The autocovariances of Y_t can therefore be expressed as

$$\mathbb{E}[Y_t Y_{t-h}] = \sum_{i=-m}^m a_j^2 C(e^{-i\omega_j}) C(e^{i\omega_j}) e^{i\omega_j h}$$

Thus, we can define the spectral distribution function of Y_t as

$$S_{Y}(\omega) = \sum_{i=-m}^{m} a_{j}^{2} C(e^{-i\omega_{j}}) C(e^{i\omega_{j}})$$

with increments

$$\Delta S_{Y}(\omega_{j}) = \Delta S_{X} C(e^{-i\omega_{j}}) C(e^{i\omega_{j}})$$

Generalization

Result: Suppose that X_t has a spectral density function $s_X(\omega)$ and $Y_t = C(L)X_t$, then the spectral density of the filtered process Y_t is given by

$$s_{Y}(\omega) = |C(e^{-i\omega})|^{2} s_{X}(\omega)$$

The function $C(e^{-i\omega})$ is called transfer function of the filter, and the filter function $f(\omega) = |C(e^{-i\omega})|^2$ is often called power transfer function. \square

Examples of Spectrum

White Noise

$$s(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h} = \frac{\gamma_0}{2\pi}$$

An AR(1): $Y_t = \phi Y_{t-1} + X_t$

Interpret as a linear filter with $MA(\infty)$ rep:

 $Y_t = \sum_{h=0}^{\infty} \phi^h X_{t-h}$. Thus:

$$|C(e^{-i\omega})|^2 = |[1 - \phi e^{-i\omega}]^{-1}|^2$$

$$= [1 - \phi \cos \omega + i\phi \sin \omega|^2]^{-1}$$

$$= [(1 - \phi \cos \omega)^2 + \phi^2 \sin^2 \omega]^{-1}$$

$$= [1 - 2\phi \cos \omega + \phi^2 (\cos \omega^2 + \sin^2 \omega)]^{-1}. (15)$$

which means $s_Y(\omega) = \frac{\sigma^2/2\pi}{1+\phi^2-2\phi\cos\omega}$. Note $s_Y(0) \longrightarrow \infty$ as $\phi \longrightarrow 1$

More Examples

Stationary ARMA process: $\phi(L)Y_t = \theta(L)X_t$ with $X_t \sim WN$. The spectral density is given by

$$s_{Y}(\omega) = \left| \frac{\theta(e^{-i\omega})}{\phi(e^{-i\omega})} \right|^{2} \sigma^{2}$$

Sums of processes. Suppose that $W_t = Y_t + X_t$. The spectrum of the process W_t is simply the sum

$$s_{W}(\omega) = s_{Y}(\omega) + s_{X}(\omega)$$

Visual

<matplotlib.legend.Legend at 0x7f8501fae130>

Estimation

- 1. Parametric Pick an ARMA process, estimate in time domain, use filtering results to get spectrum.
- 2. Nonparametric Estimate autocovariances $\{\hat{\gamma}_h\}$, directly write down spectral density. Let's look at this.

Let $\bar{y} = \frac{1}{T} \sum y_t$ and define the sample covariances

$$\hat{\gamma}_{h} = \frac{1}{T} \sum_{t=h+1}^{T} (y_{t} - \bar{y})(y_{t-h} - \bar{y})$$

An intuitively plausible estimate of the spectrum is the sample periodogram

$$I_{T}(\omega) = \frac{1}{2\pi} \sum_{j=-T+1}^{T-1} \hat{\gamma}_{h} e^{-i\omega h}$$

$$= \frac{1}{2\pi} \left(\hat{\gamma}_{0} + 2 \sum_{h=1}^{T-1} \hat{\gamma}_{h} \cos(\omega h) \right)$$
(16)

Result: The sample periodogram is an asymptotically unbiased estimator of the population spectrum, that is,

$$[I_{\rm T}(\omega)] \xrightarrow{\rm p} s(\omega)$$
 (17)

However, it is inconsistent since the variance $var[I_T(\omega)]$ does not converge to zero as the sample size tends to infinity. \square

Smoothed Periodogram

Smoothing: get non-parametric estimators.

To obtain a spectral density estimate at the frequency $\omega = \omega_*$ we will compute the sample periodogram $I_T(\omega)$ for some ω_j 's in the neighborhood of ω_* and simply average them. Define the following band around ω_* :

$$B(\omega_*|\lambda) = \left\{\omega : \omega_* - \frac{\lambda}{2} < \omega \le \omega_* + \frac{\lambda}{2}\right\}$$
 (18)

The bandwidth is λ , where λ is a parameter. Moreover, define the "fundamental frequencies" (see Hamilton 1994, Chapter 6.2, for a discussion why these frequencies are "fundamental")

$$\omega_{j} = j \frac{2\pi}{T} \quad j = 1, \dots, (T - 1)/2$$
 (19)

The number of fundamental frequencies in the band $B(\omega_*)$ is

$$\mathbf{m} = \left\lfloor \lambda \mathbf{T} (2\pi)^{-1} \right\rfloor \tag{20}$$

Smoothed Periodogram

The smoothed periodogram estimator of $s(\omega_*)$ is defined as the average

$$\hat{\mathbf{s}}(\omega) = \sum_{j=1}^{(T-1)/2} \frac{1}{m} \{ \omega_j \in \mathbf{B}(\omega_* | \lambda) \} \mathbf{I}_{\mathbf{T}}(\omega_j)$$
 (21)

where $\{\omega_j \in B(\omega_*|\lambda)\}$ is the indicator function that is equal to one if $\omega_j \in B(\omega_*|\lambda)$ and zero otherwise.

Result: The smoothed periodogram estimator $\hat{s}(\omega_*)$ of $s(\omega_*)$ is consistent, provided that the bandwidth shrinks to zero, that is, $\lambda \to 0$ as $T \to \infty$ and the number of ω_j 's in the band $B(\omega_*|\lambda)$ tends to infinity, that is $m = \lambda T/(2\pi) \to \infty$.

Remarks

- ▶ get smoothed estimates => need to get λ . Ultimately subscrive.
- ➤ Most non-parameterics approaches are based on "Kernel estimates"

The expression $\{\omega_j \in B(\omega_*)\}\$ can be rewritten as follows

$$\{\omega_{j} \in B(\omega_{*})\} = \left\{\omega_{*} - \frac{\lambda}{2} < \omega_{j} \le \omega_{*} + \frac{\lambda}{2}\right\}$$
$$= \left\{-\frac{1}{2} < \frac{\omega_{j} - \omega_{*}}{\lambda} \le \frac{1}{2}\right\}$$
(22)

Define

$$K\left(\frac{\omega_{j} - \omega_{*}}{\lambda}\right) = \left\{-\frac{1}{2} < \frac{\omega_{j} - \omega_{*}}{\lambda} \le \frac{1}{2}\right\}$$
 (23)

It can be easily verified that

$$\int K\left(\frac{\omega_{j} - \omega_{*}}{\lambda}\right) d\omega_{*} = 1 \tag{24}$$

The function $K\left(\frac{\omega_j-\omega_*}{\lambda}\right)$ is an example of a Kernel function. In general, a Kernel has the property $\int K(x)dx = 1$. Since $m \approx \lambda(T-1)/2$, the spectral estimator can be rewritten as

$$\hat{\mathbf{s}}(\omega) = \frac{\pi}{\lambda(\mathrm{T} - 1)/2} \sum_{i=1}^{(\mathrm{T} - 1)/2} \mathbf{K}\left(\frac{\omega_{j} - \omega_{*}}{\lambda}\right) \mathbf{I}_{\mathrm{T}}(\omega_{j}) \tag{25}$$

Application: IP

<matplotlib.legend.Legend at 0x7f8501484820>

Application: Autocorrelation Consistent Standard Errors

Consider the model

$$y_t = \beta x_t + u_t, \quad u_t = \psi(L)\epsilon_t, \quad \epsilon_t \sim iid(0, \sigma^2)$$
 (26)

The OLS estimator is given by

$$\hat{\beta} - \beta = \frac{\sum x_t u_t}{\sum x_t^2} \tag{27}$$

The conventional standard error estimates for $\hat{\beta}$ are inconsistent if the u_t 's are serially correlated. However, we can construct a consistent estimate based on non-parametric spectral density estimation. Define $z_t = x_t u_t$. We want to obtain an estimate of

$$\operatorname{plim} \Lambda_{\mathrm{T}} = \operatorname{plim} \frac{1}{\mathrm{T}} \sum_{t=1}^{\mathrm{T}} \sum_{h=1}^{\mathrm{T}} \mathrm{E}[\mathbf{z}_{t} \mathbf{z}_{h}]$$
 (28)

It can be verified that

$$\sum_{h=-\infty}^{\infty} \gamma_{zz,h} - \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{T} E[z_t z_h] \xrightarrow{p} 0$$
 (29)

Since

$$s(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma_{zz,h} e^{-i\omega h}$$
 (30)

it follows that a consistent estimator of plim Λ_T is

$$\hat{\Lambda}_{\mathrm{T}} = 2\pi \hat{\mathbf{s}}(0) \tag{31}$$

where $\hat{s}(0)$ is a non-parametric spectral estimate at frequency zero.

Application: Beaudry et al. (2020)

Paul Beaudry, Dana Galiza, and Franck Portier (2016): "Putting the Cycle Back into Business Cycle Analysis," NBER Working Paper.

- ▶ Re-examines the spectral properties of several cyclically sensitive variables such as hours worked, unemployment and capacity utilization.
- ▶ Document the presence of an important peak in the spectral density at a periodicity of approximately 36-40 quarters.
- ► This is cyclical phenomena at the "long end" of the business cycle.
- ➤ Suggests a model ("limit cycles") to account for this finding.

The Paper in 1 Picture

Figure 1: Properties of Hours Worked per Capita

References

- Beaudry, P., Galizia, D., and Portier, F. (2020). Putting the cycle back into business cycle analysis. American Economic Review, 110:1–47.
- Brockwell, P. J. and Davis, R. A. (1987). Time series: Theory and methods. Springer Series in Statistics.
- Hamilton, J. (1994). Time Series Analysis. Princeton University Press, Princeton, New Jersey.