Laboratorium 9 — połaczone zbiorniki

Zadanie 1 (4 pkt)

Zbuduj model reprezentujący połączone zbiorniki, który jest opisany następującym układem równań różniczkowych:

$$\begin{cases} \dot{h_1} = \frac{Q_{we} - S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)}}{S_1} \\ \dot{h_2} = \frac{S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)} - S_{wy2} \cdot \phi_2 \cdot \sqrt{2gh_2}}{S_2} \end{cases}$$

gdzie:

 h_1 – poziom cieczy w pierwszym zbiorniku,

 h_2 – poziom cieczy w drugim zbiorniku,

 S_1 – przekrój poprzeczny zbiornika pierwszego,

 S_2 – przekrój poprzeczny zbiornika drugiego,

 S_{wy1} – przekrój poprzeczny odpływu ze zbiornika pierwszego,

 S_{wy2} – przekrój poprzeczny odpływu ze zbiornika drugiego,

 ϕ_1 – współczynnik wypływu dla pierwszego zbiornika,

 ϕ_2 – współczynnik wypływu dla drugiego zbiornika,

g – przyśpieszenie ziemskie \Rightarrow 9.81,

 Q_{we} – dopływ cieczy.

Przyjmij:

Czas symulacji = 150, Metoda: Ode45, maksymalny krok = 0.05, $h_1(0) = 6$, $S_1 = 1$, $S_{wy1} = 0.4$, $\phi_1 = 1$, $S_2 = 2$, $S_{wy2} = 0.3$, $\phi_2 = 1$.

$$h_1(0) = 6$$
 $\ddot{S}_1 = 1$

$$h_2(0) = 3.$$

$$S_{-} - 2$$

$$S_{wu1} = 0.4,$$

$$\phi_1 = 1$$

$$S_{wu2} = 0.3$$

$$\phi_2 = 1.$$

W celu weryfikacji modelu przedstaw na osobnych wykresach jak kształtował się poziom wody w zbiornikach w czasie dla $Q_{we} = 3$.

Uwaga! Prosze nie wpisywać wartości parametrów na sztywno do bloczków należy stosować nazwy zmiennych. Aby wprowadzać wartości dla danych zmiennych należy utworzyć tzw. maskę.

Zadanie 2 (2 pkt)

Rozbuduj model tak, aby w momencie gdy poziom wody w którymś ze zbiorników osiągnął wartość mniejszą lub równą zero symulacja została zatrzymana. W tym celu posłuż się bloczkami "Compare To" oraz "Stop Simulation". W celu przetestowania modelu, ustaw $Q_{we} = 0$

Zadanie 3 (4 pkt)

Przy użyciu jednej z poznanych wcześniej metod utwórz wizualizację połączonych zbiorników.

- Blok "S-Function" wizualizacja online.
- Blok "To Workspace" wizualizacja offline.

W przypadku wizualizacji offline, rozpoczęcie symulacji oraz pobranie niezbędnych parametrów powinno odbyć się z poziomu kodu. Np.:

Listing 1: Pobranie paramtrów z modelu

```
sim ('zbiorniki') % uruchomienie symulacji modelu zapisanego jako zbiorniki
S1 = str2num(get_param('zbiorniki/Subsystem', 'S1')); % pobranie wartosci S1
```

Przykładowa wizualizacja:

