

Reti sequenziali

Alessandro Pellegrini a.pellegrini@ing.uniroma2.it

Limiti dei circuiti di commutazione

- I circuiti visti fino ad ora possono essere definiti *combinatori*
- Dato un input $\mathbf{x} = \langle x_1, \dots, x_n \rangle$, essi calcolato un output $\mathbf{y} = \langle y_1, \dots, y_n \rangle$ secondo la relazione:

$$\mathbf{y} = f(\mathbf{x})$$

• Tali circuiti quindi hanno un'uscita che dipende esclusivamente dall'input

• Se avessimo a disposizione solo questo tipo di circuito, non potremmo implementare *elementi di memoria*

Circuito Latch

- Un circuito latch (*lucchetto*) "cattura" il valore di input utilizzando degli anelli a *retroazione*
- È un circuito analogico che consente di immagazzinare un'informazione digitale

S	R	Q	Q'	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	indeterminato	
1	1	1	indeterminato	

Problema del Latch

- Una configurazione di ingresso in cui S = 1 e R = 1 manda il circuito in uno stato oscillante
- I valori di *S* ed *R* possono essere calcolati da altre reti combinatorie
- Non è possibile garantire che, a causa dei ritardi di propagazione, nosi osservi mai una configurazione transiente pari a S=1 e R=1
- Soluzione: *campionare* il valore di *S* ed *R* quando siamo certi che gli input si sono stabilizzati
- In questo caso il circuito assume il nome di *flip flop*

Flip Flop SR

• Si basa sull'aggiunta di un segnale di *clock* al latch

- È ancora possibile che gli input vengano impostati a S = 1 e R = 1
- Possiamo costruire un circuito che *prevenga* l'insorgere di configurazioni oscillanti

Flip Flop JK

- Il flip flop JK (da Jack Kilby, il nome dell'inventore) aggiunge una rete di controllo ai segnali in ingresso
- Tale rete rende *impossibile* che si verifichi la condizione S=1 e R=1 in input al flip flop SR interno

Flip Flop D

- I flip flop visti fino ad ora hanno la necessità di due segnali di controllo *opposti*
- Spesso, si vuole utilizzare un flip flop per immagazzinare un bit generato da una funzione di commutazione
- Per non dover negare esplicitamente il bit, si può usare un flip flop D
- Tale circuito si comporta da ritardo (delay)
 - L'input viene propagato in output dopo un periodo di clock

Flip Flop T

- A volte può essere utile avere a disposizione un flip flop che si comporta come switch
 - Al primo segnale, commuta da 0 a 1
 - Al secondo segnale, commuta da 1 a 0
- Il flip flop T (toggle) implementa questo comportamento

Fronti di commutazione

- Per funzionare correttamente, questi flip flop devono avere i segnali di controllo stabili per tutta la durata del periodo di clock
- È utile prevedere circuiti che effettuino la commutazione in finestre temporali precise e di durata più breve
- Edge-triggered flip flop: commutano sul fronte di salita o discesa

Rising Edge-Triggered JK Flip-Flop.

Fronti di commutazione

- Il comportamento dello stesso flip flop può essere estremamente differente
- In alcuni casi, alcuni segnali potrebbero essere ignorati

 Nella figura, sono riportati i differenti comportamenti per un flip flop SR

Reti sequenziali

- I circuiti che implementano i flip flop sono semplici reti sequenziali
- Una rete sequenziale ha un funzionamento che evolve nel tempo
- È quindi necessario definire uno *stato interno* per descrivere l'evoluzione nel tempo

$$\begin{cases} \mathbf{y}' = f(\mathbf{x}, \mathbf{y}) \\ \mathbf{z} = g(\mathbf{x}, \mathbf{y}) \end{cases}$$

S	R	Q	Q'	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	indeterminato	
1	1	1	indeterminato	

Reti sequenziali

- Esistono due classi principali di reti sequenziali:
 - *sincrone*: se la transizione di stato avviene in istanti temporali controllabili dall'esterno
 - *asincrone*: se le transizioni di stato non sono controllate esternamente
- Ci concentreremo esclusivamente sulle prime

Macchine a stati finiti

- Una macchina a stati finiti è un modello matematico per la descrizione della computazione
- È una macchina astratta:
 - in un dato istante si trova in uno stato (tra un insieme finito di stati)
 - eventi esterni provocano una transizione da uno stato a un altro
 - la macchina può generare output verso l'esterno
- Esistono due varianti principali:
 - macchina di Moore: l'output dipende unicamente dallo stato
 - macchina di Mealy: l'output dipende dallo stato e dalla transizione innescata

Macchina di Moore

$$\mathcal{M} = \langle I, S, s_0, O, \delta, \omega \rangle$$

- $I = \{i_1, i_2, \dots, i_p\}$: alfabeto di ingresso
- $S = \{s_0, s_1, \dots, s_n\}$: insieme degli stati interni
- $s_0 \in S$: stato iniziale
- $O = \{o_1, o_2, \dots, o_r\}$: alfabeto di uscita
- $\delta: I \times S \mapsto S$: funzione di transizione
- ω : S \mapsto O: funzione che calcola l'output

Macchina di Mealy

$$\mathcal{M} = \langle I, S, s_0, O, \delta, \omega \rangle$$

- $I = \{i_1, i_2, \dots, i_p\}$: alfabeto di ingresso
- $S = \{s_0, s_1, \dots, s_n\}$: insieme degli stati interni
- $s_0 \in S$: stato iniziale
- $O = \{o_1, o_2, \dots, o_r\}$: alfabeto di uscita
- $\delta: I \times S \mapsto S$: funzione di transizione
- ω : I \times S \mapsto O: funzione che calcola l'output

Rappresentazioni

- Per rappresentare una macchina a stati è possibile utilizzare due formalismi:
 - *Diagramma degli stati*: è un *grafo* che mostra graficamente le relazioni tra gli stati e le transizioni, identificando anche i caratteri di output
 - *Tabella degli stati e delle transizioni*: è una rappresentazione equivalente in forma tabellare

Rappresentazioni

	i_1	i_2	 i_j	 i_p
s_1				
s_2				
:				
s_i			$\delta(i_i, s_i)/\omega(i_j, s_i)$	
i				
s_n				

3	i_1	i_2	 i_j	 $ i_p $	ω'
s_1					
s_2					
÷					
s_i			$\delta(i_i, s_i)$		$\omega'(i_j,s_i)$
÷					
s_n					

Modello di Mealy

Modello di Moore

Equivalenza tra modelli

- Esiste sempre una trasformazione tra una macchina di Mealy e una macchina di Moore
 - I due modelli sono equivalenti
- Trasformazione da Moore a Mealy
 - Gli alfabeti di input ed output sono gli stessi
 - Gli stati sono gli stessi
 - Se in uno stato s_i raggiunto da una transizione causata da un carattere i_j viene generato un output o_k , quello stesso output viene generato durante la trasizione i_j verso lo stato s_i

Equivalenza tra modelli

- La trasformazione da macchina di Mealy a macchina di Moore è meno immediata
- Possiamo avere più transizioni verso lo stesso stato che generano output differenti
- In questo caso, lo stato di destinazione deve essere decomposto in più stati differenti

Sintesi delle macchine

- Per realizzare circuitalmente una macchina è necessario:
 - Realizzare il blocco M: questo può essere fatto utilizzando un numero sufficiente di flip flop D
 - Realizzare la rete δ : è necessario realizzare un circuito di commutazione per aggiornare lo stato di ciascun flip flop D (equazione di eccitazione di un flip flop)
 - Realizzare la rete ω : è necessario realizzare un circuito di commutazione per generare ciascun bit dei caratteri di output
- Trattandosi di reti combinatorie, è possibile utilizzare le tecniche di sintesi e minimizzazione che abbiamo studiato per le funzioni booleane
- La sintesi può essere svolta a partire dalla tabella degli stati e transizioni

Esempio

- Sintesi della macchina che accetta la stringa "mamma" in input
- Variante di Mealy e Moore

- Con e senza stato pozzo
- Con e senza recupero dagli errori