Intro to Machine learning

Sanja Lazarova-Molnar

Machine learning

Definition

- Getting a computer to do well on a task without explicitly programming it
- Improving performance on a task based on experience

Example: Image classification

Learning for episodic tasks

- The agent gets a series of unrelated problem instances and has to make some decision or inference about each of them
- In this case, "experience" comes in the form of training data

Training data

 Key challenge of learning: generalization to unseen examples

Example 2: Seismic data classification

Example 3: Spam filter

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example 4: Sentiment analysis

The basic machine learning framework

- **Learning:** given a *training set* of labeled examples $\{(x_1,y_1), ..., (x_N,y_N)\}$, estimate the parameters of the prediction function f
- Inference: apply f to a never-before-seen test example x and output the predicted value y = f(x)

Learning and inference pipeline

Naïve Bayes classifier

$$f(\mathbf{x}) = \arg\max_{y} P(y \mid \mathbf{x})$$

$$\propto \arg\max_{y} P(y) P(\mathbf{x} \mid y)$$

$$= \arg\max_{y} P(y) \prod_{d} P(x_{d} \mid y)$$
A single dimension or attribute of \mathbf{x}

Example of Naïve Bayes Classifier

[Optional]

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Decision tree classifier

Example problem - decide whether to wait for a table at a restaurant, based on the following attributes:

- **1. Alternate:** is there an alternative restaurant nearby?
- **2. Bar:** is there a comfortable bar area to wait in?
- **3. Fri/Sat:** is today Friday or Saturday?
- **4. Hungry:** are we hungry?
- **5. Patrons:** number of people in the restaurant (None, Some, Full)
- **6. Price:** price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- **8. Reservation:** have we made a reservation?
- **9.** Type: kind of restaurant (French, Italian, Thai, Burger)
- **10. WaitEstimate:** estimated waiting time (0-10, 10-30, 30-60, >60)

Decision tree classifier

Example	Attributes							Target			
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision tree classifier

Nearest neighbor classifier

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

K-nearest neighbors classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points

Linear classifier

• Find a *linear function* to separate the classes

$$f(\mathbf{x}) = sgn(w_1x_1 + w_2x_2 + ... + w_Dx_D) = sgn(\mathbf{w} \cdot \mathbf{x})$$

EXAM INFORMATION

Homework / Exercise Folder

- Submission Deadline May 9, 2021
- Needs to be complete, i.e., include all exercises and homework, organized
- Should be obvious that you have attempted to completely solve the problem
 - Few lines of added code is not that

Exam Details

- Multiple choice
- Only move forward
- Questions & Answers may be randomized
 - Possible that questions will be different for different students
- Duration: 2 hours

Exam Code Clarification

- Any additional comments in the code, beyond what is typical and directly related to the code, is not allowed in the exam.
- Code may only be run for the two exam questions related to the homework/exercise, and the code should be corresponding to the description of the exercise/homework. You won't be asked anything beyond that.

Example Exam Question

What kind of environment has a crossword puzzle?

- A. Dynamic
- *B. Static
- C. None of the mentioned
- D. Stochastic

Example Exam Question

Consider the search problem shown in the figure. S is the start-state, G is the (only) goal-state. Break any ties alphabetically. For the questions that ask for a path, please give your answers in the form `S - A - D - G .' (2

points)

What path would depth-first graph search return for this search problem?

$$A. S - A - D - G$$

$$B. S-B-G$$

$$*C. S-A-C-G$$

$$D.S-B-D-G$$

Exam Question Example

The Bayesian Network LMV below has three nodes for boolean variables, L, M and V. The probabilities for L and M are: P (M = true) = 0.2 and P (L = true) = 0.7. The conditional probabilities for variable V are as shown in the table below. (3 points)

${ m L}$	M	$P(V = true \mid L, M)$
true	true	0.9
${ m true}$	false	0.5
false	true	0.3
false	false	0.05

Which value is closest to the value of P(V = false | L = false)?

A. 0.3

B. 0.7

*C. 0.9

D. 0.1

Homework Example Exam Question

The homework question is related to: Exercise on Bayesian Networks Using your homework from Exercise 7, calculate the conditional probability of the fuel tank leaking given that there is a high consumption.

If needed, the Bayesian network is shown on the next slide.

What is the conditional probability of the fuel tank leaking given that there is a high consumption? (4 points)

- A. approximately 87 %
- B. approximately 3 %
- C. approximately 42 %
- D. approximately 11 %
- *E. approximately 62 %

DT	P(V DT)	
Т		0.7
F		0.1

DT	EM	P(SMS=T DT,EM)
Т	Т	0.05
Т	F	0.6
F	Т	0.3
F	F	0.7

DT	FTL	EM	P(HC=T DT,FTL,EM)
Т	Т	Т	0.9
Т	Т	F	0.8
Т	F	Т	0.3
Т	F	F	0.2
F	Т	Т	0.6
F	Т	F	0.5
F	F	Т	0.1
F	F	F	0.01

