Math 591 Lecture 13

Thomas Cohn

9/30/20

Let $F: M \to N$ C^{∞} , with $p \in M$. Last time, we defined $F_{*,p} = df_p: T_pM \to T_{F(p)}N$. Our first question today is: How do properties of $F_{*,p}$ reflect properties of F?

Thm: If $F_{*,p}$ is bijective (i.e. dim $M=\dim N$), then F is a local diffeomorphism at p, i.e., there exist open neighborhoods U of p and V of F(p) such that F(U)=V and $F|_U^V:U\to V$ has a smooth inverse.

Proof: Start with coordinate charts (U, ϕ) near p and (V, ψ) near F(p), so that $U \subseteq F^{-1}(V)$.

$$U \xrightarrow{F} V$$

$$m = \dim M \ (x^{1},...,x^{m}) = \phi \downarrow \qquad \qquad \downarrow \psi = (y^{1},...,y^{n}) \ n = \dim N$$

$$\phi(U) \xrightarrow{\tilde{F} = \psi \circ F \circ \phi^{-1}} \psi(V)$$

The matrix of $F_{*,p}$ is $\left(\frac{\partial F^i}{\partial x^j}(p)\right)$, where $F^i=y^i\circ F$ for $i\in\{1,\ldots,n\}$. This matrix is the Jacobian of \tilde{F} . By assumption (that m=n), this matrix is invertible. So by the inverse function theorem in Euclidean space, by shrinking $\phi(U)$ and $\psi(V)$ if necessary, \tilde{F} has a smooth inverse. (This is equivalent to shrinking U and V if necessary.) So $(F|_U^V)^{-1}=\phi^{-1}\circ \tilde{F}^{-1}\circ \psi$. \square

Cor: $F: M \to N$ is a local diffeomorphism iff $\forall p \in M, F_{*,p}$ is bijective.

Proof: $\Rightarrow \forall p \in M$, there are neighborhoods U of p and V of F(p) such that $F|_U^V$ is a diffeomorphism. So $F_{*,p}$ has an inverse, $((F|_U^V)^{-1})_{*,p}$ by the chain rule.

 \Leftarrow We already showed this.

П

Observe: We now have the notion of a *smooth* covering map.

Defn: $F: M \to N$ is a smooth covering map iff $\forall q \in N$, there is a neighborhood V of q s.t. $F^{-1}(V) = \bigsqcup_{i \in I} U_i$ s.t. $\forall i \in I$, $V = F(U_i)$ and $F|_{U_i}^V$ is a diffeomorphism. Such a V is said to be evenly covered.

Ex: $S^n \to \mathbb{RP}^n$.

The quotient map $S^n \to S^n/S^0 \cong \mathbb{RP}^n$ is a smooth covering map.

A smooth covering map is always a local diffeomorphism, but the converse is false.

Ex: Let

$$f:(0,4\pi)\to S^1\subseteq\mathbb{C}$$

 $t\mapsto e^{it}$

This is a local diffeomorphism, but not a covering map: $F^{-1}(1) = \{2\pi\}$, but every neighborhood of 1 is not evenly covered.

Defn: A smooth function $F: M \to N$ is called a diffeomorphism if it has a smooth inverse.

Defn: Let $F: M \to N$ be smooth.

- a) A point $p \in M$ is a regular point of $F \Leftrightarrow F_{*,p}$ is onto.
- b) F is a submersion $\Leftrightarrow \forall p \in M, \overline{F}_{*,p}$ is onto.

Thm: (Normal Form for Submersions) Let $F: M \to N$ be a submersion. Then $\forall p \in M$, there are coordinate charts (U, ϕ) around p and (V, ψ) around F(p) such that $U \subseteq F^{-1}(p)$ and $\tilde{F} = \psi \circ F \circ \phi^{-1}$ satisfies $\tilde{F}(r^1, \dots, r^m) = (r^1, \dots, r^n)$.

Observe: $F_{*,p}: T_pM \to T_{F(p)}N$ surjective implies that $m \geq n$. Define $r' = (r^1, \ldots, r^n)$ and $r'' = (r^{n+1}, \ldots, r^m)$, so $(r^1, \ldots, r^m) = (r', r'')$. Then $\tilde{F}(r', r'') = r'$.

Cor: A submersion is an open map.

Preliminary Observation: (This is a corollary of the inverse function theorem.) Suppose $p \in U \subseteq M$, and $F : U \to \mathbb{R}^m$ $(m = \dim M)$ such that $F_{*,p}$ is bijective. Then we claim that (after shrinking U if necessary) (U, F) is a coordinate chart.

Proof: By the implicit function theorem, since we can shrink U, WOLOG $F:U\to F(U)$ is a diffeomorphism. So it's a continuous chart (homeomorphism), and by definition of C^{∞} , (U,F) is compatible with the smooth charts in an atlas. So (U,F) is in the C^{∞} structure.