ویژگیهای نیم رساناها: باتری خورشیدی

گروه یک: آقایان سعید شیرانی، آبتین الماسی، امیرسهیل بلوچستانزاده

نگارنده: سعید شیرانی

۲۲ فروردین ۱۴۰۲

هدف آزمایش

بررسی تغییرات جریان اتصال کوتاه (I_{sc}) با شدت نورفرودی، محاسبه ی ولتاژ مدار باز (V_{oc}) ، محاسبه ی سازه ی پرشدگی (FF) بررسی تغییرات جریان اتصال کوتاه (I_{sc}) با زاویه ی فرود (زاویه ی میان خط عمود برسطح باتری خورشیدی و پرتوی فرودی)

ابزار آزمایش:

باتری خورشید، ولتسنج، آمپرسنج، جعبه مقاومت، چراغ شش ولتی، میزچه مدرج

چگونگی انجام آزمایش:

نور چشمه را به گونهای یکنواخت روی باتری خورشیدی بیندازید.

۱. جریان اتصال کوتاه I_{sc} را با بستن آمپرسنج به دوسر باتری خورشیدی (بی مقاومت) برحسب فاصله ی چشمه از آن اندازه بگیرید و در جدول زیر یادداشت کنید. منحنی جریان اتصال کوتاه I_{sc} ، برحسب فاصله ی چشمه از باتری خورشیدی رسم کنید. برای خطی شدن نمودار می توان از شدت برحسب یک توان مناسب از فاصله رسم کنید تا رابطه خطی بدست آید.

نکته: با تغییر فاصلهی چشمه از باتری خورشیدی، شدت نور تابیده به باتری تغییر میکند.

em 0.1± (cm) فاصله	$I_{sc}(mA)$			
90	0.105 ± 0.004			
85	0.118 ± 0.002			
80	0.128 ± 0.002			
75	0.142 ± 0.001			
70	0.160 ± 0.001			
65	0.180 ± 0.001			
60	0.203 ± 0.001			
55	0.236 ± 0.001			
50	0.275 ± 0.001			
45	0.325 ± 0.001			

جدول ۱: تغییرات جریان اتصال کوتاه برحسب فاصلهی چشمه از باتری خورشیدی

۲. مدار آزمایش را مانند شکل زیر ببندید.

محل قرار گیری شکل

Changes in current and voltage according to the change in resistance in the resistance box							
$R(\Omega)$	I(mA)	V	I * v				
1	0.40 ± 0.01	$0.60mV \pm 0.1mV$	90				
2	0.40 ± 0.01	$1.00mV \pm 0.1mV$	85				
5	0.40 ± 0.01	$2.40mV \pm 0.1mV$	80				
10	0.40 ± 0.01	$4.10mV \pm 0.1mV$	75				
20	0.40 ± 0.01	$8.20mV \pm 0.1mV$	70				
50	0.39 ± 0.01	$20.60mV \pm 0.2mV$	65				
100	0.39 ± 0.01	$7.20mV \pm 0.1mV$	60				
200	0.39 ± 0.01	$46.8mV \pm 0.5mV$	55				
500	0.38 ± 0.01	$166.0mV \pm 0.5mV$	50				
1000	0.39 ± 0.01	$0.39V \pm 0.01V$	45				
2000	0.39 ± 0.01	$0.78V \pm 0.01V$	45				
5000	0.36 ± 0.01	$1.81V \pm 0.01V$	45				
10000	0.28 ± 0.01	$2.82V \pm 0.01V$	45				
20000	0.16 ± 0.01	$3.43V \pm 0.01V$	45				
50000	0.07 ± 0.01	$3.71V \pm 0.01V$	45				
100000	0.03 ± 0.01	$3.80V \pm 0.01V$	45				
200000	0.02 ± 0.01	$3.85V \pm 0.01V$	45				
500000	0.01 ± 0.01	$3.87V \pm 0.01V$	45				

Table 2:

منحنی $I-V$ را رسم میکنیم و برای نمایش بهتر دادهها از محور لگاریتمی استفادهمی کنیم.				

۴. با کمک یک میزچه ی مدرج تغییرات I را به صورت تابعی از زاویه ی فرود در فاصله ی ثابتی از لامپ اندازه گیری کنید. ونمودار تغییرات I بر حسب θ $\cos^2\theta$ را رسم کنید. آیا رابطه خطی است؟ علت آن را بینویسید.

خطای تتا چند درجه است؟؟؟؟؟؟

Changes in current according to the change of landing angle										
θ	0	10	20	30	40	50	60	70	80	90
$I \pm 0.001 mA$	0.086	0.083	0.079	0.077	0.068	0.059	0.050	0.038	0.021±0.003mA	0.013±0.003mA

Table 3:

پرسشها

- ۱. چگونگی ساخت نیمرساناهای گونهی n و گونهی p را شرح دهید.
- ۲. مراحل تبدیل انرژی نورانی به انرژی الکتریکی را در یک باتری خورشیدی توضیح دهید.
- ۳. خطاهای موجود در آژمایش را بیان کنید و در صورت امکان راه حلی برای کاهش آنها بیابید.
 - ۴. همارزی دو تعریف داده شده بریا جریان اتصال کوتاه را نشان دهید.
- ۵. آیا اندازهگیری جریان اتصال کوتاه در بخش اول آزمایش این جریان را به درستی نشان میدهد؟ دلیل آن را بیان کنید.
 - ۶. آیا ولتاژ مدار بازی که به دست میآورید با تعریف نظری آن هم خوانی دارد؟ چرا؟

aksdfkj'sdf'llksdfka