

MNNR

MORBIDITY AND MORTALITY WEEKLY REPORT

- 405 Fluoroquinolone-Resistant Neisseria gonorrhoeae — San Diego, California, 1997
- 408 Diabetes During Pregnancy United States, 1993–1995
- 414 Progress Toward Global Eradication of Poliomyelitis, 1997
- 419 Notices to Readers

Fluoroquinolone-Resistant Neisseria gonorrhoeae — San Diego, California, 1997

The fluoroquinolones ciprofloxacin and ofloxacin are among the antimicrobials recommended for treating uncomplicated gonorrhea (1). Fluoroquinolone-resistant strains of Neisseria gonorrhoeae have been identified frequently during the 1990s in the Far East (2). In the United States, fluoroquinolone-resistant N. gonorrhoeae has been reported sporadically; resistance associated with clinical treatment failure has been reported previously in only one person, who probably acquired the infection in the Philippines (3–5). This report describes the results of an investigation in 1997 of two cases of gonococcal infection in the United States with strains with a higher level of fluoroquinolone resistance than reported previously; clinical treatment failure occurred in one case.

CASE REPORTS

Patient 1

On July 14, a 24-year-old man sought care at the San Diego County Public Health Sexually Transmitted Diseases (STD) clinic following a 2-day history of purulent ure-thral discharge. Four days before onset of symptoms, he had had vaginal intercourse with a commercial sex worker in San Diego. He reported no other recent sex partners or travel outside the United States.

Gram-negative intracellular diplococci were identified in the urethral discharge. The culture grew *N. gonorrhoeae* and was sent for antimicrobial susceptibility testing as part of the national Gonococcal Isolate Surveillance Project (GISP). He received a single dose of 400 mg ofloxacin orally and began taking 100 mg doxycycline orally twice a day for 10 days for possible chlamydial co-infection.

The patient's urethral discharge persisted, and on July 17 he sought care from his primary-care physician. Repeat urethral culture grew *N. gonorrhoeae*; this isolate was not available for further testing. The patient was treated with 500 mg ceftriaxone intramuscularly, and his symptoms resolved. The clinical treatment failure was not reported to the health department.

Patient 2

On July 17, a 22-year-old man sought care at the San Diego County Public Health STD clinic following a 2-day history of purulent urethral discharge. He reported having

Fluoroquinolone-Resistant Neisseria gonorrhoeae — Continued

had multiple female sex partners. Two weeks before gonorrhea was diagnosed, he had had one sexual contact with a woman from the United States whom he met at a nightclub frequented by U.S. military personnel in Tijuana, Mexico. He also reported having had a steady sex partner for 7 months. He had traveled to Asia in October 1996.

Gram-negative intracellular diplococci were identified in his urethral discharge. The culture grew *N. gonorrhoeae* and was sent to the GISP laboratory for susceptibility testing. The patient received a single dose of 400 mg ofloxacin orally and began taking 100 mg doxycycline orally twice a day for 10 days. His symptoms resolved without further treatment.

His steady sex partner was tested for gonorrhea; an endocervical culture was negative. The same regimen of ofloxacin and doxycycline was prescribed, which she reported completing. She reported no other recent sex partners or travel to Asia. The sex partner from the nightclub could not be located for follow-up.

FOLLOW-UP INVESTIGATION

On October 17, 1997, the STD Program of the San Diego Department of Health was notified by the GISP laboratory that the N. gonorrhoeae isolates from patients 1 and 2 were resistant to ciprofloxacin and ofloxacin (minimum inhibitory concentration [MIC] 16 μ g/mL for both antibiotics). The isolates also were resistant to tetracycline (MIC 2.0 μ g/mL) but sensitive to ceftriaxone (MIC 0.008 μ g/mL) (6–8).

On October 28, patient 1 was reexamined, and a repeat urethral culture was negative. He reported two female partners since July; endocervical cultures from both were negative. One of the partners reported another male partner; his urethral culture was negative. None of these contacts reported other sex partners or travel to Asia.

On October 29, patient 2 and his steady partner were re-examined; repeat urethral and endocervical cultures were negative. The patient's symptoms had not recurred since his initial treatment in July. The patient and his partner reported having had no other sex partners since July.

Isolates from patients 1 and 2 belonged to the same auxotype/serovar class, PA/IB-3 (proline- and arginine-requiring), and had identical antimicrobial susceptibility profiles, suggesting that they were the same strain. Molecular studies indicated that the isolates had identical mutations in the genes encoding DNA gyrase (gyrA) and topoisomerase IV (parC), mutations associated with fluoroquinolone resistance. No other fluoroquinolone-resistant N. gonorrhoeae isolates have been identified in San Diego County, neighboring Orange County, and the city of Long Beach. Gonococcal isolates from Tijuana have been requested for antimicrobial susceptibility testing.

In October 1997, a survey of 79 providers who treat patients in the high-risk STD area of San Diego County indicated that 80% used ceftriaxone or cefixime and 20% used ofloxacin or ciprofloxacin to treat gonorrhea. None reported treatment failures.

Local military health-care facilities also treat gonorrhea with ceftriaxone.

Reported by: T Brazell, MD, C Peter, PhD, M Ginsberg, MD, Community Health Svcs, Health and Human Svcs Agency, San Diego County Dept of Health, San Diego; J Montes, G Bolan, MD, STD Control Br, S Waterman, MD, State Epidemiologist, California Dept of Health Svcs. J Ehret, MS, FN Judson, MD, Denver Dept of Health, Denver, Colorado. Bacterial Sexually Transmitted Diseases Br, Div of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases; Epidemiology and Surveillance Br, Div of STD Prevention, National Center for HIV, STD, and TB Prevention; Div of Applied Public Health Training (proposed), Epidemiology Program Office; and an EIS Officer, CDC.

Fluoroquinolone-Resistant Neisseria gonorrhoeae - Continued

Editorial Note: Fluoroquinolones and cephalosporins became the recommended therapies for gonorrhea following the appearance of penicillin- and tetracycline-resistant *N. gonorrhoeae* during the 1980s and early 1990s (1,2). Fluoroquinolone-resistant *N. gonorrhoeae* (ciprofloxacin MIC ≥1.0 μg/mL or ofloxacin MIC ≥2.0 μg/mL) (6,8) emerged during the 1990s and became well-established in several areas (e.g., Hong Kong, Japan, and the Philippines) (2). During the same period in the United States, *N. gonorrhoeae* with decreased susceptibility to ciprofloxacin (MIC 0.125–0.5 μg/mL) became endemic in at least one area and occurred sporadically in other areas (3–5). Among the 26 clinics participating in GISP, the overall prevalence of *N. gonorrhoeae* with decreased susceptibility to ciprofloxacin was 0.3% in 1991 (5) and 0.4% in January–June 1997 (CDC, unpublished data). The isolates from the two patients described in this report had the highest level of fluoroquinolone resistance ever reported in the United States.

Failure of infection to respond to single-dose therapy with 500 mg of ciprofloxacin has been reported with strains of *N. gonorrhoeae* with MICs \geq 1.0 µg/mL (2), but data are limited. In one trial, treatment with 500 mg ciprofloxacin failed to cure 45% of patients who had infections caused by *N. gonorrhoeae* with ciprofloxacin MICs \geq 4.0 µg/mL (9). In San Diego, doxycycline probably was the effective component of therapy because the isolates had tetracycline MICs at the low end of the resistance range (\geq 2.0 µg/mL) (6,8).

Identifying the sources of fluoroquinolone-resistant strains of *N. gonorrhoeae* found in the United States has been difficult, but some infections have been linked to importation from Southeast Asia and contact with commercial sex workers (3). In San Diego, both patients had anonymous sex contacts, but no international link was found. Military personnel travel frequently to Asia and are a potential source of imported strains of antimicrobial-resistant *N. gonorrhoeae*. However, the military treatment regimen decreases the likelihood of spread of fluoroquinolone-resistant strains.

Although the two San Diego isolates were the same strain, no epidemiologic link between the two patients could be identified. Despite enhanced surveillance, no additional cases of fluoroquinolone-resistant *N. gonorrhoeae* have been detected in San Diego. The spread of fluoroquinolone-resistant *N. gonorrhoeae* locally may be limited by the frequent use of cephalosporins for treating gonorrhea.

Because fluoroquinolone-resistant *N. gonorrhoeae* is rare in the United States, CDC recommends fluoroquinolones to treat gonococcal infections (1). However, ceftriaxone, cefixime, or spectinomycin should be used if the infection was acquired in Asia. In some areas (e.g., Cleveland, Ohio) where strains with decreased susceptibility to fluoroquinolones are endemic, fluoroquinolones should not be used to treat gonorrhea because these strains may represent a pool from which fluoroquinolone-resistant strains may emerge (3,5). Clinicians should obtain a culture and request susceptibility testing for any patient with apparent treatment failure after recommended therapy and report these cases promptly to the local health department.

This investigation underscores the importance of timely surveillance for antibiotic-resistant *N. gonorrhoeae*. As clinical laboratories increasingly use nonculture methods for the diagnosis of gonorrhea, the importance of maintaining *N. gonorrhoeae* culture capability and the ability to measure antimicrobial susceptibility in public health laboratories increases. Laboratories serving patients with gonococcal

Fluoroquinolone-Resistant Neisseria gonorrhoeae - Continued

infections should maintain culture capability to evaluate patients with apparent treatment failure. Laboratories should report any isolates meeting proposed National Committee for Clinical Laboratory Standards criteria for resistance to ciprofloxacin (MIC ≥1.0 μg/mL; zone inhibition diameter [5 μg disk] ≤27 mm) or ofloxacin (MIC ≥2.0 μg/mL; zone inhibition diameter [5 μg disk] ≤24 mm) to their state public health laboratory (6.8). CDC laboratories will confirm resistant isolates.

References

- 1. CDC. 1998 Guidelines for treatment of sexually transmitted diseases. MMWR 1998;47(no. RR-1).
- Knapp JS, Fox KK, Trees DL, Whittington WL. Fluoroquinolone resistance in Neisseria gonorrhoeae. Emerging Infectious Diseases 1997;3:33–9.
- CDC. Fluoroquinolone resistance in Neisseria gonorrhoeae—Colorado and Washington, 1995. MMWR 1995;44:761–4.
- CDC. Decreased susceptibility of Neisseria gonorrhoeae to fluoroquinolones—Ohio and Hawaii, 1992–1993. MMWR 1994;43:325–7.
- Fox KK, Knapp JS, Holmes KK, Hook EW III, et al. Antimicrobial resistance in Neisseria gonorrhoeae in the United States, 1988–1994: the emergence of decreased susceptibility to the fluoroquinolones. J Infect Dis 1997;175:1396–403.
- Knapp JS, Hale JA, Neal SW, Wintersheid K, Rice RJ, Whittington WL. Proposed criteria for interpretation of susceptibilities of strains of Neisseria gonorrhoeae to ciprofloxacin, ofloxacin, enoxacin, lomefloxacin, and norfloxacin. Antimicrob Agents Chemother 1995;39:2442–5.
- National Committee for Clinical Laboratory Standards. Approved standard M7-A3: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Villanova, Pennsylvania: National Committee for Clinical Laboratory Standards, 1993.
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. M100-S8. Wayne, Pennsylvania: National Committee for Clinical Laboratory Standards. 1998.
- Aplasca MR, Pato-Mesola V, Klausner J, Tuazon C, et al. High rates of failure after treatment with ciprofloxacin—are fluoroquinolones no longer useful for gonorrhea treatment? [Abstract] In: Abstracts of the 4th International Congress on AIDS in Asia and the Pacific; October 1997; Manila, Philippines.

Diabetes During Pregnancy — United States, 1993-1995

Diabetes during pregnancy, whether pregestational (type 1 or type 2) or gestational, increases the risk for adverse maternal and infant outcomes (e.g., congenital anomalies, cesarean delivery, macrosomia, and future metabolic abnormalities) (1–3). Identification and careful management of diabetes during pregnancy can reduce poor maternal and infant outcomes (4–6). Diabetes prevalence and prenatalcare use varies among racial/ethnic groups and by maternal age and other characteristics (1,7,8). Higher than expected diabetes rates for women of childbearing age have been reported among many immigrant and other populations undergoing lifestyle changes (e.g., physical activity and diet) (1). This report summarizes an analysis of U.S. birth certificates during 1993–1995 to describe maternal diabetes and associated prenatal care among racial/ethnic groups and updates a previous report (7).

U.S. birth certificate data for all resident singleton, live-born infants for 1993–1995 were combined to improve reliability of race/ethnicity-specific diabetes rates. Maternal characteristics included age at delivery, self-reported race/ethnicity, birthplace (defined as born within or outside the 50 states and the District of Columbia), the month

Diabetes During Pregnancy - Continued

that prenatal care was initiated, and whether diabetes was reported as a medical risk factor for the pregnancy. Maternal diabetes is reported on a checkbox on the birth certificate; however, the type of diabetes (pregestational or gestational) is not recorded. Data for Asian Indian, Korean, Samoan, and Vietnamese women were available for seven states (California, Hawaii, Illinois, New Jersey, New York, Texas, and Washington). Age-adjusted diabetes rates were calculated to account for differences in the maternal age distributions of the racial/ethnic and birthplace groups. Age-adjusted rates were standardized to the U.S. maternal age distribution for 1993–1995 singleton live births. Rates with numerators <20 were not calculated because numbers were too small to provide stable estimates. Proxy measures of the possibility of adequate diabetes screening and treatment included 1) the proportion of mothers with diabetes who entered care after the first trimester as a measure of inadequate care for pregestational diabetes, and 2) the proportion of mothers who entered prenatal care in the eighth or ninth month (i.e., late care) or who received no prenatal care as a measure of inadequate or no screening or treatment.

During 1993–1995, the maternal diabetes rate was 25.3 per 1000 women (Table 1). Prevalence rates by maternal race/ethnicity ranged from 56.1 for Asian Indian women to 19.3 for Korean women. Diabetes rates increased steadily with age from 8.3 per 1000 women aged <20 years to 65.6 for women aged 40–49 years. Age-adjusted rates were higher than unadjusted rates for American Indian, non-Hispanic black, Mexican, Puerto Rican, Hawaiian, and Samoan women and lower for Asian Indian, Chinese, Japanese, Filipino, Korean, Vietnamese, Central and South American, Cuban, and non-Hispanic white women (7). Age-adjusted diabetes rates were highest among American Indian (52.4), Asian Indian (48.3), Puerto Rican (38.7), Hawaiian (32.6), and Filipino (32.0) women and lowest among Korean (16.1) and Vietnamese (19.5) women.

Overall, mothers born outside the United States had a higher diabetes rate than U.S.-born women (unadjusted: 28.0 compared with 24.8; adjusted: 26.4 compared with 25.0) (Table 2). However, the effect of birthplace varied by race/ethnicity. Both before and after adjusting for age, diabetes rates were at least 25% greater among Asian Indian, Samoan, and non-Hispanic black women who were born outside the United States than among U.S.-born women; however, Japanese women born in the United States were more likely to have diabetes than those born outside the United States.

Mothers with diabetes were more likely than mothers without diabetes to initiate prenatal care during the first trimester and less likely to initiate care during the eighth or ninth month of gestation or to receive no care, regardless of race/ethnicity (Table 3). Among mothers with diabetes, first-trimester initiation of care ranged from 59.0% among Samoan women to 90.4% of Cuban women. Among groups with the highest diabetes prevalence, the percentage of women with diabetes receiving care during the first trimester was 88.4% among Chinese, 85.6% among Filipino, 82.6% among Asian Indian, 77.1% among Puerto Rican, and 71.1% among American Indian women.

An average of 105,122 mothers per year initiated prenatal care during the eighth or ninth month of pregnancy or received no care. Approximately half of these women were non-Hispanic black or Mexican. Among mothers with diabetes, 1.3% had late or no prenatal care, including 3.3% of American Indian, 2.9% of Central/South American, 2.8% of Asian Indian, 2.4% of Mexican, 2.3% of Puerto Rican, and 2.2% of black non-Hispanic women. Among Chinese and Filipino mothers with diabetes, 1.0% had

TABLE 1. Number and rate* of diabetes during pregnancy, by race/ethnicity and age of mother — United States, 1993–1995

Diabetes During Pregnancy — Continued

				Age (yrs)	Age (yrs) of mother			T	Total
Race/Ethnicity	No.†	<20	20-24	25-29	30-34	35-39	40-49	Unadjusted	Unadjusted Age-adjusted [§]
Non-Hispanic White	6.996.046	10.0	17.8	24.5	30.3	41.3	56.1	25.3	24.3
Black	1,770,102	6.5	14.0	26.1	40.3	57.4	81.1	22.6	27.5
Hispanic									
Mexican	1,331,361	6.4	12.5	23.7	41.9	63.8	88.8	22.8	27.5
Puerto Rican	161,065	8.8	21.4	36.3	56.9	79.7	107.7	31.6	38.7
Cuban	35,148	-	14.7	23.6	30.2	40.4	53.4	24.9	22.7
Central or South American	271,639	5.6	11.4	21.7	35.8	56.4	79.9	25.4	24.3
American Indian/ Alaskan Native	108,982	12.9	26.8	49.5	77.3	110.2	150.6	43.9	52.4
Asian/Pacific Islander									
Chinese	77.359		11.5	26.7	40.4	809	75.1	39.1	27.3
Japanese	25,885	*	20.3	16.9	26.3	37.4	67.4	26.8	21.6
Hawaiian	16,982	11.4	16.8	33.3	47.5	67.1	-	28.9	32.6
Filipino	88,487	8.0	16.2	28.8	47.5	69.5	100.0	39.8	32.0
Asian Indian**	31,574	-	26.0	45.2	70.5	109.9	108.0	56.1	48.3
Korean**	24,918	-	0.6	13.3	22.9	31.0	48.6	19.3	16.1
Samoan**	4,855	-		27.4	42.4	8.69	-	25.7	28.7
Vietnamese**	34,140	-	6.5	16.6	34.6	41.4	70.8	24.3	19.5
Total**	11,384,926	00	16.3	25.1	33.8	47.4	929	25.3	1

*Per 1000 singleton live-born infants in specified population. 1 Women for whom diabetes status was reported.

*Directly standardized to the aggregate population of all race/ethnicities.

¶ Numbers were too small for meaningful analysis.

** Data available for seven states (California, Hawaii, Illinois, New Jersey, New York, Texas, and Washington).

†* Includes races other than those listed.

Diabetes During Pregnancy - Continued

TABLE 2. Number and rate* of diabetes for women born in the 50 states and the District of Columbia (DC) and for women born elsewhere, by race/ethnicity — United States, 1993–1995

	Women b	orn in 50 state	es and DC	Wom	en born elsev	vhere
Race/Ethnicity	No.†	Unadjusted rate	Adjusted rate	No.†	Unadjusted rate	Adjusted rate
Non-Hispanic						
White	6,653,662	25.2	24.3	332,677	27.2	23.0
Black	1,618,276	21.2	26.6	143,659	39.5	33.4
Hispanic						
Mexican	494,906	23.2	31.1	834,834	22.5	25.7
Puerto Rican	96,380	28.0	36.2	64,137	37.0	41.4
Cuban	11,945	23.0	24.3	23,181	25.8	21.4
Central or South						
American	18,347	17.6	21.3	252,773	26.0	24.3
American Indian/						
Alaskan Native	104,322	44.0	53.0	4,442	43.0	42.1
Asian/Pacific Islander						
Chinese	6,914	39.1	28.6	70,171	39.0	27.1
Japanese	12,175	35.3	27.7	13,681	19.3	15.6
Hawaiian	16,568	28.8	32.7	410	5	33.2
Filipino	13,771	26.8	29.9	74,566	42.2	32.0
Asian Indian¶	3,627	38.3	34.0	27,841	58.5	50.3
Korean¶	844	9	5	24,023	19.1	16.1
Samoan¶	1,845	15.2	17.7	3,005	32.3	31.0
Vietnamese¶	351	9	5	33,745	24.3	19.4
Total**	9,280,027	24.8	25.0	2,078,873	28.0	26.4

*Per 1000 singleton live-born infants in specified population.

[†]Women for whom place of birth and diabetes status were reported.

Numbers were too small for meaningful analysis.

¹Data were available for seven states (California, Hawaii, Illinois, New Jersey, New York, Texas, and Washington).

** Includes races other than those listed.

late or no prenatal care. The percentage of mothers without diabetes who had late or no care ranged from 1.1% of Cuban mothers to 8.7% of Samoan mothers, including ≥4% of American Indian, Mexican, non-Hispanic black, Puerto Rican, and Central and South American mothers. Late or no prenatal care among all mothers within these racial/ethnic groups was consistently higher regardless of maternal age.

Reported by: EC Kieffer, PhD, Univ of Michigan, Ann Arbor. Reproductive Statistics Br, Div of Vital Statistics, National Center for Health Statistics, CDC.

Editorial Note: During 1993–1995, at least 2.5% of women who had a live-born infant had maternal diabetes, slightly higher than the 2.1% reported for 1989 (9). This difference may reflect, in part, improved reporting rather than an increase in diabetes prevalence. These data probably underestimate the true prevalence of diabetes during pregnancy (1,8–10). Prevalence estimates have been higher in most universally screened clinic populations (1).

Prevalence underestimation may have been greater in populations that were less likely to receive diabetes screening because of younger maternal age distributions

TABLE 3. Percentage distribution of month prenatal care began and annual average number of women with late, inadequate,

or no prenatal care, by race/ethnicity and diabetes status of mother — United States, 1993-1995

Diabetes During Pregnancy — Continued

		1-3	1-3 months	4-7	4–7 months	8-9 month	8-9 months or no care	Average no.	Average no. of
Race/Ethnicity	No.*	With	Without	With	Without	With	Without	late or no care	_
Non-Hispanic White Black	6,987,365	89.2	86.2 67.9	10.1	12.3	0.8	1.5 5.5	35,233	319,333
Hispanic	0	0	6	1			6		
Mexican Prorto Pican	1,313,659	72.0	21.6	25.6	27.6	2.4	9.0	24,047	144,495
Cuban	34,927	90.4	89.3	8.7	0.00	-	2	132	1.241
Central or South American	263,138	71.8	71.0	25.3	25.0	2.9	4.0	3,482	25,452
American Indian/ Alaskan Native	108,831	71.1	64.7	25.6	29.1	e. 6.	6.2	2,111	12,705
Asian/Pacific Islander									
Chinese	76,028	88.4	85.4	10.5	13.0	1.1	1.7	415	3,681
Japanese	25,429	90.2	88.6	9.1	10.0	-	1.4	115	961
Hawaiian	16,373	79.8	74.3	19.6	22.4		3.3	175	1,392
Filipino	87,176	85.6	80.3	13.3	17.5	1.0	2.3	641	5,671
Asian Indian**	30,675	82.6	81.5	14.6	16.0	2.8	2.5	261	1,888
Korean**	24,111	80.8	79.8	17.7	17.7	-	2.6	203	1.623
Samoan**	4,673	59.0	56.1	36.1	35.2	-	8.7	134	682
Vietnamese**	33,344	85.1	81.4	13.1	16.2		2.5	272	2,061
Total	11,286,002	84.3	79.9	14.4	17.3	1.3	2.8	105,122	751,673

*Women for whom month prenatal care began and diabetes status were reported.

**Care beginning in the eighth or ninth month of pregnancy or no care. **Care beginning after the third month of pregnancy or no care.

**Data available for seven states (California, Hawaii, Illinois, New Jersey, New York, Texas, and Washington). **Includes races other than those listed. Diabetes During Pregnancy — Continued

and/or late or no prenatal care. Selective screening based on maternal age does not detect a substantial number of diabetes cases. Age and racial/ethnic differences in the timing and adequacy of prenatal care also may have influenced reported prevalence rates because all but the most overt cases of gestational diabetes may have remained undetected in women who initiated prenatal care in the eighth or ninth month of pregnancy or who received no care.

Preconception counseling and treatment is recommended for all women with pregestational diabetes. Screening to detect gestational diabetes is recommended during weeks 24–28 of pregnancy, followed by treatment during the remainder of pregnancy and postpartum follow-up (4,6). Initiation of prenatal care after the first trimester precludes adequate treatment of women with pregestational diabetes, and late or no prenatal care minimizes adequate screening and treatment of gestational diabetes. Among mothers with diabetes, approximately 20% of non-Hispanic black, Hispanic (except Cuban), American Indian, Samoan, and Hawaiian women initiated care after the first trimester.

Diabetes prevalence increased with maternal age regardless of race/ethnicity. Both older age and increased screening of older mothers may contribute to the age-associated rate increase. The older childbearing ages of Filipino and Chinese women, compared with the reference population, accounts for their lower adjusted rates. In comparison, the age-adjusted diabetes rate for Asian Indian women remained substantially higher than the rate for all other groups despite their older maternal age distribution.

Differences in childbearing age distributions by birthplace may account for some of the variation in diabetes rates between U.S.-born women and those born elsewhere. U.S.-born women generally have younger childbearing ages than women born elsewhere. However, diabetes rate differences by birthplace were not solely attributable to differing age distributions among most ethnic groups.

The findings in this report are limited by the inability to distinguish between pregestational and gestational diabetes on birth certificates. The inclusion of such data on birth certificates is being considered.

Recent studies suggest that the prevalence of diabetes among women of childbearing age is increasing in the United States (10). Increasing immigration among populations with high rates of type 2 diabetes, and the impact of acculturation on these risks (1), underscores the importance of national surveillance for diabetes prevalence during pregnancy (7–9). Identifying and monitoring the prevalence of pregestational diabetes may assist in targeting prenatal care efforts aimed at preventing adverse outcomes that may occur when glucose is inadequately controlled early in pregnancy (2,4,6). Timely diabetes screening is essential for appropriate identification and treatment of gestational diabetes (4,5). Increased outreach efforts to provide care to the populations least likely to obtain care and accurate recording of diabetes and prenatal care use on the birth certificate should contribute to improvements in diabetes surveillance and improved pregnancy outcomes.

References

- Metzger BE, Cho NM. Epidemiology and genetics. In: Diabetes mellitus and pregnancy: principles and practice. 2nd ed. New York, New York: Churchill Livingstone, 1995:11–26.
- Silverman BL, Purdy LP, Metzger BE. The intrauterine environment: implications for the offspring of diabetic mothers. Diabetes Reviews 1996;4:21–35.

Diabetes During Pregnancy - Continued

Cousins L. Obstetric complications. In: Diabetes mellitus and pregnancy: principles and practice. 2nd ed. New York, New York: Churchill Livingstone, 1995:287–302.

 American College of Obstetricians and Gynecologists. Diabetes and pregnancy. Washington, DC: American College of Obstetricians and Gynecologists, 1994. (ACOG Technical Bulletin no. 200).

 American Diabetes Association. Gestational diabetes mellitus. Diabetes Care 1998;21(suppl 1):S60.

American Diabetes Association. Preconception care of women with diabetes. Diabetes Care 1998;21(suppl 1):S56–S59.

 CDC. Prenatal care and pregnancies complicated by diabetes—U.S. reporting areas, 1989. MMWR 1993;42:119–22.

 Engelgau MM, Herman WH, Smith PJ, German RR, Aubert RE. The epidemiology of diabetes and pregnancy in the U.S., 1988. Diabetes Care 1995;18:1029–33.

 Woolbright LA, Harshbarger DS. The revised standard certificate of live birth: analysis of medical risk factor data from birth certificates in Alabama, 1988–92. Public Health Rep 1995;110:59–63.

 Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in US adults. Diabetes Care 1998;21:518–24.

Progress Toward Global Eradication of Poliomyelitis, 1997

In 1988, the World Health Assembly adopted the goal of eradicating poliomyelitis by 2000 (1). Substantial progress toward this goal has been reported from many areas of the world (2). Since 1988, all but four countries with endemic polio have conducted National Immunization Days* (NIDs), and most countries have established sensitive surveillance systems for acute flaccid paralysis (AFP). This report updates progress toward global polio eradication in 1997 based on data available from the World Health Organization (WHO) as of May 18, 1998.

PROGRESS IN IMPLEMENTING STRATEGIES

Routine vaccination

Global coverage with three doses of oral poliovirus vaccine (OPV3) among infants was 73% in 1988 and was 81% during 1996–1997 (Figure 1). OPV3 coverage remains lowest in the African Region (AFR) (54% in 1996); however, OPV3 coverage was >50% for the first time in 1996.

Supplementary vaccination

During 1997, approximately 450 million children aged <5 years in 80 countries were vaccinated during NIDs. As of May 1998, NIDs have been conducted in every country with endemic polio, including all countries in Asia, Europe, and Africa (except the Democratic Republic of Congo [DR Congo], Liberia, Sierra Leone, and Somalia). NIDs are planned during 1998 in DR Congo, Sierra Leone, Somalia, and possibly Liberia.

Initiatives to coordinate NIDs across national and regional borders continued in 1997. For the third consecutive year, in April and May 1997, "Operation MECACAR" synchronized NIDs in 19 countries of the European Region (EUR) and Eastern Mediterranean Region (EMR) (including the Russian Federation) and achieved OPV3 coverage of >90% (60 million children). During December 1997, eight countries in the South East Asian Region (SEAR) coordinated NIDs to vaccinate 190 million children during a 1-week period. Reported OPV3 coverage was >85% in Afghanistan and >90% in

^{*}Mass campaigns over a short period (days to weeks) in which two doses of oral poliovirus vaccine are administered to all children in the target group, regardless of prior vaccination history, with an interval of 4-6 weeks between doses.

FIGURE 1. Reported coverage with three doses of oral poliovirus vaccine (OPV3), administered through routine vaccination programs, and poliomyelitis cases, by year — worldwide, 1982–1997*

*As of May 18, 1998.

Eangladesh, India, and Pakistan. NIDs in India reached 134 million children in 1 day during December 1997.

Mopping-up vaccination

Targeted supplementary house-to-house vaccination activities ("mopping-up campaigns") were conducted in high-risk areas (areas identified as potential or known foci of continued poliovirus transmission based on surveillance for AFP). During May–June 1997, mopping-up vaccination targeted approximately 1.1 million children aged <5 years living in the Mekong River area of Cambodia and Vietnam and in parts of Laos.

AFP surveillance

AFP surveillance[†] requires detection, investigation, and reporting of AFP cases among children aged <15 years. AFP surveillance is monitored by two main performance indicators: 1) the sensitivity of AFP reporting (target: nonpolio AFP rate of more than one case per 100,000 children aged <15 years); and 2) the completeness of specimen collection (i.e., two adequate stool specimens from >80% of persons with AFP). From 1996 to 1997, the global rate of nonpolio AFP increased from 0.6 to 0.8 (Table 1), and rates of more than one were reported in EUR and the Western Pacific Region (WPR). AFP reporting improved in EMR and SEAR (Figure 2, Table 1). In 1997, the proportion of AFP cases with adequate specimens was 65% worldwide, with substantial regional variations (Table 1).

In 1997, AFP surveillance was established in several countries (e.g., Afghanistan and many sub-Saharan African countries), and case-based AFP reporting was

[†]A confirmed case of polio is defined as AFP and at least one of the following: 1) laboratory confirmed wild poliovirus infection, 2) residual paralysis at 60 days, 3) death, or 4) no follow-up investigation at 60 days.

Poliomyelitis TABLE 1. Confirmed poliomyelitis cases, acute flaccid paralysis (AFP) surveillance performance indicators, and poliovirus strain detected, by World Health Organization region*, 1996 and 1997

					4	D was as					
	No. re	ported	Non	polio	with a	with adequate	19	9661	19	1997	Wild polivins
	AFP	AFP cases	AFP	rate	spec	mens		Wild vine		Wild vinie	strain detected
Region	1996	1997	1996	1997	1996	1997	Confirmed	associated	Confirmed	associated	in 1997
AFR	2,377	478	0.15	0.16	1	24%	1949	(0)	219	(34)	P1/P2/P3
AMR	1,963	1,856	1.20	0.95	26%	74%	0		0		1
EMR	1,775	2,846	0.72	0.97	63%	63%	532	(268)	1023	(261)	P1/P2/P3
EUR	1,039	1,596	69.0	1.12	%89	%69	193	(88)	7	(9)	P1
SEAR	1,408	4,581	0.04	0.26	11%	39%	1203	(71)	2858	(273)	P1/P2/P3
WPR	5,295	5,961	1.17	1.35	79%	84%	197	(21)	6	(6)	P1
Total	13,857	17,318	0.58	0.84	1	962%	4074	(392)	4116	(283)	

The regions are African (AFR), American (AMR), Eastern Mediterranean (EMR), European (EUR), South East Asian (SEAR), and Western Pacific (WPR).

Number of cases of AFP per 100,000 children aged <15 years.

*Two stool specimens that are collected within 14 days of onset of paralysis from a person with AFP and that arrive in the laboratory in good condition.

FIGURE 2. Nonpolio AFP rate per 100,000 children aged <15 years, by country, 1997

introduced in India. AFP surveillance has not been initiated in 10 African countries (Burundi, Congo, Equatorial Guinea, Eritrea, Gabon, Gambia, Liberia, Mauritius, Rwanda, and Sierra Leone).

Laboratory network

The Global Polio Laboratory Network comprises 67 national, 14 regional, and six specialized laboratories (3). In 1997, WHO initiated a process to formally accredit each laboratory. In April 1998, a total of 46 of 67 national laboratories were reviewed; of these, 28 (61%) were accredited, 11 (24%) received provisional accreditation, and seven (15%) failed.

IMPACT OF STRATEGIES ON POLIO INCIDENCE

As of 1998, a total of 4116 polio cases with onset during 1997 were reported world-wide. Data for 1997 are not complete, mainly because of incomplete and delayed reporting from Africa. Although the 1997 total exceeds the number of cases confirmed in 1996 (4074), a direct comparison is difficult because AFP reporting has improved substantially in 1997. Compared with 1988, when the global eradication goal was established, the number of reported cases declined by 89%.

In AFR, the impact of supplementary vaccination and the change in incidence from 1996 to 1997 is difficult to measure because 1997 surveillance data are incomplete (Table 1). However, two large poliovirus reservoirs remain, one each in DR Congo and Nigeria.

In EMR, the number of reported polio cases increased from 532 in 1996 to 1023 in 1997, primarily because of improved surveillance and outbreaks in Pakistan. In Egypt, the number of reported cases decreased from 100 in 1996 to 14 in 1997, despite improvements in surveillance for AFP.

In EUR, the number of reported polio cases decreased from 193 in 1996 to seven in 1997. Except for one clinically confirmed case in Tajikistan, all cases in 1997 were con-

firmed by poliovirus isolation and were confined to southeastern Turkey.

In SEAR, the number of reported polio cases increased from 1203 in 1996 to 2858 in 1997, primarily reflecting improved surveillance in India and a large outbreak of 751 cases in Uttar Pradesh. AFP reporting improved in most other countries in SEAR, with increases in the number of clinically confirmed cases from 1996 to 1997 in Bangladesh (97 to 191), India (1005 to 2074), Indonesia (77 to 507), Myanmar (eight to 55), and Thailand (one to 19). In 1997, wild polioviruses were isolated from four countries in SEAR (Bangladesh, India, Nepal, and Thailand).

In WPR, nine virologically confirmed cases were reported from the Mekong Delta area of Cambodia and Vietnam. The last case reported from WPR occurred in March

1997 near Phnom Penh in Cambodia.

Reported by: Global Program for Vaccines and Immunization, World Health Organization, Geneva, Switzerland. Respiratory and Enteric Viruses Br, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases; Vaccine-Preventable Disease Eradication Div, National Immunization Program, CDC.

Editorial Note: Since 1988, substantial progress in polio eradication has been reported from all six WHO regions (2). In 1997, several factors contributed to this progress, including 1) widespread use of NIDs and mopping-up campaigns, 2) accreditation by WHO of 28 national polio laboratories, 3) establishment of sensitive surveillance systems in virtually all countries with endemic polio, and 4) expansion of the "Kick Polio out of Africa" campaign (4).

In AFR, limited laboratory capacity is a barrier to improved AFP surveillance. Only 13 laboratories in the African laboratory network serve 31 countries, which requires

frequent specimen transport between neighboring countries.

Poliovirus transmission occurs primarily in southern Asia and sub-Saharan Africa, and transmission is intense in countries with large populations (e.g., Bangladesh, India, and Pakistan in Asia and DR Congo, Ethiopia, and Nigeria in Africa). Except for DR Congo, all countries have initiated NIDs and have reduced poliovirus transmission. However, poliovirus type 2, usually the first serotype to be eliminated once NIDs have started, was isolated in Afghanistan, Benin, India, and Pakistan in 1997, suggesting that large population subgroups remain unvaccinated. Although type 2 virus was detected in only one African country in 1997, virologic surveillance in AFR remains insufficient to document the presence or absence of this virus serotype in most of sub-Saharan Africa.

Recent civil wars in Afghanistan, Congo Republic, DR Congo, Sudan, and Tajikistan hinder NIDs and AFP surveillance. Four countries with endemic polio (DR Congo, Liberia, Sierra Leone, and Somalia) have not conducted NIDs and are affected by ongoing conflicts. Interrupting poliovirus transmission in these countries, in which recognized governments are often absent and the provision of international assistance may be difficult, remains a major concern.

The costs of polio eradication are shared by countries with endemic polio and the international community. Individual countries provided 80% of the total cost for polio eradication in AMR, and China and Indonesia contributed even higher national shares. However, in developing countries, most of the cost to implement polio eradication strategies will require external funding. An estimated \$1 billion, primarily for

operational costs of NIDs, vaccine, and surveillance, will be needed for polio eradication from 1998 to 2005; two thirds of these funds are needed during 1998–2000.

An international coalition of partners supporting the eradication effort in countries with endemic polio include Rotary International, CDC, United States Agency for International Development (USAID), United Nations Children's Fund (UNICEF), WHO, and the governments of Japan, Great Britain, Denmark, Germany, and others. Progress toward global polio eradication has led to the certification of polio elimination in AMR (5), the probable interruption of poliovirus transmission in WPR (6), the restriction of poliovirus transmission to one country in EUR (7), and the strengthening of national vaccination programs worldwide. However, global eradication requires the cessation of poliovirus transmission everywhere. Fewer than 1000 days remain to reach the 2000 target (8). Success will depend on securing the additional resources to conduct and maintain eradication strategies in the remaining countries with endemic polio and sustained political commitment.

References

- World Health Assembly. Global eradication of poliomyelitis by the year 2000. Geneva, Switzerland: World Health Organization, 1988; resolution no. 41.28.
- 2. CDC. Progress toward global poliomyelitis eradication, 1996. MMWR 1997;46:579-84.
- CDC. Status of the global laboratory network for poliomyelitis eradication, 1994–1996. MMWR 1997;46:692–4.
- 4. CDC. Progress toward poliomyelitis eradication—African Region, 1997. MMWR 1998;47:235-9.
- CDC. Certification of poliomyelitis eradication—the Americas, 1994. MMWR 1994;43:720–2.
 CDC. Progress toward poliomyelitis eradication—Western Pacific Region, January 1, 1996–
- 6. CDC. Progress toward pollomyelitis eradication—Western Pacific Region, January 1, 1996—September 27, 1997. MMWR 1997;46:1113–7.
- CDC. Progress toward poliomyelitis eradication—Europe and Central Asian Republics, 1991– September 1997. MMWR 1997;46:994–1000.
- CDC. One thousand days until the target date for global poliomyelitis eradication. MMWR 1998; 47:234.

Notice to Readers

Satellite Broadcast on Risk Assessment in the Infectious Disease Laboratory

CDC and the Public Health Training Network (PHTN) will cosponsor Laboratory Risk Assessment: What, Why, and How, a live satellite broadcast, on July 23, 1998, from 2 p.m. to 4 p.m. eastern daylight time. This broadcast is designed for infectious disease personnel from public health, hospital, physician office, and research laboratories; laboratory directors, supervisors, technologists, technicians, and researchers; and laboratory safety officers, trainers, designers, engineers, and administrators.

This interactive training program will provide the tools for performing risk assessments in the infectious disease laboratory. Participants will perform a risk assessment in a simulated mycobacteriology laboratory. U.S. participants can interact with the instructors through toll-free telephone, fax, and TTY lines. Continuing education credits for various professions will be offered based on 2 hours of instruction.

Participants can register for this program by calling (800) 418-7246. There is no charge to view this program. Participants requesting continuing education credit must

Notices to Readers - Continued

register before June 12, 1998. Additional information on this and other PHTN programs is available from the World-Wide Web, http://www.cdc.gov/phtn.

Notice to Readers

Satellite Broadcast on Vaccinating Adults

CDC and the Public Health Training Network will cosponsor a satellite broadcast for physicians, physician assistants, nurses, nurse practitioners, pharmacists, medical students, and others who provide vaccinations or establish immunization policy. *Vaccinating Adults: The Technical Issues* will be held June 4, 1998 from 9 a.m. to 11:30 a.m. eastern daylight time (EDT), with a repeat broadcast from noon to 2:30 p.m. EDT. The first broadcast will be live; the second will be a taped rebroadcast of the morning program with a live question and answer session. For both broadcasts, participants will be able to interact with the instructors through toll-free telephone, FAX, and TTY lines. The course will be simultaneously translated into Spanish for selected sites. Continuing education credits for various professions will be offered based on 2.5 hours of instruction. Pharmacy credits will not be offered for this course.

Course registration information for the English broadcasts is available from state health department immunization programs. Additional information about the Spanish broadcasts is available on the World-Wide Web, http://www.cdc.gov/nip.

Notice to Readers

International Course in Applied Epidemiology

CDC and Emory University will cosponsor an international course in applied epidemiology designed for globally based public health professionals. This course will be held at CDC during October 5–30, 1998. The course emphasizes the practical application of epidemiology to public health problems and comprises lectures, workshops, classroom exercises (including actual epidemiologic problems), and computer labs. Topics covered include descriptive epidemiology and biostatistics, analytic epidemiology, epidemic investigations, public health surveillance, surveys and sampling, computers and Epi Info software, and discussions of selected prevalent diseases. There is a tuition charge.

Applications must be received by August 31, 1998. Additional information and applications are available from Department PSB, Rollins School of Public Health, Emory University, 7th floor, 1518 Clifton Road, N.E., Atlanta GA 30322; telephone (404) 727-3485; fax (404) 727-4590; or e-mail ogostan@sph.emory.edu.

FIGURE I. Selected notifiable disease reports, comparison of provisional 4-week totals ending May 23, 1998, with historical data — United States

Beyond Historical Limits

*The large apparent decrease in the number of reported cases of measles (total) reflects dramatic fluctuations in the historical baseline. (Ratio [log scale] for week 20 measles [total] is 0.00000).

Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary — provisional cases of selected notifiable diseases, United States, cumulative, week ending May 23, 1998 (20th Week)

		Cum. 1998		Cum. 1998
Arithrax			Plague	
Brucellosis		. 8	Poliomyelitis, paralytic	
Cholera		3	Psittacosis	15
Congenital rul	bella syndrome	2	Rabies, human	
Cryptosporidi	osis*	662	Rocky Mountain spotted fever (RMSF)	32
Diphtheria		1	Streptococcal disease, invasive Group A	32 893
Encephalitis:	California*		Streptococcal toxic-shock syndrome*	25
	eastern equine*		Syphilis, congenital**	64
	St. Louis*		Tetanus	8
	western equine*		Toxic-shock syndrome	52
Hansen Disea		45	Trichinosis	5
	Imonary syndrome*1	2	Typhoid fever	25 64 8 52 5 109
	mic syndrome, post-diarrheal*	10	Yellow fever	
HIY infection.		45 2 10 88	100000	

no reported cases
Not notifiable in all states.

Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases (NCID).

Updated monthly to the Division of HIV/AIDS Prevention-Surveillance and Epidemiology, National Center for HIV, STD, and TE Prevention (NCHSTP), last update April 26, 1998.

Diseases and Epidemiology, National Center for HIV, STD, and Tenesuspected case of polio with onset in 1998 has also been reported to date.

** Updated from reports to the Division of STD Prevention, NCHSTP

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending May 23, 1998, and May 17, 1997 (20th Week)

					Esche coli O	157:H7			Hepa	
	AIC		Chlar		NETSS1	PHLIS	Gono		C/NA	
Reporting Area	Cum. 1998°	Cum. 1997	Cum. 1998	Cum. 1997	Cum. 1998	Cum. 1998	Cum. 1998	Cum. 1997	Cum. 1998	Cum. 1997
UNITED STATES	18,067	22,446	196,752	174,647	357	166	110,456	106,060	1,630	1,121
NEW ENGLAND	400	678	7,230	6,638	40	25	1,871	2,267	17	30
Maine	10	25	384	358 297	7	5	14 32	20 53	*	3
N.H. VL	10	18	146	145			11	22		1
Mass.	211	279	3,294	2,710	19	15	792	852	16	24
R.I. Conn.	204	55 285	2,125	2,328	10	4	139 883	1,127	1	2
MID. ATLANTIC	4,607	6.832	24,309	21,613	30	9	13,369	13,266	151	123
Jpstate N.Y.	545	1,122	94	N	22		1,937	2,369	125	94
N.Y. City	2,631	3,293	13,244	11,653	2	4	5,616	5,249		
N.J. Pa.	823 608	1,538 879	3,628 7,527	3,969 5,991	6 N	1	2,398 3,418	2,769	26	29
E.N. CENTRAL	1,299	1.639	32,562	27,852	58	19	22,133	16,388	184	270
Ohio	242	348	9,657	8,680	16	3	5,858	5,311	5	5
Ind.	275	301	2,708	3,363	10	7	1,769	2,296	3 7	43
III. Mich.	495 218	505 394	8,937 8,372	4,357 7,309	18	4	7,173 6,227	2,123 4,950	169	201
Wis.	69	91	2,890	4,143	N	5	1,106	1,708		15
W.N. CENTRAL	288	449	10,963	11,632	45	26	5,485	5,196	100	25
Minn.	50	79	1,830	2,473	20	12	650	860	10	
lowa Mo.	14	58 210	1,639	1,778	3 8	12	505 3,312	453 2,962	10 86	1:
N. Dak.	4	3	290	339	1	1	29	23		3
S. Dak.	7	2	616	442	1		104	41		
Nebr. Kans.	32 42	34 63	915 1,236	724 1,445	6	1	331 554	266 591	2 2	
S. ATLANTIC	4,121	5,759	40.137	32,902	31	14	32,533	32,058	71	8
Del.	44	69	992	612	31	1	522	420		
Md.	488	725	3,217	2,768	10	4	3,544	5,072	3	(
D.C.	343 284	400 484	3.500	4,287	Ñ	7	1,365 2,336	1,516 3,177	i	1
Va. W. Va.	36	38	1,150	1,220	N		324	379	3	1
N.C.	273	282	8,753	6,569	7	2	7,366	6,294	10	23
S.C.	283 501	293 690	7,320 8,863	4,751	1 2		4,725 7,308	4,236	8	17
Ga. Fla.	1,869	2,778	6,342	9,318	10		5,043	6,511	46	23
E.S. CENTRAL	591	628	13,403	12,742	27	7	12,655	12,900	51	130
Ky.	87	61	2,329	2,546	6		1,298	1,695	9	(
Tenn.	184	302	4,735	4,846	16	7	3,963	4,070	39	8:
Ala. Miss.	183 137	153 112	3,608 2,731	3,088	5		4,621 2,773	2,806	3	4
W.S. CENTRAL	1,953	2,504	22,753	20,791	24	4	13,471	13,830	452	124
Ark.	71	96	1,228	1,022	1	1	1,108	1,713	1	
La.	333	428	4,731	3,098	3		3,940	2,855	2	7
Okla. Tex.	1,443	1.864	4,052 12,742	2,930 13,741	20	3	2,179 6,244	1,840 7,422	448	3
MOUNTAIN	526	706	6,997	9,822	29	17	2,646	2,939	286	130
Mont.	13	18	415	391	2		21	14	4	
Idaho Wyo.	12	22 13	715 268	578 200	2		63	43 22	80 128	1:
Colo.	91	194		1,736	5	4	917	752	10	1
N. Mex.	76	66	1,359	1,322	7	4	267	501	35	2
Ariz. Utah	200 45	157	3,315 672	3,848	N 9	5	1,213	1,212	16	1
Nev.	87	190	253	1,087	4	3	92	308	12	
FACIFIC	2,223	3,253	28,308	30,655	73	45	6,293	7,216	318	19
Wash.	165	241	4,301	3,575	17	22	718	784	9	1
Oreg.	64	144	2,137	1,807	23	17	292	275	2	**
Calif. Alaska	1,947	2,826	20,370 726	24,092 541	33	3	5,002	5,803 175	263	11
Hawali	36	24	774	640	N	3	154	179	53	6
Guam		2	8	181	N		2	24		
P.R.	006	517	U	U		U	158	250		4
V.I. Amer. Samos	15	28	N	N	N N	U		*	*	
C.N.M.I.			N	N	N	Ü	7	15		

N: Not notifiable U: Unavailable

^{-:} no reported cases

C.N.M.I.: Commonwealth of Northern Mariana Islands

[&]quot;Updated monthly to the Division of HIV/AIDS Prevention—Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention, last update April 26, 1998.

National Electronic Telecommunications System for Surveillance.

Public Health Laboratory Information System.

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending May 23, 1998, and May 17, 1997 (20th Week)

	Legion	ellosis	Lyn		Male	uria	Syph Primary & S		Tuberci	ulosis	Rabies, Animal
Reporting Area	Cum. 1998	Cum. 1997	Cum. 1998	Cum. 1997	Cons. 1998	Cum. 1997	Cum. 1998	Cum. 1997	Cum. 1998°	Cum. 1997	Cum. 1998
UNITED STATES	387	318	1,546	1,222	396	506	2,525	3,384	2,363	6,061	2,586
NEW ENGLAND	22	26	367	255	17	22	29	66	107	151	504
Maine	1	1	1	3	1	1	1		2	15	80 33
V.H.	2	4 3	7 2	6 2	3	2	1 2		1	2	29
/t. Mass.	8	10	77	47	11	16	20	36	87	79	157
R.I.	4	4	26	33	2	2	-	-	17	7	33
Conn.	6	4	254	164	-		5	30	U	47	172
MID. ATLANTIC	85	56	945	753	110	138	86	166	207	1,106	567 390
Jpstate N.Y.	25 14	12	499	96 59	28 51	22 82	9 21	18 33	U	148 578	U
N.Y. City N.J.	4	7	124	190	17	24	18	77	207	226	77
Pa.	42	35	320	408	14	10	38	38	U	154	100
E.N. CENTRAL	119	124	23	21	27	51	362	297	172	596	16
Ohio	52	59	22	7	2	4	69 65	95 68	5	120 51	15
ind.	17 12	16 5	1	9 2	6	24	136	24	167	293	1
Mich.	24	31		3	17	15	72	45	U	89	
Wis.	14	13	U	U	1	4	20	65	U	43	
W.N. CENTRAL	29	24	11	12	21	11	63	66	74	183	260
Minn.	3	1	3	9	8 2	5	3	13	U	49	48
lowa Mo.	11	4 2	7	2	8	2	48	34	62	71	15
N. Dak.		2		-	1	-	*		U	4	46
S. Dak.		1					1		9	2	5
Nebr.	10	10	î	1	2	1	7	16	3	33	4
Kans.						92	1,097	1,368	503	1,084	840
S. ATLANTIC Del.	51	39	134	125	102	2	12	11	503	13	17
Md.	10	11	100	84	33	32	257	382	98	107	200
D.C.	3	2	4	5	7	6	31 72	49 113	43 89	34 111	256
Va. W. Va.	4 N	4 N	6		15	22	2	3	21	21	3
N.C.	6	5	3	3	8	6	319	273	142	127	13
S.C.	4	2	1	1	3	5	130	168	U	90 200	6.
Ga.	17	10	14	7	13 22	12	191	243 126	U	381	8
Fla.					10	14	417	746		452	10
E.S. CENTRAL Ky.	12	10	17	25	1	3	46	62	U	63	1
Tenn.	4	4	7	9	6	4	212	304	U	146	6
Ala.		2	7	2	3	4	98	193 187	U	161	2
Miss.		4		11		3			41	904	
W.S. CENTRAL	9	5	5	3	10	7	272 47	464 65	41	76	0
Ark. La.		i	2	1	4	4	116	153		58	
Ohia.	4	1			1	2	20	48	U	66	6
Tex.	5	3	3	1	5	*	89	198	U	704	
MOUNTAIN	24	18	1	2	19	30	80	69	117 12	189	0
Mont. Idaho	1	1			2	2			4	4	
Wyo.	1	1			-	1			2	2	
Colo.	4	4			6	15	4	2	U	42	
N. Mex.	2	1 4		i	6	4 3	10	59	7	83	
Ariz. Utah	11	4			1	1	3	2	21	6	
Nev.	1	2	1	1	-	4	2	6	U	44	
PACIFIC	36	16	43	26	80	341	119	142	1,142	1,396	
Wash.	3	3	1		6	8	7	6	Ü	116	
Oreg.	33	12	5 37	8 18	9 64	121	110	131	1,066	1,109	
Calif. Alaska	33	12	3/	18	04	2	110	1	16	35	1
Hawaii		1			1	2		1	60	79)
Guam					*			3		13	
P.R.						3	92	80	46	86	1 1
V.I. Amer. Samoa		*			:						
C.N.M.J.							1	5	8		

N: Not notifiable U: Unavailable : no reported cases
"Additional information about areas displaying "U" for cumulative 1998 Tuberculosis cases can be found in Notice to Readers, MMWR
Vol. 47, No. 2, p. 39.

TABLE III. Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending May 23, 1998,

				May 1			AAGG	K)				
		venzae, Isive	H	iepatitis (V	iral), by typ	98			Measi	es (Rube	ola)	
	Cum.	Cum.	Cum.	Cum.	Cum.	Cum.	Indi	genous	Imp	orted [†]		tal
Reporting Area	1998*	1907	1998	1997	1998	1997	1998	Cum. 1998	1998	Cum. 1988	Cum. 1998	Cum. 1997
UNITED STATES	421	474	7,996	10,683	2,819	3,505		6		10	16	56
NEW ENGLAND	24	25	101	205	33	71				1	1	7
Maine N.H.	2	3	10	35		3	*					
Vt.	2	3	6 8	16	7	5	*		*	*	*	
Mass.	17	16	25	133	12	35	*	*	*	1	:	
R.i. Conn.	2	2	8	20	13	8	*				1	7
	*	1	44	55	*	18		*		*		
MID. ATLANTIC Upstate N.Y.	82 24	59	519 128	954	415	538		1		1	2	12
N.Y. City	10	20	137	105 431	114 114	95 218			*	*	*	4
N.J. Pa.	26	23	113	145	60	104		1	-	-	1	5 2
	2	13	141	273	127	121	*			1	i	1
E.N. CENTRAL Ohio	57	72	901	1,238	285	635		2		2	4	6
Ind.	27 13	36	122 71	169 125	26 24	37		-	. *	*		
10).	16	20	158	318	51	43 125	U	2	U	1	3	5
Mich. Wis.	1	9	563	540	172	200				1	1	1
W.N. CENTRAL			77	86	12	230		*		*		*
Minn.	31 17	23 14	685 28	748 64	128	214		*				10
lows	1	2	323	98	11 19	17 15				*	*	1
Mo. N. Dak.	9	3	267	420	78	159				-		i
S. Dak.		2	2 8	12	2	1	U	*	U		*	
Nebr.	*	1	13	22	6	8			*	*	*	8
Kans.	4	1	44	125	11	14	U		U			
S. ATLANTIC Del.	95	86	679	585	400	424	*	1	*	5	6	2
Md.	26	36	144	11	60	3	*	*	*	1	1	*
D.C.	*		25	13	6	71 18	*			1	1	1
Va. W. Va.	11	- 6	110	68	40	45				2	2	1
N.C.	12	13	41	80	3	6		*			-	
S.C.	3	3	12	54	82	93			*	*	*	
Ga. Fla.	18	17	116	115	59	48	U		U	1	1	
E.S. CENTRAL	24	8	228	119	160	101	*	1		*	1	*
Ky.	3	30	154	275 30	163	245	-		*	*		1
Tenn.	15	18	110	167	119	16 154				*	*	
Als. Miss.	6	7	36	45	26	30			*			1
W.S. CENTRAL	20			33	*	45	U	*	U			*
Ark.	26	20	1,403	1,947	416	347			*	*	*	4
La.	12	3	13	82	9	22 45					*	
Okle. Tex.	12	14	230	652	26	11						
MOUNTAIN	59	2	1,136	1,111	368	269	*		*	*	*	4
Mont.	29	51	1,323	1,606	334	360	*	*		*		3
idaho	*	1	91	70	16	12					*	*
Wyo. Colo.	12	9	26	18	7	9						
N. Mex.	4	3	101 74	184 107	41 126	71			*	*	*	*
Ariz.	33	13	848	759	91	123 72		-		*	*	
Utah Nev.	6	3 21	90	284	28	38	-		*			2
PACIFIC	43		63	140	22	20	U		U	*		1
Wash.	3	109	2,141 380	3,065 212	645 48	681	*	2		1	3	11
Oreg.	27	20	151	154	50	46						*
Celif. Alaska	10	84	1,580	2,622	538	595	*	2		1	3	8
Hawaii	2	3	10	16 61	5	10		*	*			*
Guern				91	0	-				*	*	3
P.R.	2		16	148	226	527	U		U	*	*	
V.I. Amer. Samoa	*						U		U	*		
C.N.M.I.		5		i	7	21	U		U	*	*	*
N: Not notifiable	Il-Haw			-	-	41	U	*	U			1

N: Not notifiable U: Unavailable

< no reported cases

^{*}Of 99 cases among children aged <5 years, serotype was reported for 51 and of those, 24 were type b.

^{*}For imported messies, cases include only those resulting from importation from other countries.

TABLE III. (Cont'd.) Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending May 23, 1998, and May 17, 1997 (20th Week)

			and N	1ay 17,	1997 (20th W	/eek)				
	Dist	ococcal ease		Mumps			Pertussis			Rubella	
Reporting Area	Cum. 1998	Cum. 1997	1998	Cum. 1998	Cum. 1997	1998	Cum. 1998	Cum. 1997	1998	Cum. 1998	Cum.
UNITED STATES	1,180	1,646	2	179	275	34	1,437	2,111	2	202	1997
NEW ENGLAND	65	101			7		245	479	4	32	37
Maine N.H.	4	10					5	6		ac	
Vt.	1	2		9			19 24	57 161			
Mass. R.I.	30	56			2		191	235		6	
Conn.	23	19		*	4	*		12	+		
MID. ATLANTIC	123	165		10	29		6	8		26	
Upstate N.Y.	30	38		3	4	2 2	167	180		93 89	13
N.Y. City N.J.	13 35	28 32	*	4	1		4	44		2	11
Pa.	45	67		3	20	-	5 57	10	*	2	
E.N. CENTRAL	151	241		27	23	2	143				*
Ohio Ind.	58	91		11	12		53	206 62		:	3
DIL	26 33	27 79	U	2	4	U	42	22	U		*
Mich.	17	22		13	9 7	2	10	27 28	:		*
Wis.	18	22			1	-	17	67	2		3
W.N. CENTRAL Minn.	98 16	118 17	*	18	7		125	112	1	3	
lows	14	23		10	3	*	76	67	*		
Mo.	40	59	*	2		:	26 9	7 21	1	2	*
N. Dek. S. Dek.	6	3	U	1	*	U	-	2	Ü		
Nebr.	4	4			i		4	1 2	*		
Kans.	18	11	U	*		U	6	12	Ú	1	
S. ATLANTIC Del.	203	275		30	37	4	105	174		4	1
Md.	19	29			4	*	*				
D.C.		5					19	73	-		
Va. W. Va.	20 5	25 10	*	4	4		6	19			1
N.C.	27	48		7	6		42	3 36	*	:	
S.C. Ga.	30	36		4	9		12	9	-	3	
Fla.	40 61	61 67	U	14	5 9	4	1	5	U		
E.S. CENTRAL	86	113		1-4	15		23	28	*	1	*
Ky.	13	29			2	2	38 16	39 10		*	*
Tenn. Ala.	37 36	36 31	*	*	3	1	10	12			
Mies.	30	17	ú	:	5	ů	12	10	**	*	*
W.S. CENTRAL	131	160		25	31	10	88		U		
Ark.	17	22	*			2	12	44	1	55	3
La. Oxia	25 23	29 18		2	7	ż	*	7			
Tex.	66	81		23	24	1	13 63	26	1	56	3
MOUNTAIN	75	106		16	36	10	334	555		5	2
Mont. Idaho	2 3	7 7		*		*	1	5			
Wyo	3			1	2	4	161	371	*	*	
Colo N. Max.	17 13	31	.:	2	3	1	52	133	-		
Ariz.	26	17	N	N 4	N 22	1	56	23		1	
Utah	8	11		3	4	4	36 14	9		1 2	2
Nev.	3	10	U	5	4	U	7	8	U	î	
PACIFIC Wash.	248 28	378 46	2	53	80	4	192	322		10	15
Oreg.	48	81	N	5 N	9 N	4	115 12	152		8	2
Calif.	167	248	1	34	56		61	21 141		i	7
Alaska Hawaii	1	1 2	:	12	5		*	2			*
Guam		1	U	142	10		4	6	*	1	6
P.R.	2	9		2	4	U	2		U	*	*
V.I. Amer, Samoa	*	*	U		-	U			Ü		
C.N.M.I.			U			U	*	*	U	*	
V. M	-	-	U		1	U		*	U		*

TABLE IV. Deaths in 122 U.S. cities,* week ending May 23, 1998 (20th Week)

	A	ill Cau	ses, By	Age (Y	ears)		PAI ¹		-	All Cau	1846, By	Age (Y	ears)		PBI
Reporting Area	All Ages	>65	45-64	25-44	1-24	<1	Total	Reporting Area	All Ages	>65	45-64	25-44	1-24	<1	Tota
NEW ENGLAND Boston, Mass. Bridgeport, Conn. Cambridge, Mass. Fall River, Mass. Hartford, Conn. Lowell, Mass. New Bedford, Mass. New Bedford, Mass. New Haven, Conn. Providence, R.I. Someryille, Mass. Springfield, Mass.	43 53 8 53	446 87 33 16 24 37 29 11 28 29 40 6	100 27 6 3 4 12 8 1 2 7 8 2 12	38 10 3 2 5 1 2 5	12 4	10 2 1 1 2 1 2 1 2 1 2 1	48 11 4 5 2 4	S. ATLANTIC Atlanta, Ga. Baltimore, Md. Charlotte, N.C. Jacksonville, Fla. Miami, Fla. Norfolk, Va. Richmond, Va. Savannah, Ga. St. Petersburg, Fla. Washington, D.C. Wilmington, D.C.	1,048 U 122 73 127 100 37 58 38 76 175 232 10	671 U 67 52 79 70 28 34 29 59 108 135	237 U 27 15 37 20 3 16 6 10 46 58	89 U 20 2 8 8 3 6 2 3 14 23	38 U 5 2 2 2 2 1 1 3 7	13 U 3 2 1 1 1 1 1 3	45
Waterbury, Conn. Wareester, Mass. MID: ATLANTIC Alibany, N.Y. Alientown, Pa. Buffalo, N.Y. Camden, N.J. Elizabeth, N.J. Erie, Pa.	31 54 2,226 46 10 98 26 23 51	26 44 1,583 36 10 72 22 13 41	6 411 3 16 2 6 9	3 160 5 5 1 1	40	32 4 2 3	7 130 4 11 2	E.S. CENTRAL Birmingham, Ala. Chattanooga, Tenn. Knoxville, Tenn. Lexington, Ky. Memphis, Tenn. Mobile, Ala. Montgomery, Ala. Nashville, Tenn.	815 167 75 83 68 178 80 34 130	565 107 56 58 46 123 56 27 82	151 38 10 17 10 33 12 3	68 15 7 5 6 15 7 3	28 4 1 3 4 6 3 1 6	10 2 1 2 4	10
Jørsøy City, N.J. New York City, N.Y. New York City, N.Y. Newark, N.J. Philadelphia, Pa. Pittsburgh, Pa. Radding, Pa. Rochaster, N.Y. Schenectady, N.Y. Scranton, Pa. Syracuse, N.Y. Litica, N.Y. Vonkers, N.Y.	1,103 U 18 400 66 31 115 23 22 110 18 15 U	26 753 U 11 291 48 26 91 17 15 85 14 12 U	U 3 80 7 4 15 5 4 15 4 3	8 93 U 2 23 8 3 1 3 6	20 U 1 4 1 1 1 4	2 14 U 1 2 2 2	40 8 3 6 1 2 12 3	W.S. CENTRAL Austin, Tex. Baton Rouge, La. Corpus Christi, Tex. Dallas, Tex. El Paso, Tex. Et. Worth, Tex. Houston, Tex. Little Rock, Ark. New Orleans, Le. San Antonio, Tex. Shreveport, La. Tulsa, Okla.	1,169 55 49 179 33 76 368 71 U 181 U 108	778 37 34 27 107 24 53 240 47 U 124 U 85	71 19 U 37	93 25 5 5 21 1 5 36 4 U	10 10 10 10 10 10 10 10 10 10 10 10 10 1	14 1 1 1 1 1 5	311111111111111111111111111111111111111
E.N. CENTRAL Akron, Ohio Canton, Ohio Chicago, III. Cincinnati, Ohio Cleveland, Ohio Columbus, Ohio Detroit, Mich. Evansville, Ind. Fort Wayne, Ind.	1,832 32 44 407 94 122 169 132 198 49	1,244 23 38 243 60 78 126 90 124 36	5 4 95 23 28 29 33 48 8	127 2 1 37 2 9 8 5 13 3	50 1 18 6 1 3 3	55 1 1 14 3 6 3 4 10	2 28 7 1 12 10 4	MOUNTAIN Albuquerque, N.M. Boise, idaho Colo. Springs, Colo Denver, Colo. Las Végas, Nev. Ogden, Utah Phoeniz, Ariz. Pueblo, Colo. Salt Lake City, Utah Tucson, Ariz.	. 57 88 192 29 225 22	681 71 31 42 54 126 24 133 17 76	18 38 3 43 2	73 6 3 2 8 19 1 18 2 4	38 1 1 2 1 5 1 20 1 2 4	28 2 1 6 4 8	1 1 1
Gary, Ind. Grand Rapids, Mich Indianapolis, Ind. Lansing, Mich. Milwaukee, Wis. Peoria, III. Rockford, III. South Bend, Ind. Toledo, Ohio Youngstown, Ohio	7	133 22 61 36 23 44	7 37 4 14 7 6 3 U	5 23 2 8 4 2 1 U	1 3 6 1 2 1	2 6 1 2	7 15 1 9 5 1 2 U	PACIFIC Berkeley, Calif. Fresno, Calif. Glendale, Calif. Honolulu, Hawaii Long Beach, Calif. Los Angeles, Calif. Pasadena, Calif. Portland, Oreo.	1,095 10 100 20 73 64 296 24 U	767 9 76 15 53 45 180 18	12 4 15 12 57 4 U	81 5 1 4 3 38 U	35 7 2 15 U	24 1 1 2 6 2 U	1 3
W.N. CENTRAL Des Moines, lowa Duluth, Minn. Kansas City, Kans. Kansas City, Mo. Lincoln, Nebr. Minneapolis, Minn. Omaha, Nebr. St. Louis, Mo. St. Paul, Minn. Wichitz, Kans.	748 67 16 34 84 42 128 92 118 91 76	529 52 14 23 48 34 96 63 76	11 2 3 5 9 19 4 6 8 17 8 16 3 31 9	44 3 5 3 1 9 3 10 4 6	19 1 2 1 2 4 6	13	5 2 1 5 2 4 5 6	Secramento, Čalif. San Diego, Calif. San Francisco, Cali San Jose, Calif. Santa Cruz, Calif. Seattle, Wash. Spokane, Wash. Tacoma, Wash. TOTAL	127 f. 118 U 25 118 44 76	87 81 U 20 90 34 59	29 21 U 2 18 6	7 9 U 2 8 1 3 774	1 3 U 1 2 2 2 2 309	U 3 4 U 1 1 4 199	1

U: Unavailable -: no reported cases

*Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not includent.

Procurrence and influence.

*Baccuse of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.

*Total includes unknown ages.

Contributors to the Production of the MMWR (Weekly)

Weekly Notifiable Disease Morbidity Data and 122 Cities Mortality Data

Samuel L. Groseclose, D.V.M., M.P.H.

State Support Team

Robert Fagan Karl A. Brendel Harry Holden Gerald Jones

Felicia Perry Carol A. Worsham

CDC Operations Team

Carol M. Knowles Deborah A. Adams Willie J. Anderson Patsy A. Hall

Myra A. Montalbano Angela Trosclair, M.S. The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy on Friday of each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer protocol server at http://www.cdc.gov/ or from CDC's file transfer proto

Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the MMWR Series, including material to be considered for publication, to: Editor, MMWR Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone (888) 232-3228.

All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

Acting Director, Centers for Disease Control and Prevention Claire V. Broome, M.D.

Acting Deputy Director, Centers for Disease Control and Prevention Stephen B. Thacker, M.D., M.Sc.

Acting Director, Epidemiology Program Office Barbara R. Holloway, M.P.H.

Acting Editor, MMWR Series Andrew G. Dean, M.D., M.P.H. Managing Editor, MMWR (weekly) Karen L. Foster, M.A. Writers-Editors, MMWR (weekly) David C. Johnson Teresa F. Rutledge Caran R. Wilbanks

Desktop Publishing and Graphics Support Morie M. Higgins Peter M. Jenkins

☆U.S. Government Printing Office: 1998-633-228/87003 Region IV

AUSUN 96 ZORMO HKN DZDM ROFR BRUN ATH AC MINO W mHH I ONO 1703 8 PRHOE ODOTA JANI OE J ms 5 D

Official Business
Penalty for Private Use \$300
Return Service Requested

DEPARTMENT OF
HEALTH AND HUMAN SERVICES
Centers for Disease Control
and Prevention (CDC)

Atlanta, Georgia 30333

000

FIRST-CLASS MAIL
POSTAGE & FEES PAID
PHS/CDC
Permit No. G-284

