Théo Guyard CIRRELT, Montréal, Canada - March 6th, 2025

Optimization methods for ℓ_0 -problems

Sparse optimization

Minimize a cost with a sparse solution

Sparse optimization

Minimize a cost with a sparse solution

Sparse optimization

Minimize a cost with a sparse solution

loss function

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} \quad f(\mathbf{x}) \\ \text{subject to} \quad \|\mathbf{x}\|_0 \leq s$

Minimized problem $\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \le \epsilon$

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Minimized problem $\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \leq \epsilon$

Regularized problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0$

Constrained problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Minimized problem $\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \le \epsilon$

Regularized problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \text{ separable}$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ NP-hard to solve $0 \longrightarrow x$ non-convex, non-smooth,

non-continuous, ...

 ℓ_0 -norm in 1d

Based on off-the-shelf solvers Poor numerical performances

1) MIP-based methods

Based on off-the-shelf solvers Poor numerical performances

2) Specialized Branch-and-Bound

Tailored solution method Better numerical performances

Mixed-Integer Programming

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Standardized expressions

ML, Stats, Signal, Operation Research, ...

Standardized expressions

Modelling framework

 $\begin{array}{c} \mathsf{Python} \to \mathsf{cvxpy} \\ \mathsf{Julia} \to \mathsf{JuMP} \\ \mathsf{C}{++} \to \mathsf{CMPL} \\ \mathsf{Matlab} \to \mathsf{YALMIP} \end{array}$

ML, Stats, Signal, Operation Research, ...

Modelling framework

Python \rightarrow cvxpy

Julia \rightarrow JuMP $C++\rightarrow$ CMPL

Matlab \rightarrow YALMIP

Problem solutions

Standardized expressions

MIP – Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t.} \ z_{i} = 0 \implies x_{i} = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have
$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t.} \ z_i = 0 \implies x_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

Avoid logical constraint

$$ilde{h}(\mathbf{x},\mathbf{z}) \ = \ \begin{cases} h(\mathbf{x}) & \text{if } z_i = 0 \implies x_i = 0, orall i \\ +\infty & \text{otherwise} \end{cases}$$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Linearized formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } z_i = 0 \implies x_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + \tilde{h}(\mathbf{x}, \mathbf{z}) \\ \text{s.t. } \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Linearize the ℓ_0 -norm

We have $\|\mathbf{x}\|_0 = \mathbf{1}^T \mathbf{z}$ whenever $z_i = 0 \iff x_i = 0, \ \forall i$ $z_i = 1 \iff x_i \neq 0, \ \forall i$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0,1\}^n$

Avoid logical constraint

$$\tilde{h}(\mathbf{x}, \mathbf{z}) = \begin{cases} h(\mathbf{x}) & \text{if } z_i = 0 \implies x_i = 0, \forall i \\ +\infty & \text{otherwise} \end{cases}$$

MIP – Penalty function

[XXX]

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable
- 2) Establish MIP formulation
- 3) Use generic MIP solvers

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable
- 2) Establish MIP formulation
- 3) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Straightforward pipeline

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable
- 2) Establish MIP formulation
- 3) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Straightforward pipeline

Cons

- X Mostly commercial solvers
- **X** h as big-M or ℓ_2 -norm
- **X** Performance issues

Branch-and-Bound Algorithms

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Application

ML, Stats, Signal, Operation Research, ...

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Implement BnB solver

Specialized mechanisms

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Implement BnB solver

Specialized mechanisms

Problem solutions

ML, Stats, Signal, Operation Research, ...

Existing BnB solver

 $\mathtt{sbnb} \to \mathsf{G.}$ Samain et al. (2020) 10 $\mathtt{bnb} \to \mathsf{H.}$ Hazimeh et al. (2021) $\mathtt{el0ps} \to \mathsf{T.}$ Guyard et al. (2024)

Why using elops?
Is is free, fast and flexible!

Explore regions in the feasible space and prune those that cannot contain any optimal solution.

Branching step – Region design and exploration **Bounding step** – Pruning test evaluation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions are expected to be sparse

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

Problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

$\begin{aligned} & \textbf{Problem} \\ & p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

Does region ν contains optimal solutions ?

Problem $p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$

restrict to
$$\nu$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Does region ν contains optimal solutions ?

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

Does region ν contains optimal solutions ?

$$p^{\nu} = \min_{\mathbf{x} \in \mathcal{V}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

 \rightarrow prune ν

Does region ν contains optimal solutions ?

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Pruning test

$$p^{
u}_{
m lb} > p^{\star}_{
m ub}$$

Easy task

Compute an upper bound on p^*

BnB – Bounding step

Does region ν contains optimal solutions ?

Problem $p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$

restrict to
$$\nu$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

BnB – Bounding step

Does region ν contains optimal solutions ?

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on p^{ν}

BnB – Bounding step

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

 \rightarrow prune ν

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on p^{ν}

Construct and solve a relaxation

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \mathbf{g}^{\nu}(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g^{\nu}(\mathbf{x})$$

$$g_{\mathsf{lb}}^{\nu} \leq g^{\nu}, g_{\mathsf{lb}}^{\nu} \mathsf{convex}$$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

set $g_{\mathrm{lb}}^{\,
u}$ set as the convex envelope of $g^{\,
u}$

BnB – Geometrical illustration

[XXX]

Solve time

region processing time \times number of regions processed

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $\textit{g}^{\nu}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at x=0

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g^{
u}_{ ext{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

Solve time

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{\mathrm{lb}}^{\nu}(\mathbf{x})$$

 $g_{\mathrm{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

→ first-order methods
 proximal gradient, coordinate descent, ...
 → acceleration strategies
 working set, screening tests, ...

Solve time

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{lb}^{\nu}(\mathbf{x})$$

 $g_{\mathrm{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{lb}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{lb}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{lb}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g_{lb}^{\nu}(\mathbf{x})$$

 $g^{
u}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

- \rightarrow first-order methods proximal gradient, coordinate descent, ...
 - → acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

continue processing

Solve time

region processing time \times number of regions processed

Relaxation for region ν

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + g_{\mathrm{lb}}^{\nu}(\mathbf{x})$$

 $g^{
u}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a **convex** sparse optimization problem

→ first-order methods

proximal gradient, coordinate descent, ...

 \rightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

continue processing

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a specialized BnB
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a specialized BnB
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a specialized BnB
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

Cons

X Less standard pipeline

Conclusion

Non-exhaustive list

Non-exhaustive list

Non-exhaustive list

MIT D. Bertsimas, R. Mazmuder, ... Optimization tools for ℓ_0 -problems **Lund University** Google Deep Mind M. Carlsson, C. Olsson... H. Hazimeh, A. Dedieu, ... Relaxation design MIP-hased heuristics Frankfurt / Wurzburg Universities C. Kanzow, A. Tillmann, ... Optimality conditions London Business School Berkley A. Atamtürk, A. Gomès, ... J. Pauphilet, R. Cory-Wright, ... Convex-based acceleration Healthcare applications

17/18

Take-home messages

- Although NP-hard, ℓ_0 -problems are of practical interest
- There exists methods to tackle them exactly
 - MIP-based formulation and off-the-shelf solvers
 - Specialized BnB algorithms
 - Structure-exploitation is key
- It's an active research area
 - Theoretical and methodological developments missing
 - Need to reach the application world

Question time!

Sparse signal

 $x \in R^n$

n pixels

Feature selection

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	<i>a</i> _{3,1}	$A \in R^{mx}$	< n	<i>a</i> _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Feature selection

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	× n	a _{3,n}	$\mathbf{y} \in \mathbf{R}^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{A} \in \mathbf{R}^m \longleftrightarrow \mathbf{A} \times \mathbf{A} \times \mathbf{A}$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Feature selection

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	≺ n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Model accuracy Loss $\mathcal{L}_{\phi}(\mathbf{A}\mathbf{x},\mathbf{y})$

Model explainability
Use few features

Feature selection

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$	$a_{m,2}$		$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{A} \in \mathbf{R}^m \longleftrightarrow \mathbf{A} \times \mathbf{A} = \mathbf{A} \times \mathbf{A}$$

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#71	6.85	8.27	7.98	8.04	 6.65	-7.58

4,088 genes

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1 #2	8.49 7.29	8.11 6.39	8.32 11.32	10.28 9.42	 7.42 6.99	-6.64 -5.43
 #71	 6.85	 8.27	7.98	8.04	 6.65	 -7.58

4,088 genes

Sparse regression Find x sparse such that $y \simeq Ax$

Sparse regression

Find x sparse such that $y \simeq Ax$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} & -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0,1\}^n \end{cases}$$

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

\$ pip install cvxpy

import cvxpy as cp

Generate sparse regression data
A, y = make_regression()

Sparse regression

Find x sparse such that
$$y \simeq Ax$$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

$$\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

```
import cvxpy as cp

# Generate sparse regression data
A, y = make_regression()

# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp.Variable(n, boolean=True)
```

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

MIP formulation

 $\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$

```
import cvxpy as cp
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
obi = cp.Minimize(
    cp.sum_squares(A @ x - y) +
    0.01 * cp.sum(z)
cst = [-5.0 * z \le x, x \le 5.0 * z]
```

Sparse regression

Find x sparse such that $\mathbf{y} \simeq \mathbf{A}\mathbf{x}$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{y} \mathbf{A}\mathbf{x}||_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M < \mathbf{x} < M)$

MIP formulation

 $\begin{cases} \min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} \\ \text{s.t.} \quad -M \mathbf{z} \leq \mathbf{x} \leq M \mathbf{z} \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$

```
import cvxpy as cp
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
obi = cp.Minimize(
    cp.sum_squares(A @ x - y) +
    0.01 * cp.sum(z)
cst = [-5.0 * z \le x, x \le 5.0 * z]
# Solve the problem using Gurobi
problem = cp.Problem(obj, cst)
problem.solve(solver=cp.GUROBI)
```

 $\label{eq:sparse regression} \begin{aligned} \text{Find } \mathbf{x} \text{ sparse such} \\ \text{that } \mathbf{y} \ \simeq \ \mathbf{A}\mathbf{x} \end{aligned}$

Sparse regression

Find x sparse such

that y \simeq Ax

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

\$ pip install el0ps

Sparse regression

Find x sparse such

that y
$$\simeq$$
 Ax

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

\$ pip install el0ps

Sparse regression Find x sparse such that y ≃ Ax ↓

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from elOps.datafits import Leastsquares
from elOps.penalties import Bigm
from elOps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()
```

\$ pip install el0ps

Sparse regressionFind **x** sparse such

that
$$\mathbf{y} \simeq \mathbf{A}\mathbf{x}$$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from elOps.datafits import Leastsquares
from elOps.penalties import Bigm
from elOps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()

# Instantiate the loss and penalty
f = Leastsquares(A, y)
h = Bigm(M=5.0)
```

\$ pip install el0ps

Sparse regression

Find
$$x$$
 sparse such that $y \simeq Ax$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

```
from elOps.datafits import Leastsquares
from elOps.penalties import Bigm
from elOps.solvers import BnbSolver

# Generate sparse regression data
A, y = make_regression()

# Instantiate the loss and penalty
f = Leastsquares(A, y)
h = Bigm(M=5.0)

# Solve the problem with elOps' solver
solver = BnbSolver()
solver.solve(f, h, lmbd=0.01)
```