

Characterization of Large Language Model Development in the Datacenter

Qinghao Hu*\$1, Zhisheng Ye*\$3, Zerui Wang*\$4, Guoteng Wang\$, Meng Zhang\$1, Qiaoling Chen\$1 Peng Sun³5, Dahua Lin³6, Xiaolin Wang³, Yingwei Luo³, Yonggang Wen², Tianwei Zhang²

NSDI 2024

汇报人: 王兆年

香港中文大學

研究背景

研究背景

Gemini

头脑风暴,提供创意

协助编程

更快的搜集资料

实时语音对话

研究背景

然而,从零开始开发 LLM 需要大量的计算资源,并且需要很长时间

使用16,000 个英伟达的 A100 GPU 训练了数月

LLaMA2 模型族 (7B,13B,34B,70B)

使用6,144个TPU-v4 训练了两个月

> PaLM 540B

研究背景

新特点 LLM 开发过程中的工作负载有何特点?

2 新需求 与以前的DL工作负载相比,运行LLM对数据中心有哪些新要求?

新调整 如何为 LLM 量身定制系统软件?

LLM的工作流程概况

数据中心特点

LLM的工作流程概况

Acme: 上海AI实验室的GPU数据中心

Cluster	#CPUs/node	#GPUs/node	Mem(GB)	Network	#Nodes
Seren	128	8 × A100-	1024	1 × 200Gb/s	286
Kalos		80GB	2048	5 × 200Gb/s	302

不同数据中心的GPU情况

	用于	用于LLM的		
数据中心	Philly	Helios	PAI	Acme
年份	2017	2020	2020	2023
任务持续时间	3个月	6个月	2个月	6个月
#工作数量	113K	3.36M	1.26M	1.09M
使用GPU平均数	1.9	3.7	0.7	6.3
GPU型号	12GB/24GB	1080Ti/V100	T4/P100/V100	A100
使用GPU总数	2,490	6,416	6,742	4,704

• 更短的GPU持续时间

解释:

- 更先进的硬件
- 每一个工作都有更充足的资源(平均5~20 个GPU)
- 大量的小规模工作
- 很多失败的工作(大约40%)

启发: 需要一个容错系统

- 两极分化的GPU利用率
 - LLM工作负载要么是完全空闲,要么是完全活跃

Med. GPU Utilization (%)

解释:

- 这是由LLM是计算密集型工作的本质导致的
- 很多工作在初始化时就失败了(并没有使用到 任何GPU)

- 高度偏斜工作负载分布
 - Kalos(b, orange): 只有5%左右的工作使用了超过256个GPU, 占据了约96%的GPU时间
 - Seren(b, blue): 只有2%左右的工作使用了超过64个GPU, 占据了约75%的GPU时间

- LLM工作具有更高的GPU利用率
 - 两个集群的SM活动中位数均约40% (PAI是20%左右)
 - Kalos 的 GPU 内存消耗中值超过 75%

工作负载分析

- 3.1 预训练工作分析
- 3.2 评估工作分析

3.1 预训练分析

工作量:

• 123B internLM,使用 2048 个 A100 GPU

框架和策略:

- InternEvo-v1: 3D parallelism
 - 流水线并行数=4, 张量并行数=8
- InternEvo-v2: Hierarchical ZeRO
 - 在 64 个 GPU 子组内进行参数分片和重新计算

3.1 预训练分析

InterEvo V2 的关键提升:

- GPU内存使用更稳定
- GPU内存使用更均匀
- 峰值更高

3.2 评估分析

• 高GPU空闲率

解释:

• 原因1: 模型加载与数据处理开销

• 原因2: 度量计算开销

启示: 需要在系统层面对LLM评估工作进行优化

故障分析

故障分析

来自检查点保存(①)

- 训练在保存检查点时卡住 (紫色块)
- 来自故障恢复(②-④)
- GPU 时间浪费 (红色区块)
- 训练进度丢失 (红色 ×)

故障分析

工作量构成:

- 1.3千次预训练任务
- 3.1万次评估任务
- 550次调试任务

数据来源:

- •运行时日志:标准错误与标准输出
- 硬件监控数据

方法论:

• 识别并分类失败任务中的故障

方法改进

- 5.1 Fault-tolerant LLM Pretraining (容错式LLM预训练机制)
- 5.2 Timely Feedback for Evaluation (评估的及时反馈机制)

5.1.1 异步检查点

- 1. 将模型状态存储在主机内存中
- 2. 后台进程异步将其保存至存储设备

24小时训练周期:

传统方法:有效训练时间 21小时(87.5%)

异步方法:有效训练时间 23小时54分(99.6%)

5.1.2 实时日志压缩+LLM协助诊断

• 结合启发式规则与LLM技术,精准定位各类故障的根本原因

5.2.1 解耦远程模型加载

• 将模型加载过程与评估过程分离

步骤:

- 1. 首先进行一次集中的 I/O 操作,将模型加载到 CPU 内存。
- 2. 然后,不同的 GPU 可以并行执行试验,通过高速 PCIe 从 CPU 内存加载模型。

改进后: 完成时间缩短1.3-1.8倍

5.2.2 解耦度量计算

• 将指标计算过程从评估试验中分离出来。

步骤:

- 1. 模型在 GPU 上完成推理 (即生成输出)。
- 2. 推理结果 (通常是文本形式) 被迅速保存到文件中
- 3. 保存完成后, GPU 的工作就结束了。
- 4. 创建 CPU 任务来执行指标计算。

思考

思考

- 1. 优化故障恢复系统:引入自动化的故障预测模型,利用机器学习(例如时间序列分析或深度学习模型)预测硬件故障的发生概率。
- 2. 分布式评估任务调度优化的进一步提升: 可以结合深度学习调度算法, 使用强化学习 (RL) 来优化评估任务的调度策略。
- 3. 跨集群负载均衡与任务调度: 在多个集群之间引入资源协同调度系统。

感谢各位的聆听

汇报人: 王兆年

2025/5/09