Алгоритм «приведение матрицы Хаусхолдера к двудиагональной форме».

В советской математической литературе метод приведения матрицы Хаусхолдера к двудиагональной форме чаще называется методом отражений. Сама же двудиагональная форма называется так же «бидиагональной».

На вход алгоритма поступает матрица A, числа m и n, такие, что матрица A размера $m \times n$.

На выходе ожидаются матрицы B, V и U такие, что матрица B — верхняя бидиагональная, U и V являются результатом матрицы Xаусхолдера, где A= UBV^T .

Опишем пошагово алгоритм:

- 1. В ← А (Пропустим этот шаг, если А должно быть перезаписано на В)
- 2. $U = I_{m \times n}$. (Создадим матрицу U размера $m \times n$)
- 3. $V = I_{n \times n}$. (Создадим матрицу V размера $n \times n$)
- 4. Определим матрицу Хаусхолдера Q_k (для k = 1, ..., n) со следующим свойством: умножение слева столбца на матрицу Q_k оставляет компоненты 1, ..., k-1 неизменными, причём

$$\mathbf{Q}_{\mathbf{k}}egin{bmatrix} 0 \ dots \ b_{k-1,k} \ b_{k,k} \ b_{k+1,k} \ dots \ b_{m,k} \end{bmatrix} = egin{bmatrix} 0 \ dots \ b_{k-1,k} \ s \ 0 \ dots \ 0 \end{bmatrix}$$
, где $\mathbf{s} = \pm \sqrt{\sum_{i=k}^m b_{i,k}^2}.$

- 5. Переопределим (для k = 1,..., n) матрицу В В ← Q_k В.
- 6. Переопределим (для k = 1,..., n) матрицу U U ← U Q_k .
- 7. Если $k \le n-2$, то определим матрицу Хаусхолдера (для k=1,...,n) P_{k+1} со следующим свойством: умножение справа строки на матрицу P_{k+1} оставляет компоненты 1,...,k неизменными, причём

- 8. Переопределим (для k = 1, ..., n) матрицу $B \leftarrow B \ P_{k+1}$.
- 9. Переопределим (для k=1,...,n) матрицу $V \leftarrow P_{k+1} \, V.$

Алгоритм «шаг алгоритма Голуба-Кахана».

На вход алгоритма поступают, числа n, p, q, матрицы B, Q, P такие, что матрица B размера $n \times n$ является верхней бидиагональной, Q и P имеют ортогональные столбцы, а матрица $A = QBP^T$.

На выходе ожидаются матрицы B, Q и P такие, что матрица B — верхняя бидиагональная, Q и P имеют ортогональные столбцы, а недиагональные элементы выходной матрицы B меньше, чем недиагональные элементы входной матрицы. (Матрицы B, Q и P перезаписываются в хранилище)

Опишем пошагово алгоритм:

- 1. Введём матрицу $B_{2,2}$, которая является диагональным блоком матрицы B с номерами строки и столбца $p+1, \ldots, n-q$.
- 2. Найдём матрицу $B_{2,2}^{T}$.
- 3. Введём C такой, что C нижняя правая подматрица размером 2×2 матрицы $B_{2,2}^T$ $B_{2,2}$.
- 4. Найдём собственные значения λ₁, λ₂ подматрицы С.
- 5. Из чисел λ_1 , λ_2 найдём то, что ближе к элементу $c_{2,2}$ матрицы C.
- 6. Введём μ = найденному числу п.5.
- 7. Введём k = p + 1.
- 8. Введём $\alpha = b_{k,k}^2 \mu$.
- 9. Введём $\beta = b_{k,k} \, b_{k,k+1}$. Все последующие шаги выполнять при $k = p+1, \ldots, n-q-1$.
- 10. Введём $c = \cos(\theta)$ и $s = \sin(\theta)$ такие, что $\begin{bmatrix} \alpha & \beta \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha^2 + \beta^2} & 0 \end{bmatrix}$.
- 11. Введём матрицу $R_{k,k+1}(c,s)$ матрица вращение Гивенса, действующая на столбцы k и k+1 во время умножения справа.
- 12. Переопределим $B \leftarrow B \ R_{k,k+1}(c,s)$.
- 13. Переопределим $P \leftarrow P \ R_{k,k+1}(c,s)$.
- 14. Приравняем $\alpha = b_{k,k}, \ \beta = b_{k+1,k}.$
- 15. Приравняем $c = \cos(\theta)$ и $s = \sin(\theta)$ так, что $\begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha^2 + \beta^2} \\ 0 \end{bmatrix}$.
- 16. Введём матрицу $R_{k,k+1}(c,-s)$ матрица вращение Гивенса, действующая на столбцы k и k+1 во время умножения слева.
- 17. Переопределим В \leftarrow R_{k,k+1}(c,-s) В.
- 18. Переопределим Q \leftarrow Q $R_{k,k+1}(c,s)$.
- 19. Если $k \le n-q-1$, то приравняем $\alpha = b_{k,k+1}, \, \beta = b_{k,k+2}.$