A cheatsheet for computational neuroscientists

Yifan Gu

School of Physics and ARC Centre of Excellence for Integrative Brain Function,

University of Sydney, NSW 2006, Australia

$770\text{-}2900 \ \mu \text{m/ms}$	conduction speed of action potential in myeli-
	nated axons in the cortex [3]
$250-380 \ \mu \text{m/ms}$	conduction speed of action potential in un-
	myelinated axons in the cortex [3]
$140~\mu\mathrm{m/ms}$	propagating speed of epileptiform waves in dis-
	inhibited hippocampal slices [6]
$60-90 \ \mu \text{m/ms}$	propagating speed of epileptiform waves in dis-
. ,	inhibited neocortical slices [7, 1]
6-10 $\mu \mathrm{m/ms}$	propagating speed of population activation in
	neocortical slices under conditions of unaltered
	excitability [8]

Table 1: Activity propagation speed

$200\text{-}450 \times 10^{-6} \ \mu\text{m}^{-3}$	density of pyramidal neurons in rodent hip-
200-400 ×10 μm	pocampus [5]
50-60 $\mu \mathrm{m}$	thickness of stratum pyramidal of rodent hip-
	pocampus (where pyramidal neurons lie) [4]
2261 mm^2	total cortical surface area of a hemisphere of a
	galago [2]
127×10^{6}	estimated number of neurons in the above cor-
	tical area [2]
18577mm^2	total cortical surface area of a hemisphere of a
	Baboon [2]
2.36×10^{9}	estimated number of neurons in the above cor-
	tical area [2]

Table 2: Neuron density

References

- [1] RD Chervin, PA Pierce, and BW Connors. Periodicity and directionality in the propagation of epileptiform discharges across neocortex. *Journal of Neurophysiology*, 60(5): 1695–1713, 1988.
- [2] Christine E Collins, David C Airey, Nicole A Young, Duncan B Leitch, and Jon H Kaas. Neuron densities vary across and within cortical areas in primates. *Proceedings of the National Academy of Sciences*, 107(36):15927–15932, 2010.
- [3] Dominique Debanne, Emilie Campanac, Andrzej Bialowas, Edmond Carlier, and Gisèle Alcaraz. Axon physiology. *Physiological reviews*, 91(2):555–602, 2011.
- [4] Soraya Ghafari and Mohammad Jafar Golalipour. Prenatal morphine exposure reduces pyramidal neurons in ca1, ca2 and ca3 subfields of mice hippocampus. *Iranian journal of basic medical sciences*, 17(3):155, 2014.
- [5] Shozo Jinno and Toshio Kosaka. Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. *Hippocampus*, 20(7):829–840, 2010.

- [6] Richard Miles, Roger D Traub, and RK Wong. Spread of synchronous firing in longitudinal slices from the ca3 region of the hippocampus. *Journal of Neurophysiology*, 60(4):1481– 1496, 1988.
- [7] David J Pinto, Saundra L Patrick, Wendy C Huang, and Barry W Connors. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. *Journal of Neuroscience*, 25(36):8131–8140, 2005.
- [8] Jian-young Wu, Li Guan, and Yang Tsau. Propagating activation during oscillations and evoked responses in neocortical slices. *Journal of Neuroscience*, 19(12):5005–5015, 1999.