Tema 6 - Espacios vectoriales

Ramon Ceballos

11/3/2021

Bases ortogonales y ortonormales

1. Bases ortogonales

Base ortogonal. Dada una base $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ de un espacio vectorial E, se dice que se trata de una base ortogonal si sus elementos son ortogonales dos a dos (el producto escalar da 0). Matemáticamente:

$$\langle \vec{u}_i, \vec{u}_j \rangle = 0 \quad \forall i \neq j$$

2. Bases ortonormales

Base ortonormal. Dada una base $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ de un espacio vectorial E, se dice que se trata de una base ortonormal si es ortogonal y todos sus elementos son unitarios. Matemáticamente:

$$\langle \vec{u}_i, \vec{u}_j \rangle = 0 \quad \forall i \neq j$$

 $||\vec{u}_i|| = 1 \quad \forall i$

3. Método de ortogonalización de Gram-Schmidt

Método de ortogonalización de Gram-Schmidt. Permite construir una base ortogonal a partir de una base cualquiera del espacio vectorial.

3.1 Demostración

Método de ortogonalización de Gram-Schmidt

Sea $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ una base cualquiera de un espacio vectorial E de dim(E) = n.

A partir de los vectores de la base B, se construirá una nueva base $B_o = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ que será ortogonal y del mismo espacio.

- 1. Se toma $\vec{u}_1 = \vec{v}_1$ como primer vetor de la base nueva.
- 2. El segundo vector será una combinación lineal de \vec{v}_1 y \vec{v}_2 de la forma $\vec{u}_2 = \vec{v}_2 \alpha \vec{u}_1$, al cual se le impondrá la condición de que debe ser perpendicular a \vec{u}_1 . Es decir, $\vec{u}_1 \perp \vec{u}_2$. De este modo obtendremos:

$$\alpha = \frac{\langle \vec{u}_1, \vec{v}_2 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle} \Rightarrow \vec{u}_2 = \vec{v}_2 - \frac{\langle \vec{u}_1, \vec{v}_2 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle} \vec{v}_1$$

3. Para calcular el tercer vector, se procede del mismo modo: el tercer vector será una combinación lineal de $\vec{v}_1, \vec{v}_2, \vec{v}_3$ de la forma $\vec{u}_3 = \vec{v}_3 - \alpha_1 \vec{u}_1 - \alpha_2 \vec{u}_2$ a la cual se impondrán las condiciones $\vec{u}_1 \perp \vec{u}_3$ y $\vec{u}_2 \perp \vec{u}_3$. Operando se obtniene:

$$\begin{split} \alpha_1 &= \frac{\langle \vec{u}_1, \vec{v}_3 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}; \quad \alpha_2 = \frac{\langle \vec{u}_2, \vec{v}_3 \rangle}{\langle \vec{u}_2, \vec{u}_2 \rangle} \\ \vec{u}_3 &= \vec{v}_3 - \frac{\langle \vec{u}_1, \vec{v}_3 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle} \vec{u}_1 - \frac{\langle \vec{u}_2, \vec{v}_3 \rangle}{\langle \vec{u}_2, \vec{u}_2 \rangle} \vec{u}_2 \end{split}$$

4. Y operamos de forma análoga hasta llegar al último vector de la base, obteniendo la expresión:

$$\vec{u}_n = \vec{v}_n - \sum_{i=1}^{n-1} \frac{\langle \vec{u}_i, \vec{v}_n \rangle}{\langle \vec{u}_i, \vec{u}_i \rangle} \vec{u}_i$$

5. Finalmente, si lo que se quiere es una base ortonormal, bastará con dividir cada vector por su norma para así normalizar todos los elementos de la base.

4. Proyección ortogonal de un vector sobre un subespacio vectorial

Vector ortogonal a un subespacio. Un vector $\vec{u} \in E$ es ortogonal a un subespacio vectorial $S \subseteq E$ si, y solo si se cumple que:

$$\langle \vec{u}, \vec{x} \rangle = 0 \quad \forall \vec{x} \in S$$

Siendo \vec{x} cada uno de los vectores que forman el subespacio vectorial S; y U sería un vector del espacio vectorial E.

4.1 Ortogonalidad de un vector con un subespacio

Teorema. Un vector $\vec{u} \in E$ es ortogonal a un subespacio vectorial $S \subseteq E$ si, y solo si, es ortogonal a todos los vectores de una base de S.

4.2 Ortogonalidad de dos subespacios del mismo espacio vectorial

Este concepto se puede extender a un nivel más elevado.

Teorema. Dos subespacio vectoriales V y W de E son ortogonales si se cumple:

$$\forall \vec{x} \in V, \ \forall \vec{y} \in W \Rightarrow \langle \vec{x}, \vec{y} \rangle = 0$$

Teorema. Para que dos subespacios V y W sean ortogonales, es suficiente con que los vectores de una base de V sean ortogonales a los vectores de una base de W.

4.3 Proyección ortogonal de un vector sobre un subespacio

Recordemos...

Proyección ortogonal. La proyección ortogonal de un vector \vec{u} sobre otro \vec{v} , se expresa como:

$$P_{\vec{u}}(\vec{v}) = \frac{\langle \vec{u}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v} = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{v}||^2} \vec{v}$$

Proyección ortogonal de un vector sobre un subespacio. Dado S un subespacio vectorial de un espacio vectorial E, todo vector $\vec{u} \in E$ se descompone de manera única en:

$$\vec{u} = \vec{u}_S + \vec{u}_0$$

Con $\vec{u}_S \in S$ y $\vec{u}_0 \in S^{\perp}$ (subespacio ortogonal de S). En particular, el vector $\vec{u}_S \in S$ se denomina **vector proyección ortogonal** de \vec{u} sobre S.

Proyección ortogonal de un vector sobre un subespacio. Si se toma en S una base ortogonal $\{\vec{s}_1, \vec{s}_2, \dots, \vec{s}_r\}$, la proyección de \vec{u} sobre S viene dada por:

$$P_S(\vec{u}) = \vec{u}_S = \sum_{i=1}^r \frac{\langle \vec{u}, \vec{s}_i \rangle}{||\vec{s}_i||^2} \vec{s}_i$$