

Analyse d'image vs Traitement d'image

- On distingue 2 classes d'applications

 - Traitement d'image
 Amélioration de la qualité des images/vidéos exemples : réduction de bruit, rehaussement de contraste, etc.
 - Analyse d'image
 - Ensemble de techniques servant à extraire les caractéristiques d'une image/vidéo exemples : contour, orientation, etc.
- · Ces 2 classes sont inter-reliées

Amélioration de la qualité

Amélioration de la qualité

Réduction du bruit (denoising)

Début officiel du cours

13

Qu'est-ce qu'une image?

Image: représentation visuelle d'un objet

Deux types d'images numériques

Images vectorielles

Contient des formes géométriques simples « collées » les unes sur les autres.

- Rectangle = 4 sommets + couleur de contour + couleur de remplissage
- Lettre = série de sommets + contour noir.

Images matricielles

Tableau 2D (*Matrice*) contenant une série de points, des pixels (*Picture* + *Element*)

- Logiciel : Photoshop, Gimp, XView
- Format : bmp,pgm,ppm,gif,jpg, etc.

Qu'est-ce qu'une image?

Image: représentation visuelle d'un objet

Deux types d'images numériques

Images vectorielles

Avantages:

- · Idéales pour modéliser une scène fait d'objets géométriques simples d'intensité uniforme ex: graphiques, architecture, CAO.

 Requiert peu d'espace mémoire.

 Résolution « infinie ».

Inconvénients:

• Inappropriées pour les images « réelles » contenant de nombreux détails fins

Images matricielles

Avantages:

- La complexité du contenu influe peu (ou pas) sur
- la taille de l'image

 Facile à afficher

 Peut contenir des images d'une complexité arbitraire

Inconvénient:

- Résolution limitée au pixel.
 Plus une image est grosse, plus elle requiert de l'espace mémoire.

Rappel: notation binaire

- 1 bit $\rightarrow 0, l = 2^l = 2$ valeurs
- 2 bits $\rightarrow 00,01,10,11 = 2^2 = 4$ valeurs
- 3 bits $\rightarrow 000,001,010,100,011,101,110,111 = 2^3 = 8$ valeurs
- 1 octet (byte) = 8 bits $\rightarrow 2^8 = 256$ valeurs

Avec n bits, on peut représenter 2^n valeurs

Conversion d'un nombre binaire en un nombre décimal

16 + 4 + 2 + 0.25 + 0.125 = 22.375

Qu'est-ce qu'une image?

Images matricielles

Les images matricielles les plus communes sont:

- Images binaires
 Images en niveaux de gris
 Images couleurs
 3 Bandes (généralement Rouge-Vert-Bleu)
 8 bits par bande

Ex.: Image en niveaux de gris int **bufferImg;

bufferImg[7][3]=119;

Qu'est-ce qu'une image?

Images matricielles

Images binaires (1 bit par pixel)

2 valeurs possibles par pixel : blanc ou noir

6

Les faits saillants...

- Image vectorielle Vs Image matricielle
- Images binaires, en niveaux de gris, couleurs
- Formats PBM, PGM et PPM