Technische Universität München Institut für Informatik Lehrstuhl für Theoretische Informatik und Grundlagen der Künstlichen Intelligenz Prof. Dr. Dr. h.c. Wilfried Brauer

Zweitkorrektur

SS 2005 Diskrete Strukturen 2 Endklausur 16. Juli 2005

]	End	kla	usu	ır D)isk	rete	e S t:	rukture	n II
Name			Vor	name	<u>)</u>		Studie	engang	Matrikelnummer
						□В	piplom achelor ehramt	☐ Inform. ☐ BioInf. ☐ WirtInf.	
Hörsaal			R	eihe		, ,	Sitz	platz	Unterschrift
						•			
						J L			
			A	llge	meir	ne H	inwe	eise	
• Bitte füllen	Sie o	bige l	Felde:	r in I	Pruckl	buchst	aben	aus und unt	erschreiben Sie!
• Bitte schrei	ben S	Sie nie	cht m	it Ble	eistift	oder	in rote	er/grüner Fa	rbe!
						_		•	füllen Sie beide bitte eue Kästchen: ■■ □□
• Für jedes f Gesamtzah								en (innerhal	b einer Aufgabe). Die
• Die Arbeits	szeit b	eträg	gt 120	Minu	uten.				
Hörsaal verlasse Vorzeitig abgege Besondere Beme	eben	gen:	von um			is	• • • •	/ von	bis
	A1	A2	A3	A4	A5	A6	Σ	Korrektor	
Erstkorrektur									-

Aufgabe 1 (8 Punkte)

Markieren Sie, ob folgende Aussagen in voller Allgemeinheit gelten (J:ja/wahr, N:nein/falsch).

Jede geometrisch verteilte, diskrete Zufallsvariable ist gedächtnislos.	N								
Die Dichtefunktion f_X einer kontinuierlichen Zufallsvariablen X ordnet jeder rellen									
• • • • • • • • • • • • • • • • • • • •	V								
Sei F_X die Verteilungsfunktion einer kontinuierlichen Zufallsvariablen X . F_X ist									
streng monoton steigend, d.h. $F_X(x) < F_X(y)$ für alle reellen Zahlen $x, y \in \mathbb{R}$, für	\ 1								
	V								
Wenn zwei unabhängige Zufallsvariable X und Y normalverteilt sind, dann ist auch	N								
	N								
Jede erwartungstreue Schätzvariable für einen Parameter ϑ schätzt den Erwartungswert von ϑ .									
wert von ϑ . Bei echten Alternativtests ist die Summe der Wahrscheinlichkeit eines Fehlers 1.Art									
	W								
Die Anwendung des Maximum-Likelihood-Prinzips setzt die Verfügbarkeit einer	Y								
	N								
Jeder Zustand einer (zeithomogenen) Markov-Kette ist entweder rekurrent oder	1								
	N								
Lösungsvorschlag	•								
	0								
Punkteverteilung: 1 Punkt pro richtiger Antwort, 1 Punktabzug pro falscher Antwort,	U								
Punkte bei unbeantworteter Frage.									
Aufgabe 2 (8 Punkte)									
Geben Sie zu den folgenden Aufgaben das Ergebnis als (Bruch-)Zahl oder Zahlenvektor									
(2 Punkte) oder mindestens als Formel (1 Punkt) an.									
(2 I unkte) oder mindestens als Polinier (1 I unkt) all.									
Walshan Want hat die (southeach sinlightsite) and and Empleien der									
Welchen Wert hat die (wahrscheinlichkeits-)erzeugende Funktion der	$\frac{4}{5}$								
diskreten Verteilung $p_i = \frac{2}{3}(\frac{1}{3})^i$, $i \in \mathbb{N}_0$ an der Stelle $z = \frac{1}{2}$?	3								
Eine (zeithomogene) Markov-Kette über der Zustandsmenge $S=$									
Ellie (zerthollogene) Markov-Nette über der Zustandsmenge 5 —									
()									
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t\in\mathbb{N}_0}$. Welchen konstanten Wert haben die Übergangswahr-	1 10								
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvaria-									
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t\in\mathbb{N}_0}$. Welchen konstanten Wert haben die Übergangswahr-									
$\{0, 1, \ldots, 9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t \in \mathbb{N}_0}$. Welchen konstanten Wert haben die Übergangswahrscheinlichkeiten, wenn jede Variable X_t für $t \geq 1$ (Laplace-) gleichverteilt ist über S ?									
$\{0, 1, \ldots, 9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t \in \mathbb{N}_0}$. Welchen konstanten Wert haben die Übergangswahrscheinlichkeiten, wenn jede Variable X_t für $t \geq 1$ (Laplace-) gleichverteilt ist über S ?	10								
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t\in\mathbb{N}_0}.$ Welchen konstanten Wert haben die Übergangswahrscheinlichkeiten, wenn jede Variable X_t für $t\geq 1$ (Laplace-) gleichverteilt ist über S ? Sei $f_X(x)=\left\{\begin{array}{ccc} \frac{1}{2}\cos(x) & : & -\frac{\pi}{2}\leq x\leq \frac{\pi}{2} \\ 0 & : & \text{sonst} \end{array}\right\}$ die Dichtefunktion einer									
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t\in\mathbb{N}_0}.$ Welchen konstanten Wert haben die Übergangswahrscheinlichkeiten, wenn jede Variable X_t für $t\geq 1$ (Laplace-) gleichverteilt ist über S ? Sei $f_X(x)=\left\{\begin{array}{ccc} \frac{1}{2}\cos(x) & : & -\frac{\pi}{2}\leq x\leq\frac{\pi}{2} \\ 0 & : & \text{sonst} \end{array}\right.$ die Dichtefunktion einer kontinuierlichen Zufallsvariablen $X.$ Geben Sie den Wert des Quan-	10								
$\{0,1,\ldots,9\}$ besteht aus einer unendlichen Folge von Zufallsvariablen $(X_t)_{t\in\mathbb{N}_0}.$ Welchen konstanten Wert haben die Übergangswahrscheinlichkeiten, wenn jede Variable X_t für $t\geq 1$ (Laplace-) gleichverteilt ist über S ? Sei $f_X(x)=\left\{\begin{array}{ccc} \frac{1}{2}\cos(x) & : & -\frac{\pi}{2}\leq x\leq \frac{\pi}{2} \\ 0 & : & \text{sonst} \end{array}\right\}$ die Dichtefunktion einer	10								

Lösungsvorschlag

Punkteverteilung: 2 pro richtige Zahl, 1 für Formel, 0 bei unbeantworteter Frage.

(0,1)

gangsmatrix $\begin{pmatrix} 0, 8 & 0, 2 \\ 0 & 1 \end{pmatrix}$.

Aufgabe 3 (6 Punkte)

Es sei M eine Zufallsmaschine, die nach Aufforderung zufällig mit gleicher Wahrscheinlichkeit die Zahlen 1, 2 oder 3 ausgibt. Wir bezeichnen die entsprechende Zufallsvariable mit N.

Wir betrachten ein Experiment E, das in 2 Schritten ein Ergebnis erzeugt. Im ersten Schritt veranlassen wir die Maschine M eine Zahl k auszugeben. Im zweiten Schritt werfen wir k mal eine faire Münze, die entweder "Kopf" oder "Wappen" zeigt. Wir definieren eine Zufallsvariable H als diejenige Zahl, die angibt, wie oft im zweiten Schritt "Kopf" geworfen wird.

- (a) Geben Sie die (wahrscheinlichkeits-)erzeugende Funktion $G_N(z)$ für N an.
- (b) Berechnen Sie den Erwartungswert $\mathbb{E}(H)$ der Variablen H.

 Ansage im Hörsaal: Die Wahrscheinlichkeitsverteilung von H ist durch das (Gesamt-)
 Experiment E bestimmt!
- (c) Berechnen Sie die (wahrscheinlichkeits-)erzeugende Funktion $G_H(z)$ für H.

Lösungsvorschlag

(a) $G_N(z) = \sum_{k=1}^3 \frac{1}{3} z^k \tag{2 Pkte.}$

(b) Die Anzahl k, bei einem einzigen Wurf Kopf zu ziehen, sei die Zufallsvariable X mit Werten 0 oder 1. Die erzeugende Funktion für X ist

$$G_X(z) = \frac{1}{2} + \frac{1}{2}z.$$

Mit
$$\mathbb{E}(X) = G_X'(1) = \frac{1}{2}$$
 $(\frac{1}{2} \text{ Pkt.})$

und
$$\mathbb{E}(N) = G'_N(1) = \frac{1}{3}(1+2+3) = 2$$
 $(\frac{1}{2} \text{ Pkt.})$

erhalten wir

(c)

$$\mathbb{E}(H) = \mathbb{E}(N) \cdot \mathbb{E}(X) = 2 \cdot \frac{1}{2} = 1. \tag{1 Pkt.}$$

 $G_H(z) = G_N(G_X(z))$ = $\frac{1}{3} \left(\frac{1+z}{2} + \left(\frac{1+z}{2} \right)^2 + \left(\frac{1+z}{2} \right)^3 \right)$ (1 Pkt.)

$$= \frac{1}{24}(7 + 11z + 5z^2 + z^3). \tag{1 Pkt.}$$

Aufgabe 4 (4 Punkte)

Sei X die kontinuierliche Zufallsvariable mit der Dichte

$$f_X(x) = \begin{cases} c & : \text{ falls } 0 \le x \le a \\ 0 & : \text{ sonst } \end{cases}$$

mit Konstanten c > 0 und a > 1.

- (a) Berechnen Sie c in Abhängigkeit von a.
- (b) Berechnen Sie die Verteilungsfunktion der Variablen T = |1 X|.

Lösungsvorschlag

(a) $1 = \int\limits_{\mathbb{R}} f_X(x) \, dx = \int\limits_0^a c \, dx = c \cdot a.$ Es folgt $c = \frac{1}{a}$. (1 Pkt.)

(b) Für t < 0 gilt $F_T(t) = 0$. Wir betrachten nun Werte $t \ge 0$.

$$F_{T}(t) = \Pr[|1 - X| \le t]$$

$$= \Pr[1 - X \le t \text{ und } X < 1] + \Pr[X - 1 \le t \text{ und } X \ge 1]$$

$$= \int_{1-t}^{1} f_{X} dx + \int_{1}^{1+t} f_{X} dx$$

$$= \begin{cases} \frac{t}{a} : \text{falls } 0 \le t \le 1 \\ \frac{1}{a} : \text{falls } t > 1 \end{cases} + \begin{cases} \frac{t}{a} : \text{falls } 0 \le t \le a - 1 \\ \frac{a-1}{a} : \text{falls } t > a - 1 \end{cases}$$
(1 Pkt.)

Ein Sonderpunkt wird gegeben für die Zusammenfassung:

$$F_T(t) = \begin{cases} 0 & : t < 0 \\ \frac{2t}{a} & : 0 \le t \le \min\{1, a - 1\} \\ \frac{\min\{1, a - 1\}}{a} + \frac{t}{a} & : \min\{1, a - 1\} < t \le \max\{1, a - 1\} \\ 1 & : \max\{1, a - 1\} < t \end{cases}$$

(1 Sonderpunkt)

Aufgabe 5 (6 Punkte)

Sei X eine Bernoulli-verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit p. Mit einer Stichprobe von nur 2 Elementen soll die Hypothese $H_0: p \geq \frac{2}{3}$ getestet werden. Die Testvariable sei $T = X_1 + X_2$, wobei X_1 und X_2 unabhängige Kopien von X sein sollen, d. h., X_1, X_2 sind ebenfalls Bernoulli-verteilt mit gleichem Parameter p. Der Ablehnungsbereich des Tests sei $K = \{0\}$.

- (a) Geben Sie die Verteilungsfunktion von T an. (Es ist nicht nach der Dichtefunktion von T gefragt!)
- (b) Berechnen Sie die Fehlerwahrscheinlichkeit 1. Art (Signifikanzniveau) α_1 .
- (c) Wir nehmen an, dass die echte Alternative $H_1: p \leq \frac{1}{3}$ bekannt sei. Dies bedeutet, dass H_1 gelte, wenn H_0 nicht gilt.

Berechnen Sie damit die Fehlerwahrscheinlichkeit 2. Art α_2 .

Lösungsvorschlag

(a) T ist binomialverteilt auf den Werten aus $W_T = \{0, 1, 2\}$ mit Dichtefunktion

$$f_T(t) = {2 \choose t} p^t (1-p)^{2-t}$$
 (\frac{1}{2} \text{Pkt.})

Für die Verteilungsfunktion F_T ergibt sich

$$F_T(0) = (1-p)^2$$
 (\frac{1}{2} \text{Pkt.})

$$F_T(1) = (1-p)^2 + {2 \choose 1} p^1 (1-p)^1$$

= 1 - p^2

$$F_T(2) = 1 (\frac{1}{2} \text{ Pkt.})$$

 $(\frac{1}{2} \text{ Pkt.})$

Im übrigen gilt $F_T(t) = 1$ für $t \ge 2$.

(b)
$$\alpha_1 = \max_{p \ge \frac{2}{3}} \Pr[T \in K]$$

$$= \max_{p \ge \frac{2}{3}} F_T(0)$$
(1 Pkt.)

$$= \max_{p \ge \frac{2}{3}} (1 - p)^2 = \frac{1}{9}$$
 (1 Pkt.)

(c)
$$\alpha_2 = \max_{p \le \frac{1}{3}} \Pr[T \notin K]$$

$$= \max_{p \le \frac{1}{3}} (1 - F_T(0))$$

$$(1 \text{ Pkt.})$$

$$= \max_{p \le \frac{1}{3}} (1 - (1 - p)^2) = \frac{5}{9}$$
 (1 Pkt.)

Aufgabe 6 (8 Punkte)

Seien $(X_t)_{t\in\mathbb{N}_0}$ die Zufallsvariablen einer zeithomogenen Markov-Kette über den Zuständen $Q=\{0,1,2\}$ mit Übergangsmatrix

$$P = (p_{i,j}) = \begin{pmatrix} 0.25 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}.$$

Die (diskrete Verteilungs-)Dichtefunktion von X_0 , d. h., die Startverteilung der Markov-Kette sei $q_0 = (s_0, s_1, s_2)$.

- (a) Berechnen Sie die Dichtefunktion q_1 von X_1 .
- (b) Bestimmen Sie die Menge aller stationären Startverteilungen.
- (c) Beweisen Sie die Unabhängigkeit der beiden Variablen X_0 und X_1 . Dabei sind X_0 und X_1 als Zufallsvariable über dem zugeordneten Wahrscheinlichkeitsraum (Ω, Pr) zu betrachten mit

$$\Omega = \{(x_0, x_1) : x_0, x_1 \in Q\}, \quad \Pr[(x_0, x_1)] = (q_0)_{x_0} \cdot \Pr[X_1 = x_1 | X_0 = x_0],$$
$$X_0((x_0, x_1)) = x_0 \quad \text{und} \quad X_1((x_0, x_1)) = x_1.$$

Lösungsvorschlag

(a)
$$q_1 = q_0 \cdot P$$

$$= \left(\sum_{i=0}^{2} s_i \cdot 0.25, \sum_{i=0}^{2} s_i \cdot 0.25, \sum_{i=0}^{2} s_i \cdot 0.5\right)$$

$$= (0.25, 0.25, 0.5)$$
(1 Pkt.)

(b) Für stationäre Lösungen (s_0, s_1, s_2) muss gelten

$$(s_0, s_1, s_2) = (s_0, s_1, s_2) \cdot P$$

mit Nebenbedingung

$$\sum_{i=0}^{2} s_i = 1. \tag{1 Pkt.}$$

Wegen

$$(s_0, s_1, s_2) \cdot P = (0.25, 0.25, 0.5)$$

folgt

$$(s_0, s_1, s_2) = (0.25, 0.25, 0.5).$$
 (1 Pkt.)

(c) Es seien q_0 und q_1 die diskreten Verteilungen von X_0 und X_1 . Für die Unabhängigkeit von X_0 und X_1 genügt der Nachweis der Gleichung

$$\Pr[(x_0, x_1)] = (q_0)_{x_0} \cdot (q_1)_{x_1}$$

für alle $x_0, x_1 \in \{0, 1, 2\}.$ (1 Pkt.)

Wir rechnen

$$(q_0)_{x_0} \cdot (q_1)_{x_1} = (q_0)_{x_0} \cdot (q_0 P)_{x_1}$$

$$= (q_0)_{x_0} \cdot \left(\sum_{i=0}^2 (q_0)_i p_{i,x_1}\right)$$
(1 Pkt.)

$$= (q_0)_{x_0} \cdot (p_{x_0,x_1}) \tag{1 Pkt.}$$

$$=\Pr[(x_0, x_1)]. \tag{1 Pkt.}$$