10강.DQN Variants

Contents

- Double DQN
- Prioritized Experience Replay(PER)
- Dueling DQN
- Code Ex.

Double DQN

Overview

- Q-learning overestimates action-value:
 - Overestimation happens in the earlier stage of training (when action-value is not accurate)
 - Overestimation may help exploration, but
 - Overestimation may be non-uniform throughout all action (Change optimal action accidentally)
- DQN is degraded by Overestimation problem (sub-optimal policy)

Problem: Overestimation

- Q-learning updates using the target $r + \gamma \max_{a'} Q(s'.a')$
 - Note both argmax action a' and Q value are computed by the same action value function

Overestimated action-values are accumulated:

$$\begin{cases}
Q(s_t, a_t) < -Q(s_{t+1}, a_{t+1}), < -... < -Q(s_{t-1}, a_{t-1}) \\
a_k = \operatorname{argmax}_{a_k} Q(s_k, a_k)
\end{cases}$$

Solution: Double Q

- Double Q-learning solves overestimation by separating
 - the action—value function in getting the target

 The action—value function in getting argmax action
 - $y_t^Q = r_{t+1} + \gamma Q(s_{t+1}, \underset{a_{t+1}}{\operatorname{argmax}} Q(s_{t+1}, a_{t+1}, a_{t+1}; \theta_t); \theta_t)$ $\Rightarrow y_t^Q = r_{t+1} + \gamma Q(s_{t+1}, \underset{a_{t+1}}{\operatorname{argmax}} Q(s_{t+1}, a_{t+1}; \theta_t); \theta_t')$
- Even if θ_t overestimates (overestimated a_{t+1}), there's no overestimation if θ_t ' does not overestimate at a_{t+1}
- θ_t , θ_t' must be statistically independent

Solution: Double Q

• Overestimation get worse as the number of actions increase:

$$\gamma \epsilon \frac{m-1}{m+1}$$
 where m is the number of actions, uniform random noise $[-\epsilon, \epsilon]$

• Reusing the target network for θ_t will reduce the resource:

$$y_t^{\text{Double DQN}} = r_{t+1} + \gamma Q(s_{t+1}, \underset{a_{t+1}}{\operatorname{argmax}} Q(s_{t+1}, a_{t+1}, a_{t+1}; \theta_t); \theta_t^{-})$$

 θ_t : parameter of the target network (past θ_t)

 Mean and media performance comparison over 49 games starting after several no-ops:

	DQN	Double DQN
Median	93.5%	114.7%
Mean	241.1%	330.3%

 Mean and media performance comparison over 49 games with agent starting after human playing:

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Code

```
def train(self):
   transitions = self.replay memory.sample(self.config.batch size)
   states, actions, rewards, next states, dones = zip(*transitions)
    states array = np.stack(states, axis=0) # (n batch, d state)
    actions array = np.stack(actions, axis=0, dtype=np.int64) # (n batch)
   rewards array = np.stack(rewards, axis=0) # (n batch)
   next states array = np.stack(next states, axis=0) # (n batch, d state)
   dones array = np.stack(dones, axis=0) # (n batch)
    states tensor = torch.from numpy(states array).float() # (n batch, d state)
    actions tensor = torch.from numpy(actions array) # (n batch)
    rewards tensor = torch.from numpy(rewards array).float() # (n batch)
   next states tensor = torch.from numpy(next states array).float() # (n batch, d state)
   dones tensor = torch.from numpy(dones array).float() # (n batch)
```

Code

```
Qs = self.forward(states tensor) # (n batch, n action)
with torch.no grad():
   next Qs = self.forward(next states tensor) # (n batch, n action)
next target Qs = self.forward target network(next states tensor) # (n batch, n action)
# index dimension should be the same as the source tensor
chosen Q = Qs.gather(dim=-1, index=actions tensor.reshape(-1, 1)).reshape(-1)
next argmax actions = next Qs.argmax(dim=-1).reshape(-1, 1) # reshaping for gather
next target max Q = next target Qs.gather(dim=-1, index=next argmax actions).reshape(-1) # (n batch)
target Q = rewards tensor + (1 - dones tensor) * config.gamma * next target max Q
criterion = nn.SmoothL1Loss()
loss = criterion(chosen Q, target Q)
# Update by gradient descent
self.optimizer.zero grad()
loss.backward()
self.optimizer.step()
return loss.item()
```

Prioritized Experience Replay(PER)

Overview

Replay buffer:

- Solves correlation of samples in an episode
- Reduces data distribution shift caused by policy update
- Reuses old data

• Problem:

- Important samples (linked to the reward) deserves more replay
- Well learnt (s, a) does not need more replaying
- Uniform random mini-batch sampling is not always good

Overview

- Ordering samples by importance and taking top m samples may seriously harm data diversity
- → Stochastic sampling take both importance and diversity into account
- → the importance is measured by |TD error|

- Sample data from replay buffer $P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$
- p_i : i_{th} sample importance in replay memory ($\alpha \ge 0$)
- Importance:
 - TD error magnitude: p_i = $|\delta_i|$ + ε
 - The order of TD error magnitude: $p_i = \frac{1}{rank(i)}$

- Distribution shift correction:
 - PER presents the distribution shift 'again' every time when prioritized
 - This will cause 'bias' in terms of stochastic gradient descent
- Correct with Importance Sampling weight

•
$$\Delta\theta=\eta\sum_i\frac{1}{N}\nabla_\theta L_i$$
 -> $\Delta\theta=\eta\sum_i\frac{1}{N}\nabla_\theta L_i$ -> $\Delta\theta=\eta\sum_i\frac{1}{N}\omega i\nabla_\theta L_i$ (uniform random) (Prioritized sampling) (prioritized sampling with bias correction)
$$\omega i=(\frac{1}{N}\frac{1}{P(i)})^\beta$$

• Mean and media performance comparison over 49 (or 57) games with agent starting after human playing:

	DQN		Double DQN (tuned)		
	baseline	rank-based	baseline	rank-based	proportional
Median	48%	106%	111%	113%	128%
Mean	122%	355%	418%	454%	551%
> baseline	_	41	_	38	42
> human	15	25	30	33	33
# games	49	49	57	57	57

Table 1: Summary of normalized scores. See Table 6 in the appendix for full results.

Code

```
class PrioritizedReplayMemory:
    def init (self, config):
        self.config = config
        self.buffer = deque([], maxlen=self.config.replay capacity)
        self.abs td errors = np.ones(self.config.replay capacity)
       self.alpha = config.alpha
        self.eps = config.eps replay
    def getsize(self):
        return len(self.buffer)
    def append(self, transition):
        buffer size = len(self.buffer)
        self.buffer.append(transition)
        if buffer size == self.config.replay capacity:
            abs td error max = self.abs td errors[:-2].max()
            self.abs td errors[:-1] = self.abs td errors[1:]
            self.abs td errors[-1] = abs td error max
```

One transition data must be sampled at least once

Once the buffer is full, a new sample input makes the td error array shifted, and assigned a max error value

```
def sample(self, size):
   buffer size = len(self.buffer)
   if buffer size >= size:
        abs td errors = self.abs td errors[:buffer size] # get valid td errors
       if config.sampling strategy == 'rank-based':
           ranks = abs_td_errors.argsort()[::-1]
                                                                index
           # 1 ~ buffer size a = [3,1,2] -> a.argsort() = [1, 2, 0]
            # [index_TD_0, index_TD_1, ..., index_TD_n-1] ranks
           logits = 1 / np.arange(1, buffer_size + 1) # [1/1, 1/2, ..., 1/buffer_size] p_sample
           p sample = np.power(logits, self.alpha)
           p sample = p sample / p sample.sum()
           indices = np.random.choice(ranks, p=p sample, size=config.batch size)
        elif config.sampling strategy == 'proportional':
           logits = abs td errors + self.eps
           p sample = np.power(logits, self.alpha)
           p sample = p sample / p sample.sum()
           indices = np.random.choice(np.arange(buffer size), p=p sample, size=config.batch size)
       samples = []
        for i in indices:
            samples.append(self.buffer[i])
       prob samples = p sample[indices]
```

Dueling DQN

Overview

- Proposed a new NN architecture that fits RL
- NN that outputs both value and advantage function
- A(s, a) = Q(s, a) V(s)

Representation that separates the advantage from value

Overview

- Saliency map tells which part of the input has more affects on output
- Value network focuses on where a new car comes and the score
- Advantage network focuses one nearby in-front cars
 - It focuses nowhere if there's no car around
 - No advantage!

- Only actions in parts of states have bigger impact on return, therefore no need to calculate Q for every states.
- (e.g., state where a collision is probable)

The architecture can be adapted Q-learning, SARSA, etc.,

Advantage conditions:

mean advantage is 0:

$$E_{\pi}[A(s,a)] = 0$$

the advantage of determinsitic policy(e.g. argmax policy) is 0 $A(s,a^*) = Q(s,a^*) - V(s) = 0$

Argmax policy: $a^* = \operatorname{argmax}_{a'} Q(s, a')$

$$V(s) = \sum_{a} \pi(a|s)Q(s,a) = Q(s,a*)$$

- Simple Q(s, a; θ , α , β) = V(s; θ , β) + A(s, a; θ , α) may output Q, but V and A may not be grounded
 - Non-identifiability problem: Q(s, a; θ , α , β) = (V(s; θ , β)-c) + (A(s, a; θ , α)+c)
- To fix, use argmax policy's advantage:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \underline{(A(s, a; \theta, \alpha) - \max_{\alpha} A(s, \alpha'; \theta, \alpha))}$$

This is zero if a is a*

or Q(s, a;
$$\theta$$
, α , β) = V(s; θ , β) + (A(s, a; θ , α) $-\frac{1}{|A|}\sum_{a}A(s, a'; \theta, \alpha)$)

- Learning is fast because policy evaluation is fast
 - policy evaluation is fast because dueling agent learn V and adv.
 - Action-values that have little influence on env. are close to V

Table 1. Mean and median scores across all 57 Atari games, measured in percentages of human performance.

	30 no-ops		Human Starts	
	Mean	Median	Mean	Median
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%
Prior. Single	434.6%	123.7%	386.7%	112.9%
Duel Clip	373.1%	151.5%	343.8%	117.1%
Single Clip	341.2%	132.6%	302.8%	114.1%
Single	307.3%	117.8%	332.9%	110.9%
Nature DQN	227.9%	79.1%	219.6%	68.5%

Double DQN

Code

```
class DuelingQNetwork(nn.Module):
    def init (self, env, config):
       super(). init ()
       d state = env.observation space.shape[0]
       n action = env.action space.n
       self.encoder = nn.Sequential(
           nn.Linear(d_state, config.hidden_size),
           nn.ELU(),
       self.advantage head = nn.Sequential(
           nn.Linear(config.hidden size, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden size, n action)
        self.value head = nn.Sequential(
           nn.Linear(config.hidden size, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden_size, 1)
```

Code

```
class DuelingQNetwork(nn.Module):
    def forward(self, x):
        h encoder = self.encoder(x)
        advantages = self.advantage head(h encoder)
        value = self.value_head(h_encoder)
       Qs = value + (advantages - advantages.mean(dim=-1, keepdim=True))
       return Os
class DuelingDQNAgent(nn.Module):
   def init (self, env, config):
        super(). init ()
        self.config = config
        self.replay memory = ReplayMemory(self.config)
        self.network = DuelingQNetwork(env, config)
        self.target_network = DuelingQNetwork(env, config)
        for param in self.target network.parameters():
            param.requires grad = False
```

Code Ex. Environment

• State:

(cart position, cart velocity, pole angle, pole angular velocity)

- Action:
 (push car left, push car right)
- Reward:
 - +1 for every step

- Python libraries:
 - gym = = 0.25.1
 - ale-py==0.7.5
 - torch==2.0.0 (cpu버전)
 - tensorboard==2.13.0

- Code files:
 - Configuration.py
 - double_dqn_agent.py
 - eval.py
 - utils.py

- Python libraries:
 - gym = = 0.25.1
 - ale-py==0.7.5
 - torch==2.0.0 (cpu버전)
 - tensorboard==2.13.0

- Code files:
 - Configuration.py
 - per_agent.py
 - eval.py
 - utils.py

- Python libraries:
 - gym = = 0.25.1
 - ale-py==0.7.5
 - torch==2.0.0 (cpu버전)
 - tensorboard==2.13.0

- Code files:
 - Configuration.py
 - Dueling_dqn_agent.py
 - eval.py
 - utils.py