Theoretical Computer Science

Tutorial - week 3

February 4, 2021

nnoboria

Agenda

- ► Recap
- ► A bit of theory ... again
- Examples of Finite State Automaton

▶ What is ...

▶ What is ... FSA (FSM)?

- ▶ What is ... FSA (FSM)?
- ► Why is F?

- ▶ What is ... FSA (FSM)?
- ▶ Why is F?
- ▶ What else is finite?
 - alphabet

- ▶ What is ... FSA (FSM)?
- ► Why is F?
- ▶ What else is finite?
 - alphabet
 - language

- ▶ What is ... FSA (FSM)?
- ▶ Why is F?
- ▶ What else is finite?
 - alphabet
 - language
 - accepting states

- ▶ What is ... FSA (FSM)?
- ▶ Why is F?
- ▶ What else is finite?
 - alphabet
 - language
 - accepting states
- ▶ What is complete FSA?

- ▶ What is ... FSA (FSM)?
- ► Why is F?
- ▶ What else is finite?
 - alphabet
 - language
 - accepting states
- ▶ What is complete FSA?
- What is extended transition?

- ▶ What is ... FSA (FSM)?
- ► Why is F?
- ▶ What else is finite?
 - alphabet
 - language
 - accepting states
- ► What is complete FSA?
- What is extended transition?
- Automata and Automaton?

Finite State Automata

- Finite State Automaton is a model of computation.
- lt is a simple computing device: it acts as a language acceptor.

- Finite State Automaton is a model of computation.
- ▶ It is a simple computing device: it acts as a language acceptor.

Let's see an example.

FSA - Example (intuition)

If $\Sigma = \{a, b\}$ and L_1 is defined as

$$L_1 = \{x \in \Sigma^* \mid x \text{ ends with } aa\}$$

FSA - Example (intuition)

If $\Sigma = \{a, b\}$ and L_1 is defined as

$$L_1 = \{x \in \Sigma^* \mid x \text{ ends with } aa\}$$

Does the following FSA accepts all and only the strings represented by the language L_1 ?

String x = ababaa belongs to L_1 . Meaning, $x \in \Sigma^*$ and it ends with aa. Let's see if the FSA accepts the string x

String x=ababaa belongs to L_1 . Meaning, $x\in \Sigma^*$ and it ends with aa. Let's see if the FSA accepts the string x q_0 is the starting point (it is graphically denoted by start). So the FSA starts in state q_0

Then, we go through each character of x, following the transitions in the FSA

Then, we go through each character of x, following the transitions in the FSA

 $x = \mathbf{a}babaa$

From state q_0 and label a, we reach state q_1

Then, we go through each character of x, following the transitions in the FSA

x = ababaa

From state q_0 and label a, we reach state q_1

We repeat the process for all characters in x. If at the end we reach a final state (graphically denoted by the double circle state), we say the FSA accepts the string x.

 $x = a\mathbf{b}abaa$

x = ababaa

We went through all characters of x and ended up in a final state: string x belongs to language L_1 .

FSA (Formal definition)

A complete Finite State Automaton

A complete Finite State Automaton is a tuple $< Q, \Sigma, q_0, A, \delta >$, where

Q is a finite set of states; Σ is a finite input alphabet; $q_0 \in Q$ is the initial state; $A \subseteq Q$ is the set of accepting states; $\delta: Q \times \Sigma \to Q$ is a total transition function.

For any element q of Q and any symbol $\sigma \in \Sigma$, we interpret $\delta(q,\sigma)$ as the state to which the FSA moves, if it is in state q and receives the input σ .

The extended transition δ^*

A move sequence starts from an initial state and is *accepting* if it reaches one of the final states (informally explained with the previous example).

Formally, this transition is defined recursively:

the extended transition δ^*

Let $M = \langle Q, \Sigma, q_0, A, \delta \rangle$ be a complete finite state automaton.

We define the extended transition function

$$\delta^*: Q \times \Sigma^* \to Q$$

as follows:

- 1. For every $q \in Q$, $\delta^*(q, \epsilon) = q$
- 2. For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$,

$$\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$$

The extended transition (Example)

The complete FSA M contains the following transitions

The extended transition (Example)

The complete FSA M contains the following transitions

The extended transition (Example)

The complete FSA M contains the following transitions

$$\delta^*(q_1, bab) = \delta(\delta^*(q_1, ba), b)$$

$$= \delta(\delta(\delta^*(q_1, b), a), b)$$

$$= \delta(\delta(\delta(\delta^*(q_1, \epsilon), b), a), b)$$

$$= \delta(\delta(\delta(q_1, b), a), b)$$

$$= \delta(\delta(q_0, a), b)$$

$$= \delta(q_1, b)$$

$$= q_0$$

Acceptance by a FSA

The extended transition function is used to determine what it means for a FSA to accept (or reject) a string or a language.

Acceptance by a FSA

The extended transition function is used to determine what it means for a FSA to accept (or reject) a string or a language. Formally:

Acceptance by a FSA

Let $M=< Q, \Sigma, q_0, A, \delta>$ be a complete FSA, and let $x\in \Sigma^*$. The string x is accepted by M if

$$\delta^*(q_0,x)\in A$$

and it is rejected by M otherwise. The language accepted by M is the set

$$L(M) = \{x \in \Sigma^* \mid x \text{ is accepted by } M\}$$

If L is a language over Σ , L is accepted by M iff L = L(M)

- Finite State Automaton is a model of computation.
- ▶ It is a simple computing device: it acts as a language acceptor.

- Finite State Automaton is a model of computation.
- lt is a simple computing device: it acts as a language acceptor.

Why problems are about accepting strings?

- Finite State Automaton is a model of computation.
- It is a simple computing device: it acts as a language acceptor.

Why problems are about accepting strings?

▶ Properties of objects: ex. - number of sides

- Finite State Automaton is a model of computation.
- ▶ It is a simple computing device: it acts as a language acceptor.

Why problems are about accepting strings?

- Properties of objects: ex. number of sides
- ► Functions: ex. 2 + 2

Build¹ a complete FSA accepting a language L which comprises of all binary representations of integers divisible by 3.

¹using a tool available here or here

Build¹ a complete FSA accepting a language L which comprises of all binary representations of integers divisible by 3.

▶ The alphabet $\Sigma = \{0, 1\}$

¹using a tool available here or here

Build¹ a complete FSA accepting a language L which comprises of all binary representations of integers divisible by 3.

- ▶ The alphabet $\Sigma = \{0, 1\}$
- ▶ $L = \{x \in \Sigma^* \mid x \text{ is the a binary representation of an integer,}$ and it is divisible by $3\}$;

¹using a tool available here or here

Build¹ a complete FSA accepting a language L which comprises of all binary representations of integers divisible by 3.

- ▶ The alphabet $\Sigma = \{0, 1\}$
- ▶ $L = \{x \in \Sigma^* \mid x \text{ is the a binary representation of an integer,}$ and it is divisible by $3\}$;

Let's consider 2 solutions:

1. L includes ϵ (for simplicity)

¹using a tool available here or here

Build¹ a complete FSA accepting a language L which comprises of all binary representations of integers divisible by 3.

- ▶ The alphabet $\Sigma = \{0, 1\}$
- ▶ $L = \{x \in \Sigma^* \mid x \text{ is the a binary representation of an integer,}$ and it is divisible by $3\}$;

Let's consider 2 solutions:

- 1. L includes ϵ (for simplicity)
- 2. L does not include ϵ

¹using a tool available here or here

Wrap up

- ▶ What have you learnt today?
- ▶ Why problems are about accepting strings?