Scilab Textbook Companion for Elementary Numerical Analysis: An Algorithmic Approach by S. D. Conte And C. de Boor ¹

Created by
Pravalika
B.Tech (pursuing)
Electronics Engineering
Visvesvaraya National Institute Of Technology
College Teacher
M. Devakar, VNIT Nagpur
Cross-Checked by
K. Suryanarayan and Prashant Dave, IITB

May 17, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elementary Numerical Analysis: An Algorithmic Approach

Author: S. D. Conte And C. de Boor

Publisher: McGraw - Hill Companies

Edition: 3

Year: 1980

ISBN: 70124477

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Number systems and Errors	5
2	Interpolation by polynomials	6
3	The solution of nonlinear equations	11
4	Matrices and Systems of linear Equations	21
5	systems of equations and unconstrained optimization	28
6	Approximation	30
7	differentiation and integration	38
8	THE SOLUTION OF DIFFERENTIAL EQUATIONS	42

List of Scilab Codes

Exa 1.1	number system	5
Exa 2.1	shifted power form	6
Exa 2.2	second degree interpolating polynomial	7
Exa 2.3	determine polynomial by newton formula	7
Exa 2.5	Newtons formula	8
Exa 2.7	find N	9
Exa 3.1	Root finding	11
Exa 3.2.a	finding roots	12
Exa 3.3	Fixed point iteration	13
Exa 3.4	Fixed point iteration	14
Exa 3.5	Secant method	14
Exa 3.8.a	Roots of a polynomial equation	15
Exa 3.8	Polynomial equations real roots	16
Exa 3.10	Roots of polynomial equation	17
Exa 3.11	Roots of polynomial equation	18
Exa 3.12	Roots of polynomial equation	18
Exa 3.14	Roots of a polynomial equation	18
Exa 3.15	Roots of a polynomial equation	18
Exa 3.16	Roots of polynomial equation	19
Exa 3.17.a	Roots of a polynomial equation	19
Exa 4.1		21
Exa 4.2	matrix multiplication	21
Exa 4.3	properties of matrices	22
Exa 4.4	matrix	23
Exa 4.6	determinant	23
Exa 4.7		23
Exa 4.8	Backward substitution	24
Exa 4 14	norm	25

Exa 4.16	determinant	25
Exa 4.17	determinant	25
Exa 4.18	determinant	26
Exa 4.19	Eigen values	26
Exa 4.20		26
Exa 4.21	determinant	27
Exa 4.22	eigen values	27
Exa 5.1	gradient	28
Exa 5.2	Steep descent	29
Exa 6.1	uniform approximation	30
Exa 6.2	distance at infinity	30
Exa 6.3	aproximation	31
Exa 6.5	approximate	33
Exa 6.11	polynomial of degree lessthan 3	34
Exa 6.12	Least squares approximation	35
Exa 7.1	integration	38
Exa 7.8	adaptive quadrature	38
Exa 8.1		42
Exa 8.5		43
Exa 8.6	Modified euler method	43
AP 1	Modified euler method	44
AP 2	adamsbashforth	45
AP 3	secant mehod	45
AP 4	bisection method	46
AP 5		47
AP 6	newton method	48
AP 7	Regular falsi method	48

Chapter 1

Number systems and Errors

Scilab code Exa 1.1 number system

```
//Example (pg no.20)
      //the number %pi/4 is the value of infinite
   //sum(((-1)^i)/(2*i+1))=1-sum(2/(16*(j)^2)-1)
     // The sequence alpha1, alpha2, .... is monotone-
        decreasing
     // to its limit %pi/4
     // 0< = (alpha)n - %pi/4 <= (1/(4*n+3))
        =1,2,\ldots
     // To calculate \%pi/4 correct to within 10^{\circ}(-6)
        using this sequence
10
     // we would need 10^{(6)} <=4*n+3
11
     n = (10^{(6)} - 3)/4
          // \text{ roughly } n=250,000
12
```

Chapter 2

Interpolation by polynomials

Scilab code Exa 2.1 shifted power form

```
1 / Example 2.1
             p(6000)=1/3 , p(6001)=-2/3
4 // From p(x)=a0+a1*x, by substituting x=6000 \& x
      =6001
5 // we get equations a0+a1*(6000)=1/3 \& a0+a1*(6001)
6 //solving the above equations we get
7 \quad a0 = 6000.3
9 deff('[y]=f(x)', 'y=6000.3-x')
10 f(6000)
11 f(6001)
12 // y = 6000.3 - x, equation recovers only only the
      first digit of the
     // given function values, a loss of four decimal
13
        digits
14
     // remedy for such loss of significance is the use
         of SHIFTED POWER FORM
     //p(x)=a0 + a1*(x-c) + a2*(x-c)^2 + .... + an*(x-c)
15
        c) ^n
```

Scilab code Exa 2.2 second degree interpolating polynomial

```
1 //Example 2.2
2
3 K(1)=1.5709
4 K(4)=1.5727
5 K(6)=1.5751
6 10(3.5)=[(3.5-4)*(3.5-6)]/[(1-4)*(1-6)]
7 11(3.5)=[(3.5-1)*(3.5-6)]/[(4-1)*(4-6)]
8 12(3.5)=[(3.5-1)*(3.5-4)]/[(6-1)*(6-4)]
9 K(3.5)=10(3.5)*K(1)+11(3.5)*K(4)+12(3.5)*K(6);
10 K(3.5)
```

Scilab code Exa 2.3 determine polynomial by newton formula

```
1 / Example 2.3
             //Using Newton formula
2
3
4 x 0 = 1
5 x 1 = 4
6 x2 = 6
    P2(1)=1.5709
   P2(4)=1.5727
8
   P2(6)=1.5751
   K1 = [P2(1) - P2(4)]/(1-4)
10
    K2 = [P2(4) - P2(6)]/(4-6)
11
12
    K3 = \{K1 - K2\}/(1-6)
```

Scilab code Exa 2.5 Newtons formula

```
1 / \text{Example } 2.5
2
    x0=1
    x1=4
4
    x2 = 6
5
    x3=0
6
     x4 = 3.5
8
       K(1) = 1.5709
9
    K(4) = 1.5727
10
    K(6) = 1.5751
     P2(1)=1.5709
11
    P2(4)=1.5727
12
13
    P2(6) = 1.5751
14
15
     p0 = K(1)
               //U0=U0(x')
16
     U0=1
17
    K1 = [P2(1) - P2(4)]/(1-4)
    // Where as K1 = K[1, 4]
18
                            //U1=U1(x')
19
    U1 = (x4 - x0) * U0
                             //p1=p1(x')
    p1=p0+U1*K1
20
21
22
    //adding the point x2=6
    K2 = [P2(4) - P2(6)]/(4-6)
23
```

```
// Where as K2 = K[4,6]
24
25
26
    K3 = \{K1 - K2\}/(1-6)
            // Where as K1 = K[1,4] , K2 = K[4,6] , K3 = K
27
               [1,4,6]
      p2=p1+U2*K3 //p2=p2(x') //U2=U2(x')
28
29
30
      // to check error approximation for k(3.5) we add
31
           point x3=0
     // K(0) = 1.5708 = a
32
33
     // p2(0) = 1.5708 = K(0)
34
     a=1.5708
      K4 = [P2(6) - a]/(6-0)
35
    //K4=K[x2,x3]=[6,0]
36
37 \text{ K5} = -0.000001
    //K5=K[x0,x1,x2,x3]
38
39
    U3 = (x4-x2)*(x4-x1)*(x4-x0) //U3=U3(x')
40
41
    p3 = p2 + U3 * K5
42
    //p3=p3(x')
```

Scilab code Exa 2.7 find N

```
12
13 //h is approximately 0.0128
14 //h=(x1-x0)/N
15
16 N={(x1-x0)/h}
17 //N is approximately 79
```

Chapter 3

The solution of nonlinear equations

```
check Appendix AP 4 for dependency:

bisect.sce

check Appendix AP 6 for dependency:

newt.sce

check Appendix AP 7 for dependency:

regulfalsi.sce

check Appendix AP 3 for dependency:

secantm.sce
```

Scilab code Exa 3.1 Root finding

```
bisection (0.5, 1.0, f)
6
7
8
  //regula falsi method
9
10
11 deff('[y]=f(x)', 'y=x-0.2*sin(x)-0.5')
12 regularfalsi(0.5,1.0,f)
13
14 //secant method
15
16 deff('[y]=f(x)', 'y=x-0.2*sin(x)-0.5')
17
   secant(0.5,1.0,f)
18
19
  //newton rapson method
20
21
22
23 x = (0.5+1)/2
24 deff('[y]=f(x)', 'y=x-0.2*sin(x)-0.5')
25 deff ('[y]=g(x)','y=1-0.2*cos(x)')
26 \text{ x=newton}(x,f,g)
```

check Appendix AP 4 for dependency:

bisect.sce

Scilab code Exa 3.2.a finding roots

```
1 //example(3.2a)
2
3
4 //bisection method
5
6 deff('[y]=f(x)','y=x^3-x-1')
7 bisection(1.0,1.5,f)
```

```
10 //regula falsi method
11
12 deff('[y]=f(x)', 'y=x^3-x-1')
13 regularfalsi(1.0,1.5,f)
14
15 //secant method
16
17 deff('[y]=f(x)', 'y=x^3-x-1')
18 secant(1.0,1.5,f)
19
20
   //newton rapson method
21
22
23
24 x = (0.5+1)/2
25 deff('[y]=f(x)', 'y=x^3-x-1')
26 deff('[y]=g(x)', 'y=1-0.2*\cos(x)')
27
28 \text{ newton}(x,f,g)
      check Appendix AP 5 for dependency:
      fixedp.sce
      check Appendix AP 6 for dependency:
      newt.sce
      check Appendix AP 7 for dependency:
      regulfalsi.sce
   Scilab code Exa 3.3 Fixed point iteration
1 //example(3.3)
```

```
 // here \ f(x) = e^{-(-x) - \sin(x)} \ , according \\ to \ fixed \ point \ iteration \ we \ take \\ g(x) = x = x + e^{-(-x) - \sin(x)}; \\ 4 \ // \ so \ , \ xn = g(xn) \\ 5 \ deff('[y] = g(x)', 'y = x + (2.718)^{-(-x) - \sin(x)'}) \\ 6 \ x = 0.6 \\ 7 \ for \ n = 1 : 1 : 18 \\ 8 \ g(x); \\ 9 \ x = g(x) \\ 10 \ end
```

Scilab code Exa 3.4 Fixed point iteration

```
//example (3.4)
1
        // here f(x) = 1.5 * x - tan(x) - 0.1 = 0, according to
3
           fixed point iteration we get x=(0.1+\tan(x))
           /1.5
       // \text{where } g(x) = x = (0.1 + \tan(x)) / 1.5
       //& xn=g(xn)
6 deff('[y]=g(x)', 'y=(0.1+\tan(x))/1.5')
   x = 0
8
9
  for n=1:1:10
        g(x);
10
11
        x = g(x)
12 end
```

check Appendix AP 3 for dependency:

secantm.sce

Scilab code Exa 3.5 Secant method

```
1 //example(3.5)
2
3 deff ('[y]=f(x)', 'y=x^3-x-1')
4 secant(1.0,1.5,f)
```

Scilab code Exa 3.8.a Roots of a polynomial equation

```
1 // example (pg no.111)
3
4 //a, b & f are the modulus coeff of x^0, x^1, x^5
   c = [-6.8 \ 10.8 \ -10.8 \ 7.4 \ -3.7 \ 1]
   a=6.8;
7
    b = 10.8;
8
    f=1;
9
    n=5
   p5=poly(c,'x','coeff')
    p=n*a/b
11
12
     q=a/f^(1/n)
    roots(p4)
13
14
15
    xset('window',0);
16 \quad x = -2 : .01 : 2.5;
                                                        //
      defining the range of x.
17 deff('[y]=f(x)', 'y=x^5-3.7*x^4+7.4*x^3-10.8*x
      ^2+10.8*x-6.8');
                                             //defining the
      cunction
18 y = feval(x, f);
19
20 a=gca();
21
22 a.y_location = "origin";
23
24 a.x_location = "origin";
```

```
25 plot(x,y)

// instruction to plot the graph

26

27 title(' y = 8*x^3-12*x^2-2*x+3')
```

Scilab code Exa 3.8 Polynomial equations real roots

```
1 / \exp(3.8)
3
4
     //a, b & e are the modulus coeff of x^0, x^1, x^4
   c = [-1 \ 1 \ -1 \ -1 \ 1]
7 a=1;
8 b=1;
9 e = 1;
10
   n=4
   p4=poly(c,'x','coeff')
11
12
    p=n*a/b
13
     q=(a/e)^{(1/n)}
14
    roots(p4)
15
          //from here we found that only 2 real roots,
             other two are complex roots
16
    xset('window',0);
17 x = -2:0.1:3;
                                                        //
      defining the range of x.
18 deff ('[y] = f(x)', 'y = x^4 - x^3 - x^2 + x - 1');
                         //defining the function
19 y = feval(x, f);
20
21 a=gca();
22
23 a.y_location = "origin";
```

```
24
25 a.x_location = "origin";
26 plot(x,y)

// instruction to plot the graph
27
28 title(' y =x^4-x^3-x^2+x-1')
```

Scilab code Exa 3.10 Roots of polynomial equation

```
1 // example (3.10)
3 c = [-3 1 0 1]]
4 p3=poly(c,'x','coeff')
5 roots(p3)
   //here
6
    xset('window',0);
8 x = -2 : .01 : 2.5;
                                                       //
      defining the range of x.
9 deff('[y]=f(x)', 'y=x^3+x-3');
                                                       //
      defining the cunction
10 y = feval(x, f);
11
12 a=gca();
13
14 a.y_location = "origin";
15
16 a.x_location = "origin";
17 \text{ plot}(x,y)
      // instruction to plot the graph
18
19 title(' y = x^3 + x - 3')
```

Scilab code Exa 3.11 Roots of polynomial equation

```
1 //example(3.11)
2 c=[-6.8 10.8 -10.8 7.4 -3.7 1]
3 p5=poly(c,'y','coeff')
4 roots(p5)
```

Scilab code Exa 3.12 Roots of polynomial equation

```
1 //example(3.12)
2
3 c=[-5040 13068 -13132 6769 -1960 322 -28 1]
4 p7=poly(c,'y','coeff')
5 roots(p7)
```

Scilab code Exa 3.14 Roots of a polynomial equation

```
1 //example(3.14)
2
3 c=[-3 1 0 1]
4 p3=poly(c,'y','coeff')
5 roots(p3)
```

Scilab code Exa 3.15 Roots of a polynomial equation

```
\frac{1}{2} / \exp(3.15)
```

```
3 c=[-6.8 10.8 -10.8 7.4 -3.7 1]
4 p5=poly(c,'x','coeff')
5 roots(p5)
```

Scilab code Exa 3.16 Roots of polynomial equation

```
1 //example(3.16)
2
3 c=[-5040 13068 -13132 6769 -1960 322 -28 1]
4 p7=poly(c,'x','coeff')
5 roots(p7)
```

Scilab code Exa 3.17.a Roots of a polynomial equation

```
1 // example (3.17)
2
   c=[51200 0 -39712 0 7392 0 -170 0 1 ]
   p8=poly(c,'x','coeff')
5 roots(p8)
   xset('window',0);
8 x = -11:01:11;
                                                    //
      defining the range of x.
9 deff('[y]=f(x)', 'y=x^8-170*x^6+7392*x^4-39712*x
      ^2+51200;
                                    //defining the
      cunction
10 y = feval(x, f);
11
12 a=gca();
13
14 a.y_location = "origin";
15
```

Chapter 4

Matrices and Systems of linear Equations

Scilab code Exa 4.1 matrix multiplication

Scilab code Exa 4.2 matrix multiplication

```
1 //Example (pg no.130)
2
3
4          A = [2 1;1 3]
5          B = [2 1;0 1]
6          A*B
7          B*A
```

```
8 //matrix multiplication is not commutative 9 //so A*B!=B*A
```

Scilab code Exa 4.3 properties of matrices

```
//Example (pg no.133)
3
           A = [1 1; 0 1]
4
            inv(A)
5
           B = [1 \ 0; 1 \ 1]
6
            inv(B)
7
           A * B
8
            inv(A*B)
9
            inv(A)*inv(B)
                                                  //inv(A*B)=
10
                                                     inv(B)*inv
                                                      (A)
11
           inv(B)*inv(A)
12
                                                     //Hence inv
                                                        (A) * inv(
                                                        B) = inv
                                                        (A) * inv(
                                                        B)
             I = eye(3,3)
13
             C=(A*B)*(inv(A)*inv(B))
14
                                                   //C! = I
15
                                                     //so, inv(A
16
                                                        )*inv(B)
                                                         cannot
                                                        be the
                                                        inverse
                                                        of (A*B)
```

Scilab code Exa 4.4 matrix

```
1
2
    //Example (pg no.136)
3
4
    // x1 + 2(x2) = 3
    //2(x1) + 4(x2) = 6
6
             A = [1 \ 2; 2 \ 4]
7
                  //coefficient matrix of above equations
8
             b=[3 6],
9
10
             x = A \setminus b
         //for corresponding homogenous system
11
                   // x1 + 2(x2) = 0
12
                  //2(x1) + 4(x2) = 0
13
              A = [1 \ 2; 2 \ 4]
14
15
                   //coefficient matrix of above equations
16
             b=[0 0],
17
             x = A \setminus b
```

Scilab code Exa 4.6 determinant

Scilab code Exa 4.7 matrix

Scilab code Exa 4.8 Backward substitution

```
1 //example 4.1 (pg 149)
3
        //2x1 + 3x2 - x3 = 5
       //-2x2 - x3 = -7
      //-5x3 = -15
7 A = [2 3 -1; 0 -2 -1; 0 0 -5]
8 b = [5 -7 -15],
9 a = [A b]
10 [nA, mA] = size(A)
11 \quad n=nA
12
13
         //Backward substitution
14
  x(3) = a(n,n+1)/a(n,n);
15
16
17
  for i = n-1:-1:1
18
       sumk=0;
19
       for k=i+1:n
20
            sumk = sumk + a(i,k) * x(k);
21
       x(i) = (a(i,n+1) - sumk)/a(i,i);
22
23 end
24
       disp(x)
```

Scilab code Exa 4.14 norm

```
1 //example(3.14)
2
3 c=[-3 1 0 1]
4 p3=poly(c,'y','coeff')
5 roots(p3)
```

Scilab code Exa 4.16 determinant

Scilab code Exa 4.17 determinant

```
1 //Example (pg no.186)
2
3 A=[3.1 4;3.2 3]
4 det(A)
```

Scilab code Exa 4.18 determinant

```
1 //Example (pg no.186)
2
3          A=[1 2;2 2]
4          B=[1 2;1 1]
5          det(A)+det(B)
6          C=[1 2; 3 3]
7          det(C)
8          //det(A)+det(B)=det(C)
```

Scilab code Exa 4.19 Eigen values

```
1 //Example(4.11) (pg no.191)
2
3 B=[1 2 0;2 1 0;0 0 -1]
4 lam = spec(B)
```

Scilab code Exa 4.20 Eigen values

```
//Example(4.14) (pg no.201)

B=[1 2 0;2 1 0;0 0 -1]

lam = spec(B)
norm(B)

//Each eigen value of the matrix must have absolute value
// no bigger than the norm of that matrix
```

Scilab code Exa 4.21 determinant

Scilab code Exa 4.22 eigen values

```
1 //Example(4.16)(page no.203)
2
3 A=[4 -1 -1 -1; -1 4 -1 -1; -1 -1 4 -1; -1 -1 4]
4 spec(A)
```

Chapter 5

systems of equations and unconstrained optimization

Scilab code Exa 5.1 gradient

```
1
2 //Example 5.1
4 deff('y=f(x)', 'y=((x1)^3)+((x2)^3)-2*((x1)^2)+3*((x2)^2)
      )^2)-8')
5 funcprot(0)
6 deff('y=g(x)', 'y=3*((x1)^2)-4*(x1)+3*((x2)^2)+6*(x2)
           // f1 = (df/dx1)(x) = 0, f2 = (df/dx2)(x) = 0
7
     deff('y=fp(x)', 'y=3*((x1)^2)-4*(x1)')
     deff('y=fpp(x)', 'y=3*((x2)^2)+6*(x2)')
9
          x1 = poly(0, "x1")
10
    fp=(3*((x1)^2)-4*(x1))
11
12
    p=roots(fp)
13
    x2 = poly(0, "x12")
14
    fpp=3*((x2)^2)+6*(x2)
15
16
    p=roots(fpp)
```

Scilab code Exa 5.2 Steep descent

```
1
2
   //Example 5.2
3
    deff('[y]=f(x1,x2)', 'y=((x1)^3)+((x2)^3)-2*((x1)^2)
4
       +3*((x2)^2)-8
      //x1=1 , x2=-1
5
       //(del) f(X(0)) = [3*((x1)^2) - 4*x1, 3*((x2)^2) + 6*x2]
          ]' = [-1, -3]'
       //Thus, in the first step of steep descent,
8
       // we look for a minimum of the function
    funcprot(0)
  deff('[y]= g(t)', 'y=((1+t)^3)+((-1+3*t)^3)-2*((1+t)
      ^{2})+3*((-1+3*t)^{2})-8
      //g'(t) = 3*((1+t)^2) + 3*3*((-1+3*t)^2) - 4*(1+t)
11
         +3*2*(-1+3*t)
12
     t=poly(0,"t")
13 \quad y=3*((1+t)^2)+3*3*((-1+3*t)^2)-4*(1+t)+3*2*3*(-1+3*t)
14 p=roots(y)
      // We choose the positive root t=1/3
15
16
      t=1/3;
17
      x1 = 1 + t
18
      x2 = -1 + 3 * t
      a=3*((x1)^2)-4*x1
19
      b=3*((x2)^2)+6*x2
20
21
      funcprot(0)
    deff('[y]=fp(x1)', 'y=(3*((x1)^2)-4*(x1))')
22
23
24
     x1 = poly(0, "x1")
    fp = (3*((x1)^2) - 4*(x1))
25
26
    p=roots(fp)
```

Chapter 6

Approximation

Scilab code Exa 6.1 uniform aproximation

```
1 //Example 6.1

2 deff('[y]=f(x)', 'y=exp(x)')

4 x0=-1

5 x1=0

6 x2=1

7 // F=f(x0,x1,x2)=f(-1,0,1)

8 F=f(x0)/[(x1-x0)*(x2-x0)]+f(x1)/[(x0-x1)*(x2-x1)]+f(x2)/[(x0-x2)*(x1-x2)]

9 // W(-1,0,1)=2 and so, for a<= -1,1 <=b

10 // |f[-1,0,1]|/2 <= dist(at infinity)(f,pi1)*****

11 // dist(exp(x),pi1) >= 0.27154
```

Scilab code Exa 6.2 distance at infinity

```
 \begin{array}{ll} 1 & // \, Example & 6.2 \\ 2 & \\ 3 & \mbox{deff('[y]=f(x)','y } = tan((\%pi/4)*x)') \end{array}
```

```
4
5  // on std interval -1 <= x <= 1 from pi3
6  // this is an odd function f(-x)=f(x)
7  n=4
8  p= (1/(2*(n+1)))*(f(1)-2*f(cos(%pi/(n+1)))+2*f(cos(2*%pi/(n+1)))-2*f(cos(3*%pi/(n+1)))+2*f(cos(4*%pi/(n+1)))-f(-1))
9  // 0.00203 <= dist(at infinity)(f,pi4)=p=0.0041</pre>
```

Scilab code Exa 6.3 aproximation

```
1 / Example 6.3
3 deff('[y]=f(x)', 'y=exp(x)')
4 xset('window',0);
                                 // defining the range of
5 \quad x = -1 : .01 : 1;
      х.
6 \text{ y=feval}(x,f);
8 a=gca();
10 a.y_location = "origin";
11
12 a.x_location = "origin";
                              // instruction to plot the
13 \text{ plot}(x,y)
      graph
14
15
16
17 //
        possible approximation
18 //
         y = q1(x)
19
20 //
        Let e(x) = \exp(x) - [a0+a1*x]
        q1(x) & exp(x) must be equal at two points in
      [-1,1], say at x1 & x2
```

```
22 //
         sigma1 = max(abs(e(x)))
23 //
         e(x1) = e(x2) = 0.
         By another argument based on shifting the
24 //
     graph of y = q1(x),
         we conclude that the maximum error sigmal is
25
      attained at exactly 3 points.
26 //
         e(-1) = sigma1
27 //
         e(1) = sigma1
         e(x3) = -sigma1
28 //
29 //
         x1 < x3 < x2
         Since e(x) has a relative minimum at x3, we
30 //
     have e'(x) = 0
31 //
         Combining these 4 equations, we have...
         \exp(-1) - [a0-a1] = \text{sigma1}
32 / /
     i )
         \exp(1) - [a0+a1] = p1 -----
     ii)
         \exp(x3) - [a0+a1*x3] = -\text{sigma1}
      iii)
         \exp(x3) - a1 = 0 -----
     iv)
36
37 //
         These have the solution
38
39 a1 = (\exp(1) - \exp(-1))/2
40 \quad x3 = \log(a1)
41 \quad sigma1 = 0.5*exp(-1) + x3*(exp(1) - exp(-1))/4
42 \text{ a0} = \text{sigma1} + (1-x3)*a1
43
44 x = poly(0, "x");
45 // Thus,
46 	 q1 = a0 + a1*x
47
48 deff('[y1]=f(x)', 'y1=1.2643+1.1752*x')
50 xset('window',0);
51 x = -1 : .01 : 1;
                                // defining the range of
     х.
```

Scilab code Exa 6.5 approximate

```
1 / \text{Example } 6.5
 2
 3 / xn = 10 + (n-1)/5
 4 // Accordingly we choose
 5 // phi1(x)=1, phi2(x)=x, phi3(x)=(x)^3
 6 A=[6 63 662.2; 63 662.2 6967.8; 662.2 6967.8
       73393.5664]
 7 norm(A, 'inf')
8 x = [10.07 -2 0.099]
9 \quad A * x
10 norm(A*x, 'inf')
11 norm(A*x)
12 a=(norm(x))/norm((A)^(-1))
13
14 //\operatorname{norm}(A*x) > = \operatorname{norm}(x) / \operatorname{norm}((A)^{\hat{}}(-1))
15 // \text{ norm}(A^{\hat{}}(-1), 'inf') >= 7.8
16
17 cond(A)
18
19 //the condition number of A is much larger than
       10<sup>5</sup>, so we take
20 deff('[y]=f(x)', 'y=10-2*x+(((x)^2))/2')
21 //f(x) is a polynomial of degree 2 F*(x) should be
```

```
f(x) itself
22
23 c1 = 10
24 c2 = -2
25 c3=0.1
26
  // by using elimination algorithm (Gauss elimination
27
      ), we get
28 \text{ c1} = 9.99999997437
29 \quad c2 = -1.999999951
30 \quad c3 = 0.099999976
31
    // by 14-decimal digit floating point arith metic
       method
32
    c1 = 6.035
    c2 = -1.243
33
    c3 = 0.0639
34
    //calculation carried out in seven decimal digit
35
        floating point arithmetic
36
    c1 = 8.492
37
    c2 = -1.712
38
    c3 = 0.0863
```

Scilab code Exa 6.11 polynomial of degree lessthan 3

```
12
13 p3=integrate('(exp(x))*((x^3)-3*x/5)', 'x',x0,x1)
14
15 //for legendre polynomials one can show
16 // si = < pi, pi > = 2/(2*i+1)
17 s0=2/(2*0+1)
18 \text{ s1}=2/(2+1)
19 s2=2/(2*2+1)
20 \text{ s3} = 2/(2*3+1)
21
22 // di *= < f, pi > / si
23 //p*(x)=y=d0*1+d1*x+d2*(3/2)*((x^2)-(1/3))+d3*((x^3)
      -3*x/5)*(5/2)
24 / p*(x) = y = (p0/s0)*1 + (p1/s1)*x + (p2/s2)*(3/2)*((x^2))
      -(1/3) + (p3/s3) * ((x^3) - 3*x/5) * (5/2)
25 poly(0,"x")
y=1.17552011*(1)+(1.103638324)*(x)+(0.3578143506)
      *(3/2)*((x^2)-(1/3))+(0.07045563367)*((x^3)-3*x
      /5)*(5/2)
27 //On (-1,1) , this polynomial a maximum deviation
      from \exp(x) of about 0.01
```

Scilab code Exa 6.12 Least squares approximation

```
1
2
3
4 /Example 6.12
5
6 //Least squares approximation
7
8 deff('[y]=f(x)','y=10-2*x+((x^2)/10)')
9 //we seek the polynomial of degree <= 2 which minimizes
10 //sum(n=1 to 9)[fn-p(xn)]^2</pre>
```

```
11 //we are dealing with scalar product with w(x)=1
12 P0(x)=1
13 //hence
14 s0=0;
15 B = 0;
16 \quad A1 = 0;
17 \text{ s1=0};
18 for n=1:1:6
19
20 s0 = s0 + 1
21 B = [10 + (n-1)/5] + B
22
23 A1 = [10+[n-1]/5] * {[((n-1)/5)-0.5]^2} + A1
24
25 s1 = \{ [((n-1)/5) - 0.5]^2 + s1 \}
26
27 end
28 B0 = B/s0
29
30 B1 = A1/s1
31 C1 = s1/s0
32
33 x = poly(0, "x")
34 \text{ y} 1 = x - B0
35 x = poly(0, "x")
36 \text{ y2}=((x-B0)^2)-0.1166667
37 //similarly calculate s2
38 \text{ s}2=0.05973332
39 //p*(x) = (d0*)*P0(x)+(d1*)*P1(x)+(d2*)*P2(x)
40 //d0*=d0, d1*=d1, d2*=d2 are least squares
       approximation
41 //d0*=d0=sigma(n=1 to 6) [fn/6] where fn=f(xn)
42
43 d0=0.03666667
44 d1=0.1
45 \quad d2 = 0.09999999
46
47 x = poly(0, "x")
```

```
\begin{array}{lll} 48 & p=d0+d1*(x-B0)+d2*\{[(x-B0)^2]-C1\} \\ 49 & //c1=c1* & ,c2=c2*,c3=c3* \\ 50 & c1=9.99998 \\ 51 & c2=-1.9999998 \\ 52 & c3=0.0999999 \end{array}
```

Chapter 7

differentiation and integration

Scilab code Exa 7.1 integration

```
1 //I = integral(exp^(-x^2) dx)
3 deff('y=f(x)', 'y=exp(-(x^2))')
4 a=0, b=1
5 c = (a+b)/2
6 deff('y=g(x)', 'y=-2*x*exp(-(x^2))')
7 f(a)
8 f(b)
9 f(c)
10 g(a)
11 g(b)
12 g(c)
13 R=(b-a)*f(a)
14 M = (b-a) * f(c)
15 T=(b-a)*[f(a)+f(b)]/2
16 S=(b-a)*{f(a)+4*f(c)+f(b)}/6
17 CT = [(b-a)/2] * [f(a)+f(b)] + [(b-a^2)/12] * [g(a)-g(b)]
```

Scilab code Exa 7.8 adaptive quadrature

```
1 //Example 7.8
3 // True value of the integral
4 x0 = 0
5 x 1 = 1
6 I=integrate('sqrt(x)', 'x',0,1)
8 //using adaptive quadrature based on simpsons rule
10 deff('[y]=f(x)', 'y=[(x)^(1/2)]')
11 x=1:1:10
12
   plot(x,f)
13
14 x2=(x0+x1)/2;
15 h=1/2
16 //considering the interval [x2,x1]=[1/2,1]
17
18 s=h/6.*{f(x2)+4*f((x2)+h/2)+f(x1)}
19 p=h/12*\{f(x2)+4*f((x2)+h/4)+2*f((x2)+h/2)+4*f(x2+3*h)\}
      /4) + f(x1)
20 E = (1/15) * (p-s)
21 ///Error criterion is clearly satisfied, hence we
      put value of p to SUM register to obtain partial
      approximation
22 //considering the interval [x2,x1]=[0,1/2]
23
24 s1=h/6.*{f(x0)+4*f((x0)+h/2)+f(x2)}
25 p1=h/12.*{f(x0)+4*f((x0)+h/4)+2*f((x0)+h/2)+4*f(x0)}
      +3*h/4)+f(x2)
26 \quad E1 = 1/15.*[p1-s1]
27
28 // Here since error is not less than 0.00025 we have
       to divide interval [0, 1/2] to [0, 1/4] \& [1/4, 1/2]
29 h = 1/4
30 //considering interval [1/4,1/2]
31
32 \times 3 = 1/4
33
```

```
34 \text{ s2=h/6.}*\{f(x3)+4*f((x3)+h/2)+f(x2)\}
35 p2=h/12.*{f(x3)+4*f((x3)+h/4)+2*f((x3)+h/2)+4*f(x3)}
      +3*h/4)+f(x2)
36 \quad E2=1/15.*[p2-s2]
37
38 / E2 < (0.0005)/4
39 //Error criterion is clearly satisfied, hence we
      add value of p2 to SUM register to obtain partial
       approximation
40 \quad sum = p + p2
41 funcprot(0)
42 //Applying again above basic formulas
43
44 // with h=1/4 , in interval [0.1/4]
45 // \text{ we get}
46
47 \quad s3 = 0.07975890
48 p3=0.08206578
49 E3=0.0001537922
50 // Here since error is not less than 0.000125 we
       have to divide interval
51 // [0,1/4] in to [0,1/8]& [1/8,1/4] with h=1/8
52 h = 1/8
53
54 // \text{ for interval } [1/8, 1/4]
55
56 \quad s4 = 0.05386675
57 p4 = 0.05387027
58 E4=0.0000002346
59
60
61 // E4 < (0.0005)*h = (0.0005)/8 = 0.0000625
62 //Error criterion is clearly satisfied, hence we
      add value of p4 to
63 //SUM register to obtain partial approximation
64
    sum = p + p2 + p4
65
66
```

Chapter 8

THE SOLUTION OF DIFFERENTIAL EQUATIONS

Scilab code Exa 8.1 Taylor series

```
1 // Example 8.1
3 \, deff('[v]=f(x,y)','v=1-(y/x)')
4 funcprot(0)
5 deff('[v]=fp(x,y)', 'v=-(f(x)/x)+(y/(x^2))')
6 funcprot(0)
7 deff('[v]=fpp(x,y)', 'v=-(fp(x)/x)+2*(f(x)/(x^2))-2*(
     y/(x^3))')
8 funcprot(0)
9 deff('[v]=g(x,y)', 'v=-(fpp(x)/x)+3*(fp(x)/(x^2))-6*(
     f(x)/(x^3)+6*(y/(x^4))
10 funcprot(0)
11 \times 1 = 2
12 y1=2
13 x = 2.1
14 y2=y1+(x-2)*f(x1,y1)+((x-2)^2)*fp(x1,y1)/factorial
      (2)+((x-2)^3)*fpp(x1,y1)/factorial(3)+((x-2)^4)*g
```

```
(x1,y1)/factorial(4)
```

```
check Appendix AP 2 for dependency:
```

adamsbash.sce

Scilab code Exa 8.5 Adamsbashforth3

Scilab code Exa 8.6 Modified euler method

```
1 // Example 8.6
2
3 // Modified Eulers method
4
5 deff('[v]=f(x,y)','v=x-(1/y)')
6
7 [y,x] = modifiedeuler(1,0,0.2,0.1,f)
```

Appendix

Scilab code AP 1 Modified euler method

```
1 function [u,t] = modifiedeuler(u0,t0,tn,h,f)
3 //modifiedeuler 1st order method solving ODE
4 // du/dt = f(u,t), with initial
5 // conditions u=u0 at t=t0. The
6 //solution is obtained for t = [t0:h:tn]
7 //and returned in u
9 umaxAllowed = 1e+100;
10
11 t = [t0:h:tn]; u = zeros(t); n = length(u); u(1) =
     u0;
12
13 \text{ for } j = 1:n-1
       k1=h*f(t(j),u(j));
14
15
       k2=h*f(t(j)+h/2,u(j)+k1/2);
       u(j+1) = u(j) + k2;
16
17
      if u(j+1) > umaxAllowed then
              disp('Euler 1 - WARNING: underflow or
18
                 overflow');
              disp('Solution sought in the following
19
                 range: ');
20
              disp([t0 h tn]);
             disp('Solution evaluated in the following
21
                range: ');
22
             disp([t0 h t(j)]);
```

Scilab code AP 2 adamsbashforth

```
1
2 function [u,t] = adamsbashforth3(u0,t0,tn,h,f)
4 //adamsbashforth3 3rd order method solving ODE
5 // du/dt = f(u,t), with initial
6 // conditions u=u0 at t=t0. The
7 //solution is obtained for t = [t0:h:tn]
8 //and returned in u
10 umaxAllowed = 1e+100;
12 t = [t0:h:tn]; u = zeros(t); n = length(u); u(1) =
      u0;
13 \text{ for } j = 1:n-1
14 if j<3 then
         k1=h*f(t(j),u(j));
15
       k2=h*f(t(j)+h,u(j)+k1);
16
       u(j+1) = u(j) + (k2+k1)/2;
17
18 end;
19
20 \text{ if } j \ge 2 \text{ then}
21
           u(j+2) = u(j+1) + (h/12)*(23*f(t(j+1),u(j+1))
              -16*f(t(j),u(j))+5*f(t(j-1),u(j-1)));
22 \text{ end};
23 \, \text{end};
24 endfunction
```

Scilab code AP 3 secant mehod

```
1 function [x]=secant(a,b,f)
       N = 100:
                            // define max. no. iterations
           to be performed
       PE = 10^{-4}
                            // define tolerance for
3
          convergence
        for n=1:1:N
                            // initiating for loop
4
           x=a-(a-b)*f(a)/(f(a)-f(b));
6
           disp(x)
7
           if abs(f(x)) <= PE then break; //checking for
              the required condition
           else a=b;
8
9
                b=x;
10
           end
11
        end
        disp(n," no. of iterations =") //
12
13 endfunction
```

Scilab code AP 4 bisection method

```
1 function x=bisection(a,b,f)
       N = 100;
          define max. number of iterations
       PE = 10^{-4}
3
          define tolerance
       if (f(a)*f(b) > 0) then
4
5
            error('no root possible f(a)*f(b) > 0')
               // checking if the decided range is
                containing a root
6
             abort;
7
       end;
       if(abs(f(a)) <PE) then
8
           error('solution at a')
9
                seeing if there is an approximate root
              at a,
10
            abort;
11
       end;
12
       if(abs(f(b)) < PE) then</pre>
          seeing if there is an approximate root at b,
```

```
error('solution at b')
13
14
       abort;
       end;
15
       x=(a+b)/2
16
                                                          //
17
       for n=1:1:N
          initialising 'for' loop,
18
            p=f(a)*f(x)
            if p<0 then b=x, x=(a+x)/2;
19
               //checking for the required conditions ( f
               (x) * f(a) < 0,
20
            else
21
                 a=x
22
                x = (x+b)/2;
23
            end
            if abs(f(x)) <= PE then break
24
               // instruction to come out of the loop
               after the required condition is achived,
25
            end
26
       end
       disp(n, " no. of iterations =")
27
          // display the no. of iterations took to
          achive required condition,
28 endfunction
```

Scilab code AP 5 fixed point

```
1 function [x]=fixedp(x0,f)
2 //fixed-point iteration
3 N = 100; eps = 1.e-5; // define max. no. iterations
      and error
4 maxval = 10000.0; // define value for divergence
5 \ a = x0;
6 \text{ while } (N>0)
       xn = f(a);
7
       if (abs(xn-a) <eps) then
9
           x = xn
           disp(100-N);
10
           return(x);
11
```

```
12
        end;
13
        if (abs(f(x))>maxval)then
14
            disp(100-N);
            error('Solution diverges');
15
16
            abort;
17
        end;
       N = N - 1;
18
19
        xx = xn;
20 \text{ end};
21 error ('No convergence');
22 abort;
23 //end function
```

Scilab code AP 6 newton method

```
function x=newton(x,f,fp)
2
       R = 100;
       PE=10^-8;
3
       maxval=10^4;
4
5
6
       for n=1:1:R
            x=x-f(x)/fp(x);
            if abs(f(x)) <= PE then break
8
9
            end
            if (abs(f(x))>maxval) then error('Solution
10
               diverges');
11
                abort
12
                break
13
            end
14
       end
       disp(n, " no. of iterations =")
15
16
  endfunction
```

Scilab code AP 7 Regular falsi method

```
1 function [x]=regularfalsi(a,b,f)
2 N=100;
3 PE=10^-5;
```

```
for n=2:1:N
4
           x=a-(a-b)*f(a)/(f(a)-f(b));
5
           disp(x)
6
           if abs(f(x)) <= PE then break;</pre>
7
           elseif (f(a)*f(x)<0) then b=x;
8
9
                else a=x;
10
           end
11
       end
       disp(n," no. of ittirations =")
12
13 endfunction
```