Aula 8

Aula passada

- Gerando amostras de v.a. discretas
- Gerando Geométrica
- Método da transformada inversa
- Gerando Binomial
- Gerando permutações

Aula de hoje

- Método da rejeição (rejection sampling)
- Exemplos
- Importance Sampling
- Exemplos
- Generalização

Rejection Sampling

- Técnica fundamental para geração de amostras aleatórias
 - usada em Markov Chain Monte Carlo (veremos depois)
- Ideia: usar distribuição conhecida para gerar amostras de outra distribuição, mais complicada
- Sejam X e Y duas v.a. com distribuições $p_{_X}$ e $q_{_X}$, definidas no mesmo suporte
 - $p_x = P[X = x], q_x = P[Y = x]$
- Assuma que $q_x \le c p_x$ para alguma constante c e todo x
 - ullet ou seja, c $p_{_{\scriptscriptstyle X}}$ é uma função envelope para $q_{_{\scriptscriptstyle X}}$
- Supor que sabemos gerar amostras para v.a. X
 - ex. método da transformada inversa
- Como usar isto para gerar amostras para v.a. Y?

Rejection Sampling

- Algoritmo (proposto por von Neumann)
 - 1) Gerar valor para i a partir de p_x
 - 2) Gerar u uniforme(0, c p_i) contínua, usando o i gerado
 - 3) Se $u < q_i$, retorna i, caso contrário vai para 1)
- Graficamente

- Algoritmo pode rejeitar amostra gerada de X várias vezes
 - rejection sampling
- Rejeita com probabilidade proporcional a diferença de p_x e q_x

Rejection Sampling Funciona

- Mostrar que algoritmo funciona
 - ullet ou seja, algoritmo gera amostra i com probabilidade q_i
- Considere um valor i e o evento aceitar

$$P[X=i, aceitar] = P[X=i] P[aceitar | X=i] = p_i q_i/(c p_i) = q_i/c$$

• Probabilidade de aceitar (por prob. total)

$$P[aceitar] = \sum_{i} P[X=i, aceitar] = \sum_{j} \frac{q_{j}}{c} = \frac{1}{c}$$

- Ao final de cada rodada, algoritmo aceita com prob. 1/c
- Temos então

$$P[X=i|aceitar] = \frac{P[X=i,aceitar]}{P[aceitar]} = q_i = P[Y=i]$$

Rodadas de Rejection Sampling

- A cada rodada, algoritmo aceita com prob. 1/c
- Número de rodadas até aceitar é aleatório. Distribuição?
 - Geométrica com parâmetro 1/c
 - valor esperado = c
 - complexidade de caso médio para cada amostra
- Escolha do valor para c é muito importante
 - menor valor tal que $q_{y} \le c p_{y}$ para todo x
- Valor depende da "distância" entre q_x e p_x
 - se muito diferentes, pode demandar c muito grande

Técnica funciona também com v.a. contínua

- Dado moeda enviesada, cara com prob p > $\frac{1}{2}$
- Como gerar moeda sem viés?

- Moeda enviesada
- Moeda honesta
 - Encontrar constante c tal que $q_x \le c p_x$
 - $c(1-p) = \frac{1}{2} \rightarrow c = \frac{1}{2}(2(1-p))$

- 1) Gerar valor para $i = \{C, K\}$ a partir de p_x (moeda enviesada)
- 2) Gerar u uniforme(0, c p_i) contínua, usando o i gerado
- 3) Se $u < q_i$, retorna i, caso contrário vai para 1)

- Gerar amostras da v.a. Y contínua com densidade $f_{y}(x) = 20x(1-x)^{3}$, 0 < x < 1
- Usando método da rejeição. Que distribuição proponente?
 - uniforme[0,1], $g_x(x) = 1$, 0<x<1
- Determinar c tal que $f(x) \le c g(x)$ para $0 \le x \le 1$
- Ideia: encontrar máximo de f(x)/g(x)
 - derivar, igualar a zero, resolver para x, encontrar valor
 - máximo em $x = \frac{1}{4}$, $c = \frac{135}{64}$
- 1) Gerar valor para x a partir de g(x) (uniforme[0,1])
- 2) Gerar u uniforme(0, c g(x)) contínua, usando o x gerado
- 3) Se u < f(x), retorna x, caso contrário vai para 1)

Cenário Problemático

- Algoritmo de Monte Carlo é estimador universal
 - média amostral converge para valor esperado
- Problema: variância do estimador pode ser muito alta!
 - muitas, muitas amostras serão necessárias
- Exemplo

$$G_N = \sum_{i=1}^N g(i)$$
 $M_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$, $X_i \sim \text{Unif(1,N)}$

- *g(i)* é pequena (ou zero) para muitos valores de *i*, e grande para poucos valores
- Teremos que gerar muitas amostras para "acertar" os valores importantes de g(i)
- Ideias para atacar o problema?

Importance Sampling

- Amostrar com probabilidade diferente da original
 - uniforme no exemplo anterior
- Amostrar com maior probabilidade região mais importante para o problema em questão
 - importance sampling
- Compensar pelo aumento desta probabilidade
- Usar método de Monte Carlo em problema reformulado
 - com novas funções de distribuição
- Objetivo: reduzir a variância do estimador
 - isto nem sempre ocorre, pois se exagerar demais vai ter que compensar com mais amostras!
 - técnica tem que ser usada com cuidado

Importance Sampling

Seja X uma v.a. uniforme(1,N)

$$E[g(X)] = \sum_{i=1}^{N} P[X=i]g(i) = \frac{1}{N} \sum_{i=1}^{N} g(i) = \frac{G_N}{N}$$

Seja Y v.a. com distribuição dada por h(i) > 0 para todo i

$$E_h\left[\frac{g(Y)}{h(Y)}\right] = \sum_{i=1}^{N} \frac{g(i)}{h(i)} h(i) = \sum_{i=1}^{N} g(i) = G_N$$

- Podemos estimar G_N estimando o valor esperado através da média amostral
 - Monte Carlo aplicado a outro valor esperado
- Usar *h* para reduzir variância!

Importance Sampling

• Seja Y_i uma sequência iid de v.a. com distribuiição h(i)

$$M_{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{g(Y_{i})}{h(Y_{i})}$$

Média e variância do novo estimador

$$E_{h}[M_{n}] = E_{h}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{g(Y_{i})}{h(Y_{i})}\right] = \frac{1}{n}\sum_{i=1}^{n}E_{h}\left[\frac{g(Y_{i})}{h(Y_{i})}\right] = G_{N}$$

- M_n converge para $E_h[g(Y) / h(Y)] = G_N$
- Variância do estimador depende da variância de g(Y)/h(Y)

Variância da Nova v.a.

Temos g(Y)/h(Y), onde Y possui distribuição h, com h_i >0 para todo i

$$\sigma_{g/h}^{2} = Var_{h} \left[\frac{g(Y)}{h(Y)} \right] = E_{h} \left[\left(\frac{g(Y)}{h(Y)} \right)^{2} \right] - E_{h} \left[\frac{g(Y)}{h(Y)} \right]^{2}$$

$$= G$$

Segundo momento

$$E_h\left[\left(\frac{g(Y)}{h(Y)}\right)^2\right] = \sum_{i=1}^N \left(\frac{g(i)}{h(i)}\right)^2 h(i) = \sum_{i=1}^N \frac{g(i)^2}{h(i)}$$

- E_h[g(Y)/h(Y)] não depende de h, mas segundo momento depende
 - variância de M_n depende apenas do segundo momento

• Dado *N*, calcular
$$G_N = \sum_{i=1}^{N} g(i)$$
 onde $g(i) = i \log i$

- Seja Y_i seq iid de v.a. com distribuição h(i) > 0 para todo i
- Opção 1: h(i) = 1/N para todo i, ou seja, h(i) é uniforme(1,N)
 - o que temos feito até agora
- Segundo momento?

$$\sum_{i=1}^{N} \frac{g(i)^{2}}{h(i)} = N \sum_{i=1}^{N} g(i)^{2} = N \sum_{i=1}^{N} i^{2} \log^{2} i$$

- Como reduzir segundo momento?
- Ideia: escolher h(i) proporcionalmente a g(i)
 - maiores valores tem maior probabilidade (com cuidado)

'igueiredo' 2018

- Opção 2: $h(i) = i / K_2$, ou seja linearmente proporcional a i
 - onde $K_2 = 1+2+...+N = N(N+1)/2$
- Segundo momento?

$$\sum_{i=1}^{N} \frac{g(i)^{2}}{h(i)} = K_{2} \sum_{i=1}^{N} \frac{g(i)^{2}}{i} = K_{2} \sum_{i=1}^{N} i \log^{2} i$$

- Opção 3: $h(i) = i^3 / K_3$, ou seja cúbica em i
 - onde $K_3 = 1^3 + 2^3 + ... + N^3 = N^2(1 + N)^2/4$

$$\sum_{i=1}^{N} \frac{g(i)^{2}}{h(i)} = K_{3} \sum_{i=1}^{N} \frac{g(i)^{2}}{i^{3}} = K_{3} \sum_{i=1}^{N} \frac{\log^{2} i}{i}$$

- Qual é a melhor opção?
- A que tiver menor variância (ou menor segundo momento)
- Com N=1000, vamos calcular!

Opção 2

Opção 3

$$E_{h}\left[\left(\frac{g(Y)}{h(Y)}\right)^{2}\right] = 1.44 \times 10^{13} \quad E_{h}\left[\left(\frac{g(Y)}{h(Y)}\right)^{2}\right] = 1.03 \times 10^{13} \quad E_{h}\left[\left(\frac{g(Y)}{h(Y)}\right)^{2}\right] = 2.75 \times 10^{13}$$

- Melhor estimador é a **opção 2** (menor variância)
 - significa menos amostras para um mesmo erro
 - ou menos erro para um mesmo número de amostras
- Qual seria a melhor h(i) possível?

O Melhor h(i) Possível

• h(i) que induz variância zero é o melhor possível!

$$\sigma_{g/h}^{2} = E_{h} \left[\left(\frac{g(Y)}{h(Y)} - \mu_{g/h} \right)^{2} \right] = \sum_{i=1}^{N} \left(\frac{g(i)}{h(i)} - \mu_{g/h} \right)^{2} h(i)$$

$$E[g(Y)/h(Y)] = G_{N}$$

- Se $\frac{g(i)}{h(i)} = \mu_{g/h}$ para todo i, então variância é zero!
- A princípio, podemos escolher qualquer h(i). Qual o problema então?
- Precisamos saber $\mu_{g/h}$ que é justamente o que queremos estimar!
- Ideia: tentar aproximar esta relação com heurísticas

Generalização

 Supor que queremos calcular um determinado valor esperado, onde X tem distribuição dada por f

$$\mu_f = E_f[g(X)] = \sum_i g(i)f(i)$$

- Podemos aplicar *Importance Sampling* neste problema
 - amostrar mais regiões mais importantes para g
- Seja h outra distribuição para v.a. X, tal que f(i) > 0 → h(i) > 0

$$\mu_f = \sum_{i} \frac{g(i)f(i)}{h(i)} h(i) = E_h \left[\frac{g(X)f(X)}{h(X)} \right]$$

- Temos um outro valor esperado E_n que pode ser estimado
 - X em E_h tem distribuição h
- Podemos reduzir variância escolhendo h

Importance Sampling (IS)

 Calcular valor esperado da função g(X), onde X tem distribuição dada por f

$$\mu_f = E_f[g(X)] = \sum_{i=1}^{N} g(i) f(i) - f(i) = P[X = i]$$

- **Problemas:** N é muito grande; difícil gerar amostras de f; g(i) não "combina bem" com f(i)
- Solução: usar outra distribuição h para amostrar
- Seja h distribuição para v.a. X, tal que $f(i) > 0 \rightarrow h(i) > 0$

$$\mu_f = \sum_i \frac{g(i)f(i)}{h(i)} h(i) = E_h \left[\frac{g(X)f(X)}{h(X)} \right]$$

• Podemos estimar E_{h} usando MC para estimar μ_{f}

Algoritmo

• Monte Carlo para estimar $\mu_f = E_h[g(X)f(X)/h(X)]$: S = 0;

para i = 1, ..., n

Gerar amostra x com distribuição h;

S = S + g(x)f(x)/h(x);

retorne S/n

- Algoritmo gera amostras de h e não de f
- Se h for bem escolhida, variância do estimador com IS pode ser menor que estimador usando f
 - outra razão para usar IS

Generalização 2

- Tudo vale para o caso de v.a. contínua
 - trocar distribuição por densidade, somatório por integral
- Muitas aplicações no caso contínuo
 - Monte Carlo Ray Tracing n\u00e3o funciona sem Importance Sampling
 - Espaço de integração é muito grande para uniforme dar bons resultados
 - Muitas heurísticas são usadas nesta aplicação
- Outro uso: estimar eventos de baixa probabilidade
 - E[I(evento A)] = p_A , onde A é evento de interesse
 - Mesma ideia, reduzir variância do estimador, aumentar amostragem do evento de interesse