The Fundamental Groupoid

Riley Shahar

Objects

x y

Z

- Objects
- Morphisms

- Objects
- Morphisms
- Composition

- Objects
- Morphisms
- Composition
- Identities

Category Axioms

Category Axioms

Associative

Category Axioms

► Set: Sets and Functions

Set: Sets and Functions

► Grp: Groups and Homomorphisms

Set: Sets and Functions

► Grp: Groups and Homomorphisms

► Top: Spaces and Continuous Functions

- Objects
- Morphisms
- Composition
- Identities

- ▶ Objects: There is a single object, *.
- ► Morphisms
- Composition
- Identities

- ▶ Objects: There is a single object, *.
- ▶ Morphisms: For each $x \in G$, there is a morphism x.
- Composition
- Identities

- ▶ Objects: There is a single object, *.
- ▶ Morphisms: For each $x \in G$, there is a morphism x.
- ► Composition: Composition is the group multiplication.
- Identities

- Objects: There is a single object, *.
- ▶ Morphisms: For each $x \in G$, there is a morphism x.
- ► Composition: Composition is the group multiplication.
- ▶ Identities: The identity 1_* is the morphism e.

Take a group G. Make a category \mathbb{G} :

- Objects: There is a single object, *.
- ▶ Morphisms: For each $x \in G$, there is a morphism x.
- Composition: Composition is the group multiplication.
- ▶ Identities: The identity 1_* is the morphism e.

Moral: not all categories have structured sets for objects and structure-preserving functions for morphisms.

Goal: generalize bijections, group isomorphisms, homeomorphisms etc.

Goal: generalize bijections, group isomorphisms, homeomorphisms etc.

Definition

A morphism $f: x \to y$ is an *isomorphism* when there exists an *inverse morphism* $g: y \to x$ such that

$$\mathit{fg} = 1_{\mathsf{y}} \quad \mathsf{and} \quad \mathit{gf} = 1_{\mathsf{x}}.$$

Goal: generalize bijections, group isomorphisms, homeomorphisms etc.

Definition

A morphism $f: x \to y$ is an isomorphism when there exists an inverse morphism $g: y \to x$ such that

$$\mathit{fg} = 1_{\mathsf{y}} \quad \mathsf{and} \quad \mathit{gf} = 1_{\mathsf{x}}.$$

What are isomorphisms in \mathbb{G} ?

Goal: generalize bijections, group isomorphisms, homeomorphisms etc.

Definition

A morphism $f: x \to y$ is an *isomorphism* when there exists an *inverse morphism* $g: y \to x$ such that

$$fg = 1_y$$
 and $gf = 1_x$.

What are isomorphisms in \mathbb{G} ? Everything!

What are isomorphisms in $\mathbb{G}?$ Everything!

What are isomorphisms in $\mathbb{G}\mbox{.}$ Everything! Let's generalize!

What are isomorphisms in \mathbb{G} ? Everything! Let's generalize!

Definition

A *groupoid* is a category in which every morphism is an isomorphism.

What are isomorphisms in \mathbb{G} ? Everything! Let's generalize!

Definition

A *groupoid* is a category in which every morphism is an isomorphism.

If you relax the requirement that paths in the fundamental group are loops, you get the fundamental groupoid Π_1 .

▶ Is the fundamental groupoid a homotopy invariant? By the most obvious notion of groupoid isomorphism, **no**.

- ▶ Is the fundamental groupoid a homotopy invariant? By the most obvious notion of groupoid isomorphism, **no**.
- The problem is that there are many more points in D^n than $\{*\}$, hence many more objects in $\Pi_1(D^n)$ than $\Pi_1(\{*\})$.

- ▶ Is the fundamental groupoid a homotopy invariant? By the most obvious notion of groupoid isomorphism, **no**.
- The problem is that there are many more points in D^n than $\{*\}$, hence many more objects in $\Pi_1(D^n)$ than $\Pi_1(\{*\})$.
- ➤ The naive notion of isomorphism is too strong: we need a kind of weak equivalence, much like homotopy for topological spaces, for categories.

- ▶ Is the fundamental groupoid a homotopy invariant? By the most obvious notion of groupoid isomorphism, **no**.
- The problem is that there are many more points in D^n than $\{*\}$, hence many more objects in $\Pi_1(D^n)$ than $\Pi_1(\{*\})$.
- ► The naive notion of isomorphism is too strong: we need a kind of weak equivalence, much like homotopy for topological spaces, for categories.
- ► This line of thought naturally leads to "higher categories", with morphisms between morphisms, etc.