Docente, F. Morandin

Laurea Triennale in Informatica

28 settembre 2018

Introduzione alla Statistica

Scritto 4

Si svolgano 3 esercizi a scelta sui 4 proposti. In nessun caso verranno assegnati punti per più di 3 esercizi.

Problema 4.1 (11 punti). Un certo calciatore, che gioca da attaccante, segna in media a=0.720 gol a partita.

- (7 punti) Che tipo di variabile aleatoria si può usare per modellizzare il numero di gol segnati da questo giocatore in una singola partita? Perché? Quanto varrà più o meno la probabilità che dopo 34 partite l'attaccante abbia totalizzato almeno 31 gol?
- (2 punti) Un altro calciatore, che gioca da difensore, segna in media b=0.044 gol a partita. Quanto varrà più o meno la probabilità che dopo 34 partite il difensore abbia totalizzato almeno 1 gol?
- (2 punti) Si suppone che in una partita i gol fatti da questo attaccante e da questo difensore siano variabili aleatorie indipendenti. Se la somma dei gol dei due giocatori è 2, qual è la probabilità che siano stati segnati 1 dall'attaccante e 1 dal difensore?

Problema 4.2 (11 punti). Sia X una variabile aleatoria continua con densità

$$f_X(t) = \begin{cases} ct & 0 \le t < a \\ 0 & \text{altrove} \end{cases}$$

dove a, c > 0 sono parametri.

(7 punti) Si determinino $a \in c$ in modo tale che E[X] = 2. Si determini quindi la mediana di X. Si tracci il grafico di f_X indicando media e mediana.

(2 punti) Si determini la densità di $Y := (X-2)^2$.

(2 punti) Si determini la densità di Z := |X - 2|.

Problema 4.3 (12 punti). Per temporizzare in modo ottimale un semaforo, si vuole preliminarmente

studiare la frequenza con cui gli autoveicoli arrivano all'incrocio

Il tempo che passa tra l'arrivo di uno e del successivo è ipotizzato avere distribuzione esponenziale di media β incognita.

- (7 punti) Misurando 30 di questi tempi si trovano media campionaria di 27.4 secondi e deviazione standard campionaria di 18.5 secondi. Questi dati sono compatibili al 10% di significatività con l'ipotesi che β non superi i 20 secondi?
- (2 punti) Si calcoli la potenza del test del punto precedente per $\beta = 30$.
- (3 punti) Si determini un intervallo di confidenza unilaterale sinistro al 90% di confidenza per il percentile¹ 80-esimo della distribuzione esponenziale in esame.

Problema 4.4 (12 punti). Da uno studio recente² sul tempo impiegato per conseguire la laurea triennale in informatica, condotto su 25 laureati di Parma, è risultata una media campionaria di 4.2 anni e una deviazione standard campionaria di 0.55 anni.

- (6 punti) Si dia un intervallo di confidenza al 95% per la durata media del corso di studi.
- (2 punti) La media nazionale è invece di 5 anni. Si testi tramite il calcolo del p-dei-dati se questi dati dimostrano che la durata media del corso di studi di Parma sia inferiore a quella nazionale.
- (3 punti) Uno studio analogo su 35 laureati di un altro ateneo ha dato una media campionaria di 4.8 anni e una deviazione standard campionaria di 0.78 anni. Si verifichi al 5% di significatività se questi dati dimostrano che le durate medie dei due corsi di laurea sono diverse.

¹Si ricorda che con 80-esimo percentile della distribuzione di X, si intende un numero reale y tale che $P(X \le y) = 80\%$.

²Dati in parte inventati. La durata media per Parma è vera.