ZILFIMIAN

KNN/Regularization (Q8L9)

52% (11/21)

- ★ 1. The bias of an estimator (e.g. z^) equals...Hint: the OLS coefficients are unbias:)
 - (A) E(z^) z
 - (B) $E(z^2) [E(z)]^2$
 - $E(z^2) E(z)^2$
 - D E(z^2)
 - (E) I do not know
- X 2. The main idea of regularization is
 - (A) To introduce a small amount of bias in order to have less variance.
 - (B) To introduce a small amount of variance in order to have less bias.
 - To introduce a small amount of variance and bias in order to have less bias.
 - D I do not know
- × 3. How the tune of any parametr can be made
 - (A) using Cross validation
 - B It is impossible
 - (c) I do not now
 - (D) using larger sample
 - e only having population
- ✓ 4. The ridge coefficient estimates shrink towards zero
 - A when lambda increases
 - B when lambda decreases
 - C when lambda = 0
 - D I do not know
- X 5. Which one can shrink the slope all the way to 0?
 - (A) Lasso
 - B Ridge
 - C Regression
 - D I do not know

6.	When lambda = 0, we have
(A)	Ridge
B	Lasso
C	EL
D	Regression
E	I do not know
7.	When alpha = 0, we have
A	Ridge
В	Lasso
	EL .
\sim	Regression
\sim	I do not know
	T do not know
8.	Which function can help to perform cross-validation for regularization in R?
A	cv.glmnet()
B	cros_val()
C	glmnet(method = "cv)
(D)	I do not know
9.	KNN is
(A)	Data-driven
В	Model-driven
(C)	I do not now
10.	KNN is
A	parametric method
В	non-parametric method
C	I do not know
11.	The dependent variable of the (OLS) regression is
(A)	categorical
(B)	ordinal
	continuous
D	count
\sim	I do not know
	A B C D E 8. A B C D 9. A B C D 11. A B C D 11. A B C D C D 11. A B C D D C D D D D D

Elena Page 2 of 4

/	12. A	The dependent variable of the classification is categorical
	\bigcirc B	numeric
	C	I do not know
×	13.	How to chose K?
	(A)	pick own
	(B)	using cross-validation
	(c)	the largest one
	D	the smallest one
/	14.	KNN can be used for regression
	A	Yes
	(B)	No
	(c)	I do not know
×	15.	In the case of KNN classification we use
	A	average of outcomes
	B	majority voting scheme
	<u>C</u>	I do not know
/	16.	Which of these errors will increase constantly by increasing k?
	A	train error
	(B)	test error
	(c)	both
	D	I do not know
×	17.	This function can be used to perform KNN in R
	(A)	knn()
	B	k_nn()
	\bigcirc	knnreg()
	D	knearneib()
	E	I do not know
	$\overline{}$	

Elena Page 3 of 4

/	18.	With the increase of k, the decision boundary will be
	A	simplified
	B	more complex
	C	I do not know
	D	unchanged
/	19.	The best k correspond to
	A	the lowest point of test error
	B	the lowest point of train error
	C	the highest point of test error
	D	I do not know
/	20.	KNN algorithm is sensitive to outliers
	A	True
	В	False
	C	I do not know
/	21.	KNN
	A	is a supervised learning algorithm.
	B	is an unsupervised learning algorithm.
	C	I do not know

Elena Page 4 of 4