maxon motor

maxon motor control	ESCON Servo Controller
Hardware Reference	Edition November 2015

ESCON Module 50/5

Servo Controller P/N 438725

Hardware Reference

Document ID: rel5744

maxon motor

TABLE OF CONTENTS

1	About			3
		1.1	About this Document	3
		1.2	About the Device	
		1.3	About the Safety Precautions	5
2	Specifica	ations		7
		2.1	Technical Data	7
		2.2	Standards	10
3	Setup			11
		3.1	Generally applicable Rules	11
		3.2	Configuration of Power Supply	12
		3.3	Connections	13
		3.4	Potentiometer	23
		3.5	Status Indicators	24
4	Wiring			25
		4.1	DC Motors	26
		4.2	EC Motors	29
5	Motherbo	oard D	Design Guide	31
		5.1	Requirements for Components of Third-party Suppliers	32
		5.2	Design Guidelines	35
		5.3	THT Footprint	35
		5.4	Pin Assignment	36
		5.5	Technical Data	36
		5.6	Dimensional Drawing	36
		5.7	ESCON Module Motherboard (438779)	37
		5.8	Spare Parts	50

READ THIS FIRST

These instructions are intended for qualified technical personnel. Prior commencing with any activities ...

- you must carefully read and understand this manual and
- you must follow the instructions given therein.

The ESCON Module 50/5 is considered as partly completed machinery according to EU Directive 2006/42/EC, Article 2, Clause (g) and is intended to be incorporated into or assembled with other machinery or other partly completed machinery or equipment.

Therefore, you must not put the device into service, ...

- unless you have made completely sure that the other machinery fully complies with the EU directive's requirements!
- unless the other machinery fulfills all relevant health and safety aspects!
- unless all respective interfaces have been established and fulfill the herein stated requirements!

1 About

1.1 About this Document

1.1.1 Intended Purpose

The purpose of the present document is to familiarize you with the ESCON Module 50/5 Servo Controller. It will highlight the tasks for safe and adequate installation and/or commissioning. Follow the described instructions ...

- · to avoid dangerous situations,
- · to keep installation and/or commissioning time at a minimum,
- · to increase reliability and service life of the described equipment.

The document contains performance data and specifications, information on fulfilled standards, details on connections and pin assignment, and wiring examples. In addition, the document also includes a Motherboard Design Guide and detailed information on the optionally available «ESCON Module Motherboard».

1.1.2 Target Audience

The present document is intended for trained and skilled personnel. It conveys information on how to understand and fulfill the respective work and duties.

1.1.3 How to use

Take note of the following notations and codes which will be used throughout the document.

Notation	Meaning
(n)	refers to an item (such as order number, list item, etc.)
→	denotes "see", "see also", "take note of" or "go to"

Table 1-1 Notation used

1.1.4 Symbols & signs

In the course of the present document, the following symbols and signs will be used.

Туре	Symbol	Meaning	
Safety Alert (ty		DANGER	Indicates an imminent hazardous situation. If not avoided, it will result in death or serious injury.
	(typical)	WARNING	Indicates a potential hazardous situation. If not avoided, it may result in death or serious injury.
	,	CAUTION	Indicates a probably hazardous situation or calls the attention to unsafe practices. If not avoided, it may result in injury .
Prohibited Action	(typical)	Indicates a dangerous action. Hence, you must not!	

Туре	Symbol	Meaning	
Mandatory Action	(typical)	Indicates a mandatory action. Hence, you must!	
Information		Requirement / Note / Remark	Indicates an activity you must perform prior to continuing, or gives information on a particular item you need to observe.
		Best Practice	Indicates advice or a recommendation on the easiest and best way to proceed.
	**	Material Damage	Indicates instructions on how to prevent damage to the equipment.

Table 1-2 Symbols & Signs

1.1.5 Trademarks and Brand Names

For easier legibility, registered brand names are listed below and will not be further tagged with their respective trademark. It must be understood that the brands (the list below is not necessarily concluding) are protected by copyright and/or other intellectual property rights even if their legal trademarks are omitted in the later course of this document.

Brand Name	Trademark Owner
Littelfuse® SMD NANO2®	© Littelfuse, USA-Chicago, IL
Windows®	© Microsoft Corporation, USA-Redmond, WA

Table 1-3 Brand Names and Trademark Owners

1.1.6 Copyright

© 2015 maxon motor. All rights reserved.

The present document – including all parts thereof – is protected by copyright. Any use (including reproduction, translation, microfilming, and other means of electronic data processing) beyond the narrow restrictions of the copyright law without the prior approval of maxon motor ag, is not permitted and subject to prosecution under the applicable law.

maxon motor ag

 Brünigstrasse 220
 Phone
 +41 41 666 15 00

 P.O.Box 263
 Fax
 +41 41 666 16 50

 CH-6072 Sachseln
 Web
 www.maxonmotor.com

1.2 About the Device

The ESCON Module 50/5 is a small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated brushed DC motors or brushless EC motors up to approximately 250 Watts.

The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON Module 50/5 is designed being commanded by an analog set value and features extensive analog and digital I/O functionality.

The miniaturized OEM plug-in module can be seamlessly integrated in complex customer applications. A suitable motherboard is available for the initial commissioning.

The device is designed to be configured via USB interface using the graphical user interface «ESCON Studio» for Windows PCs.

You can download the latest ESCON software version (as well as the latest edition of the documentation) from the internet under →http://escon.maxonmotor.com.

1.3 About the Safety Precautions

- Make sure that you have read and understood the note "READ THIS FIRST" on page A-2!
- Do not engage in any work unless you possess the stated skills (→chapter "1.1.2 Target Audience" on page 1-3)!
- Refer to → chapter "1.1.4 Symbols & signs" on page 1-3 for explanations of the symbols used in the following!
- You must observe any regulation applicable in the country and/or at the site of implementation with regard to health and safety/accident prevention and/or environmental protection!

DANGER

High Voltage and/or Electrical Shock

Touching live wires causes death or serious injuries!

- Consider any power cable as connected to live power, unless having proven the opposite!
- Make sure that neither end of cable is connected to live power!
- Make sure that power source cannot be engaged while work is in process!
- · Obey lock-out/tag-out procedures!
- Make sure to securely lock any power engaging equipment against unintentional engagement and tag it with your name!

Requirements

- Make sure that all associated devices and components are installed according to local regulations.
- Be aware that, by principle, an electronic apparatus can not be considered fail-safe. Therefore, you
 must make sure that any machine/apparatus has been fitted with independent monitoring and safety
 equipment. If the machine/apparatus should break down, if it is operated incorrectly, if the control unit
 breaks down or if the cables break or get disconnected, etc., the complete drive system must return –
 and be kept in a safe operating mode.
- Be aware that you are not entitled to perform any repair on components supplied by maxon motor.

Electrostatic Sensitive Device (ESD)

- Make sure to wear working cloth in compliance with ESD.
- Handle device with extra care.

maxon motor

About the Safety Precautions

••page intentionally left blank••

2 Specifications

2.1 Technical Data

ESCON Module 50/5 (438725)			
	Nominal operating voltage +V _{CC}	1050 VDC	
	Absolute operating voltage +V _{CC min} /+V _{CC max}	8 VDC/56 VDC	
	Output voltage (max.)	0.98 x +V _{cc}	
	Output current I _{cont} /I _{max} (<20 s)	5 A/15 A	
	Pulse width modulation frequency	53.6 kHz	
Electrical Rating	Sampling rate of PI current controller	53.6 kHz	
	Sampling rate of PI speed controller	5.36 kHz	
	Max. efficiency	98%	
	Max. speed of DC motor	limited by max. permissible speed (motor) and max. output voltage (controller)	
	Max. speed EC motor	150,000 rpm (1 pole pair)	
	Built-in motor choke	-	
	Analog input 1 Analog input 2	12-bit resolution; −10+10 V; differential	
	Analog output 1 Analog output 2	12-bit resolution ; -4+4 V; referenced to GND	
Inputs & Outputs	Digital input 1 Digital input 2	+2.4+36 VDC (R_i = 38.5 kΩ)	
	Digital input/output 3 Digital input/output 4	+2.4+36 VDC (R _i = 38.5 kΩ)/max. 36 VDC (I _L <500 mA)	
	Hall sensor signals	H1, H2, H3	
	Encoder signals	A, A B, B (max. 1 MHz)	
	Auxiliary output voltage	+5 VDC (I _L ≤10 mA)	
Voltage Outputs	Hall sensor supply voltage	+5 VDC (I _L ≤30 mA)	
	Encoder supply voltage	+5 VDC (I _L ≤70 mA)	
Potentiometer	Potentiometer P1 (on board)	210°; linear	
Motor	DC motor	+ Motor, - Motor	
Connections	EC motor	Motor winding 1, Motor winding 2, Motor winding 3	
Interface	USB 2.0 / USB 3.0	full speed	
Status Indicators	Operation	green LED	
	Error	red LED	
	Weight	approx. 12 g	
Physical	Dimensions (L x W x H)	43.2 x 31.8 x 12.7 mm	
	Connection	Plugs into socket headers with 2.54 mm pitch	

ESCON Module 50/5 (438725)			
Environmental Conditions	Temperature	Operation	−30+45 °C
		Extended range *1)	+45+75 °C Derating →Figure 2-1
		Storage	-40+85 °C
	Altitude *2)	Operation	06'000 m MSL
		Extended range *1)	6'00010'000 m MSL Derating → Figure 2-1
	Humidity	590% (condensation	not permitted)

- *1) Operation within the extended range (temperature and altitude) is permitted. However, a respective derating (declination of output current I_{cont}) as to the stated values will apply.
- *2) Operating altitude in meters above Mean Sea Level, MSL.

Table 2-4 Technical Data

Figure 2-1 Derating Output Current

Figure 2-2 Dimensional Drawing [mm]

2.2 Standards

The described device has been successfully tested for compliance with the below listed standards. In practical terms, only the complete system (the fully operational equipment comprising all individual components, such as motor, servo controller, power supply unit, EMC filter, cabling etc.) can undergo an EMC test to ensure interference-free operation.

Important Notice

The device's compliance with the mentioned standards does not imply its compliance within the final, ready to operate setup. In order to achieve compliance of your operational system, you must perform EMC testing of the involved equipment as a whole.

	Electromagnetic compatibility		
Generic standards	IEC/EN 61000-6-2	Immunity for industrial environments	
	IEC/EN 61000-6-3	Emission standard for residential, commercial and light-industrial environments	
Applied standards	IEC/EN 61000-6-3 IEC/EN 55022 (CISPR22)	Radio disturbance characteristics/radio interference	
	IEC/EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test >10 V/m	
	IEC/EN 61000-4-4	Electrical fast transient/burst immunity test ±2 kV	
	IEC/EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 10 Vrms	

	Others		
Environmental standards	IEC/EN 60068-2-6	Environmental testing – Test Fc: Vibration (sinusoidal, 10500 Hz, 20 m/s²)	
	MIL-STD-810F	Random transport (10500 Hz up to 2.53 g _{rms})	
Safety standards	UL File Number E243951; unassembled printed circuit board		
Reliability	Reliability prediction of electronic equipment Environment: Ground, benign (GB) Ambient temperature: 298 K (25 °C) Component stress: In accordance with circuit diagram a nominal power Mean Time Between Failures (MTBF): 639'548 hours		

Table 2-5 Standards

Setup

Generally applicable Rules

3 Setup

IMPORTANT NOTICE: PREREQUISITES FOR PERMISSION TO COMMENCE INSTALLATION

The ESCON Module 50/5 is considered as partly completed machinery according to EU Directive 2006/42/EC, Article 2, Clause (g) and is intended to be incorporated into or assembled with other machinery or other partly completed machinery or equipment.

WARNING

Risk of Injury

Operating the device without the full compliance of the surrounding system with EU Directive 2006/42/EC may cause serious injuries!

- Do not operate the device, unless you have made completely sure that the other machinery fully complies with the EU directive's requirements!
- Do not operate the device, unless the other machinery fulfills all relevant health and safety aspects!
- Do not operate the device, unless all respective interfaces have been established and fulfill the requirements stated in this document!

3.1 Generally applicable Rules

Maximal permitted Supply Voltage

- Make sure that operating voltage is between 10...50 VDC.
- Supply voltages above 56 VDC, or wrong polarity will destroy the unit.
- Note that the necessary output current is depending on the load torque. Yet, the output current limits
 of the ESCON Module 50/5 are as follows; continuous max. 5 A / short-time (acceleration) max. 15 A.

3.2 Configuration of Power Supply

Basically, any power supply may be used, provided it meets the minimal requirements stated below.

Power Supply Requirements		
Output voltage	+V _{cc} 1050 VDC	
Absolute output voltage	min. 8 VDC; max. 56 VDC	
Output current	 Depending on load continuous max. 5 A short-time (acceleration, <20 s) max. 15 A 	

- 1) Use the formula below to calculate the required voltage under load.
- 2) Choose a power supply according to the calculated voltage. Thereby consider:
 - a) During braking of the load, the power supply must be capable of buffering the recovered kinetic energy (for example, in a capacitor).
 - b) If you are using an electronically stabilized power supply, make sure that the overcurrent protection circuit is configured inoperative within the operating range.

Note

The formula already takes the following into account:

- · Maximum PWM duty cycle of 98%
- Controller's max. voltage drop of 1 V @ 5 A

KNOWN VALUES:

- Operating torque M [mNm]
- Operating speed n [rpm]
- Nominal motor voltage U_N [Volt]
- Motor no-load speed at U_N, n₀ [rpm]
- Speed/torque gradient of the motor Δn/ΔM [rpm/mNm]

SOUGHT VALUE:

Supply voltage +V_{CC} [Volt]

SOLUTION:

$$V_{CC} \ge \left[\frac{U_N}{n_O} \cdot \left(n + \frac{\Delta n}{\Delta M} \cdot M\right) \cdot \frac{1}{0.98}\right] + 1[V]$$

3.3 Connections

The actual connection will depend on the overall configuration of your drive system and the type of motor you will be using.

Follow the description in the given order and choose the wiring diagram that best suits the components you are using. For corresponding wiring diagrams → Chapter "4 Wiring" on page 4-25.

3.3.1 Pin Assignment

Figure 3-3 Pin Assignment

Pin	Signal	Description
1/2	Motor (+M) Motor winding 1	DC motor: Motor + EC motor: Winding 1
3/4	Motor (-M) Motor winding 2	DC motor: Motor – EC motor: Winding 2
5/6	Motor winding 3	EC motor: Winding 3
7/8	+V _{CC}	Nominal operating voltage (+10+50 VDC)
9/10	Power_GND GND	Ground of operating voltage Ground
11	+5 VDC	Hall sensor supply voltage (+5 VDC; ≤30 mA) Encoder supply voltage (+5 VDC; ≤70 mA) Auxiliary output voltage (+5 VDC; ≤10 mA)
12	Channel A	Encoder channel A
13	Hall sensor 1	Hall sensor 1 input
14	Channel A\	Encoder channel A complement
15	Hall sensor 2	Hall sensor 2 input
16	Channel B	Encoder channel B
17	Hall sensor 3	Hall sensor 3 input
18	Channel B\	Encoder channel B complement

Table 3-6 Pin Assignment (Pins 1-18)

Figure 3-4 Pin Assignment

Pin	Signal	Description	
19	DigIN/DigOUT4	Digital input/output 4	
20	DigIN/DigOUT3	Digital input/output 3	
21	DigIN2	Digital input 2	
22	DigIN1	Digital input 1	
23	GND	Ground	
24	AnOUT2	Analog output 2	
25	AnOUT1	Analog output 1	
26	AnIN2-	Analog input 2, negative signal	
27	AnIN2+	Analog input 2, positive signal	
28	AnIN1-	Analog input 1, negative signal	
29	AnIN1+	Analog input 1, positive signal	

Table 3-7 Pin Assignment (Pins 19-29)

3.3.2 Hall Sensor

Hall sensor supply voltage	+5 VDC
Max. Hall sensor supply current	30 mA
Input voltage	024 VDC
Max. input voltage	+24 VDC
Logic 0	typically <1.0 V
Logic 1	typically >2.4 V
Internal pull-up resistor	10 k Ω (referenced to +5.45 V)

Figure 3-5 Hall Sensor 1 Input Circuit (analogously valid also for Hall Sensors 2 & 3)

3.3.3 Encoder

Best practice

- Differential signals offer good resistance against electrical interference. Therefore we **recommend using a differential scheme**. Nevertheless, the controller supports both schemes differential and single-ended (unsymmetrical).
- The controller does not require an index impulse (Ch I, Ch I\).
- For best performance, we strongly recommend using encoders with a line driver. Otherwise, speed limitations may apply due to slow switching edges.

Differential		
Min. differential input voltage	±200 mV	
Max. input voltage	+12 VDC/-12 VDC	
Line receiver (internal)	EIA RS422 standard	
Max. input frequency	1 MHz	

Figure 3-6 Encoder Input Circuit Ch A "Differential" (analogously valid also for Ch B)

Single-ended		
Input voltage	05 VDC	
Max. input voltage	+12 VDC/-12 VDC	
Logic 0	<1.0 V	
Logic 1	>2.4 V	
Input high current	I _{IH} = typically +420 μA @ 5 V	
Input low current	I_{IL} = typically −170 μA @ 0 V	
Max. input frequency	100 kHz	

Figure 3-7 Encoder Input Circuit Ch A "Single-ended" (analogously valid also for Ch B)

3.3.4 Digital I/Os

3.3.4.1 Digital Input 1

Input voltage	036 VDC
Max. input voltage	+36 VDC/-36 VDC
Logic 0	typically <1.0 V
Logic 1	typically >2.4 V
Input resistance	typically 47 k Ω (<3.3 V) typically 38.5 k Ω (@ 5 V) typically 25.5 k Ω (@ 24 V)
Input current at logic 1	typically 130 μA @ +5 VDC
Switching delay	<8 ms

PWM frequency range	10 Hz5 kHz
PWM duty cycle range (resolution)	1090% (0.1%)
RC Servo cycle duration	330 ms
RC Servo pulse length	12 ms

3.3.4.2 Digital Input 2

Input voltage	036 VDC
Max. input voltage	+36 VDC/-36 VDC
Logic 0	typically <1.0 V
Logic 1	typically >2.4 V
Input resistance	typically 47 k Ω (<3.3 V) typically 38.5 k Ω (@ 5 V) typically 25.5 k Ω (@ 24 V)
Input current at logic 1	typically 130 μA @ +5 VDC
Switching delay	<8 ms

3.3.4.3 Digital Inputs/Outputs 3 and 4

DigIN		
Input voltage	036 VDC	
Max. input voltage	+36 VDC	
Logic 0	typically <1.0 V	
Logic 1	typically >2.4 V	
Input resistance	typically 47 k Ω (<3.3 V) typically 38.5 k Ω (@ 5 V) typically 25.5 k Ω (@ 24 V)	
Input current at logic 1	typically 130 μA @ +5 VDC	
Switching delay	<8 ms	

Figure 3-10 DigIN3 Circuit (analogously valid also for DigIN4)

DigOUT		
Max. input voltage	+36 VDC	
Max. load current	500 mA	
Max. voltage drop	0.5 V @ 500 mA	
Max. load inductance	100 mH @ 24 VDC; 500 mA	

Figure 3-11 DigOUT3 Circuit (analogously valid also for DigOUT4)

Figure 3-12 DigOUT3 Wiring Examples (analogously valid also for DigOUT4)

3.3.5 Analog I/Os

3.3.5.1 Analog Inputs 1 and 2

Input voltage	-10+10 VDC (differential)
Max. input voltage	+24 VDC/-24 VDC
Common mode voltage	-5+10 VDC (referenced to GND)
Input resistance	80 kΩ (differential) 65 kΩ (referenced to GND)
A/D converter	12-bit
Resolution	5.64 mV
Bandwidth	10 kHz

Figure 3-13 AnIN1 Circuit (analogously valid also for AnIN2)

3.3.5.2 Analog Outputs 1 and 2

Output voltage	-4+4 VDC
D/A converter	12-bit
Resolution	2.42 mV
Refresh rate	AnOUT1: 26.8 kHz AnOUT2: 5.4 kHz
Analog bandwidth of output amplifier	50 kHz
Max. capacitive load	300 nF Note: The rate of the increase is limited in proportion to the capacitive load (e.g. 5 V/ms @300 nF).
Max. output current limit	1 mA

Figure 3-14 AnOUT1 Circuit (analogously valid also for AnOUT2)

3.3.6 USB (J7)

Figure 3-15 USB Socket J7

Note

Column "Head B" (→Table 3-8) refers to USB terminals of your PC.

J7 & Head A	Head B	Signal	Description
Pin	Pin		
1	1	V _{BUS}	USB BUS supply voltage input +5 VDC
2	2	D-	USB Data- (twisted pair with Data+)
3	3	D+	USB Data+ (twisted pair with Data-)
4	1	ID	not connected
5	4	GND	USB ground

Table 3-8 USB Socket J7 – Pin Assignment & Cabling

USB Type A - micro B Cable (403968)				
5 1	B			
Cable cross-section	According to USB 2.0 / USB 3.0 specification			
Length	1.5 m			
Head A	USB type "micro B", male			
Head B	USB type "A", male			

Table 3-9 USB Type A - micro B Cable

USB standard	USB 2.0 / USB 3.0 (full speed)
Max. bus operating voltage	+5.25 VDC
Typical input current	60 mA
Max. DC data input voltage	-0.5+3.8 VDC

3.4 Potentiometer

POTENTIOMETER P1

Figure 3-16 Potentiometer – Location & Adjustment Range

3.5 **Status Indicators**

Light-emitting diodes (LEDs) indicate the actual operating status (green) and possible errors (red).

Figure 3-17 LEDs - Location

	-n			
Green	ED Red	Status/Error		
		INUT		
off	off	INIT		
slow	off	DISABLE		
on	off	ENABLE		
2x	off	STOPPING; STO		
off	1x	ERROR	+Vcc Overvoltage Error+Vcc Undervoltage Error+5 VDC Undervoltage Error	
off	2x	ERROR	Thermal Overload ErrorOvercurrent ErrorPower Stage Protection ErrorInternal Hardware Error	
off	3x	ERROR	 Encoder Cable Break Error Encoder Polarity Error DC Tacho Cable Break Error DC Tacho Polarity Error 	
off	4x	ERROR	PWM Set Value Input out of Range Error	
off	5x	ERROR	Hall Sensor Pattern ErrorHall Sensor Sequence ErrorHall Sensor Frequency too high Error	
off	on	ERROR	Auto Tuning Identification Error Internal Software Error	
slow 1s slow 1x 2x 3x				
4x L				
5x 📙				

Table 3-10 LEDs - Interpretation of Condition

© 2015 maxon motor. Subject to change without prior notice.

4 Wiring

Figure 4-18 Interfaces – Designations and Location

Note

The subsequent diagrams feature this symbol:

•

Ground safety earth connection (optional)

4.1 DC Motors

MAXON DC MOTOR

Figure 4-19 maxon DC motor

MAXON DC MOTOR WITH DC TACHO Power Digital Supply +10...50 VDC DialN 1 I/O DinIN 2 DigIN/OUT 3 DigIN/OUT 4 +5 VDC DC Analog Motor I/O - +5 VDC DC Tacho AnIN __ 15 Hall sensor 2 J7 __ 17 Hall sensor 3 **USB** USB Data-USB Data+ _ 11 - +5 VDC VBUS __ 10 __ 12 Γ __14 - CHA __ 16 - Ch B - CH B maxon motor control

ESCON Module 50/5

Figure 4-20 maxon DC motor with DC Tacho

MAXON DC MOTOR WITH ENCODER

Figure 4-21 maxon DC motor with Encoder

4.2 EC Motors

MAXON EC MOTOR WITH HALL SENSORS

Figure 4-22 maxon EC motor with Hall Sensors

MAXON EC MOTOR WITH HALL SENSORS & ENCODER

Figure 4-23 maxon EC motor with Hall Sensors & Encoder

5 Motherboard Design Guide

The following provides helpful information on integrating the ESCON Module 50/5 on a printed circuit board. The «Motherboard Design Guide» contains recommendations for the layout of the motherboard and specifies external components that may be required, pin assignments, and connection examples.

CAUTION

Dangerous Action

Errors in implementing the Design can result in serious Injury!

- Only proceed if you are skilled in electronics design!
- Designing a printed circuit board requires special skills and knowledge and may only be performed by experienced electronic developers!
- This quick guide is only intended as an aid, does not make any claim to completeness, and will not automatically result in a functional component!

Bring in additional Support:

If you are not trained in the design and development of printed circuit boards, you will need additional support for this point.

maxon motor will be happy to provide you with a quote for designing and manufacturing a motherboard for your specific application.

maxon motor

Motherboard Design Guide Requirements for Components of Third-party Suppliers

5.1 Requirements for Components of Third-party Suppliers

5.1.1 Socket Headers

The ESCON Module 50/5's implementation with pin headers permits mounting in two different ways. The module can either be plugged onto a socket header (→Table 5-11) or be directly soldered to a printed circuit board.

5.1.2 Supply Voltage

To protect the ESCON Module 50/5, we recommend using an external circuit breaker, a TVS diode, and a capacitor in the voltage supply cable. In this regard, please note the following recommendations:

Figure 5-24 Wiring of Voltage Supply Cable

INPUT FUSE (FU1)

An input fuse (FU1) is necessary in order to provide reverse polarity protection. Together with an unipolar TVS diode (D1), this prevents current from flowing in the wrong direction.

TVS DIODE (D1)

To protect against overvoltage resulting from voltage transients or brake energy feedback, we recommend connecting a TVS (transient voltage suppressor) diode (D1) to the voltage supply cable.

CAPACITOR (C1)

The function of the ESCON Module 50/5 does not necessarily require the use of an external capacitor (C1). To further reduce voltage ripple and feedback currents, an electrolytic capacitor can be connected to the voltage supply cable.

5.1.3 Motor Cables/Motor Chokes

The ESCON Module 50/5 is not equipped with internal motor chokes.

The majority of motors and applications do not require additional chokes. However, in the case of high supply voltage with very low terminal inductance, the ripple of the motor current can reach an unacceptably high value. This causes the motor to heat up unnecessarily and causes instable control behavior. The minimum terminal inductance required per phase can be calculated using the following formula:

$$L_{phase} \ge \frac{1}{2} \cdot \left(\frac{V_{cc}}{6 \cdot f_{PWM} \cdot I_N} - (0.3 \cdot L_{motor}) \right)$$

 $L_{phase}[H]$ Additional external inductance per phase

 $V_{cc}[V]$ Operating voltage + V_{cc}

 $f_{PWM}[Hz]$ Switching frequency of the power stage = 53 600 Hz

 $I_N[A]$ Nominal current of the motor (ightharpoonup line 6 in the maxon catalog)

 $L_{motor}[H]$ Terminal inductance of the motor (\rightarrow line 11 in the maxon catalog)

If the result of the calculation is negative, no additional chokes are necessary. Nevertheless, the use of chokes in combination with additional filter components can be useful to reduce the emission of electromagnetic interference.

An additional choke must feature electromagnetic shielding, a high saturation current, minimal losses, and a nominal current greater than the continuous current of the motor. The below wiring example refers to an additional inductance of 22 μ H. If a different additional inductance is required, also the filter components must be adapted accordingly. Should you need further help with the filter design, contact maxon Support at \rightarrow http://support.maxonmotor.com.

Figure 5-25 Wiring of Motor Winding 1 (analogously valid also for Motor Windings 2 & 3)

5.1.4 Recommended Components and Manufacturers

Recommended components						
	Straight socket header, pluggable with 0.64 x 0.64 mm pin headers, 2.54 mm pitch, 3 A, contact material: gold					
Socket Header	Preci-Dip (803-87-018-10-005101) 9 poles, 2 rows Würth (613 018 218 21) E-tec (BL2-018-S842-55)					
	11 poles, 1 row	Preci-Dip (801-87-011-10-005101) Würth (613 011 118 21) E-tec (BL1-011-S842-55)				
FU1 Fuse	Littelfuse 157 series, fuse holder incl. SMD NANO2 Fuse 10 A very fast-acting, 26.46 A²sec (0157010.DR)					
TVS Diode D1	 Vishay (SMBJ54A) U_R = 54 V, U_{BR} = 60.066.3 V @ 1 mA, U_C = 87.1 V @ 6.9 A Diotec (P6SMBJ54A) U_R = 54 V, U_{BR} = 60.066.6 V @ 1 mA, U_C = 87.1 V @ 6.9 A 					
Capacitor C1	 Panasonic (EEUFC1J221S) Rated voltage 63 V, capacitance 220 μF, ripple current 1285 mA Rubycon (63ZL220M10X23) Rated voltage 63 V, capacitance 220 μF, ripple current 1120 mA Nichicon (UPM1J221MHD) Rated voltage 63 V, capacitance 220 μF, ripple current 1300 mA 					
Motor Cable Motor Choke	• Würth Elektronik WE-PD-XXL (7447709220) $L_{_{N}} = 22 \ \mu\text{H, R}_{_{DC}} = 23.3 \ \text{m}\Omega, \ l_{_{DC}} = 5.3 \ \text{A, l}_{_{sat}} = 6.5 \ \text{A, shielded}$ • Coiltronics (DR127-220) $L_{_{N}} = 22 \ \mu\text{H, R}_{_{DC}} = 39.1 \ \text{m}\Omega, \ l_{_{DC}} = 4.0 \ \text{A, l}_{_{sat}} = 7.6 \ \text{A, shielded}$ • Würth Elektronik WE-PD-XXL (7447709150) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 21 \ \text{m}\Omega, \ l_{_{DC}} = 6.5 \ \text{A, l}_{_{sat}} = 8.0 \ \text{A, shielded}$ • Sumida (CDRH129RNP-150MC) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 16 \ \text{m}\Omega, \ l_{_{DC}} = 6.0 \ \text{A, l}_{_{sat}} > 6.0 \ \text{A, shielded}$ • Coiltronics (DR127-150) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 25 \ \text{m}\Omega, \ l_{_{DC}} = 5.0 \ \text{A, l}_{_{sat}} > 5.2 \ \text{A, shielded}$ • Bourns (SRR1280-150M) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 28 \ \text{m}\Omega, \ l_{_{DC}} = 5.2 \ \text{A, l}_{_{sat}} > 5.2 \ \text{A, shielded}$ • Würth Elektronik WE-PD-XL (744770115) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 24 \ \text{m}\Omega, \ l_{_{DC}} = 5.0 \ \text{A, l}_{_{sat}} = 6.0 \ \text{A, shielded}$ • Sumida (CDR127/LDNP-150M) $L_{_{N}} = 15 \ \mu\text{H, R}_{_{DC}} = 20 \ \text{m}\Omega, \ l_{_{DC}} = 5.7 \ \text{A, l}_{_{sat}} > 5.7 \ \text{A, shielded}$					

Table 5-11 Motherboard Design Guide – Recommended Components

5.2 Design Guidelines

The following instructions are intended to serve as an aid for designing an application-specific mother-board and ensuring the correct and reliable integration of the ESCON Module 50/5.

5.2.1 Ground

All ground connections (GND) should be internally connected to the ESCON Module 50/5 (equal potential). It is customary to equip the motherboard with a ground plane. All ground connections should be connected to the voltage supply ground via wide conductive tracks.

Pin	Signal	Description
9	Power_GND GND	Ground of operating voltage Ground
10	Power_GND GND	Ground of operating voltage Ground
23	GND	Ground

Table 5-12 Motherboard Design Guide – Grounding

If an earth potential is in place or required, the ground plane should be connected to the earth potential via one or more capacitors. The use of ceramic capacitors with 100 nF and 100 V is recommended.

5.2.2 Layout

Guidelines for the layout of the motherboard:

- Connector pins [7] and [8] +V_{CC} operating voltage:
 The pins should be connected to the fuse via wide conductive tracks.
- Connector pins [9], [10] and [23] ground:
 All pins should be connected with the ground of the operating voltage via wide conductive tracks.
- The width of the conductive track and the copper coating thickness of the conductors for supply voltage and motor depend on the current required for the application. A minimum width of 75 mil is recommended for the track and a minimum thickness of 35 µm for the copper coating.

5.3 THT Footprint

Figure 5-26 THT Footprint [mm] – View from above

maxon motor

Motherboard Design Guide Pin Assignment

5.4 Pin Assignment

For detailed specifications → chapter "3.3 Connections" on page 3-13.

5.5 Technical Data

For detailed specifications → chapter "2 Specifications" on page 2-7.

5.6 Dimensional Drawing

For the dimensional drawing \rightarrow Figure 2-2 on page 2-9.

5.7 ESCON Module Motherboard (438779)

The ESCON Module Motherboard (subsequently named ESCON Module MoBo) is available as an alternative to developing an own motherboard. All required connections are already in place and designed as screw-type terminals.

Figure 5-27 ESCON Module MoBo (left), with mounted ESCON Module 50/5 (right)

5-38

5.7.1 **Assembly**

The ESCON Module MoBo is designed to easily be screw-mounted or integrated into standard rail systems. For ordering information for the components required → Figure 5-29 (only for illustrative purposes) and → Table 5-13.

Figure 5-29 ESCON Module MoBo - Mounting on DIN Rail

Specification / Accessories		
Adapter for DIN rail	PHOENIX CONTACT 2 x panel mounting base element 11.25 mm UMK-SE11.25-1 (2970442) 2 x base element 45 mm UMK-BE45 (2970015) 2 x foot element UMK-FE (2970031)	
	CamdenBoss 2 x end section with foot 22.5 mm (CIME/M/SEF2250S) 1 x base element 22.5 mm (CIME/M/BE2250SS) 1 x base element 45 mm (CIME/M/BE4500SS)	

Table 5-13 ESCON Module MoBo, mounting on DIN Rail - Specification & Accessories

ESCON Module 50/5 Hardware Reference

Motherboard Design Guide ESCON Module Motherboard (438779)

5.7.2 Connections

Note

The USB interface is located directly at the ESCON Module 50/5.

5.7.2.1 Power Supply (J1)

Figure 5-30 ESCON Module MoBo – Power Plug J1

J1 Pin	Signal	Description
1	Power_GND	Ground of operating voltage
2	+V _{cc}	Nominal operating voltage (+10+50 VDC)

Table 5-14 ESCON Module MoBo – Power Plug J1 – Pin Assignment

Specification / Accessories				
Туре	Type Pluggable screw-type terminal block, 2 poles, 3.5 mm pitch			
Suitable cables	0.141.5 mm² multi-core, AWG 28-14 0.141.5 mm² single wire, AWG 28-14			

Table 5-15 ESCON Module MoBo – Power Plug J1 – Specification & Accessories

5.7.2.2 Motor (J2)

The servo controller is set to drive either maxon DC motors (brushed) or maxon EC motors (brushless).

Figure 5-31 ESCON Module MoBo – Motor Plug J2

J2 Pin	Signal	Description
1	Motor (+M)	DC motor: Motor +
2	Motor (-M)	DC motor: Motor -
3	not connected	-
4	Motor shield	Cable shield

Table 5-16 ESCON Module MoBo – Motor Plug J2 – Pin Assignment for maxon DC motor (brushed)

J2	Signal	Description
Pin		
1	Motor winding 1	EC motor: Winding 1
2	Motor winding 2	EC motor: Winding 2
3	Motor winding 3	EC motor: Winding 3
4	Motor shield	Cable shield

Table 5-17 ESCON Module MoBo – Motor Plug J2 – Pin Assignment for maxon EC motor (brushless)

Specification / Accessories		
Type Pluggable screw-type terminal block, 4 poles, 3.5 mm pitch		
Suitable cables	0.141.5 mm² multi-core, AWG 28-14 0.141.5 mm² single wire, AWG 28-14	

Table 5-18 ESCON Module MoBo – Motor Plug J2 – Specification & Accessories

5.7.2.3 Hall sensor (J3)

Suitable Hall effect sensors IC use «Schmitt trigger» with open collector output.

Figure 5-32 ESCON Module MoBo – Hall Sensor Plug J3

J3 Pin	Signal	Description
1	Hall sensor 1	Hall sensor 1 input
2	Hall sensor 2	Hall sensor 2 input
3	Hall sensor 3	Hall sensor 3 input
4	+5 VDC	Hall sensor supply voltage (+5 VDC; I _L ≤30 mA)
5	GND	Ground

Table 5-19 ESCON Module MoBo – Hall Sensor Plug J3 – Pin Assignment

Specification / Accessories				
Туре	Type Pluggable screw-type terminal block, 5 poles, 3.5 mm pitch			
Suitable cables	0.141.5 mm² multi-core, AWG 28-14 0.141.5 mm² single wire, AWG 28-14			

Table 5-20 ESCON Module MoBo – Hall Sensor Plug J3 – Specification & Accessories

5.7.2.4 Encoder (J4)

Figure 5-33 ESCON Module MoBo – Encoder Socket J4

J4	0:	Description.
Pin	Signal	Description
1	not connected	_
2	+5 VDC	Encoder supply voltage (+5 VDC; ≤70 mA)
3	GND	Ground
4	not connected	_
5	Channel A\	Channel A complement
6	Channel A	Channel A
7	Channel B\	Channel B complement
8	Channel B	Channel B
9	not connected	-
10	not connected	_

Table 5-21 ESCON Module MoBo – Encoder Socket J4 – Pin Assignment

Accessories		
Suitable strain relief	Retainer	For sockets with strain relief: 1 retainer clip, height 13.5 mm, 3M (3505-8110)
		For sockets without strain relief: 1 retainer clip, height 7.9 mm, 3M (3505-8010)
	Latch	For sockets with strain relief: 2 pieces, 3M (3505-33B)

Table 5-22 ESCON Module MoBo – Encoder Socket J4 – Accessories

Table 5-23 ESCON Module MoBo – Encoder Cable

Best practice

- Because of its resistance against electrical interferences, we recommend using differential scheme. Nevertheless, the controller supports both schemes – differential and single-ended.
- The controller does not require an index impulse (Ch I, Ch I\).
- For best performance, we strongly recommend using encoders with line driver. Otherwise, speed limitations may apply due to slow switching edges.

5.7.2.5 Digital I/Os (J5)

Figure 5-34 ESCON Module MoBo – Digital I/Os Plug J5

J5 Pin	Signal	Description
1	DigIN1	Digital input 1
2	DigIN2	Digital input 2
3	DigIN/DigOUT3	Digital input/output 3
4	DigIN/DigOUT4	Digital input/output 4
5	GND	Ground
6	+5 VDC	Auxiliary output voltage (+5 VDC; ≤10 mA)

Table 5-24 ESCON Module MoBo – Digital I/Os Plug J5 – Pin Assignment

Specification / Accessories		
Туре	Pluggable screw-type terminal block, 6 poles, 3.5 mm pitch	
Suitable cables	0.141.5 mm² multi-core, AWG 28-14 0.141.5 mm² single wire, AWG 28-14	

Table 5-25 ESCON Module MoBo – Digital I/Os Plug J5 – Specification & Accessories

5.7.2.6 Analog I/Os (J6)

Figure 5-35 ESCON Module MoBo – Analog I/Os Plug J6

J6	Signal	Description
Pin	Signal	Description
1	AnIN1+	Analog input 1, positive signal
2	AnIN1-	Analog input 1, negative signal
3	AnIN2+	Analog input 2, positive signal
4	AnIN2-	Analog input 2, negative signal
5	AnOUT1	Analog output 1
6	AnOUT2	Analog output 2
7	GND	Ground

Table 5-26 ESCON Module MoBo – Analog I/Os Plug J6 – Pin Assignment

Specification / Accessories		
Туре	Pluggable screw-type terminal block, 7 poles, 3.5 mm pitch	
Suitable cables	0.141.5 mm² multi-core, AWG 28-14 0.141.5 mm² single wire, AWG 28-14	

Table 5-27 ESCON Module MoBo – Analog I/Os Plug J6 – Specification & Accessories

Motherboard Design Guide ESCON Module Motherboard (438779)

5.7.3 Wiring

Note

The USB interface is located directly at the ESCON Module 50/5.

Note

The subsequent diagrams feature this symbol:

•

Ground safety earth connection (optional)

5.7.3.1 DC Motors

MAXON DC MOTOR

Figure 5-36 ESCON Module MoBo – maxon DC motor (J2)

MAXON DC MOTOR WITH DC TACHO Power J1 J2 Supply DC 12 +10...50 VDC +Vcc Motor Motor winding 2 (-M) 1234 Motor winding 3 J3 Hall sensor 1 12345 DC Tacho AnIN-+5 VDC Digital J5 1/0 123456 J4 2 10 +5 VDC AniN 1+ AniN 1-AniN 2+ AniN 2-AnOUT 1 AnOUT 2 Analog **J**6 1/0 Ch Al Ch A Ch B\ Ch B n.c. n.c. mmc ESCON Module Motherboard

Figure 5-37 ESCON Module MoBo – maxon DC motor with DC Tacho (J2)

MAXON DC MOTOR WITH ENCODER

Figure 5-38 ESCON Module MoBo – maxon DC motor with Encoder (J2 / J4)

5.7.3.2 EC motors

MAXON EC MOTOR WITH HALL SENSORS

Figure 5-39 ESCON Module MoBo – maxon EC motor with Hall Sensors (J2 / J3)

MAXON EC MOTOR WITH HALL SENSORS & ENCODER

Figure 5-40 ESCON Module MoBo – maxon EC motor with Hall Sensors & Encoders (J2 / J3 / J4)

5.8 Spare Parts

Order number	Description
444144	2-pole pluggable screw-type terminal block, 3.5 mm pitch, labeled 12
444145	4-pole pluggable screw-type terminal block, 3.5 mm pitch, labeled 14
444146	5-pole pluggable screw-type terminal block, 3.5 mm pitch, labeled 15
444147	6-pole pluggable screw-type terminal block, 3.5 mm pitch, labeled 16
444148	7-pole pluggable screw-type terminal block, 3.5 mm pitch, labeled 17

Table 5-28 Spare Parts List

LIST OF FIGURES

Figure 2-1	Derating Output Current	8
Figure 2-2	Dimensional Drawing [mm]	9
Figure 3-3	Pin Assignment	13
Figure 3-4	Pin Assignment	14
Figure 3-5	Hall Sensor 1 Input Circuit (analogously valid also for Hall Sensors 2 & 3)	15
Figure 3-6	Encoder Input Circuit Ch A "Differential" (analogously valid also for Ch B)	16
Figure 3-7	Encoder Input Circuit Ch A "Single-ended" (analogously valid also for Ch B)	17
Figure 3-8	DigIN1 Circuit	18
Figure 3-9	DigIN2 Circuit	18
Figure 3-10	DigIN3 Circuit (analogously valid also for DigIN4)	19
Figure 3-11	DigOUT3 Circuit (analogously valid also for DigOUT4)	19
Figure 3-12	DigOUT3 Wiring Examples (analogously valid also for DigOUT4)	20
Figure 3-13	AnIN1 Circuit (analogously valid also for AnIN2)	21
Figure 3-14	AnOUT1 Circuit (analogously valid also for AnOUT2)	21
Figure 3-15	USB Socket J7	22
Figure 3-16	Potentiometer – Location & Adjustment Range	23
Figure 3-17	LEDs – Location	24
Figure 4-18	Interfaces – Designations and Location	25
Figure 4-19	maxon DC motor	26
Figure 4-20	maxon DC motor with DC Tacho	27
Figure 4-21	maxon DC motor with Encoder	28
Figure 4-22	maxon EC motor with Hall Sensors	29
Figure 4-23	maxon EC motor with Hall Sensors & Encoder	30
Figure 5-24	Wiring of Voltage Supply Cable	32
Figure 5-25	Wiring of Motor Winding 1 (analogously valid also for Motor Windings 2 & 3)	33
Figure 5-26	THT Footprint [mm] – View from above	35
Figure 5-27	ESCON Module MoBo (left), with mounted ESCON Module 50/5 (right)	37
Figure 5-28	ESCON Module MoBo – Dimensional Drawing [mm]	37
Figure 5-29	ESCON Module MoBo – Mounting on DIN Rail	38
Figure 5-30	ESCON Module MoBo – Power Plug J1	39
Figure 5-31	ESCON Module MoBo – Motor Plug J2	40
Figure 5-32	ESCON Module MoBo – Hall Sensor Plug J3	41
Figure 5-33	ESCON Module MoBo – Encoder Socket J4	42
Figure 5-34	ESCON Module MoBo – Digital I/Os Plug J5	44
Figure 5-35	ESCON Module MoBo – Analog I/Os Plug J6	45
Figure 5-36	ESCON Module MoBo – maxon DC motor (J2)	46
Figure 5-37	ESCON Module MoBo – maxon DC motor with DC Tacho (J2)	47
Figure 5-38	ESCON Module MoBo – maxon DC motor with Encoder (J2 / J4)	48
Figure 5-39	ESCON Module MoBo – maxon EC motor with Hall Sensors (J2 / J3)	49
Figure 5-40	ESCON Module MoBo – maxon EC motor with Hall Sensors & Encoders (J2 / J3 / J4)	50

LIST OF TABLES

Table 1-1	Notation used	3
Table 1-2	Symbols & Signs	4
Table 1-3	Brand Names and Trademark Owners	4
Table 2-4	Technical Data	8
Table 2-5	Standards	. 10
Table 3-6	Pin Assignment (Pins 1-18)	. 13
Table 3-7	Pin Assignment (Pins 19-29)	. 14
Table 3-8	USB Socket J7 – Pin Assignment & Cabling	. 22
Table 3-9	USB Type A - micro B Cable	. 22
Table 3-10	LEDs – Interpretation of Condition	. 24
Table 5-11	Motherboard Design Guide – Recommended Components	. 34
Table 5-12	Motherboard Design Guide – Grounding	. 35
Table 5-13	ESCON Module MoBo, mounting on DIN Rail – Specification & Accessories	. 38
Table 5-14	ESCON Module MoBo – Power Plug J1 – Pin Assignment	. 39
Table 5-15	ESCON Module MoBo – Power Plug J1 – Specification & Accessories	. 39
Table 5-16	ESCON Module MoBo – Motor Plug J2 – Pin Assignment for maxon DC motor (brushed)	.40
Table 5-17	ESCON Module MoBo – Motor Plug J2 – Pin Assignment for maxon EC motor (brushless)	.40
Table 5-18	ESCON Module MoBo – Motor Plug J2 – Specification & Accessories	. 40
Table 5-19	ESCON Module MoBo – Hall Sensor Plug J3 – Pin Assignment	.41
Table 5-20	ESCON Module MoBo – Hall Sensor Plug J3 – Specification & Accessories	.41
Table 5-21	ESCON Module MoBo – Encoder Socket J4 – Pin Assignment	. 42
Table 5-22	ESCON Module MoBo – Encoder Socket J4 – Accessories	. 42
Table 5-23	ESCON Module MoBo – Encoder Cable	. 43
Table 5-24	ESCON Module MoBo – Digital I/Os Plug J5 – Pin Assignment	. 44
Table 5-25	ESCON Module MoBo – Digital I/Os Plug J5 – Specification & Accessories	. 44
Table 5-26	ESCON Module MoBo – Analog I/Os Plug J6 – Pin Assignment	. 45
Table 5-27	ESCON Module MoBo – Analog I/Os Plug J6 – Specification & Accessories	. 45
Table 5-28	Spare Parts List	. 50

INDEX

Α	275934 <i>43</i>
additionally applicable regulations 5	403968 22
analog inputs 21	438725 7
applicable EU directive 11	438779 37
assignment of the connections 13	444144 50
3	444145 <i>50</i>
C	444146 <i>50</i> 444147 <i>50</i>
cables (prefab)	444148 <i>50</i>
Encoder Cable 43	
USB Type A - micro B Cable 22	Р
country-specific regulations 5	performance data 7
-	pin assignment <i>13</i>
D	potentiometer 23
digital inputs 18, 19	precautions 5
_	prerequisites prior installation 11
E	prohibitive signs 3
error display 24	purpose
ESD 5	of the device 5
EU directive, applicable 11	Б
	R
Н	regulations, additionally applicable 5
how to	S
calculate required supply voltage 12	
interpret icons (and signs) used in the document 3	safety alerts 3
support for designing the motherboard 31	safety first! 5
I	signs used 3
	sockets
incorporation into surrounding system 11	J1 39 J2 <i>40</i>
informatory signs 4	J3 <i>41</i>
intended purpose of the device 5	J4 16, 42
of this document 3	J5 <i>44</i>
interfaces, location and designation 25	J6 <i>4</i> 5
g = -	J7 22
L	standards, fulfilled 10
LEDs 24	status display 24
2250 2 1	status LEDs 24
M	supply voltage, required 12 symbols used 3
mandatory action signs 4	Symbols used 3
MoBo (ESCON Module Motherboard) 37	Т
, , , , , , , , , , , , , , , , , , , ,	technical data 7
N	teermeal data 7
notations used 3	U
	USB interface 22
0	
operating license 11	W
operating status, display 24	wiring diagrams for DC motors <i>26</i> , <i>4</i> 6
	EC motors 29, 49

© 2015 maxon motor. All rights reserved.

The present document – including all parts thereof – is protected by copyright. Any use (including reproduction, translation, microfilming, and other means of electronic data processing) beyond the narrow restrictions of the copyright law is not permitted without the prior approval of maxon motor ag and will be subject to prosecution under the applicable law.

maxon motor ag

Brünigstrasse 220 P.O.Box 263 CH-6072 Sachseln Switzerland

Phone +41 41 666 15 00 Fax +41 41 666 16 50 www.maxonmotor.com