Contents

1	Literatura	1
2	Wektory	2
3	Operacje	2
4	Operacje 2D 4.1 Skalowanie 4.2 Rotacja 4.3 Translacja	2 2 2 2
5	Konkatenacja operacji	2
6	Operacje 3D 6.1 Skalowanie 6.2 Rotacja 6.3 Translacja	2 3 3
7	Kamery 7.1 Projekcje 7.1.1 Ortogonalna 7.1.2 Perspektywiczna	3 3 3
8	Pipeline 8.1 VP 8.2 Pro 8.3 Cam 8.4 Model 8.5 Złożenie	4 4 4 4 4
9	Algorytmy Renderowania 9.1 Algorytm malarza	4 5 5
10	Culling i Clipping 10.1 Clipping 10.1.1 Wykrywanie 10.1.2 Tworzenie 10.2 Culling	5 5 5 5
11	Oświetlenie 11.1 Diffuse 11.2 Specular 11.3 Ambient 11.4 Attenuation 11.5 Shading	5 6 6 6 6

1 Literatura

- Wykład
- J. de Vries, "Learn OpenGL"
- Ćwiczenia

2 Wektory

$$\vec{v} \cdot \vec{w} = v_x \cdot w_x + v_y \cdot w_y + v_z \cdot w_z$$

$$\vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot cos(\theta)$$

Jeśli \vec{v} i \vec{w} są prostopadłe to $\vec{v} \cdot \vec{w} = 0$. A z kolei jeśli $\vec{v} \cdot \vec{w}$ są normalne to $\vec{v} \cdot \vec{w} = cos(\theta)$.

3 Operacje

Wyróżniamy trzy rodzaje operacji na punktach w przestrzeni n-wymiarowej:

• Skalowanie

$$f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} s_x * x \\ s_y * y \end{bmatrix}$$

• Rotacja

$$f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x*\cos(\theta) - y*\sin(\theta) \\ x*\sin(\theta) + y*\cos(\theta) \end{bmatrix}$$

• Translacja

$$f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+1 \\ y-1 \end{bmatrix}$$

4 Operacje 2D

4.1 Skalowanie

$$S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \text{lub} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.2 Rotacja

$$R = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \text{lub} \begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.3 Translacja

$$T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{lub dla } \vec{V} = (T_x, T_y), T = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$$

5 Konkatenacja operacji

Operacje można łączyć w łańcuchy, np. T*R*S Jako że to jest mnożenie macierzy, to kolejność ma znaczenie. Najpierw wykonuje się operację z prawej strony.

6 Operacje 3D

6.1 Skalowanie

$$S = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6.2 Rotacja

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\theta) & -sin(\theta) \\ 0 & sin(\theta) & cos(\theta) \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} cos(\theta) & 0 & sin(\theta) \\ 0 & 1 & 0 \\ -sin(\theta) & 0 & cos(\theta) \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

6.3 Translacja

Dla wektora
$$\vec{V} = (T_x, T_y, T_z), T = \begin{bmatrix} 1 & 0 & 0, & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

7 Kamery

Podczas patrzenia na obiekt w polu widzenia kamery można wyróżnić następujące płaszczyzny:

- Górna
- Dolna
- Lewa
- Prawa
- Bliska
- Daleka

7.1 Projekcje

Kluczowym aspektem kamery jest projekcja, czyli rzutowanie obiektów na płaszczyznę ekranu. Trzeba w jakiś sposób zamienić punkty w 3D na punkty w 2D.

7.1.1 Ortogonalna

- Wszystkie linie są równoległe
- Brak perspektywy
- Obiekty są przeskalowane
- Nie ma odczucia głębi, obiekty pozostają tego samego rozmiaru niezależnie od odległości
- Linie równoległe pozostają równoległe po projekcji

7.1.2 Perspektywiczna

- Linie zbiegają się w jednym punkcie
- Obiekty są przeskalowane
- Odczucie głębi
- Obiekty są mniejsze w miarę oddalania się od kamery
- "Normalna" projekcja

8 Pipeline

Renderowanie obrazu składa się z kilku etapów:

Object Space \to World space $\overset{M_{cam}}{\to}$ View space $\overset{M_{pro}}{\to}$ Clip space $\overset{M_{vp}}{\to}$ Screen space

8.1 VP

Dla widoku wielkości $n_x * n_y$

$$M_{vp} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

8.2 Pro

Dla przestrzeni widoku ortogonalnego stworzonego przez trzy punkty:

- (l,b,n) w lewym dolnym rogu - (r,b,n) w prawym dolnym rogu - (r,t,f) w prawym górnym rogu

$$M_{ort} = egin{bmatrix} rac{2}{r-l} & 0 & 0 & -rac{l+r}{r-l} \ 0 & rac{2}{t-b} & 0 & -rac{b+t}{t-b} \ 0 & 0 & rac{2}{n-f} & -rac{n+f}{n-f} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{per} = M_{ort} \cdot egin{bmatrix} n & 0 & 0 & 0 \ 0 & n & 0 & 0 \ 0 & 0 & n+f & -nf \ 0 & 0 & 0 & 1 \end{bmatrix}$$

8.3 Cam

Dla wektorów określających kierunek patrzenia kamery: \vec{g} , \vec{v} , \vec{u} , $\vec{w} = -v$ oraz \vec{e} określającym przesunięcie kamery

$$M_{cam} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

8.4 Model

Matryca modelu to po prostu macierz transformacji obiektu. Jak obiekt jest obrócony, przesunięty, skalowany. To zależy od tego gdzie jest obiekt w przestrzeni, jako że zwykle punkty modelu są w przestrzeni obiektu (relatywnie do środka obiektu).

8.5 Złożenie

$$pipeline(\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}) = M_{vp}M_{ort}M_{cam} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

9 Algorytmy Renderowania

Jako, że w procesie przekształcenia pipeline zatracana jest informacja o koordynacie z punktów, konieczne jest renderowanie obiektów w konkretnej kolejności.

9.1 Algorytm malarza

Ten algorytm jest niezwykle prosty. Obiekty się sortuje wobec pozycji w z i najpierw renderuje się te w tle. Niestety, nie działa to dla obiektów przecinających się i innych o skomplikowanej topologii.

9.2 Z-buffer

Dla każdego obiektu zapisujesz na jakim z "jest" pixel i jakiego koloru jest. Jeśli w globalnym z bufferze ten pixel ma większe z to w bufferze pixel jest zastępowany. Efektem działania algorytmu jest buffer z pixelami "renderowany od tyłu".

10 Culling i Clipping

W procesie renderowania koniecznym jest czasami obsługiwanie co jeśli obiekt wychodzi poza kąt widzenia oraz co jeśli obiekt jest niewidoczny.

10.1 Clipping

Czyli obcinanie obiektów składa się z dwóch etapów:

- Wykrywanie czy obiekt przecina jedną z płaszczyzn
- Tworzenie nowych mniejszych obiektów

10.1.1 Wykrywanie

Jeśli dla n=normalny wektor płaszczy
zny oraz q=punkt na płaszczyźnie f(p) = n * (p - q) < 0 to punkt p
 jest wewnątrz.

10.1.2 Tworzenie

Dla każdej krawędzi obiektu sprawdzamy czy przecina ona płaszczyznę. Dzieląc trójkąty na mniejsze wewnątrz pola widzenia, tworzymy nowe trójkąty na podstawie punktów przecięcia z płaszczyzną.

10.2 Culling

Odrzucanie trójkątów których wektor normalny jest skierowany od punktu widzenia to backface culling. Any zobaczyć czy wektor normalny \vec{n} jest skierowany od punktu widzenia to wystarczy złożyć go z wektorem punktu widzenia \vec{v} Jeśli $\vec{n} \cdot \vec{v} < 0$ to trójkąt jest skierowany do kamery.

11 Oświetlenie

$$I = f_{att}(D+S) + A$$

11.1 Diffuse

$$D = I_p \cdot K_d \cdot max(0, cos(\theta))$$

gdzie:

- $\bullet \ I_p$ to intensywność światła
- K_d to współczynnik odbicia
- θ to kąt między wektorem światła a wektorem normalnym do powierzchni

11.2 Specular

$$S = I_p \cdot K_s \cdot max(0, cos(\alpha))^n$$

gdzie:

- $\bullet \ I_p$ to intensywność światła
- $\bullet~K_s$ to współczynnik odbicia
- $\bullet \ \alpha$ to kąt między wektorem do kamery a wektorem odbicia
- $\bullet \;\; n$ to współczynnik tłumienia

11.3 Ambient

$$A = I_a \cdot K_a$$

gdzie:

- $\bullet \ I_a$ to intensywność światła
- $\bullet~K_a$ to współczynnik odbicia

11.4 Attenuation

$$f_{att} = 1 - \frac{d^2}{r}$$

gdzie:

- $\bullet \ d$ to odległość od źródła światła
- $\bullet \ r$ to promień światła

11.5 Shading

- Flat shading kolor obiektu jest jednolity
- Gouraud shading kolor obiektu jest interpolowany między wierzchołkami
- Phong shading kolor obiektu jest interpolowany między pikselami