Theorem. Let $X_1, X_2, ...$ be i.i.d. with $EX_i = 0, EX_i^2 = \sigma^2$, and $E|X_i|^3 = \rho < \infty$. If $F_n(x)$ is the distribution of $(X_1 + \cdots + X_n)/\sigma\sqrt{n}$ and $\mathcal{N}(x)$ is the standard normal distribution, then

$$|F_n(x) - \mathcal{N}(x)| \le 3\rho/\sigma^3\sqrt{n}$$

Proof Let φ_F and φ_G be the ch.f.'s of F and G. Applying Lemma 3.4.19 to $F_L = F * H_L$ and $G_L = G * H_L$, gives

$$|F_L(x) - G_L(x)| \le \frac{1}{2\pi} \int |\varphi_F(t)\omega_L(t) - \varphi_G(t)\omega_L(t)| \frac{dt}{|t|} \le \frac{1}{2\pi} \int_{-L}^{L} |\varphi_F(t) - \varphi_G(t)| \frac{dt}{|t|}$$

since $|\omega_L(t)| \leq 1$. Using Lemma 3.4 .18 now, we have

$$|F(x) - G(x)| \le \frac{1}{\pi} \int_{-L}^{L} |\varphi_F(\theta) - \varphi_G(\theta)| \frac{d\theta}{|\theta|} + \frac{24\lambda}{\pi L}$$

where $\lambda = \sup_x G'(x)$. Plugging in $F = F_n$ and $G = \mathcal{N}$ gives

$$|F_n(x) - \mathcal{N}(x)| \le \frac{1}{\pi} \int_{-L}^{L} |\varphi^n(\theta/\sqrt{n}) - \psi(\theta)| \frac{d\theta}{|\theta|} + \frac{24\lambda}{\pi L}$$

and it remains to estimate the right-hand side. This phase of the argument is fairly routine, but there is a fair amount of algebra. To save the reader from trying to improve the inequalities along the way in hopes of getting a better bound, we would like to observe that we have used the fact that C=3 to get rid of the cases $n \leq 9$, and we use $n \geq 10$ in (e). To estimate the second term in (3.4.1), we observe that

(a)
$$\sup_{x} G'(x) = G'(0) = (2\pi)^{-1/2} = 0.39894 < 2/5$$

For the first, we observe that if $|\alpha|, |\beta| \leq \gamma$

(b)

$$|\alpha^n - \beta^n| \le \sum_{m=0}^{n-1} |\alpha^{n-m}\beta^m - \alpha^{n-m-1}\beta^{m+1}| \le n|\alpha - \beta|\gamma^{n-1}$$

Using (3.3.3) now gives (recall we are supposing $\sigma^2 = 1$)

(c)
$$|\varphi(t) - 1 + t^2/2| \le \rho |t|^3/6$$
 so if $t^2 \le 2$

(d)
$$|\varphi(t)| < 1 - t^2/2 + \rho |t|^3/6$$

Let $L = 4\sqrt{n}/3\rho$. If $|\theta| \le L$, then by (d) and the fact $\rho |\theta|/\sqrt{n} \le 4/3$

$$|\varphi(\theta/\sqrt{n})| \le 1 - \theta^2/2n + \rho|\theta|^3/6n^{3/2} \le 1 - 5\theta^2/18n \le \exp(-5\theta^2/18n)$$

since $1 - x \le e^{-x}$. We will now apply (b) with

$$\alpha = \varphi(\theta/\sqrt{n})$$
 $\beta = \exp(-\theta^2/2n)$ $\gamma = \exp(-5\theta^2/18n)$

Since we are supposing $n \ge 10$

(e)
$$\gamma^{n-1} < \exp\left(-\theta^2/4\right)$$

For the other part of (b), we write

$$|n|\alpha - \beta| \le n \left| \varphi(\theta/\sqrt{n}) - 1 + \theta^2/2n \right| + n \left| 1 - \theta^2/2n - \exp\left(-\theta^2/2n\right) \right|$$

To bound the first term on the right-hand side, observe (c) implies

$$n \left| \varphi(\theta/\sqrt{n}) - 1 + \theta^2/2n \right| \le \rho |\theta|^3 / 6n^{1/2}$$

For the second term, note that if 0 < x < 1, then we have an alternating series with decreasing terms so

$$\left| e^{-x} - (1-x) \right| = \left| -\frac{x^2}{2!} + \frac{x^3}{3!} - \dots \right| \le \frac{x^2}{2}$$

Taking $x = \theta^2/2n$, it follows that for $|\theta| \le L \le \sqrt{2n}$

$$n |1 - \theta^2 / 2n - \exp(-\theta^2 / 2n)| \le \theta^4 / 8n$$

Combining this with our estimate on the first term gives

(f)
$$n|\alpha - \beta| < \rho|\theta|^3 / 6n^{1/2} + \theta^4 / 8n$$

Using (f) and (e) in (b) gives

$$\frac{1}{|\theta|}\left|\varphi^n(\theta/\sqrt{n}) - \exp\left(-\theta^2/2\right)\right| \leq \exp\left(-\theta^2/4\right) \left\{\frac{\rho\theta^2}{6n^{1/2}} + \frac{|\theta|^3}{8n}\right\} \\ \leq \frac{1}{L} \exp\left(-\theta^2/4\right) \left\{\frac{2\theta^2}{9} + \frac{|\theta|^3}{18}\right\}$$

since $\rho/\sqrt{n}=4/3L$, and $1/n=1/\sqrt{n}\cdot 1/\sqrt{n}\leq 4/3L\cdot 1/3$, since $\rho\geq 1$ and $n\geq 10$. Using the last result and (a) in Lemma 3.4.19 gives

$$\pi L |F_n(x) - \mathcal{N}(x)| \le \int \exp(-\theta^2/4) \left\{ \frac{2\theta^2}{9} + \frac{|\theta|^3}{18} \right\} d\theta + 9.6$$

Recalling $L = 4\sqrt{n}/3\rho$, we see that the last result is of the form $|F_n(x) - \mathcal{N}(x)| \le C\rho/\sqrt{n}$. To evaluate the constant, we observe

$$\int (2\pi a)^{-1/2} x^2 \exp(-x^2/2a) \, dx = a$$

and writing $x^3 = 2x^2 \cdot x/2$ and integrating by parts

$$2\int_0^\infty x^3 \exp\left(-x^2/4\right) dx = 2\int_0^\infty 4x \exp\left(-x^2/4\right) dx = -16e^{-x^2/4}\Big|_0^\infty = 16e^{-x^2/4}$$

 $This\ gives\ us$

$$|F_n(x) - \mathcal{N}(x)| \le \frac{1}{\pi} \cdot \frac{3}{4} \left(\frac{2}{9} \cdot 2 \cdot \sqrt{4\pi} + \frac{16}{18} + 9.6 \right) \frac{\rho}{\sqrt{n}} < 3\frac{\rho}{\sqrt{n}}$$

For the last step, you have to get out your calculator or trust Feller.