CIT601 Operating Systems (4 CH) - Week 2 Notes

Course: Operating Systems

Credit Hours: 4 CH

Course Outline: OS basics, processes, memory management, file systems, basic system

administration.

Assessment: Labs (30%), midterm (30%), final exam/project (40%)

Resources:

• Operating System Concepts by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne (Chapter 3 for process management).

- Online tutorials: Search "Process Management" or "Linux Command Line Basics" on Microsoft Learn or YouTube (e.g., freeCodeCamp or The Linux Foundation videos).
- Tools: VirtualBox (free for OS experimentation), Canva (free for creating diagrams).
 Week 2 Topic: Process Management and Basic Command-Line Operations
 Objective: Understand how operating systems manage processes (running programs) and learn basic command-line operations in Windows and Linux to interact with the OS for practical tasks.

1. Recap of Week 1: Introduction to Operating Systems

- **Key Concepts**: An operating system (OS) manages hardware and software resources, providing a user interface (e.g., GUI, command line). Functions include process management, memory management, file systems, device management, and security. Common OS types include Windows (desktop) and Linux (open-source).
- Examples: Using Windows File Explorer to access files or Linux Terminal to list directories.
- Week 2 Focus: Dive into process management (how the OS handles running programs) and introduce basic command-line operations in Windows (Command Prompt) and Linux (Terminal) for practical system interaction.

2. Overview of Process Management

Process management is the OS's ability to manage running programs, called **processes**, which are instances of programs in execution (e.g., a web browser or text editor). The OS ensures processes run efficiently, share resources, and don't conflict.

Core Idea: A process is like a task the OS juggles, allocating CPU time and memory to each.
 For example, running Microsoft Word and a browser simultaneously requires the OS to prioritize and schedule them.

• Importance:

- o Enables multitasking (running multiple programs at once).
- Ensures system stability (e.g., prevents crashes from resource conflicts).
- o Optimizes performance (e.g., prioritizes critical tasks).

• Real-World Applications:

- o Running multiple apps (e.g., Word, Chrome) in a school lab.
- Managing server processes for a business website.
- o Prioritizing tasks on a smartphone.

3. Key Concepts of Process Management

A **process** is a program in execution, including its code, data, and state (e.g., running, waiting). The OS manages processes through several mechanisms.

Process States:

- New: Process is being created.
- o **Running**: Executing on the CPU.
- Waiting: Awaiting resources (e.g., disk I/O).
- Ready: Waiting for CPU allocation.
- Terminated: Process completed or stopped.

Process Control Block (PCB):

- o A data structure storing process information (e.g., ID, state, memory allocation).
- o Example: The OS uses the PCB to track a browser's memory usage.

Scheduling:

- o The OS decides which process gets CPU time (e.g., round-robin scheduling).
- o Example: Prioritizes a video call over a background download.

Context Switching:

- The OS switches between processes, saving and restoring their states.
- o Example: Pauses a game to run an antivirus scan.

• Process Termination:

- Ends a process when complete or if it crashes.
- Example: Closing a frozen app via Task Manager.

Visual (Text-Based Diagram):

[Process Management]

- |--> [Process States: New, Running, Waiting, Ready, Terminated]
- |--> [PCB: Stores Process ID, State, Memory]
- |--> [Scheduling: Allocates CPU Time]

- |--> [Context Switching: Switches Processes]
- |--> [Termination: Ends Process]

4. Tools for Monitoring Processes

The OS provides tools to monitor and manage processes, allowing users to view or control running programs.

Windows Task Manager:

- o Access: Ctrl+Shift+Esc or right-click taskbar → Task Manager.
- o Features: View processes, CPU/memory usage, end tasks.
- o Example: End a frozen Notepad process.

Linux Top/HTOP:

- Access: Open Terminal, type top or htop.
- o Features: Display running processes, CPU/memory usage, kill processes.
- Example: Use top to monitor a Python script's resource usage.

Windows Command Prompt (Tasklist/Taskkill):

- Commands: tasklist (list processes), taskkill /PID <number> (end process).
- o Example: taskkill /PID 1234 to close a program.

• Linux Kill Command:

- o Command: kill <PID> (end process by ID).
- o Example: kill 5678 to stop a stuck application.

5. Basic Command-Line Operations

The **command line** is a text-based interface for interacting with the OS, offering precise control compared to the GUI. Week 2 introduces basic commands in Windows Command Prompt and Linux Terminal.

5.1 Windows Command Prompt

- Access: Start → type cmd → Enter.
- Common Commands:
 - o dir: List files and folders (like Is in Linux).
 - Example: dir shows files in C:\Users.
 - cd <directory>: Change directory.
 - Example: cd Documents navigates to Documents folder.

- mkdir <name>: Create a folder.
 - Example: mkdir Projects creates a Projects folder.
- del <file>: Delete a file.
 - Example: del temp.txt deletes a file.
- o tasklist: List running processes.
 - Example: tasklist shows all active programs.
- taskkill /PID <number>: End a process.
 - Example: taskkill /PID 1234 closes a program.

5.2 Linux Terminal

- Access: Open Terminal in Linux (e.g., Ubuntu).
- Common Commands:
 - ls: List files and folders.
 - Example: Is shows files in the home directory.
 - cd <directory>: Change directory.
 - Example: cd projects navigates to projects folder.
 - o mkdir <name>: Create a folder.
 - Example: mkdir assignments creates a folder.
 - o rm <file>: Delete a file.
 - Example: rm old.txt deletes a file.
 - o ps: List running processes.
 - Example: ps aux shows all processes.
 - kill <PID>: End a process.
 - Example: kill 5678 stops a process.

Example: A student uses dir in Command Prompt to list files, creates a folder with mkdir Study, and uses tasklist to check running programs on a Windows PC.

6. Practical Examples

Example 1: Managing School Lab Processes

- Scenario: A student notices a slow PC in a lab.
- Process:
 - 1. Opens Task Manager (Ctrl+Shift+Esc).

- 2. Identifies a high-CPU process (e.g., frozen browser).
- 3. Ends the process by clicking "End Task."
- 4. Uses Command Prompt (tasklist) to confirm the process is gone.
- Outcome: Restored PC performance for classwork.

Example 2: Linux File and Process Management

- Scenario: Organizing files and checking processes on Ubuntu.
- Process:
 - 1. Opens Terminal and types mkdir Projects to create a folder.
 - 2. Uses Is to verify the folder.
 - 3. Runs ps aux to list processes.
 - 4. Uses kill 1234 to stop a stuck Python script.
- Outcome: Organized files and resolved a process issue.

Example 3: Business PC Troubleshooting

- Scenario: A business PC runs multiple apps slowly.
- Process:
 - 1. Opens Command Prompt and runs tasklist to view processes.
 - 2. Identifies a high-memory app (e.g., accounting software).
 - 3. Uses taskkill /PID 5678 to close it.
 - 4. Creates a folder with mkdir Records for organization.
- Outcome: Improved performance and organized files.

7. In-Class and Self-Study Exercises

In-Class Exercises:

1. Process Identification:

o In groups, open Task Manager (Windows) or top (Linux) and identify 3 running processes. Write a 50-word description of their purpose.

2. Command-Line Practice:

Practice dir, cd, and mkdir in Command Prompt or ls, cd, mkdir in Linux Terminal.
 Discuss steps in pairs.

3. Process Termination:

 Use Task Manager or kill to safely end a non-critical process. Write a 50-word summary of the steps.

Self-Study Exercises:

1. Scenario Analysis:

 Write a 150-word description of troubleshooting a slow PC using Task Manager and Command Prompt commands. Include 3 commands.

2. Command Research:

• Research one command (e.g., taskkill, ps). Write a 100-word summary of its use and syntax.

3. Linux Practice:

o Install Ubuntu in VirtualBox. Try 3 commands (e.g., ls, mkdir, ps). Write a 100-word summary.

4. Process Monitoring:

 Use Task Manager or top to monitor CPU/memory usage. Write a 100-word summary of findings.

10. Connection to Course Assessments

- Labs (30%): The Week 2 diagram assignment contributes to the 30% lab component by teaching process management and command-line skills. Future labs will involve tasks like file system configuration or system administration.
- Midterm (30%): The Week 2 quiz prepares students for midterm questions on process management. Later midterm tasks will include analyzing scenarios (e.g., "Describe how the OS schedules processes").
- **Final Exam/Project (40%)**: Week 2 concepts (processes, commands) will be tested with theoretical questions or a project (e.g., scripting basic OS tasks).

11. Glossary of Key Terms

- **Process Management**: OS function to handle running programs.
- Process: A program in execution (e.g., browser, Word).
- **Process States**: Stages like New, Running, Waiting, Ready, Terminated.
- Process Control Block (PCB): Stores process information (e.g., ID, state).
- Scheduling: Allocates CPU time to processes.
- **Context Switching**: Switches between processes.
- Task Manager: Windows tool for monitoring processes.
- **Top/HTOP**: Linux tools for process monitoring.
- **Command Line**: Text-based interface for OS interaction.

• **Terminal**: Linux command-line interface.

12. Frequently Asked Questions

What's the difference between a process and a program?

• A program is a static file (e.g., chrome.exe); a process is the program running with active resources (e.g., Chrome browser open).

How do I create a good diagram for the assignment?

 Use Canva's flowchart templates, show process states and 3 commands, and include visuals (e.g., Task Manager screenshot).

What if I'm unsure about command-line operations?

 Practice dir, mkdir, or ls in Command Prompt/Terminal. Review the examples for guidance.

• How do I prepare for the quiz?

 Study these notes, Chapter 3 of the textbook, and practice commands in Windows or Linux.

Why is process management important?

 It enables multitasking, ensures stability, and optimizes performance for tasks like studying or business operations.

13. Troubleshooting Tips

- **Problem**: My diagram lacks detail.
 - Solution: Include process states, a tool (e.g., Task Manager), and 3 commands (e.g., dir, taskkill). Check the example for guidance.
- **Problem**: I don't understand process states.
 - Solution: Compare to tasks (e.g., Running is a program executing, Waiting is paused for input). List one example for each state.
- **Problem**: My explanation is too short.
 - Solution: Describe how process management and commands support a task (e.g., "Task Manager closes frozen apps"). Use the school lab example as a guide.
- **Problem**: I'm stuck on the application question.
 - Solution: Think of scenarios like studying or business. Explain how process management improves efficiency.

14. Self-Study and Portfolio Tips

Practice:

- Use Task Manager to monitor 3 processes and end one safely.
- o Try 5 commands in Command Prompt (dir, cd) and Linux Terminal (ls, mkdir).
- o Create a practice diagram for process states.

Resources:

- o Read Chapter 3 of Operating System Concepts by Silberschatz et al.
- Watch freeCodeCamp's "Linux Command Line Basics" videos on YouTube.
- o Explore Microsoft Learn's "Windows Command Prompt" tutorials.
- Use VirtualBox tutorials for Ubuntu setup.

Portfolio:

- o Create a GitHub repository for IT assignments.
- Upload the diagram PDF and explanation with a README (e.g., "Process Management Diagram").
- o Include a screenshot of Task Manager or Terminal output to show practical skills.
- Applications: Consider how process management supports multitasking in schoolwork, programming, or server management to appreciate its impact.

15. Additional Notes for Success

- **Engagement**: Participate in class discussions to clarify process management or command-line operations. Ask questions during tutorials to deepen understanding.
- Practice: Practice commands in Command Prompt or Linux Terminal to build confidence.
- Preparation for Future Weeks: Week 2 prepares students for memory management (Week
 3) and file systems (Week 4). Mastering processes now will simplify later topics.
- **Portfolio Building**: Treat the diagram and explanation as professional artifacts. A clear design and thorough explanation can showcase technical skills to employers.