UNDERSTANDING THE DISTRIBUTION OF FITNESS EFFECTS (DFE) ACROSS ENVIRONMENTS

EXPLORING THE STATISTICAL PROPERTIES OF FITNESS LANDSCAPES USING THE FISHER'S GEOMETRIC MODEL

Shahnewaz Ahmed

Fundamental Scales of Living Matter

Genotype (Molecular/Microscopic scale)

Phenotype (Mesoscopic/Cellular scale)

Fitness

(Macroscopic/Population scale)

Source: Wikipedia

Evolutionary Analog of Statistical Mechanics

Importance of DFE

- Understanding what kind of effect mutation have on species especially on humans
- Central to questions in evolutionary biology
- Quantitative genetic variation

Key Questions

- * How does the distribution of fitness effects (DFE) change across different environments?
- * Are the mean and variance of the DFE more sensitive to environmental changes than the overall shape?
- * What is the correlation of fitness effects for mutations across different environments?

Experiment

Mutant fitness =
$$log_2 \left(\frac{abundance after}{abundance at the start} \right)$$

Gene Name	D-Glucose (C)	Spectinomycin 0.0125 mg/ml		
talB	-0.001	-2.712		
yaaJ	-0.127	0.275		
polB	-0.055	-0.328		

Source: Price et. al. 2018

Distribution of Fitness Effect from Experimental Data

Fisher's Geometric Model Mutations 0.144 4 Optimum X Ancestor -0.126**Relative Fitness** 0.108 ₺ Phenotype z₂ 0.090 E 0-0.072 Frequency 00 0.054 -20.036 ⁱ⁼ 0.018 -4Relative fitness 0.000 Phenotype z_1

Environment configurations

Fitness Function

$$W(||\mathbf{z} - \mathbf{z}_{\text{opt}}||) = e^{\alpha||\mathbf{z} - \mathbf{z}_{\text{opt}}||^{Q}}$$

Mutant Distribution

$$d\mathbf{z} = \{dz_i\}_{i \in [1,n]} \quad MVN(0, \sigma_m^2 \mathbf{I}_n)$$

Distribution of Mean of Fitness Values **Environments** 16 Non-stress Stress Number of environments -0.40-0.35-0.30-0.25-0.20-0.15-0.10Mean

Mean of DFE

$$M \approx \frac{\alpha \sigma_{\text{mut}}^2}{2} Q (Q + n - 2)$$
$$\times ||\mathbf{z}_0 - \mathbf{z}_{\text{opt}}||^{Q-2} + o[E[dz^3]]$$

Distribution of Variance of Fitness Values Environments Non-stress 30 Stress 5 0.064 0.066 0.068 0.070 0.072 0.074 0.076 0.078 Variance

Variance of DFE

$$V \approx \alpha^2 \sigma_{\text{mut}}^2 Q^2$$
$$\times ||\mathbf{z}_0 - \mathbf{z}_{\text{opt}}||^{2Q-2} + o[E[dz^3]]$$

Distribution of Correlation Coefficients

Correlation Coefficient

$$\rho_{H,H'} \approx \cos\left(\theta_{\mathbf{z}_{\text{opt}},\mathbf{z}'_{\text{opt}}}\right) + o[E[dz^3]]$$

Conclusion

1. Mechanistic Models: Link DFEs to molecular mechanisms (e.g., protein stability, metabolic fluxes) to move beyond phenomenological descriptions.

2. Environment Dimensionality: Develop scalable methods to handle high-dimensional environmental spaces (e.g., multi-nutrient gradients, biotic interactions).

3. Epistasis and Dynamics: Explore how DFEs change as populations evolve (i.e., epistasis) and incorporate temporal environmental fluctuations.

4. Cross-Species Frameworks: Test whether DFE patterns generalize across bacteria, eukaryotes, or viruses, revealing universal evolutionary constraints.

Thank You

Key Assumptions

7. Fitness potential:

$$H(\mathbf{z}) = \log \left(\frac{W(\mathbf{z}_0 + d\mathbf{z})}{W(\mathbf{z}_0)} \right)$$

Relative fitness:

$$dw = \frac{W(\mathbf{z}_0 + d\mathbf{z}) - W(\mathbf{z}_0)}{W(\mathbf{z}_0)}$$

$$dw \approx \ln(1+dw) = \ln W(\mathbf{z}_0 + d\mathbf{z}) - \ln W(\mathbf{z}_0)$$

Key Assumptions

- 1. Phenotype Space: $\mathbf{z} = \{z_i\}_{i \in [1,n]}$
- 2. Genotype to Phenotype Relationship: $d\mathbf{z} = \{dz_i\}_{i \in [1,n]} \ MVN(0, \sigma_m^2 \mathbf{I}_n)$
- 3. Phenotypic Fitness Landscape: $W(\mathbf{z}_0)$
- 4. Monotonicity of Fitness Function
- 5. Environmental Change
- 6. Stress and Non-stress Environment

Dataset

Gene Name	Description	D-Glucose (C)	L-Arginine (N)	Bacitracin 0.5 mg/ml	Spectinomycin 0.0125 mg/ml	Aluminum chloride 5 mM
talB	transaldolase B (NCBI)	-0.001	-0.027	-0.812	-2.712	-0.429
yaaJ	predicted transporter (NCBI)	-0.127	0.123	0.200	0.275	0.008
polB	DNA polymerase II (NCBI)	-0.055	-0.079	-0.169	-0.328	-0.113
ddlB	D-alanylalanin e synthetase (NCBI)	-0.509	-0.018	-1.366	-0.670	0.198
yacG	zinc-binding protein (NCBI)	-0.909	-0.525	0.309	0.546	0.750

Source: Price et. al. 2018

Distribution of Correlation Coefficients

Distribution of the number of fitness maxima in Fisher's geometric model

Su-Chan Park¹, Sungmin Hwang² and Joachim Krug^{3,4}

- Department of Physics, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- ² Capital Fund Management, 23-25 Rue de l'Université, 75007 Paris, France
- ³ Institute for Biological Physics, University of Cologne, Zülpicher Strasse 77, 50937 Köln, Germany

E-mail: jkrug@uni-koeln.de

Received 25 February 2020, revised 20 May 2020 Accepted for publication 28 May 2020 Published 21 August 2020

