The University of Texas at Austin

Mechanical Engineering Department

MODELING OF PHYSICAL SYSTEMS

J.J. Beaman Assigned 3/12/2022 ME 383Q.4

Spring 2022

Assignment 4

Due 3/24/2022

Read Chapter 4.6, 4.7, 4.8, 6

1. Shown below is a mass m constrained by two equal extensible strings. The strings are put into a relatively constant tension by a vertical force T. There is a mass m between the two strings which can be pulled a distance x by a horizontal force F. The tension force T remains constant during this pull. The mass is pulled out a distance x_0 and released from rest.

- (a) Derive nonlinear state equations for this mass string system in terms of distance x and mass momentum p.
- (b) Linearize the nonlinear state equations for a small value of $x = \delta x$.
- (c) For L = 1 m, m = 0.1 kg, and T = 100 N, simulate your nonlinear and linear state equations with $x_0 = .05$, .1, .5, and $x_0 = 1$ meters for time span of 1 sec. Comment on the accuracy of the linearized model with respect to initial distance pulled x_0 .
- 2. In a certain type of sewing machine, a scotch yoke mechanism is used to drive a reciprocating needle.
 - (a) Develop a bond graph model for this system (Use just the elements indicated by the parameters and the relations in the figure with torque input).
 - (b) Obtain state equations for your system.

- 3. Read the material on the energy-saving hydraulic power supply in Doeblin.pdf.
- (a) Develop a bond graph model of this system using the article's description.

Use the following variables in your model.

A = piston area and transformer modulus F_K = spring force

x = spring deflection $Q_{piston} = \text{piston volume flow}$ τ_{Be} = motor friction torque

 Q_p = pump volume flow Q_{pl} = pump leakage P =supply pressure $T_l(t)$ = motor load torque

 F_L = lever force L = lever length

 V_L = lever tip velocity $\omega_p(t)$ = pump angular velocity

 $d_p \phi = Q_p / \omega_p$ pump modulated transformer modulus F_p = piston force

 τ_L = lever torque $\tau_m = \text{motor torque}$

 h_{ϕ} = lever angular momentum Q_{ml} = motor leakage

 $d_m = \tau_m/P = Q_m/\omega_m$ motor transformer modulus ϕ = lever angle

 τ_B = lever friction torque ω_m = motor angular velocity h_m = motor angular momentum ω_L = lever angular velocity

(b) Simulate your model with the following parameters

 $J_i = .1$ in-lb-sec² pump angular inertia

 $B_i = \text{in-lb-sec}$ pump angular damping

K = 100 lb/in spring constant L=1 in lever length

 $K_{si} = KL^2$

 $J_m = .043 \text{ in-lb-sec}^2$ motor angular inertia

 $B_m = 20$ in-lb-sec motor angular damping $C_f = .0001 \text{ lb/in}^5 \text{ or } .001 \text{ lb/in}^5$ pipe fluid compliance

 $d_m = .486 \text{ in}^3$ transformer modulus

modulated transformer modulus $d_p = 1.0 \text{ in}^3/\text{radian}$

 $A = .5 \text{ in}^2$ piston area and transformer modulus

pump leakage loss coefficient $K_{pl} = .0006 \text{ in}^5/\text{sec}$

 $\omega_p(t) = 180 \text{ radian/sec pump angular velocity step input}$

 $T_i(t) = 0$ in-lb motor load torque

motor leakage loss coefficient $K_{ml} = .0004 \text{ in}^5/\text{sec}$

- (c) Develop a set of state equations from your bond graph.
- (d) What is wrong with the state equations as given in this article?
- (e) With $J_i = .1, L = 1, K = 100., J_m = .043, B_m = 20, d_m = .486, d_p = 1 A = .5, K_{pl} = .0006, \omega_p$ = 180, T_l = 0, and K_{ml} = .0004, perform a digital simulation with B_i = 50 and C_f = .0001.

Compare with the results from the article. Repeat for $B_i = 20$ and $C_f = .001$. Compare with the results from the article.