There are 10 types of people in the world; Those who understand binary and those who don't.

## 02B Numbers Systems CSC 230

# Department of Computer Science University of Victoria

Stl: Chapter 9; 10.1; 10.2; 10.3 (no multiplication/division), Appendix 12A (p. 447)

M&H: 2.1; 2.3; 2.4; 3.1.1; 3.1.2;

### **Integer Number Systems**

#### **Decimal**

Base: 10

Digits: 0,1,2,3,4,5,6,7,8,9

#### **Binary**

Octal

Base: 2

Base: 8

Digits: 0,1

Digits: 0,1,2,3,4,5,6,7

#### **Hexadecimal**

Base: 16

Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

#### **Small Trivial Example**

in decimal =



#### Integer Number Systems: Base 10 - Decimal

#### **Positional Number Systems**

Integer = 
$$D_{n-1}$$
  $D_{n-2}$  ...  $D_1$   $D_0$  e.g. 7423 in decimal Base 10: 
$$\begin{pmatrix} D_{n-1} \times 10^{n-1} \end{pmatrix} + \begin{pmatrix} D_{n-2} \times 10^{n-2} \end{pmatrix} + ... + \begin{pmatrix} D_1 \times 10^1 \end{pmatrix} + \begin{pmatrix} D_0 \times 10^0 \end{pmatrix}$$

$$7423_{10} = \left(7 \times 10^{3}\right) + \left(4 \times 10^{2}\right) + \left(2 \times 10^{1}\right) + \left(3 \times 10^{0}\right)$$

#### Integer Number Systems: Base 16 - Hexadecimal

#### **Positional Number Systems**

Integer = 
$$D_{n-1}$$
  $D_{n-2}$  ...  $D_1$   $D_0$  e.g. 8254 in hexadecimal hexade

NOTE: we have converted from hex to decimal!

#### Integer Number Systems: Base 2 - Binary

#### **Positional Number Systems**

Integer = 
$$D_{n-1}$$
  $D_{n-2}$  ...  $D_1$   $D_0$  e.g. 011011 in binary

Base 2:  $\sqrt{\phantom{a}}$   $\sqrt{\phantom{a}}$ 

NOTE: we have converted from binary to decimal!

#### **Weighted Positional Representation**

BASE: defines the range of values for digits (e.g. 0 – 9 for decimal; 0,1 for binary)

**GENERAL FORM AS AN n-BIT VECTOR:** 

Integer Decimal Value = 
$$\sum_{i=0}^{n-1} d_i \times B^i$$
Decimal Value =  $\sum_{i=-m}^{n-1} d_i \times B^i$ 
Include fractions

#### Full example:

$$145.52_{10} = 1 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 5 \times 10^{-1} + 2 \times 10^{-2}$$
$$= 100 + 40 + 5 + 0.5 + 0.02$$

#### Memorize This Table!

| Binary | Decimal | Hexadecimal |  |
|--------|---------|-------------|--|
| 0000   | 0       | 0           |  |
| 0001   | 1       | 1           |  |
| 0010   | 2       | 2           |  |
| 0011   | 3       | 3           |  |
| 0100   | 4       | 4           |  |
| 0101   | 5       | 5           |  |
| 0110   | 6       | 6           |  |
| 0111   | 7       | 7           |  |
| 1000   | 8       | 8           |  |
| 1001   | 9       | 9           |  |
| 1010   | 10      | Α           |  |
| 1011   | 11      | В           |  |
| 1100   | 12      | С           |  |
| 1101   | 13      | D           |  |
| 1110   | 14      | E           |  |
| 1111   | 15      | F           |  |

### Summary 1: Conversion from any Base "B" to Decimal (positive numbers)

→ Use the polynomial expansion in Base "B" as shown

Base "B" gives the powers of the positional system

$$7423_{16} = (3 \times 16^{0}) + (2 \times 16^{1}) + (4 \times 16^{2}) + (7 \times 16^{3})$$

$$= (3 \times 1) + (2 \times 16) + (4 \times 256) + (7 \times 4096)$$

$$= 29,731_{10}$$

$$11001011_{2} = (1 \times 2^{0}) + (1 \times 2^{1}) + (0 \times 2^{2}) + (1 \times 2^{3}) + (0 \times 2^{4}) + (0 \times 2^{5}) + (1 \times 2^{6}) + (1 \times 2^{7}) = 203_{10}$$

#### Conversion from One Base to Another

#### Decimal to Base "B" for positive integers

- 1. Repeated division by base "B"
- 2. Collect remainders
- 3. Form result from right to left

#### **Example 1: from decimal to binary**

$$35_{10} = ???_2$$

$$35/2 = 17 + remainder 1$$

$$17/2 = 8 + remainder 1$$

$$8/2 = 4 + remainder 0$$

$$4/2 = 2 + remainder 0$$

$$2/2 = 1 + remainder 0$$

$$1/2 = 0 + remainder 1$$

answer: 100011<sub>2</sub>

#### **Conversion from One Base to Another**

#### Decimal to Base "B" for positive integers

- 1. Repeated division by base "B"
- 2. Collect remainders
- 3. Form result from right to left

#### **Example 2: from decimal to hexadecimal**

$$35_{10} = ???_{16}$$
 $35/16 = 2 + remainder 3$ 
 $2/16 = 0 + remainder 2$ 
answer:  $23_{16}$ 

### Conversion amongst binary, octal and hexadecimal is straightforward

- $\square$  since 8 = 2<sup>3</sup> it takes 3 bits to represent the 8 octal digits 0 .. 7
- $\Box$  Since 16 = 24 it takes 4 bits to represent the 16 hex digits 0 .. F

#### from binary to hexadecimal:

form groups of 4 bits from right to left and encode each group directly into a hexadecimal digit – append leading zeroes if needed

from binary to octal: form groups of 3 bits from right to left and encode each group directly into an octal digit – append leading zeroes if needed

$$0\,110\,0\,111_2 = 67_{16}$$



$$0\,110\,0\,111_2 = 147_8$$



### REPRESENTATION of Positive and Negative INTEGERS



#### SIGNED MAGNITUDE

Leading bit is the sign: (not used in computation)

0 for +ve

1 for -ve

other bits are the magnitude

Ex.  $00001100_2 = +12_{10}$   $10001100_2 = -12_{10}$ 

- > Requires separate add and subtract hardware
- > There are 2 representations for "0": +ve and -ve

#### TWO'S COMPLEMENT

#### **Positive integers**

#### **Negative integers**

- ✓ Positive integers are represented following regular conversion
- ✓ They all have the leading bit = 0

#### Example:

+12<sub>10</sub>
using 8-bits
in a 2's complement
representation is =

0000 1100<sub>2</sub>

→ 0000 0000 0000 1100<sub>2</sub>
in 16 bits

✓ Negative integers are represented with the computation:

I where *n* is the number of bits used

√They all have the leading bit = 1

#### Example:

$$2^8 - 12 = 244 = 1111 \ 0100_2$$

in 16 bits = 1111 1111 1111 0100<sub>2</sub>

### Converting from decimal to binary 2's complement – *Example 1 (negative integer)*

- 1. Convert the *absolute value* to binary
- 2. Complement (flip) all bits
- 3. Add 1 (that is, add 000.....001 in *n* bits binary)

Example: convert -12<sub>10</sub> to 8 bits

1. Convert the absolute value |12<sub>10</sub> | to 8-bit binary as:

#### 0000 11002

Note: this is the 2's complement representation of + 12<sub>10</sub>

2. Complement (flip) all bits as:

$$0000\ 1100_2 \rightarrow 1111\ 0011_2$$

3. Add +1 in binary as:

for - 12<sub>10</sub>

→ this is the 2's complement

#### Converting from decimal to binary 2's complement - Why does it work?

- 1. Convert the *absolute value* to binary
- 2. Complement (flip) all bits
- 3. Add 1 (that is, add 000.....001 in *n* bits binary)

Negative integers in 2's complement are represented with the general computation:

2<sup>n</sup> – (number-to-represented)

where *n* is the number of bits used

#### Step 2:

Inverting all bits yields mathematically

 $\rightarrow$  [(2<sup>n</sup>-1) – (number-to-represented)]

#### Step 3:

Adding 1 yields

 $\rightarrow$  2<sup>n</sup> - (number-to-represented)

complement

#### **Summary 2: from decimal to binary**

(1)
Converting
from decimal
to binary 2's
complement
→ positive
integer



Regular conversion to base 2 by repeated division

(2) Converting from decimal to binary 2's complement → negative integer



- 1. Convert the absolute value to binary
- 2. Complement (flip) all bits
- Add 1 (that is, add 000.....001 in *n* bits binary)

#### Summary 3: from binary to decimal

(3) Converting from binary 2's complement to decimal → positive

integer

 Convert using the regular expansion (4) Converting from binary 2's complement to decimal (negative int)

- 1. Complement (flip) all bits
- 2. Add 1 (that is, add 000.....001 in *n* bits binary)
- Convert to decimal →
   get the absolute
   value
- 4. Adjust sign

#### **Avoid Confusion – Think it through!**

In the two's complement representation of integers, a leading "1" bit denotes a negative value, but the remaining bits alone are *not* the magnitude

→ the whole entity must be considered

→ do not confuse with signed magnitude

### Why do designers use 2's complement representation?

□ it is a very efficient representation for +ve and -ve integers
 □ it avoids having 2 representations for "0"
 □ conversion between positive and negative is quite efficient and uniform
 □ only need one adder and no subtraction unit

### Recap: Converting Decimal Integers to 2's Complement

positive decimal integer negative decimal integer get absolute value convert to n-bit convert to n-bit binary by division binary by division <--algorithm algorithm flip all the bits and add 1

### Example: convert +9<sub>10</sub> and -9<sub>10</sub> to 8-bit binary using a Two's Complement Representation



### Reversing the process - Converting from Binary 2's Complement to Decimal



#### Table to memorize:

4 bits :  $\{+7, -8\}$  = range

### In general the range for n bits is:

$$\left\{-2^{n-1}, 2^{n-1}-1\right\}$$



| 0 | 0 | 0 | 0 | 0        |
|---|---|---|---|----------|
| 0 | 0 | 0 | 1 | 1        |
| 0 | 0 | 1 | 0 | 2        |
| 0 | 0 | 1 | 1 | 3        |
| 0 | 1 | 0 | 0 | 4        |
| 0 | 1 | 0 | 1 | 5        |
| 0 | 1 | 1 | 0 | 6        |
| 0 | 1 | 1 | 1 | 7        |
| 1 | 0 | 0 | 0 | -8       |
| 1 | 0 | 0 | 1 | -7       |
| 1 | 0 | 1 | 0 | -6       |
| 1 | 0 | 1 | 1 | -5       |
| 1 | 1 | 0 | 0 | -4       |
| 1 | 1 | 0 | 1 | -3       |
| 1 | 1 | 1 | 0 | -2<br>-1 |
| 1 | 1 | 1 | 1 | -1       |

#### **Quick Quiz**

- □What is 5 in 4-bit binary? 0101
- □What is -5 as a 4-bit 2's complement?

  1011

#### DATA Representation – which CODE are we using

Code - when a piece of information is represented by a particular pattern of symbols (bits in our case).

There are many codes used in computing in addition to the number representations discussed earlier:

BCD - binary coded decimal as a direct representation of decimal digits

ASCII - American Standard Code for Information
Interchange - used for character data

Parity - simple error detection using in serial data transmission

### Binary Coded Decimal (BCD) – for the 10 decimal digits 0,1,...,9

#### A decimal digit is coded as 4 bits as follows:

| 0 | 0000 |                                                      |
|---|------|------------------------------------------------------|
| 1 | 0001 |                                                      |
| 2 | 0010 | Used in calculators and often in                     |
| 3 | 0011 | devices where display of decimal                     |
| 4 | 0100 | information is a primary function e.g. clock or VCR. |
| 5 | 0101 | e.g. clock of vck.                                   |
| 6 | 0110 | Also used extensively in business                    |
| 7 | 0111 | computing e.g. COBOL programs.                       |
| 8 | 1000 |                                                      |
| 9 | 1001 |                                                      |
|   |      |                                                      |

### 7-bit ASCII – The most commonly used code for representing character data

|   | 0   | 1           | 2     | 3 | 4 | 5 | 6 | 7   |
|---|-----|-------------|-------|---|---|---|---|-----|
| 0 | NUL | DLE         | space | 0 | @ | Р | • | р   |
| 1 | SOH | DC1<br>XON  | İ     | 1 | Α | Q | а | q   |
| 2 | STX | DC2         | ш     | 2 | В | R | b | r   |
| 3 | ETX | DC3<br>XOFF | #     | 3 | С | S | С | S   |
| 4 | EOT | DC4         | \$    | 4 | D | Т | d | t   |
| 5 | ENQ | NAK         | %     | 5 | Е | U | е | u   |
| 6 | ACK | SYN         | &     | 6 | F | V | f | ٧   |
| 7 | BEL | ETB         | ı     | 7 | G | W | g | W   |
| 8 | BS  | CAN         | (     | 8 | Н | Х | h | ×   |
| 9 | HT  | EM          | )     | 9 |   | Υ | i | У   |
| Α | LF  | SUB         | *     |   | J | Ζ | j | Z   |
| В | VT  | ESC         | +     | I | K | [ | k | {   |
| С | FF  | FS          |       | < | L | \ | I |     |
| D | CR  | GS          | _     | = | M | ] | m | }   |
| E | so  | RS          |       | > | N | ۸ | n | ~   |
| F | SI  | US          | 1     | ? | 0 | _ | 0 | del |

#### Parity – the extra bits for error detection

A parity bit can be added to a unit of information e.g. a character or a memory word

- EVEN parity → the parity bit is set to either 0 or 1 such that the total number of bits equal to 1 in the information unit, including the parity bit, is even
- ODD parity → the parity bit is set to either 0 or 1 such that the total number of bits equal to 1 in the information unit, including the parity bit, is odd
- ☐ Single bit parity can detect any odd number of bits in error
- □ One can not tell which bits are in error → no error correction

#### **Example**

The 7-bit ASCII code for "D" = 100 0100 with EVEN parity bit → 0100 0100 with ODD parity bit → 1100 0100

#### Let's Review the Nomenclature

**BIT**: unit of information storage - value of 0 or 1

BYTE: collection of 8 bits - unit of "character" representation and small integers

**WORD**: numbers and addresses - (size varies with processor)

- □ a byte or word can be viewed as :
  - (a) an unsigned number
  - (b) a signed magnitude number
  - (c) a 1's complement number
  - (d) a 2's complement number
  - (e) a character from some designated set (byte only)
  - (f) anything else you get agreement on

#### **Assignment in Storage**

lower byte addresses → more significant bytes **Big-endian:** 

Little-endian: lower byte addresses → less significant bytes



- (a) Big-endian assignment
- (b) Little-endian assignment  $_{32}$

#### Big-Endian/Little-Endian example

2 bytes to be stored:



#### Reverse within each byte



- (a) Big-endian assignment
- (b) Little-endian assignment  $_{33}$

#### MC68xxx and ARM

#### byte addressable and little-endian

| 76543210 76543210                |               | 76543210   | 76543210             |  |
|----------------------------------|---------------|------------|----------------------|--|
| BYTE 3                           | BYTE 3 BYTE 2 |            | BYTE 0               |  |
| HALFW                            | VORD 1        | HALFWORD 0 |                      |  |
| (16                              | bits)         | (16 b      | its)                 |  |
|                                  | WORD          | (32 bits)  |                      |  |
| high order<br>(most significant) |               | low o      | rder<br>significant) |  |

#### **IBM 370**

#### Byte addressable and big-endian

2 bytes = 1 halfword

4 bytes = 1 fullword

8 bytes = 1 doubleword

| half half word word 0 1 2 3  full word 0 full word 1  double word 0 | B0   B1   | B2 B3 | B4   B5  | B6   B7 |
|---------------------------------------------------------------------|-----------|-------|----------|---------|
|                                                                     | word      |       | word     | word    |
| double word 0                                                       | full word | 0 1   | full wor | d 1     |
| double word o                                                       |           |       |          |         |

#### Addition, Subtraction, Overflow

- >Study from the textbook on your own
- >They will be used later on
- ➤They are not tested on Quiz #1
- >They are tested in Midterm #1

### Competence quiz (Lab 1): what should you be able to do?

Given 8 binary digits, state their decimal equivalence in the cases of:

- 2's complement
- 1's complement
- unsigned
- signed magnitude

Given a decimal integer convert it to binary and to hex in the cases of:

- 2's complement
- 1's complement
- unsigned
- signed magnitude

#### **Example Questions (from an old test)**

(1) Given the 4-bit hexadecimal numbers below, state the *decimal* equivalent according to the assumption of the representation listed in each heading:

| Hexadecimal                        | E <sub>16</sub> | <sup>5</sup> 16 |
|------------------------------------|-----------------|-----------------|
| Unsigned Integer                   |                 |                 |
| Signed Integer in 2's complement   |                 |                 |
| Signed Integer in Signed Magnitude |                 |                 |

| (2) |                    | ne range of decimal values that can be represe<br>assuming an unsigned integers representation |          |
|-----|--------------------|------------------------------------------------------------------------------------------------|----------|
|     |                    |                                                                                                |          |
| (3) |                    | ne range of decimal values that can be represo<br>assuming a 2's complement representation     | ented in |
|     |                    |                                                                                                |          |
| (4) | Convert<br>hexaded | t the unsigned binary numbers to decimal and cimal:                                            | l to     |
|     | 001011             | 01                                                                                             |          |
|     | 111111             | 11                                                                                             |          |
| (5) | Convert<br>decimal | t the unsigned hexadecimal values to binary a                                                  | nd to    |
|     | 2 <b>A</b>         |                                                                                                |          |
|     | 6E                 |                                                                                                |          |

| (6) Convert the | signed 2's comp | lement binary numbers to |
|-----------------|-----------------|--------------------------|
| decimal:        |                 | _                        |
|                 |                 |                          |

 00110110

 11111111

(7) Convert the signed decimal values to 2's complement 8-bit binary:

+21 -23

(8) Perform the following operations using 2's complement numbers of 5 bits each. As shown all operations are to be done as additions.

-7 + 8 (in decimal) \_\_\_\_\_ + \_\_\_\_ =

10 + 5 (in decimal) \_\_\_\_\_ + \_\_\_ =

### Table available in QUIZ #1 for you

| DEC | BIN 8     | HEX | DEC | BIN 8     | HEX |
|-----|-----------|-----|-----|-----------|-----|
| 0   | 0000 0000 | O   | 8   | 0000 1000 | 8   |
| 1   | 0000 0001 | 1   | 9   | 0000 1001 | 9   |
| 2   | 0000 0010 | 2   | 10  | 0000 1010 | OA  |
| 3   | 0000 0011 | 3   | 11  | 0000 1011 | OB  |
| 4   | 000 00100 | 4   | 12  | 0000 1100 | OC  |
| 5   | 0000 0101 | 5   | 13  | 0000 1101 | OD  |
| 6   | 0000 0110 | 6   | 14  | 0000 1110 | OE  |
| 7   | 0000 0111 | 7   | 15  | 0000 1111 | OF  |