7 Your Daily Dose of Vitamin i

1. We will use complex numbers to find identities for cot. Use Pascal's triangle to expand the following:

(a) $(a+b)^3$

(b) $(a+b)^4$

(c) $(a+b)^5$

Then substitute $b = i = \sqrt{-1}$ and expand:

(d) $(a+i)^3$

(e) $(a+i)^4$

(f) $(a+i)^5$

Finally, substitute $a = \cot \theta$ and expand:

(g) $(\cot \theta + i)^3$

(h) $(\cot \theta + i)^4$

(i) $(\cot \theta + i)^5$

Consider $z = i + \cot \theta$.

- (j) Use the above results to find identities for (i) $\cot 3\theta$, (ii) $\cot 4\theta$, and (iii) $\cot 5\theta$.
- (k) Graph z, z^2, z^3, z^4 , and z^5 , with $\theta \approx 75^\circ$. What method did you use?
- 2. Compute $(1+i)^n$ for $n=3,4,5,\ldots$ Can you find a general pattern?
- 3. Expand and graph $\cos^n \theta$ for $n=2,3,4,\ldots$ and $\theta \approx 50^\circ$.
 - (a) Why is the real part $\cos n\theta$ and the imaginary part $\sin n\theta$?
 - (b) Use your results to write identities for $\cos n\theta$ and $\sin n\theta$ for n=2,3,4,5.
- 4. Compute $\cos 7^\circ + \cos 79^\circ + \cos 151^\circ + \cos 223^\circ + \cos 295^\circ$ without a calculator. (Hint: what does this have to do with complex numbers?)
- 5. Factor the following:

(a) $x^6 - 1$ as a difference of squares

(d) x^6-1 completely

(b) $x^6 - 1$ as a difference of cubes

(e) $x^4 + x^2 + 1$ completely

- (c) $x^4 + x^2 + 1$ over the real numbers
- 6. Let $f(z) = \frac{z+1}{z-1}$.
 - (a) Without a calculator, compute $f^{2020}(z)$.
 - (b) What if you replace 2020 with the current year?
- 7. Find Im $((cis 12^{\circ} + cis 48^{\circ})^{6})$.
- 8. Let x satisfy the equation $x + \frac{1}{x} = 2\cos\theta$.
 - (a) Compute $x^2 + \frac{1}{x^2}$ in terms of θ .
 - (b) Compute $x^n + \frac{1}{x^n}$ in terms of n and θ .