Lab and Exercises IV

Exercise I.

(i) Implement the finite difference scheme that we discussed for solving the equation (for simplicity q = 0 and r = 0):

$$-p\partial_x^2 u = f$$
 for $a < x < b$,
with $u(a) = g_a$, $u(b) = g_b$.

- (i) Test your code on the problem [a, b] = [0, 1], $f(x) = \sin(\pi x)$, and $g_a = g_b = 0$. What solution u(x) do you expect? Does your computed solution $\{U_i\}_{i=0}^{M+1}$ approximate the expected function well?
- (ii) With part (i) at hand you have already almost implemented the Crank-Nicolson scheme for solving the time-dependent heat equation

$$\partial_t u(t, x) - p \partial_x^2 u(t, x) = f(t, x)$$
 for $a < x < b$,
with $u(a) = g_a$, $u(b) = g_b$.

Modify your code accordingly and implement the Crank-Nicolson scheme. What happens when you run your code with $[a,b]=[0,1],\ f(t,x)=0,\ g_a=g_b=0$, and initial value $u(0,x)=\sin(\pi x)$. What do you observe? What happens if you change the right hand side to a time-dependent function $f(t,x)=\sin(\pi x)\sin(\pi t)$ instead?

Exercise II.

Implement the second-order explicit time-stepping scheme that we discussed for the wave equation: Given initial values U_i^0 at time t_0 , and U_i^1 at time t_1 for i = 1, ..., M, create a sequence of approximations at time t_{n+1} by setting

$$U_i^{n+1} = 2U_i^n - U_i^{n-1} + c^2 \frac{\tau^2}{h^2} (U_{i+1}^n - 2U_i^n + U_{i-1}^n),$$

for i = 0, ..., M, and homogeneous Dirichlet conditions: $U_0^{n+1} = U_{M+1}^{n+1} = 0$.

Warning: it is vital to choose the time step size τ small enough so that the CFL condition holds.

(i) Experiment with different initial values for $\{U_i^0\}$ and $\{V_i^0\}$. Describe what you observe. What happen when a wave hits the boundary? What happens if you choose the time step size too large?

Exercise III.

En plus. Implement the explicit first-order time-stepping scheme that we discussed for the wave equation: Given initial values U_i^0 , V_i^0 for $i=1,\ldots,M$, create a sequence of approximations at time t_{n+1} by setting

$$\begin{split} U_i^{n+1} &= U_i^n - \frac{\tau}{2h} \big(V_{i+1}^n - V_{i-1}^n \big), \\ V_i^{n+1} &= V_i^n - c^2 \frac{\tau}{2h} \big(U_{i+1}^n - U_{i-1}^n \big), \end{split}$$

for $i=0,\ldots,M,$ where we assume periodic boundary conditions throughout. Concretely, for the equation with i=0 set

$$U_{-1}^n = U_M^n$$
, and $V_{-1}^n = V_M^n$,

and for M+1 simply set $U_{M+1}^{n+1}=U_0^{n+1}$ and $V_{M+1}^{n+1}=V_0^{n+1}$.

Warning: it is vital to choose the time step size τ small enough so that the CFL condition holds.

(i) Experiment with different initial values for $\{U_i^0\}$ and $\{V_i^0\}$. Describe what you observe. What happens if you choose the time step size too large?