D-A286 827

FROM A MANAGEMENT PERSPECTIVE Ada®

by: Major Charles Engle

1Lt Anthony D. Dominice

Presented by: Ada® Software Engineering Education & Training (ASEET) Team

Ada® Joint Program Office Sponsored by:

Organized by: Herbert E. Cohen

U.S. Army Materiel Systems Analysis Activity

Aberdeen Proving Ground, Md.

DTIC QUALITY INSPECTED 3

Unclassified

RECLIBITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE							Form Approved ON: No. 0704-0188
ia. REPORT S Unclassi	ECURITY CLASS	SIFICATION		1b. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					•		
4. PERFORMING ORGANIZATION REPORT NUMBER(S)				S. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
AMSAA			AMXSY-MP	Same as 6			
6c. ADDRESS (City, State, and ZIP Code) ATTN: AMXSY-MP Aberdeen Proving Ground, MD 21005-5071				7b. ADDRESS (City, State, and ZIP Code)			
ORGANIZA	-		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Ada Joint Program Office (OCD)				10. SOURCE OF FUNDING NUMBERS			
8c. ADDRESS (City, State, and ZIP Code) The Pentagon				PROGRAM	PROJECT	TASK	WORK UNIT
Washington, D.C. 20301-3081				ELEMENT NO.	NO.	NO.	ACCESSION NO.
11. Tive (Include Security Classification) Ada from a Management Perspective							
12. PERSONAL Herb Coh	. AUTHOR(S) en, Organ	izer			······································		
13a. TYPE OF REPORT 13b. TIME CO Fianl FROM			· · · · · · · ·	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 88/3/31 81			
15. SUPPLEME	NTARY NOTA	TION			-		
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number				
FIELD	GROUP	SUB-GROUP		re Engineering, Abstraction, Modularity, zation Information Hiding, Packages, Subprograms, cs			
			Generics				
		·	and identify by block n				
95-01573							
☑ UNCLAS	SIFIED/UNLIMIT	ED SAME AS F	RPT. DTIC USERS	2: ABSTRACT SECURITY CLASSIFICATION Unclassified			
22a. NAME O		INDIVIDUAL		22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL (301)267-2785/6577 AMSAA (AMXSY-MP)			
Herbert E. Cohen I(301)267-2785/6577 AMSAA(AMXSY-MP) DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAG							

Request for Video Tapes

- l. DOD and other government agencies can obtain copies of tapes and text through their nearest local Training and Audio Visual Support Center.
- 2. Reference tape PIN # 505193.
- Local Training and Audio Visual Support Center can request tapes through:

Department of the Army U.S. Army Visual Information Center Joint Visual Information Activity ATTN: ASNV-0JVP-CM

Tobyhanna Army Depct, PA 18466-5102

The general public can obtain tapes at minimal cost, in any of the formats specified above, by writing to: Tapes will be standard DOD, 3/4 inch video cassette; however 1/2 inch VHS are also available on request.

National Audio Visual Center GSA ATTN: Order Section Washington, D.C. 20409

5. For additional information, contact:

contact:

Ada Joint Program Office
Pentagon 3E114
Washington, D.C. 20301-

ACKNOWLEDGEMENT

carried out without the continuing support of Lieutenant Colonel David Taylor (ARMY) and Major Allen Kopp This activity could not have been Army Materiel Systems Analysis Activity (AMSAA) wishes to express its deep appreciation to professionalism by the Combat Systems Test Activity at Aberdeen Proving Ground, Maryland in particular, Major Charles Engle (ARMY) and 1st Lieutenant Anthony D. Dominice (AF) of the Ada Software Engineering (AF) of the Ada Joint Program Office (OSD). This video production required considerable effort and Education and Training (ASEET) Team for an outstanding lecture series. Jack Frost, Dave Jennings and Larry Ross which is deeply appreciated.

Overview

Rationale for development

Capabilities and advantages

Life Cycle application

What you may have heard about Ada

It's a cure all for DoD computing problems

It's just another acronym

It's a programming language

It's "just another" programming language

It's a panacea

What you need to hear about Ada

Plain and simple...

use in embedded computer systems anguage developed by the DoD for Ada is a standardized computer

meeting the software engineering Ada is the BEST tool available for requirements of the DoD

Overview

Rationale for development

Capabilities and advantages

Life Cycle application

Overview

Rationale for development

Capabilities and advantages

Life Cycle application

The criticality of software

Hardware is no longer the dominant factor in the hardware/software relationship

The demand for software is rising quickly

The cost of software is rising quickly

Software maintenance is the dominant software activity

Systems are getting more complex

Life and property are dependent on software

Characteristics of DoD software

Expensive

Incorrect

Unreliable

Unpredictable

Unmaintainable

Not reusable

Factors affecting DoD software

Ignorance of life cycle implications

Lack of standards

Lack of disciplined use of methodologies

Inadequate support environments

Management

Software professionals

Characteristics of DoD software requirements

Large

Complex

Long lived

High reliability

Time constraints

Size constraints

The fundamental problem

Our inability to manage the COMPLEXITY of our software systems (Grady Booch)

Lack of a disciplined, engineering approach

Software Engineering

The establishment and application of sound engineering

Environments

Tools

Methodologies

Models

Principles

Concepts

Software Engineering

. Combined with

Standards

Guidelines

Practices

Software Engineering

To support computing which is

Understandable

Efficient

Reliable and safe

Modifiable

Correct

Throughout the life cycle of a system

(C. McKay, 1985)

Programming languages software engineering and

A programming language is a software engineering tool

A programming language EXPRESSES and EXECUTES design methodologies The quality of a programming language for software engineering is determined by how well it supports a design methodology and its underlying models, principles, and concepts

Traditional programming languages software engineering and

Programming Languages

Were not engineered

Have lacked the ability to express good software engineering

Have acted to constrain software engineering

ENVIRONMENTS CONCEPTS PRINCIPLES MODELS TOOLS STANDARDS GUIDEL INES PRACTICES

YETHODOLOGIES

Ada and software engineering

Ada

Was itself engineered to support software engineering

Embodies the same concepts, principles, and models to support methodologies

Is the best tool for software engineering available

T001 METHODOLOGIES **ENVIRONMENTS** PRINCIPLES MODELS TOOLS CONCEPTS STANDARDS **GUIDELINES PRACTICES**

Principles of software engineering

Abstraction

Modularity

Localization

Information hiding

Completeness

Confirmability

Uniformity

Abstraction

The process of separating out the important parts of something while ignoring the inessential details

Separates the "what" from the "how"

Reduces the level of complexity

There are levels of abstraction within a system

Modularity

Purposeful structuring of a system into parts which work together

Each part performs some smaller task of the overall system Can concentrate and develop parts independently as long as interfaces are defined and shared Can develop hierarchies of management and implementation

Localization

Putting things that logically belong together in the same physical place

Information hiding

Puts a wall around localized details

Prevents reliance upon details and causes focus of attention to interfaces and logical properties.

Completeness

Ensuring all important parts are present

Nothing left out

Confirmability

Developing parts that can be effectively tested

Uniformity

No unnecessary differences across a system

Major Features Of Ada

Standardization

Strong Typing

Readability

Typing Structures

Program Units

Data Abstraction

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Major Features Of Ada

Standardization

Typing Structures

Strong Typing

Data Abstraction

Tasks

Separate Compilation

Program Units

Readability

Exceptions

Generics

Packages

Subprograms

Standardization

Ada is an exact standard

- ANSI/MIL STD 1815A

- No subsets, no supersets

Conformance to the standard is required

- Ada Compiler Validation Capability (ACVC)

Standardization allows for portability

Standardization promotes reusability

Standardization shifts focus from the mundane to the important

Major Features Of Ada

Standardization

Readability

Program Units

Separate Compilation

Subprograms

Packages

Strong Typing

Typing Structures

Data Abstraction

Tasks

Exceptions

Generics

Readability

Ada was engineered with the understanding that programming is a human activity Features are provided that allow a maintainer to quickly grasp the meaning of a particular program and to understand its structure

Readability is more than just a language issue

Major Features Of Ada

Standardization

Strong Typing Typing Structures

Readability

Data Abstraction

Program Units

Tasks

Separate Compilation

Exceptions

Subprograms

Generics

Packages

Systems engineering

Analyze problem

Break into solvable parts

Implement parts

Test parts

Integrate parts to form total system

Test total system

Requirements for effective systems engineering

Ability to express architecture

Ability to define and enforce interfaces

Ability to create independent components

Ability to separate architecture issues from implementation issues

Program Units

Components of Ada which together form a working Ada software system

Express the architecture of a system

Define and enforce interfaces

Program Units

Subprograms

Working components that perform some action

Packages

A mechanism for collecting logically related entities

Perform actions in parallel with other entities

Tasks

Program Units

Consist of two parts: specification and body

SPECIFICATION:
Defines the interface
between the unit and
other units (the

BODY: Defines the implementation of the unit (the HOW)

Program Units

The specification of program units is the only means of connecting them tagether

The interface is enforced and shared

The body of a program unit is not accesible to other program units There is a clear distinction between architecture and implementation

Major Features Of Ada

Standardization

Readability

Program Units

Separate Compilation

Subprograms

Packages

Strong Typing

Typing Structures

Data Abstraction

Tasks

Exceptions

Generics

Separate compilation

Program units may be separately compiled

Possible because of separation of specification and body

Separate compilation

A program unit's spec may be compiled separately from it's body

Realizes not only a logical distinction between architecture and implementation, but also a physical distinction

Separate compilation

Allows development of independent software components

Currently we lose a tremendous amount of human effort; software is disposable

Separate compilation allows us to reuse components and keep our investment

Major Features Of Ada

Standardization

Strong Typing

Readability

Typing Structures

Program Units

Data Abstraction

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Discrete components

Allow a system to be composed of black boxes

Provide clear understandable functions

Can be verified and validated more effectively

Prevalent across engineering disciplines

Subprograms

A program unit that performs a particular action

- Procedures
- Functions

Contains an interface (parameter part) mechanism to pass data to and from the subprogram The basic discrete component which acts like a black box

Gives ability to express abstract actions

Major Features Of Ada

Standardization

Strong Typing

Readability

Typing Structures

Program Units

Data Abstraction

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Packages

Program units that allow us to collect logically related entities Allow the definition of reuseable software components

A fundamental feature of Ada which allows a change of mindset

An architecture oriented feature

Packages

Place a wall around resources

Export resources to users of a package

May contain local resources hidden from the user

Packages

Directly support:

Abstraction

Information hiding

Modularity

Localization

Understandability, efficiency, reliability, modifiability

Major Features Of Ada

Standardization

Readability

Program Units

Separate Compilation

Subprograms

Packages

Strong Typing

Typing Structures

Data Abstraction

Tasks

Exceptions

Generics

The raw materials of engineering

Al! engineering disciplines shape raw materials into a finished product

The materials and methods combine to define different disciplines

Structuring raw materials

There is a requirement to structure raw materials

- To quantifyTo manageTo testTo validate

Methods of structuring vary across disciplines

Some raw materials of software engineering

Binary switches Computer memory locations Data

Strong typing

Defines structure of data

Enforces structure of data

Strong typing

Enforces abstraction of structure on data

Increases confidence of correctness

Increases reliability and safety

Promotes understandability and maintainability

Major Features Of Ada

Standardization

Strong Typing

Readability

Typing Structures

Program Units

Data Abstraction

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Typing Structures

Variety of problems requires a variety of structuring capabilities

Ada provides a rich variety of typing capabilities

Typing structures in Ada

Discrete data

- Enumerated
 - Integer

Real data

- Fixed point (absclute error)
- Floating point (relative error)

Composite data

- Arrays (homogeneous)
- Records (heterogeneous)

Dynamic data

Access types

Major Features Of Ada

Standardization

Strong Typing

Typing Structures

|Data Abstraction

Program Units

Readability

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Data Abstraction

Combines primitive raw materials to form higher level structures

Levels of abstraction

Enforces an abstraction on a higher level structure

Prohibits use of implementation details

Promotes understandability

Promotes modifiability

Data abstraction and private types

Private types directly implement data abstraction

Directly implement information hiding

package B_R is

type NUMBERS is range 0 .. 99;

procedure TAKE (A_NUMBER : out NUMBERS);

procedure SERVE (NUMBER: in NUMBERS);

function NOW_SERVING return NUMBERS;

end B_R;

with B_R; use B_R;

se B_K;

procedure ICE_CREAM is

YOUR_NUMBER: NUMBERS;

begin

TAKE (YOUR_NUMBER);

ioop

if NOW_SERVING = YOUR_NUMBER then SERVE (YOUR_NUMBER);

exit;

end if;

end loop;

end ICE_CREAM;

```
loop
if NOW_SERVING = YOUR_NUMBER then
SERVE ( YOUR_NUMBER );
                                                                                                                                                                                                                          YOUR_NUMBER := YOUR_NUMBER -
                                                         YOUR_NUMBER: NUMBERS;
                                                                                                                   TAKE ( YOUR_NUMBER );
                            procedure ICE_CREAM is
                                                                                                                                                                                                                                                                                      end ICE_CREAM;
                                                                                                                                                                                               exit;
                                                                                                                                                                                                                                            end if;
                                                                                                                                                                                                                                                          end loop;
                                                                                                                                                                                                                else
with B_R;
use B_R;
                                                                                        begin
```

package B_R is

type NUMBERS is private;

procedure TAKE (A_NUMBER: out NUMBERS);

procedure SERVE (NUMBER : in NUMBERS);

function NOW_SERVING return NUMBERS;

private

type NUMBERS is range 0 ..99;

end B_R;

loop
if NOW_SERVING = YOUR_NUMBER then YOUR_NUMBER := NOW_SERVING; SERVE (YOUR_NUMBER); YOUR_NUMBER: NUMBERS; TAKE (YOUR_NUMBER); procedure ICE_CREAM is exit; end if; end loop; else with B_R; use B_R; begin

end ICE_CREAM;

package B_R is

type NUMBERS is limited private;

procedure TAKE (A_NUMBER : out NUMBERS);

procedure SERVE (NUMBER : in NUMBERS);

function NOW_SERVING return NUMBERS;

function "=" (LEFT, RIGHT : in NUMBERS) return BOOLEAN;

private

type NUMBERS is range 0 ..99;

end B_R;

if NOW_SERVING = YOUR_NUMBER then procedure GO_TO_DQ is separate; SERVE (YOUR_NUMBER); YOUR_NUMBER: NUMBERS; TAKE (YOUR_NUMBER); procedure ICE_CREAM is exit; with B_R; use B_R; loop begin

63

end ICE_CREAM;

60_T0_DQ;

ejse

end if;

end loop;

Major Features Of Ada

Standardization

Readability

Program Units

Separate Compilation

Subprograms

Packages

Strong Typing

Typing Structures

Data Abstraction

Tasks

Exceptions

Generics

Tasks

Program unit that acts in parallel with other entities

Directly implements those parts of embedded systems which act in parallel

Takes advantage of move toward parallel hardware architectures

- Fault tolerance
- Distributed systems

Eliminates need to introduce additional complexity into a system

Major Features Of Ada

Standardization

Strong Typing

Readability

Typing Structures

Program Units

Data Abstraction

Separate Compilation

Tasks

Subprograms

Exceptions

Packages

Generics

Software reliability and safety

Errors will occur

- Hardware
- Software

Real time systems must be able to operate in a degraded mode

Reliability and safety must be engineered into a system

Traditional languages lack features for dealing with errors and exceptional situations

Exceptions

Deal specificaily with errors and exceptional situations

When an exception is raised processing is suspended and control is passed to an appropriate exceptional handler

Try again Fix error

Propogate exception

Increases reliability

Reduces complexity

Major Features Of Ada

Standardization

Strong Typing

Typing Structures

Data Abstraction

Tasks

Separate Compilation

Program Units

Readability

Exceptions

Generics

Packages

Subprograms

Generics

A generic is a tailorable template for a program unit

Increases ability to define reuseable software components

Generics

Reduce size of program text

Reduce need to reinvent the wheel

Increase reliability by allowing reuse of known components

Overview

Rationale for development

Capabilities and advantages

Life Cycle application

Software Life Cycle

Requirements analysis

Preliminary design

Detailed design

Coding and unit testing

CSC integration and testing

CSCI testing

Maintenance

Requirements analysis

Standardization brings a much higher level of predictability

- Ada language itself
- Existing Ada software components

Ada supports rapid prototyping very well

Design

Ada features support architectural design

Can actually express design in terms of PDL

- Compileable

- Allows other automated tool support

Can enforce design through compileable PDL

Ada supports varied methodologies

Ada features reduce need to squeeze design into a programming language

Coding

Ada features ensure original design is not violated

Using PDL reduces amount of coding activity

Readability of Ada code promotes productivity

Testing

The ability of Ada to support independent components allows more effective testing

Exceptions allow "built-in" testing facilities

Integration and testing

Ada PDL ensures interfaces are correct

More effective time can be spent testing the system rather than fixing integration errors

Maintenance

Readability makes maintenance much easier

Proper software engineering using Ada will reduce maintenance costs