

Chapitre 2 : Résistance

❖ Définitions :

La tension U aux bornes d'une résistance est proportionnelle à l'intensité I du courant qui le traverse.

1. Loi d'ohm

Le coefficient de proportionnalité entre U et I est appelé « valeur de la résistance ». Il est noté R en ohm (Ω) . On a ainsi la loi d'Ohm : U = R.I

U: tension aux bornes de R en volt.

I : courant traversant R en ampère.

Remarque: si G = 1 R alors on a aussi: I = G.U avec G: conductance en siemens (S).

2. Puissance:

En régime continu, La puissance électrique absorbée par une résistance est intégralement dissipée en chaleur, c'est l'effet Joule. P_{abs} = U.I

P: puissance en Watt (W).

U: tension aux bornes de R en volt.

I : courant traversant R en ampère.

3. Résistivité:

$$R = \frac{\rho}{\varsigma}l$$

R : résistance du conducteur ou du matériau résistant $[\Omega]$.

 ρ : résistivité ou résistance spécifique du matériau résistant [Ω .m].

l : longueur du matériau résistant [m].

S: surface de conduction du matériau résistant [m²].

Association de résistance :

1. Association en série :

$$Req = R1 + R2 + R3$$

2. Association en parallèle:

$$\frac{1}{Req} = \frac{1}{R1} + \frac{1}{R2} + \cdots$$

1. Pont diviseur de tension :

$$u1 = \frac{R1}{R1 + R2}u$$
 et $u2 = \frac{R2}{R1 + R2}u$

2. Pont diviseur de courant

$$I1 = \frac{R2}{R1 + R2}I$$
 et $I = \frac{R1}{R1 + R2}I$