Reinforcement Learning Lab

Lesson 2: Policy Iteration and Value Iteration

Davide Corsi and Alberto Castellini

University of Verona email: davide.corsi@univr.it

Academic Year 2022-23

1/6

Corsi and Castellini Reinforcement Learning Lab Academic Year 2022-23

Environment Setup

The first step for the setup of the laboratory environment is to update the repository and load the miniconda environment.

• Update the repository of the lab:

```
cd RL—Lab
git stash
git pull
git stash pop
```

• Activate the *miniconda* environment:

```
conda activate rl-lab
```

Safe Procedure

Always back up the previous lessons' solutions before executing the repository update.

2/6

Today Assignment

In today's lesson, we implement the value iteration and policy iteration algorithms in Python. In particular, the file to complete is:

```
RL—Lab/lessons/lesson_2_code.py
```

Inside the file, two functions are only partially implemented. The objective of this lesson is to complete them.

- def value_iteration()
- def policy_iteration()

Expected results can be found in the:

```
RL-Lab/results/lesson_2\_results.txt
```


Pseudocode - Policy Iteration (a)

```
function POLICY-ITERATION(mdp) returns a policy
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
  local variables: U, a vector of utilities for states in S, initially zero
                        \pi, a policy vector indexed by state, initially random
  repeat
        U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
       unchanged? \leftarrow true
        for each state s in S do
           \inf \ \max_{a \ \in A(s)} \ \sum_{s'} \ P(s' \ | \ s,a) \ U[s'] \ > \ \sum_{s'} \ P(s' \ | \ s,\pi[s]) \ U[s'] \ \text{then do}
                \pi[s] \leftarrow \operatorname*{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
                 unchanged? \leftarrow false
  until unchanged?
  return \pi
```

Figure: Pseudocode for the policy iteration algorithm, the implementation is from the Russell and Norvig book: *Artificial Intelligence: A Modern Approach*

Pseudocode - Policy Iteration (b)

The policy evaluation of the policy iteration algorithm implements the following function:

$$U_i(s) = R(s) + \gamma \sum_{s'} P(s' | s, \pi_i(s)) U_i(s')$$
.

Figure: Policy Evaluation function.

Hint:

In the assignments, the update functions require discounting the future reward (e.g., $r + \gamma \cdot future$). Remember that for the terminal states, there is no future! Update only with r in such cases.

Corsi and Castellini Reinforcement Learning Lab Academic Year 2022-23 5/6

Pseudocode - Value Iteration

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a),
                rewards R(s), discount \gamma
            \epsilon, the maximum error allowed in the utility of any state
  local variables: U, U', vectors of utilities for states in S, initially zero
                       \delta, the maximum change in the utility of any state in an iteration
  repeat
       U \leftarrow U' : \delta \leftarrow 0
       for each state s in S do
           U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{-\prime} P(s' \mid s, a) \ U[s']
           if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]|
  until \delta < \epsilon(1-\gamma)/\gamma
   return D
```

Figure: Pseudocode for the value iteration algorithm, the implementation is from the Russell and Norvig book Artificial Intelligence: A Modern Approach