1. Formal grammar

Def a formal way of description language, there are generative and analytical types.

Terminal symbol an object presented in words of language. Has semantic value for language user.

Non-Terminal symbol an meta-object of language (formula, command, ...). Has no concrete meaning.

2. Generative grammar

Grammar describes how to form strings from alphabet of a formal language that are valid accordingly to language syntax. Does not describe the meaning of the strings - only their form.

alphabet a set of atomic symbols, which build words.

Grammar consists of:

- 1. Terminal alphabet \sum
- 2. Non-Terminal alphabet N
- 3. Inference rules $P : left \rightarrow right$

left: nonempty sequence of terminal and non-terminals, has at least 1 non-terminal.

right: sequence of terminal and non-terminals

4. Define first non-terminal

2.1. Chomsky hierarchy

Def hierarchy in which lower is more strict, but more suitable for parsing.

- 0. Not limited
- 1. Context-sensitive
- 2. Context-free. (only non-terminals at left P)
- 3. Regular(right has one non-terminal and maybe terminals)

3. Chomsky Normal Form

For all P must: $A \rightarrow BC \ A \rightarrow \alpha$

Must exist rule if language has epsilon: $S \to \varepsilon$

Where: $A, B, C \in$ NonTerm, $\alpha \in$ Term, S is start symbol, ε is empty string

4. Bottom-up parsing

5. offtop Dynamic programming

6. CYK

Def parsing algorithm for context-free grammars. It employs bottom-up parsing and dynamic programming.

Operates on Chomsky Normal Form. Noted because of good worst-case performance.

https://www.borealisai.com/research-blogs/tutorial-15-parsing-i-context-free-grammars-and-cyk-algorithm/