Practice 1

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden

1. Get all the columns from the Customers table

SELECT * FROM Customers

2. Write a statement that will select the City column from the Customers table.

SELECT City FROM Customers

3. Select all the different values from the Country column in the Customers table.

SELECT DISTINCT(Country) FROM Customers

4. Select all records where the City column has the value "Berlin".

SELECT * FROM Customers WHERE City="Berlin"

5. Select all records where the CustomerID column has the value 3.

SELECT * FROM Customers WHERE CustomerID = 3

6. Select all records where the City column has the value 'Berlin' and the PostalCode column has the value '12209'.

SELECT * FROM Customers WHERE City = "Berlin" AND PostalCode = "12209"

7. Select all records where the City column has the value 'Berlin' or 'London'.

SELECT * FROM Customers WHERE City = "Berlin" OR City = "London"

8. Select all records from the Customers table, sort the result alphabetically by the column City.

SELECT * FROM Customers ORDER BY City ASC;

9. Select all records from the Customers table, sort the result reversed alphabetically by the column City.

SELECT * FROM Customers ORDER BY City DESC;

10. Select all records from the Customers table, sort the result alphabetically, first by the column Country, then, by the column City.

SELECT * FROM Customers ORDER BY Country ASC, City ASC;

11. Select the record with the smallest value of the Price column.

SELECT MIN(Price) FROM Products;

12. Use an SQL function to select the record with the highest value of the Price column.

SELECT MAX(Price) FROM Products;

13. Return the number of records that have the Price value set to 18.

SELECT COUNT(*) FROM Products WHERE Price = 18;

14. Use an SQL function to calculate the average price of all products.

SELECT AVG(Price) FROM Products;

15. Use an SQL function to calculate the sum of all the Price column values in the Products table.

SELECT SUM(Price) FROM Products;

16. List the number of customers in each country.

SELECT Country, COUNT(*) FROM Customers GROUP BY Country;

17. List the number of customers in each country.

SELECT Country, COUNT(*) FROM Customers GROUP BY Country;

Practice 2

family_members

id	name	gender	species	num_books_read
1	Dave	male	human	200
2	Mary	female	human	180
3	Pickles	male	dog	0

1. Display all of that data in family_members

SELECT * FROM family_members

2. Display only the name and num_books_read columns

SELECT name, bum_books_read FROM family_members

• Return just the name and species columns

SELECT name, species FROM family_member

3. Grab all of the rows that correspond to humans

SELECT * FROM family_members WHERE species = "human

• Run a query that returns all of the rows that refer to dogs

SELECT * FROM family_members WHERE species = "dog"

4. Select family members that read at least 1 book.

SELECT * FROM family_members WHERE num_books_read > 0

SELECT * FROM family_members WHERE num_books_read >= 1

• Return all rows of family members whose num_books_read is greater than 190

SELECT * FROM family_members WHERE num_books_read > 190

5. Return all rows in family members where num books read is a value greater or equal to 180

friends of pickles

id	name	gender	species	height_cm
1	Dave	male	human	180
2	Mary	female	human	160
3	Fry	male	cat	30
4	Leela	female	cat	25
5	Odie	male	dog	40
6	Jumpy	male	dog	35
7	Sneakers	male	dog	55

- 1. Find the friends of Pickles that are over 25cm in height and are cats
- SELECT * FROM friends_of_pickles WHERE height_cm > 25 AND species = 'cat';
 - Find all of Pickles' friends that are dogs and under the height of 45cm
- SELECT * FROM friends_of_pickles WHERE species = 'dog' AND height_cm < 45;</pre>
 - 2. Find the friends of Pickles that are over 25cm in height or are cats
- SELECT * FROM friends_of_pickles WHERE height_cm > 25 OR species = 'cat';
 - Find all of Pickles' friends that are dogs or under the height of 45cm
- SELECT * FROM friends_of_pickles WHERE species = 'dog' OR height_cm < 45;
 - 3. Get the gender and species combinations of the animals less than 100cm in height.
- SELECT gender, species FROM friends_of_pickles WHERE height_cm < 100;
 - Return a list of the distinct species of animals greater than 50cm in height
- SELECT DISTINCT(species) FROM friends_of_pickles WHERE height_cm > 50;
 - 4. Sort the friends of pickles by name
- SELECT * FROM friends_of_pickles ORDER BY name ASC;
- Run a query that sorts the friends_of_pickles by height_cm in descending order
- SELECT * FROM friends_of_pickles ORDER BY height_cm DESC;
 - 5. Sorts the friends_of_pickles by height_cm in descending order
- SELECT * FROM friends_of_pickles ORDER BY height_cm DESC;
 - 6. Return the total number of rows in the table
- SELECT COUNT(*) FROM friends_of_pickles;
 - 7. Return the total number of human friends of pickles
- SELECT COUNT(*) FROM friends_of_pickles WHERE species = 'human';
- Return the number of rows in friends_of_pickles where the species is a dog
- SELECT COUNT(*) FROM friends_of_pickles WHERE species = 'dog';

family_members

id	name	species	num_books_read	num_legs
1	Dave	human	200	2
2	Mary	human	180	2
3	Pickles	dog	0	4

1. Return the total number of legs in the family.

SELECT SUM(num_legs) FROM family_members;

• Find the total num_books_read made by this family

SELECT SUM(num_books_read) FROM family_members;

2. Returns the average number of legs of each family member.

SELECT AVG(num_legs) FROM family_members;

• Find the average num_books_read made by each family member

SELECT AVG(num_books_read) FROM family_members;

3. Find the least number of legs in a family member

SELECT MIN(num_legs) FROM family_members;

• Find the highest num_books_read that a family member makes

SELECT MAX(num_books_read) FROM family_members;

4. How many of each species does pickle has as a friend?

SELECT species, COUNT(*) FROM friends_of_pickles GROUP BY species;

• Return the tallest height for each species?

SELECT species, MAX(height_cm) FROM friends_of_pickles GROUP BY species;

References

Now click go to the following two website and practice the questions again!

w3schools.com

sql-esy.com