WiSe 2024/25

Dr. G. Tapken Marius Kaiser

Di 26.11.24

8. Tutoriumsblatt zur Mathematik 2

Aufgabe 17

Welche der folgenden auf \mathbb{R} definierten Funktionen ist in $x_0 = 0$ differenzierbar? Berechnen Sie die Ableitung in x_0 , falls diese existiert.

a)
$$f_1(x) = x\sqrt{|x|}$$

a)
$$f_1(x) = x\sqrt{|x|}$$
 b) $f_2(x) = \begin{cases} 2 + (x+1)^2 & \text{für } x < 0 \\ x^3 + 2x + 3 & \text{für } x \ge 0 \end{cases}$ c) $f_3(x) = \sqrt{x^4 + x^2}$

c)
$$f_3(x) = \sqrt{x^4 + x^2}$$

Hinweis: Verwenden Sie die Definition der Differenzierbarkeit

Aufgabe 18

Berechnen Sie die Ableitungen der folgenden Funktionen:

a)
$$f_1(x) = 2x \cdot \ln(x)$$

f)
$$f_6(x) = \cot(x) = \frac{\cos(x)}{\sin(x)}$$

b)
$$f_2(x) = e^x \cdot \cos(x)$$

g)
$$f_7(x) = (\sin(2x-4))^2$$

c)
$$f_3(x) = 2x \cdot e^x \cdot \sin(x)$$

h)
$$f_8(x) = e^{x^2 - 2x + 5}$$

d)
$$f_4(x) = (\tan(x))^2$$

i)
$$f_9(x) = \ln(x^3 - 2x)$$

e)
$$f_5(x) = \frac{5x^4 - x^2 - 3x + 2}{x^3 - 7x^2 + x}$$

$$j) f_{10}(x) = \ln\left(\left(\frac{3x-2}{x^2}\right)^3\right)$$

Hinweis: Sie dürfen verwenden, dass $\frac{d}{dx}e^x = e^x$, $\frac{d}{dx}\ln(x) = \frac{1}{x}$, $\frac{d}{dx}\sin(x) = \cos(x)$, $\frac{d}{dx}\cos(x) = -\sin(x)$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Aufgabe 19

Betrachten Sie die durch die untenstehende Abbildung definierte Funktion $f:[0,5]\to\mathbb{R}$.

Hat f eine Umkehrfunktion? Falls nein, weshalb nicht?

Falls ja, zeichnen Sie die Funktion f^{-1} in die untenstehende Abbildung. Was ist der Definitionsbereich von f^{-1} ? Für welche x hat f^{-1} eine Ableitung?

Aufgabe 20

Bestimmen Sie die folgenden Grenzwerte mit Hilfe von de l'Hospital

a)
$$\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2x}}{\sqrt{x+2} - \sqrt{3x}}$$

c)
$$\lim_{x \to \infty} x \cdot \sin\left(\frac{1}{x}\right)$$

b)
$$\lim_{x \to \pi} \frac{\sin(x)}{\sin(2x)}$$

d)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

Aufgabe 21

Das Bruttosozialprodukt der USA betrug im Jahr 1990 ca. $5.6 \cdot 10^{12}$ \$, dasjenige von China $1.2 \cdot 10^{12}$ \$. Wenn man nun davon ausgeht, dass die USA im Mittel eine Wachstumsrate von 2% und China eine von 9% hat, in welchem Jahr sind dann die beiden Bruttosozialprodukte gleich?

Aufgabe 22

Berechnen Sie die folgenden Ableitungen, wenn h(2) = 2, h'(2) = 3 und h''(2) = -5 gilt.

a)
$$\frac{d}{dx} \left(x^2 \cdot (h(x))^3 \right) \Big|_{x=2}$$

b)
$$\frac{d}{dx} \left(\frac{d}{dx} \left(\frac{h(x)}{x^2} \right) \right) \Big|_{x=2}$$