

RFM products are now Murata products.

RP1298

423.22 MHz **SAW Resonator**

Ideal for 433.92 MHz Superhet Receiver LOs

- Nominal Insertion Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RP1298 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 423.22 MHz. The RP1298 is designed for 433.92 MHz superhet receivers in remote-control and wireless security applications operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency	enter Frequency Absolute Frequency f _C	2, 3, 4, 5,	423.120		423.320	MHz	
	Tolerance from 423.220 MHz	Δf_{C}	2, 3, 4, 3,			±100	kHz
Insertion Loss		IL	2, 5, 6		5.2	8.0	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		15,200		
	$50~\Omega$ Loaded Q	Q_L	5, 6, 7		6,900		
Temperature Stability	Turnover Temperature	T _O		24	39	54	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +2.6		kHz
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC	Motional Resistance	R_{M}			82	152	Ω
	Motional Inductance	L _M	5, 7, 9		475.283		μH
	Motional Capacitance	C _M			0.297547		fF
	Shunt Static Capacitance	Co	5, 6, 9	2.2	2.5	2.8	pF
Lid Symbolization (in ad	ddition to Lot and/or Date Codes)		1	RI	M P1298	1	I

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically,
- aging is greatest the first year after manufacture, decreasing significantly in subsequent years. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or fTRANSMITTER is less than the resonator fc.
- One or more of the following United States patents apply: 4,454,488; 4,616,197.

 Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature T_C = +25°C± 5°C
- The design, manufacturing process, and specifications of this device are subject to change without notice. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 - FTC $(T_O - T_C)^2$]. Typically, oscillator T_O is 20° less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Input or Output	
2	Output or Input	
3	Case Ground	

Typical Test Circuit

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design:

Case Design

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	