Università degli studi di Catania Corso di laurea triennale in Fisica Esame di Meccanica Analitica Appello del 25.09.2020

In un piano verticale Π , si consideri un riferimento fisso $\{O,x,y\}$ ed una guida circolare fissa γ , di centro O e raggio R. Sempre nel piano verticale Π sia dato un sistema meccanico, illustrato in figura, costituito da un disco circolare Γ omogeneo di massa m, raggio R/3 e centro C, e da una sbarra rettilinea omogenea di massa 2m, lunghezza R ed estremi A e B. Il disco Γ rotola senza strisciare sul bordo interno della guida circolare γ , mentre l'estremo A della sbarra é vincolato a scorrere lungo l'asse x ed il secondo estremo B si mantiene sulla guida circolare γ , in posizione diametralmente opposta al centro C del disco Γ . Sul sistema oltre alla forza peso nella direzione verticale discendente, agiscono anche le due forze

$$\{\mathbf{F}, C\}$$
 e $\{-\mathbf{F}, A\}$ con $\mathbf{F} = -k(C - A)$, essendo $k > 0$.

Supposto che il piano Π sia posto in rotazione uniforme con velocitá angolare ω attorno alla retta y, che i vincoli siano realizzati senza attrito con la condizione $k=m\omega^2$, ed utilizzando come variabile lagrangiana l'angolo ϑ , come riportato in figura, si chiede di determinare nel riferimento relativo:

- Tutte le possibili configurazioni di equilibrio, discutendone la loro stabilit\u00e1 ed instabilit\u00e1.
- 2. L'equazione del moto, determinando gli eventuali integrali primi.
- 3. Si stabilisca inoltre, motivando la risposta, se la funzione reale

$$\mathbf{G}(\vartheta, \dot{\vartheta}) = T(\vartheta, \dot{\vartheta}) - 2U(\vartheta), \qquad (\vartheta, \dot{\vartheta}) \in \mathbb{R}^2.$$

costituisca o meno un integrale primo del sistema, essendo $T(\vartheta, \dot{\vartheta})$ ed $U(\vartheta)$ rispettivamente l'energia cinetica totale ed il potenziale totale.

 I moti, in prima approssimazione, attorno alle diverse configurazioni di equilibrio.

