Построение модельного уравнения нелинейной регрессии

§ 21. Лабораторная работа № 5

Лабораторная работа № 5.

Цельработы: овладение способами выбора модельного уравнения нелинейной регрессии, выработка умения и навыков расчета параметров уравнения, проверка его надежности.

Лабораторная работа № 5.

Содержание аботы: На основании опытных данных требуется:

- 1.Построить корреляционное поле. По характеру расположения точек в корреляционном поле подобрать вид функции регрессии.
 - 2. Написать уравнение функции регрессии.
- 3.Определить тесноту корреляционной связи между рассматриваемыми признаками.
 - 4. Проверить адекватность модели.
 - 5. Построить линию регрессии в системе координат.

3 а д а ч а. При обработке металлов резанием устанавливается зависимость резания металла от различных характеристик резца и стружки. Зависимость скорости резания x (м/мин) и площади поперечного сечения стружки y (мм²) при обработке хромоникелевой стали задана табл. 35.

<u>Таблица 35</u>

X	1,1	1,4	1,7	2,1	2,6	4,7	6,1	7,0	10	12,8
у	25	22,7	22,1	19,8	17	12,3	10,7	10	8,2	6,7

В системе координат Оху строим корреляционное поле (рис. 11).

Рис. 11.

Десять точек корреляционного поля позволяют предположить, что искомая функция регрессии является степенной.

Сплошная линия — график функции у = 1/(0,00928 x + 0,0325), а штриховая — график функции у = $28,1 \text{ x}^{-0,54}$.

По расположению точек в корреляционном поле видно, что около них можно провести ветвь гиперболы. Следовательно, уравнение регрессии будем искать в виде гиперболической корреляции 1 или 2. Для выбора одного из этих уравнений применим необходимые условия. Для формулы $y=a+\frac{b}{x}$ по табл. 33 проверяем выполнение равенства

$$y(\frac{2x_1x_n}{x_1+x_n}) = \frac{y(x_1)+y(x_n)}{2}$$
.

$$y\left(\frac{2x_1x_n}{x_1+x_n}\right) = y\left(\frac{2x_1x_{10}}{x_1+x_{10}}\right) = y\left(\frac{2\cdot 1,1\cdot 12,8}{1,1+12,8}\right) = y(2,02).$$

Значение y(2,02) находим линейным интерполированием по формуле

$$y(2,02) = y(1,7) + \frac{y(2,1) - y(1,7)}{2,1 - 1,7}(2,02 - 1,7) = 22,1 + \frac{19,8 - 22,1}{0,4} \cdot 0,32 = 20,26.$$

$$\frac{y(x_1) + y(x_n)}{2} = \frac{y(1,1) + y(12,8)}{2} = \frac{25 + 6,7}{2} = 15,85.$$

Вычисляем отклонение Δ_1 : $\Delta_1 = |15,85 - 20,26| = 4,41$. Для формулы $y = \frac{1}{ax + b}$ проверяем выполнение равенства

$$y\left(\frac{x_1+x_n}{2}\right) = \frac{2y(x_1)\cdot y(x_n)}{y(x_1)+y(x_n)}.$$

$$y\left(\frac{x_1+x_n}{2}\right) = y\left(\frac{x_1+x_{10}}{2}\right) = y\left(\frac{1,1+12,8}{2}\right) = y(6,95)$$

Значение у(6,95) находим линейным интерполированием:

$$y(6,95) = y(6,1) + \frac{y(7) - y(6,1)}{7 - 6,1}(6,95 - 6,1) = 10,7 + \frac{10 - 10,7}{0,9} \cdot 0,85 = 10,04.$$

$$\frac{2y(x_1) \cdot y(x_n)}{v(x_1) + v(x_n)} = \frac{2y(1,1) \cdot y(12,8)}{v(1,1) + v(12,8)} = \frac{2 \cdot 25 \cdot 6,7}{25 + 6,7} = 10,57$$

Вычисляем отклонение Δ_2 : $\Delta_2 = \lceil 10,57-10,04 \rceil = 0,53$. Так как $\Delta_2 < \Delta_1$, то по методу необходимых условий выбираем формулу

$$y = \frac{1}{ax + b}.$$

Произведем выбор одной из выше рассматриваемых формул по методу конечных разностей.

Пусть $y=a+\frac{b}{x}$. Сводим эту зависимость к линейной Y=AX+B, где X=x, Y=xy (см. табл. 35). Вычисляем отношения $\Delta Y/\Delta X$. Составляем расчетную табл. 36.

Таблица 36

X = x	1,1	1,4	1,7	2,1	2,6	4,7	6,1	7,0	10	12,8
y	25	22,7	22,1	19,8	17	12,3	10,7	10	8,2	6,7
Y = xy	27,5	31,78	37,57	41,58	44,2	57,81	65,27	70	82	85,76
ΔY	4,28	5,79	4,01	2,62	13,61	7,46	4,73	12	3,76	
ΔX	0,3	0,3	0,4	0,5	2,1	1,4	0,9	3	2,8	
$\Delta Y/\Delta X$	14,27	19,3	10,03	5,24	6,48	5,33	5,26	4	1,34	

Рассмотрим зависимость $y = \frac{1}{ax+b}$. Пользуясь табл. 33, сводим нелинейную зависимость к линейной Y=AX+B, где X=x, $Y=\frac{1}{y}$. Для нахождения отношений $\Delta Y / \Delta X$ составляем расчетную табл. 37.

Таблица 37 2,1 X = x1,1 2,6 6,1 10 12,8 22,7 22,1 19,8 12,3 10,7 6,7 17 25 10 8,2 0,044 | 0,045 | 0,051 Y = 1/y0,040 0,059 0,081 0,093 0,149 0,100 0,122

ΔY	0,004	0,001	0,005	0,008	0,022	0,012	0,007	0,022	0,027
ΔX	0,3	0,3	0,4	0,5	2,1	1,4	0,9	3	2,8
$\Delta Y/\Delta X$	0,0135	0,0040	0,0131	0,0166	0,0107	0,0087	0,0073	0,0073	0,0098

Отношения $\Delta Y/\Delta X$, полученные для формулы $y=\frac{1}{ax+b}$, мало отличаются друг от друга, чем для формулы $y=a+\frac{b}{x}$. Поэтому по методу конечных разностей в качестве лучшей выбираем формулу $y=\frac{1}{ax+b}$. К такому же выводу мы пришли, применяя метод необходимых условий.

Итак, зависимость скорости резания от площади поперечного сечения стружки при обработке хромоникелевой стали выражается формулой $\hat{y}_x = \frac{1}{ax+b}$. Оценки a и b неизвестных параметров истинного уравнения регрессии находим, решая систему нормальных уравнений

$$\begin{cases} na_0 + [x]a_1 = [1/y], \\ [x]a_0 + [x^2]a_1 = [x/y]. \end{cases}$$

Для вычисления сумм, входящих в систему, составляем расчетную табл. 38.

Таблица 38

x	у	1/y	x/y	x^2
1,1	25	0,04	0,044	1,21
1,4	22,7	0,044053	0,061674	1,96
1,7	22,1	0,045549	0,076923	2,89
2,1	19,8	0,050505	0,106061	4,41
2,6	17	0,058824	0,152941	6,76
4,7	12,3	0,081301	0,382114	22,09
6,1	10,7	0,093458	0,570093	37,21
7	10	0,1	0,7	49
10	8,2	0,121951	1,21951	100
12,8	6,7	0,149254	1,910448	163,84
49,5		0,784595	5,223764	389,37

Решением системы

$$\begin{cases}
10a_0 + 49,5a_1 = 0,784594, \\
49,5a_0 + 389,37a_1 = 5,223761
\end{cases}$$

является точка (a_0 , a_1) = (0,03251; 0,0092835). Поэтому уравнение регрессии примет вид:

$$\hat{y}_x = \frac{1}{0,00928x+0,0325}$$
.

Оценим силу корреляционной связи между скоростью резания и площадью поперечного сечения стружки хромоникелевой стали. Вычислим индекс корреляции по формуле

$$i = \sqrt{1 - \frac{\hat{S}_{yx}^2}{\hat{S}_y^2}}$$
,

где

$$\hat{S}_{yx}^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (y_i - \hat{y}_{xi})^2, \hat{S}_y^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (y_i - \overline{y})^2$$

так как n = 10 < 50

Для нахождения \hat{S}_{yx}^2 и \hat{S}_y^2 составляем расчетную табл. 39.

Таблица 39

x_i	y_i	$\hat{{oldsymbol y}}_x$	$(y_i - \hat{y}_{xi})^2$	$(y_i - \overline{y})^2$
1,1	25	19	36	91,2025
1,4	22,7	18	22,09	52,5625
1,7	22,1	17,2	24,01	44,2225
2,1	19,8	16,2	12,96	18,9225
2,6	17	15,1	3,61	2,4025
4,7	12,3	11,7	0,36	9,9225
6,1	10,7	10,2	0,25	22,5625
7,0	10	9,4	0,36	29,7025
10	8,2	7,5	0,49	52,5625
12,8	6,7	6,3	0,16	76,5625
			100,29	400,0625

Тогда $I = \sqrt{1-11,14333/44,45139} = 0,86$. Связь между скоростью резания и площадью поперечного сечения стружки хромоникелевой стали сильная. Проверяем адекватность полученного уравнения регрессии по критерию Фишера — Снедекора. Находим статистику

$$F_{\rm H} = \frac{i^2(n-2)}{1-i^2} = \frac{0.86^2(10-2)}{1-0.86^2} = 22.7$$
.

При уровне значимости $a=0{,}05$ и числах степеней свободы $k_1=1,\,k_2=n-2=10-2=8$ по таблице критических точек распределения Фишера – Снедекора находим

$$F_{\rm T} = F_{\alpha; k_1; k_2} = F_{0,05;1;8} = 5.32$$
.

Так как

$$F_{\rm H} = 22,7 > 5,32$$

то модель адекватна. Следовательно, зависимость скорости резания от площади поперечного сечения стружки при обработке хромоникелевой стали по данным выборки описывается уравнением $\hat{y}_x = \frac{1}{0,009x+0,04282}$

Во многих инженерных задачах функцию регрессии можно предсказать, исходя из особенностей исследуемого реального процесса.

Так, при резании металла для инженера очевидно, что искомая функция имеет степенной характер, т.е. $y = k x^{-D}$, D>0. Студенту рекомендуется самостоятельно убедиться, что в этом случае $k \approx 28,1122$, $D \approx 0,5399$.

На рис. 11 для сравнения показаны гипербола (сплошная линия) и график функции $y = 28,1x^{-0,54}$.

Вариант № 1. При исследовании зависимости между средней заработной платой Y (тыс. руб.) на одного работника и выпуском X (тыс. руб.) продукции на одного работника по заводу Пластмасс получены следующие данные:

X	21,07	23,07	28,69	22,42	21,41	18,49	21,64	39,19	51,96	42,36	51,80	50,45
Y	50,6	40,0	29,6	32,5	34,9	47,6	42,0	18,7	12,5	20,1	15,1	15,2

Вариант № 2. Данные о производстве X (тыс. руб.) дизтоплива и себестоимости Y (тыс. руб.) единицы продукции приведены в таблице:

X	5	6	8	13	34	72	95	113	127	90
Y	143	125	87	45	33	27	16	25	24	27

Вариант № 3. Зависимость скорости v (м/мин) резания от площади S (мм²) поперечного сечения стружки при обработке стали задана таблицей:

\boldsymbol{v}	1	1,2	1,7	2,4	3,6	4,7	6	8	11	14
S	26	22	22,6	19,1	15,2	12,8	11,3	9,5	7,8	6,5

Вариант № 4. Данные зависимости мощности на долоте N (кВт) от осевой статической нагрузки на забой P_c (тс) при бурении пород приведены в таблице:

P_c	1	3	5	7	9	11	13	15	17
S	12,5	17,8	37	41,9	45	47	39	32	28

Вариант № 5. Зависимость скорости отскока инструмента v_0 (м/с) при ударно-вращательном бурении от коэффициента K пластичности долот задана таблицей:

K	1,5	2,5	3,5	4,5	5,5	6,5
v_0	1,2	0,6	0,21	0,9	1,4	1,9

Вариант № 6. Данные о количестве X (тыс. шт.) выпускаемых деталей и полных затратах Y (сотни руб.) на их изготовление на однотипных предприятиях приведены в таблице:

X	1	2	4	9	13	18	20
Y	26	22	19	12	9	8	6

Вариант № 7. При исследовании зависимости времени Y (мин.) на обработку одной детали от стажа X (в годах) работы на Тюменском моторостроительном объединении в цехе резиново-технических и пластмассовых изделий на слесарном участке получены следующие данные:

X	1	2	3	4	5	6	7
Y	5	3,33	2,9	2,2	2,1	2	2

Вариант № 8. Зависимость удельного момента M_y (кгс·м/тс) на долоте от осевой статической нагрузки P_c (тс) на забой при бурении пород задана таблицей:

P_c	1	3	5	7	9	11	13	15
M_y	22,5	11,5	6	5,5	2,6	2,4	2,1	2

Вариант № 9. Результаты измерений зависимости фазовой проницаемости K_B воды от нефтенасыщенности S_H породы приведены в таблице:

K_{B}	0,25	0,35	0,45	0,55	0,65	0,75	0,85
$S_{ m H}$	0,65	0,45	0,25	0,15	0,10	0,05	0,07

Вариант № 10. В результате исследований установлено, что между овальностью X колец после их обработки и овальностью Y термической обработки, существует связь, которая задана таблицей:

X	5	10	15	20	25
Y	12,1	29,3	36	42	45

Вариант № 11. При исследовании зависимости между выпуском Y (тыс. руб.) готовой продукции и коэффициентом X (%) использования техники получены следующие данные:

X	73	75	79	82	83	86	80	85	95	93	97	77
Y	14	21	29	30	31	35	34	41	38	39	46	27

Вариант № 12. Давление P (кг) воздуха на парашют возрастает при увеличении скорости v (м / сек) падения следующим образом:

P	2,23	3,28	4,65	6,5	8,1
v	0,3	0,6	1,2	2,4	4,2

Вариант № 13. Прочность Y (кг/см²) бетона при испытании цилиндрических образцов в зависимости от отношения $X = h / \alpha$ высоты h к диаметру α оказалась равной:

X	0,5	1,0	2,0	3,0	4,0	5,0	6,0
Y	290	250	216	206	200	195	190

Вариант № 14. Зависимость между размером предприятия по стоимости X (млн. руб.) основных средств и себестоимостью Y (руб.) единицы продукции характеризуется следующими данными:

X	0,5	1,5	2,5	3,5	4,5	5,5	7,5
Y	15	11	12	10,8	10	9	8

Вариант № 15. Зависимость между ростом X (тыс. руб.) производительности труда на одного работающего и выпуском Y (тыс. руб.) товарной продукции ремонтного цеха машиностроительного завода характеризуется следующими данными:

X	1,5	2,9	3,0	3,1	3,2	3,4	3,5	3,6	4,2
Y	580	618	658	670	662	699	717	775	786

Вариант № 16. Зависимость себестоимости Y (тыс. руб.) продукции от затрат X (тыс. руб.) на единицу продукции по объединению «Сибкомплектмонтаж» характеризуется следующими данными:

X	0,1	0,4	1	4	6	10	20	26
Y	2248	1950	1500	1020	906	290	175	121

Вариант № 17. Компрессорную скважину исследовали на приток Q (т/сут.) нефти при различных режимах работы с величиной ΔP (атм) забойных давлений глубинным манометром. Результаты исследований приведены в таблице:

Q	5	15	25	35	45	55
ΔP	1,25	1,3	5,25	11,25	17,25	21,25

Вариант № 18. Зависимость между стоимостью X (млн. руб.) основных средств предприятия и выработкой Y (тыс. руб.) продукции на одного работника характеризуется следующими данными:

X	1	1,5	2,5	3,5	4,5	5,5	6,5
Y	4	6	6,8	7,9	8,7	9	9,5

Вариант № 19. Ниже приводятся данные удельного момента Y (кг·м/тс) на долото и осевой статической нагрузки X (тс) на забой при бурении пород на одном из месторождений Тюменской области:

X	1	3	5	7	9	11	13	15	17
Y	25	15	12	8	10	5	4,5	3	2,8

Вариант № 20. Зависимость между мощностью X (млн. ед. продукции в год) предприятия и фактическими капитальными вложениями Y (млн. руб.) характеризуется следующими данными:

X	1	2	3	4	5	6
Y	1,2	2,6	3,8	4,6	4,9	5,4

Вариант № 21. Результаты изучения зависимости между среднемесячной производительностью X (руб.) труда рабочего и себестоимостью Y (руб.) одной тонны продукции приведены в следующей таблице:

X	21	24	30	34	35	36	39	40
Y	20	13	12	13	11	10	11	10

Вариант № 22. Энерговооруженность X (тыс. кВт-час) труда на одного рабочего и производительность Y (тыс. штук изделий) труда одного рабочего на ряде предприятий характеризуется следующими данными:

X	3	3,05	3,6	4,25	4,45	4,55
Y	1	1,5	1,8	2,5	3	4

Вариант № 23. Зависимость между стоимостью X (млн. руб.) основных средств предприятий и месячным выпуском Y (тыс. руб.) продукции характеризуется следующими данными:

X	1	4	7	9	11	12	15
Y	10	12	26	30	40	42	58

Вариант № 24. Зависимость между капитальными вложениями Y (млн. руб.) и мощностью X (млн. тонн продукции) предприятий данного типа задана таблицей:

X	1	2	3	4	5	6	7	8
Y	0,9	2,59	3,67	4,45	4,95	5,20	4,7	4,5

Вариант № 25. Распределение однотипных предприятий по объему X произведенной за день продукции и себестоимости Y единицы продукции в условных единицах приведено в таблице:

_							
	X	50	100	150	200	250	300
	Y	140	120	118	110	115	100

Вариант № 26. Результаты исследования зависимости объема V (см³) зоны разрушения от предела P_0 (кг/мм²) текучести известняков приведены в таблице:

P_0	12,5	37,5	62,5	87,5	112,5	137,5	187,5
V	0,19	0,13	0,11	0,10	0,08	0,07	0,06

Вариант № 27. Зависимость перепада ΔP (кг/см²) давления (разность между гидростатическим и пластовым давлением) от времени t (с) при бурении в песчанике задана таблицей:

t	0,025	0,074	0,125	0,175	0,225	0,275	0,325
ΔP	95	73	52	45	35	33	31

Вариант № 28. Зависимость среднемесячной заработной платы Y (тыс. руб.) рабочих нефтеперерабатывающего завода от их квалификации X (разряд) характеризуется следующими данными:

X	1	2	3	4	5	6	7
Y	0,8	1,2	1,8	2,9	4,2	5,9	12,5

Вариант № 29. Зависимость между размером X (млн. руб.) предприятия по стоимости основных средств и себестоимостью Y (тыс. руб.) единицы продукции характеризуется следующими данными:

X	0,5	1,5	2,5	3,5	4,5	6,0	9	10
Y	14	11	10	8	6,5	5	4,5	4

Вариант № 30. Зависимость между фазовой проницаемостью $K_{\rm H}$ нефти и насыщенностью $S_{\rm H}$ породы нефтью характеризуется следующими данными:

$S_{\scriptscriptstyle \mathrm{H}}$	0,35	0,45	0,55	0,65	0,75	0,85
$K_{\scriptscriptstyle \mathrm{H}}$	0,05	0,1	0,15	0,45	0,55	0,75