Assignment 2

Data Preprocessing -

- 1)Drop the first column of 'id'.
- 2)Randomly Split the data into training(70%) and testing(30%) for cross-validation.
- 3) Normalize the training data by applying standardization to make mean as 0 and standard deviation as 1.
- 4) Use the training data mean and standard deviation to standardize the testing data.
- 5) Expand the data set to include new columns according to the respective degrees .

PROCESS FLOW

Apply gradient descent for degrees 1 to 5. And apply gradient descent with regularization to degree 6.

1.For training data:

Comparison of various approaches:

Approach applied on Training Data	Iterations	Lear ning Rate	Stopp ing Criter ia	R ²	Error	RMSE	SSE	Regularizat ion coefficient
Gradient Descent on 1 degree	30	1e-6	1e-4	0.0259	148252.534	0.987	296505.068	-
Gradient Descent on 2 degree	20	1e-6	1e-5	0.060	143013.4	0.969	286026.72	-
Gradient Descent on 3 degree	600	1e-7	1e-5	0.1447	130180.931	0.9248	260361.862	-
Gradient Descent on 4 degree	2000	1e-8	1e-6	0.1736	125767.4	0.9090	251534.85	-
Gradient Descent on 5 degree	3500	1e-8	1e-6	0.2145	119555.0319	0.8862	239110.063	-
L1- Regularization on 6 degree	500	1e-9	1e-4	0.0867	139007.968	0.9556	278015.936	1e-16
L2- Regularization on 6 degree	500	1e-9	1e-4	0.0867	139007.968	0.9556	278015.936	1e-16

Comments on Regularization Coefficients:

For L1 regularization on 6 degree polynomial, we get $\lambda = 1e-16$

2.For testing data:

Comparison between various approaches:

Approach tested on Testing Data	R ²	Error	RMSE	SSE	Regularization coefficient
Gradient Descent on 1 degree	0.0275	64077.26	0.99111	128154.52	-
Gradient Descent on 2 degree	0.056	62221.95	0.976	124443.911	-
Gradient Descent on 3 degree	0.1471	56196.93	0.9281	112393.86	-
Gradient Descent on 4 degree	0.17508	54353.012	0.9128	108706.024	-
Gradient Descent on 5 degree	0.2152	51704.131	0.8902	103408.263	-
L1- Regularization on 6 degree	0.0876	60113.866	0.9599	120227.733	1e-16
L2- Regularization on 6 degree	0.0876	60113.866	0.9599	120227.733	1e-16

Weights corresponding to polynomial of different degrees

1. Degree 2

Number of weights = 6

[0.082, 0.0252, -0.147, -0.142, 0.076, -0.039]

2. Degree 3

Number of weights = 10

[0.0425, 0.3405, 0.067, -0.234, 0.123, 0.098, -0.2405, -0.19813185, 0.37579568, -0.10670022]

3. Degree 4

Number of weights = 15

[-0.02430904 ,0.21842771, -0.00355097, -0.1379215, 0.2858239 0.17015734, -0.15485221, -0.12422135, 0.15726159, 0.04443806, -0.02917758, -0.04225718, 0.09770351, -0.02514362, -0.1744744]

4. Degree 5

[-0.05969687, 0.30120738, -0.05297262 ,-0.15302335 0.40056281 , 0.24213786 ,-0.21583168 ,-0.22862247 0.2044249, 0.09984751, -0.03440302, -0.07330723 ,0.12420305, -0.07912063, -0.21939714 ,-0.00521156 0.04575243, 0.10410096 ,-0.01419789, -0.21923004 ,0.08915316]

5. Degree 6

Number of weights = 28 L2

 $\begin{bmatrix} 0.00689789 & , 0.01166721, -0.0008426, & -0.00516704, 0.01930913, \\ 0.00544683, & 0.00311111, -0.00724565, & 0.00793199 & , 0.00687061, \\ -0.00998526, & 0.01787344 & , 0.0009727, -0.00043947, -0.00334592, \\ -0.01093142, & -0.02153433, & -0.00047727, & 0.00024188, & -0.001468, \\ 0.00400684, & -0.00457427, & 0.0100237, & 0.00418119, & -0.0127856, \\ -0.00446561, & -0.0146811, & -0.00460315 \end{bmatrix}$

L1

 $\begin{array}{l} [\ 0.00689789\ ,\ 0.01166721,\ -0.0008426,\ -0.00516704,\ 0.01930913,\ 0.00544683,\ 0.00311111,\ -0.00724565,\ 0.00793199\ ,\ 0.00687061,\ -0.00998526,\ 0.01787344\ ,\ 0.0009727,\ -0.00043947,\ -0.00334592,\ -0.01093142,\ -0.02153433,\ -0.00047727,\ 0.00024188,\ -0.001468\ ,\ 0.00400684\ ,-0.00457427\ ,\ 0.0100237,\ 0.00418119,\ -0.0127856,\ -0.00446561,\ -0.0146811,\ -0.00460315]$

Formulas Used:

$$H = X.W^T + b$$

Where X is the modified data and W is the weight of respective degrees

H=Hypothesis = Standardized Predicted Altitude
 Predicted Altitude = H*std(training_Y) + mean(training_Y)
 b - constant term
 λ = Regularization Coefficient

In case of Gradient descent without regularization:

Error =
$$0.5 * [(H - Y)^{T}.(H - Y)]$$

In case of Gradient descent with L1 regularization:

Error =
$$0.5 * [(H - Y)^{T} . (H - Y)] + 0.5 * \lambda * \sum_{i=1}^{3} |w_{i}|$$

In case of Gradient descent with L2 regularization:

Error =
$$0.5 * [(H - Y)^{T}.(H - Y)] + 0.5 * \lambda * \sum_{i=1}^{3} (w_{i})^{2}$$

$$\mathbf{R}^2 = 1 - \frac{SSE}{SST}$$

Where

$$SSE = 2 * Error$$

$$SST = \sum_{all \ data \ points} (Y - \overline{Y})^{2}$$

SST = 304411 (fixed for all the approaches for training data)

Loss vs Epochs -

10-07

6 degree graph (L2 regularization):

Rmse vs ln(lambda) -

Conclusion

As there is no overfitting we take $\lambda=0$. Also, at $\lambda=0$ there is low bias and low variance between training and testing data .

6 degree graph (L1 regularization):

Rmse vs ln(lambda) -

Conclusion

As there is no overfitting we take $\lambda=0$. Also, at $\lambda=0$ there is low bias and low variance between training and testing data .

