Introduction to Intelligent Vehicles [6. Intersection Management]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Where Are We Now?

☐ Four parts in sequence

- > [Part 1] Preliminary
- > [Part 2] Applications
- ➤ [Part 3] Intelligent Technology
- ➤ [Part 4] Advanced Topics

Intersection Management

■ What is intersection management? Decide who goes first ■ Why is intersection management helpful? Make the intersection safer and traffic smoother and more efficient ☐ When is intersection management working? > Anytime? ■ Where is intersection management working? Centralized vs. distributed ■ Who develops intersection management? Basic ones from governments (or their suppliers) Advanced ones have not been realized ■ How does intersection management work?

Ideal Intersection

Outline

- **☐** Modeling
 - > Note: not all following models will be used at the same time
- Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Tiles (Cells)

- ☐ Usually, higher granularity, e.g., smaller tiles, more detailed management and higher complexity
 - Example: an intersection with 20 tiles
 - Example: an intersection with 64 tiles
 - Example: a roundabout with 24 tiles

Trajectories

- ☐ The trajectories for vehicles from different directions with different intentions follows "pre-defined" routes
 - Example: 1 trajectory for each direction of the intersection
 - Example: 3 trajectories for each direction of the intersection
 - Example: 4 trajectories for each direction of the roundabout

Collision Zones (Conflict Regions)

☐ Intersections of trajectories

- ☐ The fundamental goal
 - We should not let two vehicles occupy a collision zone or a tile at the same time

Phases

■ Example

➤ 8 phases of an intersection

Outline

- Modeling
- Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Controlling Lengths of Traffic Lights

- ☐ Fixed time control
- Coordinated control
 - Continuous green lights
- Adaptive control
 - Design-time approach
 - Based on traffic data and history
 - > Real-time approach
 - Based on sensor observation or communication

Back-Pressure Control: Method

- ☐ Traffic flow is similar to water flow
- Basic notation
 - $> \lambda_i$: lane i
 - Q_i: queue length of lane i
 - ➤ P_i: pressure of lane i
 - $P_i = Q_i$
 - \triangleright D_{i,j}: [0,1] there is a vehicle waiting at lane i to leave from lane i for lane j
 - ➤ P_{i,i}: pressure from lane i to lane j
 - $P_{i,j} = D_{i,j} \max(P_i P_j, 0)$
- \square Each time slot, pick a phase which can maximize $\sum_{(i,j)} V_{i,j} P_{i,j}$
 - $ightharpoonup V_{i,j}$: the maximum number of vehicles that can go from lane i to lane j in the phase during the time slot

Back-Pressure Control: Example

Computation

- $\triangleright \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6$
- \triangleright Q = {0, 2, 0, 1, 0, 1}
- \triangleright P = {0, 2, 0, 1, 0, 1}
- \triangleright D_{2,1} = D_{2,5} = D_{4,1} = D_{6,5} = 1
- $P_{2,1} = P_{2,5} = 2$ and $P_{4,1} = P_{6,5} = 1$
- \triangleright Assume $V_{i,i}$ is V or 0
 - Why 0?
- (Check animations for phases)
- $\triangleright \sum_{(i,j)} V_{i,j} P_{i,j} = 4V$ for Phase 1
- $\triangleright \sum_{(i,i)} V_{i,i} P_{i,i} = 2V$ for Phase 2
- $\triangleright \sum_{(i,j)} V_{i,j} P_{i,j} = 3V$ for Phase 3
- Pick Phase 1

Back-Pressure Control: Extensions

- ☐ Capacity-aware back-pressure control
 - > Remove the assumption of infinite capacity
 - Improve the fairness (for low density traffic)
 - > Redefine P_i as another more complicated function
- ☐ Adaptive max-pressure control
 - Model the network demand with a constant average rate
 - Provide some stability and performance guarantees
 - ➤ Redefine P_i as another more complicated function

Controlling Lengths of Traffic Lights

☐ If the lengths of green, yellow, and red lights can be very short

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Assumptions

- ☐ All vehicles are connected and autonomous
 - > If not connected
 - Need road-side units to collect traffic information, e.g., vehicles coming
 - Need traffic lights to provide instructions
 - > If not autonomous
 - Need to consider the control capability of human drivers

Goals

- ☐ Safety
- ☐ Traffic efficiency
- ☐ Deadlock and starvation avoidance
- ☐ Low communication and computation complexity
- ☐ Incremental deployability
- Protocol standardization

Intelligent Intersection Management

Vehicle

- > Send a request to the intersection manager about its intention
- Do not enter the intersection before confirmation.

☐ Intersection manager

- > Resolve conflicts through scheduling policies
- Allocate tiles (cells) to vehicles for every time step
- > Send confirmations or rejections to vehicles

Dresner and Stone, "A multiagent approach to autonomous intersection management," Journal of Artificial Intelligence Research, 2008.

Vehicle Behavior

- Message types
 - > REQUEST to make a reservation
 - CHANGE-REQUEST to change a reservation
 - REQUEST and CHANGE-REQUEST include all the relevant properties of the vehicle
 - > CANCEL to cancel an existing reservation
 - DONE after crossing the intersection
 - CANCEL and DONE include the IDs of the vehicle and the reservation
- Not enter the intersection if there is no confirmation from the manager

Manager Behavior

■ Message types

- ➤ CONFIRM after approving a REQUEST or CHANGE-REQUEST
 - ID of the reservation
 - Start time
 - Start and departure lanes
 - A list of constraints for the vehicle's acceleration in the intersection
- ➤ REJECT to reject a REQUEST or CHANGE-REQUEST
- > ACKNOWLEDGE to respond a CANCEL or DONE
- > EMERGENCY-STOP when detecting a major problem

Control policies

- First come (definition?), first served
- "Virtual" stop sign
- "Virtual" traffic light

Dresner and Stone, "A multiagent approach to autonomous intersection management," Journal of Artificial Intelligence Research, 2008.

Outline

- Modeling
- Controlling Lengths of Traffic Lights
- Intelligent Intersection Management
- ☐ Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Modeling Vehicle Behavior

- ☐ [4s,5s]: example time of feasible "entering" the intersection
 - > This is a logical view --- the number can be estimated by the manager
- ☐ Reasons of slowing down
 - > Sense the intersection in front and not receive a confirmation
 - > Sense other vehicles in front

Imperfect Communication: Loss

- ☐ Informal analysis
 - Case 1/2: What if a REQUEST/CHANGE-REQUEST is lost?
 - > Case 3: What if a CANCEL is lost?
 - > Case 4: What if a DONE is lost?
 - > Case 5: What if a CONFIRM is lost?
 - > Case 6: What if a REJECT is lost?
 - Case 7: What if an ACKNOWLEDGE is lost?
 - > Case 8: What if an EMERGENCY-STOP is lost?
- ☐ Ideally, we should have "formal analysis"
- ☐ Having "timeouts" is important
 - Re-request a reservation (Cases 1, 2, 5, 6)
 - Logically remove a vehicle after physically checking the intersection? (Case 4)

Imperfect Communication: Delay

- ☐ Informal analysis
 - Case 1/2: What if a REQUEST/CHANGE-REQUEST is delayed?
 - Case 3: What if a CANCEL is delayed?
 - > Case 4: What if a DONE is delayed?
 - Case 5: What if a CONFIRM is delayed?
 - Case 6: What if a REJECT is delayed?
 - > Case 7: What if an ACKNOWLEDGE is delayed?
 - Case 8: What if an EMERGENCY-STOP is delayed?
- Combinations of message loss and delay
 - ➤ How do you know which vehicle is in front?
- ☐ Having "time stamps" can help
 - > Synchronization protocol?

Imperfect Communication: More

- ☐ Schedule only when 1st vehicle requests (otherwise?)
 - ➤ We assume that each vehicle knows if it is 1st vehicle and provides this information to the manager

X		Missing X-Request	Missing X-Confirmation
1st Vehicle	Manager	Schedule nothing (1st vehicle missing)	Schedule all vehicles
	1st Vehicle	Slow down, timeout, re-request	Slow down, timeout, re-request
	2nd Vehicle	Slow down, timeout, re-request	Slow down, cannot make it, re-request
	3rd Vehicle	Slow down, timeout, re-request	Slow down, cannot make it, re-request
2nd Vehicle	Manager	Schedule 1st and 3rd vehicles	Schedule all vehicles
	1st Vehicle	Normal	Normal
	2nd Vehicle	Slow down, timeout, re-request	Slow down, timeout, re-request
	3rd Vehicle	Slow down, cannot make it, re-request	Slow down, cannot make it, re-request
3rd Vehicle	Manager	Schedule 1st and 2nd vehicles	Schedule all vehicles
	1st Vehicle	Normal	Normal
	2nd Vehicle	Normal	Normal
	3rd Vehicle	Slow down, timeout, re-request	Slow down, timeout, re-request

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

System Block Diagram: Centralized

☐ The manager is the decision maker

Flow of Execution: Centralized

☐ Each task should be completed in time

System Block Diagram: Distributed

☐ Each vehicle is a decision maker

Flow of Execution: Distributed

☐ Each task should be completed in time

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
 - > Modeling
 - Design: Scheduling (Not Covered)
 - > Analysis: Verification
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Graph-Based Policy

- ☐ The decision making problem in intersection management can be transformed to a cycle-removal problem in a graph
- ☐ Generalization
 - Conflict-resolution problem
 - The goal: we should not let two vehicles occupy a conflict zone (or a tile) at the same time
 - > Distributed intersection management
 - Does it make sense to have no manager?
 - If vehicles (even from different OEMs) agree how to remove a cycle, then "conflict-free" can be guaranteed
 - Cycle-removal algorithm is the "agreement" between vehicles (e.g., four-way stop sign) in a distributed setting
 - We have an existing system in …

Intersection

- ☐ Intersection
 - > There is one intersection
- ☐ Intersection manager
 - > Receive the information from vehicles
 - Assign a time window to each vehicle at each location (conflict zone) on the trajectory of the vehicle

Vehicle

Vehicle

- > All vehicles are connected and autonomous
- > Each vehicle has a fixed trajectory
- > Vehicle does not change lanes before and after the intersection

Conflict Zone

☐ Conflict zone

- > A conflict zone is the crossing location of two trajectories
- > Two vehicles cannot be at (occupy) the same conflict zone at the same time

Timing Conflict Graph

☐ Timing conflict graph

- > A directed timing conflict graph G = (V, E) is constructed
- Vertex set v_{i,j} is a subset of the Cartesian product of the sets of vehicles and conflict zones

> Edge

- Type-1: same vehicle's trajectory
- Type-2: conflicts between different vehicles from the same lane
- Type-3: conflicts between different vehicles from different lanes

Model Expressiveness

- ☐ If the intersection is modeled by only one conflict zone
 - ➤ Its expressiveness is limited, and the two vehicles cannot enter the intersection at the same time

- ☐ If the intersection is modeled by four conflict zones
 - > Two vehicles can enter the intersection at the same time

Goals

- ☐ A cycle-removal (on Type-3 edges) algorithm to
 - > Minimize
 - The passing time of the last vehicle, or
 - The average delay of vehicles
 - Guarantee collision-freeness
 - Provided by the passing order and scheduling after removing cycles
 - ➤ Guarantee deadlock-freeness
 - Graph-based verification
 - Petri-Net-based verification

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
 - Modeling
 - Design: Scheduling (Not Covered)
 - > Analysis: Verification
- Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Graph-Based Verification

- ☐ Having no cycles in G does not guarantee deadlock-freeness
 - > There are deadlocks in (a), (b), (c)
 - There are no deadlocks in (d), (e)

Graph-Based Verification

Construction of resource conflict graph

> The directed resource conflict graph is constructed by following rules

Graph-Based Verification

☐ Examples of resource conflict graph

Petri-Net-Based Verification

☐ Petri Net Examples

Summary

- ☐ A cycle-removal (on Type-3 edges) algorithm (not covered) to
 - > Minimize
 - The passing time of the last vehicle, or
 - The average delay of vehicles
 - Guarantee collision-freeness
 - Provided by the passing order and scheduling after removing cycles
 - ➤ Guarantee deadlock-freeness
 - Graph-based verification
 - Petri-Net-based verification

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- **☐** Non-Cooperative Environment
- ☐ Special Case: Lane Merging

Game Theory

☐ What is a game?

☐ Prisoner's dilemma

	Prisoner A Stays Silent	Prisoner A Betrays
Prisoner B Stays Silent	Both in Jail for 1 Year	A Goes Free B in Jail for 3 Years
Prisoner B Betrays	A in Jail 3 Years B Goes Free	Both in Jail for 2 Years (Nash Equilibrium)

Two-Vehicle Scenario (w/o Manager)

☐ Payoff matrix (waiting time) of vehicles A and B

Case 1 (same priority)

Payoffs of A and B	Vehicle A Enters	Vehicle A Stops
Vehicle B Enters	(-3600, -3600)	(-4, 0)
Vehicle B Stops	(0, -4)	(-3, -3) (Average of -1 and -5)

Case 2 (Vehicle A has a higher priority)

Payoffs of A and B	Vehicle A Enters	Vehicle A Stops
Vehicle B Enters	(-1800, -7200)	(-4, 0)
Vehicle B Stops	(0, -4)	(-1, -5)

- ➤ Where are the Nash Equilibria?
 - Are them realistic? → People are not rational

Three-Vehicle Scenario (with Manager)

☐ Three-vehicle strategic game

> Assume that the time needed to go through an intersection is 7

No Vehicle lies			Vehicle C Lies						
Vehicle	Actual Time	Reported Time	Allocated Time	Delay	Vehicle	Actual Time	Reported Time	Allocated Time	Delay
Α	5	5	5	0	Α	5	5	5	0
В	10	10	12	2	В	10	10	19	9
С	12	12	19	7	С	12 <	→ <u>6</u>	12	0
System Performance		9	System Performance			9			

- > Vehicle C does not worsen the overall system performance
 - Total delays = 9
- However, Vehicle C can take advantage from it

Outline

- Modeling
- ☐ Controlling Lengths of Traffic Lights
- ☐ Intelligent Intersection Management
- Imperfect Communication
- Centralized and Distributed Approaches
- ☐ Graph-Based Approach
- Non-Cooperative Environment
- **☐** Special Case: Lane Merging

Lane Merging

- ☐ Vehicles on the same lane can utilize Cooperative Adaptive Cruise Control (CACC) to form a platoon
- ☐ Interleaving vehicles from different lanes increase the vehicle-following gaps (without immediate CACC)

Two-Lane Model

☐ A fundamental assumption is that vehicles from the same lane can maintain a smaller vehicle-following gaps

- ➤ W⁼: the vehicle-following gap between two vehicles from the same lane
- ➤ W⁺: the vehicle-following gap between two vehicles from different lanes

First-Come-First-Go (FCFG)

☐ The FCFG approach does not guarantee an optimal solution

- ➤ Given earliest arrival time: (1, 2, 3, 4)
- > FCFG scheduled entering time: (1, 4, 7, 10)
- > Optimal scheduled entering time: (1, 6, 3, 7)
 - Dynamic programming!
 - T(i,j) is the scheduled entering time of the last vehicle among all vehicles until i-th vehicle from Lane A and j-th vehicle from Lane B

Three-Lane Model

Consecutive Two-Lane Model

Q&A