

Gandhinagar Machine Learning and NLP Group

(i) Gandhinagar, India

2 388 members · Public group

Organized by Ankush Chander

Share: 🕥 😝 🂆 🛅 i

May 2024 Meetup!

Why Generate When You Can Discriminate? A Novel Technique for Text Classification using Language Models

Sachin Pawar, **Nitin Ramrakhiyani**, Anubhav Sinha, Manoj Apte, G.K. Palshikar Published as Findings of the ACL (EACL 2024)

Introduction

• Text Classification: Task of assigning one or more applicable class labels to a given piece of text – sentence, paragraph, phrase, etc.

 Task: Use a causal / auto-regressive / decoder-only Language Model (LM) to perform text classification

- Some intuitive ideas that quickly come to our mind
 - Train / Fine-Tune a standard / neural classifier / transformer
 - Zero-shot: Construct a prompt and try on ChatGPT / GPT-3.5 / GPT-4
 - Few-shot: Include some examples in the prompt as part of In-Context Learning (ICL)

Motivation

- Train / Fine-Tune a standard / neural classifier / transformer
 - Requires training data, Specialized Hardware (in case of PLM FT)
 - Not robust to technical changes (number of classes, training data availability)
- Zero-shot: Construct a prompt and try on ChatGPT / GPT-3.5 / GPT-4
 - Privacy Concerns while using ChatGPT or large LMs
 - Local deployment preferred in commercial settings
 - Smaller models prone to hallucination when generating
- Few-shot: Include examples in the prompt as part of In-Context Learning (ICL)
 - Context window of the PLM restricts number of ICL examples.

Outline of the Proposed Approach

- Step 1: Generating features using LM
 - For any text X to be classified, elicit perplexity and log-likelihood features from LM using label-specific augmentations
 - <X>. This text is about <key phrase>.
 - E.g., Indian stock markets gain on third consecutive day.
 This text is about economy.
 - Features derived from Conditional perplexity (and log-likelihood) of each key phrase given the text to be classified
 - Perplexity(economy | Indian stock markets gain on third consecutive day. This text is about)
- Step 2: Learning a classifier
 - Optionally, training a light-weight classifier like Logistic Regression or Support Vector Machine using training examples

Background Revisiting some concepts

Key phrases

- We assume that each class can be represented using a small set of key phrases
 - E.g., Business: business, stock market, banking, monetary investments, economy, income and expenditure, corporate profit and loss
 - E.g., MeanOfTransportation: a vehicle, a car, a train, an aeroplane, a ship or boat
- Key phrases can be obtained from domain experts or from documented domain knowledge (e.g., audit checklist)
- Comparing with verbalizers used in prompt-tuning techniques like PET¹or KPT²
 - These techniques are used with encoder-only models whereas our technique is designed to work with decoder-only models
 - The verbalizers need to be single word only whereas key phrases used by our technique can be multi-word

^{1.} Schick and Schutze, Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference, EACL 2021

^{2.} Hu et al., Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification, ACL 2022

- Perplexity is used as a metric to evaluate language models^{3,4}.
- We propose to use perplexity for a different purpose
 - o judging plausibility of a text fragment using an autoregressive LM and
 - o comparing multiple such text fragments to decide which one is the most plausible.
- By plausibility of a text, we mean that it is seemingly more reasonable or probable.
 - The second-in command of the Shiv Sena (UBT) is Sanjay Raut.
 is more plausible than
 - The second-in command of the Shiv Sena (UBT) is Nitin Ramrakhiyani.

^{3.} Jurafsky and Martin, Speech and Language Processing, 3rd Edition (Online)

^{4.} Manning, Raghavan and Schutze, Introduction to Information Retrieval, Cambridge University Press, 2008

• Consider a text fragment $X = [w_1, w_2, ..., w_n]$. The perplexity of X as per a LM M is

$$PPL_M(X) = \prod_{i=1}^n \sqrt[n]{\frac{1}{P_M(w_i|w_{< i})}}$$

• The conditional perplexity of a text fragment X given another text $C = [c_1, c_2, \cdots, c_m]$ is

$$PPL_M(X|C) = \prod_{i=1}^{n} \sqrt[n]{\frac{1}{P_M(w_i|c_1, c_2, \cdots, c_m, w_{< i})}}$$

Lower the perplexity, better is the plausibility of the text.

• Similarly, the log-likelihood and conditional log-likelihood for the fragment $X = [w_1, w_2, ..., w_n]$ (with $C = [c_v, c_v, \cdots, c_m]$) is

$$LL_{M}(X) = \sum_{i=1}^{n} log(P_{M}(w_{i}|w_{< i}))$$

$$LL_{M}(X|C) = \sum_{i=1}^{n} log(P_{M}(w_{i}|c_{1}, \dots, c_{m}, w_{< i}))$$

 Higher the log-likelihood, better is the plausibility of the text. log-likelihood and perplexity

$$PPL_{M} = \prod_{i=1}^{n} \sqrt[n]{\frac{1}{P_{M}(w_{i}|w < i)}}$$

$$= \prod_{i=1}^{n} P_{M}(w_{i}|w < i)^{\frac{-1}{n}}$$

$$= exp\{log \prod_{i=1}^{n} P_{M}(w_{i}|w < i)^{\frac{-1}{n}}\}$$

$$= exp\{\frac{-1}{n} \sum_{i=1}^{n} log(P_{M}(w_{i}|w < i))\}$$

• Similarly, the log-likelihood and conditional log-likelihood for the fragment $X = [w_1, w_2, ..., w_n]$ (with $C = [c_1, c_2, \cdots, c_m]$) is

$$LL_{M}(X) = \sum_{i=1}^{n} log(P_{M}(w_{i}|w_{< i}))$$

$$LL_{M}(X|C) = \sum_{i=1}^{n} log(P_{M}(w_{i}|c_{1}, \cdots, c_{m}, w_{< i}))$$

• Higher the log-likelihood, better is the plausibility of the text.

log-likelihood and perplexity

$$PPL_{M} = \prod_{i=1}^{n} \sqrt[n]{\frac{1}{P_{M}(w_{i}|w < i)}}$$

$$= \prod_{i=1}^{n} P_{M}(w_{i}|w < i)^{\frac{-1}{n}}$$

$$= exp\{log \prod_{i=1}^{n} P_{M}(w_{i}|w < i)^{\frac{-1}{n}}\}$$

$$= exp\{\frac{-1}{n} \sum_{i=1}^{n} log(P_{M}(w_{i}|w < i))\}$$

SLMs vs MedLMs vs LLMs

• Different sizing bounds being put in literature^{5,6}

Small LMs: Less than 10B parameters

- Apple's OpenELM
- TinyLlama
- GPT-2, GPT2-XL, **GPTNeo-2.7B**
- GPT-J-6B,
- Mistral-7B, MPT-7B, Falcon-Instruct-7B, Falcon-40B

Medium LMs: 10B to 100B parameters

- GPT-NeoX-20B
- OPT-30B, Llama30B
- Falcon-40B

Large LMs: Greater than 100B parameters

- GPT-3.5, GPT-4
- Bloom
- PaLM
- 5. https://catherinebreslin.medium.com/small-language-models...
- 6. https://www.koyeb.com/blog/what-are-large-language-models

Approach Details

Formal Problem Definition

Input:

- $L = \{L_1, \dots, L_C\}$ (set of C class labels)
- $P_i = \{p_1^i, p_2^i, \dots, p_{n_i}^i\}$ (set of n_i key phrases for each label $L_i \in L$)
- X (text to be classified)
- M (causal / decoder-only Language Model)

Output:

- One of more class labels ($\subset L$) which are assigned to X
- Training regime:
 - A small set of training examples where each instance is of the form $\langle X_t, L_t \rangle$
 - We consider at most 500 training instances

Step 1: Generating Features using LM (1/2)

- X : Text to be classified
- S: Connector sentence (e.g., This text is about <key phrase>.)
- For each class label L_i and for each of its key phrase p_j^i the following features are generated

$$f_{ij}^{PPL}(X) = \frac{PPL_M(p_j^i|X+S)}{PPL_M(p_j^i|S)}$$

 $PPL_{M}(economy|Indian\ stock\ markets\ gain\ on\ third\ consecutive\ day. This\ text\ is\ about)$

 $PPL_{M}(economy|This\ text\ is\ about)$

$$f_{ij}^{LL}(X) = LL_M(p_i^i|X+S) - LL_M(p_i^i|S)$$

Step 1: Generating Features using LM (1/2)

Text to be classified, $X = \text{Expansion slows in}$ Class labels with corresponding key phrases:		
Japan. Economic growth in Japan slows Sports: sports, a sporting event, a sports	person,	
down as the country experiences a drop Business: business, economy, stock market,		
in domestic and corporate spending. Science: science, space exploration, softw	vare,	
Label-specific augmentations of the above sentence	f_{ij}^{PPL}	f_{ij}^{LL}
A_{11} : Expansion slows in Japan. Economic growth in Japan slows down as the country	3.48	-2.50
experiences a drop in domestic and corporate spending. This news is about sports.		
A_{12} : Expansion slows in Japan. Economic growth in Japan slows down as the country	1.42	-1.42
experiences a drop in domestic and corporate spending. This news is about a sporting		
event.		
A_{21} : Expansion slows in Japan. Economic growth in Japan slows down as the country	1.22	-0.40
experiences a drop in domestic and corporate spending. This news is about business.		
A_{22} : Economic growth in Japan slows down as the country experiences a drop in	0.62	0.95
domestic and corporate spending. This news is about economy.		
A_{31} : Expansion slows in Japan. Economic growth in Japan slows down as the country	7.12	-3.92
experiences a drop in domestic and corporate spending. This news is about science.		
A_{32} : Expansion slows in Japan. Economic growth in Japan slows down as the country	1.52	-1.27
experiences a drop in domestic and corporate spending. This news is about space		
exploration.		

Step 1: Generating Features using LM (2/2)

Class-level features are computed using key phrase level features

$$f_i^{PPL}(X) = \min_j f_{ij}^{PPL}(X)$$
$$f_i^{LL}(X) = \max_j f_{ij}^{LL}(X)$$

 Zero-shot classification is achieved by simply considering the minimum or maximum of these feature values

$$ZS_PPL(X) = \underset{i}{\operatorname{argmin}} f_i^{PPL}(X)$$
$$ZS_LL(X) = \underset{i}{\operatorname{argmax}} f_i^{LL}(X)$$

Step 2: Learning a Classifier

- This is an optional step and is necessary only in case of a supervised setting
- The perplexity and log-likelihood features are generated for all the training examples
- Horizontal scaling of these features to capture relative variations
- A light-weight classifier is trained using these features
 - Logistic Regression (LR)
 - Support Vector Machines (SVM)
- Naturally, there is no limit on number of training examples that can be used
 - We have used at most 500 examples in our experiments

Experimentation and Analysis

Datasets

Dataset	#inst	ances	#labels	#key	
Datasci	train	test	πιαυτις	phrases	
SST-2	500^{\dagger}	1821	2	20	
TREC	500^{\dagger}	500	6	50	
AGNews	500^{\dagger}	7600	4	37	
DBPedia	500^{\dagger}	1000^{\dagger}	14	41	
Ethos	200^{\dagger}	233†	8*	20	

Baselines

- ZS-KP: Zero shot with description of key phrases of each class
- ZS-KP-CoT: Similar to ZS-KP with a Chain-of-Thought Prompt
- FS-ICL: In-context Learning using Few shots (k = 16)
- CHT: Classification Head Tuning (frozen LM)
- CHT-BERT: CHT over BERT CLS
- Min et al, Noisy Channel Language Model Prompting
 - o "noisy channel" and "direct" methods to compute conditional probability of the input text given the label or vice versa (Few-shot ICL and prompt tuning)
- Estienne et al., Unsupervised Calibration through Prior Adaptation
 - Calibrate output probabilities of an LM through prior adaptation
 - Unsupervised (UCPA) where no labelled data is needed and
 - Semi-unsupervised (SUCPA) where some training examples (600) are used

Dataset	Label	Key phrases
SST-2	Positive	great, good, encouraging, brilliant, excellent, accurate, realistic,
551-2		engaging, funny, exciting
	Negative	terrible, bad, unrealistic, frustrating, boring, forgettable,
		predictable, thoughtless, appalling, incomprehensible
	World	politics, terrorism, president of a country, a military related event,
AGNews		minister of a country, elections and government formation, a natural
Adrews		disaster, a war or an armed conflict, protests or demonstration,
		religious events
	Sports	sports, a sporting event, sporting awards, a sports champion, a
		sportsperson, wins or losses in sports, prize money
	Business	business, stock market, banking, monetary investments, economy, income
		and expenditure, corporate profit and loss, international trade, sale
		of goods and services, monetary policies
	Science	science, technology and engineering, research and development,
		internet and web, space exploration, cyber security, software, weather
		and climate, healthcare and pharma, flora and fauna
	ABBR	an abbreviation, an expression which is abbreviated
	ENTY	an entity, an animal, an organ of body, a color, an invention, book
TREC		and other creative piece, a currency name, a disease or a medicine, an
TREC		event, food, a musical instrument, a language, a letter or a character,
		a plant, a product, a religion, a sport , a chemical element or a
		substance ,a symbol or a sign,a technique or a method,an equivalent
		term, a vehicle, a word with a special property
	DESC	description of something, a definition of something, a manner of an
		action, a reason
	HUM	an individual, a group or organization of persons, a title of a person,
		description of a person

Comparison with Baselines using GPT2-XL Model

	SST-2	TREC	AGNews	DBPedia	Ethos			
Unsupervised Calibration through Prior Adaptation (Estienne, 2023)								
SUCPA (zero-shot)	0.850	0.460	0.700	0.660	NA			
SUCPA (few-shot)	0.890	0.550	0.780	0.880	NA			
Noisy Channel Language Model Prompting	† (Min et	al., 2022)						
Channel (zero-shot)	0.771	0.305	0.618	0.514	NA			
Channel (concat-based)	0.850	0.420	0.685	0.585	NA			
Channel (ensemble-based)	0.775	0.315	0.743	0.648	NA			
Other baselines:								
ZS-KP (zero-shot with keyphrases)	0.183	0.10	0.088	0.157	0.137			
ZS-KP-CoT	0.160	0.01	0.029	0.089	0.032			
FS-ICL	0.874	0.476	0.330	0.085	0.182			
CHT	0.567	0.476	0.592	0.488	0.029			
CHT-BERT*	0.890	0.698	0.801	0.834	0.219			
Our proposed techniques:	Our proposed techniques:							
ZS-PPL (zero-shot with only PPL features)	0.871	0.478	0.776	0.762	0.479			
ZS-LL (zero-shot with only LL features)	0.875	0.462	0.764	0.716	0.421			
SVM with all features and horizontal scaling	0.919	0.860	0.851	0.912	0.707			
LR with all features and horizontal scaling	0.920	0.824	0.853	0.924	0.715			

Comparison using the GPT-Neo-2.7B model

	SST-2	TREC	AGNews	DBPedia	Ethos
Baselines:					
ZS-KP (zero-shot with keyphrases)	0.248	0.020	0.039	0.182	0.035
ZS-KP-CoT (ZS-KP with Chain-of-Thought)	0.061	0.046	0.024	0.239	0.019
FS-ICL	0.814	0.308	0.672	0.689	0.438
CHT	0.620	0.734	0.691	0.558	0.164
Our proposed techniques:					
ZS-PPL (zero-shot with only PPL features)	0.752	0.384	0.787	0.735	0.527
ZS-LL (zero-shot with only LL features)	0.766	0.418	0.774	0.67	0.438
SVM with all features and horizontal scaling	0.893	0.804	0.860	0.912	0.671
LR with all features and horizontal scaling	0.893	0.798	0.858	0.926	0.673

Effect of varying number of key phrases and training examples (TREC)

Ablation and Effect of Connector Sentences

	SST-2	TREC	AGNews	DBPedia	Ethos
LR default setting: With all features and horizontal scaling	0.920	0.824	0.853	0.924	0.715
LR default setting without Horizontal scaling	0.908	0.820	0.792	0.911	0.686
LR default setting without LL features	0.914	0.684	0.828	0.884	0.633
LR default setting without PPL features	0.919	0.824	0.856	0.916	0.712
LR default setting without class-level features	0.918	0.822	0.850	0.917	0.703
LR default setting without keyphrase-level features	0.880	0.486	0.784	0.886	0.672
LR default setting with only one keyphrase per class	0.832	0.504	0.688	0.855	0.647

Figure 3: Accuracy for TREC with various connector sentences using GPT2-XL (S:The answer will be, S1: The answer will be about, S2: The answer is, S3:The answer must be, S4: The answer is about)

Explainability through Key Phrases (Example from AGNews)

- <u>-</u> -			, DDT
Text	Label	Key phrase	f_{ij}^{PPL}
Afghan Army Dispatched to Calm Violence. KABUL, Afghanistan -	World	terrorism	0.259
Government troops intervened in Afghanistan's latest outbreak of			
deadly fighting between warlords, flying from the capital to the			
far west on U.S. and NATO airplanes to retake an air base contested			
in the violence, officials said Sunday			
Late rally sees Wall Street end week on a positive note. US	Business	stock	0.087
BLUE-chips recovered from an early fall to end higher as a drop		market	
in oil prices offset a profit warning from aluminium maker Alcoa,			
while a rise in Oracle fuelled a rally in technology stocks after			
a judge rejected a government attempt to block a			
Bekele, Isinbayeva top track athletes. Names Ethiopian distance	Sports	sporting	0.072
runner Kenenisa Bekele and Russian pole vaulter Yelena Isinbayeva		awards	
were named male and female athletes of the year by the world track			
and field federation. Isinbayeva set eight world records in 2004,			
including one while winning the gold medal at the Olympics. Bekele			
won the 10,000 meters in Athens and finished second to Hicham El			
Guerrouj in			
Plans for new Beagle trip to Mars. The team behind Beagle 2, the	Science	space	0.183
failed mission to land on Mars and search for life, have unveiled		exploration	
plans for a successor. Professor Colin Pillinger, lead			

Real-life Application: Analysis of Financial Audit Reports

- Use-case: To automatically check whether all important Audit Aspects are being covered in a financial audit report
- Text Classification Task: To classify each sentence in Audit Report in one or more of 15 Audit Aspects
 - Payables, Receivables, Inventory, Fixed Assets, etc.
- Training data: Silver standard annotations using a set of regular expressions
- **Test data**: 10 Audit reports manually annotated (1668 sentences)

Table: micro-averaged F1-scores on the test dataset, using GPT2-XL

#training instances	SVM	LR	ZS-PPL	ZS-LL	ChatGPT
1097	0.542	0.536	0.380	0.410	0.520
500	0.503	0.498	0.380	0.410	0.520

Conclusions and Future Work

- Proposed a two-step technique for text classification using moderate-sized causal Language Models
- A new way of exploiting available training examples in addition to in-context learning and fine-tuning
 - No limit on number of training examples
 - No need for parameter updates
 - Explainability through most suitable key phrases
 - Applicability in resource poor environments
- In future, we plan to extend to this work by:
 - Automatically discovering optimal key phrases and connector sentences
 - Exploring ensemble of multiple small LMs

Thank you for listening!

Questions? | Thoughts | Discussion

Have more questions? Send them to nitin.ramrakhiyani@gmail.com