Introduction to Data Analysis

Capstone Project: Biodiversity for the National Parks

Kathrin Aurelio

Initial situation

- A section describing the data in species_info.csv. Be sure to include some (or all) of what you noticed while working through the notebook.
- Are there are any patterns or themes to the types of species that become endangered?
- Basis of the analysis: data given from the National Park Service containing:
 - 5541 Different species in our National Parks and their categories
 - Their different common names and unique scientific names
 - Their conservation status

Initial situation

The distribution of the species looks like following:

Category	Number of species
Amphibian	79
Bird	488
Fish	124
Mammal	176
Nonvascular Plant	333
Reptile	78
Vascular Plant	4262

Initial situation

The distribution of the conservation status looks like following:

Analysis

Are certain types of species more likely to be endangered?

We separated the conservation status in not protected and protected:

not protected = no intervention

protected = endangered, in recovery, species of concern,

threatened

Analysis

Are certain types of species more likely to be endangered?

Category	Is not protected	Is protected	Protected percent
Amphibian	72	7	9%
Bird	413	75	15%
Fish	113	11	9%
Mammal	146	30	17%
Nonvascular Plant	328	5	2%
Reptile	73	5	6%
Vascular Plant	4216	46	1%

[→] It seems, that Mammals or Birds are more likely to be endangered.

Analysis

Are certain types of species more likely to be endangered?

To make sure, that there is an actual difference in probability, we checked the significance:

- Method: chi-squared test
- Null hypothesis: difference is a result of chance
- Categories, we compared:
 - Birds & mammals
 - Reptiles & mammals
 - Amphibians & mammals

Analysis

Are certain types of species more likely to be endangered?

Birds (15%) & mammals (17%):

→ P-value: 0.69 – no significant difference

Reptiles (6%) & mammals (17%):

→ P-value: 0.038 – significant difference here

Amphibians(9%) & mammals (17%):

→ P-value: 0.12 – no significant difference

→ Yes, certain types of species are more likely to be endangered!

INTENSIVE

Recommendation

Mammals, for example, are more likely to be endangered than reptiles. With regard to conservatory aspects it might make sense to **focus** on this category for more success:

Research:

Are there reasons for the increased risk to be endangered in these species, their environment and their interaction?

• Prevention:

By knowing those reasons, can those species be protected better to not get endangered?

Focus of the conservatory work:

Focus on mammals for a greater influence and better chances to preotect more species.

INTENSIVE

Foot and Mouth Disease study – sample size

Is the program to reduce the rate of the Foot and Mouth Disease in the Yellowstone National Park working?

The scientists want a reduction of at least 5% and the sample size needs to be big enough to deliver a significant result.

Which sample size do we need? How long do they need to observe enough sheep?

- We know that last year 15% of the sheep in Bryce National Park suffered from Foot and Mouth Disease.
 - \rightarrow our **basline** is 15%.
- For a change of 5% we need a minimum detectable effect of 33.33%.

INTENSIVE

Foot and Mouth Disease study – sample size

Is the program to reduce the rate of the Foot and Mouth Disease in the Yellowstone National Park working?

- We want a statistical significance of 90%.
- → Our sample size needs to be at least 870 sheep.

Foot and Mouth Disease study – sample size

INTENSIVE

Is the program to reduce the rate of the Foot and Mouth Disease in the Yellowstone National Park working?

INTENSIVE

Foot and Mouth Disease study – sample size

Is the program to reduce the rate of the Foot and Mouth Disease in the Yellowstone National Park working?

- Given the 507 sheep sightings in **Yellowstone** last week, the scientist would approximately need **2 weeks** to observe enough sheep.
- In **Bryce National Park** there were only 250 sightings last week. Therefore the scientist would approximately need **4 weeks** to observe the needed 870 sheep.