Experimental design

Dr Gustavo A. Silva-Arias

Technische Universität München

Bogotá, 23 de Agosto 2021

NGS Applications

NGS Platform Comparison

Sequencing Platform	Sequencing Generation	Amplification Method	Sequencing Method	Read Length (bp)	Error Rate (%)	Error Type	Number of Reads Per Run	Time Per Run (Hours)	Cost Per Million Bases (USD)
Sanger ABI 3730x1	1	PCR	Dideoxy chain termination	600–1000	0.001	Indel- Substitution	96	0.5–3	500
Ion Torrent	2	PCR	Polymerase synthesis	200	1	Indel	8.2 × 10 ⁷	2–4	0.10
454 Roche GS FLX+	2	PCR	Pyrosequencing	700	1	Indel	1×10 ⁶	23	8.57
Illumina HiSeq 2500; high output	2	PCR	Synthesis	2 × 125	0.1	Substitution	8×10^9 (paired)	7–60	0.03
Illumina HiSeq 2500; rapid run	2	PCR	Synthesis	2×250	0.1	Substitution	1.2 × 10 ⁹ (paired)	24–144	0.04
Illumina MiSeq v3	2	PCR	Synthesis	2×300	0.1	Substitution	3×10^{8}	27	0.15
SOLiD 5500xl	2	PCR	Ligation	2×60	5	Substitution	8×10^{8}	144	0.11
PacBio RS II: P6-C4	3	Real-time single-molecule template	Synthesis	~10,000–15,000	13	Indel	$3.5 - 7.5 \times 10^4$	0.5–4	0.40-0.80
Oxford Nanopore MinION	3	None	Nanopore	~2000–5000	~15	Indel– Substitution	$1.1 - 4.7 \times 10^4$	50	6.44–17.90

NGS Platform Comparison

NGS Project Checklist

- 1. What is the research question?
- 2. What genomic resources have been developed for the species?
- 3. Sequencing decisions:
 - What sequencing coverage do we need?
 - How much error rate can we tolerate?
 - What read length is the most appropriate?
 - Should we perform Single-End or Paired-End sequencing?
 - Can we use multiplexing?
 - Analysis requirements

NGS Project Checklist

- 1. What is the research question?
- 2. What genomic resources have been developed for the species?
- 3. Sequencing decisions:
 - What sequencing coverage do we need?
 - How much error rate can we tolerate?
 - What read length is the most appropriate?
 - Should we perform Single-End or Paired-End sequencing?
 - Can we use multiplexing?
 - Analysis requirements

NGS Project Checklist

- 1. What is the research question?
- 2. What genomic resources have been developed for the species?
- 3. Sequencing decisions:
 - What sequencing coverage do we need?
 - How much error rate can we tolerate?
 - What read length is the most appropriate?
 - Should we perform Single-End or Paired-End sequencing?
 - Can we use multiplexing?
 - Analysis requirements

Aim:

• Very little is known about conifer genomes, except that they are large and complex.

• The genome sequence is needed as a basis for other genetic/genomic studies in conifers.

Source: https://www.utahpeoplespost.com/2014/03/scientists-sequence-largest-loblolly-pine-tree-genome-ever/

Genomic resources available:

- Essentially none.
- Flow cytometry estimates indicate a genome size of ~22Gbp (6.6x the size of the human genome!).
- Also the karyotype had been determined, it has 12 chromosomes.

Multiplexing:

 Not needed, we need to generate a genome from a single sample.

Source: https://doi.org/10.1139/G06-153

• Sequencing: Read length and error tolerance

- Sequencing: Coverage, how many reads needed to achieve it?
- Number of reads = (Genome Size * Coverage) / Read Length
- Genome Size = 22Gbp or 22,000,000,000 bp
- PacBio recommended coverage = 30x
- PacBio average read length = 10Kbp or 10,000 bp
- Illumina recommended coverage = 50x (100x if only Illumina)
- Illumina read length = 2 x 150 bp (Paired-End) or 300 bp
- We need:
- 66 million PacBio reads and ~3,600 million Illumina reads!

Analysis:

- De novo assembly is storage and RAM-demanding, process is currently parallel so it benefits from having many CPUs.
- We will need a computer with hundreds of Gigabytes of RAM (512Gb 1024Gb), most commercial laptops have 8Gb.
- A hard drive with several Terabytes of space is needed. A laptop usually has between 0.5-1 Tb.
- The nodes we use in the cluster for practice have 64Gb of RAM and 24 CPUs, not enough for this project!

Research question:

• How many / Which genes, transposable elements and any other genomic features are present in the *Pinus taeda* genome?

Procedure

- Use TE databases to predict mobile elements in the genome.
- Use software to predict where are the likely positions of the genes, but perhaps some are pseudogenes or they are not expressed.
- Transfer the annotation 'conserved' genes from close related species.
- Sequence the DNA that gets transcribed (some of it will be expressed as proteins) to find the exact regions spanned by genes in the genome.

Genomic resources available:

The previous project obtained the genomic sequence that can be used as a reference.

Source: https://galaxyproject.github.io/training-material/topics/sequence-analysis/tutorials/mapping/tutorial.html

Specific experimental considerations:

We need to extract RNA. Remember that Illumina can only sequence DNA, so we need to **retro-transcribe RNA** into cDNA for sequencing (different library preparation).

Different organs transcribe genes in varying amounts (differential expression), we need to extract **RNA from different organs** and use the mixture to have a good representation of all the genes.

- Sequencing: Coverage and error tolerance
- Software gene prediction indicates ~0.7% of the total genomic sequence corresponds to genes. Let's be generous and assume 1%
- Transcriptome size = 22 Gbp * 0.01 = 220,000,000 bp
- Coverage = 100x
- Illumina read length = 2x150 bp = 300 bp
- We need:
- ~73 million reads, we need accuracy, Illumina in this case good enough

Analysis:

- Aligning short reads to a reference genome is not very RAM or CPU demanding. Storage can be a concern.
- You need enough RAM to at least hold the reference genome in memory, so at least 22Gb of RAM. 73 million Illumina reads occupy ~12 Gigabytes of disk, so you need that for the input data and twice as much for the output data.
- The cluster nodes are sufficient for this task, your laptop probably not.

Research question:

Organ differentiation depends, among many factors, on the levels of specific proteins being expressed in specific tissues and times.

- What are the genes involved in male and female cones differentiation of the loblolly pine?
- What time and conditions determine de differentiation of reproductive organs in the loblolly pine?

https://www.britannica.com/science/apicalmeristem

Source: https://www.sciencephoto.com/media/17715/view/male-and-female-pine-cones

- Genomic resources available:
- ✓ The genome reference sequence
- ✓ Reference annotation
- ✓ Transcriptome
- We can now sequence to estimate expression levels by "counting" how many reads are assigned to each transcript in the transcriptome.

- Specific experimental considerations:
- We are interested in expression level between tissues, we need to sequence each tissue separately.
- Repeatability becomes an issue, we can not draw meaningful conclusions
 from a single male and a single female cone. Several replicates of each type
 have to be sequenced.
- Conditions of tissue collection are important. Expression changes with time of day, temperature, etc.

- Sequencing: Coverage, read length, error tolerance
- In this case we want to estimate gene expression just by counting how many transcripts of each gene are produced in each sample / tissue.
- Single-End Illumina would be enough to address the question.
- Coverage is NOT SO critical and we need to sequence multiple samples. 30x is reasonable, this amounts to ~22 million reads per replicate.
- Multiplexing: Definitely!

Analysis:

- We assign reads to transcripts. This can be done by aligning (a.k.a. mapping).
- The reference transcriptome is ~220Mb. Minimal RAM requirements, just need storage to hold all input reads from all the replicates.
- You can probably run this in your laptop.
- Analyze and visualize results in R.

Example 4: Genetic differences between populations of

"loblolly pine"

• Research question:

- The natural distribution of the species is separated in two main areas by the Mississippi river.
- Are the populations coming from each side of the river genetically distinct? Why?

Source: https://www.fs.fed.us/nrs/atlas/tree/131

- Genomic resources available:
- ✓ The genome reference sequence
- ✓ Reference annotation

Specific experimental considerations:

- Assess natural variation is more important, we need to sample multiple individuals per population. Resequencing the entire genome of all individuals is impossible (and impractical).
- Most of the protein coding genes are conserved within a single species (not enough genetic information to distinguish groups), so transcriptome sequencing is not optimal in this case.
- We need a way to interrogate non-coding (more variable) regions of the genome in an efficient way.
- And target potential 'genes' related with local adaptation processes.

- Reduced Representation Libraries
- Sequencing small portions of the genome, but consistently across individuals
- RAD-Seq: Restriction Associated DNA sequencing

• The genome can be used to predict which enzyme will work better.

Source: https://doi.org/10.1371/journal.pone.0037135

- Reduced Representation Libraries
- Sequencing target genes
- Sequence capture

• The annotated genome or transcriptome can be used to generate the probes.

Source: https://eu.idtdna.com/pages/education/decoded/article/target-enrichment-facilitates-focused-next-generation-sequencing

- Sequencing: Coverage, error rate, read length
- Analyzing the genome sequence we found EcoRI cuts the genome in 20,000 pieces, we just need to sequence the first and last ~300 bp of each fragment. We need to sequence: 20,000 * 2 * 300 = 12,000,000 bp
- Coverage: accurate genotypes with at least 10x, let's sequence 20x
- Read length: Illumina 2x150: 300 bp
- We need ~800,000 reads per sample (good, because we will need to sequence hundreds of samples).
- Mutiplexing: Definitely necessary.

Analysis:

- We need to align (map) the reads from all samples to the reference genome to discover SNPs (Single Nucleotide Polymorphisms).
- This genome is around 20Gbp. We need at least 20 Gigabytes of RAM and enough storage for all the reads coming from all samples.
- A node in the cluster can easily accommodate this analysis (remember, 24 CPUs and 64 Gigabytes of RAM).

Example 4: Genetic differences between populations of

"loblolly pine"

Source: https://doi.org/10.1186/s12864-016-3081-8

Experimental design

- NGS course 2021
- https://gitlab.lrz.de/gustavo/ngscourse2021-tum/-/wikis/00.-home