# PowerPC Assembly-Language Numerics Reference

This appendix provides a reference for the numeric implementation in PowerPC assembly language. It summarizes the data formats available, how to determine the floating-point class for a value, the FPSCR, instructions that access the FPSCR, and instructions that perform floating-point operations and the exceptions they might raise.

# Floating-Point Data Formats

Figure F-1 Floating-point data formats



**Table F-1** Interpreting floating-point values

| If biased <sup>†</sup><br>exponent <i>e</i> is: | And fraction f is: | Then value <i>v</i> is:                          | And class of <i>v</i> is: |
|-------------------------------------------------|--------------------|--------------------------------------------------|---------------------------|
| $0 < e < max^{\ddagger}$                        | (any)              | $v = (-1)^s \times 2^{(e-bias)} \times (1.f)$    | Normalized number         |
| e = 0                                           | $f \neq 0$         | $v = (-1)^s \times 2^{minexp} \times (0.f)^{\S}$ | Denormalized number       |
| e = 0                                           | f = 0              | $v = (-1)^s \times 0$                            | Zero                      |
| e = max                                         | f = 0              | $v = (-1)^s \times \infty$                       | Infinity                  |
| e = max                                         | $f \neq 0$         | v = NaN                                          | NaN                       |

<sup>†</sup> bias = 127 for single format, 1023 for double format.

max = 255 for single format, 2047 for double format.

<sup>§</sup> minexp = -126 for single format, -1022 for double format.

# Floating-Point Status and Control Register

 Table F-2
 Bit assignments for FPSCR fields

| FROOD          |         | addigniments for the cert fields                                             |
|----------------|---------|------------------------------------------------------------------------------|
| FPSCR<br>field | Bi<br>t | Meaning if set                                                               |
| 0              | 0       | Exception summary                                                            |
|                | 1       | Exception enable summary                                                     |
|                | 2       | Invalid-operation exception summary                                          |
|                | 3       | Overflow exception                                                           |
| 1              | 4       | Underflow exception                                                          |
|                | 5       | Divide-by-zero exception                                                     |
|                | 6       | Inexact exception                                                            |
|                | 7       | Invalid-operation exception; signaling NaN as input                          |
| 2              | 8       | Invalid-operation exception; $\infty - \infty$                               |
|                | 9       | Invalid-operation exception; ∞/∞                                             |
|                | 10      | Invalid-operation exception; 0/0                                             |
|                | 11      | Invalid-operation exception; $0 \times \infty$                               |
| 3              | 12      | Invalid-operation exception; comparison operation                            |
|                | 13      | Fraction field rounded                                                       |
|                | 14      | Fraction field inexact                                                       |
|                | 15      | Class descriptor                                                             |
| 4              | 16      | < or < 0                                                                     |
|                | 17      | > or $> $ 0                                                                  |
|                | 18      | = or = 0                                                                     |
|                | 19      | Unordered or NaN                                                             |
| 5              | 20      | Reserved                                                                     |
|                | 21      | Invalid-operation exception; software request (not implemented in $MPC601$ ) |
|                | 22      | Invalid-operation exception; square root (not implemented in MPC601)         |
|                | 23      | Invalid-operation exception; convert-to-integer operation                    |

continued

PowerPC Assembly-Language Numerics Reference

Table F-2 Bit assignments for FPSCR fields (continued)

| FPSCR<br>field | Bi<br>t | Meaning if set                               |
|----------------|---------|----------------------------------------------|
| 6              | 24      | Invalid-operation exception enable / disable |
|                | 25      | Overflow exception enable/disable            |
|                | 26      | Underflow exception enable/disable           |
|                | 27      | Divide-by-zero exception enable/disable      |
| 7              | 28      | Inexact exception enable/disable             |
|                | 29      | Reserved                                     |
|                | 30      | Rounding direction                           |
|                | 31      | Rounding direction                           |
|                |         |                                              |

 Table F-3
 Rounding direction bits in the FPSCR

| Modes       | Bi | ts |
|-------------|----|----|
|             | 30 | 31 |
| To-nearest  | 0  | 0  |
| Upward      | 1  | 0  |
| Downward    | 1  | 1  |
| Toward-zero | 0  | 1  |

Table F-4 Class and sign inquiry bits in the FPSCR

| Class/sign                   | _  |    | Bits |    |    |
|------------------------------|----|----|------|----|----|
|                              | 15 | 16 | 17   | 18 | 19 |
| +0                           | 0  | 0  | 0    | 1  | 0  |
| -0                           | 1  | 0  | 0    | 1  | 0  |
| Positive normalized number   | 0  | 0  | 1    | 0  | 0  |
| Negative normalized number   | 0  | 1  | 0    | 0  | 0  |
| Positive denormalized number | 1  | 0  | 1    | 0  | 0  |
| Negative denormalized number | 1  | 1  | 0    | 0  | 0  |
| +∞                           | 0  | 0  | 1    | 0  | 1  |
| -∞                           | 0  | 1  | 0    | 0  | 1  |
| Quiet NaN                    | 1  | 0  | 0    | 0  | 1  |

#### PowerPC Assembly-Language Numerics Reference

## Instructions

#### Note

Throughout the tables that follow, in the Exceptions column, I = invalid; X = inexact; O = overflow; U = underflow; D = divide by zero. In the Instructions column, \* = append dot (.) to instruction name to update CR1. ◆

Table F-5 **FPSCR** instructions

| Instruction               | Description                     | SRC               | DST         | Exceptions |
|---------------------------|---------------------------------|-------------------|-------------|------------|
| mcrfsDST,SRC              | $DST \leftarrow (SRC)$          | FPSCR field       | CR field    |            |
| ${\tt mffs}^*DST$         | $DST \leftarrow (\text{FPSCR})$ | FPSCR             | FPR         |            |
| mtfsf* DST, SRC           | $DST \leftarrow SRC$            | FPR               | FPSCR field |            |
| ${\tt mtfsfi}^*DST$ , $n$ | $DST \leftarrow n$              | 16-bit signed int | FPSCR field |            |
| ${\tt mtfsb1*}DST$        | $DST \leftarrow 1$              | _                 | FPSCR bit   |            |
| ${\tt mtfsb0*} DST$       | $DST \leftarrow 0$              | _                 | FPSCR bit   |            |

Table F-6 Load instructions

| Instruction           | Description <sup>†</sup>                                                      | SRC    | DST | Exceptions |
|-----------------------|-------------------------------------------------------------------------------|--------|-----|------------|
| lfd DST, $n(GPR)$     | $DST \leftarrow (n + (GPR))$                                                  | Memory | FPR |            |
| lfdu $DST$ , $n(GPR)$ | $DST \leftarrow (n + (GPR))$ $GPR \leftarrow n + (GPR)$                       | Memory | FPR |            |
| lfdx DST, GPR1, GPR2  | $DST \leftarrow ((GPR1) + (GPR2))$                                            | Memory | FPR |            |
| lfdux DST, GPR1, GPR2 | $DST \leftarrow ((GPR1) + (GPR2))$ $GPR1 \leftarrow (GPR1) + (GPR2)$          | Memory | FPR |            |
| lfs $DST$ , $n(GPR)$  | $DST \leftarrow (n + (GPR))^{\ddagger}$                                       | Memory | FPR |            |
| lfsu $DST$ , $n(GPR)$ | $DST \leftarrow (n + (GPR))$ $GPR \leftarrow n + (GPR)^{\ddagger}$            | Memory | FPR |            |
| lfsxDST,GPR1,GPR2     | $DST \leftarrow ((GPR1) + (GPR2))^{\ddagger}$                                 | Memory | FPR |            |
| lfsux DST, GPR1, GPR2 | $DST \leftarrow ((GPR1) + (GPR2))$ $GPR1 \leftarrow (GPR1) + (GPR2)^{\sharp}$ | Memory | FPR |            |

<sup>†</sup> If *GPR* or *GPR1* is 0, the value 0 is used instead of the contents of the register. † Converts single to double format automatically.

### PowerPC Assembly-Language Numerics Reference

Table F-7 Store instructions

| Instruction            | Description <sup>†</sup>                                                           | SR<br>C | DST    | Exceptions |
|------------------------|------------------------------------------------------------------------------------|---------|--------|------------|
| stfd $SRC$ , $n(GPR)$  | $n + (GPR) \leftarrow (SRC)$                                                       | FPR     | Memory |            |
| stfdu $SRC$ , $n(GPR)$ | $n + (GPR) \leftarrow (SRC)$ $GPR \leftarrow n + (GPR)$                            | FPR     | Memory |            |
| stfdx SRC, GPR1, GPR2  | $(GPR1) + (GPR2) \leftarrow (SRC)$                                                 | FPR     | Memory |            |
| stfdux SRC, GPR1, GPR2 | $(GPR1) + (GPR2) \leftarrow (SRC)$<br>$GPR1 \leftarrow (GPR1) + (GPR2)$            | FPR     | Memory |            |
| stfs $SRC$ , $n(GPR)$  | $n + (GPR) \leftarrow (SRC)^{\ddagger}$                                            | FPR     | Memory |            |
| stfsu $SRC$ , $n(GPR)$ | $n + (GPR) \leftarrow (SRC)$ $GPR \leftarrow n + (GPR)^{\ddagger}$                 | FPR     | Memory |            |
| stfsx SRC, GPR1, GPR2  | $(GPR1) + (GPR2) \leftarrow (SRC)^{\ddagger}$                                      | FPR     | Memory |            |
| stfsux SRC, GPR1, GPR2 | $(GPR1) + (GPR2) \leftarrow (SRC)$<br>$GPR1 \leftarrow (GPR1) + (GPR2)^{\ddagger}$ | FPR     | Memory |            |

 $<sup>^{\</sup>dagger}$  If *GPR* or *GPR1* is 0, the value 0 is used instead of the contents of the register.  $^{\dagger}$  Converts double to single automatically.

Table F-8 Conversions to integer format

| Instruction         | Description                                    | SR<br>C | DST | Exceptions |
|---------------------|------------------------------------------------|---------|-----|------------|
| $fctiw^* DST$ , SRC | $DST \leftarrow (SRC)$ rounded to 32-bit int   | FPR     | GPR | I X        |
| fctiwz* DST, SRC    | $DST \leftarrow (SRC)$ truncated to 32-bit int | FPR     | GPR | I X        |

Table F-9 Conversions from double to single format

| Instruction | Description                                     | SR<br>C | DST | Exceptions |
|-------------|-------------------------------------------------|---------|-----|------------|
|             | $DST \leftarrow (SRC)$ rounded to single format | FPR     |     | IXOU-      |

Table F-10 Comparison instructions

| Instruction           | Description                                     | SRC  | DST      | Exceptions |
|-----------------------|-------------------------------------------------|------|----------|------------|
| fcmpo DST, SRC1, SRC2 | $DST \leftarrow (SRC1) \text{ compare } (SRC2)$ | FPRs | CR field | I          |
| fcmpu DST, SRC1, SRC2 | $DST \leftarrow (SRC1)$ compare $(SRC2)$        | FPRs | CR field |            |

Instructions F-5

### PowerPC Assembly-Language Numerics Reference

 Table F-11
 Arithmetic instructions

| Instruction           | Description                           | SRC  | DST | Exceptions |
|-----------------------|---------------------------------------|------|-----|------------|
| fadd* DST, SRC1, SRC2 | $DST \leftarrow (SRC1) + (SRC2)$      | FPRs | FPR | I X O U -  |
| fsub* DST, SRC1, SRC2 | $DST \leftarrow (SRC1) - (SRC2)$      | FPRs | FPR | I X O U -  |
| fmul* DST, SRC1, SRC2 | $DST \leftarrow (SRC1) \times (SRC2)$ | FPRs | FPR | I X O U -  |
| fdiv* DST, SRC1, SRC2 | $DST \leftarrow (SRC1) / (SRC2)$      | FPRs | FPR | I X O U D  |

 Table F-12
 Multiply-add instructions

| Instruction fmadd* DST, SRC1, SRC2, SRC3 | <b>Description</b> $DST \leftarrow (SRC1) \times (SRC2)$ | SRC<br>FPRs | <b>DST</b><br>FPR | Exceptions |
|------------------------------------------|----------------------------------------------------------|-------------|-------------------|------------|
| Imada DSI, SKCI, SKC2, SKCS              | + (SRC3)                                                 | FFKS        | FFK               | 1 X O U -  |
| fmsub* DST, SRC1, SRC2, SRC3             | $DST \leftarrow (SRC1) \times (SRC2) - (SRC3)$           | FPRs        | FPR               | I X O U -  |
| fnmadd* DST, SRC1, SRC2, SRC3            | $DST \leftarrow -((SRC1) \times (SRC2) + (SRC3))$        | FPRs        | FPR               | I X O U -  |
| fnmsub* DST, SRC1, SRC2, SRC3            | $DST \leftarrow -((SRC1) \times (SRC2) - (SRC3))$        | FPRs        | FPR               | I X O U -  |

 Table F-13
 Move instructions

|                 |                                      | SR  |     |            |
|-----------------|--------------------------------------|-----|-----|------------|
| Instruction     | Description                          | C   | DST | Exceptions |
| fabs* DST, SRC  | $DST \leftarrow \lceil (SRC) \rceil$ | FPR | FPR |            |
| fmr* DST, SRC   | $DST \leftarrow (SRC)$               | FPR | FPR |            |
| fneg* DST, SRC  | $DST \leftarrow -\left(SRC\right)$   | FPR | FPR |            |
| fnabs* DST, SRC | $DST \leftarrow - \mid (SRC) \mid$   | FPR | FPR |            |