We tried and we tried, and we applied and implied, and still probabilistic automata we could not decide!

Nathanaël Fijalkow Hugo Gimbert Florian Horn Youssouf Oualhadj

Highlights, September 21st, 2013

Probabilistic automata

Probabilistic automata

Early results

- (Paz, 71) The emptiness problem is undecidable;
- (Rabin, 69) If λ is isolated, L_{λ} is regular;
- (Bertoni, 74) The isolation problem is undecidable;
- (Condon-Lipton, 89) The approximation problem is undecidable.

Recent results

The isolation problem for $\lambda = 1$ is

"are there words accepted with probability arbitrarily close to 1".

The isolation problem for $\lambda = 1$ is

"are there words accepted with probability arbitrarily close to 1".

Recent results

- (Gimbert and Oualhadj, 2009) The value 1 problem is undecidable;
- Decidable classes: \sharp -acyclic \subsetneq structurally simple \subsetneq leaktight.

Undecidability results: towards fuzziness

• (Paz, 71) The emptiness problem:

$$\exists w, \ \mathbb{P}_{\mathcal{A}}(w) \geq \frac{1}{2}$$

• (Bertoni, 74) The isolation problem:

$$\forall \varepsilon, \exists w, \frac{1}{2} - \varepsilon \le \mathbb{P}_{\mathcal{A}}(w) \le \frac{1}{2} + \varepsilon$$

• (Condon-Lipton, 89) The approximation problem:

$$\exists w, \mathbb{P}_{\mathcal{A}}(w) \ge \frac{2}{3} \qquad \lor \qquad \forall w, \mathbb{P}_{\mathcal{A}}(w) \le \frac{1}{3}$$

• (Gimbert-Oualhadj, 2009) The value 1 problem:

$$\forall \varepsilon, \exists w, \ \mathbb{P}_{\mathcal{A}}(w) \geq 1 - \varepsilon$$

Research questions

- What does the saturation algorithm compute?
- What is decidable for probabilistic automata?
 How much fuzziness is required to get decidability?

An example: numberless probabilistic automata. Is the value 1 problem decidable?

Yet still PA we could not decide!

Randomized machines are deterministic automata with only *one* random coin.

Yet still PA we could not decide!

Randomized machines are deterministic automata with only *one* random coin.

Theorem

The emptiness problem, the isolation problem and the approximation problems are all undecidable for randomized machines.

Randomized machines are deterministic automata with only *one* random coin.

Theorem

The emptiness problem, the isolation problem and the approximation problems are all undecidable for randomized machines.

Corollary

The value 1 problem for numberless probabilistic automata are undecidable.

Randomized machines are deterministic automata with only *one* random coin.

Theorem

The emptiness problem, the isolation problem and the approximation problems are all undecidable for randomized machines.

Corollary

The value 1 problem for numberless probabilistic automata are undecidable.

Conclusion: the saturation algorithm is useless.