	Page No.
	Competitive programming - Elyderk
->	Prime s'eure Sieure of exathestheres
	Mark an array (bool) of size n.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	A[O] = false; A[J] = false;
	We need to find du primes forom
	for (i=2; i*; <=n; ;++)
	if $[A[i] = = torue)$ { $fog(j = i * i : j < = n : j + = i)$
	A[j]= false;
	} } }
	print those index which are marked true.
	Time - complexity = n log log n

Euclide algorithm g(d(a,b) = g(d(b,a).b) Learn it as "bod" g (d (a,0) = a Extended - euclide algorithm need to find x & ax + by = g cd (a,b) Also, gcd (a,b) = gcd (b, a/.b) comparing, me

	Date
	Page No.
-	Number of balances Binary Tree
	A h
	$(h-1)$ χ $(h-2)$ χ $(h-1)$ χ $(h-1)$ χ
	and = 2x + y
	int balance BT (inth) {
	$if (h = = 0) {$
	retwin 1;
	$m = p_{w}(10, 9) + 7$
	int $m = \beta_{m}(10, 9) + 7$; int $\alpha = \beta_{m}(10, 9) + 7$;
	balance BT (h-2);
	long res $1 = (long) x x x$
-	Jes 2 = (long) x 7.
	(ind) (9101 1 /2 m)
-	int ans 2 = (int) (res 2-1. m);
	return (ans1 + ans2) /- m;
	}
	Balance = 11H-RHI < 1
1.	LLH-KHIZ 1
	$(h-1) \longrightarrow$
	$\frac{(h-1)}{(h-2)} \xrightarrow{\chi} \chi$
	· · · · · · · · · · · · · · · · · · ·
	and = $x^*x + x^*y + x^*y$
	$=$ $\chi^2 + 2\chi y$

nodulo (multiplicative Multiplicatine mod invare (A·B)./. m = 1 We have to find B. (A-B)-/-m=1 (A-/·B)· (B-/-m)) 7. m = 1 (a·b)/·m = ((a/·m)· (b·/·m)) ·/·m 1 < B < m-1 (multiple of m, = g(d(a, m) = 1 (ax + by)= gcd (a,b)

		-
	Date	1
	Page No	
		PERMIT
	mod inverse (a, m)	
	= h	- margaret
	mat dab a me kun	-
	a me ky a multiply kne	Contract of the last
	mat dab a me ky a multiply kre awe m se mod kre ki ans = 1.	- and
	modinuerse(a,m) = b	-
	→ (, ,) /	
	$\Rightarrow (a \times 7) \cdot / \cdot m = 1$	
	bue have to find this only	
	Hard question	
	ax + by = d	
	a & b item se d banana hai	
	Need to find number of briend	
	possible of (x,y) for such	
	ax + by = d	
1		
	ax = d - by	
	This term must be	
	L'usble by x	
	$0 \le y \le d$ $0 \le x \le d$	- 3
	b '	

	Date Page No.
	Advanced 6CD
	g(d(a,b)= g(d(b,a/b)
	both must be integers
	gcd (10 ²⁴⁰ , 40)= gcd (40, 10 ²⁴⁰ /·40)
	Input as string.
- ex-	= (23567)./.40 $= (0*10+2)./.40 = 2$
	$(2^{*}10+3)\cdot 1.40 = 23$
	(23 * 10 + 5) 1/· 40 =
	2356-1.40= (735 *10 +6) 1.40
	= (235*(0)-/.6 + 6-/.40)-/.40
	= 1 from previou + 6.1.407.1.4
	U gedlange (Ma, string b) {
	1000000000000000000000000000000000000
	mod = (mod * 10 + b[i] - '0') /·ai
	geturn modi
	}

ICPC question (Brom (10 D) Inain path Path 1: 4 to 6 without train d'stance = 12A-XBI William Control Control 6 7 D 120-201 = p(20-20) THI THE Path 2: A to C and gots D then B distance = 1xc-2A1 + 1xp-xc1 + 1xg-x, xa1 + 9 |xx-xc1 + 6 |x8-201

	Date Page No.
	ans = min (+1, +2);
	But train starts at f = y.
	Path 2
	Train le lige Train chut gayi
	maiting-time if Ac(time) > y: cont (atch 4)
	maiting-fime cont catch train
	16.
	Path 1
	t2 += maiting_train
	1
	ans = min(t1, t2)
	in>>n>>B>>c>>p>>p>>y;
	int A[n];
	ton (int i=0) i(n) i++) on>7 A [i];
	int t1 = 1 (abs (A[a]- A[b));
	ind fAC = p* (abs (A[c] - A[a]);
(6 % ~	if tAC>y (
	1/ do nothing; t2 = INT_MAX;
	3
3	else: {
	maiting-time = y- fAC;
i care	maiting-time = y - tAC; t2 + = maiting-time;
	}
	cont << min (f1, f2) << endl;

```
Date
                         Page No.
Modified GCD - Cade farues
 a=24, b=36
    1 2 3 46 - av divides ged.
  Range- 10m & high mhich
      L'u'des both a and
Making l'et of divisore
for (i=1); * : <=n; i++) {
   if (gcd / · i = = 0) {
          4. pb (2) 3
        (; * ; ! = g(d) {
          4. bb (g(d/i);
   res = -1;
for (d: d'u) {
    if (d >= L && d <= 4) (
         ses = max (ses, d);
 cout << ses;
```

	Date
	Zoors and in the
	Zono gremainder array- (adefbrues
	07- K= 5
	+ + + Same
	Same group (same remainder)
	map {int > mi
	m [namainder] = no. of same;
	4 4 4 for K= 5
	$x_1 = 1$ $x_2 = 6$ $x_3 = 11$
	5 5
	21/5= x2/·5= x3-/·5
	claim - Sum
~	claim - Sum of 2 numbers is divisible by K, iff sum of their remainder is
	d'usible by K
	91= 4.1.5= 4 2 5=5.1.5=0
	912= 17-5=15
	91 = 4-1.5 = 4 7 8=5.1.5=0
	212 = 6/.5 = 1
	5
ex-	K=6
	8 7 1 8 3 7 5 10 8 4 1
	$m \ T \ 1 \ J = 3$ $x_1 = 5$, 11 , 17 $any = 17 + 1$
	$n[2]=3$, $x_2=4,10,16$
	$m I 3J=2$, $\chi_3=3,9$
	$mC1J=1, x_4=2$
	m [5] = 1

```
Chinese Remainder theorem
   2 pack of
                 cho colates
     1 park - 5 peable (3 nom)
      1 pack = 6 people (2 erem)
  2 = 3( mod 5)
  2 = 2 (mod 6)
                                13, 18,23
    x = m6 + 2 \Rightarrow x = 2, |8| 14, 20, 26
               38, 68
              38, 68
           30
            ECM (5,6)
CRT,
       a= a, (mod b,)
       a = a2 (mod b2)
      a = ak (mod pk)
```

```
S (nom [i] * ph [i] + inv [i])-/ prod
      pp [i]=
                  prod
                  nun [i]
  inu CiJ=
             mod Inv ( + [i], num (i))
for (i=0) i < ki i++) {
     int pp= prod/num (i);
nerult += nom (i) inv (pp, num(i))
 return result / brodi
 TC =
         n logn
```