

Probabilidad y Estadística 1

Departamento de Ingeniería Industrial

RESUMEN HOJA DE FÓRMULAS

Distribución	Parámetros	Función de Probabilidad/FDP	Valor	Varianza
			Esperado	
		$P(X = x) = p^{x}(1 - p)^{1-x}$		
Bernoulli	<i>p</i> = Probabilidad de éxito	x = 0,1	p	pq
Binomial	p = Probabilidad de éxito N = número de ensayos	$P(X = k) = {N \choose k} p^k q^{N-k}$ $k \in \{0, 1, 2, \dots, N\}$	Np	<i>Np</i> (1 – <i>p</i>)
Geométrica	p = Probabilidad de éxito	$P(X = x) = p(1 - p)^{x-1}$ $x \in \{1, 2,\}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial Negativa	p = Probabilidad de éxito k – ésimo éxito	$P(X = x) = {x-1 \choose k-1} p^k (1-p)^{x-k}$ $x \in \{k, k+1, k+2,\}$	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$
Poisson	λ = llegadas/tiempo t = tiempo $\lambda, t > 0$	$P(X = x) = \frac{e^{-\lambda t} (\lambda t)^x}{x!}$ $x \in \{0, 1, 2, \dots\}$	λt	λt
Uniforme Continua	a = Mínimo b = Máximo	$x \in \{0, 1, 2, \dots\}$ $f(x) = \frac{1}{b-a}$ $x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial	λ = llegadas/tiempo	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Regla de la multiplicación

 $\#\ total\ de\ resultados = n_1\ \cdot\ n_2\ \cdot\ldots\cdot\ n_r$

Muestra de orden

total de resultados= n^r

Permutaciones

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Covarianza y Coeficiente de Correlación

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

 $corr(X,Y) = \rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$

Propiedad fundamental del valor esperado condicional

$$E[X] = E[E[X|Y]]$$

Combinaciones

$$\binom{n}{r} = {}_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Particiones ordenadas:

$$\frac{N!}{n_1! \, n_2! \dots n_r!}$$

$$n_1 + n_2 + \dots + n_r = N$$

Varianza:

$$Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$$

 $Para\ X, Y\ V.\ As\ y\ a,b\ \in \mathbb{R}$

FÓRMULAS Y SUPUESTOS PARA INTERVALOS DE CONFIANZA

	Estimaciór	n de la media pol							
Distribución poblacional	Varianza poblacional	Tamaño muestral	Intervalo de confianza de confiabilidad						
Normal	Conocida	Cualquiera	$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{o}{\sqrt{n}}$						
Normal	Desconocida	Cualquiera							
Cualquiera	Conocida	Grande		$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$					
Cualquiera	Desconocida	Grande		$X \pm z_{\left(1-\frac{\alpha}{2}\right)} \overline{\sqrt{n}}$					
Es	Estimación de una diferencia de medias poblacionales $\mu_1 - \mu_2$								
Muestras	Distribuciones poblacionales	Varianzas poblacionales	Tamaños muestrales	Intervalo de confianza de confiabilidad $100(1-\alpha)\%$ $\bar{X}_1 - \bar{X}_2$					
Independientes	Normales	Desconocidas e iguales	Cualquiera						
Independientes	Normales	Conocidas	Cualquiera	$\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$					
Independientes	Cualquiera	Conocidas	Ambos grandes	$\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$					
Independientes	Cualquiera	Desconocidas	Ambos grandes $\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$						
$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$									
		·							
	Estimación de	una proporción	poblacional p	T					
Distribución poblacional	Estimación de Varianza poblacional	una proporción Tamaño r		Intervalo de confianza de confiabilidad 100(1- $lpha$)%					
	Varianza		muestral	confiabilidad					
poblacional Binomial	Varianza poblacional Conocida	Tamaño r Gran	muestral	confiabilidad 100(1-α)%					
poblacional Binomial Bernoulli	Varianza poblacional Conocida Estimada	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \hat{u} merc$	nde o de éxitos	confiabilidad 100(1- $lpha$)% $\hat{p}\pm z_{\left(1-rac{lpha}{2} ight)}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ es p_1-p_2					
poblacional Binomial Bernoulli	Varianza poblacional Conocida Estimada Donde: 1	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \hat{u} merc$	nde o de éxitos	confiabilidad 100(1- α)% $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$					
poblacional Binomial Bernoulli Estim	Varianza poblacional Conocida Estimada Donde: pación de una diferel Distribuciones	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \hat{u} merconcia de proporcio Varianzas$	nuestral o de éxitos ones poblacional Tamaños muestrales	confiabilidad $100(1-\alpha)\%$ $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ es p_1-p_2 Intervalo de confianza de confiabilidad					
Binomial Bernoulli Estim Muestras Independientes	Varianza poblacional Conocida Estimada Donde: pación de una diference poblacionales Bernoulli	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \acute{u} merc$ ncia de proporcio Varianzas poblacionales Conocidas Estimadas e una varianza p	nuestral o de éxitos ones poblacional Tamaños muestrales Ambos grandes oblacional σ^2	$ \begin{array}{c} \textbf{confiabilidad} \\ \textbf{100(1-}\alpha)\% \\ \\ \hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ \\ \textbf{es } p_1 - p_2 \\ \textbf{Intervalo de confianza de confiabilidad} \\ \textbf{100(1-}\alpha)\% \\ \\ \hat{p}_1 - \hat{p}_2 \\ \\ \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \\ \end{array} $					
Binomial Bernoulli Estim	Varianza poblacional Conocida Estimada Donde: pación de una diference poblacionales Bernoulli	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \acute{u} merc$ ncia de proporcio Varianzas poblacionales Conocidas Estimadas e una varianza p	nuestral o de éxitos ones poblacional Tamaños muestrales Ambos grandes oblacional σ^2	confiabilidad $100(1-\alpha)\%$ $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ es p_1-p_2 Intervalo de confianza de confiabilidad $100(1-\alpha)\%$ $\hat{p}_1-\hat{p}_2$ $\pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ ea de confiabilidad					
poblacional Binomial Bernoulli Estim Muestras Independientes Distribución	Varianza poblacional Conocida Estimada Donde: particular poblaciones poblacionales Bernoulli Estimación d	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \acute{u} merc$ ncia de proporcio Varianzas poblacionales Conocidas Estimadas e una varianza p	nuestral o de éxitos ones poblacional Tamaños muestrales Ambos grandes oblacional σ^2 rvalo de confian	confiabilidad $100(1-\alpha)\%$ $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ $\text{es } p_1 - p_2$ Intervalo de confianza de confiabilidad $100(1-\alpha)\%$ $\hat{p}_1 - \hat{p}_2$ $\pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ za de confiabilidad $\alpha)\%$					
Binomial Bernoulli Estim Muestras Independientes Distribución poblacional Normal	Varianza poblacional Conocida Estimada Donde: particular poblaciones poblacionales Bernoulli Estimación da Tamaño muestral	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \hat{u} merce $ ncia de proporcio Varianzas poblacionales Conocidas Estimadas e una varianza p Inter	muestral nde o de éxitos ones poblacional Tamaños muestrales Ambos grandes oblacional σ^2 rvalo de confiana 100(1- $\frac{(n-1)S^2}{\chi^2_{\left(1-\frac{\alpha}{2};(n-1)\right)}};$	confiabilidad 100(1- α)% $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ les $p_1 - p_2$ Intervalo de confianza de confiabilidad 100(1- α)% $\hat{p}_1 - \hat{p}_2$ $\pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ za de confiabilidad α)% $\frac{(n-1)S^2}{\chi^2_{\left(\frac{\alpha}{2},(n-1)\right)}}$					
Binomial Bernoulli Estim Muestras Independientes Distribución poblacional Normal	Varianza poblacional Conocida Estimada Donde: pación de una diferer Distribuciones poblacionales Bernoulli Estimación de Tamaño muestral Cualquiera	Tamaño r Gran $\hat{p} = \frac{x}{n} \qquad x n \acute{u} merconcia de proporcio varianzas poblacionales$ Conocidas Estimadas e una varianza p Interpociente de varian	muestral ode éxitos ones poblacional Tamaños muestrales Ambos grandes oblacional σ^2 rvalo de confiana 100(1- $\frac{(n-1)S^2}{\chi^2_{(1-\frac{\alpha}{2};(n-1))}}$ zas poblacionale	confiabilidad $100(1-\alpha)\%$ $\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ es $p_1 - p_2$ Intervalo de confianza de confiabilidad $100(1-\alpha)\%$ $\hat{p}_1 - \hat{p}_2$ $\pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ es de confiabilidad $\alpha)\%$ $(n-1)S^2$ $\chi^2_{\left(\frac{\alpha}{2},(n-1)\right)}$ es $\frac{\sigma_1^2}{\sigma_2^2}$ ez de confiabilidad					

FÓRMULAS Y SUPUESTOS PARA PRUEBAS DE HIPÓTESIS

	Fórn	nulas y Supuestos para Prueb	oas de Hipótesis		
	P	rueba de Hipótesis para la Medi	a Poblacional		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP) bajo la Hipótesis H _°		
H_0 : $\mu = a$	$H_1: \mu < a$	$X \to N(\mu, \sigma_0^2)$	ū		
	$H_1: \mu > a$	σ_0^2 : conocida	$\frac{X-a}{\sigma_{c}/\sqrt{n}} \rightarrow N(0,1)$		
	$H_1: \mu \neq a$	X_1, X_2, \dots, X_n	σ_0/\sqrt{n}		
	$H_1: \mu < a$	$X \to N(\mu, \sigma^2)$			
$U \cdot u = a$	$H_1: \mu > a$	σ^2 : desconocida	$\frac{\bar{X} - a}{S/\sqrt{n}} \to t_{(n-1)}$		
H_0 : $\mu = a$	$H_1: \mu \neq a$	X_1, X_2, \dots, X_n	$\frac{1}{S/\sqrt{n}} \rightarrow \iota_{(n-1)}$		
		e Hipótesis para la Diferencia de	Medias Poblacionales		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba		
	$H_1: \mu_X - \mu_Y < a$	V . N(2)	(EP) bajo la Hipótesis H _o		
	$H_1: \mu_X - \mu_Y < a$ $H_2: \mu_X - \mu_Y > a$	$X \to N(\mu_X, \sigma_X^2) Y \to N(\mu_Y, \sigma_Y^2)$	$\frac{\overline{X} - \overline{Y} - a}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \to N(0,1)$		
77	111. μχ μγ > α	$Y \rightarrow N(\mu_Y, \sigma_Y)$ σ_X^2, σ_Y^2 : conocidas			
$H_0: \mu_X - \mu_Y = a$	77	* *	$\left \frac{\sigma_X^2}{\sigma_X^2} + \frac{\sigma_Y^2}{\sigma_X^2}\right $		
	$H_1: \mu_X - \mu_Y \neq a$	X_1, X_2, \dots, X_{n_X}	$\sqrt{n_X}$ ' n_Y		
		Y_1, Y_2, \dots, Y_{n_Y}	<u> </u>		
	$H_1: \mu_X - \mu_Y < a$				
		$X \to N(\mu_X, \sigma^2)$	X-Y-a		
	$H_1: \mu_X - \mu_Y > a$	$Y \to N(\mu_Y, \sigma^2)$	$\frac{x-y-u}{Sp\sqrt{\frac{1}{n_x}+\frac{1}{n_y}}} \to t_{(n_X+n_Y-2)}$		
$H_0: \mu_X - \mu_Y = a$		σ^2 : desconocida	$Sp\sqrt{\frac{-}{n_X}+\frac{-}{n_Y}}$		
		X_1, X_2, \dots, X_{n_X}			
	$H_1: \mu_X - \mu_Y \neq a$	Y_1, Y_2, \dots, Y_{n_y}	$S^{2}(n-1) + S^{2}(n-1)$		
		11, 12,, 1 _n _Y	$Sp = \sqrt{\frac{S_X^2(n_X - 1) + S_Y^2(n_Y - 1)}{n_X + n_Y - 2}}$		
			$n_X + n_Y - 2$		
	,	Prueba de Hipótesis para la P			
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba		
•		•	(EP) bajo la Hipótesis H _o		
$H_0: p = a$	$H_1: p < a$	$X \rightarrow Bernoulli(p)$	$\frac{p-a}{\sqrt{a}} \sim N(0.1)$		
	$H_1: p > a$	X_1, X_2, \dots, X_n	$\frac{p-a}{\boxed{a(1-a)}} \sim N(0,1)$		
	$H_1: p \neq a$	$n \ge 30$	\sqrt{n}		
		$\hat{p} = \bar{X}$			
	Pruek	pa de Hipótesis para la Diferencia	a de Proporciones		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba		
	potosio / iitoriiu	0.00000	(EP) bajo la Hipótesis H _o		
$H_0: p_x - p_y = 0$	$H_1: p_x - p_y > 0$				
		$X \to Bernoulli(p_x)$	$\frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim N(0,1)$		
	$H_1: p_x - p_y < 0$	$Y \rightarrow Bernoulli(p_y)$	(1 1)		
	111. px py 0	X_1, X_2, \dots, X_n	$\int \hat{p}\hat{q}\left(\frac{1}{n_x}+\frac{1}{n_y}\right)$		
		Y_1, Y_2, \dots, Y_n	V		
	$H_1: p_x - p_y \neq 0$	$n \ge 30$	$\hat{p} = \frac{n_x \hat{p}_x + n_y \hat{p}_y}{n_x + n_y} \qquad \hat{q} = 1 - \hat{p}$		
	1		$n_x + n_y$		
		Prueba de Hipótesis para la			
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba		
	112 -	$X \to N(\mu, \sigma^2)$	(EP) bajo la Hipótesis H。		
	H. 6~ < 0		c 2		
112	$H_1: \sigma^2 < a$ $H_2: \sigma^2 > a$	$X \to N(\mu, \sigma^2)$	S ² ,		
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 > a$	$X \to N(\mu, \sigma^2)$ X_1, X_2, \dots, X_n	$\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$		
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$	X_1, X_2, \dots, X_n	<u> </u>		
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$	3 . ,	de dos Poblaciones		
H_0 : $\sigma^2=a$	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$	X_1, X_2, \dots, X_n	<u> </u>		
	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prueba Hipótesis Alterna	X_1, X_2, \dots, X_n de Hipótesis para las Varianzas Supuestos	de dos Poblaciones Estadístico de Prueba		
Hipótesis Nula	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prueba	X_1, X_2, \dots, X_n de Hipótesis para las Varianzas Supuestos $X \to N(\mu_X, \sigma^2)$	de dos Poblaciones Estadístico de Prueba		
Hipótesis Nula	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prueba Hipótesis Alterna $H_1: \sigma_X^2 < \sigma_Y^2$	X_1, X_2, \dots, X_n de Hipótesis para las Varianzas Supuestos $X \to N(\mu_X, \sigma^2)$ $Y \to N(\mu_Y, \sigma^2)$	de dos Poblaciones Estadístico de Prueba (EP) bajo la Hipótesis Ho		
·	$H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prueba Hipótesis Alterna	X_1, X_2, \dots, X_n de Hipótesis para las Varianzas Supuestos $X \to N(\mu_X, \sigma^2)$	de dos Poblaciones Estadístico de Prueba		

Departamento de Ingeniería Industrial

RESUMEN HOJA DE FÓRMULAS EXAMEN FINAL

Estimación para regresión simple:

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{X})(y_{i} - \bar{Y})}{\sum_{i=1}^{n} (x_{i} - \bar{X})^{2}}$$

Intervalo de confianza para β_i :

$$IC_{1-\alpha} = \hat{\beta}_j \pm t_{\left(1-\frac{\alpha}{2},(n-q-1)\right)} * \hat{\sigma}(\hat{\beta}_j)$$