A multivariate approach to the identification of unionid glochidia with emphasis on Species at Risk in Southern Ontario

M.E.M. Tremblay¹, T.J. Morris² and J.D. Ackerman¹

¹University of Guelph Department of Integrative Biology 50 Stone Road East Guelph, ON N1G 2M7

²Fisheries and Oceans Canada Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Rd., P.O. Box 5050 Burlington, ON L7R 4A6 CANADA

2015

Canadian Manuscript Report of Fisheries and Aquatic Sciences 3057

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base *Aquatic Sciences and Fisheries Abstracts*.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426 - 1550 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-àdire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la base de données Résumés des sciences aquatiques et halieutiques.

Les rapports manuscrits sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 900 de cette série ont été publiés à titre de Manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme Manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de Rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de Rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Canadian Manuscript Report of Fisheries and Aquatic Sciences 3057

2015

A multivariate approach to the identification of unionid glochidia with emphasis on Species at Risk in Southern Ontario

by

M.E.M. Tremblay, T.J. Morris and J.D. Ackerman

Central and Arctic Region Fisheries and Oceans Canada P.O. Box 5050, 867 Lakeshore Road Burlington, ON L7R 4A6

© Her Majesty the Queen in Right of Canada, 2014.

PDF version: Cat. No. Fs97-4/3057E-PDF ISBN 978-1-100-25668-9 ISSN 1488-5387

Correct citation for this publication:

Tremblay, M.E.M., Morris, T.J., Ackerman, J.D. 2015. A multivariate approach to the identification of unionid glochidia with emphasis on Species at Risk in Southern Ontario. Can. Manuscr. Rep. Fish. Aquat. Sci. 3057: vii + 51 p.

TABLE OF CONTENTS

ABSTRACT	vi
RÉSUMÉ	vi
2.0 METHODS	2
3.0 RESULTS	3
3.1 GENERAL TRENDS	3
3.2 SOUTHERN ONTARIO MODEL	4
3.3 AUSABLE RIVER MODEL	5
3.4 GRAND RIVER MODEL	5
3.5 SYDENHAM RIVER MODEL	5
3.6 THAMES RIVER MODEL	5
3.7 FURTHER ANALYSIS OF THE MODEL	6
4.0 DISCUSSION	6
4.1 APPLICATION OF THE MODEL	7
5.0 CONCLUSIONS.	8
6.0 ACKNOWLEDGEMENTS	9
7 0 REFERENCES	0

LIST OF TABLES

Table 1. Summary of species included in Discriminant Function Analysis (DFA) model 18
Table 2. Discriminant Function Analysis (DFA) model with all Southwestern Ontario species included
Table 2. Disciplinas Francisco Apolysis (DEA) model including only Coulbary Ontario access
Table 3. Discriminant Function Analysis (DFA) model including only Southern Ontario species with unhooked glochidia
Table 4. Discriminant Function Analysis (DFA) model including only Southern Ontario species
with hooked glochidia
Table 5. Classification Function Coefficients for the "Southern Ontario" regional model 29
Table 6. Discriminant Function Analysis (DFA) model including only Ausable River species 32
Table 7. Classification Function Coefficients for the Ausable River model
Table 8. Discriminant Function Analysis (DFA) model including only Grand River species 36
Table 9. Classification Function Coefficients for the Grand River model
Table 10. Discriminant Function Analysis (DFA) model including only Sydenham River species
41
Table 11. Classification Function Coefficients for the Sydenham River model
Table 12. Discriminant Function Analysis (DFA) model including only Thames River species 46
Table 13. Classification Function Coefficients for the Thames River model

LIST OF FIGURES

Figure 1. A description of the variables that were measured: Hinge Length (HL), Length (L)	and
Height (H) (modified from Hoggarth 1999)	2
Figure 2. Plot of canonical discriminant functions 1 and 2 for the species included in	the
southern Ontario regional model. Numbers correspond to species numbers in tables 13	3
Figure 3. Plot of canonical discriminant functions 1 and 2 for the species included in the Ausa	able
River model. Numbers correspond to species numbers in tables	4
Figure 4. Plot of canonical discriminant functions 1 and 2 for the species included in the Gr	and
River model. Numbers correspond to species numbers in tables	5
Figure 5. Plot of canonical discriminant functions 1 and 2 for the species included in	the
Sydenham River model. Numbers correspond to species numbers in tables	6
Figure 6. Plot of canonical discriminant functions 1 and 2 for the species included in the Than	mes
River model. Numbers correspond to species numbers in tables	7

ABSTRACT

Tremblay, M.E.M., Morris, T.J., Ackerman, J.D. 2015. A multivariate approach to the identification of unionid glochidia with emphasis on Species at Risk in Southern Ontario. Can. Manuscr. Rep. Fish. Aquat. Sci. 3057: vii + 51 p.

Freshwater mussels in the family Unionidae have experienced severe population declines as a result of multiple factors, including their complex life history and associated dependence on fish hosts to complete their life cycle. Understanding this life history -- in particular, identification of host fish species and the timing of glochidia release -- is crucial to mussel conservation. One way to accomplish this task is to employ morphometrics (i.e., glochidia shape and size; specifically, height, hinge length, and length) to identify the glochidia present on the gills of fish or in the water column. Using Discriminant Function Analysis, four river-specific (Ausable River, Grand River, Sydenham River, and Thames River) models and one regional (Southern Ontario) model were created. All models were able to distinguish between mussel species based on their glochidial dimensions (statistically significant, p < 0.05) with classification success ranging between 71.1% and 77.9%. The classification success of a given species varied based on the distinctiveness of the shape and size of its glochidia. This report describes a convenient and cost-effective method for the identification of unknown glochidia in Southern Ontario, which may improve understanding and consequently, the ability to conserve freshwater unionid mussel populations.

RÉSUMÉ

Tremblay, M.E.M., Morris, T.J., Ackerman, J.D. 2015. A multivariate approach to the identification of unionid glochidia with emphasis on Species at Risk in Southern Ontario. Can. Manuscr. Rep. Fish. Aquat. Sci. 3057: vii + 51 p.

Les moules d'eau douce de la famille des unionidés ont connu un déclin important de leurs populations en raison de facteurs multiples, notamment leur cycle biologique complexe et leur dépendance à des poissons-hôtes pour compléter ce cycle. L'acquisition d'une meilleure connaissance de ce cycle biologique, plus précisément l'identification des espèces de poissons-hôtes et le moment de la libération des glochidies, est cruciale pour la conservation des moules. Une des façons d'accomplir cette tâche est d'utiliser les données morphométriques (c.-à-d. les données sur la taille et la forme des glochidies; plus particulièrement la hauteur, la longueur des charnières et la longueur) afin d'identifier les glochidies présentes sur les branchies des poissons ou dans la colonne d'eau. À l'aide de l'analyse discriminante des données, des modèles ont été créés : un modèle pour chacune des quatre rivières (rivière Ausable, rivière Grand, rivière Sydenham et rivière Thames) et un modèle régional (sud-ouest de l'Ontario). Tous les modèles ont permis de différencier les espèces de moules d'après les dimensions de

leur glochidies (statistiquement significatif = p < 0,05) avec un taux de classification réussie de l'ordre de 71,1 à 77,9 %. Le succès de la classification d'une espèce de moules donnée variait en fonction du caractère distinctif de la forme et de la taille de ses glochidies. Le présent rapport décrit une méthode pratique et économique pour identifier les glochidies inconnues du sudouest de l'Ontario. Cette méthode est susceptible d'améliorer les connaissances sur l'espèce et, par le fait même, la capacité de conserver les populations de moules d'eau douce de la famille des unionidés.

1.0 INTRODUCTION

Ontario's lower Great Lakes region is home to Canada's most diverse freshwater mussel (Unionidae) fauna. Forty-one of the 55 species that occur in Canada are found in this region (Metcalfe-Smith et al. 2005) and over half of these (21 species) are found nowhere else in Canada (Clarke 1981, as cited by Metcalfe-Smith et al. 2000). Many of these species have experienced declines due to a variety of factors, including invasive species (in particular, dreissenid mussels), habitat loss and degradation, and reductions in water quality (primarily as a result of urbanization and agriculture; Morris and Burridge, 2006; Fisheries and Oceans Canada, 2013). As a result, over one third of the region's mussel species have been assessed as at risk by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (www.COSEWIC.gc.ca, accessed October 2013).

Due to the complex, obligate parasitic reproductive strategy employed by species within the Family Unionidae, the identification of the host fishes of these Threatened and Endangered mussels is a main objective of Recovery Strategies created under the Species at Risk Act (e.g., Morris and Burridge, 2006; Fisheries and Oceans Canada, 2013). For a fish species to act as a host for a mussel there are three necessary phases: 1) encounter; 2) infestation; and 3) metamorphosis (Schwalb et al. 2010; McNichols et al. 2011). During the encounter phase, viable mussel glochidia must come in direct contact with an individual from a suitable host species. The infestation phase requires the successful attachment of the glochidia to the host and this is then followed by the metamorphosis of the glochidia into viable juveniles (Barnhart et al. 2008). A primary experimental means of identifying potential host fishes is through the execution of laboratory host infestation experiments. During these experiments, potential host fishes are exposed to glochidia of mussel and both infestation and metamorphosis can be measured directly (e.g., McNichols 2007; McNichols et al. 2011). While laboratory experiments permit the evaluation of the infestation and metamorphosis phases, they provide no information about the encounter phase. In nature, the encounter phase is regulated by a variety of characteristics of both the mussel and the potential hosts, including distribution and habitat preferences (i.e., spatial overlap; McNichols et al. 2011) and life history characters (i.e., temporal overlap). In order to determine whether fish species that facilitate the laboratory metamorphosis of unionid mussels become infested and serve as hosts in nature, it is necessary to investigate all aspects of the encounter phase (timing, abundance, and diversity of unionid glochidial availability, both in the water column and on potential wild-caught hosts; Neves and Widlak 1988, Haag and Warren 2003).

In order to achieve this objective of investigating the encounter phase, the ability to classify the glochidia taxonomically (ideally to species-level) is necessary. There are currently two principal ways of doing so: first, through genetic methods (e.g., barcoding) and second, through morphometrics (i.e., analysis of glochidia size and shape). Both of these methodologies can and have been used to answer important questions about unionid ecology (e.g., Neves and Widlak 1988; Kennedy and Haag 2005; Kneeland and Rhymer 2008; Boyer et

al. 2011; Culp et al. 2011). However, morphometric models can be made widely available and permit the rapid and inexpensive identification of glochidia.

The objective of the work described here is to develop a methodology (specifically, a series of discriminant models) that can be used across southern Ontario to quickly identify glochidia of unknown species using their shell dimensions. The application of these models in the future will permit a greater understanding of the complex reproductive biology and life history of these SAR, including assisting with the identification of host fishes and the determination of the timing of glochidial release and infestation periods.

2.0 METHODS

A list of mussel species was compiled for each river of interest (Ausable, Grand, Sydenham, and Thames rivers), as well as an overall list of mussel species for southern Ontario using relevant literature (Metcalfe et al. 2000; Metcalfe et al. 2007; McNichols 2007; McNichols-O'Rourke et al. 2012; Fisheries and Oceans Canada (DFO) Lower Great Lakes Unionid database). Models included all freshwater mussel species that occur presently or historically in the specified waterbody or region.

Based on this, 27 unionid species were identified as occurring in the Ausable River, 32 species in the Grand River, 35 in the Sydenham River, and 35 in the Thames River (Table 1). Combining unique species across all watersheds of southern Ontario resulted in a potential pool of 36 species.

In order to build the models, raw data for length, hinge length, and height (Figure 1) were compiled for the glochidia of all available species. When possible (n = 23 species), glochidia were sampled from live, gravid females collected in Ontario by DFO staff and researchers in the Ackerman Laboratory at the University of Guelph following the methods of McNichols et al. 2011. Specifically, the shells of female mussels were opened gently and gills were flushed with water. Mature glochidia were collected, preserved in ethanol and measured to the nearest 0.01 µm under a dissecting scope using Northern Eclipse image analysis software (Empix Inc. Mississauga, ON, Canada), When gravid females could not be found in the study area, glochidial measurements were determined from the published literature or were supplied by colleagues (n = 13 species) (Hoggarth 1999; M.C. Barnhart, Missouri State University, pers. comm.; A. Ford, U.S. Fish and Wildlife Service, pers. comm.; M. Hove, Missouri State University, pers. comm.; B. Sietman, Minnesota Department of Natural resources, pers. comm.). Information regarding the presence or absence of hooks was obtained from Clarke (1981), Hoggarth (1999), and Watters et al. (2009).

Measurements from all thirty-six unionid species were available for the analyses and characterized using discriminant function analysis (DFA) of glochidia height, hinge length, and

length (Table 1). DFA is a multivariate statistical method in which the user inputs raw data corresponding to known categories to build the model, and discriminant functions are created to maximize the among-groups differences (Quinn and Keough 2002).

Glochidial measurements from known species were used to build the DFA models. Raw measurements were log-transformed meet the assumptions of normality, homogeneity of withingroup (species) variance-covariance matrices, and absence of multivariate outliers (Quinn and Keough 2002). The model was then tested using a jackknife procedure, in which the observation being classified is omitted from the model calculation, thus removing an inherent bias in the classification procedure (Quinn and Keough 2002). The number of jackknife iterations was equal to the number of species included in the model. Five primary models were created – one which included all species that occur, or historically occurred, in (1) southern Ontario and one for each of the (2) Ausable, (3) Grand, (4) Sydenham, and (5) Thames rivers.

In addition to the five models described above, it was desirable to determine whether the separation of species with hooked and unhooked glochidia into separate models would increase classification success. The presence or absence of this coarse morphometric feature can often be readily distinguished and this has the potential to improve identification success. In order to assess the potential improvement to the model, two versions of the Southern Ontario model were created. The first model includes only species with hooked glochidia and the second model includes only those with unhooked glochidia (for a total of seven models). Classification success of individual species was then compared between the original "Southern Ontario" model and the separate hooked/unhooked versions.

3.0 RESULTS

3.1 GENERAL TRENDS

Two distinct groupings of species were observed in the graphs of the first and second discriminant functions for each model (Figures 2-6). Upon further inspection, these groupings represented "normally-sized" glochidia and micro-glochidia, respectively. When a species was misclassified, it was usually as another species within its grouping (Tables 2, 6, 8, 10, and 12).

The glochidia of some species were consistently misclassified in general. For the overall model, these included: *E. dilatata* (42.2% classification success), *E. triquetra* (40.0%), *L. fasciola* (45.5%), *L. siliquoidea* (16.8%), *L. recta* (40.0%), and *T. truncata* (37.5%). Upon examination of the graphs, the first and second discriminant functions of these species exhibited a high degree of overlap with those of other species (Figures 2-6).

The assumption of equal population covariance matrices was tested for all five DFA models using Box's M Test and was rejected in all instances. However, this test is very sensitive to large sample sizes (Quinn and Keough, 2009). Moreover, when "separate groups" covariance was used, the models changed very little, and this is thought to indicate that the assumptions have, more or less, been met. See relevant section for specific Box's M Test results.

3.2 SOUTHERN ONTARIO MODEL

The model's classification success was 74.3% (Table 2; Figure 2). Significant differences among group (species) means were detected for glochidia height, hinge length and length (Wilks' lambda = $W_{35,2992} = 0.033$, p < 0.001; $W_{35,2992} = 0.028$, p < 0.001; $W_{35,2992} = 0.021$, p < 0.001, respectively), which indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (Box's M Test, M = 5044.37, $F_{204,20713} = 22.882$, p < 0.001).

The coefficients (x_1, x_2, x_3) and constant (b) associated with each species for the southern Ontario model used in the classification score equation can be found in Table 5.

When glochidia were separated into two models based on the presence or absence of hooks, the overall classification success of the unhooked glochidia model was reduced to 69.8%, whereas the model that included only hooked glochidia increased to 90.5%. However, changes in the classification success of individual species were minimal (Table 3; Table 4).

As indicated above, the "unhooked" model's classification success was 69.8% (Table 3; Figure 2). Significant differences among group means were detected for glochidia height, hinge length and length ($W_{24,\,2284}=0.048,\,p<0.001;\,W_{24,\,2284}=0.056,\,p<0.001;\,W_{24,\,2284}=0.032,\,p<0.001,$ respectively), which indicates that the model is effective at distinguishing between groups based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 3112.34, $F_{138,48282}=21.662,\,p<0.001$).

The classification success of the "hooked" glochidial model was 90.5% (Table 4; Figure 2). Significant differences among group means were detected for glochidia height, hinge length and length (W_{10,708} = 0.092, p < 0.001; W_{10,708} = 0.032, p < 0.001; W_{10,708} = 0.211, p < 0.001, respectively), which indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 493.22, $F_{60,3117} = 6.95$, p < 0.001).

3.3 AUSABLE RIVER MODEL

The model's classification success was 71.1% (Table 6; Figure 3). Significant differences among group means were detected for glochidia height, hinge length and length (W = 0.040, p < 0.001; W = 0.038, p < 0.001; W = 0.036, p < 001, respectively; df = 24, 1844), which indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 2289, $F_{144,13046}$ = 14.5, p < 0.001).

The coefficients and constant associated with each species for the Ausable River model can be found in Table 7.

3.4 GRAND RIVER MODEL

The model's classification success was 77.9% (Table 8; Figure 4). Significant differences among group means were detected for glochidia height, hinge length and length ($W_{30,\,2752}$ = 0.030, p < 0.001; $W_{30,\,2752}$ = 0.026, p < 0.001; $W_{30,\,2752}$ = 0.020, p < 001, respectively), which indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 4777.27, $F_{174,17963}$ = 25.448, p < 0.001).

The coefficients and constant associated with each species for the Grand River model can be found in Table 9.

3.5 SYDENHAM RIVER MODEL

The model's classification success was 75.1% (Table 10; Figure 5). Significant differences among group means were detected for glochidia height, hinge length and length ($W_{33,\,2944}$ = 0.032, p < 0.001; $W_{33,\,2944}$ = 0.028, p < 0.001; $W_{33,\,2944}$ = 0.021, p < 001, respectively), which indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 4965.29, $F_{198,\,19633}$ = 23.169, p < 0.001).

The coefficients and constant associated with each species for the Sydenham River model can be found in Table 11.

3.6 THAMES RIVER MODEL

The model's classification success was 74.8% (Table 12; Figure 6). Significant differences among group means were detected for glochidia height, hinge length and length ($W_{34,2946} = 0.033$, p < 0.001; $W_{34,2946} = 0.028$, p < 0.001; $W_{34,2946} = 0.021$, p < 0.01, respectively), which

indicates that the model is effective at distinguishing between groups (species) based on these values. The null hypothesis of equal population covariance matrices was rejected (M = 5011.43, $F_{198,19633} = 23.384$, p < 0.001).

The coefficients and constant associated with each species for the Sydenham River model can be found in Table 13.

3.7 FURTHER ANALYSIS OF THE MODEL

To further investigate the effectiveness of the models at classifying unknown species of glochidia, the sensitivity of the algorithm for each species was determined for the Southern Ontario model. The sensitivity can be thought of as the probability that a glochidium of a given species will be classified as that species, and is equal to the classification success of a species. It can be calculated as:

sensitivity = number of true positives/ [true positives + false negatives];

where a true positive is an incidence of a glochidium belonging to species "x" being classified as species "x"; a false negative can be thought of as the opposite: an incidence of a glochidium belonging to species "x" being classified as something other than species "x" (Sackett et al. 2000). In this case, the sensitivity of the algorithms for all the species in the model was quite variable (between 0.147 and 1.00), indicating that individuals belonging to a given species were not always identified correctly. For example, *L. siliquoidea* had a low sensitivity in the model (0.168), which suggests that glochidia belonging to this species have a high likelihood of not being identified correctly. See Table 2, 3, 4, 6, 8, 10, and 12 for classification success rates.

4.0 DISCUSSION

The southern Ontario and river-specific DFA models were effective in classifying glochidia in this study and could be used in the future to identify glochidia collected from the water column or glochidia that have become encysted on wild-caught fish. Knowledge of the unionid species that infested a particular fish species may provide insight into mechanisms promoting infestation (e.g., encounter of glochidia in the water column, attempted predation of conglutinates; Barnhart et al. 2008). In addition, observation of natural infestations could be used as supporting evidence for host fish relationships determined in the laboratory, or as starting points for selecting pairings to examine in the laboratory. We recommend caution when using these models to imply direct host relationships as the identification of glochidial attachment does not imply successful transformation (Jansen et al. 2001; see discussion in Haag and Warren 2003).

Our results indicate that the identification of glochidia using shell morphometrics is a reasonable and worthwhile endeavour with overall success rates between 71.1% and 77.9 %. This success rate is far higher than would be expected by chance alone.

However, it is clear that not all species can be readily identified using this technique as the glochidia of some species were consistently misclassified. For instance, the classification success, or sensitivity, of L. siliquoidea was the lowest in every model (16-25 %), indicating that these models are not effective at identifying these glochidia in the water column, nor useful at discriminating among species of Lampsilis species in general (e.g., L. cardium, L. fasciola, L. siliquoidea) or between species in the genus Truncilla (e.g., T. truncata and T. donaciformis). These misidentifications resulted from a high degree of overlap between the morphological characteristics of these species. Our attempt to improve classification success by pre-sorting glochidia on the basis of the presence/absence of hooks was not successful indicating that there is little morphological overlap among these two groups in the three axes examined. Although the overall success of the hooked model increased, the individual success rates changed very little indicating these species were well sorted in both models and that the change in success reflected the elimination of the unhooked group where most morphological overlap exists. In general we do not recommend the use of separate models on the basis of hook presence/absence because of the lack of increased discrimination success and the potential of introducing additional error into the classification process during the pre-sorting phase (e.g., broken or missing hooks). The only species to show a large change in classification success in the separate models was the unhooked Epioblasma torulosa rangiana which saw a 10% increase in classification success when isolated from the hooked specimens. This represents the only case where an unhooked species is often misidentified as a hooked species or vice versa. Studies designed to target glochidia of this endangered species may wish to employ a model pre-sorting for the presence/absence of hooks.

As would be expected, generally, the greater the number of species that are included in the model, the lower the classification success of unknown glochidia. The exception to this is the Ausable River model, which included the fewest species (n = 25) and had the lowest classification success (71.1%). This is likely a product of the constellation of species included in the model; for instance, it is difficult to distinguish between species within the Lampsilis and Epioblasma genera and both are heavily represented in the Ausable River model. In spite of this, we recommend that the river-specific model be used if glochidial origin is known. In addition, it would be beneficial to narrow the potential list of species that a glochidium could belong to, if possible, in order to improve accuracy of the results.

4.1 APPLICATION OF THE MODEL

The purpose of the present study was to develop a statistical model that could be used to identify unknown glochidia from the waters of southern Ontario. We have demonstrated that it is possible to assess the identification of most glochidia from this region using a few simple

morphological measures. Using the classification functions derived through this analysis it is possible to develop a tool for the identification of unknown glochidia collected anywhere in southern Ontario. The identity of a given glochidium can be determined by inserting its log-transformed dimensions (i.e., hinge length, length, and height in μ m) into the classification functions for all of the species within the appropriate model. Within this function, each log-transformed independent variable (i.e., hinge length, length, and height) is multiplied by its corresponding coefficient (x_1 , x_2 , or x_3) and these values are then summed along with the constant (b; Table 5) to obtain a classification score (IBM Support, 2011) such that:

Classification score = (log height of observation $*x_1$) + (log hinge length of observation $*x_2$) + (log length of observation $*x_3$) + b

The unknown glochidium should then be assigned to the species for which the highest classification score is obtained.

The associated probability that the unknown glochidium belongs to a given group can then be calculated as:

$$P(group = i) = \frac{e^{c_i - c_{max}}}{\sum_{i=1}^{k} e^{c_i - c_{max}}}$$

where C_i is the classification score for group i, C_{max} is the maximum classification score for the glochidium, and $\sum_{i=1}^k e^{c_i-c_{max}}$ is the total sum of $e^{c_i-c_{max}}$ results over all (k) groups (IBM Support, 2011).

5.0 CONCLUSIONS

The use of DFA models to determine the identity of unknown glochidia represents a powerful, cost effective tool for use in the management of species at risk. The classification models presented in this report can be used across southern Ontario to identify glochidia collected from a variety of sources (drift samples, fish collections, etc.). Where available we recommend the use of watershed specific models however the more general southern Ontario model can be widely applied across the region.

6.0 ACKNOWLEDGEMENTS

The authors would like to thank Rosario Castañon, Kelly McNichols-O'Rourke, and Colette Mesher, as well as a multitude of undergraduate students in the Professor Ackerman laboratory at the University of Guelph (Paigie Fifi, Shaylah Tuttle in particular) and at Fisheries and Oceans Canada for measuring glochidia. We would also like to thank A. Ford (U.S. Fish and Wildlife Service), M.C. Barnhart (Missouri State University), M. Hove (Missouri State University), and B. Sietman (Minnesota Department of Natural resources) for their data which contributed to the creation of the DFA models. Financial support for parts of this project was provided by Fisheries and Oceans Canada's Species at Risk Program (SARCEP).

7.0 REFERENCES

- Barnhart M.C., W.R. Haag, and W.N. Roston. 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of the North American Benthological Society 27:370–394.
- Boyer S.L., A. A. Howe, N. W. Juergens, and M. C. Hove. 2011. A DNA-barcoding approach to identifying juvenile freshwater mussels (Bivalvia:Unionidae) recovered from naturally infested fishes. Journal of the North American Benthological Society 30(1): 182-194.
- Fisheries and Oceans Canada. 2013. Recovery Strategy for the Round Hickorynut (*Obovaria subrotunda*) and the Kidneyshell (*Ptychobranchus fasciolaris*) in Canada. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada. Ottawa. vi + 70 pp.
- Hoggarth, M.A. 1999. Descriptions of some of the glochidia of the Unionidae (Mollusca: Bivalvia). Malacologia 41(1): 1-118.
- IBM Support, 2011. Applying Discriminant Analysis Results to New Cases in SPSS. http://www-01.ibm.com/support/docview.wss?uid=swg21476690. Accessed 01 June, 2014.
- Jansen W., G. Bauer, and E. Zahner-Meike. 2001. Chapter 11: Glochidial mortality in freshwater mussels. Pages 185–211 In G. Bauer and K. Wachtler, editors. Ecology and evolution of the freshwater mussels Unionoida, Springer, Berlin; New York.
- Kennedy, T.B. and W.R. Haag. 2005. Using morphometrics to identify glochidia from a diverse freshwater mussel community. Journal of the North American Benthological Society 24(4):880–889.
- Kneeland S.C. and J. M. Rhymer. 2008. Determination of fish host use by wild populations of rare freshwater mussels using a molecular identification key to identify glochidia. Journal of the North American Benthological Society 27:150-160.
- McNichols K.A. 2007. Implementing recovery strategies for mussel species at risk in Ontario. M.Sc. Thesis, Department of Zoology, University of Guelph; Guelph, Ontario.
- McNichols K.A., G.L. Mackie, and J.D. Ackerman. 2011. Host fish quality may explain the status of endangered *Epioblasma torulosa rangiana* and *Lampsilis fasciola* (Bivalvia:Unionidae) in Canada. Journal of the North American Benthological Society 30:60–70.
- McNichols-O'Rourke, K. A., Robinson, A. and Morris, T. J., 2012. Summary of freshwater mussel timed search surveys in southwestern Ontario in 2010 and 2011. Can. Manuscr. Rep. Fish. Aquat. Sci. 3009: vi + 42 p.
- Metcalfe-Smith, J.L., Staton, S.K., Mackie, G.L., and Lane, N.M., 1998. Changes in the biodiversity of freshwater mussels in the Canadian waters of the lower Great Lakes drainage basin over the past 140 years. J. Great Lakes Res. 24:845–858.
- Metcalfe-Smith J.L., A. Mackenzie, I. Carmichael, and D.J. McGoldrick. 2005. Photo Field Guide to the Freshwater Mussels of Ontario. St. Thomas Naturalist Club Incorporated, Aylmer Express, St. Thomas, ON.
- Morris, T. J. and M. Burridge, 2006. Recovery Strategy for Northern Riffleshell, Snuffbox, Round Pigtoe, Mudpuppy Mussel and Rayed Bean in Canada. *Species at Risk Act* Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa, x + 76 pp.

- Neves R.J. and J.C. Widlak. 1988. Occurrence of glochidia in stream drift and on fishes of the upper North fork Holston River, Virginia. American Midland Naturalist 119:111-120.
- Quinn G.P. and M.J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK.
- Sackett, D.L., S.E. Straus, W. S. Richardson, W. Rosenberg, R.B. Haynes. 2003. Evidence-Based Medicine: How to Practice and Teach EBM, 2nd edition. BMJ Publishing Group, London, England.
- Schwalb A.N., M.G. Garvie, and J.D. Ackerman, 2010. Dispersion of freshwater mussel larvae in a lowland river. Limnology and Oceanography. 55(2): 628–638.

Figure 1. A description of the variables that were measured: Hinge Length (HL), Length (L) and Height (H) (modified from Hoggarth 1999)

Figure 2. Plot of canonical discriminant functions 1 and 2 for the species included in the southern Ontario regional model. Numbers correspond to species numbers in tables.

Figure 3. Plot of canonical discriminant functions 1 and 2 for the species included in the Ausable River model. Numbers correspond to species numbers in tables.

Figure 4. Plot of canonical discriminant functions 1 and 2 for the species included in the Grand River model. Numbers correspond to species numbers in tables.

Figure 5. Plot of canonical discriminant functions 1 and 2 for the species included in the Sydenham River model. Numbers correspond to species numbers in tables.

Figure 6. Plot of canonical discriminant functions 1 and 2 for the species included in the Thames River model. Numbers correspond to species numbers in tables.

Table 1. Summary of species included in Discriminant Function Analysis (DFA) model. AR = Ausable River; GR = Grand River; SR = Sydenham River; TR = Thames River

				mean ± S.D. (μm)				DFA	model		
	Species	n _{total}	shell height	hinge length	shell length	Hooks	AR	GR	SR	TR	SW Ontario
1	Mucket, Actinonaias ligamentina	166	244.65 ± 11.62	105.24 ± 15.67	210.17 ± 9.12	×	1	1	1	1	1
2	Elktoe, Alasmidonta marginata	109	379.66 ± 10.25	140.23 ± 4.75	324.82 ± 10.10	1	1	1	1	1	1
4	Slippershell, Alasmidonta viridis ¹	7	250.29 ± 4.35	251.14 ± 5.84	306.86 ± 7.95	1	1	1	1	1	1
5	Threeridge, Amblema plicata ²	20	221.22 ± 9.69	136.96 ± 11.74	209.29 ± 8.15	×	1	1	1	1	1
6	Cylindrical Papershell, Anodontoides ferussacianus ¹	7	323.86 ± 9.47	234.29 ± 2.93	323.00 ± 2.52	1	1	1	1	1	1
7	Purple Wartyback, Cyclonaias tuberculata ³	13	325.05 ± 9.47	123.88 ± 5.23	264.35 ± 5.38	×	1	X	1	1	1
10	Spike, Elliptio dilatata	128	239.13 ± 14.82	158.06 ± 16.76	240.04 ± 21.41	X	1	1	1	1	1
11	Northern Riffleshell, Epioblasma torulosa rangiana	47	231.53 ± 18.72	179.32 ± 24.40	249.81 ± 21.91	×	1	X	1	1	1

	Species		mean ± S.D. (μm)					DFA model			
		n _{total}	shell height	hinge length	shell length	Hooks	AR	GR	SR	TR	SW Ontario
12	Snuffbox, Epioblasma triquetra ⁶	40	209.88 ± 14.16	141.76 ± 14.51	211.23 ± 11.14	x	1	1	1	1	1
13	Wabash Pigtoe, Fusconaia flava	9	189.69 ± 21.36	151.49 ± 23.74	192.38 ± 23.44	×	1	1	1	1	1
14	Plain Pocketbook, Lampsilis cardium	225	280.33 ± 9.80	110.46 ± 11.16	239.66 ± 11.97	x	1	1	1	1	1
15	Wavyrayed lampmussel, Lampsilis fasciola ⁶	222	300.40 ± 23.86	116.62 ± 9.16	247.88 ± 18.57	x	1	1	1	1	1
17	Fatmucket, Lampsilis siliquoidea	143	277.72 ± 18.70	118.40 ± 15.16	237.95 ± 8.14	×	1	1	1	1	1
18	White Heelsplitter, Lasmigona complanata ¹	6	300.17 ± 7.08	201.00 ± 5.10	292.83 ± 2.79	1	1	1	1	1	1
19	Creek Heelsplitter, Lasmigona compressa ¹	5	285.80 ± 1.92	233.60 ± 3.36	322.60 ± 4.39	1	1	1	1	1	1
20	Flutedshell, Lasmigona costata	315	383.36 ± 13.83	250.06 ± 10.91	348.99 ± 12.30	1	1	1	1	1	1
21	Fragile Papershell, Leptodea fragilis ²	38	86.07 ± 6.38	37.06 ± 5.97	70.66 ± 6.76	×	1	1	1	1	1
22	Eastern Pondmussel, Ligumia nasuta ⁶	47	273.14 ± 30.08	142.06 ± 10.30	235.95 ± 12.70	×	x	1	X	X	/

	Species			mean ± S.D. (μm)				DFA model				
		n _{total}	shell height	hinge length	shell length	Hooks	AR	GR	SR	TR	SW Ontario	
23	Black Sandshell, Ligumia recta	50	268.59 ± 16.45	113.73 ± 8.62	219.08 ± 13.58	x	1	1	1	1	1	
24	Threehorn Wartyback, Obliquaria reflexa ⁶	31	233.42 ± 10.79	128.40 ± 9.52	224.89 ± 10.30	X	X	1	1	1	1	
25	Hickorynut, Obovaria olivaria ^{1, 6}	3	257.67 ± 3.51	107.67 ± 2.08	202.00 ± 4.00	X	×	1	X	1	1	
26	Round Hickorynut, Obovaria subrotunda ⁶	97	228.87 ± 9.87	88.66 ± 7.07	185.30 ± 7.79	х	X	1	1	1	1	
27	Round Pigtoe, Pleurobema sintoxia 5,6	191	154.92 ± 7.13	119.81 ± 7.67	159.76 ± 5.99	X	X	1	1	1	1	
28	Pink Heelsplitter, Potamilus alatus	20	405.65 ± 9.98	118.89 ± 7.14	239.81 ± 12.71	1	1	1	1	1	1	
29	Kidneyshell, Ptychobranchus fasciolaris ⁶	33	201.39 ± 17.12	87.30 ± 7.60	176.10 ± 14.38	×	1	1	1	1	1	
31	Giant Floater, Pyganadon grandis	30	369.46 ± 14.62	257.51 ± 22.60	359.15 ± 14.48	1	1	1	1	1	1	
32	Pimpleback, Quadrula pustulosa 4	14	276.36 ± 9.56	90.93 ± 3.93	218.43 ± 8.79	×	1	1	1	1	1	
33	Mapleleaf, <i>Quadrula</i> quadrula ^{5, 6}	259	91.26 ± 9.59	38.19 ± 5.94	82.88 ± 6.59	х	x	1	1	1	1	

				mean ± S.D. (μm)					DFA	model		
	Species	n _{total}	shell height	hinge length	shell length	Hooks	AR	GR	SR	TR	SW Ontario	
34	Salamander Mussel, Simpsonaias ambigua 1,6	6	260.83 ± 3.97	167.83 ± 2.22	254.83 ± 2.56	1	×	х	1	1	1	
35	Creeper, Strophitus undulatus	207	305.43 ± 13.32	294.91 ± 17.10	366.77 ± 20.70	1	1	1	1	1	1	
36	Lilliput, <i>Toxolasma</i> parvum ⁶	318	173.48 ± 8.15	95.88 ± 6.32	161.48 ± 6.38	×	X	1	1	1	1	
37	Fawnsfoot, <i>Truncilla</i> donaciformis ⁶	31	68.23 ± 6.18	29.91 ± 3.76	56.58 ± 4.71	x	X	1	1	1	1	
38	Deertoe, Truncilla truncata	8	67.29 ± 3.3	30.85 ± 1.48	56.04 ± 3.99	x	1	1	1	1	1	
39	Paper Pondshell, Utterbackia imbecillis ¹	7	301.86 ± 5.79	247.43 ± 5.88	304.86 ± 5.70	1	1	1	1	1	1	
40	Rayed Bean, Villosa fabalis 6	132	191.08 ± 16.27	76.57 ± 9.13	156.89 ± 10.52	x	x	X	1	1	1	
41	Rainbow, Villosa iris 6	44	303.80 ± 11.43	115.62 ± 9.12	234.76 ± 11.24	×	X	1	1	1	1	
	TOTAL						25	32	34	35	36	

 $[\]checkmark$ = species included in model, x = species not included in model n_{total} refers to the total number of individual glochidia used to create each model

¹ Hoggarth, 1999

² A. Ford, U.S. Fish and Wildlife Service, pers. comm., June 2012

³ M.C. Barnhart, Missouri State University, pers. comm., June 2012

⁴ M. Hove, Missouri State University, pers. comm., June 2012

⁵ B.E. Sietman, Minnesota Department of Natural Resources, pers. comm., May 2014

⁶Species assessed as Endangered, Threatened, or Special Concern by COSEWIC.

Table 2. Discriminant Function Analysis (DFA) model with all Southern Ontario species included

	Species	N	% correct	Misclassified as (%)
2	Elktoe, A. marginata	109	100	
28	Pink Heelsplitter, P. alatus	20	100	
32	Pimpleback, Q. pustulosa	14	100	
7	Purple Wartyback, C. tuberculata	13	100	
6	Cylindrical Papershell, A. ferussacianus	7	100	
4	Slippershell, A. viridis	7	100	
39	Paper Pondshell, U. imbecillis	7	100	
18	White Heelsplitter, L. complanata	6	100	
34	Salamander Mussel, S. ambigua	6	100	
19	Creek Heelsplitter, L. compressa	5	100	
25	Hickorynut, Obovaria olivaria	3	100	
27	Round Pigtoe, Pleurobema sintoxia	191	96.9	T. parvum (3.1)
36	Lilliput, T. parvum	318	94.7	Pleurobema sintoxia (1.6), P. fasciolaris (2.2), V. fabalis (1.6)
35	Creeper, S. undulatus	207	92.8	A. viridis (0.5), L. compressa (1.4), U. imbecillis (5.3)
33	Mapleleaf, Quadrula quadrula	259	89.2	L. fragilis (9.7), T. donaciformis (0.8), T. truncata (0.4)
20	Flutedshell, L. costata	315	86.3	A. ferussacianus (1.0), P. grandis (12.7)

	Species	N	% correct	Misclassified as (%)
26	Round Hickorynut, O. subrotunda	97	84.5	A. ligamentina (6.2), O. oliviara (1.0), P. fasciolaris (7.2), V. fabalis (1.0)
40	Rayed Bean, V. fabalis	132	75.8	O. oliviara (0.8), O. subrotunda (1.5), P. sintoxia (0.8), P. fasciolaris (10.6), T. parvum (10.6)
14	Plain Pocketbook, L. cardium	225	74.7	A. ligamentina (1.8), L. fasciola (6.7), L. siliquoidea (4.9), L. nasuta (6.2), L. recta (3.1), O. oliviara (1.8), S. ambigua (0.4), V. iris (0.4)
21	Fragile Papershell, L. fragilis	38	73.7	Q. quadrula (21.1), T. donaciformis (5.3)
24	Threehorn Wartyback, O. reflexa	31	74.2	A. ligamentina (3.2), A. plicata (9.7), E. dilatata (6.5), L. siliquoidea (3.2), L. nasuta (3.2)
41	Rainbow, V. iris	44	72.7	C. tuberculata (2.3), L. cardium (2.3), L. fasciola (15.9), L. nasuta (4.5), Q. pustulosa (2.3)
31	Giant Floater, P. grandis	30	70.0	A. ferussacianus (6.7), L. costata (23.3)
11	Northem Riffleshell, E. t. rangiana	47	66.0	A. viridis (2.1), A. plicata (2.1), E. dilatata (12.8), E. triquetra (2.1), F. flava (2.1), L. complanata (2.1), L. compressa (4.3), O. reflexa (2.1), S. ambigua (4.3)
22	Eastern Pondmussel, L. nasuta	47	63.8	A. plicata (4.3), C. tuberculata (4.3), E. dilatata (2.1), E. triquetra (2.1), L. recta (2.1), O. reflexa (19.1), V. iris (2.1)
37	Fawnsfoot, Truncilla donaciformis	31	58.1	L. fragilis (3.2), T. truncata (38.7)
13	Wabash Pigtoe, Fusconaia flava	9	55.6	E. t. rangiana (11.1), P. sintoxia (33.3)
5	Threeridge, A. plicata	20	55.0	E. dilatata (5.0), E. triquetra (25.0), O. reflexa (15.0)
1	Mucket, A. ligamentina	166	53.0	A. plicata (7.8), E. dilatata (0.6), L. siliquoidea (0.6), L. nasuta (4.2), L. recta (4.8), O. reflexa (6.6), O. oliviara (9.0), O. subrotunda (5.4), Q. pustulosa (7.2), V. iris (0.6)

	Species	N	% correct	Misclassified as (%)
29	Kidneyshell, P. fasciolaris	33	48.5	A. ligamentina (12.1), O. subrotunda (9.1), T. parvum (9.1), V. fabalis (21.2)
15	Wavyrayed Lampmussel, L. fasciola	222	45.9	A. ligamentina (2.3), A. marginata (1.4), A. plicata (0.5), C. tuberculata (22.1) L. cardium (5.4), L. siliquoidea (3.2), L. nasuta (1.4), L. recta (9.9), O. reflexa (0.9), O. oliviara (2.3), O. subrotunda (0.5), P. alatus (0.5), S. ambigua (0.5), V iris (3.6)
10	Spike, E. dilatata	128	42.2	A. plicata (16.4), E. t. rangiana (11.7), E. triquetra (3.9), L. cardium (0.8), L. siliquoidea (0.8), L. complanata (0.8), L. nasuta (0.8), O. reflexa (1.6), O. oliviara (1.6), S. ambigua (19.5)
23	Black Sandshell, L. recta	50	40.0	A. ligamentina (10.0), A. plicata (2.0), L. cardium (6.0), L. fasciola (2.0), L. siliquoidea (10.0), L. nasuta (4.0), O. oliviara (18.0), Q. pustulosa (2.0), V. iris (6.0)
12	Snuffbox, E. triquetra	40	40.0	A. ligamentina (2.5), A. plicata (27.5), E. dilatata (7.5), F. flava (12.5), O. reflexa (10.0)
38	Deertoe, T. truncata	8	37.5	T. donaciformis (62.5)
17	Fatmucket, L. siliquoidea	143	16.8	A. ligamentina (0.7), C. tuberculata (0.7), E. dilatata (2.8), E. triquetra (0.7), L. cardium (53.1), L. fasciola (2.1), L. nasuta (14.7), L. recta (0.7), O. reflexa (4.9), V. iris (2.8)
	TOTAL	3028	74.3	

Table 3. Discriminant Function Analysis (DFA) model including only Southern Ontario species with unhooked glochidia

	Species	N	% correct classification in unhooked model	% correct classification in all-species model	% change
7	Purple Wartyback, C. tuberculata	13	100	100	0
25	Hickorynut, Obovaria olivaria	3	100	100	0
32	Pimpleback, Q. pustulosa	14	100	100	0
27	Round Pigtoe, P. sintoxia	191	96.9	96.9	0
36	Lilliput, T. parvum	318	94.7	94.7	0
33	Mapleleaf, Q. quadrula	259	89.2	89.2	0
26	Round Hickorynut, O. subrotunda	97	84.5	84.5	0
11	Northern Riffleshell, E. t. rangiana	47	76.6	66	10.6
40	Rayed Bean, V. fabalis	132	76.5	75.8	0.7
14	Plain Pocketbook, L. cardium	225	74.7	74.7	0
24	Threehorn Wartyback, O. reflexa	31	74.2	74.2	0
21	Fragile Papershell, L. fragilis	38	73.7	73.7	0
41	Rainbow, V. iris	44	72.7	72.7	0
22	Eastern Pondmussel, L. nasuta	47	63.8	63.8	0
37	Fawnsfoot, Truncilla donaciformis	31	58.1	58.1	0

	Species	N	% correct classification in unhooked model	% correct classification in all-species model	% change
13	Wabash Pigtoe, Fusconaia flava	9	55.6	55.6	0
1	Mucket, A. ligamentina	166	53.6	53	0.6
5	Threeridge, A. plicata	20	50.0	55	-5
10	Spike, E. dilatata	128	49.2	42.2	7
29	Kidneyshell, P. fasciolaris	33	48.5	48.5	0
15	Wavyrayed Lampmussel, L. fasciola	222	45.0	45.9	-0.9
12	Snuffbox, E. triquetra	40	40.0	40	0
23	Black Sandshell, L. recta	50	40.0	40	0
38	Deertoe, T. truncata	8	37.5	37.5	0
17	Fatmucket, L. siliquoidea	143	16.8	16.8	0.7

Table 4. Discriminant Function Analysis (DFA) model including only Southern Ontario species with hooked glochidia

	Species	N	% correct classification in hooked model	% correct classification in all-species model	% change
2	Elktoe, A. marginata	109	100	100	0
4	Slippershell, A. viridis	7	100	100	0
6	Cylindrical Papershell, A. ferussacianus	7	100	100	0
18	White Heelsplitter, L. complanata	6	100	100	0
19	Creek Heelsplitter, L. compressa	5	100	100	0
28	Pink Heelsplitter, P. alatus	20	100	100	0
34	Salamander Mussel, S. ambigua	6	100	100	0
39	Paper Pondshell, U. imbecillis	7	100	100	0
35	Creeper, S. undulatus	207	92.8	92.8	0
20	Flutedshell, L. costata	315	85.1	86.3	-1.2
31	Giant Floater, P. grandis	30	80.0	70	10

Table 5. Classification Function Coefficients for the "Southern Ontario" regional model

		Classification Function Coefficients								
		x ₁	x ₂	X ₃	b					
	Species	Log Height	Log Hinge Length	Log Length	(Constant)					
1	Mucket, A. ligamentina	978.821	470.843	2083.313	-4066.232					
2	Elktoe, A. marginata	1057.628	485.215	2266.310	-4734.156					
4	Slippershell, A. viridis	856.151	679.936	2257.325	-4652.907					
5	Threeridge, A. plicata	923.087	554.904	2071.438	-4081.332					
6	Cylindrical Papershell, A. ferussacianus	966.340	643.609	2236.740	-4785.296					
7	Purple Wartyback, C.	1044.672	481.322	2163.494	-4439.300					
10	Spike, E. dilatata	918.029	576.112	2136.803	-4268.890					
11	Northern Riffleshell, E. t. rangiana	886.868	608.462	2161.086	-4324.911					
12	Snuffbox, E. triquetra	894.080	565.296	2088.575	-4075.724					
13	Wabash Pigtoe, Fusconaia	869.356	599.995	2031.316	-3962.089					
14	Plain Pocketbook, L. cardium	1005.773	464.707	2141.728	-4256.253					
15	Wavyrayed Lampmussel, L. fasciola	1026.473	474.592	2141.486	-4326.932					
17	Fatmucket, L. siliquoidea	999.891	485.572	2130.935	-4259.102					
18	White Heelsplitter, L. complanata	962.406	613.905	2200.934	-4617.003					

		Classification Function Coefficients						
		X ₁	X ₂	X ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
19	Creek Heelsplitter, L. compressa	907.699	647.216	2270.268	-4732.341			
20	Flutedshell, L. costata	1022.590	646.589	2242.648	-4950.578			
21	Fragile Papershell, L. fragilis	818.945	343.514	1648.664	-2586.652			
22	Eastern Pondmussel, L. nasuta	986.336	542.975	2104.095	-4283.492			
23	Black Sandshell, L. recta	1008.567	487.409	2078.590	-4160.590			
24	Threehorn Wartyback, O. reflexa	931.052	524.631	2121.662	-4153.202			
25	Hickorynut, Obovaria olivaria	1013.281	483.984	2033.909	-4061.224			
26	Round Hickorynut, O. subrotunda	987.417	441.320	2024.452	-3893.046			
27	Round Pigtoe, Pleurobema sintoxia	832.913	564.128	1974.063	-3676.089			
28	Pink Heelsplitter, P. alatus	1177.834	474.434	2030.961	-4447.660			
29	Kidneyshell, P. fasciolaris	940.780	448.163	2020.400	-3788.498			
31	Giant Floater, P. grandis	996.375	651.886	2271.676	-4969.784			
32	Pimpleback, Q. pustulosa	1030.805	420.907	2098.698	-4128.339			
33	Mapleleaf, Quadrula quadrula	797.866	329.575	1755.765	-2725.304			
34	Salamander Mussel, S. ambigua	940.246	583.984	2154.014	-4380.724			

		Classification Function Coefficients						
		X ₁	X ₂	X ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
35	Creeper, S. undulatus	896.049	696.581	2321.119	-4951.926			
36	Lilliput, T. parvum	891.166	492.766	1981.356	-3676.353			
37	Fawnsfoot, Truncilla donaciformis	776.168	319.113	1566.093	-2320.520			
38	Deertoe, T. truncata	772.000	331.748	1557.828	-2317.145			
39	Paper Pondshell, U. imbecillis	946.970	669.920	2203.115	-4715.678			
40	Rayed Bean, V. fabalis	951.633	425.738	1962.664	-3642.373			
41	Rainbow, V. iris	1047.686	478.598	2097.453	-4282.927			

Table 6. Discriminant Function Analysis (DFA) model including only Ausable River species

	Species	n	% correct	Misclassified as (%)
2	Elktoe, A. marginata	109	100	
28	Pink Heelsplitter, P. alatus	20	100	••
32	Pimpleback, Q. pustulosa	14	100	
7	Purple Wartyback, C. tuberculata	13	100	
38	Deertoe, T. truncata	8	100	
3	Cylindrical Papershell, A. ferussacianus	7	100	
4	Slippershell, A. viridis	7	100	
39	Paper Pondshell, U. imbecillis	7	100	
18	White Heelsplitter, L. complanata	6	100	
19	Creek Heelsplitter, L. compressa	5	100	
21	Fragile Papershell, L. fragilis	38	97.4	T. truncata (2.6)
35	Creeper, S. undulatus	207	91.8	A. viridis (1.4), L. compressa (1.4), U. imbecillis (5.3)
29	Kidneyshell, P. fasciolaris	33	87.9	A. ligamentina (12.1)
20	Flutedshell, L. costata	315	85.7	A. ferussacianus (1.6), P. grandis (12.7)

	Species	n	% correct	Misclassified as (%)
13	Wabash Pigtoe, F. flava	9	77.8	E. t. rangiana (11.1), E. triquetra (11.1)
14	Plain Pocketbook, L. cardium	225	74.7	A. ligamentina (2.2), L. fasciola (6.2), L. siliquoidea (9.8), L. complanata (0.9), L. recta (6.2)
1	Mucket, A. ligamentina	166	72.3	A. plicata (13.3), E. dilatata (1.2), L. siliquoidea (0.6), L. recta (11.4), Q. pustulosa (1.2)
5	Threeridge, A. plicata	20	70.0	A. ligamentina (5.0), E. dilatata (5.0), E. triquetra (20)
31	Giant Floater, P. grandis	30	70.0	A. ferussacianus (3.3), L. costata (26.7)
11	Northern Riffleshell, E. t. rangiana	47	66.0	A. viridis (4.3), A. plicata (2.1), E. dilatata (14.9), E. triquetra (6.4), F. flava (2.1), L. complanata (2.1), L. compressa (2.1)
23	Black Sandshell, L. recta	50	58.0	A. ligamentina (12.0), A. plicata (2.0), L. cardium (4.0), L. fasciola (6.0), L. siliquoidea (14.0), Q. pustulosa (4.0), V. iris (8.0)
10	Spike, E. dilatata	128	53.1	A. ligamentina (0.8), A. plicata (19.5), E. t. rangiana (17.2), E. triquetra (3.9) L. siliquoidea (1.6), L. complanata (3.1), P. fasciolaris (0.8)
15	Wavyrayed Lampmussel, L. fasciola	222	44.1	A. ligamentina (3.2), A. marginata (0.5), A. plicata (0.9), C. tuberculata (26.6), E. triquetra (0.5), L. cardium (6.3), L. siliquoidea (4.5), L. complanata (0.5), L. recta (12.6), P. alatus (0.5)
12	Snuffbox, E. triquetra	40	35.0	A. ligamentina (2.5), A. plicata (35.0), E. dilatata (7.5), F. flava (20.0)
17	Fatmucket, L. siliquoidea	143	25.9	A. ligamentina (0.7), A. plicata (0.7), C. tuberculata (0.7), E. dilatata (4.9), E. t. rangiana (0.7), E. triquetra (2.1), L. cardium (53.1), L. fasciola (5.6), L. complanata (0.7), L. recta (4.9)
	TOTAL	1869	71.1	

Table 7. Classification Function Coefficients for the Ausable River model

			Classification Function Coefficients						
		X ₁	X ₂	X ₃	b				
	Species	Log Height	Log Hinge Length	Log Length	(Constant)				
1	Mucket, A. ligamentina	2923.680	609.892	1901.196	-6316.931				
2	Elktoe, A. marginata	3152.446	632.388	2075.813	-7353.952				
4	Slippershell, A. viridis	2767.980	829.061	2119.021	-6952.157				
5	Threeridge, A. plicata	2828.011	698.290	1897.233	-6264.903				
6	Cylindrical Papershell, A. ferussacianus	3002.323	800.550	2054.179	-7297.350				
7	Purple Wartyback, C. tuberculata	3098.008	627.860	1963.573	-6928.914				
10	Spike, E. dilatata	2839.910	720.750	1971.136	-6515.272				
11	Northern Riffleshell, E. t. rangiana	2787.114	753.363	2007.021	-6548.287				
12	Snuffbox, E. triquetra	2769.287	706.584	1927.663	-6216.353				
13	Wabash Pigtoe, F. flava	2714.147	743.518	1866.439	-6028.515				
14	Plain Pocketbook, L. cardium	2996.326	605.240	1957.979	-6616.599				
15	Wavyrayed Lampmussel, L. fasciola	3048.237	618.591	1947.155	-6745.987				
17	Fatmucket, L. siliquoidea	2989.182	628.142	1944.545	-6614.274				
18	White Heelsplitter, L. complanata	2972.665	767.221	2019.621	-7059.544				

		Classification Function Coefficients						
		X1	X ₂	X ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
19	Creek Heelsplitter, L. compressa	2875.981	797.805	2117.349	-7135.602			
20	Flutedshell, L. costata	3134.736	809.951	2036.361	-7611.985			
21	Fragile Papershell, L. fragilis	2403.713	454.831	1490.437	-4059.382			
23	Black Sandshell, L. recta	2998.305	631.780	1880.203	-6492.272			
28	Pink Heelsplitter, P. alatus	3372.867	636.236	1754.926	-7149.084			
29	Kidneyshell, P. fasciolaris	2812.228	581.056	1848.847	-5878.965			
31	Giant Floater, P. grandis	3082.951	812.689	2080.156	-7596.827			
32	Pimpleback, Q. pustulosa	3025.939	559.337	1905.054	-6472.337			
35	Creeper, S. undulatus	2881.358	851.316	2172.606	-7418.453			
38	Deertoe, T. truncata	2270.102	437.607	1407.893	-3633.468			
39	Paper Pondshell, U. imbecillis	2961.259	828.369	2019.304	-7174.077			

Table 8. Discriminant Function Analysis (DFA) model including only Grand River species

	Species	n	% correct	Misclassified as (%)
2	Elktoe, A. marginata	109	100	
28	Pink Heelsplitter, P. alatus	20	100	
32	Pimpleback, Q. pustulosa	14	100	
4	Slippershell, A. viridis	7	100	
6	Cylindrical Papershell, A. ferussacianus	7	100	
39	Paper Pondshell, U. imbecillis	7	100	
18	White Heelsplitter, L. complanata	6	100	
19	Creek Heelsplitter, L. compressa	5	100	_
25	Hickorynut, O. olivaria	3	100	
27	Round Pigtoe, P. sintoxia	191	97.4	T. parvum (2.6)
36	Lilliput, T. parvum	318	94.7	P. sintoxia (1.6), P. fasciolaris (3.8),
35	Creeper, S. undulatus	207	92.8	A. viridis (0.5), L. compressa (1.4), U. imbecillis (5.3)
33	Mapleleaf, Quadrula quadrula	259	88.8	L. fragilis (10.0), T. donaciformis (0.8), T. truncata (0.4)
20	Flutedshell, L. costata	315	86.0	A. ferussacianus (1.0), P. grandis (13.0)

	Species	n	% correct	Misclassified as (%)
26	Round Hickorynut, O. subrotunda	97	84.5	A. ligamentina (6.2), O. olivaria (1.0), P. fasciolaris (8.2)
24	Threehorn Wartyback, O. reflexa	31	77.4	A. ligamentina (3.2), A. plicata (9.7), E. dilatata (6.5), L. siliquoidea (3.2)
41	Rainbow, V. iris	44	77.3	L. cardium (2.3), L. fasciola (18.2), Q. pustulosa (2.3)
14	Plain Pocketbook, L. cardium	225	74.2	A. ligamentina (1.3), E. dilatata (1.3), L. fasciola (6.7), L. siliquoidea (8.9), L. complanata (0.4), L. recta (3.6), O. reflexa (0.9), O. oliviara (2.2), V. iris (0.4)
21	Fragile Papershell, L. fragilis	38	73.7	Q. quadrula (21.1), T. donaciformis (5.3)
31	Giant Floater, P. grandis	30	70.0	A. ferussacianus (6.7), L. costata (23.3)
29	Kidneyshell, P. fasciolaris	33	66.7	A. ligamentina (12.1), O. subrotunda (12.1), T. parvum (9.1)
10	Spike, E. dilatata	128	66.4	A. plicata (16.4), E. triquetra (3.9), L. cardium (0.8), L. siliquoidea (0.8), L. complanata (7.8), O. reflexa (2.3), O. oliviara (1.6)
15	Wavyrayed Lampmussel, L. fasciola	222	65.3	A. ligamentina (2.3), A. marginata (1.4), A. plicata (0.5), L. cardium (5.9), L. siliquoidea (5.4), L. complanata (0.5), L. recta (9.9), O. reflexa (0.9), O. oliviara (2.3), O. subretunda (0.5), P. alatus (0.5), V. iris (5.0)
37	Fawnsfoot, T. donaciformis	31	58.1	L. fragilis (3.2), T. truncata (38.7)
13	Wabash Pigtoe, F. flava	9	55.6	E. triquetra (11.1), P. sintoxia (33.3)
5	Threeridge, A. plicata	20	55.0	E. dilatata (5.0), E. triquetra (25.0), O. reflexa (15.0)
1	Mucket, A. ligamentina	166	54.8	A. plicata (7.8), E. dilatata (0.6), L. siliquoidea (0.6), L. recta (5.4), O. reflexa (10.2), O. oliviara (9.0), O. subrotunda (6.0), Q. pustulosa (4.8), V. iris (0.6)

	Species	n	% correct	Misclassified as (%)
23	Black Sandshell, L. recta	50	42.0	A. ligamentina (10.0), A. plicata (2.0), L. cardium (6.0), L. fasciola (2.0), L. siliquoidea (10.0), O. reflexa (2.0), O. oliviara (18.0), Q. pustulosa (2.0), V. iris (6.0)
12	Snuffbox, E. triquetra	40	40.0	A. ligamentina (2.5), A. plicata (27.5), E. dilatata (7.5), F. flava (12.5), O. reflexa (10.0)
38	Deertoe, T. truncata	8	37.5	T. donaciformis (62.5)
17	Fatmucket, L. siliquoidea	143	25.2	A. ligamentina (0.7), E. dilatata (7.0), E. triquetra (0.7), L. cardium (52.4), L. fasciola (2.1), L. recta (1.4), O. reflexa (7.7), V. iris (2.8)
	TOTAL	2783	77.9	

Table 9. Classification Function Coefficients for the Grand River model

		Classification Function Coefficients						
		Х1	X ₂	x ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
1	Mucket, A. ligamentina	987.540	487.721	2084.473	-4094.868			
2	Elktoe, A. marginata	1067.681	502.942	2267.059	-4766.871			
4	Slippershell, A. viridis	846.511	706.226	2272.086	-4691.096			
5	Threeridge, A. plicata	925.349	574.886	2077.230	-4111.885			
6	Cylindrical Papershell, A. ferussacianus	965.210	666.902	2245.566	-4822.400			
10	Spike, E. dilatata	918.114	597.386	2144.310	-4301.132			
12	Snuffbox, E. triquetra	893.881	586.202	2096.111	-4106.568			
13	Wabash Pigtoe, F. flava	867.230	621.709	2040.130	-3993.190			
14	Plain Pocketbook, L. cardium	1015.446	481.536	2142.373	-4285.884			
15	Wavyrayed Lampmussel, L. fasciola	1037.046	491.352	2141.555	-4357.266			
17	Fatmucket, L. siliquoidea	1008.577	502.966	2132.292	-4289.177			
18	White Heelsplitter, L. complanata	962.747	636.105	2208.567	-4652.253			
19	Creek Heelsplitter, L. compressa	902.277	671.889	2282.095	-4769.587			
20	Flutedshell, L. costata	1024.716	669.100	2249.297	-4988.616			
21	Fragile Papershell, L. fragilis	829.689	355.348	1646.880	-2604.493			
23	Black Sandshell, L. recta	1018.561	504.210	2078.934	-4190.237			
24	Threehorn Wartyback, O. reflexa	934.152	544.134	2126.909	-4183.444			
25	Hickorynut, O. olivaria	1024.417	500.186	2033.353	-4090.319			
26	Round Hickorynut, O. subrotunda	998.743	456.684	2023.593	-3920.234			
27	Round Pigtoe, P. sintoxia	831.212	584.765	1983.225	-3706.599			
28	Pink Heelsplitter, P. alatus	1199.521	487.655	2023.229	-4480.304			
29	Kidneyshell, P. fasciolaris	949.037	464.438	2021.630	-3815.015			
31	Giant Floater, P. grandis	996.216	675.250	2279.965	-5008.162			

			Classification Function Coefficients						
		X ₁	X ₂	X ₃	b				
	Species	Log Height	Log Hinge Length	Log Length	(Constant)				
32	Pimpleback, Q. pustulosa	1044.388	435.713	2096.433	-4156.617				
33	Mapleleaf, Q. quadrula	802.893	344.005	1756.639	-2741.115				
35	Creeper, S. undulatus	887.202	723.286	2335.567	-4992.274				
36	Lilliput, T. parvum	895.289	510.703	1985.437	-3703.088				
37	Fawnsfoot, T. donaciformis	786.541	330.185	1564.260	-2336.419				
38	Deertoe, T. truncata	781.766	343.156	1556.429	-2333.189				
39	Paper Pondshell, U. imbecillis	944.182	693.930	2213.067	-4753.164				
41	Rainbow, V. iris	1060.124	494.699	2096.163	-4313.282				

Table 10. Discriminant Function Analysis (DFA) model including only Sydenham River species

	Species	N	% correct	Misclassified as (%)
2	Elktoe, A. marginata	109	100	
28	Pink Heelsplitter, P. alatus	20	100	
32	Pimpleback, Q. pustulosa	14	100	
7	Purple Wartyback, C. tuberculata	13	100	46
6	Cylindrical Papershell, A. ferussacianus	7	100	
4	Slippershell, A. viridis	7	100	
39	Paper Pondshell, U. imbecillis	7	100	
18	White Heelsplitter, L. complanata	6	100	40
19	Creek Heelsplitter, L. compressa	5	100	
34	Salamander Mussel, S. ambigua	6	100	
27	Round Pigtoe, P. sintoxia	191	97.4	T. parvum (2.6)
36	Lilliput, T. parvum	318	94.7	P. sintoxia (1.6), P. fasciolaris (2.2), V. fabalis (1.6)
35	Creeper, S. undulatus	207	92.8	A. viridis (0.5), L. compressa (1.4), U. imbecillis (5.3)
33	Mapleleaf, Quadrula quadrula	259	88.4	L. fragilis (10.4), T. donaciformis (0.8), T. truncata (0.4)
20	Flutedshell, L. costata	315	86.0	A. ferussacianus (1.0), P. grandis (13.0)

	Species	N	% correct	Misclassified as (%)
26	Round Hickorynut, O. subrotunda	97	84.5	A. ligamentina (7.2), P. fasciolaris (7.2), V. fabalis (1.0)
24	Threehorn Wartyback, O. reflexa	31	77.4	A. ligamentina (3.2), A. plicata (9.7), E. dilatata (6.5), L. siliquoidea (3.2)
41	Rainbow, V. iris	44	77.3	C. tuberculata (2.3), L. cardium (2.3), L. fasciola (15.9), Q. pustulosa (2.3)
40	Rayed Bean, V. fabalis	132	75.8	O. subrotunda (2.3), P. sintoxia (0.8), P. fasciolaris (10.6), T. parvum (10.6)
14	Plain Pocketbook, L. cardium	225	74.2	A. ligamentina (1.8), L. fasciola (7.1), L. siliquoidea (8.4), L. recta (4.9), O. reflexa (0.4), O. subrotunda (0.4), S. ambigua (2.2), V. iris (0.4)
21	Fragile Papershell, L. fragilis	38	73.7	Q. quadrula (21.1), T. donaciformis (5.3)
31	Giant Floater, P. grandis	30	70.0	A. ferussacianus (6.7), L. costata (23.3)
11	Northern Riffleshell, E. t. rangiana	47	66.0	A. viridis (2.1), A. plicata (2.1), E. dilatata (12.8), E. triquetra (2.1), F. flava (2.1), L. complanata (2.1), L. compressa (4.3), O. reflexa (2.1), S. ambigua (4.3)
37	Fawnsfoot, T. donaciformis	31	58.1	L. fragilis (3.2), T. truncata (38.7)
1	Mucket, A. ligamentina	166	56.6	A. plicata (10.8), E. dilatata (0.6), L. siliquoidea (0.6), L. recta (8.4), O. reflexa (9.6), O. subrotunda (6.0), Q. pustulosa (6.6), V. iris (0.6)
13	Wabash Pigtoe, F. flava	9	55.6	E. t. rangiana (11.1), P. sintoxia (33.3),
5	Threeridge, A. plicata	20	55.0	E. dilatata (5.0), E. triquetra (25.0), O. reflexa (15.0)
23	Black Sandshell, L. recta	50	54.0	A. ligamentina (12.0), A. plicata (2.0), L. cardium (6.0), L. fasciola (2.0), L. siliquoidea (10.0), O. reflexa (2.0), O. subrotunda (2.0), Q. pustulosa (2.0), V. iris (8.0)
29	Kidneyshell, P. fasciolaris	33	48.5	A. ligamentina (12.1), O. subrotunda (9.1), T. parvum (9.1), V. fabalis (21.2)

	Species	N	% correct	Misclassified as (%)
15	Wavyrayed Lampmussel, L. fasciola	222	45.5	A. ligamentina (2.3), A. marginata (1.4), A. plicata (0.5), C. tuberculata (23.0), L. cardium (5.4), L. siliquoidea (4.1), L. recta (12.2), O. reflexa (0.9), O. subrotunda (0.5), P. alatus (0.5), S. ambigua (0.5), V. iris (3.6)
10	Spike, E. dilatata	128	42.2	A. plicata (17.2), E. t. rangiana (11.7), E. triquetra (3.9), L. cardium (0.8), L. siliquoidea (0.8), L. complanata (0.8), O. reflexa (1.6), P. fasciolaris (0.8), S. ambigua (20.3)
12	Snuffbox, E. triquetra	40	40.0	A. ligamentina (2.5), A. plicata (27.5), E. dilatata (7.5), F. flava (12.5), O. reflexa (10.0)
38	Deertoe, T. truncata	8	37.5	T. donaciformis (62.5)
17	Fatmucket, L. siliquoidea	143	22.4	A. ligamentina (0.7), C. tuberculata (1.4), E. dilatata (2.8), E. triquetra (0.7), L. cardium (53.1), L. fasciola (2.1), L. recta (1.4), O. reflexa (5.6), S. ambigua (7.0), V. iris (2.8)
	TOTAL	2978	75.1	

Table 11. Classification Function Coefficients for the Sydenham River model

		Classification Function Coefficients						
		X ₁	X ₂	x ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
1	Mucket, A. ligamentina	1023.308	462.913	2059.846	-4084.049			
2	Elktoe, A. marginata	1105.678	476.620	2241.015	-4755.012			
4	Slippershell, A. viridis	898.491	671.838	2233.443	-4664.210			
5	Threeridge, A. plicata	966.042	547.107	2048.213	-4096.357			
6	Cylindrical Papershell, A. ferussacianus	1011.919	635.249	2211.776	-4801.222			
7	Purple Wartyback, C. tuberculata	1091.736	473.007	2138.817	-4459.765			
10	Spike, E. dilatata	961.271	568.170	2113.251	-4283.514			
11	Northern Riffleshell, E. t. rangiana	929.378	600.536	2137.634	-4338.072			
12	Snuffbox, E. triquetra	936.252	557.541	2065.582	-4089.555			
13	Wabash Pigtoe, F. flava	910.543	592.417	2008.655	-3974.798			
14	Plain Pocketbook, L. cardium	1051.424	456.571	2117.726	-4275.205			
15	Wavyrayed Lampmussel, L. fasciola	1072.812	466.387	2117.165	-4346.675			
17	Fatmucket, L. siliquoidea	1045.368	477.462	2106.924	-4277.663			
18	White Heelsplitter, L. complanata	1007.551	605.659	2176.341	-4633.037			
19	Creek Heelsplitter, L. compressa	951.626	638.957	2245.884	-4745.863			
20	Flutedshell, L. costata	1069.992	638.043	2216.935	-4968.816			
21	Fragile Papershell, L. fragilis	855.450	337.126	1629.711	-2599.390			
23	Black Sandshell, L. recta	1054.027	479.388	2054.669	-4179.502			
24	Threehorn Wartyback, O. reflexa	974.438	516.721	2098.317	-4168.725			
26	Round Hickorynut, O. subrotunda	1031.737	433.517	2001.291	-3911.415			
27	Round Pigtoe, P. sintoxia	872.869	556.675	1952.964	-3689.786			
28	Pink Heelsplitter, P. alatus	1228.330	466.015	2005.184	-4474.052			
29	Kidneyshell, P. fasciolaris	983.626	440.505	1997.800	-3804.979			

		Classification Function Coefficients						
		X ₁	X ₂	X ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
31	Giant Floater, P. grandis	1043.132	643.351	2246.145	-4986.849			
32	Pimpleback, Q. pustulosa	1076.847	412.823	2074.818	-4148.638			
33	Mapleleaf, Quadrula quadrula	831.204	324.543	1737.327	-2734.985			
34	Salamander Mussel, S. ambigua	984.317	575.931	2130.067	-4396.142			
35	Creeper, S. undulatus	940.072	688.208	2296.380	-4964.509			
36	Lilliput, T. parvum	932.378	485.312	1959.266	-3690.661			
37	Fawnsfoot, T. donaciformis	810.764	313.056	1548.156	-2331.991			
38	Deertoe, T. truncata	806.462	325.712	1539.900	-2328.419			
39	Paper Pondshell, U. imbecillis	991.837	661.674	2178.370	-4730.649			
40	Rayed Bean, V. fabalis	994.414	418.191	1940.294	-3659.429			
41	Rainbow, V. iris	1094.460	470.423	2073.019	-4303.538			

Table 12. Discriminant Function Analysis (DFA) model including only Thames River species

	Species	N	% correct	Misclassified as (%)
27	Round Pigtoe, P. sintoxia	191	100	
2	Elktoe, A. marginata	109	100	
28	Pink Heelsplitter, P. alatus	20	100	
32	Pimpleback, Q. pustulosa	14	100	46
7	Purple Wartyback, C. tuberculata	13	100	60
6	Cylindrical Papershell, A. ferussacianus	7	100	
4	Slippershell Mussel, A. viridis	7	100	
39	Paper Pondshell, U. imbecillis	7	100	
18	White Heelsplitter, L. complanata	6	100	
34	Salamander Mussel, S. ambigua	6	100	
19	Creek Heelsplitter, L. compressa	5	100	
25	Hickorynut, O. olivaria	3	100	
36	Lilliput, T. parvum	318	94.7	P. sintoxia (1.6), P. fasciolaris (2.2), V. fabalis (1.6)
35	Creeper, S. undulatus	207	92.8	A. viridis (0.5), L. compressa (1.4), U. imbecillis (5.3)
33	Mapleleaf, Quadrula quadrula	259	89.2	L. fragilis (9.7), T. donaciformis (0.8), T. truncata (0.4)

	Species	N	% correct	Misclassified as (%)
20	Flutedshell, L. costata	315	86.0	A. ferussacianus (1.0), P. grandis (13.0),
26	Round Hickorynut, O. subrotunda	97	84.5	A. ligamentina (6.2), O. olivaria (1.0), P. fasciolaris (7.2), V. fabalis (1.0),
24	Threehorn Wartyback, O. reflexa	31	77.4	A. ligamentina (3.2), A. plicata (9.7), E. dilatata (6.5), L. siliquoidea (3.2)
41	Rainbow, V. iris	44	77.3	C. tuberculata (2.3), L. cardium (2.3), L. fasciola (15.9), Q. pustulosa (2.3)
40	Rayed Bean, V. fabalis	132	75.8	O. olivaria (0.8), O. subrotunda (1.5), P. sintoxia (0.8), P. fasciolaris (10.6), T. parvum (10.6)
14	Plain Pocketbook, L. cardium	225	74.2	A. ligamentina (1.8), L. fasciola (7.1), L. siliquoidea (8.4), L. recta (3.6), O. reflexa (0.4) O. olivaria (1.8), S. ambigua (2.2), V. iris (0.4)
21	Fragile Papershell, L. fragilis	38	73.7	T. donaciformis (2.6), Q. quadrula (21.1), T. donaciformis (5.3)
31	Giant Floater, P. grandis	30	70.0	A. ferussacianus (6.7), L. costata (23.3)
11	Northern Riffleshell, E. t. rangiana	47	66.0	A. viridis (2.1), A. plicata (2.1), E. dilatata (12.8), E. triquetra (2.1), F. flava (2.1), L. complanata (2.1), L. compressa (4.3), O. reflexa (2.1), S. ambigua (4.3)
37	Fawnsfoot, T. donaciformis	31	58.1	L. fragilis (3.2), T. truncata (38.7)
13	Wabash Pigtoe, F. flava	9	55.6	E. t. rangiana (11.1), P. sintoxia (33.3)
5	Threeridge, A. plicata	20	55.0	E. dilatata (5.0), E. triquetra (25.0), O. reflexa (15.0)
1	Mucket, A. ligamentina	166	53.6	A. plicata (8.4), E. dilatata (0.6), L. siliquoidea (0.6), L. recta (5.4), O. reflexa (9.6), O. olivaria (9.0), O. subrotunda (5.4), Q. pustulosa (6.6), V. iris (0.6)
29	Kidneyshell, P. fasciolaris	33	48.5	A. ligamentina (12.1), O. subrotunda (9.1), T. parvum (9.1), V. fabalis (21.2)

	Species	N	% correct	Misclassified as (%)
15	Wavyrayed Lampmussel, L. fasciola	222	45.5	A. ligamentina (2.3), A. marginata (1.4), A. plicata (0.5), C. tuberculata (23.0), L. cardium (5.4), L. siliquoidea (4.1), L. recta (9.9), O. reflexa (0.9), O. olivaria (2.3), O. subrotunda (0.5), P. alatus (0.5), S. ambigua (0.5), V. iris (3.6)
10	Spike, E. dilatata	128	42.2	A. plicata (16.4), E. t. rangiana (11.7), E. triquetra (3.9), L. cardium (0.8), L. siliquoidea (0.8), L. complanata (0.8), O. reflexa (1.6), O. olivaria (1.6), S. ambigua (20.3)
23	Black Sandshell, L. recta	50	42.0	A. ligamentina (10.0), A. plicata (2.0), L. cardium (6.0), L. fasciola (2.0), L. siliquoidea (10.0), O. reflexa (2.0), O. olivaria (18.0), Q. pustulosa (2.0), V. iris (6.0)
12	Snuffbox, E. triquetra	40	40.0	A. ligamentina (2.5), A. plicata (27.5), E. dilatata (7.5), F. flava (12.5), O. reflexa (10.0)
38	Deertoe, T. truncata	8	37.5	T. donaciformis (62.5)
17	Fatmucket, L. siliquoidea	143	22.4	A. ligamentina (0.7), C. tuberculata (1.4), E. dilatata (2.8), E. triquetra (0.7), L. cardium (53.1), L. fasciola (2.1), L. recta (1.4), O. reflexa (5.6), S. ambigua (7.0), V. iris (2.8)
	TOTAL	2981	74.8	

Table 13. Classification Function Coefficients for the Thames River model

		Classification Function Coefficients					
		X ₁	Х2	X ₃	b		
	Species	Log Height	Log Hinge Length	Log Length	(Constant)		
1	Mucket, A. ligamentina	1013.092	466.344	2055.717	-4070.546		
2	Elktoe, A. marginata	1094.528	480.499	2236.523	-4739.248		
4	Slippershell Mussel, A. viridis	890.517	673.602	2228.682	-4650.875		
5	Threeridge, A. plicata	956.875	549.759	2044.050	-4083.642		
6	Cylindrical Papershell, A. ferussacianus	1002.579	637.703	2207.244	-4786.750		
7	Purple Wartyback, C. tuberculata	1080.781	476.742	2134.572	-4444.803		
10	Spike, E. dilatata	952.206	570.732	2108.902	-4270.407		
11	Northern Riffleshell, E. t. rangiana	920.795	602.785	2133.175	-4325.146		
12	Snuffbox, E. triquetra	927.438	560.018	2061.326	-4077.071		
13	Wabash Pigtoe, F. flava	902.230	594.512	2004.530	-3962.945		
14	Plain Pocketbook, L. cardium	1040.828	460.216	2113.475	-4260.930		
15	Wavyrayed Lampmussel, L. fasciola	1062.041	470.061	2112.951	-4332.121		
17	Fatmucket, L. siliquoidea	1034.954	480.941	2102.700	-4263.554		
18	White Heelsplitter, L. complanata	998.136	608.244	2171.895	-4618.898		
19	Creek Heelsplitter, L. compressa	942.912	641.164	2241.162	-4731.880		

		Classification Function Coefficients						
		X ₁	X ₂	X ₃	b			
	Species	Log Height	Log Hinge Length	Log Length	(Constant)			
20	Flutedshell, L. costata	1060.050	640.731	2212.480	-4953.562			
21	Fragile Papershell, L. fragilis	846.733	340.217	1626.508	-2590.450			
23	Black Sandshell, L. recta	1043.577	482.842	2050.607	-4165.639			
24	Threehorn Wartyback, O. reflexa	964.981	519.646	2094.017	-4155.584			
25	Hickorynut, O. olivaria	1048.147	479.501	2006.199	-4066.733			
26	Round Hickorynut, O. subrotunda	1021.331	437.111	1997.333	-3898.180			
27	Round Pigtoe, P. sintoxia	864.448	558.914	1948.270	-3676.754			
28	Pink Heelsplitter, P. alatus	1216.016	470.246	2001.530	-4458.067			
29	Kidneyshell, P. fasciolaris	973.768	443.847	1993.779	-3792.387			
31	Giant Floater, P. grandis	1033.475	645.920	2241.566	-4971.727			
32	Pimpleback, Q. pustulosa	1065.795	416.808	2070.716	-4134.281			
33	Mapleleaf, Quadrula quadrula	825.603	326.217	1733.181	-2728.099			
34	Salamander Mussel, S. ambigua	975.034	578.559	2125.708	-4382.635			
35	Creeper, S. undulatus	931.689	690.107	2291.510	-4950.226			
36	Lilliput, T. parvum	923.326	488.121	1955.287	-3678.946			
37	Fawnsfoot, T. donaciformis	802.466	316.029	1545.108	-2323.939			

		Classification Function Coefficients					
		x ₁	X ₂	X 3	b		
	Species	Log Height	Log Hinge Length	Log i ength	(Constant)		
38	Deertoe, T. truncata	798.282	328.580	1536.872	-2320.463		
39	Paper Pondshell, U. imbecillis	982.875	663.846	2173.909	-4716.624		
10	Rayed Bean, V. fabalis	984.377	421.664	1936.447	-3647.063		
11	Rainbow, V. iris	1083.521	474.122	2068.965	-4288.999		