

XXIII Semana da Matemática e XIII Semana da Estatística

Universidade Federal de Uberlândia

Geometria Não Euclidiana e Polígonos Hiperbólicos Via PyScript

Gilson Montandon
Universidade Federal de Uberlândia
Faculdade de Matemática
Gilsonmontandon@gmail.com

Prof. Dr. Aldicio José Miranda Universidade Federal de Uberlândia Faculdade de Matemática aldicio@ufu.br

Introdução

Desde os tempos de Euclides (300 AC) até o século XIX, muitos matemáticos tentaram provar o quinto postulado (das paralelas) de Euclides através dos outros quatro e nesta tentativa foi que surgiram novas geometrias. Ao longo de dois séculos tivemos vários matemáticos envolvidos na criação de novas geometrias. Destacamos: Bolyai, Lobachevsky, Gauss e Reimann. Eles se motivaram a criarem novas geometrias principalmente pelo fato da geometria euclidiana ser adequada apenas para superfícies planas. Eles criaram dois tipos clássicos de geometrias chamadas não-euclidianas: a hiperbólica e a elíptica. Cada qual se diferencia da geometria de Euclides apenas pelo quinto postulado, que diz que por um ponto P não pertencente a uma reta r, passa uma única reta s paralela à r. A geometria hiperbólica substitui este quinto postulado por: dado um ponto P, fora de uma reta r, passa mais de uma reta paralela à r. Já a elíptica diz não haver nenhuma reta paralela. Por cerca de dois mil anos a Geometria de Euclides foi considerada como a única geometria possível, pois os postulados dessa geometria são aceitos pela nossa intuição muito facilmente.

A geometria euclidiana é estudada desde o colégio. Porém, ao longo de seus estudos em matemática, o aluno não é apresentado às geometrias não-euclidianas. Não é fácil imaginar muitas situações descritas por essas novas geometrias. Assim, um dos objetivos deste trabalho, baseado na referência [1], é mostrar que na geometria plana hiperbólica, a soma dos ângulos internos de um triângulo é estritamente menor do que 180 graus. Será utilizado o modelo geométrico Plano de Poincaré e ferramentas do cálculo diferencial e geometria analítica para definir e calcular a medida de um ângulo interno de um triângulo.

Neste trabalho também desenvolvemos um aplicativo web para desenhar retas no plano hiperbólico, e calcular a medida dos ângulos internos de qualquer polígono hiperbólico, através do PyScript, [2]. A interessante ferramenta PyScript permite aos usuários criar aplicativos Python juntamente com Javascript no navegador e usando a interface do HTML. Assim, apenas com o arquivo em html, o aplicativo poderá ser usado e sem a necessidade de instalar bibliotecas do Python.

Geometria Hiperbólica

A geometria é um conjunto de pontos e um conjunto de retas junto com uma relação entre esses pontos e essas retas. A geometria hiperbólica difere da euclidiana, apenas pelo V Postulado. Na geometria hiperbólica, por um ponto P, fora de uma reta r, passa mais de uma reta paralela à r. Existem vários modelos para a geometria plana hiperbólica. O modelo que usamos neste trabalho está descrito na Proposição 1 e ilustrado na Figura 1.

Definição 1

Uma geometria abstrata \mathcal{A} consiste em um conjunto de pontos, denotado por \mathcal{I} , juntamente com uma coleção \mathcal{L} não vazia de subconjuntos de \mathcal{I} chamada de retas, tais que:

- i. Por quaisquer dois pontos A e $B \in \mathcal{I}$ existe uma reta $l \in \mathcal{L}$ com $A \in l$ e $B \in l$.
- ii. Toda reta tem pelo menos dois pontos.Uma geometria abstrata A será uma geometria de incidência se:
- iii. Quaisquer dois pontos distintos em $\mathcal I$ permanecem em um única reta.
- iv. Existem três pontos $A,B,C\in\mathcal{I}$ que não estão todos sobre a mesma reta.

Abaixo um exemplo de geometria de incidência, será o principal objeto de estudo deste trabalho, e o modelo será chamado de Plano de Poincaré.

Proposição 1: Plano de Poincaré

Seja $\mathbb{H} = \{(x, y) \in \mathbb{R}^2; y > 0\}$. Descrevemos aqui dois tipos de retas:

$$L^a = \{(x,y) \in \mathbb{H}; x = a\} \subset \mathbb{H}, \text{ (Tipo I)}$$

$$L^{c,r} = \{(x,y) \in \mathbb{H}; (x-c)^2 + y^2 = r^2\} \subset \mathbb{H}, \text{ (Tipo II)},$$

onde a, c e r > 0 são números reais fixados.

Seja $\mathcal{L}_{\mathbb{H}}$ o conjunto de todas as retas do tipo I e II. Veja Figura 1. Então $\mathcal{H} = \{\mathbb{H}, \mathcal{L}_{\mathbb{H}}\}$ chamado de Plano de Poincaré é um exemplo de geometria de incidência.

Figura 1: Retas: L^a e $L^{c,r}$.

Ao adicionarmos o conceito de distância entre dois pontos e medida de ângulos em uma geometria de incidência, teremos assim, uma geometria geométrica.

Definição 2: Função distância

Uma função distância em um conjunto I é uma função $d:I imes I o \mathbb{R}$ de modo que para todo $P,Q\in I:$ i.

$$d(P,Q) \ge 0$$
; ii. $d(P,Q) = 0 \Leftrightarrow P = Q$; iii. $d(P,Q) = d(Q,P)$.

Vamos definir agora, uma distância entre pontos no Plano de Poincaré \mathcal{H} . Se dois pontos $P=(c,y_1)$ e $Q=(c,y_2)$, estão sobre uma reta vertical no Plano de Poincaré, se fixarmos y_1 , e considerar y_2 tendendo para o limite do Plano, isto é, $y_2 \to 0$, gostaríamos que a distância entre P e Q tendesse para o mais infinito. Com a distância euclidina isso não seria possível, pois daí teríamos uma distância finita entre P e Q. Usando logaritmos podemos resolver esse problema, como definido abaixo.

Definição 3: Distância Hiperbólica

Sejam $P=(x_1,y_1)\in \mathbb{H}$ e $Q=(x_2,y_2)\in \mathbb{H}$. Definimos a distância $d_{\mathbb{H}}$ no Plano de Poincaré por:

$$d_{\mathbb{H}}(P,Q) = \left| \ln \left(\frac{y_2}{y_1} \right) \right|, \text{ se } x_1 = x_2,$$

$$d_{\mathbb{H}}(P,Q) = \left| \ln \left(\frac{\frac{x_1 - c + r}{y_1}}{\frac{x_2 - c + r}{y_2}} \right) \right|, \text{ se } P, Q \in L^{c,r}. \tag{1}$$

Note que a Definição 3 satisfaz os axiomas da Definição 2.

Definição 4

Se \overrightarrow{BA} é uma semirreta no Plano de Poincaré onde $B=(x_b,y_b)$ e $A=(x_a,y_a)$, então a tangente euclidiana \overrightarrow{BA} para B é

$$T_{BA} = \left\{ egin{aligned} (0,y_a-y_b) & \sec \overrightarrow{AB} \ \mathrm{\'e} \ \mathrm{uma} \ \mathrm{reta} \ \mathrm{Tipo} \ \mathrm{I}, \ (y_b,c-x_b) & \sec \overrightarrow{AB} \ \mathrm{\'e} \ \mathrm{uma} \ \mathrm{reta} \ \mathrm{Tipo} \ \mathrm{II} \ \mathrm{com} \ x_b < x_a, \ -(y_b,c-x_b) \ \mathrm{se} \ \overleftarrow{AB} \ \mathrm{\'e} \ \mathrm{uma} \ \mathrm{reta} \ \mathrm{Tipo} \ \mathrm{II} \ \mathrm{com} \ x_b > x_a. \end{aligned}
ight.$$

A tangente euclidiana \overrightarrow{BA} é a semirreta euclidiana $\overrightarrow{BA'}$ onde $A' = B + T_{BA}$.

Definição 5

A medida do ângulo de Poincaré $\angle ABC$ em \mathcal{H} é

$$m_{\mathbb{H}}(\angle ABC) = m_E(\angle A'B'C') = \cos^{-1}\left(rac{\langle T_{AB}, T_{BC}
angle}{||T_{AB}||.||T_{BC}||}
ight)$$

onde $A'=B+T_{B,A}$, $C'=B+T_{B,C}$ e m_E a medida de ângulo euclidiana.

Chamamos de geometria hiperbólica, a geometria métrica $\mathcal{H}=\{\mathbb{H},\mathcal{L}_{\mathbb{H}},d_{\mathbb{H}}\}$ com a medida de ângulos $m_{\mathbb{H}}$.

Na geometria euclidiana, a soma das medidas dos ângulos internos de qualquer triângulo é igual a **180** graus, o que não ocorre na geometria hiperbólica.

Teorema 1

Em uma geometria hiperbólica, a soma das medidas dos ângulos de qualquer triângulo é estritamente menor do que 180 graus.

Retas e Polígonos Hipebólicos Via PyScript

Desenhar uma reta ou um polígono hiperbólico com régua e compasso é bastante trabalhoso, então ter uma interface gráfica onde o usuário possa desenhar esses objetos com o auxílio do mouse, se mostra interessante. Neste trabalho desenvolvemos um aplicativo web para desenhar retas e polígonos hiperbólicos e calcular ângulos hiperbólicos através do PyScript, [2].

O PyScrip é um framework (uma estrutura de desenvolvimento de software que fornece um conjunto de ferramentas, bibliotecas e convenções para facilitar a criação e a organização de aplicativos ou sistemas) que permite aos usuários criar aplicativos Python no navegador usando a interface do HTML e tecnologias web modernas. O PyScript fornece um caminho para o usuário rodar códigos Python diretamente no navegador, com isso podemos usar o Javascript, HTML e o Python juntamente, para desenvolver aplicações web. Esta nova e interessante ferramenta, fornece aos usuários em todos os níveis de experiência acesso a uma linguagem de programação expressiva e fácil de aprender com inúmeras aplicações.

Na Figura 2 temos um exemplo de triângulo hiperbólico usando o aplicativo web via PyScript desenvolvido neste trabalho. O aplicativo também calcula a medida dos ângulos hiperbólicos.

Figura 2: Interface Web: geometria hiperbólica.

Agradecimento: À coordenação e ao corpo docente do PROFMAT – UFU, Uberlândia, equipe qualificada tecnicamente, estimulando o crescimento pessoal e profissional. Reitero o carinho, respeito e apoio ao saber lidar com os alunos, respeitando suas limitações. Um agradecimento especial ao Prof. Dr. Aldicio José Miranda, responsável direto por este momento. Que Deus abençoe e ilumine a todos.

Referências

- [1] Richard S. Millman e George D. Parker, Geometry: A Metric Approach with Models, Springer, 2, 1991.
- [2] https://pyscript.net/