## Aplicações - SQL

Banco de Dados: Teoria e Prática

André Santanchè Instituto de Computação - UNICAMP Março de 2016



## Linguagens de Query

- Para manipulação e recuperação de dados
- Linguagens de Query (LQ) em BD:
  - Fundamentação formal
  - Subsidiam otimização
- LQ <> linguagens de programação
  - não se espera que sejam "Turing completas".
  - não pensadas para cálculos complexos.
  - suportam acessos simples e eficientes a extensos conjuntos de dados

# Linguagens de

Uma linguagem é dita "Turing completa" se puder ser demonstrado que ela é computacionalmente equivalente à máquina de Turing.

- Para manipulação e recuper
- Linguagens de Query (LQ) em BD:
  - Fundamentação formal
  - Subsidiam otimização
- LQ <> linguagens de programação
  - não se espera que sejam "Turing completas"
  - não pensadas para cálculos complexos.
  - suportam acessos simples e eficientes a extensos conjuntos de dados

(Ramakrishnan, 2003)

### SQL

- SQL Structured Query Language
- Originalmente: SEQUEL Structured English QUEry Language
- Criada pela IBM Research
  - □ Interface BD Relacional → SYSTEM R

# SQL Padronização

ANSI + ISO

SQL-86 ou SQL1

SQL-92 ou SQL2

SQL:1999 ou SQL3

**SQL:2003** 

- SQL:2006

#### Aplicações e Armazenamento Arquivos



# Aplicações e Armazenamento SGBD

Aplicação

Aplicação

Aplicação







SGBD Sistema Gerenciador de Banco de Dados



Banco de Dados

#### Dicionário de Dados



# Caso Prático - Taxis

#### Esquema Conceitual - Exemplo Táxis



Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema multi-usuário" por prof. Geovane Cayres Magalhães

# Esquema Conceitual - Exemplo Cliente



Para ilustrar o tema apresentado, foram acrescentadas duas entidades que são especialização de Cliente. A primeira representa um indivíduo que irá pagar a conta, a segunda representa um funcionário de uma empresa conveniada, para a qual a conta será enviada. Um cliente pode pertencer a ambas especializações.

#### Esquema Conceitual completo Táxis



## Tabelas para exemplo - Táxis

#### Cliente Particular (CP)

| CliId | Nome     | CPF            |
|-------|----------|----------------|
| 1532  | Asdrúbal | 448.754.253-65 |
| 1755  | Doriana  | 567.387.387-44 |
| 1780  | Quincas  | 546.373.762-02 |



| CliId | Nome     | CGC                 |
|-------|----------|---------------------|
| 1532  | Asdrúbal | 754.856.965/0001-54 |
| 1644  | Jepeto   | 478.652.635/0001-75 |
| 1780  | Quincas  | 554.663.996/0001-87 |
| 1982  | Zandor   | 736.952.369/0001-23 |



## Tabelas para exemplo - Táxis

#### Táxi (TX)

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |



#### Corrida (R1)

| ClId | <u>Placa</u> | <b>DataPedido</b> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |



#### CREATE SCHEMA

CREATE SCHEMA <esquema> AUTHORIZATION <id\_autorizado>

Java: executeUpdate(...)

#### CREATE TABLE

Java: executeUpdate(...)

#### CREATE TABLE

```
CREATE TABLE Taxi (
  Placa VARCHAR (7) NOT NULL,
  Marca VARCHAR (30) NOT NULL,
  Modelo VARCHAR (30) NOT NULL,
  AnoFab INTEGER,
  Licenca VARCHAR (9),
  PRIMARY KEY (Placa)
CREATE TABLE Cliente (
 CliId VARCHAR(4) NOT NULL,
  Nome VARCHAR (80) NOT NULL,
  CPF VARCHAR (14) NOT NULL,
  PRIMARY KEY (CliId)
```

# CREATE TABLE FOREIGN KEY

CREATE TABLE <tabela>

```
FOREIGN KEY (<coluna_estr><sub>1</sub>[,...,<coluna_estr><sub>n</sub>])
REFERENCES <tabela_ref>([<coluna_ref>[,...,<coluna_ref]])
[ON DELETE <ação_ref>]
[ON UPDATE <ação_ref>]
```

- <ação\_ref>
  - NO ACTION → impede a ação na tabela mestre < tabela\_ref>
  - □ CASCADE → propaga a ação da tabela mestre
  - □ SET NULL → valores de referências alterados para nulo
  - SET DEFAULT → valores de referências alterados para default

# CREATE TABLE FOREIGN KEY

```
CREATE TABLE Corrida (
  CliId VARCHAR(4) NOT NULL,
  Placa VARCHAR (7) NOT NULL,
  DataPedido DATE NOT NULL,
  PRIMARY KEY (CliId, Placa, DataPedido),
  FOREIGN KEY (CliId)
    REFERENCES Cliente (CliId)
      ON DELETE NO ACTION
      ON UPDATE NO ACTION,
  FOREIGN KEY (Placa)
    REFERENCES Taxi (Placa)
      ON DELETE NO ACTION
      ON UPDATE NO ACTION
```

#### Exercício 1

- Escreva uma comando SQL para criar os esquemas:
  - Pessoa(<u>nome</u>, nome\_da\_mãe, ano\_nascimento, nome\_cidade\_natal)
    - nome\_cidade\_natal → CHE Cidade
  - Cidade(<u>nome\_cidade</u>, sigla\_estado)

#### **INSERT**

```
    INSERT INTO <tabela>
        [(<campo<sub>1</sub>>[,..., <campo<sub>n</sub>>])]
    VALUES ( <valor<sub>1</sub>>[,..., <valor<sub>n</sub>>])
```

executeUpdate(...)

### Exemplos INSERT

## Comandos INSERT para Taxi

```
INSERT INTO Cliente VALUES ('1532', 'Asdrúbal', '448.754.253-65');
INSERT INTO Cliente VALUES ('1755', 'Doriana', '567.387.387-44');
INSERT INTO Cliente VALUES ('1780', 'Quincas', '546.373.762-02');
INSERT INTO Taxi VALUES ('DAE6534', 'Ford', 'Fiesta', 1999, 'MN572345');
INSERT INTO Taxi VALUES ('DKL4598', 'Wolkswagen', 'Gol', 2001, 'AU876543');
INSERT INTO Taxi VALUES ('DKL7878', 'Ford', 'Fiesta', 2001, 'OP102938');
INSERT INTO Taxi VALUES ('JDM8776', 'Wolkswagen', 'Santana', 2002, 'QM365923');
INSERT INTO Taxi VALUES ('JJM3692', 'Chevrolet', 'Corsa', 1999, 'UU335577');
INSERT INTO Corrida VALUES ('1755', 'DAE6534', '2003-02-15');
INSERT INTO Corrida VALUES ('1780', 'JDM8776', '2003-02-18');
INSERT INTO Corrida VALUES ('1755', 'DKL7878', '2003-02-16');
INSERT INTO Corrida VALUES ('1780', 'DKL4598', '2003-02-17');
INSERT INTO Corrida VALUES ('1532', 'DKL4598', '2003-02-18');
INSERT INTO Corrida VALUES ('1780', 'DAE6534', '2003-02-16');
```

#### Exercício 2

 Escreva um comando SQL para inserir uma tupla na tabela Pessoa com os seus dados e dados de familiares próximos (cerca de 2 linhas). Preencha a tabela Cidade com as cidades listadas na tabela Pessoa e suas respectivas siglas de estado. Use dados fictícios se preciso.

#### **SELECT**

```
SELECT * | <campo<sub>1</sub>>[,..., <campo<sub>n</sub>>]
FROM <tabela<sub>1</sub>>[,..., <tabela<sub>n</sub>>]
WHERE <condição/junção>
```

executeQuery(...)

# SELECT Projeção

#### SELECT Marca, Modelo FROM Taxi

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

# SELECT Projeção

#### SELECT Marca, Modelo FROM Taxi

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

# SELECT Projeção

#### SELECT Marca, Modelo FROM Taxi

| Marca      | Modelo  |
|------------|---------|
| Ford       | Fiesta  |
| Wolksvagen | Gol     |
| Ford       | Fiesta  |
| Wolksvagen | Santana |
| Chevrolet  | Corsa   |

# SELECT Seleção

#### SELECT \* FROM Taxi WHERE AnoFab > 2000

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

# SELECT Seleção

#### SELECT \* FROM Taxi WHERE AnoFab > 2000

| Placa   | Marca      | Modelo  | AnoFab |
|---------|------------|---------|--------|
| DAE6534 | Ford       | Fiesta  | 1999   |
| DKL4598 | Wolksvagen | Gol     | 2001   |
| DKL7878 | Ford       | Fiesta  | 2001   |
| JDM8776 | Wolksvagen | Santana | 2002   |
| JJM3692 | Chevrolet  | Corsa   | 1999   |

# SELECT Seleção

#### SELECT \* FROM Taxi WHERE AnoFab > 2000

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |

#### Exercício 3

- Para a tabelas que você montou no exercício
   1, escreva um comando SQL que retorne:
  - a) nomes de todas as mães
  - b) nomes de todas as mães com filhos maiores de 12 anos

#### SELECT Between

# SELECT \* FROM Taxi WHERE AnoFab BETWEEN 1999 AND 2001;

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

#### SELECT IN

#### SELECT \* FROM Taxi WHERE Modelo

IN ('Corsa', 'Santana');

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

#### SELECT LIKE

# SELECT Placa, Marca FROM Taxi WHERE Marca LIKE 'Wolks%';

|   | placa                | marca                 |
|---|----------------------|-----------------------|
|   | character varying(7) | character varying(30) |
| 1 | DKL4598              | Wolkswagen            |
| 2 | JDM8776              | Wolkswagen            |

- % → qualquer cadeia com 0 a n caracteres
- \_ → exatamente um caractere (qualquer)
- = → caractere de escape
  - e.g., serve para encontrar um caractere \_

## AS (alias)

```
SELECT <campo<sub>1</sub>> [AS] <alias<sub>1</sub>>[,..., <campo<sub>n</sub>> [AS] <alias<sub>n</sub>>]
```

# SELECT Alias

# SELECT Cl.Clild, Cl.Nome FROM Cliente AS Cl;

|   | cliid                | nome                  |
|---|----------------------|-----------------------|
|   | character varying(4) | character varying(80) |
| 1 | 1532                 | Asdrúbal              |
| 2 | 1755                 | Doriana               |
| 3 | 1780                 | Quincas               |

# SELECT Funções

SELECT Placa, Modelo | | ' - ' | | upper(Marca) AS MarcaModelo FROM Taxi;

|   | placa     | marcamodelo          |  |
|---|-----------|----------------------|--|
|   | character | text                 |  |
| 1 | DAE6534   | Fiesta - FORD        |  |
| 2 | DKL4598   | Gol - WOLKSWAGEN     |  |
| 3 | DKL7878   | Fiesta - FORD        |  |
| 4 | JDM8776   | Santana - WOLKSWAGEN |  |
| 5 | JJM3692   | Corsa - CHEVROLET    |  |

# SELECT DISTINCT e ALL

- SELECT DISTINCT ...
  - Seleciona apenas tuplas distintas (definição do modelo relacional)

SELECT ALL ...

 A cláusula ALL é implícita se não especificada (o padrão do SQL é não seguir a unicidade do modelo relacional)

# SELECT ORDER BY

- SELECT ...
  ORDER BY <campo<sub>1</sub>>[,..., <campo<sub>n</sub>>][DESC]
  - Ordena de acordo com a lista de campos
  - Use DESC para ordem decrescente

# SELECT ORDER BY

# SELECT nome FROM Cliente ORDER BY nome DESC;

|   | nome                  |  |
|---|-----------------------|--|
|   | character varying(80) |  |
| 1 | Quincas               |  |
| 2 | Doriana               |  |
| 3 | Asdrúbal              |  |

- SELECT ...
  FROM <tabela<sub>1</sub>>, <tabela<sub>2</sub>>
  - <não há condição que ligue tabelas>
- Não há associação de atributo da <tabela<sub>1</sub>>
   com atributo da <tabela<sub>2</sub>>

| <u>CliId</u> | Nome     |
|--------------|----------|
| 1532         | Asdrúbal |
| 1755         | Doriana  |
| 1780         | Quincas  |

| <u>ClId</u> | <u>Placa</u> | <b>DataPedido</b> |
|-------------|--------------|-------------------|
| 1755        | DAE6534      | 15/02/2003        |
| 1982        | JDM8776      | 18/02/2003        |

| <u>CliId</u> | Nome     |
|--------------|----------|
| 1532         | Asdrúbal |
| 1755         | Doriana  |
| 1780         | Quincas  |

| ClId | <u>Placa</u> | <b>DataPedido</b> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |

| (CliId) | Nome     | (ClId) | Placa   | <b>DataPedido</b> |
|---------|----------|--------|---------|-------------------|
| 1532    | Asdrúbal | 1755   | DAE6534 | 15/02/2003        |
| 1532    | Asdrúbal | 1982   | JDM8776 | 18/02/2003        |

| CliId | Nome     |
|-------|----------|
| 1532  | Asdrúbal |
| 1755  | Doriana  |
| 1780  | Quincas  |

| <u>ClId</u> | <u>Placa</u> | <b>DataPedido</b> |
|-------------|--------------|-------------------|
| 1755        | DAE6534      | 15/02/2003        |
| 1982        | JDM8776      | 18/02/2003        |

| (CliId) | Nome     | (ClId) | Placa   | DataPedido |
|---------|----------|--------|---------|------------|
| 1532    | Asdrúbal | 1755   | DAE6534 | 15/02/2003 |
| 1532    | Asdrúbal | 1982   | JDM8776 | 18/02/2003 |
| 1755    | Doriana  | 1755   | DAE6534 | 15/02/2003 |
| 1755    | Doriana  | 1982   | JDM8776 | 18/02/2003 |

| <u>CliId</u> | Nome     |
|--------------|----------|
| 1532         | Asdrúbal |
| 1755         | Doriana  |
| 1780         | Quincas  |

| Clld | <u>Placa</u> | <b>DataPedido</b> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |

| (CliId) | Nome     | (ClId) | Placa   | <b>DataPedido</b> |
|---------|----------|--------|---------|-------------------|
| 1532    | Asdrúbal | 1755   | DAE6534 | 15/02/2003        |
| 1532    | Asdrúbal | 1982   | JDM8776 | 18/02/2003        |
| 1755    | Doriana  | 1755   | DAE6534 | 15/02/2003        |
| 1755    | Doriana  | 1982   | JDM8776 | 18/02/2003        |
| 1780    | Quincas  | 1755   | DAE6534 | 15/02/2003        |
| 1780    | Quincas  | 1982   | JDM8776 | 18/02/2003        |

# Junção - Join (1)

SELECT ...
FROM <tabela<sub>1</sub>>, <tabela<sub>2</sub>>
WHERE <tabela<sub>1</sub>>.<atr> = <tabela<sub>2</sub>>.<atr>

Join implícito

# Join (1)

SELECT Cliente.CliId, Cliente.Nome,
 Corrida.CliId, Corrida.Placa,
 Corrida.DataPedido
 FROM Cliente, Corrida
 WHERE Cliente.CliId = Corrida.CliId

| (CliId) | Nome     | (ClId) | Placa   | DataPedido |
|---------|----------|--------|---------|------------|
| 1532    | Asdrúbal | 1755   | DAE6534 | 15/02/2003 |
| 1532    | Asdrúbal | 1982   | JDM8776 | 18/02/2003 |
| 1755    | Doriana  | 1755   | DAE6534 | 15/02/2003 |
| 1755    | Doriana  | 1982   | JDM8776 | 18/02/2003 |
| 1780    | Quincas  | 1755   | DAE6534 | 15/02/2003 |
| 1780    | Quincas  | 1982   | JDM8776 | 18/02/2003 |

Obter, para cada corrida, informações de id e nome do cliente bem como placa e data da corrida

# Join (1)

SELECT Cliente.CliId, Cliente.Nome,
 Corrida.CliId, Corrida.Placa,
 Corrida.DataPedido
 FROM Cliente, Corrida
 WHERE Cliente.CliId = Corrida.CliId

| (CliId) | Nome     | (ClId) | Placa   | DataPedido |
|---------|----------|--------|---------|------------|
| 1532    | Asdrúbal | 1755   | DAE6534 | 15/02/2003 |
| 1532    | Asdrúbal | 1982   | JDM8776 | 18/02/2003 |
| 1755    | Doriana  | 1755   | DAE6534 | 15/02/2003 |
| 1755    | Doriana  | 1982   | JDM8776 | 18/02/2003 |
| 1780    | Quincas  | 1755   | DAE6534 | 15/02/2003 |
| 1780    | Quincas  | 1982   | JDM8776 | 18/02/2003 |

Join (1)

SELECT Cliente.CliId, Cliente.Nome,
 Corrida.CliId, Corrida.Placa,
 Corrida.DataPedido
 FROM Cliente, Corrida
 WHERE Cliente.CliId = Corrida.CliId

| (CliId) | Nome    | (ClId) | Placa   | <b>DataPedido</b> |
|---------|---------|--------|---------|-------------------|
| 1755    | Doriana | 1755   | DAE6534 | 15/02/2003        |

# Exercício 4

- Para a tabelas que você montou no exercício
   1, desenhe uma tabela com mais dados (fictícios se preferir) e escreva um comando
   SQL que retorne:
  - nomes de parentes que nasceram no mesmo estado que você
  - retorne todas as duplas de irmãos (não se preocupe com duplicidade de irmãos)

# Desafio

• Qual o modelo de Taxi para cada Corrida?

### Cliente (C)

| <u>CliId</u> | Nome     | CPF            |
|--------------|----------|----------------|
| 1532         | Asdrúbal | 448.754.253-65 |
| 1755         | Doriana  | 567.387.387-44 |
| 1780         | Quincas  | 546.373.762-02 |



Marca

Ford

Táxi (TX)

Fiesta

Fiesta

Corsa

Santana

Gol

Modelo



**AnoFab** 

1999

2001

2001

2002

1999

| DKL4598 | Wolksvagen |
|---------|------------|
| DKL7878 | Ford       |
| JDM8776 | Wolksvagen |
| JJM3692 | Chevrolet  |

**Placa** 

**DAE6534** 

| ClId | <u>Placa</u> | <u>DataPedido</u> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |

# Modelo de Taxi para cada Corrida

SELECT Co.DataPedido, Co.Placa, T.Modelo
 FROM Corrida Co, Taxi T
 WHERE Co.Placa = T.Placa;

Placa

Cliente (C)

| CliId | Nome     | CPF            |
|-------|----------|----------------|
| 1532  | Asdrúbal | 448.754.253-65 |
| 1755  | Doriana  | 567.387.387-44 |
| 1780  | Quincas  | 546.373.762-02 |



Marca



Modelo



| DAE6534 | Ford       | Fiesta  | 1999 |
|---------|------------|---------|------|
| DKL4598 | Wolksvagen | Gol     | 2001 |
| DKL7878 | Ford       | Fiesta  | 2001 |
| JDM8776 | Wolksvagen | Santana | 2002 |
| JJM3692 | Chevrolet  | Corsa   | 1999 |



| ClId | <u>Placa</u> | <u>DataPedido</u> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |

# Desafio

• Quais os modelos de Taxi tomados por cada Cliente?

Cliente (C)

| CliId | Nome     | CPF            |
|-------|----------|----------------|
| 1532  | Asdrúbal | 448.754.253-65 |
| 1755  | Doriana  | 567.387.387-44 |
| 1780  | Quincas  | 546.373.762-02 |

**Placa** 



Modelo



AnoFab



Marca



|             | 0 0 1 1 1 0 0 0 |                   |
|-------------|-----------------|-------------------|
| <u>ClId</u> | <u>Placa</u>    | <b>DataPedido</b> |
| 1755        | DAE6534         | 15/02/2003        |
| 1982        | JDM8776         | 18/02/2003        |

# Modelos de Taxi por Cliente

SELECT Cl.Nome, Co.DataPedido, Co.Placa, T.Modelo
 FROM Cliente Cl, Corrida Co, Taxi T
 WHERE Cl.CliId = Co.CliId AND Co.Placa = T.Placa;

### Cliente (C)

| CliId | Nome     | CPF            |
|-------|----------|----------------|
| 1532  | Asdrúbal | 448.754.253-65 |
| 1755  | Doriana  | 567.387.387-44 |
| 1780  | Quincas  | 546.373.762-02 |

Placa



Marca



Modelo



AnoFab

| DAE6534 | Ford       | Fiesta  | 1999 |
|---------|------------|---------|------|
| DKL4598 | Wolksvagen | Gol     | 2001 |
| DKL7878 | Ford       | Fiesta  | 2001 |
| JDM8776 | Wolksvagen | Santana | 2002 |
| JJM3692 | Chevrolet  | Corsa   | 1999 |



| ClId | <u>Placa</u> | <u>DataPedido</u> |
|------|--------------|-------------------|
| 1755 | DAE6534      | 15/02/2003        |
| 1982 | JDM8776      | 18/02/2003        |



# Funções de Agregação

- COUNT(\*) ⇒ contagem
- SUM(<coluna>) ⇒ soma
- AVG(<coluna>) ⇒ média
- MAX(<coluna>) ⇒ maior valor
- MIN(<coluna>) ⇒ menor valor

# **AGREGAÇÃO**

# SELECT AVG(anofab) FROM Taxi;

Táxi:

| <u>Placa</u> | Marca      | Modelo  | AnoFab |
|--------------|------------|---------|--------|
| DAE6534      | Ford       | Fiesta  | 1999   |
| DKL4598      | Wolksvagen | Gol     | 2001   |
| DKL7878      | Ford       | Fiesta  | 2001   |
| JDM8776      | Wolksvagen | Santana | 2002   |
| JJM3692      | Chevrolet  | Corsa   | 1999   |

Resultado:

avg 2000.4

Média de ano de fabricação

# **GROUP BY**

```
SELECT * | <campo<sub>1</sub>>[,..., <campo<sub>n</sub>>]
FROM <tabela<sub>1</sub>>[,..., <tabela<sub>n</sub>>]
WHERE <condição/junção>
GROUP BY <coluna_agrupar>
HAVING <condição_grupo>
```

# **GROUP BY**

# SELECT modelo, count(\*) FROM Taxi GROUP BY modelo;

Táxi:

|    | <u>Placa</u> | Marca      | Modelo  | AnoFab |
|----|--------------|------------|---------|--------|
| D  | AE6534       | Ford       | Fiesta  | 1999   |
| D  | KL4598       | Wolksvagen | Gol     | 2001   |
| D  | KL7878       | Ford       | Fiesta  | 2001   |
| JI | OM8776       | Wolksvagen | Santana | 2002   |
| JJ | M3692        | Chevrolet  | Corsa   | 1999   |

Resultado:

| modelo  | count |
|---------|-------|
| Gol     | 1     |
| Corsa   | 1     |
| Santana | 1     |
| Fiesta  | 2     |

Contagem por modelo

# **GROUP BY**

## SELECT modelo, anofab, count(\*) FROM Taxi GROUP BY modelo, anofab;

| modelo  | anofab | count |              |
|---------|--------|-------|--------------|
| Escort  | 2001   | 1     |              |
| Escort  | 2000   | 1     |              |
| Santana | 2002   | 1     |              |
| Fiesta  | 1999   | 1     |              |
| Corsa   | 1999   | 1     | usando dados |
| Gol     | 2000   | 1     | completos)   |
| Santana | 1998   | 2     |              |
| Fiesta  | 2001   | 1     |              |
| Gol     | 2001   | 1     |              |

Resultado:

Contagem por ano de fabricação do modelo

# Exercício 6

- Escreva uma sentença SQL, baseada no esquema abaixo, que retorne o número de pessoas da família em cada estado:
  - Pessoa(<u>nome</u>, nome\_da\_mãe, ano\_nascimento, nome\_cidade\_natal)
    - nome\_cidade\_natal → CHE Cidade
  - Cidade(<u>nome\_cidade</u>, sigla\_estado)

# Consultas Aninhadas

# SELECT Seleção

### SELECT \* FROM Taxi WHERE AnoFab > 2000

| Placa   | Marca      | Modelo  | AnoFab |
|---------|------------|---------|--------|
| DAE6534 | Ford       | Fiesta  | 1999   |
| DKL4598 | Wolksvagen | Gol     | 2001   |
| DKL7878 | Ford       | Fiesta  | 2001   |
| JDM8776 | Wolksvagen | Santana | 2002   |
| JJM3692 | Chevrolet  | Corsa   | 1999   |

# SELECT IN e NOT IN

SELECT ...WHERE <campo> IN(SELECT <campo> ...)

 SELECT ...
 WHERE <campo> NOT IN (SELECT <campo> ...)



# SELECT EXISTS e NOT EXISTS

# SELECT Comparação

SELECT ...

WHERE <campo> <comparação> (SELECT <campo> ...)

Exemplo:

SELECT Placa FROM Corrida

WHERE Corrida.DataPedido = (SELECT

MIN(DataPedido) FROM Corrida);

# Exercício 7

- Para a tabelas que você montou no exercício 1, escreva um comando SQL que retorne retorne todos os primos por parte de mãe, que você for capaz de inferir a partir da tabela. Considere que você tem como ponto de partida o nome da sua avó.
- Utilize duas estratégias:
  - VIEW
  - SELECT aninhado



# Join

SELECT ...

FROM <tabela> JOIN <tabela> ON <condição> ...

- Tipo clássico de join explicitado
- Também conhecido como INNER JOIN

# Natural Join

SELECT ...
FOM <tabela> NATURAL JOIN <tabela>

- Condição não especificada
- EQUIJOIN: Verifica igualdade de cada par de atributos com o mesmo nome

#### **Outer Join**

SELECT ...

```
FROM <tabela> <join> <tabela> ON <condição> ...
```

- <join>
  - LEFT JOIN toda tupla à esquerda aparece
  - RIGT JOIN toda tupla à direita aparece
  - FULL JOIN toda tupla aparece

#### **SQL JOINS**

#### **INNER JOIN**



SELECT \*
FROM A
INNER JOIN B ON A.key = B.key

#### **LEFT JOIN**



SELECT \*
FROM A
LEFT JOIN B ON A.key = B.key

#### LEFT JOIN (sans l'intersection de B)



SELECT \*
FROM A
LEFT JOIN B ON A.key = B.key
WHERE B.key IS NULL

#### **RIGHT JOIN**



SELECT \*
FROM A
RIGHT JOIN B ON A.key = B.key

#### RIGHT JOIN (sans l'intersection de A)



SELECT \*
FROM A
RIGHT JOIN B ON A.key = B.key
WHERE B.key IS NULL

**FULL JOIN** 

CRT BOM +



WHERE B.key IS NULL

#### **RIGHT JOIN**



SELECT \*
FROM A
RIGHT JOIN B ON A.key = B.key

LEFT JOIN B ON A.key = B.key

#### RIGHT JOIN (sans l'intersection de A)



SELECT \*
FROM A
RIGHT JOIN B ON A.key = B.key
WHERE B.key IS NULL

#### **FULL JOIN**



SELECT \*
FROM A
FULL JOIN B ON A.key = B.key

#### **FULL JOIN (sans intersection)**



SELECT \*
FROM A
FULL JOIN B ON A.key = B.key
WHERE A.key IS NULL
OR B.key IS NULL

sql.sh

## União, Interseção e Diferença

- SELECT ...<operador>SELECT ...
- <operador>
  - UNION
  - INTERSECT
  - EXCEPT



## DELETE (CUIDADO!!!)

DELETE FROM < tabela<sub>1</sub> >
 WHERE < condição >

executeUpdate(...))

#### UPDATE

• UPDATE <tabela> SET <campo<sub>1</sub>>=<valor<sub>1</sub>> [,..., <campo<sub>n</sub>>=<valor<sub>n</sub>>] WHERE <condição>

executeUpdate(...)



#### Marcadores e Categorias Modelo ER



### Marcadores e Categorias Modelo Relacional

Marcador (<u>Titulo</u>, Endereco, Acessos, Categoria)

| Titulo    | Endereco                    | Acessos | Categoria |
|-----------|-----------------------------|---------|-----------|
| Terra     | http://www.terra.com.br     | 295     | Portal    |
| POVRay    | http://www.povray.org       | 2       | CG        |
| SBC       | http://www.sbc.org.br       | 26      | Sociedade |
| Correios  | http://www.correios.com.br  | 45      | Serviços  |
| GMail     | http://www.gmail.com        | 296     | Mail      |
| Google    | http://www.google.com       | 1590    | Busca     |
| Yahoo     | http://www.yahoo.com        | 134     | Serviços  |
| Orkut     | http://www.orkut.com        | 45      | Serviços  |
| iBahia    | http://www.ibahia.com       | 3       | Portal    |
| Submarino | http://www.submarino.com.br | 320     | Serviços  |

## Tabela Taxonomia Modelo Relacional



| Categoria           | Superior  |  |
|---------------------|-----------|--|
| Geral               |           |  |
| Serviços            | Geral     |  |
| Acadêmico           | Geral     |  |
| Relacionamento      | Geral     |  |
| Busca               | Serviços  |  |
| Portal              | Serviços  |  |
| Mail                | Serviços  |  |
| Vendas              | Serviços  |  |
| <u>Universidade</u> | Acadêmico |  |
| CG                  | Acadêmico |  |
| Sociedade           | Acadêmico |  |

### Marcadores e Categorias Modelo Relacional

Marcador (<u>Titulo</u>, Acessos, Endereco, Categoria)

- Categoria: chave estrangeira para Taxonomia

Taxonomia (<u>Categoria</u>, Superior)

## Estudo de Caso SQL

- UPDATE Marcadores
   SET Categoria = <nova>
   WHERE Categoria = <antiga>
- UPDATE Taxonomia
   SET Categoria = <nova>
   WHERE Categoria = <antiga>
- UPDATE Taxonomia
   SET Superior = <nova>
   WHERE Superior = <antiga>

# SELECT aninhado também pode ser usado em operações de UPDATE e DELETE



## Utilizando o PreparedStatement

SELECT FROM Marcadores
WHERE Titulo = ?

<comando>.setString(<numero>, <valor>)

## Utilizando o PreparedStatement

INSERT INTO MarcadoresVALUES (? , ? ,? ,?)

- <comando>.setString(<numero>, <valor>)
- <comando>.setInt(<numero>, <valor>)

## Utilizando o PreparedStatement

UPDATE MarcadoresSET Categoria = ?WHERE Categoria = ?

- <comando>.setString(<numero>, <valor>)
- <comando>.setInt(<numero>, <valor>)







- Luiz Celso Gomes Jr (professor desta disciplina em 2014)
   pela contribuição na disciplina e nos slides.
- Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.

## André Santanchè

http://www.ic.unicamp.br/~santanche

## Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença, com restrições adicionais:
  - Se você é estudante, você não está autorizado a utilizar estes slides (total ou parcialmente) em uma apresentação na qual você esteja sendo avaliado, a não ser que o professor que está lhe avaliando:
    - lhe peça explicitamente para utilizar estes slides;
    - ou seja informado explicitamente da origem destes slides e concorde com o seu uso.
- Mais detalhes sobre a referida licença Creative Commons veja no link:
  - http://creativecommons.org/licenses/by-nc-sa/2.5/br/