How to do MCTS on a POMDP?

Q[(s,a)]

N((s,a))

Online POMDP Methods

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Offline

Previously

Online

Formulation Approximations

(solve a slightly different problem)

Numerical Approximations

(approximately solve original problem)

Offline

Previously

Online

Formulation Approximations

(solve a slightly different problem)

Last Time

Numerical Approximations

(approximately solve original problem)

Offline

Previously

SARSOP

Online

Today!

Formulation Approximations

(solve a slightly different problem)

Last Time

POMDP Sense-Plan-Act Loop

POMDP Sense-Plan-Act Loop

Belief-Space Tree Search: AEMS

$$E(b) = \gamma P(b d) E(b)$$

$$E(b) = \gamma P(b d) E(b)$$

$$P(b d) = U(b) - L(b)$$

$$P(a | b) = U(a,b) - L(b)$$

$$P(a | b) = U(a,b) - L(b)$$

$$P(a | b) = \{b \in A = ang_a a \times U(a',b)\}$$

$$P(a | b) = \{b \in A = ang_a a \times U(a',b)\}$$

$$AEMS Z$$

Monte Carlo Tree Search (MCTS/UCT)

Search

Expansion

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}}$$

low N(s,a)/N(s) = high bonus start with $c=2(\bar{V}-\underline{V})$

Rollout

Backup

How should we adapt MCTS for POMDPs?

MCTS on Histories

DESPOT

DESPOT

DeterminizedScenarios

DESPOT

- DeterminizedScenarios
- Guided by Lower and Upper Bounds

POMCP

POMCPOW

DESPOT- α

BOMCP

Bayesian Optimized Action Branching

BOMCP

Bayesian Optimized Action Branching

BOMCP

Bayesian Optimized Action Branching

Figure 2: Wind Map. Figure shows wind map for Altamont Pass, CA at 100m altitude. The colors represent the average annual wind speed in m/s.

10 25 50 100	15708 ± 229 16234 ± 217 16374 ± 212	2.25 ± 0.07 4.80 ± 0.07 6.27 ± 0.08
50	16374 ± 212	2.00 - 0.01
		6.27 ± 0.08
100	10010 000	
	16018 ± 262	11.98 ± 0.07
200	15787 ± 233	20.67 ± 0.09
10	18095 ± 183	2.55 ± 0.08
25	18154 ± 158	5.21 ± 0.07
BOMCP 50 100	18015 ± 163	6.71 ± 0.06
	18225 ± 119	13.39 ± 0.07
200	18113 ± 157	25.14 ± 0.08
-	8130 ± 51	-
	10 25 50 100	$\begin{array}{ccc} 10 & 18095 \pm 183 \\ 25 & 18154 \pm 158 \\ 50 & 18015 \pm 163 \\ 100 & 18225 \pm 119 \\ 200 & 18113 \pm 157 \end{array}$

Voronoi Progressive Widening

Online Tree Search Planner

Voronoi Progressive Widening

Voronoi Progressive Widening

Online Tree Search Planner

Voronoi Progressive Widening

[Lim, Tomlin, & Sunberg CDC 2021]

Voronoi Progressive Widening

Online Tree Search Planner

Van Der Pol Tag Results

35

Solver

POMCPOW

25

10

0.01

Planning Time (sec) – Log Scale

Voronoi Progressive Widening

Theorem 2 (VOWSS Inequality). Given the action sampling width of C_a and state sampling width of C_s at every height of the tree that follow the intermediate concentration bounds in the form of POWSS (Lim, Tomlin, and Sunberg 2020) and regret bounds in the form of VOO (Kim et al. 2020), the following bounds for the VOWSS estimator $\hat{V}_{VOWSS,d}^{C_a}(b)$ hold for all $d \in [0, D-1]$ in expectation:

$$\left| V_d^{\star}(b) - \hat{V}_{\text{VOWSS},d}^{C_a}(b) \right| \le \eta + \alpha$$

[Lim, Tomlin, & Sunberg CDC 2021]