Reference solution to the 2021-2022 exam in HPPS

January, 2022

Context

The reference solution code is in the directory exam-solution. This document contains reference answers to the questions posed in section 2 of the exam text relative to the reference solution code. It is possible that a student submits differing-but-correct code, and hence also provides differing-but-correct answers. However, given the quite fixed task, it is unlikely that any major divergence is going to be correct.

Introduction

I benchmarked on a Ryzen 1700X processor with eight physical cores (16 threads), 256KiB L1d cahce, 4MiB L2 cache, and 16MiB L3 cache.

I generally picked the number of runs to be high for small datasets (e.g. 100 runs to transpose 1024x1024 matrices) and low for large datasets (e.g. 10 runs to multiply 1024x1024 matrices).

I have implemented every function and parallelised as much as I believe reasonable (but matmul_parallel is not as parallel as it could be).

The benchmarks are run with ./benchmark. More complicated benchmarking (e.g. changing T or showing scalability) may need code modification, recompilation, or multiple runs changing OMP_NUM_THREADS as applicable. Unless otherwise indicated, the parallel versions are run with the maximum number of threads (16).

a)

Using T=8.

n, m =	1024	2048	4096
transpose	9ms	28ms	257ms
transpose_blocked	2ms	11ms	54ms
transpose_parallel	2ms	14ms	73ms
transpose_blocked_parallel	1ms	6ms	23ms

b)

Note that testing different values of T requires recompiling everything. All times are in miliseconds.

n, m =	1024	2048	4096
T=1	8ms	34ms	260ms
T=2	4ms	17ms	84ms
T=4	2ms	14ms	71ms
T=8	2ms	11ms	56ms
T=16	3ms	13ms	68ms
T=32	6ms	23ms	985ms

Based on these results I picked T=8 as the best value. I assume (but did not test) this will also be best for transpose_blocked_parallel. (Correction note: it probably is not, but not checking is a minor flaw.)

The normal matmul function has bad locality because the output matrix is accessed column-wise. Instead, transpose_blocked accesses memory in chunks corresponding to T by T blocks of the overall matrix. This means we get better spatial locality, as there is a good chance that when writing the second column of a row of the output, that part is still in cache.

Correction note We don't expect students to do the following level of analysis.

With T=8, transposing such a block involves accessing

$$2T^2 \cdot \text{sizeof(double)} = 1024B = 1KiB$$

(the 2 factor is because we are both reading and writing such a block). 1KiB clearly fits in L1 cache, but so does the 2KiB required for T=16, so why is T=18 faster? Perhaps because the L1 cache on this CPU is 8-way set associative, so we get evictions once we need more than 8 lines at a time.

c)

I compute the speedup as the runtime of transpose_blocked divided by the runtime of transpose_blocked_parallel

First we transpose a large 4096×4096 array (note that this takes 128MiB and so does not fit entirely in cache). This is because it will likely provide plenty of work per thread, even when running with the highest number of threads.

${f Threads}$	Sequential	Parallel	Speedup
1	55ms	55ms	$1.00 \times$
2	55ms	39ms	$1.41 \times$
3	55ms	31ms	$1.77 \times$
4	55ms	27ms	$2.03 \times$
5	55ms	25ms	$2.20 \times$
6	55ms	24ms	$2.29 \times$
7	55ms	23ms	$2.39 \times$
8	55ms	23	$2.39 \times$

We conclude that transpose_blocked_parallel does *not* show strong scaling, as the speedup plateaus close to $2.4 \times$ (and requires 7 threads to even obtain that).

Now let us scale the work such that we multiply matrices of size $1024 \times t \cdot 1024$, where t is the number of threads used in the parallel case. This keeps the amount of work constant relative to the number of threads.

Threads	Sequential	Parallel	Speedup
1	2ms	2ms	$1.00 \times$
2	4ms	3ms	$1.33 \times$
3	7ms	4ms	$1.75 \times$
4	9ms	4ms	$2.25 \times$
5	11ms	6ms	$2.17 \times$
6	13ms	6ms	$2.14 \times$
7	15ms	7ms	$2.5 \times$
8	18ms	9ms	$2.00 \times$

Interestingly, weak scaling (on these workloads) is even worse than strong scaling; perhaps because of the lower width of the matrix.

d)

n, m, k =	256	512	1024
matmul	27ms	844ms	6903ms
${\tt matmul_parallel}$	3ms	79ms	590ms
matmul_locality	6ms	42ms	422ms
matmul_transpose	12ms	106ms	905ms
matmul_locality_parallel	1ms	5ms	44ms
matmul_transpose_parallel	1ms	8ms	60ms

e)

The matmul function has poor spatial locality, as we access array B with a stride of k. This means we likely have many cache misses. In contrast, matmul_locality accesses all arrays with unit stride, ensuring perfect spatial locality. Finally, matmul_transpose also accesses all arrays with unit stride, made possible by first transposing B. Since transposition is asymptotically (and in practice) much faster than matrix multiplication, this preprocessing does not add much to the runtime, but allows a more efficient subsequent memory access pattern.

f)

The raw numbers are in the answer to question (d); here are the computed speedups:

n, m, k =	256	512	1024
matmul_parallel	8.11	9.3	8.55
${\tt matmul_locality_parallel}$	6	7.0	9.5
matmul_transpose_parallel	6.0	13.25	15.08

 \mathbf{g}

For matmul_parallel and matmul_transpose_parallel, I decided to parallelise only the outer two loops with omp pragma parallel for collapse(2). This is because the inner loop has a dependency on the accumulator, and while it can be parallelised using a reduce clause, it is likely not worth the overhead—the two outer loops provide sufficient iterations for most practical workloads and machines.

I use OpenMP's default static scheduling, because the different iterations should are naturally load-balanced.

h)

matmul_locality_parallel() only parallelises the outer (i) loop. This is because different iterations of the j loop write to the same i row of the output matrix, and hence the iterations of the j loop are not independent. Hence matmul_locality_parallel() is less parallel than matmul_transpose_parallel.

For most workloads, the number of iterations in the outer loop (n) is going to exceed the number of cores in the machine, and so this difference will not matter.

i)

With t being the number of threads, I am benchmarking with $n=i\cdot 256, m=1024, k=1024$. This means the workload scales linearily with the amount of threads, and hence shows weak scaling. It also means that the working set does not fit in cache as soon as t>1. I am comparing matmul_locality_parallel and matmul_locality, average of 10 runs.

Threads	Sequential	Parallel	Speedup
1	100ms	100ms	1.00×
2	195ms	104ms	$1.88 \times$
3	295ms	105ms	$2.80 \times$
4	387ms	107ms	$3.62 \times$
5	480ms	110ms	$4.36 \times$
6	589ms	112ms	$5.25 \times$
7	686ms	116ms	$5.91 \times$
8	769ms	118ms	$6.52 \times$
12	1169ms	159ms	$7.35 \times$
16	1536ms	176ms	$8.72 \times$

The weak scaling is excellent, with runtime remaining near-constant up to 8 threads even as the workload increases. As we see, this stops after reaching the physical core count (8) of the processor.

To investigate strong scaling, we benchmark with n = 1024, m = 1024, k = 1024; the workload for 4 threads above:

${f Threads}$	Sequential	Parallel	$\mathbf{Speedup}$
1	385ms	404ms	$0.95 \times$
4	389ms	104ms	$3.74 \times$
8	376ms	58ms	$6.48 \times$
16	385ms	47ms	$8.19 \times$

For this workload, strong scaling remains quite good up to 8 threads, but diminishes significantly after that, lagging slightly behind the speedup achieved when measuring weak scaling.