

📊 Internship in Data Science

at ShadowFox

Python Visualization Libraries: Matplotlib and Seaborn

Matplotlib

Matplotlib is one of the most popular and powerful Python libraries for data visualization. It allows for creating a wide variety of static, animated, and interactive plots.

✓ Key Features ✓ Highly customizable plots with detailed control Supports multiple file formats (PNG, PDF, SVG) ✗ Compatible with GUI toolkits (Tkinter, Qt, etc.)

ii Ideal for both 2D and limited 3D plotting

Typical Use Cases

- **____ Academic Research** Create publication-quality plots.
- **Data Exploration** Visualize trends and data distributions.
- Custom Visualizations Tailored plots for specific needs.

Seaborn

Seaborn is a high-level API built on top of Matplotlib that simplifies the process of creating visually attractive and statistically meaningful graphics.

Typical Use Cases

- 🔍 Exploratory Data Analysis (EDA) Understand your data quickly.
- Statistical Visualization Relationships and distributions.
- Beautiful Plots Create insightful and presentable charts fast.

```
In [1]: import matplotlib.pyplot as plt

# Sample data
x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

# Create line plot
plt.plot(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot Example')
plt.show()
```

Line Plot Example


```
In [2]: import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]

# Create scatter plot
# Create scatter plot
```

```
plt.scatter(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot Example')
plt.show()
```

Scatter Plot Example


```
import matplotlib.pyplot as plt

# Sample data
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 5]

# Create bar chart
plt.bar(categories, values)
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart Example')
plt.show()
```



```
import matplotlib.pyplot as plt

# Sample data
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]

# Create histogram
plt.hist(data, bins=5)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram Example')
plt.show()
```



```
import matplotlib.pyplot as plt

# Sample data
labels = ['A', 'B', 'C', 'D']
sizes = [15, 30, 45, 10]

# Create pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.title('Pie Chart Example')
plt.show()
```

Value

Pie Chart Example


```
In [6]: import matplotlib.pyplot as plt

data = [1, 2, 3, 4, 5, 6, 7, 8, 9]

plt.boxplot(data)
plt.title("Box Plot")
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np

data = np.random.rand(10, 10)

plt.imshow(data, cmap='hot', interpolation='nearest')
plt.title("Heatmap")
plt.colorbar()
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Sample data
data = sns.load_dataset("flights")

# Create line plot
sns.lineplot(x="year", y="passengers", data=data)
plt.title('Seaborn Line Plot Example')
plt.show()
```

Seaborn Line Plot Example


```
import seaborn as sns
import matplotlib.pyplot as plt

# Sample data
data = sns.load_dataset("tips")

# Create scatter plot
sns.scatterplot(x="total_bill", y="tip", data=data)
plt.title('Seaborn Scatter Plot Example')
plt.show()
```

Seaborn Scatter Plot Example


```
In [10]: import seaborn as sns
import matplotlib.pyplot as plt

# Sample data
data = sns.load_dataset("tips")

# Create bar chart
sns.barplot(x="day", y="total_bill", data=data)
plt.title('Seaborn Bar Chart Example')
plt.show()
```

Seaborn Bar Chart Example


```
In [11]: import seaborn as sns
   import matplotlib.pyplot as plt

# Sample data
data = sns.load_dataset("iris")

# Create histogram
sns.histplot(data["sepal_length"], kde=True)
plt.title('Seaborn Histogram Example')
plt.show()
```

Seaborn Histogram Example


```
import seaborn as sns
import matplotlib.pyplot as plt

# Sample data
data = sns.load_dataset("flights")
pivot_data = data.pivot(index="month", columns="year", values="passengers")

# Create heatmap
sns.heatmap(pivot_data, annot=True, fmt="d")
plt.title('Seaborn Heatmap Example')
plt.show()
```

Seaborn Heatmap Example


```
In [13]: import seaborn as sns
import pandas as pd

data = pd.DataFrame({
        "category": ['A']*10 + ['B']*10,
        "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
})

sns.boxplot(data=data, x="category", y="value")
plt.title("Box Plot")
plt.show()
```



```
In [14]: import seaborn as sns
import pandas as pd

data = pd.DataFrame({
        "A": [1, 2, 3, 4, 5],
        "B": [5, 4, 3, 2, 1],
        "C": [2, 3, 4, 5, 6]
})

sns.pairplot(data)
plt.title("Pair Plot")
plt.show()
```



```
In [15]: import seaborn as sns
import pandas as pd

data = pd.DataFrame({
        "category": ['A']*10 + ['B']*10,
        "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
})

sns.violinplot(data=data, x="category", y="value")
plt.title("Violin Plot")
plt.show()
```



```
In [16]: import seaborn as sns
import pandas as pd

data = pd.DataFrame({
        "category": ['A']*10 + ['B']*10,
        "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
})

sns.swarmplot(data=data, x="category", y="value")
plt.title("Swarm Plot")
plt.show()
```

category

В

Α

2.5

0.0

-2.5

Strengths and Weaknesses of Matplotlib and Seaborn

Matplotlib

Strengths

Strength	ii Details
Flexibility and Control	Matplotlib offers complete control over every aspect of a plot, allowing highly customized visualizations.
Versatility	Supports a wide variety of plots, including line, scatter, bar, histograms, 3D plots, and more. Also supports animations and interactive plots.
Integration	
Large Community & Documentation	Extensive resources, tutorials, and support from a large user community.

Weaknesses

× Weakness	○ Details
Complexity	Requires more code for simple plots and can become verbose due to its extensive customization options.
Default Styles	The default aesthetic of plots can appear outdated and less attractive compared to more modern libraries like Seaborn.
Interactivity	Basic interactivity is supported, but it lacks the advanced interactive capabilities of libraries like Plotly or Bokeh.
Performance with Large Datasets	Can be slow with very large datasets, particularly for interactive visualizations.

Strengths

Strength	ii Details
Ease of Use	Simplifies the creation of complex statistical plots with minimal code, ideal for quick data visualization and exploration.
Aesthetics	Beautiful default styles and color palettes enhance visual appeal without needing customization.
Integration with Pandas	Works seamlessly with Pandas DataFrames, making it easy to create visualizations directly from structured data.
Statistical Visualization	Specialized in statistical plots like violin plots, box plots, and heatmaps.

Weaknesses

× Weakness	○ Details					
Limited Customization	Provides fewer customization options compared to Matplotlib, limiting detailed adjustments for complex visualizations.					
Dependency on Matplotlib	Built on top of Matplotlib, so advanced customization requires understanding Matplotlib's features.					
Performance with Large Datasets	Struggles with very large datasets due to high-level statistical computations that can be resource-intensive.					
Interactivity	Primarily focused on static plots, requiring additional tools for interactivity.					

Summary

- Matplotlib is ideal for users who need full control over their plots and want to create
 publication-quality figures. It is best suited for complex, highly customized
 visualizations, and integration with other Python libraries.
- Seaborn is best for users who need quick, beautiful visualizations and statistical
 analysis with minimal code. It excels in exploratory data analysis (EDA) and works
 seamlessly with Pandas.

📊 Internship in Data Science

at ShadowFox

AIR QUALITY ANALYSIS (DELHI)

```
In [1]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
        warnings.simplefilter("ignore")
In [2]: df = pd.read csv(r'C:\Users\Ashish Mishra\OneDrive\Desktop\ShadowFox\Shadowfox DS\I
        df.head()
In [3]:
Out[3]:
                         date
                                   co
                                               no2
                                                     о3
                                                           so2 pm2 5
                                                                        pm10
                                                                                nh3
                                         no
         0 2023-01-01 00:00:00
                              1655.58
                                        1.66
                                             39.41
                                                    5.90
                                                        17.88
                                                                169.29
                                                                       194.64
                                                                                5.83
         1 2023-01-01 01:00:00
                              1869.20
                                        6.82 42.16 1.99 22.17
                                                                182.84 211.08
                                                                                7.66
         2 2023-01-01 02:00:00 2510.07
                                       27.72 43.87 0.02 30.04
                                                                220.25
                                                                       260.68
                                                                              11.40
         3 2023-01-01 03:00:00 3150.94
                                       55.43 44.55 0.85
                                                        35.76
                                                                252.90 304.12 13.55
         4 2023-01-01 04:00:00 3471.37 68.84 45.24 5.45 39.10
                                                                266.36 322.80 14.19
        df.shape
In [4]:
Out[4]: (561, 9)
In [5]:
        df.dtypes
Out[5]:
        date
                   object
         со
                  float64
                  float64
         no
                  float64
         no2
         о3
                  float64
                  float64
         so2
         pm2 5
                  float64
         pm10
                  float64
         nh3
                  float64
         dtype: object
In [6]:
        df.columns
```

```
Out[6]: Index(['date', 'co', 'no', 'no2', 'o3', 'so2', 'pm2_5', 'pm10', 'nh3'], dtype='obj
         ect')
In [7]:
         df.size
Out[7]: 5049
In [8]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 561 entries, 0 to 560
        Data columns (total 9 columns):
            Column Non-Null Count Dtype
                    _____
        0
            date
                    561 non-null
                                    object
        1
            со
                    561 non-null
                                    float64
         2
                    561 non-null
                                    float64
            no
         3
            no2
                    561 non-null
                                    float64
        4
                    561 non-null
                                    float64
            о3
         5
            so2
                    561 non-null
                                    float64
                    561 non-null
                                    float64
            pm2 5
                                    float64
         7
            pm10
                    561 non-null
        8
            nh3
                    561 non-null
                                    float64
        dtypes: float64(8), object(1)
        memory usage: 39.6+ KB
In [9]: df.value_counts()
                                              no2
                                                             so2
Out[9]: date
                                       no
                                                     о3
                                                                     pm2_5
                                                                             pm10
                                                                                     nh3
                              CO
         2023-01-01 00:00:00
                              1655.58
                                       1.66
                                              39.41
                                                     5.90
                                                             17.88
                                                                     169.29
                                                                             194.64
                                                                                     5.83
                                                             41.48
         2023-01-16 17:00:00
                              2857.21 8.72
                                              80.20
                                                     1.31
                                                                     211.19 274.45 31.92
         2023-01-16 11:00:00
                             1949.31 11.51
                                            74.03
                                                     67.23
                                                             58.65
                                                                     135.85 172.38 22.80
         2023-01-16 12:00:00
                              2670.29 15.65
                                            111.04
                                                     18.24
                                                             59.13
                                                                     163.88 211.14 29.13
         2023-01-16 13:00:00 3257.75 28.16 117.90 0.11
                                                                     194.19 251.70 36.98
                                                             60.08
         1
         2023-01-08 13:00:00
                              4005.43 32.19 124.75 0.44
                                                             39.10
                                                                     370.36 425.01 16.47
                              2990.72 3.74
         2023-01-08 12:00:00
                                             112.41 28.97
                                                             39.10
                                                                     327.78 365.97 14.31
         2023-01-08 11:00:00 2590.18 5.59
                                              76.77
                                                     86.55
                                                             46.73
                                                                     325.19 357.19 15.07
         2023-01-08 10:00:00
                              2136.23 4.92
                                              50.04
                                                     131.61 57.22
                                                                     308.40 332.44 12.92
         2023-01-24 08:00:00 1134.87 8.61
                                              56.89
                                                     80.11
                                                             110.63 123.76 140.26 5.51
         Name: count, Length: 561, dtype: int64
In [10]:
        display(df.describe().T)
```

	count	mean	std	min	25%	50%	75%	max
со	561.0	3814.942210	3227.744681	654.22	1708.98	2590.18	4432.68	16876.22
no	561.0	51.181979	83.904476	0.00	3.38	13.30	59.01	425.58
no2	561.0	75.292496	42.473791	13.37	44.55	63.75	97.33	263.21
о3	561.0	30.141943	39.979405	0.00	0.07	11.80	47.21	164.51
so2	561.0	64.655936	61.073080	5.25	28.13	47.21	77.25	511.17
pm2_5	561.0	358.256364	227.359117	60.10	204.45	301.17	416.65	1310.20
pm10	561.0	420.988414	271.287026	69.08	240.90	340.90	482.57	1499.27
nh3	561.0	26.425062	36.563094	0.63	8.23	14.82	26.35	267.51

In [11]: df.isna()

$\cap \cup +$	[11]	
Ou L	1 44 1	

		date	со	no	no2	о3	so2	pm2_5	pm10	nh3
	0	False								
	1	False								
	2	False								
	3	False								
	4	False								
	556	False								
	557	False								
	558	False								
	559	False								
	560	False								

561 rows × 9 columns

In [12]: df.dropna(inplace=True)

In [13]: df.isna().any()

```
Out[13]: date
                   False
                   False
          co
                   False
          no
         no2
                   False
         о3
                   False
          so2
                   False
                   False
          pm2 5
         pm10
                   False
          nh3
                   False
          dtype: bool
In [14]: df.fillna(method='ffill',inplace=True)
         sns.heatmap(df.isna(),cbar=True)
Out[14]: <Axes: >
           0
                                                                            - 0.100
          22
          44
          66
                                                                            - 0.075
          88
         110
         132
                                                                            - 0.050
         154
         176
         198
                                                                            - 0.025
        220
        242
        264
                                                                            - 0.000
        286
        308
        330
        352
                                                                             -0.025
        374
        396
         418
                                                                             -0.050
         440
         462
         484
                                                                             -0.075
        506
        528
        550 -
                                                                             -0.100
              date
                                 no2
                                        03
                                              so2 pm2_5pm10 nh3
                      CO
                            no
In [15]: df['date'] = pd.to_datetime(df['date'])
         def calculate_aqi(row):
             return max(row['pm2_5'], row['pm10'], row['no2'], row['o3'], row['co'], row['so
         df['AQI'] = df.apply(calculate_aqi, axis=1)
In [16]: pollutants = ['pm2_5', 'pm10', 'no2', 'so2', 'co', 'o3', 'nh3', 'no', 'AQI']
         for pollutant in pollutants:
             plt.figure(figsize=(10, 6))
             sns.histplot(df[pollutant].dropna(), kde=True)
             plt.title(f'Distribution of {pollutant}')
```

```
plt.xlabel(pollutant)
plt.ylabel('Frequency')
plt.show()
```



```
In [17]: corr = df[['pm2_5', 'pm10','no2', 'o3', 'co', 'so2', 'no','nh3','co','AQI']].corr()
         print(corr)
                   pm2 5
                              pm10
                                          no2
                                                     о3
                                                                         so2
                                                                                     no
                                                                                         \
                                                                co
               1.000000
                          0.994088
                                    0.698696 -0.450458
                                                         0.953083
                                                                    0.648996
                                                                              0.888810
        pm2 5
        pm10
               0.994088
                          1.000000
                                    0.720050 -0.468477
                                                         0.966801
                                                                    0.658325
                                                                              0.903339
        no2
                                    1.000000 -0.407177
               0.698696
                          0.720050
                                                         0.776402
                                                                    0.734961
                                                                              0.702201
        о3
              -0.450458 -0.468477 -0.407177
                                               1.000000 -0.463082 -0.049158 -0.377813
               0.953083
                          0.966801
                                    0.776402 -0.463082
                                                         1.000000
                                                                    0.716831
                                                                              0.969740
        CO
               0.648996
                          0.658325
                                    0.734961 -0.049158
                                                         0.716831
                                                                    1.000000
                                                                              0.734503
        502
        no
               0.888810
                          0.903339
                                    0.702201 -0.377813
                                                         0.969740
                                                                    0.734503
                                                                              1.000000
        nh3
               0.720303
                          0.754468
                                    0.700254 -0.299663
                                                         0.826299
                                                                    0.843635
                                                                              0.823638
                                    0.776402 -0.463082
               0.953083
                          0.966801
                                                                              0.969740
        СО
                                                         1.000000
                                                                    0.716831
               0.953083
                          0.966801
                                    0.776402 -0.463082
        AQI
                                                         1.000000
                                                                    0.716831
                                                                              0.969740
                     nh3
                                co
                                          AQI
               0.720303
                          0.953083
                                    0.953083
        pm2 5
        pm10
               0.754468
                          0.966801
                                    0.966801
        no2
                0.700254
                                    0.776402
                          0.776402
              -0.299663 -0.463082 -0.463082
        о3
        CO
               0.826299
                          1.000000
                                    1.000000
               0.843635
                          0.716831
                                    0.716831
        502
               0.823638
                          0.969740
                                    0.969740
        no
        nh3
                1.000000
                          0.826299
                                    0.826299
                0.826299
                          1.000000
                                    1.000000
        СО
        AQI
               0.826299
                          1.000000
                                    1.000000
In [18]:
         seasonal_data = df.groupby('date').agg({'AQI': 'mean', 'pm2_5': 'mean', 'pm10': 'me
          print("Seasonal AQI and Pollutant Averages:")
          print(seasonal_data.head())
```

```
Seasonal AQI and Pollutant Averages:

AQI pm2_5 pm10

date

2023-01-01 00:00:00 1655.58 169.29 194.64

2023-01-01 01:00:00 1869.20 182.84 211.08

2023-01-01 02:00:00 2510.07 220.25 260.68

2023-01-01 03:00:00 3150.94 252.90 304.12

2023-01-01 04:00:00 3471.37 266.36 322.80
```

```
In [19]: plt.figure(figsize=(12, 6))
  plt.plot(df['date'], df['AQI'], marker='o', linestyle='-')
  plt.xticks(rotation=45)
  plt.xlabel('Date')
  plt.ylabel('Air Quality Index (AQI)')
  plt.title('AQI in Delhi Over Time')
  plt.show()
```



```
In [20]: plt.figure(figsize=(12, 8))
pollutants = ['pm2_5', 'pm10', 'AQI', 'no2', 'o3', 'no'] # List of pollutants to p
for pollutant in pollutants:
    plt.plot(df['date'], df[pollutant], label=pollutant, marker='o', linestyle='-')
plt.title('Pollutant Concentrations in Delhi')
plt.xlabel('Date')
plt.ylabel('Concentration (µg/m³ or ppm)')
plt.xticks(rotation=45)
plt.legend()
plt.grid(True)
plt.show()
```



```
In [21]: plt.figure(figsize=(10, 6))
    sns.boxplot(data=df[['pm2_5', 'pm10', 'no2', 'so2', 'co', 'o3']], palette='Set2')
    plt.title('Boxplot of Key Pollutants')
    plt.xlabel('Pollutant')
    plt.ylabel('Concentration')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [22]: plt.figure(figsize=(8, 6))
    plt.scatter(df['pm2_5'], df['AQI'], alpha=0.5)
    plt.title('AQI vs PM2.5 in Delhi')
    plt.xlabel('PM2.5 (µg/m³)')
    plt.ylabel('AQI')
    plt.grid(True)
    plt.show()
```



```
In [23]: plt.figure(figsize=(8, 6))
    plt.scatter(df['pm10'], df['AQI'], alpha=0.5)
    plt.title('AQI vs PM10 in Delhi')
    plt.xlabel('PM10 (µg/m³)')
    plt.ylabel('AQI')
    plt.grid(True)
    plt.show()
```



```
In []: df['AQI'] = pd.to_numeric(df['AQI'], errors='coerce')
pollutants = ['pm2_5', 'pm10', 'no2', 'so2']
for pollutant in pollutants:
    df[pollutant] = pd.to_numeric(df[pollutant], errors='coerce')
In [25]: sns.pairplot(df[['AQI'] + pollutants])
plt.show()
```



```
In [26]:
    plt.figure(figsize=(15, 10))
    for i, pollutants in enumerate(['AQI'] + pollutants, 1):
        plt.subplot(2, 4, i)
        sns.boxplot(y=df[pollutant])
        plt.title(f'Boxplot of {pollutant}')
    plt.tight_layout()
    plt.show()
```



```
In [27]: plt.figure(figsize=(8, 6))
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix of AQI Pollutants')
    plt.show()
```



```
In [28]: avg_concentrations = df[['pm2_5', 'pm10', 'so2', 'no2', 'co', 'o3']].mean()
    highest_pollutant = avg_concentrations.idxmax()
    highest_concentration = avg_concentrations.max()
    print(f"The pollutant with the highest average concentration in Delhi is {highest_p
```

The pollutant with the highest average concentration in Delhi is co with an average concentration of 3814.94 $\mu g/m^3$ or ppm.

```
In [29]: df['Month'] = pd.to_datetime(df['date']).dt.month

monthly_avg_concentrations = df.groupby('Month').mean()

plt.figure(figsize=(12, 6))
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['pm2_5'], lab
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['pm10'], labe
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['so2'], label
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['no2'], label
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['co'], label=
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['o3'], label=
plt.plot(monthly_avg_concentrations.index, monthly_avg_concentrations['nh3'], label
plt.title('Variation of Pollutant Concentrations by Month')
plt.xlabel('Month')
plt.ylabel('Average Concentration (µg/m³ or ppm)')
```

```
plt.xticks(range(1, 13))
plt.grid(True)
plt.legend()
plt.show()
```



```
In [30]: Day_aqi = df.groupby('date')['AQI'].mean().reset_index()
    plt.figure(figsize=(12, 6))
    sns.lineplot(x='date', y='AQI', data=Day_aqi, marker='o')
    plt.title('Daily Variation of AQI in Delhi')
    plt.xlabel('Day')
    plt.ylabel('Average AQI')
    plt.show()
```



```
In [31]: correlation_matrix = df.corr()
  plt.figure(figsize=(12, 8))
  sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
```



```
In [32]: plt.figure(figsize=(10, 6))
    sns.histplot(df['AQI'], bins=30, kde=True, color='blue')
    plt.title('Distribution of AQI in Delhi')
    plt.xlabel('AQI')
    plt.ylabel('Frequency')
    plt.show()
```


📊 Internship in Data Science

at ShadowFox

Cricket Fielding Analysis

```
In [1]:
         import pandas as pd
         df = pd.read_excel(r'C:\Users\Ashish Mishra\OneDrive\Desktop\ShadowFox\Shadowfox_DS
In [2]:
In [3]:
         df.head()
Out[3]:
                             Clean
                                                                         DC-
                                                                              Dropped
                      Y->
                                                                  Catch
              Pick
                                       N->
                                             Fumble
                                                           C->
                                                                                         S->
                                                                                              Stu
                              Pick
                                                                                 Catch
                             Good
                                                 Bad
                                                                   Dirct
                                                                         RO-
                                                                                         MR-
           Throw
                       Y->
                                       N->
                                                         DH->
                                                                               Run Out
                             Throw
                                               throw
                                                                    Hit
                       "+"
                    stands
                   for runs
                     saved
         1
             Runs
                              NaN
                                       NaN
                                                NaN
                                                          NaN
                                                                   NaN NaN
                                                                                   NaN NaN
                    stands
                   for runs
         2
             NaN
                      NaN
                              NaN
                                       NaN
                                                NaN
                                                          NaN
                                                                   NaN NaN
                                                                                   NaN
                                                                                        NaN
                     Match
                                               Player
         3
             NaN
                            Innings
                                      Teams
                                                      BallCount Position
                                                                         Pick
                                                                                 Throw
                                                                                        Runs
                                                                                              Ov
                       No.
                                               Name
                                                                  Short
                                      Delhi
                                                Rilee
             NaN IPL2367
                                                           0.1
                                                                   mid
                                                                                   NaN
                                                                                           1
                                    Capitals russouw
                                                                 wicket
In [4]: # Reload the dataset with a specific skiprows parameter to better clean and structu
         data_refined = pd.read_excel(r"C:\Users\Ashish Mishra\OneDrive\Desktop\ShadowFox\Sh
         # Rename columns based on their actual meaning and drop any unnecessary columns
         data refined.columns = [
             'Pick',
             'Match_No',
             'Innings',
             'Team',
             'Player_Name',
```

```
'BallCount',
'Position',
'Pick_Type',
'Throw_Type',
'Runs',
'Overcount',
'Venue',
'Stadium'
]

# Convert numeric fields (e.g., Runs, BallCount) to appropriate data types
data_refined['Runs'] = pd.to_numeric(data_refined['Runs'], errors='coerce').fillna(
data_refined['BallCount'] = pd.to_numeric(data_refined['BallCount'], errors='coerce
# Display the cleaned and structured dataset
data_refined.head()
```

Out[4]:		Pick	Match_No	Innings	Team	Player_Name	BallCount	Position	Pick_Type	Throw
	0	NaN	Match No.	Innings	Teams	Player Name	NaN	Position	Pick	-
	1	NaN	IPL2367	1	Delhi Capitals	Rilee russouw	0.1	Short mid wicket	n	
	2	NaN	IPL2367	1	Delhi Capitals	Phil Salt	0.2	wicket keeper	Υ	
	3	NaN	IPL2367	1	Delhi Capitals	Yash Dhull	0.3	covers	Υ	
	4	NaN	IPL2367	1	Delhi Capitals	Axer Patel	0.4	point	Υ	
	4									•
In [5]:	df	.info(

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 74 entries, 0 to 73
      Data columns (total 13 columns):
       # Column
                        Non-Null Count Dtype
      --- -----
                        -----
       0
           Pick
                        2 non-null
                                       object
       1
           Y->
                       31 non-null
                                       object
       2
                       54 non-null
           Clean Pick
                                       object
       3
           N->
                        22 non-null
                                       object
       4
           Fumble
                       19 non-null
                                       object
       5
          C->
                        22 non-null
                                       object
       6
          Catch
                       19 non-null
                                       object
       7
           DC->
                        19 non-null
                                       object
           Dropped Catch 16 non-null
                                       object
       9
                        11 non-null
                                       object
       10 Stumping
                        22 non-null
                                       object
       11 Unnamed: 11
                        21 non-null
                                       object
       12 Unnamed: 12
                         13 non-null
                                       object
      dtypes: object(13)
      memory usage: 7.6+ KB
In [6]: # Drop rows where essential columns like 'Player Name' or 'Position' are NaN
       data_refined.dropna(subset=['Player_Name', 'Position'], inplace=True)
        # Convert numeric fields (e.g., Runs, BallCount) to appropriate data types
        data_refined['Runs'] = pd.to_numeric(data_refined['Runs'], errors='coerce').fillna(
        data_refined['BallCount'] = pd.to_numeric(data_refined['BallCount'], errors='coerce
In [7]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 74 entries, 0 to 73
      Data columns (total 13 columns):
       # Column
                     Non-Null Count Dtype
                        -----
      --- -----
       0
           Pick
                        2 non-null
                                       object
       1
           Y->
                        31 non-null
                                       object
       2
          Clean Pick 54 non-null
                                       object
       3
          N->
                       22 non-null
                                      object
          Fumble
       4
                        19 non-null
                                       object
       5
          C->
                       22 non-null
                                       object
          Catch
                       19 non-null
       6
                                       object
       7
           DC->
                         19 non-null
                                       object
           Dropped Catch 16 non-null
                                       object
       9
           S->
                        11 non-null
                                       object
       10 Stumping
                         22 non-null
                                       object
       11 Unnamed: 11
                         21 non-null
                                       object
       12 Unnamed: 12
                         13 non-null
                                       object
      dtypes: object(13)
      memory usage: 7.6+ KB
In [8]: weights = {
           'CP': 1.5, # Clean Picks
           'GT': 1.2, # Good Throws
           'C': 2.0, # Catches
           'DC': -1.0, # Dropped Catches
```

```
'ST': 2.5, # Stumpings
             'RO': 3.0, # Run Outs
             'MRO': -0.5, # Missed Run Outs
             'DH': 2.0, # Direct Hits
             'RS': 1.0 # Runs Saved
In [9]: # Initialize a performance score column
         data_refined['Performance Score'] = 0
         # Calculate the performance score for each player
         data_refined['Performance Score'] = (
             data_refined['Pick_Type'].apply(lambda x: weights['CP'] if x == 'Y' else 0) +
             data_refined['Throw_Type'].apply(lambda x: weights['GT'] if x == 'Y' else 0) +
             data_refined['Runs'] * weights['RS']
         # Group by player and calculate total performance scores
         top_players = data_refined[['Player_Name', 'Performance Score', 'Match_No', 'Inning
         top_players_grouped = top_players.groupby('Player_Name').agg({
             'Performance Score': 'sum',
             'Match_No': 'first',
             'Innings': 'first',
             'Team': 'first',
             'Position': 'first',
             'Venue': 'first'
         }).sort_values(by='Performance Score', ascending=False)
         # Display top performers
         top_3_players = top_players_grouped.head(3)
         print("Top 3 Performers with Details:\n", top_3_players)
        Top 3 Performers with Details:
                        Performance Score
                                                Match_No Innings
                                                                            Team \
        Player_Name
        Kuldeep yadav
                                     4.2
                                                IPL2367
                                                              1 Delhi Capitals
        Lalit yadav
                                     4.2
                                                IPL2367
                                                              1 Delhi Capitals
        1
                                     3.0 Rilee russouw
                                                              2
                                                                              1
                               Position Venue
        Player Name
        Kuldeep yadav Short mid wicket Delhi
        Lalit yadav
                            cover point Delhi
        1
                                            10
In [10]: import seaborn as sns
         import matplotlib.pyplot as plt
In [11]: sns.barplot(x=top_3_players.index, y=top_3_players['Performance Score'], hue=top_3_
         plt.title('Top 3 Players by Fielding Performance')
         plt.xlabel('Player Name')
         plt.ylabel('Performance Score')
         plt.xticks(rotation=45)
         plt.show()
```

