(1) There is a board of NxM size. Each cell of the board is either

(a) 'x': the cell is blocked

(b) 'o': the cell is free

(c) 's': starting cell

(d) 'e' : exit cell

Starting and ending cells are also considered free.

There is a king (a chess piece) on the board occupying the start cell. Can you find the minimum number of moves required to reach the exit cell?

Sample Input 4 4 0xox 5 sxoe 0xxo 0000

Explanation:

The first line contains N, M.

Here N = 4, M = 4

The optimal movements of the kings are shown in the following,

OXOX	OXOX	OXOX	OXOX	OXOX	oxox
s xoe \rightarrow	sxoe \rightarrow	sxoe \rightarrow	sxoe \rightarrow	sxoe \rightarrow	sxo e
OXXO	O XXO	оххо	оххо	O XX O	oxxo
0000	0000	0 0 00	00 0 0	0000	0000

(2) You are given an array **A** of positive integers of size **N**. The array is 0-indexed. You start with index 0.

When you are at index i, you can jump to index i-A[i] or i+A[i] if the index is within the array.

Is it possible to reach the last index (N-1)?

Sample Input	Sample Output
5	YES
23132	
3	NO
121	

Explanation:

For sample-1: To reach 4th index from 0th index, you may follow this path:

You start at the 0th index. As A[0] = 2, you can jump to index (0-2) = -2 or (0+2) = 2. But -2 is out of the array, so you can only jump to the 2nd index.

When you are at 2nd index, As A[2] = 1, you can jump to index (2-1) = 1 or (2+1) = 3. To reach the last index you jump to the 1st index.

When you are at 1st index, As A[1] = 3, you can jump to index (1-3) = -2 or (1+3) = 4. To reach the last index you jump to the 4th index.

For sample-2: It's not possible to reach the last index

(3) Given a bidirectional unweighted graph, find the number of connected components in the graph.

Input Format:

First line contains two integers, N = number of nodes, M = number of edges. Each of the next M lines contain two integers U, V denoting there is an edge between node U and node V.

Sample Input	Sample Output
6 4	3
1 2 2 5	
3 6	
5 1	
Explanation:	

The graph has 3 connected components,

- (a) 1, 2, 5
- (b) 3, 6
- (c) 4