Električni krugovi

Grafovi i mreže

Lit.: V. Naglić: Osnovi teorije mreža, p.: 4.1.-4.4.1

- Analiza električnih krugova primjenom jednadžbi
 - petlji, čvorišta i sl.,
 - → pogodna kod jednostavnih krugova.
- Za složene krugove
 - → analiza primjenom elektroničkoga računala.

- Kako prikazati:
 - krug,
 - njegovu strukturu,
 - sastavne dijelove,
 - varijable
- u obliku pogodnom za obradu računalom?
- ► → Primjena matričnog pristupa.
- Konfiguracija kruga → topološka struktura.
- Primjena teorije grafova.

Graf

- Povezanost grana i čvorišta električnoga kruga, moguće je prikazati uz pomoć *linearnog grafa*.
- Elementi u granama → *segmenti linija*.

- Definicija:
- Linearni graf je geometrijska forma sačinjena od konačnog skupa točaka i segmenata linija, koje povezuju identične ili različite parove točaka toga skupa.

- •Formiranje grafa →
 - točke grafa čvorišta kruga,
 - •linije u grafu grane kruga.
- Primjer:
- •električni krug:

Graf

•Definicije:

•Grana → segment linije koji spaja dvije točke grafa.

grana grafa

- Ako su te dvije točke identične
- -- singularna grana.

singularna grana

Singularne grane nisu predmetom razmatranja.

• *Čvorište* → krajnja točka segmenta linije, ili izolirana točka (izolirano čvorište).

izolirano čvorište

Orijentirani graf

- svakoj grani pridružen smjer označen strelicom.

• Čvorište kojim započinje ili završava neka grana *incidentno* je s tom granom.

- Za graf na slici:
- čvorište 1 je incidentno s granama: 1 i 4
- čvorište 2 je incidentno s granama: 2, 3 i 4
- čvorište 3 je incidentno s granama: 3 i 5
- čvorište 4 je incidentno s granama: 1, 4 i 5
- *Red čvorišta* → broj grana incidentnih s čvorištem.

- PLANARNOST
- Planaran graf
- moguć prikaz u ravnini bez križanja grana.
- Primjer: planarni graf

Primjer: neplanaran graf

- Suvisli ili povezan graf →sva čvorišta povezana granama
- *Nepovezani* graf → Primjer: transformator.

Transformator i pripadajući nepovezani graf.

Serijski spoj grana

- spoj dviju grana preko čvorišta koje nije incidentno s drugim granama.

Paralelni spoj grana

- grane koje su incidentne s istim parom čvorišta.

- •Subgraf → graf koji sadrži dio grana originalnog grafa
- Primjer:U grafu G: subgraf G₁ i subgraf G₂.

•G₁ i G₂ - komplementarni subgrafovi.

•Jednostavni otvoreni put.

Jednostavni zatvoren put ili petlja.

- •Stablo grafa → sva čvorišta povezana jednostavnim otvorenim putevima
- Grane stabla.
- Spone ili neovisne grane.

spone

Prof. dr. sc. Neven Mijat

Kostablo → sustav spona

- U mreži s N_b grana i N_v čvorišta
- Broj grana stabla $N_t = N_v 1$
- Broj spona $N_s = N_b N_v + 1$.

- Moguće je formirati više različitih stabala.
- Za prethodni graf 8 stabala.

- Temeljna petlja → jedna spona i grane stabla
- •Orijentacija temeljne petlje → prema smjeru spone

■ Temeljni sustav petlji → sve temeljne petlje

Prof. dr. sc. Neven Mijat Električni krugovi 2007/08

20/34

- Rez → skup grana čijim se odbacivanjem graf dijeli na 2 subgrafa
- Temeljni rez → jedna grana stabla i spone

- •Orijentacija temeljnoga reza redoslijed subgrafova
- •Subgrafovi G1 i G2.
- •Npr. redoslijed (G1,G2) definira smjer reza.

■ Temeljni sustav rezova → svi temeljni rezovi

Temeljni sustav rezova

Matrice grafa

- Matrice grafa sadrže informacije o:
- čvorištima,
- granama,
- strukturi povezanosti grana i čvorišta,
- temeljnome sustavu petlji, rezova itd.

• Matrica incidencija A_a - (N_y, N_b) matrica

- sadrži osnovne podatke o grafu:
 - broj čvorišta N_{v} ,
 - broj grana grafa N_b ,
 - orijentacije grana i
 - incidencije čvorišta i grana.

- •reci → čvoriša,
- •stupci → grane grafa.

	a_{11}	a_{12}	• • •	a_{1N_b}
	a_{21}	a_{31}	• • •	a_{2N_b}
<i>a</i> —	•	•	•	
	$\lfloor a_{N_v 1} \rfloor$	a_{N_v2}		$a_{N_v N_b}$ _

- •Elementi matrice incidencija a_{ij} :
- $a_{ij} = 0 \rightarrow j$ -ta grana nije incidentna s *i*-tim čvorištem
- $a_{ij} = -1$ → j-ta grana incidentna i orijentirana prema i-tom čvorištu

• Primjer: graf na slici

matrica incidencija

$$\mathbf{A}_a =$$

Primjer: graf na slici

matrica incidencija

$$\mathbf{A}_{a} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & -1 \end{bmatrix}$$

- Reci matrice incidencija linearno ovisni.
- Jedan redak matrice incidencija moguće odbaciti.
- Odbačeni redak odgovara referentnome čvorištu.
- •Reducirana matrica incidencija \mathbf{A} (N_v-1, N_b) .
- Primjer: čvorište 4 referentno

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

- Subdeterminante matrice incidencija
- Subdeterminanta matrice incidencija, koja odgovara jednoj petlji jednaka je nuli.
- Npr.: kvadratna submatrica, koju čine stupci 3, 4 i 5 i reci 1, 2 i 3

$$\mathbf{A}_{a} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & -1 \end{bmatrix}$$

Prof. dr. sc. Neven Mijat

- •Subdeterminanta matrice incidencija reda N_v -1, koja je različita od nule, odgovara jednome stablu grafa.
- Npr. subdeterminanta, koju čine reci 1, 2 i 3 i stupci 1, 2 i 3.

- Rang r matrice \rightarrow red najveće subdeterminante $\neq 0$
- Rang matrice incidencija \mathbf{A}_a jednak je N_v -1.

Redoslijed grana

- Redoslijed grana u grafu proizvoljan.
- •Međutim, zbog jednostavnosti operacija s matricama:
- prvih N_v -1 grana u nizu \rightarrow stablo
- preostalih N_g - N_v +1 grana \rightarrow spone.

Primjer:

•redoslijed grana u grafu definiran je za stablo, kojeg čine grane 1, 2 i 3.

•Matrica incidencija → prikaz kao dvije blok matrice.

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_t & \mathbf{A}_s \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_t & \mathbf{A}_s \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- A_t sadrži stupce, koji odgovaraju granama stabla.
 A_s sadrži stupce, koji odgovaraju sponama.
- \bullet U reduciranoj matrici incidencija \mathbf{A}_{t} kvadratna.
- •Broj stupaca = broju redaka = $N_{,,}$ -1.
- ${}^{\bullet}$ A, je matrica incidencija stabla grafa.