Lecture 2: Early Transcriptomic Strategies

BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub, The University of Adelaide

March 16th, 2020

Overview

Measuring Single Genes

Measuring Multiple Genes

Microarray Technology

Overview

•000

Overview

The Motivation

- The transcriptome is a highly dynamic set of molecules
- Small changes can potentially have significant ramifications
 - e.g. a "Master Regulator" can determine cellular fate
- RNA molecules are small
 - How do we find what's in our sample?
 - How do we quantify RNA?
 - And how do we compare one or more groups?

Technological Developments

- Technological developments are constant
- Technologies are often transient
- Key technologies are:

Overview

- 1. Real Time Polymerase Chain Reaction (RT-PCR)
- 2. Expressed Sequence Tags (EST)
- 3. Serial/Cap Analysis of Gene Expression (SAGE/CAGE)
- 4. Microarray technologies
- 5. Sequencing technologies
- Analytic methodologies often lag technologies

A Simplified History

EST (blue); SAGE / CAGE (yellow); Microarrays (red); RNA Seq (black)¹

¹Rohan Lowe et al. "Transcriptomics technologies", In: PLOS Computational Biology 13.5 (May 2017), pp. 1–23, DOI: 10.1371/journal.pcbi.1005457. URL: https://doi.org/10.1371/journal.pcbi.1005457.

Measuring Single Genes

- One of the earliest strategies²
- Developed as an extension of the Southern Blot³ (DNA)
- Gel Electrophoresis-based strategy
 - Based on size differentiation and probe sequences

² J. C. Alwine, D. J. Kemp, and G. R. Stark. "Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes". In: Proc. Natl. Acad. Sci. U.S.A. 74.12 (1977), pp. 5350-5354.

³E. M. Southern. "Detection of specific sequences among DNA fragments separated by gel electrophoresis". In: J. Mol. Biol. 98.3 (1975), of ADELAIDE pp. 503-517.

The Northern Blot

- RNA is extracted then denatured.
- RNA is size separated using Gel Electrophoresis
- RNA is transferred to a "blotting membrane"
- Treat the membrane with a labelled probe
 - Probes are complementary to the "target sequence"
 - Probes are labelled with fluorescent dye or radioactive atoms

The Northern Blot

The Northern Blot

- Prominent usage before genomes were sequenced
- Can possibly detect different isoforms
- Crude quantitation using Densitometric Analysis
 - What limitations might this have?

RT-qPCR

- Reverse Transcriptase quantitative PCR
 - Sometimes called: qPCR, RT-PCR
- Often considered to be the "gold standard" for quantitation
- Targets a specific transcribed region via specific primers
 - Primers must be individually designed
 - Primers often span exon-exon junctions

- 1. Reverse Transcriptase converts RNA to cDNA
 - Primers are required: Can target poly-A or random
- 2. Sequence-specific primers amplify the target fragment in cycles
 - Fluorescent dye is commonly incorporated during amplification
- 3. Abundance of target will grow exponentially $(\times 2)$ for each amplification cycle
- 4. The cycle where abundance reaches the "limit of detection" is estimated (C_T)

- 1 a. RNA RNA consist of Start codon AUG and ends with poly A tail
- b. Oligo dT Primer Oligo dT Primer is binding to RNA poly A tail
- c. Reverse Transcriptase and dNTPs

©Lokesh Thimmana, under the guidance of Dr. G. Mallikarjuna, Assistant Professor, Molecular Biology, Agri Biotech Foundation.

This is a 10-fold dilution series⁴

RT-qPCR

- Can be used with a standard curve and dilution series to estimate absolute quantity of an RNA within a sample
- Can be used to compare across samples for relative abundance

RT-qPCR

- Can be used with a standard curve and dilution series to estimate absolute quantity of an RNA within a sample
- Can be used to compare across samples for relative abundance

What may be a fundamental issue when comparing across samples?

Normalisation

- There may be pipetting and other technical differences between samples
 - These are non-biological in origin
- To correct for these we can normalise our data
- In RT-qPCR this is often done using "housekeeper" genes
 - We choose genes which should not change between samples/groups
 - These are commonly structural genes such as $ACTN\beta$ or GAPDH

- Relative abundances are often referred to as fold-change (FC)
 - Down regulation is squeezed between 0 and 1
 - Up regulation ranges from 1 to ∞
- We often use log₂ fold-change to get a better scale, e.g.
 - A 2-fold increase in abundance: $\log_2 2^1 = 1$
 - A 2-fold decrease in abundance: $\log_2 \frac{1}{2} = \log_2 2^{-1} = -1$
 - No change in abundance $\log_2 1 = \log_2 2^0 = 0$
- This is often abbreviated as logFC

- For RT-qPCR the estimate of logFC is known as $\Delta\Delta C_T$
- ullet To calculate this, we calculate **two** changes in C_T
 - 1. ΔC_T relative to the housekeeper(s)
 - 2. $\Delta\Delta C_T$ across samples for our gene/fragment of interest
- The first step corrects for technical errors
- The second step estimates our true change in abundance

Within each sample

$$\Delta C_T = C_{t[gene]} - C_{t[HK]}$$

Across samples/groups

$$\Delta \Delta C_T = -(\Delta C_{T[group1]} - \Delta C_{T[group2]})$$

This formulation assumes equal amplification efficiency for all primers/genes (i.e. Efficiency = 2)

- Housekeeper genes must be matched to the "gene of interest" within each sample and within each qPCR reaction
- ullet Choosing >1 housekeeper gene is advised
- Measurements are often taken in triplicate/quadruplicate for each sample (reactions sometimes fail)

Both Northern blots and RT-qPCR use targeted primers, but in very different ways

Measuring Multiple Genes

•0000000

Expressed Sequence Tags

- The first attempt at capturing the larger transcriptome was via Expressed Sequence Tags⁵ (ESTs) in 1991
 - Sequenced 609 mRNA human brain mRNA sequences
 - ESTs were generated by reverse transcribing poly-A selected mRNA, amplified using random primers
 - ullet Used ESTs $\sim 100-800$ nt
 - Obtained actual sequences using Sanger Sequencing
- >10 years before the Human Genome Project completed
- Just discovering genes was a huge priority

Expressed Sequence Tags

Serial Analysis of Gene Expression

Serial Analysis of Gene Expression⁶ (SAGE) was the first attempt to quantify expression on a larger scale

- 1. Conversion of mRNA to ds-cDNA using biotinylated primers (often poly-T)
- 2. cDNA is bound to beads using biotin and cleaved
- 3. 11-mer "tags" were produced after cleavage and concatenated
- 4. Sequenced by Sanger Sequencing
- 5. Tags were "de-convoluted" and counted

Serial Analysis of Gene Expression

Serial Analysis of Gene Expression

- The word "tag" is still commonly used in some NGS manuals and software
- The term "Digital Gene Expression" arose during this era
 - Is sometimes shortened to DGE, but does not stand for Differential Gene Expression.
- SAGE doesn't rely on probes targeting known sequences
- Variants on the technique are still used⁷
 - Even used these concatenated tags in early NGS contexts⁸

A. M. Zawada et al. "Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease". In: Epigenetics 9.1 (2014), pp. 161-172.

⁸H. Matsumura et al. "SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays", In: Nat. Methods 3.6 (200HE UNIVERSITY of ADELAIDE pp. 469-474.

Cap Analysis of Gene Expression

- A variant technique is Cap Analysis of Gene Expression⁹
- Targets Transcription Start Site (TSS) of mRNA via the 5' cap
 - Specifically for identification of the exact TSS and analysis of promoters
- Original 27nt long, but now only limited by NGS length
- Heavily used in FANTOM (Functional ANnoTation Of the Mammalian genome)
 project

SAGE Vs CAGE

- Primers which target the poly-A sequence will capture mature mRNA
 - mRNA will also be intact (i.e. not degraded)
- CAGE targets transcriptional initiation
 - Transcripts may not be "mature"
 - 5' Cap must be in place (i.e. not degraded)
- Both techniques still involve concatenation of "tags"

Microarray Technology

- Microarrays effectively ushered in the modern era of transcriptomics
- Purely interested in relative abundances
- Could measure expression levels for 1000's of genes simultaneously, for the first time
- Were essentially glass slides with probes affixed to them

EST (blue); SAGE / CAGE (yellow); Microarrays (red); RNA Seq (black)¹⁰

- ullet Once again depends on reverse transcriptase for mRNA ightarrow cDNA
- No reliance on Sanger Sequencing
- Used probes (like a Northern blot) but the cDNA is labelled and the probes are spatially fixed
 - Probes must be designed beforehand
 - Probes are fixed to the array in known locations

- 1. Fluorescent labelling during mRNA conversion to cDNA
- 2. Complimentary probes bind target sequences (hybridisation)
- 3. Fluorescence detection at each probe

Fluoresence Intensity \propto mRNA abundance

Two Colour Microarrays

- Probes with known sequences are at known locations
 - Probes were 65mer complimentary cDNA
 - Originally printed in local facilities
- Samples are labelled with either Cy3 (Green @ 570nm) or Cy5 (Red @ 670nm)
- Both samples are hybridised to array
- Relative Red/Green intensities were of interest
- Gave an estimate of logFC within each array

Two Colour Microarrays

A section of a two colour array¹¹

http://genome.cshlp.org/content/6/7/639.full.pdf+html. URL: http://genome.cshlp.org/content/6/7/639.abstract.

Microarray Technology

- Probes are "printed" to the array
 - Print tips can get clogged
- Able to be customised for your own experiment
 - We need a mapping file for probe location to target sequence
- Both colours were scanned individually
 - One scan detects red only, the next detects green only
 - Each scan would have to be aligned with the other

- Spots were detected using astronomical software
 - Detection of true signal above background (DABG)
- "Spots" could be of variable size
- Dye bias was noted *implies* experiments often used dye swaps
 - One sample might be labelled with red on one array, then labelled with green on the next

- 3' Arrays (Affymetrix) became the dominant transcriptomic technology until RNA seq
- Probes target the 3' end of transcripts reduce issues with RNA degradation
- Single channel (i.e. single colour)
- One sample per arrays
- \sim 1,000,000 \times 25-mer probes

Single Channel Microarrays

- Manufacture used photolithography
- Greater density of probes than two-colour arrays
 - Shorter probes but far more of them
- Also need a mapping file from location to probe sequence

Single Channel Microarrays

Microarray Technology

- Each 3' exon would be targeted by 11 unique probes
- The set of 11 probes would be collected together as a single "probeset"
- Alternate isoforms with different 3' exons could be detected easily as they would have distinct probesets

