

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z laboratorium 7 – Układ równań liniowych – Metody bezpośrednie

Michał Szafarczyk

gr. Śr. 17:50 – 19:20

Narzędzia i sprzęt wykorzystany do zrealizowania ćwiczenia

Komputer z systemem Windows 10 x64 Home

Procesor: Intel Core i7-10750H @2.60 GHz / 5.00 GHz

Pamięć RAM: 32 GB

Język: Python 3.9

Środowisko: PyCharm

Użyte biblioteki pythonowskie:

• Numpy – do wykonywania różnych operacji na liczbach

• Matplotlib – dla rysowania wykresów

 Sympy – blibioteka do wykonywania operacji na równaniach z wieloma niewiadomymi

1. Zadanie 1. – Zadany układ:

W każdym z 3 zadań, które będzimy rozwiązywać, został zadany układ równań liniowych w postaci Ax = b. Macierz A jest określona w zadaniu. Następnie należy skonstruować wektor x losując jego wartości ze zbioru $\{-1,1\}$ i mnożąc przez macierz A utworzyć wektor b. W kolejnym kroku, przy pomocy zadanej metody należy rozwiązać układ, w którym znane są A oraz b, tymczasem szukamy wektora x.

Dla 1 zadania otrzymaliśmy macierz A w postaci:

$$\begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} \quad dla \ i \neq 1 \end{cases}$$
 (1.1)

$$gdzie\;i,j\;\in\{1,2,\dots,n\}$$

2. Testowanie i błędy:

Dla testów, które umieścimy w tabeli użyjemy $n\epsilon\{5,10,15,20,30,40,50,60,70,80,90,100,120,150,175,200\}$

Tymczasem dla wykresów porównujących czasy i błędy dla zadanej precyzji użyjemy liczb naturalnych z przedziału [3, 200].

To, jak bliskie prawdziwego jest otrzymane rozwiązanie, będziemy wyznaczać według 2 kryteriów:

 Maksymalna różnica pomiędzy wartościami wektora poszukiwanego i znalezionego, którą liczymy według wzoru:

$$max(|x_i - x'_i|), i \in \{1, 2, ..., n\}$$

gdzie x_i jest wartością w wektorze poszukiwanym, a x_i' wartością w wektorze znalezionym.

W tablicach będziemy ją oznaczać jako max_diff

• Różnica kwadratów pomiędzy wektorem poszukiwanym, a wektorem znalezionym:

$$\sum_{i=0}^n [x_i - x'_i]^2$$

W tablicach będziemy ją oznaczać jako sqr_diff

3. Testy dla zadania 1:

czas (s)			
n	float 32	float 64	
1	0	0	
2	0	0	
3	0	0	
4	0.007995	0	
5	0	0	
6	0	0	
7	0	0	
8	0	0	
9	0	0	
10	0	0	
11	0	0	
12	0.008001	0	
13	0	0	
14	0	0	
15	0	0.008	
20	0.007994	0	
30	0.007996	0	
40	0.015995	0.00799	
50	0.023999	0.023999	
60	0.040001	0.047999	
70	0.055999	0.07203	
80	0.088627	0.096001	
90	0.128	0.136001	
100	0.167998	0.29597	
120	0.287997	0.528026	
150	0.559998	0.609181	
175	0.905587	0.960602	
200	1.313034	1.433177	

Tabela 2.1 Porównanie czasów

	float 32		float 64	
n	max_diff	sqr_diff	max_diff	sqr_diff
1	0	0	0	0
2	1.79E-07	4.62E-14	2.22E-16	4.93E-32
3	4.47E-06	2.69E-11	1.82E-14	4.24E-28
4	7.47E-05	9.47E-09	2.91E-13	1.69E-25
5	0.001052	1.84E-06	4.27E-13	3.58E-25
6	0.072944	0.009096	6.43E-10	7.26E-19
7	17.89828	696.9805	1.66E-08	5.88E-16
8	40.30184	3532.486	3.82E-07	3.16E-13
9	103.8792	26014.41	5.65E-06	6.82E-11
10	74.01083	13255.11	7.45E-05	1.3E-08
11	57.93476	6735.12	0.007043	0.000129
12	59.60992	10008.16	0.25863	0.168743
13	121.8494	39440.65	6.705999	120.7777
14	448.2327	468688.3	0.336953	0.301238
15	170.8326	56895.9	4.152412	59.40578
20	86.11206	32258.63	206.5804	85585.96
30	105.564	53671.27	323.2339	539253.7
40	340.1616	368900.7	460.4611	972332.5
50	214.2723	327052	1556.668	14880973
60	1641.391	8878942	1324.183	8856733
70	730.4537	3294449	646.2946	3078018
80	1168.939	13680198	978.3454	7654295
90	889.1546	6223968	2366.952	54251607
100	3997.516	98865730	3913.685	1.42E+08
120	10163.22	8.35E+08	1710.787	34238824
150	453.8133	2551736	4764.682	1.98E+08
175	1749.754	33553460	4766.997	2.82E+08
200	1252.689	15625334	5418.281	3.18E+08

Tabela 2.2 Porównanie błędów

Wykres 2.1 – Wizualizacja różnic w czasie wykonania

Wykres 2.2 – Wizualizacja maksymalnych błędów

Square₁difference error comparison for float32 and float64 for exercise 1

Wykres 2.3 – Wizualizacja kwadratów błędów

4. Uwarunkowanie macierzy:

Dla określenia która z macierzy jest lepiej lub gorzej określona policzymy iloczyn maksymalnej sumy po rzędach dla macierzy i macierzy odwrotnej. Porównując macierze z zadania 1 i 2 dla różnych wartości n:

n	Zad. 1	Zad. 2
1	1	1
2	1.5	1
3	1.833333	1.444444
4	2.083333	1.833333
5	2.283333	2.233333
6	2.45	2.644444
7	2.592857	3.031746
8	2.717857	3.448413
9	2.828968	3.849206
10	2.92897	4.249206
11	3.019549	4.659428
12	11.7825	5.055219
13	11380.11	5.465475
14	14946.42	5.868898
15	102254.5	6.268898
20	210127.8	8.289565
30	69283408	12.33188
40	5.21E+08	16.37641
50	6.46E+09	20.42051
60	1.63E+11	24.46434
70	1.92E+11	28.50803
80	7.74E+10	32.55162
90	1.61E+11	36.59514
100	7.28E+11	40.63862
120	1.32E+13	48.7255
150	9.09E+12	60.85567
175	6.14E+13	70.96408
200	2.75E+13	81.07305

Tabela 4.1 Wyniki dla macierzy z zadania 1 i 2

5. Zadanie 2 – zadany układ:

W zadaniu 2 macierz A zadana jest wzorem:

$$\begin{cases} a_{ij} = \frac{2i}{j} & dla \ j \ge i \\ a_{ij} = a_{ji} & dla \ j < 1 \end{cases}$$

 $gdzie\ i,j \in \{1,2,\ldots,n\}$

6. Testy dla zadania 2:

czas (s)			
n	float 32	float 64	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
5	0	0	
6	0	0	
7	0	0	
8	0	0	
9	0	0	
10	0	0	
11	0	0	
12	0	0	
13	0.008	0	
14	0	0.007999	
15	0	0	
20	0	0	
30	0.008	0.007999	
40	0.007999	0.008	
50	0.024	0.023999	
60	0.04	0.056002	
70	0.055999	0.064	
80	0.08831	0.09675	
90	0.119998	0.136	
100	0.159996	0.167998	
120	0.287998	0.280001	
150	0.727999	0.544236	
175	0.824775	0.844344	
200	1.224176	1.279967	

Tabela 5.1 Porównanie czasów

	float 32		float 64	
n	max_diff	sqr_diff	max_diff	sqr_diff
1	0	0	0	0
2	0	0	0	0
3	2.38E-07	7.11E-14	0	0
4	4.17E-07	2.77E-13	4.44E-16	3.08E-31
5	2.98E-07	1.92E-13	4.44E-16	3.57E-31
6	1.01E-06	1.89E-12	6.66E-16	7.77E-31
7	1.49E-06	3.58E-12	1.22E-15	3.92E-30
8	5.96E-07	6.79E-13	2.89E-15	1.45E-29
9	1.73E-06	6.85E-12	1.55E-15	6.05E-30
10	1.79E-06	8.14E-12	6E-15	8.48E-29
11	4.53E-06	4.44E-11	4E-15	3.78E-29
12	2.74E-06	2.24E-11	4.88E-15	6.09E-29
13	2.56E-06	2.04E-11	6.77E-15	1.21E-28
14	3.58E-06	5.52E-11	4.22E-15	5.29E-29
15	5.78E-06	1.18E-10	6.22E-15	1.48E-28
20	4.95E-06	1.22E-10	3.43E-14	2.95E-27
30	2.83E-05	2.98E-09	3.13E-14	4.75E-27
40	9.01E-05	3.78E-08	6.31E-14	2.47E-26
50	6.84E-05	2.83E-08	8.17E-14	4.02E-26
60	8.28E-05	3.76E-08	1.34E-13	1.66E-25
70	0.000152	1.59E-07	4.84E-13	1.02E-24
80	0.000205	1.83E-07	3.12E-13	5.75E-25
90	0.000261	3.82E-07	3.4E-13	1.23E-24
100	0.000753	2.41E-06	4.18E-13	2.25E-24
120	0.00049	2.22E-06	8.01E-13	7.85E-24
150	0.000404	2.2E-06	8.82E-13	1.49E-23
175	0.001011	1.52E-05	2.36E-12	3.75E-23
200	0.001704	4.37E-05	2E-12	6.9E-23

Tabela 5.2 Porównanie błędów

Times comparison for float32 and float64 for exercise 2

Wykres 5.1 – Wizualizacja różnic w czasie wykonywania

Max error comparison for float32 and float64 for exercise 2

Wykres 5.2 – Wizualizacja maksymalnych błędów

Square difference error comparison for float32 and float64 for exercise 2

Wykres 5.3 – Wizualizacja kwadratów błędów

7. Metoda Thomasa dla układów trójprzekątniowych:

Trójprzekątniowych układ to układ w postaci:

$$\begin{bmatrix} b_1 & c_1 & 0 & \cdots & \cdots & \cdots & 0 \\ a_2 & b_2 & c_2 & & & & \vdots \\ 0 & a_3 & b_3 & c_3 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

Oraz $a_0 = 0$, $c_n = 0$

Układ można zapisać w postaci:

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i (6.1)$$

Rozwiązania układu poszukujemy w postaci:

$$x_i = \beta_i x_{i+1} + \gamma_i \tag{6.2}$$

zmieniając zmienną po której iterujemy $i \rightarrow i - 1$:

$$x_{i-1} = \beta_{i-1}x_i + \gamma_{i-1} \tag{6.3}$$

Rozwiązując dla x_i :

$$x_{i} = -\frac{c_{i}}{a_{i}\beta_{i-1} + b_{i}} x_{i+1} + \frac{d_{i} - a_{i}\gamma_{i-1}}{a_{i}\beta_{i-1} + b_{i}}$$

$$(6.4)$$

$$\beta_{i} = -\frac{c_{i}}{a_{i}\beta_{i-1} + b_{i}} \qquad \gamma_{i} = \frac{d_{i} - a_{i}\gamma_{i-1}}{a_{i}\beta_{i-1} + b_{i}}$$
(6.5)

Na podstawie (6.1) wyznaczamy:

$$b_1 x_1 + c_1 x_2 = d_1 \Longrightarrow x_1 = \frac{c_1}{b_1} x_2 + \frac{d_1}{b_1}$$
(6.6)

Używając (6.2) otrzymujemy:

$$\beta_1 = -\frac{c_1}{b_1}, \qquad \gamma_1 = \frac{d_1}{b_1} \tag{6.7}$$

Możemy również wyznaczyć ostatnią wartość w wyznaczanym wektorze za pomocą przekształcenia (6.1) (dla i=n):

$$a_n x_{n-1} + b_n x_n = d_n$$

$$a_n (\beta_{n-1} x_n + \gamma_{n-1}) + b_n x_n = d_n$$

Z czego otrzymujemy:

$$x_n = \frac{d_n - a_n \gamma_{n-1}}{a_n \beta_{n-1} + b_n} = \gamma_n \tag{6.8}$$

Wyliczamy więc początkowe wartości ze wzorów (6.7), a następnie pozostałe wartości β_i oraz γ_i . Następnie liczymy wartość x_n ze wzoru (6.8) i pozostałe wartości x_i za pomocą wzoru (6.4)

8. Testy dla zadania 3:

float32				
	Thomas		Gauss	
n	max_diff	sqr_diff	max_diff	sqr_diff
1	0	0	0	0
2	0	0	5.96E-08	3.55E-15
3	1.19E-07	1.42E-14	1.19E-07	1.42E-14
4	0	0	5.96E-08	3.55E-15
5	0	0	0	0
6	0	0	5.96E-08	3.55E-15
7	1.19E-07	1.42E-14	1.19E-07	1.42E-14
8	0	0	5.96E-08	3.55E-15
9	0	0	5.96E-08	7.11E-15
10	1.19E-07	1.42E-14	5.96E-08	7.11E-15
11	0	0	5.96E-08	7.11E-15
12	1.19E-07	2.84E-14	1.19E-07	3.55E-14
13	1.19E-07	4.26E-14	1.19E-07	5.68E-14
14	1.19E-07	4.26E-14	1.19E-07	3.91E-14
15	1.19E-07	4.26E-14	1.19E-07	4.62E-14
20	1.19E-07	9.95E-14	1.19E-07	7.11E-14
30	1.19E-07	8.53E-14	1.19E-07	7.46E-14
40	1.19E-07	1.28E-13	1.19E-07	1.1E-13
50	1.19E-07	1.99E-13	1.19E-07	1.6E-13
60	1.19E-07	1.42E-13	1.19E-07	1.67E-13
70	1.19E-07	2.27E-13	1.19E-07	2.13E-13
80	1.19E-07	1.42E-13	1.19E-07	1.35E-13
90	1.19E-07	2.27E-13	1.19E-07	2.1E-13
100	1.19E-07	2.7E-13	1.19E-07	2.63E-13
120	1.19E-07	3.69E-13	1.19E-07	4.01E-13
150	1.19E-07	5.54E-13	1.19E-07	5.26E-13
175	1.19E-07	4.41E-13	1.19E-07	4.51E-13
200	1.19E-07	6.96E-13	1.19E-07	6.47E-13

Tabela 7.1 – Porównanie błędów dla float 3

float64				
	Thomas		Gauss	
n	max_diff	sqr_diff	max_diff	sqr_diff
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	2.22E-16	9.86E-32	2.22E-16	9.86E-32
8	2.22E-16	1.48E-31	2.22E-16	1.48E-31
9	2.22E-16	9.86E-32	2.22E-16	9.86E-32
10	2.22E-16	4.93E-32	2.22E-16	4.93E-32
11	2.22E-16	2.47E-31	2.22E-16	2.47E-31
12	2.22E-16	1.97E-31	2.22E-16	1.97E-31
13	2.22E-16	1.97E-31	2.22E-16	1.97E-31
14	2.22E-16	1.97E-31	2.22E-16	1.97E-31
15	2.22E-16	2.47E-31	2.22E-16	2.47E-31
20	2.22E-16	2.96E-31	2.22E-16	2.96E-31
30	2.22E-16	4.44E-31	2.22E-16	4.44E-31
40	2.22E-16	4.44E-31	2.22E-16	4.44E-31
50	2.22E-16	3.94E-31	2.22E-16	3.94E-31
60	2.22E-16	6.41E-31	2.22E-16	6.41E-31
70	2.22E-16	1.13E-30	2.22E-16	1.13E-30
80	2.22E-16	1.33E-30	2.22E-16	1.33E-30
90	2.22E-16	1.23E-30	2.22E-16	1.23E-30
100	2.22E-16	1.28E-30	2.22E-16	1.28E-30
120	2.22E-16	1.73E-30	2.22E-16	1.73E-30
150	2.22E-16	2.76E-30	2.22E-16	2.76E-30
175	2.22E-16	2.37E-30	2.22E-16	2.37E-30
200	2.22E-16	3.06E-30	2.22E-16	3.06E-30

Tabela 7.2 – Porównanie błędów dla float 64

		float32		float64
n	Thomas	Gauss	Thomas	Gauss
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0
9	0	0.000998	0	0
10	0	0	0	0
11	0	0	0	0
12	0	0.000999	0	0
13	0	0	0.001001	0
14	0	0.001	0	0
15	0	0	0	0
20	0	0.001	0	0.001
30	0	0.003002	0	0.003007
40	0	0.007999	0	0.007017
50	0	0.015004	0	0.016288
60	0	0.025002	0.000995	0.025023
70	0	0.040967	0	0.04816
80	0	0.059998	0	0.188868
90	0	0.098999	0.001007	0.11299
100	0.001002	0.116998	0	0.122052
120	0	0.209123	0.001	0.211011
150	0	0.394002	0	0.413985
175	0.001001	0.626003	0.001002	0.642428
200	0	0.946078	0.000998	0.949178

Tabela 7.3 – Czasy w sekundach dla obu algorytmów

Times comparison for float32 and float64 for exercise 3

Wykres 7.1 – Porównanie czasów wykonania (w sekundach)

Wykres 7.2 – Porównanie maksymalnych błędów

Square₁difference error comparison for float32 and float64 for exercise 3

Wykres 7.3 – Porównanie sum kwadratów błędów