Assignment 2: Coding Basics

Cammie Moore

OVERVIEW

This exercise accompanies the lessons/labs in Environmental Data Analytics on coding basics.

Directions

- 1. Rename this file <FirstLast>_A02_CodingBasics.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. After Knitting, submit the completed exercise (PDF file) to Canvas.

Basics, Part 1

- 1. Generate a sequence of numbers from one to 55, increasing by fives. Assign this sequence a name.
- 2. Compute the mean and median of this sequence.
- 3. Ask R to determine whether the mean is greater than the median.
- 4. Insert comments in your code to describe what you are doing.

```
#1.
nums <- seq(1, 55, 5) # creating sequence 1 to 55, by 5s

#2.
mean_nums <- mean(nums) # finding the average of nums
median_nums <- median(nums) # finding the median of nums

#3.
mean_nums > median_nums # asking r if the mean is greater than the median. result = false.
```

[1] FALSE

Basics, Part 2

- 5. Create three vectors, each with four components, consisting of (a) student names, (b) test scores, and (c) whether they are on scholarship or not (TRUE or FALSE).
- 6. Label each vector with a comment on what type of vector it is.

- 7. Combine each of the vectors into a data frame. Assign the data frame an informative name.
- 8. Label the columns of your data frame with informative titles.

```
# creating vectors
name <- c("aster", "beyonce", "colby", "derrick")
test_score <- c(88, 92, 75, 96)
scholarship <- c(TRUE, FALSE, TRUE)

# making df
data.df <- as.data.frame(name)
data.df <- cbind(data.df, test_score, scholarship)

data.df</pre>
```

```
##
        name test_score scholarship
## 1
                     88
                                TRUE
       aster
## 2 beyonce
                     92
                               FALSE
## 3
       colby
                     75
                               FALSE
                                TRUE
## 4 derrick
                     96
```

9. QUESTION: How is this data frame different from a matrix?

Answer: A data frame can have multiple different elements as vectors, while a matrix only has one kind of element in its' vectors.

- 10. Create a function with one input. In this function, use if...else to evaluate the value of the input: if it is greater than 50, print the word "Pass"; otherwise print the word "Fail".
- 11. Create a second function that does the exact same thing as the previous one but uses ifelse() instead if if...else.
- 12. Run both functions using the value 52.5 as the input
- 13. Run both functions using the **vector** of student test scores you created as the input. (Only one will work properly...)

```
#10. Create a function using if...else
results1 <- function(x){
   if(x>50){"Pass"}
   else{"Fail"}
}

#11. Create a function using ifelse()
results2 <- function(x){
   ifelse(x>50, "Pass", "Fail")
}

#12a. Run the first function with the value 52.5
results1(52.5)
```

```
## [1] "Pass"
```

```
#12b. Run the second function with the value 52.5 results2(52.5)
```

[1] "Pass"

```
#13a. Run the first function with the vector of test scores
# results1(data.df$test_score)

#13b. Run the second function with the vector of test scores
results2(data.df$test_score)
```

```
## [1] "Pass" "Pass" "Pass" "Pass"
```

14. QUESTION: Which option of if...else vs. ifelse worked? Why? (Hint: search the web for "R vectorization")

Answer: if else worked but if.... else did not. If ... else does not work with vectors because it is expecting a scalar value.

NOTE Before knitting, you'll need to comment out the call to the function in Q13 that does not work. (A document can't knit if the code it contains causes an error!)