UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical & Computer Engineering Department ECE 250 - Winter Quarter 2022

Random Processes

Problem Set #2 Due Friday, January 21, 2022 at 11:59pm Submit solutions to Problems 3, 4, 7, 9 only

1. Probabilities from a cdf. Let X be a random variable with the cdf shown below.

Find the probabilities of the following events.

- (a) $\{X=2\}.$
- (b) $\{X < 2\}.$
- (c) $\{X = 2\} \cup \{0.5 \le X \le 1.5\}.$
- (d) $\{X = 2\} \cup \{0.5 \le X \le 3\}.$
- 2. Gaussian probabilities. Let $X \sim N(1000, 400)$. Express the following in terms of the Q function.
 - (a) $P{0 < X < 1020}$.
 - (b) $P\{X < 1020 | X > 960\}$.
- 3. Laplacian. Let $X \sim f(x) = \frac{1}{2}e^{-|x|}$.
 - (a) Sketch the cdf of X.
 - (b) Find $P\{|X| \leq 2 \text{ or } X \geq 0\}$.
 - (c) Find $P\{|X| + |X 3| \le 3\}$.

- (d) Find $P\{X \ge 0 \mid X \le 1\}$.
- 4. Distance to the nearest star. Let the random variable N be the number of stars in a region of space of volume V. Assume that N is a Poisson r.v. with pmf

$$p_N(n) = \frac{e^{-\rho V}(\rho V)^n}{n!}, \quad \text{for } n = 0, 1, 2, \dots,$$

where ρ is the "density" of stars in space. We choose an arbitrary point in space and define the random variable X to be the distance from the chosen point to the nearest star. Find the pdf of X (in terms of ρ).

- 5. Uniform arrival. The arrival time of a professor to his office is uniformly distributed in the interval between 8 and 9 am. Find the probability that the professor will arrive during the next minute given that he has not arrived by 8:30. Repeat for 8:50.
- 6. Lognormal distribution. Let $X \sim N(0, \sigma^2)$. Find the pdf of $Y = e^X$ (known as the lognormal pdf).
- 7. Random phase signal. Let $Y(t) = \sin(\omega t + \Theta)$ be a sinusoidal signal with random phase $\Theta \sim U[-\pi, \pi]$. Find the pdf of the random variable Y(t) (assume here that both t and the radial frequency ω are constant). Comment on the dependence of the pdf of Y(t) on time t.
- 8. Quantizer. Let $X \sim \exp(\lambda)$, i.e., an exponential random variable with parameter λ and $Y = \lfloor X \rfloor$, i.e., Y = k for $k \leq X < k+1, k=0,1,2,\ldots$ Find the pmf of Y. Define the quantization error Z = X Y. Find the pdf of Z.
- 9. Gambling. Alice enters a casino with one unit of capital. She looks at her watch to generate a uniform random variable $U \sim \text{unif}[0,1]$, then bets the amount U on a fair coin flip. Her wealth is thus given by the r.v.

$$X = \begin{cases} 1 + U, & \text{with probability } 1/2, \\ 1 - U, & \text{with probability } 1/2. \end{cases}$$

Find the cdf of X.