

SPECIFICATION

CYCLIC AMINE CCR3 ANTAGONIST

Technical Field

5

10

15

20

25

30

35

The present invention relates to a CCR3 antagonist which can be expected to have effects as a remedies and/or a prophylactics against diseases, for whose progress and maintenance the increase and tissue infiltration of eosinophils, basophils, activated T-cells and the like play main rolls, for example, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia, eosinophilic leukemia and the like, or AIDS (acquired immunodeficiency syndrome) caused by the infection of HIV (human immunodeficiency virus).

Background Art

In recent years, a concept that the essential pathosis of allergic diseases such as asthma is chronic inflammation has been established, and the accumulation of eosinophils at an inflammatory region is especially thought to be one of the principal characteristics of the diseases (refer to, for example, Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; Takao Fujisawa, Gendai Iryo, 1999, 31, 1297, and so on). For example, when an antibody against intercellular adhesion molecule-1 (ICAM-1) was administered into a simian asthmatic model, the accumulation of eosinophils was inhibited, and the manifestation of a late asthmatic response was controlled. Thereby, the importance of the eosinophils in allergic diseases was strongly suggested (Wegner, C.D. et al., Science, 1990, 247, 456).

Eotaxin was identified as a specific chemotactic factor causing the accumulation / chemotaxis of eosinophil (refer to, for example, Jose, P. J., et. al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725, and so on). Further, it was elucidated that eotaxin bound to a CCR3 receptor expressed on eosinophil to display the action, and it is also known that chemotactic factors such as RANTES (abbreviation of

regulated upon activation normal T-cell expressed and secreted), MCP-2 (abbreviation of monocyte chemoattractant protein-2), MCP-3 (abbreviation of monocyte chemoattractant protein-3), and MCP-4 (abbreviation of monocyte chemoattractant protein-4) can exhibit the same actions as that of the eotaxin through CCR3, although the action potencies of the chemotactic factors are weaker than that of the eotaxin (refer to, for example, Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Panath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et at., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997, and so on).

Not only an action for causing chemotaxis but also actions related to the activation of eosinophils, such as the enhancement in the expression of adhesion molecule receptor (CD11b) (refer to, for example, Tenscher, K. et al., Blood, 1996, 88, 3195, and so on), the stimulation in the production of active oxygen (refer to, for example, Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919, and so on), the stimulation in the release of EDN (abbreviation of eosinophil-derived neurotoxin) [refer to El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55], have been reported as the actions of the eotaxin on the eosinophils. It has also been reported that eotaxin has an action for stimulating the release of eosinophils and their precursor cells from bone marrow into blood (refer to, for example, Palframan, R. T. et al., Blood, 1998, 91, 2240, and so on).

Many reports show that eotaxin and CCR3 play important roles on allergic diseases such as asthma. For example, the inhibition of eosinophil infiltration with an anti-eotaxin antibody in a mouse asthma model (refer to Gonzalo, J. –A. et al., J. Clin. Invest., 1996, 98, 2332), the inhibition of eosinophil infiltration with an anti-eotaxin antiserum in a mouse dermal allergy model (refer to Teixeira, M. M. et al., J. Clin. Invest., 1997, 100, 1657), the inhibition in the formation of pulmonary granuloma with an anti-eotaxin antibody in a mouse model (refer to Ruth., J. H. et al., J. Immunol., 1998, 161, 4276), the inhibition of eosinophil infiltration in an asthma model and an interstitial keratitis model using eotaxin gene-deficient mice, respectively, (refer to Rothenberg, M. E. et al., J. Exp. Med., 1997, 185, 785), the increase in the expression of eotaxin and CCR3 in the bronchus of an asthmatic patient at a genetic level and a protein level in comparison with a healthy subject (refer to Ying, S. et at., Eur. J. Immunol., 1997, 27, 3507), and the increase in the

expression of eotaxin in the nasal subepithelium tissue of a chronic sinusitis patient (refer to Am. J. Respir. Cell Mol Biol., 1997, 17, 683), have been reported.

Additionally, since it has been reported that eotaxin is expressed in large amounts in the inflammatory regions of Crohn disease and ulcerative colitis which is an inflammatory large bowel disease (refer to Garcia-Zepda E.A. et al., Nature Med., 1996, 2, 449), it can be understood that the eotaxin also plays important roles on the diseases.

5

10

15

20

25

30

35

From these data, it is strongly suggested that the eotaxin accumulates and activates the eosinophils in the lesion regions through CCR3 and thereby deeply participates in the initiation progression and maintenance of diseases in which the deep participation of the eosinophils in the progresses of the lesions can be supposed, for example, allergic diseases such as asthma, allergic atopic dermatitis, urticaria, contact dermatitis, and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia and eosinophilic leukemia.

Further, since they have been reported that CCR3 receptors reveal not only on eosinophils but also on basophils and Th2 lymphocytes and that the increase in the intracellular calcium ion concentrations of the cells and the chemotaxis of the cells are caused by the eotaxin, the eotaxin and the CCR3 are supposed to have relations with the initiation progression and maintenance of the diseases in which the cells participate, such as allergic diseases, also by the accumulation and activation of the cells (refer to, for example, Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et at., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365; and so on).

Thereby, a compound for inhibiting the binding of eotaxin to the CCR3, namely, a CCR3 antagonist, is supposed to be useful as a medicine for treating and/or preventing diseases such as allergic diseases and inflammatory intestinal diseases by inhibiting the action of a CCR3 ligand represented by the eotaxin on a target cell, but a medicine having such the action is now not known.

In addition, since it has been reported that HIV-1 (human

immunodeficiency virus 1) utilizes CCR3 on the infection of a host cell, a CCR3 antagonist is supposed to be useful for a medicine for treating or preventing AIDS (acquired immunodeficiency syndrome) caused by the infection of the HIV (refer to, for example, Choe, H. et at., Cell, 1996, 85, 1135; Doranz, B.J. et al., Cell, 1996, 85, 1149).

Recently, it has been reported that xanthene-9-carboxamide derivatives (refer to WO 9804554), piperazine or piperidine derivatives (refer to EP 903349; WO 0029377; WO 0031033; WO 0035449; WO 0035451; WO 0035452; WO 0035453; WO 0035454; WO 0035876; WO 0035877), pyrrolidine derivatives (refer to WO 0031032), phenylalanine derivatives (refer to WO 9955324; WO 9955330; WO 0004003; WO 0027800; WO 0027835; WO 0027843), and other low molecular compounds (refer to WO 9802151) have antagonistic activities to CCR3 receptors. However, these compounds are different from the compounds used in the present invention. And, the compounds used in the present invention are the same as the compounds mentioned in WO 9925686, but it is not known that these compounds have antagonistic activities to CCR3 receptors.

Disclosure of the Invention

5

10

15

20

25

30

35

Thereby, the object of the present invention is to provide low molecular compounds, which have activities to inhibit that the ligand of CCR3, such as eotaxin, binds to the CCR3 on a target cell.

Another object of the present invention is to provide a method for treating and/or preventing, with a CCR3 antagonist, such a disease that the binding of the ligand of CCR3, such eotaxin, to the CCR3 on a target cell is an etiology.

The inventors of the present invention have zealously made studies, and have consequently discovered that a cyclic amine derivative having an arylalkyl group, a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, or a pharmaceutically acceptable acid addition salt thereof has an activity to inhibit the binding of the ligand of CCR3, such as the eotaxin, to a target cell, and further have found that the compounds can be used as medicines for treating or preventing diseases in which the participation of CCR3 is supposed. The studies have further been continued to accomplish the present invention.

Namely, in accordance with the present invention, there is provided a

medicine, which contains, as an active ingredient, a compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, and which has a CCR3 antagonistic action,

5

10

15

20

25

30

[wherein, R1 represents a phenyl group, a C3 to C8 cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above mentioned R1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, C1 to C6 alkyl groups, C3 to C8 cycloalkyl groups, C2 to C6 alkenyl groups, C1 to C6 alkoxy groups, C1 to C6 alkylthio groups, C₃ to C₅ alkylene groups, C₂ to C₄ alkylenoxy groups, C₁ to C₃ alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2 to C7 alkanoyl groups, C₂ to C₇ alkoxycarbonyl groups, C₂ to C₇ alkanoyloxy groups, C₂ to C₇ alkanoylamino groups, C₂ to C₇ N-alkylcarbamoyl groups, C₄ to C₉ N-cycloalkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, C₃ to C₈ (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, divalent groups represented by the formula: ·NH(C=O)O-, divalent groups represented by the formula: -NH(C=S)O, amino groups, mono(C_1 to C_6 alkyl)amino groups or di(C₁ to C₆ alkyl)amino groups, and further provided that the substituents of the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic

group or the condensed ring may further be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups.

 R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, provided that the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, and provided that when j is 0, R^2 is not a hydroxy group.

j represents an integer of 0 to 2.

k represents an integer of 0 to 2.

m represents an integer of 2 to 4.

n represents 0 or 1.

5

10

15

20

25

30

35

 R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the same or different arbitrary numbers of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, respectively).

R⁴ and R⁵, same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C₁ to C₆ alkyl group, respectively, and the C₁ to C₆ alkyl group in R4 and R5 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C3 to C8 cycloalkyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C2 to C7 alkanoyl groups, C₂ to C₇ alkoxycarbonyl groups, C₂ to C₇ alkanoyloxy groups, C₂ to C₇ alkanoylamino groups, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, amino groups, mono(C_1 to C_6 alkyl)amino groups, di(C_1 to C₆ alkyl)amino groups or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by the condensation of the aromatic heterocyclic group with a benzene ring, or R⁴ and R⁵ may together form a three to six membered cyclic hydrocarbon.

p represents 0 or 1.

q represents 0 or 1.

G represents a group represented by 'CO-, 'SO₂-, 'CO-O-, 'NR⁷-CO-,

-CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, provided that R^7 is a hydrogen atom or a C_1 to C_6 alkyl group, or R^7 may form a C_2 to C_5 alkylene group together with R^5 .

5

10

15

20

25

35

 R^6 represents a phenyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_6 cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group, the benzyl group or the aromatic heterocyclic group in the above mentioned R⁶ may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one or three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, further provided that the phenyl group, the C₃ to C₈ cycloalkyl group, the C₃ to C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R⁶ may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C₁ to C₆ alkyl groups, C₃ to C₈ cycloalkyl groups, C₂ to C₆ alkenyl groups, C₁ to Cè alkoxy groups, C₃ to C₈ cycloalkyloxy groups, C₁ to C₆ alkylthio groups, C₁ to C_3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C₂ to C₇ alkanoyloxy groups, C₂ to C₇ alkanoylamino group, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N di(C₁ to C₆ alkyl)sulfamoyl groups, amino groups, mono(C₁ to C₆ alkyl)amino groups, di(C₁ to C₆ alkyl)amino groups, benzylamino groups, C₂ to C₇ (alkoxycarbonyl)amino groups, C₁ to C₆ (alkylsulfonyl)amino groups or bis(C₁ to C₆ alkylsulfonyl)amino groups, and further provided that the substituents of the phenyl group, the C₃ to C₈ cycloalkyl group, the C₃ to C₈ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group, or the condensed ring may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C1 to C6 alkyl groups, C1 to C6 alkoxy groups, C₁ to C₆ alkylthio groups, mono(C₁ to C₆ alkyl)amino groups, or di(C₁ to C₆ alkyl)amino groups.].

In accordance with the present invention, there is also provided a medicine which contains, as an active ingredient, the compound represented by the above mentioned formula (I), the pharmaceutically acceptable acid

addition salt thereof, or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, and which is used for treating or preventing a disease concerned with CCR3.

The compound represented by the above-mentioned formula (I) has an activity for inhibiting that the ligand of CCR3 receptor, such as eotaxin, binds to a target cell, and an activity for inhibiting the physiological actions of the ligand of CCR3, such as the eotaxin, on the target cell. Namely, the compound represented by the above-mentioned formula (I) is a CCR3 antagonist.

10

15

20

25

30

35

5

Best Mode for Carrying Out the Invention

In the above-mentioned formula (I), R¹ represents a phenyl group, a C₃ to C₈ cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above-mentioned R1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C3 to C8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, C1 to C6 alkyl groups, C₃ to C₈ cycloalkyl groups, C₂ to C₆ alkenyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, C₃ to C₅ alkylene groups, C₂ to C₄ alkylenoxy groups, C₁ to C₃ alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2 to C7 alkanoyl groups, C₂ to C₇ alkoxycarbonyl groups, C₂ to C₇ alkanoyloxy groups, C₂ to C₇ alkanoylamino groups, C2 to C7 N-alkylcarbamoyl groups, C4 to C9 N-cycloalkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, C₃ to C₈ (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, divalent groups represented by the formula: -NH(C=O)O-, divalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C1 to C6 alkyl)amino groups or $di(C_1 \text{ to } C_6 \text{ alkyl})$ amino groups.

"The C₃ to C₈ cycloalkyl group" in R¹ means a cyclic alkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or a cycloctyl group, and includes a cyclopropyl

group, a cyclopentyl group, a cyclohexyl group and the like as preferable concrete examples.

"The aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms" in R¹ means an aromatic heterocyclic group such as a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, a triazolyl group, an oxadiazolyl (furazanyl) group or a thiadiazolyl group, and includes a thienyl group, a furyl group, a pyrrolyl, an isoxazolyl group, a pyridyl group and the like as preferable concrete examples.

5

10

15

20

25

30

35

"The condensed ring" in R¹ means a bicyclic aromatic heterocyclic group which is formed by condensing the above mentioned benzene ring or aromatic heterocyclic group with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms at an arbitrary possible position, and includes a naphthyl group, an indolyl group, a benzofuranyl group, a benzothienyl group, a quinolyl group, a benzomidazolyl group, a benzoxazolyl group, a benzothiadiazolyl group and the like as preferable concrete examples.

A phenyl group, a thienyl group, a pyrazolyl group, an isoxazolyl group, a benzofuranyl group or an indolyl group is especially preferable as R¹.

"The halogen atom" as the substituent on the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring, in R^1 , means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like.

"The C_1 to C_6 alkyl group" as the substituent of R^1 means a C_1 to C_6 straight-chain or branched alkyl group such as a methyl group, an ethyl group, a n-propyl group, a n-butyl group, a n-pentyl group, a n-hexyl group, a n-heptyl group, a n-octyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, an isohexyl group, a 2-methylpentyl group or a 1-ethylbutyl group, and includes a methyl group, an ethyl group, a propyl group, an isopropyl group and the like as preferable concrete examples.

"The C_3 to C_8 cycloalkyl group" as the substituent of R^1 is the same as the definition of "the C_3 to C_8 cycloalkyl group" in the above-mentioned R^1 , and includes the same groups as preferable concrete examples.

"The C₂ to C₆ alkenyl group" as the substituent of R¹ means a C₂ to C₆ straight-chain or branched alkenyl group such as a vinyl group, an allyl group, a 1-propenyl group, a 2-butenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 4-pentenyl group, a 5-hexenyl group or a 4-methyl-3-pentenyl group, and includes a vinyl group, a 2-methyl-1-propenyl group and the like as preferable concrete examples.

5

10

15

20

25

30

35

"The C_1 to C_6 alkoxy group" as the substituent of R^1 means a group comprising the above mentioned C_1 to C_6 alkyl group and an oxy group, and includes a methoxy group, an ethoxy group and the like as preferable concrete examples.

"The C_1 to C_6 alkylthio group" as the substituent of R^1 means a group comprising the above-mentioned C_1 to C_6 alkyl group and a thio group, and includes a methylthio group, an ethylthio group and the like as preferable concrete examples.

"The C_3 to C_5 alkylene group" as the substituent of R^1 means a C_3 to C_5 divalent alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group or a 1-methyltrimetylene group, and includes a trimethylene group, a tetramethylene group and the like as preferable concrete examples.

"The C₂ to C₄ alkylenoxy group" as the substituent of R¹ means a group comprising a C₂ to C₄ divalent alkylene group and an oxy group, such as an ethylenoxy group (-CH₂CH₂O-), a trimethylenoxy group (-CH₂CH₂CH₂O-) or a 1,1-dimethylenoxy group [-CH₂C(CH₃)₂O-], and includes an ethylenoxy group, a trimethylenoxy group and the like as preferable concrete examples.

"The C₁ to C₃ alkylenedioxy group" as the substituent of R¹ means a group comprising a C₁ to C₃ divalent alkylene group and two oxy groups, such as a methylenedioxy group (-OCH₂O-), an ethylenedioxy group (-OCH₂CH₂O-), a propylenedioxy group [-OCH₂CH(CH₃)O-], and includes a methylenedioxy group, an ethylenedioxy group and the like as preferable concrete examples.

"The C_2 to C_7 alkanoyl group" as the substituent of R^1 means a C_2 to C_7 straight-chain or branched alkanoyl group such as an acetyl group, a propanoyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, a heptanoyl group, an isobutyryl group, a 3-methylbutanoyl group, a 2-methylbutanoyl group, a pivaloyl group, a 4-methylpentanoyl group, a

3,3-dimethylbutanoyl group or a 5-methylhexanoyl group, and includes an acetyl group and the like as preferable concrete examples.

"The C_2 to C_7 alkoxycarbonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkoxy group and a carbonyl group, and includes a methoxycarbonyl group, an ethoxycarbonyl group and the like as preferable concrete examples.

5

10

15

20

25

30

35

"The C_2 to C_7 alkanoyloxy group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an oxy group, and includes an acetyloxy group and the like as preferable concrete examples.

"The C_2 to C_7 alkanoylamino group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an amino group, and includes an acetylamino group and the like as preferable concrete examples.

"The C_2 to C_7 alkylcarbamoyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkyl group and a carbamoyl group, and includes a N-methylcarbamoyl group, a N-ethylcarbamoyl group and the like as preferable concrete examples.

"The C_4 to C_9 N-cycloalkylcarbamoyl group" as the substituent of R^1 means a group comprising a C_3 to C_8 cycloalkyl group and a carbamoyl group, and includes a N-cyclopentylcarbamoyl group, a N-cyclohexylcarbamoyl group and the like as preferable concrete examples.

"The C_1 to C_6 alkylsulfonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkyl group and a sulfonyl group, and includes a methylsulfonyl group and the like as preferable concrete examples.

"The C_3 to C_8 (alkoxycarbonyl)methyl group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkoxycarbonyl group and a methyl group, and includes a methoxycarbonylmethyl group, an ethoxycarbonylmethyl group and the like as preferable concrete examples.

"The mono(C_1 to C_6 alkyl)amino group" as the substituent of R^1 means an amino group substituted by the C_1 to C_6 alkyl group, and includes a methylamino group, an ethylamino group and the like as preferable concrete examples.

"The $di(C_1 \text{ to } C_6 \text{ alkyl})$ amino group" as the substituent of R^1 means an amino group substituted by the same or different two C_1 to C_6 alkyl groups, and includes a dimethylamino group, a diethylamino group, N-ethyl-N-methylamino group and the like as preferable concrete examples.

Among the above mentioned groups, the substituents of the phenyl

group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 include halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups, C_2 to C_6 alkenyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylene groups, C_2 to C_4 alkylenoxy groups, methylenedioxy groups, phenyl groups, N-phenylcarbamoyl groups, amino groups and $di(C_1$ to C_6 alkyl)amino groups as especially preferable concrete examples. The substituents especially preferably include halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, methylenedioxy groups and N-phenylcarbamoyl groups.

5

10

15

20

25

30

35

Further, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups. The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

In the formula (I), R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, and the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, provided that R^2 is not the hydroxy group, when j is 0.

The C_1 to C_6 alkyl group and the C_2 to C_7 alkoxycarbonyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

The halogen atoms, C_1 to C_6 alkyl groups and C_1 to C_6 alkoxy groups as the substituents of the C_1 to C_6 alkyl group or the phenyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and includes the same examples, respectively, as preferable concrete examples.

Among groups, a case that R² represents a hydrogen atom is most preferable.

In the formula (I), j represents an integer of 0 to 2. A case that j is 0 is most preferable.

In the formula (I), k represents an integer of 0 to 2, and m represents an integer of 2 to 4. Among them, the 2-substituted pyrrolidine compound in a case that k and m are 0 and 3, respectively, the 3-substituted pyrrolidine compound in a case that k and m are 1 and 2, respectively, the 3-substituted piperidine compound in a case that k and m are 1 and 3, respectively, 4-substituted piperidine compound in a case that k and m are 2 and 2, respectively, and the 3-substituted hexahydroazepine in a case that k and m are 1 and 4, respectively, are preferable. Especially preferably, the 3-substituted pyrrolidine compound in the case that k and m are 1 and 2, respectively, and the 4-substituted piperidine compound in the case that k and m are 2 and 2, respectively, are included.

In the formula (I), n represents 0 or 1.

5

10

15

20

25

30

35

Especially, the 3-amidopyrrolidine compound in a case that k, m and n are 1, 2 and 0, respectively, and the 4-(amidomethyl)piperidine in a case that k, m and n are 2, 2 and 1, respectively, are preferable.

In the formula (I), R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the arbitrary number of the same or different halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups).

The C_1 to C_6 alkyl group in R^3 is the same as defined as the substituent of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group, or the condensed ring in the above-mentioned R^1 , and includes methyl group, ethyl group and propyl group as preferable concrete examples.

The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in R^3 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

Among them, the case in which R^3 is a hydrogen atom or a non-substituted C_1 to C_6 alkyl groups, is the most favorable.

In the formula (I), R^4 and R^5 , same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C_1 to C_6 alkyl group, respectively, and the C_1 to C_6 alkyl group in R^4 and R^5 may be substituted by

the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C_3 to C_8 cycloalkyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkanoyloxy groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 N-alkylcarbamoyl groups, C_1 to C_6 alkylsulfonyl groups, amino groups, mono(C_1 to C_6 alkyl)amino group, di(C_1 to C_6 alkyl)amino group, or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by condensing the aromatic heterocyclic groups with a benzene ring, or C_7 and C_7 are aromatic heterocyclic groups with a benzene ring, or C_7 and C_7 aromatic heterocyclic groups with a benzene ring, or C_7 and C_7 a

The C_1 to C_6 alkyl group in R^4 and R^5 is the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R^1 , and includes the same examples as preferable concrete examples.

The halogen atom, C_1 to C_6 alkoxy group, C_1 to C_6 alkylthio group, C_2 to C_7 alkanoyl group, C_2 to C_7 alkanoyloxy group, C_2 to C_7 alkanoylamino group, C_2 to C_7 alkanoyloxy group, C_2 to C_7 alkanoylamino group, C_2 to C_7 N-alkylcarbamoyl group, C_1 to C_6 alkylsulfonyl group, mono(C_1 to C_6 alkyl)amino group and di(C_1 to C_6 alkyl)amino group as the substituents of the C_1 to C_6 alkyl group in C_8 and C_8 are the same as defined as the substituents of the phenyl group, the C_8 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned C_8 , and includes the same examples, respectively, as preferable concrete examples.

The C_3 to C_8 cycloalkyl group, and the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen heteroatoms as the substituents of the C_1 to C_6 alkyl group in R^4 and R^5 are the same as defined in the above mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

The halogen atom, the C_1 to C_6 alkyl group and the C_1 to C_6 alkoxy group as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in R^4 and R^5 , are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or

the condensed ring in the above mentioned R¹, and includes the same examples, respectively, as preferable concrete examples.

The preferable concrete examples of "the three to six-membered cyclic hydrocarbon" comprising R^4 , R^5 and the adjacent carbon atom includes cyclopropane, cyclobutane, cyclopentane and cyclohexane. Among the groups, the hydrogen atom and the C_1 to C_6 alkyl group are the especially preferable examples of R^4 and R^5 .

5

10

15

20

30

35

In the above mentioned formula (I), p represents 0 or 1, and q represents 0 or 1. A case that both p and q are 0 is especially preferable.

In the above-mentioned formula (I), G represents a group represented by -CO-, -SO_2 -, -CO-O-, $\text{-NR}^7\text{-CO-}$, -CO-NR^7 -, -NH-CO-NH-, -NH-CS-NH-, $\text{-NR}^7\text{-SO}_2$ -, $\text{-SO}_2\text{-NR}^7$ -, -NH-CO-O- or -O-CO-NH-. R^7 represents a hydrogen atom or a C_1 to C_6 alkyl group, or R^7 may form a C_2 to C_5 alkylene group together with R^5 .

The -CO-, -SO₂- and -CS- means a carbonyl group, a sulfonyl group and a thiocarbonyl group, respectively. The especially preferable example of G includes a group represented by -NR⁷-CO- and a group represented by -NH-CO-NH-.

The C_1 to C_6 alkyl group in R^7 is the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R^1 , and includes the same examples as preferable concrete examples.

"The C₂ to C₅ alkylene group" comprising R⁵ and R⁷ means a C₂ to C₅ straight-chain or branched alkylene group such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a 1-methyltrimethylene group or a pentamethylene group, and includes an ethylene group, a trimethylene group and a tetramethylene group as the preferable concrete examples. Among the groups, R⁷ includes the hydrogen atom as an especially preferable example.

In the above-mentioned formula (I), R^6 represents a phenyl group, a C_3 to C_6 cycloalkeyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, and the phenyl group, the benzyl group or the aromatic heterocyclic group in R^6 may be condensed, to make s condensed ring, with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen sulfur, and/or nitrogen as heteroatoms. Further, the phenyl

group, the C₃ to C₈ cycloalkyl group, the C₃ to C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R⁶ may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C₁ to C₆ alkyl groups, C₃ to C₈ cycloalkyl groups, C₂ to C₆ alkenyl groups, C₁ to C₆ alkoxy groups, C₃ to C₈ cycloalkylthio groups, C₁ to C6 alkyloxy groups, C₁ to C₃ alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3 phenylureido groups, C₂ to C₇ alkanoyl groups, C₂ to C₇ alkoxycarbonyl groups, C₂ to C₇ alkanoyloxy groups, C₂ to C₇ alkanoylamino groups, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁ to C₆ alkyl)sulfamoyl groups, amino groups, mono(C₁ to C₆ alkyl)amino groups, di(C₁ alkyl)amino groups, benzyl amino groups, (alkoxycarbonyl)amino groups, C₁ to C₆ (alkylsulfonyl)amino groups or bis(C₁ to C₆ alkylsulfonyl)amino groups.

5

10

15

20

25

30

35

The C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen, and the condensed ring are the same as defined as the above-mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

"The C₃ to C₈ cycloalkenyl group" in R⁶ means a cyclic alkenyl group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group and a cyclooctenyl group, and includes a 1-cyclopentenyl group and a 1-cyclohexenyl group as preferable concrete examples. Among the groups, R⁶ include a phenyl group, a furyl group, a thienyl group, an indolyl group and a benzofurazanyl group as especially preferable examples.

The halogen atom, the C_1 to C_6 alkyl group, the C_2 to C_6 alkenyl group, the C_1 to C_6 alkoxy group, the C_1 to C_6 alkylthio group, the C_1 to C_6 alkylenedioxy group, the C_2 to C_7 alkanoyl group, the C_2 to C_7 alkanoyloxy group, C_2 to C_7 alkanoylamino group, the C_2 to C_7 alkylcarbamoyl group, the C_1 to C_6 alkylsulfonyl group, the mono(C_1 to C_6 alkyl) amino group and the di(C_1 to C_6 alkyl) amino group as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in C_8 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring

in the above-mentioned R¹, and includes the same examples as preferable concrete examples.

The C_3 to C_8 cycloalkyl group as the substituent of R^6 is the same as defined as the C_3 to C_8 cycloalkyl group in the above-mentioned R^1 , and cludes the same examples as preferable concrete examples.

5

10

15

20

25

30

35

"The C_3 to C_8 cycloalkyloxy group" as the substituent of R^6 means a group comprising the above mentioned C_3 to C_8 cycloalkyl group and an oxy group, and includes a cyclopropyloxy group, a cyclopentyloxy group, a cyclopexyloxy group and the like as preferable concrete examples.

"The N,N-di(C_1 to C_6 alkyl)sulfamoyl group" as the substituent of R^6 means a sulfamoyl group substituted by two same or different above mentioned C_1 to C_6 alkyl groups, and includes N,N-dimethylsulfamoyl group, N,N-diethylsulfamoyl group, N-ethyl-N-methylsulfamoyl group and the like as preferable concrete examples.

"The C_2 to C_7 (alkoxycarbonyl)amino group" as the substituent of R^6 means a group comprising the above mentioned C_2 to C_7 alkoxycarbonyl group and an amino group, and includes a methoxycarbonylamino group, an ethoxycarbonylamino group and the like as preferable concrete examples.

"The C_1 to C_6 (alkylsulfonyl)amino group" as the substituent of R^6 means a group comprising the above mentioned C_1 to C_6 alkylsulfonyl group, an amino group and the like, and includes a (methylsulfonyl)amino group as a preferable concrete example.

"The bis(C_1 to C_6 alkylsulfonyl)amino group" as the substituent of R^6 means an amino group substituted by two same or different C_1 to C_6 alkylsulfonyl groups, and includes a bis(methylsulfonyl)amino group and the like as a preferable concrete example.

Especially, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 include a halogen atom, a mercapto group, a nitro group, a trifluoromethyl group, a C_1 to C_6 alkoxy group, a phenyl group, a benzyloxy group, a phenylsulfinyl group, a C_2 to C_7 alkanoyl group, a C_2 to C_7 alkanoylamino group, an amino group and the like as preferable examples. The halogen atom, the nitro group, the trifluoromethyl group, the C_1 to C_6 alkoxy group, the phenylsulfinyl group and the amino group are included as especially preferable examples.

Additionally, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkylthio groups, mono(C_1 to C_6 alkyl)amino groups or di(C_1 to C_6 alkyl)amino groups.

The halogen atom, the C_1 to C_6 alkyl group, the C_1 to C_6 alkoxy group, the C_1 to C_6 alkylthio group, the mono(C_1 to C_6 alkyl)amino group and the di(C_1 to C_6 alkyl)amino group as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

By making a therapeutically effective amount of the compound represented by the above mentioned formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof into a pharmaceutical composition together with a pharmaceutically acceptable carrier and/or a pharmaceutically acceptable diluent, the medicine for inhibiting that the ligand of CCR3, such as eotaxin, binds to the CCR3 on a target cell, the medicine for inhibiting the physiological actions of the ligand of the CCR3, such as the eotaxin, on the target cell, and further the medicine for treating or preventing diseases in which the CCR3 is supposed to participate, as the medicine of the present invention, can be prepared. Namely, the cyclic amine derivative represented by the general formula (I), the pharmaceutically acceptable acid addition thereof, or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof can be administered orally or parenterally such as intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The dosage form of the oral administration includes tablets, pills, granules, powders, liquids, suspensions and capsules.

The tablets can be prepared using a vehicle such as lactose, starch or crystalline cellulose, a binder such as carboxymethylcellulose, methylcellulose or polyvinylpyrrolidone, a disintegrator such as sodium alginate, sodium bicarbonate or sodium lauryl sulfate, and so on, by a conventional method.

The pills, the powders or the granules can also be prepared using the above-mentioned vehicle and so on by a conventional method. The liquids or the suspensions are prepared using a glycerol ester such as tricaprylin or triacetin, an alcohol such as ethanol and so on by a conventional method. The capsules are prepared by filling capsules made from gelatin or the like with the granules, the powder, the liquids or the like.

5

10

15

20

25

30

35

The dosage form for subcutaneous, intramuscular or intravenous administration includes injections in the forms of aqueous or non-aqueous solutions. The aqueous solutions include, for example, isotonic sodium chloride solution or the like. The non-aqueous solutions include, for example, propylene glycol, poly(ethylene glycol), olive oil, ethyl oleate or the like. The solutions, if necessary, further contain a antiseptic, a stabilizer and so on. The injections are sterilized by suitably carrying out the filtration with a bacterial filter and the treatment by the addition of a disinfectant.

The dosage form for the percutaneous administration includes an ointment and a cream. The ointment is prepared using a fatty oil or a fat such as castor oil or olive oil, petrolatum or the like by a conventional method, and the cream is prepared using a fatty oil or an emulsifier such as di(ethylene glycol) or a sorbitan monofatty acid ester by a conventional method.

Ordinary suppositories such as gelatin soft capsules are used for intrarectal administration.

The dose of the cyclic amine derivative of the present invention, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof depends on the kind of a disease, an administration route, the age and sex of the patient and the severity of a disease, but is usually 1 to 500 mg/day/adult.

The suitable concrete examples of the cyclic amine derivative of the above mentioned formula (I) includes compounds containing substituents, respectively, shown in the following Tables 1.1 to 1.221.

In the Tables 1.1 to 1.221, "chirality" means "an absolute configuration", namely the absolute configuration of an asymmetric carbon on the ring of the cyclic amine. "R" means that an asymmetric carbon on the ring of the cyclic amine has the absolute configuration of R, and "S" means that the asymmetric carbon has the absolute configuration of S. " – " means that the compound is a racemate or does not have an asymmetric carbon on the cyclic amine.

Table 1.1

Compd. No.	R (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
. 1	СН2-	1	. 2	0	•	н	- CH ₂ - N- C-
2	CH2-	1	2	0	-	H .	- CH ₂ -N-C-CH ₃
` 3	C├ \ CH ₂ -	. 1	2	.0	-	Н	- CH ₂ -N-C-
4	CH2-	1	2	0	-	н	- CH ₂ - N- C - CF ₃
5	CH2-	. 1	2	0	S	Н	- CH ₂ - N- CF ₃
6	CH2-		2	0	S	H	$-CH_2-NC$
7	CH2−	. 1	2	0	S	Н	- CH ₂ - N- C
8	CH ₂ − CH ₂ −	1	2	0	S	н .	- CH ₂ -N-C-
9	CH ₂ -	1	2	0	S .	H [.]	- CH ₂ - N- C- C1
10	C	1	2	0	S	н	- CH ₂ -N-C-OCH ₃
11	С⊢С СН₂-	. 1	2	0	S	н	-CH ₂ -N-C-OCH ₃

T	a	b	l	е	1		2
---	---	---	---	---	---	--	---

, abic	1.4						
Compd.	R^1 (CH ₂) _i	k	m	n	chirality	. H3	-(CH ₂) _{p ! 5} (CH ₂) _q G-R ⁶
12	CI—CH₂-	1	2	Ó	S	н	-CH2-N-C-OCH3
13	CH2-	1	. 2	0	S	Н	- CH ₂ -N-C-CF ₃
14	CH2-	1	2	0	S	н .	- CH ₂ -N-C-CH ₃
15	C├ - CH ₂ -	1	2	0	S	н .	-CH ₂ -N-C-CI
16	CH₂-	1	2	0.	S	н	-CH ₂ -N-C
17	С├	1	2	Ö	S [.]	H	- CH ₂ - N- C CI
18	CH2-	1	2	0	- S	н	- CH ₂ - N- C-
19	CHCH ₂ -	1	2	0.	S	Н	- CH ₂ -N-C
20	CHCH ₂ -	1	2	0	S .	Н	- CH ₂ -N-C-
21	CHCH ₂ -	1	2	0	S	Н	- CH ₂ - N C - CF ₃
							- CH ₂ -N-C-

, 4510	1.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{q-4}(CH_2)_{q-1}^{q-1}G^{-1}R^6$
23	CH2-	1	2	0	S	Н	- CH ₂ -N-C-
24	CH2-	1	2	0	S	н	OCF3
25 .	CH-2-	1	2	0	S	Н	-CH ₂ -N-C-F
26	C⊢ CH₂-	1	2	0	S	H	- CH ₂ -N-C
27	C├─ੑੑि}─CH₂─	1	2	0	.S	Н	- CH ₂ -N-C-NO ₂
28	C├──CH₂-	. 1	2	0	S	н .	- CH ₂ - N- C- NO ₂
29	CHCH_2-	1	2	· 0	R	н · ·	- CH ₂ -N-C-CF ₃
30	CHCH_2-	1	2	0	R	н	$-CH_2-NC$
31	CH_2-	1	2	0	R R	н	- CH ₂ -N-C
	CI—CH₂-						- CH ₂ - N- C −
33	C⊢CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C1

rabie							
Compd.	R ¹ (CH ₂) _i -	k	'n	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
34	C	1	2	0	·R	Н	- CH ₂ -N-C-OCH ₃
35	CI—CH₂-	1	2	0	R	Н	-CH2- N-C - OCH3
36	CH2-	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
37	CH ₂ -	1	. 2	0	Ř ,	н .	- CH ₂ - N- C-
38	CH₂-	1	2	0	R	H	- CH ₂ - N- C- CH ₃
39	CH ₂ -	1	2	O	R	Н	- CH ₂ -N-C-CI
40	CH2-	. 1	2	0	R	. н	-CH ₂ -N-C
41	CHCH ₂ -	1	2	0	R	. H	- CH ₂ - N- CI
42	CI—CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C- CN
43	CHCH2-	1	2	0	R	н	-CH2-N-C-0
44	CHCH2-	1	2	0	R	н	-CH2-NC-CF3
•							

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
45	CHCH2-	1	2	0	R	H .·	- CH ₂ -N-C
46	C	1	2	0	R	. н	- CH2-N-C-F3
47	C ├── C H₂-	1	. 2	0	R	Н .	- CH ₂ - N C OCF ₃
48	C├	1	. 2	0	R	н	- CH ₂ - N- C- F
49	СН-СН2-	1	2	0	R	н	$-CH_2-N C$ $O_2 N$
50	СН-СН2-		2	0	R	н	- CH ₂ -N-C-CF ₃
51	CHCH_2-	1	2	0,	- R	H .	-CH ₂ -N-C-Br
52	CI—CH₂-	1.	2	0	R .	H	- CH ₂ -N-C
53	C⊢CH₂-	, 1	2 '	0	R	H	- CH ₂ -N-C
54	СНСН2-	1	2 (0	R	н	- CH ₂ - N- C-
55	CH ₂ -	.1 .	2 (0	R	н	- CH ₂ - N- CI

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂)p + (CH ₂)q G-R ⁶ R ⁵ .
56	CI—CH ₂ -	1	2	0	R	н	- CH ₂ - N- C - H ₃ C
57	CH2-	1	2 _.	0	, R	н	-CH2-H2C
- 58	CH₂-	1	2	. 0	R	н	- CH ₂ -N-C-
59	C├-{CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- Br
60	C├────────────────────────────────────	1	2	0	R	н	-CH ₂ -N-C-
61	C⊢CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
62	C ├── CH2-	1	2	0	R .	. н	- CH ₂ - N- C- CH ₃
63	C ├── CH ₂ -	1	2	0	R	н	$-CH_2-NC$ CH_2CH_3
64	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CN
65	CI-CH ₂ -	1	2	0	R	H	- CH ₂ -N-C-
66	C → C H ₂ -	1	2	0	R	Н	- CH ₂ -N-C-

Table 1.7

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _p ト 円(CH ₂) _q G-R ⁶
67	CI-CH ₂ -	1	~2	0	R	Н .	- CH ₂ -N-C
68	C	1	2	0	R	н	- CH ₂ - N- C
69	CH2-	1	2	0	R	н	- CH ₂ -N-C
70	C⊢√CH₂-	1	2	0	R	н .	- CH ₂ - N- C
71	CH2-	_. 1	2	0	R	Н	-CH ₂ -N-С
72	CHCH ₂ -	1.	2	0	R	н .	-CH ₂ -N-C-OCF ₃
73	CHCH_2-	1	2	0	R	н	$-CH_2-N+C$
74	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CO ₂ CH ₃
75	CH ₂ -CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C
76	CHCH ₂ -	1	2	0	R	н	- CH ₂ -N C F ₃ C
77	C├ \ CH ₂ -	· 1 - 3	2	0	R	Н	- CH ₂ -N-C-F

Ta	de	le	1	.8
	ı.	16	- 1	٠.

Compd. No.	R ¹ / _{R²} (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p=1}^{p-1}$ $(CH_2)_{q}^{q}$ $G-R^6$
78	CI—CH₂-	1	2	0	R	н	-CH2-NC
79	Ci—CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
80 .	CH2-	1	2	0	R	H 	-CH ₂ -N-C
81	C├ - CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-CH ₃
82	CI-CH ₂ -	1	2	0	- · - ·	-сн ₃	-CH ₂ -N-C-CF ₃
83	CH2-	1	2	0	R .	н ,	-CH ₂ -N-C-NO ₂
84	C ⊢ C H ₂ -	1	2 .	O	R	н	$-CH_2-N-C$
85	CHCH ₂ -	1	2.	0	, -	н	-(CH ₂) ₂ -N-C-
86	CH2-	.1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	CH-2-	1 -	2	0	S	н [°]	-(CH ₂) ₂ -N-C-CF ₃
	CI-CH ₂ -					н	-(CH ₂) ₂ -N-C H F ₃ C

10510					_		
Compd.	R ¹ /(CH ₂) _j -	k	: m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
89	C├─ \ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-Br
90	Ci—CH₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C
91	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI
92	CH2-	1	2	0	S	H	-(CH ₂) ₂ -N-C-OCH ₃
93	CH₂-	1	2	0	S	н	$-(CH_2)_2$ - N- C \longrightarrow OCH ₃
94	CH ₂ -	1	2	. 0	S	н .	-(CH ₂) ₂ -N-C-OCH ₃
95	CH2-	' 1	2	0	S	: H	-(CH ₂) ₂ -N-C-CF ₃
96	CI—CH ₂ -	1	2	0	S -	Н	-(CH ₂) ₂ -N-C-C-CH ₃
97	CHCH ₂ -	1	2	0	S	H	-(CH ₂) ₂ -N-C-CI
98	CH-CH2-	1	2	0	S		-(CH ₂) ₂ -N-C-OCH ₃
99	CHCH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI

T.	а	ы	e	1.	11	0

Compd. No.	R ¹ /(CH ₂) ₁ -	J;	m	n	chirality	R³	一(CH ₂) _p (CH ₂)q G-R ⁶
100	СН2-	1	2	O	S	н	-(CH ₂) ₂ -N-C-
101	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	C ← C H ₂ -	1	2	0	S	н	-(CH ₂) ₂ - № C - C F 3
103	С⊢ СН₂-	. 1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	C	1	2	0	S	н'	-(CH ₂) ₂ -N-C
105	СН ₂ -	1	2	0	S	. н	-(CH ₂) ₂ -N-C-CF ₃
106	СНСН2-	1	2	0	S	н :	-(CH ₂) ₂ -N-C-
107	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-F ₃
108	С — С H ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C
109	C├ - CH₂-	1	2	0	, S	н	-(CH ₂) ₂ -N-C
110	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-NC ₂

Table 1.11

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
111	C ← C H ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
. 112	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C
113	C⊢√CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
114	CH2-	1	2	0	R -	н	-(CH ₂) ₂ -N-C
115	C├ ─ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	С⊢ СН₂-	1 .	2	0	R	.Н 	-(CH ₂) ₂ -N-C
117	CH ₂ -	1	2	· O	R	н	OCH ₃ -(CH ₂) ₂ -N-C-OCH ₃
118	С├-СН2-	1	2	0	R	Н	$-(CH_2)_2$ -N-C-OCH ₃ OCH ₃
119	C:	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-CF ₃
	CHCH ₂ -						-(CH ₂) ₂ -N-C-CH ₃
121	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI

							•
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
122	C ├── CH ₂ -	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
123	с⊢С сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	СНСН2-	1	2	0	R [.]	H .	-(CH ₂) ₂ -N-C-
125	CH2−	1	2	0	R	Н	-(CH ₂) ₂ -N-C-O
126	CH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-C-
127	C ⊢ C H ₂ -	1	2	O	R	H	$-(CH_2)_2 - N - C - CF_3$
128	C├ - CH ₂ -	1	2	0 .	R	Н	-(CH ₂) ₂ -N-C
129`	CH2-	. 1	2	Ö	R	Н	-(CH ₂) ₂ -N-C
130	Ci—CH ₂ -	· 1 .	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
•	CH2-					٠.	-(CH ₂) ₂ -N-C
	CH-CH ₂ -					н	-(CH ₂) ₂ -N-C-O ₂ N

Table 1.13

Compd.	R^2 $(CH_2)_1$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
133	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	CH2-	1	. 2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
`135	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
136	C├ - CH ₂ -	1	2	O	R.	н.	-(CH ₂) ₂ -N C
137	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
138	C → C H ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
139	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CI
140	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	CI—CH ₂ -	1	2	0.	R	н	-(CH ₂) ₂ - N C - Н Н Н ₃ Ф
142	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
143	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-Ö

Table 1.14

	•••						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³ .	-(CH ₂) p (CH ₂) q G-R ⁶
144	CI—CH2-	1	2	0	R ·	н	-(CH ₂) ₂ -N-C
145	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
146	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	C	1	2	0	.R	н	-(CH ₂) ₂ -N C-CH ₂ CH ₃
148	C ├─ (CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
149	C├ - CH ₂ -	1	2	0	R	'н ``	-(CH ₂) ₂ -N-C-
150	CH ₂ -	1 ·	2	0	R	Н	-(CH ₂) ₂ -N-C-
151	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
152	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
153	C	1.	2	0	R	н	-(CH ₂) ₂ -N-C
154	C	1	2	0	R	Н	-(CH ₂) ₂ -N-C

Table 1.15

Compd. No.	R^1 $(CH_2)_i$	k	m	n	chirality	R³	ー(CH ₂) _p (CH ₂) _q G-R ^t R ⁵
155	CH2-	1	. 2		R.	н	-(CH ₂) ₂ - N C — ОСН ₃
156	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
157	CI-CH ₂ -	1	2	0	R	H÷	-(CH ₂) ₂ -N-C- H F ₃ CO
158	С⊢ СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-С
159	CHCH ₂ -	1 .	2	0	R	Н	$-(CH_2)_2 - \stackrel{\circ}{\underset{H}{\bigvee}} \stackrel{\circ}{\underset{\sim}{\bigvee}} = F$
160	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
161	CHCH ₂ -	1	<u>`</u> 2	0	R	Н	-(CH ₂) ₂ -N-C-F
162	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
163	CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - N C - CF_3$
	CHCH ₂ -					H	-(CH2)2-N-C- $+C-$ $+C-$ $+C-$ $+C-$ $+C-$ $+C-$
165	C	1	2	0	R		-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

1 abic	1.10						
Compd. No.	R! (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶ R ⁵
166	CI—CH ₂ -	1	2	0	R	н	(S) O CF ₃ -CHNCCH ₃
167	CH₂-	1	2	0	R	н	(5) 0 -CH ₃ N+C
,168	C	1	2	0	R	Н	(S) Q -CH-N-C-C H CH ₃
169	CH2-	1	2	0	R	Н	(S) P CI -CH-N-C
170	C├ - CH ₂ -	1	2	0	R	Н	(S) Q CF ₃ -CH-N-C F
171	CH2-	1	2	0	R	Н	(S) 9 -CH-N-C
· 172	C⊢√CH₂-	1	2	0,	· R ,	Н	(S) O -CH-N-C- H CH ₃
173	CH2-				R	Н	(S) P NO ₂ -CHN-C- CH ₃
174	CH2-	1	2	0	R	H	(F) QCF ₃ -CH-N-C-C H H CH ₃ .
	CH2-						
176	CH-2-	1	2	0	R ·	H	(F) (F) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
							•

Ta	h	ما	1	1	7
		1			

Compd. No.	R ¹ (CH ₂) _j -	k m	n	chirality	R ³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_q-G-R^6$
177	CI-CH2-	1 2	0	R	н	(R) (P) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
178	Ci—CH₂-	1 · 2	0	R	Н	(F) CF ₃ -CH-N-C-F
179	C⊢ CH₂-	1 2	0	R	H	(A) P -CHN-C-CI CH3
180	CH2-	1 2	0	R	Н	(A) D -CH-N-C- CH3
181	CH-2-	1 2	0	R	н	(R) P NO ₂ -CH-N-C-NO ₂ CH ₃
182	C⊢CH₂-	1 2	· 0	R .	H	CH ₃ O CF ₃
183	С⊢СН₂-	1 2	0	R	Н	CH3 O Br
184	CI—CH ₂ -			R	H ·	CH3 O CI
185	CI—CH ₂ -	1 .2	0	R	H	CH3 O CI -CH N C CI
186	CH ₂ -	1 2	0	R	н .	CH ₃ O CI -CH ₃ CH ₃ CI -CH ₃ CF ₃ CI -CH ₃ CF ₃
187	CH-2-	1 2	0	R,	Н	CH3 O CI

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _{р 1} (CH ₂) _q G-R ⁶
188	CH2-	1	2	0	R	Н	CH ³ C -CH-V-C-
189	CI—CH ₂ -	1	2	0	R	Н	CH3 0 −CH N-C− CH3
190	CI—CH₂-	1	2	0	R	н	CH NCC-CF3
191	C ⊢ C H ₂ -	1	2	0	R	н	CH ₂
192	C├	1	2	0	R	. н	CH ₂ CH ₂ C
193	C⊢CH₂-	1	2	0	R	H.	(A) -CHN-C
194	CCH₂-	1	2	0	R	н	(F) P CF 3
195	CH2-	1	2	0	R	Н	(FI) P -CHN-C-CI CH ₂ S
196	CH2-	1	2	0	R ·	Н	CHNC CH2 CH2
	CHCH ₂ -						(A) P C 2 CH 2 CH 2 S
198	CI—CH ₂ -	1	. 2	0	R	. н	(S) P CF 3 -CH N-C-

Table 1.19

1 4010							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p \mid 1 \atop R^5}(CH_2)_{q}G-R^6$
199	CH2-	1	2	0	R	н	(S) P -CH-N-C- CH ₂ S
200	C	. 1	2	0	R	Н	(S) CH
201	C ⊢ C H₂-	1	· 2	0	- R	H	(5) -CH-2+C-C-CI CH ₂ -CH
202	C ⊢ C H ₂ -	1	2	0	R	Н	(S) CF 3 -CH-N-C-F 5 -CH ₂ F
203	CH- (CH ₂ -	1	2	Ō	R	Н	(S) 0 -CH-N-C-CI CH ₂ -CS
204	С├	1	2	0	R	н .	(S) P -C+N-C- CH ₂ S
205	CI—CH₂-	1	2 .	0	R .	Н	(S) P NO 2 -CH-N-C-C
206	С├ ─ СН ₂ -	1	2	0	R	н	(OH ₂) ₂ -5-CH ₃
	C:CH ₂ -				, R	н '	(OH ₂) ₂ - \$ CH ₃
208	CHCH ₂ -	1	2	0	Ŗ	н	(S) P CI -C++ N-C- CI D CI (C-12)2- S- C-13
209	C├ \ CH ₂ -	1	2		R	H	(CH ₂) ₂ -5-CH ₃
	•						

Table 1.20

Compd.	R ¹ (CH ₂);-	k	m 0	chicality	˳	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
No.	A ²			————	H	-(CH ₂) p -(CH₂)q G-R° R ⁵
, 210	CI—CH ₂ -	1 .	2 0	R	Н	(S) P -CH-N-C-
211	С⊢СН2-	1 2	2 0	R	н	(CH ₂) ₂ -S-CH ₃
212	CHCH_2-	1 2	2 0	R	Н	(S) P -CH-N-C- H O (CH ₂) ₂ -S-CH ₃
213	CH₂-	1 2	0	R	н	(S) P -CH N-C- H O (CH ₂) ₂ -S-CH ₃
214	C⊢—CH₂-	1 2	0	-	Н	-(CH ₂) ₃ -C-
215	CH_CH ₂ -	1 2	0	- ,	н	-(CH ₂) ₃ -C
216	CI—CH ₂ -	1 2	0	-	н	-(CH ₂) ₃ -C-S
217	CI—CH ₂ -	1 2	0	, -	н	$OOCH_3$ $-(CH_2)_2$ - C H_3CO
218	C	1 2	0	· - ,	н	-(CH2)2-CH3 $H3C$
219	CI—CH₂-	1 2	0	-	н	-(CH ₂) ₂ -C-C-OCH ₃
220	CI—CH₂-	1 2	0	-	н .	-(CH ₂) ₂ -C-CH ₃

Ta	bi	le	1.	2	1

	01				:		· R⁴
No.	R^1 (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
221	CH2-	1	2	0	, -	н	-(CH ₂) ₂ -C-
222	CH2-	1	2	0	-	Н	-(CH ₂) ₂ -C-CI
223	CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
224	C	1	2	0	-	Н	- CH ₂ - S-CH ₃
225	CH ₂ -	.1	. 2	0	-	H	-(CH ₂) ₃ - C-N-
226	CH2-	1	2	0 .	. <u>-</u>	* H	-(CH ₂) ₃ -C-N-
227	C⊢ CH₂-	- 1	2	0	-	H · .	-(CH ₂) ₃ -C-N-CI
228	C ← C H ₂ -	1	2	0		- Н	-(CH ₂) ₃ -C-N-OCH ₃
							- сн ₃ - с, и сн ³ - сн ³ - сн ³ - сн ³
230	. С⊢ СН₂-	1	2	0	-	н	- CH ₂ - CH ₂ - C- N- F
231	C ⊢ C H₂-	1	2	0	- .	Н	-(CH ₂) ₃ -C-CH ₃

т	~	h	le	- 1	1	2	2
	a	u	16			~	_

Table I							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
232	CI—CH ₂ -	` 1	2	. 0	-	н	-(CH ₂) ₃ -C-N-
233	CH2-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
234	CH2-	1	2	0		Н	-(CH ₂) ₃ -C-N-CH ₃
235	C ⊢ CH ₂ -	1	2	0	- 	Н	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CI
236	C CH₂-	1	2	0	-	н .	- CH ₂ - N-S CH ₃
237	CH ₂ -	1	2	0	- <u>-</u>	Н .	- CH ₂ -N-C-O-CH ₂ -
238	C⊢√CH₂-	1.	2	0	-	H	- CH O C N CI
239	CH ₂ -	. 1	2.	0	S	Н	-CH ₂ -N-C-CF ₃
240	CH ₂ -	1	2	0	S .	. , н	-CH ₂ -N-C-C-CF ₃
241	CI CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
242	CI CH ₂ -	1	2	0	S	н .	-CH ₂ -N-C-CF ₃

Table 1.23

rabie	1.25						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q}^{-}G-R^6$
243	CI CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	H	-CH2-N-C-CF3
245	F_CH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
246	CI CH ₂ -	1	2	0	S·	Н	-CH ₂ -N-C-CF ₃
247	CI CH₂−	1	2	0	S	Н .	-CH ₂ -N-C- CF ₃
248	H ₃ CO —CH ₂ -	. 1	2	0	S	Н	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1	2	O	S	н	-СH ₂ -N-С- Н
	H ₃ C —CH ₂ -				•	н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
252	H₃CO	1	2	0	S	Н	-сн ₂ -м-с-С-С-С-3
253	H₃C-€ CH₂-	1	2	0	S	н	-сн ₂ -N-С-

Table 1.24

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality		$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
254 	NO ₂ C⊢ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF₃ CH₂-	1	2	0	S ·	н	-CH ₂ -N-C-CF ₃
258	CH- CO ₂ CH ₂ CH ₃	1	2.	0	S	Н	-CH ₂ -N-C-CF ₃
259	CH- CH ₃	1	2	0	S	, H	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	. 1	2	0	S	H . ·	-CH ₂ -N-C-CF ₃
261	F ₃ C—CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
263	Br CH ₂ -	. 1	2	0	S	, н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
264	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Т	2	h	le	1	.2	5
	a	u	וכו	- 1		J

	_						
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	—(CH ₂) _p G−R ⁶
265	B ← CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
267	OCH₃ CH₂-	1	2	0	S	, н	-CH ₂ -N-C-CF ₃
268	4c-c-H → CH2	1	2	0	S	. Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$\(\frac{\text{O}}{\text{O}}\) CH ₂ -	- 1	2	0	S	. H	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	€ CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
272.	HO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
273	CN CH ₂ -	· 1	2	0	S	Н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-⟨CH₂-	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
		,					

lable	1.20		•					
Compd.	R1 (C	H ₂) _j —	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
276	F—	-СН ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277		}-CH₂-	1	2	0	S '	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{	CH2- `	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F3CO-	}СН₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ	СН ₂	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
281	но₂с)—CH₂−	1	2	0	S	H .	$-CH_2-N-C CF_3$ CF_3
282	(H ₃ C) ₃ C-	CH2	1	2	0	S	Н	$-CH_2-N-C$ H CF_3
283	CH₃ N CH₃	CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
284	c⊢(-CH-	1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
285	\bigcirc	CH₂−	1.	2	0	R	н	-CH ₂ -N-C-CF ₃
286	·	CH₂−	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
		•						

7	٠_	_	le	-4	.2	7
	а	\mathbf{D}	ıe	1	. 2	1

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p=15}^{R^4}(CH_2)_{q}G-R^6$
287	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
288	CI CH2−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CH ₂ -	, 1	2.	0	R.	н	-CH2-N-C-CF3
290	CH ₃ -	1	2	0	` R	н	-CH ₂ -N-C-CF ₃
291	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
292	Ct CH ₂ -	1.	2 .	0	R	H	-CH ₂ -N-C-CF ₃
293	CH ₂ -	1 ,	2	0	R ·	н	-CH ₂ -N-C-CF ₃
294	H₃CQ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
296	H ₃ C	1	2	. 0	R	Н.	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$
297	F-CH ₂ -	1	.2	0	R	н	-CH ₂ -N-C-CF ₃
						•	_

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
298	H₃CO-(CH₂	- , 1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-CH ₂ -	- 1	2	0	R	н	-CH2-N-C-C-CF3
300	NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
301	O ₂ N————————————————————————————————————	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
302	O ₂ N—CH ₂ —	1	2	0	R .	, H	-CH ₂ -N-C-CF ₃
303	CF ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
304	CO₂CH₂CH	1	.2	0	R	H ,	-CH ₂ -N-C-CF ₃
305	CH ₃	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
306	CI CH ₂ -	1	2	0	R .	н ⁻	-CH ₂ -N-C-CF ₃
307	F ₃ C—CH ₂ -	. 1	2	0	R	, H	-CH ₂ -N-C-CF ₃
308	Br CH₂−	. 1	2	0	R	H	-CH ₂ -N-C-CF ₃

1 4510							
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
309	Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
310	OH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
311	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	CH ₂ -	. 1	2	0	R	H	-CH ₂ -N-C-CF ₃
313	OCH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
314	HC-C-H-CH2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-1 CH ₂ -	i	2	0	R	Н	-CH ₂ -N-C
316	H ₃ CO ₂ C —CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2 _.	0	R	Н	-CH ₂ -N-C-CF ₃
							-CH2-N-C- CE3
319	CN CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	•						•

Compd No.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{\overline{H}^4}(CH_2)_{\overline{q}}G-R^6$
320	NC CH₂-	1	2	0	R	Н	-сн ₂ -N-С-С-С-
321	NC-CH2-	1	2	0	R	н	-CH ₂ -N-C
322	F—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
323	CH₂-	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃
324	H₃∞₂C-{CH₂-	1	2	O	R	Н	-CH ₂ -N-C- CF ₃
325	F ₃ CO—CH ₂ -	. 1	2	0	R	. н	-CH ₂ -N-C-CF ₃
326	F ₃ CO —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO ₂ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
329	CH ₂ -	1	2	0	R	Н '	-CH ₂ -N-C- CF ₃
330	CI-CH ₂ -	0 ·	3	1	-	н	- CH ₂ - N- C-

lable i	.5 1						
Compd. No.	R ² (CH ₂) _j -	, k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
331	CI—CH2-	0	3	1	-	н	- CH ₂ -N-C-CH ₃
332	CH2−	0	·3	1	-	Н	OCH3 OCH3
333	CH2-	0	3	1	٠ -	. н	- CH ₂ - N C ~ N
334	CH2-	0	3	1	-	H	- CH ₂ - N- C- CH ₃
335	CH2-	0	3	1	-	н	-CH ₂ -N-C-NO ₂
336	CH2-	0	3	1	. -	H	- CH ₂ -N-C-CF ₃
337	CHCH_2-	0	3	1		н	- CH ₂ -N-C
338	CH2-	0	3	1	-	ਮ	- CH ₂ - N- C-
339	CH2-	0	3	1	R	. H	- CH ₂ -N-C-CF ₃
340	CH2-	0	3	. 1	S	Н	- CH ₂ -NC-CF ₃
							-(CH ₂) ₂ -N-C-

lable	1.3 2						1
Compd. No.	R ¹ (CH ₂)j-	k	m	n, chi	rality	R³	一(CH ₂) _p
342	CH2-	0	3	1	-	н	- C+ V+ C-
343	CH2−	0	3	1 .	-	H	- C+ N- C- H CH(CH ₃) ₂
344	CH2-	0	3	1,	·	Н	- CH N- C
345	CH2-	0	3	1 .	-	Н	-(CH ₂) ₃ -C
346	CH2−	0	3	1	-	Н	-(CH ₂) ₂ -C-C-CH ₃
347	C├ - CH ₂ -	0 -	3	1	· -	н	-(CH2)2-C - CH3 $H3C$
348	CH2-	. 0	3	1	-	н	-(CH ₂) ₂ -C-CH ₃
349	CH2-	Ö	3	1	-	н	$-CH_2 S$ CH_3
350	CHCH ₂ -	0	3	1	-	H.	-CH ₂ -N-S-CH ₃
351	C├ \ CH ₂ -	0	3	1	-	н	- CH ₂ - N- C- O- CH ₂
							- CH O C N CI
							•

Table 1.33

Compd.	R ¹ (CH ₂) _j	k	m	n·	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
353	C	1	2	1	-	ŀН	- CH2- N- C-
354	C⊢√CH₂-	1	3	0	-	Н	- CH ₂ - N- C-
355	C├	1	3	0	- .	H	- CH ₂ -N-C-CH ₃
. 356	CH2-	1	3	0_	-	Н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
357	CH2-	1	3	0	 <u>-</u>	н	$-CH_{2}-N-C$ $H_{3}C$
358	CH_CH2-	1.	3	0	<u>-</u>	H	- CH ₂ -N-C-CF ₃
359	CH2-	1	3	0	- -	H	-(CH ₂) ₂ -N-C-
360	CH-CH ₂ -	1	3	0	<u>.</u>	Н	-(CH ₂) ₂ -N-C-NO ₂
361	CI-CH ₂ -	1	3	.0		H	-(CH ₂) ₃ -C-
							O -(CH ₂) ₃ -C-\(\sum_{2}\)-OCH ₃
363	C├ - CH₂-	1	3	0	- -	Н	-(CH ₂) ₃ -C-S

Table I	1.5 4				
Compd.	R^1 $(CH_2)_i$	k _, m	n chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
364	CH2-	1 3	, O -	Н .	-(CH ₂) ₂ -C
365	CH2-	1 3	0 -	н .	$-(CH_2)_2$ $-CH_3$
366	CH2-	1 3	0 -	н	-(CH ₂) ₂ -C
367	CH2-	1 3	0 -	H	$-(CH_2)_2 - C - CH_3$
368	CH ₂ -	1 3	0 -	Н	-(CH ₂) ₂ -C
369	C⊢√CH₂-	1 3	0 -	н	-(CH ₂) ₂ - C-
370	CH-€-	1 3	0 -	H	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
371	CH-2-	1 3	0 -	н	-(CH ₂) ₂ - C - O O O O O O O
372	C ← CH ₂ -	1 3	0	н	$-CH_2 - S - CH_3$
373	CH2-	. 1 3	0 -	н	-(CH ₂) ₃ - C- N-
374	С⊢ СН₂-	1 3	0 -	н	-(CH ₂) ₃ -C·NH
				•	,

Table 1.	3	5
----------	---	---

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
375	С⊢ СН₂-	1	3	0	-	н	-(CH ⁵) ² - C N C C I
376	C├ - CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
377	СН2-	1	3	0	- -	Н	- CH ₂ -C-CH ₂ -C-N-CI
378	CH2−	1	3	0	-	Н	- CH ₂ - CH ₂ - C- N- F
379	CH ₂ -	1	3	Ö	-	Н	-(CH ₂) ₃ -C-N-C-CH ₃
380	C├	. 1	3	0	-	H	-(CH ₂) ₃ - C- N- CH ₂ -
381	C⊢CH₂-	1	3	0	•	Н	- CH ₂ -N-S-CH ₃
382	. CH2-	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂
383	CH2-	1	3	0	-	: H	- CH O C N CI
384	CH2-	•					-CH ₂ -N-C-CH ₃
385	C	2	2	0	-	H	-CH ₂ -N-C-\(\sigma\)

Table 1.3.6

, 45, 6							
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - R^6$
386	CH ₂ -	2	2	0	- -	Н	-CH ₂ -N-C-
387	CH ₂ -	. 2	2	0	-	Н	-CH ₂ -N-C-
388	CH ₂ −	2	2	0	-	Н	-CH ₂ -N-C-NO ₂
389	CH ₂ -	2	2	0	-	H	$-CH_2-N-C-$ H $-CO_2CH_3$
390	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-CF ₃
391	CH ₂ -	2	2 .	. 0	, -	н .	$-CH_2-N-C F$
392	CH ₂ -	2	2	0	- -	H	-CH ₂ -N-C-OCF ₃
393	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-Br
394	CH₂-	.2	2	0	-	Н	-CH ₂ -N-C-
395	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C
396	CH₂⁻	2	2	0	-	Н…	-CH2-N-C

٦	T -3	h	le	4	3	7
	1 71	L)	≀ 🗠	1	٠.٦	•

Table						
Compd.	R 1 (CH ₂)j-	k	m	n chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
397	()—CH₂-	2	2	0 -	н	-CH2-N-C-CI
398	—CH₂-	2	2	0 -	Н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0 -	н	-(CH ₂) ₂ -N-C-
400	CH ₂ -	2	2	0 -	н	-(CH ₂) ₂ -N-C-NO ₂
401	CH₂-	2	2	0	Н	-(CH ₂) ₂ -N-C- H - C - ∞ ₂ CH ₃
402	CH₂-	2	2	0 -	H	-(CH ₂) ₂ -N-C-CF ₃
403	CH₂-	2	2	0 -	Н .	-(CH ₂) ₂ -N-C
404 .	CH₂-	2	2	0 -	Н	-(CH ₂) ₂ -N-C-OCF ₃
						-(CH ₂) ₂ -N-C-Br
406	CH₂-	2	2	0	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	H	-(CH ₂) ₂ -N-C-Br

rable .	1.30				·		
Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	[·] R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}G-R^6$
408	CH₂-	2	2	0	<u>.</u>	н	-(CH ₂) ₂ -N-C-F
409	CH₂-	2	. 2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	H .	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂ :
411	_ CH ₂ -	2	2	0	-	Н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
412	СН ₂ -	2	2	0	-	H	(S) -CH-N-C
413	CH ₂ -	2	2	0	- . ,	H	(S) (S)
414	CH ₂ -	2	2	0	-	н	(S) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
415	CH ₂ -	2	2	0	-	Н	(S) CF_3 CH_1 CH_2 CH_3 CH_3 CH_3 CH_3
416	CH ₂ -	2	2	0		Н .	(S) O
417	CH₂-	2	2	0	-	Н	(S) Br -CH-N-C- H CH ₂ CH(CH ₃) ₂
418	CH₂-	2	2	0	-	н	(S) P C1 -CH-N-C

<u> 10031698.012302</u>

Table 1.39

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	'R³	-(CH ₂) p (CH ₂) q G-R ⁶
419.	CH ₂ -	2	2	0	-	н	(S) P -CH-N-C-Br -CH ₂ CH(CH ₃) ₂
420	CH₂-	2	2	0	-	Н	(S) F CH-N-C-F CH ₂ CH(CH ₃) ₂
421	()—CH₂-	2	2	0	· -	Н	(S) (CI -CH-N-C
422	CH ₂ -	2	2	0	-	·H	(F)
423	CH ₂ -	2	2	0	-	н	(F) (H) (H) (CH ₃) ₂
424	CH ₂ -	2	2	0	- ;	. н	(F) P NO2
425	CH₂−	2	2	0	-	н	(H) $CH-N-C CH_3$ $CH_2CH(CH_3)_2$
426	CH₂-	2	2	0		Н	(F) - CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂-	2	2	0	. -	Н .	(<i>H</i>) - CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH₂-	2	2	0 .	-	, Н	(F) OCF ₃ -CH-N-C-
429	—CH₂-	2 -	2	0		H	(<i>R</i>) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ή³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
430	(CH₂-	2	2	0	- -	н	(H) (CH ₃) ₂ (CI
431	CH ₂ -	2	2	Ο.	-	H	(A) P −CH-N-C-Br CH ₂ CH(CH ₃) ₂
432	CH ₂ -	2	2	0	-	Н	(F) -CH-N-C-F -CH ₂ CH(CH ₃) ₂
433	CH ₂ -	2	2 .	0	· <u>-</u>	Н	(A) P
434	CH_CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-
435	с⊢(Сн₂-	1	3	1	-	. Н	-CH ₂ -N-C-
436	CH2-	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\) NO ₂
437	CHCH ₂ -	1	3	1	-	н .	-CH ₂ -N-C
438	C⊢———CH ₂ -	1	3	1		Н	-CH2-N-C-C-CL3
439	C ⊢ C H₂-	1	3	1	-	`H	CH ₂ -N-C- CF ₃
440	C├ - CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-COCF ₃

Table 1.41

						_	
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
441	CH2-	1	3	1	-	н	-CH2-N-C-BL
442	C	1	3	1	-	н	-CH ₂ -N-C-
443	СН₂−	1	3	1	- -	Н	-CH ₂ -N-C-Br
444	С⊢—СН2-	. 1	3	1	-	Η	-CH ₂ -N-C
445	С⊢—СН₂-	1	3	·1	- .	H _.	-CH ₂ -N-C-CI
446	С├-{СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	C├ - CH ₂ -	1	3.	1	-	Н	-(CH ₂) ₂ -N-C-
	C├─ੑੑੑੑੑੑੑ \ CH ₂ -				·	Н	-(CH ₂) ₂ -N-C-\(\sigma\)
449	CH_CH ₂ -	1	3	1	- -	Н	-(CH ₂) ₂ -N-C-
450	С⊢√_СН₂-	1	3	1	. -	н	-(CH ₂) ₂ -N-C-
451	С⊢ СН₂-	1	3	1	• .	н _.	-(CH ₂) ₂ -N-C-

Table 1.42

lable	1.42						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
452	CH2-	1	3	1 '	-	н	OCF ₃
453	сн—СH ₂ -	1	3	1	- ,	Н	-(CH ₂) ₂ -N-C-
454	CH2−	1	3	1	-	Н.	-(CH ₂) ₂ -N-C-C
455	CHCH_2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
456	CH₂-	1	3	1 .	-	H	-(CH ₂) ₂ -N-C-F
457	CH₂-	,1	3	1 .	-	н	-(CH ₂) ₂ -N-C-CI
458	CH2−	2	2	1 ,	-	н	- CH ₂ -N-C-
459	CH2-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
460	CH2-	2	2	1·	-	Н	- CH ₂ - N- C- CH ₃
461	CH2-	2	2	. 1	-	H	- CH2- N- C-
462	CH2-	2	2	1	-	· H ·	- CH ₂ -N-C-

Table 1.43

lable	1.43						
Compd.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
463	CH₂-	2	2	1	-	н	- CH ₂ -N-C-C-CH ₃
464	CH2-	2	2	. 1	-	н	-CH ₂ -N-C-OCH ₃
465	СН ₂ -	2	2	. 1	-	н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
466	CH2-	2	2	1	7	Н	- CH ₂ -N-C-NO ₂
467	CH2-	2	2	1	-,	H	- CH ₂ - N- C-
468	C⊢ CH₂-	2	- 2	1	-	Н	- CH ₂ - N C N(CH ₃) ₂
469	CH2-	2	2	1	-	н .	- CH ₂ -N-C
470	CH_2-	2	2	1	-	Н	-CH ₂ -N C-CN
471	CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CO ₂ CH ₃
472	CH₂-	2	2	1	-	н	$-CH_{2}-NCC-CO_{2}CH_{3}$ $-CH_{2}-NCC-CO_{2}CH_{3}$
							- CH ₂ - № С — С· СН ₃
•							·

Table 1	.44					· <u></u>	
Compd.	R (CH ₂),	k	m	n	chirality	. R³ .	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
474	C ← CH ₂ -	2	2	1	-	н	-CH ₂ -N C-CF ₃
475	CH2-	2	. 2	1	-	н	- CH ₂ - N-C - CH(CH ₃) ₂
476	CH₂-	2	2	1	-	Н	- CH ₂ - N- C- NO ₂
477	C ← CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
47.8	CH2-	. 2	2	1	- .	Н	- CH ₂ - N- C-N H ₃ C
479	CH2-	2	2	1	. -	H :	- CH ₂ - N C-0
480	C├─ \ CH ₂ -	2	2	1	 	Н	-CH2-N-C-OBr
481	CH ₂ -	2	2	1	- -	H	-CH ₂ -N-C-S
482	CH2-	2	. 2	1		H	- CH ₂ - N C S
483	CH_CH ₂ -	2	. 2	1	-	' Н	-CH2-N-CS CH3
484	C├───── CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-N-H
		,					

Table 1.45

485 $CH - CH_2 - 2 = 2 = 1 - H - CH_2 - N C - CF_2 - CF_2$								
486 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 487 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 488 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 490 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 491 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 492 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 493 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 494 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-}$ 6 $-CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-} \mapsto CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-} \mapsto C \mapsto CH_{2}^{-} \mapsto CH$	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
487 CH_{2}^{-}	485	СН2-	2	2	1	· 	н	- CH2- N- C
488 $CH \longrightarrow CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \stackrel{\circ}{\to} $	486	с⊢ СН₂-	2	2	1	· -	Н	- CH ₂ -N-C-CN
489 $CH \longrightarrow CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-} \stackrel{\circ}{\to} $	487	CH2-	2	2	1	, <u>-</u> .	Н	- CH ₂ -N-C
490 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} $CH_$	488	CH2-	2	2	1	- -	H	- CH ₂ - N-C
491 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ H^{-} CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ H^{-} CH_{2}^{-} $CH_{2}^$	489	C⊢√_CH₂-	2	2	1	-	H	$-CH_2-N C CF_3$ $+G_3C$
492 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} CH_{2}^{-} 2 2 1 - CH_{2}^{-} $CH_{$	490	CH2⁻	2	2	1	-	Н	- CH ₂ -N-C
493 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} $CH_$	491	CH₂-	2	. 2	1	- '	Н	- CH ₂ - N- C-
494 CH2- 2 2 1 - H -CH2-N-C-	492	C├────────────────────────────────────	2	. 2	1	-	н	$-CH_2-NC-$
	493	C ⊢ CH ₂ -	. 2	2	1	- -	Н	- CH ₂ - N- C-
	494	CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
	i i							

Table 1.46

Compd. No.	R ¹ (CH ₂),—	k	ψ	n	chirality	 R³	$-(CH_2)_{p} \frac{R^4}{1} (CH_2)_{q} G - R^6$
496	CH2-	2	2 .	1		Н	- CH ₂ -N-C-F
497	CH2-	2	2	1	.	Н	- CH ₂ - N C - CH(CH ₃) ₂
498	CH2-	2	2	1	-	н .	- CH ₂ -N-C-
499	CH2-	2	·2	,1	• -	Н	-CH ₂ -N-C-N(CH ₃) ₂
500	CH2-	2	2	1		H	-CH ₂ -N-C- OCH ₃
501	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
502	CI—CH ₂ -	2	2		-	Н	-CH ₂ -N-C
503	C├ - CH ₂ -	2	2	1		н	- CH ₂ -N-CI
504	CH2-	2	2	1	. <u>-</u>	Н	$-CH_2-N$ C CCH_3 CCH_3
	CH-2-						- CH ₂ -N-C
506	CI—CH ₂ -	. 2	2	1	-	Н	-CH2-N-C-ONO2

Table 1.47

, abic	1.71						·
Compd.	R (CH ₂);	k ·	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
507	CI.—CH₂-	2	2	1	-	н	- CH ₂ -N-C
508	CI——CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-S
509	CHCH ₂ -	2	2	1	<u>-</u>	н	- CH ₂ -N-C-S
510	CH2-	2	2	· 1	-	Н	-CH ₂ -N-C-(CH ₃)
511	CH2-	. 2	2	1	-	Н	- CH ₂ - N- C- C(CH ₃) ₃
512	C ⊢ CH₂-	2	2	1	` <u>-</u>	Н	- CH ₂ -N-C-CHCH ₃
513	CH₂-	2	2	1	- ,	." H	- CH ₂ -N-C-CH ₃
514	CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- C(CH ₃) ₃
515	CI—CH ₂ -	2	2	1	- -	Н	- CH ₂ - N- CH ₂ OH
516	H ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C-\longrightarrow CH_{2}OH$ $-CH_{2}-N-C-\longrightarrow CF_{3}$ $-CH_{2}-N-C-\longrightarrow CF_{3}$
517	H ₂ N —CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃

1		
-		

т	_	Ь	le	4	4	ιΩ
	а	n	16		. 4	. 0

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
518	NH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	. Ω CH₂-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
520	CH_CH ₂ -	2	2	1	-	—СH ₃	-CH ₂ -N-C-CF ₃
521	CHCH ₂ -	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	C	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	С — С н ₂ —	2	2	1	-	-(CH ₂) ₂ CH-	-CH2-N-C-
524	С⊢ СН₂-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-
525	CI—CH₂-	2	2	. 1	- -	H	-CH ₂ -N-C
526	C├─ ─ -C∺₂-	2	2	1	-	Н	-CH ₂ -N-C-
	С⊢ СН₂-						-CH2-N-C-
528	CI—CH₂-	2	2	1	<u>-</u>	н	$-CH_{2}-N-C-O$ $F_{3}C$

rable	1.49						
Compd. No.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p
529	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C
530	C⊢√CH₂-	2	2	· 1	-	н	-CH ₂ -N-C
531	CI—CH₂-	2	2	1	-	H	-CH2-N-C-S
, 532	C	2	2	1	.	Н	$-CH_2-N-C-VO$ H_3C
533	СН2-	2	2	1	-	. · H	-CH ₂ -N-COHOHOHOHOHOHOHOHOH
534	C ⊢ C H₂-	2	2	1	-	Н	$-CH_2-N-C$ H H_3C NO_2
535	C	, 2	2	1	-	H	$-CH_2-N-C$ H_3C-C
536	C ⊢ CH ₂ -	2	2	1	· .	Н	$-CH_{2}-N-C$ H $H_{3}C$ CH_{3} CH_{3}
537	C├ - CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-C(CH_3)_3$ H_3C
538	CI—CH₂-	2	2	1	- ;		-CH ₂ -N-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O
539	CI————— CH2-	2	2	1	-	н	-CH ₂ -N-C-O H ₀ C CH ₃ -CH ₂ -N-C-O F ₃ C

T	а	b	ı	е	1		5	0
---	---	---	---	---	---	--	---	---

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $(CH_2)_{q}$ $ G-R^6$
540	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-CH ₃
541	CI-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
542	CH2⁻	2	2	1	- -	Н	-CH ₂ -N-C-CH ₂ CH ₃
543	C	2.	2	1	- - - -	н	$-CH_2-N$ C CH_2CH_3
544	CH2−	2	2	1	-	H . '	-CH ₂ -N-C
545	CH2-	2	2	1	· - ·	, Н	-CH2-N-C-
546	CH2-	2	2	1	- -	Н	-CH ₂ -N-C-CI
547	C├ - CH ₂ -	2 .	2	1	-	H	-CH ₂ -N-C-C:
548	C ├── CH ₂ -	2	2	1		Н	-CH ₂ -N-C- CI
549	CH2-					Н	-CH ₂ -N-C-
550	CH2-	. 2	2	1	-	Н	-CH2-N-C-

Table 1.51

559

560

561

	•						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}G-R^6$
551	C ← C H ₂ -	2	2	1	-	н	-CH2-N-C-CH2-CH3
552	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH2-	2	2	1	- t	н .	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-H
555	CHCH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C-NH
556	CH₂-	2	2	1	-	Н	-CH ₂ -N-C-N-H
557	CH2−	2	2	1	-	Н	-(CH ₂) ₂ -N-C-
558	C├ - CH₂-	2	2	-1	-	H H	- CH N- C-
				•			: C=-

Н

Н

Compd. No.	R^{1} $(CH_{2})_{i}$	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
562	CH₂-	2	2	1	-	Н	- CH N C
563	CI-CH ₂ -	2	2	1	-	н .	-CHNC-CF3
564	CH₂-	2	2	1	-	.` H	- CH N C OCH ₂ CH ₃
565	C⊢—CH ₂ -	2	2	1	· <u>-</u>	н	-CHNC-CF3
566	CI—CH₂-	2	2	1	.	· н	-CHNC-CH3
567	CH-CH₂-	2	2	. 1	-	н	- CH N C CF ₃
-568	CH2-	2	2	1	-	н	-CHNC-CF3
569	CH2-	2	2	1	-	Н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
570	CI—CH₂-					. н	-CHNC-F CH3
571	CI—CH ₂ -	2	2	1	-	Н .	-C++ V C
572	CH2-	. 2	2	1	-	H	- CHN C- CF3

Table 1.53

Table	1.55		•				
Compd.	R^{1} $(CH_{2})_{j}$	k	m	ī. N	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
573	CI—CH₂-	2	2	1	-	н	- CH N- C- S
574	CH ₂ -	2	2	1	-	н	-CHNC-S Br
575	CH ₂ -	2	2.	· 1	-	н	-CH N C C(CH ₃) ₃
576	CI—CH ₂ -	2	2	1	-	H	-CH NC-O SCH3
577	CI—CH ₂ -	2	2	1	-	н	- CH N C- O
578	CH2-	2	2	1	-	Н	-CHNC-S
579	CH2-	2	2 ·	ຸ1	-	Н	- CH N C - N H
580	C ← C H ₂ -	2	2	1 -	- '	H ·	-CHNC-SCH3
581	C├─── CH ₂ -	2	2	1 ·	- -	Н	-C+ 2 C- S
582	CH ₂ -	2	2	1	-	н	CH ₃ -CH ₃ CH ₃ O
583	C ← CH ₂ -	2	2	1	-	н	-CH N CH2

Т	a	h	le	1	.5	4
	а	_	, –			_

lable	1.54						
Compd. No.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
584	CI-CH ₂ -	2	2	1	-	Н	-CH M C C C
585	CH2-	2	2	1	. -	, H	-СН И С — СИ
586	CH₂-	2	2	1	-	н	- CH N- C- CI
587	CI—CH ₂ -	2	2	1	-	Н	-CH N C-CF ₃
588	C → CH ₂ -	2	2	1	-	Н	-CHNC-NH2 CH3
589	CH-CH ₂ -	2	. 2	1	-	Н	-CHNC-C(CH ₃) ₃ H CH ₃
590	CH ₂ -	2	2	1		H	- CH: N C - CH(CH ₃) ₂ CH ₃
591	CH₂-	2	2	1	-	Н	-CH-N-C- N(CH ₃) ₂ -CH ₃
592	CH2-	2	2	1	-	H	-CHNC-OCH3
593	C ← CH ₂ -	2	2	1	. -	н	- СН- № С — СН ₂ ОН СН ₃
594	CI-CH ₂ -	2	2	1	-	H	- СН И С- СН ³

7 4

Table 1.55

, ab.c							
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	'R³	ー(CH ₂) p G (CH ₂) q G-R ⁶
595	CI—CH₂-	2	2	. 1	-	н .	-CH N C-CO2CH3
596	C├──CH ₂ -	2	2	1	-	н	- СН- М-С- С- СН-3 СН-3
597	C├────────────────────────────────────	2	2	1	-	Н	- CH N C - C - CH3
598	CH₂-	2	2	1	-	н	- CH M C- O
599	СН2-	2	_ 2	1	- ·	`H	-CH N CH3
600.	C ⊢ CH ₂ -	2	2.	. 1	-	н ·	-CHNC-
601	CH₂-	2	2	1	-	Н	-CH N-C
602	C├	2	. 2	1	-	Н	-CH N-C
603	CH ₂ -	2	2	1	-	н	- CH N C NH ³
604	CHCH ₂ -	2	2	1	-	н .	-CHN-C-
605	C ├── C H ₂ -	2	2	1	- -		-CH-V-C-CO

iable	1.50						
Compd.	$\begin{array}{c} R^{1} \\ R^{2} \end{array} - (CH_{2})_{j} - \\$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
606	CI—CH ₂ -	2	2	1	· -	н,	-CHN-C-S
607	CI—CH ₂ -	2	2	1	-	Н	-CHN-C-S
608	CI—CH ₂ -	2	2	1	-	Н	-CHNC-CH3
609	CH2-	2	2	1	-	Н	-CH-N-CO CH ₃ H ₃ C
610	CI—CH ₂ -	2	2	1	-	H .	-CHNC-S CH3 O=CCH3
611	C├──CH ₂ -	2	2	1	·	Н	$-CHNC \longrightarrow C(CH_3)_3$ $-CHNC \longrightarrow C$ $CH_3 H_3C$
612	C├	2	2	1	-	Н	-CH- 14-C-
613	C├ - CH ₂ -	2	2	1	·	н ′	$-CHNC CH_3$ $CH_3 F_3C$
. 614	C├ - CH ₂ -	2	2	1	-	н	$-CH N C \longrightarrow N CH_3$ $CH_3 F_3 C CH_3$
615	CH ₂ -	2	2	1	-	Н	-ch N-C NH
616	C ← CH ₂ -	2	2	1	-	н	-CH-MC-N

Table 1.57

.ab.c	1.57						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	[:] R³	$-(CH_2)_{p} + G^4 (CH_2)_{q} G - R^6$
617	C ├── C H₂-	2	2	1	~	H	-CHN-C-CF3
618	C├ \ CH ₂ -	2	2	1	-	н	-CHN C-CH(CH ₃) ₂
619	CH_CH ₂ -	2	2	1.	-	Н	- CH N C - CN - CH (CH ₃) ₂
620	CHCH ₂	2	2	1	-	H	- CH N C - Br - CH(CH ₃) ₂
621	CHCH_2-	2	2	1	- -	H	- CH N C CI - CH (CH ₃) ₂
622	CH2-	2	2	1	<u>.</u>	., H	- CH N C N(CH ₃) ₂ - CH (CH ₃) ₂ - CH(CH ₃) ₂
623	CHCH ₂ -	2	2	1	`- '-	н	CH(CH ₃) ₂ OCH ₃
624	CHCH2-	2	2	1,	-	Н	- CH N C - NO ₂ CH(CH ₃) ₂
é25 ,	CH2-	2	2	1	- -	н	- CH N C NH2 - CH (CH3)2
626	CH_CH2-	2	2	1	-	н Н	- CH N C - CF ₃ - CH(CH ₂) ₂ CF ₃
627	C├─ │ CH ₂ -	2	2	1	-	н	- CH W C - OCH2CH3

Table 1.58

lable	1.50						
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} \frac{R^4}{1} (CH_2)_{q} G - R^6$
628	CI—(CH₂-	2	2	1		Н	O CO₂CH₃ - CH N C C CH(CH₃)2
629	С⊢ СН₂-	2	2	1	-	H	OF CF3 -CH N C CF3 -CH(CH3)2
630	C├ \ CH ₂ -	2	2	1.	-	н	OCF ₃ -CHNC-
631	CH2-	2	2	1	- -	н	OCI - CH N C- H CH(CH ₃) ₂ CF ₃
632	CH2-	2	2	1	-	H	-CHNCH3)2 CF3
633	CH ₂ -	2	2	1	-	. н	- CHNC
634	ÇCH⊋−	2	2	1	- -	H	O CF ₃ - CH N C F CH(CH ₃) ₂
635	CH ₂ -	2	2	1	-	н	- CH: N C- CH(CH ₃) ₂ - CH(CH ₃) ₂
636	CHCH ₂ -	2	2	1	-	н	- CH N C - CH3 - CH(CH3)2
637	CH2-	2	. 2	1	-	н	O CF3 - CH N C - CF3 - CH(CH ₃) ₂
638	CI-CH ₂ -	2	2	. 1	- .	н	- CH N C - CN H H CH(CH ₃) ₂
•							

Table 1.59

Compd.	R (CH ₂) _j -	k	m	n	chirality	Ŗ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
639	CH2-	2	2	1	· .	Н	-CH N C - N(CH ₃) ₂ -CH(CH ₃) ₂
640	CH2-	2	2	1	-	н	$\begin{array}{c c} O \\ -CH & C \\ + H & C \\ -CH(CH_3)_2 \end{array}$
641	CH2-	. 2	2	1	-	Н	-CH N C CO₂CH₃ H CH(CH₃)₂
642	CH2-	2	2	1	-	Н	-CHNC
643	CH ₂ -	2	. 2	1	- -	Н	$-CHNC \longrightarrow CF_3$ $-CH(CH_3)_2$
644	CH2-	2	2	. 1		н	$-CHNC-C(CH_3)_3$ $-CH(CH_3)_2$
645	CH ₂ -	2	2	1	-	H	$-CHNC-NH_2$ $-CH(CH_3)_2$
646	CH2-		2		-	H	- СН- № С- СН ₂ ОН СН(СН ₃) ₂
647	CI—CH ₂ -	2	2	1	-	H	- CHNC- C-CH3 CH(CH3)2
648	CH₂-	2	2.	1	-	н .	- CH N C - CH(CH ₃) ₂ CH(CH ₃) ₂
649	CH2-	. 2	2	1	-	н	- CH- V C — ОСН(СН3)2 СН(СН3)2

	_	_		1	c	\sim	
1	а	n	le	7	h	()	

, abic			•		
Compd. No.	R^1 $(CH_2)_j$	k m	n chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
650	CI—CH2-	2 2	1 -	Н	- CH-V-C
651	CH2-	2 2	1 -	Н	CH(CH ₃) ₂
652	CI—CH ₂ -	2 2	1 -	Н	-CH-N-C-NO ₂ -H CH(CH ₃) ₂
653	CH2-	2 2	1 -	H	-CH-N-C
654	CI—CH ₂ -	2 2	1 -	Н	- CH-N-C-C-CH ₃ - CH(CH ₃) ₂
655	CH2-	2 2	1 -	Н	-CH(CH ₃) ₂
656	CH2-	2 2	1 -	H .	-CH-N-C
657	CH-2-	2 2	1 -	Н	-CH-N-CS CH(CH ₃) ₂
658	CH2-	2 2	1 -	Н.	- CH-N-C-NH CH (CH ₃) ₂
659	CH2-	. 2 2	1	Н	-CH N C - S
660	CH2-	2 2	1 -	н	-CH-N-CN CH(CH ₃) ₂

Table 1.61

lable .	1.0 (
Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	[.] R³	$-(CH_2)_{p} \frac{R^4}{1.5} (CH_2)_{q} G - R^6$
661	C⊢ CH₂-	2	2	1	- · ·	Н	-CH-N-C- S H CH(CH ₃) ₂ OCH ₃
662	C⊢CH₂-	2	2	1	-	н	-CH-N-CO- H CH(CH ₃) ₂ CH ₃
663	C	2	2	1	-	н	-CH-N-C
664	CI—CH₂-	2	2	1	-	н	-CHN-C-O H NO ₂
665	CH2-	2	2	1	-	Н	- CH- N-C - S - CH(CH ₃) ₂
666	CH ₂ -	2	2	. 1	-	н	-CH-N-C
667	CH2-	2	2	1	-	Н	-CH-N-C
668	CH2-	2	. 2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
669	CI—CH₂-	2	2	1	<u>.</u> .	Н	-CHN-C-N-CH(CH ₃) ₂ CH ₃
670	C⊢CH₂-	2	2	1	-	, н	-CH-N-C
671	CI—CH₂-	. 2	2	1	- :	н	-CH-N-C- H O NO ₂ CH(CH ₃) ₂

Т	2	h	le	1	6	2
- 1	_	LJ	16	1.	. 🔾	4

Compd.	R (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
672	CH-CH₂-	2	2	1	-	н	-CH-N-C-N
673	C ⊢ C H ₂ -	2	2	1	-	н	-CH-V-C-S
674	C ⊢ C H ₂ -	2	2	. 1	-	Н	-CH-N-C-S CH(CH ₃) ₂
675	.СНСН₂-	2	2	. 1	-	н	$-CHNC-S$ $C(CH_3)_2$
676	C├───────────────────────	2	2	1		н	-CHNC-N H CH(CH ₃) ₂ H
677	CH ₂ - CH ₂ - ·	2	2	1	-	H	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
678	C⊢(CH ₂ -	2	2	. 1	-	H	-CH-N-C- H CH(CH ₃) ₂
679	C⊢CH₂-	2	2	1	-	н	-CH-N-C-S H CH(CH ₃) ₂
680	C├────────────────────────────────────	2	2	1	-	н	-CHN-C-SBr CH(CH ₃) ₂
681	CH ₂ -	2	2	i	-	Н	CH(CH ₃) ₂ CH(CH ₃) ₂ CH(CH ₃) ₂ CH ₃ CH(CH ₃) ₂ CH ₃ CH(CH ₃) ₂ CH(CH ₃) ₃
682	CH2-	2	2	1	-	н	-СН-Й-С Н ОС(СН ₃) ₃

Table 1.63

Compd.	R ¹ (CH ₂),-	k	m	n (chirality	R³ .	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
683	CH2−	2	2	1	-	H	-CH-N-C- H S SCH ₃
684	CH_CH2-	2	2	1	-	Н	-CH-N-C-S-CH(CH ₃) ₂
685	CH₂-	2	2	1	-	Н .	-CH-N-C-S-CH ₃
686	C	2	2	1	-	н	O - CH N- C- H CH₂CH(CH₃)₂
687	CH ₂ -	2	2	1	-	н .	-CHN-C-
688	CHCH ₂ -	2	2	1 -	-	Ħ	-CHNC
689	C	2	2	1	-	Н.	-CH N-C-
690	CI—CH ₂ -	2	2	1	- ·	н .	-CHNC-Br
691	C ⊢ C H ₂ -	2	2	1	-	н	-CH N-C
	C						-CH N-C-OCH3
	CI—CH₂-						-CHNC
			_				

Table 1.64

			•				
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
694	CI—CH ₂ -	2	2	1	<u>-</u>	н	-CHNC-CH2CH3
695	CI—CH ₂ -	2	2	1	-	Н	-CH \ C _ C _ CH3
696	CH ₂ -	2 .	2	1	-	н	- CH N C - OCF3
697	CI—CH ₂ -	2	2	1	-	н	-CH-N-C
698	CH2-	2	2	1	-	н	-CH N-C- N(CH ₃) ₂
699	CH2-	2	2	.1	- -	, H	-CH N-C- OCH3
700	C	2 -	2	1	<u>-</u>	Н.	-CH N-C
701	CH ₂ -	2	2	1	-	Н	-CH N-C- C-CH3
702	CH2-	2	2	1	-	н	-CHNC-CF3
703	CI-CH ₂ -	2	2	1	-	. Н	-CH V-C- CH(CH 2)2
704	CH-2-	2	2	1	-	Н	-CHN-C-NO2

Table 1.65

Compd.	R ¹ (CH ₂) _j -	k m	ı n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G-R^6$
705	C├	2 2	1	-	Н	-CH-N-C-S
706	CH2-	2 2	1	-	Н	-CHNC-STCH3
707	CH2-	2 2	1	-	н .	-CHN-C
7 08	CI—CH ₂ -	2 2	1	-	н	-CHN-C-S Br
709	CH2-	2 2	1		н	-CH-Y-C-STSCH3
710	CH ₂ -	2 2	1	-	H .:	-CHN-C-Br
711	CH2-	2 2	. 1	-	Н	-CH-N-C-CH3
712	C⊢CH₂-	2 2	1	- -	Н	-c+n-c-(\$)
713	CHCH ₂ -	2 2	1 .	-	Н	-CH-N-C
714	CHCH ₂ -	2 2	1		н	-CH-V-C-V-
	С⊢С СН₂-					-CHNC-S

Table 1.66

Compd.	R ¹ (CH ₂) _i -	k	m.	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
716	CH2-	2	2	1		H	-CH-M-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
717	CI—CH ₂ -	2	2	1	-	H [.]	-CHN-C-()NO2
718	CH2-	2	2	1	- .	Н	-CH-V-C-\NH
719	C├	2	2	1		Н	-CHN-C-()
720	C├── CH ₂ -	2	2	1	-	Н	-CHNC- PBr
721	С	2	2	1	-	H	-CH-N-C-N-CH3
722	С├───────── СН2-	2	2	1	-	.H	-СH-N-ССH ₂ ОН
723	CH2-	2	2	1	-	н	-CHNC-NH2
724	CHCH ₂ -	2	2	1	-	H	-CH-N-C-(CH ₃) ₃
725	CHCH2-	2	2	1	-	Н	-CHN-C-C-C-
							-сн-и-с-сн _э

Table 1.67

Table							
Compd.	R^1 $(CH_2)_i$	k	m	n	chirality	R³ .	-(CH ₂) p (CH ₂) q G-R ⁶
727	CI—CH ₂ -	2	2	1	-	н .	-CH-Y-C
728	CI—CH ₂ -	2	2	1	-	н	-CHN-C-NH₂
729	CH₂-	2	2	1	-	н	-CH-N-C
730	CH2-	2	2	1	- -	н	-CH-N-C-
731	C	2	2	1	-	н	-CH-NC-CH3
732	CH2−	2	2	1	- '	H	-CHNC-CF3
733	CH2-	2	2	1		Н	-CHN-C
734	CI—CH ₂ -	2	2	1 .	-	'H	-CH-N-C
	CH2-					Н .	-CHN-C-
736	CI—CH₂-	2	2	1	-	Н	-CHN-C- H ₂ N CF ₃
•	CI—CH₂-						-CH-N-C
	,				•		. •

Table 1.68

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
738	C	2	2	1	-	Н	-CH-N-C-CH3
739	. C ← CH ₂ -	2	2	1	-	н	-CH-N-C-NH
740	CH2-	2	2	1	-	н	-CH-N-C
741	CH2−	2	2	1	-	H	-CHN-C- S
742	CH2-	2	2	1	- ;	Н .	-CH-N-C-S
743	C├ \ CH ₂ -	2	2	1		н	-CHN-C-C0
744	CH ₂ -	2	2	1	- ·	Н	-CHNC-CH3
745	C ⊢ CH ₂ -	2	2	1	. -	Н	-CHNC-(CH3)3
746	CI-CH ₂ -	2	2	1	-	H	-CH-N-C-N CH ₃
747	CH2-	2	2	1	-	Н	$-CHNC-NCH_3$ $-CHNC-NCH_3$ $-CHNC-C-NCH_3$ $-CHNC-C-NCH_3$
	CH-2-						. 0

Table 1.69

i abic	1.00						
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
749	CH2-	2	2	1	-	н	-CH-N-C-\N
750	C	2	2	1	- .	н	-CH-V-CO
751	C ← C H ₂ -	2	2	1	*	H	-CH-N-C
752	C ← C H ₂ -	2	2	1	<u>.</u>	н.	CF ₃ -CH-N-C CF ₃ -CH ₂ OH CF ₃
753	CI—CH₂-	2	2	1	-	н	-CH-N-C-CN H CH₂OH
754	CH ₂ -	2	2	. 1	. - .	н	, -CH-N-C- H CH ₂ OH
755	CH ₂ −	2	2	1	· - ·	H	-CH-N-C- CH ₂ OH
756	CICH ₂ -	2	2	1	-	н	-CH-N-C
757	CH2-	2	2	1	-	н	-CHNC-OCH2CH3
758	C	2	2	1	- .	· ` н	— CH-N-C——————————————————————————————————
·759	C├ - CH ₂ -				-		-CHN-C-CHOCF3

Table 1.70

Table 1		•				
Compd. No.	R ¹ (CH ₂)	k m	n	chirality	R³	$-(CH_2)_{p+1}^{q+4}(CH_2)_{q}G-R^6$
760	CH2-	2 2	1	-	н	-CH-N-C-CF3 -CH2OH F
761	CH2-	2 2	1	-	н	OCF3. CH-N-C-F-F CH ₂ OH
762	CH2-	2 2	1	-	Н	-CH-N-C-CF3 -CH ₂ OH
763	CH ₂ -	2 2	1	- - :	Н	-CH-N-C- H CH2OH
764	CH2-	2 2	1		. н ·	CH ₃ P -C-N-C- CH ₃
765	CH₂-	2 2	1	-	H	CH ₃ Q CH ₃ -C-N-C-
766	CH₂-	2 2	. 1.	-	н	CH ₃ 0 -C-N-C- -CH ₃ 0 -CF ₃
767	CI-CH ₂ -	2 2	1	-	H	CH3 0 CH3
768	CI-CH ₂ -	2 2	1	-	Н	CH ₃ P Br
769	$CH_2^ CH_2^ CH_2^-$	2 2	1	-	Н	CH ₃ OCF ₃
770	C├ - CH ₂ -	2 2	1	-	н	CH ₃ CH ₃ CH ₃ CH ₃ CCF ₃ CH ₃ CF ₃ CF ₃ CF ₃
						·

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G^6$
771	CI—CH₂-	2	2	1	- -	H	CH ₃ Q CF ₃ -C-N-C-F CH ₃
772	CH2-	2	2	1	-	н	CH3 CH3 CF3
773	C⊢ CH₂-	2	2	1	-	H	CH ₃ O C(CH ₃) ₃
774	CH2-	2	2	1	-	H	CH ₃ O SCH ₃ SCH ₃
775	CH2-	2	2	- 1	-	H	CH ₃ O CH ₃ -C-N-C-C-C(CH ₃) ₃
776	C├ - CH ₂ -	2	2	1	-	Н	CH 3 0 CH3 -C-N-C- 0
777	С⊢ СН₂-	2	2	1		H	CH ₃ 0 CF ₃ -C-N-C-C-CH ₃ CH ₃
778	CI—CH ₂ -	. 2	2	1	-	Н	CH ₃ Ω NO ₂ -C-N-C-CI -CH ₃
779	CI—CH ₂ -	2	2	1	-	Н	CH ³ O CI
780	CI—CH₂-	2	. 2	1	-	н	CH ₃ P NO ₂ -C-N-C-
781	C ← CH ₂ -	. 2	2	1	-	н	-C-V-C-N-C-N-

Table 1.72

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	—(CH ₂) _{p 5} (CH ₂) _q G-R ⁶
782	C⊢CH₂-	2	2	1	-	н	-CH3 D OCH3
783	C	2	2	7	-	н	CH ₃ O OCH ₂ CH ₃ -C-N-C-
784	C⊢—CH₂-	2	2	1	-	н	CF ₃ -C-N-C-CH ₂ -CH ₃
785	CH ₂ -	2	2	1	-	н	CH3 P OCH3
786	CH2-	. <u>.</u> 2	2	1	- 	Н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\$
787	CH2-	2	2	1	· -	H	H ₂ C CH ₂
788	CH2−	2	2	1	. .	H	-C-N-C-CF ₃
789	С├-СН₂-	. 2	2	1	-	Н	-C-N-C-N-C-N-3
790	<u> </u>						H ₂ C—CH ₂
791	CH2-	2	2	1	÷ .	н	H ₂ C-CH ₂ NO ₂ H ₂ C-CH ₂ OCF ₃
792	CH2-	2	2	1	·-	н	-C-N-C-OCF3

Table	1		7	3
-------	---	--	---	---

Table (
Compd.	R (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
793	CI—CH ₂ -	2	2	1	-	н	-C-N-C-F H ₂ C-CH ₂
794	C	2	2	1	-	. н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
795	CH2-	2	2	1	-	. н	$-C$ H_2 C C H_3 H_2 C C H_3
796	CH2-	2	2	1	• -	Н	H ₂ C—CH ₂
797	CH2-1	2	2	1	-	н	O CH ₃ -C-H-C-CH ₂ C(CH ₃) ₃
798	CHCH ₂ -	2	2	1	, -	н	-C-N-C-H ₂
799	CH2-	2	2	1	-	Н	H ₂ C-CH ₂
800	CH2-	2	2	. 1	· .	н .	-C - N - C - C - C - C - C - C - C - C -
	CH2-					H 	H ₂ C—CH ₂
802	CI	2	2	1	<u>.</u> .	Н	H ₂ C—CH ₂
803	CH-CH2-	2	2	1	-	Н	OCH ₃ -C-N-C-OCH ₂ OCH ₂ CH ₃ -C-N-C-OCH ₂ OCH ₂ CH ₃ -C-N-C-OCH ₂
					,		

lable	1.74						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
804	CH2−	2	2	1	-	н	-C-N-C-CH ₂ -CF ₃
805	CH₂-	2	2	1	-	н	H_2C — CH_2 OCH_3
806	CH ₂ -	2	2	1	-	Н	$ \begin{array}{c} $
807	CH ₂ -	2	2	1	-	Н	CH-N-C-NH ₂
808	C├ - CH ₂ -	2	2	1	· ·	H	CH ₂) ₂ -C-NH ₂
809	C ← CH ₂ -	2	2	1	- -	H	-CH-N-C
810	C ⊢ C H₂-	2	2	. 1	· -	н	-CH-N-C
811	C	2	2	1	-	Н	-CH-N-C
812	C	2	2	. 1		Н -	- CH-N-C
813	C	2	2	1	-	н	-CH-N-C
814	C	2	2	1	•	H	-CH-N-C-NH ₂ OCF ₃ -CH-N-C-NH ₂ OCF ₃ -CH-N-C-NH ₂ OCF ₃

Table 1.75

14510	., 0					· · · · · · · · · · · · · · · · · · ·	
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
815	CH₂-	2	2	1	-	H	- CH-N-C
816	CH2−	2	2	1	-	н .	-CH-N-C
817	C ⊢ CH2-	2	2	1	-	Н	CF ₃ -CH-N-C -F H (CH ₂) ₂ -C-NH ₂
818	CH₂-	2	2	. 1	-	н	-CH-N-C-NH ₂
819	C ⊢ CH2-	2	2	1	-	Н	CF3 -CH-N-C
820	C ⊢ CH₂-	2	2	1	·	н	$-CH - N - C - NO_2$ $(CH_2)_2 - C - NH_2$
821	CH-CH₂-	2	2	1	-	H	-CH-N-C
822	CHCH ₂ -	. 2	2	1	· <u>-</u>	H	-CH-N-C-SCH ₃ -CH ₂ OCH ₃
823	CI—CH ₂ -	2	2	1	-	, H	-CH-N-C-
824	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C-C(CH ₃) ₃
825	CH2-	2	2	1	-	н	CH ⁵ OCH ³ - CH- N- C

9 5

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}G-R^6$
826	CH2-	2	2	1	-	Н	-CH-N-C-O CH ₂ OCH ₃
827	CH2-	2	2	1	-	н	-CH-N-C-NH CH2OCH3
828	CH2-	2	2	1	-	н .	-CH-N-C
829	CH₂-	2	2	1	-	н .	CH-N-C-C-CF ₃ CH ₂ OCH ₃ F
830	C⊢√-CH₂-	.2	2	1	-	н	-CH-N-C-F H CH ₂ OCH ₃
831	CH2-	2	2	1	- .	н	-CH-N-C- CH ₂ OCH ₃
832	CH2-	2	2	· 1	-	H	-CH-N-C-
833	CH ₂ -	2	2	1	- .	H	-CH-N-C- H CH2OCH3
834	CH₂-	2	2	1	- -	Н .	-CH-N-C
835	CH2-	2	2	1	-	н .	-CH-N-C- H CH2OCH3
836	С├-(СН₂-	. 2	2	1	•	н	-CH-N-C- CH2OCH3
	•						

Table 1.77

Table .							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\rho}$ $+ \frac{R^4}{CH_2}$ $+ (CH_2)_{q}$ $+ G$
837	C├	2	2	1	-	Н	-CH-N-C
838	CH ₂ -	2	2	1	<u>-</u>	н	-CH-N-C
839	CH₂-	2	2	1	-	Н	-CH-N-C
840	C	2	2	.1	· -	, .	-(CH ₂) ₃ -C-
841	CH ₂ -	2	2	1	· · <u>-</u>	: H :	-(CH ₂) ₂ -C
842	CH2 [−]	2	2	1	-	н .	-(CH ₂) ₂ -C-CI
843	C├-CH ₂ -	2	2	1	-	н	$-(CH_2)_2$ - CH_3 H_3C
844	CH2-	2	2	1	-	H _.	-(CH ₂) ₂ -C-CH ₃
845	CH2-	2	2	1	- · ·	H	-(CH ₂) ₂ -C
846	CH2-	2	2	1	-	Н	-(CH ₂) ₂ -C
							-(CH ₂) ₂ -C-FOCH ₃

Table 1.78

Compd.	R ¹ (CH ₂);-	ķ	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
848	CHCH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ - CH ₃
849	C├ - CH ₂ -	2	2	1	-	н	$\begin{array}{c} O \\ O \\ -(CH_2)_2 - C \end{array}$
850	CHCH ₂ -	2	2	1	-	, Н	- CH ₂ - S CH ₃
851	CH2-	2	2	1	-	н	- CH ₂ -N-C-N-CF ₃
852	CH2 [−]	2	2	1	-	. [*] . Н	-CH ₂ -N-C-N-CF ₃
853	CH₂-	2	2	1	-	н	- CH ₂ -N-C-N-
854	CH2-	2	2	. 1	-	н	-CH ₂ -N-C-N-CH ₃
855	CI—CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- N- CH ₃
856	CI—CH ₂ -	2	· 2	1	· <u>-</u>	, H	- CH ₂ -N-C-N-C-CH ₃
857	CH-CH2-			•			-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	CI—(CH₂-	. 2	. 2	1	- -	H	-CH ₂ -N-C-N-OCH ₃

Table 1.79

lable i	3						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³ .	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G-R^6$
859 .	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CI
860	C ← C H ₂ -	2	2	. 1	<u>.</u> .	Н	- CH ₂ -N-C-N-CN
861	CH2-	2	2	1	-	н .	- CH ₂ -N-C N-
862	CH2-	2	2	1	-	Н	- CH ₂ -N-C·N-CH ₃
863	C — CH₂-	2	2	1	-	Н	-CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
864	CH2-	2	2	`· 1	<u>-</u> .*	H .	- CH ₂ -N-C-N-C-OCH ₃
865	C├	2	2	1	-	H .	- CH ₂ -N-S-CH ₃
866	C				<u>-</u> ·		- CH ₂ - N- S-
867	CH2-	2	2	1	-	н .	- CH ₂ -N-S-CF ₃
868	C├	2	2	1	- .	н	- CH ₂ - N- S- CH ₂ CH ₃
869	CH2 ⁻	. 2	2	1	• •	H	- CH ₂ -N-S- CH(CH ₃) ₂

Table 1.80

1 abic 1							
Compd.	R (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}^{\frac{1}{1}} + (CH_2)_{q}^{\frac{1}{2}} - R^6$
870	C ⊢ C H ₂ -	2	2	1	-	H	- CH ₂ -N-S-CH ₃
871	CH ₂ -	2	2	1	- ·	H	- CH ₂ - N- S (CH ₂) ₃ CH ₃
872	C	2	2	1	-	Н	- CH ₂ - N- S-
873	C├	,2	2	1	-	н [*]	- CH ₂ -N-C-O CH ₂ -
·. 874	CH ₂ -	2	2	1	-	Н	- CH O C- N CI
875	CH ₂ -	2	2	. 1	-	н	- CH ₂ - N- C- CF ₃
876	Br—CH ₂ -	2	2	1	-	Ħ	- CH ₂ - N- C- CF ₃
877	NC-CH ₂ -	2	2	1	-	, н	CH ₂ -N-C-
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ - N C CF ₃
	O CH₂-						- CH ₂ - N- C-√
880	O^O CH ₂ -	2	2	.1		Н	- CH₂- N- C- CF₃

Table 1.81

100.0	1.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
881	Br CH₂-	2	2	1	-	Н	- CH ₂ -N-C-
882	C+12-	2	2	1	-	Н	-CH2-N-C-
883	CI — CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃
884	H°C·C- H C+15-	2	2	1	- :	н	- CH ₂ -N-C-CF ₃
885	H ₃ C-S-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	.2	1	5 .	н	-CH ₂ -N-C-CF ₃
887	F ₃ C−⟨□−− CH ₂ −	2	2	1	-	Н	- CH ₂ - N- C-
888	HO-√CH ₂ -	2	2	1	· · · · · · · · · · · · · · · · · · ·	Н	- CH ₂ - N- CF ₃
889	CH ₂ -	2	2	1	-	Н	- CH2- N- C CF3
	CH ₂ -						- CH ₂ - N-C- CF ₃
891	CI CH₂-	, 2	2	1		н	- CH ₂ - N C CF ₃

Table 1	1.82						
Compd. No.	R ¹ (CH ₂);	k	m	'n	chirality	R³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q=0}^{-R^6}$
892	H ₃ CO CH ₂ -	2	2	1	· -	н	- CH2- ¼ C - CF3
893	O ₂ N CH ₂ -	2	2	1	- •	Н	- CH₂- N- C- CF3
894	HO CH ₃ CH ₂ - CH ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
896	CN CH₂-	2 -	2	1	-	Ή	-CH ₂ -N-C-CF ₃
897	HO ₂ C ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	- ,	Н .	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1.	-	H.	-CH ₂ -N-C-CF ₃
900	H ₃ ∞ ₂ C-√-CH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CF ₃
901	CH-	2	2	1	-	Н	- CH ₂ - N-C- CF ₃
	O ₂ N CH ₂ -						- CH ₂ -N-C-

.1 0 2

Table 1.83

Compd. No.	R^{1} $(CH_{2})_{i}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
903	H ₃ CO CH ₂ - OCH ₃	2	2	. 1	-	Н	- CH ₂ - N C CF ₃
904	HO CH ₂ -	2	2	` <u>1</u>	-	Н	-CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CF ₃ .
906	(CH ₂) ₃ -	⁻ 2	2	1	-	Н	- CH ₂ - N- C-
907	CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
908	N-C' - CH2-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
909	N C-CH2-	2	2	1	-	Н	- CH ₂ -N-C-
910	CI CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C-
911	CI CH ₂ -	2	. 2	1	-	Н	- CH ₂ - N- CF ₃
912	Br CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
913	H ₃ CO—CH ₂ -	2	2	1	-	н	- CH ₂ - N- C-

					<u> </u>		D4
Compd. No.	R^{1} $(CH_{2})_{i}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
914	CH2O-CH2-	2	2	1	-	Ĥ	- CH ₂ - N- C-
91,5	OH - CHCH₂-	2	2	1		н	- CH ₂ - N- C- CF ₃
916	CH ₂ -	2	2	1	-	н	- CH ₂ - N-C-CF ₃
917	N→ CH ₂ -	2	2	.1	-	Н	- CH ₂ -N-C-CF ₃
918	H ₂ CO ₂ C OH ₂ -OH ₂ -	2	2	1		н .	- CH ₂ -N-C-
919	H ₃ C-CH ₂ -	2	2	1	- - ,	Ĥ	- CH ₂ - N- C − CF ₃
920	OCF ₃	2	2	1	- .	н	- CH ₂ -N-C-
921	CH ₂ -	2	. 2	1		. H	- CH ₂ - N- C-
922	CH₂-	2	2	1	-	H	- CH ₂ - N- C- CF ₃
923	CH-CH-	2	2	1	-	Н	- CH ₂ - N- C-
924	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃

9

Table 1.85

lable	1.05						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{4}(CH_2)_{q}G-R^6$
925	H ₂ N-C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	-	Н	-CH2-N-C-CF3
927	F ₃ CQ —CH ₂ -	2	2	1	;	H	-CH2-N-C-CF3
928	F ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H₃CS—CH₂-	2	2	1	-	Н	-CH2-N-C-CF3
930	CH ₃	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
931	NC CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
932	CH_2	2	2	1	-	H	-CH ₂ -N-C-CF ₃
933	CH₃ CH−	2	2	1		Н	-CH ₂ -N-C-CF ₃
934	CH2-	2	2	1	. -	Н	-CH2-N-C-CF3
	O ₂ N —CH ₂ —					Н	-CH2-N-C-CF3
							*

Table 1.86

lable	1.80						
Compd.	R ¹ (CH ₂)-	k	m	n (chirality	.K _{3,}	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
936	NO ₂	2	2	1	-	H	-CH2-N-C-CF3
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1		н .	$-CH_2-N-C$ CF_3
- 938	С⊢ СН₂-	2	2	1	- -	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
940	OH 	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
942	C ← C H ₂ -	2	2	1		Н	CF_3 $-CHNC$ H $CH(CH_3)_2$ CF_3
943	С⊢СН₂-	1	4	0		н	$-CH_2-N-C$
944	C├────────────────────────────	1	4	0	-	н	-CH ₂ -N-C-CH ₃
945	CH2 ⁻	1 .	4	Ó	· ·	Ή	-CH ₂ -N-C-\(\sigma\)
946	CI-CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -N-CNO ₂

Table 1.87

lable	1.87						
Compd. No.	R ² (CH ₂)	k	m	n	chirality	.R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
947	CH2-	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	CH2-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂
950	CH2-	0	4	1	-	H	- CH ₂ -N-C-
951	CH2-	1	-2	0	Ř	Н	-CH ₂ -N-C-CH ₃
952 ·	CH2-	1	2	0	R	Η	-CH ₂ -N-C
953	CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
954	CH2-	. 1	2	0	R	н	$-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
955	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H H ₃ C-NH
	CH2-					Н	-(CH ₂) ₂ -N-C
957	С⊢ СН₂-	. 1	2	0	R	н	-сн ₂ -N-С-
						,	

Table 1.88

Table	.00				·		
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
958	С⊢ СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OH
959	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-CH ₃
961	CH2-	1	2	0	R	H	-CH2-N-C
962	CI—CH₂-	1	2	0	R	н	-(CH ₂) _Z -N-C
963	CHCH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-С-Д-ОН
964	CI	1	2.	0	R	, Н	-СH ₂ -N-С-СО ₂ СН ₃
965	CI-CH ₂ -	1	2	0	R	н	$-(CH_2)_2$ -N-C- $-$ 0 $-$ 0 $-$ 0 $-$ 0 $-$ 0 $-$ 0 $-$ 0 $-$ 0
966	CH2-	1	2 .	0	R	H	-CH2-N-C-CH3
967	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C- C-CH ₃
968	CH2⁻	. 1	2	0	Ŕ	н	-CH2-N-C-NH

1 0 8

Table 1.89

lable	.89					<u> </u>	
Compd.	R^1 (CH ₂) $$	k	ḿ.	n	chirality	Ĥ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
969	CH2-	1	2	0	R	. н	-(CH ₂) ₂ -N-C-NH
970 .	CH2-	1	2	0	R	Н	-CH ₂ -N-C-N(CH ₃) ₂
971	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH2-	1	2	0	R	Н	-CH ₂ -N-C-NH ₂
973	CH2-	1	2	. 0	R	Н	-(CH ₂) ₂ -N-C-\(\sigma\)
974	CH2-	1	. 2	0	R	H	-CH ₂ -N-C-NH ₂
975	CH2-	1	2	0	R	. н	-(CH ₂) ₂ -N-C-NH ₂
	CH2-					H	-CH2-N-C-NH
977	C├ - CH ₂ -	1	2	0	R	Н	$-(CH_2)_2-N-C$
978	C├ \ CH ₂ -	1	2	0	R	. Н	-CH2-N-C-N-N-H
979	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1:90

I ADIC I	.5 0						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $+ (CH_2)_q$ $+ G$ $+ R^6$
980	CH2-	1	. 2		R	Н	-CH2-N-C-CH3
9.81	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	С⊢ СН₂-	1	2	0	. Я	· . н	-CH ₂ -N-C
983	CH ₂ -	1	2	0	R	н .	(H ₃ C) ₂ N
984	CH₂-	1 .	2	0	R	н	$-CH_2-N-C CH_2$ CH_2 C
985·	C├────────────────────────────	1	2	0	. R	H	-(CH ₂) ₂ -N-C-CH ₂ OH
986	c-C-CH-	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
987	CH-CH ₂ -	2	2	1	· _	Н .	-CH ₂ -N-C-CF ₃
988	CH2-	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
989	CH-CH2-	1	4	0	-	H	-CH ₂ -N-C-O-CH ₂ -
990	CH2⁻	1	. 4	0	ı -	н	-CH2-N-C-

┰	_	h	le	- 1	.9	1
- 1	a	ப	16	- 1	. J	1

Table 1							
Compd.	R (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)^{\frac{R^4}{p+1}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
991	C	1	4	0	-	H	-(CH ₂) ₂ -C-
992	CH-CH2-	1	4	0	-	Н	$-(CH_2)_2-C-$ OCH ₃ OCH ₃
993	CH ₂ -	1	4	. 0	-	н	-(CH ₂) ₂ -C-CH ₃
994	CH₂-	1	4	0	- ,	н	-(CH ₂) ₃ -C-
995	CH2-	1	4	Ö	-	Н	-(CH ₂) ₃ -C
996	CH-CH2-	1	4	0	· -	Ĥ	-(CH ₂) ₃ -C-N-CH ₃
997	C├────────────────	2	2	1	- -	н ,	-CH-N-C- H CH ₂ CH(CH ₃) ₂
998	CH√CH₂-	. 2	2	1	-	т. Н	-CHN-C-CF3 -CH ₂ CH(CH ₃) ₂
999	CH_CH2-	2	2	. 1	-	Н	-CH-N-C-CH ₃
1000	CH2-	. 2	2	1	- -	Н	-CHN-C
1001	CHCH ₂ -	2	2	1	1 -	н	OCH ₂ CH ₃ -CH N-C -CH ₂ CH(CH ₃) ₂

Ta	h	۱۵	1	q	2

1 abite	1.5 2						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $-G-R^6$
1002	C├───────────────────────	2	2	1	<u>-</u>	Н	CH OCH(CH3)2 OCF3
1003	C ⊢ CH2-	2	2	. 1	-	н	CH ₂ CH(CH ₃) ₂
1004	CH2-	2	2	1	-	H	CH2CH(CH3)2 OCH3
1005	CH2⁻	2	2	1	-	Н	O
1006	CI—CH₂-	2	2	1	-	H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1007	CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1008	CH ₂ -	2	2	1	-	н	- CHN-C-(CH ₂) ₂ -C-NH ₂
1009	C ├── C H ₂ -	2	2	1	- -	Н	(CH ₂) ₂ -C-NH ₂
1010	C⊢√CH₂-	2	2	1		Н	OCH ₂ CH ₃ -CH-N-C
1011	CH2-	2	2	1	- •	H	- CHN-C- CH2 CH3 - CHN-C- CH2 CH3 (CH2)2-G-NH2
1012	CI-CH ₂ -	2	2 .	1	-	н	- CH-N-C

Table 1.93

rable	1.90						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Fr³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1013	CHCH ₂ -	2	2	1	- -	н	CH ²) ² -C-NH ² OCH ³
1014	CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CHN-C-OCH ₂ CH ₃ (CH ₂) ₂ -C-NH ₂
1015	CH2-	2	2	1	-	Н	O OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ (CH ₂) ₂ -C-NH ₂ OCH ₂ CH ₃
1016	CH2-	2	2	0	-	н	-CH ₂ -N-C CF ₃
1017	CH2-	2	2	0	· _	н	-CH2-N-C-
1018	CH2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH ₂ -N-C
1019	СН-СН2-	2	2	1	·	H	$-CH_2-N_1-C-CH_2-CH_3$ $-CH_2-N_1-C-CH_2-CH_3$ $-CH_2-CH_3$
1020	CH2-	2	2	1	-	H	OCH ₂ CH ₃
1021	CH2-	2	2	1	-	Н	OCH_2CF_3 $-CH_2-N-C$ F_3CCH_2O
1022	CHCH_2-	2	2	1	-	н _.	(S) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1023	CI—CH ₂ -	2	2	1	-	Н	(S) Q CH ₂ CH ₃ -CH-N-C CH ₂ CH ₃ CH ₃
•							

Table 1.94

iable	1.5 4					•	
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m .	n	chirality	Ŕ³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
1024	CH2-	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C OCH ₃ -CH ₃ OCH ₃
1025	CH2-	2	2	1	-	Н ,	(S) P OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₃
1026	CH2-	2	2	1	-	н	$(S) \bigcirc OCH_2CH_3$ $-CH-N-C$
1027	CH2-	2	2 .	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-OCH ₃ -CH ₃
1028	CH₂-	2	2	1	<u>.</u> .	Н	$(S) \qquad QCH_2CF_3$ $-CH-N-C- \qquad QCH_2CF_3$ $CH_3 \qquad QCH_2CF_3$
1029	CH₂-	2	2	1		н	(S) OCH ₂ CH ₃ -CH-N-C
1030	CH2-	2	2	1		н	(S) OCF ₃ -CH-N-C-
1031	CH2-	2	2	1	-	н	(S) OCH ₃ -CH-N-C-OCH ₃ CH ₃
1032	C⊢CH₂-	. 2	2 .	1	-	н .	(R) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1033	C⊢CH ₂ -	2	2	· 1	- ·	н	(A) CH2CH3 -CH-N-C-CH2CH3 CH3
1034	C⊢√CH₂-	2	2	1	-	н	(A) OCH3 -CH-N-C
							•

.

Table 1.95

Compd.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1035	CH2-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1036	C	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₃ OCH ₂ CH ₃
1037	CH2⁻	2	2	1	-	H	(F) OCH ₂ CH ₃ -CH-N-C
1038	CH₂-	2	2	1	-	Н	(R) (R)
1039	CH2-	2	2	1 -	-	н .	(A) Q -CH-N-C- H CH ₃
1040	CH2-	2	2	1	 -	н	(F) OCF ₃ -CH-N-C
1041	CH2-	2	2	1	± .	н	(F) OCH ₃ -CH-N-C-
1042	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1043	CHCH ₂ -	2	2	1	- ,	н	-CH ₂ -N-C-
1044	C├ - CH ₂ -	2	2	1		н .	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ CH_{3} OCH_{3}
1045					-	Н	$-CH_2-N-C$ H_2N OCH_3 H_2N

Table 1.96

lable	1.90						
Compd. No.	R^{1} $(CH_{2})_{i}$	k	m	n	chirality	H3	$-(CH_2)^{\frac{R^4}{p+1}}(CH_2)^{\frac{1}{q}}G^-R^6$
1046	С├СН₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N CI
1047	CH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N CH_3 CH_3
. 1048	CH2-	2	2	1 [¯]	-	н.	$-CH_2-N-C \longrightarrow OCH_3$ $+ C \longrightarrow OCH_3$ $+ C \longrightarrow OCH_3$
1049	CH2-	2	2	1		н	$-CH_2-N-C \longrightarrow Br$
1050	CH2-	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C- CH ₂ CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH2-	2 ·	2	, 1	-	Н .	(5) CH ₂ CH ₃ -CH-N-C
1052	CH2-	2	2	1	-	H.	$(S) \qquad \bigcirc OCH_3$ $-CH-N-C$
1053	C ├── CH ₂ -	2	2	1.	-	H	$(S) \qquad OCH_2CH_3$ $-CH-N-C- OCH_2CH_3$ $-CH_2CH(CH_3)_2$
1054	C├────────────────────────────────────	2	2	1 .	· -	н	(S) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	C├─ \ CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	C ├── CH ₂ -	. 2	2	1	·. •	. н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1057	CH2-	2	. 2	1	-	Ĥ.	(A) OCH ⁵ CH ³ -CH-V-C- H CH ⁵ CH(CH ³) ⁵
1058	СН2-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1059	C⊢CH₂-	2	2	1		Н	(S) P. OCF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1060	CH2-	2	2	1	· _	Н	(A) OCH ₂ CH ₃ -CH-N-C
1061	C⊢√CH₂-	2	2	1	-	Н	(R) OCH_2CF_3 $-CH_1CC$ H $CH_2CH(CH_3)_2$ OCH_2CF_3
1062	C├────────────────────────────────────	2	2	1	-	H ·	(S) Q -CH-N-C H CH ₂ CH(CH ₃) ₂
1063	CH2 ⁻	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1064	C├ - CH ₂ -	2	2	1	-	н	(F) C
1065	C	2	2	1	- -	н .	(F) OCH ₃ -CH-N-C
1066	CH-CH₂-	2	2	. 1	-	н	(A) CH ₂ CH ₃ -CH-N-C
1067	CH-CH2-	2	2	1	-	н	(A) O OCH3 - CH-N-C OCH3 H OCH3 CH2CH(CH3)2 OCH3

Т	а	h	le	4	.9	8
- 1	-	_	10			_

Ą

lable i	.98						
Compd.	R^1 $(CH_2)_1$	k	m	n	chirality	· R³	—(CH ₂) _p 15 (CH ₂) _q G−R ⁶
1068	C ⊢ CH₂-	. 2	2	1	-	H	(F) Q OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1069	СН ₂ -	2	2	1	-	Н .	(F) P OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1070	CH2⁻	2	2	1		Н	CH ₂ OCH ₂
1071	CI—CH₂-	2	2	1	-	H	-CH-N-C-
1072	CH2-	2	2	1	; -	н	-CH-N-C
1073	CH2-	2	2	1	-	H	-CH-N-C
1074	CH2-	2	2 .	1	-	Н	- CH-N-C
1075	C├ - CH₂-		2			Н .	- CH- N-C
1076	CH-€	2	2	. 1	-	Н	- CH-N-C
	C ├── CH ₂ -		•				-CH-N-C
1078	CI-CH2-	2	2	. 1	-	н	-CH-N-C-CH ₂ OCH ₂ CH ₂

Table 1.99

Table 1							
Compd.	R^{2} (CH_{2})	k	m	п	chirality	· R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}$
1079	CH-√- CH2-	2	2	1	-	Н	CH ₂ OCH ₂
1080	CI—CH ₂ -	2	2	1	-	н	- CH-N-CH ₂ CH ₃
1081	C → C H ₂ -	2	2	1	<u>-</u>	Н	-CHN COCH3
1082	CI-CH ₂ -	2	2	. 1	-	Н	(5) P
1083	C├ - CH₂-	2	2	1	-	Н ,	(A) O O O
1084	CH2-	1	2	0	R	H	$-CH_{2}-N+C$ H $H_{2}N$
1085	CH2-	1	2	O	R	Н	$-CH_2-N-C$ H_2N H_2N
1086	C ⊢ CH ₂ -	1	2	0	R .	H	$-CH_2-N-C$ H_2N
1087	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N
1088	CI—CH ₂ -	1	2	0	R	Н	$-CH_{2}-NC-\bigcirc$ $-CH_{2}-NC-\bigcirc$ $+C-\bigcirc$
	CI—CH ₂ -					н	-CH2-N-C-NH

Table 1.100

Table	1.100						·
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1090	С├-СН₂-	1	2	0	R	Н	-CH2-N-C
1091 .	C ← C H ₂ -	1	2	Ò	R	Н	$-CH_2CH_2-NCC$ H_2N
1092	СН2-	1	2	0	R	Н	$-CH_2CH_2-NC$ H_2N
1093	СН2-	1	2	0	R	Н	$-CH_2CH_2-N$
1094	CH2-	1	2	0	R	H	-CH₂CḤ₂-N-C-NH
1095	CH2⁻	1	2	0	R	H	-CH2CH2-N-C-
1096	CH2-	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-F
1097	C├ - CH ₂ -					Н	-CH2OH2-N-C
1098	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1099	CH2-	1	2	0	R	н	-CH ₂ -N-C-F
1100	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C

Table 1.101

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R ₃	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
1101	C├ - CH₂-	1	2	0	R	H	-CH²-M-C-CH³
1102	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C
1104	H ₃ C-CH ₂ - /	1	2	0	R	Н	-CH ₂ -N-C-Br
1105	H ₃ C-CH ₂ -	; 1	2	0	R	H	-CH ₂ -N-C-F
1106	H₃C————————————————————————————————————	1	2	0	R	Н .	-CH ₂ -N-C
. 1107						н	-CH ₂ -N-CNO ₂
1108	CH ₃ CH ₂ -	1	2	0	R	н [:]	$-CH_2-N-C Br$ CH_3
1109	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-Br
1110	CH ₃ CH ₂ -	. 1	2	0	, R	Н	-CH ₂ -N-C-F
. 1111	CH ₃ CH ₂ CH ₂ CH ₃	. 1	2	C) R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{3}-N+C$

Table 1.102

Table !							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
1112	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-CNO ₂
1113	C ⊢ CH₂-	2	2	1	·. •	н	$-CH_2-N-C CH_3$
1114	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-CF
1115	C├─ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1116	CH2-	2	2	1	٠.	н	-CH ₂ -N-C-CH ₃
1117	C	2	2	1	-	H	$-CH_2-N-C-NO_2$
1118	N CH2-	1	2	0	R :	Н	$-CH_2-N$ C- CF_3
1119	<u> </u>	1	2	0	R	н	$-CH_2-NC$
1120	H ₃ CQ CH ₂ - OCH ₃	1	.2	. 0	R	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1122	H3 C (H3 C)2 CH-CH2- CH(CH3)2	1	2	0	R	Н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{4}-N+C$ $-CH_{5}-N+C$

Table 1.103

Table 1	1.103						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	`R³ 	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
1123	CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1124	O ₂ N C H ₂ -	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1125	СН2−	2	2	1	-	H	- CH N-C- CI
1126	СН2−	2	2	1	-	н	-CH-N-C
1127	C ← CH ₂ -	2	2	1	-	н	-CH-MC-NH
1128	СН2−	2	2	1	-	Н	-CH-N-C
1129	C	2	2	. 1	 -	H	-CH-N-C
1130						H	- CH N C- S
1131	CH2-	2	2	. 1	4, T	Н	- CH-N-C
1132	CH2-	2	2	. 1	<u>-</u>	. H	CH-N-C- CH-N-C- CH-N-C- CF3 CF3 CF3
1133	H ₃ CO CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
							•

.

Table 1.104

Н ₃	>-(CH ₂);- - - - - - - - - - - - - - - -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
	\rightarrow						R'
1134 H₃C0 H₃	,co	1	2	0	R .	н .	$-CH_2-N-C \longrightarrow CF_3$
1135	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ $-CH_2-N-C$
1136 О н _э с	Q CH₂−	1	2	0	R ·	н -	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1 ·	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH₂-	1	2	0	R	H '	-CH ₂ -N-C-CF ₃
1139 《	(CH ₂) ₂ —	1	2	0	R.	H	-CH ₂ -N-C-CF ₃
1140	2 N CH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	н [.]	-CH2-N-C-C-2
							-CH ₂ -N-C-CF ₃
1143	OH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
н 1144 н	-CH ₂ -	1	2	,	R .	H	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$

Table 1.105

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	. K ₃	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1145	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1146	CH ₂ O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H°C-C-VI CH2				R	Н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1150	CH ₃ N CH₂− CH₃	1	2	0	R	Н	$-CH_2-N-C$ CH_2CH_3
1151	CH ₃ CH ₂ - CH ₃	1	2	0	R.	Н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH₂−	1	2	0	R	H .	-CH ₂ -N-C-N-H
1153	CH ₃ CH ₂ - CH ₃	1	2	, 0	R	н	-CH ₂ -N-C-N-H H
						H .	$-CH_2-N$ C H C
1155	CH ₃ CH ₂ -	1	2,	0	R	H	-CH ₂ -N-C-CH ₃ F ₃ C
	•						•

Table 1.106

lable	1.106						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1156	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCH ₃
1158	CH ₃ N CH₂- CH₃	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ CI
1159	CH ₃ CH ₂ - CH ₃	1	2	0	. R	Н	$-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1160	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N Br
	OH -CH ₂ -					Н .	-CH ₂ -N-C-CF ₃
1162	CH ₃ -CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
	H ₃ CO—CH ₂ -				•	Н	-CH ₂ -N-C-CF ₃
1164	H ₃ C CH ₂ -	1	2	0	R	H	-сн ₂ -N-С-
1165	O-CH₂-	1	2	0	R	Н ,	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$ $-CH_{3}-N-C$ $-CH_{4}-N-C$ $-CH_{5}-N-C$ $-CH_{5}-N-C$ $-CH_{5}-N-C$ $-CH_{5}-N-C$ $-CH_{5}-N-C$
1166	H ₃ CO————————————————————————————————————	1.	2	0	R	н	-СH ₂ -N-С-СF ₃

Table 1.107

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1167	С├-СН₂-	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H ₃ C-C-N N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C CF ₃
1170	H N CH ₂ -	1	2	0	R ·	Н	-CH ₂ -N-C-CF ₃
1171	С├-СН₂-	1	2	` 0	R	Н	-CH₂-N-C-Br
1172	СН2-	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1173	C ← CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N-H
1174	C├──CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-
1175	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ Br
							-CH2-N-C-NH H
1177	Н₃С-(СН₂-	1	2	0	R	н	-CH2-N-C-N-H

Table 1.108

, 45.0				_			<u> </u>
Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	۴³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1178	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1179	Н ₃ С-СН ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1180	H ₃ C-CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C-N-H
1181	CH ₃	. 1	2	0	R	. н	-CH ₂ -N-C-Br
1182	CH ₃ CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1183	CH ₃ N—CH ₂ - CH ₃	4	2	0	R	н	-CH ₂ -N-C-N-N-H
1184	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2N
1185	CH ₃ CH ₂ −	1	2	0	R	Н	$-CH_2-N$ C H_2N
1186	CH ₃ CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C- CH ₃ Br
1188	C ├── CH₂-	2	2	1	-	H	$-CH_{2}-NC- \longrightarrow Br$ $-CH_{2}-NC- \longrightarrow H$ $-CH_{2}-NC- \longrightarrow H$

Table 1.109

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p+1}^{f^4}(CH_2)_{q}G-R^6$
. 1189	С⊢ СН₂-	2	. 2	. 1	- -	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1190	С⊢—СН2−	2	2	1	2	н	$-CH_2-N-C$ H_2N
1191	CH ₃ N—CH ₂ - CH ₃	1	2	. 0	R	Н	-CH ₂ -N-C
`1192	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	-CH ₂ -N-CF
1193	CH ₃ CH ₂ -	1	2	0	R	. · H	-CH ₂ -N-C-OCF ₃
1194	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1195	CH₃ CH₂- CH₃	• 1	2	0	R	Н	-CH ₂ -N-C-
	CH₃ N—CH₂- CH₃					. н	-CH ₂ -N-C-NO ₂
1197	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-F ₃
1198	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-
1199	CH ₃ N CH ₂ - CH ₁	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}$ $-CH_{2}-N-C$

Table 1.110

Compd. R^2 $(CH_2)_1$ k m n chi	· · · · · · · · · · · · · · · · · · ·	$ \frac{-(CH_{2})_{p} + \frac{R^{4}}{R^{5}}(CH_{2})_{q} - R^{6}}{-CH_{2} - \frac{Q}{R^{5}}} $
CH ₃	В н	-CH-N-C
CH3		CI CI
CH ₃ 1201 CH₂- 1 2 0 CH₃	R н	-CH2-N-C
1202 CH₃ CH₂- 1 2 0	R н	-CH ₂ -N-C-CF ₃
1203 H₃C- CH₂- 1 2 0	R H	-CH ₂ -N-C-OCF ₃
1204 H₃C- CH₂- 1 2 0	R н	$-CH_2-N-C-$ F_3C
1205 H₃C————————————————————————————————————	R н	-CH ₂ -N-C-S
1206 H₃C—CH₂- 1 2 0	R H	-CH ₂ -N-C-NO ₂
1207 H₃C- CH₂- 1 2 0	R н	-CH ₂ -N-C-S
1208 H₃C-CH₂- 1 2 0	В н	-CH ₂ -N-C-CI
1209 H₃C—CH₂- 1 2 0	R н .	-CH ₂ -N-C-CH ₃
1210 H₃C-СН₂- 1 2 0	R H	-CH ₂ -N-C- CI

1 3 0

Table 1.111

lable							
Compd.	R (CH ₂);-	k	m	Π	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1211	H ₃ C-CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C-F
1212	H₃C-⟨CH₂-	1	2,	0	R	Ħ	-CH ₂ -N-C-CF ₃
1213	С⊢_СН₂-	2	2	1	-	Н	$-CH_{2}-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1214	C⊢CH ₂ -	. 2	2	-1	-	н	-CH ₂ -N-C
1215	СЊ2-	2	2	1		Ή	-CH ₂ -N-C-CI
1216	C⊢—CH₂-	2	2	1	- ·	H	-CH ₂ -N-CF
1217	C├- \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	CH_CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1219	C	. 1	. 2	0	R .	Н .	-CH ₂ -N-C
1220	CH_CH2-	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$
1221	СН2−	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$

1 3 1

Table 1.112 -

Table 1	1.112					:	
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
1222	С├-СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-H
1223	С├──СН₂-	1	2	. 0	R	Н	-CH ₂ -N-C
1224	С⊢СН2-	1	2	0	R	Н	-CH ₂ -N-C
1225	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH2-N-C-CF3
1226.	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1227	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CH ₃
1228	H ₃ C− C H ₂ −	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1229	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1230	H ₃ C-CH ₂ -	. 1	2	0	R	. Н	-CH ₂ -N-C
1231	H₃C−CH₂−	1	2	0	R	, Н	-CH ₂ -N-C-S
1232	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C

Table 1.113

Compd. No.	R ¹ (CH ₂)j-					R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1233	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1234	CH ₃ CH ₂ -	1	2	0	R	н,	-CH ₂ -N-C-CH ₃
1235	CH_3 $CH_2^ CH_3$	1	2	0	R	н .	-CH ₂ -N-C-CI
1236	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1237	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N$ C H_2N H_2N
1238	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-N-H
1239	CH ₃ N −CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-
1240	CH ₃	1 .				н ·	-CH ₂ -N-C-NO ₂
1241	CH2−	2	2	1	-	Н	$-CH_2-N-C$ CI CH_3
1242	C	2	2	1	-	н	-CH ₂ -N-C
1243	C → CH ₂ -	2	2	1	· ·	н	-CH₂-N-C- CI

.

Table 1.114

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1244	С⊢ СН₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1245	C├ - CH ₂ -	2	2	1	-	, H	$-CH_2-NC-F$ H H_2N
1246	CH2−	2	2	1	-	н [*]	-CH ₂ -N-C- CH ₃
1247	CH2−	2	2	1	-	н	-CH ₂ -N-C
1248	C├──	2	2	1	<u>.</u> .	Н	-CH ₂ -N-C
1249	C⊢√CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1250	H ₃ C—CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C
1251	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1252	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C -CH(CH_3)_2$
1253	H ₃ C-CH ₂ -	1	2	0	Ŕ	н	$-CH_{2}-N-C$
1254	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H CH(CH ₃) ₂

Table 1.115

lable	1.115						
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1255	СҢ СН₂-	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2		R	н	$-CH_2-N$ - C - H_2 N
1257	CH ₃ N CH ₂ - CH ₃	1	2	0	R	H	$-CH_2-N-C$ H H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-
1259	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C
1260	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-OCH ₂ CH ₃
1261	CH2-	1	2	0	R	. Н	$-CH_2-N-C \longrightarrow O \\ H_3C$
1262	H ₃ C-CH ₂ -	1	2.	0	R	Н	$-CH_{2}-N-C$ H_{3} $C(CH_{3})_{3}$
1263	CH₃ CH₂− CH₃	1	2	0	R	H	$-CH_{2}-N-C$ $H_{3}C$ $C(CH_{3})_{3}$
1264	CHCH_2-	1	,2	0	R	. Н	-CH ₂ -N-C
1265	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
•							• •

lable							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1266	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1267	СН2-	1	2	0	R	н	$-CH_2-N$ C H C H C
1268	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1269	С├──СН2-	1	2	0	R	н	-CH ₂ -N-C
1270	C⊢-CH₂-	1	2	ó	R	Н	$-CH_2-N-C$ HO
1271	C├────────────────────────────	1	2	0	R	H	-CH ₂ -N-C
1272	H ₃ C-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-N-H-OCF ₃
1273	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1274	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1275	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
	н₃с-{Сн₂-						-CH ₂ -N-C

Table 1.117

, 45.0							
Compd.	R ¹ (CH ₂) _i -	k	m	· n	chirality	R³	$-(CH_2)_{p}^{-\frac{1}{16}}(CH_2)_{q}^{-\frac{1}{16}}G-R^6$
1277	CH ₃				R	н .	-CH ₂ -N-C-N-H-OCF ₃
1278	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1279	CH ₃ CH ₂ −	1	2	0	Ŗ	H	-CH ₂ -N-C- H
1280	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	: :	-CH ₂ -N-C-
1281	CH ₃ CH ₂ − CH ₃	1	2	,0	R	Н	-CH ₂ -N-C
1282	CH2-	2	2	1	-	H	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1283	CH2-	2	2	1	-	H 	-CH ₂ -N-C
1284	CHCH ₂ -	2	2	1	-	н ,	-CH ₂ -N-C
1285	CH2-	2	2	1	· ·	H	-CH ₂ -N-C-
1286	13 ¢ N(O1 ₂) ₃ O	1	2	0	R ·	H	-CH ₂ -N-C-CF ₃
1287	NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
•							

1 3 7

Table 1.1	1	8
-----------	---	---

1 4510							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1288	HQ	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1289	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCH_3
1290	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-CH_3$ $+L_2N$ $+L_3N$
1291	H ₃ C—←CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-N-H
1292	H ₃ C-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2N Br
1293	H₃CCH₂-	1	2	0	R	Н	-CH ₂ -N-C-F ₃
1294	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1295	H₃C-⟨CH₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	- R	Н	-CH ₂ -N-C-SSCH ₃
1297	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{3}$ $+CH_{3$
	H_3CO H_3CO CH_2 Br					н	-CH2-N-C-CF3

1

Table 1.119

labic	1.113						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1299	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1300	OCH ₃ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1301	H_3CO OCH_3 CH_2 H_3CO	1	2	0	· R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO — CH ₂ -	1	2	0	R	н·	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ CH ₂ O-CH ₂ -	1	2	· O	R	н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q . H₃CO———СН₂-	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1307	H ₃ CO — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH ₂ -					н .	-CH ₂ -N-C-CF ₃
1309	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃

No.

Table 1.120

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
1310	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1311	O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	I . CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ N S—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1315	H ₃ C O-CH ₂ -	1	2	0	R	H ·	-СH ₂ -N-С-СF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1318	CH2-	1	2		R	Н	-CH ₂ -N-C-CF ₃
1319	C → C H ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1320	Br—— CH₂-	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.121

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1321	CH2-	1	2	0	R	Н	-CH ₂ -N-C
1322	C	1	2	0	R	Н	$-CH_2-N$ C-CH3
1323	C ⊢ CH₂-	1	2	0	R '	H	-CH ₂ -N-C
1324	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1325	CH2-	1	2	0	R	н	-CH ₂ -N-C
1326	с⊢СН₂-	1	2	, O	R	Н .	-CH ₂ -N-C-
1327	CHCH ₂ -	1	2	0	R	Н .	$-CH_2-N-C$ H_2N
	H ₃ C-CH ₂ -			•		Н	-CH2-N-C
1329	H ₃ C-CH ₂ -	- 1	2	0 -	R	H ·	$-CH_2-N-C$ CI CH_3
1330	H₃CCH₂-	1	2	0	R	н .	$-CH_{2}-NC$ $-CH_{2}-NC$ $+CH_{3}$ $+CH_{2}-NC$ $+CH_{3}$
1331	H₃C—CH₂-	1	2	0	R	H·	-CH2-N-C

1 4 1

Table 1.122

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1332	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C
1333	H ₃ C-CH ₂ -	1	2	0	R	H _.	-CH ₂ -N-C
1334	H ₃ C-CH ₂ -	1	2	0	R	Н [*]	$-CH_{2}-N-C$ $H_{2}N$ CH_{3}
1335	CH ₃ N CH ₂ − CH ₃	1	2	0	R .	H .	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-CH ₃
1337	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- HO CH ₃
1339	CH ₃ CH ₂ − CH ₃	1	2 ·	0 .	R	Н	-CH ₂ -N-C
1340	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	Н	-CH ₂ -N-C
							-CH ₂ -N-C
1342	C ├── C H ₂ -	. 2	2	1	-	. н	-CH2-N-C- Br

Table 1.123

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1343	C⊢—CH₂-	2	2	1	₹.	Н	-CH ₂ -N-C-CH ₃
1344	C ⊢ CH₂−	2	2	1	-	Н	-CH ₂ -N-C-CI
1345	C ← CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H HO CH ₃
1346	CH ₂ -	2	2	1	· <u>-</u>	'nН	-CH ₂ -N-C-
1347	C⊢—CH₂-	1	2	0	· R _.	Н	-CH ₂ -N-C-S CH ₃
1348	H ₃ C-CH ₂ -	1	2	0,	R	H	-CH ₂ -N-C-S CH ₃
1349	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S CH ₃
1350	CH2-	2	2	1	-	Н	-CH ₂ -N-C-S CH ₃
1351	CH2-	1	2	0	R	н [.]	-042-Hr C-043
1352	H ₃ C-CH ₂ -	1	2	0	R ·	Н	-012-H C-012
1353	CH ₃ CH ₂ - CH ₃	; ,1	2	0	R	н	-043-HC042

Table 1.124

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1354	C	2	2	1	-	Н	-C15-H-C-C13
1355	C	1	2	0	R	. н	-CH ₂ -N-C-CN
1356	н ₃ С-СН ₂ -	· 1	2	0	R ·	Н	$-CH_2-N-C$ H_2N
1357	CH ₃ CH ₂ − CH ₃	· 1	2	0	R [°]	н	$-CH_2-N-C$ H_2N
1358	CH ₂ -					H	$-CH_2-N$ CN H_2N
1359	CH_3 CH_2 CH_3	1	2	0	R	H	-CH2-N-C-
1360	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	$-CH_{2}-N-C \xrightarrow{CH_{3}} CH_{3}$ $-CH_{3}$ $-CH_{3}$
1361	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH2-N-C
1362	CH ₃ CH ₂ - CH ₃	1	2	0	R	. Н	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
							-CH ₂ -N-C-CH ₃

,1,,

Table 1.125

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - R^6$
	CH ₃ N—CH ₂ -					Н	-CH ₂ -N-C- H
1366	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-C-←CH3
1367	H ₃ C-CH ₂ -	1	2	0	·R	н	$-CH_2-N$ C
1368	C⊢√CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
1369	_СН ₂ -	1	2	0	R .	Н	-CH ₂ -N-C
1370	C├ - CH ₂ -	1	2	Ο.	R	Н	-CH ₂ -N-C-S Br
1371	СН2-	1	2	0	R	Н	-CH ₂ -N-C-S
1372	C├ - CH ₂ -	1	2	0	R	H	- CH ₂ -N-C-
1373	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1374	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1375	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-SBr
		,		,			

Table 1.126

lable	1.126						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} G - R^6$
1376	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	. н	- CH ₂ -N-C-
1378	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1379	CH₃ N CH₂- CH₃					H	-CH ₂ -N-C
1380	CH₃ N CH₂- CH₃	•				н	-CH₂-N-C-\S Br
1381	CH ₃ CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-
1382	CH ₃ CH ₂ -	1	2	, 0	R	Н	-CH2-N-C-
1383	CHCH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
1384	CHCH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-SBr
1385	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
•	C├─────────────						-CH2-NCC-

Table 1.127

Compd No.	· R ² -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1387	CH³ CH³	1	2	0	R	Н	-CH2-N-C-
1388	CH₃ CH₃	1	2	0	R	H	$-CH_2-N C \longrightarrow C(CH_3)_3$ $-CH_2-N C \longrightarrow N N$ $-CH_3$
1389	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1390	H_3C CH_2 H_3C CH_3	1	2 .	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_2-N-C CF_3$
1392	H_3C CH_2	1	2	0	R	н,	-CH ₂ -N-C-CF ₃
1393	H₃ССН2—СН2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N CH ₂ -	1	2	0	 R	н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
.1396	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CF3
1397	Br CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.128

1 able	1.120						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	H3	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1398	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1400	CHCH-CH-CH3	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-H
1402	H ₃ C-CH ₂ -	1	2	0	R	. н	$-CH_{2}-NC \longrightarrow OCH_{3}$ $+ CH_{2}N OCH_{3}$
1403	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\bigc\)N
1404	H ₃ C-CH ₂ -	1	2	0	R	.Н	-CH ₂ -N-C-N
1405	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C H_3CS$
1406	H ₃ C-CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C- CH ₃
1407	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.129

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
1409	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CH3
1410	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1411	C├ - CH ₂ -	1	2	0	R	, H	-CH ₂ -N-H H ₃ C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H
1413	CH ₃ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C-N-H
1414	C├ - CH ₂ -	2	2	1	+ . -	н	-CH ₂ -N-C-NH
1415	CH2-	1	2	0	R	Н	$-CH_2-N-C$ H_2N SCN H_2N
1416	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1417	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-SCN
	C					н	$-CH_2-N-C$ H_2N SCN H_2N
1419	C	1	2	0	R		-CH ₂ -N-C-SH

1 4 9

Table 1.130

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
	H₃C-⟨CH₂-					Н	-CH ₂ -N-C-SH
1421	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N$ C H_2N SH
1422	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N$ - C - H_2N -
1,423	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-
1425	CH_3 CH_2 CH_3	1	2	0	R .	Н	-CH ₂ -N-C-
1426	CHCH_2-	2	2	1	-	H.	-CH ₂ -N-C-
1427	CH_CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-NH
1428	CH2-	2	2	1	-	, H	-CH ₂ -N-C
1429	њссн ₂о-{ сн₂-	2	2	1	-	H	$-CH_2-N-C H_2N$
1430	O————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-
	·						

Table 1.131

Compd No.	R^{1} (CH_{2})	k	т	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1431	H3CCH 2O ← CH2-	2	2	1	-	н	-CH ₂ -N-C
1432	CH₂-	2	2	1	-	н	-CH ₂ -N-C
1433	н,ссн 20-√	2	2	1	-	Н	-сн ₂ -мс ни сн ₂
1434	H₃CCH 2O-CH2-	2	2	1	- ·	н	-CH2-N-C-H2CH2
1435	H ₃ CCH ₂ ————————————————————————————————————	. 2	2	1	-	н	-CH ₂ -N-C
1436	(H ₀ C) ₂ CH ← CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-
1437	H ₃ C(CH ₂) ₂ O-CH ₂ -	2 .	2	1	-	H.	$-CH_2-N-C$ H_2N
1438	H3CCH2-CH2-	2 .	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
1439	(HgC)2CH———————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N Br
1440	H3C(CH2)20-CH2-	2	2	1		н	-CH ₂ -N-C-Br
	H ₃ CS————————————————————————————————————					н	-CH ₂ -N-C

.

1 5 1

Table 1.132

Compd.	R ¹ (CH ₂) _i -	ķ	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1442	H ₃ CCH ₂ —СН ₂ -	2	2	1	-	Н	-сн ₇₋ м с нх сн ₇ сн ₂ сн ₃ сн ₄
1443	(HC)2CH-(C+2-	2	2	1	-	Н	-CH2-N-C
1444	H ₃ C(CH ₂) ₂ O	2	2	1	-	Н .	-CH ₂ -N-C- HN CH ₂ -CO(OH ₂) ₂ CH ₆
1445	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	-сн ₂ -мс-
1446	(H°C) ⁵ ,CH−€C+ ⁵ −C+ ⁵ −	2	2	1.	- 	Н	-CH2-N-C
1447	н ₃ с(сн ₂) ₂ о—С— Он ₂ -	2	2	1	-	н	-012-N-C
1448	H₃CS—CH₂-	2	2	. 1.	-	н	-сн ₂ -мс-мсн ₂ -scн ₆
1449 .	н₃ссн ₂ —Сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(HgC)2CH CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)3N-CH2-	2	2	1	<u>-</u>		-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
		:					

1 5 2

Table 1.133

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{15} (CH_2)_{q} - G - R^6$
1453	щс(сн ₂) ₂ о— Он ₂ -	2	2	1	-	н	-CH ₂ -N-C- CF ₃
1454	НъССН 20————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H₃CQ HO—CH₂-	2	2	1	· <u>·</u>	Н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	<u>.</u>	Н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-CH ₂ -	2	2	1		Н	-CH ₂ -N-C
1458	H ₃ CQ HO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1460	H ₃ CO HO———————————————————————————————————				<u>-</u>	Н	$-CH_2-NC-$ H_2N H_2N Br
1461	H ₃ CQ HO————————————————————————————————————	2	2	1		н	-сн ₂ - N-С- оснь
1462	H ₃ CQ HO————————————————————————————————————	2	2	1 .	-	Н	-CH2-N-CH2-OCH
1463	С⊢СН₂-	2	1	1	-	н	-CH2-N-C-CF3

1 5 3

Table 1.134

Compd. $\frac{1}{R^2}$ (CH ₂) ₁ k m n chirality $\frac{1}{R^3}$ (CH ₂) ₂ $\frac{1}{R^3}$ (CH ₂) ₃ $\frac{1}{R^3}$ (CH ₂) ₄						•		
1465 CH_{2} 2 1 1 - H $-CH_{2}$ CF_{3} 1466 CH_{2} 2 1 1 - H $-CH_{2}$ CF_{3} 1467 CH_{2} 2 1 1 - H $-CH_{2}$ CH_{2} CH_{2} 2 1 1 - H $-CH_{2}$ CH_{2} $CH_$	Compd. No.	R^2 $(CH_2)_i$	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G-R^6$
1466 $C \mapsto CH_2 - CH_2 - 2$ 1 1 - H $CH_2 \mapsto CH_2 - $	1464	C	2	1	1		н	-CH ₂ -N-C
1467 $C \mapsto CH_{2} - 2$ 1 1 - H $C \mapsto CH_{2} - CH_$	1465	С;—Сн₂-	2	1	1	-	Н	$-CH_2-N-C$ F_3C CF_3 F_3C
1468 CH_{2} CH_{2} 2 1 1 - H CH_{2} CH_{2} CH_{2} 2 1 1 - H $-CH_{2}$ CH_{2} CH	1466	C	2	1	1	-	н	-CH ₂ -N-C-
1469 $CH_{2}^{-} - CH_{2}^{-} = 2$ 1 1 - H $-CH_{2}^{-} - CH_{2}^{-} $	1467	C⊢—CH₂-	2	1	1	-	н	-CH2-N-C
1470 CH_{2} 2 1 1 - H CH_{2} CI CH_{2} 2 1 1 - CH_{2} CH_{2} 2 1 1 - CH_{2} CH_{2} CH_{2} 1 2 0 R CH_{2} CH	1468	C⊢—CH₂-	2	1	-1	-	Н	-CH ₂ -N-C-NO ₂
1471 CH_{2}^{-} 2 1 1 - H^{-} CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ CF_{3}	1469	С⊢(СН₂-	2	1	1	-	Н	-CH ₂ -N-C-CF ₃
1472 CH_{3} 1 2 0 R H $-CH_{2}$ CF_{3}	1470	CH ₂ −CH ₂ −	2	1	1	-	H	-CH ₂ -N-C
1472 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1471	CH2-	2	1	1 .	-	н -	-CH ₂ -N-C-F
1473 $\xrightarrow{Br} \xrightarrow{S} - CH_{2^{-}}$ 1 2 0 R H $\xrightarrow{-CH_{2^{-}}N^{-}C^{-}}$ 1 2 0 R H $\xrightarrow{-CH_{2^{-}}N^{-}C^{-}}$ $\xrightarrow{CF_{3}}$ $\xrightarrow{CF_{3}}$ $\xrightarrow{CH_{3^{-}}}$ 1 2 0 R H $\xrightarrow{-CH_{2^{-}}N^{-}C^{-}}$	1472	CH ₃ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1474 CH ₂ - 1 2 0 R H -CH ₂ -N-C- CF ₃	1473	Br S CH2-	1	2 .	0	R	Н	-CH ₂ -N-C-CF ₃
	1474	CH ₂ -CH ₂ -	-1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.135

Comp No		k n	n n	chirality	R³	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)_{\overline{q}}G-R^5$
1475	CH ₂ -CH ₂	. 1 2	2 0	R	Н	-CH ₂ -N-C-CF ₃
1476	B CH ₂ -	1 2	. 0	, [†] R	н .	-CH ₂ -N-C-CF ₃
1477	Br CH ₂ -	1 2	0	R	Н	-CH ₂ -N-C-CF ₃
1478	Br CH ₂ -	1 2	0	R	н	-CH ₂ -N-C
1479	$H_3C - CH_2 - CH_3$	1 2	0	R	Н	-CH ₂ -N-C-CF ₃
1480	CH ₃	1 2	0	R .	Н	$-CH_2-N-C-$
1481	H ₃ C — CH ₂ -	1 2	0	R	H '.	-CH ₂ -N-C-CF ₃
1482	Br CH2-	1 2	0	, R	H	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1 2	0	R	Н	-CH ₂ -N-C-CF ₃
1484	CF S CH2-	1 2	0	R	н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{3}-N-C$ $+CH_{2}-N-C$
1485	H ₃ C-CH ₂ -	1 2	0	R	Н .	-CH2-N-C-SF

	1.100						
Compd. No.	R ¹ / _{R²} (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q}G-R^6$
1486	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1487	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-CI
1488	H₃C-(CH ₂ -	1	2	0	R	н	-CH2-N-C
1489	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1490	H ₃ C,—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1491	H ₃ C-CH ₂ -	1 .	2	0	R	. н	$-CH_2-N-C-$
1492	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
	CH ₃ CH ₂ - CH ₃				•	Н	-012-Hc-02
1494	CH ₃ CH ₂ -	1	2	0	R	Н ,	-CH ₂ -N-C
							-CH ₂ -N-C
1496	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-ON H ₃ C

Table 1.137

Compd No.	· R ² -(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _{p 5} (CH ₂) _q G-R ⁶
1497	CH₃ N CH₂- CH₃	1	2	0	R	н ·	-CH ⁵ -V-C. CH ³
1498	CH ₂ -CH ₂ -	. 1	2	0	R	н	-CH3-4-C-√
1499	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1500	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CH ₃
1501	CH ₃ CH ₂ - CH ₃	7	2 ,	0	R	н	-CH2-N-C-
1502	CH ₃ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1503	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1504	H ₂ N-CH ₂ -					Н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1506	CHCH ₂ -	2	1	1	-	Н	$-CH_2-N$ C H H_2N
1507	CHCH ₂ -	2	1	1	-	'. н	-CH2-N-C

rabie	1.138						
Compd No.	. R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{p+4}(CH_2)_{q}G-R^6$
1508	CH_CH2-	2	1	1	-	Н	$-CH_2-N-C-$ H_2N
1509	C ├── C H ₂ -	2	1	1	-	н	- CH ₂ -N-C-
1510	C├────────────────────────────────────	2	1	1	- -	н	$-CH_2-N-C$ H_2N
1511	CHCH2-	2	. 1	1	<u>-</u>	н	-CH ₂ -N-C-SBr
1512	CHCH2-	2	1	1:	· -	н	$-CH_2-N-C \longrightarrow H_2N$
1513	CH2−	2	1	1		Н	-CH ₂ -N-C-
1514	(H ₃ CCH ₂) ₂ N————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1515	HQ H₃CO—CH₂-	2	2	1		H	$-CH_2-N-C-$ H_2N
1516	(H3CCH2)2N-CH2-	2	2	1	-	H	$-CH_2-N-C-\longrightarrow_{H_2N}^{Q}$
1517	HQ H₃CO————————————————————————————————————	2	2	1	- -	Н	$-CH_2-N-C$ H_2N H_2N Br
1518	HQ	2	2	1,	-	н	-снт ну снт он

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R
1519	HQ H ₃ CO————————————————————————————————————	2	2	1	-	н.	-сн ₂ м сн ₂ он ни сн ₂ он -оснь
1520	Вг—СН₂-	1	2	0	R	H .	-CH2-N-C
1521	H₃CO-(CH₂-	1	2	. 0	R	н	-CH2-N-C-
1522	CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C
1523	H ₃ CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-
1525	B	1	2	0	R	Н	-CH ₂ -N-C-
1526	H ₃ CO	1	2 ·	0	R	Н	-CH ₂ -N-C-C-C-C-S
1527	-CH ₂ -	1	2	0	, R	Н	-CH ₂ -N-С-
1528 ₁	H ₃ CO————————————————————————————————————	1	2	O	R	н	-CH ₂ -N-C
	H ₃ CO HO———————————————————————————————————						$-CH_{2}-N-C-$ OCF_{3} $-CH_{2}-N-C-$ OCF_{3} $-CH_{2}-N-C-$
		٠					•

Table 1.140

, abic	, 5						
Compd.	R (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1530	B.—CH₂-	1	2	0	R	H	-CH ₂ -N-C
1531	H ₃ CO—СН₂-	1	. 2	0	R	Н	-CH ₂ -N-C-CF ₃
1532	CH ₂ -	1	<u>,</u> 2	0	R	н н	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	Ή	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO————CH ₂ -	1	2	O	R·	Н	-CH ₂ -N-C-CF ₃
1535	Br——CH ₂ -	1	2	0.	R	Н	-CH ₂ -N-C
1536	H ₃ CO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-CF
1537	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1538	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
•							-CH ₂ -N-CF
						*	

Table 1.141

Compo	d. R ¹ /(CI	-1 ₂) _i	k	m	n	chirality	₽³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1541	Н₃СО-	≻-СН²-	1	2	0	R	H	-CH2-N-C-←F
1542		CH₂− ·	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1543	H ₃ CO	-С Н ₂	1	2	0	R	н	$-CH_2-N-C-F_3$
1544	HO	CH₂−	1	2	0	R	н	-CH₂-N-CF
1545	CL_S-C	:H ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO F F	-СН ₂ -	1	2	. 0	R	н	$-CH_2-N-C- \bigcirc CF_3$
1547	H ₃ CO	-СН ₂ –	1	2	0	R .	н	-CH ₂ -N-C
1548	H ₃ C-	CH₂−	1	2	0	R	н .	-CH ₂ -N-C
1549	H ₃ C-(CH₂−	1	2	0	R	н	$-CH_2-N-C$ H_3C $CH=C(CH_3)_2$ CH_3
1550	H ₃ C-(CH₂−	1	2	0	R ,	н	-012-H-C-H-2CO
1551	H ₃ C-(-)-C	CH₂- '	1	2	0	R	H	-CH2-N-C-

Table 1.142

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1552	H₃C-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R .	н	-043-Ac-
1554	H ₃ C-CH ₂ -	1	2	0	R	Н.	$-CH_2-NC$
1555	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-CH_{3}$ $-CH_{2}-N-CH_{3}$ $-CH_{3}$ $-CH_{3$
1556	H ₃ C-CH ₂ -	1	2	0	R	Н .	$-CH_{Z}-N-C-V_{N}$ $+3C$
1557	H ₃ C-CH ₂ -	1	2	0	R .	Н .	-CH ₂ -N-CN H ₃ C
1558	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1559	н ₃ ССН ₂ -					•	$-CH_2-N-C$ H_3C $C(CH_3)_3$
1560	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N N O CH ₃
1561	H₃C-⟨CH₂-	1	· 2	0	R	н ′	$-CH_{2}-N-CCH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$
1562	H ₃ C-CH ₂ -	. 1	2	0	R	н .	$-CH_{2}-N$ $O_{2}N$ OCH_{3}

Table 1.143

							·
Compd.	R ² (CH ₂);-	k	m	n	chirality	. R3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1563	H₃C-(CH₂-	1	2	. 0	R	н	-CH ₁ -NC-C1
1564	H ₃ C-⟨CH ₂ -	1	2	Ó	R	н	-CH3-H.C.
1565	CH ₃ CH ₂ - CH ₃	1	2	0	R.	н	-CH ₂ -N-C
1566	CH₃ N—CH₂− CH₃				R	Н	$-CH_2-N$ O_2N OCH_3
1567	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-HC
1568	CH ₃ CH ₂ − CH ₃	1	2	O	R	Н	-on-De-Me
1569	CH ₃ CH ₂ - CH ₃	1	2	0	, R	H	-cH ₂ -N-C-
1570	H ₃ CS—CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1571	H3CS-CH2-	. 2	2	1	-	Н	-CH2-NCSCH6
1572	Ch C-CH 2	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1573	н,со{-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

10024698.012302

Table 1.144

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1574	40-04-	2	. 2	1		н	-CH ₂ -N-C-CF ₃
1575	C - CH ₂ -	2	2	1.	-	Н	-CH ₂ -N-C-CF ₃
1576	Q	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1577	HO(CH ³) ⁵ - H _C - CH ² -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	H ₂ C	2	2	1	- ·	Н	-CH ₂ -N-C-CF ₃
1579	CH3 Q CH2-	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
1580	N-C- CH₂-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1581	CH_CH2-						-CH ₂ -N-C
1582	C├ ~ CH ₂ -	2	2	1.	- -	Ĥ .	-CH- K-C- K-CH'
1583	CCH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1584	C├─ੑCH ₂	1	2	0	R		-CH ₂ -N-COCF ₃

Table 1.145

Compd. No.	R ² (CH ₂) _j -	k	m	n c	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1585	С⊢ СН₂-	1	2	0,,	R	н	-CH ₂ -N-C
1586	С{СH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1587	С⊢СН2- 1	1	2	0	R ·	Н	-CH2-N-C-
1588	С⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1589	H ₃ C-CH ₂ -	1	. 2	0	R	Н	$-CH_{2}-NC - CF_{3}$ $+CH_{2}N$
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-N-C$ H_2N OCF_3 H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC R$ R R R R R R R R R
1592	H_3C — CH_2 —	1	2	0		Н .	-CH ₂ -N-C-
1593	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1594	CH ₃ CH ₂ −	1	2	0	R	Н	$-CH_{2}-N \cdot C \xrightarrow{\qquad \qquad CF_{3}}$
	CH ₃ N CH ₂ -				R	H	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

Compd.	R ² (CH ₂) _i -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1596	CH ₃ CH ₂ -	1	2.	0	R ·	н	-CH ₂ -N-C-SN
1597	CH ₃ CH ₂ CH ₃				R	Н	-CH2-V-C-
1598	CH ₃ N CH ₂ −				R'	H	-CH2-N-C-
1599	CH ₃ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1600	CHCH_2-	2	2	1	÷	. ′	$-CH_2-N-C-$ H H_2N
1601 .	CH2-	2	2	.1	-	Н .	$-CH_2-N$ H_2N H_2N
1602	C	2	2	1	-	н	$-CH_2-N-C \longrightarrow$ N \longrightarrow N
1603	CH2-	2	2	1	-	H .	-CH ₂ -N-C-
1604	C⊢—CH₂-	2	2 .	1	- . ·	Н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $+CH_{3}$ $-CH_{2}-N+C$
1605	CH2-	2	2	1	-		
1606	CH2-	1.	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.147

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	₽³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1607	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₃	1	2	0	R	Н	$-CH_2-N-C$ SCF ₃
1609	CH2-	2	2	1	-	н .	-CH ₂ -N-C-SCF ₃
1610	CF3 P CH2-	2	2	1		н	-CH ₂ -N-C-CF ₃
1611	CH2-	2	2	1	· -	н.	-CH ₂ -N-C-CF ₃
1612	н,со(сн.у- нс	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1613	H C CH-	2	2	1	<u>-</u>	Н	-CH ₂ -N-C-CF ₃
1614	F3CS-CH2-	1	2	0	R	Н	$-CH_2-N-C$
	F3CS—CH2-						-CH ₂ -N-C-CF ₃
1616	F ₃ CS—CH ₂ -	2	2	1	-	· H	$-CH_2-N$ - C - H_2N
	F ₃ CS—CH ₂ -						-CH ₂ -N-C

lable	1.148						
Compd.	R ¹ (CH ₂) _i -	k	m	n.	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1618	H ₃ CO—CH ₂ -	1	2	0	R	H	-CH2-N-C-Ser
1619	HQ H ₃ CO—CH ₂ -	1 .	2	0	R	н.	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO-CH ₂ -	1.	2	0	R	.н	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-C-CF ₃
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	$-CH_2-NC$ CF_3 F
1623	HO€	1	2	0	R	н	-CH ₂ -N-C-
1624	ноСН₂-	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1625	HOCH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1626	HO-CH ₂ -	1	2	0	R	н ,	-CH ₂ -N-C-CF ₃
1627	HO-CH ₂ -	1	2	0	R	Н,	-CH ₂ -N-C-F ₃ -CF ₃ -CF ₃
1628	H₃CS	1	2	0	R	н	-CH ₂ -N-C- CF ₃

lable	1.149						
Compd. No.	R ¹ /(CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{-\frac{R^4}{4}}(CH_2)_{q}^{-}G^{-}R^6$
1629	H₃CS-()-CH2-	1	2	0	R .	н	-CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н •.	-CH ₂ -N-C-CF ₃
	CF_3 CH_2					Н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC CH ₂ -	1.	2	0	R	н .	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH CH ₂ -	1	.2	0	R	. н	-CH ₂ -N-C-CF ₃
1635	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C C(CH_3)_3$
1636	H ₃ C-CH ₂ -	1	2	0	R	н :	-CH ₂ -N-C
1637	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N$ C $(CH_2)_4CH_3$
1638	CH ₃ CH ₂ -	1	2.	0	R	H	$-CH_{2}-NC-(CH_{2})_{4}CH_{3}$ $-CH_{2}-NC-(CH_{2})_{3}CH_{3}$
1639	CH ₃ CH ₂ − CH ₃	1	2	0	R	. н	-CH3-H C-OCH3CH3
					<u> </u>	·	<u> </u>

Table 1.150

rabie	1.130						·
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 5 (CH ₂) q G-R ⁶
1640	CH ₃ CH ₂ - CH ₃	1	2	0.	R	н	-CH2-N-C
1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C
1642	CH ₃ CH ₂ - CH ₃	· 1	2	0	R	н	$-CH_2-N-C-N$ O_2N-N
1643	CH_3 CH_2 CH_3	1	2	0	R P	Н	-CH ₂ -N-C-
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C
1645	CI CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1646	Br O CH2-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	. 1	-	. Н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ ———————————————————————————————————	1	- 2	0	Ŕ	Н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	<u>-</u>	H	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1651	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1		н	-CH2-NCH2-(CH2)3CH3
1652	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	· ·	н	-CH2-N-C
1654	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1655	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	. 1	- -	Н	-CH ₂ -N-C
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
1657 .	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	<u>-</u>	Н	-CH ₂ -NC
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1659	CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N CI
1660	Br—CH ₂ -	1	2	0	R		$-CH_2-NCC-$ H_2N
1661	ВСН₂-	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
					•		•

Table 1.152

rable	1.132						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1662	в€СН2-	1	2	0	R	Н	-CH ₂ -N-C-F
1663	B	1	2	0	R	Н .	$-CH_2-NC H_2N$
1664	H₃CS—CH₂-	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$
1665	H ₃ CS-CH ₂ -	2	2	1	· · · · ·	н .	$-CH_2-N-C$ H_2N OCF_3
1666	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1667	H ₃ CCH ₂ —CH ₂ -	2	2	1	, -	н	-CH ₂ -N-C-Br
1668	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	· 'H	$-CH_2-N-C-F$ H_2N
1669	H₃CCH₂—CH₂-	2	2	1	-	H	$-CH_2-N-C$ H_2N
1670	H₃CCH₂—————CH₂-	2	2	. 1	-	н	$-CH_2-NC-$ H_2N
1671	н₃ссн₂—Сн₂-	2	2	1	-	н	$-CH_{2}-N$ $-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
1672	H ₃ CCH ₂ —CH ₂ -	2	. 2	1	-	. H	$-CH_2-N-C$ H_2N CF_3

Table 1.153

	• • • •						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1673	н₃ссн₂{Сн₂-	2	2	1	-	н	-CH2-N-C- Br
1674	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1675	F-CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1676	F—CH ₂ -	2	2	1	· <u>-</u>	Н	$-CH_2-N-C$ H_2N
1677	F-CH ₂ -	2	2	1	· -	Н	-CH ₂ -N-C-Br
1678	F-CH ₂ -	2	, 2	1	. -	н	$-CH_2-NC-$ H_2N
1679	F-CH ₂ -	2	2	1	÷	.Н	$-CH_2-NC$ H_2N
1680	F-CH ₂ -	2	2	1	- - -	Н	-CH ₂ -N-C-OCF ₃
1681	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N CF_3
1682	F—CH2-	2	2	1	- .		-CH ₂ -N-C
							-CH ₂ -N-C-Br

Table 1.154

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. Ka	-(CH ₂) , 1 (CH₂), G-R⁶ R ⁵
1684	N+ CH2-	2	2	1	-	н	-CH ₂ -N-C-FF
1685	₩ C - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1686	₩ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1687	N+ C− ← CH2−	2	2	1	-	н	$-CH_2-N+C$ H_2N
1688		2	2	.1	-	Н	$-CH_2-NC \longrightarrow H_2N$
.1689	P-N-C	2	2	1	- -	Н	$-CH_2-N-C$ H_2N
1690	H C-CH2-	2	2	1		Н	$\begin{array}{c} CF_3 \\ CF_3 \\ CH_2 - CH_2 - CF_3 \\ CF_4 \\ CF_4 \\ CF_5 \\ CF$
1691		2	2	1	-	H	-CH ₂ -N-C-Br
1692	CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1693	H ₃ C-CH ₃	. 1	2	0	R	н	$-CH_2-N-C$ H_2N
1694	CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$

Table 1.155

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1695	CH ₃	1	2	0	R	н .	$-CH_2-N-C$ H_2N H_2N
1696	CH ₃	1	2	0	Ŕ	н	$-CH_2-N+C$ H_2N
1697	CH ₃	1	. 2	0	R	Н	$-CH_2-N+C$ H_2N
1698	CH ₃ - CH ₂ -	1	2	0	R	н	$-CH_2-N+C H_2N$ H_2N
1699	CH ₃ ⊢CH ₂ −	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1700	CH ₃	1	2	.0	R	Н , ,	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	. 2	0	R	н	$-CH_2-N$ CF_3 H_2N
1702	н₃со-Сн₂-			0	·R	Н	$-CH_2-N$ CF_3 H_2N
1703	CH ₂ -	1	. 2	0	R	н	$-CH_2-N-C$ H_2N CF_3
1704	HO-CH ₂ -	1	2	0	R	. н	- CH ₂ -N-C-
1705	CI CH ₂ −	1	2	0	R	н	$-CH_2-N-C-$ H_2N

Table 1.1.56

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1706	CH₂-	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
1707	H ₃ C S—CH ₂ -	1	2	0	R	H-	$-CH_2-N$ C H_2N CF_3
1708	н₃ССН2—СН2-	1	_ 2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
1709	(H ₆ C) ₂ CH CH ₂ -		2	0	R	Н	$-CH_{2}-NC-$ H $H_{2}N$
1710	H_3C $B \leftarrow CH_2 - CH_2$	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH-	1		0	R	H	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO————————————————————————————————————	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ -	1	2	0	R .	Ħ	-CH ₂ -N-C- CF ₃
1714	H ₃ CO——CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1715	CH₂-	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	, H	-CH ₂ -N-C-CF ₃

Table 1.157

	, .						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(СН ₂) р 5 (СН ₂) р G−R ⁶
1717	H ₃ CO-(N-)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1718	CH ₃	1	2	0	. R	Н	-CH ₂ -N-C-CF ₃
1719	CH ² -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H ₃ C → CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C
1721	H ₃ CCH ₂ -CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1722	-CH ₂ -	1	2	0	. R	Н	-CH ₂ -N-C-⟨ CF ₃
1723	CH ₂ -	1	2	0	Ŕ	н	-CH ₂ -N-C-CF ₃
1724	CH ₃	1	2	. 0	R	. Н	$-CH_2-N-C F$
1725	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	н₃ссн₂—(-CH ₂ -N-C
1727	CH ₂ -	1	2	0	R	H ,	$-CH_{2}-NC-F$ $-CH_{2}-NC-F$ $-CH_{2}-NC-F$

1 7 7

Table 1.158

Compd. $\begin{array}{cccccccccccccccccccccccccccccccccccc$							
1729 H_3C CH_2 1 2 0 R H $-CH_2$ CF_3 CF_3 CF_3 CH_2 1 2 0 R H $-CH_2$ CF_3 CF_3 CF_3 CF_3 CF_3 CF_3 CH_2 1 2 0 R H $-CH_2$ CF_3 CF_3 CF_3 CH_2 1 2 0 R $-CH_2$ CF_3 CH_2 1 2 0 R $-CH_2$ CH_2	Compd. R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³ .	$-(CH_2)_p + (CH_2)_q G - R^6$
1730 $\stackrel{H_3C}{\longrightarrow}_{N_N} \stackrel{O}{\longrightarrow}_{O_2^{-}} \stackrel{1}{\longrightarrow}_{1} \stackrel{2}{\longrightarrow}_{0} \stackrel{O}{\longrightarrow}_{0} \stackrel{CF_3}{\longrightarrow}_{1} \stackrel{O}{\longrightarrow}_{0} \stackrel{CF_3}{\longrightarrow}_{1} \stackrel{C}{\longrightarrow}_{0} \stackrel{CF_3}{\longrightarrow}_{1} \stackrel{C}{\longrightarrow}_{1} C$	1728 CH₂-	1	2	0	R	н	-CH ⁵ -V-C-C-E
1731 $\stackrel{H_3 \times \dots \times}{\stackrel{N}{}} CH_2^-$ 1 2 0 R H $\stackrel{-CH_2-N^-C}{} CF_3$ 1732 $\stackrel{HOCH_2}{} CH_2^-$ 1 2 0 R H $\stackrel{-CH_2-N^-C}{} CF_3$ 1733 $\stackrel{-CH_2-1}{} CH_2^-$ 1 2 0 R H $\stackrel{-CH_2-N^-C}{} CF_3$ 1734 $\stackrel{H_3CS}{} CH_2^-$ 1 2 0 R H $\stackrel{-CH_2-N^-C}{} CF_3$ 1735 $\stackrel{H_3CCH_2}{} CH_2^-$ 1 2 0 R H $\stackrel{-CH_2-N^-C}{} CF_3$	1729 H ₃ C-CH ₂ -	1	2	0	R	Ħ.	-CH ₂ -N-C-F ₃
1732 $HOCH_2 \longrightarrow CH_2 \longrightarrow 1$ 2 0 R H $-CH_2 \longrightarrow N \longrightarrow CF_3$ 1733 $\longrightarrow CH_2 \longrightarrow 1$ 2 0 R H $-CH_2 \longrightarrow N \longrightarrow CF_3$ 1734 $H_3CS \longrightarrow CH_2 \longrightarrow 1$ 2 0 R H $-CH_2 \longrightarrow N \longrightarrow C \longrightarrow F$ 1735 $H_3CCH_2 \longrightarrow CH_2 \longrightarrow 1$ 2 0 R H $-CH_2 \longrightarrow N \longrightarrow F$	1730 H ₃ C	1	2	0	R	н	-CH2-N-C-CF3
1733 $-CH_2-$ 1 2 0 R H $-CH_2-N-C F$ 1734 $H_3CS -CH_2-$ 1 2 0 R H $-CH_2-N-C F$ 1735 $H_3CCH_2 -CH_2-$ 1 2 0 R H $-CH_2-N-C F$ F	1731 H ₃ COH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1734 H_3CS — CH_2 — 1 2 0 R H $-CH_2$ — N - C — F F 1735 H_3CCH_2 — CH_2 — 1 2 0 R H $-CH_2$ — N - C — F F	1732 носн₂—Ст₂-сн₂-	1	2	0.	R	Н	-CH ₂ -N-C-CF ₃
1735 H ₃ CCH ₂ —CH ₂ —1 2 0 R H —CH ₂ —N-C—F	1733 ←CH₂-	1	2	0	R	H	$-CH_2-N-C F$
F	1734 H₃CS—(CH₂-	. 1	2.	0	, R	H	$-CH_2-N-C$ F F
1736 CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ CF_{3} $-CH_{2}^{-}$ 1 2 0 R H $-CH_{2}^{-}$ CF_{3}^{-} $-CH_{2}^{-}$ CH_{3}^{-} 1 2 0 R H $-CH_{2}^{-}$ CF_{3}^{-} $-CH_{2}^{-}$ CF_{3}^{-} $-CH_{2}^{-}$ CF_{3}^{-} $-CH_{2}^{-}$ $-CH_$							F
1737 H_3C CH_2 1 2 0 R H $-CH_2$ CF_3 CF_3 CH_3 CH_2 1 2 0 R H $-CH_2$ CH_3 CH_3 CH_3 CH_4 CH_5 C	1736 CH₂-	1	2	0	R	H	-CH ₂ -N-C-F
1738 H ₃ C — CH ₂ - 1 2 0 R H — CH ₂ -N-C-F	1737 H₃C-√CH₃-CH₂-	1	2	0	R .	Н	-CH ₂ -N-C
	1738 H ₃ C CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-F

Table	1.	1	5	9
-------	----	---	---	---

rabic	1.133						
Compd.	R ² -(CH ₂)-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1739	(H ₃ C) ₂ CH-(1	2	0	R	н	-CH ₂ -N-CF
1740	-CH ₂ -	1	2	0	R	. н	-CH2-N-C-
1741	H₃CS-()-CH₂-	1 -	2	0	R	н	-CH ₂ -N-C-
1742	H3CCH2-CH2-	1	2	0	R	Н	-CH2-N-C-
1743	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1744	CH ₃	. 1	2.	. 0	R	н	-CH ₂ -N-C-Br
1745	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1746	(H3C)2CH CH2-			0	R	Н	-CH ₂ -N-C-
1747	CH ₂ -	. 1	2	0	R	Н	$-CH_2-N-C \xrightarrow{Q} Br$ H_2N Br
1748	H₃CCH₂CH₂-	1	2	0	R	н .	$-CH_2-NC-$ H_2N
1749	CH ₃	1	2	0	R	н	$-CH_2-NC- \longrightarrow_{H_2N}^{Q}$

Table 1.160

		-				•	
Compo	$H \xrightarrow{R^1} (CH_2)_{i}$	k	m	n	chirality	R³	ー(CH ₂) _{p 1} 5 (CH ₂)q G-R ⁶
1750	CH ₂ -	1	2	0	R	н	-CH2-N-C
1751	H3CS-CH2	- 1	2	0	R	.н	-CH2-N-C
1752	H₃CCH₂——————————————————————————————————	- 1	2	0	R.	Н	-CH ₂ -N-C
1753	CH2-	1	2	0	R	· H	-CH ₂ -N-C
1754	CH ₃	1.	2	0	R	H.	-CH ₂ -N-C-OCF ₃
1755	H ₃ C ← CH ₂ − H ₃ C	1	2	0	R	н .	-CH ₂ -N-C
1756	(H ₂ C) ₂ CH-(CH ₂ -CH ₂ -	• 1 -	2	0	R	н	-CH ₂ -N-C-OCF ₃
1757	Br Br CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1758	H ₃ CO Br CH ₂ -	1	2,	0	R	Н	-CH ₂ -N-C-CF ₃
1759	H ₃ CCH ₂ -	1	2 .	0	R	Н	-CH ₂ -N-C-CF ₃ -OH ₂ -N-C-CH ₃ -OH ₂ -N-C-CH ₃ -CH ₃ -N-C-C
1760	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 8 0

Table 1.161

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³ .	—(CH ₂) p (CH ₂) q G−R ⁶
1761	H ₃ C-CH ₂ -	1	2	0	R	H	-CH2-N-C-N-C1
1762.	CH ₃ CH ₂ - CH ₃	1	2	0	· R	н	-CH ² -HCC HCC CI
1763	CH₂-	2	2	0	-	н	-CH ₂ -N-C-OCH ₂ CH ₃
1764	CH2-	2	2	0.	-	н	-CH2CH2-N-C
1765	CH ₂ -	2	2	0	-	H	(S) OCH ₂ CH ₃ -CH-N-C CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1766	CH ₂ -	· 2	2	0	-	Н	(<i>R</i>) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1767	CH2-	1	3	1	-	Н	-CH ₂ -N-C
1768	C ⊢ CH₂-				- -	H	-CH2CH2-N-C
1769	CH ₃ CH ₂ - CH ₃ CH ₂ - CH ₂ - CH ₃ CH ₃	1	2	0	R	Н .	-CH2-N-C-OCH3 CH-CHCF20
1770	CH ₃ CH ₃	1	2	0	R	н	-CH2-N-C-N-CI
1771	CH ₃ CH ₂ − CH ₃	1	2	0	R _.	Н	-сн ₂ - мс (H ₃ C) ₃ C-С+ м-С H ₃ C

Compd.	R ¹ / _P -(CH ₂) _j -	k .	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1772	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₁ -N-C H ₁ C H
1773.	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	н	H ₃ C H ₂ C H ₂ C H ₃ C
1774	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-H ₃ -CO
1775	HO————————————————————————————————————	. 1	. 2	0	R	н	$-CH_2-N-CF_3$ H_2N
1776	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
1777	CF—CH ₂ —	2 ·	2	1.	<u>-</u>	H	$-CH_2-N$ CF_3 H_2N
1778	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N^-C H_2N$
1779	CH ₂ -	2	2	1	· <u>-</u>	Н	$-CH_2-N-C - + + + + + + + + + + + + + + + + + +$
1780	Br—CH ₂ -	2	2	1	· <u>-</u>	н .	$-CH_{2}-NC-$ $H_{2}N$
1781	HO	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
1782	H ₂ C=CH-CH ₂ -	. 2	2	1		н	$-CH_2 - N C - CF_3$ $H_2 N$

Table 1.163

Compd.	R ¹ (CH ₂) _j -	k	m ·	n	chirality	. B3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
No.	R ² -					- <u> </u>	
1783	NC-CH2-	2	2	1	-	H	-CH ₂ -N-C-
1784.	CH ₂ -	2 .	2	1	<u>.</u>	н	-CH ₂ -N-C-\(\frac{1}{2}\)
1785	-CH ₂ (CH ₂) ₂ —————————————————————————————————	2	2	1	-	. н	$-CH_{2}-N-C \xrightarrow{Q} CF_{3}$ $+H_{2}N$
1786	-CH ₂ -	2	2	1	·	н	$-CH_2-N-CH_2-N-CF_3$ H_2N
1787	CH ₃ (CH ₂) ₂ —————————————————————————————————	- 1	2	0	R	H,	$-CH_{2}-N+C$ $H_{2}N$
1788	CH ₃	2	2	1	<u>-</u>	H	$-CH_2-N-C \xrightarrow{Q} CF_3$ H_2N
1789	H ₃ CO-CH ₂ -	, 2	2	1	-	, H	$-CH_2-N-C \xrightarrow{Q} CF_3$ H_2N
1790	СН ₂ - СН ₂ 1	1	2	0	· · S	Н	-CH ₂ -N-C
1791	C	1	2	0	S	Н	$-CH_{2}-N+C$ $H_{2}N$ OCF_{3} $H_{2}N$
1792	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
1793	CI CH2-	2	2	1	-	Н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

rable	1.104						
Compd.	R ² (CH ₂);	k	m	n c	chirality	⁻ A³	-(CH ₂) p G -R ⁶
1794	H ₃ C-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1795	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1796	Br——CH ₂ -	2	2	1 .	-	H	-CH ₂ -N-C-F
17 <u>9</u> 7	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1798	H ₃ CO-CH ₂ -	2	2	1	2	H .	$-CH_2-N-C-$ H_2N
1799	H ₂ C=C H-CH ₂ -	2	2	1		Н	$-CH_2-N$ H_2N H_2N
1800	NC-⟨CH ₂ -	2	2	1	-	н .	$-CH_2-N$ H_2N
1801	CH₂-	. 2	2	1	-	Н	$-CH_2-N-C$ H_2N
1802	HO→CH ₂ − H ₃ CCH ₂ O	1	2	0	R	H	$-CH_2-N+C H_2N$
1803	HO-√	1	·2	0	R .	н	H_2N H_2N CF_3 $-CH_2-N$ H_2N
1804	H ₃ C (CH ₂) ₂ —CH ₂ -	2	2	1 .	- -	Н	-CH ₂ -N-C

Table 1.165

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1805	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H₃CO-(CH₂-	1	2	0	R	н	- CH ₂ -N-C-
1807	H ₃ CQ HO—CH ₂ -	1	2	0	R	н _	-CH2-N-C-SCF3
1808	HQ	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HOCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-CH₂-	1	. 2	0	R	Н	-CH ₂ -N-C-SCF ₃
1813	H₃CCH₂—CH₂−	1	2,	0	R	Н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $+C$
1815	H ₃ C ← CH ₂ −	1	2	0	R	H .	- CH ₂ -N-C-SCF ₃

• - -

						•	
Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	·R³	-(CH ₂) p (CH ₂) q G-R ⁶
1816	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н.	-CH2-N-C-SCF3
1817.	(CH ₃) ₃ C-CH ₂ -	1	2	0	· R	н	-CH ₂ -N-C-SCF ₃
1818	Вг—СН₂-	1	. 2	0	R _.	н	-CH2-N-C-
1819	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н.	-CH ₂ -N-C-OCHF ₂
1821	HQ H ₃ CO—CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-OCHF ₂
1822	HO-{CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1823	CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1824	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1825	H ₃ CS-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1826	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂ OCHF ₂ OCHF ₂ OCHF ₂

186

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1827	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-OCHF ₂
1828	H ₃ C-√CH ₂ -	1	2 .	0	R	Н	-CH ₂ -N-C-OCHF ₂
1829	H ₃ C CH ₂ -	1	. 2	0	R	H	-CH ₂ -N-C
1830	(CH ₃) ₂ C+	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1831	Вг—⟨СН ₂	1	2	0	· · R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1832	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1833	H ₃ CQ HO—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ CH ₂ -	1	2	0	R	H'	$-CH_2-N-C$ $C(CH_3)_3$
1835	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1836	-CH ₂ -	. 1	2	. 0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-(CH ₃) ₃

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ¹
1838	H₃CS-(1	2	0	R .	Н	-CH3-N-C-C(CH3)3
1839	н ₃ ССН ₂ ————————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C-C(CH ₃) ₃
1840	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
	CH ₃ CH ₂ −					Н	$-CH_2-N\cdot C C(CH_3)_3$
1842	H_3C CH_3 CH_2	1 .	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1844	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	H	$-CH_2-N-C- \bigcirc C(CH_3)_3$
1845	H ₃ CCH ₂ ————————————————————————————————————	1	2	. 0	R	Н	-CH2-N-C
1846	H_3C CH_3 CH_2	1	. 2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+C$ $-CH_{2}-N-C$
1847	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH2-N-C

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1849	CH ₂ -	1	2	0	R	H	- CH ₂ -N-C
1850	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1851	CH ₃ C+2-	1	2	0	R .	Н	-CH ₂ -N-C-
1852	CH ₂ -	1	2	0	R	H	-CH2-NC-
1853	H ₃ CO HO———————————————————————————————————	1	2	0	R	. н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R į	н	-CH ₂ -N-C-
1855	H ₃ CCH ₂ —CH ₂ -	1.	2	0	R	н	- CH ₂ -N-C-
1856	CH ₃ H ₃ C−CH ₂ −	1	2	0	R	н Н	-CH ₂ -N-C-
1857	CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1858 ⁻	Br—CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$
1859	H ₃ CO	.1	.2	0	R	н	$-CH_2-N+C$ H_2N H_2N

Table 1.170

Compd No.	R ² (CH ₂),-	k	m	'n	chirality	R³ .	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1861	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1863	CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1864	H ₃ CS—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1865	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1866	H_3 C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1867	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1868	(CH ₃) ₃ C—CH ₂ -	1	2	O	R	н	$-CH_2-N-C$ H_2N H_2N
1869	B-CH ₂ -	1	2	0	R		-CH ₂ -N-C-
1870	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-NC - $ H_2N

Compd.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1871	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ -	1	2	0	·R	Н	$-CH_2-N-C$ H_2N
1873	HO-€	1	2	0	R	Н .	$-CH_2-NC - H$ H_2N
1874	CH ₂ -	1	2	O	R	Н	$-CH_2-N$ C H_2N
1875	CH ₂ -	1	2	.0	R	Н	$-CH_2-N-C$ H_2N
1876	H ₃ CS-CH ₂ -	1 .	2	. 0	R	H	$-CH_2-N-C$ H_2N
1877	H₃CCH₂—CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N
1878	CH ₂ -	. 1	2	0	R	н	$-CH_2-N-C$ H_2N
1879	H_3 C C H_2 C H_3 C	1	2	0	R ,	н	$-CH_2-N$ H_2N
	(CH ₃) ₂ C H- CH ₂ -					-H	$-CH_2-N-C$ H_2N
1881	(CH ₃) ₃ C	1 .	2	0	R	. н	-CH ₂ -N-C

Table 1.172

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	, R³	-(CH ₂) p (CH ₂) q G-R ⁶
1882	B	1	2	0	R ·	н	-CH ₂ -N-C
1883	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C-NO2
1884	H ₃ CQ HO—CH ₂ −	1	2	. 0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1885	HQ H ₃ CO—CH ₂ -	1	2	0	R	н́.	$-CH_2-N-C$ H_2N NO_2
1886	HO-CH ₂ -	1	2	0	R.	н	$-CH_2-N-C$ H_2N NO_2
1887	O CH₂-	1 .	2	0	R	Н	$-CH_2-N-C$ H_2N NO_2
1888	CH ₂ -	1	2	0 ·	R	Н	$-CH_2-N-C$ H_2N NO_2
1889	H ₃ CS—CH ₂ -	1	2	0	: R	н	$-CH_2-N-C$ H_2N
1890	H ₃ CCH ₂ —CH ₂ -	. 1	2	0	R	н.	$-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $+I_{2}N$ NO_{2} $+I_{2}N$ NO_{2}
1891	CH ₂ -	1	2	0	, R	н .	-CH ₂ -N-C-NO ₂
1892	CH ₃ CH ₂ -	.1	2	0	R	Н	-CH ₂ -N-C-NO ₂

Compd.	R (CH ₂)j-	k	m	C	chirality	H3	-(СН ₂) _{р 5} (СН ₂) _q G-R ⁶
1893	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1894	(CH ₃) ₂ CH————————————————————————————————————	, 1	2	0	R	Н	$-CH_2-N-C \xrightarrow{NO_2}$
1895	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{H}_{H_2N}^{NO_2}$
1896	HQ H ₃ CO—CH ₂ -	1	2	0	R .	H	-CH ₂ -N-C
1897	H ₃ CS-CH ₂ -	1	2	0	. R .	н .	$-CH_2-N-C$ H_2N OCF_3
1898	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1899	(CH ₃) ₂ CH————————————————————————————————————	1	2	. 0	R	Н	$-CH_{2}-N$ $H_{2}N$ OCF_{3}
1900	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ $H_2 N$ $H_2 N$ OCF_3
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R ·	н	$-CH_2-N-C$ H_2N OCF_3
1902	O—CH₂-	1	2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$
1903	(CH ₃)₂CH-CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
							·

							•
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³ _.	-(CH ₂) _p (CH ₂) _q G-R ⁶
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N C \longrightarrow OCF_3$
1905	CI CH ₂ -	1	2	0	R	. н	$-CH_2-N-C \longrightarrow OCF_3$ H_2N
1906	CH ₂ -	1	2	0	R	н.	$-CH_2-N+C \longrightarrow OCF_3$ H_2N
1907	HO-CH ₂ -	1	2	0	R	Ĥ.	$-CH_2-N+C$ H_2N
1908	H ₃ CO-CH ₂ -	1	. 2	0	R	н	$-CH_2-N-C$ H_2 H_2 N
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 N
1910	BrCH ₂ -	2	2	1	· -	Н	$-CH_2-N$ C H_2 N
1911	CI CH₂−	2	2	1	- -	Н	$-CH_2-N$ C H_2 N
1912			2			Н	$-CH_{2}-N$ $H_{2}N$ OCF_{3}
1913	H ₃ C-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1914	H ₃ C-CH ₂ -	2	2	1	•	Ĥ	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+I_{2}N$ $-CH_{2}-N\cdot C$ $+I_{2}N$

Т	а	h	le	1	1	7	5

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(СН ₂) _{р +} (СН ₂) _q G-R ⁶
1915	H ₃ CC H ₂ Q HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N$ C H_2N O
1916	H ₃ C HO————————————————————————————————————	1	2	0	R	H	$-CH_2-N-C$ H_2N OCF_3
.1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1		H	$-CH_{2}-N-C$ $H_{2}N$ OCF_{3} $H_{2}N$
1918	H ₃ C HO—CH ₂ -	2	2.	1 .	-	H, '	$-CH_2-N$ C H_2N C
1919	NH ₂ CH ₂ -	2	2	1	-	Н	$-CH_2-N+C$ H_2N
1920	CH2-	2	2	1	-	H	$-CH_2-N-C$ H_2N F
1921	CH2-	1.	2	0	R	н	$-CH_2-N+C$ H_2N OCF_3
1922	CH2-	2	2	, 1	-	н	$-CH_2-N$ H_2 H_2 N OCF_3
1923	B	2	2	1 .	-	Ĥ	-CH ₂ -N-C-SCF ₃
1924	H₃CO	2	2	1	· -	н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ (C	H ₂) _i —	k	m	n	chirality	˳	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1926		-CH₂ -	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1927	но-{	-CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928		-CH ₂ -	2	2	1	-	Н	-CH2-N-C-SCF3
1929		-CH₂-	2	2	1	-	· н	-CH ₂ -N-C-SCF ₃
1930	H₃CS-	>− СН ₂ −	2	2	1	· <u>-</u>	H	-CH ₂ -N-C-SCF ₃
1931	H³CĆH⁵—	CH2-	2	2	1	-	Н	$-CH_2-N-C \longrightarrow SCF_3$
1932		-CH₂-	2	2	1	- ,	Н	-CH ₂ -N-C-SCF ₃
	H₃ C-					-	. H	-CH ₂ -N-C-SCF ₃
1934	H ₃ C	CH₃ ⊢CH₂−	2	2	1	- -	H	-CH ₂ -N-C-SCF ₃
						-	Н	-CH ₂ -N-C-SCF ₃
1936	н _з с-	CH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _p
1937	(CH ₃) ₂ CH————————————————————————————————————	. 2 [·]	2	1	-	н	-CH2-N-C-SCF3
1938	8 - CH ₂ -	2	2	1		н	-CH2-N-C- Br CH3
1939	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH3-N-C-CH3
1940	FCH ₂ -	2	2	1	-	н	$-CH_2-NC$ $\xrightarrow{\text{Br}}$ CH_3
1941	F CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1942	HOCH₂-	2	2 .	1	· •	н	$-CH_2-N-C$ \longrightarrow CH_3
1943	CH ₂ -	2	2	1		H	$-CH_2-N-C Br$ CH_3
1944	CH ₂ -	2	2	1	- ,	н	-CH ₂ -N-C
1945	H ₃ CS-CH ₂ -	2	2	1	· -	Н	-CH ₂ -N-C
1946	H ₃ CCH ₂	2	2	1	-	H	-CH2-N-C
1947	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

							
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	۲³	ー(СН ₂) р (СН ₂) q G-R ⁶
1948	CH ₃ H ₃ C-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CH ₃
1949	H ₃ C CH ₃	2	2	1	-	Н	$-CH_2-N-C$ Br CH_3
1950	C ₂ N—CH ₂ -	2	2	1	<u>-</u>	Н	-CH2-N-C
1951	H ₃ C-CH ₂ -	2	2	1	-, -	Н	-CH ₂ -P-C- CH ₃
1952	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1953	H₃CO-(2	2	1	-	H	-CH ₂ -N-C
1954	F—CH ₂ -	2	2	1	- ·	н	-CH ₂ -N-C
1.955	F—CH ₂ —	2	_ 2	1	-	н	CH ₂ -N-C
1956	HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C-F
1957	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1958	-CH ₂ -	2	2	1	- .	Н	CH ₂ -N-C Br H

Compd.	R ¹ (CH ₂) _j -	k	ń	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1959	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C-F
1960	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	- .	н	-CH ₂ -N-C
1961	O-CH ₂ -	2	. 2	1	-	Н	-CH2-N-C
1962	CH ₃	2	2	1	-	н	-CH ₂ -N-C
1963	H_3C CH_3 CH_2 CH_2	2	2	1	** <u>-</u>	. Н	-CH ₂ -N-C-SF
1964	O ₂ N-CH ₂ -	2	2	1	 -	Н	
1965	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1966	(CH ₃) ₂ C H- CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1967	BrCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1968	H ₃ CO-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	-		-CH ₂ -N-C
					···		

Compo No.	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	k	m	n	chirality	H3	$-(CH_2)_{p} + (CH_2)_q G - R^6$
1970	CH₂-	. 2	2	1	-	Н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1972	H ₃ CS-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1973	H3CCH2-CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1974	H ₃ C — CH ₂ — CH ₂ —	2	2	. 1	· <u>-</u>	н	$-CH_2-N-C$ H_2N
1975 1	O ₂ N-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1976	H ₃ C-CH ₂ -	2	2	1	· <u>-</u>	Н	-CH ₂ -N-C
1977	NC-CH ₂ -	2	2	1	. -	Н	-CH ₂ -N-C
1978	(CH ₃) ₂ CH————————————————————————————————————	2	2	1		н·	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	Н	$-CH_2-NC$ H_2N
1980	CH ₂ -	2	2	1 .	-	Н	$-CH_2-NC$ H_2N H_2N

Table 1.181

Compd.	R ¹ /(CH ₂) _i -	k	m	n `	chirality	Ŗ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1981	O ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C-FF
1982	NC-CH₂-	2	2	1	-	н .	-CH ₂ -N-C
1983	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
1984	Br-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1985	H ₃ CO-CH ₂ -	2	2	1	-	H ,	- CH ₂ -N-C
1986	HO-√CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C
1987	CH ₂ -	2	2	1.	-	H	$-CH_2-N-C$ H_2N
1988	CH ₂ -	2	2 -	1	-	н	-CH ₂ -N-C-
1989	H₃CS—CH₂-	2	2	1 .	-	н	-CH ₂ -N-C
1990	н ₃ ссн ₂ ————сн ₂ - _.	2	2	1	-	н	H_2N $-CH_2-N$ H_2N
1991	CH ₂ -	2	2	1	-	Н	-CH2-N-C-

Table 1.182

Compd.	R^{1} (CH_{2})	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1992	CH ₃	2	2	1	-	Н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1994	H ₃ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1995	NC-CH2-	2	2	1	-	Н	-CH ₂ -N-C-
1996	(CH ₃) ₂ CH− € −CH ₂ −	2	2	1	-	H	$-CH_2-N-C$ H_2 H_2 N
1997	H_3C CH_3 CH_2 CH_2	2 .	2	1	-	н	$-CH_2-N-C$ H_2N
1998	B	2	2	1		· H.	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	. -	н .	-CH2-N-C-
2000	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
	HO-CH ₂ -					Н	-CH2-N-C-
2002	CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n .	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2003	CH₂-	2	2	1	-	Н	-CH2-N-C-CI
2004	H₃CS-⟨	2	2	1	' .	. н	-CH2-N-C-C
2005	H ₂ CCH ₂ —CH ₂ -	. 2	2	1	-	Н	-CH2-N-C-C
2006	H ₃ C-CH ₂ -	. 2	2	1 .	-	H ·	-CH2-N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2008	H ₃ C-CH ₂ -	2	2	1	- .	Н .	-CH2-N-C-
2009	NC-CH ₂ -	2	2	1	- 	Н ,	-CH2-N-C-
	(CH ₃) ₂ CH-CH ₂ -				-	H	-CH2-N-C-
2011	H_3C CH_3 CH_2 CH_2	2	2	1		н	-CH2-N-C-
2012	Br-CH ₂ -	2	2	1	- ·	н	-CH2-N-C- H
2013	H₃CO-{CH₂-	2	2	1 -	-	н	-CH2-N-C- Br Cl

Table 1.184

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2014	HO-CH ₂ -	2	2	1	·_	Н	-CH ₂ -N-C
2015	CH ₂ -	2	2	1	-	, H	-CH ₂ -N-C-
2016	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2017	H₃CS—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CI
2018	H ₃ CCH ₂ ————————————————————————————————————	2	2	- 1	-	Н	-CH ₂ -N-C-Br
2019	CH₂-	2	2	1	-	Н	-CH ₂ -N-C-Br
2020	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2021	02 N-CH2-	2	2	1	· · · · · · · · · · · · · · · · · · ·	Н	-CH ₂ -N-C-Br
2022	H ₃ C-CH ₂ -	2	2	1		Н	-CH ₂ -N-C
2023	NC-CH₂-	2	2	1	-	Н	-CH ₂ -N-C
2024	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-Br

,

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _p
2025	H ₃ C CH ₂ -	2	2	1	-	H	-CH2-N-C-BL
2026	F—CH ₂ -	2	2	. 1	-	` н	-CH ₂ -N-C
2027	BCH ₂ -	2	2 -	1	-	н .	$-CH_2-N-C$ H_2N H_2N
2028	H ₃ CO-CH ₂ -	2	2	1	- · · · · · · · · · · · · · · · · · · ·	н	$-CH_2-NC \xrightarrow{\text{Br}}$
2029	HO	2	2	1	- :	н.	$-CH_2-NC \xrightarrow{O} Br$ H_2N
2030	-CH ₂ -	2	2	. 1	-	н	$-\dot{CH_2}$ $-\dot{N}$ $-\dot{C}$ $+\dot{Q}$ $+Q$
2031	CH ₂ -	2	2	1	+ . -	н	$-CH_2-NC$ H_2N H_2N
2032	CH ₂ -	2	2	1	-	н	$-CH_2-NC \longrightarrow Br$ H_2N
	CH ₃					Н	-CH ₂ -N-C-Br
2034	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2035	H ₃ C-CH ₂ -	2	2 ·	1	-		-CH ₂ -N-C
							

2 0 5

Compd. No.	R^{1} $(CH_{2})^{-}$	k	m	n c	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-CH₂-			•		н	-CH ₂ -N-C
2037	CH ₃ H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2038	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2 .	1		· ; Н	-CH ₂ -N-CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-OH
2041	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CH-
2042	H ₃ C-CH ₂ -	1 ,	2	0	R	H ,	$-CH_2-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
2043	H ₃ C-CH ₂ -	1.	2	0	R.	Н	-CH ₂ -N-C-CH ₂ CH ₃ CH ₃
2044	CH ₃ CH ₂ - CH ₃	1	2	0 .	R	Н	-CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R.	н	-CH2-N-C-N-C1
2046 .	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-N-CH ₃ -CH ₂ -N-C-N-CH ₃ -CH ₂ -N-C-N-CH ₃

		4					
Compd.	R ¹ (CH ₂),-					R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
2047	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	- CH;- N, C-, CH, CH,
2048	CH ₃ N CH ₂ -	1	2 ,	0	R	Н	-CH ₂ -N-C
2049	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-CH3
2050	H ₃ C S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2051	H ₃ C N CH ₂ -	1	. 2	0	R	Н	-CH ₂ -N-C-CF ₃
2052	Br CH ₂ -OCH ₂ CH ₃	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2053	H ₃ CQ CH ₂ O-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
2054	H ₃ CO-CH ₂ -	2	2	1	. -	н	-CH ₂ -N-C
2055	H ₃ CQ CH ₂ -	2	2	1	.	Н	$-CH_2-N-C$ $+$ H_2N $+$ H_2N
2056	Br CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-F H ₂ N
2057	Br H₃CO—CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.188

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2058	H ₃ CQ OCH ₃	2	2	1	-	Н	-CH ₂ -N-C
2059	CH2-			.1	-	н	-CH ₂ -N-C-F H ₂ N
2060	H_3CO CH_2 OCH_3	2	2	1	-	н	$-CH_2-N-C$ H_2N
2061	F_CH ₃	2	2	1	-	H	$-CH_2-N-C-$ H_2N
2062	H ₃ CO-CH ₂ -	2	2	1	-	Ħ	$-CH_2-N-C-$ H_2N
2063	H_3CO H_3CO CH_2-	2	2	1	-	H .	$-CH_2-N-C$ H_2N
2064	Br CH ₂ -	2.	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$
2065	H₃CCH₂Q H₃CCH₂O———————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2066	OC H ₂ -CH ₂ -					H	$-CH_2-N-C$ H_2N F
2067	(H5C)2CHCH2-CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N F
2068	CI F—CH ₂ —	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$

Table 1.189

Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- GR^6$
2069	H ₃ C, H ₃ CO————————————————————————————————————	2	2	1	-	н .	$-CH_2-N-C$ H_2N F
- 2070	Br CH ₂ -OCH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N F H_2N
2071	H_3 CO \longrightarrow CH ₂ - OCH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2072	(H ₃ C) ₂ CHO-√-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
2073	CH ₂ Q	2	2	1		Н	$-CH_2-N-C$ H_2N
2074	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2075	H ₃ CQ - CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2076	F—CH ₂ -	2	2	1	- -	Н	$-CH_2-N-C$ H_2N F H_2N
2077	Ct CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N F
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	- ,	Н	$-CH_2-N-C$ H_2N
2079	CH ₂ Q H ₃ CO————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C-F$ H_2N

Table 1.190

lable	1.130						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2080	CH ₂ Q H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2081	CICH ₂	2	2	1		н	-CH2-N-C-F
2082	OH H ₃ CO-CH ₂ -	2	2 2	1	-	. Н	-CH2-N-C-F
2083	H ₃ CQ HO———CH ₂ —	. 1	2	0	R	Н	$-CH_2-N-C H_2N$ H_2N
2084	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н .	$-CH_2-N-C H_2N$
2085	OH -CH ₂ -	1	2	0	R	Н .	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2086	HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2087	(H ₃ C) ₂ N——CH ₂ —	1	2	, 0	R	н	-CH ₂ -N-C- H ₂ N
2088	(H ₃ CCH ₂) ₂ N-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ CF_{3}
2089	F CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N-C-
2090	О−О−СН-	. 1	2	0	R	н Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

Table 1.191

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2091	C	2	2	1		Н	OCH ₂ CH ₃ -CH-N-C
. 2092	С├-СН2-	2	2	1	-	Н	-CH-NC-NH
2093	CH2-	2	2	1	-	`н	$(R) \qquad 0 \qquad OCH_2CH_3$ $-CH+N-C- \qquad H$ $-CH_2CH_2SCH_3$
2094	C├─ \ CH ₂ -	Ż	2	1	. , -	Н	(A O O CH ₂ CH ₃ -CH-NC CH ₂ CH ₃
. 2095	C	2	2	1	-	H , ´	(F) 0 -CH-N-C- H C(CH ₃) ₃
2096	CH2−	2	2	1	-	Н	(A O O CH ₂ CH ₃ -CH-N-C
2097	C├─ \ CH ₂ -	2	2	1	-	Н	(R) II -CH-N-C- -CH ₂ CH ₂ CH ₃
2098	CHCH2_	2	2	1	-	H	CH ₂ CH ₃
	CH ₂ -						
2100	CH ₂ -	2	2	1	-	H	CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
	CH-2-						(A II OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ OCH ₂ CH ₃

Table 1.192

labie	1.192						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2102	ССН2-	2	2	1	-	Н	CH ₂ CH ₂ -C-OCH ₂ -
2103	CH-2-	2	2	1	-	Н	H ₃ C-CHOCH ₂ -
2104	CHCH ₂ -	2	2	1		H	() OCH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ CH ₂ CH ₂ -C-OCH ₃ O R
2105	H ₃ CQ OH CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow F$ H_2N
.2106	H ₃ C OH CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2107	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2108	CH ₃	2	2	1	-	$H_{\mathbb{R}^2}$	$-CH_2-N-C$ H_2N
2109	Br O CH ₂ -	*	2	1	- ,.	Н	$-CH_2-N-C-$ H_2N
2110 .	H ₃ C CH ₂ O CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2111	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2112	H ₃ CO CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$

Table 1.193

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2114	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
2115	С├──СН2-	2	2	1	-	н.	(A) OCH ₂ CH ₃ -CH+N-C- H CH(CH ₃) ₂
2116	C ← CH ₂ -	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CH+N-C
2117	CH ₂ −	. 2	. 2	1	<u>.</u>	H.	CHNC-NH
2118	HQ HO—CH ₂ —	1	2	0	R	H	$-CH_2-N-C-$ H_2N
2119	OH HO—CH ₂ —	1	2	. 0	R	Н	-CH ₂ -N-C
2120	Br—€F-CH ₂ -					Н	$-CH_2-N-C-$ H_2N
2121	OC H ₃	1	2	0	R	Н	-CH ₂ -N-CF ₃
	F CH2−					Н	$-CH_2-N-C \xrightarrow{CF_3}$ H_2N
2123	CH ₂ -NO ₂	1	2	0	R	. н	-CH ₂ -N-C

Table 1.194

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2124	O ₂ N CH ₂ -	1	2	0	R	H	$-CH_2-N-C-$ $H_2 N$
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R .	н	$-CH_2-N-C H_2N$
2126	O ₂ N H ₃ C — CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
2127	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2128	H ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2129	H ₂ N H ₃ C — CH ₂ -	1	2	0	· R	н	$-CH_2-N-C \longrightarrow H_2N$
2130	O N CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2131	CH ₃ CH ₂ − CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N F
2132	H ₂ N CI————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2133	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	$-CH_2-N-C$ $+L_2N$ $+L_2N$

Table 1.195

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
2135	(H ₃ C) ₂ N CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2136	(H ₃ C) ₂ N .	1	2	0	R ·	н	CH ₂ -N-C- H ₂ N
2137	CH ₃	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$
.2138	CH ₃	1	2	0	R ·	H	$-CH_2-N-C$ H_2N
2139	H ₃ C, Cl N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
2140	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2142	H ₂ N CH ₂ -			1	-	Н	$-CH_2-N-C$ H_2N F H_2N
2143	HN-C-CH3	2	2	1	-	H.	$-CH_2-N-C$ H_2 H_2 H_2 N
2144	H ₂ N H ₃ CO—CH ₂ -	2	2	1	-	H	$-CH_{2}-N-C-$ $H_{2}N$
2145	H ₂ N HO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.196

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
2146	CH ₂ -NH ₂	2	2	1	-	н ,	$-CH_2-N-C$ H_2N CF_3
2147	Н ₃ С-С-NH Н ₃ СО СН ₂ -	2	2	1	- .	н	$-CH_2-N-C$ H_2 H_2 H_2
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N
2149	O ₂ N HO—CH ₂ -	1	2	0	R	H	$-CH_2-N$ CF_3 H_2N
2150	H ₃ C-C-NH CI-CH ₂ -	1	2	0	Ŗ	H	$-CH_2-N$ CF_3 H_2N
2151	HW.C-CH3	1	2	0	R .	H	$-CH_2-N+C$ H_2N CF_3
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	. Н	$-CH_2-NC H_2N$ CF_3
	H ₃ C-C-NH H ₃ C-C-CH ₂ -	:* 1	2	0	R	H	$-CH_2-N-C$ H_2N CF_3
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -				• -	Н	$-CH_{2}-N-C$ $H_{2}N$ CF_{3} CF_{3}
2155	H ₂ C-C−NH HO—CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
2156	HNC-CH ²	2	2	1	-	Н	$-CH_{2}-N+C-$ $-CH_$

Table 1.197

Compd.	R (CH ₂)-	k	m	U	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2157	CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2158	H ₃ C-NH HO—————CH ₂ -	1	2	0	R	Н	$-CH_{2}-NCH_{2}$ $+CH_{2}N$ $+CF_{3}$
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-F H ₂ N
2160	H ₃ C-NH HO———————————————————————————————————	, 2	2	1	-	Н	-CH ₂ -N-C-F
2161	H ₃ C-NH CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2.	2	1	- -	Н	$-CH_2-N-C$ H_2N
2163	H ₃ C-NH HO—CH ₂ -	2	2	1	· .	Н .	-CH ₂ -N-C
2164	CH ₃ CH ₂ -	1	2	0	R	` Н	$-CH_2-N-C$ H_2N
2165	HN CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
2166		1	2	0	R	Н	$-CH_{2}-N-C$
2167	H N CH ₂ -	1	2	0	R	H	-CH ₂ -N-C

2 1 7

Table 1.198

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{1} (CH_2)_{q} - G - R^6$
2168	H ₃ C CH ₂ H ₃ C CH ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2169	H_3C CH_3 CH_3	1	2	0	R	Н	$-CH_2-NC- CF_3$ H_2N
2170	Çı	1	2	0	R	. Н	$-CH_2-NC-$ H_2N
2171	H ₃ C _T N _C H ₂ -	. 1	2	0	R	Н	$-CH_2-NC$ H_2N CF_3
2172	F ₃ C CH ₂ - CH ₂ -	1.	.2	0	R	н	-CH ₂ -N-C-CF ₃
2173	S—CH ₂ —CH ₃	1	2	0	R	н .	$-CH_2-NC$ H_2N CF_3
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	H	$-CH_2-N$ CF_3 H_2N
2175	OCH ₃			0	R	 Н	$-CH_{2}-N-C$ $H_{2}N$
2176	H ₃ C N - CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2177	H_3 C OH $CH_2 CH_2OH$	1	2	0	R	н .	$-CH_2-N-C-$ H_2N
2178	H ₃ CO-C + CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$

2 1 8

Table 1.199

					·_		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2179	H ₃ C-Ç-N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2180	C-(CH ₂) ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2N
2181	H ₃ CQ — CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2N H_2N
2182	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-N-G-$ H_2N
2183	\$-N N-CH ₂ -	1	2	0	R	• Н	$-CH_2-N+C$ H_2N CF_3
2184	\$-N_CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N
2185	S-N N=CH ₂ -	2	2	1	- .	Н	$-CH_2-NC H_2N$
2186	H N N CH ₂ -		2			н :	$-CH_2-NC$ H_2N CF_3
2187	H ₂ N HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
	CH₂-					Н	-CH ₂ -N-C-3
2189	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.200

Laute	.200						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2.190	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
2191	CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CF ₃
2192	S H CH ₂ -	2	2	1	 -	н	$-CH_2-N-CF_3$ H_2N
2193	CH ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2194	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	H	$-CH_2-N-C \longrightarrow H_2N$
2195	H ₂ N CH ₂ -	. 2	2	1	-	Н	$-CH_2-N-C$ H_2N CF_3
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	[°] R	Н	$-CH_2-N-C$ H_2N CF_3
2198	H ₃ C-NH CH ₂ -	1	2	0	R	Н	$-CH_2-NC H_2N$ CF_3
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N
2200	H ₃ C-NH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-

Ta	h	ما	1	2	Λ	1
ıa	D	ıe		. ∠	U	-1

2202 TH 2 0 R H -CH ₂ -N-CH ₂	P C H ₂ N
2202 TH 2 0 R H -CH ₂ -N-CH ₂	H ₂ N
	_ CFA
·	C H ₂ N
2203 CH ₂ - 2 2 1 - H -CH ₂ -N-C	C F H ₂ N
	O CF ₃
2205 CH_2 2 2 1 - H $-CH_2-N-CH_$	C F
2206 $_{HO} \leftarrow _{CH_{2}-}^{CH_{3}}$ 2 2 1 - $_{H}$ $_{-CH_{2}-}^{CH_{2}-}$ $_{H}$	CF ₃
	H ₂ N
2208 CH ₂ - 2 2 1 - H -CH ₂ -NO	CF ₃ CH ₂ N
2209 CH ₂ - 2 2 1 - H -CH ₂ -N-CH ₂ - N-CH ₂ -N-CH ₂ - N-CH ₂ -N-CH ₂	C———F H ₂ N
2210 CH ₂ -CH ₂ - 1 2 0 R H -CH ₂ -N-G	O CF ₃ H ₂ N
2210 $\frac{CH_2-}{H}$ 1 2 0 R H $-CH_2-N$ 2211 $\frac{CH_2-}{H}$ 2 2 1 - H $-CH_2-N$	OCF ₃

Table 1.202

Compd.	R^1 R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2212	CH ₂ -	2	2	. 1	-	Н	$-CH_2-N$ C H_2N
2213	CH_CH ₂ -	2	2	1	- -	H	$-CH_2-N$ H_2N CF_3
2214 .	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N CF_3
2215	H ₃ C-HN CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_{2}-N$ $H_{2}N$ CF_{3}
2216	H_3CCH_2 H_3 CH_2 H_3	1	2	0	R	H	$-CH_2-N$ CF_3 H_2N
2217	H₃CO-Ç H₃C-√—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
2218	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2219	CH_CH ₂ -			-		Н	-CH2-H K C F 3
2220	CH2-	1	2	0	R	н	-CH ₂ -N-C-N-CH(CH ₃) ₂
2221	CH_CH ₂ -	1	2	0	R	Н	-CH2-N-C-N-CH3
2222	H_3C CO_2CH_3 CH_2 CH_3	1	2	0	R	Н	$-CH_{2}-N+CH_{3}$ $-CH_{2}-N+CH_{3}$ $-CH_{2}-N+CH_{3}$ $-CH_{2}-N+CH_{3}$

Table 1.203

	.200						
Compd.	R^1 R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2223	C├─ ─ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
2224	CH2-	1	2	0	R	H	-CH2-N-C-N
2225	C├─ ॔ CH₂─	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-CF ₃
2226	H_3C CH_2 CH_3	1	2	0	R	H .	$-CH_2-N+C-$ H_2N
2227	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-(CH ₃) ₂
2228	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2229	CH₂-	1	2	0	R	H	$-CH_2-N-C$ H_2N OCF_3 H_2N
2230	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2231	H_3 CO— CH_2	1	, 2	0	R	H _.	$-CH_2-N-C$ H_2N OCF_3
2232	H ₃ C H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2233	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$

Table 1.204

Table	1.204						
Compd. No.	R^{1} R^{2} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2234	CH ₂ - CH ₃ N	1	2	0	R	Н	$-CH_2-NCH_2$
2235	CH ₂ -	1	2	0	R	H	$-CH_{2}-NC \xrightarrow{OCF_{3}}$ $+H_{2}N$
2236	CH ₂ -	1	2	0	. R	, н	$-CH_2-N-C-$ H_2N
2237	CH ₂ -	1	2 .	0	R	Н	$-CH_2-N+C-$ H_2N
2238	H ₃ CO CH ₂ -N H	1	2	0	R	Н .	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
2239	CH₂ [−] CH₃	1	2	0	R	H	$-CH_{2}-N+C$ $H_{2}N$ $H_{2}N$
2240	CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2
2241	H ₃ C N H	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
2242	CH ₂ -	_. 1	2	0	R	Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C$
2243	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
2244	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C$ $H_{2}N$

2 2 3

lable	1.203						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q}$
2245	H ₃ C N CH ₂	1	2	0	R	Н	$-CH_2-N+C H_2N$
2246	H ₃ CCH ₂ H CH ₂ -	1	2	0	R	Ĥ	$-CH_2-N$ CF_3 H_2N
2247	(H ₃ C) ₂ CH N CH ₂	1	2'	0	R .	Н	$-CH_2-N+C-$ H_2N
2248	H ₂ N CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N H_2N
2249	H_2N H_3CO CH_2	1 -	2	0	R ·	н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
2250	H ₂ N HO-CH ₂ -	1	2 ,	0	R	Н	$-CH_{2}-N$ $+ H_{2}N$ $+ H_{2}N$
2251	H_2N H_3C CH_2	1	2	0	R	Н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
2252	CH ₂ -	2	2	. 1	- -	H	$-CH_{2}-N+C-$ $H_{2}N$ CF_{3} $H_{2}N$
2253	F CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ $H_2 N$ $H_2 N$
2254	H ₃ CQ CH ₂ -					н	$-CH_2-N+C-$ H_2N
2255	H ₃ C N H	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
						-	

Table 1.206

Tubic .	.200						
Compd.	R^1 (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2256	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2257	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2258	CHCH ₂ -	1	2	0	R	Н	(S) Q CI -CH-N-C CI CH ₃
2259	H₃CS	1	2	0	R	Н	(S) CI -CH-N-C-CI CH ₃
2260	CICH ₂	1	2	0	R	Н	(S) P -CH-N-C-N-C-N-CH ₃
2261	C	1	2	0	R	Н	(S) Q -CH-N-C-N- CH ₃
2262 ·	H ₃ CS-CH ₂	1	2	0	R	H	(S) 0 -CH-N-C-N- CH ₃
2263	CH ₂ -	1	2	0	S	Н	(S) Q CI -CH-N-C CI CH ₃
2264	CH_CH ₂ -	1	2	0	S	Н	(S) CI
2265	H₃CS-(CH ₂ -	1	2	0	S	Н	(S) O CI -CH-N-C-CI CH ₃
2266	CH2-	1	2	0	S	, H	(S) P -CH-N-C-N-

Table 1.207

lable	1.201						
Compd.	R^1 $(CH_2)_j$	k	m	n c	hirality	R ³ ·	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2267	CL CH ₂ -	2	2	1.	-	н .	(S) P CI -CH-N-C-CI CH ₃
2268	CHCH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI CH ₃
2269	H3CS-CH2-	2	2	1	-	Н	(S) O CI -CH-N-C CI CH ₃
2270	CL CH ₂ -	. 2	2	1	-	Н	(S) P -CH-N-C-N-C-N-CH ₃
2271	С├──СН2-	2	2	1	-	· н	(S) P -CH-N-C-N- CH ₃
2272	H3CS-CH2-	2	2	1	-	Н	(S) P -CH-N-C-N- H H H
2273	Ct C⊢CH₂-	2	2	1	-	н	(S) Q CI -CH-N-C CI -CH(CH ₃) ₂
2274	H₃CS-⟨CH₂-	2	2	1	-	н	(S) Q CI -CH-N-C CI CH(CH ₃) ₂
2275	Cl C⊢ CH₂-	2	2	1	-	Н	(S) 0 - CH-N-C-N- CH(CH ₃) ₂
2276						н .	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- H H CH(CH ₃) ₂
							4

Table 1.208

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2278	CL CH ₂ -	1	2	0	R	Н	$ \begin{array}{ccc} (S) & & & \\ -CHNC & & \\ -CH_3 & H_2N \end{array} $
2279	CH_CH2-	1	2	0	R _.	Н	(S) (S)
2280	CL CH ₂ -	1	2	0	S	Н	$(S) \bigcap_{\substack{\square \\ CH-N-C-\\ H-1\\ CH_3 H_2N}} CF_3$
2281	H_3CS CH_2	1	2	0	S	Н	(S) 0 CF ₃ -CH-N-C H CH ₃ H ₂ N
2282	CHCH2-	2	2	1		, H	$(S) \bigvee_{ C \\ $
2283	H ₃ CS—CH ₂ -	2	2	1	-	H ·	$(S) \qquad \begin{matrix} CF_3 \\ -CHN-C \end{matrix}$ $CH_3 \qquad H_2N$
2284	CH ₂ -	2	2	1	-	Н	$ \begin{array}{c c} (S) & O \\ -C + N - C \\ + H \\ CH(C H_3)_2 & CF_3 \end{array} $
2285	CH2-	2	2	1	-	Н	$(S) \qquad P \qquad $
2286	H ₃ CS—CH ₂ -	2	2	1	-	Н	$\begin{array}{c} (S) & P \\ -CH & C \\ H \\ CH (CH_3)_2 & CF_3 \end{array}$
2287	CH ₂ -	2	2	1		· . Н	(S) S -CH+N-C-N-C-N-CH(CH ₃) ₂
2288	H ₃ C S—CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ CONH ₂

2 2 8

Table 1.209

	0 0						
Compd. No.	R^1 (CH ₂) _j -	k	m	n	chirality	R³ ·	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2289	Cl C⊢ CH₂-	2	2	1	-	Н.	(S) P -C++N-C-N- H H (CH ₂) ₂ CONH ₂
2290	CL CH ₂ -	2	2	1		Н	(S) P -CH-N-C-CI H CH2OH
2291	C	2	2	1	-	Н	(S) Q CI -CH-N-C-CI H CH ₂ OH
2292	H ₃ CS-CH ₂ -	2	2	1.		H .	(S) Q CI -CH-N-C CI H CH₂OH
2293	CL CH ₂ —CH ₂ —	2	2	1	-	. Н	(S) 0 -CH-N-C-N- CH ₂ OH
2294	C	2	2	1	-	Н	(S) P -CH-N-C-N- CH ₂ OH
2295	H ₃ CS—CH₂-	2	2	1	-	Н .	(S) P -CH-N-C-N- I H H CH ₂ OH
2296	CL CH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C CI H (CH ₂) ₂ SO ₂ CH ₃
2297	H ₃ CS—CH ₂ -	1	2	0	R	Н	(S) Q CI -CH-N-C CI H CH ₂) ₂ SO ₂ CH ₃
2298	CL CH ₂ -	1	2	0	R	H	(S) 0 -CH-N-C-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2299	H₃CS—CH2-	1	2	0	R	Н	(S) 0 -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

2 2 9

Table 1.210

		•					
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2300	CH_CH ₂ -	1	2	0	S	Н	$(S) \qquad \bigcap_{C \vdash H} C \vdash C $
2301	CL CH ₂ -	1	2	.0	S	Н	(S) Q CI CI CI CI CI CI CI CI
2302	CL CH ₂ -	1	2	0	R .	Н	(S) NH ₂ -CH-N-C NH ₂ -CH ₂ N ₂ SO ₂ CH ₃ CF ₃
2303	CH—CH ₂ —	1	2	0	R	Н	(S) 0 NH ₂ -CH-N-C
2304	H ₃ CS—CH ₂ —	1	. 2	0	R	Н	(S) PH2 -CH-N-C- H H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2305	CI————————————————————————————————————	· 1	2	0	S	. н	(S) NH ₂ -C+N-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	CH ₂ -	, 1	2	0	S	Н	(S) NH ₂ -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2307	CH2−	1	2	0	R	H	(S)
2308	H ₃ C _S -CH ₂ -	1	2	0	R	н	(S)
2309	CI CI—CH₂-	1	2	0	S	Н	(S) S C C C C C C C C C
2310	C├─ C H₂-	1	2	0	S	н	(S) S C C C C C C C C C

rable	1.4						
Compd.	R^1 R^2 $(CH_2)_i$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2311	H₃CS-()-CH₂-	1	2	0	S	н	(S)
2312	H3CS-CH2-	1	2	0	R	н	$ \begin{array}{c c} (S) & \bigcirc \\ -C & + N - C \\ C & + M \\ CH_3 & H_2 N \end{array} $
2313	Cl CH₂−	1	2	0	R	н	(S) P CI -CH-N-C CI CH ₃
2314	H ₃ CS-CH ₂ -	1	2	0	S	H	(S) 0 -CH-N-C-N-C-N-CH ₃
2315	СН ₂ -	2	2	1	-	н	(S) P CI -CH-N-C CI CH(CH ₃) ₂
2316	CH_CH2-	1	2	0	S	H .	(S) NH ₂ -CH-N-C NH ₂ (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2317	CI CH₂-	2	2	1	-	н	$(S) \qquad \begin{array}{c} O \qquad \text{NH}_2 \\ -CH \qquad O \qquad \\ H \qquad \\ CH_2OH \qquad CF_3 \end{array}$
2318	CL CH ₂ -	1	2	0	R	Н	(S) S -CH-N-C-N-CH-N-CH-N-CH-N-CH-N-CH-N-CH-N
2319	CL CH ₂ -	2	2	1	- -	н	(S) S -CH-N-C-N-C-N-CH(CH ₃) ₂
2320	CH2-	2	2	1	-	Н	(S) S - CH N-C - N- CH (CH ₃) ₂
2321	H₃CS-(CH ₂ -	2	2	1	-	н	(S) S -CH+N-C-N- H H H CH(CH ₃) ₂

Table 1.212

rabic .							
Compd.	R^1 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2322	Cl CH₂−	2	2	· 1	, -	Н	(S) S C C C C C C C C C
2323	H ₃ CS—CH ₂ -	2	2	1	-	H	(S)
2324	CL CH ₂ -	2	2	1	-	Н .	(S) CF_3 CF_3 CH_3 H_2 N
2325	CL CH ₂ -	1.	2	0	R	н	(S) S CH ₃ CH ₃
2326	C	1	2	0	Ŕ	Н	(S) S CH ₃ CH ₃
2327	H ₃ CS-CH ₂ -	1	. 2	0	R	н	(S) S CH ₃ CH ₃
2328	CL CH ₂ -	1	2	0	S	Н .	(S) S CH-N-C-N-C-N-CH ₃
2329	CH_CH2-	1	2	0	S	н	(S) S CH ₃ CH ₃
2330	H3CS-CH2-	1	2	.0	S	H .	(S) S N C N C N C N C N C N C N C N C N C N
2331	CH_CH2-	1	2	0	S	Н	$ \begin{array}{ccc} (S) & & & & \\ -CH & & & & \\ CH_3 & & & & \\ CH_3 & & & & \\ \end{array} $
2332	CHCH2-	1	2	0	₋ R	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
							•

Compd. No.	R^1 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2333	CH2-	1	2	0	R	· H	(S) O - CH- N- C- N-
2334	H₃CS—CH2-	1	2	0	S	Н	(S) P CI -CH-N-C CI H H (CH ₂) ₂ SO ₂ CH ₃
2335	CL CH ₂ -	1	2	0	S .	Н	(S) Q - C H N - C - N - C
2336	CHCH_2-	1	2	0	S	Н	(S)
2337	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) 0 - CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2338	H₃CS	2	2	1	· <u>-</u>	Н	(S) P -CH-N-C-N- H H (CH ₂) ₂ C ONH ₂
2339	CHCH ₂ -	2	2	1	-	H ,	$(S) \qquad \bigcap_{\substack{P \\ -C + N - C - \\ H \\ (CH_2)_2 CONH_2 \ CF_3}} \stackrel{NH_2}{\bigvee}$
2340	H ₃ CS-CH ₂ -	2	2.	1	²	Н	$(S) \qquad \bigcap_{\substack{\text{CH} \\ \text{CH}_2\text{CONH}_2}} \bigvee_{\substack{\text{CF}_3}}$
2341	C	2	. 2	1,	-	Н	(S) ON NH2 -CHN-C- I H CH ₂ OH CF ₃
2342	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) P NH ₂ -CH-N-C- CH ₂ OH CF ₃
2343	CH_CH2-	2	2	1	-	. н	(S) P CI -CH-N-C CI (CH ₂) ₂ CONH ₂

Table 1.214

Table I	.214						•
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2344	CH-€CH2-	2	2	1	-	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ CONH ₂
2345	C├─ CH₂-	2	2	1	-	Н	$(S) \qquad \bigcap \\ -CH-N-C-N- \bigcirc \\ H \qquad H$ $(CH_2)_2CONH_2$
2346	CL . CH ₂ -	2	2	1	·	, Н	(S) P VH_2 $CHN-C$ VH_2 VH_2 VH_2 VH_2 VH_3 VH_4 VH_2 VH_4 VH_5 VH_5 VH_5 VH_6 VH_6 VH_7 VH_8 $VH_$
2347	CICH ₂ -	1	2	0	S	H.	(S) P -CH-N-C-N- H H H
2348	CL CH ₂ -	1	. 2	0	R	H	(S) P -CH-N-C CI H (CH ₂) ₂ SO ₂ CH ₃
2349		1	_ 2	0	R	Н	$(S) \qquad \bigcap_{C} CI$ $-CH \cap C \longrightarrow CI$ $(CH_2)_2SO_2CH_3$
2350	F—CH ₂ -	1	2	0	R	Н	$(S) \qquad \bigcirc CI$ $-CH \qquad N \qquad C$ $+CI$ $(CH_2)_2SO_2CH_3$
2351	CH ₂ -	.'	2		R	Н .	(S) Q -CH-N-C
2352	CL CH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C-N-CI CH ₃
							(S) 0 -CH-N-C-N- CH ₃
2354	Cl CI—CH₂-	1	2	0	R	н	(S) OCI -CHN-C-CI (CH ₂) ₂ SO ₂ CH ₃

lable 1	.213					•	
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2355	CI CH2-	、1	2	0	R	н	(S) PCI CI -CH-N-C (CH ₂) ₂ SO ₂ CH ₃
2356	CI C⊢ CH₂-	1	2	0	R	Н	(S) O CI -CH-N-C- H (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CI CI—CH₂-	1	2	0	R [.]	Н	(S)
2358	CL CH2-	1	2	0	R	Н	(S) CH ₃ CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CL CH2-CH2-	1	2	0	R	н	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CL CH ₂ -	1	2	. 0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2361	Ct CH2-	1	2	0	R	H	(S) P -CHN-C-N-CI (CH ₂) ₂ SO ₂ CH ₃
2362	CL CH2-	. 1	2	0	R	H 	(S) P OCH_3 $(CH_2)_2SO_2CH_3$
2363	CL CH ₂ -	2	2	1		Н	(S) PC -CH-N-C-CI CH ₃
2364	CL CH2	2	2	1	-	н .	(S) OCI CI -CHN-C- CH3
2365	CL_CH2-	2	2	1	-	Н	(S) O CI -CHN-C-C

Table 1	1.216						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2366	CI CH ₂ -	2	2	1	- -		CH_3
2367	Cl CH2−	2	. 2	1	-	н	(S) -CHN-C-S CH ₃
2368	CICH ₂ -	2	2	1	-	н	(S) P -CH-N-C-(S) CI CH3
2369	CL CH ₂ -	2	2	1	-	H	(S) P -CH-N-C-N-OCH ₃ CH ₃
2370	CI—CH₂-	2	2	1	-	H ·	(S) Q CI -CH-N-C-CI CH ₃
2371	CICH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C CI CH ₃
2372	CI CH ₂ −	2	2	. 1	-	Н	(S) P CI -CH-N-C-CI CH ₃
2373	F—CH ₂ -	2	2	1	-	Н	(S) Q CI -CH-N-C-CI CH ₃
	F_CH ₂ -						CH3
2375	F-CH ₂ -	2	2	1	-	Н	(S) OCI -CH-N-C-CI -CH ₃
2376	FCH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C CI CH ₃

Table 1.217

								D.4
	Compd. No.	R^1 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
•	2377	F—CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-CI CH ₃
	2378	CH ₂ -	.2	2	1	-	Н	(S) CI -CH-N-C CI CH ₃
	2379	CL CH ₂ -	2	2	1	, -	н .	(S) Br -CH-N-C -CH ₃ H ₂ N
	2380	CICH ₂ -	2	2	1	- .	н	$ \begin{array}{ccc} (S) & O \\ -C & H & C \\ CH_3 & H_2 & N \end{array} $
	2381	CL CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C- CH ₃ HO
	2382	CL CH ₂ -	. 2	. 2	_ 1	. -	Н	(\$) P -CH-N-C-OH CH ₃
	2383	CICH ₂ -	2	2	1	_·	н	(S) S CH ₂ -CH ₂ -CH ₃
	2384	CI CI	1	2	Ō	R	Н	(S) O CI - CH- N- C- CI

	0112						CH ₃
2379	CH ₂ -	2	2	1		н .	(S) Br -CH-N-C H CH ₃ H ₂ N
2380	Cl CH₂-	2	2	1		Н	$ \begin{array}{cccc} (S) & O \\ -C & H & C \\ C & H & H_2 & N \end{array} $
2381	CL CH2−	2	2	1	-	Н	(S) P -CHN-C- CH ₃ HO
2382	CL CH ₂ -	. 2	2	1 .	-	н	(S) P -CH-N-C-OH CH ₃
2383	CL CH ₂ -	2	2	1	-· -·	н	(S) S - CH-N-C-N-CH ₂ CH ₃
2384	CI_CI CH ₂ -	1	2	Ö	R	н	(S) Q CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2385	CI CH2−	1	2	0	R	н	(S) -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI CH ₂ -	1	2	0	R	H + 1 /	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2387	F-CH ₂ -	1	2	0	R	. н	(S) Q CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

lable							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ^{3.}	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-\frac{6}{q}}G^{-R^6}$
2388	F—CH ₂ -	1	2	0	R	Н	(S) CI - CH- N- C - CI H (CH ₂) ₂ SO ₂ CH ₃
2389	F CH ₂ -	1	2 -	0	R	Н	(S)
2390	CI CH2-		2	0	R	Н	(S) 0 NH2 -CHN-C- H H (CH ₂) ₂ SO ₂ CH ₃ Br
2391	CL CH2-	. 1	2	0	R	н	(S) P NH2 -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ Cl
2392	CL CH ₂ -	1	2	0	R	Н	(S) PH2 -CHN-C-PH (CH ₂) ₂ SO ₂ CH ₃
2393	CL CH2-CH2-	1	. 2	0	R	н	(S) S C H N - C - N - C H 2 - C M - C + M - C + M - C + M - C + M - M - M - M - M - M - M - M - M - M
2394	CL CH ₂ -	. 2	. 2	1	-	Н	(S) Q -CH-N-C-CI H (CH ₂) ₂ SCH ₃
2395	CI CI—CH₂-	2	2	1	- ·	Н	(S) Q -CH-N-C-CI H CH ₂ OCH ₂ Ph
	CH ₂ -						
2397	CH ₂ -	2	2	1		н	(9
2398	CL CH2-	, 2	2	1	-	н	(S) -CH-N-C-CI H ₂ C OC(CH ₃) ₃

Table 1	.219						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2399	CH_CH2-	2	2	1	-	Н	(S) P CI -CH-N-C- CI
2400 .	CL CH₂−	į 2	2	1	- .	Н	(S) Q CI -C+N-C-CI H ₂ C OH
2401	CL CH2-	2	2	1	-	·H	(S) CI -CH-N-C
2402	CI CH2-	2	2	1	<u>-</u>	н ,	(S) O CI -CH-N-C-CI CH ₂ OH
2403	F—CH ₂ —	2	2	1	·	н	(S) Q -CH-N-C-CI H H CH ₂ OH
2404	F CH ₂ -	2	2	1	-	H	(S) P CI -CH-N-C CI -CH ₂ OH
2405	F-CH ₂ -	2	2	1	-	H	(S) Q -CH-N-C-CI H CH ₂ OH
2406	FCH ₂ -	2	2	1	-	Ĥ	(S) -CH-N-C-CI CH ₂ OH
2407	CH2					Н	(S) P CI -CH+N-C- CI CH2OH
2408	н₃СSО ₂ —⟨СН ₂ -	- 2	2		1 -	Н	(S) CI -CH-N-C- CI H CH ₂ OH
2409	H₃CO₂C- (CH₂-	- 2	2		1 -	н	(S) P -CH-N-C- CI CH2OH

Table	.220	•			•		
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2410	Cl CH2−	2	2	1	- -	Н	(S) OCI -CH-N-C- CI H CH ₂ OH
2411	CI CH2−	2	2	1	-	Н	(S) OCL CI -CHN-C- H CH2OH
2412	CI CI—CH₂-	.2	2	1	-	Н	(S) P - CHN-C-S H H CH2OH
2413	CL CH2−	2	2	1	· -	Н	(S) P -C+N-C-N-OCH ₃ -CH ₂ OH
2414	CL CH₂-	2	2 ¹	1	-	Н	(S) 0 -CHN-C-S H CH ₂ OH
2415	CI CI—CH₂-	2	2	1	<u>-</u>	. Н	(S) S OC H ₃ -CH-N-C-N-C-N-CH ₃
2416	CL CH₂-	2	2	1	·	Н	(S) S
2417	CL CH ₂ -					н	(S) S CH ₃ CH ₃
2418	CL CH2-	2	· 2	1	· -	Н	(S) S CH ₃ CH ₃
2419	CL CH ₂ -	2	2	1	-	н	(S) S CH 3 CH3 (S) S CH 4 CH3 (S) S CH 6 CH3
_, 2 420	CL CH2−CH2−	2	2	1	- -	Н	(S)

Table 1.221

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
2421	CL CH ₂ -	2	_ 2	1		Н	(S) S -CHN-C-N-F H H H
2422	CL CH ₂ -	1	2	0	R ·	Н	(S) S OCH ₃ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2423	CH ₂ -	1	2	0	R	Н	(S) \$ -CH-N-C-N
2424	CH ₂ -	1	2	0	R	Н	(S) S CH ₃ -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2425	CL CH ₂ -	1	2	0	. R	Н	(S) $\begin{cases} S \\ S \\ C \\$
2426	CH2-	. 1	2	0	R	Н	(S) CI -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2427	CL CH₂-	1	2	0	. R	Н	(S) S - CH-N-C-N-CI H H (CH ₂) ₂ SO ₂ CH ₃
2428	CL CH ₂ -	· 1	2	0	R	Н	(S) S -CH-N-C-N-F (CH ₂) ₂ SO ₂ CH ₃

In the present invention, the acid addition salt of the cyclic amine compound is also used. The acid includes mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and carbonic acid and organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid and formic acid.

Further, the C₁ to C₆ alkyl addition salt of the cyclic amine compound such as 1-(4-chlorobenzyl)-1-methyl-4-[{N-(3-trifluoromethylbenzoyl)glycyl} aminomethyl]piperidinium iodide is also used in the present invention. The alkyl group includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a 2-methylpentyl group and a 1-ethylbutyl group as suitable examples, but includes the methyl group and the ethyl group as especially preferable concrete examples. The counter anion of the ammonium cation includes halide anions such as a fluoride ion, a chloride ion, a bromide ion and an iodide ion as suitable concrete examples.

In the present invention, the racemate and all the possible optical isomers of the compound represented by the formula (I) can be used.

The compound represented by the formula (I) can be synthesized by either of the following general preparation methods, as mentioned in WO 99/25686.

(Preparation method 1)

A preparation method by reacting 1 equivalent of a compound represented by the following formula (II)

30

5

10

15

20

25

[wherein, R1, R2, R3, j, k, m, and n are the same as the definitions, respectively,

in the above described formula (I)], with 0.1 to 10 equivalents of a carboxylic acid represented by the following formula (III) or a reactive derivative thereof

5

[wherein, R⁴, R⁵, R⁶, G, p, and q are the same as the definitions, respectively, in the above mentioned formula (I)], in the absence or presence of a solvent.

10

"The reactive derivative" of the carboxylic acid represented by the above mentioned formula (III) means a highly reactive carboxylic acid derivative usually used in the field of synthetic organic chemistry, such as an acid halide, an acid anhydride, a mixed acid anhydride or the like.

15

The reaction can be allowed to smoothly proceed by the suitable use of proper amounts of a dehydrating agent, such as molecular sieve; a conpling reagent such as dicyclohexylcarbodiimide (DCC),

N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDCI or WSC),

N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDCI or WS carbonyldiimidazole (CDI), N-hydroxysuccinimide (HOSu), N-hydroxybenzotriazole (HOBt),

20

benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramthyluronium hexafluorophosphate (HBTU),

2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium

25

tetrafluoroborate (TNTU), O-(N-succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TSTU) or bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBroP); and a base, for example, an inorganic base such as potassium carbonate, calcium carbonate or sodium bicarbonate, an amine such as triethylamine, diisopropylethylamine or pyridine, or a polymer supported base such as (piperidinomethyl)polystyrene,

30

(morpholinomethyl)polystyrene, (dimethylaminomethyl)polystyrene, poly(4-vinylpyridine) or the like.

(Preparation method 2)

5

15

20

25

A preparation method by reacting 1 equivalent of an alkylating reagent represented by the following formula (IV)

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - X
\end{array}$$
(IV)

[wherein, R¹, R², and j are the same as the definitions, respectively, in the above described formula (I); X represents a halogen atom, an alkylsulfonyloxy group, or an arylsulfonyloxy group],

with 0.1 to 10 equivalents of a compound represented by the following formula (V)

$$\begin{array}{c} (CH_{2})_{k} \\ HN \\ (CH_{2})_{m} \end{array} - (CH_{2})_{n} - N - C - (CH_{2})_{p} - \frac{R^{4}}{R^{5}} (CH_{2})_{q} - G - R^{6} \end{array}$$
 (V)

[wherein, R³, R⁴, R⁵, R⁶, G, k, m, n, p, and q are the same as the definitions, respectively, in the above-mentioned formula (I)], in the absence or presence of a solvent.

The reaction can be allowed to smoothly proceed by the suitable use of the same base as that in the above mentioned preparation method 1. Further, in the present preparation method, the reaction can be accelerated by the coexistence of an iodide compound such as potassium iodide, sodium iodide or the like in some cases.

In the above-mentioned formula (IV), X represents a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. The suitable examples of the halogen atoms include a chlorine atom, a bromine atom, and an iodine atom. The suitable concrete example of the alkylsulfonyloxy group includes a methylsulfonyloxy group, a trifluoromethylsulfonyloxy group and the like. The suitable concrete example of the arylsulfonyloxy group includes a tosyloxy group.

(Preparation method 3)

10

25

30

A preparation method by reacting 1 equivalent of an aldehyde represented by the following formula (VI)

$$R^1$$
 \rightarrow $(CH_2)_{j-1}$ \rightarrow (VI) R^2

[wherein, R¹, and R² are the same as the definitions, respectively, in the above-mentioned formula (I); j represents 1 or 2], or the following formula (VII)

 R^{1} -CHO (VII)

[wherein, R¹ is the same as the definition in the above mentioned formula (I); this compound corresponds to a case that j expresses 0 in the formula (I)] with 0.1 to 10 equivalents of a compound represented by the above mentioned formula (V), in the absence or presence of a solvent.

The reaction is generally called a reductive amination reaction, and includes, as a reducing condition, a catalytic hydrogenation reaction using a catalyst containing a metal such as palladium, platinum, nickel or rhodium, a hydrogenation reaction using a borane or a complex hydride such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, or sodium triacetoxyborohydride and an electrolytic reduction reaction.

10031698 D12302

(Preparation method 4)

5

20

25

30

A preparation method by reacting 1 equivalent of a compound represented by the following formula (VIII)

[wherein, R¹, R², R³, R⁴, R⁵, R⁷, j, k, m, n, p, and q are the same as the definitions, respectively, in the above-mentioned formula (I)], with 0.1 to 10 equivalents of a carboxylic acid or sulfonic acid represented by the following formula (IX) or a reactive derivative thereof

$$HO-A-R^6$$
 (IX)

[wherein, R⁶ is the same as the definition of R⁶ in the above-mentioned formula (I); "A" represents a carbonyl group or a sulfonyl group], in the absence or presence of a solvent.

The reactive derivative of the carboxylic acid or sulfonic acid represented by the formula (IX) means a highly reactive carboxylic acid or sulfonic acid derivative generally used in the field of synthetic organic chemistry, such as an acid halide, an acid anhydride or a mixed acid anhydride.

The reaction can be allowed to smoothly proceed by the suitable use of the same dehydrating agent, coupling reagent or base as those in the above mentioned preparation method 1.

(Preparation method 5)

A preparation method by reacting 1 equivalent of a compound represented by the above-mentioned formula (VIII) with 0.1 to 10 equivalents

of an isocyanate or isothiocyanate represented by the following formula (X)

$$Z=C=N\cdot R^{6} \tag{X}$$

5

[wherein, R⁶ is the same as the definition of R⁶ in the above mentioned formula (I); Z represents an oxygen atom or a sulfur atom], in the absence or presence of a solvent.

10

(Preparation method 6)

A preparation method by reacting 1 equivalent of a compound represented by the following formula (XI)

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
 R^{2}
\end{array}$$

$$\begin{array}{c}
 & CH_{2})_{k} \\
 & CH_{2})_{n} - N - C \\
 & R^{3}
\end{array}$$

$$\begin{array}{c}
 & CH_{2}\\
 & CH_{2}
\end{array}$$

$$\begin{array}{c}
 & CH_{2}\\
 & R^{5}
\end{array}$$

15

20

[wherein, R¹, R², R³, R⁴, R⁵, j, k, m, n, p, and q are the same as the definitions, respectively, in the above mentioned formula (I); "A" represents a carbonyl group or a sulfonyl group],

with 0.1 to 10 equivalents of an amine represented by the following formula (XII)

25

 R^6-NH_2

(XII)

[wherein, R⁶ is the same as the definition of R⁶ in the above mentioned formula (I)], in the absence or presence of a solvent.

30

The reaction can be allowed to smoothly proceed by the suitable use of the same dehydrating agent, coupling reagent or base as those in the above mentioned preparation method 1. When the substrate supplied for the reaction in each of the above-mentioned preparation methods 1 to 6 has substituents which can be thought to generally react under the reaction conditions of each preparation method in organic synthetic chemistry or affect the reaction, the objective compound can be obtained by protecting the functional groups of the substrate with known proper protecting groups, supplying the protected substrate for the reaction and then removing the protecting groups by a known method.

In addition, the compound used in the present invention can also be obtained by further converting the (single or plural) substituent(s) of the compound prepared by the above mentioned preparation method 1 to 6 by a known reaction generally used in organic synthetic chemistry, such as an alkylation reaction, an acylation reaction or a reduction reaction.

In each of the above mentioned preparation methods, a halogenated hydrocarbon such as dichloromethane or chloroform, an aromatic hydrocarbon such as benzene or toluene, an ether such as diethyl ether or tetrahydrofuran, an ester such as ethyl acetate, an aprotic polar solvent such as dimethyl formamide, dimethyl sulfoxide or acetonitrile, or an alcohol such as methanol, ethanol or isopropyl alcohol, is suitably used as a reaction solvent in response to the reaction.

In any preparation method, the reaction temperature is in the range of -78° C to $+150^{\circ}$ C, preferably 0° C to 100° C. After the reaction is completed, the objective cyclic amine compound represented by the above-mentioned formula (I) can be isolated in usual isolating and purifying operations, namely the operations of concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and so on. Further, the isolated compound can be converted into a pharmaceutically acceptable acid addition salt or C_1 to C_6 alkyl addition salt by usual methods.

Examples

5

10

15

20

25

30

35

The present invention will be explained specifically hereafter on the basis of examples. However, the present invention is not limited to the examples. Compound numbers assigned to compounds in the following examples correspond to compound numbers (Compd. No.), respectively, assigned to compounds shown as suitable concrete examples in Tables 1.1 to 1.221.

[Reference Example 1]

5

10

15

20

25

30

35

Synthesis of (R)-1-(4-chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)} glycyl}amino]pyrrolidine (Compd. No. 69)

The compounds of the present invention were synthesized by the preparation method mentioned in WO 99/25686, and, for example, (R)-1-(4-chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino] pyrrolidine of Compd. No. 69 was synthesized as follows.

1) 3-Amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride

4-Chlorobenzyl chloride (4.15g,25.8 mmol) and i-Pr₂NEt (6.67g, 51.6 mmol) were added to the DMF solution (50 mL of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81g, 25.8 mmol) in DMF(50ml). The reaction mixture was stirred at 70°C for 15 hours, and the solvent was then removed under reduced pressure. The residue was recrystallized (CH₃CN, 50 mL) to obtain the objective 3-{(tert-butoxycarbonyl)amino}-1-(4-chlorobenzyl) pyrrolidine (6.43g, 80%) as the yellowish white solid.

 $^1\text{H-NMR}(\text{CDCl}_3,\,300~\text{MHz})~\delta$ 1.37 (s, 9H), 1.5-1.7 (br, 1H), 2.1-2.4 (m, 2H), 2.5-2.7 (m, 2H), 2.83 (br, 1H), 3.57 (s, 2H), 4.1-4.3 (br, 1H), 4.9-5.1 (br, 1H), 7.15-7.35 (br, 4H); the purity was determined with RPLC/MS (98%); ESI/MS m/e 311.0 (M++H, $C_{16}H_{24}\text{ClN}_2\text{O}_2$).

1M HCl-Et₂O (100 mL) was added to the CH3OH (80 mL) solution of the 3-{(tert-butoxycarbonyl)amino}-1-(4-chlorobenzyl)pyrrolidine (6.38g, 20.5 mmol) and then stirred at 25℃ for 15 hours. The solvent was removed under reduced pressure to obtain the solid. The solid was recrystallized (CH₃OH/CH₃CN=1:2, 130 mL) to obtain the purified 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.939g, 85%) as white powder.

 1 H-NMR(d₆-DMSO, 300 MHz) δ 3.15 (br, 1H), 3.3-3.75 (br-m, 4H), 3.9 (br, 1H), 4.05 (br, 1H), 4.44 (br, 1H), 4.54 (br, 1H), 7.5-7.7 (m, 4H), 8.45 (br, 1H), 8.60 (br, 1H); the purity was determined with RPLC/MS (>99%); ESI/MS m/e 211.0 (M++H, C₁₁H₁₆ClN₂).

Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine -dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride were synthesized from the corresponding starting materials, respectively, by

10

15

20

25

30

35

249

the above-mentioned method. The products showed the same ¹H-NMR as that of the above-mentioned racemate.

2) (R)-3-{(N-tert-β utoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl) pyrrolidine
A mixture o

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride (4.54g, 16.0 mmol), a 2M NaOH solution (80 mL), and ethyl acetate (80 mL) was stirred, and the organic layer was then separated. The aqueous layer was extracted with ethyl acetate (80 mL × 2). The obtained organic layers were combined, dried over anhydrous sodium sulfate, filtered, and then concentrated to obtain the free (R)-3-amino-1-(4-chlorobenzyl) pyrrolidine (3.35g, 99%).

Et₃N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79g, mmol), EDCI (3.07g, 16.0 mmol) and HOBt (12.16g, 16 mmol) were added to the CH₂Cl₂ (80 mL) solution of the (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35g, 16 mmol). The reaction mixture was stirred at 25° °C for 16 hours, and then mixed with a 2M NaOH solution (80 mL). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL × 3). The obtained organic layers were combined, washed with water (100 mL × 2) and aqueous sodium chloride solution (100 mL), dried over anhydrous sulfate, filtered The and then concentrated. objective (R)-3-{N-(tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl) pyrrolidine (5.40g, 92%) was obtained by column chromatography (SiO₂, ethyl acetate).

3) Synthesis of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine

A 4M HCl dioxane (38 mL) solution was added to the methanol (60 mL) solution the (R)-3-{N-(tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl) pyrrolidine 14.7 mmol). The solution was stirred at room temperature for 2 (5.39g,The reaction mixture was concentrated and then mixed with a 2M NaOH solution (80 mL). The mixture was extracted with dichloromethane (80 mL × 3), and the extracts were combined, dried over anhydrous sodium sulfate, and then concentrated. The (R)-3-(glycylamino)-1-(4-chlorobenzyl)pyrrolidine (3.374g, 86%) was obtained by column chromatography (SiO₂, AcOEt/EtOH/Et₃N=90/5/5).

 1 H·NMR(CDCl₃, 270 MHz) δ 1.77 (dd, J = 1.3 and 6.9 Hz, 1H), 2.20-3.39 (m, 2H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1H), 2.62 (dd, J = 6.6 and 9.6

10

15

25

30

35

250

Hz, 1H), 2.78-2.87 (m, 1H), 3.31 (s, 2H), 3.57(s, 2H), 4.38-4.53 (br, 1H), 7.18-7.32 (m, 4H), 7.39(br, s, 1H).

4) (R)-1-(4-Chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino]pyrrolidine (Compd. No. 69)

The chloroform (0.4 mL) solution of 3,4 difluorobenzoyl chloride (0.060 to the chloroform (1.0)mL) solution the (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050)mmol) and The reaction mixture was stirred at room triethylamine (0.070 mmol). temperature for 2.5 hours, and then mixed with a (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol). The mixture was stirred at room temperature for 12 hours, and filtered. The resin was washed with dichloromethane (0.5 mL). The filtrate and the washings were combined and mixed with dichloromethane (4 mL). The solution was washed with a 2M NaOH aqueous solution (0.5 mL), and then concentrated to obtain the (R)-1-(4-chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino]pyrrolidine (Compd. No. 69) (7.8 mg, 38%): the purity was determined with RPLC/MS (>99%); ESI/MS m/e 408.0 (M++H, C₂₀H₂₀ClF₂N₃O₂).

[Example 1] Assay of the inhibitory potency of a compound against the rise in the intracellular calcium concentration of CCR3 expressing cells by eotaxin

The inhibitory potency of the compound of the present invention against the rise in the intracellular calcium concentration was assayed using K562 cells stably expressing a CCR3 receptor by the following method.

A 1 mM Fura 2 acetoxymethyl ester (Dojin Kagaku Co.) was added to a suspension obtained by suspending the CCR3 expressing K562 cells in a 10 mM HEPES-containing HBSS solution, and then incubated at 37° C for 30 minutes. The suspension was excited with 340 nm and 380 nm light, and the 340/380 ratio was monitored to measure the intracellular calcium concentration. Human eotaxin $(0.5\,\mu\,\mathrm{g/ml})$ was used as an agonist, and the inhibitory potency of the compound was assayed by treating the CCR3 expressing K562 cells with the compound at five minutes before the stimulation using the eotaxin, assaying the intracellular calcium concentration of the treated CCR3 expressing K562 cells, and then calculating the inhibition potency (%) by the use of the following expression.

15

20

25

30

35

251

Inhibition rate (%) = $\{1 \cdot (A \cdot B) / (C \cdot B)\} \times 100$

(A: an intracellular calcium concentration, when the cells were treated with the compound and then stimulated with the eotaxin; B: an intracellular calcium concentration, when the cells were not stimulated with the eotaxin; C: an intracellular calcium concentration, when the cells were not treated with the compound but stimulated with the eotaxin).

When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, for example, the following compounds showed inhibitory activities of 20% to 50%, 50% to 80%, and >80%, respectively, at a concentration of $10\,\mu\,\mathrm{M}$.

The compounds which showed the inhibitory activities of 20% to 50% at the concentration of $10\,\mu\,\mathrm{M}$:

Compd. Nos. 11, 156, 234, 330, 392, 424, 481, 523, 525, 533, 558, 567, 582, 602, 613, 630, 646, 649, 701, 738, 741, 754, 767, 814, 816, 833, 839, 873, 902, 909, 945, 1002, 1159, 1170, 1258, 1315, 1352, 1357, 1407, 1417, 1448, 1472, 1504, 1508, 1531, 1558, 1562, 1569, 1661, 1670, 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1797, 1802, 1803, 1815, 1834, 1841, 1846, 1883, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 2136, 2189, 2320, 2321, 2323, 2327, 2330, 2334, 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2400, 2400, 2406, 2406, 2407, 2407, 2409, 2409, 2420, 2420, 2421, 2421

The compounds which showed the inhibitory activities of 50% to 80% at the concentration of 10 $\mu\,\rm M$:

Compd. Nos. 83, 115, 146, 150, 216, 294, 297, 322, 405, 440, 459, 461, 466, 482, 484, 487, 490, 492, 503, 526, 528, 550, 562, 570, 578, 620, 623, 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 1259, 1267, 1295, 1377, 1402, 1412, 1420, 1485, 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1725, 1754, 1836, 1856, 1870, 1912, 1923, 1929, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 2290, 2291, 2294, 2297, 2300, 2301, 2302, 2307, 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2329, 2333, 2335, 2343, 2344, 2346, 2347, 2348, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 2403, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

The compounds which showed the inhibitory activities of >80% at the concentration of 10μ M:

Compd. Nos. 7, 32, 68, 169, 173, 203, 209, 215, 520, 544, 547, 851, 852, 855,

874, 910, 1003, 1012, 1032, 1038, 1042, 1043, 1046, 1114, 1190, 1244, 1247, 1384, 1441, 1513, 1527, 1545, 1582, 1673, 1687, 1689, 1705, 1850, 1869, 1871, 1876, 1877, 1899, 2027, 2289, 2293, 2296, 2298, 2315, 2318, 2319, 2325, 2332, 2349, 2352, 2354, 2355, 2356, 2357, 2359, 2362, 2363, 2366, 2367, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2378, 2382, 2383, 2390, 2393, 2396, 2412, 2413, 2414, 2415, 2422, 2423, 2424, 2425, 2426, 2427, 2428

[Example 2] Assay of inhibitory potency against the binding of eotaxin to a CCR3 expressing cells membrane fraction

A cell membrane fraction prepared from human CCR3 expressing K562 cells was suspended in an assay buffer solution (25 mM HEPES, pH 7.6, 1 mM CaCl₂, 5 mM MgCl₂, 0.5% BSA) at a concentration of 0.5 mg/mL to prepare the cell membrane fraction suspension. A test compound was diluted with the assay buffer solution to prepare the test compound solution. [125I] labeled human eotaxin (Amasham Co.) was diluted with the assay buffer solution at a concentration of $1 \mu \text{Ci/mL}$ to prepare the labeled ligand solution. $25 \mu \text{L}$ of the test compound solution, $25 \mu \text{L}$ of the labeled ligand solution and $50 \mu \text{L}$ of the cell membrane fraction suspension were sequentially injected into each well of a 96 well microplate coated with 0.5% BSA, stirred ($100 \mu \text{L}$ of the reaction solution), and then incubated at 25 C for 90 minutes.

After the reaction was finished, the reaction solution was filtered with the 96 well filter plate (Millipore Inc.) in which the filter was previously immersed in a 0.5% polyethylenimine solution, and the filter was washed with $150\,\mu\,\mathrm{L}$ of a cold washing buffer solution (assay buffer +0.5M NaCl) four times (150 $\mu\,\mathrm{L}$ of the cold washing buffer solution was added and then filtered). After the filter was dried with air, $25\,\mu\,\mathrm{L}$ of a liquid scintillator was added to each well, and the radioactivity retained in the membrane fraction on the filter was measured with a TopCounter (Packard Co.).

The inhibitory potency of the test compound against the binding of the human eotaxin to the CCR3 membrane fraction was calculated, wherein a count on the addition of 100 ng of non-labeled human eotaxin in stead of the test compound was subtracted, and a count on the non-addition of the test compound was 100%.

5

10

15

20

25

30

(A: a count, when the test compound was added; B: a count, when 100 ng of the non-labeled human eotaxin was added; C: a count, when only [125I]-labéled human eotaxin was added).

When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, the inhibitory activities of typical compounds in the present example were approximately equivalent to the inhibitory activities measured in Example 1.

Utilizability in industry

5

10

15

20

The medicine containing as an active ingredient the cyclic amine compound, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, of the present invention, or the medicine for treating or preventing diseases in which CCR3 participates, has an activity for inhibiting the action of the ligand of the CCR3, such as eotaxin, to a target cell as the CCR3 antagonist. Thereby, the medicine is useful as a medicine for treating and/or preventing diseases for whose progress and maintenance the tissue infiltration of eosinophils, basophils, activated T-cells and so on play main rolls, for example, allergic diseases such as bronchial asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis, Crohn disease and so on. Further, the medicine is useful as a medicine for treating and/or preventing AIDS by the HIV-1 infection-inhibiting activity based on the CCR3 antagonism.