CLAIMS

What is claimed is:

1. A process for preparing a compound of the formula 1

$$SO_2R^4$$

$$N$$

$$R^1$$

$$R^2$$

$$R^3$$

5

which comprises combining

(a) a compound of formula 2

$$R^1$$
 R^2 R^3 $\underline{2}$;

(b) a compound of formula 3

10

$$SO_2R^4$$
 N
 N
 N

- (c) one or more acids;
- (d) one or more water-miscible organic solvents; and
- (e) water;

15 wherein

20

 R^1 is phenyl optionally substituted by 1-3 substituents independently selected from the group consisting of halo, hydroxy, cyano, mercapto, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkoxy, -OCF3, $(C_1\text{-}C_6)$ alkyl-S-, $(C_1\text{-}C_6)$ alkyl-S(=O)-, $(C_1\text{-}C_6)$ alkyl-SO2-, amino, $(C_1\text{-}C_6)$ alkylamino, di[(C1-C6)alkyl]amino, H2N-(C=O)-, (C1-C6)alkyl-NH-(C=O)- and formyl;

R² is hydrogen, halo or (C₁-C₆)alkyl;

 R^3 is $(C_1 - C_6)$ alkyl optionally substituted with one to three halo atoms; and R^4 is $(C_1 - C_6)$ alkyl.

- 2. The process of claim 1, wherein the one or more water-miscible organic solvents comprise one or more water-miscible alcohols.
- 3. The process of claim 2, wherein the one or more water-miscible alcohols contain from 1 to 12 carbon atoms.
- 4. The process of claim 3, wherein the one or more water-miscible alcohols are selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and tert-butanol.
- 5. The process of claim 4, wherein the water-miscible alcohol is ethanol or isopropanol.
 - 6. The process of claim 5, wherein the water-miscible alcohol is isopropanol.
- 7. The process of claim 1, wherein the one or more acids are selected from the group consisting of hydrochloric acid, acetic acid, trifluoroacetic acid, p-toluenesulfonic acid and sulfuric acid.
 - 8. The process of claim 7, wherein the acid is sulfuric acid.

5

10

15

20

25

30

35

- 9. The process of claim 1, wherein (a) and (b) are combined in the presence of (e).
- 10. The process of claim 9, wherein (a) is combined with a mixture of at least (b) and (e).
- 11. The process of claim 10, wherein (a) is combined with a mixture of at least (b), (c) and (e).
- 12. The process of claim 11, wherein the mixture of (b), (c) and (e) is prepared by combining (b) with a mixture of at least (c) and (e).
- 13. The process of claim 10, wherein a mixture of at least (a) and (d) is combined with the mixture of at least (b) and (e).
- 14. The process of claim 13, wherein a mixture of (a) and (d) is combined with a mixture of (b), (c) and (e).
- 15. The process of claim 1, wherein (a) and (b) are combined before the addition of (e).
- 16. The process of claim 15, wherein (a), (b) and (d) are combined before the addition of (e).
- 17. The process of claim 15, wherein (a), (b) and (c) are combined before the addition of (e).
- 18. The process of claim 17, wherein (a), (b), (c) and (d) are combined before the addition of (e).
- 19. The process of claim 1, wherein the temperature is maintained at a temperature lower than the reflux temperature of the combination of (a), (b), (c) and (d).
- 20. The process of claim 1, wherein the temperature is maintained at a temperature lower than the reflux temperature of the combination of (a), (b), (c), (d) and (e).

- 21. The process of claim 1, which further comprises, after (a) and (b) are combined, maintaining the temperature below about 40°C until the amount of (b) has decreased to less than about 10% of its initial value.
- 22. The process of claim 21, which further comprises, after (b) has decreased to less than about 10% of its initial value, increasing the temperature to at least about 30°C.
- 23. The process of claim 22, which further comprises maintaining the temperature of at least about 30°C until the molar amount of the 5-hydroxy derivative of the compound of formula 1 is less than about 10% of the initial molar amount of (b).
- 24. The process of claim 1, which further comprises, after (a) and (b) are combined and after the amount of (b) has decreased to less than about 10% of its initial value, adding (e).
- 25. The process of claim 24, wherein (e) is added after the amount of (b) is less than about 5% of its initial value.
- 26. The process of claim 1, which further comprises neutralizing the acid after the formation of the compound of formula 1 is substantially complete.
- 27. The process of claim 1, which further comprises granulating the combination of (a), (b), (c), (d) and (e).
- 28. The process of claim 27, wherein the combination is granulated for at least about 2 hours.
- 29. The process of claim 1, wherein R^1 is unsubstituted phenyl and R^2 is hydrogen.
 - 30. The process of claim 29, wherein R³ is difluoromethyl or trifluoromethyl
 - 31. The process of claim 30, wherein R⁴ is methyl.
 - 32. The process of claim 30, wherein R³ is difluoromethyl.
- 33. The process of claim 1, wherein the molar amount of the compound of formula $\underline{2}$ is about the same as the molar amount of the compound of formula $\underline{3}$.
 - 34. A compound of the formula $\underline{4}$:

$$SO_2R^4$$
 N
 R^1
 N
 R^2
 R^3

wherein

5

10

15

20

25

30

 R^1 is phenyl optionally substituted by 1-3 substituents independently selected from the group consisting of halo, hydroxy, cyano, mercapto, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_1-C_6) alkenyl, (C_1-C_6) alkenyl, (C_2-C_6) alkenyl, (C_1-C_6) alkenyl, (C_2-C_6) alkenyl, (C_1-C_6) alkenyl, (C_2-C_6) alkenyl, (C_1-C_6) alkenyl

 $C_6) alkoxy, \quad -OCF_3, \quad (C_1-C_6) alkyl-S-, \quad (C_1-C_6) alkyl-S(=O)-, \quad (C_1-C_6) alkyl-SO_2-, \quad amino, \quad (C_1-C_6) alkyl-M-(C=O)-, \quad (C_1-C_6) alkyl-NH-(C=O)-, \quad (C_1-C_6) alkyl-NH-(C_1-C_6) alkyl-NH-(C_1$

R² is hydrogen, halo or (C₁-C₆)alkyl;

5

 \mbox{R}^{3} is (C1-C6)alkyl optionally substituted with one to three halo atoms; and \mbox{R}^{4} is (C1-C6)alkyl.