计算机组成原理之数字

第六(C)章小测验

- **1.** 4 片 74181 和 1 片 74182 相配合,具有如下 种进位传递功能
- A. 组(小组)内并行进位,组(小组)间并行进位
- **B.** 串行进位
- C. 组(小组)内并行进位,组(小组)间串行进位
- D. 组内串行进位,组间并行进位
- **2.** 浮点数加减法运算有如下几个步骤:对阶,尾数求和,规格化,舍入,溢出判断。下列描述中,其中讲述的是"对阶"步骤目的的是
- A. 将对阶后的两尾数按定点加减运算规则求和(差)
- **B.** 为提高精度,要考虑尾数右移丢失的数值位
- *C.* 使两数的小数点位置对齐
- D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化
- E. 判断结果是否溢出
- **3.** 浮点数加减法运算有如下几个步骤:对阶,尾数求和,规格化,舍入,溢出判断。下列描述中,其中讲述的是"规格化"步骤目的的是。
- A. 使两数的小数点位置对齐
- B. 为提高精度, 要考虑尾数右移丢失的数值位
- C. 将对阶后的两尾数按定点加减运算规则求和(差)
- D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化
- E. 判断结果是否溢出
- **4.** 浮点数加减法运算有如下几个步骤:对阶,尾数求和,规格化,舍入,溢出判断。下列描述中,其中讲述的是"舍入"步骤目的的是。
- A. 使两数的小数点位置对齐
- B. 为提高精度, 要考虑尾数右移丢失的数值位
- C. 将对阶后的两尾数按定点加减运算规则求和(差)
- D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化
- E. 判断结果是否溢出

5. 如果采用 0 舍 1 入法进行舍入处理,则 0.01010110011 舍入最后一位后,结果为	J	
°		
A. 0.0101011001 B. 0.0101011		
C. 0.0101011010 D. 0.0101011100		
6. 浮点数加减法运算有如下几个步骤:对阶,尾数求和,规格化,舍入,溢出判断。下列	ĺ	
描述中,其中讲述的是"尾数求和"步骤目的的是。		
A. 将对阶后的两尾数按定点加减运算规则求和(差)		
B. 为提高精度,要考虑尾数右移丢失的数值位		
<i>C.</i> 使两数的小数点位置对齐		
D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化		
E. 判断结果是否溢出		
7. 浮点数加减法运算有如下几个步骤:对阶,尾数求和,规格化,舍入,溢出判断。下列]	
描述中,其中讲述的是"溢出判断"步骤目的的是		
A. 将对阶后的两尾数按定点加减运算规则求和(差)		
B. 为提高精度,要考虑尾数右移丢失的数值位		
<i>C.</i> 使两数的小数点位置对齐		
D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化		
E. 判断结果是否溢出		
8. 在浮点数加减法运算"规格化"这步中,以下哪些尾数是需要进行"左规"运算的? (以	Ļ	
下各数均为2进制表示)(多选)		
A. 00.1000 B. 01.0101 C. 10.0100		
D. 00.0111 E. 11.1000		
9. 在浮点数加减法运算"对阶"这步中,对阶的原则是		
A. 大阶向小阶看齐		
B. 小阶向大阶看齐		
C. 使两阶码最高位都为 1		
D. 阶码用补码表示时,对阶到两数阶码最高位都为 1;阶码用原码表示时,对阶到两数阶码	1	
最高位为 o		
10. 单重分组跳跃进位就是将 n 位全加器分成若干小组,小组内的进位同时产生,小组与		
小组之间采用串行进位。如下图所示:		
1 at Clay/04/11 (Clay of Latition)		

其中 Ci 表示的是第 i 位产生的进位, di 表示只与本地进位有关的运算结果, ti 表示与 低位有关的运算。以下各选项列出的各位,是在同一时刻产生进位的是。 (多选)

A. C15~CO

B. C0~C3

C. C11∼C8

D. C3,C7,C11,C15

11. 浮点加减运算过程的步骤包含下列中的 。(多选)

A. 对阶

B. 尾数求和

C. 规格化

D. 舍入

E. 溢出判断

12. 已知两浮点数 x=0.1101*2^(10),y=0.1011*2^(01),则 x+y=。

A. 0.1001*2^(11)

B. 0.0101*2^(10)

C. 0.1010*2^(11)

D. 0.1001*2^(10)

13. 下列叙述中正确的是 。(多选)

- A. 定点补码运算时, 其符号位不参加运算
- B. 浮点运算可由阶码运算和尾数运算两部分组成
- *C.* 浮点数的正负由阶码的正负符号决定
- **D.** 尾数部件只进行乘除运算
- E. 阶码部件在乘除运算时只进行加、减操作
- 14. 早期的硬件乘法器设计中,通常采用加和移位相结合的方法,具体算法是,但需要 有 控制。

A. 串行加法和串行移位 触发器

B. 串行加法和串行右移 触发器

C. 并行加法和串行右移 计数器

D. 并行加法和串行左移 计数器

15. 设浮点数字长为 32 位, 欲表示±6*10⁴ 的十进制数, 在保证数的最大精度条件下, 除 阶符、数符各取1位外,阶码应取几位?

A. 4

B. 5 **C.** 6 **D.** 7

16.在计算机中的浮点数加减	运算中,対阶的原则是
A. 大阶码向小阶码看齐	
B. 小阶码向大阶码看齐	
<i>C.</i> 被加(减)数的阶码向加	(减)数的阶码看齐
D. 加(减)数的阶码向被加	(减)数的阶码看齐
17. 以下关于 74181 芯片描述	上 正确的是
A. 74181 是能完成 4 位十进制	引代码算逻运算的部件
B. 74181 是只能完成算术运算	算的部件
C. 74181 是只能完成逻辑运	算的部件
D. 74181 是能完成 4 位二进制	刊代码算逻运算的部件
18. 在浮点数中,判断补码规	观格化形式的原则是
A. 尾数的符号位与最高数值	位不同
B. 尾数的最高数值位为1时,	数符任意
C. 尾数的符号位与最高数值值	立相同
D. 阶符与数符不同	
19. 在対阶和右规的过程中,	可能会将尾数的低位丢失,引起误差,为此可用舍入法来提
高尾数的精度,常用的舍入法	·有(多选)
A. 恒置 1 法 B.	1 舍 0 入
<i>C.</i> 0 舍 1 入	恒置0法
20. 下列说法错误的是。	
A. 并行加法器中高位的进位	依赖于低位
B. 补码乘法器中,被乘数和	乘数的符号都不参加运算
<i>C.</i> 在小数除法中,为了避免流	益出,要求被除数的绝对值小于除数的绝对值
D. 运算器中通常都有一个状态	态标记寄存器,为计算机提供判断条件,以实现程序转移
21. ALU 属于。	
A. 寄存器	B. 控制器
<i>C.</i> 时序电路	D. 组合逻辑电路
22. 在浮点机中是隐含的	o
A. 基数	3. 数符
C. 尾数	9. 阶码
23. 设机器数字长 16 位, 阶	码 5 位(含1位阶符),基值为 2,尾数 11 位(含1位数符)。

对于两个阶码相等的数按补码浮点加法完成后,由于规格化操作可能出现的最大误差的绝对 值为 。

A. 2^3

B. 2^4 C. 2^5 D. 2^6

24. 已知 x=2^(-101)*0.0110011, y=2^(011)*(-0.1110010),则 x*y=___。

A. 2^(-011)*(-01011011)

B. 2^(-011)*(-01011111)

25. 在计算机的浮点数加减运算中,规格化的作用是

- A. 判断结果是否溢出
- B. 对齐参与运算两数的小数点
- C. 减少运算步骤,提高运算速度
- **D.** 增加有效数字的位数, 提高运算精度
- E. 计算机中的除法运算可用加(减)法和移位操作实现,根据机器数的不同,又可分为原 码除法和补码除法
- **26.** 以下关于 ALU 的描述正确的是
- A. ALU 是 CPU 中的控制器 3
- B. ALU 电路只能完成逻辑运算
- C. ALU 电路只能完成算术运算
- D. ALU 电路既能完成算术运算又能完成逻辑运算
- 27. 以下关于浮点数乘除法运算的描述错误的是
- A. 乘积的尾数应为相乘两数的尾数之积
- **B.** 乘积的阶码应为相乘两数的阶码之差
- C. 商的阶码为被除数的阶码减去除数的阶码
- **D.** 商的尾数为被除数的尾数除以除数的尾数
- 28. 用 8 片 74181 和 2 片 74182 可实现
- A. 双重分组跳跃进位链的 32 位 ALU
- **B.** 双重分组跳跃进位链的 64 位 ALU
- C. 三重分组跳跃进位链的 32 位 ALU
- D. 三重分组跳跃进位链的 64 位 ALU
- 29. 以下关于浮点四则运算溢出判断的描述错误的是
- A. 溢出与否可由阶码的符号决定
- **B.** 阶码[j]补=01,XX...X 为上溢

- C. 当阶符为"01"时,不需要作溢出处理
- **D.** 阶码[j]补=10,XX...X 为下溢
- **30.** 以下关于快速进位链的描述正确的是 (多选)
- A. 并行进位链又可称为先行进位和跳跃进位
- **B.** 串行进位链是指串行加法器中的进位信号采用串行传递
- C. 并行进位链是指串行加法器中的进位信号采用并行传递
- D. 并行进位链通常有单重分组和双重分组两种实现方案

第六(C)章小测验-答案解析

1. A 2. C 3. D 4. B 5. C 6. A 7. E 8. DE 9. B

10. BC 11. ABCDE 12. A 13. BE 14. C 15. B 16. B 17. D

18. A 19. AC 20. B 21. D 22. A 23. B 24. A 25. D

26. D 27. B 28. A 29. C 30. AD