Advanced Mathematics Formula Sheet

1. Sequences & Limits

• Limit Definition:

$$\lim_{n \to \infty} a_n = L \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |a_n - L| < \epsilon \ \forall n \ge N.$$

- Monotone Convergence Theorem:
 - A bounded, monotone (increasing/decreasing) sequence converges.
- Bolzano-Weierstrass Theorem:
 - Every bounded sequence has a convergent subsequence.
- Limit Theorems:
 - If $\lim a_n = A$ and $\lim b_n = B$, then:

$$\lim(a_n \pm b_n) = A \pm B$$
, $\lim(a_n b_n) = AB$, $\lim\left(\frac{a_n}{b_n}\right) = \frac{A}{B} \ (B \neq 0)$.

2. Infinite Series

- Convergence Tests:
 - **Divergence Test**: If $\lim a_n \neq 0$, $\sum a_n$ diverges.
 - Comparison Test: If $0 \le a_n \le b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges.
 - Ratio Test:

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = L \implies \begin{cases} L < 1 & \text{Converges,} \\ L > 1 & \text{Diverges,} \\ L = 1 & \text{Inconclusive.} \end{cases}$$

- Root Test:

$$\lim |a_n|^{1/n} = L \implies \text{Same as Ratio Test.}$$

- **Integral Test**: If f is positive, continuous, and decreasing on $[1, \infty)$, then $\sum f(n)$ converges iff $\int_1^\infty f(x) dx$ converges.
- Geometric Series:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad (|r| < 1).$$

3. Continuity & Limits of Functions

• Limit Definition:

$$\lim_{x \to c} f(x) = L \iff \forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon.$$

- Continuity:
 - f is continuous at c if $\lim_{x\to c} f(x) = f(c)$.
 - Intermediate Value Theorem (IVT): If f is continuous on [a,b] and k lies between f(a) and f(b), then $\exists c \in (a,b) \text{ s.t. } f(c) = k$.
 - Extreme Value Theorem (EVT): A continuous function on a closed interval [a, b] attains its maximum and minimum.

4. Differentiation

• Derivative Definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

• Rules:

- Sum:
$$(f \pm g)' = f' \pm g'$$

- **Product**: (fg)' = f'g + fg'

– Quotient:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

- Chain Rule:
$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

• Mean Value Theorem (MVT):

– If f is continuous on [a, b] and differentiable on (a, b), then $\exists c \in (a, b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

• Rolle's Theorem:

- Special case of MVT where
$$f(a) = f(b) \implies \exists c \in (a,b) \text{ s.t. } f'(c) = 0.$$

5. Important Inequalities

• Triangle Inequality: $|a+b| \le |a| + |b|$

• Bernoulli's Inequality: $(1+x)^n \ge 1 + nx$ for $x > -1, n \in \mathbb{N}$.

• Cauchy-Schwarz Inequality:

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

6. Special Limits

• Exponential:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e, \quad \lim_{x\to 0} \frac{e^x-1}{x} = 1.$$

• Trigonometric:

$$\lim_{x\to 0}\frac{\sin x}{x}=1,\quad \lim_{x\to 0}\frac{1-\cos x}{x}=0.$$

• Logarithmic:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

7. Taylor's Theorem

• Taylor Expansion:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

where $R_n(x)$ is the remainder term.