0521 Slides

Cesai Li

May 2025

Cesai Li 0521 Slides May 2025 1 / 34

Recall: Suppose an experiment has a continuous numerical sample space. If we associate a veriable x to the experimental outcome, then x is said to be a continuous random variable, and there is a probability distribution f(x) such that $f(i) \ge 0$ for any i in the sample space, and the area under the graph (curve) of f(x) is exactly 1.

(□ > ∢♂ > ∢ ≧ > ∢ ≧ > ≧ • ੭ < ⊙

Cesai Li 0521 Slides May 2025 2 / 34

We've seen examples like f(x) = 1 on $0 \le x \le 1$ and

$$f(x) = \begin{cases} \frac{3}{4}(1-x^2) & \text{for } x \in [-1, 1], \\ 0 & \text{otherwise.} \end{cases}$$

Those are all **good probability density/probability distribution functions** in the sense that $f(i) \ge 0$ for all i and the underlying area is 1. However, real-world data can never be a perfect curve.

←□▶ ←□▶ ← ≧ ▶ ← ≧ ▶ ♥ Q ○

Cesai Li 0521 Slides May 2025 3 / 34

Approximation by a model F(X)

Suppose we perform an experiment and get a sample data set. We plot the sample points and notice the graph look *roughly* like a simple functions F(x) (straight line, bell curve, etc.), we can probably make use of the nice properties of F(x) to obtain useful information about our data set.

- We need to make sure that it is **reasonable** to approximate our data set by F(x). There are methods with different strength, from looking at graphs or comparing means/median/standard deviation to performing careful numerical analysis.
- We obtain the [means/median/standard deviation/other info] from our nice simple function F(x), and claim that the [means/median/standard deviation/other info] of our data set is approximately that of F(x).

 Cesai Li
 0521 Slides
 May 2025
 4 / 34

Population vs. Sample vs. Model

If we claim that the probability distribution of our random variable x can be approximated by a nice mathematical function F(x), then we call F(x) a model.

This is a histogram of a data set. By looking at its shape, one may claim that this data set can be approximated by a normal curve.

Real experiment: Population vs. Sample vs. Model

In a physics experiment, I want to measure properties of an acoustic box. A speaker is places inside the acoustic box to produce sound wave. A microphone is used to detect sound wave. The microphone is connected to an oscilloscope to give me Amplitude and Frequency data points.

$$Amp = \frac{F_o}{\sqrt{1 + (\frac{2\pi}{\gamma f})^2 \cdot (f^2 - f_o^2)^2}}$$

I propose a theoretical **model**

I want to check if this model describes the properties of the acoustic box. This will not be on quiz/exam. Just to help understand the population vs. sample vs. model distinction.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Cesai Li 0521 Slides May 2025 6 /

Real experiment: Population vs. Sample vs. Model

I perform my experiment and got a data set (sample). In this setting, my **population** is a continuous quantity 'Amplitude vs. frequency during an interval of time'. My **sample** data set is

Cesai Li 0521 Slides May 2025 7 / 34

Real experiment: Population vs. Sample vs. Model

I then fit my sample data points (after some data analysis) to my model.

This seems to be a goot approximation. I may then claim that the acoustic box's amplitude vs. frequency behaves roughly like my model. Let P be a mathematical properties of my model. I can claim that the acoustic box's amplitude vs. frequency roughly has this property P.

Cesai Li 0521 Slides May 2025 8 / 34

Normal distribution / bell curve

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-1/2[(x-\mu)/\sigma]^2)$$

A (hypothetical) variable x is called a **normal variable** if its probability distribution is exactly this f(x). If $\mu=0$ and $\sigma=1$ we say such a normal variable is a **standard normal variable** and f(x) is a standard normal distribution. We often denote a standard normal variable by z.

Cesai Li 0521 Slides May 2025 9 /

Properties of a bell curve

- **1** The bell curve is symmetric about its mean μ .
- ② The area under the bell curve is 1.
- **3** The curve gets closer and closer to 0 as x increases/decreases away from μ , but never really gets to 0.
 - 7. The Empirical Rule:
 - Approximately 68% of the area under the normal curve is between $x=\mu-\sigma$ and $x=\mu+\sigma$;
 - approximately 95% of the area is between $x = \mu 2\sigma$ and $x = \mu + 2\sigma$;
 - approximately 99.7% of the area is between $x = \mu 3\sigma$ and $x = \mu + 3\sigma$.
- **1** $\mu \pm \sigma$ are **inflection points**.

◆□ → ◆□ → ◆□ → □ → ○○○

10/34

Cesai Li 0521 Slides May 2025

Normal Distribution

Normal Distribution

Suppose a normal variable x is of $\mu = 1$ and $\sigma = 1$.

- What is $P(x \ge 1)$?
- **2** What is $P(0 \le x \le 2)$?

Cesai Li 0521 Slides May 2025 12 / 34

Normal Distribution

Suppose a normal variable x is of $\mu = 1$ and $\sigma = 1$.

- ② What is $P(x \le 0)$?

Cesai Li 0521 Slides May 2025 13 / 34

Normal Distribution

What is $P(x \le \mu - \sigma)$ for the following two normal variable x?

- **1** A normal variable x of $\mu = 1$ and $\sigma = 1$
- ② A normal variable x of $\mu = 0$ and $\sigma = 2.5$

Cesai Li 0521 Slides May 2025 14 / 34

Compare two normal distribution

Compare two normal curves A and B.

What information can we get?

Cesai Li 0521 Slides May 2025 15 / 34

Compare two normal distribution

Compare two normal curves A and B.

What information can we get?

Cesai Li 0521 Slides May 2025

Given a normal curve as below, what are its mean μ and standard deviation σ ?

Cesai Li 0521 Slides May 2025 17 / 34

Poll Activity 7

The function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-1}{2}[(x-\mu)/\sigma]^2\right)$$

is called the Normal distribution. It is a sort of

- Sample
- 2 Population
- Experiment outcome
- Variable
- None of the above

This question will not be on quiz/exam.

18 / 34

Cesai Li 0521 Slides May 2025

Poll Activity 8

Suppose x is a normal random variable with mean μ and standard deviation σ . What is $P(x < \mu - \sigma)$?

- **1** 34%
- **2** 50%
- **3** 13.5%
- **16%**
- None of the above
- **1** Depends on μ and σ

Cesai Li 0521 Slides May 2025 19 / 34

Standard normal variable

A normal variable is called a **standard normal variable** if it has a mean $\mu = 0$ and $\sigma = 1$. We often denote a standard normal variable by z or Z.

Let's read the Standard Normal Distribution Table. Given a z-value a, this table tells $P(z \le a)$.

Cesai Li 0521 Slides May 2025 20 / 34

Standard Normal Distribution Table

z	.00	.01	.02	.03	.04	.05	.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.927
15	2332	0925	257	0.037	0 0382	0.0304	001

 Cesai Li
 0521 Slides
 May 2025
 21 / 34

z	.00	.01	.02	.03	.04	.05	.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.927
15	2332	0.02-5	257	0.027	0.0382	0.0304	0.04

- **1** What is $P(z \le -1.33)$?
- ② What is $P(z \le 1.33)$?
- **3** What is $P(z \ge -1.33)$?
- What is $P(z \ge 1.33)$?

Cesai Li 0521 Slides May 2025 22 / 34

z	.00	.01	.02	.03	.04	.05	.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.927
15	2332	0.92-5	257	0.022	0.0382	0.0304	0.04

What is $P(1.03 \le z \le 1.33)$?

 Cesai Li
 0521 Slides
 May 2025
 23 / 34

Change of Variable

Change of variable $x \rightarrow z$ is a key concept

Given a non-standard normal variable x with a mean μ and a standard deviation σ , we may convert it to a normal variable z by the formula

$$z = \frac{x - \mu}{\sigma}$$

Lemma.

$$P(\frac{x-\mu}{\sigma} \le a) = P(x \le a\sigma + \mu)$$

$$P(\frac{x-\mu}{\sigma} \ge a) = P(x \ge a\sigma + \mu)$$

for any number a.

Cesai Li 0521 Slides May 2025 24 / 34

Proposition

Suppose x is a normal variable with mean μ and standard deviation σ .

Let
$$z = \frac{x - \mu}{\sigma}$$
. Then:

$$P(x \le a) = P(z \le \frac{a - \mu}{\sigma})$$

$$P(x \ge a) = P(z \ge \frac{a-\mu}{\sigma})$$

for any number a.

Cesai Li 0521 Slides May 2025 25 / 34

Proposition

Suppose x is a normal variable with mean μ and standard deviation σ .

Let
$$z = \frac{x - \mu}{\sigma}$$
. Then:

$$P(x \le a) = P(z \le \frac{a-\mu}{\sigma})$$

$$P(x \ge a) = P(z \ge \frac{a - \mu}{\sigma})$$

for any number a.

Let x be a normal variable with $\mu=150$ and $\sigma=10$. Use the change of variable method and the Standard Normal Distribution Table to find out $P(x \ge 160)$.

Cesai Li 0521 Slides May 2025 26 / 34

Proposition

Suppose x is a normal variable with mean μ and standard deviation σ .

Let
$$z = \frac{x - \mu}{\sigma}$$
. Then:

$$P(x \le a) = P(z \le \frac{a - \mu}{\sigma})$$

$$P(x \ge a) = P(z \ge \frac{a-\mu}{\sigma})$$

for any number a.

Let x be a normal variable with $\mu=150$ and $\sigma=10$. Use the change of variable method and the Standard Normal Distribution Table to find out $P(155 \le x \le 160)$.

Cesai Li 0521 Slides May 2025 27 / 34

Key questions to ask:

- If we know a data set is (approximately) a normal distribution, how can we extract information we need from the normality? (Be careful with **Population** vs. **Sample** vs. **Model**)
- ② Given a data set, how can we tell if it can be approximated by a normal distribution?

Example. The GRE is a test required for admission to many US graduate schools. Suppose students' scores on some GRE test can be approximated by a normal distribution with mean 150 and standard deviation 10. What proportion of the students scored between 155 and 160? **Answer: Approximately 14.98%**

Cesai Li 0521 Slides May 2025 28 / 34

Assessing normality

Given a variable x, how do we know if x is approximately a normal variable? (I.e. if the probability density function f(x) can be approximated by a normal distribution.)

- Method 1. Plot f(x) and compare its graph to that of a normal distribution.
- ② Method 2. Compare $\overline{x} \pm s$, $\overline{x} \pm 2s$, $\overline{x} \pm 3s$ to 68%, 95%, 99.7%, resp.
- Methods using technology or more advanced math tools (not covered in this course).

Cesai Li 0521 Slides May 2025 29 / 34

Be careful: In the textbook the term 'z-score' has two different meanings. Here we do not call z_{α} a 'z-score'.

Definition of z_{α}

Given a number $0 \le \alpha \le 1$, z_{α} is defined by $P(z \ge z_{\alpha} = \alpha)$.

Cesai Li 0521 Slides May 2025 30 / 34

Definition of z_{α}

Given a number $0 \le \alpha \le 1$, z_{α} is defined by $P(z \ge z_{\alpha} = \alpha)$.

Use the Standard Normal Distribution Table to find out $Z_{0.3}$.

Cesai Li 0521 Slides May 2025 31 / 34

Property of z_{α}

Look at the diagram, the symmetry implies the following result.

Lemma

For any $0 \le \alpha \le 1$ we have $-z_{\alpha} = z_{1-\alpha}$.

Cesai Li 0521 Slides May 2025 32 / 34

Sampling distribution

Important concepts: Population Parameter vs. Sample Statistic.

	Population Parameter	Sample Statistic
Mean	μ	\overline{X}
Median	η	M
Variance	σ^2	s^2
Standard Deviation	σ	S

Cesai Li 0521 Slides May 2025 33 / 34