JOBSHEET SISTEM PENDUKUNG KEPUTUSAN

Pertemuan ke: 9

Materi : Multi-Objective Optimization by Ratio Analysis (MOORA)

A. Metode MOORA

Metode ini memiliki tingkat selektifitas yang baik karena dapat menentukan tujuan dari kriteria yang bertentangan. Dimana kriteria dapat bernilai menguntungkan (*benefit*) atau yang tidak menguntungkan (*cost*). (Rokhman, Rozi, and Asmara 2017). Metode ini yang diperkenalkan oleh Brauers dan Zavadkas (2006) pertama kali digunakanoleh Brauers dalam suatu pengambilan dengan *multi-criteria decision making (MCDM)*. Metode MOORA memiliki tingkat fleksibilitas dan kemudahan untuk dipahami dalam memisahkan bagian subjektif dari suatu proses evaluasi kedalam kriteria bobot keputusan dengan beberapa atribut pengambilan keputusan.

Metode MOORA terdiri dari lima langkah utama menurut (Brauers and Zavadskas, 2006; Chakraborty,2011; Gadakh, 2011; El-Santawy and Ahmed,2012, Kalibatas, et al. 2008, Lootsma, 1999) Langkah-langkah menghitung skor alternatif dengan Metode MOORA, antara lain:

- 1. Menentukan tujuan untuk mengidentifikasi attribut evaluasi yang bersangkutan dan menginputkan nilai kriteria pada suatu alternatif dimana nilai tersebut nantinya akan diproses dan hasilnya akan menjadi sebuah keputusan.
- 2. Menentukan matriks skor dari setiap alternatif (matriks X), yaitu:

$$X = \begin{bmatrix} x_{11} & \dots & x_{1i} & \dots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{j_1} & \dots & x_{j_i} & \dots & x_{j_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m_1} & \dots & x_{mi} & \dots & x_{mn} \end{bmatrix}$$

3. Menentukan skor ternormalisasi dari masing-masing alternatif untuk tiap kriteria (X*_{ij}), dengan persamaan:

$$X^*_{ij} = \frac{x_{ij}}{\sqrt{\left[\sum_{j=1}^m x_{ij}^2\right]}}$$

Hasil dari langkah no. 3 adalah sebuah matriks keputusan ternormalisasi.

- 4. Menghitungan Nilai Optimasi Multiobjektif yaitu:
 - a. Jika atribut atau kriteria pada masing-masing alternatif tidak diberikan nilai bobot

Ukuran yang dinormalisasi ditambahkan dalam kasus maksimasi (untuk attribut yang menguntungkan) dan dikurangi dalam minimalisasi (untuk attribut yang tidak menguntungkan) atau dengan kata lain mengurangi nilai maximum dan minimum pada setiap baris untuk mendapatkan rangking pada setiap baris, jika dirumuskan maka:

$$y_j^* = \sum_{i=1}^{i=g} x_{ij}^* - \sum_{i=g+1}^{i=n} x_{ij}^*,$$

Keterangan:

 $i=1, 2, \dots, g-$ kriteria/atribut dengan status maximized; $i=g+1, g+2, \dots, n-$ kriteria/atribut dengan status minimized; $\mathcal{V}^*_{j} =$ Matriks Normalisasi max-min .

b. Jika atribut atau kriteria pada masing-masing alternatif di berikan nilai bobot kepentingan Pemberian nilai bobot pada kriteria,menentukan skor terbobot (y_{ij}), dengan cara mengalikan skor ternormalisasi (r_{ii}) dengan bobot dari kriteria (w_i), menggunakan persamaan:

$$y_{ij} = w_i \times X *_{ij}$$

dengan ketentuan nilai bobot jenis kriteria maximum *lebih besar* dari nilai bobot jenis kriteria minimum .Perkalian Bobot Kriteria Terhadap Nilai Atribut Maximum dikurang Perkalian Bobot Kriteria Terhadap Nilai Atribut Minimum, jika dirumuskan maka:

$$y_i = \sum_{j=1}^{g} w_j x_{ij}^* - \sum_{j=g+1}^{n} w_j x_{ij}^*$$

i = 1, 2, ..., g- kriteria/atribut dengan status maximized;
 i = g+1, g+2, ..., n- kriteria/atribut dengan status minimized;
 W_j = bobot terhadap j
 y_i = nilai penilaian yang telah dinormalisasi dari alternatif 1 th terhadap semua attribut.

5. Menentukan Nilai Rangking dari hasil perhitungan(Yi)
Alternatif keputusan harus diberi peringkat urutan preferensi sesuai dengan penurunan nilai
Yi*. Penilaian nilai dapat positif atau negatif tergantung pada situasi dan kriteria nilai prioritas.

B. Contoh Kasus Metode MOORA

Tentukan salah satu guru yang layak untuk mendapat promosi jabatan di SMA RM dengan menggunakan metode Moora. Guru yang dipilih yang prestasi khusus baik, sifat kepemimpinan baik, tidak terlalu sibuk/ aktif, absensi (ketidak hadiran) sedikit, mempunyai keahlian untuk ekstrakulikuler, dan hubungan sejawat baik. Diketahui Kriteria dan alternatif sebagai berikut:

No	Kriteria	Keterangan	Bobot/w
1	C1	Memiliki Prestasi Khusus	0,290
2	C2	Mempunyai Sifat Kepemimpinan	0,173
3	C3	Keaktifan Dalam Sekolah	0,091
4	C4	Absensi (ketidak hadiran)	0,162
5	C5	Memiliki Ekstrakulikuler	0,080
6	C6	Hubungan Antar Sejawat	0,204

No	Alternatif	Keterangan
1	A1	Hamdi.,S.Pd
2	A2	Purwanto.,S.Pd
3	A3	L.Subhan.,M.Pd
4	A4	Dewi Rosatika.,S.Pd
5	A5	Tati Sunarti.,S.Pd

Langkah- langkah penyelesaian dengan Metode MOORA adalah sebagai berikut:

1. *Mengidentifikasi attribut dan menginputkan nilai* benefit attribute= C1,C2,C5,C6 dan cost attribute = C3,C4

	Skala penilaian					
Kode	Nama Kriteria	Keterangan	Nilai			
C1	Memiliki Prestasi khusus	Ya	1			
		Tidak	0			
C2	Memiliki Sifat	Ya	1			
02	Kepemimpinan	Tidak	0			
	Keaktifan Dalam	Sangat aktif	4			
C3	Sekolah	Cukup aktif	3			
		Kurang aktif	2			
		Tidak aktif	1			
C4	Absensi (ketidakhadiran)	Sangat rajin	4			
C4	Absertsi (ketidakiladilali)	Cukup rajin	3			
		Kurang rajin	2			
		Tidak rajin	1			
C5	Mempunyai	Ya	1			
CS	Ektrakulikuler	Tidak	0			
		Sangat baik	4			
C6	Hubungan Antar Sejawat	Cukup baik	3			
	Habangan Antai Sejawat	Kurang baik	2			
		Tidak baik	1			

Memasukkan data real(asli) setiap alternatif untuk tiap kriteria sebagai berikut:

	C1	C2	С3	C4	C5	C6
A1	Ya	Ya	Cukup aktif	Sangat rajin	Ya	Sangat baik
A2	Ya	Ya	Sangat aktif	Cukup rajin	Ya	Cukup baik
A3	Ya	Ya	Sangat aktif	Sangat rajin	Ya	Sangat baik
A4	Ya	Ya	Cukup aktif	Cukup rajin	Tidak	Cukup baik
A5	Ya	Ya	Cukup aktif	Cukup rajin	Ya	Sangat baik

2. Membuat matriks keputusan (X)

	C1	C2	C3	C4	C5	C6
A1	1	1	3	4	1	4
A2	1	1	4	3	1	3
A3	1	1	4	4	1	4
A4	1	1	3	3	0	3
A5	1	1	3	3	1	4

3. Matriks Normalisasi (
$$X^*_{ij}$$
)
$$X_{11} = \frac{1}{\sqrt{(1^2+1^2+1^2+1^2+1^2)}} = 0,447$$

$$X^*_{ij} = \frac{x_{ij}}{\sqrt{\left[\sum_{j=1}^{m} x_{ij}^2\right]}}$$

$$X^*_{ij} = \frac{x_{ij}}{\sqrt{\left[\sum_{j=1}^{m} x_{ij}^2\right]}}$$

	C1	C2	C3	C4	C5	C6
A1	0,447	0,447	0,391	0,521	0,500	0,492
A2	0,447	0,447	0,521	0,391	0,500	0,369
А3	0,447	0,447	0,521	0,521	0,500	0,492
A4	0,447	0,447	0,391	0,391	0	0,369
A5	0,447	0,447	0,391	0,391	0,500	0,492

4. Menghitungan Nilai Optimasi Multiobjektif (dari normalisasi terbobot)

Bobot(w)	0,290	0,173	0,091	0,162	0,080	0,204
	C1	C2	C3	C4	C5	C6
A1	0,130	0,077	0,036	0,084	0,040	0,100
A2	0,130	0,077	0,047	0,063	0,040	0,075
А3	0,130	0,077	0,047	0,084	0,040	0,100
A4	0,130	0,077	0,036	0,063	0,000	0,075
A5	0,130	0,077	0,036	0,063	0,040	0,100

Diketahui:

Max (benefit attribute)= C1+C2+C5+C6

Min (cost attribute) = C3+C4

Yi = Max - Min

Alternatif	Max(C1+C2+C5+C6)	Min (C3+C4)	Nilai Yi = Max - Min
A1	0,348	0,120	0,228
A2	0,322	0,111	0,212
А3	0,348	0,132	0,216
A4	0,282	0,099	0,184
A5	0,348	0,099	0,249

5. Menentukan Nilai Rangking dari hasil perhitungan (Yi)

Alternatif	Nilai Yi = Max - Min	Ranking
A1	0,228	2
A2	0,212	4
А3	0,216	3
A4	0,184	5
A5	<mark>0,249</mark>	1

Kesimpulan:

Berdasarkan Sistem pendukung keputusan metode MOORA diketahui salah satu guru yang layak untuk mendapat promosi jabatan di SMA RM adalah alternative A5 (Tati Sunarti.,S.Pd)

TUGAS KELOMPOK:

1. Buatlah Sistem Pendukung Keputusan untuk memilih kuota 5 Peserta teratas yang layak sebagai penerima bantuan BPJS untuk masyarakat ekonomi rendah, dengan keterangan sebagai berikut:

Krteria	Keterangan	Bobot(W)	Attribute
C1	Pendapatan	0,25	Cost
C2	Lamanya Warga Tinggal(tahun)	0,2	Benefit
C3	Perkerjaan	0,2	Cost
C4	Jenis Dinding Rumah	0,2	Cost
C5	Jenis Lantai Rumah	0,15	Cost

A	Alternatif
A1	Adelan
A2	Suwito
A3	Manisem
A4	Kardik
A5	Mislam
A6	Sukirah
A7	Nuriadi
A8	Sutiyem
A9	Poniman
A0	Sugiatik

Pembobotan kriteria (C3, C4 dan C5)

C3	Nilai	Bobot
Tukang	Sangat	0,25
becak	kurang	0,23
Petani	Kurang	0,5
Wiraswasta	Cukup	0,75
Karyawan	baik	1

C4	Nilai	Bobot	
Dinding tepas	Sangat kurang	0,25	
Dinding dari papan	Kurang	0,5	
Dinding permanen/batu	Cukup	0,75	
Dinding tergolong mewah	Baik	1	

C5	Nilai	Bobot	
Lantai tanah	Sangat kurang	0,5	
Lantai semen	Kurang	0,25	
Lantai rumah keramik	cukup	0,75	

Data Calon peserta Bantuan BPJS							
Alternatif	C ₁	C2	C3	C4	C5		
Adelan	500.000	15	Tukang Becak	Papan	Semen		
Suwito	600.000	6	Petani	Papan	Semen		
Manisem	1.000.000	3	Wiraswasta	Papan	Tanah		
Kardik	650.000	10	Petani	Papan	Semen		
Mislam	500.000	7	Tukang Becak	Papan	Semen		
Sukirah	600.000	3	Petani	Tepas	Tanah		
Nuriadi	400.000	5	Tukang Becak	Tepas	Tanah		
Sutiyem	700.000	10	Petani	Papan	Semen		
Poniman	500.000	8	Tukang Becak	Papan	Semen		
Sugiatik	1.200.000	10	Wiraswasta	Papan	Semen		

2. Buatlah 1 contoh kasus dan penyelesaian masalah penentuan keputusan dengan metode MOORA.