第2节正定二次型

安徽财经大学

统计与应用数学学院

安徽财经大学

二次型

$$f(x_1, x_2, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2$$
 (5.1)

具有如下特性: 对任意一组不全为零的实数 a_1, a_2, \cdots, a_n , 都有

$$f(a_1, a_2, \dots, a_n) = a_1^2 + a_2^2 + \dots + a_n^2 > 0.$$

二次型

$$g(x_1, x_2, \dots, x_n) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_p^2$$

则不具备这样的性质

二次型

$$f(x_1, x_2, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2$$
 (5.1)

具有如下特性: 对任意一组不全为零的实数 a_1, a_2, \cdots, a_n , 都有

$$f(a_1, a_2, \dots, a_n) = a_1^2 + a_2^2 + \dots + a_n^2 > 0.$$

二次型

$$g(x_1, x_2, \dots, x_n) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_n^2$$

则不具备这样的性质.

定义 (5.2.1)

若对任一非零实向量 X, 都使二次型 $f(X) = X^{T}AX > 0$, 则称 f(X) 为正定二次型, f(X) 的矩阵 A 称为正定矩阵.

换句话说, 若对任意一组不全为零的实数 a_1, a_2, \dots, a_n , 都使 $f(a_1, a_2, \dots, a_n) > 0$, 则二次型 $f(x_1, x_2, \dots, x_n)$ 是正定二次型. 例如, 式 (5.1) 所示的二次型就是正定二次型. 对于一般的二次型, 下面的定理可以判断它是否正定.

定理 (5.2.1)

定义 (5.2.1)

若对任一非零实向量 X, 都使二次型 $f(X) = X^{T}AX > 0$, 则称 f(X) 为正定二次型, f(X) 的矩阵 A 称为正定矩阵.

换句话说, 若对任意一组不全为零的实数 a_1, a_2, \cdots, a_n , 都使 $f(a_1, a_2, \cdots, a_n) > 0$, 则二次型 $f(x_1, x_2, \cdots, x_n)$ 是正定二次型. 例如, 式 (5.1) 所示的二次型就是正定二次型. 对于一般的二次型, 下面的定理可以判断它是否正定.

定理 (5.2.1)

二次型 $f(X) = X^T A X$ 为正定二次型的充要条件是对称矩阵 A 的特征值全为正数.

定义 (5.2.1)

若对任一非零实向量 X, 都使二次型 $f(X) = X^{T}AX > 0$, 则称 f(X) 为正定二次型, f(X) 的矩阵 A 称为正定矩阵.

换句话说, 若对任意一组不全为零的实数 a_1, a_2, \cdots, a_n , 都使 $f(a_1, a_2, \cdots, a_n) > 0$, 则二次型 $f(x_1, x_2, \cdots, x_n)$ 是正定二次型. 例如, 式 (5.1) 所示的二次型就是正定二次型. 对于一般的二次型, 下面的定理可以判断它是否正定.

定理 (5.2.1)

安徽财经大学

设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则通过正交变换 X = CY 可将 f(X) 化为

$$f(\mathbf{X}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = g(\mathbf{Y}).$$

充分性 设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 全为正数,则对任一非零实向量 $Y \neq 0$,均有 g(Y) > 0. 故对任一非零实向量 X,可得非零实向量 $Y = C^{-1}X$,使 f(X) = g(Y) > 0,故 f(X)是正定二次型.

必要性 用反证法. 设 A 的某个特征值 $\lambda_i \leq 0$, 不妨设 $\lambda_1 \leq 0$, 则对于

$$\mathbf{Y} = (1, 0, \cdots, 0)^{\mathrm{T}},$$

有 $X = CY \neq 0$,而

$$f(\mathbf{X}) = g(\mathbf{Y}) = \lambda_1 \leqslant 0,$$

这与 f(X) 是正定二次型矛盾, 故 $\lambda_1, \lambda_2, \dots, \lambda_n$ 全为正数

线性代数

设 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 则通过正交变换 X = CY 可将 f(X)化为

$$f(\mathbf{X}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = g(\mathbf{Y}).$$

设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数, 则对任一非零实向量 $Y \neq 0$, 均有 q(Y) > 0. 故对任一非零实向量 X, 可得非零实向量 $Y = C^{-1}X$, 使 f(X) = q(Y) > 0, 故 f(X) 是正定二次型.

必要性 用反证法. 设 *A* 的某个特征值 $\lambda_i \leq 0$, 不妨设 $\lambda_1 \leq 0$, 则对于

$$Y = (1, 0, \cdots, 0)^{\mathrm{T}},$$

$$f(\mathbf{X}) = g(\mathbf{Y}) = \lambda_1 \leqslant 0,$$

设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则通过正交变换 X = CY 可将 f(X) 化为

$$f(\mathbf{X}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = g(\mathbf{Y}).$$

 $\frac{\mathbf{c}}{\mathbf{c}}$ 世 设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数,则对任一非零实向量 $\mathbf{Y} \neq \mathbf{0}$,均有 $g(\mathbf{Y}) > 0$.故对任一非零实向量 \mathbf{X} ,可得非零实向量 $\mathbf{Y} = \mathbf{C}^{-1}\mathbf{X}$,使 $f(\mathbf{X}) = g(\mathbf{Y}) > 0$,故 $f(\mathbf{X})$ 是正定二次型.

必要性 用反证法. 设 A 的某个特征值 $\lambda_i \leq 0$, 不妨设 $\lambda_1 \leq 0$, 则对于

$$\boldsymbol{Y} = (1, 0, \cdots, 0)^{\mathrm{T}},$$

有 $X=CY\neq 0$,而

$$f(\mathbf{X}) = g(\mathbf{Y}) = \lambda_1 \leqslant 0,$$

这与 f(X) 是正定二次型矛盾, 故 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数.

· ◆ □ ▶ ◆**리** ▶ ◆ 현 ▶ ◆ 현 ▶ · · 현

设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则通过正交变换 X = CY 可将 f(X) 化为

$$f(\mathbf{X}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = g(\mathbf{Y}).$$

 $\frac{\mathbf{c}}{\mathbf{c}}$ 世 设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数,则对任一非零实向量 $\mathbf{Y} \neq \mathbf{0}$,均有 $g(\mathbf{Y}) > 0$. 故对任一非零实向量 \mathbf{X} ,可得非零实向量 $\mathbf{Y} = \mathbf{C}^{-1}\mathbf{X}$,使 $f(\mathbf{X}) = g(\mathbf{Y}) > 0$,故 $f(\mathbf{X})$ 是正定二次型.

必要性 用反证法. 设 A 的某个特征值 $\lambda_i \leq 0$, 不妨设 $\lambda_1 \leq 0$, 则对于

$$\boldsymbol{Y} = (1, 0, \cdots, 0)^{\mathrm{T}},$$

有 $X = CY \neq 0$,而

$$f(\mathbf{X}) = g(\mathbf{Y}) = \lambda_1 \leqslant 0,$$

这与 f(X) 是正定二次型矛盾, 故 $\lambda_1, \lambda_2, \dots, \lambda_n$ 全为正数.

安徽财经大学

推论 (5.2.1)

二次型 $f(X) = X^{T}AX$ 是正定二次型的充要条件是 f(X) 的正惯性指数为 n.

事实上,二次型 f(X) 通过正交变换可化为标准形

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

因为可逆线性变换不改变二次型的正负惯性指数,所以可逆线性变换。

5/20

推论 (5.2.1)

二次型 $f(X) = X^{T}AX$ 是正定二次型的充要条件是 f(X) 的正惯性指数为 n.

事实上, 二次型 f(X) 通过正交变换可化为标准形

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

于是, 由定理 1 可得推论 1.

因为可逆线性变换不改变二次型的正负惯性指数, 所以可逆线性变换也 不会改变二次型的正定性。

线性代数 第五章 二次型

推论 (5.2.1)

二次型 $f(X) = X^{T}AX$ 是正定二次型的充要条件是 f(X) 的正惯性指数为 n.

事实上, 二次型 f(X) 通过正交变换可化为标准形

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

于是, 由定理 1 可得推论 1.

因为可逆线性变换不改变二次型的正负惯性指数,所以<mark>可逆线性变换也</mark>不会改变二次型的正定性。

若 n 元二次型 $f(X) = X^{T}AX$ 的正惯性指数为 n, 则其规范形为

$$g(Y) = y_1^2 + y_2^2 + \dots + y_n^2 = Y^T I Y,$$
 (5.2)

故 A 与 I 合同.

反之,若 A 与 I 合同,则 f(X) 的规范形必然是式 (5.2). 于是可得

推论 (5.2.2)

二次型 $f(X) = X^T A X$ 是正定二次型的充要条件是对称矩阵 A 与单位矩阵 I 合同.

若 n 元二次型 $f(X) = X^{T}AX$ 的正惯性指数为 n, 则其规范形为

$$g(Y) = y_1^2 + y_2^2 + \dots + y_n^2 = Y^{\mathrm{T}} I Y,$$
 (5.2)

故 A 与 I 合同.

反之, 若 A 与 I 合同, 则 f(X) 的规范形必然是式 (5.2). 于是可得

推论 (5.2.2)

二次型 $f(X) = X^T A X$ 是正定二次型的充要条件是对称矩阵 A 与单位矩阵 I 合同.

若 n 元二次型 $f(X) = X^{T}AX$ 的正惯性指数为 n, 则其规范形为

$$g(\mathbf{Y}) = y_1^2 + y_2^2 + \dots + y_n^2 = \mathbf{Y}^{\mathrm{T}} \mathbf{I} \mathbf{Y},$$
 (5.2)

故 A 与 I 合同.

反之, 若 A 与 I 合同, 则 f(X) 的规范形必然是式 (5.2). 于是可得

推论 (5.2.2)

二次型 $f(X) = X^{T}AX$ 是正定二次型的充要条件是对称矩阵 A 与单位矩阵 I 合同.

有时需要直接从二次型 $f(X) = X^T A X$ 的矩阵 A 判断 f(X) 是否为正定二次型. 为此, 我们先引入顺序主子式的概念.

定义 (5.2.2)

对于 n 阶矩阵 $A = (a_{ij})_{n \times n}$, 子式

$$P_{k} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$
 $(k = 1, 2, \cdots, n)$

称为 A 的顺序主子式

有了这个概念,我们不加证明地给出下面的定理

有时需要直接从二次型 $f(X) = X^{T} A X$ 的矩阵 A 判断 f(X) 是否为正定 二次型, 为此, 我们先引入顺序主子式的概念,

定义 (5.2.2)

对于 n 阶矩阵 $\mathbf{A} = (a_{ij})_{n \times n}$, 子式

$$P_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix} \quad (k = 1, 2, \dots, n)$$

称为 A 的顺序主子式.

有了这个概念, 我们不加证明地给出下面的定理:

7/20

线性代数 第五章 二次型

定理 (5.2.2)

二次型 $f(X) = X^T A X$ 是正定二次型的充要条件是对称矩阵 A 的所有顺序主子式全大于零.

例 (5.2.1)

二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$, 当 t 取何值时, f 为正定二次型?

8/20

定理 (5.2.2)

二次型 $f(X) = X^{T}AX$ 是正定二次型的充要条件是对称矩阵 A 的所有 顺序主子式全大干零

例 (5.2.1)

二次型
$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$
, 当 t 取何值时, f 为正定二次型?

解

$$f$$
的矩阵为 $A = \begin{pmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{pmatrix}$, A 的顺序主子式为

$$P_1 = 1, P_2 = \begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} = 4 - t^2,$$

$$P_3 = \begin{vmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = -4t^2 - 4t + 8 = -4(t-1)(t+2).$$

由于 $P_1 = 1 > 0$, 故 f 正定的充要条件是 $P_2 > 0$ 且 $P_3 > 0$, 即

$$\begin{cases} 4 - t^2 > 0, \\ -4(t-1)(t+2) > 0, \end{cases}$$

解得 -2 < t < 1. 故当 -2 < t < 1 时, f 正定

◆ロト ◆問 ▶ ◆ 恵 ▶ ◆ 恵 ・ かへぐ

解

$$f$$
的矩阵为 $A = \begin{pmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{pmatrix}$, A 的顺序主子式为

$$P_1 = 1, P_2 = \begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} = 4 - t^2,$$

$$P_3 = \begin{vmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = -4t^2 - 4t + 8 = -4(t-1)(t+2).$$

由于 $P_1 = 1 > 0$, 故 f 正定的充要条件是 $P_2 > 0$ 且 $P_3 > 0$, 即

$$\begin{cases} 4 - t^2 > 0, \\ -4(t-1)(t+2) > 0, \end{cases}$$

解得 -2 < t < 1. 故当 -2 < t < 1 时, f 正定.

因为正定二次型 $f(X) = X^T A X$ 的矩阵 A 称为正定矩阵, 所以 f(X) 正定的充要条件是 A 为正定矩阵. 与二次型的正定性判断相平行, 可得下面的结论:

定理 (5.2.3)

对于实对称矩阵 A, 下列命题等价.

- 1° A 是正定矩阵
- 2° A 的特征值全为正数 β
- 3° A 与单位矩阵 I 合同f
- 4° A 的顺序主子式全大干零

因为正定二次型 $f(X) = X^T A X$ 的矩阵 A 称为正定矩阵, 所以 f(X) 正定的充要条件是 A 为正定矩阵. 与二次型的正定性判断相平行, 可得下面的结论:

定理 (5.2.3)

对于实对称矩阵 A, 下列命题等价:

- 1° A 是正定矩阵;
- 2° A 的特征值全为正数;
- 3° A 与单位矩阵 I 合同;
- 4° A 的顺序主子式全大干零.

例 (5.2.2)

证明正定矩阵 A 的逆矩阵 A^{-1} 也是正定矩阵.

由于我们定义的正定矩阵 A 首先是一个实对称矩阵,而 $\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}=A^{-1}$,故 A^{-1} 也是一个实对称矩阵.

证明

证一 因为 A 是正定矩阵, 所以 A 的特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$ 全为正数, 且存在正交矩阵 C, 使 $C^{-1}AC = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, 于是

$$C^{-1}A^{-1}C = (C^{-1}AC)^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}\right),$$

所以 A^{-1} 的特征值 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}$ 全为正数, 故 A^{-1} 为正定矩阵.

例 (5.2.2)

证明正定矩阵 A 的逆矩阵 A^{-1} 也是正定矩阵.

由于我们定义的正定矩阵 A 首先是一个实对称矩阵,而 $\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}=A^{-1}$,故 A^{-1} 也是一个实对称矩阵.

证明.

证一 因为 A 是正定矩阵, 所以 A 的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数, 且存在正交矩阵 C, 使 $C^{-1}AC = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, 于是

$$C^{-1}A^{-1}C = (C^{-1}AC)^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}\right),$$

所以 A^{-1} 的特征值 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}$ 全为正数, 故 A^{-1} 为正定矩阵

例 (5.2.2)

证明正定矩阵 A 的逆矩阵 A^{-1} 也是正定矩阵.

由于我们定义的正定矩阵 A 首先是一个实对称矩阵,而 $\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}=A^{-1}$,故 A^{-1} 也是一个实对称矩阵.

证明.

证一 因为 A 是正定矩阵, 所以 A 的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 全为正数, 且存在正交矩阵 C, 使 $C^{-1}AC = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, 于是

$$C^{-1}A^{-1}C = (C^{-1}AC)^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}\right),$$

所以 A^{-1} 的特征值 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}$ 全为正数, 故 A^{-1} 为正定矩阵.

 $\frac{\mathrm{irr}}{\mathrm{irr}}$ 因为 A 是正定矩阵,所以 A 与单位矩阵 I 合同,即存在可逆矩阵 P,使

$$\boldsymbol{A} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{P} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P},$$

所以

$$oldsymbol{A}^{-1} = \left(oldsymbol{P}^{\mathrm{T}}oldsymbol{P}
ight)^{-1} = oldsymbol{P}^{-1}\left(oldsymbol{P}^{\mathrm{T}}
ight)^{-1} = oldsymbol{P}^{-1}\left(oldsymbol{P}^{-1}
ight)^{\mathrm{T}} = oldsymbol{P}^{-1}oldsymbol{I}\left(oldsymbol{P}^{-1}
ight)^{\mathrm{T}}$$

于是, A^{-1} 与单位矩阵 I 合同

证三 设 $f(X) = X^{T}A^{-1}X$, 作可逆线性变换 X = AY, 得

$$X^{\mathrm{T}}A^{-1}X = Y^{\mathrm{T}}A^{\mathrm{T}}A^{-1}AY = Y^{\mathrm{T}}AY,$$

可逆线性变换不改变二次型的正定性,而 Y^TAY 是正定二次型,故 $X^TA^{-1}X$ 也是正定二次型,因此矩阵 A^{-1} 是正定矩阵.

 $\frac{\mathbf{LL}}{\mathbf{LL}}$ 因为 A 是正定矩阵, 所以 A 与单位矩阵 I 合同, 即存在可逆矩阵 P, 使

$$\boldsymbol{A} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{P} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P},$$

所以

$$\boldsymbol{A}^{-1} = \left(\boldsymbol{P}^{\mathrm{T}}\boldsymbol{P}\right)^{-1} = \boldsymbol{P}^{-1}\left(\boldsymbol{P}^{\mathrm{T}}\right)^{-1} = \boldsymbol{P}^{-1}\left(\boldsymbol{P}^{-1}\right)^{\mathrm{T}} = \boldsymbol{P}^{-1}\boldsymbol{I}\left(\boldsymbol{P}^{-1}\right)^{\mathrm{T}},$$

于是, A^{-1} 与单位矩阵 I 合同.

证三 设 $f(X) = X^{T}A^{-1}X$, 作可逆线性变换 X = AY, 得

$$X^{\mathrm{T}}A^{-1}X = Y^{\mathrm{T}}A^{\mathrm{T}}A^{-1}AY = Y^{\mathrm{T}}AY,$$

可逆线性变换不改变二次型的正定性,而 Y^TAY 是正定二次型,故 $X^TA^{-1}X$ 也是正定二次型,因此矩阵 A^{-1} 是正定矩阵.

线性代数 第三

 $\frac{\mathrm{ir}}{\mathrm{ir}}$ 因为 A 是正定矩阵,所以 A 与单位矩阵 I 合同,即存在可逆矩阵 P,使

$$\boldsymbol{A} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{P} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P},$$

所以

$$A^{-1} = (P^{T}P)^{-1} = P^{-1}(P^{T})^{-1} = P^{-1}(P^{-1})^{T} = P^{-1}I(P^{-1})^{T},$$

于是, A^{-1} 与单位矩阵 I 合同.

证三 设 $f(X) = X^{T}A^{-1}X$, 作可逆线性变换 X = AY, 得

$$\mathbf{X}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{X} = \mathbf{Y}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{A}\mathbf{Y} = \mathbf{Y}^{\mathrm{T}}\mathbf{A}\mathbf{Y},$$

可逆线性变换不改变二次型的正定性,而 Y^TAY 是正定二次型,故 $X^TA^{-1}X$ 也是正定二次型,因此矩阵 A^{-1} 是正定矩阵.

 $\frac{\mathrm{ir}}{\mathrm{ir}}$ 因为 A 是正定矩阵, 所以 A 与单位矩阵 I 合同, 即存在可逆矩阵 P, 使

$$\boldsymbol{A} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{P} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P},$$

所以

$$A^{-1} = (P^{T}P)^{-1} = P^{-1}(P^{T})^{-1} = P^{-1}(P^{-1})^{T} = P^{-1}I(P^{-1})^{T},$$

于是, A^{-1} 与单位矩阵 I 合同.

证三 设 $f(X) = X^{T}A^{-1}X$, 作可逆线性变换 X = AY, 得

$$\boldsymbol{X}^{\mathrm{T}}\boldsymbol{A}^{-1}\boldsymbol{X} = \boldsymbol{Y}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}^{-1}\boldsymbol{A}\,\boldsymbol{Y} = \boldsymbol{Y}^{\mathrm{T}}\boldsymbol{A}\,\boldsymbol{Y},$$

可逆线性变换不改变二次型的正定性,而 Y^TAY 是正定二次型,故 $X^TA^{-1}X$ 也是正定二次型,因此矩阵 A^{-1} 是正定矩阵.

与正定二次型相对应, 我们还可以讨论负定二次型、半正定二次型与半 负定二次型.

定义 (5.2.3)

对于二次型 $f(X) = X^{T}AX$ 及任一非零实向量 X,

- 1° 若 $f(X) = X^{T}AX < 0$, 则称 f(X) 是负定二次型;
- 2° 若 $f(X) = X^{T}AX \ge 0$,则称 f(X) 是半正定二次型;
- 3° 若 $f(X) = X^{T}AX \leq 0$, 则称 f(X) 是半负定二次型;
- 4° 不是正定、半正定、负定、半负定的二次型称为不定二次型。

13 / 20

负定二次型的判定

定理 (5.2.4)

对于二次型 $f(X) = X^T A X$, 下列命题等价:

- 1° f(X) 为负定二次型;
- 2° f(X) 的特征值全为负数;
- 3° f(X) 的负惯性指数为 n;
- 4° f(X) 的矩阵 A 的顺序主子式满足 $(-1)^{k}P_{k} > 0$ $(k = 1, 2, \dots, n)$.

事实上,由正定二次型与负定二次型的定义可知, $f(X)=X^{\mathrm{T}}AX$ 为负定二次型的充要条件是 $-f(X)=-X^{\mathrm{T}}AX$ 为正定二次型.

值得注意的是, $f(X) = X^T A X$ 是负定二次型的充要条件不是顺序主子式全小干零, 而是按照子式阶数的奇偶性呈现出奇负偶正的特点。

负定二次型的判定

定理 (5.2.4)

对于二次型 $f(X) = X^T A X$, 下列命题等价:

- 1° f(X) 为负定二次型;
- 2° f(X) 的特征值全为负数;
- 3° f(X) 的负惯性指数为 n;
- 4° f(X) 的矩阵 A 的顺序主子式满足 $(-1)^{k}P_{k} > 0$ $(k = 1, 2, \dots, n)$.

事实上,由正定二次型与负定二次型的定义可知, $f(X) = X^T A X$ 为负定二次型的充要条件是 $-f(X) = -X^T A X$ 为正定二次型.

值得注意的是, $f(X) = X^T A X$ 是负定二次型的充要条件不是顺序主子式全小干零, 而是按照子式阶数的奇偶性呈现出奇负偶正的特点.

4 □ → 4 圖 → 4 필 → 4 필

负定二次型的判定

定理 (5.2.4)

对于二次型 $f(X) = X^T A X$, 下列命题等价:

- 1° f(X) 为负定二次型;
- 2° f(X) 的特征值全为负数;
- 3° f(X) 的负惯性指数为 n;
- 4° f(X) 的矩阵 A 的顺序主子式满足 $(-1)^{k}P_{k} > 0$ $(k = 1, 2, \dots, n)$.

事实上,由正定二次型与负定二次型的定义可知, $f(X) = X^T A X$ 为负定二次型的充要条件是 $-f(X) = -X^T A X$ 为正定二次型.

值得注意的是, $f(X) = X^T A X$ 是负定二次型的充要条件不是顺序主子式全小干零. 而是按照子式阶数的奇偶性呈现出奇负偶正的特点.

14 / 20

例 (5.2.3)

判断二次型 $f(x_1, x_2, x_3) = -5x_1^2 - 6x_2^2 - 4x_3^2 + 4x_1x_2 + 4x_1x_3$ 是否为负定二次型.

解

f的矩阵为

$$\mathbf{A} = \left(\begin{array}{rrr} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{array} \right).$$

因为
$$(-1)P_1 = -|-5| > 0$$
, $(-1)^2 P_2 = \begin{vmatrix} -5 & 2 \\ 2 & -6 \end{vmatrix} = 26 > 0$

$$(-1)^3 P_3 = - \begin{vmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{vmatrix} = 80 > 0,$$

所以 ƒ 是负定二次型

例 (5.2.3)

判断二次型 $f(x_1, x_2, x_3) = -5x_1^2 - 6x_2^2 - 4x_3^2 + 4x_1x_2 + 4x_1x_3$ 是否为负定二次型.

解

f 的矩阵为

$$\mathbf{A} = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}.$$

因为
$$(-1)P_1 = -|-5| > 0$$
, $(-1)^2 P_2 = \begin{vmatrix} -5 & 2 \\ 2 & -6 \end{vmatrix} = 26 > 0$,

$$(-1)^3 P_3 = - \begin{vmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{vmatrix} = 80 > 0,$$

所以 f 是负定二次型.

例 (5.2.4)

设矩阵
$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\boldsymbol{B} = (k\boldsymbol{I} + \boldsymbol{A})^2$. 求对角矩阵 $\boldsymbol{\Lambda}$, 使 $\boldsymbol{B} \sim \boldsymbol{\Lambda}$,

并确定 k 为何值时, B 为正定矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2$$

A 的特征值为 $\lambda_1=2$ (2 重), $\lambda_2=0$. 因为 A 为实对称矩阵, 所以存在 正交矩阵 P, 使

$$\boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{D} = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right),$$

$$A = (P^{T})^{-1} DP^{-1} = PDP^{T},$$

例 (5.2.4)

设矩阵
$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\boldsymbol{B} = (k\boldsymbol{I} + \boldsymbol{A})^2$. 求对角矩阵 $\boldsymbol{\Lambda}$, 使 $\boldsymbol{B} \sim \boldsymbol{\Lambda}$,

并确定 k 为何值时, B 为正定矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2.$$

A 的特征值为 $\lambda_1=2$ (2 重), $\lambda_2=0$. 因为 A 为实对称矩阵, 所以存在 正交矩阵 P. 使

$$\mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A = (P^{\mathrm{T}})^{-1}DP^{-1} = PDP^{\mathrm{T}}$

例 (5.2.4)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = (k\mathbf{I} + \mathbf{A})^2$. 求对角矩阵 $\mathbf{\Lambda}$, 使 $\mathbf{B} \sim \mathbf{\Lambda}$,

并确定 k 为何值时, B 为正定矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2.$$

 $m{A}$ 的特征值为 $\lambda_1=2$ (2 重), $\lambda_2=0$. 因为 $m{A}$ 为实对称矩阵, 所以存在 正交矩阵 $m{P}$, 使

$$oldsymbol{P}^{\mathrm{T}}oldsymbol{A}oldsymbol{P} = oldsymbol{D} = \left(egin{array}{ccc} 2 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 0 \end{array}
ight),$$

$$\boldsymbol{A} = (\boldsymbol{P}^{\mathrm{T}})^{-1} \boldsymbol{D} \boldsymbol{P}^{-1} = \boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{\mathrm{T}},$$

解

于是

$$B = (kI + A)^{2} = (kPP^{T} + PDP^{T})^{2}$$

$$= [P(kI + D)P^{T}] [P(kI + D)P^{T}]$$

$$= P(kI + D)^{2}P^{T}$$

$$= P\begin{pmatrix} (k + 2)^{2} & \\ & k^{2} \end{pmatrix} P^{T}.$$

令
$$\boldsymbol{\Lambda} = \begin{pmatrix} (k+2)^2 \\ (k+2)^2 \\ k^2 \end{pmatrix}$$
,则 $\boldsymbol{B} \sim \boldsymbol{\Lambda}$.

解

于是

$$B = (kI + A)^{2} = (kPP^{T} + PDP^{T})^{2}$$

$$= [P(kI + D)P^{T}] [P(kI + D)P^{T}]$$

$$= P(kI + D)^{2}P^{T}$$

$$= P\begin{pmatrix} (k+2)^{2} & \\ & k^{2} \end{pmatrix} P^{T}.$$

令
$$\boldsymbol{\Lambda} = \begin{pmatrix} (k+2)^2 & \\ & (k+2)^2 & \\ & k^2 \end{pmatrix}$$
, 则 $\boldsymbol{B} \sim \boldsymbol{\Lambda}$.

由此可知, 当 $k \neq -2$ 且 $k \neq 0$ 时, B 的特征值全为正实数, 此时 B 为正定矩阵.

小结 (I)

- 正定二次型的定义:
 - 若对任一非零实向量 X, 都使二次型 $f(X) = X^{T}AX > 0$, 则称 f(X) 为正定二次型, f(X) 的矩阵 A 称为正定矩阵.
- 可逆线性变换不改变二次型的秩,不改变二次型的正负惯性指数,不 改变二次型的正定性。
- 正定二次型的充要条件:
 - (1) $f(X) = X^T A X$ 是正定的 \Leftrightarrow 对称矩阵 A 的特征值全为正数.
 - (2) $f(X) = X^{T}AX$ 是正定的 $\Leftrightarrow f(X)$ 的正惯性指数为 n.
 - (3) $f(X) = X^{T}AX$ 是正定的 \Leftrightarrow 对称矩阵 A 与单位矩阵 I 合同.
 - $f(X) = X^T A X$ 是正定的 \Leftrightarrow 对称矩阵 A 的所有顺序主子式全大于零.

小结 (Ⅱ)

- 正定矩阵的判定: 对于实对称矩阵 A, 下列命题等价:
 - **A** 是正定矩阵:
 - **A** 的特征值全为正数:
 - 3° A 的正惯性指数为 n:
 - 4° A 与单位矩阵 I 合同:
 - A 的顺序主子式全大于零.
- 负定二次型、半正定二次型与半负定二次型
- 负定二次型的判定: 二次型 $f(X) = X^T A X$, 下列命题等价:
 - f(X) 为负定二次型;
 - $-f(X) = X^{\mathrm{T}}(-A)X$ 为正定二次型 (-A) 为正定矩阵);
 - 3° f(X) 的特征值全为负数;
 - f(X) 的负惯性指数为 n;
 - 5° 对称矩阵 A 与 -I 合同:
 - **A** 的顺序主子式满足 $(-1)^k P_k > 0$ $(k = 1, 2, \dots, n)$. 6°

小结 (Ⅲ)

正定矩阵的性质:

- 若 A 为正定矩阵,则 A⁻¹ 也为正定矩阵.
- n 阶正定矩阵 $A = (a_{ij})$ 的主对角线元素为正数, 即 $a_{ii} > 0$, i = 1, 2, ..., n.
- 若 A 为正定矩阵, 则 A^k 也为正定矩阵, 其中 k 为正整数.
- 若 A 和 B 均为正定矩阵, 则 A + B 也为正定矩阵.
- 若 A 为正定矩阵,则 A 的特征值均大于零.
- 若 A 为正定矩阵,则 |A| > 0.

