21MAB101T - CALCULUS AND LINEAR ALGEBRA

Dr. M.SURESH
Assistant Professor
Department of Mathematics
SRM Institute of Science and Technology
Kattankulathur

September 5, 2024

Theorem

Every square matrix satisfies its own characteristic equation.

Application of the Cayley-Hamilton theorem

- 1. The inverse of any nonsingular square matrix can be calculated.
- 2. The higher positive integral power of the matrix A can be found out.

Examples-1

Verify Cayley-Hamilton theorem for the matrix

$$\left(\begin{array}{ccc}
1 & 3 & 7 \\
4 & 2 & 3 \\
1 & 2 & 1
\end{array}\right)$$

Solution. The characteristic equation is $|A - \lambda I| = 0$

Let
$$A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

The general form of characteristic equation is

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = \text{Sum of the main diagonal entries} \Rightarrow S_1 = 4$$

$$S_2$$
= Sum of the minors of the main diagonal entries $\Rightarrow S_2 = -20$

$$S_3$$
 = Determinant of the matrix A $\Rightarrow S_3 = 35$

The characteristic equation is
$$\lambda^3 - 4\lambda^2 - 20\lambda - 35 = 0$$

By Cayley-Hamilton theorem

$$A^3 - 4A^2 - 20A - 35I = 0$$

$$A^{2} = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix}$$

$$= \begin{pmatrix} 135 & 152 & 232 \\ 140 & 163 & 208 \\ 60 & 76 & 111 \end{pmatrix}$$

$$A^{3} - 4A^{2} - 20A - 35I$$

$$= \begin{pmatrix} 135 & 152 & 232 \\ 140 & 163 & 208 \\ 60 & 76 & 111 \end{pmatrix} - 4 \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix} - 20 \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

$$-35 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 135 & 152 & 232 \\ 140 & 163 & 208 \\ 60 & 76 & 111 \end{pmatrix} - \begin{pmatrix} 80 & 92 & 92 \\ 60 & 88 & 148 \\ 40 & 36 & 56 \end{pmatrix} - \begin{pmatrix} 20 & 60 & 140 \\ 80 & 40 & 60 \\ 20 & 40 & 20 \end{pmatrix}$$

$$- \begin{pmatrix} 35 & 0 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 35 \end{pmatrix}$$

$$A^{3} - 4A^{2} - 20A - 35I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence, Cayley-Hamilton theorem is verified,

$$A^3 - 4A^2 - 20A - 35I = 0$$

Example 2

Find characteristic equation of the matrix

$$A = \left(\begin{array}{rrr} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right).$$

Hence find A^{-1} and A^4 .

Solution. Given that

$$A = \left(\begin{array}{ccc} 2 & -1 & 1\\ -1 & 2 & -1\\ 1 & -1 & 2 \end{array}\right)$$

The characteristic equation is $|A - \lambda I| = 0$

The general form of characteristic equation is

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$
 where

 $S_1 = \text{Sum of the main diagonal entries} \Rightarrow S_1 = 6$

 S_2 = Sum of the minors of the main diagonal entries $\Rightarrow S_2 = 9$

 S_3 = Determinant of the matrix A $\Rightarrow S_3 = 4$

The characteristic equation is $\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$

By Cayley-Hamilton theorem

$$A^{3} - 6A^{2} + 9A - 4I = 0$$
Multiply (1) by A^{-1}

$$A^{2} - 6A + 9I - 4A^{-1} = 0$$

$$A^{-1} = \frac{1}{4}(A^{2} - 6A + 9I)$$
Multiply (1) by A

$$A^{4} - 6A^{3} + 9A^{2} - 4A = 0$$

$$A^{4} = 6A^{3} - 9A^{2} + 4A$$

$$= 6(6A^{2} - 9A + 4I) - 9A^{2} + 4A$$

$$= 27A^{2} - 50A + 24I$$
(3)

$$A^{2} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix}$$

From (2) we have

$$4A^{-1} = A^{2} - 6A + 9I$$

$$= \begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix} - 6 \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} + 9 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix}$$

From (3) we have

$$A^{4} = 27A^{2} - 50A + 24I$$

$$= 27\begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix} - 50\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$+24\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A^{4} = \begin{pmatrix} 86 & -85 & 85 \\ -85 & 86 & -85 \\ 85 & -85 & 86 \end{pmatrix}$$

Example 3

Using Cayley- Hamilton theorem, find A^{-1} when

$$A = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{array}\right).$$

Solution. Given that

$$A = \left(\begin{array}{ccc} 1 & 0 & 3\\ 2 & 1 & -1\\ 1 & -1 & 1 \end{array}\right)$$

The characteristic equation is $|A - \lambda I| = 0$

The general form of characteristic equation is

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = \text{Sum of the main diagonal entries} \Rightarrow S_1 = 3$$

$$S_2$$
= Sum of the minors of the main diagonal entries $\Rightarrow S_2 = -1$

$$S_3$$
 = Determinant of the matrix A $\Rightarrow S_3 = 9$

The characteristic equation is
$$\lambda^3 - 3\lambda^2 - \lambda - 9 = 0$$

By Cayley-Hamilton theorem

$$A^{3} - 3A^{2} - A - 9I = 0$$
Multiply by A^{-1}

$$A^{2} - 3A - I - 9A^{-1} = 0$$

$$A^{-1} = \frac{1}{9}(A^{2} - 3A - I)$$
(5)

$$A^{2} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -3 & 6 \\ 2 & 2 & 4 \\ 0 & -2 & 5 \end{pmatrix}$$

From (2) we have

$$9A^{-1} = A^{2} - 3A - I$$

$$= \begin{pmatrix} 4 & -3 & 6 \\ 2 & 2 & 4 \\ 0 & -2 & 5 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -3 & -3 \\ -3 & -2 & 7 \\ -3 & 1 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{9} \begin{pmatrix} 0 & -3 & -3 \\ -3 & -2 & 7 \\ -3 & 1 & 1 \end{pmatrix}$$

Example. 4

Find
$$A^{-1}$$
 if $A=\begin{pmatrix}1&-1&4\\3&2&-1\\2&1&-1\end{pmatrix}$ using Cayley-Hamilton theorem.

Solution.

Let
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

The characteristic equation is $|A - \lambda I| = 0$

The general form of characteristic equation is

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = \text{Sum of the main diagonal entries} \Rightarrow S_1 = 2$$

$$S_2$$
= Sum of the minors of the main diagonal entries $\Rightarrow S_2 = -5$

$$S_3$$
 = Determinant of the matrix A $\Rightarrow S_3 = 6$

The characteristic equation is
$$\lambda^3 - 2\lambda^2 - 6\lambda - 6 = 0$$

By Cayley-Hamilton theorem

$$A^3 - 2A^2 - 5A + 6I = 0$$

To find A^{-1} , pre-multiply (1) by A^{-1} we get

$$A^{2} - 2A - 5I + 6A^{-1} = 0$$

$$6A^{-1} = -A^{2} + 2A + 5I$$

$$A^{-1} = \frac{1}{6}[-A^{2} + 2A + 5I]$$

$$A^{2} = A \times A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 6 & 1 & 1 \\ 7 & 0 & 11 \\ 3 & -1 & 8 \end{pmatrix}$$

$$-A^{2} + 2A + 5I = \begin{pmatrix} -6 & -1 & -1 \\ -7 & 0 & -11 \\ -3 & 1 & -8 \end{pmatrix} + 2 \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$
$$+5 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{pmatrix}$$

$$A^{-1} = \frac{1}{6}[-A^2 + 2A + 5I] = \frac{1}{6} \begin{pmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{pmatrix}$$

Example-5

Use Cayley-Hamilton theorem to find the value of the matrix given by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$ if the matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{array}\right)$$

Solution.

Let
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

The characteristic equation is $|A - \lambda I| = 0$

The general form of characteristic equation is

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$
 where

$$S_1 = \text{Sum of the main diagonal entries} \Rightarrow S_1 = 5$$

$$S_2$$
= Sum of the minors of the main diagonal entries $\Rightarrow S_2 = 7$

$$S_3$$
 = Determinant of the matrix A $\Rightarrow S_3 = 3$

The characteristic equation is
$$\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$$

$$A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+I$$
 By Cayley-Hamilton theorem

$$A^3 - 5A^2 + 7A - 3I = 0 (6)$$

Given that

$$= (A^{8} - 5A^{7} + 7A^{6} - 3A^{5}) + A^{4} - 5A^{3} + 8A^{2} - 2A + I (7)$$

$$= A^{5}(A^{3} - 5A^{2} + 7A - 3I) + A(A^{3} - 5A^{2} + 8A - 2I) + I$$

$$= A^{5}(0) + A[A^{3} - 5A^{2} + 7A - 3I + A + I] + I$$

$$= 0 + A[0 + A + I] + I$$

$$= A^{2} + A + I$$
(8)

Now

$$A^{2} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{pmatrix}$$

$$A^{2} + A + I = \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$$

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I = \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$$

Example 6

Using Cayley-Hamilton theorem to find

$$A^4 - 4A^3 - 5A^2 + A + 2I$$
 when $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$.

Solution.

Let
$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

The characteristic equation is $|A - \lambda I| = 0$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix} = 0$$
$$(1 - \lambda)(3 - \lambda) - 8 = 0$$
$$\lambda^2 - 4\lambda - 5 = 0$$

By Cayley-Hamilton theorem

$$A^2 - 4A + 5I = 0$$

Now consider

$$A^{4} - 4A^{3} - 5A^{2} + A + 2I = A^{2}(A^{2} - 4A + 5I) + A + 2I$$

$$= A^{2}(0) + A + 2I$$

$$= A + 2I$$

$$= \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 2 \\ 4 & 7 \end{pmatrix}$$

Exercise

Verify Cayley - Hamilton Theorem and find its inverse of the following matrices.

1.
$$\begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{pmatrix}$$

$$2. \quad \left(\begin{array}{ccc} 8 & -6 & 2 \\ -6 & -1 & 2 \\ 2 & -4 & 3 \end{array}\right)$$

$$3. \quad \left(\begin{array}{ccc} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{array}\right)$$

$$4. \quad \left(\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}\right)$$

$$5. \quad \left(\begin{array}{ccc} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{array}\right)$$

$$6. \quad \left(\begin{array}{ccc} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{array}\right)$$

7. If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 Prove that $A^3 - 3A^2 - 9A - 5I = 0$
Hence find A^4 and A^{-1} .

8. Find A^n using Cayley-Hamilton theorem, taking $\begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix}$ also find A^3 .

9. Calculate
$$A^4$$
 for the matrix $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{pmatrix}$.

10. Using Cayley-Hamilton theorem, compute A^3 for

$$A = \left(\begin{array}{cc} 3 & 4 \\ 2 & 3 \end{array}\right).$$

11. Verify Cayley-Hamilton theorem for the matrix

(i)
$$A = \begin{pmatrix} 3 & -1 \\ -1 & 5 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
.

12. Given that
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{pmatrix}$$
, Express

 $A^6 - 5A^5 + 8A^4 - 2A^3 - 9A^2 + 35A + 6I$ as a linear polynomial in A, using Cayley Hamilton theorem.

13. Obtain the matrix $A^6 - 25A^2 + 122A$ where

$$A = \left(\begin{array}{ccc} 0 & 0 & 2\\ 2 & 1 & 0\\ -1 & -1 & 3 \end{array}\right).$$

Answers

1.
$$A^{-1} = \frac{1}{3} \begin{pmatrix} -3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5 \end{pmatrix}$$

1.
$$A^{-1} = \frac{1}{3} \begin{pmatrix} -3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5 \end{pmatrix}$$
 2. $A^{-1} = \frac{1}{45} \begin{pmatrix} 10 & 6 & -2 \\ 6 & 11 & 4 \\ -2 & 4 & 15 \end{pmatrix}$

3.
$$A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & \frac{1}{2} & -2 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$
 4. $A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 \\ 4 & -1 \end{pmatrix}$

4.
$$A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 \\ 4 & -1 \end{pmatrix}$$

5.
$$A^{-1} = \frac{1}{11} \begin{pmatrix} 5 & -1 & -7 \\ -4 & 3 & 10 \\ 3 & -5 & -2 \end{pmatrix}$$
 6. $A^{-1} = \frac{1}{4} \begin{pmatrix} 4 & 4 & -4 \\ -2 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix}$

6.
$$A^{-1} = \frac{1}{4} \begin{pmatrix} 4 & 4 & -4 \\ -2 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix}$$

7.
$$A^4 = \begin{pmatrix} 229 & 228 & 228 \\ 228 & 229 & 228 \\ 228 & 228 & 229 \end{pmatrix}$$
 $A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & 1 & 0 \\ -1 & -1 & 3 \end{pmatrix}$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 & 2\\ 2 & 1 & 0\\ -1 & -1 & 3 \end{pmatrix}$$

8.
$$A^4 = \begin{pmatrix} 463 & 266 \\ 399 & 336 \end{pmatrix}$$

9.
$$A^4 = \begin{pmatrix} 16 & 32 & 567 \\ 0 & 16 & 609 \\ 0 & 0 & 625 \end{pmatrix}$$

10.
$$A^4 = \begin{pmatrix} 41 & 84 \\ 42 & 83 \end{pmatrix}$$