Yufei Lin

Problem Set 2

Sep 17^{th} 2019

Problem Set 2

Chapter 2

1.(i)
$$1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Proof:

Let n = 1, then we have on the left hand side:

$$1^2 = 1$$

Then, on the right hand side:

$$\frac{1 \times (1+1) \times (2 \cdot 1+1)}{6} = \frac{1 \times 2 \times 3}{6}$$
$$= \frac{6}{6}$$
$$= 1$$

Therefore, left hand side equals to right hand side. This claim holds for 1.

Then, assume if n = k, and $1^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6}$.

Let n = k + 1, on the left hand side, we would have:

$$1^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^{2}}{6}$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1) \cdot (k+1)}{6}$$

$$= \frac{((k+1)(2k^{2}+k) + (6k+6)(k+1))}{6}$$

$$= \frac{(k+1)(2k^{2}+k+6k+6)}{6}$$

$$= \frac{(k+1)(2k^{2}+7k+6)}{6}$$

$$= \frac{(k+1)(2k+3)(k+2)}{6}$$

$$= \frac{(k+1)(2(k+1)+1)((k+1)+1)}{6}$$
$$= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

And on the right hand side, we would have:

$$\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

... Left hand side equals to right hand side

The claim holds.

1.(ii)
$$1^3 + \cdots + n^3 = (1 + \cdots + n)^2$$
.

Proof:

Let n = 1, then we would have on the left hand side:

$$1^3 = 1$$

On the right hand side:

$$1^2 = 1$$

Therefore, left hand side equals to right hand side this claim holds for 1.

Then, assume if n = k, and $1^3 + \cdots + k^3 = (1 + \cdots + k)^2$.

Let n = k + 1, on the left hand side, we would have:

$$1^{3} + \dots + k^{3} + (k+1)^{3} = (1 + \dots + k)^{2} + (k+1)^{3}$$

$$= (\frac{k(k+1)}{2})^{2} + (k+1)^{3}$$

$$= (\frac{k^{2}(k+1)^{2}}{4}) + (k+1) \cdot (k+1)^{2}$$

$$= \frac{k^{2}}{4} \cdot (k+1)^{2} + (k+1) \cdot (k+1)^{2}$$

$$= (k+1)^{2} \cdot (\frac{k^{2}}{4} + (k+1))$$

$$= (k+1)^{2} \cdot (\frac{k^{2}}{4} + \frac{4(k+1)}{4})$$

$$= (k+1)^{2} \cdot (\frac{k^{2}}{4} + \frac{4k+4}{4})$$

$$= (k+1)^{2} \cdot \left(\frac{k^{2}+4k+4}{4}\right)$$

$$= (k+1)^{2} \cdot \left(\frac{(k+2)^{2}}{4}\right)$$

$$= (k+1)^{2} \cdot \left(\frac{(k+2)}{2}\right)^{2}$$

$$= (k+1)^{2} \cdot \left(\frac{((k+1)+1)}{2}\right)^{2}$$

$$= \left(\frac{(k+1)((k+1)+1)}{2}\right)^{2}$$

$$= (1+\dots+(k+1))^{2}$$

And on the right hand side, we would have:

$$(1 + \cdots + (k+1))^2$$

: Left hand side equals to right hand side

The claim holds.

2.(i)

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

2.(ii)

$$\sum_{i=1}^{n} (2i-1)^2 = \sum_{i=1}^{2n} (i)^2 - \sum_{i=1}^{n} (2i)^2$$

$$= \sum_{i=1}^{2n} (i)^2 - 4 \sum_{i=1}^{n} (i)^2$$

$$= \frac{(2n)((2n)+1)(2(2n)+1)}{6}$$

$$= \frac{(2n)(2n+1)(4n+1) - 4n(n+1)(2n+1)}{6}$$

$$= \frac{(2n)(2n+1)(4n+1-2n-2)}{6}$$

$$= \frac{(2n)(2n+1)(2n-1)}{6}$$

3.(i) On the right hand side we have:

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{k \cdot n! + (n-k+1) \cdot n!}{k!(n-k+1)!}$$

$$= \frac{(k+n-k+1)n!}{k!((n+1)-k))!}$$

$$= \frac{(n+1)!}{k!((n+1)-k))!}$$

$$= \binom{n+1}{k}$$

... Left hand side is the same as the right hand side.