1092_0701專題報告

ATP網球比賽預測

→ S07240013 簡睿德

▶準備流程

整理 PPT

带入程式

了解模型

收集數據

確認主題、模型

9目的

收集來自2019年和2020年French Open官網提供的數據 共254場比賽,分別先利用Probit模型預測(今年法網前 五輪)球員NADAL比賽的勝負,再用RFECV特徵選取提升 原先模型的精準度,之後再預測一次。

會針對RAFAEL NADAL進行預測是因為他過去再法國網球公開賽都有良好的成績,加上他分別拿下19年和20年的冠軍,比賽的場次和數據量與其他人相比之下多了一些,參考性也高了一點。

Association of Tennis Professionals (ATP)

職業網球聯合會

ATP世界巡迴賽								
賽事類別	賽事數量	冠軍所獲積分						
大滿貫賽事	4	2000						
ATP世界巡迴賽總決賽	1	1100~1500						
ATP世界巡迴賽1000大 師系列賽事	9	1000						
ATP世界巡迴賽500系 列賽事	13	500						
ATP世界巡迴賽250系 列賽事	39	250						
ATP挑戰賽	178	80~125						

澳洲網球公開賽(慢速硬地賽事)

法國網球公開賽(紅土賽事)

溫布頓網球錦標賽(草地賽事)

美國網球公開賽(快速硬地賽事)

比賽時間:每年1月的最後兩個星期

比賽時間:每年5月中到6月初

比賽時間:每年6月底至7月初

比賽時間:每年8月底至9月初

資料敘述

原先EXCEL檔收集19、20年各127場比賽,22種的變數和球員名子,但為了能簡單順利地讀進python,因此將變數改為11種以及把原先每個變數的名稱只取每個單字的第一個字母,方便查看,然而在存成CSV檔。

詳細的變數名詞介紹看下一頁

Player1	Player2	Round	result	p1 sets	p2 sets	pl ace	pl doublep	l lst S∈j	pl 1st Sep	ol 2nd S∈p	1 Net Pop	1Break F	1Return p	l Unforcp2	ace	p2 doublep	2 lst S∈p	2 1st Sep	o2 2nd S∈	p2 Net Popi	Break	p2 Returnpî	Unforced Error
NOVAK DJO	NIKAEL YN		1 () ;	3 () 2	2	0.74	0.6	0.61	0.6	0.82	0.61	22	2	5	0.42	0.67	0.33	0.59	1	0.31	27
BUGO BUGO	RICARD!		1 1	1 () 8	3 2	0	0.6	0.78	0.4	0.57	0	0.33	17	3	1	0.82	0.55	0.48	0.71	0.36	0.44	27
DANIEL EL	CAMERON N		1 () ;	3 2	2 6	0	0.63	0.66	0.45	0.69	0.5	0.49	55	2	6	0.55	0.67	0.43	0.66	0.37	0.43	69
TENNYS SA	HUBERT HI		1 () ;	3 9	2 14	7	0.66	0.6	0.55	0.62	0.33	0.38	51	10	8	0.7	0.62	0.51	0.7	0.5	0.38	77
CRISTIAN	PHILIPP B		1 () ;	3 1	1 7	4	0.73	0.61	0.57	0.68	0.31	0.39	47	1	3	0.61	0.53	0.6	0.61	0.5	0.34	25
TIGO HUMBE	NARC POLA		1 1		1 8	3 8	5	0.72	0.66	0.33	0.34	0.09	0.33	45	3	1	0.71	0.73	0.56	0.81	0.45	0.41	31
JIRI VESE	LIAM BROA		1 () ;	3 1	1 14	1	0.76	0.75	0.62	0.79	0.4	0.44	23	3	1	0.67	0.62	0.38	0.71	0.67	0.27	46
KANIL NAJ	KAREN KHA		1 () () 8	3 8	2	0.64	0.6	0.49	0.63	0.25	0.31	40	6	2	0.78	0.72	0.44	0.47	0.45	0.42	22
O ROBERTO E	RICHARD (1 () ;	3 () 6	0	0.67	0.66	0.56	0.79	0.47	0.5	19	1	4	0.59	0.59	0.36	0.69	0.43	0.37	49
1 YASUTAKA			1 1	1 1) 8	3 6	3	0.65	0.62	0.36	0.53	0.33	0.29	33	3	3	0.78	0.6	0.61	0.75	0.38	0.46	23
2 GUIDO PEL	SALVATORE		1 () ;	3 1	1 9	3	0.71	0.67	0.5	0.71	0.64	0.4	67	5	3	0.63	0.63	0.54	0.66	0.45	0.36	56
3 JOHN WILL	PABLO CAR		1 1	1 1) 8	3 1	2	0.6	0.57	0.32	0.65	0.43	0.36	33	4	0	0.67	0.69	0.56	0.55	0.36	0.52	28
4 JAN-LENNA	FRANCES 1		1 () ;	3 9	2 23	4	0.71	0.58	0.57	0.57	0.4	0.4	61	10	4	0.68	0.56	0.5	0.59	0.3	0.35	52
5 DANIEL AL	FELICIANO		1 () ;	3 (10	1	0.71	0.59	0.57	0.7	0.33	0.45	29	- 11	3	0.57	0.56	0.52	0.58	0.25	0.35	40
6 LLOYD HAF	ALEXET PO		1 () ;	3 (17	1	0.82	0.72	0.63	0.5	0.25	0.33	16	7	7	0.76	0.66	0.5	0.8	0	0.23	36
7 VASEK POS			1 1	1 1) 8	3 3	5	0.6	0.53	0.43	0.52	0	0.23	45	4	2	0.78	0.58	0.74	0.5	0.3	0.48	18
8 DANIIL ME			1 1		1 8		4	0.64	0.6	0.48	0.58	0.56	0.4	0.51	2	6	0.69	0.55	0.49	0.7	0.46	0.43	49
9 ADRIAN NA			1 1	1 1	_		6	0.64	0.53	0.36	0.33	0.5	0.31	51	0	2	0.68	0.56	0.72	1	0.58	0.49	26
O QUENTIN H			1 1		2 8	3 15	15	0.68	0.6	0.47	0.71	0.44	0.39	86	8	1	0.65	0.67	0.54	0.66	0.45	0.41	47
1 THIAGO NO			1 () ;	3 () 6	0	0.78	0.68	0.71	0.75	0.5	0.37	15	0	2	0.62	0.54	0.65	0.64	0	0.24	38
2 DUSAN LAJ			1 (_	1 6	1	0.71	0.73	0.61	0.58	0.29	0.43	35	0	2	0.62	0.67	0.47	0.76	0.57	0.32	48
3 LASLO DJE			1 (3	0.6	0.7	0.3	0.83	0.4	0.31	30	- 11		0.75	0.69	0.56	0.67	0.43	0.49	19
4 HAROLD NA			1 1	1 (_		1 1	0.58	0.48	0.56	0.59	0.3	0.36	33	2	_	0.69	0.61	0.57	0.7	0.56	0.43	40
5 SAN QUERF			1 1		2 8	3 29		0.75	0.6	0.46	0.56	0.44	0.3	62	23	_	0.77	0.58	0.61	0.5	0.53	0.37	20
6 DENIS SHA			1 (1 6	7	0.6	0.69	0.49	0.71	0.46	0.5	65	5	12	0.58	0.53	0.41	0.47	0.54	0.44	46
7 STEVE JOH			1 1	1 () 8	3 1	1	0.5	0.53	0.27	0.4	0	0.21	44	1	0	0.76	0.81	0.9	0.89	0.67	0.61	9
8 ANDREJ NA			1 () ;	3 () 2	3	0.69	0.65	0.71	0.79	0.7	0.53	23	2	4	0.53	0.67	0.33	0.56	0.4	0.3	32
	OREGON AS									- 11				**	^					1.00			

1	result	pllspw	pllsp	p12spw	plnet	plerror	p21spw	p2sp	p22spw	p2net	p2error
2	0	0.74	0.6	0.61	0.6	22	0.42	0.67	0.33	0.59	27
3	1	0.6	0.78	0.4	0.57	17	0.82	0.55	0.48	0.71	27
4	0	0.63	0.66	0.45	0.69	55	0.55	0.67	0.43	0.66	69
5	0	0.66	0.6	0.55	0.62	51	0.7	0.62	0.51	0.7	77
6	0	0.73	0.61	0.57	0.68	47	0.61	0.53	0.6	0.61	25
7	1	0.72	0.66	0.33	0.34	45	0.71	0.73	0.56	0.81	31
8	0	0.76	0.75	0.62	0.79	23	0.67	0.62	0.38	0.71	46
9	0	0.64	0.6	0.49	0.63	40	0.78	0.72	0.44	0.47	22
10	0	0.67	0.66	0.56	0.79	19	0.59	0.59	0.36	0.69	49
11	1	0.65	0.62	0.36	0.53	33	0.78	0.6	0.61	0.75	23
12	0	0.71	0.67	0.5	0.71	67	0.63	0.63	0.54	0.66	56
13	1	0.6	0.57	0.32	0.65	33	0.67	0.69	0.56	0.55	28
14	0	0.71	0.58	0.57	0.57	61	0.68	0.56	0.5	0.59	52
15	0	0.71	0.59	0.57	0.7	29	0.57	0.56	0.52	0.58	40
16	0	0.82	0.72	0.63	0.5	16	0.76	0.66	0.5	0.8	36
17	1	0.6	0.53	0.43	0.52	45	0.78	0.58	0.74	0.5	18

修改前

修改後

比賽規則:

- 一場球賽分別有五盤制或三盤制,五盤制者先勝三盤者為勝,三盤制則先勝二盤者為勝
- 一盤(set)球賽有13局,先勝六局者為勝,如打成五局比五局平手,須打至有一方贏七局,其中如果是先打成六局比六 局平手時,最後一局,也就是第13局也稱為決勝局

玩家-(p1) 贏表示0, 玩家-(p2) 贏表示1

第一輪為64強,第二輪為32強,後面以此類推,最後的冠軍賽則為第7輪

發球一方,將球發在有效區內,但接發球者沒接到球,直接得分的發球

第一次發球成功直接進入發球區的球數

一發進球球數

第一次發球贏球球數

第二次發球贏球球數

在一分之中連續兩次發球失誤

第一次發球成功的球數 × 100%

第二次發球成功的球數 × 100%

上網前得分的球數 上網前的球數 × 100%

 $\times 100\%$

Ace球

名詞解釋:

Round(輪)

Result(結果)

Double Faults(雙發失誤)

1ST SERVE POINTS WON(第一發贏球率) 2ND SERVE POINTS WON(第二發贏球率)

1st Serve Percentage(一發進球率)

NET POINTS WON(網前得分率)

Break Points Converted (把握破發點成功率)

Return Points Won (接發球贏球率)

UNFORCED ERRORS(非受迫性失誤)

成功破發球的球數×100% 可破發球數

接球方贏得回發球的球數 × 100% 接球方回擊發球的球數 在沒有受到對手壓力情況下,自己犯下的失誤

Probit模型

- Probit 模型以常態的累積機率密度函數(standardized cumulativenormal function)來取代原來的線性模型。透過Probit 迴歸分析所算出來的結果變數會是二元(yes, no)或是多元的離散資料。
- 在二元應變數當中,可使用許多種類的分布, 其中 logistic 分佈通常被運用在非常態的分佈狀況下, 而probit 則運用在標準常態分佈(normal distribution)
- probit 模型的方法先從「猜測」參數的值開始,然後會 經過重複的猜測與改良而找出最好的估計值。

$$\mathbf{X}_{i+1} = \mathbf{A}\mathbf{X}_i + B_1u_{1i} + B_2u_{2i} + \cdots + B_ku_{ki} + \varepsilon_i \quad \forall i = 1,2,\cdots,n$$

A、B均為迴歸係數,A為一常數

⇒模型summary()

```
Current function value: 0.332528
        Iterations 7
                      Probit Regression Results
                           result No. Observations:
Dep. Variable:
                                                                 254
Model:
                           Probit Df Residuals:
                                                                 243
Method:
                             MLE
                                  Df Model:
                                                                  10
                  Fri, 11 Jun 2021 Pseudo R-squ.:
                                                              0.5201
Date:
Time:
                         13:21:18
                                 Log-Likelihood:
                                                             -84.462
converged:
                            True
                                 LL-Null:
                                                             -175.99
Covariance Type:
                        nonrobust
                                 LLR p-value:
                                                            5.443e-34
                                          P> | z |
                     std err
                                    Z
                                                    [0.025
                                                              0.9751
               coef
                                          0.763
const
            0.7987
                       2.650
                                 0.301
                                                    -4.394
                                                               5.992
                                -6.027
                                          0.000
p11spw
           -10.3935
                       1.725
                                                   -13.774
                                                              -7.013
                       1.774
                                          0.706
                                                    -4.145
                                                               2.807
p11sp
            -0.6690
                                -0.377
                       0.074
                                -0.930
                                          0.352
                                                    -0.215
                                                               0.077
p12spw
            -0.0692
p1net
            -2.5785
                       1.035
                                -2.491
                                          0.013
                                                    -4.607
                                                              -0.550
           0.0211
                       0.008 2.630
                                          0.009
                                                   0.005
                                                               0.037
p1error
           3.1408 0.947 3.318
p21spw
                                          0.001
                                                    1.285
                                                               4.996
            2.7790
                                                    -0.951
                                 1.460
                                          0.144
                                                               6.508
p2sp
                       1.903
p22spw
            4.4375
                       1.326
                                 3.346
                                          0.001
                                                     1.838
                                                               7.037
p2net
            2.6608
                       1.149
                                 2.317
                                          0.021
                                                     0.410
                                                               4.912
            -0.0103
p2error
                       0.008
                                -1.229
                                          0.219
                                                    -0.027
                                                               0.006
```

 $x_{i+1} = 0.7987 - 10.3935 * p1spw - 0.669 * p11sp - 0.0692 * p12spw - 2.5785 * p1net + 0.0211 * p1error + 3.1408 * p21spw + 2.779 * p21sp + 4.4375 * p22spw + 2.6608 * p2net - 0.0103 * p2error$

原本結果 VS 訓練結果

Index	result
0	0
1	0
2	1
3	1
4	1
5	0
6	0
7	1
8	0
9	1
10	0
11	1
12	0
13	1
14	0

249	Ø
250	1
251	0
252	1
253	1

Index	0
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
N. Tilleton	
249	ø

249	0
250	0
251	0
252	0
253	0

》混淆矩陣

Test accuracy = 0.44881889763779526 Test accurac

Test accuracy = 0.4881889763779528

特徵選取

- 簡化模型
- 縮短訓練時間
- 改善通用性、避免過擬合
- 它擬合模型並移除較弱的特徵,直到達到指定的特徵數量。 coef_屬性或者feature_importances_並且通過在每個循環中遞歸消除少量特徵,RFE試圖消除模型中可能存在的依賴關係和共線性。
- RFECV在一個交叉驗證的循環中執行RFE來找到最優的特徵 數量

Inde	x p11spw	p11sp	P1net	P21spw	P2sp	P22spw	P2net
0	0.74	0.6	0.6	0.42	0.67	0.33	0.59
1	0.6	0.78	0.57	0.82	0.55	0.48	0.71
2	0.63	0.66	0.69	0.55	0.67	0.43	0.66
3	0.66	0.6	0.62	0.7	0.62	0.51	0.7
4	0.73	0.61	0.68	0.61	0.53	0.6	0.61
5	0.72	0.66	0.34	0.71	0.73	0.56	0.81
6	0.76	0.75	0.79	0.67	0.62	0.38	0.71
7	0.64	0.6	0.63	0.78	0.72	0.44	0.47
8	0.67	0.66	0.79	0.59	0.59	0.36	0.69

Index	p11spw	p1net	p21spw	p22spw
0	0.82	0.86	0.59	0.4
1	0.68	0.67	0.51	0.36
2	0.72	0.44	0.71	0.58
3	0.55	0.47	0.84	0.69
4	0.7	0.61	0.72	0.52

。選取後的混淆矩陣

2019+2020

plwin(0) - 106 18 - 80 - 60 - 60 - 20 plwin(0) plwin(0) plloss(1) Predicted

RFE confusion matrix

Test accuracy = 0.7637795275590551

Test accuracy = 0.8503937007874016

- 利用前面2019+2020數據訓練的模型,在predict後面輸入相關的數據來預測今年nadal的比賽結果。 輸入的相關數據為網站提供前五輪個別的賽後統計結果
- ●第六輪(平均)是以nadal前五場的數據取平均和Novak Djokovic前五場的 數據取平均來當輸入值 第六輪(去年)則是他們去年的對戰數據來當輸入值

	Probit預測結果	果	RFECV預測結果		
	預測	實際	預測	實際	
第一輪	喜	声	赢	 遍	
第二輪	赢	贏	贏	贏	
第三輪	 順	声	声	声	
第四輪	 順	声	声	声	
第五輪	 順	 扇	声	声	
第六輪(平均)	 順	?	声	?	
第六輪(去年)	声飘	?	声	?	

>結論與心得

從這次的報告結果看來,一開始probit訓練的準確率雖然不高,但是經過特徵選取後準確率好了很多,然而變數的數量多,它的準確率不一定會比較高,還是要看哪些變數的效果比較好,而數據量多訓練出來的準確率也會比較高。

最後要預測下一場比賽時,要找兩個球員相關的數據帶入 predict,但發現要找到合適的數據卻找不太到,可能要以 手邊有的數據去做調整。由於網球比賽是單人或雙人的項目, 每一年比賽的場次跟其他運動項目比較少,兩個相同的人過 去的參考對戰次數相對的比較少,加上網球數據在近幾年才 開始有在統計整理,一旦要用到之前的數據,能用的範圍就 縮小了很多,預測出來的參考性也比較低。

多考資料

- https://en.wikipedia.org/wiki/2019_French_Open_%E2%80%93_Men%27s_Singles
- https://www.rolandgarros.com/en-
 us/matches?finished=true&tournamentDay=20190527&type=SM
- https://zh.wikipedia.org/wiki/%E7%B6%B2%E7%90%83%E8%A1%93%E8 %AA%9E%E5%88%97%E8%A1%A8
- https://www.scoreboard.com/en/tennis/atp-singles/french-open/results/
- 頂尖職業網球男子單打選手攻守數據分析,李正安
- Probit迴歸模型與羅吉斯迴歸模型預測理論之研究-以美國職棒大聯盟為例,楊意婷
- · 以Probit迴歸模型預測NBA籃球比賽結果,潘彥甫