4.3剪枝处理

概述

目的

对付过拟合

数据集

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹 .	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
		take Caba	Note meter	444-440	VE 10	144 × 1-	不
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否

训练集 (使用信息增益准则生成决策树)

图 4.5 基于表 4.2 生成的未剪枝决策树

训练集与验证集在决策树上的情况

4.3.1预剪枝(prepruning)

分之前正确率为 $\frac{3}{7}$ 按照脐部分之后正确率为 $\frac{5}{7}$ 正确率上升,划分正确

分之前正确率为 $\frac{5}{7}$ 按照脐部分之后正确率为 $\frac{4}{7}$ 正确率下降,则不需要该划分,剪枝

分之前正确率为 $\frac{5}{7}$ 按照脐部分之后正确率为 $\frac{5}{7}$ 正确率不变,则没必要划分,剪枝

则最终只需要对脐部进行划分:

最终决策树:

图 4.6 基于表 4.2 生成的预剪枝决策树

4.3.2后剪枝(post-pruning)

剪枝前决策树:

从叶子节点开始,自下而上计算正确率,若父节点>儿子节点正确率,则剪枝,若父节点<=儿子节点的 正确率,则不剪枝。

剪掉最左边的色泽和中间最下边的纹理两个分枝:

最终决策树:

图 4.7 基于表 4.2 生成的后剪枝决策树

补充: 回归剪枝的方法

详解: https://www.youtube.com/watch?v=D0efHEJsfHo