CHAPITRE 3

SERIES DE FOURIER

3.1 Séries trigonométriques

Définition 3.1.1 On appelle série trigonométrique réelle, toute série de fonctions de la forme :

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x) \tag{1}$$

avec $x \in \mathbb{R}$, $\omega > 0$, $a_n, b_n \in \mathbb{R}$, pour tout n dans \mathbb{N} .

Le problème est de déterminer l'ensemble Δ tel que la série (1) soit convergente pour tout $x \in \Delta$.

Remarque 3.1.1

Supposons que la série (1) converge et posons

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x).$$

Sachant que pour tous $n \in \mathbb{N}$ et $k \in \mathbb{Z}$:

$$\cos\left(n\omega(x+2k\pi/\omega)\right) = \cos(n\omega x + 2nk\pi) = \cos(n\omega x)$$

$$\sin\left(n\omega(x+2k\pi/\omega)\right) = \sin(n\omega x + 2nk\pi) = \sin(n\omega x).$$

Alors la série (1) converge en tout point de la forme $x + \frac{2k\pi}{\omega}$, $k \in \mathbb{Z}$.

Si la série (1) converge dans \mathbb{R} , on aura $f(x) = f\left(x + \frac{2k\pi}{\omega}\right)$ et par suite la fonction f est périodique de période $T = 2\pi/\omega$.

En conclusion, les propriétés suivantes sont équivalentes :

- i) La série trigonométrique (1) converge dans \mathbb{R} .
- ii) La série trigonométrique (1) converge dans $[0,2\pi/\omega]$.

iii La série trigonométrique (1) converge dans $[\alpha, \alpha + 2\pi/\omega]$, $\forall \alpha \in \mathbb{R}$

Proposition 3.1.1

Si les séries numériques $(\sum a_n)$ et $(\sum b_n)$ sont absolument convergentes alors la série trigonométrique (1) est normalement convergente sur \mathbb{R} ; donc absolument et uniformément sur \mathbb{R} .

Preuve:

C'est évident puisque $|a_n \cos(n\omega x) + b_n \sin(n\omega x)| \le |a_n| + |b_n|$.

Proposition 3.1.2

Si les suites numériques (a_n) et (b_n) sont décroissantes et tendent vers 0, alors la série trigonométrique (1) est convergente pour $x \neq \frac{2k\pi}{\omega}$ où $k \in \mathbb{Z}$.

Preuve:

C'est une application direct du théorème d'Abel. Pour cela il suffit tout simplement de montrer que les sommes suivantes sont majorées indépendamment de *m* et *n*.

$$S = \sum_{p=m}^{p=n} \sin px \qquad C = \sum_{p=m}^{p=n} \cos px.$$

Commençons par calculer les sommes suivantes ; On a pour $t \neq 2k\pi$ où $k \in \mathbb{Z}$:

$$C_{n} + iS_{n} = \sum_{p=0}^{p=n} \cos pt + i \sum_{p=0}^{p=n} \sin pt = \sum_{p=0}^{p=n} (\cos pt + i \sin pt)$$

$$= \sum_{p=0}^{p=n} e^{ipt} = 1 + e^{it} + e^{2it} + \dots + e^{int} = \frac{1 - e^{i(n+1)t}}{1 - e^{it}}$$

$$= \frac{(1 - \cos(n+1)t) - i \sin(n+1)t}{(1 - \cos t) - i \sin t} = \frac{2 \sin^{2} \frac{(n+1)}{2}t - 2i \sin \frac{(n+1)}{2}t \cos \frac{(n+1)}{2}t}{2 \sin^{2}(t/2) - 2i \sin(t/2) \cos(t/2)}$$

$$= \frac{-2i \sin \frac{(n+1)}{2}t \left(\cos \frac{(n+1)t}{2} + i \sin \frac{(n+1)t}{2}\right)}{-2i \sin(t/2) \left(\cos \frac{t}{2} + i \sin \frac{t}{2}\right)}$$

$$= \frac{\sin \frac{(n+1)}{2}t}{\sin(t/2)} \left(\cos \frac{(n+1)t}{2} + i \sin \frac{(n+1)t}{2}\right)$$

$$= \frac{\sin \frac{(n+1)}{2}t}{\sin(t/2)} \left(\cos \frac{nt}{2} + i \sin \frac{nt}{2}\right)$$

D'où l'on tire:

$$\begin{cases} C_n = \frac{\sin\frac{(n+1)t}{2}\cos\frac{nt}{2}}{\sin(t/2)} \\ S_n = \frac{\sin\frac{(n+1)t}{2}\sin\frac{nt}{2}}{\sin(t/2)} \end{cases}$$

Maintenant on peut majorer, on a :

$$|S| = \left| \sum_{p=m}^{p=n} \sin p\omega x \right| = |S_n - S_{m-1}| \le |S_n| + |S_{m-1}|$$

$$\le \left| \frac{\sin \frac{(n+1)\omega x}{2} \sin \frac{n\omega x}{2}}{\sin(\omega x/2)} \right| + \left| \frac{\sin \frac{m\omega x}{2} \sin \frac{(m-1)\omega x}{2}}{\sin(\omega x/2)} \right|$$

$$\le \frac{1}{|\sin(\omega x/2)|} + \frac{1}{|\sin(\omega x/2)|} = \frac{2}{|\sin(\omega x/2)|}.$$

On a de même $|C| \le \frac{2}{|\sin(\omega x/2)|}$. Les deux sommes étant majorées indépendamment de m et n; la série $\sum_{n=1}^{\infty} (a_n \cos n\omega x + b_n \sin n\omega x)$ est donc convergente pour $x \ne \frac{2k\pi}{\omega}$, $k \in \mathbb{Z}$.

3.1.1 Représentation complexe d'une série trigonométrique

D'après les relations d'Euler:

$$\cos(n\omega x) = \frac{e^{in\omega x} + e^{-in\omega x}}{2} \text{ et } \sin(n\omega x) = \frac{e^{in\omega x} - e^{-in\omega x}}{2i}$$

la série (1) devient :

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \frac{e^{in\omega x} + e^{-in\omega x}}{2} + b_n \frac{e^{in\omega x} - e^{-in\omega x}}{2i} \right] = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[e^{in\omega x} \frac{a_n - ib_n}{2} + e^{-in\omega x} \frac{a_n + ib_n}{2} \right]$$

En posant:

$$c_n = \frac{a_n - ib_n}{2}$$
; $c_{-n} = \overline{c}_n = \frac{a_n + ib_n}{2}$ et $c_0 = \frac{a_0}{2}$, la série devient :
$$c_0 + \sum_{n=1}^{\infty} (c_n e^{in\omega x} + c_{-n} e^{-in\omega x}) = c_0 + \sum_{n=1}^{\infty} c_n e^{in\omega x} + \sum_{n=1}^{\infty} c_{-n} e^{-in\omega x}$$

$$= c_0 + \sum_{n=1}^{\infty} c_n e^{in\omega x} + \sum_{n=-\infty}^{-1} c_n e^{in\omega x} = \sum_{n\in\mathbb{Z}} c_n e^{in\omega x}$$

Cette dernière expression est appelée forme complexe d'une série trigonométrique.

Calcul des cœfficients de la série trigonométrique. Cas réel 3.1.2

Mettons nous dans les conditions de convergence uniforme de la série trigonométrique (1) et posons $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega x) + b_k \sin(k\omega x))$. Alors

$$f(x)\cos(n\omega x) = \frac{a_0}{2}\cos(n\omega x) + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega x)\cos(n\omega x) + b_k \sin(k\omega x)\cos(n\omega x) \right]$$

$$f(x)\sin(n\omega x) = \frac{a_0}{2}\sin(n\omega x) + \sum_{k=1}^{\infty} \left[a_k\cos(k\omega x)\sin(n\omega x) + b_k\sin(k\omega x)\sin(n\omega x)\right]$$

Or on a: (À faire à titre d'exercices.)

$$\int_{0}^{2\pi/\omega} \cos(k\omega x) \cos(n\omega x) dx = \begin{cases} 0 & \text{si } k \neq n \\ \pi/\omega & \text{si } k = n \end{cases}$$
$$\int_{0}^{2\pi/\omega} \sin(k\omega x) \sin(n\omega x) dx = \begin{cases} 0 & \text{si } k \neq n \\ \pi/\omega & \text{si } k \neq n \end{cases}$$
$$\int_{0}^{2\pi/\omega} \cos(n\omega x) \sin(k\omega x) dx = 0.$$

On déduit alors les cœfficients par les expressions suivantes :

$$a_n = \frac{\omega}{\pi} \int_0^{2\pi/\omega} f(x) \cos(n\omega x) dx$$

$$b_n = \frac{\omega}{\pi} \int_0^{2\pi/\omega} f(x) \sin(n\omega x) dx.$$

Ces expressions sont valables même pour n = 0.

Lemme 3.1.1

Soit f une fonction périodique de période T > 0 et intégrable dans l'intervalle [0, T]. Alors pour tout $\alpha \in \mathbb{R}$, on a $\int_0^T f(t)dt = \int_{\alpha}^{\alpha+T} f(t)dt$.

Preuve.

La relation de Chasles nous permet d'écrire :

$$\int_{\alpha}^{\alpha+T} f(t)dt = \int_{a}^{0} f(t)dt + \int_{0}^{T} f(t)dt + \int_{T}^{\alpha+T} f(t)dt.$$
 Dans l'intégrale
$$\int_{T}^{\alpha+T} f(t)dt$$
 on fait le changement de variables $y = t - T$.

Ceci nous donne
$$\int_{T}^{\alpha+T} f(t)dt = \int_{0}^{\alpha} f(y+T)dy = \int_{0}^{\alpha} f(y)dy.$$
Donc
$$\int_{\alpha}^{\alpha+T} f(t)dt = \int_{\alpha}^{0} f(t)dt + \int_{0}^{T} f(t)dt + \int_{0}^{\alpha} f(t)dt = \int_{0}^{T} f(t)dt.$$

Moyennant ce lemme, les cœfficients peuvent s'écrire

$$a_n = \frac{\omega}{\pi} \int_0^{2\pi/\omega} f(x) \cos(n\omega x) dx = \frac{\omega}{\pi} \int_{\alpha}^{\alpha+2\pi/\omega} f(x) \cos(n\omega x) dx \quad \forall \alpha \in \mathbb{R}.$$

$$b_n = \frac{\omega}{\pi} \int_0^{2\pi/\omega} f(x) \sin(n\omega x) dx = \frac{\omega}{\pi} \int_{\alpha}^{\alpha+2\pi/\omega} f(x) \sin(n\omega x) dx; \quad \forall \alpha \in \mathbb{R}.$$

En particulier si $\omega = 1$, cas des fonctions 2π -périodique;

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx.$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

3.1.3 Calcul des cœfficients de la série trigonométrique. Cas complexe

On a
$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ik\omega x}$$
.
$$\int_0^{2\pi/\omega} f(x) e^{-in\omega x} dx = \sum_{k=-\infty}^{\infty} c_k \int_0^{2\pi/\omega} e^{i\omega x(k-n)} dx.$$
Or,
$$\int_0^{2\pi/\omega} e^{i\omega x(k-n)} dx = \begin{cases} 0 & \text{si} \quad k \neq n \\ 2\pi/\omega & \text{si} \quad k = n. \end{cases}$$

Les cœfficients sont alors donnés par la relation :

$$c_n = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} f(x) e^{-in\omega x} dx = \frac{\omega}{2\pi} \int_{\alpha}^{\alpha+2\pi/\omega} f(x) e^{-in\omega x}; n \in \mathbb{Z}.$$

3.2 Séries de Fourier

Dans cette partie, on ne va considérer que les fonctions de période 2π . A chaque fois on précisera les formules pour une période quelconque.

Soit $f: \mathbb{R} \to \mathbb{R}$ une application périodique de période $T = 2\pi$. On suppose que $\int_I |f(t)| dt$ converge sur un intervalle $I = [\alpha, \alpha + 2\pi]$ de longueur 2π , $\forall \alpha \in \mathbb{R}$.

Définition 3.2.1

On appelle série de \mathscr{F} ourier associée à f, la série trigonométrique

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

avec
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$
 et $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$

Deux questions se posent :

- 1. La série de \mathscr{F} ourier associée à f est-elle convergente?
- 2. En cas de convergence, peut-on dire que la série converge vers f?

Rappelons la notion de discontinuité de première espèce.

Définition 3.2.2

Une fonction f admet une discontinuité de première espèce en un point x_0 si les limites à droite et à gauche de x_0 existent. (Celles-ci ne sont pas forcément égales sauf en cas de continuité.)

Théorème 3.2.1 (Dirichlet)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période $T = 2\pi$ satisfaisant aux conditions suivantes (appelées conditions de Dirichlet) :

- D1) Les discontinuités de f (si elles existent) sont de première espèce et sont en nombre fini dans tout intervalle fini.
- D2) f admet en tout point une dérivée à droite et une dérivée à gauche.

Alors la série de ${\mathscr F}$ ourier associée à f est convergente et on a :

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

$$= \begin{cases} f(x) & \text{si } f \text{ est continue en } x \\ \frac{f(x+0) + f(x-0)}{2} & \text{si } f \text{ est discontinue en } x \end{cases}$$

De plus la convergence est uniforme sur tout intervalle où la fonction f est continue.

Les notations f(x + 0) et f(x - 0) représentent respectivement les limites à droite et à gauche de f au point x.

Remarque 3.2.1

Il y a un autre théorème équivalent au théorème (3.2.1) dû à Jordan.

Théorème 3.2.2 (Jordan)

Soit $f: \mathbb{R} \mapsto \mathbb{R}$ une fonction périodique de période $T = 2\pi$ satisfaisant aux

conditions suivantes :

- J1) Il existe M > 0 tel que $|f(x)| \le M$ (i.e f est bornée)
- J2) On peut partager l'intervalle $[\alpha, \alpha + 2\pi]$ en sous-intervalles $[\alpha_1, \alpha_2]$, $[\alpha_2, \alpha_3[..., [\alpha_{n-1}, \alpha_n]]$, avec $\alpha_1 = \alpha$ et $\alpha_n = \alpha + 2\pi$ tels que la restriction $f_{|\alpha_j,\alpha_{j+1}|}$ soit monotone et continue.

Alors la série de ${\mathscr F}$ ourier associée à f est convergente et on a :

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$
si f est continue ϵ

$$= \begin{cases} f(x) & \text{si } f \text{ est continue en } x \\ \frac{f(x+0) + f(x-0)}{2} & \text{si } f \text{ est discontinue en } x \end{cases}$$
evergence est uniforme sur tout intervalle où f est

De plus, la convergence est uniforme sur tout intervalle où f est continue.

Remarque 3.2.2

Nous allons étudier quelques cas particuliers. Rappelons d'abord quelques propriétés. $f: [-k, k] \mapsto \mathbb{R}$ une fonction intégrable sur [-k, k].

Si
$$f$$
 est paire alors $\int_{-k}^{k} f(x)dx = 2 \int_{0}^{k} f(x)dx$.
Si f est impaire $\int_{-k}^{k} f(x)dx = 0$.

Si
$$f$$
 est impaire $\int_{-k}^{k} f(x)dx = 0$.

Si f est développable en série de \mathscr{F} ourier :

- a) Si *f* est paire :
 - $\bullet \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx$ car la fonction $x \mapsto f(x)\cos(nx)$ est paire.

• $b_n = 0$ car la fonction $x \mapsto f(x) \sin(nx)$ est impaire

- b) Si *f* est impaire :

 - $a_n = 0$ car la fonction $x \mapsto f(x) \cos(nx)$ est impaire. $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) dx$ car la fonction $x \mapsto f(x) \sin(nx)$ est paire.

Résumé 1

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx.$$

$$b_n = 0, \quad \forall n \in \mathbb{N}.$$

f fonction impaire :

$$a_n = 0, \quad \forall n \in \mathbb{N}.$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx.$$

Exemple 3.2.1

Soit $f:]-\pi,\pi] \mapsto \mathbb{R}$ une fonction périodique, $T=2\pi$ définie par f(x)=x.

- 1. Les discontinuités de f sont les points de la forme $x_k = (2k+1)\pi$, $k \in \mathbb{Z}$ et sont de première espèce car $f(\pi + 0) = \pi$ et $f(\pi - 0) = -\pi$
- 2. f est partout dérivable sauf aux points x_k . En ces points nous avons :

$$\lim_{x \to \pi^{-}} \frac{f(x) - f(\pi)}{x - \pi} = 1 \text{ et } \lim_{x \to \pi^{+}} \frac{f(x) - f(\pi)}{x - \pi} = 1.$$
f vérifie les conditions de Dirichlet, donc développable en série de \mathscr{F} ourier.

f est impaire donc $a_0 = a_n = 0$ et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin(nx) dx = 2 \frac{(-1)^{n+1}}{n}$ et par suite

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Exemple 3.2.2

Soit $f: [-\pi, \pi] \to \mathbb{R}$ une fonction de période $T = 2\pi$, définie par f(x) = |x|.

- 1. On a $|f(x)| \le \pi$
- 2. $f_{|[-\pi,0]}$ est décroissante continue et $f_{|[0,\pi]}$ est croissante continue.

f satisfait les conditions du théorème de Jordan donc développable en série de \mathscr{F} ourier. De plus f est paire, ce qui nous donne $b_n = 0$.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \pi |x| \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx = \begin{cases} 0 & \text{si } n \text{ pair} \\ -\frac{4}{\pi n^{2}} & \text{si } n \text{ impair} \end{cases}$$

La série de \mathscr{F} ourier converge alors vers f et on a $f(x) = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2}$.

Puisque *f* est continue, la convergence est uniforme.

Remarquons enfin que l'égalité f(0) = 0 se traduit par $\frac{\pi}{2} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$ et par conséquent

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}.$$

Une des particularités des séries de Fourier est le calcul des sommes de certaines séries numériques.

Développement en série de \mathscr{F} ourier de fonctions non périodiques 3.2.1

Il est clair que le développement en série de \mathscr{F} ourier se pratique sur les fonctions périodiques. Cependant, il est possible, dans certains cas, de faire de tels développements pour des fonctions quelconques.

Soit $f : [a, b] \mapsto \mathbb{R}$ une fonction non périodique définie sur l'intervalle [a, b]. Soit $g : \mathbb{R} \mapsto \mathbb{R}$ une fonction périodique de période $T \ge b-a$ telle que la restriction $g_{|[a,b]} = f$. Si g satisfait les conditions de Dirichlet, on aura:

$$g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega x) + b_n \sin(n\omega x) \right]$$

avec a_n et b_n les cœfficients de \mathscr{F} ourier associés à g. La somme de cette série coïncide partout avec f dans l'intervalle [a,b] sauf peut-être aux points de discontinuités de f.

Remarque 3.2.3

Soit $f:]0, \ell[\mapsto \mathbb{R}$ une fonction quelconque, et $\ell > 0$. On suppose que f peut-être prolongée sur $]-\ell,0[$ et que les conditions de Dirichlet ou de Jordan soient satisfaites. Dans ce cas, on a le choix sur ce prolongement. On peut choisir soit un prolongement pair soit un prolongement impair pour éviter les longs calculs des cœfficients.

Exercice 1

Donner une série de Fourier de période 2π qui coïncide sur $]0, \pi[$ avec la fonction $f(x) = e^x$.

Réponse :

Ici on ne précise que l'intervalle où la série de Fourier coïncide avec f, c'est à dire $]0,\pi[$. Comme la période de la série de Fourier est 2π , il y'a alors une infinité de réponses; examinons trois cas différents.

Notons \tilde{f}_i , i=1,2,3, le prolongement de f à \mathbb{R} tout entier. \tilde{f}_i sera une fonction de période 2π qui vaut exactement e^x pour tout x dans $]0,\pi[$.

a) Choisissons un prolongement pair et posons : $\tilde{f}_1(x) = \begin{cases} e^x & \text{si} & x \in]0, \pi[\\ e^{-x} & \text{si} & x \in]-\pi, 0[\end{cases}$

On vérifie aisément que \tilde{f}_1 est une fonction paire. Posons $\tilde{f}_1(0) = 1$ et $\tilde{f}_1(\pi) = e^{\pi}$, on a alors un prolongement continue sur \mathbb{R} . Le graphe de \tilde{f}_1 et celui de la série de \mathscr{F} ourier seront identiques.

Le calcul des cœfficients donne :
$$a_0 = \frac{2(e^{\pi} - 1)}{\pi}$$
, $a_n = 2\frac{(-1)^n e^{\pi} - 1}{1 + n^2}$ et $b_n = 0$.

On a alors:

$$S_1(x) = \frac{e^{\pi} - 1}{\pi} + \sum_{n=1}^{\infty} 2 \frac{(-1)^n e^{\pi} - 1}{n^2 + 1} \cos(nx) = \begin{cases} e^x & \text{si } x \in [0, \pi] \\ e^{-x} & \text{si } x \in [-\pi, 0] \end{cases}$$

Fig. 3.1 – graphe de la fonction f(x)

Fig. 3.2 – graphe de la fonction $S_1(x)$ identique à celui de $\tilde{f_1}$

b) Choisissons un prolongement impair et posons : $\tilde{f_2}(x) = \begin{cases} e^x & \text{si} & x \in]0, \pi[\\ -e^{-x} & \text{si} & x \in]-\pi, 0[\end{cases}$ remarque que $ilde{f}_2$ est une fonction impaire mais n'est pas continue sur $\mathbb R$. Elle est discontinue en tout point de la forme $k\pi$, $k \in \mathbb{Z}$.

Le calcul des cœfficients donne :
$$a_n = 0 \ \forall n \in \mathbb{N}, \quad b_n = \frac{2n (1 - (-1)^n e^{\pi})}{\pi (1 + n^2)}$$
.

On a alors:

On a alors:

$$S_2(x) = \sum_{n=1}^{\infty} \frac{2n(1 - (-1)^n e^{\pi})}{\pi (1 + n^2)} \sin(nx) = \begin{cases} e^x & \text{si } x \in]0, \pi[\\ e^{-x} & \text{si } x \in]-\pi, 0[\\ 0 & \text{si } x = 0 \text{ ou } x = \pm \pi \end{cases}$$

Fig. 3.3 – graphe de la fonction $f_2(x)$

Fig. 3.4 – graphe de la série $S_2(x)$

c) Choisissons un prolongement ni pair ni impair et posons : $\tilde{f_3}(x) = e^x \text{ si } x \in]-\pi, \pi[$. On remarque que \tilde{f} est une fonction discontinue en tout point de la forme $\pi + 2k\pi$, $k \in \mathbb{Z}$. On a le résultat final:

On a le résultat final :
$$S_3(x) = \frac{e^{\pi} - e^{-\pi}}{\pi} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} \left(\cos(nx) - n \sin(nx) \right) \right) = \begin{cases} e^x & \text{si } x \in]-\pi, \pi[\\ \frac{e^{\pi} + e^{-\pi}}{2} & \text{si } x = \pm \pi. \end{cases}$$
On a obtenu trois séries différentes qui valent exactement e^x sur l'intervalle $[0, \pi[$.

On a obtenu trois séries différentes qui valent exactement e^x sur l'intervalle $]0, \pi[$. On pouvait choisir d'autres prolongements et obtenir d'autres séries.

Fig. 3.5 – graphe de la fonction $\tilde{f_3}(x)$

Fig. 3.6 – graphe de la série $S_3(x)$

Remarque 3.2.4 Si on voulait une série de Fourier de période π , alors il n'y a qu'une seule qui coïncide avec f sur $]0, \pi[$.

On trouve;

$$S_4(x) = \frac{2(e^{\pi} - 1)}{\pi} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \left(\cos(2nx) - 2n \sin(2nx) \right) \right) = \begin{cases} e^x & \text{si } x \in]0, \pi[\\ \frac{1 + e^{\pi}}{2} & \text{si } x = 0 \text{ ou } x = \pi. \end{cases}$$

Fig. 3.7 – graphe de la série $S_4(x)$

Égalité de Parseval 3.2.2

Théorème 3.2.3

Égalité de Parseval : Soit f une fonction développable en série de \mathscr{F} ourier et de période $T=\frac{2\pi}{\omega}>0$, alors on a pour α réel quelconque :

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{\omega}{\pi} \int_{\alpha}^{\alpha + 2\pi/\omega} f^2(x) dx = 2 \sum_{n \in \mathbb{Z}} |c_n|^2$$

$$c_n = \frac{a_n - ib_n}{2} \text{ et } c_{-n} = \frac{a_n + ib_n}{2} \text{ où } n \in \mathbb{N}.$$

$$c_n = \frac{a_n - ib_n}{2}$$
 et $c_{-n} = \frac{a_n + ib_n}{2}$ où $n \in \mathbb{N}$.

Remarque 3.2.5 1. Si f est de période 2π , on a:

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_0^{2\pi} f^2(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx$$

2.

$$f$$
 fonction paire $\implies f^2$ fonction paire $\implies \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 = \frac{2}{\pi} \int_0^{\pi} f^2(x) dx$
 f fonction impaire $\implies f^2$ fonction paire $\implies \sum_{n=1}^{\infty} b_n^2 = \frac{2}{\pi} \int_0^{\pi} f^2(x) dx$

3.3 Applications

Exemple 3.3.1 f étant une fonction 2π -périodique telle que :

$$f(x) = \begin{cases} 1 & \text{si} \quad x \in]0, \pi[\\ -1 & \text{si} \quad x \in]-\pi, 0[\end{cases}$$

Fig. 3.8 – graphe de la fonction f(x)

f étant une fonction impaire $\Longrightarrow a_n = 0, \ \forall n \in \mathbb{N}$

On a :
$$b_n = \frac{2}{\pi} \int_0^{\pi} \sin(nt)dt = \frac{2}{n\pi} (1 - (-1)^n) = \begin{cases} 0 & \text{si } n \text{ est pair} \\ \frac{4}{n\pi} & \text{si } n \text{ est impair} \end{cases}$$

La série de Fourier associée est :

$$S(x) = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2n+1)x}{2n+1} = \begin{cases} 1 & \text{si } x \in]0, \pi[\\ 0 & \text{si } x = 0 \text{ ou si } x = \pi \end{cases}$$

Fig. 3.9 – graphe de la fonction S(x)

Remarque 3.3.1 :Pour
$$x = \pi/2$$
 on a $S(\pi/2) = 1 = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2n+1)\pi/2}{2n+1} = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.

On tire:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

Appliquons l'égalité de Parseval :

$$\frac{2}{\pi} \int_0^{\pi} f^2(t)dt = 1 = \sum_{n=0}^{\infty} \frac{16}{\pi^2} \cdot \frac{1}{(2n+1)^2}$$

et l'on tire donc :

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$

Remarque 3.3.2 Posons $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$ série convergente d'après le critère de Riemann. En séparant les pairs et les impairs on $a: S = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ (*). Comme $\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \sum_{n=1}^{\infty} \frac{1}{4n^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{S}{4}$; en substituant dans l'égalité (*) on a : $S = \frac{S}{4} + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} \iff \frac{3S}{4} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \iff S = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

La méthode complexe :

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-int} f(t)dt = \frac{1}{2\pi} \left(\int_{-\pi}^{0} -e^{-int} dt + \int_{0}^{\pi} e^{-int} dt \right) = \frac{1}{2\pi} \left[\left(\frac{e^{-int}}{in} \right)_{-\pi}^{0} + \left(\frac{e^{-int}}{-in} \right)_{0}^{\pi} \right]$$
$$= -i \frac{1 - (-1)^{n}}{\pi n} = 1/2(a_{n} - ib_{n})$$

Exemple 3.3.2 f étant une fonction 2π -périodique telle que :

$$f(x) = |x|$$
 si $x \in [-\pi, \pi]$

f étant une fonction paire $\Longrightarrow b_n = 0$, $\forall n \in \mathbb{N}$

On a:
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| dt = \frac{2}{\pi} \int_{0}^{\pi} t \, dt = \frac{2}{\pi} \left(\frac{t^2}{2}\right)_{0}^{\pi} = \pi.$$

Puis on a : $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \cos nt \, dt = \frac{2}{\pi} \int_{0}^{\pi} t \cos nt \, dt = \frac{2}{\pi} \left(\left[\frac{t \sin nt}{n} \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin nt}{n} dt \right)$

$$= \frac{-2}{n\pi} \int_0^{\pi} \sin nt \ dt = \frac{2}{n\pi} \left(\frac{\cos nt}{n}\right)_0^{\pi} = \frac{2}{\pi n^2} \left((-1)^n - 1\right) = \begin{cases} 0 & \text{si } n \text{ est pair} \\ \frac{-4}{\pi n^2} & \text{si } n \text{ est impair} \end{cases}$$

La série associée est donc :

$$S(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2}.$$

f étant une fonction continue sur \mathbb{R} , et admet partout des dérivées à droite et à gauche alors f(x) = S(x), $\forall x \in \mathbb{R}$.

Fig. 3.10 – graphe de la fonction f(x) et celui de S(x).

Remarque 3.3.3 pour x = 0 on a f(0) = 0 et comme f(0) = S(0) on tire :

$$S(0) = 0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \iff \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$

L'égalité de Parseval donne :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{\pi^2}{3} = \frac{\pi^2}{4} + \frac{1}{2} \cdot \frac{16}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}$$
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$$

Remarque 3.3.4 En écrivant $S = \sum_{n=1}^{\infty} \frac{1}{n^4} = \sum_{n=1}^{\infty} \frac{1}{(2n)^4} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}$.

On déduit alors : $\frac{15S}{16} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Exemple 3.3.3 f étant une fonction 2π -périodique telle que :

$$f(x) = x$$
 si $x \in]-\pi,\pi[$

Fig. 3.11 – graphe de la fonction f(x).

f est une fonction impaire, continue pour tout $x \in \mathbb{R}$ sauf aux points $x = (2k + 1)\pi$, $k \in \mathbb{Z}$. Elle admet en chaque point une dérivée à droite et une dérivée à gauche. elle admet un

développement en série de \mathscr{F} ourier. f: impaire $\implies a_n = 0$, $\forall n \in \mathbb{N}$, et l'on a :

$$b_n = \frac{2}{\pi} \int_0^{\pi} t \sin(nt) dt = \frac{2}{\pi} \left[\left(\frac{-t \cos nt}{n} \right)_0^{\pi} + \int_0^{\pi} \frac{\cos nt}{n} dt \right] = \frac{2(-1)^{n+1}}{n}$$

$$S(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx = \begin{cases} f(x) & \text{si } x \neq (2k+1)\pi \text{ avec } k \in \mathbb{Z} \\ 0 & \text{si } x = (2k+1)\pi \text{ avec } k \in \mathbb{Z} \end{cases}$$

Fig. 3.12 – graphe de la fonction S(x).

Remarque 3.3.5 En appliquant l'égalité de Parseval, on obtient :

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{4}{n^2} = \frac{1}{\pi} \int_0^{\pi} t^2 dt = \frac{\pi^2}{3} \Longleftrightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Exemple 3.3.4 f étant une fonction 2π -périodique telle que :

$$f(x) = x^2 \quad \text{si} \quad x \in]-\pi,\pi]$$

f est une fonction paire, continue pour tout $x \in \mathbb{R}$. Elle admet en chaque point une dérivée à droite et une dérivée à gauche. elle admet un développement en série de \mathscr{F} ourier.

Fig. 3.13 – graphe de la fonction f(x) et celui de S(x)

$$f: \text{paire} \Longrightarrow b_n = 0, \ \forall n \in \mathbb{N}, \text{ et l'on a}:$$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} t^2 dt = \frac{2\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} t^2 \cos nt \, dt = \frac{2}{\pi} \left(\left[\frac{t^2 \sin nt}{n} \right]_0^{\pi} - \int_0^{\pi} \frac{2t \sin nt}{n} dt \right)$$
$$= \frac{-4}{\pi} \int_0^{\pi} t \sin nt \, dt = \frac{-4}{\pi} \left(\left[\frac{t \cos nt}{-n} \right]_0^{\pi} + \int_0^{\pi} \frac{\cos nt}{n} dt \right) = \frac{4(-1)^n}{n^2}$$

Comme f est continue sur \mathbb{R} ; on a donc f(x) = S(x) et donc :

$$S(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nx = f(x) \quad \forall x \in \mathbb{R}$$

Le graphe de *f* et celui de *S* sont identiques.

Remarque 3.3.6 Pour
$$x = 0$$
, on a $f(0) = S(0) = 0$ ce qui donne $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$

Exemple 3.3.5 *f* étant une fonction de périodique 2, telle que :

$$f(x) = \begin{cases} x & \text{si} \quad 0 \le x < 1 \\ \frac{1}{2} & \text{si} \quad 1 \le x < 2 \end{cases}$$

Fig. 3.14 – graphe de la fonction f(x)

f n'est ni paire ni impaire et ne présente des discontinuités que pour les points d'abscisses un nombre entier positif ou négatif. f admet alors un développement de \mathcal{F} ourier.

On a
$$p = \frac{2\pi}{\omega} = 2 \iff \omega = \pi$$
.
 $a_0 = \frac{\omega}{\pi} \int_{\pi/\omega}^{\pi/\omega} f(t)dt = \int_0^2 f(t)dt = \int_0^1 t \, dt + \int_1^2 \frac{1}{2} \, dt = 1$
 $a_n = \int_0^1 t \cos n\pi t \, dt + \int_1^2 \frac{\cos n\pi t}{2} \, dt = \frac{(-1)^n - 1}{\pi^2 n^2}$
 $b_n = \int_0^1 t \sin n\pi t \, dt + \int_1^2 \frac{\sin n\pi t}{2} \, dt = \frac{(-1)^{n+1} - 1}{2n\pi}$
La série de Fourier associée à f est donc:

La série de \mathscr{F} ourier associée à f est donc :

$$S(x) = \frac{1}{2} - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(2n+1)\pi x}{(2n+1)^2} - \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n}$$

En prenant les demis sommes aux points de discontinuité on a pour $x \in [0, 2]$:

tes demis sommes aux points de discontinuité on a pour
$$x \in [0, 2[$$
:
$$\frac{1}{2} - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(2n+1)\pi x}{(2n+1)^2} - \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n} = \begin{cases} \frac{1}{4} & \text{si} \quad x = 0 \\ x & \text{si} \quad 0 < x < 1 \\ \frac{3}{4} & \text{si} \quad x = 1 \\ \frac{1}{2} & \text{si} \quad 1 < x < 2 \end{cases}$$

Fig. 3.15 – graphe de la fonction S(x)

Exemple 3.3.6 Donner la série de Fourier en sinus de la fonction :

$$f(x) = \cos x$$
 pour $x \in]0, \pi[$.

On va faire un prolongement en fonction impaire de la fonction f. Comme la fonction sinus est de période 2π , posons alors :

$$\tilde{f}(x) = \begin{cases} f(x) = \cos x & \text{si } x \in]0, \pi[\\ -f(-x) = -\cos x & \text{si } x \in]-\pi, 0[\end{cases}$$

La fonction \tilde{f} est une fonction impaire de période 2π , continue partout sur \mathbb{R} sauf aux points $x = k\pi$ où $k \in \mathbb{Z}$, où elle n'est pas définie, et coïncide avec la fonction f sur $]0, \pi[$. Elle admet donc un développement de Fourier.

Comme \tilde{f} est impaire, $a_n = 0$, et on a :

$$b_n = \frac{2}{\pi} \int_0^{\pi} \cos x \sin nx \, dx = \frac{1}{\pi} \int_0^{\pi} \left(\sin(n+1)x + \sin(n-1)x \right) dx$$

$$= \frac{1}{\pi} \left[\frac{-\cos(n+1)x}{n+1} + \frac{-\cos(n-1)x}{n-1} \right]_0^{\pi} = \frac{2n((-1)^n + 1)}{\pi(n^2 - 1)} \sin x \neq 1.$$
Pour $n = 1, b_1 = \frac{2}{\pi} \int_0^{\pi} \cos x \sin x \, dx = \frac{1}{\pi} \int_0^{\pi} \sin 2x \, dx = 0$
finalement on a:
$$b_{2n+1} = 0 \text{ et } b_{2n} = \frac{8n}{\pi(4n^2 - 1)}$$

$$\forall x \in]0, \pi[\cos x = \sum_{n=1}^{\infty} \frac{8n}{\pi(4n^2 - 1)} \sin 2nx$$

Remarque 3.3.7 La demi somme aux points de discontinuité est égale à 0. On a donc :

$$S(x) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n \sin 2nx}{4n^2 - 1} = \begin{cases} \cos x & \text{si } x \in \bigcup_{k \in \mathbb{Z}}]2k\pi, (2k+1)\pi [\\ -\cos x & \text{si } x \in \bigcup_{k \in \mathbb{Z}}](2k+1)\pi, (2k+2)\pi [\\ 0 & \text{si } x = k\pi, \ k \in \mathbb{Z} \end{cases}$$

La fonction S(x) est périodique de période π .

Fig. 3.16 – graphe de la fonction S(x)

Quelques développements intéressants.

1. $\alpha \in \mathbb{R}/\mathbb{Z}$ et $x \in [-\pi, \pi]$

$$\cos \alpha x = \frac{2\alpha \sin \pi \alpha}{\pi} \left(\frac{1}{2\alpha^2} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{\pi (n^2 - \alpha^2)} \right)$$

2. Fonction impaire de période 2ℓ .

$$\frac{1}{2}\sin\frac{\pi x}{\ell} - \frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n n}{4n^2 - 1}\sin\frac{2n\pi x}{\ell} = \begin{cases} \sin\frac{\pi x}{\ell} & \text{pour } 0 \le x < \frac{\ell}{2} \\ 0 & \text{pour } \frac{\ell}{2} < x \le \ell \end{cases}$$

$$\frac{1}{2} \text{ pour } x = \frac{\ell}{2}$$

3.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = \begin{cases} \frac{-\pi - x}{2} & \text{pour } -2\pi < x < 0\\ \frac{\pi - x}{2} & \text{pour } 0 < x < 2\pi\\ 0 & \text{pour } x = 0, \ x = 2\pi, \ x = -2\pi. \end{cases}$$

4.

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} = \begin{cases} \frac{3x^2 + 6\pi x + 2\pi^2}{12} & \text{pour } -2\pi \le x \le 0\\ \frac{3x^2 - 6\pi x + 2\pi^2}{12} & \text{pour } 0 \le x \le 2\pi \end{cases}$$

5.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^3} = \begin{cases} \frac{x^2 + 3\pi x + 2\pi^2 x}{12} & \text{pour } -2\pi \le x \le 0\\ \frac{x^2 - 3\pi x + 2\pi^2 x}{12} & \text{pour } 0 \le x \le 2\pi \end{cases}$$