

08/4/17, 174

5844075

1
FIG.

1	AGCAGACAGGAGCTCCATTAAGGAGG	TGTCCTGTGCCCTGACCCCTACAAGATGCA	59			2
2		Met Pro				
3	AGGluAspAlaIshelleTyrglyTy	ProLysIysGlyHisIysIleSerItyrThr	119			22
4	ACGGCTGAAAGGCCGGCATGCCAT	CTGACACTGATGCTGGAGCTTACTGCTC	179			42
5	ThrIaGluIuAlaAlaGlyIleGlyIle	LeuThrValIleLeuGlyIleLeuLeuLeu	239			62
6	ATCGCTGTGGTATTGTAGAAGCCAAAT	GGTACACAGGCCCTGTAGGATAAAAAGTCCT	299			82
7	IleGlyCysteDiyCysArgArgGasn	GlyTyArgAlaLeuMetAspLySerLeu	359			102
8	CATGTGGCACTCAATTGTGCCCTAAQAAA	AGATGCCCACAGAAAGGGTTGATCATGGG	419			143
9	HisValGlyThrGlyCysAlaLeuThrArg	ArgCysProlGlnGluLysPheAspHisArg	479			233
10	GACACAAAGTGTCCTCTAGAGAAC	TGTGAACTCTGGTGTGCCCAATGTCACCT	539			240
11	AspSerIlyValSerIleGlyIleGlyIle	CysGluIuroValProAsnAlaProPro	599			240
12	GCTTATGAGAAAACITCTCTGCAGAACAGTCA	CCACACCTTATTCACTTAAAGCCAGCGG	839			300
13	AlaTrpGlyLysIleSerAlaGluGinSer	ProProProTyrsSerPro	899			360
14	AGACACCTGAGACATGCTGAATTATTCT	CTCACACTTTCCTGTTGAATTAAACAGAC	959			420
15	ATCTATGTTCTCTTGTGAATTGGTAGG	AAAAATGCAAGGCCATCTCTATAATAAGTC	1019			480
16	AGTGTAAATTITGATGGCTGCTGAGCA	GTCATCATCTGAGCAATTGAGAA	1079			540
17	DLLTAATTGGAAACIUTCAATTAAT	GTCATGATCATGATATACTGTCAGCA	1139			600
18	GCTTAATTGGAAACIUTCAATTAAT	TTCTGAGGACAAATCTCAACTGGTATCT	1199			660
19	GGGGCATCTCAATTCTCTTACTGAAAT	TTCGCTTAATAAACCTAGTCAGGTTCTG	1259			720
20	AACCTGTACCGATAGTACTGACAGAAA	TTCGTCAGGATTAATCTGCTCAAAAG	1319			780
21	GATACATTCATGCTTGTGCAAGGTTT	ACTGGCTTATATCTGCTAAAGATCTG	1379			840
22	900CTATAGCTCTTGTGCAATTAATCTT	ATTATACATATAATATATGTAAGAGATC	1439			960
23	GGCGCATCTGATCTGCTGCAATTACTCGGC	CGCTTGTGTCGCCAGGCTGAGCCTAANG	1439			1020
24	CCTCTGATGATGCTGCAATTACTCGGC	TCCGCTTATGCTGAGCTATTCTGCTTAG	1439			1080
25	AGTATGAGACGGGTTCTCCATGTGTC	GGCATCTGATGCTGAGCTATTCTGTTT	1439			1140
26	TCTGGCCGCTCAGCCTCCAAAGTCCTG	GGCTGTCCTCAACTCTGAGCTGTA	1439			1200
27	GGATCTTATACATTCATGAGCATTAAC	AATTACAGCGTGTGAGCCACCGCTGGGT	1439			1260
28	AATGATCTTACATTAATGAGCATGTTT	ATTCATCATACATTCATGAGCATGTT	1439			1320
29	AAATACTGAAAGCTACTATGCTCCCTT	CTACATACACCAGATGGTAAAGATTTC	1439			1380
30	TACCTGGAAATTGATCTGCTGGGTC	AGTCCTGATGCTGCTGAGCTTAATG	1439			1440
31	AAAATATACAGGAAATACATGCTGCTG	CCAAATCCCTGCTGAGCTGAGAAAG	1439			1500

FIG. 2A

FIG. 2B

FIG. 3A

FIG. 3B

FIG. 4A

GTGACGGCC	ATTACCAATC	GCGACCGGGA	AGAACACAAT	40
GGATCTGGTG	CTAAAAGAT	GCCTTCTTCA	TTTGGCTGTG	80
ATAGGTGCTT	TGCTGGCTGT	GGGGCTACA	AAAGTACCCA	120
GAAACCAGGA	CTGGCTTGGT	GTCTCAAGGC	AACTCAGAAC	160
CAAAGCCTGG	AACAGGCAGC	TGTATCCAGA	GTGGACAGAA	200
GCCCAGAGAC	TTGACTGCTG	GAGAGGTGGT	CAAGTGTCCC	240
TCAAGGTCA	TAATGATGGG	CCTACACTGA	TTGGTGCAA	280
TGCCCTCCTTC	TCTATTGCTT	TGAACCTTCCC	TGGAAGCCAA	320
AAGGTATTGC	CAGATGGGCA	GGTTATCTGG	GTCAACAATA	360
CCATCATCAA	TGGGAGCCAG	GTGTGGGGAG	GACAGCCAGT	400
GTATCCCCAG	GAAACTGACG	ATGCCCTGCAT	CTTCCCTGAT	440
GGTGGACCTT	GCCCACATCTG	CTCTTGGTCT	CAGAAGAGAA	480
GCTTGTGTTA	TGTCTGGAAG	ACCTGGGCC	AATACTGGCA	520
ATTTCTAGGG	GGCCCAGTGT	CTGGGCTGAG	CATTGGGACA	560
GGCAGGGCAA	TGCTGGGCAC	ACACACCATG	GAAGTGAETG	600
TCTACCATCG	CGGGGGATCC	CGGAGCTATG	TGCCCTTTGC	640
TCATTCCACG	TCAGCCTTCA	CCATTACTGA	CCAGGTGCCT	680
TTCTCCGTGA	CGGTGTCCCA	GTTGCGGGCC	TTGGATGGAG	720
GGAACAAAGCA	CTTCCTGAGA	AATCAGCCTC	TGACCTTTGC	760
CCTCCAGCTC	CATGACCCCCA	GTGGCTATCT	GGCTGAAGCT	800
GACCTCTCCT	ACACCTGGGA	CTTGGAGAC	AGTAGTGGAA	840
CCCTGATCTC	TCGGGCACTT	GTGGTCACTC	ATACTTACCT	880
GGAGCCTGGC	CCAGTCACTG	CCCAGGTGGT	CCTGCAGGCT	920
GCCATTCCCTC	TCACCTCCTG	TGGCTCCTCC	CCAGTTCCAG	960
GCACCCACAGA	TGGGCACAGG	CCAACTCGAG	AGGCCCCCTAA	1000
CACCACAGCT	GGCCAAGTGC	CTACTACAGA	AGTTGTGGGT	1040
ACTACACCTG	GTCAGGGCGCC	AACTGCAAGAG	CCCTCTGGAA	1080
CCACATCTGT	GCAGGTGCCA	ACCACTGAAG	TCATAAAGCAC	1120

FIG. 4B

TGCACCTGTG CAGATGCCAA CTGCAGAGAG CACAGGTATG 1160
ACACCTGAGA AGGTGCCAGT TTCAGAGGTC ATGGGTACCA 1200
CACTGGCAGA GATGTCAACT CCAGAGGCTA CAGGTATGAC 1240
ACCTGCAGAG GTATCAATTG TGTTGCTTTC TGGAACCACA 1280
GCTGCACAGG TAACAACTAC AGAGTGGGTG GAGACCACAG 1320
CTAGAGAGCT ACCTATCCCT GAGCCTGAAG GTCCAGATGC 1360
CAGCTCAATC ATGTCTACGG AAAGTATTAC AGGTTCCCTG 1400
GGCCCCCTGC TGGATGGTAC AGCCACCTTA AGGCTGGTGA 1440
AGAGACAAGT CCCCTGGAT TGTGTTCTGT ATCGATATGG 1480
TTCCCTTTCC GTCACCCCTGG ACATGTCCA GGTTATTGAA 1520
AGTGCCGAGA TCCTGCAGGC TGTGCCGTCC GGTGAGGGGG 1560
ATGCATTTGA GCTGACTGTG TCCTGCCAAG GCGGGCTGCC 1600
CAAGGAAGCC TGCATGGAGA TCTCATCGCC AGGGTGCAG 1640
CCCCCTGCC AGCGGCTGTG CCAGCCTGTG CTACCCAGCC 1680
CAGCCTGCCA GCTGGTTCTG CACCAGATAc TGAAGGGTGG 1720
CTCGGGGACA TACTGCCTCA ATGTGTCCT GGCTGATACC 1760
AACAGCCTGG CAGTGGTCAG CACCCAGCTT ATCATGCCTG 1800
GTCAAGAACG AGGCCTTGGG CAGGTTCCCG TGATCGTGGG 1840
CATCTTGCTG GTGTTGATGG CTGTTGGCTCT TGCACTCTCG 1880
ATATATAGGC GCAGACTTAT GAAGCAAGAC TTCTCCGTAC 1920
CCCAGTTGCC ACATAGCAGC AGTCACTGGC TGCGTCTACC 1960
CCGCATCTTC TGCTCTTGTC CCATTGGTGA GAACAGCCCC 2000
CTCCTCAGTG GGCAGCAGGT CTGAGTACTC TCATATGATG 2040
CTGTGATTTT CCTGGAGTTG ACAGAAACAC CTATATTTCC 2080
CCCAGTCTTC CCTGGGAGAC TACTATTAAC TGAAATAAAT 2120
ACTCAGAGCC TGAAAAAAAAA TAAAAAAAAA AAAAAAAA 2160
AAAAAAAAAA AA 2172

FIG. 5A

1 MDLVLKRCLL HLAVIGALLA VGATKVPRNQ DWLGVSRLQR TKAWNRLYP
51 EWTEAQLDWRGGQVSLKV SNDGPTLIGA NASFSIALNF PGSQVKLPDG
101 QVIWVNNTII NGSQVWGGQP VYPQETDDAC IFPDGGPCPS GSWSQKRSFV
151 YVWKWTWGQYW QFLGGPVSGL SIGTGRAMLG THTMEVTVYH RRGSRSYVPL
201 AHSSSAFTIT DQVPFSVSVS QLRALDGGNK HFLRNQPLTF ALQLHDPSGY
251 LAEADLSYTW DFGDSSGTLL SRALVVTHTY LEPGPVTAQV VLQAAIPLTS
301 CGSSPVGTT DGHRPTAEAP NTTAGQVPTT EVVGTTPGQA PTAEPSCGTS
351 VQVPTTEVIS TAPVQMPTAE STGMTPEKVP VSEVMGTTLA EMSTPEATGM
401 TPAEVSVL SGTAAQVTT TEWVETTARE LPIPEPEGPD ASSIMSTESI
451 TGSLGP_{LLDG} TATLRLVKRQ VPLDCVLYRY GSFSVTLDIV QGIESAEILQ
501 AVPSGEGLDAF ELTVSCQGGL PKEACMEISS PGCPAAQRL CQPVLPSAC
551 QLVLHQILKG GSGTYCLNVS LADTNSLAVV STQLIMPGQE AGLGQVPLIV
601 GILLVLMMAV LASLIYRRRL MKQDFSVPQL PHSSSHWLRL PRIFCSCP
651 ENSPLLSGQQ V

FIG. 5B

Pmell17	M-----V-----Q-----P-----VPGILLT-----LLSGQQV
ME20	M-----V-----Q-----L-----.....-----
gp100	M-----V-----Q-----L-----.....-----
cDNA25FL	M-----F-----Q-----L-----.....-----
cDNA25TR	Q-----L-----.....-----PPQWAAGLSTLII

1 162 236 274 588 649

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7A

1 MDLVLRKCLL HLAVIGALLA VGATKVPRNQ DWLGVSRLQR TKAWNRLQLYP
D3-----
D5-----
D4-----
C4-----
51 EWTEAQRLLDC WRGGQVSLKV SNDGPTLIGA NASFSIALNF PGSQKVLPDG
D3-----
D5-----
D4-----
C4-----
101 QVIWVNNTII NGSQVWGGQP VYPQETDDAC IFFDGGPCPS GSWSQKRSFV
D3-----
D5-----
D4-----
C4-----
151 YVWKWTWGQYW QVLGGPVSGL SIGTGRAMLG THTMEVTVYH RRGSRSYVPL
D3---D3
D5-----D5
D4-----
C4-----
201 AHSSSAFTIT DQVFVFSVSVS QLRALDGGNK HFLRNQPLTF ALQLHDPSGY
C4-----
251 LAEADLSYT W DFGDSSGT LI SRALVVTH TY LEPGPVTAQV VLQAAIPLTS
C4-----C4
25TR-----
301 CGSSPVPGTT DGHRPTAEAP NTTAGQVPTT EVVGTTPGQA PTAEPSGTT
25TR-----
351 VQVPTTEVIS TAPVQMPTAE STGMTPEKVP VSEVMGTTLA EMSTPEATGM
25TR-----
401 TPAEV SIVVL SGTTAAQVTT TEWVETTARE LPipePEGPD ASSIMSTESI
25TR-----
451 TGSLGPILLDG TATLRLVKRQ VPLDCVLYR GSFSVTLDIV QGIESAEILQ
25TR-----
501 AVPSGE GDAF ELTVSCQGL PKEACMEISS PGCQPPAQRL CQPVLPSPAC
25TR-----
551 QLVLHQILKG GSGTYCLNVS LADTNSLAVV STQLIMPGQE AGLGQVPLIV
25TR-----
601 GILLVLMMAV V LASLIYRRRL MKQDFSVQPL PHSSSHWLRL PRIFCSCP
25TR-----
651 ENSPLLSGQQ V
25TR-----25TR-----

FIG. 7B

DNA fragment	620-1	620-2	660-1	TIL	1143	1200
D3	-	-	-	-	-	-
D5	-	+	-	-	-	+
D4	-	+	-	-	-	+
C4	+	+	+	+	+	+
25TR	-	-	+	+	+	+

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

