Topic 4: Vertex Cover Problem

Input: Graph G: G = (V, E)

Weight of each vertex (node): w_i ($i \in V$)

Output: Vertex cover $S(S \subset V)$ with the minimum total weight

Minimize
$$w(S) = \sum_{i \in S} w_i$$

where $S(S \subset V)$ is a vertex cover (i.e., each edge in E has at least one end in S).

Vertex Cover Problem Set Cover Problem

We can use the greedy set cover algorithm for the vertex cover problem, which is an $H(d^*)$ -approximation algorithm where d^* is the maximum degree of the graph (i.e., the maximum number of edges from each vertex (node)).

Pricing Method (Idea)

$$\underbrace{v_i}_{e=(i,j)}\underbrace{v_j}$$

Edge e=(i,j) must be covered by vertex (node) v_i or v_j . Let p_e be the price that the edge e is willing to pay for being covered. The sum of prices over all edges incident (connected) to vertex v_i should be equal to or less than w_i (since they do not have to pay more than the total cost w_i and they can use other vertexes).

For each vertex
$$v_i$$
:
$$\sum_{e=(i,j)} p_e \le w_i \qquad p_{(i,j)} = p_{(j,i)}$$

If
$$\sum_{e=(i,j)} p_e = w_i$$
, v_i is tight.

Pricing Method (Algorithm)

Initialization of p_e : $p_e = 0$ for each edge e = (i, j).

Increase p_e : If neither vertex v_i nor v_j is tight, increase $p_{(i,j)}$ as much as possible under the condition: $\sum p_e \le w_i$ (This condition is for both w_i and w_j) $e^{=(i,j)}$

Selection of a vertex cover S: Select all tight vertexes.

Pricing Method (Algorithm)

Which edge should be selected?

Initialization of p_e : $p_e = 0$ for each edge e = (i, j).

Increase p_e : If neither vertex v_i nor v_j is tight, increase $p_{(i,j)}$ as much as possible under the condition: $\sum p_e \le w_i$ (This condition is for both w_i and w_j) $e^{=(i,j)}$

Selection of a vertex cover S: Select all tight vertexes.

Pricing Method (Algorithm)

```
We say a node i is tight (or "paid for") if \sum_{e=(i,j)} p_e = w_i.
  procedure Vertex-Cover-Approx(G, w)
      Set p_e = 0 for all e \in E
      while \exists edge e = (i, j) such that neither i nor j is tight do
          Select e
          Increase p_e without violating fairness
      end while
      Let S = \text{set of all tight nodes}
      Return S.
  end procedure
```

Fairness condition:
$$\sum_{e=(i,j)} p_e \le w_i$$

```
Weighted-Vertex-Cover-Approx(G, w) {
   foreach e in E
                                                 \sum p_e = w_i
      p_e = 0
                                                 e=(i,j)
   while (∃ edge i-j such that neither i nor j are tight)
      select such an edge e
      increase pe as much as possible until i or j tight
   S ← set of all tight nodes
   return S
```

Pricing Method (Analysis)

Let us consider a price assignment satisfying the following condition:

Example of the price assignment

Price Assignment:
$$\sum_{e=(i,j)} p_e \le w_i$$

For the given price assignment, the following inequality relation holds for an arbitrary given vertex cover S.

For any vertex cover S:
$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S)$$
This is from the assumption

Since *S* is a vertex cover, all edges are covered (some edges can be counted twice).

Pricing Method (Analysis)

Price Assignment:
$$\sum_{e=(i,j)} p_e \le w_i$$

For any vertex cover S:
$$\sum_{e \in E} p_e \le \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in S} w_i = w(S)$$

For the vertex cover S by the algorithm: $w(S) \leq 2w(S^*)$

Since all vertexes v_i in S are tight,

This is to be shown.

$$\sum_{e=(i,j)} p_e = w_i \implies w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \le 2 \sum_{e \in E} p_e$$

(An edge e = (i, j) can be counted at most twice.)

Since $\sum_{e \in E} p_e \le w(S)$ holds for any vertex cover S including S^* , $w(S) \le 2 \sum_{e \in E} p_e \le 2w(S^*)$

Homework

Exercise 9-1:

Create an example of the vertex cover problem where w(S) obtained by the pricing method is always $2w(S^*)$ independent of the order of edges. Your example should include at least three vertexes.

Exercise 9-2:

Create an example of the vertex cover problem where better results are always obtained (independent of the order of edges and a tie-breaking mechanism) by the greedy set cover algorithm than the pricing method. Your example should include at least three vertexes.

Exercise 9-3:

Create an example of the vertex cover problem where better results are always obtained (independent of the order of edges and a tie-breaking mechanism) by the pricing method than the greedy set cover algorithm. Your example should include at least three vertexes.

Exercise 9-1:

Create an example of the vertex cover problem where w(S) obtained by the pricing method is always $2w(S^*)$ independent of the order of edges. Your example should include at least three vertexes.

Please try to create interesting examples

Please try to create interesting examples

Exercise 9-2:

Create an example of the vertex cover problem where better results are always obtained (independent of the order of edges and a tie-breaking mechanism) by the greedy set cover algorithm than the pricing method. Your example should include at least three vertexes.

Exercise 9-3:

Create an example of the vertex cover problem where better results are always obtained (independent of the order of edges and a tie-breaking mechanism) by the pricing method than the greedy set cover algorithm. Your example should include at least three vertexes.

Not interesting example for Exercise 9.1 and Exercise 9.2.

- **9.1:** The pricing algorithm result w(S) is always $2w(S^*)$ independent of the order of edges.
- **9.2:** The greedy set cover result is always better than the pricing algorithm result independent of the order of edges and a tiebreaking mechanism.

Pricing algorithm result: w(S) = 12

Example

Optimal value: $w(S^*) = 6$

Greedy set cover result: w(S) = 6

