RL @ PicsArt

Bandits, exploration, production hacks

Intrinsic motivation in RL

Multi-armed bandits

Multi-armed bandits

Multi-armed bandits

A simplified MDP with only one step

Why: it's simpler to explain exploration methods, Formulae are shorter (we can generalize to MDP if you wish)

What is: contextual bandit

Examples:

- banner ads (RTB)
- recommendations
- medical treatment

Basicaly it's 1-step MDP where

- G(s,a) = r(s,a)
- Q(s,a) = E r(s,a)
- All formulae are 50% shorter

How to measure exploration

With convergence properties!

How to measure exploration

Bad idea: with convergence properties

Good idea: with \$\$\$ it brought/lost you

Regret of policy $\pi(a|s)$:

Consider an optimal policy, $\pi^*(a|s)$

Regret per tick = optimal – yours

$$\eta = \sum_{t} E_{s,a \sim \pi^{star}} r(s,a) - E_{s,a \sim \pi_t} r(s,a)$$

Finite horizon: $t < max_t$ Infinite horizon: $t \rightarrow inf^7$

How to measure exploration

Bad idea: with convergence properties

Good idea: with \$\$\$ it brought/lost you

Regret of policy $\pi(a|s)$: Regret per tick = optimal – yours

Exploration strategies so far...

Strategies:

- · ε-greedy
 - · With probability ε take a uniformly random action;
 - · Otherwise take optimal action.
- · Boltzman
 - Pick action proportionally to transformed Qvalues

$$P(a) = softmax(\frac{Q(s,a)}{std})$$

Policy based: add entropy

How many lucky random actions it takes to

- Apply medical treatment
- Control robots
- Invent efficient VAE training

Except humans can learn these in less than a lifetime

How many lucky random actions it takes to

- Apply medical treatment
- Control robots
- Invent efficient VAE training

We humans explore not with e-greedy policy!

BTW how humans explore?

Whether some new particles violate physics

Vs

Whether you still can't fly by pulling your hair up

Uncertainty in returns

We want to try actions if we believe there's a chance they turn out optimal.

Idea: let's model how certain we are that Q(s,a) is what we predicted

Thompson sampling

Policy:

- sample **once** from each Q distribution
- take argmax over samples
- which actions will be taken?

Thompson sampling

Policy:

- sample once from each Q distribution
- take argmax over samples
- which actions will be taken?

Takes a1 with p \sim 0.65, a2 with p \sim 0.35, a0 \sim never

Optimism in face of uncertainty

Idea:

Prioritize actions with uncertain outcomes!

More uncertain = better.

Greater expected value = better

Math: try until upper confidence bound is small enough.

Optimism in face of uncertainty

Policy:

- Compute 95% upper confidence bound for each a
- Take action with highest confidence bound
- What can we tune here to explore more/less?

Optimism in face of uncertainty

Policy:

- Compute 95% upper confidence bound for each a
- Take action with highest confidence bound
- Adjust: change 95% to more/less

Frequentist approach

There's a number of inequalities that bound P(x>t) < something

E.g. Hoeffding inequality

$$\mathbb{P}(S_n - \mathrm{E}[S_n] \geq t) \leq \exp\Biggl(-rac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\Biggr),$$

Remember any others?

Frequentist approach

There's a number of inequalities that bound P(x>t) < something

E.g. Hoeffding inequality

$$\mathbb{P}(S_n - \mathrm{E}[S_n] \geq t) \leq \exp\Biggl(-rac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\Biggr),$$

Remember any others?

(Chernoff, Chebyshev, over9000)

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

Upper conf. bound

- N number of time-steps so far for r in [0,1]
- n_a times action **a** is taken

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

- N number of time-steps so far
- n_a times action **a** is taken

UCB generalized for multiple states

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

where

- N_s visits to state **s**
- $n_{s,a}$ times action **a** is taken from state **s**

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

- -N number of time-steps so far
- n_a times action **a** is taken

Upper bound For bernoilli r

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

- N number of time-steps so far
- n_a times action **a** is taken

UCB generalized for multiple states

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

where

- N_s visits to state **s**
- $n_{s,a}$ times action **a** is taken from state **s**

Bayesian UCB

The usual way:

- Start from prior P(Q)
- Learn posterior P(Q|data)
- Take q-th percentile

What models can learn that?

Bayesian UCB

The usual way:

- Start from prior P(Q)
- Learn posterior P(Q|data)
- Take q-th percentile

Approach 1: learn parametric P(Q), e.g. normal

Approach 2: use bayesian neural networks

Parametric

Parametric

BNNs

BNNs (for hackers)

BNNs

Idea:

- No explicit weights
 - Maintain parametric distribution on them instead!
 - Practical: fully-factorized normal or similar

$$q(\theta|\varphi:[\mu,\sigma]) = \prod_{i} N(\theta_{i}|\mu_{i},\sigma_{i})$$

$$P(s'|s,a) = E_{\theta \sim q(\theta|\varphi)} P(s'|s,a,\theta)$$

BNNs

Idea:

- No explicit weights
 - Maintain parametric distribution on them instead!
 - Practical: fully-factorized normal or similar

$$q(\theta|\varphi:[\mu,\sigma]) = \prod_{i} N(\theta_{i}|\mu_{i},\sigma_{i})$$

$$P(s'|s,a)=E_{\theta\sim q(\theta|\varphi)}P(s'|s,a,\theta)$$

- Learn parameters of that distribution (reparameterization trick)
 - Less variance: local reparameterization trick.

$$\mathring{\varphi} = argmax_{\varphi} E_{\theta \sim q(\theta|\varphi)} P(s'|s,a,\theta)$$

wanna explicit formulae?

Lower bound

$$-KL(q(\theta|\varphi)||p(\theta|z)) = -\int_{\theta} q(\theta|\varphi) \cdot \log \frac{q(\theta|\varphi)}{p(\theta|z)}$$

$$-\int_{\theta} q(\theta|\varphi) \cdot \log \frac{q(\theta|\varphi)}{\left[\frac{p(z|\theta) \cdot p(\theta)}{p(z)}\right]} = -\int_{\theta} q(\theta|\varphi) \cdot \log \frac{q(\theta|\varphi) \cdot p(z)}{p(z|\theta) \cdot p(\theta)}$$

$$-\int_{\theta} q(\theta|\varphi) \cdot \left[\log \frac{q(\theta|\varphi)}{p(\theta)} - \log p(z|\theta) + \log p(z)\right]$$

$$[E_{\theta \sim q(\theta|\varphi)}\log p(\mathbf{z}|\theta)] - KL(q(\theta|\varphi)||p(\theta)) + \log p(\mathbf{z})$$

loglikelihood -distance to prior +const

Lower bound

$$\varphi_{t} = arg_{\varphi} ax \left(-KL\left(q\left(\theta|\varphi\right)||p\left(\theta|z_{t}\right)\right)\right)$$

$$\underset{\boldsymbol{\omega}}{argmax}([E_{\boldsymbol{\theta} \sim q(\boldsymbol{\theta}|\boldsymbol{\varphi})}\log p\left(\mathbf{z}_{\mathbf{t}}|\boldsymbol{\theta}\right)] - \mathit{KL}(q(\boldsymbol{\theta}|\boldsymbol{\varphi})||p\left(\boldsymbol{\theta}\right)))$$

Can we perform gradient ascent directly?

Reparameterization trick

$$\varphi_{t} = \underset{\varphi}{argmax} \left(-KL\left(q\left(\theta|\varphi\right)||p\left(\theta|z_{t}\right)\right)\right)$$

$$arg\!\max_{\mathbf{q}}(\underline{[\,E_{\mathbf{q}\sim q(\mathbf{q}|\mathbf{q})}\!\log p\left(\mathbf{z}_{\mathbf{t}}\!|\mathbf{\theta}\,\right)]}\!-\!\mathit{KL}(\,q(\,\mathbf{q}|\mathbf{q})||\,p\left(\mathbf{\theta}\right)))$$

Use reparameterization trick

Using BNN

$$E_{\boldsymbol{\theta} \sim N(\boldsymbol{\theta} | \boldsymbol{\mu}_{\boldsymbol{\varphi}}, \, \boldsymbol{\sigma}_{\boldsymbol{\varphi}})} \log p\left(\boldsymbol{z} | \boldsymbol{\theta}\right) = E_{\boldsymbol{\psi} \sim N(\boldsymbol{0}, \boldsymbol{1})} \log p\left(\boldsymbol{z} | (\boldsymbol{\mu}_{\boldsymbol{\varphi}} + \boldsymbol{\sigma}_{\boldsymbol{\varphi}} \cdot \boldsymbol{\psi})\right)$$

Better: local reparameterization trick (google it)

Using BNNs

- If you sample from BNNs
 - Can learn nonparametric/multimodal distribution
 - But it takes running network many times
 - Use empirical percentiles

Using BNNs

- If you sample from BNNs
 - Can learn nonparametric/multimodal distribution
 - But it takes running network many times
 - Use empirical percentiles

Practical stuff

 Approximate exploration policy with something cheaper

- Bayesian UCB:
 - Prior can make or break it
 - Sometimes parametric guys win (vs bnn)
- Of course, neural nets aren't always the best model

<us talking>

