Devoir à la maison n° 2

À rendre le 7 octobre avant le DS

Pseudo-inverse

Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathcal{M}_{n,m}(\mathbb{K})$ l'ensemble des matrices à n lignes et m colonnes à coefficients dans \mathbb{K} .

Pour toute matrice $M \in \mathcal{M}_{n,n}(\mathbb{R})$, on appelle endomorphisme canoniquement associé à M, l'endomorphisme de \mathbb{R}^n , noté m, dont M est la matrice dans la base canonique de \mathbb{R}^n .

Si $M \in \mathcal{M}_{n,m}(\mathbb{K})$, M(i,j) représente le coefficient en ligne i et colonne j de la matrice M. On note I_n la matrice identité de $\mathcal{M}_{n,n}(\mathbb{R})$. La matrice (colonne) de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1 est notée J_n .

Définition Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$, une matrice $A' \in \mathcal{M}_{n,n}(\mathbb{R})$ est un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

$$AA' = A'A \tag{1}$$

$$A = AA'A \tag{2}$$

$$A' = A'AA' \tag{3}$$

Soit A une matrice de $\mathcal{M}_{n,n}(\mathbb{R})$ et a l'endomorphisme de \mathbb{R}^n canoniquement associé.

1) Montrer que l'existence d'un pseudo-inverse implique que

$$\operatorname{rg} a = \operatorname{rg}(a^2).$$

Inversement on suppose maintenant que $rg(a) = rg(a^2)$. On note r cet entier.

2) Montrer que l'image et le noyau de a sont en somme directe :

$$\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a).$$

3) Montrer qu'il existe $B \in \mathcal{M}_{r,r}(\mathbb{R})$, B inversible et $W \in \mathcal{M}_{n,n}(\mathbb{R})$, W inversible, telles que

$$A = W \left(\begin{array}{cc} B & 0 \\ 0 & 0 \end{array} \right) W^{-1}$$

4) Montrer que A admet au moins un pseudo-inverse.

Considérons un pseudo-inverse quelconque A' de A et a' l'endomorphisme canoniquement associé à A'.

5) Montrer que $\operatorname{Ker}(a)$ et $\operatorname{Im}(a)$ sont stables par a' et qu'il existe $D \in \mathscr{M}_{r,r}(\mathbb{R})$ telle que

$$A' = W \left(\begin{array}{cc} D & 0 \\ 0 & 0 \end{array} \right) W^{-1}.$$

- 6) Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de ceux de a et préciser ce que vaut $W^{-1}(AA')W$.
- 7) Montrer que A admet au plus un pseudo-inverse.

— FIN —