

OF ADA ADA 70

MICROCOPY RESOLUTION TEST CHART

ADA 074972

LEVEU

VPI-AERO-096

User's Guide For A System Of Computer Programs To Predict Flows Over And In The Near Wake Behind Axisymmetric, Self-Propelled Bodies

by

M. C. Hyman, S. C. Houlihan, J. A. Hill, D. L. Dwoyer and C. H. Lewis

> Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

> > November 1978

This document has been approved for public release and sale; its distribution is unlimited.

DOC FILE COPY

USER'S GUIDE FOR A SYSTEM OF COMPUTER PROGRAMS TO PREDICT FLOWS OVER AND IN THE NEAR WAKE BEHIND AXISYMMETRIC, SELF-PROPELLED BODIES

by

10 M. C. Hyman, S. C. Houlihan, J. A. Hill, D. L. Dwoyer and C. H./Lewis

Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

A system of computer programs has been developed to predict flows around and in the near wake behind an axisymmetric body including a propeller at the tail of the vehicle. The system is capable of calculating laminar and/or turbulent, attached and separated flows. Interactive boundary-layer theory is used to predict the flow on the nonseparating region over the body and the full Navier-Stokes equations are solved for the separated, propeller and near wake flow regions.

Details of the theory and results are included in a separate engineering report. The programs, subroutines, variables in common and input and output data are described. Listings of the program code, input and output data for a sample case are included.

A

FORWARD

The following system of computer programs has been developed for use on the IBM 370, model 158 computer, for CMS under VM. For this reason the exec procedures required to execute this system have also been included to aid in the conversion of the system in its present form to a form compatible with that in use at a receiving facility.

NTIS G	on For		
Unannou	nced	B	<u> </u>
4	-5		
Digt 1	-11-10p		
_tv:17	philit	and/or	
Dist	spec	ial	

TABLE OF CONTENTS

of thinglessamed and augment on cores to analysis of some	ent	Page
ABSTRACT	- 984 - 0.4	ii
FORWARD	•9•1•0•	iii
TABLE OF CONTENTS		iv
LIST OF FIGURES		x
INTRODUCTION		1
DESCRIPTION OF SYSTEM		2
DESCRIPTION OF PROCEDURE CDCP		5
Use of CDCP EXEC (ARGUMENT)		5
Program DATADEV		6
Description of Program DATADEV		6
Description of Variables in Common		6
Description of Subroutines		7
MAIN		7
Subroutine LINDEV		8
Description of Variables		8
Subroutine FIT		8
Description of Variables		9
Subroutine HESSPA		9
Description of Input and Output		9
Input Data		9
COORD DATA		9
SEPARA DATA		10
HESS PARMDATA		11
Output Data		12

	Page
SEPARA DATA	12
COORD DATA	12
HESSBLI DATA	12
Program Datama	12
Description of Program Datama	12
Description of Variables in Common	13
Description of Subroutines	14
MAIN	14
Subroutine CPDATA	14
Description of Variables	14
Subroutine CURVE	14
Subroutine READAT	15
Description of Variables	15
Description of Input and Output	15
Input Data	15
WAKE COORDATA	15
ICBLINT PARMDATA	16
SUMDS DATA	16
HESSBLI OUTPUT	16
Output Data	16
SUB DATA	17
SEPARA DATA	17
DATAMAKE DATA	17
INTER DATA	17

														Page
DESCRIPTION OF PROCEDURE BLINT							•				•	•		19
Program HESS					•	0								20
Program BLDMKER									•				•	21
Description of Program BLDMKER						•		•	•					21
Description of Input for BLDMKER .					•	•	•		•					21
DATAMAKE DATA	•						•							21
HESSBLI OUTPUT					•									21
Description of Output for BLDMKER		•									•			21
Program ICBLINT				•		•								21
Description of the Program ICBLINT		٠												21
Description of Variables in Common				9	•				•					23
Description of Subroutines		•		•	•	•		•						35
Subroutine MAIN	•	•		•					•					35
Description of Variables				0	•	•					•			36
Subroutine ADDETA							•							37
Description of Variables	•		•		•								•	37
Subroutine BLUNT1								•						38
Description of Variables												•		38
Subroutine BLUNT2							•							38
Description of Variables		•	•	•						•				39
Subroutine CHANGE		•					•	•						39
Description of Variables								•			•			39
Subroutine COEF		•		•										40
Description of Variables								•						40
Subroutine DELTAS														41

												Page
Description of Variables .				•								41
Subroutine DERIV3								1				41
Subroutine EFFMU					•							42
Description of Variables .												43
Subroutine EDGPROP												44
Subroutine FD3 and FD5						•	•					44
Subroutine GEOM						•						44
Subrouitne INIT												44
Description of Variables .												45
Subroutine INTER3			•									45
Subroutine INTER5		9										46
Subroutine INTERP												46
Subroutine INTERP5												46
Subroutine MOMENT												47
Subroutine PRFILE												47
Description of Variables .												48
Subroutine READIN												48
Description of Variables												48
Description of Input Data												49
Subroutine RESTAR												49
Subroutine SOLVE												49
Description of Variables .												50
Function TLU												50
Subroutine VELDAT												51
Cubwauting WDITE1												61

									Page
Description of Variables									51
Subroutine WRITE2									52
Description of Variables							•		52
Subroutine ZRO									53
Description of Input Data	•	 •				•	•		53
HESSCP OUTPUT	•	 •							59
Description of Output Data									60
Input and Initialized Data								•	60
Station Data	•					•		•	61
Miscellaneous Messages and Data .					•	•			64
DESCRIPTION OF PROCEDURE DEVELOP	•	 •			•				67
Program DATFIELD	•	 •					•		67
Description of Program DATFIELD .	•		 •				•		67
Description of Input and Output .		 •						•	68
Input Data	•	 •	 •				•	•	68
Output Data		 •	 •	•	•	•			68
Program APLNS	•						•		70
Description of Program APLNS		 •				•			70
Numerical Procedure		 •		•					71
Description of Variables in Common		 •		•	•				71
Description of Subroutines		 •	 •	•		•			75
DRFAX6	•	 •					•	•	75
Subroutine DU1CAL	•					•	•		75
Subroutine EPSCA6							•		76
Cubmouting INTALS									76

																			Page
	Subro	utine	PUT	IN6								•							78
	Subro	utine	WOR	K6															78
Des	cripti	ion of	f In	put			•	•					•						78
	Input	Varia	able	s on	Ur	nit	5												78
	Input	Data	on i	Unit	11	١.			•										80
	Input	Data	on I	Unit	8					•	•								80
Des	cripti	on of	Ou.	tput										•		•			80
	Output	Vari	able	es					•										80
Appendix	Α.					•	•	•	•	•									85
Appendix	в.					•											0		266

LIST OF FIGURES

- Figure 1. Logical Flow of System
- Figure 2. Mechanical Flow of System
- Figure 3. Development and Effect of Wake Fairing Extension
- Figure 4. Logical Flow of DATADEV
- Figure 5. Logical Flow of DATAMA
- Figure 6. Logical Flow of HESS/ICBLINT
- Figure 7. Mechanical Flow of HESS/ICBLINT
- Figure 8. Flow Diagram of Main Routine by Function
- Figure 9. Flow Diagram of Main Routine by Subroutines Called
- Figure 10. Procedure Flowchart of APLNS
- Figure 11. Routine Sequence Flowchart of APLNS

INTRODUCTION

The purpose of this system of programs is the prediction of viscous flow over and in the near wake behind axisymmetric bodies, particularly submarine-like bodies. The effects of an operating propeller and separated flow have been included in the procedure. The system procedure is basically the execution of four segments. The first is the development of a transformed or nonseparating body which allows a boundary-layer solution to be calculated. The second segment is the solution of the interactive boundary-layer over the body. The third segment is the development of the perturbed flowfield, used in the fourth and final segment, the solution of the afterbody and near wake with the propeller.

DESCRIPTION OF SYSTEM

The system is composed of a number of programs which serve not only to obtain a solution, but to as great a degree as possible automate the calculation of the solution. The first segment of the system is composed of support programs included specifically to perform this task. The general body coordinates are input and these programs calculate a transformed set of coordinates that allow a nonseparating boundary-layer solution to be obtained. The basis of the transformation is in the nature of the flow over the afterbody. The original coordinates are tested to determine if the flow separates over the afterbody. The test is based on the inviscid pressure distribution over the body and was empirically developed from repeated trials on a number of test configurations. From these trials it was determined that the boundary layer on the afterbody would not remain attached if the inviscid pressure coefficient exceeded a value of 0.2. Therefore, an inviscid calculation is performed to give the pressures over the afterbody and, if the criterion for separation is met, the body is modified until a nonseparating configuration is found.

The next segment of the system is an interactive boundary-layer solution about the transformed body. The interactive solution employs the VPI&SU Incompressible Boundary-Layer Program and the Hess Potential Flow Program to obtain a viscous/inviscid iterated solution. The iteration procedure is as follows: A boundary-layer solution is first obtained by matching the boundary-layer edge pressure with a "first guess" inviscid pressure distribution. Coordinates of the displacement body

that result from the boundary-layer solution are placed in a separate coordinate data set. The inviscid pressure distribution is then found about the displaced body by the potential flow program and becomes the next guess for the pressure distribution. This guess is then used by the boundary-layer program to yield another, corresponding displaced body and the sequence is continued. The iterative process that is developed is continued for several iterations, the number of which is dependent on the shape of the afterbody and the accuracy of the initial guess. With the current system, the first guess is the inviscid pressure distribution about the original body obtained from the potential flow code. It has been found that the use of this initial guess requires that only one iteration was needed when solving for the flows about bodies with straight tails and from 4-6 iterations were needed for straight-tapered or curved tails.

The elliptic nature of the Navier-Stokes equations requires that full (surrounding), boundary conditions be supplied, as well as a first guess of the flowfield in the region treated. The downstream boundary lies in the wake of the body and the corresponding boundary conditions are that $\partial^2 \xi/\partial x^2$ and $\partial^2 \psi/\partial x^2$ go to zero. Since the region that is treated in the Navier-Stokes program, in this case a "box" of grid points, encompasses a much greater area than that of the viscous region alone, the full viscous-inviscid velocity profile is required at the upstream edge. The interactive boundary-layer solution provides conditions for the viscous region of the upstream boundary, and conditions in the inviscid region are obtained by employing the potential flow program to calculate the outer flowfield about the final displaced body. At the

joining of the two velocity profiles, the viscous and inviscid regions, a composite expansion is used to ensure a continuous transition. The initial flowfield is thus an inviscid velocity field and is used inside the Navier-Stokes program to generate the initial stream function throughout the Navier-Stokes region. The upper boundary conditions are simply the inviscid velocities obtained from the perturbed flowfield.

The final segment of the system is the solution of the propeller, separated and near wake regions of the flow which is accomplished through the use of the APLNS program. The Navier-Stokes program iterates on the stream function, which, on the first iteration, is the stream function about the inviscid, perturbed body described above. An Alternating Difference Implicit method (ADI) is used for calculating new stream functions in the Navier-Stokes (N-S) region. After NTS time steps, the solution is assumed to reach convergence and the results are printed. For many high speed problems the time step (Δ t) must be particularly small, and hence the number of time steps required for convergence may be considerable.

There is no final convergence criterion other than the specified total number of time steps (NTS).

The logical flow of the system may be followed in Fig. 1.

Figure 2 shows the corresponding sequence of program usage in the system. This user's guide contains a brief overview of the system augmented by a more complete and detailed description of the system and its component programs. The system is tied together by WAKE EXEC, an exec procedure which executes the segment procedures. See Appendix A, Table 1.1 for a listing of WAKE EXEC.

Figure I. LOGICAL FLOW OF SYSTEM

Figure 2. MECHANICAL FLOW OF SYSTEM

Figure 2. MECHANICAL FLOW OF SYSTEM (continued)

DESCRIPTION OF PROCEDURE CDCP

CDCP EXEC is an exec procedure which ties together the operation of the support programs: DATADEV, DATAMA, and HESS.

Programs DATADEV and DATAMA, controlled by CDCP EXEC, generate a complete set of data files with which the iterative procedure can be executed. The procedure includes the development and the checking of body geometries until a nonseparating flow is found. The development of the nonseparating flow involves: (1) the incremental extension of a trailing edge fairing into the wake (performed in DATADEV), (2) the testing of that fairing in HESS, and (3) the check of that fairing in DATAMA. CDCP EXEC first executes DATADEV, then HESSBLI and then DATAMA When DATAMA has completed executing, the data file SEPARA DATA is checked and the flag ICP is evaluated. IF ICP is 0, a successful afterbody has been found; if 1, the iterative procedure is continued. If a nonseparating fairing has been found, data sets are written and control shifts to BLINT EXEC, but if not, the fairing is extended further into the wake, and the result is retested. This sequence is continued until a successful afterbody is generated or an iteration limit is reached. Because of imperfections in the fitting of the faired afterbody to the original body, as stated above, it is suggested that the user carefully examine the coordinate sets and $\mathbf{C}_{\mathbf{D}}$ distribution that are output by CDCP and smooth where needed, especially in the trailing edge region and near the body/fairing joint.

Use of CDCP EXEC (ARGUMENT)

(ARGUMENT) is the maximum number of iterations that the sequence

will complete to find a satisfactory fairing. This is put in as a safety feature to prevent execution from continuing indefinitely due to some unforeseen body characteristic. A listing of CDCP EXEC can be found in Appendix A, Table 2.1.

Program DATADEV

Description of Program DATADEV. DATADEV EXEC is the EXEC program which executes DATADEV FORTRAN. DATADEV FORTRAN generates data sets for the HESS potential flow code. On the first pass DATADEV simply writes out a full HESS data set using the original body coordinates. On successive passes, DATADEV generates the afterbody which extends into the wake and further up the body. The extension up the body has been found to hasten afterbody development. The fairing is concave upward, beginning at the point where $\mathbf{C}_{\mathbf{p}}$ changes sign from negative to positive (see Fig. 3). After developing the afterbody, new HESS data sets are written out, and a new data set with iteration information is written. A flow chart of DATADEV is found in Fig. 4 .

See Appendix A, Tables 2.2 and 2.3 for listings of DATADEV EXEC and DATAMA FORTRAN.

Description of Variables in Common.

BLOCK	VARIABLE	DESCRIPTION OF USE
CORFIT	c	Slope of body at the beginning of the Navier-Stokes region.
CORFIT	DX	Constant stepsize used in re-positioning afterbody coordinates.

Fig. 3 Development and effect of wake fairing extension

Figure 4. LOGICAL FLOW OF DATADEV

COORD	кте	Station number of trailing edge on original body.
COORD	KTE1	Station number of trailing edge of faired (extended) body.
CORFIT	NNN	Station number of beginning of re-positioned coordinates.
COORD	NOPRFS	Number of profiles in the part of the Navier-Stokes region on the body.
COORD	X	Original x coordinates on first pass, repositioned coordinates on subsequent passes.
COORD	Y	Original y coordinates on first pass, re-positioned coordinates on subsequent passes.
CORFIT	X1	Axial distance from the beginning of the fairing to KTE1.
CORFIT	Y1	Radial distance from the beginning of the fairing to the axis.
COORD	XI	Array of x coordinates with afterbody fairing.
COORD	YI	Array of y coordinates with afterbody fairing.

Description of Subroutines.

MAIN. MAIN reads in the body coordinates. On the first pass, the original coordinates are read. On successive passes the original

coordinates with the coordinates of the afterbody repositioned to give a constant x stepsize are read. MAIN then calls LINDEV and HESSPA to generate and write out new coordinates with afterbody.

The variables listed below are used in MAIN. A description can be found in VARIABLES IN COMMON: KWAKE, KTE, KTE1, X, Y.

Subroutine LINDEV. LINDEV develops the trial afterbody fairings and reads in the separation information, including the iteration number. The routine then repositions the coordinates near the trailing edge to give a constant stepsize and on subsequent iterations, extends the fairing into the wake LWAKE points and steps back the beginning of the fairing IWAKE points. This set of x-coordinates is used in developing the fairing which is done in FIT.

Description of Variables.

DX X stepsize in afterbody for repositioned coordinates. Set at one percent of body length.

KK Number of repositioned coordinates.

LWAKE Number of points in wake used in extension of afterbody,

LWAKE = IWAKE*5

MM Number of body stations with repositioned coordinates.

Subroutine FIT. Subroutine FIT generates a curve to fit the boundary conditions given by LINDEV in the form of X1, X2, Y1, and C. C is the body slope at X1, Y1; the slope at the trailing edge is assumed to be zero. The fit is based on the equations.

$$Y_{N}^{\prime} = [\Delta Y(K) + \Delta Y(K^{2}) + \Delta Y(K^{3}) + \dots + \Delta Y(K^{N})],$$

$$N = 1, KK, KK = No. \text{ of points on curve}$$
(1)

$$Y_{N} = Y_{1} - Y_{N}^{'} \tag{2}$$

$$K = \frac{\Delta X}{\Delta Y} C \tag{3}$$

DELY is initially set to 0.0 and successively increased by DY. K is calculated according to Eq. 3. If Y from Eqs. 1 and 2 is less than Y1, DELY is increased and the calculation is redone until the convergence criterion (YK-Y1) = 0.0001 is attained. The Y's based on the last K are used in the afterbody coordinate sets.

Description of Variables.

DELX X stepsize (= dx)

DELY Y stepsize

K Constant multiplier in numerical curve fit

L Station number of the beginning of the afterbody

Y Working array of Y coordinates of afterbody

Other variables used in FIT and described in Variables in Common are C, Yl, Xl, YI, and DX.

Subroutine HESSPA. HESSPA writes out a complete HESS data set using the body coordinate arrays XI and YI which include the afterbody. The routine first reads in the HESS parameters and includes the changed parameters, if any, in the written set.

Description of Input and Output.

Input Data. Three data sets are input into DATADEV for execution. They are: COORD DATA, SEPARA DATA, and HESS PARMDATA.

COORD DATA contains the original body coordinates together with parameters and flags.

Card 1 KWAKE (I3)

KWAKE

Flag for including wake points in solu-

tion: O no wake points

1 use wake points

(must have data set of wake points if

KWAKE = 1)

Card 2

KTE, NOPRFS,

KTE1 (1x,313)

KTE

Station number of trailing edge on original

body (first pass original T. E., suc-

cessive passes repositioned T. E.)

NOPRFS

Number of profiles on the body in the

APLNS box. Maximum of 15 is the recom-

mended value

KTE1

Station number of trailing edge on faired

body

Cards

X,Y

(2F12.6)

3-KTE+3

X

x coordinate of the original body geometry

Y

y coordinate of the original body geometry

See Appendix B, Table 1.1 for a sample COORD DATA file.

SEPARA DATA contains information on the status of the iterations and flags on separation.

Card 1

IWAKE

Iteration counter, on first iteration has

a value of 0

Card 2

JSTA, KTE

(1x,313)

JSTA

Station number of start of faired body.

For initial data set can be 0

29 P.	KTE - LEGIC COLLEGE	Described above
Card 3	ICP	(13)
	I CP	Separation flag, 0 for no separation;
		1 for separation. Set to 0 initially.

See Appendix B, Table 1.2 for a sample SEPARA DATA data set.

HESS PARMDATA contains the HESS execution parameters. A further description can be found in the HESS user's guide.

Card	1-51-01	HEDR, CASE	(15A4,2x,2A4)
		HEDR	Alphanumeric array with the case title
		CASE	Alphanumeric array with the case number
Card	2	ICARD2	(13)
		I CARD2	HESS execution flags, for body only solu-
			tion set at 1,0,1
Card	3	I CARD3	(15)
		I CARD3	HESS execution flags, set to 0 (see HESS
			user's guide)
Card	4	ICARD4, NN	(1x,14,15)
		ICARD4	HESS execution flags, for body only solu-
			tion set to 1,0,0,1
		NN	Number of body stations. Set to KTE
			initially and will be changed to KTE1
			for separating case
Card	5	IBDN	(9x,I1)
		IBDN	Body number, for body only solution set
			to 1

See Appendix B, Table 1.3 for a sample HESS PARMDATA data set.

Output Data. The output files created by DATADEV are: SEPARA DATA, COORD DATA, and HESSBLI DATA.

SEPARA DATA Described above. Rewritten for use by

DATAMA

COORD DATA Described above. Values of KTE1 and

original coordinates changed to reflect

fairing extension (KTE1) and repositioning

of original body coordinates

HESSBLI DATA Complete data set for HESS execution,

including fairing when one is used

(second and subsequent iterations)

Card 1-5 Described above in HESS PARMDATA

Card 6 - KTE1 XI, YI (2F12.6)

XI, YI Body coordinates

See Appendix B, Table 1.4 for a sample HESSBLI DATA data set.

Program Datama

Description of Program Datama. DATAMA EXEC executes program DATAMA. DATAMA evaluates the pressure distribution developed by HESS and decides if the geometry will produce separating flow. The program also interpolates the $C_{\rm p}$ data set at on-coordinate points for use in the HESS/ICBLINT iterative scheme. If the developed afterbody successfully prevents separation, the full HESS/ICBLINT data sets are written. An option is included to add wake points for a wake solution from HESS/ICBLINT. A flow chart of DATAMA is shown in Fig. 5.

See Appendix A, Tables 2.4 and 2.5 for listings of DATAMA EXEC and DATAMA FORTRAN.

Figure 5. LOGICAL FLOW OF DATAMA

Description of Variables in Common.

vescription of variable	
<u>Variable</u>	Description of Variable
DYDX	Slope of straight taper approximation of
	tail section (without afterbody) for
	use in APLNS geometry data
JSTA	Station near trailing edge at which the
	C_p changes sign (- to +), which determines
	the beginning of the fairing extension.
ICP	Separation flag; 1 if flow is separating,
	0 if otherwise
IIMAX	Maximum number of coordinate stations.
	Values in coordinate array including wake
	points
JWAKE	Number of wake points at which a solu-
	tion is to be found
KTE	Station number of original body
KTE1	Station number of trailing edge of body
	with fairing
KWAKE	Wake flag; 1 if wake points are to be
	used, 0 if otherwise
X	Array of faired body coordinates
XI	Array of original body coordinates
XLOCAT	X coord of beginning of fairing X(JSTA)
Y cold to the state over a particular	Array of final y body coordinates with
	fairing
YI E	Array of original body coordinates

YWAKE

Array of Y values of wake coordinates.

Description of Subroutines.

MAIN. MAIN reads in wake coordinates, if used, and calls subroutines CPDATA, CURVE, and READAT. The last two routines are called only if ICP = 0.

Subroutine CPDATA. Subroutine CPDATA is the working section of the program. Pressure coefficients are read in from the previous HESS execution and, since these coefficients are given at off-coordinate points, the data are interpolated to on-body coordinate points. These $\mathbf{C}_{\mathbf{p}}$ data are examined to find locations of sign changes, negative minimums and magnitudes over the fairing. If the fairing $\mathbf{C}_{\mathbf{p}}$ data go higher than 0.2, the body is assumed to produce separating flow. If wake points are to be used, they are added to the coordinate array and given a constant $\mathbf{C}_{\mathbf{p}}$ value of the last negative minimum.

Description of Variables.

CP	Array of	interpolated	Cn	values

F Array of C_p values for off-body points

ICPAR Station number of negative minimum C_D

used in giving initial values to wake

Cp data

IWAKE Iteration counter

LWAKE Number of points in wake used in fairing

extension = IWAKE*5

Subroutine CURVE. CURVE is called when ICP = 0. CURVE reads in the original body coordinates and finds the slope of the body at XI(KSTA). The procedure used defines the straight tapered tail for

the APLNS geometry. CURVE also prints the necessary data for DEVELOP to calculate the inviscid, perturbed flowfield.

Subroutine READAT. Subroutine READAT reads in the HESS/
ICBLINT execution parameters and writes out the complete working data
sets. For coordinates the routine uses the last (now nonseparating)
faired set developed in DATADEV found in HESSBLI DATA. The routine
also writes out the stations at which complete solutions in ICBL are to
be obtained (IPR array) and the stations at which solutions are to be
written out (IPRINT array). For simplicity these arrays are equal, the
stations used are dependent on IIMAX.

Description of Variables.

K

Station number at which IPRINT array begins to be incremented by 1.

Description of Input and Output.

Input Data. There are seven data sets used by DATAMA: WAKE COORDATA, ICBLINT PARMDATA, HESSBLI DATA, SEPARA DATA, SUMDS DATA, HESSBLI OUTPUT and COORD DATA. Of these data sets, HESSBLI DATA, SEPARA DATA, and COORD DATA have been described above in INPUT and OUTPUT for DATADEV.

JWAKE is the number of wake points in the arrays XWAKE and YWAKE

Card 2-KWAKE+1 XWAKE (F12.6) KWAKE is the number of points in wake coordinate data set

XWAKE

The array of values of coordinates in the array of wake points.

See Appendix B, Table 1.5 for a sample WAKE COORDATA data set.

ICBLINT PARMDATA. ICBLINT PARMDATA is the data set of HESS/ICBL execution parameters. The data set contains all the necessary ICBLINT/HESS data except for the axial, radial, and surface coordinates. The data are updated in DATAMA to include any changes made in the coordinates. For a complete description of ICBLINT PARMDATA see the ICBLINT user's guide, "Description of Input," under SUB DATA. SUB DATA contains in Cards 1-20 the set ICBLINT PARMDATA.

SUMDS DATA. SUMDS DATA is the data set output by HESS giving the surface distance to each of the coordinates which becomes the XSTA array used in ICBLINT. The data set is read in by READAT and written on SUB DATA.

Card 1-NN XSTA

(12x, F12.6)

See Appendix B, Table 1.6 for a sample SUMDS DATA data set.

HESSBLI OUTPUT. HESSBLI OUTPUT is the off-coordinate $\mathbf{C}_{\mathbf{p}}$ data from HESS.

Cards 1-NN XW \leftarrow XTO \leftarrow F(3F12.6)

XW XW is the off-coordinate point at which the C_p data have been calculated in HESS XTO XTO is the on-coordinate point to which the C_p data will be interpolated F is the off-coordinate C_p value

Output Data. DATAMA outputs five data files: SUB DATA, HESSCP OUTPUT, SEPARA DATA, DATAMAKE DATA, and INTER DATA.

SUB DATA. SUB DATA is the complete data file for HESS/ICBL execution with all parameters and coordinate points (see INPUT FOR ICBLINT).

HESSCP OUTPUT. HESSCP OUTPUT is the final, interpolated data set of $\rm C_p$ values for use in HESS/ICBL along with SUB DATA. The data contain the on-coordinate $\rm C_p$ values. HESSCP OUTPUT is described in the ICBLINT user's guide, "Description of Input."

See Appendix B, Table 1.7 for a sample HESSCP OUTPUT data set.

SEPARA DATA. SEPARA DATA, described earlier, is changed in DATAMA, and output again with the new information.

DATAMAKE DATA. DATAMAKE DATA is the data set for execution of BLDMKER FORTRAN and is simply the number of points in the final body coordinate set.

Card 1 NN (I3)

NN is the number of body points

See Appendix B, Table 1.8 for a sample DATAMAKE DATA data set.

INTER DATA. INTER DATA is the data set for DATFIELD to use in developing the inviscid flowfield.

Card 1 IHESSI (511.15)

IHESSI Counter for the number of repetitions

completed through DEVELOP

Card 2 XLOCAT, DX, DY (3F12.6)

XLOCAT Location of the upstream edge of Navier-

Stokes region

DX x stepsize for placement of off-body

points

DY

y stepsize for placement of off-body points

See Appendix B, Table 1.9 for a sample INTER DATA data set.

DESCRIPTION OF PROCEDURE BLINT

BLINT EXEC is the controlling exec procedure for the HESS/ICBLINT system of codes. The iterative scheme involves the execution of these programs, together with the support program BLDMKER in a loop. The number of loops is user determined, since an accurate criterion for convergence is difficult to define. In using the method, it has been found that generally convergence is obtained after the sixth iteration. For simple geometries, fewer than six iterations are required.

The HESS/ICBLINT iterative sequence is the prime data developer of the APLNS program. In the present form the sequence uses the HESS potential flow program in very nearly its original form, the exceptions being the output of off-body point solutions, pressure distributions, and surface coordinates. Program ICBLINT has been modified to both accept and employ in calculations, C_p values from the inviscid solution, calculation of wake properties and a restart capability. All of these are used in the viscous/inviscid, iterated solution. The concepts and theory of this iterative procedure have been described, and the following is a description of the code mechanics.

Figures 6 and 7 show the operation of BLINT. The procedure begins with the execution of ICBLINT to yield the initial displaced body BODYCOOR DATA, which is run by HESS. HESS output is the C_p distribution on the body. The C_p data set (HESSBLI OUTPUT) is manipulated by BLDMKER to yield HESSCP OUTPUT which, together with the original coordinates and the displaced body coordinates, forms the input for the second iteration. In the second and subsequent iterations, the original body and the displaced body coordinates are averaged together (weighting factor of 0.5)

Figure 6. LOGICAL FLOW OF HESS/ICBLINT

Figure 7. MECHANICAL FLOW OF HESS/ICBLINT

in ICBLINT. Each run yields a displaced body (again BODYCOOR DATA) which is used as HESS input. The procedure then repeats itself for the number of iterations desired.

The procedure for the wake calculations enables the user to obtain iterated wake solutions for nonseparating, no-propeller cases. The extension into the wake may be as far as desired within the array dimensions which will be discussed later. Data set WAKE COORDATA containing the wake points has been described earlier.

The restart capability is a method of saving execution time on the second and subsequent executions of ICBLINT. There is virtually no interaction on the forward region of most bodies and therefore no reason to redo boundary-layer calculations in this region. Therefore, a tape is written at the restart station, and in subsequent iterations the tape is read and the solution begun at the restart station. The actual location of this station is dependent on geometry and must be determined initially by the user.

See Appendix A, Table 3.1 for a listing of BLINT EXEC.

Program HESS

The HESS potential flow code is controlled by HESSBLI EXEC. Only three modifications have been made to the original version of the Douglas computer program and are as follows:

- The pressure coefficients are written out on a separate tape (HESSBLI OUTPUT).
- The complete inviscid, off-body flowfield is written on a separate tape, and added on during each execution. Details of this modification are found in the description of program

DEVELOP, where the nodification is used.

 The surface distance from the leading edge (SUMDS DATA) is written out on separate tape for use in ICBLINT input data sets.

The complete HESS user's guide is sent under separate cover, describing the code and is accurate except for the above modifications.

A listing of HESSBLI EXEC is given in Table 3.2 of Appendix A.

Program BLDMKER

Description of Program BLDMKER. BLDMKER is an interpolating program which performs the same function as Program DATAMA in routine CPDATA. BLDMKER interpolates the $\rm C_p$ data output by HESS in HESSBLI OUTPUT and finds the $\rm C_p$ at on-coordinate positions, creating HESSCP OUTPUT.

See Appendix A, Table 3.3 and Table 3.4 for listings of BLDMKER EXEC and BLDMKER FORTRAN.

Description of Input for BLDMKER. BLDMKER requires two input data files: DATAMAKE DATA and HESSBLI OUTPUT.

DATAMAKE DATA is the number of points on the body.

Card 1 NN (I3)

NN Number of body points.

HESSBLI OUTPUT has been described in "Input of DATAMA."

Description of Output for BLDMKER. This is described in "Input to Program ICPL."

Program ICBLINT

Description of the Program ICBLINT. Program ICBLINT has been developed to provide solutions to a large number of incompressible boundary-layer flows. The program can calculate either body only or body

and near wake cases and can treat 2-D or axisymmetric geometries with blunt or sharp noses. Solutions may be obtained using only ICBLINT or ICBLINT in a viscous-inviscid iterative procedure with pressure coefficients of the displaced body as the medium of iteration. The program can predict laminar and/or turbulent flows, the transition models used are described in the contractor report under separate cover.

The flow of logic in the program is controlled by MAIN (see description of MAIN). To assist the user, two flow diagrams of MAIN are included. Figure 8 gives a flow chart of MAIN by the logical functions used, while Fig. 9 gives a flow diagram of MAIN by the subroutines called. As the major subroutines have particular logical functions, there is a close correlation between the two flow charts.

Additional Comments on the use of HESS/ICBLINT. Although the number of body points allowed is a maximum of 501, for the body problems of concern here, fewer than 101 points are preferred. The reasons for this are twofold: first, only a maximum 101 profiles may be solved, the remainder will be used for body definition only; and second, the solutions at only 101 points may be written and hence used in the development of the displaced body in the Potential Flow Code and for the displaced body definition in ICBLINT. For separating flows, the number of body points should be checked and, if necessary, adjusted after CDCP EXEC has been executed.

See Appendix A, Table 3.5 for a listing of BLAYER EXEC and Table 3.6 for a listing of ICBLINT FORTRAN.

FIGURE 8. FLOW DIAGRAM OF MAIN ROUTINE BY FUNCTION

Figure 9. FLOW DIAGRAM OF MAIN ROUTINE BY SUBROUTINES CALLED

Description of Variables in Common. In this section, each variable which is included in a labeled common block is given a brief description. The name of the labeled common block in which the variable occurs is given to the left of the variable name.

Common Block	Variable Name		Description of Variable
NMLCRD	ADTEST		Criterion for Increasing ETAINF, (F(IE) - F(IE-4) is compared with ADTEST)
GEOME	ANGLE	•	Local Body Angle, in Degrees (Converted to
			Radians)
TRANS	ATR	,	Transition Constant (=0.412)
ARRAY1	AOB	•	A _O
ARRAY1	AOBP	=	$\frac{\partial A_0}{\partial \eta}$
ARRAY1	A1	e . Na (se)	Partial Differential Equation Coefficient
COMWLL	A1B	•	Derivative of U/U _e at Wall
ARRAY1	A2		Partial Differential Equation Coefficient
ARRAY1	А3	•	Partial Differential Equation Coefficient
ARRAY1	A4	•	Partial Differential Equation Coefficient
EDGPRP	BETA		$\beta = 2\xi/U_e(dU_e/d\xi)$
CNVERG	CCRNI	=	1 - CRNI
CFPR	CF	12:33	Skin Friction in Transformed Coordinates

COEFF	CFBAR	: = :3 V	$\overline{C}_{f} = \frac{1}{x} \int_{0}^{x} C_{f_{\infty}} dt$
COEFF	CFBREX	•	C _f √REX
COEFF	CFE	fel e	$C_{f_e} = 2\tau_w/\rho_e U_e^2$ $C_{f_\infty} = 2\tau_w/\rho_\infty U_\infty^2$
COEFF	CFINF		$C_{f_{\infty}} = 2\tau_{W}/\rho_{\infty}U_{\infty}^{2}$
COEFF	CFRES	•	CFREY
COEFF	CFREY	ofa	C _{f∞} √REX
COEFF3	CF1	MIA.	Term used in Computing CFBREX
ARRAY1	СНІ	SÖA	$\chi = \frac{y^2}{v} \frac{\partial u}{\partial y}$, Vorticity Reynolds Number
TRANS	CHICRT	180A	Value of CHIMAX at which Transition Regime Cal- culations are Begun
TRANS	CHIMAX	•	Maximum Value in CHI Array
CNVERG	CONVRG	•	Convergence Criterion
CNVERG	CRNI	14 14	Selector for Finite Difference Scheme; 1.0 for Fully Implicit, 0.5 for Crank-Nicolson, and 0.0 for Fully Explicit
COEFF	DEL	<u>.</u> 4	δ , Boundary Layer Thickness (Value of y where $U/U_p = 0.995$)
COEFF2	DELORF	-	6/reference length
COEFF2	DELOX	-	6/x
COEFF	DELST	•	6*, Boundary Layer Displacement Thickness
COEFF	DELTA		δ/ε _{VD}

CNVERG	DIF	,	Maximum Difference in G or F (or their Derivative at the Wall) between Iterations (Compared with CONVRG in Convergence Test)
CNVERG	DIFF	,	Local Difference in G or F between Iterations
CNVERG	DIF2	•	Differnece in the Deriva- tive of F at the Wall Between Iterations
ARRAY1	DN	,	Array of $\Delta\eta$ Values
ARRAY1	DN2		Array of $\Delta\eta$ Values (Used only when ETAINF is Increased)
GEOME	DS	-	$\Delta \xi$ Corresponding to Δx
COEFF2	DSAXOR	-	δ* axi/reference length
COEFF	DSTARK	=	6*, Incompressible Bound- ary Layer Displace- ment Thickness
COEFF2	DSTODL	-	δ*/δ
COEFF2	DSTORF	=	6*/reference length
COEFF2	DSTOTH	-	δ*/θ
COEFF2	DSTOX	•	δ*/x
COEFF	DSTRAX	•	$\delta_{axi}^* = r \{\sqrt{1+2\delta_{axi}} - 1\}$ (Zero for 2-D Flow)
EDGPRP	DUEDS	-	dUE/ds
GEOME	DX	•	Δx, Step Size in x Direction
GEOME	DXMAX	,	Maximum Value of Δx Permitted in the Calculations
GEOME	DXOLD	,	Previous Value of Δx
GEOME	DX1	,	Storage Value of Δx at the First Station

GEOME	DYDX		Body Slope at JSTA
ARRAY 1	EPS0		ϵ_0^+ , the Outer Eddy Viscosity
ARRAY 1	EPSPL	•	ϵ_i^+ , or ϵ^+ , the Inner Eddy Viscosity or the Combined Inner and Outer Eddy Viscosities
VSCSTY	EPSVD	•	$\varepsilon_{VD} = \{\mu_{ref}/(\rho_{\infty}U_{\infty}L)\}^{\frac{1}{2}}$, where L is the Unit Length in REINF
NMLCRD	ETAINF	•	Maximum Value of n
COMWLL	E1		Matrix Inversion Coef- ficient Evaluated at the Wall
ARRAY1	FC	-	CRNI(F2-F1) + F1
ARRAY1	FCN	•	CRNI(F2N-F1N) + F1N
ARRAY1	FCP	+	(F2-F1)/DS
COMWLL	FF	S 180	Wall Boundary Condition on F
ARRAY 1	F1		Value of F (U/U _e) from Previous Iteration or Station
ARRAY1	FIN	•	aF1 an
ARRAY1	FINN	9188 2189	$\frac{\partial^2 F1}{\partial n^2}$
ARRAY1	F2		Value of F from Solution of Momentum Equation
ARRAY1	F2N	. //0	a F2 an
ARRAY1	F2NN	/HXC	$\frac{\partial^2 F2}{\partial n^2}$
COMWLL	F2N1	•	Value of F2N at Wall from Previous Iteration

TRANS	GAMMA	0.934 0.34	Transition Intermittency Factor, Γ , Γ = 1 - exp $(-A_{\xi}^{-2})$, where A = ATR and
			$\overline{\xi} = XIBAR$
COEFF	HAFCF	-	Cf _w /2
INTGR	IE	•	Number of Grid Points in n Direction
NTEGER	II	,	Subscript for Array IPR
INTGR	IIMAX	10 3 2X	Maximum Number of Values in Geometry Arrays (i.e. ZA, XSTA, etc.)
INTGR	IM	-	IE - 1
NTEGER	IPFL	Anazzi	Number of Values in Array IPRFL
ARRAY2	IPR		Array of Subscripts for Array XSTA Giving Values of x at which a Solution is to be Obtained
ARRAY2	IPRFL	riska	Array of Subscripts for Array XSTA Giving Values of x at which Complete Solutions (with Profiles) are to be Printed
NTEGER	IPRINT	·	Number of Values in Array IPR
INTGR	IPRNT	,	Subscript for Array IPRFL
INTGR	ISTOP	• 78	Number of Iterations Since Last Converged Solution
NTEGER	JJ	•	Integer Used in Computing DX
APLDAT	JSTA	•	Beginning of N-S Box
NTEGER	K	•	Station Counter
NTEGER	KADETA	• 11	Indicator, if Zero, ETAINF is Held Constant, if Non-zero, ETAINF can be Increased

NTEGER	KEND	ANNO	Maximum Value Allowed for K
NTEGER	KEP	6 PA	Subscript in EPSPL Array Where the Inner and Outer Eddy Viscosities are Matched
INTGR	KL	ili.	Index for Profile Output DO Loop, 1 Gives Output for Each Grid Point, 2 for Every Second Grid Point
NTEGER	KST0P	XANIL	<pre>Indicator, Normally Zero, Set to One when Solution is Completed (X = XSTA (IIMAX))</pre>
TRANS	KTRANS	347) 3 945	Indicator for Transition Regime, Zero for No Transition or Instantane- ous Transition, One for Transition Regime (Set at Two at "End of Transition")
NTEGER	KTRNSN	356	Subscript in XSTA Array at Which Instantaneous Transition Occurs
INTGR	KVSLAW	TM (SEE	Indicator for Inner Eddy Viscosity Law, Zero for Reichardt Law, Non-zero for Van Driest Law
NTEGER	LAMTRB	• (VCR)	Indicator, 1 for Laminar Flow, 2 for Turbulent Flow
CNVERG	NC	(40101 (2) (3)	Specifies Convergence Test, Zero for Test on Deriva- tives at Wall, One for Test on Functions at all Points in Profile
INTGR	NIT		Number of Iterations at Current Value of x
NTEGER	NITTOT	A13843	Cumulative Total Number of Iterations in x Direction

INTGR	NIT1		If, after a converged solution is obtained, NIT is less than or equal to NIT1, Δx is doubled
INTGR	NIT2	repa	If, after a converged solution is obtained, NIT is greater than or equal to NIT2, Δx is halved
INTGR	NIT3	Ŋ.	If NIT = NIT3 before a converged solution is obtained, Δx is halved, X and XI are recomputed
			and the iteration loop is restarted with the smaller values of X and XI
APLDAT	NOPRFS		Number of Profiles in N-S Box
INTGR	NOSE		Indicator of Geometry, 1 for a Blunt Nose, 2 for a Sharp Nose
STRT	NRSTRT	90°	Increment in K for which the Restart Tape is Written
EDGPRP	PE	-	P _é /P _{ref} , where P _{ref} = p _{ref} U _{ref}
EDGPRP	PESO	=	P_e/P_{ref} , at s = 0
FRSTRM	PFS	•	Freestream Static Pressure, PS A
GEOME	PNC	=	$\frac{\sqrt{2\xi}}{i}$, Term in Trans-
			u _e r _w ^J formation of Normal Coordinate
EDGPRP	PP	-	dPE/ds
REF	PREF	0.00	Pref = pref Uref
STAG	PSTAG	•	Freestream Stagnation Pressure, PSFA

ARRAY2	PZ	•	Local Pressure Array, P/Pref
STAG	P10	-	P ₀ /P _{ref}
GEOME	REFLEN	A Life	Reference Length (may be any Value Appropriate to User's Needs
FRSTRM	REINF	,	Freestream Reynolds Num- ber per Unit Length
COEFF	RETHET	=	Re_{θ} , Edge Unit Reynolds Number Times θ
COEFF	REX	•	Local Reynolds Number Based on Edge Conditions
FRSTRM	RHOFS	-	ρ_{∞} , slugs/ft ³
REF	RHOREF	-	$\rho_{ref} = \rho_{\infty}$, slugs/ft ³
COEFF2	ROREFL	= 11	r/reference length
ARRAY2	RZ	-	r, Array of Radius Values
GEOME	RO	-	r, Local Radius
GEOME	SCF	•	Scale Factor used to Con- vert Unit Length for REINF (REINF is Computed per
			Foot if SCF=1; per inch if SCF=12.)
COEFF3	SUM	Wild Wild	Foot if SCF=1; per inch
COEFF3	SUM		Foot if SCF=1; per inch if SCF=12.) Term used in Computing
		1014 248 1	Foot if SCF=1; per inch if SCF=12.) Term used in Computing CFBREX 0, Boundary Layer Momen-
COEFF	THET		Foot if SCF=1; per inch if SCF=12.) Term used in Computing CFBREX 0, Boundary Layer Momen- tum Thickness
COEFF2	THET)#1 / •	Foot if SCF=1; per inch if SCF=12.) Term used in Computing CFBREX 0, Boundary Layer Momen- tum Thickness
COEFF2 COEFF2	THET THODEL THOREF	•	Foot if SCF=1; per inch if SCF=12.) Term used in Computing CFBREX 0, Boundary Layer Momen- tum Thickness 0/8 0/Reference Length

ARRAY2	UEZ	(#)	U _e /U _∞ , Array
FRSTRM	UFS		U _w , ft/sec
REF	UREF		$U_{ref} = U_{\infty}$, ft/sec
ARRAY1	VC	=	$V = \int_0^n (-2\xi \frac{\partial F}{\partial \xi} - F) d\eta,$ Transformed Normal Velocity Component
COMWLL	VW	,	Value of VC at Wall
GEOME	X	372363	Local Surface Distance, x
TRANS	XBAR ,) (A)	Measure of Relative Length of Transition (i.e. XEnd of Transition [™] XBAR*XBeginning of Transi- tion)
GEOME	XI	130 = 0	ξ, Transformed Surface Distance
TRANS	XIBAR	and to the second	ξ, Transition Inter- mittency Factor Coordinate ξ = (X-XZERO)/XLAMDA, where XLAMDA = (XBAR-1)* XZERO/4 and XZERO is the Value of x at the Start of Transition
GEOME	XIOLD		Previous Value of XI
GEOME	X12	105	2*XI
		20005	
GEOME	XJAY	THE R	XJFAC
GEOME	XJFAC		Indicator, Zero for 2-D Flow, One for Axially Symmetric Flow
NMLCRD	XKETA) (2019)	Parameter Which Controls the Grid Spacing in the η Direction (1.0 Gives an Equally Spaced Grid, a Value Greater than 1.0 Gives a Grid with a Smaller Spacing at the Wall than at the Outer Edge)

VSCSTY	ХК1	•	Constant for Van Driest Inner Eddy Viscosity Law
VSCSTY	XK2	210	Constant for Outer Eddy Viscosity Law
ARRAY1	XN		Array of n Values
ARRAY1	XN2	. V	Array of n Values (Used only when ETAINF is Increased)
GEOME	XOLD	•	Previous Value of X
COEFF2	XOREFL	=	x/Reference Length
ARRAY2	XSTA	•	x, Array of Surface Dis- tance Values used to Specify Geometry
ARRAY1	Y	-	y/ϵ_{VD} , Stretched Normal Coordinates
ARRAY1	YOVDEL	=	y/δ
ARRAY1	YOVTHT	-	у/ө
ARRAY1	YY	-	y, Normal Coordinate
GEOME	Z	=	z, Local Axial Coordinate
ARRAY2	ZA	•	z, Array of Axial Co- ordinate Values used to Specify Geometry
GEOME	ZOL		z/Body Length
COEFF2	ZOREFL	-	z/Reference Length
COEFF3	SUMT		Incremental Viscous Drag due to Finite Surface Distance
COEFF3	SUMT		Total Drag due to Skin Friction and Pressure
STAG	RHO		Density from Stagnation/ Static Pressure
TVCURV	TVC		Flag for TVC Calculations; Yes for TVC, No for 2-D

TVCURV	BODANG	Local Body Angle
TVCURV	RTVC	Local Body Radius
TVCURV	RORW	TVC Body Radius
TVCURV	RORWSQ	RORW
TVCURV	RW	Local Body Radius, ft.
SPTVC	RNOSE	Nose Radius, ft.
WTE	IW	Counter for IWT
WTE	IWT	Increment for Printing Full Profile Data
TE	КТЕ	Station Number of Trail- ing Edge
TE AND THE STATE OF THE STATE O	KTSTTE	Flag for L.E. Station Calculations
WAK	XKFAC	Flag for Making Wake Calculations; O for No Wake l Include Wake
HESS	IWRTH	Displacement Body-Original Body Weighting Factor
HESS	ICARD1	Hess Code Execution Parameter, Printed on Bodycoor Data
HESS	ICARD2	
HESS	ICARD3	
HESS	ICARD4	
HESS	NN	Number of Body Stations
HESS	IBDN	Body Sequence
HESS	HEDR	Array of Alphanumeric Characters Describing the Executing Case
HESS	CASE	Alphanumeric for Record- ing Case Number

HESS	KHESS	Flag: 1 if Inviscid C _p Data are Read in from HESS, 0 if no Inviscid C _p Data are Read in
DRAG	CDV1	Old Value of CDV2
DRAG	CDV2	Pressure Drag for In- cremental Length dx
DRAG	XCP	C _p at x from Current Iteration
DRAG	XCP1	C _p at x from Previous Iteration
DRAG	СР	C _p Array from Current Iteration
DRAG	CP1	C _p Array from Previous Iteration
DRAG	ROMAX	Maximum Body Radius
INTACT	BETAS	Minimum BETA
STRTUP	IREAD	Flag for Restart Procedure; l use Restart, O do not use Restart
STRTUP	ITER	Station Number at Which Restart Tape is Written
STRTUP	ITER	Iteration Number
BDCOOR	ZDELST	Axial Displaced Body Co- ordinate at Original Axial Coordinate Station
BDCOOR	RODELS	Displaced Body Radius at Station k
BDCOOR	ZOLD	Value of Z from Previous Iteration
BDCOOR	ROLD	Value of R from Previous Iteration
BDCOOR	MM ,	IRST
APLDAT	XLOCAT	Axial Location of the Upstream N-S Region Boundary

APLDAT

DYDX

Body Slope over the Tail Section, Taken as Constant for the Straight Taper Requirement of the APLNS Code

APLDAT

JSTA

Station Number of the Be-

ginning of the N-S Box

APLDAT NOPRFS Number of APLNS Code Stations on the Body

Description of Subroutines.

Subroutine MAIN. The principle function of MAIN is to control the flow of logic in the program; however, some calculations are also made in MAIN. In general, the calculations in MAIN are such that they cannot conveniently be performed in the subroutines or they are not sufficiently similar to the calculations made in particular subroutines.

Subroutine READIN is called first. If the input data are from the restart tape, the calculations are made which normally occur at the end of MAIN after subroutine WRITE2 is called, i.e., the calculations that enable the program to set up for the next station are made. The next section of the program is skipped, and the marching integration is resumed. Otherwise, the initial data and profiles are calculated and written by subroutine WRITE1 and the integration is begun with the statement; DO 330 K=KK, KEND. An iteration loop is then entered for the solution of the velocity profile at that station. The boundary conditions at the wall are calculated and the momentum equation is solved. The transformed normal velocity component V is calculated together with the skin friction in the transformed coordinates (CF). The iteration counters are incremented and NIT and ISTOP are checked. If ISTOP is greater than

100, the program is stopped. If NIT equals (or exceeds) NIT3 the step-size is halved, X and DX are recalculated, and control is returned to the beginning of the iteration loop. Otherwise, the next test is the convergence test. If the convergence criterion is not satisfied, control is returned to the beginning of the iteration loop.

When convergence has been obtained, the velocity profile is checked to see if η_{∞} needs to be increased. If so, subroutine ADDETA is called and control is returned to the beginning of the iteration loop. If not, subroutines COEF and WRITE2 are called. New values of x and ξ are obtained and the present values of velocity are assigned to the arrays which contain the values from the previous iteration, and the iteration counters NIT and ISTOP are reset. If a solution has been obtained for the final value of x, (or for K = KEND) the program stops, otherwise, the program returns to the beginning of the marching integration loop to obtain a solution at the new value of x.

Description of Variables.

ABST = F2(IE) - F2(IE-4). If ABST is greater than or equal to ADTEST, n_m is increased

IPRIIM = IPR (II-1)

KREADN; Indicator for Subroutine READIN, 1 for Input Data, 2 for
Initial Data Written on Restart Tape, 3 for Station Data
Written on Restart Tape

N , Array subscript

The following variables used in MAIN are described in the section Description of Variables in Common: ADTEST, AlB, CCRNI, CF, CF1, CONVERG CRNI, DIF, DN, DUEDS, DX, EPSVD, FC, FCN, FCP, F1, F1N, F2, F2N, F2NN,

F2N1 IE, II, IIMAX, IPR, IPRNT, ISTOP, K, KADETA, KEND, KSTOP, KSTRT, LAMTRB, NIT, NITTOT, NIT3, NOSE, NT3, PNC, REINF, RHOFS, RO, SCF, UE, UFS, UREF, VC VW, X, XI, XIOLD, XI2, XJFAC, XKFAC, XN, XOLD, XSTA, Y, YY.

Subroutine ADDETA. Subroutine ADDETA is used to increase/decrease ETAINF when the value of F at the outermost grid point and the value of F four points inward differ by more/less than the quantity ADTEST. A new array of values is generated with the maximum value increased by 10 percent. Three point interpolation is used to obtain the values of velocity at the new grid points, whereas at the grid points lying between the new and old values of η_{∞} , f is set equal to unity. First and second derivatives of F are then calculated. The storage arrays for F and their derivatives are updated and V is recalculated using the new values. The arrays for y are not updated in this subroutine but are recalculated at the normal points in the solution procedure.

The subroutine provides the output of the intermediate profiles following the message that n_{∞} has been increased. DX, XKETA, ETAINF, and ADTEST are also included in the output.

USAGE:

CALL ADDETA

Description of Variables.

DETA1 An at wall

ETAIN2 New value η_{∞}

JC Array subscript

N Array subscript

The following variables used in subroutine ADDETA are described in the section Description of Variables in Common: AOBP, CHI, DN, DN2, DX, EPSPL, ETAINF, FC, FCN, FCP, F1, F1N, F1NN, F2, F2N, F2NN, IE, IM, ISTOP KL, VC, XKETA, XN, XN2, YOVDEL, YOVTHT, YY.

Subroutine BLUNT1. This subroutine calculates the edge and reference conditions at the stagnation point for a blunt body. The derivative of $\rm U_e$ with respect to s is obtained using the five-point differentiation formula with two points reflected about the stagnation point. USAGE:

CALL BLUNT1

Description of Variables.

DUM	Dummy variable
DUM1	Dummy variable
DUM2	Dummy variable
DUM3	Dummy variable
J	Array subscript
NERR	Dummy variable
PE	Array of PL values
UE	Array of U values

The following variables used in Subroutine BLUNT1 are described in the section Description of Variables in Common: BETA, DUEDS, PE, PESO PFS, PNC, PP, PREF, PSTAG, PZ, POPRIM, P10, REINF, RO, SCF, UE, UERO2 UFS, UREF, X, XJFAC, XM, XSTA, Z, ZA.

Subroutine BLUNT2. For a blunt body, the edge properties required by subroutine DELTAS to calculate $\Delta\xi$ are provided by subroutine BLUNT2. In the immediate vicinity of the stagnation point, z, r, Pe and

 dU_e/ds are calculated using five point interpolation with two points reflected about the stagnation point.

USAGE:

CALL BLUNT2

Description of Variables.

DUM Dummy variable

DUM1 Dummy variable

DUM3 Dummy variable

J Array subscript

The following variables used in subroutine BLUNT2 are described in the section Description of Variables in Common: DUEDS, IIAX, PE, PP PZ, P10, RZ, RO, UE, UEZ, X, XSTA, Z, ZA.

Subroutine CHANGE. Subroutine CHANGE adjusts the x step-size when necessary to obtain a solution at the specified values of x. Subroutine CHANGE is also used when calculations are made with the instantaneous transition model. In this case LAMTRB is reset to two, the stepsize is reduced and a message is printed.

Subroutine CHANGE also increases or decreases the x-stepsize depending on the number of iterations required to converge the previous station.

USAGE:

CALL CHANGE

Description of Variables.

IPRII = IPR(II)

IPRIIM = IPR(II-1)

The following variables used in subroutine CHANGE are described

in the section Description of Variables in Common: DX, DXMAX, DXOLD, DX1, EPSVD,, II, IIMAX, IPR, JJ, KSTOP, DTRNSN, LAMTRB, NIT, NIT1, NIT2, X, XOLD, XSTA.

Subroutine COEF. Subroutine COEF calculates the skin-friction coefficients for the boundary-layer flow, the pressure drag, and total drag. It calculates the Reynolds number, displacement thickness, momentum thickness and other dimensionless parameters. At X=0 the calculations in this subroutine are omitted except for Z/L. USAGE:

CALL COEF

Description of Variables.

CF2 Term used in computing CFBREX

DSUM Term used in computing CFBREX

FAC1 Dummy variables

FAC2 Dummy variables

I Array subscript

N Array subscript

RESE $\operatorname{Re}_{\mathbf{x}}^{2}$

SQREX Square root of REX

STRES CHREY

The following variables used in subroutine COEF are described in the section Description of Variables in Common: AlB, CF, CFBAR, CFBREX, CFINF, CFRES, CFREY, CF1, DEL, DELORF, DELOX, DELST, DELTA, DN, DSAXOR, DSTODL, DSTORF, DSTOTH, DSTOX, STRAX, DX, EPSVD, FC, HAFCF, IE, IIMAX K, KFS, LAMTRB, REFLEN, REINF, RETHET, REX, PNC, RHOFS, ROREFL, RO SUM, THET, THODEL, THOREF, UE, UFS, X, XJFAC, XOREFL, Y, YOVDEL, YOVTHT, YY,

Z, ZA, ZOL, ZOREFL.

Subroutine DELTAS. Subroutine DELTAS calculates the transformed surface distance ξ using integration by Simpson's rule. A value of ξ is obtained for each increment $\Delta \xi$ from the equation

$$d\xi = U_e r_w^{2j} U_e^{2k} dx$$

The transformation factor PNC,

$$PNC = \frac{\sqrt{2\xi}}{U_e r^j}$$

and the pressure gradient term, β ,

$$\beta = \frac{2\xi}{U_e} \frac{dU_e}{d\xi}$$

are also calculated.

USAGE:

CALL DELTAS

Description of Variables.

HA X - DX/2

RP RO at X

ROHA UE at HA

X1 Storage value of X

The following variables used in subroutine DELTAS are described in the section Description of Variables in Common: BETA, DS, DUEDS, DX, PNC, RO, UE, UERO2, X, XI, XIOLD, X12, XJFAC, XKFAC.

Subroutine DERIV3. Subroutine DERIV3 uses subroutine FD3 to generate the first derivative of a function which is given by the

array F. The array of abscissa values is given by X and the derivative of F with respect to X is returned in the array FP.

USAGE:

CALL DERIV3 (F,X,IMAX,IMIN,FP) where F and X are the arrays of ordinate and abscissa values, and where IMAX and IMIN are the upper and lower subscripts for the array FP.

Subroutine EFFMU. Subroutine EFFMU calculates the terms in the coefficients of the differential equations which contain the eddy viscosity. These terms are A_0 and $\frac{\partial A_0}{\partial n}$ where:

$$A_0 = (1+\epsilon^+)$$

for the momentum equation. For the laminar case, ϵ^+ = 0 and the terms reduce to

$$A_0 = 1$$

and

$$A_0' = 0$$

The first portion of the subroutine calculates the terms for the laminar case, and the next portion of the subroutine calculates the vorticity Reynolds number, x,

$$x = \frac{y^2}{v} \quad \frac{\partial u}{\partial y}$$

For calculations with a transition regime, the routine initiates transition and calculates the transition intermittency factor Γ where

$$\Gamma = 1 - \exp(-0.412\overline{\xi}^2)$$
,

$$\overline{\xi} = 4 \frac{x-x_0}{(\bar{x}-1)x_0}$$

and \mathbf{x}_0 is the location of the beginning of transition and $\bar{\mathbf{x}}$ is a measure of the relative length of transition.

In the third portion of the subroutine, the eddy viscosity is computed for turbulent flow calculations and the terms A_0 and $A_0^{'}$ are then computed.

USAGE:

CALL EFFMU (LAMTRB, II, DSTARK)

Description of Variables.

ARG Dummy variable

DELTA δ/ϵ_{VD} , boundary-layer thickness in stretched coordinates

DSTARK $\delta_{\mathbf{k}}^{\mathbf{x}}$, incompressible displacement thickness

FAC Dummy variable

FAC1 Dummy variable

FAC2 Dummy variable

FAC3 Dummy variable

FAC4 Dummy variable

GAMMA y, outer eddy viscosity intermittency factor

The subscript in the EPSPL array where the inner and outer

eddy viscosities are matched.

LAMTRB Indicator for laminar or turbulent flow; 1 for laminar,

2 for turbulent

N Array subscript

 $\lambda = (\bar{x}-1)x_0/4$

XZERO X_0 , location of start of transition

The following variables used in subroutine EFFMU are described in the section Description of Variables in Common: ATR, AOB, AOBP, CF,

CHI, CHICRT, CHIMAX, DN, DX, DXOLD, EPSO, EPSPL, EPSVD, FC, FCN, GAMMA, PRT, RO, UE, X, XBAR, XIBAR, XI2, XJFAC, XKFAC, XK1, XK2, XN, Y.

Subroutine EDGPROP. Subroutine EDGPROP obtains the edge properties used in subroutine DELTAS to calculate $\Delta \xi$. The edge properties are obtained from subroutine BLUNT1.

USAGE:

CALL EDGPROP

Subroutine FD3 and FD5. Subroutines FD3 and FD5 use the first derivative of the Lagrangian interpolating polynomial of second and fourth order, respectively, to provide the first derivative of the function F at point X. The returned value is denoted by FX. The interpolating polynomials are described in the descriptions of subroutines INTER3 and INTER5.

USAGE:

CALL FD3 (X,X1,X2,X3,F1,F2,F3,FX) or

CALL FD5 (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,FX) where X1, X2, etc. are the abscissa values, and where F1, F2, etc. are the ordinate values.

Subroutine GEOM. This subroutine obtains the edge properties at the initial value of x for the geometry specified by the variable NOSE which is passed through common. The edge properties are obtained from subroutine BLUNT1 for a blunt nosed body (NOSE = 1), from subroutine CONE1 for a sharp nose (NOSE = 2).

USAGE:

CALL GEOM

Subroutine INIT. Many variables are given fixed initial values in the program before the marching integration procedure is begun.

The non-subscripted variables are given the initial values in subroutine INIT.

USAGE:

CALL INIT

Description of Variables.

JT Array subscript

The following variables used in subroutine INIT are described in the section Description of Variables in Common: CCRNI, CF, CHIMAX, CRNI, DS, DX, DXOLD, DX1, E1, FF, GAMMA, IE, IIMAX, IM, IPRNT, ISTOP, JJ, KEP, KFS, KSTOP, KTPW, KTW, LAMTRB, NIT, NITTOT, NOSE, NRSTRT, RHOFS, SUM, UFS, VW, X, XI, XIBAR, XIOLD, XI2, XJAY, XJFAC, XKFAC, XM, XOLD, XSTA, Z.

Subroutine INTER3. Subroutine INTER3 uses a second-order Lagrangian interpolating polynomial, interpolating on the points x1, x2, and x3, with the corresponding function values F1, F2, F3 to provide a value F(x).

The general form of the polynomial is

$$F(x) = \sum_{k=1}^{3} f_{x}L_{k}(x)$$

where

$$L_{k}(x) = \prod_{\substack{m=1\\m\neq k}}^{3} \frac{x - x_{m}}{x_{k} - x_{m}}$$

USAGE:

CALL INTER3 (X, X1,X2,X3,F1,F2,F3,F) where X1, X2, and X3 are the abscissa values and F1, F2, and F3 are the function values.

Subroutine INTER5. Subroutine INTER5 uses a fourth-order Lagrangian interpolating polynomial interpolating on the points x1, x2, x3, x4, and x5 with the corresponding function values F1, F2, F3, F4, and F5 to provide a value F(x).

The general form of the polynomial is

$$F(x) = \sum_{k=1}^{5} \int_{x} L_{k}(x)$$

where

$$L_{k}(x) = \prod_{\substack{m=1\\m\neq k}}^{5} \frac{x - x_{m}}{x_{k} - x_{m}}$$

USAGE:

CALL INTER5 (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,F) where X1, X2, etc. are the abscissa values and F1, F2, etc. are the function values.

Subroutine INTERP. Subroutine INTERP uses function TLU to linearly interpolate in the array F2 for the value FF corresponding to the value XX in the array XN. If XX is not within the range of XN, a message is printed and FF is set equal to F2(IE) where IE is the size of the arrays. XN must be a strictly increasing array. USAGE:

CALL INTERP (XX,XN,F2,IE,FF)

Subroutine INTERPS. Subroutine INTRPS uses five-point interpolation to obtain a value FO in the array F1 corresponding to the value XO in the array X1. The array X1 can be either monotone increasing or monotone decreasing.

USAGE:

USAGE:

CALL INTRP5 (X0,X1,F1,IMAX,IMIN,I1,F0) where X1 and F1 are the arrays of coordinate values, IMAX and IMIN are the maximum and minimum values allowed for the subscripts of the arrays 0 and I1 is an indicator (I1 \leq 0, X1 is monotone decreasing; I1 \geq 0, X1 is monotone increasing).

Subroutine MOMENT. The solution of the momentum equation is obtained in subroutine MOMENT. The coefficients of the partial differential equation are calculated and new values of F = U/U_e and the first and second derivatives of F with respect to η are obtained from subroutine SOLVE. The difference between the new and the former values is obtained for either the wall or the all points convergence test. The derivative of F with respect to x is also calculated.

CALL MOMENT

The following variables in subroutine MOMENT are described in the section Description of Variables in Common: AO, AOB, AOBP, A1, A2, A3, A4, BETA, C, CCRNI, CP, CRNI, DIFF, DS, DSTARK, E1, FC, FCN, FCP, FF, F1, F1N, F1NN, F2, F2NN, F2N1, IE, IM, KEP, LAMTRB, NC, TH, VC, X, XI.

Subroutine PRFILE. Subroutine PRFILE calculates the array of η values, XN, which corresponds to the values of IE, ETAINF, and XKETA. The grid spacing is given by $\Delta \eta_{i} = K \Delta \eta_{i-1}$ where K corresponds to XKETA and thus at the ith grid point

$$n_i = \Delta n_1 \frac{K'-1}{K-1}$$
, $i = 0, 1, 2, 3, ...N$ (N = IE - 1)

where Δn_1 is given by

$$\Delta \eta_1 = \eta_{\infty} \frac{K-1}{K^N-1}$$

The initial velocity profile, F, is calculated from the formula $F = 1 - \exp(-n)$. The derivatives of F are also calculated as are initial profiles for ϵ^+ , y/δ , y/θ . Further, the boundary conditions at the outer edge of the boundary layer are set in this subroutine. USAGE:

CALL PRFILE

Description of Variables.

DETAl n stepsize at wall

N Array subscript

The following variables used in subroutine PRFILE are described in the section Description of Variables in Common: DN, EPSPL, ETAINF, FC, FCN, FCP, F1, F1N, F1NN, F2, F2NN, IE, IM, PNC, VW, XKETA, XN, Y, YOVDEL, YOVTHT.

Subroutine READIN. Subroutine READIN provides the input of data for the program. Input data are from a single data set (SUB DATA) when calculating a noniterative solution, two sets for the initial iterated solution (SUB DATA and HESSCP OUTPUT), and the two plus a restart tape for the subsequent iterations. READIN also resets the input flags to their default value when they are set to 0 in the input data and performs some pressure calculations for the iterated solution.

USAGE:

CALL READIN

Description of Variables.

J Array subscript

LST Alphanumeric variable, assigned value of 'LAST' in a DATA statement

All other variables are described in the section Description of Variables in Common, except for LABEL and LSTC which are described in the section.

Description of Input Data.

Subroutine RESTAR. Subroutine RESTAR restarts program execution at a predetermined body coordinate location. On the first iteration, when the marching integration reaches the restart location (IRSTRT), a tape is written containing all the data needed to begin execution on the next global iteration. RESTAR first reads in the data written from the previous global iteration, and then reads in the previous displacement body coordinates. Finally the restart tape is rewritten using the data calculated by the current execution and the coordinates of the new displacement body are written out at the end of the current execution.

Subroutine SOLVE. Subroutine SOLVE calculates the solution for a general parabolic partial differential equation when the equation is written in the standard form.

$$\phi_{\eta\eta} + A_1 \phi_{\eta} + A_2 \phi + A_3 + A_4 \phi_{\xi} = 0$$

In order to obtain a solution for the above equation, values of ϕ and the first and second derivatives of ϕ with respect to η from a previous iteration or from a previous x station are required. These data are passed through the argument list as the arrays W1, W1N, and W1NN. The new values of ϕ and the first and second derivatives are returned through the argument list as the arrays W2, W2N, and W2NN. USAGE:

CALL SOLVE (WINN, WIN, W2NN, W2N, W2, E1, F11, CRNI)

Description of Variables.

A	Matrix Inversion Coefficient
В	Matrix Inversion Coefficient
СС	Matrix Inversion Coefficient
D	Matrix Inversion Coefficient
E	Array of Matrix Inversion Coefficients
E1	Value of ϵ at wall
F of Section 21 and	Array of Matrix inversion coefficients
F11	Value of F at wall
KON	Array subscript, descending order
N	Array subscript
W1	Value of ϕ at previous station
WIN	$\partial \phi/\partial \eta$ at previous station
WINN	$\partial^2 \phi / \partial \eta^2$ at previous station
W2	New value of ϕ
W2N	New value of $\partial \phi / \partial \eta$
W2NN	New value of $\frac{\partial^2 \phi}{\partial n^2}$

The following variables which are used in subroutine SOLVE are described in the section Description of Variables in Common: Al, A2, A3, A4, CRNI, DN, DS, IE, IM, XN.

Function TLU. Function TLU searches in the array X for the two values which bracket XSTAR and linearly interpolates for the corresponding value in the array Z. The returned value is TLU. If XSTAR is not within the range of the array X, TLU is set equal to zero and the error flag is set equal to one. The array X must be strictly increasing.

USAGE:

TLU (NTABLE, Z, X, XSTAR, NFLAG) where NTABLE is the dimension of the arrays Z and X and NFLAG is the error flag.

Subroutine VELDAT. Subroutine VELDAT has been added for the express purpose of writing out data sets for the Navier-Stokes code. The routine writes the solution of the velocity profile at the upstream boundary of the Navier-Stokes region to be used as boundary conditions for the APLNS code.

USAGE:

CALL VELDAT

Subroutine WRITE1. Subroutine WRITE1 writes out the input data and the initialized data. Integer quantities are written first in the same order as they appear in the input. The next data written are the freestream quantities. The transition parameters are then written, followed by a group of variables, most of which are from the program input and appear in approximately the same order. Next are written the integer arrays which control the values of x at which a solution is obtained and stations at which full profile data are to be written. Finally, the values of axial distance, radius, surface distance, surface pressure, and nondimensional edge velocity are written.

USAGE:

CALL WRITE1

Description of Variables.

J Array subscript

The other variables which appear in this subroutine are described in the sections Description of Output and Description of Variables in Common.

Subroutine WRITE2. Subroutine WRITE2 provides the output of computed results after a converged solution is obtained. The output is in two sections. The first section is written at every station at which a solution is obtained. The second section is written for specified values of x. The first line of output contains the values of geometry related variables (such as x, z, and ξ), the pressure gradient term B, the number of iterations, and the station counter, K. The second line contains the nondimensionalized edge conditions (U_e , P_e , etc.), the skin friction in transformed coordinates, the matched eddy viscosity, and the cumulative total of the number of iterations. The third line gives the first and second derivatives of the velocity at the wall and at the second grid point from the wall. The remainder of the first section is omitted at x=0. The next line gives transition parameters and the following line contains the Reynolds number. In the remaining lines in the first section are skin friction coefficients, the boundary-layer thicknesses, and quotients of boundary-layer parameters. In the second section of the output, some of the variables which are functions of the normal coordinate are written. The output of this section contains η , y, y/θ , y/δ , $F(=U/U_e)$, $\partial F/\partial \eta$, y^+ , u^+ , Udef, and ε^+ . **USAGE:**

CALL WRITE2

Description of Variables.

II Counter or subscript for array IPR

IPRNT Counter or subscript for array IPRFL

KL The values of η and the functions of η are written

at every KLth grid point

XOLD Previous value of x

The above variables are in common and are also described in the section Description of Variables in Common. The other variables which appear in this subroutine (except for N, an array subscript) are described in the section Description of Output.

Subroutine ZRO. Subroutine ZRO uses subroutine INTER5 to interpolate in the arrays ZA and RZ for the values Z and RO corresponding to the value X2 in the array XSTA. The arrays RZ, XSTA, and ZA contain values of radius, surface distance, and axial distance respectively for an axisymmetric geometry.

USAGE:

CALL ZRO (JJ, X2, Z, RO)

Description of Input Data.

There are two sets of input files to be used in obtaining the iterated solution, i.e., SUB DATA, and HESSCP OUTPUT. SUB DATA contains the basic data for execution, and HESSCP OUTPUT contains the $\rm C_p$ distribution at the edge of the displaced body. SUB DATA will be described first.

CARD 1 IREAD, IRSRT, ITER, KHESS (6(8X, 12))

IREAD Restart flag, 0 no restart tape

to be read (or written), I read

(and write) restart tape

IRSRT Station number for restart tape

to be written

ITER Iteration counter

KHESS

Flag for using C_p distribution;

0 do not read in C_p data from

HESS, 1 read in C_D data

CARDS 2-6

HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, IBDN

(10A6, 2x, A6/I3/I5/1x, I4, I5/9x, I1)

Standard HESS input parameters, described in HESS PARMDATA

and HESSCOOR DATA

CARD 7

BETAS, ROMAX

(6F12.6)

BETAS

Minimum value of BETA, the

pressure gradient term. If

BETA goes lower than BETAS, BETA

is set equal to BETAS.

ROMAX

Maximum body radius

CARD 8

LABEL

(18A4)

Alphanumeric data for identification of the case. Printed on the first page of output.

CARD 9

NOSE, LAMTRB, KVSAW, KTRANS, KTRNSN, KONSET (3(8x,12),

3(7x, 13))

NOSE

Indicator for geometry; 1 for

a blunt nose, 2 for a sharp

nose body. A value of 0 is

reset to 1

LAMTRB

Indicator; 1 for laminar flow,

2 for turbulent flow. A value

of 0 is reset to 1

KVSLAW

Indicator: O for Reichardt Eddy Viscosity, 1 for Van Driest Eddy Viscosity

KTRANS

Indicator for transition regime; 0 for no transition or instantaneous transition, 1 for transition regime (LAMTRB must be 1)

KTRNSN

Subscript for XSTA array giving value of x at which instantaneous transition occurs

KONSET

Subscript for XSTA array giving value of x at which transition regime begins

CARD 10

NIT1, NIT2, NIT3, NC

(4(8X, I2))

NITI

After solution converges, Δx is doubled if NIT is less than or equal to 0. A value of 0 is reset equal to 3. A value less than zero is reset equal to 0. Recommended value is 5

NIT2

After solution converges, Δx is halved if NIT is greater than or equal to NIT2. A value of 0 is reset to 6. A recommended value is 10

NIT3

If NIT = NIT3, Δx is halved, X and XI are recomputed and the iteration loop is restarted with the smaller values of X and XI. A value of 0 is reset to 9. A recommended value is 20

NC

Specific convergence test; 0 for test on derivatives at wall, 1 for test on functions at all points in profile. Recommended value is 1

CARD 11

IE, KEND, IIMAX

(4(7X, I3))

IE

Number of grid points in ETA direction. (program dimensioned for 101, the recommended value) KEND

Upper index on K (the station counter). Recommended value, 300-600

IIMAX

Number of values in geometry and pressure arrays. Arrays dimensioned for 500 values, recommend no more than 101. If more than 101 points are used, changes will need to be made to the dimensions of arrays IPR and IPRFL

CARD 12

KADETA, KL, IPFL, IPRINT, IWT

(5(8X, I2))

KADETA

Indicator; if zero, ETAINF is held constant, if nonzero, ETAINF can be increased or decreased. A nonzero value is recommended

KL

Index for profile output DO loop; I gives output for each grid point, 2 for every second grid point

IPFL

Number of values in IPRFL array (maximum 100)

IWT

Increment in station number at which full profiles are printed

CARD 6

CHICRT, XBAR, ATR

(3F12.6)

CHICRT

Value of CHIMAX at which transition regime calculations begin (arbitrary if KTRANS = 0). Appropriate values have been found to be between 2000 and 4000

XBAR

Measure of relative length of transition region (i.e. Xend of transition = XBAR*X beginning of transition)

For Reichardt Law, XBAR should be about 65 percent greater than value used with Van Driest Law. Recommended values are approximately 3.3 and 2.0, respectively

ATR Transition constant = 0.412 CARD 14 UFS, REINF, PFS, PSTAG, (6F12.6)SCF, RNOSE UFS Freestream velocity, ft/sec REINF Freestream Reynolds number per unit length PFS Freestream static pressure, psfa **PSTAG** Freestream stagnation pressure, psfa SCF Scale factor to convert unit length for REINF (1.0 if REINF/ft, 12.0 if REINF/in. etc.) RNOSE Nose radius, ft CARD 15 XK1, XK2, CONVRG, ADTEST (6F12.6)Constant for Van Driest Inner XK1 Eddy Viscosity Law. A value of 0.0 is reset to 0.4, the common value X Constant for Outer Eddy Viscosity Law. A value of 0.0 is reset to 0.0168, the common value CONVRG Convergence criterion. A value of 0.0 is reset to 0.001, the recommended value Criterion for increasing ETAINF ADTEST (F(IE))-F(IE-4) is compared with ADTEST.) A value of 0.0 is reset to 0.001, the recommended value CARD 16 DX, CRNI, XKETZ, ETAINF, (6F12.6)REFLEN

Initial x stepsize

Selector for finite difference scheme; 1.0 for fully implicit

DX

CRNI

(recommended), 0.5 for Crank-Nicolson, and 0.0 for fully explicit (not recommended)

XKETA

Parameter which controls the grid spacing in the ETA direction (1.0 gives an equally spaced grid, a value greater than 1.0 gives a finer grid at the wall than at the outer edge.) A value of 0.0 is reset to 1.09, the value recommended for IE = 101

ETAINF

Maximum value of ETA. A value of 0.0 is reset to 100 which is the recommended value for a flow which is initially turbulent. For an initially laminar flow this value should be set to 6.0)

REFLEN

An arbitrary reference length

CARD 17

XJFAC, XKFAC, TVC

(2F12.6,4X,A3)

XJFAC

Indicator; 0.0 for 2-D flow, 1.0 for axially symmetric flow

XKFAC

indicator; 0.0 for body only solution, 1.0 for body and

wake solution

TVC

Indicator; YES to include TVC effects, NO without TVC

CARD 18

DXMAX, XLOCA, DYDX, DX, NOPRFS

DXMAX

Maximum x stepsize permitted in the calculations

XLOCAT

Location on the body of the upstream edge of the Navier-Stokes region

DYDX

Slope of straight taper fit of tail of body

DX

x stepsize for use in the Navier-Stokes code

NOPRES

Number of profiles on the body in the Navier-Stokes region

CARDS 19a, b, c...

(IPR(J), J = 1, IPRINT) (1415)

IPR

Array of subscript for array XSTA giving values of x at which complete solutions (with profiles) are printed (array dimensioned for 100 values)

CARDS 20a, b, c...

(IPRFL(J), J = 1, IPFL) (1415)

IPRFL

Array of subscripts for array XSTA setting values of x at which complete solutions (with profiles) are printed (array dimensioned for 100 values). Also at these stations are printed the coordinates of the displaced body. Each value of IPRFL must also be a value of **IPR**

CARDS 21-21+IIMAX

ZA(J), XSTA(J), RZ(Z), PZ(J), LSTC (4F12.6,A4)

ZA

Array of coordinate values along

the body axis

XSTA

Array of coordinate values along the body surface (same as ZA for

a flat plate)

RZ

Array of radius values for a body

PZ

Array of pressure ratio values - P/P_0 where P_0 is the local stag-

nation pressure. (These are always 0.0 for the iterated solution and are given values only

when KHESS = 0

LSTC

Alphanumeric variable used to indicate the last data card. LAST is coded on the final card.

See Appendix B, Table 2.1 for a sample SUB DATA data set.

Description of HESSCP OUTPUT.

CARD1-IIMAX

X(J), CP(J), J = 1, IIMAX(2F12.6)

X

Axial coordinate of body point, ft.

CP

Pressure coefficient at body point

See Appendix B, Table 2.2 for a sample HESSCP OUTPUT data set. Description of Output Data.

ICBLINT outputs three data sets. The first is the complete boundary-layer solution over the body (BLAYER OUTPUT). The second is the velocity profile at the upstream edge of the Navier-Stokes region with information on the profile included (APLNS VELDATA). The third set is the coordinates of the displaced body (BODYCOOR DATA).

This section contains a description of BLAYER OUTPUT in three subsections. The first subsection describes the first section of the output which is the input and initialized data. The second subsection describes the data which are written for each station at which solutions are obtained. The third subsection describes the miscellaneous messages and data written by the program. The output from a sample calculation of turbulent flow over a cylinder is included at the end of this section (see Appendix C, Table 1.1).

Input and Initialized Data.

LABEL

Alphanumeric Data for identification of the case (written by Subroutine READIN)

The data in the remainder of the first block is written by subroutine WRITE1 and corresponds to the input data with the following exceptions:

Line 6 RHOFS = ρ_{∞} , slugs/ft³

Line 10 EPSVD = $\epsilon_{VD} = \{\mu_{ref}/(\rho_{\infty}U_{\infty}L)\}^{\frac{1}{2}}$, where L is the unit length in REINF

Next in the program output are the arrays IPR and IPRFL (which are described in the section "Description of Input"). Following the arrays IPR and IPRFL are the arrays ZA, RZ, XSTA, PZ, and UEZ with the array subscripts. PZ in the output differs from the values of PZ in the input in that for input PZ is P/P_0 and is changed by the program to P/P_{ref} . UEZ is the array of nondimensional edge velocities calculated by the program (U_e/U_∞) . For a flat plate, the values of UEZ are unity.

Station Data.

The station data are divided into two groups. The first group of data is written for each value of x at which a solution is obtained. The second group --the function profiles--is written only for the values of x corresponding to XSTA (IPFRL). In the first group, lines 5-13 are not written if x = 0. In the sixth line, REX alone is written if KFS = 0. If KFS $\neq 0$, REX is written followed by the wall heat transfer (BTU/ft²/sec) and two heat transfer coefficients; one in BTU/in²-sec- $^{\circ}$ R, the other in 1bm/in²-sec.

GROUP ONE

Line 1	S	,	Surface Distance, x
	XI	=	ξ , Transformed Surface Distance
	Z	,	Axial Distance, z
	RO	,	Local Radius, r, (Set Equal to One for a Wedge or a Flat Plate)
	BETA	=	$\beta = 2\xi/U_e(dU_e/d\xi)$
	PP	-	dPE/ds
	NIT	,	Number of Iterations at Current Value of x
	K	,	Station Counter

Line 2	UE	ia s u t one ti	U _e /U _∞
	PE	mi lo neiso	P _e /P _{ref}
	DUEDS	P-21 38	dUE/ds
Line 3	CF	Light rett	Skin Friction in Transformed Coordinates = $C_{f_{\infty}}/\epsilon_{VD}$
	EPSVD	52 <u>2</u> 100 iso	$\varepsilon_{\text{VD}} = \{\mu_{\text{ref}} / (\rho_{\infty} U_{\infty} L)\}^{\frac{1}{2}}, \text{ Where}$
			L is the Unit Length in REINF
	KEP	gjar k o z	Subscript in EPSPL Array Where the Inner and Outer Eddy Viscosities are Matched (Zero for Laminar Flow)
	NITTOT	7 - 2 11 13 mag	Cumulative Total Number of Iterations in x Direction
Line 4	(F = U/U _e ; Pr	ime Denotes	ə/ən)
	F2N(1)	Property field	F' _W
	F2N(3)	e argress bess	F' at Two Points from the Wall
	F2NN(1)	1 n 🕳 300 sa h	F"W
	F2NN(3)		F" at Two Points from the Wall
	UPLUS	-	Friction Velocity
Line 5	CHIMAX	,	Maximum Value of Vorticity Reynolds Number - χ
	GAMMA	,	Transition Intermittency Factor (Set to Zero for Laminar Flow, Set to One for Turbulent Flow)
	XIBAR	· -	$\overline{\xi}$, Transition Intermittency Factor Coordinate; Initialized as Zero, Calculated after Transition Regime is Entered
Line 6	REX	•	Local Reynolds Number Based on Edge Conditions

WALL HEAT TRANSFER AND HEAT TRANSFER COEFFICIENTS (If KFS#0)

Line 7	CFE	=	$C_{f_e} = 2\tau_w/\rho_e U_e^2$
	CFINF	=	$C_{f_{\infty}} = 2\tau_{W}/\rho_{\infty}U_{\infty}^{2}$
	CF(TOTAL)	=	$C_{f_e} = 2\tau_w/\rho_e U_e^2$ $C_{f_{\infty}} = 2\tau_w/\rho_{\infty} U_{\infty}^2$ $\overline{C}_{f} = \frac{1}{x} \int_{0}^{x} C_{f_{\infty}} dt$
	CFBAR*SQRT(REX)	=	C _f √REX
	CFINF*SQRT(REX)	= 1099 = 1	C _f √REX
Line 8	CFINF/2	-	$c_{f_{\infty}}/2$
Line 9	X/REFLEN	=	x/reference length
	Z/REFLEN	-	z/reference length
	RO/REFLEN	=	r/reference length
	DELTA/X	=	δ/x
	DELSTR/X	=	δ*/x
Line 10	THETA/REFLEN	=	0/reference length
	DELSTR/REFLEN	=	$\delta*/reference length$
	DELTA/REFLEN	=	δ/reference length
	DELSTRAXI/ REFLEN	-	δ*axi/reference length
Line 11	THETA/DELTA		θ/δ
	DELSTR/DELTA	-	δ * /δ
	DELSTR/THETA	•	δ*/θ
	DELSTRAXI	· conditions a	$\delta_{\text{axi}}^* = r \left\{ \sqrt{1+2\delta^*/r} - 1 \right\}$ (Zero for 2-D Flow)
Line 12	DELSTRK	_on 141 (4) 1 6766,36136	δ*, Incompressible Boundary- Layer Displacement Thickness Computed Only for Turbulent Flow

	DELSTR	(B) Albandur	δ*, Boundary-Layer Displacement Thickness
	DELTA	=	δ, Boundary-Layer Thickness (Value of y where U/U _e = 0.995)
	THETA	=	0, Boundary-Layer Momentum Thickness
	RETHETA	=	Re_{θ} , Edge Unit Reynolds Number Times θ
GROUP TWO		PROFILES	
Block 1	ETA	,	η, Transformed Normal Coordinate
	Y \$_P	,	y, Corresponding Physical Coordinate
	Y/THETA	•	y/θ (Zero for $x = 0$)
	Y/DELTA	•	y/δ (Zero for $x = 0$)
	F=U/UE	•	Non-dimensional Velocity
	FP(N)		aF an
	YPLUS	•	Law of the Wall Normal Coordinate, yU+/v
	U/UPLUS		U/U^+ Where $U^+ = (\tau_W/\rho)^{\frac{1}{2}}$
	UDEF	•	Defect Velocity, $\frac{U-U_{\infty}}{U^{+}}$
	EPS+	•	Eddy Viscosity (Zero for Laminar Flow)
	PITOT	•	The local pitot pressure in p.s.t.
	N	,	Grid Point Number

Miscellaneous Messages and Data.

Subroutine READIN writes the message "RESTART TAPE WRITTEN. K = # KTPW = #" after the station data has been written on the restart

tape. K is the corrent value of K and KTPW is the next value of I at which the restart tape will be written.

For transition regime calculations, subroutine EFFMU writes the message "TRANSITION BEGINS" at the beginning of transition and the message "TRANSITION ENDS" when XIBAR first exceeds 2.0 with the Reichardt Eddy Viscosity Law or when XIBAR first exceeds 4.0 with the Van Driest Eddy Viscosity Law. The message "TRANSITION ENDS" was found to be useful when the Van Driest Eddy Viscosity Law was used in calculations but less useful with the Reichardt Eddy Viscosity Law. At best, the message indicates only approximately where transition ends.

For the instantaneous transition model, subroutine CHANGE writes the message "TRANSITION BEGINS INSTANTANEOUSLY" and the values of X and DX when transition is initiated.

If the iteration counter NIT reaches the value of NIT3, the stepsize is halved, new values of X and XI and new edge properties are calculated and the program attempts to obtain a converged solution for the smaller value of X. In this case, MAIN writes the values of NIT, DX, X, F2N(1), F2N1, and DIF.

When ETAINF is increased, subroutine ADDETA writes the message "INTERMEDIATE PROFILE DATA--ETAINF INCREASED ISTOP = #", and the values of DX, XKETZ, ETAINF, and ADTEST.

If ISTOP exceeds 100, the message "STOP *** ISTOP.GT.100" is written by MAIN and the program is stopped. If after a converged solution is obtained, the derivative of F at the wall is negative, subroutine WRITE2 writes the message "PROBLEM TERMINATED. NEGATIVE DF/DETA INDICATES THAT THE BOUNDARY LAYER HAS SEPARATED" and stops the program.

Normal termination of the program is indicated by the message "THE END X = XSTA(IIMAX)" or the message "THE END K = KEND" which is written twice by MAIN.

In the above descriptions, all quantities which have the apparent dimension of length have been nondimensionalized by the per unit length in REINF.

APLNS VELDATA contains the needed parts of the boundary-layer solution at the beginning of the Navier-Stokes region. All information in it is found in BLAYER OUTPUT and is written again for convenience in using the APLNS program.

BODY COORDATA contains the coordinates of the displaced body calculated during the current global iteration. This data set is used by program HESS for calculating a new pressure distribution around the body.

See Appendix B, Table 2.3 for a sample BODY COORDATA data set.

DESCRIPTION OF PROCEDURE DEVELOP

After the viscous/inviscid solution has been completed, the final displaced body coordinates are used in DEVELOP EXEC to generate the inviscid, displaced flowfield. HESS is run to obtain the flow quantities at off body points (u & v components) for use in the APLNS program input conditions. Since the APLNS code requires 1800 points (as currently dimensioned) and HESS is capable of solving only 400 points per execution, several executions of HESS are required. Each execution supplies a strip of data for input to APLNS. The off-body point locations are developed and the data set written out in DATFIELD using the displaced coordinates from BODYCOOR DATA. DEVELOP EXEC controls the execution of FIELD and HESSBLI EXECs. Execution is in a loop, nominally the loop is executed five (5) times, DATFIELD is executed first, then with the data set written, HESSBLI is run, writing STREAM DATA. Subsequent iterations add data to STREAM DATA until the required full flowfield is completed (1800 points).

See Appendix A, Table 4.1 for a listing of DEVELOP.

Program DATFIELD

Description of Program DATFIELD. FIELD EXEC controls program

DATFIELD. DATFIELD writes out the data sets for the execution of HESS

to obtain off-body flow conditions. Input data include the final

displaced body from HESS/ICBLINT, and the geometry of the afterbody from

DATAMA. DATFIELD then calculates and writes the off-body points, together

with the displaced body coordinates on HESSCOOR DATA, the HESS data set.

See Appendix A, Table 4.2 for a listing of DATFIELD FORTRAN.

(See Description of Output for a list of variables used in the program.)

Description of Input and Output.

Input Data. DATFIELD uses two input sets: INTER DATA and BODYCOOR DATA. INTER DATA has been described in Output for DATAMA. BODYCOOR DATA has been described in Output of ICBLINT.

Output Data. DATFIELD's output is in two sets; INTER DATA and HESS COORDATA. INTER DATA is rewritten to show the iteration count for DEVELOP. Only the counter, IHESSI is changed. HESS COORDATA contains the HESS data set with the off-body points where a solution is desired.

Card 1	HEDR, CASE	(15A4,2x,A4)
cui u i	IILDIN, ONSE	(I VAT & LA SAT)

HEDR Alphanumeric array describing the body that is running

CASE Alphanumeric array defining the case run

Card 2 NB,NNU,NAXI,NCF, (511)

NOFF

NB Number of bodies input

NNU Number of nonuniform flows

NAXI Flag for axisymmetric flows; 0 if not axisymmetric, 1 if axisymmetric

NCF Flag for crossflow case; 0 if no cross flows included, 1 if crossflows included

NOFF Flag; 0 for no off-body points, 1 for off-body points

Card 3 blank

Card 4 IGEOMF, ISIGF, ICURVN, NONEWF, IFORMT, NN1

IGEOMF Flag for curved elements; 0 for no curvature, 1 for curvature

ISIGF Flag for source densities; set to 1;

piecewise-linear

ICURVN Flag for computation of element

curvatures; 0 for input curvatures,

1 for internal computation

NONEWF Number of new crossflows for the same

body

IFORMT Flag; if O, read first the x, then the

y coordinates; if 1, read x,y coordinates

in 2F12.6 format, if 2 read x,y coordinates in F12.6,12x,F12.6 format

Number of off-body points

INN

Card 5 **IBDN**

> **IBDN** Body sequence number

X,Y Cards 6-NN

> X,Y Body coordinates

IGEOMF, ISIGF, Card NN+7 ICURVN, NONEWF,

IFORMT, NN1

IGEOMF Flag for curved elements; 0 for no

curvature; 1 for curvature

Described above ISIGF

ICURVN Described above

NONE OF Described above

IFORMT Described above

NNT Described above

Card NN+8 IIBDN

> Body sequence number; 0 if off-body IIBDN

points follow

Card NN+8-XB, YB

> XB, YB Coordinates of off-body points

See Appendix B, Table 3.1 for a sample HESS COORDATA data set.

Program APLNS

Description of Program APLNS. Program APLNS solves the complete Navier-Stokes equations using an Alternating Difference Implicit (ADI) scheme. Surrounding boundary conditions are required to initiate execution. The boundary conditions at the upstream boundary are held constant while the remainder of the flowfield is iterated upon. The iteration scheme is discussed in more detail later. Due to the large grid size used within the program, there are very few points within the boundary-layer region. Therefore, the results, particularly on the body, must be viewed with caution. To increase the accuracy of the results obtained from the APLNS program, the user is advised that the size of the region of interest be enlarged, i.e., the array sizes be increased from 30 X 60 to some larger values. The effect of this will be to make the far wake boundary conditions used in the program more appropriate the larger the region size, the better these conditions become. However, execution time will increase with such an enlargement. Care must be taken with regard to the initial flowfield which is input to the program. The stepsizes used must be compatible with the following criterion:

- 1. There must be at least three or four points within the boundary-layer. Therefore ΔY must be appropriatly small.
- 2. The ratio $\Delta Y/\Delta X$ must match the slope of the body at the tail region. Since the full Navier-Stokes equations are solved, the solution is very much dependent on the time stepsize. For high velocities a very small time differential (0.1 \times 10⁻⁴ sec) must be used.

Numerical Procedure

- 1. Set boundary conditions for $\xi^{(n+1)}$ and $\psi^{(n+1)}$. Coefficients for $u^{(n+1)}$ and $v^{(n+1)}$ are extrapolated from the previous time step. Boundary conditions are known except for $\xi^{(n+1)}_W$ which must be iterated upon.
- 2. Solve the Navier-Stokes equation using an Alternating Difference Implicit (ADI) scheme to get $\xi^{(n+1)}$.
- 3. Solve for $\psi^{(n+1)}$ using a direct solver method with $\xi^{(n+1)}$ for the right side.
- 4. Calculate new values of $\psi^{(n+1)}$ and $\xi^{(n+1)}$.
- 5. Iterate on ψ and ξ until $\partial u/\partial y)_{W}^{}$ $\partial u/\partial y$ meets the convergence criterion.
- 6. Compute $u^{(n+1)}$ and $v^{(n+1)}$ from the new stream function.
- 7. Modify the stepsize, if necessary, to aid convergence.

Figures 10 and 11 show the flow of logic and the calling sequence of subroutines in program APLNS.

See Appendix A, Table 5.1 for a listing of program APLNS.

Description of Variables in Common.

BLOCK	VARIABLE	DESCRIPTION OF USE
REALS	DFRODR	1/p aFx/ar lb-ft ² /slug
REALS	DT	∆t; time increment (sec)
REALS	DTA	Δt; time increment (sec)
REALS	DT2	Δt/2
REALS	DX	Axial length increment (ft)

Figure 10. PROCEDURE FLOWCHART OF APLNS

FIGURE IL ROUTINE SEQUENCE FLOWCHART OF APLNS

REALS	DY	Radial length increment (ft)
REALS	DY2	$(\Delta y)^2 (ft)^2$
ARRAYS	EPA	ϵ , epsilon at each axial lication (eddy viscosity)
REALS	EPO	Beginning value of epsilon (ft²/sec)
REALS	EPS	Value of epsilon, eddy viscosity, if ≤0 ε=0.0168δU _e (ft ² /sec)
REALS	FX	Fx; thrust magnitude (1b)
REALS	FXRHO	Fx/p (1b-ft ³ /slug)
INTEGS	IDIMY	Number of columns for DMT010
INTEGS	10	Input-output unit for any saved data
INTEGS	JCI	Point number on wall at the front of the region
INTEGS	JDEL	Boundary-layer edge point at the front of the region
INTEGS	JDIMY	Number of rows for DMT010
INTEGS	ι	Number of points per profile
IRRAYS	LAR	Array which defines body shape
LOGICS	LSWH1	Control parameter set to FALSE value
INTEGS	LI	Height of the propeller zone in number of points

INTEGS	M	Number of profiles
INTEGS	M1	Number of profiles on the body
INTEGS	NER	Number of iterations on WORK6
INTEGS	NTS	Number of iterations for solution convergence
LOGICS	OFF	FALSE
LOGICS	ON	TRUE
LOGICS	PRNT	Controls printing for saved output
ARRAYS	PSI	ψ ; stream function (ft ³ /sec)
ARRAYS	PSIB	ψ; used in WORK6 (ft ³ /sec)
ARRAYS	PSI0	ψ ; on top of region (ft ³ /sec)
INTEGS	PSKP	Controls frequency of DUICAL and EPSCA6 execution
REALS	RHO	ρ; density (slugs/ft ³)
REALS	R1	Modifies stepsize
LOGICS	SAVE	Control for saving output
PLOTZ	SKEY	Key for contour plots
PLOTZ	SL	Variables in PIXER
PLOTZ	SL1	Variables in PIXER
PLOTZ	SU	Variables in PIXER
LOGICS	SWHFX	Control for propeller
REALS	TDX	2ΔX (ft)
REALS	TDY	2ΔY (ft)

2 OF ADA ADA 497

REALS	TOL	Tolerence for convergence of WORK6
REALS	TRAMP	Modification factor of 1/p (aFx/ar) if necessary
ARRAYS	U	Axial velocity (ft/sec)
ARRAYS	UA	Axial velocity in WORK6 (ft/sec)
PEALS	UO	Boundary-layer velocities at the front of the region (ft/sec)
ARRAYS	UI	Axial velocity at upper boundary of the region (ft/sec)
REALS	U2	U _e ; edge velocity (ft/sec)
ARRAYS	U10	Initial axial velocity at upper boundary of the region (ft/sec)
ARRAYS	V	Radial velocity (ft/sec)
ARRAYS	VA	Radial velocity in WORK6 (ft/sec)
REALS	X	Axial location from front of the region (ft)
ARRAYS	XI	au/ay (sec ⁻¹)
ARRAYS	XIB	au/ay calculation at the wall from stream function in WORK6 (sec-1)
ARRAYS	XIW	$\partial u/\partial y$ at the wall (sec ⁻¹)
REALS	Y	Radial distance from body centerline (ft)

Description of Subroutines.

DRFAX6. DRFAX6 is the main driver for the axisymmetric case. The routine calls the major routines and tests for convergence of WORK6 calculations. The routine first calls two subroutines which read in data and set up initial conditions. Next, the routine begins the iteration procedure on the stream function, the main iteration loop of the program. After the convergence is met, the u velocities on the upper boundary are modified every PSKP time steps and modifications to the eddy viscosity are made every PSKP+1 time steps. The iteration on WORK6 is repeated NTS time steps with Dt modified depending on the number of iterations required for convergence of the previous time step. If more than three iterations were required, Dt is decreased by R1. If less than three iterations are required, the time step Dt is increased by the same factor R1. After NTS time steps or the number of iterations in WORK6 exceeds NER, DRFAX6 calls a routine to print the current stream function, au/ay distribution, and the u and v velocity components.

Subroutine DUICAL. DUICAL calculates a Δu that is added to the u velocity on the upper boundary of the region. The routine is called periodically to update this boundary condition. A modified value for the stream function is used to calculate the Δu . The routine then prints out the profile number (I), the modified upper boundary condition (UI), the difference between the current velocity and the initial velocity (DDUI), the initial velocity (UIO), and the initial stream function value (PSIO). It is important to note that only velocities on the upper boundary are altered in this routine.

Subroutine EPSCA6. EPSCA6 evaluates the eddy viscosity law. It is called periodically as DUICAL is called. The equation used is:

$$\frac{d\varepsilon(x)}{dx} = \frac{c_2^2 U_e}{2} \quad \left[\frac{I_2}{I_1}\right] \quad -\frac{a_2 \varepsilon^2}{4 U_e c_2 b^2 I_1} - \frac{\varepsilon_1}{2 I_1} \frac{dI_1}{dx} + \frac{\varepsilon}{2 b} \frac{db}{dx} - \frac{\varepsilon}{2 U_e} \frac{dU_e}{dx}$$

where,

$$I_{1}(x) = \int_{0}^{\ell} \bar{u}\bar{r} dr,$$

$$I_{2}(x) = \int_{0}^{2\bar{u}} \frac{\partial \bar{u}}{\partial f} \bar{r} d\bar{r}$$

and

$$\ell = C_2 b$$
, $\bar{u} = U/U_e$, $\bar{r} = r/b$, $a_2 = 2.0$, $C_2 = 0.035$.

The routine prints out the following values

Il Defined above

12 Defined above

B Value of b in above equation

DB ΔB

DII AI

F1, F2, F3 Terms in the eddy viscosity law

EPN New value of $\varepsilon(x)$

EPA Original value of $\varepsilon(x)$

These updated values are then returned to the program and used to modify the flowfield conditions.

Subroutine INTAL6. INTAL6 is responsible for calculating the inviscid stream function from flowfield velocities read in from Unit 8 data. A simple integration, which has been found to be accurate,

is used to obtain the inviscid stream function. Since the velocities at every station in the flowfield are known, the stream function is calculated using a trapazoidal rule:

$$\Delta \psi_{ij} = (u_{ij}y_i + u_{i,j-1}y_{i-2})\Delta y/2$$

$$\psi_{ij} = \psi_{i,j-1} + \Delta \psi_{i,j}$$

with $\psi=0$ at solid body boundaries and for zero radius in the wake. The inviscid flowfield is printed out giving values of $\psi(PSI)$ and u and v velocity components. The value of r at the edge of the boundary-layer at the front of the region (Y(JDEL)) is printed along with the boundary-layer thickness (Y(JDEL)-Y(J(I))), and U_e (U2). The boundary-layer velocity profiles are read in from Unit 11, and the values at the point in question Y(J) are interpolated using a 3 point Lagrangian formula. The momentum increase (FX(1,L1)) is printed out giving the initial values of thrust computed from the following equation;

$$Fx/\rho = Fx_0 = 2 \frac{SU_0}{y(L1)^2DX}$$
; where $SU_0 = \int_0^{\delta} U(U_e - U)dy$

In attempting to correct for tip losses the following expression was used:

$$Fx/\rho = \frac{Fx_0}{2} \left\{ 1 + \cos \left[\pi \frac{r - (L1-5)\Delta r}{4\Delta r} \right] \right\}$$
 for $(L1-5)\Delta r < r < (L1-1)\Delta r$

where L1(dr) is the height of the propeller region. The value of δ^{*2} (DELSR2) is calculated by;

$$\delta^{*2} = \int_0^{\delta} (1 - \frac{U}{U_e}) r dy$$

and the corresponding value of $\varepsilon(EPS)$ is given by: $\varepsilon = 0.0168\delta^* U_e$. The boundary-layer velocity profile (UO) is printed out along with the values of X and Y for the region in question. The X distances are taken from the front of the region and the Y values are measured from the axis of the body. Finally $(1/\rho) \ \partial Fx/\partial r(FXRHO)$ is printed completing the printed output from the routine.

Subroutine PUTIN6. PUTIN6 reads in values for the flags and various other parameters in the program and prints them out in namelist form. The routine defines the body shape by the LAR array which is also printed out. The initial values for variables which control the key values for the contour plot of $\partial u/\partial y(XI)$ are printed. For a description of these parameters see the section entitled Description of Input.

Subroutine WORK6. WORK6 calculates the updated values of ξ which are compared in DRFAX6 and then modified if necessary. Since this routine essentially solves n equations in n unknowns, only the numerical procedure is important to the understanding of the workings of WORK6. The use of WORK6 is best seen by referring to the section entitled Numerical Procedure, steps 1-5.

Description of Input.

Input Variables on Unit 5.

Namelist	Variable		Description of Use
ILIST	L Total and ancies		Number of points per profile, suggested value ≤30
ILIST	LI .	•	Number of points on propeller, suggested value ≤12
ILIST	М		Number of profiles, suggested value ≤60

ILIST	M1	Number of profiles on body, suggested value ≤15
ILIST	PSKP	, Time parameter controlling frequency of DUICAL and EPSCA6, suggested value 4-7
ILIST	NER	, Number of iterations on WORK6, suggested value 40
ILIST	NTS	Number of time steps for convergence, suggested value 35
ILIST	10	, Unit number for saved output, suggested value 9
RLIST	DT	Time increment (sec), suggested value 1 x 10 ⁻⁴ -1 x 10 ⁻⁵
RLIST	RHO	, Density of fluid (slugs/ft ³) suggested value 7.535 x 10-2
RLIST	EPS	, Eddy viscosity (if EPS≤0, EPS = 0.01688*U _e), suggested value 0.0
RLIST	TOL	, Tolerance value for convergence of WORK6, suggested value 0.02-0.05
RLIST	TRAMP	, Modifying factor for propeller, suggested value 0.1
RLIST	EP0	Beginning value of epsilon, suggested value 0.0
RLIST	SCALE1	, Length scaling factor for nondimensional HESS/ICBLINT I/O
RLIST	SCALE2	, Velocity scaling factor for nondimensional HESS/ICBLINT I/O
LLIST	SWHFX	, T No actuator disk F Include actuator disk

LLIST

SAVE

T Save data on previous unit defined by variable IO F Do not save data

See Appendix A, Table 3.1 for sample APLNS data. Input Data on Unit 11.

Description of Variable Variable dy/dx; slope of the body at the tail DYDX Δy; nondimensional radial lingth increment DY NUM Number of boundary-layer velocities given DELTA Nondimensional boundary-layer thickness UE Nondimensional edge velocity YD y locations in the boundary layer U/U_a; normalized boundary-layer velocities UUE See Appendix B, Table 3.2 for sample APLNS Unit 11 input data. Input Data on Unit 8.

Nondimensional axial distance from the front of the body

Nondimensional radial coordinate from the body centerline

Nondimensional axial velocity component (INVISCID)

Nondimensional radial velocity component (INVISCID)

See Appendix B, Table 3.3 for sample APLNS Unit 8 data. Description of Output.

Output Variables. Listed in order of appearance.

 Origin
 Variable
 Description of Use

 PUTIN6
 L
 Number of points per profile

PUTIN6	u s	Number of points in the propeller zone (height)
PUTIN6	M	Number of profiles
PUTIN6	м1	Number of profiles on the body
PUTIN6	PSKP	Control variable concerning frequency of DUICAL and EPSCA6
PUTIN6	NER	Number of iterations on WORK6 (maximum)
PUTIN6	NTS	Total number of time steps for solution convergence
PUTIN6	10	Unit number for saved output
PUTIN6	DT	Time increment (s)
PUTIN6	RHO	Density (slugs/ft ³)
PUTIN6	EPS	Eddy viscosity (ft^2/s)
PUTIN6	TOL	Tolerance value for convergence of WORK6
PUTIN6	TRAMP	Modification factor for derivative of thrust in the radial direction
PUTIN6	EPO	Eddy viscosity at beginning of problem (ft ² /s)
PUTIN6	SCALE1	Length scaling factor (ft)
PUTIN6	SCALE2	Velocity scaling factor (ft/s)
PUTIN6	SWHFX	Control parameter for propeller
PUTIN6	SAVE	Control parameter for printing saved output
PUTIN6	LAR	Array defining body points in terms of grid location

PUTIN6	DX	Axial length increment(ft)
PUTIN6	DY	Radial length increment (ft)
PUTIN6	JDEL	Point number at the edge of the boundary-layer
INTAL6*	PSI	Inviscid stream function (ft^3/s)
INTAL6*	U	Inviscid axial velocity (ft/s)
INTAL6*	V	Inviscid radial velocity (ft/s)
INTAL6	Y(JDEL)	Radial distance at the edge of the boundary-layer (ft)
INTAL6	Y(JDEL)-Y(J(I))	Boundary-layer thickness (ft)
INTAL6	U2	Axial velocity at the edge of the boundary-layer (ft/s)
INTAL6	FX	Force distribution of the actuator zone (lb_f)
INTAL6	DELSR2	Square of the boudary- layer displacement thickness (ft ²)
INTAL6	EPS	Eddy viscosity (ft ² /s)
INTAL6	UO	Boundary-layer profile (ft/s)
INTAL6	Y	Radial distances of grid points from body centerline (ft)
INTAL6	X	Axial distances of grid points from front of region (ft)
INTAL6	FXRHO	Derivative of propeller force with respect to radial direction (lb _f -ft ³ /slug)

DRFAX6	TIME	Time from the beginning of the procedure (s)
DRFAX6	XI	Derivative of axial velocity with respect to radial direction (1/s)
WORK6	N	Dimension of working matrix in WORK6
WORK6	IDIMY	Dimension of working matrix in WORK6
WORK6	JDIMY	Dimension of working matrix in WORK6
WORK6	I	Profile number
WORK6	J	Point number on profile
WORK6	XI(I,J)	XI at point I,J (1/s)
WORK6	WFX	Vorticity at the wall of the body at point I,J (1/s)
DRFAX6	ITER	Iteration number in WORK6
DRFAX6	XMAX	Maximum difference between (XI-X1W)/XI for all wall. points
DRFAX6	TS	Time step number
DU1 CAL	U1(I)	Updated axial velocity at the top of the region (ft/s)
DU1CAL	DDU1(I)	Difference between updated and original upper boundary axial velocity (ft/s)
DU1 CAL	U10(I)	Initial axial velocity at the upper boundary (ft/s)
DU1 CAL	PSI0	Stream function at the top of the boundary (ft ³ /s)
EPSCA6	В	Mixing zone width (ft)
EPSCA6	11	$I_1(x) = \int_0^\infty \bar{u} \bar{r} d\bar{r}$

EPSCA6	12	$I_2(x) = \int_0^{\ell} \frac{\partial \bar{u}}{\partial \bar{r}} \bar{r} d\bar{r}$
FLOCAD	12	12(x) - J ₀ ar ' u'
EPSCA6	DB	Change in the value of the mixing width (ft)
EPSCA6	DI1	Change in the value of $I_1(x)$ integral
EPSCA6	F1	Term in the eddy viscosity law
EPSCA6	F2	Term in the eddy viscosity law
EPSCA6	F3	Term in the eddy viscosity law
EPSCA6	EPN	New value of the eddy viscosity at profile I (ft^2/s)
EPSCA6	EPA	Initial value of the eddy viscosity for profile I (ft ² /s)
DRFAX6*	PSI	Final stream function (ft^3/s)
DRFAX6*	XI	Final distribution for XI (1/s)
DRFAX6	V	Final values of radial velocities (ft/s)
DRFAX6	U	Final values of axial velocities (ft/s)

^{* -} Denotes panted within mentioned subroutine through a call to routine ${\rm DM}\, {\rm FO}10$

See Appendix B, Table 3.4 for sample APLNS OUTPUT data.

APPENDIX A

APPENDIX A

TABLE 1.1 WAKE EXEC

CP SPOOL CGNS TO SYSTEM CLASS A CP TAG DEV CONS PRIOR IOLE DEST RMT35 CP TAG DEV PR PPIOR IDLE DEST RMT35 CP LINK GCUD 192 192 RR ALL ACCESS 192 D EXEC COCP 5 EXEC COCP 5 EXEC COCP 5 EXEC OFVELOP 5

TABLE 1.2 CUCP EXEC

ELOUP -ENDLOOP E1
EXEC DATADEV
EXEC HESSBLI HESSRLI DATA E
EXEC DATAMA
EXEC DATAMA
EXSERV READ SEPARA DATA E 3 3(\$COL 1 1 1CP
EIF .EICP NE .1 EGOTO -NEXT
-ENDLOOP ECONTINUE
ETYPE MAX. NO. OF ITER. EXCEEDED.

-NEXT &CONTINUE SEX IT

DATADEV EXEC TABLE 2.2

FI 01 DISK COORD DATA E (LRECL 80 BLKSIZE 80 RECFM FB FI 02 DISK SEPARA DATA E (LRECL 80 BLKSIZE 80 RECFM FB FI 03 DISK WAKE CUCRDS E (LRECL 80 BLKSIZE 80 RECFM FB FI 04 DISK HESS PARMDATA E (LRECL 80 BLKSIZE 80 RECFM FB 37 DISK HESSBLI DATA E (LRECL 80 BLKSIZE 80 RECFM FB GLOBAL TXTLIB FORTLIB VPIUTIL FI O6 DISK ERERR DAATAA A LOAD DATADEV (NOMAP START ECONTROL ALL FI * CLEAR

TABLE 2.3 DATADEV FURTRAN

PREGRAM MAIN

000

FILE DEFINITIONS

BODY COORDINATES WITH PARAMETERS	FLOW SEPARATION AND ITERATION DATA	POTENTIAL FLOW CODE EXECUTION PARAMETERS	COMPLETE DATA SET FOR POTENTIAL FLOW CODE	EXECUTION WITH FAIRED AFTERBODY.
=======================================	(2)	(4)	(2)	
UNIT	UNIT	UNIT (4)	UNIT	

CCMMON /CCCRD/ X,Y,KTE,XI,YI,KTE1,NOPRFS,KWAKE DIMENSION X(501), Y(501), XI(501), Y1(501)

READ IN THE OPIGINAL BODY

READ (1,10) KTE, NOPRFS, KTE1 READ (1,30) KWAKE DC 1 1=1,KTE

RFAD (1,20) X(1), Y(1) CALL LINDEY REWIND 1

CALL HESSPA

FURMAT (1X, 313) FURMAT (2F12.6) FURMAT (13) 228

_

000

STOP

DIMENSION X(501), Y(501), XI(501), YI (501), XWAKE (20), XXI(500), YYI (500 CCMMON /COORD/ X,Y,KTE,XI,YI,KTEI,NOPRFS,KWAKE CCMMON /CORFIT/DX,YI,C,XI,NNN SUBROUTINE LINDEY

READ IN SEPARATION PARAMETERS

000

READ (2,10) IWAKE READ (2,10) JSTA KSTA = JSTA-IMAKE CUPY URINGINAL CUCRDINATES TO WURKING ARRAYS

000

DC 1 I=1,KTE XI(I) = X(I)

XI(I) = X(I) 1 Y1(I) = Y(I) IF(IWAKE.EG.0) GC TO 9 CALCULATE REPOSITIONED X COORDINATES

000

DX = .01*X[(KTE) N = 0 XX = ROUND(XI(KSTA),2) 2 N = N+1

Z N = N+1

XXI(N) = XX+DX*(N-1)

IF((XI(KTE)-XXI(N)).GT..OCO1) GU TU Z

KK = N

CALCULATE ACCOMPANYING Y COORDINATES

000

DO 3 I=1,KK

```
DC 3 J=KK,KTE
IF((XI(J).LT.XXI(I)).AND.(XI(J+1).GT.XXI(I))) YYI(I) =-((XXI(I)-XI
I(J))/(XI(J+1)-XI(J)))*(YI(J)-YI(J+1))+YI(J)
                                                                                                                                                       REPLACE ORIGINAL WITH RELOCATED COCRDINATES, 4M IS THE TOTAL NUMBER OF NEW COORDINATES ON THE BOCY.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE OUT BODY CCCRDINATES FOR USE ON NEXT ITERATION IF ONE
                                                                                                      IF((XI(I).LE.XXI(I)).AND.(XI(I+1).GT.XXI(I))) GO TO 6
                                                                                                                                                                                                                                                                                                                                                                                                  DEFINE THE NUMBER OF POINTS IN MAKE EXTENSION
                                                   IF(XI(J).EQ.XXI(I)) YYI(I) = YI(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (1,15) KWAKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                     KTEL = KTE+LWAKE
                                                                                                                                                                                                                                                                                                                                                                                                                                   LWAKE = IWAKE#5
                                                                                                                                                                                                                                                                                                              XI(I) = XXI(JJ)
                                                                                                                                                                                                                                                                              INNINA
                                                                                      00 4 I=1,KTE
                                                                                                                                                                                                                            I+NN = NNN
                                                                                                                                                                                                                                             MY =NN+KK
                                                                                                                                                                                                                                                                                               1+66 = 66
                                                                                                                                                                                                                                                                                                                                                 KTE = MM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                     CONTINUE
                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                            I = NN
                                                                                                                                                                                                                                                                                                                                                                    S
                                                                                                                                                                                                              9
                                                                                                                                                                                                                                                                                                                                                                                   000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       000
                                                                                                                                         0000
```

```
CALL FD3(XI(NNN),XI(NNN-1),XI(NNN),XI(NNN+1),YI(NNN-1),YI(NNN
WRITE(1,10) KTE, NOPRFS,KTE1
WRITE (1,40) (XI(1),VI(1),I=1,KTE)
IF(IWAKE.EQ.O) GO TO 13
DD 8 I=KTE,KTE1
                                                                                   DEVELOP DATA FOR CURVE FIT
                                                                                                                                                                                                               WRITE (2,10) IWAKE WRITE (2,10) JSTA,KTE
                                                                                                               XI = XI(KTEI)-XI(NNN)
                                                        XI(1) = XI(1-1)+DX
                                                                                                                                                                                                                                         FORMAT (1X, 313)
                                                                                                                                          1), YI (NNN+1), FX)
                                                                                                                                                                                                                                                                                  FURMAT (2F12.6)
                                                                                                                                                                                                                                                                     FURMAT (F12.6)
                                                                                                                                                                     YI = YITNNN)
CALL FIT
                                                                                                                                                                                                                                                         FURMAT (13)
                                                                                                                                                                                                                                                                                                   DESUG INIT
                                                                                                                                                                                                 REWIND 2
                                                                                                                                                        C = FX
                                                                                                                                                                                                                                                                                                                 RETURN
                                                                                                                                                                                                                                            2000
                                                                                                                                                                                                   13
                                                         8
                                                                      000
```

SUBROUTINE HESSPA

SUBROUTINE HESSPA WRITES OUT A HESS DATA FILE USING COORDINATES DEVELOPED BY FIT

READ (4,10) HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, IBDN WRITE(7,10) HEDR, CASE, ICARD2, ICARD3, ICARD4, KTE1, IBDN CCMMON /CODRD/ X,Y,KTE,XI,YI,KTE1,NUPRFS,KWAKE DIMENSION X(501),Y(501),XI(501),YI(501) DIMENSION HEDR(15), CASE(2)

00 1 J=1,KTE1

WRITE (7,20) XI(J),YI(J) FORMAT (15A4,2X,2A4/13/15/1X,14,15/9X,11) FORMAT (2F12.6) 101

RETURN

SUBROUTINE FIT

0000

FIT DEVELOPS A NUMERICALLY GENERATED CURNE GIVEN THE COORDINATES AND SLOPE AT TWO POINTS (AT THE T.E. THE SLOPE IS ASSUMED 0)

REAL K.M COMMON/CORFIT/ DX,Y1,C,X1,NNN CCMMON/CORD/ X,Y,KTE,XI,YI,KTE1,NOPRFS,KWAKE DIMENSION X(501),Y(501),XI(501),YI(501),XXI(500),YYI(500) M = C DELY IS THE ACTUAL Y STEP SIZE, DY IS THE INCREMENT OF DELY FOR THE NEXT ITERATION

C DELY IS THE ACTU
C THE NEXT ITERATI
C DELY = 0.
DELX = DX
DELX = DX
DY = -.05*DELX
30 DELY = DELY+DY
XPRIME = 0.
YPRIME = 0.

GENERATE Y'S FOR CURRENT ITERATION

000

MF = N+1
DO 5 I=1,MF
L = L+1
YPRIME = YPRIME+DELY*K**I
5 Y(L) = YI + YPRIME

CHECK FOR CONVERGENCE

IF UNDERSHOOT, CONTINUE

IF(ABS(Y(KTE1)).LT..00001) GC TO 20

IF OVERSHOCT, GO BACK AND USE SMALLER DY'S

IF(Y(KTE1).LT.O.) GC TC 30
DELY=DELY-DY
DY = DY*.1
GD TO 30
CCNTINUE

DG 10 L=NNN,KTE1 VI(L)=Y(L) RETURN 10 20

FUNCTION ROUND (X,N)
THIS FUNCTION ROUNDS NUMBERS TO THE DESIRED DECIMAL PLACE N
ISIGN=1
IF (X,LT,0.0) ISIGN=-1
I=ABS(X)*IO**N+0.5
RCUND=FLOAT(ISIGN*I)*IO.0**(-N) RETURN

Ç

SUBROUTINE FD3 (X,X1,X2,X3,F1,F2,F3,FX)	10807080
IMPLICIT REAL*8(A-H, 0-Z)	10807090
	10807100
SUBROUTINE FD3 IS CALLED BY SUBROUTINE DERIVS.	1C807110
	10807120
SUBROUTINE FD3 CALCULATES THE FIRST DERIVATIVE-FX-CORRESPONDING	1CB07130
TO POINT X USING 3 POINT LAGRANGIAN DIFFERENTIATION FORMULA.	10807140
	1CB07150
ASSUMES X1 .LF. X .LF. X3.	10807160
	ICB07170
A1=2.0*X-X2-X3	1CB07180
A2=2.0*X-X1-X3	1CB07190
A3=2.0*X-X1-X2	1CB07200
$01=(x_1-x_2)*(x_1-x_3)$	10807210
D2=(X2-X1)*(X2-X3)	1CB07220
D3=(x3-x1)*(x3-x2)	1CB07230
C1=A1/D1	10807240
C2=A2/D2	1C807250
C3=43/03	1CB07260
FX=C1*F1+C2*F2+C3*F3	10807270
RETURN	10807280
END	

TABLE 2.3 DATAMA EXEC

FI 03 DISK WAKE COGRES E (LRECL 80 BLKSIZE 80 RECFM F FI 04 DISK ICBL PARMDATA E (LRECL 100 BLKSIZE 80 RECFM FB HESSALI OUTPUT E (LRECL 80 BLKSIZE 80 RECFM FB HESSCP GUTPUT E (LRECL 80 BLKSIZE 80 RECFM FB HESSBLI DATA E (LRFCL 80 BLKSIZE 80 RECFM FB SUB DATA E (LRECL 100 BLKSIZE 80 RECFM FB SEPARA DATA E (LRECL 80 BLKSIZE 80 RECFM FB COORD DATA E (LRECL 80 BLKSIZE 80 RECFM FB) SUMOS DATA E (LRECL 80 BLKSIZE 83 RECFM FB SLOSAL TXTLIB FORTLIR VPIUTIL FI 12 DISK INTER DATA 9 LOAD DATAMA INCMAP ECCNTROL ALL FI # CLEAR DISK DISK DISK DISK DISK DISK DISK 90 90 10 10 FI 38 1 11 1 4

TABLE 2.5 DATAMA FORTHAN

ں ں

٠				MAI 00030
***	***	****	**	MAI00040
U				MAI 30050
ں				MA100060
U				MAI00070
J		FILE	FILE DEFINITIONS	MAI00080
()				MA I 00090
ں				MA 100100
J				MA100110
ن	LINO	(3)	WAKE CUORDINATES	MAI 00120
U	FIND	(4)	BOUNDARY LAYER CODE EXECUTION PARMETERS	MAI00130
S	TIND	(5)	POTENTIAL FLOW CODE DATA SET WITH FULL	MAI00140
ں			BGDY COGROINATE INFORMATION.	MAI00150
ں	TINO	(9)	SUB DATA (FINAL VERSION WITH WAKE POINTS)	MAI00160
J	FIND	(2)	DATA SET FOR DEVELOPING NONSEPARATING	MAI00170
ں				MA 100180
J	TIND	(8)		MA100190
ں	FIND	(6)	HESSBLI OUTPUT (FROM HESSBLI CODE)	MAI00200
U	LIND	(10)	HESSCP OUTPUT (FOR ICBLINT CODE)	MA 100210
U	LIND	(11)	ORIGINAL COORDINATES WITH AFTERBODY	MAI00220
J	TIND	(12)	DATA FUR DEVELOPING THE INVISCID FLCM	MAI 00230
ں			FIELD USING THE DISPLACED BODY	MAI00240
ی	TINO	(13)		MAI0025C
J			PROGRAM: BLOMKER.	MAI00260
J				MAI00270
J				MAI00280
C*##	*	***	计操作 医异种种 医异种氏性 经存货 经存货 经存货 经存货 经存货 医二氏征 医二氏征 医二氏征 医二氏征 医二氏征 医二氏征 医二氏征 医二氏征	MAI00290
	て ァ	XWAKE .Y	MAKE/ XWAKE, YWAKE, KTE, IIMAX, KWAKE, KTEI, X, Y, XI, YI, JSTA	MA100300
	×	LUCAT, JWAKE		MAI00310
	DIMENSION XWAK	XW AK E (20) ,	YWAKE(20), X(501), Y(501), XI(501), YI(501)	MAI00320
ں				MAI00330
ں	READ IN WAKE	COCRDI	N MAKE COCRDINATES IF USED	MA 100340

MAI00350 MAI00360 MAI00380 MAI00390 MAI00400	MA100420 MA100430 MA100446	MAI00450	MAI 00470	MA130480	MA 1 00490	MA 100500	MAI00510	MAI 30520	MAI00530	MA 100540
	WRITE									
	LON									
	00									
	FNOUGH	CBLINT DATA SETS								
	3									
	V. 0									
	ñ	į ,								
	į. u									
	0817	15								
	13	SE								
	2	DATA	0 3							
) KWAKE JWAKE AKE XWAKE(I WAKE 0.0	ê	N	0) 60 TO 3							
7 7 -	A 9	CBLI	0 10		_	_	(F12.6)			
100	FAT	1/8	NE.	JRV	ADA	(112	(F1	1131		
READ (11,30) KWAKE READ(3,10) JWAKE DO 1 I=1,JWAKE READ(3,20) XWAKE(I DC 2 J=1, JWAKE YWAKE(J) = 0.0	CALL CPDATA	OUT HESS/10	ICP.	ر د د	LRE	FURMAT	MAT	FCRMAT (۵	
	CAL	OUT	IF(CALL CURV	CAL				STOP	FNJ
- ~						0	0	30	~	

SUBROUTINE CPDATA	CPD00010
CPDATA DEVELOPS AN ON-COORDINATE CP DATA SET AND DECIDES IF	CPD00030
IE CP'S SUFFICIENTLY LCW	CPD00040
	CPD00050
COMMON /WAKE/ XWAKE, YWAKE, KTE, IIMAX, KWAKE, KTEI, X, Y, XI, YI, JSTA 1.DYDX. X10CAI.JWAKE	CP000060
DIMENSION XWAKE(201, YWAKE(20), X(501), XW(501), CP(501), F(501)	CPD00080
	CPD00090
DIMENSION Y (501), XTG(501)	CP000100
	CPD00110
READ IN THE SEPARATION DATA	CPD00120
	CPD00130
(7,20)	CPD00140
17,20	CPD00150
LWAKE = IWAKE*5	CP000160
-	CPD00170
KTE1 = KTE+LWAKE	CPD00180
	CPD00190
READ IN OFF-COURDINATE CP VALUES	CPD00200
	CPD00210
READ(9,10) (XW(I), XTO(I), F(I), I=1,KTEI)	CP000220
KMINUS = KTE1-1	CPD00230
(P(1) = F(1)	CPD000240
	CPD00250
ITERPOLATE OFF-COORDINATE CP'S TO ON-COORDINATE CP'S	CPD00260
	CPD00270
×	CPD00280
"	CP000290
H	CP000300
X	CP000310
UEL = DELAZ/DELAI	CP 000 320

CPD00640

UU C

000

00000

```
CP000630
                                           CP S AND LOCATION FOR USE IN GIVING INITCPD00350 ALSO DETERMINE IF CP S GO TO HIGH IN CPD00360
                                                                                                                                       CPD00390
                                                                                                                                                                                  CPD00410
                                                                                                                                                                                                       IF (((CP(I-1).5T.CP(I)).AND.(CP(I+1).GT.CP(I)).AND.(CP(I)).LE.0.1))CP000420
                                                                                                                                                                                                                                                       CPD00440
                                                                                                                                                                                                                                                                                                     CP030460
                                                                                                                                                                                                                                                                                                                          CPD00470
                                                                                                                                                                                                                                                                                                                                               CPD00480
                                                                                                                                                                                                                                                                                                                                                                     CPD30490
                                                                                                                                                                                                                                                                                                                                                                                             CPD00500
                                                                                                                                                                                                                                                                                                                                                                                                                  CPD00510
                                                                                                                                                                                                                                                                                                                                                                                                                                        CPD00520
                                                                                                                                                                                                                                                                                                                                                                                                                                                               CPD30530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CPD00540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CPD00550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CP000560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CPD00570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CP000580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CPD00590
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CPD00600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CPD00610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CP000620
CPD00330
                       CPD00340
                                                                                          CPD30370
                                                                                                                 CPD00380
                                                                                                                                                                                                                                 CPD00430
                                                                                                                                                                                                                                                                            CPD00450
                                                                                                                                                              CPD00400
                                                                                                                                                                                                                                                                                                                       IF ( ( ( CP ( I ) . GT . 0 . ) . AND . ( CP ( I - I ) . LT . 0 . ) ) . GK . ( ( CP ( I ) . LT . 0 . ) . AND .
                                                                                                                                                                                                                                                    IF ( ( ( CP( I ) . GT . 0 . ) . AND . ( CP( I - I ) . LT . 0 . ) ) . CK . ( ( CP( I ) . LT . 0 . ) . AND .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PUT MAKE POINTS INTO ACTUAL COORDINATE ARRAYS
                                                                                                                                                                                                                                                                                              IF ((INFL.EQ.2).AND.(CP(I).GE.0.2)) ICP = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                        FIND WHERE WAKE STARTS AND FAIRING ENDS
CP(KTE1) = (1.+DEL)*F(KTE1)-DEL*F(KMINUS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF (XW(KTE1).LT.XWAKE(1)) GO TO
                                                                                                                                                                                                                                                                          (CP(I-1).GT.0.1)) INFL = INFL+1
                                                                                                                                                                                                                                                                                                                                             I(CP(I-1).GT.0.1)) JSTA = I
                                         FIND LAST, MOST NEGATIVE
                                                                 INITIAL WAKE PRESSURES.
REGION OF TRAILING EDGE
                                                                                                                                                                                                                                                                                                                                                                                            IF (KWAKE. EQ. 0) GO TO 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             I IMAX = KTE 1+JWAKE-11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DI: 8 I=1, JWAKE
                                                                                                                                                                                 00 2 I= 2,KTE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     JTE = KTE1+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ICCUNT = II
                                                                                                                                                                                                                                 I I CPAR = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CCNT INUE
                                                                                                                                                                                                                                                                                                                                                                    CCNTINUE
                                                                                                                                      INFL = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GU TO 6
                                                                                                                                                           0 = d0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           I = 11 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          æ
```

CPD00650 CPD00660 CPD00670 CPD00680 CPD00690		CPD00750 CPD00760 CPD00770	CP000780 CP000790 CP000800 CP000810	CP000830 CP000840 CP000850
	POINTS			
	WAKE			
	H H			
	SET			
	DATA			
	9			
DC 3 I=JTE, IIMAX ICDUNT = ICOUNT+1 XW(I) = XWAKE(ICOUNT) 3 CP(I) = CP(ICPAR) 6 DC 4 I=1, IIMAX	WRITE OUT THE FULL ON-COORDINATE CP DATA SET WITH WAKE POINTS ANY 4 WRITE(10,10) XW(1), CP(1) IWAKE = IWAKE+1	REWIND 7 WRITE OUT THE SEPARATION DATA	WRITE (7,20) IWAKE WRITE (7,20) JSTA,KTE WRITE (7,30) ICP	10 FURMAT (3F12.6) 20 FURMAT (1X,313) 30 FURMAT (13) ENO
				32

SUBROUT INE CURV		CUR00010
		CUR00020
	DATA FCR USE IN THE INVISCID FLOW	CUR00030
THE DEVELOPMENT, INCLUDING FITTING	S A STRAIGHT TAPERED TAIL TO	CUR00040
יור מעוסו של סכסוי		CUR00060
CCMMON /WAKE/XWAKE, YWAKE, KTE, IIMAX, KWAKE, KTE1, X, Y, XI, YI, JSTA	AKE, KTE1, X, Y, XI, YI, JSTA	CUR00070
C		CUR00080
DIMENSION X(501), Y(501), XI(501), YI(501), XWAKE(20), YWAKE(20)	1) . XWAKE(20) . YWAKE(20)	CUR00090
DATA IHESSI/1/		CUR00100
		CUR00110
READ IN ORIGINAL BODY CCORDINATES		CUR30120
		CUR00130
READ (11,10) KTEE, NCPRFS, KTEA		CUR00140
READ (11,20) (XI(I), YI(I), I=1, KTEE)		CUR00150
0 = N		CUR00160
I JSTA = JSTA-N		CUR 00170
DX = (XI(KTE1)-XI(JSTA))/NOPRFS		CUR00180
N = N+1		CUR00190
DYDX = YI(JSTA)/(XI(JSTA)-XI(KTE1))		CUR00200
DY = ABS(DYDX*DX)		CUR00210
IF(DY.LT0020) GG TG 1		CUR00220
× = _		CUR00230
(12		CUR00240
WRITE (13,30) KTE1		
FURMAT (CUR00250
T (11X		CUR00260
FURMAT (CUR00270
RETURN		CUR00280
END		

	KEAU0050 (.YI.JSTA, REA00060 REA00070 (20), HEDR(15REA00080 YI(501) REA00090 REA00100		KONSET, KTE READO200 KONSET, KTE1 READO220 READO220 READO230 READO240 READO250 READO250 READO270 READO270 READO270 READO270 READO270 READO270 READO270 READO270
READAT EADS AND WRITES GUT THE HESS/ICBLINT DATA SETS IF ITERATION WAS SUCCESSFUL	KEAUUUSU KEZ XWAKE,YWAKE,KTE,IIMAX,KWAKE,KTE1,X,Y,XI,YI,JSTA, REAOUUUSU T,JWAKE X(501), Y(501), XSTA(501), XWAKE(20), YWAKE(20), HEDR(15REAOUOBU 8), IPR(101), IPRFL(101), CASE(2), XI(501), YI(501) REAOU100 AHLAST/	SS HESS RD3.ICARD4, NN.IB RD3.ICARD4, KTEI,	SLAW, KTRANS, KTRNSN, SLAW, KTRANS, KTRNSN, OC. INC. IPRINT, IWT IPRINT, IWT R R PSTAG, SCF, RNOSE PSTAG, SCF, RNOSE ADTEST
SUBROUTINE READAT READAT READS AND WI	WA NOON	(6,30) (6,40) (6,40)	OSE, TITI: FF KEE ADETA ADETA HICKT FS: R

```
REA00560
                                                                                                                                                                                                                                                                                                                                                                   REA00570
                                                                                                                                                     RE A00430
                                                                                                                                                                                                                REA00470
                                                                                                                                                                                                                                             REA00490
                                                                                                                                                                                                                                                                          REA00510
                                                                                                                                                                                                                                                                                         REA00520
                                                                                                                                                                                                                                                                                                       REA00530
                                                                                                                                                                                                                                                                                                                       REA00540
                                                                                                                                                                                                                                                                                                                                     REA00550
                                                                                                                                                                                                                                                                                                                                                                                REA00580
                                                                                                                                                                                                                                                                                                                                                                                                9FA00590
                                                                                                                                                                                                                                                                                                                                                                                                               REA30600
                                                                                                                                                                                                                                                                                                                                                                                                                               REA00610
                                                                                                                                                                                                                                                                                                                                                                                                                                           RFA00620
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         REA00640
                REA00340
                                              REA00360
                                                           REA00370
                                                                          REA00380
                                                                                          REA00390
                                                                                                        REA00400
                                                                                                                                      REA00420
                                                                                                                                                                   REA00440
                                                                                                                                                                                  REA30450
                                                                                                                                                                                                 REA00460
                                                                                                                                                                                                                              REA00480
                                                                                                                                                                                                                                                            REA00500
 REA00330
                                REA00350
                                                                                                                        REA00410
XF1, XF2, CONVRG, ADTEST
DX, CRNI, XKETA, FTAINF, REFLEN
                             DX, CRNI, XKETA, ETAINF, REFLEN
                                                                                          WRITE(6,35) DXMAX, XLUCAT, DYD, JSTA, NOPRFS
                                                                                                                                                                                                                                                                                                                                                   READ (8,100) (XSTA(1), I=1,KTF1)
                                                                                                                                                                                                                                                                                                                                    WRITE(6,80) (IPRFL(J),J=1,IPFL)
                                                                                                                                                                                                                                                                                                                      WPITE(6,80) (IPR(J),J=1,IPRINT)
                                              XJFAC, XKFAC, TVC
                                                          XJFAC, XKFAC, TVC
                                                                                                        IF (IIMAX.GT.101) GC TO 4
                                                                                                                                                                                                                                                                         IF ( J.LE.K) | PR(J) = 2*J-1
                                                                                                                                                                                                                                                                                                                                                                                READ (5,30) X(1), Y(1)
IF(KWAKE.EQ.0) GU TC 3
                                                                                                                                                                                                                                                                                                                                                                                                                                           = KPLUS, IIMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X(I) = XWAKE(ICOUNT)
                                                                                                                                                                                                                                                           IPR(J) = IPR(J-1)+1
                                                                           DXMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                          = ICOUNT+1
                                                                                                                                                                                                                                                                                        [PKFL(J) = 1PF.(J)
                                                                                                                                                                                                                                                                                                                                                                                                                              ICGUNT = JWAKE
                                                                                                                        DG 5 J=1, II MAX
                                                                                                                                                                                                                                                                                                                                                                                                                KPLUS = KTE1+1
                                                                                                                                                                                                                                                                                                                                                                   I=1,KTE1
                                                                                                                                                                                                                             K = IIMAX-101
                                                                                                                                                                                                                                             DC 7 J=1,101
                                                                                                                                                                                                 IPRINT = 101
 WRITE (6,30)
                                             READ (4,70)
                                                           WRITE (6,70)
                READ (4,30)
                              WRITE (6,30)
                                                                          READ (4,30)
                                                                                                                                                     IPRFL(J) =
                                                                                                                                                                                                                IPFL = 101
                                                                                                                                      1 PR(J) = 1
                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                   CONTINUE
                                                                                                                                                                                 GC TO 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                           I COUNT
                                                                                                                                                                                                                                                                                                                                                                    2 00
                                                                                                                                                                   5
                                                                                                                                                                                                                                                                                                                        9
```

REA0065C	REA00660	REA00670	REA00680	REA00690	REA00700	REA00710	REA00720	REA00730	REA00740	REA00750	REA00760	REA00770	REA00780	REA00790	REA00800	REA00810	REA00820	RFA00830	REA00840	REA00850	
= YWAKE(I)	1) = XSTA(1-1)+(X(1)-X(1-1))	= IIWAX-1	(6,110) (X(1),Y(1),XSTA(1),ZERO, I=1, JJMAX)	(6,90) X(IIMAX), Y(IIMAX), XSTA(IIMAX), ZERO, LSTC	(13,120) KTE1	r (6(7x,131)	I (15A4,2X,2A4/13/15/1X,14,15/9X,11)	[(F12.6, E12.6, 4F12.6)	r (6F12.6)	r (3F12,6,213)	r (18A4)	r (8110)	[(4(7X,13))	T (2F12.6,4X,A3)	[(1415)	r (4F12.6, A4)	[(12X,F12.6)	r (4F12.6)	[(2x, 13)		
= (11)	XSTA(1	JUMAX	WRITE	WRITE	WRITE	FURMAT	FORMAT	FURMAT	FORMAT	FURMAT	FORMAT	FORMAT	FORMAT	FORMAT	FURMAT	FURMAT	FURMAT	FORMAT	FORMAT	RETURN	END
	-					10		52	30	35				10	80	06	100	110	120		

PRIOR IDLE DEST LOCAL

BLINT EXEC TABLE 3.1

CP MSG SUB STARTING BLINT
CP LINK GODD 192 192 RF ALL
ACCESS 192 D
CP LINK SUB 192 194 RF ALL

ACCESS 194 C CP TAS DEV PRT ACCT 51841 LONGKEY EVETS

EITER = E1

ECCUNT = 1

&LODP -ENDLOUP &ITER EXEC BLAYER SUB DATA B &IF &RETCODE NE O &EXIT 1 EXEC HESSBLI BCDYCOCR DATA

8

FXEC CREPLOTI

EXFC CREPLUTZ

EIF ERFTCODE NE O SEXIT 2

EXEC BLOMKER DATAMAKER DATA

8

&IF ERETCODE NE O EEXIT 3 &COUNT = &CCUNT + 1

EIF ERETCODE NE O SEXIT EXEC CHITER &COUNT

ECONTINUE -ENDL POP

EXEC BLNTPLT1 SITER EXEC BLNTPL12 SITER

TABLE 3.2 HESSBLI EXEC

FI 06 DISK HESSA CUTPUT A (RECFM FA BLKSIZE 133 EIF ERETCODE EQ O EGCTG -NOTBAT GLOBAL TXTLIB FORTLIE FI 5 DISK &1 &2 &3 TESTBAT DISK FILE FT09 FT04 FT03 DISK FILE FT08 FI 1 DISK FILE FT01 FI 2 DISK FILE FT02 DISK FILE DISK FILE FI 06 PRINTER ECONTRCL ALL EGOTO -REST FI * CLEAR **ECONTINUE ECONTINUE** -NOTBAT -REST

16 DISK FILE FT16 A
17 DISK HESSBLI GUTPUT E (LRECL 80 BLKSIZE 80 RECFM FB
18 DISK HESSCP OUTPUT A (LRECL 80 BLKSIZE 80 RECFM FB

FILE FT12 FILE FT13 FILE FT15

01SK

DISK

DISK

FIF

FILE FT11

DISK

FI

10 DISK FILE FT10

FI 19 DISK SUMUS DATA E (LRECL 80 BLKSIZE 80 RECFM FB FI 21 DISK STREAM DATA E (RECFM FB BLKSIZE 87 LRECL 87 DISP MCD LOAD HESSBLI HESSA (CLEAP NOMAP SEXIT SRETCODE START

BLOMKER EXEC TABLE 3.3 FI 17 DISK HESSBLI CUTPUT E (LRECL 80 BLKSIZE 80 RECFM FB F1 18 DISK HESSCP OUTPUT B (LRECL 80 BLKSIZE 80 RECFM FB

FI 19 DISK &1 &2 &3

LOAD BLOMKER

SEXIT SRETCODE

BLOMKER FURTRAN TABLE 3.5 DIMENSION CP(401), XW(401), X (401), F (401)

100 FORMAT (3F12.6) 110 FORMAT (2F12.6)

120 FURMAT (2X, 13)

81000020 BLD00010 BLD00030

	READ(19,120) IBDYPT	
	IPTM1=180YPT-1	
10	10 READ (17,100) (XW(I),X(I),F(I),I=1,IBDYPT)	
	CP(1)=f(1)	
	DO 20 I=2, IPTM1	
50	20 CP([] = (F([)+F([+]))/2.0	
	DELX1=X(IBOYPT)-X(IPTM1)	
	DELX2=XW(180YPT)-X(180YPT)	
	DEL=DELX2/DELX1	
	CP(IBDYPT)=(1+DEL)*F(IBDYPT)-CEL*F(IPTM1)	
	WRITE (18,110) (XW(I),CP(I),I=1,IB0YPT)	
	STOP	
	END	

BLD00050 BLD00060 BLD00070 BLD00080 BLD00100 BLD00110 BLD00130 BLD00130 BLD00150

TABLE 3.6 BLAYER EXEC

```
FI 03 DISK BUDYCCUR DATA B ( LRECL 80 BLKSIZE 80 RECFM FB FI 18 DISK HESSCP CUTPUT B (LRECL 80 BLKSIZE 80 RECFM FB FI 19 DISK SUMDS DATA B (LRECL 80 BLKSIZE 80 RECFM FB FI 20 DISK RESTART DATA B (LRECL 80 BLKSIZE 800 FT 05 DISK & 1 & 2 & 3 ( LRECL 80 BLKSIZE 80 RECFM FB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FI 22 DISK VGRI DATA B (LRECL 132 BLKSIZE 13230 RECFM FB FI 07 DISK APLNS VELDATA E (LRECL 80 BLKSIZE 80 RECFM FB
                                                                                                                                                                                                                                                                                                                                                                                 BLAYER DUTPUT E I RECFM FA BLKS12E 133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RESTAR READIN VELDAT ICBLINT (CLEAR NOMAP
                                                                                                                                                                                                       SIF ERETCODE NE O SEXIT SRETCODE
                                                                                                                                                                                                                                                               SIF ERETCODE EQ O EGCTO -NCTBAT
TXTLIB FORTLIB VPIUTIL FI * CLEAR
                                                                                                                                                                                                                                                                                           FI 06 PRINTER
                                                                                                                                                                                                                                                                                                                        EGOTO -REST
                                                                                                                                                                                                                                                                                                                                                                                FI 06 DISK
                                                                                                                                                                                                                                                                                                                                                                                                                                        FI 21 TERM
                                                                                                                                                                                                                                                                                                                                                                                                             SCONTINUE
                                                                                                                                                                                                                                                                                                                                                    ECONTINUE
                                                                                                                                                                                                                                   TESTBAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LOAD
                                                                                                                                                                                                                                                                                                                                                                                                             -REST
                                                                                                                                                                                                                                                                                                                                                     -NOTBAT
   GLOBAL
```

ERETCODE

TABLE 3.7 ICBLINT FORTRAN

MAIN PROGRAM PROGRAM PROGRAM ICBL	MAH	10
NGVEMBER 1975	MAIN	30
	MAIN	40
	MAIN	20
A PRUGRAM FUR 2-D AND AXISYMMETRIC INCOMPRESSIBLE TRANSITIONAL ANDMAIN	ANDMAIN	9
-	SE MAIN	70
CURVATURE	MAIN	80
	MAIN	90
8₩	MAIN	100
	NAM	110
D.L. DWOYER, C.H. LEWIS AND E.C. ANDERSON	MAIN	120
AEROSPACE AND CCEAN ENGINEERING DEPT.	MAIN	130
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY	NIVE	140
BLACKSBURG, VA. 24061	MAIN	150
PHONE - (703)-552-6126	MAIN	160
	MAIN	170
	MAIN	180
MAIN ROUTINE	MAIN	190
IMPLICIT REAL #8(A-H,0-1)	MAIN	200
	MAIN	210
MAIN CALLS SUBROUTINES ADDETA, CHANGE, CCEF, DELTAS, DERIVS,	MAIN	220
SEOM. INIT. MOMENT, DREITE, READIN, WRITE! AND WRITE?	MATA	220

240	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	450	430	440	450	460	470	480	690	500	510	520	530	240	250
MAIN	MAIN	MAIN	MAIN	101) MAIN	I) . FMAIN	VC(1MAIN	MAIN	RFLIMAIN	MAIN	MAIN	MAIN	MAIN	MAIN	MAIN	NAM	FOLDMAIN	MAIN	NITHAIN	MAIN	SNILMAIN	MAIN	MAIN	MAIN	NIAM	MAIN	TA, MAIN	MAIN	MAIN	MAL	MAIN
PROGRAM AND				101), A4(1,FIN(10)	CP(101),	(101)	R(101), 1PF								XI. XI2, X		ITTI . NITZ		STOP, KTRN						DELST, DE		1011 . RW		
				(101), A3	11),F1(10)	CN(101), F	T(101), Y	(1501), IPE						2,UES0		EN SCF , X		IE, IIMAX, IM, IPRNT, I STOP, KL, KVSLAM, NIT, NITI, NITZ, NITMAIN		II, IPFL, IPRINT, JJ, K, KACETA, KEND, KEP, KSTOP, KTRNSN, LMAIN						FREY, DEL,		. J . RORW SO		
1061C IN				1(101), A2	, EPSPL(10	FC(101), F	011) , Y CVT+	A(501), ZA		CUNVRG, CCRNI, CRNI, DIF, CIFF, NC				BETA, DUE US, PE, PESO, PP, UE, UEROZ, UESO		PNC , REFL		CP , KL , KVS		KACETA, KE						IF, CFRES, C		. RORW(101		
E FLOW OF				BP(101), A	EPS0(101)	2NN (101).	VCVDEL (1	(501), XST		I,CRNI, DI		ZNI,VW		PE, PESO, P	HOF S, UF S	CLOXO, XAM		I PRNT, I ST		INT, JJ, K,		NF, XKETA	EF	K2		, CFE, CFIN	REX, THET	RTVC(101)		
CL OF THE				(101), AO	N2(102),	N(101), F.	11011) Y (1	5011, UEZ		IVRG, CCRN	CF1, SUM	AIB, E1, FF, F2N1, VW		A, DUE OS,	PFS, REINF, RHOFS, UFS	X OXI OX		IMAX, IM.		IPFL, IPR		IEST, ETAI	HOREF, UR	VO.XKI.X	301)	IR , CF BREX	, RETHET,	. BUDANG.	w.	
VIDES CONTROL OF THE FLOW OF LOGIC IN THE	CULATIONS.			ARRAYI/ A08(101), A0BP(101), A1(101), A2(101), A3(101), A4(101) MAIN	DN(102)	F2 (101), F2	02), XNZ(102), Y(101), YCVDEL(101), YCVTHT(101), YY(101) MAIN	ARRAY2/ P2(501), UE2(501), XSTA(501), 2A(501), IPR(101), IPRFL(MAIN	501)	CNVERG/ CUN	COEFF3/ CF1	COMMLL/ A16	CFPR/ CF		FRSTRM/ PFS	GEUME/ DS,DX,DX1,DXMAX,DXGLD,PNC,REFLEN,SCF,X,XI,XIZ,XIGLDMAIN		INTGR/ IE,		ER/	TOT	NMLCRD/ ADTEST, ETAINF, XKETA	REF/ PREF, RHOREF, UREF	VSCSTY/ EPSVO, XKI, XK2	DIFP/ DIFM(301)	CREFF/ CFBAR, CFBREX, CFE, CFINF, CFRES, CFREY, DEL, DEL ST, DELTA, MAIN	STARX, HAFCF, RETHET, REX, THET	TVCURV/ TVC, BODANG, RTVC(101), RORW(101), RORWSQ(101), RW	SPTVC/ RNOSE	MAK/ XKFAC
MAIN PROV	CAL				1, CHI (101)		301), XN(10	CC-4MON /A	11011,8215	COMMON /C	CCMMON /C	COMMON /C	COANON /C	CUMMON /E	COMMON /F		FA	-	13,NOSE	COMMON IN	Z	COMMON IN	COMMON /R	COMMON /V	CUM.40N /D	-	0	-	•	COMMON /

COMMON /TE/ KTE, KTSTTE	MAIN	260	
	MAIN		
COMMON /STRTUP/ IREAD, IRSRT, KK	MAIN		
	MAIN	290	
	MAIN	009	
DATA YES/3HYES/	MAIN		
	MAIN	620	
	MAIN	630	
ABS(X)=DABS(X)	MAIN		
SQRT(X)=DSQRT(X)	MAIN	920	
CALL ERRSET(208,260,2)	MAIN		
	MAIN	670	
READ INPUT DATA; EXECUTION PARAM	MAIN		
RESTART TAPE IF ONE.	MAIN	069	
	MAIN		
CALL READIN	MAIN		
IF (IREAD. EQ. 1) GO TO 70	MAIN		
∀ ≡0	MAIN		
CALL INIT	MAIN		
EPSVD=1./SGRT(REINF)	MAIN	150	
CALL WRITE1	MAIN		
CALL PRFILE	MAIN	1	
XIOLD=XI	MAIN		
XCLD=X	MAIN	190	
Y(1)=0.0	MAIN	800	
YY(1)=0.0	MAIN		
RW=1.00	MAIN		
IF (XJFAC.GT.1.0-05.0R.XKFAC.GT.1.0-05) RW=R0	MAIN	830	
RTVC(11)=RW	MAIN		
RORW(1)=1.000	MAIN		
	MAIN		
IF (NOSE.EQ.1) RORW(1)=1.00/DUEDS	MAIN	870	

00 00 00000

	IF (NOSE.EQ.2) RGRW(1)=RW/UE				MAIN 8	880
10	CONTINUE				MAIN 8	068
ں					O NIAM	006
ں	GENERATE CURVATURE CONSTANTS FOR	FOR DIFFERENT CASES;	CASES;	WAKE,	AXISYMETRIMAIN 9	910
v	ECT.				WAIN 9	920
J					O NIAM	930
	RORMSQ(1)=RCRW(1)++2				MAIN 9	046
	IF (NOSE.EQ.1) GC TG 30				9 NIAE	056
ں					9 NAIN 9	096
J	SHARP NOSE CASE				9 NIAM	016
٥					O NIAM	086
	RO=RW				9 NIAM	066
	RDD=RW				MAINIOOO	000
	R000=R0				MAINIO	010
ں					MAIN1020	020
J	WAKE CASE				MAINIO	030
ں					MAINIO	040
	IF (XKFAC.GT.1.D-06) RDDU=UE				MAINIO	020
	RT=1.00				MAINIO	090
	2=				MAINIO	010
	Y(N)= SQRT (X 12) * XN(N) /(UE * R H)				MAINIO	080
50	CONTINUE				MAINIO	060
	60 10 50				MAIN1100	100
30	CONTINUE				MAINII	110
ی					MAINII	120
J	BLUNT NOSE CASE				MAINIL	130
v					MAINII	140
	RD=RNCSE				MAINIISO	150
	RDD=1.00				MAIN1160	160
	R JOD=RNGSE				MAINIITO	170
U					MAIN1180	180
د	MAKE CASE				MAIN1190	190

J		MAIN1200
	IF (XKFAC.GT.1.0-06) RODD=DUEDS	MAIN1210
	RT=0.00	MAIN1220
	00 40 N=2,1E	MAIN1230
	Y(N)=XN(N)*DUEDS**(XKFAC500)/DSQRT(XJFAC+XKFAC+1.00)	MAIN1240
40	CONTINUE	MAIN1250
20	CONTINUE	MAIN1260
	AN3=BODANG	MAIN1270
	CSGRW=1.DO	MAIN1280
	IF (RW.GT.1.D-06) CSUFN=DCCS(ANG)/RW	MAIN1290
J		MAIN1300
J	FCP NO TRANSVERSE CURVATURE CASE	MAINISIO
J		MAIN1320
	DU 60 N=2,1E	MAIN1330
	PCRA(N)=RCRW(1)	MAIN1340
	RUZWSQ(N)=RORWSQ(1)	MAIN1350
	4	MAIN1360
	YY(V)=Y(V)*EPSVD	MAIN1370
	IF (TVC.NE.YES) GO TO 60	MAIN1380
J		MAIN1390
ں	FOR TRANSVERSE CURVATURE CASES	MAIN1400
U		MAIN1410
	YY (N) = (-1.00+5@RT(1.00+2.00*EPSV0*Y(N)*CSCRW))/CSORW	MAIN1420
	POJM=RO+RDD*YY(N)*CSORW	MAIN1430
	RTVC(N)=RT*RDUM	MAIN1440
	RCRW(N)=RDUM/RDUD	MAIN1450
	PORMSO(N)=RURW(N)++2	MAIN1460
	Y(N)=YY(N)/EPSVU	MAIN1470
69	CONTINUE	MAIN1480
ں		MAIN1490
J	BEGIN MARCHING INTEGRATION	MAIN1500
v		MAINISIO

MAIN1520 MAIN1530 MAIN1550 MAIN1560 MAIN1560 MAIN1580	MAINI650 MAINI640 MAINI640 MAINI650 MAINI660 MAINI660 MAINI660	MAIN1750 MAIN1710 MAIN1720 MAIN1730 MAIN1750	MAIN1780 MAIN1780 MAIN1800 MAIN1810 MAIN1820
KK•KEND 00 00	CURVATURE DATA FCR RESTARTED EXECUTION -D CASE	.GT.1.D-05.CR.XKFAC.GT.1.D-05) RW=R0 .D0 =1.D0 EQ.1.AND.K.EQ.1) GO TO 110 .LT.1.D-05) GO TC 90	E, WAKE CASES W/UE =RORW(1)**2 2,1E
KK=1 DC 270 K=KK,1 IREAD=0 F1(1)=0.00 F2(1)=0.00 FC(1)=0.00 CONTINUE	RATE RAL 2 AKE	IF (XJFAC.GT.) RTVC(1)=RW RORW(1)=1.DO RCRWSQ(1)=1.DO IF (NOSE.EQ.1.) IF (XKFAC.LT.)	SHARP NUSE, WIRELDENKUE RORNSQ(1) = RORN CONTINUE DG 100 N=2, IE
68 68			, o o o o o

MAIN1840 MAIN1850 MAIN1860 MAIN1880 MAIN1990 MAIN1910 MAIN1910	MAIN1950 MAIN1950 MAIN1960 MAIN1970 MAIN1980 MAIN1990	MAIN2020 MAIN2030 MAIN2040 MAIN2050 MAIN2050	MAIN2100 MAIN2110 MAIN2120 MAIN2130 MAIN2140
			E CASES
R00=1.03			BLUNT NOSE, WAKE JFAC+XKFAC+1.00)
	120		UNSTRETCHED CCORDINATES FOR BLUNT NOSE, WAKE , IE *DUEDS**(XKFAC500)/DSQRT(XJFAC+XKFAC+1.00)
)*PNC .GT.1.D-06) RDCD=UE .GT.1.D-06.AND.RW.LT.1.D-06)	ASE 1.D-06) GC TC	F. WAKE CASE DO/DUEDS RORW(1)**2	UNSTRETCHED CCORD • IE • DUEDS** (XKFAC5
Y(N)=XN(N)*PNC CCNTINUE RDD=RW RDG=RW RDGD=RD IF (XKFAC.GT.1 IF (XKFAC.GT.1 RT=1.DO GC TU 140 CCNTINUE	PLUNT NOSE CASE RD=RNDSE RDD=1.DO RDDD=RD IF (XKFAC.LT.1.D-06) GC	BLUNT NCSE, WAKE C. RODD=DUFDS RORW(1)=1.DO/DUEDS RERWSQ(1)=RORW(1)* CCNTINUE RT=0.DO	CALCULATE UNS DC 130 N=2, IE Y(N)=XN(N)*DU CGNTINUE CGNTINUE
011	u	0 0 1 1 0 0	C C 130

MAIN2780

CALL DELTAS

INRTH=0

```
MAIN2680
                                                                                                                                                                                                                                                                                                                                                             MAIN2690
                                                                                                                                                                                                                                                                                                                                                                              MA I N2 700
                                                                                                                                                                                                                                                                                                                                                                                               MAIN2710
                                                                                                                                                                                                                                                                                                                                                                                                               MAIN2720
                                                                                                                                                                                                                                                                                                                                                                                                                               MAI N2 730
                                                                                                                                                                                                                                                                                                                                                                                                                                                MAIN2740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MAIN2770
                                                                                   MAIN2530
                                                                                                                    MAIN2550
                                                                                                                                                                      MAIN2580
                                                                                                                                                                                                                                                          MAIN2630
                                                                                                                                                                                                                                                                          MAIN2640
                                                                                                                                                                                                                                                                                           MAIN2650
                                                                                                                                                                                                                                                                                                          MAIN2660
                                                                                                                                                                                                                                                                                                                            MAIN2670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MAIN2750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MAIN2760
                4AI N2490
                                                 MAIN2510
                                                                                                   MAIN2540
                                                                                                                                    MA IN2560
                                                                                                                                                     MAIN2570
                                                                                                                                                                                       MAIN2590
                                                                                                                                                                                                       MAIN2600
                                                                                                                                                                                                                        MAIN2610
                                                                                                                                                                                                                                         MAIN2620
                                  MAIN2500
                                                                  MAIN2520
                                                                                                                                                                                                                                                                                                                                                                                                             IF TOO MANY ITERATIONS AT X, GO BACK TO PREVIOUS X AND CUT DX
                                                                                                                                                                                                                                                                                                                                                           F (ABS(1.-X/XSTA(IPRIIM)).LE.1.E-6) II=II-1
                                                                                                                                                                                                                                                                                                                                          (XSTALIPRIIM).EG.C.ODD) GD TG 200
                                                                                                                                                                                                                                                                                                         ARITE (5,320) F2N(1), F2N1, DIF
                                                                                                                                                                                                                                                                        IF (DIF.LE.CONVRG) GO TO 210
                IF (PNC.LT.1.0E-8) GC TG 190
A18=CRN1*F2N(1)+CCRN1*F1N(1)
                                                                                                                                                                                                                      F (1STOP.GT.100) GC TO 290
                                                                                                  WRITE (6, 300) CF, UE, A1B, PNC
                                                                                                                                                                                                                                       IF (K.EQ.1) GO TO 210
IF (NIT.LT.NIT3) GC TO 210
                                                                 IF (RW.LT.1.D-08) CF=0.D0
                                                                                IF (CF.GE.0.0) GO TC 18C
                                                                                                                                                                                                                                                                                          WRITE (6,310) NIT, DX, X
                                                                                                                                                                                                                                                                                                                                                                                                                              IN HALF, AND CONTINUE
                                                CF=2. DO#UE *A18/PNC
                                                                                                                                                                                                                                                                                                                           IPRIIM=IPR(II-1)
                                                                                                                                                                                     NITTOT=NITTOT+1
                                                                                                                                                                                                      ISTUP=ISTCP+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                              X=X0L0+0X/2.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DX=DX/2.0
                                                                                                                                                                      NIT=NIT+1
                                                                                                                   CF=CFOLD
                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
                                 CFULD=CF
                                                                                                                                                     CCNTINUE
                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NIT=0
                                                                                                                                    190
```

210	GC TO 80 CCNTINUE	MAIN2800 MAIN2810
,	CHECK FOR CONVERGENCE AND NUMBER OF ITERATIONS TO CONVERGENCE.	MAIN2830
	IF (NIT-LT-2) GO TO 160	MAIN2850
	IF (DIF.GT.CONVRG) GO TO 160	MAIN2860
	ABST=ABS(F2(IE)-F2(IE-4))	MAIN2870
	IF (KADETA.EQ.0) GO TC 240	MAIN2880
	IF (ABST.LT.ADTEST) GO TO 220	MAIN2890
	SUBTST=1.000	MA IN2900
	GC TO 230	MAIN2910
220	IF (ABST.GT.ADTEST/100.CDO) GC TO 240	MAIN2920
	SUBTST=2.000	MAIN2930
v		MAIN2940
S	IF MEEDED, ADJUST THE ETA GRID	MAIN2950
u		MAIN2960
230	CALL ADDETA (SUBTST)	MAIN2970
	60 10 80	MAIN2980
240	CONTINUE	MAIN2990
J		MAIN3000
J	CALCULATE THE BOUNDARY LAYER QUANTITIES	MAIN3010
J		MAIN3020
	CALL COEF	MAIN3030
	KRITE2=1	MAIN3040
v		MAIN3050
u	WRITE OUT THE APLNS PRCFILE DATA IF AT UPSTREAM BOUNDARY	MAIN3060
J	**	MAIN3070
ں		MAIN3080
	CALL VELDAT	MAIN3090
		MAIN3100
U		MAINSILO

MAIN3120 MAIN3130	MAIN3140	MAIN3150	MAIN3160	MAIN3170	MAIN3180	MAIN3190	MAIN3200	MAIN3210	MAIN3220	MAIN3230	MAIN3240	MAIN3250	MAIN3260	MAIN3270	MAIN3280	MAIN3290	MAIN3300	MAIN3310	MAIN3320	MAIN3330	MAIN3340	MAIN3350	MAIN3360	MAIN3370	MA IN3380	MAIN3390	MAIN3400	MAIN3410	MAIN3420	MAIN3430
SAVE CURRENT VALUES AND SCLUTIONS FOR USE IN NEXT ITERATION	X=GTOX	XIOLO=XI	DXICLO=0X	CALL CHANGE	DC 250 N=1, IE	F1(N)=F2(N)	FIN(N)=F2N(N)		CONTINUE		RESET COUNTERS		O=LIN	1ST0P=0	IF (KSTOP.EQ.1) GC TO 260		FIND TRANSFORMED COCRDINATES OF NEX		CALL DELTAS	UER02=UE	IF (XJFAC.GT.1.D-04) UFR02=UE*R0**2	IF (XKFAC.GT.1.D-04) UER02=UE**3	CF1=2.00*UE*A18/PNC*EPSVU*DCDS(80DANG)			IF (KSTUP, EQ. 0) GU TO 270	WRITE (6,330)	WRITE (6,330)	GC TO 280	
U U									250	ں	v	U				ں	J	v						260						270

WRITE (6,340) CONTINUE STOP WRITE (6,350) STUP FURMAT (1H0,16HCF, UE, A18, PNC/4E15.6///) FORMAT (1H0,1//6H NIT=,15,5H DX=,E14.6,4H X=,E14.6/)
WRITE CONTINU STOP WRITE STUP FURMAT FORMAT

SUBROUTINE ADDETA (SUBTST)	ADDO	10
יוני ביי או שריפוש וויים ביי	ADDO	30
SUBROUTINE ADDETA CALLS SUBROUTINES INTERS AND DERIVS.	ADD0	40
	ADDO	20
SUBROUTINE ADDETA IS CALLED BY MAIN.	ADDO	09
	ADDO	10
Ė		80
ADTEST.	ADDO	90
GENERATES NEW ETA SPACING AND INTERPCLATES FOR NEW VELOCITY	ADDO	100
PROFILE.	ADDO	110
	ADDO	120
CC4MON /ARRAY1/ AUR(101), AUBP(101), A1(101), A2(101), A3(101), A4(101) ADDO	DADDO	130
1,CHI(101), DN(102), DN2(102), EPSU(101), EPSPL(101), FI(101), FIN(101)	FADDO	140
21NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101), VC(1ADD0	LADDO	150
301), XN(132), XN2(102), Y(101), YCVDEL(101), YOVTHT(101), YY(101)	ADDO	160
CC1MUN /CUMMLL/ A1B, E1, FF, F2N1, VW	ADD0	170
COMMON /GEOME/ DS.DX.DX1.DXMAX.DXCLD.PNC.REFLEN.SCF.X,XI,XIZ,XIOLDADDO	DADDO	180
FAC	ADD0	190
CCAMEN /INTER/ IF, II MAX, IF, IPRNT, ISTOP, KL, KVSLAM, NIT, NITI, NITZ, NITADDO	TADDO	200
13,NOSE	ADD0	210
COMMON INTEGER/ II, IPFL, IPRINT, JJ, K, KADETA, KEND, KEP, KSTOP, KTRNSN, LADDO	LADDO	220
101	ADDO	230
COMMON /NMLCRD/ ADTEST, ETAINF, XKETA	A0D0	240
	ADDO	250
	ADDO	260
FLOAT(M)=JFLCAT(M)	ADDO	270
	ADDO	280
INCREASE OR DECREASE ETAINF, DEPENDING ON TEST-SUBTST	ADD0	290
	ADDO	300
	A D D O	310
WRITE (6,80) ISTCP.K	ADDO	320

	ETAIN2=ETAINF+.100*ETAINF	ADDO	330
	GO TO 20	ADDO	340
10	WRITE (6,100) 1STOP,K	ADDO	350
	ETAIN2=ETAINF-0.100*ETAINF	ADDO	360
J		ADDO	370
3	CALCULATE NEW ETA PROFILE	ADDO	380
ں		ADDO	390
20	CONTINUE	ADDO	400
	IF (XKETA.EQ.1.0) DETAI=ETAIN2/FLCAT(IE-1)	ADDO	410
		ADDO	420
	DN2(1)=DETA1	ADDO	430
	XN2(1)=0.0	ADDO	440
		ADD0	450
	DN2(N+1)=DN2(N)*XKETA	ADDO	460
	XN2(N+1)= XN2(N)+ON2(N)	ADDO	470
30	CONTINUE	ADDO	480
	9C 60 N=1, IF	AUDO	490
	IF (XNZ(N).GE.ETAINF) GC TC 50	ADD0	500
	JC=0	ADDO	510
40	JC=JC+1	ADDO	520
	IF (XN2(N).GT.XN(JC)) GC TO 40	ADDO	530
	IF (JC.LT.2) JC=2	ADDO	540
	IF (JC.6T.(IE-1)) JC=IE-1	ADDO	550
	CALL INTERS (XNZ(N), XN(JC-11, XN(JC), XN(JC+1), F1(JC-11, F1(JC), F1(JCADDO	JCADD0	560
	1+11,F2(N))	ADDO	570
	GC TU 60	ADDO	580
20	F2(N)=1.0	ADDO	290
09	CONTINUE	ADDO	600
ں			019
٠,	INTERPOLATE GLO SOLUTION TO NEW ETA GRID FOR 1ST GUESS ON CURRENT		620
٠,٠	SOLUTION	ADDO	630
د		AUDO	040

CALL DERIV3 CALL DERIV3 VC(1) = VW PUT NEW GRID DU 70 N=1,1E DN(N) = DN2(N) KN(N) = XN2(N) F1(N) = F2(N) F1(N) = F2(N) F1(N) = F1(N) F1(N) =

SUBROUTINE BLUNT1	BLAO	10	
IMPLICIT REAL*8(A-H,0-Z)	BLAO	20	
	BLAO	30	
SUBROUTINE BLUNTI CALLS SUBROUTINE FD5.	BLAO	40	
	BLAO	20	
SUBROUTINE BLUNTI IS CALLED BY SUBROUTINE GEOM.	BLAO	09	
	BLAO	10	
SUBROUTINE BLUNTI CALCULATES THE EDGE AND REFERENCE PROPERTIES	BLAO	80	
FOR THE STAGNATION POINT OF A BLUNT BCDY.	BLAO	06	
	BLAO	100	
COMMON /ARRAY2/ PZ(501), UFZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(BLA0	(BLA)	110	
1101), R2(501)	BLAO		
SPRP/	BLAO		
CCHMON /FRSTRM/ PFS, REINF, RHOFS, UFS	BLAO		
COMMON /GEOME/ DS, DX, DXI, DXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XI2, XIOLDBLAD	DBLAO	150	
1, XJ, XJFAC, Z, ZGL, RO	BLAO		
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTCP, KL, KVSLAM, NIT, NIT1, NIT2, NITBLAO	TBLAO	170	
13,NUSE	BLAO		
COMMON /REF/ PREF, RHOREF, UREF	BLAO		
CUMMON /STAG/ P10, PSTAG	BLAO		
COMMON /VSCSTY/ EPSVD, XKI, XK2	BLAO		
COMMON /IVCURV/ IVC, BODANG, RIVC(101), RCRW(101), ROPWSQ(101), RW	BLAO		
COMMON /WAK/ XKFAC	BLAO		
	BLAO		
	BLAO		
AL0610(x)=DL0610(x)	BLAO		
SQRT(X)=DSQRT(X)	BLAO	270	
	BLAO	280	
	BLAO		
PIJ=PSTAG/(RHOFS*UFS*UFS)	BLAO		
DC: 10 J=1,11MAX	BLAO	310	
01d*(f)7d=(f)7d	BL AO		

	UEZ(J)=SORT(2,*(P10-P7(J)))	BI AO	330
	CONTINUE	BIAO	340
	BODANG=DARCOS(-1.000)/2.000	BLAD	350
	Z=ZA(1)	BLAO	360
	R0=0.0	BLAO	370
	PE=P10	BLAO	380
	UE=0.0	BLAU	390
	0 • 0 = 0 d	BLAO	400
		RL AO	410
	FIND STAGNATION PUINT EDGE VELOCITY GRADIENT BY INTERPOLATION AND	BLAO	420
	REFLECTION AROUND THE CPIGIN	BLAO	430
		BLAD	044
	CALL FD5 (X,-XSTA(3),-XSTA(2),XSTA(1),XSTA(2),XSTA(3),-UEZ(3),-UEZBLAO	ZBLAO	450
	1(2), UEZ(1), UEZ(2), UEZ(3), DUEDS)	BLAO	094
	UER32=0.0	BLAO	470
	PNC=SQRT((XKFAC+1.00)/((XJFAC+1.)*DUEDS))	BLAO	480
	8ETA=0.500	BLAO	065
	PESO=PE	BLAO	200
	(6,20)	BLAO	510
	WRITE (6, 30) UE, PE	BLAD	520
	RETURN	BLAD	530
		BLAO	240
		BLAO	250
_	(1H ,2X,4HP10=,015.7)	BLAO	260
_	MAT	BLAD	570
	CNE	BLAO	280

SUBROUTINE BLUNT2 (IFLAG)	BL 80	10
	BLBO	20
	8180	30
SUBROUTINE BLUNT2 CALLS SUBROUTINES FD5, INTERS AND ZRO	8180	40
	8180	20
SUBROUTINE BLUNTZ IS CALLED BY SUBROUTINE EGPROP.	8680	09
	8180	10
CALCULATES THE EDGE PROPERTIES FOR A BLUNT BODY	8680	80
AT THE VALUES OF X AFTER THE INITIAL VALUE OF X.	BL 80	06
	BLBO	100
NYZ/ PZ(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPPFL(8680	110
	BLBO	120
CUMMON /EDGPRP/ BETA, DUEDS, PE, PESO, PP, UE, UEROZ, UESO	8180	130
CCMAGN /SEDME/ DS,DX,DXI,DXMAX,DXCLD,PNC,REFLEN,SCF,X,XI,XI2,XIDLDBLBO	6LB0	140
1, XJ, XJFAC, Z, ZDL, RO	8180	150
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTOP, KL, KVSLAM, MIT, NITI, NITZ, NITBLB	8180	160
	BL B0	170
/STAG/ P10,PSTAG	BLBO	180
/VSCSTY/ EPSVO,XKI,XK2	RLBO	190
	8180	200
CCMMON /DRAG/ CJV1, CDV2, XCP, XCP1, CP(501), CP1(501)	BLRO	210
COMMON /HESS/ IWTH, ICARD2, ICARD3, ICARD4, NN, IBDN, HEDRII 31, CASE, KHESBLBO	8180	220
15	BLBO	230
	BLBO	240
	BL 80	250
SGAT (X)=0SQRT (X)	8180	260
	BLBO	270
	6180	280
[X.LT.XSTA(3)] GC TO 30	BLBO	290
	8180	300
	8180	310
IF (X.GT.XSTA(J)) 6U TO 10	BL 80	320

IF (J.LT.3) J=3	BLB0 3	130
13.61	80 3	040
	80 3	350
FIND PROPERTIES IF PAST THE THIRD STATICN BL	80 3	360
	80 3	370
L ZRC	80 3	180
ROL	80 3	06
CALL FOS (7,24(3-2),24(3-1),24(3),24(3+1),24(3+2),R2(3-2),R2(3-1),B1	80 4	00
1RZ(J), RZ(J+1), RZ(J+2), TANBOD)	BO 4	014
BCDANG=DATAN(TANBOD) 81	80 4	120
IN	80 4	430
1J-21, PZ(J-11, PZ(J), PZ(J+1), PZ(J+21, PE)		40
UE=SQRT(2.*(P10-PE))		20
FD5		094
		102
		980
IF (KHESS.EQ.0) GC TO 20		064
CALL INTERS (X, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), CP(B)		000
13-2),CP(J-1),CP(J),CP(J+1),CP(J+2),XCP)		210
INTE		250
1(J-2), CP1(J-1), CP1(J), CP1(J+1), CP1(J+2), XCP1)		930
CONTINUE		040
PP=-UE*DUFDS 81		920
RETURN		099
		210
I I IMAX, X, Z, RO)		989
Z,ZA(1),ZA(2),ZA(3),ZA(4),ZA(5),RZ(1),RZ(2),RZ(3),RZ(4),		069
(00)	8180 6	000
ATAN(TANBOD)		010
CALL INTERS (X,-XSTA(3),-XSTA(2),XSTA(1),XSTA(2),XSTA(3),PZ(3),PZ(BLBO		970
, PZ(1),		30
CALL FUS (X,-XSIA(3),-XSIA(2),XSIA(1),XSIA(2),XSIA(3),-UEZ(3),-UEZ8LB0		240

650	099 0	0 670	680	069	100	110	720	730	140
8180	IF (IFLAG.EQ.0) GC TO 40	8L80	, X STA(1), XSTA(2), XSTA(3), CP(3), CP(8L80	0818	, X STA(1), X STA(2), X STA(3), CP1(3), CP 6L 80	BLRO	PLB0	91.80	9180 740
1(2), UEZ(1), UEZ(2), UEZ(3), DUEDS)	IF (IFLAG.EQ.0) GC TO 40	IF (KHESS.FQ.0) GC TO 40	CALL INTERS (X,-XSTA(3),-XSTA(2)	12),CP(1),CP(2),CP(3),XCP)	CALL INTERS (X,-XSTA(3),-XSTA(2)	11(2), CP1(1), CP1(2), CP1(3), XCP1)	UF=SQRT(2.*(P10-PE))	Gr 1C 20	END

NE CHANGE	CHAO	10
IMPLICIT REAL+8(A-H,0-Z)	CHAO	20
	CHAO	30
SUBROUTINE CHANGE IS CALLED BY MAIN.	CHAO	40
	CHAO	20
E CHANGE ADJUSTS THE X STEP SIZE IF NECESSARY TO OBTAIN	CHAO	09
N AT A SPECIFIED VALUE OF X.		10
WHEN INSTANTANEOUS TRANSITION IS TO BE CALCULATED, THIS SUBROUTINECHAO		80
		06
RESETS DELTA X. CI		00
THIS SUBROUTINE DOUBLES/HALVES THE X STEP SIZE IF NIT IS LESS THANGE		110
NITZ OR GREATER THAN NITI RESPECTIVELY. DX CAN NEVER BE SET CHAO		20
		130
3		40
RRAY1/ A08(101), A08P(101), A1(101), A2(101), A3(101), A4(101)		150
1, CHI(101), DN(102), DN2(102), EPSC(101), EPSPL(101), F1(101), F1N(101), FC		09
21NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101), VC(1C		170
(10		180
COMMCN /ARRAY2/ PZ(501), UFZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(CHA0		190
7(501)	CHAO 2	00
CUMMON /GECME/ DS, DX, DX1, DXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XI2, XICL DCHAO		210
		220
7		30
		40
COMMON INTEGER! II, IPFL, IPRINT, JJ, K, KACETA, KEND, KEP, KSTCP, KTRNSN, LCHAO		250
INT		260
MANS ATR, CHICRT, CHIMAX, GAMMA, XBAR, XIBAR, KTRANS, KONSET	CHAO 2	170
E/ KTE,KISTTE	CHAO 2	80
COMMON /HESS/ INRTH		290
	CHAO 3	300
	CHAO 3	310
A85(x)=UA85(x)	CHAO 3	20

ں ں

ں ں		CHAO	40 330
	IXSTA(1)+1.0-04))	CHAO	
	. (XSTA(1)+1.9-04))	CHAO	A0 360
	X=X+DX	CHAO	
	GC TO 30	CHAO	40 380
10	CUNTINUE	CHAO	
	-	CHAO	
	IF (NIT.6F.0) Ge TO 20	CHAO	
		CHAO	40 420
	X=X-DX	CHAO	
	GI TO 30	CHAO	
ن	ADJUST DX USING ITEP CNTP, NIT	CHAO	40 450
20	IF (NIT-ST-NITI) GU TO 30	CHAO	
	0x=2.00*0x	CHAO	
	IF (DX.GT.DXMAX) DX=DXMAX	CHAO	
	GC TC 50	CHAO	065 OF
30	IF (NIT-LT-NIT2) GO TO 50	CHAD	
	0x=.500*0X	CHAO	40 510
၁			
ں	CHECK IF DX IS TGG SMALL, IF SO, HALT EXECUTION, SOLUTION WILL NO		
J	CCIVERGE. USUALLY MEANS FLOW HAS SEPARATED.		
ى		CHAO	
	IF (DX.GT.3X1/100.00) GC TC 40	CHAO	
	WPITE (6,110)	CHAO	
	STOP	CHAD	
40	CC-NT INUE	CHAO	
J		CHAO	
J	IF START OF TRANSITION, SET DX FOR GAMMA	CHAO	
ي ع		CHAO	
20	IF (A.E. XSTACKUSET). AND KUNSET . NE. IIMAX) DX X X IACKUS ID-02	DX=XSIA(RUNSEI) *6.32121CHAO	A0 640

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CHAO CHAO CHAO CHAO
CHAO CHAO CHAO CHAO
CHAO CHAO CHAO CHAO
CHAO CHAO CHAO
CHAO
CHAO
CHAO
CVAC
CHAD
CHAO
CHAD
CHAO

CHAO 970 CHAO 980 CHAO 990

FCRMAT (1HO,24HQUITTING DUE TC SMALL DX) END 011

SUBROUTINE COEF	COEO	10
SUBROUTINE COEF CALLS SUBPOUTINE INTERP.	COEO	4 0
	CCEO	20
SUBROUTINE COFF IS CALLED BY MAIN.	CCEO	09
	COEO	20
SUBROUTINE COEF COMPUTES FLOW COEFFICIENTS SUCH AS SKIN FRICTION	COEO	80
COEFFICIENT, ETC.	COEO	06
ALSO COMPUTES DELTA, THETA, AND DELTA*.	COEO	100
The state of the s	CCEO	011
CCM-10N /ARRATI/ AUBILIOI/AUBPILIOI/AI/IOI/AZ(IOI),AZ(IOI),AZ(IOI),A4(IOI)CCEO	CUED	071
1; CHILLOLL; SNI 102 ; SNZ 102 ; EPSOLIOLL; EPSPL(101); FILLOLL; F	COED	150
301), XN(102), XN2(102), Y(101), YCVDEL (101), YOVTHT(101), YY(101)	CCEO	150
CC4MON /ARRAYZ/ P2(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(CDE0	COEO	160
1101), R2(501)	CCEO	170
CCMMON /COEFF/ CFBAR, CFBREX, CFE, CFINF, CFRES, CFREY, DEL, DELST, DELTA, CCEO	CCEO	180
10STARK, DSTARX, HAFCF, RETHET, REX, THET	CCEO	190
COMMON /COEFF2/ DELCRF, DELCX, DSAXOR, DSTCDL, DSTORF, DSTGTH, DSTCX, RCRCCEO	SCUE0	200
	COEO	210
	COEO	220
	CUEO	230
	CCEO	240
	CCEO	250
	CCFO	260
COMMON /GEOME/ DS,DX,DX1,DXMAX,DXCLD,PNC,REFLEN,SCF,X,XI,XI2,XIGLDCDED	COED	270
1, XJ, XJFAC, Z, ZGL, RO	CUEO	280
CCMMON /INTGR/ IE, IIMAX, IM, IPPNT, ISTOP, KL, KVSLAM, NIT, NITI, NITZ, NITCOEO	COE 0	290
13+NUSE	COEO	300
COMMON INTEGER/ II, IPFL, IPRINI, JJ, K, KADETA, KEND, KEP, KSTOP, KTRNSN, LCOEO	COEO	310
14MTRB NITTUT	COEO	320

		33(
COMMON ATMENDIAL THE BODANG BINCHOLL BEBLAIDLY BOBBEOLLOSS BEH	COEO	34
		36
		37
		38
CO 4MUN /STAG/ P10, PSTAG, RHO		39
COMMUN /WKPRL/ RSTAR		40
COMMON /HESS/ IWIH, ICARDZ, ICARD3, ICARD4, NN, 19DN, HEDR(10), CASE, KHESCOFO		41
1S	CCEO	45
DATA YES/3HYES/		43
DIMENSION FD(101)	CUED	44
	COEO	45
	CCFO	46
SQRT(X)=DSQRT(X)	COEO	47
	COEO	48
IF (X.EQ.XSTA(1)) GC TG 60	CUEO	49
	CCEO	20
PI=DARCOS(-1.00)	COFO	21
	COEO	52
		53
RESE=UE*X		54
REX=REINF *RESF	COEO	55
SOREX=SORT (PEX)		56
CFRFS=CF*SORFX		57
CFE=CF*EPSVn/(UE*UE)	CCEO	58
CFINF=CF*EPSVD	CCEO	65
CFRFY=CFRFS*EPSVD	CUEO	9
IF (X.EQ.0.0) 60 TC 20	CUEO	19
CALL INTERP (0.99500,FC,Y, IE, DELTA)	COEO	62
00 10 1=1,1E		63
YUVUEL(I)=Y(I)/DELTA	CUEO	94

10	CONTINIE	COEC	450
200		0100	000
2	CONTINOS	CCEO	099
v		CCEO	670
S	AVG. CF*SQRT(REX)	COEO	680
u		COEO	069
	(K.EQ.1) GO TO 30	COEO	100
	IF (KTSTTE.GT.0) GU TO 40	COEO	110
	CFBREX=2.+2.+*.5+418	CCEO	720
	CF2=CFINF*DCOS(BODANG)	COEO	730
U		COEO	740
ی	CALCULATE INCREMENTAL SKIN, DRAG DUE TO DX	COEO	150
U		COEO	160
	DSUM=0.50*UX*(CF2+CF1)	COEO	170
ပ		COEO	780
U	RUNNING SUM OF SKIN DRAG	COEO	190
ပ		COEO	800
	SUM=SUM+DSUM	COEO	810
		CUEO	820
	IF (KHESS.EQ.0) GO TO 30	CCEO	830
	\circ	COEO	840
	'UFS**	COEO	850
	CDV2=C*(XCP-XCP1)*R0*DSIN(BDDANG)	COEO	960
u		COEO	870
J	CALCULATE INCREMENTAL PRESSURF DRAG	CUEO	880
U		COEO	890
	DSUMI=0.5*UX*(CDVI+CUV2)	COEO	006
v		CCEO	016
ں	RUNNING SUM CF PRESSURE UPAG	CCEO	920
u		COFO	930
	SUIT = SUMI +DSUMI	COEO	046
	COV1=CDV2	COEO	950
	SUMT = SUM + SUM!	CUEO	096

30	*EPSV0/2.0 .0.01 GO TG 40 BREX/SQREX	CCEO 970 CCEO 980 CCEO 990 CCEO 1000
ر ئ		CCE01010
J	CALCULATE MUMENTUM THICKNESS	COE01030
J		COE01040
		CCE01050
	0C 50 I=2, IE	CCE01060
		CCF01070
		CC = 01080
C	THE I = I HEI + 0.500* (FACI+FACZ) + OR (I-I) + PROTE PSVU	COE01090
,	FASANG=BUDANG	COE01110
U		CCE01120
J	THETA FOR TRAVSVEPSE CURVATURE CASE FOR A 0.0 OR FINITE WALL RADIUCTED1130	CCE01130
J		CUE01140
	IF (TVC.EQ.YES.AND.FW.GT.1.0-08) THET=RM/DCDS(FASANG)*(-1.000+0SQRCDE01150	COE01150
	1T(1.000+2.000*DCUS(FASANG)*THET/Rh))	CUE01160
	IF (TVC.EQ.YES.AND.FW.LF.1.D-C8) THET=DSGRT(2.DO*THET)	CUE01170
09	DELST=0.0	CCF01180
J		CCE01190
ی	INTEGRATE TO FIND THE DISPLACEMENT THICKNESS	CCE01200
ی		CCE01210
	DC 70 1=2,1E	CCE01220
	FAC(=1.00-FC(1)	COE01230
	PACZ=1*D0-FC(1-1) DFLST=DFLST+0.5D0*(FAC1+FAC2)*DN(1-1)*PNC*FPSVD	COF01250
7.0		CCE01260
	IF (TVC.EQ.YES.AND.RW.GT.1.D-08) DELST=PW/DCOS(FASANG)*(-1.0D0+DSQCCE01270	CCE 01270
	IRT(1.000+2.000*DCFS(FASANG)*DFLST/RW))	COF01280

	IF (TVC.EQ.VES.AND.RW.LE.1.D-08) DELST=DSQRT(2.D0*DELST) IF (X.EQ.XSTA(1)) RETURN	CGE01290 CDE01300
	CALCINATE DEINIED ACTINDABY LANED CHANITITES	COE01310
	ביינון מסטימיין רעובע	CCE01330
	RETHET=UE*THET/(EPSVD*EPSVD)	CCE01340
	OFL=DELTA*EPSVD	COE01350
	RUREFL=R0/REFLEN	CCE01360
	XUREFL=X/REFLEN	CCE01370
	THUREF=THET/REFLEN	CGE01380
	OSTURF=DELST/REFLEN	C0E01390
	DSTOX=DELST/X	COE01400
	DELOX=DEL/X	CUE01410
	LURF=DE	CCE01420
		CCE01430
	ITVC.E	CUE01440
	IF (XJFAC.EQ.0.0) DSTRAX=0.0	CCE01450
	ZOREFL=Z/REFLEN	CCE01460
	THUDEL=THET/DEL	C0E01470
	OSTODL=OELST/DEL	COE01480
	DSTOTH=DELST/THET	CUE01490
	DSAXOR=DSTRAX/REFLEN	COE01500
	DU 80 N=1,1F	CDE01510
_	THT (N)	COE01520
	IF (KTSTTE.GT.0) GO TO 100	CCE01530
	= SOR	COE 01540
	DG 90 I=1,IE	COE01550
	-	CCE01560
		COE01570
	UDEF(I)=UE*(FC(I)-1.00)/UPLUS	COF01580
	CONTINUE	COE01590
0	CONTINUE	COE01600

	VGRI=DSQRT(2.00*X1)/UE/DELTA	COE01610
	THETA=B0DANG	C0E01620
	ROEL=RO+OELTA*DCOS(THETA)	CCE01630
	ZDEL=Z-DELTA*DSIN(THETA)	CUE01640
	WRITE (22,120) VGRT, Z, RO, ZDEL, RDEL, DELTA, THETA	C0E01650
	IF (KTSTTE.LT.1) RETURN	COE01660
	BIGUD=1.00-FC(1)	CCE01670
	OC 110 I=1, IE	CCE01680
	F0(1)=1.00-FC(1)	COE 01690
110	FD(1)=FD(1)/81GU0	COF01700
	CALL INTERP (0.500, FD, YY, IE, RSTAR)	CCE01710
	RETURN	C0F01720
		CCE01730
120	FURMAT (7E15.6)	CCE01740
	END	CCE01750

SUBROUTINE CONEI IMPLICIT REAL*8(A-H,O-Z)	CCAO	10
SUBROUTINE CONEI CALLS SUBROUTINES FDS, INTERS AND ZRO.	COAO	40
SUBROUTINE CONET IS CALLED BY SUBROUTINE GEOM.	COAO	20
	CCAO	202
SUBROUTINE CONEI CALCULATES THE EDGE AND REFERENCE PROPERTIES FOR	CCAO	80
THE FIRST CALCULATED PUINT ON A SHARP NCSE BODY.	COAO	06
CCA0 CCM:	CCAO	100
101), 82(501)	CCAO	120
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTOP, KL, KVSLAW, NIT, NITI, NITZ, NITCCAO	TCCA0	130
	COAO	140
	CCA0	150
CCMMON /FRSTPM/ PFS, REINF, RHOFS, UFS	COAO	160
CUMMON /GEGME/ DS, DX, DXI, DXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XIZ, XIOLDCCAD	DCCAO	170
. XJ, XJFAC, Z, ZOL, FO	CCAO	180
	COAO	190
		200
		210
	CCAO	220
COMMON /TVCURV/ TVC, BODANG, RTVC(101), RORW(101), RORWSQ(101), RW		230
		240
	COAO	250
SIN(X)=DSIN(X)	CCAO	260
SQRT(X)=0SQRT(X)		270
		280
PIO=PSTAG/(RHOFS*UFS*UFS)		290
DG 10 J=1, IIMAX		300
01d*(f)7d=(f)7d		310
UEZ(J)=DSQRT(2.50*(P10-PZ(J)))	CCAO	320

330	350	370	380	390	00%	015	450	430	240	450
CONTINUE CALL ZRO (11MAX, X, Z, RO) CON 330	COAO	CGAO	CCAO 3	(2), xSTA(3), xSTA(4), XSTA(5), PZ(1), PZ(2)CGAO	CCAO 4	, XSTA(31, XSTA(4), XSTA(5), UE Z(1), UE Z(2), CCAO 4	CCAO 4	CUAO C	CCAO 4	CCAO 4
CONTINUE CALL ZRO (11MAX, X, Z, RO)	IF (RO-LT-0-DO) RO=0-DO	182(5), TANBOD)	BUDANG=DATAN(TANBCD)	CALL INTERS (X, XSTA(1), XSTA	1,P2(3),P2(4),P2(5),PE)	CALL FDS (X, XSTA(1), XSTA(2)	1UF 2(3), UE 2(4), UE 2(5), DUEDS)	UE=SQRT (2.*(P10-PE))	RETURN	CNB

	SUBROUTINE CONEZ (IFLAG)	0800	10
	IMPLICIT REAL *8(A-H, U-Z)	CGBO	20
	SUBBOUTINE CONES CALLS SUBBOUTINES EDS. INTERS AND 700.		004
		0000	20
	SUBROUTINE CONEZ IS CALLED BY SUBROUTINE EGPROP.	0800	09
		COBO	10
	FCR A SHARP NOSE	CCBO	80
	0F X.	CCBO	06
		CC:80	001
	CUMMON /ARRAY2/ PZ(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(C080	0800	110
	1101),R2(501)	0800	120
	COMMON /INTGR/ IE, ILMAX, IM, IPRNT, ISTCP, KL, KVSLAW, NIT, NITI, NITZ, NITCOBO	COBO	130
	13,NUSE	CCBO	140
	TAG/ P10,PSTAG	0800	150
	CC4MON /EDGPRP/ BETA, DUEDS, PE, PESO, PP, UE, UEROZ, UESO	CCBO	160
	EDME/ US, DX, DXI, DXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XI2, XIDLD	CUBO	170
	1, XJ, XJFAC, Z, ZNL, RO	0800	180
	CCIMMON /STAG4/ UECN, PECN	CCBO	190
	NC, RTVC(101), RGRW(101), RORWSQ(101), RW	CC 80	200
		CC 80	210
	COMMON /HESS/ IMRTH, ICARD2, ICARD3, ICARD4, NN, I BDN, HEDR(10), CASE, KHECCBO	CC180	220
	188	CCBO	230
	CC4MON /DRAG/ CDV1, CDV2, XCP, XCP1, CP(501), CP1(501)	CCBO	240
		CCBO	250
	USCXI	CC 80	260
	SCRT(x)=DSQRT(x)	CCBO	270
		CC. B0	280
		0800	290
	IF (X.LT.XSTA(3)) GC TC 30	COBO	300
	0=7	CCBO	310
0	J=J+1	0800	320

.GT.XSTA(J)) GC TO 10 .LT.3) J=3		000
J.GI.(IIMAX-Z) JEIIMAX-Z	80 350	0
IF (RO-LT-0-DO) RO=0-DO CORO		20
(2,2A(J-2),2A(J-1),2A(J),2A(J+1),2A(J+2),R2(J-2),R2(J-1),		0
J+1), RZ(J+2), TANBOD)		0
NG=DA		0
IN	80 410	0
1J-21, PZ(J-11, PZ(J), PZ(J+1), PZ(J+2), PE) CCB	80 420	0
URT	80 430	0
CALL FOS (X, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), UEZ(J-CUB	80 440	0
E2(1	80 450	0
IF (IFLAG.EQ.0) GO TO 20 CCB	80 460	0
KHES	80 470	0
CALL INTERS (X, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), CP(CCB	80 480	0
CP	80 490	0
CALL INTERS (X, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), CPICUB	BO 500	0
1(J-2),CP1(J-1),CP1(J),CP1(J+1),CP1(J+2),XCP1)	80 510	0
4	80 520	0
E#5	80 530	0
		0
INDE		0
2R0	80 560	0
L FOS (2,24(1),24(2),24(3),24(4),24(5),R2(1),R2(2),R2(3),R2(4),		0
000)		0
NG=DA		0
INTERS (X, XSTA(1), XSTA(2), XSTA(3), XSTA(4), XSTA(5), PZ(1), PZ(2)		0
31,92		0
- :	80 620	0
J CE		0
IF (IFLAG.EG.0) GU TO 40 COBO		0

650	999	670	68	69	200	72	720	
059 0800	11, XSTA (21, XSTA (31, CP (31, CP (COBO	0803	1) , XSTA(2) , XSTA(3) , CP1(3) , CPCCB0	069 0800	10C 0800	CCB0 71C	CCB0 720	
IF (KHESS.EG.0) GC TO 40	CALL INTERS (x,-xSTA(3),-xSTA(2),xSTA(1),xSTA(2),XSTA(3),CP(C)BO 660	12), CP(1), CP(2), CP(3), XCP)	CALL INTERS (X,-XSTA(3),-XSTA(2),XSTA(1),XSTA(2),XSTA(3),CP1(3),CPCDB0 68(11(2), CP1(1), CP1(2), CP1(3), XCP1)	UE=SQRT(2.*(P10-PE))	GO TO 20	END	

SUBRGUTINE DELTAS	DELO	10	
IMPLICIT REAL*8(A-H,0-Z)	DELO	30	
SUBROUTINE DELTAS CALLS SUBROUTINE EGPROP.	DELO	40	
	DELO	20	
SUBROUTINE DELTAS IS CALLED BY MAIN AND SUBROUTINE INIT.	DELO	09	
		10	
SUBROUTINE DELTAS CALCULATES DS - DELTA XI, THE TRANSFORMATION	N DELO		
FACTUR - PNC, AND THE PRESSURE GRADIENT TERM - BETA.	DELO	06	
INTEGRATION BY SIMPSONS RULE IS USED FOR CALCULATING DS.		100	
	OEFO	110	
CCMMON /EUGPRP/ BETA, DUEUS, PE, PESO, PP, UE, UEROZ, UESO	DELO	120	
CUMMON /GEOME/ DS,DX,DX1,DXMAX,DXCLD,PNC,REFLEN,SCF,X,XI,XI2,XI3LDDFLO	VI SLDDELO	130	
1, XJ, XJFAC, Z, ZOL, RO	DELO	140	
	2.NITDELO	150	
13, VCSE	DELO	160	
CUMMON /WAK / XKFAC	DELO	170	
CCMMON /INTACT/ BETAS	DELO	180	
COMMON /HESS/ INRTH, ICARD2, ICARD3, ICARD4, NN, IBON, HEDR(10), CASE, KHEDELO	E, KHEDELO	190	
155	DELO	230	
	DELO	210	
	0110	220	
SQRT(X)=DSQRT(X)	DELO		
	DELO		
	DELO		
HA=X-DX*0.50	DELO		
X=1x	DELO		
	DELO		
CALL EGPROP (0)	DELO		
	DELO		
CALL EGPROP (1)	DEFO		
	DELO	320	

U	AXISYMETRIC, WAKE CASES		330
ى	RP=RO	DELO	350
	UEHA=UE		360
	ROHA=RO		370
	RPP=RP		380
	200		000
J			014
ں	2-0, NO WAKE CASES		420
J			430
10	CENTINUE		044
	RP=1.00		450
	RPP=RP		094
	ROHA=1.00		410
50	CONTINUE		480
	IF (XKFAC.LT.0.0010) GC TC 30		064
ပ			200
J	2-0 OR AXISYMETRIC, WITH NAKE		210
J		DELO	250
	RP=iJ€		530
	RPP=RO		240
	ROHA=UEHA		250
30	CCNT INUE		260
	DS=(UERO2+4.*UEHA*ROHA*ROHA+UE*RP#RP)*CX/6.		570
	XI=XICL0+DS		580
	XI2=2.00*XI		065
	PNC=SQRI(XI2)/UE		009
	1.1-0-08) PNC=PN		019
	£05/(950
	10.01 RET	0	630
	T.8FTA	DELO	049

DELO 650 DELO 660

RETURN

SUBROUTINE DERIV3 (F, X, IMAX, IMIN, FP) IMPLIGIT REAL*8(A-H, 0-Z)			DERO	10
			DERO	30
SUBROUTINE DERIV3 CALLS SUBROUTINE FD3.			DERO	40
				50
SUBROUTINE DERIV3 IS CALLED BY MAIN AND SUBROUTINES ADDETA, EFFMU	ADDETA, E	FFMU	DERO	9
AND SOLVE.			DERO	10
			DERO	80
_	OF F WITH		DERO	90
RESPECT TO X AND RETURNS THE ARRAY FP.			DERO	100
			DERO	110
OIMENSION F(101), X(102), FP(101)			DERO	120
			DERO	
			DERO	
DC 10 J=[MIN, IMAX			DERO	150
(=)			DERO	
IF (K.LT.(IMIN+1)) K=IMIN+1			DERO	
IF (K.GT.(IMAX-1)) K=IMAX-1			DERO	
CALL FD3 (X(J), X(K-1), X(K), X(K+1), F(K-1), F(K), F(K+1), FP(J))	1,FP(J))		DERO	190
CUNTINUE			DERO	200
RETURN			DERO	
END			DERO	

SUBROUTINE EFFMU (LAMTRB, II, DL STRK)	EFFO	10
IMOLICIT REAL*8(A-H,O-Z)	EFFO	20
	EFFO	30
SUBROUTINE EFFMU CALLS SUBROUTINES DERIV3 AND INTERP.	EFFO	40
	EFFO	20
SUBROUTINE EFFMU IS CALLED BY SUBROUTINE MOMENT.	EFFO	09
	EFF0	20
CALCULATES THE TERMS ADB AND ADBP WHICH, FOR THE TURBULENT	EFFO	80
CASE, INCLUDE THE EDDY VISCOSITY - EPSPL.	EFF.0	06
FOR THE TRANSITION REGIME, THE EDDY VISCOSITY IS REDUCED BY THE	EFFO	100
TRANSITION INTERMITTENCY FACTOR - GAMMA.	EFFO	110
	EFFO	120
CCMMON /ARRAYI/ AUB(101), AUB(101), A1(101), A2(101), A3(101), A4(101	EFFO	130
1, CHI (101), UN(102), UN2(102), FPSO(101), EPSPL(101), FI(101), FIN(101),	CHH3-	140
21NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101), VC(LEFFO	150
301), XN(102), XN2(102), Y(101), YCVDEL(101), YOVTHT(101), YY(101)	EFFO	160
COMMON /ARRAYZ/ P2(501), UF2(501), XSTA(501), ZA(501), IPR(101), IPRFL(EFFO	(EFF0	170
1101), RZ(501)	EFF0	180
2	EFFO	190
/E	EFFO	200
9	DEFF 0	210
1, XJ, XJFAC, Z, ZOL, RO	EFF0	220
=	reff0	230
13 NOSE	FFFO	240
1	EFFO	250
COMMON /VSCSTY/ EPSVO,XKI,XK2	EFFO	260
2	FFFD	270
19STARK, OSTARX, HAFCF, RETHET, REX, THET	EFFO	280
K	EFFO	290
1	EFFO	300
N NO	EFFO	310
DATA YES/3HYES/	EFFO	320

ABS(X)=DABS(X) EXP(X)=DEXP(X)	EFF0 EFF0 EFF0	350	
SORTIX	EFFO		
	EFFO	390	
	EFFO		
	EFFO	410	
LAMTRB = 1 LAMINAR B.L. ,=2 TURBULENT B.L.	EFFO		
	EFFO		
1F (LAMTRB.ED.2) GO TO 30	FF F 0		
	EFFO	460	
LAMINAR	EFFO		
	EFFO		
	EFFO		
COEFFICIENTS FOR MOMENTUM EQUATION	EFFO		
	EFFO		
00 10 I=1,IE	EFFO		
AOB(I)=RORWSQ(I)	EFFO		
	EFFO		
(408, XN, IE, 1, A	EFFO		
1111-111	EFFO		
IF (PNC.LT.1.0E-10) RETURN	EFFO		
	EFFO		
	EFFO		
CALCULATES VORTICITY REYNOLDS NUMBER	EFFO	009	
	EFFO		
DC 20 N=2,IE	EFFO		
	EFFO	630	
.GT.CHIMAX) CHIMAX=CHI(N)	EFFO	049	

U U

20	SOMT TAILE	0000	46.0
2		2	000
	IF (KTRANS.EQ.O) RETURN	EFF0	099
v		EFFO	670
J	INITIATES TRANSITION	EFFO	089
J		EFFO	069
	LAMTRB=2	EFFO	100
	DX=DX/10.	EFFO	710
	0xCLD=0xCLD/10.	EFFO	720
	WRITE (6,190)	EFFO	730
	WRITE (6, 200)	EFFO	140
ပ	XZEKO=X	EFFO	150
	XZERO=X-XSTA(1)	EFFO	760
	XLAMDA=(XBAR-1.)*XZERG/4.	EFFO	770
J		EFF0	780
J	WHEN USING THIS TRANSITION MODEL, THE VALUE OF XBAR SHOULD BE	EFFO	190
ں	SIXTY-FIVE PERCENT GREATER WHEN THE REICHARDT EDDY VISCOSITY LAW	EFFO	800
၁	IS USED THAN THE VALUE OF XBAR USED WITH THE VAN DRIEST EDDY	EFFO	810
v	AN. THE USER IS ADVISED THAT	EFFO	820
3	TENTATIVE ONLY AND THAT DUE CARE MUST BE EXERCISED IN INTERPRETINGEFFO	GEFFO	830
ں	GBTAINED WITH THIS TRANSITION	EFF0	840
ں		EFFO	850
30	CONTINUE	EFFO	860
	IF (KTRANS.EQ.0) CO TO 40	EFFO	870
	XIBAR=((X-XSTA(1))-XZERC)/XLAMDA	EFFO	880
	MMA=1E	EFFO	890
	CKTRAN	EFFO	006
	00 TC	EFFO	016
	(.NE.O.AND.XIBAR.LT.4.0) GO	EFFO	920
ی		EFFO	930
J	KTRANS IS SET EQUAL TO 2 AT THE END OF THE TRANSITION REGIME	EFFO	046
u		EFFO	056
	KTRANS=2	EFFO	096

	WRITE (6,210)	EFF0 970
	WRITE (6,200)	
40	CONTINUE	EFF0 990
J		EFF01000
J	TURBULENT	EFF01010
ں		EFF01020
	FAC1=0.0	EFF01030
	IF (KVSLAW.NE.0) GO TO 70	EFF01040
	DC 60 I=1,1M	EFF01050
v		EFF01060
v	INNER EDDY VISCOSITY LAW, REICHARDT EQUATION	EFF01070
J		EFF01080
	FAC=CF/12.*EPSV0)	EFF01090
	IF (FAC.GT.0.0) GC TO 50	EFF01100
	WRITE (6,180) FAC, CF, EPSVD	EFF01110
	-	EFF01120
20	CONTINUE	EFF01130
	FAC1=SORT(FAC)	EFF01140
	EPSPL (1)=(.4*Y(1)*FAC1-4.4*TANH(Y(1)*FAC1/11.))*GAMMA	EFF01150
69	CONTINUE	EFF01160
	CO TO 100	EFF01170
10	CONTINUE	EFF01180
U		EFF01190
U	INNER EDDY VISCOSITY LAW, VAN ORIEST EQUATION	EFF01200
v		EFF01210
	FAC=SQRT(.500*CF)	EFF01220
	IF (FAC.6T.0.0) GC TO 80	EFF01230
	WRITE (6, 180) FAC, CF, EPSVD	EFF01240
	FAC=1.0E-6	EFF 01250
60	CONTINUE	EFF01260
	R0F=1.00	EFF01270
	DC 90 I=1, IM	EFF01280

XDUOG2=Y(I) / XEX=XNOT / I E PSVO*XIZ**.5) XDUOG2=Y(I) / (ZE.*FPSVO**.5) XDUOG2=Y(I) / (ZE.*FPSVO**.5) XDUOG2=O.00 IF ((XDUOG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC) EPSPL(I)=XDCUG1*(I1XDGUG3)**2)*ABS(FCN(I))*GAMMA CUNTINUE OCNTINUE OCNTINUE OCNTINUE FACI=1.DO-FC(I) FACI=1.DO-FC(I) FACI=1.DO-FC(I) DS TARK=DSTARK+0.5D0*DN(I-I)*(FACI+FAC2)*PNC*EPSVD CONTINUE ANJ=BCDANG IF (IVC.EC.YES.AND.RW.GT.1.D-GB) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(I) II.DO+2.DO*DCGS(ANG)*DSTARK/RW) IF (IVC.EC.YES.AND.RW.LE.1.D-CB) DSTAFK=BSGRT(2.DO*DSTAPK) INTERPLATE FUR DELTA MITH INTERP ANG TLU CALL INTERPLATE FUR DELTA MITH INTERP ANG TLU CALL INTERPLATE FUR OF OCOSITY LAW CHIMAX=O. DC 120 1=2.1E CHIMAX=O. DC 120 1=2.1E CHI(I)=0.0 IF (CHI(I)-67.50*(VII)/DELTA)**E) EPSG(I)=XX2*UFEDSTARK*CAMF*CPSVO**2		IF (XJFAC.GT.1.0-04.0R.XKFAC.GT.1.0-04) RJF=RTVC(I)	EFF01290
XDDUGG=Y(I)/(Z6.*EPSVD**.5) XDDUGG=0.00 IF (IXDDGG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC) FF (IXDDGG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC) FF (IXDDGG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC) FF (II) = XDCUG1*(I1XDGUG3)**2)*ABS(FCN(I))*GAMMA CCNTINUE DSTARK=0.0 DC 110 1=2.1E FAC1=1.D0-FCI(-1) DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CCNTINUE ANG=BCDANG IF (IVC.EC.YES.AND.RW.GT.1.D-U8) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(I1.D0+2.D0*DGSTARK) II.D0+2.D0*DGGS(ANG)*DSTARK/FW)) IF (IVC.EQ.YES.AND.RW.LE.1.D-C8) DSTAFK=BSQRT(2.D0*DSTAPK) INTERPLATE FUR DELTA WITH INTERP ANC TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) TUTER EDCY VISCOSITY LAW CHIMAX=0. CCHIMAX=0.		XDOUG1=(XK1*UE*Y(I))**2*ROF/(EPSVO*XI2**.5)	EFF01300
X00UG3=CD0 IF (KXDQUG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC) EPSPL (I)=XDCUG1*((I)-XDGUG3)**2)*ABS(FCN(I))*GAMMA CU*INUE O CCNTINUE OSTARK=0.0 DO 110 1=2,1E FAC1=1.D0-FC(1) FAC2=1.D0-FC(1-1) OSTARK=0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CONTINUE AN5=BCDANG IF (TVC.EC.YES.ANO.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(1))*(FVC.EC.YES.ANO.RW.LF.1.D-C8) DSTAFK=DSGRT(2.D0*DSTAPK) IF (TVC.EC.YES.ANO.RW.LF.1.D-C8) DSTAFK=BSGRT(2.D0*DSTAPK) IF (TVC.EQ.YES.ANO.RW.LF.1.D-C8) DSTAFK=DSGRT(2.D0*DSTAPK) CALL INTERPLATE FUR DELTA hITH INTERP ANC TLU CALL INTERPLATE FUR DELTA hITH INTERP ANC TLU CALL INTERPLATE FUR DELTA HITH INTERP ANC TLU GAMF=1.00*C CHIMAX=0.0 IF (CHI(I)=0.0 IF (CHIMAX)=0.0 IF (CH		XDQUG2=Y(I)/(26.*EPSVD**.5)	EFF01310
IF ((XDOUG2*FAC).IT-70) XCDUG3=EXP(-XCDUG2*FAC) EPSPL(I)=XDCUG1*((I)-XDGUG3)**2)*ABS(FCN(I))*GAMMA CUNTINUE CUNTINUE DSTARK=0.0 DSTARK=0.0 DSTARK=0.0 DSTARK=0.0 DSTARK=0.0 CONTINUE FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC2=1.00-FC(I) FAC3=1.00-FC(I) FAC3=1.00-FC(I) FAC4=1.00-FC(I) FAC4=1.00-FC(I) FAC4=1.00-FC(I) FAC5=1.00-FC(I) FAC5=1.00-FC(I) FAC4=1.00-FC(I) FAC4=1.00-FC(I) FAC5=1.00-FC(I) FAC5=1.00-FC(I) FAC5=1.00-FC(I) FAC6=1.00-FC(I) FA		X00UG3=0.00	EFF01320
EPSPL(I)=XDCUGI*((1XDGUG3)**2)*ABS(FCN(I))*GAMMA CUNTINUE OCCUTINUE OCCUTINUE OCCUTINUE FACI=1.00-FC(1) FACI=1.00-FC(1-1) FACI=1.00-FC(1-1) FACI=1.00-FC(1-1) DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CONTINUE ANG=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DSGRT(2.D0*DSTAPK)) IF (TVC.EC.YES.AND.RW.LE.1.D-C8) DSTAFK=DSQRT(2.D0*DSTAPK) INTERPLATE FUR DELTA WITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) TUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 I=2, IE CHIMAX=0.0 IF (CHIMAX=0.0) FF (CH		IF ((XDOUG2*FAC).LT.70) XCCUG3=EXP(-XCCUG2*FAC)	EFF01330
CCNTINUE OSTARR=0.0 DO 110 1=2.1E FACI=1.00-FC(1) FACI=1.00-FC(1) FACI=1.00-FC(1-1) DSTARR=DSTARK+0.500*DN(1-1)*(FACI+FAC2)*PNC*EPSVD CONTINUE ANG=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.D-U8) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(1.D0+2.D0*DCSTARK)) IF (TVC.EC.YES.AND.RW.GT.1.D-U8) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(1.D0+2.D0*DCSTARK)) IF (TVC.EC.YES.AND.RW.LE.1.D-U8) DSTAFK=DSQRT(2.D0*DSTAPK) INTERPULATE FUR DELTA NITH INTERP ANG TLU CALL INTERPULATE FUR DELTA NITH INTERP ANG TLU CALL INTERPULATE FUR DELTA NITH INTERP ANG TLU CALL INTERPULATE FUR DELTA NITH INTERP ANG TLU GAMF=1.07 (1.0+5.50*(Y(1)/DELTA)**6) FO 120 1=2, IE CHI(I) =0.0 IF (CHI(I) GT.CHIMAX) CHIMAX=CHI(I) GAMF=1.07 (1.0+5.50*(Y(1)/DELTA)**6) EPSU(1) =XK2*UE*DSTARK*GAMF*CAMPA/FPSVO**2		EPSPL (1)=XDCUG1*((1XDGUG3)**2)*ABS(FCN(1))*GAMMA	EFF01340
OCTION E DSTARK = 0.0 DO 110 1 = 2, 1E FAC = 1.00 - FC(1) FAC = 1.00 - FC(1) FAC = 1.00 - FC(1-1) DSTARK = DSTARK + 0.5 D0 * DN (1-1) * (FAC 1 + FAC 2) * PNC * EPSVD GONTINUE ANG = BCDANG IF (TVC * EC * VES * AND * RW * GT * 1 * D - CB) DSTARK = RW / DCCS (ANG) * (-1 * D0 + DSGRT(1) II * D0 + 2 * D0 * DCCS (ANG) * DSTARK / FW) IF (TVC * EQ * VES * AND * RW * LE * 1 * D - CB) DSTARK = DSGRT(2 * D0 * DSTARK) II * D0 + 2 * D0 * DCCS (ANG) * EC * V * IE * DELTA) IF (TVC * EQ * VES * AND * FC * V * IE * DELTA) CALL INTER PULATE FUR DELTA MITH INTERP ANG TLU CALL INTER FORY VISCOSITY LAW CHIMAX = 0. DC 120 1 = 2, IE CHIMAX = 0. CHIMAX = 0. GA * FE = 1.0 * (1 * 0 + 5 * 5 * 0 * (1 * 1) / DELTA) * * 6 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	06	CUNTINUE	EFF01350
DSTARK=0.0 DC 110 I=2,1E FACI=1.00-FC(1) FAC2=1.00-FC(1-1) DSTARK=DSTARK+0.5CO*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CAC2=1.00-FC(1-1) DSTARK=DSTARK+0.5CO*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CCNTINUE ANG=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.D-G8) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DSTARK)RW)) IF (TVC.EG.YES.AND.RW.LE.1.D-G8) DSTAFK=DSGRT(2.D0*DSTAPK) INTERPLATE FUR DELTA MITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) TUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 I=2,IE CHIMAX=0. DC 120 I=2,IE CHIMAX=0. IF (CHIMAX=0.0) I	100	CCNTINUE	EFF01360
DC 110 I=2,1E FAC1=1.00-FC(1) FAC2=1.00-FC(1) FAC2=1.00-FC(1) DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD AN5=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(1.D0+2.D0*DCGS(ANG)*BSTARK/RW)) IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTAFK=DSQRT(2.D0*DSTAPK) II.U0+2.D0*DCGS(ANG)*DSTARK/RW)) IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTAFK=DSQRT(2.D0*DSTAPK) CALL INTERPULATE FUR DELTA WITH INTERP ANC TLU CALL INTERPULATE FUR DELTA WITH INTERP ANC TLU CHIMAX=0. CHIMAX=0. DC 120 I=2, IE CHIMAX=0. DC 120 I=2, IE CHI(I) = 0.0 IF (CHI(I) = 0.0 IF (CHI(I) = 0.0 IF (CHI(I) = 0.0 IF SEU(I) = XK2*UE*USTARK*GAMF*GAMF*ACFPSVD**2		DSTARK=0.0	EFF01370
FACI=1.DO-FC(1) FAC2=1.DO-FC(1-1) DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD GONTINUE ANS=BCDANG If (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DCGNANG)*(-1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+2.D0*DCGNANG)*(-1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+2.D0*DCGNANG)*(-1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+2.D0*DCGNANG)*(-1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DCGNANG)*(-1.D0+3.DELTA) INTERPLATE FUR DELTA NITH INTERP ANC TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) CHIMAX=0. CHIMAX=0. CHIMAX=0. CHIMAX=0. CHIMAX=0. CHIMAX=0. CHIMAX=0. CHIMAX=0. EPSU(1)-STCHIMAX) CHIMAX=CHI(1) GAMF=1.0/(1.045.50*(Y(1)/DELTA)**E) EPSU(1)=XK2*UE*DSTARK*GAMF*GAMF*ACPSVO**2		DC 110 I=2, IE	EFF01380
FAC2=1.00-FC(1-1) DSTARK=DSTARK+0.500*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CONTINUE ANS=BUDANG If (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(1.D0+2.D0*DCSCANG)*RW.LF.1.D-C8) DSTAFK=DSGRT(2.D0*DSTAFK) II.00+2.00*DCCS(ANG)*DSTARK/FW)) IF (TVC.EQ.YES.AND.RW.LF.1.D-C8) DSTAFK=DSGRT(2.D0*DSTAFK) INTERPULATE FUR DELTA WITH INTERP ANC TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) CHIMAX=0. DC 120 I=2,IE CHI(I)=0.0 IF (CHI(I)=0.0 IF (CHI(I)=0.0 IF (CHI(I)=0.0) EPSU(I)=XK2*UE*USTARK*GAMF*GAMF*AFPSVD**2		FAC1=1.00-FC(1)	EFF01390
DSTARK=DSTARK+0.5D0*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD CGNTINUE ANG=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.0D-08) DSTAFK=RW/DCCS(ANG)*(-1.00+DSGRT(IL.00+2.00*DCGS)ANG)*(-1.0D-08) DSTAFK=BW/DCCS(ANG)*(-1.00+DSGRT(IL.00+2.00*DCGS)AND.RW.LE.1.0D-C8) DSTARK=DSGRT(2.00*DSTAPK) IF (TVC.EQ.YES.AND.RW.LE.1.0D-C8) DSTARK=DSGRT(2.00*DSTAPK) INTERPULATE FUR DELTA WITH INTERP ANG TLU CALL INTERP (0.9950D0.FC.Y,IE,OELTA) OUTER EDGY VISCOSITY LAW CHIMAX=0. DC 120 1=2,IE CHI(I)=0.0 IF (CHI(I)=0.0 IF (CHI		FAC2=1.00-FC(1-1)	EFF01400
ANS=BCDANG IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.DO+DSGRT(11.DO+2.DO*DCCS(ANG)*(-1.DO+DSGRT(11.DO+2.DO*DCCS(ANG)*(-1.DO+DSGRT(11.DO+2.DO*DCCS(ANG)*(-1.D-0.B)) IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTAFK=DSQRT(2.DO*DSTAPK) INTERPULATE FUR DELTA hITH INTERP ANC TLU CALL INTERP (0.9950DO,FC,Y,IE,DELTA) OUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 I=2,IE CHI(I)=0.0 IF (CHI(I)-0.0 IF (CHI(I)-0.0 IF (CHI(I)-0.45.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*DSTARK*GAMF*CEAPPA/EPSVO**2		DSFARK=DSTARK+0.500*DN(I-1)*(FAC1+FAC2)*PNC*EPSVD	EFF01410
ANS=BODANG IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.DO+DSGRT(11.DO+2.DO*DCDS(ANG)*DSTARK/RW)) IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTARK=DSGRT(2.DO*DSTAPK) INTERPLATE FUR DELTA HITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) TUTER FDCY VISCOSITY LAW CHIMAX=0. DC 120 I=2,IE CHIMAX=0. IF (CHIMAX) CHIMAX=CHIMA GAMF=1.0/(1.045.50*(Y(1)/DELTA)**6) EPSU(1)=XX2*UE*DSTARK*GAMF*GAMPA/EPSVD**2	110	CONTINUE	EFF01420
ANS=BODANG IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSQRT(II.D0+2.D0*DCDS(ANG)*DSTARK/RW)) IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTAFK=DSQRT(2.D0*DSTAPK) INTERPULATE FUR DELTA WITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) OUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 1=2,IE CHIMAX=0. IF (CHI(I).GT.CHIMAX) CHIMAX=CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*DSTARK*GAMF*GAMPA/EPSVO**2	ں		EFF01430
IF (TVC.EC.YES.AND.RW.GT.1.D-08) DSTAFK=RW/DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DCCS(ANG)*(-1.D0+DSGRT(11.D0+2.D0*DCCS(ANG)*(-1.D0+DCCS(ANG)*(-1.D0+DCCS(ANG)*(-1.D0+DCCS(ANG)*(-1.D0-C8) DSTARK=DSGRT(2.D0*DSTAPK) INTERPULATE FUR DELTA MITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) CHIMAX=0. CHIMAX=0. CHIMAX=0. IF (CHIMAX=0.0 IF (CHIMAX) CHIMAX=CHIMA) GAMF=1.0/(1.0+5.50*(Y(1)/DELTA)**6) EPSU(1)=XK2*UE*DSTARK*GAMF*GAMPA/EPSVD**2		ANS=BODANG	EFF01440
11.00+2.00*0C0S(ANG)*DSTARK/FW)) IF (TVC.EQ.YES.AND.RW.LE.1.0-C8) DSTARK=DSQRT(2.00*DSTAPK) INTERPULATE FUR DELTA hITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) TUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 1=2,IE CHI(I)=0.0 IF (CHI(I)-GT.CHIMAX) CHIMAX=CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSVO**2			T(EFF01450
IF (TVC.EQ.YES.AND.RW.LE.1.D-C8) DSTARK=DSQRT(2.DO*DSTAPK) INTERPULATE FUR DELTA WITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) OUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 1=2,IE CHI(I)=0.0 IF (CHI(I)-6T.CHIMAX) CHIMAX=CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSVO**2		11.00+2.00*DCOS(ANG)*DSTARK/RW))	EFF01460
INTERPULATE FUR DELTA WITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) OUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 I=2,IE CHI(I)=0.0 IF (CHI(I)-6T.CHIMAX) CHIMAX=CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2			EFF01470
INTERPULATE FUR DELTA WITH INTERP AND TLU CALL INTERP (0.9950D0,FC,Y,IE,DELTA) OUTER EDDY VISCOSITY LAW CHIMAX=0. DC 120 1=2,IE CHI(I)=0.0 IF (CHI(I)=0.0 EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2	J		EFF01480
CALL INTERP (0.9950D0,FC,Y,IE,DELTA) OUTER EDCY VISCOSITY LAW CHIMAX=0. DC 120 I=2,IE CHI(I)=0.0 IF (CHI(I).GT.CHIMAX = CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2	J	FUR DELTA WITH INTERP	EFF01490
CALL INTERP (0.9950D0,FC,Y,IE,DELTA) nuter edgy viscosity Law CHIMAX=0. DC 120 I=2,IE CHI(I)=0.0 If (CHI(I).GT.CHIMAX = CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2	ن		EFF01500
CHIMAX=0. CHIMAX=0. DC 120 I=2, IE CHI(I)=0.0 IF (CHI(I) of CHIMAX CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2		CALL INTERP (0.9950D0, FC, Y, IE, DELTA)	EFF01510
CHIMAX=0. CHIMAX=0. DC 120 I=2, IE CHI(I)=0.0 IF (CHI(I).6T.CHIMAX = CHI(I) GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*DSTARK*GAMF*GAMPA/EPSV0**2	ں		EFF01520
CHIMAX=0. DC 120 I=2, IE CHI(I)=0.0 IF (CHI(I).GT.CHIMAX) CHIMAX=CHI(I) GAMF=1.0/(1.045.50*(Y(I)/DELTA)**6) EPSU(I)=XK2*UE*USTARK*GAMF*GAMPA/EPSV0**2	U	OUTER EDDY VISCOSITY LAW	EFF01530
• IE • GT.CHIMAX) CHIMAX=CHI(I) 1.045.50*(Y(I)/DELTA)**6) 2*UE*DSTARK*GAMF*GAMMA/EPSVD**2	ن		EFF01540
*IE *GT.CHIMAX) CHIMAX=CHI(I) 1.045.50*(Y(I)/DELTA)**6) 2*UE*DSTARK*GAMF*GAMMA/EPSVD**2		CHIMAX=0.	EFF01550
.GT.CHIMAX) CHIMAX=CHI(I) 1.0+5.50*(Y(I)/DELTA)**6) 2*UE*DSTARK*GAMF*GAMPA/EPSVD**2		DC 120 I=2, IE	EFF01560
.GT.CHIMAX) CHIMAX=CHI(I) 1.0+5.50*(Y(I)/DELTA)**6) 2*UE*DSTARK*GAMF*GAMPA/EPSVD**2		CHI(I)=0.0	EFF01570
1.045.50*(Y(I)/DELTA)**6) 2*UE*DSTARK*GAMF*GAMMA/EPSVD**2		IF (CHI(I). GT.CHIMAX) CHIMAX=CHI(I)	EFF01580
2*UE*DSTARK*GAMF*GAMPA/EPSVD**2		GAMF=1.0/(1.0+5.50*(Y(I)/DELTA)**6)	EFF01590
		EPSU(1)=XK2*UE*USTARK*GAMF*GAMPA/EPSVO**2	EFF01600

```
EFF01840
                                                                                                                                                                                                                                                                       EFF01850
            EFF01620
                       EFF01630
                                                                  EFF01670
                                                                             EFF01680
                                                                                        EFF01690
                                                                                                   EFF01700
                                                                                                             FFF01710
                                                                                                                                    EFF01730
                                                                                                                                               EFF01740
                                                                                                                                                          EFF01750
                                                                                                                                                                    EFF01760
                                                                                                                                                                               EFF01770
                                                                                                                                                                                         EFF01780
                                                                                                                                                                                                     EFF01790
                                                                                                                                                                                                                EFF01800
                                                                                                                                                                                                                           EFF01810
                                                                                                                                                                                                                                     EFF01820
                                                                                                                                                                                                                                                 EFF01830
  EFF91610
                                 EFF01640
                                            EFF01650
                                                        EFF01660
                                                                                                                         EFF01720
                                                                                                                                                                                                                                     (1H ,14H FAC,CF,EPSVD /4F15.6///)
(28H1 TRANSITION BEGINS/)
                                                                                                                                                                                                                                                                      TRANSITION ENDS/)
                                                       (EPSPL(1).LT.EPSC(1)) 60 TC 130
                                                                                                                                                         A08(1)=(1.+EPSPL(1))*RORWSQ(1)
                                                                                                                                                                              CALL DERIV3 (AOB, XN, IE, 1, AOBP)
                     (XK2.GT.100.0) GO TO 140
                                                                                                                        FPSPL (1)=FPSO(1)
                                                                                                             DC 150 I=II , IE
                                            130 I=1, IE
                                                                                                                                               DO 170 I=1, IE
                                                                                                                                                                                                                                                          (1H1)
                                                                                                                                                                                                                                                                      (26H1
                                                                             GC TC 140
                                                                                                                                                                    CONTINUE
                                                                                                                                   CONTINUE
                                                                                       CCNTINUE
CCNT INUF
                                                                                                                                                                                                                                     FURMAT
                                                                                                                                                                                                                                               FORMAT
                                                                                                                                                                                         RETURN
                                                                                                                                                                                                                                                          FURMAT
                                                                                                                                                                                                                                                                      FCRMAT
                                                                                                   11=16
            1=1
                                                                  CNE
                                                                                                                                                                                                                                     180
                                                                                                                                                                                                                                                          200
                                                                                                                      150
                                                                                                                                                                    1 70
                                                                                                             40
```

	SUBROUTINE EGPROP (IFLAG)	EGP 0	10
		EGPO	20
ں			30
ی	SUBROUTINE EGPROP CALLS SUBRCUTINES BLUNT2 AND CONEZ.	ECP0	40
S		EGP0	20
ں	SUBROUTINE EGPROP IS CALLED BY SUBROUTINE DELTAS.		09
C		EGP0	10
٥	SUBROUTINE EGPROP CBTAINS EDGE PROPERTIES FOR SPECIFIED GEOMETRY		80
ر			06
U		EGPO	100
	COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTCP, KL, KVSLAW, NIT, NITI, NITZ, NITEGPO		110
	13,NOSE		120
ی		EGPO	130
ی		EGPO	140
	, 201, NUSE		150
10		EGPO	160
	UNT2 (IFLAG)		170
	RETURN	EGPO	180
20		EGPO	150
	GNE2 (IFLAG)	EGPO	200
	URN	ECPO	210
	END	EGPO	220

,F2,F3,FX)	
SUBROUTINE FD3 (X+X1+X2+X3,F1,F2,F3,FX)	170
1X,X1	2
INE FD3	
SUBROUT	

SUBROUTINE FD3 IS CALLED BY SUBRCUTINE DERIVS.

SUBROUTINE FD3 CALCULATES THE FIRST DERIVATIVE-FX-CORRESPONDING TO POINT X USING 3 POINT LAGRANGIAN DIFFERENTIATION FORMULA.

ASSUMES X1 .LF. X .LE. X3.

1=2.0*X-X2-X	2=2.0#X-X1-X	3=	1=(x1-x2)*(x1-x	2=(x2-x1)*(x	3=(X3-X1)*(X3-X	1-41/01	2=A2/3	3=43/0	X=C1*F	S.	S
A	AZ	A3	0	02	93	5	C	23	û	R	u

SUBROUTINE FD5 (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,FX)	F050	10
IMPLICIT REAL*8(A-H,0-Z)	FD50	20
	F050	30
SUBROUTINE FDS IS CALLED BY SUBROUTINES BLUNTI, BLUNT2, CCNEI	FD50	40
AND CONE2.	F050	50
	FD50	9
SUBROUTINE FOS CALCULATES THE FIRST DERIVATIVE-FX-CORRESPONDING	F050	10
TO PUINT X USING 5 POINT LAGRANGIAN DIFFERENTIATION FORMULA	FD50	80
	FD50	06
ASSUMES XI .LE. X .LE. X5.	F050	100
	FD50	110
A1=(X-X4)*(X-X5)*(2.0*X-X2-X3)+(X-X2)*(X-X3)*(2.0*X-X4-X5)	F050	120
A2=(X-X4)*(X-X5)*(2.0*X-X1-X3)+(X-X1)*(X-X3)*(2.0*X-X4-X5)	F050	130
A3=(X-X4)*(X-X5)*(2.0*X-X1-X2)+(X-X1)*(X-X2)*(2.3*X-X4-X5)	F050	140
A4=(X-X3)*(X-X5)*(2.0*X-X1-X2)+(X-X1)*(X-X2)*(2.0*X-X3-X5)	F050	150
A5=(X-X3)*(X-X4)*(2.0*X-X1-X2)+(X-X1)*(X-X2)*(2.0*X-X3-X4)	F050	160
01=(X1-X2)*(X1-X3)*(X1-X4)*(X1-X5)	FD50	170
$02=(x_2-x_1)*(x_2-x_3)*(x_2-x_4)*(x_2-x_5)$	FD50	180
03=(X3-X1)*(X3-X2)*(X3-X4)*(X3-X5)	F050	190
D4=(X4-X1)*(X4-X2)*(X4-X3)*(X4-X5)	F050	200
D5=(X5-X1)*(X5-X2)*(X5-X3)*(X5-X4)	F050	210
C1=A1/D1	FD50	220
C2=A2/02	FD50	230
C3=A3/D3	F050	240
C4=A4/04	F050	250
C5=A5/05	FD50	
FX=C1*F1+C2*F2+C3*F3+C4*F4+C5*F5	F050	
RETURN	F050	280
END	FD50	290

SUBROUTINE GEOM	GEOO	01	
IMPLICIT REAL+8(A-H,U-Z)	CED0	50	
	CE00	30	
SUBROUTINE GEOM CALLS SUBROUTINES BLUNTI AND CONEI.	CE00	40	
	GE DO		
SUBROUTINE GEOM IS CALLED BY MAIN AND SUBROUTINE INIT.	GEOO		
	GED0		
SUBROUTINE GEGM OBTAINS EDGE PROPERTIES FOR SPECIFIED SECMETRY	GECO		
FOR THE INITIAL VALUE OF X.	GFOO		
	GE00		
CC4MCN /INTGR/ IE, IIMAX, IM, IPPNT, ISTCP, KL, KVSLAW, NIT, NITI, NITZ, NITGEDO	VITGEDO	110	
13,NOSE	GEOO		
	GF00		
NCSE=1 BLUNT BNDY	GEDO		
NOSE=2 SHARP NOSE BODY	CED0	150	
	GEOO		
GO TO (10,20), NCSE	GEOO		
CALL BLUNT1	GE CO		
RETURN	GEOO		
CCNTINUE	CEDO		
CALL CONEI	GECO		
RETURN	GEDO		
CNB	GEO0		

	INIO 10
IMPLICIT REAL*8(A-H,O-Z)	
SUBROUTINE INIT CALLS SUBROUTINES DELTAS AND GEOM.	
SUBROUTINE INIT IS CALLED BY MAIN.	INIO 60
THIS SUBROUTINE PROVIDES INITIALIZATION OF DATA FOR THE PROGRAM. IN	
	06 OINI
CUMMUN /ARRAYZ/ PL(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(INIO	
11011,82(501)	
, DIF, CIFF, NC	
	INIO 130
CUMMON /CGMALL/ ALB, El, FF, F2NI, VW	INIO 140
	INIO 150
PP, UE, UEROZ, UESO	
COMMON /FRSTRM/ PFS, REINF, RHOFS, UFS	
CUMMON /GECME/ DS,UX,DX1,UXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XIZ, XIQLDINIO	10 180
1, XJ, XJFAC, Z, ZOL, RO	
COMMON /INTGR/ IE, IIMAX, IM, IPFNT, ISTOP, KL, KVSLAW, NIT, NITI, NITZ, NITINIO	10 200
13,NUSE IN	
CUMMON /NTEGER/ II, IPFL, IPRINI, JJ, K, KADETA, KEND, KEP, KSTOP, KTRNSN, LINIO	
1AMTRB, NITTOT	
r, uref	INTO 240
CUMMON /STAG/ P10,PSTAS	
/TRANS/ ATR, CHICRT, CHIMAX, GAMMA, XBAR, XIBAR, KTRANS	INIO 260
CUMMON /VSCSTY/ EPSVD,XKI,XK2	
CCM40N /STAG4/ UECN, PECN	INIO 280
CCMMON /TVCURV/ TVC, BODANG, RTVC(101), RORW(101), RORWSQ(101), RW IN	
SITE	
/WAK/ XKFAC	
COMMON / DRAG/ CDV1, CDV2, XCP1 IN	INIO 320

Court 3 2000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
DAIA TESSING SHIESS, CHINO	DINI	
	INIO	
	INIO	
3QDANG=0.DO	INIO	
IF (TVC.EQ.NO) RW=1.D0	INIO	
(STA(IIMAX+1)=-2.E6	INIO	
XSTA = -2.E6 TERMINATES SOLUTION	INIO	
(FP=0	INIO	
KJAY= XJFAC	CINI	
CF=1,00	CINI	
0.0=#/	INIO	
(STUP=0	INIO	
11=2	INIO	
[PRNT=1	INIO	
0.0=MJS	INIO	
0.001=0.0	INIO	
SU41=0.0	OINI	
SUMT=0.0	INIO	
Z=ZA(1)	INIO	
(=XSTA(1)	INIO	
KI=0.00	CINI	
KI2=2.00*XI	INIO	
XIOLD=XI	INIO	
X-G-D=X	INIO	
0xCL0=0.0	INIO	
05=1.00	INIO	
CCAN I = 1 • 30 - CRN I	INIO	
E1=3.00	INIO	
1N=1.00	0171	
FF=0.00		
	O I N	630
	7717	

INIO

810

840

OIN

850

INIO

830

OINI

GINI

870

INIO

OINI

880

CINI

006

N N N N N

OINI

910 920 930

940

190

OINI

INIO

069

7100

740 750 770 780

NNNN

099

NNNNNN

670

```
IF (TVC.EQ.YES) X=XSTA(1)+0.0100
IF (TVC.EQ.YES) X=XSTA(1)+0.00025
                                                                                                                                                                                                                                                                                                                                                                                                                               IF (XKFAC.GT.1.0-04) UER02=UE*#3
                                                                                                                                                                                                                                                                                                                                                                                                              IF (TVC.EQ.YES) UER02=UF *R0**2
                                                                                                                                         PHUFS=2.*(PSTAG-PFS)/(UFS*UFS)
                                                    IF (LAMTRB.EQ.1) GAMMA=0.0
                                                                                                                                                                                                                                IF (LAMTRB.NE.2) GO TO 20
                                                                                                                                                                                                                                                                                                                                                         IF (TVC.EQ.YES) DX=.00025
                                                                                                                                                                                                              IF (NOSE.EQ.1) SC TO 20
                                                                                                                                                                                              IF (NOSE. EQ. 2) GG TC 10
                                                                                                                                                                                                                                                                                                                        RO=X*DSIN(BCDANG)
                                                                                                                                                                                                                                                                    K=XSTA(1)+1.D-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                 CALL DELTAS
                CHIMAX=0.0
                                                                                                                                                            CALL GEOM
                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                         DX=0.010
                                                                                                                                                                                                                                                                                                                                                                                             UEROZ=UE
                                  GAMMA=1.
                                                                    XIBAR=0.
                                                                                      KTSTTE=0
ISTUP=0
                                                                                                        IM=1E-1
                                                                                                                                                                                                                                                                                                                                                                             X=CTOX
                                                                                                                                                                              DX1=DX
                                                                                                                         17=1
                                                                                                                                                                                                                                                   10
```

2 0

RETURN

END

CONTINUE

OX=UXI

INPO	01	
INPO	20	
INPO	30	
INPO	04	
INPO	20	
INPO	09	
INPO	10	
INPO	80	
INPO	06	
INPO	100	
INPO	110	
INPO	120	
INPO	130	
INPO	140	
INPO	150	
INPO	160	
INPO	170	
INPO	180	
INPO	190	
INPO	200	
INPO	210	
INPO	220	
	230	
FURMAT (IHC, 10x, 38HINADAQUATE TABLE FCR SUBROUTINE INTERP, // 111X, 43INPO	240	
INPO	250	
INPO	560	
n in the second		

SUBROUTINE INTER3 (X,X1,X2,	X2,X3,F1,F2,F3,F)	INTO	
IMPLICIT REAL*8(A-H,0-Z)		INTO	20
		INTO	30
SUBRCUTINE INTER3 IS CALLED BY SUBRGUTINE ADDETA.	LED BY SUBROUTINE ADDETA.	INTO	
		INTO	
SUBROUTINE INTER3 INTERPOLA	SUBROUTINE INTER3 INTERPOLATES FOR THE VALUE F CORRESPONDING TO	INTO	
POINT X USING 3 POINT LAGRANGIAN INTERPOLATION.	GRANGIAN INTERPOLATION.	INTO	70
		INTO	
ASSUMES XI .LE. X .LE. X3.	3.	INTO	
		INTO	
A1=(x-x2)*(x-x3)		INTO	
A2=(X-X1)*(X-X3)		INTO	
A3=(X-X1)*(X-X2)		INTO	
01=(x1-x2)*(x1-x3)		INTO	
D2=(X2-X1)*(X2-X3)		INTO	
D3=(X3-X1)*(X3-X2)		INTO	
C1=A1/D1		INTO	
C2=42/02		INTO	
C3=A3/D3		INTO	
F=C1*F1+C2*F2+C3*F3		INTO	
RETURN		INTO	
ENO		INTO	

SUBRGUTINE INTERS (X, X1, X2, X3, X4, X5,F1,F2,F3,F4,F5,F)	INFO	01
IMPLICIT REAL *8 (A-H, 0-Z)	INFO	20
	INFO	30
SUBROUTINE INTERS IS CALLED BY SUBROUTINES BLUNTI, BLUNTZ, CONEI,	INFO	40
CONE2, INIT, ZRO, AND INTRPS.	INFO	20
	INFO	9
SUBROUTINE INTERS INTERPOLATES FOR THE VALUE F CORRESPONDING TO .	INFO	10
POINT X USING 5 POINT LAGRANGIAN INTERPOLATION FORMULA.	INFO	80
	INFO	90
ASSUMES X1 .LF. X .LE. X5.	INFO	100
	INFO	110
$A1=(X-X2)*(X-X_3)*(X-X_4)*(X-X_5)$	INFO	120
A2=(X-X1)*(X-X3)*(X-X4)*(X-X5)	INFO	130
A3=(X-X1)*(X-X)*(X-X4)*(X-X5)	INFO	140
$A4=(x-x1)*(x-x^2)*(x-x3)*(x-x5)$	INFO	150
A5=(X-X1)*(X-X4)*(X-X3)*(X-X4)	INFO	160
D1=(X1-X2)*(X1-(X3)*(X1-X4)*(X1-X5)	INFO	
02=(x2-x1)*(x2-x3)*(x2-x4)*(x2-x5)	INFO	
D3=(X3-X1)*(X3-X2)*(X3-X4)*(X3-X5)	INFO	
04 = (x4 - x1) * (x4 - x2) * (x4 - x3) * (x4 - x5)	INFO	
05=(x5-x1)*(x5-x2)*(x5-x3)*(x5-x4)	INFO	
C1=A1/01	INFO	
C2=A2/02	INFO	
C3=A3/03	INFO	240
C4=A4/04	INFO	
C5=A5/D5	INFO	
F=C1*F1+C2*F2+C3*F3+C4*F4+C5*F5	INFO	270
RETURN	INFO	
END	INFO	290

SUBROUTINE INTRP3 (XX,X,Y,NPNTS,YY)	INTO	10
IMPLICIT REAL *8(A-H, D-Z)	INTO 20	20
	INTO	30
SUBROUTINE INTRP3 SETS UP THE CALLING ARGUMENT FOR	INTO	40
SUBROUTINE INTER3	INTO	50
	INTO	9
	INTO	10
WHICH CORRESPONDS TO THE VALUE XX IN ARRAY X	INTO	80
	INTO	05
DIMENSION X(1), Y(1)	INTO	100
	INTO	110
JC=0	INTO	120
JC=JC+1	INTO	130
IF (XX.GT.X(JC)) GO TO 10	INTO	140
IF (JC.LT.2) JC=2	INTO	150
IF (JC.GT.(NPNTS-1)) JC=NPNTS-1	INTO	160
CALL INTER3 (XX,X(JC-1),X(JC),X(JC+1),Y(JC-1),Y(JC),Y(JC+1),YY)	INTO	170
RETURN	INTO	180
END	INTO	190

SUBROUTINE MCMENT IMPLICIT REAL*8(A-H, 0-Z)		000
SUBROUTINE MOMENT CALLS SUBROUTINES EFFMU AND SOLVE.		0 0 0
SUBROUTINE MOMENT IS CALLED BY MAIN.	NOW O	200
		10
THIS SUBROUTINE PROVIDES THE SOLUTION FOR THE MOMENTUM EQUATION. MO	MOMO	80
9	MCM0	06
CCMMON /ARRAYI/ AOB(101), ACBP(101), A1(101), A2(101), A3(101), A4(101)MCMO		100
1,CHI(101),DN(102),DN2(102),EPSO(101),EPSPL(101),F1(101),F1N(101),FMCMO		110
21NN(1911, F2(1011, F2N(1011, F2NN(101), FC(101), FCN(101), FCP(101), VC(1MCMO		120
301), XN(102), XN2(102), Y(101), YCVDEL (101), YCVTHT(101), YY(101)		130
		0 4
CCMMGN /COEFF/ CFBAF, CFPREX, CFE, CFINF, CFRES, CFREY, DEL, DELST, DELTA, MOMO		20
_		160
	MUMO 1	170
COMMON /EDGPRP/ BETA, JUEDS, PE, PESO, PP, UE, UEROZ, UESO		180
COMMON /GEOME/ DS,DX,DXI,DXMAX,DXCLD,PNC,REFLEN,SCF,X,XI,XI2,XIOLDMGMO		190
1, XJ, XJFAC, Z, ZCL, RO MC		200
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTOP, KL, KVSLAW, NIT, NITI, NITZ, NITMCMO		210
13,NOSE		220
CCMMON /NTEGER/ II, IPFL, IPRINI, JJ, K, KADETA, KEND, KEP, KSTCP, KTRNSN, LMCMO		230
	MCMO 2	0,
	MCMO 2	250
CC-MON /TE/ KTE, KTSTTE MO	MCMO 2	260
	MOMO 2	270
	MCMO 2	80
ABS(X)=DABS(X)	MOMO 2	290
	HCMO 3	300
	MOMO 3	310
D1F=0.00	MCHO 3	50

GN SCLUTION ON COEFFICIENTS 1)/AOB(N) AOB(N) TO 20 TO 20 1 GO TO 30 DERIV3 (F2,XN,IE,1,F2N) BERIV3 (F2,XN,IE,1,F2N) HOORIV3 (F2N,XN,IE,1,F2N) HOORIV3 (F2N,XN,IE,1,FZN) HOORIV3 (F2N,XN,IE,1,FZN,IE,1,FZN) HOORIV3 (F2N,XN,IE,1,FZ	CALL EFFMU (LAMTRB, KEP, DSTARK)	MOMO	
TUM EQUATION SCLUTION MONO MONO		OWOW	
### ##################################	EQUATION	MOMO	
### ##################################	EQUATION	MOMO	
### ##################################		MCMO	
BP (N) - VC(N) 1/A 0B (N)	DO 10 N=2,IM	MOMO	
### ### ##############################	AI(N)=(A0BP(N)-VC(N))/A0B(N)	MOMO	
#XI*FC(N)/A0B(N) #XI*FC(N)/A0B(N) #MOMO	A2(N) =-BETA*FC(N)/A0B(N)	MCMO	
*XI*FC(N)/AOB(N) WOMO E.EQ.O) GO TO 20 MCMO MCMO F(FINN,FIN,FI,F2NN,F2,BC1,BC2,CRNI) WOMO *IE (FINN,FIN,FI,F2NN,F2,BC1,BC2,CRNI) WOMO *GT.1.OE-6) GO TO 30 MCMO *GO.1) CALL DERIV3 (F2,XN,IE,1,F2N) MOMO *GO.1) CALL DERIV3 (F2,XN,IE,1,F2N) MOMO *TIVE CUNVERGENCE TEST AT WALL MOMO *CO.1) CALL DERIV3 (F2,XN,IE,1,F2N) MOMO *CO.1) GO TO 40 MCMO *CO.1) F2(1) 1/XN(2) *CO.1) MOMO *CO.1) MOM	A3(N)=BETA/A08(N)	MOMO	
F.EQ.O) GO TO 20 MCMO MC	A4(N) =-2.*XI*FC(N)/A0B(N)	MOMO	
NOW	CONTINUE	MCMO	
F.EQ.O GO TO 20 MOMO MO	9C1=E1	MOMO	
E.EQ.O GO TO 20 MCMO M		MOMO	
HOMO HOMO	E.EQ.0) 60 TO	MCMO	
MCMO HDMO HDMO HDMO HDMO HDMO HDMO HDMO HD	BC1=1.00	MOMO	
HDMO (FINN,FIN,FI,F2NN,F2,BCI,BC2,CRNI) (FIL) (GT-1.06-6) (GT-1.06	8C2=0.00	MOMO	
F		MOMO	
HOMO HOMO HOMO HOMO HOMO HOMO HOMO HOMO) H	MOMO	
MOMO 1. GT.1.0E-61 GO TO 30 MOMO 1. GT.1.0E-61 GO TO 40 MOMO	KF2=0	OWOW	
- GT-1.0F-6 GO TO 30 MOMO	DC 30 N=2,1E	MOMO	
MGMO MGMO MGMO MGMO MGMO MGMO MGMO MGMO	60 10	MOMO	
MGMO GQ.1) CALL DERIV3 (F2,XN,IE,1,F2N) GQ.1) CALL DERIV3 (F2N,XN,IE,1,F2N) GQ.1) CALL DERIV3 (F2N,XN,IE,1,F2N) MGMO MCMO MTIVE CUNVERGENCE TEST AT WALL MCMO	KF2=1	MOMO	
### ### ##############################	F2(N)=1.0E-6	MOMO	
EQ.1) CALL DERIV3 (F2,XN,IE,1,F2N) EQ.1) CALL DERIV3 (F2N,XN,IE,1,F2NN) E.0) GC TO 40 MUMO ATIVE CUNVERGENCE TEST AT WALL MOMO MCMO		MOMO	
IV3 (F2N,XN,IE,1,F2NN) MCMO MCE TEST AT WALL MCMO MCMO MCMO MCMO MCMO MCMO MCMO MC	Q.I) CALL DERIVS	MOMO	
NCE TEST AT WALL MOMO	(KF2.EQ.1) CALL DERIV3	MCMO	
NCE TEST AT WALL MOMO	00 10	MUMO	
NCE TEST AT WALL MOMO		MCMO	
OWOW	E CUNVERGENCE TEST AT	MOMO	
OWOM		MCMO	
CHON	FPW=(F2(2)-F2(1))/XN(2)	MOMO	
CHOR	DIFF=(FPW-FPWW)/FPW	MCMO	

3 OF 4 ADA 074972

MICROCOPY RESOLUTION TEST CHART

	MONTH LON
	IF (DIFF.GT.DIF) DIF=DIFF
40	CONTINUE
	IF (K.GT.1) GC TC 60
	0C 50 N=1,1E
	F1(N)=F2(N)
	FIN(N)=F2N(N)
20	FINN(N)=F2NN(N)
09	CONT INUE
	IF (NC. EQ.0) GC TC 80
	DC 70 N=2,1F
J	
U	ALL POINTS CONVERGENCE TEST
J	
	DIFF=ABS(1.0-FC(N)/F2(N))
	DIFA(N)=DIFF
	IF (DIFF.GT.DIF) DIF=DIFF
02	CONTINUE
80	CCNT INUE
	OC. 90 N=1, IE
	FCP(N)=(F2(N)-F1(N))/0S
	FCN(N)=F2N(N)*CRNI+FIN(N)*CCRNI
06	FC(N) =F2(N) *CPNI+F1(N) *CCRNI
	RITIAN

SUBROUTINE PRFILE	PRFO	10
IMPLICIT REAL#8(A-H,0-Z)	PRFO	
	PRFO	30
SUBRCIUTINE PRFILE IS CALLED BY MAIN.	PAFO	
	PRFO	
SUBROUTINE PRFILE GENERATES THE INITIAL VELOCITY PROFILE.	PRFO	09
	PRFO	10
CCMMCN /ARRAYI/ AOB(101), AOBP(101), AI(101), A2(101), A3(101), A4(101)PRFO	101)PRF0	60
1, CHI (1011, DN(102), DK2(102), EPSC(101), EPSPL(101), F1(101), F1N(101), FPRFO	1), FPRFO	05
21NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101)	VC(1PRF0	100
301), XN(102), XN2(102), Y(101), YCVDEL (101), YGVTHT(101), YY(101)	PRED	
CCMMON /CUMMLL/ A18,E1,FF,F2N1,VM	PRFO	
CCMMON /EDGPRP/ BETA, DUEDS, PE, PESO, PP, UE, UEROZ, UESO PP.F.O	PP.F.O	130
CCMMCN /GEUME/ DS.CX.DXI.DXMAX,DXCLD,PNC.REFLEN.SCF.X,XI,XIZ,	IULDPRFO	
1, X J, X J F A C, Z , ZDL, R O	PRFO	
CCMMON /INTGR/ IE, IIMAX, IM, IPFNT, ISTCP, KL, KVSLAW, NIT, NITI, NITZ, NITPRFJ	. NITPRED	160
13,NUSE	PRFO	
CCMMON /NMLCRD/ ADTEST, ETAINF, XKETA	PRFO	
CCMMCN /REF/ PREF, RHOREF, URFF	PRFU	
CUMMON /CFPR/ CF	PRFJ	
COMMON /VSCSTY/ EPSVD, XKI, XK2	PRFO	
CCMMON /TVCURV/ TVC, BCDANG, FTVC(101), FCRW(101), ROPWSQ(101), RW	PRFO	
COMMON /SPIVC/ RNCSE	PRFO	
COMMEN /WAK/ XKFAC	PRFO	
DATA YES/3HYES/	PRFO	
	PRFO	260
	PRFO	
EXP(X)=0EXP(X)	PRFO	
FLCAT(M)=DFLOAT(M)	PRFO	
	PRFO	
DEVELOP INITIAL ETA GRIU	PRFO	310
	PRED	320

PRFO

PRFO

PRFO PRFO PRFO PRFO PRFO

PRFO

PRFO PRFO PRFO PRFO PRED

RD=RNCSE

PRFO

340

360

PRF0 PRF0 PRF0

350

PRFO

400 410 430 440 450 460 470 480 490 500 210 520 530 540 550 560 570 580 290 009 919 620 630

PRFO

PRFO

PRFO

PRFO

PRFO

PRFO

350

PRFO

```
(XKETA.NE.1.0) DETAI=ETAINF+(XKETA-1.0)/(XKETA**IM-1.0)
                                                                                                                                                                                                                       IF (XJFAC.GT.1.0-05.0R.XKFAC.GT.1.0-05) RW=R0
(XKETA.EG.1.0) DETA1=ETAINF /FLCAT(IE-1)
                                                                                                                                                                                                                                                                              IF (XKFAC.GT.1.D-05) RORW(1)=C.DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (XKFAC.GT.1.D-04) RDCD=UE
                                                                                                                                                                                                                                                                                                                  IF (NOSE. EQ. 1) GC TC 20
                                                                                                                                                                                                                                                                                                 RORMSQ(1)=RORK(1)**2
                                                                                                                               DN(N+1)=XKETA*ON(N)
                                                                                                                                                 (N) NO+ (N) NX = (T+N) NX
                                                                                          XN(IE)=ETAINF
                                                                                                            DC 10 N=1,1E
                                                                                                                                                                                                                                                             RURW (1)=1.00
                                    DN(1)=DETA1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          BLUNT NOSE
                                                                                                                                                                                                                                                                                                                                                       SHARP NOSE
                                                                                                                                                                                    YY(1)=1.00
                                                                                                                                                                                                                                          RIVC(1)=RW
                                                      XN(1)=0.00
                                                                        V(1)=0.0
                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GC TO 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                               RDDD=RD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RT=1.00
                                                                                                                                                                                                       RW=1.00
                                                                                                                                                                                                                                                                                                                                                                                                             RJ9=RW
                                                                                                                                                                                                                                                                                                                                                                                           RO=RW
                                                                                                                                                                  10
```

30	RDD=1.DO RDDD=RD IF (XKFAC.GT.1.D-04) RDDD=DUEDS RT=0.DO CONTINUE	P R R R C C C C C C C C C C C C C C C C	650 640 680 690
ں د	DEVELOP STRETCHED AND UNSTRETCHED COCRDINATES FOR NO CURVATURE	PRFO	120
ں ں	CASES	PRFO	720
	CSOKW=1.00	PRFO	740
	IF (RW.GT.1.D-06) CSORW=DCOS(PODANG)/RW	PRFO	
	XDUUG1=ETAINF/6.DO	PRFO	
		PRFO	220
	<pre></pre>	PRED	100
	RCR#(N)=1.00	PRFO	800
	RCRWSG(N)=1.D0	PRFO	810
	RIVC(N)=Rh	PRFO	
v		PRFO	
ပ	DEVELOP STRETCHED AND UNSTRETCHED COORDINATES FOR TVC CASES	PRFO	
U		PRFO	
	IF (TVC.NE.YES) GU TO 40	PRFO	
	YY(N) = (-1.00+DSQRT(1.00+2.00*EPSVD*Y(N)*CSCRW))/CSCRW	PRFO	870
	RDUM=RD+RDD+YY(N)+CSORW	PRFO	
	RTVC(N)=RT*RDUM	PRFO	
	RCR#(N)=RCUM/RDDC	PRFO	
		PRFO	910
	Y(N)=YY(N)/EPSVD	PRFO	920
40	CONTINUE	PRFO	
U		PRFO	
ی د	USE ASSUMED VELOCITY PROFILE FOR INITIAL GUESS. VARIATION OF 1/6	PRFO	950
,	TONER LAN.	TX10	200

PRF01160 PRF01010 PRF01030 PRF01050 PRF01060 PRFC1070 PRF01090 PRF01110 PRF01120 PRF01130 PRF01140 PRF01150 PRF01170 PRF01180 PRFO 970 PRFO 980 PRFO 990 PRF01000 PRF01020 PRF01040 PRF 01 080 PRF01100 PRF01190

20

CHI(N)=0.0

CONTINUE

F1(1E)=1.0 F2(1E)=1.0 FC(1E)=1.0 FINALIE)=0.0

RETURN

FIN(IE)=0.0

IF (FIN(N).LE.1.D-25) FIN(N)=0.0

FINN(N)=-FIN(N) F 2NN(N)=FINN(N) VC(N) =VM-XN(N)/XDOUG1

EPSPL (N)=0.0

FCN(N)=FIN(N)

FCP(N)=0.0

FC(N) = F1(N)

VCVDEL (N) =0.0 VCVTHT(N)=0.0

F2(N)=F1(N)

F1(N)=1.0-EXP(-XN(N)/XDCUG1) FIN(N)=EXP(-XN(N)/XDOUGI)

SUBROUTINE READIN	10
IMPLICIT REAL*8(A-H,O-Z)	20
	30
SUBROUTINE READIN CALLS SUBROUTINES WRITE! AND WRITES. READ	40
	20
SUBROUTINE READIN IS CALLED BY MAIN AND SUBROUTINE WRITEZ. READ	9
READ	10
SUBROUTINE READIN PROVIDES THE INPUT OF DATA FOR THE PROGRAM. READ	80
READ	06
CCMMON /ARRAYI/ AUBITOTI, AUBITOTI, AICTOTI, AZCIDII, AZCIDII, AZCIDIII, AZCIDIII AZCIDIII AZCIDIII AZCIDIII AZCIDIII AZCIDIII AZCIDIII AZCIDII AZCIDI	100
1, CHI (101), DN (102), DN 2(102), EP SU (101), EP SPL (101), FI (101), FIN (101), FREAD	110
21.NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101), VC(1READ	120
3011, XN(1021, XN2(102), Y(101), YGVDEL(101), YGVTHT(101), YY(101)	130
CC440N /ARRAY2/ P2(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(READ	140
7	150
/CNVERG/ CONVRG, CCRNI, CRNI, DIF, DIFF, NC	160
CO 4 MON / COEFF/ CFBAR, CFBREX, CFE, CFINF, CFRES, CFREY, DEL, DELST, DELTA, READ	170
ō	180
CGMMON /COEFF2/ DELCRF, DELOX, DSAXGR, DSTOOL, DSTORF, DSTOTH, DSTOX, RORREAD	190
1EFL, THODEL, THOREF, XGREFL, 20REFL	200
	210
AIB, EI, FF, F2NI, VW	220
	230
COMMON /EDGPRP/ BETA, DUEUS, PE, PESO, PP, UE, UERUZ, UESO REAO	240
	250
DX, DX1, DXMAX, DXCLD, PNC, REFLEN, SCF, X, XI, XI2, XICLD	260
A	270
CCMMON /INTGR/ IE, IIMAX, IM, IPRNT, I STOP, KL, KVSLAW, NIT, NITI, NITZ, NITREAO	280
13,NOSE READ	290
COMMON INTEGER/ II, IPFL, IPRINT, JJ, K, KADETA, KEND, KEP, KSTOP, KTRNSN, LREAD	300
NITTOT	310
COMMON /NMLCRD/ ADTEST, ETAINF, XKETA	320

COMMON /REF/ PREF, RHOREF, URFF		READ	330
-		READ	340
•		READ	350
-		READ	360
COMMON /TVCURV/ TVC, BODANG, RTVC(101), RORM(101), RORWSQ(101), RM		READ	370
-		READ	380
-		READ	390
1		REAO	400
COMMON /WAK/ XKFAC		READ	410
CUMMON /HESS/ IWRTH, ICARD2, ICARD3, ICARD4, NN, IBON, HEDR(10), CASE, KHEREAO	N, HEDR (10), CASE, KHE	EREAD	420
155		READ	430
CCMMON /URAG/ CDV1, CDV2, XCP, XCP1, CP(501), CP1(501), ROMAX		READ	440
/INTACT/		READ	450
/STR TUP/		READ	460
/80000R/		READ	470
CCMMON /APLDAT/ XLOCA, DYDX, JSTA, NCPRFS		READ	480
		READ	490
		READ	500
DI 4ENSION LABEL(18)		READ	210
		READ	520
DIMENSION SUMDS(501)		REAO	530
DATA LST/4HLAST/		REAO	540
		READ	550
		READ	560
WRITE (6,130)		READ	570
		READ	580
		REAO	290
Z		REAO	009
READ (5,160) IREAD, IRSRI, ITER, KHESS		READ	910
		REAO	620
IF THERE IS NO RESTART TAPE TO BE READ, INPUT FOR NON ITERATION		REAO	630
OPERATION		REAO	640

U		REAO	650
	IF (IREAU.FO.0) GC TO 10		099
		READ	670
	60 TO 50		680
10	IF (KHESS.EU.O) GO TO 20		069
ی			100
ں	FUR RESTART CASE, READ IN STANDARD HESS INPUT	READ	011
J		REAO	720
	READ (5,260) HEDK, CASE, ICARD2, ICARD3, ICARD4, NN, IBDN	READ	730
	(5,210)	READ	140
20	1691	READ	150
ں		READ	160
J	TITLE CARD	REAO	170
J		READ	780
	WRITE (6,230) LABEL		190
J		READ	800
		REAO	018
	1801	READ	820
	1091	READ	830
	10414	PEAD	840
	READ (5,170) KADETA, KL, IPFL, IPRINT, IMT	REAU	850
	1017	READ	960
	(0174	READ	870
	,210)	READ	880
	10174	RFAO	068
	10514	REAO	006
	10224	REAO	016
	10824	READ	920
	10624	READ	930
	I&RTH=1	REAO	046
	0=0	READ	056
30	1+7=7	REAO	096

SECTE 30	READ (5,240) ZA(J),RZ(J),XSTA(J),PZ(J),LSTC IF (LSTC.EQ.LST) GO TO 40	REA0 970 REA0 980	
EQ.0) GD TD 100 (50) (CP(I),I=1,J) (1AL ITERATION, SAVE INITIAL PRESSURE COEFF'S. FGR USE INITIAL PRESSURE COEFF'S. FGR USE II) (1) (ESSURES FROM PRESSURE COEFF'S. (1) (2) (3) (4) (4) (5) (4) (5) (6) (7) (6) (7) (7) (8) (8) (9) (9) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	GC TO 30	REA0 990	
EQ.O) GD TD 100 ESO) (CP(I),I=1,J) IIAL ITERATION, SAVE INITIAL PRESSURE COEFF'S. FCR USE IN LATIONS. LATIONS. -J -PFS)*2/UFS*2 N.E.1) GD TD 90 JSPIO NE.1) GD TD 90 LEO) LABEL IIO PIO 120) LEO PE EL STURN -FG.1) RETURN	I MAX#J	REA01000	
### 17	IF (KHESS.EQ.0) GO TO 100	REA01020	
IIAL ITERATION, SAVE INITIAL PRESSURE COEFF'S. FGR USE IN LATIONS. LATIONS. ESSURES FROM PRESSURE COEFF'S. PFS)*2/UFS**2 J S+CP(I)*0.5*RHC*UFS**2)/PSTAG NE.1) GO TO 90 LAMEL HOPIO LAMEL LIO) PLO LZO) LAMEL LIO) PLO LZO) LAMEL LZO) UE,PE EL.1) RETURN	READ (18, 250) (CP(1), I=1, J)	REA01030	
11AL ITERATION, SAVE INITIAL PRESSURE COEFF'S. FCR USE IN 1.J. 1.1) 1.ESSURES FROM PRESSURE CCEFF'S. 1.FCP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 3.+CP(1)*0.5*RHC*UFS**2)/PSTAG 4.+CP(1)*0.5*RHC*UFS**2)/PSTAG 5.+CP(1)*0.5*RHC*UFS**2)/PSTAG 6CP(1)*0.5*RHC*UFS**2)/PSTAG 6CP(1)*0.5*RHC*UFS*		REA01040	
### ##################################	ON INI	INREA01050	
### ### ### ### ### ### ### ### ### ##	DRAG CALCULATIONS.	REA01060	
## SESURES FROM PRESSURE CCEFF*S. -PFS)*2/UFS**2		REA01070	
## SECONT FOR THE STATE CONTROL OF THE STATE CONTROL OF THE STATE OF T	DG 60 1=1,J	REA01080	
## SESURES FROM PRESSURE CCEFF'S.	CP1(1)=CP(1)	REA01090	
## SSURES FROM PRESSURE CCEFF'S.		REA01100	
-PFS)*2/UFS**2 J 5+CP(I)*0.5*RHC*UFS**2)/PSTAG NE.1) GO TO 90 NF.10 NF(2.00*(P10-PZ(I))) 200) LABEL 110) P10 120) UE,PE E1 FG.1) RETURN	٥	REA01110	
-PFS)*Z/UFS**Z -J +CP(I)*O.5*RHC*UFS**Z)/PSTAG -NE.1) GO TO 90 -J -J -J -J -J -J -J -J -J -J		REA01120	
+CP(I)*0.5*RHC*UFS**2)/PSTAG +NE.1) GO TO 90 -J 1)*P10 200 LABEL 110) P10 120) UE,PE E1 -EC.1) RETURN	KH()= (PSIAG-PFS)*Z/UFS**Z	REA01130	
+CP(I)*0.5*RHC*UFS**2)/PSTAG NE.1) GO TO 90 J SP10 RT(2.DO*(P10-PZ(I))) 200) LABEL 110) P10 120) UE,PE E1 EG.1) RETURN	DO 70 I=1,5	REA01140	
.WE.1) GO TO 90 .J .J .ME.1) GO TO 90 .J .ME.10 .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I))) .METCZ.DO*(P10-PZ(I)))	PZ(1)=(PFS+CP(1)*0.5*RHC*UFS**2)/PSTAG	REA01150	
1)*P10 201 LABEL 110) P10 120) UE,PE E1 FG.1) RETURN	IF (IREAD.NE.1) GC TO 90	REA01160	
1)*P10 200 LABEL 110) P10 120) UE,PE E1 EG.1) RETURN	DC 80 I=1, J	REA01170	
200) LABEL 110) PLO 120) UE, PE 11 RETURN	01d*(1)7d=(1)7d	REA01180	
230) LABEL 110) PIO 120) UE, PE 21 64.1) RETURN	UEZ(11)=DSQRT(2.00*(P10-PZ(1)))	REA01190	
110) P10 120) UE,PE 51 FG.1) RETURN	WRITE (6, 200) LABEL	REA01200	
120) UE,PE E1 FG.1) RETURN	MRITE (6,110) P10	REA01210	
EG.1) RETURN	150)	REA01220	
.EG.1) RETURN	CALL WRITE1	REA01230	
.EG.1) RETURN	PETURN	REA01240	
FG.1) RETURN	CCNTINUE	REA01250	
	IF (IREAD.EG.1) RETURN	REA01260	
	CONTINUE	REA01270	
	I-1x1=x1	REA01280	

```
REA01310
                                                                                                                               REA01350
                                                                                                                                                                          REA01370
                                                                                                                                                                                                                    REA01390
                                                                                                                                                                                                                                         REA01400
                                                                                                                                                                                                                                                                REA01410
                                                                                                                                                                                                                                                                                    REA01420
                                                                                                                                                                                                                                                                                                         REA01430
                                                                                                                                                                                                                                                                                                                                REA01440
                                                                                                                                                                                                                                                                                                                                                    REA01450
                                                                                                                                                                                                                                                                                                                                                                                             REA01470
                                                                                                                                                                                                                                                                                                                                                                                                                     REA01480
                                                                                                                                                                                                                                                                                                                                                                                                                                           REA01490
                                                                                                                                                                                                                                                                                                                                                                                                                                                               REA01500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RF A01510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FIRMAT (60X, 13HPROGRAM ICBL//60X, 13HA PROGRAM FOR/21X, 89H2-D AND REA01520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IAXISYMMETRIC INCOMPRESSIBLE, LAMINAR, TRANSITICNAL AND/OR TURBULENREADIS30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   218CUNDARY-LAYER/42X,47HFLCW INCLUDING EFFECTS OF TRANSVERSE CURVATREA01540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3URE./66 X, 2HBY/45X, 41HD.L. DWUYER, C.H. LEWIS AND E.C. ANDERSON/47XREA01550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4,37HAFROSPACE AND OCEAN ENGINFERING DEPT./41X,51HVIRGINIA PCLYTECHREA01560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SNIC INSTITUTE AND STATE UNIVERSITY/56X, 21HBLACKSBURG, VA. 24061/56REA01570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           REA01580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             REA01590
                                                                 REA01320
                                                                                      REA01330
                                                                                                           REA01340
                                                                                                                                                      REA01360
                                                                                                                                                                                                  REA01380
                                                                                                                                                                                                                                                                                                                                                                          REA01460
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     REA01600
 REA01290
                      REA01300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PF S0=,015.71
                                                                                                                                                                                                                                                                                    IKTRNSN. GT. I I MAX) KTRNSN= I I MAX
                                                                                                          ADTEST. EQ. 0.0) ADTEST= 0.0010
                                                                                                                               CONVRG. EQ. 0. 0) CONVRG=0.0010
                                                                                                                                                    ETAINF. EQ. 0.0) ETAINF=100.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6X,22HPHONE - (703)-951-6126//)
                                                                                                                                                                                                                                                                                                        (KTRNSN.EQ.O) KTPNSN=IIMAX
                                                                                                                                                                                                                                                                                                                                                    IF (KCNSFT.EQ.0) KCNSET=IIMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  UE SO= , D15 . 7, 9H
                                                                                                                                                                        XKEIA.EG.0.0) XKETA=1.09
                                                                                                                                                                                                                                                                                                                                                                                                                                                               FCRMAT (1H, 2X, 4HP10=,015.7)
                                                                                                                                                                                                                                                             XK2.FU.0.01 XK2=0.01680
                                                                                                                                                                                               LAMIRB. EQ. 0) LAMIRB=1
                                                                                                                                                                                                                                         XKI-EQ.0.01 XKI=0.40
                                                                                                                                                                                                                                                                                                                              KTE.EQ. 01 KTE=IIMAX
N111=3
                      NITI-LT.O) NITI=0
                                                                 NIT3.EQ.0) NIT3=9
                                                                                                                                                                                                                    NCSE.EG.0) NOSE=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FCR4AT (2F12.6, 4X, A3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FURMAT (4(7X,131)
                                                                                      KL.EQ.0) KL=2
 NIT1.E0.01
                                          INIT2. E0.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    H6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FURMAT
                                                                                                                                                                                                                                                                                                                                                                         RETURN
                                                                                                                                                                                                                                                               F
                                                                                                                                                                                                                                                                                 4
                                                                                     1
                                                                                                                                                                          4
                                                                                                                                                                                               ٣
                                                                                                                                                                                                                                                                                                                                                                                                                                                              110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                150
```

```
REA01620
REA01630
                                         REA01660
REA01670
 REA01610
                         REA01640
                                 REA01650
                                                         REA01680
                                                                 REA01690
                                                                          REA01700
                                                                                  REA01710
                                                                                          REA01720
                                                                                  (1046,2X, 46/13/15/1X, 14, 15/9X, 11)
        (6(7X,13))
(3(8X,12),4(7X,13),9X,11)
                       (1844)
(1H0,30x,184////)
(6F12.6)
(3F12.6,213)
1415)
                                                                (4E12.6, A4)
(12x, F12.6)
 (6 (8X, 12))
FORMAT
FORMAT
FORMAT
                        FORMAT
                                                                 FCRMA (
                                                                         FCRMAT
                                         FURMAT
                                                FORMAT
                                                         FURMAT
                                                                                          ENO
150
170
170
180
190
200
220
220
240
250
250
```

SUBROUTINE RESTAR	10
RESO	20
	30
SUBROUTINE RESTAR WRITES A DATA TAPE AT THE RESTART POINT RESO	40
	20
PRUGRAM TO CALCULATE A NEW SOLUTION USING A PREVICUS ITER-	09
ATION SOLUTION.	70
RESO	80
	06
IMPLICIT RFAL*8(A-H,0-Z)	100
CHAMON /APPAYI/ ADB(101), ADB(101), A1(101), A2(101), A3(101), A4(101) RESO	110
	120
11, VC(IRESO	130
	140
CC*MON /ARRAY2/ PZ(5011, UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(RESO	150
11011, RZ (501)	160
COMMON /COEFF/ CFBAR, CFBREX, CFE, CFINF, CFRES, CFREY, DEL, DELST, DELTA, RESO	170
10STARK, DSTARX, HAF CF, RETHET, REX, THET	180
COMMUN /COEFF2/ DELORF, DELCX, DSAXOR, DSTODL, DSTORF, DSTOTH, DSTOX, RORRESO	190
1EFL, THODEL, THOKEF, XCREFL, ZOREFL	200
/COEFF3/ CF1,SUM,SUM1,SUMT	210
/CCMWLL/ A1B, E1, FF, F2N1, VW	220
RESO	230
PP, UE, JEROZ, UESO RESO	240
RESO	250
DX, DXI, DXMAX, DXCLD, PAC, REFLEN, SCF, X, XI, XIZ, XIOLORESO	260
	270
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTOP, KL, KVSLAM, NIT, NITI, NITZ, NITRESO	280
13, VUSE RESO	290
ER/ II, IPFL, IPRINT, JJ, K, KADETA, KEND, KEP, KSTOP, KTRNSN, L	300
1AMTRB, NITTUT RESO	310
COMMON /TRANS/ ATR, CHICRI, CHIMAX, GAMMA, XBAR, XIBAR, KTRANS, KONSET RESO	320

COMMON	/VSCSTY/ EPSYD.XK1.XK2	086 03
COMMON	TVC. RODANG. RTVC (101) . RORM (101) . RORWSO(101) . RM	
CCMMON	YPLUS(101), UDEF(101), UPLUS	
COMMON		
COMMON	IF, DIFF, NC	
COMMON	, XKFTA	50 380
COMMON	HOREF, UREF	
COMMON	/aTE/ Ih, IhT	
COMMON	STTE	
CCMMON	/WAK/ XKFAC RESO	
COMMON	/HESS/ IMRTH, ICARD2, ICARD3, ICARD4, NN, IBDN, HEDR(10), CASE, KHERESO	
155	RESO	
COMMON	/INTACT/ BETAS RESO	50 450
COMMON		
COMMON	ZDELST(501), RODELS(501), ZOLD(501), ROLD(501), MM	
COMMON	/STRTUP/ IREAD, IRSPT, KK	50 480
CCMMON	APLDAT/ XLOCA, DYOX, JSTA, NCPRFS	20 490
1F (IREA	D.EQ.1) GC TO 10	
IF (IRSR	T.GT.1) GG TO 30	
6C TO 4	RES.	
READ (2	(20) AOB, AOBP, DN, EPSPL, F2, F2N, F2NN, FC, FCN, FCP, VC, XN, Y, YOVDEL, RE	
IYCVTHT,Y	. YY, CONVRG, CCRNI, CRNI, DIF, DIFF, NC, CFBAR, CFBREX, CFE, CFINF, CFRRE	
2ES, CFREY	EY, DEL, DELST, DELTA, DSTARK, DSTRAX, HAFGF, RETHET, REX, THET, DELCARE	50 550
3F, DELOX,	X, DSAXOR, DSTODL, DSTORF, DSTOTH, DSTCX, RCREFL, THODEL, THCREF, XGRRE	20 560
4EFL , 20RE	RELF, CFI, SUM, AIB, EI, FF, F2NI, VW, CF, DUEDS, PE, PESO, PP, UE, UEROZ, RE	
	FS, REINF, RHCFS, UFS, DS, DX, DXI, DXMAX, DXCLD	
	(20) PNC, RO, REFLEN, SCF, X, XI, XIZ, XICLD, XOL, XJ, XJFAC, Z, ZOL, IE, RE	
1 I I I MAX, I	~ 4	20 600
3XKETA,P		
41,XK2,HE	HEDR, CASE, ICARDZ, ICARD3, ICAKD4, NN, IBDN, BETAS, XSTA, JEZ, PZ, ZA, RESO	
SIPR, IPP	RFL, KZ, KHESS, PREF, RHOREF, UREF, IW, IMI, KTE, KTSTTE, XKFAC, KONSETRE	20 640

	6. BETA, A1, A2, A3, A4, CHI, DN2, EPSO, FI, FIN, FINN, XN2, TVC, BODANG, RTVC, RORRESO TW. RORWSQ, RW, UGUPLS, YPLUS, UDEF, UPLUS, KK, ZDELST, RODELS, CDV1, CDV2, XCPRESO A, XCPI, CD, CD1, CHM1, SHMT, ROMAX, RHC, MM, XI CCA, DVDX, LSTA, NORRES	RESO RESO	650
v		RESO	680
ں	E. REWIND TO REPLACE	RESO	069
ں	RUN FOR NEXT ITERATION.	RESJ	100
ں		RESO	710
		RESO	720
	READ 13, 1001 HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, INDN	RESO	730
ں		RESO	140
J	READ IN ALL DISPLACED BCDY COURDINATES	RESO	150
J		RESO	160
	READ (3,90) (ZGLD(I), RGLD(I), I=1,NN)	RESO	170
J		RESO	780
J	THE SEGINNING OF THE TAPE THE INPUT PARAMTERS	RESO	190
v	RESTART POSITION.	RESO	800
S		RESO	018
	0.3	RESO	820
	(3,50) HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, IBDN	RESO	830
	(20ELST(1), RODELS(1), I=1, MM)	RESO	840
ں		RESO	850
U	RULLBACK X VALUE FUR NEXT ITERATION	RESO	860
U		RESO	870
		RESO	880
	X10L0=X1	RESO	890
	0×1010=0x	RESO	006
		RESO	016
		RESU	920
		RESO	930
		RESO	040
	FINN(N)=F2NN(N)	RESO	950
20	CONT INUE	RESO	096

```
RES01260
                                                                           066
                                                                                                               RES01000
                                                                                                                                                       RES01010
                                                                                                                                                                                          RES01020
                                                                                                                                                                                                                                   RES01030
                                                                                                                                                                                                                                                                      RES01040
                                                                                                                                                                                                                                                                                                              RES01050
                                                                                                                                                                                                                                                                                                                                                  RES01060
                                                                                                                                                                                                                                                                                                                                                                                       RES01070
                                                                                                                                                                                                                                                                                                                                                                                                                             RES01080
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RES01090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      WRITE (20) AOB, AOBP, DN, EPSPL, F2, F2N, F2NN, FC, FCN, FCP, VC, XN, Y, YOVDELRESO1100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            , YOVTHT, YY, CCNVRG, CCRNI, CRNI, DIF, DIFF, NC, CFBAR, CFBREX, CFE, CFINF, CFRESO1110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2RES, CFREY, DEL, DELST, DEL TA, DSTARK, DSTRAX, HAF CF, RETHET, REX, THET, DEL ORESO1120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3RF, DELCX, DSAXOR, DSTCOL, DSTOPF, DSTCTH, DSTCX, ROREFL, THODEL, THOREF, XORESO1130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4REFL, ZORFLF, CF1, SUM, A18, E1, FF, F2N1, VW, CF, DUEDS, PE, PESO, PP, UE, UERO2RESO1140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RES01150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE (20) PNC, RO, REFLEN, SCF, X, XI, XI2, XICLD, XGLD, XJ, XJFAC, Z, ZOL, IERESO1160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .IIMAX.IM.IPRNT.ISTOP.KL.KVSLAM.NIT.NITI.NITZ.NIT3,NOSE.II.IPFL.IPRESO1170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2RINT, JJ,K, KADETA, KEND, KEP, KSTCP, KTRNSN, LAMTRB, NITTUT, ADTEST, ETAINFRESO1180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3, XKETA, PIO, PSTAG, ATR, CHICRT, CHIMAX, GAMMA, XBAR, XIBAR, KTRANS, EPSVD, XRESO1190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4K1, XK2, HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, IBDN, BETAS, XSTA, UE Z, PZ, ZARES01200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5, IPR, IPRFL, RZ, KHESS, PREF, FHGREF, UREF, IW, IWT, KTE, KTSTTE, XKFAC, KONSERESO1210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6T, BETA, AI, A2, A3, A4, CHI, EN2, FPSC, FI, FIN, FINN, XN2, TVC, BODANG, RTVC, RORESO1220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7PW, RORWSQ, RW, UNUPLS, YPLUS, UDEF, UPLUS, KK, ZDELST, RODELS, CDV1, CDV2, XCRES01230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RES01240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RES01250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 KES01270
                                     RESO
                                                                           RESO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RP, XCP1, CP, CP1, SUM1, SUMT, ROMAX, RHC, MM, XLOCA, DY DX, JSTA, NOPRFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5, UESO, PFS, RFINF, RHOFS, UFS, DS, DX, DXI, DXMAX, DXOLD
                                                                                                                                                                                                                           CF1=2.DO*UE *A1B/PNC *EPSVO*DCGS (BOD ANG)
                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE A TAPE WITH NEW SCLUTION DATA
                                                                                                                                                  IF IXJFAC.GT.1.0-04) UER 02=UE *RO**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (21,80) X, XI, Z,RO, BETA, PP, K
                                                                                                                                                                                     IF (XKFAC.GT.1.0-04) UER02=UE**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       6,801 X, XI, Z, RO, BETA, PP. K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (21,70)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6, 701
                                                                           CALL DELTAS
                                                                                                                                                                                                                                                                   KKMX1=K+10
                                                                                                            JEROZ=UE
                                1ST0P=0
                                                                                                                                                                                                                                                                                                            KK=K+1
                                                                                                                                                                                                                                                                                                                                                  RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MRITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ME ITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               MOITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MPITE
NIT=0
```

				#				
		FCRMAT (1046,2x,46,/13/15/1X,14,15/9X,11)	FORMAT (2F12.6)	FCRMAT (10X,45HRESTART TAPE WRITTEN AT X,X1,Z,R0,BETA,PP,K =	FCRMAT (10X,6F10.5,7X,13)	FURMAT (2F12.6)	FCRMAT (10A6,2X, A6/13/15/1X, 14, 15/9X, 11)	
RETURN		FCRMAT	FORMAT	FCRMAT	FCRMAT	FURMAT	FCRMAT	CNO
40	J	20	69	10	80	06	130	

RESO1290 RESO1310 RESO1310 RESO1320 RESO1330 RESO1350 RESO1350 RESO1350

SUBRGUTINE SCLVE (WINN, WIN, WIN, WZNN, WZ, El, FII, CRNI) IMPLICIT REAL*8(A-H, O-Z)	070S	10
SUBRGUTINE SOLVE CALLS SUBRGUTINE DERIV3.	SOLO	400
	SOLO	20
SUBROUTINE SOLVE IS CALLED BY SUBROUTINE MOMENT.	SCLO	9
SUBBOUTINE SOLVE CALCULATES THE SOLUTION FOR A GENERAL PARABOLIS	SCLO	0 0
PARTIAL DIFFERENTIAL EQUATION WHEN THE P.D.E. IS PEPRESENTED BY A	SCLO	000
SYSTEM OF IMPLICIT, THREE POINT FINITE DIFFERENCE EQUATIONS.	SCLO	100
	SCLO	110
CCMMON /ARRAYI/ AOB(101), AOB(101), A1(101), A2(101), A3(101), A4(101	0 705	120
1, CHI (101), DN (102), DNZ (102), EPSU (101), FPSP L (101), FI (101), FIN (101), FSC 10	SC-10	130
ZINN(101), FZ(101), FZN(101), FZNN(101), FC(101), FCN(101), FCP(101), VC(SCLO	140
301), XN(102), XN2(102), Y(101), YCVDEL(101), YCVTHT(101), YY(101)	SCLO	150
COMMON /GEOME/ DS, DX, DXI, DXMAX, DXGLD, PNC, REFLEN, SCF, X, XI, XI2, XIDL	O TOSC	160
1,XJ,XJFAC,Z,ZGL,RO	SCLO	170
CCMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTGP, KL, KVSLAW, NIT, NITI, NITZ, NITSOLO	SOLO	180
13,NJSE	2010	190
	SCLO	200
MENSION WZNN(101), WZN(101), WZ(101), WINN(101), WIN(101),	WICIOSCLO	210
	SOLO	220
	SOLO	230
DIMENSION E(102), F(102)	SOLO	240
	SOLO	250
EQUIVALENCE (E(1), DN2(1)), (F(1), XN2(1))	SOLO	260
	SULO	270
	SOLO	280
E(1)=E1	SOLO	290
F(1)=F11	SOLO	300
DC 10 N=2, IM	SOLO	310
A=(2.00-A1(N)*DN(N))/(DN(N-1)*(DN(N)+DN(N-1)))*CRNI	SOLO	320

330	038 0	360	078 0	380	068 0	004 0	014 0	074 0	0 430	0440	0 420	094 0	0 410	0 480
6=((-2.0+aiin)*(bnin)-bnin-1))/(bnin)*bnin-1))+azin))*(kni+a+in)/SULD 550	(DN(N)+DN(N-1))) *CRNI	#1(N)) # (1.00-CRNI) -A3(N)+A4(N) #W1(NSCL	TOS	TUS SUF	708	10S	TUS SUIT	los	NOS SOIL	105	SCI	138	108	SOLO 480
10S	CC=(2.00+A1(N)*DN(N-1))/(DN(N)*	D=-(#1NN(N)+A1(N)*#1N(N)+A2(N)*	11/05	E(N)=-CC/(8+A*E(N-1))	F(N)=(D-A*F(N-1))/(B+A*E(N-1))	W2(IE)=1.00	KCN= I w	DC 20 N=2, IE	W2(KUN) = E(KGN) * W2(KON+1)+F(KON)	KCN=KUN-1	CALL DERIVS (WZ,XN,IE,1,WZN)	CALL DERIVS (WZN, XN, 1E, 1, WZNN)	RETURN	END

TLU0 10					TLUO	TLUO	TLUO	TLUO		0.000		TLU0 130	TLU0 140			TLU0 170				TLU0 210								TLU0 290		1100 320
TLU (NTABLE, Z. X. XSTAR, NFLAG)	IMPLICIT REAL*8(A-H,U-Z)		FUNCTION TLU IS CALLED BY SUBRCUTINE INTERP.				IN THE ARRAYS XII) XINTABLE! AND ZII) ZINTABLE! USING				DI MENSION X (NTABLE), Z (NTABLE)			CHECK TO SEE IF XSTAR LIES WITHIN THE SCOPE OF THE	••••		.A6=0	(XSTAR.LT.X(1)) GO TO 10	IF (XSTAR.LE.X(NTABLE)) GG TO 20	NFLAG=1	TLU=0.0	RETURN		SEARCH TO FIND TWC SUCCESSIVE ENTRIES,	X(I-1) AND X(I), BETWEEN WHICH XSTAR LIES		~	IF (X(I) . GT . X STAR) GO TO 40	.GE.KTABLE 1 GO TO 40	66 10 30
		J	J	J	U	ပ	J	ن	J	U		U	J	U	U	S				10			J	U	U	U	~	۴,		

TLU0 330	TLU0 340	TLU0 350	TLU0 360	TLU0 370	TLU0 380	TLUG 390
	•••••					
	OF 1					
	VALUE		(-1)			
	FIND CURRESPONDING		1)X-(1)X)/((1-1)2-(
	LINEARLY INTERPOLATE TO FIND CORRESPONDING VALUE OF Z)+(XSTAR-X(I-1))*(2(I)-2(I-1))/(X(I)-X(I-1))			
	LINEAR		TLU=2(1-1)+(RETURN		END

SUBROUTINE VELDAT	VELO	10	
ARITES OUT THE	VELO	30	
THE NAVIER	VELO	40	
CONDITIONS FOR THE APLNS PROGRAM.	VELO	20	
IMPLICIT REAL*8(A-H, 0-2)	VELO	202	
COMMON /APLDAT/ XLOCA, DYDX, JSTA, NOPRFS	VELO	80	
CGMMON /ARRAYI/ ADB(101), AOBP(101), A1(101), A2(101), A3(101), A4(101) VELO	INELO	06	
1, CHI (101), DN(102), DN2(102), EPSO(101), EPSPL(101), FI(101), FIN(101)	FVELO	001	
21 NN(101), F2(101), F2N(101), F2NN(101), FC(101), FCN(101), FCP(101), VC	INELO	110	
3011, XN(102), XN2(102), Y(101), YGVDEL(101), YOVTHT(101), YY(101)	VELO	120	
CUMMUN /ARRAYZ/ PZ(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(VELO	IVELO	130	
1101), R2(501)	VELO	140	
/ED	VELO	150	
COMMON /GEOME/ DS, DX, DX1, DXMAX, DXOLD, PNC, REFLEN, SCF, X, XI, XIZ, XIOL DVFLO	DVFLO	160	
4	VELO	170	
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTOP, KL, KVSLAW, NIT, NITI, NITZ, NITVELO	ITVELO	180	
	VELO	190	
2	4.VELO	200	
10STARK, DSTARX, HAFCF, RETHET, REX, THET	VELO	210	
	VELO	220	
	VELO	230	
	VELO	240	
10 I=JSTA, IIMAX	VELO	250	
IF (X.EQ.XSTA(I)) GC TC 20	VELO	260	
CUNTINUE	VELO	270	
RETURN	VELO	280	
XBACK=1.0-XLOCA	VELO	290	
DXI=XBACK /NOPRFS	VELO	300	
IXO*XOX=DYO	VELO	310	
MRITE (7,40) DYDX,DYI,IE	VELO	320	

3	4	350	9	-	8	0	0
EL	EL	ELO	F	EL	E	EL	H
>	>	>	>	>	>	>	>

MRITE (7,50) DEL, UE
DU 30 [=1,1E
30 MRITE (7,50) YY(I), FC(I)
RETURN
C
40 FURMAT (2F12.6,13)
50 FCRMAT (2F12.6)

2000	
WR00 20	
WR00 30	
WR00 40	
WR00 50	
WR00 60	
WR00 70	
PZ(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPPFL(WRCO 90	
WR00 100	
WRC0 110	
WRD0 120	
WR00 130	1
WRC0 140	
WR00 150	
COMMON /GEOME/ DS,DX,DX1,0XMAX,DXCLD,PNC,REFLEN,SCF,X,XI,XIZ,XICLDWRDO 160	
WPC0 170	
COMMON /INTGR/ IE, IIMAX, IM, IPRNT, ISTCP, KL, KVSLAM, NIT, MITT, NITZ, NITWRCO 180	
COMMON /NTEGER/ II, IPFL, IPRINT, JJ, K, KADETA, KEND, KEP, KSTCP, KTRNSN, LWRGO 200	
WR.00 210	
WRC0 230	
WR00 240	
WR00 270	
WRG0 280	
WF.00 290	
WRC0 320	

ں		MRDO	330
			340
	. EQ . YE		350
	WRITE (6,20) NOSE, LAMTRB, KTRANS, KTRNSN, KTE	WROO	360
	108 49	MAGO	370
	104.5	WRCO	380
	WRITE (6,50) UFS, REINF	WROO	990
	10949	WROO	400
	AFITE (6,70) CHICKT, XBAP, ATR	WROO	410
	_ 	WRCO	450
	3 106	MPCO	430
	E (6,100)	MRCO	440
	E (6,110)		450
	E (6,120)		460
	E (6,	WROO	410
	16,		480
	1=1 0	WR.CO	490
	u	MRCO	200
01	CONTINUE		210
	WPITE (5,160)	WROO	520
	RETJRN		530
J		WRCO	240
J			250
ں		WRCO	260
50	HO	11WR00	210
	NSN	WRCO	580
30	FURMAT (1H0,2X,7HNIT1 = ,12,9H, NIT2 = ,12,9H, NIT3 = ,12,7H, NC	=WK00	290
	1 , 12, 7H, 1E = , 13,9H, KEND = , 13, 10H, 11MAX = , 12)	WRCO	009
40	AT (1H0.		019
	,13,11H, KVSLAW = ,11)		620
20	T (1H3,2X,6HUFS = ,F12,6,10H, REINF =	WRGO	630
09	[(1H0,2X,6HPFS = ,F12,4,10H,	. WRCO	940

	10PF12.4)	650
2	FURMAT (IHO,2X,10HCHICRIT = ,F12.3,9H, XBAR = ,F12.6,8H, ATR = ,F1WR00 6	094
	WROO	670
30	(1H0,2X,6HXKI = ,F7.4,8H, XK2 = ,F9.6) WROO	980
00	(IHO,2X,9HCUNVRG = ,F7.4,11H, ADTEST = ,F7.4,9H, CRNI = ,F7WRCO	069
	1.4.10H, XKETA = ,F7.4,11H, ETAINF = ,F7.2)	100
001	.HO.2X, 8HEPSVD = ,F12.6,17H, SCALE FACTOR = ,F9.5,21H, REFWROD	110
	NGTH = , F9.41	720
110	.HO.2X, 8HXJFAC = ,F7.4,2X, 8HXKFAC = ,F7.4,10H, ANGLE = ,F9WRDQ	130
	= **F7.4.10H, DXMAX = *F7.41	40
120	.HO,3X,3HIPR,4X,2015,//(11X,2015/1)	150
130		160
140	.HO, 3X, 14HAXIAL POSITION, 14X, 2HZA, 13X, 2HRZ, 12X, 4HXSTA, 10X, WRGO	170
		180
150	19X, 13, 10X, 5F15.6) WROO	190
091	(IHO)	000
170	FURMAT (43X,46HTHIS RUN INCLUCES TRANSVERSE CURVATURE EFFECTS//// MRDO 810	310
180	_	320
		330

WRIO 330 LWRIO 340 WRIO 350			WR10 380		WR 10 420		WRI0 440		WRI0 470		WR10 490		WR.10 510			1)WRIO 560	WRIO 590				WRIO 640
13,NOSE CCMMON /NTEGER/ II, IPFL, IPRINI, JJ, K, KACETA, KEND, KEP, KSTOP, KTRNSN, LWRI I AMTRB, NITTOT	CCMMON /TRANS/ ATR, CHICRT, CHIMAX, GAMMA, XBAR, XIBAR, KTRANS	•	'	COMMON ATVOIRM TTY, BODANG, DIVICION BOBELLON BOBELLON BE	'	CEMMON /LWALL/ UDUPLS(1C1), YPLUS(101), UDEF(101), UPLUS	CUMMON /TE/ KTE,KTSTTE	CCMMON /HESS/ IWRTH, ICARD2, ICARD3, ICARC4, NN, IBDN, HEDR(10), CASE, KHEWRIO	-	-	-	COMMON /WKPRL/ RSTAR		DIMENSION VORTI(101)	(TPR(1), DN2(1))	EQUIVALENCE (XMAL(1), XNZ(1)), (PITGT(1), EPSG(1)), (PITGTR(1), A1(1)WRIO		ABS(X)=DABS(X)	IF (KHESS.EQ.0) GO TO 30		WE IS WEIGHTING FACTOR FOR DAMPING BCDY COOR ITERATIONS

0.500 (IWRIH.EQ.0) GD) TC 30	WRIO	0 650	
10	2) GC TO 10	WRI		
HEDR	290) HEDR, CASE, ICARD2, ICARD3, ICARD4, NN, IBBN	MRIO		
		WRIO		
		1 X X		
DELS	J=RO+DELST*DCOS(THETA)	WRIO	0 720	_
ELST)= L-DELST*DSIN(THETA)	IAM		
39	EQ.1) GU TG 20	MRI		
M-00)=(1.00-WF)*ZOLD(MM)+WF*ZUELST(MM)	WRIO	0 150	_
M-00)=(1.00-WF) *ROLD(MM)+WF*R ODELS(MM)	MRI		
1307	280) ZUELSTIMM), RODELSIMM)	MR I		_
		WRI		_
		WRI		_
130) X,XI	I, Z, RO, BETA, PP, NIT, K	MR I		_
UE, P	UE, PE, DUEUS, CF, EPSVD, KFP, NITTOT	WRIO		_
150) F2N(11), F2N(3), F2NN(1), F2NN(3), UPLUS	WRIO		_
111	XSTA(11) GC TC 60	WRIO	0 833	_
CHIM	CHIMAX, GAMMA, XI BAP	WRI	0 84	_
170) REX		WRI	0	-
0) (0	. CT.0) GO TO 40	WRI		_
CFE,	180) CFE, CFINF, CFBAR, CFBREX, CFREY		0 810	_
1+S*0	F*RHCFS*UFS**2/2.0/144.0	WRI	88 0	_
HAFC	1901 HAFCF, TAUM			_
		MRI		_
XCFE	XCHEFL, ZCREFL, RUREFL, DELCX, DSTOX	WRI	16 0	_
THOK	KEF, USTORF, DELORF, USAXCR	MRI		_
THOD	THOUEL, DSTODL, DSTOTH, JSTRAX	WRIO		_
DSTA	DSTARK, DELST, DEL, THET, RETHET	WRIO	0 940	_
		WR IO		_
000-0	G*180.300/DARCES(-1.000)	WP.10		_

	WRITE (6,270) BDYANG	WR10 970
	I	WRI0 980
	WRITE (6,300) SUM, SUMI, SUMT, XCP, XCP1	WR10 990
20	IF (KTSTTE.LT.1) GO TO 60	WR 101000
	WRITE (6, 310) RSTAR	WR101010
09	CONTINUE	WRI01020
	REFF=R0+DELST	WR 101030
	(K.ES	WR101040
	DL 70 NM=1, IPRINT	WRI01050
	(X.EG	WR I 31060
2	CONTINUE	WR101070
		WRI01080
	-IM+1	WR 101090
	IF (IM-LE-INT) GG TC 120	WR101100
	[W=1	WR [0 1 1 1 0
80	CCNT INUE	WP 101120
	UFAC=UE*UFS	WR101130
	00 90 N=1,1E	WR 101140
	PIIOT (N)=P10+.500*UE**2*(F2(N)**2-1.00)	WE101150
06	CONTINUE	WR101160
	WRITE (6,240)	WR 101170
	0	WRI01180
100	WRITE (6,250) XN(N), YY(N), YCVTHT(N), YOVDEL(N), FC(N), FCN(N), YPLI	JS (NWR I 0 1 190
	PLS	WR 101200
	WRITE (6,260)	WR I 0 1 2 1 0
	IF (X-LT-XSTA(N)-UR-X-GT-XSTA(N)) GO TC 120	WR 101220
		WR101230
110	Ξ	WR101240
	WRITE (10) (VORTI(1), YY(1), 1=1,1E)	WRI01250
120	CONTINUE	WR 101260
		WRI01270
	IT INSTITUTE TO THE TENT OF TH	MK101780

000	RETURN WRI01290 WRI01300 WRI01310
130	FURWAT (1H3,2X,3HS =, F13.5, 1H, /16X,6H XI =, E10.4,5H, Z =, F9.5,6H, WRI01330 1 R3 =, F8.5,8H, BETA =, F9.5,6H, PP =, F12.5,8H, NIT = ,13,5H, K =, 13WRI01340
140	FORMAT (IHU, 2X, 4HUE =, F8.5, 6H, PE =, FII.5, 9H, DUEDS =, FII.5, 6H, CFWRI01360 1 =, FII.5, 9H, EPSVD =, E13.6, 7H, KEP =, 13, 10H, NITTOT =, 15) FURMAT (IHU, 2X, 8HF2N(I) =, F12.6, 10H, F2N(3) =, F12.6, 11H, F2NN(I) = WRI01380
17.0	INFICEDITH, FENNESS = FIZE 0, 10H; UPLUS = FEIS 0, 9H; XIBAR = FEIMRIOLS 0, 9H; GAMMA = FEIM XIBAR = FEIMRIOLG 0, 9H; GAMMA = FEIM
180	FORMAT (1H0,2X,5HCFE =, 1PE13.6,9H, CFINF =, E13.6,13H, CF(TOTAL) =, WPI01430 1E13.6,19H, CFBAR*SQRT(REX) =, E13.6,19H, CFINF*SQRT(REX) =, E13.6) WRIO1440 FORMAT (1H0,2X,9HCFINF/2 =, 1PE13.6,8H, TAUM =, E13.6,7H P.S. 1.)
200	FCR4AT (1H0,2X,10HX/REFLEN =,1PE13.6,12H, Z/REFLEN =,E13.6,13H, ROWRIO1460 1/REFLEN =,E13.6,11H, DELTA/X =,E13.6,12H, DELSTR/X =,E13.6) FORMAT (1H0,2X,14HTHETA/REFLEN =,1PE13.6,17H, DELSTR/REFLEN =,E13.WRIO1480
220	16,16H, DELTA/REFLEN =, E13.6,20H, DELSTRAXI/REFLEN =, E13.6) WRIO1490 FURMAT (1HJ,2X,13HTHETA/DELTA =, 1PE13.6,16H, DELSTR/DELTA =, E13.6,WRIO1500 116H, DELSTR/THETA =, E13.6,13H, DELSTRAXI =, E13.6)
240	FCRMAT (1HO,2X,9H)ELSTRK =,1PE12.5,10H, DELSTR =,E12.5,9H, DELTA =WRI01520 1,E12.5,9H, THETA =,E12.5,11H, RETHETA =,E12.5)
250 260 270 280	1,5X,5HFP(N),6X,5HYPLUS,6X,7HU/UPLUS,5X,4HUDEF,6X,4HEPS+,8X,5HPITOTWRIO1550 2,6X,1HN/) FCRMAT (F11.6,10F11.6,14) FURMAT (1X,//) FLRMAT (1H0,2X,19HLCCAL 9CDY ANGLE = ,E12.6///) FCRMAT (2F12.6) WRIO1590 WRIO1600

WRI01610	WR101620	WR101630	WR101640	WR101650
	COT =,F12.6,7H			
FURNAT (1046,2X,46/13/15/1X,14,15/9X,11)	CDP =,F12.6,8H			
. A6/13/15/1X, 14,1	COF =,F12.6,8H	CP1 =, F12.6)	STAR = , F12.61	
FURNAT (1046,2X,	FURMAT (3X, 8H	1 CP = , F12.6,8H	FORMAT (10X, 7HRS	END
290			310	

	SUBROUTINF ZRO CALLS SUBRCUTINE INTERS SUBROUTINF ZRO CALLS SUBRCUTINE INTERS SUBROUTINF ZRO IS CALLED BY SUBROUTINES BLUNTZ AND CONEZ. SUBROUTINE ZRO CALCULATES FOR AXISYMETRIC FLUM AN AXIAL DISTANCE ZRO Z AND A RADIUS RO CORRESPONDING TO A SURFACE DISTANCE X2. ZRO 90 CC4490N /ARRAYZ/ PZ(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(ZRO) 110 LI01), RZ(501) J=0 J=0 IF (X2.GT.XSTA(J)) GO TC 10 IF (J.LT.3) J=3 F (J.LT.3) J=3 F (J.LT.3) J=3 CALL INTERS (X2.XSTA(J-1), XSTA(J-1), XSTA(J+1), XSTA(J+2), RZZROO 200 (LJ.Z), RZ(J-1), RZ(J-1), RZ(J-1), RZ(J-1), XSTA(J-1), XSTA(J-2), ZAZROO 220 (LJ.Z), ZA(J-1), ZA(J	SUBROUTINE ZRO (JJ, X2, Z, RO) IMPLICIT REAL#8(A-H, U-Z)	ZROO	10
			2800	30
			ZROO	40
			ZROO	20
			ZPOO	09
			ZRCO	10
		DISTANCE	ZROO	80
			ZRDO	60
				001
		CC4MON /ARRAYZ/ P2(501), UEZ(501), XSTA(501), ZA(501), IPR(101), IPRFL(110
		1101), RZ(501)		120
ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00	ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00			130
ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0	ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0 ZRD0			140
ZROO 2ROO 2ROO 2ROO 2ROO 2ROO 2ROO 2ROO	ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00 ZR00			150
ZR00 21 J=3 (JJ-21) J=JJ-2 (JJ-21) J=JJ-2 (KZ, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZR00 ZR00 J-1), RZ(J), RZ(J+1), RZ(J+2), RO) ZR00 ZR00 ZR00 J-1), RZ(J), ZZ(J+1), RZ(J+2), RO) ZR00 J-1), ZZ(J), ZZ(J+1), ZZ(J+2), ZZ	ZR00 2800 (JJ-21) J=JJ-2 (JJ-21) J=JJ-2 (KZ, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZR00 ZR00 J-1), RZ(J), RZ(J+1), RZ(J+2), RO) ZR00 ZR00 J-1), RZ(J), ZZ(J+1), ZZ(J+2), ZZ(J+2), ZZR00 ZR00 J-1), ZZ(J), ZZ(J+1), ZZ(J+2), ZZ ZR00 ZR00 ZR00			160
ZR00 (JJ-Z1) J=JJ-2 (KJ-Z1) J=JJ-2 (KZ, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZR00 J-1), RZ(J), RZ(J+1), RZ(J+2), RO) Z-1), RZ(J), XSTA(J-2), XSTA(J-1), XSTA(J+1), XSTA(J+2), ZAZR00 J-1), ZA(J), ZA(J+1), ZA(J+2), Z)	ZR00 (JJ-21) J=JJ-2 (KJ-21) J=JJ-2 (KZ, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZRD0 ZR00 J-1), RZ(J), RZ(J+1), RZ(J+2), RO) ZR00 ZR00 ZR00 J-11, ZA(J), ZA(J+11, ZA(J+2), Z) ZR00 ZR00 ZR00 ZR00	-xSTA(J)) GO TC 10		170
ZROO ZROO R5 (X2, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZROO J-1), RZ(J), RZ(J+1), RZ(J+2), RO) ZROO SROO J-1), ZA(J), ZA(J+1), ZA(J+2), Z)	ZROO (1J-2)) J=JJ-2 R5 (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),RZZROO J-1),KZ(J),RZ(J+1),RZ(J+2),RO) ZROO SROO J-1),KZ(J),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),ZAZROO ZROO J-1),ZA(J),ZA(J+1),ZA(J+2),Z)	3) 1=3		180
R5 (X2, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZRDO J-1), RZ(J), RZ(J+1), RZ(J+2), ROJ ZROO ZROO ZROO ZROO ZROO ZROO ZROO	R5 (X2, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), RZZRDO J-1), RZ(J), RZ(J+1), RZ(J+2), RD) ZRDO ZRDO ZRDO ZRDO ZRZ(J), RZ(J+1), RZ(J+1), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), ZAZRDO ZRDO J-1), ZA(J+1), ZA(J+2), Z) ZRDO ZRDO ZRDO ZRDO ZRDO ZRDO ZRDO ZRDO	IF (J.6T.(JJ-2)) J=JJ-2		190
ZRG0 SR5 (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),ZAZRG0 J-1),ZA(J),ZA(J+1),ZA(J+2),Z)	ZRGO SRGO SRS (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),ZAZRGO SRS (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),ZAZRGO ZRGO J-11,ZA(J),ZA(J+11,ZA(J+2),Z) ZRGO ZRGO	CALL INTERS (X2, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), R2		200
ERS (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),ZAZROO (J-1),ZA(J),ZA(J+1),ZA(J+2),Z)	ER5 (X2,XSTA(J-2),XSTA(J-1),XSTA(J),XSTA(J+1),XSTA(J+2),ZAZROO	1(J-2), R2(J-1), R2(J), R2(J+1), R2(J+2), R0)		210
(J-11, ZA(J), ZA(J+11, ZA(J+21,Z)	(J-11, ZA(J), ZA(J+11, ZA(J+21, Z) ZROO ZROO ZROO ZROO	CALL INTERS (X2, XSTA(J-2), XSTA(J-1), XSTA(J), XSTA(J+1), XSTA(J+2), ZA		220
	ZRO0 ZRO0	1(J-2), ZA(J-1), ZA(J), ZA(J+11, ZA(J+21, Z)		230
ZR00	ZROO			240
ZROO				250

TABLE 4.1 FIELD EXEC

GLOBAL TXTLIB FORTLIB
FI 96 DISK HESS COURDATA B (LRECL 80 BLKSIZE 80 RECFM FB) FI 04 DISK INTER DATA B (LRECL 80 BLKSIZE 80 RECFM FB)
FI 05 DISK HESSBLI DATA E (LRECL 80 BLKSIZE 80 RECFM FB)
FI 02 DISK HESS PARMDATA E (LRECL 80 BLKSIZE 80 RECFM FB
LGAD DATFIELD (NOMAP ECONTROL ALL OT TERM START

TABLE 4.2 DEVELOP EXEC

ECONTROL ALL
ELGOP -LABEL E1
EXEC FIELD
EXEC HESSBLI HESS COORDATA B

-LABEL ECONTINUE

TABLE 4.3 CATFIELD FOFTRAN

0AT00010 0AT00020 0AT00030	DATJOO40 DATJOO50 DATJOO50 DATJOO70 DATJOO90 CURVDATJOO90	DATOOLSO DATOOLSO DATOOLSO DATOOLSO DATOOLSO DATOOLSO DATOOLSO	0AT00180 0AT00190 0AT00200 0AT00210
DIMENSION X(30,60), Y(30,60), HEDR(15), XB(501), YB(501) READ IN DISPLACED BGDY COORDINATES	DATJOO40 READ (5,10) HEDR, CASE, ICARD2, ICARD3, ICARD4, Nr, IBDN DATJOO50 READ(5,80) DU 6 1=1, NN 6 READ (5,20) XB(I),YB(I) DATJOO70 DATA NB/1/,NNU/0/,NCF/C/,NAXI/I/,NDFF/I/,IGECMF/O/,ISIGF/I/,ICURVDATJOO90 IN/J/,NONEWF/O/,IFCRMI/I/,IIBDN/O/,NNI/360/	WRITE (6,70) HEDR, CASE WRITE (6,30) NB,NNU,NAXI,NCF,NOFF WRITE (6,30) WRITE (6,30) WRITE (6,30) WRITE (6,30)	

```
DAT00280
                                                                                                                                                              DAT00350
                                                                                                                                                                          DAT00360
                                                                                                                                                                                     DAT00370
                                                                                                                                                                                                  DAT 00380
                                                                                                                                                                                                              UAT 00390
                                                                                                                                                                                                                           DATU0400
                                                                                                                                                                                                                                       DAT30410
                                                                                                                                                                                                                                                                DAT00430
                                                                                                                                                                                                                                                                           DAT00440
                                                                                                                                                                                                                                                                                        DAT 00450
                                                                                                                                                                                                                                                                                                    DAT 30460
                                                                                                                                                                                                                                                                                                                DAT00470
                                                                                                                                                                                                                                                                                                                                         0450CTAU
                                                                                                                                                                                                                                                                                                                                                      0AT00500
                                                                                                                                                                                                                                                                                                                                                                DAT00510
                                                                                                                                                                                                                                                                                                                                                                             DAT00529
                                                                                                                                                                                                                                                                                                                                                                                          DAT00530
                                   DAT00250
                                                            DAT00270
                                                                                    UAT00290
                                                                                                 DAT00300
                                                                                                             DAT 00310
                                                                                                                                                                                                                                                   DAT 30420
                                                                                                                                                                                                                                                                                                                              DAT 30480
DAT 30220
           DAT00230
                        DAT00240
                                                 DAT30260
                                                                                                                          DAT00320
                                                                                                                                     DAT00330
                                                                                                                                                  DAT30340
                                                                      M IS THE UPPER MEST RGW OF OFF BODY PCINTS ITERATION. K IS THE BUTTOM MOST ROW.
                                                                                                                                                                                                                                                                                                                                      (1544,2X,44/13/15/1X,14,15/9X,11)
          READ IN THE ITERATION DATA
                                                                                                                                                                                                              WRITE (6,20) X(I,J), Y(I,J)
                                                                                                                                                                                                                                                                          REWIND FILE WITH REPITITI
                                                                                                                                                                                                                                                                                                                           WRITE (4,60) XLOCAT, UX, DY
                                             14,60) XLCCAT, DX, DY
                                                                                                                                                                                                                                                                                                               MRITE (4,40) IHESSI
                                   (4,40) IHESSI
                                                                                                                                                                                                                                                  IHESSI = IHESSI+1
                                                                                                                                                                                                                                                                                                                                                                             (511,15)
                                                                                                                                                                                                                                                                                                                                                   (2F12.6)
                                                                                                                                                                                                                                                                                                                                                                                        (9x, 11)
                                                                                                                                                                                                                                                                                                                                                                (511)
                                                                                                                                    = DY*(K-1
                                                                                                            4 = IHESSI*6
                                                                                                                                                                          J=1,60
                                                                                                                                                                                    Y(1,1) = YS
                                                                                                                                                             XS = XLOCAT
                                                                                                                                                  I=K,M
                                                                                                                                                                                                                           XO+SX = SX
                                                                                                                                                                                                                                      = YS+DY
                                                                                                                                                                                                                                                                                                   REWIND 4
                                                                                                                        M-5
                                                                                                                                                                                                 (C.1)X
                                                                                                                                                                                                                                                                                                                                         FURMAT
                                                                                                                                                                                                                                                                                                                                                                FURMAT
                                                                                                                                                                                                                                                                                                                                                                             FURMAT
                                                                                                                                                                                                                                                                                                                                                                                         FURMAT
                                                                                                                                                                                                                                                                                                                                                   FURMAT
                                                                                                                                                                         00 3
                                              READ
                                   READ
                                                                                                                                                                                                                                                                                                                                                               30
                                                                                                                                                                                                                           3
                                                                                                                                                                                                                                                                                                                                        10
```

DAT00540 DAT00550 DAT00560 DAT00570

60 FURMAT (3F12.6) 70 FURMAT (15A4,2X,A4) 90 FURMAT(/) STOP END

APLNS EXEC

TABLE 5.1

GLOBAL TXTLIB FCRTXLIB FI 5 DISK &1 &2 &3

FI 38 DISK STREAM DATA E (RECF4 FB BLOCK 87 LRECL 87 FI 11 DISK APLNS VELDATAI E

TESTBAT

CRC = CRETCODE

EIF ERC EG O FI D6 DISK APLNS GUTPUT E EIF ERC NE O FI D6 PRINTER LUAD NSTIDY PLTCAPLN (CLEAR NOMAP START

TABLE 5.2

APLNS FURTRAN

CALL DRFAX6 STOP END

FAVIN 01000 CH CCM- AND ALUES OR XIW	JLATED 01001			K C R K 6		1014 01015 01015		01002 (HC, X,Y, UO, KM, KL, KU,
SUBROUTINE WORK6(TIME, TS, TTS) AXI—SYM & CORNER WITHIN WORK6 THE CALCULATIONS ARE PERFCRMED WHICH COM- UTE XIM AND XI, THE VALUES OF DU/DY AT THE WALL AND AT ANY POINT IN THE FLOW, RESPECTIVELY. THESE VALUES ARE COMPARED IN SUBROUTINE DRFAX6. THE VALUES FOR XIM	FROM STREAM FUNCTION CALCU-2)	10		• •		<u>-</u>	*	KI, KM, KL, KU REALS/ RI,C7,DX,UY,DT,U2,RHG,EPS,FX,FXRHC,X,Y,UG, NTA,TDY,TDX,DY2, DFRGDR, TRAMP,TCL, KI, KM, KL, KU,
TINE WORKGITIME, TS, TTS 1 & CORNER WORKE THE CALCULATIONS A 1 AND XI, THE VALUES OF D 1 POINT IN THE FLOW, RESPENDENT IN SUBROUTINE DRFA	ARE CALCULATED THE GRID REGION.	*	• • •	**	*	× = = = = = = = = = = = = = = = = = = =	X	L*8 KI, KM, KL, KU MON /REALS/ RI,C7,DX,DY,DT,U2, DT2,DT4,TDY,TDX,DY2, DFRGDR,
SUBROUTI AXI-SYM WITHIN W UTE XIM AT ANY P ARE COMP	AND XI WITHIN IMPLICI)=[J=30EL		; - ; <u>-</u> ;	A 1=1	[=]	REAL#8 COMMON # DT2,

	01021	01024 01025 01026 01027	01028 01029 01030 01031	01035	01038	01035
* EPG, THRUST CCM4ON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIW, EPA(60), U1(60), * U10(60), PSIO(60) CCMMON /INTEGS/ L,LI,JDEL,M,MI,NTS,NFR,PSKP,IDIMY,JDIMY,JCI,IO CCMMON /IRRAYS/ LAR(60) CCMMON /IRRAYS/ LAR(60) CCMMON /IRRAYS/ LSWHI, PRNT, ON, OFF, RSTART, SAVE, SWHFX,	DIMENSIONS ARE SET UP FOR MAXIMUMS OF L=30, M=60, L1=15 E M1=15 DIMENSION PSI(60,30), PSIR(60,30), XI(60,30), V(60,30), U(60,30)	2003	INTEGER TS, TTS, PSKP CCM4GN 1HDR INTEGER JHDR(6) DATA JHDR / OPSI''O XI'', O V', O U', OXIA', OXIB' / DATA IPSIR /4HOPSB/	CAL CAL NSIGN VALEN	DATA IA, IB, IDIMY, JDIMY / 1624, 1624, 60, 30 / DATA IA, IB / 1624, 1624 / DATA NLC, NUC, MB, IJCB / 1,1,1,0 / DATA INCE / 0 /	2(X)

```
01040
                                                                                                                                                                                  01092
                                                                                                                                                                                                     01094
01095
01095
01098
01098
                                                                                                                                                                                                                                                                                                        01103
                                                                                                                                01067
                                                                                                                                                                        16010
                                                                                                                                                                                                                                                                                               01102
                                                                                                                       01086
                                                                                                                                           91088
                                                                                                                                                    01089
                                                                                                                                                               06010
                                                                                                                                                                                                                                                                  01100
                                                                                                                                                                                                                                                                                                                  90110
                                                                                                                                                                                                                                                                                     10110
                                                                                                                                                                                                                                   FCRMATI OHERE IS N. IDIMY AND IDIMM (MAX DIM FUR WW) . / 318)
                                                                                                                                                                                                                          IDIMM = 2*LM2 + 4*MM2 + 4M2*(DLOG2(R) + 1) +1
                              WITH EPO"
                               Ø
                               ×
                               a
FCRMAT(2x, 1P10G12.4)
IF(INCE .FQ. 1) GU TO 1000
                               0
                                                                                                                                                                                                                                             PHINT 43, N, IDIMY, IDIMM
DT2 = DT / TWO
DX2 = DX*DX
                                                                               FURNATI . EPG = ", 1PG16.7)
                             FURMAT ( * 0 * * 01/20/77
                                                                                                                                                                                                                                                                           FOX2 = FOUR * OX2
                                                           EPU = 16.900D-05
PFINT 6, EPC
                                                                                                                                                                                                                                                                                                                  = 0x2 / 0Y2
                                                                                                   DLG2 = DLOS(TWO)
                                                                                                                                                                                                                                                                                                        = DY2/DX2
                                                                                                                                                                                                                                                                                              DY3 = 0Y2 # DY
                                                                                                                                                                                                                                                                                     DY2 = 3Y*DY
                                                                                                                                                                                                      N = LM2*:4M2
                                                                                                            MIPI = MI+1
                                                                                                                       1-1
                                                                                                                                4-2
                                                                                                                                           N-3
                                                                                                                                                               7-7
                                                                                                                                                    1-1 = 1W1
                                                                                                                                                                                   11 = 111
                     PRINT 1
                                        INCE=1
                                                                                                                       - INN
                                                                                                                                           MR3 =
                                                                                                                                                                                                                                                                                                                  RXY2
                                                                                                                                                                                             1142
                                                                                                                                                                                                                                                                                                         RYX2
                                                                                                                                 MMZ
66
                                                                                                                                                                                                                                    43
                                                                                 S
                                                  UU
```

```
01105
                                                                                                                       80110
                                                                                                                                    60110
                                                                                                                                               01110
                                                                                                                                                                     01136
                                                                                                                                                                               01137
                                                                                                              01107
                                                                                                                                                          01135
                                                                                                                                                                                           01138
                                                                                                                                                                                                     01139
                                                                                                                                                                                                                01110
                                                                                                                                                                                                                                                  01141
                                                                                                               *
                                                                                                             XI AT THE WALL FOR 1=2 TC MI
                                                                                                                                                                                                                                                                                                                           FCR.4AT (*01= *,14,*: PSWI(K,1),K=2,MIMI*)
                                                                                                                                                                                                                        AA(LMI) = AA(LMI) + CC(LMI)
                                                                                                                                                                                                              88(J) = -TWP * RXY2
                                                                                                                                                                                                                                                                                                                                       00 41 [P=1,LM]
00 41 JP=1,4M2
                                                                                                                                                                               I = DXT / Y(J+1)
                                                                                                  XIA(1,J)=XI(1,J)
                                                                                                                                                                                         AA(J) = RXY2 +
                                                                                                                                                         0xt = 0x2 / T0Y
TDY = TWO * DY

TDX = TWO * DX
                                                                                                                                                                                                                                     CC(LM1) = ZERU
                                                               PS18(1, J) = ZERC
                                                                                                                                                                                                                                                                                                      00 40 I=2, MIMI
                                                                                                                                                                                                    CC(J) = RXY2 -
                                                                                                                                                                   OC 51 J=1, LM1
                                          XIA(I,J)=ZERO
                                                                                                                                  XIM(1) = ZERO
                     DU 45 1=1,60
00 45 J=1,30
                                                      XIB(1, J)=ZERO
                                                                                                                       JC 50 1=1,41
                                                                                                                                                                                                                                                                                            1-1W =
                                                                                      1º1=6 44 00
                                                                                                                                                                                                                                                          N$ = JCI-2
                                                                                                                                                                                                                                                                                                                  PRINT 2.
                                                                            CONTINUE
                                                                                                             XIM = 0;
                                                                                                                                                                                                                                                                      IA$ = 15
                                                                                                                                                                                                                                                                                106T = 0
                                                                                                                                                                                                                                                                                           MIMI
                                                                                                                                   20
                                                                            45
                                                                                                  44
                                                                                                                                                                                                               15
                                                                                                                                              ں
                                                                                                                                                                                                                                                 S
                                                                                                                                                                                                                                                                                                                  v
                                                                                                             U
```

```
31285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   01286
                                                                                                                                                                                                                                                                                                                                                                                                                                               01283
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 01284
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    01287
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       01288
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       01289
                                                                                                                                                                                                                                                                                                      01277
                                                                                                                                                                                                                                                                                                                                                                                                                              01282
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   + (XI(1, 1+1)-XI(1, 1-1))/TOY/Y(J)-XI(I, 1)/Y(J)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = EPA([]*((XI(1, J+1)-2*XI(1, J)+XI(1, J-1))/DY2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      + XI(1,1) / DT2 + V(1,1) * XI(1,1) / Y(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      V(1,1) * (XI(1,1+1)-XI(1,1-1))/TOY
                                                                                                      .EO. 4) CALL DMTG13(YY, LMI, MMZ, L, M)
                                                                                                                                            E
                                                                                                                                        .EQ. 4) CALL DMT0101YY, LMI, MMZ, L,
                                                                                                                        CALL PCISZ(MMZ, LMI, AA, BB, CC, JS IMY, YY, XL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              A(NC,2) = TMU/DI + (TMO*EPA(I))/DX2

A(NC,1) = -U(I,3)/TUX - EDD + EDC
                                                                                                                                                                                                                                                                                                                                                                                                                                               - EDD - EDC
                                                                                                                                                                                                                                                                                                                                                                         EOC = (EPA(I+1)-EPA(I-1))/FOX2
                                                                                                                                                                                                                                                  PPINT 99, (PSMI(K,11,K=2,MIM1)
                                                                                                                                                                                                                                PSWICK. 1) = YYLLJ, K-1)
                                                                                                                                                                                                               1F(LJ .LE. 0) GG TG 40
                                                                                                                                                                                                                                                                                                                                                                                                            1F() .LT. LJ) GC TO 87
                                                                                                                                                                                                                                                                                                                                                                                                                                              A(NC,3) = U(1,3)/ TDX
                                 IFILJ .LE. 0) GO TO 40
YY(IP, JP) = ZERG
LJ = LAR(I)-1
                                                                                                                                                                              00 42 K=2,M1M1
                                                                                                                                                                                                                                                                                                                      00 88 J= 2, LM1
                                                                                                                                                                                            LJ = LAR(K)-1
                                                                                                                                                                                                                                                                                                                                                        ED0 = EPA(11/0x2
                                                                      YY(LJ,I-1) = ONE
                                                                                                                                                                                                                                                                                                                                                                                            LJ = LAP(1) + 1
                                                                                                                                                                                                                                                                                                                                       OC 87 1=2, MM1
                                                                                                                                                                                                                                                                                                                                                                                                                              NC = NC+1
                                                                                      IHDR = MASK
                                                                                                                                                                                                                                                                   40 CENTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  6 ( PIC )
                                                                                                                                                                                                                                                                                  1000 CUNTINUE
                                                                                                                                                                                                                                                                                                      NC = 0
                                                                                                       IF II
                                                                                                                                         11-11
                                                                                                                                                                                                                                  45
  14
                                                                                                                                                                                                                                                  U
                                                                                        UU
                                                    J
                                                                                                                                           UU
```

```
01291
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               01292
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  01293
                                                                    (V(I+1,J) - TWC*V(I,J) + V(I-1,J))/DX2 - V(I,J)/Y(J)**2)
                                                                                                                                                                                                                                                                                            B(NC) = B(NC) + (EPA(I)-EPU)/TOY * ( (U(I, J+1)-TWO*U(I, J)+
                                                                                                                                                                                                                                                                                                                                                                                                                                             (U(I,J+1)-U(I,J-1))/TDY + (V(I+1,J)-V(I-1,J))/TDX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (U(1+1,J)-U(1-1,J))/TDX - (V(1,J+1)-V(1,J-1))/TDY
                                                                                                                                                                                                                                                                                                                    U(1, J-1))/DY2 + (U(1, J+1)-U(1, J-1))/TWO/DY2/(LJ-1)
                                                                                                                   (U(I+J+I)-U(I+J-I))/TDY + (V(I+I+J)-V(I-I+J))/TDX
BINC) = BINC) - (EPA(I+1)-EPA(I-1))/10x # (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DETERMINATION OF THE LCCATION OF THE PROPELLER(S)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(1.NE.M1) GG TO 94

IF(J.LE. L1) B(NC) = B(NC) + DFRCOR(J)
                                                                                           (EPA(I+1) - THO*EPA(I) + EPA(I-1))/DX2
                    IV(I, J+1) - TMC*V(I, J) + V(I, J-1))/DY2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B(NC) = B(NC) - A(NC,1)*XI(1,J)
                                                                                                                                                                                                                                                                                                                                               (U(1+1,J)-TF0*U(1,J)+U(I-1,J))/DX2 +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (( I . N E. M I) . AND . ( I . N E . M I P I ) ) GO TO 94
                                            (V(1, J+1) - V(1, J-1)) / TDY / Y(J)
                                                                                                                                                                      ****** F.CP EPS( Y ) ******
                                                                                                                                                                                                                                                                                                                                                                                                                    (EPALI)-TWO*EPA(I)+EPO) /DY2
                                                                                                                                                                                                                                                                                                                                                                       XI(1, J+1)-XI(1, J-1))/TDY
                                                                                                                                                                                              IF(EPO .EQ. ZEKO) 60 TO 93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (FPO-EPA(I))/DY/DX *
                                                                                                                                                                                                                      63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             94 IFII .NE. 2) GC TO 95
                                                                                                                                                                                                                    IF( I .GT. M1) GO TC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       93 CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ALONG
                         -20
                                                                                            4 10
                                                                                                                                               ں ں
                                                                                                                                                                                                                                                                       J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               UU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        U
```

J

```
01310
01294
                                                01297
                                                                                                                                                                                                            01302
                                                                                                                                                                                                                                   01304
                                                                                                                                                                                                                                                           01306
                                                                                                                                                                                   01301
                                                                                                                                                                                                                                                91305
                                                                        01299
                                                                                                                                                                         01300
                                                                                                                                                                                                                                                                                                                                                                        01312
                                                                                                                                                                                                                                                                                    *** DUNE UP ABUVE
                                                                                                                                                                                                          CALL LEGIIBIA,NIC,NUC, IA, B, MB, IB, IJOB, XL, IER)
                                              A(NC,1) = A(NC,1) - A(NC,3)
A(NC,2) = A(NC,2) + TWO*A(NC,3)
                                                                                                                                                                                                                                  IF(IER .NE. 0) PRINT 22, IER
FCRWAT(*0***EPROR 1ST LEQTIB: IER= ',15)
                                                                                                                                  B(NC) = B(NC) - A(NC, 1)*XI(1,J)
A(NC,1) = ZERO
CUNTINUE
                                                                                                                                                                                                                                                                                                                       IF(1) .LT. LJ) GC TO 89
                       IF( I .NE. MM1) GO TO 86
                                                                      AINC, 3) = ZERG
A(NC,1) = ZERC
                                                                                               IF(1 .GT. M1) GG TG 87
IF(J .NE. LJ) GG TG 87
ALCNG FF
                                                                                                                                                                                                                                                                                                                                               XIA(1, J) = B(NC)
                                                                                                                                                                                                                                                                                   XIA(1,1) = XI(1,1)
                                                                                                                                                                                                                                                                       00 96 J= 2,1M1
                                                                                                                                                                                                                                                                                              DU 89 1=2,4M1
                                                                                                                                                                                                                                                                                                           LJ = LAR(1)+1
                                                                                   CUNTINUF
                                                                                                                                                                                                                                                                                                                                                          89 CONTINUE
96 CONTINUE
           95 CUNTINUE
                                                                                                                                                                       AB CENTINUE
                                    ALONG
                                                                                                                                                                                                 N=NC
                                                                                    36
                                                                                                                                                            37
                                                                                                                                                                                                                                                22
                                                                                                                                                                                                                                                                                    U
                                    U
                                                                                                                       v
                                                                                                                                                                                     ں
                                                                                                                                                                                                                         c
```

```
97810
                                                                                                                01325
                                                                                                                                                                                            01333
                                     01316
                                                                 01319
                                                                                                                                                                                                              01335
                                                                                                                                                                                                                                                    01339
                                                                                    01322
                                                                                                                                                                         01331
                                              01317
                                                        01318
                                                                           01320
                                                                                              01323
                                                                                                                                    01327
                                                                                                                                             01328
                                                                                                                                                      01329
                                                                                                                                                                01330
                                                                                                                                                                                   01332
                                                                                                                                                                                                                         01336
                                                                                                                                                                                                                                            38810
                                                                                                                                                                                                                                                              01340
                                                                                                                                                                                                                                                                        01341
                                                                                                                                                                                                                                                                                 01342
                                                                                                                                                                                                                                                                                           01343
                             01315
                                                                                                                                                                                                                                  01337
 01313
                                                                                                                                                                                                                                          (U(I,J)-UA(I,J)) * TMP
(V(I,J)-VA(I,J)) * TMP
                                                                 XIA(M,J) = 2*XIA(MMI,J) - XIA(MM2,J)

IHDR = JHOR(5)
                                                                                                       IF(TS .GT. 1) GG TG 175
                                                                                                                                                                                                                                         JA(I,J) = UA(I,J) +
VA(I,J) = VA(I,J) +
                  XIA(1,LJ) = XI(1,LJ)
XIA(1,L) = 2ERO
                                                                                                                                                               (L.1) = (L.1)AV
                                                                                                                                                      UALLAJ) = U(I,J)
                                                                                                                                                                                                               TMP = OT/(DTA*TWO)
                                              NEW ALUNG CD -->
                                                                                                                                   DO 170 I=1,M
DO 170 J=1,L
                                                                                                                                                                                                                        M.1=1 081 00
                                                                                                                                                                                           FOR 15 NUT 1
                                                                                                                                                                                                                                 JU 180 J=1,L
                                                                                                                                                                                                                                                                                                   OC 110 1=2, MM1
                                                                                                                 FOR TS=1
                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                          JIA = UT
M 1=1 16 30
                                                                                                                                                                                   GG TO 200
         LJ=LAR(I)
                                                                                                                                                                                                     175 CCNTINUE
                                     CONTINUE
                                                                                                                                                                                                                                                                                 200 CONFINUE
                                                                                                                                                                                                                                                                                          C=ON
                                                                                                                                                                                                                                                              190
                                                                   98
                                                                                                                                                                          170
                                      16
                                                                                                                                                                                             J
                                                J
                                                                                      U
```

```
01348
                                                                                                                                     01350
                                                                                                                                                                                          01352
                                                                                                                                                                                                                                                                            01355
                                                                                                                                                                                                                                                                                                      01356
                                                                                                                                                               12810
                                                                                                                                                                                                                      01353
                                                                                                                                                                                                                                                                                                                                 01357
                                                                                                                                                                                                                                                                                                                                                                                      B(NC)=B(NC)+(EPA([+1)-EPA([-1))/TDX *(XIA([+1,J)-XIA([-1,J))/TDX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (VA(I+1,J) - TWC*VA(I,J) + VA(I-1,J))/5X2 - VA(I,J)/Y(J)**2)
(EPA(I+1) - TWO*EPA(I) + EPA(I-1))/0X2 * (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          B(NC) = B(NC) + (EPA(I)-EPC)/TDY * ( (LA(I, J+1)-TKO*UA(I, J)+
                                                                                                                                                                                                                                                 = EPA(1)*((xIA(I+1,J)-2*XIA(I,J)+XIA(I-1,J))/0X2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        UA(1, J-1))/DY2 + (UA(1, J+1)-UA(1, J-1))/TWC/DY2/(LJ-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (UA([,J+1)-UA(I,J-1))/TDY + (VA([+1,J)-VA(I-1,J))/TDX
                                                                                                                                                                                                                                                                                                                                 + XIA(1,3) / DT2 + VA(1,3) * XIA(1,3) / Y(3)
                                                                                                                                                                                                                                                                                                      - UA(I,J) # (XIA(I+1,J)-XIA(I-1,J))/TOX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A(NC,1) = A(NC,1) + (EPA(1)-EPC)/4.0C0/0Y2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A(NC,3) = A(NC,3) - (EPA(1)-EPO)/4.000/DY2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (UA(I+1, J)-TWO*UA(I, J)+UA(I-1, J)) /DX2 ) +
                                                                                                                                                                                                                                                                                                                                                                                                                                            (VA(I.J+1) - THC+VA(I.J) + VA(I.J-1)) /DY2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (VA(I, J+1) - VA(I, J-1)) / TEY / Y(J) +
                                                                                                                                                              A(NC,2) = TWO/UT + (TWC#EPA(I))/DY2
                                                                                                                                                                                                                                                                                                                                                                                                               - (EPA(I+1)-EPA(I-1))/TOX *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               *****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (EPA(1)-TWO*EPA(1)+EPO)/DY2 *
                                                                                                                                                                                                                                                                            - XIA(1, J)/Y(J) **2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (EPO .EG. ZERU) GU TO 193
                                                                                                                                                                                            A(NC.1) = -VA(1, J)/ TDY
                                                                                                                                     A(NC, 3) = VA(I, 3)/ TOY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF( J .NE. LJ) GC TO 193
IF( I .GT. MI) GO TC 193
                                                                                                            / TDY / Y(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ****** FOR EPS! Y
EOU = EPA(I)/DY2
                                                       DG 110 J=LJ,LM1
                            LJ = LAR(1)+1
                                                                                     NC = NC+1
                                                                                                            = EPA(I)
                                                                                                                                                                                                                                                   BINC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    UU
```

J

((UA(I, J+1)-UA(I, J-1))/TDY + (VA(I+1, J)-VA(I-1, J))/TDX) + (EPO-EPA(I))/DY/DX + ((UA(I+1, J)-UA(I-1, J))/TDX - (VA(I, J+1)-VA(I, J-1))/TDY)		
193 CCNTINUE		
IF ((I.NE.MI).AND.(I.NE.MIPI)) GO TO 102		92.10
IF(J -LE. L1) B(NC) = B(NC) + DFRCDR(J)		01359
CCATINUE 15(J. NE. 1J) GO TC 134		01360
		01363
		01364
		01365
$B(NC_21) = B(NC_21) - A(NC_21) + 0.0$ IF TOP WALL	*	01366
		01368
CCNTINUE		01369
N = NC		01510
CALL LEGTIB(A,N, NLC, NUC, IA, B, MB, IB, IJCR, XL, IER)		01371
		01373
FGSMAT("O***ERKOR ***ZNO LEGTIB: IER= ",14)		01374
0 =		01376
120 1=2,4M1 = LAR(1)+1		01377
XIB([•LJ-1) = X[([•LJ-1)		
N =		01380

```
01383
                                  01384
                                             01385
                                                        01386
                                                                    01387
                                                                               01388
                                                                                           01389
                                                                                                       01390
                                                                                                                 16810
                                                                                                                             01392
                                                                                                                                        01393
                                                                                                                                                    01395
                                                                                                                                                               96810
                                                                                                                                                                          01397
                                                                                                                                                                                     01398
                                                                                                                                                                                                01399
                                                                                                                                                                                                            00410
                                                                                                                                                                                                                                   01402
                                                                                                                                                                                                                                               01403
                                                                                                                                                                                                                                                          01404
                                                                                                                                                                                                                                                                      01405
                                                                                                                                                                                                                                                                                31406
                                                                                                                                                                                                                                                                                             01407
                                                                                                                                                                                                                                                                                                        01408
                                                                                                                                                                                                                                                                                                                   01409
                                                                                                                                                                                                                                                                                                                              01410
                                                                                                                                                                                                                                                                                                                                                     01412
           01382
                                                                                                                                                                                                                       10410
                                                                                                                                                                                                                                                                                                                                         01411
                                                                                                                                                                                                            $$$$$$$$$$$$$$$$$$$$$$$$$
                                                                                                                                                                                                                                                                                                                                                                (DY2*X18(M,LM1) - U1(M)*DY*(CNE-T)) * Y(LM1)
                                                                                                                                                                                     IE.
                                                                                                                                                                          A LA EHRLICH
                                                                                                                                                                          DEL_SQUARE PSI = XI(X,Y) A LA EHRLICH
FIRST SGLVF ALGNG THE RHS CF THE REGIGN.
                                                                                                     XIB(M.J) = TWO*XIB(MMI,J) - XIB(MM2,J)
                                                                                                                                                                                                                                                                                8(J) = DY2 * XIB(M, J+1) * Y(J+1)
                                                                                                                                                                                               BUT NOT THE END POINTS
                                                                                                                                                                                                                                                                                                                  T = 0Y / TWC / Y(L41)
XIB(1,J) = B(NC)
CCNTINUE
                                                        DO 124 J=1,L
XIB(1,J) = XI(1,J)
                                                                                                                                                                                                                                  T = DY/TWU/Y(J+1)
                                                                                                                                                                                                                                              A(J.3) = CNE - T
                                                                                                                                                                                                                                                                    = ONE + T
                                                                                                                                                                                                                                                                                                                                         = -0NE
                                                                                                                XI3(M,1) = ZERG
                                            XIB(I,L) = ZERC
                                                                              NOW ALONG CD-->
                                                                                                                                                                         DEL_SQUARE PSI
                                                                                          00 126 J=2,LM1
                                                                                                                                        IHUR = JHDR(6)
                                                                                                                                                                                                                        DC 205 J=1,LM2
                                                                                                                                                                                                                                                                                                                             A(1,1) = ZERO
                                                                                                                                                                                                                                                         - -TWO
                                DC 122 I=1,M
                                                                                                                                                                                                                                                                                                                                                               8(1 42) =
                                                                                                                                                                                                                                                                                                                                         A(L42,2)
                                                                                                                                                                                                                                                                                                                                                     A(LM2,3)
                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                         A(J,2)
                                                                                                                                                                                                                                                                      4(1,1)
           120
                                            122
                                                                    124
                                                                                                      126
                                                                                                                                                                                                                                                                                           275
                                                                                                                                                                         0000
```

ی		01414
	CALL LEGTIB(A, LMZ, NLC, NUC, IA, B, MB, IB, IJG3, XL, IER)	01415
S		01410
	IF(IER .NE. 0) PPINT 24,1ER	01417
54	FORMAT (.	01418
	.1.	01419
	PSIB(M, J+1) = B(J)	01420
130	CONTINUE	01421
J		01422
v	MUST "INTERCHANGE I AND J FOR POISZ USE HERE"	01423
J	(1,J) MAPS INTO (J',I') AND YY(30,60)	01424
J		01425
ں	SIEP 2	
	DC 135 [=1,LM]	01426
	DO 135 J=1, MM2	01427
	LJ = LAR(J+1)-1	
	YY(1, J)=ZERO	
	IF(I .GT. LJ) YY(I,J) = XIB(J+1,I+1)*0X2 * Y(I+1)	
135	CONTINUE	
J		
ر,	ALONG L.H.SIDE	. 01430
	LJ=JCI-1	
	DC 136 [=LJ,LM]	
136		
J	.H.SIDE	01432
	00 2137 I=1,LM1	
2137	YY(I,MM2)	
ں		01434
	UN 137 J=1, MM2	01436
U	7	01437
ی ر		01438
٠	ALTING THE TOP	01439

```
01450
 01440
                               01448
                01441
                                                                                                           31451
137 YY(LM1, J) = YY(LM1, J) - TWC*(RXY2-DX2/TWC/Y(L)/DY)*Y(L)*DY*U1(J+1)
                                                                          AA, BB, CC, JDIMY, YY, XL)
MM2, L, M)
                                                                                                                                                                                                                                                                                                                                                                                                                        FURMATIOD###ERROR ### LEGIIF: IFR=", 14)
                                                                                                                                                                                                                                                                                                                                                             CALL LEUTIFIAS, MB, NS, IAS, B, IDGT, XL, IER)
                                                             LMI, MMZ, L. M)
                                                                                                                                                                                                                                                                                                                PKINT 99, (A$(IP,K-1), IP=1,N$)
                                                                                                                                                                                                                                                                                  A$(I-1,K-1) = PSKI(1,K)
                                                                                                                                                                                                                                                                                                                                                                                           IFITER .EQ. 0) GG TC 216
                                                                         POISZEMMZ, LMI,
                                                                                            CALL DMT010(YY, LMI,
                                                                                                                                                       PSW(K) = YY(LJ,K-1)
                                                                                                                                                                                       STFP 3.1
                                                                                                                                                                       ---- STEP 3 -----
                                                                                                                                                                                                                                                PRINT 99, B(K-1),K
                                                                                                                                                                                                                                                                  DC 215 1=2,41M1
                                                                                                                                                                                                                                   B(X-1) = -PSW(K)
                                                             DMTO LOCYY.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DC 218 1=2, MIMI
                                                                                                                                                                                                                     DG 220 K=2, MIMI
                                                                                                                          DC 210 K=2, 41M1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        218 AI([] = B[[-1]
                                                                                                                                       LJ = LAR(K)-1
                                                                                                                                                                                                                                                                                                CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                          PFINT 3. IER
                                              - MASK
                                                                                                                                                                                                                                                                                                                                                                                                                                                        A1111=2FRC
                                                                                                                                                                                     FURMAT('0
                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                       PRINT 4
                                                                          CALL
                                                                                                                                                        210
                                                                                                                                                                                                                                                                                                                               220
                                                                                                                                                                                                                                                                                                                                                                                                                                          216
                                                                                                                                                                                                                                                                                                 215
                                                                                             ں ں
                                                                                                                                                                                                                                                                                                                ں
```

```
01453
                                                                                                                                                                                                                                                                                                                                                                                                                                                           01458
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          01460
                                                                                                                                                                                                                                                                                                                                                            01452
                                                                                                                                                                                                                                                                                                                                                                                          01454
                                                                                                                                                                                                                                                                                                                                                                                                           01455
                                                                                                                                                                                                                                                                                                                                                                                                                           01456
                                                                                                                                                                                                                                                                                                                                                                                                                                           01457
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          01459
                                                                                                                                                                                                                                           YY(L41,J) = YY(LM1,J) - ThO*(RXY2-DX2/ThO/Y(L)/DY)*Y(L)*DY*U1(J+1)
                                                                                                           IF(I .GT. LJ) YY(I,J) = XIB(J+1,I+1)*DX2 * Y(I+1)
CONTINUE
                                                                                                                                                                                                                                                                                                          PCISZIMMZ, LMI, AA, BB, CC, JOIMY, YY, XL)
                                                                                             AI(J+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        PSIB(I,1) = PSI(I,1)
PSIB(I,L) = PSIB(I,LMI) + UI(I)*0Y* Y(L)
                                                                                                                                                                                                           YY(I, MM2) = YY(I, 4M2) - PSI(M, I+1)
                                                                                                                                                                                                                                                                                           DMT013(YY, LMI, MMZ, L, M)
                                                                                                                                                                                                                                                                                                                          DMT010(YY, LM1, MM2, L, M)
                                                                                                                                                                            YY(1,1) = YY(1,1)- PSI(1,1+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FURMATI' HERE IS WALL XI')
                                                                                                                                                                                                                                                                                                                                                                                        PSIB(I+1, J+1) = YY(J, I)
                                                                                            IF( I .Eq. LJ) YY(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                        PS13(1, J) = PS1(1, J)
                                                              DO 4135 I=1, LM1
                                                                             YY(I,J) = ZERC
                                                                                                                                                            DO 4136 1=1J,L41
                                                                                                                                                                                                                           DO 4137 J=1, MM2
                                                                                                                                                                                            DO 4437 I=1, LM1
                            DU 4135 J=1, MM2
                                            = LAR(J+1)-1
             ----- STEP 4
                                                                                                                                                                                                                                                                                                                                                          OC 138 [=1, MM2
                                                                                                                                                                                                                                                                                                                                                                       DC 138 J=1, LM1
AI(MI) = ZERO
                                                                                                                                                                                                                                                                                                                                                                                                                                        DC 140 I=1, M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IHOK = IPSIB
                                                                                                                                                                                                                                                                                                                                                                                                        DC 139 J=1, L
                                                                                                                                                                                                                                                                             # MASK
                                                                                                                                             1-126 = 67
                                                                                                                                                                                                                                                                            IHUR
                                                                                                                                                                                                                                                                                           CALL
                                                                                                                                                                                                                                                                                                                          CALL
                                                                                                                                                                                                                                                                                                           CALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         30
                                                                                                                                                                                                                                          4137
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         140
                                                                                                                                                                                                                                                                                                                                                                                         138
                                                                                                                                                                                                                                                                                                                                                                                                                         139
                                                                                                                             4135
                                                                                                                                                                            4136
                                                                                                                                                                                                            4437
               U
```

LJ = LAR(I)+1 LJ = LAR(I)+1 142 XIW(I) =TWG*(PSIR(I,LJ)/OV2 + PSIG(I+1,LJ-1)/OX2) / Y(LJ-1) XIW(MI) = THREE * PSIB(MI,2)/OV3		
LJ = LAR(I)+1 142 XIW(I) = TWG*(PSIR(I,LJ)/OV2 + PSI XIW(MI) = THREE * PSIB(MI,2)/DV3	C *PPINT 99, (XIW(I),[=1,MI) PRINT 99, (XIW(I),[=1,MI)	C IFF UNE .EQ. 1.000) STOP RETURN END

J

UU

PSI,XI,V,U,VA,UA,PSIB,XIB,XIN, EPA(60), U1(60), CCMMUN /INTEGS/ L.LI.JEFL, M.MI.NTS, NER, PSKP, IDIMY, JDIMY, JCI, IC COMMON /IRRAYS/ LAR(60) LSWHI, PRNT, UN, OFF, RSTARI, SAVE, SWHFX, U10(60), PSI0(60) /LOGICS/ CLMMON JARPAYS! CCMMON

01021	01023	01027	01028	01031	01033	01037		97010	11010	01045	01047	01048	01050		01038	
* ZSTART, CSTART COMMON /PLOTZ/ SL,SU,SL1,SKEY(30) C DIMENSIONS ARE SET UP FOR MAXIMUMS OF L=30, M=60, L1=15 & M1=15	DI MENSION DIMENSION	DIMENSION UO(30), Y(30), X(60), FX(15), FXRHU(15), DFRCDR(15)		HOR		DATA ZERU, UNE, TWC, THREE, FCUR/0.000,1.000,2.000,3.000,4.000/	00 = 000	LSWH1 = OFF PRINT 6	6 FCRWAT	C = IA = IB = (L-2)*(M-2) C = THE DIM DE A AND E ARE N AND XL (S TWICE THAT	IA = 1624	ANIOI	H A	CNE = 1.000	C SEAD INTITAL DATA	101111111111111111111111111111111111111

			IS				
			u				
			I				
			-				
			m Z				
			3				
			0				
			AT E				
			100				
			5				
			2				
			NO				
			S				
			٩		Σ		
		S	11		101		
		6	w v		* :		~
		E	2 2 %		0 1		88
		G	4 -1		1 * 0		<u>ـ</u>
		~	C- A		0 0		=
		3	a vo	•	- 1		
		2	TR IRS CO	15.	- T - T - T - T - T - T - T - T - T - T		09
		ARY CO	FIRS FP CO	1 15.	GC T FRCM 2,0UP	D •	9
		NDARY CE	EKC) TR HE FIRS STEP CO	HAT 15.	T) GC T T FRCM UM2, DUP	0.,	1 60
		OUNDARY CO	ZERO) TRAMP=ONE THE FIRST TIME STEP L STEP COUNTER; IT	THAT 15.	ARTI GC T ART FRGM , DUMZ, DUM	V.V.U	ART) 60
		BOUNDARY CO	G. ZERO) TR THE FIRS UAL STEP CO	IN. THAT IS.	START) GC T START FRCM	19X1.V.U	START) 60
9N		AL BOUNDARY CO L6	FG. ZERO) TR THE FIRS	RUN, THAT IS.	RO ZSTART) GC T R START FRCM UMM1, DUMZ, DUM	OUMA PSI,XI,V,U AL	RSTART) 60
TIN6		TIAL BOUNDARY CO	THE FIRST ACTUAL STEP CO	S RUN, THAT IS.	ZERO DT. ZSTART) GC T TTER START FRCM 10)) DUMA)) PSI,XI,V,U)ICAL SCA6(IT)	DT. RSTART) GO
PUTIN6	H-1 H-2 [-1 = M1+1	NITIAL BOUNDARY CO	THE FIRS THE FIRS TS ACTUAL STEP CO	THIS RUN, THAT IS. PSKP CON	= ZERO NOT. ZSTART) GC T SETTER START FRCM NO 10	110) DUMA (10) PSI,XI,V,U DUICAL EPSCA6(IT)	NOT. RSTART) 60
L PUTIN6	= M- = M-2 = L-1 = M +1	INITIAL BOUNDARY CO.	TRAMP .FG. ZEKO) TR THE FIRS	=0 R THIS RUN, THAT IS. = 1 S = PSKP VI = GN	4E = ZERO (NOT. ZSTART) GC T I BETTER START FROM MIND 10 AO(10) DUMI,DUMZ,DUM	10(10) 00MA 10(10) PSI,XI,V,U LL DUICAL LL EPSCA6(IT) TG 887	(.NOT. RSTART) 60
SALL PUTIN6	IMI = M-1 IM2 = M-2 IMI = L-1 IIPI = MI+1	UP INITIAL BOUNDARY CO	IFITRAMP .EG. ZEKO) TR THE FIRS	IT=0 FCR THIS RUN, THAT IS. IS = 1 TTS = PSKP	TIME = ZERO IF(.NOT. ZSTART) GC T SET BETTER START FRGM RFWIND 10 RFAJ(10) DUMI,DUMZ,DUM	RFAD(10) DUMA RFAD(10) PSI,XI,V,U CALL DUICAL GALL EPSCAS(IT)	IF(.NOT. RSTART) GOREWIND 9
CALL PUTIN6	MMI = M-1 MM2 = M-2 LMI = L-1 MIPI = M1+1	ET UP INITIAL BOUNDARY CO	TS ACTUAL	IT=0 FCR THIS RUN, THAT IS. TS = 1 TTS = PSKP PPNT = GN	TIME = ZERO IF(.NGT. ZSTART) GC TG 10 GET BETTER START FRCM **10** RFWIND 10 READ(10) DUMI, DUMZ, DUM3, DUM4, IDUM	RFAD(10) DUMA RFAD(10) PSI,XI,V,U CALL DUICAL CALL EPSCA6(IT) GC TG 887	O IF(.NOT. RSTART) GO REWIND 9
CALL PUTIN6	MMI = M-1 MM2 = M-2 LM1 = L-1 MIP1 = M1+1	SET UP INITIAL BOUNDARY CONDITIONS CALL INTAL6	IF(IRAMP .EG. ZEKO) TR THE FIRS	IT=0 FCR THIS RUN, THAT IS. TS = 1 TTS = PSKP PPNT = GN	TIME = ZERO IF(.NOT. ZSTART) GC T GET BETTER START FRGM RFWIND 10 READ(10) DUMI,DUMZ,DUM	RFAD(10) DUMA RFAD(10) PSI,XI,V,U CALL DUICAL CALL EPSCA6(IT) GC TG 887	10 IF(.NOT. RSTART) GO TC 887 REWIND 9
CALL PUTIN6	MMI = M-1 MM2 = M-2 LMI = L-1 MIPI = M1+1	C SET UP INITIAL BOUNDARY CO C CALL INTAL6	C IF(TRAMP .EG. ZEKO) TR C THE FIRS C "IT" IS ACTUAL STEP CO	IT=0 FCR THIS RUN, THAT IS. IS = 1 TTS = PSKP PPNT = GN	TIME = ZERO IF(.NOT. ZSTART) GC T GET BETTER START FROM RFWIND 10 RFAJ(10) DUMI,DUMZ,DUP	RFAD(10) DUMA RFAD(10) PSI,XI,V,U CALL DUICAL CALL EPSCA6(IT) GC TG 887	10 IF (.NOT. RSTART) GO REWIND 9

	TIME, DT. DT2, DTA, TS	01238
PEAD(9) DERCOR		01239
		01240
DUICA		
CALL		
C CANT TO MAKE ANY CE	LANGE C3	
887 IFI CSTART) CALL	CHANGS TIME, TS)	
C TIME_STEP LCOP:		01245
898 CONTINUE		01246
PRINT 1, TIME		01247
11.0 TIME	= ',F12.5)	01248
.LE. NTS! GC	TO 700 FCR DEBUG	
0.11	*******************	01250
131*** 17 = 0,141		
PRINT 13, 17		01251
IF(IT .EQ. 0) GG TG	19 402	
IFITS .GE. NTS) GC TU 400	1 TU 400	
GU TD 402		
400 CUNTINUE		
	= JHDR(11)	01254
	4. L. IDIMY, JOIMY)	01255
		01256
CALL DMTD10(XI, M.	DMT010(XI, M, L, IDIMY, JUIMY)	01257
		01258
	CALL DMTC101 V, M, L, IDIMY, JDIMY)	01259
IHUR = JHOR (4)		01260
	CALL DMT010f U, M, L, IDIMY, JOIMY)	01261
402 CCNTINUE		

```
01262
                                                                                                                                                                                                                                                                    01272
                                                                                                                                                                                            01270
                                                                                                            01265
                                                                                                                                                                                                               01271
                                            CONTOUR PLCT FOR XI'I
                                                                                                                                       DATA SAVED ON UNIT ', 151
                                                                                                                                                        TIME, UT, DT2, DTA, DFRCDR
                                                                                                  SAVE FUR A LATER RESTART
                                                                                                                    66 01 09
                                                                                                                                                                                                                       IF( .NOT. PRNT) GC TO 701
PRINT 87
                                                                                                                                                                           PSI, XI, V, U
                                          FORMATI'I', ////, "O
                 PRINT XI CONTUUR PLOT
                                                                                                                                                                                                                                                                             THE ITERATION LCOP
                                                                                                                    IF ( .NUT. SAVE)
                                                                                                                                                                                                                                         CALL PIXER XI
                                                                                                                             PRINT 2, IN
                                                              FGRMAT( . 1 . )
PRNT = DFF
                                                                                                                                      FURNATIO
                                                                                                                                                REWIND 10
                                                                                                                                                        WRITE(IC)
                                                                                                                                                                  WRITE(10)
                                                                                                                                                                           WRITE(1G)
                                                                                                                                                                                   WRITE(IS)
                                                                                                                                                                                                               CCNTINUE
                                                                                                                                                                                                                                                           CONTINUE
                                   PRINT 87
                                                                                         CCINTINUE
                                                                       PRINT 4
                                                                                                                                                                                                                                                  PRINT 4
                                                                                                                                                                                                     RETURN
                                                                                                                                                                                             STUP
                                                                                                                                                                                                      669
                                                                                          999
                                                                                                                                                                                                                                                           101
                                            87
                                                                                                                                                                                             569 3
                                                                                                                                                                                                              100
          000
                                                                                                                                                                                                                                                                      000
```

	DU 777 ITER=1,NER PRINT 21, ITER 21 FORMAT(///, ITER = ',[4,' CALL WORK6(TIME, TS, ITS)		01274 01275 01276	
ى ن	TEST CONVERGENCE		01467	
J	XMAX = ZERO DO 147 I=2, M1		01468	
	3,101,1		DE BUG DE BUG	
-	M O W -	XI(I,J))	01471 01474 01475 01476	
000	IF (XMAX -LT. TOL) GO TO 555 IF XMAX IS GREATER THAN TOL SET XI=(XIM+XI)/2	T XI=(XIM+XI)/2	01411	
))/TWG		
	146 CONTINUE 777 CCNTINUE C END OF LOOP ON ITER		01478 01479 1498 1500	

	PRINT 32	1501
ر د د	STOP BUT FIRST PRINT OUT WHAT YOU GET	1503
,	15 = NTS+1	1505
ى بى د	00T_0F_L00P	1506
555	CUNTINUE DO 556 I=2,M1	1508
	J=JC[+]-[XI(I,J) = XIW(I) XIB(I,I) - XIM(I)	
929	CONTINUE TIME = TI	1600
,	11 = 11 + 1	1303
J	06 35 J=1,L1 0FRGOR(J) = FXRHC(J)	
35	CONTINUE	
5 66		
	PRINT 99, (OFROOR(I), I=1, LI)	
. د		1510
	If (ITEP .GI. 3) $DT = DT/R1$ If (ITER .LI. 3) $DT = DT*R1$	1511
300	CCNTINUE PPINT 33, ITER, TS	1513

33 FCRMAT(*0 ITER AND TS ARE *,218) DT2 = DT / TWO PRINT 34, DT 34 FCRMAT(*0 DT IS ',F12.6) TS = TS + 1	1515 1516 1517 1518 1519
C DEFINE THE GRID STREAM FUNCTION AND DU/DY DISTRIBUTION C BASED ON THE FINAL RESULTS FFOM WORKE	
DC 153 1=1,M DC 150 J=1,1 XI(1,J) = XIB(1,J) PSI(1,J) = PSIB(1,J) 150 CCNTINUE	1520 1521 1522 1523 1523
C CALCULATE U AND V FUR THE REGION AHEAD OF THE TRAILING EDGE C DC 155 I=2,M1 JL = JCI+2-I	
	1527 1528 1529
C CALCULATE U AND V FUR THE WAKE REGION C	
00 5155 I=MIPI,MMI 00 5155 J=2.LMI U(I,J) = (PSI(I,J+1) - PSI(I,J-1))/TGY/Y(J) V(I,J) = -(PSI(I+1,J)-PSI(I-1,J))/TDX /Y(J) 5155 CONTINUE	
	1530

1531 1532 1533		1534 1535 1536 1536		1538	1540		1541		1545	1547
C RECALCULATE U(1,1) = D(PSI)/DY FUR MIP1 TO M C DO 160 I=MIP1, M 160 U(1,1) = TWO*PSI(1,2)/OY2	C CALCULATE U FOR THE DOWNSTREAM BOUNDARY	DC 162 J=2,LM1 U(4,J) = (PSI(M,J+1)-PSI(M,J-1)) / TDY/Y(J) V(M,J) = -(PSI(MMZ,J) - FCUR*PSI(MMI,J) + THREE*PSI(M,J))/TDX/Y(J) 162 CCNTINUE	C CALCULATE U(M.L)	C CALCULATE V(M.L)	C V(4,L) = -(PSI(MM2,L) - FCUR*PSI(MM1,L) + THREE*PSI(M,L))/TDX/Y(L) C	C CALCULATE V ALCNS THE UPSTREAM BCUNDARY	166 V(I,L) = -(PSI(I+I,L) - PSI(I-I,L)) / TDX /Y(L)	IF (MOD(IT+1,PSKP) .EQ. 0) CALL DUICAL IF (MCD(IT,PSKP) .EQ. 3) CALL EPSCA6(IT)	PRNT = UN IF (TS .GF. NTS) GC TO	PRN = OFF

IF (TTS .GT. 0) GO TO 888
PRNT = CN
TTS = PSKP
GO TO 888
GO TO TIME_STEP;

.

SUBROUTINE PUTIN6

	10010			01021	01023	01027	01029	01033	01037
M-m-	- * * ! .	CCMMON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIW, EPA(60), U1(60), * U10(60), PSIO(60) * U10(60), PSIO(60) * COMMON /INTEGS/ L,L1,JDEL,M,M1,NTS,NER,PSKP,IDIMY,JDIMY,JCI,IC COMMON /IRRAYS/ LAR(60)	> FR G	DIMENSIONS ARE SET UP FOR MAXIMUMS OF L=30, M=60, L1=15 & M1=15	DIMENSION PSI(60,30), PSIB(60,30), XI(60,30), V(60,30), U(60,30) DIMENSION XIM(15), XIB(60,30), VA(60,30), UA(60,30)	DIMENSION UD(30), Y(30), X(60), FX(15), FXRHU(15), DFRODR(15) INTEGER PSKP	CCMMON IHDR LOGICAL LSWH1, PRNT, CN, OFF, SWHFX LOGICAL SWH	LCGICAL RSTART, SAVE, ZSTART, CSTART	DATA ZERU, ONE /0.000,1.000 /

ں ں

01040		16010	01053 01078 01079		01080	
NAMELIST /ILIST/ L,Ll,M,Ml,PSKP,NER,NTS,JDEL,JCI,IO NAMELIST /RLIST/ CX,DY,DT, RHO,EPS,TCL,C7,TRAMP,KU,K1,KM,KL,EPO NAMELIST /LLIST/ SWHFX,RSTART,SAVE,ZSTART,CSTART	PRINT 87 7 FORMAT(*0 PUTIN6 01/20/77 MAKE PLOT * 7.,//)	TWU = 2.300/ONE THREE = 3.000 FOUR = 4.300	114	SWHFX = .TRUE. IMPLIES "NOT" TO COMPUTE A NEW FX CURVE IN SUB INITAL ZSTART=ON [MPLIES THIS IS A NEW START AND GET A GGOD GUESS FROM DATA UN UNIT 10 CSTART = ON IMPLIES A CALL TO SUB CHANGE TO MAKE SOME CHANGES	TRAMP = 0 CONTINUE IMPUT PAR READ (5,	TWO .
ı.	&	٠			0001	o o

					01076	01082	
WRITE(6, LLIST) WRITE(6, LLIST)	<pre>IF((JCI+2 .LT. JDEL) .AND. (JCI .LE. M1)) GD TD 20 PRINT 4 4 FORMAT('O***ERROR IN JCI & JDEL') STOP 20 CONTINUE</pre>	DO 21 I=1,M 21 LAR(I)=1	DC 22 I=1,M1 J = JCI+1 - I LAR(I) = J IF(J.EQ.I) GC TU 23	AH	IF (RSTART) PRINT 14 IF (SAVE) PRINT 15 IE (SAVE) PRINT 15	し出て	PRINT 111, TOL 111 FURMAT("O TOL = ",F12.5) PRINT 1, TRAMP
		 					,

01113

```
SKEY(I) = SKEY(I-1) + DPY
IF( DABS(SKEY(I)) .LE. 1.0D-5) SKEY(I)=0.0D0
FURMAT (") FOR GRAD PROP, TRAMP = ", F8.2)
                                                               IF(JDEL .LE. 1) READ 3, (FX(I),I=1,L1) FORMAT(8F10.0)
                                                                                                              SL = -7.93928250735156400
SLI= -5.73280215355375100
                                                                                                                                                                                                                                                                                                                                                                                        DC 80 I=1,30
SKEY(I) = 7.000 * SKEY(I)
                                                                                                                                                                                                                                                                                                          IF (SWH) DPY = DPY * SU
                                                                                                                                                                                                                                                           IF (SKEY(1-11) 30,31,31
                                                                                                                                                                                                                                                                         DPY = DPY / SU
                                                                                                                                                                                             DPY = SL1 - SL
                                                                                                                                                                             SKEY(2) = SL1
               11.1=1 55 00
                               53 FX(1) = ZERO
                                                                                                                                                                                                                                            DE 35 1=3,30
                                                                                                                                                             SKEY(1) = SL
                                                                                                                                              SU = 1.3500
                                                                                                                                                                                                             SHH = OFF
                                                                                                                                                                                                                                                                                                                            NO = HMS
                                                                                                                                                                                                                                                                                                                                                                         CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                        CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                      RETURN
                                                                                                                                                                                                                                                                           30
                                                                                                                                                                                                                                                                                                            31
                                                                                                                                                                                                                                                                                                                                          32
                                                                                                                                                                                                                                                                                                                                                                          35
                                                                                                                                                                                                                                                                                                                                                                                                                         90
```

SUBROUTINE CUICAL

THIS SUBROUTINE CALCULATES A DIUI) WHICH IS ADDED TO THE INITIAL

				01023	01027	01033
IS UPDATED DURING BOUNDARY CONDITIONS.	*FXRHC, X, Y, U0, KI, KM, KL, KU,	<pre>IW. EPA(60), U1(60), IDIMY,JDIMY,JCI,IO</pre>	RT. SAVE. SWHFX.	, V(60,30), U(60,30) , UA(60,30)	0(15), OFRODR(15)	
VALUE COMPUTED IN INTAL6. THE VALUE OF DIUI) IS UPDATED DURING THE ITERATION SEQUENCE TO MODIFY THE INITIAL BOUNDARY CONDITIONS.	IMPLICIT REAL*8 (A-H,O-Z) REAL*8 KI, KM, KL, KU COMMON /REALS/ RI,C7,DX,DY,DT,UZ,RHC,EPS,FX,FXRHC,X,Y,UO, DTZ,DTA,TDY,TDX,DYZ, DFRODR, TRAMP,TOL, KI, KM, KL, KU, EPO, THRUST	COMMON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIW, EPA(60), U1(60), U10(60), PSIO(60) CC4MON /INTEGS/ L,L1,JDEL,M,M1,NTS,NER,PSKP,IDIMY,JDIMY,JCI,IO	COMMON /LOGICS/ LSWHI, PRNT, ON, OFF, RSTART, SAVE, SWHFX, 2START, CSTART	DIMENSION PSI(60,30), PSIB(60,30), XI(60,30), V(60,30), U(60,30) DIMENSION XIW(15), XIB(60,30), VA(60,30), UA(60,30)	DIMENSION U0(30), Y(30), X(60), FX(15), FXRHO(15), OFRODR(15) INTEGER PSKP	LUGICAL LSWHI, PRNT, ON, OFF, SWHFX LUGICAL RSTARI, SAVE, ZSTARI, CSTARI

09/01/76") DPS1(60), 3DU1(60) FURMAT(15, 1P4615.5) DIMENSION FCRMAT ('0 FORMAT (.

MM1=M-1 RT=(L-1)*DY

PRINT 1

010(1)

0001(1)

```
DO 10 [=1,4M]

DPSI(1) = PSI([+1,L] - PSI([,L] - PSIO([+1] + PSIO(1)
                                                                                                                                                                                                                                                                                                                                                       PRINT 3, 1, U1(1), COUI(1), U10(1), PSIO(1)
                                                                                                                                                                                                                                                                                                         00011(1) = 0001(1) + 0V*0COS( BETA )
                                                                                                                                                                                                                                                              R2 = TWO * (RT2 + XTK**2)
                                                                                                                                                                                                                                                                           BETA = DATANZI RT, XTK )

DV = DPSI(K) / R2
                                                                                                                                                                                                                                                                                                                                        (1)110g + (1)010 = (1)10
                                                                                                                                                                                                                                XK=[K-1]*0X + DX/110
                                                                                                                                                                                                                  00 20 K=1, MM1
                                                                                                                                                                                                                                                                                                                                                                                                     11111 = (1111)
                                                                                                                                                                   00.30 I=2.M

XT = (I-1)*DX
                                                                                                                                                                                                                                             XTK = XT-XK
                                                           DPSI(M) = 2C
                                                                                                                                                                                                                                                                                                                                                                                      DC 40 [=1,4
RT2 = RT##2
                                                                                                                                                                                                   007=(1)1000
                            TNU=2.000
DDU1(1)=20
                                                                                                                                                                                                                                                                                                                         CONTINUE
               20=0.000
                                                                                                                                                                                                                                                                                                                                                                      CCNTINUE
                                                                                                                      10 CONTINUE
                                                                                                                                                       PRINT 2
                                                                                                                                                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                                                                        30
                                                                                                                                                                                                                                                                                                                                                                                                      64
                                                                                                                                                                                                                                                                                                                          20
                                                                            ں
                                                                                                                                        ں
```

01037

DATA ZERO, ONE, TWC, THREE, FOUR/O.000, 1.000, 2.000, 3.000, 4.000/

SUBROUTINE INTAL6

METRIC CASE. THE STREAM FUNCTION FOR THE INVISCIO FLOWFIELD THIS SUBROUTINE SOLVES FOR THE INITIAL INVISCID FLOWFIELD IS SOLVED FUR USING A SCURCE-SINK DISTRIBUTION ALONG THE BODY AXIS. THIS DISTRIBUTION IS FED INTO THE SUBROUTINE AND SETS THE INITIAL BOUNDARY CONDITIONS FOR THE AXISYM-FROM SUBROUTINE SINK.

00000000

IMPLICIT REAL*8 (A-H,0-Z) REAL*8 KI, KM, KL, KU	01001
CO-MGN /REALS/ R1,C7.DX,DY,DT,U2,RHC,EPS,FX,FXRHC,X,Y,U0, DI2,DIA,IDY,IDX,DY2, DFRODR, IRAMP,ICL, K1, KM, KL, KU,	
EPO, THRUST	
COMMON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIW, EPA(60), U1(60),	
U10(60), PSIO(60)	
CCAMON /INTEGS/ L, LI, JDEL, M, MI, NTS, NER, PSKP, IDIMY, JDIMY, JCI, IC	
CCAMON /IRRAYS/ LAR(60)	
COMMON /LOGICS/ LSWHI, PRNT, ON, DFF, RSTART, SAVE, SWHFX,	
LSTART, CSTART	
DIMENSIONS ARE SET UP FOR MAXIMUMS OF L=30, M=60, L1=15 & M1=15	01021
DIMENSION PSI (60,30), PSIB(60,30), XI(60,30), V(60,30), U(60,30)	01023
DIMENSION XIM(15), XIS(60,30), VA(60,30), UA(60,30)	
DIMENSION U0(30), Y(30), X(60), FX(15), FXRHO(15), DFRODR(15)	01027
INTEGER PSKP	
COMMON IHOR	01029
LOGICAL LSWHI, PRNT, ON, OFF, SWHFX	
LCGICAL RSTART, SAVE, ZSTART, CSTART	01033
	01035

UU

PRINT 1

1 FORMAT(* INTAL6 02/09/77*)

JC1 = JC1+1

JC2 = JC1 + 2

FX9 = ZERO
P14 = DATANIONE)

TDY = TWO*DY

LM1 = L-1

LIM1 = L1-1

LIM2 = L1-2

LIM2 = L1-3

L14 = L1-4

M1P1 = M1+1

52 X(I) = (I-1)*DX DC 54 I=1,L UO(I) = ZERC Y(I) = (I-1) * DY 54 CONTINUE DC 60 I=1,M1 DC 60 J=1,M1 PSI(I,J) = ZERO X(I,J) = ZERO U(I,J) = ZERO U(I,J) = ZERO U(I,J) = ZERO DC 601 I=1,M JI = LAR(I) XP = KI + (I-1)*DX DO 600 J=J1,L

J

```
- ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PSI(1,J) = -KM#CT + KM#(RKL - DS) + KU#R##2#ST2/TWO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       VTU = -KM/KU/KL**2/(RKL*ST) * (ONE-(RKL-CT)/DS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VRU = KM/KU/R**2 - KM/KU/KL**2/(RKL*0S) + CT
                                                                                                                                                                                                                             BESIN SOLVING FOR THE INVISCID FLOWFIELD
                                                                                                                                                                                                                                                                                                                                                                                                                                     DS = DSQRT(RKL**2 + DNE - TWO*RKL*CT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    VIOT = KU * USGRI(VRU**2 + VTU**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      U(1, J) = VTOT * DCOS(THETA+ALPHA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALCULATE STREAM FUNCTION (PSI)
                                                                                                                                                                                                                                                                                                R = DSQRT(RB**2 + XP**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ALPHA = DATAN(VTU/VRU)
                                                                                                                                                                                                                                                                          THETA = CATANIRBIXP)
IF(J .GT. J1) GO TO 30
                                                                                                                                                                                                                                                                                                                                            ST2 = ONE - CT**2
                                                                                                                                                                                                                                                                                                                      CT = DCOS(THETA)
                                                                                                                                                                                FORMAT(18, 1P4615.5)
                                                                                                                                                                                                                                                                                                                                                                ST = DSQRT(ST2)
                                                                                                                                    RB = (J-1) *DY
                                                                                                                                                          FURMAT(1P8G15.5)
                    V(I, J)=ZERO
                                            U( I . J) = ZERO
                                                                  PSI(1, J)=ZERO
                                                                                                                                                                                                                                                                                                                                                                                        RKL = R/KL
                                                                                         GU TO 600
                                                                                                              30 CONTINUE
                                                                                                                                                             ~
                                                                                                                                                                                m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S
```

V(1, J) = VTOT * DSIN(THETA+ALPHA)

```
01129
                                                                                                                                                                                                                                                                                                                                                                        01130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     01133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       01134
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           01145
                                                                                                                                                                                                                                                                                                                                  Y(JDEL)-Y(JCI)= ',1PG20.10,
                                                                                                                                                                                                                                                                                                                                                                                                          CALCULATE THE VELOCITY PROFILE AT THE FRONT EDGE OF THE REGION
                                                                                                                             U(I_01) = KU*(CNE+KM/KU/KL**2*(CNE/XP**2-CNE/XP/(XP-CNE)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SWITCH TO COMPUTE FX"S OR LET THEM BE ZERC.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                UO(1) = U2 * ( (Y(1)-Y(JC1))/YBUT )**C7
                                                                                                                                                                                                                                                                                                               10 FCRMAT(*0 Y(JDEL), YBOT, UZ
                                                                                                                                                                                                                                                                              YBUT = Y(JDEL) - Y(JCI)
                                                                                                                                                                                   V(M1,2) = V(M1P1,2)
                                                                                                                                                                                                    V(M1-1,3) = V(M1,3)
                                                                                                                                                                                                                                                                                                                                                    U2 = ', 1PG20.101
                                                                                                                                                                                                                     00 603 J=2,L
673 U(MI,J) = U(MIPI,J)
                                                   PSIO(1) = PSI(1,L)
                                                                                                           XP = K1 + (I-1)*DX
                                                                                                                                                                                                                                                                                                                                                                                                                                              DC 56 I=JCI, JDELMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (SWHFX) GG TO 59
                                                                                                                                                                                                                                                                                                                                                                      JOELMI = JOEL-1
                                                                                         DC 602 I=M1P1,M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                U(1,1) = U0(1)
                                                                                                                                                                                                                                                                                            U2 = U(1, JOEL)
                                 U10(11) = U1(11)
               U1(1) = U(1,L)
CONT INUE
                                                                       CONTINUE
                                                                                                                                              602 CUNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Se CONTINUE
                                                                                                                                                                                                                                                                                                                                                   10*
009
                                                                       601
```

01146 01147 01148 01150 01151	01152	01155	01158	01163	01167 01164 01165 01166	01180
FROM Y(JCI) TO Y(JDEL)		FROM Y(JCI) TG Y(JDEL) AND FXO ARE!	0115	(CONE + DCCS((Y(1)-Y(L14))*P14/DY))		
C FIRST: INTEGRAL OF (U0*(U2-U0)*Y)DY C SUO = ZERO C DG 57 I=JGI, JDELM1 C 57 SUO = SUO + U0(1)*(U2-U0(1))*Y(I) C SUO = SUO + DY	C FX3 = TWC * SUO / Y(L1)**2 / DX C SUO = 0.DO FX0 = 259.000	PRINT 12, SUO, FX0 12 FCRMAT(*0INT OF UO*(U2-U0)*Y 12*,/1P2G20-10)	C 00 58 I=1,L1 58 FX(I) = FX0	DC 580 I=L13,L1 580 FX(I) = FX0/TWD *	C 59 CONTINUE PRINT 4, (FX(I), I=1, L1) 4 FURMAT('OHERE IS FX(I:L1) =',/,(IP10E13.4) C	C PSI IS INTEGRAL (Y(JCI) TO Y(J)) OF Y*U(Y) DY (SANS 2*P1) C AND XI IS DU/DY C HH = DY/TWO XI(1,JCI) = (-THREE*U(1,JCI)+FOUR*U(1,JCI)-U(1,JC2)) / TDY

D

```
16110
                                                                                                                                                     0110
                                                                                                                                                                              01192
                                                                                                                                                                                                                                 01193
                                                                                                                                                                                                                                              01194
                                                                                                                                                                                                                                                          01195
                                                                                                                                                                                                                                                                                                             96110
           01183
                                    01185
                                                                                       01187
                                                                         IFIEPS .GT. ZERO) GC TO 65
THE END POINTS OF THE INTEGRAND ARE ASSUMED TO BE ZERO
PLANAR DSTAR FCR EPS
THE FOLLOWING WAS REMOVED 2/9/77
          PSI(1,1) = PSI(1,1-1) + HH*(U(1,1)+U(1,1-1)) * Y(J)
                    IF( J .NE. L) XI(1, J) = (U(1, J+1)-U(1, J-1))/TOY CONTINUE
                                                                                                                                                                                                                                             DELSR2 AND EPS ARE ", 1P2G17.81
                                                                                                                                                                                                       DELSR2 = (Y(JDEL)-Y(JCI)) / (CNE/C7+DNE)
                                                                                                                                                     ONE-U0(1)/U2
                                                                                                                                                                               DELSR2 * U2
                                                                                                                                                                                                                   EPS = 3.016800 * DELSR2 * U2
                                                                                                                                                                                                                                                                                                                                                                                        XI(1,1) = XI(I-1,1+1)
                                                                                                                                                                                                                                 PRINT 11, DELSR2, EPS
                                                                                                                                                                  DELSR2 = DELSR2 * DY
                                                                                                                                         DO 62 I=JC1, JDELMI
                                                                                                                                                     DELSR2 = DELSR2 +
                                                                                                                                                                                                                                                                                                                                                              00 41 K=1,K15
                                                                                                                                                                               EPS = 0.01800 *
                                                                                                                            DELSR2 = 0.500
                                                 XI(1,L) = ZERG
                                                                                                                                                                                                                                                                                                            NCW FILL IN...
                                                                                                                                                                                                                                                                                                                                                                            J = [J+K-1
DO 64 J=JC1+L
                                                                                                                                                                                                                                                                                   EPA(I) = EPS
                                                                                                                                                                                                                                                                                                                                      00 40 I=2,41
                                                                                                                                                                                                                                                                                                                                                   LJ = LAR(1)
                                                                                                                                                                                                                                                                                                                                                                                                     CONT INUE
                                                                                                                                                                                                                                                                       DC 27 I=1,M
                                                                                                                                                                                                                                             FCRMAT ( . 0
                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                             219/17
                                                                                                                                                                                                                                                                                   27
                                                                                                                                                                                                                                              11
                                                                                                                                                                                                                                                                                                                                                                                                     41
                                     9
                                                                                                                                                     62
                                                                                       000000000
                                                                                                                                                                                                                                                                                                 UU
```

	01198	01202 01203 01204	01205			01208
) / THREE	7 THREE 3) / THREE 7 THREE 13) / THREE	
J1 = J+1 D0 42 K=J1,L XI(1,K) = XI(1,J) CONTINUE CONTINUE	66 J=MIPI,M 66 J=1,L XI(I,I) = XI(MI,I)	VUE ED> I=MIPI	77 1	J = LAR(I) U(I,J)=ZERC V(I,J)=ZERC PSI(I,J)=ZERC IF(I,EQ,I) GO TO 79 PSI(I,J+2) = TWO*PSI(I,J+3)/IHREE	142) = 14	On 80 J=1,L1 FXRHO(J) = ZERO DFRODR(J) = ZERO
42 40 CGA	88	C ALCNG DC 78	78 XICI.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PS 17 67	EXE BO DFR

J		NGW ONLY E IE. I=M1, J=2 TO L1-1	01207
v		ASSUMING FXRHO IS ZERO INITIALLY	
		DO 82 J=L13,L1	
	82	FXRHO(J)	
v			01212
	66	99 FCRMAT(2x, 1P10G12.4)	01213
U			01214
	2		01215
		PRINT 5	01216
		PRINT 99, (UO(I), I=1,L)	01217
	-	0.1	01218
		PRINT 7	01219
		PRINT 99, (V(I), I=1,L)	01220
	8	FORMATI'O X ')	01221
		80	01222
		89° (X	01223
	6	FORMAT("O FXRHC")	01224
		PRINT 9	01225
		PRINT 99, (FXRHO(1), [=1,L1)	01226
J			01227
		RETURN	
v			01229
		CAU	

SUBROUTINE EPSCA6 (10)

CRIBED IN THE ACCOMPANING REPORT. AS AN ADDITIONAL REFERENCE, SEE THE SCHETZ-FAVIN PAPER CONCERNING THE DEVELOPMENT OF THE PROBLEM TITLED " NUMERICAL SOLUTION FCR THE NEAR WAKE OF A THIS SUBROUTINE CALCULATES THE EDDY VISCOSITY LAW AS DES-BODY WITH PROPELLER".

P1,C7.DX,DY,DT,U2,RHO,EPS,FX,FXRHC,X,Y,U0, K1, KM, KL, KU, 11, 12 IMPLICIT REAL *8 (A-H,0-Z) COMMON /REALS/ REAL *8

DT2, DTA, TDY, TDX, DY2, DFRODR, TRAMP, TCL, KI, KM, KL, KU, EPO, THRUST

CCMMON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIM, EPA(60), U1(60), U10(60), PSI3(60)

LAR (60) CUMMON / IRRAYS/ INTEGER PSKP

CUMMEN /LOGICS/ LSAHI, PRNT, CN, OFF, RSTART, SAVE, SWHFX,

L=30, M=60, L1=15 & M1=15 DIMENSIONS ARE SET UP FOR MAXIMUMS OF ZSTART, CSTART

PSI(60,30), PSIB(60,30), XI(60,30), V(60,30), U(60,30) DIMENSION DU(30), DUY(30), 11(60), 12(60), DI1(60), DB(60), B(60) VA(60,30), UA(60,30) XIB(60,30), XIW(15), DI MENSION DIMENSION

DIMENSION U0(30), Y(30), X(60), FX(15), FXRH0(15), LSWHI, PRNI, CN, OFF, SWHFX LOSICAL

DIMENSION DUILGOI, RICGOI

RSTART, SAVE, ZSTART, CSTART LOGICAL

IF(10 .EQ. 0) IDSV=-1 DATA IDSV / -1 /

UU

UU

.

```
>
                                                                                                                                                                                                                                                                                                                                                         Σ
                                                                                                                                                                                                                                                                                                                                                        200
                                                                                                                                                                                                                                                                                                                                                        PUT IN IF
                                                                                                                                                                                                                                                                                                                                           XI(1, J) ., /10(6x, 1P10G12.4,/1)
                                                                                                                                                                                                                                                 FURMATI' CUT USED IS ., 1PG20.8)
                                                                                                                                                                                              IF(CUT .LT. 100.000) GO TC 422
CUT = 0.0500
                                                                                                                                                                     IFICUT .GT. 0.0500) GO TO 421
                                                                                                                                                       FURMAT( . CUT IS ., 1PG20.8)
                                                                                                                                                                                                                                                                                                                                                       IF (EPS .GT. 0.000) RETURN
                                                                                        EPA(1) = EPS
PKINT 3, EPS
FCRMAT(' EPS=',1PG20.10)
CUT = 0.001D0 * XI(1,JC1)
IF(10 .EQ. IDSV) RETURN
            IF(ID .NE. 0) IDSV=10
                                                                                                                                                                                                                                                                                                                                          4 FURMATI' 1=", 16,"
                                                                                                                                                                                                                                                                                                                                                                                                           RI(I) = 0Y*(LI-1)
                                                                                                                                           PRINT 425, CUT
                                                                                                                                                                                                                                     PP. INT 426, CUT
                                                                                                                                                                                                                                                                                                                                                                                M 1=1 001 00
                                                  ONE = 1.000
                                                                TWO = 2.000
                                                                                                                                                                                                                                                                                                                                                                                               LI = LAR(I)
                                      70 = 0.000
                                                                                                                                                                                 60 10 420
                                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                               PRINT 1
                                                                                                                                                          425
                                                                                                                                                                                                             420
                                                                                                                                                                                                                        422
                                                                                                                                                                                                                                                  426
                                                                                                                                                                                                                                                                            S
                                                                                                                                                                                                                                                                                                                               J
                                                                                                                                                                                                                                                                                                                                                        J
                          J
                                                                             S
```

10

```
IF(I .LT. M1) DU(LI) = (4.000*U(I,LII)-U(I,LI+2))/TDY
IF(I .EQ. M1) DU(LI) = 3.000*PSI(M1,2)/DY**3
                                                                                                                                                                                                                                                                   GO TC 30
                                                                                                                                      IF(I .LE. M1) DUY(L1) = Y(L1) * DU(L1)**2
                                                                  VOT / ((1,3+1)-U(1,3-1)) / TOY
                                                                                                                                                                                                                                                                                                                                                                                                                                         IFIIABS(JP-LJP) .LE. 2) GC TO 39
                                                                                                                                                                                                                                                                    IF (DABS(XI(I,J)) .GE. CUT)
                                                                                                                                                                                                                                                                                                             FCRMAT( ***EFROR** [ = ,15)
                                                                                DUY(J) = Y(J) + DU(J) **2
                                                                                                                                                                                                                                                                                                                                                                                                              JP=JDEL
                                                                                                                                                                                                                                                                                                                                                                                                JP=JDEL
                                                                                                                                                                                                                                                                                                                                                                                                                           IFII .EQ. 1) GO TO 39
                                                     00 99 J=L11,LM2
                                                                                                                                                                                                                           50 10 K=2,142
                                                                                                                                                                                                                                                                                                                                                                                               IF(JP . CE.LI) J
                                                                                                                                                                   5 FURMAT (1P6616.5)
           J=1,L[
                                        07 = (C)ANO
                          07 = (6)00
111 = 11 + 1
                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                 CONT INUE
                                                                                                                                                                                                                                                       JP = J+1
                                                                                                                                                                                                                                                                                              PRINT 13, 1
                                                                                                                                                                                                                                        J = L-K
                                                                                                                                                                                                                                                                                                                           SCME GUESS
                                                                                                                                                                                                                                                                                                                                                       60 10 39
                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                         JP=JDEL
                                                                                                                                                                                                                                                                                                                                                                     STOP
                                                                                                                                                                                                                                                                                                              13
                                                                                                                                                                                                                                                                                                                                                                                   30
                                                                                                                                                                                                                                                                                  10
                                        20
                                                                                                 66
                                                                                                                                                                                                                                                                                                                                                                      ں
                                                                                                                                                                                   000
                                                                                                                                                                                                                                                                                                                            U
```

```
II(I) = 0Y * II(I) / UI(I) / (B(I)-RI(I))**2

I2(I) = 0Y * I2(I) / UI(I) **2
                                                                                                                                                                                                                                                                                                                                                                                                                                DII(I) = (DLOG(II(I+1))-DLOG(II(I-1))) / TDX

DUI(I) = (UI(I+1)-UI(I-1)) / TDX
                                                                                                                                                                                                                                                                                     12(1) = 12(1) + DUY(JP)/TWG + DUY(LI)/TWO
                                                                                                                                                                                                                                                                       II(I) = II(I) + U(I,JP)*Y(JP)/TWO
                                                                                                                                                                                         JP1 = JP-1
00 40 J=LII, JP1
II(I) = II(I) + U(I, J)*Y(J)
OK, BUT LET IT JUMP BY 2 ONLY IF(JP-LJP) 34, 39, 35
                                                                                                                                                                                                                                        12(1) = 12(1) + DUY(J)
                                                                                                                                                                                                                                                                                                                                                                                                                  DC 200 I=2, MM1
                                                                                                                                           1 df ) x = (1)8
                                              60 T0 30
JP = LJP+2
                             JP = LJP-2
                                                                                                                                                           11(1)=20
                                                                                                                                                                                                                                                                                                                                                                                                    MM1 = M-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               200 CONTINUE
                                                                             GO TO 30
                                                                                                                                                                           12(1)=20
                                                                                                                                                                                                                                                                                                                                                     CONT INUE
                                                                                                                            IJP = JP
                                                                                            39 CONTINUE
                                                                                                                                                                                                                                                                                                                                                     001
                                                              35
                               34
                                                                                                                                                                                                                                         40
  v
                                                                                                              ں
                                                                                                                                                                                                                                                         S
                                                                                                                                                                                                                                                                                                       S
```

```
PRINT 2, 1,8(1), 11(1), 12(1), DB(1), D11(1), F1, F2, F3, EPN, EPA(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PRINT 2, M.B(M), II(P), I2(M), DE(P), DII(M), FI, F2, F3, EPN, EPA(M)
                                                                                                                                                                                                                                                                                     = -A2*(10NE-RB**2)/BA**2) / (4.0D0*U1(I)*C2)
                                                                                                                                                                                                                                                                                                                                               - DII(I)/TWC)
                                                                            XO
                                                                                          DII(M) = (DLOG(II(M)) - DLOG(II(M-1))) /
                                                                                                                                                                                                                                                                                                                          EPA(1) **2 / B(1) **2 / 11(1)
                                                                        = (DLOG( B(M)) - DLOG( B(M-1)))
= (DLOG(11(2))- DLOG(11(1)))
                                                                                                                                                                                                                                                                                                                                          EPA(1) * (DB(1)/11(1)/TWC/8A
                                                                                                                                                                                                                                                                                                                                                               F4 = -EPA(I) * DUI(I)/TWU/U1(I)
                                                                                                                                                                                                                                                                                                                                                                                                    EPN = EPA(I) + DX*(F1+F2+F3+F4)
                                                                                                               DU1(M) = (U1(M) - U1(M-1))/0X
                                                                                                                                                                                                                                                                                                                                                                                                                                                           EPN = EPS
                                                                                                                                                                                                                                                                 CCN1 = C2**2 * U1(1) / TWC
                                     DU1(11) = (U1(2) - U1(11))/DX
                                                                                                                                                                                                                                                                                                      CON1 * 12(1) / 11(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FURMAT(14, 1P10G12.4)
                                                                                                                                                                                                                                                (ONE-RB)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (EPN .LE. 20)
EPA(1+1) = EPN
                                                                                                                                                                                                                              RB = RI(1)/B(1)
                                                                                                                                                                                                           1MM 1=1 0CE JG
                                                                                                                                                  C2 = 0.03500
A2 = 2.0000
                                                                                                                                                                                                                                                                                                                          CONZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CCNTINUE
                   08(1)
                                                                          08(M)
                                                                                                                                                                                                                                                BA =
                                                                                                                                                                                                                                                                                     CONS
                                                                                                                                                                                                                                                                                                        F1 =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                                  J
                                                                                                                                                                                                                                                                                                                                                                                                                        ں
                                                        J
                                                                                                                                  U
```

SUBROUTINE CHANGS(TIME, TS) IMPLICIT REAL*8 (A-H,O-Z) COMMON /REALS/ R1,C7,DX,DY,DT,U2,RHG,EPS,FX,FXRHG,X,Y,U0, * DTZ,DTA,TDY,TDX,DYZ, DFRODR, TRAMP,TOL, K1, KM, KL, KU COMMON /ARRAYS/ PSI,XI,V,U,VA,UA,PSIB,XIB,XIW, EPA(60), U1(60),	* UIO(60), PSIO(60) CCMMON /INTEGS/ L.LI, JDEL, M.MI, NTS, NER, PSKP, IDIMY, JDIMY, JCI, IG CCMMON /IRRAYS/ LAR(60) CCMMON /LOGICS/ LSWHI, PRNT, CN, OFF, RSTART, SAVE, SWHFX, * ZSTART, CSTART DIMENSIONS ARE SET UP FOR MAXIMUMS OF L=30, M=60, LI=15 & MI=15	DIMENSION PSI(60,30), PSIB(60,30), XI(60,30), V(60,30), U(60,30) DIMENSION XIM(15), XIB(60,30), VA(60,30), UA(60,30) DIMENSION UO(30), Y(30), X(60), FX(15), FXRHO(15), DFRUDR(15) INTEGER TS, PSKP LGGICAL LSHHI, PRNT, Ch, CFF, SWHFX LOGICAL RSTART, SAVE, ZSTART, CSTART COMMON /PLOTZ/ SL,SU,SLI,SKEY(30) PRINT 6 6 FCRMAT(* 5/13/76 DUMMY CHANG5*) RETURN END

```
1
                                                                                                                                            DATA CC / 1-ABC', DEFS', 141JK', 11MNO', 1PQRS', 1TUVW', 1XYZ+', 1++
DATA CC / 1-765', 14321', 10ABC', 1DEFG', 1HIJK', 1MNO', 1PQR+', 1+
                                                                                                                                ((1)) ((1))
                                                                                                                                                                                                                                                                                                C(K), SKEY(K+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 19
                                                                                                                                                                                                                                                                                              PRINT 33, SKEY(K), C(K), SKEY(K-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TU 19
                            COMMON /PLOTZ/ SL, SU, SL1, SKEY(30)
                                                                                                                                                                                                                                                                KEY TO PLOTS !
             IMPLICIT REAL*8 (A-H,0-2)
                                                                                                                               EQUIVALENCE (A(1), B(1)),
                                                                                                                                                                                                                IF CONCE . EQ. 0) GC TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (U(1, J) . GE. SKEY (28))
                                                                                                             LUGICAL*1 C(32), A(132)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(U(I,J) .LT. SKEY(2))
                                                             INTEGER B(15), XK, CC(8)
SUBROUTINE PIXER( U )
                                               DIMENSION U (60,30)
                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 20 I=1,60
                                                                                                                                                                                DATA UNCE / 1 /
                                                                               INTEGER ONCE
                                                                                                                                                                                                                                                                                DC 30 K=1,28
                                                                                                                                                                                                                                                                                                                                                                                                 DC 10 K=1,30
                                                                                               INTEGER ONCE
                                                                                                                                                                                                                                                                                                                                  FCRMAT(1H1)
                                                                                                                                                                                                                                                                FCRMAT( .)
                                                                                                                                                                                                                                 ONCE = 0
                                                                                                                                                                                                                                                                                                                                                  PRINT 34
                                                                                                                                                                                                                                                PRINT 35
                                                                                                                                                                                                                                                                                                                                                                  CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                  J=31-K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     XK=28
                                                                                                                                                                                                                                                                                                                                                                                                                                                     XK=1
                                                                                                                                                                                                                                                                                                                                                                  100
                                                                                                                                                                                                                                                                 35
                                                                                                                                                                                                                                                                                                 33
                                                                                                                                                U
                                                                                                                                                                                                 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    S
```

```
2 FORMAT(13,1X,60(1A1,1X))
4 FCRMAT(4X,*[*,17X*[*,5(19X,*[*)))
3 FCRMAT(4X,*[*,17X,*10*,18X,*20*,18X,*30*,18X,*40*,18X,*50*,18X,*
                                IF(U(I,J) .GE. SKEY(XK)) GO TO 19
18 CONTINUE
                                                                                                               CALL PLICIA, I, CIXKI, I)
                                                                                                                                                 PRINT 2, J, (A(M), M=1,60)
10 CONTINUE
                                                                                IF (XK .LF. 0) XK=1
IF (XK .GT. 28) XK=28
DC 18 L=2,28
                                                                                                                                CONT INUE
                                                                                                                                                                                                                                                                 3**60**//)
                                                                                                                                                                               PRINT 4
                XK=29-L
                                                                                                                                                                                                                                                                               RETURN
                                                                                                                19
                                                                  ں
```

.

SUBROUTINE POISZ(N, M, A, B, C, IDIMY, Y, W)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 Y(IDIMY, 1), A(1), B(1), C(1), W(1)

THIS SUBROUTINE SOLVES THE LINEAR SYSTEM OF EQUATIONS

A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J) + X(I,J-I) - 2*X(I,J) + X(I,J+I) = Y(I,J)

FOR I = 1,2, . . . , M , AND J = 1,2, . . . , N ,

WHERE

X(I,0) = X(I,N+1) = 0 FGR ALL I, AND X(0,J) = X(M+1,J) = 0 FOR ALL J.

** * * * * * * * * * * RESTRICTIONS M AND N MUST RE GREATER THAN 1. * * * * * * * * *

M MUST BE DIMENSIONED AT LEAST 2*N + 4*F + ## (LOG2(N)+1).

PI (MACHINE DEPENDENT CONSTANT) DEFINED IN POSGNZ AND COSGEN.

11 = 2*N + 1 12 = 11 + 4 13 = 12 + 8 14 = 13 + 8 15 = 14 + 8 00 100 1=1*P (2)

1

1

100 W(14+I-1) = B(I) - 2.D0
CALL POSGN2(N,M,A,W(I4),C,IDIMY,Y,W(1),W(I1),W(I2),W(I3),W(I5))
RETURN
END

T

```
Q(101MQ,1), BA(1), BB(1), BC(1), TCOS(1), B(1), D(1), W(1), P(1)
                                                                                                                                                                                                                                  I WHEN NG IRREGULARITIES HAVE CCCURRED, OTHERWISE IT IS 2.
SUBROUTINE PGSGNZ(N,M,BA,BB,BC,IDIMQ,Q,TCGS,B,D,W,P)
IMPLICIT REAL*8 (A-H,O-Z)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 TCUS(1) = 2.00*0COS(0FLCAT(2*1-1)*PI/DFLCAT(L))
                                                                                                                                                                                                                                                                                  NCDO = 1 WHEN NUN IS ODD, OTHERWISE IT IS 2.
GC TO (220,210),NCDD
                                                                                                                                                                                                                                                                  NGOD = 2 - 2*((NUN+1)/2) + NUN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0(1.1) = 0(1.2-1) + 0(1.3+1)
                                                                                                                                                                                                                                                                                                                                                                          IF (IRREG .NE. 1) JSP = JSP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GO TO 400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GC TO 330
                                                  PI = 3.1415926535897900
                                                                                                                                                                                                                                                                                                                                                                                                               REGULAR REDUCTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         B(I) =2.00*Q(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (L .GT. JSP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DC 380 J=L,JSP,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (JST .NE. 1)
                                                                                                                                                                                                                                                                                                                                                          JSP = JSP - JST
                                                                                                                                                                                                                                                                                                                                                                                                                                 DC 300 I=1, JST
                                                                                                                                                                                                                                                                                                                         JSP = JSP - L
                                                                                                                         M.1=1 001 00
                                                                                                                                          P(1) = 0.00
                                                                    IDEGBR = 0
                                                                                                                                                                                                                                                                                                                                          GC TO 230
                                                                                                                                                                                                                                                  L = 2*JST
                                                                                       I DEGCR =
                                                                                                                                                                                                                                                                                                                                                                                              CCNTINUE
                                                                                                                                                                                                                                 IRREG =
                                                                                                                                                              Z = NON
                                                                                                                                                                                              JSP = N
                                   REAL *8
                                                                                                         0 = d
                                                                                                                                                                             - 1SC
                                                                                                                                                                                                               IRREG
                                                                                                                                                                                                                                                                                                                                                                                              230
                                                                                                                                                                                                                                                                                                                                                                                                                                                 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          310
                                                                                                                                          100
                                                                                                                                                                                                                                                  200
                                                                                                                                                                                                                                                                                                                         210
                                                                                                                                                                                                                                                                                                                                                          220
                                                                                                                                                                                                                                   U
                                                                                                                                                                                                                                                                                                                                                                                                                v
                                                                                                                                                                                                                                                                                      J
```

.

-

```
B(I)=.5D0*(Q(I,J-JSH)+Q(I,J-3*JSH)-Q(I,J-JST)) +P(IP*M+ I)-Q(I,J)
CALL TRIX(JST,0,M,BA,BB,BC,B,TCOS,D,W)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL TRIX(IDEGBR*JSTSAV, IDEGCR*JSTSAV+JST, M, BA, BB, BC, B, TCOS, D, W)
                                                                                                         T = Q(1,1) - Q(1,1-1SH) - Q(1,1+1SH) + Q(1,1-1ST) + Q(1,1+1ST)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              P(IP*M+I ) = .500*(C(I,J-JSH)+Q(I,J+JSH)-Q(I,J)) + B(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TCUS(KK+1) = 2.00*0COS(DFLOAT(2*1-1)*PI/OFLOAT(L))
                                                                                                                              B(1) = T + Q(1, J) - Q(1, J-3*JSH) - Q(1, J+3*JSH)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       + 8(1) - P(1P*M+1)
CALL TRIX(JST,0,M,BA,BB,BC,B,TCOS,D,W)
                                                                                                                                                                        CALL TRIX(JST.0.M.BA,BB,BC,B,TCOS,D,W)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALL COSGEN(JSTSAV, IDEGBR, IDEGCR, TCOS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B(1) = Q(1, J+JST) - P(1P#M+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              KK = JSTSAV*(IDEGBR+IDEGCR)
                                                                                                                                                                                                                                                         REDUCTION FOR LAST UNKNOWN
                                                                                                                                                                                                                                                                                                      GG TG (540,420), IRRES
                                          (1)9 + ((,1)0 = ((,1)0
                                                                                                                                                                                                                  Q(1,J) = Q(1,J) + B(1)
                                                                                                                                                                                                                                                                                 GO TU (410,470), NODD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0(1,1) = 0(1,1-151)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DC 440 I=1, JST
                                                                                                                                                                                                                                                                                                                           1 + dSf = dSf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N.1=1 094 00
                                                                                                                                                                                             DO 350 I=1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                       DC 431 1=1,M
                     00 320 I=1,M
                                                                                    DC 340 I=1,M
                                                                                                                                                                                                                                                                                                                                                                      DO 430 1=1,M
                                                                                                                                                                                                                                                                                                                                                                                                                                     IP = IP + 1
                                                                                                                                                T = (L,1)p
                                                               GO TO 380
                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                 J = JSP
                                                                                                                                                                                                                                                                                                    014
                                                                                                                                                                                                                                                                                                                           420
                                                                                    330
                                                                                                                                                   340
                                                                                                                                                                                                                   350
                                                                                                                                                                                                                                        380
                                                                                                                                                                                                                                                                                 400
                                                                                                                                                                                                                                                                                                                                                                      459
                                                                                                                                                                                                                                                                                                                                                                                           430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       460
                                           320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    431
                                                                                                                                                                                                                                                             ں
```

```
B(I) = Q(I,J) + .500*(Q(I,J-JST)-Q(I,J-JSH)-Q(I,J-3*JSH))
CALL TRIX(IDEG, IDEGCR*JSTSAV,M,BA,BB,BC,B,TCGS,D,W)
                                                                                                                                                                                                                                                           B(I) = Q(I_0J) + .500*(Q(I_0J-JST)-Q(I_0J-JSH)-Q(I_0J-3*JSH))

P(M*(IP-I)+I) = .500*(Q(I_0J-JSH)+Q(I_0J+JSH)-Q(I_0J))
                                                                                                                                                                                                                                                                                                               CALL COSGENIJSTSAV, IDEGBR, IDEGCR, TCOS)
                                                                                                                                                                                                                                                                                                                                                                                                                                      P(M*IP+I) = P(M*(IP-I) + I) - B(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1+d1*h) - (157-731) - 6(41)0
IDEGBR = IDEGBR + 2*JST/JSTSAV
                                                                                                                                                                                                                                                                                                                                                 IDEGBR = IDEGBR + JST/JSTSAV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GU TC 200
                                                                                                                                                                       GC TC 483
                                                                                    GO TO (480, 500), IRREG
                                                                                                                                                                                                                                                                                                                                IDEG = IDEGBR*JSTSAV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (NUN . GE. 2)
                                                                                                                                                                          .NE. 1)
                                                                                                                                                                                                                                                                                                                                                                   |= 1 , M
                                                                                                                                                                                                          (C.1)0 = (1)8
                                                                                                                                                                                                                                                                                                                                                                                                                    00 530 I=1,M
                                                                                                                                                                                                                                             OG 485 I=1,M
                                                                                                                      ISTSAV = JST
                                                                                                                                                                                         DC 482 I=1, M
                                + dSC = dSC
                                                                   1 + d1 = d
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NUN = NUN/2
                                                                                                                                                       IDEGBR = 2
                                                                                                                                     DEG = JST
                                                                                                    IRREG = 2
                                                                                                                                                                                                                           60 TO 528
                                                                                                                                                                                                                                                                                              GO TO 528
              GC TO 540
                                                                                                                                                                                                                                                                                                                                                                   DC 505 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           J = JSP
                                                                                                                                                                        IF (3ST
                                                                                                                                                                                                                                                                                                                                                                                    505
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           550
                                470
                                                                                                    480
                                                                                                                                                                                                           482
                                                                                                                                                                                                                                             483
                                                                                                                                                                                                                                                                             485
                                                                                                                                                                                                                                                                                                              200
                                                                                                                                                                                                                                                                                                                                                                                                                                                       530
```

```
CALL TRIX(IDEG, IDEGCR*JSTSAV,M, BA, BB, BC, B, TCOS, 0, W)
                                                                                                                                                                                                                          (1)8 - (((,1)0-(H2L+,1)0+(H2L-,1)0)*002. = (L,1)0
                                                             TCOS(1) = 2.00*DCCS(DFLCAT(2*I-1)*PI/DFLCAT(2*JST))
                                                                                                                            CALL COSGEN(JSTSAV, IDEGBR, IDEGCR, TCOS)
                                                                                                            IDEGBR = IC. GCR + JST/JSTSAV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (J+JST .LE. N)GU TO 690
                                                                                                                                                                                                                                                                                                                                                                                                                                      B(11) = Q(1,1) - Q(1,1+JST)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8(11) = 4(1,3) - 4(1,3-351)
                                                                                                                                                                                                                                                                                                                                                                                                     (1 .61. JST) 60 TO 670
                                                                                                                                                                                                                                                                         Q(11,J) = P(1P*M+1) - 8(1)
                                                                                                                                                                                         GO TO (635,637), IRRES
                             GO TO (620,630), IRREG
                                                                                                                                           IDEG = JSTSAV*IDEGBR
                                                                                                                                                                                                                                                                                                                                                                                      750 J= JST, N, L
                                                                                                                                                                                                                                                                                                                                                                        IF (NUN .GT. N)
                                           DG 625 I=1, JST
            B(1) = Q(1,J)
                                                                                                                                                                                                          DC 636 [=1, M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DC 680 I=1, M
                                                                                                                                                                                                                                                                                                                                                                                                                       M.1=1 099 00
M.1=1 019 DG
                                                                                                                                                                                                                                                         DG 650 I=1,#
                                                                                                                                                                                                                                                                                                                                                        NUN = 2*NUN
                                                                                                                                                                                                                                                                                         1 - dI = dI
                                                                                                                                                                                                                                                                                                                       JSI = JST/2
                                                                                                                                                                                                                                                                                                                                        JSH = JST/2
                                                                          10EG = JST
                                                                                                                                                                                                                                                                                                                                                                                                                                                   GU TO 710
                                                                                                                                                                                                                                          GO TO 655
                                                                                           GC TO 634
                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                        CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                         00
              019
                                               620
                                                             629
                                                                                                                                                                                                                          989
                                                                                                                                                                                                                                                                                                        655
                                                                                                                                                                                                                                                                                                                                                                                                                                       099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     680
                                                                                                            089
                                                                                                                                                                                                                                                                         9
                                                                                                                                                           634
                                                                                                                                                                                                          635
                                                                                                                                                                                                                                                           637
```

4.3

```
. M. BA, BB, BC, B, TCCS, D, W)
                                                                                                                                                                                                                                                                                                                                          (1)8 - (([,1)0-(H2L+L,1)0+(H2L-L,1)0)*002. = (L,1)0
                                                                        TCOS(1) = 2.00*0COS(0FLCAT(2*1-1)*PI/0FLCAT(L))
                                                                                                                                     IF (J+L .GT. N) IDEGCR = IDEGCR - JST/JSTSAV
                                           B(1) = Q(1,1) - Q(1,1-1ST) - Q(1,1+1ST)
                                                                                                                                                                   CALL COSGENIJSTSAV, IDEGBR, IDEGCR, TCOSI
IF (JST .LT. JSTSAV) IRREG =
                                                                                                                                                    IDEGBR = JST/JSTSAV + IDEGCR
                                                                                                                                                                                                                                                                                                         IF (J+JST .GT. N) GU TC 730
DG 724 I=1,M
                                                                                                                                                                                                                                              60 10 723
                                                                                                                                                                                                                                                                                                                                                                                                     0(11,1) = P(1P*M+1) - B(1)
              GC TU (710,720), IRREG
                                                                                                                                                                                                                                                                                                                                                                       GO TO (725, 739), IRREG
                                                                                                                                                                                   = IDEGBR*JSTSAV
                                                                                                                                                                                                JDEG = IDEGCR*JSTSAV
                                                                                                                                                                                                                               CALL TRIXIIDEG, JDEG
                                                                                                                                                                                                                                              IF (JST .GT. 1)
                                                          DC 715 I=1,JST
                                                                                                                                                                                                                                                                              0(1,3) = -8(1)
                                                                                                                                                                                                                                                              DC 722 I=1,M
                                                                                                                                                                                                                                                                                                                                                                                       DC 740 1=1, M
                             DO 700 I=1.N
                                                                                        10EG = JST
                                                                                                                                                                                                                                                                                           GO TO 750
                                                                                                                                                                                                                                                                                                                                                       GC TO 750
                                                                                                                                                                                                                                                                                                                                                                                                                                   - dI = dI
                                                                                                                       GC TO 721
                                                                                                                                                                                                                CONTINUE
                                                                                                        JDEG = 0
                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RETURN
                                                                                                                                                                                   9301
                                                         710
                                                                                                                                                                                                                                                                                                                                                                                                                    150
                                                                                                                                      720
                                           100
                                                                                                                                                                                                                                                                              722
                                                                                                                                                                                                                                                                                                           723
                                                                                                                                                                                                                                                                                                                                         724
                                                                                                                                                                                                                                                                                                                                                                       730
                                                                                                                                                                                                                                                                                                                                                                                                    740
                                                                                                                                                                                                                                                                                                                                                                                                                                                  155
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                160
                                                                                                                                                                                                                 721
```

```
SUBROUTINE TRIX(IDEGBR, IDEGCR, M, A, B, C, Y, TCOS, D, W)
IMPLICIT REAL*8 (A-H, 0-Z)
                                 COS(1),0(1),W(1)
                                                                                                   MM1 = M - 1
DELTC = DFLCAT(IDEGBR+1)/DFLOAT(INEGCR+1)
                                                                   SUBROUTINE TO SOLVE TRIDIAGONAL SYSTEMS
                                 A(11), B(11), C(11), Y(11), T
                                                                                                                                                                                                                                                                                                                                                                                                                     X(1) = (Y(1) + A(1)*Y(1-1))/2
                                                                                                                                                                                                                          XX = TCOS(IDEGBR + LINT) - X
                                                                                                                                                                                                                                                                                                                                                                                   Z = X - B(I) - A(I) *D(I-I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        V(1) = Y(1) + D(1) * Y(1+1)
                                                                                                                                                                                                           IF IK .NE. L) GC TC 90
                                                                                                                                                                                                                                                                                                                               Y(1) = Y(1)/(X - B(1))
                                                                                                                                                                                                                                                                                                                0(11) = C(11)/(x - 8(11))
                                                                                                                                                                        DO 300 K=1, IDEGBR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LINT = LINT + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                      DC 200 IP=1,MM1
                                                                                                                                                                                                                                                                             Y(I) = XX*Y(I)
                                                                                                                                                                                                                                                                                                                                                                                                   2/(11) = (11)/2
                                                                                                                                                                                                                                                                                                                                                                 00 100 I=2,M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 250 1=1, M
                                                                                                                                                                                         X = TCOS(K)
                                                                                                                                                                                                                                            DC 20 I=1,M
                                                                                                                                                                                                                                                             (1) = (1)M
                                                                                                                                      L = DELTC
                                                                                                                                                                                                                                                                                               CCNTINUE
                                                                                                                                                       LINT = 1
                                 REAL * 8
                                                                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        200
                                                                                                                                                                                                                                                                                                                                                                                                                     100
                                                    000
```

L = (LINT*(IDEGBR+1.))/(IDEGCR+1.)

CONTINUE

RETURN
END J

```
SUBROUTINE COSGEN(N,MI,M2,TCOS)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 TCOS(1)
PI = 3.1415926535897900
KK = 0
DO 200 K=1,N
DC 100 I=1,MI
X = DFLOAT(K) - DFLUAT(I)/DFLGAT(MI+1)
100 TCOS(KK+I) = 2.D0*DCOS(X*PI/DFLOAT(N))
200 KK = KK + MI
IF (M2 .EQ. 0) GG TG 500
DG 400 K=1,N
DG 300 I=1,M2
X = DFLOAT(K) - DFLOAT(I)/DFLOAT(M2+1)
300 TCOS(KK+I) = 2.D0*DCOS(X*PI/DFLOAT(N))
400 KK = KK + M2
500 RETURN
```

SUBROUTINE DMTG10(A.NR.NC.NRDIM.NJDIM) COMMON IHUR 5 FORMAT(1A4) PRINT 10 COLUMNS PER ROW WITH G12.4 FCRMAT		
THIS FORTRAN IV SUBRUUTINE WRITES A DOUBLE PRECISION MATRIX IN A READABLE FORMAT WITH ROW AND COLUMN IDENTIFICATION.	00000010	
THE ARGUMENTS IN THE CALLING STATEMENT ARE: THE MATRIX TO BE WRITTEN (SPECIFIED DGUBLE PRECISION), THE NUMBER OF ROWS OF A TO BE WRITTEN.	000000050	
NC THE NUMBER OF COLUMNS OF A TO BE WRITTEN, NRDIM THE NUMBER OF ROWS OF A IN THE DIMENSION STATEMENT OF THE CALLING PROGRAM.	000000080 000000090 000000100	
DOUBLE PRECISION A(NRDIM,NJDIM) NCD8 = NC/10 NCRM = MOD(NC,10) IF (NCD8 -LE, 0) GU TO 2	000000110	
DU I I=I,NCU8 PRINT 5, IHDR I8 = I*10 I8M7 = I8-9 WRITE(6,100)(JCOL,JCOL=I8M7,I8) FURMAT(4H ROW,3x,4HCOL ,I3,)		
DO 1 IROW=1,NR WRITE(6,101) IROW, (A(IRCW, JCOL), JCOL=18M7,18) FORMAT(1H, 13,1P10612.4)	00000510	
A . LE	000000240	
NCANCR = NC-NCR#+1	000000560	

WRITE(6,100) (JCDL,JCDL=NCMNCR,NC)
DC 3 IRDW=1,NR
WRITE(6,101) IRDW,(A(IROW,JCDL),JCDL=NCMNCR,NC)
CONTINUE
RETURN

00000280 00000290 00000300 00000310

m 4

APPENDIX B

APPENDIX 8

0

di

SAMPLE DATA SETS FUR EXECUTION OF TEST CASE TWO

TABLE 1.1

COORD DATA

0.054670 0.065070 0.072893 0.075075 0.078909 0.080586 0.023329 0.032712 0.039717 0.045457 0.050366 0.061947 0.067914 0.070513 0.077075 0.082117 0.083509 0.058501 0.0 0.020000 0.073333 0.080000 0.100000 0.113333 0.006667 0.013333 0.026667 0.033333 0.00000 0.053333 0.00000 0.066667 0.046667 0.086667 0.093333 0.106667 0.120000 90 15115 0.0

.08477	0.085905	.08691	.08781	.08860	.08927	.08984	.09030	-09065	16060*	.09106	11160.	11160.	11160.	11160.	.09111	.09111	11160.	11160.	11160*	.09111	.09111	11160.	.09110	.09108	.09104	16060.	.09087	.09073	•09056	.09033	90060
.12666	0.133333	.14000	.14666	.15333	.16000	.16666	.17333	.18000	.18666	.19333	-20000	-24074	-28149	.32224	.36298	.40373	.44448	.48523	.52597	.56672	.60747	.61401	.62055	.62709	.63363	.64018	.64672	.65326	.65980	.66635	-61289

0.089736	.08890	.08840	.08783	.08719	.08648	.08570	.08485	.08393	.08293	.08186	.08071	.07949	.07819	.07682	.07628	.07400	.07058	.06468	.05926	.05429	.04972	.04552	.04167	.03814	.03489	.03191	.02917	.02666	.02435	.02223
0.679434	16269.	90669.	. 70560	.71214	.71868	.12523	.73177	.73331	.74485	.75139	.15794	. 76448	.77102	.11756	. 78000	.79330	.80000	.81000	.82000	.83000	-84000	.85000	.86000	.87000	.88000	00068.	00006	-91000	.92000	.93000

~
-
u
ABL
14
_
-

0.020287 0.018500 0.016859 0.015353 0.012699

0.940000 0.950000 0.960000 0.980000 0.990000 SEPARA DATA

11 90 0 TABLE 1.3

HESS PARMOATA

1

NSRDC SUBIL/D = 10.975) WITH ELLIPTIC FCREBODY 101

101 1001 TABLE 2.4

HESSBLI DATA

NSRDC SUBIL/D = 10.9751 WITH ELLIPTIC FCREBGDY

100 1001

101

0.0 0.023329 0.032712 0.039717 0.006667 0.0

0.013333

0.045457 0.054670 0.020000 0.026667 0.033333 0.040000 0.046667

0.058501 0.065070 0.00090-0

16190.	.07051	.07289	.07507	10770.	.07890	.08058	.08211	.08350	.08477	.08590	.08691	.08781	.08860	.08927	.08984	.09030	• 09065	16060*	•09100	11160.	.09111	.09111	.09111	11160.	11160.	.09111	.09111	.09111	.09111	0.091116	.09111
.06666	.07333	.08000	.08666	.09333	.10000	.10666	.11333	.12000	.12666	.13333	.14000	.14666	.15333	.16000	.16666	.17333	.18000	.18666	.19333	.20000	-24074	.28149	.32224	.36298	.40373	.4444	.48523	.52597	.56672	0.607471	.61401

01160	.09108	.09104	16060	.09087	.09073	.09056	.09033	90060	.08973	.08935	.08890	.08840	.08783	.08719	.08648	.08570	.08485	.08393	.08293	.08186	.08071	.07949	.07819	.07682	.07537	-07405	.07185	69690*	.06756	0.065459	.06338
.62055	.62109	.63363	.64018	-64672	.65326	.65980	.66635	.67289	.67943	.68597	.69251	90669*	.70560	.71214	.71868	.72523	.73177	.73831	.74485	.75139	.15794	.76448	.17102	.11756	.78000	. 79000	.80000	.81000	.82000	0.830000	.84000

0.061348	.05735	.05540	-05347	12150-	.04786	-04605	.04426	.04250	-04076	.03905	-03736	•03569	.03406	-03244	.03085	.02928	.02773	.02621	.02471	.02323	.02177	.02034	-01892	.01752	.01615	.01479	.01346	.01214	.01085
0.850000	.87000	.88000	.89000	90000	.92000	.93000	.94000	.95000	.96000	.97000	.98000	00066	C00000 -	66600*	.01999	.02999	.03999	.04669	.05999	66690*	.07999	.08999	66660.	.10999	66611.	.12999	.13999	.14998	.15998

0.009573 0.008313 0.007072 0.005849 0.003455 0.002285 0.001131

1.229983

1.249982

1.169988

1.189986

1.199986 1.209985 1.219984

WAKE COURDATA TABLE 2.5

1.100000 .050000 1.020000 1.300000

1.400000 1.500000

1.600000 1.800000

TABLE 2.6 SUMDS DATA

.02447	.03600	.04567	.05447	.06275	.07069	.07838	.08588	.09325	.10049	.10765	.11473	0.121748	.12870	.13562	.14249	.14933	.15614	.16293	.16969
.00666	.01333	.02000	.02666	.03333	.04000	.04666	.05333	.06000	.06666	.07333	.0800	0.086667	.09333	.10000	.10666	.11333	.12000	.12666	.13333

```
0.650648
0.176439
                  0.189878
                                                       0.216629
                                                               0.223300
                                                                          0.229968
                                                                                  0.236636
                                                                                                    0.318129
                                                                                                                                0.440370
                                                                                                                                                  0.521865
                                                                                                                                                                     0.603359
                                                                                                                                                                              0.644106
                                                                                                                                                                                                0.657190
                                                                                                                                                                                                                   0.670274
                                                                                                                                                                                                                                     0.683360
                                                                                                                                                                                                                                               0-689904
                                                                                                                                                                                                                                                        0.696448
                                                                                                                                                                                                                                                                 0.702994
         0.183166
                           0.196579
                                    0.203270
                                             0.209952
                                                                                           0.277383
                                                                                                              0.358876
                                                                                                                       0.399623
                                                                                                                                         0.481117
                                                                                                                                                            0.562612
                                                                                                                                                                                                          0.663732
                                                                                                                                                                                                                             0.676817
                                                                                                                                                                                                                                                                          0.709541
                                                                                                                                                                                                                                                                                   0.716092
                                                                                                                                                                                                                                                                                            0.722646
                                                                                                                                                                                      0.614013
                                                                                                                                                                                                                  0.633639
                                                                                                                                                                                                                                              0.653266
                                                                                                                                                                                                                                                        0.659808
                                                                                                                                                                                                                                                                 0.666350
0.140000
                  0.153333
                           0.160000
                                    0.166667
                                              0.173333
                                                      0.180000
                                                                0.186666
                                                                         0.193333
                                                                                  0.20000
                                                                                           0.240747
                                                                                                    0.281494
                                                                                                                       0.362988
                                                                                                                                0.403735
                                                                                                                                         0.444482
                                                                                                                                                  0.485230
                                                                                                                                                            0.525977
                                                                                                                                                                     0.566724
                                                                                                                                                                                                0.620555
                                                                                                                                                                                                         0-627097
                                                                                                                                                                                                                            0.640182
                                                                                                                                                                                                                                     0-646724
                                                                                                                                                                                                                                                                         0.672892
                                                                                                                                                                                                                                                                                            0.685977
         0-146667
                                                                                                              0.322241
                                                                                                                                                                              0.607471
```

0

.72920	73576		.74233	.74890	.75548	.76207	.76867	.17527	.78189	.78852	.79516	.80182	.80849	.81517	.81801	.82809	0.838335	.84856	.85879	.86900	.87922	.88942	.89962	.90982	.92001	.93019	.94037	.95054	.96071	.97087	.98103	61166*
-69251	40904	200	. 10560	.71214	.71868	.72523	.73177	.73831	.74485	.75139	.75794	.76448	.77102	.17756	.78000	. 79000	0.00008.0	.81000	.82000	.83000	.84000	.85000	.86000	.87000	.88000	.89000	.90000	.91000	.92000	.93000	.94000	.95000

.00134	.01148	1.021627	.03176	.04189	.05202	.06215	.07227	.08238	.09250	.10261	.11272	.12282	.13292	.14302
00096	.97000	0.980000	00066	.00000	66600*	.01999	.02999	.03999	.04999	.05999	66690*	.07999	.08999	66660

TABLE 3.1 UNIT 5 DATA (APLNS DATA)

£ILIST NTS=70,PSKP=5,NER=40,L=30,L1=12,M=60,M1=15,IO=9, £END

DT=0.1D-02,RHO=0.7535D-01,EPS=0.0,TDL=0.02D0,TRAMP=.1D0,EPD=0.D0,SCALE1=10.0D0,SCALE2=1.0D0, ERL1ST

SCALE1=10.000, SC EEND

SWHFX=F,SAVE=F,

CN33

TABLE 3.2 UNIT 8 DATA (APLNS VELDATA)

0.006000101	.00009	.00029	.00068	.00100	.00137 .00159	0.002082 0.002360 0.002663	.00299
	.00000	00000	.00000	00000	00000	0.000001	00000

0.003744	.00514 .00569	-00695	.00929	-01122	01624	.01778	.02129 .02328	.03039	.03318	.03954	.05131	.06097
0.000003	00000	.00000	00000	000000	00000	.00001	10000	00002	.00002	-00003	.00003	00000

* 题题

0

0.975612 0.973802 0.972125 0.967772 0.954512 0.970569 0.961163 0.959300 0.958387 0.957469 0.977568 0.969122 0.964206 0.963145 0.962134 0.960222 0.956531 0.955554 0.965324 UNIT 11 DATA (STREAM DATA) 0.969122 0.967772 0.966509 0.962145 0.962134 0.961163 0.960222 0.959300 0.958387 0.957469 0.975612 0.973802 0.972125 0.965324 0.970569 0.977568 0.0 TABLE 3.3 1.000000 0.974280 1.006429 0.909980 0.916410 0.922840 0.929270 0.935700 0.942130 0.948560 0.954990 0.961420 0.967850 0.980710 0.987140 0.993570 1.012857 1.019287 1.025718 220987557576987657676

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																											•		0.0		
.95207	.95057	.94875	.94645	.94343	.9393	.93369	.92598	.91652	.90823	.9064		.9228	.9327	.9412	. 9482	.9538	.9584	.9622	.9655	.9682	9706	.9727	.97456	1916.	.97763	.97894	.98011	.98118		.98305	87
			0.0								0.0							0.0						0.0					0.0	•	0.0
52	.9505	.94875	0.946452	.94343	.93935	.9336	.92598	.91652	.9082	.90646		.92281	•	.94127	-9482	.9538	.9584		.9655	.9682	.9706	.9727	.97456	1926.	.97763	.97894	.98011	•	216	. 98305	38
				•			•							•	•						•	•	•			•	•	•	0.0		0.0
.03857	.04500	.05143	.0578	.06429	-07072	.07715	.08358	.00901	•09644	.10287	.1093	.11573	.12216	.12859	.13502	.14145	.14788	.15431	.16074	.1671	.17359	-1800	.18646	.1928	.19931	-20574	.2121	.21860	1.225038	.23146	.23789
22	23	54	52	92	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	45	43	44	45	94	41	48	64	20	21	25	53

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							.01546	.01437	.01334	.01240	.01155	.01076	.01004	0.009437	.00389	.00841	.00803	.00770	.00744	.00724	+11000-	-00712	.00721	00.	-00786	.00850	**600*	.01083	.01287	.01591	.02049
984	985	985	986	987	987	988	776	975	973	972	970	696	196	0.966508	965	964	963	962	196	960	959	958	957	956	955	954	953	952	950	948	0.946464
				•	•		.00026	.00024	.00022	.00021	.00019	.00018	.00017	0.000159	.00015	.00014	.00013	-00012	.00012	-00012	.00012	.00011	.00012	.00012	.00013	.00014	.00015	.00018	.00021	.00026	3
9846	.9853	.9859	.9865	.9871	.9876	.9881	.9775	.9756	.9738	.9721	.9705	1696	.9677	0.966508	.9653	. 9642	.9631	.9621	.9611	-9602	.9593	.9583	.9574	.9565	.9555	.9545	.9533	.9520	.9505	.9487	.9464
							.0016	.0016	.0016	.0016	.0016	.0016	.0016	0.001670	.0016	.0016	9100-	.0016	.0016	.0016	.0016	.0016	.0016	.0016	.0016	.0016	.00167	.0016	.00167	.00167	
24	25	25	26	27	27	28	90	90	16	92	92	93	94	0.948560	95	96	96	97	98	86	66	9	8	5	5	0	03	03	9	0	S
														89 fr											61	80	18	82	83	84	85