Contents

1	akhdefo_functions.unzip	:
	1.1 Parameters	3
	1.2 Returns	3
2	akhdefo_functions.copyImage_Data	Ę
	2.1 Parameters	5
	2.2 Returns	5
3	akhdefo_functions.copyUDM2_Mask_Data	7
	3.1 Parameters	7
	3.2 Returns	7
4	akhdefo_functions.Filter_PreProcess	ç
	4.1 Parameters	ç
	4.2 Returns	Ĉ
5	akhdefo_functions.Crop_to_AOI	11
	5.1 Parameters	
	5.2 Returns	11
6	akhdefo_functions.Mosaic	13
	6.1 Parameters	13
	6.2 Returns	13
7	akhdefo_functions.Coregistration	15
	7.1 Parameters	15
	7.2 Returns	16
8	akhdefo_functions.DynamicChangeDetection	17
	8.1 Parameters	17
	8.2 Returns	18
9	akhdefo_functions.plot_stackNetwork	19
	9.1 Parameters	19
	9.2 Returns	19
10	akhdefo_functions.stackprep	21
	10.1 Parameters	21
	10.2 Returns	22
11	akhdefo_functions.Time_Series	23
	11.1 Parameters	23
	11.2 Returns	23

12 akhdefo_functions.akhdefo_ts_plot 12.1 Parameters 12.2 Returns	
13 akhdefo_functions.rasterClip 13.1 Parameters	
14 akhdefo_functions.akhdefo_viewer 14.1 Parameters	
15 akhdefo_functions.Akhdefo_resample 15.1 Parameters 15.2 Returns	
16 akhdefo_functions.Akhdefo_inversion 16.1 Parameters	33 33 33
17 akhdefo_functions.utm_to_latlon 17.1 Parameters	
18 akhdefo_functions.MeanProducts_plot_ts 18.1 Parameters	37 37 38
19 akhdefo_functions.Auto_Variogram 19.1 Parameters	39
20 Indices and tables	41

akhdefo_functions.unzip (page 3)(zipdir,	This program unzips all the zip products into one
dst_dir)	folder
$akhdefo_functions.copyImage_Data \ (page 5)([])$	This program copy all the raster images.
akhdefo_functions.copyUDM2_Mask_Data (page 7)([])	This program copy all raster masks.
akhdefo_functions.Filter_PreProcess	This program prepare and uses filters to balanace
(page 9)([])	raster image brightness
akhdefo_functions.Crop_to_AOI (page 11)([])	This program used to clip multiple raster files
akhdefo_functions.Mosaic (page 13)([])	This program mosiacs raster images in geotif for-
3 3 (1 0) (1 1)	mat as well grab dates the satellite image taken for
	further processing.
$akhde fo_functions. Coregistration$	This program coregisteres multiple rasters using
(page 15)([])	both structural similarity index and feature match-
	ing techniques.
$akhde fo_functions. Dynamic {\it Change Detection}$	This program calculates optical flow velocity from
(page 17)([])	triplets of daily optical satellite images.
$akhde fo_functions.plot_stackNetwork$	This Program plots temporal network of triplets to
(page 19)([])	be stacked for calculating Annual Mean Velocity
	from stacked optical images.
$akhdefo_functions.stackprep \ (page \ 21)([])$	This program collects velocity candiate points for
	time-series analysis.
$akhdefo_functions.Time_Series \ (page \ 23)([])$	This program uses candiate velocity points from
	stackprep function and performs linear interpola-
	tion in time-domain to calibrate stacked velocity.
$akhde fo_functions.akhde fo_ts_plot$	This program used for analysis time-series velocity
(page 25)([])	profiles
$akhde fo_functions.raster {\it Clip}$	This program used to clip single raster file.
(page 27)(rasterpath,)	
akhdefo_functions.akhdefo_viewer	This program used for plotting raster products.
(page 29)([])	
akhdefo_functions.Akhdefo_resample	This program performs raster resampling for rasters
(page 31)([])	
akhdefo_functions.Akhdefo_inversion	This program calculates 3D displacement velocity
(page 33)([])	(East-West, North-South and vertical) using com-
	bined optical and InSAR products
akhdefo_functions.utm_to_latlon	This program converts geographic projection of
(page 35)(easting,)	shapefiles from UTM to LATLONG
$akhdefo_functions.MeanProducts_plot_ts \ (page 37)([])$	This program used to plot shapefile data
$akhde fo_functions.Auto_Variogram$	This program automatically selects best variogram
(page 39)([])	model which later can be used to interpolate data-
	points.

Contents 1

2 Contents

$akhde fo_functions.unzip$

akhdefo_functions.unzip(zipdir, dst_dir)

This program unzips all the zip products into one folder

1.1 Parameters

\mathbf{zipdir}

[str] path to directory contains all the zipfiles

$\mathbf{dst_dir}$

[str] path to destination folder to copy all unzipped products.

1.2 Returns

unzip folder

$akhde fo_functions.copy Image_Data$

akhdefo_functions.copyImage_Data(path_to_unzipped_folders='', Path_to_raster_tifs='')
This program copy all the raster images.

2.1 Parameters

 $path_to_unzipped_folders: str$

 $Path_to_raster_tifs: str$

2.2 Returns

rasters

$akhde fo_functions.copy UDM2_Mask_Data$

 ${\tt akhdefo_functions.copyUDM2_Mask_Data(\it path_to_unzipped_folders='', Path_to_UDM2raster_tifs='')} \\ {\tt This\ program\ copy\ all\ raster\ masks.}}$

3.1 Parameters

$path_to_unzipped_folders$

[str] file extension must end with udm2_clip.tif

 $Path_to_UDM2raster_tifs: str$

3.2 Returns

rasters

$akhde fo_functions. Filter_PreProcess$

 $akhdefo_functions.Filter_PreProcess(unfiltered_folderPath='',\ UDM2_maskfolderPath='',\ outpath_dir='',\ Udm_Mask_Option=False)$

This program prepare and uses filters to balanace raster image brightness

4.1 Parameters

 $unfiltered_folderPath: str$ $UDM2_maskfolderPath: str$

 $outpath_dir : str$

Udm_Mask_Option

[bool] False if True the program uses planetlabs imagery unusable pixel mask to ignore and mask bad image pixels

4.2 Returns

geotif rasters

Filtered geotif rasters

Figures

plotted filtered rasters and mask for bad pixels

$akhde fo_functions. Crop_to_AOI$

 $\label{eq:continuous_akhdefo_functions.Crop_to_AOI} akhdefo_functions.Crop_to_AOI(Path_to_WorkingDir='',\ Path_to_AOI_shapefile='',\ output_CroppedDir='')$

This program used to clip multiple raster files

5.1 Parameters

$Path_to_WorkingDir$

[str] path to raster working directory

$Path_to_AOI_shape file$

[str] path to Area of interest in shapefile format

$output_CroppedDir$

[str] path to save cropped raster files

5.2 Returns

cropped raster files

akhdefo_functions.Mosaic

akhdefo_functions.Mosaic(Path_to_WorkingDir='', output_MosaicDir='', img_mode=0)

This program mosiacs raster images in geotif format as well grab dates the satellite image taken for further processing. The current version only supports Planet Labs SurfaceReflectance products.

6.1 Parameters

Path_to_WorkingDir : str output_MosaicDir : str

img_mode

[int] if img_mode=0 the the programs mosaics only the raster images. if img_mode=1 the program mosiacs only mask rasters

6.2 Returns

Mosaiced raster images

$akhde fo_functions. Coregistration\\$

 $\begin{tabular}{ll} {\bf akhdefo_functions.Coregistration} (input_Folder='',\ output_folder='',\ grid_res=20,\ min_reliability=60,\ window_size=(64,\ 64),\ path_figures='',\ showFig=False,\ no_data=[0,\ 0],\ single_ref_path='') \end{tabular}$

This program coregisters multiple rasters using both structural similarity index and feature matching techniques. This program is written based on arosics python library.

7.1 Parameters

input_Folder: str

Path to input raster folders

grid_res: int

min_reliability: int

structural simialrity index threshold to differentiate deformation from raster shift (min=20, max=100)

window_size: tuple

window size for pixel search

showFig: bool

True to display results or False to not displat results

no_data: list

No data values to be ignored for both reference and target image

single_ref_path: str

provide path to raster if interested to coregister all rasters to a single reference, ignore this option the program uses subsequent rasters as reference.

output_folder: str

returns coregistred and georeferenced raster in geotif format

path_figures: str

returns figure with plotted displaced pixels in raster coordinate system units

7.2 Returns

coregistred rasters

$akhde fo_functions. Dynamic Change Detection\\$

```
\label{eq:continuous_point}  \mbox{akhdefo\_functions.DynamicChangeDetection}(Path\_working\_Directory='', Path\_UDM2\_folder='', Path\_to\_DEMFile='', Coh\_Thresh=0.75, vel\_thresh=0.063, udm\_mask\_option=False, cmap='jet', Median\_Filter=False, Set\_fig\_MinMax=False, show\_figure=False, plot\_option='origional', xres=10, yres=10)
```

This program calculates optical flow velocity from triplets of daily optical satellite images. Final Timeseris products will be a shapefile format using Time_Series function after stackprep step.

8.1 Parameters

Path_working_Directory: str
Path_UDM2_folder: str
Path_to_DEMFile: str
Coh_Thresh: float
vel_thresh: float
udm_mask_option: bool
cmap: str
Median_Filter: bool

show_figure : bool

Set_fig_MinMax: bool

 $\mathbf{plot_option}$

[str] origional, resampled

xres: int yres: int

8.2 Returns

Rasters

velocity in X direction (EW) Velocity in Y direction (NS) $\,$

Figures

Initial Timesereis Figures (those figures are only intermediate products needs calibration)

$akhde fo_functions.plot_stack Network$

```
 \begin{tabular}{ll} akhdefo\_functions.plot\_stackNetwork(src\_folder='', output\_folder='', cmap='tab20', \\ date\_plot\_interval=(5, 30), marker\_size=15) \end{tabular}
```

This Program plots temporal network of triplets to be stacked for calculating Annual Mean Velocity from stacked optical images.

9.1 Parameters

src_folder

 $[\mathrm{str}]$ path to georeferenced_folder

output_folder

[str] path to output folder to save output Figure plot

cmap

[str] colormap for the plot default is tab20

date_plot_interval

[list] minumum and maximum plot x axis interval dates for the plot

marker_size

[float] size of plotted points default is 15

9.2 Returns

Figure

akhdefo_functions.stackprep

```
\label{lem:akhdefo_functions.stackprep} $$ (path\_to\_flowxnFolder='', path\_toFlowynFolder='', dem='', print\_list=False, start\_date='YYYYMMDD', end\_date='YYYYMMDD', output\_stackedFolder='', VEL\_scale=('month', 'year'), xres=3.125, yres=3.125, Velocity\_shapeFile=False, Resampling=True) $$ This program collects velocity candiate points for time-series analysis.
```

10.1 Parameters

```
path_to_flowxnFolder
     [str] path to folder include east-west velocity files
path_toFlowynFolder
     [str] path to folder include north-south velocity files
dem
     [str] path to digital elevation model file will be used to geocode the products
print_list
     [bool] print list of temporal processed dates default is False
start\_date
    [str] YYYYMMDD
end_{-}date
     [str] YYYYMMDD
output\_stackedFolder: str
VEL_scale
     [str] month or year) at this stage you can ignore this option; will be removed from future versions
xres: float
yres: float
Velocity_shapeFile: bool
    set to True if need to generate points for temporal deformation analysis
Resampling: bool
```

if True reduce number of measurement points but faster processing

10.2 Returns

ESRI Shapefile

This file include candiate velocity points for timeseries analysis

akhdefo_functions.Time_Series

```
akhdefo\_functions.Time\_Series(stacked\_raster\_EW='', stacked\_raster\_NS='', velocity\_points='', \\ dates\_name='', output\_folder='', outputFilename='', \\ rasteriz\_mean\_products=True, std=1, VEL\_Scale='year')
```

This program uses candiate velocity points from stackprep function and performs linear interpolation in time-domain to calibrate stacked velocity. Additionally produces corrected timeseries velocity(daily) in a shapefile.

11.1 Parameters

```
stacked_raster_EW : str

stacked_raster_NS : str

velocity_points
    [str ] Velcity Candidate points

dates_name
    [str] text file include name of each date in format YYYYMMDD

output_folder : str

outputFilename : str
```

11.2 Returns

Time-series shape file of velocity and direction EW, NS, and 2D(resultant Velocity and direction)

$akhde fo_functions. akhde fo_ts_plot$

```
akhdefo\_ts\_plot(path\_to\_shapefile='', dem\_path='', point\_size=1.0, opacity=0.75, \\ cmap='turbo', Set\_fig\_MinMax=True, MinMaxRange=[-50, 50], \\ color\_field='VEL', user\_data\_points='', path\_saveData\_points='', \\ save\_plot=False, Fiq\_outputDir='', VEL\_Scale='year')
```

This program used for analysis time-series velocity profiles

12.1 Parameters

$user_data_points$

[str] provide path to csv. file contains x and y coordinate for points of interest you can generate this file by providing path to path_saveData_points (POI.csv). This is useful to save mouse click positions to repeat the plots for different datasets for example if you plot several TS profiles for EW velocity product, you can recreate TS for the same exact position by saving POI.csv with path_saveData_points and then use that as input for the another plot such as NS velocity product via setting user_datapoints=POI.csv

path_to_shapefile

[str] type path to timeseries shapefile in stack_data/TS folder

dem_path

[str] path to dem raster in geotif fromat

point_size

[float] size of the sactter plot points

opacity

[float] transparency of the scater overlay

cmap

[str] Matplotlib colormap options example RdYlBu_r, jet, turbo, hsv, etc

$\mathbf{Set_fig_MinMax}$

[bool] True or False

MinMaxRange

[list] [-50,50] Normalize plot colormap range if Set_fig_MinMax=True

color_field

[str] VEL ,VEL_2D, VEL_N, VEL_E, VELDir_MEA

$path_saveData_points$

[str] optional, provide directory path if you want to save profile data. the data will be saved under POI.csv file

save_plot: bool

True or False

$Fig_outputDir$

[str]

if save_plot=True then you save your profile plots in interactive html file and jpg image

${\bf VEL_Scale}$

[str] year or month projects the velocity into provided time-scale

12.2 Returns

Interactive Figures

$akhde fo_functions. raster Clip\\$

akhdefo_functions.rasterClip(rasterpath, aoi, outfilename)
This program used to clip single raster file.

13.1 Parameters

rasterpath

[str] path to raster file in geotif format

aoi

[str] path to Area of interest in shapefile format

outfilename

[str] path to output raster file in geotif format .tif

13.2 Returns

clipped raster

akhdefo_functions.akhdefo_viewer

```
 \begin{tabular}{ll} {\bf akhdefo\_viewer}(Path\_to\_DEMFile='',\ rasterfile='',\ cbar\_label='Velocity(mm/year)', \\ title='Akhdefo-Viewer',\ pixel\_resolution\_meter=3.125, \\ outputfolder='',\ alpha=0.8,\ unit=1,\ cmap='jet', \\ noDATA\_Mask=False,\ Normalize=True,\ SetDates\_Filename=False, \\ Set\_fiq\_MinMax=False) \end{tabular}
```

This program used for plotting raster products.

14.1 Parameters

Path_to_DEMFile

[str] provide path to digital elevation raster file to be used as shaded base Map

rasterfile

[str] provide path to raster file to be plotted

title

[str] provide your desired title for the plot

pixel_resolution_meter

[float] provide pixel resolution of the digital elevation raster to draw proper figure scalebar

outputfolder

[str] provide path to outure folder to save the plot

outputfileName

[str] provide name for the output plot including the desired extension such as .jpg, .pmg, .pdf, etc..

alpha

[float] transparency level for the plotted raster relative to hillshaded basemap

unit

[int] conversion unit default is 1 (no conversion) if your data is in meter such as velocity in meter/year set unit to 2 to convert to mm/year

$noDATA_MAsk$

[bool] set to True if you do not want to plot zero values of your dataset

14.2 Returns

Figure

$akhde fo_functions. Akhde fo_re sample$

 $akhdefo_functions. Akhdefo_resample(input_raster='', output_raster='', xres=3.125, yres=3.125, SavFig=False, convert_units=False)$

This program performs raster resampling for rasters

15.1 Parameters

$input_raster$

[str] path to input raster

$output_raster$

[str] path to output raster

 \mathbf{xres}

[float] horizontal resolution

yres

[float] vertical resolution

SavFig

[bool] True to save output plot False to ignore exporting plot

$convert_units$

[bool] if True converts raster value units from m to mm

15.2 Returns

Raster geotif

akhdefo_functions.Akhdefo_inversion

 $akhdefo_inversion(horizontal_InSAR='', \ Vertical_InSAR='', \ EW_Akhdefo='', \ NS_Akhdefo='', \ demFile='', \ output_folder='')$

This program calculates 3D displacement velocity (East-West,North-South and vertical) using combined optical and InSAR products

16.1 Parameters

horizontal_InSAR

[str] path to East Velocity InSAR product in geotif format

${\bf Vertical_InSAR}$

[str] path to Vertical Velocity InSAR product in geotif format

$EW_Akhdefo$

[str] path to east-west velocity akhdefo(optical) product in geotif format

$NS_Akhdefo$

[str] path to north-south velocity akhdefo(optical) product in geotif format

demFile

[str] path to DEM raster in geotif format

$output_folder$

[str] path to save raster products

16.2 Returns

Three geotif rasters

3D-Velocity (D3D in mm/year) raster Plunge raster in degrees Trend raster in degrees

$akhde fo_functions.utm_to_latlon$

akhdefo_functions.utm_to_latlon(easting, northing, zone_number, zone_letter)

This program converts geographic projection of shapefiles from UTM to LATLONG

17.1 Parameters

easting: Geopandas column with Easting

northing: Geopandas column with Northing

zone_number: int zone_letter: N or S

17.2 Returns

[lon , lat]: List

$akhde fo_functions. Mean Products_plot_ts$

This program used to plot shapefile data

18.1 Parameters

```
path_to_shapefile: str

dem_path: str

out_folder: str

color_field
    [str] geopandas column name

Set_fig_MinMax: bool

MinMaxRange: list

opacity: float

cmap: str

point_size: str

cbar_label
    [str] mm/year or degrees, etc.. based on unit of the data column name in the color_field
```

18.2 Returns

Figure

$akhde fo_functions. Auto_Variogram$

 $\verb|akhdefo_functions.Auto_Variogram|(|path_to_shapefile='', |column_attribute='', |latlon=False|)|$

This program automatically selects best variogram model which later can be used to interpolate datapoints.

19.1 Parameters

path_to_shapefile : str type path to shapefile to include data (point data) the shapefile attribute must have x, y or lat, lon columns

$column_attribute$

[str] Name of shapefile field attribute include data

19.2 Returns

 str

name of best variogram model also figure for plotted variogram models

Indices and tables

- \bullet genindex
- \bullet modindex
- \bullet search