DBMS SQL

Lesson 13: Introduction to Oracle Architecture

Lesson Objectives

- To understand the following topics:
 - Outline of Oracle architecture and it's main components
 - List of structures involved in connecting a user to an Oracle instance

Oracle SGA and Database

Oracle Server Defined

- An Oracle server:
 - is a "database management system (DBMS)" that provides an open, comprehensive, integrated approach to information management.
 - consists of an "Oracle instance" and an "Oracle database".

Oracle Instance

- An Oracle instance:
 - is a means to access an Oracle database.
 - always opens one and only one database.
 - consists of memory and process structures.

Connection and Creating a Session

- Connecting to an Oracle instance consists of:
 - establishing a User Connection, and
 - creating a Session

Memory Structure

- Memory Structure:
 - The Memory Structure of Oracle consists of two memory areas known as:
 - System Global Area (SGA): Allocated at instance startup, and is a fundamental component of an Oracle Instance.
 - Program Global Area (PGA): Allocated when the server process is started.

System Global Area (SGA)

- The SGA consists of following memory structures:
 - Mandatory
 - Shared pool
 - Database buffer cache
 - Redo log buffer
 - Streams Pool
 - Optional
 - Large pool
 - Java Pool
- SGA can be sized by the SGA_MAX_SIZE parameter

Shared Pool

Shared Pool:

The shared pool is used to store the most recently executed SQL statements, and the most recently used Data Definitions.

- It consists of two key memory structures:
 - Library cache
 - Data dictionary cache
- It is sized by the parameter SHARED_POOL_SIZE.

Shared Pool

Library Cache

Data Dictionary

Cache

Library Cache

- Library Cache can be described as follows:
 - The Library Cache stores information about the most recently used SQL and PL/SQL statements. The Library Cache enables sharing of commonly used statements.
 - It is managed by a least recently used (LRU) algorithm.
 - It consists of two structures:
 - Shared SQL area
 - Shared PL/SQL area
 - It has it's size determined by the Shared Pool Sizing.

Data Dictionary Cache

- Data Dictionary Cache can be described as follows:
 - The Data Dictionary Cache is a collection of the most recently used data dictionary information from the database.
 - It includes database files, tables and their descriptions, Indexes, columns, users, privileges, and other database objects.
 - During the "parse phase", the "server process" looks at the Data Dictionary for information to resolve "object names", and validate the access.
 - The query response time is improved by caching the data dictionary information
 - The size is determined by the Shared Pool Sizing.

Database Buffer Cache

- The Database Buffer Cache stores copies of data blocks that have been retrieved from the data files.
 - Enables performance improvement when you obtain and update data.
 - Managed through a LRU algorithm.
 - DB_BLOCK_SIZE determines the primary block size.

Database Buffer Cache

Database Buffer Cache (Contd...)

- Database Buffer Cache consists of sub caches
 - Default
 - Keep
 - Recycle
 - Non-standard block sizes
- The size of sub caches can be controlled by parameters:
 - DB_CACHE_SIZE
 - DB_KEEP_CACHE_SIZE
 - DB_RECYCLE_CACHE_SIZE
 - DB_nK_CACHE_SIZE

Redo Log Buffer

- The Redo Log Buffer Cache records all changes made to the data blocks.
 - It's main purpose is recovery.
 - Recorded changes are called redo entries
 - Redo entries contain information to reconstruct or redo changes.

It is sized by the parameter LOG_BUFFER.

Large Pool

- The Large Pool is an optional memory area in the SGA and is configured only in shared server environment.
 - The burden on Shared Pool is reduced.
 - This memory area is typically used for Session Memory (UGA), I/O slaves, and backup and restore operations.
 - The Large Pool does not use an LRU list.
 - It is sized by the parameter LARGE_POOL_SIZE.

Java Pool

- The Java Pool services the parsing requirements for Java commands.
 - Required in case of installation and use of Java.
 - Stored in the same way as PL/SQL in database tables.
 - Sized by the JAVA_POOL_SIZE parameter.

Streams Pool

- The Streams Pool stores data and control structures to support the Oracle streams feature of Oracle Enterprise Edition.
 - It is new cache introduced in Oracle 10g
 - Sized with parameter STREAMS_POOL_SIZE

Program Global Area

 Program Global Area (PGA) is the memory reserved for each user process that connects to an Oracle database.

Program Global Area (Contd...)

- It is allocated when a process is created and deallocated when the process is terminated
- Can be sized with parameter PGA_AGGREGATE_TARGET

Process Structure

- An Oracle process is a program, which can request information, execute a series of steps, or perform a specific task, depending on its type.
 - Oracle has the following types of processes:
 - **User process:** Starts at the time a database user requests connection to the Oracle server.
 - Server process: Connects to the Oracle Instance and starts when a user establishes a session.
 - Background process: Available when an Oracle instance is started.

Background Process

- The physical structure and memory structures are related to each other by Oracle background processes
 - Mandatory background processes:
 - SMON
 - PMON
 - DBWR
 - LGWR
 - CKPT
 - Optional background process:
 - Arcn

Database Writer (DBWn)

- Database Writer (DBWn) writes when:
 - Checkpoint occurs
 - on reaching Dirty buffers threshold
 - No Buffers are free
 - Timeout occurs
 - when Tablespace is offline or read only
 - when DROP Table or TRUNCATE Table is used

Log Writer (LGWR)

- Log Writer (LGWR) writes:
 - on Commit
 - when one-third is full
 - when there is 1 MB of redo
 - every 3 seconds
 - before DBWn writes

System Monitor (SMON)

- SMON does instance recovery
 - Rolls forward changes in redo logs
 - Opens the database for user access
 - Rolls back uncommitted transactions
- Every 3 secs coalesces free space
- Deallocates temporary segments

Process Monitor (PMON)

- Process Monitor (PMON)
 - PMON cleans up after failed processes, by:
 - rolling back the transaction
 - releasing locks
 - releasing other resources

Checkpoint (CKPT)

- Checkpoint (CKPT):
 - CKPT is responsible for:
 - signaling DBWn at checkpoints
 - updating data-file headers with checkpoint information
 - updating control files with checkpoint information

Archiver (ARCn)

- Archiver (ARCn):
 - It is an optional background process, responsible for:
 - Automatically archiving online redo logs when ARCHIVELOG mode is set
 - Preserving the record of all changes made to the database

Physical Structure

- An Oracle database:
 - is a collection of data that is treated as a unit.
 - consists of mainly three file types.

Physical Structure (Contd...)

- Physical structure:
 - The physical structure of an Oracle database is determined by the Operating System files that provide the actual physical storage for database information, namely:
 - Control files
 - Data files
 - Redo log files

Logical Structure

- The "logical structure" of the Oracle architecture dictates how the "physical space" of a database should be used.
 - A hierarchy exists in this structure that consists of tablespaces, segments, extents, and blocks.

Tablespace Data file Segment Segment Blocks

Logical Structure (Contd...)

- Oracle stores data logically in "tablespaces", and physically in "datafiles" associated with the corresponding tablespace.
 - An Oracle database consists of one or more logical storage units called tablespaces, which collectively store all the data in the database.
 - Tablespaces are further divided into logical units of storage called "Segments".
 - "Segments" are further divided into "Extents".
 - "Extents" are a collection of "contiguous blocks".

Relation Between Tablespace & Datafiles

Schemas

- An Oracle database contains many schemas.
 - A "schema" is a logical structure that contains objects like segments, views, procedures, functions, packages, triggers, user-defined objects, collection types, sequences, synonyms, and database links.
 - A "segment" is a data structure that can be a table, index, or temporary or undo segment.
 - The schema name is the user that controls the schema.
 - Examples of schemas: System, Sys, Scott, and SH schemas

Schemas and Tablespaces

Relationship between Schemas and Tablespace:

Schemas and Tablespaces (Contd...)

- However, each partition is itself a "segment", and each segment can only reside in one "tablespace".
- "Clustered tables" are another special case where two tables with a close link between them can have their data stored together in a "single block" to improve join operations.
- "Indexes" are optionally built on tables to help improve performance and to help implement "integrity constraints" such as primary keys and uniqueness.

Schemas and Tablespaces (Contd...)

- "Temporary segments" are used as a temporary storage area by Oracle to run an SQL statement.
 - For example: Temporary segments may be used for sorting data, and then discarded once a query or transaction is complete.
- "Undo Segments" or "Rollback Segments" are used:
 - to manage the before image of changes to allow data to roll back, if required, and
 - to help provide data consistency for users querying data that is being changed.

RowID

RowID:

- Oracle has its own way of storing the data.
- To retrieve the data quickly, Oracle assigns each row with a unique ROWID.
 - The ROWID does not change throughout the life of the row.
 - Oracle always retrieves the row using the ROWID.
 - When you create an Index, Oracle stores the key column and the ROWID for that row in the index.
 - ROWID cannot be used for computation and it is HEX value

Characteristics

- Characteristics of ROWID are:
 - ROWID provides the fastest access to a row.
 - It stores the "disk block address" where the row is stored.
 - The ROWID of a row does not change ever for a row as long as it exists
 - All Oracle applications such as Forms, Reports, PL/SQL use ROWID to access, lock, and update rows.
 - ROWID of a row does not change unless you export and import the table.
 - As a programmer you will always try to use the primary key to access the row. It is not recommended that the programmer explicitly uses the ROWID.

Types of RowID

- Types of ROWIDs are:
 - Oracle has two different representations of ROWIDS namely Restricted ROWID and Extended ROWID.
 - Restricted ROWID:
 - It uses a binary representation, to store the ROWID (discontinued in Oracle 8i)
 - When ROWID is used in SQLPLUS, it is converted into a varchar2 format and displayed.
 - The format of restricted ROWID is:
 - Block.row.file
 - For example: 00000DD5.00000.0001

Types of RowID (Contd...)

Extended ROWID:

- Oracle 8i and above, always uses Extended ROWID for storing rows.
- Extended ROWID uses a 64 bit representation of every row. It has the following format:
 - OOOOOOFFFBBBBBBRRR

where:

OOOOO: Data object number

FFF: Tablespace relative datafile number

BBBBBB: Data block number within that file

RRR: Row in that file

For example: AAAAaoAATAAABrXAAA

Types of RowID (Contd...)

- Note:
 - The ROWID of a record is the fastest method of record retrieval.
 - The performance can be improved by selecting a record before updating or deleting it and including ROWID in the initial selection list.

Summary

- In this lesson you have learnt about:
 - Concept of Database file
 - Data files
 - Control files
 - Online redo logs
 - Concept of SGA memory structure:
 - Database Buffer cache
 - Shared SQL Pool
 - Redo Log Buffer

Review Question

- Question 1: The "Oracle server" consists of an ____
 and an ____
- Question 2: ____ provide the actual physical storage for database information.
- Question 3: A single Oracle9i instance can open multiple databases.
 - True / False

Review Question

- Question 4: The Background process communicates with the Oracle instance on behalf of the "user process", which runs on the client.
 - True / False
- Question 5: Redo logs contain a record of changes made to the database.
 - True / False

Review Question: Match the Following

- Java Pool
- 2. Large Pool
- 3. SGA
- 4. PGA

- is allocated when the database instance is started
- b. is sized by the JAVA_POOL_SIZE parameter
- is allocated when a user process is created
- d. is an optional area of memory in the shared global area

