

GraphGAN

- Integrantes:
- Benjamín Farías V.
- Víctor Hernández
- Benjamín Lepe

Contenidos

- 1. Contexto
- 2. Estado del Arte
- 3. GraphGAN
- 4. Experimentos
- 5. Conclusiones

Contexto - Representación de Grafos

- También conocido como *network embeddings*
- Apunta a representar cada vértice de un grafo como low-dimension vectors
- Se busca facilitar las tareas de análisis del grafo y predicción sobre los vértices y aristas del mismo

D

Signed Grap

Contexto - Aplicaciones

Link Prediction

 Interesado en predecir, en base a dos vértices dados, si existe o no una conexión entre ambos

Node Classification

 Cada vértice se encuentra asignado a una o varias etiquetas, y dado un grupo de vértices, nos interesa clasificar el resto con las etiquetas correspondientes

Recommendation

 Se pretende recomendar películas que podrían gustarle a un usuario, sin haberlas visto antes

Contexto - Otras Aplicaciones

- Visualization
- Knowledge Graph Representation
- Clustering
- Text Embedding
- Social Network Analysis

Contenidos

- 1. Contexto
- 2. Estado del Arte
- 3. GraphGAN
- 4. Experimentos
- 5. Conclusiones

Estado del Arte - Aprendizaje Generativo

- Para cada vértice v_c existe una **distribución condicional** implícita $p_{true}(v|v_c)$ que indica las conexiones de preferencia del vértice v_c respecto a todos los vértices del grafo
- Las aristas del grafo pueden verse como muestras generadas por distribuciones condicionales donde los modelos generativos aprenden los vertex embeddings al maximizar la probabilidad de que exista una conexión

Node2Vec

Estado del Arte - Aprendizaje Discriminativo

- A diferencia del modelo generativo, en este las aristas de los vértices no se consideran generadas por distribuciones condicionales implícitas
- Este modelo apunta a predecir la existencia de aristas directamente, comprobando la **probabilidad de conexión** entre dos vértices v_i, v_j como $p(edge|(v_i, v_i))$, basado en los datos de entrenamiento

discriminative

Estado del Arte - GANs

- Combinación de discriminador y generador
- Mucho éxito recientemente con sus aplicaciones
 - Image Generator (https://thispersondoesnotexist.com/)
 - Sequence Generator
 - Dialogue Generator
 - *Etc.*

Contenidos

- 1. Contexto
- 2. Estado del Arte
- 3. GraphGAN
- 4. Experimentos
- 5. Conclusiones

GraphGAN - Framework

Generador (G)

Genera nodos con mayor probabilidad de estar conectados con v_c

$$p_{\rm true}(v|v_c)$$

Discriminador (D)

Discrimina la conectividad entre pares de nodos, entregando la probabilidad

$$p(edge|(v_i, v_j))$$

GraphGAN - Framework

• Juego Minimax, D debe discriminar entre vecinos reales y vecinos generados por G

GraphGAN - Discriminador (D)

• Determina si el nodo v es vecino real o generado, aplicando activación sigmoidal

$$D(v, v_c) = \sigma(\mathbf{d}_v^{\top} \mathbf{d}_{v_c}) = \frac{1}{1 + \exp(-\mathbf{d}_v^{\top} \mathbf{d}_{v_c})}$$

 Se optimiza mediante ascenso de gradiente, buscando maximizar la probabilidad de discriminar correctamente

$$\nabla_{\theta_D} V(G, D) = \begin{cases} \nabla_{\theta_D} \log D(v, v_c), & \text{if } v \sim p_{\text{true}}; \\ \nabla_{\theta_D} (1 - \log D(v, v_c)), & \text{if } v \sim G. \end{cases}$$

GraphGAN - Generador (G)

• Genera muestras de vecinos v aproximando la distribución mediante softmax

$$G(v|v_c) = \frac{\exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}{\sum_{v \neq v_c} \exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}$$

 Se optimiza mediante descenso de gradiente, buscando minimizar la probabilidad de que D identifique los vecinos generados por G

$$\nabla_{\theta_G} V(G, D) = \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_c)} \left[\nabla_{\theta_G} \log G(v | v_c) \log \left(1 - D(v, v_c) \right) \right]$$

GraphGAN - Generador (G)

La función *softmax* es intuitiva, pero tiene ciertas limitaciones en este contexto:

- La optimización aplica a todos los nodos, lo que es ineficiente
- Trata a los nodos por igual, desaprovechando la información estructural

Se propone una alternativa a softmax para G, denominada graph softmax

GraphGAN - Graph Softmax

- Dado un nodo raíz v_c , se computa **BFS** en el grafo, obteniendo un árbol T_c
- Se define la **relevancia de** v_i **dado** v en base a los vecinos de v en T_c :

$$p_c(v_i|v) = \frac{\exp(\mathbf{g}_{v_i}^{\top} \mathbf{g}_v)}{\sum_{v_j \in \mathcal{N}_c(v)} \exp(\mathbf{g}_{v_j}^{\top} \mathbf{g}_v)}$$

• Dado el camino $P_{v_c
ightarrow v} = (v_{r_0}, v_{r_1}, ..., v_{r_m})$, se define finalmente:

$$G(v|v_c) \triangleq \left(\prod_{j=1}^m p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m})$$

GraphGAN - Graph Softmax

La función graph softmax cumple con las propiedades deseadas:

- Es una distribución de probabilidades válida (dem. por inducción sobre T_c)
- La probabilidad decrece exponencialmente con la distancia entre nodos
- La complejidad de calcularla en general es $O(d\log V)$

GraphGAN - Algoritmo Generador

• Random walk sobre T_c , se retorna el nodo en el que se decida devolverse

Algorithm 1 Online generating strategy for the generator

```
Require: BFS-tree T_c, representation vectors \{\mathbf{g}_i\}_{i \in \mathcal{V}}

Ensure: generated sample v_{gen}

1: v_{pre} \leftarrow v_c, v_{cur} \leftarrow v_c;

2: while true do

3: Randomly select v_i proportionally to p_c(v_i|v_{cur}) in Eq. (6);

4: if v_i = v_{pre} then

5: v_{gen} \leftarrow v_{cur};

6: return v_{gen}

7: else

8: v_{pre} \leftarrow v_{cur}, v_{cur} \leftarrow v_i;

9: end if

10: end while
```


GraphGAN - Algoritmo Generador

- En cada paso se elige un vecino al azar, condicionado en su **relevancia** p_{c}
- Cuando un nodo elija a su padre, se detiene y retorna dicho nodo
- Se deberán actualizar los pesos de todos los nodos del camino y sus vecinos

GraphGAN - Algoritmo Final

- Construir el árbol T_c para cada nodo
- Iterar el juego Minimax entre G y D
- Retornar los embeddings obtenidos
- Complejidad: $O(V \log V)$

Algorithm 2 GraphGAN framework

Require: dimension of embedding k, size of generating samples s, size of discriminating samples t

Ensure: generator $G(v|v_c;\theta_G)$, discriminator $D(v,v_c;\theta_D)$

- 1: Initialize and pre-train $G(v|v_c;\theta_G)$ and $D(v,v_c;\theta_D)$;
- 2: Construct BFS-tree T_c for all $v_c \in \mathcal{V}$;
- 3: while GraphGAN not converge do
- 4: **for** G-steps **do**
- 5: $G(v|v_c;\theta_G)$ generates s vertices for each vertex v_c according to Algorithm 1;
- 6: Update θ_G according to Eq. (4), (6) and (7);
- 7: end for
- 8: **for** D-steps **do**
- 9: Sample t positive vertices from ground truth and t negative vertices from $G(v|v_c;\theta_G)$ for each vertex v_c ;
- 10: Update θ_D according to Eq. (2) and (3);
- 11: end for
- 12: end while
- 13: **return** $G(v|v_c;\theta_G)$ and $D(v,v_c;\theta_D)$

Contenidos

- 1. Contexto
- 2. Estado del Arte
- 3. GraphGAN
- 4. Experimentos
- 5. Conclusiones

Experimentos - Setup

Se utilizaron estos 5 datasets para evaluar GraphGAN:

- arXiv-AstroPh
- arXiv-GrQc
- BlogCatalog
- Wikipedia
- MovieLens-1M

Experimentos - Setup

Se utilizaron estos 4 modelos como baseline para GraphGAN:

- DeepWalk
- LINE
- Node2Vec
- Struc2Vec

Experimentos - Resultados

La probabilidad de que exista una arista entre dos vértices del grafo, disminuye al aumentar la distancia mínima (shortest distance).

Resultados - Link Prediction

• *GraphGAN* supera a todos los demás modelos en las dos métricas para los datasets *arXiv-AstroPh* and *arXiv-GrQc*.

Model	arXiv-AstroPh		arXiv-GrQc	
	Acc	Macro-F1	Acc	Macro-F1
DeepWalk	0.841	0.839	0.803	0.812
LINE	0.820	0.814	0.764	0.761
Node2vec	0.845	0.854	0.844	0.842
Struc2vec	0.821	0.810	0.780	0.776
GraphGAN	0.855	0.859	0.849	0.853

Resultados - Node Classification

• *GraphGAN* supera a todos los demás modelos en las dos métricas para los datasets *BlogCatalog y Wikipedia*.

Model	BlogCatalog		Wikipedia	
	Acc	Macro-F1	Acc	Macro-F1
DeepWalk	0.225	0.214	0.194	0.183
LINE	0.205	0.192	0.175	0.164
Node2vec	0.215	0.206	0.191	0.179
Struc2vec	0.228	0.216	0.211	0.190
GraphGAN	0.232	0.221	0.213	0.194

Resultados - Recomendación

• *GraphGAN* supera a todos los demás modelos en las dos métricas para el dataset *MovieLens-1M*.

Contenidos

- 1. Contexto
- 2. Estado del Arte
- 3. GraphGAN
- 4. Experimentos
- 5. Conclusiones

Conclusiones

- Se propuso un framework que es capaz de unificar dos tipos de GNN: generativas y discriminativas
- El algoritmo ayuda a que estas dos redes se **impulsen a aprender** más eficientemente, ya que se enfrentan como **oponentes** en un juego *Minimax*
- Se introdujo una **nueva función generativa** llamada *graph softmax*
- GraphGAN logró superar todos los baselines propuestos, demostrando que es un modelo más robusto y preciso

Bibliografía y Referencias

[1] Wang, H. et al. (2017). *GraphGAN: Graph Representation Learning with Generative Adversarial Nets.*