Cobalt Coordination Compound Name / date?

Purpose:

- Synthesize trans cobalt coordination compound
 - Oxidize Co²⁺to Co³⁺through the reaction 2Co²⁺+2H⁺+H₂O₂->2 Co³⁺+2H₂O
 - o Bond Co^{3+} to ligand ethylene diamine through reaction $Co^{3+}+2H_2NCH_2CH_2NH_2+3Cl^->$ [$Co(H_2NCH_2CH_2NH_2)_2Cl_2$]Cl
- Isolate trans cobla coordination compound through vacuum filtration and determine percent yield
- Isomerize solution of trans isomer to cis isomer both partially and fully
- Determine the differnace.. in absorbance of isomers through wavelength of max absorbance

Reference: How did you decide the limiting reagent?

(1) Kateley, L. J., *Introduction to Chemistry in the Laboratory*, 20th Ed., Lake Forest College, **2021**, Experiment Cobalt Coordination Compound, Appendix D_LabEquipment

Synthesis of Trans

- 0.5001g of solid dark pink CoCl₂•6H₂O weighted on analitical balance and added to 25mL Erlenmeyer Flask
- 1mL of deionized water measured in 10mL graduated cylander and a stir bar added to flask
- Solution is a clear pink red akin to cranberry juice

- 700 µL ethylene diamine solution measured with blue Eppendorf pipet and added to flask while stirring
- Solution turned deep red

- 5mL of 3% H₂O₂(hydrogen peroxide) added to flask
- Solution turned darker red, akin to soy sauce

- Mixture stirred for 15 minutes to allow for evaporation

- 3mL of concentrated HCl (hydrochloric acid) measured in graduated cylander and added to flask
- Solution heated to boiling point for 20 minutes reducing to volume to ~3 mL and turing the solution a dark blue green

- Mixture was cooled on countertop and then in ice bath as it cooled it turned back to a deep red/purple indication that it was overheated into cis isomer, bypassing trans isomer

Isolation of Trans through Vacuum Filtration

- After cooling mixture was filtered through vacuum filtration separating a shiny dark green solid and dark blue filtrate

- Mixture is washed with twice $\sim 2mL$ of $CH_3COCH_3(acetone)$, once with $\sim 1mL$ of $CH_3OCH_3(dielhylether)$, and twice with $\sim 1mL$ of acetone again
- Solid is transfered to petri dish in tared anylitical balance and weighed in at 0.3082g
- Percent yield = 100 x experimental/actual = 100 x .3082 g / 0.482 g = 63.9 %

CALCULATIONS AND RESU	MM g/mol	conc	density	volume	mass, g	moles available (mass + MM)
cobalt chloride hexahydrate	237.93	mass.%	g/mL NA	NA	0.509	.002 mol ol
ethylenediamine	60.10	30.0	1.00	700 µL	0.700 mL x 1.00 g/mL x 0.300 = 0 . 7 0	.003419 mol
hydrogen peroxide	34.01	3.0	1.00	5 40 mL	5.0nlx 1.00g/ml x .03 = 0.15	
trans- dichlorobisethylenediamine- cobalt(III) chloride	275.41	NA	NA	NA	.30829	.00112-
iting reactant: $F+hy$ e_h pretical yield: $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	or .00	112 ma	,1			•

Isomerization and Visible Spectra

- 50mg (0.0588g)of synthesised trans isomer was disolved in 10mL of deionized water creating a pale mint green solution
- The solution was equally divided into 3 spectroscopy vials
- 1 vial was packed with ice to make sure it remains as trans isomer, the solution remained green
- 1 vial was heated in a boiling water bath to create cis isomer, the solution turned grey pink and got pinker as it sat
- 1 vial was heated by boiling water for a short time and then put in the ice bath to stop conversion

- The pink vial had a peak at 525 nm

- The grey vial was relativly equal overall

- The green solution vial had a peak around 615 nm, orange red range

Models and Drawing, 2 possible structures for the cis, that are mirror images

- Models B and D are models of the trans isomer. Thet can be super imposed on each other and have one ring
- Models A and C are cis isomers. They are mirror images of each other and have two rings
- In the models Co is pink, Cl is green, black is C, and blue is N. The rings are made of C and N and there are 8 atoms in the ring, the ring itself is 5 atom ring, Co, N, C, C, N

Conclusion:

- The yeild was not 100% because not all of the reactants reacted and some of the product was left behind in various equipment.
- One clear indicator is that the color of the compound is different. We do not have any good indicators of purity.
- Oxidation state change is another possible explination for color change.
- The pink cis isomer had a larger max absorbance as it has a larger peak at 525 nm [blue green range] then the green trans did at 615 nm, [red orange range. The grey mix has slightly more cis iosmer as it absorbs more green (525 nm) light then orange/red (615 nm) light