Question 1 (10 pts)	
Soit $p_2(x)$ le polynôme de degré 2 interpolant $(0, -1)$, $(-1, -1)$ et $(1, -3)$.	Correct
Combien vaut p ₂ (2) ?	
A. ○ -6 B. ○ -5 C. ○ -8 ✓ D. ● -7	
Note:	10 / 10 pts
Question 2 (10 pts)	
Étant donné quatre points du plan d'abscisses distinctes, combien de polynômes de degré 3 interpolent ces points?	Correct
A. ○ Une infinité B. ○ Aucun ✓ C. ⑤ Un seul D. ○ Trois	
Note:	10 / 10 pts

Question 3 (10 pts)		
Soit les cinq points (-2,4), (-1,1), (0,0), (1,1), (2,4). Le seul polynôme d'interpolation interpolant ces points est-il $p(x) = x^2$?		Incorrect
 X A.		
	Note:	0/ 10 pts
	Bonus:	+ 10 pts
	Note ajustée :	10 / 10 pts
Question 4 (10 pts)	Note ajustée :	10 / 10 pts
Question 4 (10 pts) Soit la fonction vectorielle $f(x,y,z) = (x^2,y^2,z^2)$ et sa racine $r=(0,0,0)$. Déterminer à quel ordre convergerait la méthode de Newton vers r .	Note ajustée :	10 / 10 pts
Soit la fonction vectorielle $f(x,y,z) = (x^2,y^2,z^2)$ et sa racine $r = (0,0,0)$. Déterminer à	Note ajustée :	

Question 5 (10 pts)		
Calculer le conditionnement (en norme de Frobenius) de la matrice		Correct
$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$		
✓ A.		
	Note:	10 / 10 pts
Question 6 (10 pts)		
On résout Ax=b avec une erreur relative de 0.05% sur les coefficients de b, et on obtient une erreur relative de 2% sur la solution x. Donner la valeur minimale que doit avoir le conditionnement de A.		Correct
A. ○ 1 B. ○ 20 ✓ C. ◎ 40		
	Note :	10 / 10 pts