République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2017

Session Normale

Honneur – Fraternité – Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (4 points)

Le plan complexe est muni d'un repère orthonormé (O; u, v).

1) a- Soit a un nombre réel, résoudre dans l'ensemble de nombres complexes l'équation d'inconnue z: $(1+i)z^2-2(a+1)z-(-1+i)(a^2+1)=0$

(1 pt)

b- Soient f et g les transformations données par leurs expressions complexes $f:z \to z'=1-iz$ et $g:z \to z''=z-i$. Déterminer la nature et les éléments caractéristiques de chacune des transformations f et g.

(0,5 pt)

Dans le reste de l'exercice on considère les points I, M_1 et M_2 d'affixes respectives $z_0 = 1 - i$, $z_1 = 1 - ia$

- et $z_2 = a i$ où $a = e^{i\alpha}$, $\alpha \in]0,2\pi[$
- 2) a- Montrer que le triangle IM,M, est rectangle en I, isocèle et direct.

- (0,5 pt) (0,5 pt)
- b-Préciser les lieux géométriques de chacun des points M_1 et M_2 lors que α décrit l'intervalle $0,\pi$
 - (0,5 pt)
- 3) Soit M_3 le point d'affixe $z_3 = i \sin \alpha + ia$ et soit G l'isobarycentre des points M_1 , M_2 et M_3

c-Ecrire z_1 et z_2 sous forme exponentielle pour α appartenant à l'intervalle $\left|0,\frac{\pi}{2}\right|$.

a- Vérifier que $z_G = \frac{1 + \cos \alpha}{3} + i \frac{(-1 + 2\sin \alpha)}{3}$ puis montrer que, pour $\alpha \in]0,\pi[$, le point G appartient à

(0,5 pt)

une ellipse Γ dont on donnera une équation.

b- Préciser les sommets et l'excentricité de Γ puis la construire dans le repère précédent.

Exercice 2 (6 points)

ABC est un triangle équilatéral direct de coté 4 cm, et de cercle circonscrit Γ , les points I, J et K sont les milieux respectifs des segments [BC], [CA] et [AB]. On pose $A' = s_B(A)$.

1) a- Faire une figure illustrant les données que l'on complétera au fur et à mesure. On prendra (AB) horizontale.

(0,75 pt)

b- Montrer qu'il existe un unique antidéplacement g vérifiant g(B) = A et g(A') = B. Vérifier que g est une symétrie glissante et donner sa forme réduite.

(0,75 pt)

- c- Soit r la rotation qui transforme C en B et J en K. Déterminer un angle et le centre de r.
- (0, 5 pt)

2) Soit s la similitude directe qui transforme A en B et C en I, et on pose $h = s \circ r$

- (0, 5 pt)
- a- Déterminer le rapport et une mesure de l'angle de s. b- Soit Ω le centre de s. Montrer que $\Omega \in \Gamma$ et que les points Ω , A et I sont alignés. Placer alors Ω .
- (0, 5 pt)

c- Déterminer la nature et les éléments caractéristiques de h.

(0, 5 pt)

3) Soit M un point de Γ distinct de Ω , on pose M'=s(M) et M_1 =r(M)

(0, 5 pt)

a- Montrer que le triangle Ω MM' est rectangle.

(0,5 pt)(0,5 pt)

b- Montrer que la droite (MM') passe par un point fixe que l'on déterminera. c- Montrer que les points M₁, M et M' sont alignés.

(0, 3 pt)(0, 25 pt)

4) On pose M₀ = A et ∀n ∈ N, M_{n+1} = s(M_n)
 a- Déterminer M₁ et construire M₂.

(0, 25 pt)

b- Vérifier que $M_{2017} \in (\Omega B)$

- (0, 5 pt)
- c- Pour tout entier naturel n, on pose $L_n = M_n M_{n+1}$ et $S_n = \sum_{k=0}^n L_k$ exprimer S_n en fonction de n, puis déterminer $\lim_{n \to \infty} S_n$.

(0, 5 pt)

Exercice 3 (5 points)

Pour tout entier naturel n on définit la fonction f_n sur \mathbb{R} par : $f_n(x) = \frac{e^{-nx}}{1 + e^{-x}}$ et soit (C_n) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

	(0,5 pt)
 Montrer que toutes les courbes (C_n) passent par un point fixe à déterminer. a- Dresser le tableau de variation de f₀. 	(0,5 pt)
b- On considère les points M et N de la courbe (C_0) d'abscisses respectives x et $-x$. Déterminer les	
coordonnées de A , milieu de $\lceil MN \rceil$, que représente A pour (C_0) ?	(0,5 pt)
3) a- Montrer que les courbes (C_0) et (C_1) sont symétriques par rapport à l'axe des ordonnées.	(0,25 pt)
b- Déduire le tableau de variation de f ₁	(0,25 pt)
c- Construire (C_0) et (C_1) dans le même repère.	(0,5 pt)
4) On suppose que n est strictement supérieur à 1.	
a- Montrer que $\lim_{x \to +\infty} f_n(x) = 0$ et $\lim_{x \to -\infty} f_n(x) = +\infty$ puis calculer $\lim_{x \to -\infty} \frac{f_n(x)}{x}$. Interpréter.	(0,75 pt)
b- Calculer f'_n et dresser le tableau de variation de f_n .	(0, 5 pt)
5) Soit (u_n) la suite définie par : $u_n = \int_0^1 f_n(x) dx$, $n \in \mathbb{N}$	
a- Justifier l'existence de (u_n) puis vérifier que $u_0 = ln\left(\frac{1+e}{2}\right)$	(0,5 pt)
b- Vérifier que $u_0 + u_1 = 1$ et que $u_{n+1} + u_n = \frac{1 - e^{-n}}{n}$ puis déduire u_1 et u_2	(0,5 pt)
c- Montrer que (u _n) est convergente et calculer sa limite.	(0,25 pt)
Exercice 4 (5 points)	
Soit f la fonction définie sur $]0;+\infty[$ par : $f(x) = \frac{\ln x}{x^2}$	
1) a- Dresser le tableau de variation de f.	(0, 75 pt)
b- Déduire que pour tout entier $n \ge 6$, l'équation $f(x) = \frac{1}{n}$ admet dans l'intervalle $\left[1, \sqrt{e}\right]$ une seule	
solution notée a _n	(0, 25 pt)
c- Prouver que la suite (a _n) est décroissante, en déduire qu'elle converge.	(0,5 pt)
2) a- Montrer que pour tout entier k strictement supérieur à 1, on a : $\frac{\ln\left(k+1\right)}{\left(k+1\right)^2} \le \int_k^{k+1} \frac{\ln x}{x^2} dx \le \frac{\ln k}{k^2}$	(0,5 pt)
b- Utiliser une intégration par parties pour exprimer en fonction de n l'intégrale : $\int_2^n \frac{\ln x}{x^2} dx$, $n \ge 2$.	(0,5 pt)
3) Pour tout entier n supérieur strictement à 1, on pose : $S_n = \frac{\ln 2}{2^2} + \frac{\ln 3}{3^2} + \frac{\ln 4}{4^2} + \dots + \frac{\ln n}{n^2}$	
a- Montrer que $S_n - \frac{\ln(2)}{(2)^2} \le \int_2^n \frac{\ln x}{x^2} dx \le S_n - \frac{\ln(n)}{(n)^2}$	(0,5 pt)
b- En déduire que : $\frac{1+\ln 2}{2} - \frac{n + (n-1)\ln(n)}{n^2} \le S_n \le \frac{2+3\ln 2}{4} - \frac{1+\ln(n)}{n}$	(0,25 pt)
4) Pour tout entier naturel n non nul, on pose: $u_n = \sum_{k=1}^n \frac{\left(\ln 2\right)^{k-1}}{k!}$ et $I_n = \frac{1}{n!} \int_1^2 \frac{(\ln x)^n}{x^2} dx$	
a- Montrer que : $\forall n \in \mathbb{N}^* \ 0 \le I_n \le \frac{\left(\ln 2\right)^n}{n!}$ En déduire la limite de I_n	(0,5 pt)
b. Montrer que: $\forall n \in \mathbb{N}^* \ I_{n+1} = I_n - \frac{1}{2} \frac{(\ln 2)^{n+1}}{(n+1)!}$	
	(0,5 pt)
c- En déduire que : $\forall n \in \mathbb{N}^*$ $I_n = \frac{1}{2} - \frac{1}{2} \left[\frac{\ln 2}{1!} + \frac{(\ln 2)^2}{2!} + \frac{(\ln 2)^n}{n!} \right]$	(0,25 pt)
d- Exprimer (u_n) en fonction de I_n . En déduire la limite de (u_n) .	(0,5 pt)
Fin.	(v,v pt)