

LONGITUDINAL STRESS

Longitudinal/Tensile stress causes increase in length

Longitudinal stress = $\frac{F}{\Delta}$ unit N/m²

VOLUME STRESS

- Same as pressure
- Causes change in volume

SHEARING STRESS

- · Causes change in shape shearing stress = $\frac{F_{+}}{A}$
 - F = tangential force

STRAIN

MECHANICS OF SOLIDS

HOOKE' S LAW

- 1. For rigid body E = infinity
- 2. Steel is more elastic than rubber risid body
- 3. Depends on :-
- (a) Nature of metal
 (b) Temperature Young's modulus

STRESS STRAIN CURVE

BREAKING STRESS

Breaking Force= breaking stress x area, B.F \propto A

BREAKING OF WIRE UNDER IT'S OWN WEIGHT

B.S
$$\times$$
 A =T= mg
B.S \times A = V \times $\rho \times g$ = A L_{max} ρ g
L_{max} = $\frac{B.S}{\rho g}$

RATIO OF DENSITY OF BODY TO THAT OF LIQUID IN WHICH BODY IS IMMERSED

here, I and I are extensions in the rod in the two cases.

YOUNG'S MODULUS

$$y = \frac{\text{Longitudnal stress}}{\text{Longitudnal strain}} = \frac{FL}{A\triangle L}$$

Comparing with a spring of force constant ${\sf K}$

$$y = \frac{FL}{Ax}$$
 $F = \frac{Ayx}{L} = kx$ $k = \frac{AY}{L}$

POISSON'S RATIO

Theoretical value :- $-1 < \sigma < 0.5$ Practical value :- 0 < 0 < 0.5

ELASTIC POTENTIAL ENERGY AND ENERGY DENSITY

strain, ε

 $= \frac{1}{2} \times \frac{\text{Stress}}{\text{Strain}} \times \text{volume } \times \text{strain}^2$ = $\frac{1}{2}$ X Stress X strain X volume

Energy Density=EPE

 $\Rightarrow e = \frac{1}{2} \times \text{Stress} \times \text{strain}$

INCREASE IN LENGTH DUE TO IT'S OWN WEIGHT

for brittle materials

$$F = kx$$

$$mg = \frac{\frac{YA}{L}}{2} \times \frac{\frac{L}{2}}{2\frac{YA}{L}} \times \frac{\frac{L}{2}}{2\frac{L}{L}} \times \frac{\frac{L}{2}}{2\frac{L}} \times \frac{\frac{L}{2}}{2\frac{L}{L}} \times \frac{\frac{L}{2}}{2\frac{L}}{2\frac{L}{L}} \times \frac{\frac{L}{2}}{2\frac{L}$$

RATIO OF EXTENSION

$$\frac{x_{1}}{x_{2}} = \frac{\frac{F_{1}}{k_{1}}}{\frac{F_{2}}{k_{2}}} = \frac{\frac{3mg \times L_{1}}{Y_{1} \times A_{1}}}{\frac{2mg \times L_{2}}{Y_{2} \times A_{2}}} = \frac{3I}{2yd^{2}}$$

where
$$I = \frac{L_1}{L_2}$$
 $y = \frac{Y_1}{Y_2}$ $d = \frac{D_1}{D_2}$

BULK MODULUS

Bulk modulus, B =
$$\frac{\text{Volumetric stress}}{\text{Volumetric strain}} = \frac{\triangle P}{-\frac{\triangle V}{V}}$$
 $K = \frac{1}{B} = \text{compressibility}$

$$B_{isothermal} = P$$
, $B_{adibatic} = \gamma P$, $B_{isotropic} = xP$

MODULUS OF RIGIDITY

$$\eta = \frac{\text{shear stress}}{\text{shear strain}} \frac{F}{A \phi} = \frac{FI}{Ax}$$