# $11a_{88} \ (K11a_{88})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 3.81735 \times 10^{18} u^{55} - 3.41298 \times 10^{18} u^{54} + \dots + 7.25836 \times 10^{18} b - 6.54872 \times 10^{18}, \\ &8.54661 \times 10^{18} u^{55} - 1.96112 \times 10^{19} u^{54} + \dots + 7.25836 \times 10^{18} a - 6.19813 \times 10^{18}, \ u^{56} - 2u^{55} + \dots - 2u + 1 \\ I_2^u &= \langle -au + 3b + a + 2u + 1, \ a^2 + 2au - 7u - 7, \ u^2 + u + 1 \rangle \\ I_3^u &= \langle b, \ a + u, \ u^2 - u + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 62 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 3.82 \times 10^{18} u^{55} - 3.41 \times 10^{18} u^{54} + \dots + 7.26 \times 10^{18} b - 6.55 \times 10^{18}, \ 8.55 \times 10^{18} u^{55} - 1.96 \times 10^{19} u^{54} + \dots + 7.26 \times 10^{18} a - 6.20 \times 10^{18}, \ u^{56} - 2u^{55} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1.17748u^{55} + 2.70188u^{54} + \dots - 7.40789u + 0.853930 \\ -0.525924u^{55} + 0.470213u^{54} + \dots + 0.327275u + 0.902232 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.70341u^{55} + 3.17209u^{54} + \dots - 7.08061u + 1.75616 \\ -0.525924u^{55} + 0.470213u^{54} + \dots + 0.327275u + 0.902232 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ u^3 + u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u^3 \\ u^5 + u^3 + u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^6 - u^4 + 1 \\ u^8 + 2u^6 + 2u^4 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -0.0147560u^{55} + 0.313638u^{54} + \dots - 6.67639u + 0.916847 \\ 0.352209u^{55} - 0.918697u^{54} + \dots + 1.18445u + 1.11145 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1.10278u^{55} - 2.44048u^{54} + \dots + 5.22670u - 1.38381 \\ 0.449311u^{55} - 0.0110571u^{54} + \dots + 0.457669u - 0.899349 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.33623u^{55} + 3.16841u^{54} + \dots - 7.38742u + 1.20484 \\ -0.480366u^{55} + 0.160009u^{54} + \dots + 0.210912u + 0.917813 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.33623u^{55} + 3.16841u^{54} + \dots - 7.38742u + 1.20484 \\ -0.480366u^{55} + 0.160009u^{54} + \dots + 0.210912u + 0.917813 \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes =  $-\frac{10988692710744958139}{3629180684127117001}u^{55} + \frac{21985136905178948607}{3629180684127117001}u^{54} + \cdots - \frac{18377034251590244150}{3629180684127117001}u + \frac{18266861748021250925}{3629180684127117001}$ 

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing           |
|-----------------------|------------------------------------------|
| $c_1,c_5$             | $u^{56} - 2u^{55} + \dots - 2u + 1$      |
| $c_2$                 | $u^{56} + 28u^{55} + \dots + 4u + 1$     |
| <i>C</i> 3            | $u^{56} - 3u^{55} + \dots + 276u + 172$  |
| $c_4, c_8, c_9$       | $u^{56} + u^{55} + \dots + 12u + 4$      |
| $c_6$                 | $u^{56} + 2u^{55} + \dots + 1554u + 481$ |
| $c_7, c_{10}, c_{11}$ | $u^{56} + 3u^{55} + \dots - 31u + 7$     |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing             |
|-----------------------|------------------------------------------------|
| $c_1,c_5$             | $y^{56} + 28y^{55} + \dots + 4y + 1$           |
| $c_2$                 | $y^{56} + 4y^{55} + \dots + 28y + 1$           |
| <i>c</i> 3            | $y^{56} + 9y^{55} + \dots + 99952y + 29584$    |
| $c_4, c_8, c_9$       | $y^{56} - 51y^{55} + \dots + 48y + 16$         |
| $c_6$                 | $y^{56} - 20y^{55} + \dots - 456284y + 231361$ |
| $c_7, c_{10}, c_{11}$ | $y^{56} - 53y^{55} + \dots + 747y + 49$        |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.761612 + 0.706746I |                                       |                     |
| a = -2.61065 - 0.67242I   | 1.58146 - 5.73177I                    | 1.83404 + 5.79402I  |
| b = 1.324630 - 0.244844I  |                                       |                     |
| u = -0.761612 - 0.706746I |                                       |                     |
| a = -2.61065 + 0.67242I   | 1.58146 + 5.73177I                    | 1.83404 - 5.79402I  |
| b = 1.324630 + 0.244844I  |                                       |                     |
| u = 0.690346 + 0.801960I  |                                       |                     |
| a = 0.481692 + 0.412002I  | -2.82580 + 2.62743I                   | -4.75305 - 4.09062I |
| b = -0.066092 - 0.603875I |                                       |                     |
| u = 0.690346 - 0.801960I  |                                       |                     |
| a = 0.481692 - 0.412002I  | -2.82580 - 2.62743I                   | -4.75305 + 4.09062I |
| b = -0.066092 + 0.603875I |                                       |                     |
| u = 0.451244 + 0.989156I  |                                       |                     |
| a = 0.050142 - 0.437553I  | -0.57122 + 2.77824I                   | 2.95589 - 4.20688I  |
| b = -0.542520 + 0.123434I |                                       |                     |
| u = 0.451244 - 0.989156I  |                                       |                     |
| a = 0.050142 + 0.437553I  | -0.57122 - 2.77824I                   | 2.95589 + 4.20688I  |
| b = -0.542520 - 0.123434I |                                       |                     |
| u = 0.853869 + 0.316506I  |                                       |                     |
| a = -2.36674 - 0.45164I   | -0.70521 - 8.81361I                   | 1.89048 + 4.78995I  |
| b = 1.40459 - 0.32683I    |                                       |                     |
| u = 0.853869 - 0.316506I  |                                       |                     |
| a = -2.36674 + 0.45164I   | -0.70521 + 8.81361I                   | 1.89048 - 4.78995I  |
| b = 1.40459 + 0.32683I    |                                       |                     |
| u = -0.569045 + 0.945562I |                                       |                     |
| a = -2.02662 - 1.07884I   | 5.37458 - 1.80246I                    | 7.34576 + 2.56666I  |
| b = 1.411350 + 0.084042I  |                                       |                     |
| u = -0.569045 - 0.945562I |                                       |                     |
| a = -2.02662 + 1.07884I   | 5.37458 + 1.80246I                    | 7.34576 - 2.56666I  |
| b = 1.411350 - 0.084042I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.631832 + 0.630832I |                                       |                     |
| a = 2.75595 + 1.02264I    | 6.29507 - 2.91322I                    | 8.51117 + 4.03861I  |
| b = -1.399300 + 0.140066I |                                       |                     |
| u = -0.631832 - 0.630832I |                                       |                     |
| a = 2.75595 - 1.02264I    | 6.29507 + 2.91322I                    | 8.51117 - 4.03861I  |
| b = -1.399300 - 0.140066I |                                       |                     |
| u = -0.829870 + 0.241336I |                                       |                     |
| a = 0.509900 + 0.334719I  | -5.93188 + 4.75475I                   | -2.47991 - 3.65893I |
| b = -0.240288 - 0.794736I |                                       |                     |
| u = -0.829870 - 0.241336I |                                       |                     |
| a = 0.509900 - 0.334719I  | -5.93188 - 4.75475I                   | -2.47991 + 3.65893I |
| b = -0.240288 + 0.794736I |                                       |                     |
| u = 0.374837 + 1.075050I  |                                       |                     |
| a = -0.490885 - 0.409888I | -0.27332 + 2.70620I                   | 0                   |
| b = -1.087140 + 0.111404I |                                       |                     |
| u = 0.374837 - 1.075050I  |                                       |                     |
| a = -0.490885 + 0.409888I | -0.27332 - 2.70620I                   | 0                   |
| b = -1.087140 - 0.111404I |                                       |                     |
| u = 0.268445 + 1.111910I  |                                       |                     |
| a = 0.146715 - 0.451206I  | 0.50238 - 1.98879I                    | 0                   |
| b =  1.272610 - 0.252980I |                                       |                     |
| u = 0.268445 - 1.111910I  |                                       |                     |
| a = 0.146715 + 0.451206I  | 0.50238 + 1.98879I                    | 0                   |
| b = 1.272610 + 0.252980I  |                                       |                     |
| u = -0.385295 + 1.082820I |                                       |                     |
| a = -0.468644 - 1.033150I | -3.45328 - 1.33657I                   | 0                   |
| b = -0.004875 - 0.663333I |                                       |                     |
| u = -0.385295 - 1.082820I |                                       |                     |
| a = -0.468644 + 1.033150I | -3.45328 + 1.33657I                   | 0                   |
| b = -0.004875 + 0.663333I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.698151 + 0.927977I |                                       |                     |
| a = 1.99746 + 0.91434I    | 0.926044 + 0.238949I                  | 0                   |
| b = -1.275360 - 0.207940I |                                       |                     |
| u = -0.698151 - 0.927977I |                                       |                     |
| a = 1.99746 - 0.91434I    | 0.926044 - 0.238949I                  | 0                   |
| b = -1.275360 + 0.207940I |                                       |                     |
| u = -0.459731 + 1.077510I |                                       |                     |
| a = 1.83760 + 1.09993I    | 1.33205 - 3.50361I                    | 0                   |
| b = -1.55132 - 0.05064I   |                                       |                     |
| u = -0.459731 - 1.077510I |                                       |                     |
| a = 1.83760 - 1.09993I    | 1.33205 + 3.50361I                    | 0                   |
| b = -1.55132 + 0.05064I   |                                       |                     |
| u = 0.743330 + 0.310940I  |                                       |                     |
| a = 2.16703 + 0.83141I    | 4.80088 - 4.79415I                    | 6.07434 + 4.15713I  |
| b = -1.369280 + 0.248755I |                                       |                     |
| u = 0.743330 - 0.310940I  |                                       |                     |
| a = 2.16703 - 0.83141I    | 4.80088 + 4.79415I                    | 6.07434 - 4.15713I  |
| b = -1.369280 - 0.248755I |                                       |                     |
| u = 0.491299 + 1.104420I  |                                       |                     |
| a = 0.51919 - 2.24490I    | 0.50012 + 4.58916I                    | 0                   |
| b = -1.281970 - 0.243617I |                                       |                     |
| u = 0.491299 - 1.104420I  |                                       |                     |
| a = 0.51919 + 2.24490I    | 0.50012 - 4.58916I                    | 0                   |
| b = -1.281970 + 0.243617I |                                       |                     |
| u = -0.278365 + 0.729460I |                                       |                     |
| a = 0.896209 - 1.073100I  | -1.99309 - 1.19360I                   | -4.63700 - 2.51647I |
| b = -0.259021 - 0.390087I |                                       |                     |
| u = -0.278365 - 0.729460I |                                       |                     |
| a = 0.896209 + 1.073100I  | -1.99309 + 1.19360I                   | -4.63700 + 2.51647I |
| b = -0.259021 + 0.390087I |                                       |                     |

| Solutions to $I_1^u$                                          | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape            |
|---------------------------------------------------------------|---------------------------------------|-----------------------|
| u = -0.502022 + 1.112160I                                     |                                       |                       |
| a = 0.985384 + 0.850050I                                      | -2.59517 - 6.04162I                   | 0                     |
| b = -0.199636 + 0.712351I                                     |                                       |                       |
| u = -0.502022 - 1.112160I                                     |                                       |                       |
| a = 0.985384 - 0.850050I                                      | -2.59517 + 6.04162I                   | 0                     |
| b = -0.199636 - 0.712351I                                     |                                       |                       |
| u = 0.764797 + 0.121262I                                      |                                       |                       |
| a = 1.42719 + 0.09783I                                        | -3.86656 - 0.41270I                   | -0.197348 - 0.929430I |
| b = -0.889806 - 0.402045I                                     |                                       |                       |
| u = 0.764797 - 0.121262I                                      |                                       |                       |
| a = 1.42719 - 0.09783I                                        | -3.86656 + 0.41270I                   | -0.197348 + 0.929430I |
| b = -0.889806 + 0.402045I                                     |                                       |                       |
| u = 0.218016 + 1.217340I                                      |                                       |                       |
| a = 0.398270 + 0.377014I                                      | -5.76926 - 5.58643I                   | 0                     |
| $\frac{b = -1.357810 + 0.368437I}{u = 0.218016 - 1.217340I}$  |                                       |                       |
|                                                               | F 70000 . F F00407                    |                       |
| a = 0.398270 - 0.377014I                                      | -5.76926 + 5.58643I                   | 0                     |
| $\frac{b = -1.357810 - 0.368437I}{u = -0.287537 + 1.214310I}$ |                                       |                       |
| •                                                             | 10 50000 + 1 000117                   |                       |
| a = 0.204967 + 0.561724I                                      | -10.53930 + 1.20311I                  | 0                     |
| b = 0.159869 + 0.851956I $u = -0.287537 - 1.214310I$          |                                       |                       |
|                                                               | 10 50000 1 000117                     |                       |
| a = 0.204967 - 0.561724I                                      | -10.53930 - 1.20311I                  | 0                     |
| b = 0.159869 - 0.851956I $u = 0.364658 + 1.197690I$           |                                       |                       |
|                                                               | 7 01047 + 9 465461                    | 0                     |
| a = -0.622424 + 1.025440I                                     | -7.81847 + 3.46546I                   | 0                     |
| b = 1.042020 + 0.460884I $u = 0.364658 - 1.197690I$           |                                       |                       |
|                                                               | 7 01047 2 465461                      | 0                     |
| a = -0.622424 - 1.025440I                                     | -7.81847 - 3.46546I                   | U                     |
| b = 1.042020 - 0.460884I                                      |                                       |                       |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 0.553003 + 1.128780I  |                                       |                    |
| a = -1.31357 + 2.28219I   | 2.40647 + 9.70272I                    | 0                  |
| b = 1.377580 + 0.293281I  |                                       |                    |
| u = 0.553003 - 1.128780I  |                                       |                    |
| a = -1.31357 - 2.28219I   | 2.40647 - 9.70272I                    | 0                  |
| b = 1.377580 - 0.293281I  |                                       |                    |
| u = 0.501395 + 1.168450I  |                                       |                    |
| a = -0.103705 + 0.434801I | -6.88232 + 5.05308I                   | 0                  |
| b = 0.861654 - 0.536583I  |                                       |                    |
| u = 0.501395 - 1.168450I  |                                       |                    |
| a = -0.103705 - 0.434801I | -6.88232 - 5.05308I                   | 0                  |
| b = 0.861654 + 0.536583I  |                                       |                    |
| u = 0.442137 + 0.560010I  |                                       |                    |
| a = -0.812619 + 0.111492I | 0.730759 + 1.016190I                  | 5.20362 - 4.92767I |
| b = 0.366660 + 0.363322I  |                                       |                    |
| u = 0.442137 - 0.560010I  |                                       |                    |
| a = -0.812619 - 0.111492I | 0.730759 - 1.016190I                  | 5.20362 + 4.92767I |
| b = 0.366660 - 0.363322I  |                                       |                    |
| u = -0.554081 + 1.174850I |                                       |                    |
| a = -1.075370 - 0.533382I | -8.70986 - 9.86105I                   | 0                  |
| b = 0.284145 - 0.839978I  |                                       |                    |
| u = -0.554081 - 1.174850I |                                       |                    |
| a = -1.075370 + 0.533382I | -8.70986 + 9.86105I                   | 0                  |
| b = 0.284145 + 0.839978I  |                                       |                    |
| u = 0.589077 + 1.163720I  |                                       |                    |
| a = 1.67040 - 1.98061I    | -3.2473 + 14.1444I                    | 0                  |
| b = -1.43155 - 0.34420I   |                                       |                    |
| u = 0.589077 - 1.163720I  |                                       |                    |
| a = 1.67040 + 1.98061I    | -3.2473 - 14.1444I                    | 0                  |
| b = -1.43155 + 0.34420I   |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.604383 + 0.247576I |                                       |                    |
| a = -0.549400 + 0.155635I | -0.16557 + 1.66732I                   | 1.05437 - 4.59670I |
| b = 0.196990 + 0.593586I  |                                       |                    |
| u = -0.604383 - 0.247576I |                                       |                    |
| a = -0.549400 - 0.155635I | -0.16557 - 1.66732I                   | 1.05437 + 4.59670I |
| b = 0.196990 - 0.593586I  |                                       |                    |
| u = 0.558020 + 0.203304I  |                                       |                    |
| a = -1.14181 - 1.13686I   | 2.93700 - 0.37083I                    | 3.52953 - 0.41815I |
| b = 1.302810 - 0.128993I  |                                       |                    |
| u = 0.558020 - 0.203304I  |                                       |                    |
| a = -1.14181 + 1.13686I   | 2.93700 + 0.37083I                    | 3.52953 + 0.41815I |
| b = 1.302810 + 0.128993I  |                                       |                    |
| u = -0.302548 + 0.409621I |                                       |                    |
| a = -3.46567 - 2.43013I   | 3.41711 - 0.18501I                    | 2.17012 - 1.34687I |
| b = 1.45106 - 0.06557I    |                                       |                    |
| u = -0.302548 - 0.409621I |                                       |                    |
| a = -3.46567 + 2.43013I   | 3.41711 + 0.18501I                    | 2.17012 + 1.34687I |
| b = 1.45106 + 0.06557I    |                                       |                    |

II. 
$$I_2^u = \langle -au + 3b + a + 2u + 1, \ a^2 + 2au - 7u - 7, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}au - \frac{1}{3}a - \frac{2}{3}u - \frac{1}{3} \\ \frac{1}{3}au + \frac{2}{3}a - \frac{2}{3}u - \frac{1}{3} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}au + \frac{2}{3}a - \frac{2}{3}u - \frac{1}{3} \\ \frac{1}{3}au - \frac{1}{3}a - \frac{2}{3}u - \frac{1}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{2}{3}au + \frac{1}{3}a - \frac{7}{3}u - \frac{11}{3} \\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{3}au - \frac{2}{3}a + \frac{2}{3}u + \frac{1}{3} \\ -\frac{1}{3}au + \frac{1}{3}a + \frac{2}{3}u + \frac{1}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{3}au + \frac{2}{3}a - \frac{5}{3}u - \frac{1}{3} \\ \frac{1}{3}au - \frac{1}{3}a + \frac{1}{3}u + \frac{2}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{3}au + \frac{2}{3}a - \frac{5}{3}u - \frac{1}{3} \\ \frac{1}{3}au - \frac{1}{3}a + \frac{1}{3}u + \frac{2}{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 4

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_6$            | $(u^2 - u + 1)^2$              |
| $c_2, c_5$            | $(u^2+u+1)^2$                  |
| $c_3, c_4, c_8$ $c_9$ | $(u^2-2)^2$                    |
| $c_7$                 | $(u+1)^4$                      |
| $c_{10}, c_{11}$      | $(u-1)^4$                      |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing |
|-----------------------|------------------------------------|
| $c_1, c_2, c_5$ $c_6$ | $(y^2+y+1)^2$                      |
| $c_3, c_4, c_8$ $c_9$ | $(y-2)^4$                          |
| $c_7, c_{10}, c_{11}$ | $(y-1)^4$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.500000 + 0.866025I |                                       |                    |
| a = -1.62132 - 2.09077I   | 3.28987 - 2.02988I                    | 2.00000 + 3.46410I |
| b = 1.41421               |                                       |                    |
| u = -0.500000 + 0.866025I |                                       |                    |
| a = 2.62132 + 0.35872I    | 3.28987 - 2.02988I                    | 2.00000 + 3.46410I |
| b = -1.41421              |                                       |                    |
| u = -0.500000 - 0.866025I |                                       |                    |
| a = -1.62132 + 2.09077I   | 3.28987 + 2.02988I                    | 2.00000 - 3.46410I |
| b = 1.41421               |                                       |                    |
| u = -0.500000 - 0.866025I |                                       |                    |
| a = 2.62132 - 0.35872I    | 3.28987 + 2.02988I                    | 2.00000 - 3.46410I |
| b = -1.41421              |                                       |                    |

III. 
$$I_3^u = \langle b, a+u, u^2-u+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4u + 2

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_2, c_6$       | $u^2 + u + 1$                  |
| $c_3, c_4, c_8$ $c_9$ | $u^2$                          |
| <i>C</i> 5            | $u^2 - u + 1$                  |
| $c_7$                 | $(u-1)^2$                      |
| $c_{10}, c_{11}$      | $(u+1)^2$                      |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing |
|-----------------------|------------------------------------|
| $c_1, c_2, c_5$ $c_6$ | $y^2 + y + 1$                      |
| $c_3, c_4, c_8$ $c_9$ | $y^2$                              |
| $c_7, c_{10}, c_{11}$ | $(y-1)^2$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape    |
|---------------------------|---------------------------------------|---------------|
| u = 0.500000 + 0.866025I  |                                       |               |
| a = -0.500000 - 0.866025I | -1.64493 + 2.02988I                   | 0 3.46410I    |
| b = 0                     |                                       |               |
| u = 0.500000 - 0.866025I  |                                       |               |
| a = -0.500000 + 0.866025I | -1.64493 - 2.02988I                   | 0. + 3.46410I |
| b = 0                     |                                       |               |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                           |
|-----------------------|--------------------------------------------------------------------------|
| $c_1$                 | $((u^2 - u + 1)^2)(u^2 + u + 1)(u^{56} - 2u^{55} + \dots - 2u + 1)$      |
| $c_2$                 | $((u^2+u+1)^3)(u^{56}+28u^{55}+\cdots+4u+1)$                             |
| <i>c</i> <sub>3</sub> | $u^{2}(u^{2}-2)^{2}(u^{56}-3u^{55}+\cdots+276u+172)$                     |
| $c_4, c_8, c_9$       | $u^{2}(u^{2}-2)^{2}(u^{56}+u^{55}+\cdots+12u+4)$                         |
| <i>C</i> <sub>5</sub> | $(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{56} - 2u^{55} + \dots - 2u + 1)$  |
| <i>C</i> <sub>6</sub> | $((u^2 - u + 1)^2)(u^2 + u + 1)(u^{56} + 2u^{55} + \dots + 1554u + 481)$ |
|                       | $((u-1)^2)(u+1)^4(u^{56}+3u^{55}+\cdots-31u+7)$                          |
| $c_{10}, c_{11}$      | $((u-1)^4)(u+1)^2(u^{56}+3u^{55}+\cdots-31u+7)$                          |

#### V. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                |
|-----------------------|-------------------------------------------------------------------|
| $c_1,c_5$             | $((y^2 + y + 1)^3)(y^{56} + 28y^{55} + \dots + 4y + 1)$           |
| $c_2$                 | $((y^2+y+1)^3)(y^{56}+4y^{55}+\cdots+28y+1)$                      |
| <i>c</i> 3            | $y^{2}(y-2)^{4}(y^{56}+9y^{55}+\cdots+99952y+29584)$              |
| $c_4, c_8, c_9$       | $y^{2}(y-2)^{4}(y^{56}-51y^{55}+\cdots+48y+16)$                   |
| <i>c</i> <sub>6</sub> | $((y^2 + y + 1)^3)(y^{56} - 20y^{55} + \dots - 456284y + 231361)$ |
| $c_7, c_{10}, c_{11}$ | $((y-1)^6)(y^{56} - 53y^{55} + \dots + 747y + 49)$                |