Contents

	Preface	e		page xiii
1	Introd	luction		1
	1.1	The Pe	enguins and the Polar Bear	1
	1.2	So Wh	nat's New?	5
		1.2.1	A New Attitude to Quantum Theory: 'Features'	6
		1.2.2	A New Form of Mathematics: 'Diagrams'	9
		1.2.3	A New Foundation for Physics: 'Process Theories'	11
		1.2.4	A New Paradigm: 'Quantum Picturalism'	13
	1.3	Histor	ical Notes and References	15
2	Guide	to Rea	ding This Textbook	19
	2.1	Who A	Are You and What Do You Want?	19
	2.2	The M	lenu enu	20
		2.2.1	How Diagrams Evolve in This Book	20
		2.2.2	Hollywood-Style Trailer	22
		2.2.3	Some Intermediate Symbolic Pollution	24
		2.2.4	Summaries, Historical Notes, References, Epigraphs	25
		2.2.5	Starred Headings and Advanced Material Sections	25
	2.3	FAQ		25
3	Proce	sses as l	Diagrams	28
	3.1	From 1	Processes to Diagrams	29
		3.1.1	Processes as Boxes and Systems as Wires	29
		3.1.2	Process Theories	32
		3.1.3	Diagrams Are Mathematics	35
		3.1.4	Process Equations	38
		3.1.5	Diagram Substitution	41
	3.2	Circui	t Diagrams	44
		3.2.1	Parallel Composition	44
		3.2.2	Sequential Composition	45
		3.2.3	Two Equivalent Definitions of Circuits	46

vi Contents

		3.2.4	Diagrams Beat Algebra	50
	3.3	Functi	ons and Relations as Processes	52
		3.3.1	Sets	53
		3.3.2	Functions	54
		3.3.3	Relations	56
		3.3.4	Functions versus Relations	59
	3.4	Specia	al Processes	59
		3.4.1	States, Effects, and Numbers	59
		3.4.2	Saying the Impossible: Zero Diagrams	66
		3.4.3	Processes That Are Equal 'Up to a Number'	68
		3.4.4	Dirac Notation	69
	3.5	Summ	ary: What to Remember	72
	3.6	Advan	aced Material*	74
		3.6.1	Abstract Tensor Systems*	75
		3.6.2	Symmetric Monoidal Categories*	77
		3.6.3	General Diagrams versus Circuits*	80
	3.7	Histor	ical Notes and References	81
4	String	g Diagra	nms	83
	4.1	Cups,	Caps, and String Diagrams	84
		4.1.1	Separability	85
		4.1.2	Process–State Duality	88
		4.1.3	The Yanking Equations	90
		4.1.4	String Diagrams	92
	4.2	Transp	position and Trace	94
		4.2.1	The Transpose	95
		4.2.2	Transposition of Composite Systems	99
		4.2.3	The Trace and Partial Trace	101
	4.3	Reflec	ting Diagrams	103
		4.3.1	Adjoints	103
		4.3.2	Conjugates	108
		4.3.3	The Inner Product	113
		4.3.4	Unitarity	117
		4.3.5	Positivity	118
		4.3.6	⊗-Positivity	120
		4.3.7	Projectors	122
	4.4	Quant	um Features from String Diagrams	125
		4.4.1	A No-Go Theorem for Universal Separability	125
		4.4.2	Two No-Go Theorems for Cloning	129
		4.4.3	As If time Flows Backwards	134

			Contents	vii
		4.4.4	Teleportation	137
	4.5	Summ	nary: What to Remember	141
	4.6		nced Material*	145
		4.6.1	String Diagrams in Abstract Tensor Systems*	146
		4.6.2	Dual Types and Self-Duality*	146
		4.6.3	Dagger Compact Closed Categories*	150
	4.7	Histor	ical Notes and References	152
5	Hilbe	154		
	5.1	Bases	and Matrices	156
		5.1.1	Basis for a Type	156
		5.1.2	Matrix of a Process	162
		5.1.3	Sums of Processes	167
		5.1.4	Processes from Matrices	172
		5.1.5	Matrices of Isometries and Unitaries	177
		5.1.6	Matrices of Self-Adjoint and Positive Processes	182
		5.1.7	Traces of Matrices	185
	5.2	Matrix	x Calculus	187
		5.2.1	Sequential Composition of Matrices	187
		5.2.2	Parallel Composition of Matrices	188
		5.2.3	Matrix Form of Cups and Caps	194
		5.2.4	String Diagrams of Matrices	197
		5.2.5	Matrices as Process Theories	198
	5.3	Hilber	rt Spaces	200
		5.3.1	Linear Maps and Hilbert Spaces from Diagrams	200
		5.3.2	Positivity from Conjugation	203
		5.3.3	Why Mathematicians Love Complex Numbers	204
		5.3.4	Classical Logic Gates as Linear Maps	210
		5.3.5	The <i>X</i> -Basis and the Hadamard Linear Map	213
		5.3.6	Bell Basis and Bell Maps	218
	5.4	Hilber	rt Spaces versus Diagrams	222
		5.4.1	String Diagrams Are Complete for Linear Maps	223
		5.4.2	The Set-Theoretic Definition of Hilbert Spaces	226
	5.5		nary: What to Remember	233
	5.6	Advan	nced Material*	238
		5.6.1	Beyond Finite Dimensions*	238

Equivalence of Symmetric Monoidal Categories*

240

242

243

249

Categories with Sums and Bases*

Sums in Knot Theory*

Historical Notes and References

5.6.2

5.6.3

5.6.4

5.7

viii Contents

6	Quai	ntum Pro	cesses	251
	6.1	Pure Quantum Maps from Doubling		253
		6.1.1	Doubling Generates Probabilities	253
		6.1.2	Doubling Eliminates Global Phases	257
		6.1.3	The Process Theory of Pure Quantum Maps	260
		6.1.4	Things Preserved by Doubling	265
		6.1.5	Things Not Preserved by Doubling	270
	6.2	Quant	um Maps from Discarding	274
		6.2.1	Discarding	275
		6.2.2	Impurity	279
		6.2.3	Weight and Causality for Quantum States	282
		6.2.4	The Process Theory of Quantum Maps	287
		6.2.5	Causality for Quantum Maps	292
		6.2.6	Isometry and Unitarity from Causality	294
		6.2.7	Kraus Decomposition and Mixing	298
		6.2.8	The No-Broadcasting Theorem	305
	6.3	Relativ	vity in Process Theories	309
		6.3.1	Causal Structure	309
		6.3.2	Causality Implies Non-signalling	314
		6.3.3	Causality and Covariance	315
	6.4	Quant	um Processes	317
		6.4.1	Non-deterministic Quantum Processes	318
		6.4.2	Non-deterministic Realisation of All Quantum Maps	322
		6.4.3	Purification of Quantum Processes	324
		6.4.4	Teleportation Needs Classical Communication	327
		6.4.5	Controlled Processes	329
		6.4.6	Quantum Teleportation in Detail	331
	6.5	Summ	nary: What to Remember	334
	6.6	Advan	nced Material*	337
		6.6.1	Doubling General Process Theories*	338
		6.6.2	Axiomatizing Doubling*	339
		6.6.3	And Now for Something Completely Different*	342
	6.7	Histor	ical Notes and References	343
7	Quai	ntum Me	asurement	345
	7.1	ONB 1	Measurements	347
		7.1.1	A Dodo's Introduction to Measurement Devices	347
		7.1.2	Demolition ONB Measurements	350
		7.1.3	Non-demolition ONB Measurements	355
		7.1.4	Superposition and Interference	357
		7.1.5	The Next Best Thing to Observation	360

Contents	ix

	7.2	Measu	rement Dynamics and Quantum Protocols	361	
		7.2.1	Measurement-Induced Dynamics I: Backaction	362	
		7.2.2	Example: Gate Teleportation	365	
		7.2.3	Measurement-Induced Dynamics II: Collapse	366	
		7.2.4	Example: Entanglement Swapping	369	
	7.3	More	General Species of Measurement	371	
		7.3.1	Von Neumann Measurements	371	
		7.3.2	Von Neumann's Quantum Formalism	377	
		7.3.3	POVM Measurements	380	
		7.3.4	Naimark and Ozawa Dilation	383	
	7.4	Tomog	graphy	385	
		7.4.1	State Tomography	385	
		7.4.2	Informationally Complete Measurements	388	
		7.4.3	Local Tomography = Process Tomography	390	
	7.5	Summ	nary: What to Remember	392	
	7.6	Advan	nced Material*	396	
		7.6.1	Do Quantum Measurements Even Exist?*	396	
		7.6.2	Projectors and Quantum Logic*	399	
		7.6.3	Failure of Local Tomography*	401	
	7.7	Histor	rical Notes and References	402	
8	Pictu	Picturing Classical-Quantum Processes			
	8.1	Classic	cal Systems as Wires	409	
		8.1.1	Double versus Single Wires	410	
		8.1.2	Example: Dense Coding	413	
		8.1.3	Measurement and Encoding	415	
		8.1.4	Classical-Quantum Maps	416	
		8.1.5	Deleting and Causality	421	
	8.2	Classic	cal Maps from Spiders	423	
		8.2.1	Classical Maps	424	
		8.2.2	Copying and Deleting	427	
		8.2.3	Spiders	437	
		8.2.4	If It behaves like a Spider It Is One	444	
		8.2.5	All Linear Maps as Spiders + Isometries	446	
		8.2.6	Spider Diagrams and Completeness	451	
	8.3	Quant	um Maps from Spiders	453	
		8.3.1	Measuring and Encoding as Spiders	454	
		8.3.2	Decoherence	459	
		8.3.3	Classical, Quantum, and Bastard Spiders	463	
		8.3.4	Mixing with Spiders	469	
		8.3.5	Entanglement for Impure States	472	

x Contents

	8.4	Measu	rements and Protocols with Spiders	476
		8.4.1	ONB Measurements	476
		8.4.2	Controlled Unitaries	479
		8.4.3	Teleportation	482
		8.4.4		485
		8.4.5	Entanglement Swapping	486
		8.4.6	Von Neumann Measurements	488
		8.4.7	POVMs and Naimark Dilation	490
	8.5	Summ	ary: What to Remember	492
	8.6	Advan	ced Material*	498
		8.6.1	Spiders Are Frobenius Algebras*	498
		8.6.2	Non-commutative Spiders*	502
		8.6.3	Hairy Spiders*	505
		8.6.4	Spiders as Words*	507
	8.7	Histor	ical Notes and References	507
9	Pictu	ring Pha	ses and Complementarity	510
	9.1	Decora	ated Spiders	512
		9.1.1	Unbiasedness and Phase States	512
		9.1.2	Phase Spiders	517
		9.1.3	Phase Spider Fusion	519
		9.1.4	The Phase Group	522
		9.1.5	Phase Gates	524
	9.2	Multic	coloured Spiders	529
		9.2.1	Complementary Spiders	529
		9.2.2	Complementarity and Unbiasedness	535
		9.2.3	The CNOT-Gate from Complementarity	540
		9.2.4	'Colours' of Classical Data	543
		9.2.5	Complementary Measurements	545
		9.2.6	Quantum Key Distribution	549
		9.2.7	Teleportation with Complementary Measurements	552
	9.3	Strong	Complementarity	557
		9.3.1	The Missing Rules	558
		9.3.2	Monogamy of Strong Complementarity	561
		9.3.3	Faces of Strong Complementarity	562
		9.3.4	The Classical Subgroup	567
		9.3.5	Parity Maps from Spiders	575
		9.3.6	Classifying Strong Complementarity	578
	9.4	ZX-Ca	alculus	581
		9.4.1	ZX-Diagrams Are Universal	582
		9.4.2	ZX-Calculus for Clifford Diagrams	586
		9.4.3	ZX for Dodos: Just Diagrams, Nothing Else	591

Contents	V 1
Contents	Λ

		9.4.4	ZX for Pros: Build Your Own Calculus	596
		9.4.5	ZX for the God(esse)s: Completeness	601
		9.4.6	Where We Stand with Full ZX-Calculus	608
	9.5	Summa	ary: What to Remember	610
	9.6	Advano	ced Material*	616
		9.6.1	Strongly Complementary Spiders Are Hopf Algebras*	616
		9.6.2	Strong Complementarity and Normal Forms*	618
	9.7	Histori	cal Notes and References	622
10			ory: The Full Picture	624
	10.1		agrams	625
			Circuit Diagrams	625
			String Diagrams	627
			Doubled Diagrams	629
			Spider Diagrams	631
			ZX-Diagrams	634
	10.2		ocesses	636
			Causality	636
			Process Decomposition and No-Broadcasting	637
			1	639
	10.3	The La		645
			Complementarity	645
			Strong Complementarity	648
	10.4		ZX-Calculus	650
	10.4	Histori	cal Notes and References	653
11	Quan	tum Fou	ndations	655
	11.1	Quantu	ım Non-locality	655
		11.1.1	Refinements of Quantum Theory	656
			GHZ-Mermin Scenarios	658
			Drawing a Contradiction	660
	11.2	_	ım-like Process Theories	661
			Complementarity in relations	662
			Spekkens' Toy Quantum Theory	663
			Phases in <i>spek</i>	668
			ZX-Calculus for <i>spek</i>	671
			Non-locality in <i>spek</i> ?	674
	11.3		ary: What to Remember	676
	11.4	Histori	cal Notes and References	677
12	Quan	tum Con	nputation	679
	12.1	The Ci	rcuit Model	680
		12.1.1	Quantum Computing as ZX-Diagrams	681

xii Contents

		12.1.2	Building Quantum Gates as ZX-Diagrams	684
		12.1.3	Circuit Universality	691
	12.2		ım Algorithms	698
		12.2.1	A Quantum Oracle's (False?) Magic	698
		12.2.2		702
		12.2.3	Quantum Search	707
		12.2.4	The Hidden Subgroup Problem	712
	12.3	Measur	rement-Based Quantum Computation	719
		12.3.1	Graph States and Cluster States	721
		12.3.2	Measuring Graph States	722
		12.3.3	Feed-Forward	724
		12.3.4	Feed-Forward with Classical Wires	727
		12.3.5	Universality	730
	12.4	Summa	ary: What to Remember	734
	12.5	Histori	cal Notes and References	735
13	Quan	737		
	13.1	Resour	rce Theories	738
		13.1.1	Free Processes	739
		13.1.2	Comparing Resources	741
		13.1.3	Measuring Resources	744
	13.2	Purity 7	Theory	746
		13.2.1	Comparing Purity	747
		13.2.2	Measuring (Im)purity	756
	13.3	Entang	lement Theory	757
		13.3.1	LOCC Entanglement	757
		13.3.2	SLOCC Entanglement	770
		13.3.3	Exploding Spiders	776
		13.3.4	Back to Basics: Arithmetic	781
	13.4	Summa	ary: What to Remember	784
	13.5	Histori	cal Notes and References	788
14	Quan	tomatic		790
	14.1	Taking	Quantomatic for a Spin	791
	14.2	2 !-Boxes: Replacing the 'Dot, Dot, Dot'		797
	14.3	3 Synthesising Physical Theories		800
	14.4	Histori	cal Notes and References	803
	Appen	dix Son	ne Notations	804
	References			806
	Index			822