# Problem Solving with AI Techniques Refresher on Probability Theory

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018



#### For more, see VE401 and VE501

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
- 4 Some Notions From Information Theory

# Why is there Uncertainty?

- Knowledge is generally uncertain because
  - Full vs partial/non observable world
  - Observation comes from imperfect sensors
  - Data often imprecise, missing or contradictory
  - World is stochastic?
- Uncertainty can be handled with probability distribution
- Other uncertainty models, e.g., possibility theory, belief functions



## Why Use Probability?

- Cox Theorem
  - If some "natural" postulates are satisfied, then belief is represented by probability

# Why Use Probability?

- Cox Theorem
  - If some "natural" postulates are satisfied, then belief is represented by probability
- Dutch Book Argument: If rules of probability not respected, there
  exist a set of bets that guarantees to lose money (de Finetti).
  Example:

| Proposition | Belief |  |
|-------------|--------|--|
| а           | .4     |  |
| Ь           | .3     |  |
| $a \lor b$  | .8     |  |

# Why Use Probability?

- Cox Theorem
  - If some "natural" postulates are satisfied, then belief is represented by probability
- Dutch Book Argument: If rules of probability not respected, there
  exist a set of bets that guarantees to lose money (de Finetti).
  Example:

| Proposition | Belief | Bet |                  | Stakes |
|-------------|--------|-----|------------------|--------|
| а           | .4     | а   |                  | 4 to 6 |
| Ь           | .3     | b   | )                | 3 to 7 |
| $a \lor b$  | .8     | _   | $\neg(a \lor b)$ | 2 to 8 |

- Empirical Justification
  - Many success stories in gambling, finance, engineering, machine learning...

## Interpretation of Probability

- Objective Probability
  - probability = objective property of objects like mass

- Frequentist Interpretation
  - probability = limit of observed frequences

- Subjective Interpretation
  - probability = beliefs of an agent

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
- 4 Some Notions From Information Theory

• Sample space/domain  $\Omega$ Sample point/possible world/atomic event  $\omega \in \Omega$ Event  $A \subseteq \Omega$ e.g., Roll of 6-face die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ 

- Sample space/domain  $\Omega$ Sample point/possible world/atomic event  $\omega \in \Omega$ Event  $A \subseteq \Omega$ 
  - e.g., Roll of 6-face die:  $\Omega = \{1,2,3,4,5,6\}$
- Probability  $\mathbb{P}: A\subseteq \Omega\mapsto [0,1]$ e.g.,  $\mathbb{P}(\{1\})=\frac{1}{6}$ ,  $\mathbb{P}(\{2,4\})=\frac{1}{3}$ ,  $\mathbb{P}(\{3,5,6\})=\frac{1}{2}$

- Sample space/domain  $\Omega$ Sample point/possible world/atomic event  $\omega \in \Omega$ Event  $A \subseteq \Omega$ 
  - e.g., Roll of 6-face die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Probability  $\mathbb{P}: A \subseteq \Omega \mapsto [0,1]$ e.g.,  $\mathbb{P}(\{1\}) = \frac{1}{6}$ ,  $\mathbb{P}(\{2,4\}) = \frac{1}{3}$ ,  $\mathbb{P}(\{3,5,6\}) = \frac{1}{2}$
- Kolmogorov Axioms:  $\forall A, B \subseteq \Omega$ 
  - Nonnegativity  $\mathbb{P}(A) \geq 0$
  - Normalization  $\mathbb{P}(\Omega) = 1$
  - Additivity  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$  if  $A \cap B = \{ \}$

- Sample space/domain  $\Omega$ Sample point/possible world/atomic event  $\omega \in \Omega$ Event  $A \subseteq \Omega$ 
  - e.g., Roll of 6-face die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Probability  $\mathbb{P}: A \subseteq \Omega \mapsto [0,1]$ e.g.,  $\mathbb{P}(\{1\}) = \frac{1}{6}$ ,  $\mathbb{P}(\{2,4\}) = \frac{1}{3}$ ,  $\mathbb{P}(\{3,5,6\}) = \frac{1}{2}$
- Kolmogorov Axioms:  $\forall A, B \subseteq \Omega$ 
  - Nonnegativity  $\mathbb{P}(A) \geq 0$
  - Normalization  $\mathbb{P}(\Omega) = 1$
  - Additivity  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$  if  $A \cap B = \{ \}$
- Implications
  - $0 \leq \mathbb{P}(A) \leq 1$
  - $\mathbb{P}(\{\}) = 0$
  - $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
  - $\mathbb{P}(\Omega \backslash A) = 1 \mathbb{P}(A)$
  - $\mathbb{P}(\cap_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$  if  $A_i$ 's are disjoint

• Random variable X: measurable function from  $\Omega$  to some measurable space, e.g.,  $\mathbb{R}$  or  $\{true, false\}$  e.g.,  $X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \\ x\mapsto x \end{array} \right.$ ,  $Odd(\omega)$ 

• Random variable X: measurable function from  $\Omega$  to some measurable space, e.g.,  $\mathbb R$  or  $\{true, false\}$ 

e.g., 
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
,  $Odd(\omega)$ 

• For any random variable X,  $\mathbb{P}$  induces a probability distribution, denoted  $\mathbb{P}(X)$ 

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g., 
$$\mathbb{P}(\textit{Odd} = \textit{true}) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

• Random variable X: measurable function from  $\Omega$  to some measurable space, e.g.,  $\mathbb{R}$  or  $\{true, false\}$ 

e.g., 
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
,  $Odd(\omega)$ 

• For any random variable X,  $\mathbb{P}$  induces a probability distribution, denoted  $\mathbb{P}(X)$ 

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g., 
$$\mathbb{P}(Odd = true) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

• For finite space, think of  $\mathbb{P}(X)$  as a table

• Random variable X: measurable function from  $\Omega$  to some measurable space, e.g.,  $\mathbb{R}$  or  $\{true, false\}$ 

e.g., 
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
,  $Odd(\omega)$ 

• For any random variable X,  $\mathbb{P}$  induces a probability distribution, denoted  $\mathbb{P}(X)$ 

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g., 
$$\mathbb{P}(\textit{Odd} = \textit{true}) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

- For finite space, think of  $\mathbb{P}(X)$  as a table
- Notation  $\sum_{X} \mathbb{P}(X) = \sum_{X} \mathbb{P}(X = X)$

#### Assume we have two random variables X and Y

• Joint  $\mathbb{P}(X, Y)$ 



#### Assume we have two random variables X and Y

- Joint  $\mathbb{P}(X, Y)$
- Marginal  $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$



#### Assume we have two random variables X and Y

- Joint  $\mathbb{P}(X, Y)$
- Marginal  $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$
- Conditional  $\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(Y)}$ What is the dimension of  $\mathbb{P}(X \mid Y)$ ?

What is the value of  $\sum_{X} \mathbb{P}(X \mid Y)$ ?



#### Assume we have two random variables X and Y

- Joint  $\mathbb{P}(X, Y)$
- Marginal  $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$
- Conditional  $\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(Y)}$ What is the dimension of  $\mathbb{P}(X \mid Y)$ ? What is the value of  $\sum_{X} \mathbb{P}(X \mid Y)$ ?
- X is independent of Y iff  $\mathbb{P}(X \mid Y) = \mathbb{P}(X)$ What does it mean for  $\mathbb{P}(X \mid Y)$  and  $\mathbb{P}(Y \mid X)$ ?



### Important Rules

Product rule

$$\mathbb{P}(X, Y) = \mathbb{P}(X \mid Y)\mathbb{P}(Y) = \mathbb{P}(Y \mid X)\mathbb{P}(X)$$

Bayes' rule

$$\underline{\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(Y \mid X)\mathbb{P}(X)}{\mathbb{P}(Y)}}$$

 $\mathbb{P}(X \mid Y)$  posterior  $\mathbb{P}(X)$  prior

|X| likelihood  $\mathbb{P}(Y)$  normalization

Extended form

$$\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(Y \mid X)\mathbb{P}(X)}{\sum_{X} \mathbb{P}(Y \mid X)\mathbb{P}(X)}$$

#### Joint Distribution: General Case

#### Assume we have n random variables $X_{1:n}$

- Joint  $\mathbb{P}(X_{1:n})$
- Marginal  $\mathbb{P}(X_1) = \sum_{X_{2:n}} \mathbb{P}(X_{1:n})$
- Conditional  $\mathbb{P}(X_1 \mid X_{2:n}) = \frac{\mathbb{P}(X_{1:n})}{\mathbb{P}(X_{2:n})}$
- X is independent of Y given Z iff  $\mathbb{P}(X \mid Y, Z) = \mathbb{P}(X \mid Z)$



### Expectation

- Discrete case:  $\mathbb{E}[X] = \sum_{x} x \mathbb{P}(X = x)$
- Continuous case:  $\mathbb{E}[X] = \int_{X} xp(x)dx$
- More generally,  $\mathbb{E}[f(X)]$  for some function f
- $\mathbb{E}[X]$  if  $X \in \mathbb{R}^n$
- Operator E is linear:
  - $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$
  - $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

### Variance

- $\mathbb{V}[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$
- Covariance  $cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$
- If X, Y are independent, then cov(X, Y) = 0. But opposite generally not true!
- Useful identities:
  - $\mathbb{V}(\lambda X) = \lambda^2 V(X)$
  - $\mathbb{V}(X + Y) = \mathbb{V}(X) + 2cov(X, Y) + \mathbb{V}(Y)$
- If  $\mathbf{X} \in \mathbb{R}^n$ ,  $\mathbb{V}[\mathbf{X}] = \mathbb{E}[(\mathbf{X} E[\mathbf{X}])(\mathbf{X} E[\mathbf{X}])^{\intercal}]$

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
  - Discrete case
  - Continuous case
- Some Notions From Information Theory

#### Bernoulli & Binomial Distribution

• Random variable  $X \in \{0,1\}$  follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

### Bernoulli & Binomial Distribution

• Random variable  $X \in \{0,1\}$  follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

• Dataset of i.i.d. random variables  $D = (X_1, X_2, ..., X_n)$  where  $X_i \sim Bern(p)$ 

$$\mathbb{P}(D = (x_1, \ldots, x_n) | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\operatorname{arg\,max}_{p} \mathbb{P}(D \mid p) = \operatorname{arg\,max}_{p} \sum_{i=1}^{n} x_{i} \ln p + (1 - x_{i}) \ln(1 - p) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

#### Bernoulli & Binomial Distribution

• Random variable  $X \in \{0,1\}$  follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

• Dataset of i.i.d. random variables  $D = (X_1, X_2, ..., X_n)$  where  $X_i \sim Bern(p)$ 

$$\mathbb{P}(D = (x_1, \ldots, x_n) | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\operatorname{arg\,max}_{p} \mathbb{P}(D \mid p) = \operatorname{arg\,max}_{p} \sum_{i=1}^{n} x_{i} \ln p + (1 - x_{i}) \ln(1 - p) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

• Random variable  $M = \sum_{i=1}^{n} X_i \sim \text{Binomial distribution } Bin(n, p)$ 

$$\mathbb{P}(M = m \mid n, p) = \binom{n}{m} p^m (1-p)^{n-m}, \quad \binom{n}{m} = \frac{n!}{(n-m)!m!}$$

## How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution  $Beta(\alpha, \beta)$  with  $\alpha, \beta > 0 =$  distribution over [0, 1]

$$Beta(p \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$
 with mean  $\frac{\alpha}{\alpha + \beta}$ 

### How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution  $Beta(\alpha, \beta)$  with  $\alpha, \beta > 0 =$  distribution over [0, 1]

$$\mathit{Beta}(p \,|\, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$
 with mean  $\frac{\alpha}{\alpha + \beta}$ 

• It can be used to represent belief about unknown p:  $\mathbb{P}(p) = Beta(p \mid \alpha, \beta)$ 

## How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution  $Beta(\alpha, \beta)$  with  $\alpha, \beta > 0 =$  distribution over [0, 1]

$$\mathit{Beta}(p \,|\, lpha, eta) = rac{1}{B(lpha, eta)} p^{lpha-1} (1-p)^{eta-1} \quad ext{with mean } rac{lpha}{lpha+eta}$$

- It can be used to represent belief about unknown p:  $\mathbb{P}(p) = Beta(p \mid \alpha, \beta)$
- After observing  $D = (x_1, ..., x_n)$ , with counts  $a = \sum_i x_i$  and  $b = \sum_i (1 x_i)$ , the belief about p can be updated:

$$\mathbb{P}(p \mid D) = \frac{\mathbb{P}(D \mid p)\mathbb{P}(p)}{\mathbb{P}(D)} \propto Bin(D \mid p)Beta(p \mid \alpha, \beta)$$
$$\propto p^{a}(1-p)^{b}p^{\alpha-1}(1-p)^{\beta-1} = p^{\alpha-1+a}(1-p)^{\beta-1+b}$$
$$= Beta(\alpha + a, \beta + b)$$

## Examples of Beta Distribution



Paul Weng (UM-SJTU JI)

### Categorical & Multinomial Distribution

• Random variable  $X \in \{1, 2, \dots K\}$  follows a categorical distribution  $Cat(\boldsymbol{p})$  with  $\boldsymbol{p} = (p_1, \dots, p_K)$  and  $\sum_k p_k = 1$ 

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

### Categorical & Multinomial Distribution

• Random variable  $X \in \{1, 2, \dots K\}$  follows a categorical distribution  $Cat(\boldsymbol{p})$  with  $\boldsymbol{p} = (p_1, \dots, p_K)$  and  $\sum_k p_k = 1$ 

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

• Dataset of i.i.d. random variables  $D = (X_1, \dots, X_n)$  with  $X_i \sim Cat(\boldsymbol{p})$ 

$$\mathbb{P}(D = (x_1, \dots, x_n) | \boldsymbol{p}) = \prod_{i=1}^n p_{x_i} = \prod_{i=1}^n \prod_{k=1}^K p_k^{[x_i = k]} = \prod_{k=1}^K p_k^{m_k}$$

where  $m_k = \sum_{i=1}^{n} [x_i = k]$ .

$$\operatorname{arg\,max}_{\boldsymbol{p}}\mathbb{P}(D \mid \boldsymbol{p}) = \frac{1}{n}(m_1, m_2, \dots, m_K)$$

### Categorical & Multinomial Distribution

• Random variable  $X \in \{1, 2, \dots K\}$  follows a categorical distribution  $Cat(\boldsymbol{p})$  with  $\boldsymbol{p} = (p_1, \dots, p_K)$  and  $\sum_k p_k = 1$ 

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

• Dataset of i.i.d. random variables  $D = (X_1, \dots, X_n)$  with  $X_i \sim Cat(\boldsymbol{p})$ 

$$\mathbb{P}(D = (x_1, \dots, x_n) | \boldsymbol{p}) = \prod_{i=1}^n p_{x_i} = \prod_{i=1}^n \prod_{k=1}^K p_k^{[x_i = k]} = \prod_{k=1}^K p_k^{m_k}$$

where  $m_k = \sum_{i=1}^{n} [x_i = k]$ .

$$\operatorname{arg\,max}_{\boldsymbol{p}}\mathbb{P}(D \mid \boldsymbol{p}) = \frac{1}{n}(m_1, m_2, \dots, m_K)$$

• Random variable  $\mathbf{M} = (\sum_{i=1}^{n} [X_i = k])_{k=1,...K}$  follows a multinomial distribution  $Mult(n, \mathbf{p})$ 

$$\mathbb{P}(\boldsymbol{M}=(m_1,\ldots,m_K)\,|\,n,\boldsymbol{p})\propto\prod_{k=1}^K p_k^{m_k}$$

# How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution  $Dir(\alpha)$  with  $\alpha_k > 0$  = distribution over (K-1)-simplex:  $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$ 

$$\mathit{Dir}(oldsymbol{p}\,|\,lpha) \propto \prod_{k=1}^{\mathcal{K}} p_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,\mathcal{K}}$$

### How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution  $Dir(\alpha)$  with  $\alpha_k > 0 =$  distribution over (K-1)-simplex:  $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$ 

$$\mathit{Dir}(oldsymbol{p}\,|\, lpha) \propto \prod_{k=1}^K oldsymbol{p}_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,K}$$

• It can be used to represent belief about unknown p:

$$\mathbb{P}(\mathbf{p}) = Dir(\mathbf{p} \mid \alpha)$$

# How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution  $Dir(\alpha)$  with  $\alpha_k > 0 =$  distribution over (K-1)-simplex:  $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$ 

$$\mathit{Dir}(oldsymbol{p}\,|\, lpha) \propto \prod_{k=1}^{K} p_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,K}$$

- It can be used to represent belief about unknown p:  $\mathbb{P}(\mathbf{p}) = Dir(\mathbf{p} \mid \alpha)$
- After observing  $D = \{x_1, \dots, x_n\}$ , with counts  $a_k = \sum_i [x_i = k]$ , the belief about p can be updated:

$$\mathbb{P}(\boldsymbol{\rho} \mid D) = \frac{\mathbb{P}(D \mid \boldsymbol{\rho})\mathbb{P}(\boldsymbol{\rho})}{\mathbb{P}(D)} \propto Mult(D \mid \boldsymbol{\rho})Dir(\boldsymbol{\rho} \mid \alpha)$$

$$\propto \prod_{k=1}^{K} p_k^{a_k} \prod_{k=1}^{K} p_k^{\alpha_k - 1} = \prod_{k=1}^{K} p_k^{\alpha_k - 1 + a_k}$$

$$= Dir(\boldsymbol{\alpha} + \boldsymbol{a})$$

19/30

Paul Weng (UM-SJTU JI) Probability VE593, Fall 2018

### Examples of Dirichlet Distribution





#### Other Discrete Distributions

- Uniform discrete distribution
- Geometric distribution: How many Bernoulli trials before a success?
- Negative binomial distribution: How many successes in a sequence of Bernoulli trials with a fixed number of failures?
- Poisson distribution: How many successes in a duration of time if they occur at known constant rate?

- Introduction of Probability
- Pormal Definitions
- Family of Probability of Distributions
  - Discrete case
  - Continuous case
- Some Notions From Information Theory

#### Distributions over Continuous Domains

• Probability for  $X \in \mathbb{R}$  determined by probability density function  $p(x) \in [0, \infty)$ :

$$\mathbb{P}(X \in [a,b]) = \int_a^b \rho(x) dx \in [0,1]$$

Cumulative probability distribution:

$$F(y) = \mathbb{P}(X \le y) = \int_{-\infty}^{y} p(x) dx$$

• Note: for continuous probability distribution,  $\mathbb{P}(X = x) = 0$ 

# Gaussian (or Normal) Distribution

ullet on  $\mathbb{R}$ :

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$



• on  $\mathbb{R}^n$ :

$$\mathcal{N}(oldsymbol{x} \,|\, oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{|2\pi oldsymbol{\Sigma}|^{1/2}} e^{-rac{1}{2}(oldsymbol{x} - oldsymbol{\mu})^\intercal oldsymbol{\Sigma}^{-1}(oldsymbol{x} - oldsymbol{\mu})}$$



### Why are Gaussian Distributions Important?

• Central limit theorem: Averages of n i.i.d random variables (with mean  $\mu$  and variance  $\sigma^2$ )  $\sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ 

 If only mean and variance are known, it is the distribution that maximizes entropy

It makes math simpler, e.g., weighted sum of independent Gaussian
 r.v.s is also Gaussian

#### Dirac Distribution

• Dirac distribution  $\delta(x) = 0$  except at x = 0 such that

$$\int \delta(x)dx = 1$$

- $\delta(x) = \frac{\delta}{\delta x} H(x)$  where  $H(x) = [x \ge 0]$ , Heaviside step function
- Limit of  $\mathcal{N}(0, \frac{\sigma^2}{n})$  as  $n \to \infty$
- Can represent certainty



#### Other Continuous Distributions

- Beta and Dirichlet distributions
- Continuous uniform distribution over a compact set (e.g., interval)
- Exponential distribution: How long before an event happens if it occurs at some known rate?
- Logistic distribution: distribution whose CDF is the logistic function  $\frac{1}{1+e^{-\frac{X-\mu}{s}}}$
- $\chi^2$  distribution: distribution of sum of n squared Gaussian

#### For more, see VE550

- Introduction of Probability
- 2 Formal Definitions
- Family of Probability of Distributions
  - Discrete case
  - Continuous case
- 4 Some Notions From Information Theory

#### Entropy

- Neg-log of a distribution  $(-\log p(x))$  reflects something like "error":
  - neg-log of Gaussian ↔ squared error
  - neg-log of likelihood ↔ prediction error
- Term  $-\log p(x)$  is "optimal" coding length you should assign to symbol x. This will minimize the expected length of an encoding:

$$H(p) = \int_{X} p(x) (-\log p(x)) dx \ge 0$$

- Entropy  $H(X) = \mathbb{E}[-\log p(X)] =$  measure of uncertainty, or lack of information, we have about X
- Note: Uniform distribution has highest entropy and *Dirac* distribution has lowest entropy

### Relative Entropy or Kullback-Leibler Divergence

• Assume distribution q(x) used to decide on coding length of symbols drawn from p(x). Expected length of encoding is given by *cross-entropy*:

$$\int_{x} p(x) \big( -\log q(x) \big) dx \ge H(p)$$

Difference

$$D(p||q) = \int_{x} p(x) \left(\log \frac{p(x)}{q(x)}\right) dx \ge 0$$

is called relative entropy or Kullback-Leibler divergence

 Note: Although not a distance, it can be used to measure how different two distributions are