Messdaten und Hinweise zum Versuch Die Wärmepumpe

Wärmekapazität der Kupferschlangen: $m_k g_k = 750 J/K$

Fassungsvermögen der Wassereimer: m=4kg

Sobald der Kompressor eingeschaltet wird, werden die Temperaturen T_1 und T_2 , die Drücke p_1 und p_2 und die Kompressorleistung N an den Anzeigegeräten abgelesen. Damit die Zeitabstände beim Ablesen möglichst gleich sind, werden die Größen immer in derselben Reihenfolge notiert. Um die Drücke p_1 und p_2 zu erhalten, muss noch 1 bar auf die gemessenen Drücke p_1^* und p_2^* addiert werden. Für das Einlesen in andere Programme stehen die Messdaten zusätzlich in der Datei Waermepumpe.dat zur Verfügung. Die Messunsicherheit des digitalen Thermometers kann als $\Delta T = 0.1^{\circ}C$ angenommen werden.

Bem.:Die Drücke zu den Reservoiren 1 und 2 werden in der Anleitung zum Versuch mit p_a und p_b bezeichnet. Ich finde die Bezeichnung $p_1 = p_a$ und $p_2 = p_b$ nicht so Fehleranfällig bei der weiteren Berechnung. Deshalb verwende ich die anderen Bezeichnungen.

t [min]	T_1 [°C]	p_1^* [bar]	T_2 [°C]	p_2^* [bar]	N[W]
0	21.7	4.0	21.7	4.1	120
1	23.0	5.0	21.7	3.2	120
2	24.3	5.5	21.6	3.4	120
3	25.3	6.0	21.5	3.5	120
4	26.4	6.0	20.8	3.5	120
5	27.5	6.0	20.1	3.4	120
6	28.8	6.5	19.2	3.3	120
7	29.7	6.5	18.5	3.2	120
8	30.9	7.0	17.7	3.2	120
9	31.9	7.0	16.9	3.0	120
10	32.9	7.0	16.2	3.0	120
11	33.9	7.5	15.5	2.9	120
12	34.8	7.5	14.9	2.8	120
13	35.7	8.0	14.2	2.8	120
14	36.7	8.0	13.6	2.7	120
15	37.6	8.0	13.0	2.6	120
16	38.4	8.5	12.4	2.6	120
17	39.2	8.5	11.7	2.6	120
18	40.0	9.0	11.3	2.5	120
19	40.7	9.0	10.9	2.5	120
20	41.4	9.0	10.4	2.4	120
21	42.2	9.0	9.9	2.4	120
22	42.9	9.5	9.5	2.4	120
23	43.6	9.5	9.1	2.4	120
24	44.3	10.0	8.7	2.4	120
25	44.9	10.0	8.3	2.4	120
26	45.5	10.0	8.0	2.3	120
27	46.1	10.0	7.7	2.2	122
28	46.7	10.5	7.4	2.2	122
29	47.3	10.5	7.1	2.2	122
30	47.8	10.75	6.8	2.2	122
31	48.4	11.0	5.6	2.2	122
32	48.9	11.0	4.3	2.2	122
33	49.4	11.0	3.4	2.2	122
34	49.9	11.0	3.0	2.2	122
35	50.3	11.0	2.9	2.2	122

Für die Berechnung der realen Güteziffer ν_{real} wird der Differentialquotient $\frac{\Delta T_1}{\Delta t}$ benötigt. Dieser kann aus der Temperaturkurve gewonnen werden, in dem an verschiedenen Punkten die Steigung bestimmt wird, indem das Steigungsdreieck mit $\Delta t=120s$ ausgemessen wird. Eleganter ist es, an den Kurvenverlauf ein Polynom 2
ten Grades anzupassen und dieses Polynom zu differenzieren. Welche Auswertemethode sie verwenden ist Geschmackssache.