#### **RNN** - Basics

- RNN in PyTorch
- Simple Example
  - Input
  - Hidden State
  - Sequence Length
  - Batch Size

### RNN in PyTorch

```
rnn = torch.nn.RNN(input_size, hidden_size)
outputs, _status = rnn(input_data)
```



#### **Example: Input**

# 1-hot encoding
h = [1, 0, 0, 0]
e = [0, 1, 0, 0]
l = [0, 0, 1, 0]
o = [0, 0, 0, 1]

input\_size = 4

"hello"



### **Example: Hidden State**



# **Example: Hidden State**



# **Example: Sequence Length**



# **Example: Sequence Length**

h, e, I, I, o

$$egin{aligned} x_0 &= [1,0,0,0] \ x_1 &= [0,1,0,0] \ x_2 &= [0,0,1,0] \ x_3 &= [0,0,1,0] \ x_4 &= [0,0,0,1] \end{aligned}$$

**Automatically Calculated** 



input\_data
shape=(-,5,4)

### **Example: Batch Size**



**Automatically Calculated** 



#### **Example: Run**

```
import torch
import numpy as np
input size = 4
hidden size = 2
# 1-hot encoding
h = [1, 0, 0, 0]
e = [0, 1, 0, 0]
1 = [0, 0, 1, 0]
0 = [0, 0, 0, 1]
input_data_np = np.array([[h, e, 1, 1, o],
                          [e, o, 1, 1, 1],
                          [1, 1, e, e, 1]], dtype=np.float32)
# transform as torch tensor
input data = torch.Tensor(input data np)
rnn = torch.nn.RNN(input size, hidden size)
outputs, _status = rnn(input_data)
```

#### What's Next?

• Train RNN in PyTorch