

O objetivo deste tutorial é demonstrar como se configura e implementa a arquitetura cliente-servidor no SGBD MySQL. Além disso, iremos também abordar os seus tipos de dados e seus respectivos domínios.

Carlos Henrique Reis - 30415 Mateus Henrique Toledo - 34849 Victor Rodrigues da Silva - 31054

mysql>

<u>Instalação</u>

Para o funcionamento da Arquitetura Cliente-Servidor é necessária uma rede local configurada e funcionando corretamente, sendo que o servidor tem que possuir IP fixo. Desta forma iniciamos a configuração do servidor e posteriormente do(s) clientes(s).

Servidor

Ambiente utilizado: Ubuntu 14.04 LTS

1.1 Instalação do MySQL-Server:

Assim como a instalação de qualquer pacote é necessário atualizar os índices dos repositórios dos pacotes instalados, para que a instalação de um novo pacote ocorra sem problemas. Execute os comandos abaixo, para a instalação do pacote mysql-server e execute os *scripts* de inicialização de segurança e de banco de dados.

sudo apt-get update
sudo apt-get install mysql-server

Após o comando entre com a senha do root:

mysql>

1.2. Configuração do MySQL-Server:

O comando abaixo iniciará um questionário com algumas configurações básicas que devem ser realizadas (solicitará senha *root* do MySQL):

```
sudo mysql_secure_installation
```

Pressione "**Enter**" e, em seguida, realize as seguintes configurações:

```
Set root password? [Y/n] y
```

Após selecionar "y", o MySQL configurará uma nova senha para o usuário *root* do serviço. Caso não seja necessário, essa etapa pode ser ignorada (digitando N ao invés de Y). É possível optar por configurar os seguintes parâmetros: remover usuários anônimos, não permitir o *login* de *root* remotamente, remover banco de dados de teste e seu acesso e recarregar tabelas de privilégios agora.

```
Remove anonymous users? [Y/n] y
Disallow root login remotely? [Y/n] y
Remove test database and access to it? [Y/n] y
Reload privilege tables now? [Y/n] y
```

Se você estiver usando uma versão do MySQL anterior à 5.7.6, você deve inicializar o diretório de dados executando:

```
sudo mysql_install_db
```

Se você instalou a versão 5.7 em alguma distribuição Debian (Ubuntu, Mint, etc), como na primeira etapa, o diretório de dados foi inicializado automaticamente, então você não precisa realizar esta operação. Se você tentar executar o comando anterior de qualquer maneira, você verá algum erro.

1.3. Testando o MySQL:

Caso o MySQL esteja instalado, o mesmo, está executando automaticamente. Para testar a execução verifique seu status.

```
service mysql status
```

Você verá a saída a seguir:

mysql>

Se o MySQL não estiver em execução, você pode iniciá-lo com:

sudo service mysql start

A execução pode ser encerrada com:

```
sudo service mysql stop
```

Você pode tentar se conectar ao banco de dados usando a ferramenta mysqladmin, que permite executar comandos administrativos. Por exemplo, este comando conecta ao MySQL como *root* (-u root), solicitando uma senha (-p) e retornar a versão.

```
mysqladmin -p -u root version
```

Você deve ver uma saída semelhante a esta:

mysql>

```
carlos@Pc-Carlos ~ $ mysqladmin -p -u root version
Enter password:
mysqladmin Ver 8.42 Distrib 5.7.17, for Linux on x86_64
Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Server version 5.7.17-0ubuntu0.16.04.1
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/run/mysqld/mysqld.sock
Uptime: 49 min 6 sec

Threads: 1 Questions: 5 Slow queries: 0 Opens: 107 Flush tables: 1 Open tables: 26 Queries per second avg: 0.001
carlos@Pc-Carlos - $
```

1.4. Configuração para acesso remoto:

Como comentado os requisitos básicos para fazer qualquer máquina funcionar como servidor de banco de dados MySQL é que a mesma tenha acesso a rede e ter um IP fixo. Além de realizar as seguintes configurações:

1. Altere o arquivo de configuração do MySQL. Para isso, execute o seguinte comando, como *root* para abrir o arquivo de configuração:

```
nano /etc/mysql/mysql.conf.d/mysqld.cnf
```

2. Mude o IP da seguinte linha, para 0.0.0.0:

```
bind-address = 127.0.0.1
```

3. Ficando assim:

```
bind-address= 0.0.0.0
```

4. Reinicie o serviço do MySQL:

```
sudo /etc/init.d/mysql restart
```

5. Entre no MySQL como usuário root:

```
mysql -u root -p
```

1.5. Concessão de privilégios:

1. Conceda os devidos privilégios para o usuário, caso ele já exista:

```
GRANT <privilégios > ON <itens > TO '<usuario > '@ <ip da máquina cliente >;
```

2. Caso o usuário não exista é necessário criá-lo e delegar os privilégios do item

mysql>

anterior:

```
create user '<nome>' with password '<senha>';
```

Note que o usuário pode conceder seus privilégios a outros usuários com adição do WITH GRANT OPTION ao comando (**não é remendado**).

Cliente

Para ter acesso ao MySQL é necessário que a máquina cliente possua o MySQL instalado. Para a instalação execute o seguinte comando:

```
sudo apt-get update
sudo apt-get install mysql-client
```

Para o acesso remoto ao servidor execute:

```
myslq -u <usuário> -p 'senha' -h[IP do servidor]
```

Nota: Para ter acesso ao MySQL é necessário que a máquina cliente possua o MySQL instalado.

Tipos de dados e seus domínios

Dados Numéricos

O sistema gerenciador de banco de dados MySQL usa os tipos de dados numéricos apresentados na tabela abaixo. A definição dos campos como UNSIGNED (sem sinal) determina que serão aceitos apenas valores positivos. A definição dos campos como ZEROFILL (preenchimento com 0) preenche os campos vazios da coluna com 0, além da definição automática de UNSIGNED à coluna.

mysql>

TIPO DE DADO VALORES ACEITOS LICO DE MEMÓDIA				
TIPO DE DADO	VALORES ACEITOS	USO DE MEMÓRIA		
		(bytes)		
BIT(N)	0,1	N+7/8		
TINYINT(N)	-128 a 127	1		
[UNSIGNED] [ZEROFILL]	0 a 255			
BOOL, BOOLEAN	0,1	1		
SMALLINT(N)	-32768 a 32767	2		
[UNSIGNED] [ZEROFILL]	0 a 65535.			
MEDIUMINT(N)	-8388608 a 8388607	3		
[UNSIGNED] [ZEROFILL]	0 a 16777215			
INT(N),INTEGER(N)	-2147483648 a 2147483647	4		
[UNSIGNED] [ZEROFILL]	0 a 4294967295			
BIGINT(N)	-9223372036854775807 a	8		
[UNSIGNED] [ZEROFILL]	9223372036854775807			
DECIMAL(N,P)	N com máximo de 65 casas e P 30			
[UNSIGNED] [ZEROFILL]	*Sinal não incluso no número de	Máx. 8 bytes		
	casas.			
DEC[(M[,D])],	Seguem o mesmo padrão que os			
NUMERIC[(M[,D])] ,	campos do tipo DECIMAL	Máx. 8 bytes		

mysql>

	11133412	
FIXED[(M[,D])]		
[UNSIGNED] [ZEROFILL]		
FLOAT(M,D)	-3.402823466E+38 a	
	-1.175494351E-38	
		4
[UNSIGNED] [ZEROFILL]	1.175494351E-38 a	
	3.402823466E+38	
DOUBLE, DOUBLE	-1,7976931348623157E+308 a	
PRECISION[(M,D)],	-2,2250738585072014E-308, 0	
REAL[(M,D)]		8
	2,2250738585072014E-308 a	
[UNSIGNED] [ZEROFILL]	1,7976931348623157E + 308, 0	
FLOAT(N)	Com valores de 0 a 24 é convertido	4 se 0>=N<=24
[UNSIGNED] [ZEROFILL]	para FLOAT(M,D), valores acima	
	para DOUBLE.	8 se 25>=N<=53

Armazenamento de data e tempo

Datas e tempos são representados pelos tipos de dados presentes na tabela abaixo. Os campos com **fsp** entre colchetes aceitam valores fracionários de

mysql>

segundos com no máximo 6 casas decimais.

TIPO DE DADO	VALORES ACEITOS	USO DE MEMÓRIA (bytes)
DATE	'1000-01-01' a '999-12-31'	3
	'1000-01-01	
DATETIME[(fsp)]	00:00:00.000000' a	5 + armazenamento da parte
	'9999-12-31	fracionária.
	23:59:59.999999'.	
	'1970-01-01	
TIMESTAMP[(fsp)]	00:00:01.000000' UTC a	4 + armazenamento da parte
	'2038-01-19	fracionária.
	03:14:07.999999'	
TIME[(fsp)]	'-838:59:59.000000' a	3
	'838:59:59.000000'	
YEAR[(fsp)]	1901 a 2155 e 0000	1

Armazenamento de caracteres e valores binários

O armazenamento de caracteres e sequência de bits no SGBD MySQL pode ser realizado com os tipos de dados apresentados na tabela abaixo.

mysql>

TIPO DE DADO	QUANTIDADE MÁXIMA DE	USO DE MEMÓRIA (bytes)
	CARACTERES	
CHAR(N),		N x W onde W representa o
	255	uso de memória da
		codificação de caracteres.
BINARY(N)		
VARCHAR(N),	65535 , Máx. 21844 por	Valor em bytes da String +2
VARBINARY(N)	padrão.	(máximo)
TINYBLOB,TINYTEXT	Não especificado	257
BLOB[(N)]	Não especificado	65538
TEXT[(N)]	65535	65538
MEDIUMBLOB	Não especificado	16777219
MEDIUMTEXT	16777215	16777219
LONGBLOB	Não especificado	4,294,967,300 (4 GB)
LONGTEXT	Não especificado	4,294,967,300 (4 GB)

Existe a possibilidade de armazenar dados do tipo caractere em formato de lista: ENUM ('Valor1','Valor2', ...)

Os atributos do tipo String armazenam somente um dos valores listados. É recomendado colocar menos de 3000 valores possíveis como parâmetros no

mysql>

ENUM.

SET ('Valor1','Valor2',...)

Os atributos do tipo String declarados com SET armazenam um ou mais dos valores listados do SET.

Conclusão

Durante a nossa pesquisa sobre os tipos de dados aceitos pelo MySQL e seus domínios, conhecemos alguns tipos ainda não explorados por nós em nenhum outro sistema gerenciador de banco de dados ou linguagem de programação. Os tipos DATETIME e TIMESTAMP além de desconhecidos foram agradáveis surpresas devido à possibilidade de armazenar frações de segundos, muito úteis em certos tipos de aplicações. Os tipos BINARY e VARBINARY também surpreenderam, já que são cadeias de caracteres binários e que se comportam como CHAR e VARCHAR, respectivamente. Outro tipo de dado utilizado para armazenar caracteres bastante interessante é o BLOB, que consegue armazenar cadeias de caracteres muito grandes.