TRIGONOMETRY

Chapter 22 Session I

Funciones trigonométricas

FUNCION SENO:

$$F = \{(x; y)/y = senx ; x \in R\}$$

Tabulando algunos valores para x e y :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
y = senx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Tabulando mas valores y uniendo con una curva dichos puntos, tenemos:

Dominio: Dom $F \in R$; $x \in R$

Rango: Ran $F \in [-1;1] \Rightarrow -1 \le \text{sen } x \le 1$

Periodo: $T = 2\pi$

Es una función impar : sen(-x) = -senx

OBSERVACION:

Sea la función:y = A.senBx

Amplitud;A|;

$$T = \frac{2\pi}{|B|}$$

! Ejemplos:

$$\begin{cases} |A| - x \\ T = \pi \end{cases}$$

Determine el rango de la función: f(x) = 5 sen x - 3

Resolución

Recordemos que:

$$\forall x \in \mathbb{R}: -1 \leq senx \leq 1 \qquad \dots (*)$$

De (*):

$$-1 \le \operatorname{senx} \le 1$$

$$-5 \le 5 \operatorname{senx} \le 5$$

$$-8 \le 5 \operatorname{senx} - 3 \le 2$$

$$-8 \le f(x) \le 2$$

∴ Ran
$$f = [-8; 2]$$

De ermine el rango de la función: $g(x) = \frac{2sen3x - 1}{3}$

Resolución

Recordemos que:

$$\forall x \in \mathbb{R}: -1 \leq sen3x \leq 1 \qquad \dots \ (*)$$

De (*):
$$\begin{array}{c} -1 \leq sen3x \leq 1 \\ -2 \leq 2sen3x \leq 2 \\ -1 \\ \hline -3 \leq 2sen3x - 1 \leq 1 \\ \hline \div 3 \\ \hline -1 \leq \frac{2sen3x - 1}{3} \leq \frac{1}{3} \\ \hline g(x) \end{array}$$

∴ Ran g =

Desermine el rango de la función: f(x) = 6. senx. cosx + 2

Resolución

Recordemos que:

2senxcosx

$$\forall x \in \mathbb{R}: -1 \leq sen2x \leq 1$$

$$\Rightarrow \left| -\frac{1}{2} \le \operatorname{senxcosx} \le \frac{1}{2} \right| \dots (*)$$

De (*):
$$-\frac{1}{2} \le \operatorname{senxcosx} \le \frac{1}{2}$$

$$-3 \le 6\operatorname{senxcosx} \le 3$$

$$+2$$

$$-1 \le 6\operatorname{senxcosx} + 2 \le 5$$

$$-1 \le f(x) \le 5$$

∴ Ran
$$f = [-1; 5]$$

Carcule $T_1 + T_2$, siendo T_1 y T_2 periodos de las funciones f(x) y g(x) respectivamente, donde: f(x) = 3sen(5x) y $g(x) = 2sen\left(\frac{x}{3}\right)$

Resolución

Recordemos que:

$$y = Asen(Bx) \land y = Acos(Bx)$$

$$T = \frac{2\pi}{|B|}; B \neq 0$$

Para :
$$f(x) = 3sen(5x)$$
 $T_1 = \frac{2\pi}{5}$

Para :g(x) = 2sen
$$\left(\frac{x}{3}\right) \rightarrow T_2 = \frac{2\pi}{\frac{1}{3}} \rightarrow T_2 = 6\pi$$

Piden:

$$T_1 + T_2 = \frac{2\pi}{5} + 6\pi$$

$$\therefore T_1 + T_2 = \frac{32\pi}{5}$$

De gráfico, halle el valor de a.

Resolución

Sea f(x) = y = senx

Se cumple:

$$P\left(\frac{2\pi}{3}; a\right) \in f \implies a = \operatorname{sen}\left(\frac{2\pi}{3}\right)$$

Entonces:

$$\mathbf{a} = \mathbf{sen}\left(\pi - \frac{\pi}{3}\right) = +\mathbf{sen}\left(\frac{\pi}{3}\right)$$

$$\therefore a = \frac{\sqrt{3}}{2}$$

De gráfico, halle el valor de m.

Resolución

Sea: f(x) = y = 8senx

Se cumple:

$$Q\left(\frac{7\pi}{4}; m\right) \in f \implies m = 8 \operatorname{sen}\left(\frac{7\pi}{4}\right)$$

Entonces:

$$\mathbf{m} = 8 \operatorname{sen} \left(2\pi - \frac{\pi}{4} \right) = -8 \operatorname{sen} \left(\frac{\pi}{4} \right)$$

$$\frac{\sqrt{2}}{2}$$

Det gráfico, calcule A + B

Resolución

Sea la función:
$$f(x) = y = AsenBx$$

El
$$T = \frac{21}{2}$$

periodo (T):
$$T = \frac{2\pi}{|B|}$$

$$\Rightarrow 6\pi = \frac{2\pi}{B} \qquad \Rightarrow \qquad B = \frac{1}{3}$$

Piden: A +
$$= 4 + \frac{1}{3}$$

$$\therefore A + B = \frac{13}{3}$$

El siguiente grafico muestra las ondes emitidas por un teléfono móvil. Calcule el área de la región triangular sombreada.

Resolución

Sea la función:f(x) = y = 3senx

El periodo (T):
$$T = \frac{2\pi}{1}$$
 $T = 2\pi$

Área sombreada:

$$\Rightarrow$$
 $\mathbb{S} = \frac{(\pi)(3)}{2}$

$$\therefore \mathbb{S} = \frac{3\pi}{2}u^2$$