Lecture 10

0.1 Expectation of a Function of a Random Variable

Let $X: \Omega \to S$ be a random variable and let $f: S \to \mathbb{R}$ be a function. Then f(X) is also a random variable, and we could ask ourselves what is the value of $\mathbb{E}(f(X))$ (e.g., $\mathbb{E}(1/X)$, $\mathbb{E}(X^2)$ etc.). It follows by the linearity of expectation that $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$ for every $a, b \in \mathbb{R}$. That is, $\mathbb{E}(f(X)) = f(\mathbb{E}(X))$ whenever f is a linear function. One could imagine that such an equality holds for every function f but, as illustrated by the following example, this is not the case.

Example 1: Let X be a random variable satisfying $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ and let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Then $\mathbb{E}(X) = 1 \cdot 1/2 + (-1) \cdot 1/2 = 0$ implying that $f(\mathbb{E}(X)) = 0$. On the other hand, $f(X) = X^2 = 1$, i.e., $\mathbb{P}(f(X) = 1) = 1$. Hence $\mathbb{E}(f(X)) = 1$. We conclude that $\mathbb{E}(f(X)) \neq f(\mathbb{E}(X))$ in this case.

Denoting f(X) by Y, one could of course calculate $\mathbb{E}(f(X))$ using the formula $\mathbb{E}(Y) = \sum_{y} y \cdot \mathbb{P}(Y = y)$. However, this requires calculating the distribution of Y and does not make a real use in the fact that Y is a function of X. The following claim suggests a better course of action.

Claim 0.1. If f is a non-negative function, namely $f: S \to [0, \infty)$, then

$$\mathbb{E}\left(f(X)\right) = \sum_{x} f(x) \cdot \mathbb{P}\left(X = x\right).$$

Moreover, for a general function f, $\mathbb{E}(f(X))$ is finite if and only if the above series absolutely converges, in which case the series $\sum_{x} f(x) \cdot \mathbb{P}(X = x)$ converges to $\mathbb{E}(f(X))$.

Proof. We have

$$\begin{split} \sum_{x} f(x) \cdot \mathbb{P} \left(X = x \right) &= \sum_{y \in [0, \infty)} \sum_{x \in S: f(x) = y} f(x) \cdot \mathbb{P} \left(X = x \right) \\ &= \sum_{y \in [0, \infty)} y \sum_{x \in S: f(x) = y} \mathbb{P} \left(\left\{ w \in \Omega : X(\omega) = x \right\} \right) \\ &= \sum_{y \in [0, \infty)} y \cdot \mathbb{P} \left(\bigcup_{x \in S: f(x) = y} \left\{ w \in \Omega : X(\omega) = x \right\} \right) \\ &= \sum_{y \in [0, \infty)} y \cdot \mathbb{P} \left(\left\{ \omega \in \Omega : \exists x \in S \text{ such that } X(\omega) = x \text{ and } f(x) = y \right\} \right) \\ &= \sum_{y \in [0, \infty)} y \cdot \mathbb{P} \left(\left\{ \omega \in \Omega : f(X(\omega)) = y \right\} \right) \\ &= \sum_{y \in [0, \infty)} y \cdot \mathbb{P} \left(f(X) = y \right) \\ &= \mathbb{E} \left(f(X) \right), \end{split}$$

where the third equality holds since $\{w \in \Omega : X(\omega) = x\} \cap \{w \in \Omega : X(\omega) = x'\} = \emptyset$ whenever $x \neq x'$.

Example 2: Let $X \sim \text{Geom}(1/2)$ and let $Y = 2^X$. Then the support of μ_X is \mathbb{N} and for every $k \in \mathbb{N}$ we have $\mathbb{P}(X = k) = \frac{1}{2^k}$. Moreover, it is evident that the support of μ_Y is $\{2^k : k \in \mathbb{N}\}$ and that $\mathbb{P}(Y = 2^k) = \mathbb{P}(X = k) = \frac{1}{2^k}$ for every $k \in \mathbb{N}$, where the first equality holds since $f(x) = 2^x$ is a bijection between \mathbb{N} and $\{2^k : k \in \mathbb{N}\}$. We now calculate $\mathbb{E}(Y)$ using two methods. The first method uses the distribution of Y and the second uses Claim 0.1. Using the distribution of Y we get

$$\mathbb{E}(Y) = \sum_{y \in \{2^k: k \in \mathbb{N}\}} y \cdot \mathbb{P}(Y = y) = \sum_{k=1}^{\infty} 2^k \cdot \frac{1}{2^k} = \infty.$$

Using Claim 0.1 we get

$$\mathbb{E}(Y) = \sum_{k \in \mathbb{N}} 2^k \cdot \mathbb{P}(X = k) = \sum_{k=1}^{\infty} 2^k \cdot \frac{1}{2^k} = \infty.$$

As we can see, both methods yield the same result.

1 Variance

Definition 1.1. Let X be a random variable with finite expectation. The variance of X is defined to be

$$\operatorname{Var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right).$$

The standard deviation of X is

$$\sigma = \sigma_X = \sqrt{\operatorname{Var}(X)}.$$

Remark 1.2. The variance is defined for every random variable with finite expectation. Note, however, that it could be infinite.

1.1 Basic properties of the variance

In the following, let X be a random variable with finite expectation μ .

Claim 1.3. $Var(X) \ge 0$. Moreover, Var(X) = 0 if and only if $\mathbb{P}(X = \mu) = 1$.

Proof. Let $f(x) = (x - \mu)^2$. Clearly, f is a non-negative function. Hence, it follows by the Monotonicity of Expectation (See Claim 1.15 in Lecture 9) that $\operatorname{Var}(X) = \mathbb{E}(f(X)) \geq \mathbb{E}(0) = 0$, and, moreover, equality is attained if and only if $\mathbb{P}(X = \mu) = \mathbb{P}(f(X) = 0) = 1$.

Remark 1.4. This shows, in particular, that the standard deviation is a non-negative real number.

Claim 1.5. For every $a \in \mathbb{R}$ it holds that $Var(aX) = a^2 Var(X)$.

Proof. We have

$$\operatorname{Var}\left(aX\right) = \mathbb{E}\left(\left(aX - \mathbb{E}\left(aX\right)\right)^{2}\right) = \mathbb{E}\left(\left(aX - a\mathbb{E}\left(X\right)\right)^{2}\right) = a^{2}\mathbb{E}\left(\left(X - \mathbb{E}\left(X\right)\right)^{2}\right) = a^{2}\operatorname{Var}\left(X\right),$$
 where the second and third equalities hold by the linearity of expectation.

Claim 1.6. For every $b \in \mathbb{R}$ it holds that $\operatorname{Var}(X + b) = \operatorname{Var}(X)$.

Proof. We have

$$\operatorname{Var}\left(X+b\right)=\mathbb{E}\left(\left(X+b-\mathbb{E}\left(X+b\right)\right)^{2}\right)=\mathbb{E}\left(\left(X+b-\mathbb{E}\left(X\right)-b\right)^{2}\right)=\mathbb{E}\left(\left(X-\mathbb{E}\left(X\right)\right)^{2}\right)=\operatorname{Var}\left(X\right),$$
 where the second equality holds by the linearity of expectation.

The following claim presents a useful way of calculating variance.

Claim 1.7.
$$\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$
.

Proof. We have

$$\operatorname{Var}(X) = \mathbb{E}\left((X - \mu)^2\right)$$

$$= \mathbb{E}\left(X^2 - 2\mu \cdot X + \mu^2\right)$$

$$= \mathbb{E}\left(X^2\right) - 2\mu\mathbb{E}\left(X\right) + \mu^2$$

$$= \mathbb{E}\left(X^2\right) - 2\mu^2 + \mu^2$$

$$= \mathbb{E}\left(X^2\right) - (\mathbb{E}\left(X\right))^2,$$

where the third equality holds by the linearity of expectation.

1.2 Variance of Common Distributions

1.2.1 Uniform Distribution

Recall the definition of the Uniform distribution: $X \sim U(S)$ if

$$\mathbb{P}(X = s) = \begin{cases} \frac{1}{|S|} & s \in S \\ 0 & s \notin S \end{cases}$$

Claim 1.8. If $S = \{a, a+1, ..., b\}$ for some $a, b \in \mathbb{N}$, then $Var(X) = \frac{(b-a+1)^2-1}{12}$.

Proof. Let Y=X-a+1 and let n=b-a+1. Then Var(X)=Var(Y+a-1)=Var(Y). Hence, it suffices to show that $\mathrm{Var}\,(Y)=\frac{n^2-1}{12}$. Observe that $Y\sim\mathrm{U}\,(1,\ldots,n)$ and thus, in particular, $\mathbb{E}\,(Y)=\frac{n+1}{2}$. We next calculate $\mathbb{E}\,(Y^2)$.

$$\mathbb{E}(Y^{2}) = \sum_{y=1}^{n} y^{2} \cdot \mathbb{P}(Y = y)$$

$$= \sum_{y=1}^{n} y^{2} \cdot \frac{1}{n}$$

$$= \frac{1}{n} \cdot \sum_{y=1}^{n} y^{2}$$

$$= \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{(n+1)(2n+1)}{6},$$

where the first equality holds by Claim 0.1 and the fourth equality holds by the identity

$$\sum_{i=1}^{m} i^2 = \frac{m(m+1)(2m+1)}{6}.$$

We conclude that

$$Var (X) = Var (Y)$$

$$= \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^2$$

$$= \frac{n+1}{12} \cdot (4n+2-3n-3)$$

$$= \frac{(n+1)(n-1)}{12}$$

$$= \frac{n^2 - 1}{12}$$

1.2.2 Bernoulli Distribution

Recall the definition of the Bernoulli distribution: $X \sim \mathrm{Ber}\,(p)$ if

$$X \sim \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

Claim 1.9. Var (X) = p(1 - p).

Proof. As we have seen $\mathbb{E}(X) = p$. Therefore

$$\operatorname{Var}(X) = \mathbb{E}(X^{2}) - (\mathbb{E}(X))^{2}$$
$$= 1^{2} \cdot p + 0^{2} \cdot (1 - p) - p^{2}$$
$$= p(1 - p).$$

1.2.3 Binomial Distribution

Recall the definition of the Binomial distribution: $X \sim \text{Bin}(n, p)$ if

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k},$$

for every integer $k \in \{0, 1, \dots, n\}$.

Claim 1.10. Var(X) = np(1-p).

The proof is left as an exercise.