Bài toán 1: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$ (1)

Phân tích:

- Cho tập A = $\{a_1, a_2, ..., a_n\}$
- Cần chọn k phần tử từ tập hợp A
- Gọi x_ilà số phần tử a_i được chọn

$$\rightarrow$$
 $x_1 + x_2 + ... + x_n = k$

- $x_i \in \mathbb{N}$ có thể lớn hơn 1 \rightarrow phần tử a_i có thể được lặp lại. **Mỗi nghiệm của (1)** \equiv **một cách chọn k phần tử trong tập n phần tử** \equiv một tổ hợp lặp chập k của n phần tử

Số nghiệm tự nhiên của (1) = ����� = ���⊕+��−�� TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 1: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$ (1)

Ví dụ 1.1: Tính số nghiệm tự nhiên của phương trình $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ (1.1)

Giải: n = 5; k = 20.

Mỗi nghiệm của (1.1) là một tổ hợp lặp chập 20 của 5 phần tử Số

nghiệm tự nhiên của (1.1) = 44

Bài toán 1: Tính số nghiệm tự nhiên của phương trình $x_1 + x_2 + ... + x_n = k$ (1)

Ví dụ 1.2: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5$$
 (1.2)

Giải: n = 8; k = 5.

Mỗi nghiệm của (1.2) là một tổ hợp lặp chập 5 của 8 phần tử **=

Bài toán 1: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$ (1)

Ví dụ 1.3: Tính số nghiệm tự nhiên của phương trình

20

Giải:
$$n = 20$$
; $k = 50$.

Mỗi nghiệm của (1.3) là một tổ hợp lặp chập 50 của 20 phần tử

Bài toán 2: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$, với $x_i \ge d > 0$ (2)

Phân tích:

- Giả sử x₁≥ d
- Đặt $X_1 = x_1 d \ge 0$

- (2)
$$\Leftrightarrow$$
 $X_1+d+x_2+...+x_n=k \Leftrightarrow X_1+x_2+...+x_n=k-d$ (1) (1) là bài

toán chuẩn có số nghiệm = ����◆◆

Số nghiệm tự nhiên của (2) = Số nghiệm tự nhiên của (1)

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 2: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$, với $x_i \ge d > 0$ (2)

Ví dụ 2.1: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20, x_1 \ge 4$$
 (2.1)
Giải: - Đặt $X_1 = x_1 - 4 \ge 0$
- (2.1) \Leftrightarrow $X_1 + 4 + x_2 + x_3 + x_4 + x_5 = 20$
 \Leftrightarrow $X_1 + x_2 + x_3 + x_4 + x_5 = 16$ (1)

Số nghiệm tự nhiên của (2.1) = Số nghiệm tự nhiên của (1)

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 2: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$, với $x_i \ge d > 0$ (2)

Ví dụ 2.2: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 5, x_2 \ge 1, x_4 \ge 1$$
 (2.2) Giải: - Đặt $X_2 = x_2$

$$-1 \ge 0$$
, $X_4 = X_4 - 1 \ge 0$

$$-(2.2) \Leftrightarrow x_1 + X_2 + 1 + x_3 + X_4 + 1 + x_5 + x_6 + x_7 + x_8 = 5 \Leftrightarrow x_1 + X_2 + x_3$$

$$+ X_4 + X_5 + X_6 + X_7 + X_8 = 3$$
 (1)

Số nghiệm tự nhiên của (2.2) = Số nghiệm tự nhiên của (1)

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 2: Tính số nghiệm tự nhiên của phương trình $x_1+x_2+...+x_n=k$, với $x_i \ge d > 0$ (2)

Ví dụ 2.3: Tính số nghiệm tự nhiên của phương trình

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 2: Tính số nghiệm tự nhiên của phương trình

 $x_1+x_2+...+x_n=k$, với $x_i \ge d > 0$ (2)Vi dụ 2.4: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20$$
, $x_1 \ge 3$ hoặc $x_2 \ge 5$ (2.4) Giải

- Gọi A là tập nghiệm của (2.4)
- Gọi B là tập nghiệm của (2') : $x_1 + x_2 + x_3 + x_4 + x_5 = 20$, $x_1 \ge 3$ (2') Gọi C là tập nghiệm của (2'') : $x_1 + x_2 + x_3 + x_4 + x_5 = 20$, $x_2 \ge 5$ (2'') Gọi D là tập nghiệm của (2''') : $x_1 + x_2 + x_3 + x_4 + x_5 = 20$, $x_1 \ge 3$, $x_2 \ge 5$ (2''') \longrightarrow A = B U C \longrightarrow |A| = |B| + |C| |B \cap C |

Bài toán 3: Tính số nghiệm tự nhiên của phương trình $x_1 + x_2 + ... + x_n = k$ (1), $x_i \le d$, $d \in \mathbb{N}$ (3)

Phân tích:

- Giả sử $\mathbf{x_1}$ ≤ \mathbf{d} , $\mathbf{d} \in \mathbb{N}$
- Gọi A là tập nghiệm của (1): $\mathbf{x_1}+\mathbf{x_2}+...+\mathbf{x_n}=\mathbf{k}$ (1) Gọi B là tập nghiệm của (2) : $\mathbf{x_1}+\mathbf{x_2}+...+\mathbf{x_n}=\mathbf{k}$, $\mathbf{x_1}\geq\mathbf{d+1}$ (2) Gọi C là tập nghiệm của (3)

$$A = B \cup C$$
, $B \cap C = \emptyset \Rightarrow |A| = |B| + |C| \Rightarrow |C| = |A| - |B|$

Số nghiệm tự nhiên của (3) = Số nghiệm tự nhiên của (1) - Số nghiệm tự nhiên của (2)

Bài toán 3: Tính số nghiệm tự nhiên của phương trình x₁+ x₂

+...+
$$\mathbf{x}_{n} = \mathbf{k}, \mathbf{x}_{i} \le \mathbf{d}, \mathbf{d} \in \mathbb{N}$$
 (3)

Ví dụ 3.1: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20$$
, $x_1 \le 4$ (3.1)Giải

- Gọi A là tập nghiệm của (1): $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ (1) |A| =

- Gọi B là tập nghiệm của (2) : x_1 + x_2 + x_3 + x_4 + x_5 = 20 , x_1 ≥ 5 (2) |B|

- Gọi C là tập nghiệm của (3.1): |C| = |A| - |B|

Số nghiệm tự nhiên của
$$(3.1) = \diamondsuit \diamondsuit_{\diamondsuit \diamondsuit} \diamondsuit^{\diamondsuit \diamondsuit \diamondsuit} - \diamondsuit \diamondsuit_{\diamondsuit \diamondsuit} \diamondsuit^{\diamondsuit \diamondsuit} = \diamondsuit \diamondsuit_{\diamondsuit \diamondsuit \diamondsuit} \diamondsuit_{\diamondsuit \diamondsuit} \diamondsuit_{\diamondsuit} \diamondsuit_{\diamondsuit}$$

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 3: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + ... + x_n = k, x_{io} \le d, d \in \mathbb{N}$$
 (3)

Ví dụ 3.2: Tính số nghiệm tự nhiên của phương trình

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20$$
, $x_1 \le 2$, $x_2 \le 4$ (3.2)Giải

- Gọi A là tập nghiệm của (1): $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ (1) |A| =

- Gọi B là tập nghiệm của (2) : $x_1 + x_2 + x_3 + x_4 + x_5 = 20$, $x_1 \ge 3$ hoặc $x_2 \ge 5$ (2.4)

- Gọi C" là tập nghiệm của (3.2): |C| = |A| - |B|

Số nghiệm tự nhiên của
$$(3.2) = 4444$$
 -4444

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 4: Tính số nghiệm tự nhiên của bất phương trình $x_1+x_2+...+x_n \le k$ (4)

Phân tích:

- Đặt
$$x_{n+1} = k - (x_1 + x_2 + ... + x_n) ≥ 0$$

$$\rightarrow (4) \Leftrightarrow x_1 + x_2 + \dots + x_n + x_{n+1} = k (1)$$

Số nghiệm của (4) = Số nghiệm của (1)

Số nghiệm tự nhiên của (4) = ��_{��+��}

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 4: Tính số nghiệm tự nhiên của bất phương trình $x_1+x_2+...+x_n \le k$ (4)

Ví dụ 4.1: Tính số nghiệm tự nhiên của bất phương trình $x_1 + x_2 + x_3 + x_4 + x_5 \le 20$ (4.1)

Giải:

- Đặt
$$x_6 = 20 - (x_1 + x_2 + x_3 + x_4 + x_5) \ge 0$$

$$\rightarrow$$
 (4.1) \Leftrightarrow $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 20 (1)$

Số nghiệm tự nhiên của (4.1) = Số nghiệm tự nhiên của (1)

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n biến

Bài toán 4: Tính số nghiệm tự nhiên của bất phương trình $x_1+x_2+...+x_n \le k$ (4)

Ví dụ 4.2: Tính số nghiệm tự nhiên của bất phương trình $x_1 + x_2$

$$+ x_3 + x_4 + x_5 < 20 (4.2)$$

Giải:

$$-(4.2) \Leftrightarrow x_1 + x_2 + x_3 + x_4 + x_5 \le 19$$

- Đặt
$$x_6 = 19 - (x_1 + x_2 + x_3 + x_4 + x_5) \ge 0$$

$$\rightarrow$$
 (4.2) \Leftrightarrow $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 19 (1)$

Số nghiệm tự nhiên của (4.2) = Số nghiệm tự nhiên của (1)

TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n

biến Tính số nghiệm tự nhiên của các phương trình, bất phương trình

sau:

- 1. $x_1 + x_2 + x_3 + x_4 = 25$ với $6 \le x_1 \le 15$, $x_2 \le 6$
- 2. $x_1 + x_2 + x_3 + x_4 = 20$ với $x_1 \le 10$, $3 \le x_2 \le 12$
- 3. $x_1 + x_2 + x_3 + x_4 + x_5 = 22$ với $x_1 \ge 5$, $5 \le x_4 \le 14$
- 4. $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ với $x_3 \ge 4$, $x_4 \le 13$, $x_5 \le 12$
- 5. $x_1 + x_2 + x_3 + x_4 + x_5 = 21$ với $x_1 \le 3$ và $1 \le x_2 \le 4$ và $x_3 \ge 15$
- 6. $x_1 + x_2 + x_3 + x_4 + x_5 \le 20$ với $x_1 \ge 4$
- 7. $x_1 + x_2 + x_3 + x_4 + x_5 \le 20$ với $x_1 \ge 3$, $x_2 \le 6$
- 8. $x_1 + x_2 + x_3 + x_4 + x_5 \le 20$ với $x_1 \ge 2$, $1 \le x_2 \le 7$

Lập chương trình để tính số nghiệm tự nhiên của phương trình n biến TỔ HỢP LẶP: Bài toán tính số nghiệm tự nhiên của phương trình n

biến Lập chương trình để tính số nghiệm tự nhiên của phương trình n

biến