Prova di Comunicazioni Numeriche 075II

Scrivere nome, cognome e numero di matricola in cima a ogni foglio protocollo

Rispondere ai quesiti 1-3 sul foglio protocollo 1.

- 1. Un esperimento aleatorio consiste nel lanciare 5 volte una coppia di dadi non truccati, osservando ad ogni lancio la somma dei punteggi sui due dadi. (3 punti)
 - (a) Calcolare la probabilità che il 7 si presenti al più una volta.
 - (b) Calcolare la probabilità che il 12 si presenti due volte.
- 2. Sia data la variabile aleatoria X uniformemente distribuita nell'intervallo $[0, \frac{\pi}{2}]$. Si consideri la trasformazione di v.a. $Y = \tan(X)$. (3 punti)
 - (a) Descrivere l'andamento e disegnare $f_X(x)$.
 - (b) Calcolare e disegnare $f_Y(y)$.

N.B.:
$$\frac{d}{dx} \tan(x) = 1 + [\tan(x)]^2$$
.

- 3. Sia dato il processo aleatorio X(t) stazionario almeno in senso lato con valor medio nullo e densità spettrale di potenza come in Fig. 1. X(t) entra in un filtro passa-basso ideale con guadagno unitario e frequenza di taglio $f_0 = 2500Hz$. Sia Y(t) il processo in uscita. (4 punti)
 - (a) Calcolare la varianza di X(t).
 - (b) Determinare l'intervallo di campionamento T_c minimo affinché i campioni $X(nT_c)$, $n \in \mathbb{Z}$, ottenuti campionando X(t) ad intervalli T_c , siano incorrelati.
 - (c) Calcolare la potenza di Y(t).

Figura 1: Densità spettrale di potenza di X(t).

Rispondere ai quesiti 4-8 sul foglio protocollo 2.

- 4. Dato il filtro $h(t) = \cos(2\pi f_0 t) \exp(-t/T) u(t)$ con $T = 1\mu$ s e $f_0 = 3$ GHz (4 punti):
 - (a) Calcolare la trasformata di Fourier del segnale.
 - (b) Calcolare la banda a -3 dB in Hz del filtro.
- 5. Un sistema lineare è descritto dalla seguente risposta impulsiva (5 punti):

$$h(t) = e^{\alpha t} u(t), \quad \alpha > 0$$

- (a) Determinare se il sistema è stabile secondo il criterio BIBO.
- (b) Dato il sistema con risposta impulsiva h(t)g(t) con $g(t) = e^{-\beta t}u(t)$, determinare una condizione su β affinché il sistema sia stabile secondo il criterio BIBO.
- 6. Si consideri il codice sistematico con matrice di controllo di parità H (3 punti):

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Determinare la matrice generatrice **G**;
- (b) Data la parola ricevuta $\mathbf{y} = \mathbf{x} + \mathbf{e} = [0, 0, 1, 1, 0, 1, 0]$, impiegare la decodifica a sindrome per trovare la sequenza di bit informativi trasmessa.
- 7. Disegnare lo schema a blocchi di un sistema di comunicazione 16-QAM. (3 punti)
- 8. Dato il sistema PAM illustrato in figura dove $g_T(t) = \text{rect}\left(\frac{t}{T}\right)$ e w(t) è un processo aleatorio di rumore Gaussiano bianco con densità spettrale di potenza $N_0/2$. (5 punti)

(a) Calcolare il campione x(k) ottenuto all'istante di campionamento t=kT, nell'ipotesi in cui $g_R(t)=\mathrm{rect}\left(\frac{t}{2T}\right)$.