AI 기본 교육

2021. 10. 01 곽대훈

A possible decision tree for the data:

- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label
 - or a probability distribution over labels

Impurity

Very impure group

Less impure

Minimum impurity

Entropy: a common way to measure impurity

• Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

 Entropy comes from information theory. The higher the entropy the more the information content.

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Ensemble Philosophy

- Build many models and combine them
- Only through averaging do we get at the truth!
- It's too hard (impossible?) to build a single model that works best
- Two types of approaches:
 - Models that don't use randomness
 - Models that incorporate randomness

Ensemble Approaches

- Bagging
 - Bootstrap aggregating
- Boosting
- Random Forests
 - Bagging reborn

Bagging

- Main Assumption:
 - Combining many unstable predictors to produce a ensemble (stable) predictor.
 - Unstable Predictor: small changes in training data produce large changes in the model.
 - e.g. Neural Nets, trees
 - Stable: SVM (sometimes), Nearest Neighbor.
- Hypothesis Space
 - Variable size (nonparametric):
 - Can model any function if you use an appropriate predictor (e.g. trees)

The Bagging Algorithm

Given data:
$$D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$

For m=1:M

- Obtain bootstrap sample D_m from the training data
- Build a model $G_m(\mathbf{x})$ from bootstrap data D_m

The Bagging Model

Reg
 Regression

$$\hat{y} = \frac{1}{M} \sum_{m=1}^{M} G_m(\mathbf{x})$$

- Clas
 - \ Classification:
 - Vote over classifier outputs $G_1(\mathbf{x}),...,G_M(\mathbf{x})$

Bagging Details

- Bootstrap sample of N instances is obtained by drawing N examples at random, with replacement.
- On average each bootstrap sample has 63% of instances
 - Encourages predictors to have uncorrelated errors
 - This is why it works

Bagging Details 2

- Usually set
 - Or use validation data to pick $= \sim 30$
- The models need to be unstable
 - Usually full length (or fig(xl)) pruned) decision trees.

Boosting

- Main Assumption:
 - Combining many weak predictors (e.g. tree stumps or 1-R predictors) to produce an ensemble predictor
 - The weak predictors or classifiers need to be **stable**
- Hypothesis Space
 - Variable size (nonparametric):
 - Can model any function if you use an appropriate predictor (e.g. trees)

Commonly Used Weak Predictor (or classifier)

A Decision Tree Stump (1-R)

Boosting

Each classifier $G_m(\mathbf{x})$ is trained from a weighted Sample of the training Data

Boosting (Continued)

- Each predictor is created by using a biased sample of the training data
 - Instances (training examples) with high error are weighted higher than those with lower error
- Difficult instances get more attention
 - This is the motivation behind boosting

Background Notation

The

• The I(s) function is defined as:

$$I(s) = \begin{cases} 1 \text{ if } s \text{ is true} \\ 0 \text{ otherwise} \end{cases}$$

• The

• The log(x) function is the natural logarithm

The AdaBoost Algorithm

(Freund and Schapire, 1996)

Given data:
$$D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$

- 1. Initialize weights $w_i = 1/N, i = 1,...,N$
- 2. For m = 1: M
 - a) Fit classifier $G_m(\mathbf{x}) \in \{-1,1\}$ to data using weights w_i
 - b) Compute $err_{m} = \frac{\sum_{i=1}^{N} w_{i} I\left(y_{i} \neq G_{m}\left(\mathbf{x}_{i}\right)\right)}{\sum_{i=1}^{N} w_{i}}$
 - c) Compute $\alpha_m = \log((1 err_m) / err_m)$
 - d) Set $w_i \leftarrow w_i \exp\left[\alpha_m I\left(y_i \neq G_m\left(\mathbf{x}_i\right)\right)\right], \quad i = 1, ..., N$

Gradient Boosting Model

• The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

This is what we need to decide in round t

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

$$= \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$$

Goal: find f_t to minimize this

Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round

Gradient Boosting Model

- XGBOOST
- CATBOOST
- LIGHT GBM

•