

Algoritmos y Estructuras de Datos III

Trabajo Práctico 1

Integrante	LU	Correo electrónico
Agustín Cangiani	344/09	cangiani@gmail.com
Marco Vanotti		marcovanotti15@gmail.com
Romina Gómez	590/08	rominagomez1789@gmail.com
Verónica Coy	652/08	verocoy@gmail.com

Keywords:

Ceros de funciones, Newton, Bisección, Energía mecánica, tolerancia, presición

${\rm \acute{I}ndice}$

1.		cicio 1	3
	1.1.	Desarrollo	3
	1.2.	Correctitud	4
		1.2.1. Demo	4
	1.3.	Resultados	6
2.	Ejer	cicio 2	7
	2.1.	Desarrollo	7
	2.2.	Correctitud	8
		2.2.1. Demo	8
	2.3.	Resultados	10
3.	Con	clusiones	11
4.	Libr	erías básicas	12
5.	Refe	rencias	13

1. Ejercicio 1

1.1. Desarrollo

1 EJERCICIO 1 3

1.2. Correctitud

1.2.1. Demo

Vamos a demostrar que si tenemos una secuencia de máquinas óptima, que no esté ordenada de mayor a menor según el tiempo de producción, podemos cambiar el orden de dos máquinas adyacentes que estén desordenadas y seguir teniendo una solución óptima.

Una secuencia de máquinas óptima es una secuencia tal que el Tiempo de producción de la misma es menor o igual que el de cualquiera de sus permutaciones.

Definimos una función T para obtener el tiempo total de procesamiento de una máquina en la posición k de la secuencia S como

$$T(S,k) = \left(\sum_{i=0}^{k} Costo(S_i)\right) + Peso(S_k)$$

Definimos la función para calcular el tiempo total de procesamiento de una secuencia de máquinas como

$$Tiempo(S) = \max \{ T(S, j), j \in [0, |S|) \}$$

Supongamos que tenemos una secuencia S óptima que no se encuentra ordenada. Entonces existe un $j < |S-1| / Peso(S_j) < Peso(S_{j+1})$.

Sea S' la secuencia que se forma de intercambiar la máquina de la posición j con la de la posición j+1, quiero ver que $Tiempo(S) \geq Tiempo(S')$.

Sea $i \neq j \land i \neq j+1$, es trivial ver que T(S,i) = T(S',i). Es decir, que si el máximo no era ni j, ni j+1, el tiempo total se mantiene igual.

Supongamos entonces que Tiempo(S) depende de T(S, j) y T(S, j + 1):

$$Tiempo(S) = \max \left\{ T(S,j) , T(S,j+1) \right\}$$

$$T(S,j) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_j) + Costo(S_j)$$

$$T(S,j+1) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j)$$

$$Por hipótesis, vale que $Peso(S_j) < Peso(S_{j+1})$

$$\downarrow \downarrow$$

$$Tiempo(S) = T(S,j+1)$$$$

1 EJERCICIO 1 4

5

$$Tiempo(S') = \max \{ T(S', j), T(S', j + 1) \}$$

Como en S' intercambiamos la máquina en la posición j por la máquina en la posición j+1, vale que $S'_j=S_{j+1}\wedge S'_{j+1}=S_j$ Luego, reemplazando en T las máquinas

$$T(S', j) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_{j+1}) + Costo(S_{j+1})$$

$$T(S', j+1) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Tiempo(S) \ge Tiempo(S')$$

1.3. Resultados

1 EJERCICIO 1 6

2. Ejercicio 2

2.1. Desarrollo

2 EJERCICIO 2 7

8

2.2. Correctitud

2.2.1. Demo

Vamos a demostrar que si tenemos una secuencia de máquinas óptima, que no esté ordenada de mayor a menor según el tiempo de producción, podemos cambiar el orden de dos máquinas adyacentes que estén desordenadas y seguir teniendo una solución óptima.

Una secuencia de máquinas óptima es una secuencia tal que el Tiempo de producción de la misma es menor o igual que el de cualquiera de sus permutaciones.

Definimos una función T para obtener el tiempo total de procesamiento de una máquina en la posición k de la secuencia S como

$$T(S,k) = \left(\sum_{i=0}^{k} Costo(S_i)\right) + Peso(S_k)$$

Definimos la función para calcular el tiempo total de procesamiento de una secuencia de máquinas como

$$Tiempo(S) = \max \{ T(S, j), j \in [0, |S|) \}$$

Supongamos que tenemos una secuencia S óptima que no se encuentra ordenada. Entonces existe un $j < |S-1| / Peso(S_j) < Peso(S_{j+1})$.

Sea S' la secuencia que se forma de intercambiar la máquina de la posición j con la de la posición j+1, quiero ver que $Tiempo(S) \geq Tiempo(S')$.

Sea $i \neq j \land i \neq j+1$, es trivial ver que T(S,i) = T(S',i). Es decir, que si el máximo no era ni j, ni j+1, el tiempo total se mantiene igual.

Supongamos entonces que Tiempo(S) depende de T(S, j) y T(S, j + 1):

$$Tiempo(S) = \max \left\{ T(S,j) , T(S,j+1) \right\}$$

$$T(S,j) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_j) + Costo(S_j)$$

$$T(S,j+1) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j)$$

$$Por hipótesis, vale que $Peso(S_j) < Peso(S_{j+1})$

$$\downarrow \downarrow$$

$$Tiempo(S) = T(S,j+1)$$$$

$$Tiempo(S') = \max \{ T(S', j), T(S', j + 1) \}$$

Como en S' intercambiamos la máquina en la posición j por la máquina en la posición j+1, vale que $S'_j=S_{j+1}\wedge S'_{j+1}=S_j$ Luego, reemplazando en T las máquinas

$$T(S', j) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_{j+1}) + Costo(S_{j+1})$$
$$T(S', j+1) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Tiempo(S) \ge Tiempo(S')$$

2.3. Resultados

2 EJERCICIO 2 10

- 3. Ejercicio 3
- 3.1. Desarrollo

3 EJERCICIO 3 11

3.2. Correctitud

3.2.1. Demo

Vamos a demostrar que si tenemos una secuencia de máquinas óptima, que no esté ordenada de mayor a menor según el tiempo de producción, podemos cambiar el orden de dos máquinas adyacentes que estén desordenadas y seguir teniendo una solución óptima.

Una secuencia de máquinas óptima es una secuencia tal que el Tiempo de producción de la misma es menor o igual que el de cualquiera de sus permutaciones.

Definimos una función T para obtener el tiempo total de procesamiento de una máquina en la posición k de la secuencia S como

$$T(S,k) = \left(\sum_{i=0}^{k} Costo(S_i)\right) + Peso(S_k)$$

Definimos la función para calcular el tiempo total de procesamiento de una secuencia de máquinas como

$$Tiempo(S) = \max \{ T(S, j), j \in [0, |S|) \}$$

Supongamos que tenemos una secuencia S óptima que no se encuentra ordenada. Entonces existe un $j < |S-1| / Peso(S_j) < Peso(S_{j+1})$.

Sea S' la secuencia que se forma de intercambiar la máquina de la posición j con la de la posición j+1, quiero ver que $Tiempo(S) \geq Tiempo(S')$.

Sea $i \neq j \land i \neq j+1$, es trivial ver que T(S,i) = T(S',i). Es decir, que si el máximo no era ni j, ni j+1, el tiempo total se mantiene igual.

Supongamos entonces que Tiempo(S) depende de T(S, j) y T(S, j + 1):

$$Tiempo(S) = \max \left\{ T(S,j) , T(S,j+1) \right\}$$

$$T(S,j) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_j) + Costo(S_j)$$

$$T(S,j+1) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j)$$

$$Por hipótesis, vale que $Peso(S_j) < Peso(S_{j+1})$

$$\downarrow \downarrow$$

$$Tiempo(S) = T(S,j+1)$$$$

3 EJERCICIO 3 12

$$Tiempo(S') = \max \{ T(S', j), T(S', j + 1) \}$$

Como en S^\prime intercambiamos la máquina en la posición j por la máquina en la posición j+1, vale que $S'_j=S_{j+1}\wedge S'_{j+1}=S_j$ Luego, reemplazando en T las máquinas

$$T(S', j) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_{j+1}) + Costo(S_{j+1})$$

$$T(S', j+1) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Tiempo(S) \ge Tiempo(S')$$

3.3. Resultados

3 EJERCICIO 3 14

4. Ejercicio 4

4.1. Desarrollo

4 EJERCICIO 4 15

4.2. Correctitud

4.2.1. Demo

Vamos a demostrar que si tenemos una secuencia de máquinas óptima, que no esté ordenada de mayor a menor según el tiempo de producción, podemos cambiar el orden de dos máquinas adyacentes que estén desordenadas y seguir teniendo una solución óptima.

Una secuencia de máquinas óptima es una secuencia tal que el Tiempo de producción de la misma es menor o igual que el de cualquiera de sus permutaciones.

Definimos una función T para obtener el tiempo total de procesamiento de una máquina en la posición k de la secuencia S como

$$T(S,k) = \left(\sum_{i=0}^{k} Costo(S_i)\right) + Peso(S_k)$$

Definimos la función para calcular el tiempo total de procesamiento de una secuencia de máquinas como

$$Tiempo(S) = \max \{ T(S, j), j \in [0, |S|) \}$$

Supongamos que tenemos una secuencia S óptima que no se encuentra ordenada. Entonces existe un $j < |S-1| / Peso(S_j) < Peso(S_{j+1})$.

Sea S' la secuencia que se forma de intercambiar la máquina de la posición j con la de la posición j+1, quiero ver que $Tiempo(S) \geq Tiempo(S')$.

Sea $i \neq j \land i \neq j+1$, es trivial ver que T(S,i) = T(S',i). Es decir, que si el máximo no era ni j, ni j+1, el tiempo total se mantiene igual.

Supongamos entonces que Tiempo(S) depende de T(S, j) y T(S, j + 1):

$$Tiempo(S) = \max \left\{ T(S,j) , T(S,j+1) \right\}$$

$$T(S,j) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_j) + Costo(S_j)$$

$$T(S,j+1) = \left(\sum_{i=0}^{j-1} Costo(S_i) \right) + Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j)$$

$$Por hipótesis, vale que $Peso(S_j) < Peso(S_{j+1})$

$$\downarrow \downarrow$$

$$Tiempo(S) = T(S,j+1)$$$$

4 EJERCICIO 4 16

$$Tiempo(S') = \max \{ T(S', j), T(S', j + 1) \}$$

Como en S' intercambiamos la máquina en la posición j por la máquina en la posición j+1, vale que $S'_j=S_{j+1}\wedge S'_{j+1}=S_j$ Luego, reemplazando en T las máquinas

$$T(S', j) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_{j+1}) + Costo(S_{j+1})$$

$$T(S', j+1) = \left(\sum_{i=0}^{j-1} Costo(S'_i)\right) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$Peso(S_{j+1}) + Costo(S_{j+1}) + Costo(S_j) + Peso(S_j) + Costo(S_j) + Costo(S_{j+1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Tiempo(S) \ge Tiempo(S')$$

4.3. Resultados

4 EJERCICIO 4 18

5. Conclusiones

6. Librerías básicas

7. Referencias