16F - NET2000 - Intermediate Networking

Case Study

II. Implementation Analysis (IA)

By: Owen Yuen & Sinclair Dacombe Lab Section: A2

Carleton University / Algonquin College December 4th, 2016

1. Addressing requirements

1.1 Addressing for networks

Addressing for OTT_A

- 300 users with growth of 25% for a total of 375 users
 - o IPv4 block 192.168.0.0 /23
 - o IPv6 block 2001:FACE:BE50:1920::1/64

Addressing for OTT_B

- 120 users with growth of 25% for a total of 150 users
 - o IPv4 block 192.168.2.0 /24
 - o IPv6 block 2001:FACE:BE50:1922::1/64

1.2 Addressing for VLANs

- VLAN 5 (DMZ) requires 10 users with growth of 25% for a total of 13 users
 - o DLS A IPv4 address and block: 150.50.5.251 /28
 - DLS B IPv4 address and block: 150.50.5.252 /28
 - o ALS 1 IPv4 address and block: 150.50.5.253 /28
 - O DLS A IPv6 address and block: 2001:FACE:BE50:5::A1 /64
 - O DLS_B IPv6 address and block: 2001:FACE:BE50:5::B1 /64
 - o ALS_1 IPv6 address and block: 2001:FACE:BE50:5::C1 /64
- VLAN 10 (ADMIN) requires 20 users with growth of 25% for a total of 25 users
 - o DLS A IPv4 address and block: 150.50.10.251/27
 - DLS B IPv4 address and block: 150.50.10.252 /27
 - o ALS 1 IPv4 address and block: 150.50.10.253 /27
 - O DLS A IPv6 address and block: 2001:FACE:BE50:10::A1 /64
 - O DLS_B IPv6 address and block: 2001:FACE:BE50:10::B1 /64
 - o ALS_1 IPv6 address and block: 2001:FACE:BE50:10::C1 /64
- VLAN 20 (SALES) requires 80 users with growth of 25% for a total of 100 users
 - DLS_A IPv4 address and block: 150.50.20.251 /25
 - o DLS_B IPv4 address and block: 150.50.20.252 /25
 - ALS_1 IPv4 address and block: 150.50.20.253 /25
 - DLS_A IPv6 address and block: 2001:FACE:BE50:20::A1 /64
 - O DLS B IPv6 address and block: 2001:FACE:BE50:20::B1/64
 - o ALS_1 IPv6 address and block: 2001:FACE:BE50:20::C1 /64
- VLAN 30 (ACCT) requires 15 users with growth of 25% for a total of 19 users
 - DLS_A IPv4 address and block: 150.50.30.251 /27
 - DLS B IPv4 address and block: 150.50.30.252 /27
 - ALS_1 IPv4 address and block: 150.50.30.253 /27
 - DLS_A IPv6 address and block: 2001:FACE:BE50:30::A1 /64
 - DLS_B IPv6 address and block: 2001:FACE:BE50:30::B1 /64
 - ALS 1 IPv6 address and block: 2001:FACE:BE50:30::C1 /64

1.3 Addressing for point-to-point links

- Between ISP and OTT A
 - ISP S0/0/0
 - IPv4 address and block: 205.5.5.254 /24

- IPv6 address and block: 2001:FACE:BECA:205::254/64
- OTT_A S0/0/0
 - IPv4 address and block: 205.5.5.50 /24
 - IPv6 address and block: 2001:FACE:BECA:205::50/64
- Between OTT_A and DLS_A
 - OTT_A G0/0
 - IPv4 address and block: 150.50.2.2 /30
 - IPv6 address and block: 2001:FACE:BE50:2::2/64
 - DLS_A F0/1
 - IPv4 address and block: 150.50.2.1 /30
 - IPv6 address and block: 2001:FACE:BE50:2::1/64
- Between DLS_A, DLS_B, and ALS_1
 - o DLS_A PO10 (F0/3-6)
 - IPv4 address and block: 150.50.3.1 /30
 - IPv6 address and block: 2001:FACE:BE50:3::1/64
 - DLS_B PO10 (F0/3-6)
 - IPv4 address and block: 150.50.3.2 /30
 - IPv6 address and block: 2001:FACE:BE50:3::2/64
 - o DLS_A PO1 (F0/7-10)
 - IPv4 address and block: 150.50.4.1 /30
 - IPv6 address and block: 2001:FACE:BE50:4::1/64
 - ALS_1 PO1 (F0/7-10)
 - IPv4 address and block: 150.50.4.2 /30
 - IPv6 address and block: 2001:FACE:BE50:4::2/64
 - DLS_B PO2 (F0/7-10)
 - IPv4 address and block: 150.50.6.1 /30
 - IPv6 address and block: 2001:FACE:BE50:6::1/64
 - ALS 1 PO2 (F0/7-10)
 - IPv4 address and block: 150.50.6.2 /30
 - IPv6 address and block: 2001:FACE:BE50:6::2/64
- Between DLS_B and OTT_B
 - DLS_B F0/1
 - IPv4 address and block: 150.50.7.1 /30
 - IPv6 address and block: 2001:FACE:BE50:7::1/64
 - OTT B G0/0
 - IPv4 address and block: 150.50.7.2 /30
 - IPv6 address and block: 2001:FACE:BE50:7::2/64

1.4 Addressing for loopbacks and end-device links

- For ISP
 - o Loopback0
 - IPv4 address and block: 2.2.2.2/32
 - IPv6 address and block: 2001:FACE:BECA:2::2/ 128
- For DLS_A
 - o Loopback0
 - IPv4 address and block: 22.2.2.2/32
 - IPv6 address and block: 2001:FACE:BECA:22::2/ 128
 - o F0/2 to INTRA_WEB SERVER (in VLAN 5)
- For DLS_B
 - o Loopback0
 - IPv4 address and block: 11.1.1.1/32
 - IPv6 address and block: 2001:FACE:BECA:11::1/128
- For OTT_B
 - o Loopback0
 - IPv4 address and block: 1.1.1.1/32
 - IPv6 address and block: 2001:FACE:BECA:1::1/128

2. Routing

2.1 OSPFv3 in area 0

- Router ID
 - OTT A in area 0
 - Router-id 1.1.1.1
 - OTT_B in area 0
 - Router-id 2.2.2.2
 - O DLS_A in area 0
 - Router-id 3.3.3.3
 - o DLS_B in area 0
 - Router-id 4.4.4.4
- Networks
 - o OTT A
 - Interface g0/0
 - Ipv6 ospf 1 area 0
 - Interface loop0

- Ipv6 ospf 1 area 0
- o OTT_B
 - Interface g0/0
 - Ipv6 ospf 1 area 0
 - Interface loop0
 - Ipv6 ospf 1 area 0
- o DLS A
 - Interface f0/1
 - Ipv6 ospf 1 area 0
 - Interface loop0
 - Ipv6 ospf 1 area 0
 - Interface vlan 100 (need to neighbour through area 0 in OSPFv3)
 - Ipv6 ospf 1 area 0
- o DLS B
 - Interface f0/1
 - Ipv6 ospf 1 area 0
 - Interface loop0
 - Ipv6 ospf 1 area 0
 - Interface vlan 100
 - Ipv6 ospf 1 area 0
- Routing updates disabled on unnecessary interfaces using passive-interface
 - o OTT_A
 - Passive-interface on g0/1
 - Passive-interface on s0/0/0
 - o OTT B
 - Passive-interface on g0/1
- Routes must be summarized
 - o DLS A
 - Area 0 range 2001:FACE:BE50::/56
 - o DLS B
 - Area 0 range 2001:FACE:BE50::/56
- Hello timers modified for fast convergence
 - o OTT A
 - Interface g0/0
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4

- o DLS A
 - Interface f0/1
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
- o OTT_B
 - Interface g0/0
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
- o DLS_B
 - Interface f0/1
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
- Bandwidth modified for correct metric calculation
 - o OTT_A, OTT_B, DLS_A, DLS_B
 - Auto-cost reference bandwidth 10000
- Implement MD5 authentication in area 0
 - o OTT_A
 - Interface g0/0
 - Ospfv3 authentication md5 0 cisco123
 - o DLS A
 - Interface f0/1
 - Ospfv3 authentication md5 0 cisco123
 - o OTT_B
 - Interface g0/0
 - Ospfv3 authentication md5 0 cisco123
 - o DLS B
 - Interface f0/1
 - Ospfv3 authentication md5 0 cisco123
- Place DR in appropriate place
 - OTT_A to be DR
 - Priority 255

2.2 OSPFv3 in area 10

- Router ID
 - o DLS_A in area 10
 - Router-id 3.3.3.3
 - o DLS_B in area 10
 - Router-id 4.4.4.4
- Networks

- o DLS A
 - Interface vlan 5
 - Ipv6 ospf 1 area 10
 - Interface vlan 10
 - Ipv6 ospf 1 area 10
 - Interface vlan 20
 - Ipv6 ospf 1 area 10
 - Interface vlan 30
 - Ipv6 ospf 1 area 10
 - Interface vlan 99
 - Ipv6 ospf 1 area 10
- o DLS_B
 - Interface vlan 5
 - Ipv6 ospf 1 area 10
 - Interface vlan 10
 - Ipv6 ospf 1 area 10
 - Interface vlan 20
 - Ipv6 ospf 1 area 10
 - Interface vlan 30
 - Ipv6 ospf 1 area 10
 - Interface vlan 99
 - Ipv6 ospf 1 area 10
- Routing updates disable on unnecessary interfaces using passive-interface
 - o DLS_A
 - Passive-interface on f0/2 to intra_web server
- Routes must be summarized
 - DLS_A
 - Area 10 range 2001:FACE:BE50::/56
 - o DLS_B
 - Area 10 range 2001:FACE:BE50::/56
- Hello timers modified for fast convergence
 - o DLS A
 - Interface PO10
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
 - Interface PO1
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
 - o DLS B

- Interface PO10
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
- Interface PO2
 - Ip ospf hello-interval 1
 - Ip ospf dead-interval 4
- Bandwidth modified for correct metric calculation
 - o DLS_A, DLS_B
 - Auto-cost reference bandwidth 10000
- Implement MD5 on all interfaces in area 10
 - o DLS A
 - Interface PO10
 - Ospfv3 authentication md5 0 cisco123
 - o DLS_B
 - Interface PO10
 - Ospfv3 authentication md5 0 cisco123
- Place DR in appropriate place
 - o DLS_A to be DR
 - Priority 255

2.3 EIGRP for IPv4

- Router ID in AS 20
 - o OTT_A
 - Eigrp router-id 1.1.1.1
 - o OTT_B
 - Eigrp router-id 2.2.2.2
 - o DLS A
 - Eigrp router-id 3.3.3.3
 - o DLS_B
 - Eigrp router-id 4.4.4.4
- Networks
 - o OTT_A
 - Network 150.50.2.2 0.0.0.0
 - Network 192.168.0.0 0.0.1.255
 - Network 205.5.5.50 0.0.0.255
 - o OTT B
 - Network 150.50.7.2 0.0.0.0
 - Network 192.168.2.1 0.0.0.0

- Network 1.1.1.1 0.0.0.0
- o DLS_A
 - Network 150.50.0.0 0.0.127.255
 - Network 150.50.2.1 0.0.0.0
 - Network 22.2.2.2 0.0.0.0
- o DLS_B
 - Network 150.50.0.0 0.0.127.255
 - Network 150.50.7.1 0.0.0.0
 - Network 11.1.1.1 0.0.0.0
- Routing updates disable on unnecessary interfaces using passive-interface
 - o OTT A
 - Passive-interface on g0/1
 - OTT_B
 - Passive-interface on g0/1
 - o DLS A
 - Passive-interface on f0/2
- Routes must be summarized
 - o DLS A
 - Interface PO10
 - No auto-summary
 - Ip summary-address eigrp 20 150.50.0.0 255.255.0.0
 - Interface f0/1
 - No auto-summary
 - Ip summary-address eigrp 20 150.50.0.0 255.255.0.0
 - o DLS B
 - Interface PO10
 - No auto-summary
 - Ip summary-address eigrp 20 150.50.0.0 255.255.0.0
 - Interface f0/1
 - No auto-summary
 - Ip summary-address eigrp 20 150.50.0.0 255.255.0.0

2.4 Static and Default Routes

- ISP to OTT_A needs a default route:
 - o ISP
 - \blacksquare Ip route 0.0.0.0 0.0.0.0 s0/0/0
 - Ipv6 route ::/0 s0/0/0
- OTT_A to ISP needs a static route:

- o OTT A
 - Ip route 205.5.5.0 255.255.255.0 s0/0/0
 - Redistribute static
 - Ipv6 route 2001:FACE:BECA:205::/64 s0/0/0
 - Redistribute static

2.5 DHCP

- DLS A
 - Ip dhcp pool VLAN_5
 - Network 150.50.5.0 255.255.255.248
 - Default-router 150.50.2.1
 - Ip dhcp excluded-address 150.50.5.1 150.50.5.1
 - Ip dhcp pool VLAN_10
 - Network 150.50.10.0 255.255.255.240
 - Default-router 150.50.2.1
 - Ip dhcp excluded-address 150.50.10.1 150.50.10.2
 - Ip dhcp pool VLAN_20
 - Network 150.50.20.0 255.255.255.192
 - Default-router 150.50.2.1
 - Ip dhcp excluded-address 150.50.20.1 150.50.20.6
 - Ip dhcp pool VLAN_30
 - Network 150.50.30.0 255.255.255.240
 - Default-router 150.50.2.1
 - Ip dhcp excluded-address 150.50.30.1 150.50.30.2
 - Ip dhcp pool VLAN_99
 - Network 150.50.99.0 255.255.255.128
 - Default-router 150.50.2.1
 - Ip dhcp excluded-address 150.50.99.1 150.50.99.14
- DLS B
 - Ip dhcp pool VLAN_5
 - Network 150.50.5.8 255.255.255.248
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 150.50.5.9 150.50.5.9
 - Ip dhcp pool VLAN_10
 - Network 150.50.10.16 255.255.255.240
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 150.50.10.17 150.50.10.18
 - Ip dhcp pool VLAN_20
 - Network 150.50.20.64 255.255.255.192
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 150.50.20.65 150.50.20.70

- Ip dhep pool VLAN_30
 - Network 150.50.30.16 255.255.255.240
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 150.50.30.17 150.50.30.18
- o Ip dhcp pool VLAN_99
 - Network 150.50.99.128 255.255.255.128
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 150.50.99.129 150.50.99.141
- Ip dhcp pool OTT_B_OFF
 - Network 192.168.2.0 255.255.255.0
 - Default-router 150.50.7.1
 - Ip dhcp excluded-address 192.168.2.1 192.168.2.25
- Configure DHCP snooping and spoofing security
 - o OTT A
 - Ip dhcp snooping vlan 5,10,20,30,99
 - Interface G0/0
 - Ip dhcp snooping trust
 - o OTT B
 - Ip dhcp snooping vlan 5,10,20,30,99
 - Interface G0/0
 - Ip dhep snooping trust
 - Interface G0/1
 - Ip dhcp snooping limit rate 255

2.6 FHRP

- Configure redundant gateway for every VLAN in IPv4
 - DLS_A VLANs will be configured as standby with priority 110
 - DLS_B VLANs will be configured as standby with priority 100
 - Virtual gateway for VLANs on DLS_A and DLS_B:
 - VLAN 5: 150.50.5.200
 - VLAN 10: 150.50.10.200
 - VLAN 20: 150.50.20.200
 - VLAN 30: 150.50.30.200
 - VLAN 99: 150.50.99.200
 - o Configure standby preempt on DLS A and DLS B's PO10 interface
 - o Configure standby track on DLS A and DLS B's PO10 interface

3. Network Switching

3.1 Etherchannels

- DLS A and DLS B connected to each other via Etherchannel Po10 using native vlan 666
 - Interface range f0/3-6
 - Channel-group 10 mode active
 - Interface Po10
 - Switchport trunk native vlan 666
 - Switchport trunk encapsulation dot1q
 - Switchport mode trunk
 - Switchport trunk allowed vlan 5,10,20,30,99
- DLS A and ALS 1 connected to each other via Etherchannel Po1 using native vlan 666
 - Interface range f0/7-10
 - Channel-group 10 mode active
 - o Interface Po1
 - Switchport trunk native vlan 666
 - Switchport trunk encapsulation dot1q
 - Switchport mode trunk
 - Switchport trunk allowed vlan 5,10,20,30,99
- DLS B and ALS 1 connected to each other via Etherchannel Po2 using native vlan 666
 - Interface range f0/11-14
 - Channel-group 10 mode active
 - o Interface Po2
 - Switchport trunk native vlan 666
 - Switchport trunk encapsulation dot1q
 - Switchport mode trunk
 - Switchport trunk allowed vlan 5,10,20,30,99

3.2 Configuring Switchports

- DLS A
 - o Interface F0/2
 - Switchport mode access
 - Switchport access vlan 5
- DLS A
 - o Interface range F0/11-24, G0/1-2
 - Switchport access vlan 999
 - Shut
- DLS B
 - o Interface range F0/2, F0/7-10, F0/15-24, G0/1-2
 - Switchport access vlan 999
 - Shut

- ALS 1
 - o Interface range F0/3-6, F0/15-24, G0/1-2
 - Switchport access vlan 999
 - Shut

3.3 Configuring STP Security

- Configure BPDU guard and portfast on interfaces connecting to end devices
 - o DLS A
 - Interface F0/2
 - Spanning-tree portfast
 - Spanning-tree portfast bpdu-guard

3.4 Configuring Default Gateways for ALS 1's VLANs

- VLANs need to send traffic in the most balanced manner possible. Use Virtual Gateways for load balancing
 - o ALS_1
 - Interface vlan 5
 - Ip default-gateway 150.50.5.200
 - Interface vlan 10
 - Ip default-gateway 150.50.10.200
 - Interface vlan 20
 - Ip default-gateway 150.50.20.200
 - Interface vlan 30
 - Ip default-gateway 150.50.30.200
 - Interface vlan 99
 - Ip default-gateway 150.50.99.200