Propriedades Coligativas

Gabriel R. Munhoz

22 de outubro de 2016

0.1 Abaixamento da pressão de vapor

Um líquido em um sistema fechado sempre entrará em equilíbrio com seu vapor, e este sempre aplicará uma certa pressão sobre o líquido. Essa pressão se muito pequena classifica o mesmo como sendo não-volátil e se grande o caracteriza como sendo volátil.

A adição de soluto não-volátil e não-eletrólito faz com que a pressão de vapor diminua e isso ocorre de acordo com a concentração do soluto e não com o tipo de partícula. A causa dessa interferência pode ser explicada devido a ocupação de parte da superfície do líquido pelo soluto, assim o líquido tem mais dificuldade em se transformar em vapor, com isso a pressão de vapor é menor (Figura 1).

Figura 1 – Diferença entre líquido puro e soluções quanto a pressão de vapor

0.2 Diminuição do ponto de congelamento

Devido à variação da pressão de vapor ocasionada pela adição de um soluto não-volátil o ponto de congelamento de um liquido puro é mais alto do que em uma solução. E isso

acontece por causa da dificuldade que a solução possui para aumentar sua pressão de vapor.

E este fato é muito utilizado no cotidiano dos países que fazem muito frio, pois ao adicionarem sal na neve das estradas, por exemplo, ela acaba derretendo e diminuindo o número de acidentes, além de utilizam um composto no combustível dos carros também para que ela não congele tão facilmente quando as temperaturas se encontram muito baixas.

0.3 Elevação do ponto de ebulição

Assim como ocorre no ponto de fusão, ao adicionarmos um soluto não-volátil em um líquido conseguiremos aumentar sua temperatura de ebulição. Isso transcorre devido à baixa pressão de vapor que as soluções possuem e com isso precisam de mais temperatura para compensar tal fato. Consequentemente o seu ponto de ebulição é mais alto do que o de o ponto de ebulição de um liquido puro.