Abstract Interpretation, continued.

Ceval: 2 x E -> 2 ceval (R,E) = U ceval (s, E) $Ceval(s, x) = \{s(x)\}$ Ceval (S, input) = 7 ceval (S, E, op Ez) = [V, op V2] V, E ceval (S, Ez) $Ili I = \left\{ S[x \mapsto cercl(s, E)] \mid s \in [li-i] \right\}$ set of shed in a constant of the set of shed in a constant of shed

Signs =
$$\{+, -, 0\}$$
 T_1L^2

Astate = Nais \longrightarrow Signs

Qeval $\{a_1 \text{ input}\} = T$

Yes \longrightarrow Signs

Qeval $\{a_1 \text{ input}\} = T$

Qeval $\{a_1 \text{ input}\} = A(X)$

Qeval $\{a_1 \text{ input}\} = A(X)$

Qeval $\{a_1 \text{ input}\} = A(X)$
 $\{x_1 \text{ input}\} = A(X)$
 $\{x_2 \text{ input}\} = A(X)$
 $\{x_1 \text{ input}\} = A(X)$

concetization function

$$V_a: Sign \longrightarrow 2^{2}$$
 $V_a: Sign \longrightarrow 2^{2}$
 $V_a: Sign \longrightarrow 2^{2}$
 $V_a: V_a(+) = \{1,2,3,\dots\}$

Galois connections

Soundness

R concrete states

E expression

$$\left(\begin{array}{c} \left(\operatorname{Ceval}(R,E)\right) & \sqsubseteq & \operatorname{adval}(\alpha_{s}(P),E) \\ 2^{72} & \operatorname{Sign} \end{array}\right)$$

f: 2 Cstates 2 Cstates

f: Astate -> Astate

abstract

 $\alpha(f(R)) \subseteq \hat{f}(\alpha(R))$

we have ∞ , %, %I want %for all α , % (α) = α (α)

I is a sound approximation of α because of Galois Connection

If LIJ L2 are latticus. X:L, >L2 and V: L2 -> L1 form a Galois connection. $f: L_1 \longrightarrow L_1$) \hat{f} is a safe approximation (sound) $\hat{f}: L_2 \longrightarrow L_2$

 $(f) \subseteq fi \times (f)$ Soundress theorem

$$f: 2^{\text{CState}} \longrightarrow 2^{\text{CState}}$$

f(a) =
$$\alpha(f(8(a)))$$

the most precise townsformer

ceval(s,
$$\alpha - \infty$$
) = 0

aeual (a, $\alpha - \infty$) = T

+ +

our analysis is non-suelahiand

interval domain (non-orelational)

X H3 +1, -1, 0, T, I

X H3 [-10, 11]

Zonetope domain (912 lational domail