Section 2: Data

Data Description

In this section, I will describe the data used to solve the problem as described previously.

As noted below in the Further Development Section, it is possible to attempt quite complex and sophisticated scenarios when approaching this problem. However, given the size of the project and for simplicity only the following scenario will be addressed:

- 1. Query the FourSqaure website for the top sites in Chicago
- 2. Use the FourSquare API to get supplemental geographical data about the top sites
- 3. Use the FourSquare API to get top restaurent recommendations closest to each of the top site
- 4. Use open source Chicago Crime data to provide the user with additional crime data

Top Sites from FourSquare Website

Although FourSquare provides a comprehensive API, one of the things that API does not easily support is a mechanism to directly extract the top N sites / venues in a given city. This data, however, is easily available directly from the FourSquare Website. To do this simply go to www.foursquare.com, enter the city of your choise and select Top Picks from I'm Looking For selection field.

Using BeautifulSoup and Requests the results of the Top Pick for Chicago was retrieved. A sample venue is shown below:

From this HTML the following data can be extracted:

- Venue Name
- Venue Score
- Venue Category
- Venue HREF
- Venue ID [Extracted from the HREF]

A sample of the extracted data is given below:

id	score	category	name	href
42b75880f964a52090251fe3	9.7	Park	Millennium Park	/v/millennium- park/42b75880f964a52090251fe3
4b9511c7f964a520f38d34e3	9.6	Trail	Chicago Lakefront Trail	/v/chicago-lakefront- trail/4b9511c7f964a520f38
49e9ef74f964a52011661fe3	9.6	Art Museum	The Art Institute of Chicago	/v/the-art-institute-of- chicago/49e9ef74f964a5
4f2a0d0ae4b0837d0c4c2bc3	9.6	Deli / Bodega	Publican Quality Meats	/v/publican-quality- meats/4f2a0d0ae4b0837d0c4c
4aa05f40f964a520643f20e3	9.6	Theater	The Chicago Theatre	/v/the-chicago- theatre/4aa05f40f964a520643f20e3

We will have a closer look at this data gather later on when the supplemental geographical data has been added.

Supplemental Geographical Data

Using the id field extracted from the HTML it is then possible to get further supplemental geographical details about each of the top sites from FourSquare using the following sample API call:

```
# Get the properly formatted address and the latitude and longitude
url =
'https://api.foursquare.com/v2/venues/{}?client_id={}&client_secret={}&v={}'.format(
    venue_id,
    cfg['client_id'],
    cfg['client_secret'],
    cfg['version'])

result = requests.get(url).json()
result['response']['venue']['location']
```

The requests returns a JSON object which can then be queried for the details required. The last line in the sample code above returns the following sample JSON:

```
{
    "city":"Chicago",
    "lng":-87.62323915831546,
    "crossStreet":"btwn Columbus Dr & Michigan Ave",
    "neighborhood":"The Loop",
    "postalCode":"60601",
    "cc":"US",
    "formattedAddress":[
        "201 E Randolph St (btwn Columbus Dr & Michigan Ave)",
        "Chicago, IL 60601",
        "United States"
    ],
    "state":"IL",
    "address":"201 E Randolph St",
    "lat":41.8826616030636,
    "country":"United States"
}
```

From this the following attributes are extracted:

- Venue Address
- Venue Postalcode
- Venue City
- Venue Latitude
- Venue Longitude

Final FourSquare Top Sites Data

A sample of the final FourSquare Top Sites data is shown below:

id	score	category	name	address	postalcod e	city	href	latitude	longitude
42b75880 f964a520 90251fe3	9.7	Park	Millennium Park	201 E Randolph St	60601	Chicago	/v/millennium- park/42b75880f96 4a52090251fe3	41.882662	-87.623239
4b9511c7 f964a520f 38d34e3	9.6	Trail	Chicago Lakefront Trail	Lake Michigan Lakefront	60611	Chicago	/v/chicago- lakefront- trail/4b9511c7f96 4a520f38	41.967053	-87.646909
49e9ef74f 964a5201 1661fe3	9.6	Art Museum	The Art Institute of Chicago	111 S Michigan Ave	60603	Chicago	/v/the-art- institute-of- chicago/49e9ef74f 964a5	41.879665	-87.623630
4f2a0d0a e4b0837 d0c4c2bc 3	9.6	Deli / Bodega	Publican Quality Meats	825 W Fulton Market	60607	Chicago	/v/publican- quality- meats/4f2a0d0ae4 b0837d0c4c	41.886642	-87.648718
4aa05f40f 964a5206 43f20e3	9.6	Theater	The Chicago Theatre	175 N State St	60601	Chicago	/v/the-chicago- theatre/4aa05f40f 964a520643f20e3	41.885578	-87.627286

Data Analysis and Visualisation

An initial look at the data shows that there are 30 rows of data [as expected] each with 10 attributes. The variable types are all correct except the Venue Rating or Score which will be converted to a float. After converting the score column to a float it can clearly be seen that we have the top venues with a mean of 9.532.

```
df top venues.shape
(30, 10)
df_top_venues.dtypes
id
              object
               object
score
category
             object
              object
name
address object postalcode object
address
             object
city
              object
href
              object
latitude float64
```

```
longitude float64
dtype: object
df top venues.score.describe()
count 30.000000
mean
       9.523333
       0.072793
std
       9.400000
min
25%
       9.500000
50%
       9.500000
75%
       9.600000
        9.700000
Name: score, dtype: float64
```

We are now ready to get the top restaurents within 500 meters of each of the top sites.

FourSquare Restaurent Recommendation Data

Using the the list of all id values in the Top Sites DataFrame and the FourSquare categoryID that represents all food venues we now search for restaurants within a 500 meter radius.

```
# Configure additional Search parameters
categoryId = '4d4b7105d754a06374d81259'
radius = 500
limit = 15
url =
'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&ll={},{}&v
={}&categoryId={}&radius={}&limit={}'.format(
    cfg['client_id'],
    cfg['client_secret'],
    ven_lat,
    ven_long,
    cfg['version'],
    categoryId,
    radius,
    limit)
results = requests.get(url).json()
```

The requests returns a JSON object which can then be queried for the restaurant details required. A sample restaurnt from the results returned is shown below:

```
"label": "display",
                 "lng":-87.62460021795313,
                 "lat":41.88169538551873
            }
        "crossStreet":"btwn E Madison & E Monroe St",
        "postalCode": "60603",
        "formattedAddress":[
            "12 S Michigan Ave (btwn E Madison & E Monroe St)",
            "Chicago, IL 60603",
            "United States"
        "distance":155,
        "city": "Chicago",
        "lng":-87.62460021795313,
        "neighborhood": "The Loop",
        "cc":"US",
        "state": "IL",
        "address": "12 S Michigan Ave",
        "lat":41.88169538551873,
        "country": "United States"
    "name": "Cindy's",
    "categories":[
        {
            "pluralName": "Gastropubs",
            "id":"4bf58dd8d48988d155941735",
            "name": "Gastropub",
            "primary":"True",
            "icon":{
                 "prefix": "https://ss3.4sqi.net/img/categories_v2/food/gastropub_",
                 "suffix":".png"
            "shortName":"Gastropub"
        }
    ]
},
```

From this JSON the following attributes are extraced and added to the Dataframe:

- Restaurant ID
- Restaurant Category Name
- Restaurant Category ID
- Restaurant Nest_name
- Restaurant Address
- Restaurant Postalcode
- Restaurant City
- Restaurant Latitude
- Restaurant Longitude
- Venue Name

- Venue Latitude
- Venue Longitude

The only piece of data that is missing is the Score or Rating of the Restaurant. To get this we need to make another FourSquare API query using the id of the Restaurant:

```
# Get the restaurant score and href
rest_url =
'https://api.foursquare.com/v2/venues/{}?client_id={}&client_secret={}&v={}'.form
at(
    rest_id,
    cfg['client_id'],
    cfg['client_secret'],
    cfg['version'])

result = requests.get(rest_url).json()
rest_score = result['response']['venue']['rating']
```

Using just the data in this DataFrame we will be able to generate maps displaying the chosen Top List Venue and the best scored surrounding restaurants. A sample of this data is shown below:

id	score	categ ory	catego ryID	name	addr ess	postal code	city	latitu de	longi tude	venue_ name	venu e_lat itud e	venue_lo ngitude
55669 b9b49 8ee34 e5249 ea61	9.2	Gastro pubs	4bf58d d8d489 88d155 941735	Cindy's	12 S Michi gan Ave	60603	Chic ago	41.88 1695	- 87.62 4600	Millenn ium Park	41.88 2662	- 87.62323 9
55650 9d649 8e726 bdec1 9fe9	8.4	Burge r Joints	4bf58d d8d489 88d16c 941735	Shake Shack	12 S Michi gan Ave	60603	Chic ago	41.88 1673	- 87.62 4455	Millenn ium Park	41.88 2662	- 87.62323 9
49e74 9fbf96 4a520 86641f e3	9.1	Gastro pubs	4bf58d d8d489 88d155 941735	The Gage	24 S Michi gan Ave	60603	Chic ago	41.88 1319	- 87.62 4642	Millenn ium Park	41.88 2662	- 87.62323 9
4e879 cdc93a dfd05 1d6d6 09e	9.2	Breakf ast Spots	4bf58d d8d489 88d143 941735	Wildberry Pancakes & Cafe	130 E Rand olph St	60601	Chic ago	41.88 4599	- 87.62 3203	Millenn ium Park	41.88 2662	- 87.62323 9
49d81 59cf96	8.5	Pubs	4bf58d d8d489	Miller's	134 S Wab	60603	Chic	41.87	- 87.62	Millenn ium	41.88	- 87.62323

id	score	categ ory	catego ryID	name	addr ess	postal code	city	latitu de	longi tude	venue_ name	venu e_lat itud e	venue_lo ngitude
4a520 a05d1f e3			88d11b 941735	Pub	ash Ave		ago	9911	5972	Park	2662	9

Looking at the data we get an interesting insight into the range of restuarants that are included. From a list of 30 top venues only 28 actually had more than 10 to provide the user with a real choice. In total there were 387 restaurants found of which 240 were unique occuring only once in the data. There were 72 categories of restaurants. The mean score of all the restaurants wa 8.23 with a manimum value of 9.5 and a minimum value of 5.3.

Coffee Shops (52) and Pizza Places (29) were the top two most frequently occurring categories but Pie Shops (9.4000) and French Restaurants (9.4000) were the restaurant categories with the highest average score.

```
# What is the shape of the Restaurants DataFrame
df restaurant.shape
(387, 13)
# Get a count of the top venues that had more than 10 restaurant within 500 meters
# The number of unique restaurants
# The number of unique restaurant categories
df restaurant.venue name.nunique()
df_restaurant.name.nunique()
df_restaurant.category.nunique()
# Look at the data types
df restaurant.dtypes
id
                   object
                  float64
score
category
                   object
categoryID
                   object
name
                   object
address
                   object
                   object
postalcode
                   object
city
latitude
                  float64
longitude
                  float64
venue_name
                 object
```

```
venue_latitude
                 float64
venue_longitude
                 float64
dtype: object
# Describe the Score attribute
df_restaurant.score.describe()
count 387.000000
mean 8.286563
std
        0.930138
min
        5.300000
        7.800000
25%
       8.500000
9.000000
9.500000
50%
75%
Name: score, dtype: float64
df_restaurant.groupby('category')['name'].count().sort_values(ascending=False)[:10]
category
Coffee Shops
                                  52
Pizza Places
                                  29
Cafés
                                  24
                                  15
Bakeries
Burger Joints
                                  15
                                 15
Gastropubs
New American Restaurants
                                  15
Mexican Restaurants
                                  14
                                 13
Breakfast Spots
Fast Food Restaurants
                                  13
df_restaurant.groupby('category')['score'].mean().sort_values(ascending=False)[:10]
category
Pie Shops
                                  9.4000
French Restaurants
                                  9.4000
Molecular Gastronomy Restaurants 9.3000
Filipino Restaurants
                                9.2000
Cuban Restaurants
                                9.1000
                                 9.0625
Ice Cream Shops
                             9.0600
Mediterranean Restaurants
Korean Restaurants
                                 9.0000
Latin American Restaurants
                                9.0000
Fish & Chips Shops
                                9.0000
```

Chicago Crime Data

This dataset can be download from the <u>Chicago Data Portal</u> and reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago in the last year, minus the most recent seven days. A full desription of the data is available on the site.

Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified.

Column Name	Туре	Description
CASE#	Plain Text	The Chicago Police Department RD Number (Records Division Number), which is unique to the incident.
DATE OF OCCURRENCE	Date & Time	Date when the incident occurred. this is sometimes a best estimate.
BLOCK	Plain Text	The partially redacted address where the incident occurred, placing it on the same block as the actual address.
IUCR	Plain Text	The Illinois Unifrom Crime Reporting code. This is directly linked to the Primary Type and Description. See the list of IUCR codes at https://data.cityofchicago.org/d/c7ck-438e .
PRIMARY DESCRIPTION	Plain Text	The primary description of the IUCR code.
SECONDARY DESCRIPTION	Plain Text	The secondary description of the IUCR code, a subcategory of the primary description.
LOCATION DESCRIPTION	Plain Text	Description of the location where the incident occurred.
ARREST	Plain Text	Indicates whether an arrest was made.
DOMESTIC	Plain Text	Indicates whether the incident was domestic-related as defined by the Illinois Domestic Violence Act.

Column Name	Туре	Description
BEAT	Plain Text	Indicates the beat where the incident occurred. A beat is the smallest police geographic area – each beat has a dedicated police beat car. Three to five beats make up a police sector, and three sectors make up a police district. The Chicago Police Department has 22 police districts. See the beats at https://data.cityofchicago.org/d/aerh-rz74 .
WARD	Number	The ward (City Council district) where the incident occurred. See the wards at https://data.cityofchicago.org/d/sp34-6z76 .
FBI CD	Plain Text	Indicates the crime classification as outlined in the FBI's National Incident-Based Reporting System (NIBRS). See the Chicago Police Department listing of these classifications at http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html .
X COORDINATE	Plain Text	The x coordinate of the location where the incident occurred in State Plane Illinois East NAD 1983 projection. This location is shifted from the actual location for partial redaction but falls on the same block.
Y COORDINATE	Plain Text	The y coordinate of the location where the incident occurred in State Plane Illinois East NAD 1983 projection. This location is shifted from the actual location for partial redaction but falls on the same block.
LATITUDE	Number	The latitude of the location where the incident occurred. This location is shifted from the actual location for partial redaction but falls on the same block.
LONGITUDE	Number	The longitude of the location where the incident occurred. This location is shifted from the actual location for partial redaction but falls on the same block.
LOCATION	Location	The location where the incident occurred in a format that allows for creation of maps and other geographic operations on this data portal. This location is shifted from the actual location for partial redaction

Column Name	Туре	Description
		but falls on the same block.

Not all of the attributes are required so on the following data was imported:

- Date of Occurance
- Block
- Primary Description
- Ward
- Latitude
- Longitude

A sample of the imported data is shown.

CASE#	DATE OF OCCURRENCE	BLOCK	PRIMARY DESCRIPTION	WARD	LATITUDE	LONGITUDE
JB241987	04/28/2018 10:05:00 PM	009XX N LONG AVE	NARCOTICS	37.0	41.897895	-87.760744
JB241350	04/28/2018 08:00:00 AM	008XX E 53RD ST	CRIMINAL DAMAGE	5.0	41.798635	-87.604823
JB245397	04/28/2018 09:00:00 AM	062XX S MICHIGAN AVE	THEFT	20.0	41.780946	-87.621995
JB241444	04/28/2018 12:15:00 PM	046XX N ELSTON AVE	THEFT	39.0	41.965404	-87.736202
JB241667	04/28/2018 04:28:00 PM	022XX S KENNETH AVE	ARSON	22.0	41.850673	-87.735597

This data was then processed as follows:

- 1. Move September 2017 dates to September 2018 The extract of data used was taken mid September which meant that there was half a months data for September 2017 and half a months data for September 2018. These were combined to create a single month.
- 2. Clean up the column names:
 - i. Strip leading & trailing whitespace

- ii. Replace multiple spaces with a single space
- iii. Remove # characters
- iv. Replace spaces with _
- v. Convert to lowercase
- 3. Change the date of occurrence field to a date / time object
- 4. Add new columns for:
 - i. Hour
 - ii. Day
 - iii. Month
 - iv. Year
 - v. etc.
- 5. Split Block into zip_code and street
- 6. Verify that all rows have valid data

Data Analysis and Visualisation

Now let's look at some of the attributes and statistics of the crime dataset.

We will start by looking at the top three crimes and a total count for each crime type:

```
# What Crimes are the 3 most commonly occuring ones
df[['primary_description', 'case']].groupby(
     ['primary_description'], as_index=False).count().sort_values(
     'case', ascending=False).head(3)
```

primary_description	case
THEFT	63629
BATTERY	49498
CRIMINAL DAMAGE	27980

To get a better understanding of the data we will now visualise it. The number of crimes per month, day and hour were calculated:

Looking at the top three crimes it is clearly visible that the occurrences of theft rise greatly during daylight hours and particularly between the hours of 3:00 pm and 5:00 pm.

Unsurprisingly there little obvious variation in the number of crimes committed per month other than an apparent drop-off in February. There is a small increase in crime reported at the weekend, Saturday and Sunday, but

nothing that could be considered significant. There is an expected fall-off in reported crime rates after midnight and before eight in the morning.

Finally the crimes data for a single month, August, was super-imposed over a map of Chicago to visualise the distribution of that data:

The higher frequency of the top two crimes can be easily seen. Red for Theft and Blue for Battery.

Next the crimes were clustered:

Several obvious clusters of crime locations were visible, particularly in the center of Chicago.

Finally a heat map of the August crimes was created:

This reinforces the cluster chart where it can clearly be seen that the center of Chicago and the area around Oak Park have a high crime rate occurrence. It will be interesting to see later if there is a high probability of crime in these areas if one of the top listed venues are located in these areas.