Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

Examen Localización de un robot diferencial

Alumno:

1.- Un robot diferencial se encuentra en la posición inicial $(-1, -5, 0^{\circ})$, posteriormente genera el siguiente historial de pasos:

Paso	v(m/s)	ω (rad/s)	Δt (s)
1	1.0	0.0	1.0
2	0.0	π/3	1.0
3	1.0	0.0	1.0
4	0.0	π/3	1.0
5	1.0	0.0	1.0
6	0.0	π/3	1.0
7	1.0	0.0	1.0
8	0.0	π/3	1.0
9	1.0	0.0	1.0
10	0.0	π/3	1.0
11	1.0	0.0	1.0
12	0.0	π/3	1.0

a) Obtén la pose del robot en cada paso, integrando numéricamente siguiendo la suposición de Markov. Muestra tus resultados en una tabla.

b) Calcula la pose final (x, y, θ) del robot tras completar los 12 pasos.

X	Υ	Theta Rad
-1.0000	-5.0000	0
0	-5.0000	0
0	-5.0000	1.0472
0.5000	-4.1340	1.0472
0.5000	-4.1340	2.0944
0	-3.2679	2.0944
0	-3.2679	3.1416
-1.0000	-3.2679	3.1416
-1.0000	-3.2679	4.1888
-1.5000	-4.1340	4.1888
-1.5000	-4.1340	5.2360
-1.0000	-5.0000	5.2360
-1.0000	-5.0000	6.2832

2.- Un robot diferencial con los siguientes parámetros:

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

Radio de las ruedas: 0.1m.

Distancia entre ruedas (eje): L= 0.4m Pose inicial (x_0 , y_0 , θ_0) = (0, 0, 0°)

Recibe las siguientes señales de entrada:

Pas	V_m_	W_rad	omega_R_ra	omega_L_ra	X_m	Y_m	Theta_r	Theta_d
0	S	_S	d_s	d_s			ad	eg
1	0.314	0.7202	4.582	1.701	0.31415	0	0.72025	41.2672
	15	5						9
2	0.3563	0.605	4.773	2.353	0.58196	0.23500	1.32525	75.9312
						6		3
3	0.448	0.4037	5.291	3.676	0.690947	0.66990	1.729	99.0644
	35	5				7		
4	0.540	0.276	5.96	4.856	0.605747	1.20395	2.005	114.878
	8					4		
5	0.605	0.218	6.49	5.618	0.351063	1.75317	2.223	127.368
	4					6		5
6	0.628		-1.168	13.735	-0.03031	2.25255	-1.5025	- 00 4040
	35	3.7257				6		86.1012
	0.005	5	1.004	10 470	0.010050	1 04055	E 011E	
7	0.605 4	-3.709	-1.364	13.472	0.010856	1.64855 7	-5.2115	200 611
8	0.540	0.276	5.96	4.856	0.260026	2.12331	-4.9355	298.611
0	0.540	0.276	5.96	4.000	0.269826	2.12331	-4.9333	282.798
9	0.448	0.4037	5.291	3.676	0.369139	2.56053	-4.532	202.790
9	35	0.4037 5	5.291	3.070	0.309139	2.56055	-4.552	259.664
10	0.356	0.605	4.773	2.353	0.305215	2.91105	-3.927	200.004
10	3	0.003	4.773	2.000	0.000210	2.51105	-0.527	225.001
11	0.314	0.7202	4.582	1.701	0.083079	3.13319	-3.2065	
	15	5	4.002	1.701	0.000070	0.10010	0.2000	183.733
12	0.356	0.605	4.773	2.353	-0.27246	3.15638	-2.6015	-
	3	0.000				9		149.069
13	0.448	0.4037	5.291	3.676	-0.65705	2.92593	-2.198	-
	35	5				7		125.936
14	0.540	0.276	5.96	4.856	-0.97444	2.48806	-1.922	-
	8					6		110.122
15	0.605	0.218	6.49	5.618	-1.18272	1.91962	-1.704	-97.632
	4							
16	0.628	0.2012	6.686	5.881	-1.26617	1.29683	-1.5025	-
	35	5				6		86.1012
17	0.605	0.218	6.49	5.618	-1.225	0.69283	-1.2845	-
	4							73.6108
18	0.540	0.276	5.96	4.856	-1.07241	0.17401	-	-
	8						1.00875	57.7971
19	0.448	0.4037	5.291	3.676	-0.83348	-0.2053	-0.605	-
	35	5						34.6639
20	0.356	0.605	4.773	2.353	-0.54042	-0.4080	-5.55E-	-3.18E-
	3						16	14
21	0.314	0.7202	4.582	1.701	-0.22627	-0.4080	0.72025	41.2672
	15	5						9

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

Completa la tabla y genera la simulación de la trayectoria del robot en Matlab

3.- Considerando los parámetros del robot descrito en el reactivo 2. Obtén la tabla de las señales de entrada ω_R (rad/s) y ω_L (rad/s) requeridas en cada instante de muestreo si se desea obtener una trayectoria circular con un radio de 20m, cuyo centro sea el origen (0,0). Genera la simulación en Matlab.

Tiempo_s omega_R_rad_s omega_L_rad_s

0	10.1	9.9
5	10.1	9.9
10	10.1	9.9
15	10.1	9.9
20	10.1	9.9
25	10.1	9.9
30	10.1	9.9
35	10.1	9.9
40	10.1	9.9
45	10.1	9.9
50	10.1	9.9
55	10.1	9.9
60	10.1	9.9
65	10.1	9.9
70	10.1	9.9
75	10.1	9.9

Implementación de Robótica Inteligente TE3002B.101 Profesor: Alfredo García Suárez

80	10.1	9.9
85	10.1	9.9
90	10.1	9.9
95	10.1	9.9
100	10.1	9.9

