线性方程组

Didnelpsun

目录

1	基础解系													1									
	1.1	方程求通解					•																1
	1.2	通解求通解																					1
	1.3	特解求通解																					1
	1.4	通解判断特解	! .																				1
	1.5	线性表出 .																					1
2	反求	参数																					1
3	公共	公共解														2							

1 基础解系

1.1 方程求通解

1.2 通解求通解

题目给出 ξ_i 是 Ax = 0 的基础解系,然后判断这几个基础解系的变式是否 还能称为基础解系,判断条件就是对这些基础解析进行初等运算(往往是加减), 如果最后能凑成 0 则代表其线性相关,所以不能成为基础解系,否则可以。

如 $\xi_1 + \xi_2, \xi_2 + x_3, \xi_3 + \xi_1$ 可以成为,因为 $(\xi_1 + \xi_2) - (\xi_2 + x_3) + (\xi_3 + \xi_1) = 2\xi_1 \neq 0$, $\xi_1 - \xi_2$ 、 $\xi_2 - x_3$ 、 $\xi_3 - \xi_1$ 不能成为,因为 $(\xi_1 - \xi_2) + (\xi_2 - x_3) + (\xi_3 - \xi_1) = 0$ 。

1.3 特解求通解

1.4 通解判断特解

已知特解为方程的一个解,知道通解,所以特解可以由通解线性表出,所以 将通解和特解组成增广矩阵进行初等变换(如果是判断多个向量,则可以一起组 成),通解矩阵的秩和增广矩阵的秩相同则代表可以线性表出,否则不能。

1.5 线性表出

2 反求参数

基本上都是给出方程组有无穷多解:

- 齐次方程组:系数矩阵是降秩的:行列式值为 0。
- 非齐次方程组: 系数矩阵与增广矩阵秩相同目降秩。

例题: 已知齐次线性方程组 $\begin{cases} ax_1 - 3x_2 + 3x_3 = 0 \\ x_1 + (a+2)x_2 + 3x_3 = 0 \end{cases}$ 有无穷多解,求参 $2x_1 + x_2 - x_3 = 0$

数a。

解: 使用矩阵比较麻烦, 三阶的系数矩阵可以使用行列式。

解: 使用起阵比较麻烦,三阶的系数起阵可以使用行列式。
$$|A| = \begin{vmatrix} a & -3 & 3 \\ 1 & a+2 & 3 \\ 2 & 1 & -1 \end{vmatrix} = \begin{vmatrix} a & 0 & 3 \\ 1 & a+5 & 3 \\ 2 & 0 & -1 \end{vmatrix} = (a+5)(a+6) = 0.$$

1

解得 a = -5 或 a = -6。

3 公共解