Содержание

§1. Ряды	2
1. Числовые ряды. Определения	2
2. Свойства числовых рядов	3
3. Условия сходимости рядов	6
3.1. Необходимое	6
3.2. Критерии (Необходимое и Достаточное условия)	6
3.3. Достаточное условие (признаки сходимости)	6
4. Знакочередующиеся ряды	10
§2. Функциональные ряды	13
1. Определения	13
2. Степенные ряды	16
3. Ряд Тейлора	18
3.1. Стандартные разложения элементарных функций	19
3.2. Приложения	21
4. Ряды Фурье	21
4.1. Определение	21
4.2. Оценка коэффициентов Фурье	26
4.3. Интеграл Фурье	27
${ m X.}\;\Pi$ рограмма экзамена в $2024/2025$	29
Х.1. Числовые ряды.	29
Х 2. Функциональные рялы	31

§1. Ряды

1. Числовые ряды. Определения

Mem. Числовая последовательность: $\{u_n\}=\{u_1,u_2,\ldots,u_n,\ldots\},u_n\in\mathbb{R}$

 $Ex.\ 1.\$ Бесконечно убывающая геометрическая прогрессия: $u_n = bq^n, \quad \frac{1}{2^n} \stackrel{n=0,1,\dots}{=} \left\{1, \frac{1}{2}, \frac{1}{4}, \dots \right\}$

Ex. 2. $u_n = 1, -1, 1, -1, \dots$

 $\mathbf{Def.}\ \{u_n\}$ - последовательность

 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$ называется числовым рядом

Nota. Начальное значение n произвольно (целое)

Ex. $u_n = \frac{1}{(n-4)^3}$, n = 5, 6, ...

 $u_n = \frac{1}{n^3}, \quad n = 2024, 2025, \dots$

 $Nota. u_n$ называется общим членом ряда

Nota. Существует ли сумма $\sum_{n=1}^{\infty} u_n$ и в каком смысле?

 $Ex. \ 3. \ \sum_{n=1}^{\infty} n = 1 + 2 + 3 + \dots = \infty$ - существует, но бесконечная

Ex. 4. $\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \dots = \begin{bmatrix} 0 + 0 + \dots = 0 \\ 1 + 0 + 0 + \dots = 1 \end{bmatrix}$

Ex. 5. $\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$

Def. Частичная сумма ряда $S_n \stackrel{def}{=} \sum_{k=1}^n u_k$

Nota. Последовательность частичных сумм - $S_1, S_2, S_3, S_4, \ldots$

Ex. $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

 $S_1=u_1=1$ $S_2=rac{3}{2}$ $S_3=rac{7}{4}$ $S_4=rac{15}{8}$ $\lim_{n o\infty}S_n=?$, но проблема заключается в том, что бы найти формулу для S_n

Def. Если $\exists \lim_{n\to\infty} S_n = S \in \mathbb{R}$, то ряд $\sum_{n=1}^{\infty} u_n$ называют сходящимся, а S называют суммой ряда

$$\sum_{n=1}^{\infty} u_n = S$$

Nota. В противном случае ряд расходится, суммы не может быть или она бесконечна

Ех. Поиск суммы по определению

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$u_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_n = \sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 = S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Nota. При исследовании на сходимость используются эталонные ряды

Ex. Геометрический ряд (эталонный): $\sum_{n=0}^{\infty} bq^n$

$$S_n = \sum_{k=0}^n bq^k = b(1+q+q^2+q^3+\cdots+q^n) = b\frac{1-q^n}{1-q}$$

Исследуем предел $\lim S_n$:

$$|q| < 1 \qquad \lim_{n \to \infty} S_n = \frac{b}{1 - q} \lim_{n \to \infty} (1 - q^n) = \frac{b}{1 - q}$$

$$|q| > 1 \qquad \lim_{n \to \infty} S_n = \infty \qquad (q^n \to \infty)$$

$$|q| > 1$$
 $\lim_{n \to \infty} S_n = \infty$ $(q^n \to \infty)$

$$|q| = 1$$

$$\lim_{n \to \infty} b \frac{0}{0}?$$

$$\sum_{n=0}^{\infty} b q^n = \sum_{n=0}^{\infty} b = \infty \quad (b \neq 0)$$

$$q=-1$$
 $\sum_{n=0}^{\infty}b(-1)^n$ - расходится (из четвертого примера)

Lab. Доказать при q = -1 по def $(S_n = ?)$

2. Свойства числовых рядов

Nota. Свойства рядов используются в арифметических операциях с рядами и при исследовании на сходимость

Тh. 1. Отбрасывание или добавление конечного числа членов ряда не влияет на сходимость, но влияет на сумму

$$\sum_{n=1}^{\infty} u_n$$
 и $\sum_{n=k>1}^{\infty} u_n$ одновременно сходятся или расходятся

$$S_{n}^{u} = \sum_{n=1}^{\infty} u_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{k} + u_{k+1} + \dots + u_{n} + \dots$$

$$S_{n}^{v} = \sum_{n=k}^{\infty} v_{n} \qquad u_{n} = v_{n} \quad \forall n \ge k$$

$$S_{n}^{u} = \underbrace{u_{1} + u_{2} + \dots + u_{k-1}}_{\sigma \in \mathbb{R}} + \underbrace{u_{k} + \dots + u_{n}}_{S_{n}^{v}} = \sigma + S_{n}^{v}$$

$$\lim_{n \to \infty} S_{n}^{u} = \lim_{n \to \infty} (\sigma + S_{n}^{v}) = \sigma + \lim_{n \to \infty} S_{n}^{v}$$

Оба предела либо существуют (либо конечны, либо нет), либо не существуют

$$extbf{Th. 2.} \sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \quad \alpha \in \mathbb{R}$$
 Тогда $\alpha \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \alpha u_n = \alpha S$

□ По свойству пределов □

Th. 3.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \ \sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}$$
 Тогда $\sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$ - сходится

$$\square$$
 По свойству пределов $\lim_{n\to\infty}(S_n\pm\sigma_n)=\lim_{n\to\infty}S_n\pm\lim_{n\to\infty}\sigma_n=S\pm\sigma$ \square

Nota. Обратное неверно! Теорема разрешает складывать и вычитать сходящиеся ряды, но из сходимости суммы рядов не следует сходимость каждого из них

сходимости суммы рядов не следует сходимость каждого из них
$$Ex. \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
, но: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, а $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n+1}$ расходятся

Nota. Докажем расходимость $\sum_{n=1}^{\infty} \frac{1}{n}$

Ех. Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} u_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

$$\sum_{n=1}^{\infty} v_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{16} + \frac{1}{$$

$$= 1 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \frac{1}{16} \cdot 8 + \dots = 1 + \sum_{n=1}^{\infty} \frac{1}{2} = \infty$$

А так как нижний ряд почленно меньше верхнего, а нижний расходится, то и верхний расходится

Так как $u_n \geq v_n$, то $S_n \geq \sigma_n$, тогда $\lim_{n \to \infty} S_n \geq \lim_{n \to \infty} \sigma_n$

$$\sigma_n = 1 + \frac{1}{2} \cdot n \to \infty \Longrightarrow S_n \to \infty$$

Th. 4. Если ряд сходится к числу S, то члены ряда можно группировать произвольным образом, не переставляя, и сумма всех рядов будет равна S

Группировка означает выделение различных подпоследовательностей из последовательности частичных сумм

Так как
$$\lim_{n\to\infty}S_n=S$$
, то $\lim_{k\to\infty}S_n^{(k)}=S$, где $S_n^{(k)}$ - подпоследовательность S_n

$$Ex.$$
 Было $\sum (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + 1 - \dots = \begin{bmatrix} 0, \\ 1, \end{bmatrix}$ так как ряд расходится

$$Nota.$$
 В условиях **Th.** важно, что переставлять члены ряда нельзя $Ex.$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} + \dots$

Далее будет доказано, что этот ряд сходится

Найдем сумму, переставив члены ряда

$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{4} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{8} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{12} + \left(\frac{1}{9} - \frac{1}{18}\right) + \dots$$

$$S = 1 - \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6}\right) = 1 + \frac{1}{2} \left(-1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = 1 + \frac{1}{2} \left(-2 + 1 - \frac{1}{2} + \frac{1}{3} + \dots\right) = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = \frac{1}{2}S$$
 ?!

 $ar{N}ota$. Можно доказать, что в подобных рядах перестановкой членов можно получить любое наперед заданное число

Nota. Сходящиеся ряды допускают умножение, но непочленное. В действительности используют формулы перемножения рядов (см. литературу)

$$\sum_{n=1}^{\infty}u_n=S, \sum_{n=1}^{\infty}v_n=\sigma$$
Тогда $\left(\sum_{n=1}^{\infty}u_n\right)\left(\sum_{n=1}^{\infty}v_n\right)=S\sigma$

3. Условия сходимости рядов

3.1. Необходимое

Th.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R} \Longrightarrow \lim_{n \to \infty} u_n = 0$$

$$\lim_{\substack{n \to \infty \\ \square}} S_n = S, \quad \lim_{\substack{n \to \infty \\ \square}} (S_n - S_{n-1}) = 0$$

Nota. Обратное неверно! (см. гармонический ряд)

$$Ex. \sum_{n=1}^{\infty} (2n+3) \sin \frac{1}{n}$$
$$\lim_{n \to \infty} (2n+3) \sin \frac{1}{n} = \lim_{n \to \infty} (2+\frac{3}{n}) = 2 \neq 0$$

3.2. Критерии (Необходимое и Достаточное условия)

Мет. Критерий Коши для последовательности:

$$\{x_n\}$$
 сходится $\Longleftrightarrow \forall \varepsilon > 0$ $\exists n_0 \in \mathbb{N} \mid \forall m > n > n_0 \mid |x_m - x_n| < \varepsilon$

$$\mathbf{Th.}\ (\text{без док-ва})$$

$$\sum_{n=1}^{\infty}u_n\ \text{сходится} \Longleftrightarrow \forall \varepsilon>0\ \exists n_0\in\mathbb{N}\ |\ \forall m>n>n_0\ |u_{n+1}+\dots+u_m|<\varepsilon$$

$$|S_m-S_n|<\varepsilon$$

Nota. Хвост ряда попадает в ε -трубу

Nota. Критерий не удобен для непосредственного исследования на сходимость, в отличии от признаков

3.3. Достаточное условие (признаки сходимости)

Здесь мы рассмотрим:

- 1. Признак сравнения (в неравенствах)
- 2. Предельный признак сравнения
- 3. Признак Даламбера
- 4. Признак Коши (радикальный)

5. Признак Коши (интегральный)

Далее $\sum_{n=1}^\infty u_n$ - исследуемый ряд, $\sum_{n=1}^\infty v_n$ - вспомогательный (уже исследован на сходимость), для простоты $v_n, u_n > 0$ (для отрицательных доказывается аналогично)

Th. 1. Признак сравнения (в неравенствах)

а)
$$\exists 0 < u_n \le v_n$$
. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится

а)
$$\exists 0 < u_n \le v_n$$
. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится б) $\exists 0 \le v_n \le u_n$. Тогда $\sum v_n$ расходится $\Longrightarrow \sum u_n$ расходится

а) Строим частичные суммы:

$$\sum v_n$$
 сходится \iff $\exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$ S_n, σ_n возрастают и обе ограничены числом σ

Следовательно $\exists \lim_{n \to \infty} S_n = S \le \sigma$

Аналогично пункт б)

Th. 2. Предельный признак

$$\lim_{n\to\infty}\frac{u_n}{v_n}=q\in\mathbb{R}\setminus\{0\}\implies\begin{bmatrix} \sum u_n \text{ сходится, если } \sum v_n \text{ сходится}\\ \sum u_n \text{ расходится, если } \sum v_n \text{ расходится} \end{cases}$$

По определению предела

$$\exists \lim_{n \to \infty} \frac{u_n}{v_n} = q \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \mid \forall n > n_0 \ \left| \frac{u_n}{v_n} - q \right| < \varepsilon$$

$$\left| \frac{u_n}{v_n} - q \right| < \varepsilon \Longleftrightarrow q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon$$

$$(q-\varepsilon)v_n < u_n < (q+\varepsilon)v_n$$

а) Если $\sum v_n$ сходится, то из правой части неравенства: $0 < u_n < (q+\varepsilon)v_n$

По признаку сравнения $\sum u_n$ также сходится

б) Если $\sum v_n$ расходится, то из левой части неравенства: $0 < (q-\varepsilon)v_n < u_n$

Тогда по пункту б) **Th. 1.** $\sum u_n$ расходится

Nota. При q=0 можем говорить, что u_n - бесконечно малая высшего порядка, чем v_n , а значит, если ряд v_n сходится, то u_n сходится

$$Ex. \ 1. \ \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} u_n$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} v_n \text{ сходится}$$

$$\frac{1}{n(n+1)} = \frac{1}{n^2+n} > \frac{1}{n^2+2n+1} = \frac{1}{(n+1)^2}$$

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ сходится по признаку сравнения}$$

$$Ex. \ 2. \ \sum_{n=1}^{\infty} \frac{1}{n!} = \sum_{n=1}^{\infty} u_n$$
 $\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} v_n$ сходится

Начиная с некоторого n_0 $n! > 2^n$. Тогда $u_n < v_n$ при $n > n_0$, по признаку сравнения $\sum_{i=1}^{\infty} \frac{1}{n!}$ сходится

Ex. 3.
$$\sum_{n=1}^{\infty} \arcsin \frac{1}{n}$$

Nota. Члены рядов u_n и v_n - бесконечно малые последовательности. Иначе ряды расходятся по необходимому условию. Тогда в Тh. 2. сравниваются порядки бесконечно малых, и ряды одновременно сходятся или расходятся, если u_n и v_n одного порядка малости. По этому принципу подбирается вспомогательный ряд

$$u_n = \arcsin \frac{1}{n} \sim \frac{1}{n} = v_n$$
 $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Th. 3. Признак Даламбера

$$\sum_{n=1}^{\infty}u_n$$
 - исследуемый, $\exists \mathcal{D}=\lim_{n o\infty}rac{u_{n+1}}{u_n}\in\mathbb{R}^+$

- a) $0 \le \mathcal{D} < 1$ $\Longrightarrow \sum u_n$ сходится б) $\mathcal{D} > 1$ $\Longrightarrow \sum u_n$ расходится
- в) $\mathcal{D} = 1$ \Longrightarrow ничего не следует, требуется другое исследование

а) По определению предела
$$\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}, \ 0 \le \mathcal{D} < 1 \Longleftrightarrow$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ \left| \frac{u_{n+1}}{u_n} - \mathcal{D} \right| < \varepsilon \iff \mathcal{D} - \varepsilon < \frac{u_{n+1}}{u_n} < \mathcal{D} + \varepsilon$$
 Так как $0 \le \mathcal{D} < 1$, можно втиснуть число r между \mathcal{D} и 1: $\mathcal{D} < r < 1$

Положим $\varepsilon = r - \mathcal{D}$, то есть $\mathcal{D} + \varepsilon = r$

Смотрим правую часть $\frac{u_{n+1}}{u_n} < r$ для $\forall n > n_0$, где $n_0 = n_0(\varepsilon)$, $\varepsilon = r - \mathcal{D}$

$$u_{n_0+1} < ru_{n_0}$$

$$u_{n_0+2} < ru_{n_0+1} < r^2 u_{n_0}$$

$$u_{n_0+l} < r^l u_{n_0}$$

$$\sum_{n=1}^{\infty} u_n = \underbrace{u_1 + u_2 + \dots + u_{n_0-1}}_{k} + u_{n_0} + \dots = k + \sum_{m=1}^{\infty} v_m$$

Члены $v_m < r^l u_{n_0}; \; u_{n_0}$ - фикс. число, а $\sum_{l=1}^\infty r^l$ сходится как геометрический при |r| < 1

Итак ряд $\sum_{l=1}^{\infty} r^l u_{n_0}$ сходится и почленно превышает $\sum v_m = (\sum u_n) - k$

To есть $\sum u_n$ сходится

б) <u>Lab.</u> (взять r между $\mathcal D$ и $1, 1 < r < \mathcal D, \mathcal D - r = \varepsilon$)

Сравнить $\sum u_n$ с $\sum r^l$ (расходящимся)

$$Ex.\ 1.\ \sum_{n=1}^{\infty} \frac{1}{n!}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$ - сходится

$$Ex. \ 2. \ \sum_{n=1}^{\infty} \frac{1}{n}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{n}{n+1} = 1$ - расходится

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \mathcal{D} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1 - \text{сходится}$$

Th. 4. Радикальный признак Коши

$$\sum_{n=1}^{\infty} u_n \qquad u_n \ge 0 \text{ и } \exists \lim_{n \to \infty} \sqrt[n]{u_n} = K \in \mathbb{R}$$

- а) $0 \le K < 1 \Longrightarrow \sum u_n$ сходится
- б) $K > 1 \Longrightarrow \sum u_n$ расходится

 $Nota.\ K=1$ - ничего не следует

а) По определению предела $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \sqrt[n]{u_n} - K | < \varepsilon$

 $\Longleftrightarrow K - \varepsilon < \sqrt[n]{u_n} < K + \varepsilon$ Положим $\varepsilon = r - K,$ где K < r < 1

 $\Longrightarrow 0 \leq u_n < r^n$ - геом. ряд с |r| < 1, то есть $\sum r^n$ сходится

б) Аналогично

Ex. 1.
$$\sum_{n \to \infty} \left(\frac{n}{n+1} \right)^n \qquad K = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\mathcal{D} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n+2}\right)^{n+1}}{\left(1 - \frac{1}{n+1}\right)^n}$$

Ho $\lim_{n\to\infty}u_n=e^{-1}\neq 0$ - необходимое условие не выполняется

$$Ex. \ \mathcal{Z}. \ \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}, \qquad K = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^n} = e^{-1} < 1$$
 - сходится

Th. 5. Интегральный признак Коши

Если существует $f(x):[1;+\infty]\to\mathbb{R}^+, f(x)$ монотонно убывает, $f(n)=u_n$, то $\sum_{n=1}^\infty u_n$ и

 $\int_{1}^{\infty} f(x)dx$ одновременно сходятся или расходятся

$$\int_{1}^{+\infty} f(x)dx = \lim_{b \to \infty} \int_{1}^{b} f(x)dx$$

$$\sum_{n=2}^{b} u_{n} = u_{2} \cdot 1 + u_{3} \cdot 1 + \dots < \int_{1}^{b} f(x)dx < u_{1} \cdot 1 + u_{2} \cdot 1 + \dots = \sum_{n=1}^{b-1} u_{n}$$
Обозначим
$$\sum_{n=1}^{b-1} u_{n} = S_{b-1}, \quad \sum_{n=2}^{b} u_{n} = S_{b-1} - u_{1} + u_{b}$$

$$0 < S_{b-1} - u_{1} + u_{b} < \int_{1}^{b} f(x)dx < S_{b-1}$$

$$0 < \sum_{n=1}^{\infty} u_{n} - u_{1} + u_{b} < \int_{1}^{\infty} f(x)dx < \sum_{n=1}^{\infty} u_{n}$$
Если
$$\int \text{ сходится, то смотрим левую часть}$$
Если
$$\int \text{ расходится, то смотрим правую часть неравенства}$$

4. Знакочередующиеся ряды

 $\mathbf{Def.}\ \sum_{n=0}^{\infty} (-1)^n u_n\ (u_n>0)$ - знакочередующийся ряд

Th. Признак Лейбница

Если для знакочередующегося ряда $\sum_{n=0}^{\infty} (-1)^n u_n$ верно, что $u_n \to 0$ и $|u_1| > |u_2| > \cdots > |u_n|$,

то ряд $\sum_{n=0}^{\infty} (-1)^n u_n$ сходится

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + u_n + \dots$$

$$S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n})$$

Все слагаемые в скобках будут больше нуля, тогда частичные суммы будут возрастать

$$S_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n} < u_1$$

Здесь же тоже все слагаемые больше нуля - их мы вычитаем из u_1 и получаем число гарантированно меньшее u_1

По **Th.** о монотонности и ограниченности последовательность $\exists \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$

$$S_{2n+1} = S_{2n} + u_{2n+1};$$
 $\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} u_{2n+1} = S \in \mathbb{R}$

 $Ex. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ $u_n = \frac{1}{n} \xrightarrow[n \to \infty]{} 0, \qquad \frac{1}{n} > \frac{1}{n+1} \Longrightarrow$ ряд сходится

Nota. Оценка остатка ряда

Запишем ряд:
$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - \dots \pm u_n \mp u_{n+1} = S + \sum_{k=n+1}^{\infty} (-1)^k u_k = S_n + R_n$$

$$\uparrow$$
 остаток ряда

В доказательстве Тh. было установлено, что сумма ряда не превышает своего первого члена

$$R_{n+1} < |(-1)^{k+1}u_k| = u_k = u_{n+1}$$

Ex.
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} \underbrace{-\frac{1}{32} + \dots}_{R_4} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

$$|R_4| < \frac{1}{32}$$

Проверка:
$$-\left(\frac{1}{32} - \frac{1}{64}\right) - \left(\frac{1}{128} - \frac{1}{256}\right) - \dots = -\sum_{k=3}^{\infty} \frac{1}{2^{2k}} - \underline{\text{Lab.}}$$
 досчитать и сравнить с $\frac{1}{32}$

Nota. Оценка не работает в знакоположительных рядах

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$R_3 = \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = \frac{1}{16} \left(1 + \frac{1}{2} + \dots \right) = \frac{2}{16} = \frac{1}{8} > \frac{1}{16}$$

Def. Знакопеременный ряд

 $\sum_{n=1}^{\infty} u_n$, где u_n - любого знака и не все u_n одного знака

Ex.
$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots$$

Nota. Исследование таких рядов (в том числе знакочередующихся) на сходимость можно проводить при помощи ряда из модулей

$$\mathbf{Th.}$$
 Абсолютная сходимость $\sum_{n=1}^{\infty} |u_n|$ сходится $\Longrightarrow \sum_{n=1}^{\infty} u_n$ сходится

Мет. См. абсолютную сходимость в несобственных интегралах

По критерию Коши:
$$\sum_{n=1}^{\infty} |u_n| \operatorname{сходится} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall m > n > n_0 \quad ||u_n| + |u_{n+1}| + \dots + |u_m|| < \varepsilon$$
 По неравенству треугольника:
$$|u_n| + |u_{n+1}| + \dots + |u_m| < |u_n| + |u_{n+1}| + \dots + |u_m| < \varepsilon$$

Nota. Обратное неверно!

$$Ex. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \dots$$
 сходится
Но $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ сходится, он называется **абсолютно сходя**щимся

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ расходится, он называется условно сходящимся

Nota. Для абсолютно сходящихся рядов перестановка членов безболезнена и сохраняет сумму ряда

Nota. На абсолютно сходящиеся ряды распространяются признаки сходимости знакоположительных рядов

- 1) Признак сравнения: $|u_n| < |v_n|$: $\sum |v_n|$ сходится $\Longrightarrow \sum |u_n|$ сходится
- 2) Предельный признак: $\lim \left| \frac{u_n}{v_n} \right| = q \in \mathbb{R} \setminus \{0\}$
- $3) D = \lim \left| \frac{u_{n+1}}{u_n} \right| < 1$
- 4) $K = \lim \sqrt[n]{|u_n|} < 1$
- $\int_a^{\infty} f(x)dx$ сравнивается с $\sum |u_n|$

§2. Функциональные ряды

1. Определения

 $\mathbf{Def.} \ \sum_{n=1}^{\infty} u_n(x),$ где $u_n(x): E \subset \mathbb{R} \to \mathbb{R}$ называется функциональным

Nota. При фиксации переменной x ряд становится числовым Ex. $\sum_{n=0}^{\infty} x^n$

$$Ex. \sum_{n=0}^{\infty} x^{n}$$

$$x = 2$$
 $\sum_{n=0}^{\infty} 2^n$ расходится

$$x = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 сходится

 $\frac{2}{n=0}$ $\frac{2}{n=0}$ Таким образом для |x|<1 ряд будет сходящимся, для |x|>1 расходящимся

Def. Множество значений x, при которых $\sum_{n=1}^{\infty} u_n(x)$ сходится, называется областью сходимости

Def. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится при всех x из некоторого множества E, то сумма ряда функция S(x)

Nota. To ecth $\exists \lim_{n \to \infty} S_n(x) = S(x)$

Запишем остаток: $R_n(x) = S(x) - S_n(x)$. Часто удобно исследовать $R_n(x) \to 0$. Также работает критерий Коши

Тһ. Критерий Коши

$$\sum_{n=1}^{\infty}u_n(x)$$
 сходится в области $D\Longleftrightarrow \forall \varepsilon>0$ \exists $n_0\in\mathbb{N}$ $\mid \forall m>n>n_0 \mid u_n(x)+u_{n+1}(x)+\cdots+u_m(x)\mid <\varepsilon$

Nota. Очень неприятно, что n_0 зависит от ε и всякого x

Def. Равномерная сходимость ряда

$$\sum_{n=1}^{\infty} u_n(x)$$
 равномерно сходится в области $D \stackrel{def}{\Longleftrightarrow} \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |R_n(x)| < \varepsilon$

Nota. Доказательства равномерной сходимости по определению сложно, пользуются другими способами

$${f Th.}$$
 Признак Вейерштрасса
$$\exists \sum_{n=1}^\infty \alpha_n \text{ - числовой ряд такой, что } \alpha_n > 0, \ \sum \alpha_n \ \text{сходится, } |u_n(x)| \le \alpha_n \ \forall n$$
 Тогда $\sum_{n=1}^\infty u_n(x)$ равномерно сходящийся

Nota. Ряд $\sum_{n=1}^{\infty} \alpha_n$ называется мажорирующим (то есть преобладающий), а ряд $\sum_{n=1}^{\infty} u_n(x)$ - мажорируемым

$$\sum_{n=1}^{\square} \alpha_n \, \operatorname{сходится} \iff \forall \varepsilon > 0 \, \exists n_0 \in \mathbb{N} \mid \forall n > n_0 \mid R_n^{\alpha} \mid < \varepsilon$$
 Заменим на условие $|\alpha_n + \dots + \alpha_m| < \varepsilon \, (\text{кр. Коши})$ $|u_n(x) + \dots + u_m(x)| \leq |u_n(x)| + \dots + |u_m(x)| \leq \alpha_n + \dots + \alpha_m \leq \varepsilon$ При этом номер n_0 зависит только от ε

Nota. Таким образом всякий мажорируемый ряд равномерно сходится, но не всякий равномерно сходящийся ряд мажорируем

Nota. Установим свойство суммы равномерно сходящегося ряда

$$Ex.$$
 Рассмотрим ряд $\sum_{n=1}^{\infty} (x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}) = (x^{\frac{1}{3}} - x^1) + (x^{\frac{1}{5}} - x^{\frac{1}{3}}) + (x^{\frac{1}{7}} - x^{\frac{1}{5}}) + \dots;$ $S_n = x^{\frac{1}{2n+1}} - x$ При $x > 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (x^{\frac{1}{2n+1}} - x) = 1 - x$ При $x < 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (-2^{n+1}\sqrt{|x|} - x) = -1 - x$ При $x = 0$ $S_n = 0$

Th. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ $(u_n(x) \in C_{[a,b]})$ мажорируем в D = [a,b], то его сумма S(x) непрерывна на [a,b]

$$\square$$

$$S(x) \text{ непрерывна на } x \in [a,b] \iff \Delta S \underset{\Delta x \to 0}{\longrightarrow} 0$$

$$\Delta S(x) = S(x + \Delta x) - S(x), \ S(x) = S_n(x) + r_n(x)$$

$$\Delta S_n(x) = S_n(x + \Delta x) - S_n(x)$$

$$\Delta S = S(x + \Delta x) - S(x) = S_n(x + \Delta x) + r_n(x + \Delta x) - S_n(x) - r_n(x)$$

$$\begin{split} \Delta S(x) &= \Delta S_n(x) + r_n(x + \Delta x) - r_n(x) \\ |\Delta S(x)| &\leq |\Delta S_n(x)| + |r_n(x + \Delta x)| + |r_n(x)| \\ \text{Ряд } \sum_{n=1}^\infty u_n(x) \text{ мажорируем} \iff \exists \text{ сходящийся } \sum_{n=1}^\infty \alpha_n \ \Big| \ |u_n(x)| \leq |\alpha_n| \\ \text{Тогда } \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ | \ |r_n(x)| < \frac{\varepsilon}{3} \\ \text{и } \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ | \ |r_n(x + \Delta x)| < \frac{\varepsilon}{3} \ (\text{так как } N \text{ не зависит от } x; \ x + \Delta x \in [a,b]) \\ \Delta S_n &= S_n(x + \Delta x) - S(x) = u_1(x + \Delta x) - u_1(x) + \dots + u_n(x + \Delta x) - u_n(x) - \text{ конечная сумма } \\ \text{непрерывна} \\ \text{Сама } \Delta S_n(x) \text{ непрерывна, тогда } \forall \varepsilon > 0 \ (\text{при фиксированном } N) \ \exists \delta > 0 \ | \ |\Delta S_n(x)| < \frac{\varepsilon}{3} \ \text{при } \\ |\Delta x| &< \delta \\ \text{Итак: } \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \text{ и } \delta > 0 \ | \ \forall x \in D \ |\Delta S_n(x)| < \frac{\varepsilon}{3} \\ &+ |r_n(x + \Delta x)| < \frac{\varepsilon}{3} \\ &+ |r_n(x)| < \frac{\varepsilon}{3} \\ &= |\Delta S(x)| < \varepsilon \end{split}$$
 To есть $S(x) \in C_{[a,b]}$

Nota. Не все равномерно сходящиеся мажорируются, но у всех S(x) непрерывна Это позволяет определить $\int_{x_0}^y S(x) dx$, а если $S(x) \in C'_{[a,b]}$, то и $\frac{dS(x)}{dx}$

Th. Если ряд мажорируется на [a,b] и $u_n(x)$ непрерывна на [a,b], то определен $\int_{x_0}^y S(x)dx$ и $\int_{x_0}^x S(x)dx = \sum_{n=1}^\infty \int_{x_0}^x u_n(x)dx$

 $S(x) = S_n(x) + r_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + r_n(x) - \text{ конечное число слагаемых из }$ непрерывных функций $(r_n(x))$ как хвост равномерно сходящегося ряда) Тогда для $x_0, x \in [a,b]$ $\int_{r_0}^x S(x) = \sum_{i=1}^n \int_{r_0}^x u_k(x) dx + \int_{r_0}^x r_n(x) dx - \text{ это будет верно, если}$

Тогда для $x_0, x \in [a, b]$ $\int_{x_0}^{x} S(x) = \sum_{k=1}^{\infty} \int_{x_0}^{x} u_k(x) dx + \int_{x_0}^{x} r_n(x) dx - \text{9то буде}$ $\int_{x_0}^{x} r_n(x) dx \xrightarrow[n \to \infty]{} 0$

По свойству интегралов $\left| \int_{x_0}^x r_n(x) dx \right| \le \int_{x_0}^x |r_n(x)| dx$ $\left| \int_{x_0}^x r_n(x) dx \right| \le \int_{x_0}^x |r_n(x)| dx < \int_{x_0}^x \varepsilon_n dx = \varepsilon_n(x - x_0) \left(x, x_0 - \phi \text{икс.} \right)$

To ectb
$$\lim_{n\to\infty} \int_{x_0}^x r_n(x)dx = 0$$

 $\lim_{n\to\infty} \int_{x_0}^x S(x)dx = \lim_{n\to\infty} \sum_{k=1}^n \int_{x_0}^x u_k(x)dx + \lim_{n\to\infty} \int_{x_0}^x r_n(x)dx$
 $\int_{x_0}^x S(x)dx = \sum_{n=1}^\infty \int_{x_0}^x u_n(x)dx$

Nota. Почленно интегрируются не просто равномерно сходящиеся, а мажорируемые, иначе остаток необязательно стремится к 0

$$\mathbf{Th.} \ \sum_{n=1}^\infty u_n(x)$$
 мажорируем на $[a,b]$ и $u_n(x) \in C'_{[a,b]}$ Тогда $S'(x) = \sum_{n=1}^\infty u'_n(x)$

Пусть
$$g(x) = \sum_{n=1}^{\infty} u'_n(x)$$
. Докажем, что $g(x) = S'(x)$

$$\int_{x_0}^{x} g(x) dx = \int_{x_0}^{x} \left(\sum_{n=1}^{\infty} u'_n(x)\right) dx = \sum_{n=1}^{\infty} \left(\int_{x_0}^{x} u'_n(x) dx\right) = u_1(x) \Big|_{x_0}^{x} + u_2(x) \Big|_{x_0}^{x} + \dots$$

$$= (u_1(x) - u_1(x_0)) + (u_2(x) - u_2(x_0)) + \dots = S(x) - S(x_0) - \text{разность сходящихся рядов}$$

$$\int_{x_0}^{x} g(x) dx = S(x) - S(x_0) \Longrightarrow \left(\int_{x_0}^{x} g(x) dx\right)' = g(x) = S'(x)$$

2. Степенные ряды

Def. $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, $c_n \in \mathbb{R}$, $x_0 \in \mathbb{R}$ - степенной ряд с центром x_0 (в точке x_0 , по степеням $(x-x_0)$)

Nota.В частности $\sum_{n=1}^{\infty} c_n x^n$ - степенной с центром в $x_0=0$

$$\sum_{n=0}^{\infty} c_n (x-x_0)^n$$
 легко сводится заменой $x-x_0=t$ к $\sum_{n=0}^{\infty} c_n t^n$

Th. Абеля.

1) $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда ряд сходится для любого x, который $|x| < |x_1|$

$$\sum_{n=0}^{\infty} c_n x^n$$
 расходится в точке x_2 . Тогда ряд расходится $\forall x \ |x| > |x_2|$

 $\stackrel{-}{=}$ 1) В точке $x_1 \sum_{n=0}^{\infty} c_n x_1^n = c_0 + c_1 x_1 + c_2 x_1^2 + \dots$ - числовой ряд, сходящийся

В точке $x (|x| < |x_1|)$ $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots = c_0 + c_1 x_1 \frac{x}{x_1} + c_1 x_1^2 \frac{x^2}{x_1^2} + \dots$

Для этого ряда докажем абсолютную сходимость

$$\sum_{n=0}^{\infty} |c_n x^n| = |c_0| + |c_1 x_1| \left| \frac{x}{x_1} \right| + |c_1 x_1^2| \left| \frac{x^2}{x_1^2} \right| + \dots$$

При этом ряд $\sum_{n=0}^{\infty} c_n x_1^n$ сходится $\Longrightarrow \exists M>0 : |c_n x_1^n| \leq M$

$$\left| \frac{x^k}{x_1^k} \right| < 1$$
, так как $|x| < |x_1|$

Тогда $|c_0| + |c_1x_1| \left| \frac{x}{x_1} \right| + |c_1x_1^2| \left| \frac{x^2}{x_1^2} \right| + \dots + |c_kx_1^k| \left| \frac{x^k}{x_1^k} \right| < M \left(1 + \left| \frac{x}{x_1} \right| + \left| \frac{x}{x_1} \right|^2 + \dots + \left| \frac{x}{x_1} \right|^k \right)$ - геомет-

рическая прогрессия с |q| < 1Таким образом $\sum_{n=0}^{\infty} |c_n x^n| \sim M \sum_{n=0}^{\infty} \left| \frac{x}{x_1} \right|^n$, который сходится

Ряд $\sum_{n=0}^{\infty} c_n x^n$ абсолютно сходится (и равномерно?)

б) От противного, используя пункт а)

Nota. Заметим, что должно существовать такое R, для которого для всех x меньше R ряд сходится Зафиксируем между x_0 и R число $x_0 < r < R$ - тогда $\sum c_n r^n$ - мажорирует $c_n x^n$, то есть ряд сходится равномерно

 $\mathbf{Def.}\ R \in \mathbb{R}^+ \ |\ \forall |x| < R$ ряд сходится, а $\forall |x| > R$ ряд расходится, тогда R называют радиусом сходимости

Для сдвинутого ряда $\sum_{n=0}^{\infty} c_n (x-x_0)^n \quad \forall x: \; |x-x_0| < R$ сходится; $\forall x: |x-x_0| > R$ - расходится Сходимость ряда в $x_0 \pm R$ нужно проверять специально

Nota. Чаще всего исследование на сходимость проводится по признакам Даламбера, Коши

$$Ex. \sum_{n=1}^{\infty} \frac{x^n}{n} (-1)^{n+1}$$

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{1}{n+1} |x|^{n+1} \frac{n}{|x|^n} = \lim_{n\to\infty} |x| = |x| < 1$$
 Предварительно $D = (-1;1)$.

Далее, рассмотрим
$$x = \pm 1$$
:
$$(x = 1) : \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} - \text{сходится}$$

$$(x = -1) : \sum_{n=1}^{\infty} \frac{-1}{n} - \text{расходится}$$
 Итак, $D = (-1; 1]$

3. Ряд Тейлора

$$Mem.$$
 Формула Тейлора: $f(x) \in C^{n+1}_{U_{\delta}(x_0)}$, тогда $f(x) \stackrel{x \in U_{\delta}(x_0)}{=} f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ Чтобы $f(x)$ в пределе равнялось $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$, нужно, чтобы $r_n(x) \to 0$ Формула: $f(x) \in C^{\infty}_{U_0(x_0)}$ и $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$, ξ между x и x_0

Th. Если
$$R_n(x) \underset{n \to \infty}{\longrightarrow} 0$$
, то $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ - ряд Тейлора

Nota. Если $x_0 = 0$, то ряд Маклорена

3.1. Стандартные разложения элементарных функций

$$1^{\circ} e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots$$

$$Nota. e^{x} - 1 = x + \frac{x^{2}}{2} + \dots \qquad e^{x} - 1 \underset{x \to 0}{\sim} x$$

$$2^{\circ} \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$Nota. \sin x \underset{x \to 0}{\sim} x$$

$$3^{\circ} \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

$$Nota. \ 1 - \cos x \underset{x \to 0}{\sim} \frac{x^2}{2}$$

$$4^{\circ} \operatorname{sh} x, \operatorname{ch} x$$

Def.
$$shx = \frac{e^x - e^{-x}}{2}, chx = \frac{e^x + e^{-x}}{2}$$

Сложим и вычтем ряды для e^x и e^{-x}

Причем
$$e^{-x} \stackrel{t=-x}{\underset{x,t \in u(0)}{\longleftarrow}} e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

Из этого получаем:

$$\operatorname{sh} x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!}$$

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!}$$

Формула Эйлера

$$\overline{e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \dots = (1 - \frac{x^2}{2!} + \dots) + i(x - \frac{x^3}{3!} + \dots) = \cos x + i \sin x}$$

$$\overline{e^{ix} = \cos x + i \sin x}$$

5° Биномиальный ряд

$$f(x) = (1+x)^m, n \in \mathbb{Q}$$
REMETHM. HITO $f'(x) = m(1+x)^m$

Заметим, что
$$f'(x) = m(1+x)^{m-1}$$

$$(1+x)f'(x) = m(1+x)^m = mf(x)$$

Получаем дифференциальное уравнение: (1+x)f'(x) = mf(x)

Nota. Если дополнить ДУ начальными условиями, то задача Коши будет решаться единственным образом, то есть, найдя ряд $S(x) = \sum_{k=0}^{\infty} a_k x^k$ как единственное решение, получим, что

S(x) = f(x) и не надо исследовать остаток R_n на убывание к нулю

Задача Коши:

$$\begin{cases} (1+x)f'(x) = mf(x) \\ f(0) = 1 \end{cases}$$

Будем искать решение в виде ряда $S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots$

$$S'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + ka_kx^{k-1} + \dots$$

$$(1+x)S'(x) = a_1 + (a_1 + 2a_2)x + (2a_2 + 3a_3)x^3 + \dots + (ka_k + (k+1)a_{k+1})x^k + \dots$$

$$mS(x) = ma_0 + ma_1x + ma_2x^2 + \dots + ma_kx^k + \dots$$

Начальные условия: $a_0 = 1$. Тогда приравниваем коэффициенты: $a_1 = m, a_2 = \frac{m(m-1)}{2}, a_3 = \frac{m(m-1)(m-2)}{2 \cdot 3}$

Выявили закономерность: $a_k = \frac{m(m-1)(m-2)\dots(m-k+1)}{k!}$

Таким образом: $(1+x)^m = \sum_{k=0}^{\infty} C_m^k x^k$

При $m \in \mathbb{N}$ ряд - конечная сумма, при остальных - бесконечная

Lab.
$$\frac{1}{\sqrt{1-x^2}} = (1+(-x^2))^{-\frac{1}{2}} = (\arcsin x)'$$
 $\int_0^t \frac{dx}{\sqrt{1-x^2}} = \arcsin t$

$$6^{\circ} \ln(1+x)$$

$$(\ln(1+x))' = \frac{1}{1+x} = \frac{1}{1-(-x)} = \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\ln(1+x) = \int_0^x (\sum_{n=0}^\infty (-1)^n y^n) dy = \sum_{n=0}^\infty (-1)^n \int_0^x y^n dy = \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Интервал сходимости: $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}n}{(n+1)x^n}\right|=|x|<1$ D=(-1,1)

При
$$x = 1$$
 $\ln(1+x) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ - сходится $D = (-1, 1]$

Nota. Сходимость остатка требует исследования

Nota. Заметим, если $x=\frac{1}{k}$, где $k\in\mathbb{N}$, то $\ln(1+\frac{1}{k})=\ln\frac{k+1}{k}=\ln(k+1)-\ln k$ - рекуррентная формула логарифмов натуральных чисел

7°
$$\operatorname{arctg} x - \underline{\operatorname{Lab.}} \left((\operatorname{arctg} x)' = \frac{1}{1 + x^2} \right)$$

3.2. Приложения

$$Ex. \ 1. \ I = \int_0^{\frac{1}{2}} \frac{\sin x}{x} dx$$

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots$$

$$I = \int_0^{\frac{1}{2}} (1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots) dx = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} + \dots \Big|_0^{\frac{1}{2}} = \frac{1}{2} - \frac{1}{8 \cdot 3 \cdot 6} + \frac{1}{32 \cdot 5 \cdot 120} - \dots$$

Ряд знакопеременный - можем найти такой u_n , который будет меньше заданной точности вычисления ε

$$Ex.\ 2.\ \int_0^a e^{-x^2} dx = \int_0^a (1+(-x^2)+\frac{x^4}{2!}+\dots)dx = x-\frac{x^3}{2}+\frac{x^5}{10}+\dots\Big|_0^a = a-\frac{a^3}{5}+\frac{a^5}{10}-\dots$$
 Отсюда были вычислены таблицы для функции Лапласа $\Phi(a)=\frac{1}{\sqrt{2\pi}}\int_0^a e^{-\frac{x^2}{2}}dx$

$$\lim_{x \to 0} \frac{\sin x - \arctan x}{x^3} = \lim_{x \to 0} \frac{\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right) - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots\right)}{x^3} = \lim_{x \to 0} \frac{-x^3 \left(\frac{1}{3!} - \frac{1}{3}\right) + o(x^3)}{x^3} = \frac{1}{6}$$

4. Ряды Фурье

4.1. Определение

Mem. Линейное функциональное пространство со скалярным произведением $f(x) \in C_{[a,b]}$

Скалярное произведение $(f,g) = \int_a^b f(x)g(x)dx$

Из этого норма $||f|| = \sqrt{(f,f)} = \left(\int_a^b f^2(x)dx\right)^{\frac{1}{2}}$

Главное приложение евклидовых пространств - задача о перпендикуляре: найти перпендикуляр h из конца вектора f на подпространство L'. Иначе: ищем расстояние ||f - h|| (метрика) или ортогональную проекция f_0 вектора f на L', такую, что $f_0 + h = f$

Будем искать f_0 , задав подпространство L' множеством функций $\{\sin mx, \cos mx\}$

Тригонометрические функции полезны для описания периодических явлений

Раньше рассматривали тригонометрический многочлен

$$T_m(x) = \frac{\dot{a}_0}{2} + b_1 \sin x + a_1 \cos x + \dots + b_m \sin mx + a_m \cos mx$$

Дальше стоит задача: при каких a_i, b_i многочлен $T_m(x)$ будет наименее отстоящим от данной f(x)

 $\mathit{Mem}.$ Решаем задачу о перпендикуляре, ищем f_0 - наименьшую из проекций и минимально отстоящую от f

Координаты f_0 в выбранном ортонормированном базисе L' равны соответствующим координатам f в этом базисе

$$f_0 = f_1 e_1 + f_2 e_2 + \dots + f_k e_k = (f, e_1) e_1 + (f, e_2) e_2 + \dots + (f, e_k) e_k$$

$$(f, e_1) = \int_a^b f(x) e_1(x) dx$$

Nota. Итак, $\exists L \in C_{[-\pi,\pi]}, L' = l_{\{1,\sin x,\cos x,\sin 2x,\cos 2x,\dots\}}$ Тогда можно искать многочлен $P_n(x) = \frac{a_0}{2} + a_1\cos x + b_1\sin x + \dots + a_n\cos nx + b_n\sin x$, который наилучшим образом приближает f(x)

Если нормировать систему $\{\sin nx, \cos nx\}$, то коэффициентами многочлена $P_n(x)$ будут скалярные произведения f(x) на функция ортонормированной системы.

Получим
$$\left\{ \frac{1}{2\pi}, \frac{\sin x}{\pi}, \frac{\cos x}{\pi}, \dots, \frac{\sin nx}{\pi}, \frac{\cos nx}{\pi} \right\}$$
Тогда, $\left[\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx \right]$
 $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$ - коэффициенты Фурье $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$

Nota. Если увеличивать степень n, то получим ряд Фурье. Запишем формально:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 - сходится ли этот ряд и сходится ли к $f(x)$?

Ответ дает теорема (доказательство будет приведено позже)

Th. f(x) - 2π -периодична, на $[-\pi,\pi]$ f(x) - кусочно монотонна и ограничена (то есть имеет конечное число конечных разрывов). Тогда в точках непрерывности f(x) представляется рядом Фурье:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = S(x)$$

а в точках разрыва $S(x_0) = \frac{1}{2}(f(x_0+0)+f(x_0-0))$

Сейчас только тригонометрический ряд Фурье, хотя подобное разложение возможно по различным ортогональным системам функций

Nota. В концах отрезках $[-\pi, \pi]$ f(x) может быть не определена, но в любом случае ограничена $S(\pi) = S(-\pi) = \frac{1}{2}(f(-\pi+0) + f(\pi-0))$

Разложение периодичных функций (на $[-\pi, \pi]$)

$$1^{\circ}$$
: $f(x) = x$ Ha $[-\pi, \pi]$, $f(x + 2\pi) = f(x)$

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{-2}{\pi n} \int_{0}^{\pi} x \, d\cos nx = -\frac{2}{\pi n} \left(x \cos nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \cos nx \, dx \right)^{0} = -\frac{2}{\pi n} x \cos nx \Big|_{0}^{\pi} = \frac{2}{\pi n} \cos \pi n = \begin{bmatrix} \frac{-2}{n}, & n = 2m \\ \frac{2}{n}, & n = 2m + 1 \end{bmatrix} = \frac{2}{n} (-1)^{n+1}$$

$$\text{Итак } f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot 2}{n} \sin nx$$

$$2^{\circ} \colon f(x) = \begin{cases} 1 & \text{ ha } [0,\pi] \\ -1 & \text{ ha } [-\pi,0) \end{cases} \text{ ha } [-\pi,\pi] \\ \frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0 \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0 \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(-\int_{-\pi}^{0} \sin nx dx + \int_{0}^{\pi} \sin nx dx \right) = \frac{1}{2n} \left(\int_{-\pi}^{0} d \cos nx - \int_{0}^{\pi} d \cos nx \right) = \frac{1}{\pi n} \left(\cos nx \Big|_{-\pi}^{0} - \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} (1 - \cos \pi n - \cos \pi n + 1) = \frac{2}{\pi n} (1 - \cos \pi n) = \frac{4}{\pi (2m - 1)} \\ f(x) = \sum_{m=1}^{\infty} \frac{4}{\pi (2m - 1)} \sin(2m - 1) x$$

Nota. Заметим, что если f(x) - четная, то $b_n=0$, а если нечетная, то $a_n=0$. Иногда в задаче требуется разложить f(x), заданную только на отрезке $[0,\pi]$. Такую функцию можно продолжить четным или нечетным образом на $[-\pi,\pi]$. Говорят о разложении в ряд по косинусам и синусам соответственно

$$3^{\circ}$$
: $f(x) = \pi - x$, $x \in [0, \pi]$

Дополним f(x) двумя способами

В ряд Фурье раскладывются периодические функции \hat{f}, \tilde{f}

$$\underline{\text{Lab. }}\hat{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \qquad \qquad \tilde{f}(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

Заметим, что \tilde{f} на $[0,2\pi]$ имеет одно аналитическое задание (удобно интегрировать). Изменится ли ряд Фурье, если сдвинуть отрезок?

Th. о сдвиге. Сдвиг промежутка длиной 2π не меняет ряда Фурье

Th. о растяжении. Для $f:[a,b] \to \mathbb{R}$ растяжение промежутка приводит к разложению:

$$b-a=2l=T$$
 - период $a_0=rac{1}{l}\int_{-l}^{l}f(x)dx$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi n}{l} x dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi n}{l} x dx$$

Th. 1. о сдвиге:

Ряд Фурье не изменится, если $[-\pi, \pi]$ заменить на $[a; a+2\pi]$

Докажем, что если $\varphi(t)$ - 2π -периодична, то $\int_{-\pi}^{\pi} \varphi(t)dt = \int_{a}^{a+2\pi} \varphi(t)dt$

У нас
$$f(x)$$
 с периодом $[-\pi, \pi]$, обозначим $x = t - 2\pi$ $(t = x + 2\pi)$.
Рассмотрим $\int_{b}^{a} f(x) dx = \int_{b+2\pi}^{a+2\pi} f(t - 2\pi) dt = \int_{b+2\pi}^{c+2\pi} f(t) dt = \int_{b+2\pi}^{c+2\pi} f(x) dx$

Пусть $b = -\pi, c = a$, тогда $\int_{b}^{c} f(x)dx = \int_{-\pi}^{a} f(x)dx = \int_{-\pi+2\pi}^{a+2\pi} f(x)dx = \int_{a}^{\pi} f(x)dx$

$$\int_{a}^{a+2\pi} f(x)dx = \int_{a}^{-\pi} + \int_{-\pi}^{\pi} + \int_{\pi}^{a+2\pi} = \int_{-\pi}^{\pi} f(x)dx$$

Th. 2. о растяжении:

f(x) - 2l-периодична: (T : [-l, l])

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi n}{l} x dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi n}{l} x dx$$

Тогда
$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l}$$

$$f(x)$$
 - $2l$ -периодична: $(T : [-l, l])$
Обозначим $x = \frac{lt}{\pi} t \int_{-\pi}^{\pi} x \int_{-l}^{l} f(\frac{lt}{\pi}) = \varphi(t)$ - 2π -периодична
Ряд Фурье для $\varphi(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kt + b_k \sin kt$, где $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \cos kt dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{lt}{\pi}\right) \cos kt dt = \frac{1}{l} \int_{-\pi}^{\pi} f\left(\frac{lt}{\pi}\right) \cos kt dt = \frac{1}{l} \int_{-\pi}^{l} f(x) \cos \frac{k\pi}{l} x dx$

Аналогично b_k .

$$Ex. \ 1. \ f(x) = x \qquad x \in [-1, 1]$$

$$a_k = \frac{1}{l} \int_{-l}^{l} x \cos \frac{k\pi x}{d} x = \int_{-1}^{1} x \cos k\pi x dx = \frac{1}{k\pi} \left(x \sin k\pi x \right)_{-1}^{1} - \int_{-1}^{1} \sin k\pi x dx = -\frac{1}{k\pi} \cdot 0 = 0$$

$$b_k = \int_{-1}^{1} x \sin k\pi x dx = -\frac{1}{k\pi} \left(x \cos k\pi x \right)_{-1}^{1} - \int_{0}^{1} \cos k\pi x dx = -\frac{2}{k\pi} \left((-1)^k - \frac{1}{k\pi} \sin k\pi x \right)_{0}^{1} = \frac{(-1)^{k+1} \cdot 2}{k\pi}$$

$$x = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cdot 2}{k\pi} \sin k\pi x$$

4.2. Оценка коэффициентов Фурье

Nota. Вернемся к приближению f(x) тригонометрическим многочленом $T_n(x)$. Ранее говорилось, что из всех многчленов типа $\sum_{m=0}^n a_m \cos mx + b_m \sin mx$ минимально отстоящим будет многочлен Фурье, то есть с a_m и b_m , равными коэффициентам Фурье.

Зададим расстояние δ_n между f(x) и многочленом $T_n(x)$ формулой

$$\delta_n^2 = \|f - T_n\|^2 = (f - T_n, f - T_n) = \frac{1}{b - a} \int_a^b (f(x) - T_n(x))^2 dx = \left[[a, b] = [-\pi, \pi] \right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(x) - \frac{a_0}{2} - \sum_{m=1}^n a_m \cos mx + b_m \sin mx \right)^2 dx$$

Далее, честно интегрируя, можно убедиться, что δ будет наименьшим, если a_m и b_m - коэффициенты Фурье

Преобразуем $||f - f_0||^2$:

$$\delta_n^2 = \|f - \sum_{m=0}^n (f, e_m) e_m\|^2 = \|f\|^2 - 2\left(f, \sum_{m=0}^n (f, e_m) e_m\right) + \left\|\sum_{m=0}^n (f, e_m) e_m\right\|^2 = \|f\|^2 - 2\sum_{m=0}^n (f, e_m)^2 + \sum_{m=0}^n (f, e_m)^2 = \|f\|^2 - \sum_{m=0}^n (f, e_m)^2 - \text{квадраты коэффициентов разложения}$$

Тогда
$$\delta_n^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{a_0^2}{4} - \frac{1}{2} \sum_{m=1}^n (a_m^2 + b_m^2)$$

Так как
$$\delta_n^2 \ge 0$$
, то $\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \ge \frac{a_0^2}{2} + \sum_{m=1}^k (a_m^2 + b_m^2)$

Так как $\sum_{m=1}^{n}$ растет и ограничена, то ряд $\sum_{m=1}^{\infty}$ сходитсяя

Можем записать:
$$\boxed{\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \geq \frac{a_0^2}{2} + \sum_{m=1}^{\infty} (a_m^2 + b_m^2)} \text{ - неравенство Бесселя}$$

Можем усилить неравенство, если доказать, что при $n \to \infty$ $\delta_n^2 \to 0$. В этом случае f(x) раскладывается по полной системе функций $\{\cos mx, \sin mx\}$

Def. Система $\{\varphi_m(x)\}_{m=1}^\infty$ называется полной, если $\forall f(x) \notin \{\varphi_m\}_{m=1}^\infty$ $\int_a^b f(x)\varphi(x)dx = 0 \Longrightarrow f(x) = 0$

$$\int \frac{f(x)}{\pi} = 0$$

$$\left[\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{a_0^2}{2} + \sum_{m=1}^{\infty} (a_m^2 + b_m^2) \right] -$$
равенство Парсеваля

Заметим, что из оценки ранее
$$||f||^2 = \sum_{m=1}^n (f, e_m)^2 = \sum_{m=1}^n f_m^2$$

В
$$\infty$$
-мерном пространстве $||f||^2 = \sum_{m=1}^{\infty} f_m^2$ - «теорема Пифагора»

Nota. Эти утверждения верны для любых ортогональных систем функций, а не только для тригонометрических

4.3. Интеграл Фурье

$$f: \mathbb{R} \to \mathbb{R}, \ \exists \int_{\mathbb{R}} |f(x)| dx = I \in \mathbb{R}$$

 \exists ряд Фурье для f(x) на [-l,l] $\forall l>0$, то есть

$$\begin{split} f(x) &= \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos \frac{m\pi x}{l} + b_m \sin \frac{m\pi x}{l} = \\ &= \frac{1}{2l} \int_{-l}^{l} f(t) dt + \sum_{m=1}^{\infty} \left[\left(\frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{m\pi t}{l} dt \right) \cos \frac{m\pi x}{l} + \left(\frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{m\pi t}{l} dt \right) \sin \frac{m\pi x}{l} + \right] = \\ &= \frac{1}{2l} \int_{-l}^{l} f(t) dt + \sum_{m=1}^{\infty} \frac{1}{l} \int_{-l}^{l} f(t) \frac{m\pi}{l} (t - x) dt \end{split}$$

Исследуем при $l \to \infty$:

$$\frac{1}{2l} \int_{-l}^{l} f(t)dt \leq \frac{1}{2l} \int_{-l}^{l} |f(t)|dt \leq \frac{I}{2l} \underset{l \to \infty}{\longrightarrow} 0$$

Обозначим $\alpha_1 = \frac{\pi}{l}, \alpha_2 = \frac{2\pi}{l}, \dots, \alpha_m = \frac{m\pi}{l}, \quad \Delta a_m = \frac{\pi}{l}$

Рассмотрим
$$\sum_{m=1}^{\infty} \frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{m\pi(t-x)}{l} dt = \sum_{m=1}^{\infty} \frac{1}{\pi} \left(\int_{-l}^{l} f(t) \cos \alpha_m(t-x) dt \right) \Delta \alpha_m$$

функция переменной l

Рассмотрим переменную $\alpha \in \mathbb{R}$, $\alpha_m = \alpha(m)$, $\Delta \alpha_m = \Delta \alpha$ - дифференциальное

Имеем аналог интегральной суммы $\sum_{m=1}^{n} \varphi(\alpha_m) \Delta \alpha_m, n \to \infty$

Тогда
$$f(x) = \frac{1}{\pi} \int_0^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) \cos \alpha (t-x) dt \right) d\alpha$$
 - интеграл Фурье

Nota. От дискретного спектра частот $\alpha_1,\alpha_2,\ldots,\alpha_m$ перешли к непрерывному спектру α Nota. В точках разрыва $\frac{f(x+0)+f(x-0)}{2}=\frac{1}{\pi}\int_0^\infty\left(\int_{-\infty}^{+\infty}f(t)\cos\alpha(t-x)dt\right)d\alpha$

Преобразуем интеграл:

$$f(x) = \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^{+\infty} f(t) (\cos \alpha t \cos \alpha x + \sin \alpha t \sin \alpha x) dt \right) d\alpha =$$

$$= \int_0^\infty \left(\int_{-\infty}^{+\infty} \cos \alpha t \cos \alpha x dt + \int_{-\infty}^{+\infty} \sin \alpha t \sin \alpha x dt \right) d\alpha$$

Если
$$f(x)$$
 - четная, то $\int_{-\infty}^{+\infty} f(t) \cos \alpha t dt = 2 \int_{0}^{+\infty} \dots; \int_{-\infty}^{\infty} \sin \alpha t dt = 0$ Если $f(x)$ - нечетная, то $\int_{-\infty}^{+\infty} f(t) \sin \alpha t dt = 2 \int_{0}^{+\infty} \dots; \int_{-\infty}^{\infty} \cos \alpha t dt = 0$

Обозначим
$$F(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos \alpha t dt$$

$$\Phi(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin \alpha t dt$$
 Тогда $f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F(\alpha) \cos \alpha x d\alpha$,
$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \Phi(\alpha) \sin \alpha x d\alpha$$
 косинус-преобразование Фурье

$$\begin{aligned} Ex. \ f(x) &= e^{-\beta x}, \quad (\beta > 0, x \ge 0) \ \underline{\text{Lab.}} \\ F(\alpha) &= ? \ \Phi(\alpha) &= ? \end{aligned} \qquad e^{-\beta x} &= \frac{2\beta}{\pi} \int_0^\infty \frac{\cos \alpha x}{\beta^2 + \alpha^2} d\alpha \end{aligned}$$

$X.\ \Pi$ рограмма экзамена в 2024/2025

Х.1. Числовые ряды.

1. Определение числового ряда, понятие суммы ряда.

Определение числового ряда: $\{u_1, u_2, \dots, u_n, \dots\} = \{u_n\}$ называется числовым рядом u_n называется общим членом ряда

Понятие суммы ряда: Частичная сумма ряда $S_n \stackrel{def}{=} \sum_{k=1}^n u_k$

Если $\exists \lim_{n \to \infty} S_n = S \in \mathbb{R}$, то ряд $\sum_{n=1}^{\infty} u_n$ называют сходящимся, а S называют суммой ряда

$$\sum_{n=1}^{\infty} u_n = S$$

2. Сходимость числового ряда. Эталонные ряды: геометрический, гармонический.

Сходимость числового ряда: Если $\exists \lim_{n \to \infty} S_n = S \in \mathbb{R}$, то ряд $\sum_{n=1}^{\infty} u_n$ называют сходящимся

 Γ е
ометрический ряд: $\sum_{n=0}^{\infty}bq^n$ - сходится при |q|<1, тогда
 $S=\frac{b}{1-q}$

Гармонический ряд: $\sum_{n=1}^{\infty} \frac{1}{n}$ - расходится

3. Условия сходимости рядов: необходимое условие, критерий Коши.

Необходимое условие:

Th. Если $\sum_{n=1}^{\infty} u_n$ сходится, то верно, что $\lim_{n\to\infty} u_n = 0$

Критерий Коши:

Th.
$$\sum_{n=1}^{\infty} u_n$$
 сходится $\iff \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \mid \forall m > n > n_0 \mid u_{n+1} + \cdots + u_m \mid < \varepsilon \mid |S_m - S_n| < \varepsilon \mid$

4. Знакоположительные числовые ряды, свойства.

Знакоположительный ряд - ряд $\sum_{n=1}^{\infty}u_n$ такой, что $u_n>0$

Свойства рядов:

- (a) Отбрасывание или добавление конечного числа членов ряда не влияет на сходимость, но влияет на сумму
- (b) $\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \quad \alpha \in \mathbb{R}$

Тогда
$$lpha \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} lpha u_n = lpha S$$

(c)
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}$$

Тогда
$$\sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$$
 - сходится

5. Признаки сходимости знакоположительных числовых рядов: признаки сравнения.

Признак сравнения в неравенствах:

а)
$$\exists 0 < u_n \le v_n$$
. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится б) $\exists 0 \le v_n \le u_n$. Тогда $\sum v_n$ расходится $\Longrightarrow \sum u_n$ расходится

б)
$$\exists 0 \le v_n \le u_n$$
. Тогда $\sum v_n$ расходится $\Longrightarrow \sum u_n$ расходится

Предельный признак сравнения:

$$\lim_{n\to\infty}\frac{u_n}{v_n}=q\in\mathbb{R}\setminus\{0\}\implies\begin{bmatrix}\sum u_n\ \text{сходится, если}\ \sum v_n\ \text{сходится}\\ \sum u_n\ \text{расходится, если}\ \sum v_n\ \text{расходится}\end{cases}$$

6. Признак Даламбера, радикальный признак Коши.

Признак Даламбера:

$$\sum_{n=1}^{\infty}u_n$$
 - исследуемый, $\exists \mathcal{D}=\lim_{n o\infty}rac{u_{n+1}}{u_n}\in\mathbb{R}^+$

a)
$$0 \le \mathcal{D} < 1 \implies \sum u_n$$
 сходится

$$a) \ 0 \le \mathcal{D} < 1 \implies \sum u_n$$
 сходится $b) \ \mathcal{D} > 1 \implies \sum u_n$ расходится

в)
$$\mathcal{D} = 1$$
 \Longrightarrow ничего не следует, требуется другое исследование

Радикальный признак Коши:

$$\sum_{n=1}^{\infty} u_n \qquad u_n \ge 0 \text{ и } \exists \lim_{n \to \infty} \sqrt[n]{u_n} = K \in \mathbb{R}$$

а)
$$0 \le K < 1 \Longrightarrow \sum u_n$$
 сходится

б)
$$K > 1 \Longrightarrow \sum u_n$$
 расходится

в)
$$K=1$$
 \Longrightarrow требуется другое исследование

7. Интегральный признак сходимости.

Интегральный признак Коши:

Если существует
$$f(x):[1;+\infty]\to\mathbb{R}^+, f(x)$$
 монотонно убывает, $f(n)=u_n,$ то $\sum_{n=1}^\infty u_n$ и

$$\int_{1}^{\infty} f(x) dx$$
 одновременно сходятся или расходятся

8. Знакочередующиеся ряды. Теорема Лейбница. Оценка остатка ряда.

Знакочередующиеся ряды:
$$\sum_{n=0}^{\infty} (-1)^n u_n \ (u_n > 0)$$
 - знакочередующийся ряд

Признак Лейбница: Если для знакочередующегося ряда $\sum_{n=0}^{\infty} (-1)^n u_n$ верно, что $u_n \to 0$ и $n \to \infty$

$$|u_1| > |u_2| > \cdots > |u_n|$$
, то ряд $\sum_{n=0}^{\infty} (-1)^n u_n$ сходится

Оценка остатка ряда: для знакочередующегося ряда $R_{n+1} < u_{n+1}$

9. Знакопеременные ряды. Абсолютная и условная сходимость.

Знакопеременные ряды: $\sum_{n=1}^{\infty}u_{n}$, где u_{n} - любого знака и не все u_{n} одного знака

Абсолютная сходимость: $\sum_{n=1}^{\infty} |u_n|$ сходится $\Longrightarrow \sum_{n=1}^{\infty} u_n$ сходится абсолютно

Условная сходимость: $\sum_{n=1}^{\infty} u_n$ сходится условно, если $\sum_{n=1}^{\infty} |u_n|$ расходится

Х.2. Функциональные ряды.

10. Функциональные ряды. Сходимость. Поточечная и равномерная сходимость ряда. Мажорирующий ряд.

Функциональные ряды: $\sum_{n=1}^{\infty} u_n(x)$, где $u_n(x): E \subset \mathbb{R} \to \mathbb{R}$ называется функциональным Сходимость: Если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится при всех x из некоторого множества E, то сумма ряда - функция S(x)

Поточечная сходимость: Ряд сходится поточечно, если $\forall x \in D \ \exists \lim_{n \to \infty} S_n(x)$

Равномерная сходимость: $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится в области $D \stackrel{def}{\Longleftrightarrow}$

 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |R_n(x)| < \varepsilon$

Пример: $\sum_{n=1}^{\infty} x^n$ на [0,1) сходится поточечно, но не сходится равномерно

Мажорирующий ряд: ряд $\sum_{n=1}^{\infty} \alpha_n$ называется мажорирующим, если по признаку Вейер-

штрасса с помощью него можно сказать, что $\sum_{n=1}^{\infty}u_{n}(x)$ сходится

11. Признак Вейерштрасса.

Признак Вейерштрасса: $\exists \sum_{n=1}^{\infty} \alpha_n$ - числовой ряд такой, что $\alpha_n > 0, \sum \alpha_n$ сходится, $|u_n(x)| \le$

Тогда $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходящийся, а $\sum_{n=1}^{\infty} \alpha_n$ называют мажорирующим

12. Непрерывность суммы ряда.

Непрерывность суммы ряда: **Th.** Если ряд $\sum_{n=1}^{\infty} u_n(x) \ (u_n(x) \in C_{[a,b]})$ мажорируем в D =[a,b], то его сумма S(x) непрерывна на [a,b]

13. Свойства равномерно сходящихся рядов (дифференцирование и интегрирование суммы ряда).

Интегрирование: **Th.** Если ряд мажорируется на [a,b] и $u_n(x)$ непрерывна на [a,b], то определен $\int_{x_0}^y S(x)dx$ и $\int_{x_0}^x S(x)dx = \sum_{n=1}^\infty \int_{x_0}^x u_n(x)dx$

Дифференцирование: Th. $\sum_{n=1}^{\infty}u_n(x)$ мажорируем на [a,b] и $u_n(x)\in C'_{[a,b]}$. Тогда S'(x)=

 $\sum_{n=1}^{\infty}u_n'(x)$ 14. Степенные ряды. Теорема Абеля. Радиус сходимости.

Степенной ряд: $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, $c_n \in \mathbb{R}, x_0 \in \mathbb{R}$ - степенной ряд с центром x_0 (в точке x_0 , по степеням $(x-x_0)$

Теорема Абеля: Тh. Абеля.

- 1) $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда ряд сходится абсолютно для любого x, который $|x| < |x_1|$
- $\sum_{n=0}^{\infty} c_n x^n$ расходится в точке x_2 . Тогда ряд расходится для любого x, который $|x|>|x_2|$

Радиус сходимости: $R \in \mathbb{R}^+ \mid \forall |x| < R$ ряд сходится, а $\forall |x| > R$ ряд расходится, тогда R называют радиусом сходимости

15. Ряд Тейлора. Стандартные разложения элементарных функций.

Ряд Тейлора:
$$f(x) \in C^{\infty}_{U_0(x_0)}$$
 и $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$, ξ между x и x_0

Th. Если
$$R_n(x) \underset{n \to \infty}{\longrightarrow} 0$$
, то $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ - ряд Тейлора

Разложения функций:

Функция	т.	Рап Тейпора		
e^x	=	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$		$1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots$
$\sin x$	=	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$		$x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
$\cos x$	=	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$	=	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
	=	$\sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!}$	=	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
ch x	=	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ $\sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!}$ $\sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!}$ $\sum_{n=0}^{\infty} C^k x^k$	=	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
$(1 \pm x)$	_	$\sum_{k=0}^{\infty} C_m x$		$1+mx+m(m-1)x^2+\dots$
$\frac{1}{\ln(1+x)}$	=	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$	=	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$

16. Ортогональные системы функций и ряды Фурье. Определение тригонометрического ряда Фурье для функции на отрезке $[-\pi,\pi]$. Теорема Дирихле.

Оргогональные системы функций: Система функций $\{e_n\}$ $(e_n \in C_{[a,b]})$ называется ортого-

нальной, если
$$\forall i \neq j \ (e_i, e_i) = 0, \ (e_i, e_j) \neq 0,$$
 где $(f(x), g(x)) = \int_a^b f(x)g(x)dx$

Ряд Фурье: Пусть f(x) 2π -периодична на интервале $[-\pi;\pi]$, тогда ее ряд Фурье - f(x) =

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$
 где

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

Теорема Дирихле:

Th. f(x) - 2π -периодична, на $[-\pi,\pi]$ f(x) - кусочно монотонна и ограничена (то есть имеет конечное число конечных разрывов). Тогда в точках непрерывности f(x) представляется рядом Фурье $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, а в точках разрыва x_0 $S(x_0) = \frac{1}{2}(f(x_0 + 0) + f(x_0 - 0))$

17. Тригонометрический ряд Фурье на произвольном отрезке (сдвиг, растяжение) Теорема о сдвиге: **Th.** о сдвиге. Ряд Фурье не изменится, если $[-\pi, \pi]$ заменить на $[a; a+2\pi]$

Теорема о растяжении: **Th.** о растяжении. Для $f:[a,b] \to \mathbb{R}$ (2l-периодична, где $l = \frac{b-a}{2})$ растяжение промежутка приводит к разложению $\varphi(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{\pi k}{l} t + b_k \sin \frac{\pi k}{l} t$, где

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi k}{l} x dx$$

$$b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi k}{l} x dx$$