Analyse, Transformée et Intégrale de Fourier Valentin COLIN

I.S.E.P 2019-2020 Fourier SPÉ 2

Analyse de Fourier

Série de Fourier 1

Représentation réelle 1.1

Toute fonction $f: T_0$ -périodique ne présentant qu'un nombre fini de discontinuité (dénombrable sur une période) peut être décomposée en série de Fourier, sous la forme :

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$
 (*)

Ou

$$f(t) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$
(**)

Rappel : $\omega_0 = \frac{2\pi}{T_0}$ Où les a_n et b_n sont appelés les coefficients de Fourier

$$avec \begin{cases} a_0 = \frac{1}{T} \int_0^T f(t) dt \\ \forall n \in \mathbb{N}^* \quad a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt \\ \forall n \in \mathbb{N}^* \quad b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt \end{cases}$$
 (*)

Ou

$$avec \begin{cases} \forall n \in \mathbb{N} & a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) \, dt \\ \forall n \in \mathbb{N} & b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) \, dt \end{cases}$$
(**)

Remarque:

- Pour (**) $b_0 = 0$
- Si la fonction f est paire $\Rightarrow \forall n \in \mathbb{N}$ $b_n = 0$
- Si la fonction f est impaire $\Rightarrow \forall n \in \mathbb{N}$ $a_n = 0$
- ω_0 s'appelle la fondamentale
- Pour n>1 $\omega_n=n\omega_0$ s'appelle l'harmonique de rang n

1.2 Représentation complexe

En représentation complexe :

Puisque $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$, on écrira :

$$f(t) = \sum_{n = -\infty}^{+\infty} C_n e^{in\omega_0 t}$$

Où les C_n sont les coefficients de Fourier complexes

$$avec \left\{ C_n = \frac{1}{T} \int_0^T f(t) e^{in\omega_0 t} dt \right.$$

remarque
$$\begin{cases} C_0 = a_0 \\ C_n = \frac{1}{2}(a_n - b_n) \\ c_{n \ge 1} \end{cases}$$

$$C_n = \frac{1}{2}(a_{-n} + b_{-n})$$

I.S.E.P 2019-2020 Fourier SPÉ 2

Tranformée ou Intégrale de Fourier

2 Intégrale de Fourier

Soit f une fonction non périodique

À partir de f on construit une fonction f_{T_0} (T_0 -périodique) ayant pour image la fonction f sur une période T_0

On peut donc developper f_{T_0} en série de Fourier

"On va considérer qu'une fonction non périodique "est" une fonction périodique de période ∞ " Puis on ferra tendre T_0 vers ∞

On developpe
$$f_{T_0}$$

$$\begin{cases}
f_{T_0}(t) = \sum_{n=-\infty}^{+\infty} C_n e^{in\omega_0 t} \\
C_n = \frac{1}{T_0} \int_0^{T_0} f_{T_0}(t) e^{in\omega_0 t} dt
\end{cases}$$

$$f_{T_0}(t) = \sum_{n = -\infty}^{+\infty} \left(\frac{1}{T_0} \int_0^{T_0} f_{T_0}(t') e^{in\omega_0 t'} dt' \right) e^{in\omega_0 t}$$
$$= \sum_{n = -\infty}^{+\infty} \left(\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_{T_0}(t') e^{in\omega_0 t'} dt' \right) e^{in\omega_0 t}$$

Posons $\omega_n = n\omega_0$ et calculons $\omega_{n+1} - \omega_n = \omega_0 = \frac{2\pi}{T_0}$

Si $T_0 \longrightarrow \infty$ alors $\omega_{n+1} - \omega_n \longrightarrow 0$

On va remplacer l'écriture discrète ω_n par une variable continue ω telle que $\omega_{n+1}-\omega_n=\mathrm{d}\omega$

$$d\omega = \frac{2\pi}{T_0} \Rightarrow \frac{1}{T_0} = \frac{d\omega}{2\pi}$$
$$\left(\sum_{n=-\infty}^{+\infty} \longrightarrow \int_{-\infty}^{+\infty}\right)$$

Donc

$$f_{T_0} \xrightarrow[T_0 \to \infty]{} f$$

Ainsi

$$f(t) = \int_{-\infty}^{+\infty} \left(\frac{\mathrm{d}\omega}{2\pi} \int_{-\infty}^{+\infty} f(t') e^{-i\omega t'} \, \mathrm{d}t' \right) e^{i\omega t}$$

On pose alors la transformée (ou l'intégrale) de Fourier (notation : $\tilde{f}(\omega)=TF(f)=\mathcal{F}(f))$:

$$\left(\widetilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt\right)$$

Et la transformée de Fourier inverse (notation : $TF^{-1}(f) = \mathcal{F}^{-1}(f)$) :

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widetilde{f}(\omega) e^{i\omega t} d\omega$$

- Attention aux signes dans l'exponentielle (qui sont d'ailleurs intervertible)
- $f(\omega)$ correspond aux coefficients de Fourier
- L'exponentielle de la TF^{-1} correspond à une somme de fonctions sinusoïdales
- ATTENTION : dans le formalisme de la TF^{-1} il y a des pulsations négatives

3 Propriétés importantes

3.1 Série de Fourier

Soit f un fonction T-périodique

Égalité de Bessel-Parceval :
$$\frac{1}{T}\int_{t_0}^{t_0+T}|f(t)|^2\,\mathrm{d}t = \sum_{n=-\infty}^{+\infty}|C_n|^2$$

3.2 Transformée de Fourier

Soit f une fonction (non périodique)

Égalité de Parceval-Placherel :
$$\int_{-\infty}^{+\infty} |f(t)|^2 \, \mathrm{d}t = \int_{-\infty}^{+\infty} |\tilde{f}(\omega)|^2 \, \mathrm{d}\omega$$

3.3 produit de convolution

1) La TF d'un produit de convolution est égal au produit des TF des fonctions

$$TF(f \circledast g) = TF(f) \cdot TF(g)$$

2) La TF d'un produit de fonctions est égal au produit de convolution des TF

$$TF(f \cdot g) = TF(f) \circledast TF(g)$$

4 Quelques exemples

4.1 Distribution de Dirac

4.1.1 Définition de la distribution de Dirac

Soit f_k à valeur réelle définie par

$$f_k(x) = \begin{cases} \frac{1}{2k} & \text{si } |x| < k \\ 0 & \text{sinon} \end{cases}$$

tel que :
$$\int_{-\infty}^{+\infty} f_k(x) \, \mathrm{d}x = 1$$

La distribution δ de Dirac dans ce cas correspond à la limite de f_k quand $k\longrightarrow 0$:

$$\delta(x) = \lim_{k \to 0} f_k(x)$$

 δ n'as de valeur qu'au voisinage de 0, d'où :

$$\int_{-\infty}^{+\infty} f(x)\delta(x) \, \mathrm{d}x \approx f(0)$$

En généralisant :

$$\int_{-\infty}^{+\infty} f(x)\delta(x-a) \, \mathrm{d}x \approx f(a)$$

4.1.2 Calcul de la TF d'un Dirac

$$TF(\delta(t)) = \int_{-\infty}^{+\infty} \delta(t)e^{-i\omega t} dt$$

$$\approx e^{0} \underbrace{\int_{-\infty}^{+\infty} \delta(t) dt}_{=1}$$

$$\approx 1$$

$$TF(\delta(t - t_a)) = \int_{-\infty}^{+\infty} \delta(t - t_a)e^{-i\omega t} dt$$

$$\approx e^{-i\omega t_a} \underbrace{\int_{-\infty}^{+\infty} \delta(t - t_a) dt}_{=1}$$

$$\approx e^{-i\omega t_a}$$

4.2 Peigne de Dirac

4.2.1 Définition

Une peigne de Dirac de période T (noté \sqcup_T) est défini par :

$$\sqcup_T(t) \stackrel{def}{=} \sum_{k=-\infty}^{+\infty} \delta_{kT}(t) = \sum_{k=-\infty}^{+\infty} \delta(t-kT)$$

4.2.2 Calcul de la TF d'un peigne de Dirac

$$TF(\coprod_{T_0}) = \int_{-\infty}^{+\infty} \coprod(t)e^{-i\omega t} dt$$

$$\vdots$$

$$= \frac{1}{T_0} \sum_{k=-\infty}^{+\infty} \delta\left(\nu - \frac{k}{T_0}\right)$$

$$= \frac{1}{T_0} \coprod_{\frac{1}{T_0}} (\nu) \quad \text{avec } \nu = \frac{1}{T} \text{ et } T = \frac{1}{2\pi\omega}$$