Лабораторная работа №3. Исследование зависимости сопротивления примесного полупроводника от температуры и определение энергии активации электронов

Цель работы: исследовать зависимость сопротивления примесного полупроводника от температуры и определить энергию активации электронов для данного образца.

Общие сведения

 $\sigma(T)$ — температурная зависимость удельной электропроводности вещества.

Электропроводность [См] — способность тела проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Ход эксперимента

В ходе выполнения лабораторной работы был проведён следующий эксперимент. К примесному полупроводнику (образцу) были подключены электроды. Этот образец был затем помещён в электропечь, где последовательно нагревался с 45°С до 99°С. Провода от электродов были выведены за пределы печи и подключены к измерительному оборудованию, позволяющему определять полное сопротивление (импеданс) z [Ом] и угол ф [гр]. Эти показатели последовательно записывались в таблицу для каждого значения температуры в данном диапазоне с шагом в 3 градуса. В результате была получена таблица 1:

Таблица 1

No	t (°C)	z (мОм)	φ (гр)
1	45	5,24	86,4
2	48	5,09	86,1
3	51	4,98	85,8
4	54	4,93	85,7
5	57	4,88	85,5
6	60	4,8	85,4
7	63	4,73	85,3

8	66	4,67	85,2
9	69	4,65	85,1
10	72	4,59	85,03
11	75	4,54	84,92
12	78	4,48	84,93
13	81	4,43	84,6
14	84	4,39	84,6
15	87	4,35	84,6
16	90	4,31	84,4
17	93	4,27	84,2
18	96	4,24	83,9
19	99	4,19	83,5

Экспериментальные результаты

Для определения энергии активации графическим способом потребуется построить график зависимости $\ln(R)$ от обратной абсолютной температуры среды ($\frac{1}{T}$).

Для этого потребуется установить сопротивление проводника в каждой точке измерений, для чего была применена формула 1:

$$R = z \cdot \cos(\phi) \tag{1}$$

Затем для каждого из этих значений был вычислен соответствующий ему натуральный логарифм.

Для каждого из значений t было вычислено соответствующее ему значение обратной абсолютной температуры по формуле 2:

$$\frac{1}{T} = (t + 273)^{-1} \tag{2}$$

Таким образом, была получена таблица 2:

Таблица 2

No	R (кОм)	ln(R)	t (°C)	T-1	z (мОм)	φ (гр)
1	329,022	5,796	45	0,00314	5,24	86,4
2	346,198	5,847	48	0,00312	5,09	86,1
3	364,726	5,899	51	0,00309	4,98	85,8
4	369,645	5,913	54	0,00306	4,93	85,7
5	382,880	5,948	57	0,00303	4,88	85,5

Величко Арсений Александрович ИВТ 2 курс, 2 группа, 3 подгруппа Предмет: Физика полупроводников

6	384,955	5,953	60	0,00300	4,8	85,4
7	387,569	5,960	63	0,00298	4,73	85,3
8	390,776	5,968	66	0,00295	4,67	85,2
9	397,189	5,984	69	0,00292	4,65	85,1
10	397,651	5,986	72	0,00290	4,59	85,03
11	402,002	5,996	75	0,00287	4,54	84,92
12	395,910	5,981	78	0,00285	4,48	84,93
13	416,900	6,033	81	0,00282	4,43	84,6
14	413,135	6,024	84	0,00280	4,39	84,6
15	409,371	6,015	87	0,00278	4,35	84,6
16	420,582	6,042	90	0,00275	4,31	84,4
17	431,510	6,067	93	0,00273	4,27	84,2
18	450,560	6,110	96	0,00271	4,24	83,9
19	474,321	6,162	99	0,00269	4,19	83,5

По данным таблицы 2 был построен следующий график (рис. 1):

Рисунок 1

Используя этот график, можно графически определить энергию активации полупроводника. Для этого потребуется определить угол а линии тренда по отношению к горизонтальной оси (рис. 2):

Рисунок 2

Угол а приблизительно равен 15 градусам. Воспользуемся формулой 3 для определения E_A:

$$tg(\alpha) = \frac{E_A}{k_E} \Leftrightarrow E_A = tg(\alpha) \cdot k_E$$
, где $k_E \approx 8,617 \cdot 10^{-5} \text{ эВ} \cdot \text{K}^{-1}$ (3)

Подставим значение а в формулу и получим:

$$E_{A}$$
= tg ($lpha$)· k_{B} = tg (15 °)· 8 ,617· 10^{-5} =2,309· 10^{-5} э B =23,09· 10^{-6} э B =23,09 мкэ B

Таким образом, энергия активации образца Е_А равна 23,09 мкэВ.

Величко Арсений Александрович ИВТ 2 курс, 2 группа, 3 подгруппа Предмет: Физика полупроводников

Вывод

В ходе выполнения лабораторной работы был проведён эксперимент и установлена зависимость сопротивления примесного полупроводника от температуры. Также была определена энергия активации электронов графическим способом. Для данного образца энергия активации E_A составила 23,09 мкэВ.