《大学物理 AI》作业 No.01 运动的描述

班级	学号	姓名	成绩
******	 **********本章	 文学要求************************************	*****
1、理解运动的绝对性与运动中的作用;	描述的相对性,理解	参考系、坐标系、时间	1、空间等概念在描述物体运动
2、理解质点、质点系、刚体	模型的意义,相互关	系和适用条件;	
3、理解惯性系和非惯性系的			
掌握描述质点圆周运动和刚体	本定轴转动运动的物理	E量: 角速度、角加速	可加速度、法向加速度的定义; 度的定义及角量与线量的关系; 【会用中学所掌握的方法去解决
问题; 6、掌握伽利略坐标变换公式	、伽利略速度变换公	式并能用于解决相对证	5动的力学问题。
 一、填空题			
1.在相对地面静止的坐标系内], A、B 二船都以 2m	ı ⋅s ⁻¹ 的速率匀速行使	A 船沿 x 轴正向, B 船沿 y 轴
正向。今在 A 船上设置与静」	上坐标系方向相同的學		氏量用 \vec{i} 、 \vec{j} 表示),那么在 A 船
上的坐标系中, B 船的速度(I	从m·s⁻¹ 为单位)为	·	
2. 已知质点的运动方程产=	$4t^2\vec{i} + (2t+3)\vec{j} \text{ (SI)}$,则该质点的轨道方程	是为,3秒时质点在轨
道上运动的速度和加速度的方	大小分别为	_ 和。	
3. 一质点沿 <i>x</i> 轴运动,其加速	互度 a 与位置坐标 x 的	关系为 a=2+6x²(SI)。	如果质点在原点处的速度为零,
则质点在 $x=2m$ 处的速度 $v=_$			
4.根据	_ 在其中是否成立,	可将参考系分为惯性参	参考系和非惯性参考系; 严格说
来,绝对精确的惯性系是不得	存在的,只是一种	,在	对日常运动的研究和实验中,
可以作为近似和	星度相当好的惯性系。		
5.在半径为 R 的圆周上运动的	的质点, 其速率与时间	J 关系为 $v = ct^2$ (式中	¹ c为常量),则从 <i>t</i> =0 到 <i>t</i> 时刻
质点走过的路程 $S(t) = $; <i>t</i> 时刻质点的切	$ 切向加速度 a_t = \underline{\hspace{1cm}} $; t时刻质点的法向加速度
<i>a</i> _n =			
6. 一般情况下刚体的运动可	看成和	的叠加;当刚体	时,其任一质点的速度与加
速度是相同的; 在刚体的转动	动中,有一种特殊的软	专动为, 当刚	J体作这种转动时,其上任意两
个质点的和	是相同的。(选 :	填项 :平动、转动、冠	E轴转动、速度、角速度、加速
度、角加速度)			

二、选择题

- 1.一运动质点在 t 时刻位于矢径 $\vec{r}(x,y)$ 的端点处,其速度大小为 [

- (A) $\frac{dr}{dt}$; (B) $\frac{d\vec{r}}{dt}$; (C) $\frac{d|\vec{r}|}{dt}$; (D) $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$.
- 2.一质点在平面上作一般曲线运动,其瞬时速度为 \bar{v} ,瞬时速率为v,某一段时间内的平均速度为 \bar{v} , 平均速率为,它们之间的关系必定有[
- (A) $|\vec{v}| = v$, $|\vec{\overline{v}}| = v$ (B) $|\vec{v}| \neq v$, $|\vec{\overline{v}}| = v$ (C) $|\vec{v}| \neq v$, $|\vec{\overline{v}}| \neq v$ (D) $|\vec{v}| = v$, $|\vec{\overline{v}}| \neq v$

- 3. 与河岸 (看成直线)的垂直距离为 $l=500\,\mathrm{m}$ 处有一艘静止的船,船上的探照灯以转速 $n=0.6\,\mathrm{r/min}$
- 转动。当光束与岸边的夹角为 $\theta=60^\circ$ 时,光束沿岸边移动的速率为 Γ
 - (A) 63 m/s:
- (B) 56 m/s:
- (C) 42 m/s:
- (D) 28 m/s:
- (E) 14 m/s_{\odot}
- 4.两辆车A和B,在笔直的公路上同向行驶,它们从同一起始线上同时出发,并且由出发点开始计时, 行驶的距离与行驶时间的函数关系式: $x_A = t + t^2$, $x_B = t^2 + t^3$ (SI), 则在 t = 1.20 s 时刻, B 相对于 A 的速度为[- 1
 - (A) 3.3 m/s;
- (B) 11 m/s; (C) 26 m/s; (D) 47 m/s;
- (E) 74 m/s_{\circ}
- 5.一刚体以每分种 60 转绕 z 轴作匀速转动。设某时刻刚体上一点 P 的位置矢量为 $\vec{r}=3\vec{i}+4\vec{j}+5\vec{k}$,
- 其单位为" 10^{-2} m",若以" 10^{-2} m·s⁻¹"为速度单位,则该时刻 P 点的速度为[
 - (A) $\vec{v} = 94.2\vec{i} + 125.6\vec{j} + 157.0\vec{k}$ (B) $\vec{v} = -25.1\vec{i} + 18.8\vec{j}$
- - (C) $\vec{v} = 25.1\vec{i} + 18.8\vec{j}$
- (D) $\vec{v} = 31.4\vec{k}$

三、简答题

1. 一质点作直线运动,其x-t 曲线如图所示,质点的运动可分为 OA、AB、 BC 和 CD 四个区间。其 中AB为平行于t轴的直线,CD为直线。试问每一区间的速度、加速度分别是正值、负值,还是零? 质点分别做什么运动?

2. 绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动。试问刚体上任意一点是否有切向加速度? 是否有法向加速度? 切向加速度和法向加速度的大小是否变化? 理由如何?

3.在离船的高度为h岸边,绞车以恒定速率 v_0 收拖缆绳,使船靠岸,如下图所示。讨论以下两个问题:

- (1) 缆绳上各点的速度相同吗?
- (2)有人认为船的速率为 $v = v_0 \cos \theta$,对不对?为什么?

四、计算题

- 1. 一个人自原点出发,10 s 内向东走 15 m,又 10 s 内向南走 10 m,再 25 s 内向正西北走 30 m。求在 这 45 s 内,
 - (1) 平均速度的大小和方向,
 - (2) 平均速率的大小。

2. 一物体悬挂在弹簧上作竖直振动,其加速度为a=-ky,式中k为常数,y是以平衡位置为原点所测得的坐标,假定振动的物体在坐标 y_0 处的速度为 v_0 ,试求:速度v与坐标y的函数关系式。

3. 质点 M 在水平面内的运动轨迹如图所示,OA 段为直线,AB、 BC 段分别为不同半径的两个 1/4 圆周。设 t=0 时,M 在 O 点,已知运动学方程为 $S=30t+5t^2(SI)$ 。求 t=2s 时刻,质点 M 的切向加速度和法向加速度。

 $30 \mathrm{m}$