Gaussian processes

1. Consider the condition from the Kolmogorov continuity theorem:

$$\mathsf{E}\Big[|X_t - X_s|^{\alpha}\Big] \le K|t - s|^{1+\beta}, \quad \forall t, s > 0.$$

For which parameters α , K and β this condition holds, if X_t is a Brownian motion?

- $\alpha = 3, K = 3 \text{ and } \beta = 2;$
- $\alpha = 4, K = 2 \text{ and } \beta = 3;$
- $\alpha = 4$, K = 3 and $\beta = 1$;
- none of the above.

Solution: recall the lecture material:

$$\mathsf{E}\Big[|X_t - X_s|^4\Big] = (t - s)^2 \mathsf{E}\big[\xi^4\big]$$

where $\xi \sim N(0,1)$. Then one should recall that $\mathsf{E}[\xi^4] = 3$ for $\xi \sim N(0,1)$, hence the answer.

Note: it wasn't necessary to remember the exact value of K because pair (α, β) is different for all options.

- 2. Choose the right statements about the Brownian motion W_t :
 - W_t has continuous trajectories;
 - $W_t W_s \sim N(0, t s)$;
 - $W_0 = 0$ almost surely;
 - W_t has symmetric distribution for any t > 0;
 - W_t has independent increments.

Solution: recall the lecture material.

- 3. Let $X_t = e^{W_t}$, where W_t is a Brownian motion. Find mathematical expectation $\mathsf{E}[X_t]$, variance $\mathsf{Var}(X_t)$ and covariance function $K(t,s) = \mathsf{cov}(X_t,X_s)$ (in the answers below it is assumed that $t > s \ge 0$).
 - $E[X_t] = e^{t/2}$, $Var[X_t] = e^{2t} e^t$, $cov(X_t, X_s) = e^{\frac{3s+t}{2}} e^{\frac{s+t}{2}}$:
 - $E[X_t] = e^{2t} e^t$, $Var[X_t] = e^{t/2}$, $cov(X_t, X_s) = e^{\frac{3s+2t}{2}} e^{\frac{s-t}{2}}$;
 - $E[X_t] = e^{t/2}$, $Var[X_t] = e^{2t} e^t$, $cov(X_t, X_s) = e^{\frac{3s+2t}{2}} e^{\frac{s+t}{2}}$;
 - none of the above.

Solution: easy straightforward calculations show that

$$\begin{split} \mathsf{E}[X_t] &= \mathsf{E}\Big[e^{W_t}\Big] = \\ &= \int_{-\infty}^{\infty} \frac{e^x}{\sqrt{2\pi t}} \exp\left\{-\frac{x^2}{2t}\right\} \mathrm{d}x = \\ &= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} \exp\left\{x - \frac{x^2}{2t}\right\} \mathrm{d}x = \\ &= \frac{1}{\sqrt{2\pi t}} \sqrt{2\pi t} e^{t/2} = e^{t/2}. \end{split}$$

Still straightforward yet not so easy calculations show that

$$\operatorname{Var}[X_t] = \operatorname{Var}\left[e^{W_t}\right] =$$

$$= \operatorname{E}\left[\left(e^{W_t} - e^{t/2}\right)^2\right] =$$

$$= \operatorname{E}\left[e^{2W_t}\right] - 2e^t + e^t =$$

$$= \operatorname{E}\left[e^{2W_t}\right] - e^t =$$

$$= \int_{-\infty}^{\infty} \frac{e^{2x}}{\sqrt{2\pi t}} \exp\left\{-\frac{x^2}{2t}\right\} dx - e^t =$$

$$= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} \exp\left\{2x - \frac{x^2}{2t}\right\} dx - e^t =$$

$$= \frac{1}{\sqrt{2\pi t}} \sqrt{2\pi t} e^{2t} - e^t =$$

$$= e^{2t} - e^t.$$

Finally, somewhat harder calculations show that

$$\begin{aligned} \operatorname{cov}(X_t, X_s) &= \operatorname{cov}\left(e^{W_t}, e^{W_s}\right) = \\ &= \operatorname{E}\left[e^{W_t + W_s}\right] - \operatorname{E}\left[e^{W_t}\right] \operatorname{E}\left[e^{W_s}\right] = \\ &= \operatorname{E}\left[e^{W_t + W_s}\right] - e^{\frac{t+s}{2}} = \\ &= \operatorname{E}\left[e^{2W_s + \xi(t-s)}\right] - e^{\frac{t+s}{2}} = \\ &= \operatorname{E}\left[e^{2W_s}\right] \operatorname{E}\left[e^{\xi(t-s)}\right] - e^{\frac{t+s}{2}} = \\ &= e^{2s} \operatorname{E}\left[e^{\xi(t-s)}\right] - e^{\frac{t+s}{2}} = \\ &= e^{2s} e^{\frac{t-s}{2}} - e^{\frac{t+s}{2}} = \\ &= e^{\frac{3s+t}{2}} - e^{\frac{t+s}{2}}, \end{aligned}$$

where $\xi \sim N(0,1)$.

- 4. Let W_t be the Brownian motion. Calculate $P\{W_1 + W_2 > 2\}$. In the possible answers below Φ is the distribution function of the standard normal distribution.
 - $1 \Phi(2/\sqrt{5})$, where Φ is a normal distribution function;
 - $\Phi(1/2)$, where Φ is a normal distribution function;
 - 1/2;
 - $\Phi(2/\sqrt{5})$, where Φ is a normal distribution function
 - none of above.

Solution: $W_2 = W_1 + \eta$, with $\eta \perp W_1$, where $\eta \sim N(0,1)$, and $W_1 = \xi$, where $\xi \sim N(0,1)$ hence we can write

$$P\{W_1 + W_2 > 2\} = P\{2\xi + \eta > 2\}.$$

It is known that $2N(0,1) \sim N(0,2)$ and that for independent random variables N(0,2) + N(0,1) = N(0,5). Finally,

$$P\{N(0,5) > 2\} = P\{N(0,1) > 2/\sqrt{5}\} =$$
$$= 1 - \Phi(2/\sqrt{5}).$$

Note: it was clear from the beginning that out answer is less than 1/2.

- 5. Which properties hold for the covariance function K(t,s) of a stochastic process?
 - K is symmetric, that is, $K(t,s) = K(s,t), \forall t, s \in \mathbb{R}^+$;
 - K is positive semidefinite, that is,

$$\sum_{j,k} u_j u_k K(t_j, t_k) \ge 0, \quad \forall t_1, \dots, t_n \in \mathbb{R}^+, \quad \forall u_1, \dots, u_n \in \mathbb{R}^+;$$

- K(0,0) = 1;
- K is positive definite, that is,

$$\sum_{j,k} u_j u_k K(t_j, t_k) > 0, \quad \forall t_1, \dots, t_n \in \mathbb{R}^+, \quad \forall u_1, \dots, u_n \in \mathbb{R}^+;$$

• none of above.

Solution: recall the lecture material.

- 6. Let W_t be the Brownian motion. Choose the processes which are also the Brownian motions.
 - aW_{t/a^2} with some fixed $a \neq 0$.;
 - \bullet $-W_t$:
 - $W_{t+s} W_s$ with some fixed s > 0;
 - $tW_{1/t}$, t > 0, and $W_0 = 0$.

Solution: for the first three one can easily check the properties from the definition of a Brownian motion. For the last one, it is also a Brownian motion, even though it is somewhat harder to check: first we need to check that $\mathsf{E}(X_tX_s) = \min\{t,s\}$. Indeed:

$$\mathsf{E}[X_t X_s] = \mathsf{E}\left[t W_{1/t} s W_{1/s}\right] = t s \mathsf{E}[W_{1/t} W_{1/s}].$$

Given t > s one gets 1/t < 1/s and hence

$$E[W_{1/t}W_{1/s}] = \min\{1/t, 1/s\} = 1/t.$$

Substituting into the lest equations gives $ts(1/t) = s = \min\{t, s\}$, as desired.

Now, we have that $E[X_t - X_s]^2 = t - s$ for all s < t, and

$$\mathsf{E}\big[(X_t - X_s)(X_s - X_u)\big] = s - u - s - u = 0$$

for u < s < t. From this we have that the increments are independent and N(0, t - s).

Finally, the trajectories are continuous since

$$\lim_{t \to 0} X_t = \lim_{s \to \infty} \frac{W_s}{s} = 0$$

as stated in the lecture.

- 7. Let $Y_{n+1} = aY_n + X_n$, where $n = 0, 1, 2, \ldots, Y_0 = 0, |a| < 1, X_0, X_1, X_2, \ldots \sim N(0, 1)$ i.i.d. Find $cov(Y_4, Y_3)$.
 - $a^5 + a^3 + a$;
 - $a^5 + a^4 + a^3 + a^2 + a + 1$:
 - \bullet $a^5 + a^4 + a^3 + a^2 + a$:
 - $a^4 + a^2 + 1$.

Solution: first note that $E(Y_0) = 0$ and

$$\begin{split} \mathsf{E}(Y_{n+1}) &= \mathsf{E}(aY_n + X_n) = \\ &= \mathsf{E}(aY_n) + \mathsf{E}(X_n) = \\ &= \mathsf{E}(aY_n) = \\ &= a\mathsf{E}(Y_n) = \\ &= 0 \end{split}$$

by induction on n.

Next note that $\mathsf{E}(Y_0^2) = 0$ and

$$\begin{split} \mathsf{E}(Y_{n+1}^2) &= \mathsf{E}((aY_n + X_n)^2) = \\ &= \mathsf{E}(a^2Y_n^2 + 2aX_nY_n + X_n^2) = \\ &= a^2\mathsf{E}(Y_n^2) + 2a\mathsf{E}(X_nY_n) + \mathsf{E}(X_n^2) \stackrel{Y_n \perp \!\!\! \perp X_n}{=} \\ &= a^2\mathsf{E}(Y_n^2) + 2a\mathsf{E}(X_n)\mathsf{E}(Y_n) + \mathsf{E}(X_n^2) = \\ &= a^2\mathsf{E}(Y_n^2) + \mathsf{E}(X_n^2) = \\ &= a^2\mathsf{E}(Y_n^2) + 1. \end{split}$$

From here one can derive the identity $\mathsf{E}(Y_n^2) = a^{2n} + a^{2(n-1)} + \ldots + a^2 + 1$ by induction on n.

Finally, we see that

$$cov(Y_4, Y_3) = E(Y_4Y_3) - E(Y_4)E(Y_3) =$$

$$= E((aY_3 + X_3)Y_3) - E(aY_3 + X_3)E(Y_3) =$$

$$= E(aY_3^2 + X_3Y_3) - E(aY_3 + X_3)E(Y_3) =$$

$$= E(aY_3^2) - E(aY_3)E(Y_3) =$$

$$= aE(Y_3^2) - a(E(Y_3))^2 =$$

$$= a(a^4 + a^2 + 1) = a^5 + a^3 + a.$$

8. Let X_t be a Brownian motion. Find

$$K(t,s) - \operatorname{Var}(X_{\min\{t,s\}}).$$

- $\min\{t, s\}$;
- **0**;
- 2(t+s);
- $\max\{t, s\}$.

Solution: first

$$K(t,s) = \min\{t,s\}$$

Second

$$\operatorname{Var}\left(X_{\min\{t,s\}}\right) = \min\{t,s\}.$$

Therefore the answer is 0.