XLV Olimpiada Matemática Española

Primera Fase

Primera y segunda sesión

Sábado mañana, 24 de enero de 2008

SOLUCIONES

1. y **4.** Probar que para todo entero positivo n, $n^{19} - n^7$ es divisible por 30.

Solución:

 $n^{19} - n^7 = n^7 (n^{12} - 1) = n^7 (n^6 + 1)(n^6 - 1) = n^7 (n^6 + 1)(n^3 + 1)(n^3 - 1)$, con lo que en la descomposición de $n^{19} - n^7$ aparecen tres números consecutivos, n - 1, n, n + 1, de los cuales al menos uno es divisible por 2 y exactamente uno es divisible por 3.

Completaremos la descomposición para probar que aparece un factor divisible por 5, y habremos terminado.

$$n^{19} - n^7 = n^7 (n^2 + 1)(n^4 - n^2 + 1)(n + 1)(n^2 - n + 1)(n - 1)(n^2 + n + 1)$$

Si ninguno de los números n-1, n, n+1 es múltiplo de 5, entonces $n=5k\pm 2$, con lo que $(n^2+1)=25k^2\pm 20k+5$ es múltiplo de 5, como queríamos.

- **2.** y **5.** Determinar el mayor número de planos en el espacio tridimensional para los que existen seis puntos con las siguientes condiciones:
- i) Cada plano contiene al menos cuatro de los puntos.
- ii) Cuatro puntos cualesquiera no pertenecen a una misma recta.

Solución:

Sean r y s dos rectas que se cruzan en el espacio. Sean A, B y C tres puntos distintos de r y sean P, Q y R tres puntos distintos en s. Cada uno de los puntos de r define con s un plano, y análogamente cada punto de s con r. Estos 6 planos cumplen las condiciones del problema, por lo que el número buscado es mayor o igual que 6.

Probaremos que no es posible satisfacer las condiciones con más de 6 planos.

Comenzamos por ver que no puede haber tres puntos en una misma recta. En efecto, si suponemos que los puntos H, J, K están sobre una recta l, ningunos de los restantes

puntos, L, M, N, puede estar en l, por la condición b. Estos tres puntos L, M y N, pertenecen como mucho a tres de los planos, por lo que los demás planos contienen al menos a 2 de los puntos de l, y por tanto a toda la recta. Es decir, al menos cuatro planos contienen a l, lo que es imposible, porque al menos uno de ellos no podría contener a ninguno de los puntos L, M o N, contrario a la condición a.

Veremos ahora que ningún plano puede contener a más de cuatro de los puntos. Supongamos que uno de los planos contiene a cinco de los puntos y deja fuera al punto X. Como acabamos de ver que no puede haber tres puntos alineados, un plano que contenga a X contendría como mucho a dos de los otros puntos, contrario a la condición a.

Resumiendo, cada uno de los planos contiene exactamente a cuatro de los seis puntos y no hay tres que estén en la misma recta.

Cada plano deja fuera un par de puntos y dos planos distintos dejan fuera a puntos distintos, de lo contrario habría tres puntos en ambos planos, y deberían estar alineados. Como seis puntos sólo se pueden agrupar en tres pares disjuntos de puntos, es imposible que existan más de seis planos en las condiciones del problema.

3. y **6.** Los puntos de una retícula $m \times n$ pueden ser de color blanco o negro. Una retícula se dice que está equilibrada si para cualquier punto P de ella, la fila y columna que pasan por este punto P tienen ambas el mismo número de puntos de igual color que P. Determinar todos los pares de enteros positivos (m, n) para los que existe una retícula equilibrada.

Solución:

Denotaremos por BF(i) el número de puntos de color blanco que hay en la fila i y con BC(j) el número de puntos blancos en la columna j. Análogamente, NF(i) y NC(j) denotarán el número de puntos negros en la fila i y en la columna j, respectivamente. Siendo P_{ij} el punto que se encuentra en la fila i y en la columna j, suponiendo que es de color blanco, la condición de ser equilibrada se leerá BF(i) = BC(j).

Supongamos que el punto P_{11} de una retícula equilibrada de n filas y m columnas es de color negro, y sea k el número de puntos negros de la primera fila. Intercambiando las columnas, si fuere necesario, podemos suponer que estos puntos de color negro son los

k primeros, P_{11} , ..., P_{1k} . Por la condición de equilibrio para P_{11} , la primera columna también tendrá exactamente k puntos de color negro que, reordenando las filas, si fuere necesario, supondremos que son los k primeros puntos, P_{11} , ..., P_{k1} .

Sea P_{ij} , con $1 < i \le k$ y $1 < j \le k$. Supongamos que P_{ij} es de color blanco. Se tendrá entonces que BF(i) = BC(j). Pero por ser negro el punto P_{1j} , NC(j) = NF(1) = k, y por ser negro el punto P_{i1} , NF(i) = NC(1) = k. De donde,

$$n = BF(i) + NF(i) = BF(i) + k = BC(j) + k = BC(j) + NC(j) = m.$$

Suponiendo que, por ejemplo, n > m, tendremos que todos los puntos negros de las filas 1 a k están en las primeras columnas, y análogamente todos los puntos negros de las columnas 1 a k están en las primeras filas

$$k \begin{cases} \bullet & \cdots & \bullet & \circ & \cdots & \circ \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \bullet & \cdots & \bullet & \circ & \cdots & \circ \\ m-k \begin{cases} \circ & \cdots & \circ \\ \vdots & \ddots & \vdots \\ \circ & \cdots & \circ \end{cases}$$

Suponiendo que m - k > 0, todos los puntos P_{ij} , con i > k y j > k, deben ser negros. En otro caso tendríamos un rectángulo con tres vértices de color blanco y uno negro, de donde se seguiría que n = m, como vimos al principio.

Por lo tanto, la condición para cualquiera de estos puntos nos dice que

$$n - k = NF(i) = NC(j) = m - k$$

lo que contradice nuestra suposición de n > m. Por tanto, m - k = 0, lo que resulta en que k = n - k, por la condición para P_{mn} , de donde n = 2m.

Luego los posibles pares de números serán (n, n), (n, 2n) y (2n, n), con n un entero positivo.

XLV Olimpiada Matemática Española

Primera Fase Segunda sesión

Sábado tarde, 24 de enero de 2008

SOLUCIONES

4. En el interior de un paralelogramo ABCD se dibujan dos circunferencias. Una es tangente a los lados AB y AD, y la otra es tangente a los lados CD y CB. Probar que si estas circunferencias son tangentes entre si, el punto de tangencia está en la diagonal AC.

Solución:

Veremos que los puntos A, K y C están alineados.

Sean O_1 y O_2 los centros de la primera y segunda circunferencia, respectivamente. Notar que AO_1 , biseca el ángulo DAB, y análogamente CO_2 biseca el ángulo DCB. Como los lados son paralelos dos a dos y los ángulos O_1AK y CO_2K son iguales, entonces AO_1 es paralelo a CO_2 , y, como O_1K y O_2K están alineados, los ángulos AO_1K y KO_2C son iguales.

Como $O_1P \perp AB$ y $O_1Q \perp CD$, los triángulos APO_1 y CQO_2 son semejantes, por lo que

$$\frac{\left|O_{1}A\right|}{\left|O_{1}P\right|} = \frac{\left|O_{2}C\right|}{\left|O_{2}Q\right|}, \text{ y como } |O_{1}P| = |O_{1}K| \text{ y } |O_{2}Q| = |O_{2}K|, \text{ los triángulos } AO_{1}K \text{ y } KO_{2}C \text{ son }$$

semejantes, por lo que los puntos A, K y C están alineados, como se quería.

5. Dado un número natural n mayor que 1, hallar todos los pares de números enteros a y b tales que las dos ecuaciones $x^n + ax - 2008 = 0$ y $x^n + bx - 2009 = 0$ tengan, al menos, una raíz común real.

Solución:

Restando ambas ecuaciones tenemos que (b - a)x = 1. Luego si estas ecuaciones van a tener una raíz común, tiene que ser x = 1/(b - a). Notar que a no puede ser igual a b. Substituyendo en una de las ecuaciones, tendremos que

$$(b-a)^{n-1}(a-2008(b-a))=-1,$$

y que, por ser a y b enteros, estos dos factores serán uno igual a + 1 y otro igual a - 1.

Si
$$(b-a) = 1$$
, se tendrá $a = -1 + 2008 = 2007$, y por tanto $b = 2008$.

Si
$$(b-a) = -1$$
, se tendrá $a = (-1)^{n-1} - 2008$, y por tanto $b = (-1)^{n-1} - 2009$.

Luego los únicos pares de números (a, b) son

$$(2007, 2008)$$
 y $((-1)^{n-1} - 2008, (-1)^{n-1} - 2009)$.

6. Sean C_1 y C_2 dos circunferencias exteriores tangentes en el punto P. Por un punto A de C_2 trazamos dos rectas tangentes a C_1 en los puntos M y M'. Sean N y N' los puntos respectivos de corte, distintos ambos de A, de estas rectas con C_2 .

Probar que
$$|PN'| \cdot |MN| = |PN| \cdot |M'N'|$$
.

Solución:

Probaremos que para cualquier punto N de C_2 y M de C_1 tal que MN es tangente a C_1 , se tiene que el cociente $\frac{|MN|}{|PN|}$ es constante. Sea Q el punto de corte con C_1 de la recta por N y

P. Los triángulos NMP y NQM son congruentes porque comparten el ángulo en N y $\angle MQN = \angle MQP = \angle MPN$ por ser inscrito y semi-inscrito con cuerda MP. Por lo tanto, se tiene:

$$\frac{|MN|}{|QN|} = \frac{|PN|}{|MN|} . \quad (*)$$

Siendo O_1 y O_2 los centros de C_1 y C_2 , respectivamente, los triángulos isósceles PO1Q y PO2N son congruentes porque $\angle O_1PQ = \angle O_2PN$.

De aquí se sigue que $\frac{|QP|}{|PN|} = \frac{|O_2N|}{|O_1N|} = \frac{r_2}{r_1} = \lambda$, siendo r_1 y r_2 los respectivos radios de C_1 y C_2 .

Como $|QN| = |QP| + |PN| = |PN| (1 + \lambda)$, substituyendo en (*) tenemos que $|MN|^2 = |PN|^2$ $(1 + \lambda)$, de donde $\frac{|MN|}{|PN|} = \sqrt{(1 + \lambda)}$, como queríamos.