HEC ESSEC 2021 Maths 1

Ce problème étudie la transformée de Fourier discrète des vecteurs de \mathbb{C}^n où l'entier n est une puissance de 2. Dans la première partie, on découvre la matrice de Fourier-Vandermonde. Dans la seconde, on utilise les résultats obtenus pour les matrices circulantes et, dans la troisième partie, on s'intéresse à un algorithme d'obtention de la transformée de Fourier discrète que l'on applique ensuite au calcul d'un produit de convolution.

Dans tout le problème :

- N désigne un entier supérieur ou égal à 1 et n = 2^N.
 On note ω_n le nombre complexe e^{2iπ}/_n = cos (^{2π}/_n) + i sin (^{2π}/_n).
 Si z = Re(z) + i Im(z) est un nombre complexe, on note son conjugué z̄ = Re(z) i Im(z). Ainsi, $\overline{\omega_n} = e^{-\frac{2i\pi}{n}}$.
- $\mathcal{B}_n = (e_0, e_1, \dots, e_{n-1})$ est la base canonique de \mathbb{C}^n et e_{Σ} est le vecteur $e_{\Sigma} = \sum_{k=0}^{n-1} e_k$. Si $x = (x_0, x_1, \dots, x_{n-1}) = \sum_{k=0}^{n-1} x_k e_k \in \mathbb{C}^n$, on pourra identifier x et la matrice colonne $X = \sum_{k=0}^{n-1} x_k e_k$

$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$
 de ses coordonnées dans la base \mathcal{B}_n .

• Si
$$X = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$
, on note $\overline{X} = \begin{pmatrix} \overline{x_0} \\ \overline{x_1} \\ \vdots \\ \overline{x_{n-1}} \end{pmatrix}$.

• Si $M = (m_{i,j})_{(i,j)\in[[0,n-1]]^2} \in \mathcal{M}_n(\mathbb{C})$, on note \overline{M} la matrice $\overline{M} = (\overline{m_{i,j}})_{(i,j)\in[[0,n-1]]^2} \in \mathcal{M}_n(\mathbb{C})$.

- On utilisera sans démonstration la formule $\overline{MX} = \overline{MX}$.

 Si $x = \sum_{k=0}^{n-1} x_k e_k$, on remarquera que : $\sum_{k=0}^{n-1} |x_k|^2 = {t \overline{X} \choose X} X$.

 Si λ est une valeur propre d'un endomorphisme g de \mathbb{C}^n , on note $E_{\lambda}(g) = \operatorname{Ker}(g \lambda \operatorname{Id}_{\mathbb{C}})$ l'espace propre associé a la valeur propre λ .
- Un sous-espace vectoriel G de \mathbb{C}^n est dit stable par un endomorphisme q de \mathbb{C}^n si, pour tout $x \in G$, $g(x) \in G$.

On note alors $g_{|G}: \left\{ \begin{array}{l} G \to G \\ x \mapsto g(x) \end{array} \right.$

On utilisera sans démonstration le fait que $g_{|G}$ est un endomorphisme de G. Cet endomorphisme $g_{|G}$ est appelé endomorphisme de G induit par g.

On s'intéresse, dans ce problème, à l'étude de l'application :

$$F_n: x = \sum_{k=0}^{n-1} x_k e_k \mapsto \sum_{k=0}^{n-1} \left(\sum_{j=0}^{n-1} \omega_n^{kj} x_j \right) e_k$$

On acceptera sans le démontrer que F_n est un endomorphisme de \mathbb{C}^n .

On notera A_n la matrice de F_n dans la base \mathcal{B}_n ; on a donc $A_n = (\omega_n^{kj})_{(k,j) \in [[0,n-1]]^2} \in \mathcal{M}_n(\mathbb{C})$.

$$A_{n} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{n} & \omega_{n}^{2} & \cdots & \omega_{n}^{n-1} \\ 1 & \omega_{n}^{2} & \omega_{n}^{4} & \cdots & \omega_{n}^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \cdots & \omega_{n}^{(n-1)^{2}} \end{pmatrix}$$

On prendra bien garde que dans tout le problème, les indexations des coefficients de vecteurs et de matrices sont réalisées a l'aide de l'ensemble d'entiers [[0, n-1]].

HEC ESSEC S1 2021 Page 1/6

Partie I - Premières propriétés de l'application F_n

1. Préliminaires :

- a) Que vaut ω_n^n ? Et plus généralement, que vaut $(\omega_n^k)^n$ pour $k \in \mathbb{Z}$? Montrer que : $\forall (k, k') \in [[0, n-1]]^2$, $k \neq k' \Longrightarrow \omega_n^k \neq \omega_n^{k'}$. Justifier alors la factorisation dans $\mathbb{C}[X]: X^n - 1 = \prod_{k=0}^{n-1} (X - \omega_n^k)$.
- b) Soit $s \in \mathbb{Z}$. Montrer que $\sum_{q=0}^{n-1} \omega_n^{sq} = \begin{cases} n & \text{si } s \text{ est un multiple de } n \\ 0 & \text{sinon} \end{cases}$

2. Cas particulier n=2:

- a) Expliciter la matrice A_2 . Est-elle inversible ? Si oui, calculer son inverse.
- b) A_2 est-elle diagonalisable ? Si oui, déterminer ses valeurs propres et une base de vecteurs propres.

3. Cas particulier n=4:

- a) Expliciter la matrice A_4 et calculer la matrice A_4 $\overline{A_4}$. En déduire que A_4 est inversible et donner son inverse.
- b) Calculer la matrice A_4^2 puis A_4^4 . En déduire un polynôme annulateur non nul de A_4 .
- c) Quelles sont les valeurs propres possibles de A_4 ?
- d) On note $P = \text{vect}(e_0, e_{\Sigma})$. Montrer que P est stable par F_4 . Écrire la matrice C_4 de l'endomorphisme induit $F_{4|P}$ dans la base (e_0, e_{Σ}) de P. Déterminer les valeurs propres de C_4 ainsi qu'une base de vecteurs propres de C_4 . En déduire que 2 et -2 sont valeurs propres de F_4 et déterminer des vecteurs propres de F_4 associés à ces deux valeurs propres.
- e) Calculer $F_4(e_0 + e_2)$ ainsi que $F_4(e_1 e_3)$. En déduire le spectre de F_4 ainsi que ses espaces propres. F_4 est-il diagonalisable?

4. Exemples de transformées de Fourier discrètes :

Soient
$$x = \sum_{k=0}^{n-1} x_k e_k \in \mathbb{C}^n$$
 et $y = F_n(x) = \sum_{k=0}^{n-1} y_k e_k$.

a) Déterminer y dans les trois cas suivants :

i.
$$x = e_{\Sigma} = \sum_{k=0}^{n-1} e_k$$
.
ii. $x = \sum_{k=0}^{n-1} a^k e_k$ où $a \in \mathbb{C}$ tel que $|a| \neq 1$.
iii. $x = \sum_{k=0}^{n-1} \binom{n-1}{k} e_k$.

- b) On suppose que pour tout $k \in [[0, n-1]]$, $x_k \in \mathbb{R}$. Montrer que pour tout $k \in [[0, n-1]]$, $y_k = \overline{y_{n-k}}$.
- 5. Inversibilité de A_n dans le cas général et formule de Parseval :
 - a) Calculer la matrice A_n $\overline{A_n}$. Justifier alors que A_n est inversible et préciser A_n^{-1} .
 - b) Justifier que F_n est inversible et préciser F_n^{-1} .
 - c) Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$, $n(^{t}\overline{X}) X = {}^{t}(\overline{A_{n}X}) A_{n}X$.
 - d) En déduire la formule de Parseval : pour tout $x = \sum_{k=0}^{n-1} x_k e_k$, $\sum_{k=0}^{n-1} \left| \sum_{j=0}^{n-1} \omega_n^{kj} x_j \right|^2 = n \sum_{k=0}^{n-1} |x_k|^2$.
- 6. Valeurs propres de A_n :

- a) Soit $\lambda \in \mathbb{C}$, une valeur propre de A_n . Montrer que $|\lambda| = \sqrt{n}$ (on pourra utiliser la question 5.c)).
- b) Montrer que la matrice A_n^2 est la matrice de terme général $b_{k,j}$ où $(k,j) \in [[0,n-1]]^2$ tel que :

$$b_{0,0}=n\quad b_{k,n-k}=n$$
 pour $k\in [[0,n-1]]$ et $b_{k,j}=0$ sinon

Autrement dit,
$$A_n^2 = \begin{pmatrix} n & 0 & \dots & \cdots & 0 \\ 0 & \cdots & 0 & 0 & n \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & n & 0 & \cdots & 0 \end{pmatrix}$$

c) Préciser alors A_n^4 .

En déduire un polynôme annulateur non nul de A_n et les valeurs propres possibles de A_n .

7. Construction de vecteurs propres de F_n :

On suppose dans cette question que $n \geq 8$.

On note
$$e_{\cos} = \sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) e_k$$
 et $e_{\sin} = \sum_{k=0}^{n-1} \sin\left(\frac{2k\pi}{n}\right) e_k$.

- a) Calculer $F_n\left(e_1+e_{n-1}\right)$ et $F_n\left(e_1-e_{n-1}\right)$ en fonction des vecteurs e_{\cos} et e_{\sin} .
- b) On note G_n l'endomorphisme canoniquement associé a A_n^2 . Préciser $G_n(e_1 + e_{n-1})$ et $G_n(e_1 - e_{n-1})$ et en déduire que :

$$F_n(e_{\cos}) = \frac{n}{2} (e_1 + e_{n-1})$$
 et $F_n(e_{\sin}) = i \frac{n}{2} (e_1 - e_{n-1})$

c) On note $Q = \text{vect}(e_1 + e_{n-1}, e_{\cos}).$

Vérifier que Q est de dimension 2 et montrer que Q est stable par F_n .

Quelle est la matrice de l'endomorphisme induit $F_{n|Q}$ dans la base $(e_1 + e_{n-1}, e_{\cos})$ de Q? Déterminer les valeurs propres ainsi qu'une base de vecteurs propres de cette matrice.

En déduire que \sqrt{n} et $-\sqrt{n}$ sont valeurs propres de F_n et déterminer des vecteurs propres de F_n associés à ces deux valeurs propres.

- d) Procéder de la même façon avec $R = \text{vect}(e_1 e_{n-1}, e_{\sin})$.
- e) En déduire les valeurs propres de F_n .

Partie II - Lien avec les matrices circulantes

Soit $a = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n$; on appelle matrice circulante associée à a et on note C(a) la matrice :

$$C(a) = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{n-2} & a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-2} & a_{n-1} & a_0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

On note en particulier,
$$J_n = C(0, 1, 0, 0, \dots, 0) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ 0 & \vdots & \ddots & \ddots & 1 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$

(c'est-à-dire $a_1 = 1$ et $a_j = 0$ si $j \neq 1$).

On note φ_n l'endomorphisme de \mathbb{C}^n dont la matrice dans la base \mathcal{B}_n est J_n .

Enfin, on note $\operatorname{Circ}_n(\mathbb{C})$ l'ensemble des matrices circulantes de $\mathcal{M}_n(\mathbb{C})$.

- 8. Puissances successives de J_n :
 - a) Pour tout $j \in [[0, n-1]]$, déterminer $\varphi_n(e_j)$, puis $\varphi_n^2(e_j)$ et en déduire la matrice J_n^2 .
 - b) Soit $k \in [[1, n-1]]$. Montrer que :

$$\forall j \in [[k, n-1]], \quad \varphi_n^k(e_j) = e_{j-k} \text{ et } \forall j \in [[0, k-1]] \quad \varphi_n^k(e_j) = e_{n-k+j}$$

c) Enfin, pour tout $j \in [[0, n-1]]$, calculer $\varphi_n^n(e_j)$.

Que vaut φ_n^n ?

- d) Déduire de ce qui précède l'expression des matrices J_n^k pour $k \in [[1, n]]$.
- 9. Réduction de J_n :
 - a) Déduire de la question 8., les valeurs propres possibles de J_n .
 - b) Montrer que pour tout $k \in [[0, n-1]]$, $F_n(e_k)$ est vecteur propre de φ_n pour la valeur propre ω_n^k .
 - c) Donner alors tous les sous-espaces propres de φ_n .

En déduire que J_n est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ et que $J_n = \frac{1}{n}A_nD_n\overline{A_n}$ où D_n est la matrice diagonale de taille n dont les coefficients diagonaux sont les complexes ω_n^k où $k \in [[0, n-1]]$

- 10. Structure de $\operatorname{Circ}_n(\mathbb{C})$:
 - a) Justifier que $\operatorname{Circ}_n(\mathbb{C})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$.

En donner une base et la dimension.

- b) Montrer que $\operatorname{Circ}_n(\mathbb{C})$ est stable pour la multiplication.
- 11. Réduction des matrices circulantes :

Soit $a = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n$ et C(a) la matrice circulante associée.

- a) Vérifier que $C(a) = \sum_{k=0}^{n-1} a_k J_n^k$.
- b) Montrer alors que C(a) est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ et préciser ses valeurs propres.
- c) Exemple : soit $\alpha = (0, 1, 0, 0, \dots, 0, 1) \in \mathbb{C}^n$, c'est- à-dire :

$$\alpha_1 = \alpha_{n-1} = 1$$
 et $\alpha_i = 0$ si $i \neq 1$ et $i \neq n-1$.

On note $S_n = C(\alpha)$.

Quelles sont les valeurs propres de S_n ?

La matrice S_n est-elle inversible?

12. Caractérisation des matrices circulantes :

On se propose dans cette question, de montrer que $\operatorname{Circ}_n(\mathbb{C})$ est l'ensemble des matrices qui commutent avec J_n .

On note $\Omega = \{ M \in \mathcal{M}_n(\mathbb{C}) \mid J_n M = M J_n \}.$

a) Vérifier que $\operatorname{Circ}_n(\mathbb{C}) \subset \Omega$.

Dans la suite de cette question, on considère une matrice $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $J_nM = MJ_n$ et on note g l'endomorphisme de \mathbb{C}^n dont la matrice dans la base canonique de \mathbb{C}^n est M.

- b) Montrer que pour tout $k \in [[0, n-1]]$, il existe $\lambda_k \in \mathbb{C}$ tel que $g(F_n(e_k)) = \lambda_k F_n(e_k)$.
- c) En déduire une explicitation simple de $\frac{1}{n}\overline{A_n}MA_n$.

HEC ESSEC S1 2021

d) Démontrer que Ω est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ de dimension n, et que Ω est égal à $\mathrm{Circ}_n(\mathbb{C})$.

Partie III - Construction algorithmique

13. Algorithme de calcul de $F_n(x)$:

Algorithme de Cooley-Tukey ou algorithme « papillon ».

On rappelle que l'entier n est égal à 2^N avec N entier supérieur ou égal à 1.

On se propose dans cette question, de construire un algorithme de calcul de $F_n(x)$, pour un vecteur $x = \sum_{k=0}^{n-1} x_k e_k = (x_0, x_1, \dots, x_{n-1})$ de \mathbb{C}^n .

Pour tout $k \in [[0, n-1]]$, on note $[F_n(x)]_k$ la composante d'indice k de $F_n(x)$ dans la base \mathcal{B}_n . À x, on associe les vecteurs $y = (y_0, y_1, \dots, y_{n/2-1}) \in \mathbb{C}^{n/2}$ et $z = (z_0, z_1, \dots, z_{n/2-1}) \in \mathbb{C}^{n/2}$ tels que pour tout $k \in [[0, \frac{n}{2} - 1]]$, $y_k = x_{2k}$ et $z_k = x_{2k+1}$.

Ainsi, pour n = 8, pour $x = (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7) \in \mathbb{C}^8$, on a $y = (x_0, x_2, x_4, x_6) \in \mathbb{C}^4$ et $z = (x_1, x_3, x_5, x_7) \in \mathbb{C}^4$.

a) Vérifier que pour tout $k \in \lceil \left[0, \frac{n}{2} - 1\right] \rceil$:

$$[F_n(x)]_k = [F_{n/2}(y)]_k + \omega_n^k [F_{n/2}(z)]_k$$
 et $[F_n(x)]_{k+n/2} = [F_{n/2}(y)]_k - \omega_n^k [F_{n/2}(z)]_k$

- b) On suppose déjà calculés $F_{n/2}(y)$ et $F_{n/2}(z)$ et on considère l'algorithme suivant :
 - $1 \quad A$ prend la valeur 1
 - **2** pour k allant de 0 à $\frac{n}{2} 1$ faire
 - B prend la valeur $A \times [F_{n/2}(z)]_{L}$
 - 4 α_k prend la valeur $\left[F_{n/2}(y)\right]_k + B$
 - 5 $\alpha_{k+n/2}$ prend la valeur $\left[F_{n/2}(y)\right]_k B$

 - **7** fin

Comparer le vecteur $(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ obtenu après exécution de cet algorithme au vecteur $F_n(x)$.

c) On s'intéresse, dans cette question, à l'efficacité de l'algorithme précédent en terme de rapidité de calcul.

Pour ceci, la procédure habituelle consiste à évaluer le nombre d'opérations arithmétiques (additions, soustractions, multiplications et divisions de deux nombres complexes) nécessaires a l'obtention du résultat final.

L'implémentation de ce type d'algorithmes, dits récursifs (pour calculer des images par la fonction F_n , on commence par calculer des images par la fonction $F_{n/2}$), nécessite une gestion particulière dans la mémoire de la machine, du stockage des variables et de l'adressage des instructions exécutées, gestion dont nous ne tiendrons pas compte dans ce sujet.

On note u_N le nombre d'opérations nécessaires au calcul de $F_n(x)$ avec $n=2^N$.

Les calculs de $F_{n/2}(y)$ et de $F_{n/2}(z)$ nécessitent donc chacun u_{N-1} opérations.

On convient que $u_0 = 0$.

Justifier alors que la suite (u_N) vérifie la relation de récurrence $u_N = 2u_{N-1} + 2^{N+1}$.

- d) En déduire pour tout $N \in \mathbb{N}$, la valeur de u_N en fonction de N, puis de n. (on pourra d'abord s'intéresser a la suite (v_N) définie par : $\forall N \in \mathbb{N}, v_N = \frac{u_N}{2^N}$)
- 14. Produit de convolution de deux vecteurs de $\mathbb{C}^{n/2}$: Soient $y = (y_0, y_1, \dots, y_{n/2-1}) \in \mathbb{C}^{n/2}$ et $z = (z_0, z_1, \dots, z_{n/2-1}) \in \mathbb{C}^{n/2}$;

HEC ESSEC S1 2021 Page 5/6

on pose, pour tout $k \in \left[\frac{n}{2}, n-1\right]$, $y_k = z_k = 0$; on construit ainsi deux vecteurs notés $\tilde{y} = (y_0, y_1, \dots, y_{n-1}) \in \mathbb{C}^n$ et $\tilde{z} = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{C}^n$.

On pose alors $x=y*z=(x_0,x_1,\ldots,x_{n-1})\in\mathbb{C}^n$ tel que pour tout $k\in[[0,n-1]],$ $x_k=\sum_{j=0}^ky_jz_{k-j}.$

Le vecteur x est appelé produit de convolution des vecteurs y et z.

- a) Vérifier que pour tout $k \in [[0, n-1]], [F_n(x)]_k = [F_n(\tilde{y})]_k \cdot [F_n(\tilde{z})]_k$.
- b) On calcule le produit de convolution x = y * z en calculant successivement :
 - les transformées de Fourier discrètes $F_n(\widetilde{y})$ et $F_n(\widetilde{z})$ par l'algorithme étudié dans la question 13.
 - les produits : pour tout $k \in [[0, n-1]], [F_n(x)]_k = [F_n(\tilde{y})]_k \cdot [F_n(\tilde{z})]_k$, donc $F_n(y * z)$,
 - la transformée de Fourier discrète inverse $F_n^{-1}(F_n(y*z))$.

Déterminer le nombre d'opérations nécessaires à la réalisation de chacune de ces trois étapes, et en déduire en fonction de n un équivalent du nombre d'opérations nécessaires au calcul du produit de convolution x = y * z par cette méthode.

c) Comparer, du point de vue du nombre d'opérations effectuées, cette méthode à la méthode du calcul du produit x = y*z par la définition : pour tout $k \in [[0, n-1]], x_k = \sum_{j=0}^k y_j z_{k-j}$.

HEC ESSEC S1 2021 Page 6/6