# REVIEW OF LAST LECTURE(S)

- NumPy: Python Library for Manipulating nD Arrays
   Multidimensional Arrays, and a variety of operations including Linear Algebra
- 2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
  Series, Tables (also called DataFrames)
  Many operations to manipulate and combine tables/series
- Relational DatabasesTables/Relations, and SQL (similar to Pandas operations)
- 4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

# DATA MANIPULATION AND COMPUTATION

Data Science == manipulating and computing on data

Large to very large, but somewhat "structured" data

We will see several tools for doing that this semester

Thousands more out there that we won't cover

**Need to learn to shift thinking from:** 

Imperative code to manipulate data structures

to:

Sequences/pipelines of operations on data

Should still know how to implement the operations themselves, especially for debugging performance (covered in classes like 420, 424), but we won't cover that much

# THE NUMPY STACK



## **NEXT FEW CLASSES**

#### 1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

#### 2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called **DataFrames**)
Many operations to manipulate and combine tables/series

#### 3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

#### 4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

# THE DATA LIFECYCLE



# **TODAY/NEXT CLASS**

- Tables
  - Abstraction
  - Operations
- Pandas
- Tidy Data
- SQL

# **TABLES**



# **TABLES**

| ID | age  | wgt_kg | hgt_cm |
|----|------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  |
| 2  | 11.0 | 40.8   | 143.8  |
| 3  | 15.6 | 65.3   | 165.3  |
| 4  | 35.1 | 84.2   | 185.8  |

| ID | Address                  |
|----|--------------------------|
| 1  | College Park, MD, 20742  |
| 2  | Washington, DC, 20001    |
| 3  | Silver Spring, MD, 20901 |

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-73/mission-sts-73.html HTTP/1.0" 200 4085

# 1. SELECT/SLICING

Select only some of the rows, or some of the columns, or a combination

| ID | age  | wgt_kg | hgt_cm |
|----|------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  |
| 2  | 11.0 | 40.8   | 143.8  |
| 3  | 15.6 | 65.3   | 165.3  |
| 4  | 35.1 | 84.2   | 185.8  |

Only columns ID and Age

| ID | age  |
|----|------|
| 1  | 12.2 |
| 2  | 11.0 |
| 3  | 15.6 |
| 4  | 35.1 |

Only rows with wgt > 41

| ID | age  | wgt_kg | hgt_cm |
|----|------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  |
| 3  | 15.6 | 65.3   | 165.3  |
| 4  | 35.1 | 84.2   | 185.8  |

Both

| ID | age  |  |
|----|------|--|
| 1  | 12.2 |  |
| 3  | 15.6 |  |
| 4  | 35.1 |  |

# 2. AGGREGATE/REDUCE

Combine values across a column into a single value

73.9 232.6 640.0

| S | U | M   |  |
|---|---|-----|--|
| 3 | U | IVI |  |

| ID | age  | wgt_kg | hgt_cm |
|----|------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  |
| 2  | 11.0 | 40.8   | 143.8  |
| 3  | 15.6 | 65.3   | 165.3  |
| 4  | 35.1 | 84.2   | 185.8  |

MAX **35.1** 84.2 185.8

SUM(wgt\_kg^2 - hgt\_cm)

14167.66

#### What about ID/Index column?

Usually not meaningful to aggregate across it May need to explicitly add an ID column

## **3. MAP**

Apply a function to every row, possibly creating more or fewer columns

| ID | Address                  |
|----|--------------------------|
| 1  | College Park, MD, 20742  |
| 2  | Washington, DC, 20001    |
| 3  | Silver Spring, MD, 20901 |



| ID | City             | State | Zipcode |
|----|------------------|-------|---------|
| 1  | College<br>Park  | MD    | 20742   |
| 2  | Washington       | DC    | 20001   |
| 3  | Silver<br>Spring | MD    | 20901   |

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

# 4. GROUP BY

#### Group tuples together by column/dimension

| ID | Α   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | bar | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | foo | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

By 'A'

$$A = foo$$

| ID | В | С   |
|----|---|-----|
| 1  | 3 | 6.6 |
| 3  | 4 | 3.1 |
| 4  | 3 | 8.0 |
| 7  | 4 | 2.3 |
| 8  | 3 | 8.0 |

$$A = bar$$

| ID | В | C   |
|----|---|-----|
| 2  | 2 | 4.7 |
| 5  | 1 | 1.2 |
| 6  | 2 | 2.5 |

# 4. GROUP BY

#### Group tuples together by column/dimension

| ID | A   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | bar | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | foo | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

By 'B'

$$B = 1$$

| ID | A   | C   |
|----|-----|-----|
| 5  | bar | 1.2 |

$$B = 2$$

| ID | Α   | C   |  |
|----|-----|-----|--|
| 2  | bar | 4.7 |  |
| 6  | bar | 2.5 |  |

$$B = 3$$

| ID | A   | C   |
|----|-----|-----|
| 1  | foo | 6.6 |
| 4  | foo | 8.0 |
| 8  | foo | 8.0 |

$$B = 4$$

| ID | Α   | C   |
|----|-----|-----|
| 3  | foo | 3.1 |
| 7  | foo | 2.3 |

# 4. GROUP BY

#### Group tuples together by column/dimension

| ID | Α   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | bar | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | foo | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

By 'A', 'B'

$$A = bar, B = 1$$

| ID | С   |
|----|-----|
| 5  | 1.2 |

$$A = bar, B = 2$$

| ID | C   |
|----|-----|
| 2  | 4.7 |
| 6  | 2.5 |

$$A = foo, B = 3$$

| ID | C   |
|----|-----|
| 1  | 6.6 |
| 4  | 8.0 |
| 8  | 8.0 |

$$A = foo, B = 4$$

| ID | С   |
|----|-----|
| 3  | 3.1 |
| 7  | 2.3 |

# 5. GROUP BY AGGREGATE

#### Compute one aggregate per group

| ID | Α   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | bar | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | foo | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

Group by 'B'
Sum on C







| ID | A   | C   |
|----|-----|-----|
| 2  | bar | 4.7 |
| 6  | bar | 2.5 |

$$B = 3$$

| ID | Α   | C   |
|----|-----|-----|
| 1  | foo | 6.6 |
| 4  | foo | 8.0 |
| 8  | foo | 8.0 |

$$B = 4$$

| ID | A   | C   |
|----|-----|-----|
| 3  | foo | 3.1 |
| 7  | foo | 2.3 |





$$B = 2$$



B = 3



$$B = 4$$



5.4

# 5. GROUP BY **AGGREGATE**

B = 1

### Sum (C)

1.2

#### Final result usually seen as a table

| ID | Α   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | bar | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | foo | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

B = 2

#### Sum (C)

7.2

| $\Box$ $ \odot$ |  |
|-----------------|--|
| D - O           |  |
| B = 3           |  |

|   | _ | 2 |  |  |
|---|---|---|--|--|
| 1 | _ | J |  |  |

#### Sum (C)

22.6

Group by 'B'

Sum on C

| В | SUM(C) |
|---|--------|
| 1 | 1.2    |
| 2 | 7.2    |
| 3 | 22.6   |
| 4 | 5.4    |

B = 4

#### Sum (C)

5.4

# 6. UNION / INTERSECTION / DIFFERENCE

Set operations – only if the two tables have identical attributes/columns

| ID | A   | В | С   |  |
|----|-----|---|-----|--|
| 1  | foo | 3 | 6.6 |  |
| 2  | bar | 2 | 4.7 |  |
| 3  | foo | 4 | 3.1 |  |
| 4  | foo | 3 | 8.0 |  |



|   | ID | A   | В | C   |
|---|----|-----|---|-----|
|   | 1  | foo | 3 | 6.6 |
| - | 2  | bar | 2 | 4.7 |
|   | 3  | foo | 4 | 3.1 |
|   | 4  | foo | 3 | 8.0 |
|   | 5  | bar | 1 | 1.2 |
|   | 6  | bar | 2 | 2.5 |
|   | 7  | foo | 4 | 2.3 |
|   | 8  | foo | 3 | 8.0 |
|   |    |     |   |     |

Similarly Intersection and Set Difference manipulate tables as Sets

IDs may be treated in different ways, resulting in somewhat different behaviors

## 7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

| ID | A   | В |
|----|-----|---|
| 1  | foo | 3 |
| 2  | bar | 2 |
| 3  | foo | 4 |
| 4  | foo | 3 |





| ID | Α   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 1.2 |
| 2  | bar | 2 | 2.5 |
| 3  | foo | 4 | 2.3 |

What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN

### 7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

Outer joins can be used to "pad" IDs that don't appear in both tables

Three variants: LEFT, RIGHT, FULL

**SQL** Terminology – pandas has these operations as well

| ID | A   | В |
|----|-----|---|
| 1  | foo | 3 |
| 2  | bar | 2 |
| 3  | foo | 4 |
| 4  | foo | 3 |



| ID | A   | В   | С   |
|----|-----|-----|-----|
| 1  | foo | 3   | 1.2 |
| 2  | bar | 2   | 2.5 |
| 3  | foo | 4   | 2.3 |
| 4  | foo | 3   | NaN |
| 5  | NaN | NaN | 8.0 |

## **SUMMARY**

- Tables: A simple, common abstraction
  - Subsumes a set of "strings" a common input
- Operations
  - Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By
- In a given system/language, the operations may be named differently
  - E.g., SQL uses "join", whereas Pandas uses "merge"
- Subtle variations in the definitions, especially for more complex operations

| ID | A   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | baz | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | baz | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |



# HOW MANY GROUPS IN THE ANSWER?

foo -> ... baz -> ... bar -> ...

| ID | A   | В | С   |
|----|-----|---|-----|
| 1  | foo | 3 | 6.6 |
| 2  | baz | 2 | 4.7 |
| 3  | foo | 4 | 3.1 |
| 4  | baz | 3 | 8.0 |
| 5  | bar | 1 | 1.2 |
| 6  | bar | 2 | 2.5 |
| 7  | foo | 4 | 2.3 |
| 8  | foo | 3 | 8.0 |

# HOW MANY GROUPS IN THE ANSWER?

(foo, 3) -> ... (baz, 2) -> ... (foo, 4) -> ... (baz, 3) -> ... (bar, 1) -> ... (bar, 2) -> ...

| ID | A   | В |
|----|-----|---|
| 1  | foo | 3 |
| 2  | bar | 2 |
| 4  | foo | 4 |
| 5  | foo | 3 |

|   | ID | C   |
|---|----|-----|
|   | 2  | 1.2 |
| × | 4  | 2.5 |
| • | 6  | 2.3 |
|   | 7  | 8.0 |
|   | •  |     |

| A.        | 1 |
|-----------|---|
| <b>B.</b> | 2 |
| C.        | 4 |
| D.        | 6 |

# HOW MANY TUPLES IN THE ANSWER?

| ID | A   | В |
|----|-----|---|
| 1  | foo | 3 |
| 2  | bar | 2 |
| 4  | foo | 4 |
| 5  | foo | 3 |



| ID | C   |
|----|-----|
| 2  | 1.2 |
| 4  | 2.5 |
| 6  | 2.3 |
| 7  | 8.0 |

**FULL OUTER JOIN** 

All IDs will be present in the answer With NaNs

**A.** 1 **B.** 4 **C.** 6 **D.** 8

# HOW MANY TUPLES IN THE ANSWER?

#### Inner join: 1 - X !! 2 - 2 !! 4 - 4 !! 5 - X !! X - 6 !! X - 7 !!

### **CONTINUING TO PANDAS ...**

- NumPy: Python Library for Manipulating nD Arrays
   Multidimensional Arrays, and a variety of operations including Linear Algebra
- 2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
  Series, Tables (also called DataFrames)
  Many operations to manipulate and combine tables/series
- 3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

#### 4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

### **PANDAS: HISTORY**

- Written by: Wes McKinney
  - Started in 2008 to get a high-performance, flexible tool to perform quantitative analysis on financial data
- Highly optimized for performance, with critical code paths written in Cython or C
- Key constructs:
  - Series (like a NumPy Array)
  - DataFrame (like a Table or Relation, or R data.frame)
- Foundation for Data Wrangling and Analysis in Python

# **PANDAS: SERIES**

#### index values



- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

## **PANDAS: DATAFRAME**



- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns
- Note the use of word "index" for what we called "key"
  - Relational databases use "index" to mean something else
- Non-unique index values allowed
  - May raise an exception for some operations

## HIERARCHICAL INDEXES

Sometimes more intuitive organization of the data

Makes it easier to understand and analyze higher-dimensional data

e.g., instead of 3-D array, may only need a 2-D array

| day    |        | Fri   | Sat   | Sun   | Thur  |
|--------|--------|-------|-------|-------|-------|
| sex    | smoker |       |       |       |       |
| Female | No     | 3.125 | 2.725 | 3.329 | 2.460 |
|        | Yes    | 2.683 | 2.869 | 3.500 | 2.990 |
| Male   | No     | 2.500 | 3.257 | 3.115 | 2.942 |
|        | Yes    | 2.741 | 2.879 | 3.521 | 3.058 |

| first  | second  |           |
|--------|---------|-----------|
| bar    | one     | 0.469112  |
|        | two     | -0.282863 |
| oaz    | one     | -1.509059 |
|        | two     | -1.135632 |
| foo    | one     | 1.212112  |
|        | two     | -0.173215 |
| gux    | one     | 0.119209  |
|        | two     | -1.044236 |
| dtype: | float64 |           |

## **ESSENTIAL FUNCTIONALITY**

#### Reindexing to change the index associated with a DataFrame

Common usage to interpolate, fill in missing values

```
In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
In [85]: obj3.reindex(range(6), method='ffill')
Out[85]:
0          blue
1          blue
2          purple
3          purple
4          yellow
5          yellow
```

## **ESSENTIAL FUNCTIONALITY**

"drop" to delete entire rows or columns Indexing, Selection, Filtering: very similar to NumPy Arithmetic Operations

- Result index union of the two input indexes
- Options to do "fill" while doing these operations

```
In [130]: s1 + s2
Out[130]:
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
```

# FUNCTION APPLICATION AND MAPPING

```
In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
                           index=['Utah', 'Ohio', 'Texas', 'Oregon'])
   . . . . . :
In [159]: frame
                                          In [160]: np.abs(frame)
Out[159]:
                                          Out[160]:
               b
                                                         b
                                                                   d
                                                 0.204708 0.478943
Utah
      -0.204708
                 0.478943 -0.519439
                                         Utah
                                                                     0.519439
Ohio
                                         Ohio
      -0.555730 1.965781 1.393406
                                                 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023
                                          Texas
                                                 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221
                                         Oregon 1.246435 1.007189 1.296221
In [161]: f = lambda x: x.max() - x.min()
In [162]: frame.apply(f)
                              In [163]: frame.apply(f, axis=1)
Out[162]:
                              Out[163]:
     1.802165
                              Utah
                                        0.998382
     1.684034
                              Ohio
                                        2.521511
     2.689627
                              Texas
                                        0.676115
                               Oregon
                                        2.542656
```

## **SORTING AND RANKING**

```
In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])
In [170]: obj.sort index()
Out[170]:
C
In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
                         'c': [-2, 5, 8, -2.5]})
  . . . . . :
In [188]: frame
              In [189]: frame.rank(axis=1)
Out[188]:
                    Out[189]:
                       a b c
  a b c
0 0 4.3 -2.0 0 2 3 1
1 1 7.0 5.0 1 1 3 2
2 0 -3.0 8.0
3 1 2.0 -2.5
```

# **DESCRIPTIVE AND SUMMARY STATISTICS**

| Table 5-10. Descriptive and summary st | statistics |
|----------------------------------------|------------|
|----------------------------------------|------------|

| Method         | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| count          | Number of non-NA values                                                                     |
| describe       | Compute set of summary statistics for Series or each DataFrame column                       |
| min, max       | Compute minimum and maximum values                                                          |
| argmin, argmax | Compute index locations (integers) at which minimum or maximum value obtained, respectively |
| idxmin, idxmax | Compute index values at which minimum or maximum value obtained, respectively               |
| quantile       | Compute sample quantile ranging from 0 to 1                                                 |
| sum            | Sum of values                                                                               |
| mean           | Mean of values                                                                              |
| median         | Arithmetic median (50% quantile) of values                                                  |
| mad            | Mean absolute deviation from mean value                                                     |
| var            | Sample variance of values                                                                   |
| std            | Sample standard deviation of values                                                         |
| skew           | Sample skewness (3rd moment) of values                                                      |
| kurt           | Sample kurtosis (4th moment) of values                                                      |
| cumsum         | Cumulative sum of values                                                                    |
| cummin, cummax | Cumulative minimum or maximum of values, respectively                                       |
| cumprod        | Cumulative product of values                                                                |
| diff           | Compute 1st arithmetic difference (useful for time series)                                  |
| pct_change     | Compute percent changes                                                                     |

### **CREATING DATAFRAMES**

**Directly from Dict or Series** 

From a Comma-Separated File – CSV file

- pandas.read\_csv()
- Can infer headers/column names if present, otherwise may want to reindex

From an Excel File

pandas.read\_excel()

From a Database using SQL (see the reading for an example)

From Clipboard, URL, Google Analytics, ...

. . .

# MORE...

**Unique values, Value counts** 

**Correlation and Covariance** 

Functions for handling missing data – in a few classes

dropna(), fillna()

**Broadcasting** 

**Pivoting** 

We will see some of these as we discuss data wrangling, cleaning, etc.

### **CONTINUING TO TIDY DATA**

# NumPy: Python Library for Manipulating nD Arrays Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

#### 3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

#### 4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

# **TABLES**



#### But also:

- Names of files/DataFrames = description of one dataset
- Enforce one data type per dataset (ish)

## **EXAMPLE**

#### Identifier Variable: measure or attribute:

age, weight, height, sex

#### Value: measurement of attribute:

• 12.2, 42.3kg, 145.1cm, M/F

#### Observation: all measurements for an object

• A specific person is [12.2, 42.3, 145.1, F]

# **TIDYING DATA I**

| Name         | Treatment A | Treatment B |
|--------------|-------------|-------------|
| John Smith   | -           | 2           |
| Jane Doe     | 16          | 11          |
| Mary Johnson | 3           | 1           |

????????????

| Name         | Treatment A | Treatment B | Treatment C | Treatment D |
|--------------|-------------|-------------|-------------|-------------|
| John Smith   | -           | 2           | -           | -           |
| Jane Doe     | 16          | 11          | 4           | 1           |
| Mary Johnson | 3           | 1           | -           | 2           |

????????????

# **TIDYING DATA II**

In a few lectures ...

| Name         | Treatment | Result   |
|--------------|-----------|----------|
| John Smith   | Α         | - /      |
| John Smith   | В         | 2        |
| John Smith   | С         | <u>-</u> |
| John Smith   | D         | (-)      |
| Jane Doe     | Α         | 16       |
| Jane Doe     | В         | 11       |
| Jane Doe     | С         | 4        |
| Jane Doe     | D         | 1        |
| Mary Johnson | Α         | 3        |
| Mary Johnson | В         | 1        |
| Mary Johnson | С         | -        |
| Mary Johnson | D         | 2        |

### **MELTING DATA**

What we just did was "unpivot" the dataframe from wide to long format.

Pandas: Melt (<a href="https://pandas.pydata.org/docs/reference/api/pandas.melt.html">https://pandas.pydata.org/docs/reference/api/pandas.melt.html</a>)

This function is useful to massage a DataFrame into a format where:

- One or more columns are identifier variables (id\_vars),
- All other columns, considered measured variables (*value\_vars*), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'.

| Name         | Treatment A | <b>Treatment B</b> | Treatment C | Treatment D |
|--------------|-------------|--------------------|-------------|-------------|
| John Smith   | -           | 2                  | -           | -           |
| Jane Doe     | 16          | 11                 | 4           | 1           |
| Mary Johnson | 3           | 1                  | -           | 2           |

|   | Name         | Treatment | Result |
|---|--------------|-----------|--------|
|   | John Smith   | A         | -      |
|   | John Smith   | В         | 2      |
|   | John Smith   | С         | -      |
|   | John Smith   | D         | -      |
|   | Jane Doe     | A         | 16     |
|   | Jane Doe     | В         | 11     |
|   | Jane Doe     | С         | 4      |
| _ | Jane Doe     | D         | 1      |
|   | Mary Johnson | A         | 3      |
|   | Mary Johnson | В         | 1      |
|   | Mary Johnson | С         | -      |
|   | Mary Johnson | D         | 2      |
|   |              |           |        |



# **MELTING DATA I**

| religion                   | <\$10k | \$10-20k | \$20-30k | \$30-40k | \$40-50k | \$50-75k |
|----------------------------|--------|----------|----------|----------|----------|----------|
| Agnostic                   | 27     | 34       | 60       | 81       | 76       | 137      |
| Atheist                    | 12     | 27       | 37       | 52       | 35       | 70       |
| Buddhist                   | 27     | 21       | 30       | 34       | 33       | 58       |
| Catholic                   | 418    | 617      | 732      | 670      | 638      | 1116     |
| Dont<br>know/refused       | 15     | 14       | 15       | 11       | 10       | 35       |
| Evangelical Prot           | 575    | 869      | 1064     | 982      | 881      | 1486     |
| Hindu                      | 1      | 9        | 7        | 9        | 11       | 34       |
| Historically<br>Black Prot | 228    | 244      | 236      | 238      | 197      | 223      |
| Jehovahs<br>Witness        | 20     | 27       | 24       | 24       | 21       | 30       |
| Jewish                     | 19     | 19       | 25       | 25       | 30       | 95       |

# **MELTING DATA II**

| religion | income   | freq |
|----------|----------|------|
| Agnostic | <\$10k   | 27   |
| Agnostic | \$30-40k | 81   |
| Agnostic | \$40-50k | 76   |
| Agnostic | \$50-75k | 137  |
| Agnostic | \$10-20k | 34   |
| Agnostic | \$20-30k | 60   |
| Atheist  | \$40-50k | 35   |
| Atheist  | \$20-30k | 37   |
| Atheist  | \$10-20k | 27   |
| Atheist  | \$30-40k | 52   |



Billboard Top 100 data for songs, covering their position on the Top 100 for 75 weeks, with two "messy" bits:

- Column headers for each of the 75 weeks
- If a song didn't last 75 weeks, those columns have are null

| year | artist.inv<br>erted    | track                       | time | genre | date.ente<br>red | date.pea<br>ked | x1st.wee<br>k | x2nd.wee<br>k |  |
|------|------------------------|-----------------------------|------|-------|------------------|-----------------|---------------|---------------|--|
| 2000 | Destiny's<br>Child     | Independent<br>Women Part I | 3:38 | Rock  | 2000-09-2<br>3   | 2000-11-1<br>8  | 78            | 63.0          |  |
| 2000 | Santana                | Maria, Maria                | 4:18 | Rock  | 2000-02-1<br>2   | 2000-04-0<br>8  | 15            | 8.0           |  |
| 2000 | Savage<br>Garden       | I Knew I Loved<br>You       | 4:07 | Rock  | 1999-10-2<br>3   | 2000-01-2<br>9  | 71            | 48.0          |  |
| 2000 | Madonna                | Music                       | 3:45 | Rock  | 2000-08-1<br>2   | 2000-09-1<br>6  | 41            | 23.0          |  |
| 2000 | Aguilera,<br>Christina | Come On Over<br>Baby        | 3:38 | Rock  | 2000-08-0<br>5   | 2000-10-1<br>4  | 57            | 47.0          |  |
| 2000 | Janet                  | Doesn't Really<br>Matter    | 4:17 | Rock  | 2000-06-1<br>7   | 2000-08-2<br>6  | 59            | 52.0          |  |

Messy columns!

```
# Keep identifier variables
id vars = ["year",
           "artist.inverted",
           "track",
           "time",
           "genre",
           "date.entered",
           "date.peaked"]
# Melt the rest into week and rank columns
df = pd.melt(frame=df,
             id vars=id vars,
             var name="week",
             value name="rank")
```

Creates one row per week, per record, with its rank

 $[..., x2nd.week'', 63.0] \square [..., 2, 63]$ 

```
# Ignore now-redundant, messy columns
df = df[["year",
         "artist.inverted",
         "track",
         "time",
         "genre",
         "week",
         "rank",
         "date"]]
df = df.sort values(ascending=True,
by=["year","artist.inverted","track","week","rank"])
# Keep tidy dataset for future usage
billboard = df
df.head(10)
```

| year | artist.in<br>verted | track                                          | time | genre | week | rank | date       |
|------|---------------------|------------------------------------------------|------|-------|------|------|------------|
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 1    | 87   | 2000-02-26 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 2    | 82   | 2000-03-04 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 3    | 72   | 2000-03-11 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 4    | 77   | 2000-03-18 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 5    | 87   | 2000-03-25 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 6    | 94   | 2000-04-01 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)            | 4:22 | Rap   | 7    | 99   | 2000-04-08 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is Getting Ba | 3:15 | R&B   | 1    | 91   | 2000-09-02 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is Getting Ba | 3:15 | R&B   | 2    | 87   | 2000-09-09 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is Getting Ba | 3:15 | R&B   | 3    | 92   | 2000-09-16 |

# **MORE TO DO?**

Column headers are values, not variable names?

Good to go!

Multiple variables are stored in one column?

Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?

Good to go!

Multiple types of observational units in the same table?

Good to go! One row per song's week on the Top 100.

A single observational unit is stored in multiple tables?

Don't do this!

Repetition of data?

Lots! Artist and song title's text names. Which leads us to ...

# ON WE GO! TO RELATIONAL DATABASES & SQL!

- NumPy: Python Library for Manipulating nD Arrays
   Multidimensional Arrays, and a variety of operations including Linear Algebra
- 2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
  Series, Tables (also called DataFrames)
  Many operations to manipulate and combine tables/series
- 3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

#### 4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

# **TODAY'S LECTURE**

#### Relational data:

What is a relation, and how do they interact?

#### **Querying databases:**

- SQL
- SQLite
- How does this relate to pandas?

#### **Joins**



### RELATION

Simplest relation: a table aka tabular data full of unique tuples



# WHERE DOES THIS BREAK DOWN?

# What's wrong with our last example???

Lots of duplicated data

# What happens if we add years?

 Need to be able to have different units of observation or different views!

#### What do we need?

 Different tables to store different kinds of observations!

| year | artist.in<br>verted | track                                             | time | genre | week | rank | date       |
|------|---------------------|---------------------------------------------------|------|-------|------|------|------------|
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 1    | 87   | 2000-02-26 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 2    | 82   | 2000-03-04 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 3    | 72   | 2000-03-11 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 4    | 77   | 2000-03-18 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 5    | 87   | 2000-03-25 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 6    | 94   | 2000-04-01 |
| 2000 | 2 Pac               | Baby Don't Cry (Keep Ya Head Up II)               | 4:22 | Rap   | 7    | 99   | 2000-04-08 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is<br>Getting Ba | 3:15 | R&B   | 1    | 91   | 2000-09-02 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is<br>Getting Ba | 3:15 | R&B   | 2    | 87   | 2000-09-09 |
| 2000 | 2Ge+her             | The Hardest Part Of Breaking Up (Is<br>Getting Ba | 3:15 | R&B   | 3    | 92   | 2000-09-16 |

# PRIMARY KEYS

| ID | age  | wgt_kg | hgt_cm | nat_id |
|----|------|--------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  | 1      |
| 2  | 11.0 | 40.8   | 143.8  | 1      |
| 3  | 15.6 | 65.3   | 165.3  | 2      |
| 4  | 35.1 | 84.2   | 185.8  | 1      |
| 5  | 18.1 | 62.2   | 176.2  | 3      |
| 6  | 19.6 | 82.1   | 180.1  | 1      |

| ID | Nationality |
|----|-------------|
| 1  | USA         |
| 2  | Canada      |
| 3  | Mexico      |

The primary key is a unique identifier for every tuple in a relation

Each tuple has exactly one primary key

# AREN'T THESE CALLED "INDEXES"?

Yes, in Pandas; but not in the database world

For most databases, an "index" is a data structure used to speed up retrieval of specific tuples

#### For example, to find all tuples with nat\_id = 2:

- We can either scan the table O(N)
- Or use an "index" (e.g., binary tree) O(log N)



# **FOREIGN KEYS**

| ID | age  | wgt_kg | hgt_cm | nat_id |
|----|------|--------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  | 1      |
| 2  | 11.0 | 40.8   | 143.8  | 1      |
| 3  | 15.6 | 65.3   | 165.3  | 2      |
| 4  | 35.1 | 84.2   | 185.8  | 1      |
| 5  | 18.1 | 62.2   | 176.2  | 3      |
| 6  | 19.6 | 82.1   | 180.1  | 1      |

| ID | <b>Nationality</b> |
|----|--------------------|
| 1  | USA                |
| 2  | Canada             |
| 3  | Mexico             |

Foreign keys are attributes (columns) that point to a different table's primary key

• A table can have multiple foreign keys

### **RELATION SCHEMA**

A list of all the attribute names, and their domains

```
create table department
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)
);
```

SQL Statements
To create Tables

```
create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department
)
```

## **SCHEMA DIAGRAMS**



# **SEARCHING FOR ELEMENTS**

| ID | age  | wgt_kg | hgt_cm | nat_id |
|----|------|--------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  | 1      |
| 2  | 11.0 | 40.8   | 143.8  | 1      |
| 3  | 15.6 | 65.3   | 165.3  | 2      |
| 4  | 35.1 | 84.2   | 185.8  | 1      |
| 5  | 18.1 | 62.2   | 176.2  | 3      |
| 6  | 19.6 | 82.1   | 180.1  | 1      |





# **INDEXES**

Like a hidden sorted map of references to a specific attribute (column) in a table; allows O(log n) lookup instead of O(n)

| loc | ID | age  | wgt_kg | hgt_cm | nat_id |
|-----|----|------|--------|--------|--------|
| 0   | 1  | 12.2 | 42.3   | 145.1  | 1      |
| 128 | 2  | 11.0 | 40.8   | 143.8  | 2      |
| 256 | 3  | 15.6 | 65.3   | 165.3  | 2      |
| 384 | 4  | 35.1 | 84.2   | 185.8  | 1      |
| 512 | 5  | 18.1 | 62.2   | 176.2  | 3      |
| 640 | 6  | 19.6 | 82.1   | 180.1  | 1      |

| nat_id | locs           |
|--------|----------------|
| 1      | 0, 384,<br>640 |
|        | 040            |
| 2      | 128, 256       |
| 3      | 512            |

## **INDEXES**

#### **Actually implemented with data structures like B-trees**

(Take courses like CMSC424 or CMSC420)

#### But: indexes are not free

- Takes memory to store
- Takes time to build
- Takes time to update (add/delete a row, update the column)

#### But, but: one index is (mostly) free

Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!



### **RELATIONSHIPS**

Primary keys and foreign keys define interactions between different tables aka entities. Four types:

- One-to-one
- One-to-one-or-none
- One-to-many and many-to-one
- Many-to-many

Connects (one, many) of the rows in one table to (one, many) of the rows in another table



# ONE-TO-MANY & MANY-TO-ONE

One person can have one nationality in this example, but one nationality can include many people.

Person

Nationality

| ID | age  | wgt_kg | hgt_cm | nat_id |
|----|------|--------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  | 1      |
| 2  | 11.0 | 40.8   | 143.8  | 1      |
| 3  | 15.6 | 65.3   | 165.3  | 2      |
| 4  | 35.1 | 84.2   | 185.8  | 1      |
| 5  | 18.1 | 62.2   | 176.2  | 3      |
| 6  | 19.6 | 82.1   | 180.1  | 1      |

| ID | <b>Nationality</b> |
|----|--------------------|
| 1  | USA                |
| 2  | Canada             |
| 3  | Mexico             |



### **ONE-TO-ONE**

Two tables have a one-to-one relationship if every tuple in the first tables corresponds to exactly one entry in the other



In general, you won't be using these (why not just merge the rows into one table?) unless:

- Split a big row between SSD and HDD or distributed
- Restrict access to part of a row (some DBMSs allow column-level access control, but not all)
- Caching, partitioning, & serious stuff: take CMSC424

### **ONE-TO-ONE-OR-NONE**

Say we want to keep track of people's cats:

| Person ID | Cat1            | Cat2         |
|-----------|-----------------|--------------|
| 1         | Chairman Meow   | Fuzz Aldrin  |
| 4         | Anderson Pooper | Meowly Cyrus |
| 5         | Gigabyte        | Megabyte     |

People with IDs 2 and 3 do not own cats\*, and are not in the table. Each person has at most one entry in the table.



Is this data tidy?

### **MANY-TO-MANY**

Say we want to keep track of people's cats' colorings:

| ID | Name            |
|----|-----------------|
| 1  | Megabyte        |
| 2  | Meowly Cyrus    |
| 3  | Fuzz Aldrin     |
| 4  | Chairman Meow   |
| 5  | Anderson Pooper |
| 6  | Gigabyte        |

| Cat ID | Color ID | Amount |
|--------|----------|--------|
| 1      | 1        | 50     |
| 1      | 2        | 50     |
| 2      | 2        | 20     |
| 2      | 4        | 40     |
| 2      | 5        | 40     |
| 3      | 1        | 100    |

One column per color, too many columns, too many nulls Each cat can have many colors, and each color many cats



# **ASSOCIATIVE TABLES**

#### Cats

| ID | Name            |
|----|-----------------|
| 1  | Megabyte        |
| 2  | Meowly Cyrus    |
| 3  | Fuzz Aldrin     |
| 4  | Chairman Meow   |
| 5  | Anderson Pooper |
| 6  | Gigabyte        |

| Cat ID | Color ID | Amount |
|--------|----------|--------|
| 1      | 1        | 50     |
| 1      | 2        | 50     |
| 2      | 2        | 20     |
| 2      | 4        | 40     |
| 2      | 5        | 40     |
| 3      | 1        | 100    |

#### Colors

| ID | Name       |
|----|------------|
| 1  | Black      |
| 2  | Brown      |
| 3  | White      |
| 4  | Orange     |
| 5  | Neon Green |
| 6  | Invisible  |

Used to model pure relationships (as opposed to discrete entities)

**Primary key ??????????** 

• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s) ??????????

Cat ID and Color ID

## **ASIDE: PANDAS**

#### So, this kinda feels like pandas ...

And pandas kinda feels like a relational data system ...

#### Pandas is **not** strictly a relational data system:

No notion of primary / foreign keys

#### It does have indexes (and multi-column indexes):

- pandas.Index: ordered, sliceable set storing axis labels
- pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-grained slicing and dicing and viz with pandas

# **SQLITE**

#### On-disk relational database management system (RDMS)

Applications connect directly to a file

#### Most RDMSs have applications connect to a server:

- Advantages include greater concurrency, less restrictive locking
- Disadvantages include, for this class, setup time ©

#### Installation:

- conda install -c anaconda sqlite
- (Included in Docker container & Jupyter install; need install for raw Python)

#### All interactions use Structured Query Language (SQL)

# **HOW A RELATIONAL DB FITS INTO YOUR WORKFLOW** Persists! Raw Input SQL Python SQLite File SQLite CLI & GUI Frontend Persists! Structured output (trained classifiers, JSON for D3, visualizations)

# CRASH COURSE IN SQL (IN PYTHON)

```
import sqlite3

# Create a database and connect to it
conn = sqlite3.connect("cmsc320.db")
cursor = conn.cursor()

# do cool stuff
conn.close()
```

**Cursor**: temporary work area in system memory for manipulating SQL statements and return values

If you do not close the connection (conn.close()), any outstanding transaction is rolled back

(More on this in a bit.)

# CRASH COURSE IN SQL (IN PYTHON)

```
# Make a table
cursor.execute("""
CREATE TABLE cats (
   id INTEGER PRIMARY KEY,
   name TEXT
)""")
```

????????

id name

cats

Capitalization doesn't matter for SQL reserved words

SELECT = select = SeLeCt

Rule of thumb: capitalize keywords for readability

# CRASH COURSE IN SQL (IN PYTHON)

```
# Insert into the table
cursor.execute("INSERT INTO cats VALUE (1, 'Megabyte')")
cursor.execute("INSERT INTO cats VALUE (2, 'Meowly Cyrus')")
cursor.execute("INSERT INTO cats VALUE (3, 'Fuzz Aldrin')")
conn.commit()
```

| id | name         |
|----|--------------|
| 1  | Megabyte     |
| 2  | Meowly Cyrus |
| 3  | Fuzz Aldrin  |

# Delete row(s) from the table
cursor.execute("DELETE FROM cats WHERE id == 2");
conn.commit()

| id | name        |
|----|-------------|
| 1  | Megabyte    |
| 3  | Fuzz Aldrin |



# CRASH COURSE IN SQL (IN PYTHON)

```
# Read all rows from a table
for row in cursor.execute("SELECT * FROM cats"):
    print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query("SELECT * FROM cats", conn, index_col="id")
```

| id | name        |  |
|----|-------------|--|
| 1  | Megabyte    |  |
| 3  | Fuzz Aldrin |  |

index\_col="id": treat column with label "id" as an index index\_col=1: treat column #1 (i.e., "name") as an index (Can also do multi-indexing.)

### **JOINING DATA**

A join operation merges two or more tables into a single relation. Different ways of doing this:

- Inner
- Left
- Right
- Full Outer

Join operations are done on columns that explicitly link the tables together

# **GOOGLE IMAGE SEARCH ONE** SLIDE SQL JOIN VISUAL INNER JOIN







LEFT JOIN



RIGHT JOIN



# **INNER JOINS**

| id | name            |
|----|-----------------|
| 1  | Megabyte        |
| 2  | Meowly Cyrus    |
| 3  | Fuzz Aldrin     |
| 4  | Chairman Meow   |
| 5  | Anderson Pooper |
| 6  | Gigabyte        |

| cat_id | last_visit |
|--------|------------|
| 1      | 02-16-2017 |
| 2      | 02-14-2017 |
| 5      | 02-03-2017 |
|        |            |

visits

cats

Inner join returns merged rows that share the same value in the column they are being joined on (id and cat id).

| id | name            | last_visit |
|----|-----------------|------------|
| 1  | Megabyte        | 02-16-2017 |
| 2  | Meowly Cyrus    | 02-14-2017 |
| 5  | Anderson Pooper | 02-03-2017 |



### **INNER JOINS**

### **LEFT JOINS**

Inner joins are the most common type of joins (get results that appear in both tables)

Left joins: all the results from the left table, only some matching results from the right table

Left join (cats, visits) on (id, cat id) ????????????

| id | name            | last_visit |
|----|-----------------|------------|
| 1  | Megabyte        | 02-16-2017 |
| 2  | Meowly Cyrus    | 02-14-2017 |
| 3  | Fuzz Aldrin     | NULL       |
| 4  | Chairman Meow   | NULL       |
| 5  | Anderson Pooper | 02-03-2017 |
| 6  | Gigabyte        | NULL       |

### **RIGHT JOINS**

#### Take a guess!

```
Right join
   (cats, visits)
on
   (id, cat_id)
?????????
```

| id | name            |
|----|-----------------|
| 1  | Megabyte        |
| 2  | Meowly Cyrus    |
| 3  | Fuzz Aldrin     |
| 4  | Chairman Meow   |
| 5  | Anderson Pooper |
| 6  | Gigabyte        |

| cat_id | last_visit |
|--------|------------|
| 1      | 02-16-2017 |
| 2      | 02-14-2017 |
| 5      | 02-03-2017 |
| 7      | 02-19-2017 |
| 12     | 02-21-2017 |
|        | visits     |

cats

| id | name            | last_visit |
|----|-----------------|------------|
| 1  | Megabyte        | 02-16-2017 |
| 2  | Meowly Cyrus    | 02-14-2017 |
| 5  | Anderson Pooper | 02-03-2017 |
| 7  | NULL            | 02-19-2017 |
| 12 | NULL            | 02-21-2017 |

### **LEFT/RIGHT JOINS**

### **FULL OUTER JOIN**

Combines the left and the right join

??????????

| id | name            | last_visit |
|----|-----------------|------------|
| 1  | Megabyte        | 02-16-2017 |
| 2  | Meowly Cyrus    | 02-14-2017 |
| 3  | Fuzz Aldrin     | NULL       |
| 4  | Chairman Meow   | NULL       |
| 5  | Anderson Pooper | 02-03-2017 |
| 6  | Gigabyte        | NULL       |
| 7  | NULL            | 02-19-2017 |
| 12 | NULL            | 02-21-2017 |

### **GROUP BY AGGREGATES**

SELECT nat\_id, AVG(age) as average\_age
FROM persons GROUP BY nat\_id

| ID | age  | wgt_kg | hgt_cm | nat_id |
|----|------|--------|--------|--------|
| 1  | 12.2 | 42.3   | 145.1  | 1      |
| 2  | 11.0 | 40.8   | 143.8  | 1      |
| 3  | 15.6 | 65.3   | 165.3  | 2      |
| 4  | 35.1 | 84.2   | 185.8  | 1      |
| 5  | 18.1 | 62.2   | 176.2  | 3      |
| 6  | 19.6 | 82.1   | 180.1  | 1      |

| nat_id | average_<br>age |
|--------|-----------------|
| 1      | 19.48           |
| 2      | 15.6            |
| 3      | 18.1            |

# **RAW SQL IN PANDAS**

# The More You Know

#### If you "think in SQL" already, you'll be fine with pandas:

- conda install -c anaconda pandasql
- Info: http://pandas.pydata.org/pandas-docs/stable/comparison\_with\_sql.html



# PUTTING THE SCIENCE BACK IN DATA SCIENCE Why did you build a death rav?

#### What's the "Science" part of data science?

 Typically, "Science" is "determining some truth about the world...."

Suppose you work for a company that is considering a redesign of their website; does their new design (design B) offer any statistical advantage to their current design (design A)?



Sad truth: Most "mad scientists" are actually just mad engineers

#### In a linear regression, does a certain variable impact the response?

Does energy consumption depend on whether or not a day is a weekday or weekend?

Both: concerned with making actual statements about the nature of the world.

**RECALL: WHAT IS DATA SCIENCE?** 

Drawing useful conclusions from data in a principled way. **Exploration** 

- Identifying patterns in information
- Uses visualizations, bringing data together

**Prediction:** Given what I've seen, what is the most likely value I'll see in the future? Predictions forecast the most likely values of the data coming from the data generating process.

- Making informed guesses
- Uses machine learning and optimization

Inference: How likely is what I observed representative of the broader picture? Statistical Inference draws conclusions 

- Quantifying whether those patterns are reliable
- Uses randomization

Inference vs Prediction (TBD expanded!): inference = learn about the data generation process, prediction = predict what's coming next



# **HOW DATA AND MODELS INTERACT: EXAMPLE 1**

Machine Learning: Prediction/Regression/Classificat Learned Model ion approximate explanation recording Data "True" of events Data Generating Process Model Sample Population

True Model / Population: phenomenon under investigation

Data Generating Process / Sample: mechanisms that create the data that will be recorded (e.g. probabilistic, noisy)

**Example: Understand customer satisfaction.** Sends a text message to all previous customers to rate on a scale of 1-5.

True Model: the true opinion of all customers

**Data Generating Process: how and which** customers responded (satisfaction, mood, too busy, don't care, ignored, etc.)

Data: all replies received and recorded.

#### Tasks:

- Predict Reviews from unseen customers
- Understand product comparison

Statistical Inference: Experiments/Significance

# HOW DATA AND MODELS INTERACT: EXAMPLE 2

Machine Learning: Prediction/Regression/Classificat Learned Model ion approximate explanation recording Data "True" of events Data Generating Process Model Sample Population

A Model: theory or explanation of the data generating process (relationships).

Fit Model: an instance of a model that is likely to explain a fixed dataset.

Example: What is the relationship between the number of parking tickets and the weather?

Data Generating Process: data recorded of parking ticket and weather; noisy observations!

Model: more parking tickets are issued when the weather is temperate (neither hot nor cold).

Fit Model: quantitative relationship for a dataset:

- E.g, On data of tickets and weather in San Diego, a car is 5x more likely to get a ticket when the weather is temperate.
- Model fit on data from Minneapolis might specify a different quantity (e.g. 3x) but same structure.

Statistical Inference: Experiments/Significance

# WHAT MAKES A MODEL GOOD?

A fit model finds the most likely parameters that explain the observed data under the given model.

These parameters are found by minimizing a loss function – typically some notion of 'error' or 'cost'.

A model is good if it effectively explains the phenomenon under investigation. Two questions:

- 1. Is the model choice reasonable? Does the structure of the model capture the general understanding of how the Data Generating Process behaves?
- 2. Does the fit model describe the data well? How small is the error?
- (1) is about the applicability of the model to new observations (bias).
- (2) is about the ability of a model to explain the observed data (variance).
  - More later on this semester!





# STATISTICAL MODEL: INFERENCE

A statistical model is a quantitative relationship between properties in observed data.

A statistical model is a function  $\underline{S}: X \to \mathbb{R}^n$  that measures properties of X.

Example: Is there a linear relationship between the heights of children and the height of their biological mother?

- X = mother\_height ∈ R
- Y = child\_height ∈ R
- <u>S</u> is the *correlation coefficient* (measure of strength of relationship between the relative movement of mother\_height and child\_height)

Inference results in interpreting properties (e.g., significance) of the data generating process from the parameters of the model (e.g. correlation).



# PREDICTION MODEL: REGRESSION

Regression models attempt to predict the most likely quantitative value associated to an observation (set of input features).

A regressor is a function  $\underline{F}$ :  $X \rightarrow R$  that predicts the value  $y \in R$  of an observation  $x \in X$ .

Example: Given the heights of a child's parents, what is the height of their child?

- X = (father\_height, mother\_height) ∈ R<sup>2</sup>
- Y = child\_height ∈ R
- F predicts child heights.

Regression results in having a model that we can use to predict a numerical value for data that we have not see yet.



# PREDICTION MODEL: CLASSIFICATION

Classification models attempt to predict the most likely class associated to an observation (set of input features)

Class is a nominal attribute (e.g., 1='YES' v 0='NO').

A classifier is a function  $\underline{F}$ :  $X \rightarrow Y$  that predicts whether an observation  $x \in X$  belongs to a class  $y \in Y$ .

Example: Given product purchase attributes (item, price, age, state), can one predict whether the person was satisfied with their purchase?

- X = (item, price, age, state)  $\in \mathbb{R}^4$
- Y = 'SATISFIED', 'NOT SATISFIED' ∈ {0,1}
- F predicts product satisfaction.

Classification results in a model that we can use to predict labels for data we have not seen.



### A SIDE NOTE ON TERMS

For linear regression we want to know the relationship between an outcome, given some set/vector of predictors.

#### If you have a ML background:

Get target, outcome given predictors/observations

#### If you have a "stats" background:

Get endogenous variables given exogenous variables

#### If you are more of a "math" person:

Get dependent variable given one or more independent variables



# TEASER I: PUTTING ON OUR STATS HAT

Eating Chocolate, A Little Each Week, May Lower The Risk Of A Heart Flutter

Population (Individuals, study subjects, participants)

European adults

May 24, 2017 · 6:30 PM ET Heard on All Things Considered



Treatment: Something (drug, price, web headline) to which a subjects are exposed

Chocolate consumption

Outcome: dependent variable, response, target, output

Heart disease



# TEASER II: PUTTING ON OUR STATS HAT

Question: Is there any relation between chocolate consumption and heart disease?

Eating Chocolate, A Little Each Week, May Lower The Risk Of A Heart Flutter

May 24, 2017 · 6:30 PM ET
Heard on All Things Considered
ALLISON AUBREY

- Association: any relation
- Not necessarily causal! "The rooster does not make the sun rise."

#### Data:

- "Among those in the top tier of chocolate consumption, 12 percent developed or died of cardiovascular disease during the study, compared to 17.4 percent of those who didn't eat chocolate."
- Howard LeWine of Harvard Health Blog, reported by npr.org





Figure 3-1. The classical statistical inference pipeline



NOW, TRAVEL BACK TO LONDON IN THE 1800S ...

# MIASMAS, MIASMATISM, MIASMATISTS

Bad smells given off by waste and rotting matter ... Believed to be the main source of disease (cholera)

#### Suggested remedies:

- "fly to clene air"
- "a pocket full o'posies"
- "fire off barrels of gunpowder"





# **JO(H)N SNOW, 1813—58**

#### Which one?

https://en.wikipedia.org/wiki/John\_Snow



Big name in epidemiology, the study of determinants of population-level disease



Big name (Jon, not John) in the North, let down by some writers



A public house built at the epicenter of a truly virulent cholera outbreak circa 1800s

### **JOHN SNOW'S MAP**



Some houses served by S&V, which drew water from the Thames; otherws by Lambeth, which didn't

#### Snow's Map:

- Black bar represents one death.
- Multiple deaths at same address 
   □ bars stacked on top of each other
- Black discs mark the locations of water pumps.
- Creates a "natural experiment"



### **TERMINOLOGY TEASER**

#### Treatment: Something (drug, price, web headline) to which subjects are exposed Treatment group

A group of subjects exposed to a specific treatment

#### **Control group**

A group of subjects exposed to no (or standard) treatment

#### Randomization

• The process of randomly assigning subjects to treatments

#### **Subjects**

• The items (web visitors, patients, etc.) that are exposed to treatments

#### **Test statistic**

The metric used to measure the effect of the treatment



# **QUESTIONS**

**Treatment Group** ????????

Control Group ????????

#### Which houses were part of the treatment group?

- All houses in the region of overlap.
- Houses served by S&V (dirty water) in the region of overlap.
- Houses served by Lambeth (clean water) in the region of overlap?

#### In the language of stats:

- S&V houses as the treatment group
- Lambeth houses at the control group.
- A crucial element in Snow's analysis was that the people in the two groups were comparable to each other, apart from the treatment.



### **JOHN SNOW'S EXPERIMENT**

"... there is no difference whatever in the houses or the people receiving the supply of the two Water Companies, or in any of the physical conditions with which they are surrounded ..."

The only difference was in the water supply, "one group being supplied with water containing the sewage of London, and amongst it, whatever might have come from the cholera patients, the other group having water quite free from impurity."



The map displays a striking revelation—the deaths are roughly clustered around the Broad Street pump.

| Supply Area           | Num. of Houses | Cholera Deaths | Deaths/10k Houses |
|-----------------------|----------------|----------------|-------------------|
| S & V (Dirty Water)   | 40,046         | 1,263          | 315               |
| Lambeth (Clean Water) | 26,107         | 98             | 37                |
| Rest of London        | 256,423        | 1,422          | 59                |

# NEXT CLASS: EXPLORATORY ANALYSIS

