Mathématiques : Devoir maison n° 3

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois $1\mathrm{E}1$

Problème 1 - Partie entière

```
\begin{vmatrix}
5 \\
2
\end{vmatrix} = 2

\lfloor -\pi \rfloor = -4

\lfloor \frac{2\pi}{7} \rfloor = 0
```

Version originale:

```
def part_ent(x):
    n = 0
    # Quand x est negatif, cette condition est fausse des le depart
    while n+1 <= x:
        n += 1
    return n

from math import pi
    print(partent(5/2)) # 2
    print(partent(-pi)) # 0 FAUX
    print(partent(2*pi/7)) # 0</pre>
```

Version corrigée :

```
def part_ent(x):
    n = 0
    while n+1 <= abs(x):
        n += 1
    if x >= 0:
        return n
    else:
        return -n-1

from math import pi
    print(partent(5/2)) # 2
    print(partent(-pi)) # -4
    print(partent(2*pi/7)) # 0
```

Versions optimisées:

```
def part_ent1(x):
    n = 0
    abs_x = abs(x)
    while (n := n+1) <= abs_x: pass
    return n-1 if x >= 0 else -n

def part_ent2(x):
    return int(x) - (1 if x <= 0 else 0)</pre>
```

2)

a) Soit x un réel et p un entier naturel.

Un nombre décimal s'écrit sous la forme $\frac{a}{10^b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}$.

Par définition, $|10^p x|$ est un entier relatif et $p \in \mathbb{N}$ donc :

$$\frac{\lfloor 10^p x \rfloor}{10^p} \in \mathbb{D}$$

Par définition,

$$\forall c \in \mathbb{R}, c-1 < |c| \leqslant c < |c| + 1$$

Donc avec $c = 10^p x$:

$$|10^p x| \le 10^p x < |10^p x| + 1$$

Or $10^p > 0$ donc

$$\frac{\lfloor 10^p x \rfloor}{10^p} \leqslant x < \frac{\lfloor 10^p x \rfloor}{10^p} + \frac{1}{10^p}$$

Nous avons prouvé que $\frac{\lfloor 10^p x \rfloor}{10^p}$ est un nombre décimal et que $\frac{\lfloor 10^p x \rfloor}{10^p} \leqslant x < \frac{\lfloor 10^p x \rfloor}{10^p} + \frac{1}{10^p}$ pour tous $x \in \mathbb{R}$ et $p \in \mathbb{N}$.

b) Le chiffre des unités de 10^x est la p-e décimale de x. Un arrondi à 10^{-p} près de x revient donc à diviser par 10^p un arrondi à l'unité de x.

Notons $\alpha:\mathbb{R}\to\mathbb{Z}$ la fonction qui à $x\in\mathbb{R}$ associe son arrondi à l'unité.

 $\frac{\text{Si }x \in \mathbb{R}^+: \text{Notons }d \text{ la première décimale de }x. \text{ Si }d \in \llbracket 0;4 \rrbracket, \text{ alors par définition }\alpha(x) = \lfloor x \rfloor. \text{ Mais } \lfloor x + \frac{1}{2} \rfloor = \lfloor x \rfloor. \text{ Donc }\alpha(x) = \lfloor x + \frac{1}{2} \rfloor.$

Si $d \in [5; 9]$, par définition, $\alpha(x) = \lfloor x \rfloor + 1$. Mais $\lfloor x + \frac{1}{2} \rfloor = \lfloor x \rfloor + 1$. Donc $\alpha(x) = \lfloor x + \frac{1}{2} \rfloor$.

 $\underline{\text{Si } x \in \mathbb{R}^-}$: $\underline{\text{Si } d \in [0; 4]}$, alors par définition $\alpha(x) = \lfloor x \rfloor + 1$. Mais $\lfloor x + \frac{1}{2} \rfloor = \lfloor x \rfloor + 1$. Donc $\alpha(x) = \lfloor x + \frac{1}{2} \rfloor$.

Si $d \in [5; 9]$, par définition, $\alpha(x) = \lfloor x \rfloor + .$ Mais $\left| x + \frac{1}{2} \right| = \lfloor x \rfloor$. Donc $\alpha(x) = \left| x + \frac{1}{2} \right|$.

Synthèse: Pour tout $x \in \mathbb{R}$, $\alpha(x) = \lfloor x + \frac{1}{2} \rfloor$. Un arrondi à 10^-p près de x est donc donné par $\frac{\alpha(10^p x)}{10^p} = \frac{\lfloor 10^p x + \frac{1}{2} \rfloor}{10^p}$, ce qu'il fallait démontrer.

Problème 2 - Notion de densité

1)

a)

Théorème (Grenouille généralisée). Soient $x, y \in \mathbb{R}$, x < y. Soit l = |x - y| et $0 < \delta < l$. Alors il existe $n \in \mathbb{Z}$ tel que $n\delta \in [x; y]$.

Démonstration. On procède par l'absurde en supposant que $n\delta \notin]x;y[$ pour tout $n\in \mathbb{Z}.$

Soit $p \in \mathbb{Z}$ le plus petit entier tel que $p\delta > y$. Son existence est assurée par l'existence de parties entières, en prenant $p = \left\lfloor \frac{y}{\delta} \right\rfloor + 1$, ou par la propriété archimédienne de \mathbb{R} . Par hypothèse, $(p-1)\delta \not\in]x;y[$. Par minimalité de $p, (p-1)\delta \leq y$. Donc $(p-1)\delta < x$.

Ainsi, on trouve que $(p-1)\delta < x < y < p\delta$. Donc $]x;y[\subseteq](p-1)\delta;p\delta[$, et $|p\delta - (p-1)\delta| = \delta \ge |x-y| = l$, ce qui est une contradiction.

Donc il existe $n \in \mathbb{Z}$ tel que $n\delta \in]x;y[$.

b) Si $0 \le x < y$, alors $n\delta > x$ est équivalent à ce que $n > \frac{x}{\delta}$. En particulier, si n est le plus petit tel entier, alors $n\delta \in]x;y[$. En effet, si $n\delta \ge y$, alors $m\ge n$ implique que $m\delta \ge y$ et m< n implique par hypothèse que $m\delta \le x$, et $m\delta \not\in]x;y[$ pour tout $m\in \mathbb{Z}$, ce qui contredit le théorème de la Grenouille.

Or, $n = \left\lfloor \frac{x}{\delta} \right\rfloor + 1$ est le plus petit entier tel que $n\delta > x$, et $n\delta \in]x; y[$. Donc la grenouille tombe dans la mare après $\left\lfloor \frac{x}{\delta} \right\rfloor + 1$ sauts.

2)

- a) $\frac{1}{n} < y x$ si et seulement si $\frac{1}{y-x} < n$. Donc $n = \left| \frac{1}{y-x} \right| + 1$ fonctionne.
- b) Soient $x, y \in \mathbb{R}$, x < y. Prouvons qu'il existe $a \in \mathbb{Q}$, $a \in]x; y[$. Par la question précédente, il existe $q \in \mathbb{N}^*$ tel que $\frac{1}{q} < y x$. Par le théorème de la Grenouille, il existe $p \in \mathbb{Z}$ tel que $p = \frac{p}{q} \in [x; y[$. Comme $\frac{p}{q} \in \mathbb{Q}$, \mathbb{Q} est dense dans \mathbb{R} .
- c) Soient $x, y \in \mathbb{R}$, x < y. Par densité de \mathbb{Q} dans \mathbb{R} , il existe $\frac{p}{q} \in]\frac{x}{\sqrt{2}}; \frac{y}{\sqrt{2}}[$. On peut choisir $\frac{p}{q} \neq 0$, soit si $0 \notin]x; y[$, soit en prenant $\frac{p}{q}$ dans $]0; \frac{y}{\sqrt{2}}[\subseteq]\frac{x}{\sqrt{2}}; \frac{y}{\sqrt{2}}[$. Dans ces deux cas, $\frac{p}{q}\sqrt{2} \in]x; y[$.

Montrons maintenant par l'absurde que $\frac{p}{q}\sqrt{2}$ est irrationel. Supposons que $\frac{p}{q}\sqrt{2} = \frac{a}{b}$, avec $\frac{a}{b} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{aq}{bp} \in \mathbb{Q}$, ce qui est impossible car $\sqrt{2} \notin \mathbb{Q}$.

Donc $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

3)

a) Prouvons par récurrence que $(1+a)^n \ge 1+an$ pour tout $n \in \mathbb{N}^*$. Posons P(n) l'assertion $(1+a)^n \ge 1+an$.

Initialisation: $P(1) \iff (1+a)^1 = 1+a \ge 1+1a = 1+a$. Donc P(1) est vraie.

<u>Hérédité</u>: Supposons que P(n) est vraie pour $n \in \mathbb{N}$. Prouvons P(n+1).

$$(1+a)^{n+1} = (1+a)(1+a)^n \ge (1+a)(1+an) = 1 + a(n+1) + a^2n$$

$$\ge 1 + a(n+1)$$

Donc si P(n), alors P(n+1). Par le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}^*$.

b) Trouver $C \in \mathbb{R}_+^*$ tel que $b^n \leq \frac{C}{n}$ pour tout $n \in \mathbb{N}^*$ revient à trouver un majorant de la fonction $f: n \mapsto nb^n$. On dit que f est croissante en $n \in \mathbb{N}^*$ si $f(n+1) \geq f(n)$. Montrons donc qu'il existe $p \in \mathbb{N}^*$ tel que f est croissante avant p et strictement décroissante après p, de manière à ce que f soit au moins majorée par f(p).

On procède par équivalence :

$$f$$
 strictement décroissante en $p \iff f(p) > f(p+1)$
 $\iff pb^p > (p+1)b^{p+1}$
 $\iff \frac{p}{p+1} > b$
 $\iff 1 - \frac{1}{p+1} > b$
 $\iff 1 - b > \frac{1}{p+1}$
 $\iff p+1 > \frac{1}{1-b}$
 $\iff p+1 \ge \left\lfloor \frac{1}{1-b} \right\rfloor + 1$
 $\iff p \ge \left\lfloor \frac{1}{1-b} \right\rfloor$

Donc f est croissante avant $\left\lfloor \frac{1}{1-b} \right\rfloor$ et strictement décroissante après $\left\lfloor \frac{1}{1-b} \right\rfloor$. Donc f est majorée (en particulier, par $f\left(\left\lfloor \frac{1}{1-b} \right\rfloor\right) \in \mathbb{R}_+^*$).

4)

a) On prouve l'assertion suivante, plus générale : si x < y, alors il existe $n \in \mathbb{N}^*$ tel que $\frac{1}{10^n} < |y - x|$.

Par la question précédente, il existe $C \in \mathbb{R}_+^*$ tel que $\left(\frac{1}{10}\right)^n \leq \frac{C}{n}$ pour tout $n \in \mathbb{N}^*$. En prenant $n > \frac{C}{|y-x|}$ (celui-ci existe par existence des parties entières), on a :

$$\frac{1}{10^n} < \frac{C}{\frac{C}{|y-x|}} = |y-x|$$

Donc il existe bien $n \in \mathbb{N}^*$ tel que $\frac{1}{10^n} < |y - x|$.

b) Soit $x,y\in\mathbb{R},\ x< y$. Par définition $\mathbb{D}=\{\frac{m}{10^n}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$. On choisit $n\in\mathbb{N}^*$ de manière à ce que $\frac{1}{10^n}<|x-y|$. Par le théorème de la Grenouille, il existe $m\in\mathbb{Z}$ tel que $\frac{m}{10^n}\in]x;y[$. Comme $\frac{m}{10^n}\in\mathbb{D},$ \mathbb{D} est dense dans \mathbb{R} .

5)

a) On pose $x, y \in \mathbb{Z}[\sqrt{2}]$ avec $x = a + b\sqrt{2}$ et $y = c + \sqrt{2}$. Alors:

$$x + y = (a+c) + (b+d)\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$$

Et:

$$xy = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$$

Donc $\mathbb{Z}[\sqrt{2}]$ est stable par addition et multiplication.

b) On prouve encore l'assertion suivante, plus générale : si x < y, alors il existe $p \in \mathbb{N}^*$ tel que $u^p < |y-x|$.

Soit $u = \sqrt{2} - 1$. Montrons que 0 < u < 1. Comme $\sqrt{2} > 1$, u > 0. Si $u \ge 1$, alors $\sqrt{2} \ge 2$ et $2 \ge 4$, ce qui est absurde. Donc $u \in]0;1[$.

Donc il existe $C \in \mathbb{R}_+^*$ tel que pour tout $p \in \mathbb{N}^*$, $u^p \leq \frac{C}{p}$. En prenant $p > \frac{C}{|x-y|}$, $u^p < |x-y|$.

Donc il existe bien $p \in \mathbb{N}^*$, $u^p < |x - y|$.

c) Soient $x,y \in \mathbb{R}, \ x < y$. Choisissons $p \in \mathbb{N}^*$ tel que $u^p < |x-y|$. Par le théorème de la Grenouille, il existe $n \in \mathbb{Z}$ tel que $nu^p \in]x;y[$. Comme $n,u \in \mathbb{Z}[\sqrt{2}], \ nu^p \in \mathbb{Z}[\sqrt{2}].$

Donc $\mathbb{Z}[\sqrt{2}]$ est dense dans \mathbb{R} .