WORKSHOP SHEET 1

ALGEBRAIC GEOMETRY [MATH11120]

Try to do some exercises before tutorial.

Each exercise has (\star) -part. They are for self-study only.

Exercise 1. Let Σ be a subset in $\mathbb{P}^2_{\mathbb{C}}$ such that Σ is not contained in one line in $\mathbb{P}^2_{\mathbb{C}}$.

(a) Let $[a_{11}:a_{12}:a_{13}]$, $[a_{21}:a_{22}:a_{23}]$, and $[a_{31}:a_{32}:a_{33}]$ be points in $\mathbb{P}^2_{\mathbb{C}}$. Prove that these three points are contained in one line in $\mathbb{P}^2_{\mathbb{C}}$ if and only if the determinant of the matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

is zero. Similarly, show the determinant of this matrix is zero if and only if the lines $a_{11}x + a_{12}y + a_{13}z = 0$, $a_{21}x + a_{22}y + a_{23}z = 0$ and $a_{31}x + a_{32}y + a_{33}z = 0$ all pass through one point in $\mathbb{P}^2_{\mathbb{C}}$.

- (b) Suppose that $|\Sigma| \leq 6$. Prove that there exists a line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that contains exactly two points of the set Σ .
- (*) Suppose that $|\Sigma| = 7$. Prove that there exists a line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that contains exactly two points of the set Σ .

Exercise 2. Observe that no three points among the four points [1:2:3], [1:0:-1], [2:5:1] and [-1:7:1] in $\mathbb{P}^2_{\mathbb{C}}$ are collinear.

- (a) Find the projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi([1:2:3]) = [1:0:0]$, $\phi([1:0:-1]) = [0:1:0]$, $\phi([2:5:1]) = [0:0:1]$ and $\phi([-1:7:1]) = [1:1:1]$.
- (b) Let \mathcal{C} be the conic in $\mathbb{P}^2_{\mathbb{C}}$ that is given by

$$-xy + 2y^2 - 3xz + 7yz + 3z^2 = 0.$$

Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi(\mathcal{C})$ is given by xy = 0.

 (\star) Let \mathcal{C} be the conic in \mathbb{P}^2 that is given by

$$x^2 + xy - 2y^2 + 3xz + 3yz + z^2 = 0.$$

Then \mathcal{C} contains the point [-2:1:3]. Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi([-2:1:3]) = [0:0:1]$ and $\phi(\mathcal{C})$ is given by $xz + y^2 = 0$.

Exercise 3. Let λ be a complex number. Put

$$f(x, y, z) = x^3 + y^3 + z^3 + \lambda xyz.$$

Let C be a subset in $\mathbb{P}^2_{\mathbb{C}}$ given by f(x,y,z)=0. Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$, so that $\omega^3=1$. Denote by Σ the subset in $\mathbb{P}^2_{\mathbb{C}}$ consisting of the following 9 points:

$$[1:-1:0], [1:-\omega:0], [1:-\omega^2:0],$$

$$[1:0:-1], [1:0:-\omega], [1:0:-\omega^2],$$

$$[0:1:-1], [0:1:-\omega], [0:1:-\omega^2].$$

- (a) Check that C contains Σ . Show that the set Σ is not contained in any line in $\mathbb{P}^2_{\mathbb{C}}$. Going through all pairs of points in Σ , one can see that every line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that passes through two points in Σ contains another point in Σ . Check this in some cases.
- (b) Suppose that $\lambda^3 \neq -27$. Show that there is no point $[a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$ such that

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

Use Bezout theorem to show that the homogeneous polynomial f(x, y, z) is irreducible. Conclude that C is a smooth irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree 3. Pick a point $P \in \Sigma$. Find the equation of the line $L_P \subset \mathbb{P}^2_{\mathbb{C}}$ that is tangent to the curve C at the point P. Show that $L_P \cap C = P$.

 (\star) Suppose that $\lambda^3 = -27$. Show that there are 3 points $[a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$ such that

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

Use Bezout theorem to deduce that the curve C is a union of 3 different lines in $\mathbb{P}^2_{\mathbb{C}}$. Conclude that f(x, y, z) is a product of 3 different polynomials in $\mathbb{C}[x, y, z]$ of degree 1. Find these 3 polynomials explicitly.

Exercise 4. Denote by V_n the vector space (over \mathbb{C}) consisting of all homogeneous polynomials in $\mathbb{C}[x,y,z]$ of degree n. Let C_d be an irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree $d \geq 3$.

- (a) Show that the dimension of V_3 is 10. Use this to prove that for every 9 points in $\mathbb{P}^2_{\mathbb{C}}$, there is a non-zero polynomial $f(x, y, z) \in V_3$ that vanishes at these 9 points.
- (b) Suppose that d=5. Use Bezout theorem and part (a) to show that the curve C_d has at most 6 singular points.
- (*) Show that V_n is of dimension $\frac{(n+1)(n+2)}{2}$. Use this and Bezout theorem to show that the curve C_d has at most $\frac{(d-1)(d-2)}{2}$ singular points.

Exercise 5. Denote by V_n the vector space (over \mathbb{C}) consisting of all homogeneous polynomials in $\mathbb{C}[x,y,z]$ of degree n. Let Σ be a finite subset in $\mathbb{P}^2_{\mathbb{C}}$, and let $V_n(\Sigma)$ be the vector subspace of V_n consisting of all polynomials in V_n that vanish at each point of the subset Σ . We say that Σ imposes independent linear conditions (ILC) on V_n in the case when

$$\dim_{\mathbb{C}} \left(V_n(\Sigma) \right) = \dim_{\mathbb{C}} \left(V_n \right) - |\Sigma|.$$

Otherwise we say that Σ imposes dependent linear conditions (DLC) on V_n .

- (a) Prove that the following two conditions are equivalent:
 - the subset Σ imposes ILC on V_n ,
 - for every point $P \in \Sigma$, there is a polynomial

$$f(x, y, z) \in V_n$$

such that $f(P) \neq 0$ and f(Q) = 0 for every point $Q \in \Sigma \setminus P$.

- (b) Use part (a) to show that Σ imposes ILC on V_n in each of the following cases:
 - (i) when Σ imposes ILC on V_k for some $k \leq n$,
 - (ii) $|\Sigma| \leq n+1$,
 - (iii) $n=1,\, |\Sigma|=3,\, {\rm and}\,\, \Sigma$ is not contained in one line in $\mathbb{P}^2_{\mathbb{C}},$
 - (iv) $n=2, |\Sigma|=5$, and every line in $\mathbb{P}^2_{\mathbb{C}}$ contains at most 3 points of Σ .
- (\star) Show that Σ imposes DLC on V_n in each of the following cases:
 - (i) dn + 2 points of $|\Sigma|$ are contained in an irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree d,
 - (ii) $n=3, |\Sigma|=9, \text{ and } \Sigma=C\cap Z, \text{ where } C \text{ and } Z \text{ are irreducible curves of degree } 3.$