

Data Preprocessing for Machine Learning

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Classification
- Logistic Regression
- Log Likelihood, Cross Entropy Loss
- Stochastic Gradient Descent

Review

So far we focused on ML model design

Review

Let's pivot today and understand how data is input

What is Data

- Lens of Data Model "raw" data
 - What the data is? (i.e operations, statistical relations)
 - Example: 3-dimensional floating-point vector

f1	f2	f3			
70	4	1			
120	3	5			
70	4	1			
50	4	0			
110	2	2			
110	2	0			
97.7	2.3	1.5			

What is Data

- Lens of Conceptual Model constructs
 - What does data *mean*? semanticity
 - Example: temperature, grade point, dollars

f1	f2	f3			
70	4	1			
120	3	5			
70	4	1			
50	4	0			
110	2	2			
110	2	0			
97.7	2.3	1.5			

What is Data

- Lens of Data Model "raw" data
 - A data model can capture the complex relationships between these numbers in a very statistical sense, e.g one might say that a higher f3 leads to higher f1.
 - What data is? Statistical Relationship, Operations
 - Example: temperature, grade point, dollars
- Lens of Conceptual Model conceptual
 - A conceptual model captures the constructs in data and adds meaning to attributes, e.g. one might say that if f1, f2, and f3, are constructs like Calories, Proteins and Fats.
 - What data means? Semanticity
 - Example: temperature, grade point, dollars

What is the use of Data

- Lens of Data Model "raw" data
 - Analyze, process, clean
 - e.g. what is the relationship
- Lens of Conceptual Model conceptual
 - Provide meaning, direct hypotheses
 - e.g. why is it increasing/decreasing

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
 - Example: Dog Breeds, what else?

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.
 - Example: Class grade, what else?

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.
- Interval (no true zero)
 - Interval data is a type of quantitative data that represents measurements on a scale
 - The intervals between the values are equal, but there is no true zero point.

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.
- Interval (no true zero)
 - Interval data is a type of quantitative data that represents measurements on a scale
 - The intervals between the values are equal, but there is no true zero point.
 - Example: Date, what else?

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.
- Interval (no true zero)
 - Interval data is a type of quantitative data that represents measurements on a scale
 - The intervals between the values are equal, but there is no true zero point.
- Ratio (with true zero)
 - Ratio data is a type of quantitative data that represents measurements on a scale
 - There is an inherent order, equal intervals between the values, and differences are meaningful.

- Nominal (labels, categories, groups)
 - Nominal data is a type of qualitative data that represents categories or labels.
 - They are primarily mutually exclusive and cannot be ranked.
- Ordered (ordinal, rankings)
 - Ordinal data is a type of qualitative or quantitative data that represents categories or values
 - They have inherent order, but differences between values are not informative.
- Interval (no true zero)
 - Interval data is a type of quantitative data that represents measurements on a scale
 - The intervals between the values are equal, but there is no true zero point.
- Ratio (with true zero)
 - Ratio data is a type of quantitative data that represents measurements on a scale
 - There is an inherent order, equal intervals between the values, and differences are meaningful.
 - Example: Height, what else?

- Nominal (labels, categories, groups)
 - Example: Dog breeds, gender, nationality
- Ordered (ordinal, rankings)
 - Example: Class grade, Likert scale (like, neutral, dislike)
- Interval (no true zero)
 - Example: Date, time
- Ratio (with true zero)
 - Example: Height, weight, income

- Data: 44.0, 54.2, 78.4, 42.1, 102.3
- Concept: Temperature in Celsius
- Kinds
 - Nominal
 - ?
 - Ordinal
 - ?
 - Interval / Ratio
 - •

What kinds of data can it represent?

- Data: 44.0, 54.2, 78.4, 42.1, 102.3
- Concept: Temperature in Celsius
- Kinds
 - Nominal
 - Water freezes / water doesn't freeze
 - Ordinal
 - Warm, cold, freezing
 - Interval / Ratio
 - Celsius or Kelvin

What are Nominal, Ordered, Quantitative (Interval, Ratio) attributes here?

name	Manufacturer	Calories	Protein	Fat	Sodium	Fiber	Carbohydrates :	
100% Bran	Nabisco	70	4	1	130	10	5	
100% Natural Bran	Quaker Oats	120	3	5	15	2	8	
All-Bran	Kelloggs	70	4	1	260	9	7	
All-Bran with Extra Fiber	Kelloggs	50	4	0	140	14	8	
Apple Cinnamon Cheerio	General Mills	110	2	2	180	1.5	10.5	
Apple Jacks	Kelloggs	110	2	0	125	1	11	
Basic 4	General Mills	97.7	2.3	1.5	157.9	1.5	13.5	
Bran Chex	Ralston Purina	90	2	1	200	4	15	
Bran Flakes	Post	90	3	0	210	5	13	
Cap'n'Crunch	Quaker Oats	120	1	2	220	0	12	
Cheerios	General Mills	110	6	2	290	2	17	
Cinnamon Toast Crunch	General Mills	120	1	3	210	0	13	
Clusters	General Mills	110	3	2	140	2	13	
Cocoa Puffs	General Mills	110	1	1	180	0	12	
Corn Chex	Ralston Purina	110	2	0	280	0	22	
Corn Flakes	Kelloggs	100	2	0	290	1	21	
Corn Pops	Kelloggs	110	1	0	90	1	13	
Count Chocula	General Mills	110	1	1	180	0	12	
Cracklin' Oat Bran	Kelloggs	110	3	3	140	4	10	
Crispix	Kelloggs	110	2	0	220	1	21	

Empirical Operations

- Nominal (labels, categories, groups) (Determination of Equality)
 - =≠∈ ∉
- Ordered (ordinal, rankings) (Determination of greater or less)
 - =≠∈ ∉<>
- Interval (Determination of equality of intervals or differences)
 - = ≠ > < + -
- Ratio (Determination of equality of ratios)
 - $= \neq > < + \times \div \%$

Common Conventions

- Dimensions
 - Qualitative values
 - Categorize, segment
 - Dates, Names
- Measures
 - "Mathematical" data
 - Numeric, able to be aggregated w/functions
 - Petal width, height, temperature, grade point

What are Dimensions and Measures here?

name	Manufacturer	cturer Calories Protein Fat		Fat	Sodium	Fiber	Carbohydrates	
100% Bran	Nabisco	70	4	1	130	10	5	
100% Natural Bran	Quaker Oats	120	3	5	15	2	8	
All-Bran	Kelloggs	70	4	1	260	9	7	
All-Bran with Extra Fiber	Kelloggs	50	4	0	140	14	8	
Apple Cinnamon Cheerio	General Mills	110	2	2	180	1.5	10.5	
Apple Jacks	Kelloggs	110	2	0	125	1	11	
Basic 4	General Mills	97.7	2.3	1.5	157.9	1.5	13.5	
Bran Chex	Ralston Purina	90	2	1	200	4	15	
Bran Flakes	Post	90	3	0	210	5	13	
Cap'n'Crunch	Quaker Oats	120	1	2	220	0	12	
Cheerios	General Mills	110	6	2	290	2	17	
Cinnamon Toast Crunch	General Mills	120	1	3	210	0	13	
Clusters	General Mills	110	3	2	140	2	13	
Cocoa Puffs	General Mills	110	1	1	180	0	12	
Corn Chex	Ralston Purina	110	2	0	280	0	22	
Corn Flakes	Kelloggs	100	2	0	290	1	21	
Corn Pops	Kelloggs	110	1	0	90	1	13	
Count Chocula	General Mills	110	1	1	180	0	12	
Cracklin' Oat Bran	Kelloggs	110	3	3	140	4	10	
Crispix	Kelloggs	110	2	0	220	1	21	

Finding Correlations

Index	Longitude	Latitude	Housing Median Age	Total Rooms	Total Bedrooms	Population	Households	Median Income	Median House value	Ocean Proximity	Rooms Per Household	Bedrooms	Population per household
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY	6.984127	0.146591	2.55556
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY	6.238137	0.155797	2.109842
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY	8.288136	0.129516	2.802260
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY	5.817352	0.184458	2.547945
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY	6.281853	0.172096	2.181467
20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	INLAND	5.045455	0.224625	2.560606
20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	INLAND	6.114035	0.215208	3.122807
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	INLAND	5.205543	0.215173	2.325635
20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	INLAND	5.329513	0.219892	2.123209
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	INLAND	5.254717	0.221185	2.616981

Finding Correlations


```
corr_matrix = housing.corr()
   corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value
                      1.000000
median_income
                      0.688075
                      0.134153
total_rooms
housing_median_age
                      0.105623
households
                      0.065843
total_bedrooms
                      0.049686
population
                     -0.024650
longitude
                     -0.045967
latitude
                     -0.144160
Name: median_house_value, dtype: float64
```

- Correlation close to 1 = strong positive
- Correlation close to -1 =strong negative

Finding Correlations

Data Model vs Concept Model

Before adding correlation feature

```
corr_matrix = housing.corr()
   corr_matrix["median_house_value"].sort_values(ascending=False)

√ 0.0s

median house value
                      1.000000
median_income
                      0.688075
total_rooms
                      0.134153
housing_median_age
                      0.105623
households
                      0.065843
total_bedrooms
                      0.049686
population
                     -0.024650
longitude
                     -0.045967
latitude
                     -0.144160
Name: median_house_value, dtype: float64
```

After adding correlation feature

```
housing["rooms per household"] = housing["total rooms"]/housing["households"]
housing["bedrooms per room"] = housing["total bedrooms"]/housing["total rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]
      corr_matrix = housing.corr()
      corr_matrix["median_house_value"].sort_values(ascending=False)
   median_house_value
                                1.000000
   median income
                                0.688075
   rooms_per_household
                                0.151948
   total_rooms
                                0.134153
   housing median age
                                0.105623
   households
                                0.065843
   total bedrooms
                                0.049686
   population per household
                               -0.023737
   population
                               -0.024650
   longitude
                               -0.045967
   latitude
                               -0.144160
                               -0.255880
   bedrooms per room
   Name: median_house_value, dtype: float64
```


Different distributions, different correlations

Same Statistics, Different Data

X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
Y SD : 26.93
Corr. : -0.06

Same Statistics, Different Data

X Mean: 54.26

Y Mean: 47.83

X SD : 16.76

Y SD : 26.93

Corr. : -0.06

Same Statistics, Different Data

Anscombe's Quartet

Each dataset has the same summary statistics (mean, standard deviation, correlation), and the datasets are *clearly different*, and *visually distinct*.

★ Unstructured Quartet

Each dataset here also has the same summary statistics. However, they are not *clearly different* or *visually distinct*.

- Data Cleaning
- Categorical Variables
- Feature Scaling
- Creating Test Sets

Removing missing data

- Delete corresponding row.
- Delete entire column.
- Set missing values to some value
 - (zero, the mean, the median, etc.).

- Data Cleaning
- Categorical Variables
- Feature Scaling
- Creating Test Sets

```
housing_cat = housing[["ocean_proximity"]]
housing_cat.value_counts()

0.0s

ocean_proximity
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
dtype: int64
```

```
ordinal encoder = OrdinalEncoder()
   housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
   print(ordinal_encoder.categories_)
   housing_cat_encoded[:10]
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
      dtype=object)]
array([[3.],
                                     housing_cat.head(10)
       [3.],
                              [18] \( \sigma 0.0s
       [3.],
                                      ocean_proximity
       [3.],
                                            NEAR BAY
       [3.],
       [3.],
                                            NEAR BAY
       [3.],
                                   2
                                            NEAR BAY
       [3.],
                                            NEAR BAY
       [3.],
                                            NEAR BAY
       [3.]])
                                            NEAR BAY
                                            NEAR BAY
                                            NEAR BAY
                                            NEAR BAY
```

Converting text to numbers

NEAR BAY

- Data Cleaning
- Categorical Variables
- Feature Scaling
- Creating Test Sets

Converting numbers to arrays

- Data Cleaning
- Categorical Variables
- Feature Scaling
- Creating Test Sets

Min-Max Scaler

```
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))  
X_scaled = X_std * (max - min) + min  
x' = \frac{x - \min(x)}{\max(x) - \min(x)}
```

Standard Scaler

x_scaled =
$$[(x - x.mean)/std_dev]$$

$$x' = \frac{x - \bar{x}}{\sigma}$$

- Data Cleaning
- Categorical Variables
- Feature Scaling
- Creating Test Sets

How to split the test dataset:

- 80-20 split
- Stratified split

Readings

Reference Material:

- 1. Feature Scaling
- 2. Stratified Split
- 3. Categorical Vairables
- 4. Datasaurus

Thank You

