FINANSIERING 1

3 timers skriftlig eksamen, 9-12 fredag 22/6 2018. Alle sædvanlige hjælpemidler (inkl. blyant) tilladt. Sættet er på 3 sider og indeholder 10 nummererede delspørgsmål, der indgår med lige vægt i bedømmelsen. (Der anvendes . til at angive decimalpunkter.)

Opgave 1

I denne opgave betragtes en 3-periode model for kursen, S, på en aktie. Den mulige udvikling er fastlagt ved nedenstående gitter med **tidspunkter**, aktiekurser og P-sandsynligheder og dividender. Desuden findes der et risikofrit aktiv (bankbogen) med en rente på 0.05 (dvs. 5%) per periode.

 $\frac{\rm Spg.~1a}{\bf Vis~at}$ modellen er arbitragefri og inkomplet. Vink: $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$

Spg. 1b

Find tid 0-pris og initiale sammensætning af den replikerende porteføjle (med aktie og bankbog) for en put-option (på aktien), der har udløb på tidspunkt T=2 og strike K=100.

<u>Spg. 1c</u>

Betragt en put-option, der har udløb på tidspunkt T=3 og strike K=100. Argumenter for at den har en entydigt bestemt arbitrage-fri tid 0-pris og beregn denne.

Spg. 1d

Betragt en forward-kontrakt på aktien med udløb på tid 3. **Argumenter for** at der er en entydigt bestemt arbitrage-fri tid 0-forwardpris, Fwd(0,3) og **beregn denne**.

Spg. 1e

Antag nu at dividenderne i den øverste tid 2-til-3-delmodel i gitteret ændres til (1,4,1) i hhv. op-, midt- og ned-tilstanden. (De øvrige dele af modellen ændres ikke; den får derfor formelt set en træ-struktur.) **Hvad** kan du nu sige om arbitrage-frie værdier af Fwd(0,3)? Et kvalitativt svar er tilstækkeligt.

Opgave 2

Betragt en porteføljevalgsmodel med tre usikre aktiver (aktier, numereret 1, 2 og 3), hvis afkastrater har forventede værdier (μ) og kovarianser (Σ) givet ved:

$$\mu = \begin{bmatrix} 0.03 \\ 0.05 \\ 0.06 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 0.04 & 0.01 & 0.01 \\ 0.01 & 0.09 & 0.01 \\ 0.01 & 0.01 & 0.16 \end{bmatrix}.$$

Modellen antages i første omgang ikke at indeholde et risikofrit aktiv.

Spg. 2a

Angiv (gennem ligninger og figur) de kombinationer af (forventet afkastrate, afkastratespredning), der kan opnås ved porteføljer, der er konvekse kombinationer af aktie 1 og 2. (En sådan portefølje har altså vægt α i aktie og $1 - \alpha$ i aktie 2, hvor $\alpha \in [0; 1]$.)

Spg. 2b

Angiv den efficiente rand i modellen på den/de måde(r), du finder passende.

Vink: Det kan — med standard-notation — være nyttigt at vide at

$$\mathbf{A} = [\mu \ \mathbf{1}]^{\top} \mathbf{\Sigma}^{-1} [\mu \ \mathbf{1}] = \begin{bmatrix} 0.05836 & 1.32787 \\ 1.32787 & 34.42623 \end{bmatrix}.$$

Spg. 2c

Modellen udvides nu med et riskofrit aktiv med en rente på 0.01 (dvs. 1%).

Antag at tangentporteføljen er markedsporteføjlen. Verificer at CAPM-ligningen holder for en portefølje med vægt $\frac{1}{3}$ i hver aktie.

Opgave 3

Antag at den danske nulkuponrentestruktur er givet ved

$$y(\tau) = 0.01 + 0.03 * \frac{\tau}{30},$$

hvor τ angiver løbetid målt i år.

Spg. 3a

Staten udsteder/sælger 30-årige stående lån med årlige terminer og kuponrente 5% og ønsker at gøre dette, så der ved salget opnås et provenu på 50 milliarder kroner. **Hvilken** hovedstol skal lånet have, og **hvad** er dets effektive rente? Staten udlåner nu de 50 milliarder til den nødlidende bank *StorDanskBank*. Dette sker i form af et 5-årigt serielån med hovedstol 50 milliarder og kuponrente 10%. **Hvad** er nutidsværdien af dette lån (idet det antages, at banken betaler det tilbage fuldt ud)?

Spg. 3b

Der fremkommer nu følgende udsagn:

Det, at staten redder *StorDanskBank*, ender med at koste de danske skatteydere 125 milliarder kroner over 30 år.

Kommenter. Specielt: Hvordan kan man komme frem til tallet 125 milliarder? (Vink: Forestil dig, du ikke kan kende hovedstol fra provenu, kende kuponrente fra effektiv rente, holde styr på indtægter og udgifter.) Er udsagnet fornuftigt?