الجامعة الإسلامية/ غزة كلية الآداب قسم الجغرافيا ونظم المعلومات الجغرافية

مقاييس النزعة المركزية والتشتت

الجزء الثالث من محاضرات مساق الإحصاء الجغرافي بالحاسوب

د. كامل أبو ضاهر

مقاييس النزعة المركزية والتشتت

تتم المعالجة الإحصائية الوصفية باستخدام مقاييس النزعة المركزية ومقاييس التشتت، وعلى هذا الأساس فإننا سنتناول موضوعين: الأول يوضح مقاييس النزعة المركزية والثاني يوضح مقاييس التشتت.

أُولاً / مقاييس النزعة المركزية

المقصود بالنزعة المركزية: هو تجمع معظم المشاهدات حول قيمة متوسطة، تمثل نقطة ارتكاز تلك المشاهدات أو بؤرتها ومركز ثقلها، كالمتوسط الحسابي والوسيط والمنوال.

- كلما كانت تلك القيمة تمثل مركز ثقل فعلي، فإنها تجذب إليها أكبر عدد ممكن من المشاهدات، وكانت تلك القيمة اكثر قدرة على قياس النزعة المركزية للمشاهدات مثل الأمطار الاستوائية.
- تفقد تلك القيمة أهميتها، إذا كانت أعداد كبيرة من المشاهدات بعيدة عنها، ويصبح من الضروري استخدام مقاييس أخرى مثل الأمطار الصحراوية.

1) المتوسط الحسابي: وهو من أبسط مقاييس النزعة المركزية وأكثرها شيوعاً في الاستخدام، وتعتمد عليه مقاييس متعددة خاصة التي ترصد وتحلل الفروق بين المجموعات في صفة معينة أو سلوك معين. ويتميز ب:

- يعرف بأنه القيمة التي تساوي مجموع المشاهدات مقسوماً على عددها.
 - هو أكثر مقاييس النزعة المركزية شيوعاً.
- يستخدم في الجغرافيا في وصف كثير من الظواهر الجغرافية مثل: متوسط الزيادة السكانية، متوسط حجم الأسرة، متوسط انتاجية الأرض.

استعمالات المعدل (المتوسط الحسابي):

يستخدم المعدل في وصف النزعة المركزية عند توفر الشروط الاتية :-

- عندما تكون القيم موزعة بصورة متماثلة تقريبا .
- عندما يتطلب البحث وصف النزعة المركزية للقيم .
- عندما تكون قيم النزعة المركزية اساس لتحليل احصائي لاحق.
- عند البحث عن الصلة بين العينة و مجتمعها ، و تقدير خصائص المجتمع .

خصائص المتوسط الحسابي:

- 1 انه النقطة التي يكون مجموع القيم المنحرفة عنها مساويا للصفر -1
- 2- انه النقطة التي تتوازن حولها مجموعة القيم (نقطة ارتكاز و توازن)

- 3- ان مجموع مربع انحراف القيم عن وسطها الحسابي هو الأقل في مجموع تربيع انحراف القيم عن أية قيمة أخرى عدا معدل المتغير نفسه .
- 4- المتوسط الحسابي: هو قياس للنزعة المركزية الذي يكون مجموع تربيع انحرافات القيم عنه في حده الأدنى، ولهذه الخاصية أهمية كبيرة في الطرائق الاحصائية، وعند رسم المنحنيات البيانية على وجه الخصوص.
 - 5- المتوسط الحسابي حساس جدا للقيم المتطرفة .
 - 6- أنه الوحيد الذي تعتمد قيمته على قيم البيانات جميعها دون استثناء، لذا فانه يتأثر بها.
- 7- لا تتأثر قيمته كثيراً عند اعادة تنظيم التوزيع التكراري، أي اعادة توزيع المشاهدات على فئات جديدة مغايرة في اطوالها للفئات الاصلية.
- 8- لا يصلح الوسط الحسابي لتمثيل البيانات الاحصائية المجدولة والتي تتوزع قيمها دون انتظام على الفئات المختلفة . أي ان البيانات الاحصائية التي يكون معظمها متجمع في طرف واحد من التوزيع دون سواه يحسن عدم تمثيلها والدلالة على نزعتها بالمتوسط الحسابي لها لأن في ذلك تشويه لحقيقة أمرها ، والشيء نفسه يصدق على البيانات التي تتجمع غالبيتها في فئات متباعدة عن بعضها البعض نسبيا .

الفرق بين مقاييس النزعة المركزية والأشكال والجداول:

ملاحظة على الشكل السابق:

- 井 شكل المنحنيين التكراريين اللذين يمثلان هذين التوزيعين متشابهان
- 🚣 لكن المتوسط الحسابي لعدد غرف المسكن في الضاحيتين مختلف تماماً
 - فهو يساوي في الحالة الأولى: 6.88 غرفة
 - ويساوي في الحالة الثانية: 8.83 غرفة

2) الوسيط:

وهو المقياس الثاني بعد المتوسط الحسابي، وهو القيمة التي تتوسط القيم بعد ترتيبها تصاعدياً أو تتازلياً، بحيث يكون عدد القيم الموجودة قبلها مساوياً لعدد القيم بعدها، ويمكن حسابه من البيانات الخام مباشرة، كما يمكن حسابه من البيانات المبوبة، وكذلك يمكن حسابه باستخدام المنحنى التكراري.

ومن خصائص الوسيط أنه لا يتأثر بالقيم المتطرفة، فهو يتم حسابه من البيانات بغض النظر عن هذه القيم، كما أنه لا يتأثر بالفئات المفتوحة، ويفيد الوسيط في رصد متوسط ظاهرة عبر فترة زمنية معينة، كما أن الوسيط لا يعتمد على مراكز الفئات، بل يعتمد على التكرارات فقط، ولذلك فهو يستخدم دون غيره في الفئات المفتوحة، كما يصلح عندما يكون توزيع التكرارات ملتوياً، دلالة على تطرف البيانات وانحيازها في اتجاه معين.

استعمالات الوسيط:-

- 🚣 عندما يتطلب البحث معرفة النقطة الوسيطة في التوزيع .
 - 🚣 عندما تؤثر القيم المتطرفة على قيمة المعدل.
 - 🚣 عند معالجة التوزيعات الشاذة للقيم (المتطرفة) .
 - 🚣 يستعمل مع البيانات التراتبية بشكل خاص.

3) المنوال:

المنوال هو القيمة الأكثر تكراراً وشيوعاً في البيانات الخام، أما في البيانات التكرارية فهو مركز الفئة الأكبر تكراراً.

خصائص المنوال:

- الرسم الحساب ولا يقبل الخطأ، سواء أكان استخراجه عن طريق الجداول التكرارية أم الرسم البياني.
 - 🚣 لا يتأثر بالقيم المتطرفة.
- له أهمية خاصة عند دراسة تكرار حدوث الظواهر أو المشكلات التي يتصدى الجغرافي لدراستها وتحليل اسبابها المكانية.
- ♣ لا يصلح لوصف النزعة المركزية في كثير من الحالات، مثل تساقط المطر، ولكن عند تبويب
 القيم يمكن اعتماده.
- ♣ ولمجموعة القيم مدى واحد، وسيط واحد، ووسط حسابي واحد، ولكن قد يكون فيها أكثر من منوال واحد عندما تكون غير متجانسة، أو متمحورة حول أكثر من نقطة واحدة.

مقارنة بين مقاييس النزعة المركزية:

- 井 المتوسط الحسابي هو جزء من نظام رياضي يستخدم في تطبيقات احصائية أكثر عمقاً.
 - → ان انحراف القيم عن الوسيط ذي تطبيقات محدودة في الطرائق الاحصائية المتقدمة.
 - 🚣 المتوسط الحسابي أكثر استقرارية وفاعلية من غيره من مقاييس النزعة المركزية.
- ♣ عند أخذ عينات من المجتمع نفسه فان معدلاتها تكون أقل تذبذبا من قيم الوسيط والمنوال، بعبارة اخرى ، يوفر المعدل افضل تقدير لخصائص المجتمع .

مقاييس التشتت

التشتت هو درجة تبعثر البيانات أو انتشارها حول متوسطها الحسابي أو حول الوسيط، فمقاييس النزعة المركزية تدل على تجمع البيانات حول قيمة متوسطة لها، غير أن ذلك لا يعتبر كافياً لوصف البيانات بدقة، فقد يتساوى الوسط الحسابي لمجموعتين من البيانات، رغم وجود فروق كبيرة في القيم الخاصة بها:

فالوسط الحسابي للقيم: 6، 9، 9، 12 هو 9 والوسط الحسابي للقيم: 1، 2، 24 هو 9

أي أن قيمة الوسط الحسابي هي نفسها في المجموعتين رغم وجود اختلافات واضحة في أعداد كل مجموعة، وبالتالي فالوسط الحسابي لا يوضح الاختلاف بين المجموعتين، ويتعين استخدام مقاييس إضافية للوصول إلى وصف دقيق للبيانات، مثل مقاييس التشتت كالمدى، والانحراف المعياري، والتباين، ومعامل الاختلاف، ومعامل الإلتواء وغيرها.

1) المدى The Range

- هو المسافة بين أكبر وأصغر قيمة في مجموعة البيانات قيد التحليل، فالمدى أحد مقاييس درجة التطرف في مجموعة قيم، إذن المدى هو الفرق بين أعلى وأقل قيمة في مجموعة قيم، إذن المدى هو الفرق بين أعلى وأقل قيمة في مجموعة قيم، إذن
- ويستخدمه الجغرافيون بكثرة عند وصف وتحليل الظواهر الطبيعية مثل: المدى الحراري لقياس القارية والتطرفات المناخية، وعند قياس درجة انحدار السطح تحسب المسافة المكانية الفاصلة بين أعلى نقطة وأدناها (قياس درجة التضرس). كذلك عند تفسير سرعة الرياح باختلاف درجات الضغط الجوي بين منطقتين والمسافة الفاصلة بينهما، كما يستخدم في الدراسات التي تعنى بتصميم السدود ومصارف مياه الأمطار ومشاريع الري والصرف ومعالجة الفيضانات.
- في الجغرافية البشرية يعتمد المدى عند المقارنة بين المجاميع الاقتصادية الاجتماعية، وبين الأقاليم، وبين الدول، وهكذا، فهو يعكس حدة التباين المكاني وأثر العوامل المحلية عليه. انه أحد أهم مقاييس التباين المكاني لأنه يعكس التطرفين الإحصائيين والمسافة المكانية الفاصلة بينهما، ويساعد في تفسير ما تمخض عنه من نتائج.

• المدى يهتم بقيمتي التطرفين في قيم المتغير لذا فانه واحد سواء أكانت القيم مجدولة أم لا، ممثلة على الخارطة بنقاط أم بوحدات مساحية، انه لا يعطي فكرة عن توزيع القيم ولا يقيس التشتت بل يساعد في استكمال صورة توزيع القيم .

مزايا و عيوب (المدى) :-

- + مقياس بسيط وسهل الحساب لتبعثر و تشتت القيم .
- 🚣 لا يمكن استخدامه في التوزيعات التكرارية المفتوحة النهاية.
- 🚣 يعطى فكرة خاطئة عن توزيع القيم عند وجود تطرفات شاذة فيها .
- ◄ لا يستفاد من المدى للمقارنة بين عدة مجموعات في درجة تباينها وتشتتها، فقد يكون للمدى
 القيمة نفسها في كل مجموعة ولكن توزيع القيم مختلف كليا .

2) الانحراف المتوسط:

هو يعبر عن انحراف القيم عن معدلها، وهو متوسط مجموع الانحرافات المطلقة للقيم عن متوسطها الحسابي ويستخرج بالخطوات الآتية:-

- 🚣 اشتقاق المتوسط الحسابي للمشاهدات .
- 🚣 حساب انحراف المشاهدات عن متوسطها الحسابي
- 井 تحويل الانحرافات إلى انحرافات مطلقة بإهمال الإشارة الجبرية (السالبة والموجبة)
 - + حساب مجموع الانحرافات المطلقة.
 - + قسمة نتيجة الخطوة السابقة على عدد المشاهدات.

يعد الانحراف المتوسط من مقاييس التشتت الجيدة، إلا انه يعاني من أوجه قصور مختلفة أدت إلى صعوبة استخدامه في العمليات الإحصائية الاستدلالية .

3) التباين: Variance

وهو متوسط مجموع مربع الانحرافات عن المتوسط الحسابي، والسبب في تربيع الانحرافات قبل استخدامها لحساب قيمة التباين هو إن مجموعها يساوي صفرا. ولتجاوز عيوب الانحرافات المطلقة عمل الاحصائيون إلى تربيع الفروقات بدلاً من تحويلها إلى قيم مطلقة، ولا يعتمد لوحده في التحليل، الا نادرا و ذلك لأنه يشكل خطوة لاشتقاق قيمة الانحراف المعياري.

4) الانحراف المعياري Standard Deviation

انه الجذر التربيعي للتباين، وهو يعيد الفروقات إلى وضعها الأصلي بعد أن تم تربيعها، أو تربيع القيم ذاتها. ولأهميته فقد تتوعت طرائق حساب قيمته، فكثرت المعادلات وتكررت بصيغ مختلفة تؤدي الغرض نفسه مبنية وفق المنطق نفسه .

Variation Coefficient : معامل الاختلاف (5

هو أحد المقاييس المهمة والأكثر استعمالاً في الدراسات الجغرافية حيث يستخدم في المقارنات بين الظواهر الجغرافية خاصة المختلفة المقياس. يستخدم معامل الاختلاف للمقارنة بين توزيعين من حيث التشتت، مثلاً مقارنة التشتت بين إقليمين مناخيين من حيث الأمطار ودرجات الحرارة، فنجد أن متوسط درجات الحرارة قد يتساوى بين إقليمين ولكن معامل الاختلاف يكون مختلفاً مما يعني أن التشتت بينهما مختلف.

6) معامل الميلان:

يستخدم في معرفة ما إذا كانت البيانات الجغرافية تتبع التوزيع الطبيعي أم لا، فالبيانات الجغرافية إما أن تكون بيانات ذات توزيع طبيعي، أو بيانات ذات ميلان موجب، أو ذات ميلان سالب وهي محصورة بين (+3 إلى -3)، ويعرف معامل الميلان بمعامل الإلتواء

أمثلة

مثال 1 :

كمية الأمطار	السنة						
551.9	2000	401.5	1990	684.1	1980	534.8	1970
538.7	2001	949.5	1991	369.6	1981	729.6	1971
612.1	2002	874.4	1992	618.4	1982	421.9	1972
674.0	2003	386.0	1993	730.3	1983	531.0	1973
464.5	2004	761.5	1994	450.1	1984	790.6	1974
571.7	2005	266.6	1995	479.5	1985	498.5	1975
474.8	2006	510.2	1996	718.4	1986	467.8	1976
491.8	2007	652.9	1997	490.1	1987	687.4	1977
295.9	2008	325.2	1998	664.1	1988	384.8	1978
378.9	2009	223.0	1999	358.5	1989	663.3	1979
393.1	2010						

المطلوب:

- 1) أوجد مقاييس النزعة المركزية والتشتت
 - 2) كون جدول تكراري للبيانات السابقة

الحل: مجموع كميات الأمطار خلال 41 سنة = 22071

عدد السنوات n = 41 سنة

1- الوسط الحسابي

$$\bar{x} = \frac{\sum x}{n} = \frac{22071}{41} = 538.3$$

2- الوسيط:

ترتيب الأرقام تصاعدياً بالشكل التالي:

						پ			, -	
10	9	8	7	6	5	4	3	2	1	الرتبة
393.1	386	384.8	378.9	369.6	358.5	325.2	295.9	266.6	223	الرقم
20	19	18	17	16	15	14	13	12	11	الرتبة
498.5	491.8	490.1	479.5	474.8	467.8	464.5	436	436	401.5	الرقم
30	29	28	27	26	25	24	23	22	21	الرتبة
663.3	652.9	618.4	612.1	571.7	551.9	538.7	534.8	531	510.2	الرقم
40	39	38	37	36	35	34	33	32	31	الرتبة
874.4	790.6	761.5	730.3	729.6	718.4	687.4	684.1	674	664.1	الرقم

41	الرتبة
949.5	الرقم

رتبة الوسيط:

إذا كان عدد المشاهدات فردي فيكون القانون ربّبة الوسيط = (عدد المشاهدات + 1) / 2 أما إذا كان عدد المشاهدات زوجياً فيكون:

رتبة الوسيط الأول = عدد المشاهدات / 2 ، رتبة الوسيط الثاني = (عدد المشاهدات /2) +1 بما أن عدد المشاهدات فردي = 41 ، فإننا نستخدم القانون الأول

$$436 = 1$$
المنوال = القيمة الأكثر تكراراً = 4

$$726.5 = 223 - 949.5 = 1$$
 المدى = أكبر قيمة – أقل قيمة – 4

ثانياً مقاييس التشتت:

$$726.5 = 223 - 949.5 = 320$$
 المدى = أكبر قيمة – أقل قيمة = 1

جدول الحل:

$(\mathbf{x}-\overline{\mathbf{x}})^2$	$ \mathbf{x}-\overline{\mathbf{x}} $	الأمطار (x)	السنة
12.25	3.5	534.8	1970
36595.69	191.3	729.6	1971
13548.96	116.4	421.9	1972
53.29	7.3	531.0	1973
63655.29	252.3	790.6	1974
1584.04	39.8	498.5	1975
4970.25	70.5	467.8	1976
22230.81	149.1	687.4	1977
23562.25	153.5	384.8	1978
15625.00	125.0	663.3	1979
21257.64	145.8	684.1	1980
28459.69	168.7	369.6	1981
6416.01	80.1	618.4	1982
36864.00	192.0	730.3	1983
7779.24	88.2	450.1	1984
3457.44	58.8	479.5	1985
32436.01	180.1	718.4	1986
2323.24	48.2	490.1	1987
15825.64	125.8	664.1	1988
32328.04	179.8	358.5	1989
18714.24	136.8	401.5	1990
169085.44	411.2	949.5	1991
112963.21	336.1	874.4	1992
23195.29	152.3	386.0	1993
49818.24	223.2	761.5	1994
73820.89	271.7	266.6	1995
789.61	28.1	510.2	1996
13133.16	114.6	652.9	1997
45411.61	213.1	325.2	1998
99414.09	315.3	223.0	1999
184.96	13.6	551.9	2000
0.16	0.4	538.7	2001
5446.44	73.8	612.1	2002
18414.49	135.7	674.0	2003
5446.44	73.8	464.5	2004
1115.56	33.4	571.7	2005
4032.25	63.5	474.8	2006
2162.25	46.5	491.8	2007
58757.76	242.4	295.9	2008
25408.36	159.4	378.9	2009
21083.04	145.2	393.1	2010
444-000			
1117382.27	5566.3	22071	المجموع

2- الانحراف المتوسط:

$$M.D = \frac{\sum |X - \overline{X}|}{N} = \frac{5566.3}{41} = 135.76$$

3- الانحراف المعيارى:

$$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{N}} = \sqrt{\frac{1117382.27}{41}} = \sqrt{27253.22} = 165.1$$

نجد أن قيمة الانحراف المعياري = 165.1 ملم، كلما كبرت قيمة الانحراف المعياري مقارنة بالمتوسط الحسابي، تعطي دلالة على عدم تجانس البيانات، وفي هذا المثال نجد أن البيانات متجانسة حيث أن قيمة الانحراف المعياري ± 165.1

$$27253.22 = {}^{2}(165.1) = {}^{2}(\sigma) = 1$$
 التباین – 4

$$100 \times ($$
 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) × -5 % $30.6 = 100 \times 0.306 = 100 \times (538.3 / 165.1) =$

التفسير: كلما كبرت قيمة معامل الاختلاف كلما كانت البيانات غير متجانسة، هنا البيانات متجانسة بشكل كبير.

$$-6$$
 معامل الميلان = (المتوسط – الوسيط) / الانحراف المعياري = -6 0.17 = 165.1 / 28.1 = 165.1 / $(510.2 - 538.3)$ =

التفسير: معامل الميلان يكون بين + 3 ، - 3 ، فإذا كان محصوراً بينهما فهو توزيع أقرب للمعتدل (الطبيعي) ، أما غير ذلك فيكون توزيع غير الطبيعي.

الحل بالحاسوب: بعد إدخال البيانات بالحاسوب بالشكل التالى:

ل الوصفية	المقاييس الوصفية		
Mean	المتوسط الحسابي	538.317	
Median	الوسيط	510.200	
Mode	المنوال	223.0 ^a	
Std. Deviation	الانحراف المعياري	167.1363	
Variance	التباين	27934.556	
Skewness	معامل الإلتواء	0.356	
Std. Error of Skewness	الخطأ المعياري لإلتواء	0.369	
Range	المدى	726.5	
Minimum	أقل قيمة	223.0	
Maximum	أعلى قيمة	949.5	
Sum	المجموع	22071.0	

خطوات استخراج مقاييس النزعة المركزية والتشتت

ل الوصفية	القيمة	
Mean	المتوسط الحسابي	538.317
Median	الوسيط	510.200
Mode	المنوال	223.0 ^a
Std. Deviation	الانحراف المعياري	167.1363
Variance	التباين	27934.556
Skewness	معامل الإلتواء	0.356
Std. Error of Skewness	الخطأ المعياري لإلتواء	0.369
Range	المدى	726.5
Minimum	أقل قيمة	223.0
Maximum	أعلى قيمة	949.5
Sum	المجموع	22071.0

: 2 مثال

البيانات التالية لدرجات الحرارة في الأسبوع الأول من شهر يناير: 11 ، 12 ، 7 ، 6 ، 7 ، 6 ، 7 ، 6 ، 7 ، 6 درجة مئوية. المطلوب: أوجد مقاييس النزعة المركزية والتشتت لدرجات الحرارة.

الترتيب	Х	التصاعدي	$ x-\overline{x}) $	$(x-\overline{x})^2$
1-	11	6	2	4
2-	12	6	2	4
3-	7	7	1	1
4-	<mark>7</mark>	<mark>7</mark>	1	1
5-	6	7	1	1
6-	7	11	3	9
7-	6	12	4	16
المجموع		56	14	36

الحل:

أولاً / مقاييس النزعة المركزية

المتوسط الحسابى:

$$\overline{x} = \frac{\sum x}{n} = \frac{56}{7} = 8$$

قيمة المتوسط الحسابي = 8 درجات مئوية

الوسيط: عدد المشاهدات = 7 فردى

الوسيط = المشاهدة التي تقابل الرتبة 4 هي = 7

المنوال: هو القيمة الأكثر تكراراً = 7

ثانياً / مقاييس التشتت:

$$6 = 6 - 12 = 16$$
 المدى = أكبر قيمة -1 المدى = 1

2- الانحراف المتوسط:

$$M. D = \frac{\sum |X - \overline{X}|}{N} = \frac{14}{7} = 2$$

3- الانحراف المعياري:

$$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{N}} = \sqrt{\frac{36}{7}} = \sqrt{5.14} = 2.27$$

نجد أن قيمة الانحراف المعياري = 2.27 درجة مئوية، كلما كبرت قيمة الانحراف المعياري مقارنة بالمتوسط الحسابي ، تعطي دلالة على عدم تجانس البيانات ، وفي هذا المثال نجد أن البيانات متجانسة حيث أن قيمة الانحراف المعياري ± 2.27

$$5.14 = {}^{2}(2.27) = {}^{2}(\sigma) = 0$$
 التباین – 4

$$100 \times ($$
 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) = -5 % $28.4 = 100 \times 0.284 = 100 \times (8 / 2.27) =$

التفسير: كلما كبرت قيمة معامل الاختلاف كلما كانت البيانات غير متجانسة، هنا البيانات متجانسة بشكل كبير.

التفسير: معامل الميلان يكون بين + 3 ، - 3 ، فإذا كان محصوراً بينهما فهو توزيع أقرب للمعتدل (الطبيعي) ، أما غير ذلك فيكون توزيع غير الطبيعي.

الحل بالحاسوب: بعد إدخال البيانات بنفس الطريقة السابقة نحصل على الجدول التالي:

ل الوصفية	المقاييس	القيمة بالحاسوب	القيمة بالحل اليدوي
Mean	المتوسط الحسابي	8	8
Median	الوسيط	7	7
Mode	المنوال	7	7
Std. Deviation	الانحراف المعياري	2.449	2.27
Variance	التباين	6.000	5.14
Skewness	معامل الإلتواء	1.143	0.44
Std. Error of Skewness	الخطأ المعياري لإلتواء	0.794	-
Range	المدى	6	6
Minimum	أقل قيمة	6	6
Maximum	أعلى قيمة	12	12
Sum	المجموع	56	56

ملحظة : الاختلاف في قيم الانحراف المعياري والتباين سببه ، أن الحاسوب يتعامل مع القانون الثاني للانحراف المعياري وهو n-1 وبالتالي تكون النتائج مختلفة

مثال 3: البيانات التالية لدرجات الحرارة في الأسبوع الأول من شهر يناير: 11، 12، 7، 7، 6، 7، 6، 7، 6 كا البيانات الترارة. وحد مقاييس النزعة المركزية والتشتت لدرجات الحرارة.

X	الرتبة	التصاعدي	$ \mathbf{x} - \overline{\mathbf{x}} $	$(x-\overline{x})^2$
11	1	6	2	4
12	2	6	2	4
7	3	7	1	1
7	4	7	1	1
6	5	7	1	1
7	6	11	3	9
6	7	12	4	16
16	8	16	7	49
موع	المج	72	21	85

الحل:

أولاً / مقاييس النزعة المركزية

1) المتوسط الحسابي:

$$\overline{x} = \frac{\sum x}{n} = \frac{72}{7} = 9$$

قيمة المتوسط الحسابي = 9 درجات مئوية

2) الوسيط: عدد المشاهدات = 8 زوجي

رتبة الوسيط الأول = (عدد المشاهدات) / 2 = (8) = 2 تقابل القيمة 7 رتبة الوسيط الثاني = عدد المشاهدات ÷ $2 + 1 = (2 \div 8) = 1 + 4 = 1 + (2 \div 8) = 1 + (2 \div 8)$ القيمة 7 = 2/14 = 2/(7 + 7) = 2/(7 + 7) = 2/(7 + 7) = 2/(7 + 7) = 2/(7 + 7) = 2/(7 + 7)

المنوال: هو القيمة الأكثر تكراراً = 7

ثانياً / مقاييس التشتت:

$$10 = 6 - 16 = 16$$
 المدى = أكبر قيمة – أقل قيمة

2- الانحراف المتوسط:

$$M.D = \frac{\sum |X - \overline{X}|}{N} = \frac{14}{7} = 2$$

3- الانحراف المعياري:

$$\mathbf{\sigma} = \sqrt{\frac{\sum (X - \overline{X})^2}{N}} = \sqrt{\frac{85}{8}} = \sqrt{10.625} = 3.26$$

نجد أن قيمة الانحراف المعياري= 3.26 درجة مئوية، كلما كبرت قيمة الانحراف المعياري مقارنة بالمتوسط الحسابي، تعطي دلالة على عدم تجانس البيانات، وفي هذا المثال نجد أن البيانات متجانسة إلى حد ما ، حيث أن قيمة الانحراف المعياري ± 3.26

$$10.625 = {}^{2}(3026) = {}^{2}(\boldsymbol{\sigma}) = 10.625 = -4$$
 التباین

$$100 \times ($$
 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) \times 5 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) \times 36.2 = \times 100 \times (9 / 3.26) =

التفسير: كلما كبرت قيمة معامل الاختلاف كلما كانت البيانات غير متجانسة، هنا البيانات متجانسة بشكل كبير.

التفسير: معامل الميلان يكون بين + 3 ، - 3 ، فإذا كان محصوراً بينهما فهو توزيع أقرب للمعتدل (الطبيعي) .

ل الوصفية	المقاييس	القيمة بالحاسوب	القيمة بالحل اليدوي
Mean	المتوسط الحسابي	9	9
Median	الوسيط	7	7
Mode	المنوال	7	7
Std. Deviation	الانحراف المعياري	3.625	3.26
Variance	التباين	13.143	10.625
Skewness	معامل الإلتواء	1.199	0.613
Std. Error of Skewness	الخطأ المعياري لإلتواء	0.752	-
Range	المدى	10	10
Minimum	أقل قيمة	6	6
Maximum	أعلى قيمة	16	16
Sum	المجموع	72	72

ثانياً / البيانات المبوبة:

من أجل تسهيل التعامل مع البيانات الإحصائية الجغرافية كثيرة المشاهدات، يلجأ الإحصائيون إلى اختصارها في جداول، ثم معاملتها بالقوانين الإحصائية المختلفة.

أ- خطوات عمل جدول تكراري يدوياً:

41 =تحدید عدد المشاهدات -1

$$726.5 = 223 - 949.5 = 1$$
 المدى = أكبر قيمة – أقل قيمة = -2

$$6.61 = 1.61 + 5 = 41$$
 عدد الفئات = 5 + لو $7 = 1.61 + 5 = 41$ عدد الفئات = 5 + لو

إذن عدد الفئات من (6 - 7 فئات) ويجب أن لا يقل عدد الفئات عن 5 ولا يزيد عن 10 فئات

$$109.9 = 6.61 / 726.5 = 109.9 = 6.61 / 726.5 = 109.9$$

200 = 200 بما أن أقل مشاهدة = 223 إذن نبدأ الفئات برقم صحيح = -5

الجدول التكراري يكون بالشكل التالى:

		*		
الفئات	التكرار	التكرار f	مركز الفئة (X)	التراكمي
200 – 300	///	3	250	3
300 - 400	// ////	7	350	10
400 - 500	<i>//// ////</i>	10	450	20
500 - 600	/ ##	6	550	26
600 - 700	/// ////	8	650	34
700 -800	////	5	750	39
800 – 900	/	1	850	40
900 -1000	/	1	950	41
		41		

ب- كيفية عمل جدول تكراري بالحاسوب:

نفتح (ملف الأمطار السابق) حيث يوجد به متغير واحد هو الأمطار:

الخطوة الأولى: نفتح نافذة Transform ثم الأمر Transform

نحصل على النافذة التالية:

الخطوة الثانية: نقوم بتسمية المتغير الجديد الذي نريد إنشاؤه ونسميه (الفئات) وتكون هذه الفئات كما في المثال السابق ولكن نعطيها أرقاماً متسلسلاً لكل فئة من الفئات، فالفئة الأولى والتي هي من 200 - 300 نعطيها الرقم 1، والفئة الثانية من 300 - 400 نعطيها الرقم 2 وهكذا حتى الفئة الثامنة.

ولكن حينما نكتب الفئة يجب أن يكون الحد الأعلى فيها أقل من القيمة الموجودة في الفئة ، فمثلاً الفئة من 200 - 300 وهكذا .

ثم نضغط على الأمر (Old and new Value) ونقوم بإدخال الفئات من خلال القائمة 299.9 ، وفيها ندخل الرقم 200.9 في الفراغ المقابل لكلمة Range ، وندخل الرقم 200.0 للفراغ المقابل لكلمة through .

ثم في النصف الثاني من النافذة (اليمين) New value ندخل الرقم 1 وهو يعبر عن الفئة الأولى، ثم نضغط على الزر add، فيتم إدخال الفئة وترتيبها، وهكذا مع باقى المجموعات.

الخطة الأخيرة: نضغط على continue ثم ok فنحصل على النتائج التالية:

	فئات الأمطار								
الفئات		Frequency	Percent	Valid Percent	Cumulative Percent				
Valid	1	3	7.3	7.3	7.3				
	2	7	17.1	17.1	24.4				
	3	10	24.4	24.4	48.8				
4		6	14.6	14.6	63.4				
	5	8	19.5	19.5	82.9				
	6	5	12.2	12.2	95.1				
	7	1	2.4	2.4	97.6				
	8	1	2.4	2.4	100.0				
	Total	41	100.0	100.0					

حتى نحول الأرقام الرتبية (1 إلى 8) إلى فئات نقوم بما يلي : أولاً/ نفتح نافذة Variable View ثم نذهب للأمر Value، ونقوم بإدخال الفئات كما في الشكل التالي:

وبعد ذلك نضغط على Ok، فنحصل على الشكل المقابل

الخطوة الثانية / نعيد نفس الخطوات في حساب التكرارات للفئات فنحصل على الجدول التالي:

	فئات الأمطار							
		Frequency	Percent%	Valid Percent	Cumulative Percent			
Valid	200 - 300	3	7.3	7.3	7.3			
	300 - 400	7	17.1	17.1	24.4			
	400 - 500	10	24.4	24.4	48.8			
	500 - 600	6	14.6	14.6	63.4			
	600 - 700	8	19.5	19.5	82.9			
	700 - 800	5	12.2	12.2	95.1			
	800 - 900	1	2.4	2.4	97.6			
	900 - 1000	1	2.4	2.4	100.0			
	Total	41	100.0	100.0				

مثال 1: تمثل البيانات التالية كميات الأمطار الساقطة على غزة حسب الجدول التكراري:

a 1 s 2 t 1	التكرار	مركز الفئة	(f. X)	التراكمي	I31	c l = 1	c (=)2
الفئات	f	(X)			$ \mathbf{x} - \mathbf{x} $	$ \mathbf{f} \mathbf{x}-\overline{\mathbf{x}} $	$(\mathbf{x} - \mathbf{x})$
200 - 300	3	250	750	3	280.5	841.5	236040.75
300 - 400	7	350	2450	10	180.5	1263.5	228061.75
400 - 500	10	450	4500	20	80.5	805	6480.25
500 - 600	6	550	3300	26	19.5	117	2281.5
600 - 700	8	650	5200	34	119.5	956	114242
700 -800	5	750	3750	39	219.5	1079.5	236950.25
800 – 900	1	850	850	40	319.5	319.5	102080.25
900 -1000	1	950	950	41	419.5	419.5	175980.25
	41		21750		5801.5	5801.5	1102117

أوجد مقاييس النزعة المركزية والتشتت

أولاً / مقاييس النزعة المركزية

1- المتوسط الحسابى:

$$\overline{x} = \frac{\sum f. x}{\sum f} = \frac{21750}{41} = 530.5$$

قيمة المتوسط الحسابي = 530.5 ملم

2/ الوسيط:

رتبة الوسيط
$$=rac{\sum f}{2}=rac{41}{2}=20.5$$

2- تحديد فئة الوسيط: نجد أن فئة الوسيط هي التي يقابلها التراكمي الصاعد الذي به الرقم المساوي لرتبة الوسيط أو أكبر منه، وهنا الرقم التراكمي 26، وهو يقابل الفئة 600 – 500

500 = 1 الحد الأدنى لفئة الوسيط

20 = 1 التراكمي السابق لفئة الوسيط

6 = تكرار فئة الوسيط = -5

100 = 500 - 600 = 100 طول فئة الوسيط = الحد الأعلى – الحد الأدنى لفئة الوسيط = 100 – 600

قيمة الوسيط =

الحد الأدنى لفئة الوسيط + [(رتبة الوسيط - التراكمي السابق لفئة الوسيط)/ تكرار فئة الوسيط] × طول الفئة

$$100 \times [6/(20 - 20.5)] + 500 =$$

$$100 \times [6 / 0.5] + 500 =$$

$$100 \times [0.083] + 500 =$$

3 / المنوال: هو مركز الفئة الأكبر تكراراً = 450 ملم ، وهو يقابل التكرار الأكبر المساوي 10

ثانياً / مقاييس التشتت:

ملم
$$= 1$$
 المدى $= 1$ كبر قيمة -1 قل قيمة $= 1000 - 1000$

2- الانحراف المتوسط:

$$M. D = \frac{\sum f |X - \overline{X}|}{\sum f} = \frac{5801.5}{41} = 141.5$$

3- الانحراف المعياري:

$$\mathbf{\sigma} = \sqrt{\frac{\sum f(X - \overline{X})^2}{\sum f}} = \sqrt{\frac{1102117}{41}} = \sqrt{26880.9} = 163.9$$

نجد أن قيمة الانحراف المعياري = 163.9 ملم، كلما كبرت قيمة الانحراف المعياري مقارنة بالمتوسط الحسابي ، تعطي دلالة على عدم تجانس البيانات ، وفي هذا المثال نجد أن البيانات متجانسة حيث أن قيمة الانحراف المعياري ± 163.9

$$26880.9 = {}^{2}(163.9) = {}^{2}(\boldsymbol{\sigma}) = 163.9$$
 – التباین

$$100 \times ($$
 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) × 05 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) × 30.9 = $100 \times (530.5 \ / \ 163.9)$ =

التفسير: كلما كبرت قيمة معامل الاختلاف كلما كانت البيانات غير متجانسة، هنا البيانات متجانسة بشكل كبير.

$$-6$$
 - **asiati** - (المتوسط – الوسيط) / الانحراف المعياري – -6 - -6

التفسير: معامل الميلان يكون بين + 3 ، - 3 ، فإذا كان محصوراً بينهما فهو توزيع أقرب للمعتدل (الطبيعي) ، أما غير ذلك فيكون توزيع غير الطبيعي.

عثال 2:

في دراسة حول ظاهرة الصقيع في قطاع غزة ، قام أحد الباحثين بجمع بيانات حول هذه الظاهرة في المنطقة ، كما هو موضح في :

جدول : حدوث ظاهرة الصقيع بشهر مارس في قطاع غزة من 1901م -2000م

	T T	,	,				
عدد مرات	السنة						
حدوث الظاهرة	,	حدوث الظاهرة		حدوث الظاهرة		حدوث الظاهرة	
0	1976	1	1951	0	1926	0	1901
2	1977	1	1952	1	1927	1	1902
1	1978	1	1953	0	1928	2	1903
0	1979	2	1954	0	1929	0	1904
3	1980	1	1955	0	1930	4	1905
0	1981	3	1956	1	1931	5	1906
4	1982	0	1957	2	1932	0	1907
1	1983	2	1958	3	1933	6	1908
0	1984	2	1959	0	1934	1	1909
1	1985	0	1960	4	1935	2	1910
2	1986	1	1961	5	1936	1	1911
0	1987	2	1962	6	1937	0	1912
2	1988	0	1963	0	1938	1	1913
1	1989	2	1964	1	1939	1	1914
0	1990	1	1965	1	1940	0	1915
2	1991	0	1966	1	1941	0	1916
0	1992	2	1967	0	1942	2	1917
5	1993	1	1968	1	1943	3	1918
6	1994	3	1969	1	1944	1	1919
0	1995	0	1970	2	1945	0	1920
7	1996	2	1971	0	1946	1	1921
1	1997	0	1972	1	1947	0	1922
0	1998	3	1973	3	1948	1	1923
1	1999	0	1974	0	1949	0	1924
5	2000	3	1975	1	1950	0	1925

المطلوب: تحليل البيانات السابقة إحصائياً ، و تمثيلها بيانياً ما أمكن .

خطوات الحل:

1- عمل جدول تكراري

X	التكرار f	التكرار التراكمي	(f. X)	$ x-\overline{x} $	$f x-\overline{x} $	$f(x-\overline{x})^2$
0	35	35	0	1.43	50.05	71.57
1	30	65	30	0.43	12.9	5.55
2	16	81	32	0.57	9.12	5.2
3	8	89	24	1.57	12.56	19.72
4	3	92	12	2.57	7.71	19.81
5	4	96	20	3.57	14.28	50.98
6	3	99	18	4.57	13.71	62.65
7	1	100	7	5.57	5.57	31.02
المجموع	100		143		125.9	266.51

أولاً / مقاييس النزعة المركزية

1- المتوسط الحسابي:

$$\overline{x} = \frac{\sum f \cdot x}{\sum f} = \frac{143}{100} = 1.43$$

قيمة المتوسط الحسابي = 1.43 مرة

2/ الوسيط:

رتبة الوسيط
$$=rac{\Sigma f}{2}=rac{100}{2}=50$$

تحديد فئة الوسيط: نجد أن فئة الوسيط هي التي يقابلها التراكمي الصاعد الذي به الرقم المساوي لرتبة الوسيط أو أكبر منه، وهنا الرقم التراكمي 65، وهو يقابل الفئة = 1 قيمة الوسيط = 1 مرة

35 مرة ، وهو يقابل التكرار الأكبر المساوي 35 مرة ، وهو يقابل التكرار الأكبر المساوي

ثانياً / مقاييس التشتت:

$$7 = 0 - 7$$
 المدى = أكبر قيمة – أقل قيمة = 7 – 0

2- الانحراف المتوسط:

$$M. D = \frac{\sum f |X - \overline{X}|}{\sum f} = \frac{125.9}{100} = 1.259$$

3- الانحراف المعياري:

$$\mathbf{\sigma} = \sqrt{\frac{\sum f(X - \overline{X})^2}{\sum f}} = \sqrt{\frac{266.51}{100}} = \sqrt{2.665} = 1.63$$

نجد أن قيمة الانحراف المعياري = 1.63 مرة، كلما كبرت قيمة الانحراف المعياري مقارنة بالمتوسط الحسابي ، تعطي دلالة على عدم تجانس البيانات ، وفي هذا المثال نجد أن البيانات غير متجانسة حيث أن قيمة الانحراف المعياري ± 1.63

$$2.665 = {}^{2}(1.63) = {}^{2}(\sigma) = 1.63$$
 – التباین

$$100 \times ($$
 معامل الاختلاف = (الانحراف المعياري / المتوسط الحسابي) × 00 = -5 % $114.16 = 100 \times (1.43 / 1.63) =$

التفسير: كلما كبرت قيمة معامل الاختلاف كلما كانت البيانات غير متجانسة، هنا البيانات غير متجانسة هنا البيانات غير متجانسة بشكل كبير.

6- معامل الميلان

$$1.63 / (1 - 1.43) = (1 - 1.43) / (1 - 1.43) = (1 - 1.43) / (1 - 1.43) = (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.63) = (1 - 1.63) / (1 - 1.43) = (1 - 1.63) / (1 - 1.6$$

التفسير: معامل الميلان يكون بين + 3 ، - 3 ، فإذا كان محصوراً بينهما فهو توزيع أقرب للمعتدل (الطبيعي) ، أما غير ذلك فيكون توزيع غير الطبيعي

كيفية حل السؤال السابق بالحاسوب:

أُولاً / نقوم بإدخال البيانات السابقة في نافذة Data View ثم نقوم باستخدام الأمر Analyze ثم الأمر Discriptive

يعد أن ندخل التكرار ونضغط Ok نحصل على الجدول التالي:

	التكرار							
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	0	35	35.0	35.0	35.0			
	1	30	30.0	30.0	65.0			
	2	16	16.0	16.0	81.0			
	3	8	8.0	8.0	89.0			
	4	3	3.0	3.0	92.0			
	5	4	4.0	4.0	96.0			
	6	3	3.0	3.0	99.0			
	7	1	1.0	1.0	100.0			
	Total	100	100.0	100.0				

كما نحصل على الجدول التالي للمقاييس الوصفية:

Mean	1.43
Median	1.00
Mode	0
Std. Deviation	1.641
Variance	2.692
Skewness	1.450
Std. Error of Skewness	.241
Range	7
Maximum	7
Sum	143

انتهت المحاضرة