Resumen de algebra (segundo semestre)

Mateo P. Cetti

August 13, 2020

1 Espacios vectoriales

cualquier conjunto que posea operaciones de suma y producto por un escalar, cumpliendo todas las siguientes propiedades:

Suma:

- 1. Asociativa (u + w) + v = u(w + v) = (u + v) + w
- 2. Conmutativa u + v = v + u
- 3. Elemento neutro tal que u + 0 = u
- 4. Para cada vector u existe un elemento opuesto (-u) tal que u + (-u) = 0.

Multiplicacion:

- 1. Asociativa $(k * k') * u = k * (k' * u) = (k * u) * k'k, k'e\mathbb{K}$
- 2. Distributiva
 - Respecto a la suma de vectores k * (u + v) = k * u + k * v
 - Respecto a la suma de escalares $(k_1 + k_2) * u = k_1 * u + k_2 * u$
- 3. Elemento neutro k=1, tal que 1*u=u

Sea \mathbb{K} un cuerpo, y V un conjunto de dos operaciones definimos:

Operacion interna llamada adición, que asigna a cada par u,v de elementos de V, un elemento de V denotado u+v

Operacion externa llamada multiplicación por un escalar que asigna a cada par formado por un elemento $ke\mathbb{K}$ y un elemento veV, un elemento de V denotado por kv

Subespacios vectoriales Un subconjunto no vacio W de un espacio vectorial V se denomina subespacio vectorial de V, si W es en si mismo un espacio vectorial bajo las operaciones de suma y Multiplicacion por escalar definidas en V. Ademas debe cumplir:

- La suma de 2 vectores de W pertenecen a W u, vW => u + vW
- El producto de un vector de W por un escalar cualquiera K pertenece a W $uW, k\mathbb{K} => k.uW$
- El vector nulo pertenece a W

2 Clase 2

Combinacion lineal Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , v_1, v_2, v_n son vectores de V $k_1, k_2, ..., k_n$ son escalares de \mathbb{K} .

Se dice que un vector $v \in V$ es combinacion lineal de los vectores v_1, v_2, v_n segun los escalares k_1, k_2, k_n si y solo si:

$$v = k_1 v_1 + k_2 v_2 + k_n + v_n$$

Generador de un subespacio vectorial Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , v_1, v_2, v_n son vectores de V, W es el conjunto de **todas** las combinaciones lineales de v_1, v_2, v_n . Llamaremos a \mathbb{W} subespacio generado por v_1, v_2, v_n y lo indicaremos como:

$$W = \langle v_1, v_2, v_n \rangle$$

y se lee "W es el subespacio generado por v_1, v_2, v_n "

El subespacio generado por los vectores v_1, v_2, v_n , puede ser el mismo V, en este caso diremos que el conjunto $S = v_1, v_2, ..., v_n$ genera el espacio vectorial V o bien, S es un generador de V.

Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , el conjunto $S=v_1,v_2,v_n$ es un **generador** de V si y solo si $v\in V\to v=k_1v_1+k_2v_2+k_nv_n$

- Un generador es un conjunto de vectores tales que todo vector del espacio vectorial se puede expresar como una combinacion lineal de ellos
- El subespacio generado es el conjunto formado por todas las

Suma de conjuntos A y B son 2 conjuntos $A + B = x = a + b/a \in Ayb \in B$

La suma de 2 conjuntos es un nuevo conjunto formado por elementos donde se suma 1 elemento del primer conjunto con 1 elemento del segundo conjunto. Suma de subespacios vectoriales sea V un espacio vectorial sobre un cuerpo $\mathbb K$ si " w_1 y w_2 son subespacios del espacio vectorial V, entonces W_1+W_2 es un subespacio.

Interseccion de subespacios vectoriales sea V un espacio vectorial sobre un cuerpo $\mathbb K$ si " w_1 y w_2 son subespacios del espacio vectorial V, entonces $W_1\cap W_2$ es un subespacio.