統測數學 Exercise 5

一、單選題: (100 小題, 每題 1 分, 共 100 分)

- 1. ()已知坐標平面上三點 A(1,a) 、 B(2,3) 、 C(5,1) ,若向量內積 \overrightarrow{AB} . \overrightarrow{BC} 的值為 1 ,則 a=(A)-3 (B) -1 (C) 1 (D) 2
- **2.** () 已知 $\overrightarrow{u} = (1,1)$ 、 $\overrightarrow{v} = (x+4,y-1)$ 、 $\overrightarrow{w} = (2x,y)$ 。若 \overrightarrow{u} 與 \overrightarrow{v} 垂直且 \overrightarrow{u} 與 \overrightarrow{w} 平行,則下列 何者正確? (A) x = 1 (B) y = -2 (C) y = 1 (D) x = -2
- 3. () 已知兩向量 $\overrightarrow{a} = (2,4)$ 、 $\overrightarrow{b} = (1,2)$,則 $|\overrightarrow{a} \overrightarrow{b}| = (A)\sqrt{3}$ (B) $\sqrt{5}$ (C) $3\sqrt{2}$ (D)5
- **4.** () 若 $\overrightarrow{a} = (4,2)$, $\overrightarrow{b} = (6,k)$ 且 $\overrightarrow{a} \perp \overrightarrow{b}$, 則 k 值為 (A)10 (B)12 (C)-10 (D)-12
- **5.** () 試判斷下列何者為單位向量? $(A)\left(\frac{5}{13}, -\frac{12}{13}\right)$ $(B)\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ $(C)\left(-\frac{1}{2}, \frac{1}{2}\right)$ (D)(1,1)
- 6. () 設 A(3,-2)、 B(-1,1) 為平面上兩點,則 $|\overrightarrow{AB}|$ = (A)(4,-3) (B)(-4,3) (C)5 (D)25
- 7. () 若A(5,-2)、B(3,6),則 $\overrightarrow{AB}=$? (A)(8,4) (B)(2,-8) (C)(-2,8) (D)(-8,-4)
- **8.** () 平行四邊形 ABCD 中,下列敘述何者**不正確**?

- (A) $\overrightarrow{AD} = \overrightarrow{BC}$ (B) $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$ (C) $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (D) $\overrightarrow{AB} \overrightarrow{CB} = \overrightarrow{CA}$
- 9. () 已知正 $\triangle ABC$ 邊長為 3,則 $|\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}| =$ (A)0 (B)3 (C)9 (D)18
- 10. () 已知 \overrightarrow{a}_{+2} \overrightarrow{b}_{+3} $\overrightarrow{c}_{=0}$ 且 $|\overrightarrow{a}| = 4$ $|\overrightarrow{b}| = 5$, 若 $|\overrightarrow{a}|$ $|\overrightarrow{b}| = 6$, 則 $|\overrightarrow{c}| = 6$ (A) $\frac{\sqrt{65}}{3}$ (B) $2\sqrt{2}$ (C) $2\sqrt{5}$ (D) $\frac{2\sqrt{35}}{3}$
- **11.** () 如圖,二組平行線分別等間隔,令 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$,若 $\overrightarrow{OP} = x \overrightarrow{a} + y \overrightarrow{b}$,則 $(x,y) = x \overrightarrow{a} + y \overrightarrow{b}$

- (A)(2,1) (B)(4, $\frac{1}{2}$) (C)($\frac{17}{5}$, $\frac{14}{5}$) (D)($\frac{17}{7}$, $\frac{6}{7}$)
- **12.** ()如圖,平行四邊形 ABCD 中, $E \cdot F \cdot G \cdot H$ 分別為 $\overline{AB} \cdot \overline{BC} \cdot \overline{CD} \cdot \overline{DA}$ 之中點,設 $\overline{AH} = \overline{a} \cdot \overline{AE} = \overline{b}$,若 $\overline{AG} = x \overline{a} + y \overline{b}$,則(x,y) =

- 13. ()已知向量 $\overrightarrow{v} = (4,1)$, 若 \overrightarrow{v} 與向量 (x,-3) 平行 ,且 \overrightarrow{v} 與向量 (1,y) 垂直 ,則數對 (x,y) 為 (A) (-12,-4) (B) $\left(\frac{3}{4},\frac{1}{4}\right)$ (C) (0,-2) (D) $\left(-\frac{1}{4},-\frac{3}{4}\right)$
- 14. () 若 $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, 且 $\overrightarrow{a} \cdot \overrightarrow{b} = -2$, 則 $|\overrightarrow{a} + \overrightarrow{b}|^2 =$ (A)21 (B)9 (C)29 (D)5
- **15.** ()如圖所示,平行四邊形 ABCD 中,試以 $A \times B \times C \times D$ 為起點或終點的有向線段表示,則 $\overrightarrow{AB} \overrightarrow{AD} =$

(A) \overrightarrow{DB} (B) \overrightarrow{BD} (C) \overrightarrow{AD} (D) \overrightarrow{DA}

16. () 如圖所示,ABCD 是一矩形, $E \times F$ 分別為 $\overline{AB} \times \overline{CD}$ 的中點,且 \overline{AC} 和 \overline{BD} 交於 G 點。 若 $\overline{AG} = \overline{a} \times \overline{BG} = \overline{b}$,則 $\overline{FG} =$

 $(A)\frac{1}{2}\left(\overrightarrow{a}+\overrightarrow{b}\right) \quad (B)-\frac{1}{2}\left(\overrightarrow{a}+\overrightarrow{b}\right) \quad (C)\frac{1}{2}\left(\overrightarrow{a}-\overrightarrow{b}\right) \quad (D)-\frac{1}{2}\left(\overrightarrow{a}-\overrightarrow{b}\right)$

- **18.** () 在△ABC 中,已知 $\angle C = 90^{\circ}$, $\overrightarrow{AB} = (3,k)$ 、 $\overrightarrow{AC} = (2,1)$,則 k = (A) 8 或 5 (B) 6 (C) 3 或 5 (D) 1
- 20. () $\overrightarrow{\mathbb{R}} | \overrightarrow{a} | = 2$ $\overrightarrow{b} | = \sqrt{5}$, $\overrightarrow{a} \cdot \overrightarrow{b} = -3$, $\overrightarrow{\mathbb{N}} | \overrightarrow{a} 2 \overrightarrow{b} | = (A)2$ (B)3 (C)4 (D)6
- 21. () $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{$
- **22.** () $A(3,-1) \cdot B(1,2) \cdot C(x,y) \cdot D(-1,3) \cdot x \cdot y$ 為實數,若 $(\overrightarrow{AB} + \overrightarrow{AC})//\overrightarrow{BD}$,且 $\overrightarrow{BC}//\overrightarrow{AD}$,則

$$(x,y) = (A)(-6,9)$$
 (B)(6,9) (C)(9,6) (D)(9,-6)

- 23. () 已知 $A(-1,2) \cdot B(3,-5) \cdot C(1,6)$, 設 G 為 $\triangle ABC$ 的重心,M 為 \overline{AC} 的中點,則 $\overline{BG} \overline{AM} = (A)(-3,4)$ (B)(-1,8) (C)(-3,8) (D)(-1,4)
- **24.** () $\triangle ABC$ 中,已知向量 $\overrightarrow{AB} = (-3,4)$ 、 $\overrightarrow{AC} = (-4,3)$,則 $\triangle ABC$ 的周長為 (A)15 (B)5+6 $\sqrt{2}$ (C)10+2 $\sqrt{2}$ (D)10+ $\sqrt{2}$
- 25. () 設 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 為平面向量 , D 、 E 、 F 、 G 為坐標平面上的四個點 ,若 $\overrightarrow{DE} = 2\overrightarrow{a}$, $\overrightarrow{DF} = 3\overrightarrow{b} \overrightarrow{a}$, $\overrightarrow{FG} = -\overrightarrow{b} + 4\overrightarrow{c}$,則下列何者恆正確 ? (A) $\overrightarrow{GE} = 2\overrightarrow{a} + 3\overrightarrow{b} 4\overrightarrow{c}$ (B) $\overrightarrow{GE} = 3\overrightarrow{a} 2\overrightarrow{b} 4\overrightarrow{c}$ (C) $\overrightarrow{GE} = 4\overrightarrow{a} 3\overrightarrow{b} + 2\overrightarrow{c}$ (D) $\overrightarrow{GE} = 2\overrightarrow{a} 3\overrightarrow{b} + 4\overrightarrow{c}$
- **26.** () 如圖,已知 $\triangle ABC$ 為正三角形, $P \cdot Q \cdot R$ 是三邊的中點,則 $\overrightarrow{PR} =$

(A) \overrightarrow{PA} (B) \overrightarrow{BQ} (C) \overrightarrow{BC} (D) \overrightarrow{CQ}

- 27. ()設 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 為三向量,且 $\overrightarrow{0}$ 為零向量,則下列何者錯誤? (A) $\overrightarrow{0}$ + \overrightarrow{b} = \overrightarrow{b} (B) \overrightarrow{a} + $(\overrightarrow{b}$ + \overrightarrow{c}) = $(\overrightarrow{a}$ + \overrightarrow{b}) + \overrightarrow{c} (C) \overrightarrow{a} \overrightarrow{b} = \overrightarrow{b} \overrightarrow{a} (D) $(-\overrightarrow{a})$ = \overrightarrow{a}
- 28. () $\triangle ABC$ 之三邊長為 a , b , c , 則 $|\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}| =$ (A)a+b+c (B)a+b-c (C)a-b+c (D)0
- 29. () $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} =$ (A) \overrightarrow{AD} (B) \overrightarrow{DA} (C) \overrightarrow{O} (D)0
- 30. () 如圖是由二組兩兩平行的直線所構成,且每一小格都是菱形,則下列何者錯誤?

(A) $\overrightarrow{AB} = 3\overrightarrow{a} + 5\overrightarrow{b}$ (B) $\overrightarrow{CD} = 3\overrightarrow{a} - 3\overrightarrow{b}$ (C) $\overrightarrow{AB} + \overrightarrow{CD} = 8\overrightarrow{a}$ (D) $\overrightarrow{AB} - \overrightarrow{CD} = 8\overrightarrow{b}$

31. () 如圖所示,若 $\overrightarrow{OQ} = -\frac{3}{2}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$,則 Q 點會落在哪一個區域內?

(A)I (B)II (C)III (D)IV

32. () 設 $A \cdot B \cdot X$ 為相異三點,r 為任意實數, $\overrightarrow{AX} = r\overrightarrow{AB}$,則下列敘述何者**錯誤**? (A)當 $r = \frac{2}{3}$ 時,X點在 \overrightarrow{AB} 上 (B)當 r = -3 時, \overrightarrow{AX} 與 \overrightarrow{AB} 方向相反 (C)當 r < -1 時, $|\overrightarrow{AX}| < |\overrightarrow{AB}|$ (D)當 0 < r < 1 時, $|\overrightarrow{AX}| < |\overrightarrow{AB}|$

- 33. () $\stackrel{\text{de}}{=} \overrightarrow{a} = (-3,k)$, $\overrightarrow{b} = (k,4)$, $\overrightarrow{B} = \overrightarrow{a} \cdot \overrightarrow{b} = 8$, $\cancel{B} = (A) 8$ (B) $\frac{8}{7}$ (C) 8 (D) 1
- 34. () 已知 $|\overrightarrow{a}|_{=4}$, \overrightarrow{a} 與 \overrightarrow{b} 的夾角 θ 為 30° ,若 \overrightarrow{a} . $\overrightarrow{b} = 2\sqrt{3}$,則 $|\overrightarrow{b}|_{=}$ (A)1 (B) $\sqrt{3}$ (C) 2 (D) $2\sqrt{3}$
- 35. () 設 $\overrightarrow{a} = (2,m)$, $\overrightarrow{b} = (m,8)$,若 \overrightarrow{a} // \overrightarrow{b} ,則 m = (A)4 (B)2 (C)4 或 -4 (D)2 或 -2
- **36.** () 如圖,已知 $A \times C$ 兩點在 x 軸上, $B \times D$ 兩點在 y 軸上,且 $\overline{OA} = \overline{OB} = \overline{OC} = \overline{OD} = 1$,則下 列何者正確?

- (A) $\overrightarrow{AB} = (1,-1)$ (B) $\overrightarrow{DC} = (1,-1)$ (C) $\overrightarrow{CA} = (-2,0)$ (D) $\overrightarrow{BD} = (0,-2)$
- 37. () 如圖,在正六邊形 ABCDEF 中,若 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$,則 $\overrightarrow{AE} = \overrightarrow{DA}$

- $(A)\overrightarrow{a} + \overrightarrow{b}$ $(B) \overrightarrow{a} \overrightarrow{b}$ $(C) \overrightarrow{a} + \overrightarrow{b}$ $(D) \overrightarrow{a} \overrightarrow{b}$
- 38. () 已知 $\overrightarrow{a} = (12,-5)$,若 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$,則 \overrightarrow{b} 可為下列何者? (A)(5,-12) (B)(-10,24) (C) (-5,12) (D)(10,24)
- 39. ()已知 \overrightarrow{a} 和 \overrightarrow{b} 是坐標平面上的兩個向量,若 $|\overrightarrow{a}| = 6$, $|\overrightarrow{b}| = 3$,且 \overrightarrow{a} 和 \overrightarrow{b} 的夾角 θ 為 60° ,则 $\overrightarrow{a} \cdot \overrightarrow{b} =$ (A)18 (B)18 $\sqrt{3}$ (C)9 (D)9 $\sqrt{3}$
- **40.** () 在 $\triangle ABC$ 中,若 $\overrightarrow{AB} = (3,-4)$, $\overrightarrow{BC} = (4,0)$,則 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = (A)(1,4)$ (B)(-1,-4) (C)(7,-4) (D)(-7,4)
- 41. ()已知坐標平面上兩點 A(9,4)、 B(5,3) ,則 $\overrightarrow{AB} = (A)(3,-2)$ (B)(4,1) (C)(-3,2) (D)(-4,-1)
- **42.** () 如圖,已知 $A \times B$ 兩點在x軸上,若 $\overline{OA} = \overline{OB} = 6$,則下列何者正確?

$$O$$
 A
 X

(A) $\overrightarrow{AO} = (6,0)$ (B) $\overrightarrow{OB} = (-6,0)$ (C) $\overrightarrow{OA} = \overrightarrow{OB}$ (D) $\overrightarrow{OA} + \overrightarrow{BO} = \overrightarrow{O}$

)如圖,在平行四邊形 ABCD 中, E 為 \overline{AB} 的中點, F 、 G 為 \overline{AD} 的三等分點。若 $\overline{AE} = \overline{a}$, **43.** (

- $(A)_{2\overrightarrow{a}+3\overrightarrow{b}}$ $(B)_{2\overrightarrow{a}+4\overrightarrow{b}}$ $(C)_{2\overrightarrow{a}+2\overrightarrow{b}}$ $(D)_{3\overrightarrow{a}+3\overrightarrow{b}}$

-)如圖,在正六邊形 ABCDEF 中,若 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$,則下列何者正確? 44. (

- (A) $\overrightarrow{a} = \overrightarrow{b}$ (B) $\overrightarrow{BC} = \overrightarrow{a}$ (C) $\overrightarrow{CD} = \overrightarrow{b}$ (D) $\overrightarrow{FA} = \overrightarrow{b}$
-)如圖,已知 $\triangle ABC$ 為正三角形, $D \times E \times F$ 是三邊中點,則 $\overrightarrow{BF} =$ **45.** (

- $(A) \overrightarrow{CF} \quad (B) \overrightarrow{FC} \quad (C) \overrightarrow{DE} \quad (D) \overrightarrow{FD}$
-)下列何者為「向量」? (A)向南走 25 公尺 (B)長度 (C)時間 (D)溫度 **46.** (
-)已知向量 $\overrightarrow{a}=(1,2)$ 與向量 $\overrightarrow{b}=(2,3)$,若 $\overrightarrow{a}-2\overrightarrow{b}=(r,s)$,則s-2r=**47.** ((A)-2 (B)-1 (C)2 (D)3
-)若ABCDE為一五邊形,則 $\overline{AB}+\overline{BC}+\overline{CD}+\overline{DE}+\overline{EA}=$ **48.** ($(A) \overrightarrow{AE} \quad (B) \overrightarrow{EB} \quad (C) \overrightarrow{EA} \quad (D) \overrightarrow{0}$
-)如圖所示,正六邊形 ABCDEF 中,設 $\overrightarrow{a} = \overrightarrow{AB}$ 、 $\overrightarrow{b} = \overrightarrow{BC}$,試以 \overrightarrow{a} 、 \overrightarrow{b} 表示 \overrightarrow{CD} ,則 $\overrightarrow{CD} = \overrightarrow{DC}$ **49.** (

- $(A)\overrightarrow{a} + \overrightarrow{b}$ $(B)\overrightarrow{a} \overrightarrow{b}$ $(C) \overrightarrow{a} \overrightarrow{b}$ $(D) \overrightarrow{a} + \overrightarrow{b}$
- **50.** ($\overrightarrow{AD} = \overrightarrow{b}$, 若 $\overrightarrow{MN} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$, 數對 (α, β) 為

 $(A)\left(\frac{2}{3}, -\frac{1}{2}\right) \quad (B)\left(-\frac{2}{3}, \frac{1}{2}\right) \quad (C)\left(-\frac{1}{2}, \frac{2}{3}\right) \quad (D)\left(\frac{1}{2}, -\frac{2}{3}\right)$

- 51. ()平面上有 $A \times B \times C$ 三點,已知由 $A \cong B$ 的向量 $\overrightarrow{AB} = (-4,3)$,由 $B \cong C$ 的向量 $\overrightarrow{BC} = (9,9)$, 試求以 $A \times B \times C$ 為頂點之 $\triangle ABC$ 的周長為 (A) $5+9\sqrt{2}+4\sqrt{3}$ (B) $15+9\sqrt{2}$ (C) $2+\sqrt{2}$ (D) $18+9\sqrt{2}$
- 52. () 已知向量 $\overrightarrow{a} = (1,2)$ 與向量 $\overrightarrow{b} = (2,3)$,若 $3\overrightarrow{a} 2\overrightarrow{b} = (r,s)$,則s 2r = (A) 2 (B) -1 (C) 2 (D) 3
- 53. () 若向量 $\overrightarrow{a} = (x, y)$ 與向量 $\overrightarrow{b} = (-5,12)$ 的方向相反,且 $|\overrightarrow{a}| = 52$,則x + y = (A) 68 (B) -28 (C) 28 (D) 68
- **54.** () 設平面上三點 A(x,y) 、B(-1,4) 及 C(9,-1) 。若向量 $\overrightarrow{AD} = \frac{2}{5} \overrightarrow{AB} + \frac{3}{5} \overrightarrow{AC}$,則 D 點坐標為何? (A)(1,5) (B)(3,2) (C)(5,1) (D)(2,3)
- 55. () 設兩向量 $\vec{a} = (x-1,1)$ 、 $\vec{b} = (x+2,2)$ 。若滿足內積 $\vec{a} \cdot \vec{b} = 6$ 之x有兩解 α 、 β ,則 $\alpha + \beta = (A)-1$ (B)0 (C)1 (D)2
- **56.** ()已知 $\left|\overrightarrow{AB}\right| = 4 \cdot \left|\overrightarrow{AC}\right| = 3 \cdot$ 又 \overrightarrow{AB} 與 \overrightarrow{AC} 的夾角為 $\frac{\pi}{3}$,則 $\left|\overrightarrow{AB} + 2\overrightarrow{AC}\right|$ 之值為何? (A) $\sqrt{52}$ (B) $\sqrt{76}$ (C) $\sqrt{52 + 24\sqrt{3}}$ (D)10
- 57. () 若兩向量 $\overrightarrow{a} = (1,3)$ 、 $\overrightarrow{b} = \left(2,2-\frac{x}{3}\right)$ 互相垂直,則x = (A)5 (B)6 (C)7 (D)8
- 58. () 設 $\overrightarrow{a} = (\cos 60^{\circ}, \sin 30^{\circ})$ 、 $\overrightarrow{b} = (\tan 315^{\circ}, \cos 120^{\circ})$,則 $\overrightarrow{a} + \overrightarrow{b} = (A)(-\frac{1}{2},1)$ (B) $(-\frac{1}{2},0)$ (C) $(\frac{3}{2},2)$ (D) $(\frac{3}{2},-1)$
- **59.** ()若 \overrightarrow{a} = (-2,5)、 \overrightarrow{b} = (x,6),且 \overrightarrow{a} // \overrightarrow{b} ,則 (A)x 為偶數 (B)x 為 3 的倍數 (C)x 為 5 的倍數 (D)x < 0
- 60. ()已知 \overrightarrow{i} = (1,0), \overrightarrow{j} = (0,1)為平面上兩個單位向量。設 \overrightarrow{a} = 3 \overrightarrow{i} + 4 \overrightarrow{j} , \overrightarrow{b} = -2 \overrightarrow{i} + 3 \overrightarrow{j} ,若 \overrightarrow{c} = 2 \overrightarrow{a} + 3 \overrightarrow{b} ,则 \overrightarrow{c} = (A)17 \overrightarrow{j} (B)8 \overrightarrow{i} (C)6 \overrightarrow{i} + 3 \overrightarrow{j} (D)-2 \overrightarrow{i} + 3 \overrightarrow{j}
- 61. () 若兩向量 $\overrightarrow{a} = (3,4)$ 與 $\overrightarrow{b} = (2,1-\frac{x}{2})$ 相互垂直,則 x 之值為 (A) -1 (B)2 (C)5 (D) -2
- **62.** () 設 \overrightarrow{a} 與 \overrightarrow{b} 為平面上的兩向量,若 $|\overrightarrow{a}| = 2$ 、 $|\overrightarrow{b}| = 3$,且 $|\overrightarrow{a}| \cdot |\overrightarrow{b}| = 3$,則 $|\overrightarrow{a}| |\overrightarrow{b}| = (A)\sqrt{7}$ (B) $\sqrt{6}$ (C) $\sqrt{5}$ (D) $2\sqrt{2}$
- 63. ()已知 $\overrightarrow{A} = (-2,a)$, $\overrightarrow{B} = (b,3)$, $\overrightarrow{C} = (5,-4)$, 若 $\overrightarrow{A}//\overrightarrow{C}$ 且 $\overrightarrow{B} \perp \overrightarrow{C}$, 則 a+b 之值為 (A)2 (B)4 (C)6 (D)8
- **64.** () 若 $_{a}$ = (2,2)、 $_{b}$ = (3,0),則 $_{a}$ 與 $_{b}$ 的夾角 $_{\theta}$ = (A)30° (B)45° (C)60° (D)150°
- **65.** () 設| \overrightarrow{a} | = $\sqrt{3}$ \times | \overrightarrow{b} | = 2 \times \cancel{a} \times \cancel{b} 之夾角為 $\frac{\pi}{6}$ $\xrightarrow{6}$ $\xrightarrow{6}$ | 之值為 (A)7 (B)79 (C) $\sqrt{7}$ (D) $\sqrt{79}$
- **66.** () 如圖所示,有 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 三個向量,下列何者錯誤?

(A)
$$\overrightarrow{a} = -\frac{2}{3}\overrightarrow{c}$$
 (B) $\overrightarrow{b} = \frac{1}{2}\overrightarrow{a}$ (C) $\overrightarrow{c} = -3\overrightarrow{b}$ (D) $\overrightarrow{a} = -2\overrightarrow{b}$

- 67. ()已知坐標平面上三點 A(1,a) 、 B(2,3) 、 C(5,1) ,若向量內積 \overrightarrow{AB} . \overrightarrow{BC} 的值為 1 ,則 a=(A)-3 (B) -1 (C) 1 (D) 2
- 68. () 若 $|\overrightarrow{a}| = 1 \cdot |\overrightarrow{b}| = 2 且 \overrightarrow{a}$ 垂直 \overrightarrow{b} ,則 $|\overrightarrow{a} 2\overrightarrow{b}| =$ (A)17 (B) $\sqrt{17}$ (C)3 (D) $\sqrt{7}$
- 69. ()如圖,若 ABCDEF 為正六邊形,則下列哪一個向量的長度最長?

(A)
$$\overrightarrow{AB} + \overrightarrow{BC}$$
 (B) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$ (C) $\overrightarrow{AB} + \overrightarrow{AF}$ (D) $\overrightarrow{AC} - \overrightarrow{AE}$

- 70. () $\stackrel{\text{#}}{\overline{AB}} = \overrightarrow{a} \overrightarrow{c}$ $\stackrel{\text{$\overrightarrow{BC}}}{\overline{BC}} = 2\overrightarrow{a} \overrightarrow{b}$ $\stackrel{\text{$\overrightarrow{CD}}}{\overline{CD}} = -\overrightarrow{b} + \overrightarrow{c}$ $\stackrel{\text{$\overrightarrow{DE}}}{\overline{DE}} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ $\stackrel{\text{$\overrightarrow{NI}}}{\overline{EA}} = (A) 3\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}$ (B) $\overrightarrow{a} + 2\overrightarrow{c}$ (C) $2\overrightarrow{a} \overrightarrow{b} 3\overrightarrow{c}$ (D) $-4\overrightarrow{a} + \overrightarrow{b} \overrightarrow{c}$
- 71. () $\exists \exists \overrightarrow{a} = (5, -3)$ $\Rightarrow \overrightarrow{b} = (7,1)$ $\Rightarrow \exists \overrightarrow{a} = (3, -3)$ $\Rightarrow (A)(-11, -9)$ (B)(9,11) (C)(-2, -4) (D)(12, -2)
- 72. () 設 $A(3,2) \cdot B(-1,3) \cdot C(4,6) \cdot D(-3,-5)$, 則 $|\overrightarrow{AB} \overrightarrow{CD}| =$ (A) $3\sqrt{17}$ (B) $3\sqrt{15}$ (C) $5\sqrt{13}$ (D) $5\sqrt{17}$
- 73. () A(1,x+1)、B(y-2,-7)、C(2,8)為平面上三點,若 $_{3}\overrightarrow{AB} = -2\overrightarrow{BC}$,則 $_{x+y}$ 之值為 (A)1 (B)2 (C)3 (D)4
- 74. () 若平行四邊形中,其中三頂點坐標為(0,3)、(4,2)、(2,6),則下列何者**不可能**為第四個頂點? (A)(-2,7) (B)(6,5) (C)(2,-1) (D)(6,8)
- 75. () 若 \overrightarrow{a} = (-2,5)、 \overrightarrow{b} = (x,6),且 \overrightarrow{a} \bot \overrightarrow{b} ,則 (A)x < 0 (B)x 為偶數 (C)x 為 3 的倍數 (D)x 為 7 的倍數
- 76. () 設| \overrightarrow{a} |=3 \ | \overrightarrow{b} |=2 \ \overrightarrow{a} · \overrightarrow{b} =5 \ , 則 \overrightarrow{a} -2 \overrightarrow{b} 的長度 = (A) $\sqrt{5}$ (B)1 (C) -1 (D)5
- 77. () 如圖,在平行四邊形 ABCD 中,以 $A \times B \times C \times D$ 為向量的起點或終點,則 $\overrightarrow{AB} + \overrightarrow{BC} =$

(A) \overrightarrow{DB} (B) \overrightarrow{BD} (C) \overrightarrow{AC} (D) \overrightarrow{BC}

78. () 平行四邊形 ABCD 中,下列敘述何者不正確? (A) $\overrightarrow{AD} = \overrightarrow{BC}$ (B) $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$ (C) $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (D) $\overrightarrow{AB} - \overrightarrow{CB} = \overrightarrow{CA}$

79. () 如圖,ABCDEF 為正六邊形,設 $\overrightarrow{AB} = \overrightarrow{a}$ 、 $\overrightarrow{BC} = \overrightarrow{b}$,下列敘述何者**不正確**?

- (A) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}$ (B) $\overrightarrow{AF} = \overrightarrow{b} \overrightarrow{a}$ (C) $\overrightarrow{AD} = 3\overrightarrow{b}$ (D) $\overrightarrow{EF} = -\overrightarrow{b}$
- **80.** () \overrightarrow{AB} 、 \overrightarrow{BC} 、 \overrightarrow{CD} 、 \overrightarrow{DA} 、 \overrightarrow{AC} 、 \overrightarrow{BD} 向量圖示如圖,下列關係何者錯誤?

 $(A) \overrightarrow{CD} + \overrightarrow{DA} = -\overrightarrow{AC} \qquad (B) \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{AD} = \overrightarrow{0} \qquad (C) \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \qquad (D)$ $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AB} + 2\overrightarrow{BC} + \overrightarrow{CD}$

- 81. () 如圖所示, $C \times D \times E$ 分別為 \overline{AB} 的等分點,試以向量 \overline{AB} 表示 \overline{AD} ,則 $\overline{AD} = AD \times D \times \overline{AD}$ (A) \overline{AB} (B) \overline{AB} (C) \overline{AB} (D) \overline{AB} (D) \overline{AB}
- **82.** ()如圖所示, $\triangle ABC$ 中,D為 \overline{AC} 的中點,E、F為 \overline{AB} 的三等分點, \Diamond $\overline{AD} = \overrightarrow{a}$ 、 $\overline{AE} = \overrightarrow{b}$, 試以 \overrightarrow{a} 與 \overrightarrow{b} 表示 \overline{FC} ,則 \overline{FC} =

- $(A)_{-2}\overrightarrow{a}_{+2}\overrightarrow{b}$ $(B)_{2}\overrightarrow{a}_{-2}\overrightarrow{b}$ $(C)_{2}\overrightarrow{a}_{+2}\overrightarrow{b}$ $(D)_{2}\overrightarrow{a}_{-}\overrightarrow{b}$
- 83. () 如圖所示,正六邊形 ABCDEF 中,設 $\overrightarrow{AB} = \overrightarrow{p}$ 、 $\overrightarrow{BC} = \overrightarrow{q}$,試以 \overrightarrow{p} 與 \overrightarrow{q} 表示 \overrightarrow{BE} ,則 $\overrightarrow{BE} = \overrightarrow{p}$

 $(A) 2 \left(\overrightarrow{q} - \overrightarrow{p} \right) \quad (B) - 2 \left(\overrightarrow{q} - \overrightarrow{p} \right) \quad (C) 2 \left(\overrightarrow{q} + \overrightarrow{p} \right) \quad (D) - 2 \left(\overrightarrow{p} + \overrightarrow{q} \right)$

- **84.** () 已知平面上五個點 $A\left(\frac{1}{3},\frac{-1}{4}\right)$ 、 $B\left(\frac{51}{13},\frac{1}{4}\right)$ 、 $C\left(\frac{571}{13},\frac{69}{7}\right)$ 、 $D\left(\frac{-51}{16},\frac{69}{17}\right)$ 、 $E\left(\frac{-23}{4},\frac{-10}{3}\right)$,若向量相加 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = (m,n)$,求m-n之值。 (A) -3 (B) -1 (C) 1 (D) 3
- **85.** () 設平面上兩向量 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 θ ,若 $\cos\theta = \frac{33}{65}$,且 $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 13$,則

$$(4\overrightarrow{a} - \overrightarrow{b}) \cdot (2\overrightarrow{a} + \overrightarrow{b}) =$$

$$(A) -39 \quad (B) 93 \quad (C) 97 \quad (D) 435$$

- 86. () 設平面二向量 $\overrightarrow{u} = (2\cos\theta, \sin\theta)$ 、 $\overrightarrow{v} = (\sin\theta, 2\cos\theta)$ 且其內積 \overrightarrow{u} . $\overrightarrow{v} = 1$,若 $0 \le \theta \le \frac{\pi}{2}$,則 θ 之值可能為何? (A) $\frac{\pi}{12}$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$
- 87. ()在 $\triangle ABC$ 中,向量 $\overrightarrow{AB} = (\sqrt{3},1)$ 、 $\overrightarrow{AC} = (0,2)$,則 $\triangle ABC$ 之周長為何? (A) $4+\sqrt{2}$ (B) 6 (C) $4+2\sqrt{2}$ (D) $4+2\sqrt{3}$
- 88. () 已知兩向量 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 $\frac{\pi}{3}$ 且 $|\overrightarrow{a}| = 5$ 、 $|\overrightarrow{b}| = 4$,則 $|\overrightarrow{a}| = 2$ $|\overrightarrow{b}|$ 之值為何? (A) $\sqrt{31}$ (B) 7 (C) 8 (D) $\sqrt{41}$
- 89. () 若有一四邊形 ABCD 如圖所示,則下列何者錯誤?

(A)
$$\overrightarrow{CD} + \overrightarrow{DA} = -\overrightarrow{AC}$$
 (B) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{AD} = \overrightarrow{0}$ (C) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ (D) $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AB} + 2\overrightarrow{BC} + \overrightarrow{CD}$

90. () 如圖,方格紙上 \overrightarrow{PO} + \overrightarrow{QO} =

(A) \overrightarrow{OA} (B) \overrightarrow{OB} (C) \overrightarrow{OC} (D) \overrightarrow{OD}

- 91. () 設 A(-1,7)、B(3,4)為平面上兩點,則 $2\overrightarrow{AB} =$ (A)(6,7) (B)(-2,6) (C)(-4,-6) (D)(8,-6)
- 92. () 設 A(-1,5)、 $\overrightarrow{AB} = (7,-9)$,則 B 點坐標為 (A)(7,-9) (B)(-1,5) (C)(-8,4) (D)(6,-4)
- 93. () 設與 \overrightarrow{AB} 同方向的單位向量為 $(-\frac{3}{5}, \frac{4}{5})$ 且 $|\overrightarrow{AB}| = 5$,已知 A(2,0),則 B 點坐標為 (A)(-3,4) (B)($-\frac{1}{5}, \frac{4}{5}$) (C)(1,-4) (D)(-1,4)
- 94. ()設 $A(-3,2) \setminus B(2,5) \setminus C(-1,-2)$ 為坐標平面上三點,已知 $\overrightarrow{AB} = \overrightarrow{CD}$,則 D 點的坐標為 (A)(1,4) (B)(0,9) (C)(0,5) (D)(4,1)
- 95. ()設 A(1,-3)與 B(2,-2)為平面上兩點,若一向量 \overrightarrow{a} 與 \overrightarrow{AB} 的方向相反,且 \overrightarrow{a} |=1,則 \overrightarrow{a} = (A)(1,1) (B)(-1,-1) (C)($\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}$) (D)($-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$)
- 96. () 若 $|\overrightarrow{a}| = 4$ \ $|\overrightarrow{b}| = 3$, $|\overrightarrow{a}| \oplus |\overrightarrow{b}|$ 方向相反,則 $|\overrightarrow{a}| + |\overrightarrow{b}| = 3$

(A)12 (B) - 12 (C)0 (D)6

- 97. ()已知向量 $\overrightarrow{a} = (4, -2)$ 、 $\overrightarrow{b} = (9,3)$,則 \overrightarrow{a} 與 \overrightarrow{b} 的夾角 θ 等於 $(A)\frac{\pi}{6}$ $(B)\frac{\pi}{4}$ $(C)\frac{\pi}{3}$ (D) $\frac{3\pi}{4}$
- **98.** () 已知 \overrightarrow{AC} = (6,8)、 \overrightarrow{BC} = (4,6),則△ \overrightarrow{ABC} 面積為 (A)1 (B)2 (C) $\frac{5}{2}$ (D) $\frac{7}{2}$
- 99. ()已知 A(3,1) 、 B(2,-3) 、 C(7,-1) 及 D(x,y) 為坐標平面上的四個點。若 $\overrightarrow{AB} + 2\overrightarrow{AC} = \overrightarrow{CD}$,則 x+y=? (A) -8 (B) -4 (C) 5 (D) 6
- **100.** () 已知 $|\overrightarrow{a}| = |\overrightarrow{a} + \overrightarrow{b}| = 10$ 、 $|\overrightarrow{b}| = 5$ 。若 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 θ ,則 $\sin \theta = ?$ (A) $-\frac{1}{4}$ (B) $-\frac{\sqrt{15}}{4}$ (C) $\frac{1}{4}$ (D) $\frac{\sqrt{15}}{4}$