Exercise: Vector Space Model¹

Consider a collection made of the 4 following documents (one document per line)

dl. John gives a book to Mary

d2. John who reads a book loves Mary

d3. who does John think Mary love?

d4. John thinks a book is a good gift

Question 1

These documents are pre-processed using a stop-list and a stemmer. The resulting index is built to allow to apply vector-based queries. Give a (graphical or textual) representation of this index.

term t	N/df_t	\rightarrow	$d1:tf_{t,d_1}$	$d2:tf_{t,d_2}$	$d3:tf_{t,d_3}$	$d4:tf_{t,d_4}$
book	4/3	-	d1 :1	d2 :1	d4 :1	
gift	4/1	-	d4 :1	Mr.		
give	4/1	\rightarrow	d1 :1	-		
good	4/1	\rightarrow	d4:1			
John	4/4	\rightarrow	d1 :1	d2 :1	d3 :1	d4:1
love	4/2	→	d2:1	d3 :1		
Mary	4/3	\rightarrow	d1 :1	d2 :1	d3 :1	
read	4/1	\rightarrow	d2 :1			
think	4/2	\rightarrow	d3 :1	d4 :1		

Question 2

We now focus on 3 terms belonging to the dictionary, namely book, love and Mary. Compute the tf – idf-based vector representation for the 4 documents in the collection (these vectors are normalized using the euclidian normalization).

$$\frac{dI}{dI} = \begin{cases}
(book) & \frac{1*\log(4/3)}{DI} \\
(love) & 0 \\
(Mary) & \frac{1*\log(4/3)}{DI}
\end{cases}$$

$$\frac{dJ}{dJ} = \begin{cases}
(book) & 0 \\
(love) & \frac{1*\log(4/2)}{DJ} \\
(Mary) & \frac{1*\log(4/3)}{DJ}
\end{cases}$$

¹ From http://www.sfs.uni-tuebingen.de/~parmenti/doc/final.pdf

$$\vec{d2} = \begin{cases}
(book) & \frac{1*\log(4/3)}{D2} \\
(love) & \frac{1*\log(4/2)}{D2} \\
(Mary) & \frac{1*\log(4/3)}{D2}
\end{cases}$$

$$\overrightarrow{d4} = \begin{cases}
(book) & \frac{1 * \log(4/3)}{D4} \\
(love) & 0 \\
(Mary) & 0
\end{cases}$$

Where $D1 = \sqrt{(\log(4/3)^2 + 0 + \log(4/3)^2)} = 0.4068 = 0.1766$ This is log to the D2 = $\sqrt{(\log(4/3)^2 + \log(4/2)^2 + \log(4/3)^2)} = 0.8037 = 0.8037 = 0.3 = \sqrt{(0 + \log(4/2)^2 + 0 + \log(4/3)^2)} = 0.7505$ D4 = $\sqrt{(\log(4/3)^2 + 0 + 0)} = 0.2877$

Question 3

Consider the query "love Mary". Give the results of a ranked retrieval for this query. What document is considered to be the most relevant?

$$\vec{q} = \begin{cases} (book) & 0\\ (love) & 1\\ (Mary) & 1 \end{cases}$$

Ranking:

1.
$$s(\vec{q}, \vec{d3}) = 0 + \log \frac{(2)}{D3} + \log \frac{(4/3)}{D3} = 1.3069$$

2.
$$s(\vec{q}, \vec{d2}) = 0 + \log \frac{(2)}{D^2} + \log \frac{(4/3)}{D^2} = 1.2204$$

3.
$$s(\vec{q}, \vec{dI}) = 0 + 0 + \log \frac{(4/3)}{DI} = 0.7071$$

4.
$$s(\vec{q}, \vec{d4}) = 0 + 0 + 0 = 0$$

0.0,56096810