Подготовил :КОНЕ Сирики НФИБд-01-20

Операционные системы: Доклад

Методы криптования на основе открытого ключа(Шифрование с открытым ключом)

Содержание

- Симметричный шифр
- Ассиметричный шифр
- Виды ассиметричных шифров
- Пример
- Заключение
- Список литературы

Симметричный шифр

<u>Симметричный шифр</u> – метод передачи шифрованной информации, в котором зашифровывающий и расшифровывающий ключи совпадают.

Стороны, обменивающиеся зашифрованными данными, должны знать общий секретный ключ.

Симметричный шифр

Симметричный шифр

Достоинства:

Всего один зашифровывающий / расшифровывающий ключ

Недостатки:

Процесс обмена информацией о секретном ключе представляет собой брешь в безопасности.

Для передачи секретного ключа необходим закрытый канал связи.

Ассиметричный шифр

<u>Ассимметричный шифр</u> – метод передачи шифрованной информации, в котором зашифровывающий и расшифровывающий ключи не совпадают.

Ассиметричное шифрование является односторонним процессом.

Данные шифруются только открытым ключом

Расшифровываются только секретным

Открытый и секретный ключ связаны между собой.

Ассиметричный шифр

Ассиметричный шифр

Достоинства:

Для передачи ключа не нужен закрытый канал связи.

Открытый ключ может быть свободно распространен, это позволяет принимать данные от всех пользователей.

Недостатки:

Ресурсоемкий алгоритм шифрования / дешифрирования

Виды ассиметричных шифров

RSA

Rivest-Shamir-Adleman (Ривест-Шамир-Адлеман)

DSA

Digital Signature Algorithm (Алгоритм цифровой подписи)

EGSA

El-Gamal Signature Algorithm (Алгоритм ЭЦП Эль-Гамаля)

ECC

Elliptic Curve Cryptography (Криптография эллиптической кривой)

ГОСТ Р 34.10-94

Российский стандарт схожий с DSA

ΓΟCT P 34.10-2001

Российский стандарт схожий с ЕСС

Пример шифрование RSA

Шифрование

Формула для шифрования:

$$b_i = a_i^e \pmod{n}$$

Возьмем к примеру сообщение

$$b_i = a_i^e \pmod{n}$$

Запишем его кодом в соответствии с алфавитом

$$a = \{3,18,25,16,20,15\}$$

Результат:

$$b = \{27, 24, 16, 4, 14, 9\}$$

Пример:

$$27 = 3^3 \pmod{33}$$
 $4 = 16^3 \pmod{33}$
 $24 = 18^3 \pmod{33}$ $14 = 20^3 \pmod{33}$
 $16 = 25^3 \pmod{33}$ $9 = 15^3 \pmod{33}$

Пример дешифрование

Дешифрирование

Формула для дешифрирования

$$a_i = b_i^d \pmod{n}$$

Шифрованное сообщение

$$b = \{27, 24, 16, 4, 14, 9\}$$

Результат:

$$a = \{3,18,25,16,20,15\}$$

В соответствии с алфавитом:

$$a = \{C, R, Y, P, T, O\}$$

Пример:

$$25 = 16^7 + 8134407 \cdot 33$$

 $3 = 27^7 \pmod{33}$ $16 = 4^7 \pmod{33}$
 $18 = 24^7 \pmod{33}$ $20 = 14^7 \pmod{33}$
 $25 = 16^7 \pmod{33}$ $15 = 9^7 \pmod{33}$

Заключение

Как симметричное, так и асимметричное шифрование играет важную роль в обеспечении безопасности конфиденциальной информации и коммуникации в современном цифровом мире. Оба шифра могут быть полезны, ведь у каждого из них есть свои преимущества и недостатки, поэтому они применяются в разных случаях.

Поскольку криптография как наука продолжает развиваться для защиты от более новых и более серьезных угроз, симметричные и асимметричные криптографические системы всегда будут иметь отношение к компьютерной безопасности.

Список литературы

Венбо Мао Современная криптография. Теория и практика. — М.: Вильямс, 2005. — 768 с.

Коутинхо С. Введение в теорию чисел. Алгоритм RSA. — М.: Постмаркет, 2001. - 328 стр.

Фергюсон Н., Шнайер Б. Практическая криптография — М.: «Диалектика», $2004.-432~\mathrm{c}.$

Википедия [Электронный ресурс] – Режим доступа: http://ru.wikipedia.org