PREDICTING FOOTBALL PLAYER MARKET VALUE

Introduction & Problem

Predicting football player transfer values is complex and dynamic Influenced by many factors — performance, injuries, market trends, public sentiment

Traditional methods are subjective and inconsistent

Need for a datadriven, Al-based approach to improve reliability

Project Objective

- Build an Al-driven system that integrates multiple data sources
- Apply machine learning and time-series forecasting (LSTM)
- Generate accurate, adaptive, and real-time transfer value predictions

Demo of this Project

https://drive.google.com/file/d/1bVqezHO FYbP53khLyly3_2tdeACpusU0/view?usp=dri ve_link

Step-by-Step Approach

Raw Data

Unprocessed player statistics

Data Cleaning

Handling missing values and duplicates

Feature Engineering

Creating new performance metrics

Model Building

Developing LSTM and ensemble models

Hyperparameter Tuning

Optimizing model parameters

Deployed Model

Interactive transfer value predictions

Data Collection & Preprocessing

► Sources Used:

- ► Kaggle—Player performance stats
- ► Kaggle— Transfer history & market values
- ▼ Twitter (X) Sentiment data via API
- ▶ Open Sports Databases Injury data

Preprocessing Steps:

- Removed duplicates & handled missing values
- Standardized player IDs
- Feature scaling & one-hot engoding

Feature Engineering:

- · Performance Metrics: Goals per match, assists per match, minutes per game
- Injury Metrics: Days missed due to injury, number of injuries, significant injury flags
- **Sentiment Metrics:** Compound score & polarity (mean, min, max, std) from social media
- Cumulative Stats: Total goals, total assists, games played per season
- Player Attributes: Age, BMI, market value trends
- Transfer History: Total past transfers, previous clubs

LSTM Model Development

Univariate LSTM (Target-only Model)

- Uses only player's past transfer values as input
- Built with 1 LSTM layer (64 units) + Dense output layer
- Predicts next-step transfer value
- Early stopping & model checkpoint used for optimal training
- Trained for 20 **epochs** with mean squared error (MSE) loss

Multivariate LSTM (All Features Model)

- Includes performance, injury, and sentiment features
- LSTM layer with 128 units captures multivariate time dependencies
- Output layer: predicts single-step or multi-step values
- Same call back (early stopping, checkpoints) used
- Trained for 20 epochs with MSE loss and MAE metric

Result

Multivariate LSTM — Val MAE: 0.2835, RMSE: 0.9856, MAPE: 899474963.39%

MAE (Mean Absolute Error): - 0.2835

RMSE (Root Mean Squared Error):- 0.9856

Ensemble Model Integration

Tree-Based Models

- XG Boost: 500 estimators, learning rate 0.05, max depth 6
- Light GBM: 500 estimators, learning rate 0.05, 31 leaves
- Trained on flattened feature sequences for tree-based regression

Stacking Ensemble

- Combines XG Boost + Light GBM predictions/
- Final estimator: Linear Regression
- Pass-through enabled → uses original features along with predictions
- Trained to improve overall prediction accuracy

Validation Performance of All Models

Model	MAE	RMSE	MAPE
Univariate LSTM	0.2835	0.9856	~8.99×10 ⁸ %
Multivariate LSTM	0.2835	0.9856	~8.99×10 ⁸ %
XG Boost	0.0367	0.4247	~1.28×10 ¹⁰ %
Light GBM	0.0396	0.5231	~1.28×10 ¹⁰ %
Stacking Ensemble	0.0368	0.5247	~1.28×10 ¹⁰ %

Hyperparameter Tuning

Objective:

- Optimize LSTM architecture for better transfer value predictions
- Approach (Keras Tuner Random Search):
- Layer Units: Tested $32 \rightarrow 64 \rightarrow 96 \rightarrow 128$ LSTM units
- **Learning Rate:** Tried 0.01, 0.001, 0.0001
- Validation: 20% split of training data
- **Epochs:** 5 per trial, 4 trials total

Outcome:

- Best model selected automatically by lowest validation loss
- Tuned LSTM ready for final training and evaluation

Technology Used

Programming & Libraries:

- **Python** main programming language
- Pandas, NumPy data processing & manipulation
- Scikit-learn preprocessing, tree-based models, evaluation
- TensorFlow & Keras LSTM modeling
- Keras Tuner hyperparameter tuning
- XG Boost & Light GBM ensemble models
- VADER / NLTK sentiment analysis

Visualization & Deployment:

- Matplotlib, Seaborn, Plotty charts & trend visualization
- Streamlit interactive web app

Thank you