HOL: Propositional Logic

Overview

- Natural deduction
- Rule application in Isabelle/HOL

Rule notation

$$\frac{A_1 \dots A_n}{A}$$
 instead of $[\![A_1 \dots A_n]\!] \Longrightarrow A$

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator ⊕:

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove $A \oplus B$?

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove $A \oplus B$?

Elimination: what can I prove from $A \oplus B$?

A∧B conjI	conjE
disjI1/2	————disjE
impI	impE
iffI	——— iffD1 ——— iffD2
notI	—— notE

$\frac{A}{A \wedge B}$ conjI	conjE
——— disjI1/2	———disjE
impI	impE
iffI	——— iffD1 ——— iffD2
notI	—— notE

$$rac{A}{A \wedge B} \operatorname{ConjI}$$
 — conjE — disjE — impI — iffD1 — iffD2 — notI — notE

$$rac{A \quad B}{A \wedge B} \, ext{conjI}$$
 — — — conjE — disjE — impE — iffI — iffD1 — iffD2 — notI — notE

$$rac{A \quad B}{A \wedge B} \, ext{conjI}$$
 — conjE — disjE $rac{A}{A \vee B} \, rac{B}{A \vee B} \, ext{disjI1/2}$ — impE — iffI — iffD1 — iffD2 — notI — notE

$$\frac{A \quad B}{A \land B} \text{conjI} \qquad \qquad \qquad \text{conjE}$$

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{disjI1/2} \qquad \qquad \qquad \text{disjE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{impI} \qquad \qquad \qquad \text{impE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{iffI} \qquad \qquad \text{iffD1} \qquad \qquad \text{iffD2}$$

$$\frac{A \Longrightarrow B}{A = B} \text{notI} \qquad \qquad \text{notE}$$

$$\frac{A \quad B}{A \land B} \text{conjI} \qquad \frac{A \land B}{C} \qquad \text{conjE}$$

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{disjI1/2} \qquad \text{disjE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{impI} \qquad \text{impE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{iffI} \qquad \text{iffD1} \qquad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{notI} \qquad \text{notE}$$

$$\frac{A \quad B}{A \land B} \text{conjI} \qquad \frac{A \land B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{conjE}$$

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{disjI1/2} \qquad \text{disjE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{impI} \qquad \text{impE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{iffI} \qquad \text{iffD1} \qquad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{notI} \qquad \text{notE}$$

$$\begin{array}{lll} \frac{A & B}{A \wedge B} \operatorname{conjI} & \frac{A \wedge B & \llbracket A;B \rrbracket \Longrightarrow C}{C} \operatorname{conjE} \\ & \frac{A}{A \vee B} \frac{B}{A \vee B} \operatorname{disjI1/2} & \frac{A \vee B}{C} & \operatorname{disjE} \\ & \frac{A \Longrightarrow B}{A \longrightarrow B} \operatorname{impI} & \cdots & \operatorname{impE} \\ & \frac{A \Longrightarrow B & B \Longrightarrow A}{A = B} \operatorname{iffI} & \cdots & \operatorname{iffD1} & \cdots & \operatorname{iffD2} \\ & \frac{A \Longrightarrow False}{\neg A} \operatorname{notI} & \cdots & \operatorname{notE} \end{array}$$

$$\frac{A \quad B}{A \land B} \text{ conjI} \qquad \frac{A \land B \quad \llbracket A;B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{ disjI1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \longrightarrow B} \text{ impI} \qquad \qquad \text{impE}$$

$$\frac{A \implies B \quad B \implies A}{A = B} \text{ iffI} \qquad \qquad \text{iffD1} \qquad \text{iffD2}$$

$$\frac{A \implies False}{\neg A} \text{ notI} \qquad \qquad \text{notE}$$

$$\frac{A \quad B}{A \land B} \text{conjI} \qquad \frac{A \land B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{conjE}$$

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{disjI1/2} \qquad \frac{A \lor B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text{disjE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{impI} \qquad \frac{A \longrightarrow B}{C} \text{impE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{iffI} \qquad ---- \text{iffD1} \qquad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{notI} \qquad ---- \text{notE}$$

$$\begin{array}{lll} \frac{A & B}{A \wedge B} \text{ conjI} & \frac{A \wedge B & \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE} \\ & \frac{A}{A \vee B} \frac{B}{A \vee B} \text{ disjI1/2} & \frac{A \vee B & A \Longrightarrow C}{C} \text{ B} \Longrightarrow C \text{ disjE} \\ & \frac{A \Longrightarrow B}{A \longrightarrow B} \text{ impI} & \frac{A \longrightarrow B & A & B \Longrightarrow C}{C} \text{ impE} \\ & \frac{A \Longrightarrow B & B \Longrightarrow A}{A = B} \text{ iffI} & ---- & \text{iffD1} & ---- & \text{iffD2} \\ & \frac{A \Longrightarrow False}{\neg A} \text{ notI} & ---- & \text{notE} \end{array}$$

$$\begin{array}{ll} \frac{A \quad B}{A \land B} \text{ conjI} & \frac{A \land B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE} \\ \\ \frac{A}{A \lor B} \frac{B}{A \lor B} \text{ disjI1/2} & \frac{A \lor B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text{ disjE} \\ \\ \frac{A \Longrightarrow B}{A \longrightarrow B} \text{ impI} & \frac{A \longrightarrow B \quad A \quad B \Longrightarrow C}{C} \text{ impE} \\ \\ \frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI} & \frac{A=B}{A = B} \text{ iffD1} & \frac{A=B}{A \Longrightarrow B} \text{ iffD2} \\ \\ \frac{A \Longrightarrow False}{\neg A} \text{ notI} & \cdots \text{ notE} \end{array}$$

$$\frac{A \quad B}{A \land B}$$
 conjI

$$rac{A \wedge B \quad \llbracket A;B
rbracket}{C} \Longrightarrow C$$
 conjE

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{disjI}_{1/2}$$

$$\dfrac{A \lor B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C}$$
 disjE

$$\frac{A \Longrightarrow B}{A \longrightarrow B}$$
 impl

$$A \longrightarrow B \quad A \quad B \Longrightarrow C$$
 impE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI}$$

$$A \Longrightarrow B$$
 iffD1 $A \Longrightarrow A$ iffD2

$$\frac{A \Longrightarrow \textit{False}}{\neg A}$$
 notI

$$\frac{A}{A \wedge B}$$
 conjI

$$\frac{A \wedge B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE}$$

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{disji1/2}$$

$$\dfrac{A \lor B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C}$$
 disjE

$$\frac{A \Longrightarrow B}{A \longrightarrow B}$$
 impl

$$A \longrightarrow B \quad A \quad B \Longrightarrow C$$
 impE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI}$$

$$A \Longrightarrow B$$
 iffD1 $A \Longrightarrow A$ iffD2

$$\frac{A \Longrightarrow \textit{False}}{\neg A}$$
 notI

$$\frac{\neg A}{C}$$
 not E

$$\frac{A}{A} \stackrel{B}{\wedge} B$$
 conji

$$rac{A \wedge B \quad \llbracket A;B
rbracket}{C} \longrightarrow C$$
 conjE

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{disji1/2}$$

$$\dfrac{A \lor B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C}$$
 disjE

$$\frac{A \Longrightarrow B}{A \longrightarrow B}$$
 impl

$$A \longrightarrow B \quad A \quad B \Longrightarrow C$$
 impE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI}$$

$$A \Longrightarrow B$$
 iffD1 $A \Longrightarrow A$ iffD2

$$\frac{A \Longrightarrow \textit{False}}{\neg A}$$
 notI

$$\frac{\neg A \quad A}{C}$$
 notE

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule

If I know A_1 and want to prove A it suffices to prove $A_2 \dots A_n$.

Equality

$$\frac{s=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s}{r=t} \frac{s=t}{t=s} \text{ trans}$$

Equality

$$\frac{s=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s \quad s=t}{r=t} \text{ trans}$$

$$\frac{s=t \quad A(s)}{A(t)} \text{ subst}$$

Equality

$$\frac{s=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s}{r=t} \frac{s=t}{t=s} \text{ trans}$$

$$\frac{s=t \quad A(s)}{A(t)} \text{ subst}$$

Rarely needed explicitly — used implicitly by simp

More rules

$$\frac{A \longrightarrow B}{B}$$
 mp

More rules

$$A \longrightarrow B \quad A \text{ mp}$$

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

More rules

$$\frac{A \longrightarrow B}{B}$$
 mp

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

Remark:

ccontr and classical are not derivable from the ND-rules.

More rules

$$A \longrightarrow B \quad A \\ B$$

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

Remark:

ccontr and classical are not derivable from the ND-rules.

They make the logic "classical", i.e. "non-constructive".

Proof by assumption

$$rac{ extbf{\emph{A}}_1}{ extbf{\emph{A}}_i}$$
 assumption

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

Unify A and C

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals A₁ ... A_n

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals A₁ ... A_n

Working backwards, like in Prolog!

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals $A_1 \ldots A_n$ Working backwards, like in Prolog!

Example: rule: $[?P; ?Q] \implies ?P \land ?Q$ subgoal: $1. A \land B$

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals A₁ ... A_n

Working backwards, like in Prolog!

```
Example: rule: [?P; ?Q] \implies ?P \land ?Q
```

subgoal: $1. A \wedge B$

Result: 1. A

2. B

Rule: $[A_1; ...; A_n] \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_m] \Longrightarrow C$

Subgoal: 1. $[B_1; ...; B_m] \Longrightarrow C$

Substitution: $\sigma(A) \equiv \sigma(C)$

```
Rule: \llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A
Subgoal: 1. \llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C
Substitution: \sigma(A) \equiv \sigma(C)
New subgoals: 1. \sigma(\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow A_1)
\vdots
n. \sigma(\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow A_n)
```

Command:

apply(rule <rulename>)

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i (backtracking!)

apply(erule <elim-rule>)

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

apply(erule <elim-rule>)

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $[P \land P; P; P] \Rightarrow R \Rightarrow R$

Subgoal: 1. $[X; A \land B; Y] \Longrightarrow Z$

apply(erule <elim-rule>)

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $[P \land P; P; P] \Rightarrow R \Rightarrow R$

Subgoal: 1. $[X; A \land B; Y] \Longrightarrow Z$

Unification: $?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$

apply(erule <elim-rule>)

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Subgoal: 1. $[X; A \land B; Y] \Longrightarrow Z$

Unification: $?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$

New subgoal: 1. $\llbracket X; Y \rrbracket \Longrightarrow \llbracket A; B \rrbracket \Longrightarrow Z$

apply(erule <elim-rule>)

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $[P \land P; P; P] \Rightarrow R \Rightarrow R$

Subgoal: 1. $[X; A \land B; Y] \Longrightarrow Z$

Unification: $?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$

New subgoal: 1. $\llbracket X; Y \rrbracket \Longrightarrow \llbracket A; B \rrbracket \Longrightarrow Z$

same as: 1. $[X; Y; A; B] \longrightarrow Z$

How to prove it by natural deduction

Intro rules decompose formulae to the right of ⇒.
 apply(rule <intro-rule>)

How to prove it by natural deduction

Intro rules decompose formulae to the right of ⇒.
 apply(rule <intro-rule>)

Elim rules decompose formulae on the left of ⇒.
 apply(erule <elim-rule>)

Demo: propositional proofs

To facilitate application of theorems:

write them like this $[A_1; ...; A_n] \Longrightarrow A$ not like this $A_1 \land ... \land A_n \longrightarrow A$

HOL: Predicate Logic

Parameters

Subgoal:

1. $\bigwedge x_1 \ldots x_n$. Formula

The x_i are called parameters of the subgoal. Intuition: local constants, i.e. arbitrary but fixed values.

Parameters

Subgoal:

1. $\bigwedge x_1 \ldots x_n$. Formula

The x_i are called parameters of the subgoal. Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over $\bigwedge x_1 \dots x_n$ and applied directly to *Formula*.

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with \forall or \Longrightarrow

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with \forall or \Longrightarrow

$$\land x y. \ [\![\ \forall y. \ P \ y \longrightarrow Q \ z \ y; \ Q \ x \ y \]\!] \Longrightarrow \exists \ x. \ Q \ x \ y$$
 means $\land x y. \ [\![\ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \]\!] \Longrightarrow \exists \ x_1. \ Q \ x_1 \ y$

α -Conversion

Bound variables are renamed automatically to avoid name clashes with other variables.

$$\overline{\forall x. P(x)}$$
 all _____ allE ____ exE

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)}$$
 all $-$ all $-$ exE

$$\frac{\bigwedge x. \ P(x)}{\forall \ x. \ P(x)}$$
 all $\frac{P(?x)}{\exists \ x. \ P(x)}$ exI $\frac{P(?x)}{\exists \ x. \ P(x)}$ exE

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)}$$
 all $\frac{\forall x. P(x)}{R}$ all $\frac{P(?x)}{\exists x. P(x)}$ exi $\frac{\Rightarrow x. P(x)}{\Rightarrow x. P(x)}$ exi

$$\frac{\bigwedge x.\ P(x)}{\forall\ x.\ P(x)}$$
 all $\frac{\forall\ x.\ P(x)\ P(?x) \Longrightarrow R}{R}$ all $\frac{P(?x)}{\exists\ x.\ P(x)}$ exI $\frac{P(?x)}{\exists\ x.\ P(x)}$ exE

$$\frac{\bigwedge x.\ P(x)}{\forall\ x.\ P(x)}$$
 all $\frac{\forall\ x.\ P(x)}{R}$ all $\frac{P(?x)}{R}$ all $\frac{P(?x)}{\exists\ x.\ P(x)}$ exi $\frac{\exists\ x.\ P(x)}{R}$ exi

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P(x)}{\forall \ x. \ P(x)} \ \text{alli} \qquad \frac{\forall \ x. \ P(x) \qquad P(?x) \Longrightarrow R}{R} \ \text{alle}$$

$$\frac{P(?x)}{\exists \ x. \ P(x)} \ \text{exi} \qquad \frac{\exists \ x. \ P(x) \qquad \bigwedge x. \ P(x) \Longrightarrow R}{R} \ \text{exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P(x)}{\forall \ x. \ P(x)} \text{ alli} \qquad \frac{\forall \ x. \ P(x) \qquad P(?x) \Longrightarrow R}{R} \text{ alle}$$

$$\frac{P(?x)}{\exists \ x. \ P(x)} \text{ exi} \qquad \frac{\exists \ x. \ P(x) \qquad \bigwedge x. \ P(x) \Longrightarrow R}{R} \text{ exE}$$

• allI and exE introduce new parameters ($\bigwedge x$).

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P(x)}{\forall \ x. \ P(x)} \ \text{alli} \qquad \frac{\forall \ x. \ P(x) \qquad P(?x) \Longrightarrow R}{R} \ \text{alle}$$

$$\frac{P(?x)}{\exists \ x. \ P(x)} \ \text{exi} \qquad \frac{\exists \ x. \ P(x) \qquad \bigwedge x. \ P(x) \Longrightarrow R}{R} \ \text{exE}$$

- allI and exE introduce new parameters ($\bigwedge x$).
- allE and exI introduce new unknowns (?x).

Instantiating rules

 $apply(rule_tac x = term in rule)$

Like *rule*, but ?x in rule is instantiated by term before application.

Instantiating rules

apply($rule_tac x = term in rule$)

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule_tac

Instantiating rules

 $apply(rule_tac x = term in rule)$

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule_tac

 $m{x}$ is in rule, not in the goal

1.
$$\forall$$
 a. \exists b. a = b

1. $\forall a. \exists b. a = b$ apply(rule allI)

1. \forall a. \exists b. a = b apply(rule allI)
1. \land a. \exists b. a = b

```
1. \forall a. \exists b. a = b

apply(rule allI)

1. \land a. \exists b. a = b

apply(rule_tac x = "a" in exI)
```

```
1. \forall a. \exists b. a = b

apply(rule allI)

1. \land a. \exists b. a = b

apply(rule_tac x = "a" in exI)

1. \land a. a = a
```

```
1. \forall a. \exists b. a = b

apply(rule allI)

1. \land a. \exists b. a = b

apply(rule_tac x = "a" in exI)

1. \land a. a = a

apply(rule refI)
```

Demo: quantifier proofs

More proof methods

"Forward" rule: $A_1 \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_n] \Longrightarrow C$

"Forward" rule: $A_1 \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_n] \Longrightarrow C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

"Forward" rule: $A_1 \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_n] \Longrightarrow C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

New subgoal: 1. $\sigma([B_1; ...; B_n; A] \Longrightarrow C)$

"Forward" rule: $A_1 \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_n] \Longrightarrow C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

New subgoal: 1. $\sigma(\llbracket B_1; \ldots; B_n; A \rrbracket \Longrightarrow C)$

Command:

apply(frule rulename)

```
"Forward" rule: A_1 \Longrightarrow A
```

Subgoal: 1.
$$[B_1; ...; B_n] \Longrightarrow C$$

Substitution:
$$\sigma(B_i) \equiv \sigma(A_1)$$

New subgoal: 1.
$$\sigma([B_1; ...; B_n; A] \Longrightarrow C)$$

Command:

apply(frule rulename)

Like *frule* but also deletes B_i :

apply(drule rulename)

frule and drule: the general case

Rule:
$$[A_1; ...; A_m] \Longrightarrow A$$

Creates additional subgoals:

1.
$$\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$$

:
 m -1. $\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_m)$
 m . $\sigma(\llbracket B_1; \ldots; B_n; A \rrbracket \Longrightarrow C)$

Forward proofs: OF

$$r[OF r_1 \dots r_n]$$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and . . .

Forward proofs: OF

$$r[OF r_1 \dots r_n]$$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule
$$r$$
 $\llbracket A_1; \ldots; A_m \rrbracket \Longrightarrow A$ Rule r_1 $\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow B$ Substitution $\sigma(B) \equiv \sigma(A_1)$ $r[OF r_1]$

Forward proofs: OF

$$r[OF r_1 \dots r_n]$$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule
$$r$$
 $\llbracket A_1; \dots; A_m \rrbracket \Longrightarrow A$
Rule r_1 $\llbracket B_1; \dots; B_n \rrbracket \Longrightarrow B$
Substitution $\sigma(B) \equiv \sigma(A_1)$
 $r[OF r_1]$ $\sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \Longrightarrow A)$

Clarifying the goal

Clarifying the goal

apply(clarify)
 Repeated application of safe rules without splitting the goal

Clarifying the goal

- apply(clarify)
 Repeated application of safe rules without splitting the goal
- apply(clarsimp simp add: ...)
 Combination of clarify and simp.

Demo: proof methods