Report for E-Commerce website Database management system

International University of Business Agriculture and Technology

Final Report Writing

Course Code: CSC434

Course Name: Database Management System Lab

Prepared For

Toyeer-E-Ferdous

Senior lecturer, Department of Computer Science and Engineering

Prepared By:

Serial	Name	ID
04	Md.Al-Amin	19303055
03	Saida Binte Saifuddin Surave	19303041
01	Md.Rashel Khan	18103300
11	Md Salauddin	20103164
37	Abdus Salam	20203056

Summary of the report:

The ultimate goal of making this report to implement the idea of Database Management System that we have. We chose our topic "E-Commerce website database management system". The E-commerce sector is very big, we tried to implement our idea in this report and tried to make something different and challenging. The report is showing us the advance diagrams and quarry technique. Our data is 100% original and analytical. From this report anyone can gain knowledge about E-Commerce database and also can implement their ideas by updating the report. Though we are publishing the report on github. Also we will try to publish the report on newspapers.

Table of content:

1.Title		Page-0
2.Summery		Page-1
3. Table of content		Page-2
4.Introduction & Why the report is us	eful	Page-3
5.ER Diagram		Page -4
6.ER DIAGRAM (Explanation)		Page-4-5
7. Clint to server database physical re	presentation	Page -5
8. Database Schema		Page -6
9.UML USE-CASE Diagram		Page-7
10.UML Class Diagram		Page-7-8
11. Relational Algebra example		-Page-9-10
12. Normalization example		Page -10
13.ACID		Page-11
14.Indexing		Page-11
15.Judgment		Page-12
16.Conclusion		Page -12

Introduction:

This report is for "E-Commerce" web application database management system. In this particular report we are going to discuss about our project and its ultimate goals. An E-commerce database building is always challenging because here have to input many sub-databases (Table) for managing all thing. Our database is mainly focused on customer services for e-commerce website. How they manage everything for providing best services to their customers.

Why the report is useful:

Now-a-days e-commerce websites are very new normal all over the country. Maximum educated people use e-commerce sites for easy shopping and discount. But most of the people don't know how the website is running or how the company manage all the data. The student can be beneficial by reading the report. As the report is open for everyone, one can update the report and also can gather knowledge. The report is also telling about the ER diagram, Use-case-diagram, UML diagram and many advance analytical things. So, this report will also give the readers knowledge about these advance data management procedures.

ER Diagram for "E-Commerce website database management system":

ER DIAGRAM (Entities, attributes, types of attributes, relationship):

This Entity relationship diagram shows us the over-all view of our project like a template. Here we took the tables as entity and the elements of the table are acting as attributes.

For example: The "Buyer" table is an entity and the table columns are the attributes. Like as "BuyerID"," MemberShip"," Email" and other columns.

The diagram is designed such a way that a one can easily understand the over-all project or database.

The entities are connected with each other in many relationships. For example: "Buyer"," Seller" and "Offer" these three entities are connected with a relation called "Demand". The

reason behind this name is, the "Seller" will understand the "Buyer" s demand and give "Offer" s to that particular product.

We have derived attributes like, "PostalCode" & "City". Form the "Province" name we can know these attributes.

Database clint to server connection:

Fig: Database schema for E-commerce website (Our project based)

Database schema:

7 UnitsInOrder

int(11)

Yes NULL

UML Use-Case-Diagram:

Fig: Use-Case-Diagram for E-Commerce website (Our project based)

The use case diagram shows us that, which entity will access which attribute in case of use.

For example:

- 1. The "Buyer" s can access the "Rating", "Product".
- 2.The "Database Manager" can access the full management system.
- 3. The suppliers can access the address.
- 4. The company manager can access the full use case of the particular company.

UML Class Diagram:

Relational Algebra:

Buyer					WishL	.ist
(Nam	e ID	M_Lev	el)		(WId	Items)
			-			
Ram	14	Gold			W1	T-shirt
Sona	15	silve	r		w2	Watch
kim	20	Plati	num			
Buyer X WishList						
Name	ID M	Level	WId	Items		
Ram	14	М	w1	T-shirt		
Ram	15	Μ	w2	Watch		
Sona	16	F	W1	Pant		
Sona	19	F	w3	Laptop		
Kim	20	Μ	w10	Tv		

Fig: Relational Algebra

Book

We can use all properties and symbol of relational algebra to our database.

Kim 25 M w15

Some symbols are:

Selection	σ	
Projection	π	
Renaming	ρ	
Union	\cup	
Intersection	\cap	
Difference		
Cartesian product	×	
Join	\bowtie	
Logical AND	^	
Logical OR	V	[Fig: of relational algebra]
Logical NOT	~	

[Fig: Symbols of relational algebra]

Normalization for some part of our database:

ProductID	OrderID	UserID	Price	Address
pd89	or54	156	150/=	Uttara
Pd78	Or98	134	500/=	Mirpur
Pd67	Or56	178	900/=	Badda
Pd78	Or37	168	259/=	Dohar

ACID for "Payment" part:

Fig: ACID for E-Commerce (Our project based)

Indexing:

11

Judgment:

After doing all these works, we can understand that an E-Commerce website database management system is very hard job to maintain all data. The employee needs to be very careful in every step of inserting or moving data. The work was very tough to be done by this group tried to make this report as applicable for publishing in newspapers and social sites. All the data are original and no internet source used to complete the project report. The full report is done that way, which topics was covered on our (Database management system and lab) courses. All the diagram and analytical things are done originally using many advance softwares. The tables that are used in the report is done by deep analysis and hard work. Hope this report will help other students to update their knowledge about E-Commerce database management system and also, they can update the report from this link.

Conclusion:

In the conclusion part we want to say that, without knowing about database nothing is possible in IT field. E-Commerce website database is very hard to display in one report. But we tried our best to make this report more informative and useful.