FMI, Info, Anul I Semestrul I, 2015/2016 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

06-07.10.2015

Seminar 1

(S1.1) Fie T o mulţime şi $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ şi $A \cup (B \setminus X) = B \cup X$. Să se arate că X = A.

Demonstrație: Presupunem prin absurd că $X \neq A$. Atunci ori există $x \in X \setminus A$, ori există $x \in A \setminus X$.

În primul caz, avem că $x \in X \subseteq B \cup X = A \cup (B \setminus X)$. Cum $x \notin A$, avemm $x \in B \setminus X$, deci $x \notin X$, contradicție cu $x \in X \setminus A$.

In cel de-al doilea caz, avem că $x \in A \subseteq A \cup (B \setminus X) = B \cup X$, deci $x \in B$ sau $x \in X$. Cum $x \in A \setminus X$, rezultă $x \in B$. Atunci x aparține și lui A, și lui B. Dar A și B sunt disjuncte, contradicție.

(S1.2) Fie $A = \{a, b, c, d\}$ şi $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$ o relație binară pe A. Care este compunerea $R \circ R$? Care este inversa R^{-1} a lui R? Care dintre relațiile $R, R^{-1}, R \circ R$ este funcție?

Demonstrație: Obținem

$$\begin{array}{lcl} R\circ R & = & \{(a,a),(a,b),(a,c),(a,d),(b,a),(b,b),(b,c)\},\\ R^{-1} & = & \{(a,a),(a,b),(b,a),(c,a),(d,c)\}. \end{array}$$

Niciuna dintre relațiile $R, R^{-1}, R \circ R$ nu este funcție, deoarece

- (i) $(a, b) \in R$ şi $(a, c) \in R$;
- (ii) $(a,a) \in R^{-1}$ și $(a,b) \in R^{-1}$;
- (iii) $(a, a) \in R \circ R$ şi $(a, b) \in R \circ R$.

(S1.3) Dați exemplu de familie de submulțimi ale lui \mathbb{R} indexată, pe rând, după:

- (i) \mathbb{N}^* ;
- (ii) \mathbb{Z} ;
- (iii) $\{2, 3, 4\}$.

Determinați reuniunea și intersecția fiecărei familii date ca exemplu.

Demonstraţie:

- (i) (a) $A_n = \{n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \emptyset$.
 - (b) $B_1 = \{0\}, B_2 = \mathbb{N}^*, B_3 = \mathbb{Q} \text{ şi } B_n = \mathbb{C} \text{ pentru orice } n \geq 5. \text{ Atunci } \bigcup_{n \in \mathbb{N}^*} B_n = \mathbb{C}, \bigcap_{n \in \mathbb{N}^*} B_n = \emptyset.$
 - (c) $E_n = (-\frac{1}{n}, \frac{1}{n})$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} E_n = (-1, 1), \bigcap_{n \in \mathbb{N}^*} E_n = \{0\}$.
 - (d) $A_n = \{1\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.
 - (e) $A_n = \{1, 2, ..., n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.

- (ii) $C_1 = (-\infty, 0), C_2 = \{0\}, C_{-n} = \{3\}$ pentru orice $n \ge 0, C_n = \{7\}$ pentru orice $n \ge 3$. Atunci $\bigcup_{n \in \mathbb{Z}} C_n = (-\infty, 0] \cup \{3\} \cup \{7\}, \bigcap_{n \in \mathbb{Z}} C_n = \emptyset$.
- (iii) $D_2 = \{0\}, D_3 = \{2\}, D_4 = \{3\}.$ Atunci $\bigcup_{x \in \{2,3,4\}} D_x = \{0,2,3\}, \bigcap_{x \in \{2,3,4\}} D_x = \emptyset.$

(S1.4) Dacă $(A_i)_{i\in I}$ este o familie de submulțimi ale unei mulțimi X, arătați următoarele (legile lui De Morgan):

- (i) $C_X \bigcup_{i \in I} A_i = \bigcap_{i \in I} C_X A_i;$
- (ii) $C_X \bigcap_{i \in I} A_i = \bigcup_{i \in I} C_X A_i$.

Demonstraţie:

- (i) Fie $x \in X$. Atunci $x \in C_X \bigcup_{i \in I} A_i \iff x \notin \bigcup_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcup_{i \in I} A_i \iff$ nu este adevărat că (există $i \in I$ a.î. $x \in A_i$) \iff pentru orice $i \in I$, $x \notin A_i \iff$ pentru orice $i \in I$, $x \in C_X A_i \iff x \in \bigcap_{i \in I} C_X A_i$.
- (ii) Fie $x \in X$. Atunci $x \in C_X \bigcap_{i \in I} A_i \iff x \notin \bigcap_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcap_{i \in I} A_i \iff$ nu este adevărat că (pentru orice $i \in I$, $x \in A_i$) \iff există $i \in I$ a.î. $x \notin A_i \iff$ există $i \in I$ a.î. $x \in C_X A_i \iff x \in \bigcup_{i \in I} C_X A_i$.

(S1.5)

- (i) Demonstrați că orice intervale deschise (a, b), (c, d) ale lui \mathbb{R} sunt echipotente.
- (ii) Demonstrați că (0,1), (0,1], [0,1), [0,1] și \mathbb{R} sunt echipotente.

Demonstraţie:

(i) Fie funcția

$$f:(a,b)\to(c,d), \quad f(x)=rac{d-c}{b-a}(x-a)+c \ \ {
m pentru\ orice}\ x\in(a,b).$$

Dacă a < x < b, avem că 0 < x - a < b - a şi $0 < \frac{d-c}{b-a}(x-a) < d-c$. Adăugând c, rezultă că funcția noastră este bine definită, i.e. valoarea dată de noi pentru f(x) se află într-adevăr în (c,d). Definim funcția

$$g:(c,d)\to(a,b),\quad g(x)=rac{b-a}{d-c}(x-c)+a \ \ {
m pentru\ orice}\ x\in(c,d).$$

Se observă uşor că f şi g sunt inverse una celeilalte. Prin urmare, (a, b) şi (c, d) sunt echipotente.

(ii) Ştim că tan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ este bijectivă, iar din punctul anterior avem că $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ este echipotent cu (0, 1).

O soluție directă este: se ia funcția $f:(0,1)\to\mathbb{R},$ definită, pentru orice $x\in(0,1),$ prin:

$$f(x) = \begin{cases} 2 - \frac{1}{x}, & \text{dacă } 0 < x < \frac{1}{2} \\ \frac{1}{1 - x} - 2, & \text{altminteri} \end{cases}$$

ce are inversa $f^{-1}: \mathbb{R} \to (0,1)$, definită, pentru orice $y \in \mathbb{R}$, prin:

$$f^{-1}(y) = \begin{cases} \frac{1}{2-y}, & \text{dacă } y < 0\\ 1 - \frac{1}{2+y}, & \text{altminteri.} \end{cases}$$

Prin urmare, (0,1) și $\mathbb R$ sunt echipotente.

Se ia apoi funcția $h:(0,1] \to (0,1),$ definită, pentru orice $x \in (0,1],$ prin:

$$h(x) = \begin{cases} \frac{1}{n+1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n} \\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $h^{-1}:(0,1)\to(0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$h^{-1}(y) = \begin{cases} \frac{1}{n-1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } y = \frac{1}{n} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1] şi (0,1) sunt echipotente.

Considerăm apoi funcția $j:[0,1]\to(0,1)$, definită, pentru orice $x\in[0,1]$, prin:

$$j(x) = \begin{cases} \frac{1}{2}, & \text{dacă } x = 0\\ \frac{1}{n+2}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n}\\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $j^{-1}:(0,1)\to[0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$j^{-1}(y) = \begin{cases} \frac{1}{n-2}, & \text{dacă există } n \in \mathbb{N} \setminus \{0,1,2\} \text{ a.î. } y = \frac{1}{n} \\ 0, & \text{dacă } y = \frac{1}{2} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1) şi [0,1] sunt echipotente.

În sfârşit, se observă uşor că funcția $F:(0,1]\to [0,1), F(x)=1-x$ este bijectivă (inversa lui F fiind tot F). Prin urmare, (0,1] şi [0,1) sunt echipotente.