EW-3-82

June 1982

GAS TURBINE COMPARISONS
USING THE EXERGY METHODS

by

V. J. LOPARDO
Professor
Mechanical Engineering Department

UNITED STATES NAVAL ACADEMY DIVISION OF ENGINEERING AND WEAPONS ANNAPOLIS, MARYLAND

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

EW-3-82

June 1982

GAS TURBINE COMPARISONS
USING THE EXERGY METHODS

bу

V. J. LOPARDO
Professor
Mechanical Engineering Department

S	D'EL	T EC	T	E)95	
		G	i		

Accesion For					
NTIS DTIC Unanno Justifica	TAB unced	*			
By					
Availability Codes					
Dist	Avail a Spe				
9-1			<u> </u>		

19950623 016

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
EW-3-82				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
GAS TURBINE COMPARISONS USING THE	EXERGY METHOD			
G. 10 10 10 10 10 10 10 10 10 10 10 10 10		6. PERFORMING ORG. REPORT NUMBER		
		CONTRACT OF CRANT NUMBER(c)		
7. Айтнок(*) Professor Vincent J. Lopardo		B. CONTRACT OR GRANT NUMBER(#)		
Mechanical Engineering Department				
neerlan out Engineering bepar amend		·		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
United States Naval Academy				
Annapolis, Maryland 21402				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
		June 1982		
		13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE UNCLASSIFIED		
16. DISTRIBUTION STATEMENT (of this Report)		UNCLASSIFIED		
Unlimited				
on milited				
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)		
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	·		
Exergy, Gas Turbines, Second Law,	Available Energy	y		
	J.	,		
20. ABSTRACT (Continue on reverse side if necessary and		w of Thermodynamics several		
Using the exergetic methods of the Second Law of Thermodynamics several gas turbine configurations are compared and evaluated. In all cases the				
primary loss of exergy is associated with the combustion process and the				
exhaust stream. The use of a regenerator reduces the overall exergy				
dissipation.		•		

ACKNOWLEDGMENTS

The work for this paper has been supported by the Naval Ship Research and Development Center, Annapolis Branch under the supervision of Mr. Rolf Muench. His assistance is gratefully acknowledged.

Additionally, the author wishes to express his gratitude to Ms. Inez Johnson who diciphered many pages of calculations and prepared the manuscript.

ABSTRACT

Using the exergetic methods of the Second Law of Thermodynamics several gas turbine configurations are compared and evaluated. In all cases the primary loss of exergy is associated with the combustion process and the exhaust stream. The use of a regenerator reduces the overall exergy dissipation.

TABLE OF CONTENTS

<u>. </u>	age
ACKNOWLEDGMENTS	
ABSTRACT	ii
TABLE OF CONTENTS	iii
1ETHOD	
RESULTS	1
CONCLUSIONS AND RECOMMENDATIONS	7
APPENDIX A - Calculations and Results GTF990 (C ₁₀ H ₂₂ as fuel)	A-1
APPENDIX B - Calculations and Results GTF990WR ₈₆ (C ₁₀ H ₂₂ as fuel)	B-1
APPENDIX C - Calculations and Results GTF990WR ₈₆ and GTF40WR ₈₆ (LHV = 18,400 Btu/1bm)	C-1
APPENDIX D - Calculations and Results GTF40WR ₉₆ (LHV = 18,400 Btu/1bm)	D-1

The objective of this study was to evaluate and compare the exergy flows for four different gas turbine configurations.

Method

The gas turbines investigated were: GTF990, GTF990 WR $_{86}$, GTF40WR $_{86}$ and GTF40WR $_{96}$. The letters WR refer to "with regenerator" and the subscript is the regenerator effectiveness in percent. There were two approaches used in this study. The first was to assume that the fuel was C_{10} H $_{22}$ and to compute the enthalpies and entropies at each station using the JANAF tables. This method yields information of the actual exergy flow at each station and was used for GTF990 and GTF990WR $_{86}$. It is a more rigorous or detailed approach with all exergy values referenced to the same datum. The second method used the calculator program (see Report EW-9-81) for obtaining the properties in combination with the given lower heating value of the fuel. This method was used to determine the actual exergy losses or dissipation for all four turbines since the only known data were the LHV and the fuel air ratios. For a detailed description of the method see Report EW-2-82.

In both approaches the exergy was evaluated as $[(h - T_0S) - (h_0 - T_0S_0)]$ with the exergy of kinetic and potential effects neglected.

Results

Figures 1 thru 5 summarize the results of this study. Figures 1 and 2 show the exergy flows in turbines GTF990 and GTF990WR $_{86}$ using dodecane ($\mathrm{C_{10}H_{22}}$) as the fuel. Figure 3 compares the exergy dissipation for turbines GTF990WR $_{86}$ and GTF40WR $_{86}$. Figures 4 and 5 give the losses for turbines GTF40WR $_{96}$ and GTF990 respectively.

EXERGY FLOW GTF990 (All Units BTU/S)

Fig. 1.

Fig. 3

EXERGY DISSIPATION FOR GTF40WR96

Fig. 4

EXERGY DISSIPATION FOR GTF990

Fig. 5

Conclusions and Recommendations

The exergetic methods clearly indicate areas of exergy dissipation. As is well known, the two main dissipators are the burner and the exhaust stream. The use of the regenerator reduces the loss but not enough to feel that efforts can cease in that area. The quality of the energy in the exhaust stream, even with a regenerator, is still high. In addition to some of the other well known approaches to using the exhaust stream, it may be possible to combine some of it with the fuel forming a lower grade of combustible reactants which would still perform satisfactorily in the turbines. If feasible, this would certainly reduce some of the losses.

This approach can be effectively used to compare large energy users and it is recommended that present computer programs be modified to incorporate exergy calculations as well as those of energy.

APPENDIX A CALCULATIONS AND RESULTS ${\rm GTF990} \ ({\rm C_{10}H_{22}} \ {\rm as} \ {\rm fuel})$

GAS TURBINE GTF990

For this analysis $C_{10}H_{22}$ was used as the fuel. T_0 = 518.7°R, P_0 = 14.7 psia F.A.R. = .0187 \rightarrow 357% of theoretical air.

The JANAF tables were used for the burner only. The calculator valves (derived from GAS TABLES) were used for all other calculations. The results were adjusted to make them consistent and then plotted.

1 :-

Station	T °R	P	h	ф	$-Rln \frac{P}{14.7}$	S
1	518.7	14.7	123.93	1.5910	0	1.5910
2	518.7	14.7	123.93	1.5910	0	1.5910
3	1173.4	177.1	284.44	1.7904	1706	1.6198
4	2358.0	171.5	619.86	1.9883	1696	1.8187
5	1741.7	38.3	442.53	1.9014	0661	1.8353
6	1683.5	38.3	425.35	1.8911	0661	1.8250
8	1355.2	14.7	336.23	1.8323	0	1.8323
9	1355.2	14.7	336.23	1.8323	0	1.8323

$$C_{10}H_{22} + 55.34 O_2 + 208.06 N_2 \rightarrow 10 CO_2 + 11 H_2O + 38.84 O_2 + 208.06 N_2$$

Molecular Weight of Products

Using 357% theoretical air - 267.9 moles of products

	×i	, M	
CO_2	.0373	44.01	1.6428
$H_2^{}0$.0411	18.02	.7399
02	.1450	32	4.6393
N_2	.7766	28.01	21.7519
		·	- 20 77/ 15/15 male of product

M = 28.774 lb/lb mole of products

PRELIMINARIES

$$ex = (h - T_0S) - (h_0 - T_0S_0)$$

For this calculation: Use $T_0 = 518.7$ °R

 $P_0 = 14.7 \text{ psia}$

Air
$$h_0 = 123.93$$

$$\phi_0 = S_0 = 1.5910$$

$$\phi_0 = S_0 = 1.5910$$
 ... $h_0 - T_0 S_0 = -701.32$ Air

Prod. of Comb

$$FAR = h_0 = 124.78$$

.0166
$$\phi_0 = S_0 = 1.5912$$

$$h_0 - T_0 S_0 = \frac{-700.57}{}$$
 FAR = .0166

$$FAR = h_0 = 124.91$$

.0187
$$\phi_0 = S_0 = 1.5912$$

$$h_0 - T_0 S_0 = \frac{-700.4}{}$$
 FAR = .0187

STATION
$$h - T_0S$$
 $-[h_0 - T_0S_0] = Ex$

+145.57

+376.55

+190.96

179.29

86.39

86.39

COMPRESSOR

$$Ex_{comp} = ?$$

$$E\dot{x}_2 + Ex_w = E\dot{x}_3 + E\dot{x}_D$$

$$W_{act} = h_3 - h_2$$

= 284.44 - 123.93
= 160.51 B/1bm

$$m[(h_2 - T_0S_2) - (h_0 - T_0S_0)] + \dot{W} = \dot{m}[(h_3 - T_0S_3) - (h_0 - T_0S_0)] + E\dot{x}_D$$

[123.93 - 518.7 x 1.5910] 43.5 + 43.5 (160.51) =

[(284.44 - 518.7 x 1.6198)] 43.5 +
$$E\dot{x}_D$$

$$(-701.32)(43.5) + 43.5 (160.51) = (-555.75) 43.5 + Ex_D$$

$$Ex_D = 649.9 B/s \leftarrow$$

$$E_{2}^{\star} = 43.5[(-701.32) - (-701.32)] = 0$$

$$\dot{E}_{W}$$
 = (160.51)(43.5) = 6982.2 B/s

$$E\dot{x}_3 = 43.5[(-555.75) - (-701.32)] = 6332.3 \text{ B/s}$$

COMBUSTOR (BURNER)

$$FAR = .0187$$

... 357% Theoretical Air

Combustion equation:

$$C_{10}H_{22}$$
 + 55.34 O_2 + 208.06 N_2 \rightarrow 10 CO_2 + 11 H_2O + 38.84 O_2 + 208.06 N_2 EXERGY OF REACTANTS

$$\sum_{R}^{\dot{n}_{i}} [(h_{f}^{\cdot} + \Delta h) - T_{o}^{S}] = E_{R}^{\dot{x}} + \sum_{R}^{\dot{n}_{i}} [(h_{f}^{\cdot} + \Delta h) - T_{o}^{S}]$$

REACTANTS

$$C_{10}H_{22}$$
: 1[-72.875 x 1.8001 + (76.12)(23)] = -129,432B - T_0S = -198,187B T_0S = 518.7[3.9006 $\frac{kJ}{kg^{-0}k}$ x .4299 x $\frac{5}{9}$ x 142.286] = 68755 T_0S = $\frac{55.34}{264.4}$ x 177.1 = 37.07 psi T_0S = $\frac{208.06}{264.4}$ x 177.1 = 139.43 psi T_0S = $\frac{208.06}{264.4}$ x 177.1 = 139.43 psi T_0S = T_0S = 1257593 Btu T_0S = T_0S = T_0S = T_0S = 1257593 Btu T_0S = T_0S = T_0S = T_0S = T_0S = 1257593 Btu T_0S = T_0S = T_0S = T_0S = T_0S = T_0S = 4113071 Btu

Products at T_0P_0 (H_2O liquid)

$$C0_2$$
: $10[-169,297 + (-147) - 518.7 (50.74)] = -1,957,628$

$$H_20$$
: 11[-122,971 + (-18 x 18) -518.7 (16.716 - .614)] = -1,448,118

corr. for S:
$$.08775 - .05362 = .-3413 \frac{B}{1b} \times \frac{181b}{1b \text{ mole}} = .614$$

$$0_2$$
: 38.84[0 + (-123) - 518.7 (48.725)] = -986,406

$$N_2$$
: 208.06[0 + (-123) - 518.7 (45.492)] = $\frac{-4935121}{\Sigma}$ = 9327273

...
$$Ex_R$$
 of REACTANTS = 3,758,422 B/mole fuel
= 26,415 B/lb fuel = 19018 B/s

EXERGY OF PRODUCTS

at
$$T = 2358^{\circ}R \qquad \text{and} \qquad P = 171.5 \text{ psia}$$

$$x_{1} \qquad p_{1} = x_{1}P \qquad R = 1.986 \frac{Btu}{1bmole \ ^{\circ}R}$$

$$C0_{2} \qquad .0373 \qquad 6.36$$

$$H_{2}0 \qquad .0411 \qquad 7.05$$

$$0_{2} \qquad .1450 \qquad 24.87$$

$$N_{2} \qquad .7766 \qquad 133.19$$

$$C0_{2} : 10[(-169,297 + 21,825) - 518.7 \ (67.943 - \overline{R}&n \frac{6.36}{14.7})] = -1,835,771$$

$$H_{2}0: 11[(-104,036 + 16,932) - 518.7 \ (58.368 - \overline{R}&n \frac{7.05}{14.7})] = -1,299,500$$

$$0_{2} : 38.84[(0 + 14,503) - 518.7 \ (60.48 - \overline{R}&n \frac{24.87}{14.7})] = -634,114$$

$$N_{2} : 208.06[(0 + 13,700) - 518.7 \ (56.665 - \overline{R}&n \frac{133.19}{14.7})] = -2,792,536$$

$$= -6,561,922 \text{ Btu}$$

$$\text{Ex of Products} = (h - T_{0}S) - (h_{0} - T_{0}S_{0})_{T_{0}P_{0}}$$

$$\text{Ex}_{Des} \text{ in Combustor} = 3,758,422 - 2,765,350$$

Ex_{Des} in Combustor =
$$3,758,422 - 2,765,350$$

= $993,072$ B/mole fuel = $6,979$ B/lb fuel = $\underline{5025}$ B/s

H. P. TURBINE

Assuming adiabatic & eff = .867

eff = .867 =
$$\frac{W_{act}}{W_{isen}}$$

$$T_{4} = 2358.0^{\circ}R$$
 $h_{4} = 619.71$ $\phi = 1.9883$

$$P_5 = 38.3$$
 if $S_4 = S_5 = 1.9883 - \frac{1.986}{28.77 \frac{1b}{1bmole}} \frac{B}{1bmole} \ln \frac{171.5}{14.5}$

$$S_4 = 1.8187 = 1.819$$

$$\frac{P_4}{P_5} = \frac{P_{r4}}{P_{r5}}$$
 : $\frac{171.5}{38.3} = \frac{395.3}{P_{r5}}$... $P_{r5} = 88.3$

2358

$$P_r$$
 @ 400% = 385.1 47.3 ... P_r = 395.3 200% = 432.4

$$P_r = 88.3 @ 400\%$$
 $T = 1654$ $T_s = 1647.6$ $h_s = 416.4$ $\phi = 1.8860$

Check S = 1.886 -
$$\frac{1.986}{28.774}$$
 £n $\frac{38.3}{14.7}$ = 1.8199 \approx 1.820

$$W_s = 619.7 - 416/4 = 203.3$$

 $W_a = (-867)(203.3) = 176.3 B/1b \leftarrow$

From data $W_a = 619.7 - 442.5 = 177.2 \leftarrow$

... Data must assume adiabatic turbine.

H.P. TURBINE

$$E\dot{x}_{4} = (h_{4} - T_{0}S_{4}) - (h_{0} - T_{0}S_{0})$$

$$= [(619.71 - 518.7 \times 1.819) - (-700.4)] 39.44$$

$$= 14,853 \text{ B/s}$$
 $E\dot{x}_{W} = (177.2)(39.44) = 6989 \text{ B/s}$

$$E\dot{x}_{5} = 39.44[442.53 - 518.7 \times 1.835 - (-700.4)] = 7533 \text{ B/s}$$

$$\therefore 14,853 = 6989 + 7533 + E\dot{x}_{D}$$

$$= E\dot{x}_{D} = 331 \text{ B/s}$$

MIXER:

$$E\dot{x}_3 = 4.78 \ [(-555.75) - (-701.32)] = 696 \ B/s$$
 $E\dot{x}_5 = 7533 \ B/s$
 $E\dot{x}_6 = 44.22 \ [(425.35) - (518.7)(1.825) - (-700.57)]$
 $= 7928 \ B/s$
 $\therefore 7533 + 696 = 7928 + Ex_D$
 $\therefore E\dot{x}_D = 301 \ B/s$

L.P. TURBINE

$$W = h_6 - h_8 = 425.35 - 336.23 = 89.12 B/1b$$

$$\mathring{W}$$
 = 44.22 x 89.12 = 3932 B/s

$$E_{W}^{*} = 3932 \text{ B/s}$$

$$E\dot{x}_6 = 7928 \text{ B/s}$$

$$E\dot{x}_8$$
 = 44.22 [(336.23 - 518.7 x 1.8323) - (-700.57)]
= 3820 B/s To Dif & Exhaust

...
$$7928 = 3932 + 3820 + Ex_D$$

$$E\dot{x}_D = 176 \text{ B/s}$$

EXERGY DISSIPATED

		Percent
COMP	650	6.31
BURNER	5025	48.77
H.P. TURBINE	331	3.21
MIXER	301	2.92
L.P. TURBINE	176	1.71
DIF & EXHAUST	3820 10303 B/s	37.08 100.00

EXERGY FLOW GTF990 (All Units BTU/S)

EXERGY DISSIPATION FOR GTF990

AMBIENT 518.7°R & 14.7 psia

•	_	_	Rel to S	•	Rel to 0°		
STA	P Psia	T °R	h B/1bm	m lb/s	B/1b-R	Ren $\frac{P}{14.7}$	S
2	14.7	518.7	-4.1	41.31	1.5910	0	1.5910
3	160.7	1129.7	146.8	41.31	1.7808	.1639	1.6169
31	154.2	1362.6	206.4	36.77	1.8287	.1611	1.6676
4	149.2	2358.0		37.35	1.9868	.1598	1.8270
5	38.0	1780.9		37.35	1.9065	.0655	1.8410
6	38.0	1714.1		41.90	1.8952	.0655	1.8297
8	15.4	1400.4		41.90	1.8403	.0033	1.8370
81	15.4	1400.4		41.90	1.8403	.0033	1.8370
9	14.7	1197.1		41.90	1.7990	0	1.7990

COMPRESSOR

EXERGY BALANCE

$$E\dot{x}_{2}^{2} + E\dot{x}_{W}^{2} = E\dot{x}_{3}^{2} + E\dot{x}_{D}^{2}$$

$$S_{2} = 1.5910 - R \ln 1 = 1.5910$$

$$S_{3} = 1.7808 - .06855 \ln \frac{160.7}{14.7} = 1.6169$$

$$h_{0} - T_{0}S_{0}^{2} (@ 14.7, 518.7^{\circ}R) = -4.1 - 518.7 \times 1.5910$$

$$= -829.35 \text{ B/1b}$$

$$E\dot{x}_{2} = 0$$

$$E\dot{x}_{3} = \{[146.8 - 518.7 \times 1.6169] - [-829.35]\}\{41.31\}$$

$$= 5678.6 \text{ B/s}$$

$$E\dot{x}_{M} = 6232 \text{ B/s}$$

Cal/gm mole °K x 1.8001 $\frac{\text{Btu/lb mole}}{\text{cal/gm mole}}$ $\frac{5^{\circ}\text{K}}{9^{\circ}\text{R}}$ x $\frac{15\text{mole}}{28.964 \text{ lbm}}$

= -.065
$$\frac{h_{cal}}{gmmole}$$
 x $\frac{1.8001}{10^{-3} \frac{h_{cal}}{cal}}$ x $\frac{1}{28.964}$ = -4.07 B/1bm

h @ 1129.7°R

= 2.322
$$\frac{k_{cal}}{gmmole}$$
 = 146.8 B/1bm

h @ 1362.6 @ 31

3.321
$$\frac{h_{cal}}{gmmole}$$
 = 206.4 B/1bm

AT 31 out of HX

$$E_{x}^{\bullet} = \{(206.4 - 518.7 \times 1.6676) - (-829.35)\}\ 41.31$$

$$E\dot{x} = 7054 \text{ B/s}$$

BURNER

Assume
$$C_{10}H_{22}$$
 fuel

LHV =
$$19,020 B/1b$$

$$C_p = .535 \text{ B/lb} \text{ °R} = 76.12 \text{ B/lbmole-°R}$$

$$C_{10}H_{22} + x 15.5 (0_2 + 3.76N_2) \rightarrow 10 CO_2 + ? 11 H_2O + ? O_2 + ? N_2$$

.0160 =
$$\frac{(1)(142.286)}{x(15.5)(32) + x(15.5)(3.76)(28.016)}$$

$$x = 4.18$$
 ... 418% theoretical Air

•

$$C_{10}H_{22}$$
 + 64.79 O_2 + 243.61 N_2 \rightarrow 10 CO_2 + 11 H_2O + 49.29 O_2 + 243.61 N_2

$$E\dot{x}_R = E\dot{x}_P + E_{xD}$$

H_R:

$$C_{10}H_{22}$$
: 1[(-131 183) + 76.13 (23)] = -129 432

$$0_2$$
: 64.79[0 + 6197] = 401 504

$$N_2$$
: 243.61[0 + 5898] = 1 436 812

$$S_{C_{10}H_{22}} = 3.9006 \times \frac{1}{4.187} \times 142.286 = 132.553 \text{ B/lbmole } ^{\circ}\text{R}$$

$$0_2$$
: $x_i = .21$... $p_{0_2} = .21$ x 154.2 = 32.38 psia ... $s_{0_2} = 55.9 - 1.986$ ln $\frac{32.38}{14.7} = 54.33$

$$N_2$$
: $x_1 = .79$... $p_{N_2} = .79 \times 154.2 = 121.82$ psia ... $S_{N_2} = 52.374 - 1.986$ ln $\frac{121.82}{14.7} = 48.174$

$$C_{10}H_{22}$$
 -129432 132.553 -68755 -198 187

$$\Sigma H_{R} - T_{o}S = -6273007 \text{ Btu}$$

H_o - T_oS_o of Products at STP

$$CO_2$$
: $10[-169,297 + (-147) - 518.7 (50.742)] = -1957 639$

$$H_{2}0$$
 (10.11 [-122971 + (-18 x 18) - 518.7 (16.716 - .614)] = -1448 118

$$0_{2}$$
: 49.29[0 + (-123) - 518.7 (48.725)] = -1 251 801

$$N_2$$
: 243.61[0 + (-123) - 518.7 (45.492)] = -5 778 356

$$(H_0 - T_0 S_0)_{STP} = -10 435 914 Btu$$

$$Ex_{R} = 4162 907 \text{ B/mole fuel}$$

$$\dot{m} = .58 \frac{1b_{fuel}}{S} \times \frac{mole_{fuel}}{142.286} 1b_{fuel}$$

$$\dot{x}_{R} = 16 969 \text{ B/s}$$

PRODUCTS

$$CO_2$$
: $10[(-169297 + 21825) - 518.7 (70.183)] = -1838759$

$$H_20$$
: $11[(-104036 + 16932) - 518.7 (60.423)] = -1302900$

$$0_2$$
: 49.29[(0 _ 14504) - 518.7 (59.554)] = - 807698

$$N_2$$
: 243.61 [(0 + 13700) - 518.7 (52.566)] = - 3304809

ENTROPIES:

$$\begin{array}{c} p_{1} \text{ (psia)} & -\text{Ren P/14.7} & \phi & S \\ x_{\text{CO}_{2}} = 10/313.9 = .0319 & 4.759 & 2.240 & 67.943 & 70.183 \\ H_{2}0 & 11/313.9 = .0350 & 5.222 & 2.055 & 58.368 & 60.4238 \\ 0_{2} & 49.29/313.9 = 1570 & 23.424 & - .925 & 60.479 & 59.554 \\ N_{2} & 243.61/313.9 = .7761 & 115.794 & -4.099 & 56.665 & 52.566 \end{array}$$

$$(H - T_o S)_P = -7254167$$

$$Ex_p = (H - T_oS)_p - (H_o - T_oS_o)_{STP} = 3181747 \text{ B/mole fuel}$$

$$E\dot{x}_{p} = 12970 \text{ B/s} = E\dot{x}_{4}$$

$$16969 - 12970 = E\dot{x}_D = 3999 \text{ B/s}$$
 BURNER

H.P. TURBINE

 $T_5 = 1780.9$ °R, $P_5 = 38.0$ psia $h_5 - h_4 = 1530985$ B/mole fuel from pg 6 & 7 below.

 $\dot{W} = 6240 \text{ B/s}$

 Ex_5

$$CO_2$$
: $10[-169.297 + 11825 - 518.7 (69.157)] = -1933437$

$$H_20: 11[-104036 + 10991 - 518.7 (60.256)] = -1367298$$

$$0_2$$
: 49.29[0 + 9611 - 518.7 (59.891)] = -1057490

$$N_2$$
: 243.61[0 + 9084 - 518.7 (53.038)] = -4488955

$$\Sigma = -8847181$$
 Btu

	p _i	-Ren P/14.7	ф	S
CO ₂	1.212	4.956	64.201	69.157
H ₂ 0	1.330	4.772	55.484	60.256
02	5.966	1.791	58.100	59.891
N_2	29.492	-1.383	54.421	53.038

$$Ex_5 = -8847181 - (-10 435 914) = 1588733 B/mole fuel$$

...
$$Ex_5 = 1588733 \times .58 \times \frac{1}{142.286} = 6476 \text{ B/s}$$

12970 = 6240 + 6476 +
$$E\dot{x}_D$$
 ··. $E\dot{x}_D$ = 254 B/s B-7

H.P. TURBINE (CHECK)

Using Calculator Program

$$(H - T_0S)_4 - (H_0 - T_0S_0)_4 = (H - T_0S)_5 - (H_0 - T_0S_0)_5 + \dot{W} + E\dot{x}_D$$

$$H_4 - H_5 - T_0 (S_4 - S_5) = \dot{W} + E\dot{x}_D$$

$$E\dot{x}_D = T_0 (S_5 - S_4)$$

S₅ @ 1780.9°R & 38 psia

$$\phi_5 = 1.9065 \text{ B/1bm}$$
 $-\frac{1.986}{28.802} \text{ ln } \frac{38}{14.7} = -.0655$
 $S_5 = 1.8410 \text{ B/1bm}$

S₄ @ 2358°R & 149.2 psia

...
$$E\dot{x}_D = (37.35)(518.7)(1.841 - 1.827)$$

$$\frac{E\dot{x}_{D} = 270 \text{ B/s}}{}$$
 close enough

For a FAR = .0142 must add $x(0_2 + 3.76 N_2)$

.0142 =
$$\frac{142.286}{x(15.5)(32) + x(15.5)(3.76)(28.016)}$$
 ... x = 4.707

$$72.96 \ 0_2 - 64.79 \ 0_2 = 8.17 \ 0_2$$

274.32
$$N_2$$
 - 243.61 N_2 = 30.71 N_2

... AIR

$$(8.17 \ 0_2 + 30.71 \ N_2) + 10 \ CO_2 + 11 \ H_2O + 49.29 \ O_2 + 243.6 \ IN_2$$

 $\rightarrow 10 \ CO_2 + 11 \ H_2O + 57.46 \ O_2 + 274.32 \ N_2$

$$\phi = 1.8287$$
 S = 1.6675

$$Ex_{air} = 170.76 \text{ B/lb}$$

$$E\dot{x}_{air} = 775 \text{ B/s}$$

$$E\dot{x}_{5} = 6476 \text{ B/s}$$

Ex ₆	
	(
	ł
	1

	n	xi	М	lb/mole mix	P _i
CO_2	10	.0283	44.011	1.2475	1.075
H ₂ 0	11	.0312	18.016	0.5618	1.186
02	57.46	.1629	32	5.2121	6.190
N_2	274.32 352.78	.7776	28.016	21.7851 28.807	29.549

 $\hat{M} = 28.81$

	ф	-Rln P _i /14.7	S	Δh
CO ₂	63.699	5.194	68.893	13270
H ₂ 0	55.104	4.999	60.103	10344
02	57.776	1.718	59.494	9058
N_2	54.118	-1.387	52.731	8567

$$C0_2$$
: $10[-169297 + 13270 - 518.7 (68.893)] = -1917618$

$$H_{2}0: 11[-104036 + 10344 - 518.7 (60.103)] = -1373542$$

$$0_2$$
: 57.46[0 + 9058 - 518.7 (59.494)] = -1252716

$$N_2$$
: 274.32[0 + 8567 - 518.7 (52.731)] = -5152983

$$\Sigma = (H-T_0S)_6 = -9696859 Btu$$

$$H_{o} - T_{o}S_{o}$$
 at STP

$$C0_2$$
: $10[-169297 + (-147) - 518.7 (50.742)] = 01957639$

$$H_20$$
: 11[-122971 + (-324) - 518.7 (16.716 - .614)] = -1448118

$$0_2$$
: 57.46[0 + (-123) - 518.7 (48.725)] = -1459292

$$N_2$$
: 274.32[0 + (-123) - 518.7 (45.492)] = 06506788

1	Е	,	,	
	C	à	•	6

	n	×i	M	<pre>lb/mole mix</pre>	Pi
CO ₂	10	.0283	44.011	1.2475	1.075
H_2O	11	.0312	18.016	0.5618	1.186
02	57.46	.1629	32	5.2121	6.190
N_2	274.32 352.78	.7776	28.016	21.7851 28.807	29.549

 $\hat{M} = 28.81$

	φ	-Rin P _i /14.7	S	Δh
CO ₂	63.699	5.194	68.893	13270
H ₂ 0	55.104	4.999	60.103	10344
02	57.776	1.718	59.494	9058
N_2	54.118	-1.387	52.731	8567

$$C0_2$$
: $10[-169297 + 13270 - 518.7 (68.893)] = -1917618$

$$H_20: 11[-104036 + 10344 - 518.7 (60.103)] = -1373542$$

$$0_2$$
: 57.46[0 + 9058 - 518.7 (59.494)] = -1252716

$$N_2$$
: 274.32[0 + 8567 - 518.7 (52.731)] = -5152983

$$\Sigma = (H-T_0S)_6 = -9696859 Btu$$

$$H_{o}$$
 - $T_{o}S_{o}$ at STP

$$CO_2$$
: $10[-169297 + (-147) - 518.7 (50.742)] = 01957639$

$$H_20$$
: 11[-122971 + (-324) - 518.7 (16.716 - .614)] = -1448118

$$0_2$$
: 57.46[0 + (-123) - 518.7 (48.725)] = -1459292

$$N_2$$
: 274.32[0 + (-123) - 518.7 (45.492)] = 06506788

Line 6 con't

$$\Sigma = -11371837 B = H_o - T_o S_o \text{ at STP}$$

$$\text{for FAR} = .0142$$

$$(H - T_o S) - (H_o - T_o S_o) = -9696859 - (-11371837)$$

$$Ex_6 = 1674978 B/352.78 \text{ moles}$$

$$= 4748 B/\text{mole} \times \frac{\text{mole}}{28.81 \text{ lb/mole}} \times 41.9 \frac{1b}{s}$$

$$E\dot{x}_6 = 6905 B/s$$

... FOR MIXER

775 + 6476 = 6905 +
$$E\dot{x}_D$$

$$\frac{369 \text{ B/s} = E\dot{x}_D}{}$$

L.P. TURBINE

$$\dot{W} = (\Delta h) \dot{m}$$

 $\Delta h = 874050 \text{ B}/352.78 \text{ moles}$

W = 3603 B/s

Ex₈

	S° = ϕ	Δh	P _i	-Rln P _i /14.7	S
CO_2	61.167	9337	.436	6.987	68.154
H ₂ 0	53.197	7380	.480	6.794	59.991
02	56.127	6499	2.509	3.511	59.638
N_2	52.580	6179	11.975	.407	52.987

 $H - T_0S$

$$CO_{2}$$
: $10[-169297 + 9337 - 518.7 (68.154)] = -1953115$

$$H_20$$
: $11[-104036 + 7380 - 518.7 (59.991)] = -1405506$

$$0_2$$
: 54.76[0 + 6499 - 518.7 (59.638)] = -1404048

$$N_2$$
: 274.32[0 + 6179 - 518.7 (52.987)] = -5844486

$$H - T_0 S = -10607155$$

$$Ex_8 = -10607155 - (-11371837) = 764682 B$$

$$E\dot{x}_8 = 764682 \times \frac{1}{352.78} \times \frac{1}{28.81} \times 41.9$$

$$E_{8}^{\bullet} = 3152 \text{ B/s}$$

$$6905 = 3603 + 3152 + Ex_D$$

$$\frac{Ex_D = 150 \text{ B/s}}{}$$

$$T_9 = 1197.1$$
°R $P_9 = 14.7$

LINE 9 -R&n
$$\frac{P_i}{14.7}$$
 S Δh

 CO_2 59.287 7.080 66.367 6913

 H_2O 51.774 6.886 58.660 5548

 O_2 54.878 3.604 58.482 4889

 N_2 51.414 ,500 51.914 4677

 CO_2 : 10[-169297 + 6913 - 518.7 (66367)] = -1968086

 H_2O : 11[-104036 + 5548 - 518.7 (58.660)] = -1418064

 O_2 : 57146[O + 4889 - 518.7 (58.482)] = -1462105

 N_2 : 274.32[O + 4677 - 518.7 (51.914)] = -6103837

 $(H - T_0S)_9 = -10952092$ Btu

 $(H_0 - T_0S_0) = -11371837$ Btu

 $Ex_9 = 419745$ Btu

$$E\dot{x}_9 = 419745 \times \frac{1}{352.78} \times \frac{1}{28.81} \times 41.9$$

$$E\dot{x}_9 = 1730 \text{ B/s}$$

$$E\dot{x}_{3} + E\dot{x}_{8} = E\dot{x}_{31} + E\dot{x}_{9} + E\dot{x}_{D}$$

$$5679 + 3152 = 7054 + 1730 + Ex_D^*$$

$$\frac{E\dot{x}_D = 47 \text{ B/s}}{}$$

APPENDIX C

CALCULATIONS AND RESULTS

 ${\tt GTF990WR}_{86}$ and ${\tt GTF40WR}_{86}$ (LHV = 18,400 Btu/1bm)

USING GAS TABLES

Ambient 518.7°R & 14.7 psia;

REF. EFF = .86; LH.V. = 18,400 Btu/lbm

COMPRESSOR

w = 6162.2 Btu/s m = 41.31 1bm/s

$$E\dot{x}_2 + E\dot{x}_W = E\dot{x}_3 + E\dot{x}_D$$

 $E\dot{x}_2 = 0$

$$E\dot{x}_W$$
 = 6162.2 Btu/s

$$h_o - T_o S_o = 123.93 - 518.7 \times 1.5910$$

= -701.32 Btu/lbm (@14.7 & 518.7°R)

$$E\dot{x}_3$$
 = {[273.1 - 518.7 x 1.6169] - [-701.32]}{41.31}
= 5607.2 Btu/s

... 0 + 6162.2 = 5607.2
$$E\dot{x}_D$$

 $E\dot{x}_D$ = 555 Btu/s

$$\dot{Ex}_{31}$$
 (out of HX)

$$E_{x}^{*} = \{[33].7 - 518.7 \times 1.6676] - [-701.32]\}\{41.31\}$$

$$E_{31}^{\bullet} = 6983 \text{ Btu/s}$$

BURNER

H.P. TURBINE

$$E\dot{x}_{4} - E\dot{x}_{5} - \dot{W} = E\dot{x}_{D}$$

37.35 [(617.52 - 518.7 x 1.827) - (452.14 - 518.7 x 1.841)] - 6177 = $E\dot{x}_{D}$

37.35 [172.64] = 6177 = $\frac{271 \text{ B/s}}{271 \text{ B/s}} = \frac{1000 \text{ B}}{271 \text{ B/s}} = \frac{10000 \text{ B}}{271 \text{ B/s}} = \frac{1000 \text{ B}}{271 \text{ B/s}} = \frac{10000 \text{ B}}{271 \text{ B/s}} = \frac{1000 \text{ B}}{271 \text{ B/s}} = \frac{10000 \text{ B/s}}{271 \text{ B/s}} = \frac{10000 \text{$

MIXER

$$(h_O - T_O S_O)_{31} = 123.78 - 518.7 \times 1.5910;$$
 $(h - T_O S)_{31} = 332.70 - 518.7 \times 1.6676$
 $(h_O - T_O S_O)_5 = 124.75 - 518.7 \times 1.5912;$ $(h - T_O S)_5 = 452.14 - 518.7 \times 1.841$
 $(h_O - T_O S_O)_6 = 124.64 - 518.7 \times 1.5912;$ $(h - T_O S)_6 = 432.69 - 518.7 \times 1.8297$
 $E\dot{x}_D = 4.54 [169.2] + 37.35 [197.82] - 41.9 [184.34]$

$$E\dot{x}_D = 433 \text{ B/s}$$

L.P. TURBINE

$$E\dot{x}_D = E\dot{x}_6 - E\dot{x}_8 - \dot{W}$$
 $E\dot{x}_D = 41.9 [(432.69 - 518.7 \times 1.8297) - (347.47 - 518.7 \times 1.837)] - 3571 B/s$
 $E\dot{x}_D = 41.9 [518.7(1.837 - 1.8297)] = 158 B/s$

HEAT EXCHANGER

$$E\dot{x}_D = T_o \ (\Sigma\Delta S)$$

$$= 518.7 \ [(1.6676 - 1.6169) \ 41.31 + (1.7990 - 1.837) \ 41.9]$$

$$\underline{E\dot{x}_D} = 262 \ B/S$$

$$\underline{Ex_9} = 41.9 \ [(293.97 - 518.7 \times 1.7990) - (124.64 - 418.7 \times 1.5912)]$$

$$\underline{Ex_9} = 2579 \ B/S$$

SUMMARY		PE	RCENT
		(%)	(%) not counting burner
COMPRESSOR	555	7.35	13.03
BURNER	3292	43.60	-
H.P. TURBINE	271	3.59	6.36
MIXER	433	5.73	10.17
L.P. TURBINE	158	2.09	3.71
HEAT EXCHANGER	263	3.48	6.18
EXHAUST	2579	34.15	60.55

ST	ATION	TEMP R	PRESS PSI	ENTH BTU/LB	FAR	MASSFLOW LB/SEC	S°	$Ren \frac{P}{14.7}$	s
	2	560.0	14.6	133.65		29.00	1.6094	0	1.6094
	3	1107.6	119.4	267.53		27.55	1.7758	.1435	1.6323
	31	1532.0	118.6	377.51		27.55	1.8595	.1430	1.7165
	4	2414.7	113.9	633.07	.0144	27.95	1.9929	.1405	1.8524
	5	1931.9	39.2	494.02	.0144	27.95	1.9287	.0673	1.8614
	6	1893.8	37.6	482.87	.0137	29.40	1.9228	.0644	1.8584
	8	1601.1	16.1	401.71	.0137	29.40	1.8763	.0062	1.8701
	81	1601.1	15.8		.0137	29.40	1.8763	.0050	1.8713
	9	1206.4	14.9	296.25	.0137	29.40	1.8009	.0009	1.8000

Compressor

$$E\dot{x}_D = 29(518.7)(1.6323 - 1.6094) = 344 B/s$$

H.P. Turbine

$$E\dot{x}_D = 27.95(518.7)(1.8614 - 1.8524) = 130 \text{ B/s}$$

L.P. Turbine

$$E\dot{x}_D = 29.4(518.7)(1.8701 - 1.8584) = 178 \text{ B/s}$$

HEAT EXCH

$$E\dot{x}_D = 518.7 [29(1.7165 - 1.6323) + 29.4 (1.8000 - 1.8713)]$$

$$E\dot{x}_D = \frac{179 \text{ B/s}}{2}$$

BURNER

$$\begin{split} &\dot{E}\dot{x}_{D} = \dot{m}_{f} \; (LHV) + \dot{m}_{f} \; (\Delta h_{f} - T_{o}S)_{f} + \dot{m}_{a} \; (\Delta h_{f} - T_{o}S)_{a} - m_{p} \; (\Delta h_{f} - T_{o}S)_{p} \\ &\dot{m}_{f} \; (LHV) = .40 \; (18,400) = \underline{7360 \; B/s} \\ &\dot{m}_{f} \; (\Delta h_{f} - T_{o}S_{f}) = .40[(.5 \times 23) - 518.7 \times .9] = \underline{-182 \; B/s} \\ &\Delta h_{air} = (377 - 128) = 249 \; B/lb; \; T_{o}S = 518.7 \times 1.7165 = 890 \\ &\dot{m}_{a} \; (\Delta h_{f} - T_{o}S_{f}) = 27.55 \; (249 - 890) = \underline{-17670 \; B/s} \\ &\Delta h_{p} = (633 - 129.1) = 504 \; B/lb \\ &\dot{m}_{p} \; (\Delta h_{f} - T_{o}S_{f}) = 27.95 \; (504 - 518.7 \times 1.8524) = \underline{12770 \; B/s} \\ &\dot{E}\dot{x}_{D} = 7360 + (-182) + (-17670) - (-12770) \\ &\dot{E}\dot{x}_{D} = \underline{2278 \; B/s} \end{split}$$

MIXER

$$\begin{split} & \dot{\mathbf{E}}\dot{\mathbf{x}}_{31} + \dot{\mathbf{E}}\dot{\mathbf{x}}_{5} = \dot{\mathbf{E}}\dot{\mathbf{x}}_{6} + \dot{\mathbf{E}}\dot{\mathbf{x}}_{D} \\ & 1.45 \left[(377.5 - 518.7 \times 1.7165) - (133.65 - 518.7 \times 1.6094) \right] + \\ & 27.95 \left[(494 - 518.7 \times 1.8614) - (134.67 - 518.7 \times 1.6098) \right] - \\ & 29.40 \left[(482.9 - 518.7 \times 1.8584) - (134.62 - 518.7 \times 1.6097) \right] = \dot{\mathbf{E}}\dot{\mathbf{x}}_{D} \\ & \dot{\mathbf{E}}\dot{\mathbf{x}}_{D} = 373 + 6396 - 6447 \\ & \dot{\mathbf{E}}\dot{\mathbf{x}}_{D} = \frac{222 \, \mathrm{B/s}}{\mathrm{E}} \\ & \dot{\mathbf{E}}\dot{\mathbf{x}}_{9} = 29.4 \, \left[(296.5 - 518.7 \times 1.8000) - (134.62 - 518.7 \times 1.6097) \right] \\ & \dot{\mathbf{E}}\dot{\mathbf{x}}_{9} = \frac{1857 \, \mathrm{B/s}}{\mathrm{E}} \end{split}$$

TOTAL		%
COMP.	344	6.63
BURNER	2278	43.91
H.P. TURB	130	2.51
MI XER	222	4.28
L.P. TURB	178	3.43
H.X.	179	3.45
EXH.	1857	35.79

COMPARISON OF EXERGY DISSIPATION FOR GTF990WR86 and GTF40WR86

APPENDIX D

CALCULATIONS AND RESULTS

GTF40WR₉₆ (LHV = 18,400 Btu/1bm)

For this calculation we will use $T_0 = 537^{\circ}R$, $P_0 = 14.7$ psia. The fuel will be one with a LHV = 18400. Schematic and state points are shown below.

The approach in this analysis is to determine the lost or dissipated exergy in each component rather than the absolute values of exergy.

STATION	TEMP R	PRESS PSI	ENTH BTU/LB	FAR	MASS FLOW	LB/SEC
2	560.0	14.6	133.81		29.00	
3	1107.6	119.4	267.81		27.55	
31	1580.5	118.6	390.00		27.55	
4	2414.7	113.9	532.14	.0136	27.93	
. 5	1930.9	39.2	492.95	.0136	27.93	
6	1892.7	37.6	481.80	.0129	29.38	
8	1600.2	16.1	400.8	.0129	29.38	
81	1600.2	15.8		.0129	29.38	
9	1432.2	14.9	279.8	.0129	29.38	

2-3 COmpressor (Q = 0)

$$E\dot{x}_2 + E\dot{x}_W = E\dot{x}_3 + E\dot{x}_D$$

$$\dot{m}[(h - T_0S)_2 - (h_0 - T_0S_0)] + 3886 = \dot{m}[(h - T_0S)_3 - (h_0 - T_0S_0)] + \dot{E}x_D$$

 $\phi_2 = 1.6094 \text{ B/1bm } ^\circ\text{R} = S_2$

$$29[133.81 - 537 (1.6094)] + 3886 - 29[267.81 - 537 (1.6321)] = E_{D}^{*}$$

or

$$\dot{Ex}_D = mT_0 [S_3 - S_2] = 353.5 = 354 B/s$$

4-5 HP TURBINE

$$\dot{W}$$
 = 27.93 [632.45 - 493.30] = 3886 B/s (True only if adiabatic)
 ϕ_4 = 1.9924 ; S_4 = 1.9924 - .0686 &n $\frac{113.9}{14.7}$ = 1.8519 B/1b °R
 ϕ_5 = 1.9282 ; S_5 = 1.9282 - .0686 &n $\frac{39.2}{14.7}$ = 1.8609

$$[(h_4 - T_0S_4) - (h_0 - T_0S_0)] = [(h_5 - T_0S_5) - (h_0 - T_0S_0)] + (h_4 - h_5) + ex_D$$

$$+ T_0(S_5 - S_4) = ex_D$$

$$537(1.8609 - 1.8519) = 4.83 \text{ B/lbm} = ex_D$$

$$E\dot{x}_D = 4.83 \times 27.93 = 135 \text{ B/s}$$

MIXER

$$Ex_A + Ex_5 = Ex_6 + Ex_D$$

1.45[390.0 - 537 x (1.8678 - .06855
$$\ln \frac{118.6}{14.7}$$
) - (128.2 - 537 x 1.5993)]

+ 27.93[492.95 - 537 x (1.9282 - .0686
$$\ln \frac{39.2}{14.7}$$
) - (129.0 - 537 x 1.5995)]

- 29.38[481.8 - 537 x (1.9223 - .0686
$$\ln \frac{37.6}{14.7}$$
) - (129.0 - 537 x 1.5996)]

$$E\dot{x}_D = 282 + 6244 - 6290 = 236 B/s$$

H.P. Turb & mix
$$E\dot{x}_D = 135 + 236 = 371 \text{ B/s}$$

COMPARE WITH NEXT PAGE

(alternate approach)

COMBINED TURBINE & MIXER

$$\phi_{31}$$
 = 1.8678 S₃₁ = 1.8678 - .0686 &n $\frac{118.6}{14.7}$ = 1.7246 B/1bm °R

$$\phi_6$$
 = 1.9223 S₆ = 1.9223 - .0686 ln $\frac{37.6}{14.7}$ = 1.8579

Check energy balance

$$(632.45)$$
 27.93 + $(390.41)(1.45)$ = 3886 + $(482.17)(29.38)$
 18230 = 18052 \approx 1% off

$$\dot{\mathbf{m}}_{\!_{4}} \big[\big(\mathbf{h}_{\!_{4}} - \mathbf{T}_{\!_{0}} \mathbf{S}_{\!_{4}} \big) - \big(\mathbf{h}_{\!_{0}} - \mathbf{T}_{\!_{0}} \mathbf{S}_{\!_{0}} \big) \big] + \dot{\mathbf{m}}_{\!_{31}} \big[\big(\mathbf{h}_{\!_{31}} - \mathbf{T}_{\!_{0}} \mathbf{S}_{\!_{31}} \big) - \big(\mathbf{h}_{\!_{0}} - \mathbf{T}_{\!_{0}} \mathbf{S}_{\!_{0}} \big) \big]$$

=
$$\dot{W} + \dot{m}_6 [(h_6 - T_0 S_6) - (h_0 - T_0 S_0)] + E\dot{x}_D$$
 Note: h_{fg} on both sides will cancel

- 29.38[(482.17 - 537 x 1.8579) - (129.00 - 537 x 1.5997)] =
$$E\dot{x}_D$$

$$\frac{Ex_D = 373 \text{ B/s}}{}$$

BURNER

Use
$$S_{fuel} \approx 0.9 \text{ B/1bm }^{\circ}\text{R}$$
 and let $T_{fuel} = T_{537} = T_{0}$
 $\dot{E}\dot{x}_{D} = \dot{m}_{f}(LHV) + \dot{m}_{f}(\Delta h_{f} - T_{0}S_{f}) + \dot{m}_{air}(\Delta h_{D} - T_{0}S)_{air}$
 $- \dot{m}_{p}(\Delta h_{p} - T_{0}S)_{p}$
 $T_{p}-537$

= $(.38)(18400) + .38(0 - 537 \times .9) + 27.55[(390.0 - 128.2) - 537 \times 1.7246]$
 $- 27.93[(632.1 - 129.0) - 537 \times 1.8519]$
 $\dot{E}\dot{x}_{D} = 6992 - 184 - 18,302 + 13724$
 $\dot{E}\dot{x}_{D} = 2230 \text{ B/s}$

L.P. TURBINE

$$\dot{W} = 29.38(481.8 - 400.8) = 2379.8 \text{ B/s}$$

 $\dot{Ex}_6 = \dot{Ex}_8 + \dot{Ex}_W + \dot{Ex}_D$

HEAT EXCHANGER

$$E\dot{x}_{3} + E\dot{x}_{8} = E\dot{x}_{31} + E\dot{x}_{9} + E\dot{x}_{D}$$

$$\begin{split} \dot{m}_{3} [(h_{3} - T_{0}S_{3}) - (h_{0} - T_{0}S_{0})_{3-31}] + \dot{m}_{8} [(h_{8} - T_{0}S_{8}) - (h_{0} - T_{0}S_{0})_{8-9}] = \\ \dot{m}_{3} [(h_{31} - T_{0}S_{31}) - (h_{0} - T_{0}S_{0})_{3-31}] + \dot{m}_{8} [(h_{9} - T_{0}S_{9}) - (h_{0} - T_{0}S_{0})_{8-9}] + E\dot{x}_{D} \\ 29 [(267.81 - 537 \times 1.6321)] + 29.38 [(400.8 - 537 \times 1.8696)] = \\ 29 [(390 - 537 \times 1.7246] + 29.38 [(279.8 - 537(1.7869 - .0686 \ln \frac{14.9}{14.7}) + E\dot{x}_{D} \\ -17.650 - 17721 + 15535 + 19957 = E\dot{x}_{D} \\ \underline{E\dot{x}_{D}} = 121 B/s \\ \underline{E\dot{x}_{D}} = 121 B/s \end{split}$$

The regenerator eff = $\frac{h_{31} - h_3}{h_{31} - h_3}$ where h_{31} = enthalpy of air at T_8

$$eff = \frac{390.41 - 267.81}{395.23 - 267.81} = .96$$

$$E\dot{x}_9 = [(h_9 - T_0S_9) - (h_0 - T_0S_0)]\dot{m}$$

$$= 29.38[[279.8 - 537 \times (1.7869 - .0686 \ln \frac{14.9}{14.7})]$$

$$- [129 - 537 \times 1.5996]]$$

$$E\dot{x}_9 = 29.38\{[279.8 - 537 \times 1.7860] - [129 - 859]\}$$

$$E\dot{x}_9 = 1490 \text{ B/s}$$

DISSIPATED EXER	<u>GY</u>	PERCENT
COMPRESSOR	354	7.45
H.P. TURBINE	135	2.84
MIXER	236	4.97
BURNER	2230	46.94
L.P. TURBINE	185	3.89
REGENERATOR	121	2.55
EXHAUST	1490 4751	$\frac{31.36}{100.00}$

EXERGY DISSIPATION FOR GTF40WR96