

An Educational System of Scientific Visualization Techniques Using Microsoft Excel Spreadsheets

Naohisa Sakamoto, Koji Koyamada Kyoto University, Japan

Rendering results (left: boundary faces, right: isosurfaces)

System architecture

Main characteristics of our system

- Users can intuitively understand the table-driven algorithm that uses look-up tables, such as in isosurface extraction, by using the worksheet.
- 2. Because the rendering processes can be visually shown on the worksheet in our system, users can learn the rendering pipeline, which is implemented as a fixed processing stage sequence on a GPU, and is hard to learn using only graphics APIs such as OpenGL.
- 3. By using our Excel-based system, users can efficiently learn that basis of computer graphics and scientific visualization techniques by using commodity PCs.

Frame buffer

A frame buffer can be created by treating a cell as a pixel.

Fragment processing

By filling in the cells, which can be regrads as a fragment in OpenGL, on the frame buffer worksheet, it is possible to draw a polygon on the worksheet.

Vertex processing

Transformation matrices for the vertex transformation, such as the modelview matrix and projection matrix in OpenGL, can be calculated on the worksheet by using only standard worksheet functions.

Vertex transformation

Double buffering

A double buffering process is performed for the animation rendering by switching two color buffer worksheets.

Depth testing

Hidden polygon removal can be performed with a Z buffer algorithm implemented in VBA by using the depth buffer worksheet.

Volume rendering

This research has been partially supported by the National Institute of Information and Communication Technology (NICT) of Japan.