MATE 6540: Tarea 2

Due on 21 de marzo
 Prof. Iván Cardona , C41, 21 de marzo

Sergio Rodríguez

Problem 0

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos y sea $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ una biyección. Demuestre que las siguientes son equivalentes:

- (a) f es un homeomorfismo.
- (b) $f y f^{-1}$ son funciones abiertas.
- (c) $f y f^{-1}$ son funciones cerradas.

Demo:

$$(a \Longrightarrow b)$$

Suponga que f es un homeomorfismo, y sea $U \in \mathcal{T}_X$, como f es biyectiva y un homeomorfismo, f^{-1} es continua, entonces $\left(f^{-1}\right)^{-1}(U) = f(U) \in \mathcal{T}_Y$.

 $\therefore f$ es función abierta.

Similarmente, sea $V\in\mathcal{T}_X$, como f es homeomorfismo, f es continua, entonces $f^{-1}(V)=\left(f^{-1}\right)^{-1}(V)\in\mathcal{T}_X$.

 $\therefore f^{-1}$ es función abierta.

$$(b \Longrightarrow c)$$

Suponga que f y f^{-1} son funciones abiertas. Sea $C \subseteq X$ cerrado y note que:

$$f^{-1}(Y \smallsetminus f(C)) = f^{-1}(Y) \smallsetminus f^{-1}(f(C)) = X \smallsetminus C \in \mathcal{T}_X \text{ (porque f es inyectiva)} \tag{1}$$

Pero f es función abierta, entonces:

$$f(f^{-1}(Y \setminus f(C))) = Y \setminus f(C) \in \mathcal{T}_Y \Longrightarrow f(C) \text{ es cerrado}$$
 (2)

 $\therefore f$ es función cerrada.

Similarmente, sea $K \subseteq Y$ cerrado y note que:

$$f(X \setminus f^{-1}(K)) = (f^{-1})^{-1}(X \setminus f^{-1}(K)) = (f^{-1})^{-1}(X) \setminus (f^{-1})^{-1}(f^{-1}(K))$$

= $f(X) \setminus f(f^{-1}(K)) = Y \setminus K \in \mathcal{T}_Y$ (3)

$$\Longrightarrow f^{-1}\big(f\big(X \smallsetminus f^{-1}(K)\big)\big) = X \smallsetminus f^{-1}(K) \in \mathcal{T}_X \Longrightarrow f^{-1}(K) \text{ es cerrado}$$

 f^{-1} es función cerrada.

$$(c \Longrightarrow a)$$

Suponga que f y f^{-1} son funciones cerradas, y sea C_Y un conjunto cerrado en (Y, \mathcal{T}_Y) , entonces $f^{-1}(C_Y)$ es cerrado en $(X, \mathcal{T}_X) \Longrightarrow f$ es continua.

Similarmente, suponga que C_X es cerrado en (X, \mathcal{T}_X) , entonces $(f^{-1})^{-1}(C_X) = f(C_X)$ es cerrado en $Y \Longrightarrow f^{-1}$ es continua.

 \therefore f es un homeomorfismo.

MEP

Problem 1

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos. Una función $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ es fuertemente continua si $f(\overline{A}) \subseteq f(A)$, $\forall A \subseteq X$. Demuestre que f es fuertemente continua $\iff f^{-1}(B)$ es cerrado, $\forall B \subseteq Y$.

Demo:

MEP

Problem 2

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos y \mathcal{U} la topología producto sobre $X \times X$. Demuestre que (X, \mathcal{T}_X) es Hausdorff \iff la diagonal $\Delta = \{(x,y) \in X \times X \mid x=y\}$ es un subconjunto cerrado de $(X \times X, \mathcal{U})$.

Demo:

MEP

Problem 3

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos. Demuestre que si $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ es sobreyectiva, continua, y abierta, entonces $\mathcal{T}_Y = \mathcal{T}_{\text{FIN}}$, donde \mathcal{T}_{FIN} es la topología final inducida por f.

Demo:

MEP

Problem 4

Sea $p:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ una función continua. Demuestre que si existe una función continua $f:(Y,\mathcal{T}_Y) \to (X,\mathcal{T}_X)$ tal que $p\circ f$ es la identidad en Y, entonces p es una aplicación cociente.

Demo:

MEP