(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 January 2003 (16.01.2003)

PCT

(10) International Publication Number WO 03/003906 A2

(51) International Patent Classification?: A61B
(21) International Application Number: PCT/US02/21338
(22) International Filing Date: 3 July 2002 (03.07.2002)

(25) Filing Language: English

(26) Publication Language:

English

(30) Priority Data:

 60/302,814
 3 July 2001 (03.07.2001)
 US

 60/310,099
 3 August 2001 (03.08.2001)
 US

 60/343,705
 8 November 2001 (08.11.2001)
 US

 60/350,666
 13 November 2001 (13.11.2001)
 US

 60/372,246
 12 April 2002 (12.04.2002)
 US

- (71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).
- (72) Inventors: MACK, David, H.; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). AZIZ, Natasha; 411 California Avenue, Palo Alto, CA 94306 (US).
- (74) Agents: PARENT, Annette, S. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF BLADDER CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF BLADDER CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in bladder cancer. Also described are such genes whose expression is further up-regulated or down-regulated in drug-resistant bladder cancer cells. Related methods and compositions that can be used for diagnosis, prognosis, or treatment of bladder cancer are disclosed. Also described herein are methods that can be used to identify modulators of bladder cancer.

METHODS OF DIAGNOSIS OF BLADDER CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF BLADDER CANCER

CROSS-REFERENCES TO RELATED APPLICATIONS

5

10

15

20

25

This application is related to USSN 60/302,814, filed July 3, 2001; USSN 60/310,099, filed August 3, 2001; USSN 60/343,705, filed November 8, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/372,246, filed April 12, 2001, each of which is incorporated herein by reference.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in bladder cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis, and therapy of bladder cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit bladder cancer.

BACKGROUND OF THE INVENTION

In the United States, over 50,000 new cases of bladder cancer are diagnosed annually, and more than 10,000 deaths will be attributed to bladder cancer. Bladder cancer is now the fourth most common cancer among American men and the ninth most common cancer among American women. It occurs three times more frequently in men than in women, and it occurs roughly twice more frequently in white versus black men.

Bladder cancer rarely occurs in people younger than 40 years of age, being primarily a disease of older men. Nonetheless, bladder cancer is a significant cause of illness and death in the United States. The risk of bladder cancer increases steeply with age, with over half of all bladder cancer deaths occurring after age 70. In white men older than 65, the annual disease rate of bladder cancer is approximately 2 cases per 1,000 persons; this contrasts with a rate of 0.1 cases per 1,000 persons younger than 65.

Within the United States, bladder cancer rates are higher among people who reside in northern versus southern states, and is higher for people who live in urban versus rural areas. Although this difference suggests that environmental as well as genetic factors may contribute to the development and progression of the disease, other studies confirm that certain genes play a role in bladder cancer. For example, expression of the tumor suppressor gene p53 has been associated with an adverse prognosis for patients with invasive bladder cancer. A retrospective study of 243 patients treated by radical cystectomy found that the presence of nuclear p53 was an independent predictor for recurrence among patients with mid to late stage tumors. Esrig, et al (1994) N.E.J. Med. 331:1259-64.

5

10

15

20

25

Urinary bladder cancers represent a spectrum of diseases that can be grouped into three general categories: superficial, invasive, and metastatic. The prognosis for treatment is highly dependent on the stage at which the tumor is first diagnosed. A unique aspect of bladder cancer treatment is that repeated surgical biopsy is an integral part of routine patient management. This has permitted the conduct of molecular genetic studies of tumors from specific stages of the disease. The results of these studies suggest that bladder cancers develop and progress along at least two discrete pathways, which may account for differences in invasiveness and metastatic potential. Incorporating molecular genetic factors into the current paradigm for diagnosis and treatment will optimize the probability of cure and allow the quality of life for bladder cancer patients to be maintained.

Early detection and treatment can prevent reoccurrence and progression of the disease to an incurable stage. Thus, the identification of novel diagnostic markers and therapeutic targets will improve the current treatment of bladder cancer patients. While industry and academia have identified novel sequences, there has not been an equal effort exerted to identify the function of these novel sequences in disease states. The elucidation of a role for novel proteins and compounds in disease states for identification of diagnostic markers and therapeutic targets is essential for improving the current treatment of bladder cancer patients. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of bladder cancer. Additionally, provided herein are molecular targets for therapeutic intervention in bladder cancer and other related bladder diseases.. Further provided are

methods that can be used to screen candidate bioactive agents for the ability to modulate bladder cancer.

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are upand down-regulated in bladder cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate bladder cancer, such as hormones or antibodies. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

5

10

15

20

25

In one aspect, the present invention provides a method of detecting a bladder cancerassociated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13.

In one embodiment, the present invention provides a method of determining the level of a bladder cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting a bladder cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-13.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label.

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat bladder cancer. In another embodiment, the patient is suspected of having metastatic bladder cancer.

In one embodiment, the patient is a human.

In one embodiment, the bladder cancer associated transcript is mRNA.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of bladder cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a bladder cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic bladder cancer. In a further embodiment, the patient has a drug resistant form of bladder cancer.

5

10

15

20

25

30

In one embodiment, the method further comprises the step of: (iii) comparing the level of the bladder cancer-associated transcript to a level of the bladder cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate bladder cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1A-13.

In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-13.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid.

In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-13.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-13.

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting a bladder cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody as described herein.

5

10

15

20

25

30

In another aspect, the present invention provides a method of detecting antibodies specific to bladder cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1A-13.

In another aspect, the present invention provides a method for identifying a compound that modulates a bladder cancer-associated polypeptide, the method comprising the steps of:
(i) contacting the compound with a bladder cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect:

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of a bladder cancer-associated cell to treat bladder cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having bladder cancer or to a cell sample isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence

as shown in Tables 1A-13in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of bladder cancer.

In one embodiment, the control is a mammal with bladder cancer or a cell sample therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal.

5

10

15

20

25

30

In one embodiment, the test compound is administered in varying amounts or concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1A-13 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

In another aspect, the present invention provides a method for treating a mammal having bladder cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having bladder cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in a bladder cancer. In one embodiment, a gene is selected from Tables 1A-13. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate, wherein the concentration of the drug candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug

candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate bladder cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the bladder cancer modulatory protein, or an animal lacking the bladder cancer modulatory protein, for example as a result of a gene knockout.

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1A-13, wherein the biochip comprises fewer than 1000 nucleic acid probes. Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

10

15

20

25

30

Furthermore, a method of diagnosing a disorder associated with bladder cancer is provided. The method comprises determining the expression of a gene of Tables 1A-13 in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with bladder cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in bladder cancer.

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of a bladder cancer modulating protein (bladder cancer modulatory protein) or a fragment thereof and an antibody which binds to said bladder cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining a bladder cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said bladder cancer modulatory protein or fragment thereof. The method further includes determining the binding of said bladder cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits bladder cancer.

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an individual a

composition comprising a bladder cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1A-13.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises a bladder cancer modulating protein, preferably encoded by a nucleic acid of Tables 1A-13 or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding a bladder cancer modulating protein, preferably selected from the nucleic acids of Tables 1A-13, and a pharmaceutically acceptable carrier.

5

10

15

20

25

Also provided are methods of neutralizing the effect of a bladder cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1A-13.

In another aspect of the invention, a method of treating an individual for bladder cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of a bladder cancer modulating protein. In another embodiment, the method comprises administering to a patient having bladder cancer an antibody to a bladder cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for bladder disease (BD), e.g., cancer, including metastatic bladder cancer, as well as methods for screening for compositions which modulate bladder diseases. Also provided are methods and compositions for treating bladder disease. Various related conditions where these markers may be useful also, include, e.g., carcinoma in situ, various stages of papillary carcinomas; and such conditions in different stages, layers, structural portions, etc.

Recent advances in molecular medicine, generally, have increased the interest in tumor-specific cell surface antigens that could serve as diagnostic or prognostic markers, or as targets for various immunotherapeutic or small molecule strategies. Antigens suitable for immunotherapeutic strategies should be highly expressed in cancer tissues and ideally not expressed in other, e.g., normal, adult tissues. Expression in tissues that are dispensable for life, however, may be tolerated, as a physiological consequence of such expression would be limited. Examples of such antigens in cancers other than bladder cancer include Her2/neu and the B-cell antigen CD20. Humanized monclonal antibodies directed to Her2/neu (Herceptin®/trastuzumab) are currently in use for the treatment of metastatic breast cancer. Ross and Fletcher (1998) Stem Cells 16:413-428. Similarly, anti-CD20 monoclonal antibodies (Rituxin®/rituximab) are used to effectively treat non-Hodgkin's lymphoma. Maloney, et al. (1997) Blood 90:2188-2195; and Leget and Czuczman (1998) Curr. Opin. Oncol. 10:548-551.

15 <u>Definitions</u>

5

10

20

25

30

The term "bladder cancer protein" or "bladder cancer polynucleotide" or "bladder cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a gene of Tables 1A-13; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1A-13, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1A-13 and conservatively modified variants thereof; or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino sequence identity, preferably over a region of over a region of at least

about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1A-13. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "bladder cancer polypeptide" and a "bladder cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" bladder cancer protein or nucleic acid refers to a bladder cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type bladder cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of splicing, including alternative splicing, or post-translation processing.

10

15

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid, e.g., that contains nucleic acids or polypeptides of a bladder cancer protein, polynucleotide, or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, urine, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate, e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, or mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g.,

about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, substitutions, naturally occurring variants, e.g., polymorphic or allelic, and manmade variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison computer algorithm, test and reference sequences, subsequence coordinates, and sequence algorithm program parameters are typically designated. Default or alternative program parameters can be selected. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from about 20-600, usually about 50-200, more usually about 100-150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, by, e.g., the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l Acad. Sci. USA 85:2444-448, computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer

Group, 575 Science Dr., Madison, WI), or manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) <u>Current Protocols in Molecular Biology</u>
Lippincott.

5

10

15

20

25

30

Preferred algorithms suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms. See Altschul, et al. (1977) Nuc. Acids Res. 25:3389-3402; and Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Nat'l Acad. Sci. USA 89:10915-919) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Nat'l Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

5

10

15

20

25

30

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells in vivo, and the like. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from

some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments typically denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogeneous, e.g., 100% pure.

5

10

15

20

25

30

The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which at least one amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and a non-naturally occurring amino acid polymer.

The term "amino acid" embraces naturally occurring or synthetic amino acids, amino acid analogs, and amino acid mimetics. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs include compounds that share a basic chemical structure with a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, or an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but share some basic chemical structure with a naturally occurring amino acid. Amino acid mimetics include chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function similarly to a naturally occurring amino acid.

Amino acids may be referred to herein by their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to amino acid or nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or

where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU all encode the amino acid alanine. Thus, at each position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Each nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions, or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds, or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions for one another include: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M). See, e.g., Creighton (1984) Proteins: Structure and Molecular Properties Freeman.

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. See, e.g., Alberts, et al. (eds. 2001) Molecular Biology of the Cell (4th ed.) Garland; and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The

Conformation of Biological Macromolecules Freeman. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains, which are portions of a polypeptide that often form a compact unit of the polypeptide, and are typically about 25-500 amino acids long. Typical domains are made of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

5

10

15

20

25

30

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are polymers, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds. In some cases, nucleic acid analogs are included that may have alternate backbones, e.g., phosphoramidate (Beaucage, et al. (1993) Tetrahedron 49:1925-963 and references therein; Letsinger (1970) J. Org. Chem. 35:3800-803; Sprinzl, et al. (1977) Eur. J. Biochem. 81:579-589; Letsinger, et al. (1986) Nucl. Acids Res. 14:3487-499; Sawai, et al. (1984) Chem. Lett. 805; Letsinger, et al. (1988) J. Am. Chem. Soc. 110:4470-471; and Pauwels, et al. (1986) Chemica Scripta 26:141-149); phosphorothioate (Mag, et al. (1991), Nucleic Acids Res. 19:1437-441; and U.S. Patent No. 5,644,048); phosphorodithioate (Brill, et al. (1989) J. Am. Chem. Soc. 111:2321-322); O-methylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford Univ. Press); and peptide nucleic acid backbones and linkages (see Egholm (1992) J. Am. Chem. Soc. 114:1895-897; Meier, et al. (1992) Chem. Int. Ed. Engl. 31:1008-010; Nielsen (1993) Nature 365:566-568; Carlsson, et al. (1996) Nature 380:207. Other analog nucleic acids include those with positively charged backbones(Denpcy, et al. (1995) Proc. Nat'l Acad. Sci. USA 92:6097-101); non-ionic backbones (U.S. Patent Nos. 5,386,023; 5,637,684; 5,602,240; 5,216,141; and 4,469,863; Kiedrowshi, et al. (1991) Angew. Chem. Intl. Ed. English 30:423-426;

Letsinger, et al. (1988) J. Am. Chem. Soc. 110:4470-471; Jung, et al. (1994) Nucleoside and Nucleotide 13:1597-xxx; Chapters 2-3 of Sanghvi and Cook (eds. 1994) Carbohydrate

Modifications in Antisense Research ACS Symposium Series 580; Mesmaeker, et al. (1994)

Bioorganic and Medicinal Chem. Lett. 4:395-398; Jeffs, et al. (1994) J. Biomolecular NMR

34:17; Horn, et al. (1996) Tetrahedron Lett. 37:743-xxx); and non-ribose backbones (see U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6-7 of Sanghvi and Cook (eds. 1994)

Carbohydrate Modifications in Antisense Research ACS Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also contemplated. See Jenkins and Turner (1995) Chem. Soc. Rev. 24:169-176. Several nucleic acid analogs are described in Rawls (page 35, June 2, 1997) C&E News. Modifications of the ribose-phosphate backbone may be made, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which include peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. The PNA backbone typically exhibits improved hybridization kinetics, exhibiting larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. And due to their non-ionic nature, hybridization of the polymers is relatively insensitive to salt concentration. In addition, PNAs are not as easily degraded by cellular enzymes, and can be more stable.

The nucleic acids may be single stranded or double stranded, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine,

isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

5

10

15

20

25

30

A "label" or "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. Direct or indirect methods are comtemplated. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the bladder cancer nucleic acids, proteins, and antibodies. Methods are well known for conjugating the antibody to the label, including those methods described by Hunter, et al. (1962) Nature 144:945-946; David, et al. (1974) Biochemistry 13:1014-021; Pain, et al. (1981) J. Immunol. Meth. 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to a target, e.g., an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds; fluorescent compounds; an enzyme or substrate; tags such as epitope tags; a toxin; activatable moieties; a chemotherapeutic agent; a lipase; an antibiotic; a radioisotope emitting "hard", e.g., beta radiation; or an attracting moiety.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (e.g., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which streptavidin linked label may bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed, or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operable linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, e.g., using in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced

recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, e.g., through the expression of a recombinant nucleic acid as depicted above.

5

10

15

20

25

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

5

10

15

20

25

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) Hybridization with Nucleic Probes (Techniques in Biochemistry and Molecular Biology; vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., about 10-50 nucleotides) and at least about 60° C for long probes (e.g., greater than about 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least about two times background, preferably about 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32-48° C depending on primer length. For high stringency PCR amplification, a temperature of about 62° C is typical, although high stringency annealing temperatures can range from about 50-

65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90-95° C for 30-120 sec, an annealing phase lasting 30-120 sec, and an extension phase of about 72° C for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications Academic Press NY.

5

10

15

20

25

30

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least about twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous references, e.g., Ausubel, et al. Current Protocols in Molecular Biology Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a bladder cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the bladder cancer protein or nucleic acid, e.g., a functional, physical, or chemical effect, such as the ability to decrease bladder cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cell viability, cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of bladder cancer cells. "Functional effects" include in vitro, in vivo, and ex vivo activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a bladder cancer protein sequence, e.g., functional, enzymatic, physical and chemical effects.

Such functional effects can be measured by many means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the bladder cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation or metabolism. Determination of the functional effect of a compound on bladder cancer can also be performed using bladder cancer assays, such as, in vitro assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of bladder cancer cells. Functional effects can be evaluated by many means, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for bladder cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β-gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of bladder cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of bladder cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of bladder cancer proteins, e.g., antagonists. Antisense nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate bladder cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of bladder cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g.,

expressing the bladder cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of bladder cancer can also be identified by incubating bladder cancer cells with the test compound and determining increases or decreases in the expression of 1 or more bladder cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more bladder cancer proteins, such as bladder cancer proteins encoded by the sequences set out in Tables 1A-13.

Samples or assays comprising bladder cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably about 50%, more preferably about 25-0%. Activation of a bladder cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is about 110%, more preferably about 150%, more preferably about 200-500% (e.g., two to five fold higher relative to the control), more preferably about 1000-3000% higher.

10

15

20

25

30

The phrase "changes in cell growth" refers to a change in cell growth and proliferation characteristics in vitro or in vivo, such as cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., pp. 231-241 of Freshney (1994) <u>Culture of Animal Cells: A Manual of Basic Technique</u> (3d ed.).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene.

Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy. See, Freshney (2000) Culture of Animal Cells: A Manual of Basic Technique (4th ed.) Wiley-Liss.

5

10

15

20

25

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul (ed. 1999) Fundamental Immunology (4th ed.) Raven.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'2, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'2 dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region. See Paul (ed. 1999) Fundamental Immunology (4th ed.) Raven. While various antibody fragments are defined in terms of the digestion of an intact antibody, such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using

recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries. See, e.g., McCafferty, et al. (1990) Nature 348:552-554.

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques can be used. See, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al. pp. 77-96 in Reisfeld and Sell (1985) Monoclonal Antibodies and Cancer Therapy Liss; Coligan (1991) Current Protocols in Immunology Lippincott; Harlow and Lane (1988) Antibodies: A Laboratory Manual CSH Press; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press. Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens. See, e.g., McCafferty, et al. (1990) Nature 348:552-554; and Marks, et al. (1992) Biotechnology 10:779-783.

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced, or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function, and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced, or exchanged with a variable region having a different or altered antigen specificity.

Identification of bladder cancer-associated sequences

5

10

15

20

25

30

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue (e.g., normal bladder or other

tissue) may be distinguished from cancerous or metastatic cancerous tissue of the bladder, or bladder cancer tissue or metastatic bladder cancerous tissue can be compared with tissue samples of bladder and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different bladder cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained.

5

10

15

20

25

30

The identification of sequences that are differentially expressed in bladder cancer versus non-bladder cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate bladder cancer, and thus tumor growth or recurrence, in a particular patient; or does chemotherapy or radiation therapy induce expression of particular targets. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of bladder cancer in the tissue or origin of a primary tumor. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the bladder cancer expression profile. This may be done by making biochips comprising sets of important bladder cancer genes, which can then be used in these screens. These methods can also be applied on the protein basis; that is, protein expression levels of the bladder cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the bladder cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense or inhibitory nucleic acids, or the bladder cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in bladder disease or cancer relative to normal tissues and/or non-malignant bladder tissue, herein termed "bladder cancer sequences." As outlined below, bladder cancer sequences include those that are up-regulated (e.g., expressed at a higher level) in bladder cancer, as well as those that are down-regulated (e.g., expressed at a lower level). In a preferred embodiment, the bladder cancer sequences are from humans; however,

as will be appreciated by those in the art, bladder cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other bladder cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.). Bladder cancer sequences from other organisms may be obtained using the techniques outlined below.

5

10

15

20

25

30

Bladder cancer sequences can include both nucleic acid and amino acid sequences. Bladder cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications. Biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the bladder cancer sequences can be generated.

A bladder cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the bladder cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying bladder cancer-associated sequences, the bladder cancer screen typically includes comparing genes identified in different tissues, e.g., normal, non-malignant, or cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing bladder cancer samples with metastatic cancer samples from other cancers, such as lung, bladder, gastrointestinal cancers, ovarian, etc. Samples of different stages of bladder cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In one embodiment, genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal bladder, but also including, and not limited to lung, heart, brain, liver, bladder, kidney,

muscle, colon, small intestine, large intestine, spleen, bone, and placenta. In a preferred embodiment, those genes identified during the bladder cancer screen that are expressed in a significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, e.g., not be expressed on critical organs.

In a preferred embodiment, bladder cancer sequences are those that are up-regulated in bladder cancer; that is, the expression of these genes is higher in the bladder cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and sequences of accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, et al. (1998) Nuc. Acids Res. 26:1-7 and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

In another preferred embodiment, bladder cancer sequences are those that are down-regulated in the bladder cancer; that is, the expression of these genes is lower in bladder cancer tissue as compared to non-cancerous tissue (see, e.g., Tables 1A-13). "Down-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred.

Informatics

5

10

15

20

25

30

The ability to identify genes that are over or under expressed in bladder cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with bladder cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation. See Anderson (June 11-12, 1998) Pharmaceutical Proteomics:

Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference,

Coronado, CA. Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

5

10

15

20

25

30

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on an electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent that similar databases can be assembled for assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing bladder cancer, e.g., the identification of bladder cancer-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be

catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multi-dimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

10

15

20

25

See also Mount, et al. (2001) <u>Bioinformatics</u> CSH Press, NY; Durbin, et al. (eds. 1999) <u>Biological Sequence Analysis</u>: <u>Probabilistic Models of Proteins and Nucleic Acids</u> Cambridge Univ. Press; Baxevanis and Oeullette (eds. 1998) <u>Bioinformatics</u>: <u>A Practical Guide to the Analysis of Genes and Proteins</u> (2d. ed.) Wiley-Liss; Rashidi and Buehler (1999) <u>Bioinformatics</u>: <u>Basic Applications in Biological Science and Medicine</u> CRC Press; Setubal, et al. (eds 1997) <u>Introduction to Computational Molecular Biology</u> Brooks/Cole; Misener and Krawetz (eds. 2000) <u>Bioinformatics</u>: <u>Methods and Protocols</u> Oxford Univ. Press; Higgins and Taylor (eds. 2000) <u>Bioinformatics</u>: <u>Sequence</u>, <u>Structure</u>, and <u>Databanks</u>: <u>A Practical Approach</u> Oxford Univ. Press; Brown (2001) <u>Bioinformatics</u>: A <u>Biologist's Guide to Biocomputing and the Internet</u> Eaton Pub.; Han and Kamber (2000) <u>Data Mining</u>: <u>Concepts and Techniques</u> Kaufmann Pub.; and Waterman (1995) <u>Introduction to Computational Biology</u>: <u>Maps</u>, <u>Sequences</u>, and <u>Genomes</u> Chap and Hall.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g.,

with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for bladder cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

5

10

15

20

25

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

5

10

15

20

25

30

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor

can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

15

20

25

30

10

5

Characteristics of bladder cancer-associated proteins

Bladder cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the bladder cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Alberts, et al. (1994) Molecular Biology of the Cell (3d ed.) Garland. For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In

addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden. See, e.g., Bateman, et al. (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-322.

5

10

15

20

25

30

In another embodiment, the bladder cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains.

For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases

and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, and interleukin receptors, e.g., IL-1 receptor, IL-2 receptor, etc.

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Bladder cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in

situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the bladder cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, wax producing glands of the ear, etc.). Thus secreted molecules often find use in modulating or altering numerous aspects of physiology. Bladder cancer proteins that are secreted or released proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or urine tests. Those which are enzymes may be antibody or small molecule targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms.

Use of bladder cancer nucleic acids

5

10

15

20

25

As described above, bladder cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the bladder cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The bladder cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1A-13, can be fragments of larger genes, e.g., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the bladder cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., supra. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

10

15

20

25

30

Once a bladder cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire bladder cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant bladder cancer nucleic acid can be further-used as a probe to identify and isolate other bladder cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant bladder cancer nucleic acids and proteins.

The bladder cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the bladder cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, and/or antisense/inhibition applications.

Alternatively, the bladder cancer nucleic acids that include coding regions of bladder cancer proteins can be put into expression vectors for the expression of bladder cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to bladder cancer nucleic acids (both the nucleic acid sequences outlined in the tables and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the bladder cancer nucleic acids, e.g., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that

hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be a number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

5

10

15

20

25

30

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (e.g., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical

equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

5

10

15

20

25

30

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. See WO 00/55627.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being

particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

10

15

20

25

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of bladder cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, a bladder cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of bladder cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative

PCR are provided, e.g., in Innis, et al. (1990) <u>PCR Protocols: A Guide to Methods and Applications</u> Academic Press.

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification. See, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com.

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560-569; Landegren, et al. (1988) Science 241:1077-1080; and Barringer, et al. (1990) Gene 89:117-122), transcription amplification (Kwoh, et al. (1989) Proc. Nat'l Acad. Sci. USA 86:1173-1177), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:1874-1878), dot PCR, and linker adapter PCR, etc.

Expression of bladder cancer proteins from nucleic acids

5

10

15

20

25

In a preferred embodiment, bladder cancer nucleic acids, e.g., encoding bladder cancer proteins, are used to make a variety of expression vectors to express bladder cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Fernandez and Hoeffler (eds. 1999) Gene Expression Systems Academic Press) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the bladder cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a

promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation; two sequences may be operably linked if they are physically linked on a single polynucleotide. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the bladder cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

10

15

20

25

30

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are useful in the present invention.

In addition, an expression vector may comprise additional elements. The expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a procaryotic host for cloning and replication. For integrating expression vectors, the expression vector may contain at least one sequence homologous to the host cell genome, and preferably two homologous sequences

which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known (e.g., Fernandez and Hoeffler, supra).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The bladder cancer proteins of the present invention may be produced by culturing a host cell transformed with an expression vector under the appropriate conditions to induce or cause expression of the bladder cancer protein. Conditions appropriate for bladder cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will typically require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter typically requires identifying the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, insect, and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the bladder cancer proteins are expressed in mammalian cells. Mammalian expression systems include retroviral and adenoviral systems. Retroviral vector systems are described in PCT/US97/01019 and PCT/US97/01048. Of particular use are promoters from mammalian viral genes, since viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez and Hoeffler, supra). Typically, transcription

termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlyation signals include those derived from SV40.

Methods of introducing exogenous nucleic acid into mammalian and other hosts are well known, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In another embodiment, bladder cancer proteins are expressed in bacterial systems. Promoters from bacteriophage may also be used. Synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. A bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. Often an efficient ribosome binding site is desirable. The expression vector may include a signal peptide sequence that provides for secretion of the bladder cancer protein. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs, e.g., ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin, and tetracycline, or biosynthetic genes, e.g., those in the histidine, tryptophan, and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez and Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using, e.g., calcium chloride treatment, electroporation, and other methods.

Bladder cancer proteins can also be produced in insect cells. See, e.g., Miller, et al. (1997) <u>Baculovirus Expression Vectors: A Laboratory Manual</u> Oxford Books; ISBN: 0716770172; and Makrides (1999) <u>Prot. Expr. Purif.</u> 17:183-202.

Bladder cancer protein may be produced in yeast cells. Yeast expression systems exist with expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica. See, e.g., Jones, et al. (eds. 1993) The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression CSH Press; ISBN: 0879693657.

The bladder cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the bladder cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the bladder cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the bladder cancer protein is a bladder cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression or purification purposes.

The bladder cancer protein is typically purified or isolated after expression. Bladder cancer proteins may be isolated or purified in a variety of ways, depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological, and chromatographic techniques, including ion exchange, hydrophobic, affinity, reverse-phase HPLC chromatography, and chromatofocusing. The bladder cancer protein may be purified using a standard anti-bladder cancer protein antibody affinity column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see, e.g., Scopes (1982) Protein Purification Springer-Verlag. The degree of purification necessary will vary depending on the use of the bladder cancer protein. In some instances no purification will be necessary, which may depend on the intended use.

Once expressed and purified, if necessary, the bladder cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

Variants of bladder cancer proteins

5

10

15

20

25

In one embodiment, the bladder cancer proteins are derivative or variant bladder cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative bladder cancer peptide will often contain at least one amino acid substitution, deletion, or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion, or deletion may occur at most residues within the bladder cancer peptide.

5

10

15

20

25

Certain embodiments of bladder cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional, or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the bladder cancer protein, using cassette or PCR, mutagenesis, or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant bladder cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are often characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the bladder cancer protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is often predetermined, the mutation per se need not be predetermined. To optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed bladder cancer variants screened for the optimal combination of desired activities. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is performed using assays of bladder cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be

tolerated. Deletions range from about 1-20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions, or combinations thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the bladder cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

5

10

15

20

25

30

The variants typically exhibit the same qualitative biological activity and elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the bladder cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the bladder cancer protein is altered. For example, glycosylation sites may be altered or removed.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. Substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, e.g., the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. Substitutions which are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g., serine or threonine is substituted for (or by) a hydrophobic residue, e.g., leucine, isoleucine, phenylalanine, valine, or alanine; (b) a cysteine or proline is substituted for (or by) another residue; (c) a residue having an electronegative residue, e.g., lysine, arginine, or histidine, is substituted for (or by) an electronegative residue, e.g., glutamic acid or aspartic acid; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

Covalent modifications of bladder cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a bladder cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a bladder cancer polypeptide. Derivatization with bifunctional agents is useful, e.g., for crosslinking bladder

cancer polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-bladder cancer polypeptide antibodies or screening assays. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

5

10

15

20

25

30

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamic and aspartic residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serine, threonine or tyrosine residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (pp. 79-86, Creighton (1984) Proteins: Structure and Molecular Properties Freeman), acetylation of the N-terminal amine, and amidation of a C-terminal carboxyl group.

Another type of covalent modification of the bladder cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence bladder cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence bladder cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express bladder cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to bladder cancer polypeptides may also be accomplished by-altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence bladder cancer polypeptide (for O-linked glycosylation sites). The bladder cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the bladder cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the bladder cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide.

Such methods are described in the art, e.g., in WO 87/05330, and pp. 259-306 in Aplin and Wriston (1981) CRC Crit. Rev. Biochem.

Removal of carbohydrate moieties present on the bladder cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art. See, e.g., Hakimuddin, et al. (1987) <u>Arch. Biochem.</u> <u>Biophys.</u> 259:52-57; and Edge, et al. (1981) <u>Anal. Biochem.</u> 118:131-137. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases. See, e.g., Thotakura, et al. (1987) <u>Meth. Enzymol.</u> 138:350-359.

5

10

15

20

25

30

Another type of covalent modification of bladder cancer comprises linking the bladder cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; or 4,179,337.

Bladder cancer polypeptides of the present invention may also be modified to form chimeric molecules comprising a bladder cancer polypeptide fused to a heterologous polypeptide or amino acid sequence. In one embodiment, a chimeric molecule comprises a fusion of a bladder cancer polypeptide with an epitope tag. The epitope tag is generally placed at the amino-or carboxyl-terminus of the bladder cancer polypeptide. The presence of such epitope-tagged forms of a bladder cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the bladder cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a bladder cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7, and 9E10 antibodies thereto (Evan, et al. (1985) Molecular and Cellular Biology 5:3610-3616);

and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3:547-553). Other tag polypeptides include the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other bladder cancer proteins of the bladder cancer family, and bladder cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related bladder cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the bladder cancer nucleic acid sequence. Preferred PCR primers are from about 15-35 nucleotides in length, with from about 20-30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known. See, e.g., Innis (1990) PCR Protocols, supra.

Antibodies to bladder cancer proteins

10

15

20

25

30

In a preferred embodiment, when the bladder cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the bladder cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller bladder cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known (see, e.g., Coligan, supra; and Harlow and Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a

nucleic acid of the tables or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.

Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected as appropriate.

10

15

20

25

30

The antibodies may be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495-497. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1A-13 or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (pp. 59-103, Goding (1986) Monoclonal Antibodies: Principles and Practice Academic Press). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are typically monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two

epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Tables 1A-13 or a fragment thereof, the other one is for another antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

5

10

15

20

25

30

In a preferred embodiment, the antibodies to bladder cancer protein are capable of reducing or eliminating a biological function of a bladder cancer protein, as is described below. That is, the addition of anti-bladder cancer protein antibodies (either polyclonal or preferably monoclonal) to bladder cancer tissue (or cells containing bladder cancer) may reduce or eliminate the bladder cancer. Generally, at least about 25% decrease in activity, growth, size, or the like is preferred, with at least about 50% being particularly preferred, and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the bladder cancer proteins are humanized antibodies (e.g., Xenerex Biosciences; Medarex, Inc.; Abgenix, Inc.; Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human

immunoglobulin. See Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988)

Nature 332:323-329; and Presta (1992) Curr. Op. Struct. Biol. 2:593-596. Humanization can be performed, e.g., following the method of Winter and co-workers (see Jones, et al. (1986)

Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-327; Verhoeyen, et al. (1988)

Science 239:1534-1536), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter (1991) J. Mol. Biol. 227:381-388; Marks, et al. (1991) J. Mol. Biol. 222:581-597) or of human monoclonal antibodies (e.g., p. 77, Cole, et al. in Reisfeld and Sell (1985) Monoclonal Antibodies and Cancer Therapy Liss; and Boerner, et al. (1991) J. Immunol. 147:86-95). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Neuberger (1996) Nature Biotechnology 14:826 commenting on Fishwild, et al. (1996) Nature Biotechnology 14:845-51; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

By immunotherapy is meant treatment of bladder cancer with an antibody raised against bladder cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient), which may be used to target a label or toxin. Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As

appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the bladder cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted bladder cancer protein.

5

10

15

20

25

30

In another preferred embodiment, the bladder cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the bladder cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane bladder cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the bladder cancer protein. The antibody is also an antagonist of the bladder cancer protein. Further, the antibody prevents activation of the transmembrane bladder cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the bladder cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, bladder cancer is treated by administering to a patient antibodies directed against the transmembrane bladder cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be a number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the

therapeutic moiety is a small molecule that modulates the activity of the bladder cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the bladder cancer protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with bladder cancer.

5

10

15

20

25

30

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to bladder cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with bladder cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against bladder cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane bladder cancer proteins not only serves to increase the local concentration of therapeutic moiety in the bladder cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the bladder cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the bladder cancer protein can be targeted within a cell, e.g., the nucleus, an antibody thereto contains a signal for that target localization, e.g., a nuclear localization signal.

The bladder cancer antibodies of the invention specifically bind to bladder cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of bladder cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the bladder cancer phenotype. Expression levels of genes in normal tissue (e.g., not experiencing bladder cancer) and in bladder cancer tissue (and in some cases, for varying severities of bladder cancer that relate to prognosis, as outlined below), or in non-malignant disease, are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

10

15

20

25

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus bladder cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; e.g., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays. See Lockhart (1996) Nature Biotechnology 14:1675-1680. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR,

northern analysis and RNase protection. As outlined above, preferably the change in expression (e.g., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from about 300-1000% being especially preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the bladder cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to bladder cancer genes, e.g., those identified as being important in a bladder cancer or disease phenotype, can be evaluated in a bladder cancer diagnostic test.

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the bladder cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of bladder cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the bladder cancer protein are detected. Although DNA or RNA encoding the bladder cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a bladder cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid

probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example, a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a bladder cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The bladder cancer proteins, antibodies, nucleic acids, modified proteins and cells containing bladder cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, bladder cancer proteins, including intracellular, transmembrane or secreted proteins, find use as diagnostic or prognostic markers of bladder cancer, or to assist in selecting therpay based on expression profile and archival data. Detection of these proteins in putative bladder cancer tissue allows for detection or diagnosis of bladder cancer. In one embodiment, antibodies are used to detect bladder cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the bladder cancer protein is detected, e.g., by immunoblotting with antibodies raised against the bladder cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the bladder cancer protein find use in in situ imaging techniques, e.g., in histology (e.g., Asai (ed. 1993) "Antibodies in Cell Biology" Methods in Cell Biology (vol. 37). In this method cells are contacted with from one to many antibodies to the bladder cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable

label. In another method the primary antibody to the bladder cancer protein(s) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of bladder cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

5

10

15

20

25

30

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing bladder cancer from blood, serum, plasma, stool, urine, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of bladder cancer proteins. Antibodies can be used to detect a bladder cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous bladder cancer protein.

In a preferred embodiment, in situ hybridization of labeled bladder cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including bladder cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the bladder cancer proteins, antibodies, nucleic acids, modified proteins and cells containing bladder cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to bladder cancer, clinical, pathological, or other information, e.g., in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. Single or multiple genes may be useful in various combinations. As above, bladder cancer probes may

be attached to biochips for the detection and quantification of bladder cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR methods may provide more sensitive and accurate quantification.

5 Assays for therapeutic compounds

10

15

20

25

30

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The bladder cancer proteins, antibodies, nucleic acids, modified proteins and cells containing bladder cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent. See, e.g., Zlokarnik, et al. (1998) Science 279:84-88; and Heid (1996) Genome Res. 6:986-94.

In a preferred embodiment, the bladder cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified bladder cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the bladder cancer phenotype or an identified physiological function of a bladder cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, supra.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in bladder cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the bladder cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing bladder cancer, with changes of at least about 10%, preferably about 50%, more preferably about 100-300%, and in some

embodiments about 300-1000% or greater. Thus, if a gene exhibits about 4-fold increase in bladder cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, about 10-fold decrease in bladder cancer tissue compared to normal tissue often provides a target value of about 10-fold increase in expression to be induced by the test compound.

5

10

15

20

25

30

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the bladder cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, e.g., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the bladder cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of bladder cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more bladder cancer-associated sequences, e.g., a polynucleotide sequence set out inTables 1A-13. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate bladder cancer, modulate bladder cancer proteins, bind to a bladder cancer protein, or interfere with the binding of a bladder cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes a molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the bladder cancer phenotype or the expression of a bladder cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter

expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a bladder cancer phenotype, e.g., to a normal tissue or non-malignant fingerprint. In another embodiment, a modulator induced a bladder cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, e.g., at zero concentration or below the level of detection.

5

10

15

20

25

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than about 100 and less than about 2,500 daltons. Preferred small molecules are less than about 2000, or less than about 1500 or less than about 1000 or less than about 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl, or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

In one aspect, a modulator will neutralize the effect of a bladder cancer protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a bladder cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

5

10

15

20

25

30

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (e.g., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks. See, e.g., Gallop, et al. (1994) J. Med. Chem. 37:1233-1251.

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Pept. Prot. Res. 37:487-493, Houghton, et al. (1991) Nature 354:84-88); peptoids (PCT Publication No WO 91/19735); encoded peptides (PCT Publication WO 93/20242); random bio-oligomers (PCT Publication WO 92/00091); benzodiazepines (U.S. Pat. No. 5,288,514); diversomers such as hydantoins, benzodiazepines, and dipeptides (Hobbs, et al. (1993) Proc. Nat'l Acad. Sci. USA 90:6909-6913); vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568-6570); nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann, et al. (1992) J. Amer. Chem. Soc. 114:9217-9218); analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661-2662); oligocarbamates (Cho, et al. (1993) Science 261:1303-1305); and/or peptidyl phosphonates (Campbell, et al. (1994) J. Org. Chem. 59:658-xxx). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385-1401, nucleic acid libraries (see, e.g., Strategene, Corp.); peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083); antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14:309-314, and PCT/US96/10287);

carbohydrate libraries (Liang, et al. (1996) <u>Science</u> 274:1520-1522, and U.S. Patent No. 5,593,853); and small organic molecule libraries (see, e.g., benzodiazepines, Baum (p. 33, Jan 18, 1993) <u>C&E News</u>); isoprenoid (U.S. Patent No. 5,569,588); thiazolidinones and metathiazanones (U.S. Patent No. 5,549,974); pyrrolidines (U.S. Patent Nos. 5,525,735 and 5,519,134); morpholino compounds (U.S. Patent No. 5,506,337); benzodiazepines (U.S. Patent No. 5,288,514); and the like.

Devices for the preparation of combinatorial libraries are commercially available. See, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY; Symphony, Rainin, Woburn, MA; 433A Applied Biosystems, Foster City, CA; and 9050 Plus, Millipore, Bedford, MA.

10

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, MA; Orca,

Hewlett-Packard, Palo Alto, CA), which mimic the manual synthetic operations performed by a chemist. The above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex,

Princeton, NJ; Asinex, Moscow, Ru; Tripos, Inc., St. Louis, MO; ChemStar, Ltd, Moscow, RU; 3D Pharmaceuticals, Exton, PA; Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of bladder cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (e.g., in

arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

5

10

15

20

25

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5-30 amino acids, with from about 5-20 amino acids being preferred, and from about 7-15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate nucleotide or amino acid substitutions. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the

length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

5

10

15

20

25

30

In one embodiment, the library is fully randomized, with no sequence preferences or constants. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of bladder cancer can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. Digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag

or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

5

10

15

20

25

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc., which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

5

10

15

20

25

30

Screens are performed to identify modulators of the bladder cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a bladder cancer expression pattern leading to a normal expression pattern, or to modulate a single bladder cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated bladder cancer tissue reveals genes that are not expressed in normal tissue or bladder cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for bladder cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated bladder cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of bladder cancer cells, that have an associated bladder cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (e.g., a peptide) may be put into a viral construct such as an adenoviral or

retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., bladder cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress the bladder cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on bladder cancer activity. By defining such a signature for the bladder cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

10

15

20

25

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "bladder cancer proteins" or a "bladder cancer modulatory protein". The bladder cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of the Tables 1A-13. Preferably, the bladder cancer modulatory protein is a fragment. In a preferred embodiment, the bladder cancer amino acid sequence which is used to determine sequence identity or similarity is encoded by a nucleic acid of Tables 1A-13. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Tables 1A-13. In another embodiment, the sequences are sequence variants as further described herein.

Preferably, the bladder cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has

an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, e.g., to cysteine.

In one embodiment the bladder cancer proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the bladder cancer protein is conjugated to BSA.

5

10

15

20

25

30

Measurements of bladder cancer polypeptide activity, or of bladder cancer or the bladder cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the bladder cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of bladder cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian bladder cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, a bladder cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5-48 hours. In one embodiment, the bladder cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the bladder cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using the bladder cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein,

CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "bladder cancer proteins." The bladder cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

5

10

15

20

25

30

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present.

Alternatively, cells comprising the bladder cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a bladder cancer protein and a candidate compound, and determining the binding of the compound to the bladder cancer protein. Preferred embodiments utilize the human bladder cancer protein, although other mammalian proteins may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative bladder cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the bladder cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be

made of a composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of a convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

10

15

20

25

30

In a preferred embodiment, the bladder cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the bladder cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the bladder cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the bladder cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

5

10

15

20

25

30

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (e.g., a bladder cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the bladder cancer protein and thus is capable of binding to, and potentially modulating, the activity of the bladder cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the bladder cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the bladder cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the bladder cancer proteins. In this embodiment, the methods comprise combining a bladder cancer protein and a competitor in a first sample. A second sample comprises a test compound, a bladder cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the bladder cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the bladder cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native bladder cancer protein, but cannot bind to modified bladder cancer proteins. The structure of the bladder cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a bladder cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

10

15

20

25

30

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a bladder cancer protein. The methods

comprise adding a test compound, as defined above, to a cell comprising bladder cancer proteins. Many different cell types may be transfected to contain a recombinant nucleic acid that encodes a bladder cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, and pharmacological agents including, e.g., chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In one example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate bladder cancer agents are identified.

Compounds with pharmacological activity are able to enhance or interfere with the activity of the bladder cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting bladder cancer cell division is provided. The method comprises administration of a bladder cancer inhibitor. In another embodiment, a method of inhibiting bladder cancer is provided. The method comprises administration of a bladder cancer inhibitor. In a further embodiment, methods of treating cells or individuals with bladder cancer are provided. The method comprises administration of a bladder cancer inhibitor. In one embodiment, a bladder cancer inhibitor is an antibody as discussed above. In another embodiment, the bladder cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

5

10

15

20

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of bladder cancer sequences, which when expressed in host cells, inhibit

abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semisolid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells: A Manual of Basic Technique</u> (3d ed.) Wiley-Liss, herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), supra, herein incorporated by reference.

Contact inhibition and density limitation of growth

5

10

15

20

25

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a bladder cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), supra.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin (1966) <u>J. Nat'l Cancer Inst.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879; Freshney (1994), supra). This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

30 Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells. See, e.g., "Angiogenesis, tumor vascularization, and potential interference with tumor growth" pp. 178-184 in Mihich (ed. 1985) <u>Biological Responses in Cancer Plenum</u>. Similarly, tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) <u>Sem Cancer Biol.</u> 3:89-96.

Various techniques which measure the release of these factors are described in Freshney (1994), supra. See also, Unkeless, et al. (1974) <u>J. Biol. Chem.</u> 249:4295-4305; Strickland and Beers (1976) <u>J. Biol. Chem.</u> 251:5694-5702; Whur, et al. (1980) <u>Br. J. Cancer</u> 42:305-312; Gullino "Angiogenesis, tumor vascularization, and potential interference with tumor growth" pp. 178-184 in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, Plenum; and Freshney (1985) <u>Anticancer Res</u>. 5:111-130.

Invasiveness into Matrigel

5

10

15

20

25

30

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate bladder cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1984), supra, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (2000), supra.

Tumor growth in vivo

Effects of bladder cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the bladder cancer gene is disrupted or in which a bladder cancer gene is inserted. Knock-out

transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous bladder cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous bladder cancer gene with a mutated version of the bladder cancer gene, or by mutating the endogenous bladder cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. By breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion. See, e.g., Capecchi, et al. (1989) Science 244:1288-1292. Chimeric targeted mice can be made. See Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual, CSH Press; and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Nat'l Cancer Inst.</u> 52:921-930), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263-272; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52-61) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a bladder cancer-associated sequences are injected subcutaneously. After a suitable length of time, preferably about 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

Polynucleotide modulators of bladder cancer Antisense and RNAi Polynucleotides

5

10

15

20

25

In certain embodiments, the activity of a bladder cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, e.g., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a bladder cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

5

10

15

20

25

30

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or intersugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the bladder cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for bladder cancer molecules. A preferred antisense molecule is for a bladder cancer sequences in Tables 1A-13, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein and Cohen (1988) Cancer Res. 48:2659-2668; and van der Krol, et al. (1988) BioTechniques 6:958-976.

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) Sciencexpress (21March2002); Sharp (1999)

Genes Dev. 13:139-141; and Cathew (2001) Curr. Op. Cell Biol. 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) Nature 411:494-498. The mechanism may be used to downregulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease

Ribozymes

5

10

15

20

25

30

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of bladder cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes. See, e.g., Castanotto, et al. (1994) Adv. in Pharmacology 25: 289-317 for a general review of the properties of different ribozymes.

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing them are well known. See, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Nat'l Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Human Gene Therapy 1:39-45; Leavitt, et al. (1995) Proc. Nat'l Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Human Gene Therapy 5:1151-120; and Yamada, et al. (1994) Virology 205: 121-126.

Polynucleotide modulators of bladder cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of bladder cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating bladder cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-bladder cancer antibody that reduces or eliminates the biological activity of an endogenous bladder cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a bladder cancer protein. This may be accomplished in many ways. In a preferred embodiment, e.g., when the bladder cancer sequence is down-regulated in bladder cancer, such state may be reversed by increasing the amount of bladder cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous bladder cancer gene or administering a gene encoding the bladder cancer sequence, using known gene-therapy techniques. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, e.g., when the bladder cancer sequence is up-regulated in bladder cancer, the activity of the endogenous bladder cancer gene is decreased, e.g., by the administration of a bladder cancer antisense nucleic acid.

5

10

15

20

25

30

In one embodiment, the bladder cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to bladder cancer proteins. Similarly, the bladder cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify bladder cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a bladder cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The bladder cancer antibodies may be coupled to standard affinity chromatography columns and used to purify bladder cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the bladder cancer protein.

Methods of identifying variant bladder cancer-associated sequences

Without being bound by theory, expression of various bladder cancer sequences is correlated with bladder cancer. Accordingly, disorders based on mutant or variant bladder cancer genes may be determined. In one embodiment, the invention provides methods for

identifying cells containing variant bladder cancer genes, e.g., determining all or part of the sequence of at least one endogenous bladder cancer genes in a cell. This may be accomplished using many sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the bladder cancer genotype of an individual, e.g., determining all or part of the sequence of at least one bladder cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced bladder cancer gene to a known bladder cancer gene, e.g., a wild-type gene.

5

10

15

20

25

30

The sequence of all or part of the bladder cancer gene can then be compared to the sequence of a known bladder cancer gene to determine if differences exist. This can be done using many known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the bladder cancer gene of the patient and the known bladder cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the bladder cancer genes are used as probes to determine the number of copies of the bladder cancer gene in the genome.

In another preferred embodiment, the bladder cancer genes are used as probes to determine the chromosomal localization of the bladder cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the bladder cancer gene locus.

Administration of pharmaceutical and vaccine compositions

In one embodiment, a therapeutically effective dose of a bladder cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. See, e.g., Ansel, et al. (1999) Pharmaceutical Dosage Forms and Drug Delivery Lippincott; Lieberman (1992) Pharmaceutical Dosage Forms (vols. 1-3) Dekker,

ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding Amer. Pharma. Assn.; and Pickar (1999) Dosage Calculations Thomson. As is known in the art, adjustments for bladder cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. USSN 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in bladder cancer and is hereby expressly incorporated by reference.

5

10

15

20

25

30

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the bladder cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the bladder cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a bladder cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.

"Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

5

10

15

20

25

30

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that bladder cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a bladder cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary

widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman and Limbird (eds. 2001) Goodman and Gilman: The Pharmacologial Basis of Therapeutics McGraw-Hill.

5

10

15

20

25

30

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1-10 mg per patient per day. Dosages from about 0.1-100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gilman: The Pharmacologial Basis of Therapeutics, supra.

The compositions containing modulators of bladder cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. The composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, at least in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

It will be appreciated that the present bladder cancer protein-modulating compounds can be administered alone or in combination with additional bladder cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1A-13, such as antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of bladder cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo, or in vivo (cell or organism-based) recombinant expression systems.

5

10

15

20

25

30

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors, and other methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell. See, e.g., Berger and Kimmel (1987) Guide to Molecular Cloning Techniques from Methods in Enzymology (vol. 152) Academic Press; Ausubel, et al. (eds. 1999 and supplements) Current Protocols in Molecular Biology Lippincott; and Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Vol. 1-3) CSH Press.

In a preferred embodiment, bladder cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, bladder cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the bladder cancer coding regions) can be administered in a gene therapy application. These bladder cancer genes can include antisense applications, either as gene therapy (e.g., for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Bladder cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses.. Such vaccine compositions can include, e.g., lipidated peptides (Vitiello, et al. (1995) <u>J. Clin. Invest.</u> 95:341-349); peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres

(Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681); peptide compositions contained in immune stimulating complexes (ISCOMS) (Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin. Exp. Immunol. 113:235-243); multiple antigen peptide systems (MAPs) (Tam (1988) Proc. Nat'l Acad. Sci. USA 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-5 32); peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al. in Kaufmann (ed. 1996) Concepts in Vaccine Development de Gruyter; Chakrabarti, et al. (1986) Nature 320:535-537: Hu, et al. (1986) Nature 320:537-547; Kieny, et al. (1986) AIDS Bio/Technology 4:790; Top, et al. (1971) J. Infect. Dis. 124:148-154; Chanda, et al. (1990) 10 Virology 175:535-547), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol. Methods 192:25-35; Eldridge, et al. (1993) Sem. Hematol. 30:16-24; Falo, et al. (1995) Nature Med. 7:649-653), adjuvants (Warren, et al. (1986) Annu. Rev. Immunol. 4:369-388; Gupta, et al. (1993) Vaccine 11:293-306), liposomes (Reddy, et al. (1992) J. 15 Immunol. 148:1585-1589; Rock (1996) Immunol. Today 17:131-137), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745-1749; Robinson, et al. (1993) Vaccine 11:957-960; Shiver, et al. in Kaufmann (ed. 1996) Concepts in Vaccine Development de Gruyter; Cease and Berzofsky (1994) Annu. Rev. Immunol. 12:923-989; and Eldridge, et al. (1993) Sem. Hematol. 30:16-24). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc., 20 Needham, MA, may also be used.

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides;

25 ·

30

polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff, et al. (1990) Science 247:1465-1468 as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

5

10

15

20

25

30

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode bladder cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization, e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like. See, e.g., Shata, et al. (2000) Mol Med Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; Hipp, et al. (2000) In Vivo 14:571-85.

Methods for the use of genes as DNA vaccines are well known, and include placing a bladder cancer gene or portion of a bladder cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a bladder cancer patient. The bladder cancer gene used for DNA vaccines can encode full-length bladder cancer proteins, but more preferably encodes portions of the bladder cancer proteins including peptides derived from the bladder cancer protein. In one embodiment, a patient is immunized with a

DNA vaccine comprising a plurality of nucleotide sequences derived from a bladder cancer gene. For example, bladder cancer-associated genes or sequence encoding subfragments of a bladder cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

5

10

15

20

25

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the bladder cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment bladder cancer genes find use in generating animal models of bladder cancer. When the bladder cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed to the bladder cancer gene will also diminish or repress expression of the gene. Animal models of bladder cancer find use in screening for modulators of a bladder cancer-associated sequence or modulators of bladder cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the bladder cancer protein. When desired, tissue-specific expression or knockout of the bladder cancer protein may be necessary.

It is also possible that the bladder cancer protein is overexpressed in bladder cancer. As such, transgenic animals can be generated that overexpress the bladder cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of bladder cancer and are additionally useful in screening for modulators to treat bladder cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include one or more of the following: assay reagents, buffers, bladder cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense or inhibitory polynucleotides, ribozymes, dominant negative bladder cancer polypeptides or polynucleotides, small molecules inhibitors of bladder cancer-associated sequences etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

5

10

15

20

25

In addition, the kits may include instructional materials containing directions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. A medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of bladder cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a bladder cancer-associated polypeptide or polynucleotide, control positive or negative samples, reaction tubes, and instructions for testing bladder cancer-associated activity. Optionally, the kit contains biologically active bladder cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

EXAMPLES

Example 1: Gene Chip Analysis

5

25

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) Nature 403:672-676; Zhao, et al. (2000) Genes Dev. 14:981-993).

TABLE DESCRIPTIONS

Table 1A shows about 3413 that exhibit increased or decreased expression in bladder cancer samples. See USSN 60/302,814.

Table 2A shows about 485 genes overexpressed in bladder tumors relative to normal tissues as analyzed using the Affymetrix/Eos Hu03 GeneChip array. See USSN 60/343,705.

- Table 3A shows about 414 genes upregulated in bladder cancer relative to normal body tissues and preferred for utility as small molecule, antibody, DNA vaccine targets for the therapy of bladder cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
 - Table 4A shows about 129 genes upregulated in bladder cancer relative to normal body tissues and preferred for utility as diagnostics of bladder cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 5A shows about 149 genes upregulated in bladder cancer relative to normal body tissues. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03

 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 6A shows about 199 genes upregulated in bladder cancer relative to normal bladder tissue. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 7A shows about 63 genes downregulated in bladder tumors relative to normal bladder. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip

array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

- Table 8A shows about 1440 genes upregulated in Ta or T1 bladder tumors from patients who later presented with muscle-invasive bladder tumors (stage T2-T4). Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 9A shows about 1200 genes upregulated in Ta or T1 tumors of patients who later presented with either more Ta tumors or no tumors at all. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 10A shows about 65 genes upregulated in non-invasive exophytic Ta bladder tumors relative to T2-T4 muscle-invasive tumors. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 11A shows about 106 genes upregulated in muscle-invasive T2-T4 bladder tumors relative to non-invasive exophytic Ta bladder tumors. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.
- Table 12A shows the Pkey, ExAcon, UnigeneID, and Unigene Title for all of the sequences in Table 13. Seq ID No. is used to link Table 12A to table 13.
 - Tables 1B-12B show the accession numbers for those Pkey's lacking UnigeneID's for tables 1A-12A, respectively. For each probeset is listed a gene cluster number from which oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.
- Tables 1C-12C show genomic positioning for Pkey's lacking Unigene ID's and accession numbers for tables 1A -12A, respectively. For each predicted exon, is listed genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

40	TABLE 1A:	
45	Pkey: ExAccn: UnigenelD: Unigene Title: R1: R2: Targel Type:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title plaase refer to original application please refer to original application downregulate stage if target is downregulated in bladder tumors relative to normal bladder or

early stage if larget is an earl stage (Ta) bladder tumor marker or late stage if larget is a late stage (T2-T4) bladder tumor marker or T2-T4 grade 3 papilloma marker or T2-T4 grade 3 solid tumor marker or Upregulate stage

			grand a propriet		<u> </u>		
5	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2	Target Type
	400440	X83957	Hs.83870	nebulin	0.17	2.05	downregulate stage
	400888				0.24	1.97	downregulale stage
	401566				0.19	4.06	downregulate stage
10	401669				0.2	2.05	downregulate stage
10	401691				0.04 0.3	10.13 1.87	downregulate stage downregulate stage
	401905 402076				0.06	6.51	downregulate stage
	402110				0.43	2.35	downregulate stage
	402271	NM_002197	Hs.154721	aconitase 1, soluble	0.40	2.16	downregulate stage
15	403362	144_002101	110:10 17 21		0.18	4.44	downregulate stage
	403687				0.32	1.91	downregulate stage
	403959				0.14	2.27	downregulate stage
	404015				0.2	2.48	downregulate stage
	404059				0.36	1.84	downregulate stage
20	404152				0.32	1.85	downregulate stage
	404498				0.14	2.18	downregulate stage
	404819				0.19	5.25	downregulate stage
	405001	U58196	Hs.296281	Interleukin enhancer binding factor 1	0.16	2.92	downregulate stage
25	405349				0.18	3.8	downregulate stage
25	405390				0.3	2.54	downregulate stage
	405735				0.13 0.26	2.44 1.85	downregulate stage downregulate stage
	405968 406017				0.20	2.28	downregulate stage
	406305	BE261320	Hs.297096	transcriptional adaptor 3 (ADA3, yeast h	0.42	1.93	downregulate stage
30	406320	00201320	NS.231030	transcriptional analytor of (NDAO, yeast in	0.37	2.01	downregulate stage
50	406704	M21665	Hs.929	myosin, heavy polypeptide 7, cardiac mus	0.3	2.84	downregulate stage
	406706	X03740	Hs.231581	myosin, heavy polypeptide 1, skeletał mu	0.14	7.4	downregulate stage
	406707	S73840	Hs.931	myosin, heavy polypeptide 2, skeletal mu	0.05	12.51	downregulate stage
	407013	U35637		gb:Human nebulin mRNA, partial cds	0.14	2.17	downregulate stage
35	407245	X90568	Hs.172004	üün	0.02	15.21	downregulate stage
	407330	AA582607		gb:nn51b05.s1 NCI_CGAP_Kid6 Homo sapiens	0.42	1.87	downregulate stage
	407571	AJ446183	Hs.9572	ESTs	0.38	2.13	downregulate stage
	407682	AL035858	Hs.3807	FXYD domain-containing ion transport reg	0.34	2.56	downregulate stage
40	407815	AW373860	Hs.301716	ESTs	0.31	2.44	downregulate stage
40	407834	AW084991	Hs.26100	ESTs	0.15	2.98	downregulate stage
	407891	AA486620	Hs.41135	endomucin-2	0.15	3.33	downregulate stage
	407906	AA369665	Hs.41185	Homo sapiens mRNA; cDNA DKFZp56401262 (f	0.12 0.08	8.05 8.77	downregulate stage downregulate stage
	407938	AA905097	Hs.85050	phospholamban	0.06	2.29	downregulate stage
45	407965 408009	W21483 AF020498	Hs.41707 Hs.41735	heat shock 27kD protein 3 purinergic receptor P2X, ligand-gated io	0.49	1.91	downregulate stage
73	408139	AA451966	Hs.43005	RAB9-like prolein	0.41	1.88	downregulate stage
	408221	AA912183	Hs.47447	ESTs	0.04	24.1	downregulate stage
	408374	AW025430	Hs.155591	forkhead box F1	0.35	2.85	downregulate stage
	408493	BE206854	Hs.46039	phosphoglycerate mutase 2 (muscle)	0.09	9.04	downregulate stage
50	408508	Al806109	Hs.135736	KIAA1580 protein	0.45	2.2	downregulate stage
	408614	AL137698	Hs.46531	Homo sapiens mRNA; cDNA DKFZp434C1915 (f	0.13	5.48	downregulate stage
	408652	R43409	Hs.6829	ESTs	0.33	2.5	downregulate stage
	408753	Al337192	Hs.47438	SH3 domain binding glutamic acid-rich pr	0.05	6.94	downregulate stage
<i></i>	408896	Al610447	Hs.48778	niban protein	0.39	2.01	downregulate stage
55	409277	T05558	Hs.156880	ESTs	0.18	2.75	downregulate stage
	410023	AB017169	Hs.57929	slit (Drosophila) homolog 3	0.07 0.09	2.7 5.23	downregulate stage downregulate stage
	410036	R57171	Hs.57975 Hs.58882	calsequestrin 2, cardiac muscle Microfibril-associated glycoprotein-2	0.09	2.34	downregulate stage
	410132 410168	NM_003480 AW834050	Hs.9973	lensin	0.39	2.17	downregulate stage
60	410243	D83402	Hs.289006	ESTs, Weakly similar to alternatively sp	0.11	2.82	downregulate stage
00	410339	Al916499	Hs.298258	ESTs	0.15	2.16	downregulate stage
	410677	NM_003278	Hs.65424	tetranectin (plasminogen-binding protein	0.32	2.65	downregulate stage
	410868	T06529	Hs.98518	Homo sapiens cDNA FLJ11490 fis, clone HE	0.2	2.74	downregulate stage
	411048	AK001742	Hs.67991	hypothetical protein DKFZp434G0522	0.2	1.92	downregulate stage
65	411067	Al681006	Hs.301543	ESTs	0.11	3.41	downregulate stage
	411069	AL133092	Hs.68055	hypothetical protein DKFZp434I0428	0.17	5.8	downregulate stage
	411644	H92064	Hs.301548	ESTs	0.06	13.8	downregulate stage
	411741	AW859650		gb:RC0-CT0358-071299-011-d03 CT0358 Homo	0.36	2.5	downregulate stage
70	412047	AA934589	Hs.49696	ESTS	0.18	3.57	downregulate stage
70	412095	AI624707	Hs.5921	Homo sapiens cDNA: FLJ21592 fis, clone C ab:RC0-MT0003-140300-031-b07 MT0003 Homa	0.32	1.89	downregulate stage downregulate stage
	412389	AW947655	Nº Jesou	gp:RCU-M10003-140300-031-b0/ M10003 Homo serum deprivation response (phosphalidy)	0.38 0.12	2.6 3.67	downregulate stage
	412442	AI983730 AA196241	Hs.26530 Hs.73980	troponin T1, skeletal, slow	0.12	1.86	downregulate stage
	412519 412622	AW664708	Hs.171959	ESTs	0.06	5.45	downrequiate stage
75	412649	NM_002206	Hs.74369	integrin, alpha 7	0.29	2.95	downregulate stage
	412659	AW753865	Hs.74376	olfactornedin related ER localized protei	0.18	2.06	downregulate stage
	412758	Y07818	Hs.74566	dihydropyrimidinase-like 3	0.3	2.23	downregulate stage

	412802	U4151B	Hs.74602	aquaporin 1 (channel-forming integral pr	0.11	2.71	downregulate stage
	412975	T70956	Hs.75106	clusterin (complement lysis inhibitor, S	0.44	2.03	downregulate stage
	413074	AI871368	Hs.8417	ESTs	0.47	1.91	downregulate stage
	413272	AA127923	Hs.293256	ESTs	0.09	4,44	downregulate stage
5	413276	Z24725	Hs.75260	mitogen inducible 2	0.23	2.48	downregulate stage
	413508	BE145364		gb:ILO-HT0198-151099-125-e05 HT0198 Homo	0.31	2.53	downregulate stage
	413624	BE177019	Hs.75445	SPARC-like 1 (masi9, hevin)	0.33	2.17	downregulate stage
	413778	AA090235	Hs.75535	myosin, light polypeptide 2, regulatory,	0.33	2.63	downregulate stage
10	414063	H26904	Hs.75736	apolipoprotein D	0.42	1.85	downregulate stage
10	414241	AA425085	Hs.4007	Sarcolemmal-associated protein	0.16	2.22	downregulate stage
	414290	Al568801	Hs.71721	ESTs	0.02	10	downregulate stage
	414629	AA345824	Hs.76688	carboxylesterase 1 (monocyle/macrophage	0.13	4.14	downregulate stage
	414657	AA424074	Hs.76780	protein phosphatase 1, regulatory (inhib	0.33 0.4	2.14 2.5	downregulate stage downregulate stage
15	414712 414903	N88858 AA451700	Hs.77039	ribosomal protein S3A Homo sapiens cDNA: FLJ22841 fis, clone K	0.4	3.3	downregulate stage
13	415165	AW887604	Hs.85835 Hs.78065	complement component 7	0.04	3.41	downregulate stage
	415274	AF001548	Hs.78344	myosin, heavy polypeptide 11, smooth mus	0.2	3.29	downregulate stage
	415447	Z97171	Hs.78454	myocilin, trabecular meshwork inducible	0.15	6.55	downregulate stage
	415672	N53097	Hs.193579	ESTs	0.28	3.55	downregulate stage
20	415934	NM_000928	Hs.992	phospholipase A2, group IB (pancreas)	0.34	2.64	downregulate stage
	416127	N49843	Hs.79022	GTP-binding protein overexpressed in ske	0.3	1.98	downregulate stage
	416349	X69089	Hs.79227	myornesin (M-protein) 2 (165kD)	0.41	1.96	downregulate stage
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	0.02	49.3	downregulate stage
0.5	416854	H40164	Hs.80296	Purkinje cell protein 4	0.02	7.55	downregulate stage
25	416941	BE000150	Hs.48778	niban protein	0.27	2.16	downregulate stage
	416982	J05401	Hs.80691	creatine kinase, milochondrial 2 (sarcom	0.29	2.43	downregulate stage
	417011	F08212	Hs.234898	ESTs	0.41	2.06	downregulate stage
	417298	AW865639	Hs.37958	ESTs	0.27	3.7	downregulate stage
30	417501	AL041219	Hs.82222	sema domain, immunoglobulin domain (ig),	0.39 0.29	2.08 2.59	downregulate stage
50	417553 417987	L09190 AA210872	Hs.82276 Hs.50133	trichohyalin ESTs	0.23	2.09	downregulate stage downregulate stage
	418297	R91254	HS.50 155	gb:yp94e12.s1 Soares fetal liver spleen	0.28	1.9	downregulate stage
	418332	R34976	Hs.78293	ESTs .	0.2	3.9	downregulate stage
	418391	NM_003281	Hs.84673	troponin I, skeletal, slow	0.35	2.02	downregulate stage
35	418409	AA219332	Hs.120869	ESTs, Weakly similar to AF092922 1 retin	0.21	3.8	downregulate stage
	418421	R58620	Hs.85050	phospholamban	0.2	2.08	downregulate stage
	418489	U76421	Hs.85302	adenosine deaminase, RNA-specific, B1 (h	0.05	21.55	downregulate stage
	418533	NM_004533	Hs.85937	myosin-binding protein C, fast-type	0.42	1.95	downregulate stage
40	418787	AW296134	Hs.86999	ESTs	0.48	1.87	downregulate stage
40	418793	AW382987	Hs.88474	prostaglandin-endoperoxide synthase 1 (p	0.26	2.43	downregulate stage
	418947	W52990	Hs.22860	ESTs	0.13	7.18	downregulate stage
	419037	R39895	Hs.7864	ESTs	0.27	2	downregulate stage
	419441	AW023731	Hs.274368	Homo sapiens mRNA; cDNA DKFZp586I1524 (f	0.19	5.25	downregulate stage
45	419535	AW139550	Hs.115173	ESTS	0.31 0.28	2.59 2.38	downregulate stage downregulate stage
40	419682 419685	H13139 W76083	Hs.92282 Hs.173077	paired-like homeodomain transcription fa ESTs	0.26	2.21	downregulate stage
	419703	Al793257	Hs.128151	ESTs	0.09	3.52	downregulate stage
	419942	U25138	Hs.93841	potassium large conductance calcium-acti	0.28	2.96	downregulate stage
	420058	AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	0.3	2.09	downregulate stage
50	420195	N44348	Hs.300794	ESTs	0.22	2.79	downregulate stage
	420261	AW206093	Hs.748	fibroblast growth factor receptor 1 (fms	0.35	1.98	downregulate stage
	420674	NM_000055	Hs.1327	butyrylcholinesterase	0.29	3.5	downregulate stage
	421296	NM_002666	Hs.103253	perilipin	0.36	2.11	downregulate stage
c c	421639	NM_012082	Hs.297921	Homo sepiens mRNA full length insert cDN	0.13	4.3	downregulate stage
55	421763	AW163500	Hs.108080	cysteine and glycine-rich protein 1	0.26	3.49	downregulate stage
	421853	AL117472	Hs.108924	DKFZP586P1422 protein	0.14	5	downregulate stage
	422103	AA984330	Hs.111676	protein kinase H11; small stress protein	0.2	2.29	downregulate stage
	422287	F16365	Hs.114346	cytochrome c oxidase subunit VIIa polype	0.27	2.58	downregulate stage
60	422320	A1745249 X56832	Hs.23650 Hs.118804	ESTs, Weakly similar to AAB47496 NG5 [H.	0.24 0.23	2.95 3.57	downregulate stage downregulate stage
00	422633 422639	Al929377	Hs.173724	enolase 3, (beta, muscle) creatine kinase, brain	0.23	1.97	downregulate stage
	423334	AK000906	Hs.127273	hypothetical protein FLJ10044	0.37	2.29	downregulate stage
	423587	AA328074	Hs.284256	hypothetical protein FLJ14033 similar to	0.37	2.47	downregulate stage
	423889	AL035447	Hs.134594	hypothetical protein LOC57158	0.24	2.43	downregulate stage
65	424181	AL039482	Hs.142517	Homo sapiens mRNA; cDNA DKFZp434P0810 (f	0.27	2.28	downregulate stage
	424206	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc	0.3	2.59	downregulate stage
	424479	AF064238	Hs.149098	smoothelin	0.26	3.29	downregulate stage
	424580	AA446539	Hs.35092	ESTs	0.15	2.57	downregulate stage
70	424846	AU077324	Hs.1832	neuropeptide Y	0.4	2.04	downregulate stage
70	424938	AW102607	Hs.245233	ESTs	0.29	2.16	downregulate stage
	424982	U94777	Hs.154084	phosphorylase, glycogen; muscle (McArdle	0.42	1.89	downregulate stage
	425383	D83407	Hs.156007	Down syndrome critical region gene 1-lik	0.14	1.86	downregulate stage
•	425545	N98529	Hs.158295	Human mRNA for myosin light chain 3 (MLC	0.03	13.25	downregulate stage
75	425622	AW360847 T19239	Hs.16578 Hs.1940	ESTs	0.3 0.47	2.19 1.92	downregulate stage downregulate stage
, ,	425751 425869	AA524547	Hs.1940 Hs.160318	crystallin, alpha B FXYD domain-containing ion transport reg	0.47	1.85	downregulate stage
	425887	AL049443	Hs.161283	Homo sapiens mRNA; cDNA DKFZp586N2020 (f	0.43	2.85	downregulate stage
	423001	. 12070770	, ia. 10 1200	Homo Japiens mater, contr. ora zpodortzaza (1	V. 13	200	

	425932	M81650	Hs.1968	semenogelin I	0.02	16.3	downregulate stage
	426354	NM_004010	Hs.169470	dystrophin (muscular dystrophy, Duchenne	0.27	2.52	downregulate stage
	426429	X73114	Hs.169849	myosin-binding protein C, slow-type	0.1	10.3	downregulate stage
_	426752	X69490	Hs.172004	litin	0.03	31.3	downregulate stage
5	426809	BE313114	Hs.29706	ESTs	0.34 0.22	2.95 2.11	downregulate stage downregulate stage
	427078 427136	AI676062 AL117415	Hs.111902 Hs.173716	ESTs Homo sapiens mRNA; cDNA DKFZp434K0521 (f	0.22	2.33	downregulate stage
	427164	AB037721	Hs.173871	KIAA1300 protein	0.12	5.47	downregulate stage
	427185	AA398930	Hs.186674	ESTs	0.22	4.65	downregulate stage
10	427373	AB007972	Hs.177533	Homo sapiens mRNA; cDNA DKFZp586N0318 (f	0.22	3.18	downregulate stage
	427393	AB029018	Hs.177635	KIAA1095 protein	0.27	2.13	downregulate stage
	427665	AF134803	Hs.180141	cofilin 2 (muscle)	0.05 0.45	4 1.87	downregulate stage downregulate stage
	427676 427888	AA394062 AA417088	Hs.180266 Hs.137598	tropomyosin 2 (beta) ESTs	0.36	2.04	downregulate stage
15	427980	AA418305	110.101030	gb:zv96g05.s1 Soares_NhHMPu_S1 Homo sapi	0.32	2.39	downregulate stage
	428087	AA100573	Hs.182421	troponin C2, fast	0.17	4.37	downregulate stage
	428138	AA773842	Hs.293799	ESTs .	0.45	2.2	downregulate stage
	428221	U96781	Hs.183075	ESTs, Highly similar to Ca2+ ATPase of f	0.23	3.36	downregulate stage
20	428329 428409	AA426091 AW117207	Hs.98453 Hs.98523	ESTs ESTs	0.21 0.1	2.09 7.63	downregulate stage downregulate stage
20	428411	AW291464	Hs.10338	ESTs ·	0.32	1.98	downregulate stage
	428648	AF052728	Hs.188021	potassium voltage-gated channel, subfami	0.08	2.99	downregulate stage
	428649	AL045716	Hs.188228	Homo sapiens cDNA FLJ11003 fis, clone PL	0.11	2.07	downregulate stage
25	428899	AA744610	Hs.194431	palladin	0.42	1.84	downregulate stage
25	429350	AI754634	Hs.131987	ESTs	0.06 0.18	4.73 2.31	downregulate stage downregulate stage
	429525 429545	N92540 Al824164	Hs.205353 Hs.77667	ectonucleoside triphosphate diphosphohyd lymphocyte antigen 6 complex, locus E	0.10	2.07	downregulate stage
	429655	U48959	Hs.211582	myosin, light polypeptide kinase	0.33	2.18	downregulate stage
	429892	NM_003803	Hs.2504	myomesin 1 (skelemin) (185kD)	0.36	2.17	downregulate stage
30	429930	AI580809	Hs.99569	ESTs	0.18	5.6	downregulate stage
	429956	Al374651	Hs.22542	ESTs	0.22	4.45	downregulate stage
	430013	AA463833	Hs.151275	ESTs	0.21 0.47	3.03 1.85	downregulate stage downregulate stage
	430271 430310	T06199 U60115	Hs.237506 Hs.239069	heat shock cognate 40 four and a half LIM domains 1	0.47	3.44	downregulate stage
35	430418	R98852	Hs.36029	heart and neural crest derivatives expre	0.38	2.26	downregulate stage
	430699	AW969847	Hs.292718	ESTs, Weakly similar to RET2_HUMAN RETIN	0.16	2.52	downregulate stage
	430712	AW044647	Hs.196284	ESTs	0.29	1.94	downregulate stage
	430778	D90337	Hs.247916	natriuretic peptide precursor C	0.14	4.48	downregulate stage
40	430998 432247	AF128847 AA531287	Hs.204038 Hs.105805	indolethylamine N-methyltransferase ESTs	0.35 0.21	1.87 3.99	downregulate stage downregulate stage
40	432689	AB018320	Hs.278626	Arg/Abl-interacting protein ArgBP2	0.11	1.98	downregulate stage
	432792	AA448114	Hs.278950	protocadherin beta 1	0.22	2.93	downregulate stage
	433142	AL120697	Hs.110640	ESTs	0.21	2.18	downregulate stage
45	433633	AI880516	Hs.84630	ESTS	0.34	2.67	downregulate stage
43	433688	AA628467	Hs.112572	Homo sapiens cDNA FLJ14130 fis, clone MA ESTs	0.35 0.24	2.27 1.91	downregulate stage downregulate stage
	433826 434025	AA609938 AF114264	Hs.144492 Hs.216381	Homo sapiens clone HH409 unknown mRNA	0.07	3.46	downregulate stage
	434160	BE551196	Hs.114275	ESTs	0.5	2	downregulate stage
	434352	AF129505	Hs.86492	small muscle protein, X-linked	0.34	2.13	downregulate stage
50	434361	AF129755	Hs.117772	ESTs	0.03	31.3	downregulate stage
	435731	AA699581	Hs.186811	ESTs	0.31 0.21	3.25 3.73	downregulate stage downregulate stage
	435869 435978	AF255910 AF272899	Hs.54650 Hs.135118	vascular endothellal junction-associated Homo sapiens PR-domain zinc finger prote	0.21	2.25	downregulate stage
	436359	Z83806	11011001110	gb:H.sapiens mRNA for axonemal dynein he	0.24	3.28	downregulate stage
55	43663B	Al271945	Hs.134984	ESTs	0.36	1.87	downregulate stage
	436953	AW959074	Hs.23648	Homo saplens cDNA FLJ13097 fis, clone NT	0.14	6.95	downregulate stage
	437176	AW176909	Hs.42346 Hs.153961	calcineurin-binding protein calsarcin-1	0.32 0.27	2.19 2.38	downregulate stage downregulate stage
	437233 438619	D81448 AB032773	Hs.6341	ARP1 (actin-related protein 1, yeast) ho TU1281-TY protein	0.19	2.69	downregulate stage
60	438666	AW014493	Hs.126727	ESTs	0.16	1.98	downregulate stage
	439231	AW581935	Hs.141480	ESTs	0.1	3.9	downregulate stage
	439973	AI733308	Hs.124663	ESTs	0.16	6.2	downregulate stage
	440172	AA868584	Hs.126154	ESTS	0.24 0.11	2.34 3.02	downregulate stage downregulate stage
65	440274 440687	R24595 AL080222	Hs.7122 Hs.7358	scrapie responsive protein 1 hypothetical protein FLJ13110	0.19	2.95	downregulate stage
03	440700	AW952281	Hs.296184	ESTs, Highly similar to GB01_HUMAN GUANI	0.13	2.69	downregulate stage
	440737	Al375167	Hs.132221	Homo sapiens cDNA FLJ12401 fis, clone MA	0.5	2	downregulate stage
	441805	AA285136	Hs.7974	neuronal specific transcription factor D	0.07	13.55	downregulate stage
70	441969	A1733386	Hs.129194	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.38	1.86	downregulate stage downregulate stage
70	442109 442985	BE218975 Al025984	Hs.212395 Hs.55467	ESTS ESTS	0.24 0.19	2.86 2	downregulate stage
	443060	D78874	Hs.8944	procollagen C-endopeptidase enhancer 2	0.09	3.66	downregulate stage
	443164	Al038503	Hs.55780	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.2	1.86	downregulate stage
75	443476	AW068594	Hs.133878	ESTs, Weakly similar to AF151889 1 CGI-1	0.11	2.79	downregulate stage
75	443604	C03577	Hs.9615	myosin regulatory light chain 2, smooth acyl-Coenzyme A oxidase 2, branched chai	0.24 0.28	3.41 3.6	downregulate stage downregulate stage
	443790 443932	NM_003500 AW888222	Hs.9795 Hs.9973	tensin	0.28	3.6 2.57	downregulate stage
	443332	~*********	. 13.3313		J.VL	,	

	444195	AB002351	Hs.10587	KIAA0353 protein	0.19	4.04	downregulate stage
	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	0.38	2.04	downregulate stage
	444684	AW044070	Hs.147037	ESTS	0.36	2.25 2.19	downregulate stage downregulate stage
5	444793 444938	U89281 AW470690	Hs.11958 Hs.148814	oxidative 3 alpha hydroxysterold dehydro ESTs	0.29 0.43	2.19	downregulate stage
,	445230	U97018	Hs.12451	echinoderm microlubule-associated protei	0.13	2.64	downregulate stage
	445235	Al564022	Hs.138207	ESTs	0.13	2.4	downregulate stage
	445621	AI733818	Hs.145549	ESTs	0.25	1.91	downregulate stage
10	445687 445850	W80382	Hs.149297 Hs.145560	ESTs ESTs	0.2 0.53	3.5 1.9	downregulate stage downregulate stage
10	446406	Al262049 Al553681	Hs.25248	ESTs	0.07	3.25	downregulate stage
	446500	U78093	Hs.15154	sushi-repeat-containing protein, X chrom	0.33	1.9	downregulate stage
	447595	AW379130	Hs.18953	phosphodiesterase 9A	0.28	1.85	downregulate stage
15	447918	Al129320	Hs.16930	ESTs	0.29	2.46 2.27	downregulate stage downregulate stage
15	448076 448283	AJ133123 Al340462	Hs.20196 Hs.182979	adenylate cyclase 9 ribosomal protein L12	0.2 0.53	1.9	downregulate stage
	448303	BE622468	Hs.11924	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.39	1.84	downregulate stage
	448425	Al500359	Hs.233401	ESTs	0.16	1.97	downregulate stage
20	448429	D17408	Hs.21223	calponin 1, basic, smooth muscle	0.12	5.43	downregulate stage
20	448555	Al536697	Hs.159863	ESTs	0.32 0.17	2.86 2.66	downregulate stage downregulate stage
	448901 448999	AK001021 AF179274	Hs.22505 Hs.22791	hypothetical protein FLJ10159 transmembrane protein with EGF-like and	0.17	1.86	downregulate stage
	449226	AB002365	Hs.23311	KIAA0367 protein	0.1	4.96	downregulate stage
25	449238	AA428229	Hs.85524	muscle-specific RING-finger protein homo	0.14	2.53	downregulate stage
25	449422	AA001373	Hs.59821	ESTs	0.43	2.3	downregulate stage
	449690	AA002140	Hs.33024 Hs.10083	ESTs ESTs	0.5 0.33	2 2.7	downregulate stage downregulate stage
	449874 449925	AA135688 Al342493	Hs.24192	Homo saplens cDNA FLJ20767 fis, clone CO	0.33	5.57	downregulate stage
	450300	AL041440	Hs.58210	ESTs	0.41	2.13	downregulate stage
30	450578	Al971773	Hs.232268	ESTs	0.44	2.25	downregulate stage
	450810	BE207588	Hs.25511	transforming growth factor beta 1 induce	0.51	1.86	downregulate stage
	450831 451331	R37974	Hs.25255	ESTs Homo sapiens cDNA FLJ11177 fis, clone PL	0.23 0.37	1.96 2.18	downregulate stage downregulate stage
	451533	AK002039 NM_004657	Hs.26243 Hs.26530	serum deprivation response (phosphatidyl	0.57	9.36	downregulate stage
35	451782	AF233588	Hs.27018	Ris	0.35	2.43	downregulate stage
_	451948	AW452473	Hs.211125	ESTs	0.43	1.88	downregulate stage
	452422	AA521416	Hs.22701	ESTs	0.41	1.85	downregulate stage
	452463	R36452 AA194540	Hs.300817 Hs.13522	ESTs ESTs	0.09 0.36	4.05 2.16	downregulate stage downregulate stage
40	452776 452814	A1092790	Hs.55016	hypothetical protein FLJ21935	0.06	4.7	downregulate stage
	453064	R40334	Hs.301395	Homo sapiens cDNA: FLJ21204 fis, clone C	0.07	4.47	downregulate stage
	453351	Al625721	Hs.61814	Homo sapiens cDNA: FLJ22750 fis, clone K	0.33	3.05	downregulate stage
	453355	AW295374	Hs.31412	Homo sapiens cDNA FLJ11422 fis, clone HE	0.03	7.14 1.92	downregulate stage downregulate stage
45	453359 453464	AA448787 AI884911	Hs.24872 Hs.32989	ESTs, Weakly similar to aortic carboxype receptor (calcitonin) activity modifying	0.4 0.24	3.29	downregulate stage
-15	453500	A1478427	Hs.43125	ESTs	0.02	11.41	downregulate stage
	453582	AW854339	Hs.33476	hypothetical protein FLJ11937	0.39	2.04	downregulate stage
	453586	AA248089	Hs.50841	ESTs, Weakly similar to tuftelin [M.musc	0.43	1.86	downregulate stage
50	453666 453698	AW015681 AA037615	Hs.135229 Hs.42746	ESTs, Moderately similar to AF107203 1 a ESTs	0.28 0.2	2,42 1.88	downregulate stage downregulate stage
50	453702	AA037637	Hs.42128	ESTs	0.32	2.42	downregulate stage
	453725	W28543		gb:48c5 Human retina cDNA randomly prime	0.2	2.06	downregulate stage
	453950	AA15699B	Hs.211568	eukaryotic translation initiation factor	0.07	7.86	downregulate stage
55	454078	AA601518	Hs.22209	secreted modular calcium-binding protein	0.16	2,49 2.45	downregulate stage
22	454471 454637	AW902125 AW811613		gb:QV0-NN1022-120500-220-h12 NN1022 Homo gb:CM3-ST0157-300999-017-f06 ST0157 Homo	0.41 0.18	2.45	downregulate stage downregulate stage
	454750	AW866285		gb:QV4-SN0024-080400-167-a09 SN0024 Homo	0.49	2.05	downregulate stage
	455073	AW854829		gb:QV2-CT0261-201099-011-f01 CT0261 Homo	0.27	2.09	downregulate stage
60	455485	AA102287	Hs.26756	Homo sapiens cDNA: FLJ20896 fis, clone A	0.32	2.07	downregulate stage
60	455611 456100	L06419 Al983981	Hs.75093 Hs.189114	procollagen-lysine, 2-oxoglutarate 5-dio ESTs	0.15 0.4	2.87 2.5	downregulate stage downregulate stage
	456841	AA875863	Hs.152345	poliovirus receptor-related 1 (herpesvir	0.35	1.9	downregulate stage
	457064	AA776743	Hs.191589	ESTs	0.17	2.34	downregulate stage
15	457108	N74724	Hs.108479	ESTs	0.48	2.1	downregulate stage
65	457506	AF131757	Hs.274533	Homo sapiens clone 24926 mRNA sequence	0.29	2.59	downregulate stage
	457625	T10073 AV648858	Hs.29488	gb:seq1293 b4HB3MA Col8-HAP-Ft Homo sapi ESTs	0.29 0.26	3.45 2.17	downregulate stage downregulate stage
	458482 458622	AA972412	Hs.13755	f-box and WD-40 domain protein 2	0.51	1.95	downregulate stage
	458841	W28965		gb:54d10 Human retina cDNA randomly prim	0.32	3.1	downregulate stage
70	459037	AW439497	Hs.290656	EST	0.43	2.35	downregulate stage
	400762				0.71	0.4	early stage
	400937 400977				1.2 0.63	0.26 0.48	early stage early stage
	401024				0.8	0.3	early stage
75	401048				1.9	0.22	early stage
	401537				1.3	0.2	early stage
	401619				3.5	0.19	early stage

	402089				0.39	0.55	early stage
	402176				0.35	0.91	early stage
	402407				1	0.15	early stage
	402430				0.28	1.25	early stage
5	402435				2.15	0.21	early stage
,					1.8	0.14	
	402522						early stage
	402546				0.17	1.66	early stage
	402604				0.41	0.66	early stage
_	402716				0.14	0.86	early stage
10	402846				0.61	0.52	early stage
	402922				0.14	0.83	early stage
					0.44	0.49	
	403567						early stage
	403590				1	0.34	early stage
	404336				0.49	0.44	early stage
15	404345	AA730407	Hs.159156	protocadherin 11	0.38	0.4	early stage
	404501	AW247252	Hs.75514	nucleoside phosphorylase	0.32	8.0	early stage
	404594				. 0.37	0.91	early stage
	404874				1.87	0.26	early stage
					0.36	0.5	
20	404881		11 400045	11.1 1 do 11			early stage
20	404896	NM_000429	Hs.106845	methionine adenosyltransferase), alpha	1	0.36	early stage
	404999	U58196	Hs.296281	Interleukin enhancer binding factor 1	0.19	1.06	early slage
	405071				0.19	0.77	early slage
	405308				0.4	0.55	early stage
	405463				0.41	1	early stage
25	405580				1.89	0.19	early stage
23						0.63	
	405600				0.22		early stage
	405720				0.37	0.61	early stage
	405863				0.53	0.26	early stage
	405867				0.24	1.1	early stage
30	405920				0.39	1.15	early stage
	406036				2.15	0.17	early stage
					0.32	1.23	
	406243						early stage
	406367				0.38	0.76	early stage
0.5	406834	Al318680		gb:ta49g09.x1 NCI_CGAP_Lu25 Horno sapiens	0.4	0.67	early stage
35	406881	D16154		gb:Human gene for cytochrome P-450c11, e	0.14	1.55	early stage
	407411	AF060170		gb:Homo sapiens AS12 protein mRNA, parti	0.39	0.69	early stage
	407639	AW205369	Hs.252936	ESTs	0.61	0.34	early stage
	408112	AW451982	Hs.248613	ESTs	0.2	0.54	early stage
					1	0.32	
40	408732	AL117490	Hs.47225	Homo sapiens mRNA; cDNA DKFZp434N211 (fr			early stage
40	409103	AF251237	Hs.112208	XAGE-1 protein	0.33	1.03	early stage
	409840	AW502122		gb:UI-HF-BR0p-ajr-c-08-0-UI.r1 NIH_MGC_5	0.56	0.28	early stage
	410128	AW904599		gb:RC1-NN1063-260400-011-h05 NN1063 Homo	1.26	0.37	early stage
	411474	AW848427		gb:lL3-CT0214-150200-075-H10 CT0214 Homo	1	0.14	early stage
	412564	X83703	Hs.74019	cardiac ankyrin repeat protein	0.36	0.44	early stage
45	413266		113.74010		1.46	0.25	early stage
72		BE300352	11- 404205	gb:600944231F1 NIH_MGC_17 Homo saplens c			
	413341	H78472	Hs.191325	ESTs, Weakly similar to cDNA EST yk414c9	0.41	0.48	early stage
	414055	AW818687	Hs.5366	Homo sapiens cDNA: FLJ21522 fis, clone C	0.33	0.67	early stage
	414170	AA335996	Hs.3743	matrix metalloproteinase 24 (membrane-in	1.15	0.21	early stege
	414220	BE298094		gb:601118231F1 NIH_MGC_17 Homo saplens c	0.16	0.52	early stage
50	414276	BE297862		gb:601174780F1 NIH_MGC_17 Homo sapiens c	1.75	0.2	early stage
	414327	8E408145	Hs.185254	ESTs, Moderately similar to NAC-1 protei	0.1	0.99	early stage
	414366	BE549143		gb:601076456F1 NIH_MGC_12 Homo sapiens c	1	0.31	early stage
			U- CC015		0.18	0.96	
	414376	BE393856	Hs.66915	ESTs, Weakly similar to 16.7Kd protein [early stage
<i></i>	.414555	N98569	Hs.76422	phospholipase A2, group IIA (platelets,	0.48	0.67	early stage
55	415199	AA161125	Hs.57893	ESTs	0.75	0.72	early stage
	417304	H15635		gb:ym27h06.r1 Soares infant brain 1NIB H	0.6	0.58	early stage
	417371	N74613	Hs.269149	ESTs	0.3	0.58	early stage
	418133	R43504	Hs.6181	ESTs	1.28	0.29	early stage
	419273	BE271180	Hs.293490	ESTs	0.54	0.28	early stage
60			1.0.200 100	gb:on89e04.s1 Soares_NFL_T_GBC_S1 Home s	0.45	0.66	early stage
UU	419716	AA953770	U- 404407	gp.onoseo4.51 dodies_Mrt_1_0DC_01 Nono s		0.12	
	420390	AA330047	Hs.191187	ESTs	1.45		early stage
	421745	AF205849	Hs.107740	Kruppel-like factor 2 (lung)	0.33	0.71	early stage
	421813	BE048255		gb:tz49b05.y1 NCI_CGAP_Brn52 Homo sapien	0.52	0.67	early stage
	422669	H12402	Hs.119122	ribosomal protein L13a	1	0.26	early stage
65	422743	BE304678	Hs.119598	ribosomal protein L3	0.2	0.57	early stage
	422760	BE409561		gb:601299865F1 NiH_MGC_21 Homo sapiens c	0.41	0.64	early stage
	422880	AF228704	Hs.121524	glutathione reductase	3.75	0.1	early stage
			Hs.155606	paired mesoderm homeo box 1	0.55	0.54	early stage
	423457	F08208					
70	425349	AA425234	Hs.79886	ribose 5-phosphate isomerase A (ribose 5	1	0.21	early stage
70	425360	BE547704		gb:601076309F1 NIH_MGC_12 Homo sapiens c	0.28	0.85	early stage
	426356	BE536836		gb:601064837F1 NIH_MGC_10 Homo sapiens c	0.31	0.69	early stage
	426521	AF161445	Hs.170219	hypothetical protein	0.11	0.69	early stage
	426670	AA383047	Hs.193718	ESTs	1	0.55	early stage
	426699	AA383337	Hs.121269	ESTs	0.33	0.71	early stage
75		AA416577	Hs.189105	ESTs	1.16	0.41	early stage
, ,	427827					0.24	
	428651	AF196478	Hs.188401	annexin A10	1.85		early stage
	430727	X75917	Hs.2654	MHC binding factor, beta	0.78	0.46	early stage

	/00754				0.45	0.47	
	430750 430795	A1650360	Hs.100256	ESTs	2.15	0.17	early stage
		AW971398	Un 102524	gb:EST383487 MAGE resequences, MAGL Homo	1.95 0.36	0.21 0.73	
	431900 432728	AW972048	Hs.192534 Hs.278721	ESTS	1.8	0.13	early stage early stage
5	432791	NM_006979 NM_014554	Hs.278949	HLA class II region expressed gene KE4 sentrin/SUMO-specific protease	2.8	0.15	early stage
•	433404	T32982	Hs.102720	ESTs	2.2	0.13	early stage
	433782	AF090945	1.0	gb:Homo sapiens clone HQ0670	3.3	0.15	early stage
	433877	BE146567	Hs.257475	ESTs	0.65	0.7	early stage
	434483	AA223646	Hs.57222	nurim (nuclear envelope membrane protein	0.38	0.49	early stage
10	435752	AF230801	Hs.125180	growth hormone receptor	0.52	0.4	early stage
	436178	BE152396	Hs.21590	Homo sapiens HSPC304 mRNA, partial cds	1.65	0.14	early stage
	436391	AJ227892	Hs.146274	ESTs	1.35	0.16	early stage
	436602	Al793222	Hs.166817	ESTs	0.17	1.46	earty stage
15	436777	AA731199	Hs.293130 Hs.129004	ESTs	1 0.19	0.2 1.45	early stage
13	436813 436869	AW975714 NM_014867	Hs.297661	ESTs Homo sapiens YAC clone 377A1 unknown mRN	0.15	0.2	early stage early stage
	437169	AA309612	Hs.118797	ubiquitin-conjugating enzyme E2D 3 (homo	0.07	1.8	early stage
	438649	AA813136	Hs.143014	ESTs	1.38	0.19	early stage
	438681	AW384815	Hs.149208	KIAA1555 protein	0.25	0.54	early stage
20	438802	AA825976	Hs.136954	ESTs	1.8	0.14	early stage
	438887	R68857	Hs.265499	ESTs	1.05	0.32	early stage
	440128	AA962623	Hs.189144	ESTs, Weakly similar to NPT2_HUMAN RENAL	1	0.19	early stage
	440397	AA884448	Hs.157239	ESTs	0.59	0.38	early stage
25	440509	BE410132	Hs.134202	ESTs, Weakly similar to B41182 collagen	0.26	0.9	early stage
25	440605	Z40094	Hs.185698	ESTs	0.51 1	0.43	early stage early stage
	442238 443258	AW135374 AF169301	Hs.270949 Hs.9098	ESTs	0.85	0.18 0.49	early stage
	445739	AW136354	Hs.145303	sulfate transporter 1 ESTs	0.88	0.43	early stage
	447306	Al373163	Hs.170333	ESTs	0.15	0.8	early stage
30	447346	Al525135	Hs.210507	ESTs	1.35	0.27	early stage
	448265	N46272	Hs.26812	ESTs	0.47	0.26	early stage
	448678	AI560776	Hs.199854	ESTs	0.19	0.68	early stage
	448778	AF074913		gb:Homo sapiens transcription factor Pax	0.57	0.53	early stage
25	448871	BE616709		gb:601279937F1 NIH_MGC_39 Homo saplens c	0.26	0.94	early stage
35	449180	A1633836	Hs.195649	ESTS	0.46	0.45	early stage
	449213	BE616861		gb:601279056F1 NIH_MGC_39 Homo sapiens c	0.73 0.27	0.56 0.76	early stage early stage
	449231 449450	BE410360 AL039852	Hs.256990	gb:601302340F1 NIH_MGC_21 Homo sapiens c ESTs, Moderately similar to ALU7_HUMAN A	1	0.76	early stage
	449815	A1671000	Hs.199739	ESTs	1.2	0.15	early stage
40	450972	AW967906	Hs.194617	ESTs	0.28	0.83	early stage
	451236	A1767405	Hs.207026	ESTs, Weakly similar to B56205 transcrip	0.35	0.77	early stage
	451283	H83979		gb:ys93d11.r1 Soares retina N2b5HR Homo	1	0.23	early stage
	451375	A1792066	Hs.283902	Homo sapiens BAC clone RP11-481J13 from	0.16	1.37	early stage
15	452530	Al905518		gb:RC-BT091-210199-098 BT091 Homo sapien	1.35	0.21	early stage
45	452550	AA026735	11- 044007	gb:ze93d05.r1 Soares_fetal_heart_NbHH19W	0.44	0.6	early stage
	454121	AW090524	Hs.244967	ESTs gb:RC0-CT0210-280999-021-c10 CT0210 Homo	2.85 0.36	0.17 0.5	early stage
	454554 454697	AW847505 AW813728	Hs.15036	ESTs, Highly similar to AF161358 1 HSPC0	0.43	0.6	early stage early stage
	454851	AW835127	113.13030	gb:RC4-LT0011-100100-012-c07 LT0011 Homo	0.77	0.32	early stage
50	455040	AW852286		gb:QV0-CT0225-100400-187-d08 CT0225 Homo	0.26	0.52	early stage
	455225	AW996689		gb:QV3-BN0046-150400-151-g09 BN0046 Homo	1.7	0.18	early stage
	455970	A1733857	Hs.71483	ESTs	0.66	0.45	early stage
•	456235	AA203637		gb:zx58b12.r1 Soares_felal_liver_spleen_	0.64	0.43	early stage
55	456450	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	0.38	0.76	early stage
55	456526	AA782222	Hs.192008	ESTS	0.63	0.43	early stage
	456855 456983	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Dr thymopoletin	0.49 0.27	0.46 0.75	early stage early stage
	457089	AI081687 AA416556	Hs.170225 Hs.98234	ESTs ·	0.34	0.48	early stage
٠.	458198	AI286100	Hs.192739	ESTs	0.47	0.48	early stage
60	458425	Al084057	Hs.301149	ESTs	0.4	0.37	early stage
	458660	AJ299739	Hs.99601	Homo sapiens cDNA FLJ12553 fis, clone NT	0.79	0.68	early stage
	458703	AW749121	Hs.282901	ESTs	1	0.23	early stage
	458767	T97083	Hs.148355	ESTs	1	0.17	early stage
65	459399	BE407712		gb:601299745F1 NIH_MGC_21 Homo sapiens c	0.68	0.56	early stage
65	400860	VD033063	D- 42577	ATDens Close I has 8D member 2	4.9 0.58	0.08 0.84	late stage late stage
	408190 408558	AB032963 AW015759	Hs.43577 Hs.235709	ATPase, Class I, type 8B, member 2 ESTs	1.26	0.45	late stage
	410077	AF097645	Hs.58570	deleted in cancer 1; RNA helicase HDB/DI	6.2	0.12	late stage
	410295	AA741357	Hs.62041	nidogen (enactin)	0.77	0.86	late stage
70	410310	J02931	Hs.62192	coagulation factor III (thromboplastin,	1.45	0.27	late stage
	410614	AI091195	Hs.65029	growth arrest-specific 1	0.4	1.12	late stage
	410867	X63556	Hs.750	fibrillin 1 (Marfan syndrome)	0.71	1.07	late stage
	411573	AB029000	Hs.70823	KIAA1077 protein	3.64	0.19	late stage
75	412116	AW402166	Hs.784	Epstein-Barr virus induced gene 2 (lymph	5.18	0.13	late stage
13	412178	AW898526	Un 75765	gb:RC6-NN0072-040500-011-E05 NN0072 Homo	7.55 3.37	0.08 0.15	late stage late stage
	412429	AV650262 AI801777	Hs.75765 Hs.6774	GRO2 oncogene ESTs	0.49	1.24	late stage
	412652	Albuilli	115.0174	E019	U.43	1.24	www aresto

	412020	41 422200	11- 24004		26	0.44	lata abasa
	412828 414020	AL133396	Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob	3.6 4.62	0.11 0.14	late stage late stage
	414183	NM_002984	Hs.75703	small inducible cytokine A4 (homologous	3.18	0.14	
	414359	AW957446 M62194	Hs.301711	ESTS	0.81	0.10	late stage late stage
5	414476	AA301867	Hs.75929 Hs.76224	cadherin 11, type 2, OB-cadherin (osteob	0.37	0.73	late stage
J	414504	AW069181	Hs.293523	EGF-containing libutin-like extracellula ESTs, Weakly similar to transformation-r	0.97	0.65	late stage
	414812	X72755	Hs.77367	monokine induced by gamma interferon	3.84	0.00	late stage
	415116	AA160363	Hs.269956	ESTs	7.45	0.07	late stage
	415714	NM_002290	Hs.78672	laminin, alpha 4	0.49	1,39	late stage
10	415822	D59243	113.70072	gb:HUM526E07B Clontech human placenta po	8.15	0.09	late stage
10	415994	NM_002923	Hs.78944	regulator of G-protein signalling 2, 24k	0.48	1.46	late stage
	417059	AL037672	Hs.81071	extracellular matrix protein 1	1.52	0.44	late stage
	417259	AW903838	Hs.81800	chondroitin sulfate proteoglycan 2 (vers	2	0.39	late stage
	417733	AL048678	Hs.82503	syntaphilin	0.2	2.67	late stage
15	417771	AA804698	Hs.82547	retinoic acid receptor responder (tazaro	4.56	0.12	late stage
	417849	AW291587	Hs.82733	nidogen 2	1.81	0.38	late stage
	418005	Al186220	Hs.83164	collagen, type XV, alpha 1	0.97	0.74	late stage
	418283	S79895	Hs.83942	cathepsin K (pycnodysostosis)	1.21	0.56	late stage
	418875	W19971	Hs.233459	ESTs	2.63	0.33	late stage
20	419490	NM_006144	Hs.90708	granzyme A (granzyme 1, cytotoxic T-lymp	7.65	0.07	late stage
	419925	AA159850	Hs.93765	lipoma HMGIC fusion partner	0.91	0.82	late stage
	420411	AI581085	Hs.24678	ESTs	7.3	0.1	late stage
	420943	AJ718702	Hs.105341	EST ₈	7.05	0.07	late stage
	421116	T19132	Hs.101850	retinol-binding protein 1, cellular	0.99	0.42	late stage
25	421684	BE281591	Hs.106768	hypothetical protein FLJ10511	8.1	0.08	late stage
	421786	Al188653	Hs.21351	ESTs	8.15	0.08	late stage
	422414	AW875237	Hs.13701	ESTs	1.05	0.69	late stage
	422550	BE297626	Hs.296049	microfibrillar-associated protein 4	0.28	1.53	late stage
20	422790	AA809875	Hs.25933	EST ₈	2.59	0.28	late stage
30	423057	AW961597	Hs.130816	ESTs	7.55	0.08	late stage
	423720	AL044191	Hs.23388	Homo sapiens cDNA: FLJ21310 fis, clone C	1.24	0.61	late stage
	423905	AW579960	Hs.135150	lung type-I cell membrane-associated gly	2.12	0.24	late stage
	423915	AF039018	Hs.135281	alpha-actinin-2-associated LIM protein	0.29	2.45	iate stage
25	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	4.47	0.17	late stage
35	424247	X14008	Hs.234734	lysozyme (renal amytoldosis)	2.44	0.26	late stage
	424839	AA740632	Hs.120850	ESTs	2.74	0.23	late stage
	426780	BE242284	Hs.172199	adenylate cyclase 7	8.55	0.09	late stage
	426974	AB002298	Hs.173035	KIAA0300 protein	1.56	0.36	late stage
40	427055	AI301740	Hs.173381	dihydropyrimldinase-like 2	0.72	1	late stage
40	427882	AA640987	Hs.193767	ESTs	2.25	0.29	late stage
	428065	A1634046	Hs.157313	ESTs	6.19	0.1 0.08	late stage
	428147 428585	AW629965	Hs.234983	ESTs KIAA0403 protein	8.42 6.85	0.08	iate stage
	428825	AB007863	Hs.185140	ESTs	0.65	0.8	late stage late stage
45	429490	Al084336 Al971131	Hs.128783 Hs.293684	ESTs, Weakly similar to alternatively sp	1.59	0.39	late stage
73	429500	X78565	Hs.289114	hexabrachlon (tenascin C, cytotactin)	0.77	0.49	late stage
	431103	M57399	Hs.44	pleiotrophin (heparin binding growth fac	0.92	0.3	tate stage
	431319	AA873350	113.47	gb:oh64h02.s1 NCI_CGAP_Kid5 Homo sapiens	1.36	0.44	late stage
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.69	0.17	late stage
50	432314	AA533447	Hs.285173	ESTs	1.75	0.31	late stage
	432331	W37862	Hs.274368	Homo sapiens mRNA; cDNA DKFZp586l1524 (f	0.35	1.58	late stage
	432559	AW452948	Hs.257631	ESTs	1.37	0.49	late stage
	433470	AW960564	Hs.3337	transmembrane 4 superfamily member 1	2.58	0.24	late stage
	433586	T85301		gb:yd78d06.s1 Soares fetal liver spleen	5.06	0.11	late stage
55	436428	AW246900	Hs.283712	hypothetical protein	8.25	0.09	late stage
	436729	BE621807	Hs.3337	transmembrane 4 superfamily member 1	1.6	0.26	late stage
	438873	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	8.15	0.08	late stage
	439584	AA838114	Hs.221612	ESTs	8.6	0.09	late slage
~	439653	AW021103	Hs.6631	hypothetical protein FLJ20373	2.21	0.27	late stage
60	440524	R71264	Hs.16798	ESTs	3.44	0.21	late stage
	440624	AF017987	Hs.7306	secreted frizzled-related protein 1	0.42	0.63	late stage
	441976	AA428403	Hs.106131	ESTs	8.5	0.09	late stage
	442739	NM_007274	Hs.8679	cytosolic acyl coenzyme A thioester hydr	7.95	0.06	late stage
65	443852	Al679966	Hs.150603	ESTs	6.84	0.12	late stage
65	443896	A1680242	Hs.271687	Homo sapiens cDNA FLJ13527 fis, clone PL	7.95	0.08	late stage
	444212	AW503976	Hs.10649	basement membrane-induced gene	2.31	0.28	late stage
	444331	AW193342	Hs.24144	ESTS	0.32	1.64	late stage
	445142	AW978484	Hs.93842	Horno sapiens cDNA: FLJ22554 fis, clone H	2.52	0.24	late stage
70	445701	AF055581 U53445	Hs.13131	lymphocyte adaptor protein downregulated in ovarian cancer 1	1.43 0.54	0.47	late stage late stage
, 0	44658 4 447526	AL048753	Hs.15432 Hs.340	small inducible cytokine A2 (monocyte ch	1.43	1.39 0.43	iate stage
	447744	AA313230	Hs.19413	S100 calcium-binding protein A12 (calgra	1.35	0.45	late stage
	447818	W79940	Hs.21906	ESTs	6.63	0.13	iate stage
	449567	A1990790	Hs.188614	ESTs	4.7	0.13	late stage
75	450455	AL117424	Hs.25035	chloride intracellular channel 4	0.64	1.31	late stage
	452239	AW379378	Hs.170121	protein tyrosine phosphatase, receptor t	0.59	1.18	late stage
	452698	NM_001295	Hs.301921	ESTs	2.31	0.26	late stage
		-					-

	453212	H15416	Hs.21865	ESTs	2.51	0.26	late stage
	455510	AA422029	Hs.143640	ESTs, Wealdy similar to hyperpolarizatio	8.6	0.06	late stage
	400775	R58624	Hs.2186	eukaryolic translation elongation factor	1	1	T2-T4 grade 3 papilloma marker
5	401508				1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
5	403092 404232				j	i	T2-T4 grade 3 papilloma marker
	407020	U49973		gb:Human Tigger1 transposable element, c	i	i	T2-T4 grade 3 papilloma marker
	407345	AI053836	Hs.169365	ESTs, Weakly similar to ALU1_HUMAN ALU S	i	1	T2-T4 grade 3 papilloma marker
	407420	AF084362		gb:Homo sapiens lipoate-protein ligase B	1	1	T2-T4 grade 3 papilloma marker
10	407577	AW131324	Hs.246759	ESTs, Weakly similar to KIAA1074 protein	1	1	T2-T4 grade 3 papilloma marker
	407666	AF071107	Hs.37501	MAD (mothers against decapentaplegic, Dr	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
	407916 407936	L09234 AW118147	Hs.603 Hs.270935	ATPase, H+ transporting, lysosomal (vacu ESTs	i	i	T2-T4 grade 3 papilloma marker
	408186	AW168847	Hs.250156	ESTs	i	i	T2-T4 grade 3 papilloma marker
15	408950	AA707814	Hs.7396	ESTs	1	1	T2-T4 grade 3 papilloma marker
	409038	T97490	Hs.50002	small inducible cytokine subfamily A (Cy	1.2	0.12	T2-T4 grade 3 papilloma marker
	409045	AA635062	Hs.50094	Homo sapiens mRNA; cDNA DKFZp43400515 (f	1	1	T2-T4 grade 3 papilloma marker
	409196 409281	NM_001874	Hs.169765	carboxypeptidase M gb:zm67b03.r1 Stratagene neuroepithelium	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
20	410010	AA069998 AW572853	Hs.257683	ESTs, Weakly similar to ALU3_HUMAN ALU S	∍i –	0.5	T2-T4 grade 3 papilloma marker
~0	410157	AW593277	Hs.225056	ESTs	i	0.69	T2-T4 grade 3 papilloma marker
	411112	AW818158		gb:CM1-ST0277-161299-070-g07 ST0277 Homo	1	1	T2-T4 grade 3 papilloma marker
	411336	AW837675		gb:QV2-LT0039-260300-107-b04 LT0039 Homo	1	1	T2-T4 grade 3 papilloma marker
25	412051	T15872	Hs.268713	ESTs, Weakly similar to hypothetical pro	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
23	413485 413574	N52628 BE149158	Hs.129998	gb:yv37g11.s1 Soares fetal liver spleen Homo sapiens cDNA FLJ14267 fis, clone PL	i	i	T2-T4 grade 3 papilloma marker
	413782	BE546104	113.123330	gb:601072642F1 NIH_MGC_12 Homo sapiens c	i	i	T2-T4 grade 3 papilloma marker
	414749	H94622	Hs.193358	ESTs, Moderately similar to diabetes mel	1	1	T2-T4 grade 3 papilloma marker
20	415293	R49462	Hs.106541	ESTs	1	1	T2-T4 grade 3 papilloma marker
30	415442	F12963	Hs.7045	GL004 protein	1	1	T2-T4 grade 3 papilloma marker
	416255	T87587 AA192640	Hs.272082	ESTs ATPase, Ca++ transporting, cardiac muscl	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
	417047 417181	L10123	Hs.1526 Hs.1071	surfactant protein A binding protein	i	i	T2-T4 grade 3 papilloma marker
	417367	N73877	Hs.171815	ESTs	i	1	T2-T4 grade 3 papilloma marker
35	419721	NM_001650	Hs.288650	aquaporin 4	1	1	T2-T4 grade 3 papilloma marker
	420294	AA808259	Hs.196716	ESTs	1	0.65	T2-T4 grade 3 papilloma marker
	423589	AA328082	Hs.209569	ESTs, Weakly similar to thrombospondin t	1	1	T2-T4 grade 3 papilloma marker
	424549 425458	Al873205 H89317	Hs.183114 Hs.182889	Homo sapiens cDNA FLJ14236 fis, clone NT ESTs	i	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
40	426475	AL134728	FIS. 102003	gb:DKFZp547A1890_r1 547 (synonym: hfbr1)	i	i	T2-T4 grade 3 papilloma marker
	429453	AA453195	Hs.124222	ESTs	1	1	T2-T4 grade 3 papilloma marker
	431200	AF044923	Hs.250752	hook1 protein	1	1	T2-T4 grade 3 papilloma marker
	431938	AA938471	Hs.115242	developmentally regulated GTP-binding pr	1	1	T2-T4 grade 3 papilloma marker
45	431944 432021	Al360891 AA524470	Hs.143619 Hs.58753	ESTs ESTs	1	1	T2-T4 grade 3 papilioma marker T2-T4 grade 3 papilioma marker
77	432021	A1806583	Hs.125291	ESTs	i	0.31	T2-T4 grade 3 papilioma marker
	432527	AW975028	Hs.102754	ESTs '	1	1	T2-T4 grade 3 papilloma marker
	434069	AF116651	Hs.283058	hypothetical protein PRO0800	1	0.41	T2-T4 grade 3 papilloma marker
50	435278	AW994242	Hs.173495	ESTS	1	1 0.36	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
50	435965 436227	AI034368 AA706937	Hs.132650 Hs.120802	ESTs ESTs, Moderately similar to A26641 Na+/K	1	1	T2-T4 grade 3 papilloma marker
	436635	AW104325	Hs.272093	ESTs, Weakly similar to STK2_HUMAN SERIN	i	0.74	T2-T4 grade 3 papilloma marker
	436540	AA724411	Hs.156065	ESTs	1	1	T2-T4 grade 3 papilloma marker
	436884	BE046657		gb:hn42e02.x1 NCI_CGAP_RDF2 Homo sapiens	1	1	T2-T4 grade 3 papilloma marker
55	437251	AW976082	11- 400444	gb:EST388191 MAGE resequences, MAGN Homo	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
	437348 437769	AA749149 AA767853	Hs.163114 Hs.122895	ESTs ESTs	i	-1	T2-T4 grade 3 papilloma marker
	437771	AA811071	Hs.123349	ESTs	i	i	T2-T4 grade 3 papilloma marker
	438347	AA909686	Hs.293397	ESTs	1	1	T2-T4 grade 3 papilloma marker
60	439171	AA831133	Hs.294128	ESTs	1	0.95	T2-T4 grade 3 papilloma marker
	439914	AA854066	Hs.145394	ESTS	1	1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
	440399 440972	Al215527 BE044588	Hs.125589 Hs.276158	ESTs ESTs	i	i	T2-T4 grade 3 papilloma marker
	442004	AA973568	Hs.128317	ESTs	i	i	T2-T4 grade 3 papilloma marker
65	442270	BE565699	Hs.62005	ESTs	1	1	T2-T4 grade 3 papilloma marker
	443413	AI056457	Hs.221642	ESTs	1	1	T2-T4 grade 3 papilloma marker
	443927	AW016726	Hs.134860	ESTs	1	1	T2-T4 grade 3 papilloma marker
	445442	N20392	Hs.42846	ESTs ESTs	1	1 0.49	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
70	445611 445888	AW418497 AF070564	Hs.145583 Hs.13415	Homo sapiens clone 24571 mRNA sequence	1	1	T2-T4 grade 3 papilloma marker
, 0	445552	AW470827	Hs.156241	ESTs	i	i	T2-T4 grade 3 papilloma marker
	447399	AI815401	Hs.251967	Homo sapiens clone 785627 unknown mRNA	2.9	0.14	T2-T4 grade 3 papilloma marker
	449111	T83109	Hs.196180	ESTs	1	1	T2-T4 grade 3 papilloma marker
75	449232	AW192780	Hs.196080	ESTS -	1	0.8 1	T2-T4 grade 3 papilloma marker T2-T4 grade 3 papilloma marker
75	451373	Al792030 Al902519		gb:os03e11.y5 NCI_CGAP_Lu5 Homo sapiens gb:QV-BT009-101198-051 BT009 Homo sapien	1	i	T2-T4 grade 3 papilloma marker
	452453 452534	AW083022	Hs.149425	Homo sapiens cDNA FLI11980 fis, clone HE	i	0.67	T2-T4 grade 3 papilloma marker
	.0250						

	452536	BE063380		gb:PM0-BT0275-291099-002-g10 BT0275 Homo	1.65	0.26	T2-T4 grade 3 papilloma marker
	452640	AA027115	Hs.100206	ESTs, Weakly similar to AAAD_HUMAN ARYLA	1	1	T2-T4 grade 3 papilloma marker
	452645	Al911325	Hs.212049	EST	1	1	T2-T4 grade 3 papilloma marker
_	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	1	1	T2-T4 grade 3 papilloma marker
5	453472	AL037925		gb:DKFZp564M037_r1 564 (synonym: hfbr2)	1	8.0	T2-T4 grade 3 papilloma marker
	453609	AL045301	Hs.13427	ESTs .	1	1	T2-T4 grade 3 papilloma marker
	453677	AL079389		gb:DKFZp434E2116_r1 434 (synonym: htes3)	1	0.77	T2-T4 grade 3 papilloma marker
	453704	R41806	Hs.100884	ESTs	1	1	T2-T4 grade 3 papilloma marker
10	455267	AW880861		gb:QV0-OT0033-070300-152-c12 OT0033 Homo	1	1	T2-T4 grade 3 papilloma marker
10	455880	BE153208		gb:PM0-HT0335-050400-007-F10 HT0335 Homo	1	1	T2-T4 grade 3 papilloma marker
	456520	AW835416	Hs.29417	HCF-binding transcription factor Zhangfe	1	1	T2-T4 grade 3 papilloma marker
	456763	AJ271351	Hs.128180	B-cell translocation gene 4	1	0.71	T2-T4 grade 3 papilloma marker
	456912	AI458843	Hs.158112	protein tyrosine phosphatase, receptor t	1	1	T2-T4 grade 3 papilioma marker
	457018	AA761820	Hs.250965	ESTs	1	1	T2-T4 grade 3 papilloma marker
15	457323	AW967813	Hs.201064	ESTs	1	1	T2-T4 grade 3 papilloma marker
	457339	AW971949	Hs.291252	ESTs	1	1	T2-T4 grade 3 papilloma marker
	457340	AA492071		gb:ne97b04.s1 NCI_CGAP_Kid1 Homo sapiens	1	1	T2-T4 grade 3 papilloma marker
	457507	AW300248	Hs.181693	ESTs	1	1	T2-T4 grade 3 papilloma marker
00	458106	AF086561	Hs.37	acetyl-Coenzyme A acetyltransferase 1 (a	1	1	T2-T4 grade 3 papilloma marker
20	458624	Al362790	Hs.181801	ESTs	1	0.34	T2-T4 grade 3 papilloma marker
	459396	A1907536	Hs.103869	ESTs	1	1	T2-T4 grade 3 papilloma marker
	401002				1	1	T2-T4 grade 3 solid turnor marker
	401866				1.35	0.14	T2-T4 grade 3 solid tumor marker
05	403615				1	1	T2-T4 grade 3 solid tumor marker
25	403776			•	1	1	T2-T4 grade 3 solid tumor marker
	404113				1	0.43	T2-T4 grade 3 solid tumor marker
	404488				1	0.17	T2-T4 grade 3 solid turnor marker
	404653				1	1	T2-T4 grade 3 solid tumor marker
20	406076	AL390179	Hs.137011	Homo sapiens mRNA; cDNA DKFZp547P134 (fr	1	0.24	T2-T4 grade 3 solid tumor marker
30	406471				1	0.42	T2-T4 grade 3 solid turnor marker
	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	2.75	0.05	T2-T4 grade 3 solid turnor marker
	407624	AW157431	Hs.248941	ESTs	3.05	0.15	T2-T4 grade 3 solid tumor marker
	409153	W03754	Hs.50813	hypothetical protein FLJ20022	3.85	0.03	T2-T4 grade 3 solid tumor marker
26	409464	X69115	Hs.54488	zinc finger protein 37a (KOX 21)	1.15	0.29	T2-T4 grade 3 solid tumor marker
35	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	1	0.24	T2-T4 grade 3 solid tumor marker
	410025	BE220489	Hs.113592	ESTs	1	0.3	T2-T4 grade 3 solid tumor marker
	410589	AW770768	Hs.266717	ESTs	1	0.28	T2-T4 grade 3 solid tumor marker
	411840	AW866330		gb:QV4-SN0024-080400-167-e01 SN0024 Homo	1.05	0.15	T2-T4 grade 3 solid tumor marker
40	412198	AA937111	Hs.69165	ESTs	1	0.26	T2-T4 grade 3 solid tumor marker
40	412305	AW936369		gb:QV4-DT0021-301299-071-d07 DT0021 Homo	1	0.53	T2-T4 grade 3 solid tumor marker
	412753	Al065016	Hs.6390	ESTs	1	0.33	T2-T4 grade 3 solid tumor marker
	413472	BE242870	Hs.75379	solute carrier family 1 (glial high affi	1	0.69	T2-T4 grade 3 solid tumor marker
	413530	AA130158	Hs.19977	ESTs, Moderately similar to ALU8_HUMAN A	1	0.29	T2-T4 grade 3 solid tumor marker
4.5	415027	D31010		gb:HUML12147 Human fetal lung Homo saple	1	1	T2-T4 grade 3 solid turnor marker
45	416099	H18626	Hs.22634	ESTs	1	0.74	T2-T4 grade 3 solid turnor marker
	416655	AW968613	Hs.79428	BCL2/adenovirus E1B 19kD-Interacting pro	3.8	0.12	T2-T4 grade 3 solid tumor marker
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	2.85	0.08	T2-T4 grade 3 solid turnor marker
	420347	AL033539	Hs.97124	Human DNA sequence from clone RP1-309H15	1	0.2	T2-T4 grade 3 solid tumor marker
~~	421243	AW873803	Hs.102876	pancreatic lipase	1	0.38	T2-T4 grade 3 solid turnor marker
50	422660	AW297582	Hs.237062	ESTs	1.05	0.32	T2-T4 grade 3 solid tumor marker
	422834	AA318334		gb:EST20402 Retina II Homo sapiens cDNA	1	0.38	T2-T4 grade 3 solid tumor marker
•	422972	N59319	Hs.145404	ESTs	1	0.61	T2-T4 grade 3 solid tumor marker
	423104	AJ005273	Hs.123647	antigenic determinant of recA protein (m	2.95	0.12	T2-T4 grade 3 solid tumor marker
<i>5 5</i>	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	1	0.05	T2-T4 grade 3 solid tumor marker
55	424268	AA397653	Hs.144339	Human DNA sequence from clone 495O10 on	1	0.35	T2-T4 grade 3 solid tumor marker
	425196	AL037915	Hs.155097	carbonic anhydrase II	2.75	0.05	T2-T4 grade 3 solid tumor marker
	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	1	0.09	T2-T4 grade 3 solid tumor marker
	430300	U60805	Hs.238648	oncostatin M receptor	1	0.25	T2-T4 grade 3 solid lumor marker
6 0	431098	AW501465	Hs.249230	ribonuclease L (2,5'-oligoisoadenylate	1	0.28	T2-T4 grade 3 solid tumor marker
60	431277	AA501806	Hs.249965	ESTs .	1	0.22	T2-T4 grade 3 solid tumor marker
	431750	AA514986	Hs.283705	ESTs	1	1	T2-T4 grade 3 solid tumor marker
	434273	AA913143	Hs.26303	ESTs	1	0.41	T2-T4 grade 3 solid tumor marker
	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.8	0.19	T2-T4 grade 3 solid tumor marker
C C	436281	AW411194	Hs.120051	ESTs .	2.05	0.14	T2-T4 grade 3 solid tumor marker
65	437010	AA741368	Hs.291434	ESTs	2.4	0.17	T2-T4 grade 3 solid tumor marker
	437814	AI088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	1.8	0.13	T2-T4 grade 3 solid tumor marker
	438361	AA805666	Hs.146217	Homo saptens cDNA: FLJ23077 fis, clone L	1	0.3	T2-T4 grade 3 solid tumor marker
	438376	BE541211	Hs.34804	Homo sapiens cDNA FLJ11472 fis, clone HE	1	0.57	T2-T4 grade 3 solid tumor marker
70	439370	AW274369	Hs.158853	ESTs	1	0.17	T2-T4 grade 3 solid tumor marker
70	440021	AW025498	Hs.270842	ESTs, Weakly similar to ALU8_HUMAN ALU S	1	0.65	T2-T4 grade 3 solid tumor marker
	440404	Al015881	Hs.125616	ESTS	. 1	0.26	T2-T4 grade 3 solid tumor marker
	441523	AW514263	Hs.168872	ESTs, Weakly similar to ALUF_HUMAN !!!!	1	1	T2-T4 grade 3 solid tumor marker
	442277	AW448914	Hs.202391	ESTs	24	0.15	T2-T4 grade 3 solid tumor marker
75	442738	AW002370	Hs.131055	ESTs	1	0.29	T2-T4 grade 3 solid tumor marker
75	443297	Al049864	Hs.133029	ESTs	1	1	T2-T4 grade 3 solid tumor marker
	444754	T83911	Hs.11881	transmembrane 4 superfamily member 4	1	0.61	T2-T4 grade 3 solid tumor marker
	445550	AI242754	Hs.137306	ESTs	1	0.5	T2-T4 grade 3 solid tumor marker

						0.00	TO T4 and 2 solid human market
	446149	BE242960	Hs.203181	ESTs	1	0.25	T2-T4 grade 3 solid tumor marker
	446163	AA026880	Hs.25252	Homo sapiens cDNA FLJ13603 fis, clone PL	1	0.21	T2-T4 grade 3 solid turnor marker
	446434	A1823410	Hs.169149	karyopherin alpha 1 (importin alpha 5)	1	1	T2-T4 grade 3 solid tumor marker
_	446928	A1694493	Hs.246916	ESTs	1	0.31	T2-T4 grade 3 solid tumor marker
5	448591	Al540111	Hs.171261	ESTs	1	1	T2-T4 grade 3 solid tumor marker
	449121	Al915858	Hs.194980	ESTs	1	1	T2-T4 grade 3 solid tumor marker
	449539	W80363	Hs.58446	ESTs	1	0.33	T2-T4 grade 3 solid tumor marker
	450451	AW591528	Hs.202072	ESTs	1	0.59	T2-T4 grade 3 solid turnor marker
	450469	AI955049	Hs.281326	ESTs	1	0.43	T2-T4 grade 3 solid tumor marker
10	450684	AA872605	Hs.25333	Interleukin 1 receptor, type II	1	0.05	T2-T4 grade 3 solid tumor marker
	451099	R52795	Hs.25954	interleukin 13 receptor, alpha 2	1.55	0.11	T2-T4 grade 3 solid turnor marker
	451106	BE382701	Hs.25960	v-myc avian myelocytomatosis viral relat	1	0.95	T2-T4 grade 3 solid tumor marker
	451130	Al762250	Hs.211347	ESTs	3.65	0.15	T2-T4 grade 3 solid turnor marker
	451412	AW136378	Hs.208060	ESTs .	1	1	T2-T4 grade 3 solid tumor marker
15	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	1.35	0.22	T2-T4 grade 3 solid tumor marker
	452114	N22687	Hs.8236	ESTs	1	0.19	T2-T4 grade 3 solid tumor marker
	452743	AW965082	Hs.61455	ESTs	1.	0.44	T2-T4 grade 3 solid turnor marker
	454622	U70071		gb:HSU70071 Human Homo sapiens cDNA cion	1	1	T2-T4 grade 3 solid tumor marker
	455235	AW875951		gb:CM1-PT0013-131299-067-f09 PT0013 Homo	1	0.31	T2-T4 grade 3 solid turnor marker
20	457792	AL046988	Hs.268677	ESTs, Moderately similar to ALU7_HUMAN A	1	0.24	T2-T4 grade 3 solid turnor marker
	100147	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	20.531	0.036	upregulate stage
	101193	L20861	Hs.152213	"wingless-type MMTV integration site fam	1	0.526	upregulate stage
	101724	M69225	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	20.67	0.037	upregulate stage
	101809	M86849	*Hs.323733	gap junction protein, beta 2, 26kD (con	20.78	0.019	upregulate stage
25	102154	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalini	18.848		upregulate stage
	102211	U23070	Hs.78776	putative transmembrane protein	2.092	0.28	upregulate stage
	102623	U66083	Hs.37110	"melanoma antigen, family A, 9"	1	0.306	upregulate stage
	102915	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	3.27	0.041	upregulate stage
	103036	X54925	*Hs.83169	matrix metalloproteinase 1 (interstitial	13.63	0.034	upregulate stage
30	103030	X63629	Hs.2877	"cadherin 3, type 1, P-cadherin (placent	7.296	0.054	upregulate stage
50	103312	X82693	Hs.3185	"lymphocyte antigen 6 complex, locus D"	0.908	0.485	upregulate stage
	103478	Y07755	Hs.38991	S100 calcium-binding protein A2	2.928	0.219	upregulate stage
	103587	Z29083	Hs.82128	5T4 oncofetal trophoblast glycoprotein	3.156	0.16	upregulate stage
	106632	AA459897	Hs.11950	GPI-anchored metastasis-associated prote	1.642	0.516	upregulate stage
35				ESTs	2.421	0.174	upregulate stage
55	107151	AA621169	Hs.8687	keratin 6A	1.259	0.343	upregulate stage
	107901	AA026418	."Hs.111758	"Homo sapiens lg superfamily receptor LN	14.22	0.049	upregulate stage
	107922	AA028028	Hs.61460		11.13	0.039	upregulate stage
	109166	AA179845	Hs.73625	"RAB6 interacting, kinesin-like (rabkine	1.737	0.518	
40	109424	AA227919	"Hs.85962	hyaluronan synthase 3	20.93	0.021	upregulate stage
40	110906	N39584	Hs.17404	ESTs	3.941	0.181	upregulate stage upregulate stage
	112244	R51309	Hs.70823	KIAA1077 protein	1.932	0.502	upregulate stage
	115060	AA253214	Hs.198249	"gap junction protein, beta 5 (connextn	7.394	0.101	upregulate stage
	115697	AA411502 ·	Hs.63325	"transmembrane protease, serine 4"	1.667	0.445	upregulate stage
45	115978	AA447522	*Hs.69517	"Homo sapiens, clone MGC:5257, mRNA, com	4.899	0.154	upregulate stage
45	116335	AA495830	Hs.41690	desmocollin 3		0.069	upregulate stage
	118314	N63402	Hs.46692	ESTS	9.75	0.197	
	118336	N63604	Hs.47166	HT021	4.601 1.95	0.123	upregulate stage upregulate stage
	119845	W79920	Hs.58561	G protein-coupled receptor 87	4.191	0.211	
50	120486	AA253400	Hs.137569	tumor protein 63 kDa with strong homolog	14.25	0.058	upregulate stage
50	121027	AA398470	Hs.99785	"Homo sapiens cDNA: FLJ21245 fis, clone	4.99	0.168	upregulate stage
	124059	F13673	Hs.283713	"ESTs, Weakly similar to ORF YGL050w [S.	2.433	0.306	upregulate stage
	128595	U31875	"Hs.152677	"Homo sapiens cDNA FLJ20338 fis, clone H		0.14	upregulate stage upregulate stage
	128610	L38608	Hs.10247	activated leucocyte cell adhesion molecu	4.34 2.003	0.455	upregulate stage
55	129041	H58873	*Hs.169902	"solute carrier family 2 (facilitated gl	11.584		upregulate stage
55	129468	L42583	*Hs.111758	keratin 6A	2.376	0.233	upregulate stage
	130627	L23808	Hs.1695	matrix metalloproteinase 12 (macrophage		0.132	
	132349	Y00705	"Hs.181286	"serine protease inhibitor, Kazal type 1	5.4 3.888	0.132	upregulate stage upregulate stage
	132710	W93726	Hs.55279	"serine (or cysteine) proteinase inhibit		0.334	
60 .	133391	X57579	Hs.727	"Inhibin, beta A (activin A, activin AB	1.517		upregulate stage
UU .	134110	AA242758	"Hs.79136	"LIV-1 protein, estrogen regulated" matrix metalloproteinase 10 (stromelysin	2.221	0.387 0.03	upregulate stage upregulate stage
	400289	X07820	Hs.2258		4.85	0.03	
	400297	A)127076	Hs.288381	hypothetical protein DKFZp564O1278	3.54	0.13	upregulate stage upregulate stage
	400346	AB041269	Hs.272263	Homo sapiens mRNA for keratin 19, partia	8.95	0.06	upregulate stage
65	400419	AF084545	Hs.81800	chondroitin sulfate proteoglycan 2 (vers	10.7	0.56	upregulate stage
05	400495		11- APPERE		1		upregulate stage
	400509	M97639	Hs.155585	receptor tyrosine kinase-like orphan rec	1.52	0.51 0.23	upregulate stage
	400528				3.47		upregulate stage
	400577				1	0.29	
70	400608				7.2	0.08	upregulate stage
70	400644			·	1	1	upregulate stage
	400666				1.42	0.43	upregulate stage
	400750				8.7	0.1	upregulate stage
	400773				1.11	0.51	upregulate stage
75	400844				9.65	0.04	upregulate stage
75	400845				2.3	0.28	upregulate stage
	400846				1.34	0.5	upregulate stage
	400880				9.4	0.06	upregulate stage

	100000						
	400887				!	1	upregulate stage
	401086				1	0.51	upregulate stage
	401093				7	80.0	upregulate stage
-	401101				1	0.17	upregulate stage
5	401197				5.18	0.14	upregulate stage
	401262				1	1	upregulate stage
	401271				1	1	upregulate stage
	401279				9.1	0.06	upregulate stage
	401342				1.42	0.5	upregulate stage
10	401345	M83738	Hs.147663	protein tyrosine phosphatase, non-recept	. 1	0.33	upregulate stage
	401365			,,	6.5	0.11	upregulate stage
	401395				1	0.31	upregulate stage
	401420				1	1	upregulate stage
	401439				2.65	0.17	upregulate stage
15	401451				12	0.05	upregulate stage
13		00047976	D- 454707	HE and AND appoints austria 116 kg	9.15	0.03	upregulate stage
	401599	BE247275	Hs.151787	U5 snRNP-specific protein, 116 kD	8.75	0.00	
	401600	BE247275	Hs.151787	U5 snRNP-specific protein, 116 kD	1		upregulate stage
	401694					1	upregulate stage
20	401747				29.75	0.02	upregulate stage
20	401759		•		11.35	0.06	upregulate stage
	401780				6.15	0.07	upregulate stage
	401868	AC005261	Hs.98338	serine/threonine kinase 13 (aurora/IPL1-	1	0.69	upregulate stage
	401994				3.15	0.15	upregulate stage
0.5	402001				4.4	0.14	upregulate stage
25	402230				8.75	0.06	upregulate stage
	402325				1	0.36	upregutate stage
	402408				5.15	0.1	upregulate stage
	402472				9.05	0.08	upregulate stage
	402480				1	1	upregulate stage
30	402490				9.6	0.07	upregulate stage
50	402553				9.85	0.09	upregulate stage
	402889				9.4	0.09	upregulate stage
					1.07	0.65	upregulate stage
	402901						
35	402938				1	1	upregulate stage
33	402995				9.6	0.06	upregulate stage
	403005				1.5	0.21	upregulate stage
	403020				5.15	0.12	upregulate stage
	403052	R58624	Hs.2186	eukaryotic translation elongation factor	1	1	upregulate stage
4.0	403053	R58624	Hs.2186	eukaryotic translation elongation factor	1.5	0.28	upregulate stage
40	403073				1	0.37	upregulate stage
	403085				1	0.43	upregulate stage
	403106				1.12	0.57	upregulate stage
	403152	AA576664	Hs.37078	v-crk avian sarcoma virus CT10 oncogen-	e 0.86	1.08	upregulate stage
	403172				7.7	0.09	upregulate stage
45	403212				1.18	0.62	upregulate stage
	403214				6.05	0.1	upregulate stage
	403277				· 4.5	0.11	upregulate stage
	403331				3.2	0.13	upregulate stage
	403381				10.7	0.05	upregulate stage
50	403381				10.35	0.03	upregulate stage
50					1		upregulate stage
-	403588				-	1	
	403851				2.45	0.34	upregulate stage
	403860	•			1	1	upregulate stage
55	403894				4.45	0.14	upregulale stage
55	403903				1.39	0.58	upregulate stage
	403954	W28077	Hs.79389	nel (chicken)-like 2	1	1	upregulate stage
•	404148				9.15	0.08	upregulate stage
	404229				1	1	upregulate stage
	404268				1	1	upregulate stage
60	404274				1.3	0.2	upregulate stage
	404288				1	0.39	upregulate stage
	404403				1	0.28	upregulate stage
	404440				7.05	0.06	upregulate stage
	404507				1	0.33	upregulate stage
65	404516				i	1	upregulate stage
03	404639				i	i	upregulate stage
	404684				0.89	0.9	upregulate stage
					2.74	0.9	egista etsingerqu
	404685						
70	404704				9.35	0.08	upregulate stage
70	404829				1	0.24	upregulate stage
	404860				3.65	0.15	upregulate stage
	404894				2.05	0.16	upregulate stage
	404939				1	1	upregulate stage
	405034	AL035754	Hs.2474	toll-like receptor 1	1	0.18	upregulate stage
75	405059				1	0.56	upregulate stage
	405064				1	0.22	upregulate stage
	405102				9.65	0.08	upregulate stage
							-

						A C7	
	405167				1	0.67 0.48	upregulate stage
	405170				1	0.40	upregulate stage upregulate stage
	405177				3.75	0.22	upregulate stage
5	405186				8.85	0.09	upregulate stage
5	405258				1	1	upregulate stage
	405281				i	0.87	upregulate stage
	405379 405494				5	0.13	upregulate stage
					1	0.95	upregulate stage
10	405520 405526				8.96	0.08	upregulate stage
10	405725				3.3	0.12	upregulate stage
	405738				0.86	0.69	upregulate stage
	405809				2.4	0.18	upregulate stage
	405838				1	0.22	upregulate stage
15	405906			•	2.6	0.12	upregulate stage
13	406137				1.54	0.52	upregulate stage
	406187				3.2	0.14	upregulate stage
	406322				3.95	0.12	upregulate stage
	406360				4.1	0.1	upregulate stage
20	406397				1	0.24	upregulate stage
20	406434				7.4	0.07	upregulate stage
	406467				9.1	0.07	upregulate stage
	406511				1	1	upregulate stage
	406517	W28077	Hs.79389	nel (chicken)-like 2	i	1	upregulate stage
25	406588	***20017			0.93	0.91	upregulate stage
	406651	Al559224	Hs.277477	major histocompatibility complex, class	10.1	0.07	upregulate stage
	406665	U22961	Hs.75442	albumin	1.08	0.81	upregulate stage
	406671	AA129547	Hs.285754	met proto-oncogene (hepatocyte growth fa	5.7	0.12	upregulate stage
	406687	M31126	Hs.272620	pregnancy specific beta-1-glycoprotein 9	1.95	0.3	upregulate stage
30	406732	AA487229	Hs.2064	vimentin	1	0.77	upregulate stage
	406747	Al925153	Hs.217493	annexin A2	3.6	0.14	upregulate stage
	406753	AA505665	Hs.217493	annexin A2	5.45	0.13	upregulate slage
	406815	AA833930	Hs.288036	IRNA isopentenylpyrophosphate transferas	3.65	0.09	upregulate stage
	406850	A1624300	Hs,172928	collagen, type I, alpha 1	1.29	0.62	upregulate stage
35	406892	D55643		gb:Human spieen PABL (pseudoautosomal bo	1	1	upregulate stage
	406944	J04742	Hs.247945	Hurnan autonomous replicating sequence H1	1	1	upregulate stage
	406950	L17325	Hs.278	pre-T/NK cell associated protein	1	0.36	upregulate stage
	406961	L77563		gb:Homo sapiens DGS-F partial mRNA.	1	1	upregulale stage
	406964	M21305	Hs.247946	Human alpha satellite and satellite 3 Ju	42.25	0.01	upregulate stage
40	406993	S83249		gb:NG-TRA=transporter protein/putative h	1	1	upregulate stage
	407017	U48697		gb:Human mariner-like element-containing	1	1	upregulate stage
	407073	Y10510		gb:H.sapiens mRNA for CD67S protein.	1	0.53	upregulate stage
	407105	S64699	Hs.663	cystic fibrosis transmembrane conductanc	1	1	upregulate stage
15	407128	R83312	Hs.237260	EST	1	1	upregulate stage
45	407132	T02871	Hs.228523	EST	1	0.45	upregulate stage
	407137	T97307	Hs.199067	v-erb-b2 avian erythroblastic leukemia v	14.3	0.05	upregulate stage
	407158	N49839		gb:yz08b10.s1 Soares_multiple_sclerosis_	1	0.57	upregulate stage
	407175	T86603		gb:yd87d12.s1 Soares fetal liver spleen	1 1	0.31 1	upregulate stage upregulate stage
50	407186	AA435610		gb:zt74b11.s1 Soares_testis_NHT Homo sap	i	i	upregulate stage
50	407189	AA598927		gb:ae37e03.s1 Gessler Wilms tumor Homo s	6.05	0.12	upregulate stage
	407192	AA609200 C21124		gb:af12e02.s1 Soares_testis_NHT Homo sap gb:HUMGS0002072 Human adult (K.Okubo) Ho	1	1	upregulate stage
	407195	N58172	Hs.109370	ESTs	3.7	0.16	upregulate stage
	407202	R41933	Hs.140237	ESTs, Weakly similar to AF119917 13 PRO1	10.2	0.06	upregulate stage
55	407204 407205	R78910	Hs.272620	pregnancy specific beta-1-glycoprotein 9	1.9	0.22	upregulate stage
55	407211	T95828	Hs.230070	EST	1	0.59	upregulate stage
	407346	AI090210	Hs.264106	ESTs	i	1	upregulate stage
	407422	AF116633	110.204100	gb:Homo sapiens PRO1318 mRNA, complete c	Ť	0.22	upregulate stage
	407494	U10072		gb:Human forkhead family (AFX1) mRNA, pa	4.1	0.13	upregulate stage
60	407547	Y10259		gb:H.sapiens ACTH receptor mRNA 3'UTR.	2.45	0.19	upregulate stage
•••	407564	AA042860	Hs.103005	ESTs	1	1	upregulate stage
	407603	AW955705	Hs.62604	ESTs	1.18	0.73	upregulate stage
65	407634	AW016569	Hs.301280	ESTs, Highly similar to AF241831 1 intra	9.6	0.06	upregulate stage
	407668	BE161086	Hs.279817	ESTs	1	0.39	upregulate stage
	407709	AA456135	Hs.23023	ESTs	6.8	0.12	upregulate stage
	407710	AW022727	Hs.23616	ESTs	3.9	0.14	upregulate stage
	407725	BE388094	Hs.21857	ESTs	9.97	0.07	upregulate stage
	407729	T40707	Hs.270862	ESTs	9.2	0.09	upregulate stage
5 0	407774	AA084958		gb:zn13d12.r1 Stratagene hNT neuron (937	2.65	0.22	upregulate stage
70	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	2.1	0.34	upregulate stage
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	8.45	0.06	upregulate stage
	407813	AL120247	Hs.40109	KIAA0872 protein	9.1	0.08	upregulate stage
75	407833	AW955632	Hs.66666	ESTs	9.2	0.07	upregulate stage
	407839	AA045144	Hs.161566	ESTs	2.11	0.25	upregulate stage
	407853	AA336797	Hs.40499	dickkopf (Xenopus laevis) homolog 1	1	0.34	upregulate stage
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-O-sulfot	3.52	0.18	upregulate stage
	407882	AJ241264	Hs.62772	ESTs	1	0.26	upregulate stage

	407040	AACEMATA	Un 4490C	Character levels a deb transmembrane a	13.6	0.05	unmoulate stane
	407910 407911	AA650274 AF104922	Hs.41296 Hs.41565	fibronectin leucine rich transmembrane p growth differentiation fector 8	13.0	1	upregulate stage upregulate stage
	407912	AW104401	Hs.243489	ESTs, Weakly similar to AF151881 1 CGI-1	10.35	0.07	upregulate stage
_	407935	U31986	Hs.41683	cartilage paired-class homeoprotein 1	4.25	0.12	upregulate stage
5	407939	W05608		gb:za85e07.r1 Soares_fetal_lung_NbHL19W	8.75	0.09	upregulate stage
	407944	R34008	Hs.239727	desmocollin 2	9.2	0.06	upregulate stage
	407945 407946	X69208 AA226495	Hs.606 Hs.154292	ATPase, Cu++ transporting, alpha polypep ESTs	1.45 9.4	0.25 0.07	upregulate stage upregulate stage
	407949	W21874	Hs.247057	ESTs	3.32	0.2	upregulate stage
10	407974	AW968123	Hs.146401	small inducible cytokine subfamily E, me	3.55	0.14	upregulate stage
	407983	U40371	Hs.41718	phosphodiesterase 1C, calmodulin-depende	8.95	0.07	upregulate stage
	407994	AW135309	Hs.244331	ESTs	4.5	0.12	upregulate stage
	408000 408014	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD) protein kinase, cGMP-dependent, type II	2.89 1.31	0.19 0.53	upregulate stage upregulate stage
15	408031	AA723782 AA081395	Hs.41749 Hs.42173	Homo sapiens cDNA FLJ10366 fis, clone NT	3.6	0.17	upregulate stage
10	408046	AW139121	Hs. 183643	ESTs	1	0.36	upregulate stage
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	10.75	0.05	upregulate stage
	408092	NM_007057	Hs.42650	ZW10 Interactor	4.7	0.13	upregulate stage
20	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	4.5 4.4	0.14 0.13	upregulate stage upregulate stage
20	408141 408170	U69205 AW204516	Hs.45152 Hs.31835	ESTs, Moderately similar to neurogenic b ESTs	5.85	0.13	upregulate stage
	408184	AW168741	Hs.22249	ESTs	1	1	upregulate stage
	408224	AW175997		gb:QV0-BT0078-190899-005-E02 BT0078 Homo	1	0.44	upregulate stage
0.5	408239	AA053401	Hs.271827	ESTs, Moderately similar to ALU7_HUMAN A	9.95	0.04	upregulate stage
25	408241	AW176546		gb:MR0-CT0063-200899-001-a01 CT0063 Homo	2.8	0.17	upregulate stage
	408268 408277	AL138247		gb:DKFZp547D237_r1 547 (synonym: hfbr1) gb:lL3-HT0060-200899-008-D03 HT0060 Homo	1	0.61 1	upregulate stage upregulate stage
	408277	AW177959 BE141991		gb:PM2-HT0134-220999-002-d10 HT0134 Homo	i	i	upregulate stage
	408352	AA053875	Hs.95310	ESTs	1	1	upregulate stage
30	408360	A1806090	Hs.44344	hypothetical protein FLJ20534	9.15	0.08	upregulate stage
	408393	AW015318	Hs.23165	ESTs	9.35	0.07	upregulate stage
	408396	AA330496	Hs.40840	ESTs	1	0.61 1	upregulate stage upregulate stage
	408442 408514	R59608 AW206559	Hs.21435 Hs.255903	ESTs ESTs	i	0.34	upregulate stage
35	408572	AA055611	Hs.226568	ESTs, Moderately similar to ALU4_HUMAN A	i	0.33	upregulate stage
	408617	R61736	Hs.124128	ESTs	2.75	0.14	upregulate stage
	408633	AW963372	Hs.46677	PRO2000 protein	3.14	0.25	upregulate stage
	408706	AW438503	Hs.256935	ESTs	8.45 2.81	0.09 0.21	upregulate stage upregulate stage
40	408713 408725	NM_001248 AA131539	Hs.47042 Hs.15669	ectonucleoside triphosphate diphosphohyd ESTs	9.1	0.08	upregulate stage
	408728	AL137379	Hs.47125	hypothetical protein FLJ13912	3.1	0.11	upregulate stage
	408738	NM_014785	Hs.47313	KIAA0258 gene product	4.4	0.13	upregulate stage
	408739	W01556	Hs.238797	ESTs	5.65	0.11	upregulate stage
45	408754	N31256	Hs.161623	ESTs	1 8.75	1 0.09	upregulate stage upregulate stage
45	408765 408805	AA057268 H69912	Hs.146013 Hs.48269	ESTs vaccinia related kinase 1	4.95	0.03	upregulate stage
	408813	A1580090	Hs.48295	RNA helicase family	3.65	0.17	upregulate stage
	408817	AA524525	Hs.279864	PRO1996 protein	6.15	0.12	upregulate stage
50	408849	BE219451	Hs.254919	ESTs	1	0.32	upregulate stage
50	408902 408908	AW014869 BE296227	Hs.5510 Hs.48915	ESTs serine/threonine kinase 15	3.3 5.65	0.15 0.1	upregulate stage upregulate stage
	408916	AW295232	Hs.22893	ESTs	10	0.08	upregulate stage
	408933	AA058979	Hs.182133	ESTs, Highly similar to ADP-ribosylation	1	0.91	upregulate stage
	408943	NM_007070	Hs.49105	FKBP-associated protein	3.45	0.16	upregulate stage
55 .	408960	BE158389	Hs.300976	ESTS	6.3	0.1	upregulate stage upregulate stage
	409032 409093	AW301807 BE243834	Hs.297260 Hs.50441	ESTs CGI-04 protein	8.4 1.71	0.08 0.49	upregulate stage
	409099	AK000725	Hs.50579	hypothetical protein FLJ20718	10.1	0.07	upregulate stage
	409142	AL136877	Hs.50758	chromosome-associated polypeptide C	11.85	0.05	upregulate stage
60	409203	AA780473	Hs.687	cytochrome P450, subfamily IVB, polypept	2.83	0.24	upregulate stage
	409231	AA446644	Hs.692	tumor-associated calcium signal transduc	9.34	80.0	upregulate stage
	409262	AK000631	Hs.52256 Hs.54415	hypothetical protein FLJ20624 casein, kappa	8.7 1.6	0.0 9 0.2	upregulate stage upregulate stage
	409357 409402	M73628 AF208234	Hs.695	cystatin B (stefin B)	1.57	0.56	upregulate stage
65	409405	AA075869	Hs.126400	ESTs, Highly similar to RL39_HUMAN 60S R	2.6	0.12	upregulate stage
	409408	AW387837		gb:MR4-ST0118-021299-021-f08 ST0118 Homo	4.3	0.15	upregulate stage
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	8.28	0.06	upregulate stage
	409509	AL036923	Hs.127006	ESTs	10.2 1	0.06 0.56	upregulate stage upregulate stage
70	409566 409575	AA078899 AW419225	Hs.256247	gb:zm94b01.r1 Stratagene colon HT29 (937 ESTs	1 2.15	0.50	upregulate stage
, 0	409582	R27430	Hs.271565	ESTs	7.3	0.07	upregulate stage
	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	3.78	0.19	upregulate stage
	409642	AW450809	Hs.257347	ESTs	9.55	0.07	upregulate stage
75	409674	AI935146	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:potyp	1	0.29	upregulate stage upregulate stage
75	409691 4097 0 3	T89983 NM_006187	Hs.246042 Hs.56009	ESTs 2-5'oligoadenylate synthetase 3	2.22	0.36	upregulate stage
	409727	N63786	Hs.94149	ESTs, Weakly similar to ALU1_HUMAN ALU S	1	0.57	upregulate stage
				• • • • • • • • • • • • • • • • • • • •			-

	400700	A A 202040		absCOT40C24 Adia and Marine white I I leave	0.00	20.0	
	409760 409789	AA302840	N= 400046	gb:EST10534 Adipose tissue, white I Homo	9.95 1	0.05 0.83	upregulate stage upregulate stage
	409794	8E256027 AW885691	Hs.180946	ribosomai protein L5	i	1	upregulate stage
	409977	AW805510	Hs.97056	gb:RC4-OT0071-240300-013-b04 OT0071 Homo	9.65	0.07	nbiednjaje stade
5	409985	AW291944	Hs.122139	hypothetical protein FLJ21634 ESTs	4.35	0.07	upregulate stage
,	409989	R37868	Hs.13333	ESTs	1	0.21	upregulate stage
	409995	AW960597	Hs.30164	ESTs	5.05	0.12	upregulate stage
	410013	AF067173	Hs.57904	mago-nashi (Drosophila) homolog, prolife	3.05	0.26	upregulate stage
	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leuc	3.15	0.09	upregulate stage
10	410071	AW582568	110.00100	gb:RC1-ST0278-080100-011-h04 ST0278 Homo	2.5	0.18	upregulate stage
- •	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	8	0.06	upregulate stage
	410114	AW590540	Hs.271280	ESTs	5.1	0.14	upregulate slage
	410117	AK001586	Hs.58650	hypothetical protein FLJ10724	1	1	upregulate stage
	410153	BE311926	Hs.15830	Homo sapiens cDNA FLJ12691 fis, clone NT	4.7	0.11	upregulate stage
15	410181	Al468210	Hs.261285	pleiotropic regulator 1 (PRL1, Arabidops	1	0.23	upregulate stage
	410196	A1936442	Hs.59838	hypothetical protein FLJ 10808	6.05	0.09	upregulate stage
	410252	AW821182	Hs.61418	microfibrillar-associated protein 1	5.55	0.12	upregulate stage
	410259	AK000337	Hs.61485	hypothetical protein	10.1	0.07	upregulate stage
20	410276	AI554545	Hs.68301	ESTs	2.98	0.25	upregulate stage
20	410278	AW614396	Hs.282230	ESTs	1	0.28	upregulate stage
	410325	AB023154	Hs.62264	KIAA0937 protein	6.85	0.13	upregulate stage
	410356	BE244668	Hs.62643	dual adaptor of phosphotyrosine and 3-ph	1	1	upregulate stage
	410388	AA831460	Hs.22039	hepatocyte nuclear factor 3, alpha	1	0.33	upregulate stage
25	410399	BE068889	Hs.63236	synuclein, gamma (breast cancer-specific	1.07	0.78	upregulate stage
23	410420 410429	AA224053	Hs.172405 Hs.63657	ESTs, Moderately similar to I52835 H-NUC	1 11.25	0.14 0.07	upregulate stage upregulate stage
	410429	AA310600	Hs.63788	hypothetical protein FLJ11005 propionyl Coenzyme A carboxylase, beta p	9.6	0.07	upregulate stage
	410475	X73424 AW749927	HS.00700	gb:QV0-BT0537-231299-049-f03 BT0537 Homo	9.8	0.08	upregulate stage
	410475	N95428		gb:zb80d09.s1 Soares_senescent_fibroblas	11.3	0.06	upregulate stage
30	410501	A1675688	Hs.83286	ESTs	4.75	0.1	upregulate stage
50	410503	AW975746	Hs.188662	Homo sapiens cDNA: FLJ23421 fis, clone H	6.5	0.1	upregulate stage
	410520	AW752710	110.100002	gb:lL3-CT0219-281099-024-A03 CT0219 Homo	1	-1	upregulate stage
	410534	AW905138		gb:QV0-NN1071-280400-207-g07 NN1071 Homo	3.1	0.16	upregulate stage
	410537	AW753108		gb:PM1-CT0247-080100-008-e10 CT0247 Homo	10.35	0.08	upregulate stage
35	410553	AW016824	Hs.68784	ESTs	1.67	0.41	upregulate stage
	410560	N29220		gb:yx43b05.r1 Soares melanocyte 2NbHM Ho	9	0.07	upregulate stage
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	6.2	0.11	upregulate stage
	410562	AW858528		gb:CM3-CT0341-150300-119-h11 CT0341 Homo	1	1	upregulate stage
40	410579	AK001628	Hs.64691	KIAA0483 protein	11.1	0.06	upregulate stage
40	410634	AW888653	Hs.266859	ESTs	1	1	upregulate stage
	410664	NM_006033	Hs.65370	lipase, endothelial	3.95	0.1	upregulate stage
	410668	BE379794	Hs.65403	hypothetical protein	1.82	0.41	upregulate stage
	410730	AW368860	Hs.293950	ESTs	9.25	0.07	upregulate stage
45	410751	AA357918		gb:EST66726 Fetal lung III Homo saplens	1 3.1	1 0.14	upregulate stage
73	410754 410762	T63840 AF226053	Hs.66170	gb:yc16b10.s1 Stratagene lung (937210) H HSKM-B protein	5.55	0.14	upregulate stage upregulate stage
	410764	AW978159	Hs.250164	ESTs, Weakly similar to coded for by C.	1	0.2	upregulate stage
	410782	AW504860	Hs.288836	Homo sapiens cDNA FLJ12673 fis, clone NT	1.75	0.25	upregulate stage
	410794	AA248010	Hs.154669	ESTs	1	0.67	upregulate stage
50	410804	U64820	Hs.66521	Machado-Joseph disease (spinocerebellar	3.2	0.17	upregulate stage
	410844	AW807073		gb:MR4-ST0062-031199-018-d06 ST0062 Homo	1	0.8	upregulate stage
	410855	X97795	Hs.66718	RAD54 (S.cerevisiae)-like	6.5	0.12	upregulate stage
	410910	AW810204		gb:MR4-ST0125-021199-017-d08 ST0125 Homo	9.35	0.08	upregulale stage
	410973	AW812278		gb:RC0-ST0174-211099-011-h12 ST0174 Homo	1	1	upregulate stage
55	410976	R36207	Hs.25092	ESTs	8.35	0.1	upregulate stage
	410997	AW812877		gb:RC3-ST0186-300100-017-e04 ST0186 Homo	1	1	upregulate stage
	410998	W28247	Hs.82007	KIAA0094 protein	2.45	0.18	upregulate stage
•	411036	AA857218	Hs.297007	ESTs	4.05	0.14	upregulate stage
60	411110	H93000		gb:yv07f01.s1 Soares fetal liver splean gb:CM1-ST0283-071299-061-d08 ST0283 Homo	1	0.36 1	upregulate stage
00	411132 411137	AW819191 AW819455		gb:RC5-ST0293-021299-031-A04 ST0293 Homo	3.65	0.18	upregulate stage upregulate stage
	411157	AW819867		ab:QV0-ST0294-070300-151-f02 ST0294 Homo	3.2	0.10	upregulate stage
	411159	AW820178		gb:QV0-ST0294-100400-185-e07 ST0294 Homo	1	0.27	upregulate stage
	411170	AW820503		gb:QV2-ST0298-140200-042-b05 ST0298 Homo	1	1	upregulate stage
65	411193	AW821484		gb: L2-ST0311-211299-028-F12 ST0311 Homo	Í	0.24	upregulate stage
	411242	BE146808		gb:QV4-HT0222-181099-013-g03 HT0222 Homo	2.55	0.26	upregulate stage
	411245	AWB33441		gb:QV4-TT0008-271099-020-g01 TT0008 Homo	9.62	0.09	upregulate stage
	411263	BE297802	Hs.69360	kinesin-like 6 (mitotic centromere-assoc	2.4	0.32	upregulate stage
70	411282	AW995011		gb:QV0-BN0040-170300-161-d07 BN0040 Homo	1	1	upregulate stage
70	411284	N28519	Hs.135191	ESTs, Wealdy similar to unnamed protein	3.25	0.12	upregulate stage
	411294	AW859729	Hs.42680	ESTs	1	1	upregulate stage
	411327	AW836922		gb:QV1-LT0036-150200-074-h06 LT0036 Homo	1	0.37	upregulate stage
	411338	AW731782	Hs.116122	ESTs, Weakly similar to unnamed protein	5	0.13	upregulate stage
75	411339	BE164598	Un 60740	gb:RC3-HT0470-120200-013-b10 HT0470 Homo	1	0.25 0.18	upregulate stage upregulate stage
, 5	411383	AA001394 AW842339	Hs.69749 Hs.130815	KIAA0087 gene product hypothelical protein FLJ21870	3.6 8.75	0.10	upregulate stage
	411387 411400	AW042339 AA311919	Hs.69851	GAR1 protein	12.1	0.09	upregulate stage
	711400		, ~	and the business	144.1	0.07	-broffman anda

	411425	AW846012		gb:RC2-CT0163-230999-003-E01 CT0163 Homo	1	0.74	upregulate stage
	411461	AW847937		gb:/L3-CT0213-210200-042-D02 CT0213 Homo	1	1	upregutate stage
	411526	AW850327		gb:lL3-CT0219-221199-029-D08 CT0219 Homo	1	1	upregulate stage
_	411560	AW851186		gb:IL3-CT0220-150200-071-H05 CT0220 Homo	2.8	0.17	upregulate stage
5	411568	BE144593		gb:MR0-HT0167-141199-002-04 HT0167 Homo	1	1	upregulate stage
	411571	AA122393	Hs.70811	hypothetical protein FLJ20516	3.55	0.14	upregulate stage
	411605	AW006831	Hs.20479	ESTs	9.6	0.08	upregulate stage
	411626	AW793453	Hs.71109	KIAA1229 protein	1.	1	upregulate stage
10	411630	U42349	Hs.71119	Putative prostate cancer tumor suppresso	4.1	0.11	upregulate stage
10	411643	AJ924519	Hs.192570	Homo sapiens cDNA: FLJ22028 fis, clone H	1	0.28	upregulate stage
	411653	AF070578	Hs.71168	Homo saplens clone 24674 mRNA sequence	8.9 1	0.08 1	upregulate stage upregulate stage
	411727	AW858443 AW993247		gb:CM0-CT0341-260100-160-f10 CT0341 Homo	2.6	0.14	upregulate stage
	411771 411787			gb:RC2-BN0033-180200-014-h09 BN0033 Homo ab:MR3-SN0010-240300-102-c10 SN0010 Homo	1	1	upregulate stage
15	411788	AW863568 AW897793		gb:CM1-NN0063-280400-203-f07 NN0063 Homo	3.7	0.15	upregulate stage
13	411826	AW947946		ab:PM0-MT0011-240300-001-a09 MT0011 Homo	3.25	0.13	upregulate stage
	411835	U29343	Hs.72550	hyaluronan-mediated motility receptor (R	1	1	upregulate stage
	411860	T89420	113.12330	gb:yd98f04.s1 Soares fetal liver spleen	i	0.22	upregulate stage
	411874	AA096106	Hs.20403	ESTs	5.75	0.11	upregulate stage
20	411917	AW876360	Hs.3592	Homo sapiens cDNA: FLJ22555 fis, clone H	1	0.33	upregulate stage
	411928	AA888624	Hs.19121	adaptor-related protein complex 2, alpha	4.75	0.12	upregulate stage
	411932	AW876548		gb:RC3-PT0028-190100-012-h02 PT0028 Homo	1	0.38	upregulate stage
	411943	BE502436	Hs.7962	ESTs, Weakly similar to putative [C.eleg	3.82	0.23	upregulate stage
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	4.65	0.15	upregulate stage
25	411991	X58822	Hs.73010	interferon, omega 1	2.45	0.14	upregulate stage
	412040	D86519	Hs.73086	neuropeptide Y receptor Y6 (pseudogene)	4.6	0.14	upregulate stage
	412088	A1689496	Hs.108932	ESTs	2.82	0.18	upregulate stage
	412134	AW895560		gb:QV4-NN0038-270400-187-g08 NN0038 Hamo	6.4	0.1	upregulate stage
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	17.05	0.04	upregulate stage
30	412231	AW902491	Hs.289088	heat shock 90kD protein 1, alpha	1	0.91	upregulate stage
	412296	AW936233		gb:QV0-DT0020-090200-107-a06 DT0020 Homo	1	1	upregulate stage
	412327	AW937355		gb:QV3-DT0043-211299-044-a06 DT0043 Homo	1	1	upregulate stage
	412357	AW939537		gb:QV1-DT0072-110200-066-f05 DT0072 Hamo	1	0.24	upregulate stage
25	412359	AW837985		gb:QV3-LT0048-140200-083-e05 LT0048 Homo	1	0.41	upregulate stage
35	412367	AW945964		gb:QV0-ET0001-050500-228-e09 ET0001 Homo	1	0.22	upregulate stage
	412529	BE271224	Hs.266273	Homo sapiens cDNA FLJ13346 fis, clone OV	4.45	0.14	upregulate stage
	412530	AA768268	Hs.266273	Homo sapiens cDNA FLJ13346 fis, clone OV	9.3	0.08	upregulate stage
	412537	AL031778	Hs.797	nuclear transcription factor Y, alpha	4.25	0.14 1	upregulate stage
40	412547	W27161		gb:23a12 Human relina cDNA randomly prim	1	0.26	upregulate stage upregulate stage
40	412559	T31474	Ue 74216	gb:EST33147 Human Embryo Homo sapiens cD	12.05	0.25	upregulate stage
	412636 412648	NM_004415	Hs.74316 Hs.69658	desmoplakin (DPI, DPII) EST	12.05	0.03	upregulate stage
	412668	AA115211 AA456195	Hs.10056	ESTs	10.75	0.07	upregulate stage
	412671	AW977734	113.10000	gb:EST389963 MAGE resequences, MAGO Homo	2.65	0.3	upregulate stage
45	412673	AL042957	Hs.31845	ESTs	4.6	0.11	upregulate stage
,,,	412723	AA648459	Hs.179912	ESTs	2.55	0.11	upregulate stage
	412739	AA116018	Hs.271809	Homo sapiens cDNA: FLJ22406 fis, clone H	1.6	0.24	upregulate stage
	412744	N31101	7.0.2. 1000	gb:yx52a03.r1 Soares melanocyte 2NbHM Ho	2	0.23	upregulate stage
	412778	AA120882	Hs.159244	ESTs	1	1	upregulate stage
50	412811	H06382	Hs.21400	ESTs	1	0.49	upregulate stage
	412838	D61870		gb:HUM218F11B Clontech human aorta polyA	1	0.34	upregulate stage
	412854	BE004149	Hs.31161	ESTs	1	1	upregulate stage
	413075	D59828	Hs.70953	ESTs	1	0.77	upregulate stage
	413109	AW389845	Hs.110855	ESTs	3.93	0.1	upregulate stage
55	413117	BE066107	Hs.138484	ESTs, Weakly similar to ALU1_HUMAN ALU S	1	0.22	upregulate stage
	413119	BE065941		gb:RC3-BT0319-100100-012-d12 BT0319 Homo	1	0.87	upregulate stage
	413141	BE166323	11- 440900	gb:QV4-HT0492-270100-086-e12 HT0492 Homo	5.45	0.12	upregulate stage
	413219	AA878200	Hs.118727	Homo sapiens cDNA FLJ13692 fis, clone PL	2.54	0.19	upregulate stage
60	413228	AA127518	Hs.195870	ESTs	1	1	upregulate stage
00	413273	U75679	Hs.75257	Hairpin binding protein, histone	5.05	0.11	upregulate stage
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa ab:MRO-HT0165-191199-004-a02 HT0165 Homo	1.45	0.5 1	upregulate stage upregulate stage
	413294	BE144034	Hs.75294	corticotropin releasing hormone	1 6.95`	0.03	upregulate stage
	413324 413342	V00571 AA128535	HS.13254	qb:zi24e04.r1 Soares_pregnant_uterus_NbH	1	1	upregulate stage
65	413430	R22479	Hs.24650	Homo sapiens cDNA FLJ13047 fis, clone NT	3	0.18	upregulate stage
05	413707	BE158679	113.24000	gb:CM0-HT0395-280100-169-c04 HT0395 Homo	1	0.28	upregulate stage
	413743	BE161004		gb:PM0-HT0425-170100-002-h03 HT0425 Homo	i	1	upregulate stage
	413753	U17760	Hs.301103	Human DNA sequence from clone 272L16 on	22.7	0.03	upregulate stage
	413786	AW613780	Hs.13500	ESTs	9.9	0.07	upregulate stage
70	413792	BE166924		gb:CM4-HT0501-240300-519-f01 HT0501 Homo	1	1	upregulate stage
	413804	T64682		gb:yc48b02.r1 Stratagene liver (937224)	0.99	0.75	upregulate stage
	413833	Z15005	Hs.75573	centromere protein E (312kD)	2.55	0.17	upregulate stage
	413854	BE174300	Hs.44581	heat shock protein hsp70-related protein	1.25	0.24	upregulate stage
7.0	413918	AW015898	Hs.71245	ESTs	4	0.11	upregulate stage
75	413968	AW500374	Hs.64058	ESTs	10.85	0.07	upregulate stage
	414091	T83742	11. 2000	gb:yd67g02.s1 Soares fetal liver spleen	8.9	0.1	upregulate stage
	414099	U11313	Hs.75760	sterol carrier protein 2	10.3	0.06	upregulate stage

	414116	AA587370	Hs.71584	ESTs	1	1	upregulate stage
	414127	AI431863	Hs.135270	ESTS	2.85	0.13	upregulate stage
	414169	AA136169	Hs.149335	ESTs	8.95	0.09	upregulate stage
_	414275	AW970254	Hs.889	Charot-Leyden crystal protein	7.05	0.05	upregulate slage
5	414304	Al621276	Hs. 165998	DKFZP564M2423 protein	1	0.24	upregulate stage
	414338	N80751	Hs.301471	ESTs	10.3	0.08	upregulate stage
	414447	AA147549	Hs.109909	ESTS	3.4 3.4	0.16 0.18	upregulate stage upregulate stage
	414494 414520	AA768491 AA148806	Hs.6783 Hs.204046	Homo sapiens cDNA: FLJ22724 fis, clone H ESTs	1	0.10	upregulate stage
10	414569	AF109298	Hs.118258	prostate cancer associated protein 1	3.1	0.18	upregulate stage
	414575	H11257	Hs.295233	ESTs	3.1	0.15	upregulate stage
	414597	H67472	Hs.34274	ESTs	4.6	0.11	upregulate stage
	414643	H46177	Hs.119316	ESTs	1	0.28	upregulate stage
15	414658	X58528	Hs.76781	ATP-binding cassette, sub-family D (ALD)	7.75	0.08 0.26	upregulate stage
13	414661 414683	T97401 S78296	Hs.21929 Hs.76888	ESTs internexin neuronal intermediate filamen	1 2.72	0.25	upregulate stage upregulate stage
	414735	BE468016	Hs.281904	ESTs	1	0.38	upregulate stage
	414737	Al160386	Hs.125087	ESTs	5.5	0.1	upregulate stage
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin	3.19	0.24	upregulate stage
20	414774	X02419	Hs.77274	plasminogen activator, urokinase	1.45	0.49	upregulate stage
	414783	AW069569	Hs.75839	zinc finger protein 6 (CMPX1)	4.65	0.13	upregulate stage
	414799	A1752416	Hs.77326	insufin-like growth factor binding prote	. 1.7	0.46	upregulate stage
	414833 414883	T07114	Hs.77550	gb:EST05003 Fetal brain, Stratagene (cat CDC28 protein kinase 1	4.5 3.36	0.13 0.22	upregulate stage upregulate stage
25	414885	AA926960 AA157531	Hs.269276	ESTs	2.7	0.21	upregulate stage
23	414918	AJ219207	Hs.72222	Homo sapiens cDNA FLJ13459 fis, clone PL	0.87	0.69	upregulate stage
	414985	C17372		gb:C17372 Clontech human aorta polyA+ mR	1	0.42	upregulate stage
	415025	AW207091	Hs.72307	ESTs	5.3	0.06	upregulate stage
20	415033	D31476	Hs.301448	Homo sapiens cDNA FLJ12152 fis, clone MA	1	1	upregulate stage
30	415060	AJ223810	Hs.43213	ESTs, Wealdy similar to IEFS_HUMAN TRANS	6.05	0.1	upregulate stage
	415068 415095	Z19448	Hs.131887 Hs.34745	ESTs, Weakly strallar to ORF YNL227c (S.c ESTs	4.5 1	0.13 0.44	upregulate stage upregulate stage
	415099	D59592 Al492170	Hs.77917	ubiquitin carboxyl-terminal esterase L3	2.27	0.29	upregulate stage
	415104	D60076	15.77011	gb:HUM0B4E10A Clontech human fetal brain	3.95	0.13	upregulate stage
35	415114	D60468		gb:HUM111A06B Clontech human fetal brain	2.05	0.2	upregulate stage
	415138	C18356	Hs.78045	tissue factor pathway inhibitor 2	5.8	0.05	upregulate stage
	415139	AW975942	Hs.48524	ESTs	1.15	0.21	upregulate stage
	415148	Z36953	Hs.48527	ESTs	2.5 8.95	0.2 0.09	upregulate stage upregulate stage
40	415153 415178	C03508 D80503	Hs.7000	ESTs gb:HUM080A02B Human fetal brein (TFujiwa	6.85 1	0.09	upregulate stage
+0	415217	H23983	Hs.26922	ESTs	i	0.13	upregulate stage
	415227	AW821113	Hs.72402	ESTs	6.3	0.11	upregulate stage
	415238	R37780	Hs.21422	ESTs	1	1	upregulate stage
15	415241	F02208	Hs.27214	ESTs	1	1	upregulate stage
45	415295	R41450	Hs.6546	ESTs	1	0.63	upregulate stage
	415296	F05086	Un 1961	gb:HSC01A011 normalized infant brain cDN membrane protein, palmitoylated 1 (55kD)	5.65 8.15	0.1 0.09	upregulate stage upregulate stage
	415327 415330	H22769 Z44693	Hs.1861 Hs.21422	ESTs	3	0.2	upregulate stage
	415336	T77664	Hs.78362	Human clone 23839 mRNA sequence	ĭ	0.87	upregulate stage
50	415337	Z44881	Hs.9012	ESTs	8.8	0.07	upregulate stage
	415352	F06565		gb:HSC1CG051 normalized infant brain cDN	1	1	upregulate stage
	415364	F06771		gb:HSC1KD031 normalized infant brain cDN	1.	1	upregulate stage
	415371	R15239	11- 50400	gb:yf89b02.r1 Soares infant brain 1NIB H	5.1	0.13	upregulate stage
55	415412 415451	F08049 H19415	Hs.52132 Hs.268720	ESTs ESTs, Moderately similar to ALU1_HUMAN A	4.25 4.1	0.16 0.15	upregulate stage upregulate stage
55	415462	R52692	Hs.12698	ESTS	4.65	0.10	upregulate stage
	415496	R37637	Hs.12286	ESTs	5.4	0.13	upregulate stage
	415509	R40000	Hs.91968	ESTs	1	0.44	upregutate stage
60	415511	AI732617	Hs.182362	ESTs	9.3	0.03	upregulate stage
60	415542	R13474	Hs.290263	ESTs	9.7	0.08	upregulate stage
	415569	Z43930		gb:HSC10H121 normalized infant brain cDN	1	0.74	upregulate stage
	415600 415616	F12664 F12945	Hs.12294	gb:HSC3CG021 normalized infant brain cDN ESTs	1	0.43 1	upregulate stage upregulate stage
	415626	Z43847	ns.12254	gb:HSC1MC051 normalized infant brain cDN	i	i	upregulate stage
65	415635	F13168		gb:HSC3JF101 normalized infant brain cDN	i	0.26	upregulate stage
	415750	AA167712		gb:zq39g08.s1 Stratagene hNT neuron (937	1	0.83	upregulate stage
	415786	AW419196	Hs.257924	Homo sapiens cDNA FLJ13782 fis, clone PL	9	0.08	upregulate stage
	415788	AW628686	Hs.78851	KIAA0217 protein	5.2	0.11	upregulate stage
70	415790	R23574	Hs.23545	ESTs	1	1	upregulate stage upregulate stage
70	415799	AA653718 H05279	Hs.225841 Hs.21758	DKFZP434D193 protein ESTs	4.25 1	0.12 0.57	upregulate stage
	415837 415857	AA866115	Hs.301646	Homo sapiens cDNA FLJ11381 fis, clone HE	8.05	0.07	upregulate stage
	415906	A1751357	Hs.288741	Homo sapiens cDNA: FLJ22256 fis, clone H	12.2	0.06	upregulate stage
	415947	U04045	Hs.78934	mutS (E. coli) homolog 2 (colon cancer,	12.2	0.06	upregulate stage
75	415948	AA262226	11 00:	gb:zs24h06.r1 NCI_CGAP_GCB1 Homo sapiens	1	1	upregulate stage
	415979	H16427	Hs.271501	ESTs	4.85	0.13	upregulate stage upregulate stage
	415989	Al267700	Hs.111128	ESTs	4.45	0.08	nhi efinitia siafia

	*****	******	11	to the contract of the second			
	416018	AW138239	Hs.78977	proprotein convertase sublilisin/kexin t	1	1	upregulate stage
	416052 416053	R12816	Hs.21164	ESTS	1.45 4.35	0.24 0.14	upregulate stage upregulate stage
	416061	H16359 R45516	Hs,130648 Hs.26119	ESTs ESTs	1	1	upregulate stage
5	416065	BE267931	Hs.78996	proliferating cell nuclear entigen	4.72	0.17	upregulate stage
-	416097	BE387371	Hs.301304	Homo sapiens cDNA: FLJ21017 fis, clone C	5.75	0.11	upregulate stage
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (8.4	0.09	upregulate stage
	416135	AW473656	Hs.45119	ESTs	2.29	0.2	upregulate stage
	416155	Al807264	Hs.205442	ESTs, Wealty similar to AF117610 1 inner	5.1	0.13	upregulate stage
10	416173	R52782		gb:yg99d09.r1 Soares Infant brain 1NIB H	3.7	0.12	upregulate stage
	416195	AW131940	Hs.104030	ESTs	1.1	0.16	upregulate stage
	416196	W51955	Hs.73372	ESTs	3.25	0.14	upregulate stage
	416203	H27794	Hs.269055	ESTs	1	0.32	upregulate stage
1.5	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, h	4.15	0.12	upregulate slage
15	416226	N55342	Hs.34372	ESTs	2.35	0.21	upregulate stage
	416239	AL038450	Hs.48948	ESTs	4.05	0.14	upregulate stage
	416241 416254	N52639 H51703	Hs.32683 Hs.13640	ESTs ESTs	5 1	0.09 0.95	upregulate stage upregulate stage
	416269	AA177138	Hs.161671	ESTs	4.07	0.33	upregulate stage
20	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	1.84	0.45	upregulate stage
~0	416280	H44180	Hs.181789	ESTs	1	1	upregulate stage
	416309	R84694	Hs.79194	cAMP responsive element binding protein	9.35	0.08	upregulate stage
	416324	H47983	Hs.1870	phenylalanine hydroxylase	5.15	0.13	upregulate stage
	416332	H91284	Hs.244461	ESTs	1	1	upregulate stage
25	416343	H49213		gb:yq19e04.r1 Soares fetal liver spleen	1	1	upregulate stage
	416353	T77127	Hs.191297	ESTs, Moderately similar to ALU6_HUMAN A	1.46	0.59	upregulate stage
	416395	R94575		gb:yt73e10.s1 Soares fetal liver spleen	9.2	0.09	upregulate stage
	416437	N48990	Hs.37204	ESTs	4.15	0.12	upregulate stage
20	416476	H58137	Hs.268639	ESTs	1	0.22	upregulate stage
30	416537	T99086	Hs.144904	nuclear receptor co-repressor 1	5.45	0.12	upregulate stage
	416539	Y07909	Hs.79368	epithelial membrane protein 1	9.45 4.95	0.0 9 0.1	upregulate stage upregulate stage
	416575 416624	W02414 H69044	Hs.38383	ESTs gb:yr77h05.s1 Soares fetal liver spleen	1	0.22	upregulate stage
	416644	H70701	Hs.269135	ESTs	5.65	0.12	upregulate stage
35	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	9.65	0.05	upregulate stage
	416682	R99700	Hs.36152	ESTs	1	0.25	upregulate stage
	416690	H84078	Hs.108551	ESTs	5.35	0.13	upregulate stage
	416709	R99369	Hs.283108	hemoglobin, gamma G	5.4	0.13	upregulate stage
	416712	N68576	Hs.81602	ESTs	1	0.25	upregulate stage
40	416715	H79460	Hs.271722	ESTs, Weakly similar to ALU1_HUMAN ALU S	1	0.32	upregulate stage
	416731	T58115	Hs.10336	ESTs	1	0.4	upregulate stage
	416734	H81213	Hs.14825	ESTs	3.8	0.16	upregulate stage
	416735	R11275	Hs.194485	ESTs	11.5	0.06	upregulate stage
15	416738	N29218	Hs.40290	ESTs	1	0.42	upregulate stage
45	416856	N27833	Hs.269028	ESTs	2.6	0.22	upregulate stage
	416883	AW140128	Hs.184902	ESTs	11.3 1	0.07 0.61	upregulate stage upregulate stage
	416923 416936	N32498 N21352	Hs.42829 Hs.42987	ESTs ESTs, Weakly similar to ORF2 [M.musculus	ì	1	upregulate stage
•	417018	M16038	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related	11.3	0.05	upregulate stage
50	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	5.04	0.15	upregulate stage
-	417134	N51220	Hs.269068	ESTs	1	0.24	upregulate stage
	417185	NM_002484	Hs.81469	nucleotide binding protein 1 (E.coli Min	1.98	0.32	upregulate stage
	417218	AA005247	Hs.285754	met proto-oncogene (hepatocyte growth fa	2.95	0.21	upregulate stage
	417265	AL121369	Hs.281117	ESTs	1	0.3	upregulate stage
55	417283	N62840	Hs.48648	ESTs	1.05	0.27	upregulate stage
	417308	H60720	Hs.81892	KIAA0101 gene product	9.2	0.09	upregulate stage
	417320	AA195667	Hs.287324	ESTs	2.8	0.16	upregulate stage
	417396	T98987		gb:ye66f02.r1 Soares fetal liver spleen	1	1	upregulate stage
60	417404	NM_007350	Hs.82101	pleckstrin homology-like domain, family	2.75	0.09	upregulate stage
UU	417409	BE272506	Hs.82109	syndecan 1 ESTs	1.92 6.45	0.44 0.1	upregulate stage upregulate stage
	417448	AA203135 H73183	Hs.130186 Hs.129885	ESTs, Moderately similar to unnamed prot	4.65	0.13	upregulate stage
	417453 417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated	1.59	0.49	upregulate stage
	417540	AA203600	Hs.152250	ESTs	1	1	upregulate stage
65	417576	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	5.65	0.1	upregulate stage
	417581	R26968	Hs.24104	ESTs, Weakly similar to ALU7_HUMAN ALU S	9.15	0.09	upregulate stage
	417596	R07343	Hs.226823	ESTs	4.35	0.14	upregulate stage
	417599	AA204688	Hs.136201	ESTs, Weakly similar to ALU7_HUMAN ALU S	0.94	0.9	upregulate stage
~~	417620	R02530	Hs.191198	ESTs	9.1	0.07	upregulate stage
70	417638	R12490	Hs.189779	EST ₈	1	0.32	upregulate stage
	417650	T05870	Hs.100640	ESTs	1	0.22	upregulate stage
	417715	AW969587	Hs.86366	ESTs	6.31	0.09	upregulate stage
	417720	AA205625	Hs.208067	ESTS	4.65	0.11	upregulate stage
75	417742	R64719	U. acacas	gb:EST22d11 WATM1 Homo sapiens cDNA clon	4.15	0.13 0.08	upregulate stage upregulate stage
15	417750	AI267720	Hs.260523	neuroblastoma RAS viral (v-ras) oncogene	9.98 2.3	0.14	upregulate stage
	417780 417789	Z43482 R50978	Hs.82772 Hs.267054	collagen, type XI, atpha 1 ESTs	1.05	0.19	upregulate stage
	41//03	(190310	13.207039	LUIS	1.00	0.10	-h-chesta omla

	417791	AW965339	Hs.111471	ESTs	5.35	0.1	upregulate stage
	417850	AW905339 AA215724	Hs.82741	primase, polypeptide 1 (49kD)	1	1	upregulate stage
	417898	AA826198	Hs.291851	ESTs	2.15	0.21	upregulate stage
	417975	AA641836	Hs.30085	Homo sapiens cDNA: FLJ23186 fis, clone L	3.7	0.13	upregulate stage
5	418004	U37519	Hs.87539	aldehyde dehydrogenase 8	1.57	0.5	upregulate stage
_	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	17.9	0.02	upregulate stage
	418027	AB037807	Hs.83293	hypothetical protein	6.6	0.09	upregulate stage
	418030	BE207573	Hs.83321	neuromedin B	12.2	0.04	upregulate stage
10	418068	AW971155	Hs.293902	ESTs, Weakly similar to prolyl 4-hydroxy	4.26	0.14	upregulate stage
10	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	5.21	0.15	upregulate stage
	418134	AA397769	Hs.86617	ESTs	1	0.3	upregulate stage
	418153	R13696	Hs.112830	ESTs	1 0 70	0.3	upregulate stage
	418180	8E618087	Hs.83724	Human clone 23773 mRNA sequence	8.79 3.75	0.09 0.13	upregulate stage upregulate stage
15	418201 418203	AA214345	Hs.98445	Homo sapiens cDNA: FLJ21652 fis, clone C	13.85	0.13	upregulate stage
13	418216	X54942 AA662240	Hs.83758 Hs.283099	CDC28 protein kinase 2 AF15q14 protein	9.75	0.07	upregulate stage
	418236	AW994005	Hs.172572	hypothetical protein FLJ20093	10.75	0.05	upregulate stage
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	6.25	0.12	upregulate stage
	418259	AA215404	Hs.137289	ESTs	11.5	0.07	upregulate stage
20	418268	AA810599	Hs.86643	ESTs	1	0.43	upregulate stage
	418296	C01566	Hs.86671	ESTs	1	0.45	upregulate stage
	418372	AA311833	Hs.84318	replication protein A1 (70kD)	9.04	0.08	upregulate stage
	418379	AA218940	Hs.137516	fidgetin-like 1	3.25	0.15	upregulate stage
25	418422	AW440068	Hs.59425	Homo sapiens cDNA: FLJ23323 fis, clone H	8.95	0.1	upregulate stage
25	418454	AA315308		gb:EST187095 Colon carcinoma (HCC) cell	2.5	0.15	upregulate stage
	418462	BE001596	Hs.85266	Integrin, beta 4	1.33	0.59	upregulate stage
	418469	U34879	Hs.85279	hydroxysteroid (17-beta) dehydrogenase 1	1.21 2.69	0.71 0.23	upregulate stage upregulate stage
	418478	U38945 AA223929	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	1	1	upregulate stage
30	418480 418498	T78248	Hs.86902	ESTs qb:yd79f05,r1 Soares fetal liver spleen	i	0.47	upregulate stage
50	418516	NM_006218	Hs.85701	phosphoinositide-3-kinase, catalytic, al	5.4	0.14	upregulate stage
	418546	AA224827	113.03701	gb:nc32g04.s1 NCI_CGAP_Pr2 Homo sapiens	2.72	0.23	upregulate stage
	418573	AA225188		gb:nc21h04.r1 NCI_CGAP_Pr1 Homo sapiens	9.95	0.07	upregulate stage
	418577	AA225247	Hs.269300	ESTs, Weakly similar to B34087 hypotheti	1	0.77	upregulate stage
35	418578	U92459	Hs.86204	glutamate receptor, metabotropic 8	1	1	upregulate stage
	418590	A1732672	Hs.252507	ESTs	1	0.59	upregulate stage
	418592	X99226	Hs.284153	Fanconi anemia, complementation group A	4.75	0.13	upregulate stage
	418612	AB037788	Hs.224961	cleavage and polyadenylation specific fa	1	0.23	upregulate stage
40	418624	AI734080	Hs.104211	ESTs	7.95	0.09	upregulate stage
40	418661	NM_001949	Hs.1189	Human mRNA for KIAA0075 gene, partial cd	3	0.15 0.04	upregulate stage
	418663	AK001100	Hs.87013	Homo sapiens cDNA FLJ10238 fis, clone HE bone morphogenetic protein receptor, typ	17.2 1	1	upregulate stage upregulate stage
	418675 418686	AW299723 Z36830	Hs.87223 Hs.87268	annexin A8	2.11	0.3	upregulate stage
	418687	R61650	Hs.22581	ESTS	6.75	0.07	upregulate stage
45	418693	AI750878	Hs.87409	thrombospondin 1	4.5	0.08	upregulate stage
	418704	AA227235	Hs.83286	ESTs	1	0.33	upregulate stage
	418712	Z42183		gb:HSC0BF041 normalized infant brain cDN	1	0.91	upregulate stage
	418717	A1334430	Hs.86984	ESTs	4.7	0.12	upregulate stage
	418723	AA504428	Hs.10487	ESTs, Weakly similar to Weak similarity	5.85	0.1	upregulate stage
50	418738	AW388633	Hs.6682	ESTs	3.6	0.09	upregulate stage
	418752	AL133556	Hs.88144	hypothetical protein FLJ12476	1	1	upregulate stage
	418757	AI864193	Hs.169728	Homo sapiens cDNA FLJ13150 fis, clone NT	9.15	0.09 0.08	upregulate stage
	418844 418867	M62982	Hs.1200 Hs.89404	arachidonate 12-lipoxygenase msh (Drosophila) homeo box homolog 2	9.25 1.83	0.43	upregulate stage upregulate stage
55	418876	D31771 AA740616	Hs.293874	ESTs	11.3	0.06	upregulate stage
<i>J J</i>	418903	AW969665	Hs.154848	ESTs	1	1	upregulate stage
	418915	AJ474778	Hs.118977	ESTs .	4.75	0.12	upregulate stage
	418939	AW630803	Hs.89497	tamin B1	2.6	0.13	upregulate stage
	418945	BE246762	Hs.89499	arachidonate 5-lipoxygenase	1.45	0.53	upregulate stage
60	418976	AA933082	Hs.126883	ESTs	1	0.23	upregulate stage
	419059	T86216		gb:yd84a05.r1 Soares fetal liver spleen	1	0.38	upregulate stage
	419078	M93119	Hs.89584	Insulinoma-associated 1	1.25	0.18	upregulate stage
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1	1	upregulate stage
65	419169	AW851980	Hs.262346	ESTs, Weakly similar to ORF2: function u	1.59	0.3	upregulate stage
65	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin ESTs, Weakly similar to ALU1_HUMAN ALU S	3.55	0.05 0.27	upregulate stage upregulate stage
	419218	AI248073	Hs.188723 Hs.87413	ESTS, Weakly Similar to ALOT_HOMAN ALO S	1	0.27	upregulate stage
	419226 419235	Al342491 AW470411	Hs.288433	neurotrimin	11.9	0.07	upregulate stage
	419288	AA236005	Hs.221303	ESTs	4.85	0.14	upregulate stage
70	419200	AA521504	Hs.190179	ESTs	1	1	upregulate stage
, 0	419355	AA428520	Hs.90061	progesterone binding protein	10.6	0.06	upregulate stage
	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)	1.84	0.47	upregulate stage
	419413	AA237040	Hs.87589	ESTs	1	1	upregulate stage
a c	419436	AA991639	Hs.15036	ESTs, Highly similar to AF161358 1 HSPC0	6.6	0.1	upregulate stage
75	419452	U33535	Hs.90572	PTK7 protein tyrosine kinase 7	1.31	0.64	upregulate stage
	419472	AW978038		gb:EST390147 MAGE resequences, MAGO Homo	1	1	upregulate stage
	419475	AA243420	Hs.87648	ESTs	1.1	0.24	upregulate stage

	410477	A A D2C220		-hard02e07 et NCI CCAR CCRI Nema contana	4	0.56	uemaulate stace
	419477 419484	AA826279 AA243474	Hs.272128	gb:od03g07.s1 NCI_CGAP_GCB1 Homo septens Homo septens cDNA FLJ13901 fis, clone TH	1	0.56 0.22	upregulate stage upregulate stage
	419506	N20912	Hs.42369	ESTs	i	1	upregulate stage
	419554	Al732138	Hs.104318	ESTs	i	0.5	upregutate stage
5	419569	Al971651	Hs.91143	jagged 1 (Alagille syndrome)	i	0.91	upregulate stage
•	419594	AA013051	Hs.91417	topoisomerase (DNA) II binding protein	8.1	80.0	upregulate stage
	419651	NM_007023	Hs.91971	cAMP-regulated guanine nucleotide exchan	1	1	upregulate stage
	419666	NM_014810	Hs.92200	KIAA0480 gene product	5.2	0.12	upregulate stage
	419737	H24185	Hs.92918	hypothetical protein	11.7	0.07	upregulate stage
10	419743	AW408762	Hs.127478	ESTs	6.1	0.09	upregulate stage
	419752	AA249573	Hs.152618	ESTs	1.8	0.17	upregulate stage
	419769	H27374	Hs.103483	ESTs	1	0.36	upregulate stage
	419805	AW966945		gb:EST379019 MAGE resequences, MAGJ Homo	1	0.34	upregulate stage
15	419807	R77402	11- 5445	gb:yi75f11.s1 Soares placenta Nb2HP Homo	1 7.05	0.67	upregulate stage
13	419831	AW448930 AA251131	Hs.5415 Hs.220697	ESTs	7.05 1.25	0.1 0.53	upregulate stage upregulate stage
	419833 419834	AA251131 AA251139	ns.220091	ESTs gb:zs03g12.s1 NCL_CGAP_GCB1 Horno saptens	1.25	1	upregulate stage
	419923	AW081455	Hs.120219	ESTs	5.89	0.13	upregulate stage
	419945	AW290975	Hs.118923	ESTs	1	0.24	upregulate stage
20	419962	AA830111	Hs.291917	ESTs	i	1	upregulate stage
	419970	AW612022	Hs.263271	ESTs	9.15	0.09	upregulate stage
	419986	Al345455	Hs.78915	GA-binding protein transcription factor,	3.05	0.17	upregulate stage
	419998	AA252691		gb:zs26d09.r1 NCI_CGAP_GCB1 Homo sapiens	1	0.47	upregulate stage
~ -	420016	AW016908	Hs.88025	ESTs	1	0.8	upregulate stage
25	420047	Al478658	Hs.94631	brefeldin A-Inhibited guanine nucleotide	4.8	0.11	upregulate stage
	420076	AA827860	Hs.293717	ESTs	5.35	0.12	upregulate stage
	420111	AA255652		gb:zs21h11.r1 NCI_CGAP_GCB1 Homo sapiens	5.3	0.11	upregulate stage
	420145	AA809860	Hs.256284	ESTs	1	1	upregulate stage
30	420159	Al572490	Hs.99785	Homo sapiens cDNA: FLJ21245 fis, clone C	14.8	0.04	upregulate stage
30	420161	A)683069 AA188408	Hs.175319	ESTs	4.7 4.35	0.11 0.15	upregulate stage upregulate stage
	420184 420226	AA100408 AA773709	Hs.95665 Hs.152818	hypothetical protein ub i quitin specific protease 8	3.1	0.16	upregulate stage
	420230	AL034344	Hs.298020	Homo sapiens cDNA FLJ11796 fis, clone HE	10.35	0.06	upregulate stage
	420236	AA256763	Hs.291111	ESTs	4.45	0.14	upregulate stage
35	420270	AA257990		gb:zs35h07.r1 NCI_CGAP_GCB1 Homo sapiens	10.05	0.08	upregulate stage
	420297	Al628272	Hs.88323	ESTs	9.45	0.09	upregulate stage
	420344	BE463721	Hs.97101	putative G protein-coupled receptor	11.7	0.05	upregulate stage
	420392	Al242930	Hs.97393	KIAA0328 protein	1.7	0.22	upregulate stage
40	420413	AW971624	Hs.120605	ESTs	1	1	upregulate stage
40	420445	AA262213	Hs.193514	ESTs	1	1	upregulate stage
	420471	AA262452	Hs.192268	ESTs	3.95	0.13	upregulate stage
	420479	AW183695	Hs. 186572	ESTs SALLER SALL	4.95	0.12	upregulate stage
	420493	AJ635113	Hs.270366	Homo sapiens mRNA; cDNA DKFZp564H0616 (f	4.4	0.15	upregulate stage
45	420552	AK000492	Hs.98806	hypothetical protein	11.55 1.35	0.06 0.22	upregulate stage upregulate stage
47	420572 420643	AL035593 W87731	Hs.99016	Human DNA sequence from clone 310J6 on c gb:zh65g10.r1 Soares_fetal_liver_spleen_	1.25	0.25	upregulate stage
	420650	AA455706	Hs.44581	heat shock protein hsp70-related protein	7.3	0.09	upregulate stage
	420654	AA279091	Hs.104420	ESTs	1	0.27	upregulate stage
	420655	R74405	Hs.300886	ESTs	i	1	upregulate stage
50	420717	AA284447	Hs.271887	ESTs	9	0.09	upregulate stage
	420734	AW972872	Hs.293736	ESTs	5.2	0.13	upregulate stage
	420756	AA411800	Hs.189900	ESTs	1	1	upregulate stage
	420789	AI670057	Hs.199882	ESTs	8.85	0.06	upregulate stage
	420802	U22376	Hs.1334	v-myb avian myeloblastosis viral oncogen	4.6	0.12	upregulate stage
55	420851	AA281062	Hs.250734	ESTs	8.35	0.08	upregulate stage
	420880	AI809621	Hs.105620	ESTs	1	1	upregulate stage upregulate stage
	420923	AF097021	Hs.273321	differentially expressed in hematopoieti	10.4 1	0.03 1	upregulate stage
	420928 420936	AA281809	Hs.99410	gb:zt10e01.r1 NCI_CGAP_GCB1 Homo sapiens ESTs	8.71	0.07	upregulate stage
60	420930	AA456112 AA491044	Hs.47196	ESTs	1	0.38	upregulate stage
OO	421017	AW979181	Hs.293221	ESTs, Weakly similar to ALU1_HUMAN ALU S	i	1	upregulate stage
	421064	Al245432	Hs.101382	tumor necrosis factor, alpha-induced pro	1.26	0.62	upregulate stage
	421070	AA283185	Hs.19327	ESTs	2.2	0.14	upregutate stage
	421100	AW351839	Hs.124660	Homo sapiens cDNA: FLJ21763 fis, clone C	1.69	0.28	upregulate stage
65	421102		Hs.89217	ESTs	2.65	0.19	upregulate stage
	421103	A1625835	Hs.27104	ESTs	6	0.1	upregulate stage
	421114	AW975051	Hs.293156	ESTs	4.7	0.12	upregulate stage
	421118	Al471925	Hs.89257	ESTs	1	0.39	upregulate stage
70	421155	H87879	Hs.102267	tysyl oxidase	1.15	0.18	upregulate stage
70	421159	AW978316	Hs.136649	ESTs	1	0.44	upregulate stage
	421187	NM_014721	Hs.102471	KIAA0680 gene product	5.7 0.07	0.11 2.55	upregulate stage upregulate stage
	421218	NM_000499	Hs.72912	cytochrome P450, subfamily I (aromatic c ESTs	0.07 8.75	2.55 0.07	upreguiate stage
	421221	AW276914 AI056590	Hs.300877 Hs.7086	Homo saplens cDNA: FLJ23000 fis, clone L	1.64	0.49	upregulate stage
75	421229 421261	AA600853	Hs.98133	ESTs	10.9	0.43	upregulate stage
, ,	421262	AA286746	Hs.9343	Homo sapiens cDNA FLJ14265 fis, clone PL	2.65	0.16	upregulate stage
	421278	Al367919	Hs.99691	ESTs	1	0.56	upregulate stage

	421200	44011004		-high 20-pp -4 NCL CGAP, GCR1 Homo springs	1	0.34	upregulate stage
	421280 421282	AA811804 AA286914	Hs.183299	gb:ob39a05.s1 NCI_CGAP_GCB1 Homo sapiens ESTs	9	0.08	upregulate stage
	421306	AA806207	Hs.125889	ESTs	1	0.95	upregulate stage
	421308	AA687322	Hs.192843	ESTs	2.85	0.15	upregulate stage
5	421373	AA808229	Hs.167771	ESTS	2.45	0.14	upregulate stage
•	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	1.6	0.26	upregulate stage
	421381	AA361752		gb:EST71314 T-cell lymphoma Homo sapiens	5.05	0.09	upregulate stage
	421418	AA806639		gb:ob88g05.s1 NCI_CGAP_GCB1 Homo sapiens	6.55	0.1	upregulate stage
10	421433	Ai829192	Hs.134805	ESTs	9.9	0.07	upregulate stage
10	421451	AA291377	Hs.50831	ESTs	11.9	0.06	upregulale stage
	421491	H99999	Hs.42736	ESTs	3	0.2	upregulate stage
	421493	BE300341	Hs.104925	ectodermal-neural cortex (with BTB-like	2.51	0.32	upregulate stage
	421559	NM_014720	Hs.105751	Ste20-related serine/threonine kinase	9 5.75	0.09 0.12	upregulate stage upregulate stage
15	421577	BE465451	Hs.105925	single-minded (Drosophila) homolog 1 ESTs	1	1	upregulate stage
13	421673 421685	H54384 AF189723	Hs.36892 Hs.106778	ATPase, Ca++ transporting, type 2C, memb	9.45	0.07	upregulate stage
•	421708	AW754341	13.100/70	gb:CM0-CT0341-181299-130-h12 CT0341 Homo	1	0.47	upregulate stage
	421733	AL119671	Hs.1420	fibroblast growth factor receptor 3 (ach	1.97	0.33	upregulate stage
	421838	AW881089	Hs.108806	Homo saplens mRNA; cDNA DKFZp566M0947 (f	7.05	0.1	upregulate stage
20	421869	AB003592	Hs.109050	contactin 6	1	1	upregulate stage
	421925	S80310	Hs.109620	acidic epididymal glycoprotein-like 1	1	1	upregulate stage
	421948	L42583	Hs.111758	keratin 6A	51.9	0.01	upregulate stage
	421958	AA357185	Hs.109918	ras homolog gene family, member H	10.17	0.07	upregulate stage
25	421991	NM_014918	Hs.110488	KIAA0990 protein	4.5 6.5	0.17 0.08	upregulate stage
25	422026	U80736	Hs.110826	trinucleotide repeat containing 9	9.2	0.08	upregulate stage upregulate stage
	422072	AB018255	Hs.111138	KIAA0712 gens product	6.95	0.09	upregulate stage
	422094 422158	AF129535 L10343	Hs.272027 Hs.112341	F-box only protein 5 protease inhibitor 3, skin-derived (SKAL	1.66	0.17	upregulate stage
	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	3.96	0.1	upregulate stage
30	422182	AL043892	Hs.180582	Homo sapiens cDNA: FLJ21836 fts, clone H	2.8	0.16	upregulate stage
-	422204	AA339015	***************************************	gb:EST44247 Fetal brain I Homo sapiens c	1	1 1	upregulate stage
	422261	AA307595	Hs.119908	nucleolar protein NOP5/NOP58	1	1	upregulate stage
	422271	AB038995	Hs.114159	RAB-8b protein	5.04	0.16	upregulate stage
25	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	3.46	0.24	upregulate stage
35	422282	AF019225	Hs.114309	apolipoprotein L	4.54	0.14	upregulate stage
	422322	AB022192	Hs.115240	peroxisome biogenesis factor 13	1	0.53 0.06	upregulate stage upregulate stage
	422330	D30783	Hs.115263	epiregulin	4.45 2.25	0.19	upregulate stage
	422342 422406	AA309272 AF025441	Hs.116206	gb:EST180209 Liver, hepatocellular card Opa-interacting protein 5	9.5	0.13	upregulate stage
40	422400	AJ010901	Hs.198267	mucin 4, tracheobronchial	7.35	0.04	upregulate stage
-10	422491	AA338548	Hs.117546	neuronatin	0.64	1.24	upregulate stage
	422504	AA311407		gb:EST182167 Jurkat T-cells V Homo sapie	3.6	0.11	upregulate stage
	422505	AL120862	Hs.124165	ESTs	2.8	0.14	upregulate stage
	422508	AJ000327	Hs.117852	ATP-binding cassette, sub-family D (ALD)	5.25	0.14	upregulate stage
45	422530	AW972300	Hs.118110	bone marrow stromal cell antigen 2	2.57	0.31	upregulate stage
	422540	Al050751	Hs.22895	Homo sapiens cDNA: FLJ23548 fis, clone L	1	0.59	upregulate stage
	422588	AA312730	U= 440455	gb:EST183651 Monocytes, stimulated II Ho	3 10.7	0.14 0.07	upregulate stage upregulate stage
	422678 422762	AA247778	Hs.119155 Hs.119976	Homo sapiens mRNA; cDNA DKFZp434B249 (fr Human DNA sequence from clone RP1-20N2 o	5.1	0.13	upregulate stage
50	422702	AL031320 AK001379	Hs.121028	hypothelical protein FLJ10549	5.94	0.10	upregulate stage
30	422823	D89974	Hs.121102	vanin 2	10	0.07	upregulate stage
	422892	AA988176	Hs.121553	hypothetical protein FLJ20641	1	0.27	upregulate stage
	422938	NM_001809	Hs.1594	centromere protein A (17kD)	7.2	0.08	upregulate stage
	422964	AW439476	Hs.256895	ESTs	11.75	0.07	upregulate stage
55	422981	AF026445	Hs.122752	TATA box binding protein (TBP)-associate	3.05	0.14	upregulate stage
	423001	AA320014	Hs.208603	ESTs	9.1	0.09	upregulate stage upregulate stage
	423090	BE387529	Hs.123536	melanoma antigen, family E, 1, cancer/te	1	0.49 1	upregulate stage
	423100	AA323114		gb:EST25873 Cerebellum II Horno sapiens c gb:PM2-SN0018-290300-003-c09 SN0018 Horno	2.8	0.19	upregulate stage
60	423121 423156	AW864848 AA131493	Hs.124752	fibroblast growth factor 12B	1	0.27	upregulate stage
00	423198	M81933	Hs.1634	cell division cycle 25A	8.95	0.07	upregulate stage
	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	1.2	0.57	upregulate stage
	423262	NM_005479	Hs.126057	frequently rearranged in advanced T-cell	9.75	0.07	upregulate stage
	423296	AW957193	Hs.3327	Homo sapiens cDNA: FLJ22219 fis, clone H	4.95	0.12	upregulate stage
65	423309	BE006775	Hs.126782	sushi-repeat protein	1.58	0.34	upregulate stage
	423347	Al660412	Hs.234557	ESTs	1	0.45	upregulate stage
	423359	NM_014170	Hs.127496	HSPC135 protein	1	0.69	upregulate stage
	423368	AA364195	Un 64247	gb:EST75015 Pineal gland II Homo sapiens	1 3.95	0.95 0.14	upregulate stage upregulate stage
70	423389	A1471609	Hs.54347	ESTs RAD54, S. cerevisiae, homolog of, B	1.62	0.14	upregulate stage
70	423430 423441	AF112481 R68649	Hs.128501 Hs.278359	absent in melanoma 1 like	6.25	0.45	upregulate stage
	423453	AW450737	Hs.128791	CGI-09 protein	8.45	0.09	upregulate stage
	423500	AF020763	Hs.129705	člone 1900 unknown protein	1	0.8	upregulate stage
	423578	AW960454	Hs.222830	ESTs	11.94	0.07	upregulate stage
75	423629	AW021173	Hs.18612	Homo sapiens cDNA: FLJ21909 fis, clone H	3.4	0.17	upregulate stage
	423632	AA328824		gb:EST32358 Embryo, 12 week I Homo saple	1	0.71	upregulate stage
	423642	AW452650	Hs.157148	Homo saplens cDNA FLJ11883 fis, clone HE	8.35	0.1	upregulate stage

	423644	A A 2200 40		-L-CCT22075 C-bare 12 unch Name cosis	1	0.43	upregulate stage
	423648	AA329048 AK000456	Hs.130546	gb:EST32875 Embryo, 12 week I Homo saple hypothetical protein FLJ20449	10.4	0.43	upregulate stage
	423651	AF192913	Hs.130683	zinc finger protein 180 (HHZ168)	5.75	0.1	upregulate stage
	423654	A1674253	Hs.35828	ESTs	3.15	0.18	upregulate stage
5	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	29.7	0.02	upregulate stage
•	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.1	0.16	upregulate stage
	423745	AI809797	Hs.43222	ESTs	1	0.5	upregulate stage
	423748	AJ149048	Hs.30211	hypothetical protein FLJ22313	4.25	0.13	upregulate stage
	423753	Y11312	Hs.132463	phospholnositide-3-kinase, class 2, beta	1.18	0.71	upregulate stage
10	423758	AA338153	Hs.82124	taminin, beta 1	1	1	upregulate stage
	423774	L39064	Hs.1702	interleukin 9 receptor	3.08	0.15	upregulate stage
	423818	AA332439		gb:EST36554 Embryo, 8 week I Homo sapien	1	0.38	upregulate stage
	423827	A1472828	Hs.172625	ESTs	1	0.43	upregulate stage
	423837	AW937063		gb:PM3-DT0037-231299-001-g11 DT0037 Homo	1.44	0.55	upregulate stage
15	423912	BE091233		gb:PM0-BT0726-300300-001-H07 BT0726 Homo	1	1	upregulate stage
	423938	AL049328	Hs.135642	Homo sapiens mRNA; cDNA DKFZp564E026 (fr	1	1	upregulate stage
	423942	AF209704	Hs.135723	glycolipid transfer protein	11.65	0.05	upregulate stage
	423944	T91433	Hs.128291	phosphodiesterase 10A	1	0.45	upregulate stage
20	423946	AL137344	Hs.135892	Homo sapiens mRNA; cDNA DKFZp761I1311 (i	1	1	upregulate stage
20	423956	W28203	Hs.136169	Homo sapiens clone 25215 mRNA sequence,	5.35	0.09	upregulate stage
	424006	AF054815	Hs.137548	CD84 antigen (leukocyte antigen)	8.8	0.06 0.19	upregulate stage
	424008	R02740	Hs.137555	putative chemokine receptor; GTP-binding	3.14	0.19	upregulate stage upregulate stage
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	2.6 1.8	0.20	upregulate stage
25	424073	U03493	Hs.138959	gap junction protein, alpha 7, 45kD (con	9.1	0.06	upregulate stage
23	424075 424087	AI807320	Hs.227630 Hs.21638	RE1-silencing transcription factor ESTs	1	1	upregulate stage
	424193	N69333 AK002005	Hs.142868	Homo sapiens cDNA FLJ11143 fis, clone PL	1	0.23	upregulate stage
	424353	AA339646	115.142000	gb:EST44755 Fetal brain I Homo sapiens c	i	1	upregulate stage
	424364	AW383226	Hs.201189	ESTs, Weakly similar to DRPLA [H.sapiens	2.18	0.33	upregulate stage
30	424406	D54120	Hs.146409	wingless-type MMTV Integration site fami	2.05	0.17	upregulate stage
50	424420	BE614743	Hs.146688	prostaglandin E synthase	1.19	0.67	upregulate stage
	424425	AB031480	Hs.146824	SPR1 protein	1.42	0.54	upregulate stage
	424486	BE002477	Hs.278714	chloride intracellular channel 6	1	0.27	upregulate stage
	424490	AJ278016	Hs.55565	ankyrin repeat domain 3	2.02	0.39	upregulate stage
35	424492	Al133482	Hs.165210	ESTs	3.15	0.14	upregulate stage
	424505	AA446131	Hs.124918	Homo sapiens cDNA FLJ13186 fis, clone NT	11.55	0.05	upregulate stage
	424513	BE385864	Hs.149894	mitochondrial translational initiation f	2.65	0.23	upregulate stage
	424575	AL110217	Hs.150751	DKFZP572C163 protein	1	1	upregulate stage
40	424583	AF017445	Hs.150926	fucose-1-phosphate guanytyltransferase	1.8	0.26	upregulate stage
40	424589	AW854298		gb:RC3-CT0254-100500-211-c03 CT0254 Homo	0.85	0.94	upregulate stage
	424602	AK002055	Hs.301129	Homo sapiens clone 23859 mRNA sequence	2.85	0.2	upregulate stage
	424625	AW904466	Hs.151310	PDZ domain protein (Drosophila inaD-like	1	0.4	upregulate stage
	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub	1.41	0.52	upregulate stage
45	424643	AF241850	Hs.151428	ret finger protein 2	9.75	0.07 0.13	upregulate stage upregulate stage
43	424649	BE242035	Hs.151461	embryonic ectoderm development calcium/calmodulin-dependent serine prot	5.85 1	0.13	upregulate stage
	424653 424670	AW977534 W61215	Hs.151469 Hs.116651	epithelial V-like antigen 1	1,42	0.52	upregulate stage
	424690	BE538356	Hs.151777	Human translation initiation factor eIF-	4.3	0.1	upregulate stage
	424701	NM_005923	Hs.151988	milogen-activated protein kinase kinase	3.85	0.11	upregulate stage
50	424702	AF250237	Hs.152009	G protein-coupled receptor 85	1	1	upregulate stage
	424717	H03754	Hs.152213	wingless-type MMTV integration site fami	4.05	0.09	upregulate stage
	424735	U31875	Hs.152677	Homo sapiens cDNA FLJ20338 fis, clone HE	1.04	0.59	upregulate stage
	424736	AF230877	Hs.152701	microtubule-interacting protein that ass	1.11	0.65	upregulate stage
	424749	NM_002451	Hs.152817	methylthioadenosine phosphorylase	1	1	upregulate stage
55	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	18.5	0.03	upregulate stage
	424841	A1280215	Hs.96885	ESTs	1	1	upregulate stage
	424860	W60828	Hs.153529	Homo sapiens clone 24540 mRNA sequence	1	1	upregulate stage
	424878	H57111	Hs.221132	ESTs	9.45	0.07	upregulate stage
6 0	424879	AA348013	Hs.159354	ESTs	10.7	0.07	upregulate stage
60	424888	AA348126	Hs.24882	E918	2.8	0.21	upregulate stage upregulate stage
	424905	NM_002497	Hs.153704	NIMA (never in milosis gene a)-related k	7.75	0.07	upregulate stage
	424930	`AA885344	Hs.96910 Hs.190503	ESTs	1.45 3.2	0.38 0.12	upregulate stage
	424948	AA348810 AW964082	HS. 190000	ESTs qb:EST376155 MAGE resequences, MAGH Homo	8.75	0.12	upregulate stage
65	424951 424993	F07625		gb:HSC2CF021 normalized infant brain cDN	1	1	upregulate stage
.03	425020	U09368	Hs.154205	zinc finger protein 140 (clone pHZ-39)	i	i	upregulate stage
	425024	R39235	Hs.12407	ESTs	2.65	0.13	upregulate stage
	425057	AA826434	Hs.96944	ESTs	1	0.22	upregulate stage
	425068	AL048716	Hs.154387	KIAA0103 gene product	9.5	0.07	upregutate stage
70	425081	X74794	Hs.154443	minichromosome maintenance deficient (S.	1.66	0.52	upregulate stage
	425191	AF052146	Hs.155085	Homo sapiens clone 24653 mRNA sequence	1	0.32	upregulate stage
•	425216	U81504	Hs.155172	adaptor-related protein complex 3, beta	7.05	0.1	upregulate stage
	425234	AW152225	Hs.165909	ESTs	19.7	0.04	upregulate stage
75	425239	BE567924	Hs.155244	pre-mRNA splicing factor similar to S. c	1	0.69	upregulate stage
75	425289	AW139342	Hs.155530	interferon, gamma-inducible protein 16	10.45	0.05	upregulate stage
	425304	AA463844	Hs.31339	fibroblast growth factor 11	1.57	0.51	upregulate stage
	425316	AA354977	Hs.191565	ESTs, Moderately similar to NSD1 protein	5.05	0.12	upregulate stage

	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	14.7 1	0.05 1	upregulate stage
	425362	AA355936	Un 450040	gb:EST64410 Jurkat T-cells VI Homo saple topolsomerase (DNA) II alpha (170kD)	8.24	0.09	upregulate stage upregulate stage
	425397 425403	J04088 AL023753	Hs.156346 Hs.156406	Human DNA sequence from clone 1198H6 on	1	0.22	upregulate stage
5	425415	M13903	Hs.157091	Involucio	1.19	0.55	upregulate stage
9	425420	BE536911	Hs.234545	ESTs, Weakly similar to AF155135 1 novel	2.85	0.13	upregulate stage
	425463	AK000740	Hs.157986	hypothelical protein FLJ20733	9	0.07	upregulate stage
	425465	L18964	Hs.1904	protein kinase C, lota	9.6	0.07	upregulate stage
	425467	R16484	Hs.190075	ESTs	1	0.83	upregulate stage
10	425492	AL021918	Hs.158174	zinc finger protein 184 (Kruppel-like)	3.2	0.15	upregulate stage
	425607	U09860	Hs.158333	protease, serine, 7 (enterokinase)	1	1	upregulate stage
	425608	AA360486	Hs.92448	ESTs	4.7 2.65	0.14 0.14	upregulate stage upregulate stage
	425614 425641	AI334963 D79758	Hs.156256 Hs.14355	ESTs Homo sapiens cDNA FLJ13207 fis, clone NT	4.86	0.14	upregulate stage
15	425660	AA521184	Hs.105504	ESTs	1	0.31	upregulate stage
13	425665	AK001050	Hs.159066	hypothetical protein FLJ10188	1.25	0.19	upregulate stage
	425672	AA361483	110.100000	gb:EST70790 T-cell lymphoma Homo sapiens	1	1	upregulate stage
	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.96	0.13	upregulate stage
	425726	AF085808	Hs.159330	uropłakin 3	0.92	0.79	upregulate stage
20	425742	AJ001454	Hs.159425	testican 3	1	1	upregulate stage
	425785	T27017	Hs.159528	Homo saplens clone 24400 mRNA sequence	1	0.39	upregulate stage
	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, Impor	1.89	0.44	upregulate stage
	425843	BE313280	Hs.159627	death associated protein 3	3.1 1.72	0.15 0.47	upregulate stage upregulate stage
25	425852 425883	AK001504 AL137708	Нs.159651 Нs.161031	death receptor 6 Homo sapiens mRNA; cDNA DKFZp434K0322 (f	0.95	0.68	upregulate stage
23	426010	AA136563	Hs.1975	Homo sapiens cDNA: FLJ21007 fis, clone C	1	0.34	upregulate stage
	426028	NM_001110	Hs.172028	a disintegrin and metalloproteinase doma	14.3	0.04	upregulate stage
	426101	AL049987	Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (fr	11.75	0.05	upregulate stage
	426108	AA622037	Hs.166468	programmed cell death 5	3.23	0.18	upregulate stage
30	426115	H08895	Hs.166733	leucyl/cystinyl aminopeptidase	1	0.32	upregulate stage
	426168	NM_003152	Hs.167503	signal transducer and activator of trans	1.97	.0.4	upregulate stage
	426257	AL137201	Hs.168625	KIAA0979 protein	1	0.29	upregulate stage
	426261	AW242243	Hs.168670	peroxisomal farnesylated protein	2.8 14.75	0.16 0.04	upregulate stage upregulate stage
35	426283	NM_003937 Al908165	Hs.169139	kynureninase (L-kynurenine hydrolase) GATA-binding protein 3	3.05	0.28	upregulate stage
55	426451 426462	U59111	Hs.169946 Hs.169993	dermatan sulphate proteoglycan 3	1	0.36	upregulate stage
	426490	NM_001621	Hs.170087	aryl hydrocarbon receptor	14.17	0.05	upregulate stage
	426514	BE616633	Hs.301122	bone morphogenetic protein 7 (osteogenic	1.15	0.47	upregulate stage
	426561	AA381437		gb:EST94514 Activated T-cells I Homo sap	5.65	0.11	upregulate stage
40	426711	AA383471	Hs.180669	conserved gene amplified in osteosarcoma	11.05	0.05	upregulate stage
	426731	AW303411	Hs.130332	ESTs	24	0.21	upregulate stage
	426759	Al590401	Hs.21213	ESTs	9.5 9.25	0.06 0.09	upregulate stage upregulate stage
	426786 426788	AA319798 U66815	Hs.172247 Hs.172280	eukaryotic translation etongation factor SWI/SNF related, matrix associated, acti	5.63	0.14	upregulate stage
45	426818	AA554827	Hs.124841	ESTs, Weakly similar to ALU5_HUMAN ALU S	9	0.08	upregulate stage
	426824	D87717	Hs.172652	KIAA0013 gene product	1	0.87	upregulate stage
	426827	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	8.95	0.09	upregulate stage
	426921	AA037145	Hs.172865	cleavage stimulation factor, 3' pre-RNA,	1	0.19	upregulate stage
50	426935	880000_MM	Hs.172928	collagen, type I, alpha 1	1.15	0.72	upregulate stage
50	426997	BE620738	Hs.173125	peptidylprolyl isomerase F (cyclophilin	11.06	0.06	upregulate stage
	427071	AA397958	Hs.192719	ESTs	5.75 2.55	0.08 0.18	upregulate stage upregulate stage
	427126 427134	AA620613 AA398409	Hs.191827 Hs.173561	ESTs EST	3.4	0.18	upregulate stage
	427142	AA398510	Hs.133148	ESTs	1	0.25	upregulate stage
55	427259	AA400096		gb:zu69f07.s1 Soares_testis_NHT Homo sap	1	0.22	upregulate stage
	427308	D26067	Hs.174905	KIAA0033 protein	5.9	0.1	upregulate stage
	427315	AA179949	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	6.12	0.11	upregulate stage
	427356	AW023482	Hs.97849	ESTs	2.7	0.13	upregulate stage
60	427370	AI243615	Hs.97740	ESTs	3.6	0.14	upregulate stage
60	427376	AA401533	Hs.19440	ESTs 3-oxoacid CoA transferase	2.1 1	0.16 0.39	upregulate stage upregulate stage
	427387 427470	BE244966 AW999924	Hs.177584 Hs.178357	Homo sapiens cDNA FLJ13657 fis, clone PL	3.4	0.16	upregulate stage
	427519	AW085233	Hs.180696	ESTs	8.23	0.1	upregulate stage
	427521	AW973352	Hs.299056	ESTs	7.75	0.1	upregulate stage
65	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	5.7	0.15	upregulate stage
-	427566	A1743515		gb:wf72b08.x2 Soares_NFL_T_GBC_S1 Homo s	1	1	upregulate stage
	427581	NM_014788	Hs.179703	KIAA0129 gene product	11.45	0.06	upregulate stage
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.25	0.16	upregulate stage
70	427603	AI090838	Hs.98006	ESTs	1 57	1 0.11	upregulate stage upregulate stage
70	427646	AJ678042 AJ673025	Hs.271953 Hs.43874	ESTs ESTs	5.7 1	0.11	upregulate stage
	427652 427742	AA411880	Hs.190888	ESTS	2.4	0.16	upregulate stage
	427814	W28383	Hs.180900	Williams-Beuren syndrome chromosome regi	9.13	0.08	upregulate stage
	427839	AA608823	Hs.98244	ESTs	1.9	0.19	upregulate stage
75	427878	C05766	Hs.181022	CGI-07 protein	4.1	0.14	upregulate stage
	427922	AK001934	Hs.181112	HSPC126 protein	2.6	0.19	upregulate stage
	427933	AW974643	Hs.190571	ESTs	4.55	0.14	upregulate stage

	427024	44040544	II- 004000	COT-			umanaulata alama
	427934	AA810541	Hs.291866	ESTS	1 6.15	1 0.1	upregulate stage
	427944 427961	AA417878 AW293165	Hs.48401 Hs.143134	ESTs, Weakly similar to ALU8_HUMAN ALU S ESTs	4.85	0.11	upregulate stage upregulate stage
	427986	N45214	Hs.282387	Homo saplens cDNA: FLJ21837 fis, clone H	3.55	0.13	upregulate stage
5	428003	AL110200	Hs.181384	Homo sapiens mRNA; cDNA DKFZp586B0922 (f	1.45	0.36	upregulate stage
-	428004	AA449563	Hs.300270	ESTS	3.95	0.12	upregulate stage
	428010	AA806554	Hs.185375	ESTs	1	0.38	upregulate stage
	428057	Al343641	Hs.185798	ESTs	10.1	0.06	upregulate stage
	428058	AI821625	Hs.191602	ESTs	1	0.5	upregulate stage
10	428071	AF212848	Hs.182339	ets homologous factor	6.4	0.09	upregulate stage
	428182	BE386042	Hs.293317	ESTs, Weakly similar to JM27 [H.sapiens]	1	0.23	upregulate stage
	428192	AA424051		gb:zv80d03.s1 Soares_total_fetus_Nb2HF8_	2.45	0.16	upregulate stage
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	9.25	0.04	upregulate stage
1.5	428403	A1393048	Hs.239894	leucine rich repeat (in FLII) interactin	9.94	0.06	upregulate stage
15	428436	BE080180		gb:RC4-BT0629-120200-011-b10 BT0629 Homo	1	1	upregulate stage
	428450	NM_014791	Hs.184339	KIAA0175 gene product	4.43	0.16	upregulate stage
	428479	Y00272	Hs.184572	cell division cycle 2, G1 to S and G2 to	9.2	0.07	upregulate stage
	428529	AW262022	Hs.106278	Homo sapiens cDNA FLJ12839 fis, clone NT	1	1 0.3	upregulate stage
20	428576	AW009330	Hs.167621	ESTs	9.25	0.09	upregulate stage upregulate stage
20	428605 428664	AB037862	Hs.186756 Hs.189095	KIAA1441 protein similar to SALL1 (sal (Drosophila)-like	3.8	0.08	upregulate stage
	428685	AK001666 AF131853	Hs.189527	Homo sapiens clone 25016 mRNA sequence	1	1	upregulate stage
	428716	AL122118	Hs.190614	Homo sapiens mRNA; cDNA DKFZp43401221 (f	i	0.65	upregulate stage
	428783	AW070204	Hs.178176	ESTs	1.6	0.23	upregulate stage
25	428788	AF082283	Hs.193516	8-cell CLL/lymphoma 10	9.6	0.08	upregulate stage
20	428829	R14050	Hs.194051	Homo saplens mRNA; cDNA DKFZp566B213 (fr	5.45	0.11	upregulate stage
	428839	Al767756	Hs.82302	ESTs	10	0.06	upregulate stage
	428881	Al298368	Hs.98918	ESTs	1.4	0.18	upregulate stage
	428954	AF100781	Hs.194678	WNT1 Inducible signaling pathway protein	1	1	upregulate stage
30	428988	AA442900	Hs.27947	ESTs	3.05	0.13	upregulate stage
-	429042	AW015489	Hs.235920	ESTs	1	0.56	upregulate stage
	429057	AF156557	Hs.194816	stomatin-like protein 1	0.95	0.93	upregulate stage
	429066	AA868555	Hs.178222	ESTs	6	0.11	upregulate stage
25	429072	Al376228	Hs.108043	Friend leukemia virus integration 1	1	1	upregulate stage
35	429083	Y09397	Hs.227817	BCL2-related protein A1	11.12	0.03	upregulate stage
	429091	AA935658	Hs.187939	ESTs	8.9	0.08	upregulate stage
	429115	AA446728	Hs.289020	Homo sapiens cDNA FLJ14098 fis, clone MA	4.1	0.17	upregulate stage
	429127	AA749382	Hs.107233	ESTs	1	0.23	upregulate stage
40	429135	AA446966	Hs.99090	ESTs, Moderately similar to similar to K	1	1	upregulate stage
40	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	8.6 8.4	0.08 0.06	upregulate stage
	429174	BE559598	Hs.197803	KIAA0160 protein	1	0.36	upregulate stage upregulate stage
	429236 429268	AA448407 AA205388	Hs.198481	gb:zw68d11.s1 Soares_testis_NHT Homo sap RAR-related orphan receptor B	29	0.16	upregulate stage
	429300	AB011108	Hs.198891	serine/threonine-protein kinase PRP4 hom	4.25	0.15	upregulate stage
45	429334	D63078	Hs.186180	Homo saplens cDNA: FLJ23038 fis, clone L	2.95	0.11	upregulate stage
1.5	429344	R94038	Hs.199538	inhibin, beta C	2.91	0.28	upregulate stage
	429359	W00482	Hs.2399	matrix metalloproteinase 14 (membrane-in	1.19	0.68	upregulate stage
	1 429376	AI867889	Hs.43227	ESTs	1	1	upregulate stage
	429412	NM_006235	Hs.2407	POU domain, class 2, associating factor	8.15	0.07	upregulate stage
50	429450	AA824451	Hs.94292	Homo sapiens cDNA: FLJ23311 fis, done H	3.3	0.17	upregulate stage
	429472	AW452421	Hs.15652	ESTs	1	1	upregulate stage
	429482	AF076974	Hs.203952	transformation/transcription domain-asso	1.52	0.59	upregulate stage
	429486	AF155827	Hs.203963	hypothetical protein FLJ10339	2.9	0.15	upregulate stage
55	429572	AW295375	Hs.39474	ESTs	1	0.95	upregulate stage
55	429584	AI817785	Hs.183037	protein kinase, cAMP-dependent, regulato	6.55 1	0.1 1	upregulate stage
	429590	Al219490	Hs.44445	ESTs, Weakly similar to Kelch motif cont	5.6	0.14	upregulate stage upregulate stage
	429597 429601	NM_003816 AIB04293	Hs.2442 Hs.119406	a disintegrin and metalloproteinase doma ESTs, Weakly similar to AF143946 1 trans	1.36	0.58	upregulate stage
	429602	AA521463	Hs.183424	ESTs	1	0.34	upregulate stage
60	429617	X89984	Hs.211563	B-cell CLL/lymphoma 7A	10.8	0.07	upregulate stage
00	429629	BE501732	Hs.30622	Homo sapiens cDNA FLJ13010 fis, clone NT	3.4	0.12	upregulate stage
	429631	AA455612	Hs.136710	EST	1	1	upregulate stage
	429644	AA455892	Hs.156379	ESTa	3.4	0.15	upregulate stage
	429653	NM_005955	Hs.211581	metal-regulatory transcription factor 1	4.45	0.17	upregulate stage
65	429664	L20433	Hs.211588	POU domain, class 4, transcription facto	1.17	0.74	upregulate stage
	429673	AA884407	Hs.211595	protein tyrosine phosphatase, non-recept	3.19	0.22	upregulate stage
	429699	AJ383469	Hs. 159300	ESTs	4.4	0.1	upregulate stage
	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	4.25	0.13	upregulate stage
70	429813	AW139678	Hs.180791	ESTs	1	0.95	upregulate stage
70	429828	AB019494	Hs.225767	IDN3 protein	4.2	0.14	upregulate stage
	429838	AW904907	Hs.108241	ESTs, Weakly similar to The KIAA0191 gen	3.25	0.14	upregulate stage
	429859	NM_007050	Hs.225952	protein tyrosine phosphatase, receptor t	1 25	0.36	upregulate stage
	429913	AA460608	Hs.99552	ESTs	1.35	0.2	upregulate stage upregulate stage
75	429917	H80572	Un 10mre	gb:yu76c02.r1 Soares fetal liver spleen	4.8 1	0.13 0.63	upregulate stage
15	429921	AA526911 AW081608	Hs.102756 Hs.105053	ESTs ESTs	3.7	0.03	upregulate stage
	429950 429971	AF079550	Hs.227098	glial cells missing (Drosophila) homolog	1	0.83	upregulate stage
	42531	74 V1 3300	19.551030	Over ages summing for exactly manifold	•	0.50	-F880

	400070	* * 400000		-b07-40 of Compa NBUNDs C1 Upma cool	1	0.32	uprepulate stage
	429979 429982	AA463338 AW449534	Hs.99607	gb:zx97a10.r1 Soares_NhHMPu_S1 Homo sapi Homo sapiens cDNA FLJ13841 fis, clone TH	9.45	0.32	upregulate stage
	429986	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	0.78	0.58	upregulate stage
	430020	Al539029	Hs.99607	Homo segiens cDNA FLJ13841 fis, clone TH	1	0.36	upregulate stage
5	430021	AA463913	Hs.221160	ESTs	i	0.56	upregulate stage
-	430049	AW277085	Hs.99619	ESTs	3.55	0.17	upregulate stage
	430060	NM_002941	Hs.301198	roundabout (axon guidance receptor, Dros	1	0.59	upregulate stage
	430076	AA465115		gb:aa32c11.r1 NCI_CGAP_GCB1 Homo saplens	5.4	0.12	upregulate stage
10	430134	BE380149	Hs.105223	ESTs, Wealthy similar to contains similar	3.6	0.13	upregulate stage
10	430184	AB013802	Hs.234790	contactin 5	1 9.15	1 0.1	upregulate stage
	430195	AW969308	Hs.188594	ESTs ESTs	1.2	0.52	upregulate stage upregulate stage
	430279 430287	R85974 AW182459	Hs.16279 Hs.125759	ESTs, Weakly similar to tumor suppressor	4.05	0.15	upregulate stage
	430291	AV660345	Hs.238126	CGI-49 protein	7.2	0.08	upregulate stage
15	430299	W28673	Hs.106747	serine carboxypeptidase 1 precursor prot	11.9	0.06	upregulate stage
	430350	BE169639		gb:PM1-HT0527-280200-005-a05 HT0527 Homo	7.1	0.09	upregulate stage
	430387	AW372884	Hs.240770	nuclear cap binding protein subunit 2, 2	5.9	0.11	upregulate stage
	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	2.56	0.2	upregulate stage
~^	430488	D19589	Hs.4220	ESTs, Moderately similar to tetracycline	10.5	0.08	upregulate stage
20	430512	AF182294	Hs.241578	U6 snRNA-associated Sm-like protein LSm8	11.2	0.06	upregulate stage
	430519	AF129534	Hs.49210	F-box only protein 4	5.35 1	0.11 1	upregulate stage upregulate stage
	430550 430561	AK000062	Hs.243756	hypothelical protein FLJ20055 gb:RC1-BT0314-310300-015-b06 BT0314 Homo	i	i	upregulate stage
	430563	BE065227 AA481269	Hs.178381	ESTs	i	0.45	upregulate stage
25	430598	AK001764	Hs.247112	hypothetical protein FLJ10902	4.75	0.14	upregulate stage
	430630	AW269920	Hs.2621	cystatin A (stefin A)	2.52	0.25	upregulate stage
	430634	Al860651	Hs.26685	ESTs	1.24	0.61	upregulate stage
	430637	BE160081	Hs.256290	S100 calcium-binding protein A11 (calgiz	1.79	0.47	upregulate stage
20	430640	AA482636		gb:zv29c06.r1 Soares ovary tumor NbHOT H	9.15	0.08	upregulate stage
30	430665	BE350122	Hs.157367	ESTs	9.4	0.08 ,	upregulate stage
	430726	AL031224	Hs.247850	Human DNA sequence from clone 336H9 on c	1	0.27	upregulate stage
	430733	AW975920	Hs.283361	ESTS	3.5	0.13 1	upregulate stage upregulate stage
	430781 430791	AW088127 AA486293	Hs.278536 Hs.272068	ESTs ESTs, Moderately similar to alternativel	1 1.61	0.42	upregulate stage
35	430791	AA487242	Hs,185105	ESTs. Woder allery similar to alternatives	1	1	upregulate stage
55	430888	BE155293	Hs.76064	ribosomal protein L27a	3.05	0.17	upregulate stage
	430918	NM_000843	Hs.248131	glutamate receptor, metabotropic 6	9.05	0.09	upregulate stage
	430926	L05597	Hs.248136	5-hydroxytryptamine (serotonin) receptor	1	0.91	upregulate stage
40	430994	AA490345	Hs.40530	ESTs	1.03	0.89	upregulate stage
40	431009	BE149762	Hs.248213	gap Junction protein, beta 6 (connexin 3	24.8	0.03	upregulate stage
	431023	AI283133	Hs.178925	ESTs	2.55 1	0.15 0.47	upregulate stage
	431030	AA830525	Hs.291988 Hs.105276	ESTs ESTs	i	0.47	upregulate stage upregulate stage
	431041 431070	AA490967 AW408164	Hs.249184	transcription factor 19 (SC1)	1.65	0.45	upregulate stage
45	431082	AA491600	Hs.161942	ESTs	9.85	0.06	upregulate stage
	431089	BE041395	Hs.283676	ESTs, Weakly similar to unknown protein	43.15	0.01	upregulate stage
	431146	Z83850	Hs.250649	Human DNA sequence from PAC B2J11 and co	1	0.4	upregulate stage
	431173	AW971198	Hs.294068	ESTs	6.3	0.12	upregulate stage
50	431245	AA496933	Hs.191687	ESTs	1	1	upregulate stage
50	431253	R06428	Hs.226351	ESTs	1	0.8 0.31	upregulate stage
	431267	AW969661 BE044989	Hs.124047 Hs.274901	ESTs	1	1	upregulate stage upregulate stage
	431287 431322	AW970622	T\$.274901	ESTs gb:EST382704 MAGE resequences, MAGK Homo	10.8	0.06	upregulate stage
	431332	AA503297	Hs.117108	ESTs	6.55	0.1	upregulate stage
55	431343	AW970603	Hs.300941	Homo sapiens cDNA FLJ11661 fis, clone HE	5.65	0.09	upregulate stage
	431346	AA371059	Hs.251636	ubiquitin specific protease 3	1.68	0.52	upregulate stage
	431347	Al133461	Hs.251664	insulin-like growth factor 2 (somalomedi	1.12	0.47	upregulate stage
	431381	AA577114	Hs.105727	ESTS	1	0.36	upregulate stage
60	431448	AL137517	Hs.288381	hypothetical protein DKFZp564O1278	3.72	0.13	upregulate stage
00	431494	AA991355 AA580082	Hs.129808 Hs.112264	ESTs ESTs	2.75 3.75	0.18 0.13	upregulate stage upregulate stage
	431510 431560	BE244135	Hs.260238	hypothetical protein FLJ10842	9.1	0.13	upregulate stage
	431571	AW500486	Hs.180610	splicing factor proline/glutamine rich (7.5	0.11	upregulate stage
	431596	T34708	Hs.272927	Sec23 (S. cerevisiae) homolog A	8.2	0.08	upregulate stage
65	431610	AK000972	Hs.264363	hypothetical protein FLJ10110	6.4	0.1	upregulate stage
	431613	AA018515	Hs.264482	Apg12 (autophagy 12, S. cerevisiae)-like	5.8	0.11	upregulate stage
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD49C, alpha	1.3	0.59	upregulate stage
	431663	NM_016569	Hs.267182	TBX3-iso protein	1.6	0.52	upregulate stage upregulate stage
70	431670	AW971287	11-007005	gb:EST383376 MAGE resequences, MAGL Homo	1	1 0.05	upregulate stage
70	431689	AA305688 Al208511	Hs.267695 Hs.292510	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr ESTs	9.1 4.15	0.05	upregulate stage
	431691 431692	AL021331	Hs.267749	unc93 (C.elegans) homolog A	4.13	0.12	upregulate stage
	431694	AW970112	Hs.292697	ESTs	1	0.83	upregulate stage
	431726	NM_015361	Hs.268053	KIAA0029 protein	10.1	0.07	upregulate stage
75	431736	AI912234	Hs.151245	ESTs	9.9	80.0	upregulate stage
	431753	X76029	Hs.2841	neuromedin U	1	0.23	upregulate stage
	431781	AA515474	Hs.99908	nuclear receptor coactivator 4	1	0.36	upregulate stage

	431810	X67155	Hs.270845	kinesin-like 5 (mitotic kinesin-like pro	1	0.65	upregulate stage
	431814	BE256242	Hs.270847	delta-tubulin	3.35	0.18	upregulate stage
	431817	X65233	Hs.271079	zinc finger protein 80 (pT17)	1	1	upregulate stage
5	431828	AA572994		gb:nm33f12.s1 NCI_CGAP_Llp2 Homo sapiens	4	0.12 1	upregulate stage
5	431880	AI700238	Hs.187486	ESTs	2.89	0.27	upregulate stage upregulate stage
	431890	X17033	Hs.271986	integrin, alpha 2 (CD498, alpha 2 subuni	1	0.18	upregulate stage
	431941	AK000106	Hs.272227	Homo sapiens cDNA FLJ20099 fis, clone CO	6.4	0.16	upregulate stage
	431951	AI086335	Hs.136470	ESTS	9.09	0.11	upregulate stage
10	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	1	0.23	upregulate stage
10	431989	AW972870	Hs.291069	ESTs	3.9	0.15	upregulate stage
	431992	NM_002742	Hs.2891	prolein kinase C, mu ESTs	6.05	0.09	upregulate stage
	432015 432023	AL157504	Hs.159115 Hs.214188	ESTs	0.99	0.86	upregulate stage
	432028	AW273128 AJ272208	Hs.272354	interleukin 1 receptor accessory protein	1	0.48	upregulate stage
15	432039	AF220217	Hs.272374	Homo sapiens rsec15-like protein mRNA, p	i	0.24	upregulate stage
13	432065	AA401039	Hs.2903	protein phosphatase 4 (formerly X), cata	1.38	0.64	upregulate stage
	432069	AW975868	Hs.294100	ESTs	4.25	0.15	upregulate stage
	432072	N62937	Hs.269109	ESTs	5.9	0.09	upregulate stage
	432093	H28383		ab:yl52c03.r1 Soares breast 3NbHBst Homo	7.9	0.08	upregulate stage
20.	432136	AA157632	Hs.272630	vacuolar proton pump delta polypeptide	1	0.28	upregulate stage
	432162	AA584062	Hs.272798	hypothetical protein FLJ20413	2.5	0.25	upregulate stage
	432169	Y00971	Hs.2910	phosphoribosyl pyrophosphate synthetase	6.1	0.11	upregulate stage
	432215	AU076609	Hs.2934	ribonucleotide reductase M1 polypeptide	2.44	0.29	upregulate stage
	432222	AI204995		gb:an03c03.x1 Stratagene schizo brain S1	15	0.02	upregulate stage
25	432235	AA531129	Hs.190297	ESTs	9.57	0.06	upregulate stage
	432237	AK001926	Hs.274132	hypothetical protein FLJ11064	1	0.44	upregulate stage
	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	4.3	0.1	upregulate stage
	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	3.95	0.15	upregulate stage
20	432338	AA534197	Hs.272693	ESTs	1	1	upregulate stage
30	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	1.97	0.4	upregulate stage
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.16	0.58	upregulate stage
	432407	AA221036	Hs.285026	HERV-H LTR-associating 1	3.75	0.16	upregulate stage
	432410	X68561	Hs.2982	Sp4 transcription factor	1	1	upregulate stage upregulate stage
25	432415	T16971	Hs.289014	ESTs	7.3 5.35	0.07 0.13	
35	432432	AA541323	Hs.115831	ESTS	5.35 5.35	0.13	upregulate stage upregulate stage
	432435	BE218886	Hs.282070	ESTS	19.4	0.04	upregulate stage
	432441	AW292425	Hs.163484	ESTS	15.4	0.59	upregulate stage
	432518	A1675836	Hs.94319	ESTs	9.15	0.08	upregulate stage
40	432580	X82018	Hs.3053	zinc finger protein with interaction dom granzyme K (serine protease, granzyme 3;	10.15	0.05	upregulate stage
40	432606	NM_002104 AA557153	Hs.3066 Hs.185853	ESTs	1	0.33	upregulate stage
	432614	BE297635	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	10.5	0.07	upregulate stage
	432642 432661	AW973823	Hs.283526	ESTs	1	1	upregulate stage
	432666	AW204069	Hs.129250	ESTs, Weakly similar to unnamed protein	i	0.16	upregulate stage
45	432669	AL043482	Hs.267115	ESTs	4.15	0.12	upregulate stage
-10	432673	AB028859	Hs.278605	ER-associated DNAJ; ER-associated Hsp40	10.24	0.06	upregulate stage
	432678	AA923424	Hs.135567	ESTs	1	0.69	upregulate stage
	432690	AF181490	Hs.278627	prenylcysteine lyase	4.55	0.12	upregulate stage
	432724	X98266		gb:H.sapiens mRNA for ligase like protei	1	1	upregulate stage
50	432758	NM_014091	Hs.278920	PRO1510 prolein	1	1	upregulate stage
	432773	NM_014124	Hs.278935	PRO0255 protein	1	1	upregulate stage
	432789	D26361	Hs.3104	KIAA0042 gene product	3.46	0.22	upregulate stage
	432829	W60377	Hs.57772	ESTs	1.33	0.43	upregulate stage
	432840	AK001403	Hs.279521	hypothetical protein FLJ20530	4.5	0.14	upregulate stage
55	432900	BE178025	Hs.7942	hypothetical protein FLJ20080	1	0.3	upregulate stage
	432917	NM_014125	Hs.279812	PRO0327 protein	6.33	0.12	upregulate stage
	432935	AW270239	Hs.213709	ESTs	3.85	0.11	upregulate stage
	432963	AA572859	Hs.225791	ESTs	1 20.0	0.19	upregulate stage upregulate stage
60	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1 gb:QV1-DT0069-010200-057-c12 DT0069 Homo	29.9	0.03 0.59	upregulate stage
60	433005	AW939074		gb:QV1-D10069-010200-057-012 D10069 Hollo	1	1	upregulate stage
	433129	AA577814	11- 450507	gb:nn24d03.s1 NCI_CGAP_Gas1 Homo sapiens	6	0.1	upregulate stage
	433159	AB035898	Hs.150587 Hs.21104	kinesin-like protein 2 KIAA1463 protein	9.2	0.09	upregulate stage
	433201	AB040896	Hs.12808	MARK	1.6	0.45	upregulate stage
65	433211 433218	H11850 AJ040372	Hs.278894	KIAA1482 protein	1	0.44	upregulate stage
05	433222	AW514472	Hs.238415	ESTs, Moderately similar to ALU8_HUMAN A	5.45	0.12	upregulate stage
	433230	AW136134	Hs.220277	ESTs	7.3	0.09	upregulate stage
	433237	AB040930	Hs.297021	Homo sapiens cDNA FLJ13211 fis, clone NT	1	1	upregulate stage
	433385	AF026944	Hs.293797	ESTs	4.95	0.08	upregulate stage
70	433371			gb:PTHI188 HTCDL1 Homo sapiens cDNA 5/3	4.75	0.12	upregulate stage
. •	433394	AI907753	Hs.93810	cerebral cavernous malformations 1	4.5	0.11	upregulate stage
	433424	R68252	Hs.163566	ESTs	1	1	upregulate stage
	433440	AF052127		gb:Homo sapiens clone 23850 mRNA sequenc	1	1	upregulate stage
	433452	AW296906	Hs.142869	ESTs	9.82	80.0	upregulate stage
75	433456	AA593447	Hs.124296	ESTs	9.45	0.08	upregulate stage
	433467	AJ420457	Hs.50955	ESTs	1.11	0.74	upregulate stage
	433479	AW511459	Hs.249972	ESTs	3.35	0.13	upregulate stage

	100.00					۰	
	433484	BE264397	Hs.148674	ESTs	1 3.05	0.27 0.14	upregulate stage
	433515 433602	AA595800	Hs.190246	ESTs	1	1	upregulate stage upregulate stage
	433613	A1769948 AA836128	Hs.24906 Hs.5669	ESTs ESTs	2.8	0.12	upregulate stage
5	433625	AW955674	Hs.161762	ESTS	1	0.53	upregulate stage
•	433658	L03678	Hs.156110	immunoglobulin kappa constant	9.65	0.05	upregulate stage
	433672	BE281165	Hs.288038	TLS-associated serine-arginine protein 1	7.9	0.08	upregulate stage
	433730	AK002135	Hs.3542	hypothetical protein FLJ11273	6.7	0.11	upregulate stage
	433735	AA608955	Hs.109653	ESTs	8.95	0.08	upregulate stage
10	433895	AI287912	Hs.3628	mitogen-activated protein kinase kinase	4.43	0.16	upregulate stage
	433904	Al399956	Hs.208956	ESTs	5.5	0.12	upregulate stage
	433929	Al375499	Hs.27379	ESTs	7	0.09	upregulate stage
	433966	AF113017	Hs.284301	PRO1268 protein	7.95	0.08	upregulate stage
15	433967	AF113018	Hs.284302	PRO1621 protein	2.65	0.1 0.08	upregulate stage
13	434006	AF113688	11- 002040	gb:Homo sapiens clone FLB4630	7.85 8.81	0.09	upregulate stage upregulate stage
	434037 434064	AF116601 AL049045	Hs.283048 Hs.180758	hypothetical protein PR00128 hypothetical protein PR00082	8.35	0.09	upregulate stage
	434085	AF116673	Hs.250029	hypothetical protein PRO1925	1	1	upregulate stage
	434092	AA625155	. 10.200020	gb:af70d06.r1 Soares_NhHMPu_S1 Homo sapi	i	i	upregulate stage
20	434094	AA305599	Hs.238205	hypothetical protein PRO2013	11.5	0.06	upregulate stage
	434138	AA625804		gb:zu86h01.s1 Soares_testis_NHT Homo sap	3.55	0.11	upregulate stage
	434192	AW387314	Hs.34371	ESTs	1.65	0.22	upregulate stage
	434194	AF119847	Hs.283940	Homo sapiens PRO1550 mRNA, partial cds	7.85	0.09	upregulate stage
25	434217	AW014795	Hs.23349	ESTs	3.8	0.13	upregulate stage
25	434228	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	5.95	0.11	upregulate stage
	434271	AA897778	Hs.201677	ESTS	1 0.45	0.38 0.07	upregulate stage
	434280	BE005398	Un 453737	gb:CM1-BN0116-150400-189-h02 BN0116 Homo	9.45 2.65	0.07	upregulate stage upregulate stage
	434322 434351	Al125686 AW974991	Hs.152727 Hs.191852	ESTs ESTs, Weakly similar to ALU1_HUMAN ALU S	1	0.61	upregulate stage
30	434354	AW974912	Hs.292783	ESTs	i	1	upregulate stage
50	434398	AA121098	Hs.3838	serum-inducible kinase	10.7	0.08	upregulate stage
	434464	BE063921	Hs.295971	ESTs	10.15	0.07	upregulate stage
	434466	AB037829	Hs.3862	regulator of nonsense transcripts 2; DKF	7.6	0.09	upregulate stage
2.5	434484	W79839	Hs.104336	hypothetical protein	5.1	0.15	upregulate stage
35	434513	AF143888	Hs.18213	Homo sapiens clone IMAGE:121736 mRNA seq	1	1	upregulate stage
	434534	H90477	Hs.41407	ESTs	1	0.18	upregulate stage
	434540	NM_016045	Hs.5184	TH1 drosophila homolog	12.4 1.75	0.06 0.38	upregulate stage upregulate stage
	434569 434575	Al311295	Hs.58609 Hs.299964	ESTs ESTs	9.7	0.06	upregulate stage
40	434575	Al 133446 Al 221894	Hs.39311	ESTs	1.65	0.17	upregulate stage
, 40	434629	AA789081	Hs.4029	glioma-amplified sequence-41	9	0.07	upregulate stage
	434663	AA641972	Hs.130058	ESTs	4.55	0.15	upregulate stage
	434731	AA648049	Hs.121518	ESTs	8.5	0.1	upregulate stage
	434765	AA831115	Hs.190473	ESTs	· 1	0.71	upregulate stage
45	434773	AA648962	Hs.152947	ESTs	10.55	0.08	upregulate stage
	434792	AA649253	Hs.132458	ESTs	5.45	0.11	upregulate stage
	434828	D90070	Hs.96	phorbol-12-myristate-13-acetate-induced	1	0.34	upregulate stage
	434876	AF160477	Hs.245781	Homo sapiens ig superfamily receptor LNI	1.4 1	0.57 0.91	upregulate stage upregulate stage
50	434909 434926	Al479212 BE543269	Hs.17283 Hs.50252	hypothetical protein FLJ 10890 Homo saplens HSPC283 mRNA, partial cds	4.9	0.13	upregulate stage
50	434926	AF161422	Hs.21590	Homo sapiens HSPC304 mRNA, partial cds	1	1	upregulate stage
	434963	AW974957	Hs.288719	Homo sapiens cDNA FLJ12142 fis, clone MA	10.75	0.07	upregulate stage
	434970	AW272262	Hs.250468	EST6	9.05	0.08	upregulate stage
	434980	AW770553	Hs.293640	ESTs	4.95	0.14	upregulate stage
55	434997	AW975155	Hs.292163	ESTs	1	0.36	upregulate stage
	435013	H91923	Hs.110024	NADH:ubiquinone oxidoreductase MLRQ subu	1.16	0.71	upregulate stage
	435030	AJ203316	Hs.148655	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.95	0.14	upregulate stage
	435047	AA454985	Hs.54973	cadherin-like protein VR20	3.31	0.2	upregulate stage upregulate stage
60	435061	AI651474	Hs.163944	ESTs	1.4 9.05	0.2 0.08	upregulate stage
00	435080 435087	AI831760 AW975241	Hs.155111 Hs.23567	ESTs ESTs	1	1	upregulate stage
	435108	AW975018	Hs.287440	Homo sapiens cDNA FLJ11692 fis, clone HE	i	0.2	upregulate stage
	435136	R27299	Hs.10172	ESTs	8.9	0.07	upregulate stage
	435159	AA668879	Hs.116649	ESTs	1.35	0.25	upregulate stage
65	435162	AI911044	Hs.213893	ESTs	1	1	upregulate stage
	435166	AJ391470	Hs.158618	ESTs	5.5	0.12	upregulate stage
	435212	AW300100	Hs.164185	ESTs	1	1.	upregulate stage
	435237	AJ026836	Hs.114689	ESTS	8.75	0.1	upregulate stage
70	435255	W87434	Hs.106015	ESTs, Moderately similar to ALU1_HUMAN A	3.4	0.14	upregulate stage
70	435256	AF193766	Hs.13872	cytokine-like protein C17	3.2 4.5	0.14 0.12	upregulate stage upregulate stage
	435257	AA677026 AA677696	Hs.191217 Hs.189196	ESTs ESTs	4.5	1	upregulate stage
	435298 435307	W90610	Hs.192003	ESTs	i	0.87	upregulate stage
	435347	AW014873	Hs.116963	EST8	2.45	0.14	upregulate stage
75	435382	N54493		gb:yv40g05.s1 Soares fetal liver splean	1	0.56	upregulate stage
•	435408	H07897	Hs.4302	ESTs	0.84	0.97	upregulate stage
	435491	T98543	Hs.191900	ESTs	1	0.3	upregulate stage

					2.05		
	435525	AI831297	Hs.123310	ESTs	3.25	0.15	upregulate stage
	435597	AW305188	Hs.163027	ESTs	1 0 70	0.57	upregulate stage
	435637	AF220051	Hs.110853	uncharacterized hematopoletic stem/proge	8.76 3.19	0.09 0.25	upregulate stage upregulate stage
5	435647 435738	A1653240 AA699633	Hs.49823 Hs.269543	ESTs ESTs	2.9	0.16	upregulate stage
,	435762	AW043836	Hs.212460	ESTs	1	1	upregulate stage
	435809	H90213	Hs.191330	ESTs	1.25	0.23	upregulate stage
	435826	Al554089	Hs.117880	ESTs	6.55	80.0	upregulate stage
_	435854	AJ278120	Hs.4996	DKFZP564D166 protein	2.76	0.29	upregulate stage
10	435979	W03698	Hs.83513	ESTs, Weakly similar to ALU1_HUMAN ALU S	1	0.25	upregulate stage
	435981	H74319	Hs.188620	ESTs	6.35	0.11	upregulate stage
	435990	AI015862	Hs.131793	ESTs	4.25	0.08	upregulate stage
	435999	AA703271	Hs.269903	ESTs, Moderately similar to ALU1_HUMAN A	1	1	upregulate stage
1.5	436016	AA806465	Hs.121536	ESTs	1.45	0.23	upregulate stage
15	436023	T81819		gb:yd95f05.s1 Soares fetal liver splaen	9.15	0.07	upregulate stage
	436052	Al021983	Hs.271432	ESTs	1 1.9	0.23 0.21	upregulate stage
	436115	AW512033	Hs.102004	ESTs ESTs	1.5	1	upregulate stage upregulate stage
	436118	Al221173	Hs.145080 Hs.119860	ESTs	9.61	0.08	upregulate stage
20	436120 ° 436149	Al248193 Al754308	Hs.159452	ESTs	2.4	0.19	upregulate stage
20	436156	AA705466	Hs.119900	ESTs	1	0.26	upregulate stage
	436170	AW450381	Hs.14529	ESTs	i	0.91	upregulate stage
	436202	AA706315	Hs.192057	ESTs	1	1	upregulate stage
	436246	AW450963	Hs.119991	ESTs	3.85	0.11	upregulate stage
25	436274	AA732755	Hs.120299	ESTs	2.85	0.13	upregulate stage
	436282	R91913	Hs.272104	ESTs	3.95	0.11	upregulate stage
	436299	AK000767	Hs.5111	hypothetical protein FLJ20729	6	0.09	upregulate stage
	436300	AA831601	Hs.275736	ESTs	1	1	upregulate stage
20	436326	BE085236	Hs.181244	major histocompatibility complex, class	2.49	0.28	upregulate stage
30	436360	Al962796	Hs.136754	ESTs	2.4	0.17	upregulate stage
	436363	AA843926	Hs.124434	ESTs	3.35	0.1 0.67	upregulate stage
	436383 436396	BE065178	11- 200112	gb:RC1-BT0314-020200-012-h01 BT0314 Homo	1	0.07	upregulate stage upregulate stage
	436408	A1683487	Hs.299112 Hs.252954	Homo sapiens cDNA FLJ11441 fis, clone HE ESTs	9.1	0.09	upregulate stage
35	436422	AW274577 AA716141	Hs.147027	ESTs	1	0.26	upregulate stage
55	436429	AA357003	Hs.17546	hypothetical protein FLJ23499	i	1	upregulate stage
	436463	H06502	Hs.6656	ESTs	5.45	0.12	upregulate stage
	436476	AA326108	Hs.53631	ESTs, Weakly similar to enhancer-of-spli	7.75	0.07	upregulate stage
	436507	AA721209	Hs.201630	ESTs	2.45	0.18	upregulate stage
40	436518	AA766433	Hs.122864	ESTs	3.15	0.21	upregulate stage
	436522	AA721381	Hs.129876	ESTs	4.75	0.1	upregulate stage
	436578	AI091435	Hs.134859	ESTs	3.4	0.12	upregulate stage
	436670	Al690021	Hs.201536	ESTs	6.85	0.11	upregulate stage
15	436740	AW975133		gb:EST387239 MAGE resequences, MAGN Homo	7.4	0.09	upregulate stage
45	436764	AW976004	Hs.291731	ESTs	1	1	upregulate stage
	436785	AA745597	Hs.291400	ESTs	4.6	0.12	upregulate stage upregulate stage
	436823 436831	AW749865 AA830173	Hs.293645 Hs.291918	ESTs ESTs	1.6	0.12	upregulate stage
	436839	AA767346	Hs.291614	ESTs	1	1	upregulate stage
50	436844	AA766458	Hs.122812	ESTs .	1.5	0.28	upregulate stage
<i>-</i>	436853	BE328074	Hs.148661	ESTs	5.05	0.14	upregulate stage
	436860	H12751	Hs.5327	PRO1914 protein	8.95	0.08	upregulate stage
	436925	AA742327	Hs.292687	ESTs	. 1	1	upregulate stage
	437044	AL035864	Hs.69517	ESTs, Highly similar to differentially e	1.61	0.5	upregulate stage
55	437087	AA745563		gb:ny60e04.s1 NCI_CGAP_Pr18 Homo sapiens	1	1	upregulate stage
	437144	AL049466	Hs.7859	ESTs	1	0.31	upregulate stage
	437170	R49202	Hs.181694	ESTs	8.7	0.08	upregulate stage
	437181	Al306615	Hs.125343	ESTs, Wealdy similar to KIAA0758 protein	4.4	0.05	upregulate stage
60	437207	T27503	Hs.15929	Homo sapiens cDNA FLJ12910 fis, clone NT	1.4	0.22 0.09	upregulate stage
UU	437214	BE092336		gb:IL2-BT0734-240400-072-A12 BT0734 Homo gb:nx85c05.s1 NCI_CGAP_GCB1 Homo sepiens	5.65 1	0.05	upregulate stage upregulate stage
	437240	AA747537 Al283085	Hs.290931	ESTs, Weakly similar to unknown [S.cerev	3.8	0.14	upregulate stage
	437257 437258	AL041243	Hs.174104	ESTS. Weakly strike to disclosur (o.cerev	9.72	0.08	upregulate stage
	437267	AW511443	Hs.258110	ESTs	4.25	0.12	upregulate stage
65	437274	AA747965	1.0.2001.70	gb:nx79a10.s1 NCI_CGAP_Ew1 Homo sapiens	1	0.19	upregulate stage
	437288	AA748182	Hs.160377	ESTs	1	0.61	upregulate stage
	437311	AA370041	Hs.9456	SWI/SNF related, matrix associated, acti	3.1	0.17	upregulate stage
	437324	AL162077		gb:Homo sapiens mRNA; cDNA DKFZp761A219	1	0.25	upregulate stage
70	437330	AL353944	Hs.50115	Homo sapiens mRNA; cDNA DKFZp761J1112 (f	7.95	0.07	upregulate stage
70	437356	8E622396	Hs.284252	Homo sapiens mRNA; cDNA DKFZp76201615 (f	1	1	upregulate stage
	437438	AL359620	Hs.14217	hypothetical protein DKFZp762P2111	9.15	0.09	upregulate stage
	437471	AL390169	ll- 400 40*	gb:Homo sapiens mRNA; cDNA DKFZp547D064	1	1 0 56	upregulate stage
	437553	AI829935	Hs.130497	ESTs, Weakly similar to MAT8_HUMAN CHLOR	1.1 1	0.56 1	upregulate stage upregulate stage
75	437567	AW627990 AW954355	Hs.288954	Homo sapiens cONA: FLJ21466 fis, clone C	10.25	0.06	upregulate stage
13	437575	AA804765	Hs.36529 Hs.132853	ESTs ESTs	10.25	0.77	upregulate stage
	437717 437722	AW292947	Hs.132853	ESTS	9.75	0.05	upregulate stage
	40/144	***************************************	1-0.122012	2010			.p 0 - /4

	107777		11 004004	FOT-	6.7	0.08	upregulate stage
	437752	AA767376 AA767881	Hs.291631 Hs.122897	ESTs ESTs	2.57	0.00	upregulate stage
	437770 437798	AW811767	ns.12209/	gb:RC2-ST0165-300999-011-g02 ST0165 Harno	1	1	upregulate stage
	437799	R51083	Hs.90787	ESTs	i	1	upregulate stage
5	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.77	0.3	upregulate stage
	437886	BE264111	Hs.31314	retinoblastoma-binding protein 7	8.8	0.08	upregulate stage
	437887	AA811524	Hs.29263	Homo sapiens cDNA FLJ 11896 fis, clone HE	3.8 1	0.17 0.69	upregulate stage upregulate stage
	437889	AA830524	Hs.124357	ESTs .	i	0.38	upregulate stage
10	437937 437938	Al917222 Al950087	Hs.121655	gb:vg05c02.x1 NCI_CGAP_Kid12 Homo sapien	1.37	0.52	upregulate stage
10	437983	Al303023	Hs.30211	hypothetical protein FLJ22313	8.82	0.08	upregulate stage
	438011	BE466173	Hs.145696	splicing factor (CC1.3)	9	0.09	upregulate stage
	438032	BE045624	Hs.152992	ESTs	5.65	0.13	upregulate stage
. ~	438069	N80701	Hs.33790	ESTs	3.25	0.13	upregulate stage
15	438077	AA777330	Hs.50429	ESTs	1 3.75	1 0.11	upregulate stage upregulate stage
	438081	H49546	Hs.298964 Hs.137580	ESTs xylulokinase (H. influenzae) homolog	1	1	upregulate stage
	438102 438112	AA777793 W85729	Hs.194279	ESTs	i	0.33	upregulate stage
	438113	Al457908	Hs.8882	ESTs	1.21	0.55	upregulate stage
20	438119	AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	11.75	0.07	upregulate stage
	438144	AA778894	Hs.118364	ESTs	1	1	upregulate stage
	438153	A1268632	Hs.146159	ESTs	1	1	upregulate stage
	438171	AW976507	Hs.293515	ESTs	2.82 1	0.24 1	upregulate stage upregulate stage
25	438271 438290	L21934 AA843719	Hs.14553 Hs.122341	sterol O-acyltransferase (acyl-Coenzyme ESTs	3.9	0.13	upregulate stage
23	438321	AA576635	Hs.6153	CGI-48 protein	9.4	0.08	upregulate stage
	438325	AA804258	Hs.123229	ESTs	4.65	0.11	upregulate stage
	438334	AA806992	Hs.291686	ESTs	1	1	upregulate stage
••	438366	AA805760		gb:ns43f01.s1 NCI_CGAP_GCB1 Homo sapiens	1	0.34	upregulate stage
30	438370	AA843242	Hs.48523	ESTs	4	0.14 0.84	upregulate stage
	438374	AA321866	Hs.6193	Homo sapiens mRNA; cDNA DKFZp434C1717 (f	1	0.04	upregulate stage upregulate stage
	438377 438378	AA806070 AW970529	Hs.291716 Hs.86434	ESTs Homo sapiens cDNA: FLJ21816 fis, clone H	6,65	0.11	upregulate stage
	438401	AL046321	Hs.197484	ESTs	1	1	upregulate stage
35	438403	AA806607	Hs.292206	ESTs	2.75	0.14	upregulate stage
	438412	AA806776	Hs.130814	ESTs	1	1	upregulate stage
	438448	AA807344	Hs.172932	Homo sapiens mRNA for partial 3'UTR, seq	1	0.34	upregulate stage
	438451	AJ081972	Hs.220261	ESTs	5.7 1	0.09 1	upregulate stage upregulate stage
40	438473	H07986	Hs.136901 Hs.88820	ESTs HDCMC28P protein	i	0.21	upregulate stage
40	438487 438529	A1684733 AW007287	Hs.28538	Homo sagiens cDNA: FLJ21086 fis, clone C	i	0.36	upregulate stage
	438534	AW204052	Hs.123644	ESTs	1	0.37	upregulate stage
	438693	AA814360	Hs.249595	ESTs	3.55	0.15	upregulate stage
4.5	438698	AW297855	Hs.125815	ESTs	3.12	0.22	upregulate stage
45	438728	AA815202	Hs.25657	ESTs	1 1.5	0.67 0.35	upregulate stage upregulate stage
	438746	A1885815	Hs.184727	ESTs ESTs	9.35	0.07	upregulate stage
	438805 438812	AA826048 AA826199	Hs.117887 Hs.44287	ESTS ESTS	1	0.57	upregulate stage
	438817	AI023799	Hs.163242	ESTs	4.2	0.08	upregulate stage
50	438886	AA827728	Hs.128705	ESTs, Weakly similar to AF149422 2 unkno	4.05	0.12	upregulate stage
	438913	A1380429	Hs.172445	ESTs	5.4	0.11	upregulate stage
	438950	H23789	Hs.144530	ESTs	1	1	upregulate stage
	438961	H42135	Hs.101848	ESTs gb:Homo sapiens full length insert cDNA	7.85 1	0.08 0.83	upregulate stage upregulate stage
55	438990 439026	AF085890 R98978	Hs.117767	ESTs	i	0.27	upregulate stage
55	439052	AF085917	Hs.37921	ESTs	i	0.22	upregulate stage
	439057	H59623	Hs.271561	ESTs	1	1	upregulate stage
	439176	A1446444	Hs.190394	ESTs	5.8	0.12	upregulate stage
60	439179	AA831250	Hs.292693	ESTs	1	1	upregulate stage
60	439183	AW970600	11 400050	gb:EST382681 MAGE resequences, MAGK Homo	4.5 11.9	0.13 0.06	upregulate stage upregulate stage
	439208	AK000299	Hs.180952 Hs.134877	dynactin p62 subunit ESTs	11.4	0.07	upregulate stage
	439212 439223	AF087995 AW238299	Hs.23945	ESTs	2.79	0.26	upregulate stage
	439312		Hs.270745	ESTs	8.9	80.0	upregulate stage
65	439330	AF086147		gb:Homo sapiens full length insert cDNA	1	0.19	upregulate stage
	439351	W37688	Hs.55158	ESTs, Weakly similar to weak similarity	1	0.31	upregulate stage
	439430	AF124250	Hs.6564	breast cancer anti-estrogen resistance 3	3.9	0.15	upregulate stage upregulate stage
	439444	AI277652	Hs.54578	ESTs thyroid hormone receptor interactor 13	11 12.21	0.07 0.05	upregulate stage
70	439453	BE264974 AA836340	Hs.6566 Hs.165490	ESTs	1	0.65	upregulate stage
70	439476 439492	AF086310	Hs.103159	ESTs	5.43	0.1	upregulate stage
	439527	AW298119	Hs.202536	ESTs	5.25	0.1	upregulate stage
	439550			gb:ym08d10.s1 Soares infant brain 1NIB H	3.2	0.18	upregulate stage
75	439560	BE565647	Hs.74899	hypothetical protein FLJ12820	1.81	0.32	upregulate stage
75	439565	AF086386	Hs.145599	ESTs	8.96 1	0.07 1	upregulate stage upregulate stage
	439592		Hs.58399	ESTs ESTs	9.15	0.09	upregulate stage
	439605	AF086431	Hs.134805	Lois	J. 13	4.55	-h9

	439606	W79123	Hs.58561	ESTs, Wealdy similar to Ki01_HUMAN PROBA	8.45	0.06	upregulate stage
	439750	AL359053	Hs.57664	Homo sapiens mRNA full length Insert cDN	5.43	0.14	upregulate stage
	439780	AL109688		gb:Homo sapiens mRNA full length insert	5	0.09	upregulate stage
-	439851	AJ149520	Hs.144453	ESTs	2.75	0.21	upregulate stage
5	439862	Al571647	Hs.146170	hypothetical protein FLJ22969	6.3	0.11	upregulate stage
	439926	AW014875	Hs.137007	ESTs	33.5 9.9	0.02 0.08	upregulate stage upregulate stage
	439942 439963	AW993791 AW247529	Hs.94881 Hs.6793	ESTs platelet-activating factor acetylhydrola	5.59	0.08	upregulate stage
	439979	AW600291	Hs.6823	hypothetical protein FLJ10430	6.95	0.07	upregulate stage
10	439987	AA860116	Hs.223232	ESTs	2.45	0.17	upregulate stage
••	439999	AA115811	Hs.6838	ras homolog gene family, member E	8.75	0.07	upregulate stage
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	1.68	0.41	upregulate slage
	440012	AA861072		gb:ak32e05.s1 Soares_testis_NHT Homo sap	1	1	upregulate stage
15	440126	AA975145	Hs.66194	ESTs	1	1	upregulate stage
15	440194 440228	R43809 AF125392	Hs.22688 Hs.7089	ESTs insulin induced protein 2	i	i	upregulate stage upregulate stage
	440249	Al246590	Hs.125325	ESTs	1.74	0.44	upregulate stage
	440284	AA912032	Hs.181059	ESTs	1	1	upregulate stage
	440334	BE276112	Hs.7165	zinc finger protein 259	9.45	0.09	upregulate stage
20	440348	AW015802	Hs.47023	ESTs	1	0.33	upregulate stage
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.75	0.16	upregulate stage
	440366	F08229	Hs.125273	ESTs	3.5 1.54	0.12 0.52	upregulate stage upregulate stage
	440462 440527	T71629 AV657117	Hs.100554 Hs.184164	ESTs ESTs	3.75	0.14	upregulate stage
25	440527	Al733034	Hs.137079	ESTs	3.9	0.11	upregulate stage
23	440705	AA904244	Hs.153205	ESTs	3.9	0.14	upregulate stage
	440856	AW993377	Hs.130390	ESTs	8.95	0.09	upregulate stage
	440899	AW449445	Hs.172690	diacylglycerol kinase, alpha (80kD)	2.55	0.2	upregulate stage
20	440917	AA909651	Hs.160025	ESTs	1_	0.17	upregulate stage
30	440980	AL042005	Hs.1117	tripeptidyi peptidase il	8.9	0.09	upregulate stage
	440994	Al160011 .	Hs.193341	ESTs	1.29 4.9	0.58 0.11	upregulate stage
	441092	T99289	Hs.126556 Hs.190520	EST ESTs	4.9 5.9	0.09	upregulate stage upregulate stage
	441107 441131	AA917075 Al733222	Hs.126632	ESTs	9.55	0.09	upregulate stage
35	441143	Al027604	Hs.159650	ESTs	3.8	0.13	upregulate stage
-	441205	AW137827	Hs.176904	ESTs	4.75	0.12	upregulate stage
	441206	BE552314	Hs.131823	ESTs, Wealtly similar to TERA HUMAN [H.sa	1	1	upregulate stage
	441264	AA927170	Hs.23290	ESTs	4.3	0.14	upregulate stage
40	441318	Al078234	Hs.176130	ESTs	1.74	0.45	upregulate stage
40	441334	A1700529	Hs.117964	ESTS	1	1	upregulate stage
	441346	AA931077	Hs.186889	Homo sapiens cDNA FLJ12021 fis, clone HE ESTs	1 4.5	0.1	upregulate stage upregulate stage
	441378 441383	AA931826 AW294408	Hs.126846 Hs.222068	ESTS	1	1	upregulate stage
	441421	AA356792	Hs.301786	ESTs	i	0.24	. upregulate stage
45	441470	BE503874	Hs.301986	ESTs	0.63	0.93	upregulate stage
	441474	AW274946	Hs.144476	ESTs	1	1	upregulate stage
	441484	AA935481	Hs.58972	ESTs	1	0.33	upregulate stage
	441485	A)792988	Hs.189133	ESTs	4.25	0.1 1	upregulate stage upregulate stage
50	441508	AW015203 AW578981	Hs.232237 Hs.52184	ESTs hypothetical protein FLJ20618	1 4.05	0.12	upregulate stage
50	441562 441599	AW473362	Hs.127221	ESTs	1	0.29	upregulate stage
	441612	Al802629	Hs.113660	Homo sapiens cDNA FLJ11631 fis, clone HE	8.75	0.08	upregulate stage
	441616	BE569122	Hs.74111	RNA-binding protein (autoantigenic)	1.14	0.71	upregulate stage
	441643	A1740504	Hs.205128	ESTs	1	0.33	upregulate stage
55	441677	AW271702	Hs.93739	ESTs	1	0.28	upregulate stage
	441693	AA384673	Hs.7943	RPB5-mediating protein	1	0.43	upregulate stage
	441703	AW390054	Hs.192843	ESTs	9.85 4.6	0.08 0.14	upregulate stage upregulate stage
	441732 441759	AW298818 C16126	Hs.127341 Hs.161377	ESTs ESTs	4.55	0.13	upregulate stage
60	441762	AW592203	Hs.144769	ESTS	1	0.83	upregulate stage
00	441790	AW294909	Hs.132208	ESTs	9	0.08	upregulate stage
	441794	AW197794	Hs.253338	ESTs	4.5	0.12	upregulate stage
	441799	AW292276	Hs.127872	ESTs .	1	0.22	upregulate stage
65	441801	AW242799	Hs.211874	ESTs	8	0.06	upregulate stage
65	441904	AI633206	Hs.128104	ESTs ·	2 0.87	0.19 0.96	upregulate stage upregulate stage
	441955	AA972327 AA306207	Hs.142903 Hs.286241	ESTs Homo sagiens cDNA: FLJ22698 fis, clone H	9.17	0.90	upregulate stage
	441989 441990	T66139	Hs.113631	ESTs	3.55	0.12	upregulate stage
	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	4.65	0.14	upregulate stage
70	442030	W67167	Hs.109080	ESTs	1	0.35	upregulate stage
	442064	A1422867	Hs.88594	ESTs	8.8	0.08	upregulate stage
	442071	BE048433	Hs.276043	ESTs	9.15	0.09	upregulate stage
	442093	AA976049	Hs.128464	ESTs	1	1	upregulate stage
75	442194	AA984389	Hs.205088	ESTS	1 9.9	0.83 0.08	upregulate stage upregulate stage
75	442202 442203	8E272862 Al921423	Hs.106534 Hs.250146	Homo sapiens cDNA: FLJ22625 fis, clone H ESTs	9.9 1	1	upregulate stage
	442214	AI681733	Hs.129003	ESTS	2.2	0.26	upregulate stage
	776417						

					_		
	442216	A1733468	Hs.129006	ESTs	1	1	upregulate stage
	442295	A1827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	1.49	0.31	upregulate stage
	442319	BE048144	Hs.177677	CGI-102 protein	1	0.29	upregulate stage
~	442432	BE093589	Hs.38178	Homo sapiens cDNA: FLJ23468 fis, clone H	22.95	0.03	upregulate stage
5	442510	AF150179	Hs.249890	ESTs .	1	0.63	upregulate stage
	442518	AF150226		gb:AF150226 Human mRNA from cd34+ stem c	1	1	upregulate stage
	442539	AL119506	Hs.58220	Homo saplens cDNA: FLJ23005 fis, clone L	1	0.23	upregulate stage
	442552	R20624	Hs.83572	son of sevenless (Drosophila) homolog 1	9	0.08	upregulate stage
1.0	442562	BE379584	Hs.34789	ESTs	6.55	0.1	upregulate stage
10	442564	Al590207	Hs.188378	EST ₅	1	1	upregulate stage
	442577	AA292998	Hs.163900	ESTs	1.41	0.52	upregulate stage
	442590	Al002686	Hs.130313	ESTs	1	0.36	upregulate stage
	442597	AI499214	Hs.130825	EST ₆	1	1	upregulate stage
	442611	BE077155	Hs.177537	EST ₈	4.35	0.15	upregulate stage
15	442612	A1005233	Hs.130631	ESTs	1	0.28	upregulate stage
	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	7.85	0.09	upregulate stage
	442642	R51853	Hs.226429	ESTs	1.	1	upregulate stage
	442660	AW138174	Hs.130651	ESTs	4.1	0.09	upregulate stage
20	442696	BE566962	Hs.7063	Homo sapiens cDNA: FLJ20913 fis, clone A	2.65	0.16	upregulate stage
20	442712	BE465168	Hs.131011	ESTs	2.51	0.23	upregulate stage
	442760	BE075297	Hs.10067	ESTs, Weakly similar to KIAA1205 protein	8	0.1	upregulate stage
	442769	AW243058	Hs.131155	ESTs	1	0.3	upregulate stage
	442785	AW296625	Hs.131188	ESTs	1	0.27	upregulate stage
25	442806	AW294522	Hs.149991	ESTs	9.6	80.0	upregulate stage
25	442856	H56735	Hs.282958	Homo sapiens cDNA FLJ13611 fls, clone PL	4.3	0.11	upregulate stage
	442861	AA243837	Hs.57787	ESTs	3.9	0.12	upregulate stage
	442875	BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA sequ	3.85	0.15	upregulate stage
	442879	AF032922	Hs.8813	syntaxin binding protein 3	3.95	0.14	upregulate stage
20	442883	AW195774	Hs.253199	ESTs	1	1	upregulate stage
30	442961	BE614474	Hs.289074	Homo sapiens cDNA FLJ13986 fis, clone Y7	11.55	0.07	upregulate stage
	442966	Al394036	Hs.132237	ESTs, Weakly similar to dual specificity	2.95	0.16	upregulate stage
	442980	AA857025	Hs.8878	kinesin-like 1	1.	0.24	upregulate stage
	442992	Al914699	Hs.13297	ESTs	6.1	0.14	upregulate stage
25	442994	Al026718	Hs.16954	ESTs	8.9	0.07	upregulate stage
35	443054	Al745185	Hs.8939	yes-associated protein 65 kDa	5.7	0.11	upregulate stage
	443113	AI040686	Hs.132908	ESTs	3.9	0.14	upregulate stage
	443119	AA312264	Hs.7980	ESTs, Moderately similar to ALU4_HUMAN A	8.73	0.08	upregulate stage
	443171	BE281128	Hs.9030	TONDU	3.18	0.22	upregulate stage
40	443211	Al128388	Hs.143655	ESTs	6.55	0.08	upregulate stage
40	443242	BE243910	Hs.9082	nucleoporin p54	11.05	0.06	upregulate stage
	443243	Al452496	Hs.132056	ESTs	8.9	0.09	upregulate stage
	443247	BE614387	Hs.47378	ESTs, Moderately similar to hypothetical	10.95	0.05	upregulate stage
	443270	NM_004272	Hs.9192	Homer, neuronal immediate early gene, 18	3.75	0.2	upregulate stage
15	443299	AI733642	Hs.133042	ESTs	1	0.69	upregulate stage
45	443362	AI053464	Hs.166505	ESTs	2.9	0.16	upregulate stage
	443383	Al792453	Hs.166507	ESTs	5	0.14	upregulate stage
	443411	AW134566	Hs.65320	ESTs	1	0.59	upregulate stage
	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	2.68	0.31	upregulate stage
50	443447	AI094222	Hs.166572	ESTs	1	0.38	upregulate stage
50	443542	A1927065	Hs.146040	ESTs	5.65	0.13	upregulate stage
	443557	AV645987	Hs.145681	ESTs	1	1	upregulate stage
	443584	A1807036	Hs.101619	ESTs	1	0.36	upregulate stage
	443606	A1078664	Hs.199424	ESTs	1.15	0.33	upregulate stage
E E	443634	H73972	Hs.134460	ESTs	3.05	0.16	upregulate stage
55	443640	AI872643	Hs.134218	ESTs	3.65	0.12	upregulate stage
	443715	Al583187	Hs.9700	cyclin E1	5.65	0.11	upregulate stage
	443799	AA150320	Hs.9800	protein kinase Njmu-R1	1.8	0.19	upregulate stage
	443899	AW842283	Hs.79933	cyclin I	4.65	0.13	upregulate stage
60	443917	AW503739	Hs.72325	Human DNA sequence from clone RP1-187J11	1	1.	upregulate stage
60	443919	AJ091284	Hs.135224	ESTs	8.05	0.07	upregulate stage
	443967	AW294013	Hs.200942	ESTs	5.55	0.13	upregulate stage
	443977	AL120986	Hs.150627	ESTs	4	0.14	upregulate stage
	443979	AV647366	Hs.282365	ESTs	1	1	upregulate stage
65	444020	R92962	Hs.35052	ESTs	10.45	0.08	upregulate stage
65	444105	AW189097	Hs.166597	ESTs	6.29	0.1	upregulate stage
	444129	AW294292	Hs.256212	ESTs	1	0.77	upregulate stage
	444152	Al125694	Hs.149305	Homo saplens cDNA FLJ14264 fis, clone PL	1.64	0.48	upregulate stage
	444163	Al126098	11 000000	gb:qc54g07.x1 Soares_placenta_8to9weeks_	1.12	0.81	upregulate stage
70	444166	AV648429	Hs.282393	ESTs	1	1	upregulate stage
70	444270	A1138580	Hs.255220	EST	1	0.47	upregulate stage
	444271	AW452569	Hs.149804	ESTs	3.2	0.12	upregulate stage
	444282	Al138955	11- 055564	gb:qd79b07.x1 Soares_testis_NHT Homo sap	1	1	upregulate stage
	444333	AI262567	Hs.253801	trinucleolide repeat containing 15	1	0.77	upregulate stage
75	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane	6.9	0.06	upregulate stage
75	444378	R41339	Hs.12569	ESTs	1	0.32	upregulate stage
	444381	BE387335	Hs.283713	ESTs, Weakly similar to CA54_HUMAN COLLA	2.85	0.26	upregulate stage
	444431	AW513324	Hs.42280	ESTs	6.27	0.12	upregulate stage

	444437	Al377961	Hs.44041	ESTs	9.9	0.07	upregulate stage
	444444	AJ149332	Hs.14855	ESTs	1.16	0.47	upregulate stage
	444525	AW593778	Hs.259699	ESTs	1	0.5	upregulate stage
_	444584	AI168422		gb:ok30e11.x1 Soares_NSF_F8_9W_OT_PA_P_S	3.6	0.15	upregulate stage
5	444599	Al174377	Hs.143796	ESTS	1	0.44	upregulate stage
	444646	Al184565		gb:qd60b08.x1 Soares_testis_NHT Homo sap	1	1	upregulate stage
	444649	AW207523	Hs.197628	ESTs	9.35	0.06	upregulate stage
	444675	Al186380	Hs.244621	ESTs	9.88	0.08	upregulate stage
10	444698	Al188139	Hs.147050	ESTs	1 2.1	0.36 0.15	upregulate stage upregulate stage
10	444743	AA045648	Hs.11817	nudix (nucleoside diphosphate linked mol	3.9	0.15	upregulate stage
	444762	AI733700	Hs.143883	CSI control materials respected and	1.44	0.53	upregulate stage
	444781 444783	NM_014400 AK001468	Hs.11950	GPI-anchored metastasis-associated prote anillin (Drosophila Scraps homolog), act	6.65	0.07	upregulate stage
	444838		Hs.62180 Hs.208558	ESTs	4.84	0.14	upregulate stage
15	444849	AV651680 Al199438	Hs.148480	ESTs	3.05	0.17	upregulate stage
15	444950	Al950256	Hs.224875	ESTs	1	0.51	upregulate stage
	445027	AV652692	Hs.282498	ESTs	11.1	0.08	upregulate stage
	445091	AI652154	Hs.147294	ESTs	1	1	upregulate stage
	445098	AL050272	Hs.12305	DKFZP566B183 protein	9.75	0.07	upregulate stage
20	445101	T75202	Hs.12314	Homo sapiens mRNA; cDNA DKFZp586C1019 (f	10.9	0.07	upregulate stage
	445250	AI597838	Hs.175621	ESTs	9.8	80.0	upregulate stage
	445258	AI635931	Hs.147613	ESTs	3.05	0.13	upregulate stage
	445390	Al222165	Hs.144923	ESTs	10.6	0.06	upregulate stage
	445396	BE181792		gb:QV1-HT0639-070500-193-g06 HT0639 Homo	1	0.29	upregulate stage
25	445413	AA151342	Hs.12677	CGI-147 protein	4.65	0.12	upregulate stage
	445436	Al224105	Hs.151408	ESTs	1.35	0.22	upregulate stage
	445444	AA380876	Hs.270	pleckstrin homology, Sec7 and coiled/coi	10.7	0.07	upregulate stage
	445483	Al307150	Hs.148845	ESTs	1	1	upregulate stage
	445495	AB007860	Hs.12802	development and differentiation enhancin	12.05	0.06	upregulate stage
30	445525	BE149866	Hs.14831	ESTs	10.65	0.06	upregulate stage
	445527	W39694	Hs.83286	ESTs	4.85	0.1	upregulate stage
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	9.7	0.06	upregulate stage
	445546	AW468821	Hs.156054	ESTs	4.2	0.13	upregulate stage
25	445576	Al793233	Hs.145608	ESTs	1	0.31	upregulate stage
35	445623	Al245366	Hs.149158	ESTs	1.	1	upregulate stage
	445640	AW969626	Hs.31704	ESTs, Weakly similar to KIAA0227 [H.sapi	4.7	0.13	upregulate stage
	445668	Al557114	Hs.181591	EST	1	0.34	upregulate stage upregulate stage
	445766	AJ623607	Hs.282977	Homo sapiens cDNA FLJ13490 fis, clone PL	1	0.23	
40	445770	AL119499	Hs.13285	neuronal potassium channel alpha subunit	1 9.7	1 0.07	upregulate stage upregulate stage
40	445778	AA196443	Hs.86043	Homo sapiens cDNA FLJ13558 fis, clone PL	3.1	0.07	upregulate stage
	445787	Al253167	Hs.145395	ESTs, Weakly similar to ALUC_HUMAN IIII	1	1	upregulate stage
	445814	H92020	Hs.101624	ESTs	i	i	upregulate stage
	445818 445829	BE045321	Hs.136017 Hs.145526	ESTs ESTs	i	0.37	upregulate stage
45	445832	A1452457 A1261545	NS. 140020	gb:qz30a07.x1 NCI_CGAP_Kid11 Homo sapien	3.21	0.22	upregulate stage
73	445873	AA250970	Hs.251946	Homo sapiens cDNA: FLJ23107 fis, clone L	5.25	0.12	upregulate stage
	445880	AV655474	Hs.131058	ESTs	1.05	0.27	upregulate stage
	445883	AF070559	Hs.13413	Homo sapiens clone 24463 mRNA sequence	1	1	upregulate stage
	445908	R13580	Hs.13436	Homo sapiens clone 24425 mRNA sequence	3.25	0.15	upregulate stage
50	445939	BE018658	Hs.141003	Homo sapiens cDNA: FLJ21691 fis, clone C	8.85	0.08	upregulate stage
	446019	A1362520	Hs.94133	ESTs	9.75	0.08	upregulate stage
	446054	AB014537	Hs.13604	KIAA0637 gene product	10.25	0.07	upregulate stage
	446062	AA211738	Hs.282974	ESTs, Weakly similar to transformation-r	1	1	upregulate stage
	446080	Al221741	Hs.117777	ESTs	9.75	0.09	upregulate stage
55	446082	Al274139	Hs.156452	ESTs	1.37	0.4	upregulate stage
	446099	T93096	Hs.17126	ESTs	2.4	0.31	upregulate stage
	446119	D29527		gb:HUMNK667 Human epidermal keratinocyte	1	1	upregulate stage
	446120	N26080	Hs.43741	ESTs	1	0.31	upregulate stage
CO	446126	AW085909	Hs.47413	ESTs	9.35	0.08	upregulate stage
60	446127	AA333608	Hs.13980	ubiquitously transcribed tetratricopepti	1	0.25	upregulate stage
	446152	AJ292036	Hs.150028	ESTs	4.7	0.12	upregulate stage upregulate stage
	446196	A1744888	Hs.149470	ESTs	1	0.83	
	446229	A1744964	Hs.14449	KIAA1609 protein	2.4 1	0.36 1	upregulate stage upregulate stage
65	446248	AJ283014	Hs.149638	ESTs hypothetical protein FLJ10540	10.85	0.07	upregulate stage
U.J	446269	AW263155 X77244	Hs.14559	malic enzyme 1, NADP(+)-dependent, cytos	10.65	1	upregulate stage
	446303		Hs.14732	gb:QV1-BT0681-290400-181-h05 BT0681 Homo	11.75	0.06	upregulate stage
	446312		Hs.14838	hypothetical protein FLJ10773	6.45	0.00	upregulate stage
	446332 446356	AK001635 Al816736	Hs.14896	DHHC1 protein	8.9	0.08	upregulate stage
70	446362	AW612481	Hs.255914	ESTs	7.6	0.00	upregulate stage
70	446398	AV012401 Al681317	Hs.150074	ESTs	1	1	upregulate stage
	446411	A1298828	Hs.153439	ESTs	i	0.37	upregulate stage
	446474	Al301227	Hs.150186	ESTs	3.35	0.13	upregulate stage
	446501	Al302616	Hs.150819	ESTs	4.25	0.12	upregulate stage
75	446507	AA352554	Hs.15164	nuclear DNA-binding protein	11.25	0.06	upregulate stage
. –	446526	H89616	Hs.296290	Homo sapiens cDNA FLJ13357 fis, clone PL	10.25	0.07	upregulate stage
	446555	AV659046	Hs.201847	ESTs	1	1	upregulate stage

	446577	AB040933	Hs.15420	KIAA 1500 protein	1	0.51	upregulate stage
	446629	A1436046	Hs.156148	Homo sapiens cDNA: FLJ23082 fis, clone L	1	0.25	upregulate stage
	446636	AC002563	Hs.15767	citron (rho-Interacting, serine/threonin	2.54	0.28	upregulate stage
	446682	AW205632	Hs.211198	ESTs	4	0.18	upregulate stage
5					1.32	0.69	upregulate stage
,	446701	AK001621	Hs.15921	hypothetical protein FLJ10759	1	1	
	446718	AV660019	Hs.282676	ESTs			upregulate stage
	445719	W39500	Hs.47305	ESTs, Weakly similar to LONN_HUMAN MITOC	9.65	0.07	upregulate stage
	446720	AI439136	Hs.140546	ESTs	4.55	0.12	upregulate stage
_	446765	AV660348	Hs.282688	ESTs	1	0.91	upregulate stage
10	446771	AA128965	Hs.60679	TATA box binding protein (TBP)-associate	11.2	0.06	upregulate stage
	446821	W03766	Hs.301482	ESTs	8.9	0.09	upregulate stage
	446830	BE179030	Hs.64239	Human DNA sequence from clone RP5-1174N9	10.65	0.07	upregulate stage
					14.05	0.05	upregulate stage
	446839	BE091926	Hs. 16244	mitotic spindle coiled-coil related prot			
1.5	446853	AV660630	Hs.87627	disrupter of silencing 10	9.7	0.09	upregulate stage
15	446880	Al811807	Hs.108646	Homo sapiens cDNA FLJ12534 fis, clone NT	11.05	0.06	upregulate stage
	446922	BE175605		gb:RC5-HT0580-100500-022-H07 HT0580 Homo	2.75	0.16	upregulate stage
	446950	AA305800	Hs.293454	ESTs, Weakly similar to Similarity to Ye	9.6	0.06	upregulate stage
	446988	AW339533	Hs.272108	ESTs	1	0.29	upregulate stage
	446989	AK001898	Hs.16740	hypothetical protein FLJ11036	1.75	0.51	upregulate stage
20	447052	AV661911	Hs.282735	ESTs	1	1	upregulate stage
20				ESTs	i	0.25	upregulate stage
	447065	Al829014	Hs.158678		i	0.4	upregulate stage
	447069	Al359927	Hs.157722	ESTs			
	447078	AW885727	Hs.301570	ESTs	4.4	0.13	upregulate stage
~ ~	447080	Al418781	Hs.300144	ESTs	1	0.31	upregulate stage
25	447081	Y13896	Hs.17287	potassium inwardly-rectifying channel, s	3.55	0.12	upregulate stage
	447118	AB014599	Hs.17411	KIAA0699 protein	10.15	0.07	upregulate stage
	447153	AA805202	Hs.173912	eukaryotic translation initiation factor	6.2	0.12	upregulate stage
	447154	H52284	Hs.293545	ESTs	1	0.24	upregulate stage
	447159	Al685286	Hs.280386	EST	1.25	0.25	upregulate stage
30					2.4	0.16	upregulate stage
30	447215	BE617056	Hs.283000	ESTs			
	447228	AW192200	Hs.158188	ESTs	1	0.29	upregulate stage
	447258	BE047911		gb:tz44a05.y1 NCI_CGAP_Brn52 Homo saplen	1.15	0.23	upregulate stage
	447286	AW197097	Hs.183858	transcriptional intermediary factor 1	1	1	upregulate stage
	447289	AW247017	Hs.36978	melanoma antigen, family A, 3	1	1	upregulate stage
35	447334	AA515032	Hs.91109	ESTs	9.15	0.08	upregulate stage
	447342	Al199268	Hs.19322	ESTs	5.95	0.09	upregulate stage
	447343	AA256641	Hs.236894	ESTs, Highly similar to LRP1_HUMAN LOW-D	2.11	0.33	upregulate stage
	447376	Al376747	113.200054	gb:tc35h05.x1 Soares_total_fetus_Nb2HF8_	1	0.33	upregulate stage
			Un 10442	E-1 enzyme	5.3	0.14	upregulate stage
40	447397	BE247676	Hs.18442	*	3.65	0.13	upregulate stage
40	447430	Al742989	Hs.206112	ESTs			
	447444	AK000318	Hs.18616	hypothetical protein FLJ20311	9.2	0.08	upregulate stage
	447519	U46258	Hs.23448	ESTs	14.4	0.05	upregulate stage
	447522	BE143888		gb:MRO-HT0165-081199-001-b04 HT0165 Homo	1.7	0.18	upregulate stage
	447578	AA912347	Hs.136585	ESTs	1.5	0.3	upregulate stage
45	447606	A1588954	Hs.170995	ESTs	2.7	0.16	upregulate stage
	447688	N87079	Hs.19236	NADH dehydrogenase (ubiquinone) 1 beta s	4.55	0.12	upregulate stage
	447701	BE619526	Hs.255527	ESTs, Weakly similar to unnamed protein	1.63	0.46	upregulate stage
		AI421737	Hs.167253	ESTs	1	1	upregulate stage
	447741				3.9	0.11	upregulate stage
50	447748	Al422023	Hs.161338	ESTs	1.44	0.59	upregulate stage
50	447827	U73727	Hs.19718	protein tyrosine phosphatase, receptor t			
	447881	BE620886	Hs.23037	ESTs	12.15	0.06	upregulate stage
	447963	Al452973	Hs.165900	ESTs, Weakly similar to ALUC_HUMAN !!!!	8.9	0.08	upregulate stage
	447977	A1457097	Hs.255906	ESTs	1	1	upregulate stage
	447978	A1457098	Hs.280848	ESTs	1	1	upregulate stage
55	447982	H22953	Hs.137551	ESTs	4.25	0.13	upregulate stage
	448032	AW511770	Hs.246868	ESTs	1	1	upregulate stage
•	448045	AJ297436	Hs.20166	prostate stem cell antigen	2.22	0.29	upregulate stage
	448058	Al458998	Hs.170424	ESTs	1	0.51	upregulate stage
	448062	AW295923	Hs.255472	ESTs	5.9	0.08	upregulate stage
60	448138	AW847925	Hs.170736	ESTs	1	1	upregulate stage
00					9.85	0.07	upregulate stage
	448154	AL120320	Hs.203230	ESTs III			
	448165	NM_005591	Hs.202379	meiotic recombination (S. cerevisiae) 11	7.3	0.09	upregulate stage
	448168	AW605999	Hs.22549	hypothetical protein FLJ12799	1	0.77	upregulate stage
	448236	AA890449	Hs.20766	oxysterol 7alpha-hydroxylase	1	0.47	upregulate stage
65	448256	BE614149	Hs.20814	CGI-27 protein	11.95	0.07	upregulate stage
	448289	AW390251	Hs.202402	ESTs	1	0.47	upregulate stage
	448356	AL120837	Hs.20993	high-glucose-regulated protein 8	11	0.07	upregulate stage
	448357	N20169	Hs.108923	ESTs	1.34	0.61	upregulate stage
	448408	AA322866	Hs.21107	neuroligin	1.7	0.24	upregulate stage
70		AI252625	Hs.269860	ESTs	8.8	0.09	upregulate stage
70	448455				1	0.03	upregulate stage
	448459	AW069838	Hs.171055	ESTs			
	448464	AI522053	Hs.196093	ESTs	10.35	0.06	upregulate stage
	448468	BE550361	Hs.171072	ESTs	1	1	upregulate stage
~~	448502	AW805285	Hs.239699	ESTs	9.3	0.08	upregulate stage
75	448552	AW973653	Hs.20104	hypothetical protein FLJ00052	4.75	0.13	upregulate stage
	448556	AW885606	Hs.5064	ESTs	9.8	0.08	upregulate stage
	448569	BE382657	Hs.21486	signal transducer and activator of trans	2.14	0.35	upregulate stage
				-			

	448632	BE614269		gb:601504311T1 NIH_MGC_71 Homo sapiens c	1	1	upregulate stage
	448643	Al557531		gb:pt2.1-06.D06.r tumor2 Homo saplens cD	3.6	0.14	upregulate stage
	448649	T94590	Hs.222855	ESTs	1.95	0.21	upregulate stage
_	448663	BE614599	Hs.106823	H.sapiens gene from PAC 42616, similar t	4.3	0.12	upregulate stage
5	448680	AW245890	Hs.21753	JM5 protein	0.97 2.6	0.93 0.19	upregulate stage upregulate stage
	448725 448729	AA193251 BE614535	Hs.40289 Hs.138580	ESTs ESTs, Weakly similar to ALU5_HUMAN ALU S	3.25	0.19	upregulate stage
	448743	AB032962	Hs.21896	KIAA1136 protein	1.9	0.19	upregulate stage
	448826	AI580252	Hs.293246	ESTs, Weakly similar to putative p150 [H	1.78	0.44	upregulate stage
10	448914	A1927656	Hs.196459	ESTs	2.75	0.19	upregulate stage
	448946	AI652855	Hs.155796	ESTs	9.7	0.07	upregulate stage
	448958 448974	AB020651 AL049390	Hs.22653 Hs.22689	KIAA0844 protein Homo sapiens mRNA; cDNA DKFZp586O1318 (f	1 5,85	0.18 0.11	upregulate stage upregulate stage
	448979	Al611378	Hs.192610	ESTs	1	1	upregulate stage
15	449008	AW578003	Hs.22826	tropomodulin 3 (ubiquitous)	5.2	0.11	upregulate stage
	449032	AA045573	Hs.22900	nuclear factor (erythrold-derived 2)-lik	1	0.33	upregulate stage
	449053	A1625777	Hs.270344	ESTs	5.73	0.12	upregulate stage
	449057 449148	AB037784 AW836677	Hs.22941 Hs.287564	KIAA1363 protein Homo sapiens cDNA FLJ13345 fis, clone OV	9.25 7.2	0.07 0.09	upregulate stage upregulate stage
20	449203	Al634578	Hs.282121	ESTs	7	0.00	upregulate stage
	449207	AL044222	Hs.23255	nucleoporin 155kD	2.34	0.36	upregulate stage
	449219	Al637581	Hs.195012	ESTs	1	1	upregulate stage
	449230	BE613348	Hs.23348	S-phase kinase-associated protein 2 (p45	3.08	0.25	upregulate stage
25	449246 449318	AW411209 AW236021	Hs.23363 Hs.108788	hypothetical protein FLJ10983 ESTs, Weakly similar to zeste [D.melanog	4.79 2.8	0.16 0.16	upregulate stage upregulate stage
23	449328	AI962493	Hs.197647	ESTs	2.55	0.17	upregulate stage
	449343	Al151418	Hs.272458	protein phosphatase 3 (formerly 2B), cat	4.75	0.12	upregulate stage
	449344	A1640355		gb:wa17c04.x1 NCI_CGAP_Kid11 Homo sapien	2.1	0.22	upregulate stage
20	449351	AW016537	Hs.200760	ESTs	2.45	0.14	upregulate stage
30	449370	AK002114	Hs.23495	hypothetical protein FLJ11252	1.55 4.05	0.14 0.12	upregulate stage upregulate stage
	449424 449425	AW448937 AW103433	Hs.197030 Hs.195684	ESTs ESTs	4.65	0.12	upregulate stage
	449434	AW294858	Hs.197641	ESTs	1	0.29	upregulate stage
2.5	449437	A1702038	Hs.100057	Homo sapiens cDNA: FLJ22902 fis, clone K	2.38	0.34	upregulate stage
35	449474	AA019344	Hs.2055	ubiquitin-activating enzyme E1 (A1S9T an	5.9	0.12	upregulate stage
	449523 449528	NM_000579 H63337	Hs.54443	chemokine (C-C motif) receptor 5 Homo sapiens cDNA: FLJ23468 fis, clone H	6.45 2.85	0.1 0.18	upregulate stage upregulate stage
	449565	A1824925	Hs.38178 Hs.197066	ESTs	. 1	1	upregulate stage
	449568	AL157479	Hs.23740	KIAA1598 protein	10.15	0.06	upregulate stage
40	449618	AI076459	Hs.14366	Homo sapiens cDNA FLJ12819 fis, clone NT	11.7	0.06	upregulate stage
	449639	AA001968	Hs.59956	ESTs, Highly similar to MGR7_HUMAN METAB	1	1	upregulate stage
	449666	AA002047 AK000733	Hs.23900	gb:zh84e05.r1 Soares_fetal_liver_spleen_ GTPase activating protein	1.85 2.82	0.33 0.3	upregulate stage upregulate stage
	449704 449722	BE280074	Hs.23960	cyclin B1	6.44	0.12	upregulate stage
45	449764	N93104	Hs.54895	ESTs, Weakly similar to ZNF91L [H.sapien	1	1	upregulate stage
	449784	AW161319	Hs.12915	ESTs	6.25	0.11	upregulate stage
	449829	N51440	Hs.47261	ESTs	1 10.2	0.57 0.07	upregulate stage
	449843 449892	R85337 N73608	Hs.24030 Hs.50309	solute carrier family 31 (copper transpo ESTs	6.5	0.07	upregulate stage upregulate stage
50	449894	AK001578	Hs.24129	hypothetical protein FLJ10716	4.55	0.12	upregulate stage
	449919	A1674685	Hs.200141	ESTs	5.3	0.11	upregulate stage
	450020	A1680684	Hs.282219	ESTs	1	1	upregulate stage
	450033	R43010	Hs.269452	ESTs, Weakly similar to JH0148 nucleolin	1 4.2	0.65 0.17	upregulate stage upregulate stage
55	450063 450083	Al681509 AA131795	Hs.277133 Hs.142001	ESTs ESTs	3.9	0.17	upregulate stage
00	450116	AA005355	Hs.222882	ESTs	1	1	upregulate stage
	450121	AL040174	Hs.288927	Homo sapiens cDNA: FLJ22944 fis, clone K	1	1	upregulate stage
	450135	AI810816	Hs.201142	ESTs	4.95	0.14	upregulate stage
60	450144	T63961 AW969781	Hs.301851 Hs.293440	ESTs Moderatoly similar to 7/C2 protois	2.75 3.75	0.13 0.14	upregulate stage upregulate stage
.00	450149 450151	A1088196	Hs.295233	ESTs, Moderately similar to ZiC2 protein ESTs	2.51	0.28	upregulate stage
	450152	Al138635	Hs.22968	ESTs	2.45	0.15	upregulate stage
	450195	AA007352	Hs.256042	ESTs	4.1	0.14	upregulate stage
65	450221	AA32B102	Hs.24641	cytoskeleton associated protein 2	1	0.3	upregulate stage
05	450238 450257	T89693 AW820313	Hs.138777	ESTs ab:QV2-ST0296-150200-028-d02 ST0296 Homo	12.2	0.07 1	upregulate stage upregulate stage
	450313	A1038989	Hs.24809	hypothetical protein FLJ10826	4.35	0.15	upregulate stage
	450314	AA574309	Hs.283402	TCR eta	10.1	0.07	upregulate stage
70	450350	T97817	Hs.174880	ESTs	3.65	0.1	upregulate stage
70	450411	D61167	Hs.202156	ESTs	1075	0.67 0.07	upregulale stage upregulate stage
	450447 450448	AF212223 D54299	Hs.25010 Hs.36244	hypothetical protein P15-2 ESTs	10.75 1	1	upregulate stage upregulate stage
	450448	A1696596	Hs.202068	ESTs	1	i	upregulate stage
	450506	NM_004460	Hs.418	fibroblast activation protein, alpha	11.45	0.05	upregulate stage
75	450573	AW964334		gb:EST376407 MAGE resequences, MAGH Homo	1.2	0.2	upregulate stage
	450628	AW382884	Hs.204715	ESTS . ESTS	4.95 1	0.13 0.69	upregulate stage upregulate stage
	450636	AI703076	Hs.201959	LUIS	,	0.03	ahusharam srafta

	450655	AI707846	Hs.279860	hypothetical protein FLJ20030	1	1	upregulate stage
	450664	AA808358	Hs.36830	ESTs	1	0.34	upregulate stage
	450680	AF131784	Hs.25318	Homo saplens clone 25194 mRNA sequence	9.51	0.09	upregulate stage
5	450722	AJ732318	Hs.101120	ESTS	1	0.87 1	upregulate stage upregulate stage
J	450751 450772	A1733251 BE326391	Hs.126853 Hs.280146	ESTs, Wealdy similar to JU0033 hypotheti ESTs, Wealdy similar to JU0033 hypotheti	i	i	upregulate stage
	450800	BE395161	Hs.243963	ESTs, Weakly similar to ALU5_HUMAN ALU S	8.7	0.08	upregulate stage
	450824	R09055	Hs.269204	ESTs	3.03	0.22	upregulate stage
10	450832	AW970602	Hs.105421	ESTs	6.15	0.08	upregulate stage
10	450870	AA011471	11 00000	gb:zi01h08.r1 Soares_fetal_liver_spleen_	1.15	0.23	upregulate stage
	450937 450983	R49131 AA305384	Hs.26267 Hs.25740	ATP-dependant interferon response protei ERO1 (S. cerevisiae)-like	9.75 3.32	0.08 0.26	upregulate stage upregulate stage
	451052	AA281504	Hs.24444	ESTs, Moderately similar to ALUE_HUMAN !	9.25	0.08	upregulate stage
	451067	BE172186	Hs.180789	S164 protein	2.8	0.21	upregulate stage
15	451088	AA015600	Hs.82415	ESTs	1	0.32	upregulate stage
	451094	Al949825	Hs.260395	ESTs	4.45	0.14	upregulate stage
	451096	BE383234	Hs.25925	Homo sapiens clone 23860 mRNA sequence ESTs	4.15 1	0.14 1	upregulate stage upregulate stage
	451126 451161	H30600 - AA211329	Hs.40910 Hs.26006	hypothetical protein FLJ10559	2.15	0.16	upregulate stage
20	451166	T98171	Hs.185675	ESTs	9.26	0.08	upregulate stage
	451222	AA018386	Hs.64341	ESTs	1	0.36	upregulate stage
	451225	Al433694	Hs.293608	ESTs	9.19	0.08	upregulate stage
	451228	AI767166	Hs.207025	ESTs cutaneous T-cell lymphoma turnor antigen	1 7.35	1 0.11	upregulate stage upregulate stage
25	451246 451266	AW189232 AA016292	Hs.39140 Hs.290849	ESTs	1.33	0.33	upregulate stage
	451276	AW294386	Hs.236533	ESTs, Highly similar to dJ742C19.2 (H.sa	i	1	upregulate stage
	451277	AK001123	Hs.26176	hypothetical protein FLJ10261	11.7	0.06	upregulate stage
	451291	R39288	Hs.6702	ESTs	1	1	upregulate stage
30	451326	AW296946	Hs.300967	ESTs	10.55	0.07 1	upregulate stage upregulate stage
30	451347 451359	Al288679 H85334	Hs.101139	ESTs gb:ys90e05.r1 Soares retina N2b5HR Homo	1 2.7	0.15	upregulate stage
	451365	Al791783		gb:op20h10.y5 NCI_CGAP_Co12 Homo sapiens	8.9	0.09	upregulate stage
	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	2.45	0.19	upregulate stage
25	451440	AA017599	Hs.293817	ESTs	1	1	upregulate stage
35	451487	AA018072	11- 007004	gb:ze51g02.r1 Soares retina N2b4HR Homo	5.7	0.1 1	upregulate stage
	451492 451495	AA018119 H86887	Hs.297824	ESTs, Highly similar to CIK1_HUMAN VOLTA gb:yt07a01.r1 Soares retina N2b5HR Homo	1 4.25	0.13	upregulate stage upregulate stage
	451535	AW970577		gb:EST382658 MAGE resequences, MAGK Homo	6.8	0.12	upregulate stage
	451553	AA018454	Hs.269211	ESTs, Wealdy similar to B34087 hypotheti	1	1	upregulate stage
40	451562	H04150	Hs.107708	ESTs	4.65	0.11	upregulate stage
	451580	AW138195	Hs.184326	CDC10 (cell division cycle 10, S. cerevi	1 28	0.42	upregulate stage
	451592 451651	Al805416 Al097337	Hs.213897 Hs.88977	ESTs hypothetical protein dJ511E16.2	1	0.17 0.18	upregulate stage upregulate stage
	451658	AW195351	Hs.250520	ESTs	9.55	0.07	upregulate stage
45	451684	AF216751	Hs.26813	CDA14	3.7	0.15	upregulate stage
	451690	AW451469	Hs.209990	ESTs	10.86	0.07	upregulate stage
	451724	Al903765	Un 02074	gb:UI-BT037-301298-102 BT037 Homo saplen	8.85 2.17	0.0 9 0.35	upregulate stage upregulate stage
	451743 451794	AW074266 AA019799	Hs.23071 Hs.111911	ESTs ESTs	1	1	upregulate stage
50	451844	T61430	16.171511	gb:yc06a03.s1 Stratagene lung (937210) H	6.5	0.11	upregulate stage
	451903	W19617	Hs.261003	ESTs, Moderately similar to B34087 hypot	2.2	0.21	upregulate stage
	451914	AI822115	Hs.270618	ESTs, Weakly similar to KIAA0822 protein	11.67	0.07	upregulate stage
	451938 451939	Al354355 U80456	Hs.16697 Hs.27311	down-regulator of transcription 1, TBP-b single-minded (Drosophila) homolog 2	11.65 1	0.06 0.95	upregulate stage upregulate stage
55	451971	AA021185	Hs.226306	ESTs	i	1	upregulate stage
-	451998	AW594129	Hs.213666	ESTs	1	0.26	upregulate stage
	452028	AK001859	Hs.27595	hypothetical protein FLJ10997	1	0.21	upregulate stage
	452036	NM_003966	Hs.27621	sema domain, seven thrombospondin repeat	1.76 8.9	0.41 0.07	upregulate stage upregulate stage
60	452099 452122	BE612992 AF216833	Hs.27931 Hs.1710	hypothetical protein FLJ10607 similar to ATP-binding cassette, sub-family B (MDR/	1	0.47	upregulate stage
00	452163	Al863140	113.1110	gb:tz43h12.x1 NCI_CGAP_Bm52 Homo sapien	i	0.2	upregulate stage
	452179	H16725	Hs.27463	ESTs	3	0.13	upregulate stage
	452198	Al097560	Hs.61210	ESTs	1	0.28	upregulate stage
65	452206	AW340281	Hs.33074	ESTs, Moderately similar to ALU1_HUMAN A	12.4 6.8	0.07 0.09	upregulate stage upregulate stage
05	452234 452240	AW084176 Al591147	Hs.223296 Hs.61232	ESTs ESTs	3.75	0.03	upregulate stage
	452247	AL137432	Hs.28564	hypothetical protein DKFZp761E1824	3.9	0.15	upregulate stage
	452250	BE618654	Hs.28607	hypothetical protein A-211C6.1	8.75	0.09	upregulate stage
70	452256	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE	5.2	0.09	upregulate stage
70	452266	A1767250 AL049013	Hs.165240 Hs.28783	ESTs KIAA1223 protein	10.45 8.9	0.06 0.05	upregulate stage upregulate stage
	452277 452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	8.2	0.03	upregulate stage
	452291	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisi	3.5	0.13	upregulate stage
75	452328	AA805679	Hs.61271	ESTs	3.5	0.14	upregulate stage
75	452331	AA598509	Hs.29117	H.sapiens mRNA for pur alpha extended 3'	11.75	0.07	upregulate stage upregulate stage
	452345 452367	AA293279 U71207	Hs.29173 Hs.29279	hypothetical protein FLJ20515 eyes absent (Drosophila) homolog 2	1.08 10.15	0.73 0.07	upregulate stage
	402001	31 1201	16.65613	also again franchism named a	.5.10		

	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	1	0.17	upregulate stage
	452404	AW450675	Hs.212709	ESTs	3.63	0.2	upregulate stage
	452430	AF118083	Hs.29494	PRO1912 protein	1	0.41	upregulate stage
_	452436	BE077546	Hs.31447	ESTs	10	0.07	upregulate stage
5	452457	AW062499	11 400400	gb:MR0-CT0065-100899-001-d02 CT0065 Homo	1	0.13	upregulate stage
	452461 452518	N78223 AA280722	Hs.108106 Hs.24758	transcription factor ESTs	8.1 9.3	0.06 0.08	upregulate stage upregulate stage
	452519	BE006701	NS.24730	gb:RC0-BN0132-270300-021-a03 BN0132 Homo	1	0.19	upregulate stage
	452524	AW136499	Hs.29796	Homo sapiens mRNA; cDNA DKFZp434D1319 (f	1	0.45	upregulate stage
10	452531	AA429462	Hs.293946	ESTs	2.94	0.22	upregulate stage
	452547	AA335295	Hs.74120	adipose specific 2	1.51	0.53	upregulate stage
	452560	BE077084	11- 04000	gb:RC5-BT0603-220200-013-C07 BT0603 Homo	5.35 2.55	0.11 0.11	upregulate stage upregulate stage
	452571 452607	W31518 Al160029	Hs.34665 Hs.61438	ESTs ESTs	4.75	0.11	upregulate stage
15	452677	BE167202	Hs.212065	ESTS	1	0.32	upregulate stage
	452680	AW138410	Hs.45051	ESTs	1	1	upregulate stage
	452724	R84810	Hs.30464	cyclin E2	1	0.27	upregulate stage
	452738	AL133800		gb:DKFZp761A0614_r1 761 (synonym: hamy2)	3.45 3.05	0.15 0.16	upregulate stage
20	452741	BE392914	Hs.30503 Hs.61460	Homo sapiens cDNA FLJ11344 fis, clone PL ESTs	2.54	0.18	upregulate stage upregulate stage
20	452747 452761	BE153855 BE244742	Hs.30532	CGI-77 protein	3.85	0.14	upregulate stage
	452825	Al921523	18.00002	gb:wo26d09.x1 NCI_CGAP_Gas4 Homo sapiens	1	1	upregulate stage
	452831	AW864089	Hs.135145	ESTs	2.4	0.19	upregulate stage
25	452846	AA082160	Hs.204295	ESTs	8.9	0.08	upregulate stage
25	452850	H23230	Hs.22481	ESTs Homo sapiens cDNA: FLJ23591 fis, clone L	4.75 9.15	0.14 0.08	upregulate stage upregulate stage
	452859 452862	Al300555 AW378065	Hs.288158 Hs.8687	ESTs	5.95	0.07	upregulate stage
	452899	M96739	Hs.30956	Human NSCL-1 mRNA sequence	1.04	0.9	upregulate stage
	452902	Al926501	Hs.249729	ESTs	6.8	0.1	upregulate stage
30	452909	NM_015368	Hs.30985	pannexin 1	5.6	0.1	upregulate stage
	452931	AW190011	Hs.158006	hypothetical protein	1 1.44	0.53 0.55	upregulate stage upregulate stage
	452934 452956	AA581322 AW003578	Hs.4213 Hs.231872	ESTs ESTs	1.44	0.33	upregulate stage
	452974	BE090803	Hs.61506	ESTs	1.75	0.18	upregulate stage
35	453011	N62952	Hs.46473	ESTs	1	1	upregulate stage
	453050	AW136479	Hs.224046	ESTs	1	0.39	upregulate stage
	453074	AA031813	Hs.271880	ESTs	1	1 0.14	upregulate stage upregulate stage
	453076	AI978583	Hs.232161 Hs.221849	ESTs ESTs	3.75 6.6	0.14	upregulate stage
40	453123 453134	AI953718 AA032211	Hs.118493	ESTs	1.68	0.42	upregulate stage
	453135	T07866	Hs.31834	Homo sapiens clone 25129 mRNA sequence	1	1	upregulate stage
	453137	Al954733	Hs.223640	ESTs	1	0.51	upregulate stage
	453144	AW268807	Hs.61646	ESTs	1	0.26	upregulate stage
45	453153 453156	N53893 BE463762	Hs.24360 Hs.223784	ESTs ESTs	5 2.8	0.13 0.15	upregulate stage upregulate stage
43	453204	R10799	Hs.191990	ESTs	9.5	0.05	upregulate stage
	453228	AW628325	Hs.232327	ESTs	1	1	upregulate stage
	453274	AA018511	Hs.32769	Homo sapiens mRNA full length insert cDN	1.	1	upregulate stage
50	453293	AA382267	Hs.10653	ESTs	8.4 6.7	0.09 0.1	upregulate stage upregulate stage
50	453321	Al984381	Hs.232521 Hs.17998	ESTs ESTs	8.9	80.0	upregulate stage
	453329 453389	T97205 BE273648	Hs.32963	cadherin 6, type 2, K-cadherin (fetal ki	1	0.18	upregulate stage
	453437	H10751	Hs.79981	Human clone 23560 mRNA sequence	1	0.83	upregulate stage
	453450	AW797627	Hs.89474	ADP-ribosylation factor 6	7.09	0.08	upregulate stage
55	453459	BE047032	Hs.257789	ESTs	2.35 2.75	0.3	upregulate stage
	453476 453651	Al640500 AA971698	Hs.24633 Hs.159397	SAM domain, SH3 domain and nuclear local x 010 protein	8.95	0.16 0.08	upregulate stage upregulate stage
	453653	AW505554	Hs.300284	ESTs	4.6	0.1	upregulate stage
	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	3.4	0.1	upregulate stage
60	453776	R15749	Hs.31677	ESTs	1	1	upregulate stage
	453846	AL157586	20020	gb:DKFZp761H0216_r1 761 (synonym: hamy2)	1 10.25	0.95 0.06	upregulate stage upregulate stage
	453884 453900	AA355925 AW003582	Hs.36232 Hs.226414	KIAA0186 gene product ESTs, Weakly similar to ALU8_HUMAN ALU S	4.75	0.12	upregulate stage
	453913	AW004683	Hs.233502	ESTs	3.65	0.14	upregulate stage
65	453925	AW021088	Hs.181614	ESTs	3.7	0.13	upregulate stage
	453931	AL121278	Hs.25144	EST8	3.45	0.18	upregulate stage
	453945	NM_005171	Hs.36908	activating transcription factor 1	6.35	0.12	upregulate stage
	454032	W31790	Hs.194293	ESTs gb:df45e05.y1 Morton Fetal Cochlea Homo	6.15 2.8	0.07 0.15	upregulate stage upregulate stage
70	454049 454069	AW022885 AW025160	Hs.34161	ESTs, Moderately similar to ALU1_HUMAN A	1	0.13	upregulate stage
, 0	454099	AW062974	,,,,,,,,,,,	gb:lL1-ST0041-020899-001-H08 ST0041 Homo	1	1	upregulate stage
	454111	AW081681	Hs.269064	ESTs	2.8	0.18	upregulate stage
	454219	X75042	Hs.44313	v-rel avian reticuloendotheliosis viral	9.4 6.2	0.05	upregulate stage
75	454259		Hs.47679	Homo sapiens mRNA; cDNA DKFZp564l112 (fr gb:QV3-BT0297-231199-020-h08 BT0297 Homo	1	0.11 1	upregulate stage upregulate stage
, 5	454327 454331	BE064097 AW372937		gb:QV3-BT0297-231195-020-1008 BT0297 Hullio gb:QV3-BT0381-161299-042-a09 BT0381 Homo	i	0.43	upregulate stage
	454380	AW858722		gb:RC3-CT0347-281199-011-c04 CT0347 Homo	1	0.29	upregulate stage

	454504	****			10.55	0.08	unmaulala ctono
	454524	AW857191		gb:RC2-CT0304-080100-011-b12 CT0304 Homo			upregulate stage
	454592	AW810112		gb:MR4-ST0124-100400-006-e07 ST0124 Homo	1	0.37	upregulate stage
	454648	AW811960		gb:RC2-ST0168-240300-017-f09 ST0168 Homo	1	0.4	upregulate stage
_	454687	AWB14473		gb:MR3-ST0203-010200-109-c11 ST0203 Homo	1	1	upregulate stage
5	454692	AW813350		gb:MR3-ST0192-100100-024-g07 ST0192 Homo	4.45	0.14	upregulate stage
	454702	BE145915		gb:MR0-HT0208-221299-204-h08 HT0208 Homo	9.65	0.08	upregulate stage
	454729	AW817003		gb:QV0-ST0247-040100-081-f03 ST0247 Homo	1	0.8	upregulate stage
	454789	BE156314		gb:QV0-HT0367-150200-114-d02 HT0367 Homo	1	0.31	upregulate stage
				gb:PM0-HT0425-170100-002-a10 HT0425 Homo	4.1	0.14	upregulate stage
10	454797	BE161168			1	1	upregulate stage
10	454863	AW835610		gb:QV4-LT0016-090200-100-c02 LT0016 Homo			
	454893	AW837753		gb:CM1-LT0042-310100-112-g03 LT0042 Homo	4.45	0.18	upregulate stage
	454898	AW838125		gb:QV2-LT0051-240300-097-e12 LT0051 Homo	1	1	upregulate stage
	454951	AW847464		gb:RC3-CT0208-270999-021-h12 CT0208 Homo	7.4	0.1	upregulate stage
	454956	AW847725		gb:IL3-CT0213-180200-041-H10 CT0213 Homo	1	0.23	upregulate stage
15	455047	AWB52530		gb:PM1-CT0243-071099-001-g06 CT0243 Homo	4.25	0.13	upregulate stage
13	455128	AW861555		gb:RC2-CT0321-110100-013-b05 CT0321 Homo	2.9	0.13	upregulate stage
				gb:PM1-MT0010-200300-001-g08 MT0010 Homo	3.15	0.16	upregulate stage
	455201	AW947884			1	0.18	upregulate stage
	455207	AW994394		gb:RC3-BN0036-060400-014-h12 BN0036 Homo			
^^	455331	AW897292		gb:CM0-NN0057-150400-338-b02 NN0057 Homo	1	0.87	upregulate stage
20	455351	AW901942		gb:QV0-NN1022-100400-190-b04 NN1022 Homo	1	0.39	upregulate stage
	455380	BE160188		gb:QV1-HT0413-010200-059-g05 HT0413 Homo	1.96	0.33	upregulate stage
	455414	AW936969		gb:RC1-DT0029-160200-013-f10 DT0029 Homo	1	1	upregulate stage
	455428	AW938204		gb:QV0-DT0048-170200-124-f01 DT0048 Homo	1	0.67	upregulate stage
	455573	BE004988		gb:MR2-BN0114-100500-020-b04 BN0114 Homo	1	1	upregulate stage
25				gb:RC3-BT0501-130100-011-h02 BT0501 Homo	1	i	upregulate stage
23	455586	BE070794			i	i	upregulate stage
	455595	BE008343		gb:CM0-BN0154-080400-325-g10 BN0154 Homo	•		
	455610	BE011703		gb:CM3-BN0223-100500-177-h09 BN0223 Homo	6.05	0.12	upregulate stage
	455647	BE064415		gb:RC4-BT0311-241199-012-b03 BT0311 Homo	1	1	upregulate stage
	455650	BE064655		gb:RC1-BT0313-301299-012-c09 BT0313 Homo	1	0.67	upregulate stage
30	455657	8E065209		gb:RC1-BT0314-310300-015-b12 BT0314 Homo	1.87	0.4	upregulate stage
	455669	BE065803		gb:RC2-BT0318-241199-011-g02 BT0318 Homo	2.85	0.2	upregulate stage
	455678	BE066007		gb:RC3-BT0319-120200-014-d09 BT0319 Homo	2.8	0.18	upregulate stage
		BE080895		gb:QV1-BT0631-280200-084-e01 BT0631 Homo	1	0.48	upregulate stage
	455761		U- 44570	Homo sapiens cDNA: FLJ22530 fis, clone H	5.7	0.11	upregulate stage
25	455799	BE169911	Hs.14570				
35	455831	BE144966		gb:RC6-HT0187-201099-031-c04 HT0187 Homo	1	1	upregulate stage
	455874	BE152283		gb:QV4-HT0316-191199-039-b01 HT0316 Homo	1	0.67	upregulate stage
	455903	BE155185		gb:PM1-HT0350-231299-005-g05 HT0350 Hamo	1	0.31	upregulate stage
	455938	BE159432		gb:MR0-HT0407-140200-009-e06 HT0407 Homo	2.4	0.15	upregulate stage
	455950	BE161004		gb:PM0-HT0425-170100-002-h03 HT0425 Homo	1	0.44	upregulate stage
40	455951	BE161001		gb:PM0-HT0425-170100-002-f10 HT0425 Homo	1	0.38	upregulate stage
	455965	BE167014		gb:CM2-HT0502-140200-088-d08 HT0502 Homo	1	1	upregulate stage
					i	0.57	upregulate stage
	455981	BE177000		gb:RC4-HT0587-070400-015-b07 HT0587 Homo	8.29	0.05	upregulate stage
	456034	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su			
4 =	456046	R51494	Hs.71818	ESTs	3.15	0.17	upregulate stage
45	456122	R11813		gb:yf53a04.r1 Soares infant brain 1NIB H	1.3	0.31	upregulate stage
	456212	N51636		gb:yy87b01.s1 Soares_multiple_sclerosis_	4.45	0.14	upregulate stage
	456265	Al968210	Hs.173623	ESTs	1	0.34	upregulate stage
	456285	R67585	Hs.268748	ESTs	1	0.83	upregulate stage
	456320	AI734064	Hs.136212	ESTs	1	1	upregulate stage
50	456353	AI042330	Hs.87128	ESTs, Weakly similar to similar to YBS4	5.15	0.11	upregulate stage
50			Hs.171545	HIV-1 Rev binding protein	1	0.27	upregulate stage
	456486	AA676544	NS.17 1040		i	0.8	upregulate stage
	456493	AA261830	11 00404	gb:zs17g09.r1 NCI_CGAP_GCB1 Homo sapiens			upregulate stage
	456504	AK000532	Hs.98491	Homo sapiens cDNA FLJ20525 fis, clone KA	1	0.29	
	456508	AA502764	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	17,7	0.05	upregulate stage
55	456519	AA279917	Hs.88678	ESTs, Weakly similar to Unknown [H.saple	2.3	0.18	upregulate stage
	456536	AW135986	Hs.257859	ESTs	9.45	0.06	upregulate stage
	456592	R91600		gb:yq10c02.r1 Soares fetal liver spleen	4.5	0.14	upregulate stage
	456621	T35958	Hs.107614	DKFZP564I1171 protein	1	0.2	upregutate stage
	456682	AW500321	Hs.246766	Homo sapiens cDNA FLJ12360 fis, clone MA	1	0.24	upregulate stage
60	456726	H43102	Hs.144183	ESTs	1	0.69	upregulate stage
00	456736	AW248217	Hs.1619	schaete-scute complex (Drosophila) homol	0.89	0.91	upregulate stage
				hypothetical protein FLJ11222	3.2	0.13	upregulate stage
	456786	AK002084	Hs.132851		1	0.69	upregulate stage
	456800	AL118754		gb:DKFZp761P1910_r1 761 (synonym: hamy2)			
c =	456823	AL161979	Hs.146128	Homo saplens mRNA; cDNA DKFZp761G1823 (f	8.95	0.07	upregulate stage
65	456844	AI264155	Hs.152981	CDP-diacylglycerol synthase (phosphatida	5.55	0.1	upregulate stage
	456999	AA319798	Hs.172247	eukaryotic translation elongation factor	11.3	0.07	upregulate stage
	457015	AA688058	Hs.261544	ESTs	9.25	0.08	upregulate stage
	457030	Al301740	Hs.173381	dihydropyrimidinase-like 2	2.65	0.17	upregulate stage
	457158	AA135370	Hs.188536	Homo sapiens cDNA: FLJ21635 fis, clone C	1	1	upregulate stage
70	457190	Al753247	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	i	0.87	upregulate stage
, 0			Hs.239340	Homo sapiens clone 24987 mRNA sequence	2.6	0.15	upregulate stage
	457309	AF131843		ESTS	1	1	upregulate stage
	457376	A1026984	Hs.293662		2.9		upregulate stage
	457402	AW452648	Hs.149342	activation-induced cylidine deaminase		0.16	
76	457435	AW972024	Hs.154645	ESTs, Wealdy similar to tyrosine kinase	1.	0.36	upregulate stage
75	457437	AW969732		gb:EST381810 MAGE resequences, MAGK Homo	2.5	0.14	upregutate stage
	457465	AW301344	Hs.195969	ĒSTs .	6.3	0.1	upregulate stage
	457467	AW974815	Hs.292786	EST8	1	1	upregulate stage

	457474	AW972935	11 000500	gb:EST385031 MAGE resequences, MAGM Homo	1	0.29 0.39	upregulate stage
	457530	AW973713	Hs.293596	ESTs	1	1	upregulate stage upregulate stage
	457637	Al288373	Hs.149875	ESTs	3.25	0.19	upregulate stage
5	457643 457650	AI375499 AA649162	Hs.27379 Hs.236456	ESTS ESTS	8.9	0.08	upregulate stage
,	457661	AA917801	Hs.128596	ESTs	0.96	0.9	upregulate stage
	457692	AA744046	Hs.133350	ESTs	1	1	upregulate stage
	457857	AW814892	Hs.273104	ESTs	i	1	upregulate stage
	457892	AA744389		gb:ny51e10.s1 NCL_CGAP_Pr18 Homo sapiens	8.7	0.06	upregulate stage
10	457902	A1624876	Hs.75862	MAD (mothers against decapentaplegic, Dr	2.2	0.21	upregulate stage
	457943	AA765625	Hs.155690	ESTs	3.55	0.1	upregulate stage
	457948	A1498640	Hs.159354	ESTs	2.65	0.19	upregulate stage
	457964	NM_016353	Hs.5943	LBC	1.5	0.17	upregulate stage
٠, ٠	458004	AW976942	Hs.153057	ESTs	1	0.87	upregulate stage
15	458027	L49054	Hs.85195	ESTs, Highly similar to t(3;5)(q25.1;p34	3.45	0.12	upregulate stage
	458079	A1796870	Hs.54277	ESTS	11.5	0.05	upregulate stage
	458158	AW296778	Hs.300357	ESTs, Highly similar to dJ416F21.2 [H.sa	1 0.69	1 1.09	upregulate stage upregulate stage
	458171	Al420016	Hs.192090	ESTS	3	0.16	upregulate stage
20	458172	BE007237	Hs.153205	gb:PM0-BN0139-050500-003-g09 BN0139 Homo ESTs	4.6	0.15	upregulate stage
20	458186 458242	AA904244 BE299588	Hs.28465	Homo sapiens cDNA: FLJ21869 fis, clone H	3.1	0.16	upregulate stage
	458270	T66139	Hs.113631	ESTs	ĩ	0.67	upregulate stage
	458282	AA984075	Hs.22580	alkylglycerone phosphate synthase	i	1	upregulate stage
	458287	AA987556	Hs.12867	ESTs	5.05	0.13	upregulate stage
25	458580	Z30118	Hs.293788	ESTs, Moderately similar to unnamed prot	1	0.28	upregulate stage
	458586	A1683479	Hs.65390	ESTs	8.2	0.07	upregulate stage
	458608	AW444662	Hs.202247	ESTs	1	0.27	upregulate stage
	458632	A1744445	Hs.24650	Homo saplens cDNA FLJ13047 fis, clone NT	1.05	0.23	upregulate stage
	458663	AV658444	Hs.280776	Homo saplens cDNA FLJ13684 fis, clone PL	5.05	0.13	upregulate stage
30	458670	Al301987	Hs.233398	ESTs	8.9	0.08	upregulate stage
	458680	N73773	Hs.282950	ESTs	1	0.23	upregulate stage
	458720	AV662037	Hs.124740	ESTs	1	0.3	upregulate stage
	458722	AA741545	Hs.282832	ESTs	3.2	0.11	upregulate stage
25	458747	BE618395	Hs.257391	ESTs, Weakly similar to GTPase-activatin	3.3	0.14	upregulate stage
35	458760	Al498631	Hs.111334	ferritin, light polypeptide	11	0.07	upregulate stage
	458781	A1444821		gb:RET487 subtracted retina cDNA library	6.05	0.12 0.13	upregulate stage upregulate stage
	458801	N98648	Hs.276860	ESTS	4.45 9	0.13	upregulate stage
	458880	AA046742	N= 402077	gb:zf48c09.r1 Soares retina N2b4HR Homo	1	0.00	upregulate stage
40	458886	AI247487	Hs.103277 Hs.42311	ESTs ESTs	8.7	0.08	upregulate stage
40	458946 459023	AA009716 AW968226	Hs.60798	ESTs	2.95	0.15	upregulate stage
	459028	A1940577	HS.007 50	gb:IL5-HT0009-120799-001-G07 HT0009 Homo	2.6	0.17	upregulate stage
	459030	H86658	Hs.107699	ESTs, Weakly similar to hypothetical pro	1	1	upregulate stage
	459058	H85939	Hs.209605	ESTs	1	1	upregulate stage
45	459128	Al902169		gb:IL-8T002-221198-051 BT002 Homo sapien	1	0.26	upregulate stage
	459182	BE178517		gb:PM1-HT0603-090300-001-e09 HT0603 Homo	1	1	upregulate stage
	459204	AW194601	Hs.13219	ESTs	2.85	0.16	upregulate stage
	459256	AW967468	Hs.99821	Homo sapiens mRNA; cDNA DKFZp564C046 (fr	10.65	0.07	upregulate stage
	459319	NM_000059		gb:Homo saplens breast cancer 2, early o	1	1	upregulate stage
50	459395	230300	Hs.281935	ESTs	4.05	0.14	upregulate stage
	459459	AA460445		gb:zx66h11.r1 Soares_total_fetus_Nb2HF8_	4.8	0.13	upregulate stage
	459464	AA854847		gb:aj77h02.s1 Soares_parathyroid_tumor_N	1	0.38 1	upregulate stage upregulate stage
	459492	AL118619		gb:DKFZp761E2410_r1 761 (synonym: hamy2)	i	i	upregulate stage
55	459530	AW770811		gb:hn49d07.x1 NCI_CGAP_Co17 Homo sapiens	12.65	0.06	upregulate stage
55	401519 402474				25.55	0.03	upregulate stage
	402727				16.25	0.05	upregulate stage
	405411				12.95	0.05	upregulate stage
	406636	L12064		gb:Homo sapiens (clone WR4.12VL) anti-th	14.42	0.03	upregulate stage
60	406685	M18728		gb:Human nonspecific crossreacting antig	15.75	0.03	upregulate stage
	407151	H25836	Hs.301527	ESTs, Moderately similar to unknown [H.s	16.3	0.04	upregulate stage
	407242	M18728		gb:Human nonspecific crossreacting antig	12.56	0.03	upregulate stage
	407347	AA829847	Hs.167347	ESTs, Weakly similar to ALU8_HUMAN ALU S	12.91	0.06	upregulate stage
	407796	AA195509	Hs.272239	lymphocyte activation-associated protein	14.2	0.06	upregulate stage
65	408243	Y00787	Hs.624	Interleukin 8	18.52	0.02	upregulate stage
	408380	AF123050	Hs.44532	diubiquitin	16	0.03	upregulate stage upregulate stage
	408618	AK000637	Hs.46624	HSPC043 protein	12.6	0.06 0.03	upregulate stage upregulate stage
	408741	M73720	Hs.646	carboxypeptidase A3 (mast cell)	15.5 12.55	0.03	upregulate stage
70	409417	AA156247	Hs.295908	ESTs, Wealdy similar to ALU7_HUMAN ALU S	14	0.05	upregulate stage
70	410315	Al638871	Hs.17625	ESTs ESTs	15.65	0.05	upregulate stage
	410324 412420	AW292539 AL035668	Hs.30177 Hs.73853	bone morphogenetic protein 2	12.6	0.05	upregulate stage
	412420	AW803564	Hs.288850	Homo sapiens cDNA: FLJ22528 fis, clone H	16.45	0.03	upregulate stage
	413281	AA861271	Hs.34396	ESTs ·	12.95	0.04	upregulate stage
75	414004	AA737033	Hs.7155	ESTs, Wealthy shrillar to 2115357A TYKI pr	15.25	0.04	upregulate stage
. •	414161	AA136106	Hs.184852	KIAA1553 protein	13.25	0.06	upregulate stage
	414217	Al309298	Hs.279898	Homo sapiens cDNA: FLJ23165 fis, clone L	12.5	0.05	upregulate stage

	414219	W20010	Hs.75823	ALL1-fused gene from chromosome 1q	12.71	0.05	upregulate stage
	414493	AL133921	Hs.76272	relinoblastoma-binding protein 2	13.05	0.05	upregulate stage
	414522	AW518944	Hs.76325	Homo sapiens cDNA: FLJ23125 fis, clone L	30.45	0.02	upregulate stage
	414602	AW630088	Hs.76550	Homo sagiens mRNA; cDNA DKFZp564B1264 (f	29	0.02	upregulate stage
5	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	13.2	0.05	upregulate stage
	416114	A1695549	Hs.183868	glucuronidase, beta	14.7	0.04	upregulate stage
	416179	R19015	Hs.79067	MAD (mothers against decapentaplegic, Dr	13	0.06	upregulate stage
	416391	A1878927	Hs.79284	mesoderm specific transcript (mouse) hom	13.3	0.04	upregulate stage
10	416815	U41514	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	15.55	0.04	upregulate stage
10	416980	AA381133	Hs.60684	high-mobility group (nonhistone chromoso	23.85	0.03	upregulale stage
	417258	N58885	Hs.294040	ESTs	15.05 23.05	0.06 0.04	upregulate stage upregulate stage
	417274	N92036	Hs.81848	RAD21 (S. pombe) homolog general transcription factor IIA, 2 (12k	13	0.06	upregulate stage
	417353 417615	AA375752 BE548641	Hs.76362 Hs.82314	hypoxanthine phosphoribosyltransferase 1	19.45	0.04	upregulate stage
15	417696	BE241624	Hs.82401	CD69 antigen (p60, early T-cell activati	12.45	0.03	upregulate stage
13	417777	A1823763	Hs.7055	ESTs	12.6	0.06	upregulate stage
	417821	BE245149	Hs.82643	protein tyrosine kinase 9	20.8	0.04	upregulate stage
	417928	AA209344	Hs.282973	ESTs	14.65	0.05	upregulate stage
	418699	BE539639	Hs.173030	ESTs, Weakly similar to ALU8_HUMAN ALU S	13	0.05	upregulate stage
20	418791	AA935633	Hs.194628	ESTs	12.95	0.06	upregulate stage
	419145	N99638		gb:za39g11.r1 Soares fetal liver spleen	13.2	0.05	upregulate stage
	421878	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, clone HE	12.6	0.05	upregulate stage
	422150	Al867118	Hs.2953	ribosomal protein S15a	13.55	0.05	upregulate stage
25	422363	T55979	Hs.115474	replication factor C (activator 1) 3 (38	15.7 16.9	0.05 0.04	upregulate stage upregulate stage
23	424673	AA345051	Hs.294092	ESTs	15.2	0.05	upregulate stage
	424848 424865	Al263231 AF011333	Hs.145607 Hs.153563	ESTs lymphocyte antigen 75	12.85	0.03	upregulate stage
	425053	AF046024	Hs.154320	ubiquitin-activating enzyme E1C (homolog	13.25	0.06	upregulate stage
	425787	AA363867	Hs.155029	ESTs	17.55	0.05	upregulate stage
30	426252	BE176980	Hs.28917	ESTs	12.95	0.05	upregulate stage
50	426329	AL389951	Hs.271623	nucleoporin 50kD	13.8	0.05	upregulate stage
	427127	AW802282	Hs.22265	pyruvate dehydrogenase phosphatase	13.85	0.05	upregulate stage
	427351	AW402593	Hs.123253	Homo sapiens cDNA: FLJ22009 fis, clone H	12.8	0.06	upregulate stage
25	427979	BE379776	Hs.181309	proteasome (prosome, macropain) subunit,	16.95	0.05	upregulate stage
35	428044	AA093322	Hs.182225	RNA binding motif protein 3	14.65	0.05	upregulate stage
	428428	AL037544	Hs.184298	cyclin-dependent kinase 7 (homolog of Xe	17.15	0.05	upregulate stage upregulate stage
	428840	M15990	Hs.194148	v-yes-1 Yamaguchi sarcoma viral oncogene	16.8 14.5	0.05 0.05	upregulate stage
	430191 430589	Al149880 AJ002744	Hs.188809 Hs.246315	ESTs UDP-N-acetyl-alpha-D-gatactosamine:polyp	14.9	0.05	upregulate stage
40	430369	AI734179	Hs.105676	ESTs	13.55	0.06	upregulate stage
	431049	AA846576	Hs.103267	hypothetical protein FLJ22548 similar to	16.2	0.04	upregulale stage
	431211	M86849	Hs.5566	gap junction protein, beta 2, 26kD (conn	27	0.01	upregulate stage
	431341	AA307211	Hs.251531	proteasome (prosome, macropain) subunit,	13.45	0.06	upregulate stage
	431639	AK000680	Hs.266175	phosphoprotein associated with GEMs	21.2	0.03	upregulate stage
45	431770	BE221880	Hs.268555	5'-3' exoribonuclease 2	13.05	0.06	upregulate stage
	431863	AA188185	Hs.271871	spindlin	15.6	0.05	upregulate stage
	434263	N34895	Hs.44648	ESTs	14.25	0.05	upregulate stage
	434651	BE616902	Hs.285313	core promoter element binding protein	17.95 14.95	0.05 0.05	upregulate stage upregulate stage
50	436286 436385	AA804442	Hs.3459 Hs.144097	Homo saplens cDNA: FLJ22003 fis, done H ESTs	13.85	0.06	upregulate stage
50	430303	BE551618 AW975786	Hs.75355	ubiquitin-conjugating enzyme E2N (homolo	12.75	0.06	upregulate stage
	438000	AI825880	Hs.5985	non-kinase Cdc42 effector protein SPEC2	15.3	0.04	upregulate stage
	439941	Al392640	Hs.18272	ESTs	17.42	0.05	upregulate stage
	440086	NM_005402	Hs.288757	v-ral simian leukemia viral oncogene hom	12.59	0.05	upregulate stage
55	440116	AI798851	Hs.9403	ESTs	14.5	0.05	upregulate stage
	441020	W79283	Hs.35962	ESTs	12.4	0.04	upregulate stage
	441633	AW958544	Hs.112242	ESTs	15.85	0.03	upregulate stage
	441980	AK001441	Hs.8055	hypothetical protein FLJ10579	13.6	0.05	upregulate stage
60	442043	BE567620	Hs.99210	ESTs	12.5	0.06	upregulate stage
OU	442053	R35343	Hs.24968	Human DNA sequence from clone RP1-233G16	12.65	0.06	upregulate stage
	442271	AF000652	Hs.8180 Hs.9216	syndecan binding protein (syntenin) caspase 7, apoptosis-related cysteine pr	15.15 13.4	0.05 0.05	upregulate stage upregulate stage
	443303 445033	U67319 AV652402	Hs.155145	ESTs	13.3	0.05	upregulate stage
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	30.5	0.02	upregulate stage
65	446847	T51454	Hs.82845	Human clone 23815 mRNA sequence	13.8	0.04	upregulate stage
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	15.15	0.04	upregulate stage
	448712	W01046	Hs.181634	Homo sapiens cDNA: FLJ23602 fis, clone L	13.2	0.05	upregulate stage
	448772	AW390822	Hs.24539	ESTs	12.75	0.06	upregulate stage
70	448926	AI798164	Hs.140903	ESTs, Moderately similar to neuronal thr	13.35	0.06	upregulate stage
70	449962	AA004879	Hs.187820	ESTS	12.79	0.05	upregulate stage
	450139	AK001838	Hs.296323	Homo sapiens cDNA FLJ10976 fis, clone PL	14.76	0.06	upregulate stage
	451035	AU076785	Hs.430	plastin 1 (l isoform) ESTs	17.65 14.7	0.04 0.05	upregulate stage upregulate stage
	451334	Al122691 D87120	Hs.13268 Hs.29882	predicted osteoblast protein	12.45	0.05	upregulate stage
75	452567 453258	AW293134	Hs.32597	ring finger protein (C3H2C3 type) 6	13.4	0.05	upregulate stage
, 5	4532331	A1240665	Hs.8895	ESTs	12.6	0.05	upregulate stage
	400365	Y10259	Hs.274501	H.sapiens ACTH receptor mRNA 3 UTR	2.2	0.17	upregulate stage
				•			

	401256				2	0.16	upregulate stage
	402075				1	0.1	upregulate stage
	403029				1.75	0.16	upregulate stage
_	403047				3.3	0.1	upregulate stage
5	403426				1.7	0.18	upregulate stage
	403754				2.8	0.12	upregulate stage
	403822				1.2	0.14	upregulate stage
	407835	AK002081	Hs.40337	hypothetical protein	1.9	0.15	upregulate stage
• •	407980	AA046309		gb:zf12f01.s1 Soares_fetal_heart_NbHH19W	1.35	0.1	upregulate stage
10	408081	AW451597	Hs.167409	ESTs	2.3	0.18	upregulate stage
	408408	AF070571	Hs.44690	Homo sapiens clone 24739 mRNA sequence	1.65	0.12	upregulate stage
	408920	AL120071	Hs.48998	fibronectin leucine rich transmembrane p	1	0.2	upregulate stage
	409810	AW500895		gb:UI-HF-BP0p-air-a-02-0-UI.r1 NIH_MGC_5	2.25	0.2	upregulate stage
	410094	BE147897	Hs.58593	general transcription factor IIF, polype	4.05	0.12	upregulate stage
15	410603	AA086219	Hs.68714	ESTs	1.9	0.18	upregulate stage
	410763	AF279145	Hs.8966	tumor endothelial marker 8	4.15	0.13	upregulate stage
	411418	BE241870		gb:TCAAP2E0047 Pediatric acute myelogeno	1.6	0.22	upregulate stage
	411691	AW857199		gb:RC2-CT0304-080100-011-f06 CT0304 Homo	1.45	0.24	upregulate stage
	411750	BE562298	Hs.71827	KIAA0112 protein; homolog of yeast ribos	2.2	0.2	upregulate stage
20	411880	AW872477		gb:hm30f03.x1 NCI_CGAP_Thy4 Homo sapiens	1.75	0.06	upregulate stage
	412102	H56435	Hs.75935	KIAA0077 protein	1.7	0.2	upregulate stage
	412303	AW936336		gb:QV4-DT0021-281299-070-g11 DT0021 Homo	1	0.17	upregulate stage
	412312	AW936686		gb:PM2-DT0023-080300-004-g01 DT0023 Homo	3.4	0.16	upregulate stage
	412598	AI681997	Hs.107057	ESTs	2.25	0.2	upregulate stage
25	413383	AA128978	Hs.154706	Homo sapiens cONA FLJ13594 fis, clone PL	2.3	0.17	upregulate stage
	413406	AW452823	Hs.135268	ESTs	3.52	0.14	upregulate stage
	413618	BE154078		gb:PM0-HT0339-200400-010-F04 HT0339 Homo	1	0.18	upregulate stage
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	1.05	0.12	upregulate stage
• •	417708	N74392	Hs.50495	ESTs	2	0.16	upregulate stage
30	417974	AA210765		gb:zr90c06.r1 NCI_CGAP_GCB1 Homo sapiens	1.7	0.18	upregulate stage
	418604	AA225632	Hs.190016	ESTs	3.75	0.13	upregulate stage
	418631	AA225921	Hs.115105	ESTs	1.75	0.2	upregulale stage
	418830	BE513731	Hs.88959	Human DNA sequence from clone 967N21 on	3.8	0.09	upregulate stage
	418893	N32264	Hs.44330	ESTs	2.35	0.14	upregulate stage
35	418950	T78517	Hs.13941	ESTs	2.15	0.19	upregulate stage
	419044	AI799135	Hs.87164	Homo sapiens cDNA FLJ14001 fis, clone Y7	1.85	0.15	upregulate stage
	420082	N43741	Hs.203148	ESTs	3.8	0.14	upregulate stage
	420653	A1224532	Hs.88550	ESTs	2.05	0.16	upregulate stage
40	421112	AW243875	Hs.265427	ESTs	3.3	0.13	upregulate stage
40	421683	AJ147535	Hs.143769	ESTs	2	0.14	upregulate stage
	421799	AW972292	Hs.292998	ESTs	2.35	0.15	upregulate stage
	422177	AA720878	Hs.201375	ESTs	3.3	0.14	upregulate stage
	422429	AA310527		gb:EST181333 Jurkat T-cells V Homo saple	3.45	0.12	upregulate stage
4 -	422956	BE545072	Hs.122579	hypothetical protein FLJ10461	2.15	0.11	upregulate stage
45	424026	A1798295	Hs.123218	ESTs .	3.8	0.14	upregulate stage
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris anligen	1	0.09	upregulate stage
	425761	AW664214	Hs.196729	ESTs	2	0.19	upregulate stage
	426427	M86699	Hs.169840	TTK protein kinase	2.1	0.16	upregulate stage
~^	427558	D49493	Hs.2171	growth differentiation factor 10	2.15	0.14	upregulate stage
50	427635	BE397988	Hs.179982	tumor protein p53-binding protein	3.9	0.11	upregulate stage
	428766	AA477989	Hs.98800	ESTs .	3.8	0.12	upregulate stage
	429761	Al276780	Hs.135173	ESTs	1.9	0.17	upregulate stage
	430132	AA204686	Hs.234149	hypothetical protein FLJ20647	5.05	0.11	upregulate stage
~ ~	430253	AK001514	Hs.236844	hypothetical protein FLJ10652	3.55	0.15	upregulate stage
55	430388	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 2	2.5	0.14	upregulate stage
	431187	AW971146	Hs.293187	ESTs	3.95	0.13	upregulate stage
	431364	AW971382	Hs.294016	ESTs, Weakly similar to alpha-1(XVIII) c	1.8	0.15	upregulate stage
	431401	AA504626	Hs.105735	ESTs	1.65	0.22	upregulate stage
	431419	AL041844	Hs.277522	ESTs, Weakly similar to FYVE finger-cont	1.45	0.16	upregulate stage
60	432361	AJ378562	Hs.159585	ESTs	2.15	0.14	upregulate stage
	432810	AA863400	Hs.23054	ESTs	3.7	0.08	upregulate stage
	432926	AA570416	Hs.32271	hypothetical protein FLJ10846	2	0.2	upregulate stage
	433108	AB002446		go:Homo sapiens mRNA from chromosome 5q2	2.35	0.14	upregulate stage
	434153	AF118072	Hs.283916	Homo saplens PRO1716 mRNA, complete cds	1	0.14	upregulate stage
65	435202	AJ971313	Hs.170204	KIAA0551 protein	1.25	0.16	upregulate stage
	435313	A1769400	Hs.189729	ESTs	2	0.18	upregulate stage
	435359	T60843	Hs.189679	ESTs	3.6	0.11	upregulate stage
	435488	H57954	Hs.34394	ESTs	2.2	0.22	upregulate stage
70	436583	AW293909	Hs.156935	ESTs	1.4	0.19	upregulate stage
70	436862	AI821940	Hs.264622	ESTs, Moderately similar to ALU8_HUMAN A	3.2	0.12	upregulate stage
	437485	Al149570	Hs.127363	ESTs	2.05	0.22	upregulate stage
	437854	AL119723		gb:DKFZp761A2124_r1 761 (synonym: hamy2)	2.75	0.15	upregulate stage
	438316	AA789249		gb:aj27g08.s1 Soares_testis_NHT Homo sap	2.45	0.13	upregulate stage
75	438390	Al422017		gb:tf45f12.x1 NCI_CGAP_Brn23 Homo sapien	3.1	0.13	upregulate stage
75	438915	AA280174	Hs.23282	ESTs	1.35	0.12	upregulate stage
	439983	AA858394	Hs.117955	ESTs	4	0.13	upregulate stage
	442048	AA974603		gb:op34f05.s1 Soares_NFL_T_GBC_S1 Homo s	5.55	0.09	upregulate stage

	****					0.44	
	442369	Al565071	Hs.159983	ESTs	3.85 2.35	0.14 0.23	upregulate stage upregulate stage
	442748 443717	Al016713 BE163884	Hs.135787 Hs.282331	ESTs ESTs	2.5	0.18	upregulate stage
	445935	AA287537	Hs.167585	ESTs	1	0.2	upregulate stage
5	446078	Al339982	Hs.156061	ESTs	2.25	0.24	upregulate stage
_	446139	H77395	Hs.39749	ESTs	2.15	0.18	upregulate stage
	446183	AA354991	Hs.14222	Homo sapiens mRNA; cDNA DKFZp761P019 (fr	3.45	0.14	upregulate stage
	448253	H25899	Hs.201591	ESTs	1.65	0.18	upregulate stage
10	448956	AK001674	Hs.22630	cofactor required for Sp1 transcriptiona	2.2	0.14	upregulate stage
10	449199	Al990122	Hs.196988	ESTs	1.25	0.23	upregulate stage
	449558	AA001765	Hs.157079	KIAA1227 protein	1 23	0.16 0.19	upregulate stage upregulate stage
	449576	AW014631	Hs.225068 Hs.18214	ESTs	6.3	0.19	upregulate stage
	449859 450434	T98077 AA166950	Hs.18645	ESTs ESTs, Weakly similar to partial CDS [C.e	1.65	0.22	upregulate stage
15	450625	AW970107	HS. 10040	gb:EST382188 MAGE resequences, MAGK Homo	1.35	0.19	upregulate stage
1,5	451337	Al400209	Hs.60787	ESTs	1.6	0.16	upregulate stage
	451686	AA059246	Hs.110293	ESTs	3.4	0.14	upregulate stage
	452079	AA830908	Hs.15825	ESTs	1.9	0.23	upregulate stage
	452220	BE158006	Hs.212296	ESTs	3.1	0.17	upregulate stage
20	453918	AW005123	Hs.231975	ESTs	1	0.21	upregulate stage
	455350	AW901809		gb:QV0-NN1020-170400-195-h02 NN1020 Homo	2	0.2	upregulate stage
	456511	AA282330	Hs.145668	ESTs	1.15 1.65	0.12 0.18	upregulate stage
	456986	D38299	Hs.170917	prostaglandin E receptor 3 (subtype EP3)	2.35	0.16	upregulate stage upregulate stage
25	457427 400296	AW971287 AA305627	Hs.139336	gb:EST383376 MAGE resequences, MAGL Homo ATP-binding cassette, sub-family C (CFTR	1	0.10	upregulate stage
23	400290	AF153341	Hs.283954	Homo sapiens winged helix/forkhead trans	2.33	0.2	upregulate stage
	400471	74 150571	16.200507	Tiento opporo milgos molecio.	7.45	0.09	upregulate stage
	400641				0.71	0.31	upregulate stage
	400749				7.25	0.1	upregulate stage
30	400751				5.35	0.09	upregulate stage
	400761				5.9	0.1	upregulate stage
	400843				5.85	0.07	upregulate stage
	401045				2.42 1.2	0.17 0.19	upregulate stage upregulate stage
35	401049				2.47	0.19	upregulate stage
22	401192 401203				6.73	0.08	upregulate stage
	401205				6.63	0.1	upregulate stage
	401276				6.95	0.1	upregulate stage
	401561				2.2	0.13	upregulate stage
40	401604				1	0.19	upregulate stage
	402245				7.65	0.09	upregulate stage
	402296			•	1.	0.33	upregulate stage
	402530			•	5.1	0.13	upregulate stage
45	402812				1.65 1	0.17 0.34	upregulate stage upregulate stage
43	402820				i	1	upregulate stage
	402892 403344				6.5	0.08	upregulate stage
	403344				3.7	0.11	upregulate stage
	404290				4.45	0.09	upregulate stage
50	404538				8.38	0.09	upregulate stage
	404676				8.3	0.09	upregulate stage
	404977				0.9	0.35	upregulate stage
	405033			OCH OF A L	1.52	0.31	upregulate stage
55	405109	N47812	Hs.81360	CGI-35 protein	6.2 1.95	0.1 0.06	upregulate stage upregulate stage
55	405654				3	0.00	upregulate stage
	406081 406270				6.09	0.13	upregulate stage
	406399				1.55	0.41	upregulate stage
	406475				6.2	0.12	upregulate stage
60	406485				1	0.48	upregulate stage
	406741	AA058357	Hs.74466	carcinoembryonic antigen-related cell ad	5.4	0.07	upregulate stage
	406867	AA157857	Hs.182265	keratin 19	2.26	0.37	upregulate stage
	407173	T64349	11. 400005	gb:yc10d08.s1 Stratagene lung (937210) H	3.35	0.11	upregulate stage upregulate stage
65	407230	AA157857	Hs.182265	keratin 19 gb:Homo sapiens mRNA for immunoglobulin	2.15 2.1	0.38 0.09	upregulate stage
05	407266	AJ235664 AW996872	Hs.172028	a disintegrin and metalloproteinase doma	3.25	0.03	upregulate stage
	407783 407825	NM_006152	Hs.40202	lymphoid-restricted membrane protein	6.25	0.08	upregulate stage
	407870	AB032990	Hs.40719	hypothetical protein KIAA1164	4.5	0.12	upregulate stage
	407877	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone H	3.3	0.15	upregulate stage
70	407968	NM_004863	Hs.59403	serine palmitoyltransferase, long chain	7.35	0.1	upregulate stage
	408162	AA993833	Hs.118527	ESTs	6.2	0.09	upregulate stage
	408363	NM_003389	Hs.44396	coronin, actin-binding protein, 2A	5.36	0.14	upregulate stage
	408576	NM_003542	Hs.46423	H4 histone family, member G	7.28	0.1	upregulate stage upregulate stage
75	408673	BE208517	Hs.184109	ribosomal protein L378	2.53 1	0.24 0.3	upregulate stage upregulate stage
75	408684	R61377 NM_005982	Hs.12727 Hs.54416	hypothetical protein FLJ21610 sine oculis homeobox (Drosophila) homolo	7.7	0.06	upregulate stage
	409361 409592		Hs.55058	EH-domain containing 4	3.95	0.1	upregulate stage
	703334	0000001	. 10.0000	,			

	409744	AW675258	Hs.56265	Homo sapiens mRNA; cDNA DKFZp586P2321 (f	1.55	0.16	upregulate stage
•	410141	R07775	Hs.287657	Homo sapiens cDNA: FLJ21291 fis, clone C	4.1	0.18	upregulate stage
	410232	AW372451	Hs.61184	CGI-79 protein	3.65	0.14	upregulate stage
_	410269	AW613597		gb:hh79g12x1 NCI_CGAP_GU1 Homo sapiens	7.55	0.09	upregulate stage
5	410297	AA148710	Hs.159441	ESTs	3.8	0.1	upregulate stage
	410337	M83822	Hs.62354	cell division cycle 4-like	4.35	0.19	upregulate stage
	410418	D31382	Hs.63325	transmembrane prolease, serine 4	1.42	0.4	upregulate stage
	410541	AA065003	Hs.64179	hypothetical protein	1.61	0.48	upregulate stage upregulate stage
10	410724 410785	AW799269		gb:RC0-UM0051-210300-012-f01 UM0051 Homo	6.65 1.4	0.12 0.16	upregulate stage
10	410765	AW803341 AA199907	Hs.67397	gb:IL2-UM0079-090300-050-D03 UM0079 Homo homeo box A1	3.05	0.10	upregulate stage
	411162	AW819944	113.07.007	gb:QV0-ST0294-240300-172-e03 ST0294 Homo	2	0.23	upregulate stage
	411173	R81571		gb:yj02h10.r1 Soares placenta Nb2HP Horno	7.2	0.1	upregulate stage
	411243	AB039886	Hs.69319	CA11	0.36	0.93	upregulate stage
15	411407	R00903		gb:ye87a07.r1 Soares fetal liver spleen	8	0.09	upregulate stage
	411704	Al499220	Hs.71573	hypothetical protein FLJ10074	1.75	0.22	upregulate stage
	412121	AB033061	Hs.73287	KIAA1235 protein	5.3	0.11	upregulate stage
	412123	BE251328	Hs.73291	hypothetical protein FLJ10881	6.9	0.1	upregulate stage
20	412129	M21984	Hs.73454	troponin T3, skeletal, fast	0.27	1.06	upregulate stage
20	412354	AW939148	11- 24100	gb:QV1-DT0069-110200-067-d06 DT0069 Homo	6.9 2.88	0.11 0.21	upregulate stage upregulate stage
	412610	X90908	Hs.74126 Hs.201262	fatty acid binding protein 6, Iteal (gas ESTs	2.85	0.15	upregulate stage
	412700 412706	BE222433 R97106	Hs.167546	ESTs	3.75	0.16	upregulate stage
	412935	BE267045	Hs.75064	tubulin-specific chaperone c	7	0.09	upregulate stage
25	413402	T24065		gb:seg2245 HMSWMYK Homo sapiens cDNA clo	6.3	0.12	upregulate stage
	413431	AW246428	Hs.75355	ubiquitin-conjugating enzyme E2N (homolo	3.45	0.11	upregulate stage
	413445	BE141022		gb:MR0-HT0067-201099-002-d10 HT0067 Homo	3.9	0.13	upregulate stage
	413587	AA156164	Hs.271833	Homo sapiens cDNA FLJ13473 fis, clone PL	7.63	0.09	upregulate stage
••	413800	Al129238	Hs.192235	ESTs	3.2	0.18	upregulate stage
30	413859	AW992356	Hs.8364	pyruvate dehydrogenase kinase, isoenzyme	2.54	0.33	upregulate stage
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	1.75	0.21	upregulate stage
	413991	H44725	Hs.71300	ESTs	1.3 8.1	0.21 0.07	upregulate stage
	414052	AW578849	Hs.283552	ESTs, Weakly similar to unnamed protein ab:601150419F1 NIH_MGC_19 Homo sapiens c	1.45	0.14	upregulate stage upregulate stage
35	414203 414343	BE262170 AL036166	Hs.75914	coated vesicle membrane protein	1	0.23	upregulate stage
55	414543	AA587775	Hs.66295	Homo sapiens HSPC311 mRNA, partial cds	i	0.36	upregulate stage
	414987	AA524394	Hs.165544	ESTs	1.51	0.51	upregulate stage
	414993	AW819403	Hs.77724	KIAA0586 gene product	2.72	0.23	upregulate stage
	415276	U88666	Hs.78353	SFRS protein kinase 2	6.95	0.1	upregulate stage
40	415303	R11813		gb:yf53a04.r1 Soares infant brain 1NIB H	8.1	0.09	upregulate stage
	415392	Z44067		gb:HSC1RF051 normalized Infant brain cDN	5.56	0.11	upregulate stage
	415572	F12294		gb:HSC38B051 normalized infant brain cDN	5.7	0.11	upregulate stage
	415773	R21651	11- 70004	gb:yh19g02.r1 Soares placenta Nb2HP Homo	5.3 2.19	0.11 0.28	upregulate stage upregulate stage
45	416012	AF061959	Hs.78961 Hs.21209	protein phosphatase 1, regulatory (inhib	7.61	0.11	upregulate stage
43	416074 416182	R40174 NM_004354	Hs.79069	ESTs cyclin G2	1	0.39	upregulate stage
	416518	H60730	Hs.18917	ESTs	6.6	0.1	upregulate stage
	416782	L35035	Hs.79886	ribose 5-phosphate isomerase A (ribose 5	3.9	0.17	upregulate stage
	416987	D86957	Hs.80712	KIAA0202 protein	2.54	0.31	upregulate stage
50	417094	NM_006895	Hs.81182	histamine N-methyltransferase	4.26	0.12	upregulate stage
	417275	X63578	Hs.81849	parvalbumin	1	0.12	upregulate stage
	417395	BE564245	Hs.82084	Integrin beta 3 binding protein (beta3-e	8.4	0.08	upregulate stage
	417683	AW566008	Hs.239154	Homo sapiens cDNA FLJ12814 fis, clone NT	2.2	0.17	upregulate stage
55	417759	R13567	Hs.12548	ESTs	8.18	0.09 0.08	upregulate stage upregulate stage
))	417848 417985	AA206581 AA187545	Hs.39457 Hs.83114	ESTs crystallin, zeta (quinone reductase)	8.6 7	0.00	upregulate stage
	417983	R39789	Hs.119714	EST	6.3	0.11	upregulate stage
	418394	AF132818	Hs.84728	Kruppel-like factor 5 (intestinal)	1.63	0.46	upregulate stage
	418406	X73501	Hs.84905	cytokeratin 20	3.5	0.02	upregulate stage
60	418555	Al417215	Hs.87159	Homo sapiens cDNA FLJ12577 fis, clone NT	6.75	0.06	upregulate stage
	418636	AW749855		gb:QV4-BT0534-281299-053-c05 BT0534 Homo	4.1	0.11	upregulate stage
	418786	Al796317	Hs.203594	Homo sapiens uncharacterized gastric pro	7.5	0.08	upregulate stage
	418827	BE327311	Hs.47166	HT021	5.6	0.13	upregulate stage
65	418948	Al217097	11- 04044	gb:qd43h07.x1 Soares_fetal_heart_NbHH19W	1.5 2.44	0.22 0.29	upregulate stage upregulate stage
UJ	419551	AW582256	Hs.91011	anterior gradient 2 (Xenepus laevis) hom poly (ADP-ribose) glycohydrolase	8.08	0.25	upregulate stage
	419590 419693	AF005043 AA133749	Hs.91390 Hs.92323	FXYD domain-containing ion transport reg	1.64	0.48	upregulate stage
	419712	AA360838	Hs.179909	Homo sapiens cDNA: FLJ22995 fis, clone K	5.4	0.11	upregulate stage
	419713	AW968058	Hs.92381	nudix (nucleoside diphosphate linked moi	7.9	0.06	upregulate stage
70	419720	AA249131	Hs.143607	hypothetical protein FLJ11068	2.95	0.15	upregulate stage
•	419791	Al579909	Hs.105104	ESTs	2.45	0.2	upregulate stage
	419872	A1422951	Hs.146162	ESTs	4.25	0.17	upregulate stage
	419903	T16938	Hs.87902	ESTs	2.5	0.22	upregulate stage
75	419932	AA281594	11a 400070	gb:zt03a01.r1 NCI_CGAP_GCB1 Homo saplens	6.1	0.12 0.14	upregulate stage upregulate stage
75	420026	AI831190 AK001714	Hs.166676	ESTs hypothetical protein similar to ankyrin	3.4 4.03	0.14	upregulate stage
	420187 420193	AK001714 Al460080	Hs.95744 Hs.202869	ESTs	1	0.10	upregulate slage
	450100	100000			•		•

	420281	A1623693	Hs.191533	ESTs	6.6	0.11	upregulate stage
	420337	AW295840	Hs.14555	Homo sapiens cDNA: FLJ21513 fis, done C	6	0.09	nbiedniaje sjede
	420370	Y13645	Hs.97234	uropiakin 2	1.2	0.45	upregulate stage
5	420383	T55154	Hs.144880	ESTs	3.8	0.12	upregulate stage
5	420450	AW968969	Hs.177726	ESTs	2.75	0.14	upregulate stage
	420588	AF000982	Hs.147916	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	8,1	0.09	upregulate stage
	420763	AA419392	Hs.178354	ESTs	8	0.09	upregulate stage
	420838	AW118210	Hs.5244	ESTs	8.65	0.07 0.32	upregulate stage
10	420981	L40904	Hs.100724	peroxisome proliferative activated recep	1.98 1	0.32	upregulate stage upregulate stage
10	421013	M62397	Hs.1345	mutated in colorectal cancers	5.8	0.12	upregulate stage
	421072	AJ215069	Hs.89113	ESTs	5.45	0.12	upregulate stage
	421110	AJ250717	Hs.1355	cathepsin E ESTs	2.75	0.16	upregulate stage
	421141 421338	AW117261 AA287443	Hs.125914	gb:zs52c10.r1 NCI_CGAP_GCB1 Homo sapiens	7.45	0.09	upregulate stage
15	421508	NM_004833	Hs.105115	absent in melanoma 2	4.21	0.19	upregulate stage
13	421634	AA437414	Hs.106283	hypothetical protein FLJ10262	7.79	0.08	upregulate stage
	421674	T10707	Hs.296355	neuronal PAS domain protein 2	7.5	0.1	upregulate stage
	421810	AK001718	Hs.108530	hypothetical protein FLJ10856	8.45	0.08	upregulate stage
	421855	F06504	Hs.27384	ESTs	2.9	0.16	upregulate stage
20	421898	AA259011	Hs.109268	hypothetical protein FLJ12552	7.06	0.11	upregulate stage
	422156	N34524	Hs.300893	ESTs, Weakly similar to envelope protein	3.75	0.16	upregulate stage
	422225	BE245652	Hs.118281	zinc finger protein 266	2.95	0.17	upregulate stage
	422243	AW803733	Hs.250655	prothymosin, alpha (gene sequence 28)	8.15	0.08	upregulate stage
	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	2.21	0.17	upregulate stage
25	422634	NM_016010	Hs.118821	CGI-62 protein	1.3	0.29	upregulate stage
	422988	AW673847	Hs.97321	ESTs	4.15	0.11	upregulate stage
	423081	AF262992	Hs.123159	sperm associated antigen 4	2.82	0.3	upregulate stage
	423596	AA328195	Hs.234101	ESTs, Wealdy similar to CTL1 protein [H.	2.75	0.19	upregulate stage
•	423872	AB020316	Hs.134015	uronyl 2-sulfotransferase	1.95	0.13	upregulate stage
30	423979	AF229181	Hs.136644	CS box-containing WD protein	7.12	0.11	upregulate stage
	424005	AB033041	Hs.137507	KIAA1215 protein	1.71	0.37	upregulate stage
	424014	AA333653	Hs.24790	KIAA1573 protein	4.85	0.12	upregulate stage
	424028	AF055084	Hs.153692	KIAA0686 protein	8.5	0.07	upregulate stage
25	424194	BE245833	Hs.169854	hypothetical protein SP192	6.1	0.1	upregulate stage
35	424308	AW975531	Hs.154443	minichromosome maintenance deficient (S.	6.59	0.11	upregulate stage
	424550	A1650541	Hs.115298	ESTs	3.25	0.12	upregulate stage
	424631	AA688021	Hs.179808	ESTs	5.45 3.55	0.11 0.15	upregulate stage upregulate stage
	424659	AW891298	Hs.301877	ESTs, Weakly similar to hSIAH2 [H.sapien	8.45	0.15	upregulate stage
40	424704 424775	A1263293	Hs 152096	cytochrome P450, subfamily IIJ (arachido SWAP-70 protein	6.65	0.11	upregulate stage
1 0	424775	AB014540 AL035588	Hs.153026 Hs.153203	MyoD family inhibitor	1.94	0.3	upregulate stage
	425086	M82882	Hs.154365	E74-like factor 1 (ets domain transcript	2.85	0.19	upregulate stage
	425259	AL049280	Hs.155397	Homo sapiens mRNA; cDNA DKFZp564K143 (fr	5.2	0.1	upregulate stage
	425277	NM_001241	Hs.15547B	cyclin T2	6	0.13	upregulate stage
45	425508	AA991551	Hs.97013	ESTs	5.67	0.1	upregulate stage
	425689	W16480	Hs.24283	ESTs	4.55	0.13	upregulate stage
	425721	AC002115	Hs.159309	uroplakin 1A	0.71	0.8	upregulate stage
	426069	H10807	Hs.30998	ESTs	3.4	0.17	upregulate stage
	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	6.84	0.09	upregulate stage
50	426110	NM_002913	Hs.166563	replication factor C (activator 1) 1 (14	6.7	0.1	upregulate stage
	426227	U67058	Hs.168102	Human proteinase activated receptor-2 mR	3.05	0.14	upregulate stage
	426603	AA382291		gb:EST95683 Testis I Homo sapiens cDNA 5	1.8	0.26	upregulate stage
	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	0.96	0.36	upregulate stage
F	426716	NM_006379	Hs.171921	sema domain, immunoglobulin domain (lg),	1.32	0.49	upregulate stage
55	426902	AI125334	Hs.97408	ESTS	5.05	0.07	upregulate stage
	426931	NM_003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	2.95	0.12	upregulate stage
	427001	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl	4.9	0.13 0.86	upregulate stage upregulate stage
	427087	BE073913	Hs.173515	uncharacterized hypothalamus protein HTO	0.57 1.86	0.31	upregulate stage
60	427398	AW390020	Hs.20415	chromosome 21 open reading frame 11		0.13	upregulate stage
00	427399	NM_014883 AB014526	Hs.177664	KIAA0914 gene product KIAA0626 gene product	5 5.3	0.13	upregulate stage
	427450	Z95152	Hs.178121 Hs.178695	mitogen-activated protein kinase 13	6.37	0.03	upregulate stage
	427490 427737	AA435988	Hs.178066	ESTs, Weakly similar to AF068289 5 HDCME	5.7	0.15	upregulate stage
	428042	AA419529	115.170000	gb:zv03d12.r1 Soares_NhHMPu_S1 Homo sapl	1.65	0.14	upregulate stage
65	428336	AA503115	Hs.183752	microseminoprotein, beta-	5.37	0.05	upregulate stage
05	428337	AA644508	110.100102	gb:af73c01.r1 Soares_NhHMPu_S1 Homo sapi	3.4	0.13	upregulate stage
	428365	AA295331	Hs.183861	Homo sapiens cDNA FLJ20042 fis, clone CO	1	0.17	upregulate stage
	428471	X57348	Hs.184510	stralifin	1.81	0.39	upregulate stage
	428583	AA430589	Hs.301374	ESTs, Moderately similar to ALU5_HUMAN A	7.55	0.11	upregulate stage
70	428670	AA431682	Hs.134832	ESTs	8.05	0.1	upregulate stage
	428785	AI015953	Hs.125265	ESTs	1.65	0.15	upregulate stage
	429332	AF030403	Hs.199263	Ste-20 related kinase	2.64	0.28	upregulate stage
	429343	AK000785	Hs.199480	epsin 3	3.15	0.27	upregulate stage
76	429556	AW139399	Hs.98988	ESTs	1.87	0.31	upregulate stage
75	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,	0.61	1.02	upregulate stage
	429824	AA296363	Hs.121520	Human BAC clone GS1-99H8	2.03	0.39	upregulate stage
	429966	BE081342	Hs.226799	HSPC039 protein	7.85	0.08	upregulate stage

	100070		11- 007000	able the absence calcium callinged from		0.61	unmonulate stone
	429970	AK000072	Hs.227059	chloride channel, calcium activated, fam	1 2.5	0.61 0.17	upregulate stage upregulate stage
	430042	AB023170	Hs.227850	KIAA0953 protein	1.98	0.4	upregulate stage
	430168 430308	AW968343 BE540865	Hs.300896 Hs.238990	ESTs, Highly similar to AF128113 1 promi cyclin-dependent kinase inhibitor 18 (p2	6.7	0.09	upregulate stage
5	430399	Al916284	Hs.199671	ESTs	8.09	0.08	upregulate stage
,	430763	AA485468	Hs.105658	ESTs	3.18	0.24	upregulate stage
	431474	AL133990	Hs.190642	ESTs	0.37	0.51	upregulate stage
	431567	N51357	Hs.260855	Homo saplens mRNA; cDNA DKFZp761G2311 (f	1.74	0.39	upregulate stage
	431585	BE242803	Hs.262823	hypothetical protein FLJ10326	3.55	0.15	upregulate stage
10	431683	AK001749	Hs.267604	hypothetical protein FLJ10450	8.55	0.08	upregulate stage
	431709	AF220185	Hs.267923	uncharacterized hypothalamus protein HT0	7.95	0.1	upregulate stage
	431846	BE019924	Hs.271580	uroplakin 1B	1.33	0.5	upregulate stage
	431912	AI660552	Hs.154903	ESTs, Weakly similar to A56154 Abl subst	4.15	0.12	upregulate stage
	432350	NM_005865	Hs.274407	protease, serine, 16 (thymus)	3.7	0.13	upregulate stage
15	432520	AI075978	Hs.188007	ESTs	2.05	0.22	upregulate stage
	432524	A1458020	Hs.293287	ESTs	5.15	0.14	upregulate stage
	432540	AIB21517	Hs.105866	ESTs	5.5	0.11	upregulate stage
	432623	AA557351	Hs.152448	ESTs, Moderately similar to PUR6_HUMAN M	8.43	0.09	upregulate stage
20	432632	AW973801	Hs.134656	ESTs	2.45	0.16	upregulate stage
20	432820	A1554057	Hs.152477	ESTs	8.29	0.09	upregulate stage
	432945	AL043683	Hs.271357	ESTs, Weakly similar to unnamed protein	3.22	0.23	upregulate stage
	433027	AF191018	Hs.279923	putative nucleotide binding protein, est	2.15	0.39 0.11	upregulate slage upregulate slage
	433037	NM_01415B	Hs.279938	HSPC067 protein Homo sapiens cDNA: FLJ22539 fis, clone H	5.1 7.9	0.1	upregulate stage
25	433156	R59206	Hs.17519	gb:nf37c08.s1 NCI_CGAP_Pr2 Homo sapiens	3.54	0.14	upregulate stage
23	433171	AA579425		ob:nv16h12.s1 NCI_CGAP_Pr22 Homo sapiens	6.6	0.08	upregulate stage
	433311 433383	AA688149 AF034837	Hs.192731	double-stranded RNA specific adenosine d	2.45	0.21	upregulate stage
	433409	AI278802	Hs.25661	ESTs	4.75	0.1	upregulate stage
	433650	AA603472	Hs.28456	ESTs	1.6	0.18	upregulate stage
30	433675	AW977653	Hs.110771	Homo sapiens cDNA: FLJ21904 fis, clone H	3.88	0.17	upregulate stage
50	434328	BE564937	Hs.15984	pp21 homolog	3	0.15	upregulate stage
	434476	AW858520	Hs.271825	ESTs	4.6	0.1	upregulate stage
	434683	AW298724	Hs.202639	ESTs	2.1	0.19	upregulate stage
	434726	AF062719	Hs.139053	ESTs	1.76	0.34	upregulate stage
35	435124	AA725362	Hs.120456	ESTs	7.7	0.09	upregulate stage
	435563	AF210317	Hs.95497	solute carrier family 2 (facilitated glu	5.8	0.09	upregulate stage
	435899	W89093	Hs.189914	ESTs	1.32	0.42	upregulale stage
	436026	Al349764	Hs.217081	ESTs	1	0.22	upregulate stage
40	436154	AA764950	Hs.119898	ESTs	8.4	0.05	upregulate stage
40	436293	AI601188	Hs.120910	ESTs	2.42	0.2	upregulate stage
	436361	AA825814	Hs.149065	ESTs	6.95	0.09	upregulate stage
	436455	Al027959	Hs.132300	ESTs	3.25	0.15	upregulate stage
	436577	W84774	Hs.17643	ESTs	6.3	0.06	upregulate stage
45	436684	AW976319	Hs.94806	KIAA1062 protein	4.75	0.12 0.13	upregulate stage upregulate stage
43	437036	Al571514	Hs.133022	ESTS	1.4 1	0.13	upregulate stage
	437146	AA730977	Hs.174838	gb:nw55f05.s1 NCI_CGAP_Ew1 Homo saplens Homo saplens cDNA FLJ14192 fis, clone NT	3.25	0.17	upregulate stage
	437262 437277	BE250537 AA748016	Hs.123370	ESTs	6.75	0.09	upregulate stage
	437882	Al243203	Hs.131572	ESTs	8.12	0.09	upregulate stage
50	438392	AA806395	Hs.123205	ESTs	1	0.34	upregulate stage
-	438416	N76398	Hs.21187	Homo sapiens cDNA: FLJ23068 fis, clone L	8.1	0.1	upregulate stage
	438739	AA815391		gb:ai61c02.s1 Soares_testis_NHT Homo sap	4.69	0.12	upregulate stage
	439211	A1890347	Hs.271923	Homo sapiens cDNA: FLJ22785 fis, clone K	6.65	0.11	upregulate stage
	439394	AA149250	Hs.56105	ESTs, Weakly similar to WDNM RAT WDNM1 P	3.19	0.11	upregulate stage
55	439544	W26354	Hs.28891	hypothetical protein FLJ11360	2.3	0.34	upregulate stage
	439569	AW602166	Hs.222399	CEGP1 protein	0.73	0.51	upregulate stage
	439586	AA922936	Hs.110039	ESTs	4.3	0.1	upregulate stage
	439706	AW872527	Hs.59761	ESTs	1	0.14	upregulate stage
C 0	439897	NM_015310	Hs.6763	KIAA0942 protein	8.4	0.08	upregulate stage
60	439898	AW505514	Hs.209561	ESTs, Weakly similar to C05E11.1 gene pr	7.35	0.1	upregulate stage
	439949	AW979197	Hs.292073	ESTs	8.55 6	0.08 0.11	upregulate stage upregulate stage
	440035	BE561589	Hs.285122	hypothetical protein FLJ21839 ESTs, Moderately similar to ALU5_HUMAN A	7.95	0.07	upregulate stage
	440619	AW408586	Hs.91052	gb:RC4-ST0316-190100-011-c08 ST0316 Homo	5.95	0.11	upregulate stage
65	440635 440787	AW610331 AW292043	Hs.209433	ESTs	5.05	0.12	upregulate stage
05	441233	AA972965	Hs.135568	ESTs	1.7	0.12	upregulate stage
	441528	A1003797	Hs.130815	hypothetical protein FLJ21870	7.2	0.09	upregulate stage
	441670	AW874090	Hs.127392	ESTs, Moderately similar to p33ING1 [H.s	2.45	0.19	upregulate stage
	441683	BE564214	Hs.102946	ESTs	5.9	0.13	upregulate stage
70	441847	AI215564	Hs.220972	ESTs	6.95	0.11	upregulate stage
	442145	Al022650	Hs.8117	erbb2-interacting protein ERBIN	3	0.19	upregulate stage
	442299	AW467791	Hs.155561	ESTs	5.05	0.13	upregulate stage
	442315	AA173992	Hs.7956	ESTs .	3.97	0.17	upregulate stage
	442528	AF150317	Hs.134217	ESTs	1.4	0.34	upregulate stage
75	442571	C06338	Hs.165464	ESTs	8_	0.08	upregulate stage
	442607	AA507576	Hs.288361	Homo sapiens cDNA: FLJ22696 fis, done H	6.7	0.1	upregulate stage
	442652	Al005163	Hs.201378	ESTs, Weakly similar to KIAA0944 protein	7.15	0.11	upregulate stage

	442947	R40800	Hs.21303	ESTs	8.5	0.08	upregulate stage
	442993	BE018682	Hs.44343	ESTs	1.91	0.34	upregulate stage
	443015	R33261	Hs.6614	ESTs	8.5	0.09	upregulate stage
	443085	AI032660	Hs.164711	ESTs	4	0.13	upregulate stage
5	443228	W24781	Hs.293798	ESTs	1.61	0.47	upregulate stage
•	443367	AW071349	Hs.215937	ESTs	1.75	0.29	upregulate stage
	443371	Al792888	Hs.145489	ESTs	5.85	0.11	upregulate stage
	443564	AI921685	Hs.199713	ESTs	1.4	0.18	upregulate stage
	443638	AW028696	Hs.145679	ESTs	3.25	0.15	upregulate stage
10				ESTs, Weakly similar to 1207289A reverse	6.45	0.11	upregulate stage
10	443677	AV646096	Hs.293776		6.72	0.09	upregulate stage
	443861	AW449462	Hs.134743	ESTs	4.25	0.11	upregulate stage
	444097	AW517412	Hs.150757	ESTs	8.45	0.09	
	444171	AB018249	Hs.10458	small inducible cytokine subfamily A (Cy			upregulate stage
4 /	444184	T87841	Hs.282990	Human DNA sequence from clone RP1-28H20	8.1	0.1	upregulate stage
15	444385	BE278964	Hs.11085	CGI-111 protein	8.6	0.09	upregulate stage
	444624	AV650476	Hs.282936	ESTs	7.52	0.1	upregulate stage
	444631	AW995395	Hs.84520	ESTs	1.25	0.21	upregulate stage
	444707	AI188613	Hs.143866	ESTs	2.1	0.21	upregulate stage
	444735	BE019923	Hs.243122	hypothetical protein FLJ13057 similar to	6.8	0.1	upregulate stage
20	444779	Al192105	Hs.147170	ESTs	0.94	0.6	upregulate stage
	444823	BE262989	Hs.12045	putative protein	8.09	0.1	upregulate stage
	444858	Al199738	Hs.208275	ESTs, Weakly similar to unnamed protein	4.6	0.09	upregulate stage
	444875	Al200759	Hs.44737	ESTs	6.85	0.11	upregulate stage
	444888	Al651039	Hs.148559	ESTs	3.15	0.18	upregulate stage
25	445076	Al206888	Hs.154131	ESTs	7.81	0.09	upregulate stage
23	445076			ESTs	2	0.07	upregulate stage
		AW189787	Hs.147474		2.65	0.12	upregulate stage
	445189	AI936450	Hs.147482	ESTS	1.47	0.46	upregulate stage
	445320	AA503887	Hs.167011	Homo sapiens cDNA: FLJ21362 fis, clone C			
20	445594	AW058463	Hs.12940	zinc-fingers and homeoboxes 1	6.2	0.07	upregulate stage
30	445674	BE410347	Hs.13063	transcription factor CA150	3.8	0.15	upregulate stage
	445817	NM_003642	Hs.13340	histone acelyltransferase 1	5.6	0.1	upregulate stage
	445871	AJ702901	Hs.145582	ESTs	2.3	0.33	upregulate stage
	446140	AA356170	Hs.26750	Homo sapiens cDNA: FLJ21908 fis, clone H	2.15	0.18	upregulate stage
	446553	AB021179	Hs.15299	HMBA-inducible	2.55	0.18	upregulate stage
35	446651	AA393907	Hs.97179	ESTs	8.05	0.07	upregulate stage
	447086	Al421397	Hs.161321	ESTs	6.9	0.1	upregulate stage
	447290	A1476732	Hs.263912	ESTs	2.35	0.18	upregulate stage
	447379	Al554946	Hs.158794	ESTs	6.3	0.09	upregulate stage
	447390	X95384	Hs.18426	translational inhibitor protein p14.5	7.25	0.08	upregulate stage
40	447533	NM_004786	Hs.18792	thioredoxin-like, 32kD	1	0.24	upregulate stage
10	447548	N53388	Hs.7222	ESTs	8.6	0.07	upregulate stage
	447731	AA373527	Hs.19385	CGI-58 prolein	7.3	0.08	upregulate stage
	447853	A1434204	Hs.164285	ESTs, Weakly similar to Afg1p [S.cerevis	6.75	0.11	upregulate stage
		AA081218	Hs.58608	Homo sapiens cDNA FLJ14206 fis, clone NT	2.2	0.24	upregulate stage
45	447857			ESTs	3.6	0.13	upregulate stage
47	447965	AW292577	Hs.94445		5.8	0.11	upregulate stage
	448072	A1459306	Hs.24908	ESTs	2.72	0.28	upregulate stage
	448474	Al792014	Hs.13809	ESTS	4.8	0.12	upregulate stage
	448513	AA344741	Hs.61773	Homo sapiens cDNA FLJ11648 fis, clone HE		0.12	
50	448601	R61666	Hs.293690	ESTs	2.65		upregulate stage
50	448625	AW970786	Hs.178470	Homo sapiens cDNA: FLJ22662 fis, clone H	1.68	0.44	upregulate stage
	448735	AW473830	Hs.171442	ESTs	2.95	0.19	upregulate stage
	448807	AI571940	Hs.7549	ESTs	2.3	0.14	upregulale stage
	448920	AW408009	Hs.22580	alkylglycerone phosphate synthase	8.6	0.08	upregulate stage
	449448	D60730	Hs.57471	ESTs	1	0.13	upregulate stage
55	449517	AW500106	Hs.23643	serine/threonine protein kinase MASK	6.4	0.11	upregulate stage
	449585	Al655321	Hs.197693	ESTs	1	0.16	upregulate stage
	449619	A1655992	Hs.300647	ESTs	8.35	0.09	upregulate stage
	449659	R60031	Hs.198899	eukaryotic translation initiation factor	6.65	0.11	upregulate stage
	449689	AF228421	Hs.301039	Human DNA sequence from clone RP1-132F21	8.35	0.06	upregulate stage
60	449901	AI674072	1,5,55	gb:wd15h01.x1 Soares_NFL_T_GBC_S1 Homo s	5.8	0.1	upregulate stage
•	449964	AW001741	Hs.273193	hypothetical protein FLJ10706	8.7	0.09	upregulate stage
	450170	A1685366	Hs.32775	ESTs	6.77	0.12	upregulate stage
		A1916071	Hs.224623	ESTs	5.73	0.1	upregulate stage
	450193		Hs.288928	Homo sapiens cDNA: FLJ23298 fis, clone H	8.2	0.08	upregulate stage
65	450336	AA046814 N90956		hypothetical prolein FLJ22087	4.2	0.19	upregulate stage
UJ	450341		Hs.17230	ESTs	4.71	0.15	upregulate stage
	450353	AJ244661	Hs.103296		2.14	0.25	upregulate stage
	450737	AW007152	Hs.203330	ESTs	6	0.1	upregulate stage
	450795	AW173371	Hs.60435	ESTS	1.75	0.18	upregulate stage
70	450928	AI744417	11-05000	gb:tr10h12.x1 NCI_CGAP_Ov23 Homo sapiens			
70	451134	AA318315	Hs.25999	hypothetical protein FLJ22195	4.3	0.1	upregulate stage
	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	4.75	0.16	upregulate stage
	451593	AF151879	Hs.26706	CGI-121 protein	5.8	0.11	upregulate stage
	451618	AA115639	Hs.26764	KIAA0546 protein	5.8	0.13	upregulate stage
	451668	Z43948	Hs.26789	hypothetical protein FLJ 10320	0.73	0.26	upregulate stage
75	451790	AA927403	Hs.43897	ESTs, Weakly similar to P2CA_HUMAN PROTE	3.2	0.25	upregulate stage
	452001	AI827675	Hs.297735	Homo sapiens cDNA: FLJ22094 fis, clone H	3.7	0.13	upregulate stage
	452039		Hs.172510	ESTs	1	0.65	upregulate stage

	452046	AB018345	Hs.27657	KIAA0802 protein	1.13	0.39	upregulate stage	
	452092	BE245374	Hs.27842	hypothetical protein FLJ11210	3.2	0.15	upregulate stage	
		AL037715	Hs.28785	Homo sapiens mRNA; cDNA DKFZp586F0219 (f	8.25	0.07	upregulate stage	
_		H23329	Hs.290880	ESTs, Wealdy similar to ALU1_HUMAN ALU S	1	0.34	upregulate stage	
5	452420	BE564871	Hs.29463	centrin, EF-hand protein, 3 (CDC31 yeast	4.97	0.13	upregulate stage	
	452714	AW770994	Hs.30340	hypothetical protein KIAA1165	7.6	0.09	upregulate stage	
		AF053551	Hs.31584	metaxin 2	5.3 3.78	0.0 9 0.13	upregulate stage upregulate stage	
	453765	Al470523 BE279901	Hs.182356 Hs.35091	ESTs, Moderately similar to translation hypothetical protein FLJ10775	3.95	0.13	upregulate stage	
10		AW137224	Hs.245869	ESTs	6	0.09	upregulate stage	
- •	454044	AW022393		gb:df37h12.y1 Morton Felal Cochlea Horno	1.15	0.18	upregulate stage	
	454289	AL137554	Hs.49927	Homo sapiens mRNA; cDNA DKFZp434H1720 (f	7.05	0.1	upregulate stage	
		AW364844		gb:QV3-DT0044-221299-045-c03 DT0044 Homo	1_	0.37	upregulate stage	
1.5			Hs.251928	nuclear pore complex interacting protein	2.7	0.13	upregulate stage	
15		BE160229		gb:QV1-HT0413-090200-062-a12 HT0413 Homo	8.5 1.15	0.09 0.14	upregulate stage upregulate stage	
		AW820852 AW820794	Hs.252406	gb:RC2-ST0301-120200-011-f12 ST0301 Homo hypothetical protein FLJ12296 similar to	3.65	0.14	upregulate stage	
		AW860972	115.232400	gb:QV0-CT0387-180300-167-h07 CT0387 Homo	5.7	0.07	upregulate stage	
	455511	BE144762		gb:CM0-HT0180-041099-065-b04 HT0180 Homo	1	0.25	upregulate stage	
20		AI751357	Hs.288741	Homo sapiens cDNA: FLJ22256 fis, clone H	8.35	0.09	upregulate stage	
	456258	AW976410	Hs.289069	Homo saptens cDNA: FLJ21016 fis, clone C	4.85	0.14	upregulate stage	
	456279	AW006783	Hs.6586	ESTs	7.25	0.1	upregulate stage	
	457518	AA825350	Hs.143805	ESTs, Weakly similar to ALU1_HUMAN ALU S	6.84	0.11	upregulate stage	
25			Hs.190226	ESTs	2.6 1	0.2 0.25	upregulate stage upregulate stage	
23	457982 458080	AW856093 BE142728	Hs.183617	ESTs gb:MR0-HT0157-021299-004-d08 HT0157 Homo	2.05	0.23	upregulate stage	
	458340	Al457102	Hs.121583	Human glucose transporter pseudogene	2.25	0.18	upregulate stage	
	458440	A1095468	Hs.135254	ESTs, Weakly similar to thrombospondin t	2.35	0.13	upregulate stage	
	458771	AW295151	Hs.163612	ESTs	1	0.19	upregulate stage	
30	459092	AA722012	Hs.255757	ESTs, Weakly similar to KIAA0611 protein	6.95	0.1	upregulate stage	
	TABLE 18	3						•
	Pkey:	Unique Fo	s probeset iden	lifier number				
35		ber: Gene clus						
	Accession		accession numb	ers				
								-
	Dken	CAT	According					
40	Pkey	CAT	Accessions					
10	407774	101538_1	AA084958	AA214034 AA044587 AA130152 AA130116 D81924				
	407939	1027688_1		V118352 AW196215				
	407980	103087_1		A1263500 AA046397				
15	408224	1048369_1		AW176000 AW175999 AW175994 AW176004 AW175	989		,	
45	408241	1048867_1		AW178965 BE141057				
	408268	104987_1		A053529 BE173313 AW177960 AW178066 AW178022				
,	408277 408306	1050131_1 1050863_1		AW178855 BE141990 BE141993 BE141994 BE06240	BE062404	4 AW1788	150	
	409281	111502_1		AA075659 AA075660 AA069828	, , , , , , , , , , , , , , , , , , , ,			
50	409408	1128045_1		AW387874 AW387826 AW387758 AW387864 AW809	268 AW387	7754		
	409566	114012_1	AA078899	AA078782 AA075788		1107		
	409760	115373_1				1104		
				T93016 T92950 AA077551		,,,,,		
	409794	1154785_1	AW885691	BE185989 BE185940 AW500322 H10282		,,,,,		
55	409810	1154785_1 1155339_1	AW885691 AW500895	BE185989 BE185940 AW500322 H10282 AW937549				
55	409810 409840	1154785_1 1155339_1 1156071_1	AW885691 AW500895 AW502122	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720				
55	409810 409840 410071	1154785_1 1155339_1 1156071_1 1174764_1	AW885691 AW500895 AW502122 AW582568	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818				
55	409810 409840 410071 410128	1154785_1 1155339_1 1156071_1 1174764_1 117773_1	AW885691 AW500895 AW502122 AW582568 AW904599	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150				
55	409810 409840 410071 410128 410269	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818	234			
55 60	409810 409840 410071 410128 410269 410475 410495	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1204788_1 1205826_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE00235 BE080168 AW749938 AW749986 AW749966 R87124 AW860541	234			
60	409810 409840 410071 410128 410269 410475 410495 410520	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1204788_1 1205826_1 1206965_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW918647 AW818655 AW818637 AW818 AA325920 AW964919 AA081785 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751356 H81987 BE180336 BE180186	234			·
60	409810 409840 410071 410128 410269 410475 410495 410520 410534	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1204788_1 1205826_1 1206965_1 1207247_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2 AW752710 AW905138	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818566 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081765 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 40404 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519	234			·
60	409810 409840 410071 410128 410269 410475 410495 410520 410534 410537	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1204788_1 1205826_1 1206965_1 1207247_1 1207336_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2 AW752710 AW905138 AW753108	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW55209 N36993 AW694327 AW903629	234			·
60	409810 409840 410071 410128 410269 410475 410495 410520 410534 410537 410560	1154785_1 1155339_1 1156071_1 117773_1 117773_1 1189983_1 1204788_1 1205826_1 1206965_1 1207336_1 1208311_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2 AW752710 AW905138 AW753108 N29220 AW	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 44040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754224	234			
60	409810 409840 410071 410128 410269 410475 410495 410520 410534 410537 410560 410562	1154785_1 1155339_1 1156074_1 117776_1 117773_1 1189983_1 1204788_1 1205826_1 1207247_1 1207336_1 1208311_1 1208415_1	AW885691 AW500895 AW502122 AW562568 AW904599 AW613597 AW749927 N95428 W2 AW752710 AW905138 AW753108 N29220 AW	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW918647 AW818655 AW818637 AW818 AA325920 AW964919 AA081785 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754224 AW754362 H74000	234			
60	409810 409840 410071 410128 410269 410475 410495 410520 410534 410537 410560 410562 410724	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1204788_1 1205826_1 1207247_1 1207336_1 1208311_1 1208415_1 1218202_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW763597 AW749927 N95428 W2 AW752710 AW905138 AW753108 N29220 AW AW858528 AW858528 AW858528	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 44040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754224	234			·
60	409810 409840 410071 410128 410269 410475 410520 410534 410537 410560 410562 410724 410751	1154785_1 1155339_1 1156074_1 117776_1 117773_1 1189983_1 1204788_1 1205826_1 1207247_1 1207336_1 1208311_1 1208415_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AV AW858528 AW79269 AA357918	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753038 R13818 Z43519 AW852909 N36993 AW894327 AW903629 7754225 AW754224 AW754362 H74000 AW793385 AW799501 AW799386 AW799270 AW799	234			·
60	409810 409840 410071 410128 410269 410475 410495 410520 410534 410537 410560 410562 410724	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1205826_1 1207247_1 1207336_1 1208415_1 1218202_1 121964_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 AW749927 N95428 W2 AW752710 AW905138 AW753108 N29220 AW AW858528 AW799269 AA357918 T63840 AW	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753038 R13818 Z43519 AW852909 N36993 AW894327 AW903629 7754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 7801569 AW801568 AW803265 AW803403 AW803466 AW803402 AW803	234 7 1467 1413 AW80	3268 AW8	303396 AW803334 AW803	3355
60	409810 409840 410071 410128 410269 410475 410520 410534 410537 410562 410724 410754	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1205826_1 1207247_1 1207336_1 1208311_1 1208415_1 1218202_1 1219733_1	AW885691 AW500952 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AW AW858528 AW799269 AA357918 T63840 AW	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE6080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754024 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 7801569 AW8013668 AW803265 AW803403 AW803466 AW803402 AW803 AW803265 AW803403 AW803466 AW803402 AW803	234 7 1467 1413 AW80	3268 AW8	303395 AW803334 AW803 307091 AW807275 AW807	3355 7284 AW807287 AW845891
60	409810 409840 410070 410128 410269 410475 410452 410534 410537 410560 410560 410754 410754 410754 410754 410785	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1206965_1 1207247_1 1207336_1 1208311_1 1208415_1 1218924_1 1219733_1 1221055_1 1223878_1	AW885691 AW500895 AW502122 AW562568 AW904599 AW613597 N95428 W2 AW752710 AW905138 N29220 AW AW858528 AW799269 AA357918 T63840 AW AW803341 AW807073 AW807195	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW525099 N36993 AW894327 AW903629 4754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 801569 AW801568 AW803265 AW801668 AW803265 AW801668 AW807055 AW807067 AW807276 AW807403 AW807	234 7 1467 1413 AW80	3268 AW8	303395 AW803334 AW803	3355 7284 AW807287 AW845891
60	409810 409840 410071 410128 410269 410475 410495 410534 410534 410534 410560 410562 410724 410754 410754 410785 410844	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1205826_1 1207247_1 1207347_1 1208311_1 1208415_1 1218202_1 121964_1 1221055_1 1223878_1	AW885691 AW500895 AW502122 AW562568 AW904599 AW613597 AW749927 AW955138 AW752710 AW905138 AW75220 AW AW858528 AW799269 AA357918 T63840 AW AW803041 AW807195 AW807195 AW807195	BE185989 BE185940 AW500322 H10282 AW397549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 44040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 7801569 AW801568 AW807055 AW807067 AW807276 AW807030 AW807 AW8070571 AW807271	234 7 1467 1413 AW80	3268 AW8	303395 AW803334 AW803 307091 AW807275 AW807	3355 7284 AW807287 AW845891
60	409810 409840 410071 410128 410269 410475 4104520 410537 410562 410724 410751 410754 410755 410844	1154785_1 1155339_1 1176671_1 1177764_1 117773_1 1189983_1 1205826_1 1205965_1 1207336_1 1208311_1 1218202_1 121964_1 1219733_6 1221955_1 1223878_1	AW885691 AW500192 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AW AW858528 AW799269 AA357918 T63840 AW AW807073 AW807073 AW807195 AW807195 AW80795 AW807195	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753038 R13818 Z43519 AW852909 N36993 AW894327 AW903629 7754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 7801569 AW801568 AW803025 AW807067 AW807276 AW807030 AW807 AW8070271 AW810555 AW810196 AW810619 AW810507 AW810555 AW810196 AW810619 AW810507 AW810555 AW810196 AW810619 AW810507	234 7 1467 1413 AW80	3268 AW8	303395 AW803334 AW803 307091 AW807275 AW807	3355 7284 AW807287 AW845891
60 65 70	409810 409840 410071 410128 410269 4104795 410520 410537 410560 410562 410751 410751 410754 410784 410910 410910 410910 410910 410910	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1205826_1 1207247_1 1207336_1 1208415_1 1218733_1 1221055_1 1223878_1 1228378_1 1228236_1 1228236_1	AW885691 AW500895 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AV AW858528 AW799269 AA357918 T63840 AW AW803341 AW807073 AW807195 AW810204 AW812877	BE185989 BE185940 AW500322 H10282 AW397549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 44040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW852909 N36993 AW894327 AW903629 4754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA089516 AA357917 7801569 AW801568 AW807055 AW807067 AW807276 AW807030 AW807 AW8070571 AW807271	234 7 1467 1413 AW80	3268 AW8	303395 AW803334 AW803 307091 AW807275 AW807	3355 284 AW807287 AW845891
60	409810 409840 410071 410128 410269 410475 4104520 410537 410562 410724 410751 410754 410755 410844	1154785_1 1155339_1 117676_1 117776_1 117773_1 1189983_1 1205826_1 1205826_1 1207336_1 1207336_1 1208311_1 1218202_1 121964_1 1219733_1 12219733_1 1221973_1 12228736_1 1228736_1 1228736_1 1228736_1 1228736_1 1228736_1 1228736_1	AW885691 AW500122 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AV AW858528 AW399269 AA357918 T63840 AW AW807073 AW807195 AW807073 AW807195 AW812278 AW812278 AW812877 H9300	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818656 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 2040 AW751366 H81987 BE180336 BE180186 AW753038 R13818 Z43519 AW852909 N36993 AW894327 AW903629 7754225 AW754224 AW754362 H74000 AW799385 AW799501 AW799386 AW799270 AW799 AA08935 AW799501 AW799386 AW80402 AW803 AW807055 AW801568 AW803265 AW801568 AW807271 AW810555 AW810196 AW810619 AW810507 AW810555 AW810196 AW810619 AW810507 AW812586 AW812274 AW812878 AW812252 AW812880 V818022 AW818044 AW885743 AW865702 AW865698	234 7 467 413 AW80 363 AW84	3268 AW8 5892 AW8	307091 AW807275 AW807	7284 AW807287 AW845891
60 65 70	409810 409840 410071 410128 410269 4104795 410530 410537 410560 410562 410724 410754 410754 410785 410844 410973 410973 410973 410973 410973 410110	1154785_1 1155339_1 1156071_1 1174764_1 117773_1 1189983_1 1205826_1 1206965_1 1207247_1 1208311_1 1208415_1 1218924_1 121993_1 1221055_1 1223878_1 1226517_1 1228236_1 1228736_1 1228736_1	AW885691 AW500122 AW502122 AW582568 AW904599 AW613597 N95428 W2 AW752710 AW905138 AW753108 N29220 AV AW858528 AW399269 AA357918 T63840 AW AW807073 AW807195 AW807073 AW807195 AW812278 AW812278 AW812877 H9300	BE185989 BE185940 AW500322 H10282 AW937549 AW502125 AW501663 AW501720 AW818556 AW818647 AW818655 AW818637 AW818 AA325920 AW964919 AA081786 T05150 BE080235 BE080168 AW749938 AW749986 AW749966 R87124 AW860547 24040 AW751366 H81987 BE180336 BE180186 AW753008 R13818 Z43519 AW52509 N36993 AW894327 AW903629 4754225 AW754224 AW754362 H74000 AW69295 AW504568 AW803265 AW801568 AW803265 AW801568 AW803265 AW807957 AW807276 AW807403 AW807 AW807055 AW807067 AW807276 AW807030 AW807 AW807055 AW8010196 AW810619 AW810507 AW810555 AW810196 AW810619 AW810507 AW810555 AW811952 AW812880 V818022 AW818044	234 7 467 413 AW80 363 AW84	3268 AW8 5892 AW8	307091 AW807275 AW807	7284 AW807287 AW845891

			AW819265 AW819268 AW819246 BE 152602 AW819249 AW819251 AW819263 AW819194
	411137	1233775_1	AW819455 AW819711 AW819553
	411157	1234099_1	AW819867 AW819956 AW820159
_	411159	1234102_1	AW820178 AW820183 AW819870 AW819937 AW835709 AW820184 AW820157 AW819945 AW820096
5	411162	1234161_1	AW819944 AW820182 AW820168 AW819959 AW819953
	411170	1234379_1	AW820503 AW820306 AW820429 BE174741 AW820244 BE174738
	411173	123446_1	R81571 AW962014 AA324277
	411193	1235254_1	AW821484 AW821461 AW821490 AW821525 AW821526 AW821519
10	411242	1236393_1	BE146808 BE146949 AW833828 BE147002 BE147066 AW833422 AW833475 AW833485 AW833414 AW833406 AW83395 AW833640
10			AW833835 AW833421 BE146805 AW833465 BE146753 BE147004 AW833473 AW833573 BE147068 AW833466 AW833680 BE147063 BE147058
		4000440 4	BE146807 AW833830 AW833694 AW833596 AW833601
	411245	1236412_1	AW833441 AW833552 AW833700 AW833610 AW833673 AW833675
	411282	1237660_1	AW995011 AW880630 AW995662 AW880196 AW850455 AW995379 AW880634 AW938253 AW880580 AW938263 AW880584 AW860454 AW880603 AW880506 AW938265 AW880592 AW880592 AW852203 AW880588 AW880680 AW995392 AW880598 AW860603 AW880590 AW8
15			AW846534 AW880098 AW880108 AW860453 AW938051 AW995191 AW880532 AW880542 AW938197 AW994929 AW880635 AW835438
13			AW938057 AW938054
	411327	1238874_1	AW836922 AW876719 AW876688 AW836919 AW836997 AW836908 AW836912 AW836993
	411336	1239216_1	AW837675 AW837356 AW837581 AW837348 AW837681
	411339	1239387_1	BE 164598 AW837578 AW837582
20	411407	1244071_1	R00903 R20424 AW844169
	411418	124518_1	BE241870 AI752584 Z19223 AA307961 AA181165 AA093272 AW368570
	411425	1245503_1	AW846012 AW846007 AW845996 AW845975
	411461	1246730_1	AW847937 AW847672 AW847809 AW847923 AW847808 AW847616
25	411474	1247047_2	AW848427 AW848890 AW848159 AW848118 AW848634 AW848285 AW848086 AW848485 AW848283 AW848162
23	411526	1248748_1	AW850327 AW850350 AW850348 AW850375
	411560	1249443_1	AW851186 AW996967 BE143456 BE144593 AW851632 AW968149 AW968144 W21059
	411568 411691	1249776_1 1254166_1	AW857199 BE066018 BE065982 BE066082 BE065949 BE066019 BE066081 BE065954 BE066084
	411727	1255052_1	AW858443 AW858436 AW851923 AW858551 AW861872 AW858674 AW861904 AW858398
30	411741	1255976_1	AW859650 BE071806 AW859655
-	411771	1257335_1	AW993247 AW861464
	411787	1258789_1	AW863568 BE161696 BE161629 BE161824
	411788	125879_1	AW897793 R20054 H23321
~ ~	411826	1260006_1	AW947946 AW947986 AW947977 AW865187 AW865246 AW865182 AW865376 AW865392 AW865184
35	411840	1260678_1	AW866330 AW866410 AW866332 AW866411 AW866327 AW866326 AW866335 AW866334 AW866331 AW866333 AW866328 AW866329
	411860	126168_1	T89420 N87510 AA095932
	411880	1263110_1	AW872477 BE088101 T05990
	411932	1266125_1	AW876548 AW876577 AW876528 AW876523 AW876519 AW876540 AW876569 AW876534 AW876563 AW876545 AW876574
40	412134	1279147_1	AW895560 AW895557 AW895314 AW895537 AW895287 AW895411
+0	412178 412296	1281471_1 1288043_1	AW898526 AW898525 Z19700 AW936233 AW936272
	412303	1288130_1	AW936336 AW936339
	412305	1288141_1	AW936369 AW936377 AW936355 AW936410 AW936460
	412312	1288349_1	AW936686 AW936656 AW936608 AW936635 AW936652 AW936679 AW936726 AW936602 AW936733
45	412327	1288935_1	AW937355 AW937450 BE162340 BE162397
	412354	1290342_1	AW939148 AW939200 BE161819
	412357	1290611_1	AW939537 AW939584 W92705
	412359	129085_1	AW837985 AW837938 AA101955 AW837913 AW837935
50	412367	1291505_1	AW945964 AW946020 AW946034 AW946027 AW946041 AW946044 AW945033 AW946024 AW946021 AW946029 AW946015 AW946016
30	440000	1202500 1	AW946039 AW946045 AW945028 AW946036
	412389 412547	1292588_1 1305813_1	AW947655 AW984020 W27161 AW961828
	412559	1306011_1	T31474 T31123 Z45146 AW962040
	412671	1319959_1	AW977734 H62048
55	412744	1324622_1	N31101 N46491 AW994084
•	412838	1331178_1	D61870 D61866 BE002674
	413119	1349658_1	BE065941 BE066098 BE066070 BE065997 BE066003
	413141	1350477_1	BE166323 BE067045
C 0	413266	1356260_1	BE300352 BE299274 BE075351 BE297444
60	413294	1359149_1	BE144034 N72932 BE080176
	413342	136279_1	AA128535 AW973587 AA553822 T24065 BE092527 BE092528 BE092204 BE092271 BE092516 BE092202 BE092280 BE092065 BE091991 BE092284 BE092514
	413402	1366932_1	BE091995 BE092063 BE092068 BE091994 BE092283 BE092447
	413445	1370833 1	BE141022 BE141513 BE141532 BE141488 BE141481 BE141526 BE141516 BE141471 BE141478 BE141476 BE141475 BE141021
65	413443	1370033_1	BE141533 BE141464 BE141490 BE141472 BE141480
05	413485	1372953_1	N52628 BE143639 BE143706
	413508	1374273_1	BE145364 BE145429 BE145418
	413618	1380384_1	BE154078 BE154006 BE153891 BE153523 BE153983
	413707	1384137_1	BE158679 BE158714
70	413743	1385884_1	BE161004 BE162497 BE161135 BE160999 BE162492
	413782	1389068_1	BE546104 BE165710 BE382801
	413792	1389912_1	BE166924 BE166921 BE166915 BE166970 BE166968
	413804	1390710_1	T64682 BE168190 BE168256
75	414091	141621_1	T83742 AW672882 AA135378 BE262170 BE382553 BE261026 BE273627
13	414203 414220	1425510_2 1426940_1	BE288094 BE267860
	414220	14321151	
	714270	-1021101	

```
414366
                         1438636_1
                                         BE549143 BE390613 BE277344
            414833
                         1496271_1
                                          T07114 BE543688
            414985
                         1511215_1
                                          C17372 D63180 D78908 D63262
                         1515978_1
1522649_1
1523035_1
            415027
415104
                                          D31010 D30991 D31168 D31166 D31465
  5
                                         D60076 D60259 D61037
                                          D60468 D60950 D61218 N98936
            415114
            415178
                         1527354_1
                                          D80503 D81739 N95691
            415298
                         1533528_1
                                          F05086 F05091 R17158
                        153360_1
1534744_1
            415303
                                          R11813 AA164376 T56632
10
                                         F06565 Z43466 R18417 F06477 F06476 F07098
            415352
            415364
                         1535008_1
                                         F06771 H04895 Z42778
            415371
                         1535066_1
                                         R15239 Z45189 F06836
            415392
                         1535746_1
                                         Z44067 F07617 R34555
            415569
                         1539911_1
                                         Z43930 F12170 H10881 T65261
15
                                         F12294 F12213 T66272 T66261
F12664 T74312 N80318 Z20039
            415572
                         1539951_1
                         1540373_1
1540758_1
            415600
            415626
                                         Z43847 F13068 T75331
                         1540853_1
                                         F13168 R21289 T77628
            415635
            415750
                         155215_1
                                          AA167712 AW936024 AW364438 AW364446
20
                        1554447_1
155791_1
156264_1
                                         R21651 H00542
D59243 D63202 AA169716
AA262226 AI984175 AA171807
            415773
            415822
            415948
            416173
                         1574973_1
                                         R52782 R17313 H24192 R19876
            416343
                         1589633_1
                                         H49213 W90725 H49398 W90726
25
            416395
                        1592777_1
1604694_1
                                         R94575 T99886 H52989
                                         H69044 T47567 H75691 T50292
H15635 H16691 AA195506
           416624
417304
                         166556_1
            417396
                         1674485_1
                                         T98987 T96744 N78306
            417742
                         1696282_1
                                         R64719 Z44680 R12451
30
                        171237_1
1736343_1
175699_1
                                         AA210765 T95700 H94407
R91254 T97156 R58711
AA315308 AA223392 BE538098 BE087173
            417974
           418297
418454
                         1762961_1
                                         178248 T88763 R93361
            418498
                                         AA224827 T59708 T59843 BE156903
AA225188 AL157508 AL157509 AA225189
AW749855 AA225995 AW750208 AW750206
            418546
                         176677_1
35
            418573
                        176907_1
                         177402_1
            418636
                         1784125_1
            418712
                                         Z42183 T31621 T97478
            418948
                         180808_1
                                         AI217097 AW886090 W38035 W38792 AA232835 AW936043
                                         786216 T86117 T83316
N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815
AW978038 AA804204 AA243400
AA826279 AA243426 AW971614 AW967805 AW971605
            419059
                         1816038_1
40
                        182217_1
185148_1
            419145
            419472
            419477
                         185172_1
            419716
                         187390_1
                                         AA953770 AA249091
                        188248_1
188252_1
188386_1
                                         AW966945 AA250984 H91733 AW966941
R77402 AA262462 AA250988 R06794
AA251139 AW967485 AA251204
            419805
45
            419807
            419834
                                         AA281594 AI365043 AA251996
            419932
                         189159_1
            419998
                         189768_1
                                         AA252691 AW298356 AA688063
                        190755_1
192170_1
            420111
                                         AA255652 AA280911 AW967920 AA262684
50
                                         AA257990 AW816460 Al416981 AW500873
W87731 AA279004 AA279001
            420270
            420643
                        195293_1
197723_1
            420928
                                         AA281809 H89487 N46537
                        200885_1
                                         AAB11804 AA809404 AA286907 AW977624
            421280
                                         AA287443 AA419385 BE084078 AI478347
            421338
                        201378_1
55
                        201903_1
202288_1
                                         AA361752 AW963276 AA288017
AA806639 AA291008 AA836274 AW978806
            421381
            421418
            421708
                        205732_1
                                         AW754341 AW858420 AW858475 AW861969 AW861925 AW858554 AW858616 AW858450 AW858545
            421813
                         207654_1
                                         BE048255 AA313083 AA298419
                                         AA339015 AW962948 AA306188
AA309272 AA309312 AW961837
AA310527 AW962295 Z44865 H06641
AA311407 AW958321 N23583 R70050
            422204
                        213258_1
215498_1
60
            422342
            422429
                        216469_1
                        217160_1
            422504
            422588
                        218192_1
                                         AA312730 AW963285 W28250 W27318
                        221034_1
221906_1
                                         BE409561 BE162756 AW732798
AA318334 AW961457 AA317752
            422760
65
           422834
                        224988 1
                                         AA323114 AA321992 BE161391 BE161392
            423100
                        225175_1
                                         AW864848 AA322213 AA322209 AW961624
            423121
            423368
                        227560_1
                                         AA364195 AA325029 AW962050
                        230430_1
230585_1
232362_1
                                         AA328824 AW951410 AW958096
AA329048 AW962484 T83628
AA332439 AA332579 AA331470 AW962539
            423632
70
           423644
            423818
            423837
                        232478_1
                                         AW937063 AW937056 AW937062 AW937059 AW937057 AA331599 AW937061 AW937093 AW937094 AW937058 AW851327 BE082872
                                         AW752885 AW937055 AW937054
                                         BE091233 BE080904 BE079414 BE075356 AA332482
AA339646 AA339189 AW966286
            423912
                        233241_1
75
                        238398_1
241202_1
            424353
                                         AW854298 AA343691 H50917 H50907 H50938
            424589
                        245273_1
                                         AW964082 AA348838 AA348839
            424951
```

```
F07625 R35115 AW953115 F06102 H13351 AA349497 F11152 AA707254
                 424993
                                   245782_1
                                                        BE547704 AA355909
AA355936 AI741379
                 425360
                                   250631_1
                                   250655_1
                 425362
                                   254716_1
                                                         AA361483 Al557239
                 425672
    5
                                                         BE536836 AA376153
                 426356
                                   265381_1
                 426475
                                                         AL134728 AA379975 AA379440 AW963931
                                   267785_1
                 426561
                                   269158_1
                                                         AA381437 AA628833 AW407275
                                                         AA382291 AA994657
                 426603
                                   269825_1
                                                         AA400096 AA400167
                 427259
427566
                                   276594_1
280401_1
10
                                                        AI743515 AA405617 AW276706
                 427980
                                   285225_1
                                                        AA418305 Al264351
                 428042
                                   286292_1
                                                         AA419529 H97089 H96977
                                                        AA424051 AW104616
AA644508 AA479489 AA426174
                 428192
                                   288021_1
                 428337
                                   289967 1
15
                                   291472_1
                                                         BE080180 AW827313 AW231970 AA995028 AA428584 AW872716 AW892508 AW854593 AA578441 AW975234 AA664937 AA984131
                 428436
                                                         AA528743 AA552874 AA564758 AW063245 Al267534 AW070190 AW893483 AA770330 AA906928 AA906582 AA758746 AA551717 AW063311
                                                         AA429538
                                  301580_1
                 429236
                                                         AA448407 AA448404 AA448424 AA448426
                                                        H80572 AL 109691 H80520
AA463338 M86137 M85945 Al040226
                 429917
                                  31049_1
311517_1
20
                 429979
                                                         AA465115 AW967750 AW869525
                 430076
                                   312952_1
                 430350
                                   316401_1
                                                         BE169639 AA476976
                                                        BE065227 BE065366 BE065182 BE065184 AA481239
AA482636 R16336 R16343 R60706 R53647
                 430561
                                   319932_1
                 430640 430795
                                  321094_1
323756 1
25
                                                        AW971398 AA507162 AA486494
                                                        AA873350 T82429 T82428
                 431319
                                   331474_1
                                                        AW970622 AA503009 AA502998 AA502989 AA502805 T92188
AW971287 AA524976 AA513479
AA572994 AA516249 AA702595
H28383 AW972670 H28359 AA525808
                 431322
                                   331543_1
                 431670
                                   336353_1
                                  338201_1
341283_1
                 431828
30
                 432093
                                   343347_1
                                                         Al204995 AW827539 AW969908 AW440776 AA528756
                 432222
                 432724
                                   35330_1
                                                         X98266 N41124
                                                        AW939074 AW939073 BE160476 AW939938 AW939206 AW940012 AW939076 AA573577 AW750479 AA574383 AW970057 AB002446 T03146
                 433005
                                   357346_1
                 433108 433129
                                  35896_1
359479_1
35
                                                        AA577814 N68543 N68478 H79613 AI910764
                 433171
                                                        AA579425 AW969965 AA579102
                                   360292_1
                 433311
                                   362908_1
                                                         AA688149 AW975336 R82513 R79237
                                                         T25451 AA585296 AA585305
                 433371
                                   364430_1
                 433440
433586
                                  36629_-1
370470_1
                                                         AF052127
40
                                                         T85301 AW517087 AA601054 BE073959
                                                         AF090945 AW996754 Al064870
                 433782
                                   37414_1
                 434006
                                   37855_1
                                                         AF113688 Al114617
                                                        AA625155 BE502124
AA625804 AW418787 AW074833 Al675642 Al393368
BE005398 AA628622 AA994155
                 434092
                                   379978_1
                 434138
434280
                                  380572_1
382816_1
45
                 435382
                                   405265_1
                                                         N54493 AA679039 N76605
                                                        T81819 AW393709 AA703541 AW370185
Z83806 AJ132091 AJ132090
BE065178 AJ227879
                                   413562_1
                 436023
                                  41847_1
41888 1
                 436359
                 436383
50
                                                         AW975133 AA729943 AA805813
                 436740
                                   426095_1
                 436884
                                   428731_1
                                                         BE046657 AA736610 AW827495
                                                        BEUGGOST AVISOR 10 AVIGE 1439
AA745563 AA745334 AA744168 AA744044 AA744034 AA744056 AA745569 AA744397
AA730977 AI261584 AA334473 Z43283 AW875861 AW938044 BE150701 AW936262 AA306862 BE565575 BE567380 AA728920
AA167612 AI239729 AI251752 AA485791 BE568425 AW962958
                  437087
                                   432797_1
                 437146
                                   43371_1
55
                 437214
                                   434730_1
                                                         BE092336 BE092259 BE092497 BE092051 AA746882 Al336378
                                   435139_1
                                                         AA747537 BE089068 BE089070
                 437240
                                                         AW976082 AW976085 AA747803 AA747680
AA747965 Al248281 Al752458
AL162077 AW023677
                 437251
                                   435242_1
                 437274
                                   435465_1
                 437324
437471
                                   43609_1
43747_1
60
                                                         AL390169 AW277196 AW131001
                                                         AW811767 AA831890 AW977539 AA768655
                 437798
                                   443128_1
                                                         AL119723 AL119874 AI909018 U50537
AI950087 N70208 R97040 N36809 AI308119 AW967677 N35320 AI251473 H59397 AW971573 R97278 W01059 AW967671 AA908598
                 437854
                                   44418_1
                 437938
                                   44573_2
                                                         AA251875 AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA884444 N92578
                                                        AAZ51875 AI6ZUSD1 AI8ZUSS2 W87891 165904 071495 162391 BE326571 175102 R34725 AVA869222 BE326924 R34761740 17570 R54705 R
65
                                                         AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032
70
                                                         AI564269 F00531 H83488 W37181 W78802 R66056 AJ002839 R67840 AA300207 AW959581 T63226 F04005
                                                         AA789249 AA904217 AA904142
                 438316
                                   454745_1
                                                         AA805760 BE000856
AI422017 AI422945 AI363249 AI423113 AI925592 AI420795 AI208187 AI423279 AI423645 AI424090 AI359637 AL044732 D17003
                  438366
                                   456119_1
                  438390
                                   45662_1
                                                         AA815391 AW573185
                  438739
                                   464193_1
75
                                                         AF085890 H29949 H29856
                                   46760_1
                 438990
                                                          AW970600 AA503323 H89218 AF086031 H89112
                                   46956_1
                  439183
                                                         AF086147 W20068 N91464
                  439330
```

```
473671_1
           439550
                                      H10438 AA837479 H16299 AW978825
                                      AL109688 R23665 R26578
AA861072 H02819 R25946
           439780
                       47673_1
           440012
                       483290_1
           440635
                                      AW610331 AW610338 AA897379
                       498968 1
  5
                       531432_1
                                      AA974603 Al984319 AW340495
           442048
           442518
                                      AF150226 AJ240137
                       544159_1
                                      Al126098 Al184746 Al148521
Al138955 BE149059 BE149027
Al168422 D80113 T59074
           444163
                       593658_1
           444282
                       599268 1
           444584
                       611496 1
10
           444646
                       613548_1
                                      Al184565 AL037304 AW793549
           445396
                       638138_1
                                      BE181792 Al222266 BE181789 BE181837
           445832
                       651925_1
                                      AI261545 N59134 AW875371 AW875247
                                      D29527 Al275850
BE087853 Al286184
BE175605 Z43529 F06610 BE175602 AV661027
           446119
                       662531_1
           446312
                       671114_1
69865_1
15
           446922
           447258
                       71439_1
                                      BE047911 AA984167 BE617316
           447376
                       719483_-1
                                      Al376747
                                      BE143888 Al382949 T06429
           447522
                       724922_1
           448632
448643
                       77303_-1
773566_-1
                                      BE614269
20
                                      AI557531
           448778
                                      AF074913 AW505435 U62539
                       7800_1
           448871
                       78566_2
                                      BE616709 BE616712
           449213
                       80240_-1
                                      BF616861
                                      BE410360 AA442408 AA315540
           449231
449344
                       80303_1
805184_1
25
                                      AI640355 BE464385 AW197679
                                      AA002047 N72537 H54142 H81580
           449666
                       81249_1
           449901
                       818599_1
                                      AI674072 BE268487
                                      AW820313 BE065936 BE065948 BE155658 Al689473 AW862275 AW820265 AW820438 AW820331
           450257
                       830121_1
                                      AW964334 AW967230 T08913 R11895 F11463 AA010271
           450573
450625
                       83907 1
30
                                      AW970107 AA513951 AA010406
                       84032_1
                                      AA011471 AA700636
           450870
                       84994_1
                                      AI744417 R91614 H77365
           450928
                       851593_1
                                      H83979 R84433 AA017024
H85334 AA017286 H86654
           451283
                       86479_1
                       86711_1
867325 -1
           451359
451365
35
                                      Al791783
                                      AJ792030 AW386116 AW875146
           451373
                       867533_1
           451487
                       87131_1
                                      AA018072 N46370 R84847
                                      H86887 H86898 H86906 AA019519 AA018127 AA056306 AA053726
AW970577 AA861861 AA418358 AA018329 AA501885
           451495
                       87182_1
          451535
451724
                       87353_1
882130 1
40
                                      Al903765 Al811194 BE007147 AW130760
           451844
                       888230_1
                                      T61430 Al820546 Al821336
                                      AI863140 W80703 R43474
                       902067_1
           452163
           452453
452457
                       918300_1
918409_1
                                      AI902519 AI902518 AI902516
                                      AW062499 AW062495 AW062500 AW062492 AW062494 AW062493 AW062496 AW062498 AI902650 AI902649
45
           452519
                       920292_1
                                      BE006701 BE006709 BE006704 Al904981
           452530
                       920646_1
                                      Al905518 Al905516 Al905457 Al905515 AW176013 AW176037
           452536
                       921149_1
                                      BE063380 BE063346 Al906097
                                      AA026735 BE264405 AL040323 AA323099
           452550
                       92188_1
                                      BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212 AW806207 AW806208 AW806210
           452560
                       922216_1
50
                                      A1907497
           452738
                       929698_1
                                      AL133800 Al916209
                                      Al921523 AW903707 AW903687
AL037925 AL037931 AL037957
AL079389 AL079390
           452825
                       933090_1
           453472
                       968371_1
977149_1
           453677
453725
55
                       978760_1
                                      W28543 AL119531
                                      AL157586 AL157590
           453846
                       983043_1
           454044
                       996486_1
                                      AW022393 AW022578
                                      AW022885 AW023064
           454049
                       996858_1
                                      AW062974 AW859625 BE081366
                        1007650 1
           454099
60
           454314
                                      AW364844 AW364847 AW937534 AW937593 AW937659
                        1108161_1
                                      BE064097 BE064124 BE064087 AW371617
AW372937 AW378043 AW377970 BE145850 AW377858 AW377964 AW378040
           454327
                        1114097_1
           454331
                        1115278_1
                       1152648_-1
1213795_1
                                      AW858722
           454380
                                      AW902125 AW792853 AW837703 AW837710
           454471
65
                        1221640_1
                                      AW857191 AW857192 AW804060
           454524
                                      AW847505 AW811792 BE061442 BE061433 AW847506 AW806999 AW806996 BE061436 BE061430 BE142460 BE146499 AW806994 AW809156 AW806991 AW814082 AW806992 BE061669 AW807002 BE146659 AW806995 AW807000 AW845743 AW845747 AW847504 BE142458 BE061431 BE061435 AW847507 BE146650 BE142470 AW814096 AW807012 BE061438 AW807011 AW806993 BE142465 BE142459
           454554
                        1223842_1
                                       BE142462 AW854330 AW854331 BE061434 BE061731 BE142464 AW847501 AW807001 BE142463 AW811800 BE061437 AW811802 BE061440
70
                                      AW806997 AW806998 BE061745 BE061753
                        1226050_1
                                       AW810112 AW810114 AW810032 AW809631 AW810183 AW810178
           454592
                                      U70071 AW883715 AW810701
AW811613 AW811611 AW811610
           454622
                        1226951_1
                        1227707_1
           454637
                                       AW811960 AW811957 AW811959
           454648
                        1227976 1
75
                                       AW814473 AW816157 AW816064 AW813298 AW813315 AW816100 AW813389 AW813338 AW813342 AW816108 AW813318 AW816105
           454687
                        1229077_1
                                      AW816160 AW816163 AW814480 AW813392 AW816063 AW813399
AW813350 AW816082 AW813476 AW813383
           454692
                        1229118_1
```

PCT/US02/21338 WO 03/003906

```
BE145915 BE145893 AW892892 BE145806 BE145901 AW814144
            454702
                        1229722_1
            454729
                         1231926_1
                                        AW817003 AW816997 AW817126 AW817331 AW817120 BE158378 AW817121
                                        AW866285 AW819000 AW819153 AW819014 AW866541
BE160229 AW819879 AW820179 AW819882 AW819876 AW820169 BE153201 AW993736 BE152911
BE156314 BE156316 AW820750
AW820852 AW820773 AW821088
            454750
                         1233434_1
                        1234106_1
1234742_1
           454775
            454789
  5
                         1234752 1
            454790
            454797
                         1235093_1
                                        BE161168 BE162466 AW821260
                                        AW835127 BE071463 AW991660 BE071473 BE071461 BE071469 BE071472
            454851
                         1237414_1
           454863
                         1237794_1
                                        AW835610 AW835806
                                        AW837753 AW837754 AW837700
AW838125 AW838205
10
           454893
                        1239472_1
1239833_1
            454898
                        1246612_1
                                        AW847464 AW847462 BE063767 BE063755
            454951
            454956
                         1246711_1
                                        AW847725 AW847599 AW847600 AW847706 AW847854 AW847595 AW847850 AW847795 AW847798
            455040
                         1250028_1
                                        AW852286 AW851934 AW852096 AW852274
15
                        1250536_1
1252361_1
                                        AW852530 AW852527 AW852526
AW854829 AW854805 AW854841 AW854825 AW854822 AW854830 AW854835 AW854826
           455047
           455073
                                        AW861555 AW857776 AW861556 AW861567 AW857799 AW857768
            455128
                        1254554 1
                                        AW8601333 AY851/16 AW861339 AW860183 AW860983 AW860985 AW860922 AW860986 AW860984 AW860989 AW860972 AW860989 AW860989 AW860988 AW947883 AW947883 AW947897 AW947910 AW947905 AW864751 AW947878 AW947884 AW947918 AW947884 AW947878 AW94787 AW947910 AW947905 AW864751 AW947878 AW947849 AW965900 AW865905 AW865891 AW866014 AW865898 AW996380 AW996453 BE085650 AW868687 BE085595
            455170
                         1256906_1
           455201
                         1259748_1
20
                        1260400_1
1262318_1
           455207
           455225
                                        AW875951 AW875950 AW875936 AW875948 AW875939 AW875957
           455235
                        1265634 1
                                        AW880861 AW880883 AW881117 AW881012
           455267
                         1269025_1
                                        AW897292 AW897251 AW897298 AW897248 AW897259 AW897250 AW897246 AW897242 AW901809 AW901787 AW901795 AW901792 AW901744 AW901753 AW901807 AW901798 AW901942 AW901937 AW902016 AW901947
            455331
                         1280616_1
25
           455350
                         1283853_1
                        1284023_1
           455351
                                        BE160188 AW935785 BE160401 BE160319 BE160313 BE160395
           455380
                        1287679_1
           455414
                                        AW936969 AW936920 AW936975 AW936906
                        1288605_1
                                        AW938204 AW938195 AW938205 AW938206 AW938193 AW938199 AW938200 AW938190 AW938201 AW938198 AW938203 AW938202
           455428
                        1289639_1
30
                                        AW938192 AW938207 AW938194
BE144762 AW979091
           455511
                        1321229_1
                                        BE004988 BE004574
           455573
                        1332529 1
           455586
                         1334857_1
                                        BE070794 BE070791 BE070792 BE070795 BE070789 BE070788 BE070786 BE070787 BE070790
           455595
                         1335422_1
                                        BE008343 BE008321 BE008326 BE008314 BE008345 BE008330 BE008344 BE008327
35
           455610
                        1337549_1
1348563_1
                                        BE011703 BE011692 BE011697 BE011624 BE011673 BE011644
                                        BE064415 BE064430 BE064448
           455647
           455650
                        1348720_1
                                        BE064655 BE153953
           455657
                         1349078_1
                                        BE065209 BE065364 BE065110 BE065111
           455669
                         1349554_1
                                        BE065803 BE065826
40
                                        BE066007 BE066017 BE066074
BE080895 BE080906
           455678
                        1349716_1
1359566_1
           455761
                                        BE144966 BE144957 BE144958
           455831
                         1373969 1
                         1379514_1
                                        BE152283 BE152260 BE152297 BE152292 BE152259 BE152250
           455874
                                        BE153208 BE153146 BE152981
BE155185 BE155264 BE155186
BE159432 BE159313 BE159295 BE159242
            455880
                         1380022_1
45 .
                        1381603_1
1384537_1
           455903
           455938
                         1385884_1
                                        BE161004 BE162497 BE161135 BE160999 BE162492
           455950
                         1385886_1
                                        BE161001 BE162494 BE162470 BE161172
           455951
                                        BE167014 BE167058 BE167062
BE177000 BE177003 BE176816 BE176952
AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367
           455965
                         1389984_1
50
                        1396805_1
           455981
                        142696_1
           456034
                                        BE011368 BE011362 BE011215 BE011365 BE011363
                        153360_1
                                        R11813 AA164376 T56632
           456122
           456212
                        1655565_1
                                        N51636 T51874 T51829
                                        AA203637 AA832266 H67452
AA261830 AW967855 H26953 AA262478
55
           456235
                        168686.1
                        193331_1
           456493
                                        R91600 T87079 AA291455
            456592
                        202684_1
                        233842_1
                                        AL118754 AA333202 H38001
           456800
                                        AA492071 AA484229 AW969850
AW971287 AA524976 AA513479
AW969732 AW970974 AA515741
            457340
                        322100_1
60
           457427
457437
                        336353_1
337879 1
           457474
                         341077_1
                                        AW972935 AA525272 N28227
                        373012_1
                                        T10073 H14872 AA604786
            457625
                                        AA744389 AA744270 AA744284 AA744299 AA745380 AA744337 AA846905 AA847698
BE142728 AA834047 AW937124
            457892
                        432926 1
65
                        471050 1
           458080
                        497769_1
                                        BE007237 BE007496 BE007263 W19919 BE546311 AA984819
           458172
            458781
                        743159_1
                                         Al444821 W26012
            458841
                        784186_1
                                        W28965 W28971
                                        AAQ46742 AA551269 AAQ01505
AI940577 AI940580 AI940568 AI940578 AI940569 AI795858 AI795867 AI940572
AI902169 AI902173 AI902323 AI902174 AI902347
            458880
                        80785 1
70
                        868710_1
           459028
                        918011_1
           459128
                                        BE178517 AI908132 BE142437
            459182
                        922744_1
75
           TABLE 1C
```

Pkey:

Sequence source. The 7 digit numbers in this column are Genbank identifier (Gi) numbers. "Dunham i. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham i. et al., Nature (1999) 402-489-495. Indicates DNA strand from which expons were predicted. Ref:

Strand:

	Nt position			tions of predicted exons.
5	INC DOSHRA	i. Illuicales il	ucieoliue pos	HOUS OF DESPERANCE GAVES.
,				•
	Pkey	Ref	Strand	Nt_position
		T-Ca		n Charles
	400471	9931670	Minus	105629-105760
10	400495	9714773	Minus	61902-62137
	400528	6981824	Phus	472381-472528,474170-474277,475328-475542,475878-476000
	400577	7960401	Plus	101535-101881
	400608	9887666	Minus	96756-97558
	400641	8117693	Plus	4786-4992
15	400644	8117693	Plus	27682-27840
13	400666	8118496	Plus	17982-18115,20297-20456
	400749	7331445	Minus	9162-9293
	400750	8119067	Plus	198991-199168,199316-199548
	400751	7331445	Minus	35395-35533
20	400761	8131609	Minus	114220-115164
20	400762	8131616	Plus	7235-7605
	400773	8131629	Minus	44116-44238,48208-48321
	400843	9188605	Plus	5863-5970,7653-7784,8892-9023,9673-9807,10634-10789,15254-15403,23827-23958
	400844	9188605	Plus	24746-24872,25035-25204
25	400845	9188605	Plus	34428-34612
40	400846	9188605	Plus	39310-39474
	400860	9757499	Minus	151830-152104,152649-152744
	400880	9931121	Plus	29235-29336,36363-36580
•	400887	9958187	Plus	119239-121542
30	400888	9958187	Minus	199600-199875
50	400937	7652890	Minus	89519-89905
	400937	8072510	Plus	73950-74364
	401002	8117251	Minus	77898-78050
		8117489	Plus	60551-60802
35	401024 401045	8117619	Plus	90044-90184,91111-91345
55	401043	7232177	Plus	132430-132761
	401049	7232177	Plus	149157-150692
	401045	9957912	Plus	84561-84884
	401093	8516137	Minus	22335-23166
40	401101	8568122	Plus	77081-77226
40	401192	9719502	Minus	69559-70101
	401197	9719705	Plus	176341-176452
	401203	9743387	Minus	172961-173056,173868-173928
	401205	9743388	Plus	167373-167433,167936-168031
45	401256	9796573	Minus	45482-45620
73	401262	9796963	Plus	35662-35799
	401271	9797373	Minus	61292-61911
	401276	8954274	Minus	15919-16096
	401279	9800062	Minus	13535-13669
50	401342	9908882	Plus	3096-3242
50	401365	9796180	Minus	119572-119672
	401395	7327842	Minus	11502-11771,46357-46489,58720-58916
	401420	7452889	Minus	141362-141502
	401439	8246737	Plus	92993-94026
55	401451	6634068	Minus	119926-121272
55	401508	7534110	Minus	110779-110983
	401519	6649315	Plus	157315-157950
	401537	7960358	Minus	186786-187029,190607-190779,198218-198348
	401561	8224660	Minus	10652-10838,19815-20018
60	401566	8469090	Minus	96277-96420,96979-97160
00	401604	7689963	Minus	119835-120185
	401619	8516761	Minus	141309-143576
	401669	9801805	Plus	25414-26310
	401691	3582311	Plus	162333-162715
65	401694	3540172	Minus	64056-64168
0,5	401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866-
	701777	3,030,2	1111100	131932.132451-132575.133580.134011
	401759	9929699	Plus	59811-60665
	401780	7249190	Minus	28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573
70	401766	8018106	Plus	73126-73623
, ,	401905	8671966	Plus	153965-154441,156599-156819
	401994	4153858	Minus	42904-43124,43211-43336,44607-44763,45199-45281,46337-46732
	402001	9501818	Pius	68052-68223
	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126078
75	402076	8117410	Plus	128316-128627
	402089	7249154	Plus	101610-101819
	402110	8131678	Minus	173889-174062

	402176	7543687	Minus	10-750
	402230	9966312	Minus	29782-29932
	402245	7690231 6598824	Minus Plus	88253-88417 22587-23723
5	402296 402325	7636348	Minus	60658-60738,61677-61803
,	402407	3962498	Minus	115812-116187
	402408	9796239	Minus	110326-110491
	402430	9796372	Minus	62382-62552
	402435	9796462	Plus	114593-115588
10	402472	9797116	Plus	53716-54470
	402474	7547175	Minus	53526-53628,55755-55920,57530-57757
	402480	9797375	Phus	59708-59999
	402490	9797648	Plus Plus	149982-150929
15	402522 402530	9798493 7630937	Plus Minus	20605-20731 1524-2003
13	402546	7637348	Plus	24673-25170
	402553	9863566	Plus	48292-48398,49564-49944
	402604	9909420	Plus	20393-20767
	402716	8969253	Minus	84065-84242
20	402727	9211324	Plus	54596-54777
	402812	6010110	Plus	25026-25091,25844-25920
	402820	6456853	Minus	82274-82443
	402846	9408716	Minus	5726-5850 99393-99499-99359-99574
25	402889 402892	9931133 8086844	Plus Minus	89392-89498,90358-90571 194384-194645
23	402692	8894222	Minus	175426-175667
	402922	8216969	Minus	19036-19401,19589-19849,19951-20102
	402938	8953442	Plus	22365-22473
	402995	2996643	Minus	5962-6216
30	403005	5791501	Minus	16945-17053,20018-20403
	403020	6984114	Minus	96644-97021,97462-97868
	403029	7768593	Minus	44558-44766
	403047	3540153	Minus	59793-59968 142964-143260
35	403073 403085	8954241 8954241	Plus Plus	165035-165334,165420-165713
55	403083	8954241	Plus	174720-175016,175104-175406,175508-175813
	403106	7331404	Plus	77162-77350,81338-81511
	403172	7464784	Minus	64007-64275
	403212	7630897	Minus	156037-156210
40	403214	7630945	Minus	76723-77027,79317-79484
	403277	8072597	Minus	27494-27642
	403331	8567936	Plus	169793-169966
	403344	8569726	Pius Pius	70823-70990 64099-64260
45	403362 403381	8571772 9438267	Minus	26009-26178
73	403426	9719529	Minus	157156-158183
	403485	9966528	Plus	2888-3001,3198-3532,3655-4117
	403567	8101141	Plus	35349-35614
	403588	8101227	Minus	197672-197944
50	403590	8101229	Plus	405-1296
	403615	8567964	Plus	107671-107866
	403687	7387384	Plus Minus	9009-9534 163899-164726
	403754 403776	7229815 7770611	Minus	1414-1513.1624-1756
55	403822	9369510	Minus	142803-142922
	403851	7708872	Plus	22733-23007
	403860	7708960	Minus	95755-96045
	403894	7381715	Minus	1442-2224
60	403903	7710671	Minus	101165-102597
60	403959	8224399	Minus	175363-177474
	404015	8655948	Minus	587821-588222
	404059 404113	3548785 9588571	Plus Minus	104326-106788 13446-13646
	404148	9863703	Plus	78218-78418.79571-79709
65	404152	9884757	Plus	41111-41281,45495-45716,47801-47910
	404156	9886577	Plus	127319-127754
	404229	7159766	Plus	16607-16841
	404232	8218045	Minus	71800-71956
70	404268	9711362	Plus	33238-33463
70	404274	9885189	Ptus	104127-104318
	404288	2769644	Plus	3512-3691 36651 36913
	404290 404336	2769644 9838028	Plus Plus	36651-36813 157951-158129
	404403	7272157	Minus	72053-72238
75	404440	7528051	Plus	80430-81581
	404488	8113286	Minus	64835-64994
	404498	8151654	Plus	13292-13497

	404507	8151803	Plus	146359-146739
	404516	B151967	Plus	114153-114322
	404538	8247909	Minus	192748-192945
-	404594	9958262	Minus	15310-15510
5	404639	9796778	Plus	5779-14387
	404653	9796999	Plus	164997-165230
	404676	9797204	Minus	56167-56342,58066-58189,58891-59048,60452-60628
	404684	9797403	Minus	110881-111020
10	404685	9797437	Minus	153217-153315,154043-154124,159185-159353,161290-161420,163544-163669,166127-166207,167654-167734
10	404704	9800728	Minus	88841-89018
	404819	4678240	Plus	16223-16319,16427-16513,16736-16859,16941-17075,17170-17287,17389-17529,18261-18357,18443-18578
	404829	6624702	Minus	4913-5093,7310-7469,9472-9621,9951-10082
	404860	8979555	Plus	65852-66081
	404874	9650523	Minus	96066-96192
15	404881	5931510	Minus	36360-36608
	404894	6850447	Plus	102822-103127
	404939 ⁻	6862697	Plus	175318-175476
	404977	3738341	Minus	43081-43229
	405033	7107731	Minus	142358-142546
20	405059	7656683	Ptus	349-822
	405064	7658416	Plus	81207-81416
	405071	77087 97	Minus	11115-11552
	405102	8076881	Minus	120922-121296
0.5	405167	9966316	Plus	43796-43981,48245-48427,54141-54317
25	405170	9966524	Plus	37047-37198
	405177	7139696	Minus	118466-118663
	405186	7229793	Plus	161475-161581,162930-163067
	405258	7329310	Plus	129930-130076
••	405281	6139075	Minus	34202-34351,35194-35336,45412-45475,45731-45958,47296-47457,49549-49658,49790-49904,50231-50342,53583-
30				53667,54111-54279
	405308	3638954	Plus	40778-41034,41383-41573
	405349	2914717	Minus	85552-8580 6
	405379	6513908	Minus	22332-22473,24333-24439
	405390	6606064	Minus	94007-94177
35	405411	3451356	Minus	17503-17778,18021-18290
	405463	7715630	Minus	123097-123260
	405494	8050952	Minus	70284-70518
	405520	9454643	Plus	60849-60981
	405526	9558556	Minus	132704-133277
40	405580	4512267	Plus	169232-169647
	405600	5923640	Plus	26662-27225
	405654	4895155	Minus	53624-53759
	405720	9797144	Plus	13409-13861
	405725	9838299	Minus	105417-106521
45	405735	9931101	Minus	29854-29976
	405738	9943998	Plus	44370-45410
	405809	5304920	Minus	6655-6883,8687-8859
100	405838	5686575	Plus	3460-3717
	405863	7657810	Plus	49410-49620
50	405867	6758731	Minus	74553-75173
	405906	7705124	Minus	10835-11059
	405920	6758795	Plus	120621-120971
	405968	8247789	Plus	14893-15148
<i></i>	406017	8272661	Minus	46271-46874
55	406036	6758919	Plus	17942-18163
	406081	9123861	Minus	38115-38691
	406137	9166422	Minus	30487-31058
	406187	7289992	Plus	8044-8877
۲۸	406243	7417725	Plus	38899-39369
60	406270	7534217	Plus	13136-13591
	406320	9211754	Minus	20170-20511
	406322	9212102	Minus	130230-130418
	406360	9256107	Minus	7513-7673
6 F	406367	9256126	Minus	58313-58489
65	406397	9256243	Minus	127317-127454
	406399	9256288	Minus	63448-63554
	406434	9256651	Minus	17803-17931
	406467	9795551	Plus	182212-182958
70	406471	9795566	Plus	87383-87589 426447 436662 438660 438480
70	406475	9797684	Plus	125417-125563,128052-128180
	406485	7711305	Plus	125036-125422
	406511	7711412	Plus	177277-177384 195500 195049
	406588	8189273	Minus	135629-135848

PCT/US02/21338 WO 03/003906

TABLE 2A: 485 GENES UP-REGULATED IN BLADDER CANCER

Pkey: Unique Eos probeset identifier number

ExAcon: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number

Unigene Title: Unigene gene title

R1: Ratio of mRNA expression in bladder tumors compared to normal bladder 5

	K1: Ratio of mikria expression in disposer fullhors compared to from all bladder					
10	Pkey	ExAcon	UnigenelD	Unigene Title	R1	
	418818	AA228899	Hs.101307	Homo sapiens HUT11 protein mRNA, partial	3.473	
	412841	AJ751157	Hs.101395	hypothetical protein MGC11352	2.279	
	421066	AU076725	Hs.101408	branched chain aminotransferase 2, mitoc	3.052	
15	435136	R27299	Hs.10172	ESTs	4.717	
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	0.003	
	421307	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp43480425 (f	188.231	
	421318	U63973	Hs.103501	rhodopsin kinase	1.381	
	421359	AK001589	Hs.103816	hypothetical protein FLJ10727	1.000	
20	459462	AA481396	Hs.105167	ESTs	1.000	
	430134	BE380149	Hs.105223	ESTs, Weakly similar to T33188 hypotheti	1.000	
	433227	AB040923	Hs.106808	kelch (Drosophila)-like 1	1.000	
	421742	AW970004	Hs.107528	androgen induced protein	1.514	
25	417366	BE185289	Hs.1076	small proline-rich protein 18 (cornilin)	2.782	
25	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane	20.064	
	451686	AA059246	Hs.110293	ESTs	0.033	
	454417	Al244459	Hs.110826	trinucleotide repeat containing 9	56.751	
	458760	Al498631	Hs.111334	ferritin, light polypeptide	2.512 2.634	
30	422119	AI277829	Hs.111862	KIAA0590 gene product	0.055	
50	422170	Al791949	Hs.112432 Hs.11340	anti-Mullerian hormone hypothetical protein FLJ23047	0.008	
	441877 445958	AW273802 BE326257	Hs.114536	ESTs	0.002	
	434288	AW189075	Hs.116265	fibrillin3	11.401	
	435347	AW014873	Hs.116963	ESTs	0.003	
35	453134	AA032211	Hs.118493	ESTs	262.962	
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	5.336	
	436154	AA764950	Hs.119898	ESTs	103.154	
	436246	AW450963	Hs.119991	ESTs	0.071	
	436293	Al601188	Hs.120910	ESTs	29.129	
40	433078	AW015188	Hs.121575	Homo sapiens cDNA FLJ12231 fis, clone MA	274.769	
	438181	AW978608	Hs.122121	ESTs, Weakly similar to 138022 hypotheti	0.024	
	449399	AA760881	Hs.122408	ESTs	1.000	
	437722	AW292947	Hs.122872	ESTs, Weakly similar to JU0033 hypotheti	4.314 0.264	
45	457465	AW301344	Hs.122908 Hs.123114	DNA replication factor cystatin SN	1.390	
73	409757 439907	NM_001898 AA853978	Hs.124577	ESTs	0.010	
	437181	Al306615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	0.344	
	440304	BE159984	Hs.125395	ESTs	0.025	
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	0.014	
50	441495	AW294603	Hs.127039	ESTs	0.198	
	435376	AW770956	Hs.127280	ESTs	0.008	
	427685	Al751124	Hs.127311	ESTs	3.244	
	423349	AF010258	Hs.127428	homeo box A9	0.134 7.255	
55	445457	AF168793	Hs.12743	camiline O-octanoyltransferase Homo sapiens cDNA FLJ11381 fis, clone HE	1.000	
"	420759	T11832	Hs.127797 Hs.128056	ESTs	0.013	
	441875 441940	Al435973 AW298115	Hs.128152	ESTs	6.075	
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	0.137	
	429983	W92620	Hs.128656	ESTs	162.590	
60	445600	AF034803	Hs.12953	PTPRF interacting protein, binding prote	0.969	
	437553	Al829935	Hs.130497	ESTs, Weakly similar to MAT8_HUMAN CHLOR	9.163	
	459204	AW194601	Hs.13219	ESTs	1.000	
	439842	Al910896	Hs.132413	ESTs	1.000	
65	443113	Al040686	Hs.132908	ESTs	0.069	
65	423853	AB011537	Hs.133466	slit (Drosophila) homolog 1	0.100	
	420792	AA280321	Hs.13392	tethering factor SEC34	16.103 0.667	
	427719	Al393122	Hs.134726	ESTs	F 400	
	443861 447578	AW449462 AA912347	Hs.134743 Hs.136585	ESTs ESTs, Weakly similar to JC5314 CDC28/cdc	5.100 1.691	
70	4455 50	Al242754	Hs.137306	ESTs	0.006	
, 0	454284	AW297935	Hs.138493	ESTs, Moderately similar to ALU7_HUMAN A	0.003	
	418937	T71508	Hs.13861	ESTs, Weakly similar to T42383 probable	0.042	
	424098	- AF077374	Hs.139322	small proline-rich protein 3	1.347	
	453370	Al470523	Hs.139336	ATP-binding cassette, sub-family C (CFTR	0.186	
75	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	47,949	
	426900	AW163564	Hs.142375	ESTs	0.404	
	439337	AA448718	Hs.142505	ESTs	. 0.012	

					0.070
	427961	AW293165	Hs.143134	ESTs	0.073 11.958
	419888	A1243493	Hs.144049	ESTs Homo sapiens cDNA FLJ12981 fis, clone NT	77.269
	413943 445871	AW294416 Al702901	Hs.144687 Hs.145582	ESTs, Weakly similar to FOR4 MOUSE FORM	183.782
5	445911	A1985987	Hs.145645	ESTs, Moderately similar to ALU1_HUMAN A	0.362
•	424395	AA165082	Hs.146388	microtubule-associated protein 7	203.038
	424411	NM_005209	Hs.146549	crystallin, beta A2	1.808
	444517	AI939339	Hs.146883	ESTs	0.004
	445020	AI205655	Hs.147221	ESTs	0.307
10	422109	S73265	Hs.1473	gastrin-releasing peptide	1.000
	445352	Al221087	Hs.147761	ESTs	0.015
	444444	Al149332	Hs.14855	ESTs	140.859 2.037
	444152 446248	AI125694	Hs.149305 Hs.149638	hypothetical protein MGC2603 ESTs	0.018
15	433159	Al283014 AB035898	Hs.150587	kinesin-like protein 2	0.110
15	428004	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub	3.179
	456840	H03754	Hs.152213	wingless-type MMTV integration site fami	0.005
	456844	Al264155	Hs.152981	CDP-diacylglycerol synthase (phosphatida	1.111
	425206	NM_002153	Hs.155109	hydroxysteroid (17-beta) dehydrogenase 2	257.949
20	446082	Al274139	Hs.156452	ESTs	0.779
	444946	AW139205	Hs.156457	hypothetical protein FLJ22408	1.919
	446636	AC002563	Hs.15767	citron (rho-interacting, serine/threonin ESTs	0.417 10.349
	447073 422765	AW204821 AW409701	Hs.157726 Hs.1578	baculoviral IAP repeat-containing 5 (sur	1.839
25	446673	NM_016361	Hs.15871	LPAP for lysophosphalidic acid phosphala	1.691
	447475	Al380797	Hs.158992	ESTs	44.641
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	0.340
	418343	AA216372	Hs.159501	ESTs	0.023
	441143	AI027604	Hs.159650	ESTs	0.280
30	440917	AA909651	Hs.160025	ESTs	1.000
	418365	AW014345	Hs.161690	ESTS	0.066 0.005
	431839 446839	AW020280 BE091926	Hs.162025 Hs.16244	ESTs mitotic spindle coiled-coil related prot	0.606
	438817	AI023799	Hs.163242	ESTs	2.202
35	432441	AW292425	Hs.163484	ESTs	2.305
	442577	AA292998	Hs.163900	ESTs	688.038
	435212	AW300100	Hs.164185	ESTs	0.002
	425048	H05468	Hs.164502	ESTs	0.083
40	442083	R50192	Hs.165062	ESTs	3.844
40	423536	L22075	Hs.1666	guanine nucleotide binding protein (G pr cancer/testis antigen	0.157 269.487
	418678 446989	NM_001327 AK001898	Hs.167379 Hs.16740	hypothetical protein FLJ11036	0.208
	456967	AW004056	Hs.168357	T-box 2	160.397
	447979	Al457197	Hs.170348	ESTs	0.016
45	458814	AJ498957	Hs.170861	ESTs, Wealty similar to Z195_HUMAN ZINC	1.036
	446312	BE087853	Hs.171802	ESTs, Wealty similar to T08729 RING zinc	1.334
	426783	Z19084	Hs.172210	MUF1 protein	1.654
	423916	AW993496	Hs.17235	Homo sapiens clone TCCCIA00176 mRNA sequ	154.064 0.007
50	409092 426853	A1735283 U32974	Hs.172608 Hs.172777	ESTs baculoviral IAP repeat-containing 4	0.009
JO ,	426968	U07616	Hs.173034	amphiphysin (Stiff-Mann syndrome with br	0.002
	407581	R48402	Hs.173508	P3ECSL	0.866
	427239	BE270447	Hs.174070	ubiquitin carrier protein	15.708
	427268	X78520	Hs.174139	chloride channel 3	207.936
55	436577	W84774	Hs.17643	ESTs	62.333 32.959
	420876	AA918425	Hs.177744 Hs.179565	ESTs minichromosome maintenance deficient (S.	1.171
	427528 427585	AU077143 D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	1.000
	427747	AW411425	Hs.180655	serine/threonine kinase 12	12.446
60	429813	AW139678	Hs.180791	ESTs	0.013
	439808	AA846824	Hs.180908	ESTs	0.561
	427878	C05766	Hs.181022	CGI-07 protein	0.002
	440284	AA912032	Hs.181059	ESTs, Weakly similar to 2108276A ssDNA-b	0.030
65	427922	AX001934	Hs.181112	HSPC126 protein	0.039 0.004
65	427972 428071	AA864870 AF212848	Hs.181304 Hs.182339	putative gene product ets homologous factor	4.321
	428071	AA503115	Hs.183752	microseminoprotein, beta-	145.128
	428450	NM_014791	Hs.184339	KIAA0175 gene product	0.370
	428479	Y00272	Hs.184572	cell division cycle 2, G1 to S and G2 to	0.632
70	438746	AI885815	Hs.184727	ESTs	0.339
	420557	AA960844	Hs.186579	Homo saptens, clone IMAGE:4081483, mRNA	0.006
	431014	W67730	Hs.187573	ESTs	0.344
	428651	AF196478	Hs.188401	annexin A10 ESTs, Wealdy similar to PC4259 ferritin	1.459 0.502
75	416225 432497	AA577730 AA551104	Hs.188684 Hs.189048	ESTs, Weakly similar to PC4299 territin	2.499
, ,	432497	AL133990	Hs.190642	ESTS	0.044
	427742	AA411880	Hs.190888	ESTs	0.158

	428058	AJ821625	Hs.191602	ESTs	0.006
	431245	AA496933	Hs.191687	ESTs	0.006
	453204	R10799	Hs.191990	ESTs	1.734
5	436608	AA628980	Hs.192371	down syndrome critical region protein DS	115.500
5	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	0.152
	454032	W31790	Hs.194293	ESTs, Weakly similar to I54374 gene NF2	60.103
	449121	AI915858	Hs.194980	ESTs	0.003 305.974
	447827	U73727	Hs.19718	protein tyrosine phosphatase, receptor t	
10	438401	AL046321	Hs.197484 Hs.197764	ESTs, Weakly similar to JC4296 ring fing	0.002 0.011
10	457200 429211	U33749 AF052693	Hs.198249	thyroid transcription factor 1 gap junction protein, beta 5 (connexin 3	9.390
	429257	AP052693 AW163799	Hs.198365	2,3-bisphosphoglycerate mutase	178.436
	429276	AF056085	Hs.198612	G protein-coupled receptor 51	0.729
	449818	AW594365	Hs.199365	ESTs	1.000
15	429345	R11141	Hs.199695	hypothetical protein	7.339
10	443564	Al921685	Hs.199713	ESTs	0.001
	449847	AW204447	Hs.199750	organic anion transporter polypeptide-re	1.000
	449351	AW016537	Hs.200760	ESTs	0.005
	426322	J05068	Hs.2012	transcobalamin I (vitamin B12 binding pr	381.474
20	434411	AA632649	Hs.201372	ESTs	0.039
	448045	AJ297436	Hs.20166	prostate stem cell antigen	2.337
	446555	AV659046	Hs.201847	ESTs	0.024
	450411	D61167	Hs.202156	ESTs	0.004
~ -	442282	AW451086	Hs.202390	ESTs	1.000
25	427587	BE348244	Hs.202628	ESTs, Weakly similar to 178885 serine/th	228.705
	429486	AF155827	Hs.203963	hypothetical protein FLJ10339	0.133
	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	2.070
	426746	J03626	Hs.2057	uridine monophosphate synthetase (orotal	0.528
20	448275	BE514434	Hs.20830	kinesin-like 2	19.718
30	459058	H85939	Hs.209605	EST	0.005
	441795	N58115	Hs.21137	AD024 protein	1.000
	451592	AI805416	Hs.213897	ESTs	0.012
	443367	AW071349	Hs.215937	ESTs	0.003 0.072
35	415949	H10562	Hs.21691 Hs.220756	ESTS	213.962
<i></i>	444008	BE544855	Hs.22133	ESTs, Weakly similar to SFR4_HUMAN SPLIC hypothetical protein FLJ20121	0.250
	432548 427867	AW973399 NM_005073	Hs.2217	solute carrier family 15 (oligopeptide t	0.010
	453123	Al953718	Hs.221849	ESTs	0.566
	439569	AW602166	Hs.222399	CEGP1 protein	10.625
40	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	27.603
70	435956	AF269255	Hs.22604	lysosomal apyrase-like protein 1	127.564
	453883	AI638516	Hs.22630	cofactor required for Sp1 transcriptiona	2.216
	431253	R06428	Hs.226351	ESTs	0.023
	453900	AW003582	Hs.226414	ESTs, Weakly similar to ALUB_HUMAN ALU S	0.103
45	430034	X60155	Hs.227767	zinc finger protein 41	1.000
	423017	AW178761	Hs.227948	serine (or cysteine) proteinase inhibito	0.024
	417997	AA418189	Hs.23017	Homo sapiens cDNA: FLJ22747 fis, clone K	1.635
	441362	BE614410	Hs.23044	RAD51 (S. cerevistae) homolog (E coll Re	120.167
5 0	452956	AW003578	Hs.231872	ESTs	1.000
50	446009	A1989885	Hs.231926	ESTs	4.000
	430499	AW969408	Hs.231991	ESTs	0.014
	448560	BE613183	Hs.23213	ESTs	285.090
	441508	AW015203	Hs.232237	ESTs	0.261
55	453228	AW628325	Hs.232327	ESTs	1.000
"	442167	H18740	Hs.23248	hypothetical protein from EUROIMAGE 2005 ESTs	0.240 0.609
	453321 449207	Al984381 AL044222	Hs.232521 Hs.23255	nucleoporin 155kD	0.551
	430152	AB001325	Hs.234642	aquapodin 3	1.040
	439239	AI031540	Hs.235331	ESTs	0.598
60	435087	AW975241	Hs.23567	ESTs	0.007
00	451276	AW294386	Hs.236533	ESTs, Highly similar to dJ742C19.2 [H.sa	0.012
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	1.280
	431011	AA490631	Hs.23783	ESTs	0.016
	430307	BE513442	Hs.238944	hypothetical protein FLJ10631	284.526
65	444371	BE540274	Hs.239	forkhead box M1	3.691
	424264	D80400	Hs.239388	Human DNA sequence from clone RP1-304B14	0.255
	449722	BE280074	Hs.23960	cyclin B1	0.467
	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	13.419
70	430168	AW968343	Hs.24255	DKFZP434l1735 protein	1.192
70	452292	AW139588	Hs.244359	ESTs	1.000
	412661	N32860	Hs.24611	ESTs, Weakly similar to 154374 gene NF2	2.500
	456682	AW500321	Hs.246766	Homo sapiens cDNA FLJ12360 fis, clone MA	0.014
	457343	NM_013936	Hs.247862	olfactory receptor, family 12, subfamily	0.233
75	430978	U53583	Hs.248182	olfactory receptor, family 1, subfamily	1.000 5.866
13	431020	AF097874	Hs.248226	caspase 14, apoptosis-related cysteine p transcription factor 19 (SC1)	1.838
	431070 431098	AW408164 AW501465	Hs.249184 Hs.249230	ribonuclease L (2,5'-oligoisoadenylate	0.004
	431030	ATTOUT 400	10.275230	Howard of the longuage of the	0.007

	454470	******	11- 050450	COT-	0.242
	454170 439223	AW177225 AW238299	Hs.250158 Hs.250618	ESTs UL16 binding protein 2	0.243 0.516
	438223	H49548	Hs.251391	claudin 16	0.080
	431347	Al133461	Hs.251664	insulin-like growth factor 2 (somalomedi	843.974
5	450663	H43540	Hs.25292	ribonuclease HI, targe subunit	5.928
•	450684	AAB72605	Hs.25333	Interleukin 1 receptor, type II	1.000
	413094	H24184	Hs.25413	TOLLIP protein	268.885
	450796	NM_001988	Hs.25482	envoplakin	1.643
4.0	408827	AW275730	Hs.254825	ESTs	0.008
10	444129	AW294292	Hs.256212	ESTs	0.002
	430637	BE160081	Hs.256290	S100 calcium-binding protein A11 (calgiz	3.240
	436138	H53323	Hs.25717	Homo sapiens cDNA: FLJ23454 fis, clone H	0.679
	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	260.231 2.133
15	453459 456536	BE047032 AW135986	Hs.257789 Hs.257859	ESTs ESTs	98.795
13	438424	AVV 133386 Al912498	Hs.25895	hypothetical protein FLJ14996	1.882
	451161	AA211329	Hs.26006	hypothetical protein FLJ10559	0.012
	430634	Al860651	Hs.26685	calcyphosine	9.561
	435562	AL046988	Hs.268677	ESTs, Moderately similar to ALU7_HUMAN A	0.957
20	417964	R71449	Hs.268760	ESTs	0.004
	445703	AV654845	Hs.27	glycine dehydrogenase (decarboxylating;	1.324
	431845	BE019924	Hs.271580	uroplakin 1B	303.679
	453074	AA031813	Hs.271880	ESTs	0.004
25	431890	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 suburi	1.828 0.013
23	435182 430791	AA669386 AA486293	Hs.272035 Hs.272068	ESTs, Weakly similar to gonadotropin ind ESTs, Weakly similar to ALU3_HUMAN ALU S	8.978
	430791	AA157632	Hs.272630	vacuolar proton pump della polypeptide	0.316
	451939	U80456	Hs.27311	single-minded (Drosophila) homolog 2	0.014
	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (f	26.348
30	423031	Al278995	Hs.27457	ESTs	53.288
	455612	BE042896	Hs.274848	ESTs	21.013
	452046	AB018345	Hs.27657	KIAA0802 protein	129.013
	436567	AI492860	Hs.276904	ESTs	0.007
25	459006	AW298631	Hs.27721	Wolf-Hirschhorn syndrome candidate 1-lik	0.031
3 5	430157	BE348706	Hs.278543	ESTS	99.244 0.408
	452012 433001	AA307703 AF217513	Hs.279766 Hs.279905	kinesin family member 4A clone HQ0310 PRO0310p1	1.721
	458663	AV658444	Hs.280776	tankyrase, TRF1-interacting ankyrin-rela	38.231
	450020	A1680684	Hs.282219	ESTs	0.003
40	435858	AF254260	Hs.283009	tuftelin 1	1.516
. •	430733	AW975920	Hs.283361	ESTs	1.000
	446024	AB040946	Hs.284227	KIAA1513 protein	9.424
	433967	AF113018	Hs.284302	PRO1621 protein	0.008
15	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	0.030
45 .	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	1.058
	414595	AA641726 X51730	Hs.289015	hypothetical protein MGC4171	273.013 0.002
	432097 452345	AA293279	Hs.2905 Hs.29173	progesterone receptor hypothetical protein FLJ20515	4.010
	457733	AW974812	Hs.291971	ESTs	1.000
50	441398	AA932398	Hs.292036	ESTs, Weakly similar to B34087 hypotheti	1.000
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	0.006
	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	0.003
	433365	AF026944	Hs.293797	ESTs	0.049
55	417151	AA194055	Hs.293858	ESTs	6.593
55	424242	AA337476	Hs.293984	hypothetical protein MGC13102	1.656
	432375	BE536069 Al186431	Hs.2962	S100 calcium-binding protein P	17.094 2.646
	422424 432410	X68561	Hs.296638 Hs.2982	prostate differentiation factor Sp4 transcription factor	0.007
	426847	S78723	Hs.298623	5-hydroxytryptamine (serotonin) receptor	0.005
60	454054	Al336329	Hs.301519	Homo sapiens cDNA FLJ12536 fis, done NT	0.488
	452142	AB028947	Hs.301654	KIAA1024 protein	0.009
	449773	R76294	Hs.302383	ESTs	0.001
	438366	AA805760	Hs.303567	ESTs	1.000
c =	452724	R84810	Hs.30464	cyclin E2	1.000
65	429343	AK000785	Hs.307036	Homo sapiens, Similar to epsin 3, clone	0.494
	446466	H38026	Hs.308	arrestin 3, retinal (X-arrestin)	0.022
	430694 432789	AAB10624 D26361	Hs.30936 Hs.3104	ESTs, Weakly similar to H2BH_HUMAN HISTO KIAA0042 gene product	16.744 0.302
	432666	AW204069	Hs.312716	ESTs. Weakly similar to unnamed protein	0.001
70	453028	AB006532	Hs.31442	RecQ protein-like 4	13.392
	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	2.766
	427122	AW057736	Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	553.782
	453216	AL137566	Hs.32405	Homo sapiens mRNA; cDNA DKFZp586G0321 (f	84.115
76	443247	BE614387	Hs.333893	c-Myc target JPO1	79.385
75	439632	AW410714	Hs.334437	hypothetical protein MGC4248	337.474
	431448	AL137517	Hs.334473	hypothetical protein DKFZp564O1278	0.842
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	402.500

					404 470
	433958	AW043909	Hs.334707	aminoacylase 1	191.179
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	313.462 .
	457292	AI921270	Hs.334882	hypothetical protein FLJ14251	21.744
5	451359	H85334	Hs.336623	ESTs	0.038
)	440249	AI246590	Hs.337275	ESTs Madagataki almilar la SSSSS7 alaba	0.432 1.102
	434487 447437	AF143867	Hs.337588	ESTs, Moderately similar to S65657 alpha purinergic receptor P2Y, G-protein coupl	0.483
	447519	U07225 U46258	Hs.339 Hs.339665	ESTs	1.032
	434192	AW387314	Hs.34371	ESTs	0.003
10	453765	BE279901	Hs.35091	hypothetical protein FLJ10775	0.056
10	441020	W79283	Hs.35962	ESTs	75.141
	453884	AA355925	Hs.36232	KIAA0186 gene product	0.138
	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1	0.008
	453945	NM_005171	Hs.36908	activating transcription factor 1	0.044
15	447289	AW247017	Hs.36978	melanoma antigen, family A, 3	0.002
	407626	U39196	Hs.37169	potassium inwardly-rectifying channel, s	0.009
	423620	N71320	Hs.39938	ESTs	1.000
	436027	A1864053	Hs.39972	ESTs, Weakly similar to 138588 reverse t	0.042
••	407846	AA426202	Hs.40403	Cbp/p300-interacting transactivator, wit	1.810
20	443133	A1033878	Hs.41379	ESTs	0.534
	434534	H90477	Hs.41407	ESTs	0.013
	452934	AA581322	Hs.4213	hypothetical protein MGC16207	3.679
	434952	T10269	Hs.4285	Homo sapiens cDNA: FLJ22505 fis, clone H	2.885
25	432237	AK001926	Hs.44143	polybromo 1	0.010
25	420900	AL045633	Hs.44269	ESTs	10.436
	408522	AI541214	Hs.46320	Small proline-rich protein SPRK (human,	3.393 386.256
	435099	AC004770	Hs.4756 Hs.48956	flap structure-specific endonuclease 1 gap junction protein, beta 6 (connexin 3	0.922
	431009 408947	BE149762 AL080093	Hs.49117	Homo sapiens mRNA; cDNA DKFZp564N1662 (f	0.003
30	435647	A1653240	Hs.49823	ESTs	175.910
50	435854	AJ278120	Hs.4996	putative ankyrin-repeat containing prote	2.584
	436291	BE568452	Hs.5101	protein regulator of cytokinesis 1	0.610
	455506	AA703584	Hs.5105	hypothetical protein FLJ 10569	0.008
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	1.089
35	409287	AL080213	Hs.52792	Homo sapiens mRNA; cDNA DKFZp586i1823 (f	16.910
	435047	AA454985	Hs.54973	cadherin-like protein VR20	0.612
	439750	AL359053	Hs.57664	Homo sapiens mRNA full length insert cDN	5.938
	439452	AA918317	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	1.000
40	439482	W70045	Hs.58089	ESTs	0.118
40	439606	W79123	Hs.58561	G protein-coupled receptor 87	0.095
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	0.055
	452240	Al591147	Hs.61232	ESTS	0.221 2.595
	452316	AA298484	Hs.61265	ESTs, Moderately similar to G786_HUMAN P	2.595 3.677
45	452747	BE153855 AF160477	Hs.61460 Hs.61460	lg superfamily receptor LNIR lg superfamily receptor LNIR	7.587
72	434876 444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	0.046
	438779	NM_003787	Hs.6414	nucleolar protein 4	0.030
	439453	BE264974	Hs.6566	thyroid hormone receptor interactor 13	12.016
	440126	AA975145	Hs.66194	ESTs	0.008
50	451291	R39288	Hs.6702	ESTs	0.012
	439963	AW247529	Hs.6793	platelet-activating factor acetythydrola	1.653
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	8.628
	437044	AL035864	Hs.69517	cDNA for differentially expressed CO16 g	140.908
<i></i>	418107	R41726	Hs.7284	ESTs	0.146
55	436326	BE085236	Hs.75313	aldo-keto reductase family 1, member B1	0.649
	433675	AW977653	Hs.75319	ribonucleotide reductase M2 polypeptide	0.237
	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.242 0.202
,	414430	Al346201	Hs.76118 Hs.76884	ubiquitin carboxyl-terminal esterase L1	2.318
60	414682 414807	AL021154 A1738616	Hs.77348	inhibitor of DNA binding 3, dominant neg hydroxyprostaglandin dehydrogenase 15-(N	1.622
UU	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	246.564
	451575	AA767622	Hs.78893	KIAA0244 protein	1.000
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.552
	416498	U33632	Hs.79351	potassium channel, subfamily K, member 1	5.128
65	458921	A1682088	Hs.79375	holocarboxylase synthetase (biotin-[prop	0.246
	409235	AA188827	Hs.7988	ESTs, Weakly similar to 138022 hypotheti	7.249
	440371	BE268550	Hs.80449	Homo sapiens, clone IMAGE:3535294, mRNA,	0.792
	452732	BE300078	Hs.80449	Homo sapiens, clone IMAGE:3535294, mRNA,	360.782
70	417003	AL038170	Hs.80756	betaine-homocysteine methyltransferase	60.590
70	407584	W25945	Hs.8173	hypothetical protein FLJ10803	9.988
	417312	AW888411	Hs.81915	leukemia-associated phosphoprotein p18 (402.705
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	10.806
	428839	A1767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT ESTs	1.051
75	438315	R56795	Hs.82419 Hs.82906	CDC20 (cell division cycle 20, S. cerevi	0.226 26.260
13	417900	BE250127 X02308	Hs.82962	thymidylate synthetase	221.090
	417933 418067	Al127958	Hs.83393	cystatin E/M	2.396
	410001	W.151.900	,	-,	

	438086	AA336519	Hs.83523	nuclear receptor subfamily 1, group I, m	1.000
	418205	L21715	Hs.83760	troponin I, skeletal, fast	0.159
	413385	M34455	Hs.840	Indoleamine-pyrrole 2,3 dioxygenase	0.490
<u>r</u>	418322	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	3.527
5	413529	U11874	Hs.846	interleukin 8 receptor, beta	0.077 0.008
	458027 418543	L49054 NM_005329	Hs.85195 Hs.85962	myeloid leukemia factor 1	1.813
	418583	AA604379	Hs.86211	hyaturonan synthase 3 hypothetical protein	125.769
	441801	AW242799	Hs.86366	ESTs	55.026
10	414792	BE314949	Hs.87128	hypothetical protein FLJ23309	8.139
	407246	S70348	Hs.87149	integrin, beta 3 (platelet glycoprotein	0.020
	433417	AA587773	Hs.8859	Homo sapiens, Similar to RIKEN cDNA 5830	313.141
	445060	AA830811	Hs.88808	ESTs	1.000
15	453450	AW797627	Hs.89474	ADP-ribosylation factor 6	137.718 0.006
13	419227	BE537383	Hs.89739 Hs.9028	cholinergic receptor, nicotinic, beta po	6.846
	401464 443162	AF039241 T49951	Hs.9029	histone deacetylase 5 DKFZP434G032 protein	14.057
	431024	AA713666	Hs.90462	Homo sapiens, clone IMAGE:4132043, mRNA,	3.507
	419559	Y07828	Hs.91096	ring finger protein	0.025
20	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	684.577
	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	0.363
	424457	A1249036	Hs.94292	hypothetical protein FLJ23311	175.667
	410348	AW182663	Hs.95469	ESTs	0.01 1 428.231
25	439738 421478	BE246502 Al683243	Hs.9598 Hs.97258	sema domain, immunoglobulin domain (lg), ESTs, Moderately similar to S29539 ribos	0.005
23	443767	BE562136	Hs.9736	proteasome (prosome, macropain) 26S subv	1.168
	426902	Al125334	Hs.97408	ESTs	37.467
	444874	AI218496	Hs.97515	BRCA1-interacting protein 1; BRCA1-assoc	0.067
••	427356	AW023482	Hs.97849	ESTs	1.000
30	430000	AW205931	Hs.99598	hypothetical protein MGC5338	0.812
	419485	AA489023	Hs.99807	ESTs, Weakly similar to unnamed protein	0.342
	420783	AI659838	Hs.99923	lectin, galactoside-binding, soluble, 7 gb:EST13476 Testis tumor Homo sapiens cD	19.785 103.769
	421934 431322	AA300625 AW970622		gb:EST382704 MAGE resequences, MAGK Homo	0.258
35	424040	AA334400		gb:EST38610 Embryo, 9 week Homo sapiens	0.011
-	433108	AB002446		gb:Horno sapiens mRNA from chromosome 5q2	0.023
	458829	AI557388		gb:PT2.1_6_G03.r tumor2 Homo sapiens cDN	1.000
	459169	AI905517		gb:RC-BT091-210199-105 BT091 Homo sapien	0.773
40 ·	400300	X03363		HER2 receptor tyrosine kinase (c-erb-b2,	468.462
40	440012	AA861072		gb:ak32e05.s1 Soares_testis_NHT Homo sap	0.002 0.010
	412799 412964	A1267606 BE019688		gb:aq91h03.x1 Stanley Frontal SB pool 1 gb:bb28g08.x1 NIH_MGC_5 Homo sapiens cDN	0.003
	406992	S82472		gb:beta -pol=DNA polymerase beta (exon a	0.005
	414969	C16195		gb:C16195 Clontech human aorta polyA mRN	0.023
45	413158	BE068098		gb:CM1-BT0368-061299-060-c09 BT0368 Homo	0.007
	453823	AL137967		gb:DKFZp761D2315_r1 761 (synonym: hamy2)	0.994
	453846	AL157586		gb:DKFZp761H0216_r1 761 (synonym: hamy2) gb:H.saplens DNA for endogenous retrovir	0.004 0.037
	407055 415204	X89211 T27434		gb:hbc2294 Human pancreatic Islet Homo's	76.500
50	434572	AF147340		gb:Homo sapiens full length insert cDNA	0.030
	438990	AF085890		gb:Homo sapiens full length insert cDNA	1.000
	439780	AL109688		gb:Homo sapiens mRNA full length insert	0.256
	413671	Z43712		gb:HSC1JA121 normalized infant brain cDN	0.009
55	406974	M57293		gb:Human parathyroid hormone-related pep	0.004 2.616
رر	455797 455807	BE091833 BE141140		gb:IL2-BT0731-260400-076-F04 BT0731 Homo gb:MR0-HT0075-021299-006-d07 HT0075 Homo	0.413
	432189	AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapiens	0.415
	443309	AI821874		gb:nt58f10.x5 NCI_CGAP_Pr3 Homo saplens	0.007
	437240	AA747537		gb:nx85c05.s1 NCI_CGAP_GCB1 Homo sapiens	0.006
60	455189	AW864176		gb:PM0-SN0014-260400-002-b08 SN0014 Homo	0.069
	444163	AJ126098		gb:qc54g07.x1 Soares_placenta_8to9weeks_	394.282
	455170	AW860972		gb:QV0-CT0387-180300-167-h07 CT0387 Homo gb:QV0-HT0367-150200-114-d02 HT0367 Homo	0.757 1.000
	454789 433005	BE156314 AW939074		gb:QV1-DT0069-010200-057-c12 DT0069 Homo	0.013
65	455380	BE160188		gb:QV1-HT0413-010200-059-g05 HT0413 Homo	0.249
•	455650	BE064655		gb:RC1-BT0313-301299-012-c09 BT0313 Homo	1.000
	436383	BE065178		gb:RC1-BT0314-020200-012-h01 BT0314 Homo	1.000
	413100	BE065208		gb:RC1-BT0314-310300-015-b09 BT0314 Homo	271.372
70	428436	BE080180		gb:RC4-BT0629-120200-011-b10 BT0629 Homo	0.002
70	455831	BE144966		gb:RC6-HT0187-201099-031-c04 HT0187 Homo	0.011 293.654
	434414 414221	A1798376 AW450979		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	0.807
	409488	AW402825		gb:UI-HF-BKO-aaq-d-08-0-UI.r1 NIH_MGC_36	0.965
	437938	AI950087		gb:wq05c02.x1 NCI_CGAP_Kid12 Homo sapien	2.952
75	451385	AA017656		gb:ze39h01.r1 Soares retina N2b4HR Homo	7.341
	449325	AA001162		gb:ze48b06.r1 Soares retina N2b4HR Homo	0.004
	413316	W91931		gb:zh47c01.r1 Soares_fetal_liver_spleen_	0.004
				1.70	

	401016 401335		0.342 0.256
_	401555 401760		1.000 301.372
5	401781 401961		247.141 1.722
	402239		5.180
	402305 402424		0.917 551.141
10	402777		153.231
	402778 402837		0.008 0.367
	402948		154.103
15	402952 403142		17.038 0.196
	403297 403637		12.744 0.304
	403657		0.032
20	404136 404249		0.008 0.065
20	404875		1.105
	404917 404983		69.590 1.000
25	405238		1.000
25	405364 405531		294.141 1.747
	405601		145.551
	405621 405932		0.224 1.968
30	406117		0.333 1.000
	406354 406548		0.002
	406599 459702	Al204995	0.010 0.449
35			U.11U
	TABLE 28		
	Pkey:	Unique Eos per: Gene cluste	probeset identifier number
40	Accession		cession numbers
	Pkey 409488	CAT Number 1134791_1	Accession AW402825 BE544338
45	412799	132817_1	AI267606 AA121045 AA126521
	412964 413100	1339278_1 1349119_1	BE019688 BE144460
	413158	1351251_1	BE068098 BE068119 BE068083 BE068088 BE068120 BE068155 BE068111
50	413316 413671	1360169_1 1382504_1	W91931 W94979 BE081744 Z43712 BE156729 BE156538 BE156731 BE156673 BE156539 BE156674 BE156430 BE156672 BE156675 BE156432 BE156541
	414221	142696_1	AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367 BE011368 BE011362 BE011215 BE011365 BE011363
	414969	1510393_1	C16195 C16230 C16211 C16164 C16251
55	415204 421934	1529407_1 209339_1	T27434 Z25288 F00323 D82802 R85077 AA300625 R16859 R16860 AW898335 W24337
55	424040	234659_1	AA334400 AA334257 AW966124
	428436	291472_1	BE080180 AW827313 AW231970 AA995028 AA428584 AW872716 AW892508 AW854593 AA578441 AW975234 AA664937 AA984131 AA528743 AA552874 AA564758 AW063245 A)267534 AW070190 AW893483 AA770330 AA906928 AA906582 AA758746 AA551717 AW063311 AA429538
60	431322	331543_1	AW970622 AA503009 AA502998 AA502989 AA502805 T92188
00	432189 433005	342819_1 357346_1	AA527941 AIB10508 AI620190 AA635266 AW939074 AW939073 BE160476 AW939938 AW939206 AW940012 AW939076 AA573577 AW750479 AA574383 AW970057
	433108	35896_1 38585_1	AB002446 T03146 AI798376 \$46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231
	434414	36363_1	AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174
65			T61139 AA149776 AA699829 AW879188 AW813567 AW813538 A1267168 AA157718 AA157719 AA100472 AA100774 AA130756 AA157705 AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824
			AI829309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662
	434572	38911_1	AW817705 AW817703 AW817659 BE081531 H59570 AF147340 T51948 T52029
70	436383	41888_1	BE065178 AJ227879
	437240 437938	435139_1 44573_2	AA747537 BE089068 BE089070 AI950087 N70208 R97040 N36809 AI308119 AW967677 N35320 AI251473 H59397 AW971573 R97278 W01059 AW967671 AA908598 AA251875
			AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA884444 N92578 F13493
75			AA927794 AI560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488964 AA283144 AI890387 AI950344 AI741346 AI689062 AA282915 AW102898 AI872193 AI763273 AW173586 AW150329 AI653832 AI762688 AA988777 AA488892 AI356394 AW103813 AI539642
			AA642789 AA856975 AW505512 AI961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 AI819225 AW205862 AI683338 AI858509 AW276905 AI633006 AA972584 AA908741 AW072629 AW513996
			ATTACLIST TARE TOWN TATE THE PARTY T

			A A 202277 /	AA969759 N75628 N22388 H84729 H60052 T92487 Al022058 AA780419 AA551005 W80701 AW613456 Al373032 Al564269 F00531					
				4A909709 N78028 N22380 N64729 N8002 192407 N8022038 AA780419 AA301005 VY60701 AW613436 N373032 X3544259 V0507 7181 W78802 R66056 AB002839 R67840 AA300207 AW959581 T63226 F04005					
	438990	46760_1		129949 H29856					
-	439780	47673_1		R23665 R26578					
5	440012	483290_1	102819 R25946						
	443309	56604_1	AI821874 AI821868 AA630932 AA653897 AA650103 AI821131 AI821124 A1126098 A1184746 A1148521						
	444163 449325	593658_1	AA001162 AA018950 AA017505 R84446						
	449325 451385	80480_1 86787_1	AA001162 AA018950 AA017505 K84446 AA017656 AA017374 AA019761						
10	453823	982526_1		IE064160 BE064186					
	453846	983043_1	AL157586 A						
	454789	1234742_1		BE156316 AW820750					
	455170	1256906_1		AW862598 AW862599 AW860988 AW8609B3 AW860898 AW860925 AW860922 AW860986 AW860984 AW860989					
1.5	455189	1259271_1		AW864133 AW864185 AW864137					
15	455380 455650	1287679_1		AW935785 BE160401 BE160319 BE160313 BE160395					
	455 79 7	1348720_1 1366826_1	BE064655 E	3E091874 BE091871					
	455807	1370914_1		3E141139 BE141105 BE141143 BE141127 BE141202 BE141108					
	455831	1373969_1		BE144957 BE144958					
20	458829	773443_1	A1557388 BI						
	459169	920641_1	Al905517 Al	1905455 A)905452					
0.5	TABLE 2C								
25	~			Production of the section of the sec					
	Pkey: Ref;	Unique num	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA						
	rei:	Sedirence of	burge. The 7 C	ungu numbers in dus column aer centreaux desimare (of) numbers. Dumient 1. et al. Terers d'ute protection entres l'incompagne 22 l'unique de la Nature (1999) 402-489.					
	Strand:		sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted.						
30	N_position:	Indicates nu	cleolide positic	ons of predicted exons.					
•	Pkey	Ref	Strand	NLposition					
	rkoy	1761	CUBIO	in _pusition					
25	401016	8117441	Plus	126234-126359,128050-128236					
35	401335	9884881	Plus	15736-16352					
	401555	8099284	Minus Plus	162520-162657 83126-83250,85320-85540,94719-95287					
	401760 401781	9929699 7249190	Minus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814					
	401961	4581193	Minus	124054-124209					
40	402239	7690131	Plus	38175-38304,42133-42266					
	402305	7328724	Plus	40832-41362					
	402424	9796344	Minus	64925-65073					
	402777	9588235	Plus	126786-126948					
45	402778 402837	9588235 9369121	Plus Minus	128560-128702 2013-2186,9570-9758,11136-11309,19429-19677,21210-21455,23368-23562,24342-24527,29132-29320					
40	402948	9368458	Minus	2013-2100,3370-3700,11130-11303,13423-13077,21210-21400,23300-23302,24042-24327,23102-23320 143456-143626,143808-143935					
	402952	9408724	Minus	119452-119619					
	403142	9444521	Plus	89286-90131					
c0	403297	8096824	Minus	16584-17264					
50	403637	8671936	Minus	142647-142771,145531-145762					
	403657	8843996 6981900	Minus Minus	156223-156370 42538-46428					
	404136 404249	8655533	Plus	42300-40420 64270-64633					
	404875	9801324	Plus	96588-96732,97722-97831					
55	404917	7341851	Plus	49330-49498					
	404983	4432779	Minus	51178-51374,52000-52173					
	405238	7249119	Minus	51728-51836					
	405364	2281075	Minus	48325-48491,49136-49252					
60	405531 405601	9665194 5815493	Pius Minus	35602-35803 147835-147935,149220-149299					
50	405621	5523811	Plus	59362-59607					
	405932	7767812	Minus	123525-123713					
	406117	9142932	Plus	54304-54584					
65	406354	9256049	Minus	2095-2377					
65	406548	7711514	Minus Plus	25138-26762 10933-11086					
	406599	8248616	rius	1/202-11/00					

PCT/US02/21338 WO 03/003906

Table 3A: Preferred therapeutic targets for bladder cancer

Pkey:	Unique Eos probeset identifier number
ExAcon:	Exemplar Accession number, Genbank accession number
I leie en al De	Halana aumbas

5

UnigenelD: Unigene number
Unigene Title: Unigene gene title
R1: 90th percentile of bladder tumor Als divided by the 90th percentile of normal bladder sample Als
R2: 90th percentile of bladder tumor Als divided by the 90th percentile of normal bady sample Als

₹2:	90th pe	rcentile of bladder	turnor Als divided by the 90th percentile of normal b	ody sample A	ls	
Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2	
42194		Hs.334309	keratin 6A	14.20	1.20	
43992			ESTs	11.31	21.34	
41332		Hs.75294	corticotropin releasing hormone	9.15	45.75	
42111		Hs.1355	cathepsin E	9.07	45.35	•
41730		Hs.81892	KIAA0101 gene product	8.50	1.99	
43121		Hs.323733	gap junction protein, beta 2, 26kD (conn	8.39	1.28	
41840		Hs.84905	cytokeralin 20	8.10	40.50	
44661		Hs.313	secreted phosphoprotein 1 (osteopontin,	7.98	1.38	
		Hs.279905	clone HQ0310 PRO0310p1	7.67	2.12	
43300			interleukin 8	7.56	4.85	
40824		Hs.624	ESTs	7.45	4.70	
41771			ESTs	7.34	9.18	
41772		Hs.208067		7.30	26.07	
42367		Hs.1695	matrix metalloproteinase 12 (macrophage	7.12	35.60	
41800		Hs.83169	matrix metalloproteinase 1 (interstitial		4.96	
41375		Hs.75517	taminin, beta 3 (nicein (125kD), kalinin	6.95	0.89	
44163			normal mucosa of esophagus specific 1	6.42		
42216		Hs.112408	S100 calcium-binding protein A7 (psorias	6.08	3.49	
40724			gb:Human nonspecific crossreacting antig	5.96	0.96	
40503			C1002652*:gi]544327 sp Q04799 FMO5_RABIT	5.84	16.22	
44923		Hs.211579	melanoma cell adhesion molecule	5.82	2.28	
40668			gb:Human nonspecific crossreacting antig	5.80	0.89	
42015		Hs.99785	Homo sapiens cDNA: FLJ21245 fis, clone C	5.77	28.85	
41551		Hs.182362	ESTs	5.65	28.25	
42602	8 NM_00111	0 Hs.172028	a disintegrin and metalloproteinase doma	5.60	6.51	
42400	8 R02740	Hs.137555	putative chemokine receptor, GTP-binding	5.59	2.33	
42865	1 AF196478	Hs.188401	annexin A10	5.55	27.75	
40084	3		NM_003105*:Homo sapiens sortilin-related	5.51	4.92	
40223	0		Target Exon	5.36	21.44	
45274	7 BE153855	Hs.61460	lg superfamily receptor LNIR	5.33	2.80	
41608	5 BE267931	Hs.78996	proliferating cell nuclear antigen	5.17	1,98	
42845		1 Hs.184339	KIAA0175 gene product	4.90	2.63	
41832		Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	4.77	2.35	
41261	0 X90908	Hs.74126	fatty acid binding protein 6, ileal (gas	4.77	3.71	
41866		Hs.41690	desmocollin 3	4.74	1.48	
41468		Hs.76888	hypothetical protein MGC12702	4.74	2.92	
44243		Hs.38178	hypothetical protein FLJ23468	4.68	1.61	
42483		Hs.153408	Homo sapiens cDNA FLJ10570 fts, clone NT	4.65	11.63	
43195		Hs.2877	cadherin 3, type 1, P-cadherin (placenta	4.63	2.06	
42372		Hs.132127	hypothetical protein LOC57822	4.55	3.35	
40178			NM_005557*:Homo sapiens keratin 16 (foca	4.49	1.62	
42430		Hs.154443	minichromosome maintenance deficient (S.	4.43	2.39	
40109		120101110	C12000586*:gi]6330167 dbj BAA86477.1 (A	4.40	12.94	
41793		Hs.82962	thymidylate synthetase	4.35	2.29	
		Hs.83484	SRY (sex determining region Y)-box 4	4.32	2.82	
41811 41214		Hs.73625	RAB6 interacting, kinesin-like (rabkines	4.24	8.15	
		1 13.7 3023	Targel Exon	4.15	1.31	
40178 42523		Hs.165909	ESTs, Weakly similar to 138022 hypotheti	4.14	7.39	
			hypothetical protein MGC4485	4.12	2.51	
43284			diubiquitin	4.11	3.26	
40838		Hs.44532		4.09	3.72	
4497			cyclin B1	4.07	2.50	
42034		Hs.97101	putative G protein-coupled receptor		7.14	
42280		Hs.121028	hypothetical protein FLJ10549	4.00		
4049			Insulin-like growth factor 2 (somatomedi	3.89	5.17 7.20	
4004		11 400004	Homo sapiens winged helix/forkhead trans	3.88	7.29	
4291		Hs.196384	prostaglandin-endoperoxide synthase 2 (p	3.87	1.61	
4443	71 BE540274		forkhead box M1	3.87	2.75	
	1 BE281128		TONDU	3.83	9.48	
4413			RAD51 (S. cerevislae) homolog (E coli Re	3.82	2.98	
4399	3 AW247529	Hs.6793	platelet-activating factor acetylhydrola	3.77	3.83	
4071			gb:ye53h05.s1 Soares fetal liver spleen	3.73	4.91	
4260			ATPase, Class I, type 8B, member 1	3.68	7.08	
4434			chromosome 20 open reading frame 1	3.68	2.29	
4147			enhancer of zeste (Drosophila) homolog 2	3.67	3.06	
4130			chitinase 3-like 1 (cartilage glycoprote	3.67	1.18	
4215			absent in melanoma 2	3.67	3.65	
4431		Hs.9029	DKFZP434G032 protein	3.66	3.21	
7101						

	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	3.66	3.57
	417771	AA804698	Hs.82547	retinoic acid receptor responder (lazaro	3.62	2.73
	441495	AW294603	Hs.127039	ESTs	3.60	2.71
	422282	AF019225	Hs.114309	apolipoprotein L	3.57	3.92
5	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	3.55	0.80
-	417275	X63578	Hs.295449	parvalbumin	3.54	4.60
	440006			hypothetical protein FLJ20510	3.52	2.59
		AK000517	Hs.6844		3.50	3.61
	418203	X54942	Hs.83758	CDC28 protein kinase 2		
10	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	3.50	17.50
10	404875			NM_022819°:Homo sapiens phospholipase A2	3.46	3.24
	420005	AW271106	Hs.133294	ESTs	3.40	2.22
	409757	NM_001898	Hs.123114	cystatin SN	3.39	2.93
	427719	Al393122	Hs.134726	ESTs	3.31	2.51
	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	3.28	0.42
15	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	3.28	2.62
13		AW411307	FIS. 114311		3.25	13.54
	406081	0.5040000	11- 470405	Target Exon		
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	3.25	2.46
	431009	BE149762	Hs.48956	gap Junction protein, beta 6 (connexin 3	3.23	2.88
	429983	W92620	Hs.260855	ESTs	3.20	2.84
20	422158	L10343	Hs.112341	protease Inhibitor 3, skin-derived (SKAL	3.18	1.54
	426451	Al908165	Hs.169946	GATA-binding protein 3 (T-cell receptor	3.17	5.44
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	3.13	15.65
	415752	BE314524	Hs.78776	putative transmembrane protein	3.11	2.46
				PRO2000 protein	3.11	3.30
25	408633	AW963372	Hs.46677		3.09	1.52
43	409956	AW103364	Hs.727	Inhibin, beta A (activin A, activin AB a		
	412420	AL035668	Hs.73853	bone morphogenetic protein 2	3.08	2.22
	400297	Al127076	Hs.306201	hypothetical protein DKFZp564O1278	3.05	12.49
	437931	A1249468	Hs.124434	ESTs	3.01	3.70
	421451	AA291377	Hs.50831	ESTs	2.99	14.95
30	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	2.97	2.10
50	402239	***************************************		Target Exon	2.97	3.37
	429345	D14144	Hs.199695	hypothetical protein	2.96	2.61
		R11141			2.93	2.13
	435904	AF261655	Hs.8910	1,2-alpha-mannosidase IC		
25	423961	D13666	Hs.136348	periostin (OSF-2os)	2.93	1.44
35	420923	AF097021	Hs.273321	differentially expressed in hematopoieti	2.92	0.95
	436608	AA628980		down syndrome critical region protein DS	2.92	4.86
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	2.88	2.93
	439223	AW238299	Hs.250618	UL16 binding protein 2	2.88	2.15
	401747			Homo sapiens keratin 17 (KRT17)	2.88	3.44
40	410102	AW248508	Hs.279727	ESTs; homologue of PEM-3 [Ciona savignyl	2.86	14.30
70	444444		Hs.14855	ESTs	2.85	2.68
		Al149332			2.84	2.46
	421100	AW351839	Hs.124660	Homo sapiens cDNA: FLJ21763 fis, clone C		2.26
•	431070	AW408164	Hs.249184	transcription factor 19 (SC1)	2.78	
4.5	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	2.77	2.34
45	442994	Al026718	Hs.16954	ESTs	2.75	2.82
	444381	BE387335	Hs.283713	ESTs, Wealdy similar to S64054 hypotheti	2.74	2.44
	434487	AF143867	Hs.337588	ESTs, Moderately similar to S65657 alpha	2.72	3.37
	417003	AL038170	Hs.80756	betzine-homocysteine methyltransferase	2.69	2.70
	404440			NM_021048:Homo sapiens melanoma antigen,	2.69	13.45
50	400844			NM_003105*:Homo sapiens sortilin-related	2.69	13.45
-	426322	J0 5 068	Hs.2012	transcobalamin I (vitamin B12 binding pr	2.69	1.36
			Hs.306201	hypothetical protein DKFZp56401278	2.69	12.08
	431448	AL137517	115.300201		2.68	13.40
	403381	* * 554500	11- 004005	ENSP00000231844*:Ecotropic virus integra		2.43
55	411248	AA55153B	Hs.334605	Home sapiens cDNA FLJ14408 fis, clone HE	2.68	
55	425206	NM_002153	Hs.155109	hydroxysteroid (17-beta) dehydrogenase 2	2.67	2.68
	435099	AC004770	Hs.4758	flap structure-specific endonuclease 1	2.67	1.79
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	2.65	0.73
	413281	AAB61271	Hs.222024	transcription factor BMAL2	2.65	2.23
	446082	Al274139	Hs.156452	ESTs	2.65	2.65
60	422424	AI186431	Hs.296638	prostate differentiation factor	2.64	2.68
••	407839	AA045144	Hs.161566	ESTs	2.64	1.08
		AW292425	Hs.163484	ESTs	2.64	6.14
	432441				2.64	1.31
	417312	AW888411	Hs.250811	leukemia-associated phosphoprotein p18 (2.58
65	430157	BE348706	Hs.278543	ESTs	2.63	
65	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	2.61	1.93
	418686	Z36830	Hs.87268	annexin A8	2.60	1.62
	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	2.59	2.87
	429276	AF056085	Hs.198612	G protein-coupled receptor 51	2.57	3.89
	439738	BE246502	Hs.9598	sema domain, Immunoglobulin domain (lg),	2.57	2.49
70	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	2.56	1.43
	414812	X72755	Hs.77367	monokine induced by gamma interferon	2.54	3.10
		Z43948	Hs.326444	cartilage acidic protein 1	2.51	3.60
	451668	Y15221	Hs. 103982	small inducible cytokine subfamily B (Cy	2.50	2.91
	421379					
75	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.49	1.78
75	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	2.49	1.80
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	2.49	3.46
	437553	Al829935	Hs.130497	ESTs, Weakly similar to MAT8_HUMAN CHLOR	2.48	2.36

	418941	AA452970	Hs.239527	E1B-55kDa-associated protein 5	2.46	2.33
	414807	AI738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N	2.44	2.49
	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	2.43	1.42
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	2.41	2.05
5	449019	AI949095	Hs.67776	ESTs, Weakly similar to T22341 hypotheti	2.40	1.90
-	417366	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)	2.40	0.49
	420370	Y13645	Hs.97234	uroptakin 2	2.39	3.81
	408000	L11690	Hs.198689	bullous pemphigoid antigen 1 (230/240kD)	2.38	1.45
	406399			NM_003122*:Homo sapiens serine protease	2.36	4.20
10	435563	AF210317	Hs.95497	solute carrier family 2 (facilitated glu	2.31	4.05
	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447	2.31	1.17
	436246	AW450963	Hs.119991	ESTs	2.30	11.50
	433078	AW015188	Hs.121575	Homo sapiens cDNA FLJ12231 fis, clone MA	2.30	2.40
	424012	AW368377	Hs.137569	turnor protein 63 kDa with strong homolog	2.29	1.89
15	411263	BE297802	Hs.69360	kinesin-like 6 (mltotic centromere-assoc	2.28	2.14
	432829	W60377	Hs.57772	ESTs	2.28	4.85
	415025	AW207091	Hs.72307	ESTs	2.28	11.40
	436293	AI601188	Hs.120910	ESTs	2.27	3.80
	415989	A1267700		ESTs	2.27	11.35
20	418067	Al127958	Hs.83393	cystatin E/M	2.25	1.54
	436291	BE568452	Hs.344037	protein regulator of cytokinesis 1	2.25	2.45
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	2.25	1.55
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	2.22	11.10
0.5	443247	BE614387	Hs.333893	c-Myc target JPO1	2.21	1.32
25	424364	AW383226	Hs.201189	ESTs, Weakly similar to G01763 atrophin-	2.21	1.52
	405932			C15000305:gi[3806122[gb]AAC69198.1] (AF0	2.20	1.55
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	2.19	1.99
	423271	W47225	Hs.126256	interleukin 1, bela	2.19	2.01
20	402305			C19000735*:gi 4508027[ref NP_003414.1] z	2.19	2.54
30	421064	A1245432	Hs.101382	tumor necrosis factor, alpha-induced pro	2.19	2.16
	427747	AW411425	Hs.180655	serine/threonine kinase 12	2.18	1.80
	437181	Al306615	Hs.125343	ESTs, Wealdy similar to KIAA0758 protein	2.17 2.17	10.85 2.14
	431890	X17033	Hs.271986	integrin, alpha 2 (CD498, alpha 2 subuni		1.37
25	433437	U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	2.16 2.15	1.95
35	407581	R48402	Hs.173508	P3ECSL	2.15	2.23
	400845	*1 0 40 000	11. 00070	NM_003105*:Homo sapiens sortilin-related	2.13	1.70
	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)	2.13	1.83
	418526	BE019020	Hs.85838	solute carrier family 16 (monocarboxylic	2.13	3.49
40	448045	AJ297436	Hs.20166	prostate stem cell anligen	2.13	2.30
40	453459	BE047032	Hs.257789	ESTs	2.13	10.60
	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	2.12	1.89
	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat) ESTs, Moderately similar to ALU1_HUMAN A	2.11	2.57
	445911	AI985987	Hs.145645		2.09	2.30
45	420876	AA918425	Hs.177744 Hs.163242	ESTs ESTs	2.09	10.45
43	438817	A1023799 NM_004445	Hs.3796	EphB6	2.08	2,42
	434293 422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	2.08	2.10
	418216	AA662240	Hs.283099	AF15q14 protein	2.08	4.62
	437915	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	2.08	10.40
50	409420	Z15008	Hs.54451	laminin, gamma 2 (niceln (100kD), kalini	2.05	5.39
50	431441	U81961	Hs.2794	sodium channel, nonvoltage-gated 1 alpha	2.05	1.20
	400773	001301	113.21 54	NM_003105*:Homo sapiens sortilin-related	2.05	1.78
	414987	AA524394	Hs.294022	hypothetical protein FLJ14950	2.04	2.06
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	2.04	1.70
55	444476	AF020038	Hs.11223	isocitrate dehydrogenase 1 (NADP), solub	2.03	2.26
-	447437	U07225	Hs.339	purinergic receptor P2Y, G-protein coupl	2.02	1.73
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	2.02	2.93
	407601	AC002300	Hs.37129	sodium channel, nonvoltage-gated 1, beta	2.02	1.55
	441801	AW242799	Hs.86366	ESTs	2.01	10.05
60	439780	AL109688		gb:Homo sapiens mRNA full length insert	2.00	10.00
	452732	BE300078	Hs.80449	Homo sapiens, clona IMAGE:3535294, mRNA,	2.00	1.53
	434876	AF160477	Hs.61460	lg superfamily receptor LNIR	2.00	1.91
	430152	AB001325	Hs.234642	aquaporin 3	1.99	1.74
	453134	AA032211	Hs.118493	ESTs	1.99	3.16
65	412719	AW016610	Hs.816	ESTs	1.99	0.34
	442577	AA292998	Hs.163900	ESTs	1.99	3.09
	409402	AF208234	Hs.695	cystatin B (stefin B)	1.98	1.50
	414774	X02419	Hs.77274	plasminogen activator, urokinase	1.97	1.84
	439318	AW837046	Hs.6527	G protein-coupled receptor 56	1.95	1.42
70	447334	AA515032	Hs.91109	ESTs	1.95	2.53
	432015	AL157504	Hs.159115	Homo sapiens mRNA; cDNA DKFZp58600724 (f	1.94	9.70
	429002	AW248439	Hs.2340	Junction plakoglobin	1.94	1.57
	410553	AW016824	Hs.255527	hypothetical protein MGC14128	1.94	2.02
7.5	420783	AI659838	Hs.99923	lectin, galactoside-binding, soluble, 7	1.93	0.56
75	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	1.92	1.01
	448988	Y09763	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.92	1.47
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	1.92	1.59

					4.50	
	414918	Al219207	Hs.72222	hypothetical protein FLJ13459	1.92	2.77
	424522	AL134847	Hs.149957	ribosomal protein S6 kinase, 90kD, polyp	1.92	1.21
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	1.92	1.72
_	428928	BE409838	Hs.194657	cadherin 1, type 1, E-cadherin (epitheli	1.91	1.41
5	414595	AA641726	Hs.289015	hypothetical protein MGC4171	1.90	1.61
_	400846			sortilin-related receptor, L(DLR class)	1.90	1.93
		DE000500	11 00400			1.75
	417409	BE272506	Hs.82109	syndecan 1	1.89	
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	1.88	1.16
	418867	D31771	Hs.89404	msh (Drosophila) homeo box homolog 2	1.88	3.09
1Λ						1.18
10	419092	J05581	Hs.89603	mucin 1, transmembrane	1.88	
	446673	NM_016361	Hs.15871	LPAP for lysophosphatidic acid phosphata	1.87	2.01
	431347	A1133461	Hs.251664	insulin-like growth factor 2 (somatomedi	1.85	1.B7
					1.86	2.11
	430168	AW968343	Hs.24255	DKFZP434I1735 protein		
	412115	AK001763	Hs.73239	hypothetical protein FLJ 10901	1.86	1.77
15	402901			NM_025206*:Homo sapiens hypothetical pro	1.85	2.35
13		A 1074040	U- 00000		1.85	1.59
	449027	AJ271216	Hs.22880	dipeptidylpeptidase III		
	410418	D31382	Hs.63325	transmembrane protease, serine 4	1.84	1.90
	418870	AF147204	Hs.89414	chemokine (C-X-C motif), receptor 4 (fus	1.84	1.03
					1.84	1.54
20	414732	AW410976	Hs.77152	minichromosome maintenance deficient (S.		
20	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.83	1.74
	452934	AA581322	Hs.4213	hypothetical protein MGC16207	1.82	1.84
				integrin, alpha 3 (antigen CD49C, alpha	1.82	1.83
	431630	NM_002204	Hs.265829			
	427239	BE270447	Hs.174070	ubiquitin carrier protein	1.82	1.74
	402424			NM_024901:Homo sapiens hypothetical prot	1.81	1.61
25		A140744EE	Hs.293902	ESTs, Weakly similar to ISHUSS protein d	1.81	3.67
23	418068	AW971155				
	431846	BE019924	Hs.271580	uroplakin 1B	1.80	4.11
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691	1.80	9.00
				Small proline-rich prolein SPRK [human,	1.80	1.02
	408522	AI541214	Hs.46320			
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	1.80	2.26
30	451541	BE279383	Hs.26557	plakophilin 3	1.79	1.16
-	415786	AW419196	Hs.257924	hypothetical protein FLJ13782	1.79	5.59
					1.79	8.95
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k		
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	1.79	2.08
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.77	2.96
25					1.76	1.43
35	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an		
	439606	W79123	Hs.58561	G protein-coupled receptor 87	1.76	8.80
	424098	AF077374	Hs.139322	small proline-rich protein 3	1.76	0.57
					1.73	1.39
	430890	X54232	Hs.2699	glypican 1		
	452862	AW378065	Hs.8687	ESTs	1.73	1.99
40	427335	AA448542	Hs.251677	G antigen 7B	1.73	8.65
			Hs.161031	Homo sapiens mRNA; cDNA DKFZp434K0322 (f	1.72	2.07
	425883	AL137708				
	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	1.72	1.65
	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino	1.72	1.03
		AI638516	Hs.347524	cofactor required for Sp1 transcriptiona	1.71	1.66
15	453883					1.52
45	448993	A1471630	Hs.8127	KIAA0144 gene product	1.71	
	422406	AF025441	Hs.116206	Opa-interacting protein 5	1.71	5.52
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	1.71	8.55
					1.71	8.55
	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane		
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	1.71	8.55
50	424735	U31875	Hs.272499	short-chain alcohol dehydrogenase family	1.71	13.98
50					1.70	1.84
	447532	AK000614	Hs.18791	hypothetical protein FLJ20607		
	414053	BE391635	Hs.75725	transgelin 2	1.69	1.51
	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	1.69	8.45
		AF017307	Hs.166096	E74-like factor 3 (ets domain transcript	1.69	1.60
FF	426050					
55	448262	AW880830	Hs.186273	ESTs	1.67	2.07
	452316	AA298484	Hs.61265	ESTs, Moderately similar to G786_HUMAN P	1.66	0.70
	452240	AI591147	Hs.61232	ESTs	1.66	1.23
						2.08
	417151	AA194055	Hs.293858	ESTs	1.65	
	452461	N78223	Hs.108106	transcription factor	1.65	8.25
60	418462	BE001596	Hs.85266	Integrin, beta 4	1.65	1.78
UU				CDC00 (ask distalan anda 20 C accord	4 4 4	4.50
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	1.64	1.59
	438746	A1885815	Hs.184727	Human melanoma-associated antigen p97 (m	1.64	1.13
	423161	AL049227	Hs.124776	downstream of cadherin 6 (by 3.3kb)	1.63	1.81
					1.62	1.51
15	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso		
65	402777			C1002652*:gij544327 sp Q04799 FMO5_RABIT	1.62	2.33
	436569	BE439539	Hs.279837	glutathione S-transferase M2 (muscle)	1.62	2.18
					1.62	1.27
	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated		
	413385	M34455	Hs.840	indoleamine-pyrrole 2,3 dloxygenase	1.61	2.05
	410407	X66839	Hs.63287	carbonic anhydrase IX	1.60	1.78
70				mesenchymal stem cell protein DSCD75	1.60	1.63
70	450635	AW403954	Hs.25237			
	437016	AU076916	Hs.5398	guanine monphosphate synthetase	1.59	1.50
	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401763 (f	1.58	1.92
		U18244	Hs.113602	solute carrier family 1 (high affinity a	1.57	1.79
	422247					
	408908	BE296227	Hs.250822	serine/threonine kinase 15	1.58	7.80
75	433159	AB035898	Hs.150587	kinesin-like protein 2	1.56	7.80
		Al128388	Hs.143655	ESTs	1.56	7.80
	443211				1.55	1.44
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.	1.00	1.77

	426900	AW163564	Hs.142375	ESTs	1.54	1.93
	421066	AU076725	Hs.101408	branched chain aminotransferase 2, mitoc	1.54	1.71
	413804	T64682	FLS. 10 1400	gb:yc48b02.r1 Stratagene liver (937224)	1.53	1.55
	418641	BE243136	Hs.86947	a disintegrin and metalloproteinase doma	1.53	1.59
5	444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	1.52	7.60
-	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibito	1.49	0.52
	418543	NM_005329	Hs.85962	hyaturonan synthase 3	1.48	1.54
	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	1.48	1.39
	402260			NM_001436°:Homo sapiens fibrillarin (FBL	1.47	1.48
10	424264	D80400	Hs.239388	Human DNA sequence from clone RP1-304814	1.47	7.35
	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.47	1.37
	422164	NM_014312	Hs.112377	cortic al thymocyte receptor (X. laevis	1.46	1.80
	444163	Al126098	11- 04944	gb:qc54g07.x1 Soares_placenta_8to9weeks_	1.45	1.58 1.58
15	452304	AA025386	Hs.61311	ESTs, Weakly similar to S10590 cysteine	1.45 1.43	7.15
13	445182 408930	AW189787 AA146721	Hs.334686	ESTs hypothetical protein FLJ21588	1.43	1.53
	429359	W00482	Hs.2399	matrix metalloproteinase 14 (membrane-in	1.43	1.34
	406467	1100402	113.2000	Target Exon	1.42	7.10
	424244	AV647184	Hs.143601	hypothetical protein hCLA-iso	1.42	1.32
20	422094	AF129535	Hs.272027	F-box only protein 5	1.41	4.55
	431322	AW970622		gb:EST382704 MAGE resequences, MAGK Homo	1.39	10.35
	401760			Target Exon	1.37	1.16
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	1.36	1.39
	424420	BE614743	Hs.146688	prostaglandin E synthase	1.33	1.49
25	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.31	1.44
	422119	A1277829	Hs.111862	KIAA0590 gene product	1.31	1.22
	418729	AB028449	Hs.87889	helicase-mol	1.30	0.84
	418399	AF131781	Hs.84753	hypothetical protein FLJ12442	1.30	1.32
20	453028	AB006532	Hs.31442	RecQ protein-like 4	1.29	1.42
30	431369	BE184455	Hs.251754	secretory leukocyte protease inhibitor (1.29	0.61
	453321	A1984381	Hs.232521	ESTs	1.27	6.35
	421478	A1683243	Hs.97258	ESTs, Moderately similar to S29539 ribos	1.26	6.30
	425726	AF085808	Hs.159330	uroplakin 3	1.26	2.26
25	406906	Z25424	11- 004077	gb:H.sapiens protein-serine/threonine ki	1.26 . 1.25	1.11 1.01
35	429413	NM_014058	Hs.201877		1.23	1.17
	418678	NM_001327	Hs.87225 Hs.2860	cancer/testis antigen (NY-ESO-1)	1.23	1.59
	431840	AA534908		POU domain, class 5, transcription facto 5T4 oncofetal trophoblast glycoprotein	1.20	1.38
	417433	BE270266	Hs.82128	Homo sapiens cDNA: FLJ22495 fis, clone H	1.19	1.23
40	422397	AJ223366	Hs.116051	C5001632*:gi}10645308[gb]AAG21430.1 AC00	1.19	1.98
70	403903 425721	AC002115	Hs.159309	uroplakin 1A	1.17	2.30
	413943	AW294416	Hs.144687	Homo sepiens cDNA FLJ12981 fis, clone NT	1.17	5.85
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	1.17	1.39
	443859	NM_013409	Hs.9914	follistatin	1.17	1.17
45	419743	AW408762	Hs.5957	Homo sapiens clone 24416 mRNA sequence	1.13	2.83
	422330	D30783	Hs.115263	epiregulin	1.13	5.65
	420281	Al623693	Hs.323494	Predicted cation efflux pump	1.11	5.55
	424717	H03754	Hs.152213	wingless-type MMTV integration site fami	1.08	5.40
~~	440304	BE159984	Hs.125395	ESTs	1.06	5.30
50	422170	Al791949	Hs.112432	anti-Mullerian hormone	1.06	1.55
	417599	AA204688	Hs.62954	ESTs	1.05	1.02
	411874	AA096106	Hs.20403	ESTs	1.04	7.20
	449961	AW265634	Hs.133100	ESTs	1.03	0.65
55	418506	AA084248	Hs.85339	G protein-coupled receptor 39	1.03	0.92
55	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase Homo sapiens mRNA; cDNA DKFZp586G0321 (f	1.02 1.02	5.10 0.60
	453216	AL137566	Hs.32405		1.00	0.05
	423634	AW959908	Hs.1690 Hs.227948	heparin-binding growth factor binding pr serine (or cysteine) proteinase inhibito	1.00	0.25
	423017 453365	AW178761 AA035211	Hs.17404	SOX7 SRY (sex determining region Y)-box	1.00	0.25
60	439239	Al031540	Hs.235331	ESTs	1.00	0.27
00	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	1.00	0.45
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	1.00	0.72
	404403			Target Exon	1.00	1.00
_	406974	M57293		gb:Human parathyroid hormone-related pep	1.00	1.00
65	410348	AW182663	Hs.95469	ESTs	1.00	1.00
	412661	N32860	Hs.24611	ESTs, Weakly similar to 154374 gene NF2	1.00	1.00
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
	426320	W47595	Hs.169300	transforming growth factor, beta 2	1.00	1.00
~ ^	426958	U07616	Hs.173034	amphiphysin (Stiff-Mann syndrome with br	1.00	1.00
70	432097	X51730	Hs.2905	progesterane receptor	1.00	1.00
	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	1.00	1.00
	453389	BE273648	Hs.32963	cadherin 6, type 2, K-cadherin (fetal ki	1.00	1.00
	419078	M93119	Hs.89584	insulinoma-associated 1	1.00	1.25
75	430378	Z29572	Hs.2556	tumor necrosis factor receptor superfami	1.00	1.35 1.75
75	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00 1.00	1.80
	451844	T61430	חיי שממפע	gb:yc06a03.s1 Stratagene lung (937210) H ESTs	1.00	2.20
	415178	D80503	Hs.322850	2010		

	410044	BE566742	Hs.58169	highly expressed in cancer, rich in lauc	1.00 1.00	2.25 2.25
	425048 422956	H05468 BE545072	Hs.164502 Hs.122579	ESTs ECT2 protein (Epithelial cell transform)	1.00	2.60
	449448	D60730	Hs.57471	ESTs	1.00	2.70
5	417791	AW965339	Hs.111471	ESTs	1.00	2.95
•		AA808229	Hs.167771	ESTs	1.00	3.00
	427356	AW023482	Hs.97849	ESTs	1.00	3.15
		AA283185	Hs.19327	ESTs	1.00	3.25
10		R13474	Hs.290263	ESTs, Weakly similar to 138022 hypotheti	1.00	3.35
10		AF155827	Hs.203963	hypothetical prolein FLJ 10339	1.00 1.00	3.55 3.95
	402075 419559	Y07828	Hs.91096	ENSP00000251056*:Plasma membrane calcium ring finger protein	1.00	4.00
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	1.00	4.00
	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino	1.00	4.35
15	412723	AA648459	Hs.335951	hypothetical protein AF301222	1.00	4.40
	404877			NM_005365:Homo sapiens melanoma antigen,	1.00	4.45
		AI745185	Hs.8939	yes-associated protein 65 kDa NM_005656*:Homo sapiens transmembrane pr	1.00 1.00	4.45 4.50
	403047 406434			NM_030579*:Homo sapiens cytochrome b5 ou	1.00	4.65
20		AA766268	Hs.266273	hypothetical protein FLJ13346	1.00	4.65
		AF026944	Hs.293797	ESTs	1.00	10.05
		A1791495	Hs.180142	calmodulin-like skin protein (CLSP)	0.99	0.60
		X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	0.99	1.00
25		AL133990	Hs.190642	CEGP1 protein gb:hm30f03.x1 NCI_CGAP_Thy4 Homo sapiens	0.94 0.93	9.14 21.15
23		AW872477 AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	0.91	2.60
		AW207523	Hs.197628	ESTs	0.89	11.15
		AW450979		gb:Ui-H-BI3-ala-a-12-0-Ul.s1 NCI_CGAP_Su	0.89	5.13
20		D28124	Hs.76307	neuroblastoma, suppression of tumorigeni	0.84	0.85
30		AW602166	Hs.222399	CEGP1 protein	0.84	2.42 6.75
		A1204995 AA426202	Hs.40403	gb:an03c03.x1 Stratagene schizo brain S1 Cbp/p300-interacting transactivator, wit	0.81 0.80	0.73
		AI921270	Hs.281462	hypothetical protein FLJ14251	0.77	1.40
		BE041395		ESTs, Weakly similar to unknown protein	0.76	14.88
35		Al204995		gb:an03c03.x1 Stratagene schizo brain S1	0.74	11.03
		NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	0.56	0.80 11.16
		M21305 AA577730	Hs.188684	gb:Human alpha satellite and satellite 3 ESTs, Weakly similar to PC4259 ferritin	0.53 0.48	3.01
		X06256	Hs.149609	Integrin, alpha 5 (fibronectin receptor,	0.40	0.70
40		NM_000499	Hs.72912	cytochrome P450, subfamily I (aromatic c	0.40	0.61
	TABLE 3B	L				
45	_			PP		
43	Pkey:	onique Eo: er: Gene clust	s probeset ider er number	luter number		
	Accession		ccession numb	oers .		
50		CATAL				
30	Pkey 411880	CAT Numb 1263110_1		on 477 BE088101 T05990		
	413804	1390710_1		BE168190 BE168256		
	414221	142696_1			92073 BE16	8945 AA809054 AW238038 BE011212 BE011359 BE011367
				68 BE011362 BE011215 BE011365 BE011363	····-	
55	415989	156454_1		00 A1720344 AA191424 A1023543 A1469633 AA1720	ob AW95846	DAATIZZJU AWSSJSSI AAJSSUUDU
	431089	327825_1 331543_1		195 AA491826 AA621946 AA715980 AA666102 622 AA503009 AA502998 AA502989 AA502805 T92°	IRR	•
	431322 432222	343347_1		95 AW827539 AW969908 AW440776 AA528756	100	
	436608	42361_3		80 Al126603 BE504035		
60	439780	47673_1		88 R23665 R26578		
	444163	593658_1	Al1260	98 A1184746 A1148521	2047 05002	040 05002040
	445182	632151_1		787 A1215430 AW268499 AW205930 A1392907 BE09 A1820546 A1821336	33017 BE033	019 BE093010
	451844 456034	888230_1 142696_1	AW450	979 AA136653 AA136656 AW419381 AA984358 AA4	92073 BE16	8945 AA809054 AW238038 BE011212 BE011359 BE011367
65	100001		BE0113	168 BE011362 BE011215 BE011365 BE011363		
		_				
	TABLE 30	<u> </u>	·			
	Pkey:	Un ic ue nu	mber correspon	nding to an Eos probaset		
70	Ref:	Sequence	source. The 7	digit numbers in this column are Genbank identifier ("Dunham I, et al." refers to the publication entitled "The DNA
				mosome 22.* Dunham I. et al., Nature (1999) 402:48	9-495.	
	Strand:			n which exons were predicted.		
	Nt_positio	n: mulcales f	iucieoude posit	ions of predicted exons.		
75						
	Pkey	Ref	Strand	Nt_position		
	400773	8131629	Minus	44116-44238,48208-48321		

	400843	9188605	Plus	5863-5970,7653-7784,8892-9023,9873-9807,10634-10789,15254-15403,23827-23958
	400844	9188605	Plus	24746-24872.25035-25204
	400845	9188605	Plus	34428-34612
	400846	9188605	Plus	39310-39474
5	401093	8516137	Minus	22335-23166
•	401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866-
		*******		131932,132451-132575,133580-134011
	401760	9929699	Plus	83126-83250,85320-85540,94719-95287
	401780	7249190	Minus	28397-28617, 28920-29045, 29135-29296, 29411-29567, 29705-29787, 30224-30573
10	401781	7249190	Minus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
_	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076
	402230	9966312	Minus	29782-29932
	402239	7690131	Plus	38175-38304,42133-42266
	402260	3399665	Minus	113765-113910,115653-115765,116808-116940
15	402305	7328724	Plus	40832-41362
	402424	9796344	Minus	64925-65073
	402777	9588235	Plus	126786-126948
	402901	8894222	Minus	175426-175667
••	403047	3540153	Minus	59793-59968
20	403381	9438267	Minus	26009-26178
	403903	7710671	Minus	101165-102597
	404403	7272157	Minus	72053-72238
	404440	7528051	Plus -	80430-81581
25	404875	9801324	Pius	96588-96732,97722-97831
25	404877	1519284	Plus	1095-2107
	404977	3738341	Minus	43081-43229
	405033	7107731	Minus	142358-142546
	405932	7767812	Minus	123525-123713
20	406081	9123861	Minus	38115-38691
30	406399	9256288	Minus	63448-63554
	406434	9256651	Minus	17803-17931
	406467	9795551	Plus	182212-182958

PCT/US02/21338 WO 03/003906

TABLE 4A: Preferred diagnostics for bladder cancer

5

Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number
Unigenel D: Unigene number
Unigene Title: Unigene gene title
R1: 80th percentile of muscle-invasive bladder tumor (stage T2-T4) Als divided by the 80th percentile of exophytic non-invasive carcinoma (stage Ta) Als
R2 90th percentile of bladder tumor Als minus background divided by 90th percentile of normal body sample Als minus background, where background equals

	R2	90th perce	entile of bladder ercentile of all s	tumor Als minus background divided by 90th percentile	e of normal	body sa	nele Als r	ninus back	ground, w	here bac	kground	equal
10	R3	90th perce	entile of bladder	tumor Als divided by the 90th percentile of normal bod	y sample A	ls						_
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2	R3			•		
	423961	D13666	Hs.136348	periostin (OSF-2as)	11.22	1.40	1.44					
15	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	8.40	1.31	1.38					
	444381	BE387335	Hs.283713	ESTs, Weakly similar to \$64054 hypotheti	7.88	2.06	2,44					
	408243	Y00787	Hs.624	interleukin 8	7.54	2.86	4.85					
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote	6.14	1.18	1.18					
	414020	NM_002984	Hs.75703	small inducible cytokine A4 (homologous	5.32	1.34	1.36					
20	424247	X14008	Hs.234734	łysozyme (renal amyloldosis)	5.27	0.61	0.57					
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	5.17	7.47	35.60					
	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	4.30	1.75	1.54					
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	4.29	1.35	1.60					
	413324	V00571	Hs.75294	corticotropin releasing hormone	4.20	6.27	45.75					
25	412429	AV650262	Hs.75765	GRO2 oncogene	4.00	0.94	0.93					
	406636	L12064		gb:Homo sapiens (clone WR4.12VL) anti-th	3.66	1.25	1.25					
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	3.58	2.07	2.26					
	406687	M31126		matrix metalloproteinase 11 (stromelysin	3.41	4.37	3.37					
	422550	BE297626	Hs.296049	microfibrillar-associated protein 4	3.09	0.39	0.40					
30	410867	X63556	Hs.750	fibrillin 1 (Marfan syndrome)	2.96	0.44	0.45					
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	2.90	1.94	3.46					
	414812	X72755	Hs.77367	monokine induced by gamma interferon	2.80	1.67	3.10					
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	2.77	5.62	26.07					
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	271	2.26	2.91					
35	429500	X78565	Hs.289114	hexabrachion (tenascin C, cytotactin)	2.40	0.47	0.37					
	417849	AW291587	Hs.82733	nidogen 2	2.34	0.88	0.86					
-	400419	AF084545		Target	2.33	1.54	2.12		•			
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	2.10	1.01	1.01					
	400289	X07820	. Hs.2258	matrix metalloproteinase 10 (stromelysin	1.99	3.19	17.50					
40	414774	X02419	Hs.77274	plasminogen activator, urokinase	1.94	2.49	1.84					
	409420	Z15008	Hs.54451	laminin, gamma 2 (niceln (100kD), kalini	1.94	2.02	5.39					
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	1.84	1.99	8.55					
	414476	AA301867	Hs.76224	EGF-containing fibulin-like extracellula	1.76	0.33	0.31					
	431639	AK000680	Hs.266175	phosphoprotein associated with GEMs	1.76	1.13	1.16					
45	421958	AA357185	Hs.109918	ras homolog gene family, member H	1.75	1.33	1.27					
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	1.58	2.42	1.39					
	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane	1.57	2.02	8.55					
	421493	BE300341	Hs.104925	ectodermal-neural cortex (with BTB-like	1.55	1.57	1.55					
	407939	W05608	Hs.312679	ESTs. Weakly similar to A49019 dynein he	1.41	0.79	0.67					
.50	429344	R94038 ´	Hs.199538	inhibin, beta C	1.36	1.39	1.34					
	4027.27			NM_025065:Homo seplens hypothetical prot	1.34	1.34	1.56					
	412420	AL035668	Hs.73853	bone morphogenetic protein 2	1.31	1.63	2.22				•	
	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	1.27	2.00	1.67		•			
~ ` ~	424206	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc	1.25	0.15	0.30					
55 .	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	1.23	1.70	4.34					
	424479	AF064238	Hs.149098	smoothelin	1.19	0.27	0.47					
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.17	1.59	2.93					
	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	1.16	0.82	0.80					
60	421634	AA437414	Hs.106283	hypothetical protein FLJ10262	1.16	1.05	1.05					
60	439569	AW602166	Hs.222399	CEGP1 protein	1.15	2.01	2.42					
	431346	AA371059	Hs.251636	ubiquitin specific protease 3	1.10	1.64	1.52					
	448901	AK001021	Hs.22505	hypothetical protein FLJ10159	1.10	0.31	0.31					
	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	1.03	1.51	1.42					
65	422424	Al186431	Hs.296638	prostate differentiation factor	1.02	2.77	2.68					
65	458781	AJ444821	Hs.63085	ESTs, Weakly similar to MPP3_HUMAN MAGUK	1.00	1.64	5.45					
	445413	AA151342	Hs.12677	CGI-147 protein	1.00	1.51	5.20					
	432350	NM_005865	Hs.274407	protease, serine, 16 (thymus)	1.00	1.55	4.30					
	403106			C8000064*:gi]10432393[emb]CAC10283.1] (A	1.00	1.48	4.24					
70	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.67	3.95					
70	404860			C1003394*:gi 12314272jemb CAC00591.1 (A	1.00	1.40	3.90					
	434037	AF116601		WW domain-containing oxidoreductase	1.00	1.58	3.70					
	405738	D04450	11- 470700	CX000390*:gi[6014646]gb[AAF01438.1]AF187	1.00	1.36	2.95					
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	1.00	1.45	1.60					
75	439898	AW505514	Hs.209561	KIAA1715 prolein	1.00 1.00	1.28 1.10	1.59 1.31					
75	452567	D87120	Hs.29882	predicted osteoblast protein	1.00	2.12	1.00					
	401271	DE464506	11- 074054	C9000559*:gi]12314195[emb]CAB99338.1] (A hypothetical protein FLJ20375; KIAA1797	1.00	2.05	1.00					
	411339	BE164598	Hs.274251	Hypothesisan hintern construct of unovitat	1.00	200	1.00					

	403005 431146	Z83850		C21000027*:gi[1817556 dbj]BAA13672.1] (D Human DNA sequence from PAC 82J11 and co	1.00 1.00	1.89 1.89	1.00 1.00			
	434939	AF161422	Hs.306567	Homo sapiens HSPC304 mRNA, partial cds	1.00	1.86	1.00			
_	431753	X76029	Hs.2841	neuromedin U	1.00	1.82	1.00			
5	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.69	1.00			
	435505	AF200492	Hs.211238	interleukin-1 homotog 1	1.00 1.00	1.67 1.67	1.00 1.00			
	452401 406397	NM_007115	Hs.29352	himor necrosis factor, alpha-induced pro C16001447*:gi 12053709 emb CAC20419.1 (1.00	1.68	1.00			
	404488			NM_030958*:Homo sapiens organic anion tr	1.00	1.56	1.00			
10	441206	BE552314	Hs.131823	ESTs, Weakly similar to TERA HUMAN [H.sa	1.00	1.49	1.00			
	407853	AA336797	Hs.40499	dickkopf (Xenopus laevis) homolog 1	1.00	1.47	1.00			
	446119	D29527	Hs.290931	ESTs	1.00	1.47	1.00			
	406471 402110			Target Exon C18000178:gi[11990779]emb]CAC19649.1] (A	1.00 1.00	1.44 1.42	1.00 1.00			
15	407911	AF104922	Hs.41565	growth differentiation factor 8	1.00	1.40	1.00			
	404829			C1002937*:gi[7499208 plr [T20993 hypothe	1.00	1.37	1.00			
	421925	S80310	Hs.109620	acidic epididymal glycoprotein-like 1	1.00	1.26	1.00			
	406076	AL390179		Homo sapiens mRNA; cDNA DKFZp547P134 (fr	1.00	1.19	1.00			
20	458622	AA972412 AW138239	Hs.13755 Hs.78977	f-box and WD-40 domain protein 2 proprotein convertase subtilisin/kexin t	1.00 1.00	1.09 1.04	1.00 1.00			
20	416018 409357	M73628	Hs.54415	casein, kappa	1.00	1.03	1.00			
	436884	AW976319	Hs.94806	ATP-binding cassette, sub-family A (ABC1	1.00	0.84	0.84			
	436178	BE152396	Hs.21590	hypothetical protein DKFZp564O0523	1.00	0.91	08.0			
25	402522			C1000568*:gij12697965 dbj BAB21801.1] (A	1.00	0.80	0.67			
25	405735			ENSP00000252164*:KIAA1578 protein (Fragm	1.00	0.86 0.65	0.56 0.52			
	401905 404152			ENSP00000252232*:Sterof regulatory eleme C6000931*:gi[9558454]dbj[BAB03398.1] (AB	1.00 1.00	0.58	0.52			
	418693	A1750878	Hs.87409	thrombospondin 1	1.00	0.85	0.51			
	451375	Al792066	Hs.283902	Homo sapiens BAC clone RP11-481J13 from	1.00	0.46	0.38			
30	430132	AA204686	Hs.234149	hypothetical protein FLJ20647	1.00	0.84	0.33			
	456983	Al081687	Hs.11355	lhymopoietin	1.00	0.61	0.29			
	438681 409038	AW384815 T97490	Hs.149208 Hs.50002	KIAA1555 protein small inducible cytokine subfamily A (Cy	1.00 1.00	0.60 0.39	0.28 0.19			
	409196	NM_001874	Hs.334873	carboxypeptidase M	1.00	0.43	0.13			
35	410023	AB017169	Hs.57929	slit (Drosophila) homolog 3	1.00	0.30	0.12			
	420674	NM_000055	Hs.1327	butyrylcholinesterase	1.00	0.30	0.08			
	415165	AW887604	Hs.78065	complement component 7	1.00	0.08	0.06			
	425545 448256	N98529	Hs.158295 Hs.20814	Homo sapiens, clone MGC:12401, mRNA, com	1.00 0.96	0.10 1.32	0.01 1.55			
40	417389	BE614149 BE260964	Hs.82045	CGI-27 protein midkine (neurite growth-promoting factor	0.95	3.15	2.34			
	403214			NM_016232*:Homo sapiens interleukin 1 re	0.94	1.63	2.51			
	414799	AI752416	Hs.77326	insulin-like growth factor binding prote	0.92	1.87	1.60			
	406665	U22961	Hs.184411	albumin	0.92	1.09	1.03			
45	401519 417501	AL041219	Hs.82222	C15000476*:gi 12737279 ref XP_012163.1 sema domain, immunoglobulin domain (Ig),	0.88 0.87	1.46 0.41	3.44 0.50	•		
73	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	0.85	1.38	1.43			
	405494			C2001837*:gl[12697903]db]]BAB21770.1] (A	0.83	1.46	4.65			
	444171	AB018249	Hs.10458	small inducible cytokine subfamily A (Cy	0.80	0.91	0.91			
50	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	0.79	0.58	0.43			
50	436396 426716	AI683487 NM_006379	Hs.152213 Hs.171921	wingless-type MMTV integration site fami sema domain, Immunoglobulin domain (Ig),	0.77 0.75	1.47 1.13	2.37 1.18			
	431347	AJ133461	Hs.251664	insulin-like growth factor 2 (somatomedi	0.68	2.61	1.87			
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	0.68	2.70	4.96			
	426322	J05068	Hs.2012	transcobalamin I (vitamin B12 binding pr	0.67	1.50	1.36			
55	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	0.56	2.05	2.46			
	422282	AF019225 NM_001898	Hs.114309 Hs.123114	apolipoprotein L cystatin SN	0.55 0.53	3.91 2.72	3.92 2.93			
	409757 427450	AB014526	Hs.178121	KIAA0626 gene product	0.52	1.34	1.97			
	414555	N98569	Hs.76422	phospholipase A2, group IIA (platelets,	0.50	1.04	1.05			
60	423774	L39064	Hs.1702	interleukin 9 receptor	0.49	2.81	6.46			
	404977		11 400000	Insulin-like growth factor 2 (somatomedi	0.28	5.78	5.17			
	428336	AA503115 Z43948	Hs.183752 Hs.326444	microseminoprotein, beta- cartilage acidic protein 1	0.21 0.18	1.47 4.05	1.56 3.60			
	451668 428651	AF196478	Hs.188401	annexin A10	0.17	5.14	27.75			
65	421110	AJ250717	Hs.1355	cathepsin E	0.12	5.49	45.35			
-	TABLE 4	<u>B</u>							 	—
70	Pkey: CAT nun	Unique Eo	s probeset ider ter number	difier number						
	Accessio		accession numi	pers						
75		CATAL	has Assa						 	—
13	Pkey 431146	CAT Numi 32854_1	Z83850	AA459717 AW965384 AA333635						
	434037	37918_1	AF1166	01 Al110691 AF063566						

	TABLE 4C									
5	Pkey: Ref:	Sequence:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifiar (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-489-495.							
	Strand: Nt_position:	m which exons were predicted. Illians of predicted exons.								
10										
	Pkey	Ref	Strand	Nt position						
	401271	9797373	Minus	61292-61911						
	401519	6649315	Plus	157315-157950 153965-154441,156599-156819						
15	401905	8671966 8117407	Plus Plus	133965-134441,130395-130619 121907-122035,122804-122921,124019-124161,124455-124610,125672-125076						
1)	402075 402110	8131678	Minus	173889-174062						
	402110	9798493	Phus	20605-20731						
	402727	9211324	Plus	54596-54777`						
	403005	5791501	Minus	16945-17053,20018-20403						
20	403005	7331404	Plus	77162-77350,81338-81511						
20	403214	7630945	Minus	76723-77027-79317-79484						
	404152	9884757	Plus	4111-41281,45495-45716,47801-47910						
	404488	8113286	Minus	64835-64994						
	404829	6624702	Minus	4913-5093,7310-7469,9472-9621,9951-10082						
25	404860	8979555	Plus	65852-66081						
	404977	3738341	Minus	43081-43229						
	405494	8050952	Minus	70284-70518						
	405735	9931101	Minus	29854-29976						
	405738	9943998	Plus	44370-45410						
30	406076	9123123	Plus	89972-90319						
	406397	9256243	Minus	127317-127454						
	406471	9795566	Plus	87383-87589						

PCT/US02/21338 WO 03/003906

TABLE 5A: Genes upregulated in bladder cancer

Pkey: Unique Eos probeset identifier number

ExAcon: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number
Unigene Title: Unigene gene title

5

	Unigene 1 R1	Fille: Unigene gen 90th percenti	e tille le of bladder tun	nor Als divided by the 90th percentile of normal body s	ample Als				
10	Pkey	ExAcon	UnigenelD	Unigene Title	R1				
	459702	Al204995		gb:an03c03.x1 Stratagene schizo brain S1	11.03				
	437915	Al637993	Hs.202312	Homo sapiens done N11 NTera2D1 teratoca	10.40				
	404917			Target Exon	9.65				
1.5	401066			C11000517*:gi[7293105[gb]AAF48490.1] (AE	9.00				
15	447475	Al380797	Hs.158992	ESTs	. 8.92				
	427335	AA448542	Hs.251677	G anligen 7B	8.65				
	450061	A1797034	Hs.346238	ESTs	8.35				
	401335			Target Exon	7.95		•		
	424264	D80400	Hs.239388	Human DNA sequence from clone RP1-304B14	7.35				
20	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	7.20				
	436608	AA628980		down syndrome critical region protein DS	4.86				
	451950	AW292317	Hs.213307	ESTs	4.45				
	406542	********		C19000728*:gi]12585552 sp Q9Y2Q1 Z257_HU	3.73				
	437931	Al249468	Hs.124434	ESTs	3.70				
25	443133	AI033878	Hs.41379	ESTs	3.60				
	434487	AF143867	Hs.337588	ESTs, Moderately similar to S65657 alpha	3.37				
	402239	74 140001	12.007000	Target Exon	3.37				
	443162	T49951	Hs.9029	DKFZP434G032 protein	3.21				
		143331	113,3023		3.13				
30	403383	DECTOR	11- 02440	Target Exon	3.04				
50	438315	R56795	Hs.82419	ESTs					
	452827	AI571835	Hs.55468	ESTs	3.01				
	416225	AA577730	Hs.188684	ESTs, Weakly similar to PC4259 ferritin	3.01				
	402948			NM_025206:Homo sapiens hypothetical prof	2.91				
25	429983	W92620	Hs.260855	ESTs	2.84				
35	~429238	NM_002849	Hs.198288	protein tyrosine phosphatase, receptor t	2.78				
	444371	BE540274	Hs.239	forkhead box M1	2.75				
	417003	AL038170	Hs.80756	betaine-homocysteine methyltransferase	2.70				
	414906	AA157911	Hs.72200	ESTs	2.70				
	425206	NM_002153	Hs.155109	hydroxysteroid (17-beta) dehydrogenase 2	2.68				
40	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	2.62				
	429345	R11141	Hs.199695	hypothetical protein	2.61				
	414221	AW450979	1,0,100000	gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	2.60				
	402305			C19000735*:gi 4508027 ref NP_003414.1 z	2.54				
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	2.51				
45	427719	Al393122	Hs.134726	ESTs	2.51				
73			113.104720	gb:IL2-BT0731-260400-076-F04 BT0731 Homo	2.50				•
	455797	BE091833	11- 77040		2.49				
	414807	A1738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N	2.49				
	456967	AW004056	Hs.168357	T-box 2		_			
50	406387			Target Exon	2.48	•			
50	417997	AA418189	Hs.23017	Homo sapiens cDNA: FLJ22747 fis, clone K	2.48				
	415752	BE314524	Hs.78776	putative transmembrane protein	2.46				
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	2.43				
	434293	NM_004445	Hs.3796	EphB6	2.42				
	433078	AW015188	Hs.121575	Homo sapiens cDNA FLJ12231 fis, clone MA	2.40	•		•	
55	425997	AK000086	Hs.165948	hypothetical protein FLJ20079	2.38				
	418322	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	2.35				
	452012	AA307703	Hs.279766	kinesin family member 4A	2.34				
	445600	AF034803	Hs.12953	PTPRF interacting protein, binding prote	2.33				
	418941	AA452970	Hs.239527	E1B-55kDa-associated protein 5	2.33				
60	454609	AW810204		gb:MR4-ST0125-021199-017-d08 ST0125 Homo	2.28				
•••	444476	AF020038	Hs.11223	Isocitrate dehydrogenase 1 (NADP), solub	2.26				
	420005	AW271106	Hs.133294	ESTB	2.22				
	439826	NM_014965	Hs.6705	KIAA1042 protein	2.22				
	405531	14400	(13.0700	Target Exon	2.21				
65		DE 420E20	Un 270927	glutathione S-transferase M2 (muscle)	2.18				
05	436569	BE439539	Hs.279837	ENSPO000241075:TRRAP PROTEIN.					
	404394	0.7.440000	11- 470474		2.17				
	427479	8E410092	Hs.178471	KIAA0798 gene product	2.17				
	435904	AF261655	Hs.8910	1,2-alpha-mannosidase IC	2.13				
70	431620	AA126109	Hs.264981	2-5-oligoadenylate synthetase 2 (69-71	2.12				
70	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	2.10				
	422765	AW409701	Hs.1578	bacutoviral IAP repeat-containing 5 (sur	2.10				
	451385	AA017656		gb:ze39h01.r1 Soares retina N2b4HR Homo	2.09				
	403477			C3002160*:gi]7662420 ref NP_055738.1 KI	2.09				
	417151	AA194055	Hs.293858	ESTs	2.08				
75	448262	AW880830	Hs.186273	ESTs	2.07				
	415192	D17793	Hs.78183	aldo-keto reductase family 1, member C3	2.04				
	402994			NM 002463°:Homo saplens myxovirus (influ	2.04				

	420000	LICOADE	11- 470400	anhelds bladian anderlands d	2.02
	426053	U68105	Hs.172182	poly(A)-binding protein, cytoplasmic 1	2.02
	423271	W47225	Hs.126256	interleukin 1, beta	2.01
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	1.99
_	407581	R48402	Hs.173508	P3ECSL	1.95
5	410197	NM_005518	Hs.59889	3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.95
	427122	AW057736	Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	1.93
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	1.93
	436251	8E515065	Hs.296585	nuclsolar protein (KKE/D repeat)	1.89
10	401961			NM_021626:Homo saplens serine carboxypep	1.86
10	434042	Al589941	Hs.8254	Homo sapiens, Similar to tumor different	1.85
	447532	AK000614	Hs.18791	hypothetical protein FLJ20607	1.84
	418526	BE019020	Hs.85838	solute carrier family 16 (monocarboxylic	1.83
	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	1.80
	422164	NM_014312	Hs.112377	cortic al thymocyte receptor (X. laevis	1.80
15	422247	U18244	Hs.113602	solute carrier family 1 (high affinity a	1.79
	410407	X66839	Hs.63287	carbonic anhydrase IX	1.78
	412115	AK001763	Hs.73239	hypothetical protein FLJ10901	1.77
	414809	A1434699	Hs.77356	transferrin receptor (p90, CD71)	1.75
00	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.74
20	427239	BE270447	Hs.174070	ubiquitin carrier protein	1.74
	459198	AI086347	Hs.151138	ESTs	1.74
	421066	AU076725	Hs.101408	branched chain aminotransferase 2, miloc	1.71
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	1.70
25	450663	H43540	Hs.25292	ribonuclease HI, large subunit	1.70
25	417324	AW265494	047504	ESTs	1.67
	453883	AI638516	Hs.347524	cofactor required for Sp1 transcriptiona	1.66
	428000	R35145	Hs.291904	accessory proteins BAP31/BAP29	1.65
	450635	AW403954	Hs.25237	mesenchymat stem cell protein DSCD75	1.63 1.62
20	423397	NM_001838	Hs.1652	chemokine (C-C motif) receptor 7	1.62
30	415440	D83782	Hs.78442	SREBP CLEAVAGE-ACTIVATING PROTEIN	1.62
	428028	U52112	Hs.182018	interleukin-1 receptor-associated kinase	1.62
	426783	Z19084	Hs.172210 Hs.321231	MUF1 protein UDP-Gal:betaGtcNAc beta 1,4- galactosylt	1.61
	445937	AI452943	Hs.288649	hypothetical protein MGC3077	1.60
35	445462 400965	AA378776	ns.200043	C11002190*:gi[12737279]ref[XP_012163.1]	1.59
J J	432269	NM_002447	Hs.2942	macrophage stimulating 1 receptor (c-met	1.59
	429578	Al969028	Hs.99389	ESTs	1.59
	449027	AJ271216	Hs.22880	dipeptidylpeptidase III	1.59
	431840	AA534908	Hs.2860	POU domain, class 5, transcription facto	1.59
40	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	1.59
	429002	AW248439	Hs.2340	junction plakoglobin	1.57
	442410	AW996503	Hs.197680	ESTs	1.56
	407601	AC002300	Hs.37129	sodium channel, nonvoltage-gated 1, beta	1.55
	418543	NM_005329	Hs.85962	hyaluronan synthase 3	1.54
45	424611	NM_001421	Hs.151139	E74-like factor 4 (ets domain transcript	1.54
	414732	AW410976	Hs.77152	minichromosome maintenance deficient (S.	1.54
	408930	AA146721	Hs.334686	hypothetical protein FLJ21588	1.53
	448993	Al471630	Hs.8127	KIAA0144 gene product	1.52
	414053	BE391635	Hs.75725	transgelin 2	1.51
50	433662	W07162	Hs.150826	CATX-8 protein	1.50
	432562	BE531048	Hs.278422	DKFZP586G1122 protein	1.50
	402260			NM_001436*:Homo sapiens fibrillarin (FBL	1.48
	426127	L36983	Hs.167013	dynamin 2	1.48
	427557	NM_002659	Hs.179657	plasminogen activator, urokinase recepto	1.48
55	418026	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	1.47
	418960	NM_004494	Hs.89525	hepatoma-derived growth factor (high-mob	1.46
	428293	BE250944	Hs.183556	solute carrier family 1 (neutral amino a	1.46
	432344	A1476474	Hs.248156_	ESTs	1.46
60	453449	W16752	Hs.32981	sema domain, immunoglobulin domain (lg),	1.46
OU	450690	AA296696	Hs.333418	FXYD domain-containing lon transport reg	1.46
	441940	AW298115	Hs.128152	ESTS	1.45
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S. G protein-coupled receptor 56	1.44 1.42
	439318	AW837046	Hs.6527 Hs.118400	singed (Drosophila)-like (sea urchin fas	1.42
65	422565	BE259035 BE409838	Hs.194657	cadherin 1, type 1, E-cadherin (epitheli	1.41
UJ	428928 445 4 17	AK001058	Hs.12680	Homo sapiens cDNA FLJ 10196 fis, clone HE	1.39
		AW953575	Hs.303125	p53-induced protein PIGPC1	1.37
	441565 439180	Al393742	Hs.199067	v-erb-b2 avian erythroblastic leukemia v	1.35
	418399	AF131781	Hs.84753	hypothetical protein FLJ12442	1.32
70	432636	AA340864	Hs.278562	claudin 7	1.32
, ,	439053	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	1.32
	413762	AW411479	Hs.848	FK506-binding protein 4 (59kD)	1.31
	453914	NM_000507	Hs.574	fructose-1,6-bisphosphatase 1	1.28
	430056	X97548	Hs.228059	KRAB-associated protein 1	1.24
75	451524	AK001466	Hs.26516	hypothetical protein FLJ10604	1.23
	431441	U81961	Hs.2794	sodium channel, nonvoltage-gated 1 alpha	1.20
	439863	BE547830	Hs.9408	paired Immunoglobulin-like receptor beta	1.19

5	406906 429504 414002	BE279383 Z25424 X99133 NM_006732 BE184455	Hs.26557 Hs.204238 Hs.75678 Hs.251754	plakophilin 3 gb:H.saplens protein-serine/ihreonine ki lipocatin 2 (oncogene 24p3) FBJ munine osteosarcoma viral oncogene h secretory leukocyte protease inhibitor (1.16 1.11 1.00 0.86 0.61				
	TABLE 5B								
10	Pkey: CAT numbe Accession:	r: Gene cluste:	probeset identi r number cession numbe						
15	Pkey 414221	CAT Numbe 142696_1	AW4509		92073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367				
20	417324 436608 451385 454609 455797	166714_1 42361_3 86787_1 1226517_1 1366826_1	AA6289 AA0176 AW8102	94 AA455904 AA195677 AW265432 AW991605 AA 80 A1126603 BE504035 86 AA017374 AA019761 04 AW810555 AW810196 AW810619 AW810507 33 BE091874 BE091871	456370				
25	TABLE 5C Pkey: Ref:	Unique numi Sequence so	ource. The 7 di	ng to an Ecs probeset git numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA				
30	Strand: Nt_position:	Indicates DN	sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. ndicates DNA strand from which exons were predicted. ndicates nucleotide positions of predicted exons.						
35	Pkey 400965 401066 401335 401961 402239 402260	Ref 7770576 8217436 9884881 4581193 7690131 3399665	Strand Minus Plus Plus Minus Plus Minus	NL position 173043-173564 71448-71574 15736-16352 124054-124209 38175-38304,42133-42268 113765-113910,115652-115765,116808-116940					
40	402305 402948 402994 403383 403477	7328724 9368458 2996643 9438267 9958251	Plus Minus Minus Minus Minus Plus	11335-1335, 1335-1335-1335-1335-1335-1335-1335-1335					
45	404394 404917 405531 406387 406542	3135305 7341851 9665194 9256180 7711499	Minus Plus Plus Plus Plus	37121-37205,37491-37762,41053-41140,41322-415 49330-49498 35602-35603 116229-116371,117512-117651 117335-118473	93,41773-41919				
50									

TABLE 6A:	Conoc	hatelunanu	in h	laddar	cancer
IADLE DA.	Colles	upi equiateu	ut L	Hauruer	Calludi

	Pkey:		probeset ident								
5	ExAccn:		ccession number, Genbank accession number								
5	UnigenelD:	nigenelD: Unigene number nigene Title: Unigene gene title									
	R1		e gene and reentile of bladder tumor Als divided by the 90th percentile of normal prothetium blopsy Als								
	R2			tumor Als divided by the 90th percentile of normal							
10											
10	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2					
	439926	AW014875	Hs.137007	ESTs	11.31	11.31 9.15					
	413324	V00571 AJ250717	Hs.75294 Hs.1355	corticotropin releasing hormone cathepsin E	9.15 9.07	9.07					
	421110 417308	H60720	Hs.81892	KIAA0101 gene product	8.50	8.50					
15	418406	X73501	Hs.84905	cytokeratin 20	8.10	8.10					
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	7.98	7.98					
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	7.67	7.67					
	408243	Y00787	Hs.624	interleukin 8	7.56	7.56					
20	416065	BE267931	Hs.78996	proliferating cell nuclear antigen	7.17	5.17					
20	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	7.17 7.14	8.24 4.62					
	414183 418007	AW957446 M13509	Hs.301711 Hs.83169	ESTs matrix metalloproteinase 1 (Interstitial	7.12	7.12					
	426125	X87241	Hs.166994	FAT tumor suppressor (Drosophila) homolo	6.90	3.38					
	427337	Z46223	Hs.176663	Fc fragment of IgG, low affinity IIIb, r	6.85	4.98					
25	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	6.42	6.42					
	438091	AW373062		nuclear receptor subfamily 1, group 1, m	6.32	6.32					
	413063	AL035737	Hs.75184	chilinase 3-like 1 (cartilage glycoprote	6.09	3.67					
	414219	W20010	Hs.75823	ALL1-fused gene from chromosome 1q	5.93	4.68					
20	405033			C1002652*:gi]544327 sp Q04799 FMO5_RABIT	5.84	5.84					
30	413132	NM_006823	Hs.75209	protein kinase (cAMP-dependent, catalyti	5.79	5.68					
	428336	AA503115	Hs.183752	microseminoprotein, beta-	5.78	4.57					
	449230	BE613348	Hs.211579	melanoma cell adhesion molecule	5.69 5.69	5.82 7.30					
	423673 415511	BE003054 Al732617	Hs.1695 Hs.182362	matrix metalloproteinase 12 (macrophage ESTs	5.65	5.65					
35	426028	NM_001110	Hs.172028	a disintegrin and metalloproteinase doma	5.60	5.60					
J J	421948	L42583	Hs.334309	keratin 6A	5.59	14.20					
	428651	AF196478	Hs.188401	annexin A10	5.55	5.55					
	424008	R02740	Hs.137555	putative chemokine receptor, GTP-binding	5.38	5.59					
	406687	M31126		matrix metalloproteinase 11 (stromelysin	5.36	5.34					
40	439453	BE264974	Hs.6566	thyroid hormone receptor interactor 13	5.35	5.35					
	408246	N55669	Hs.333823	mitochondrial ribosomal protein L13	5.20	3.50					
	427678	BE267756	Hs.180312	mitochondrial ribosomal protein S16	5.13	4.10					
	426158	NM_001982	Hs.199067	v-erb-b2 avian erythroblastic leukernia v	4.97	3.71					
45	442315	AA173992	Hs.7956	ESTs, Moderately similar to ZN91_HUMAN Z	4.90 4.90	4.90 4.77					
43	418322 417720	AA284166 AA205625	Hs.84113 Hs.208067	cyclin-dependent kinase inhibitor 3 (CDK ESTs	4.84	7.34					
	423979	AF229181	Hs.136644	CS box-containing WD protein	4.81	4.81					
	420981	L40904	Hs.100724	peroxisome proliferative activated recep	4.81	4.43					
	433470	AW960564		transmembrane 4 superfamily member 1	4.72	4.72					
50	429138	AB020657	Hs.197298	NS1-binding protein	4.71	4.71					
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	4.71	4.71					
	452714	AW770994	Hs.30340	hypothetical protein KIAA1165	4.69	4.69					
	442432	BE093589	Hs.38178	hypothetical protein FLJ23468	4.68	4.68					
55	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	4.65	4.65					
55	446921	AB012113 Z95152	Hs.16530 Hs.178695	small inducible cytokine subfamily A (Cy mitogen-activated protein kinase 13	4.64 4.63	4.64 5.12					
	427490 412490	AW803564	Hs.288850	Homo sagiens cDNA: FLJ22528 fis, clone H	4.61	4.61					
	418030	BE207573	Hs.83321	neuromedin B	4.60	4.60					
	401192		1.0.00021	Target Exon	4.60	4.29					
60	426761	AI015709	Hs.172089	Homo sapiens mRNA; cDNA DKFZp58612022 (f	4.59	3.51					
	452747	BE153855	Hs.61460	lg superfamily receptor LNIR	4.58	5.33					
	449618	AI076459	Hs.15978	KIAA1272 protein	4.58	4.58					
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.55	4.55					
65	415701	NM_003878	Hs.78619	gamma-glutamyl hydrolase (conjugase, fol	4.52	4.70					
65	446742	AA232119	Hs.16085	putative G-protein coupled receptor	4.49	4.11					
	419433	AA814807	Hs.7395	hypothetical protein FLJ23182	4.48 4.47	4.48 4.47					
	412326	R07566	Hs.73817 Hs.179565	small inducible cytokine A3 (homologous minichromosome maintenance deficient (S.	4.45	4.45					
	427528 444371	AU077143 BE540274	Hs.239	forkhead box M1	4.44	3.87					
70	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	4.43	3.63					
. •	424308	AW975531	Hs.154443	minichromosome maintenance deficient (S.	4.43	4.43					
	401093			C12000586*:gi[6330167 dbj[BAA86477.1] (A	4.40	4.40					
	447644	AW861622	Hs.108646	Homo sapiens cDNA FLJ14934 fis, clone PL	4.39	4,39					
ac .	417933	X02308	Hs.82962	thymidylate synthetase	4.38	4.35					
75	409461	AA382169	Hs.54483	N-myc (and STAT) interactor	4.36	3.68					
	401451	Dogra	11- 070500	NM_004496*:Homo sapians hepatocyte nucle	4.35	4.35					
	450746	D82673	Hs.278589	general transcription factor II, I	4.35	3.36					
					_						

	414683	S78296	Hs.76888	hypothetical protein MGC12702	4.34	4.74
	434203	BE262677	Hs.283558	hypothetical protein PRO1855	4.31	4.31
	417615	BE548641	Hs.82314	hypoxanthine phosphoribosyltransferase 1	4.30	4.30
	416815	U41514	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	4.30	4.30
5	440086	NM_005402	Hs.288757	v-ral simian leukemia viral oncogene hom	4.29	4.29
_	417715	AW969587	Hs.86366	ESTs	4.27	7.45
	409757	NM_001898	Hs.123114	cystatin SN	4.24	3.39
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	4.24	4.24
	432842	AW574093	Hs.334822	hypothetical protein MGC4485	4.21	4.12
10	446847	T51454	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	4.20	4.20
10	436856	AJ469355	Hs.127310	ESTs	4.19	4.19
	428450	NM_014791	Hs.184339	KIAA0175 gene product	4.16	4.90
	425234	AW152225	Hs.165909	ESTs, Weakly similar to 138022 hypotheti	4.14	4.14
	409231	AA446644	Hs.692	GA733-2 antigen; epithelial glycoprotein	4.14	5.99
15	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolase)	4.12	4.12
13	446849	AU076617	Hs.16251	cleavage and polyadenylation specific fa	4.12	3.43
	400843	A0010011	16.19201	NM_003105*:Homo sapiens sortilin-related	4.11	5.51
	449722	BE280074	Hs.23960	cyclin B1	4.09	4.09
	405506	DL200014	110.20000	Target Exon	4.09	3.75
20	420344	BE463721	Hs.97101	putative G protein-coupled receptor	4.07	4.07
20	426997			peptidylprolyl isomerase F (cyclophilin	4.05	4.80
		BE620738	Hs.173125	S100 calcium-binding protein A8 (calgran	4.03	7.64
	456525	AW468397	Hs.100000		4.02	4.02
	437150	R51407	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A sy	4.02	4.02
25	413794	AF234532	Hs.61638	myosin X	4.02	4.72
23	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1 small inducible cytokine A4 (homologous	4.01	3.99
	414020	NM_002984	Hs.75703		4.01	4.01
	416391	A1878927	Hs.79284	mesoderm specific transcript (mouse) hom	4.00	4.00
	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	4.00	3.47
30	400277	1100000	Il- moore	Eos Control	3.99	3.37
30	415791	H09366	Hs.78853	uracii-DNA glycosylase	3.98	4.77
	412610	X90908	Hs.74126	fatty acid binding protein 6, iteal (gas	3.98	3.95
	427557	NM_002659	Hs.179657	plasminogen activator, urokinase recepto		6.95
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	3.96 3.92	5.04
25	420859	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgran		3.88
35	400409	AF153341		Homo sapiens winged helix/forkhead trans	3.91	
	408988	AL119844	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi	3.90	3.90
	411678	Al907114	Hs.71465	squalene epoxidase	3.89	3.89
	429113	D28235	Hs.196384	prostaglandin-endoperoxide synthase 2 (p	3.87	3.87
40 ٠	428428	AL037544	Hs.184298	cyclin-dependent kinase 7 (homolog of Xe	3.87	3.87
40	442932	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	3.85	4.50 3.85
	429083	Y09397	Hs.227817	BCL2-related protein A1	3.85	
	439963	AW247529	Hs.6793	platelet-activating factor acetylhydrola	3.82	3.77 3.82
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	3.82	3.81
45	430589	AJ002744	Hs.246315	UDP-N-acetyl-alpha-D-galactosamine:polyp	3.81 3.81	3.62
43	417771	AA804698	Hs.82547	relinoic acid receptor responder (tazaro	3.80	3.80
	430259	BE550182	Hs.127826	RalGEF-like protein 3, mouse homolog		
	447973	AB011169	Hs.20141	similar to S. cerevisiae SSM4	3.77	3.77 3.46
	404875	DE 1000ET	11. 00.400	NM_022819*:Homo sapiens phospholipase A2	3.77 3.76	3.76
50	411299	BE409857	Hs.69499	hypothetical protein		3.76
J U	418827	BE327311	Hs.47166	HT021	3.76	
	446839	BE091926	Hs.16244	mitotic spindle colled-coil related prot	3.75	3.75
	407137	T97307		gb:ye53h05.s1 Soares fetal liver spleen	3.73	3.73
	433376	Al249361	Hs.74122	caspase 4, apoptosis-related cysteine pr	3.71	3.71
55	400294	N95796	Hs.278695	Homo sapiens prostein mRNA, complete cds	3.70	3.45 3.69
55	409518	BE384836	Hs.3454	KIAA1821 protein	3.69	3.69
	430024	A1808780	Hs.227730	integrin, alpha 6	3.69	3.68
	426088	AF038007	Hs.166196	ATPase, Class I, type 88, member 1	3.68	3.66
	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	3.68	3.67
<i>ς</i> Λ	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	3.67	
60	413670	AB000115	Hs.75470	hypothetical protein, expressed in osteo	3.67	3.41 3.88
	424840	D79987	Hs.153479	extra spindle poles, S. cerevisiae, homo	3.67	3.65
	434263	N34895	Hs.44648	ESTs	3.65	3.36
	438280	AW015534	Hs.217493	annexin A2	3.63	
65	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	3.63	3.68
65	408989	AW361666	Hs.49500	KIAA0746 protein	3.61	3.66 4.22
	416640	BE262478	Hs.79404	neuron-specific protein	3.60	
	416926	H03109	Hs.108920	HT018 protein	3.59	3.59
	414368	W70171	Hs.75939	uridine monophosphate kinase	3.59	3.53
70	402727	4 0000 400	11- 00000	NM_025065:Homo sapiens hypothetical prot	3.58	3.58
70	419381	AB023420	Hs.90093	heat shock 70kD protein 4	3.56	3.77 3.55
	416114	A1695549	Hs.183868	glucuronidase, beta	3.55	
	424941	AA128376	Hs.153884	ATP binding protein associated with cell	3.55	3.55
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	3.54	4.63 3.92
75	429238	NM_002849	Hs.198288	protein tyrosine phosphatase, receptor t	3.53	
75	420159	A1572490	Hs.99785	Homo sapiens cDNA: FLJ21245 fis, clone C	3.51	5.77 3 EO
	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin CDC28 protein kinase 2	3.50	3.50
	418203	X54942	Hs.83758	OCOZO PIOREII MIIASE Z	3.50	3.50

	415220	AA431880	Hs.181174	ESTs, Weakly similar to T19201 hypotheti	3.50	3.50			
	428371	AB012193	Hs.183874	cullin 4A	3.46	3.46			
	418663	AK001100	Hs.41690	desmocollin 3	3.45	4.74			
	404977			Insulin-like growth factor 2 (somatomedi	3.45	3.89			
5	422663	AW500087	Hs.119014	zinc finger protein 175	3.44	3.44			
	434061	AW024973	Hs.283675	NPD009 protein	3.41	5.64			
	418113	AJ272141	Hs.83484	SRY (sex determining region Y)-box 4	3.41	4.32			
	431689	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	3.40	3.40			
	411943	BE502436	Hs.7962	ESTs, Weakly similar to \$44608 C02F5.6 p	3.39	4.27			
10	420005	AW271106	Hs.133294	ESTs	3.38	3.40			
	453450	AW797627	Hs.347459	ADP-ribosylation factor 6	3.38	3.87			
	410315	AI638871	Hs.17625	Homo sapiens cDNA: FLJ22524 fis, clone H	3.36	3.36			
	428839	AI767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	3.35	3.35			
	437469	AW753112	Hs.15514	hypothetical protein MGC3260	3.35	3.35			
15	407151	H25836	Hs.301527	ESTs, Moderately similar to unknown [H.s	3.34	3.34			
	428157	Al738719	Hs.198427	hexokinase 2	3.33	3.73			
	450293	N36754	Hs.171118	hypothetical protein FLJ00026	3.33	3.33			
	400750			Target Exon	3.33	3.33			
	450139	AK001838	Hs.296323	serum/glucocorticold regulated kinase	3.33	3.33			
20	412636	NM_004415		desmoplakin (OPI, DPII)	3.30	4.81			
-0	447578	AA912347	Hs.136585	ESTs, Wealdy similar to JC5314 CDC28/cdc	3.27	3.38			
	430315	NM_004293	Hs.239147	quanine deaminase	3.26	4.30			
	421594	R45689	Hs.21889	Homo sapiens cDNA FLJ12978 fis, clone NT	3.26	3.41			
	443030	R68048	Hs.9238	hypothetical protein FLJ23516	3.19	3.34			
25	436911	AA142984	Hs.5344	adaptor-related protein complex 1, gamma	3.17	3.40			
23	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	3.06	3.52			
				TONDU	3.05	3.83			
	443171	BE281128	Hs.9030		3.01	3.53			
	429343	AK000785	Hs.199480	Homo sapiens, Similar to epsin 3, clone	2.99	4.11			
30	408380	AF123050	Hs.44532	diubiquitin	2.99	3.67			
30	421508	NM_004833	Hs.105115	absent in melanoma 2	2.97	4.55			
	439750	AL359053	Hs.57664	Homo saplens mRNA full length insert cDN	2.95	3.39			
	452046	AB018345	Hs.27657	KIAA0802 protein	2.93	3.58			
	451940	Al735759	Hs.52620	integrin, beta 8	2.90 2.90	3.68			
25	407722	BE252241	Hs.38041	pyridoxal (pyridoxine, vitamin B6) kinas					
35	422282	AF019225	Hs.114309	apolipoprotein L	2.89	3.57			
	402230			Target Exon	2.88	5.36			
	406685	M18728		gb:Human nonspecific crossreading antig	2.80	5.80			
	417880	BE241595	Hs.82848	selectin L (lymphocyte adhesion molecule	2.79	3.89			
40	447957	NM_014821	Hs.20126	KIAA0317 gene product	2.75	3.45			
40	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	2.75	3.46			
	417275	X63578	Hs.295449	parvalbumin	2.73	3.54			
	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	2.72	8.39			
	401781			Target Exon	2.62	4.15			
	407242	M18728		gb:Human nonspecific crossreacting antig	2.54	5.96			
45	428423	AU076517	Hs.184276	sofute carrier family 9 (sodium/hydrogen	2.52	4.27			
	430200	BE613337	Hs.234896	geminin	2.52	4.1 9			
	451035	AU076785	Hs.430	plastin 1 (I isoform)	2.51	4.15			
	443162	T49951	Hs.9029	DKFZP434G032 protein	2.48	3.66			
	441495	AW294603	Hs.127039	ESTs	2.45	3.60			
50	449246	AW411209	Hs.23363	hypothetical protein FLJ 10983	2.45	3.52			
	401780			NM_005557*:Homo sapiens keratin 16 (foca	2.22	4.49			
	417079	U65590	Hs.81134	Interleukin 1 receptor antagonist	2.20	3.55			
•	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	2.15	6.08		•	. •
	439394	AA149250	Hs.56105	ESTs	2.05	3.95			
55	427315	AA179949	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	1.79	3.88			
	42.0.0						•		
	TABLE 6	3							
	1710 58.51								
	Pkey:	Unique Eos	probeset iden	tifier number					
60	CAT num	ber: Gene cluste	r number						
	Accession	n: Genbank ad	cession numb	ers					
65	Pkey	CAT Numbe	er Accessio	00 	300 414107000	414070047	A1AP27CC00 A1A/9/	19371 AUJ376701	AM040700
65	412636	13165_1	NM_004	415 AL031058 M77830 BE149760 AW752599 AW848	1723 AVV370031	47 DE 40E 40	7 AMORTICE DE1	56691 DE170016	DEGREES!
			AW3614	13 AW849074 AW997139 AW799304 AW799309 BE0	177020 BEU770	1/ BE 185184	/ AVV99/ 130 DE 1	30021 DE [/33 [3	DE000001 IOE044 DE000576
			BE1431	55 AW890985 BE002107 AW103521 AA857316 AW38	13133 BE01137	8 AW170253	3 BE185/50 AW80	304/5 BE160433	J05211 BE082576
			BE0825	84 BE004047 AW607238 AW377700 AW377699 BE08	32526 BE08250	5 BE082507	BE082514 AW17	8000 AW177933	A1905935
			AW7478	377 AW748114 BE148516 AW265328 AW847678 AW8	147688 AW365	151 AW36514	48 AW365163 AV	/365166 AW3651	/5 AW36515/
70			AW3651	54 AW068840 BE005272 AW365145 BE001925 BE18	12166 BE14424	3 BE001923	AI951766 AI4345	18 BE184920 BE	184933 AI284090
			BE1849	41 AW804674 BE184924 C04715 W39488 AW995615	BE184948 BE	159646 AW6	06653 AA099891	AA131128 AA33	7270 AA340777
			AW3843	71 AA852212 R58704 AW366566 AW364859 AA0258	351 AA025852	4A455100 A4	A719958 AW3522	20 AW996245 BE	165351 BE073467
			AA3771	27 AW890264 AW609750 AW391912 AW849690 T873	267 AW853812	AA852213 W	N74149 BE00909I	0 AA056401 H910	011 AW368529
_			A1A/3003	772 C18467 AW674920 N57176 AA026480 AW576767	' H93284 AA02	6863 AW177	787 AA026654 A\	W177786 BE0921	134 BE092137
75			RE0921	36 AW177784 AI022862 BE091653 AW376811 AW848	8592 AA040018	3 BE185331 B	BE182164 AA368	564 AW951576 T	29918 AA131077
. •			MOSOM	W25458 AW205789 H90899 N29754 W32490 R2090	4 BE 167181 BI	-167165 N84	4767 H27408 H30	146 Al190590 CO	3378 A1554403
			A120526	3 AA128470 Al392926 AF139065 AW370813 AW3708	327 AW798417	AW798780 A	AW798883 AW79	8569 R33557 AA	149190 C03029

5			Al5680 Al5688 AW105 Al8582 AA782	7783 AA088866 AW370829 AA247685 BE002273 AI760816 AI439101 AW879451 AI700963 AA451923 AI340326 AI590975 T48793 196 AI142882 AA039975 AI470146 AA946936 BE067737 BE067786 W19287 AA644381 AA702424 AI417612 AI306554 AI686869 192 AW190555 AI571075 AI220573 AA056527 AI471874 AI304772 AW517828 AI915596 AI627383 AIZ70345 AW021347 AW166807 1614 AI346078 AA552300 W95070 AI494069 AI911702 AA149191 AA026864 AI83049 AIB87258 AW780435 AI910434 AIB19984 182 AI078449 AI025932 AI860584 AI635878 AA026047 AA703232 D12062 AW192085 AA658154 AW514597 AW591892 T87181 1056 AW243815 AW150038 AW268383 AW004633 AI927207 AA782109 AW473233 AI804485 AW169216 AI572669 AA602182 1480 AW771865 AIZ70027 AA961816 AA283207 AI076962 AI498487 AI348053 AI763914 H44405 AW799118 AA128330 AA515500
10	433470	3672_1	AA918 AW960 AA3044 D82725 AA343 AA180	281 W02156 AI905927 AA022701 W38382 R20795 T77861 AW860878 1564 AA092457 T55890 D56120 T92525 AI815987 BE182508 BE182595 AW080238 M90657 AA347236 AW961686 AW176446 671 AW883735 T61714 AA316968 AI446615 AA343532 AA083489 AA488005 W52095 W39480 N57402 D82638 W25540 W52847 99 D56990 BE619182 AA315188 AA308636 AA112474 W76162 AA088544 H52265 AA301631 H80982 AA113786 BE620997 AW651691 799 BE613669 BE547180 BE546656 F11933 AA376800 AW239185 AA376086 BE544387 BE619041 AA452515 AA001806 AA190873 483 AA159546 F00242 AI940609 AI940602 AI189753 T97663 T66110 AW062896 AW062910 AW062902 Al051622 AI828930 AA102452
15			AI6850 AW629 R79300 AI2422 AA2160	95 AIB19390 AA557597 AA383220 AIB04422 AI633575 AW338147 AW603423 AW606800 AW750567 AW510672 AI250777 AA083510 9109 AW513200 AA921353 AI677934 AI148698 AI955858 AA173825 AA455027 AI027865 AW375554 AA454099 AA733014 AI591384 0 R80023 AA843108 AA626058 AA844698 AW375550 AA889018 AI474275 AW205937 AI052270 AW388117 AW388111 AA699452 30 NA7478 H38178 AA366621 AA113196 AA130023 H39740 T61629 AI885973 AW083671 AA179730 AA305757 AI285455 N83956 013 AA336155 AW999959 T97525 AA345349 T91762 AA771981 AI285092 AI591386 BE392486 BE385852 AA682601 AI682884
20	438091	44964_1	AW373 AA709 AW043 AJ8138	840 T85477 AA292949 AA932079 AA098791 D82607 T48574 AW752038 C06300 1062 T55662 AI299190 BE174210 AW579001 H01811 W40186 R67100 AJ923886 AW952164 AA628440 AW898607 AW898616 126 AW898628 AW898544 AA947932 AW898625 AW898622 AIZ76125 AI185720 AW510698 AA987230 T52522 BE467708 AW243400 1642 AI288245 AI186932 D52665 D55017 D52715 D52477 D53933 D54679 AI298739 AI146984 AJ922204 N98343 BE174213 AA845571 154 AI214518 AI635262 AI139455 AI707807 AI698085 AW884528 AI024768 AI004723 AW087420 AI565133 N94964 AI268939
25			AW890	I280 AI061126 AI435B18 AI859106 AI360506 AI024767 AA513019 AA757598 X56196 AA902959 AI334784 AI860794 AA010207 I091 AW513771 AI951391 AI337671 T52499 AA890205 AI640908 H75966 AA463487 AA358688 AI961767 AI866295 AA780994 I13 BE174196 AA029094 AW592159 T555B1 N79072 AI611201 AA910812 AI220713 AW149306 AI758412 AA045713 R79750 N76096
	TABLE 6C			
30	Pkey: Ref:	Sequence s	ource. The 7	inding to an Eos probeset 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA moscome 22." Dunham I. et al., Nature (1999) 402:489-495.
35	Strand: Nt_position:			m which exons were predicted. tions of predicted exons.
40	Pkey 400750 400843 401093	Ref 8119067 9188605 8516137	Strand Plus Plus Minus	Nt_position 198991-199168,199316-199548 5863-5970,7653-7784,8892-9023,9673-9807,10634-10789,15254-15403,23827-23958 22335-23166
45	401192 401451 401780 401781	9719502 6634068 7249190 7249190	Minus Minus Minus Minus	69559-70101 119926-121272 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573 83215-83435,8531-83656,83740-83901,84237-84393,84955-85037,86290-86814
43	402230 402727 404875 404977	9966312 9211324 9801324 3738341	Minus Plus Plus Minus	29782-29932 54596-54777 96558-96732,97722-97831 43081-43229
50	405033 405506	7107731 6466489	Minus Plus	142358-142546 80014-80401,80593-81125

	TABLE 7A:	Genes downre	gulated in blad	der cancer							
	Pkey:	Unique Eos	probeset identi	ifier number							
	ExAcon:			er, Genbank accession number							
5	UnigenelD:			.,							
•		Title: Unigene gene title									
	R1	90th percentile of normal prothetium biopsy Als divided by 75th percentile of bladder tumor Als									
	R2	90th percenti	ile of normal u	rothellum biopsy and normal bladder Als divided by	he 90th p	ercentile bladder turnor A	ıls				
10	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2					
	403010		-	C21000152:gij6226483 sp Q52118 YMO3_ERWS		2.49					
	426796	S78234	Hs.172405	cell division cycle 27	4.28	2.48					
	416225	AA577730	Hs.188684	ESTs, Weakly similar to PC4259 ferritin	4.04	2.07		•			
	459006	AW298631	Hs.27721	Wolf-Hirschhorn syndrome candidate 1-lik	3.82	2.66					
15	404917			Target Exon	3.78	2.00					
	426488	X03350	Hs.4	alcohol dehydrogenase 1B (class I), bela	2.64	1.79					
	419543	AA244170		gb:nc05h02.s1 NCI_CGAP_Pr1 Homo sapiens	2.63	3.42					
	453180	N46243	Hs.110373	ESTs, Highly similar to T42626 secreted	2.32	3.24					
20	428957	NM_003881	Hs.194679	WNT1 inducible signaling pathway protein	2.20	3.80 3.69					
20	451529	Al917901	Hs.208641	ESTS	2.18 2.03	3.03					
	417076	AW973454	Hs.238442	ESTs, Moderately similar to ALU7_HUMAN A	2.00	5.05 5.17					
	425438	T62216	Hs.270840	ESTS	1.89	2.46					
	450515	AW304226	U. nancan	biphenyl hydrolase-like (serine hydrolas Homo sapiens mRNA; cDNA DKFZp586M2022 (f	1.70	2.79					
25	432873	AW837268	Hs.279639		1.69	2.46					
23	452123	AI267615	Hs.38022 Hs.167988	ESTs neural cell adhesion molecule 1	1.65	4.67					
	424378 437601	W28020 AA761546	Hs.248844	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.50	3.34		•			
	402096	A4101340	115.240044	ENSP00000217725*:Laminin alpha-1 chain p	1.48	3.02					
	439563	AI018768	Hs.12482	glyceronephosphate O-acyltransferase	1.47	3.22					
30	412810	M21574	Hs.74615	platelet-derived growth factor receptor,	1.46	2.30					
50	458651	AW612481	Hs.104105	ESTs	1.39	2.89					
	414033	AL079707	Hs.207443	hypothetical protein MGC10848	1.36	2.80					
	433572	AL046859	Hs.3407	protein kinase (cAMP-dependent, catalyti	1.35	3.49		*			
	413305	NM_000426	Hs.323511	Homo sapiens cDNA: FLJ23176 fis, clone L	1.34	2.93					
35	420412	AW976674	Hs.125103	ESTs	1.32	5.13					
	421406	AF179897	Hs.104105	Meis (mouse) homolog 2	1.31	4.07					
	417446	AL118671	Hs.82163	monoamine oxidase B	1.27	2.86					
	452886	A1478250	Hs.13751	ESTs	1.26	1.95					
40	446808	AA703226	Hs.16193	Homo sapiens mRNA; cDNA DKFZp586B211 (fr	1.25	3.44					
40	443105	X96753	Hs.9004	chondroitin sulfate proteoglycan 4 (mela	1.24	2.07					
	421348	M94048	Hs.103724	peripheral myelin protein 22	1.24	2.63					
	433070	N75346	Hs.306121	CDC20 (cell division cycle 20, S. cerevi	1.23 1.22	2.80 3.43					
	420059	AF161486	Hs.94769	RAB23, member RAS oncogene family	1.20	6.01					
45	408491	A1088063	Hs.7882 Hs.40528	ESTs ESTs	1.00	7.92					
47	447384 421998	Al377221 R74441	Hs.117176	poly(A)-binding protein, nuclear 1	1.00	7.38					
	409619	AK001015	Hs.55220	BCL2-associated athanogene 2	1.00	6.40					
	444795	Al193356	Hs.160316	ESTs	1.00	5.53					
	408495	W68796	Hs.237731	ESTs	1.00	5.05					
50	417124	BE122762	Hs.25338	ESTs .	1.00	4.73					
	443998	Al620661	Hs.296276	ESTs	1.00	4.39					
	406303			C16000922:gi[7499103[pir][T20903 hypothe	1.00	4.37		•			
	422994	AW891802	Hs.296276	ESTs	1.00	4.37					
	422195	AB007903	Hs.113082	KIAA0443 gene product	1.00	4.35					
55	452877	A1250789	Hs.32478	ESTs	1.00	3.90					
	452487	AW207659	Hs.6630	Homo sapiens cDNA FLJ13329 fis, clone OV	1.00	3.90					
	417159	R01761		gb:ye81f10.s1 Soares fetal liver spleen	1.00	3.82					
	445607	AA488107	Hs.30156	ESTs, Weakly similar to unnamed protein	1.00	3.62					
60	406274			Target Exon	1.00	3.59					
60 ·	410611	AW954134	Hs.20924	KIAA1628 protein	1.00	3.06					
	426495	NM_001151	Hs.2043	solute carrier family 25 (mitochondrial transforming growth factor beta-stimulat	1.00	2.89 2.61					
	422292	Al815733 AA193338	Hs.114360 Hs.12321	sodium calcium exchanger	1.00	2.51					
	413040 429623	NM_005308	Hs.211569	G protein-coupled receptor kinase 5	1.00	2.05					
65	456607	AI660190	Hs.106070	cyclin-dependent kinase inhibitor 1C (p5	1.00	2.01					
05	429143	AA333327	Hs.197335	plasma glutamate carboxypeptidase	0.97	2.45					
	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	0.90	2.47					
	442498	U54617	Hs.8364	Homo sapiens pyruvate dehydrogenase kina	0.88	5.08					
	414449	AA557660	Hs.76152	decorin	0.88	3.13					
70	412014	Al620650	Hs.43761	ESTs, Weakly similar to A46010 X-linked	0.78	1.88					
	425100	AF051850	Hs.154567	supervillin	0.70	3.90					
	432094	Al658580	Hs.61426	Homo sapiens mesenchymal stem cell prote	0.68	3.41					
	427818	AW511222	Hs.193765	ESTs	0.63	3.75					
75	7451 F 35	,									
75	TABLE 78			***							

Pkey: Unique Eos probeset identifier number

CAT number: Gene cluster number Accession: Genbank accession numbers

4	117159 119543	CAT Number 1653899_1 185745_1	AA244	1 R01760 N49787 1170 A1018087 AA244355						
4:	450515	B3710_1	BE439 AI1978 AI6822 AI7081	AW304226 AW008420 AA349212 H15015 AA317021 AIB29484 H25661 H81744 AI906147 AA837938 AW167765 AW603578 AW842369 BE439926 AA902417 AW235409 AA010062 AW069319 AI280242 AW672925 H06848 H05608 R51905 R45023 AW675471 H28475 AI086597 AI197815 AI825355 N99134 AI075956 AI470122 AA449985 AW662833 AA860423 AA913342 T23825 AI394207 AI310319 T32467 AI589870 AI682293 AI810633 BE2233045 H14620 AA626645 AA876023 T33571 AA953982 AI138631 H15016 AI304356 AA983631 AI350990 AI143993 AI708171 AA526961 H26247 W38485 AA847598 H81745 AW855486 BE299605 AI079409 AI278050 AI223168 AI860904 AW025415 AI339003 AA393692 AI354302 AI492838 N80194 AI015651 N34543 BE295397 AI085154 W24135						
<u> </u>	ABLE 7C									
	key: Ref:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "T sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.								
_	Strand: It_position:	Indicates DN	imosome 22. Dunitam I. et al., Maure (1999) 402-409-455. Im which exons were predicted. Itions of predicted exons.							
4(4(4(4(Pkey 02096 03010 04917 06274	Ref 8117697 3132346 7341851 7543787	Strand Minus Plus Plus Plus	Nt_position 24993-25186 78385-79052 49330-49498 932-1123						
) 40	06303	8575868	Plus	173622-173786						

TABLE 8A: Genes predictive of bladder cancer progression

	Pkey:		probeset Identi				
5	ExAcen: Unigeneti			er, Genbank accession number			
		Mile: Unigene ger	ne title		annulla of Ta	as T4 humas Al	la from notionte who did not unctor
	R1 R2	BOth percent median of T	tile of Ta or T1 a or T1 tumor A	tumor Als from patients who upstaged divided by 80th p ils from patients who upstaged divided by the median of	Ta or T1 turno	or 11 tumor Al or Als from pation	ents who did not upstage
)	Pkey	ExAcon	UnigenelD	Unigene Tille	R1	R2	
	413324	V00571	Hs.75294	corticotropin releasing hormone	8.30	4.18	
	437802	Al475995	Hs.122910	ESTs	7.51	2.50	
	444444	Al149332	Hs.14855	ESTs	2.58	1.38	
	445033	AV652402	Hs.72901	mucin 13, epithelial transmembrane	2.26	1.13	
	417771	AA804698	Hs.82547	retinolc acid receptor responder (tazaro	3.27	5.33	
	449618	Al076459	Hs.15978	KIAA1272 protein	2.70 3.58	3.33 1.90	
	407242	M18728	No 04072	gb:Human nonspecific crossreacting antig transmembrane 4 superfamily member 3	3.32	1.00	
	418318 423441	U47732 R68649	Hs.84072 Hs.278359	absent in melanoma 1 like	2.44	2.40	
	405033	100045	113.21 0000	C1002652*:gij544327[splQ04799]FMO5_RABIT	1.75	3.48	
	423024	AA593731	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	3.72	1.28	
	425118	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	2.40	2.78	
	437928	NM_005476	Hs.5920	UDP-N-acetylgtucosamine-2-epimerase/N-ac	2.20	1.53	
	446584	U53445	Hs.15432	downregulated in ovarian cancer 1	1.38	2.33	
	436608	AA628980		down syndrome critical region protein DS	3.32	4.53	
	404440			NM_021048:Homo sapiens melanoma antigen,	2.64	1.00	
	435602	AF217515	Hs.283532	uncharacterized bone marrow protein BM03	2.06	1.09 3.64	
	424098	AF077374	Hs.139322	small proline-rich protein 3	2.47 2.09	3.64 0.91	
	437553	Al829935	Hs.130497	ESTs, Weakly similar to MAT6_HUMAN CHLOR Homo sapiens mRNA for caldesmon, 3' UTR	2.09	4.58	
	428036	AW068302	Un 16244		3.18	2.33	
	446839 448479	BE091926 H96115	Hs.16244 Hs.21293	mitotic spindle coiled-coll related prot UDP-N-acteylglucosamine pyrophosphorylas	2.61	1.81	
	412059	AA317962	Hs.249721	ESTs, Moderately similar to PC4259 ferri	1.90	2.02	
	401241	AB028989	10.270721	mitogen-activated protein kinase 8 inter	1.26	2.55	
	408741	M73720	Hs.646	carboxypeptidase A3 (mast cell)	2.12	1.23	
	415989	AI267700		ESTs	1.60	1.00	
	431070	AW408164	Hs.249184	transcription factor 19 (SC1)	1.73	1.50	
	452140	AB007928	Hs.28169	KIAA0459 protein	2.44	2.95	
	443162	T49951	Hs.9029	DKFZP434G032 protein	2.98	1.00	
	435904	AF261655	Hs.8910	1,2-alpha-mannosidase IC	2.56	1.20	
	407379	AA332127	Hs.325804	transcription factor 17	2.10	1.72	
	442712	BE465168	Hs.131011	ESTs	2.54	2.72	
	411678	Al907114	Hs.71465	squalene epoxidase	1.12	3.11	
	406791	A1220684	Hs.347939	hemoglobin, alpha 2	1.69 1.92	1.38 2.05	
	431805	NM_014053	Hs.270594	FLVCR protein	1.04	2.15	
	438414 413924	AA806794 AL119964	Hs.131511 Hs.75616	ESTs seladin-1	1.69	2.05	
	437679	NM_014214	Hs.5753	inositol(myo)-1(or 4)-monophosphatase 2	2.27	2.26	,
	445911	AI985987	Hs.145645	ESTs, Moderately similar to ALU1_HUMAN A	1.42	2.74	
	408349	BE546947	Hs.44276	homeo box C10	1.60	2.05	
	422545	X02761	Hs.287820	fibronectin 1	1.77	3.02	
	406643	N77976	Hs.347939	hemoglobin, alpha 2	1.57	1.35	·
	407228	M25079	Hs.155376	hemoglobin, beta	1.81	1.50	
	449644	AW960707	Hs.148324	ESTs	1.90	3.19	
	402305			C19000735*:gij4508027 ref NP_003414.1 z	2.25	1.49	
	427683	BE545490	Hs.15053	Homo sapiens HCMOGT-1 mRNA for sperm ant	1.08	2.25	
	441690	R81733	Hs.33106	ESTs	1.80	2.65	•
	434487	AF143867	Hs.337588	ESTs, Moderately similar to S65657 alpha	2.13	1.63	
	403362			NM_001615*:Homo sapiens actin, gamma 2.	2.33	2.22	
	445496	AB007860	Hs.12802	development and differentiation enhancin	1.12	2.60 3.05	
	425234	AW152225	Hs.165909	ESTs, Weakly similar to 138022 hypotheti	1.83	2.05	
	402366	AV648601	Hs.97774	apolipoprotein B (including Ag(x) antige ESTs	1.32 2.44	1.00	
	427254	AL121523 AA149060	Hs.296100	ESTs	1.70	2.06	
	414533 430157	BE348706	Hs.278543	ESTs	2.54	3.00	
	413433	NM_003199	Hs.326198	transcription factor 4	2.26	1.41	
	410532	T53088	Hs.155376	hemoglobin, beta	1.52	1.56	
	405779			NM_005367:Horno sapiens melanoma antigen,	2.42	1.22	
	450455	AL117424	Hs.25035	chloride intracellular channel 4	2.48	2.13	
	414081	AW969976	Hs.279009	matrix Gla protein	1.81	1.53	
	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	1.65	2.08	
	415062	H45100	Hs.49753	uveal autoantigen with coiled coil domai	1.62	3.75	
	406317			C2002658*:gi 6625694 gb AAF19354.1 AF185	1.68	2.11	
	453259	R93125	Hs.124187	ESTs	1.08	2.25	
	445937	AI452943	Hs.321231	UDP-Gat:betaGlcNAc beta 1,4- galactosyll	1.76	1.01	
	434370	AF130988	Hs.58346	ectodysplasin 1, anhidrotic receptor	1.12	2.08 2.40	
	418058	AW161552	Hs.83381	guanine nucleotide binding protein 11	2.02	Z.4U	

	432331	W37862	Hs.274368	MSTP032 protein	4.36	2.18
	451736	AW080356	Hs.23889	ESTs, Weakly similar to ALU7_HUMAN ALU S	1.51	3.45
	413109	AW389845	Hs.110855	ESTs	4.34	5.98
		AA130987	Hs.188727	ESTs	1.30	2.42
5	413643				1.70	2.49
,	433217	AB040914	Hs.278628	KIAA1481 protein	1.79	1.66
	435232	NM_001262	Hs.4854	cyclin-dependent kinase inhibitor 2C (p1		
	438006	BE148799	Hs.127951	hypothetical protein FLJ14503	1.76	2.04
	410102	AW248508	Hs.279727	ESTs; homologue of PEM-3 [Clona savignyl	2.32	2.45
	433656	AW974941	Hs.292385	ESTs, Weakly similar to I78885 serine/th	1.14	2.50
10	415714	NM_002290	Hs.78672	laminin, alpha 4	2.52	1.13
	450282	AA007655	Hs.93523	ESTs	1.40	2.58
	442855	A1074465	Hs.133469	ESTs	1.54	2.20
	432917	NM_014125	Hs.241517	PRO0327 protein	2.24	3.03
	429041	AJ132820	Hs.194768	a disintegrin and metalloproteinase doma	1.61	2.60
15	442807	AL049274	Hs.8736	Homo sapiens mRNA; cDNA DKFZp564H203 (fr	1.73	1.19
13				ESTs	1.46	2.00
	427719	Al393122	Hs.134726	hypothetical protein PRO2714	1.46	2.58
	408778	Al500519	Hs.63382		1.40	
	418870	AF147204	Hs.89414	chemokine (C-X-C motif), receptor 4 (fus		2.03
~~	424425	AB031480	Hs.146824	SPR1 protein	1.60	1,11
20	445391	T92576	Hs.191168	ESTs	1.69	2.40
	446899	NM_005397	Hs.16426	podocalyxin-like	1.22	2.42
	420996	AK001927	Hs.100895	hypothetical protein FLJ 10462	2.68	2.98
	424909	S78187	Hs.153752	cell division cycle 25B	2.18	1.33
•	413593	AA205248		gb:zq78c12.r1 Stratagene hNT neuron (937	1.69	2.00
25	408734	AW264996	Hs.254299	ESTs	2.06	2.94
	413880	Al660842	Hs.110915	interleukin 22 receptor	1.24	2.20
		AA351109	Hs.5437	Tax1 (human T-cell leukemia virus type I	1.78	2.60
	437063			ESTs, Weakly similar to ALUF_HUMAN !!!!	1.54	2.53
	418044	AI640532	Hs.119830		1.62	2.13
20	441971	W27060	Hs.265855	ESTs	1.42	2.30
30	450401	AW959281	Hs.8184	ESTs		
	440157	AA868350	Hs.343636	ESTs	1.38	2.60
	457587	AA992841	Hs.27263	KIAA1458 protein	1.47	2.42
	440707	BE256751	Hs.22867	Homo sapiens cDNA: FLJ22073 fis, clone H	1.18	2.10
	402241			Target Exon	2.58	2.52
35	413428	AA430155	Hs.151343	KIAA1524 protein	1.22	2.45
	416735	R11275	Hs.194485	ESTs	1.14	2.14
	421582	AI910275		trefoil factor 1 (breast cancer, estroge	1.25	1.03
	431031	AA830335	Hs.105273	ESTs	2.35	2.95
	433336	AF017986	Hs.31386	secreted frizzled-retated protein 2	3.72	1.00
40	420786	AW296466	Hs.43628	deleted in lymphocytic leukemia, 2	1.23	2.60
40		ATTENOTOO	113.40020	Target Exon	1.18	1.68
	401335	D07705		gb:yf15c06.r1 Soares fetal liver spleen	1.56	2.00
	417670	R07785			1.60	3.08
	406314			C14001020:gij12597441jgbjAAG60049.1JAF31		
45	458981	AW968318	Hs.285996	hypothetical protein FLJ23375	1.70	2.50
45	417509	AA203414	Hs.42009	ESTs	1.82	2.05
	452732	BE300078	Hs.80449	Homo sapiens, clone IMAGE:3535294, mRNA,	1.34	1.37
	418678	NM_001327	Hs.87225	cancer/testis antigen (NY-ESO-1)	1.37	1.02
	457871	Al168278		ESTs	1.20	2.19
	444163	Al126098		gb:qc54g07.x1 Soares_placenta_8to9weeks_	1.43	1.22
50	413276	Z24725	Hs.75260	mitogen inducible 2	1.78	2.28
• •	421097	Al280112	Hs.125232	Homo sapiens cDNA FLJ13266 fis, clone OV	2.55	2.60
	417151	AA194055	Hs.293858	ESTs	1.68	1.67
		AA425414	Hs.33287	nuclear factor I/B	2.06	2.40
	453556			ESTs	1.12	1.70
55	440859	AW070865	Hs.346390 Hs.156823	ESTs, Weakly similar to T30868 RhoA-bind	1.21	2.38
JJ	420629	AW204343			1.58	2.15
	422363	T55979	Hs.115474	replication factor C (activator 1) 3 (38		
	434831	AA248060	Hs.273397	KIAA0710 gene product	1.69	1.78
	412055	AA099907	Hs.271806	ESTs, Wealty similar to ALU1_HUMAN ALU S	1.36	2.65
	445468	AW450439		ESTs	1.52	2.50
60	444550	BE250716	Hs.87614	ESTs	1.30	2.28
	417259	AW903838	Hs.81800	chondroitin sulfate proteoglycan 2 (vers	1.50	3.02
	430233	AW367902	Hs.236443	Homo sapiens mRNA; cDNA DKFZp564N1063 (f	1.24	2.95
	413444	BE141019		gb:MR0-HT0067-201099-002-b10 HT0067 Homo	1.68	2.80
	433844	AA610175	Hs.179647	Homo sapiens cDNA FLJ12195 fis, clone MA	1.49	2.01
65	427055	Al301740	Hs.173381	dihydropyrimidinase-like 2	1.11	2.58
05	454244	R51604	Hs.300842	KIAA1608 protein	1.00	2.02
		AA394183	Hs.26873	ESTs	2.58	4.08
	429503		113.20013	gb:RC1-BT0606-090500-015-b04 BT0606 Homo	3.48	2.46
	422940	BE077458	Un 247057	ESTs. Weakly similar to 2109260A B cell	3.13	1.48
70	407949	W21874	Hs.247057			
70	437312	AA809350	Hs.246180	ESTs	1.10	2.05
	449426	T92251	Hs.198882	ESTs	1.22	2.08
	447620	AW290951	Hs.224965	ESTs	1.80	2.18
	444700	NM_003645	Hs.11729	fatty-acid-Coenzyme A ligase, very long-	1.72	2.81
	436258	AW867491	Hs.107125	plasmalemma vesicle associated protein	1.99	1.80
75	415712	AW249188	Hs.169577	Homo sapiens cDNA FLJ14743 fis, clone NT	1.66	2.98
-	432877	AW974111	Hs.292477	ESTs	1.63	2.79
	412085	AW891667		gb:CM3-NT0089-110500-179-h09 NT0089 Homo	1.40	2.08
	.,			•		

	431421	AW96911B	Hs.108144	ESTs, Wealthy similar to unnamed protein	1.96	3.58
	409714	AW367812	Hs.199961	ESTs, Weakly similar to ALU7_HUMAN ALU S	1.24	2.10
					1.49	2.09
	423013	AW875443	Hs.22209	secreted modular calcium-binding protein		
_	422663	AW500087	Hs.119014	zinc finger protein 175	1.01	2.78
5	439737	Al751438	Hs.41271	Homo sapiens mRNA full length insert cDN	1.54	2.57
	413196	AA127386		gb:zn90d09.r1 Stratagene lung carcinoma	1.04	2.18
	439349	A1660898	Hs.195602	ESTs	2.03	2.43
				ESTs	1.42	2.10
	443005	AI027184	Hs.200918			
10	424762	AL119442	Hs.183684	eukaryotic translation initiation factor	2.58	3.43
10	427373	AB007972	Hs.130760	myosin phosphatase, target subunit 2	2.08	1.70
	413916	N49813	Hs.75615	apolipoprotein C-II	0.70	0.42
	418332	R34976	Hs.78293	ESTs	2.74	2.43
	426552	BE297660	Hs.170328	moesin	1.28	1.52
					1.42	2.02
1.5	456583	AF179897	Hs.104105	Mels (mouse) homolog 2		
15	447214	A1367288	Hs.273621	Homo sapiens cDNA: FLJ21350 fis, clone C	1.14	2.10
	449254	W26908	Hs.172762	ESTs	2.04	2.50
	443651	W22152	Hs.282929	ESTs	2.94	3.08
	421021	AA808018	Hs.109302	ESTs	1.41	2.04
	419741		Hs.93002	ubiquitin carrier protein E2-C	1.61	1.21
20		NM_007019				2.76
20	432027	AL096678	Hs.272353	KIAA0957 protein	1.70	
	452688	AA721140	Hs.49930	ESTs, Weakly similar to putative p150 [H	1.80	2.95
	417042	C75563	Hs.113029	ribosomal protein S25	2.22	3.20
	443574	U83993	Hs.321709	purinergic receptor P2X, ligand-gated to	1.21	2.51
	429372	AA451859	Hs.99253	ESTs	1.28	2.43
25			N3.33233		1.82	2.03
25	424290	AA338396		gb:EST43386 Fetal brain I Homo saplens c		
	428518	AW969656		gb:EST381733 MAGE resequences, MAGK Homo	1.72	2.52
	455649	BE065051		gb:RC1-BT0313-110500-017-c04 BT0313 Homo	1.65	3.03
	414665	AA160873	Hs.332053	serum arnytoid A1	1.36	1.08
	418298	AA256014	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	1.04	2.03
30					4.94	4.34
30	429655	U48959	Hs.211582	myosin, light polypeptide kinase		
	433924	AA618304	Hs.258785	ESTs	1.44	2.40
	452683	Al089575	Hs.9071	progesterone membrane binding protein	1.48	2.48
	439437	Al207788	Hs.343628	sialyltransferase 4B (beta-galactosidase	1.36	2.33
	432314	AA533447	Hs.312989	ESTs	0.96	2.78
35	400881		, ,0,0 , 2000	NM_025080:Homo sapiens hypothetical prot	1.70	3.15
55		44070404			2.01	2.37
	426477	AA379464		gb:EST92386 Skin tumor I Homo saplens cD		
	454741	BE154396		gb:CM2-HT0342-091299-050-b05 HT0342 Homo	2.12	3.44
	423977	AA333232		gb:EST37283 Embryo, 8 week I Homo sapien	. 1.38	2.13
	450396	AU077002	Hs.24950	regulator of G-protein signalling 5	2.13	3.28
40	431842	NM_005764	Hs.271473	epithelial protein up-regulated in card	1.90	2.23
70			113.27 1410		1.29	2.90
	415157	D63257		gb:HUM514B08B Clontech human placenta po		
	418236	AW994005	Hs.337534	ESTs	1.74	2.37
	454390	AB020713	Hs.56966	KIAA0906 protein	1.47	1.38
	436143	AA705245	Hs.192189	ESTs	1.46	2.45
45	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)	1.43	2.07
75		AI732321	110.20000	SRY (sex determining region Y)-box 4	1.36	2.02
	450735		12- 405054		2.70	1.68
	420136	AW801090	Hs.195851	actin, alpha 2, smooth muscle, aorta		
	447100	Al361801	Hs.167130	hypothetical protein	1.66	2.03.
	453577	AL043049		gb:DKFZp434A1523_r1 434 (synonym: htes3)	1.41	2.75
50	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.59	1.38
•	412632	AL120379	Hs.74294	aldehyde dehydrogenase 7 family, member	1.81	2.51
				guanylate cyclase 1, soluble, beta 2	1.54	2.83
	423291	NM_004129	Hs.126590			
	456172	R99050		gb:yq65c02.r1 Soares fetal liver spleen	1.46	2.68
	452123	AI267615	Hs.38022	ESTs	1.24	1.93
55	433900	AA721668	Hs.257761	ESTs	1.78	2.66
	408436	R31954	Hs.7885	phosphalidylinositol binding clathrin as	1.21	2.35
	417123	BE326521	Hs.159450	ESTs	1.46	2.09
					2.68	2.70
	436023	T81819	Hs.302251	ESTs		
20	454150	AA131893	Hs.154088	hypothetical protein FLJ22756	1.40	2.50
60	444094	A1695764	Hs.202394	ESTs	1.28	4.03
	429176	AW975021	Hs.193800	ESTs	1.08	2.53
	422259	AA307584		qb:EST178498 Colon carcinoma (HCC) cell	1.80	3.03
			Hs.60659	ESTs, Weakly similar to T46471 hypotheti	1.47	1.17
	451164	AA015912			2.92	2.70
<i>C E</i>	417501	AL041219	Hs.82222	sema domain, immunoglobulin domain (lg),		
65	455642	BE063965		· gb:QV3-BT0296-140200-085-h01 BT0296 Homo	1.70	2.70
	443387	BE139135	Hs.254629	EST8	1.48	2.32
	420995	AA282495	Hs.89014	ESTs	1.45	1.51
	407329	AA576061	Hs.269834	ESTs, Weakly similar to ALUD_HUMAN !!!!	1.13	2.38
			Hs.283040	hypothetical protein PRO2543	0.99	2.75
70	438797	C16161	110.203040			
70	443357	AW016773		low molecular mass ubiquinone-binding pr	1.60	2.08
	412656	AF006011	Hs.74375	dishevelled 1 (homologous to Drosophila	1.32	1.13
	427377	AU077029	Hs.177543	antigen identified by monoclonal antibod	1.24	0.79
	412200	R08110	Hs.187462	ESTs, Weakly similar to 138022 hypotheti	1.35	1.54
	432586	AA568548		ESTs	1.50	2.25
75					1.22	2.53
75	411590	T96183	11- 440-400	gb:ye09f07.s1 Stratagene lung (937210) H		
	422672	X12784	Hs.119129	collagen, type IV, alpha 1	2.27	2.20
	420256	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula	1.59	2.11

	419900	A1469960	Hs.170698	ESTs	1.30	2.68
	410805	AW804742	Hs.84264	acidic protein rich in leucines	1.16	2.28
	452560	BE077084	Hs.99969	ESTs	1.44	2.58
•	448429	D17408	Hs.21223	calponin 1, basic, smooth muscle	4.02	1.00
5	424436	AW818428	Hs.4953	golgi autoantigen, golgin subfamily a, 3	1.10	2.00
	447400	AK000322	Hs.18457	hypothetical protein FLJ20315	1.45	1.28
	422522	AI023428	Hs.34549	ESTs, Highly similar to S94541 1 clone 4	1.82 1.98	2.10 2.01
	443696	AW607444	Hs.134622	ESTs	1.34	2.40
10	436094	AI798701	Hs.222222	ESTs	1.58	2.45
10	420168	AF217508	Hs.95594	serine carboxypeptidase vitellogenic-lik	1.34	2.43
	430325	AF004562	Hs.239356	syntaxin binding protein 1	2.76	2.40
	439022	AA356599	Hs.173904	ESTs ESTs, Moderately similar to Y140_HUMAN H	1.78	2.65
	420563 429494	AA278327 AA769365	Hs.136237 Hs.126058	ESTs	1.50	2.40
15	420689	H79979	Hs.88678	ESTS	1.26	2.28
13	448988	Y09763	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.72	1.29
	439943	AW083789	Hs.124620	ESTs	1.45	2.84
	442300	AJ765908	Hs.129166	ESTs	1.24	2.35
	449614	Al989490	Hs.197703	ESTs	1.12	2.22
20	444363	Al142827	Hs.143656	ESTs	1.32	2.08
	424479	AF064238	Hs.149098	smoothelin	1.59	1.10
	437321	AA768966	Hs.292026	ESTs, Weakly similar to 2109260A B cell	1.28	2.07
	431926	AW972724		gb:EST384816 MAGE resequences, MAGL Homo	1.52	2.63
	433640	AW390125	Hs.240443	Homo sapiens cDNA: FLJ23538 fis, clone L	1.69	1.30
25	415901	H08398	Hs.76118	ubiquitin carboxyl-terminal esterase L1	1.71	2.19
	437199	AL110175	Hs.306337	Homo sapiens mRNA; cDNA DKFZp564H0616 (f	1.48	2.50
	457450	AW294163	Hs.146127	ESTs	1.07	2.60
	456678	AF141305	Hs.173736	ancient ubiquitous protein 1	1.44	2.35
20	451079	A1827988	Hs.240728	ESTs, Moderately similar to PC4259 ferri	0.95	3.00
30	405944			Target Exon	1.48	2.45
	408877	AA479033	Hs.130315	ESTs, Weakly similar to A47582 B-cell gr	1.38	2.20
	446682	AW205632	Hs.211198	ESTs ·	1.38	3.00
	431380	AW610282	Hs.291003	ESTs	1.43	2.64
25	442027	Al652926	Hs.128395	ESTs	1.18	2.43 2.18
35	423578	AW960454	Hs.222830	ESTs	1.56 2.80	1.73
	441495	AW294603	Hs.127039	ESTs CDC20 (cell division cycle 20, S. cerevi	1.36	1.18
	417900	BE250127	Hs.82906 Hs.235070	ESTs	1.30	2.28
	443949	AW827419 AA887212	Hs.14161	hypothetical protein DKFZp434l1930	1.74	2.78
40	440495 449948	R19156	Hs.20798	ESTs	1.12	2.23
70	439564	W77911	Hs.110006	ESTs	1,34	2.85
	423225	AA852604	Hs.125359	Thy-1 cell surface antigen	1.24	1.09
	436139	AA765786	Hs.120936	ESTs	1.30	2.10
	456968	Al174861	Hs.190623	ESTs	1.14	2.15
45	437191	NM_006846	Hs.331555	serine protease Inhibitor, Kazal type, 5	1.21	2.18
	411652	AW855393		gb:CM3-CT0275-191099-024-f10 CT0275 Homo	1.85	1.94
	420732	AA789133	Hs.88650	ESTs	1.66	2.71
	409291	AW373472		gb:RC3-BT0523-181299-011-d12 BT0523 Homo	1.56	2,30
	424415	NM_001975	Hs.146580	enolase 2, (gamma, neuronal)	1.56	1.39
50	424927	AW973666	Hs.153850	hypothetical protein C321D2.4	1.58	1.24
	450946	AA374569	Hs.127698	ESTs, Moderately similar to 2109260A B c	1.02	2.25
	428423	AU076517	Hs.184276	solute carrier family 9 (sodium/hydrogen	1.70	2,39
	415361	F06724		gb:HSC1IG021 normalized infant brain cDN	1.34	2.40
	406490	•		C5001926:gi[7511572]pir T42245 probable	1.28	2.40
55	410855	X97795	Hs.66718	RAD54 (S.cerevisiae)-like	1.52	2.00
	440010	AA534930	Hs.127236	hypothetical protein FLJ12879	1.12	2.20
	429508	AW369620	Hs.33944	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.33	2.28 2.18
	426340	Z97989	Hs.169370	FYN oncogene related to SRC, FGR, YES	1.88	1.16
60	416889	AW250318	Hs.80395	mal, T-cell differentiation protein ESTs	1.65 1.24	2.03
UU	451870	A1820991	Hs.8377	ESTS	1.05	2.13
	444091	AV647924	Hs.282376 Hs.66392	intersectin 1 (SH3 domain protein)	2.00	3.13
	410793	AW581906 AW806287	Hs.21432	SEX gene	1.25	1.10
	452222 433010	AW970018	113.21432	gb:EST382097 MAGE resequences, MAGK Homo	1.36	2.41
65	432674	AA641092	Hs.257339	ESTs, Weakly similar to 138022 hypotheti	1.14	2.03
05	438855	AW946276	Hs.6441	Homo sapiens mRNA; cDNA DKFZp586J021 (fr	2.24	1.77
	448718	AA220235	Hs.153959	hypothetical protein MGC15436	1.52	2.65
	402685	. 4.22000		Target Exon	2.04	2.46
	424528	AW073971	Hs.238954	ESTs, Weakly similar to KIAA1204 protein	1.66	2.05
70	422068	AI807519	Hs.104520	Homo sapiens cDNA FLJ13694 fis, clone PL	1.89	4.98
. •	451225	Al433694	Hs.293608	ESTs	1.79	2.70
	441078	AI453268	Hs.323409	Homo sapiens cDNA FLJ14113 fis, clone MA	1.44	2.58
	409406	H83092	Hs.49605	ESTs	1.38	2.05
76	422297	AW961290		p30 DBC protein	1.20	2.73
75	408711	AW376061	Hs.63335	ESTs, Moderately similar to A46010 X-lin	1.20	2.08
	426596	AW363332	Hs.171844	Homo sapiens cDNA: FLJ22296 fis, clone H	1.35	2.68
	417324	AW265494		ESTs	1.68	1.25

)	100	0.00
	408283	8E141579	11 20000	gb:QV2-HT0083-071299-018-b05 HT0083 Homo	1.25	265
	415166	NM_003652	Hs.78068	carboxypeptidase Z	1.34	1.09
	406300			Target Exon	1.61	2.47
_	411880	AW872477		gb:hm30f03.x1 NCI_CGAP_Thy4 Homo saplens	3.60	4.03
5	422287	F16365	Hs.114346	cytochrome c oxidase subunit VIIa polype	2.16	1.44
	422567	AF111178	Hs.118407	glypican 6	1.57	2.03 2.75
	436855	AA732624	Hs.165852	ESTs	1.08	
	403536		11- 40400	Target Exon	0.93	2.13
1Λ	447733	AF157482	Hs.19400	MAD2 (mitotic arrest deficient, yeast, h	1.18	1.07 2.85
10	417117	N46778	11-400075	gb:yy52b02.r1 Soares_multiple_sclerosis_	1.70 2.12	2.78
	411690	AA669253	Hs.136075	RNA, U2 small nuclear	1.15	2.83
	443243	Al452496	Hs.132056	ESTs		1.43
	423074	AL109963	11- 400	FSH primary response (LRPR1, rat) homolo	1.37 1.63	2.23
15	408916	AW295232	Hs.429	ATP synthase, H transporting, mitochondr	1.40	2.23
15	449799	Al143466	Hs.125060	ESTs		1.85
	415378	T16964		gb:NIB2079-5R Normalized Infant brain, B	1.88	2.57
	431089	BE041395	11- 400504	ESTs, Weakly similar to unknown protein	1.57	2.30
	434959	AW974949	Hs.186564	ESTs, Weakly similar to 138022 hypotheti	1.30	4.35
20	416311	D80529	11. 0700	gb:HUM081H05B Human fetal brain (TFujiwa	1.58	2.98
20	444614	R44284	Hs.2730	heterogeneous nuclear ribonucleoprotein	1.88	2.08
	456206	NM_006895	Hs.81182	histamine N-methyltransferase	1.24	
	410583	AW770280	Hs.36258	ESTs, Moderately similar to JC5238 galac	1.56	4.33
	430410	AF099144	Hs.334455	Iryptase beta 1	1.91	1.58
25	408139	AA451966		RAB9-like protein	1.42	2.14
25	432621	Al298501	Hs.12807	ESTs, Weakly similar to T46428 hypotheti	2.08	1.94
	441584	AW148329	Hs.175208	ESTs	1.12	2.05
	445940	D60438	Hs.34779	ESTs	1.86	2.70
	453022	AA031499	Hs.118489	ESTs	2.02	1.75
20	444008	BE544855	Hs.236572	ESTs, Weakly similar to SFR4_HUMAN SPLIC	1.54	1.29
30	442994	Al026718	Hs.16954	ESTs	3.60	3.78
	402085			C18000504*:gij2627436 gb AAB86683.1 (AF	1.36	2.53
	411918	AW876354		gb:PM4-PT0019-141299-009-F08 PT0019 Homo	2.00	2.63
	455508	AW976165		gb:EST388274 MAGE resequences, MAGN Homo	1.70	3.04
25	426106	Al678765	Hs.21812	ESTs	1.49	2.11
35	425131	BE252230	Hs.99163	ESTs	2.04	2.65
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	1.17	2.55
	420447	AA687306	Hs.88448	ESTs	1.66	2.58
	428055	AA420564	Hs.101760	ESTs	1.08	2.15
40	422110	Al376736	Hs.111779	secreted protein, acidic, cysteine-rich	1.76	1.82
40	438581	AW977766	Hs.292133	ESTs, Moderately similar to 178885 serin	1.08	2.10
	403290			C10001011*:gi 4758212 ref NP_004411.1 d	0.97	2.48
	408175	W29089	Hs.19066	hypothetical protein DKFZp667O2416	1.42	1.41
	432390	AA936177	Hs.274460	olfactory receptor, family 5, subfamily	1.26	2.05
15	443441	AW291196	Hs.92195	ESTs	1.52	2.13
45	419925	AA159850	Hs.93765	Ilpoma HMGIC fusion partner	1.72	2.80
	445256	Al858635	Hs.144763	ESTS	1.97	3.33
	456381	AA236606	1) 450740	gb:zr99b10.r1 NCI_CGAP_GCB1 Homo sapiens	1.16	1.95 2.20
	422433	AA310560	Hs.153746	hypothetical protein FLJ22490	1.06	2.25
5Ò	432529	A1989507	Hs.162245	ESTS	1.36	2.58
JU	424951	AW964082	11 404040	gb:EST376155 MAGE resequences, MAGH Homo	2.22	
	420785	H89633	Hs.191346	ESTs	1.26	2.15
	411347	AW838126	1). 400540	gb:QV2-LT0051-240300-097-f01 LT0051 Homo	1.38	2.38
	438742	AW204126	Hs.196543	ESTs	1.10	2.30
55	414900	AW452420	Hs.248678	ESTs	2.01	3.08
55	443284	Al369813	Hs.64783	ESTs, Weakly similar to T42705 hypotheti	0.66	0.43
	402049	4141004040	11- 004000	Target Exon	2.28	2.00 2.00
-	429400	AW604940	Hs.201668	transcription factor 20 (AR1)	1.16	
	423916	AW993496	Hs.17235	Homo sapiens clone TCCCIA00176 mRNA sequ	1.59	1.05 2.05
60	432495	AW973537	Hs.186734	ESTs, Weakly similar to I61746 pheromone	1.50	
OO	414840	R27319	Hs.23823	hairy/enhancer-of-split related with YRP	1.89	2.09 1.83
	428711	R46414	Hs.56828	trinucleotide repeat containing 5	1.77	2.26
	448609	AW139420	Hs.7972	KIAA0871 protein	1.14 1.17	1.05
65	443859	NM_013409	Hs.9914	follistatin ab:RC5-ST0293-140200-013-G04 ST0293 Horno	1.44	2.40
	411141	AW819561	U- 0000E0		1.18	2.08
U.S	440116	A1798851	Hs.266959	hemoglobin, gamma G	2.10	1.37
	417944	AU077196	Hs.82985	collagen, type V, alpha 2		
	429640	U83508	Hs.2463	angiopoietin 1	1.92	2.98 1.29
	410064	X53416	Hs.195464	filamin A, alpha (actin-binding protein-	1.51	1.15
70	458218	Al435179	Hs.126820	ESTs	1.49	2.05
70	443114	AI033377	Hs.153298	ESTs	1.38	2.05 1.85
	427788	AA412397	Hs.116858	ESTS	1.45	3.90
	435913	W95006	Hs.269559	ESTs, Weakly similar to S65657 alpha-1C-	1.63	
75	457949	W69171	Hs.71741	ESTs, Highly similar to 138945 melanoma	1.01	2.00 2.45
	419203	AA488719	Hs.190151	ESTS	1.94	2.43
13	412510	Al056689	Hs.133538	ESTS, Wealdy similar to ALU1_HUMAN ALU S	1.91	2.80
	413885	BE177442	Hs.214226	gb:RC1-HT0595-200400-012-f01 HT0595 Homo	1.48 1.36	2.50
	426239	AA669815	NS.2 (4220	ESTs	1.50	2.00

					4 00	0.00
	408866	AW292096	Hs.255036	ESTs	1.93	2.92
	412857	A1703484	Hs.128052	ESTs .	1.72	1.60
	427340	BE167242	Hs.47099	hypothetical protein FLJ21212	1.46	2.13
_	412902	BE008018		gb:QV0-BN0147-290400-214-c01 BN0147 Homo	0.90	2.05
5	451141	AW772713	Hs.247186	ÉSTs	2.38	3.95
-	412626	AA114945	Hs.151839	ESTs	1.75	2.15
	405667			Target Exon	2.62	3.79
	417777	AI823763	Hs.7055	ESTs, Weakly similar to 178885 serine/th	1.24	2.08
	401400	A1023703	115.1000	Target Exon	1.16	1.90
10		070004	11- 470405		2.14	1.63
10	426796	S78234	Hs.172405	cell division cycle 27		
	435046	AA662772	Hs.174330	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.14	2.28
	448401	A1498509	Hs.346254	ESTs	2.50	2.83
	450832	AW970602	Hs.105421	ESTs	0.55	0.39
	441057	AL043897	Hs.126483	ESTs	1.08	2.13
15	438725	AA815163	Hs.127307	ESTs	1.31	2.65
1.5	450062	AW001043	Hs.200854	ESTs	1.30	2.48
				ESTs	1.43	1.71
	441214	A1820648	Hs.129136		1.22	2.30
	431723	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	1.35	1.49
20	414907	X90725	Hs.77597	polo (Drosophia)-like kinase		
20	423622	BE154847		gb:PM1-HT0345-121199-001-d05 HT0345 Homo	1.57	2.30
	450835	BE262773	Hs.25584	hypothetical protein FLJ10767	1.40	1.12
	444014	Al095718	Hs.135015	ESTB	2.30	1.78
	431603	AA807955	Hs.325984	EST	1.28	2.03
	408697	AW419069	Hs.209670	ESTs	1.35	2.60
25	444312	R44007		ESTs	1.95	2.07
23		1144001		C6001909:qij704441 dbj BAA18909.1 (D298	2.29	2.22
	404286	1207040			1.03	2.43
	438813	M27346	11 40010	gb:Homo sapiens (clone HGP09/HGP32) T ce		
	445534	AL038823	Hs.12840	Homo sepiens germline mRNA sequence	1.00	2.16
~~	426046	AA833655	Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	1.59	2.73
30	451907	A1822065	Hs.50749	ESTs, Moderately similar to ALU7_HUMAN A	1.74	2.65
	418796	AA228351	Hs.34060	ESTs	1.28	2.12
	422431	Al769410	Hs.221461	ESTs	1.80	3.58
•	417557	AA225622	Hs.293589	ESTs	1.32	2.14
	455313	AW894409	Hs.125472	ESTs, Moderately similar to KIAA0877 pro	1.48	2.57
35	415479	F10042	Hs.4840	ESTs	1.83	2.01
55				ESTs	1.31	2.58
	450433	AW444538	Hs.231863		1.54	1.62
	410581	AA018982	Hs.125036	tumor endothelial marker 7 precursor		
	455407	AW936B13		gb:PM2-DT0023-050400-003-b10 DT0023 Homo	1.32	2.15
40	417552	R00916	Hs.166510	ESTs	1.50	2.63
40	428290	Al932995	Hs.183475	Homo saplens clone 25061 mRNA sequence	1.94	2.70
	432391	A1732374	Hs.339827	Human DNA sequence from clone RP5-881L22	0.96	2.38
	456283	U68162	Hs.84171	myeloproliferative leukemia virus oncoge	1.22	2.13
	438535	L09078		gb:Homo sapiens mRNA fragment	2.14	1.95
	416564	AW795793	Hs.2575	Homo sapiens cDNA FLJ12257 fis, clone MA	2.28	1.93
45		AA670310	Hs.145903	ESTs	1.16	2.13
73	435200				1.37	3.10
	457635	AV660976	Hs.3569	hypothetical protein	0.99	2.45
	444930	BE185536	Hs.301183	molecule possessing ankyrin repeats indu		
	449319	AA373630	Hs.188750	ESTs	1.56	3.28
	418992	AW074143	Hs.87134	ESTs	1.88	2.20
50	409367	AW382767		gb:PM0-HT0339-081199-001-h05 HT0339 Homo	1.30	2.50
	434973	AW449285	Hs.313636	EST	1.11	2.65
	408383	BE466959	Hs.144153	ESTs :	1.30	2.44
	440100	BE382685	Hs.158549	ESTs, Weakly similar to T2D3_HUMAN TRANS	1.23	2.71
	431996	AL122087	1 Hs.272304	Homo sapiens mRNA; cDNA DKFZp564C0371 (f	1.24	2.27
55	427681	AB018263	Hs.180338	tumor necrosis factor receptor superfami	1.70	1,68
55	405146			C8001690*:qi[6754446]ref[NP_034760.1] ki	2.00	0.68
		A A 7C 40E0	Hs.119898	ESTs	1.43	3.00
	436154	AA764950			1.38	2.20
CO	451233	AA047221	Hs.59752	ESTs		3.93
	445856	Al814373	Hs.164175	ESTs	1.33	
60	448211	BE384592	Hs.6451	PRO0659 protein	1.48	2.73
	418283	S79895	Hs.83942	cathepsin K (pycnodysostosis)	1.33	2.68
	409609	AW444670	Hs.335685	ESTs	1.27	1.51
	450414	Al907735	Hs.21446	KIAA1716 protein	1.60	1.24
	452929	AW954938	Hs.172816	neuregulin 1	2.01	3.70
65	435112	AW976145	Hs.143198	Inhibitor of growth family, member 3	1.22	1.30
	439806	AA846824	Hs.180908	ESTs	0.80	2.04
		H66765	Hs.339397	ESTs	1.28	2.16
	439910			retinoblastoma-binding protein 7	1.06	2.82
	437886	BE264111	Hs.31314			2.28
70	441354	AA931221	Hs.126813	ESTs	1.20	1.83
70	428951	AL138153	Hs.300410	ESTs, Moderately similar to A47582 B-cel	1.50	
	438272	Al167963	Hs.143700	ESTs, Weakly similar to S65824 reverse t	1.34	2.51
	429642	X68264	Hs.211579	melanoma cell adhesion molecule	1.18	1.18
	422121	A1767949	Hs.179833	ESTs	1.18	2.26
75	411184	AW821117		gb:PM2-ST0303-170100-003-g03 ST0303 Homo	1.18	2.21
	435871	AF257077	Hs.283627	eukaryotic translation initiation factor	1.17	1.57
	430570	AJ417881	Hs.292464	ESTs	1.49	3.17
	431995	AL080197	Hs.272302	hypothetical protein	1.52	2.11
	40 1000	. 4,000 101		*!		

	451326	AW295946	Hs.256078	ESTs	1.19	2.18
	437046	BE149154		gb:RC2-HT0252-271099-017-c11 HT0252 Homo	1.18	2.25
	410154	F06959		gb:HSC1QD011 normalized infant brain cDN	1.41	2.05
			Hs.168587	ESTs	1.39	1.33
5	434373	A1565566			1.36	2.20
)	444552	AW295211	Hs.230777	ESTS		
	411608	AW853441		gb:RC1-CT0252-030100-023-g09 CT0252 Homo	2.12	1.80
	440573	BE550891	Hs.270624	ESTs	2.19	2.17
	443047	AW157377	Hs.132910	ESTs	1.81	2.28
	451473	AW298047	Hs.346198	ESTs	1.18	2.30
10	416265	AA177088	Hs.190065	ESTs	2.37	3.38
- 0	435375	AI733610	Hs.187832	ESTs	1.12	2.18
	401469	74100010	113.107002	NM_022137*:Homo sapiens secreted modular	1.32	1.61
		A A 4 7 2 4 9 C	Lis popules		1.26	2.50
	456152	AA174126	Hs.332163	ESTs		
1 =	415808	R21439	Hs.334578	Homo sapiens, clone IMAGE:3929520, mRNA	1.39	2.43
15	452721	AJ269529	Hs.301871	solute carrier family 37 (glycerol-3-pho	0.92	2.20
	435127	Al217926	Hs.179863	EST	1.36	2.65
	420772	AW752656	Hs.222707	KIAA1718 protein	1.19	1.50
	456332	AA228357		gb:nc39d05.r1 NCI_CGAP_Pr2 Homo sapiens	1.45	3.57
	44467B	AI741513	Hs.143739	ESTs	1.43	1.62
20	446175	AL036568	Hs.291	glutamyi aminopeptidase (aminopeptidase	1.00	1.53
20			115.231		1.44	2.13
	416463	H59241		Homo sapiens cDNA FLJ11095 fis, clone PL		
	405158			ENSP00000243337:CDNA FLJ13984 fis, done	1.38	2.68
	403903			C5001632*:gi 10645308 gb AAG21430.1 AC00	1.32	1.43
	407271	X98937		gb:H.sapiens rearranged lg heavy chain (1.40	2.68
25	413929	BE501689	Hs.75617	collagen, type IV, alpha 2	1.59	1.33
	45077B	U81375	Hs.25450	solute carrier family 29 (nucleoside tra	1.17	1.10
	434274	AA628539	Hs.116252	ESTs, Moderately similar to ALU1_HUMAN A	1.92	2.80
	400075	744020000	113,110202	Eos Control	1.76	2.60
		41000044	U- 400CC		1.48	2.33
20	433694	Al208611	Hs.12066	Homo sapiens cDNA FLJ11720 fis, clone HE		
30	454826	AW833676		gb:QV4-TT0008-181199-038-h04 TT0008 Homo	1.57	2.89
	415168	AA160805	Hs.199832	ESTs, Weakly similar to 178885 serine/th	2.08	1.76
	439486	AF086303	Hs.103185	ESTs	1.49	2.19
	403291			Target Exon	1.36	2.28
	438618	AA897673	Hs.123457	ESTs	0.75	0.79
35	455087	AW855389	. (0.720)01	gb:CM3-CT0275-191099-024-e06 CT0275 Homo	0.91	2.63
55			Un 42400		1.46	2.15
	408075	AA382881	Hs.42409	CGI-146 protein	1.04	3.11
	436826	AA731863	Hs.120276	ESTs		
	408961	AW297475	Hs.323180	ESTs	1.25	1.39
4.0	424408	A1754813	Hs.146428	collagen, type V, alpha 1	1.64	2.05
40	423300	AK000742	Hs.126774	L2DTL protein	1.47	3.44
	403217	AL134878		ribosomal protein, large P2	1.70	2.22
	437990	AI686579	Hs.121784	ESTs	2.14	1.69
	419156	AC002366	Hs.46329	amelogenin (X chromosome, amelogenesis i	1.40	1.45
		BE302900	Hs.72241	mitogen-activated protein kinase kinase	1.18	1.12
45	411817				1.60	2.15
7)	425701	AA361850	Hs.322149	Human clone 137308 mRNA, partial cds	1.57	2.23
	418757	A1864193	Hs.169728	hypothetical protein FLJ13150		
	415184	AA380436	Hs.211973	homolog of Yeast RRP4 (ribosomal RNA pro	1.32	2.09
	414918	Al219207	Hs.72222	hypothetical protein FLJ 13459	1.61	1.50
	401723			Target Exon	1.01	2.68
50	439010	AW170332	Hs.75216	Homo sapiens cDNA FLJ13713 fis, clone PL	1.28	1.65
	449166	BE168981	Hs.23131	kinesin family member C3 '	1.64	2.58
•	410642	AW792784		gb:CM0-UM0001-010300-258-h11 UM0001 Homo	1.54	1.90
	409556	D38616	Hs.54941	phosphorylase kinase, alpha 2 (liver)	1.63	1.21
				immunoglobulin heavy constant gamma 3 (G	0.76	0.61
55	439894	AA853077	Hs.300697		0.97	2.59
"	401913			ENSP00000249158*:CDNA	1.11	1.23
	406097			Target Exon		
	414745	AA160511	Hs.5326	amino acid system N transporter 2; porcu	1.29	1.12
	445752	A1733942	Hs.344887	ESTs	2.03	1.68
	408052	AW501117	Hs.283585	ESTs	1.32	1.72
60	407256	AA204763	Hs.288036	tRNA isopentenylpyrophosphate transferas	1.01	2.09
	423264	AJ133439	Hs.126076	Glutamate receptor interacting protein	1.51	2.39
	418859	AA229558		gb:nc15d10.s1 NCI_CGAP_Pr1 Homo sapiens	1.40	2.35
	410370	AB037753	Hs.62767	KIAA1332 protein	1.34	2.00
					1.09	2.61
65	417264	AA195100	Hs.188695	ESTs	1.56	2.92
65	444909	Al933051	Hs.192280	EST8		
	419386	AA236867		ESTs, Weakly similar to 138022 hypotheti	1.14	2.28
	439212	AF087995	Hs.134877	ESTs	1.06	2.90
	437766	W69171	Hs.71741	ESTs, Highly similar to 138945 melanoma	1.25	2.28
	448951	AI611221	Hs.334802	hypothetical protein FLJ10101	1.88	2.17
70	401659			Target Exon	1.63	2.05
. •	419145	N99638		gb:za39g11.r1 Soares fetal liver spleen	2.63	3.85
		AW054834	Hs.210356	ESTs	1.73	2.14
	444813	AW292820		ESTS	1.88	2.46
	433902	WAASSCORA	Hs.144906		1.32	2.91
75	403072	1 20000 10	11- 00070	NM_003319":Homo sapiens titin (TTN), mRN		0.70
75	452484	AB033042	Hs.29679	cofactor required for Sp1 transcriptiona	0.72	
	456788	AA724612	Hs.133130	Homo sapiens mRNA; cDNA DKFZp566H0124 (f	1.90	3.40
	403315			Target Exon	1.22	2.00

	406432	AJ289116		CD1E antigen, e polypeptide	2.31	2.63
	457785	AA682670	Hs.160884	ESTs	0.98	2.38
	433259	AA580665	Hs.326082	ESTs	1.46	1.07
~	435882	AW016722	Hs.194976	SH2 domain-containing phosphatase anchor	1.38	2.13
5	401473	710000	11-000740	Target Exon	1.47 1.64	2.04 2.15
	444816	Z48633	Hs.283742	H.sapiens mRNA for retrotransposon	1.44	2.15
	438029	H61502	Hs.10235	chromosome 5 open reading frame 4 small inducible cytokine subfamily A (Cy	1.26	2.21
•	431830 450817	Y16645 N71597	Hs.271387 Hs.29698	ESTs, Weakly similar to ZN91_HUMAN ZINC	2.20	2.90
10	404427	147 1557	113.23030	C8000068*:gij5453579 ref NP_006120.1 bo	0.74	0.81
10	430658	AW970093	Hs.24453	ESTs	1.45	2.55
	405723		•	Target Exon	1.60	2.28
	436896	AW977385	Hs.278615	ESTs	1.17	1.64
	411974	AW880414	Hs.84264	acidic protein rich in leucines	1.54	2.08
15	412528	Al123478	Hs.32112	ESTs	1.72	2.85
	446425	AW295364	Hs.255418	ESTs	1.25	1.31
	424991	AA775471	Hs.241467	ESTS	0.62	0.37
	443100	Al033188	11- 204057	gb:ow94e08.s1 Soares_fetal_liver_spleen_	1.15 1.07	2.34 2.00
20	445332	A1220225	Hs.321057	ESTs	1.04	3.43
20	414781 421893	D50917 NM_001078	Hs.77293 Hs.109225	KIAA0127 gene product vascular cell adhesion molecule 1	1.15	2.53
	424265	AF173901	Hs.144287	hairy/enhancer-of-split related with YRP	1.26	2.00
	446667	BE161878	Hs.224805	ESTs	1.12	2.13
	426399	AA652588	Hs.301348	Homo sapiens cDNA FLJ13271 fis, clone OV	2.26	1.29
25	438190	AA780020	Hs.136798	ESTs, Moderately similar to KBF3_HUMAN N	1.44	2.07
	406972	M32053		gb:Human H19 RNA gene, complete cds.	1.38	2.11
	417086	AA194446		ESTs, Weakly similar to S55024 nebulin,	2.12	3.30
	446410	Al361109	Hs.151721	ESTs, Weakly similar to 138022 hypotheti	1.14	2.33
20	427674	NM_003528	Hs.2178	H2B histone family, member Q	1.24	1.00
30	422526	AA311763	Hs.131056	ESTs	1.29	2.04
	439317	AF086127	Hs.50600	ESTs, Weakly similar to T47156 hypotheti	1.26 1.28	2.12 2.20 '
	409126	AA063426	No 14047	gb:zf70c08.s1 Soares_pineal_gland_N3HPG ESTs	0.87	2.58
	412093 420169	BE242691 AA256126	Hs.14947 Hs.16179	hypothetical protein FLJ23467	1.38	2:07
35	426096	D87436	Hs.166318	lipin 2	2.00	2.25
55	402551	D01430	110.100010	NM_005012*:Homo saplens receptor tyrosin	0.80	0.82
	405760			Target Exon	1.44	2.85
	402901			NM_025206*:Homo sapiens hypothetical pro	1.63	1.27
	453982	AW014252	Hs.252837	ESTs	1.44	2.03
40	424244	AV647184	Hs.143601	hypothetical protein hCLA-iso	1.40	1.18
	439984	BE559514	Hs.275425	hypothetical protein	1.30	2.15
	457297	AW968188		gb:EST380383 MAGE resequences, MAGJ Homo	1.64	3.17
	415054	A1733907	11 400000	gb:zo86h09.y5 Stratagene ovarian cancer	1.00 1.19	2.20 1.16
45	426273	A)174861	Hs.190623	ESTS	1.31	1.35
43	405187	A) 047051	Hs.199961	NM_014272:Homo sapiens a disintegrin-lik ESTs, Weakly similar to ALU7_HUMAN ALU S	2.44	1.88
	413939 427596	AL047051 AA449506	Hs.270143	extracellular glycoprotein EMILIN-2 prec	2.06	1.50
	408049	AW076098	Hs.345588	desmoplakin (DPI, DPII)	2.01	3.90
•	406002			Target Exon	1.73	2.08
50	408284	AW248254	Hs.44101	protein kinase PKNbeta	1.28	1.31
	431377	AW178807	Hs.246182	ESTs	1.40	2.70
	451456	AW386183	Hs.210305	ESTs	1.44	2.08
	427530	AA405093	Hs.126519	ESTs:	1.07	1.12
55	431957	AK002104	Hs.272246	hypothetical protein FLJ11292	1.27 1.74	2.89 1.28
55	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	1.13	1.15
	419600	AA448958 AI400661	Hs.91481 Hs.127811	NEU1 protein disintegrin metalloproteinase with throm	1.44	2.53
	423314 451690	AW451469	Hs.209990	ESTs	1.41	2.49
	454662	AW812715	113.203330	gb:RC4-ST0185-271099-011-g01 ST0185 Homo	1.35	2.86
60	454413	AI653672	Hs.40092	PNAS-123	1.79	2.03
•	416861	AW977206	Hs.151858	ESTs	1.52	2.10
	415908	H08623	Hs.22833	ESTs	1.37	2.13
	438942	AW875398	Hs.6451	PRO0659 protein	1.80	1.55
	407618	AW054922	Hs.53478	Homo saptens cDNA FLJ12366 fis, clone MA	2.16	3.18
65	429177	AA447527	Hs.207429	ESTs	1.74	3.19
	448357	N20169	Hs.108923	RAB38, member RAS oncogene family	0.77	0.73 4.08
	422008	AJ000534	Hs.110708	sarcoglycan, epsilon	1.52 1.66	2.16
	434461	AA744046	Hs.133350	ESTs, Weakly similar to I78885 serine/th gb:MR0-HT0165-140200-009-d04 HT0165 Homo	1.28	2.23
70	413489	BE144228		go:MR0-H10165-140200-009-004 H10165 Hollid Target Exon	1.11	1.19
, 0	405551 441183	BE562910	Hs.92679	Homo sapiens clone CDABP0014 mRNA sequen	1.20	1.20
	456034	AW450979	. 10.02013	gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	1.98	2.53
	420611	AA994635	Hs.129929	ESTs	1.46	2.15
	422061	BE178434	Hs.267995	ESTs, Moderately similar to G02654 ribos	1.42	2.30
75	437908	A1082424		ESTs	1.38	2.21
	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	0.74	0.43
	401927			C17000914*:gij8394367 ref NP_058549.1 s	2.26	2.14

	432967	AA572949	Hs.207566	ESTs	1.52	2.28
	439159	AF087972	Hs.120938	ESTs	2.03 1.82	2.08 2.07
	415357	H22757	Hs.13471	ESTs	1.48	2.88
5	442327 430186	AA991745 AB020696	Hs.42522 Hs.234791	ESTs KIAA0889 protein	1.46	2.23
J	426971	A1809984	Hs.243209	ESTs, Weakly similar to NPA1_HUMAN NEURO	1.06	2.13
	422687	AW068823	Hs.119206	insulin-like growth factor binding prote	1.61	1.37
	432954	AI076345	Hs.214199	ESTs	1.19	2.84
	429040	AL035542	Hs.248169	olfactory receptor, family 2, subfamily	1.25	1.44
10	414169	AA136169	Hs.149335	ESTs	1.59	2.51
	419882	AA687313	Hs.190043	ESTs	1.20	2.50
	426900	AW163564	Hs.142375	ESTs	1.87 1.35	1.77 2.02
	418773	T39748	Hs.325474	Target CAT Homo sapiens mRNA full length insert cDN	1.32	2.10
15	439776 428712	AL360140	Hs.176005 Hs.190452	KIAA0365 gene product	1.41	1.52
13	408839	AW085131 AW277084	FIS. 130432	gb:xp61h09.x1 NCI_CGAP_Ov39 Homo saplens	1.14	2.03
	450492	AW290961	Hs.201815	ESTs	1.17	2.21
	434654	AI825942	Hs.139366	Homo sapiens clone L5 polyadenylated HER	1.62	2.31
	457567	AW939074		gb:QV1-DT0069-010200-057-c12 DT0069 Homo	1.80	3.73
20	452426	A1904823	Hs.31297	duodenal cytochroma b	2.15	1.84
	418559	AA225048	Hs.104207	ESTs	1.84	2.33
	439099	AB037800	Hs.6462	protein kinase C and casein kinase subst	1.07	1.15 1.22
	451984	R60571	Hs.27406	Homo sapiens mRNA; cDNA DKFZp566F1946 (f	1.18 2.24	2.55
25	420789	A1670057	Hs.199882	ESTs ESTs, Weakly similar to APXL_HUMAN APICA	1.07	1.14
23	456396 402948	AA236863	Hs.188894	NM_025206:Homo saplens hypothetical prot	2.41	1.83
	426405	AW296631	Hs.283403	ESTs	1.28	1.07
	439732	AW629604	Hs.167641	hypothetical protein from EUROIMAGE 1703	0.85	0.77
	416784	AA334592	Hs.79914	lumican	1.88	1.27
30	422531	AW967280	Hs.293894	ESTs, Weakly similar to HERC2 [H.saplens	1.20	1.25
	415608	F12795	Hs.12286	ESTs, Moderately similar to ALU1_HUMAN A	1.03	2.31
	428671	BE297851	Hs.189482	zinc finger protein 179	1.26 1.60	2.20 2.25
	420007	H13700	Hs.31235	ESTs, Weakly similar to Y934_HUMAN HYPOT Target Exon	1.22	1.03
35	400850 404580			trichorhinophalangeal syndrome i gene (T	1.00	1.00
55	407680	AW064284	Hs.279153	ESTs	1.02	2.28
	410420	AA224053	Hs.172405	cell division cycle 27	1.64	1.00
	421234	AA907153	Hs.190060	ESTs	1.76	1.45
40	426791	AA384910	Hs.46519	ESTs	1.12	2.15
40	430439	AL133561		DKFZP434B061 protein	1.00	1.00
	434036	Al659131	Hs.197733	hypothetical protein MGC2849	1.00 1.40	1.00 1.00
	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi ESTs	1.00	1.00
	440304 441699	BE159984 AW511126	Hs.125395 Hs.127572	ESTS	1.00	1.73
45	443383	A1792453	Hs.166507	ESTs	2.04	1.00
	445660	Al702668	Hs.201955	ESTs	1.00	1.00
	453160	Al263307	Hs.239884	H2B histone family, member L	1.00	1.00
	456513	AA279143	Hs.88561	ESTs	1.00	1.40
50	457231	A1472022	Hs.301959	proline synthetase co-transcribed (bacte	0.98	0.63
50	459565	W27086	Hs.209694	ESTS	1.00 1.00	1.00 1.00
	429317	AA831552	Hs.268016	Homo sapiens cDNA: FLJ21243 fis, clone C H3 histone family, member L	1.00	1.40
	430971 408376	M26150 AW971303	Hs.248177 Hs.292601	ESTs	1.08	1.60
	411920	AW876263	113.232001	gb:PM4-PT0019-131299-006-E09 PT0019 Homo	0.82	0.45
55	457389	AW970989		gb:EST383074 MAGE resequences, MAGK Homo	0.92	0.71
	408565	BE502544	Hs.282244	ESTs, Weakly similar to peptidoglycan re	1.00	2.10
	438086	AA336519	Hs.83623	nuclear receptor subfamily 1, group 1, m	1.00	1.00
	446779	AI341135	Hs.156084	ESTs	1.06	2.02
60	441691	Al015418	Hs.127556	ESTs	1.13 0.44	2.03 0.36
60	402039	A D010340	Hs.5460	Target Exon K!AA0776 protein	0.95	0.63
	437133 438089	AB018319 W05391	FIS.3400	nuclear receptor subfamily 1, group I, m	3.12	1.00
	409582	R27430	Hs.271565	ESTs	1.00	1.00
	428769	AW207175	Hs.106771	ESTs	1.00	1.48
65	442868	Al022701	Hs.336984	ESTs	1.27	1.62
	439559	AW364675	Hs.173921	ESTs, Weakly similar to 2109260A B cell	1.00	1.33
	426958	R18845	Hs.172979	zinc finger protein 177	1.24	2.25 2.03
	419015	T79262	Hs.14463	ESTS	1.16 1.00	1.33
70	415806	AA169560 AA704899	Hs.291651	gb:zo89d08.r1 Stratagene ovarian cancer ESTs, Weakly similar to l38022 hypotheti	1.60	2.21
, 0	436110 458760	AJ498631	Hs.111334	ferritin, light polypeptide	1.10	1.43
	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	1.28	1.00
	438182	AW342140	Hs.182545	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.90	2.31
7.0	438091	AW373062		nuclear receptor subfamily 1, group I, m	4.70	1.00
75	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	2.48	1.00
	432222	AI204995	UL 10010	gb:an03c03.x1 Stratagene schizo brain S1 Homo sapiens cDNA FLJ14647 fis, clone NT	1.96	2.84 1.46
	416055	Z45423	Hs.13349	ramo sepens contra rea 14047 (IS, Civilis IT)	1.52	1.40

	417895	AA836392	Hs.56237	hypothetical protein FLJ20495	1.05	1.18
	422959	AV647015		paired Immunoglobulin-like receptor beta	1.33	1.25
	408969	AW297929	Hs.328317	EST	1.88	2.07
	409536	H59024	Hs.14485	Homo sapiens cDNA: FLJ23220 fis, clone A	1.18	2.38
5	447449	AW137091	Hs.18624	KIAA1052 protein	1.07	1.13
•	437315	AW976247	Hs.153248	ESTs	1.16	2.53
			113.130240	Eos Control	1.36	1.32
	459317	BRCA1b			1.11	1.18
	405137			Target Exon		
10	400366	M22333		Target	1.55	1.42
10	423413	AA325560	Hs.346401	ESTs	1.78	1.57
	433972	A1878910	Hs.278670	cisplatin resistance-associated overexpr	1.62	2.98
	440748	AW451780	Hs.130363	ESTs	1.42	2.14
	422637	AA399024	Hs.118836	myoglobin	1.46	2.38
	432342	AL036128	Hs.274404	plasminogen activator, tissue	1.67	1.10
15	442820	AW293459	Hs.172681	ESTs	1.02	1.13
	436573	AA723297	Hs.127138	ESTs	1.18	1.15
	403779	TAN EDED!	110.127100	Target Exon	1.13	1.15
		A1020440	Un 245102		1.66	2.78
	447686	Al939440	Hs.345192	ESTS	1.44	2.48
20	447506	R78778	Hs.29808	Homo sapiens cDNA: FLJ21122 fis, clone C		
20	425853	BE348404	Hs.24740	ESTs	1.40	2.75
	454457	AW753456		gb:QV2-CT0261-261099-011-d11 CT0261 Homo	1.52	2.00
	424132	AA335715	Hs.200299	ESTs	1.34	1.32
	421707	NM_014921	Hs.107054	lectomedin-2	1.09	1.14
	442871	Al290691	Hs.131393	ESTs	1.40	2.50
25	448489	AI523875		gb:tg97d04.x1 NCI_CGAP_CLL1 Homo saplens	1.31	2.20
	436365	AW444548	Hs.163118	ESTs	1.07	1.12
	415733	Al052628	Hs.271570	ESTs, Weakly similar to 2109260A B cell	1.91	2.01
	413888	AA580288	TIOLET TOTAL	gb:nn12d01.s1 NCI_CGAP_Co12 Homo sapiens	1.75	1.93
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	1.92	1.73
30				ESTs	1.05	1.12
50	442959	Al025248	Hs.6927		1.62	2.45
	409610	AW444736	Hs.27864	ESTs		
	424793	AI559696	Hs.298885	ESTs	1.37	2.78
	449977	C16939	Hs.297848	ESTs	1.52	4.57
25	414051	BE244127		gb:TCBAP1E0661 Pediatric pre-B cell acut	1.68	2.84
35	422400	AA974434	Hs.128353	ESTs	1.04	2.20
	443908	AW295791	Hs.13040	G protein-coupled receptor 86	1.47	2.10
	439316	AF086126	Hs.118208	Homo sapiens cDNA FLJ11727 fis, clone HE	2.08	0.59
	438505	AA808948	Hs.173776	ESTs, Moderately similar to ALU1_HUMAN A	1.44	2.73
	436196	AK001084	Hs.333498	Homo sapiens cDNA FLJ10222 fis, clone HE	2.17	1.00
40	453740	AL120295	Hs.311809	ESTs, Moderately similar to PC4259 ferri	1.88	2.58
	431756	R69465	Hs.255889	ESTs	1,12	1.30
	424487	T08754	Hs.6259	KIAA1698 protein	1.15	1.15
	435392	R07195	Hs.19918	ESTs	1.38	2.64
	430068	AA464964	710.10010	gb:zx80f10.s1 Soares ovary tumor NbHOT H	0.92	2.12
45	418741	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	-1,44	2.51
73					1.94	2.33
	411664	BE065069	Hs.270833	amphiregulin (schwannoma-derived growth		2.68
	416586	D44643	Hs.14144	secreted modular calcium-binding protein	1.72	
	419612	A1498267	Hs.110613	KIAA0421 protein	2.28	2.46
50	435800	Al248285	Hs.118348	ESTs	1,42	2.45
50	433363	AA584829	Hs.275163	non-metastatic cells 2, protein (NM238)	2.07	2.53
	422936	AA319278		gb:EST21478 Adrenal gland tumor Homo sap	1.46	1.22
	413358	BE 259160	Hs.75313	aldo-keto reductase family 1, member B1	1.43	1.43
	435357	N71620	Hs.118173	ESTs	1.44	2.93
	441063	AA913819	Hs.188025	ESTs .	1.20	2.80
55	450724	R55428		gb:yj79b05.r1 Soares breast 2NbHBst Homo	1.44	4.18
	430446	AF131782	Hs.241438	Homo sapiens clone 24941 mRNA sequence	1.03	2.34
	401577			NM_000761:Homo sapiens cytochrome P450.	1.13	1.22
	403978			C5000010*:gi 10440464 dbj BAB15765.1 (A	1.22	1.66
	459702	Al204995		gb:an03c03.x1 Stratagene schizo brain S1	2.72	4.60
60	416708	H78836	Hs.181900	ESTs, Moderately similar to ALU1_HUMAN A	1.36	2.03
oo	451410	AL110235		DKFZP566K1924 protein	1.51	2.28
			Hs.26358	Wolf-Hirschhorn syndrome candidate 1-lik	1.33	1.09
	451159	AW298631	Hs.27721		0.83	0.40
	448455	Al252625	Hs.269860	ESTs, Moderately similar to S65657 alpha		
45	444020	R92962	Hs.35052	ESTS	1.66	2.50
65	414623	BE391050		gb:601285674F1 NIH_MGC_44 Homo sapiens c	1.84	3.88
	454915	AW841619		gb:RC1-CN0017-120200-012-b09 CN0017 Homo	1.14	2.10
	444064	W85970	Hs.16292	ESTs	0.80	0.63
	454353	AW389693	Hs.300700	hypothetical protein FLJ20727	1.30	2.10
-	447794	Al424999	Hs.161445	EST	1.26	2.05
70	426686	AI362802	Hs.171814	parathymosin	1.16	1.11
	435815	AA700482	Hs.113157	ESTs	1.66	2.73
	432482	L19267	Hs.275924	dystrophia myotonica-containing WD repea	1.10	1.15
	431062	AA491270	Hs.187946	ESTs	1.44	2.60
	429191	AF065215	Hs.198161	phospholipase A2, group IVB (cytosolic)	1.35	1.06
75 .	424456	AA341017	Hs.25549	hypothetical protein FLJ20898	1.21	3.45
	451124	Al186203	Hs.31432	cardiac ankyrin repeat protein	1.23	2.10
	432828	AB042326	Hs.287402	chondroitin 4-sulfotransferase	1.11	2.71
	702020	710042020	1 10.201 702	SUPPLIED A. Chinan entropiese		

	431868	BE246400	Hs.285176	acetyl-Coenzyme A transporter	1.03	3.10
	429321	AA449921		gb:zx37g07.r1 Soares_total_fetus_Nb2HF8_	1.68	2.93
	417890	R79048		gb:yi87g02.r1 Soares placenta Nb2HP Homo	1.32	1.80
5	439590	AF086410	N- arosar	gb:Homo sapiens full length insert cDNA	1.32	2.43
5	420232	AW450051 BE349635	Hs.256295	ESTs	1.28 1.46	2.26 1.23
	418927		Hs.190284 Hs.128152	ESTs ESTs	1.34	1.23
	441940 401090	AW298115	ns. 120132	ESTs C9000193*:nii6330729ldbi]BAA86547.1] (AB	1.50	1.40
	409136	AW206670	Hs.50748	chromosome 21 open reading frame 18	1.02	2.38
10	438267	AW205708	Hs.292725	ESTs, Weakly similar to T18818 hypotheti	1.28	2.25
10	422482	Al439905	Hs.344476	gb:ti57g08.x1 NCI_CGAP_Lym12 Homo sapien	1.05	2.81
	420067	T52431	Hs.94795	Homo sapiens mRNA; cDNA DKFZp5640222 (fr	1.77	2.40
	442180	AA983913	Hs.128929	ESTs	1.76	2.38
	434256	Al378817	Hs.191847	ESTs	1.05	2.06
15	444519	AJ160304	Hs.28313	ESTs	0.55	0.63
	454459	AW855738	Hs.17767	KIAA1554 protein	1.10	2.05
	455988	BE177983		gb:RC3-HT0600-230300-021-g10 HT0600 Hamo	1.70	2.64
	444510	Al367823	Hs.146872	ESTs	1.44	2.08
	456210	N49729	Hs.156875	ESTs	1.64	2.65
20	450569	AW192334	Hs.38218	ESTs	1.78	2.71
	414921	BE390551	Hs.77628	steroidogenic acute regulatory protein r	1.05	1.12
	401381			C14000165:gi[12698069]dbj[BAB21853.1] (A	0.63	0.85
	439998	BE559554	Hs.61790	hypothetical protein FLJ23338	1.06	1.14
25	453762	AW977286	Hs.17428	RBP1-like protein	1.42	2.68
25	419403	AA744520	Hs.87734	ESTs, Weakly similar to nonsyndromic hea	0.99	2.17
	423736	AW936874		gb:RC1-DT0029-120100-011-07 DT0029 Homo	2.05	1.56
	421186	Al798039	Hs.270563	ESTs, Moderately similar to T12512 hypot	1.29	1.31
	426435	AI827946	Hs.124854	hypothetical brain protein my040	1.36	1.59
20	439312	AA833902	Hs.270745	ESTs	1.60	2.50
30	407924	BE537128	Hs.299797	ESTs	1.51	1.15
	409692	Al500724		KIAA1550 protein	1.72	2.21 2.13
	415449	H15034	L)= 40000C	gb:ym20a03.s1 Soares Infant brain 1NIB H	1.50 1.18	2.60
	423436	R21176	Hs.100926	ESTs ESTs	1.54	2.20
35	458697 415770	Al797713 M79237	Hs.156471	gb:EST01385 Subtracted Hippocampus, Stra	1.49	1.55
JJ	449279	Al962312	Hs.224976	ESTs, Weakly similar to CRX_HUMAN CONE-R	2.50	3.60
	429735	AA458759	Hs.188794	ESTs	1.84	2.31
	442124	R66412	Hs.129013	Homo saplens cDNA FLJ14309 fis, clone PL	1.10	1.19
	412557	AA761612	Hs.291557	ESTs	1.10	1.18
40	409335	NM_001502	Hs.53985	glycoprotein 2 (zymogen granule membrane	1.18	1.12
	430526	AF181862	Hs.242407	G protein-coupled receptor, family C, gr	1.35	2.39
	420855	AA281092	Hs.33417	Homo sapiens cDNA: FLJ22806 fis, clone K	1.22	2.09
	450567	AA033904	Hs.269235	ESTs	1.60	2.20
	414197	W44877	Hs.55501	ESTs	1.06	2.08
45	448800	AI571294	Hs.298889	ESTs, Moderately similar to ALU1_HUMAN A	1.65	2.79
	421338	AA287443		gb:zs52c10.r1 NCI_CGAP_GCB1 Homo sapiens	1.47	2.90
	412679	BE144762		gb:CM0-HT0180-041099-065-b04 HT0180 Homo	1.32	2.53
	417882	R22311		gb:yh26c09,r1 Soares placenta Nb2HP Homo	1.58	2.43
50	425112	AW953291	Hs.64211	hypothetical protein MGC5601	0.70	0.63
50	401658			C16000210:gi]12585542 sp[O14771 Z213_HUM	1.68	2.04
•	409325	AW377549	Hs.17865	ESTs	1.68	2.21
	437402	A1553976	Hs.121191	ESTS	1.20	2.35
	433455	AA360439	Hs.89319	ESTs	0.98	2.53
55	457329	AI634860	Hs.247043	type 1 tumor necrosis factor receptor sh	0.59 1.24	0.43 1.12
"	434830 450696	AW852235 A1654223	Hs.16026	gb:QV0-CT0225-230300-169-e11 CT0225 Homo hypothetical protein FLJ23191	1.44	2.53
	446098	AW072215	Hs.208470	ESTs	1.38	2.93
	443310	BE552018	Hs.133152	ESTs	0.85	0.83
	424015	N95696	Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (fr	1.42	2.25
60	420229	AA256675	Hs.194058	ESTs, Weakly similar to AF252293 1 PAR3	1.70	2.39
••	403371			Target Exon	1.50	3.43
	410744	H86002		gb:ys92b01.r1 Soares relina N2b5HR Homo	1.32	2.13
	424160	T74062		gb:yc81f01.r1 Soares infant brain 1NIB H	1.30	2.17
	438818	AW979008	Hs.222487	ESTs	1.98	2.43
65	438791	AA825750	Hs.129983	EST ₈	1.12	2.15
	411206	AW827390	Hs.16899	EST8	1.17	2.58
	432211	BE274530	Hs.273333	hypothetical protein FLJ10986	0.42	0.30
	448918	AB011152	Hs.22572	KIAA0580 protein	1.54	2.63
70	424496	A1733451	Hs.167165	hypothetical protein FLJ12975	1.39	2.25
70	410730	AW368860		DnaJ (Hsp40) homolog, subfamily B, membe	1.84	3.23
	457581	AA578512	11- 400040	gb:nh22e11.s1 NCI_CGAP_Pr1 Homo sapiens	1.21	1.09
	435353	AW243062	Hs.190348	ESTs	1.90	2.98
	417029	AW952192	Hs.273385	guanine nucleotide binding protein (G pr	1.21	1.24
75	433682	AA642418	Hs.17381 Hs.23096	ESTs ESTs	1.18	2.23 2.73
15	424915	R42755 AW516704	Hs.208726	ESTS	1.60	3.20
	442201 429111	AV516704 AI870811	Hs.7579	KIAA1151 protein	1.74 1.27	1.40
	423111	7101 0011	. 10.1 51 5	.m to : protest	1.21	

	429282	N27596	Hs.21342	ESTs	1.84	3.73
	436604	AW105129	Hs.242158	ESTs	1.27	2.70
	448712	W01046	Hs.333371	Homo saplens clone TA40 untranslated mRN	0.79	2.70
5	412274	AA101443		gb:zn74a07.r1 Stratagene NT2 neuronal pr	1.40	2.53
5	403859		11- 400400	C5001408*:gi 12621134 ref NP_075244.1 M	1.76 1.48	2.00 2.51
	451521	AA018237	Hs.128189	gb:ze53a02.r1 Soares retina N2b4HR Homo	1.44	2.60
	443210	Al692649	Hs.9451	hypothetical protein MGC13168 ESTs, Weakly similar to B28096 line-1 pr	1.20	2.25
	442722	AL048889	Hs.131029	Target Exon	0.66	0.60
10	400840 454639	AW811633		gb:RC2-ST0158-091099-011-d05 ST0158 Homo	1.23	1.41
10	439864	Al720078	Hs.291997	ESTs, Weakly similar to A47582 B-cell gr	1.77	2.12
	410725	AW799279	113,23 1331	gb:RC0-UM0051-210300-012-h06 UM0051 Homo	1.08	2.55
	423430	AF112481	Hs.128501	RAD54, S. cerevisiae, homolog of, B	1.94	2.29
	450717	T94709	, 10.1.2000	gb:ye35d09.r1 Strategene lung (937210) H	1.56	2.64
15	400314	NM_018949	Hs.192720	G protein-coupled receptor 14	0.89	0.87
	434947	AA654320	Hs.183819	Homo sapiens cDNA FLJ12304 fis, clone MA	1.19	2.14
	453582	AW854339	Hs.33476	hypothetical protein FLJ11937	1.24	2.19
	409005	AW299806	Hs.297256	ESTs	1.24	2.03
	406584			Target Exon	1.52	2.37
20	420203	AA256374	Hs.191069	ESTs	1.16	1.37
	406156			Target Exon	1.18	1.17
	422132	AB002337	Hs.112078	KIAA0339 gene product	1.08	1.16
	441371	AW452292	Hs.197354	ESTs	1.19	2.00
25	434807	AA364183	Hs.323443	hypothelical protein FLJ11806	1.30 1.48	2.76 2.48
25	424542	A1860558	Hs.272009	ESTs, Weakly similar to ALU2_HUMAN ALU S	1.15	1.57
	450893	AK002185	Hs.25625	hypothetical protein FLJ11323	2.16	1.76
	418481	M81945 Al459490	Hs.85289 Hs.60090	CD34 antigen Homo sapiens cDNA FLJ13595 fis, clone PL	1.36	2.41
	443077	AA758758	Hs.121380	ESTs	1.07	2.05
30	437521 430265	L36033	Hs.237356	stromal cell-derived factor 1	2.34	1.35
50	446898	AV660906	Hs.184411	albumin	1.52	1.33
	429725	AA457367	Hs.191638	ESTs	1.38	3.00
	425114	AW409763	Hs.50699	ESTs, Weakly similar to 2109260A B cell	1.13	2.34
	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	1.62	1.71
35	435284	AA879470	Hs.96849	Homo sapiens cDNA FLJ11492 fis, clone HE	1.20	2.50
-	415634	F13165	Hs.12549	ESTs, Weakly similar to 2109260A B cell	1.46	2.35
	420565	A1806770	Hs.30258	ESTs	1.39	3.85
	419494	W01060	Hs.34382	ESTs	1.10	1.75
40	458183	AL031591	Hs.7370	phospholidylinositol transfer protein, b	1.28	2.24
40	416620	R93080	Hs.35035	ESTs	1.81	2.58
	431356	AW499632	Hs.288512	Homo sapiens cDNA FLJ11632 fis, clone HE	1.42	2.03
	433282	BE539101	Hs.5324	hypothetical protein	0.33 1.50	0.20 0.95
	456898	NM_001928	Hs.155597	D component of complement (adipsin)	1.34	1.32
45	458126	AW979136	Hs.124629	ESTs ESTs	1.52	2.07
43	414005 411496	AA134489 AW849241	Hs.269379	gb:IL3-CT0215-210200-088-E03 CT0215 Homo	1.10	2.21
	451147	AA016982	Hs.64341	ESTs	1.53	2.29
	450238	T89693	Hs.138777	ESTs	1.32	2.28
	449284	BE502240	Hs.38592	hypothetical protein FLJ23342	1.46	1.40
50	449479	A1797619	Hs.197659	ESTs	0.72	0.66
	403066			Target Exon	1.32	1.19
	410118	AW590680	Hs.110802	von Willebrand factor	1.72	2.54
	437674	Al749921	Hs.205377	ESTs	1.38	2.21
	431065	AA491286	Hs.128792	ESTs .	1.30	2.08
55	416352	H78006	Hs.19553	ESTs	1.05	1.14
	452565	BE066552		gb:RC3-BT0333-300300-017-h08 BT0333 Homo	1.46	2.53 0.98
	418115	AW005376	Hs.173280	ESTs	1.20 1.37	1.37
	422031	R66895	Hs.28788	ESTs	1.64	2.20
60	446269	AW263155 Al821877	Hs.14559 Hs.140002	hypothetical protein FLJ10540 ESTs, Moderately similar to ALU7_HUMAN A	1.03	2.35
00	457683	W23814	Hs.6361	mitogen-activated protein kinase kinase	0.73	0.59
	435521 438874	H02780	Hs.347520	gb:yj41a11.r1 Soares placenta Nb2HP Homo	1.56	2.73
	441167	AA921754	Hs.211781	ESTs	1.74	2.12
	455917	BE156765	110.211101	ab:RC1-HT0370-120100-012-c09 HT0370 Homo	1.29	1.35
65	419058	AW675039	Hs.1227	aminolevulinate, delta-, dehydratase	2.04	1.83
	408651	BE266928	Hs.17126	hypothetical protein MGC15912	1.30	1.23
	442737	AB002319	Hs.8663	KIAA0321 protein	0.85	0.79
	407134	T51588		gb:yb27e06.s1 Stratagene fetal spleen (9	1.23	0.97
70	447492	Al381619	Hs.20188	ESTs	1.26	2.28
70	437840	AA884836	Hs.292014	ESTs	2.05	2.29
	412294	AA689219	Hs.117176	poly(A)-binding protein, nuclear 1	1.47	3.55
	419909	AL136653	Hs.93675	decidual protein induced by progesterone	1.10	2.18
	432569	Al131140	Hs.152434	ESTs	1.34 1.26	1.83 2.00
75	412252	AW903782		gb:CM4-NN1032-190400-527-g09 NN1032 Homo gb:HSDHII020 Stratagene cDNA library Hum	1.36	2.68
13	444298	Z17870	He SEREE1	ESTs, Weakly similar to 138022 hypotheti	0.95	2.23
	445261 418315	T79759 T06475	Hs.250651 Hs.124962	Homo sapiens, clone IMAGE:3510191, mRNA,	0.82	0.82
	410010	100-13	110.124042	The sales of same in the same in the same		

	440357	AA379353	Hs.20950	phospholysine phosphobistidine inorganic	0.83	0.68
	440867	AI417007	Hs.166338	ESTs	1.45	1.50
	410956	AW938322		gb:PM1-DT0054-231299-002-c02 DT0054 Homo	1.06	2.95
_	446574	AJ310135	Hs.335933	ESTs	1.54	2.45
5	447912	AW576549	Hs.165728	ESTs, Weakly similar to 138022 hypotheti	1.22	2.07
	457741	BE044740		gb:hm55g10.x1 NCI_CGAP_ROF1 Homo sapiens	1.89	2.08
	433762	AA732484	Hs.169399	ESTs	1.24	2.58
	418156	W17056	Hs.83623	nuclear receptor subfamily 1, group i, m	3.71	1.38
10	409282	AW966480		gb:EST378554 MAGE resequences, MAGI Homo	1.70	1.70
10	425169	AW292500	Hs.128514	EST8	1.13	1,12
	458497	Al161428	Hs.75916	splicing factor 3b, subunit 2, 145kD	1.26	2.28
	405673			NM_022775:Homo sapiens hypothetical prot	2.00	1.00
	442691	AW341438	Hs.278036	ESTs	1.38	2.28
1.5	424316	AA676403	Hs.145078	regulator of differentiation (in S. pomb	1.06	2.10
15	444608	A1174683	Hs.329863	ESTs	1.95	1.82
	447345	BE247767	Hs.18166	KIAA0870 protein	1.26	2.10
	439848	AW979249		gb:EST391359 MAGE resequences, MAGP Homo	1.68	2.63
	428946	D42046	Hs.194665	DNA2 (DNA replication halicase, yeast, h	1.32	2.33
20	403214			NM_016232*:Homo sapiens interleukin 1 re	1.02	2.15
20	404495			C8001441*:gi 8923061 ref NP_060114.1 hy	2.20	2.49
	443471	AW236939	Hs.172154	Homo sapiens clone FLB3442 PRO0872 mRNA,	1.58	1.74
	437116	AL049253	Hs.190162	ESTs	1.22	2.53
	451357	AB020640	Hs.26319	Human DNA sequence from clone RP3-467L1	0.94	2.35
25	408255	AW807321		gb:MR4-ST0062-240300-003-g05 ST0062 Homo	1.12	1.39
25	448931	A)597806	Hs.192671	ESTs	1.30	3.29
	422343	AJ628633	Hs.346823	gb:ty77d05.x1 NCI_CGAP_Kid11 Homo sapien	1.86	2.32
	407140	AA059106	Hs.271780	ESTs, Weakly similar to I38022 hypotheti	1.37	1.01
	429187	AA447648	Hs.163872	ESTs, Weakly similar to S65657 alpha-1C-	1.74	1.55
20	423614	A1457640	Hs.206632	ESTs	1.48	2.83
30	429073	AA446167	Hs.47385	ESTs	1.24	2.00
	415732	AA167566	Hs.271570	ESTs, Weakly similar to 2109260A B cell	1.31	2.34
	412634	U55984	Hs.289088	heat shock 90kD protein 1, alpha	0.42	0.22
	415274	AF001548	Hs.78344	myosin, heavy polypeptide 11, smooth mus	1.94	1.27
25	415007	BE244332	Hs.77770	adaptor-related protein complex 3, mu 2	0.78	0.71
35	402654			Target Exon	0.90	0.85
	457974	AW842353	Hs.321717	ESTs, Weakly similar to S22765 heterogen	0.86	0.90
	405340			C2002952:gi 1345964 sp P10079 FBP1_STRPU	1.46	2.33
	426259	BE395776	Hs.168640	ankylosis, progressive (mouse) homolog	1.63	2.75
40	442237	AW905607	Hs.24567	ESTs, Weakly similar to KBF3_HUMAN NUCLE	1.08	3.38
40	456370	AA234938	Hs.87384	ESTs	0.77	2.83
	407041	X15673		gb:Human pTR2 mRNA for repetitive sequen	2.00	1.84
	452001	A1827675	Hs.274281	fidgetin	1.38	2.03
	445137	A1733837	Hs.145661	ESTs	1.60	3.00
45	440808	AK001339	Hs.7432	hypothetical protein FLJ10477	1.17	2.10
45	404418			Target Exon	1.90	3.36
	447658	AJ916872	Hs.213424	ESTs	1.90	2.21
	434414	A1798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens	1.58	1.24
	400834			NM_002240*:Homo sapiens potassium inward	1.25	2.33
50	449542	AW857362	Hs.268855	ESTs, Weakly similar to I38022 hypotheti	1.46	1.28
50	441043	AA913422	Hs.192104	ESTs	1.26	1.09
	403391			C3001164*:gi 1730196 sp P50573 GAR3_RAT	1.46	2.55
	449129	A1631602	Hs.258949	ESTs	1.27	2.48
	418321	D63477	Hs.84087	KIAA0143 protein	0.56	0.52
	426789	F06596	Hs.23837	Homo sapiens cDNA FU11812 fis, clone HE	1.31	2.06
55	443679	AK001810	Hs.9670	hypothetical protein FLJ10948	1.34	1.22
	428554	R46070	Hs.6407	ESTs	1.04	2.08
	401890		•	Target Exon	1.24	1.14
	419501	AW843822		gb:CM4-CN0045-010200-514-f08 CN0045 Homo	1.74	1.38
~	457096	A1809202	Hs.208343	ESTs, Weakly similar to cerebroside sulf	0.82	0.87
60	426123	AA370352		gb:EST82246 Prostate gland 1 Homo sapien	1.28	2.35
	449445	AW197349	Hs.232197	ESTs	1.24	2.13
	430683	AC004862	Hs.247768	Homo sapiens PAC clone RP4-697H17 from 7	1.30	2.00
	440642	AI744995		ESTs, Moderately similar to ALU4_HUMAN A	1.29	2.44
45	455236	AW875972	11 400570	gb:CM3-PT0014-071299-051-b05 PT0014 Homo	1.78	2.95
65	449622	AW013915	Hs.196578	ESTs .	1.42	2.20
	415116	AA160363	Hs.269956	ESTs	2.02	1.03
	457269	A1338993	Hs.134535	ESTs	1.93	1.35
	427877	AW138725	Hs.178067	ESTs	1.91	2.42
70	454631	AW811324	11- 400030	gb:IL3-ST0141-131099-017-A02 ST0141 Homo	1.00	3.13
70	458390	A1792585	Hs.133272	ESTs, Weakly similar to ALUC_HUMAN !!!!	1.02	2.21
	435844	AA700856	Hs.59651	ESTs, Wealthy similar to 178885 serine/th	0.85	0.81
	427237	AA399964	Hs.97763	ESTs	1.57	1.44
	408855	T83061	Hs.319946	Homo sapiens mRNA for KIAA1727 protein,	1.20	3.13
75	442151	AI733404	Hs.128865	ESTs	1.50	2.13
75	412708	R26830	Hs.106137	ESTs, Weakly similar to CGHU7L collagen	1.16	3.00
	417262	AA195276	Hs.263858	ESTs, Moderately similar to 834087 hypot	1.25	2.40
	419362	N64116	Hs.24624	hypothetical protein FLJ21945	1.38	2.48

	447040	A1320000004	11- 0400	F.C.T	1 66	2.03
	447248	AW295831	Hs.6496	ESTS	1.56 1.48	230
	415622	F13010	Hs.12400	ESTs Homo sapiens cDNA FLJ13580 fis, clone PL	1.26	2.88
	414065 414585	AW515373 W46954	Hs.271249 Hs.334716	hypothetical protein MGC16291	1.24	2.05
5	443197	Z43613	715.5547 10	gb:HSC1GD091 normalized infant brain cDN	1.11	2.04
,	428266	AJ382001	Hs.43590	ESTs	1.09	2.03
	447083	Al472124	Hs.157757	ESTs	1.66	3.53
	412302	AW936334		gb:QV4-DT0021-281299-070-g05 DT0021 Homo	1.74	3.00
	445555	AW974013		ESTs	1.32	1.29
10	453117	AW162044	Hs.104203	hypothetical protein MGC12981	0.73	0.81
	436757	AW975663	Hs.293404	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.21	1.88
	431976	AA719001	Hs.291065	ESTs	1.23	2.01
	430657	AA482910	Hs.279664	ESTs	1.64 0.85	2.65 0.85
16	438744	BE314727	Hs.75721	profilin 1	1.16	2.05
15	439325	AF086139	Hs.150423	cyclin-dependent kinase 9 (CDC2-related	0.79	0.76
	438117 401686	AA328041	Hs.194329	hypothetical protein FLJ21174 NM_014587*:Homo sapiens SRY (sex determi	1.32	2.31
	420269	U72937	Hs.96264	alpha thalassemia/mental retardation syn	0.78	0.53
	434288	AW189075	Hs.116265	fibrillin3	2.42	4.23
20	433215	AB040912	Hs.191098	hypothetical protein FLJ11598	1.36	1.36
	413429	BE139117	Hs.278881	ESTa	1.30	2.98
	426417	AA377908	Hs.13254	ESTs	1.36	1.77
	413882	AA132973	Hs.184492	ESTs	1.55	2.10
~~	413346	AA128586		gb:zl24h06.r1 Soares_pregnant_uterus_NbH	1.29	1.77
25	445020	AI205655	Hs.147221	ESTs	1.90	2.00
	418175	AW967054	Hs.206312	ESTs, Weakly similar to 138022 hypotheti	1.60	3.70
	429582	Al569068	Hs.22247	ESTs	1.06 1.64	2.38 2.57
	409134	AW340389	Hs.250585	ESTs	0.73	2.33
30	415642	U19878	Hs.336224	transmembrane protein with EGF-like and ESTs	1.10	2.33
30	435667	F13625 BE407106	Hs.124183 Hs.65907	Homo saplens, clone IMAGE:3959816, mRNA,	0.85	2.03
	440513 419711	C02621	Hs.159282	ESTs	1.22	2.00
	434249	AA987537	Hs.129875	ESTs	1.29	2.48
	437355	AL359557	Hs.306508	Homo sapiens mRNA; cDNA DKFZp762O1415 (f	1.86	2.08
35	428360	H10291	Hs.30974	ESTs	1.40	2.05
	435339	Al358300	Hs.129827	ESTs	1.38	2.18
	435345	AW360966	Hs.6653	ESTs	1.49	2.27
	435105	A1878982	Hs.131859	Homo sapiens F-box protein FBX11 mRNA, p	1.78	2.33
40	459645	AA074346	Hs.250715	ESTs	1.50	2.40
40	449691	AA002143	Hs.21413	solute carrier family 12, (potassium-chl	0.74	0.69
	425955	T96509	Hs.248549	ESTs, Moderately similar to S65657 alpha	1.42	2.76 2.16
	437272	AW975957	Un 100075	gb:EST388066 MAGE resequences, MAGN Homo	1.00 0.84	0.81
	456955	NM_006925	Hs.166975	splicing factor, arginine/serine-rich 5	1.30	2.21
45	421362	AK000050 AA452378	Hs.103853 Hs.11637	hypothetical protein FLJ20043 Homo sapiens mRNA; cDNA DKFZp547J125 (fr	1.27	2.12
73	457926 444557	Al167637	Hs.146924	ESTs	1.83	2.35
	434476	AW858520	Hs.84264	acidic protein rich in leucines	1.43	3.80
	458059	AW015588	Hs.137232	ESTs, Weakly similar to \$65657 alpha-1C-	1.30	2.23
	413595	AW235215	Hs.16145	ESTs	2.10	2.43
50	417281	R98773	Hs.268883	ESTs	1.26	2.10
	445689	BE158869		gb:QV0-HT0398-210100-096-f08 HT0398 Homo	1.15	2.15
	423249	AA323682	Hs.125374	ESTs, Weakly similar to S26689 hypotheti	1.76	1.50
	408366	AW511255	Hs.346442	ESTs	1.74	2.91
c	441359	Al435179	Hs.126820	ESTs	2.43	1.59
55	413068	BE063792	11- 400000	gb:QV3-BT0295-260100-066-d06 BT0295 Homo	1.52 1.42	2.09 2.10
	441322	AW071851	Hs.130628	ESTS	1.11	2.20
	409124	AW292809	Hs.50727	N-acetylglucosaminidase, alpha- (Sanfili Homo sapiens mRNA; cDNA DKFZp564A216 (fr	1.10	2.25
	432413	AK000257 Al248252	Hs.274505 Hs.160672	ESTs	1,17	2.38
60	425391 443861	AW449462	Hs.134743	ESTs	1.44	2.30
00	454609	AW810204	110.10	gb:MR4-ST0125-021199-017-d08 ST0125 Homo	2.30	1.33
	425893	AA629695		gb:ad43b07.s1 Stratagene lung carcinoma	1.76	2.51
	443611	NM_014397	Hs.9625	NIMA (never in mitosis gene a)-related k	1.81	2.90
	410359	R38624	Hs.106313	ESTs	1.78	2.05
65	406308			NM_025192:Homo saplens hypothetical prot	1.92	2.24
	432476	T94344	Hs.326263	ESTs	1.40	2.45
	435073	AA664078		gb:ac04a05.s1 Stratagene lung (937210) H	1.66	2.26
	420581	AA278459	Hs.151940	ESTS	1.48	2.58
70	435579	Al332373	Hs.156924	ESTs	1.46	2.68
70	439633	AF086464	Hs.86248	ESTs	1.40 1.40	2.48 2.28
	430551	AA481150	Hs.136343	ESTs	1.40	2.40
	450855	T97988	Hs.295605	mannosidase, alpha, class 2A, member 2 ESTs	0.88	2.40
	444326 412149	A1939357 R49355	Hs.270710 Hs.273824	ESTs	1.58	2.19
75	455116	AW857271	113.21 3027	gb:CM0-CT0307-210100-158-g09 CT0307 Homo	1.56	2.50
	449626	AA774247	Hs.301637	zinc finger protein 258	0.60	0.53
	410047	AI167810	Hs.132390	zinc finger protein 36 (KOX 18)	0.66	0.58
				• •		

	AIDOCC	ANN 17500	U= 10/2/4	ERTA	1.58	2.63
	418865 402762	AW117500	Hs.104241	ESTs ENSP00000235171*:GAP junction beta-4 pro	0.81	0.82
	436449	Al418027	Hs.120361	ESTs	1.46	1.46
_	403488			ENSP00000201948:KARYOPHERIN BETA2B HOMOL	1.38	2.23
5	431235	AA318271	Hs.250905	hypothetical protein	1.14	2.55
	448576	AB026730	Hs.21495	UDP-Gal:betaGicNAc beta 1,3-galactosyttr	0.70	0.78
	408100 433436	AW205382	Hs.42676	KIAA0781 protein	1.36 1.50	2.66 2.15
	422337	AW162474 R38572		Bruno (Drosophila) -like 6, RNA binding gb:yc87c11.s1 Soares infant brain 1NIB H	2.23	1.71
10	426160	AA206020	Hs.167460	splicing factor, arginine/serine-rich 3	1.08	2.09
	447008	BE010189		nuclear receptor subfamily 1, group I, m	1.26	1.27
	420141	AA702961	Hs.124103	ESTs, Weakly similar to 138344 titin, ca	1.46	2.60
	423840	AA332434	Hs.72465	ESTs, Weakly similar to non-lens beta ga	1.26	2.47
1.5	447793	Al424924	Hs.211203	ESTS	2.38	1.83 2.54
15	407328	AA508857	Hs.187748 Hs.292471	ESTs, Wealdy similar to ALU1_HUMAN ALU S ESTs, Wealdy similar to ALU1_HUMAN ALU S	1.11 1.63	2.05
	432451 421311	AW972771 N71848	Hs.283609	hypothetical protein PRO2032	0.51	0.44
	444649	AW207523	Hs.197628	ESTs	1.21	2.24
	448688	R94570	Hs.266869	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.91	3.25
20	428847	AI954833	Hs.98881	ESTs	1.48	2.66
	413750	BE161453		gb:IL2-HT0437-290200-045-A06 HT0437 Homo	1.22	1.00
	429355	AW973253	Hs.292689	ESTS	1.86 1.82	2.35 2.33
	427798 431179	AA412499 Al338644	Hs.104779 Hs.195432	ESTs aldehyde dehydrogenase 2 family (mitocho	0.80	2.00
25	451719	Al373532	Hs.157910	ESTs	1.29	3.85
23	438094	Al821755	Hs.131805	ESTs, Weakly similar to A56194 thromboxa	1.74	2.54
	418504	BE159718	Hs.85335	Homo sepiens mRNA; cDNA DKFZp564D1462 (f	0.52	0.49
	407414	AF072164		gb:Homo saplens HSFE-1 mRNA, partial cds	1.67	2.28
20	416410	H53777	Hs.36822	ESTs	1.85	2.28
30	439141	AI241470	Hs.268982	ESTs	1.08 1.81	2.28 2.02
	441181 434482	AA416925 AF143331	Hs.121076 Hs.16073	peptidylprolyl isomerase (cyclophilin)-l ESTs	1.22	2.00
	455757	BE079531	115.10075	gb:RC5-BT0624-240300-013-D08 BT0624 Homo	1.53	2.16
	425787	AA363867	Hs.155029	ESTs	0.76	2.13
35	405727			CX001244:gi 11420428 ref XP_004814.1 be	1.70	2.21
	441846	AW850980		gb:IL3-CT0220-150200-068-B03 CT0220 Homo	1.16	2.14
	451945	BE504055	Hs.211420	ESTs	0.84 1.60	2.73 2.43
	438432	AW444990	Hs.258800 Hs.26002	ESTs, Weakly similar to 138022 hypotheti LIM domain binding 1	1.14	1.20
40	451140 407341	AW411354 AA918886	Hs.204918	ESTS, Weakly similar to ALUS_HUMAN ALU S	1.03	2.42
70	453041	AI680737	Hs.289068	Homo sapiens cDNA FLJ11918 fis, clone HE	1.69	3.43
	437613	R19892	Hs.10267	MIL1 protein	1.16	2.11
	451507	AW291109	Hs.208787	ESTs, Weakly similar to T31611 hypotheti	1.22	2.05
15	430259	BE550182	Hs.127826	RalGEF-like protein 3, mouse homolog	2.85	1.00
45	453669	AL049029	Hs.7258	hypothetical protein FLJ22021 gb:RC3-CT0255-200100-024-g10 CT0255 Homo	0.75 1.49	0.64 2.20
	455065 442220	AW854352 AL037800	Hs.8148	selenoprolein T	0.50	0.18
	437936	AW798475	Hs.288549	hypothetical protein FLJ14710	1.50	2.44
	442556	AL137761	Hs.8379	Homo sapiens mRNA; cDNA DKFZp586L2424 (f	0.54	0.37
50	405223			Target Exon	1.09	2.80
	437225	AW975982	Hs.292935	ESTs	1.03	2.47
	421101	AF010446	Hs.101840	major histocompatibility complex, class	0.72 1.64	0.57 2.93
	436200	R51386	Hs.124881	ESTs NM 021624:Horno saplens histamine H4 rece	1.52	2.28
55	402025 407019	U49973		gb:Human Tigger1 transposable element, c	2.40	2.12
55	451305	AW003571	Hs.211191	ESTs, Weakly similar to A46010 X-linked	1.24	3.23
	423450	AJ290445	Hs.128759	KIAA0524 protein	1.64	2.13
	423139	AW402725	Hs.288560	hypothetical protein FLJ21106	1.61	2.28
60	451763	AW294647	Hs.233634	hypothetical protein FLJ14220	1.39	2.08
60	458915	Al915689	Hs.212781	EST ESTs, Weakly similar to TRHY_HUMAN TRICH	1.62 0.60	2.02 0.41
	452829	Al955579 T05816	Hs.63368 Hs.92511	ESTs	2.08	1.48
	446383 432576	AW157424	Hs.165954	ESTs, Weakly similar to 138022 hypotheti	1.88	2.49
	433820	Al401627	Hs.174067	ESTs	1.30	2.00
65	419719	AA844700	Hs.39297	ESTs, Moderately similar to ALU1_HUMAN A	1.33	2.00
	415868	H06728	Hs.21017	ESTs	1.34	2.08
	420738	NM_004185	Hs.258575	wingless-type MMTV integration site fami	1.42	2.29
	446614	AK001733	Hs.15562	hypothetical protein FLJ10871	0.79	0.78
70	404167	740070	Uc 01424	NM_021956*:Homo sapians glutamate recept guanidinoacetate N-methyltransterase	1.62 0.72	2.55 0.75
70	417074	Z49878	Hs.81131	C12000457*:gi 7512178 pir [T30337 polypr	1.14	2.08
	401215 421600	AW893889	Hs.323231	Homo sapiens cDNA FLJ11946 fis, clone HE	1.88	2.66
	426248	T18988	Hs.293668	ESTs	1.17	3.44
	454523	AW803980		gb:PM0-UM0084-240300-001-G11 UM0084 Homo	1.34	2.40
75	420656	AA279098	Hs.187636	ESTs	1.22	2.43
	402833	4 4 007004	11- 004000	C1002508:gij6691937 emb CAB65797.1 (ALO	1.31	2.00
	438910	AA827921	Hs.291858	ESTs, Weakly similar to ALUC_HUMAN IIII	1.39	3.13

	*****				0.00	240
	416170	H42454	Hs.220645	ESTs	0.99	2.18
	433598	AJ762836	Hs.271433	ESTs, Moderately similar to ALU2_HUMAN A	2.04	1.28 2.50
	417699	T91491	Hs.119670	ESTs	1.36	
-	459605	AL045773		gb:DKFZp434F246_r1 434 (synonym: htes3)	1.21	2.13
5	453204	R10799	Hs.191990	ESTs	3.12	2.98 2.09
	458971	AL119206	Hs.126257	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.34	2.00
	457040	N77624	Hs.173717	phosphalidic acid phosphalase type 28	1.68 1.70	2.54
	400414	AF083118	Hs.283968	Homo saplens CATX-2 mRNA, complete cds		2.54
10	426263	A1908774	Hs.259785	camiline palmitoyltransferase i, liver	0.96	2.45
10	439334	Al148976	Hs.112062	ESTs	1.50 1.46	2.28
	455527	AW984479		gb:PM1-HN0012-220300-001-b12 HN0012 Homo	1.61	2.23
	408084	AL040832	Hs.160422	Homo sapiens clone PP902 unknown mRNA		2.23
	432059	AF227131	Hs.272387	taste receptor, type 2, member 4	1.66	2.83
15	429791	AW015667	Hs.119427	ESTs	1.51	2.03
15	438695	A1885190	Hs.156089	ESTs, Wealdy similar to repressor protei	1.19	2.10
	458139	Al525711	Hs.253147	ESTS	1.42	2.30
	413035	BE155563		gb:PM4-HT0352-171199-001-C05 HT0352 Homo	1.62	2.05
	422444	AA310688	11 oross4	gb:EST181501 Jurkat T-cells V Homo sapie	1.38	2.03
20	409546	AW410190	Hs.250624	hypothetical protein MGC4473	1.87 1.04	2.03
20	411432	AW846272	11 447700	gb:QV0-CT0179-300999-024-d12 CT0179 Homo		2.10
	445327	A1220082	Hs.147722	ESTs	1.16 0.61	0.63
	424628	AB011136	Hs.151385	KIAA0564 protein		0.39
	440197	AW340708	Hs.317714	pallid (mouse) homolog, pallidin	0.56 1.50	2.45
25	409894	BE081731	11. 400046	gb:QV2-BT0635-220400-158-e04 BT0635 Homo	1.36	2.20
25	422776	AA316987	Hs.129846	ESTs	1.34	2.40
	428255	AI627478	Hs.187670	ESTs	0.97	2.00
	412484	AA112090	Hs.269961	ESTs		2.73
	432789	D26361	Hs.3104	KIAA0042 gene product	1.44	2.02
20	430100	AA766178	Hs.291601	ESTs, Highly similar to T00350 hypotheti	1.06 1.34	2.02
30	419528	AA244000	Hs.222365	ESTs		2.70
	441793	AA968459	Hs.158785	ESTs	1.80	0.61
	429468	AF033579	11 000474	T-box 10	0.71 2.55	2.10
	410248	AA166653	Hs.268171	ESTS	1.76	2.58
25	401818			NM_000664*:Homo sapiens acelyl-Coenzyme	1.64	2.28
35	451724	Al903765	11 0005	gb:UI-BT037-301298-102 BT037 Homo sapien	1.56	2.36
	431866	NM_012098	Hs.8025	angiopoietin-like 2	1.36	2.25
	432719	AW935411	Hs.314460	ESTs	2.06	3.60
	418977	AA233094	Hs.191517	ESTs	1.54	2.23
40	404220			C6000989*:gi[7573285 emb]CAB87644.1] (AL		2.23
40	446708	BE549905	Hs.231754	ESTs	1.35	2.18
	453823	AL137967		gb:DKFZp761D2315_r1 761 (synonym: hamy2)	1.42	
	422050	AA302741	Hs.25786	ESTs, Moderately similar to JC5238 galac	1.40	2.50
	400704			Target Exon	1.48	1.00
4 =	406104			Target Exon	1.22	2.03
45	411008	AW813238		gb:MR3-ST0191-020200-207-d04 ST0191 Homo	1.00	2.13
	426582	AA381797	Hs.281121	ESTs	1.35	2.45
	430853	A1734179	Hs.105676	ESTs	1.43	2.23
	432420	AL044659	Hs.43791	ESTS	1.15	2.03
Ė	403197			C2002793*:gi]1353148 sp Q09568 YR86_CAEE	0.52	0.47 2.23
50	432407	AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	1.93	
	414996	AW747800	Hs.55016	hypothetical protein FLJ21935	1.56	2.72
	401016		11 000 40 4	ENSP00000227126:NAALADASE II PROTEIN.	1.25	2.45
	433335	AA584134	Hs.269454	ESTs	1.31	2.24 2.03
55	459668	BE244127	11 400070	gb:TCBAP1E0661 Pediatric pre-B cell acut	1.16	2.72
55	437722	AW292947	Hs.122872	ESTs, Weakly similar to JU0033 hypotheti	3.75 0.33	0.26
	452277	AL049013	Hs.28783	KIAA1223 protein	1.34	2.21
	425712	AA412548	Hs.21423	ESTs, Moderately similar to ALU1_HUMAN A		2.05
	427598	AA406057	Hs.97998	ESTs	1.06 1.24	2.59
60	412565	M85975	Hs.344069	gb:EST02500 Fetal brain, Stratagene (cat		0.41
60	422043	AL133649	Hs.110953	retinoic acid induced 1	0.48	2.45
	421814	L12350	Hs.108623	thrombospondin 2	0.48 1.32	2.45
	413645	AA130992	11- 05407	gb:zo15e02.s1 Stratagene colon (937204)	0.39	0.28
	435563	AF210317	Hs.95497	solute carrier family 2 (facilitated glu	1.60	2.45
65	452396	H10302	Hs.112577	ESTs		2.60
65	440612	BE561384		gb:601344969F1 NIH_MGC_8 Homo sapiens cD	1.08	1.65
	454721	AW815588	11- 6700	gb:QV0-ST0216-061299-068-a09 ST0216 Homo	1.44 1.68	3.85
	417796	AA206141	Hs.6786	ESTs	0.43	0.35
	432864	D16217	Hs.279607	calpastatin		
70	454480	AA088375	Hs.22612	hypothetical protein DKFZp566D1346	2.19	1.91 2.07
70	434490	AF143870	Hs.15246	ESTS	2.26	2.55
	418797	AA515814		gb:ng64b03.s1 NOI_CGAP_Lip2 Homo sapiens	1.42	2.53
	403871		11- 40470	C5001783*:gi[780367]gb[AAB05844.1] (L416	1.60	
	441283	AA927670	Hs.131704	ESTs .	1.31	3.63 2.38
75	442250	AW290871	Hs.129121	ESTs	1.14	1.26
75	456747	AL037357	Hs.125864	tropornodulin 2 (neuronal)	1.61	2.95
	425757	AA363171		gb:EST72986 Ovary II Homo sapiens cDNA 5	1.29	1.00
	405494			C2001837*:gi]12697903 db]]BAB21770.1 (A	2.09	1.00

	432250	AA452088	Hs.274170	Opa-Interacting protein 2	1.26	2.71
	431911	AK000156	Hs.272193	Homo saplens cDNA FLJ20149 fis, clone CO	1.46	2.60
	413923	AI733852	Hs.199957	ESTs	1.62	2.10
	449590	AA694070	Hs.268835	ESTs	1.20	2.53
5	438467	AA808027	Hs.123277	ESTs	1.48	2.10
,	432121	AJ824879	Hs.211286	ESTs, Weakly similar to 1207289A reverse	1.27	3.13
	412298	AW936300	113,211200	gb:QV4-DT0021-281299-070-a04 DT0021 Homo	1.42	2.60
			11- 49404		1.84	3.70
	408519	AA679082	Hs.43481	hypothetical protein DKFZp564K192		3.08
10	416067	T79732	Hs.14633	ESTs	1.11	
10	420497	AW206285	Hs.253548	ESTs	1.90	2.48
	405704			NM_001844*:Homo saplens collagen, type !	1.42	2.90
	423443	AJ432601	Hs.168812	Homo saplens cDNA FLJ14132 fis, clone MA	1.42	2.03
	415904	Z44679	Hs.336391	ESTs	1.62	2.94
	413786	AW613780	Hs.13500	ESTs	0.33	0.17
15	404031			C5001700*:qij9256616 ref[NP_061761.1] pr	1.94	2.29
10	457412	N40711	Hs.333300	hypothetical protein FLJ14026	1.92	3.20
	439719	AF086554	Hs.326048	Homo sapiens mRNA; cDNA DKFZp434M0420 (f	1.62	2.30
					1.81	2.42
	418161	A1950754	Hs.81716	ESTs	0.92	2.20
20	425894	AW954011	Hs.180711	ESTs		
20	419988	W39388	Hs.55336	Homo sapiens, clone MGC:17421, mRNA, com	1.34	2.57
	439668	AI091277	Hs.302634	frizzled (Drosophila) homolog 8	1.67	2.66
	450177	Al698091	Hs.107845	ESTs	1.50	2.25
	459704	AA719572	Hs.274441	Homo sapiens mRNA; cDNA DKFZp434N011 (fr	1.27	3.35
	410357	AW663614		gb:hj22e04.x1 NCI_CGAP_Li8 Homo sapiens	0.69	0.59
25	459234	AI940425		gb:CM0-CT0052-150799-024-c04 CT0052 Homo	1.67	2.08
	421313	NM_014923	Hs.103329	KIAA0970 protein	0.57	0.26
	431322	AW970622	110.100025	gb:EST382704 MAGE resequences, MAGK Homo	1.80	2.73
			11- 100400		0.40	0.56
	423086	AB028984	Hs.123420	KIAA1061 protein		2.50
20	425980	AA366951		gb:EST77963 Pancreas tumor III Homo sapi	1.33	
30	423185	BE299590	Hs.125078	omithine decarboxylase antizyme 1	0.60	0.56
	410840	AW806924		gb:QV4-ST0023-160400-172-h10 ST0023 Homo	1.50	2.88
	403917			Targel Exon	1.82	2.02
	437384	A1674710	Hs.174397	ESTs	1.26	2.05
	444389	AW439340	Hs.189720	ESTs	1.26	2.13
35	443318	Al051603	Hs.133141	ESTs	1.46	2.20
20	441093	AI698138	Hs.126918	ESTs	1.40	2.35
	439432	AI984203	Hs.57874	ESTs	0.88	2.18
			110.07074	gb:MR2-ST0131-111199-016-a04 ST0131 Homo	1.96	2.31
	454629	AW811114			2.77	2.55
40	406207			Target Exon		
40	444872	AI936264		p30 DBC protein	1.48	2.45
	401908			C17000154:gij12003980 gb AAG43830.1 AF21	1.15	2.28
	404730			Target Exon	1.84	2.78
	457498	A1732230	Hs.191737	ESTs	1.49	2.55
	448471	AA158617	Hs.21276	collagen, type IV, alpha 3 (Goodpasture	0.37	0.36
45	438978	A1095207	Hs.307972	ESTs	1.57	2.39
	418786	AJ796317	Hs.203594	Homo sapiens uncharacterized gastric pro	2.86	3.34
	400416	AF083130	110.20000	Homo sapiens CATX-14 mRNA, partial cds	2.03	1.55
		A1696334	Hs.14450	ESTs	1.32	2.38
	450446			ESTS	0.41	0.27
50	419791	A1579909	Hs.105104		2.01	1.50
20	449436	AA860329	Hs.279307	hypothetical protein DXFZp434l2117		
	430808	L08603	Hs.247980	melanocortin 4 receptor	1.09	2.18
	443116	A1033397	Hs.132225	ESTs	1.30	2.25
	437923	BE088433	Hs.334696	hypothetical protein KIAA1335	1.40	2.50
	403294			Target Exon	0.98	2.18
55	436007	Al247716	Hs.232168	ESTs	1.38	1.00
	430649	AB040941	Hs.247713	KIAA1508 protein	1.52	2.85
	437271	AL137445	Hs.28846	Homo sapiens mRNA; cDNA DKFZp566O134 (fr	1.29	2.59
	444500	AV651273	Hs.282966	ESTs, Moderately similar to 2109260A B c	1.22	2.05
	447434	R16890	Hs.137135	ESTs	1.72	2.85
60		1110030	113.107 133	NM_025006:Homo saplens hypothetical prot	2.04	2.68
00	400830	A1004E40	LI= 00202	ESTs, Weakly similar to I38022 hypotheti	1.09	2.74
	428114	AI821548	Hs.98363		1.67	1.38
	409688	Al150485		gb:qf36a10.x1 Soares_testis_NHT Homo sap		2.50
	4407B1	BE561823	Hs.281434	Homo sapiens cDNA FLJ14028 fis, clone HE	1.28	
15	442662	U78168	Hs.8578	Rap1 guanine-nucleotide-exchange factor	1.92	2.28
65	443078	M78728	Hs.132694	Homo sapiens cDNA: FLJ23149 fis, clone L	1.42	2.03
	440179	Al990151	Hs.125904	ESTs	1.49	2.63
	446780	R31107		gb:yh61g01.s1 Soares placenta Nb2HP Homo	1.96	2.78
	444173	AI126432	Hs.149493	ESTs	1.50	2.10
	417939	R53863	Hs.337512	ESTs, Weakly similar to ALUB_HUMAN !!!!	1.60	2.03
70	428490	BE301738	Hs.49806	ESTs, Weakly similar to A46010 X-linked	0.47	0.44
, ,	443869	Al141520	Hs.151464	ESTs, Weakly similar to ALUC_HUMAN IIII	1.25	2.68
		J05068	Hs.2012	transcobalamin I (vitamin B12 binding pr	2.12	1.15
	426322			Putative prostate cancer tumor suppresso	0.64	0.48
	411630	U42349	Hs.71119		1.30	2.33
75	454701	AW854930		gb:PM0-CT0263-201099-003-f06 CT0263 Homo		2.33
75	439795	N77294	Hs.194294	ESTs	1.17	
	425546	BE409762	Hs.26118	hypothetical protein MGC13033	1.17	2.85
	411245	AW833441		gb:QV4-TT0008-271099-020-g01 TT0008 Hamo	1.90	3.98

	434057	A F202775	Hs.35380	004 amilala	0.47	0.41
	434957 425724	AF283775 AA362525	HS.3538U	x 001 protein gb:EST72223 Namalwa B cells i Homo saple	1.38	2.63
	446847	T51454	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	0.34	0.28
	453216	AL137566	Hs.32405	Homo saptens mRNA; cDNA DKFZp586G0321 (f	1.28	2.19
5	421718	AL117574	113.02.700	Homo sapiens mRNA; cDNA DKFZp434L2221 (f	2.04	1.79
•	415924	H18047	Hs.335821	ESTs	2.02	3.17
	450850	AA648886	Hs.151999	ESTs	1.68	2.45
	443153	AJ371823	Hs.34079	ESTs	1.13	2.41
	434420	AA688278	Hs.194864	hypothetical protein FLJ22578	1.34	2.38
10	426126	AL118747	Hs.26691	ESTs	1.31	2.25
	421926	AA300591		gb:EST13437 Testis tumor Homo sapiens cD	1.48	2.40
	459563	A1590487	Hs.49760	gb:tt77d04.x1 NCI_CGAP_HSC3 Homo sapiens	1.74	3.33
	453006	AI362575	Hs.303171	ESTs	1.17	2.24
15	437223	C15105	Hs.330716	Homo saplens cDNA FLJ14368 fis, clone HE	0.54 1.04	0.46 2.18
13	417016 420223	AA837098 N27807	Hs.269933	ESTs ribosomal protein L4	2.08	3.10
	425303	AA354785	Hs.286	gb:EST63098 Jurkat T-cells V Homo sapien	2.18	2.85
	400375	NM_014115		NM_014115*:Homo sapiens PRO0113 protein	1.83	214
	456169	Y07909	Hs.79368	epithelial membrane protein 1	1.54	2.08
20	409707	AA861773	Hs.313501	ESTs	0.79	0.84
	422241	Y00062	Hs.170121	protein tyrosine phosphalase, receptor t	1.46	2.06
	443152	Al803470	Hs.204529	KIAA1806 protein	1.07	2.43
	452714	AW770994	Hs.30340	hypothetical protein KIAA1165	0.45	0.34
	415110	H04043		gb:yj45c03.r1 Soares placenta Nb2HP Homo	1.62	2.07
25	443251	BE185436	Hs.278839	ESTs	1.34	2.05
	433441	R37094	Hs.13742	ESTs	1.76	2.05
	434612	R76513	Hs.301183	molecute possessing ankyrin repeats Indu	0.83	2.88
	417807	R17806	Hs.269452	gb:yg09b06.r1 Soares infant brain 1NiB H	1.30	2.23
30	426902	Al125334	Hs.97408	ESTs	1.94	2.20 1.73
30	436028	AA731124	Hs.120931	ESTs	2.01 1.22	2.17
	428878 439749	AA436884 AL389942	Hs.48926 Hs.157752	ESTs Homo sapiens mRNA full length insert cDN	1.32	2.75
	442435	AL369942 A1986208	Hs.244760	ESTs, Highly similar to 834087 hypotheti	2.09	3.13
	416527	T62507	Hs.11038	ESTs	1.66	2.12
35	441808	AW118601	Hs.127887	ESTs, Moderately similar to 1609195B blo	1.22	2.58
<i>-</i>	417054	AF017060	Hs.174151	aldehyde oxidase 1	2.57	1.48
	446636	AC002563	Hs.15767	citron (rho-interacting, serine/threonin	1.16	2.23
	418442	Al873471	Hs.186898	ESTs	1.39	2.26
	416640	BE262478	Hs.79404	neuron-specific protein	0.31	0.26
40	403146			Target Exon	1.49	2.18
	457397	AW969025	Hs.109154	ESTs	1.32	2.26
	439189	A1951185	Hs.144630	nuclear receptor subfamily 2, group F, m	1.76	2.90
	423969	A1830571	Hs.34969	hypothetical protein DKFZp566N034	1.18	2.00
15	459683	A1674906	Hs.199460	gb:wc73f02.x1 NCI_CGAP_Pan1 Homo sapiens	1.74	2.00
45	426826	AK001890	Hs.172654	guanine nucleotide binding protein beta	2.04 0.40	1.60 0.29
	414462	BE622743	Hs.301064	arfaptin 1 transcription factor Dp-2 (E2F dimerizat	1.08	2.40
	438027 408623	N93047 AW811978	Hs.19131 Hs.254037	ESTs	1.64	3.08
	433765	AA909619	Hs.112668	ESTs	1.52	2.02
50	417132	N56605	Hs.269053	ESTs	1.64	2.51
-	416815	U41514	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	0.28	0.16
	435186	AL119470	Hs.145631	ESTs	1.74	3.10
	411107	AW958042	Hs.95870	PTD015 protein	0.49	0.24
	406930	U04691		gb:Human offactory receptor (OR17-219) g	2.21	3.88
55	411026	AW813786		gb:RC3-ST0197-120200-015-b05 ST0197 Homo	1.64	1.03
	415766	H01613	Hs.50628	adaptor-related protein complex 4, sigma	1.64	2.51
	446018	AW631111	Hs.249727	gb:hh92e12.y1 NCI_CGAP_GU1 Homo saplens	1.56	2.48
	440125	AW238410	Hs.253888	ESTs	1.46	2.25
6 0	449832	AA694264	Hs.60049	ESTs	1.27	2.33
60	431899	AA521381 BE142052	Hs.187726	ESTS	1.11 1.06	2.53 2.00
	431531 441077	AI241273	Hs.62654 Hs.15312	kringle-containing transmembrane protein ESTs	1.12	2.13
	426799	H14843	Hs.303154	popeye protein 3	0.61	0.51
	419480	BE536584	Hs.122546	hypothetical protein FLJ23017	1.88	2.38
65	455908	BE156306	. 10. 1220 10	gb:QV0-HT0367-150200-114-h04 HT0367 Homo	1.77	2.55
0.5	403332			Target Exon	1.46	2.60
	455753	BE075124		gb:PM1-BT0585-110200-003-h02 BT0585 Homo	1.40	2.43
	404429			Target Exon	1.31	2.01
	438941	AF075047	Hs.31864	ESTs	1.34	2.21
70	428745	AA433896	Hs.201634	ESTs	1.72	2.06
	411567	AW851630		gb:MR2-CT0222-211099-002-h06 CT0222 Homo	1.60	2.70
	458714	R20916	Hs.344777	ESTs	0.93	2.07
	426839	M74782	Hs.172689	interleukin 3 receptor, alpha (low affin	1.39	2.71
76	444539	A1955765	Hs.146907	ESTs, Weakly similar to 2004399A chromos	1.66	2.18
75	407322	AA171892	Hs.324570	ESTs, Weakly similar to ALU3_HUMAN ALU S ab:DKFZp547F152_r1 547 (synonym: hfbr1)	1.30	2.65 2.73
	453826	AL138129	U. 25757F	ESTs	1.52 1.24	2.00
	435695	AA694324	Hs.257675	Cola	1.24	4.00

1.80

3.08

Target Exon

402294

## 17759 ## 173507 Hs.1 2549 EST Montange Monta		402294			Target Exon	1.60	3.08			
C-17/25 C-17		417759	R13567	Hs.12548	ESTs					
\$ 45300 AMS9170P Hs. 125505 Hs. 12570 Hs. 125505 Hs. 12570 Hs. 12570 Hs. 125505 Hs. 12570 Hs. 12		417527	AA203524		gb:zx56e10.r1 Soares_fetal_liver_spleen_					
5 45300 AM691701 H-12855		427526	AA405062	Hs.345830	gb:zu12e04.r1 Soares_testis_NHT Homo sap	2.03	1.90			
Hard	5					1.12	2.20			
## 1955.55 AP\$21875 AP\$21875	•			Hs 128653						
Activity Months				1.0.1.20000						
141056 K17186 K17187 K17177 K										
Addition April 1985 He 1,17370 He 1,173				11- 405300						
## 151476 NAL (1231 Hz.)25458 price for color victors applied to the color	10									
45258 AASSA002 W36339 H. 15059 P1010 profels P3010	10		AF072164							
455.937		451478	NM_012331	Hs.26458	methionine sulfoxide reductase A					
49555		425288	AA354502		gb:EST62799 Jurkat T-cells V Homo saplen					
409555		456397	W28339	Hs.150580	PTD010 protein	1.11	2.29			
					C12001521:pi[7513934]pir[[731081 cca3 pr	2.30	1.00			
1985 AASSP18 14.1947 ESTA, Weskey willing to 120728A meres 1.26 2.60	15		A1088196	Hs.22968		1,21	2.60			
466916 446927 M35037 Hz. 202565 ESTs, Moderately similar to 2109/26A B c 1.55 2.23 46192 A.A158031 Hz. 202565 ESTs, Moderately similar to 2109/26A B c 1.55 2.23 46192 A.A158031 Hz. 34442 46192 A.A158031 Hz. 362865 46	1.5									
440909 AM89379 Hs. 128625 ESTs, Moderately similar to 2108268A 8 e 1.56			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
445925 W98137 Hz. 202955 445924 A.1935201 Hz. 34402 445924 A.1935201 Hz. 34402 445924 A.1935201 Hz. 34402 445924 A.1935201 Hz. 329555 445927 R7 1481 45592 A.1945201 Hz. 202913 45924 A.1945201 Hz. 202913 45924 A.1945201 Hz. 329525 45920 E.1925205 Hz. 20217 4000 E.1925205			A14C0070	Uc 126622						
41182 AA135301 Hs. 344442 45704 AA400352 Hs. 112861 45704 AA400525 Hs. 112861 42257 RF. 112861 42258 AA194462 Ls. 202247 42258 AA194462 Ls. 112862 42258 Hs. 112861 42258 Ls. 11										
45704 AA40352 Hs. 12861 ESTs, Weakly similar to PC4299 ferrilin 1.54 2.05 442537 PT418 Hs. 229555 ESTs, Weakly similar to PC4299 ferrilin 1.48 2.15 4584 AVM44402 AVM44602 Hs. 22749 ESTs, Weakly similar to PC4299 ferrilin 1.48 2.15 4584 AVM44602 Hs. 22749 ESTs AVM44602 AVM4	20									
405542 A498943 Hs. 298555 ESTs, Weakly similar to PC4259 ferritin 1.48 2.15 45944 A49845 Hs. 2073 FSTs, Weakly similar to ALUB, HUMAN A 1.31 2.25 459402 B229567 Hs. 20724 Hs. 20749 ESTs 4004 41855 197133 420441 A989150 Hs. 180383	20									
42257 AVM-4485 Hs 202247 ESTs, Moderately strillar to ALUB, HUMAN A 1.31 2.25										
45948 AM-4682 H. 20224 F. 2170 A 1556 F. 19170 A 1285 F. 19170				Hs.295655						
Assemble		422857								
413565 191703 40991 190124 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022		445948	AW444662	Hs.202247	ESTs					
413565 191703 40991 190124 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022 Hs. 20024 Hs. 20022	25	454002	BE299567	Hs.271749	ESTs, Moderately similar to ALU8_HUMAN A	1.31	2.25			
420441 Al996160 Hos 190380 dual specificitly phosphatase 6 0.99 2.33	_	413656			ab:ye20g09.s1 Stratagene lung (937210) H	2.10	1.69			
412062				Hs 180383		0.99	2.33			
409991 6501816 Hs.281927 FSTE 1.76 2.83										
\$3534										
435136 RZ7299 Hs. 10172 ESTS 0.76 3.40	20									
451052	30									
413928										
439448										
April			AA442498		ESTs, Moderately similar to Z195_HUMAN Z					
419056 A524886 April 1/6 Hs. 130283 ESTS 2.44 1.32 2.08		439448	AA970788	Hs.257586	ESTs					
419056 A524886 April 1/6 Hs. 130283 ESTS 2.44 1.32 2.08	35	403344			NM_000341:Homo saplens solute carrier fa	1.36	2.22			
435428 A781165 Hs.30283 ESTs 2.44 1.32		418056	AA524886		qb:nh34f02.s1 NCI_CGAP_Pr3 Home saplens	1.42	2.85			
419986 AW19677 Hs. 131232 SSTs 1.80 2.65 400926 AW19677 Hs. 131232 SSTs 1.80 2.65 452625 AA724771 Hs. 61425 SSTs 1.64 2.18 452797 AM269787 Hs. 131233 SSTs 1.64 2.18 452797 AM26978 AW19677 Hs. 131203 SSTs 1.47 3.16 453120 AJ248193 Hs. 11980 SSTs 1.47 2.83 449567 AW19679 Hs. 1880614 SSTs 1.48 2.45 459628 AB021665 Hs. 55276 potassium voltage-gated channel, Shal-re 1.70 2.23 455 416617 H68311 Hs. 205980 SSTs 1.83 2.04 45266 AJ767250 Hs. 165240 SSTs 1.83 2.04 45260 AJ3390 AA686950 Hs. 265168 Isoucher ich repeat (in FUI) interactin 0.33 0.21 45260 AJ3390 AA686950 Hs. 265168 Isoucher ich repeat (in FUI) interactin 0.33 0.21 451443 AW295527 Hs. 210303 SSTs 1.87 2.25 451433 AV7985527 Hs. 149424 Homo saplens PRNA; cDNA DKF2p761G18121 (2.00 4.90 451443 AW295528 Hs. 149424 Homo saplens PRNA; cDNA DKF2p761G18121 (2.00 4.90 45260 X92108 Hs. 149424 Homo saplens PRNA; cDNA DKF2p761G18121 (2.00 4.90 45260 X92108 Hs. 149424 Homo saplens PRNA; cDNA DKF2p761G18121 (2.00 4.90 45260 X92108 Hs. 149424 Homo saplens PRNA; cDNA DKF2p761G18121 (2.00 4.90 45260 X92108 Hs. 117323 SSTs 1.66 4.00 45260 X92108 Hs. 117323 SSTs 1.66 4.00 45260 X92108 Hs. 117329 SSTs 1.66 4.00 45260 X92108 Hs. 117329 SSTs 1.60 45260 X92108 Hs. 117329 SSTs 1.90 45791 X92108 Hs. 18978 hypothetical protein FLJ10097 0.44 0.19 45950 X4031615 Hs. 130722 SSTs 1.90 45795 V22860 AJ49707 Hs. 18888 ESTs, Weakly similar to PC4259 ferritin 2.72 8.25 402797 AV2797 Hs. 28100 Hs. 10189 SSTs 1.90 404917 AK1965 AW207597 Hs. 28100 Ubiquitin-like 3 0.36 1.75 402797 Linguit Econ 1.50 404917 AV2797 Linguit Exit AV2797 Lingui				Hs.130293		2.44	1.32			
400 45825 AA72777						1.32				
457873 AJ39787 Hs.7146 ESTs 1.47 AJ16 452797 AJ39787 Hs.7146 ESTs 1.47 AJ16 45878 A980780 Hs.1188614 ESTs 1.47 AJ16 45867 AJ890780 Hs.188614 ESTs 1.48 ESTs 1.41 2.83 449667 AJ890780 Hs.188614 ESTs 1.48 2.45 458623 AB021865 Hs.55276 polassium voltage-gated channel, Shal-re 1.70 2.23 458 416617 Hs9311 Hs.205980 ESTs 1.83 2.04 452266 AJ767250 Hs.165240 ESTs 0.58 0.43 404606 401814 Target Exon 1.47 3.75 428403 AJ393048 Hs.326159 Hs.260180 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich AD04 DK72761618121 (2.00 4.90 451443 AW295527 Hs.210303 pp:PM0-H10425-Homo 2.15 1.69 45704 AA027823 Hs.149424 Hs.149426 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich AD04 DK72761618121 (2.00 4.90 45744 AA027823 Hs.149424 Hs.149424 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich AD04 DK72761618121 (2.00 4.90 45744 AA027823 Hs.149424 Hs.149426 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich AD04 DK72761618121 (2.00 4.90 45744 AA027823 Hs.149424 Hs.149426 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich AD04 DK72761618121 (2.00 4.90 45744 AA027823 Hs.149424 Hs.149426 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) interactin 0.33 0.21 Homo saplens rich repeat (in FLI) int										
452787 AJ593787 Hs.7146 ESTs 1.47 3.16	40									
435120	70									
49587 A990790 Hs.188614 ESTs potassium voltage-gated channel, Shal-re 1.70 2.23 409626 A767250 Hs.165240 ESTs 1.83 2.04 406606 476960 A767250 Hs.165240 ESTs 0.59 0.43 409606 476960 A767250 Hs.165240 ESTs 0.59 0.43 428403 A1393048 Hs.326159 leucher rich repeat (in FUI) interactin 0.33 0.21 428403 A39304 Hs.260180 Homo saplens mRNA; cDNA DKF2p761G18121 (2.00 4.90 451443 AW295527 Hs.210303 ESTs 0.57 0.43 451443 AW295527 Hs.210303 ESTs 0.57 0.40 A0072823 Hs.149424 Homo saplens mRNA for subtelomeric repeat s 2.40 2.58 452406 Mg.108 Hs.147323 ESTs 1.46 2.10 428200 A33310 Hs.18373 ESTs 1.46 2.10 428200 A33101 Hs.18373 ESTs 1.46 2.10 428200 A33101 Hs.18373 ESTs 0.42 0.26 428736 AA431615 Hs.130722 ESTs 0.42 0.26 428736 AA431615 Hs.130729 ESTs 0.42 0.26 428737 A441615 Hs.130729 ESTs 0.42 0.26 428738 AA41615 Hs.130729 ESTs 0.42 0.26 428738 AA41615 Hs.130729 ESTs 0.42 0.26 428739 AA416777 Hs.28102 ESTs 1.90 2.45 428720 AA416777 Hs.28102 ESTs 1.90 2.15 428720 AA416777 Hs.28102 ESTs 1.90 2.45 428720 AA416777 Hs.28102 ESTs 1.90 2.45 428720 AA416707 Hs.173091 Ubiquitin-like 3 70 Accession: Gene duster number Accession Centumber Gene duster number Accession: Gene duster number Accession: Gene duster number Accession: Gene duster number Accession: Gene duster number A2450 AA41690 AA43682 AM90728 AW30735 AM304553 AA98268 AR080848 AR089329 AW307356 AM334284 H29050 AM39258 AM807284 AW307324 AW707816 EST45 AW307324 AW707816 EST45 AW307324 AW7071816 EST45 AW307324 AW707181										
455 409528 AB021865 Hs.55276 polassium voltage-gated channel, Shal-re 1.70 2.23 416617 Hs3311 Hs.20598 ESTs 1.83 2.04 45266 A1767250 Hs.165240 ESTs 0.59 0.43 404606 1.47 3.75 404606 401814 228403 A1393048 Hs.326199 leucine rich repeat (in FLI) interactin 0.33 0.21 428403 A1393048 Hs.326199 leucine rich repeat (in FLI) interactin 0.33 0.21 428403 A393048 Hs.326199 leucine rich repeat (in FLI) interactin 0.33 0.21 451443 AW295527 Hs.210303 ESTs 0::PMO-HT0425-170100-002-a10 HT0425 Homo 2.15 1.69 45704 AA027823 Hs.149424 Homo saplens PNAS-130 mRNA, complete dos 2.64 1.65 424060 X92108 Hs.117323 ESTs 1.87 2.25 424060 X92108 Hs.149424 Homo saplens PNAS-130 mRNA, complete dos 2.64 1.65 428520 A331901 Hs.184736 hypothetical protein FLJ10097 0.44 0.19 428520 A331910 Hs.184736 hypothetical protein FLJ10097 0.44 0.19 428520 A331615 Hs.130722 ESTs 1.90 2.45 416225 AA377730 Hs.188684 ESTS, Weakly similar to PC4259 ferritin 2.72 6.25 409177 448955 AW207597 Hs.28102 ESTs 2.08 1.75 42892 AA149707 Hs.1873091 ublquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene duster number ADDESSION: Gene duster num										
455										
## ## ## ## ## ## ## ## ## ## ## ## ##		409628	AB021865	Hs.55276						
1	45	416617	H69311	Hs.205980	ESTs					
Mode		452266	AI767250	Hs.165240	ESTs	0.58	0.43			
401814 428403 A1393048 Hs. 326159 leucline rich repeat (in FLII) interactin 0.33 0.21					Target Exon	1.47	3.75			
188 188 188 188 188 188 188 188 188 188 188 188 188 188 182 188 182 188 182 188 182 182 183 182 183 182 183						2.00	1.91			
A33390			V1303U48	Hs 326159						
451443 AW295527 Hs.210303 ESTs gb:PM0-HT0425-170100-002-a10 HT0425 Homo 2 15 1.69 452704 AA027823 Hs.149424 Homo saplens PNAS-130 mRNA, complete cds 2 64 1.65 424060 X92108 Hs.sepiens mRNA for subtelomeric repeat s 2.40 2.58 433331 A7738815 Hs.117323 ESTs 1.46 2.10 428520 AA331901 Hs.184736 hypothetical protein FLJ10097 0.44 0.19 439492 AF086310 Hs.103159 EST6 0.42 0.26 426735 AA431615 Hs.130722 ESTs 1.90 2.45 416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 416225 AA577730 Hs.28102 ESTs 1.90 2.45 418955 AW207597 Hs.28102 ESTs 2.08 1.75 407917 Target Exon 1.60 2.15 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 65 Fixey Cat Number Gene cluster number Accession: Genbank accession numbers Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers Pkey: CAT Number Gene cluster number Accession: Genbank accession numbers Pkey: CAT Number Gene cluster number Accession: Genbank accession numbers Pkey: CAT Number Gene cluster number Accession 10421_1 ACCession AA451966 NM, 016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 A08255 1049351_1 AV3807282 AW137106 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 A08255 1049351_1 AV3807282 AW1377104 AW807319 AW807314 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	50									
## 411188 BE161168 gb:PM0-HT0425-170100-002-a10 HT0425 Homo	50									
4527704 AA0277823 Hs.149424 Homo saplens PNAS-130 mRNA, complete cds 424060 X92108 Hs.apiens mRNA for subtelomeric repeat s 424060 X92108 Hs.apiens mRNA for subtelomeric repeat s 4240 2.58 428520 AA331901 Hs.184736 hypothetical protein FLJ10097 0.44 0.19 439492 AF086310 Hs.103159 ESTs 0.42 0.26 426736 AA431615 Hs.130722 ESTs 1.90 2.45 416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 40017 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene duster number Genbank accession numbers Pkey CAT Number Gene duster number Genbank accession numbers Accession: AA451956 NM_016370 AB036693 AL139228 R58124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408139 10421_1 AA51956 NM_016370 AB036693 AL139228 R58124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408139 10421_1 AA51956 NM_016370 AB036693 AL139228 R58124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408255 1049351_1 AW807321 AW807282 AA991348 AI204553 AA992664 N80848 AA699329 AI824676 R26624 R49653 AW807321 AW807321 AW807282 AW9177104 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807324 AW8				RS.210303						
1										
A3331				HS.149424						
428520 A331901 Hs.184736 hypothetical protein FLJ10097 0.44 0.19 439492 AF086310 Hs.103159 ESTs 0.42 0.26 426736 AA431615 Hs.130722 ESTs 1.99 2.45 416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 404917 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 Zarget Exon 2.12 1.37 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE BB Pkey: Unique Eos probeset Identifier number Accession: Genbank accession numbers Pkey: Unique Eos probeset Identifier number Accession: Genbank accession numbers ACCESSION: AA51966 NM_016370 AB036693 AL 139228 RS8124 AI634847 AL 119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408139 10421_1 AA51966 NM_016370 AB036693 AL 139228 RS8124 AI634847 AL 119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408255 1049351_1 W9807321 AW807326 AW130622 AA991348 AI204553 AA992664 N80848 AA699329 AIB24676 R26624 R49853 AW807321 AW807321 AW807326 AW17104 AW8073319 AW807115 AW807344 AW80		424060	X92108							
439492 AF086310 Hs.103159 EST6 0.42 0.26 426736 AA431615 Hs.130722 EST8 1.90 2.45 416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 404917 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.76 42797 Target Exon 2.12 1.37 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 88 Pkey: Unique Eos probeset Identifier number Accession: Gene duster number Accession: Gene duster numbers Pkey CAT Number: Gene duster numbers Accession: Genbank accession numbers ACCESSION: AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807326 AW177104 AW807319 AW807315 AW807324 AW07318 BE141575 AW845849 AW807105 AW845868	22									
439492 AF086310 Hs.103159 ESTs		428520	AA331901	Hs.184736	hypothetical protein FLJ10097					
416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 404917 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 2.12 1.37 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset identifier number Accession: Gene diuster number Accession: Genbank accession numbers Pkey CAT Number: Gene diuster number Accession: Genbank accession numbers ACCESSION: AA451966 NM_016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 AV451956 NM_016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 AV451956 NM_016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 AV451956 NM_016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 AV451956 NM_016370 AB036693 AL139228 RS8124 AI634847 AL119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 AV451956 NM_017321 AW807321 AW807326 AW907115 AW807334 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868		439492	AF086310	Hs.103159	ESTs	0.42				
416225 AA577730 Hs.188684 ESTs, Weakly similar to PC4259 ferritin 2.72 6.25 404917 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 Target Exon 2.12 1.37 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset identifier number Accession: Genbank accession numbers Pkey CAT number: Gene duster number Accession: Genbank accession numbers ACCESSION: AA51956 NM_016370 AB036693 AL139228 RS8124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 408139 10421_1 AA51956 NM_016370 AB036693 AL139228 RS8124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 408255 1049351_1 AW807321 AW807262 AM917104 AW807319 AW807115 AW807344 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868		426736	AA431615	Hs.130722	ESTs	1.90	2.45			
404917 Target Exon 1.60 2.15 448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers Pkey CAT Number 10421_1 AA51956 NM_016370 AB036693 AL 139228 R58124 AI634847 AL 119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408139 10421_1 AA51956 NM_016370 AB036693 AL 139228 R58124 AI634847 AL 119333 W07356 AI334284 H29050 AI192685 AA652438 AW172843 W19794 408255 1049351_1 AW807321 AW807326 AW130522 AA991348 AI204553 AA992664 N80848 AA699329 AIB24676 R26624 R49853 AW807321 AW807321 AW807321 AW807326 AW178116 BE141575 AW845849 AW807105 AW845868				Hs.188684	ESTs. Weakly similar to PC4259 ferritin	2.72	6.25			
448955 AW207597 Hs.28102 ESTs 2.08 1.75 402797 Target Exon 2.12 1.37 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number 408139 10421_1 AA51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AV31860 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW8073262 AW177104 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	60					1.60	2.15			
## 402797 ## 457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 ## 426982 AA149707 Hs.173091 ubiquitin-like 3 0.36 0.17 ## TABLE 8B Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers Pkey	00		AM207597	Hs 28102						
457951 U23860 gb:Human clone mcag19 chromosome 16 CTG 1.72 2.00 426982 AA149707 Hs.173091 ubiquitin-like 3 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number 10421_1 AA51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AM51956 NM_016370 AB036693 AL139228 AB036693 AL13928 AB036693 AL13928 AB036693 AL13928 AB036693 AL13928 AB036693 AL13928 AB036693 AL139			AVVZUIJOI	16.20102						
426982 AA149707 Hs.173091 Ubiquitin-like 3 0.36 0.17 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number Accession numbers AA451956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AA51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AA51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AA61955 1049351_1 AW807321 AW8073262 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW8073262 AW177104 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868			1100000							
70 TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers Pkey CAT Number Accession numbers Pkey CAT Number Accession numbers 75 Add 1986 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807321 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868				11- 472004						
TABLE 8B Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers Pkey CAT Number (Accession numbers) Pkey CAT Number (Accession numbers) Pkey CAT Number (Accession numbers) Add1199 10421_1 AA511956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807324 AW807324 AW807324 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	65	426982	AA149/U/	HS. 173091	upiquiun-iixe 3	0.30	0.17			
Pkey: Unique Eos probeset identifier number CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number 10421_1 AACSISION AACSI	03									
70 CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number 10421_1 AAC1956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AA61956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807262 AW177104 AW807319 AW807115 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868		TABLE 88	·							
70 CAT number: Gene duster number Accession: Genbank accession numbers Pkey CAT Number 10421_1 AAC1956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 AA61956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807262 AW177104 AW807319 AW807115 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868										
75 Accession: Genbank accession numbers Pkey CAT Number 408139 10421_1 AA51956 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49853 AW807321 A		Pkey:	Unique Eos	probeset Identi	fier number					
Pkey CAT Number 408139 10421_1 Accession AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992864 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807319 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868		CAT numb	er: Gene duste	r number						
Pkey CAT Number 408139 10421_1 Accession AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992864 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807319 AW807319 AW807315 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	70				rs .					
75 408139 10421_1 AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807321 AW807319 AW807319 AW807319 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	. •									
75 408139 10421_1 AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807321 AW807319 AW807319 AW807319 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868										-
75 408139 10421_1 AA451966 NM_016370 AB036693 AL139228 R58124 Al634847 AL119333 W07356 Al334284 H29050 Al192685 AA652438 AW172843 W19794 N21460 Al743862 AW130622 AA991348 Al204553 AA992664 N80848 AA699329 Al824676 R26624 R49653 AW807321 AW807321 AW807321 AW807321 AW807319 AW807319 AW807319 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868		Okov	CAT Numbe	r Arracein	1					
75 N21460 AI743862 AW130622 AA991348 AI204553 AA992664 N80848 AA699329 AI824676 R26624 R49653 408255 1049351_1 AW807321 AW807262 AW177104 AW807319 AW807115 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868				. , 100003101 AAA6102	6 NNA -016370 AR036603 AI 120228 RER124 AIE24847 .	AI 119393 W/M	356 Al334	284 H29050 Att92685	AA652438 AW17	2843 W19794
408255 1049351_1 AW807321 AW807262 AW177104 AW807319 AW807115 AW807344 AW807324 AW178116 BE141575 AW845849 AW807105 AW845868	75	400133	10421_1	יישון איני	17/2962 AM/120622 AL 133220 NG 124 A1004041 /	SUBVIS TANGOS	29 AIR2467	6 R26624 R49653		,0 ,
4UB233 1_1 AVIOU722 AVI 17 TOU AVIOU7313 AVIOU7313 AVIOU7324 AVI 17 TOU BE 14133 AVI 1	13	100000	4040054 4	112 140U A	HI TUUUE MIT IUUUEE MMJJ IU40 MEUHJUU MMJJZ004 IV H ANNONTOED ANNITTANA ANNONTTAN ANNONTAE ANNON	72A4 010230	24 AW/1791	16 RE141575 AWAAS	849 AW807105 AV	NB45868
RE140347 WAARNULY W WARRILY W WARRILY 250 WARRILY 250 WARRILY 202 WARRILY 202 WARRILY 202 WARRILY 202 WARRILY 202		408255	1049351_1	AVVBU/3	10 AAN 11 1 1004A EL CIONANA POLL I LI ANA 2021 DAVIOUS	1 344 WALON 1 24	5 5 VIIII	10 05 17 1010 M1040	אל ממו וממזוח ביר	
				BE 14094	4 WANDOLLILO WANDOLJOL WANDOLJOR WANDOLJOSO WANDOL	300 AYY84366	v			

	408283	1050275_1	BE141579 AW807555 AW807502 BE141596 AW845845 AW807500 AW845864 AW807480 AW807486 AW807478 AW178109 AW807228
	400263	1030275_1	AW807374 AW807125 AW846124 AW807470 AW807477 AW807510 AW807208 BE141573 AW807465
	408839	1085657_1	AW277084 R27662 R26970 D79194
	409126	110159_1	AA063426 AW962323 AW408063 AA063503 AA772927 AW753492 BE175371 AA311147
5	409282	111512_1	AW956480 AA069840 AA384646
	409291	1115745_1	AW373472 AW373484 BE071899 BE071898
	409367	1123651_1	AW382767 BE153835 BE153702 BE153572
	409688	114831_3	Al150485 AW938392 AA076894 AW883422
10	409692	114869_1	AI500724 AA399661 AA397891 AI471084 AI423511 T07531 AI094336
10	409894	1157906_1	BE081731 AW861738 AW803629 BE081969
	410154	117950_1	F06959 Z43559 AA082002
	410357 410642	1197159_1 1213736_1	AW663614 BE046540 BE045760 AW827443 BE046544 AW792784 Z44444 H06639
	410725	1218207_1	AW799279 AW799395 AW799392 AW799276 AW799479 H57885
15	410730	121847_1	AW368860 AA457091 Al903441 AA088823 W88852 AW979154 AA826016 R94779
	410744	1219485_1	HB6002 W92289 AW801558 AW801324 AW801270 AW801307 AW801351 AW801357 AW801299 AW801609 AW801356 AW801420
		<u>-</u> -	AW801425 AW801358 AW801429 AW801428 AW801427 AW801424 AW801306
	410840	1223800_1	AW806924 AW866537 AW866473 AW866298 AW866390 AW866478 AW866454 AW866309 AW866539 AW866521 AW866547 AW866517
20			AW866403 AW866369
20	410956	1227882_1	AW938322 AW938307 AW938320 AW938323 AW811840
	411008	1229027_1	AW813238 AW813474 AW813334 AW816081 AW813296 AW813363 AW813397 AW813327 AW813328 AW816031 AW816140
	411026	12293731	AW813786 AW819561 AW819682 AW819563 AW819688 AW819499 AW819498 AW819690 BE065081
	411141 411184	1233793_1 1234977_1	AW821117 AW855541 AW855405 AW855374
25	411188	1235093_1	BE161168 BE162466 AW821260
20	411245	1236412_1	AW833441 AW833552 AW833700 AW833610 AW833673 AW833675
	411347	1239834_1	AW838126 AW838294 AW838247 AW838251 AW838292 AW838299 AW838374
	411432	1245636_1	AW846272 AW846564 AW846545 AW846285 AW846135 AW846317 AW846200 AW846265 AW846326 AW846196 AW846357 AW846153
20			AW846286 AW846319 AW846277 AW846381 AW846438 AW846481 AW846352
30	411496	1248073_1	AW849241 AW849569 AW849243
	411567	1249774_1	AW851630 AW851703 AW851735 AW851723 AW851712
	411590 411608	125064_1 1251259_1	T96183 T64070 AA094134 AW853441 BE145228 BE145218 BE145162 BE145283
	411652	1251259_1	AW855393 AW855560 AW855424
35	411880	1263110_1	AW872477 BE088101 T05990
-	411918	1265807_1	AW876354 AW876379 AW876318 AW876290 AW876234 AW876125 AW876199 AW876198
	411920	1265812_1	AW876263 AW876257 AW876261 AW876273 AW876231 AW876398 AW876334 AW876134 AW876371 AW876308 AW876314 AW876328
			AW876169 AW876331 AW876426 AW876407 AW876412 AW876322 AW876363 AW876218 AW876240 AW876141 AW876138 AW876326
40			AW876181 AW876131 AW876378 AW876206 AW876191 AW876188 AW876376 AW876289 AW876415 AW876209 AW876366 AW876343
40			AW876347 AW876165
	412085	1276467_1	AW891667 H93096 AW903782 AW903668 AW903672 AW903763 AW903784
	412252 412274	1285293_1 128647_1	ANIO1443 R20332 F07484
	412298	1288098_1	AW936300 AW936538 AW936386 .
· 45	412302	1288128_1	AW936334 AW936371 AW936474
	412679	1321229_1	BE144762 AW979091
	412902	1335166_1	BE008018 BE008025 BE008026 BE007959 BE007994 BE008016 BE008019 BE008024 BE008022 BE008027 BE008029 BE008020 BE008015
			BE008021 BE008028 BE008023 BE008030 BE008014
50	413035	1346295_1	BE155563 BE155574 BE155556 BE061294 BE063792 BE063803 BE063775 BE063801 BE063809 BE063777 BE063784 BE063808 BE066125 BE063782 BE063805 BE063812
30	413068	1348104_1	8EU63/92 BEU63803 BEU637/5 BEU63801 BEU63809 BEU63777 BEU63764 BEU63606 BEU66125 BEU63762 BEU63605 BEV63605 BE
	413196 413346	135322_1 136323_1	AA127300 K13044 AA127404 AA128586 AA463667 AA235203
	413444	1370831_1	BE141019 BE141473 BE141529
	413489	1373392_1	BE144228 BE144291
55	413593	137891_1	AA205248 AA130658 AA204737
	413645	138145_1	AA130992 AA503835 AW969537
	413656	1381628_1	T91703 BE155222 BE155240 BE155274 BE155275 T92469
	413750	1386250_1	BE161453 W28808
60	413885	1397288_1	BE177442 BE177439 BE177445 BE177440 BE177448 BE177444 BE177433 AA580288 AA315555 AA133031 AA377748
UU	413888 414051	139750_1 1413185_1	BE244127 BE246216
	414623	1466952 1	BE331050 BE389191 BE389697
	415054	151827_1	AI733907 AA159708 AI732614
	415110	1522905_1	H04043 D60988 D60337
65	415157	1525616_1	D63257 D78918 D63214
	415361	1534970_1	F06724 Z43690 R21681
	415378	1535274_1	T16964 F07075 H10256
	415449	1537026_1	H15034 T17195 F09059 M79237 Al267298 AA169260
70	415770 415806	155437_1 155668_1	A169560 AA169840
. 0	415855	155930_1	AI921875 AA170835 AA866613
	415989	156454_1	AI287700 AI720344 AA191424 AI023543 AI469633 AA172056 AW958465 AA172236 AW953397 AA355086
	416311	158797_1	D80529 D81719 C14833 AA179446 AA357794
76	416463	1595999_1	H59241 H57540 R00795
75	417086	164830_1	AA194446 AA194603 AA193162 AA196396 Z24810
	417117 417324	1651230_1	N46778 W86339 N75221 AW265494 AA455904 AA195677 AW265432 AW991605 AA456370
	417324	166714_1	ULI POPEL LA LIGORATA LA LIGORATA LA LIGORATA CALLOCALIA

	417527	168576_1	AA203524 W88451
	417670	1692163_1	R07785 T85948 T86972
	417882	1705458_1 1706141_1	R22311 R23982 R23997
5	417890 418056	171841_1	R79048 R23111 AA524886 AW971347 AA211537
,	418797	179095_1	AA515814 AA515037 AA230024 AA228343
	418859	179717_1	AA229558 AA345492 AA229582
	419145	182217_1	N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815
10	419386	184356_1	AA236867 AA237066 AA354236 AW957759 H08961
10	419501	185354_1	AW843822 AW844020 AA825923 AW968657 AW854173 BE084673
	421338 421582	201378_1 2041_1	AA287443 AA419385 BE084078 A1478347 A1910275 X00474 X52003 X05030 NM_003225 AA314326 AA308400 AA506787 AA314825 A1571948 AA507595 AA614579 AA587613 R83818
	421302	2041_1	AA568312 AA614409 AA307578 AI925552 AW950155 AI910083 M12075 BE074052 AW004668 AA578674 AA582084 BE074053 BE074126
			BE074140 AA514776 AA588034 BE074051 BE074068 AW009769 AW050690 AA858276 R55389 Al001051 AW050700 AW750216 AA614539
15			BE074045 Al307407 AW602303 BE073575 Al202532 AA524242 Al970839 Al909751 BE076078 Al909749 R55292
	421718	20595_1	AL117574 AI681945 BE503055 AW015330 C16652 AA441855 AA329853 AW962502 AA441830 AF114049
	421926	209246_1	AA300591 AW963893 AA300493
	422259 422297	214322_1 214851_1	AA307584 AW795791 AW795790 AW961290 AA308338 R60841 BE378716 R13001
20	422337	215447_1	R38572 R49597 H51730 F10488 AA309198 BE011889 AA613236
-0	422444	216595_1	AA310688 AA355321 AW962134
	422857	222190_1	R71461 AA328744 AA318128 BE081817 BE081587 BE081751
	422936	223099_1	AA319278 AA319712 AW961504 AW954956
25	422940	223106_1	BE077458 AA337277 AA319285 AV647015 AV647162 AA477047 AW392066 BE168052 AA657684 AL040747 AL043589 AL041618 W24630 AA419002 AA778650 Al028269
23	422959	22327_3	AV547015 AV647162 AA477047 AW392066 BE168052 AA657684 AL040147 AL045363 AL041616 W24650 AA415002 AX776050 AU620205 AW378085 AW780241 AJ984255 AW129462 AJ271476 AL040967 AA836991 AL040910 AW273346 AA132452 AJ375545 AJ436321 N53166
			AA598667 AA423804 AA889495 A1954063 A1923968 AW194576 A1400578 AA748499 AA860230 AW519209 AA339537 AA476935 AA767391
			AI017695 AI860419 N93437 AW452389 AI051533 AA806940 AA609569 AI624860 Al356952 AI811516 AI439198 AA749268 AI206880
			Al784422 Al431957 Al187038 Al678429 Al273421 Al358604 Al691155 AA586499 AA897667 AA524576 Al417772 AW799936 BE241923
30			AA013428 BE164987 AW602710 AI933540 AA757772 AW015132 AI954159 AW956377 W69468 AI807580 AI871746 AI922524 N80292
			Al676213 BE467086 N92405 AV656311 Al678172 AW339455 Al949278 Al872882 Al123785 AA016267 Al961623 AW168519 F28686 F37181
	100074	00470 4	AA908333 AW020788 AW374027 AL109963 AA134692 BE273642 M78295 AI825179 AA228029 BE538677 AW589948 AW241564 AA732224 AA228030 AW977225
	423074 423622	22470_1 230333_1	BE154847 BE154890 AA328702
35	423736	231511_1	AW936874 AW936923 AW936924 AA330274
	423977	233868_1	AA333232 AW962695 R54896
	424060	23490_1	X92108 AW295478 AI768675 AI086644 AW190160 AA313783 AA322741 AA354698 AW962099 AL044667 AA282648 AA973897 AL036586
	402400	000454 4	A386055 AL135179 AW82199
40	424160	236151_1	T74062 F12441 AA336207 BE185031 AA338396 AW966247 AW753612
+0	424290 424951	237857_1 245273_1	AA336396 AW360247 AW753612 AW364082 AA348838 AA348839
	425288	249569_1	AA354502 AA355215 AW362122
	425303	249780_1	AA354785 AA354792 AW958427
4.5	425702	255206_1	N59555 AA362113 AA362136
45	425724	255509_1	A382525 AW979199 AA887501
	425757 425893	255956_1 257742_1	AA363171 AW963347 AA371863 AA629695 AA365582 AA365581 AW959799 AW876559 AW876588
	425980	258778_1	A336991 A447099 A469425
	426123	261304_1	AA370352 AA370860 AW962776
50	426477	267804_1	AA379464 AA379611 AA379463
	428036	28620_1	AW068302 AI754558 AI750727 AI752631 AA302174 AA327522 M64110 AW859944 AW859989 AI751995 AA769520 AI858829 AI924875
			AI888836 AA864291 AI685060 AW088029 AI924908 AW466328 AI093800 AA991651 AI254501 BE004703 AA334442 AW938852 AA194330 AL046953 AA852866 AW391995 W30846 AW662928 W25261 AA042863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 N31556
			N36484 AI798679 AA989355 W23832 AA873789 AI743646 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 R63433
55			AA524984 AA234043 AA195131 N99903 AA453669 Al240302 AA370271 Al950026 AW771049 AA121476 AA569557 Al752632 Al355594
_			Al471993 Al159941 N94555 Al753138 N21537 H97881 N25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 Al073645
			AA527960 AA525036 AA044414 AI752460 AA703064 R01216 AA897183 AI751996 TB1078 H95047 AA573642 D58348 N20953 AA437143
			N95439 AA579540 AW867056 AA770090 Al085180 Al806799 AA426421 Al572513 R24081 AA853189 AA295620 AA234044 AA371020
60			AW994984 H20896 AW964438 AA318516 AA318499 AA318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318498 AA318309 AA318496 AA318213 AA318435 AA318424 AA318217 AA318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 Al251813
00			AA478174 AA447737 T68350 F07712 AA121145 H08973 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 N42354
			H85516 BE147991 T28113 R32662 AA384678 AW239275 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 BE002409
			AA042828 AA363555 AJ223812 AA344709 BE 149590 R70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 AA062957
C =			D79947 W46960 AW959278 AA295997 AA026215 AW579469 AW365135 AW365134 AW994353 AW972886 AW069166 AA343690 AW888731
65			AJ751527 AA937490 AA937506 AJ826715 BE465604 AJ925532 AJ858109 AW339097 AJ858524 AJ720571 BE046506 AW384981 AA043908 AA375983 AA525181 AW068366 AW070577 AW891837 N83985 AW182753 AJ422979 AJ679733 BE006555 AL048166 AJ081401 AJ888821
			AG26043 N37087 AI624140 AI801298 AA600048 AI753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 AI971816 AW059022
			AVX0593059 AWX059454 AA342989 AI077712 AI311467 AI087361 AI801015 W46993 AI281324 AW191963 AI421675 AI300881 AI356670
			AAB73156 A1004219 A1189685 AA478018 AA076063 A1445222 A1753124 A1521569 A1925026 A1022368 A1475993 H20846 A1223234 A1635123
70			AA579170 N30442 AW117889 AA807935 AA558975 Al306636 AA888963 Al952591 Al935835 Al445293 H16713 AW139833 AA622122
			AA972051 A1280828 H09543 A1453725 AW069613 AI865615 A1753921 AI368782 AI633208 AI446651 W46961 N22201 H82276 C16555
			AA291477 AW440535 AW517755 AA669921 AI926777 AW662118 AA553369 N67873 AW023948 C15861 C16601 AI251465 AW079187
			BE045090 A)273006 C16390 C16503 A)620823 F13661 N66864 Z21311 C16108 C16089 C16400 AA758273 A)287781 AA864676 AW608074 AW385583 A)589944 AA665817 AW192979 AW469065 AA564048 H84715 C16417 AA731072 AA661674 C16487 N29477 AW189997
75			AW385883 AI589944 AA6652809 AA936687 AA566512 C16306 AW028413 AI537935 AA528347 C16255 AW029046 C16202 AI868152 AI524662
, 5			T94414 AI567041 AI619654 AW008486 AI075624 AA577434 AA345104 T30105 AA932002 C16585 AI750390 AW294265 AI619552 AA669781
			AA026678 AW132002 AW263919 C16562 AA759137 AA693351 Z40779 C16577 AA885045 AW073763 R45484 AI520895 U54708 T49285

			Al568126 AW006569 Al093317 AL119781 T61046 Al053563 H51958 AF114144 AA305739 AW950394 AW793928 AW793910 AL047737
			AV659047 AV659632 Al750389 AA092053 AA092798 H85367 T61597 R23745 Z20418 T78485 Al751528 AW068121 AA853188 Al752459
			AAB53711 AW950663 R78964 R36359 R21626 R21522
-	428518	292383_1	AW969656 AA501412 AA905186 AA429703 AA431958
5	429321	302955_1	AA449921 AA449922 C75309
	429468	30498_1	AF033579 NM_005995
	430068	312849_1	AA464964 M85405 AA947566
	430439 431089	31808_1 327825_1	AL133561 AL041090 AL117481 AL122069 AW439292 Al968826 BE041395 AA491826 AA621946 AA715980 AA666102
10	431322	331543_1	AW970622 AA503009 AA502998 AA502989 AA502805 T92188
10	431926	· 339082_1	AW972724 AA522631 AA877998
	432222	343347_1	AJ204995 AW827539 AW969908 AW440776 AA528756
	432407	34624_1	AA221036 RB7170 BE537068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW869639
		0.02.0_1	BE061833 BE000620 AW961170 AW847519 AA308542 AW821833 AW945688 C04699 AA205504 AA377241 AW821667 AA055720
15			AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859
	432586	350432_1	AA568548 AI050036 AA554053 AI911659 AI826259
	433010	357372_1	AW970018 AA573669 AA573622 R08736
	433436	366107_1	AW162474 AA588442 Al972440
00	434414	38585_1	AI798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231
20			AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174
			T61139 AA149776 AA699829 AW879188 AW813567 AW813538 AI267168 AA157718 AA157719 AA100472 AA100774 AA130756 AA157705
			AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206838 AA209204 BE156909 AA226824
			AIB29309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662
25	424020	20400 4	AW817705 AW817703 AW817659 BE081531 H59570
23	434830 435073	39406_1 399701_1	AW852235 AF155166 R07008 AA664078 AW363313 AA805009
	435073	42361_3	AA628980 A1126603 BE504035
	437046	42301_3 43210_1	BE149154 BE149151 X60138
	437272	435447_1	AW975997 AA747943 AA811289
30	437908	445001_1	AI082424 AI740586 AA771764 AA771806 AI033879 BE500996 AW204531 D38676
-	438089	44963_1	W05391 X56197 H75313 AW770789 AA281642 AV654440 AA344646 R00244 TB3378
	438091	44964_1	AW373062 T55662 Al299190 BE174210 AW579001 H01811 W40186 R67100 Al923886 AW952164 AA628440 AW898607 AW898616
		- .	AA709126 AW898628 AW898544 AA947932 AW898625 AW898622 AI276125 AI185720 AW510698 AA987230 T52522 BE467708 AW243400
			AW043642 Al288245 Al186932 D52654 D55017 D52715 D52477 D53933 D54679 Al298739 Al146984 Al922204 N98343 BE174213 AA845571
35		•	AI813854 AI214518 AI635262 AI139455 AI707807 AI698085 AW884528 AI024768 AI004723 AW087420 AI565133 N94964 AI268939
			AW513280 Al061126 Al435818 Al859106 Al360506 Al024767 AA513019 AA757598 X56196 AA902959 Al334784 Al860794 AA010207
			AW890091 AW513771 Al951391 Al337671 T52499 AA890205 Al640908 H75966 AA463487 AA358688 Al961767 Al866295 AA780994
			AI985913 BE174196 AA029094 AW592159 T55581 N79072 AI611201 AA910812 AI220713 AW149306 AI758412 AA045713 R79750 N76096
40	438535	45946_1	L09078 L03145 L09094 L09098 L03165 L09102
40	438813	465531	M27346
	439590	47413_1	AF086410 W94386 W74609
	439848 440612	477806_1	AW979249 D63277 AA846968 BE561384 AW732707
	440612	49847_1 499098_1	AI744995 AI973099 R19291 AA935215 AA897534 AI698070 BE179102 AI694912
45	441846	527227_1	AW850980 AA969613 AW366793
	443100	559752_1	AJ033188 BE004743 AW804074 BE004795 BE178660 BE089438 BE089378 BE089439 BE089437 BE089423 BE089420 BE089425 BE089424
	, 10.00		BE089426
	443197	56261_1	Z43613 AA320191 AW954963 H15889 R83872
	443357	567506_1	AW015773 Al052778 Al452937 AW085293
50	444163	593658_1	Al126098 Al184746 Al148521 -
	444298	600160_1	Z17870 AL039867 Al139927
	444312	600647_1	R44007 N54521 Al140476 AW418649 T95308
	444872	623948_1	Al936264 Al219228 Al200740 BE300771 Al635739 Al690626 AW044010 R60842 R40388
55	44546B	640681_1	AW450439 AW297340 Al239849 Al613119
23	445555	64334_1	AW974013 AA557257 N36812 AI597998 AA873565
	445689	647829_1 692897_1	BE158869 Al248241 BE158865 BE158868 R31107 Al341136 Al653198 H04953
	446780 447008	70358_1	BE010189 AW879041 BE008038 AW905325 AA343575 AW844209 AL038020 BE010133 BE010083 AW903901 BE174377 Al309717 Al349651
	447000	70000_1	Al903726 BE176661 AW905394
60	448489	765247_1	A1523875 R45782 R45781
00	450717	844561_1	T94709 AI820675 AI732253
	450724	844585_1	R55428 Al820704 Al732283 R54983
	450735	844617_1	AI732321 R55640 R55639 AI820744
	451724	882130_1	AI903765 AI811194 BE007147 AW130760
65	452565	922372_1	BE056552 BE056341 Al907683
	453577	972216_1	AL043049 T95976
	453823	982526_1	AL137967 BE064160 BE064186
	453826	982669_1	AL138129 AL138179 BE064231
70	454457	1207274_1	AW753456 AW753036 AW854868 AW854862
70	454523	1221564_1	AW803980 AW803974
	454609	1226517_1	AW810204 AW810555 AW810196 AW810619 AW810507
	454629	1227240_1	AWB11114 AWB11095 AWB11087 AWB11124 AWB11054 AWB11094 AWB11157 AWB11324 AWB11325 AWB11326 AWB11333 AWB11329 AWB11328 AWB11332 AWB11339 AWB11335
	454631	1227443_1 1227728_1	AW811533 AW811652 AW811898
75	454639 454662	1228537_1	AW812715 AW812646 AW812714
, ,	454701	1229702_1	AW354930 AW314431 AW814190 AW814115 AW854941
	454701	1230747_1	AW815588 AW815671 AW815493 AW815898 AW815613 AW815490 AW815808 AW815426
	707161		

```
454741
                         1232559_1
                                        BE154396 AW817959 BE154393
                                        BE154395 AWR 1795 BE154395
AW833676 AW833814 AW833798 AW833677 AW833449 AW833630 AW833626 AW833444 AW833366 AW833791 AW833659 AW833432
AW833534 AW833556 AW833555
           454826
                         1236377_1
                        1242343_1
                                        AW841619 AW851958 AW851851 AW851985
           454915
  5
                        1251980_1
                                        AW854352 AW854311 AW854340 AW854461
           455065
                                        AW855389 AW855556 AW855420
AW857271 AW857308 AW857296 AW857258
AW875972 AW875983 AW875974 AW876000 AW875966 AW876050
           455087
                         1252832_1
           455116
                         1254206_1
           455236
                        1265662_1
                                        AW891707 AW891696 AW891917 AW891913 AW891912 AW891909 AW891890 AW891892 AW891889 AW891697 AW891880 AW891898
           455300
10
           455407
                         1288347_1
                                        AW936813 AW936731 AW936728 AW936600 AW936681 AW936651
           455508
                         1318507_1
                                        AW976165 C04000
                                        AW984479 AW984498 AW984495 AW984477 AW984480 AW984504
           455527
                         1322125_1
                                        BE063965 BE063968 BE064034 BE064028 BE063874 BE063966 BE063869 BE064043 BE064033 BE063884
           455642
                         1348163_1
                                        BE065051 BE155165 BE064764 BE155231 BE064648 BE064671 BE064636
                        1348708_1
           455649
                                        BE075124 BE075229 BE075278
15
                        1356070_1
           455753
                                        BE079531 BE079371 BE079372 BE079593 BE079468 BE079504 BE079505
BE156306 BE156188 BE156298 BE156377 BE156374
BE156765 BE156770 BE156767 BE156769 BE156803 BE156802 BE156847 BE156853 BE156780 BE156836 BE156792 BE156834 BE156779
                         1358657_1
           455757
           455908
                         1382301_1
           455917
                         1382784_1
                                        BE156789 BE156833 BE156844 BE156831 BE156849 BE156797 BE156784 BE156801 BE156843 BE156793 BE156852
20
                         1397740 1
           455988
                                        AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367 BE011368 BE011368 BE011216 BE011365 BE011363
           456034
                         142696_1
                                        R99050 R99067 H67642
           456172
                         1603643_1
                                         AA228357 AW841786 AW841716
           456332
                         179104_1
184123_1
                                        AA236606 AA459341 AA237079
25
           456381
                                        AW968188 AA468196 AA468269 AA468298
                         313764_1
           457297
                                         AW970989 AA502167 AA507546
           457389
                         331080_1
                                         AW939074 AW939073 BE160476 AW939938 AW939206 AW940012 AW939076 AA573577 AW750479 AA574383 AW970057
           457567
                         357346_1
                                         AA578512 AA595535 BE177533
            457581
                         359936_1
                                         BE044740 AW827360 AW827623 BE161439 BE044718 BE046207 BE046551 AA653908 BE166581
30
           457741
                         395767_1
                                         Al168278 AA868238 BE550792 Al522194 Al819707 AA973538 Al990086 Al628424 Al095270 Al991608 AA730741
           457871
                         426637 1
                                         U23860 U80739
                         44251_1
           457951
           459234
                         945240_-1
                                         AI940425
35
           TABLE 8C
                         Unique number corresponding to an Eos probeset
           Pkey:
                         Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-489-495.
                         Indicates DNA strand from which exons were predicted.
40
            Strand:
            Nt_position: Indicates nucleotide positions of predicted exons.
                                                   Nt_position
           Pkey
400704
                                      Strand
45
                                                   63110-63241
                         8118864
                                      Minus
                                                   157683-163035
                         8570385
            400830
                                      Plus
                                                   121963-122288
            400834
                         8705192
                                      Ptus
            400840
                         9188586
                                      Ptus
                                                   113882-114121
                                                   4506-4691
            400850
                         1927150
                                      Minus
                                                   91446-91603,92123-92265
 50
            400881
401016
                                      Minus
                         2842777
                         8117441
                                                    126234-126359,128050-128236
                                      Plus
            401090
                         8492704
                                      Minus
                                                   201281-201460 103739-103919
            401215
                         9858408
                                      Ptus
                                                   30503-30844,31056-31248
                         4827300
9884881
            401241
                                      Minus
 55
                                      Plus
                                                    15736-16352
            401335
                                                    118629-119146,119392-119657
                         8570226
                                      Minus
            401381
                                                   33028-33585
125521-125639
            401400
                         7708226
                                      Minus
            401469
                         6682292
                                      Minus
                                                    115142-117305
            401473
                         7249001
                                      Plus
                                                    139377-139674,141195-141281,142217-142340
 60
            401577
                         9280797
                                      Minus
                                                    89638-90028
            401658
                         9100664
                                      Plus
                                                   183379-183521
5005-5426,6810-7042
            401659
                          7689875
                                      Minus
            401686
                          6468551
                                       Plus
                                                    147273-147503
             401723
                          7656694
                                      Plus
                                                    136003-136726
 65
            401814
                          7408052
                                      Plus
                                                    10964-11084,11674-11817
                          7467933
                                       Minus
            401818
                                                    148955-149396,149569-150002
126888-127024
            401890
                          8516144
                                       Plus
                          8698760
                                       Minus
             401908
                                                    33753-33904
             401913
                          9369520
                                      Minus
                                                    112000-112137
  70
                          3873185
                                       Minus
             401927
                                                    173835-173998
                                       Plus
                          7547159
             402025
             402039
                          7770432
                                                    560-1294
                                                    100065-100419
             402049
                          6072512
                                       Plus
                                                    90533-90687,94949-95158
             402085
                          7249154
                                       Phis
                                                     125073-125206,130996-131125
  75
                          7690131
                                       Minus
             402241
                                                    2575-3000
                                       Minus
                          2282012
             402294
                                                    40832-41362
             402305
                          7328724
```

	402366	9454515	Plus	485888 486883
	402551	9856793	Minus	195808-196863 37346-37633
	402654	8076879	Plus	44058-44803
	402685	8318558	Plus	58962-59294
5	402762	9230904	Minus	123298-124035
•	402797	3421043	Minus	15758-15930
	402833	8918545	Plus	26987-27778
	402901	8894222	Minus	175426-175667
	402948	9368458	Minus	143456-143626,143808-143935
10	403066	8954202	Plus	158189-158433
	403072	8954241	Plus	141829-142006
	403146	9799812	Plus	162877-163118
	403197	9930749	Plus	79990-80237
15	403214	7630945	Minus	76723-77027,79317-79484
13	403217	7630969	Plus	54089-54163,55427-55623
	403290 403291	8083176	Plus	19288-20076
	403294	7230870 8096496	Plus Plus	95177-95435 41565-41881
	403315	8247953	Minus	125117-125287
20	403332	8568139	Minus	31409-31674
	403344	8569726	Plus	70823-70990
	403362	8571772	Plus	64099-64260
	403371	9087278	Plus	105655-106050
~~	403391	9438337	Plus	42410-42544,83317-83540,86840-86922,87970-88110
25	403488	9966615	Minus	12450-12753
	403536	8076924	Plus	34972-35182
	403779	8018040	Minus	95602-95969
	403859	7708954	Plus	113738-113858
30	403871 403903	7709262	Plus	104545-104757
20	403903	7710671 7710849	Minus Plus	101165-102597 109718-109847,109927-110202
	403978	8576014	Plus	97326-97808
	404031	7671252	Plus	171477-172316
	404167	9926594	Minus	77030-77280
35	404220	6706820	Plus	46107-46439
	404286	2326514	Plus	51086-51301
	404418	7382420	Minus	153339-153481,155099-155294
	404427	7407959	Plus	127170-127358
40	404429	7407979	Plus	31352-31498
40	404440	7528051	Plus	80430-81581
	404495	8151634	Minus	59449-60477
	404580	6539738	Minus	240588-241589
	404606 404730	9212936 8389582	Minus Plus	22310-23269 119832-120016,124110-124275
45	404917	7341851	Plus	49330-49498
	405033	7107731	Minus	142358-142546
	405137	8570507	Plus	158969-159423
	405146	9438278	Minus	102529-102633
	405158	9966252	Plus	42873-43056,43815-43949
50	405187	7229826	Plus	117025-117170,118567-118736
	405223	7239614	Plus	106184-106313
	405340	6094635	Plus	49644-49760
	405494	8050952	Minus	70284-70518
55	405551	1552506 4895155	Plus	12525-12997 53624-53759
55	405654 405667	4726099	Minus Plus	5798-5914
	405673	4589984	Plus	50700-50842
	405704	4204244	Plus	138842-139051
	405723	9801668	Plus	114896-115831
60	405727	9838331	Minus	78865-79664
	405760	6066938	Minus	37424-38045
	405779	7280331	Minus	33048-33856
	405944	7883702	Minus	5143-5684
65	406002	8247797	Minus	154007-154579
UJ	406016	8272661	Plus Minus	41341-41940
	406097 406104	7107918 9124028	Plus	36698-37269 35309-35977
	406156	7144867	Plus	379-597
	406207	5923650	Minus	162607-162800
70	406300	6479046	Minus	19234-19401
. •	406308	9211532	Plus	358408-358651
	406314	9211609	Minus	12899-13011,18022-18136
	406317	9211652	Plus	108018-108410
75	406432	9256504	Plus	3804-3930,4026-4120,4929-5109
75	406490	7711309	Minus	80295-80480
	406584	3983530	Minus	3989-4497

TABLE 9A: Genes predictive of no bladder cancer progression

Pkey: Unique Eos probeset identifier number
ExAcon: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number
Unigene Tilla: Unigene gene title
R1 80th percentile of Ta or T1 tumor Als from patients who did not upstage divided by the 80th percentile of Ta or T1 tumor Als from patients who did ups

		'ille: Unigene gene	title					
	R1	80th percentile	of Ta or T1 tur	nor Als from patients who did not upstage divided by the	e 80th pe	rcentile of Ta o	r T1 turnor Als from	patients who did upstage
	R2	median of Taid	or 11 tumor Als	from patients who did not upstage divided by the media	n of Tao	r T1 tumor Als	from patients who u	pstaged
10	Pkey	ExAcon	UnigeneID	Unigene Title	D4	00		
	408000	L11690	Hs.198689	bullous pemphigoid antigen 1 (230/240kD)	R1 4.64	R2 5.88		
	412129	M21984	Hs.73454	troponin T3, skeletal, fast	4.54	5.10		
	459290	NM_001546	Hs.34853	Inhibitor of DNA binding 4, dominant neg	4.37	1.63		
	400844	- '		NM_003105":Homo sapiens sortilin-related	3.69	5.90		
15	419555	AA244416		gb:nc07d11.s1 NCI_CGAP_Pr1 Homo sapiens	3.61	2.03		
	414522	AW518944	Hs.76325	step II splicing factor SLU7	3.60	1.00		
	440509	BE410132	Hs.134202	ESTs, Weakly similar to T17279 hypotheti	3.58	1.04		
	445182	AW189787		ESTs	3.57	2.70		
20	407151	H25836	Hs.301527	ESTs, Moderately similar to unknown [H.s	3.56	1.48		
20	421314	BE440002	Hs.180324	Homo sapiens, clone IMAGE:4183312, mRNA,	3.28	3.25		
	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,	3.25	2.50		
	430702	U56979	Hs.278568	H factor 1 (complement)	3.20	2.70		
	412420 420729	AL035668 AW964897	Hs.73853 Hs.290825	bone morphogenetic protein 2	3.20 3.20	2.30		
25	433376	Al249361	Hs.74122	ESTs caspase 4, apoptosis-related cysteine pr	3.00	1.53 4.10		
20	420028	AB014680	Hs.8786	carbohydrate (N-acelylglucosamine-6-0) s	2.94	2.78		
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-0-sulfot	2.93	1.43		
	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolese)	2.93	1.33		
	428030	Al915228	Hs.11493	Homo sapians cDNA FLJ13536 fis, clone PL	2.92	2.47		
30	419713	AW968058	Hs.92381	nudix (nucleoside diphosphate linked mol	2.89	3.33		
	414407	AA147026	Hs.76704	ESTs	2.87	2.87		
	450779	AW204145	Hs.156044	ESTs	2.78	1.86		
	411243	AB039886	Hs.69319	CA11	2.73	1.00		
	417878	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	2.68	2.32		
35	441619	NM_014056	Hs.7917	DKFZP564K247 protein	2.67	2.98		
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	2.66	1.00		
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	2.64	1.77		
	426252	BE176980	Hs.28917	ESTs	2.63	7.30		
40	424008	R02740	Hs.137555	putative chemokine receptor; GTP-binding	2.60	2.53		
40	429429	AA829725	Hs.334437	hypothetical protein MGC4248	2.59	3.34		
	427450	AB014526	Hs.178121	KIAA0626 gene product	2.57	2.28		
	420180	AI004035	Hs.25191	ESTs	2.56	1.68		
	434061	AW024973	Hs.283675	NPD009 protein	2.54	2.10		
15	422070	AF149785	Hs.111126	pitultary tumor-transforming 1 interacti	2.54	3.25	•	
45	419355	AA428520	Hs.90061	progesterone binding protein	2.53	3.63		
	446215	AW821329	Hs.14368	SH3 domain binding glutamic acid-rich pr	2.52	4.38		
	432442	A1672516	Hs.178485	ESTs, Weakly similar to S65657 alpha-1C-	2.50 2.49	4.60 2.23		
	447887	AA114050	Hs.19949	caspase 8, apoptosis-related cysteine pr	2.48	2.23		
50	401155 404530			Target Exon Target Exon	2.48	1.00		
50	446006	NM_004403	Hs.13530	deafness, autosomal dominant 5	2.48	2.35		
	436476	AA326108	Hs.33829	bHLH protein DEC2	2.47	2.88		
	446535	AF257175	Hs.15250	peroxisomal D3,D2-enoyl-CoA isomerase	2.46	2.19		
	408636	BE294925	Hs.46680	CGI-12 prolein	2.45	1.60		
55	420962	NM_005904	Hs.100602	MAD (mothers against decapentaplegic, Dr	2.44	3.75		
	427008	Z45258	Hs.286013	short coiled-coil protein	2.42	3.40		
	459711	BE386801	Hs.21858	trinucleolide repeal containing 3	2.40	2.78		
	407910	AA650274	Hs.41296	fibronectin leucine rich transmembrane p	2.40	1.00	•	
	410337	MB3822	Hs.62354	cell division cycle 4-like	2.39	3.88		
60	435029	AF167706	Hs.19280	cysteine-rich motor neuron 1	2.39	3.23	_	
	437181	Al306615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	2.39	1.00		
	410968	AA199907	Hs.67397	homeo box A1	2.38	1.33		
	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	2.38	6.40		
CE	450775	AA902384	Hs.73853	bone morphogenetic protein 2	2.38	2.71		
65	442433	BE243044	Hs.8309	KIAA0747 protein	2.37	3.68		
	454000	AA040620	Hs.5672	hypothetical protein AF140225	2.36	1.14		
	447701	BE619526	Hs.255527	hypothetical protein MGC14128	2.38	2.02		
	427985	A1770170	Hs.29643 Hs.323370	Homo sapiens cDNA FLJ13103 fis, clone NT Human EST clone 25267 mariner transposon	2.36 2.35	2.18 3.53		
70	442257	AW503831 N79110	Hs.21276	collagen, type IV, alpha 3 (Goodpasture	2.35	3.60		
70	454070 418452	BE379749	Hs.85201	C-type (calcium dependent, carbohydrate-	2.35	2.48		
	421218	NM_000499	Hs.72912	cytochrome P450, subfamily I (aromatic c	2.35	1.00		
	407793	AW080879	Hs.236572	gb:xc38g04.x1 NCI_CGAP_Co20 Homo sapiens	2.35	1.21		
	442061	AA774284	Hs.285728	abl-interactor 12 (SH3-containing protei	2.34	3.03		
75	402845			ENSP00000246267:KIAA0444 PROTEIN (FRAGME	2.34	1.52		
. •	411407	R00903	Hs.169793	ribosomal protein L32	2.34	0.77		
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	2.34	0.72		

	424637	NM_015057	Hs.151411	KIAA0916 protein	2.32	2.55
	413804	T64682		gb:yc48b02.r1 Stratagene liver (937224)	2.32	1.46
	411060	NM_006074	Hs.318501	Homo sapiens mRNA full length insert cDN	2.32	2.90
	430028	BE564110	Hs.227750	Target CAT	2.32	2.28
5	417720	AA205625	Hs.208067	ESTs	2.32	2.09
•	436396	AI683487	Hs.152213	wingless-type MMTV integration site famil	2.31	1.13
	454219	X75042	Hs.44313	v-rel avian reticuloendotheliosis viral	2.30	4.38
	444745	AF117754	Hs.11861	thyroid hormone receptor-associated prot	2.30	1.86
1.0	408179	AL042465	Hs.43445	poly(A)-specific ribonuclease (deadenyla	2.29	2.19
10	442679	R53718	Hs.107882	hypothetical protein FLJ10659	2.29	2.79
	458949	AW291777	Hs.346137	ESTs, Weakly similar to T08599 probable	2.28	1.85
	407191	AA608751		gb:ae56h07.s1 Stratagene lung carcinoma	2.27	2.42
	448367	A1955411	Hs.94109	Homo sapiens cDNA FLJ 13634 fis, clone PL	2.27	1.18
	405155			Target Exon	2.26	1.94
15	445594	AW058463	Hs.12940	zinc-fingers and homeoboxes 1	2.26	1.55
	417458	NM_005655	Hs.82173	TGFB inducible early growth response	2.25	1.95
	430315	NM_004293	Hs.239147	quanine deaminase	2.24	1.84
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	2.24	2.73
	408937	AA210734	Hs.291386	ESTs	2.24	3.18
20	431474			CEGP1 protein	2.23	1.00
40		AL133990	Hs.190642		2.22	4.08
	434094	AA305599	Hs.238205	hypothetical protein PRO2013		
	420997	AK001214	Hs.100914	hypothetical protein FLJ10352	2.22	2.15
	420164	AW339037	Hs.24908	ESTs	2.22	2.16
~ -	414099	U11313 ·	Hs.75760	sterol carrier protein 2	2.21	4.05
25	424800	AL035588	Hs.153203	MyoD family inhibitor	2.21	3.53
	459005	AA447679	Hs.144558	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.21	2.90
	416290	NM_000016	Hs.79158	acyl-Coenzyme A dehydrogenase, C-4 to C-	2.20	4.00
	439208	AK000299	Hs.180952	dynactin 4 (p62)	2.2D	1.88
	401563		1101100000	C15001262:gi[7304981 ref[NP_038528.1] ca	2.20	1.77
30	404687			C9000375*:gi[11994617 dbj[BAB02754.1] (A	2.19	2.60
20		1167240	Hs.9216	caspase 7, apoptosis-related cysteine pr	2.19	2.08
	443303	U67319			2.19	2.21
	439866	AA280717	Hs.6727	Ras-GTPase activating protein SH3 domain	2.18	3.00
	400835	AW853954	11 450000	chromosome 2 open reading frame 2		
25	456855	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Dr	2.18	2.45
35	431689	AA305688	Hs.267695	UDP-Gal:betaGicNAc beta 1,3-galactosyltr	2.17	1.83
	418026	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	2.17	2.67
	451131	Al267586	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	2.17	1.71
	406038	Y14443		zinc finger protein 200	2.17	1.71
	43407B	AW880709	- Hs.283683	chromosome 8 open reading frame 4	2.17	1.00
40	441623	AA315805		desmoglein 2	2.17	1.81
	459244	AW503990	Hs.142442	HP1-BP74	2.17	4.03
	424720	M89907	Hs.152292	SWI/SNF related, matrix associated, acti	2.17	2.93
	404204	11103301	110.102202	ENSP00000252204*:Zinc finger protein 165	2.17	1.02
		A A 2027EN	Hs.235026	Homo sapiens, clone IMAGE:4247529, mRNA,	2.16	2.85
15	453987	AA323750			2.16	3.60
45	411400	AA311919	Hs.69851	nucleolar protein family A, member 1 (H/	2.16	1.96
	454949	AW847318	Hs.290131	KIAA1819 protein		
	409223	AA312572	Hs.6241	phosphoinositide-3-kinase, regulatory su	2.16	1.48
	418030	BE207573	Hs.83321	neuromedin B	2.16	2.07
	433364	A1075407	Hs.296083	ESTs, Moderately similar to 154374 gene	2.16	2.32
50	459511	Al142379		gb:qg64c01.r1 Soares_testis_NHT Homo sap	2.16	1.85
	437559	AI678033	Hs.121476	ESTs	2.15	1.43
	418827	BE327311	Hs.47166	HT021	2.15	3.84
	417470	AF112219	Hs.82193	esterase D/formylglutathione hydrolase	2.15	1.74
	421012	X53281	Hs.101025	basic transcription factor 3	2.15	1.26
55	448772	AW390822	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	2.15	4.05
55	439601	AB029032	Hs.6606	KIAA1109 protein	2.15	2.15
		AL110157	Hs.3843	Homo sapiens mRNA; cDNA DKFZp586F2224 (f	2.15	1.45
	434417			lymphocyte antigen 75	2.15	2.63
	424865	AF011333	Hs.153563		2.14	2.67
60	400752			NM_003105*:Homo sapiens sortilin-related	2.14	2.38
60	438916	AW188464	Hs.101515	ESTs		2.00
	430024	A1808780	Hs.227730	integrin, alpha 6	2.14	
	409345	A1949109		hypothetical protein FLJ20783	2.14	1.40
	421939	BE169531	Hs.109727	TAK1-binding protein 2; KIAA0733 protein	2.13	1.58
	442315	AA173992	Hs.7956	ESTs, Moderately similar to ZN91_HUMAN Z	2.13	2.67
65	419591	AF090900	Hs.91393	Homo sapiens cDNA: FLJ21887 fis, clone H	2.13	2.00
	458025	A1275406	Hs.32450	gb:ql63c10.x1 Soares_NhHMPu_S1 Homo sapi	2.12	0.89
	428582	BE336699	Hs.185055	BENE protein	2.12	2.65
	422749	W01076	Hs.278573	CD59 antigen p18-20 (antigen identified	2.12	2.73
		Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	2.11	0.91
70	433091		Hs.91973	hypothetical protein	211	2.51
70	456421	AL157485		absent in melanoma 2	2.11	3.13
	421508	NM_004833	Hs.105115		2.09	1.79
	402760			NM_021797*:Homo saplens eosinophil chemo	2.09	1.60
	406274			Target Exon		
~~	406897	M57417		gb:Homo sapiens mucin (mucin) mRNA, part	2.09	1.00
75	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	2.09	2.92
	445320	AA503887	Hs.167011	Homo sapiens cDNA: FLJ21362 fis, clone C	2.09	3.20
	442271	AF000652	Hs.8180	syndecan binding protein (syntenin)	2.09	1.90

	428336	AA503115	Hs.183752	microseminoprotein, beta-	2.08	4 15
	405165	POGUSTIS	115.100/02	ENSP00000238974*:Homeobox protein NKX2-3	2.00	1.15 2.83
	416999	AW195747	Hs.21122	hypothetical protein FLJ11830 similar to	2.07	3.71
	453865	AA307279	Hs.35947	methyl-CpG binding domain protein 4	2.07	1.71
5	439924	A1985897	Hs.125293	ESTs	2.07	1.00
	439004	AW979062		gb:EST391172 MAGE resequences, MAGP Homo	2.07	2.13
	407955	BE536739	Hs.109909	ESTs	2.06	1.91
	412998	BE046254		gb:hn38g09.x2 NCI_CGAP_RDF2 Homo saplens	2.06	2.58
10	414013	AA766605	Hs.47099	hypothetical protein FLJ21212	2.05	5.00
10	415249	R40515	Hs.21248	ESTs	2.05	2.18
	427332	R09418	Hs.261101	ESTs, Weakly similar to 138022 hypotheti	2.05	3.35
	426521	AF161445	Hs.170219	hypothetical protein	2.05	1.00
	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	2.05	6.03
15	423851	R39505	Hs.133342	Homo saplens clone 24566 mRNA sequence	2.05	1.88
15	410028	AW576454	Hs.346502	ESTs	2.04	1.95
	406575	A F00403E	N- 404007	Target Exon	2.04 2.04	1.56 3.11
	457148 449924	AF091035 W30681	Hs.184627	KIAA0118 protein	2.04	2.42
	429837	NM_003896	Hs.146233 Hs.225939	Homo sapiens cDNA: FLJ22130 fis, clone H sialyltransferase 9 (CMP-NeuActlactosylc	2.04	1.97
20	440675	AW005054	Hs.47883	ESTs, Weakly similar to KCC1_HUMAN CALCI	2.04	2.06
20	411988	AA455459	Hs.164480	ESTs, Weakly similar to T50609 hypotheti	2.04	2.65
	433293	AF007B35	Hs.32417	hypothetical protein MGC4309	2.04	2.35
	446187	AK001241	Hs.14229	hypothetical protein FLJ10379	2.04	2.03
	420838	AW118210	Hs.42321	ESTs	2.03	1.00
25	445481	AW661846	Hs.346630	EST6	2.03	2.49
	448175	BE296174	Hs.225160	hypothetical protein FLJ13102	2.03	2.25
	410600	AW575742		ESTs, Moderately similar to S65657 alpha	2.02	2.10
	401177			Target Exon	2.02	2.59
	448474	Al792014	Hs.13809	hypothetical protein FLJ10648	2.02	4.23
30	434782	NM_005032	Hs.4114	plastin 3 (T isoform)	2.02	1.48
	424125	M31669	Hs.1735	inhibin, beta B (activin AB beta polypep	2.02	2.93
	424241	AW995948	Hs.182339	Homo sapiens pyruvate dehydrogenase kina	2.02	2.63
	424673	AA345051	Hs.294092	ESTs, Weakly similar to 138022 hypotheti	2.02	3.43
2 5	414721	X90392	Hs.77091	ribosomal protein L10	2.02	1.89
35	429869	Al907018	Hs.15977	Target CAT	2.02	1.47
	439177	AW820275	Hs.76611	ESTs, Weakly similar to 138022 hypotheti	2.01	1.94
	437175	AW968078	Hs.87773	protein kinase, cAMP-dependent, catalyti	2.01	1.64 4.31
	452046	AB018345	Hs.27657	KIAA0802 protein	2.01 2.01	6.75
40	417615	BE548641	Hs.82314	hypoxanthine phosphoribosyltransferase 1	2.00	2.75
40	420337	AW295840	Hs.14555	Homo sapiens cDNA: FLJ21513 fis, cione C Homo sapiens mRNA; cDNA DKFZp434C1714 (f	2.00	2.02
	408232	AL137269	Hs.43899	Homo sapiens cDNA FLJ11537 fis, clone HE	2.00	1.95
	408409 433256	AW838181 AW604447	Hs.278337 Hs.339408	ESTs, Weakly similar to S26689 hypotheti	2.00	0.91
	426969	A1936504	Hs.2083	CDC-like kinase 1	2.00	3.60
45	442053	R35343	Hs.24968	Human DNA sequence from clone RP1-233G16	2.00	1.95
,,,	444916	AB028956	Hs.12144	KIAA1033 protein	2.00	1.23
	452286	Al358570	Hs.123933	ESTs, Weakly similar to ZN91_HUMAN ZINC	2.00	5.30
	414906	AA157911	Hs.72200	ESTs .	1.99	1.22
	414176	BE140638	Hs.75794	endothelial differentiation, lysophospha	1.99	3.83
50	414557	AA340111	Hs.100009	acyl-Coenzyme A oxidase 1, palmitoyl	1.99	2.31
	452846	AA082160	Hs.63368	ESTs, Weakly similar to TRHY_HUMAN TRICH	1.99	3.43
	408437	AW957744	Hs.278469	lacrimal proline rich protein	1.98	2.15
	439205	AF087990	Hs.42758	Homo sapiens, clone IMAGE:3354845, mRNA,	1.98	2.28
CE	442506	BE566411		ESTs	1.98	3.95
55	447731	AA373527	Hs.19385	CGI-58 protein	1.98	2.67 2.43
	410579	AK001628	Hs.64691	KIAA0483 protein	1.97 1.97	2.50
	426716	NM_006379	Hs.171921	sema domain, Immunoglobulin domain (Ig), Homo sapiens cDNA: FLJ22256 fis, clone H	1.97	3.03
	456141	Al751357 AK002060	Hs.288741	hypothetical protein FLJ11198	1.96	2.88
60	419576	M34516	Hs.91251	gb:Human omega light chain protein 14.1	1.96	1.09
UU	407241 420664	Al681270	Hs.99824	BCE-1 protein	1.96	1.75
	448586	AF285120	Hs.283734	CGI-204 protein	1.96	3.28
	408089	H59799	Hs.42644	thioredoxin-like	1.95	4.00
	421100	AW351839	Hs.124660	Homo sapiens cDNA: FLJ21763 fis, clone C	1.95	2.12
65	452518	AA280722	Hs.24758	ESTs, Weakly similar to i38022 hypotheti	1.95	3.45
	432015	AL157504	Hs.159115	Homo sapiens mRNA; cDNA DKFZp58600724 (f	1.94	2.80
	434263	N34895	Hs.44648	ESTs	1.94	4.60
	409829	M33552	Hs.56729	lymphocyte-specific protein 1	1.94	1.79
70	425593	AA278921	Hs.1908	proteoglycan 1, secretory granule	1.94	2.30
70	401835			Target Exon	1.94	2.27
	406557			C5000893:gij6226859 splP38525 EFG_THEMA	1.94	3.28
	440062	A)350518	Hs.129692	ESTs	1.94	3.18 2.70
	410442	X73424	Hs.63788	propionyl Coenzyme A carboxylase, beta p ESTs, Wealdy similar to ALU1_HUMAN ALU S	1.94 1.94	2.60
75	457281	BE253012	Hs.153400	forkhead box C1	1.93	2.28
13	420230	AL034344 NM 012238	Hs.284186 Hs.31176	siduin (silent mating type information	1.93	4.35
	452970 403728	NM_012238	110.01110	Targel Exon	1.92	1.70
	-001 EU			· •-	•	

	445700					
	415789	H01581		gb:yj33f08.r1 Soares placenta Nb2HP Homo	1.92	2.15
	406759	AA654582	Hs.77039	ATP synthase, H transporting, mitochondr	1.92	2.10
	442073	AW973443	Hs.8086	RNA (guanine-7-) methyltransferase	1.92	4.43
_	438023	AF204883	Hs.6048	FEM-1 (C.elegans) homolog b	1.92	4.00
5	445502	AW379160	Hs.12813	DKFZP434J214 protein	1.92	2.13
	405474			NM_001093*:Homo sapiens acetyl-Coenzyma	1.92	2.58
	430007	NM_014892	Hs.227602	KIAA1116 protein	1.92	3.78
	439937	AF151906	Hs.6776	CGI-148 protein	1.91	2.32
	418068	AW971155	Hs.293902	ESTs, Weakly similar to ISHUSS protein d	1.91	1.68
10	444630	AI753230	Hs.323562	hypothetical protein DKFZp584K142	1.91	1.61
	451184	T87943	Hs.173638	transcription factor 7-like 2 (T-cell sp	1.90	
	414715	AA587891	Hs.904	amylo-1,6-glucosidase, 4-alpha-glucanotr		3.35
•	445841	AL080115	Hs.13370		1.90	3.55
	425284			DKFZP564G0222 protein	1.90	1.46
15		AF155568	Hs.348043	NS1-associated protein 1	1.90	3.65
IJ	437943	NM_016353	Hs.5943	rec	1.89	1.73
	442426	AI373062	Hs.332938	hypothetical protein MGC5370	1.89	2.79
	400111			Eos Control	1.89	3.84
	437762	T78028	Hs.154679	synaptotagmin I	1.89	1.00
20	404069			Target Exon	1.89	2.51
20	434809	AW974687		gb:EST386776 MAGE resequences, MAGM Homo	1.88	2.35
	414220	BE298094	Hs.323806	gb:601118231F1 NIH_MGC_17 Homo sapiens c	1.88	1.00
	422506	R20909	Hs.300741	sorcin	1.87	2.99
	417439	AW602154	Hs.82143	E74-like factor 2 (ets domain transcript	1.87	1.13
	404391			Target Exon	1.87	3.00
25	420187	AK001714	Hs.95744	hypothetical protein similar to ankyrin	1.86	2.93
	446950	AA305800	Hs.5672	hypothetical protein AF140225	1.86	1.90
	400634	70.00000	110.0012	C10000818*:gi]7661882]ref[NP_055697.1] K	1.86	2.80
	408455	C19034	Hs.288613	Homo sapiens cDNA FLJ14175 fis, clone NT	1.86	1,32
	422366	T83882	Hs.97927	ESTs		1.44
30					1.85	
50	452170	AF064801	Hs.28285	patched related protein translocated in	1.85	2.64
	430604	AV650537	Hs.247309	succinate-CoA ligase, GDP-forming, beta	1.85	1.81
	426484	A'A379658	Hs.272759	KIAA1457 protein	1.85	2.60
	411609	AW993680		gb:RC3-BN0034-290200-013-d08 BN0034 Homo	1.85	2.10
25	431129	AL137751	Hs.263671	Homo sapiens mRNA; cDNA DKFZp43410812 (f	1.84	3.70
35	412843	AF007555	Hs.74624	protein tyrosine phosphatase, receptor t	1.84	2.58
	401512			NM_014080:Homo sapiens dual oxidase-like	1.84	1.52
	415969	H11294	Hs.31047	ESTs	1.84	3.08
	444736	AA533491	Hs.23317	hypothetical protein FLJ14681	1.84	1.20
	426418	M90464	Hs.169825	collagen, type IV, alpha 5 (Alport syndr	1.84	2.35
40	416968	AA412686	Hs.97955	ESTs	1.84	2.18
	442961	BE614474	Hs.289074	F-box only protein 22	1.84	2.18
	418650	BE386750	Hs.86978	prolyl endopeptidase	1.84	1.98
	420923	AF097021	Hs.273321	differentially expressed in hematopoieti	1.84	1.00
	432834	F06459	Hs.289113	cytochrome b5 reductase 1 (B5R.1)	1.83	3.93
45	442485	BE092285	Hs.29724	hypothetical protein FLJ13187	1.83	3.10
	427699	AW965076	Hs.180378	hypothetical protein 669	1.83	3.03
	447387	Al268331	Hs.102237	tubby super-family protein	1.83	1.78
	418663	AK001100	Hs.41690	desmocollin 3	1.82	1.53
	419733			Homo sapiens cDNA FLJ14415 fis, clone HE	1.82	1.00
50		AW362955	Hs.224961		1.81	1.57
50		. NM_012453	Hs.52515	transducin (beta)-like 2		
	413341	H78472	Hs.191325	ESTs, Weakly similar to T18967 hypotheti	1.81	2.05
	423810	AL132665	Hs.132955	BCL2/adenovirus E1B 19kD-interacting pro	1.81	1.98
	416274	AW160404	Hs.79126	guanine nucleotide binding protein 10	1.80	1.91
	400843			NM_003105*:Homo sapiens sortilin-related	1.80	4.88
55	442187	N23532	Hs.288963	Homo sapiens cDNA: FLJ23034 fis, clone L	1.80	2.61
	458285	AW296984	Hs.255595	ESTs, Weakly similar to A46302 PTB-assoc	1.80	2.33
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	1.80	3.17
	428004	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub	1.80	1.00
	401613			Target Exon	1.79	2.66
60	407173	T64349		gb:yc10d08.s1 Stratagene lung (937210) H	1.79	2.30
	443145	AI049671	Hs.307763	EST, Weakly similar to 138022 hypothetic	1.79	2.00
	418596	AW976721	Hs.293327	ESTs	1.79	3.92
	437374	AL359571	Hs.44054	ninein (GSK3B interacting protein)	1.79	1.24
	439569	AW602166	Hs.222399	CEGP1 protein	1.79	2.39
65	430677	Z26317	Hs.94560	desmoglein 2	1.78	2.02
	436749	AA584890	Hs.5302	lectin, gelactoside-binding, soluble, 4	1.78	0.98
	453016	AW295466	Hs.232051	ESTs, Weakly similar to dJ403A15.3 [H.sa	1.78	2.60
	426885	AA393130	Hs.193894	ESTs, Weakly similar to A47582 B-cell gr	1.78	2.47
				hypothetical protein FLJ22604	1.78	2.17
70	452848	Al417193	Hs.288912	CCR4-NOT transcription complex, subunit		3.13
70	412560	R24601	U_ 70040		1.78	
	411821	BE299339	Hs.72249	three-PDZ containing protein similar to	1.78	1.55
	428788	AF082283	Hs.193516	B-cell CLL/lymphoma 10	1.78	2.36
	443963	AA878183	Hs.17448	Homo sapiens cDNA FLJ13618 fis, clone PL	1.78	2.20
75	435479	AF197137	Hs.259737	ATP synthase, H transporting, mitochondr	1.78	2.03
75	413073	AL038165	Hs.75187	translocase of outer mitochondrial membr	1.77	2.29
	442473	W27992		gb:43d9 Human retina cDNA randomly prime	1.77	2.93
	418060	AA211589	Hs.208047	ESTs	1.77	4.19

	400773			NM_003105*:Homo saplens sortilin-related	1.77	1.76
	400175			Eos Control	1.77	2.04
	421501 451234	M29971 Al914901	Hs.1384	O-6-methylguanine-DNA methyltransferase	1.77	2.32
5	423332	AI091466	Hs.24052 Hs.127241	ESTs, Weakly similar to 138022 hypotheti sorting nexin 7	1.77	2.43
•	423960	AA164516	Hs.136309	SH3-containing protein SH3GLB1	1.76 1.76	1.82 2.00
	450489	AJ697990	Hs.345002	ESTs	1.76	3.15
	457265 413076	AB023212 U10564	Hs.225967	KIAA0995 protein	1.76	2.37
10	421948	L42583	Hs.75188 Hs.334309	wee1 (S. pombe) homolog keratin 6A	1.75 1.75	2.18
	453578	R06875	Hs.81810	ESTS	1.75	1.00 3.10
	412430	AW675064	Hs.73875	furnarylacetoacetate hydrolase (furnarylac	1.75	2.14
	439396	BE562958	Hs.74346	hypothetical protein MGC14353	1.75	1.78
15	431448 449538	AL137517 Al559444	Hs.306201 Hs.104679	hypothetical protein DKFZp564O1278 ESTs	1.75 1.75	2.36
	453146	Al338952	Hs.32194	ESTs	1.74	3.07 2.82
	426122	NM_006925	Hs.166975	splicing factor, arginine/serine-rich 5	1.74	2.88
	408989	AW361666	Hs.49500	KIAA0746 protein	1.74	2.07
20	441715 412718	Al929453 X79204	Hs.342655 Hs.74520	Homo sapiens cDNA FLJ13289 fis, clone OV spinocerebellar ataxia 1 (olivopontocere	1.74 1.74	2.08
	450798	AW167780	Hs.50438	ESTs	1.74	2.46 2.02
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.73	2.58
	400190	D04004	11 70404	Eos Control	1.73	2.40
25	416309 410219	R84694 T98226	Hs.79194 Hs.171952	cAMP responsive element binding protein occludin	1.73	1.48
20	419814	AW402478	Hs.93213	BCL2-entagonist/killer 1	1.73 1.73	2.75 2.70
	448625	AW970786	Hs.178470	hypothetical protein FLJ22662	1.73	2.07
	422387	AA309996	Hs.148656	ESTs, Weakly similar to T12453 hypotheti	1.73	2.02
30	417386	AL037228	Hs.82043	D123 gene product	1.73	2.44
50	405812 436270	C03769	Hs.339669	Target Exon Homo sapiens, clone IMAGE:3947554, mRNA,	1.72 1.72	2.94 2.85
	409855	AW502461	110.00000	gb:UI-HF-BR0p-ajv-b-08-0-UI.r1 NIH_MGC_5	1.72	2.63
	411442	N25956	Hs.101810	Homo sapiens cDNA FLJ14232 fis, clone NT	1.72	1.88
35	400846			sortilin-related receptor, L(DLR class)	1.72	1.63
33	401660 402190			Target Exon C19000835*:gij10946730(ref)NP_067362.1]	1.72 1.72	2.63 3.33
	439191	AA281177	Hs.41182	Homo sapiens DC47 mRNA, complete cds	1.71	2.17
	410444	W73484	Hs.132554	gb:zd54e04.s1 Soares_fetal_heart_NbHH19W	1.71	2.70
40	430393	BE185030	Hs.241305	estrogen-responsive B box protein	1.71	1.33
40	446066 411299	Al343931 BE409857	Hs.149383 Hs.69499	ESTs	1.71 1.71	2.32 2.92
	408246	N55669	Hs.333823	hypothetical protein mitochondriał ribosomal protein L13	1.71	2.92
	454054	Al336329	Hs.301519	Homo sapiens cDNA FLJ12536 fis, clone NT	1.71	1.93
15	417381	AF164142	Hs.82042	solute carrier family 23 (nucleobase tra	1.70	3.70
45	427820	BE222494	Hs.180919	inhibitor of DNA binding 2, dominant neg	1.70 1.70	1.60
	400750 455842	BE145837		Target Exon gb:MR0-HT0208-101299-202-c07 HT0208 Homo	1.70	2.82 2.17
	429966	BE081342	Hs.283037	HSPC039 protein	1.70	1.18
50	418444	Al902899	Hs.85155	butyrate response factor 1 (EGF-response	1.70	2.47
50	437450	AL390154	Hs.26954	Homo sapiens mRNA; cDNA DKFZp762G123 (fr	1.70	3.03 2.34
	415738 405245	BE539367	Hs.295953	ESTs, Weakly similar to AF220049 1 uncha Target Exon	1.70 1.70	1.99
	408483	AA464836	Hs.291079	ESTs, Weakly similar to T27173 hypotheti	1.70	2.05
<i></i>	413611	BE153275		gb:PM0-HT0335-180400-008-e11 HT0335 Homo	1.70	2.05
55	410190	AW072328	Hs.59728	Homo sapiens mRNA; cDNA DKFZp566C0546 (f	1.69	2.20
	434608 432170	AA805443 T56887	Hs.179909 Hs.18282	hypothetical protein FLJ22995 KlAA1134 protein	1.69 1.69	2.36 1.83
	448182	AF244137	Hs.20597	host cell factor homolog	1.69	2.11
60	436293	Al601188	Hs.120910	ESTs	1.69	2.37
60	448524	AB032948	Hs.21356	hypothetical protein DKFZp762K2015	1.68	2.48
	404231 453906	AW444952	Hs.257054	Target Exon ESTs	1.68 1.68	2.50 2.45
	437967	BE277414	Hs.5947	mel transforming oncogene (derived from	1.68	1.00
~ ~	426125	X87241	Hs.166994	FAT tumor suppressor (Drosophila) homolo	1.68	3.51
65	448813	AF169802	Hs.22142	cytochrome b5 reductase b5R.2	1.68	1.69
	429162 425556	AK001250 H27225	Hs.197642 Hs.9444	hypothetical protein FLJ10388 hypothetical protein FLJ13114	1.68 1.67	3.13 2.02
	405630	1127220	710,5774	Target Exon	1.67	3.00
70	421405	AA251944	Hs.104058	CGI-29 protein	1.67	3.25
70	422640	M37984	Hs.118845	troponin C, slow	1.67	1.23
	450857 451668	AA629075 Z43948	Hs.190090 Hs.326444	ESTs cartilage acidic protein 1	1.67 1.66	2.4B 2.55
	433821	AW182416		ESTs	1.66	2.65
76	405595			NM_000721":Homo sapiens calcium channel,	1,66	2.23
75	433892	A1929357	Hs.323966	Homo sapiens clone H63 unknown mRNA	1.66	1.97
	443558 412141	AA376798 Al183838	Hs.286122 Hs.48938	MDS024 protein hypothetical protein FU21602	1.66 1.66	2.00 2.65
	415141	. 4 100000			1.00	2.00

	40.4000	14104000				
	424585	W21223	Hs.151734	nuclear transport factor 2 (placental pr	1.65	2.88
	400845			NM_003105*:Homo sapiens sortifin-related	1.66	1.61
	447816	NM_007233	Hs.274329	TP53 target gene 1	1.66	2.63
_	404438			Target Exon	1.66	2.34
5	451543	AA397651	Hs.301959	proline synthetase co-transcribed (bacte	1.65	2.08
	433233	AB040927	Hs.301804	KIAA1494 protein	1.65	3.13
	420938	AL049698	Hs.100469			
	435438			myeloid/lymphoid or mixed-lineage leukem	1.65	1.37
		H84421	Hs.4890	ubiquitin-conjugating enzyme E2E 3 (homo	1.65	2.35
10	431130	NM_006103	Hs.2719	HE4; epididymis-specific, whey-acidic pr	1.65	1.00
10	433235	AB040929	Hs.35089	contactin 3 (plasmacytoma associated)	1.65	1.44
	439632	AW410714	Hs.334437	hypothetical protein MGC4248	1.65	2.35
	409324	W76202	Hs.343812	lipoic acid synthetase	1.65	2.00
	452207	NM_014517	Hs.28423	upstream binding protein 1 (LBP-1a)	1.65	2.33
	423630	AB011132	Hs.129952	KIAA0560 gene product	1.65	2.13
15	443358	H65417	Hs.17757	pleckstrin homology domain-containing, f	1.65	1.63
	427417	AA341061	Hs.177861	CGI-110 protein	1.64	1.28
	450353	A)244661	Hs.103296	ESTs, Weakly similar to S65657 alpha-1C-	1.64	1.60
	445677	H96577	Hs.6838			
				ras homolog gene family, member E	1.64	1.91
20	447503	AA115496	Hs.336898	Homo sapiens, Similar to RIKEN cDNA 1810	1.64	2.04
20	431234	AL389985	Hs.301637	zinc finger protein 258	1.64	1.53
	418032	AW964695	Hs.9436	Homo sapiens, clone MGC:15763, mRNA, com	1.64	2.05
	407796	AA195509	Hs.39733	postsynaptic protein CRIPT	1.64	2.30
	446298	AF187813	Hs.14637	kidney- and liver-specific gene	1.64	2,05
	439578	AW263124	Hs.315111	nuclear receptor co-repressor/HDAC3 comp	1.64	2.26
25	429113	D28235	Hs.196384	prostaglandin-endoperoxide synthase 2 (p	1.64	2.10
	433646	AA603319	Hs.155195	ESTs	1.64	2.05
	407783	AW996872	Hs.172028	a disintegrin and metalloproteinase doma	1.64	1.00
	419982	AA252544				
		MAZ32344	Hs.55610	solute carrier family 30 (zinc transport	1.64	2.16
20	401603		11	NM_022041*:Homo sapiens glant axonal neu	1.64	2.73
30	431604	AF175265	Hs.264190	vacuolar protein sorting 35 (yeast homol	1.64	2.75
	400788			C6000994*:gi]10435784[dbj]BAB14668.1] (A	1.63	2.04
	416221	BE513171	Hs.79086	mitochondrial ribosomal protein L3	1.63	2.64
	422491	AA338548	Hs.117546	neuronatin	1.63	0.96
	424737	BE301883	Hs.152707	glioblastoma amplified sequence	1.63	3.45
35	41607B	AL034349	Hs.79005	protein tyrosine phosphatase, receptor t	1.63	1.39
	403988			C5001831:gij11056014 ref NP_067651.1 ac	1.62	2.11
	411486	N85785	Hs.181165	eukaryotic translation elongation factor	1.62	2.63
	407874	Al766311	Hs.289047	Homo sapiens cDNA FLJ14059 fis, clone HE	1.62	2.19
					1.62	3.03
40	446700	AW206257	Hs.156326	Human DNA sequence from clone RP11-145L2		
40	438184	AA779897	Hs.122125	ESTs	1.62	2.79
	405502			C7000609*:gi[628012 pirl]A53933 myosin l	1.62	2.55
	447050	NM_016314	Hs.17200	STAM-like protein containing SH3 and ITA	1.62	2.48
	457961	AA772119	Hs.270721	ESTs, Weakly similar to I38022 hypotheti	1.62	2.30
	436774	AW975810	Hs.159054	hypothetical protein FLJ13224	1.62	2.17
45	414893	AA215295	Hs.77578	ubiquitin specific protease 9, X chromos	1.62	2.03
	458660	AI299739	Hs.99601	hypothetical protein FLJ12553	1.62	2.25
	405806	7 22007 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Target Exon	1.62	2.15
	421205	AL137540	Hs.102541	netrin 4	1.62	1.00
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	1.62	1.74
50					1.61	2.16
50	427016	AA397525	Hs.191579	ESTs		
	458182	Al147996	Hs.155833	ESTs, Weakly similar to spliceosomal pro	1.61	2.74
	451109	F11875	Hs.5534	Homo sapiens cDNA FLJ12961 fis, clone NT	1.61	2.59
	414807	Al738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N	1.61	1.78
	456508	AA502764 -	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	1.61	2.10
55	447532	AK000614	Hs.18791	hypothetical protein FLJ20607	1.61	1.75
	439944	AA856767	Hs.124623	ESTs	1.61	2.41
	414692	H06831	Hs.164557	ESTs, Moderately similar to ALUC_HUMAN!	1.60	3.05
	433187	R53995	Hs.293381	ESTs, Moderately similar to ALU7_HUMAN A	1.60	2.63
	446825	BE266822	Hs.344097	filamin A, alpha (actin-binding protein-	1.60	2.43
60					1.60	2.69
00	441166	AA921738	Hs.132473	ESTs	1.60	1.49
	425571	AJ007292	Hs.158306	ephrin-A2		1.08
	406836	AW514501	Hs.156110	Immunoglobulin kappa constant	1.60	
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, done PL	1.60	1.47
65	449268	AW369278	Hs.23412	hypothetical protein FLJ20160	1.60	2.89
65	400772			NM_003105":Homo saplens sortilin-related	1.60	2.57
	445733	BE295568	Hs.13225	UDP-Gal:betaGlcNAc beta 1,4- galactosylt	1.60	2.03
	428172	U09367	Hs.182828	zinc finger protein 136 (clone pHZ-20)	1.60	2.68
	421887	AW161450	Hs.109201	CGI-86 protein	1.59	1.39
	418127	BE243982	Hs.83532	membrane cofactor protein (CD46, trophob	1.59	1.67
70	400297	Al127076	Hs.306201	hypothetical protein DKFZp564O1278	1.59	2.19
, ,		AW500718	Hs.8115	Homo sapiens, clone MGC:16169, mRNA, com	1.59	2.26
	434938			cyclin D1 (PRAD1: parathyroid adenomatos	1.59	1.76
	417924	AU077231	Hs.82932			1.26
	418067	AI127958	Hs.83393	cystatin E/M	1.59	2.25
75	427127	AW802282	Hs.22265	pyruvate dehydrogenase phosphatase	1.59	
75	451938	Al354355	Hs.16697	down-regulator of transcription 1, TBP-b	1.59	2.10
	407325	AA291180	Hs.328476	ESTs, Weakly similar to alternatively sp	1.58	2.43
	410796	Z44547	Hs.3731	ESTs, Moderately similar to 138022 hypot	1.58	1.26

	417343	AA197132	Un 224504	mundo homa polynostido di alcatatal mu	4 50	
			Hs.231581	myosin, heavy polypeptide 1, skeletal mu	1.58	2.84
	416643	U62531	Hs.79410	solute carrier family 4, anion exchanger	1.58	1.26
	400847			NM_003105":Homo sapiens sortilin-related	1.58	1.48
_	436760	AW606927	Hs.5306	hypothetical protein OKFZp586F1122 simil	1.57	1.57
5	433427	Al816449	Hs.171889	cholinephosphotransferase 1	1.57	1.64
	451986	BE246996	Hs.318401	hypothetical protein DKFZp564D1378	1.57	1.83
	428901	A1929568	Hs.145668	KIAA1253 protein	1.57	2.23
	426028	NM_001110	Hs.172028	a disintegrin and metalloproteinase doma	1.57	3.07
	444504	AW327695	Hs.11441	chromosome 1 open reading frame 8	1.57	1.86
10	439686	W40445	Hs.235857	ESTs, Weakly similar to 138022 hypotheti	1.57	
10	426996					3.07
		AW968934	Hs.173108	Homo sapiens cDNA: FLJ21897 fis, clone H	1.57	2.01
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	1.57	2.83
	418942	AI566004	Hs.141269	Homo sapiens cDNA: FLJ21550 fis, clone C	1.57	1.21
٠, ٠,	418555	Al417215	Hs.87159	hypothetical protein FLJ12577	1.56	3.08
15	402368			NM_021155*:Homo saplens CD209 antigen (C	1.56	2.05
	419749	X73608	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	1.56	2.08
	404977			Insulin-like growth factor 2 (somatomed)	1.56	5.50
	441872	BE567100	Hs.154938	hypothetical protein MDS025	1.56	2.30
	415503	U36601	Hs.78473	N-deacetylase/N-sulfotransferase (hepara	1.56	2.56
20	451743	AW074266	Hs.23071		1.56	1.85
20				ESTs		
	423184	NM_004428	Hs.1624	ephrin-A1	1.56	1.41
	408041	AW138782	Hs.243607	ESTs	1.56	2.21
	416777	AF146760	Hs.79844	DKFZP564M1416 protein	1.56	2.00
25	428013	AF151020	Hs.181444	hypothetical protein	1.56	1.53
25	410072	BE384447	Hs.16034	hypothetical protein MGC13186	1.55	1.52
	411495	AP000693	Hs.70359	KIAA0136 protein	1.55	2.88
	408162	AA993833	Hs.118527	ESTs	1.55	2.70
	413350	U02556	Hs.75307	t-complex-associated-testis-expressed 1-	1.55	1.99
	422010	AA302049	Hs.31181	Homo sapiens cDNA: FLJ23230 fis, clone C	1.55	1.60
30	425229	AU076961	Hs.155212	methylmalonyl Coenzyme A mutase	1.55	2.57
50	425184				1.55	1.45
		BE278288	Hs.155048	Lutheran blood group (Auberger b antigen	1.55	2.77
	419011	H56244	Hs.89552	glutathione S-transferase A2		
•	417538	AW050865	Hs.275711	hypothetical protein MGC2452	1.55	2.76
25	409806	AW500960		gb:UI-HF-8P0p-aly-b-01-0-UI.r1 NIH_MGC_5	1.55	2.45
35	402737			Target Exon	1.54	2.58
	419825	A1754011	Hs.7326	ESTs	1.54	1.00
	410001	AB041036	Hs.57771	kallikrein 11	1.54	0.62
	407813	AL120247	Hs.40109	KIAA0872 protein	1.54	2.33
	415906	A1751357	Hs.288741	Homo sapiens cDNA: FLJ22256 fis, clone H	1.54	2.77
40	427886	AA417083	Hs.104789	ESTs	1.54	2.60
. •	437018	AA889078	Hs. 187033	ESTs	1.54	2.48
	415049	N67334	Hs.50158	ESTs	1.54	2.57
		U16296	Hs.115176	T-cell lymphoma invasion and metastasis	1.54	2.57
	422315				1.54	1.98
45	413715	AW851121	Hs.75497	Homo sapiens cDNA: FLJ22139 fis, clone H	1.54	2.48
43	447144	Al630759	Hs.174B1	Homo sapiens clone 24606 mRNA sequence		
	438924	BE535511		transmembrane trafficking protein	1.53	3.08
	445166	AI656116	Hs.147451	ESTs	1.53	2.08
	414073	AF068293	Hs.75737	pericentriolar material 1	1.53	1.70
	402378			Target Exon	1.53	2.83
50	452316	AA298484	Hs.61265	ESTs, Moderately similar to G786_HUMAN P	1.53	1.60
	450374	AA397540	Hs.60293	Homo sapiens clone 122482 unknown mRNA	1.53	3.59
	402617		,,,,,,,,,,,	C1003551:gi]6678593[ref[NP_033547.1] win	1.53	2.75
	406837	R70292	Hs.156110	immunoglobulin kappa constant	1.53	1.01
		AF151057	Hs.64595	aminoadipate-semialdehyde dehydrogenase-	1.53	1.23
55	410573		Hs.10862	Homo sapiens cDNA: FLJ23313 fis, clone H	1.53	0.67
"	426359	AA376409			1.53	2.80
	434445	A1349306	Hs.11782	ESTs	1.53	2.01
	452717	AW160399	Hs.30376	hypothetical protein		
	420465	AL080276	Hs.70488	similar to prokaryolic-type class I pept	1.53	2.25
	437404	AA868974	Hs.180992	ESTs	1.53	2.00
60	459192	AW176180		gb:RC2-BT0214-010999-001-E07 BT0214 Homo	1.52	3.20
	446457	Al300580	Hs.345281	ESTs, Moderately similar to ALU1_HUMAN A	1.52	2.35
	441466	AW673081	Hs.54828	ESTs	1.52	1.99
	421810	AK001718	Hs.108530	hypothelical protein FLJ 10856	1.52	2.98
	447769	AW873704	Hs.320831	Homo sapiens cDNA FLJ14597 fis, clone NT	1.52	2.47
65	414882	D79994	Hs.77546	Homo saplens cDNA: FLJ21983 fis, clone H	1.52	2.55
03		W21813	Hs.B125	Homo sapiens mRNA; cDNA DKFZp586E1521 (f	1.52	1.31
	442169	***************************************	1 10.0 120	Target Exon	1.52	2.74
	404349	VVSCCSCC	LL 70127	protein-L-isoaspartate (D-aspartate) O-m	1.52	2.93
	416278	AA356366	Hs.79137			1.01
70	431846	BE019924	Hs.271580	uroplakin 18	1.52	
70	43195B	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	1.52	0.93
	442670	BE410050	Hs.11859	hypothetical protein FLJ13188	1.52	2.70
	441617	AA581863	Hs. 178485	Homo sapiens cDNA FLJ13919 fis, clone Y7	1.52	1.65
	440079	A1557284	Hs.6900	ring finger protein 13	1.52	1.76
	432831	AI821702	Hs.115959	ESTs, Weakly similar to 138022 hypotheti	1.52	2.13
75	414320	U13616	Hs.75893	ankyrin 3, node of Ranvier (ankyrin G)	1.52	2.13
-	442149	AB014550	Hs.8118	KIAA0650 protein	1.52	1.00
	457747	AW975000		gb:EST387105 MAGE resequences, MAGN Homo	1.51	2.38
	707777			A		

	419433	AA814807	Hs.7395	hypothetical protein FLJ23182	1.51	2.50
	431812	AA515902	Hs.130650	ESTs	1.51	1.64
	415477	NM_002228	Hs.78465	v-jun avian sarcoma virus 17 oncogene ho	1.51	2.62
	447580	AI953360	Hs.133487	ESTs	1.51	2.02
5	416926	H03109				
			Hs.108920	HT018 protein	1.51	2.22
	442755	W57656	Hs.109701	ubiquitin-like 5	1.51	1.34
	448694	AA478756	Hs.194477	E3 ubiquitin ligase SMURF2	1.51	2.24
	422675	BE018517	Hs.119140	eukaryotic translation initiation factor	1.51	1.49
	404397			ENSP00000251675*:KIAA1550 protein (Fragm	1.51	2.18
10	412927	AA284018	Hs.75063	human immunodeficiency virus type I enha	1.51	1.33
	402371	704010	713.75000			
		4 C00000C	11-000400	Target Exon	1.51	3.22
	431730	AF208856	Hs.268122	hypothetical protein	1.51	1.57
	417715	AW969587	Hs.86366	ESTs .	1.51	1.59
	451117	AA015752	Hs.205173	ESTs	1.50	2.70
15	434727	H43374	Hs.7890	Homo sapiens mRNA for KIAA1671 protein,	1.50	3.53
	442297	NM_006202	Hs.89901	phosphodiesterase 4A, cAMP-specific (dun	1.50	2.24
	425883	AL137708	Hs.161031	Homo sapiens mRNA; cDNA DKFZp434K0322 (f	1.50	1.13
	452658		Hs.30212			
		N88604		thyroid receptor interacting protein 15	1.50	1.62
20	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	1.50	1.00
20	438967	H30340	Hs.173705	Homo sapiens cDNA: FLJ22050 fis, clone H	1.50	1.05
	419847	AW390601	Hs.184544	Homo sapiens, clone IMAGE:3355383, mRNA,	1.50	2.53
	431369	BE184455	Hs.251754	secretory leukocyte protease inhibitor (1.49	0.97
	433265	AB040971	Hs.35096	KIAA1538 protein	1.49	1.44
						2.24
25	408136	AL041135	Hs.42959	KIAA1012 protein	1.49	
23	455485	AA1022B7	Hs.26756	hypothetical protein FLJ20896	1.49	2.40
	418863	AL135743	Hs.25566	ESTs, Weakly similar to 2004399A chromos	1.49	2.84
	405193			C7000789:gi 1943947jgb AAC48716.1} (U901	1.48	2.20
	408948	AW296713	Hs.221441	ESTs	1.48	2.20
	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	1.48	2.24
30	405932	74 000001	110.100100		1.48	1.48
50		NIN 000004	11- 676	C15000305:gij3806122 gb AAC69198.1 (AF0		
	454034	NM_000691	Hs.575	aldehyda dehydrogenase 3 family, member	1.48	1.16
	422355	AW403724	Hs.300697	coagulation factor VII (serum prothrombi	1.48	1.20
	428044	AA093322	Hs.301404	RNA binding motif protein 3	1.48	2.38
	416166	AW501907	Hs.261734	Homo sapiens cDNA: FLJ22807 fis, clone K	1.48	1.28
35	430453	BE387060	Hs.3903	Cdc42 effector protein 4; binder of Rho	1.48	2.73
-	401600	BE247275	110.0000	U5 snRNP-specific protein, 116 kD	1.48	2.53
			•			2.03
	432638	Al017717		chromosome 21 open reading frame 15	1.48	
	405194			C7000789:gi 1943947[gb AAC48716.1] (U901	1.48	2.00
	416179	R19015	Hs.79067	MAD (mothers against decapentaplegic, Dr	1.48	1.25
40	450272	A1075170	Hs.20010	ESTs	1.48	2.35
	413709	BE158687		gb:CM0-HT0395-280100-169-b09 HT0395 Homo	1.48	2.08
	442607	AA507576	Hs.288361	Homo sapiens cDNA: FLJ22696 fis, clone H	1.48	1.00
					1.47	1.91
	410418	D31382	Hs.63325	transmembrane protease, serine 4		
4 =	436566	BE545586	Hs.278712	Homo sapiens cDNA FLJ11074 fis, clone PL	1.47	2.26
45	404769			NM_007037*:Homo sapiens a disintegrin-fi	1.47	1.24
	420132	BE079847	Hs.301914	gb:RC6-BT0627-220300-012-D06 BT0627 Homo	1.47	2.00
	448356	AL120837	Hs.20993	high-glucose-regulated protein 8	1.47	2.90
	421628	AL121317	Hs.106210	hypothetical protein FLJ10813	1.47	4.08
		AK000566	Hs.98135	hypothetical protein FLJ20559	1.47	3.13
50	449059				1.47	1.06
50	449029	N28989	Hs.22891	solute carrier family 7 (cationic amino		
	422119	Al277829	Hs.111862	KIAA0590 gene product	1.47	1.51
	438713	H16902		ESTs	1.47	2.39
	418248	NM_005000	Hs.83916	NM_005000°:Homo sapiens NADH dehydrogena	1.47	1.00
	419125	AA642452	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	1.46	2.20
55	420548	AA278246	Hs.920	ESTs	1.46	2.13
55		AA433848	Hs.107882	hypothetical protein FLJ10659	1.46	1.98
	424258				1.46	1.45
	414683	S78296	Hs.76888	hypothetical protein MGC12702		
	427045	HB6504	Hs.173328	protein phosphatase 2, regulatory subuni	1.46	2.31
	446646	BE552004	Hs.26192	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.46	1.30
60	427257	AI026805	Hs.97726	ESTs	1.46	2.48
	422971	A1879223	Hs.145409	RAB, member of RAS oncogene family-like	1.46	1.05
	451334	Al122691	Hs.13268	ESTs	1.46	2.12
		MILLOU	110110200	C2000428*:gi[7705383[ref[NP_057536.1] GC	1.46	2.40
	403326	A C204049	H- SECEN	BUP protein	1.46	1.65
65	453827	AF201948	Hs.35660		1.46	1.56
$\omega_{\mathcal{J}}$	423599	AI805664	Hs.31731	peroxiredoxin 5		
	410691	AW239226	Hs.65450	reticulon 4	1.46	1.49
	430688	AL022101	Hs.104991	hypothetical protein similar to preferen	1.46	2.45
	438083	AJ949940	Hs.121924	ESTs	1.46	2.00
	430713	AA351647	Hs.2642	eukaryotic translation elongation factor	1.45	1.60
70	437325	AF142481	Hs.5548	f-box and leucine-rich repeat protein 5	1.45	1.26
, 0		FW 174901	10000	Target Exon	1.45	2.21
	403342	122000	Un 1000E9	Homo sapiens NOTCH 1 (N1) mRNA, complete	1.45	2.40
	438808	M73980	Hs.129053			
	446493	AK001389	Hs.15144	hypothetical protein DKFZp564O043	1.45	3.65
	414895	AW894856	Hs.116278	Homo sapiens cDNA FLJ13571 fis, clone PL	1.44	2.71
75	442072	A1740832	Hs.12311	Homo sapiens clone 23570 mRNA sequence	1.44	1.08
	425723	NM_014420	Hs.159311	dickkopf (Xenopus laevis) homolog 4	1.44	2.24
	432901	A1554929	Hs.281866	ATPase, H transporting, lysosomal (vacuo	1.44	1.63
	TOLOG					-

	412210	AW901492		gb:RCO-NN1012-270300-031-h10 NN1012 Homo	1.44	2.15
	421685	AF189723	Hs.106778	ATPase, Ca transporting, type 2C, member	1.44	1.83
	428115	AB023194	Hs.300855	KIAA0977 protein	1.44	1.31
-	442358	BE567985	Hs.18585	ESTs, Moderately similar to ALU4_HUMAN A	1.44	2.47
5	414685	L39874	Hs.76894	dCMP deaminase	1.44	1.25
	413798	AA336708	Hs.75546	capping protein (actin filament) muscle	1.44	1.26
	410937	AA218564	Hs.67052	vacuolar protein sorting 26 (yeast homol	1.44	1.41
	400397	AJ270770		transcription factor 7-like 2 (T-cell sp	1.44	3.43
	405902			Target Exon	1.44	2.65
10	433976	AA620987	Hs.190268	ESTs	1.44	2.46
	405376	701020001	1201000	Target Exon		
	436086	Z43133	Hs.9961		1.44	2.28
	418182			Homo sapiens cDNA: FLJ21954 fis, clone H ESTs	1.44	1.34
		AW016405	Hs.16648		1.44	2.35
15	430307	BE513442	Hs.238944	hypothetical protein FLJ10631	1.43	1.55
13	434924	AA443164	Hs.23259	hypothetical protein FLJ13433	1.43	2.05
	417821	BE245149	Hs.82643	protein tyrosine kinase 9	1.43	2.15
	404744			Target Exon	1.43	1.99
	405418			Target Exon	1.43	2.83
~^	402869			Target Exon	1.43	2.40
20	451608	AA384525	Hs.26745	hypothetical protein	1.43	1.22
	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	1.43	2.45
	401041			C11000425:gij4507721]ref[NP_003310.1] ti	1.43	2.90
	417839	Al815732	Hs.82712	fragile X mental retardation, autosomal	1.43	2.84
	409245	AA361037	Hs.288036	tRNA isopentenylpyrophosphate transferas	1.43	2.65
25	447808	NM_007265	Hs.19673	suppressor of S. cerevisiae gcr2	1.43	2.00
	456492	AA330047	Hs.191187	ESTs	1.43	2.73
	449244	AW859979	Hs.32204	ESTs	1.42	1.57
	413094	H24184		TOLLIP protein	1.42	1.33
			Hs.25413			
30	452407	AA682909	Hs.29353	brain-specific protein p25 alpha	1.42	2.50
20	407674	AW064061	Hs.279145	ESTs	1.42	2.35
	441297	AW403084	Hs.7766	ubiquitin-conjugating enzyme E2E 1 (homo	1.42	2.20
	421932	W51778	Hs.323949	kangai 1 (suppression of turnorigenicity	1.42	1.48
	426348	BE466586	Hs.17433	hypothetical protein FLJ20967	1.42	1.83
25	432554	Al479813	Hs.278411	NCK-associated protein 1	1.42	2.46
35	431735	AW977724	Hs.75968	thymosin, beta 4, X chromosome	1.42	1.30
	429953	NM_004376	Hs.226581	COX15 (yeast) homolog, cytochrome c oxld	1.42	1.50
	444037	AV647686	Hs.42733	CHMP1.5 protein	1.42	1.38
	402144			Target Exon	1.42	2.38
	456758	AA325170	Hs,224627	ESTs, Weakly similar to FAHUAA alpha-act	1.42	2.23
40	452322	BE566343	Hs.28988	glutaredoxin (thioltransferase)	1.42	2.18
	426863	AL137657	Hs.172803	hypothetical protein MGC10327	1.41	1.38
	410684	AA088500	Hs,170298	ESTs	1.41	1.28
	401784	70.00000	1,5,11,555	NM_002280*:Homo sapiens keratin, hair, a	1.41	1.37
	427523	BE242779	Hs.179526	upregulated by 1,25-dihydroxyvitamin O-3	1.41	1.32
45	449269	AI564682	Hs.175870	ESTs	1.41	1.37
73	406467	A1304002	NS.113010	Target Exon	1.41	1.80
		TOCECE	Un 24562	ESTs	1.41	2.94
	444339	T96555	Hs.31562			1.41
	431563	AI027643	Hs.120912	ESTs	1.41	
50	413343	BE392026	Hs.334346	hypothetical protein MGC13045	1.41	1.21
50	447537	AW295072	Hs.346408	ESTs, Wealdy similar to AF193556 1 sacsl	1.41	2.07
	428211	AA424211	Hs.183176	ESTs	1.41	1.25
	406248			Target Exon	1.41	2.40
	437412	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	1.41	1.39
	414653	M24486	Hs.76768	procollagen-proline, 2-oxoglutarate 4-di	1.41	1.33
55	403885			Target Exon	1.41	2.58
	439459	AF086279	Hs.58013	ESTs	1.41	2.08
	419075	T84266	Hs.123927	ESTs	1.41	2.84
	405022			Target Exon	1.40	2.55
	401346	BE041451		hypothetical protein	1.40	2.38
60	415660	AJ909007	Hs.78563	ubiquitin-conjugating enzyme E2G 1 (homo	1.40	2.38
	448023	AI693299	Hs.170388	ESTs	1.40	2.38
	435962	AA702820	Hs.291294	ESTs	1.40	2.10
	432480	AA205475	Hs.275865	ribosomal protein S18	1.40	1.37
	414309	AK000639	Hs.75884	DKFZP588A011 protein	1.40	1.18
65	440256	U23841	Hs.18851	hypothetical protein FLJ10875	1.40	1.91
05	413809	L25851	Hs.851	Integrin, alpha E (antigen CD103, human	1.40	2.80
				adenylate kinase 3 alpha like	1.40	2.73
	408176	AK001553 AW629188	Hs.43436		1.40	1.99
	433960	WAA052100	Hs.188929	ESTs C6001430*:ail4503521[refINP_001559.1] mu	1.40	2.83
70	404178		•	=		
/ U	402449	DE04::00		Target Exon	1.40	1.51
	455604	BE011183		gb:PM3-BN0218-100500-003-d09 BN0218 Homo	1.40	2.30
	429221	Al821060	Hs.198271	Target CAT	1.40	1.22
	422122	AA383642	Hs.111894	lysosomal-associated protein transmembra	1.40	1.42
76	406231			Target Exon	1.40	2.60
75	405879			Target Exon	1.40	2.73
	450936	Al033745		gb:ow23a10.x1 Soares_parathyroid_tumor_N	1.40	1.13
	403381			ENSP00000231844*:Ecotropic virus Integra	1.39	6.03

	453258	AW293134	Hs.32597	ring finger protein (C3H2C3 type) 6	1.39	3.20
	448261	BE244072	Hs.20815	macrophage erythroblast attacher	1.39	1.33
	427666	A1791495	Hs.180142	calmodulin-like skin protein (CLSP)		
					1.39	2.30
5	413859	AW992356	Hs.8364	Homo sapiens pyruvate dehydrogenase kina	1.39	1.53
)	407704	BE315072	Hs.78768	malignant cell expression-enhanced gene/	1.39	1.34
	430138	AA936296	Hs.234265	DKFZP586G011 protein	1.39	2.38
	432841	M93425	Hs.62	protein tyrosine phosphatase, non-recept	1.39	2.88
	444051	N48373	Hs.10247	activated leucocyte cell adhesion molecu	1.39	1.34
	440704	M69241	Hs.162	insulin-like growth factor binding prote	1.39	
10						1.61
10	450092	AW139606	Hs.221057	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.39	2.78
	400275			NM_006513*:Homo saplens seryl-IRNA synth	1.39	2.03
	403725			Targel Exon	1.39	2.03
	443211	Al128388	Hs.143655	ESTs	1.39	1.83
	421510	AK000919	Hs.105191	hypothetical protein FLJ10057	1.39	2.83
15	430071	AA355986	Hs.232068		1.38	
13				transcription factor 8 (represses interl		3.54
	451545	Al802128	Hs.208647	ESTs	1.38	2.21
	439897	NM_015310	Hs.6763	KIAA0942 protein	1.38	3.65
	423872	AB020316	Hs.134015	uronyl 2-sulfotransferase	1.38	1.00
	410344	AW978436	Hs.62515	KIAA0494 gene product	1.38	2.25
20	404439			ENSP00000067222*:Mitochondrial 28S ribos	1.38	2.25
	448581	NN 002700	Un 24527			
		NM_002709	Hs.21537	protein phosphatese 1, catalytic subunit	1.38	1.47
	408569	BE066047	Hs.86412	chromosome 9 open reading frame 5	1.38	1.27
	447643	H10767	Hs.238465	nGAP-like protein	1.38	1.22
	401593			Target Exon	1.38	2.58
25	403807			NM_031889:Homo sapiens enamelin (ENAM),	1.38	2.38
	406356	N47812		CGI-35 protein	1.38	2.25
		144/012				
	401886			NM_021783:Homo sapiens XEDAR (XEDAR), mR	1.38	2.00
	421110	AJ250717	Hs.1355	cathepsin E	1.38	8.93
	427449	AW946384	Hs.178112	DNA segment, single copy probe LNS-CAI/L	1.38	1.44
30	427451	Al690916	Hs.178137	transducer of ERBB2, 1	1.38	2.81
	440681	AW449696	Hs.166547	ESTs	1.38	2.95
	419590	AF005043	Hs.91390	poly (ADP-ribose) glycohydrolase	1.38	2.10
	446044	H67567	Hs.13572	calcium modulating ligand	1.37	2.62
25	400967			Targel Exon	1.37	3.12
35	414506	AF075337	Hs.76293	thymosin, bela 10	1.37	1.18
	402599			NM_021186*:Homo saplens zona pellucida g	1.37	2.68
	422932	Al191813	Hs.308220	ESTs	1.37	2.38
	433889	AK002082	Hs.3623	hypothetical protein FLJ11220	1.37	2.23
					1.37	2.25
40	429802	H09548	Hs.5367	ESTs, Wealdy similar to 138022 hypotheti		
40	443856	AK000574	Hs.9908	nitrogen fixation cluster-like	1.37	1.28
	453489	AA300067	Hs.33032	hypothetical protein DKFZp434N185	1.37	2.15
	424670	W61215	Hs.116651	epithelial V-like antigen 1	1.37	1.66
	428995	AW004975	Hs.194716	MAD (mothers against decapentaplegic, Dr	1.37	1.33
	441551	AA318224	Hs.296141	ESTs	1.37	2.95
45					1.37	1.19
47	450528	NM_014072	Hs.25063	PRO0461 protein		
	427605	NM_000997	Hs.337445	ribosomal protein L37	1.37	1.31
	459237	AA031675	Hs.31917	Homo sapiens, clone MGC:9658, mRNA, comp	1.37	2.50
	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B	1.37	1.31
	404906			NM_025213:Homo saplens spectrin, bela, n	1.36	3.08
50	436246	AW450963	Hs.119991	ESTs	1.36	1.00
50					1.36	1.43
	441478	AA350018	Hs.301342	hypothetical protein MGC4342		
	419715	AF070523	Hs.92384	vitamin A responsive; cytoskeleton relat	1.36	1.28
	426251	M24283 .	Hs.168383	intercellular adhesion molecule 1 (CD54)	1.36	2.16
	400129			Eos Control	1.36	2.03
55	450447	AF212223	Hs.25010	hypothetical protein P15-2	1.36	2.13
	434697	AL133033	Hs.4084	KIAA1025 protein	1.36	2.01
					1.36	2.03
	430308	BE540865	Hs.238990	cyclin-dependent kinase inhibitor 1B (p2		2.87
	434767	AF153201		C2H2 (Kruppel-type) zinc finger protein	1.36	
	459729	AL037285	Hs.289848	EST, Weakly similar to ALU4_HUMAN ALU SU	1.36	1.27
60	426653	AA530892	Hs.171695	dual specificity phosphatase 1	1.35	2.20
	408912	AB011084	Hs.48924	KIAA0512 gene product; ALEX2	1.35	2.68
	409844	AW502336		gb:UI-HF-BR0p-aka-b-05-0-UI.r1 NIH_MGC_5	1.35	2.29
	402517			Target Exon	1.35	2.10
		AB035863	Hs.182217	succinate-CoA ligase, ADP-forming, beta	1.35	1.25
65	447042	ADUSSOUS	NS. 102211			2.32
65	405000			Target Exon	1.35	
	452065	AK000360	Hs.27721	Wolf-Hirschhorn syndrome candidate 1-lik	1.35	2.36
	404666			C9000748:gij8324209 gb AAB34384.2 (S775	1.35	2.55
	451081	AI078645	Hs.431	murine leukemia viral (bml-1) oncogene h	1.35	1.70
	427979	BE379776	Hs.181309	proteasome (prosome, macropain) subunit,	1.35	2.23
70			Hs.91147	ESTs	1.35	2.39
70	435825	R16702			1.35	1.40
	426469	BE297886	Hs.293970	methylmalonate-semialdehyde dehydrogenas		
	447002	BE242866	Hs.16933	HepA-related protein	1.34	2.88
	410946	AW811502		gb:CV2-ST0145-061299-015-b04 ST0145 Homo	1.34	2.02
	454383	AW500332	Hs.11114	hypothetical protein dJ1181N3.1	1.34	2.13
75	440512	AA887845	Hs.19673	suppressor of S. cerevisiae gcr2	1.34	2.05
	409865	AW502208		gb:Ul-HF-8R0p-aju-e-09-0-Ul.r1 NIH_MGC_5	1.34	2.63
		X95384	Hs.18426	translational inhibitor protein p14.5	1.34	1.00
	447390	ADJUUT	113,10440	ушини инивии рассир ито	1.07	

	450293	N36754	Hs.171118	hypothetical protein FLJ00026	1.34	2.45
	445831	NM_006055	Hs.13351	LanC (bacterial lantibiotic synthetase c	1.34	1.60
	418610	AW245993	Hs.223394	hypothetical protein MGC2742	1.34	1.39
	441946	AW298716	Hs.120775	ESTs	1.34	2.30
5	446192	H49944	Hs.14231	selenoprotein W, 1		
•	416285	BE537973	Hs.48617		1.34	1.17
				Homo sapiens cDNA FLJ12540 fis, clone NT	1.34	2.22
	425590	A1954686	Hs.158321	beaded filament structural protein 2, ph	1.34	2.50
	407498	U28131		gb:Human HMGI-C chimeric transcript mRNA	1.34	2.13
10	441331	Al216764	Hs.149971	ESTs, Moderately similar to ALUB_HUMAN!	1.34	2.05
10	411789	AF245505	Hs.72157	Adlican	1.34	1.27
	420542	NM_000505	Hs.1321	coagulation factor XII (Hageman factor)	1.33	1.25
	413892	AI878921	Hs.75607	myristoylated alanine-rich protein kinas	1.33	1.41
	439750	AL359053	Hs.57664			
				Homo sapiens mRNA full length Insert cDN	1.33	1.99
15	414861	AL119396	Hs.77508	glulamate dehydrogenase 1	1.33	1.66
13	421687	AL035306	Hs.106823	hypothetical protein MGC14797	1.33	2.18
	410846	AW807057		gb:MR4-ST0062-031199-018-b03 ST0062 Homo	1.33	2.07
	443937	R66571	Hs.24601	ESTs	1.33	2.02
	432360	BE045243	Hs.274416	Target CAT	1.33	1.12
	443119	AA312264	Hs.7980	hypothetical protein MGC12966	1.33	2.68
20	438464	AA669735	Hs.324743	protein phosphatase 4 regulatory subunit	1.33	1.99
	401371	70 1005705	113021110		1.33	
				ENSP00000198192*:BA438F9.1 (novel protei		1.10
	405443	DC000400	11-000040	Target Exon	1.33	2.11
	453764	BE008180	Hs.282846	Homo sapiens cDNA FLJ14353 fis, clone Y7	1.33	2.88
25	424924	AL039103	Hs.153834	pumilio (Drosophila) homolog 1	1.33	1.24
25	453555	N23574	Hs.123649	ESTs, Moderately similar to ALU7_HUMAN A	1.33	2.23
	404343			C7002191*:gi 5053028 gb AAD38811.1 AF155	1.33	1.04
	412383	AW947577		gb:RC0-MT0004-140300-031-b09 MT0004 Homo	1.33	2.06
	404250			Target Exon	1.33	2.53
	413899	AF083892	Hs.75608	light junction prolein 2 (zona occludens	1.33	2.81
30	422716					
50		A1702835	Hs.124475	ESTs, Weakly similar to YEF4_YEAST HYPOT	1.33	2.30
	448862	AJ351979	Hs.152717	hypothetical protein FLJ13725	1.33	1.08
	409540	AW409569		gb:fh01e09.x1 NIH_MGC_17 Homo saplens cD	1.33	2.18
	431186	NM_012249	Hs.250697	ras-like protein	1.32	1.39
	402754			NM_022469*:Homo sapiens hypothetical pro	1.32	1.16
35	420798	W93774	Hs.99936	keratin 10 (epidermolytic hyperkeratosis	1.32	2.02
	459710	AJ701596	Hs.121592	ESTs	1.32	2.70
	435192	AK000739	Hs.4835	eukaryotic translation initiation factor	1.32	2.22
	401383	711000100	113.1000	Target Exon	1.32	2.18
		AMOCOAZA	Un 40200	ESTs	1.32	2.20
40	453394	AW960474	Hs.40289			
40	421820	AW662990	Hs.294133	herne-binding protein	1.32	1.24
	444047	Al097452	Hs.135095	ESTs	1.32	2.95
	440860	R10482	Hs.132876	ESTs	1.32	2.83
	425808	AA364109	Hs.177990	ESTs	1.32	2.11
	456558	BE410992	Hs.258730	heme-regulated initiation factor 2-alpha	1.32	2.05
45	447015	AB033029	Hs.16953	KIAA1203 protein	1.32	1.30
	414015	AA340987	Hs.75693	prolytcarboxypeptidase (angiotensinase C	1.32	1.39
	414843	BE386038	Hs.77492	heterogeneous nuclear ribonucleoprotein	1.32	1.26
	424058		Hs.138617	thyroid hormone receptor Interactor 12	1.32	2.01
		AL121516	113.100017		1.32	2.13
50	401196	4101000000	11- 440004	Target Exon		
50	450147	AW373713	Hs.146324	CGI-145 protein	1.32	1.32
	422699	BE410590	Hs.119257	ems1 sequence (mammary tumor and squamou	1.32	1.33
	405172	. =		Target Exon	1.32	2.11
	434087	AF116675	Hs.334476	hypothetical protein PRO1942	1.32	2.30
	416720	H05435	Hs.11110	hypothetical protein MGC2508	1.32	2.18
55	426621	NM_001329	Hs.171391	C-terminal binding protein 2	1.32	1.53
	442685	AB033017	Hs.8594	KIAA1191 protein	1.32	1.43
	443879	Z28462	Hs.9927	Homo sapiens mRNA; cDNA DKFZp564D156 (fr	1.31	2.24
	405180	NM_002649		phosphoinosilide-3-kinase, catalytic, ga	1.31	1.36
	417365	D50683	Hs.82028	transforming growth factor, beta recepto	1.31	0.98
60		030003	110.02020	Target Exon	1.31	1.31
00	402087	NIM COLCAD	Un 2204		1.31	2.05
	429323	NM_001649	Hs.2391	apical protein, Xenopus laevis-like		
	409935	AW511413	Hs.278025	ESTs	1.31	1.20
	430235	BE268048	Hs.236494	RAB10, member RAS oncogene family	1.31	1.31
	400172			Eos Control	1.31	1.05
65	421742	AW970004	Hs.107528	androgen induced protein	1.31	1.79
	404273			Target Exon	1.31	2.35
	416204	AW972270	Hs.144054	ESTs	1.31	2.15
	435076	AW298113	Hs.92909	SON DNA binding protein	1.31	2.05
		AA732153	Hs.27865	Homo sapiens cDNA: FLJ21333 fis, clone C	1.30	1.57
70	452497	W/197199	113.2/000	Target Exon	1.30	2.23
, ,	404596	41414 50005	11- 40070			1.15
	419080	AW150835	Hs.18878	hypothetical protein FLJ21620	1.30	
	427195	W27230	Hs.173912	eukaryotic translation initiation factor	1.30	1.34
	438129	AA778647		gb:af87d03.s1 Soares_testis_NHT Homo sap	1.30	2.55
75	402138			Target Exon	1.30	2.09
75	404029			NM_018936*:Homo sapiens protocadherin be	1.30	2.83
	402731	AL042818		E3 ubiquitin ligase SMURF1	1.30	3.32
	458766	AW183618	Hs.55610	solute carrier family 30 (zinc transport	1.30	1.56
				• • •		

	434585	AW451715	Hs.184075	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.30	2.73
	417219	AW973473	Hs.220936	ESTs	1.30	2.45
	428125	AA393071	Hs.182579	leucine aminopeptidase	1.30	2.00
	416188					
5		BE157260	Hs.79070	v-myc avian myelocytomatosis viral oncog	1.30	1.00
J	444681	AJ243937	Hs.288316	chromosome 6 open reading frame 9	1.30	0.94
	406621	X57809	Hs.181125	Immunoglobulin lambda locus	1.29	1.02
	436663	AW410458	Hs.5258	chromosome 11 open reading frame2	1.29	1.20
	417250	N58241	Hs.332115	ESTs	1.29	3.43
	434978					
10		AA321238	Hs.4310	eukaryotic translation initiation factor	1.29	1.91
10	448079	R76981		thyroid hormone receptor-associated prot	1.29	2.01
	450626	AW190989	Hs.1508	Insulin-degrading enzyme	1.29	2.09
	456059	BE543127	Hs.336948	Homo sapiens, clone IMAGE:3530891, mRNA,	1.29	2.23
	417809	H75797	Hs.233550	zinc finger protein 208	1.29	2.20
1.0	454771	AW819939	Hs.273629	ESTs	1.29	2.10
15	413895	BE178160		gb:RC3-HT0600-060400-022-h10 HT0600 Homo	1.29	2.08
	404649	•		Target Exon	1.29	1.32
	440676	NN 004007	Hs.112378	LIM and senescent cell antigen-like doma	1.29	2.08
		NM_004987	N3.112310			
	405891			Target Exon	1.29	2.00
~~	418965	A1002238	Hs.11482	splicing factor, arginine/serine-rich 11	1.29	2.41
20	412824	AW958075	Hs.11261	small proline-rich protein 2A	1.29	1.27
-	420037	BE299598	Hs.135569	hypothetical protein FLJ14708	1.29	1.23
	459221	BE246522	Hs.306121	leukocyte receptor cluster (LRC) encoded	1.28	2.48
	458651	AW612481	Hs.104105	ESTs	1.28	2.35
	422984	W28614		chorionic somatomammotropin hormone 1 (p	1.28	1.37
25	459365	BE067754		gb:MR4-BT0358-140400-006-g10 BT0358 Homo	1.28	1.06
	418254	AA732511	Hs.86650	ESTs	1.28	2.38
		AATSZSTT	113.00030			
	402474			NM_004079:Homo sapiens cathepsin S (CTSS	1.28	1.99
	448456	Al521830	Hs.171050	ESTs	1.28	2.18
	450098	W27249	Hs.8109	hypothetical protein FLJ21080 .	1.28	1.68
30	405053			Target Exon	1.28	3.23
-	428915	A10/4070	Un 07000		1.28	4.25
		AI041278	Hs.87908	Snf2-related CBP activator protein		
	443721	AW450451	Hs.266355	ESTs	1.28	1.15
	452047	N35953	Hs.43510	ESTs, Weakly similar to BOX B BINDING FA	1.28	2.30
	440213	AW246253	Hs.7043	succinate-CoA ligase, GDP-forming, alpha	1.28	1.19
35	452900	AA626794		prothymosin, alpha (gene sequence 28)	1.28	1.27
"			Un 07779			2.76
	418721	NM_002731	Hs.87773	protein kinase, cAMP-dependent, catalyti	1.28	
	458911	AA373131	Hs.24322	ATPase, H transporting, lysosomal (vacuo	1.28	1.21
	444250	R40815	Hs.12396	ESTs, Weakly similar to 2004399A chromos	1.28	2.43
	431631	AA548906	Hs.122244	ESTs	1.27	1.51
40			Hs.105887	ESTs, Weakly similar to Homolog of rat Z	1.27	3.08
70	447966	AA340605				
	430316	NM_000875	Hs.239176	insulin-like growth factor 1 receptor	1.27	1.37
	416272	AA178882		gb:zp38b09.r1 Stratagene muscle 937209 H	1.27	2.00
	437456	AL047045	Hs.60293	Homo sapiens clone 122482 unknown mRNA	1.27	3.18
	456327	H68741	Hs.38774	ESTs	1.27	2.35
45			11000114	ephrin-B3	1.27	2.28
40	403349	NM_001406				
	428821	H91282	Hs.286232	Homo sapiens cDNA: FLJ23190 fis, clone L	1.27	2.13
	454555	AW807095		gb:MR4-ST0062-040100-024-e02 ST0062 Homo	1.27	2.05
	406872	Al760903		gb:wi09h08.x1 NCI_CGAP_CLL1 Homo sapiens	1.27	1.44
	401720			NM_014587*:Homo sapiens SRY (sex determi	1.27	2.07
50				- Eos Cantrol	1.27	1.26
50	400082		11- 440400			
	420183	W92885	Hs.143408	ESTs	1.27	2.24
	411579	AC005258	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	1.27	1.17
	402191			NM_021733*:Homo sapiens testis-specific	1.27	2.44
	457118	A1245525	Hs.182469	Homo sapiens mRNA; cDNA DKFZp564K1972 (f	1.27	2.17
55	408576	NM_003542	Hs.46423	H4 histone family, member G	1.27	2.78
"					1.27	3.15
	452826	BE245286	Hs.301636	peroxisornal biogenesis factor 6		
	414909	R80316	Hs.132569	PP2135 protein	1.27	1.37
	416114	Al695549	Hs.183868	glucuronidase, beta	1.26	2.48
	455476	AW948172		gb:RC0-MT0013-280300-021-b06 MT0013 Homo	1.26	2.18
60		AF054284	Hs.334826	splicing factor 3b, subunit 1, 155kD	1.26	1.35
UU	445926			fibroblast growth factor receptor 2 (bac	1.26	1.16
	432647	AI807481	Hs.278581			
	405436			Target Exon	1.26	2.38
	406140			Target Exon	1.26	3.20
	426201	AW182614	Hs.128499	ESTs	1.26	1.17
65	433334	Al927208	Hs.231958	matrix metalloproteinase 28	1,26	2.30
00			Hs.126057	frequently rearranged in advanced T-cell	1.26	2.61
	423262	NM_005479				2.11
	422929	AA356594	Hs.94011	ESTs, Weakly similar to MGB4_HUMAN MELAN	1.26	
	445605	Al906088	Hs.87159	hypothetical protein FLJ12577	1.26	3.11
	425050	BE391854	Hs.7970	gb:601285394F1 NIH_MGC_44 Homo sapiens c	1.26	2.18
70	420539	AA282735	Hs.44004	AD031 protein	1.26	2.03
, 0			Hs.284181	hypothetical protein DKFZp434P0531	1.25	1.19
	437352	AL353957				
	456535	AA305079	Hs.1342	cytochrome c oxidase subunit Vb	1.25	1.18
	434202	BE382411	Hs.3764	guanylate kinase 1	1.25	1.14
	439528	BE613180	Hs.288368	Homo saplens cDNA: FLJ21314 fis, clone C	1.25	2.12
75	400178		3	Eos Control	1.25	2.15
, ,		AA158243	Hs.227729	FK506-binding protein 2 (13kD)	1.25	1.20
	430023				1.25	1.39
	412841	Al751157	Hs.101395	hypothetical protein MGC11352	1.25	1.05

	425655	DEC4.4554	U- 700			
		BE614551	Hs.738	nbosomal protein L14	1.25	1.22
	449536	Al656608	Hs.281328	ESTs, Weakly similar to T00378 KIAA0641	1.25	3.00
	418406	X73501	Hs.84905	cytokeratin 20	1.24	2.11
_	414570	Y00285	Hs.76473	insulin-like growth factor 2 receptor	1.24	1.14
5	436967	AA761729	Hs.136705	ESTs	1.24	2.53
	457216	AA452554	Hs.283697	ESTs, Weakly similar to A41796 neural re	1.24	2.18
	418414	J04977	Hs.84981	X-ray repair complementing defective rep	1.24	1.35
	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys		
	421733	AL119671	Hs.1420	fibroblast growth factor receptor 3 (ach	1.24	0.92
10	402329	nc(130/1	115.1420		1.24	2.71
10		45454004		NM_006505*:Homo saplens poliovirus recep	1.24	1.13
	447525	AF151031	Hs.300631	hypothetical protein	1.24	1.07
	445939	BE018658	Hs.141003	Homo sapiens cDNA: FLJ21691 fis, clone C	1.24	2.23
	421936	AB040884	Hs.109694	KIAA1451 protein	1.24	2.15
	433681	Al004377	Hs.200360	Homo sapiens cDNA FLJ13027 fis, clone NT	1.24	2.15
15	426717	N90977	Hs.49690	Homo sapiens mRNA; cDNA DKFZp434D2328 (f	1.24	2.14
	404751	T70445	,	ribosomal protein L9		
	411456	AW847588			1.24	1.30
			11-457443	gb:IL3-CT0213-161299-038-G09 CT0213 Homo	1.24	2.35
	425417	AF098948	Hs.157113	coenzyme Q, 7 (rat, yeast) homolog	1.24	2.88
20	434508	AI648601	Hs.118012	ESTs	1.24	2.03
20	428284	AA535762	Hs.183435	NM_004545:Homo sapiens NADH dehydrogenas	1.24	1.59
	418597	AK001678	Hs.86337	similar to DNA-directed RNA polymerase I	1.24	2.27
	414191	AW250089	Hs.75807	PDZ and LIM domain 1 (elfin)	1.24	1.53
	449210	Al635363	Hs.345517	ESTs	1.24	2.18
	439551	W72062	Hs.11112	ESTs	1.24	
25	426244	AI064808	Hs.168289			2.13
				succinate dehydrogenase complex, subunit	1.23	1.06
	453635	BE148082	Hs.24724	MFH-amplified sequences with leucine-ric	1.23	1.34
	429617	X89984	Hs.211563	B-cell CLL/lymphoma 7A	1.23	2.27
	434943	Al929819	Hs.92909	chromosome 21 open reading frame 50	1.23	2.10
	417010	NM_006225	Hs.80776	phospholipase C, delta 1	1.23	1.21
30	426508	W23184	Hs.170171	glutamate-ammonia ligase (glutamine synt	1.23	1.37
	434055	AF168712	Hs.3726	x 003 protein	1.23	1.58
	438363	Al886351	Hs.22353	hypothetical protein FLJ21952	1.23	2.44
	450937	R49131	Hs.26267			
	407018		NS.20207	ATP-dependent interferon response protei	1.23	2.28
35		U49869	11- 40046	NM_018955:Homo sapiens ubiquitin B (UBB)	1.23	1.44
22	444981	AW855398	Hs.12210	hypothetical protein FLJ13732 similar to	1.23	1.19
	440112	AA099014	Hs.231029	Homo sapiens, clone MGC:15961, mRNA, com	1.22	2.07
	426672	AW270555	Hs.171774	hypothetical protein	1.22	1.16
	404956			C1003210*:gij6912582[ref]NP_036524.1] pe	1.22	2.18
	435088	NM_000481	Hs.102	aminomethyltransferase (glycine cleavage	1.22	1.08
40	438588	AW274454	Hs.6318	peroxisomal short-chain alcohol dehydrog	1.22	1.02
. •	434454	AF217798	Hs.3850	LIS1-interacting protein NUDEL; endoolig	1.22	1.27
	425689	W16480	Hs.24283		1.22	2.52
				ESTs, Moderately similar to reduced expr		
	428755	D87454	Hs.192966	KIAA0265 protein	1.22	1.16
15	420685	AA279362		gb:zs84d04.r1 NCI_CGAP_GC81 Homo saplens	1.22	2.75
45	458991	Al743502		gb:wf63h12.x2 Soares_NFL_T_GBC_S1 Homo s	1.22	2.39
	414825	X06370	Hs.77432	epidermal growth factor receptor (avian	1.22	1.00
	434023	A1277883	Hs.146141	ESTs	1.22	2.12
	430801	Al580935	Hs.105698	ESTs	1.22	2.53
	414880	AW247305	Hs.119140	eukaryotic translation initiation factor	1.21	1.16
50	454144	BE280478	Hs.182695	hypothetical protein MGC3243	1.21	1.04
•	404790	DC,200470	. 13.102000	C12001707*:gi[7305215[ref]NP_038599.1] k	1.21	2.05
					1.21	2.05
	403943			C5000355:gi]4503225[ref]NP_000765.1] cyt		
	400201			NM_006156*:Horno sapiens neural precursor	1.21	1.35
55	421005	AW293089	Hs.33263	ESTs	1.21	2.02
55	414774	X02419	Hs.77274	plasminogen activator, urokinase	1.21	1.11
	400789			C11001367*:gij1076205[pir] S50754 hypoth	1.21	1.06
	412853	M34175	Hs.74626	adaptor-related protein complex 2, beta	1.21	1.24
	449709	BE410592	Hs.23918	hypothetical protein PP5395	1.20	1.27
	413726	AJ278465	Hs.75510	annexin A11	1.20	1.14
60	428485	NM_002950	Hs.2280	ribophorin I	1.20	1.24
00	405163	1414 005000	110.2200	C5000561*:gi[7513700]pir][T14151 lnv pro	1.20	1.11
			11- 70000			
	415887	NM_003375	Hs.78902	voltage-dependent anion channel 2	1.20	1.16
	434468	N29309	Hs.39288	ESTs	1.20	3.20
~~	446843	AW135925	Hs.98798	hypothetical protein MGC11332	1.20	2.25
65	432642	BE297635	Hs.3069	heat shock 70kD protein 98 (mortalin-2)	1.20	2.18
	448242	R60646	Hs.20768	HSPC189 protein	1.20	1.22
	415753	U52819	Hs.78781	vascular endothelial growth factor B	1.20	1.05
	442156	A1690586	Hs.29403	hypothetical protein FLJ22060	1.20	1.18
	408824	L80005	Hs.48375	small nuclear ribonucleoprotein potypept	1.20	1.45
70	430012	NM_015373	Hs.227637	chromosome 22 open reading frame 2	1.20	1.03
7.0			Hs.13021	ESTs	1.20	2.07
	413392	AW021404	H3. 13021			
	401286			Target Exon	1.20	2.08
	415665	Al097276	Hs.274430	surfeit 6	1.20	2.53
75	456562	AA306049	Hs.102669	DKFZP434O125 protein	1.20	2.40
75	408988	AL119844	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi	1.20	3.45
	427818	AW511222	Hs.193765	ESTs	1.19	2.99
	406404			NM_002162*:Homo saplans intercellular ad	1.19	1.17
				•		

	400124			Eos Control	1.19	2.12
	416023	AA173029		gb:zp05e01.r1 Stratagene ovarian cancer	1.19	2.45
	427751	AF000152	Hs.180669	conserved gene amplified in osteosarcoma	1.19	1.07
_	401204			ENSP00000252232*:Sterol regulatory eleme	1.19	2.40
5	446771	AA128965	Hs.60679	TATA box binding protein (TBP)-associate	1.19	2.03
	429673	AA884407	Hs.211595	protein tyrosine phosphatase, non-recept	1.18	2.36
	400130			Eos Control	1.18	2.58
	405365 406181			CX001212°:gij7861932 gb AAF70445.1 (AF2	1.18	2.38
10	422559	AW247696	Hs.155839	Terget Exon hypothetical protein MGC12934	1.18 1.18	2.18 2.13
10	409524	AW402151	Hs.54673	tumor necrosis factor (ligand) superfami	1.18	1.07
	438446	AW137476	Hs.135204	Homo sapiens cDNA FLJ13884 fis, clone TH	1.18	2.11
	447980	AI703397	Hs.202355	ESTs	1.18	2.02
1.5	425503	W92517	Hs.158203	actin binding LIM protein 1	1.18	1.29
15	411469	T09997	Hs.70327	cysteine-rich protein 2	1.18	0.99
	409162	H25530	Hs.50858	solute carrier family 22 (organic cation	1.17	1.04
	429986 420869	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	1.17	1.00
	425943	X58964 H46986	Hs.123638 Hs.31861	regulatory factor X, 1 (influences HLA c ESTs	1.17 1.17	2.58 2.25
20	415376	R35960	Hs.180711	Homo sapiens, Similar to hypothetical pr	1.17	2.13
	420588	AF000982	Hs.147916	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.17	2.38
	457205	Al905780	Hs.198272	Target CAT	1.17	1.11
	407970	AW403814	Hs.41714	BCL2-associated athanogene	1.16	3.60
25	440214	AA24711B	Hs.7049	hypothetical protein FLJ11305	1.16	2.15
25	405646		11	C12000200:gi 4557225 ref NP_000005.1 al	1.16	1.11
	438438	AA257992	Hs.50651	Janus kinase 1 (a protein tyrosine kinas	1.16 1,16	1.08 2.08
	431427 419885	AK000401 AA251561	Hs.252748 Hs.48689	Homo sapiens cDNA FLJ20394 fis, clone KA ESTs	1.16	2.07
	427679	AA973904	Hs.176092	ESTs, Moderately similar to MYPH_HUMAN M	1.16	2.15
30	443865	AW296385	Hs.146139	hypothetical protein FLJ12610	1,15	2.05
	415511	Al732617	Hs.182362	ESTs	1.15	3.44
	417988	AA210878	Hs.111219	ESTs, Moderately similar to ALU1_HUMAN A	1.15	2.09
	405058			Target Exon	1.15	1.16
35	446623	AF279865	Hs.15711	kinesin family member 13B	1.15	1.21
33	419754 420003	H52299 AA256906	Hs.308467 Hs.111364	Homo saplens mRNA; cDNA DKFZp586l0523 (f ESTs, Weakly similar to ubiquitous TPR m	1.15 1.15	1.15 2.06
	420003	AW673847	Hs.97321	ESTS	1.15	1.00
	426371	M63967	Hs.169517	aldehyde dehydrogenase 1 family, member	1.15	2.31
	422895	NM_015958		CGI-30 protein	1.15	2.08
40	426295	AW367283	Hs.278270	zinc finger protein 6 (CMPX1)	1.15	2.13
	448323	A1492298	Hs.170915	ESTs	1.14	2.54
	414244	AA287801	Hs.71711	ESTs, Moderately similar to Z195_HUMAN Z	1.14	2.23
	442872	AI471987	Hs.173045	ESTS	1,14 1,14	2.09 2.33
45	425318	AU076845 F11582	Hs.155596 Hs.78582	BCL2/adenovirus E1B 19kD-interacting pro developmentally regulated GTP-binding pr	1.14	1.10
73	415667 401058	F11302	115.76502	Target Exon	1.14	2.20
	409838	AW502928		gb:UI-HF-BP0p-aiw-e-10-0-UI.r1 NIH_MGC_5	1.14	2.15
	438493	AJ130740	Hs.6241	phosphoinositide-3-kinase, regulatory su	1.14	1.00
~^	404392			C7001460:gij12667420jgbjAAK01436.1jAF332	1.14	2.82
50	433220	AI076192	Hs.131933	ESTs	1,14	2.78
	405166			Target Exon C11000425:gi]4507721]ref[NP_003310.1] ti	1.14 1.14	2.23 2.71
	401038 414052	AW578849	Hs.283552	ESTs, Weakly similar to unnamed protein	1,14	2.08
	442043	BE567620	Hs.99210	ESTs	1.13	2.17
55	419727	AW160796	Hs.92700	DKFZP564O243 protein	1.13	1.14
	425206	NM_002153	Hs.155109	hydroxysteroid (17-beta) dehydrogenase 2	1.13	2.07
	414682	AL021154	Hs.76884	inhibitor of DNA binding 3, dominant neg	1.13	1.47
	402712			C1003562*:gi[10047177]dbj[BAB13382.1] (A	1.13	1.18
60	452289	BE568205	Hs.28827	mitogen-activated protein kinase kinase	1.12 1.12	2.16 1.10
OU	401496 459249	AI970399	Hs.240079	Target Exon ESTs	1.12	2.67
	447495	AW401864	Hs.18720	programmed cell death 8 (apoptosis-induc	1.12	2.03
•	428422	AI557280	Hs.184270	capping protein (actin filament) muscle	1.11	2.60
	421762	AA297546		gb:EST113074 Fetal brain III Homo sapien	1.11	2.15
65	405855			Target Exon	1.11	1.98
	428972	AK001470	Hs.194692	cysteine desulfurase	1,11	2.19 3.33
	406761	AI241715	Hs.77039	ATP synthase, H transporting, mitochondr Homo sapiens clone 24481 mRNA sequence	1.10 1.10	2.30
	432425 446241	AF070619 Al004677	Hs.274539 Hs.179260	chromosome 14 open reading frame 4	1.10	2.28
70	424454	AB011139	Hs.147946	optic alrophy 1 (autosomal dominant)	1.10	2.18
. •	418242	AW976183	Hs.88414	BTB and CNC homology 1, basic leucine zi	1.10	2.07
	437407	A1479332	Hs.129031	ESTs	1.10	2.09
	447459	AJ380255	Hs.159424	ESTs	1.10	2.22
75	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	1.09 1.09	2.33 2.25
13	403655	R59206	Hs.17519	NM_003071:Homo sapiens SWI/SNF related, Homo sapiens cDNA: FLJ22539 fis, clone H	1.09	2.70
	433156 403826	NUSECIA	113.17318	Target Exon	1.09	1.10
	700020			•		

	433333 451382	AI016521 HB6180	Hs.71816 Hs.221513	v-akt murine thymoma viral oncogene homo ESTs	1.09 1.08	1.06 2.75
	454717	AW815123		gb:QV4-ST0212-261199-045-b01 ST0212 Homo	1.08	1.98
5	422743	BE304678	Hs.119598	ribosomal protein L3	1.08	1.00
,	411672 452748	AJ275986 AB011128	Hs.71414 Hs.30512	transcription factor (SMIF gene) Homo sapiens mRNA for KIAA0556 protein,	1.08 1.08	1.00
	428330	L22524	Hs.2256	matrix metalloproleinase 7 (matrilysin,	1.08	2.45 2.15
	447703	A1420277		gb:tf06c12.x1 NCI_CGAP_Pr28 Horno sapians	1.08	2.05
10	452420	BE564871	Hs.29463	centrin, EF-hand protein, 3 (CDC31 yeast	1.07	2.03
10	455234	R41084		gb:Hk763-f Adult heart, Clontech Homo se	1.07	2.08
	413945	NM_000591	Hs.75627	CD14 antigen	1.07	0.91
	417333 434105	AL157545 AW952124	Hs.173179 Hs.13094	bromodomain and PHD finger containing, 3 presentiins associated rhombold-like pro	1.07 1.07	1.00 1.11
	455630	AV655701	Hs.75183	cytochrome P450, subfamily IIE (ethanol-	1.06	2.14
15	455424	AW937733	113.70100	gb:QV3-DT0045-210100-063-d06 DT0045 Homo	1.05	2.03
	438324	A1792660	Hs.6162	KIAA0771 protein	1.05	2.27
	421604	AW293880	Hs.248367	MEGF11 protein	1.05	2.00
	422614 404058	A1908006	Hs.295362	Homo sapiens cDNA FLJ14459 fis, clone HE	1.04	2.33
20	453085	AW954243		Target Exon KIAA0251 protein	1.04 1.04	2.10 2.18
	417500	H59970		gb:yr16f04.r1 Soares fetal liver spleen	1.04	2.40
	408653	AW410189	Hs.98074	itchy (mouse homolog) E3 ubiquitin prote	1.04	2.73
	440439	N92818	Hs.64754	ESTs, Wealdy similar to potential CDS [H	1.04	2.05
25	409209	AA460160	Hs.73217	ESTS	1.04	2.73
23	456107	AA160000	Hs.137396 Hs.26744	ESTs, Weakly similar to JC5238 galactosy	1.03 1.02	2.18 2.43
	415403 455591	F07923 BE008018	NS.20144	ESTs gb:QV0-BN0147-290400-214-c01 BN0147 Homo	1.02	2.08
	428491	AF091035	Hs.184627	KIAA0118 protein	1.02	2.81
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	1.02	2.11
30	434540	NM_016045	Hs.3945	CGI-107 protein	1.02	2.78
	442174	A1690080	Hs.128907	ESTs, Weakly similar to ARIX homeodomain	1.02	2.05
	413431 452436	AW246428 BE077546	Hs.75355 Hs.31447	ubiquitin-conjugating enzyme E2N (homolo ESTs, Moderately similar to A46010 X-lin	1.02 1.02	1.00 2.25
	454412	AW582568	115.3 1447	gb:RC1-ST0278-080100-011-h04 ST0278 Komo	1.00	2.20
35	426955	AA393669	Hs.238094	ESTs	1.00	2.18
	425910	AA830797	Hs.184760	CCAAT-box-binding transcription factor	1.00	2.10
	405710			CX000682:gi]12741327[ref]XP_008833.2] zi	1.00	2.00
	400296	AA305627	Hs.139336	ATP-binding cassette, sub-family C (CFTR	1.00 1.00	1.00 1.00
40	402001 402812			Target Exon NM_004930*:Homo sapiens capping protein	1.00	1.00
10	402892			Target Exon	1.00	1.00
	403329			Target Exon	1.00	1.00
	407202	N58172	Hs.109370	ESTs	1.00	1.00
45	408684	R61377	Hs.12727	hypothetical protein FLJ21610	1.00	1.00
43	410555 413573	U92649 Al733859	Hs.64311 Hs.149089	a disintegrin and metalloproteinase doma ESTs	1.00 1.00	1.00 1.00
	414343	AL036166	Hs.323378	coated vesicle membrane protein	1.00	1.00
	414422	AA147224	Hs.249195	Homeo box A13	1.00	1.00
50	417006	AW673606	Hs.80758	aspartyl-tRNA synthetase	1.00	1.00
50	421577	BE465451	Hs.105925	single-minded (Drosophila) homolog 1	1.00	1.00 1.00
	423349	AF01025B	Hs.127428	homeo box A9 phospholipase A2, group X	1.00 1.00	1.00
	424273 424649	W40460 BE242035	Hs.144442 Hs.151461	embryonic ectoderm development	1.00	1.00
	426827	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	1.00	1.00
55	427308	D26067	Hs.174905	KIAA0033 protein	1.00	1.00
•	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	1.00	1.00
	430261	AA305127	Hs.237225 Hs.249195	hypothetical protein HT023 homeo box A13	1.00 1.00	1.00 1.00
	431078 433222	U82827 AW514472	Hs.238415	dickkopf (Xenopus laevis) homolog 4	1.00	1.00
60	434980	AW770553	Hs.14553	sterol O-acyltransferase (acyl-Coenzyme	1.00	1.00
	435974	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor	1.00	1.00
	443054	A1745185	Hs.8939	yes-associated protein 65 kDa	1.00	1.00 1.00
	443564	A)921685	Hs.199713	ESTs aminopeptidase	1.00 1.00	1.00
65	444542 445413	Al 161293 AA 151342	Hs.280380 Hs.12677	CGI-147 protein	1.00	1.00
•••	448706	AW291095	Hs.21814	Interleukin 20 receptor, alpha	1.00	1.00
	448807	A1571940	Hs.7549	ESTs	1.00	1.00
	449448	D60730	Hs.57471	ESTS	1.00	1.00 1.00
70	449517	AW500106 AL050078	Hs.23643	serine/threonine protein kinase MASK Homo sapiens cDNA FLJ10784 fis, clone NT	1.00 1.00	1.00
, 0	450568 451844	T61430	Hs.25159	gb:yc06a03.s1 Stratagene lung (937210) H	1.00	1.00
	452039	AI922988	Hs.172510	ESTs	1.00	1.00
	452795	AW392555	Hs.18878	hypothetical protein FLJ21620	1.00	1.00
75	453096	AW294631	Hs.11325	ESTs	1.00	1.00
75	453370 453066	AJ470523 BE148734	Hs.139336 Hs.63325	ATP-binding cassette, sub-family C (CFTR transmembrane protease, serine 4	1.00 1.00	1.00 1.00
	453966 405580	DE 140134	113.00043	Target Exon	1.00	1.00
				• '- '		

	430268 450377	AK000737 AB033091	Hs.237480 Hs.74313	hypothetical protein FLJ20730 KJAA1265 protein	1.00	1.00 1.00
	433226 412719	AW503733	Hs.9414	KIAA1488 protein	1.00	1.00
5	425289	AW016610 AW139342	Hs.816 Hs.155530	ESTs interferon, gamma-Inducible protein 16	1.00	1.00
,	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	1.00 1.00	1.00 1.00
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	1.00	1.00
	438817	Al023799	Hs.163242	ESTs	1.00	1.00
	455474	AW948094		gb:RC0-MT0012-290300-031-c10 MT0012 Homo	0.99	2.00
10	420148	U34227	Hs.95361	myosin VIIA (Usher syndrome 18 (autosoma	0.99	2.33
	428466	AF151063	Hs.184456	hypothetical protein	0.98	2.20
	421594	R45689	Hs.21889	Homo sapiens cONA FLJ12978 fis, clone NT	0.98	3.09
	444654	AV650572	Hs.23440	KIAA1105 protein	0.98	2.00
15	409759	N40285	Hs.81182	histamine N-methyltransferase	0.97	2.20
13	401936 403463			Target Exon Target Exon	0.97 0.96	2.39 2.58
	434421	AI915927	Hs.34771	ESTs	0.96	2.15
	412636	NM_004415	110.04771	desmoplakin (DPI, DPII)	0.95	2.01
	442432	8E093589	Hs.38178	hypothetical protein FLJ23468	0.93	2.55
20	421938	AA405951		gb:zu66c01.r1 Soares_testis_NHT Homo sap	0.93	3.10
	447470	BE618324	Hs.263561	ESTs, Weakly similar to A53531 oncofetal	0.92	2.08
	448369	AW268962	Hs.111335	ESTs	0.91	2.35
	421710	AB007930	Hs.107088	KIAA0461 protein	0.91	2.63
25	406805	AI686003	Hs.296031	ESTs	0.91	2.21
23	447475 428892	Al380797 U82828	Hs.158992	ESTS	0.90 0.90	3.25 2.02
	450222	U75308	Hs.194382 Hs.24644	ataxia telangiectasia mutated (includes TATA box binding protein (TBP)-associate	0.89	2.02
	401572	073300	113.27044	C15001384*:gi[12737057[ref[XP_012129.1]	0.88	2.00
	429226	AA913330	Hs.53542	choreoacanthocytosis gene; KIAA0986 prot	0.88	2.37
30	421979	AW062518	Hs.233150	hypothetical protein MGC5560	0.87	3.70
	407614	NM_001932	Hs.37144	membrane protein, palmitoylated 3 (MAGUK	0.86	2.02
	417912	R25269	Hs.50547	ESTs	0.86	2.00
	401654			NM_007242:Homo saplens DEAD/H (Asp-Glu-A	0.86	2.11
25	403149			NM_001450:Homo sapiens four and a haif L	0.86	2.19
35	413000	BE046280	11- 454040	gb:hn43c09.x2 NCI_CGAP_RDF2 Homo sapiens	0.85	2.40
	425166	AK001456	Hs.154919 Hs.18368	KIAA0625 protein DKFZP56480769 protein	0.85 0.84	2.18 2.13
	447371 452801	AA334274 Al935587	Hs.34447	ESTs	0.84	2.55
	400957	Misosoni	110.04447	Target Exon	0.83	2.15
40	426420	BE383808	Hs.322430	NDRG family, member 4	0.83	2.14
	429354	AA451666	Hs.269363	ESTs	0.80	2.25
	417831	H16423	Hs.82685	CD47 antigen (Rh-related antigen, integr	0.78	2.43
	443368	BE568891	Hs.199210	ESTs, Moderately similar to bK116F5.2 [H	0.78	2.00
45	441901	AI914445	Hs.128103	ESTs	0.76	2.06
43	429462 403010	A1890356	Hs.127804	Homo sapiens, clone IMAGE:3536432, mRNA,	0.76 0.75	2.03 2.43
	420344	BE463721	Hs.97101	C21000152:gij6226483 splQ52118 YMO3_ERWS putative G protein-coupled receptor	0.75	2.42
	448332	AW293110	Hs.171068	ESTs	0.74	2.00
	421674	T10707	Hs.296355	hypothetical protein FLJ23138	0.71	2.18
50	450645	AL117441	Hs.301997	hypothetical protein FLJ13033	0.67	2.06
	448514	AB020626	Hs.301866	KIAA0819 protein	0.67	2.03
	431609	AW792792	Hs.264330	N-acytsphingosine amidohydrolase (acid c	0.60	2.54
	417512	X76534	Hs.82226	glycoprotein (transmembrane) nmb	0.60	2.00
55	425960	AW410646	Hs.164649	hypothetical protein DKFZp434H247	0.57	2.15
55	408077	AL133574	Hs.42458	Homo sapiens mRNA; cDNA DKFZp586C1817 (f	0.53	2.29
	TABLE 98					
	TUREST					
	Pkey:	Unique Eos pro		rnumber		
60		r: Gene cluster ni				
	Accession:	Genbank acces	ssion numbers			
~	Pkey	CAT Number	Accession			200000 A ADDOOR ALL DOOR ALL D
65	409345	112147_1	Al949109	AW118631 Al833148 AW117891 R45932 R80970 AA	733110 AW	269428 T27024 R97693 A1149202 A1475492 H98845 AA609665
						4509 W65300 R07712 R36955 AA812477 AA609576 AI754304
				A970004 AW274661 AA923584 Al673108 AA070706	4A541812 I	30338
	409540	1138613_1		9 BE297044 BE295828 0 AW501280 AW500814		•
70	409806	1155259_1		8 AW505606 AW501576 AW501577		
70	409838 409844	1155987_1 1156139_1		6 AW502339 AW501736 AW501839		
	409855	1156256_1		1 AW503000 AW502207 AW501862		
	409865	1156518_1	AW50220	8 AW502366 AW502148		
	410600	121108_1	AW57574	2 BE549623 Al335824 BE463447 AA729043 AW4087	12 AW4996	16 AA086179 AW499617 AA191322
75	410846	1223902_1	AW80705	7 AW807054 AW807189 AW807193 AW807369 AW8	07429 AW8	07364 AW807365 AW807078 AW807256 AW807180 AW807331
	410946	1227589_1		2 AW811521 AW811548 AW811471 AW811511 AW8	11508	
	411456	1246706_1	A4V84758	8 AW847716 AW847664 AW847592		

5	411609 412210 412383 412560	1251530_1 1283615_1 1292509_1 130601_1	AW993680 AW853769 AW901492 AW947725 AW901448 AW947577 AW947574 AW9477576 AW947734 AW947733 AW947732 R24601 R23657 AA194467 AI948584 AI676666 AA194383 AI765219 AA702993 AA813511 AA620965 AI990303 AI624882 AI003925 AI338870 AI004689 AI004690 AI177228 Z25302 F29302 BE044308 F32992 AA112966 T30825 F24958 F18071 C00537 T30841 R24502 AI934786 AI770075 AI144132 AA812597 AW203978 H82735 AI813349 AI142908 C04894 AI208243 AI208044 N89963 AI767866 AI290470
	412636	13165_1	AI855963 H83611 BE463806 AI082639 AA507760 NM_00415 AL031058 M77830 BE149760 AW752599 AW848723 AW376697 AW376817 AW376699 AW848371 AW376782 AW848789 AW361413 AW849074 AW997139 AW799304 AW799309 BE077020 BE077017 BE185187 AW997198 BE156621 BE179913 BE00561
10			BE143155 AW890985 BE002107 AW103521 AA857316 AW383133 BE011378 AW170253 BE185750 AW880475 BE16443 303211 BE082576 BE082584 BE004047 AW607238 AW377700 AW377693 BE082505 BE082505 BE082505 BE082514 AW178000 AW177933 AI905935 AW747877 AW748114 BE148516 AW2652328 AW847678 AW847688 AW365151 AW365148 AW365153 AW365156 AW365175 AW365157 AW365154 AW068840 BE005272 AW365145 BE001925 BE182166 BE144243 BE001923 AI951766 AA434518 BE184920 AW365157 AW365154 AW068840 BE005272 AW365145 BE001925 BE182166 BE144248 BE159646 AW606653 AA098891 AA131128
15			AA337270 AA340777 AW384371 AA852212 R58704 AW366566 AW364859 AA025851 AA025852 AA455100 AA7 19550 AW352220 AW996245 BE165351 BE073467 AA377127 AW890264 AW609750 AW991912 AW849690 T87267 AW853812 AA852213 W74149 BE009090 AA056401 H91011 AW368529 AW390272 C18467 AW674920 N57176 AA026480 AW576767 H93284 AA026863 AW177787 AA026554 AW177786 BE092134 BE092137 BE092136 AW177784 AU022862 BE091653 AW376811 AW848592 AA040018 BE185331 BE182164 AW177786 BE092134 BE092137 BE092136 AW177784 AU022862 BE091653 AW376811 AW848592 AA040018 BE185331 BE187165 AW37681 AW376
20			A358594 AW991576 129116 AA15107/ W35946 W2555 ANZ128470 A1392926 AF 139065 AW370813 AW370827 AW798417 AW798780 H27408 H30146 A119590 C03378 A1554403 A1205263 AA128470 A1392926 AF 139065 AW370813 AW370827 AW798817 AW798883 AW798569 R33557 AA149190 C03029 AW177783 AA088866 AW370829 AA247685 BE002273 AI760816 AI439101 AW879451 AI700963 AA451923 A1340326 A1590975 T48793 A1568096 A1142882 AA039975 AI470146 A9346936 BE067737 BE067786 W19287 AA644381 AA702424 AI417612 A1306554 AI686869 A1568892 AW190555 AI571075 A1220573 AA056527 AI471874 A1304772 AW517828 A1915596 AI627383 A1270345 AW021347 AW166807 AW105514 A1346078 AA552300 W95070 A1494069 A1911702 AA149191 AA026864 A1915596 AI627383 A1270345 AW021347 AW166807 AW105514 A1346078 AA552300 W95070 A1494069 A1911702 AA149191 AA026864
25			AIB30049 AIB87258 AW780435 AI910434 AIB19984 AIB59282 AI078449 AIU2932 AI800584 AI9769376 AAU2597 AF76252 D1200 AW192085 AA658154 AW514597 AW591892 T87181 AA782066 AW243815 AW150038 AW268383 AW004633 AI927207 AA782109 AW473233 AI804485 AW169216 AI572669 AA602182 AW015480 AW771865 AI270027 AA961816 AA283207 AI076962 AI498487 AI348053 AJ783914 H44405 AW799118 AA128330 AA515500 AA918281 W02156 AI905927 AA022701 W38382 R20795 T77861 AW860878
30	412998 413000 413611 413709	1343218_1 1343239_1 1380017_1 1384144_1	BE046254 BE046673 BE046253 BE046280 BE046763 BE046676 BE153275 BE153189 BE153329 BE153022 BE153030 BE152974 BE158687 BE158688
35	413804 413895 415789 416023 416272	1390710_1 1397743_1 1555357_1 156696_1 158407_1	T64682 BE168190 BE168256 BE178160 BE177986 BE17830 BE178480 H01581 H12850 R65905 H13053 AA173029 BE467711 AA176710 AA178882 AA17998 AA178897
40	417500 419555 420685 421762	168443_1 185884_1 195591_1 206590_1	H59970 AA203382 R08822 AA244416 AA244401 AA279352 AA454496 AA5B4871 AA297546 AA297410 AA297401 AA297465 AA297268 AW966174
45	421938 422895	209376_1 22276_1	AA405951 AA300675 AA412243 AA412383 NM_015958 AF132964 AA088658 N28882 AI197842 AA338679 AA405666 W16871 AA385447 AI928315 AI928318 AW846613 AW960009 NM_015958 AF132964 AA088658 N28882 AI197842 AA338679 AA405666 W16871 AA338340 AA371380 AA334618 AA316398 AI860687 AI205534 AI961336 T64873 AI735559 H58826 AA857710 AW337576 BE242131 AA339340 AA371380 AA334618 AA316398 R96579 AW771956 AA366110 W07461 H77946 W28614 W27435 AI983043 AA364395 AW572472 AW19386 AI129278 AI913081 AW473549 AA830713 AI982871 AI638647 AI828466 W28614 W27435 AI983043 AA364395 AW572472 AW19386 AI129278 AI913081 AW473549 AA830717 AA974369 AI866929 AI866032
	422984	223488_3	AW572486 N52583 N89687 AW075567 AI571047 AI857479 AI659465 AI656019 AI263697 AI355825 R42668 AA894603 AW105585 AI824555 AI823925 AI823566 AW198135 AI287510 AI565910 AA765775 AI866019 AI263697 AI355825 R42668 AA894603 AW105585 AI824555
50	432638	35173_4 374566_1	AI017717 AA349996 AA350286 BE501310 R48207 AI372769 AI003450 AA313976 AI261513 AI003313 AI00331
<i></i>	433821 434767	39297_1	AW182416 AA918195 AA778707 AA927922 AA868718 AA653391 AA653630 AF026094 N83362 AA206766 AW874294 AA284205 AF153201 AW8888811 AW8888810 AW842970 AA383181 F35832 F26805 X78930 AF026094 N83362 AA206766 AW874294 AA284205 Al091885 AA206800 AW370684 AA904608 AA806352 AA894757 AW068376 AA807284 AA311341 AW958314 AW974687 AA649656 AA652145
55	434809 438129 438713	393566_1 450500_1 463722_1	AA778647 AW070999 R42302 H16902 AA814856 T65225 AI523569 F09869 F04737 AI538427 AI051714 AW172603 F02602 F01437 AI684417 AI801950 F02970 Z39367
60	438924	4669_1	BE535511 M62098 AA306787 AW891766 AA348998 AA336669 AA346722 AA448690 C21404 AW884390 AA345454 AA303292 AA174174 AI568978 H13317 R20373 AW948724 AW948744 AA335023 AA436722 AA448690 C21404 AW884390 AA345454 AA303292 AA174174 BE092290 T90614 AA035104 R76028 AA126924 AA741086 AW022056 AW118940 AA121666 AI832409 AA683475 AI140901 AI623576 BE092290 T90614 AA035104 R76028 AA126924 AA741086 AW022056 AW118940 AA127782 AIR44073 N27434 AA876543 AA937815 AI051166
65	-		AW519064 AW474125 A1953923 A1735349 AW150109 A456154 AW116130 A1366874 A1564386 A1815196 A1683526 A1435885 AA505376 A1041975 A1335355 A1089540 AA662243 A127912 A1925604 A1250880 A1366874 A1564386 A1815196 A1683526 A1435885 A160934 H79030 A1801493 AA448691 A1673767 A1076042 A1804327 AA813438 AA680002 A1274492 T16177 A1287337 A1935050 AA907805 AA911493 A1589411 A1371358 AW576236 A1078866 AW516168 AA346372 A1560185 AA471009 R75857 AA296025 AA523155 AA853168 A1696593 A1658482 A1566601 AW072797 AA128047 AA035502 AW243274 AA992517 R43760
	439004 441623	467743_1 52182_1	AW979062 AA848000 AA847968 AA629138 AA315805 AA376906 BE539395 AW579186 H44349 BE328145 BE041644 AW579187 AW366504 H28241 H25318 W37573 AW600919 AA315805 AA376906 BE539395 AW579186 H44349 BE328145 BE041644 AW579187 AW366504 H28241 H25318 W37573 AW600919
70			AIG23661 BE501576 AI742232 AW887496 BE501734 AI023964 AI26360 AV8189392 AA612894 AI373653 H89551 H89365 AI699774 AW241694 AI038448 AA576391 AI018389 AI672071 AA977874 W37448 AW189392 AA612894 AI373653 H89551 H89365 AI699774 AI277548
75	442473 442506 445182 447703	543413_1 54405_1 632151_1 733191_1	W27992 AF056988 BE566411 AL 121194 AW976385 AW366882 AI767324 AW189787 AI215430 AW268499 AW205930 AI392907 BE093017 BE093019 BE093010 AA20277 AW747989 W26565

5	448079	74834_1	Al275045 AW1902 AW61435	AA101801 AA101722 AA122297 AA098802 BE005483 AA343200 AW963375 BE090425 AA213871 BE621402 AA309094 AW950171 6 Z44230 AW243724 Al051487 Al376624 R68631 AW978550 C00116 Al984051 AA122265 Al379941 AW205843 AW205839 19 AW129532 Al954133 Al668869 Al383948 Al537386 AA213788 Al088416 Al360826 AA101802 Al619505 AA101795 AA101723 92 R64287 AA927599 Al251904 Al803003 Al675123 AW023079 AW134959 Al926166 AA831069 Al638324 F29901 R46085 F03383
3	451844	85190_2 888230_1	A1033745 T61430 A	R20584 T90131 5 A034133 AA844424 AW166024 A1831699 A1971097 AA011685 H70852 H70851 A1820546 A1821336 94 AA626779 AA071274 AA928041 A1954235 N71035 N70230 AW674412 A1871136 A1563955 A1954237 AA649543 A1340231
10	452900	93691_1	AI368586 N67040	6 AI868721 W44486 TB3736 AA126250 AI343619 H94297 147633 AI672897 AA495355 R23240 AI814680 AA902119 AA044602 AW074273 AI357512 AA865354 AI027942 R33837 H95828 N63928 AI418701 AI186469 AA693727 AA778429 AA128352 AW954072 AA861852 AW0727116 AI955845 AI753118 AI755995 AA029523 T70086 AA029458 AW675640 N79606 AI659597 AI417119 AI804089
15			Al18702	1 AA128493 T83907 T47632 AA094118 AA496405 H94191 AW887759 N98454 AA512988 AI623761 AW028373 AW249740 9 AA991733 AI683085 AI336036 D60550 D60466 D60009 D60248 AW262673 AI524080 AA205643 AI969141 AW674989 AA093704 R73069 W01019 R23316 C14688 W44485 AA093663 T70157 H57883 R94790 D81287 D81788 AA364340 AA383533 N41706 14 D60973 D81466 D60551 R33836 D60249 AA354560 W01933 T71478 AA515461 F27984 BE084745 W19084 R81247 AI080252
13			1100000	3 AA205642 43 AA829930 AA412478 AA828434 AA814538 AI927418 AI192435 W52897 AA443666 AA031913 AI683306 AA918481 AI183314
20	453085	94851_1	D83907	43 AA829430 AA412476 AA626434 AA61633 AA61761290 A191125 A1143749 AW771909 Al241436 A1767267 W56507 AA847787 A1206832 AA876122 D83836 D83838 D82533 A1761290 A191125 A1143749 AW771909 Al241436 A1767267 W56507 AA847787 A21206822 A1247870 AA715017 AA643304 AA890233 AA811387 AA897470 AA907729 A1708679 A1078010 AA452830 AW419160 3 N80205 W56778 AA676899 A1888718 N69930 A1338935 A1217580 AA639508 AA575836 BE046852 A1312651 A1038406 AA628649 38 A1493761 AA032024 W38849 AA340178 AA447052 AA452969 W19369 AA296384 H44229 W58767 C05751 C05835 A1741989
			N98532	AW102617 AA412583 AJ922246 W38495 AA355375 AA928571 C06275 AA352500 N93132
	454412	1174764_1	AW5825	568 AW818656 AW818647 AW818655 AW818637 AW818234 195 AW807022 AW845880 AW807096 AW807461 AW846116 AW807070
25	454555 454717	1223870_1 1230516_1	AW8151	123 AW815138 AW815259
	455234	1265385_1	R41084	AW875856
	455424 455474	1289247_1 1292960_1		
30	400774	1202000_	AW9481	194 AW948118 AW948070 AW948051 AW948091 AW948098 AW948089 AW948104 AW948119 AW948069 AW948100 AW948112 102 AW948087 AW948080 AW948061 AW948091 AW948098 AW948089 AW948108 AW948114 AW948115 AW948012 AW948083 121 AW948068 AW948109 AW948075 AW948077 AW948067 AW948107 AW948122 AW948065 AW948064 AW948113 AW948063 195 AW948116 AW948078 AW948077 AW948071 AW948067 AW948107 AW948122 AW948065 AW948064 AW948113 AW948063
	455476	1293055_1	AW9480 AW948	062 172 AW948178 AW948169 AW948176 AW948191 AW948192 AW948186 AW948184 AW948187 AW948188 AW948189 AW948181
35	455591	1335166_1	AW948	177 AW948171 AW948183 AW948173 HB RE088025 RE088026 BE007959 BE007994 BE008016 BE008019 BE008024 BE008022 BE008027 BE008029 BE008020
55		_	DEVUSU	115 BE008021 BE008028 BE008023 BE008030 BE008014 183 BE011170 BE011333 BE011188 BE011181 BE011324 BE011161 BE011169
	455604 455842	1337197_1 1374629_1	BE0111	183 BE01170 BE011353 BE011100 BE011101 BE011021 BE011021 BE01101 BE011353 BE0111100 BE011101 BE01101 B
	457747	397222_1	AW975	000 AA658945 AA661558
40	458991	850804_1	A)74350	02 A1807438 180 AW176212 A1909464 AW176218 AW176171 AW176203 AW176181 AW176213
	459192	923891_1	AWIITO	NATIONIS NECESTAL AND
	TABLE 9C			
45	Pkey: Ref:	Sequence sour	rce. The 7 d	ding to an Eos probeset digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA losome 22." Dunham I. et al., Nature (1999) 402:489-495.
	Strand: Nt_position:	Indicates DNA Indicates nucle	strano from otide positio	which exons were predicted. ons of predicted exons.
50				
	Pkey		Strand	NL position
	400634		Minus Plus	101102-101223,101886-102018 198991-199168,199316-199548
55	400750 400752	•	Minus	36215-36461
33	400772	8131629	Minus	34896-35021,41078-41197
	400773		Minus Plus	44116-44238,48208-48321 184369-184715
	400788 400789		Ptus	82281-83693
60	400835		Plus	89366-89622 5863-5970,7653-7784,8892-9023,9673-9807,10634-10789,15254-15403,23827-23958
	400843		Plus Plus	24746-24872,25035-25204
	400844 400845	9188605	Plus	34428-34612
	400846	9188605	Pius	39310-39474
65	400847	9188605 7705148	Plus Minus	44643-44836 66959-67241
	400957 400967	7770682	Minus	32697-32999
	401038	7232177	Minus	4277-4469 44750-45076
70	401041	7232177 8117654	Plus Minus	44/50-450/6 45226-45414
70	401058 401155	9438289	Plus	31381-31526
	401177	9438503	Minus	62773-63330
	401196	9719673 9743388	Plus Minus	33138-33834 33694-33872
75	401204 401286	9801342	Minus	147035-147318
	401346	9926605	Minus	12031-13032 80901-81283
	401371	9650602	Plus	0070 1-01200

	401383	£70112£	Afferra	155549 457994
	401496	6721135 7381769	Minus Minus	155543-157381 82790-83002
	401512	7622346	Plus	136399-136557
	401563	8247910	Plus	91395-91763
5	401572	8570271	Minus	78651-78889
	401593	7230957	Plus	10368-10572,11293-12356
	401600	4388746	Minus	27363-27518,28727-28891,29526-29731
	401603	7689963	Minus	116659-116780
10	401613	4878062	Plus	22461-22831
10	401654	9097132	Minus	64695-64797
	401660	9100664	Minus	173662-174024
	401720	6468551	Pfus	7783-8468
	401784 401835	7249190	Plus Plus	148362-148606,149453-149535,149731-149962
15	401886	7139700 7229913	Minus	142257-142742 79215-79393
13	401936	3808091	Plus	46817-46943
	402001	9501818	Plus	68052-68223
	402087	8117546	Plus	137069-137213,138678-138828,138969-139050
	402138	7704985	Plus	14173-15108
20	402144	7242326	Plus	115425-115977
	402190	8576067	Minus	76488-76959
	402191	8576073	Minus	69410-69583
	402329	7798735	Plus	15833-16180,18419-18715,22507-22624
25	402368	9558577	Minus	47218-47330,48052-48203
23	402371 402378	9558584 9625333	Plus	68736-68956 41312-41469-49313-49730
•	402376	9796674	Minus Plus	41312-41468,48313-48720 59867-60039,62588-62828,63465-63623,64923-65108
	402474	7547175	Minus	53526-53628,55755-55920,57530-57757
	402517	9798106	Plus	17569-17721
30	402599	7239666	Plus	5835-5987
	402617	9930797	Minus	69466-69945
	402712	8969253	Minus	10941-11138
	402731	9211639	Minus	117913-118004,121110-121211,121327-121457,125478-125623,126540-126663
25	402737	9212184	Minus	13358-13552
35	402754	9213730	Plus	15345-15852
	402760	9213869	Plus Plus	136829-136952,137336-137521
	402812 402845	6010110 9369286	Plus	25026-25091,25844-25920 160451-160617,160768-161009
	402869	6434643	Minus	138639-139335
40	402892	8086844	Minus	194384-194645
	403010	3132346	Plus	78385-79052
	403149	9799833	Plus	25034-25185
	403326	8440025	Minus	110959-111122
4.5	403329	8516120	Plus	96450-96598
45	403342	7233487	Minus	42312-43750
	403349	8569773	Minus	167815-168374
	403381	9438267	Minus	26009-26178 102596-102879
	403463 403655	9929538 8736093	Plus Plus	65668-65859
50	403725	7534031	Plus	B6737-B6843
50	403728	7534291	Minus	34481-34671
	403807	8439933	Minus	162963-165773
	403826	9838209	Plus	121197-121358
	403885	7710403	Minus	53259-53524
55	403943	7711864	Plus	100742-100904,101322-101503
	403988	8576087	Plus ·	16251-16462
	404029	7671252	Plus	108716-111112
	404058	3548785	Plus Plus	99397-101808 47310-47450
60	404069 404178	3168619 7630978	Plus Minus	178075-178383
00	404176	3169112	Minus	79868-80321
	404231	8218035	Minus	61077-61322
	404250	9187145	Minus	36099-36212,37928-38075
	404273	9885189	Plus	97789-98285,99601-99855
65	404343	9838093	Plus	122664-122931
	404349	7630858	Minus	61006-61187
	404391	3135305	Minus	26030-26173,27852-27997
	404392	3135305	Minus	29738-29857
70	404397	9558608	Minus Plus	104042-104232 63413-63553
70	404438 404439	6984205 7139680	Plus	55316-55585
	404530	6479107	Phus	3157-3304
	404596	9958262	Minus	104807-105043
	404649	9796926	Minus	100027-100399
75	404566	7272179	Minus	18677-18993
	404687	9797554	Minus	128456-128565
	404744	9187237	Plus	71776-71852,72885-73019,73700-73822,74692-74850

	404751	7630939	Plus	113799-114252,114393-114715
	404769	8099713	Minus	175801-176823
	404790	7230958	Plus	38811-38761
	404906	7331453	Minus	100985-101126
5	404956	7387343	Plus	55883-56203
-	404977	3738341	Minus	43081-43229
	405000	· 6957544	Minus	88854-89993
	405022	7330304	Plus	217163-217439
	405053	7651944	Minus	157134-157430
10	405058	7655685	Plus	150740-151556
	405155	9966228	Plus	130469-130723
	405163	9966267	Minus	161171-161299
	405165	9966302	Plus	6461-6845
	405166	9966302	Plus	40526-40891
15	405172	9966752	Plus	153027-153262
	405180	7139743	Plus	65438-65740
	405193	7230072	Plus	128187-128383
	405194	7230072	Plus	190465-190645.193346-193610
	405245	7249293	Minus	57560-58312
20	405365	2275192	Minus	119867-120372,120481-120824,121029-121357
	405376	1552533	Plus	28875-29099
	405418	6997292	Plus	51839-51953
	405436	7408068	Minus	55716-55979
	405443	7408143	Plus	90716-90887,101420-101577
25	405474	8439781	Plus	172005-172175
	405502	9211311	Minus	50360-50584
	405580	4512267	Plus	169232-169647
	405595	7159256	Plus	47585-47688
	405630	4508116	Minus	103218-103291,105858-105993,110051-110126
30	405646	4914350	Plus	741-969
	405710	5531256	Minus	66203-66832
	405806	7274891	Minus	224961-226780
	405812	4775630	Minus	29424-29764
	405855	7652031	Minus	60377-60795
35	405879	6758747	Minus	54789-55457
	405891	6758795	Plus	41062-41861
	405902	6758795	Minus	82322-83110
	405932	7767812	Minus	123525-123713
	406038	8389537	Plus	37764-37877
40	406140	9168231	Minus	49887-50219
	406181	5923650	Plus	16586-16855
	406231	7417725	Plus	17206-17641,17772-17968
	406248	7417725	Plus	49711-50227
	406274	7543787	Plus	932-1123
45	406356	7107907	Plus	18761-18973
	406404	9256305	Minus	152569-152874
	406467	9795551	Plus	182212-182958
	406557	7711569	Minus	5446-5574,6170-6352
~ A	406575	7711679	Plus	142034-142473
50				

	TABLE 10A: Genes preferentially expressed in non-invasive bladder tumors						
	Pkey:		probeset identifie				
5	ExAcon:			Genbank accession number			
ر	Unigenel	D: Unigene nun Title: Unigene gen					
	R1	Alth nement	e uue Ile of Te bonor Al	s divided by the 80th percentile of T2-T4 tumor Als			
		oour percent	COFTO (BILLOT 74	S divided by the cour percentile or 12-14 turnor Als			
	Pkey	ExAcon	UnigenetD	Unigene Title	R1		
10	421110	AJ250717	Hs.1355	cathepsin E	8.23		
	428651	AF196478	Hs.188401	annexin A10	5.78		
	451668	Z43948	Hs.326444	cartilage acidic protein 1	5.53		
	415511	Al732617	Hs.182362	ESTs	4.72		
15	428336	AA503115	Hs.183752	microseminoprotein, beta-	4.66		
13	418026 400752	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	4.62		
	430315	NM_004293	Hs.239147	NM_003105":Homo sapiens sortilin-related guanine deaminase	3.99 3.82		
	403010		110.200141	C21000152:gi[6226483[sp]Q52118[YMO3_ERWS	3.56		
	404977			Insulin-like growth factor 2 (somatomedi	3.54		
20	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	3.51		
	400409	AF153341		Homo sapiens winged helix/lorkhead trans	3.38		
	400844			NM_003105*:Homo sapiens sortilln-related	3.27		
	406081	Venezo	11- 205440	Target Exon	3.22		
25	417275 402230	X63578	Hs.295449	parvalbumin	3.03		
23	454219	X75042	Hs.44313	Target Exon v-rel avian reticuloendotheliosis viral	2.96 2.89		
	403381	NI GOTE	113.44010	ENSP00000231844*: Ecotropic virus integra	2.87		
	426088	AF038007	Hs.166196	ATPase, Class I, type 6B, member 1	2.86		
••	452286	Al358570	Hs.123933	ESTs, Wealdy similar to ZN91_HUMAN ZINC	2.69		
30	434061	AW024973	Hs.283675	NPD009 protein	2.66		
	418406	X73501	Hs.84905	cytokeratin 20	2.65		
	418818 421594	AA228899	Hs.101307	Homo sapiens HUT11 protein mRNA, partial	2.59		
	403383	R45689	Hs.21889	Homo sapiens cDNA FLJ 12978 fis, clone NT Target Exon	2.57 2.56		
35	435563	AF210317	Hs.95497	solute carrier family 2 (facilitated glu	2.55		
	424800	AL035588	Hs.153203	MyoD family inhibitor	2.54		
	404606			Target Exon	2.53		
	418205	L21715	Hs.83760	troponin I, skeletal, fast	2.53		
40	431912	A1660552	Hs.76549	ESTs, Weakly similar to A56154 Abl subst	2.52		
40	413786 421100	AW613780 AW351839	Hs.13500 Hs.124660	ESTs Homo sapiens cDNA: FLJ21763 fis, clone C	2.51 2.50		
	416640	BE262478	Hs.79404	neuron-specific protein	2.50		
	420729	AW964897	Hs.290825	ESTs	2.50		
4.5	402844			C1000118*:gij9951913 ref[NP_062832.1] pr	2.48		
45	401093			C12000586*:gi]6330167 dbj BAA86477.1 (A	2.46		
	417720	AA205625	Hs.208067	ESTs	2.45		
	400297 403818	Al127076	Hs.306201	hypothetical protein DKFZp564O1278	2.45 2.44		
	440273	A1805392	Hs.325335	Target Exon Homo sapiens cDNA: FLJ23523 fis, clone L	2.44		
50	418060	AA211589	Hs.208047	ESTs	2.40		
	400843			NM_003105*:Homo sapiens sortilin-related	2.38		
	446006	NM_004403	Hs.13530	deafness, autosomal dominant 5	2.35		
	401512	TP4464	11. 00045	NM_014080:Homo saplens dual oxidase-like	2.34		
55	446847 417094	T51454	Hs.82845 Hs.81182	Homo sapiens cDNA: FLJ21930 fis, clone H histamine N-methyltransferase	2.32 2.31		
55	436293	NM_006895 Al601188	Hs.120910	ESTs	2.30		
	436246	AW450963	Hs.119991	ESTs	2.30		
	447578	AA912347	Hs.136585	ESTs, Wealdy similar to JC5314 CDC28/cdc	2.29		
60	417381	AF164142	Hs.82042	solute carrier family 23 (nucleobase tra	2.28		
60	426028	NM_001110	Hs.172028	a disintegrin and metalloproteinase doma	2.27		
	431448	AL137517	Hs.306201 Hs.125343	hypothetical protein DKFZp56401278 ESTs, Weakly similar to KlAA0758 protein	2.26 2.23		
	437181 415025	Al306615 AW207091	Hs.72307	ESTs	2.18		
	412610	X90908	Hs.74126	fatty ecid binding protein 6, iteal (gas	2.04		
65	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	2.03		
	433078	AW015188	Hs.121575	Homo sapiens cDNA FLJ12231 fis, clone MA	2.01		
	416225	AA577730	Hs.188684	ESTs, Weakly similar to PC4259 ferritin	2.00		
	411880	AW872477	Hs.61265	gb:hm30f03.x1 NCI_CGAP_Thy4 Homo saplens ESTs, Moderately similar to G786_HUMAN P	1.99 1.89		
70	452316 413804	AA <i>298484</i> T64682	113.01200	gb:yc48b02.r1 Stratagene liver (937224)	1.88		
	432306	Y18207	Hs.303090	protein phosphatase 1, regulatory (Inhib	1.76		
	405364			ENSP00000239138*:Guanine nucleotide-bind	1.60		
	414320	U13616	Hs.75893	ankyrin 3, node of Ranvier (ankyrin G)	1.52		
75	401929			C17001690:gi 6005701 ref NP_009099.1 AT	1.00		
, ,	TABLE 10	nr.					
	TURKET						

		Unique Eos probeset identifier number : Gene cluster number Genbank eccession numbers						
5	Pkey 411880 413804	CAT Number Accession 1263110_1 AW872477 BE088101 T05990 1390710_1 T64682 BE168190 BE168256						
10	TABLE 10C							
	Pkey: Ref:	Sequence so	urce. The 7 d	fing to an Eos probeset figit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication enlitted "The DNA ocome 22." Dunham I. et al. "Refers to the publication enlitted "The DNA ocome 22." Dunham I. et al. Nature (1999) 402-489-495.				
15	Strand: Nt_position:	Indicates DN	sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.					
20	Pkey 400752 400843 400844 401093	Ref 7331445 9188605 9188605 8516137	Strand Minus Plus Plus Minus	Ni_position 36215-36461 563-5970,7653-7784,8892-9023,9673-9807,10634-10789,15254-15403,23827-23958 24746-24872,25035-25204 22335-23166				
25	401512 401929 402230 402844 403010	7622346 3810670 9966312 9369286 3132346	Plus Minus Minus Plus Plus	136399-136557 3167-3286,4216-4310 29782-29932 54958-55313 78385-79052 26009-26178				
30	403381 403383 403818 404606 404977	9438267 9438267 8962065 9212936 3738341	Minus Minus Minus Minus Minus	119837-121197 138360-138512,144656-144796 22310-23269 43081-43229 48325-48491,49136-49252				
35	405364 406081	2281075 9123861	Minus Minus	483,5-40491,49130-49232 38115-38691				

TABLE 11A:	Genes pre	terentially e	expressed	in muscle in	vasive bladde	r tumors

5	Pkey: ExAccn: Unigenel(Unigene)	Exemplar A D: Unigene nu Tile: Unigene ge	mber ne litte	er, Genbank accession number	AL.	·
	<u>R1</u>	80th percer	tile of T2-14 tur	nor Als divided by the 80th percentile of Ta tumor	AIS	
	Direct	Eviana	UnigenelD	Unigene Title	R1	
10	Pkey 423961	ExAcon D13666	Hs.136348	periostin (OSF-2os)	11,22	
10	421948	L42583	Hs.334309	keratin 6A	10.87	
	401780	142303	113.00-1000	NM_005557*:Homo saplens keratin 16 (foca	9.16	
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	8.40	
	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	7.88	
15	439926	AW014875	Hs.137007	ESTs	7.73	
13	408243	Y00787	Hs.624	interleukin 8	7.54	
	414183	AW957446	Hs.301711	ESTs	7.00	
	411573	AB029000	Hs.70823	KIAA1077 protein	6.52	
	414522	AW518944	Hs.76325	step II splicing factor SLU7	6.42	
20	413063	AL035737	Hs.75184	chilinase 3-like 1 (cartilage glycoprote	. 6.14 6.04	
	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	5.66	
	427337	Z46223	Hs.176663	Fc fragment of IgG, low affinity IIIb, r	5.62	
	420859	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgran	5.51	
25	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias chemokine (C-X-C motif), receptor 4 (fus	5.48	
25	418870	AF147204	Hs.89414		5.46	
	401781	T10122	U- 101950	Target Exon · retinol-binding protein 1, cellular	5.41	
	421116	T19132 D17408	Hs.101850 Hs.21223	calponin 1, basic, smooth muscle	5,41	
	448429	NM_002984	Hs.75703	small inducible cytokine A4 (homologous	5.32	
30	414020 447526	AL048753	Hs.303649	smail inducible cytokine A2 (monocyte ch	5.32	
50	424247	X14008	Hs.234734	lysozyme (renal amyloidosis)	5.27	
	456525	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgran	5.22	
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	5.17	
	406663	U24683	Hs.293441	Immunoglobalin heavy constant mu	5.08	
35	425593	AA278921	Hs.1908	proteoglycan 1, secretory granule	4.93	
	433336	AF017986	Hs.31386	secreted frizzled-related protein 2	4.89	
	425118	AU076611	Hs.154672	methytene tetrahydrofolate dehydrogenase	4.74	
	415994	NM_002923	Hs.78944	regulator of G-protein signalling 2, 24k	4.64	
	412326	R07566	Hs.73817	small inducible cytokine A3 (homologous	4.39 4.30	
40	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	4.29	
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	4.23	
	433470	AW960564		transmembrane 4 superfamily member 1	4.22	
	417880	BE241595	Hs.82848	selectin L (lymphocyte adhesion molecule	4.22	
	446500	U78093	Hs.15154	sushi-repeat-containing protein, X chrom	4.20	
45	413324	V00571	Hs.75294	corticotropin releasing hormone transmembrane 4 superfamily member 1	4.18	
	436729	BE621807	11- 25025	chloride intracellular channel 4	4.15	
	450455		Hs.25035 Hs.75511	connective tissue growth factor	4.09	
	413731	BE243845	Hs.75765	GRO2 oncogene	4.00	
50	412429	AV650262 S79895	Hs.83942	cathepsin K (pycnodysostosis)	4.00	
50	418283 418299	AA279530	Hs.83968	integrin, beta 2 (antigen CD18 (p95), ly	4.00	
	420899		Hs.100194	arachidonate 5-lipoxygenase-activating p	3.97	
	400288		Hs.149609	integrin, alpha 5 (fibronectin receptor,	3.95	
	437446		Hs.101302	ESTs, Moderately similar to CA1C RAT COL	3.94	•
55	413441		Hs.75367	Src-like-adapter	. 3.91	
	404854			Target Exon	3.81	
	431319		Hs.302232	ESTs	3.77 3.76	
	452432		Hs.283378	Homo sapiens cDNA: FLJ21778 fis, clone H	3.72	
	429679	NM_006290	Hs.211600	tumor necrosis factor, alpha-induced pro	3.58	
60	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	3.58	
	408380		Hs.44532	diubiquitin	. 3.57	
	431103		Hs.44	plelotrophin (heparin binding growth fac	3.52	
	422545		Hs.287820	fibronectin 1	.3.49	
15	418203		Hs.83758	CDC2B protein kinase 2 inhibin, beta A (activin A, activin AB a	3.48	
65	409956		Hs.727	matrix metalloproteinase 11 (stromelysin	3.41	
	406687		Hs.75929	cadherin 11, type 2, OB-cadherin (osteob	3.36	
	414359		Hs.81800	chondroitin sulfate proteoglycan 2 (vers	3.32	
	417259		Hs.82212	CD53 antigen	3.30	
70	417497 44933		Hs.345728	STAT induced STAT inhibitor 3	3.25	
70			Hs.72901	mucin 13, epithelial transmembrane	3.23	
	44503 42727			colony stimulating factor 1 receptor, fo	3.23	
	42752		Hs.293441	immunoglobulin heavy constant mu	3.22	
	40914		Hs.50758	SMC4 (structural maintenance of chromoso	3.18	
75	45333			ESTs	3.15	
, ,	42803			Homo sapiens mRNA for caldesmon, 3' UTR	3.10	
	41736		Hs.1076	small proline-rich protein 1B (comilin)	3.09	

	414622	A1752666	Hs.76669	nicolinamide N-methyltransferase	3.07 3.02
	418478	U38945 AA804698	Hs.1174 Hs.82547	cyclin-dependent kinase Inhibitor 2A (me retinoic acid receptor responder (tazaro	2.77
	417771 413936	AF113676	Hs.297681	serine (or cysteine) proteinase inhibito	2.75
5	406755	N80129	Hs.94360	metaliothionein 1L	2.75
•	426653	AA530892	Hs.171695	dual specificity phosphatase 1	2.67
	443623	AA345519	Hs.9641	complement component 1, q subcomponent,	2.65 2.64
	443907	AU076484	Hs.9963	TYRO protein tyrosine kinase binding pro spondin 2, extracellular matrix protein	2.51
10	422048 410204	NM_012445 AJ243425	Hs.288126 Hs.326035	early growth response 1	2.46
10	438973	AW959503	Hs.60440	ESTs, Weakly similar to serin protease w	2.46
	420202	AL036557	Hs.95910	putative lymphocyte G0/G1 switch gene	2.44
	422626	AA344932	Hs.118786	metallothionein 2A	2.44
1.5	442402	NM_000954	Hs.8272	prostaglandin D2 synthase (21kD, brain)	2.43 2.42
15	413902	AU076743	Hs.75613	CD36 antigen (collagen type I receptor, collagen, type VI, alpha 2	2.42
	434868 407207	R50032 T03651	Hs.159263 Hs.336780	tubulin, beta polypeptide	2.30
	438855	AW946276	Hs.6441	Homo sapiens mRNA; cDNA DKFZp586J021 (fr	2.29
	430413	AW842182	Hs.241392	small inducible cytokine A5 (RANTES)	2.20
20	424909	S78187	Hs.153752	cell division cycle 25B	2.18
	419938	AU076772	Hs.1279	complement component 1, r subcomponent	2.17 2.11
	416819	U77735	Hs.80205	pim-2 oncogene AE-binding protein 1	2.07
	422562	A1962060 AW969976	Hs.118397 Hs.279009	matrix Gla protein	2.07
25	414081 426406	AI742501	Hs.169756	complement component 1, s subcomponent	2.03
23	443950	NM_001425	Hs.9999	epithelial membrane protein 3	2.01
	418323	NM_002118	Hs.1162	major histocompatibility complex, class	1.94
	414420	AA043424	Hs.76095	immediate early response 3	1.90 1.72
20	415149	X12451	Hs.78056	cathepsin L ribonuclease, RNase A family, 1 (pancrea	1.70
30	415213	NM_002933	Hs.78224 Hs.108885	collagen, type VI, alpha 1	1.69
	421848 452516	X15880 AA058630	Hs.29759	RNA POLYMERASE I AND TRANSCRIPT RELEASE	1.64
	427676	AA394062	Hs.300772	tropomyosin 2 (beta)	1.64
	415198	AW009480	Hs.943	natural killer cell transcript 4	1.60 1.59
35	424390	AW815657	Hs.182241	interferon induced transmembrane protein	1.51
	426825	AL133415	Hs.297753	vimentin Homo sapiens, Similar to complement comp	1.46
	452363	AI582743 U77594	Hs.94953 Hs.37682	relinoic acid receptor responder (lazaro	1.44
	407694	011334	113.07 002	totales and receptor t	
40					
40	TABLE	11B			
40			os probesel ide	nüfier number	
40	Pkey:		os probeset ide ster number	nüfier number	
	Pkey:	Unique E mber: Gene clu			
40 45	Pkey: CAT nu	Unique E mber: Gene clu	ster number		
	Pkey: CAT nui Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num	bers	A 720000 A 1050000 A 1054975
	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num nber Acce	ession	I110 AW859944 AW859989 AI751995 AA769620 AI858829 AI924875
45	Pkey: CAT nui Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num nber Acce AW0	bers esion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6	N 10 AW859944 AW859989 AI751995 AA769620 AI858829 AI924875 93800 AA991651 AI254501 BE004703 AA334442 AW938852 AA194330 93822 AD9046 H07450 W93910 H94687 TR8984 AI 048165 T29632
45	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sier number accession num nber Acce AW0 A188 AL04	bers 	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632
	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sier number accession num nber Acce AW0 A188 AL04 N315	ession 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6 8836 AA864291 A1685060 AW088029 A1924908 AW466328 A10 16953 AA852866 AW391995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646	93800 AC45100 AC45100 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 AA367374 AL950736 AW771049 AA121476 AA569557 Al752632
45	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num nber Acce AW0 A188 AL04 N315 R634	ssion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6- 68302 A754558 A1750727 A1752631 AA302174 AA327522 M6- 68353 AA852866 AW391995 W30846 AW662928 W25261 AA0- 656 N36484 A1798679 AA989355 W23832 AA873789 A1743645 433 AA524984 AA234043 AA195131 N99903 AA453669 A12403	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 AI752532 03760 AW868044 AA888425 R63380 AA384736 AA384738 AA852352
45	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	nber Acce AW0 Al88 AL04 N315 R634 Al35	bers ssion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A16 16953 AA852866 AW391995 W30846 AW662928 W25261 AA0- 556 N36484 A1798679 AA989355 W23832 AA873789 A1745464 133 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AIB14748 AW338990 N73740 N83666 AL047816 R24137 IO2 AA370271 AI950026 AW771049 AA121476 AA569557 AI752632 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352
45 50	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	niber Accession number Accession num Accessi	ssion 68302 Al754558 Al750727 Al752631 AA302174 AA327522 M6- 8836 AA864291 Al665060 AW088029 Al924908 AW466328 Al0 16953 AA852866 AW391995 W30846 AW662928 W25261 AA0- 556 N36484 Al798679 AA989355 W23832 AA873789 Al743646 133 AA524984 AA234043 AA195131 N99903 AA453669 Al2403 5594 Al471993 Al159941 N94555 Al753138 N21537 H97881 N 3645 AA527950 AA525036 AA044414 Al752460 AA703064 R0	12663 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AIB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 AI752632 25769 AW068044 AA808425 R65380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953
45	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	number accession number accession number Acce AW0 Als& AL04 N315 R634 Al35 Al07 AA4	ssion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA864291 A1685060 AW088029 A1924908 AW466328 A10 68953 AA852866 AW391995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646 433 AA524984 AA234043 AA195131 N9993 AA453669 A1240 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A18	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 22769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573842 D58348 N20953 6799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044
45 50	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	number accession number accession number Acce AW0 Al888 AL04 N311 R634 Al35 Al07 AA4	bers SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A16 68935 AA852866 AW331995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A174364 333 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A471993 A159941 N94555 A1753138 N21537 H97881 N 3645 AA527980 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A18 71020 AW994984 H20896 AW964438 AA318516 AA318499 A4	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 AI752532 22769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318484 A318727 AA318241 AA318478 AA318724 AA593185 AW994985 T69842
45 50	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	nber Accession number Accession num Accession num Alba Alba Alba Al35 Alor AAA AA3 AA3 Al25	Ders SSION 68302 AI754558 AI750727 AI752631 AA302174 AA327522 M6- 68302 AI754558 AI750727 AI752631 AA302174 AA327522 M6- 8836 AA864291 AI665060 AW088029 AI924908 AW466328 AIC 16953 AA852866 AW391995 W30846 AW662928 W25261 AA04- 1566 N36484 AI798679 AA989355 W23832 AA873789 AI743646 1331 AA524984 AA234043 AA195131 N99903 AA453669 AI240- 15594 AI471993 A159941 N94555 AI753138 N21537 H97881 N 13645 AA527950 AA525036 AA044414 AI752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 AI0816 AB31840 171020 AW994984 H20896 AW964438 AA318516 AA31849 A1 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 18309 AA318496 AA318714 AA447737 T68350 F07712 AA121145 H08973	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AIB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 AI752532 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 6799 AA426421 AI572513 R24081 AA853189 A4295620 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426
45 50 55	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num number Acces AW0 Al88 AL04 N316 R634 Al35 Al07 AA4 AA3 AA34 AA3	bers SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 68363 AA854281 A1685060 AW088029 A1924908 AW466328 A16 6853 AA852866 AW331995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A174364 333 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527950 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A18 71020 AW994984 H20896 AW86438 AA318516 AA318499 A4 18309 AA318495 AA318413 AA318435 AA318424 AA318217 A 18309 AA318497 AA347737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384578 AW392375	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 A1751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW864070 D58229 C04082 W45394 AW795667 R73973
45 50	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acce AW0 Al88 AL04 N311 R63- Al35 Al07 AA4 AA3 AA3 AA2 BE0	bers ssion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6- 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A16 6856 A36484 A1798679 AA989355 W23832 AA873789 A1753646 633 AA524984 AA234043 AA195131 N99903 AA453669 A12403 6594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A1752460 AA70304 R0 77143 N95439 AA579540 AW867056 AA770090 A1085180 A188 771020 AW994984 H20895 AW964438 AA318516 AA318499 AA 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 181613 AA478174 AA447737 T68350 F07712 AA121145 M08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 AJ223812 AA344709 BE149590 R	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AIB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 AI752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573842 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 3.18727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA3184724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450
45 50 55	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	number accession number	SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A1 6953 AA852866 AW391995 W30846 AW662928 W25261 AA04 556 N36484 A1798879 AA9893355 W23823 A873789 A1743646 433 AA524984 AA234043 AA195131 N99903 AA453669 A12405 5594 A1471993 A159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA77000 A1085180 A180 71020 AW994984 H20896 AW964438 AA318516 AA318499 A4 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 51813 AA478174 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE1495590 R 102409 AA042828 AA363555 A1223812 AA344709 BE1495590 R	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AIB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 AI752632 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 6799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW355134 AW994353 AW972886 AW069166
45 50 55	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	ster number accession num number Accession Alox Al88 AL04 N316 R634 Al35 Al07 AA4 AA3 AA3 AA3 ABEC BEC AA0	bers SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA864291 A1685060 AW088029 A1924908 AW466328 A16 6853 AA852866 AW331995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646 333 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527950 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A1807 1020 AW994984 H20896 AW867056 AA770090 A1085180 A1807 11813 AAA78174 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 BW14950 R 102409 AA042828 AA363555 A1223812 AA344709 BE149590 R 162957 D79947 W46980 AW959728 AA259597 AA026215 AW5 143690 AW888731 A1751527 AA937490 AA937506 A1826715 B	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 22769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 A1751996 T81078 H95047 AA573642 D58348 N20953 6799 AA426421 AI572613 R24081 AA853189 AA295620 AA234044 A318523 AA318438 AA318478 AA318444 AA31837 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW984700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71424 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 465604 AI925532 AI888109 AW339097 AI858524 AI720571 BE046506
45 50 55	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acces AW0 Al88 AL04 N316 R634 Al35 Al07 AA4 AA3 AA3 AA2 BE0 AA0 AA3	bers SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 68305 AA854291 A1685060 AW088029 A1924908 AW466328 A16 6953 AA852866 AW391995 W30846 AW662928 W25261 AA04 6556 N36484 A1798679 AA989355 W23832 AA8573789 A1743646 133 AA524984 AA234043 AA195131 N99903 AA453669 A12403 65594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527980 AA525036 AA04441 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A188 771020 AW994984 H20896 AW964438 AA318516 AA318499 AA 18309 AA318474 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE145950 R 162957 D79947 W46980 AW959278 AA295997 AA026215 AW5 4A3690 AW888731 AN751527 AA937490 AA937506 A1826716 BW 384898 AA043908 AA375983 AA525181 AW068366 AW010577	12853 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 AI752532 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA31848 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73977 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 70469 AW365135 AW365134 AW994353 AW972865 AW069166 E465604 A1925532 A1858109 AW339097 AI858524 AI720571 BE046506 AW891837 N83985 AW182753 AI422979 A1679733 BE006555 AL048166 AW891837 N83985 AW182753 AI422979 A1679733 BE006555 AL048166
45 50 55 60	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num nber Acce AW0 Al88 AL04 N315 R634 Al35 Al37 AA4 AA3 AA3 AA3 AA3 AA3 AA3 AA3 AA3 AA3	SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A1 6953 AA852866 AW391995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989335 W23823 A873789 A1743646 433 AA524984 AA234043 AA195131 N99903 AA453669 A12405 5594 A1471993 A159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04414 A1752460 AA703064 R0 37143 N95439 AA575940 AW867056 AA770090 A1085180 A180 71020 AW994984 H20896 AW964438 AA318516 AA318499 A4 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 51813 AA478174 AA447737 T66350 F07712 AA121145 H08973 334 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE149590 F 102409 AA04828 AA363555 A1223812 AA344709 BE149590 F 102409 AA04888731 A1751527 AA937490 AA937506 A826715 B1 384981 AA043908 AA375983 AA525181 AW068366 AW070577 1816 AW069022 AW069069 AW069454 AA342989 A1077712	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 AI752632 22769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573842 D58348 N20953 16799 AA426421 AI572613 R24081 AA853189 AA295620 AA234044 A318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW668210 AW608407 R05674 H16712 N55426 H82382 AW840700 D58229 C04082 W45394 AW795667 R7397 79995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972866 AW069166 465604 AI925532 AI858109 AW339097 AI858524 A1720571 BE046506 445806 AI925532 AI858109 AW339097 AI858524 A1720571 BE046506 446 A1753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 AI311467 AI087361 AIB01015 W46993 AI2931324 AW191963 AI421675 AISTEAN AIRS AIRS AIRS AIRS AIRS AIRS AIRS AIRS
45 50 55	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num riber Acces AW0 Al88 AL04 N316 R633 Al35 Al07 AAA AA3 AA3 AA3 AA2 BE0 AA0 AA3 AW AI04 AI04 AI04 AI04 AI04 AI04 AI04 AI04	Bession 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 6836 AA864291 A1685060 AW088029 A1924908 AW466328 A16 68935 AA852866 AW391995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646 133 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A471993 A159941 N94555 A1753138 N21537 H97881 N 3645 AA527980 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA776090 A1085180 A186 71020 AW994984 H20896 AW964438 AA318516 AA318499 AA 18309 AA318474 AA447737 T68350 F07712 AA211145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE149590 F 162957 D79947 W46980 AW959278 AA295997 AA026215 AW5 162957 D79947 W46980 AW959278 AA295997 A026215 AW5 16399 AW888731 A1751527 AA937490 AA937506 A1826715 B1 384981 AA043908 AA375983 AA525181 AW068366 AW07057 18140 A1888821 A1626043 N37087 A1624140 A1801298 AA6000 71816 AW0689022 AW069069 AW069454 AA342989 A1077712 100881 A1356670 AA873156 A1004219 A189685 AA478018 AA0	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 A1751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 3.18727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW9840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 -465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL046166 448 A1753947 H89615 N66424 AW069756 AI814880 AJ892806 AI754287 31311467 A1087361 AI801015 W46993 AI281324 AW191963 AI421675 76063 AI445222 A1753124 AI521569 AI925026 AI022368 AI47593
45 50 55 60	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acce AW0 Al88 AL04 N311 R63-3 Al35 Al07 AA4 AA3 AA2 BEC AA0 AA2 AW0 AI01 AI91 AI91 AI91 AI91 AI91 AI91 AI91 AI9	Sision 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A16 68536 AA884291 A1685060 AW088029 A1924908 AW466328 A16 6853 AA852866 AW391995 W30846 AW662928 W25261 AA0- 556 N36484 A1798679 AA989355 W23832 AA873789 A1743686 433 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A1752460 AA70304 R0 771020 AW994984 H20895 AW986438 AA318516 AA318499 AA 718309 AA318496 AA318213 AA318435 AA318516 AA318499 AA 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 181813 AA478174 AA447737 T68350 P07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 AJ223812 AA344709 BE149590 R 162957 D79947 W46960 AW959278 AA295997 AA026215 AW5 443690 AW888731 A1751527 AA937490 AA937506 A1826716 B 384981 AA043908 AA375983 AA525181 AW068366 AW070577 81401 A1888821 A1626043 N37087 A1624140 A1801298 AA6002 171816 AW069022 AW069009 AW069454 AA342989 A1077712 A 10881 A1356670 AA873156 A1004219 A118686 AA478018 AA6 10881 A1356670 AA873156 A1004219 A118686 AA478018 AA8 10886 A1223234 A1635123 AA579170 N30442 AW117889 AA80	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 AI752532 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW97286 AW069166 -465604 AU925532 AI858109 AW339097 AI858524 AI720571 BE046506 - AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 46 AI753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475993 3055 AA558975 AI306636 AA688963 AI952591 AI305835 AI445293 H16713
45 50 55 60	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num number Accession num number Accession num Accession num Accession num Albertal Accession num Albertal A	Sesion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M668302 A1754558 A1750727 A1752631 AA302174 AA327522 M66836 AA884291 A1685060 AW088029 A1924908 AW466328 A16953 AA852866 AW391995 W30846 AW662928 W25261 AA04556 N36484 A1798879 AA989355 W23832 AA873789 A1743646 N33 AA524984 AA234043 AA195131 N99903 AA453669 A124055594 A1471993 A159941 N94555 A1753138 N21537 H97881 N3645 AA527960 AA525036 AA044414 A1752460 AA703084 R037143 N95439 AA579540 AW867056 AA770090 A1085180 A18309 AA318496 AA318213 AA318435 AA318516 AA318499 A18309 AA318496 AA318213 AA318435 AA318516 A821874 A18309 AA318474 AA447737 T68350 F07712 AA121145 H08973 N354 H85516 BE147991 T28113 R32662 AA384678 AW239275 N2409 AA042828 AA385355 A1223812 AA344709 BE149590 F062957 D79947 W46980 AW959278 AA295997 AA026215 AW543590 AW868731 A1751527 AA931490 AA937506 A1826715 B1384981 AA043908 AA375983 AA525181 AW068366 AW070577181401 A1888821 A1626043 N37087 A1624140 A1801298 AA600071816 AW069022 AW069069 AW069454 AA342989 AI077122 OW0814 A1335667 AA873156 AW654071712 AN5127 AA8731740 AA873156 AN68366 AW070577181401 A1888821 A1626043 N37087 A1624140 A1801298 AA6000181 AW0689022 AW069069 AW069454 AA342989 AI077172 A18464 A1851233 AA578170 N30442 AW117889 AA807 N39833 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828 H09543 A1453725 AW113893 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA62212 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828 H09543 A1453725 AW1138933 AA622122 AA972051 A1280828 H09543 A1453725 AW113889 AA622122 AA972051 A1280828	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 Al814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 Al950026 AW771049 AA121476 AA569557 Al752632 02 AA370271 Al950026 AW771049 AA121476 AA569557 Al752632 03 AA370271 Al950026 AW771049 AA121476 AA569557 Al752632 04 AA97183 Al751996 T81078 H95047 AA573842 058348 N20953 05 AA987183 Al751996 T81078 H95047 AA573842 058348 N20953 05 AA9426421 Al572613 R24081 AA853189 AA295620 AA234044 04 318727 AA318418 AA318478 AA318444 AA318307 AA318497 AA318448 04 A318523 AA318438 AA318487 AA318444 AA318307 AA318497 AA318448 04 A336512 BE000667 AW668210 AW608407 R05574 H16712 N85426 04 AA345212 BE00667 AW668210 AW994353 AW995667 R73973 07995 W46681 W90778 N71242 AA534826 AL040676 R23797 H96450 079469 AW365135 AW365134 AW994353 AW992865 AW069166 04 AW891837 N83985 AW182753 A4422979 A1679733 BE006555 AL048166 04 A1753947 H89615 N66424 AW069756 AI814880 AI982806 A1754287 04 A145222 A1753124 A1521569 AI925026 AI022368 AI475993 035 AA556975 A1306636 AA888963 AI952591 AI335835 AI445293 H16713 069513 AI865615 A1753921 AI368762 A16533208 AI446651 W46591 N22201
45 50 55 60 65	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num nter Accession AW0 Al88 AL04 N316 R634 Al35 Al07 AAA AA3 AA3 AA3 AA3 AA3 AA3 AA3 AA3 AA	Bers SSION 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 8836 AA854291 A1685060 AW088029 A1924908 AW466328 A16 16953 AA852866 AW331995 W30846 AW662928 W25261 AA04 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646 133 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527950 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A180 71020 AW994984 H20896 AW86438 AA318516 AA318499 A4 18309 AA318495 AA318213 AA318435 AA318424 AA318217 A 18309 AA318495 AA318213 AA318435 AA318424 AA318217 A 181813 AAA78174 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA3344709 BE149590 R 162957 D79947 W46980 AW959278 AA25597 AA026215 AW5 143590 AW888731 A1751527 AA937490 AA937506 A1826715 B18 384981 AA043908 AA375983 AA525181 AW068366 AW070577 381401 A1888821 A1626043 N37087 A1624140 A1801298 AA6007 171816 AW069022 AW069069 AW069454 AA342999 A1077712 A 100881 A1356670 AA873156 A1004219 A1189886 AA478018 AA0 1846 A1223234 A1635123 AA579170 N30442 AW117889 AA807 1276 C16555 AA291477 AW440535 AW517755 AA669921 A182671 A	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 22769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D68348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 A318527 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW9840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 C46560A AI925532 AI858109 AW339097 AI858524 AI72571 BE046506 74W891837 N83985 AW182753 AL422979 AI679733 BE006555 AL048166 48 AJ753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 AI311467 AI087361 AI801015 W46993 AI281324 AW191953 AI421675 76063 AI445222 AJ753124 AI521569 AI925026 AI022368 AI475993 AJ558975 AI306636 AA888963 AI952501 AI935835 AI445293 H16713 AI865615 AI753921 AI368782 AI633208 AI446651 W46961 N22201 6777 AW062118 AA553369 N67873 AW023948 C15861 C16601 AI251465
45 50 55 60	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acces AW0 Al88 AL04 N316 R633 Al07 AA4 AA3 AA3 AA2 BE0 AA0 AA0 AA0 AA0 AA0 AA0 AA0 AA0 AA0 A	Bession 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 6836 AA864291 A1685060 AW088029 A1924908 AW466328 A16 6853 AA852866 AW331995 W30846 AW662928 W25261 AA06 556 N36484 A1798679 AA989355 W23832 AA873789 A1743646 133 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527980 AA525036 AA04441 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA776090 A1085180 A186 71020 AW994984 H20896 AW96438 AA318516 AA318499 AA 18309 AA318474 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE149590 R 162957 D79947 W46980 AW959278 AA295997 AA026215 AW5 133890 AW888731 A1751527 AA937490 AA937506 A1826114 S 1334981 AA043908 AA375983 AA525181 AW068366 AW0705718 1401 A1888821 A1626043 N37087 A1624140 A1801298 AA6000 71816 AW059022 AW069069 AW06944 AA342998 AI077712 710881 A1356570 AA873156 A1004219 A189685 AA478018 AA60 1846 A1223234 A1835123 AA579170 N30442 AW117889 AA807 139833 AA622122 AA972051 A1280828 H09543 A1453725 AW 129838 AB6555 AA291477 AW440535 AW517755 AA669921 A127 129187 BE045090 A1273006 C16390 C165503 A6620823 11386	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 A1751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 3.18727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW9840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 -465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 446 AI753947 H89615 N66424 AW069756 AI814880 AJ982806 AI754287 A311467 AI087361 AI801015 W46993 AI281324 AW191963 AI421675 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI47593 3055 AA558975 AI306636 AA868963 AI952591 AI838383 AI445293 H16713 3058613 AI865615 AI753921 AI368780 AW023948 C15861 C16601 AI251465 6777 AW562118 AA553369 N67873 AW023948 C15681 C16601 AI251465 6777 AW562118 AA553369 N67873 AW023948 C15681 C16601 AI251465 6777 AW562118 AA553369 N67873 AW023948 C15681 C16601 AI251465
45 50 55 60 65	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num number Accession num number Accession num Alasa Alas	ssion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6- 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M6- 8836 AA884291 A1685060 AW088029 A1924908 AW466328 A16 6953 AA852866 AW391995 W30846 AW662928 W25261 AA0- 5556 N36848 A1798679 AA989355 W23832 AA873789 A1743686 433 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A1752460 A7703064 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A184 71020 AW994984 H20895 AW964438 AA318516 AA318499 AA 18309 AA318496 AA318213 AA318435 AA318616 AA318499 AA 18309 AA318496 AA318213 AA318435 AA318616 AA318217 A 181613 AA478174 AA447737 T68350 F0771 ZAA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA04828 AA363555 A1223812 AA344709 BE149590 R 162957 D79947 W46960 AW959278 AA29597 AA026216 AW5 143690 AW888731 A1751527 AA937490 AA937506 A1826716 B 1401 A1888821 A1626043 N37087 A1624140 A1801298 AA600 171816 AW069022 AW06909 AW059454 AA342989 A4701712 A 10881 A1356670 AA873156 A1004219 A1189685 A94701712 A 10881 A1356670 AA873156 A1004219 A1189685 A94701712 A 10886 A1223234 A1835123 AA579170 N30442 AW117889 AA607 1739833 AA622122 AA972051 A1280828 H09543 A1453725 AW1 1739833 AA622122 AA972051 A1280828 H09543 A1453725 AW1 1739833 AA622122 AA972051 A1280828 H09543 A1453725 AW1 1739833 A6622122 AA972051 A1280828 H09543 A1453725 AW1 1739833 A6622122 AA972051 A1280828 H09543 A163725 AW1 1799187 BE045090 A1273006 C16390 C16503 A1620823 F1366 17608074 AW385583 A1859944 AA665817 AW192979 AW46906	12863 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 AI752532 25769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 3.18727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 -465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 -AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 46 AI753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475993 3035 AA558975 AI306636 AA888963 AI952591 AI305835 AI445293 H16713 805813 AI865615 AI753921 AI368782 AI633208 AI446651 W46981 N22201 6777 AW662118 AA553369 N67873 AW023348 C15861 C16601 AI251465 6777 AW662118 AA553369 N67873 AW023348 C15861 C16601 AI251465 6 AA56404 H84715 C16417 AA731072 AA651674 C16487 N29477 6 AA654044 BI8715 C16417 AA731072 AA651674 C16487 N29477 6 AA654048 H84715 C16417 AA731072 AA651674 C16487 N29477 6 AA654048 H84715 C16417 AA731072 AA661674 C16487 N29477
45 50 55 60 65	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num riber Acces AW0 Al88 AL04 N316 R633 Al07 AAA AA3 AA3 AA22 BE0 AA0 AA3 AW AW AW AW AW AW AW AW AW	Bession 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M66 6836 AA864291 A1685060 AW088029 A1924908 AW466328 A16 68936 AA862866 AW391995 W30846 AW662928 W25261 AA04 68935 AA852866 AW391995 W30846 AW662928 W25261 AA04 68935 AA452894 AA234043 AA195131 N99903 AA453669 A12403 6594 A471993 A159941 N94555 A1753138 N21537 H97881 N 3645 AA527980 AA525036 AA044414 A1752460 AA703064 R0 37143 N95439 AA579540 AW867056 AA776090 A1085180 A186 71020 AW994984 H20896 AW96438 AA318516 AA318499 AA 18309 AA318496 AA318213 AA318435 AA318424 AA318217 A 61813 AA478174 AA447737 T68350 F07712 AA211145 H08973 3354 H85516 BE147991 T28113 R32662 AA384678 AW239275 102409 AA042828 AA363555 A1223812 AA344709 BE149590 R 62957 D79947 W46980 AW959278 AA295997 AA026215 AW5 43690 AW888731 A1751527 AA937490 AA337506 A1826715 B1 384981 AA043908 AA375983 AA525181 AW068366 AW07057 81401 A1888821 A1626043 N37087 A1624140 A1801298 AA600 710881 A1356670 AA873156 A1004219 A1189685 AA478018 AA60 1139833 AA622122 AA972051 A1280828 H09543 A1453725 AW1 1276 C16555 AA291477 AW40535 AW517755 AA669921 A192 1079187 BE045090 A1273006 C16390 C16503 A1620823 F1366 6608074 AW335583 A1659934 AA665817 AW192979 AW46906 168997 A1370492 C16471 AA652809 AA336687 AA506512 C166152 A1524662 T94414 A1657041 A1619654 AW008468 A1075 168152 A1524662 T94414 A1567041 A1619654 AW008468 A1075 168152 A1524662 T94414 A1567041 A1619654 AW008468 A1075 166152 A1524662 T94414 A1567041 A1619654 AW008468 A1075	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 A1751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 A318527 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW9840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW355135 AW365134 AW994353 AW972886 AW069166 -465604 AI925532 AI858109 AW739097 AI858524 AI720571 BE046506 -AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 -AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 468763 AI445222 AI753124 AI521569 AI925026 AI022368 AI47593 AI311467 AI087361 AI801015 W46993 AI281324 AW191953 AI421675 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI47593 AI558975 AI306368 AA88863 AI952591 AI305835 AI445293 H16713 AI55813 AI865615 AI753921 AI368782 AI633208 AI446651 W46961 N22201 6777 AW662118 AA553368 N67873 AW023948 C15861 C16601 AI251465 6777 AW662118 AA553368 N67873 AW023948 C15861 C16601 AI251465 6777 AW66218 AA553368 N67873 AW023948 C15861 C16601 AI251465 674 AA567443 AA5436104 T30105 AA592002 C16585 AI750390 AW29476 674 AA577434 AA345104 T30105 AA582002 C16585 AI750390 AW294426
45 50 55 60 65 70	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acces AW0 AI88 AL04 N311 R63-3 AI35 AI07 AA4 AA3 AI22 BE0 AA0 AA3 AI24 BE0 AA0 AA3 AW AII AW AW AW AW AW AW	Sision 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M668302 A1754558 A1750727 A1752631 AA302174 AA327522 M668303 AA864291 A1685060 AW088029 A1924908 AW466328 A166953 AA852866 AW391995 W30846 AW662928 W25261 AA06556 N36484 A1798679 AA989355 W23832 AA873785 A1743681 A33 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A172460 AA703054 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A188 71020 AW994984 H20895 AW96438 AA318516 AA318499 AA18303 AA318496 AA318213 AA318435 AA318424 AA318217 A 11830 AA318496 AA318213 AA318435 AA318424 AA318217 A 11830 AA318474 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 802409 AA042828 AA363555 AJ223812 AA344709 BE149590 F162957 D79947 W46960 AW959278 AA295997 AA005215 AW5 43690 AW985931 A1751527 AA931490 AA937506 A1826715 B1334891 AA043908 AA375983 AA525181 AW068366 AW07057781401 A1888821 A1626043 N37087 A1624140 A1801299 AA600071816 AW069022 AW069069 AW069454 AA342989 A1077712 A00881 A1356670 AA873156 A1004219 A189854 AA478018 AA600886 A4623234 A1635123 AA579170 N30442 AW117889 AA807139833 AA622122 AA972051 A1280828 H09543 A1453725 AW69066 AW079577 B176 E045090 A1273006 C16390 C16503 A1620823 F1366 F108074 AW385583 A1589944 AA665817 AW112997 AW46906 A128937 A1370492 C16471 AA652809 AA936687 AA60921 A12709187 BE045090 A1273006 C16390 C16503 A1620823 F1366 F108097 A137492 C16471 AA652809 AA936687 AA506512 C168152 A1524662 T94414 A1657041 A1619654 AW0008486 A1073006 A18952 A18952 A1524662 T94414 A1657041 A1619654 AW0008486 A107511552 AA6669781 AA006678 AW036596 AW006836 AA78006836 AH7006836 AB66678 AW0008486 A107510852 A1524662 C16471 AA652809 AA936687 AA0008486 A108993 A15852 A1524662 T94414 A1657041 A1619654 AW0008486 A1075115552 AA6669781 AA0026678 AW0360678 AW0363919 C16552 A1524662 T94414 A1657041 A1619654 AW0008486 A1075115552 AA6669781 AA0026678 AW0360678 AW0363919 C16552 A15246678 AA006678 AW036000 AW365919 C16556 AW7008486 A1075115552 A	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AI814748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW71049 AA121476 AA569557 A1752532 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295520 AA234044 318727 AA318211 AA318478 AA318444 AA318307 AA318497 AA318448 A318523 AA318438 AA318487 AA318724 AA593185 AW994985 T69842 AA345212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 770995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 -465604 A1925532 A1858109 AW339097 A1858524 A1720571 BE046506 -AW891837 N83985 AW182753 AI422979 A1679733 BE006555 AL048166 448 A1753947 H89615 N66424 AW069756 A1814880 A1982806 A1754287 76063 A1445222 A1753124 A1521569 A1925026 A102368 A1475933 935 AA558975 A130636 AA888963 A1952591 A1358538 A1475933 935 AA558975 A130636 AA888963 A1952591 A1836531 A1445293 H16713 059613 A1865615 A1753921 A1368782 A1633208 A1446651 W46991 N22201 6777 AW662118 AA553369 N67873 AW023948 C15861 C16601 A1251465 5 AA564048 H84715 C16417 AA731072 AA661674 C16487 N29477 5 AA6564048 H84715 C16417 AA731072 AA661674 C16487 N29477 5 AA664048 H84715 C16417 AA731072 AA661674 C16487 N29477 5 AA564048 H84715 C16417 AA731072 AA661674 C16487 N29477 5 AA664048 H84715 C16417 AA731072 AA661674 C16487 N29477 5 AA664048 H84715 C16417 AA731072 AA664676 AW753394 AW795394 AW79
45 50 55 60 65	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acces AW0 Al88 AL04 N311 R63-3 Al35 Al07 AA4 AA3 AA3 AA22 BE0 AA0 AA3 AW	Sesion 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M668302 A1754558 A1750727 A1752631 AA302174 AA327522 M668303 AA854291 A1685060 AW088029 A1924908 AW466328 A166953 AA852866 AW391995 W30846 AW662928 W25261 AA06556 N36484 A1798679 AA989355 W23832 AA873785 A1743681 A33 AA524984 AA234043 AA195131 N99903 AA453669 A12403 A5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A172460 AA703054 R0 37143 N95439 AA579540 AW0867056 AA770090 A1085180 A188 71020 AW994984 H20896 AW966438 AA318516 AA318499 AA18303 AA318496 AA318213 AA318435 AA318424 AA318217 A 31813 AA478174 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 602409 AA042828 AA363555 AJ223812 AA344709 BE149590 F162957 D79947 W46960 AW9559278 AA295997 AA06215 AW5 43690 AW985971 A1751527 AA937490 AA937506 A1826715 B1334981 AA043908 AA375983 AA525181 AW068366 AW0705771816 AW069022 AW069069 AW069454 AA342989 A1077712 A0834384 A1835670 AA873156 A1024219 A189854 AA478018 AA6043918 AA375983 AA525181 AW068366 AW0705771816 AW069022 AW069069 AW069454 AA342989 A1077712 A0846 A1223234 A1635123 AA579170 N30442 AW117889 AA80719883 AA622122 AA972051 A1280828 H09543 A1453725 AW139833 AA622122 AA972051 A1280828 H09543 A1453725 AW069069 AW069054 AA342989 A1077712 A0846 A1223234 A1635123 AA579170 N30442 AW117889 AA80719887 AB56870 AA873156 A1004219 A189883 AA478018 AA606071 AW35583 AA5251477 AW440535 AW517755 AA669921 A17079187 BE045090 A12734006 C16390 C16593 A1620823 F1366 A60074 AW335583 A1569944 AA665817 AW192979 AW46906 A18937 A1370492 C16471 AA652809 AA936687 AA506512 C168152 A1524662 T94414 A1567041 A1619654 AW008486 A17732 AV65065 BW13300 A273200 AW069968 AW008486 A17732 AV65065 BW13300 AW365989 AW365991 A10593317 AL119772340641 A1619654 AW008486 A17732 AV65065 BW13300 AW365989 AW365931 A152809 A1933317 AL119772340641 A1619654 AW008486 A17732 AV65065 BW13300 AW36598 AW365981 AA9008486 A177300 A17732 AV65065 BW13300 AW365989 AW365931 A153093 A162083317 AL119772340641 A1619654 AW008486 A177300 A	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 318727 AA318211 AA318478 AA318474 AA318307 AA318497 AA318523 AA464212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 2465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 7AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 448 A1753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445224 AI753124 AI521669 AI925026 AI022368 AI475933 305 AA558974 AI3687802 AI66890 C16400 AA758273 AI287781 AA864676 76777 AW662118 AA553369 N67873 AW023948 C15861 C16601 AI251465 76777 AW662118 AA553369 N67873 AW023948 C15861 C16601 AI251465 76064 AA577434 AA345104 T30105 AA932002 C16858 AI750390 AW294265 7759137 AA893361 Z40779 C16577 AA885045 AW0737363 R45484 81 T61046 AI053363 H51958 AF1141444 AA3305739 AW9503394 AW793328 AA092788 H85367 T61997 R23745 Z20418 T78485 AI751528 AW068121
45 50 55 60 65 70	Pkey: CAT nuc Accessi	Unique E mber: Gene clu on: Genbank	sler number accession num niber Acces AW0 Al88 AL04 N311 R63-3 Al35 Al07 AA4 AA3 AA3 AA22 BE0 AA0 AA3 AW	Sision 68302 A1754558 A1750727 A1752631 AA302174 AA327522 M668302 A1754558 A1750727 A1752631 AA302174 AA327522 M668303 AA864291 A1685060 AW088029 A1924908 AW466328 A166953 AA852866 AW391995 W30846 AW662928 W25261 AA06556 N36484 A1798679 AA989355 W23832 AA873785 A1743681 A33 AA524984 AA234043 AA195131 N99903 AA453669 A12403 5594 A1471993 A1159941 N94555 A1753138 N21537 H97881 N 3645 AA527960 AA525036 AA04441 A172460 AA703054 R0 37143 N95439 AA579540 AW867056 AA770090 A1085180 A188 71020 AW994984 H20895 AW96438 AA318516 AA318499 AA18303 AA318496 AA318213 AA318435 AA318424 AA318217 A 11830 AA318496 AA318213 AA318435 AA318424 AA318217 A 11830 AA318474 AA447737 T68350 F07712 AA121145 H08973 354 H85516 BE147991 T28113 R32662 AA384678 AW239275 802409 AA042828 AA363555 AJ223812 AA344709 BE149590 F162957 D79947 W46960 AW959278 AA295997 AA005215 AW5 43690 AW985931 A1751527 AA931490 AA937506 A1826715 B1334891 AA043908 AA375983 AA525181 AW068366 AW07057781401 A1888821 A1626043 N37087 A1624140 A1801299 AA600071816 AW069022 AW069069 AW069454 AA342989 A1077712 A00881 A1356670 AA873156 A1004219 A189854 AA478018 AA600886 A4623234 A1635123 AA579170 N30442 AW117889 AA807139833 AA622122 AA972051 A1280828 H09543 A1453725 AW69066 AW079577 B176 E045090 A1273006 C16390 C16503 A1620823 F1366 F108074 AW385583 A1589944 AA665817 AW112997 AW46906 A128937 A1370492 C16471 AA652809 AA936687 AA60921 A12709187 BE045090 A1273006 C16390 C16503 A1620823 F1366 F108097 A137492 C16471 AA652809 AA936687 AA506512 C168152 A1524662 T94414 A1657041 A1619654 AW0008486 A1073006 A18952 A18952 A1524662 T94414 A1657041 A1619654 AW0008486 A107511552 AA6669781 AA006678 AW036596 AW006836 AA78006836 AH7006836 AB66678 AW0008486 A107510852 A1524662 C16471 AA652809 AA936687 AA0008486 A108993 A15852 A1524662 T94414 A1657041 A1619654 AW0008486 A1075115552 AA6669781 AA0026678 AW0360678 AW0363919 C16552 A1524662 T94414 A1657041 A1619654 AW0008486 A1075115552 AA6669781 AA0026678 AW0360678 AW0363919 C16552 A15246678 AA006678 AW036000 AW365919 C16556 AW7008486 A1075115552 A	12653 R99045 H97060 W03910 H94687 T88984 AL048165 T29632 AA363587 AB14748 AW338990 N73740 N83666 AL047816 R24137 02 AA370271 AI950026 AW771049 AA121476 AA569557 A1752632 225769 AW068044 AA808425 R63380 AA384736 AA384738 AA852352 1216 AA897183 AI751996 T81078 H95047 AA573642 D58348 N20953 16799 AA426421 AI572513 R24081 AA853189 AA295620 AA234044 318727 AA318211 AA318478 AA318474 AA318307 AA318497 AA318523 AA464212 BE000667 AW068210 AW608407 R05674 H16712 N85426 H82382 AW840700 D58229 C04082 W45394 AW795667 R73973 70995 W46881 W90778 N71242 AA534826 AL040676 R23797 H96450 79469 AW365135 AW365134 AW994353 AW972886 AW069166 2465604 AI925532 AI858109 AW339097 AI858524 AI720571 BE046506 7AW891837 N83985 AW182753 AI422979 AI679733 BE006555 AL048166 448 A1753947 H89615 N66424 AW069756 AI814880 AI982806 AI754287 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445222 AI753124 AI521569 AI925026 AI022368 AI475933 3935 AA558975 AI306636 AA888963 AI952591 AI336835 AI445293 H16713 76063 AI445224 AI753124 AI521669 AI925026 AI022368 AI475933 305 AA558974 AI3687802 AI66890 C16400 AA758273 AI287781 AA864676 76777 AW662118 AA553369 N67873 AW023948 C15861 C16601 AI251465 76777 AW662118 AA553369 N67873 AW023948 C15861 C16601 AI251465 76064 AA577434 AA345104 T30105 AA932002 C16858 AI750390 AW294265 7759137 AA893361 Z40779 C16577 AA885045 AW0737363 R45484 81 T61046 AI053363 H51958 AF1141444 AA3305739 AW9503394 AW793328 AA092788 H85367 T61997 R23745 Z20418 T78485 AI751528 AW068121

5	433470	3672_1	AA3046 D82729 AA3437 AA1804 AA1024 AA0835	564 AA092457 T55890 D56120 T92525 AI815987 BE182608 BE182595 AW080238 M90657 AA347236 AW961686 AW176446 571 AW583735 T61714 AA316968 AI446615 AA343532 AA083489 AA488005 W52095 W39480 N57402 D82638 W25540 W52847 50 D58990 BE619182 AA315188 AA308636 AA112474 W76162 AA088544 H52265 AA301631 H80982 AA113786 BE620997 AW651691 579 BE613669 BE547180 BE546566 F11933 AA376800 AW239185 AA376086 BE544387 BE619041 AA452515 AA001806 AA190873 183 AA159346 F00242 AI940609 AI940602 AI189753 T97663 T66110 AW062896 AW062910 AW062902 AI051622 AI828930 1852 AI685095 AI819390 AA557597 AA383220 AI804422 AI633575 AW338147 AW603423 AV406800 AW750567 AW510672 AI250777 1510 AW629109 AW513200 AA921353 AI677934 AI148698 AI955858 AA173825 AA453027 AI027865 AW376542 AA454099 AA733014 84 R79300 R80023 AA843108 AA626058 AA844898 AW375550 AA889018 AI474275 AW205937 AI052270 AW388117 AW388111						
10	436729	42585_1	AA6994 N83956 AJ6828 BE6211	452 AI242230 N47476 H38178 AA366621 AA113196 AA130023 H39740 T61629 AI885973 AW083671 AA719730 AA305737 AI259455 6 AA216013 AA336155 AW999959 T97525 AA345349 T91762 AA771981 AI285092 AI591386 BE392486 BE385852 AA682601 884 AA345840 T85477 AA292949 AA932079 AA098791 D82607 T48574 AW752038 C05307 807 AI445461 AI346835 AI453743 AI564644 AI928364 AW984527 BE155214 AI694111 AI591358 C17504 C17476 C17963 C18304						
15			AJ4243 AA088 AW015 AA723	678 A1925607 AA292956 AA192449 AW192593 A1885838 A1696905 AIB71950 AI911921 BE619741 BE439796 A161312 A1597801 84 A1093510 A1240988 AW820230 A1492554 BE044033 AW262737 AW008570 AA043216 AW629505 AA136645 AA037722 AA706057 839 AW806193 AW806183 AA479834 BE501957 AA129574 R381114 AA649494 AA524526 BE327120 AW572531 BE219784 BE349186 8724 AA043217 AW772000 A1799814 AI671727 AW779725 AA502832 A1470033 AA129575 W38161 AI972739 AA404570 AA627686 8724 AA043217 AW772000 A1799814 AI671727 AW779725 AA502832 A1470033 AA129575 W38161 AI972739 AA404570 AA627686 8724 AA043217 AW772000 A19980245 A1075878 T32487 C06123 AA157944 A1800106 W60075 A1859160 AA478328 AW673152 860 A1990827 AW275048 AW103470 A1298935 AW471421 R79190 AW085158 W45410 A1333170 AW300456 AA662517 T55840						
20			AI8234 AA037 AW088 AI7985	66 A1692846 AA962397 AW191997 AA136658 A1251817 BE044134 AW339104 AW517762 AA724739 R79935 AA41110 A9666 AA190966 AA757735 AW772283 AA01631 H80983 A1769516 H64985 A1061065 A1950693 AA085492 A1245632 H28594 81968 BE156360 A1349390 A1621320 A1738844 AW194272 AA148284 AA953883 C06365 AA487893 A1927217 A1918523 A1453453 A1062185 A186283 A1962899 A1972899 A1507676 A1872628 A1693030 Z28771 A1985583 A1363829 AW339301 A1862133 A186284 AA96289 A1972899 A15076 A1872678 A1693030 Z28771 A1985583 A1363829 AW339301 A1862878 A186289 A18629 A186289 A186289 A186289 A186289 A186289 A186289 A186289 A18						
25	453331	96214_1	Al9184 BE157 Al3488 Al2408	153 AA035576 AI472527 AW351556 AA191414 AW674145 D57556 AI446740 D57685 AI569264 CU5762 AA72220 AI59280 AI5926 510 AI829640 AI468237 AW384233 AA989662 AI865912 AW197954 AI344941 X75684 AI344943 AW583310 AA988297 AI334860 377 AI798415 D11921 AI377596 AI893655 AI744233 C06111 AI248307 AA948565 AI224807 517 AI798415 D11921 AI377596 AI893655 AI744233 C06111 AI248307 AA948565 AI224807 518 AI8981 AI77468 H51833 AA147247 R75732 C18450 R73999 AI095755 T49904 H03868 AA411580 R33395 AA410586 T48869 518 AI8981 AI77468 H51833 AA147247 R75732 C18450 R73999 AI095755 T49904 H03868 AA411580 R33395 AA410586 T48869 518 AI8981 AI77468 H51833 AA147247 R75732 C18450 R73999 AI095755 T49904 H03868 AA411580 R3399 AI378760						
30				2 R31981 H12496 R02696 A02695 R						
	TABLE 11C									
35	Pkey: Ref:	Sequence so	urce. The 7	corresponding to an Eos probeset p. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA nan chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.						
40	Strand: Nt_position	Indicates DN	A strand from	n which exons were predicted. ions of predicted exons.						
	Pkey 401780	Ref 7249190	Strand Minus	Nt_position 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573						
45	401781 404854	7249190 7143420	Minus Plus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814 14260-14537						

TABLE 12A: Genes preferentially expressed in muscle-invasive bladder tumors

	Pkey:	Unique Eos probeset identifier number
_	ExAcon:	Exemplar Accession number, Genbank accession number
5	UnigenelD:	Unigene number
	tislana Tita.	Malana ana tito

Unigene Title: Unigene gene title
Seq ID No.: Unigene gene title
Sequence Identification Number linking Information in Table 12A to sequences in Table 13

10	Pkey	ExAccn	UnigenelD	Unigene Title	Seq ID No.
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	Seq ID No. 1 & 2
	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	Seq ID No. 3 & 4
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	Seq ID No. 5 & 6
	418738	AW388633	Hs.6682	solute carrier tarnily 7, (cationic amino	Seq ID No. 7 & 8
15	406964	M21305	. 10.000	FGENES predicted novel secreted protein	Seq ID No. 9 & 10
	429276	AF056085	Hs.198612	G protein-coupled receptor 51	Seq ID No. 11 & 12
	428227	AA321649	Hs.2248	small inducible cytokine subtamily B (Cy	
	410102	AW248508	Hs.279727	ESTs; homotogue of PEM-3 [Ciona savignyl	Seq ID No. 13 & 14
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	Seq ID No. 15 & 16
20	424735	U31875	Hs.272499		Seq ID No. 17 & 18
20	420159			short-chain alcohol dehydrogenase family	Seq ID No. 19 & 20
		AI572490	Hs.99785	Homo saplens cDNA: FLJ21245 fis, clone C	Seq ID No. 21 & 22
	415511 452461	A1732617	Hs.182362	ESTs	Seq ID No. 23 - 25
		N78223	Hs.108106	transcription lactor	Seq ID No. 26 & 27
25	413324	V00571	Hs.75294	corticotropin releasing hormone	Seq ID No. 28 & 29
23	443211	A)128388	Hs.143655	ESTs	Seq ID No. 30
	439926	AW014875	Hs.137007	ESTs	Seq ID No. 31 & 32
	432222	AI204995		gb:an03c03.x1 Stratagene schizo brain S1	Seq ID No. 33
	408908	BE296227	Hs.250822	serine/threonine kinase 15	Seq ID No. 34 & 35
20	443171	BE281128	Hs.9030	TONDU	Seq ID No. 35 & 37
30	432829	W60377	Hs.57772	ESTs	Seq ID No. 38 & 39
	410553	AW016824	Hs.272068	hypothetical protein MGC14128	Seq ID No. 40 & 41
	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	Seq ID No. 42 & 43
	425721	AC002115	Hs.159309	uroplakin 1A	Seq ID No. 44 & 45
	420370	Y13645	Hs.97234	uroptakin 2	Seq ID No. 46 & 47
35	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 (H.sa	Seq ID No. 48 & 49
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	Seq ID No. 50 & 51
	456034	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	Seq ID No. 52
	421110	AJ250717	Hs.1355	cathepsin E	Seq ID No. 53 & 54
	451668	Z43948	Hs.326444	cartilage acidic protein 1	Seq ID No. 55 - 60
40	408243	Y00787	Hs.624	Interleukin 8	Seq ID No. 61 & 62
-10	440304	BE159984	Hs.125395	ESTs	Seq ID No. 63 & 64
	414918	Al219207	Hs.72222	hypothetical protein FLJ13459	Seq 1D No. 65 & 66
	418867	D31771	Hs.89404	msh (Drosophila) homeo box homolog 2	Seq ID No. 67 & 68
	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	Seq ID No. 69 & 70
45	405033	AL030001	NS. 100130	C1002652*:gi 544327 sp Q04799 FMO5_RABIT	Seq ID No. 71 & 72
73		AF019225	Hs.114309		
	422282			apolipoprotein L	Seq ID No. 73 & 74
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	Seq ID No. 75 & 76
	400844			NM_003105*:Homo saplens sortilin-related	Seq ID No. 77 & 78
50	404875	.1/004070	11 404000	NM_022819*:Homo saplens phospholipase A2	Seq ID No. 79 & 80
50	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	Seq ID No. 81 & 82
	431347	Al133461	Hs.251664	Insulin-like growth factor 2 (somatomedi	Seq ID No. 83 & 84
	413804	T64682		gb:yc48b02.r1 Stratagene liver (937224)	Seq ID No. 85 & 86
	444163	Al126098		FGENESH predicted RNaseH domain-contain	Seq ID No. 87 - 89
c	444444 "	Al149332	Hs.14855	ESTs	Seq ID No. 90 & 91
55	427747	AW411425	Hs.180655	serine/threonine kinase 12	Seq ID No. 92 & 93
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	Seq ID No. 94 & 95
	420281	AI623693	Hs.323494	Predicted catton efflux pump	Seq ID No. 96 & 97
	402305	1		C19000735*:gi[4508027 ref[NP_003414.1] z	Seq ID No. 98 - 100
~ 0	436608	AA628980		down syndrome critical region protein DS	Seq ID No. 101 & 102
60	427239	BE270447		ubiquitin carrier protein	Seq ID No. 103 & 104
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	Seq ID No. 105 & 106
	424008	R02740	Hs.137555	putative chemokine receptor; GTP-binding	Seq ID No. 107 & 108
	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	Seq ID No. 109 & 110
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	Seq ID No. 111 & 112
65	426028	NM_001110	Hs.172028	a disintegrin and metalloproteinase doma	Seq ID No. 113 & 114
	417079	U65590	Hs.81134	Interleukin 1 receptor antagonist	Seq ID No. 115 & 116
	401093			C12000586*:gi[6330167 db][BAA86477.1] (A	Seq ID No. 117 - 119
	422247	U18244	Hs.113602	solute carrier family 1 (high affinity a	Seq ID No. 120 & 121
	449722	BE280074	Hs.23960	cyclin B1	Seq ID No. 122 & 123
70	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	Seq ID No. 124 & 125
	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	Seq ID No. 126 - 133
	439606	W79123	Hs.58561	G protein-coupled receptor 87	Seq ID No. 134 & 135
	418543	NM_005329	Hs.85962	hyaluronan synthase 3	Seq ID No. 136 & 137
	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)	Seq ID No. 138 - 141
75	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	Seq ID No. 142 & 143
, ,	427335	AA448542	Hs.251677	Gantigen 7B	Seq ID No. 144 & 145
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), katini	Seq ID No. 146 & 147
	700760	2.0000	- 1010-170 1	second Second a fraction fraction	

5	404440 433091 408380 409893 424905 438817 421478	Y12642 AF123050 AW247090 NM_002497 AI023799 AI683243	Hs.3185 Hs.44532 Hs.57101 Hs.153704 Hs.97258	NM_021048:Homo sapiens melanoma antigen, lymphocyte antigen 6 complex, locus D diublquitin minichromosome maintenance deficient (S. NIMA (never in mitosis gene a)-related k ESTs. ESTs, Moderately similar to S29539 ribos	Seq ID No. 148 & 149 Seq ID No. 150 & 151 Seq ID No. 152 & 153 Seq ID No. 154 & 155 Seq ID No. 156 & 157 Seq ID No. 158 Seq ID No. 158
10	431515 433159 432441 425726 448045 431846	NM_012152 AB035898 AW292425 AF085808 AJ297436 BE019924	Hs.258583 Hs.150587 Hs.163484 Hs.159330 Hs.20166 Hs.271580	EDG-7 (endothelial differentiation, lys kinesin-like protein 2 ESTs uroptakin 3 prostate stem cell antigen uroptakin 1B	Seq ID No. 159 & 160 Seq ID No. 161 & 162 Seq ID No. 163 & 164 Seq ID No. 165 Seq ID No. 166 & 167 Seq ID No. 168 & 169 Seq ID No. 170 & 171
15	444381 400303 452747	AL035864 BE387335 AA242758 BE153855 AJ127076	Hs.69517 Hs.283713 Hs.79136 Hs.61460 Hs.306201	differentially expressed in Fanconi's an ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Ig superfamily receptor LNIR hypothetical protein DKFZp56401278	Seq ID No. 172 & 173 Seq ID No. 174 & 175 Seq ID No. 176 & 177 Seq ID No. 178 & 179 Seq ID No. 180 & 181
20	428484 429211 417389 445537	AF104032 AF052693 BE260964 AJ245671 D13666	Hs.184601 Hs.198249 Hs.82045 Hs.12844 Hs.136348	solute carrier family 7 (cationic amino gap junction protein, beta 5 (connextn 3 midkine (neurite growth-promoting factor EGF-like-domain, multiple 6 perfositin (OSF-2os)	Seq ID No. 182 & 183 Seq ID No. 184 & 185 Seq ID No. 186 & 187 Seq ID No. 188 & 189 Seq ID No. 190 & 191
25	444781 430486 425650	BE270266 NM_014400 BE062109 NM_001944 AF251237	Hs.82128 Hs.11950 Hs.241551 Hs.1925 Hs.112208	5T4 oncofetal trophoblast glycoprotein GPLanchored melastasis-associated protein homolog chloride channel, calcium activated, family member 2 desmoglain 3 (pemphigus vulgaris antigen) XAGE-1 protein	Seq ID No. 192 & 193 Seq ID No. 194 & 195 Seq ID No. 196 & 197 Seq ID No. 198 & 199 Seq ID No. 200 & 201
30	403047 439738	Al267700 BE246502	Hs.9598	ESTs NM_005656*:Homo sapiens transmembrane protease sema domain, immunoglobulin domain (lg), transmem	Seq ID No. 202 Seq ID No. 203 & 204 Seq ID No. 205 & 206
35	TABLE 12B Pkey: CAT number Accession:	: Gene duster	probeset identif r number cession number		
40	Pkey 413804 427239	CAT Number 1390710_1 27647_1	T64682 BE2704	BE168190 BE168256 47 AW409921 BE207288 BE207170 D56355 BE263223 BE40	08171 BE262243 BE392439 BE292738 BE261776 BE314300 BE267719 31344 BE622905 AW248281 AW250313 T19021 AA355115 AA316879
45			BE3128 AA9069 Al03885	68 BE278817 BE252503 AA426470 M91670 NM_014501 BE: 24 Al571293 AW172642 AA582906 AW674596 AW300936 A' 9 Al589898 AA828316 AA938955 AA283711 AW170665 BEC	79220 H73020 AW797850 BE274611 BE314315 BE642407 BE562063 264633 AIB84863 AIB84942 AI678077 AA829393 AIB869333 AW273060 W615753 AW615587 AW665495 AI859296 AA594105 AA928110 J47759 AW732128 AI015067 AW070748 AW248955 AA975490 474 AA827720 AI922589 AW000868 W58033 AA991461 BE048131
50			A147157 A134058 AW0750	7 AA293354 AA464019 BE044549 T29587 AW956171 BE53' 9 A1250128 A1247038 BE138953 AW075177 A1307208 BE04 106 AW302733 AW302738 A1054057 A1054217 A1054172 A10	244 AW245061 AA688299 AW250988 AI953468 AI891144 AW089131 7716 BE269400 AA918328 AI538087 AA969243 AW075033 BE139361 9086 AW302327 AI054335 AI345565 AI334881 AI252075 AI254494 54302 AI053722 AI054060 AI054079 AW075181 AI307473 AI312145 251662 AI307559 BE139228 AI254764 AW073049 AI251264 AI802837
55	432222	343347_1	AW0736 Al25286 Al30747	56 AW072901 Al307493 Al255068 Al251289 Al252160 Al27 8 AW072520 AW073433 Al340643 Al802854 Al334733 Al58	W271039 AW071307 Al610913 AW071289 Al251232 Al251262 1496 Al252427 AW073469 AW071420 Al270156 Al252926 Al252839 3896 AW071311 Al802853 Al289711 Al345035 AW072513 Al348921 70478 BE139260 BE138965 AW302085 BE041872 AW268964
60	432222 436608 438817 444163 456034	42361_3 465592_1 593658_1 142696_1	AA6289 Al02379 Al12609 AW4509	80 A1126603 BE504035 19 AA826307 A1683094 A1307373 A1870547 AW979007 8 A1184746 A1148521	DE168945 AA809054 AW238038 BE011212 BE011359 BE011367
65	TABLE 12C				
70	Pkey: Unique number corresponding to an Eos probeset Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Strand: Indicates DNA strand from which exons were predicted. NL position: Indicates nucleotide positions of predicted exons.				
75	Pkey 400844 401093	Ref 9188605 8516137	Strand Plus Minus	Nt_position 24745-24872,25035-25204 22335-23166	

402305	7328724	Plus	40832-41362
404440	7528051	Plus	80430-81581
404875	9801324	Plus	96588-96732,97722-97831
405033	7107731	Minus	142358-142546

Table 13
Seq ID NO: 1 DNA sequence:
Nucleic Acid Accession #: NM_002205
Coding sequence: 24..3173

5

•							
	1	11	21	31	41	51	
	1	1	1			 	60
10	CAGGACAGGG	AAGAGCGGGC	GCTATGGGGA	GCCGGACGCC	AGAGTCCCCT	TTGCTGCTCG	120
10	TGCAGCTGCG	CTGGGGCCCC	CGGCGCCGAC	CCCCGCTCGT ACTTAGACGC	GCCGCTGCTG	CCACTACTCT	180
	TGCCGCCGCC	CCCCTCCTTC	TTCCCATTCT	CAGTGGAGTT	TTACCGGCCG	GGAACAGACG	240
	CGGGGGGGGGGG	CCTCCTCCGA	GCACCCAAGG	CTAATACCAG	CCAGCCAGGA	GTGCTGCAGG	300
	CTCCTCCTCT	CTACCTCTGT	CCTTGGGGTG	CCAGCCCCAC	ACAGTGCACC	CCCATTGAAT	360
15	TTGACAGCAA	AGGCTCTCGG	CTCCTGGAGT	CCTCACTGTC	CAGCTCAGAG	GGAGAGGAGC	420
. •	CTCTCCACTA	CAAGTCCTTG	CAGTGGTTCG	GGGCAACAGT	TCGAGCCCAT	GGCTCCTCCA	480
	TCTTGGCATG	CGCTCCACTG	TACAGCTGGC	GCACAGAGAA	GGAGCCACTG	AGCGACCCCG	540
	TEGGENECTG	CTACCTCTCC	ACAGATAACT	TCACCCGAAT	TCTGGAGTAT	GCACCCTGCC	600
~~	GCTCAGATTT	CAGCTGGGCA	GCAGGACAGG	GTTACTGCCA	AGGAGGCTTC	AGTGCCGAGT	660
20	TCACCAAGAC	TGGCCGTGTG	GTTTTAGGTG	GACCAGGAAG	CTATTTCTGG	CAAGGCCAGA	720 780
	TCCTGTCTGC	CACTCAGGAG	CAGATTGCAG	AATCTTATTA	CCCCGAGTAC	ACCENCCENG	840
	TGGTTCAGGG	GCAGCTGCAG	ACTCGCCAGG	CCAGTTCCAT GTGATGACAC	CTATGATGAC	CTTCCTAG	900
	GATACTCTGT	GGCTGTTGGT	GAATTCAGTG	TCACCATCCT	TAATGGCTCA	GACATTOGAT	960
25	TGCCCAAAGG	GAACCICACI	CAACAGCIAIG	CCTCCTACTT	TEGETATECA	GTGGCCGCCA	1020
23	COCTOTACAA	TOGGGLOGGG	CTCGATGACT	TGCTGGTGGG	GGCACCCCTG	CTCATGGATC	1080
	CONCOCCICA	CCCCCCCCCC	CAGGAGGTGG	GCAGGGTCTA	CGTCTACCTG	CAGCACCCAG	1140
	CCCCCATAGA	CCCCACGCCC	ACCCTTACCC	TCACTGGCCA	TGATGAGTTT	GGCCGATTTG	1200
	CCXCCTCCTT	GACCCCCCTG	GGGGACCTGG	ACCAGGATGG	CTACAATGAT	GTGGCCATCG	1260
30	CCCCTCCCCTT	TOCTOCCOAC	ACCCAGCAGG	GAGTAGTGTT	TGTATTTCCT	GGGGGCCCAG	1320
	C NOCCOMPOSE	CTCTAAGCCCT	TOTOLOGICAL	TGCAGCCCCT	GTGGGCAGCC	AGCCACACCC	1380
	CACA CONTOUR	TRECTTORCE	CTTCGAGGAG	GCCGAGACCT	GGATGGCAAT	GGATATCCTG	1440
	A TOTO A TTYST	CCCCTCCTTT	GGTGTGGACA	AGGCTGTGGT	ATACAGGGGC	CGCCCCATCG	1500 1560
2.5	TGTCCGCTAG	TGCCTCCCTC	ACCATCTTCC	CCGCCATGTT	CAACCCAGAG	AATCCTTCTG	1620
35	GCAGCTTAGA	GGGGAACCCT	GTGGCCTGCA	TCAACCTTAG	TCACCTCCAC	TECCAGAAGE	1680
	GAAAACACGT	TGCTGACTCC	ATTGGTTTCA	CAGTGGAACT TGGCCTCCAG	CCAGCIGGAC	CTGACCCAGA	1740
	AGAAGGGAGG	GGTACGGCGG	CCTCCAGAGG	ATTGCAGAGA	GATGAAGATC	TACCTCAGGA	1800
	* *** *******	N TOTAL CONTRACTOR	ስ እ እ ርጥርጥርርር	CCATTCACAT	CCCTCTCAAC	TICICCIIGG	1860
40		COCKOMOCKO	へんしんり しんじんしん	TCAGGCCAGC	CCTACATTAT	CAGAGCAAGA	1920
70	COCCORDO	CONCNACCO	CAGATCTTGC	TGGACTGTGG	AGAAGACAAC	ATCTGTGTGC	1980
	OMOR COMOON	COTCONNETC	TTTCCCCCACC	AGAACCATGT	GIACCIGGE	GHCHMGHMIG	2040
		CACTOTCOAT	CCCCAGAATG	TCGGTGAGGG	TGGCGCCTAT	GAGGCTGAGC	2100
		COCCCTCCN	CACCCTCACT	ACTCAGGACT	CGTCAGACAC	CCAGGGAACI	2160
45	mamaa	CACCTCTCAC	ተል ርጥተጥርርርር	TGAACCAGAG	CCCCCTCCTC	GIGIGIGACC	2220
		CATCAACCCA	CCACCCACTC	TGTGGGGTGG	CCTTCGGTT	ACAGICCCIC	2280 2340
	- managagaga	へってでもってるっち	አፖሮኔጥሮሮልርፕ	TTGACTTCCA	GATCCTCAGC	AAGAAICICA	2400
	ACAACTCGCA	AAGCGACGTG	GTTTCCTTTC	GGCTCTCCGT	GGAGGCTCAG	GCCCAGGTCA	2460
50	CCCTGAACGG	TGTCTCCAAG	CCTGAGGCAG	TGCTATTCCC	CCACCATGTC	TGGCATCCCC	2520
50	GAGACCAGCC	TCAGAAGGAG	GAGGACCIGG	CTCTCCTGC	ACTCAGCTGT	CCCCAGGCTC	2580
	TCAACCAAGG	COCCAGCICC	TATIAGCCAGG	GAGTTACGGG	ACTCAACTG	ACCACCAATC	2640
		COGNINGCCC	CTCCACTTCC	: ATCCCGAGGG	TTCCCTGCAG	CACCAGCAAA	2700
		mada acces	· VCCALATION	' '''''''''''''''''''''''''''''''''''	' TCAGATCCIX	AAAIGCCCGG	2760
55		THE PROPERTY OF THE PROPERTY O	. ~~~~~~~~~~	TOGGGCCCC	CCACCAACA	I GAGAGCCAAA	2820
"	CHOMOCA COM	, CONTRACTOR	CTCTGGGCC	AGACTTTCT	GCAGCGGGA	CACCAGCCAL	2880
			• ሮሞሮሞአሮልክልር	2 CCCTGAAGA1	CCCCTACCG	ATCCIGCOLC	2940
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: CCACAGCTGT	r GCAATGGAC	, AAGGCAGAAG	3000
	0010001000	* ACTOCOTA (************************************	3 ጥርርልፕሮልፕሮ <i>እ</i>	A TCCTAGCCAT	CCTGTTIGG	CICCIGCICC	3060 3120
60	TAGGTCTACT	r CATCTACATO	CTCTACAAG	TTGGATTCT	CAAACGCTC	CTCCCATATG	3180
	GCACCGCCAT	r ggaaaaagc	CAGCTCAAG	CTCCAGCCAG	CICIGAIGU	TGAGTCCTCC	3240
	CAATTTCAG	A CTCCCATTC	TGAAGAACC	COCCOCCA	NACCTOCTO	CTGAAAAGGA CCCCAGCCCA	3300
	GGGGTCTGG	3 TACTICITE	AGGIGCIGA	COTCAGGGA	TGGGGATCC	TCCCCCCAT	3360
65	GAGACATAC	T TGAAGGGCC	A GAGCCAGGG	COTOMOGNO	CATGGGGGA	A CTCAGATCCA	3420
03			- സാവാമമാന	r TGCATTTG	G AGAGITICC	I GWWWCWWCIG	3480
	0 - 4 - C - M - 2	C CARCONNATC	~ አጥጥሮልሮልርቸ	r ctttgggcc	A GACATGCCA	CAAGGACTICC	3540
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	N አርኔተርፕርፕር	C TCAGCCTTG	C CAGAGATUC	A AMMUMMUCCC	3600
			T CCCCACTTA	A GACCTGGCA	G CTCTGGACA	G CCCCACCCIG	3660
70	amagagaan n	C NANCABCAC	T AACTATGCA	T GGTGCCCCA	G GACCAGCIC	A GGACAGAIGC	3/20
, 0		* ~ ~ **********	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	A GCCCAGCTC	C AAGGGGAAI	C MONNETCHAN	2.00
		N MOCKCOCK	с сстстссва	T TGATCTGGA	A CCCAGACTO	A GACATIGGCA	3040
		~ ~~~~~~~~	דידידעדעידי י	c ccccrccrc	C AGACCIGAI	C CIGGAGGCCC	3500
_			~ **********	A TTTCCCAGG	A CCTGAAGGG	G CCATGAIGGC	3300
75		~ CNACCTCAG	c cresceaga	C ACAGGCCCT	C CCTGTTCCC	C AGAGAAAGGG	4020
-			ተ ርርክርልልቸቸቸ	G GGTTCTGCC	T GCCAGCIGU	A CIGALGUIGE	4000
		**************************	C CCHTCCCTC	A CCTTGGCAC	C AGACACCCA	G GACTTALLIA	4740
	AACTCTGTT	G CAAGTGCAA	T AAATCTGAC	CAGTGCCCC	L ACTGACCAG	A ACTAGAAAAA	

AAAA

```
Seq ID NO: 2 Protein sequence:
 5
       Protein Accession #: NP_002196.1
       MGSRTPESPL HAVQLRWGPR RRPPLVPLLL LLVPPPPRVG GFNLDAEAPA VLSGPPGSFF
10
       GFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP 1EFDSKGSRL
                                                                                     120
                                                                                     180
       LESSLSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
       DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
       IAESYYPEYL INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                                     300
       GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPPGGET
                                                                                     360
                                                                                     420
15
       QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
        VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
       GPTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
                                                                                     600
        LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
                                                                                     660
                                                                                     720
        GEONHVYLGD KNALNLTFHA ONVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
20
        FAVNQSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
        SFRLSVEAQA QVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
SQGVLELSCP QALEGQQLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                                     840
                                                                                     900
        SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPFSLQCEAV
                                                                                     960
        YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
25
        YKLGFFKRSL PYGTAMEKAQ LKPPATSDA
        Seq ID NO: 3 <u>DNA sequence:</u>
Nucleic Acid Accession #: NM_002425
30
        Coding sequence: 23..1453
                                 21
                     11
        AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC
35
        AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT
                                                                                     120
        TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG
        AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA
                                                                                      240
        GGTGACAGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAGGCCCA GGTGTGGAGT
TCCTGACGTT GGTCACTTCA GCTCCTTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT
TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT
                                                                                      300
                                                                                      360
40
                                                                                      420
         TGAGAAAGCT CTGAAAGTCT GGGAAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA
                                                                                      480
        AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT
TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA
                                                                                      540
                                                                                      600
         TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT
 45
         CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC
                                                                                      720
         TTTGATGTAC CCACTCTACA ACTCATTCAC AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA
                                                                                      780
         TGATGTGAAT GGCATTCAGT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT
                                                                                      840
         GGTGCCCACA AAATCTGTTC CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT
                                                                                      900
         GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT
 50
         TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC
                                                                                     1020
         CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTTAT
                                                                                     1080
         TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG
                                                                                     1140
         AGGCATCCAT ACCCTGGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCAG CTGTTTCTGA
         1260
 55
                                                                                     1320
                                                                                     1380
         ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG
         GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA
ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT
                                                                                     1500
                                                                                     1560
 60
         GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC
                                                                                     1620
         ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA
         ATGTATTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC
 65
          Seq ID NO: 4 Protein sequence:
          Protein Accession #: NP_002416
                                                                        51
 70
          MMHLAFLVLL CLPVCSAYPL SGAAKEEDSN KDLAQQYLEK YYNLEKDVKQ FRRKDSNLIV
          KKIQGMQKPL GLEVTGKLDT DTLEVMRKPR CGVPDVGHPS SFPGMPKWRK THLTYRIVNY
                                                                                       120
          TPDLPRDAVD SAIEKALKVW EEVTPLTFSR LYEGEADIMI SFAVKEHGDF YSPDGPGHSL
                                                                                       180
          AHAYPPGPGL YGDIHFDDDE KWTEDASGTN LPLVAAHELG HSLGLFHSAN TEALMYPLYN
SPTELAGFRL SQDDVNGIQS LYGPPPASTE EPLVPTKSVP SGSEMPAKCD PALSFDAIST
                                                                                       240
  75
                                                                                       300
          LRGEYLFPKO RYFWRRSHWN PEPEFHLISA FWPSLPSYLD AAYEVNSROT VFIFKGNEFW
                                                                                       360
          AIRGNEVQAG YPRGIHTLGF PPTIRKIDAA VSDKEKKKTY FFAADKYWRF DENSQSMEQG
```

51

## FPRLIADDFP GVEPKVDAVL QAFGFFYFPS GSSQFEFDFN ARMVTHILKS NSWLHC

31

Seq ID NO: 5 DNA sequence:
Nucleic Acid Accession #: NM_002421
Coding sequence: 72..1481

21

11

```
GGGATATTGG AGTAGCAAGA GGCTGGGAAG CCATCACTTA CCTTGCACTG AGAAAGAAGA
10
         CTCACAGCTT CCCAGCGACT CTAGAAACAC AAGAGCAAGA TGTGGACTTA GTCCAGAAAT ACCTGGAAAA ATACTACAAC CTGAAGAATG ATGGGAGGCA AGTTGAAAAG CGGAGAAATA
                                                                                                          240
         GTGGCCCAGT GGTTGAAAAA TTGAAGCAAA TGCAGGAATT CTTTGGGCTG AAAGTGACTG
GGAAACCAGA TGCTGAAACC CTGAAGGTGA TGAAGCAGCC CAGATGTGGA GTGCCTGATG
TGGCTCAGTT TGTCCTCACT GAGGGGAACC CTCGCTGGGA GCAAACACAT CTGACCTACA
                                                                                                          300
15
                                                                                                          420
         TGGCTCAGTT TGTCCTCACT GAGGGAACC TGGCGATGC ATTGAGAAAG GGATTGAAAA TTACACGCCA GATTTGCCAA GAGCAGATGT GGACCATGCC ATTGAGAAAAG CCTTCCAACT CTGAGATAAA GTCACACCTC TGACATTCAC CAAGGTCTCT GAGGGTCAAG
                                                                                                          480
                                                                                                          540
         CAGACATCAT GATATCTTTT GTCAGGGGAG ATCATCGGGA CAACTCTCCT TTTGATGGAC
         CTGGAGGAAA TCTTGCTCAT GCTTTTCAAC CAGGCCCAGG TATTGGAGGG GATGCTCATT
TTGATGAAGA TGAAAGGTGG ACCAACAATT TCAGAGAGTA CAACTTACAT CGTGTTGCGG
                                                                                                          660
20
                                                                                                          720
         CTCATGAACT CGGCCATTCT CTTGGACTCT CCCATTCTAC TGATATCGGG GCTTTGATGT
                                                                                                          780
         ACCCTAGCTA CACCTTCAGT GGTGATGTTC AGCTAGCTCA GGATGACATT GATGGCATCC
         AAGCCATATA TGGACGTTCC CAAAATCCTG TCCAGCCCAT CGGCCCACAA ACCCCAAAAG
                                                                                                          900
         CGTGTGACAG TAAGCTAACC TTTGATGCTA TAACTACGAT TCGGGGAGAA GTGATGTTCT
TTAAAGACAG ATTCTACATG CGCACAAATC CCTTCTACCC GGAAGTTGAG CTCAATTTCA
                                                                                                          960
25
                                                                                                        1020
          TITCTGITTT CTGGCCACAA CTGCCAAATG GGCTTGAAGC TGCTTACGAA TITGCCGACA
                                                                                                        1080
         THEOGRAM COGGATATTE ARAGGANTA AGTACTAGGC TOTTAGGGA CAGANTGTAGC
GAGATGAAGT CCCCAAGGAC ATCTACAGGT CCTTTGGCTT CCCTAGAACT GTGAAGCATA
TCGATGCTGC TCTTTCTGAG GAAAACACTG GAAAAACCTA CTTCTTTGTT GCTAACCAAAT
ACTGAGGGTA TGATGAATAT AAACGATCTA TGGATCCAGG TTATCCCAAA ATGATAGCAC
                                                                                                        1200
                                                                                                        1260
30
                                                                                                        1320
          ATGACTITCC TGGAATTGGC CACAAAGTTG ATGCAGTTTT CATGAAAGAT GGATTTTCT
          ATTTCTTTCA TGGAACAAGA CAATACAAAT TTGATCCTAA AACGAAGAGA ATTTTGACTC
TCCAGAAAGC TAATAGCTGG TTCAACTGCA GGAAAAATTG AACATTACTA ATTTGAATGG
                                                                                                         1440
                                                                                                         1500
          AAAACACATG GTGTGAGTCC AAAGAAGGTG TTTTCCTGAA GAACTGTCTA TTTTCTCAGT
CATTITTAAC CTCTAGAGTC ACTGATACAC AGAATATAAT CTTATTTATA CCTCAGTTTG
CATATTTTT TACTATTAG AATGTAGCCC TTTTTGTACT GATATAATTT AGTTCCACAA
                                                                                                         1560
35
                                                                                                         1680
          ATGGTGGGTA CAAAAAGTCA AGTTTGTGGC TTATGGATTC ATATAGGCCA GAGTTGCAAA
GATCTTTTCC AGAGTATGCA ACTCTGACGT TGATCCCAGA GAGCAGCTTC AGTGACAAAC
                                                                                                         1740
                                                                                                         1800
          ATATCCTTTC AAGACAGAAA GAGACAGGAG ACATGAGTCT TTGCCGGAGG AAAAGCAGCT
 40
          CAAGAACACA TGTGCAGTCA CTGGTGTCAC CCTGGATAGG CAAGGGATAA CTCTTCTAAC
          ACAAAATAAG TGTTTTATGT TTGGAATAAA GTCAACCTTG TTTCTACTGT TTT
          Seq ID NO: 6 Protein sequence:
 45
          Protein Accession #: NP_002412
          50
           WHSEPPELLE LFWGVVSHSF PAILELGEQU VENGATIEM VITEGRIPRWE QTHLTYRIEN VEKLKQMQEF FGLKVTGRPD AETLKVMKQP RCGVPDVAQF VLTEGRIPRWE QTHLTYRIEN YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                                                           180
           LAHAFQPGPG IGGDAHFDED ERWTNNFREY NLHRVAAHEL GHSLGLSHST DIGALMYPSY
                                                                                                           240
           TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                                                           300
 55
           FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
            PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
           GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
           Seq ID NO: 7 <u>DNA sequence:</u>
Nucleic Acid Accession #: NM_014331
Coding sequence: 1..1506
  60
  65
                                           21
                           11
            ATGGTCAGAA AGCCTGTTGT GTCCACCATC TCCAAAGGAG GTTACCTGCA GGGAAATGTT
            AACGGGAGGC TGCCTTCCCT GGGCAACAAG GAGCCACCTG GGCAGGAGAA AGTGCAGCTG
                                                                                                            120
            AAGAGGAAAG TCACTTTACT GAGGGGAGTC TCCATTATCA TTGGCACCAT CATTGGAGCA
            GGAATCTTCA TCTCTCCTAA GGGCGTGCTC CAGAACACGG GCAGCGTGGG CATGTCTCTG
                                                                                                            240
  70
            ACCATCTGGA CGGTGTGTGG GGTCCTGTCA CTATTTGGAG CTTTGTCTTA TGCTGAATTG
                                                                                                            300
            GGAACAACTA TAAAGAAATC TGGAGGTCAT TACACATATA TTTTGGAAGT CTTTGGTCCA
TTACCAGCTT TTGTACGAGT CTGGGTGGAA CTCCTCATAA TACGCCCTGC AGCTACTGCT
                                                                                                            360
            GTGATATCCC TGGCATTTGG ACGCTACATT CTGGAACCAT TTTTTATTCA ATGTGAAATC
            CCTGAACTTG CGATCAAGCT CATTACAGCT GTGGGCATAA CTGTAGTGAT GGTCCTAAAT AGCATGAGTG TCAGCTGGAG CGCCCGGATC CAGATTTCT TAACCTTTTG CAAGCTCACA
                                                                                                             540
   75
                                                                                                             600
            GCAATTCTGA TAATTATAGT CCCTGGAGTT ATGCAGCTAA TTAAAGGTCA AACGCAGAAC
            TTTAAAGACG CGTTTTCAGG AAGAGATTCA AGTATTACGC GGTTGCCACT GGCTTTTTAT
```

```
TATGGAATGT ATGCATATGC TGGCTGGTTT TACCTCAACT TTGTTACTGA AGAAGTAGAA
         AACCCTGAAA AAACCATTCC CCTTGCAATA TGTATATCCA TGGCCATTGT CACCATTGGC TATGTGGTGA CAAATGTGGC CTACTTTACG ACCATTAATG CTGAGGAGCT GCTGCTTTCA
                                                                                                 900
         AATGCAGTGG CAGTGACCTT TTCTGAGCGG CTACTGGGAA ATTTCTCATT AGCAGTTCCG
                                                                                                 960
  5
         ATCTTTGTTG CCCTCTCCTG CTTTGGCTCC ATGAACGGTG GTGTGTTTGC TGTCTCCAGG
                                                                                                1020
         TTATTCTATG TTGCGTCTCG AGAGGGTCAC CTTCCAGAAA TCCTCTCCAT GATTCATGTC
                                                                                                1080
         CGCAAGCACA CTCCTCTACC AGCTGTTATT GTTTTGCACC CTTTGACAAT GATAATGCTC
TTCTCTGGAG ACCTCGACAG TCTTTTGAAT TTCCTCAGTT TTGCCAGGTG GCTTTTTATT
                                                                                                1200
         GGGCTGGCAG TTGCTGGGCT GATTTATCTT CGATACAAAT GCCCAGATAT GCATCGTCCT
                                                                                               1260
         TTCAAGGTGC CACTGTTCAT CCCAGCTTTG TTTTCCTTCA CATGCCTCTT CATGGTTGCC
                                                                                                1320
10
         CTTTCCCTCT ATTCGGACCC ATTTAGTACA GGGATTGGCT TCGTCATCAC TCTGACTGGA
         GTCCCTGCGT ATTATCTCTT TATTATATGG GACAAGAAAC CCAGGTGGTT TAGAATAATG TCAGAGAAAA TAACCAGAAC ATTACAAATA ATACTGGAAG TTGTACCAGA AGAAGATAAG
                                                                                                1440
                                                                                                1500
         TTATGAACTA ATGGACTTGA GATCTTGGCA ATCTGCCCAA GGGGAGACAC AAAATAGGGA
                                                                                                1560
         TTTTTACTTC ATTTTCTGAA AGTCTAGAGA ATTACAACTT TGGTGATAAA CAAAAGGAGT
15
         CAGTTATTIT TATTCATATA TITTAGCATA TICGAACTAA TITCTAAGAA ATTTAGTTAT
         AACTCTATGT AGTTATAGAA AGTGAATATG CAGTTATTCT ATGAGTCGCA CAATTCTTGA
                                                                                                1740
         GTCTCTGATA CCTACCTATT GGGGTTAGGA GAAAAGACTA GACAATTACT ATGTGGTCAT
                                                                                                1800
                                                                                                1860
         TCTCTACAAC ATATGTTAGC ACGGCAAAGA ACCTTCAAAT TGAAGACTGA GATTTTTCTG
         TATATATGGG TTTTGTAAAG ATGGTTTTAC ACACTACAGA TGTCTATACT GTGAAAAGTG
20
         THITCAATTC TGAAAAAAG CATACATCAT GATTATGGCA AAGAGGAGAG AAAGAAATTT ATTTTACATT GACATTGCAT TGCTTCCCCT TAGATACCAA TTTAGATAAC AAACACTCAT
                                                                                                1980
                                                                                                2040
          GCTTTAATGG ATTATACCCA GAGCACTTTG AACAAAGGTC AGTGGGGATT GTTGAATACA
                                                                                                2100
         TTAAAGAAGA GTTTCTAGGG GCTACTGTTT ATGAGACACA TCCAGGAGTT ATGTTTAAGT AAAAATCCTT GAGAATTTAT TATGTCAGAT GTTTTTTCAT TCATTATCAG GAAGTTTTAG TTATCTGTCA TTTTTTTTT TCACATCAGT TTGATCAGGA AAGTGTATAA CACATCTTAG
                                                                                                2220
25
                                                                                                2280
          AGCAAGAGTT AGTTTGGTAT TAAATCCTCA TTAGAACAAC CACCTGTTTC ACTAATAACT
                                                                                                2340
          TACCCCTGAT GAGTCTATCT AAACATATGC ATTTTAAGCC TTCAAATTAC ATTATCAACA
                                                                                                2400
          TGAGAGAAAT AACCAACAAA GAAGATGTTC AAAATAATAG TCCCATATCT GTAATCATAT
                                                                                                2460
          CTACATGCAA TGTTAGTAAT TCTGAAGTTT TTTAAATTTA TGGCTATTTT TACACGATGA
TGAATTTTGA CAGTTTGTGC ATTTTCTTTA TACATTTTAT ATTCTTCTGT TAAAATATCT
                                                                                                2520
30
                                                                                                2580
         CTTCAGATGA AACTGTCCAG ATTAATTAGG AAAAGCATA TATTAACATA AAAATTGCAA
AAGAAATGTC GCTGTAAATA AGATTTACAA CTGATGTTTC TAGAAAATTT CCACTTCTAT
ATCTAGGCTT TGTCAGTAAT TTCCACACCT TAATTATCAT TCAACTTGCA AAAGAACACA
                                                                                                2700
                                                                                                2760
          CTGATAAGAA GAAAATTGAA ATGAGAATCT GTGGATAAGT GTTTGTGTTC AGAAGATGTT
                                                                                                2820
35
          GTTTTGCCAG TATTAGAAAA TACTGTGAGC CGGGCATGGT GGCTTACATC TGTAATCCCA
GCACTTTGGG AGGCTGAGGG GGTGGATCAC CTGAGGTCGG GAGTTCTAGA CCAGCCTGAC
                                                                                                2880
                                                                                                2940
          CAACATGGAG AAACCCCATC TCTACTAAAA ATACAAAATT AGCTGGGCAT GGTGGCACAT
                                                                                                3000
          GCTGGTAATC TCAGCTATTG AGGAGGCTGA GGCAGGAGAA TTGCTTGAAC CCGGGAGGCG
                                                                                                 3060
          GAGGTTGCAG TGAGCCAAGA TTGCACCACT GTACTCCAGC CTGGGTGACA AAGTCAGACT
 40
          CCATCTCCAA AAAAAAAAAA AAAA
          Seq ID NO: 8 Protein sequence:
 45
          Protein Accession #: NP_055146
                                                     31
                                                                    41
                         11
                                      21
          MVRKPVVSTI SKGGYLQGNV NGRLPSLGNK EPPGQEKVQL KRKVTLLRGV SIIIGTIIGA
 50
          GIPISPKGVL ONTGSVGMSL TIWTVCGVLS LPGALSYAEL GTTIKKSGGH YTYILEVFGP
                                                                                                   120
           LPAFVRVWVE LLIIRPAATA VISLAFGRYI LEPFFIQCEI PELAIKLITA VGITVVMVLN
                                                                                                   180
          SMSVSWSARI QIFLIFCKLT ALLIILVEV MQLIKQQTQN FKAFSGRDS SITRLELAFY

YGMYAYAGMF YLMFVTEEVE NEEKTIFLAI CISMAIVTIG YVLTNVAYFT TINAEELLLS

NAVAVTFSER LIGNFSLAVP IFVALSCFGS MNGGVFAVSR LFYVASREGH LPEILSMIHV
                                                                                                   300
                                                                                                   360
  55
           RKHTPLPAVI VLHPLTMIML FSGDLDSLLN FLSFARWLFI GLAVAGLIYL RYKCPDMHRP
                                                                                                   420
           PKVPLFIPAL FSFTCLFMVA LSLYSDPFST GIGFVITLTG VPAYYLFIIW DKKPRWFRIM
           SEKITRTLQI ILEVVPEEDK L
           Seq ID NO: 9 DNA sequence
Nucleic Acid Accession #: FGENESH
  60
           Coding sequence: 1..546
                                                      31
                                                                                   51
                                       21
  65
           ATGCCCTTGG GCAGCTCCGC CCCTGTGGCT TTGCAGGGTA ATGCCCACTT CCCTGCTGCT
           TTCATGGCTG GCATTAAGTG TCTGTGGCTT TTCCAGGTAG TCCCCCTGGG GCTCCCCGAG
TTGGTGCAAA GGCTCCTGGG TGGAGCTCGA ACTGAAACTC GCTTTGTGCC CGCAGCCCTG
                                                                                                   120
                                                                                                    180
           CAGCTCGCCG GTGCCCTCCA CCTGCCCGCT GGGTCCTGTG CCTTTGAAGA GAGCACTTGC
GGCTTTGACT CCGTGTTGGC CTCTCTGCCG TGGATTTTAA ATGAGGAAGG CCAGCAACCT
                                                                                                    300
  70
            TTCTGGTCCT CAGGAGACAT GTCTGACTGG GACTACTGGG TTGGCTGGCG GAAGTTAATT
                                                                                                    360
            CATTCTCCTC TGAGCACTCC AGGGTGGAGC AGGCAGGTTA GGCTCCAGTT GTTCCAGCTT
                                                                                                    420
            CAGTTTGTCA AAGGCCAGAA CTTGGACGTA ACAGTGTACT GCAGGCTCCA GGGCAGTGAG
            AAACCCTTTG AAACTGGTTC CATGGTTCCA TTCACCTTCA TGTACTGGAT CCACCATGGA
  75
            AAGTAG
```

		••	21	21	41	51	
	1	11	21 	31 	1	1	
5	MALGSSAPVA	LOGNAHFPAA GSCAPEESTC	FMAGIKCLWL	FQVVPLGLPE	LVQRLLGGAR	TETREVPAAL	60 120
J	HSPLSTPGWS	RQVRLQLFQL	QFVKGQNLDV	TVYCRLQGSE	KPFETGSMVP	PTFMYWIHHG	180
	K						
	Seq ID NO:	11 DNA sequ	ence				
10		ld Accession		nence			
	Coaing sequ	jence: 461-3	286				
	1	11	21 ]	31 }	41 	51 	
15	GCCGCCCCTG	AGCAGCCTCG	CCTTCGCCTC	CCGCGTTTCC	TGCCGTCCGC	CCTCCCCCGG	60
	CCGAGCTCCA	GGGGCTGCCG GGAGGCGGCC	CCTAGCAGCT	CCCGGCGGGA	GAGCGGTTCA	GAGCGCGCAC	120 180
	<b>AUCCURRECU</b>	CCCTCTCCCC	GTTTGCTCGC	TTGCTCCCCG	CCTCCCGCAC	TCCGCTCGCT	240
20	CCCACCCCTT	CCCGGCGTGA TGAGCCGAGC	TTGATCCGTC	ACGGGCGCCG	CCGCTGCCGC	CGCCGCCGCC	300 360
20	CCCATTCCCC	GGGCGCCGCG	CCAACACCTT	GGCGCGGGGC	GGCGGGCCGG	GCCAGGCCAT	420
	CCCCCCCCAA	TGAGCCGGCG	CCCGCAGCCC	GCGGCGCGGC	ATGGCTTCCC	CGCGGAGCTC	480 540
	CONCORCOCC	GGGCCGCCGC	CALCALCECC CCC	CGGGGCCTGG	GGCTGGGCGC	GGGGGCGCCCC	600
25	0000000000	CCCAGCAGCC	CCCCCCTCTC	CATCATGGGC	CTCATGCCGC	TCACCAAGGA	660 720
	GGTGGCCAAG	GGCAGCATCG GAGTCACTCC	GGCGCGGTGT	GCTCCCCGCC	CTGCGGCTCT	ATGACACGGA	780
	OMCOON CARC	CONNANCECT	TODADGCCTT	CTACGATGCA	ATAAAATACG	GGCCTAACCA	840
20	CAMANCA P ARCACARGE	THECONCOLO	TOTOTOTATO	CGTCACATCC	ATCATTGCAG	AGTCCCTCCA	900 960
30	**************************************	CTGGTGCAGC TATTTCTTTC	CCACCCTCCC	ATCAGACAAT	GCGGTGAATC	CAGCCATTCI	1020
		***************	A CTCCA ACCC	CGTGGGCACG	CTGACGCAAG	ACGIICAGAG	1080 1140
	GTTCTCTGAG	GTGCGGAATG AGCTTCTCCA	ACCTGACTGG	AGTTCTGTAT	AAAAAGCTGA	AGGGGAATGA	1200
35	mamaaaaa ma	N TO COTTO CO CO	<b>አርጥጥጥር Σ Γ Γ Δ</b>	GAATATGGCA	GCAAAAGTGT	TCTGTTGTGC	1260
		AACATGTATG GAGCAGGTGC	CTACTABATA	TCAGTGGATC	ATTCCGGGCT	GGTACGAGCC	1320 1380
	COMMOCTOCO	NTCCNCCCCT	ACATTGGGGT	GGATTTCGAG	CCCCTGAGCT	CCAAGCAGAI	1440
		**************************************	CTCCACAGCA	GTATGAGAGA	GAGTACAACA	ACMAGCOGIC	1500 1560
40		***********************	<b>れたれたれたれたこと</b>	TGCCAGCAGC	CGGCACCAGC	TCATCGCCAA GGATCCAGGA	1620
	CONTRACTOR NOTES C	* ************************************	CALTRACTOR	CATCATCCTC	AATGCCATGA	ACGAGACCA	1680
		<ul> <li>CTCACCCCTY</li> </ul>	ተከፈጥር የተመሰመል ላ	CCGGAATGGG	GAGAGAATGG	GGACCATTAA CTGTGGCCGA	1740 1800
45		* ************************************	* *************	GTTCCAAGGA	TCCGAACCAC	CAMMAGACAM	1860
1.5			• ጥርርርርልአለርአባ	CTCCCTACCT	CICIACAGGA	ICCICICIOC	1920 1980
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ATACATCAAL	AACCITATO	TCAAGAACCG TCCTTGGAGG	2040
		_ mamoommoot	لبطعيا بلمانك بليداه لاداك	י תכנוררייויוניאו	GUATUUTIU	1 LCICIGAAAA	2100 2160
50		3 3 monmoroon 1		LAGTOCACGCC	AICIICAAAA	ACACGACCGC ATGTGAAAAT	2220
		3 MMC3MC33CC	• x~~x~xxxx	CONTRACTOR		1 TOCIOCIONI	2280
		n 800000000000	P CCTCCCACCC	TOTOGACCO	: CIGCGAAGG	CAGTGGAGAA TCCTGGAGCA	2340 2400
55		- BOOGNERNO	,	י יימיניראיזיייי	TATUCCIAC	4 MOGGACTIC+	2460
J <b>J</b>			ו האולים האהרבונים ביו	A GACCCIGCAAU	_ GICAGCAIC	, cococaca	2520 2580
			~ ~~~~~~~~~~~	TAATGTGCAG	TICIGONIC	TCATCGGGGC TGGCTCTGGT	2640
			, <b>-</b>	TTATESTON E	GIGCCGAAG	TOWITHCECT	2700 2760
60			~ ~~~~~~~~~~	A CARCERGATIN	CAGILLACI	C AGAATCAGAA A GCACATCCCG C AGCTGGATAA	2820
			רוד בייין האא אי	T CCRRTIAAT	- 144641	a Wactadows	2880
		* C*CCTC*CC	* #CCVCCTCC	A CCACACACC	A GAAAAGACC	W CCINCULIUM	2940 3000
65		* ************************************	ጥ ጥለጸጸጸሽሞሮ	A CCTCTIATCA	A AAICCCCAG	A CTGAGAGCAC C TACAGTGGAA	3060
05		C CCCTCTCCX	* CATCCAAAC	A TCCTATAGA	A GAIAIAAAC	1 CICCHONNEN	3120 3180
	CATCCAGCG	T CGGCTGTCC	C TCCAGCTCC	C CATCCTCCA	C CCCACCGCC	A GCCCCCGCCA	3240
		M	ም ምርርርአርሞሮል	T COTOTOGGG	C CTGTAAGGG	I GGGWGGCCIG	3300 3360
70		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ *~****	C ACTGGGCAG	A GGGGTLIGG	T GCAGAAACAC A CCACTCGGAT	3420
			C CCCCCACCC	C CAGACTIGG	C ACCIDACUI	C GWGCC++v++	3480
		10 mm 1 mm 10 mm		A GGAACGGAA	A TUGGALUTU	I ICCIINACAI	3340
75		***********	C 802000000	A GAACTCCAG	C TUGAAUTU	A AAAAAAAAAA C GGAGTGGCTC	5000
15		PR 0000 80000	יייים מתחמת מייי	'C TCAAGAAAC	T GCCTCTGC	CACACATOR	5.24
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~ ~~~~~~~~~	יא ההתרשידות אי	'C ACTCTGGGG	G AGGAGGTG	G AAGGGCCACC AG TCTGCAGGAG	3.00
	AGGCCCCC	AG CTGCCAGG	C AGCTGACCC	MGCC11CC1	- Constitution		

```
CGCAGACAGG CACAGCCCTG GAGCAGGCAG GCCGAGGGCT GCGGCACTGG AGCAGGCTGA 3900
        CTTACATGCT CCACATGGGA CCTGTGTCAC CCAATGAGAT GTTTGTTACT CTGGTAAATG
                                                                                       3960
        CCACACGTTA ACACAATAAC ACCCATTCCT GGGACCGTGG GGATTTAGGG CACGTCACTG
        CAGACACGCT CTGCAGCATT CACCGACAGT CTGTCATGCA CCCACCACGT TGGCCATGTC
                                                                                        4080
 5
        CTTGTGTTCC TATCGGATGC TCCCAGTAAC CAGGGGGACC ACCCGAGCTA ATCATGGAAT
                                                                                        4140
        GTCTGTTCCC AGCAAACACG ATAAAGAAAG ATTGTGCACT TTAACCTCTC TCATCAGGGC
                                                                                       4200
        CCAAGGGCTG GCTGGGATTT TTTTTTTTTT TTTCCCACTA ACTTTGTTTC TGACCAAAGT GAATTGGAGG CACTCTGCTA AAAGACATCC CCGTAGACAT AGGGGAGAGA GTTGCTGGCT
                                                                                        4260
                                                                                        4320
        GAGGGCTTCC CTTGGCTTCC AGAAGGCAGC CTTCCATCCA GACAAGCCAG TGAGCTCTCC
                                                                                       4380
10
        CCTTGGGATC ACTGGGGTGA TCAGTCAGCA GATTGATTCT CATTCATAAG ATCATTCCTC
                                                                                        4440
        CCTTTAAATT GAGCCCCTAA GAGCACTGGC CTGGGAGTCA GACAGACCTG GGTTCAAGTC CTCAGTCCCC CTACCTGACT TTGATCAGGT CACTAGTGTC TCTCTGAGCC
                                                                                        4500
        TCAGTTTCCC CTCTGTAACT TGGGGTTGAA CTAAAACACC TGTCCTGCCT ACCTCACAAG
                                                                                        4620
        GTCACTCTGA GGATTGAAAC TTGATCTTGT CCAGGAAAGC TTTGTACCAA ACAGTGAAGC
                                                                                        4680
        CGCCCTGATC CGTGAGGTAT GAGTATGACT CTGACCTTCA GCCCTCCCTA CAGCCGGGGG
15
                                                                                        4740
         TGTGGCCCAG AGAAGCTTCC AGCACAGCCC TCTACCCAGA ACATCCGGGC TGGAGGGAGG
        TOTGCCCAG AGAGCTIC AGCACACCC CITACCAGA ACAGCTCAGA AAAGGCCTGA CTCCCAGTGA CTTTCTGAC ATTCCTAGAC AGGTTCATTC TTTGCTCAGA AAAGGCCTGA ATGACAATGT CCAGGATGTC TGCACAACTG AGGAGCTCGC TCACTCCCTA AAGAAACCTA
                                                                                        4860
                                                                                        4920
        TTGGCAGCTT CAACAGGCAG GCAATAATCT CTTCCCAGAA CCACTGCAGT CAGGAATAAA
                                                                                        4980
        CTGTTTTCTC CACCAGGCTT TGACAAAAGG GCCCACAGGA ATCTTACCAA TGCCAACATT TCAAAGCACC CTATTTCACG TAGCATAGCT TTCTGCTCCC CTTCCCCAAA GAGAGGTTAT
20
                                                                                        5040
                                                                                        5100
        GGAGGTACTG TAGCTTTTAG GGAAAAAAAA ATGTTAACAC ATCACAGGTC AAGTTGAAGT
                                                                                        5160
         CATTCTCTGT TTAGGCACTA AAAATCGGTG TTGTCACTCA CTGTGTATTA CCAGTATTTA
                                                                                        5220
        CTTGCTTTCT TGATTTCACC AAAACCAAAT TTAATTTAAA GGACCACATT AATTTTTCAA AGGGAAAGAG ACAATTAATT GTACATAATG TATACACACA CACAAAAAAA AATACCTGTA
                                                                                        5280
25
                                                                                        5340
         GAAATATTAT TCCAGCATAG CAGGAAAACA AACAAAAGTA TTGGACTGTC GGAGGTGAGC
                                                                                        5400
         CTGTGCGTCT GTAACCCTTT GTGACTCCTG AGCGTGCGCT GTCTTCTAGG TTAACTCACG
                                                                                        5460
         AAGTACATTC TCTGTCTTAC TGATACTGTA GGTTCACCCA TTTTTTTTTA ATTTCCTCGC
                                                                                        5520
         GCAAACACAC CGTCCATTTC TGAAGAGGCT TCGGCCTGAA GGCATTTTCC AATGATGTTA
GTGCACAAAA CGCTTTAAAT TAGACTGGAA CTGCCAGAAT CAAATGTAAA TGAGGAATTT
                                                                                        5640
30
                                                                                        5700
         CTCGTACCCC TACTGCATGG TATCGATTTT TAATAAATTG TTGCAAATTT GTTTTTATGA 5760
         ATAAAAGGAA AAAACCTGTC GTCTTT
35
         Seq ID NO: 12 Protein sequence:
         Protein Accession #: EOS sequence
                                                             41
                                                31
         MASPRSSGQP GPPPPPPPPP ARLLLLLLP LLLPLAPGAW GWARGAPRPP PSSPPLSIMG
40
         LMPLTKEVAK GSIGRGVLPA VELAIEQIRN ESLLRPYFLD LRLYDTECDN AKGLKAFYDA
IKYGPNHLMV FGGVCPSVTS IIAESLQGWN LVQLSFAATT PVLADKKKYP YFFRTVPSDN
         AVNPAILKLL KHYQWKRVGT LTQDVQRFSE VRNDLTGVLY GEDIEISDTE SFSNDPCTSV
                                                                                          240
         KKLKGNDVRI ILGQFDQNMA AKVFCCAYEE NMYGSKYQWI IPGWYEPSWW EQVHTEANSS
                                                                                          300
         RCLRKNLLAA MEGYIGVDFE PLSSKQIKTI SGKTPQQYER EYNNKRSGVG PSKFHGYAYD
45
         GIWVIAKTLQ RAMETLHASS RHQRIQDFNY TDHTLGRIIL NAMNETNFFG VTGQVVFRNG
                                                                                          420
         ERMGTIKFTQ FQDSREVKVG EYNAVADTLE IINDTIRFQG SEPPKDKTII LEQLRKISLP
                                                                                          480
         LYSILSALTI LGMIMASAFL FFNIKNRNQK LIKMSSPYMN NLIILGGMLS YASIFLFGLD
                                                                                          540
         GSFVSEKTFE TLCTVRTWIL TVGYTTAFGA MFAKTWRVHA IFKNVKMKKK IIKDQKLLVI
                                                                                          600
         VGGMLLIDLC ILICWQAVDP LRRTVEKYSM EPDPAGRDIS IRPLLEHCEN THMTIWLGIV
                                                                                          660
 50
         YAYKGLLMLF GCFLAWETRN VSIPALNDSK YIGMSVYNVG IMCIIGAAVS FLTRDQPNVQ
                                                                                          720
         PCIVALVIIF CSTITLCLVF VPKLITLRTN PDAATQNRRF QFTQNQKKED SKTSTSVTSV
                                                                                          780
         NQASTSRLEG LQSENHRLRM KITELDKDLE EVTMQLQDTP EKTTYIKQNH YQELNDILNL
         GNFTESTDGG KAILKNHLDQ NPQLQWNTTE PSRTCKDPIE DINSPEHIQR RLSLQLPILH
                                                                                          900
 55
         HAYLPSIGGV DASCVSPCVS PTASPRHRHV PPSFRVMVSG L
         Seq ID NO: 13 DNA sequence
         Nucleic Acid Accession #: NM_001565.1
         Coding sequence: 67-363
 60
                                                                           51
                                                31
                                                              41
                                   21
          GAGACATTCC TCAATTGCTT AGACATATTC TGAGCCTACA GCAGAGGAAC CTCCAGTCTC
                                                                                            60
          AGCACCATGA ATCAAACTGC GATTCTGATT TGCTGCCTTA TCTTTCTGAC TCTAAGTGGC ATTCAAGGAG TACCTCTCTC TAGAACCGTA CGCTGTACCT GCATCAGCAT TAGTAATCAA
                                                                                           120
                                                                                           180
 65
          CCTGTTAATC CAAGGTCTTT AGAAAAACTT GAAATTATTC CTGCAAGCCA ATTTTGTCCA
          CGTGTTGAGA TCATTGCTAC AATGAAAAAG AAGGGTGAGA AGAGATGTCT GAATCCAGAA
TCGAAGGCCA TCAAGAATTT ACTGAAAGCA GTTAGCAAGG AAATGTCTAA AAGATCTCCT
                                                                                           300
                                                                                           360
          TAAAACCAGA GGGGAGCAAA ATCGATGCAG TGCTTCCAAG GATGGACCAC ACAGAGGCTG
                                                                                           420
          CCTCTCCCAT CACTTCCCTA CATGGAGTAT ATGTCAAGCC ATAATTGTTC TTAGTTTGCA
  70
          GTTACACTAA AAGGTGACCA ATGATGTCA CCAAAATCAGC TGCTACTACT CCTGTAGGAA
GGTTAATGTT CATCATCCTA AGCTATTCAG TAATAACTCT ACCCTGGCAC TATAATGTAA
GCTCTACTGA GGTGCTATGT TCTTAGTGGA TGTTCTGACC CTGCTTCAAA TATTTCCCTC
                                                                                           600
                                                                                           660
          ACCTITICCA TCTTCCAAGG GTACTAAGGA ATCTTTCTGC TTTGGGGTTT ATCAGAATTC
          TCAGAATCTC AAATAACTAA AAGGTATGCA ATCAAATCTG CTTTTTAAAG AATGCTCTTT
                                                                                           780
  75
          ACTICATGGA CTICCACTGC CATCCTCCCA AGGGGCCCAA ATTCTITCAG TGGCTACCTA
                                                                                           840
          CATACAATTC CAAACACATA CAGGAAGGTA GAAATATCTG AAAATGTATG TGTAAGTATT
                                                                                           900
          CTTATTTAAT GAAAGACTGT ACAAAGTATA AGTCTTAGAT GTATATATTT CCTATATTGT
```

	TTTCAGTGTA	CATCGATAA	Сатстаатта	AGTACTATGT	ATCAATGAGT	AACAGGAAAA	1020
	TTTTAAAAAT TTTTCAAATA	ACAGATAGAT	ATATGCTCTG	CATGTTACAT	AAGATAAATG	TGCTGAATGG	1080
5	Seq ID NO: Protein Acc						
	1	11	21	31	41	51	
10	MNQTAILICC	LIFLTLSGIQ	 GVPLSRTVRC	TCISISNOPV	NPRSLEKLEI	I PASQFCPRV	60
	EIIATMKKKG	EKRCLNPESK	AIKNLLKAVS	KEMSKRSP			
	Seq ID NO: Nucleic Aci			nence			
15	Coding sequ			-			
	1	11 	21 	31 	41 	51	
	CCCCAGACGC	CCCAGCCCCC	CACCGCCCCC	AAAGGGGCGA	GCGACGCCAA	GCTCTGCGCT	60
20	CTCTACAAAG	AGGCCGAGCT	GCGCCTGAAG	GGCAGCAGCA	ACACCACGGA	GTGTGTTCCC	120 180
	GTGCCCACCT	CCGAGCACGT	GGCCGAGATC	GTGGGCAGGC	AAGGCTGCAA GGGGCGAGGA	ACCAGTGTTC	240
	N TOOTONONG	CCCCACCCCA	CCACCTCCCC	ACAGCCCGGC	GCGAAATCAT	CTCAGCAGCG	300
	CACCACTTCT	CCATGATCCG	TGCCTCCCGC	AACAAGTCAG	GCGCCGCCTT	TGGTGTGGCT	360
25	CONCORCINGO	CCCCCCACCT	GACCATCCGT	GTGCGGGTGC	CCTACCGCGT	GGTGGGGCTG	420
	CTCCTCCCCC	CCANAGGGGC	AACCATCAAG	CGCATCCAGC	AGCAAACCAA	CACATACATT	480 540
	ATCACACCAA	GCCGTGACCG	CGACCCCGTG	TTCGAGATCA	CGGGTGCCCC GCACTGGCAA	GATCCTCGAG	600
	GAGCGTGCGC	GCGAGGAGAT	CCTCCCCCCC	ACCCCCGACG	CAGCAATCGA	TAGCCGCTAC	660
30	MODOL NOCOTT	CCCCCCCCCCA	CCAGCCCGGC	TGCAAGCCCC	TCTCCACCIT	CCGGCAGAAC	720
50	N COCCECCO	CCATCCCCCA	CTCCCCACTC	GACTCTGGCT	TIGAGGCCCC	ACGCC1GGG1	780
	CACCACCCCC	CCCACTTGG	CTACGGGGG	TACCTCTTTC	CGGGCTATGG	CGTGGGCAAG	840 900
	CAGGATGTGT	ACTACGGCGT	GGCCGAGACT	AGCCCCCCCC	CTCCTCCTC	CCAGGAGAAC	960
35	accessores	CCCCCCCCCC	CCCACACCC	TCCCCTGCCA	CTTCCGCGGG	ACCCGAGCIG	1020
55	0000010000	CC X CC CCCCCC	CCCCCCAGAG	CCCCTCCAGG	CCTTCTCTAA	ACTIGGIGG	1080
	~~~~~~~~~	CCACCCCCCC		GATTGCATGG	TCTGCTTTGA	CACCGAAGIG	1140 1200
	ACTGCCGCCC	TTGTGCCCTG	CGGACACAAC	CTGTTCTGCA	TGGAGTGTGC	AGTACGCATC AGCCATCCGA	1260
40	* # * # # # # # # # # # # # # # # # # #	NACCCCCCTC	CCCCATGCCT	CCGGGGGCCCA	CTCCACTGGG	CCCACCCIGG	1320
40	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> ምምምምምር</u> ልልልር	I CCCTCATITO	AGGGGCAAG	IGCTIAGAGA	1380
		CTCCCCAACC	CCCCACCGAC	: GCAGTGGTGC	CIGGAGGGI	CUCCACILIC	1440
			CCTCCAAACA	TTCGGAGGG	GCCAGACIG	MAMILITACI	1500 1560
15	AGAGTTACAA	CTCTGATACC	TCAACACAC	TOTALATUR	TCTGCCCAC	AGAGAAACTT TCCCCCGCTG	1620
45			maccongange	CCCTCCCTA	AACHIGAGAG	, GWGWWTTWCC	1680
			- ተሞተሞ ተመሰው የ	י רדא אכרריויו	TGGTCCTGA	CICCOMCCIC	1740
			, ~~» ~~~~~	י רררבים איניני	1 (-1"1"1"(-)	/ CIGICACCUO	1800 1860
50	TTTCCAGCAG	TGTAAGGGAG	TTGGAGTCC	CATCAGAAGI	C TCAGAAGCC	TCTAGGGGTT A TCTGTCCCCA	1920
30			· CTCCACACACC	A CTCCTCCTC	r Cruccicity	I CCCCIGCAGI	1980
		* * **********************************	յ Մարդայալիայի ի	CITCCITIG	GUALLILL	TITCTICATOR	2040
				- Andreadalatalatic	4 11-6-11-11-11	L ILLCAGGACA	2100 2160
55			* TOCCCARCAA	TACKIKKIAG	G AATATITGG	T ACCAGCCCAG A TGGTCCCTCC	2220
33			* X CO	CCCCACTCC	I CCAAAGAAA	C WICICHUMATA	2280
			בושה עה ההיותה	A AAATTITIAG	ALJERIAL II	W INCIRROTIN	2340
			ייד מידים איטידי אי	CICCATTATA	I LIAGGGMGI	W GIICIIOOO	2400 2460
60						T TTAAAGGAGC C CTCCCATGCA T CCTTATTAGC	2520
60							
			במנוגיייייייייייייייייייייייייייייייייייי	G GERTICALIC		C MOGNETOGG	
65		_ ~~~~~~~	~ **********	T GCCACCAGC	" CTCCACCC	T TGCACCCCT C CTGGTTCCGC	
65							
			* ~ * * * * * * * * * * * * * * * * * *	nt Late (T TILLICITURE	I COMODALIAN	
70			~ ~~~~~~~~~~	A CCAGCCAG	de Alciele I lec	EG AAGGAGGTCA	
70			~ ~~~~~~~	T CCCCACCC	rc GGTTGCCG	6 666CH00100	3200
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ביציור ביני יוי	T CICCCCI	I COMPLETE	
			og የሚያርከርቸው እ	IG GGGCTCAG	A AATICAAT	C CHCCCTTHCC	. 3500
75			8 8CC8CTTC	TATAATT	AA TAIILIAI	AG AAAACAAAA TT TAATAAAGG	
			ጥ አርሮልልልርል!	AC CTGGGCTA	AT ALGAMAM	AN MUGUCILIA	
	ATTAGGTA	TTATTATA	G AAAAGGAT	AT TTTATTT	AT GATAAAGT	GA TCCTTAAAAA	3600

	AATAAAAAA	CTTTAGAAGG	TTTAGAATAT	ATGTAGGGAG	AGAAGAAGAA	AAAAATACAT	3660
	TTGTATTCAG	AGTTAAATCT	AAAAAAAA	AAGTGTTTTT	AATATATGTT	TGGGTTTACG	3720 3780
	ATCCCGGGGG	CCCCCACTTT	TTTTTTGGGG	AGGAATGTCA	CCCTCCCTCC	TIGGGGGAGC	3840
5	CCAGTAGATT	CONTROL	CCATCCACTC	CTCCTCCCCT	CTCCCCCTCC	CCCTCAGGGG	3900
,	AGCCCCCAGA	CCCAAACAAA	GAAAGGGATT	AACAAGAAAG	GAAGAAGCTG	TAGGACTAAG	3960
	CACTGAGGAT	COTGGGGGGGTGT	CCCCCACCAC	TTTCCCCTGC	CCTGTCGCAG	GGGCAAGTGA	4020
	GGAGGGGGAA	TCCAGAATTA	AGGCCTAGCA	GGCCTATAGG	AACCCTCAGA	GATGTGTGAG	4080
	ADADAATTA	TTTTAGATTT	TTTTTAACCA	AAAACAAGAG	AGAAAGAGAA	GAAAAAGAGA	4140
10	AACCGAGGGG	TTTAAAAGAA	AAGAATACTA	CAAAATAATA	ATTATTAATA	ATAATAATTC	4200
	AAATTTATTT	CATATAATCC	TAGAGAGAGA TTAGTAGCAT	AAGAAACAAT	TACTAGTTAC	TIAGIAGACA ACAATCTATA	4260 4320
	ATATTAAGAT	AGCTTAAAGT	AATAGAGGAG	CCANGRGGCCCC	GAGTCCACCC	TGAGTTGCCC	4380
	AAAGITGTAA	TACCACCCTT	GGATCAGGTT	GCTAGTTTAA	GATTGGGAGC	TTCCAGTCTG	4440
15	CTCCCCCTTGA	TTCTGAGAAT	CCTTGGATTT	TTAAATTGTA	GGACAAAGAA	ATGAGGGGTT	4500
	CATTTCCCAG	CCTCTTCCAA	AGGATGCACA	CTGATCATCT	CAATAAGACA	GGGGCTGGGT	4560
	TOCOCOCAGO	AGAGGAGGCC	AAGCACATTC	ACCTGCACCC	CTAGTACCTG	GGCAGCCCAT	4620
	ስርፕርር ል ልጥር ተ	CCTATCTCCC	CTCCTGGGGC	TCCCAGCTCA	AACCCTCCCA	TGCCTGCTTC	4680
20	CCCCAGGCCT	AACTGAGGAA	GTCCTTCTTG	AAGTGTGACC	TOGGTCCACT	TCTCTACAGA	4740 4800
20	TTGATTTAAG	AGCCTGGGAA	GTCATTCCAC	AAACAGACAC	ACATGCACAC	CATCCAGCTT	4860
	CCTTCAGAGC	TTCAAGAGCA	CTGAGGCGAT ATGGCAGCAG	TAGCAGTAAC	AATCTCAGTA	ATTGTTCTTT	4920
	A A A COTTO A COT	CCTTCTTCAC	CTACTTGCAA	AGTGCTTTCT	TGTCTCATAA	AAGTTAGATT	4980
	CCNNGNNGGN	CTTCCCACGG	AGTGGAGTGG	AAACACTGTC	CTTGAAGGCC	TGGGAGAAAG	5040
25	CCATCCCCAT	CCCCACAGAG	GCTGGGGAAA	GGCACAGGGA	CTTTGGGTGA	CCCTAACCCT	5100
	CACCCTCTGC	TCCAGTTCAC	CTCCATCTAT	ATGTGTTCAG	GTAGGGGTCA	TCTACTGTAC	5160
	CONCOCCAGG	CAACACATTC	CCCCCCCCCC	ACAAAACTGG	AGGGCTTGGC	TTCTGCGTGT	5220
	GAGAAATCAA	CATTTTTAAA	GCACTTGCCT	TCTACCAACC	CCAGCTTGCA	CACCACTGGGC	5280 5340
20	CTTCCCCTCC	TATCCAAGGG	GTTGGAGGGG CTCTGCCATC	CCCCTTGGCT	CCCCTTGG	CAGGAGGAGC	5400
30	CTGCTTCATT	ACACCAATGA	CTTCTCGCCC	CACCTAGGGA	CAGATTCCCC	CIGCICTITI	5460
	manage a a a a	ACCCCCCTAC	TTTCCCATCC	TAGCGTCTGG	GGTGGGGAGG	GCTTCCCCTT	5520
	~~~~~~~~	COCCOCC	CCCCAACCCC	CCCTCCCTCC	AGACAGCCCT	GGGGCAGGGA	5580
		MACA CHANGE & C.	AAACTACACT	ACCATTGTGG	TCAGACTTAA	TTTGAGGCAT	5640
35		~ * ~ ~ ~ ~ ~ ~ * * * * * * * * * * * *	<b>ポペペカ ペペカ カペペ</b>	יויידמטמממממ	CAAAAGCAAA	WIWWWOCOG	5700
	0 5 5 5 6 5 5 5 5 5 C	ACACCCAAGA	ፐጋደፈጎፕሬፈፕሬ	CAAAGTGATG	TTGCACAAAA	IGCAGAGAAA	5760 5820
			TGTATTAAAT	GTGCTATTAA	GAACTTAATT	TTATTAAAAG	3020
	TACTATTACT	TAAGGCTC					
40		16 Protein cession #:					
45	1	11	21	31	41	51	
70		1	1	1	1		
	MVTGRREDVA	TARREIISAA	EHFSMIRASR	nksgaafgva	PALPGQVTIR	VRVPYRVVGL	60 120
	* P*OPYCZ TT V	TALEMENDOUTES	TTDSPNPNPV	FEITGAPGNV	ERARELIEIN	TWANTGUIDE	180
50	YNNENDFLAG	SPDAAIDSRY	SDAWRVHQPG	CKPLSTFRQN	ATPTSVLPSS	DSGFEAPRLG	240
50 .	EQGGDFGYGG	YLFPGYGVGK	ODVAIGAVET	DIUCESKICC	GGLRSPGGGF	DCMVCFESEV	300
	ARAGPPGAHR	I SPAISAGPEL	CERTDPECPV	CHITATOAIR	IFS		343
	TAALVPCGHN	I DECHECAVAL	CERTOFACT	<b>C</b>			
	Seg ID NO:	17 DNA se	quence				
55	Nucleic Ac	id Accessio	n #: NM_005	940			
	Coding seq	ruence: 23-1	489			•	
					41	51	
	1	11	21	31 	i	ī	
60	)		L GGATGGCTCC	COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTCCGCAGC	CGGCCGCGCG	60
00		* CCCCCCATCC	- тсстсстс	CCTCCAGCC	i CCGCCGCIG	_ 10000000	120
		- ~ x ~~~~~~ x ~/	יייאר מייטיתיטיט אינו	COACACCAG	i GGGCCACAG	- ccroocarec	180
		つ みつかりごつつつご	3 CACCTCCCC	TRICCALGUA	S GAAGCCCCC	- GOCCIOCCNO	240
			T OTOO COTOO	י רכאררראיני	r gardeelie	# OTOCCOCHY	300 360
65	CCGACAGAA	G AGGTTCGTG	C TTTCTGGCGG	GCGCTGGGA	AAGACGGAC	C TCACCTACAG	420
	GATCCTTCG	G TTCCCATGG	C AGTTGGTGC	A GGAGCAGGI	r caccaccac	A TGGCAGAGGC G AGGGCCGTGC	480
	CCTAAAGGT	A TGGAGCGAT	G TGACGCCAC	CACCIIIAC	CRACCTGCCG	T TTGATGGGCC	540
		~ ~~~~~~~~~~		ר כאאכאכדונא	C CGAGAAGGG	G WIGICOWCII	600
70	mm mc 8	# CXCXCCTCC	<b>N CTATCCCCC</b>	A TCACCAGGG	C ACAGACCIG	C IGCMGGIGGC	660
70		<ul> <li>mmm-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o</li></ul>	<i>ი ფიიფიიიი</i>	T CCACCACAC	A ALAGCAGC	N NOGCCCIONI	720
		~ ~~~~~~~~~~	C COTACOCAC	ጥ ርልርፕሮፕሮልቤ	C CCAGAIGAC	1 GCAGGGGGG	780
				<b>ሶ ጥርጥርልሮር</b> ፕር	C AGGACCCC	- CCC1666CCC	840
	TCAACACCT	A TATEGCCAG	C CCIGGCCA		a acres ~~~~	ר רכרראמאדרי	ann
75		~ ******	סדייים מכול מי מי	r accurrigga	G CCAGACGCC	C COCCMONIUC	900 960
75	CCAGGCTGG CTGTGAGGC	G ATAGACACO C TCCTTTGAC	A ATGAGATTG G CGGTCTCCA	C ACCGCTGGA C CATCCGAGG	C GAGCTCTTT C GGCTACCCA	T TCTTCAAAGC G CATTGGCCTC	960 1020
75	CCAGGCTGG CTGTGAGGC GGGCTTTGT	G ATAGACACO C TCCTTTGAC G TGGCGCCTC	A ATGAGATTG G CGGTCTCCA C GTGGGGGCC C CCAGCCCTG	C ACCGCTGGA C CATCCGAGG A GCTGCAGCC T GGACGCTGC	C GAGACGCC C GAGCTCTTT C GGCTACCCA C TTCGAGGA1	T TCTTCAAAGC G CATTGGCCTC G CCCAGGGCCA	960 1020 1080
75	CCAGGCTGG CTGTGAGGC GGGCTTTGT	G ATAGACACO C TCCTTTGAC G TGGCGCCTC	A ATGAGATTG G CGGTCTCCA C GTGGGGGCC	C ACCGCTGGA C CATCCGAGG A GCTGCAGCC T GGACGCTGC	C GAGACGCC C GAGCTCTTT C GGCTACCCA C TTCGAGGA1	T TCTTCAAAGC	960 1020

```
CCCCGCACCC CTCACCGAGC TGGGCCTGGT GAGGTTCCCG GTCCATGCTG CCTTGGTCTG 1200
       GGGTCCCGAG AAGAACAAGA TCTACTTCTT CCGAGGCAGG GACTACTGGC GTTTCCACCC
       CAGCACCCGG CGTGTAGACA GTCCCGTGCC CCGCAGGGCC ACTGACTGGA GAGGGGTGCC
                                                                                    1320
        CTCTGAGATC GACGCTGCCT TCCAGGATGC TGATGGCTAT GCCTACTTCC TGCGCGGCCG
                                                                                    1380
 5
        CCTCTACTGG AAGTTTGACC CTGTGAAGGT GAAGGCTCTG GAAGGCTTCC CCCGTCTCGT
                                                                                    1440
        GGGTCCTGAC TTCTTTGGCT GTGCCGAGCC TGCCAACACT TTCCTCTGAC CATGGCTTGG
       ATGCCCTCAG GGGTGCTGAC CCCTGCCAGG CCACGAATAT CAGGCTAGAG ACCCATGGCC
                                                                                    1560
       ATCTTTGTGG CTGTGGGCAC CAGGCATGGG ACTGAGCCCA TGTCTCCTGC AGGGGGATGG
                                                                                    1620
       GGTGGGGTAC AACCACCATG ACAACTGCCG GGAGGGCCAC GCAGGTCGTG GTCACCTGCC
                                                                                    1680
       AGCGACTGTC TCAGACTGGG CAGGGAGGCT TTGGCATGAC TTAAGAGGAA GGGCAGTCTT
GGGACCCGCT ATGCAGGTCC TGGCAAACCT GGCTGCCCTG TCTCATCCCT GTCCCTCAGG
10
                                                                                    1740
        GTAGCACCAT GGCAGGACTG GGGGAACTGG AGTGTCCTTG CTGTATCCCT GTTGTGAGGT
                                                                                    1860
        TCCTTCCAGG GGCTGGCACT GAAGCAAGGG TGCTGGGGCC CCATGGCCTT CAGCCCTGGC
                                                                                    1920
        TGAGCAACTG GGCTGTAGGG CAGGGCCACT TCCTGAGGTC AGGTCTTGGT AGGTGCCTGC ATCTGTCTGC CTTCTGGCTG ACATTCCTGG AAATCTGTTC TCCAGAATCC AGGCCAAAAA
                                                                                    1980
                                                                                    2040
15
        GTTCACAGTC AAATGGGGAG GGGTATTCTT CATGCAGGAG ACCCCAGGCC CTGGAGGCTG
                                                                                    2100
        CAACATACCT CAATCCTGTC CCAGGCCGGA TCCTCCTGAA GCCCTTTTCG CAGCACTGCT
                                                                                    2160
        ATCCTCCAAA GCCATTGTAA ATGTGTGTAC AGTGTGTATA AACCTTCTTC TTCTTTTTTT
        TTTTTAAACT GAGGATTGTC ATTAAACACA GTTGTTTTCT
20
        Seg ID NO: 18 Protein sequence:
        Protein Accession #: NP_005931.1
25
                                                                                       60
        MAPAAWLRSA AARALLPPML LLLLQPPPLL ARALPPDVHH LHAERRGPQP WHAALPSSPA
        PAPATQEAPR PASSLRPPRC GVPDPSDGLS ARNRQKRFVL SGGRWEKTDL TYRILRFPWQ
        LVQEQVRQTM AEALKVWSDV TPLTFTEVHE GRADIMIDFA RYWHGDDLPF DGPGGILAHA
                                                                                     180
        FFPKTHREGD VHFDYDETWT IGDDQGTDLL QVAAHEFGHV LGLQHTTAAK ALMSAFYTFR
                                                                                     240
        YPLSLSPDDC RGVQHLYGQP WPTVTSRTPA LGPQAGIDTN EIAPLEPDAP PDACEASFDA
                                                                                     300
30
        VSTIRGELFF FKAGFVWRLR GGQLQPGYPA LASRHWQGLP SPVDAAFEDA QGHIWFFQGA
QYWYYDGEKP VLGPAPLTEL GLVRFPVHAA LVWGPEKNKI YFFRGRDYWR FHPSTRRVDS
PVPRRATDWR GVPSEIDAAF QDADGYAYFL RGRLYWKFDP VKVKALEGFP RLVGFDFFGC
                                                                                     360
                                                                                      420
                                                                                     480
35
        Seq ID NO: 19 DNA sequence
        Nucleic Acid Accession #: NM_005794.1
        Coding sequence: 434-1276
                                                                       51
40
                                                          41
         GGTTCCCTTC CACGCTGTGA AGCTTTGTTC TTTTGGTCTT CATGATAAAT CTTGCTGCTG
                                                                                       60
         CTCACTCGTT GGGTCCGTGC CACCTTTAAG AGCTGTAACA CTCACCGCGA AGGTCTGCAA
                                                                                      120
         CTTCACTCCT GGGGCCAGCA AGACCACGAA TGCACCGAGA GGAATGAACA ACTCTGGACA
         CACCATCTTT AAGAACCGTA ATACTCACCG CAAGGGTCTG CAACTTCATT CTTGAAGTCA
                                                                                      240
45
        GTGAGGCCAA GAACCCATCA ATTCCGTACA CATTTTGGTG ACTTTGAAGA GACTGTCACC
TATCACCAAG TGGTGAGACT ATTGCCAAGC AGTGAGACTA TTGCCAAGTG GTGAGACCAT
                                                                                      300
                                                                                      360
         CACCAAGCGG TGAGACTATC ACCTATCGCC AAGTGGCCTG ATTCAGCAGG AAGCATCTCA
        GACACCAACC ACTATGCTGT CAGCAGTTGC CCGGGGCTAC CAGGGCTGGT TTCATCCCTG
TGCTAGGCTT TCTGTGAGGA TGAGCAGCAC CGGGATAGAC AGGAAGGCCG TCCTGGCTAA
                                                                                      480
                                                                                      540
 50
         CCGGGTAGCC GTGGTCACGG GGTCCACCAG TGGGATCGGC TTTGCCATCG CCCGACGTCT
                                                                                      600
         GGCCCGGGAC GGGGCCCACG TGGTCATCAG CAGCCGGAAG CAGCAGAACG TGGACCGGGC
         CATGGCCAAG CTGCAGGGGG AGGGGCTGAG TGTGGCGGGC ATTGTGTGCC ACGTGGGGAA
                                                                                      720
         GGCTGAGGAC CGGGAGCAGC TGGTGGCCAA GGCCCTGGAG CACTGTGGGG GCGTCGACTT
                                                                                      780
         CCTGGTGTGC AGCGCAGGGG TCAACCCTCT GGTAGGGAGC ACTCTGGGGA CCAGTGAGCA
                                                                                      840
 55
         GATCTGGGAC AAGATCCTAA GTGTGAACGT GAAGTCCCCA GCCCTGCTGC TGAGCCAGTT
         GCTGCCCTAC ATGGAGAACA GGAGGGGTGC TGTCATCCTG GTCTCTTCCA TTGCAGCTTA
TAATCCAGTA GTGGCGCTGG GTGTCTACAA TGTCAGCAAG ACAGCGCTGC TGGGTCTCAC
                                                                                      960
                                                                                     1020
         TAGAACACTG GCATTGGAGC TGGCCCCCAA GGACATCCGG GTAAACTGCG TGGTTCCAGG
                                                                                     1080
         AATTATAAAA ACTGACTTCA GCAAAGTGTT TCATGGGAAT GAGTCTCTCT GGAAGAACTT
 60
         CAAGGAACAT CATCAGCTGC AGAGGATTGG GGAGTCAGAG GACTGTGCAG GAATCGTGTC
                                                                                     1200
         CTTCCTGTGC TCTCCAGATG CCAGCTACGT CAACGGGGAG AACATTGCGG TGGCAGGCTA
                                                                                     1260
         CTCCACTCGG CTCTGAGAGG AGTGGGGGCG GCTGCGTAGC TGTGGTCCCA GCCCAGGAGC
                                                                                     1320
         CTGAGGGGGT GTCTAGGTGA TCATTTGGAT CTGGAGCAGA GTCTGCCATT CTGCCAGACT
         AGCAATTIGG GGGCTTACTC ATGCTAGGCT TGAGGAAGAA GAAAAACGCT TCGGCATTCT
                                                                                     1440
 65
          Seq ID NO: 20 Protein sequence:
         Protein Accession #: NP_005785.1
 70
                                                                        51
                                               31
                                  21
          MLSAVARGYQ GWFHPCARLS VRMSSTGIDR KGVLANRVAV VTGSTSGIGF AIARRLARDG
          AHVVISSRKQ QNVDRAMAKL QGEGLSVAGI VCHVGKAEDR EQLVAKALEH CGGVDFLVCS
                                                                                       120
          AGVNPLVGST LGTSEQIWDK ILSVNVKSPA LLLSQLLPYM ENRRGAVILV SSIAAYNPVV
                                                                                       180
 75
          ALGVYNVSKT ALLGLTRTLA LELAPKDIRV NCVVPGIIKT DFSKVFHGNE SLÆKNFKEHH
          OLORIGESED CAGIVEFLCS PDASYVNGEN IAVAGYSTRL
```

Seq ID NO: 21 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 77-904

5	1	11	21	31	41	51	
	1	1	1	1	1	1	
	GCCGCGTTTT	GCCTCCGCAG	CAGCTCTGGG	CTCTTCTCAG	CTGCGCGAGC	AGCTGCTCCA	60
	ATGCCCCGGA	GTGGCCATGG	GCGCCCCGCA	CTGGTGGGAC	CAGCTGCAGG	CTGGTAGCTC	120
10	GGAGGTGGAC	TGGTGCGAGG	ACAACTACAC	CATCGTGCCT	GCTATCGCCG	AGTTCTACAA	180
10	CACGATCAGC	AATGTCTTAT	TTTTCATTTT	ACCGCCCATC	TGCATGTGCT	TGTTTCGTCA	240 300
	GTATGCAACA	TGCTTCAACA	GTGGCATCTA	CTTAATCTGG	ACTCTTTTGG	TIGIAGIGG	360
	AATTGGATCC	GTCTACTTCC	ATGCAACCCT	TAGTTTCTTG	GGTCAGATGC	CCTATCTACC	420
	TGCAGTCCTT	TGGGTTCTGA	TGTGTGCTTT	GGCCATGTGG CAAGGTGGTG	CTCACTCTCC	TOTALCIACC	480
15	AAAGATCTTT	CGGAATGACC	GGGGTAGGTT	CATCAACAAC	ATCTCTCTCA	TGACCCTGGG	540
15	TACGACGTGC	CIGGCATTIG	TCAAGCCIGC	GCTAAAGAGG	TGTGACAACA	TGCGTGTGTT	600
	AGTTCCTTGC	ACTGCACTGC	COCTOTOGETG	GACCCTGGCC	CTGTTCTGCT	GGATCAGTGA	660
	CCCACCMMCC	TOTOLOGO	<b>サビサースサービーサード</b>	CAACTTCCCC	TACCTGCACT	GCATGTGGCA	720
	COMMITTEE	TOCOMOCIOC	CCTACCTGGG	CTGTGTATGC	TTTGCCTACT	TTGATGCTGC	780
20	CTCACACATT	CCTCAGCAAG	CCCCTGTCAT	CAAGTTCTGG	CCCAATGAGA	AATGGGCCTT	840
20	CATTOCTATTC	COMPARCICIT	CCCACCACAC	TGCCAACAAG	AAATCATCAG	TCAAGATCAC	900
	CTCATCCCAA	CATCCTCCCT	GGCTTCTCTG	CTTATCGCCC	CTCATGCAGT	GGGCTTCCTT	960
	TOCTACCAAC	ACAGCCAAGG	GAGTTCGAAT	AGTTGGGGTG	TGGGCTATCT	TITCAAAAAT	1020
	CTATTTCCTC	CCCCTCTTAA	TTTTTAGT	GTTCTTTGTA	TGTAGGGATT	TAAACTTTGT	1080
25	CATATGGTAC	AAATATTCCC	TGCCCCCCTG	CAGTTTCCCA	TTTGTCTTTC	AGTATGTTAA	1140
	TATTTTTGTG	CCATACTGGT	TTTAAACTTT	CATGTTGTCA	CATCTGTTAA	TCTTTTCTT	1200 1260
	AGGATTTCTG	GATTTTGTGT	AAATTTTTAAA	AAGGTCCCCT	CCTCCTCCCT	CARACATCCA	1320
	TGGACCACCT	GGATTCCACT	GTACAAGGGG	AAAAGTGTCT	ATTCCTTTCC	CAMAGAZGGA	1380
20	AAATGGAGGG	CTTAGGGACA	CTAGATGCAT	CTTTCTCAGC	ATCACTICCA	TCCAGCCCTG	1440
30	CTTGTTGGGC	TGCGTCCTTA	ATGGCCATGG	CAGAGCAGTC CCTGCTCCAG	ACCCCACCAT	TCCCAGGCGC	1500
	TACAATGCAT	CTCTTCCTGG	AGAAAGCIGG	GACCCTCTGA	GAGACAAGAC	CCTCTGACTC	1560
	CCTTGGAGTG	GACTCTACTG	AIGACAGACA	GGGGTAATTG	TCCTTAAACA	AAACCAAACA	1620
		A CACACOACT	TOTOCOTANA	AACCCTAGTT	TTTCACTTGC	ATTTCTCAAC	1680
35		manage of the day of the same	マーマンアンアー アーマン・アーファー	CTTTTACTAC	TACCTCTGTG	GAGAGAIGGA	1740
33		B TO B B DOTTO B	ACCTAATGAG	TAAAACCCTC	TCTGCCAAAA	CCTACACTCC	1800
	A CHEMINA COOC		ATGAGGAGAA	TTTTTAAATA	CTGAGCACAA	IIIIIIAAAIA	1860
	0000 N C N T C N C	The state of the s	してしていっていた	CCAGCTCAGC	AGCCTCAAAT	CIACAGAGAA	1920
			ヤサンへつなったこと	CCCACCATCT	TTAAGACTTG	ACCTUTGTAA	1980
40		CCCCTCCTCA	CAATTGTGGT	GGGGGGTTCTG	GTTCAAAATI	TOGAGCAMAC	2040
			كالمسلميل لاساملساماسا	AAGCCTCCAG	TATULTGIAL	INTICIOGNA	2100
		*************************************	بالمصلحات المصاحب	TGTTGTGTTT	TCTGTGGGC	TCATGITCIL	2160 2220
	~~ ~~~~~~~~~		ساتاك استسبب	TTCCCAGAGT	ATCCAACGG	ICMCCITICI	2280
4.5	CAAGTGCTGG	CAGTAGCTAT	GCACTCACGG	GCTGGTTTGG	TCCCTACAA	CAGCAGCGCA	2340
45	AATCTGTTGC	CTTCTGAATI	TTTCTCACCI	AATGTGACAC	CTCCATCCT	GAATCTTCTC	2400
	TTCATCGGG	TGAATGAAAG	ATTCAAGAAC	MOTOCOTO CONT	TOTALCATT	CATTGTTGGG	2460
	ACCTCAGGG	TACTCATTTI	AACTCAGGCG	CONCERCTOR	TGTCACTGT	CTACATATGT	2520
			. מרשמיים ארים ארים אורים	י אידרראכונאאני	TUTTACICIA	( GIIMOMAIII	2580
50							2640
50		* ***	ויייף ת תיהיתי הייתוריי	י דויונוגארומיים יי	i IIGAGAAGG	4 GWWCGCIGII	2700
			, ~, , , ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~	CTCTCIAACTI	DIALDIAN	INTINUOTIE	2760
							2820
		_ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. ~~~~~~~~~~~	1 TTAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AAIGAAIGI	4 TWIGITGG**	2880
55							2940
							3000 3060
							3120
	CTCCCAGCT	A ATTTTTGTA	r TTTTTCATA	AGATGGGGT	T TCACCALLL	T GCCCAGGCTG	3180
<b>~</b>	GTCTCAAAC	T TCTGGGCTC	A AGAGATTOG	CCGCCTCGG	N ATCATOTT	T GCTGGGAATA	3240
60	GGCATGAGC	C GTCACGCCT	GCCTAAAAA	A TATTITIAN	T TGATGGAAC	G AATTAAATAT A GAACTGCTGT	3300
							3360
							3420
							3480
65							3540
05							3600
70							3840
~-							
75	TGGCTTGGT	G AGTCATCAT	A AATAGCTGT	COTTAGTE OF	T GGGCAGTC	TTTGATATGT A GAATCTCCCT	4200
		TA AAAAATGAA	T AGTTTATT	C ALIMALIGA	0000010		
	CC						

```
Seg ID NO: 22 Protein sequence:
         Protein Accession #: EOS sequence
. 5
          MGAPHWWDQL QAGSSEVDWC EDNYTIVPAI AEPYNTISNV LFFILPPICM CLFRQYATCF
         NSGIYLIWTL LVVVGIGSVY FHATLSFIGO MLDELAVLWV LMCALAMWFF RRYLPKIFRN
DRGRFKVVVS VLSAVTTCLA FVKPAINNIS LMTLGVPCTA LLIAELKRCD NMRVFKLGLF
                                                                                                        120
                                                                                                        180
          SGLWWTLALF CWISDRAFCE LLSSFNFPYL HCMWHILICL AAYLGCVCFA YFDAASEIPE
                                                                                                        240
         QGPVIKFWPN EKWAPIGVPY VSLLCANKKS SVKIT
10
          Seq ID NO: 23 DNA sequence
         Nucleic Acid Accession #: CAT cluster
                                                                                      51
15
          TGAAGTATCT CTGTTTAATG TCATATATCT GAGATGTTCT GTGGAGCCAG AATTCAAAAC
          CCAGATACGC AGGAGGACAC ATTCTTGATC GGTATTTTAT TCTATTATTT TTATTAGTTC
                                                                                                        120
          CAATCCTTAT GACTCTGTTT AAAATGAGTA TCTGCATTAT TGTGCAAACA CTTCTGAGAT
          CTCATCACAT ACCTGATCCC ATTTAACTTC AGTCTATCCC TCCATTACTT TTTGTGGAAA GTGCTATCTA AGTTGGAGGT TCTGCTTGAG TATTCTTAAT TTTTCTTCTT TTTAATGCAT
                                                                                                        240
20
                                                                                                        300
          ACGGTGGTCA AAGTAAATAG CTAACATATT GGCATCAAAC CATTGCCTAT TGAAGCAAGC
                                                                                                        360
          TTTGAATGAA ATTGGTTTGT CATTGACCAC TGTAAGAAAC TCATTTGTAA AGATAATACT
                                                                                                        420
          GAAAAACATC CTGACTCTTA TGTATGCTTG CCTGTCTCTG AACTCCACCT CTATCAGCAT
          ACTCAATACA TIGCCTCTIT CCAACATTTA TCTCCTATTT CAGGAGAAAG TTTTGTGGGA
GCGTCTACCA CGTTGCAAAG ATTCAACATT TCTCTTAAAA ATAGGAGTTT CTTTTAGATA
                                                                                                        540
25
                                                                                                        600
          TAAGCAATGA AATTTCAAGC AACAATATTA CTTCTCTCAT GTCCTTTGCT TTTTTAAGAT
                                                                                                        660
          CTGAACCTCA AGATTCAAAT GGATTTTCAT TGAAATTCAC CACGATCCCC TCTGCAGCTG
          TGGTCTGAAA GTACCATTTC TGCATTTATT TTAGCCCATG GAATAACTGT GCTGAGAAAC
                                                                                                        780
          CACAGAGTCA ATCAGATTCA AAATGITAAA ATCCTTCCTG CTTGGAGTTT TCCGTCTTCA
CATCAAGGCA TTTCATGCCC GTCAGCAACT TTTTAATGCA TTTGCTCATG GTTTGCAGAA
                                                                                                        840
 30
                                                                                                        aña
           TTTCCATTTA AAGACTTTCC TTGGCTGACT TCTCTGATGA GGTTTCCTGC TTGCCTC
           Seq ID NO: 24 DNA sequence
          Nucleic Acid Accession #: Eos sequence
 35
                                                                        41
           GTGTGTAGTC GGGTATGAGA ACGATTGCAA GCAAAAGCAG CTGAGGGACG CTGTCCAAGG
                                                                                                         60
          AGTAGGCTCA GTAGCACGAA CTGCAAATAC TTGAGAAGGG AAAAGTTCAG CCTTGTGCTG
GAAAGTGGTT TAGCATGCTG GAGCTGGTTT TCTGCTTGGT AGCCCTACAA CTTTGGCCCA
 40
                                                                                                         180
           ACTACTTGGC CTCTGGGACT CAGATTCCTC CTCTTTAAAA TGGTGCTAAT AATAGCACCC
                                                                                                         240
           ACCCTCTGTG AGGAGGATGC TGTGAGGACA AAATGAGATC ATCCACATAA GCCGTGAACC
                                                                                                         300
           ACCUTATION AGAINMENT TO THE TOTAL TANGENTY ACTUARCET CACTUCAGET ANAGGARCAT CTACACACAG AGGARATGAR TRACATGARG TGARGUTT ATCCCCATTC
                                                                                                         420
 45
           CCAACAGTCC CCATTCTACT TGCAGAAAGG TTGCTTACAC TGAAAATCAG TTTATTTTCC CCTGGTGCAA AGAACAGTCG TTTCTCCAAA ACTGAAGCTG GAAATTATCT GAAAATACAG
                                                                                                         480
                                                                                                         540
           GTCCTCCGGA AAAGGGACGT GAAGCCCCCT TTGTAATTTC TGCATTAGCG TGCTCCTCG
           GCAGGAAGA AACCTCATCA GAGGAGTCAG CCAAGGAAAG TCTTTAAATG GAATTGTGC AAACGAGAAG AACTCATT AAAAAGTTGC CGAGGAAAG TCTTTAAATG GAATTGAGA AAACGAGGAA GAATTGCAT TGACGGCAT GAATGCTT GAATGAAGA GGAAAACTC CAAGCAGGAA GGATTTTAAA ATTTTGAATC TGATTGACT TGTGGTTTCT CAGCACAGTT ATTCCATGGG CTAAAAATAAA TGCAGAAATG GTACTTTCAG ACCACAGCTG
                                                                                                         720
  50
                                                                                                         780
            CAGAGGGGAT CGTGGTGAAT TTCAATGAAA ATCCATTTGA ATCTTGAGGT TCAGATCTTA
           AAAAAGCAAA GGACATGAGA GAAGTAATAT TGTTGCTTGA AATTTCATTG CTTATATCTA
AAAGAAACTC CTATTTTAA GAGAAATGTT GAATCTTTGC AACGTGGTAG ACGCTCCCAC
                                                                                                          960
                                                                                                          1020
  55
            AAAACTITCI CCTGAAATAG GAGATAAATG TTGGAAAGAG GCAATGTATT GAGTATGCTG
                                                                                                          1080
           ATACATTACA ATGACTTCT TACAGTGGTC AATGACAAC CAATTCATT CAAAGCTTGC
                                                                                                          1200
            TTCAATAGGC AATGGTTTGA TGCCAATATG TTAGCTATTT ACTTTGACCA CCGTATGCAT
TAAAAAGAAG AAAAATTAAG AATACTCAAG CAGAACCTCC AACTTAGATA GCACTTTCCA
                                                                                                          1260
                                                                                                          1320
  60
            CAAAAAGTAA TGGAGGGATA GACTGAAGTT AAATGGGATC AGGTATGTGA TGAGATCTCA
            GAAGTGTTTG CACAATAATG CAGATACTCA TTTTAAACAG AGTCATAAGG ATTGGAACTA
ATAAAAATAA TAGAATAAAA TACCGATCAA GAATGTGTCC TCCTGCGTAT CTGGGTTTTG
                                                                                                          1440
                                                                                                          1500
            AATTCTGGCT CCACAGAACT TGTCAGATAT ATGACATTAA AC
  65
            Seq ID NO: 25 DNA sequence
            Nucleic Acid Accession #: Eos sequence
                                          21
  70
            GTGTGTAGTC GGGTATGAGA ACGATTGCAA GCAAAAGCAG CTGAGGGACG CTGTCCAAGG
AGTAGGCTCA GTAGCACGAA CTGCAAATAC TTGAGAAGGG AAAAGTTCAG CCTTGTGCTG
                                                                                                          120
            GAAAGTGGTT TAGCATGCTG GAGCTGGTTT TCTGCTTGGT AGCCCTACAA CTTTGGCCCA
            ACTACTTGGC CTCTGGGACT CAGATTCCTC CTCTTTAAAA TGGTGCTAAT AATAGCACCC
                                                                                                           240
            ACCCTCTGTG AGGAGGATGC TGTGAGGACA AAATGAGATC ATCCACATAA GCCGTGAACC
CTGTTCCTGG TAAGGAAATG AATAACATGA AGTGAAGTCT TCATCTCCAT TCCCAACAGT
                                                                                                          300
  75
                                                                                                           360
             CTC-LTC-LGG LANGSANG GGTTGCTTAC ACTGAAAATC AGTTTATTTT CCCCTGGTGC AAAGAACAGT CGTTTCTCCA AAACTGAAGC TGGAAATTAT CTGAAATATC AGGTCCTCCG
```

	GAAAAGGGAC	GTGAAGCCCC	CTTTGTAATT	TCTGCATTAG	CGTGCTCTCC	TGGCAAGCAG	540
	GAAACCTCAT	CAGAGAAGTC	AGCCAAGGAA	AGTCTTTAAA	TGGAAATTGT	GCAAACGAGG	600
	AGCAAATGCA	TTAAAAAGTT	GCTGACGGGC	ATGAAATGCT	TTGATGTGAA	GACGGAAAAC	660 720
5	TCCAAGCAGG	AAGGATTTTA	ACATTITGAA	TCTGATTGAC TGGTACTTTC	TCTGTGGTTT	TECNERACE	780
)	TTATTCCATG	GGCTAAAATA	AATGCAGAAA	GAATCTTGAG	CTTCACACTCT	TARARAGGA	840
	ATCGTGGTGA	CACARCTART	AMAICCAIII	GAAATTTCAT	TGCTTATATC	TAAAAGAAAC	900
	AAGGACAIGA	AACAGAAATG	TTGLIGGII	GCAACGTGGT	AGACGCTCCC	ACAAAACTTT	960
	TCCIMITITI	ACCACATAAA	TCTTCCAAAG	AGGCAATGTA	TTGAGTATGC	TGATAGAGGT	1020
10	CICCIGAMAI	CUCUCCCUTC	CATACATAAG	AGTCAGGATG	TTTTTCAGTA	TTATCTTTAC	1080
10	AAATGAGTTT	CTTACAGTGG	TCAATGACAA	ACCAATTTCA	TTCAAAGCTT	GCTTCAATAG	1140
	CCAATGGTTT	GATGCCAATA	TGTTAGCTAT	TTACTTTGAC	CACCGTATGC	ATTAAAAAGA	1200
	ACABBARTA	ACANTACTCA	AGCAGAACCT	CCAACTTAGA	TAGCACTTTC	CACAAAAAGT	1260
	AATGGAGGGA	TAGACTGAAG	TTAAATGGGA	TCAGGTATGT	GATGAGATCT	CAGAAGTGTT	1320
15	TOCACASTA	TOPAGATACT	CATTTTAAAC	AGAGTCATAA	GGATTGGAAC	TAATAAAAAT	1380
	AATAGAATAA	AATACCGATC	AAGAATGTGT	CCTCCTGCGT	ATCTGGGTTT	TGAATTCTGG	1440
	CTCCACAGAA	CTTGTCAGAT	ATATGACATT	AAAC			
20		26 DNA sequ					
20	Nucleic Ac:	id Accession	1 #: NM_0132	182.2			
	Coqrud aedu	ence: 852	466				
	1	11	21	31	41	51	
	Ť	i i	1	ĭ	Ī	1	
25	CONCTOUTE	CACCATCCCA	TGGCTCAGAG	GTGCTGGTAA	AACTGATGGG	GGTTTTTGCT	60
23	CTCCCTCCCC	TCAGCGCCGA	CACCATGTGG	ATCCAGGTTC	GGACCATGGA	CGGGAGGCAG	120
	ACCCACACGG	TGGACTCGCT	GTCCAGGCTG	ACCAAGGTGG	AGGAGCTGAG	GCGGAAGATC	180
	CACCACCTCT	ጥሮሮ እርሚጥርር እ	GCCAGGCCTG	CAGAGGCTGT	TCTACAGGGG	CAAACAGATG	240
	GAGGACGGCC	<b>ስጥልዮር/ርጥርጣጥ</b>	CGACTACGAG	GTCCGCCTGA	ATGACACCAT	CCAGCTCCTG	300
30	CTCCCCCACA	CCTCCTCCT	CCCCCACAGC	ACCAAGGAGC	GGGACTCCGA	GCTCTCCGAC	360
	ACCCACTCCC	CCTCCTCCCT	GGGCCAGAGT	GAGTCAGACA	AGTCCTCCAC	CCACGGCGAG	420
	00000000000	ACACTGACAG	CAGGCCAGCC	GATGAGGACA	TCTCCCATGA	GACGGAATTG	480
	CCCCTCTACA	ACCTCAATGA	GTACGTCGAT	GCTCGGGACA	CGAACATGGG	GGCGTGGTTT	540
	0 x 0 0 0 0 0 0 0 0 0 0	TOOTONGGGT	CACCCCAAG	CCCCCCTCCC	GGGACGAGCC	CTGCAGCTCC	600
35	ACGTCCAGGC	CGGCGCTGGA	GGAGGACGTC	ATTTACCACG	TGAAATACGA	CGACTACCCG	660 720
	G 2 G 2 2 G C C C C C	かっつかっているかか	CAACTCCAGG	GACGTCCGAG	CGCGCGCCCG	CACCATCATC	780
	AAGTGGCAGG	ACCTGGAGGT	GGGCCAGGTG	GTCATGCTCA	ACTACAACCC	COACAACCCC	840
	AAGGAGCGGG	GCTTCTGGTA	CGACGCGGAG	ATCTCCAGGA	AGCGCGAGAC	TOCCATCATC	900
40	CGGGAACTCT	ACGCCAACGT	GGTGCTGGGG	GATGATTCTC	TGAACGACIG	CCTTGACAAC	960
40	TTCGTGGACG	AAGTCTTCAA	GATTGAGCGG	CCGGGTGAAG AAGCACTGCA	ACCACCACCA	GAACAGACTC	1020
	CCCATGAGAC	GGAAGAGCGG	GCCGTCCTGC	GGCCGGCAGG	ACCCCCACAA	GCAGCTCATG	1080
	TGCCGGGTCI	GCGCCTGCCA	CCTGTGCGG	TACTGCCTGG	ACCOGCCCCT	CAGCAGTGTT	1140
		**************************************	CTCCCCCTCAC	TGCCCGAATG	ATGCCAGCGA	GGTGGTACTG	1200
45	~~~~~~~~~	CCCCCCCCCCCC	CACCAAGAAG	ADGCCGAAGA	TGGCCTCGGC	CACATCGICC	1260
40	max ax acces	* ACTCCCCCAA	CCCCATGGCC	TGTGTGGGCC	GCACCAAGGA	AIGIACCAIC	1320
	amagagamaa*	A COACTACCO	አርርርልቸርርር	GGGATCCCCG	TGGGCACCAI	676666776	1380
				- CCCCCCCACG	TGGCTGGCA1	ACAUGGUGG	1440
		- CACCCTACTC	• ጦርጥልርጥርርጥር	GCGGGGGGCT	ATGAGGATGA	CGIGGACCAI	1500
50	COCK NORTHWA	• ጥርእርአጥአር <b>እ</b> ር	• ссстьстсст	GGTCGAGATC	TITCCGGCCA	CAAGAGGACC	1560
~ ~		- COMPONONTON		<b>AACACCAACA</b>	GGGCGCTGGC	TCTCAACIGC	1620
		TO STORE OF THE	NO A A GCCCCCC	· GAGGCCAAGG	ACTGGCGGTC	GGGGAAGCCG	1680
			· CARCCCCCCCCC	' ABCAATACCA	AGTACUCLU	COCIGNOCOC	1740
		NECOCONTACT!	CANCETTGTE	: AAATACTGGC	CCGAGAAGG	GAAGICCGGG	1800 1860
55	TTTCTCGTG	r ggcgctacc1	TCTGCGGAGG	GACGATGATG	AGCCTGGCCC	TTGGACGAAG	1920
	GAGGGGAAG	ACCGGATCA	GAAGCTGGGG	CTGACCATGC	AGIATCCAGA	AGGCTACCTG	1980
	GAAGCCCTG	G CCAACCGAGA	GCGAGAGAA	GAGAACAGCA	AGAGGGAGGA	GGAGGAGCAG	2040
	CAGGAGGGG	3 GCTTCGCGT	CCCCAGGACC	GGCAAGGGCA	CCARGARAGE	GAAGTCGGCA CAAGGTGGAG	2100
60	GGAGGTGGC	CGAGCAGGG	CGGGTCCCCC	CTCATCAGAGAG	ACCACAAGAC	CAACGCCAAG	2160
60	CCCTACAGT	C TCACGGCCC	A GUAGAGUAGA	GACCGGCCGG	CGAGCGGCAG	CCCGTTCCAG	2220
	CTGTGGAAT	G AGGTCCTGG	CCACACACT	CAGTGTATCT	GCTGTCAGG	GOTGGTGTTC	2280
			~ ~~~~~~~~~~~~	TGTGCAAGU	ACIGULIGO	4 CHONICCIA	2340
			- ~~~~~~~~~~~	י ואגויוארואוייוניין	* Transfer Crack	CINICCAIG	2400
65		~ ~~~~~~~~~	* ************************************	AACCAGUTC	TCCCCCGCT	4 COGCHAIGGE	2460
05							2520
			~ ~~~~~~~~~~~~	P TABCTTABAG	CAGGTAGTGT	I TUCTUUGITU	2580
				A "I"I"I"I"I"I"I"I"I"I"	I ICAAAILIA	I WOMITTIAN	2640
			* ************************************	TITC TO ACTION	r margitias	I ICIIIGONO	2700
70			~ ~~*~**	A ACACAAGAT	r iiiiiaaaga	I. GOWHI CHOUS	2760
. •			արարությալությամբ	C TGGTGTCAA	TTCTCAGAA		2820 2880
			<i>~ አ</i> ራሪአጥሮል <b>ር</b> ጥ	C CTTCTCTAG	G GTTCTGGCC	C CCMMOGICAG	2880 2940
		~ ~~~~~~~~	~ ~~~~~~~~~~~~~	A TETABAGTE	C AGTGACATG	G TICCCCGIGG	3000
			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TATE ALTERNATION	C TGTTGAAGT	I GIIGCHAGAN	3060
75		* C*********	و کی استیت دست ک	A CCTPRGCCT	C AAAGCCAIU	C CCCACCAGAC	3120
			~~~~~~~~~~	A CALCALCIC	A CITAGAGCAG	G GWG11GGGC	3180
	CACGCAGA	A TGGCCTCAA	G GGGACTCTG	C TOURCETGG	G GCCAGGCGI	G TGACTGACGC	3240
	TGTCCGACC	EA AGGCGGCCA	C GGACGGACG	- CAGCACACO	a moreneous	C AAGTGCCTTT	
					_	27	

```
GATTCGTTCC TTCTTTCTAA AGACGACAGT CTTTGTTGTT AGCACTGAAT TATTGAAAAT
                                                                                                        3300
                                                                                                        3360
         GTCAACCAGA TTCTAGAAAC TGCGGTCATC CAGTTCTTCC TGACACCGGA TGGGTGCTTG
         GGAACCGTTT GAGCCTTATA GATCATTTAC ATTCAATTTT TTTAACTCAG CAAGTGAGAA
                                                                                                        3420
         CTTACAAGAG GGTTTTTTT TAATTTTTTT TTCTCTTAAT GAACACATTT TCTAAATGAA
                                                                                                        3480
         TTTTTTTTGT AGTTACTGTA TATGTACCAA GAAAGATATA ACGTTAGGGT TTGGTTGTTT
TTGTTTTTGT ATTTTTTTC TTTTGAAAGG GTTTGTTAAT TTTTCTAATT TTACCAAAGT
                                                                                                        3540
 5
                                                                                                         3600
         TTGCAGCCTA TACCTCAATA AAACAGGGAT ATTTTAAATC ACATACCTGC AGACAAACTG
                                                                                                        3660
        GAGCAATGTT ATTTTAAAG GGTTTTTTC ACCTCCTTAT TCTTAGATTA TTAATGTATT AGGGAAGAAT GAGACAATTT TGTGTAGGCT TTTTCTAAAG TCCAGTACTT TGTCCAGATT TTAGATTCTC AGAATAAATG TTTTTCACAG ATTGAAAAAA AAAAAAAA
                                                                                                         3720
                                                                                                        3780
10
                                                                                                        3828
         Seg ID NO: 27 Protein Sequence
         Protein Accession #: NP_037414.2
                                                                                      51
15
         MWIQVRTMDG ROTHTVDSLS RLTKVEELRR KIQELPHVEP GLQRLFYRGK QMEDGHTLFD
         YEVRLNDTIQ LLVRQSLVLP HSTKERDSEL SDTDSGCCLG QSESDKSSTH GEAAAETDSR
PADEDMWDET ELGLYKVNEY VDARDTNMGA WFEAQVVRVT RKAPSRDEPC SSTSRPALEE
                                                                                                         120
                                                                                                         180
         DVIYHVKYDD YPENGVVQMN SRDVRARART IIKWQDLEVG QVVMLNYNPD NPKERGFWYD
20
         AEISRKRETR TARELYANVV LGDDSLNDCR IIFVDEVFKI ERPGEGSPMV DNPMRRKSGP
          SCKHCKDDVN RLCRVCACHL CGGRQDPDKQ LMCDBCDMAF HIYCLDPPLS SVPSEDEWYC
                                                                                                         360
         PECRNDASEV VLAGERLRES KKKAKMASAT SSSQRDWGKG MACVGRTKEC TIVPSNHYGP
                                                                                                         420
                                                                                                         480
         IPGIPVGTMW RFRVQVSESG VHRPHVAGIH GRSNDGAYSL VLAGGYEDDV DHGNFFTYTG
          SGGRDLSGNK RTAEQSCDQK LTNTNRALAL NCFAPINDQE GAEAKDWRSG KPVRVVRNVK
25
         GGKNSKYAPA EGNRYDGIYK VVKYWPEKGK SGFLVWRYLL RRDDDEPGPW TKEGKDRIKK
LGLTMQYPEG YLEALANRER EKENSKREBE EQQEGGFASP RTGKGKWKRK SAGGGPSRAG
                                                                                                         600
                                                                                                         660
          SPRRTSKKTK VEPYSLTAQQ SSLIREDKSN AKLWNEVLAS LKDRPASGSP PQLPLSKVEE
                                                                                                         720
          TFQCICCQEL VPRPITTVCQ HNVCKDCLDR SFRAQVFSCP ACRYDLGRSY AMQVNQPLQT
30
          VLNQLFPGYG NGR
          Seg ID NO: 28 DNA sequence
          Nucleic Acid Accession #: NM_000756.1
35
          Coding sequence:186..776
                                                         31
                                                                        41
                                                                                       51
          AGAAACTCAG AGACCAAGTC CATTGAGAGA CTGAGGGGAA AGAGAGGAGA GAAAGAAAAA
          GAGAGTGGGA ACAGTAAAGA GAAAGGAAGA CAACCTCCAG AGAAAGCCCC CGGAGACGTC
                                                                                                          120
 40
          TCTCTGCAGA GAGGCGGCAG CACCCGGCTC ACCTGCGAAG CGCCTGGGAA GCGAGTGCCC
          CTAACATGCG GCTGCCGCTG CTTGTGTCCG CGGGAGTCCT GCTGGTGGCT CTCCTGCCCT
                                                                                                          240
          GCCCGCCATG CAGGGCGCTC CTGAGCCGCG GGCCGGTCCC GGGAGCTCGG CAGGCGCCGCAGCAGCACCCTCA GCCCTTGGAT TTCTTCCAGC CGCCGCCGCA GTCCGAGCAG CCCCAGCAGC
                                                                                                          300
                                                                                                          360
          CGCAGGCTCG GCCGGTCCTG CTCCGCATGG GAGAGGAGTA CTTCCTCCGC CTGGGGAACC
 45
          CGCAGGCTCG GCCGGTCCTG CTCCGCATGG GAGAGGAGTA CTTCCTCCGC CTGGGGAACC
TCAACAAGAG CCCGGCGCT CCCCTTTCGC CCGCCTCCTC GCTCCTCGC GAGGGAAGC
GCAGCCGCCC TTCGCCGGAA CAGGCGACCG CCAACTTTT CCGCGTGTTG GCTGCAGCAGC
TCGTGCTGCC TCGGCGCTC CTCGACAGCC CCAGCGCTCT CGCGGAGCGC GGCGCTAAGA
                                                                                                          540
                                                                                                          600
          ATGCCCTCGG CGGCCACCAG GAGGCACCGG AGAGAGAAAG GCGGTCCGAG GAGCCTCCCA
TCTCCCTGGA TCTCACCTTC CACCTCCTCC GGGAAGTCTT GGAAATGGCC AGGGCCGAGC
                                                                                                           720
 50
           AGTTAGCACA GCAAGCTCAC AGCAACAGGA AACTCATGGA GATTATTGGG AAATAAAACG
                                                                                                           780
          GTGCGTTTGG CCAAAAGAA TCTGCATTTA GCACAAAAAA AATTTAAAAA AATACAGTAT
TCTGTACCAT AGCGCTGCTC TTATGCCATT TGTTTATTTT TATATAGCTT GAAACATAGA
                                                                                                           840
          TOTATACAT ASCALAGE TATACCCCTTA CITAGATAGA AGAAGGTA ATCACAGGGA GAACACA AATGTTATTC GTTTTGTCTA CGTTTAGTTT CCGTTTCAG GTGTTTATAG GCAGCAACAC AATGTTATTC GTTTTGTCTA CGTTTAGTTT TGTTTCAAAA AGCAGACAGA TGGTGTTTTA AAGAGAATGT AGACCTGTGA GAAAACGTTT TGTTTGAAAA AGCAGACAGA
                                                                                                           1020
 55
                                                                                                           1080
          TGGTGTTTTA AAGAGAATGT AGACCTGTGA GAAAACGTTT TGTTTGAAAA AGCAGACAGA
AGTCACTCAA TTGTTTTTGT TGTGGTCTGA GCCAAAGAGA ATGCCATTCT CTTGGGTGGG
TAAGACTAAA TCTGTAAGCT CTTTGAAACA ACTITCTCTT GTAAACGTTT CAGTAATAAA
ACATCTTTCC AGTCCTTGGT CAGTTTGGTT GTGTAAGAGA ATGTTGAATA CTTATATTTT
                                                                                                           1140
                                                                                                           1200
                                                                                                           1260
 60
           TAATAAAAGT TGCAAAGGT
           Seq ID NO: 29 Protein Sequence
           Protein Accession #: NP_000747.1
                                                          31
  65
            MRLPLLVSAG VLLVALLPCP PCRALLSRGP VPGARQAPQH PQPLDFFQPP PQSEQPQQPQ
                                                                                                           60
            ARPVLLRMGE EYFLRLGNLN KSPAAPLSPA SSLLAGGSGS RPSPEQATAN FFRVLLQQLL
                                                                                                           120
            LPRRSLDSPA ALAERGARNA LGGHQEAPER ERRSEEPPIS LDLTFHLLRE VLEMARAEQL
            AQQAHSNRKL MEIIGK
  70
           Seq ID NO: 30 DNA sequence
Nucleic Acid Accession #: CAT cluster
                                                                                         51
  75
                                                                          41
            ATTTCTTGAG ATGGCTCCTC TTGGAACTAT GCATCTCTCC TGATACTTGG ATGCTTTTCC
            TCTGACTGAT GAAGATCCTG AATACCAAAG AGGGCCGCTG AAAGGGCTCT AGGAGTACAC
```

```
CTTCTAGGAA CCCTAAGCCA GAGAGAGGCT TCACTACATC ATGCTTCCTG ACATCTCTCC
        CTTTGAAGAG CAGTCAGACT CCTGCTTTGC TCTTCAGACT TAATTTGGGG GTTTAACAGG
                                                                                   240
        TGAGGTTGCT GGGGGAACTC TTTTACAACA TCTCTCTGAA AGAATCCGGG CTGCCAGTTT
        CATTTGGTTT GGGTGTCAGT AGCATGATGG AAAGACAAAA AAACACAACT TGACATCTGC
                                                                                   360
 5
        AGAAATGGGT TCAAATTTTA CCTGCAACTC ACCAATTCTG TGGCCTTGGT TCAGCAATTA
                                                                                   420
        AACTCCCTAA AATTCAGTTT TTTCTTTGTA AAATGGGGTT ATGAACAGTA CCTACTTCAA
                                                                                   480
        AATGTGTTTG TGAAGATTAA AAAAGTTAAC ATAAAGAGTT TAGAAGAGTG TCTGGCATAT
                                                                                   540
        TGTGCTCAAT AAGTGTTTAT TTATTTATTG CTGAATAAAC CAGTAATTTA ATTAGTAT
10
        Seq ID NO: 31 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 134..1917
                                                                     51
15
        CACCTCAGCC CCAACCCCAA CCCCAGCCGC ATCCCCTGCC CCAGCTGACG GGTCAAAGCC
        TCAGGAGAGT GTGGCTCTCC CCAGGCGCTA CCAGGAGGGG CAGGTCTCAG CCAGCTGGGG
AAACCTTATT GCCATGGTTC TTAGAAGCCA CCCCTTCCCC AGGCAAGACA GGCCCCAAGG
                                                                                   120
                                                                                   180
        GAGTGTCCCG AGGGCGGTTC CCGGGAGCCC CGTGGGTCCC AGCACTTCCA CACACTCTGA
                                                                                   240
        GGACAGACAC GGCCCCTCTT CTTCAGTGGG GACAGTCATA GGGACAGGTA CAGGGGGCCT
20
        GGTTGAGGCT GGAGGTCAGC CACAGCCAAG AAGCTCCGAG ACCAACGGAT CGCCCAGCCC
AGACCCTCCC CCAGGCCTAA GAGGAGAGGG AACCAGGGAG AAAAGTCTAG ACCCGCTGCC
                                                                                   360
                                                                                   420
        CCAAGCCGCG ATGCCCAGGG GCCCCGCACA GCCCCCCGCG CAGAGGCCGC CTGGCCCCGC
                                                                                   480
        GGCCTCCTCC TCTGCGAGGC GCTCACAGCC GGTACCCCAG CTACGGAAAC GCAGCAGGTG
        CGAAATCGCC CCGAGCTCGG AGCAGGAGGT CAGGCCGGCC GCCTCGGGGG ACCCTCAAGG
                                                                                   600
25
        GGAGGCGCCG GGGGAGGGGG GCAGCCCTGC CGGCCGCAGC GGGGCGCTCA CGGAAAAGCA
                                                                                   660
        GGAGGAGGCC CGGAAGCTCA TGGTGTTTCT GCAGAGGCCC GGGGGTTGGG GGGTGGTGGA
                                                                                   720
        GGGGCCCGG AAGCCCAGCT CCCGGGCCCT GGAGCCCGCC ACGGCGGCAG CCCTGCGGCG
GCGGCTGGAC CTGGGCAGTT GCCTGGACGT GCTGGCCTTT GCCCAGCAGC ACGGAGAGCC
                                                                                    780
                                                                                    840
        CGGCCTGGCG CAGGAGACCT ACGCGCTGAT GAGCGACAAC CTGCTGCGAG TGCTGGGAGA
CCCGTGCCTC TACCGCCGGC TGAGCGCGGC CGACCGCGAG CGCATCCTCA GCCTGCGGAC
                                                                                    900
30
                                                                                    960
                                                                                    1020
        CGGCCGGGGC CGGCCGTGC TGGGCGTCCT CGTACTGCCC AGCCTCTACC AGGGGGGCCG
        CTCAGGGCTC CCCAGGGGCC CTCGTGGCGA GGAGCCTCCT GCGGCGGCCC CTGTGTCCCT
                                                                                    1080
        GCCTCTACCT GCGCACCTGC ATGTGTTCAA CCCCCGGGAG AACACCTGGC GGCCCCTGAC
                                                                                    1140
        CCAGGTGCCC GAGGAGGCCC CGCTTCGGGG CTGCGGTCTC TGCACCATGC ACAACTACCT
                                                                                    1200
35
                                                                                    1260
        GTTTCTGGCG GGGGGCATCC GTGGCTCCGG TGCCAAGGCC GTCTGCTCCA ACGAGGTCTT
        CTGCTACAAC CCTCTGACCA ACATCTGGAG CCAGGTTCGG CCCATGCAGC AGGCCCGAGC
                                                                                    1320
        CCAGCTCAAG CTGGTGGCCC TGGACGGGCT GCTCTATGCC ATCGGTGGCG AATGCCTGTA
                                                                                    1380
        CAGCATGGAG TGCTACGACC CGCGAACAGA CGCCTGGACC CCACGCGCGC CACTCCCCGC
                                                                                    1440
        AGGCACCTTC CCTGTGGCCC ACGAGGCTGT GGCCTGCCGT GGGGACATCT ACGTCACCGG
                                                                                    1500
40
        GGGTCACCTC TTCTACCGCC TGCTCAGGTA CAGCCCCGTG AAGGATGCTT GGGACGAGTG
                                                                                    1560
        CCCATACAGT GCCAGCCACC GGCGTTCCAG CGACATCGTG GCACTGGGGG GCTTCCTGTA
                                                                                    1620
         CCGCTTCGAC CTGCTGCGGG GCGTGGGCGC CGCCGTGATG CGCTACAACA CAGTGACCGG
                                                                                    1680
                                                                                    1740
         CTCCTGGAGC AGGGCTGCCT CCCTGCCCCT GCCCGCCCCC GCCCCACTGC ACTGCACCAC
         CCTGGGCAAC ACCATTTACT GCCTCAACCC CCAGGTCACT GCCACCTTCA CGGTCTCTGG
                                                                                    1800
45
        1860
                                                                                    1920
                                                                                    1980
         TGAGAGGCCG GGCTCAGGG AAGGGGCTGG GATCGGAACT TCCTGCTCTT GTTTCTGGAC AACTTTCCCC TTCTGCTTTA AAGGTTGTCG ATTATTTTGA AGCCCAGACT CCCTCAGCCT
                                                                                    2040
                                                                                    2100
 50
         CTTTCTGCCC CTCACTCCAC ACCCAGACTG TTTCCTGACT CAATTCCGTA CCTACTTACA
GACCCTCTCA GCTTGCTGAC ACCCCCCTGT CTGTGGGACT CCCTATTCCC TAGAGCCAGG
                                                                                    2160
                                                                                    2220
         GACTGATGCG TCTCCACAGA CAAGGACTTG GCTCGCTGGA GCTCTGCTGA GCCGAGAGAG
         2340
                                                                                    2400
 55
                                                                                     2460
         GCCTCTGAAA CTGGTCCGCT GGTGCAGCCC TGCTGTCTGC AGCTCCTGCC CATACCCCCA
GCCCACACCA GGCCAGGCCC ACTCCGGGCT CACCACCCTC TGCAGCCTTG TGGGGCTCTC
                                                                                     2520
                                                                                     2580
         CCAGCCCCC CAGAAGCCCA CCCCACTTCT CGCCAACCCC CGATCTCTAA ATGAGGCCTG
AGCGTCACCC TAGTTCTGCC CCTTTTTAGC TGTGTAGACT TGGACGAGAC ATTTGACTTC
                                                                                     2640
                                                                                     2700
 60
         CCTTTCTCT TGTCTATAAA ATGTGGACAG TGGACGTCTG TCACCCAAGA GAGTTGTGGG
                                                                                     2760
         AGACAAGATC ACAGCTATGA GCACCTCGCA CGGTGTCCAG GATGCACAGC ACAATCCATG
                                                                                     2820
         ATGCGTTTTC TCCCCTTACG CACTTTGAAA CCCATGCTAG AAAAGTGAAT ACATCTGACT
                                                                                     2880
                                                                                     2940
         GTGCTCCACT CCAACCTCCA GCCTGGATGT CCCTGTCTGG GCCCTTTTTC TGTTTTTAT
         TCTATGTTCA GCACCACTGG CACCAAATAC ATTTTAATTC ACCGAAAGCA
 65
         Seq ID NO: 32 Protein Sequence
         Protein Accession #: XP_054631.1
                                                                      51
 70
                                                           41
                                              31
          MPRGPAQPPA QRPPGPAASS SARRSQPVPQ LRKRSRCEIA PSSEQEVRPA ASGDPQGEAP
          GEGGSPAGRS GALTEKQEBA RKLMVFLQRP GGWGVVEGPR KPSSRALEPA TAAALRRRLD
                                                                                     120
          LGSCLDVLAF AQQHGEPGLA QETYALMSDN LLRVLGDPCL YRRLSAADRE RILSLRTGRG
                                                                                     180
          RAVLGVLVLP SLYQGGRSGL PRGPRGEEPP AAAPVSLPLP AHLHVPNPRE NTWRPLTQVP
                                                                                     240
 75
          EEAPLRGCGL CTMMNYLFLA GGIRGSGAKA VCSNEVFCYN PLTNIWSQVR PMQQARAQLK
                                                                                     300
          LVALDGLLYA IGGECLYSME CYDPRTDAWT PRAPLPAGTF PVAHEAVACR GDIYVTGGHL
                                                                                     360
          FYRLLRYSPV KDAWDECPYS ASHRRSSDIV ALGGFLYRFD LLRGVGAAVM RYNTVTGSWS
```

```
RAASLPLPAP APLHCTTLGN TIYCLNPQVT ATFTVSGGTA QFQAKELQPF PLGSTGVLSP 480
        FILTLPPEDR LOTSL
        Seq ID NO: 33 DNA sequence
 5
        Nucleic Acid Accession #: CAT cluster
                                                                        51
        CCTCTGTCTA ACCTTACATG AAAAAACCCG TTTCCAACGA AGGCCTCTAA AAGGCCAAGA
        AATCCCCTTG CAGACTTTAC AAACAGAGTG TTTCCTAACT GCTCTATGAA CAGAAAGGTT
10
                                                                                       120
        AAACTCTGTG AGTTGAACCA ACACATCACA ACGCAGTTTG TGGGAATGAT TCTGTCTAGT
                                                                                       180
        TTTGAAACGA AGATATTTCC TTTTCTGCCG TTGACCTTAA AGCGCTTGAA ATCTACACTT
        GCARATTGCA CARATAGAGT GITTCARATC TGCTCTGTCT RAGGGRACGT TCRACTCTGT
GAGTTGRATG CACACACAC RAGGRAGTTA CTGGGRATTC TTCTGTCTAG CCTTACATGA
                                                                                        300
                                                                                        360
        AAGAAAACCC GTTTCCAACG AAGGCCTCTA AGTGGTCAAA ATATCCACGT GCAGACTTTA
                                                                                        420
15
        CARACAGAGT GITTCCARAC TGCTGAATGA ARAGARAAGT ARACTCTGAG AGTTGAACGC ACACATCGCA GAGCAGTTTC TGAGAATGAT TCTGTCTAGT TTTTATACGA AGATATTTCC
                                                                                        480
        TTTTCTGCCT TTGGCCTCAA AGCGCTTGAA ATCTCCACTT GCAAATTCCA CAAAAAGAGT
                                                                                        600
        GTTTCAAATC TGCTCTGTCT AAAGGAAGGT TCAACTCTGT GAGTTGAATA CACACAACAC
                                                                                        660
        AAAGAAGTTA CTGAGAATTC TTCTGTCTAG CATTATATGA AGAAATCCCG TTTCCAACGA AGGCATCTAA GAGGTCCAAA TATCCACTTG CAGACTTTAC AAACAGAGGG TTTCCAGAAT
                                                                                        720
20
                                                                                        780
        GGCTGTATGA AAAGAAAGGT TAAACTCTGT GAGTTAAACA CACA
        Seg ID NO: 34 DNA seguence
        Nucleic Acid Accession #: AF011468.1
25
        Coding sequence: 257..1468
                                                            41
                                                                         51
                                  21
        GGAAGACTTG GGTCCTTGGG TCGCAGGTGG GAGCCGACGG GTGGGTAGAC CGTGGGGGAT
30
        ATCTCAGTGG CGGACGAGGA CGGCGGGGAC AAGGGGCGGC TGGTCGGAGT GGCGGAGCGT
CAAGTCCCCT GTCGGTTCCT CCGTCCCTGA GTGTCCTTGG CGCTGCCTTG TGCCCGCCCA
                                                                                        120
                                                                                        180
        GCGCCTTTGC ATCCGCTCCT GGGCACCGAG GCGCCCTGTA GGATACTGCT TGTTACTTAT
        TACAGCTAGA GGCATCATG ACCGATCTAA AGAAAACTGC ATTTCAGGAC CTGTTAAGGC TACAGCTCCA GTTGGAGGTC CAAAACGTGT TCTCGTGACT CAGCAAATTC CTTGTCAGAA
                                                                                        300
                                                                                        360
35
         TCCATTACCT GTAAATAGTG GCCAGGCTCA GCGGGTCTTG TGTCCTTCAA ATTCTTCCCA
                                                                                        420
         GCGCGTTCCT TTGCAGGCA AAAAGCTTGT CTCCAGTCAC AAGCCGGTTC AGAATCAGAA
GCAGAAGCAA TTGCAGGCAA CCAGTGTACC TCATCCTGTC TCCAGGCCAC TGAATAACAC
                                                                                        480
                                                                                        540
         CCAAAAGAGC AAGCAGCCCC TGCCATCGGC ACCTGAAAAT AATCCTGAGG AGGAACTGGC
                                                                                        600
         ATCAAAACAG AAAAATGAAG AATCAAAAAA GAGGCAGTGG GCTTTGGAAG ACTTTGAAAT
                                                                                        660
40
         TGGTCGCCCT CTGGGTAAAG GAAAGTTTGG TAATGTTTAT TTGGCAAGAG AAAAGCAAAG
         CAAGTTTATT CTGGCTCTTA AAGTGTTATT TAAAGCTCAG CTGGAGAAAG CCGGAGTGGA
                                                                                        780
         GCATCAGCTC AGAAGAGAAG TAGAAATACA GTCCCACCTT CGGCATCCTA ATATTCTTAG
                                                                                        840
         ACTGTATGGT TATTTCCATG ATGCTACCAG AGTCTACCTA ATTCTGGAAT ATGCACCACT
                                                                                        900
         TGGAACAGTT TATAGAGAAC TTCAGAAACT TTCAAAGTTT GATGAGCAGA GAACTGCTAC
 45
         TTATATAACA GAATTGGCAA ATGCCCTGTC TTACTGTCAT TCGAAGAGAG TTATTCATAG
                                                                                         1020
         AGACATTAAG CCAGAGAACT TACTTCTTGG ATCAGCTGGA GAGCTTAAAA TTGCAGATTT
                                                                                        1080
         TGGGTGGTCA GTACATGCTC CATCTTCCAG GAGGACCACT CTCTGTGGCA CCCTGGACTA
                                                                                         1140
         CCTGCCCCT GAAATGATTG AAGGTCGGAT GCATGATGAG AAGGTGGATC TCTGGAGCCT
                                                                                         1200
         TGGAGTTCTT TGCTATGAAT TTTTAGTTGG GAAGCCTCCT TTTGAGGCAA ACACATACCA
                                                                                         1260
 50
         AGAGACCTAC AAAAGAATAT CACGGGTTGA ATTCACATTC CCTGACTTTG TAACAGAGGG
                                                                                         1320
         AGCCAGGGAC CTCATTTCAA GACTGTTGAA GCATAATCCC AGCCAGAGGC CAATGCTCAG
                                                                                         1380
         AGAAGTACTT GAACACCCCT GGATCACAGC AAATTCATCA AAACCATCAA ATTGCCAAAA
         CARAGAATCA GCTAGCAAAC AGTCTTAGGA ATCGTGCAGG GGGAGAAATC CTTGAGCCAG
                                                                                         1500
         GGCTGCCATA TAACCTGACA GGAACATGCT ACTGAAGTTT ATTTTACCAT TGACTGCTGC
CCTCAATCTA GAACGCTACA CAAGAAATAT TTGTTTTACT CAGCAGGTGT GCCTTAACCT
                                                                                         1560
 55
                                                                                         1620
          CCCTATTCAG AAAGCTCCAC ATCAATAAAC ATGACACTCT GAAGTGAAAG TAGCCACGAG
          AATTGTGCTA CITATACTGG TTCATAATCT GGAGGCAAGG TTCGACTGCA GCCGCCCCGT
                                                                                         1740
          CAGCCTGTGC TAGGCATGGT GTCTTCACAG GAGGCAAATC CAGAGCCTGG CTGTGGGGAA
                                                                                         1800
          AGTGACCACT CTGCCCTGAC CCCGATCAGT TAAGGAGCTG TGCAATAACC TTCCTAGTAC
                                                                                         1860
 60
          CTGAGTGAGT GTGTAACTTA TTGGGTTGGC GAAGCCTGGT AAAGCTGTTG GAATGAGTAT
         GTGATTCTIT TTAAGTATGA AAATAAAGAT ATATGTACAG ACTTGTATTT TTTCTCTGGT
                                                                                          1980
          GGCATTCCTT TAGGAATGCT GTGTGTCTGT CCGGCACCCC GGTAGGCCTG ATTGGGTTTC
TAGTCCTCCT TAACCACTTA TCTCCCATAT GAGAGTGTGA AAAATAGGAA CACGTGCTCT
                                                                                         2040
                                                                                          2100
          ACCTCCATTT AGGGATTGC TTGGGATACA GAAGAGGCCA TGTGTCTCAG AGCTGTTAAG
GGCTTATTT TTTAAAACAT TGGAGTCATA GCATGTGTGT AAACTTTAAA TATGCAAATA
  65
                                                                                         2220
          AATAAGTATC TATGTCTAAA AAAAAAAAAA AAA
          Seg ID NO: 35 Protein Sequence
  70
          Protein Accession #: AAC63902.1
                                                                           51
                                                 31
           NDRSKENCIS GPVKATAPVG GPKRVLVTQQ IPCQNPLPVN SGQAQRVLCP SNSSQRVPLQ
           AQKLVSSHKP VQNQKQKQLQ ATSVPHPVSR PLNNTQKSKQ PLPSAPENNP REELASKQKN
                                                                                          120
  75
           EESKKRQWAL EDFEIGRPLG KGKFGNVYLA REKQSKFILA LKVLFKAQLE KAGVEHQLRR
                                                                                          180
           EVEIQSHLRH PNILRLYGYF HDATRVYLIL EYAPLGTVYR ELQKLSKFDE QRTATYITEL
           ANALSYCHSK RVIHRDIKPE NLLLGSAGEL KIADFGWSVH APSSRRTTLC GTLDYLPPEM
```

```
IEGRMHDEKV DLWSLGVLCY EFLVGKPPFE ANTYQETYKR ISRVEFTFPD FVTEGARDLI 360
        SRLLKHNPSQ RPMLREVLEH PWITANSSKP SNCQNKESAS KQS
        Seq ID NO: 36 DNA sequence
 5
        Nucleic Acid Accession #: NM_016267
        Coding sequence: 67..843
                                                                              51
                                    21
                                                  31
                                                                41
10
        CGGCACGAGG ACAGAATCAG GTGATGGTCC AGAATTAAGA GCTGTCACCT GTGTCATTCA
                                                                                               60
        CTCACAATGG AAGAAATGAA GAAGACTGCC ATCCGGCTGC CCAAAGGCAA ACAGAAGCCT
                                                                                               120
        ATAAAGACGG AATGGAATTC CCGGTGTGTC CTTTTCACCT ACTTCCAAGG GGACATCAGC
                                                                                               180
        AGCGTAGTGG ATGAACACTT CTCCAGAGCT CTGAGCAATA TCAAGAGCCC CCAGGAATTG ACCCCCTCGA GTCAGAGTGA AGGTGTGATG CTGAAAAACG ATGATAGCAT GTCTCCAAAT
                                                                                               300
        CAGTGGCGTT ACTCGTCTCC ATGGACAAAG CCACAACCAG AAGTACCTGT CACAAACCGT
                                                                                               360
15
        GCCGCCAACT GCAACTTGCA TGTGCCTGGT CCCATGGCTG TGAATCAGTT CTCACCGTCC
                                                                                               420
         CTGGCTAGGA GGGCCTCTGT TCGGCCTGGG GAGCTGTGGC ATTTCTCCTC CCTGGCGGGC
        ACCAGCTCCT TAGAGCCTGG CTACTCTCAT CCCTTCCCCG CTCGGCACCT GGTTCCAGAG
CCCAGCCTG ATGGGAAACG TGAGCCTCTC CTAAGTCTCC TCCAGCAAGA CAGATGCCTA
                                                                                               600
20
        GCCCGTCCTC AGGAATCTGC CGCCAGGGAG AATGGCAACC CTGGCCAGAT AGCTGGAAGC
                                                                                               660
        ACAGGETTGC TCTTCAACCT GCCTCCCGGC TCAGTTCACT ATAGGAAACT ATATGTATCT CGTGGATCTG CCAGTACCAG CCTTCCAAAT GAAACTCTTT CAGAGTTAGA GACACCTGGG
                                                                                               720
                                                                                               780
         AAATACTCAC TTACACCACC AAACCACTGG GGCCACCCAC ATCGATACCT GCAGCATCTT
                                                                                               840
         TAGTCAAGTT GGAGGAGAAA GACAACACTT GGTCTAAGAC ACGGCAGCAA GACATCCCTG
                                                                                               900
         CATATTGTTC CAGATAAAAA TGAAAGCTGC TCACACCCAC TTGCCTCCCC AATCTGTTAA
                                                                                               960
25
         ACAGCTTCGT GTCTAGTATA AGCTCAGTAC TTGCCCTGTG AAAATCCCAG AAGCCCCGC
TGTCAATGTT CCCCATCCAC ACCCTGCTTG CTCCTGTGTA ACAGCTCAGA TGATGAATAA
                                                                                               1020
                                                                                               1080
         TAATAAAACT GTACTTTTT GGAAAAAAA AAAAAAAAA AAAAAA
30
         Seq ID NO: 37 Protein Sequence
         Protein Accession #: NP_057351.1
                                                                 41
                                                                               51
                                     21
         MEEMKKTAIR LPKGKQKPIK TEWNSRCVLF TYFQGDISSV VDEHFSRALS NIKSPQELTP
                                                                                               60
35
         PSSQSEGVML KNDDSMSPNQ WRYSSPWTKP QPEVPVTNRA ANCNLHVPGP MAVNQFSPSL
AARRASVRPG ELWHFSSLAG TSSLEPGYSH PFPARHLVPE PQPDGKREPL LSLLQQDRCL
                                                                                               120
                                                                                               180
         ARRPQESAAR ENGNPGQIAG STGLLFNLPP GSVHYKKLYV SRGSASTSLP NETLSELETP
         GKYYSLTPPN HWGHPHRYLQ HL
40
         Seq ID NO: 38 DNA sequence
         Nucleic Acid Accession #: AK058088.1
         Coding sequence: 252..1772
45
                                                    31
                       11
                                     21
         AGGAAACCAA GGCAAGCTCC CCCTGTCAAA GCACCTTGGC CCATAAGAAG AAAAGGGGGA
GCCCCAGATG TGATGAGCGC TTCCAGGCTT CAGGCTCAGA AGGCGCCCCC AGCTCTCCTG
                                                                                                120
         TARCTCAGAG GCCAGTGTGA TGGGAGTTCC TCCACTCAGC ACACTTCCCC TGTAAACACG
CCTGTGGTGG GCAAAAGGGC TTTGGAACGG TTGCTTGTCT TTTCTCTCCT GCGTAATTTC
                                                                                                180
 50
          CACTITICATI CATGATAATG TCGAACACGC ACAAAGCTCG GCTGGAACGC CGGGTCACTG
                                                                                                300
          GCTCAACCAA CCGGTGGCGT TTGCCCAAAC AGCCTTTCTC TGGGGACCTG CTCTCACTTT
                                                                                                360
          CCCAGATGTG CAAGGCTCTG AGCATAGACT TTGAGGAAGC TTTGAGGAAC CCAGACAGGT
                                                                                                420
          TATGCATTIC ACAAATCCAG AAGTTTTTCT TIGAGAATTI CAAGAACAAG GACATCCAAA
          GTGGGGAAGC AGATGTGATT CTCGAGTGCC TGGGCTTCAA ATGGGAGGTC CATCAGCCCC GGCTTTTTCA GTCTGAGACC TTGGCCAAGC TCTACCTGAA AGCCCTGGCG CAGGGCACCA
                                                                                                540
 55
                                                                                                600
          CACACCCCCT GAGGGAGCTG GAGGAGCTTC TGCGAGCTCA ATCACCTAAG AAGACCAAAG
                                                                                                660
          AAAAATCCCC TGCAAAGAGG ATCATCATTT CCTTGAAGAT CAATGACCCA CTGGTCACTA
          AAGTCGCCTT CGCCACGGCC CTGAAGAACC TCTACATGAG TGAGGTGGAG ATTAACTTGG
                                                                                                 780
          AAGACCTACT GGGAGTGCTG GCTTCCGCCC ACATCCTCCA GTTCAGTGGC CTGTTTCAAA
                                                                                                 840
 60
          GGTGCGTGGA TGTGATGATA GCCAGACTCA AGCCAAGCAC CATCAAGAAA TTCTACGAGG
                                                                                                 900
          CCGGCTGCAA GTACAAGGAA GAGCAGCTCA CCACCGGCTG CGAGAAGTGG CTGGAAATGA
ACTTGGTTCC TCTAGGGGGG ACGCAGATCC ACCTCCACAA AATCCCACAG GACCTGCTCC
                                                                                                 1020
          ACAAAGTGCT GAAGTCCCCC AGGTTATTTA CCTTTAGTGA ATTCCATCTT CTGAAAACAA
TGCTTTTGTG GGTCTTCTTG CAACTGAACT ACAAGATTCA GGCAATTCCG ACTTATGAAA
                                                                                                 1080
                                                                                                 1140
 65
           CCGTGATGAC ATTITITAAG AGCTTTCCTG AGAACTGTTG CTTTCTGGAC CGGGACATAG
                                                                                                 1200
          GACGGAGCTT GAGGCCGCTC TTCCTCTGCT TGCGTCTGCA CGGCATCACC AAAGGCAAGG
                                                                                                 1260
          ATCTGGAGGT GCTGCGGCAC CTTAACTTCT TCCCAGAGTC ATGGCTCGAC CAGGTTACAG
TCAACCATTA CCACGCACTG GAGAATGGGG GCGACATGGT CCACCTGAAA GATCTTAACA
                                                                                                 1320
                                                                                                 1380
          CCCAGGCTGT GAGATTTGGG CTGCTCTTTA ACCAGGAGAA TACAACTTAT TCGAAAACGA
                                                                                                 1440
  70
          TTGCTCTATA TGGATTCTTC TTTAAGATAA AGGGACTCAA ACATGATACT ACCTCTTATA
GTTTTACAT GCAGAGAATA AAGCACACAG ACCTGGAATC TCCCTCTGCG GTCTACGAGC
                                                                                                 1500
                                                                                                 1560
           ACAACCACGT CAGCCTGCGA GCGGCACGCC TGGTGAAGTA TGAGATCAGA GCAGAGGCCC
                                                                                                 1620
           TGGTTGACGG CAAGTGGCAG GAGTTCAGGA CAAACCAGAT CAAGCAGAAG TTTGGGTTGA
CCACGTCATC CTGCAAAAGC CATACCTTGA AAATCCAAAC TGTGGGCATC CCAATCTATG
                                                                                                 1680
                                                                                                 1740
  75
           TAAGTTTTGC ATTCATCTTC CCAGCATCTT GACAGTTTCC AGAAGAATCT ATGGGATTTT
                                                                                                 1800
           CCCCCCACTG GTCTGCATAA AAGAAAATAA AATGACATAA AAGGGAGC
```

```
Protein Accession #: BAB71658.1
 5
        MIMSNTHKAR LERRVIGSTN RWRLPKQPPS GDLLSLSQMC KALSIDFEEA LRNPDRLCIS
        QIQKFFFENF KNKDIQSGEA DVILECLGFK WELHQPRIFQ SETLAKLYLK ALAQGTTHPL
RELEELLRAQ SPKKTKEKSP AKRIIISLKI NDPLVTKVAF ATALKNLYMS EVEINLEDLL
                                                                                         120
        GVLASAHILQ FSGLFQRCVD VMIARLKPST IKKPYEAGCK YKEEQLTTGC EKWLEMNLVP
                                                                                         240
10
        LGGTQIHLHK IPQDLLHKVL KSPRLFTFSE FHLLKTMLLW VFLQLNYKIQ AIPTYETVMT
                                                                                         300
        FFKSFPENCC FLDRDIGRSL RPLFLCLRLH GITKGKDLEV LRHLNFFPES WLDQVTVNHY
                                                                                         360
        HALENGGOMV HLKDLNTOAV RFGLLFNOEN TTYSKTIALY GFFFKIKGLK HDTTSYSFYM
QRIKHTDLES PSAVYEHNHV SLRAARLVKY EIRABALVDG KWQEFRINQI KQKFGLTTSS
        CKSHTLKIQT VGIPIYVSFA FIFPAS
15
         Seq ID NO: 40 DNA sequence
        Nucleic Acid Accession #: NM_032899.1
         Coding sequence: 186..1070
                                                                           51
20
         GGCACGAGGA TTGCTCAGGA CAGCGGTAAA TCACTTCTTG GAGGTGCCCT GCACGCCGGT
         CCTGGGAGCA GGCGGCCTCC CGGGGGTGCG GGAGCCCCAC TCCTCCGTGG TGTGTTCCAT
                                                                                         120
         TTGCTTCCCA CATCTGGAGG AGCTGACGTG CCAGCCTCCC CCAGCACCAC CCAGGGACGG
                                                                                          180
         GAGGCATGAG CCGGTCAAGG CACCTGGGCA AAATCCGGAA GCGTCTGGAA GATGTCAAGA
25
         GCCAGTGGGT CCGGCCAGCC AGGGCTGACT TTAGTGACAA CGAGAGTGCC CGGCTGGCCA
                                                                                          300
         CGGACGCCCT CTTGGATGGG GGTTCTGAAG CCTACTGGCG GGTGCTCAGC CAGGAAGGCG
                                                                                          360
         AGGTGGACTT CTTGTCCTCG GTGGAGGCCC AGTACATCCA GGCCCAGGCC AGGGAGCCCC
                                                                                          420
         CGTGTCCCCC AGACACCCTG GGAGGGGCGG AAGCAGGCCC TAAGGGACTG GACTCCAGCT
         CCCTACAGTC CGGCACCTAC TTCCCTGTGG CCTCAGAGGG CAGGGAGCCG GCCCTACTGC ACAGCTGGGC CTCAGCTGAA AAGCCCTACC TGAAGGAAAA ATCCAGCGCC ACTGTGACT
                                                                                          540
30
                                                                                          600
         TCCAGACCGT CAAGCACAAC AACATCAGAG ACCTCGTCCG CCGCTGCATC ACCCGGACTA
                                                                                          660
         GCCAGAACAT TTCCATCCGG AGTGTGGAAG GAGAGATATA CTGTGCCAAG TCAGGCAGGA
         AATTCACTGG CCAAATCCGG GAGAAGTTCA TCATCTCGGA CTGGAGATTT GTCCTGTCTG
GATCTTACAG CTTCACCTGG CTCTGCGGAC ACGTGCACCG GAACATCCTC TCCAAGTTCA
                                                                                          780
                                                                                          840
35
         CAGGCCAGGC GGTGGAGCTG TTTGACGAGG AGTTCCGCCA CCTCTACGCC TCCTCCAAGC
                                                                                          900
         CTGTGATGGG CCTGAAGTCC CCGCGGCTGG TCGCCCCCGT CCCGCCCGGA GCAGCCCCGG
         CCAATGGCCG CCTTAGCAGC AGCAGTGGCT CCGCCAGTGA CCGCACGTCC TCCAACCCCT
                                                                                          1020
         TCAGCGGCCG CTCGGCAGGC AGCCACCCCG GTACCCGAAC TGACGGCTGA GATGAGGTTA
                                                                                          1080
         GAATGACTGG GCCCGGCTGA ACATTCCAAA TTGGATTTCA CCATCTGCTG AGAAAGTTTA
                                                                                          1140
40
         AGGAAGGCAA AGCTTGCCAG GTCACAGAAG CTCCCAAGCC CAGCTTTCCA AAGGCCTCAG
         CCTGTGCCTG TGTCGAGCTC AGTCCTGGGA GATAGGGGAG AACCTGCAGG CAGGAACAAG
                                                                                          1260
         CCCCCCTACT CCTGACCACC CTCCATCAGC AGTCTCCCCT CCGTGGTCGT CTTTGTTGAC
                                                                                          1320
          AAAGGTGCAG TTTCTCCTCT CCTGGGCACC TGTAACATGT GATGCGCTGC CTGCTGGGAG
                                                                                          1380
          GTTAGGTCGG GGCTGCCCCG GCGAGTGGAG CATGAGCAGA ACCGCCGAGG GTCACTTCTG
                                                                                           1440
 45
         1500
                                                                                           1560
          ААААААА
 50
          Seq ID NO: 41 Protein Sequence
          Protein Accession #: NP_116288.1
                                                                            51
                                                 31
                                                               41
 55
          MSRSRHLGKI RKRLEDVKSQ WVRPARADFS DNESARLATD ALLDGGSEAY WRVLSQEGEV
DFLSSVEAQY IQAQAREPPC PPDTLGGAEA GPKGLDSSSL QSGTYFFVAS EGSEPALLHS
                                                                                           120
          WASAEKPYLK EKSSATVYFQ TVKHNNIRDL VRRCITRTSQ NISIRSVEGE IYCAKSGRKF
                                                                                           180
          TGQIREKFII SDWRFVLSGS YSFTWLCGHV HRNILSKFTG QAVELFDEEF RHLYASSKPV
                                                                                           240
          MGLKSPRLVA PVPPGAAPAN GRLSSSSGSA SDRTSSNPFS GRSAGSHPGT RTDG
 60
          Seq ID NO: 42 DNA sequence
Nucleic Acid Accession #: NM_000782.2
          Coding sequence: 405..1946
  65
           TGGAGAGGGA CAGGAGGAAA CGCAGCGCCA GCAGCATCTC ATCTACCCTC CTTGACACCT
           CCCCGTGGCT CCAGCAAGCC CTAGAAGTCA GCCTTGCGGA CCAACAGGAG GACTCCCAGC
TTTCCCTTTT CAAGAGGTAC CCCAGACACC GGCCACCCTC TTCCAGCCCC TGCGGCCAGT
                                                                                            180
  70
           GCAAGGAGGC ACCAATGCTC TGAGGCTGTC GCGTGGTGCA GCGTCGAGCA TCCTCGCCGA
                                                                                            240
           GCAAGGAGGC ACCAATGCTC TGAGGCTGTC GCGTGGTGCA GCGTCGTGGC GCTCTTTGCT
GTCCTTCTGC TGCCTGTCCC GCCTCACCCC GCTCCATCAC ACCAGGTGGC CCTCTTTGCT
TCCTTTTCCC AGAATCGTTA AGCCCCGACT CCCACTAGCA CCTCGTACCA ACCTCGCCCC
                                                                                            300
                                                                                            360
          ACCCCATCCT CCTGCCTTCC CGCGCTCCGG TGTCCCCCCC TGCCATGAGC TCCCCCCTCA GCAGGAGCCG CTCGCTTGCC GCCTTCCTGC AGCAGCTGC CAGCGCGGG CAGCCCCCGA GACTGGTGAC ATCTACGGCG TACACGTCCC CTCAGCCGC AGAGGTGCCA GTCTGCCCGC CTCAGCCGC AGAGGTGCCA GTCTGCCCGC
                                                                                            420
                                                                                            480
  75
                                                                                            540
           TGACAGCTGG TGGCGAGACT CAGAACGCGG CCGCCCTGCC GGGCCCCACC AGCTGGCCAC
           TGCTGGCGAG CCTGCTGCAG ATTCTCTGGA AAGGGGGTCT CAAGAAACAG CACGACACCC
                                                                                            660
```

Seq ID NO: 39 Protein Sequence

PCT/US02/21338 WO 03/003906

720

```
TGGTGGAGTA CCACAAGAAG TATGGCAAGA TTTTCCGCAT GAAGTTGGGT TCCTTTGAGT
                                                                                                 780
         CGGTGCACCT GGGCTCGCCA TGCCTGCTGG AAGCGCTGTA CCGCACCGAG AGCGTACCCC
         AGCGGCTGGA GATCAAACCG TGGAAGGCCT ATCGCGACTA CCGCAAAGAA GGCTACGGGC
         TGCTGATCCT GGAAGGGGAA GACTGGCAGC GGGTCCGGAG TGCCTTTCAA AAGAAACTAA
                                                                                                 900
        TGAAACCAGG GGAAGTGATG AAGCTGGACA ACAAAATCAA TGAGGTCTTG GCCGATTTTA
TGGGCAGAAT AGATGAGCTC TGTGATGAAA GAGGCCACGT CGAAGACTTG TACAGCGAAC
                                                                                                 960
                                                                                                 1020
         TGAACAAATG GTCGTTTGAA AGTATCTGCC TCGTGTTGTA TGAGAAGAGA TTTGGGCTTC
                                                                                                 1080
        TCCAGAGAA TGCAGGGGAT GAAGCTGGA ACTTCATCAT GGCCATCAAA ACAATGATGA
GCACGTTTGG GAGGATGATG GTCACTCCAG TCGAGCTGCA CAAGAGCCTC AACACCAAGG
                                                                                                 1200
         TCTGGCAGGG ACACACTCTG GCCTGGGACA CCATTTTCAA ATCAGTCAAA GCTTGTATCG
10
                                                                                                 1260
         ACAACCGGTT AGAGAAGTAT TCTCAGCAGC CTAGTGCAGA TTTCCTTTGT GACATTTATC
                                                                                                 1320
         ACCAGAATCG GCTTTCAAAG AAAGAATTGT ATGCTGCTGT CACAGAGCTC CAGCTGGCTG
         CGGTGGAAAC GACAGCAAAC AGTCTAATGT GGATTCTCTA CAATTTATCC CGTAATCCCC
                                                                                                 1440
         AAGTGCAACA AAAGCTTCTT AAGGAAATTC AAAGTGTATT ACCTGAGAAT CAGAGGCCAC
                                                                                                 1500
         GGGAGGAAGA TTTGAGGAAT ATGCCGTATT TAAAAGCCTG TCTGAAAGAA TCTATGAGGC
                                                                                                 1560
15
         TTACCCCGGG TGTACCATTT ACAACTCGGA CTCTTGACAA GGCAACAGTT CTGGGTGAAT
                                                                                                 1620
         ATGCTTTACC CAAAGGAACA GTGCTCATGC TAAATACCCA GGTGTTGGGA TCCAGTGAAG
ACAATTTTGA AGATTCAAGT CAGTTTAGAC CTGAACGTTG GCTTCAGGAG AAGGAAAAAA
TTAATCCTTT TGCGCATCTT CCATTTGGCG TTGGAAAAAG AATGTGCATT GGTCGCCGAT
                                                                                                 1740
                                                                                                 1800
         TAGCAGAGCT TCAACTGCAT TTGGCTCTTT GTTGGATTGT CCGCAAATAC GACATCCAGG
                                                                                                 1860
20
         CCACAGACAA TGAGCCTGTT GAGATGCTAC ACTCAGGCAC CCTGGTGCCC AGCCGGGAAC TCCCCATCGC GTTTTGCCAG CGATAATACG CCTCAGATGG TGGTATTTGC TAACATCATA
                                                                                                 1920
                                                                                                 1980
         TCCAACTCAG GGAAGCGGAC TGAGTGCTGG GATCCAAGGC ATTCTACAGG GTTCACTGCT
                                                                                                 2040
                                                                                                 2100
         GGTTTACACT TCACCTGTGT CAGCACCATC TTCAGGTGCT TAGAATGGCC TGGGAGCCTG
         TTCTGTCTTG CATCTTCCAT GACATGAAAG GGAGGCTGGC ACTTGTCAGT CAGGTAGAGG
25
         TTACAAACCG TTTCAGGCCC TGCTACCACA TTCACTGTTT GAATCTTTAA TTCCCAAGAA
TAAGTTTACA TTTCACAATG AATGACCTAC AACAGCTAAA TTTTCTGGGG CTGGGAGTAA
                                                                                                 2220
                                                                                                 2280
         TACTGACAAT CCATTTACTG TAGCTCTGCT TAATGTACTA CTTAGGAAAA TGTCCCTGCT
                                                                                                 2340
         TAATAATGTA AGCCAAGCTA AATGATGGTT AAAGTTATCA GGCCTCCCAT GAAATTGCGT
                                                                                                  2400
         TCTTCCTGCA TTGAAATAAA AACATTATTG GGAAACTAGA GAACACCTCT ATTTTTAAAA
                                                                                                 2460
30
         GGACTITAAC GAAGTCAAAC AACTICITAG ACTAGTGATT CACTGGGGCA TTATTTGTTA
GAGGACCITA AAATTGTTTA TTTTTTAAAT GTGATTCCTT TATGGCATTA GGGTAAAGAT
                                                                                                 2520
                                                                                                 2580
         GAAGCAATAA TITTTAAATT GTGTATGTGC ATATGAAGCA CAGACATGCA TGTGTGTGT
TGTCTGTGTG TGTGTCCC TGTATGTGTG TGTGGGTTCT AATGGTAATT TGCCTCAGTC
                                                                                                  2640
                                                                                                  2700
         ATTITITAA TATTIGCAGT ACTIGATITA GGATCIGIGG IGCAGGGCAI GITTCAAAGI
                                                                                                 2760
35
         TTAGTCACAG CTTAAAAACA TTCAGTGTGA CTTTAATATT ATAAAATGAT TTCCCATGCC
                                                                                                  2820
                                                                                                  2880
         ATAATTTTC TGTCTATTAA ATGGGACAAG TGTAAAGCAT GCAAAAGTTA GAGATCTGTT
         ATATAACATT TGTTTTGTGA TTTGAACTCC TAGGAAAAAT ATGATTTCAT AAATGTAAAA
                                                                                                  2940
         TGCACAGAAA TGCATGCAAT ACTTATAAGA CTTAAAAATT GTGTTTACAG ATGGTTTATT
TGTGCATATT TTTACTACTG CTTTTCCTAA ATGCATACTG TATATAATTC TGTGTATTTG
ATAAATATTT CTTCCTACAT TATATTTTTA GAATATTTCA GAATATACA TTTATGTCTT
                                                                                                  3000
                                                                                                  3060
40
                                                                                                  3120
         TATATTGTAA TAAATATGTA CATATCTAGG TATATGCTTT CTCTCTGCTG TGAAATTATT
                                                                                                  3180
          TTTAGAATTA TAATTCACGT CTTGTCATAT TTCATCTGTA TACCTTCAAA TTCTCTGAAA
                                                                                                  3240
         GTAAAAATAA AAGTTTTTAA ATATT
 45
          Seq ID NO: 43 Protein Sequence
          Protein Accession #: NP_000773.1
                                                                                 51
                                                     31
                                       21
          50
          PTSWPLLASL LQILWKGGLK KQHDTLVEYH KKYGKIFRMK LGSFESVHLG SPCLLEALYR TESVPQRLEI KPWKAYRDYR KEGYGLLILE GEDWQRVRSA FQKKLMKPGE VMKLDNKINE
                                                                                                  120
          VLADFMGRID ELCDERGHVE DLYSELNKWS FESICLVLYE KRFGLLQKNA GDEAVNFIMA
IKTMMSTFGR MMVTPVELHK SLNTKVWQGH TLAWDTIFKS VKACIDNRLE KYSQQPSADF
                                                                                                  300
 55
          LCDIYHQNRL SKKELYAAVT ELQLAAVETT ANSLMWILYN LSRNPQVQQK LLKEIQSVLP
                                                                                                  360
                                                                                                   420
          ENQRPREEDL RNMPYLKACL KESMRLTPGV PFTTRTLDKA TVLGEYALPK GTVLMLNTQV
          LGSSEDNFED SSQFRPERWL QEKEKINPFA HLPFGVGKRM CIGRRLAELQ LHLALCWIVR
          KYDIQATDNE PVEMLHSGTL VPSRELPIAF CQR
 60
          Seq ID NO: 44 DNA sequence
          Nucleic Acid Accession #: NM_007000.2
          Coding sequence: 1-777
 65
                                       21
           ATGGCGTCTG CGGCAGCAGC GGAGGCCGAG AAGGGATCTC CAGTTGTGGT GGGCCTGCTA
           GTTGTGGGCA ATATCATTAT TCTGCTGTCA GGCCTGTCCC TGTTTGCTGA GACCATATGG
                                                                                                   120
           GTTGTGGCA ATATCATTAT TCTGCTGTCA GGCCTGTCCC TGTTGCTCAA GGCATAGACGTC
GTGACAGCCG ACCAGTACCG TGTATACCCA CTGATGGGAG TCTCAGGCAA GGATAGACGTC
TCGCTGGTG CCTGGATTGC CATCTTCTGC GGCTTCTCCT TCTTCATGGT AGCCAGTTTT
                                                                                                   180
 70
          GGTGTGGGTG CCGCACTCTG CCGCCGCCGG TCCATGGTC TCACGTACT GGTGCTCATG
GTGTGTGGTT ACATCTTCGA GTGGGCCTCC TGCATCACGT CCTACACCCA CCGTGACTAC
ATGGTGTCCA ACCCATCCCT GATCACCAAG CAGATGCTGA CCTTCTACAG CGGGGACACC
                                                                                                   300
                                                                                                   360
                                                                                                   420
           GACCAGGGCC AGGAGCTGAC CCGCCTCTGG GACCGCGTCA TGATTGAGCA AGAATGCTGT
                                                                                                    480
           GGCACATCTG GTCCCATGGA CTGGGTGAAC TTCACGTCAG CCTTCCGGGC GGCCACTCCG
                                                                                                    540
  75
           GAGGTGGTGT TCCCCTGGCC CCCACTGTGC TGTCGCCGGA CGGGAAACTT CATCCCCCTC AACGAGGAGG GCTGCCGCCT GGGGCACATG GACTACCTGT TCACCAAGGG CTGCTTCGAA
                                                                                                    600
                                                                                                    660
           CACATOGGCC ACGCCATOGA CAGCTACACG TGGGGTATCT CGTGGTTTGG GTTTGCCATC
```

```
CTGATGTGGA CGCTCCCGGT CATGCTGATA GCCATGTATT TCTACACCAT GCTCTGAGGG
         ACAGGAGGG AAGGCAACAT ACACACCCCG GACTCCTCCG CATCCTCCTC CTGCTTCCTC
                                                                                               840
         CGCTGGGCCT GGATGGCTGC CTCACCTCTC ACCTCCCAAC GTCCCTAGCC CTTACGTCCT
                                                                                               900
         TCCACTTCCA AGATCTTTTT CCAGGTTCCT GAGCCCTACT GTGTCTCAGG TGTGCCCTGA
                                                                                               960
 5
         AACCCCAGGG CTTGTGTGCA CATATCCTTA GCCCATCTTT CAAGGGACCT CTCCATGATC 1020
         CCACCTCCCA TTCACAGATA CCTCTTTGT AGCTCTCTA CCTCCTCCTT CATGGCAGGC ATCGCCATTC TTGCTGAACC GTTTGTGATT GCCATTTGAG CTCTGGAAGC CTCTATTGCC
                                                                                              1080
         ATGAGAGTTC TGTCACGGTC ACTTTACTGT CCCCATCATC ACCCAGCACG GGGCTAAGCA 1200
         TATACTAGAT AGTCAATAAA TAA
10
         Seq ID NO: 45 Protein sequence:
         Protein Accession #: NP 008931.1
                                                                               51
15
         MASAAAAEAE KGSPVVVGLL VVGNIIILLS GLSLFAETIW VTADQYRVYP LMGVSGKDDV
         FAGAWIAIFC GFSFFMVASF GVGAALCRRR SMVLTYLVLM LIVYIFECAS CITSYTHRDY
                                                                                                120
         MVSNPSLITK QMLTFYSADT DQGQELTRLW DRVMIEQECC GTSGPMDWVN FTSAFRAATP
                                                                                                180
         EVVFPWPPLC CRRTGNFIPL NEEGCRLGHM DYLFTKGCFE HIGHAIDSYT WGISWFGFAI
20
         LMWTLPVMLI AMYFYTML
         Seg ID NO: 46 DNA sequence
         Nucleic Acid Accession #: NM_006760.1
         Coding sequence: 39..593
25
                                     21
         GAAAGCCTGC CAGCACCTAT TCCACCTCCC AGCCCAGCAT GGCACCCCTG CTGCCCCATCC
         GGACCTTGCC CTTGATCCTG ATTCTGCTGG CTCTGCTGTC CCCAGGGGCT GCAGACCTTCA ACATCTCAAG CCTCTCTGGT CTGCTGTCC CGGCGCTAAC GGAGAGCCTG CTGGTTGCCT TGCCCCCCTG TCACCTCACA GGAGGCAATG CCACACTGAT GGTCCGGAGA GCCAATGACA
                                                                                                120
                                                                                                180
30
                                                                                                240
         GCAAAGTGGT GACGTCCAGC TTTGTGGTGC CTCCGTGCCG TGGGCGCAGG GAACTGGTGA
GTGTGGTGGA CAGTGGTGCT GGCTTCACAG TCACTCGGCT CAGTGCATAC CAGGTGACAA
ACCTCGTGCC AGGAACCAAA TTCTACATTT CCTACCTAGT GAAGAAGGGG ACAGCCACTG
                                                                                                360
                                                                                                420
          AGTCCAGCAG AGAGATCCCA ATGTCCACAC TCCCTCGAAG GAACATGGAA TCCATTGGGC
                                                                                                480
35
         TEGETATGE CCGCACAGGG GGCATGGTGG TCATCACGT GCTGCTCTCT GTCGCCATGT
TCCTGCTGGT GCTGGGCTTC ATCATTGCC TGGCACTGG CTCCCGCAAG TAAGGAGGTC
TGCCCGGAGC AGCAGCTTCT CCAGGAAGCC CAGGGCACCA TCCAGGTCCC CAGCCCACCT
                                                                                                540
                                                                                                600
                                                                                                660
          GCTCCCAGGC CCCAGGCCTG TGGCTCCCTT GGTGCCCTCG CCTCCTCCTC CTGCCCTCCT
                                                                                                720
          CTCCCCTAGA GCCCTCTCCT CCCTCTGTCC CTCTCCTTGC CCCCAGTGCC TCACCTTCCA
                                                                                                780
40
          ACACTCCATT ATTCCTCTCA CCCCACTCCT GTCAGAGTTG ACTTTCCTCC CATTTTACCA
                                                                                                840
          CTTTAAACAC CCCCATAACA ATTCCCCCAT CCTTCAGTGA ACTAAGTCCC TATAATAAAG
                                                                                                900
          GCTGAGGCTG CATCTGCCAA AAAAAAAAAA AA
45
          Seg ID NO: 47 Protein Sequence
          Protein Accession #: NP_006751.1
                                      21
                                                                  41
                                                                                51
                       11
          MAPLLPIRTL PLILILLALL SPGAADFNIS SLSGLLSPAL TESLLVALPP CHLTGGNATL
 50
          MVRRANDSKV VTSSFVVPPC RGRRELVSVV DSGAGFTVTR LSAYQVTNLV PGTKFYISYL
                                                                                                120
          VKKGTATESS REIPMSTLPR RNMESIGLGM ARTGGMVVIT VLLSVAMFLL VLGFIIALAL
                                                                                                 180
 55
          Seq ID NO: 48 DNA sequence
          Nucleic Acid Accession #: EOS sequence
          Coding sequence: 200-2932
                                      21
                                                    31
                        11
 60
           ATTGCTGATG GATCAGTGAG CCTGTGTTCA TGCCAGTGAG CTGCTGTGGC TCAGATACTG
          ATACTITCTT TCCAAACAGC ATAAGAAGTG ATTGAGCCAC AAGTATACTG AAGGAAGGGC
                                                                                                 120
           TCCCTCGAGT TCTGGTGTGA AGAGATAAAT CACCAGTCAC AGACTATGCA CCCGACTGCT
                                                                                                 180
          CCTGTTCAGT CCAGGGAAAA TGAAAGTTGG AGTGCTGTGG CTCATTTCTT TCTTCACCTT CACTGACGGC CACGGTGGCT TCCTGGGGAA AAATGATGGC ATCAAAACAA AAAAAGAACT CATTGTGAAT AAGAAAAAAC ATCTAGGCCC AGTCGAAGAA TATCAGCTGC TGCTTCAGGT
                                                                                                 240
 65
           GACCTATAGA GATTCCAAGG AGAAAAGAGA TTTGAGAAAT TTTCTGAAGC TCTTGAAGCC
                                                                                                 420
           TCCATTATTA TGGTCACATG GGCTAATTAG AATTATCAGA GCAAAGGCTA CCACAGACTG
                                                                                                  480
          CAACAGCCTG AATGAGTCC TGCAGTGTAC CTGTGAAGAC AGCTACACCT GGTTTCCTCC
CTCATGCCTT GATCCCCCAGA ACTGCTACCT TCACACGGCT GGAGCACTCC CAAGCTGTA
ATGTCATCTC AACAACCTCA GCCAGAGTGT CAATTTCTGT GAGAGAACAA AGATTTGGG
                                                                                                  600
  70
                                                                                                  660
           CACTITCAAA ATTAATGAAA GGTITACAAA TGACCTTTTG AATTCATCTT CTGCTATATA
                                                                                                  720
           CTCCAAATAT GCAAATGGAA TTGAAATTCA ACTTAAAAAA GCATATGAAA GAATTCAAGG
           TTTTGAGTCG GTTCAGGTCA CCCAATTTCG AAATGGAAGC ATCGTTGCTG GGTATGAAGT
TGTTGGCTCC AGCAGTGCAT CTGAACTGCT GTCAGCCATT GAACATGTTG CCGAGAAGGC
                                                                                                  900
  75
           TAAGACAGCC CTTCACAAGC TGTTTCCATT AGAAGACGGC TCTTTCAGAG TGTTCGGAAA
                                                                                                  960
           AGCCCAGTGT AATGACATTG TCTTTGGATT TGGGTCCAAG GATGATGAAT ATACCCTGCC
           CTGCAGCAGT GGCTACAGGG GAAACATCAC AGCCAAGTGT GAGTCCTCTG GGTGGCAGGT
```

```
CATCAGGGAG ACTTGTGTGC TCTCTCTGCT TGAAGAACTG AACAAGAATT TCAGTATGAT 1140
            TGTAGGCAAT GCCACTGAGG CAGCTGTGTC ATCCTTCGTG CAAAATCTTT CTGTCATCAT
                                                                                                                               1200
            TCGGCAAAAC CCATCAACCA CAGTGGGGAA TCTGGCTTCG GTGGTGTCGA TTCTGAGCAA
            TEGECARARA CEATCACTA CAGGOCATTI CAGGGTGTCC AATTCAACAA TGGAGGATGT
CATCAGTATA GCTGACAATA TCCTTAATTC AGCCTCAGTA ACCAACTGGA CAGTCTTACT
                                                                                                                               1320
                                                                                                                               1380
  5
            GCGGGAAGAA AAGTATGCCA GCTCACGGTT ACTAGAGACA TTAGAAAACA TCAGCACTCT
                                                                                                                               1440
            GGTGCCTCG ACAGCTCTTC CTCTGAATTT TTCTCGGAAA TTCATTGACT GGAAAGGGAT
TCCAGTGAAC AAAAGCCAAC TCAAAAGGGG TTACAGCTAT CAGATTAAAA TGTGTCCCCA
                                                                                                                               1560
            AAATACATCT ATTCCCATCA GAGGCCGTGT GTTAATTGGG TCAGACCAAT TCCAGAGATC
                                                                                                                               1620
10
            CCTTCCAGAA ACTATTATCA GCATGGCCTC GTTGACTCTG GGGAACATTC TACCCGTTTC
                                                                                                                               1680
            CAAAAATGGA AATGCTCAGG TCAATGGACC TGTGATATCC ACGGTTATTC AAAACTATTC
                                                                                                                                1740
            CATAAATGAA GTTTTCCTAT TTTTTTCCAA GATAGAGTCA AACCTGAGCC AGCCTCATTG
            TGTGTTTTGG GATTTCAGTC ATTTGCAGTG GAACGATGCA GGCTGCCACC TAGTGAATGA
                                                                                                                               1860
            AACTCAAGAC ATCGTGACGT GCCAATGTAC TCACTTGACC TCCTTCTCCA TATTGATGTC
                                                                                                                               1920
            ACCITITGIC CCCICIACAA TCTTCCCCGT TGTAAAATGG ATCACCTATG TGGGACTGGG
                                                                                                                                1980
15
            TATCTCCATT GGAAGTCTCA TTTTATGCCT GATCATCGAG GCTTTGTTTT GGAAGCAGAT
            TAAAAAAAAC CAAACCTCTC ACACAGGTCG TATTTGCATG GTGAACATAG CCCTGTCCCT
CTTGATTGCT GATGTCTGGT TTATTGTTGG TGCCACAGTG GACACCACGG TGAACCCTTC
                                                                                                                                2100
                                                                                                                                2160
            TGGAGTCTGC ACAGCTGCTG TGTTCTTTAC ACACTTCTTC TACCTCTCTT TGTTCTTCTG
                                                                                                                                2220
            GATGCTCATG CTTGGCATCC TGCTGGCTTA CCGGATCATC CTCGTGTTCC ATCACATGGC
CCAGCATTTG ATGATGGCTG TTGGATTTTG CCTGGGTTAT GGGTGCCCTC TCATTATATC
20
             TGTCATTACC ATTGCTGTCA CGCAACCTAG CAATACCTAC AAAAGGAAAG ATGTGTGTTG
                                                                                                                                2400
            GCTTAACTGG TCCAATGGAA GCAAACCACT CCTGGCTTTT GTTGTCCCTG CACTGGCTAT
                                                                                                                                2460
             TGTGGCTGTG AACTTCGTTG TGGTGCTGCT AGTTCTCACA AAGCTCTGGA GGCCGACTGT
             TGGGGAAAGA CTGAGTCGGG ATGACAAGGC CACCATCATC CGCGTGGGGA AGAGCCTCCT
                                                                                                                                2580
25
             CATTCTGACC CCTCTGCTAG GGCTCACCTG GGGCTTTGGA ATAGGAACAA TAGTGGACAG
                                                                                                                                2640
             CCAGAATCTG GCTTGGCATG TTATTTTTGC TTTATCTCAT GCATTCCAGG GATTTTTAT
CTTATGCTTT GGAATACTCT TGGACAGTAA GCTGCGACAA CTTCTGTTCA ACAAGTTGTC
                                                                                                                                2700
                                                                                                                                2760
            2880
30
                                                                                                                                2940
             ATCATAAAAT CAAGAAAAAA TTTCCAGAAC AACTTGACAT TTAGAGACAA ATGTCAATGA
             AGAAATTATG CTCAGTATTC GATCGGGTTT TCTGATTTAG GGGTCTGGGA ATAAAACAAG
             AATGTCTCAG TGGCTTCA
 35
             Seq ID NO: 49 Protein sequence:
             Protein Accession #: EOS sequence
                                                   21
 40
              MKVGVLWLIS FFTFTDGHGG FLGKNDGIKT KKELIVNKKK HLGPVEEYQL LLQVTYRDSK
              EKRDLRNFLK LLKPPLLWSH GLIRIIRAKA TTDCNSLNGV LQCTCEDSYT WFPPSCLDPQ
              NCYLHTAGAL PSCECHLNNL SQSVNFCERT KIWGTFKINE RFTNDLLNSS SAIYSKYANG
                                                                                                                                   180
              IEIQLKKAYE RIQGPESVQV TQFRNGSIVA GYEVVGSSSA SELLSAIEHV AEKAKTALHK
                                                                                                                                   240
              LFPLEDGSFR VFGKAQCNDI VFGFGSKDDE YTLPCSSGYR GNITAKCESS GWQVIRETCV
 45
              LSLLEELNKN FSMIVGNATE AAVSSFVQNL SVIIRQNPST TVGNLASVVS ILSNISSLSL
                                                                                                                                   360
              ASHPRVSNST MEDVISIADN ILNSASVTNW TVLLREEKYA SSRLLETLEN ISTLVPPTAL
                                                                                                                                   420
              PLNFSRKFID WKGIPVNKSQ LKRGYSYQIK MCPQNTSIPI RGRVLIGSDQ FQRSLPETII
                                                                                                                                   480
              SMASLTLGNI LPVSKNGNAQ VNGPVISTVI QNYSINEVFL FFSKIESNLS QPHCVFWDFS
HLQWNDAGCH LVNETQDIVT CQCTHLTSFS ILMSPFVPST IFPVVKWITY VGLGISIGSL
                                                                                                                                    600
  50
              ILCLIIEALF WKQIKKSQTS HTRRICMVNI ALSILIADVW FIVGATVDTT VNPSGVCTAA
VFFTHFFYLS LFFWMLMIGI LLAYRIILVF HHMAQHLMMA VGFCLGYGCP LIISVITIAV
TQPSNTYKRK DVCWLMWSNG SKPLLAFVVP ALAIVAVNFV VVLLVLTKLW RPTVGERLSR
                                                                                                                                   660
                                                                                                                                    720
              DDKATIIRVG KSLLILTPLL GLTWGFGIGT IVDSQNLAWH VIFALLNAFQ GFFILCFGIL
                                                                                                                                    840
               LDSKLRQLLF NKLSALSSWK QTEKQNSSDL SAKPKFSKPF NPLQNKGHYA FSHTGDSSDN
  55
               IMLTOFVSNE
               Seq ID NO: 50 DNA sequence
               Nucleic Acid Accession #: EOS sequence
  60
               Coding sequence: 63-3224
                                                     21
               CAGGAATTTG TGGCGGAGAG GGCAAATAAC TGCGGCTCTC CCGGCGCCCC GATGCTCGCA
               CCATGTCGAG GCGCAAGCAG GCGAAACCCC AGCACATCAA CTCGGAGGAG GACCAGGGCG
                                                                                                                                    120
   65
               AGCAGCAGCC GCAGCAGCAG ACCCCGGAGT TTGCAGATGC GGCCCCAGCG GCGCCCGCGG
               CGGGGGAGCT GGGTGCTCCA GTGAACCACC CAGGGAATGA CGAGGTGGCG AGTGAGGATG
AAGCCACAGT AAAGCGGCTT CGTCGGGAGG AGACGCACGT CTGTGAGAAA TGCTGTGCGG
                                                                                                                                     240
                                                                                                                                     300
               AGGCCACAGT AAAGCGGCTT COTCGGAAG ACACCACAA TTGCACTAAA AATCCACCTG
AGTTCTTCAG CATCTCTGAG TTCCTGGAAC ATAAGAAAAA TTGCACTAAA AATCCACCTG
TCCTCATCAT GAATGACAGC GAGGGGCCTG TGCCTTCAGA AGACCTCTCC GGAGCTGTAC
                                                                                                                                     360
                                                                                                                                     420
   70
                TGAGCCACCA GCCCACCAGT CCCGGCAGTA AGGACTGTCA CAGGGAGAAT GGCGGCAGCT
                                                                                                                                     480
                CAGAGGACAT GAAGGAGAAG CCGGATGCGG AGTCTGTGGT GTACCTAAAG ACAGAGACAG
                                                                                                                                     540
                CCCTGCCACC CACCCCCAG GACATAAGCT ATTTAGCCAA AGGCAAAGTG GCCAACACTA
                                                                                                                                     600
                ATGTGACCT GCAGGCACTA CGGGGCACCA AGGTGCGGGT GAATCAGCGG AGGCGGGATG
CACTCCCTGC CCCGFGCCT GGTGCCAACA GCATCCCGTG GGTCCTCGAG CAGATCTTGT
GTCTGCAGCA GCAGCAGCTA CAGCAGATCC AGCTCACCGA GCAGATCCCGC
ATCCAGGTGA
CAGCAGCTA CAGCAGATCC AGCTCACCGA GCAGATCCCG
CAGCAGCTA CAGCAGATCC AGCTCACCGA GCAGATCCCGC
ATCCAGGTGA
CAGCAGCTA CAGCAGATCC AGCTCACCGA GCAGATCCCAGTGA
CAGCAGCTACACCAGTGA
CAGCAGCTA CAGCAGATCC AGCTCACCGA GCAGATCCCAGTGA
CAGCAGCAGTA CAGCAGATCC AGCTCACCGA GCAGATCCCAGTGA
CAGCAGCAGCTA CAGCAGATCC AGCTCACAGTGA CAGCAGATCCAGCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCAGATCCAGATCCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATC
                                                                                                                                      660
                                                                                                                                     720
    75
                                                                                                                                      780
                ACATGTGGGC CTCCCACGCC CTCCACTCAA GCGGGGCAGG GGCCGACACT CTGAAGACCT
                 TGGGCAGCCA CATGTCTCAG CAGGTTTCTG CAGCTGTGGC TTTGCTCAGC CAGAAAGCTG
```

```
GAAGCCAAGG TCTGTCTCTG GATGCCTTGA AACAAGCCAA GCTACCTCAC GCCAACATCC
       CTTCTGCCAC CAGCTCCCTG TCCCCAGGGC TGGCACCCTT CACTCTGAAG CCGGATGGGA CCCGGGTGCT CCCGAACGTC ATGTCCCGCC TCCCGAGGCC TTTGCTTCCT CAGGCCCCGG
                                                                                   1080
       GCTCGGTGCT CTTCCAGAGC CCTTTCTCCA CTGTGGCGCT AGACACATCC AAGAAAGGGA
                                                                                   1140
       AGGGGAAGCC ACCGAACATC TCCGCGGTGG ATGTCAAACC CAAAGACGAG GCGGCCCTCT
                                                                                   1200
       ACAAGCACAA GTGTAAGTAC TGTAGCAAGG TTTTTGGGAC TGATAGCTCC TTGCAGATCC
                                                                                   1260
       ACCTICGECTE CCACACTIGAS GEGAGACCCT TOGTGTGCTC TGTCTGTGGT CATCGCTTCA CCACCAGGG CAACCTCAAG GTGCACTTTC ACCGACATC CCAGGTGAAG GCAAACCCC
                                                                                   1380
       AGCTGTTTGC CGAGTTCCAG GACAAAGTGG CGGCCGGCAA TGGCATCCCC TATGCACTCT
                                                                                   1440
       CTGTACCTGA CCCCATAGAT GAACCGAGTC TTTCTTTAGA CAGCAAACCT GTCCTTGTAA
                                                                                   1500
10
       CCACCTCTGT AGGGCTACCT CAGAATCTTT CTTCGGGGAC TAATCCCAAG GACCTCACGG
       GTGGCTCCTT GCCCGGTGAC CTGCAGCCTG GGCCTTCTCC AGAAAGTGAG GGTGGACCCA
                                                                                   1620
       CACTCCCTGG GGTGGGACCA AACTATAATT CCCCAAGGGC TGGTGGCTTC CAAGGGAGTG
                                                                                   1680
       GGACCCCTGA GCCAGGGTCA GAGACCCTGA AATTGCAGCA GTTGGTGGAG AACATTGACA
                                                                                   1740
       AGGCCACCAC TGATCCCAAC GAATGTCTCA TTTGCCACCG AGTCTTAAGC TGTCAGAGCT
                                                                                   1800
15
        CCCTCAAGAT GCATTATCGC ACCCACACCG GGGAGAGACC GTTCCAGTGT AAGATCTGTG
        GCCGAGCCTT TTCTACCAAA GGTAACCTGA AGACACACCT TGGGGTTCAC CGAACCAACA
                                                                                   1920
        CATCCATTAA GACGCAGCAT TCGTGCCCCA TCTGCCAGAA GAAGTTCACT AATGCCGTGA
                                                                                   1980
       TGCTGCAGCA ACATATTCGG ATGCACATGG GCGGTCAGAT TCCCAACACG CCCCTGCCAG
                                                                                   2040
       AGAATCCCTG TGACTTTACG GGTTCTGAGC CAATGACCGT GGGTGAGGAAC GGCAGCACCG GCGCTATCTG CCATGATGAT GTCATCGAAA GCATCGATGT AGAGGAAGTC AGCTCCCAGG
                                                                                   2100
20
                                                                                   2160
        AGGCTCCCAG CAGCTCCTCC AAGGTCCCCA CGCCTCTTCC CAGCATCCAC TCGGCATCAC
                                                                                   2220
        CCACGCTAGG GTTTGCCATG ATGGCTTCCT TAGATGCCCC AGGGAAAGTG GGTCCTGCCC
                                                                                   2280
        CTTTTAACCT GCAGCGCCAG GGCAGCAGAG AAAACGGTTC CGTGGAGAGC GATGGCTTGA
       CCAACGACTC ATCCTCGCTG ATGGGAGACC AGGAGTATCA GAGCCGAAGC CCAGATATCC TGGAAACCAC ATCCTTCCAG GCACTCTCCC CGGCCAATAG TCAAGCCGAA AGCATCAAGT
                                                                                   2400
25
                                                                                   2460
        CAAAGTCTCC CGATGCTGGG AGCAAAGCAG AGAGCTCCGA GAACAGCCGC ACTGAGATGG
                                                                                   2520
       AAGGTCGGAG CAGTCTCCCT TCCACGTTTA TCCGAGCCCC GCCGACCTAT GTCAAGGTTG
AAGTTCCTGG CACATTTGTG GGACCCTCGA CATTGTCCCC AGGGATGACC CCTTTGTTAG
                                                                                    2580
                                                                                    2640
        CAGCCCAGCC ACGCCGACAG GCCAAGCAAC ATGGCTGCAC ACGGTGTGGG AAGAACTTCT
                                                                                    2700
30
                                                                                    2760
        CGTCTGCTAG CGCTCTTCAG ATCCACGAGC GGACTCACAC TGGAGAGAAG CCTTTTGTGT
        GCAACATTTG TGGGCGAGCT TTTACCACCA AAGGCAACTT AAAGGTTCAC TACATGACAC
        ACGGGGCGAA CAATAACTCA GCCCGCCGTG GAAGGAAGTT GGCCATCGAG AACACCATGG
                                                                                    2880
        CTCTGTTAGG TACGGACGGA AAAAGAGTCT CAGAAATCTT TCCCAAGGAA ATCCTGGCCC
                                                                                    2940
        CTTCAGTGAA TGTGGACCCT GTTGTGTGGA ACCAGTACAC CAGCATGCTC AATGGCGGTC
                                                                                    3000
35
        TGGCCGTGAA GACCAATGAG ATCTCTGTGA TCCAGAGTGG GGGGGTTCCT ACCCTCCCGG
                                                                                    3060
        TTTCCTTGGG GGCCACCTCC GTTGTGAATA ACGCCACTGT CTCCAAGATG GATGGCTCCC
                                                                                    3120
        AGTCGGGTAT CAGTGCAGAT GTGGAAAAAC CAAGTGCTAC TGACGGCGTT CCCAAACACC
                                                                                    3180
        AGTITICCTCA CTTCCTGGAA GAAAACAAGA TTGCGGTCAG CTAAGGGAGA ACTTGCGTGG
                                                                                    3240
        AAGGAGCAAT GCAGACACAG TGAAATCTCT AGAATCTGCT TTGTTTTGTA AGAACTCATC
                                                                                    3300
40
        TCCTCCTGTT TTCTTTTCT TACTGATATG CAAATGATGT TTACTACGTT GGTTGTGACC 3360
        ACAACCTCAG GCAAGTGCTA CAATCACGAT TGTTGCTATG CTGCTTTGCA AAAAGTTG
        Seq ID NO: 51 Protein sequence:
45
        Protein Accession #: NP_065169.1
        MSRRKQAKPQ HINSEEDQGE QOPQQOTPEF ADAAPAAPAA GELGAPVNHP GNDEVASEDE
        ATVKRLRREE THVCEKCCAE FFSISEFLEH KKNCTKNPPV LIMNDSEGPV PSEDFSGAVL
                                                                                      120
 50
        SHOPTSPGSK DCHRENGGSS EDMKEKPDAE SVVYLKTETA LPPTPQDISY LAKGKVANTN
                                                                                      180
         VTLQALRGTK VAVNQRSADA LPAPVPGANS IPWVLEQILC LQQQQLQQIQ LTEQIRIQVN
                                                                                      240
         MWASHALHSS GAGADTLKTL GSHMSQQVSA AVALLSQKAG SQGLSLDALK QAKLPHANIP
        SATSSLSPGL APPTLKPDGT RVLPNVMSRL PSALLPQAPG SVLFQSPFST VALDTSKKGK
GKPPNISAVD VKPKDEAALY KHKCKYCSKV FGTDSSLQIH LRSHTGERPF VCSVCGHRFT
                                                                                      360
                                                                                      420
 55
        TKGNLKVHFH RHPQVKANPQ LFAEFQDKVA AGNGIPYALS VPDPIDEPSL SLDCKPVLVT
TSVGLPQNLS SGTNPKDLTG GSLPGDLQPG PSPESEGFT LPGVGPNYNS PRAGGFQUSG
TPEPGSETLK LQQLVENIDK ATTDPNECLI CHRVLSCQSS LKMHYRTHTG ERPFQCKICG
                                                                                      480
                                                                                      540
                                                                                      600
         RAFSTKGNLK THLGVHRTNT SIKTOHSCPI CQKKFTNAVM LQQHIRMHMG GQIPNTPLPE
                                                                                      660
         NPCDFTGSEP MTVGENGSTG AICHDDVIES IDVEEVSQE APSSSSKVPT PLPSIHSASP
                                                                                      720
 60
         TLGPAMMASL DAPGKVGPAP FNLQRQGSRE NGSVESDGLT NDSSSLMGDQ EYQSRSPDIL
                                                                                      780
         ETTSFQALSP ANSQAESIKS KSPDAGSKAE SSENSRTEME GRSSLPSTFI RAPPTYVKVE
                                                                                      840
         VPGTFVGPST LSPGMTPLLA AQPRRQAKQH GCTRCGKNFS SASALQIHER THTGEKPFVC
                                                                                      900
         NICGRAFTIK GNLKVHYMTH GANNNSARRG RKLAIENTMA LLGTDGKRVS EIFPKEILAP
                                                                                      960
         SVNVDPVVWN QYTSMLNGGL AVKTNEISVI QSGGVPTLPV SLGATSVVNN ATVSKMDGSQ
 65
         SGISADVEKP SATDGVPKHQ FPHFLEENKI AVS
         Seq ID NO: 52 DNA sequence
         Nucleic Acid Accession #: CAT cluster
 70
                      11
                                  21
                                               31
          TCTAGCATTA AAGGAAGAAA CCCCGTCTTG CAACGAAGGC CTCAAAGAGG TCCAAATATC
         AACTTGCAGA CATAACAAGC AGAGTGTTTC TAAACTGCTC TAAGAAAAGA AAGGTTAAAC
                                                                                       120
         TCTGTGAGTT GAAGGCACAC ATCACAAAGT AGTTTCTGAG AATGATTCTG TCTAGTTTTT
                                                                                      180
 75
          ATTTGAAGAT ATTTCCTTTT CTACTGTTGG CATCAAATCG CTTGAAATCT CCACTTGCAA
                                                                                       240
          ATTCCACAAA AAGAGTGTTT CAAATCTGCT CTGTGTAAAG GGACGTTCCA CTCTGTGAGT
          TGAATACACA CAACACAAGG AAGTTACTGA GAATTCTTCT GTCTAGCATG ATATGAAGAA
                                                                                       360
```

```
ATCCCGTTTC CAACGAAGGC CTCAATGAGG TCTATATATC CACTTGCAGA CTTTACAAAC
        AGAGTGTTTC CTAACTGCTC TATGAAAAGA AAGGTTAAAC TCTGTGGAGT TGAACGCACA
                                                                                                480
        CATCACAAAA GGAGTTTCTG AGAATCATTC TGTCTAGTTT TTTTAGGAAG ATATTTCCTT
                                                                                               540
        TTCTACCGTT GACTTCAAAG CGGCTGAAAT
 5
        Seg ID NO: 53 DNA seguence
        Nucleic Acid Accession #: NM_001910.1
        Coding sequence: 50..1240
10
                                    21
        GGAGAGAAGA AAGGAGGGG CAAGGGAGAA GCTGCTGGTC GGACTCACAA TGAAAACGCT
        CCTTCTTTTG CTGCTGGTGC TCCTGGAGCT GGGAGAGGCC CAAGGATCCC TTCACAGGGT
                                                                                                120
        GCCCCTCAGG AGGCATCCGT CCCTCAAGAA GAAGCTGCGG GCACGGAGCC AGCTCTCTGA
         GTTCTGGAAA TCCCATAATT TGGACATGAT CCAGTTCACC GAGTCCTGCT CAATGGACCA
                                                                                                240
15
         GAGTGCCAAG GAACCCCTCA TCAACTACTT GGATATGGAA TACTTCGGCA CTATCTCCAT
                                                                                                300
         TGGCTCCCCA CCACAGAACT TCACTGTCAT CTTCGACACT GGCTCCTCCA ACCTCTGGGT
                                                                                                360
         CCCCTCTGTG TACTGCACTA GCCCAGCCTG CAAGACGCAC AGCAGGTTCC AGCCTTCCCA
GTCCAGCACA TACAGCCAGC CAGGTCAATC TTTCTCCATT CAGTATGGAA CCGGGAGCTT
GTCCGGGATC ATTGGAGCCG ACCAAGTCTC TGTGGAAGGA CTAACCGTGG TTGGCCAGCA
                                                                                                480
20
                                                                                                540
         GTTTGGAGAA AGTGTCACAG AGCCAGGCCA GACCTTTGTG GATGCAGAGT TTGATGGAAT
                                                                                                600
         TCTGGGCCTG GGATACCCCT CCTTGGCTGT GGGAGGAGTG ACTCCAGTAT TTGACAACAT
         GATGGCTCAG AACCTGGTGG ACTTGCCGAT GTTTTCTGTC TACATGAGCA GTAACCCAGA AGGTGGTGCG GGGAGCGAGC TGATTTTTGG AGGCTACGAC CACTCCCATT TCTCTGGGAG
                                                                                                720
                                                                                                780
         CCTGAATTGG GTCCCAGTCA CCAAGCAAGC TTACTGGCAG ATTGCACTGG ATAACATCCA
                                                                                                840
25
         GGTGGGAGGC ACTGTTATGT TCTGCTCCGA GGGCTGCCAG GCCATTGTGG ACACAGGGAC
         960
                                                                                                1020
                                                                                                1080
         CGTGGATGGA ATGCAGTTCT GCAGCAGTGG CTTTCAAGGA CTTGACATCC ACCCTCCAGC
                                                                                                1140
30
         TGGGCCCCTC TGGATCCTGG GGGATGTCTT CATTCGACAG TTTTACTCAG TCTTTGACCG
                                                                                                1200
         TGGGAATAAC CGTGTGGGAC TGGCCCCAGC AGTCCCCTAA GGAGGGGCCT TGTGTCTGTG
                                                                                                1260
         CCTGCCTGTC TGACAGACCT TGAATATGTT AGGCTGGGGC ATTCTTTACA CCTACAAAAA
                                                                                                1320
         GTTATTTTCC AGAGAATGTA GCTGTTTCCA GGGTTGCAAC TTGAATTAAG ACCAAACAGA
ACATGAGAAT ACACACACAC ACACACATAT ACACACACAC ACACTTCACA CATACACACC
                                                                                                1380
                                                                                                1440
35
         ACTCCCACCA CCGTCATGAT GGAGGAATTA CGTTATACAT TCATATTTT TATTGATTTT
TGATTATGAA AATCAAAAAT TTTCACATTT GATTATGAAA ATCTCCAAAC ATATGCACAA
                                                                                                1500
                                                                                                1560
          GCAGAGATCA TGGTATAATA AATCCCTTTG CAACTCCACT CAGCCCTGAC AACCCATCCA
         CACACGGCCA GGCCTGTTTA TCTACACTGC TGCCCACTCC TCTCTCCAGC TCCACATGCT GTACCTGGAT CATTCTGAAG CAAATTCCGA GCATTACATC ATTTTGTCCA TAAATATTTC
                                                                                                1680
                                                                                                1740
40
         THACATCCT AATATACAA TCGGAATTCA AGCATCTCC ATTGTCCCAC AAATGTTTGG
CTGTTTTTGT AGTTGGATTG TTTGTATTAG GATTCAAGCA AGGCCCATAT ATTGCATTTA
                                                                                                1800
                                                                                                1860
          TTTGAAATGT CTGTAAGTCT CTTTCCATCT ACAGAGTTTA GCACATTTGA ACGTTGCTGG
                                                                                                1920
         TTGAAATCCC GAGGTGTCAT TTGACATGGT TCTCTGAACT TATCTTTCCT ATAAAATGGT AGTTAGATCT GGAGGTCTGA TTTTGTGGCA AAAATACTTC CTAGGTGGTG CTGGGTACTT
                                                                                                1980
                                                                                                 2040
 45
          CTTGTTGCAT CCTGTCAGGA GGCAGATAAT GCTGGTGCCT CTCTATTGGT AATGTTAAGA
CTGCTGGGTG GGTTTGGAGT TCTTGGCTTT AATCATTCAT TACAAAGTTC AGCATTTT
          Seq ID NO: 54 Protein Sequence
 50
          Protein Accession #: NP_001901.1
          MKTLLLLLLV LLELGEAQGS LHRVPLRRHP SLKKKLRARS QLSEFWKSHN LDMIQFTESC
          SMDQSAKEPL INYLDMEYFG TISIGSPPQN FTVIFDTGSS NLWVPSVYCT SPACKTHSRF QPSQSSTYSQ PGQSFSIQYG TGSLSGIIGA DQVSVEGLTV VGQQFGESVT EPFQTFVDAE
                                                                                                 120
 55
                                                                                                 180
          FDGILGLGYP SLAVGGVTPV FDNMMAQNLV DLPMFSVYMS SNPEGGAGSE LIFGGYDHSH
                                                                                                 240
           FSGSLNWVPV TKQAYWQIAL DNIQVGGTVM FCSEGCQAIV DTGTSLITGP SDKIKQLQNA
                                                                                                 300
           IGAAPVDGEY AVECANLNVM PDVTFTINGV PYTLSPTAYT LLDFVDGMQF CSSGFQGLDI
          HPPAGPLWIL GDVFIRQFYS VFDRGNNRVG LAPAVP
 60
           Seq ID NO: 55 DNA sequence
           Nucleic Acid Accession #: NM_018058.1
           Coding sequence: 319..1575
  65
                                                                                 51
           TACGCGCTGC GGGACCGGCA GGGGAACGCC ATCGGGGTCA CAGCCTGCGA CATCGACGGG
GACGGCCGGG AGGAGATCTA CTTCCTCAAC ACCAATAATG CCTTCTCGGG GGTGGCCACG
                                                                                                  120
           TACACCGACA AGTTGTTCAA GTTCCGCAAT AACCGGTGGG AAGACATCCT GAGCGATGAG
GTCAACGTGG CCCGTGGTGT GGCCAGCCTC TTTGCCGGAC GCTCTGTGGC CTGTGTGGAC
  70
                                                                                                  240
           AGAAAGGGCT CTGGACGCTA CTCTATCTAC ATTGCCAATT ACGCCTACGG TAATGTGGGC .
                                                                                                  300
           CCTGATGCCC TCATTGAAAT GGACCCTGAG GCCAGTGACC TCTCCCGGGG CATTCTGGCG
                                                                                                  360
           CTCAGAGATG TGGCTGCTGA GGCTGGGGTC AGCAAATATA CAGGGGGCCG AGGCGTCAGC
           GTGGGCCCCA TCCTCAGCAG CAGTGCCTCG GATATCTTCT GCGACAATGA GAATGGGCCT
                                                                                                  480
  75
           ACTITICTI TCCACAACCG GGCGATGGC ACCTITITG ACGCTGGG CACTGCTGGT GTGGACGACC CCCACCAGCA TCGGCCAGGT GTCGCCCTGG CTGACTTCAA CCGTGATGGC AAAGTGGACA TCGTCTATGG CAACTGGAAT GGCCCCCACC GCCTCATCT GCAAATGAGC
                                                                                                  540
                                                                                                  600
```

720

```
780
       GTCCGCACGG TCATCACCGC CGACTTTGAC AATGACCAGG AGCTGGAGAT CTTCTTCAAC
        AACATTGCCT ACCGCAGCTC CTCAGCCAAC CGCCTCTTCC GCGTCATCCG TAGAGAGCAC
       GGAGACCCCC TCATCGAGGA GCTCAATCCC GGCGACGCCT TGGAGCCTGA GGGCCGGGGC
                                                                                     900
        ACAGGGGGTG TGGTGACCGA CTTCGACGGA GACGGGATGC TGGACCTCAT CTTGTCCCAT
                                                                                     960
                                                                                     1020
        GGAGAGTCCA TGGCTCAGCC GCTGTCCGTC TTCCGGGGCA ATCAGGGCTT CAACAACAAC
        TGGCTGCGAG TGGTGCCACG CACCCGGGTT GGGGCCTTTG CCAGGGGAGC TAAGGTCGTG
                                                                                     1080
        CTCTACACCA AGAAGAGTGG GGCCCACCTG AGGATCATCG ACGGGGGCTC AGGCTACCTG
                                                                                     1140
        TETERGATEG ACCCCTEGC ACACTTTEGC CTEGGGAAGG ATGAAGCCAG CAGTETGGAG
                                                                                     1200
                                                                                     1260
10
        GTGACGTGGC CAGATGGCAA GATGGTGAGC CGGAACGTGG CCAGCGGGGA GATGAACTCA
        GTGCTGGAGA TCCTCTACCC CCGGGATGAG GACACACTTC AGGACCCAGC CCCACTGGAG ACACCAATGA ATGCATCCAG TTCCCATTCG TGTGCCCTCG AGACAAGCCC GTATGTGTCA
                                                                                     1320
                                                                                      1380
        ACACCTATGG AAGCTACAGG TGCCGGACCA ACAAGAAGTG CAGTCGGGGC TACGAGCCCA
                                                                                     1440
        ACGAGGATGG CACAGCCTGC GTGGGGACTC TCGGCCAGTC ACCGGGCCCC CGCCCCACCA
                                                                                     1500
        CCCCCACCGC TGCTGCTGCC ACTGCCGCTG CTGCTGCCGC TGCTGGAGCT GCCACTGCTG CACCGGTCCT CGTAGATGGA GATCTCAATC TGGGGTCGGT GGTTAAGGAG AGCTGCGAGC CCAGCTGCTG AGCAGGGGTG GGACATGAAC CAGCGGATGG AGTCCAGCAG GGGAGTGGGA
                                                                                     1560
15
                                                                                      1620
                                                                                      1680
        AAGTGGGCTT GTGCTGCTGC CTAGACAGTA GGGATGTAAA GGCCTGGGAG CTAGACCCTC
                                                                                      1740
        1800
                                                                                      1860
20
        ATTCCAGTGG GTCTAATGAC CATATCTTAG GACACAGATG TGCCCAGGGA GGTGGTGTCA
                                                                                      1920
        CTGCACAGGA AGTATGAGGA CTTTAGTGTC CTGAGTTCAA ATCCTGATTC AGGAACTCAC
                                                                                      1980
                                                                                      2040
        AAAGCTATGT GACCTTACAC CAGTCACTTA ACTTGTTAGC CATCCATTAT CGCATCTGCA
                                                                                      2100
        AAATGGGGAT TAAGAATAGA ATCTTGGGGT TAGTGTGGAG ATTAGATTAA ATGTATGTAA
        GACACTTGGC ACAAAACCTG GCACATAGTA AAGGCTCAAT AAAAACAAGT GCCTCTCACT
25
        GGGCTTTGTC AACACGTG
        Seg ID NO: 56 Protein Sequence
        Protein Accession #: NP_060528.1
30
                                                                       51
                                              31
                                                           41
                                 21
                     11
        MDPEASDLSR GILALRDVAA EAGVSKYTGG RGVSVGPILS SSASDIFCDN ENGPNFLFHN
        RGDGTFVDAA ASAGVDDPHQ HGRGVALADF NRDGKVDIVY GNWNGPHRLY LQMSTHGKVR
                                                                                      120
         FRDIASPKFS MPSPVRTVIT ADFONDQELE IFFNNIAYRS SSANRLFRVI RREHGDPLIE
                                                                                      180
35
         ELNPGDALEP EGRGTGGVVT DFDGDGMLDL ILSHGESMAQ PLSVFRGNQG FNNNWLRVVP
         RTRVGAFARG AKVVLYTKKS GAHLRIIDGG SGYLCEMEPV AHFGLGKDEA SSVEVTWPDG
         KMVSRNVASG EMNSVLEILY PRDEDTLQDP APLETPMNAS SSHSCALETS PYVSTPMEAT
                                                                                      360
         GAGPTRSAVG ATSPTRMAQP AWGLSASHRA PAPPPPPLLL PLPLLLPLLE LPLLHRSS
40
         Seg ID NO: 57 DNA sequence
         Nucleic Acid Accession #: AJ279016.1
         Coding sequence: 1..1962
45
                                              31
                     11
         ATGTCCAGGA TGTTACCGTT CCTGCTGCTG CTCTGGTTTC TGCCCATCAC TGAGGGGTCC
         CAGCGGGCTG AACCCATGTT CACTGCAGTC ACCAACTCAG TTCTGCCTCC TGACTATGAC
         AGTAATCCCA CCCAGCTCAA CTATGGTGTG GCAGTTACTG ATGTGGACCA TGATGGGGAC
                                                                                      180
         TTTGAGATCG TCGTGGCGGG GTACAATGGA CCCAACCTGG TTCTGAAGTA TGACCGGGCC CAGAAGCGGC TGGTGAACAT CGCGGTCGAT GAGCGCAGCT CACCCTACTA CGCGCTGCGG
                                                                                      240
 50
                                                                                      300
         GACCGGCAGG GGAACGCCAT CGGGGTCACA GCCTGCGACA TCGACGGGGA CGGCCGGGAG
                                                                                       360
         GAGATCTACT TCCTCAACAC CAATAATGCC TTCTCGGGGG TGGCCACGTA CACCGACAAG
                                                                                       420
         TTGTTCAAGT TCCGCAATAA CCGGTGGGAA GACATCCTGA GCGATGAGGT CAACGTGGCC
                                                                                       480
         CGTGGTGTGG CCAGCCTCTT TGCCGGACGC TCTGTGGCCT GTGTGGACAG AAAGGGCTCT
                                                                                       540
 55
         GGACGCTACT CTATCTACAT TGCCAATTAC GCCTACGGTA ATGTGGGCCC TGATGCCCTC
                                                                                       600
         ATTGAAATGG ACCCTGAGGC CAGTGACCTC TCCCGGGGCA TTCTGGCGCT CAGAGATGTG
         GCTGCTGAGG CTGGGGTCAG CAAATATACA GGGGCCCGAG GCGTCAGCGT GGGCCCCATC
                                                                                       720
         CTCAGCAGCA GTGCCTCGGA TATCTTCTGC GACAATGAGA ATGGGCCTAA CTTCCTTTTC
                                                                                       780
         CACAACCGGG GCGATGGCAC CTTTGTGGAC GCTGCGGCCA GTGCTGGTGT GGACGACCCC
                                                                                       840
 60
         CACCAGCATG GGCGAGGTGT CGCCCTGGCT GACTTCAACC GTGATGGCAA AGTGGACATC
         GTCTATGGCA ACTGGAATGG CCCCCACCGC CTCTATCTGC AAATGAGCAC CCATGGGAAG
                                                                                       960
         GTCCGCTTCC GGGACATCGC CTCACCCAAG TTCTCCATGC CCTCCCCTGT CCGCACGGTC
                                                                                       1020
         ATCACCGCCG ACTITGACAA TGACCAGGAG CTGGAGATCT TCTTCAACAA CATTGCCTAC
                                                                                       1080
         ATTACCECC ACTITORCA TOACCAGOR CITATOCGTA GAGAGCACGG AGACCCCTC
CGCAGCTCCT CAGCCAACCG CCTCTTCCGC GTCATCCGTA GAGAGCACGG AGACCCCCTC
ATCGAGGAGC TCAATCCCGG CGACGCCTTG GAGCCTGAGG GCCGGGGCAC AGGGGGTGTG
 65
                                                                                       1200
          GTGACCGACT TCGACGGAGA CGGGATGCTG GACCTCATCT TGTCCCATGG AGAGTCCATG
                                                                                       1260
         GCTCAGCCGC TGTCCGTCTT CCGGGGCAT CAGGGCTTCA ACAACAACTG GCTGCGAGTG
GTGCCACGCA CCCGGTTTGG GGCCTTTGCC AGGGGAGCTA AGGTCGTGCT CTACACCAAG
                                                                                       1320
                                                                                       1380
          AAGAGTGGGG CCCACCTGAG GATCATCGAC GGGGGCTCAG GCTACCTGTG TGAGATGGAG
                                                                                        1440
 70
         CCCGTGGCAC ACTTTGGCCT GGGGAAGGAT GAAGCCAGCA GTGTGGAGGT GACGTGGCCA
GATGGCAAGA TGGTGAGCCG GAACGTGGCC AGCGGGGAGA TGAACTCAGT GCTGGAGATC
                                                                                       1500
                                                                                       1560
          CTCTACCCCC GGGATGAGGA CACACTTCAG GACCCAGCCC CACTGGAGTG TGGCCAAGGA
                                                                                        1620
          TTCTCCCAGC AGGAAAATGG CCATTGCATG GACACCAATG AATGCATCCA GTTCCCATTC
                                                                                        1680
          GTGTGCCCTC GAGACAAGCC CGTATGTGTC AACACCTATG GAAGCTACAG GTGCCGGACC
                                                                                        1740
  75
          AACAAGAAGT GCAGTCGGGG CTACGAGCCC AACGAGGATG GCACAGCCTG CGTGGGGACT
                                                                                        1800
          CTCGGCCAGT CACCGGGCCC CCGCCCACC ACCCCCACCG CTGCTGCTGC CACTGCCGCT
GCTGCTGCCG CTGCTGGAGC TGCCACTGCT GCACCGGTCC TCGTAGATGG AGATCTCAAT
                                                                                        1860
```

ACCCATGGGA AGGTCCGCTT CCGGGACATC GCCTCACCCA AGTTCTCCAT GCCCTCCCCT

1980

```
CTGGGGTCGG TGGTTAAGGA GAGCTGCGAG CCCAGCTGCT GAGCAGGGGT GGGACATGAA
                                                                                       2040
       CCAGCGGATG GAGTCCAGCA GGGGAGTGGG AAAGTGGGCT TGTGCTGCTG CCTAGACAGT
       AGGGATGTAA AGGCCTGGGA GCTAGACCCT CCCCAAGCCC ATCCATGCAC ATTACTTAGC
TAACAATTAG GGAGACTCGT AAGGCCAGGC CCTGTGCTGG GCACATAGCT GTGATCACAG
                                                                                       2160
       CAGACAGGGT CGCTGCCCTG ATGGCGCTTA CATTCCAGTG GGTCTAATGA CCATATCTTA
                                                                                       2220
 5
                                                                                       2280
       GGACACAGAT GTGCCCAGGG AGGTGGTGTC ACTGCACAGG AAGTATGAGG ACTTTAGTGT
       CCTGAGTTCA AATCCTGATT CAGGAACTCA CAAAGCTATG TGACCTTACA CCAGTCACTT
                                                                                       2340
       AACTTGTTAG CCATCCATTA TCGCATCTGC AAAATGGGGA TTAAGAATAG AATCTTGGGG
                                                                                       2400
        TTAGTGTGGA GATTAGATTA AATGTATGTA AGACACTTGG CACAAAACCT GGCACATAGT
                                                                                       2460
       AAAGGCTCAA TAAAAACAAG TGCCTCTCAC TGGGCTTTGT CAACACG
10
        Seq ID NO: 58 Protein Sequence
        Protein Accession #: CAC08451.1
                                                                        51
15
                                                           41
                                 21
        MSRMLPFLLL LWFLPITEGS QRAEPMFTAV TNSVLPPDYD SNPTQLNYGV AVTDVDHDGD
        FEIVYAGYNG PNLVLKYDRA OKRLVNIAVD ERSSFYYALR DROGNAIGVT ACDIDGDGRE
EIYFLNINNA FSGVATYTDK LFKFRNNRWE DILSDEVNVA RGVASLFAGR SVACVDRKGS
                                                                                        120
                                                                                        180
        GRYSIYIANY AYGNVGPDAL IEMDPEASDL SRGILALRDV AAEAGVSKYT GGRGVSVGPI
20
        LSSSASDIFC DNENGPNPLF HNRGDGTFVD AAASAGVDDP HQHGRGVALA DFNRDGKVDI
                                                                                        300
        VYGNWNGPHR LYLQMSTHGK VRFRDIASPK FSMPSPVRTV ITADFDNDQE LEIFFMNIAY
                                                                                        360
        RSSSANRLFR VIRREHGDPL IEELNPGDAL EPEGRGTGGV VTDFDGDGML DLILSHGESM
                                                                                        420
        AQPLSVFRGN QGFNNNWLRV VPRTRFGAFA RGAKVVLYTK KSGAHLRIID GGSGYLCEME
        PVAHFGLGKD EASSVEVTWP DGKMVSRNVA SGEMNSVLEI LYPRDEDTLQ DPAPLECGQG
FSQQENGHCM DTNECIGFPF VCPRDKPVCV NTYGSYRCRT NKKCSRGYEP NEDGTACVGT
                                                                                        540
25
                                                                                        600
        LGQSPGPRPT TPTAAAATAA AAAAAGAATA APVLVDGDLN LGSVVKESCE PSC
        Seq ID NO: 59 DNA sequence
        Nucleic Acid Accession #: FGENESH
30
        Coding sequence: 1..4794
                                                                         51
                                                            41
                                               31
                                  21
        ATGGCGTGTC CGGGAGGACT CCCAGCCCGT TGCTCTGGTT GGATGGGACT GGGTGGGCCC
                                                                                        60
35
         AGCGGCTCCT CCCCAGCATC CCCTCCCCAT TCCTCCTCCA GGTACAATGG ACCCAACCTG
                                                                                        120
         GTTCTGAAGT ATGACCGGGC CCAGAAGCGG CTGGTGAACA TCGCGGTCGA TGAGCGCAGC
                                                                                        180
         TCACCCTACT ACGCGCTGCG GGACCGGCAG GGGAACGCCA TCGGGGTCAC AGCCTGCGAC
                                                                                        240
         ATCGACGGGG ACGGCCGGGA GGAGATCTAC TTCCTCAACA CCAATAATGC CTTCTCGGGC
                                                                                        300
         CACAGCAGCT CAGCGCAGGT CCCTTCTGGG CTCCACAGAA ACAGGCCTGT GCTGAAGCCT
                                                                                        360
 40
         CCACCTACAA CCCCTGCAGG CCTCCTGGGT CTGCCTCCAC TCAGCGGAAG GGACTTTTCC
         TCCTCCCTGG GTCAGGCTTC TCCGGACAGC AGGCAGGAG AGAGGGTGCC GGTTCCCTGC
                                                                                         480
         TGTCGGGGTG GACTGAGACC TACCCATGAA CCAGAACCAT TTCTTCTGAG ACCCAAATCA
                                                                                         540
         GGGGTGGCCA CGTACACCGA CAAGTTGTTC AAGTTCCGCA ATAACCGGTG GGAAGACATC
CTGAGCGATG AGGTCAACGT GGCCCGTGGT GTGGCCAGCC TCTTTGCCGG ACGCTCTGTG
                                                                                         600
 45
         GCCTGTGTGG ACAGAAAGGG CTCTGGACGC TACTCTATCT ACATTGCCAA TTACGCCTAC
                                                                                         720
         GGTAATGTGG GCCCTGATGC CCTCATTGAA ATGGACCCTG AGGCCAGTGA CCTCTCCCGG
                                                                                         780
         GGCATTCTGG CGCTCAGAGA TGTGGCTGCT GAGGCTGGGG TCAGCAAATA TACAGAAGGC
                                                                                         840
         TTCTCCCACA CTGCCTCTCC AAGCATTGGT GAGATATCTG GCAGAACCGA GGAGCGGGAA
GGAGGAGACC CAGAGGAGGC AGATGAGGAG CACAGTGGGG ATGGAAGCAC CAGCCAACTG
                                                                                         960
 50
         TGCCGGCTGG GCTGGAAGGA CGGGCAGTTC AAGGAAGAAG CAGCAGCTTT GGTGGAGGAA
                                                                                         1020
         CAGAGGGAGG CTGGGGCAGC TGGCGTGCCC AGAGGACGTG TTCGAACAGC TCTGCAGACT
                                                                                         1080
         TCCAAAAGCC ATTTGGCTGA CAAGAACCTA TTTGGCCCAC CATGTTACTA TTCTGTCTGC
         GCGCCTTCTC CAGCCCACCC TTTCCCTGCC CGCCAAGCCC CCCAACACTA CCCTGTAGCC
                                                                                         1200
         CCCCTTGTCA CTCAGCTAAT GACACATGGA CGTCTGGCTG GAAAACTAGC CCGGAGTGTC
                                                                                         1260
 55
         CCCCACCCC GAGCCCCAGG AATGGACCCC AAATGTAAGG GCCGCCATGC TGAGCCCGGC
                                                                                         1320
         CTGATGGCTG AGGCTTTGGG CGCGTGGCCA GCGCTCAGCA CCACTGTGGT GCCAGGGGGC
                                                                                         1380
         CTGAGAAGCT GGGAGGAAAG CAGGCAGAAG GGGCAGGCCA TGTCCAGATG TGCACTCAGG
GAGCTGGGAG GTCCCTGGAG CCAAGCCACA CAGCACCTGC CTGCTAGAGA GCTGTATGAC
                                                                                         1440
                                                                                          1500
          CTGGGAGAAC CTCCCATTTT ACAAAGAACA GACGGAGATC CAGGGAGGAG AAGGGACTCG
                                                                                          1560
  60
          CCCAAGGTCA CACAGGAGTG CCATCTAGTG GCCACCATGC CAGCTCTCGG GGGACTCGAG
                                                                                          1620
          GGCCCCGGGA GGGTGGCCAA GCGAGAGATT GGGAGAGAGA CTGGGGCAGT AGGAAGACCA
                                                                                          1680
          CTCTCCCATC CCCTGGTCCC CAACTTCCCC AGCTGCTTGA GGCCTCTTGA AGCCGGGACA
                                                                                          1740
          GTGCCGGGAG CTGCCCTGCC TGGGAATCCT GGGAACTGGG TTCTGGACAT GGCCAAGGCC
                                                                                          1800
         CTGCGGTGGA ACCAGATGGA AAAAGAGGAG GGGAAGATTC ATGAGCCCAGAG
TTTAGGCTCA GGAAAGCACG GGAAGCAGAA TTCCCCCCAG GCTCCTCTGA GGAGCCCTCG
CTGCAGTTCC CCTCAGGCCT CAGAGGCAGC CCTGTCCTCC AGGTGGGCCT GGGGCTTGCT
                                                                                          1860
  65
                                                                                          1920
                                                                                          1980
          TCTGCCACTC ACTGTGGGTC GATGTCTTTT CTAGGGGGCC GAGGCGTCAG CGTGGGCCCC ATCCTCAGCA GCAGTGCCTC GGATATCTTC TGCGACAATG AGAATGGGCC TAACTTCCTT
                                                                                          2040
                                                                                          2100
          TTCCACAACC GGGGCGATGG CACCTTTGTG GACGCTGCGG CCAGTGCTGA ACGTCGTTTA
                                                                                          2160
  70
          GCCTTCATCG TTCACCTCAA ATATCACCTC TGCAGAGATT TTCCTCACTC CCTGTGCCAC
                                                                                          2220
          CTAGCAGAAA CTGGTCCTTC CTCCTCCTGC TGCCCGTGC ATGCACGTCT TCTTCAGGCT
CCACATTGCC ATCATGGTT GTCTATGAGC TTTACAAGGA CCGGGTCACG GTTCTATTCA
                                                                                          2280
                                                                                          2340
          TTCTTGACGC AAGGCTTGGC CTCCAGTGCC CACCGGAGGA CACTCAGCCT CCAGGGTTCT
                                                                                          2400
          CAGGGGGCCC CACCCTGCCT TCTGGCAAGA GCTCCCTGTG TCCTGGGGTC TCTGATCCCC
                                                                                          2460
  75
           ACTGCCTATT ACATTGTCCT GTGGTCTGCC ATCCCAGAGA GCCTGATGAC CCACAGCTAT
                                                                                          2520
           TTGTCCTCTG AAAGAGTCAA CGTGGGTGTG GACGACCCCC ACCAGCATGG GCGAGGTGTC
                                                                                           2580
          GCCCTGGCTG ACTTCAACCG TGATGGCAAA GTGGACATCG TCTATGGCAA CTGGAATGGC
```

2700

```
CCCCACCGCC TCTATCTGCA AATGAGCACC CATGGGAAGG TCCGCTTCCG GGACATCGCC
        TCACCCAAGT TCTCCATGCC CTCCCCTGTC CGCACGGTCA TCACCGCCGA CTTTGACAAT
                                                                                        2760
        GACCAGGAGC TGGAGATCTT CTTCAACAAC ATTGCCTACC GCAGCTCCTC AGCCAACCGC
                                                                                        2820
        CTCTTCCGAT GCTCCATCCT GGCTCGTGGC TCTTCATCCT TGACAGCTGG TGGGAGGAAC
                                                                                        2880
        GGTCAGGGAG AAGGTTTAAG AATCAGAAGG GGAGGGTTCC CAGGGCCAGG GGGTCAGGCC
 5
                                                                                        2940
        AAGGTCAACA CAGGTCCCCT GATGAAGAAA CAGAAAGGAA GGAAGGACGA GGACTGGGCA
                                                                                        3000
        AGAGGCTGTG GGAATGCAGG GCAAAGCCTG GCCAAGGAGC CGGCCTCTGC TATTGCAGGG
                                                                                        3060
                                                                                        3120
        AAAGGGAAGG GAAATGTGGC CCAAAGTGTG CCCAGAACCC AAGCGCCACA AGATACAAAG
        CCACACTACC ACAAAAAGGG GCTACAGGGT CCAATCACTA CCAGGAAAAG GGGCTACGGG
        GTCCAATCAC TACCAGGAAA AGGGGCTACG GGGTCCAATC ACTACCAGGA AAAGGGGCTA
10
                                                                                        3240
        CGGGGTCCAA TCACTACCAG GAAAAGGGGC TACGGGGTCC AATCACTACC AGGAAAAGGG
                                                                                        3300
        GCTACGGGCT CCAATCACTA CCAGGAAAAG GGGCTACAGG GTCCAATCAC TACCAGGAAA
                                                                                        3360
        AGGGGCTACG GGCTCCAATC ACTACCAGGA AAAGGGGCTA CAGGGTCCAA TCACTACCAC
AGAAAGGGC TACGGGCTCC AATCACTACC AGGAAAAGGG GCTACGGGGT CCAATCACTA
                                                                                        3420
                                                                                         3480
        CCAGGAAAG GGGCTACAGG GTCCAATCAC TACCAGGAAA AGGGGCTACG GGGTCCAATC
                                                                                        3540
15
        ACTACCAGGA AAAGGGGCTA CGGGCTCCAA TCACTACCAG GAAAAGGGGC TACGGGGTCC
                                                                                        3600
        AATCACTACC AGGAAAAGGG GCTACAGGGT CCAATCACTA CCAGGAAAAG GGGCTACAGG
                                                                                         3660
        GTCCAATCAC TACCACAGAA AGGGGCTACG GGCTCCAATC ACTACCAGGA AAAGGGGCTA
                                                                                         3720
        CGGGGTCCAA TCACTACCAG GAAAAGGGGC TACGGGCTCC AATCACTACC AGGAAAAGAG
                                                                                        3780
        GCTATGGGGT CCAATCACTA CCAGGAAAAG GGGCTACGGG CTCCAATCAC TACCAGGAAA
                                                                                         3840
20
        AGGGGCTATG GGGTCCAATC ACTACCACAG AAAGGGGCTA CGGGGTCCAA CGTCATCCGT AGAGAGCACG GAGACCCCCT CATCGAGGAG CTCAATCCCG GCGACGCCTT GGAGCCTGAG
                                                                                         3900
                                                                                         3960
        GGCCGGGGCA CAGGGGTGT GGTGACCGAC TTCGACGGAG ACGGGATGCT GGACCTCATC
                                                                                         4020
        TTGTCCCATG GAGAGTCCAT GGCTCAGCCG CTGTCCGTCT TCCGGGGCAA TCAGGGCTTC
                                                                                         40B0
        AACAACAACT GGCTGCGAGT GGTGCCACGC ACCCGGTTTG GGGCCTTTGC CAGGGGAGCT
                                                                                         4140
25
        AAGGTCGTGC TCTACACCAA GAAGAGTGGG GCCCACCTGA GGATCATCGA CGGGGGCTCA
GGCTACCTGT GTGAGATGGA GCCCGTGGCA CACTTTGGCC TGGGGAAGGA TGAAGCCAGC
                                                                                         4200
                                                                                         4260
        AGTGTGGAGG TGACGTGGCC AGATGGCAAG ATGGTGAGCC GGAACGTGGC CAGCGGGGAG
                                                                                         4320
                                                                                         4380
        ATGAACTCAG TGCTGGAGAT CCTCTACCCC CGGGATGAGG ACACACTTCA GGACCCAGCC
         CCACTGGAGT GTGGCCAAGG ATTCTCCCAG CAGGAAAATG GCCATTGCAT GGACACCAAT
                                                                                         4440
30
         GAATGCATCC AGTTCCCATT CGTGTGCCCT CGAGACAAGC CCGTATGTGT CAACACCTAT
                                                                                         4500
         GGAAGCTACA GGTGCCGGAC CAACAAGAAG TGCAGTCGGG GCTACGAGCC CAACGAGGAT
                                                                                         4560
                                                                                         4620
         GGCACAGCCT GCGTGGGTAC TGAGCTAGGC TCTAGGCATA CAATGACGTG GAAACCAAGG
         CCCAAAAAGG AGCTGCAACT TTCCCAAGGC ATCTGCACCC CCGTCTGGTC CTTTTTCCTG
                                                                                          4680
         CCGGGTTGCC GGCTGCTCCT CAAAAGAGCT CAGCTCCAGG CTGCTCCCAG CACCCTTCTC
                                                                                         4740
35
         CAGAAAGCTC CAGGTATTCC AGAAGCCCAA GTGTATGAAC AAGATCAGGA ATAA
         Seg ID NO: 60 Protein Sequence
40
         Protein Accession #: FGENESH
                                                             41
                                                                          51
         MACPGGLPAR CSGWMGLGGP SGSSPASPPH SSSRYNGPNL VLKYDRAQKR LVNIAVDERS
         SPYYALRDRQ GNAIGVTACD IDGDGREEIY FLNTNNAFSG HSSSAQVPSG LHRNRPVLKP
                                                                                          120
45
         PPTTPAGLLG LPPLSGRDFS SSLGQASPDS RQGERVPVPC CRGGLRPTHE PEPFLLRPKS
         GVATYTDKLF KFRNNRWEDI LSDEVNVARG VASLFAGRSV ACVDRKGSGR YSIYIANYAY
                                                                                         240
         GNVGPDALIE MDPEASDLSR GILALRDVAA EAGVSKYTEG FSHTASPSIG EISGRTEERE
                                                                                          300
         GNOVEPUBLIE WINEAGUES GILMUNG KEEAAALVEE QREAGAAGVP RGRVFTALQT
GGDPEEADEE HSGDGSTSQL CRIGWKDGGF KEEAAALVEE QREAGAAGVP RGRVFTALQT
SKEHLADKNL FGPPCYYSVC APSPAHPFPA RQAPQHYPVA PLVTQLMTHG RLAGKLARSV
                                                                                          360
50
         PHPRAPGMDP KCKGRHAEPG LMAEALGAWP ALSTTVVPGG LRSWEESRQK GQAMSRCALR
         ELGGPWSQAT QHLPARELYD LGEPPILQRT DGDPGRRRDS PKVTQECHLV ATMPALGGLE
GPGRVAKREI GRETGAVGRP LSHPLVPNFP SCLRPLEAGT VPGAALPGNP GNWVLDMAKA
                                                                                          540
                                                                                          600
          LAWNOMEKEE GKIHGDHEPR FRLRKAREAE FPPGSSEEPL LQFPSGLRGS PVLQVGLGLA
                                                                                          660
          SATHOGSMSF LGGRGVSVGP ILSSSASDIF CONENGPNFL FHNRGDGTFV DAAASAERRL
                                                                                          720
 55
          AFIVHLKYHL CRDFPHSLCH LAETGPSSSC CPWHARLLQA PHCHHGLSMS FTRTGSRFYS
                                                                                          780
         FLIQGLASSA HRRILSLQGS QGAPPCLLAR APCVLGSLIP TAYYIVLWSA IPESLMTHSY
LSSERVNVGV DDPHQHGRGV ALADFNRDGK VDIVYGNWNG PHRLYLQMST HGKVRFRDIA
                                                                                          840
                                                                                          900
          SPKFSMPSPV RTVITADFDN DQELEIFFNN IAYRSSSANR LFRCSILARG SSSLTAGGRN
          GOGEGLRIRR GGFPGPGGQA KVNTGPLMKK QKGRKDEDWA RGCGNAGQSL AKEPASAIAG
KGKGNVAQSV PRTQAPQDTK PHYHKKGLQG PITTRKRGYG VQSLPGKGAT GSNHYQEKGL
                                                                                          1020
 60
                                                                                          1080
          RGPITTRKRG YGVQSLPGKG ATGSNHYQEK GLQGPITTRK RGYGLQSLPG KGATGSNHYH
                                                                                          1140
          RKGLRAPITT RKRGYGVQSL PGKGATGSNH YQEKGLRGPI TTRKRGYGLQ SLPGKGATGS
                                                                                          1200
          NHYQEKGLQG PITTRKRGYR VQSLPQKGAT GSNHYQEKGL RGPITTRKRG YGLQSLPGKE
                                                                                          1260
          AMGSNHYQEK GLRAPITTRK RGYGVOSLPQ KGATGSNVIR REHGDPLIEE LNPGDALEPE
GRGTGGVVTD PDGDGMLDLI LSHGESMAQP LSVPRGNQGF NNNWLRVVPR TRFGAFARGA
                                                                                          1320
 65
                                                                                          1380
          KVVLYTKKSG AHLRIIDGGS GYLCEMEPVA HFGLGKDEAS SVEVTWPDGK MVSRNVASGE
                                                                                          1440
          MNSVLEILYP RDEDTLQDPA PLECGQGFSQ QENGHCMDTN ECIQFPFVCP RDKPVCVNTY
GSYRCRTNKK CSRGYEPNED GTACVGTELG SRHTMTWKPR PKKELQLSQG ICTPVWSFFL
                                                                                          1500
          PGCRLLLKRA QLQAAPSTLL QKAPGIPEAQ VYEQDQE
 70
          Seq ID NO: 61 DNA sequence
Nucleic Acid Accession #: NM_000584.1
          Coding sequence: 75..374
  75
                                                 31
                                                              41
          AGCAGAGCAC ACAAGCTTCT AGGACAAGAG CCAGGAAGAA ACCACCGGAA GGAACCATCT
                                                                        250
```

	CACTGTGTGT F	AAACATGACT '	ICCAAGCTGG (CCGTGGCTCT (CTTGGCAGCC	TTCCTGATTT	120
	CTGCAGCTCT (TOTGAAGGT	GCAGTTTTGC (CAAGGAGTGC '	FAAAGAACTT	AGATGTCAGT	180
	GCATAAAGAC	ATACTCCAAA	CCTTTCCACC (CCAAATTTAT (CAAAGAACTG	AGAGTGATTG	240
_	AGAGTGGACC A	ACACTGOGCC 7	AACACAGAAA 1	PTATTGTAAA (3CTTTCTGAT	GGAAGAGAGC	300
5	TCTGTCTGGA (CCCAAGGAA	AACTGGGTGC	AGAGGGTTGT	GAGAAGTTT	TTGAAGAGGG	360 420
	CTGAGAATTC I	TAAAAAAT	TCATTCTCTG '	rggratecaa (SAATCAGTGA	AGATGCCAGI TCTACCCTTC	480
	GAAACTTCAA	GCAAATCTAC '	TTCAACACTT	CATGTATTGT	STEGGTCTGT	TGTAGGG11G	540
	CCAGATGCAA	TACAAGATTC	CTGGTTAAAT	TIGAATITCA (CUNTRACACIO	MAIAGIIIII TTA ACTATA	600
10	CATTGTACCA 1	IGAAATATCC	AGAACATACT	TATATGTAAA	SIMIIMIIIM	CCCCACATA	660
10	TACAAATAGC A	CAAATAATTT	CAACCCCCAA	CACAATATCC (TAATTTTAAT	TTCAGGAATT	720
	GAATGGGTTT (AAAATIGAGC	CAMGGGCCAA	CONTENTAL O	AAATGATGG	GACAATAAAT	780
	TTTGCCATAA	CIAGAAIGI '	ACCTCCAAAT	CTCGATTTT	TTTCTGTTAA	ATCTGGCAAC	840
	CCTAGTCTGC	MGICAAAIII . TAGCCAGGAT	CCACAGAGATCC '	TTGTTCCACT	GTGCCTTGGT	TTCTCCTTTA	900
15	THE PROPERTY AND A COURT OF	TATDAAAAA	TAGCCACCAT	CTTACCTCAC .	AGTGATGTIG	TGAGGACATG	960
15	TOCANCONOT!	דידידידינט מ מידיד	TCATCATAAC .	ATAAATTATT '	TTCAAGTGTA	ACTTATTAAC	1020
	COTA TOTA TOTA !	ጥጥምልጥርጥልጥቸ	TATTTAAGCA	TCAAATATTT '	GTGCAAGAAT	TTGGAAAAAT	1080
	ACABOATORA 1	アクスサイススサイン	ATACTTATA	AAGATGTTAT .	AGTAAATTTA	TITTATITIA	1140
	ONTROUBLE A	C A ጥር ጥጥጥጥ ሽ ጥ	TACATABATT	TCAATCAGGG '	TTTTTAGATI	AAACAAAGAA	1200
20	N C N N TOTO COOT	スペペペスペペースス	<u> ጥጥጥር እጥጥጥ</u>	CAGATAAACA .	ACAAATAATT	TITTAGTATA	1260
	ACTACATEAT !	שריים ביים ביים ביים ביים ביים ביים ביים	AATTTTAA	TTGAACTAAC	AATCCTAGTT	TGATACTCCC	1320
	NOTION OF THE PARTY OF THE PART	かかいしい へんしかい	小ごな小ごごかんだい	CCTGTGTTGA	ATTACGGAAT	AATGAGTIAG	1380
	AACTATTAAA	ACAGCCAAAA	CTCCACAGTC	AATATTAGTA	ATTTCTTGCT	GGTTGAAACT	1440 1500
0.5	TGTTTATTAT	GTACAAATAG	ATTCTTATAA	TATTATTTAA	ATGACTGCAT	TITIMAMIAC	1560
25	AAGGCTTTAT	ATTTTTAACT	TTAAGATGTT	TTTATGTGCT	CICCAMAIII	TTTGTTGTCA	1620
	TTCTGATTGT		AAAAGTAAAT	ATGAAACATT	TAAAATATAA	1110110101	
	AAGTAAAAA	AAAAAAAA					
	Seq ID NO:	62 Protoin	Samience				
30	Protein Acc						
50	Process Acc	COBLOIT W. I				,	
	1	11	21	31	41	51	
	ī	1	1	1 .	1	1	
	 MTSKLAVALL	AAFLISAALC	EGAVLPRSAK	ELRCQCIKTY	SKPFHPKFIK	ELRVIESGPH	60
35	CANTELIVKL	SDGRELCLDP	KENWVQRVVE	KFLKRAENS			
	Seq ID NO:	63 DNA sequ	ience				
	Nucleic Aci	d Accession	n#: EOS Bed				
				4			
40	Coding sequ	ence: 52-1	146				
40	Coding sequ	ience: 52-1:	146		41	51	
40	Coding sequ	ience: 52-1:	146 21	31 	1		
40	Coding sequ	11	21 	31 GATCTGAACG	CTGATCCCAT	AATGCATCCT	60
40	Coding sequents of the control of the coding sequents of the coding	11 ATTGTGAGTG	21 ACAGAGCCTG	31 GATCTGAACG	CTGATCCCAT	AATGCATCCT TTCTGTAAAG	120
	Coding sequence of the control of th	11 ATTGTGAGTG	21 ACAGAGCCTG CATCCTACAT	31 GATCTGAACG CTGGCAGATT	CTGATCCCAT CTGTAGCTGG	AATGCATCCT TTCTGTAAAG AGCTGTCACA	120 180
40 45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG	120 180 240
	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGGGG	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT	120 180 240 300
	1 GTTACCCAGC CAAGTGGTCA GTTGGTGGAG TCCATGTGCT ACCAATGGAA	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGT BATTACAGCTG	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT	120 180 240 300 360
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA	31 	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG	120 180 240 300 360 420
	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCG GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACAGCT AATACAGCTG AATGACATGA AATTGTCACAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGI CTGTTCCAAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT	120 180 240 300 360 420 480
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA	31 GATCTGAACG CTGSCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ATTGTCACAA ACGACTGTTC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGAGG CGGTACGACT	120 180 240 300 360 420
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACG CCAAGGTCAC GCACGCTCAC GCACGCTCAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ATTGTCACAA ACGACTGTTC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGACCTT TGGCGTATTAT ATCATTGGAG CGTCACGACT TGTTCCAACG	120 180 240 300 360 420 480 540
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GCACCACTGT CCAACACAACA	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA TCCAACGACA GAGCATTCCA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGCACAA ACGACTGTTC ACGACAACGA ACGACATCC CCAATGCCTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACGGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC TGCCAGGCAC TGCCAGGCAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CCTCACGACT TGTTCCAACG TGTTCCAACG GACATGACT AAGGTGTTCCA	120 180 240 300 360 420 480 540 600
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GCACCACTGT CAACAACAT CAACAACAT CAACGAGCGT CTGTCTCTAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACCCA TCCAACGACA CTCAACGACA CTCCAACGACA CTCCAACGACA CTCTTGTTCCT	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ATGACATGA ACGACTGTTC ACGACAACGA ACGACCATTC CCAGTAGAAA CCAGTGACAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTTCCAAC CAATGAGCAC CTGTTCTGAC CAACACAAC TGCCCAGCCCTAC CCCACCCTAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT TGTTCCAACG GACAATGACT AAGTGTTCCA GACACCATGAA GACACCATGAA GACACTGCAG	120 180 240 300 360 420 480 540 600 660 720 780
45	Coding sequence of the control of th	11	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACCAC TCCAACGACA TCCAACGACA CTCAACGACA CTCTTGTTCCT TTCACCTCAG	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATACAGCTG ACTGCACAAA ACGACTGTTC ACGACAACGA ACGACACTCC CCAATGCCTT CCAGCAGAAA CCATTGTACT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCAT CTGTTCCAAC CAGTACCAG CAGCACCAG CCCACCCAG CTTACACAAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATTAT ATCATTGGAG CGTCACGACT TGTTCCAACG GACAATGACT AAGTGTTCCA GAACCATGAA GAACCATGAA AGACCATGAA	120 180 240 300 360 420 480 540 600 660 720 780 840
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GGACCACTGT CAACAACAAT CCAACGAGGAC CTTCACCATC GGAGAGAACAC CTTCACCATC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA GAGCATTCCA CTCCAACGACA CTCCAACGACA CTTCGTTCCT TTCACCTCAG CACCAGCTCA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGT AATGACATGA ATTGTCACAA ACGACTGTTC ACGACAACGA ACGACCATTC CCAATGCCTT CCAGCAGAAA CCATTGTACT TCGAATAACA	CTGATCCCAT CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG CAATGACGAC CTGTTCCAAC CAACAACAAC TGCCCAGGC CCCCCCTAC CTTACACAAC ATCAACATC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TTGCGGAGG CGTCACGACT CGTCACGACT TGTTCCAACG GGAATGACT AAGTGTTCCA GAACCATGAA GAACCATGCAG AGATGGGAAT ACTGTTCCTA	120 180 240 300 360 420 480 540 600 660 720 780 840 900
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCCC GGAATAGAGG CCCACGTCAC CTAAGCCACTCAC CCAAGGTCAC CCAAGGTCAC CCAAGGTCAC CCACGACACTGT CCACCACTGT CCACCACTGT CCACCACTGT CCACCACTGT CCTCCACCCATC CGGAGGAGAACCC CCAGGGTCTCTAC CGGAGGAGAACCC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA TCCAACGACA CTCAACGACA TCCAACGACA TCCAACGACA TCCAACGACA TCCAACGACA TCCACCACGACA CACACCACCACACACACACACACACACA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT AATACAGCTG AATACAGCTG AATGACATGA ACGACTGATC ACGACAACGA ACGACAACGAT CCAATGCCTT CCAGCAGAAA CCATTGTACT CCAGCAGAAA AAAGGATAACA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGAGGAC CTGTTCTGAC CAACACAAC TGCCCAGCCCTAC CTTACACACAC ATCAAACTCL ATCAAACTCL ATCAGGAGG	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT TGTTCCAACG GACAATGACT AAGTGTTCCA GAACCATGAA GAACCATGAA GAACCATGAA AGACCTGCAG AGATGGGAT ACTGTTCCTA CTGTATTTCT	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
45	Coding sequence of the control of th	INTERPORT OF THE PROPERTY OF T	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA TCCAACGACA TCCAACGACA TTCACTCCAC TTCACTCCAC CACCAGCTCA CACCAGCTCA AGATGGCCTT	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGT AATACAGCTG AATGACATGA ATGACATGA ACGACTGTTC ACGACAACGA ACGACACTGA CCAATGCCTT CCAGCAGAAA CCATTGTACT TGGAATAACA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACACAC TGCCCAGGCC CCACCCTAC CTTACACAAC ATCAACACC ATCTCTGACAG ATCAGAGTAT AAAGTATT AAAAGTAT AAAAGTATT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT TGTTCCAACG GACAATGACT AAGTGTTCCA GAACCATCAA GAACATGCAG AGATGGAAT ACTGTTCCTA ACTGTTCCTT TCTTCAAAAAG	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020
45 50 55	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG GCACCACTGT CAACAACAAT CAACGACGT CTTCTCTTC CTTCTCTAC CTTCACCATC CAGGGTACC CAGGGTACC CAGGGTACC CTTCACCATC CAGGGTCTT CTGTCTTCTCTTC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TCGACGACA GAGCATTCCA CTCAACGACA CTCAACGACA CTTCAACGACA CTTTCACCACCAC CACAGCTCA AGATGCCTCAC CACAGCTCA CAGAGCACA CAGCACACAC CATTTGGTTCCT CAATACCACT CAATACCACT CAATACCACT CTTTTGGTTGTC CTTTTTGGTTGTT CTTTTTTTTT	31 GATCTGAACG CTGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATGACATGA ACGACTGTTC ACGACAACGA ACGACTGTTC CCAATGCCTT CCAGCAGAAA CCATTGTACT TGGAATAACA AAAGGAATCT TGGAATAACA AAAGGAATCT	CTGATCCCAT CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACGAT CTGTTCCAAC CAATCACGAC TGCCAGGGG CCCACCCTAG CTTACACAAC ATCACACAC ATCACACAC ATCACACAC TGCTGGGGGGAG ATCACACAC ATCACACAC ATCACACAC ATTACACACAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGTCGGAGG CGTATAT ATCATTGGAG CGTCACGACT GAACGACT AAGTGTTCCA GAACCATGAC AGAACCATGAA AGACCATGAA AGACCTCCA CAGACTCCAC CGCTTATTTCT ACTGTATTCTA CTGTATTTCT CTTCAAAAAG GCAAAATGCA	120 180 240 300 360 420 480 540 600 720 780 840 900 950 1020
45	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GCACCACTGT CAACAACAAT CAACGAGCGT CTTCACCATC GGAGGAGAACC CTTCACCATC CAGAGTCTC CTACTGTCTCTAC CTACTGTCTCTAC CTACTGTCTCTC CTACTGTCTCTC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACCACA CTCCAACGACA CTCCAACGACA CTTTGTTCCT TTCACCTCAG CACCAGCTCA CACCAGCTCA CACCAGCTCA CACTACCACCA TTTGTTCTC TTCACTTCAG TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTCT TTTGTTTTAG TTTTGGGTGT TTTTGGGTGTC	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT AATACAGCTG AATACAGCTG AATACACAGA ACGACTGTTC ACGACAACGA ACGACAATCCTT CCAGCAGAAAA CCAATGCATT CCAGCAGAAAA ACGACTGTACT ACGAATACTT ACGAATACT AAAGGAATACT AAAGGAATCT ATCATTGCAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAACGACCAGC CAACACAAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTACACACAC CTTACACACAC ATCAAACTC ATCAGACT ATCAGAGT AAAAGTATT TTAAAGGTT TTAAAGGTT AGAAATGTC AGAATAGTC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG GACATGACT AAGTGTTCCAACG GACAATGACT AGACCATCAG GACACTGCAG AGACCATCAG CTGTTCCTA CTGTTCCTA CTGTTCTT CTTCAAAAAG TCTTCAAAAAG TTTATGCCACG	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080
45 50 55	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCCC GGAATAGAGG CCCACGTCAC CCAAGGTCAC GCACCACTGT TTGAGCACCG CCAAGGTCAC CCAACGTCAC CCAACGTCAC CAACGACCATTG CAACAACAAT CCTTCACCATC CGAGGTCTC CAGAGTCTC CAGAGTCTC CAGAGTCTC CAACGACGT CTTCTTCACCATC CAGAGTCTTC CAACTAACGACGT TTCTTGCTCT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA CTCATGTTCT CTATCGGAGG GACCATAGAA TCGACGACA TCCAACGACA TCCAACGACA TCCAACGACA CTTTGTTCCT TTCACCTCAG CACCAGCTCA CACCAGCTCA CACCAGCTCA TCCATGGTTCT TTCACTTCAC	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT AATACAGCTG AATGACATGA ACGACTGTC ACGACACAGA ACGACCATTC ACGACAAGA ACGACTATC CCAATGCCTT CCAGCAGAAA CCATTGTACT TCAGCAGAAAA ACGATTACT AAAAGGAATTC AATCATTCACATACT ATCATCACATACATT ATCACCTCAAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAACCATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCGAC CAACACAAC CTGTCTGAC CTACCAGGC CCCACCCTAC CTTACACAAC ATCAAACTC ATGAAACTC ATGAGGAC ATGAGGAC ATGAGGAGA ATGAAACTC AGAGTGGAGG AGAAAGGTC GGAGTGCAGA	AATGCATCCT TTCTGTAAAG AGCTGTCACA AGTTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT AGACCATGAAC GACCATGAA GACCATGAA GACCATGAA CGACTGCAG AGTGTTCCTA ACTGTTCCTA ACTGTTCCTA CCTTCAAAAG CCTCAAAAG GACAATGAC GACAAATGCA	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1080 1140
45 50 55	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTT TTGAGCACCG CCAACGTCAC GCACCACTGT CAACAACAAT CAACAACAAT CTTCTCTCT CTGTCTCTAC CTGCACCACC CAGAGTCTC TACTGACGGC TACTGACGGC TACTGACGGC AACTAAGTGT AACTAAGTGT AACTAAGGT	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAGG GACCATAGAA TGGGTGGTTCCA TCCAACGACA CTCTACCACGACA CTTTGTTCCT CACCACCACCT CACACGACA CTTTGGTGTC CAATACCACT CAATACCACT CAATACCACT CAATACCACT CAATACCACT CAATACCACT CAATACCACT CAATACCACT CTTTGGGTGTC CAATACCACT CTTTCATTTAGGACT CAGAGACAAA CTTTTGAGACT	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ACGACTGTTC ACGACAACGA ACGACTGTTC CCAGCAGAAA CCAGTGACTT TGGAATACA AAAGGAATCI TGGAATAACA AATCATTGCCA ATCATTGCACAT ATCATTGCACAT CTACGCCAT CTACGCACAT CTACGCCAT CTACGCACAT CTACGCACAT CTACGCCAT CTACGCCAT CTACGCACAT CAGCACATT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACAACAAC CCCACCCTAC CCCACCCTAC CTTACACAAC ATCAACAC ATCACACAC ATCAGCTGAGGG TTACACAGC TTACACACAGC TTACACACAGC TTACACACAGC TTACACACAGC TTACACACAGC TTACACACAGC TTACACACAGC TTACACACACACAC TTACACACACACACAC TTACACACAC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGACCTT TGGCGTATTAT ATCATTGGAG CGTCACGACT AGCTGTCCAACG GACAATGACT AAGTGTTCCA GAACATGAA ACTGTTCCTA CGTGTATTTCT CTTCTAAAAAG CGCAAAATGCA TTATGCCACG GAAAATGCA CTGTATTTCT CTTCTAAAAAG CGCAAAATGCA ACTGTACTCAAAAAG AGCTGAACAC	120 180 240 300 360 420 480 540 660 720 780 900 900 1020 1080 1140 1200 1260
45 50 55 60	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGARATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GGACCACTGT CAACAACAAT CAACGAGCTT CTGTCTCTAC CTTCACCATC CAGAGTCAC TTCTTGACCATC CAGAGTCTT TACTGACCGC TTCTTGCTCT AACTAAGTCT AACTAAGTCT AACTAAGTCT AACTAAGTCT AACTAAGCC CAGTGGTGCC CATCAACACC CAGTGGTGCC CAGTGGTGCC CATCAACACC CAGTCAACACC CAGTGGTCC CACCACC CACCACC CACCACC CACCACC CACCAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACTCCA CTCCACGACA CACACGACA CATCCACACCACA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGT AATACAGCTG AATGACATGA ACGACTGTTC ACGACAACGA ACGACTGTTC CCAATGCCTT CCAGCAGAAA CCATTGTACT TGGAATAACA AAAGGAATCT ATCATTGCCAA AGCCTTTCAAA AGCCTTACAT CTACATCCCAT AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGCCTTACATC AGGCTTACATC AGGCTACAAA ATCATCACATC AGGCTACAAAA AGCAAATT AGAGCAAATACAAAAAAAAAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGI CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACAAC CTGTTCTGAC CCACCCTAC CTTACACAAC ATCACACAC ATGACTGAG AAAAGTAT TTAAAGCTT GCCGGGGG GGGGGGAGA TTTCTGTTT GGGTGCAGA TTTCTGTTT CTCACTCCA	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACAACT AGAACTGCACA GAACATGACT AGAACATCAA GAACATCAA CGACATCAA CGACATCCAG CTGTATTCT TCTTCAAAAG TGCAAAATGCA TTATGCCAC TTATGCCAC AGACTGACAG AGATTCATCT ACTGTTCATACA	120 180 240 300 360 420 540 600 650 720 900 900 1020 1080 1140 1200 1260 1320
45 50 55	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAACGACCACTGT CAACGACCACTGT CTTCTCTCTC CTTCTCTCTC CTTCACCATC CAGGTGTCC CAGGTGTCT CAACTACTC CAGGTGTCT CAACTACTC CAGGTGTCT CAACTACGCC CAGGTCTC CAGGTCTC CAGGTCTC CAGGTCTC CAGGTCTC CAGGTCTC CAGTGTCACC CAGGTCTC CAGTGTCACC CAGTGTCACC CAGTGTCACC CAGTGTCACC CAGTGTCACC CACTCTCACCACC CAGTGTCACC CACTCTCACCACC CAGTGTCACC CACTCTCACCACC CACTCTCACCACC CACTCTCACCACC CACTCTCACC CACTCTCACCACC CACTCTCACCACCACC CACTCTCACCACCACCACCACCACCACCACCACCACCACC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTCT GACCATGGGT GACCATGGACA TCCAACGACA TCCAACGACA CTTTGTTCCT TTCACCTCAC CACCACCTCA CACCACCTCA CACCACCTCA CATTGGGTGTC CAATACCACI TTTGGGTGT CAATACCACI TTTGGGTGT TTCATTTAGG	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ACGACTGTC ACGACAACGA ACGACTGTC CCAATGCCTT CCAATGCCTT TGGAATACA AAAGGAATCT TGGAATAACA AATCATTGCCA ATCATTGCACA TATCATTGCCAT TTACGCCCAT CAGGCAACT TTTACGCCCAT CAGGCAACT TTTACGCCAT CAGGCAACT CAGGCAACT TTTACGCCCAT CAGGCAACT CAGGCACAT CAGCCACAT CAGCCAC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC CCACCCAGGCC CCCACCCTAC CCTACCCAGGC ATGAACTGC ATGAACTGC AAGAATACTC AGAATAGTC GGAGTGCAGA TTTCCTGTTT CCCACTCAC TTTCCTTTC CTCACTCCA AAAACTGCCT CTCACTCCA AAACTGCT TTTCTGTTT CTCACTCCA AAACTGCT GTATGTTCT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCAGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT CAGCTCACACG GACAATGACT AAGTGTTCCA GAACCATGAA GAACCATGAA CAGCATCACAG CAGCATCACACAG CAGCATCACACAG CAGCATCACACAG CAGCATCACACAG CAGCATCACACACACACACACACACACACACACACACACA	120 180 240 300 360 420 480 540 660 720 780 900 900 1020 1080 1140 1200 1260
45 50 55 60	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGARTAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG GCACCACGTCAC CCAACGTCAC CCAACGTCAC CCACGTCAC CTTCACCATC CAACGAGCGT CTTCTCTAC CTTCACCATC CAGAGTCTCT CAGAGTCTCT CAGAGTCTCT CAGAGTCTCT CAGAGTCTTC CAGAGTCTTC CAGTGGTGCT CAGTGGTGCT CAGTGGTGCT CAGTGGTGCT CATCAGACGT CATCAGACGT CATCAGACGT CATCAGACGT CATCAGACGT CATCAGACGT CATCAGACGT CATCAGACGT CATTAGACGT CATTAGACG CATTAGACGT CATTAGACG CATTAGACGT CATTAGACGT CATTAGACGT CATTAGACGT CATTAGACGT CATTAGAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTCTC CTATCGGAAG GACCATAGAA TGGGTGGTTCA TCCAACGACA CACACGACA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCACA CACAGCTCA CACAGCACA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCACA CACAGCTCA CACAGCACA	31 GATCTGAACG CTGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATGACATGA ATTGTCACAA ACGACTGTTC CCAATGACTT CCAATGACTT CCAATGACTT CCAATGACTT CCAATGACTT CAATGACTT CCAATGACTT TTGAATAACA AAAGGAATCT TTACGCCCAT TTACGCCCAT TTACGCCCAT TTTTATGCTI TTTTATGCTI TCCCTGGAAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ATAAGCTATT TGTCTGACAG AAATCACCGI CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACAAC CTGTTCTGAC CTGTTCTGAC CTGACCCTAC CTTACACAAC ATCACAACTCC ATGCTGGGGG AAAAGTATT TTAAGCTT TTAAGCTT TTAAGCTT TTTATTTT TCTCTCTTT CTCACTCCA AAACTGGCT TTATGTTCT TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGGGTATAT ATCATTGGAG CGTCACGACT GAACCATGAA GAACCATGAA CGTATTCCA GAACCATGAA CGCACTGCAG CAGACTGCAG CAGACTGCAC CAGACTGCAC CAGACTGCAC CAGACTGCAC CAGACTGCACC CAGACTCTATCC CAGACTCCAC CAGACTCCA	120 180 240 300 360 420 540 600 720 780 840 900 900 1020 1140 1200 1200 1320
45 50 55 60	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GCACACTGT CAACAACAAT CTGTCTCTAC CTGTCTCTAC CTGTCTCTAC TTGTCTCTAC CTACTGACCACT CTACTGACCACT CTACTGACCACT CTACTGACCACT CTACTGACCAC CTTCTGCTCTC AACTAAGTCT CAACTAAGTCT CATGACCGC TTCTTGCTCTC CATGTCTCTC CTACTTCACTC CTACTCACTC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGGTGGTTC GACTACCACA CTCCAACGACA CACAGCACA CACAGCTCA	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATACAGCAG ACGACAACGA ACGACTGTTC CCAATGCCAT CCAATGCCAT CCAATGCCTT CCAAGACAAT AAAGGAATACT ATCATTCACAT AAAGGAATACT TTACGCCAT TTACGCCCAT TTACGCCCAT TTACGCCAT TTACGCAT TTACGCCAT TTACGCAT TTACGCCAT TTACGCAT TTACGCCAT TTACGCCAT TTACGCCAT TTACGCCAT TTACGCCAT TTACGCAT TTACGCAT TTACGCAT TTACGCAT TTACGCAT TTACGCAT TTACGCAT TTACGCAT TT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACAAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTCTGAC CTGTTCTGAC CTGTCTGAC CTGACACTAC CTTACACTC ATCACACTC GGGTGCAGA TTTCTGTTT CTCACTCCA AAACTGGCT GTATGTTCT GTATGCAAT AAACCAGC ATACACAAC AAACTGGCT GTATGTTCT CTCACTCCA AAACTGGCT GTATGTTCT CTCACTCCA AAACTGGCT GTATGTTCT ATACCAAT AAAACCAGC	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT AGACCATCAA GACACTGAA GACACTGAA CGACATGAA CGACATGAA CAGACATCAA CTCTACAAAAG TATTGTCTAAAAAG CAGAAAATGCA TTATGCCACG AGACTGAACAG AGACTGAACAG AGACTGAACAG AGACTGAACAG AGACTGAACAG AGACTGAACAG AGACTGAACAG AATTCTATCT AATCCTTCTG AATCCTACCA	120 180 240 300 360 420 600 660 720 780 840 900 1020 1020 1140 1260 1320 1340
45 50 55 60	Coding sequence of the control of th	INTERPRETARIES 11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCAC GGAATAGAGG CCCACGTCAC CCAAGGTCAC GCACGTCAC GCACACCACTG CCAAGGTCAC GCACGTCAC GCACCACTG CCAACGACCACTG CCACCACTG CAACGAGCGT CTTCACCATC CAGAGTCTTC CAACGAGCGT CTTCACCATC CAGAGTCTTC CAACGAGCGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CATTGACCAC CAGTGGTCC CATTGACCAC CATGTCACCAC CAGTGTTCC CATTTAATG CATGTCAGACGT CATTTAATG CATGTCAGACGT CATGTCAGACG CATGTCAGACGT CATGTCAGACGT CATGTCAGACGT CATGTCAGACGT CATGTCAGACG CATGTCAGACGT CATGTCAGACGT CATGTCAGACGT CATGTCAGACGT CATGTCAGACG CATGTCAGACACACACACACACACACACACACACACACAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTTCT CTATCGGAAG GACCATAGAA TGGATGCTCCA TCCAACGACA CTCAACGACA CAGCACTCCACGACA CAGCACTCCACGACA CATTGTTCCT TTCACCTCAC CACAGCTCA CACAGCTCA CACAGCTCA CATTGTTCT TTTAGGTTTC TTTAGTTTCAT TTTTAGGTTTC TTTTAGGTTTC TTTTAGGTTTC TTTTAGGTTTC AGAAGACAAT CTTTTAGACC ATACTCACT ATACTGGGTT AGTCCTAAT: AATATGAACI AAGAGAGGGG	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ACGACTGTC ACGACAACGA ACGACAATCCT CCAGTGATACAC CCATTCTCT CCAGCAGAAA ACGACTTCAAA ACGACTTCAAA CCATTCAAAA CCATTCAAAA ATCTACATTC CAAGACAATTC CAAGACAATTC CAAGACAATTC CAAGACAATTC CTTACCCCAA CCTTTATAACT CCCTGGAAAA AATCTGTCTTT CCCTGGAAAAA AATCTGTCTTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACATCAGCGT CTGTTCCAAC CAATGAGAC CTGTTCGAC CAACACAAC CTGTCGAC CCCACCCTAC CTTACACAAC ATCAAACTCC AGAGTAGT AGAATAGT GGAGTGCAGA TTTCTGTTT CTCACTCCA AAACCAGC TGTAGCAAAT GGATGTGCAGA TTTCTGTTT CTCACTCCA AAAACCAGC TTAGCAAAT AAAACCAGC TTAGCAAAT AAAACCAGC TTAGAAACCAGC TTAGCAAAT AAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAAAT AAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAACCAGC TTAGAAAACCAGC TTAGAAAT AAAACCAGC TTAGAAAACCAGC TTAGAAACCAGC TTAGAAAACCAGC TTAGAAAAT TTAGAAAACCAGC TTAGAAAAT TTAGAAAT TTAGAA	AATGCATCCT TTCTGTAAAG AGCTGTCACA AATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT GACCATGACT AGACCATGAA GACCATGAA GACCATGAA CGACATGCAG TCTCAAAAAG TCTCAAAAAG GACACTGCAG AGATTATCCAAAG AGACTTCTCT ACTGTATTCT TTTCAAAAAG AGACTTCTATCT ACTGTATATCT	120 180 240 300 360 480 540 600 720 780 900 950 1020 1140 1200 1260 1380 1440 1560 1560
4550556065	Coding sequence of the control of th	INTERPRETATION OF THE PROPERTY	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA TCAACGACA GACCACACACACA TCCAACGACA GAGCATTCCA TCCAACGACA CTCAACGACA CTCAACGACA CACAGCTCA CTTTCACCACCAC CTTTGTTCCT TTCACCACCAC CACAGCTCA AGATGCCAT CTTTGATTCCT CAACACACAC CTTTTGATTCCT CAACACACAC CTTTTTAGCCT CAATACCACT CTTTTTTTAGC CAATACCACT CTTTTTTTTTT	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATGACATGA ACGACTGTC CCAGACAAAA ACGACTGTC CCAGACAAAA CCATTGTACA AAAGGAATCI CAAGCAATCA AAAGGAATCI ATCATTGCCA AAGCAATCA TTACGCCAA ACGACTATTAC ATCATTGCCAA ACGACTATTAC TTACGCCAAT ACTACATCAAAAAAAAAA	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG ACTACCGT TGTTCCAAC CAATGACAAC CAATGACAAC CCACCTAAC CCACCCAAC ATCACACAC ATCACACAC ATCACACAC ATCACACAC TGCTGCGCAG TTTCTGACAC AAAAGTACT TCACTCCAAC TTTCTGACT TTTCTTTTC AGAATAGTC TGAGTGCAGAC TTTCTATTTC TTTTTTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT TGTTCCAACG GAACATGAAC CACTGTCCA GAACATGCAG CAGACTGCAG CAGACTTCCAAAAG CAGACTCCAC CAGACTCCAC CAGACTCCAC CAGACTCCAC CAGACTCCAC CAGACTCCAC CAGACTCCACAC CAGACTCCACAC CAGACTCCACAC CAGACTCCACAC CAGACTCCACAC CAGACTCCACAC CACTTCCAAATG CACTTCCAAATG CTCCAGAGG CTCCGTGGGGA	120 180 240 360 420 480 540 660 720 780 900 960 1080 1140 1260 1380 1560 1560 1560 1680
45 50 55 60	Coding sequence of the control of th	Ince: 52-1: 11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGARTAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC CAACGAGGTCAC CTTCACCATC CTTCACCATC CTTCTCTCACCATC CAGAGTCTTC TACTGACGAG TTCTTGCTCTC AACTAAGTCT AAGTCCAAG CAGTGTGCC TTCTTGCTCT ACTACAAGC TTCTTGCTCT ATCATCAAGC TTTTTACCAAGC TTTTTACTCTC TTTTTACTCTC TTTTTTCTCTC TTTTTTCTCTC TTTTTTCTCTC TTTTTT	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA ATCTGTCACA GACCACACACA GACCACACACA CTCAACGACA GAGCATTCCA TCCAACGACA CATCCTACGACA CACACGACA CACACGACA CACACGACA CACACGACA CACACGCCA CACACGACA CACACGCCCA CACACGACA CACACGCCCA CACACGCCCCA CACACGCCCA CACACGCCCCA CACACGCCCA CACACGCCA CACACGCCCA CACACGCCA CACACGCCCA CACACGCCCA CACACGCCA CACACCAC CACACGCCA CACACCAC CACACCAC CACACCAC CACACCAC CACACCAC	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGT AATACAGCTG AATGACAGA ACGACTGTTC CCAATGACAA ACGACATTC CCAATGACAA ACGACATTC CCAATGACAA ACGACATTC CAATGACAA AAAGGAATCT ATCATTGCAA AAAGGAATACT TTACGCCAT TTACGCCAT TTTATACT TTTTATGCTI ACTTTATACT ATCTTTTTTATGCTI ATCTTTTTTATGCTI ATCTTTTTTTATGCTI ATCTTTTTTTATGCTI ATCTTTTTTTATGCTI ATCTTTTTTTTATGCTI ATCTTTTTTTTTATGCTI ATCTTTTTTTTTATGCTI ATCTTTTTTTTTTTTTTATGCTI ATCTTTTTTTTTTTTTTTTATGCTI ATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCCAAAATGG AAATCACCGI CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACAAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTGTTCTGAC CTACACACAC ATCAAACTCC ATCACACAC ATCAAACTCC GGGTGCAGA TTTCTGTTT CTCACTCCA AAAACTACTCG GTGTGTTTCTGTTT CTCACTCCA AAAACTACTCTGAC AAAACTACTTTTTTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACACT CGTCACACT AGACCATCAA GAACCATCAA GAACCATCAA CGACCATCAA CTCTACAAAAG TATTGTCTAAAAAG TATTGTCTAAAAAG AGACATCAAAAAG AGACATCAAAAAG AGACATCAAAAAG AGACATCAAAAAG AGACATCAAAAAG AATTCTATCT ACTGTGTATATCACT ACTGTGTATA AATCCTTCTG TTTAGACCCC AACTCTATCTAC AATCCAACGT ACTCCAAAGG ATCCAACGT ACTCCAAAGG ATCCAACGT ACTCCAAAGG ATCCAACGT ACTCCAAAGG ATCCCACGG AATCCAACGT ACTCCCAAGGG AATTCCAAAGG AATCCAACGT ACTCCCAAGGG AATTCCAAAGG AATCCAACGT AATC	120 180 240 300 360 420 540 660 720 780 960 1020 1140 1200 1320 1380 1440 1560 1620 1620 1740
4550556065	Coding sequence of the control of th	INTERPRETARIES 11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG GCACACTCAC CAAGGTCAC CAACGACACT CTACCACAC CTTCACCAC CAGAGTCTIC CAACGAGCGT CTACTGACGAC CTTCACCAC CAGAGTCTIC CAACGAGCTCT CAACGAGCTCT CAACGAGCTCT CAACGAGCTCT CAACGAGCTCT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTGT CAACTAAGTCT CAACTACTC CTTACTCTCT CTTACTCTCT CTTACACTC CTTAGGAAGCA CTTATGATTTC CTTAGGAAGCA CTTATGTTTTC CTTTGCAAGCAC CTTATGTTTTC CTTTGCAAGCAC CTTATGTTTTC CTTTGCAAGCAC CTTATGTTTTC CAGCTCTC CTTAGGAAGCAC CTTATGTTTTC CAGGCTCTCC CTTAGGAAGCAC CTTATGTTTTC CAGGCTCTCC CTTAGGAAGCAC CTTATGTTTTC CTCTCTC CTTTGCAACTC CTTTTCTCTC CTTTTCCTCC CTTTTCCTCC CTTTTCCTCC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA ATCTGTCACA ATCTGTCACA ATCTGTCTC CTATGTCT CTATCGGAAG GACCATAGAA TGGATGCTCCA TCCAACGACA CTCCAACGACA ACACGACACA CTCCACGACA TCCAACGACA TCCAACGACA TCTACTCAC TTCACCTCAG AGAGACACA TTTTAGGCTTC TTTTAGACCC AGAGAGACACA TTTTAGACCC ATACTGGGTT ATACTGGGTT AATACTGGGT AATACTGGT AATACT	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACAGCT AATACAGCTG AATGACATGA ACGACTGTC CCAGCAGAACA CCATTGTACT CCAGCAGAAAA CCATTGTACT CCAGCAGAAAAT CTACATTCACAT ATCATTGCAT ATCATTGCAT ATCATTGCAT CAGGATAACT TTACGCCCAT CCAGGAAAAT CTTATACTCT TTTTTACTCT ATCTTGTTT ATCTCTTGTTT AATCGTCGGC TTTTTTTTTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG GCCAAAATGG ATACCGT TGTCTGACAG AAATCACCGT CTGTTCCAAC CAATGACGAC CTGTTCCGAC CAACACCAAC CTTACACAAC CTTACACAAC CTTACACAAC ATCAAACTCIC ATGACTGGAG AAAAGTATT TTTAAAGCTT GCACCCAAC GAGTGCAGAC TTTCTGTTT CTCACTCCAA AAAACTGGT GTATGTTCT ATAGCAAAT TTTTTTTCT TTTTATTCC TTAACCAAC TTTTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT GACACATGAC GACACTGCAG GACACTGCAG GACACTGCAG GACACTGCAG AGATGGAT TTCTACAAAAG TCTTCTAT TTCTAAAAAG GACACTGCACG AGATTTCATCT TTTAGCCACG AGATTTCATCT ACTTGTATTCT ACTTGTATCT TTTAGCCACG AGATTTCATCT ACTTGTATCT CTTCAAAATG TTTAGCCCC AATCTGTATC AATCCAACGT ACTTCCAAATG CTCCCAGGGGA AATGCAAATG CTCCCAGGGGGA AATGTGATGC	120 180 240 300 360 420 600 720 780 900 900 1020 1140 1200 1320 1440 1500 1680 1780
4550556065	Coding sequence of the control of th	INTERPRETATION INTERPRETATION INTERPRETATION AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACGC GCACCACTGT CAACAACAAT CAACAACAAT CTTCACCATC CAACAACAAT CAACAACGACC TTCATCGCC TACTGACGGC AACTAAGGTCT AACTAAGGTCT AACTAAGGTCT AACTAAGACGT TACTAGACGC TTTTCTTCTCTC TTTTTCTTCTCTC TTTTTCTTC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA CTCATGTCT GACCATAGAA TGGGTGGTTCCA TCCAACGACA CTCAACGACA CTTTGTTCCT TTCACCTCAG CACAGCCAC CTTTGGTTCCT CAACACAC CTTTGGTTCCT CAACACACC AGAGGCCAT CAACACCACC CTTTGGTTCCT CAACACACC AGAGGCCAT CTTCATTAGCCC AGAAGACAAT CTTTGAGAGT CTTTGAGAGT AGAAGACAAT CTTTGAGAGT AGAAGACAAT CTTTAGAGCC AACACCTC AAAATATGAACC AAGAGATAG AAGAGATTC AAAAGGTTTC AAAGGTTTC AAATTGAGCC ACAGGTTTAGA ATTGGGGTAA	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATACAGCTG AATACACTGA ACGACTGTTC ACGACAACGA ACGACTGTTC CCAGCAGAAA CCATTGTACT TGGAATACA AAAGGAATCT TTACGCCCAT CAGCAATC ATCATTGCCCAT CTTATACATTC TTACGCCAT CCAGCAGAAA ATCTTCTTATACTT CCCTGGAAAC ATCTTCTTTTACCTTT ATCTCTTTTTACCTTT ATCTCTTTTTACCTTT ATCTCTTGTTT ATCTCTTGTTT ATCTCTTGTTT ATCTCTTGTTT AATCGTGGGC CTGTTTTTCC CTTGTTTTTCC CTGTTTTTCC CTTTTTTCC CTGTTTTTCC CTTTTTTCC CTTTTTTCC CTTTTTTCC CTTTTTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGAGA CTGTTCCAAC CAATGAGAC CTGTTCGAC CAACACAAC CTGTCTGGAC CTGTCTGGAC CTGTCTGGAC CTGTCGAC CTTACACAAC ATCAACTCG ATGAGACTC TTACACAGA TTACACAGC TTTCTGTT TCAGTCCA ACACTGCCT GGATGACACAC TTTCTGTTT CTACTCCA AAAACTGCCT TTTTTATTTC ATAGCACTGC TTTTTTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCAGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT TGTTCCAACG GAACCATGACT AAGTGTTCCA GAACCATGACT CTTCAAAAAG CGCAACTGCAG CAGACATGACT TATTGCACG AGATGACATCACACG AGATGACACACGACA TTATTGCACG AGATGAACAG AGATTCATCT AACTGTGTATA ACTGTGTATT TTTATGCCCC AACTGTCACACG TTTATGCCCC AACTGCACACG TTTATGACCCC AACTTCACACGT TTTAGACCCC AACTTCAAAAG TTCATCTCT CTTCAAAATG TTTAGACCCC AACTTCAACG TTTAGACCCC AACTTCAACG TTCACAAGT CTTCCAAAATG CTTCCAAATG CTCCCAAATG CTCCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG	120 180 240 360 420 480 540 6650 720 780 960 1080 1140 1250 1380 1560 1560 1560 1680 1740 1860
45 50 55 60 65 70	Coding sequence of the control of th	INTEGRACE: 52-1: 11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGARATGAGGG CCCACGTCAC ATGTCTCTTT TTGAGCACOG CCAAGGTCAC GCACCACTGT CAACAACAAT CAACGAGGTCAC CTTCACCATC CAGGGTCAC TTCTTGCCCATC CAGGGTCTC CACTGCCCATC CAGTGTCTCTAC CAGTGTCTCTAC CAGTGTCTCTAC CAGTGTCTCTAC CAGTGTCCTC CAACTAAGTTT CATTCACCAGC CTTCTACCAGC CTTCTACCAGC CTTCTACCAGC CTTTTCTCTCC CAACTAAGTTT CATTCACCAGC CTTTTTCTCTC CTTTTCCTCC CTTTTCCTCC CTTTTCCTCC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA ATCTGTCACA GACCATAGAA GACCATAGAA TGGGTGGTTC GACTACTACA CTCAACGACA GAGCATTCCA CTCAACGACA CACAGCTCA CACAGCTCA CACAGCTCA CACAGCACA CACACACA	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATGACATGA ATGACAAGA ACGACTGTTC CCAGCAGAAA ACGACATGCTT CCAGCAGAAA CCATTGTACT TGGAATAACA AAAGGAATCT TTACGCCCAT TTACGCCCAT TTACGCCCAT TTTTATGCTT AGAGTAACT TTTTATGCTT AGAGTAACT TTTTATGCTT AGAGTAACT TTTTATGCTT AGAGTAACT CCTGGAAAA ATCTTGTCTT TCCTGTGTT AAATCGTGGGG CTGTTTTACG	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGA AAATCACCGI CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACAACAAC ATCACAGCAC ATCACACACAC ATCACACACAC ATCACACACAC TTTACACAAC ATCACACACA	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACACT TGTTCCAACG GACATGACT AGAACTGCAG AGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACTGCAG CTTCAAAAG TTATACCACC AGATTCCTATC ACTGTTCTATCT ACTGTTCTATCT ACTGTTCTATCT ACTGTTCTATCT CTTCAAAAG CAACTCCAACG ACTTCCAACG ACTTCCAACG CTCCCAAGG ACTTCCAACG ACTCCAACG ACTCCAACG ACTCCAACG ACACACACACACACAC ACACACACACACACAC	120 180 240 300 360 480 540 660 720 780 960 1020 1140 1260 1320 1380 1440 1560 1680 1740 1800 1920
4550556065	Coding sequence of the control of th	INTERPRETARIES 11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAAGGTCAC GCACACACAT CTGCACACACACACACACACACACACACACACACACACAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA GACCATAGAA GACCATAGAA TGGGTGGTTC GACTACTCCA GAGCATCCAC CTCAAGACA GAGCATTCCA CACCACCAC CACCACCACA CACCACCACA CACCAC	31 GATCTGAACG CTGCCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATACAGCAG ACGACAACGA ACGACAACGA ACGACAACGA ACGACAACGA ACGACATGTACT CCAATGCATAC AAAGGAATACT ATCATTCACAT AAAGGAATACT TTTACGCCAT AGGTAACATCT TTTATAGCT TTTTATGCT ATCTTTTATATT CCCTGGAAAA ATCTGTCTT ATCTTTTTTATGCT ATCTTTTTTTATGCT ATCTTTTTTTTATGCT ATCTTTTTTTTTT	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG GCAAAATGG AAATCACCGT CTGTTCCAAC AAATCACCGT CTGTTCCAAC CTACCAGC CCACCCTAC ATCACAGAC ATCACAGAC ATCACAGAC ATCACAGAC ATCACAGAC ATCACTCCCAC AGATGATAC CTGATCCCAC AAAACTGGT GTTCACTCCA AAACTGGT CTACTCCAC AAACTGGT CTACTCCACCAC AAACTGGT CTACTCCACCAC AAACTGGT CTACTCCACCAC AAACTGGT CTACTCCACCAC AAACTGGT CTACTCCACCAC AAACTGGT CTACTCCACCAC AAACTGGT CTATGTTAT CTACTCCACCAC AAACTGGT CTATGTTAT CTTTACTCTCCCCCCACCCCCCCCCC	AATGCATCCT TTCTGTAAAG AGCTGTCACA AATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT GACAGACT GACACTGCAG GACAATGACT AGACCATGAA GACCATGAA CGACCATGAA CGACATGAA CGACATGAAC CTGTACTAT CTTCAAAAAG CGCAAATGCA AGTTCACT ACTGTTCTA ACTGTTATAT ACTGTTATA CTTCAAAAG CTCCAACGT ACTGTATATA CTCCAAACGT ACTCCAAACGT AATCCAACGT AATCCAAACGT AATCCAACGT AATCCAAACGT CTCCAAAATG CTCCAAAATG CTCCAAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCCAAATG CTCGAATTATAT CTTCCACGCCT TTCCCCCCCCT TTCCCCCCCCT	120 180 240 300 360 480 540 660 720 780 960 1020 1140 1200 1320 1440 1500 1620 1680 1740 1800 1860 1980
45 50 55 60 65 70	Coding sequence of the control of th	11 ATTGTGAGTG TCTTAAGCCT AGGCAGGTCC GGAATAGAGG CCCACGTCAC ATGTCTCTTT TTGAGCACCG CCAACGACCACTGT CAACGACCACTGT CTTCTCTCTCT CTGTCTCTCACCATC CAACGACGTCAC CAACGACCACTGT CAACTACTCACCATC CAACTACTCACCATC CAGGGTCTC CAACTACTCACCATC CAGGGTCTC CAACTACTCACCATC CAGTGTCACCATC CAGTGTCACCACCACCACCACCACCACCACCACCACCACCACCAC	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA ATCTGTCACA GACCATAGACA TCGAACGACA TCCAACGACA CTCTACTCCT CAACGACA CTTTGTTCCT CAACGACA CTTTGTTCCT CAACGACA CTTTGGTTCCT CAATACCACC CACAGCTTCA CAGAGACACA CTTTGGTGTC CAATACCACT CAAGATACACC CAATACCACT CAAGATTAGACC CAATACCACT CAAGATTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTTAGACC CAAGACTAGACC CAAGACTAGACC CAAGACTACGACC CAATACCACC CAATACCACC CAACACCACC CAATACCACC CAACACCACC CAATACCACC CAATAC	31 GATCTGAACG CTGGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATACAGCTG AATACAGCTG AATACAGCTG AATACACGCT CCAGCAGAAA ACGACTGTTC CCAGCAGAAA CCATTGTACT TGGAATACA AACGACTTC AGGATACT TTACGCCAT TTTATACCTT CCTTTATACT TTTATGCTT TCCTTGTT AATCGTGGG CTGTTTTACC CTGTTTTACCC CTGTTTTACCC CTGTTTTACCC CTGTTTTACCC CTGTTTTACCC CTGTTTTACC CTGTTTTACCC CTGTTTTACCC CTGTTTTACCC CTGTTTTACCC CTCTTTTACCC CTCTTTTACCC CTCTCTCC CTCCCCCC CTCCCCCCC CTCCCCCC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACATGACAGA ACTACTCGAC CTGTTCCAAC CTGTCGACAG CTGTTCCAAC CTTACACAAC CTTACACAAC ATCAACTCG AGAGTATT TTTCTGTT CTCACTCCA AAAACCAGC TGTACACAAC TGCCAGGCG TTTCTGTT CTTACTCCA AAAACCAGC TTTTCTGTT TTTTATTCC ATAACTCGG TTATAGCAAT TTTTTATTCC ATAACTCTGG AGATGTT TTTTTATTCT ATAACTCTGG AGATGTT TTTTATTCT TTTTATCTCT TTTTATCT TTTTATCTCT TTTTATCT TTTTTATCT TTTTTATCT TTTTATCT TTTTTATCT TTTTTATCT TTTTTATCT TTTTTTT TTTTTT TTTTTT TTTTTT TTTTTT TTTT	AATGCATCCT TTCTGTAAAG ACCTGTCACA ACATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACGACT GACCATGACT AGACCATGAA GGACCATGAA CGACCATGAA CGACCATGAA CGACCATGAA CGACCATGAA CGACCATGAA CGACCATGAA CTGTATTTCCTA TCTTCAAAAG CTGTATTTCT ACTGTATTCT ACTGTATACCACG AGATTGAAAAG CTGTAAAAG CTGTAAAAG CTGTAAAAG CTGTAAAAG CTGTAAAAG CTCTCAAAAG CTCTCAAAAG CTCTCAAAAG CTCTCAAAAG CTCCAAAG CTCCAAATG AATTCAACC AAATCAACG AAATGTAATG CTCCAAATG AAATGTAATG CTCCAAATG AAATGTAATG CTCCAAATG AAATGTAATG CTCCAAATG AAATGTAATG CTCCAAATG AAATGTAATG CTCCAAATG AAATGTAATG CTCGGGGGA AAATGTAATG CTCCAAATG AAATGTAATG AATTTTATGT AATTTTTTTAA	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1140 1260 1320 1380 1500 1680 1740 1860 1920 1980
45 50 55 60 65 70	Coding sequence of the control of th	INTERPRETARE STATE OF THE PROPERTY OF THE PROP	21 ACAGAGCCTG CATCCTACAT ATCTGTCACA ATCTGTCACA ATCTGTCAGAG GACCATAGAA TGGGTGGTTCA TCCAACGACA GAGCATTCCA CTCCAACGACA CACAGCACA CACAGCTCA CACAGCTCA CACAGCACA CAGAGAGACA CAGAGAGACA CAGAGAGACA CTTTGATTCCT CAATACCACT CAATACCACACT CAATACCACT CAA	31 GATCTGAACG CTGCAGATT CTACCCTGCC CTATTCACAT GACACACGCT AATGACATGA ATGACAAGA ACGACTGTTC CCAGCAGAAA ACGACTGTTC CCAGTGAAAA CCATTGACT AATGATTACAT CAGCATTACAT AAAGGAATCT TTTACGCCAA ATTACTCAAA ATTACTCAAA ATTACTCAAA ATTACTCAAA ATTACTCATACT TTTTATGCTI ATTACTGCTT ATTACTGCTT ATTACTGTT CCCTGGAAAA AATCGTGTTT CCCTGGAAAA AATCGTGCTT CCCTGGAAAA AATCGTGTTT CCCTGGAAAA ATCTTGTTT CCCTGGAAAA ATCTTGTT CCTGTTTTACCC CTGTTTTTCC CTGTTTTTCC CTGTTTTCCC CTCTTCCGG CTTCCCGG CTTCCCGG CTTCCCGCACT CTCCCCCACT CTCCCCCACT CTCCCCCACT CTCCCCCACT CTCCCCCACT CTCCCCCACT CTCCCCCACT CTCCCCCCCC	CTGATCCCAT CTGTAGCTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGG ACTACAGTGT ATACCAGT CTGTTCCAAC CAATGACGAC CTGTTCTGAC CAACACAAC CTGTTCTGAC CCACCCTAC CTTACCAAC ATCACAGAC ATCACAGAC ATCACAGAC TTTACACAAC ATCACAGAC TTTACACAAC ATCACAGC TTTACTTTT CTCACTCCA AAACTGGCT CTATGTTAT AAAACTCGCT ATACCAAC ATCACCACC ATCACCCAC AAACTGCT TTTTTTTTTT	AATGCATCCT TTCTGTAAAG AGCTGTCACA CATTGTCTGG GGGGGACCTT TGGCGTATAT ATCATTGGAG CGTCACACT TGTTCCAACG GACATGACT AGAACTGCAG AGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACCATCAA CGACTGCAG CTTCAAAAG TTATACCACC AGATTCCTATC ACTGTTCTATCT ACTGTTCTATCT ACTGTTCTATCT ACTGTTCTATCT CTTCAAAAG CAACTCCAACG ACTTCCAACG ACTTCCAACG CTCCCAAGG ACTTCCAACG ACTCCAACG ACTCCAACG ACTCCAACG ACACACACACACACAC ACACACACACACACAC	120 180 240 360 420 480 540 660 720 780 960 1020 1380 1140 1260 1380 1440 1500 1560 1680 1740 1800 1980 2040 2100

```
CCTGGTCCAT TTATGCAATT TTTATTACAC GTGTGTCATG GTGCTAAGCA TTTAAACAAC 2220
        CATCAGGCTT TCTGAACAAA TTTTTAGAAC CAAGAAGATC AGCAATAAAA GAAAAAAAAA AGGCGGGAGT AGGGAAAAGT CTGCCTTTTC TGCCTTATAA GTTACATTGC AGATATAAGT
                                                                                          2340
        GTTTGAAACT CACTAGTTTT GACCCAAATT CTAAATCGCC TCCAAACCAC TTTCATGTTT
                                                                                          2400
        AAAATTGTTT AGGAGGCTAG CGCCGTGGCT CATGCCTGTA ATCCCAGCAC TTTGTGAAGC
                                                                                          2460
        CAAGGTGGGC AGGTAGCTTG AGCCCAGAAG TTTGAGACCA GCCTGGGCAA CATGGCAATA
                                                                                          2520
        2640
        AATTCAATTA GGCTTATTGT AAGGATATCT TTAGTCAGTA TAAAAATATA TAAAAAACAA
                                                                                          2700
                                                                                          2760
        TTATACTAAA CCAGTATAAT TGTTTAGAAG TATATATTTG CCGGCCGGGC ATGGTGGCTC
10
        ATGCCTGTAA TCCCAGGGCT TTGGAAGGCT GAGGTGAGTG GATCACTAGA GGTCGGGAGT
         TTGAGACCAG CCTGACCAAC ATGGAGAAAC ACTGTTCTCT ACTAAGTATA GATTTGCAAG
                                                                                          2880
        GGCTAGATTT GTCAGAAAAG AAACATTTCT ACATGAACAG TTAAGGCTGG GTATTAATTT
                                                                                          2940
                                                                                          3000
        CAATTTCAGT TTGAGTAAAC TCTGAAATAA TTCATGGTTG AGGTTCAGAG CTACCCATAC
        CATAGTTGTC TGGGGCAACA GGATGCTTGC TTTCAGAGGA AACTTTTGT TTTTGTTTTT
                                                                                          3060
15
         GTTTTTTTGA GATGGAGTTT TGCTCTTGTC ACCCAGGCTG AAATGCAATG GCACAATCTT
        GGCTCACTGC AACCTCCACC TCCCAGGTTC AAGTGATTCT CCTGCCTCAG CCTCCTGAGT
AGCTGGGATT ACAGATGCCC GCCACAACGC CCAGCTTATT TTTAGTAGAG ACAGGGTTTC
                                                                                          3180
                                                                                          3240
                                                                                          3300
         ACCATATTGG CCAGGCTGGC CTCCAACTCC TGACCTCAGG TGAGCCACCC GCTTTGGCCT
        CCCCAAAGTG TTGGGATTAC AGGCATAAGC CACCGCGCCC AGCCAGAGGC AACATTTTT
AACGCAGTTA TCATTCTAGG AAATTTATAG GTCCTTTGAA GGAAAATTCT GTGGGCAAAT
20
                                                                                          3420
         AAGATTGTGA TACATGGTAT TTCAGTTTTC CCAAATGTGG CCAGCCCGAT CTGGTCAAAA
                                                                                          3480
        ATTITATITT TIANAGCTA TAGTETCTIT TITTCTTAAA TITTGAGGCAA CATGCACAAA ATTGAGATT TGAAATTAAA GCCAAGATT GTAGTTTCTC TGGAAAGACC TGGCAAGATT
                                                                                          3540
        GGACTGGATT GCTATGTGAC CAGGGTCCCA CTAGATGGGG CTGCATCCTC TAATCCCCAA
ATCCTTATGT TCCCTGCATG CTCACCTTTG TTACCTGCCT GACACCTGTG GGGCTTTTAA
                                                                                          3660
25
                                                                                          3720
         CTTTATGGCA ACTGCCCTAT TCTCTGGATC CTTCCTGAGG ATTTATGATG CGTAATACTC
                                                                                          3780
         CAGGATTG GTTAGCTTTG CTTAACACAT TTCCAAAACT TGTTTGAATG CATGAGTACA
GTCACTAGTA GCATTCTGTG CAGTACAATG TATGGGGGCT TAGGAGTTTM GGGTAGTATA
CAGGATTAGG GATAGGACTT GAGTCTAATC CTAACTCTTA GCAGTTACAC TGGATGACAT
TAGAGCAAAT GGTTCTTTAC GTCTACATTT TCTTCATCTG TAGATGTAAT AATTTCCATA
                                                                                          3900
                                                                                          3960
30
                                                                                          4020
         TCAACTATGA TGTACAGTGC TAATTCCAAT GAAATGTTAC ATGTGAGAAG TCTTTGAAAT
         GTAAAAAACA CTACAGATAC TGAAGCAGTT TGGAGAATTA AAAAACACTA CGAAAACACA 4140
GCTTGGTAAA TAATTTTTTT TTTCTTTTGA GACAGAGTCT GGCTCTGTCA TCCAGGCTAG 4200
35
         AGTGTAGTG
         Seq ID NO: 64 Protein sequence:
         Protein Accession #: NP_036338.1
                                                                            51
                                                               41
 40
         MHPQVVILSL ILHLADSVAG SVKVGGEAGP SVTLPCHYSG AVTSMCWNRG SCSLFTCQNG
                                                                                             60
         IVWINGTHVT YRKDTRYKLL GDLSRRDVSL TIENTAVSDS GVYCCRVEHR GWFNDMKITV
SLEIVPPKVT TTPIVTTVPT VTTVRTSTTV PTTTVPTTT VPTTMSIPT TTVPTTMTVS
                                                                                            120
          TTTSVPTTTS IPTTTSVPVT TTVSTFVPPM PLPRQNHEPV ATSPSSPQPA ETHPTTLQGA
                                                                                            240
 45
          IRREPTSSPL YSYTTDGNDT VTESSDGLWN NNQTQLFLEH SLLTANTTKG IYAGVCISVL
                                                                                            300
          VLLALLGVII AKKYFFKKEV QQLSVSFSSL QIKALQNAVE KEVQAEDNIY IENSLYATD
          Seq ID NO: 65 DNA sequence
          Nucleic Acid Accession #: EOS sequence
 50
          Coding sequence: 2932-4764
          AGRAGARAGE TEGTAGGGG TEGGAGAGGG TACCACAGGG GAGTATGATC TACTTGGGGG CCAGAGAAGG TTCCCTGAGG AAATAGTACC TGAACTTAGA CTTGAAGGAT AACAGATGTT
                                                                                              60
 55
           AACTGGGAGG AGAGAATGTT CCAGGCAGAG GAAAAGGCAT ATGCAAAAGT CCAGCGCCTT
                                                                                             180
           GAAGGAGCAC AGCTGGGGTG CCTGGAGTGA GATGGAGCTG GAAAGATCCA GGTGGAGCTT
                                                                                             240
          GACCTGAAGT ACCAGCCCC ACAGGGCGCT ACTGGAGCCT GGTCAGAGGA GGACTTTGGG
GCACCCATCC AGGACAGCTT CGAGTTAATC ATCCCCAATG TGGGCTTCCA GGAACTGGAG
                                                                                             300
  60
           CCTGGGGAGG CCCAGCTGGA GCGGCGGGCA GTGGCTCTAG GCCGCAGGCT AGCTCGAAGT
                                                                                             420
           CTAGGCCAGC AGGACGATGA AGAGAATGAG CTGGAGCTTG AGCTGGAGCA GGACCTGGAT
                                                                                             480
           GATGAGCCTG ACGTGGAACT TTCTGGTGTT ATGTTCAGCC CCCTCAAGAG CCGCGCCAGG
                                                                                             540
          GCCCTGGCCC ATGGGGATCC CTTCCAGGTG TCCAGAGCTC AAGACTTCCA GGTGGGAGTC
           ACTGTGCTGG AAGCCCAGAA ACTGGTGGGA GTCAACATTA ACCCCTATGT GGCCGTGCAA
                                                                                              660
  65
           GTGGGGGGG AGCGCCGTGT GACCGCCACA CAGCGTGGGA CCAGTTGCCC CTTCTACAAT
                                                                                              720
           GAGTACTTCT TGTTCGAATT TCATGACACG CGGCTTCGTC TCCAAGACTT GCTGCTGGAG
                                                                                              780
           ATCACGGTGA GTGGGGTAGG GGTGACCAGT GTCCTTCAGA GAAGGGGGGA TGAGAAAGCT
GCAGGACTAA CACCACCTTC CCCCAAGGCT TTCCATTCGC AGACCCTCCC CTTTATGGCC
                                                                                              840
                                                                                              900
           ACCCGGATAG GCACCTTCAG GATGGACCTG GGCATCATCT TGGACCAGCC AGGTATGGAA
                                                                                              960
  70
           TCGTCCCCTT ATTGAGACTC TGCACGGACA AGGGCCCTAG AGATTGACCC TGCAGTGACT
                                                                                            1020
           CCECATGEAC CCCTATACAC TCACTTCGGA GAGGGCCATC TCTGGCGGAG GCTGAACTCT
TGGCACTTCC GCCCCTCCCT GCTGAGCCAG AGAAGCCCTG GCCATTGTCC GTCACTCCGA
                                                                                            1080
                                                                                            1140
           TAGCCTCACG GCCACCCTGT GCGTCCCGCC GGTCGCCCCT TACCCCTGGC TCGCCCCTTC
                                                                                            1200
           GCCCTTAGAT GGCCAGTTCT ACCAAAGATG GGTTCCGCTG CATGATCCCC GAGACACCCG
                                                                                            1260
  75
           CGCCGGGACC AAGGGTTTCA TTAAGGTCAC CTTGTCCGTG AGGGCGCGCG GGGACCTGCC
                                                                                             1320
           CCCTCCAATG CTACCCCCGG CCCCAGGGCA CTGTTCGGAC ATCGAGAAGT GAGCCGGGGT
           GAGGTGGGGA GGAGGACATG GATCCGGGGG TGGCCGTGGG GCGCGGATAA GGGGAGGGGC
                                                                                            1440
```

	CGAGATCCCA	GTTTCTCCCC	CCCCGCTCGG	TGCCCCCTCC	CCTAGGAACC	TGCTCCTGCC	1500
	COCCCCCCCCCTC	CCCGCCGAGA	GGCCATGGGC	GCGGCTCCGC	GTGCGCCTGT	ACCGCGCCGA :	1560
	CCCCCCTCCC	GCGCTGCGCC	TGGGGCTGCT	GGGCAGCCTG	GTCCGCGCCC	TGCACGACCA	1620
	CCCCCTCCTG	GTGGAGCCCT	ATGTGCGGGT	GTCTTTCCTG	GGGCAGGAGG	GCGAGACGTC	1680
5	CCTYCNGCGCCC	GAGGCGGCGG	CGCCCGAATG	GAACGAGCAG	CTGAGCTTCG	TGGAGCTCTT	1740
	CCCGCCGCTG	ACGCGCAGCC	TCCGCCTGCA	GCTGCGGGAC	GACGCGCCCC	TGGTCGACGC	1800
	GGCACTCGCT	ACGCACGTGC	CGGACCTGAG	GCGGATCTCC	CATCCGGGCC	GCGCGGGGGG	1860
	GTTTAACCCT	ACCTTCGGCC	CGGCCTGGGT	GCCCCTCTAT	GGCTCGCCCC	CCGGCGCGCGG	1920 1980
10	GCTCCGGGAT	AGTCTTCAAG	GTCTCAACGA	AGGCGTTGGC	CAAGGCATTT	CTCACCCTCC	2040
10	CCGCCTTCTG	CTGGCTGTGT	CCATGCAGGT	GTTGGAAGGG	AGAGCIGAAC	ACABACCTCC	2100
	CCAGGCCCAG	CAGGGGTCCA	CGTTGTCCCG	GCTCACCCGA	CCCXCCCCC	CTCCCCAGGG	2160
	AAGGGATCAG	ACCCCAAAGG CCCCGTGCCA	TOGS TOCGCA	GCACTIGGAC	CTCCTCCCCC	TGCCAGAGAA	2220
	GCCTGAGATC	CCCCGTGCCA	TGGAGGTGGA	TTTCCCTCTC	CTCTTCTAGG	CCACCATGAT	2280
15 .	TGTCCTGGCG	GTGGCCTCCC	ATTICCIGCI	CTTCGAGATC	TCCATTGGTG	TGTGGCCTAG	2340
15	CGACCCCACC	GAGTGCCATT	TCACACCTTA	CITCOAGATE	AGGGGTGTTG	ACTITCAGTC	2400
	CCGAACCCCT	TCTGGAGGAG	CANTECCCC	GAGGGTCCAG	GGCTGGGGAG	GGAACTGAGG	2460
	GCGCAGGCCG	GGAGGCTCAG	CARTIGOGCC	GAGCCAGGCC	AGAGGAGGAG	AAAGAGGAGG	2520
•	A B C B B CTCCC	CACCCATCCT	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGCCCATGGA	CGGCAGTGGG	CCATACTTCT	2580
20	COMPACCOCOT	COUNTRY	ADDITATIONA	TGCATGTGTG	GAGTTGCTGG	GAGGACCACA	2640
20		CCACACCACC	AACTCCCTCC	GCAAAGTGGC	CGAGAGGCTG	GACCAGGGGG	2700
	MOOR OCKCOT	TONONCACTO	CAGCGCAAGC	CGGGGCCTGG	CGCCTGTGCA	CAGCICAAGC	2760
	NOOCN CROCK	A COTA CONCOTO	GCTGGGAGCA	GACAGTTTTG	CCACGGTGCC	GAGCGCAGGA	2820
	001 701 0000	CCCCNNTCCC	CTCCATCCAT	GCCGAGGGAA	ACTCCTGGTG	CACAGCCIGA	2880
25	1 000000000000	TARCCARCGA	CTCCCACTTC	TACGCGGCCT	GAGACGGCGC	AATGTGCAAA	2940
20	* C* * CCTCCC	A CTCCCCA AC	AAGCTCCTGG	CAAAACTGCG	CTTTCTGGCT	GAGGAGGCAC	3000
	000000000000000000000000000000000000000	CCCTCCTCACAC	CTCTCTCCA	AGCTGGAGCT	CTTCCTGCGG	C1000CC100	3060
	GG 1 1 CC 1 1 CC	CANCACCTRCC	ACCITCIGAGO	TGCCCCCGGA	TTTGCTGCCC	GAGCCCTCAG	3120
	~~~~~~~~~	CTCCNCCCTA	CACCGGGACG	GTCCTGGAGC	AGACGCTGAG	CCCICIGIGG	3180
30		MCCOUNTINES IN	CCACTTGATC	GTGGATGGGA	GGAGGGAGCA	CCTGCAGGAG	3240
		MACING AMOAM	<u> </u>	GACCACAATA	AGTTTIGGCCC	CCCCGIGIIC	3300 3360
		CNOTOCOCC	CCCAACCCTA	AAGCTGATGG	AGGACCCATA	CCHACGCCCA	3420
		THE PROPERTY OF THE PROPERTY O	CACCAACCCA	CCCTGGGGGAG	CCGGAGAGCI	CWIIGCCCC	3480
0.5	TTTCAACTCA	TTGAACTAGA	CTACAGTGGC	CGACTTGAGC	CCTCAGTGCC	CAGIGAGGIG	3540
35	GAGCCCCAGG	ATCTGGCACC	CCTGGTTGAG	CCCCACTCTG	TOTTCTCCCC	TCTTAGGGGA	3600
	AACGTGTGCC	CAGTGCTCAG	GGAGTTCCGT	GITGAGGIGC	TTOTACTOGG	GGTGGCTGGG	3660
	CTTGGTCGTG	TGCATCTGCT	CGAGGTGGAG	CAGCCCCAGG	CCCCCAATTT	CACTGAGCTT	3720
	CAAGGTGTGG	AGTCTGAGGT TGACAGTGGT	CCTGGCCAGC	NCACCTCCTC	TCTTCCACCC	CCAGGACTTG	3780
40	GTCAGGCATC	TGACAGTGGT CTTACTTGCA	CTTCAAAGAC	ACAGCICCIC	TGATTGAGCG	CCGGGCCTTT	3840
40	CCGGAGCAGC	TCCTTGTGGG	GCCTCCACTC	CTCCCCCACA	TGCTGCGATT	CACATTTCGG	3900
		**************************************		CACATCCAGG	AGALAGGGA	INIGHTOCCC	3960
					CTGAAGCGGG	INTITION	4020
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	CAAATGGATG	ATCUTGGAGA	TICHGUIGG	4080
45							4140
40		. ~~~~~~~~	* ************************************	CTCAACATCI	. ACAACAGGIC	CCIGMMOONN	4200
							4260
				GGACACCTIL	1100000	CMMOOGCACC	4320
			・ゝへぇへへへれだずん		ACICULUMUM	C1CCC00000	4380
50				2 CTCAGAGTY	. AIGITULAM	COCINCENS	4440
. 50							4500
							4560
							4620 4680
							4740
55							4800
_							4860
	TTGTGTCTC	C AGATCCTATO	3 ATTTCATGG	A AGGGGACCC	P CCCACCCAC	GCCACTGCCA	4920
	ACCAAGACA	T AGCTCAGTG	TCAAGACTT	G GGCTTGGGA	TOGGGATCE	GTAACGAATG	4980
	TCACTTGAC	C GCTTTCTTT	r TTTATGAAA	C AGICICGCI	C CTTCAAGCG	G GTTGGAGTGC A TTCTCCTGCC	5040
60	AGTGGCACG	A TCTCGGCTG	A CTGCAACCT	C CACCICCIO	C ATGTCCAGC	T AATTTTTATA	5100
							5160
							5220
65							
03							
70							
70							
75							
	TACCTGCC	CA CGGAGCGG	BA GGTGAGCG	rc recetted	ar Clookece.	TT TGCCCTGGAG	

```
GAGGCGGAGT TCCGGCAGCC TGCAGTGCTG GTCCTGCAGG ATCCCTGGAG TTGCAGCTAC 6180
        CAGACATGGT GCGTGGGGCC CGGGGCCCCG AGCTCTGCTC TGTGCAGCTG GCCCGCAATG
                                                                                                 6240
                                                                                                 6300
        TGAAGCTGAA GGAGGCAGAG GACGTGGAGC GGGAGGCGCA GGAGGCTCAG GCTGGCAAGA
                                                                                                 6360
        AGAAGCGAAA GCAGAGGAGG AGGAAGGGCC GGCCAGAAGA CCTGGAGTTC ACAGACATGG
        GTGGCAATGT GTACATCCTC ACGGGCAAGG TGGAGGCAGA GTTTGAGCTG CTGACTGTGG
        GREGGARGY GRAATCTC ACGGGAAGG GGCGGAAGCA GCCAGAGCCT CTGGAGAAAC
ACGAGCGCCC CAAAACTTCC TTCAACTGGT TTGTGAACCC GCTGAAGACC TTTGTCTTCT
                                                                                                 6540
                                                                                                 6600
        TCATCTGGCG CCGGTACTGG CGCACCCTGG TGCTGCTGCT ACTGGTGCTG CTCACCGTCT
                                                                                                 6660
        TCCTCCTCCT GGTCTTCTAC ACCATCCCTG GCCAGATCAG CCAGGTCATC TTCCGTCCCC
                                                                                                 6720
10
        TCCACAAGTG ACTCTCGCTG ACCTTGGACA CTCACCCAGG GTGCCAACCC TTCAATGCCT
                                                                                                 6780
        GCTCCTGGAA GTCTTTCTTA CCCATGTGAG CTACCCCAGA GTCTAGTGCT TCCTCTGAAT 6840
        AAACCTATCA CAGCC
15
        Seq ID NO: 66 Protein sequence:
        Protein Accession #: EOS sequence
                                                                   41
                                                                                 51
                                     21
                      11
        20
                                                                                                   120
                                                                                                   180
         SEVEPODLAP LVEPHSGRLS LPPHVCPVLR EFRVEVLFWG LRGLGRVHLL EVEQPQVVLE
        VAGQGVESEV LASYRESPNF TELVRHLTVV FKDTAPLPHP QDLPEQPYLQ PPLSILVIER RAFGHTVLVG SHIVPHMLRF TFRGHEDPPE BEGEMEETGD MMPKGPQGQK SLDPFLAEAG
                                                                                                   360
         ISRQLLKHNF DEDEMDDPGD SDGVNLISMV GEIQDQGEAE VKGTVSPKKA VATLKIYNRS
                                                                                                   420
25
         LKEEFNHFED WLNVFFLYRG QGGQDGGGEE EGSGHLVGKF KGSFLIYPES EAVLFSEPQI
                                                                                                   480
         SRGIPONRPI KLLVRVYVVK ATNLAPADPN GKADPYVVVS AGRERODTKE RYIPKQLNPI
         FGEILELSIS LPAETELTVA VFDHDLVGSD DLIGETHIDL ENRFYSHRA NCGLASQYEV
                                                                                                   600
         WVOOGPOEPF
30
         Seg ID NO: 67 DNA sequence
         Nucleic Acid Accession #: NM_002449.2
         Coding sequence: 223..1026
                                                                   41
35
         GGGGGGGGG GGCAGCCTCT CGGGAAGAGC CAATCAGGGG CGAGCGTCTT CTCGTCGCAC
         GAGGCCCGGC GCGGATTGGC GGCGCGCGTC TCCCACTTCC CCTCGGAGGA AAGGCTCAGC
TCCCAGCGCG CCCCTCCCGT CTCCGCAGCA AAAAAGTTTG AGTCGCCGCT GCCGGGTTGC
                                                                                                    120
         CAGCGGAGTC GCGCGTCGGG AGCTACGTAG GGCAGAGAG TCATGGCTTC TCCGTCCAAA
 40
         GGCAATGACT TGTTTTCGCC CGACGAGGAG GGCCCAGCAG TGGTGGCCGG ACCAGGCCCG
                                                                                                    300
          GGGCTGGGGG GCGCCGCGGG GGCCGCGGAG GAGCGCCGCG TCAAGGTCTC CAGCCTGCCC
                                                                                                    360
          TTCAGCGTGG AGGCGCTCAT GTCCGACAAG AAGCCGCCCA AGGAGTCGCC CGCTGTGCCT
          CCCGAAGGCG CCTCGGCCGG GGCCCACCTG CGGCCACTGC TGCTGTCGGG GCACCGCGCT
                                                                                                    480
          CGGGAAGCGC ACAGCCCCGG GCCGCTGGTG AAGCCCTTCG AGACCGCCTC GGTCAAGTCG
                                                                                                    540
 45
          GGAAATTCAG AAGATGGAGC GGCGTGGATG CAGGAACCCG GCCGATATTC GCCGCCGCCA
AGACATATGA GCCCTACCAC CTGCACCCTG AGGAAACACA AGACCAATCG GAAGCCGCGC
                                                                                                    600
          ACGCCCTTTA CCACATCCCA GCTCCTCGCC CTGGAGCGCA AGTTCCGTCA GAAACAGTAC
                                                                                                    720
          CTCTCCATTG CAGAGCGTGC AGAGTTCTCC AGCTCTCTGA ACCTCACAGA GACCCAGGTC
AAAATCTGGT TCCAGAACCG AAGCGCCAAG GCGAAAAGAC TGCAGGAGGC GGAACTGGAA
                                                                                                    780
                                                                                                    840
 50
          AAGCTGAAAA TGGCTGCAAA ACCTATGCTA CCCTCCAGCT TCAGTCTCCC CTTCCCCATC
          AGCTCGCCCC TGCAGGCAGC GTCCATATAC GCAGCATCCT ACCCGTTCCA TAGACCTGTG
                                                                                                    960
          CTTCCCATCC CGCCCGTGGG ACTCTATGCC ACGCCAGTGG GATATGGCAT GTACCACCTG
                                                                                                    1020
          TCCTANGGAN GACCAGATCA ATAGACTICA TGATGGATGC TTGTTTCANA GGGTTTCCTC TCCTCTCCA CANAGGCATA GCCAGCCAGT ACTCCTGCGC TGCTANGCCC TCGACGTTGC
                                                                                                    1080
                                                                                                    1140
 55
          ACCCCACCCC CTCTAACGGC TAGCTGACAG GGCCACACCA CATAGCTGAA ATTTCGTTCT
GTAGGCGGAG GCACCAAGCC CTGCTTTTCT TGGTGTAACT TCCAGAGTCC CCCCTTTTTT
                                                                                                    1200
                                                                                                    1260
          CCCTTGCACA AAAGCTTGGC TCTGATGGTT TTTTTGGCAT GATGTATATA TATATATACG
                                                                                                    1320
          AAAATACTA CAGACCCTT TTATCAGCAG ACGTAAAAT TCAAATTATA TTAAAAGGCA
AAATTATATA ACATATGTG TTTTTTTCTA TATCTCACCT TCCCAAAAAG ACACATGTGT
AAGTCCATTT GTTGTATTTT CTTAAAGAGG GAGACAAATT CGGAGGAGCG CCGCGTCAAG
                                                                                                    1380
                                                                                                     1440
 60
                                                                                                    1500
          GTCTCCAGCC TGCCCTTCAG CCTGGAGGCG CTCATGTCCG ATTTGCAAAA ATGTGCTAAA
GTCAATGATT TTTACCGGGA TTATTGACTT CTGCTTATAC AAGAAGCCGC CCAAGGAGTC
                                                                                                    1560
                                                                                                     1620
          GCCCGCTGTG CCTCCCGAAG GCGCCTCGGC CGGCCTGCGG AAAAACAAAA GAAAACAGAC
          ACAATGCAGC AGCCAGAAAA TATTAGATAT GGAGAGATTA TGGCCACTGC TGCTGACCGG
CCACGGCTC CGGGAAGCGC ACAGCCCCGG GCCGCTGGTG ATCAAAGTGA ACCCACATCA
                                                                                                     1740
  65
                                                                                                     1800
           TATTTCTGCA TTTTACTTGC ATTAAAAGAA ACCTCTTTAT AAGCCCTTCG AGACCGCCTC
                                                                                                     1860
           GGTCAAGTCG GGAAATTCAG AAGATGGAGC GGCGTGGATG CTACATACGT TGTTCCTATC
           TCCCGCCCAC GCCCACACAT ATTITTAAAG TTTTTAGGAA CCCGGCCGAT ATTCGCCGCC
                                                                                                     1980
          TCCCGCCCAC
GCCCACACAT ATTTTTAAAG TTTTTAGGAA CCCGGCCGAT ATTCGCCGCC
GCCAAGACAT ATGAGCCCTA CCACCTGCAC CCTGACCTTT TTAAGAATATT TTTTGTAAGA
CCAATACCTG GGATGAAGAAG AATCCGTAGA CTGCCGGAAA CACAAGACCA ATCGGAAGACC
GCGACGCCC TTTACCACAT CCCAGCTCCT CGCCCTGGAG GTGAGGTAGA AAAATTAGAA
ATACTTCCTA ATTCTTCTCA AGGCTGTGG TAACTTTGGA GCGCAAGTTC CGTCAGAAAC
AGTACCTCTC CATTGCAGAG CGTGCAGAGT TCTGAACCTC ACAGACCCAG GTCAAAAAGT
GTTAAAACCT GTGAAGAGT TTTACAGCTC TCTGAACCTC ACAGACCCAG GTCAAAAAGGT
TCTGAACACTA A TCCACCTACA CACACCACG GTCACACGGTT
                                                                                                     2040
  70
                                                                                                     2100
                                                                                                     2160
                                                                                                     2220
                                                                                                     2280
                                                                                                     2340
  75
           TCTGAGAAAT ACTAGGTACA TTCATCCTCA CAGATTGCAA AGGTGCTTTG GGTGGGGGTT
                                                                                                     2400
           TAGTAATTTT CTGCTTAAAA AATGAGTATC TTGTAACCAT TACCTATATC TAAATATTCT
           TGAACAATTA GTAGATCCAG AAAGAAAAAA AAAATATGCT TCTCTGTGTG TGTACCTGTT
                                                                                                     2520
```

5	AGCATGTTTG TCCTGTCCAT ATTTGATATA ATTCTGAATT	ACTTGTGAAA CTGTCCCCTC TTTTATTGAA AAATTAAGCA	ATGGGATGTC CATCGGTATA GAGTTATCTC TTTGTTTTAT	ATCTTTTAC AAACAGCCAT CCTTTATCCC TTATTCTGAA TGCAGTAAAG	AAGTTCCCTG TTTGAAAGGG TTAAATTAAG	GTATTCACCT TGCTTGTACA	2580 2640 2700 2760
	Seq ID NO: Protein Acc						
10 15	ESPAVPPEGA	SAGAHLRPLL	LSGHRAREAH	31     AAGAAEERRV SPGPLVKPFE TSQLLALERK AAKPMLPSSF	TASVKSGNSE FRQKQYLSIA	DGAAWMQEPG ERAEFSSSLN	60 120 180 240
13	PFHRPVLPIP	PVGLYATPVG	YGMYHLS	AARFMIFSSE	3021110012	<b>4.1.01.1.0</b>	
20		69 DNA sequid Accession mence: 13	1 #: NM_005	503.1			
	1	11	21	31	41	51 	
25	ATGAGTACAG	AAAGAGACTC	AGAAACGACA	TTTGACGAGG	ATTCTCAGCC	TAATGACGAA	60
	CACCAMACCAL	ACACTGATGA	TGAAACAGAA	GATGAACTTG	ATGACCAGGG	GTCTGCTGTT	120 180
	GAACCAGAAC	AAAACCGAGT	CAACAGGGAA	GCAGAGGAGA CGCAAGTACC	ACCGGGAGCC	TCACTTTATG	240
	******	TOTTOTOTAT	TAACGAGAGT	AAATATGCGA	ATAATGCAAT	TAAAACATAC	300
30	3 3 CES CS 5 CC	CATALACCALA	TATACCAATG	AATCTGTTTG	AGCAGTTTAA	GAGAGCAGCC	360 420
	A A TOTAL OF A STOTE	TOTAL	ጥር ተሞር ተሞር ተሞር A	CAGGCAGTTC	CTCAAATCTC	TACCCIGGCI	480
	TGGTACACCA	CACTAGTGCC	CCTGCTTGTG	GTGCTGGGCG AAGGAAATCA	ACAATAGGAC	GTGTGAAGTC	540
	3 mm 5 3 cm 5 mm	CCACCTTCAA	ACTTCCTAAG	TGGAAAGAAA	TTCAAGTTGG	AGACGTCATT	600
35		***************************************	かいかいし ひじんし	CACATTCTCC	TGCTGTCTAG	CICIONGCCI	660 720
	*****	へいてい かいかいいいき	AACACCAGAA	CTGGACGGAG CAAAGAGAAG	AAACCAATTI	AAAATTTAAG	780
		A D TOTO A A C D	ACCCA ATA AC	CGACTAGATA	AGTTTACAGG	AACACIALLI	840
	mac. C. 1 1 C.	CANCELLA PORT	ጥጥጥርርልጥርር	CATAAAATTT	TGTTACGTGG	CIGIGIAATI	900
40		አምምተረጥ/ <b>ር</b> ርላ	CCCCTTAGTC	ATTTTTGCAG	GTGCTGACAC	TAAAATAATG	960 1020
	> - C > > M > C MC	CCNNNNCCNC	מממממתייית	ACTAAAATTG	ATTACTIGAT	GANCINCATO	1080
		CACACCTCCC	יים איידיריניים איי	CTTTCTGCTG	ATGATGGAGA	MONCONINCH	1140
			ULAL Junear to	CCCTATATCA	TIGITOTOA	CWCCWIGGIA	1200
45		TO THE PROPERTY OF THE PROPERT	CCTCCA ACTC	ATTCCTCTTC	GACAGAGTCA	CITCATCAMC	1260 1320
			- ΤΟ ΟΤΟ ΔΟΔΑΟ	CACACACCC	CAAMGCIAC	MACCACCION	1380
	CTCAATGAAC	AGCTCGGGCA	GATCCATTA	ATCITCICIO	AGATATATGO	GACACTCACA GGACCATCGG	1440
		**********	ודממממחמה.	GAGCAAGTIC	ATTITAGCI	) GWWINCHIN:	1500
50		* ~~~~~~~~	ነ ፈግር ለርጉሞ ለጥጥ ነ	י יייביייריידעיייני	AGLAAATUU	f GICHOGGWW	1560 1620
		. m. aa. aa. aa. ama	بكريك بالمامك تدنيك	2 CTCGCAGTT	GCCACACAG	CATGGTGGAT CCTGGTAAAC	1680
			4 1000000000000000000000000000000000000	י הריבונובונים	· ALIANCACUA		1740
	** * ********	~~~~~~~~~~ <i>~~~~~</i>	ግ ጥጥልሮልልፕርሞ	r CTTGCCATT	TUGALTI LA	1 CMGIGNECOG	1800
55		יירי אידי אידי אידי אידי	, אמכא <i>ארררר</i>	A CAAGGCAAT	TUMBLIII	4 CIGIUMOO-	1860 1920
	GCTGACACTC	TTATTTATG	A ACGGTTACA	r CGAATGAAT	TATGCCTTT	A AGAAACACAG G CTACAAGGAA	1980
			~ ^C^ATCCAA'	r ababacerr	A TGGCIGCCA	3 1010000100	2040
							2100 2160
60		. a.aam.mmc	» » ጦ አ ጦ አ አርርግዮ	A CARRATERA	TILLAGAAA	C CHIII CHAPPE	2220
	CTTGCAAAA	G CTGACATTA	A GATCIGGGI	G CTTACTGGA	A CCATCTGCT	A AACTGCTGAA A TGGGGAGGAT	2280
		~ ~~~~~~~~	~ እአርርስፕርርል	A AACCAGAGG	A AIAGAGGIG	G COTCINCOO.	2340
			· · · · · · · · · · · · · · · · · · ·	טטטעטעע ש	C CILICAAACL	G IGCCIIANIC	2400 2460
65			יודי אינייייייי או או איייייייייייייייייייי	מממממאיים די	A AGALLANGA	G AAATAAGATT A AAGTAAAAGG	2520
			* CCACCCCC	ורוריויים ממממים	[ IGGMCCIGG	C CIGCONSIGE	2580
		* ***	א המידים ארוניני	T AAGCAGAAG	I CONTROL	1 Gaucerea	2640
			T CACCCCCCC	Y ATCGGAGAT	Ti (iGGCCCMAIC	M CGIOWCUIO	2700 2760
70		A GOOD OLDO	COTTCGAAT	א ממתההמת מי	C AAGGAAIG	A AGCTGTCATG	2820
			ന സസസമസ്ഥ	ומדמכונומדים חי	T TCTTTAC	M WWCIIIGCC	2880
			יים היים ביים ביים	ירי דידירי א א דוכונונ	T ALILIGUE	W OWCIGOUSING	2940
			ידי המחתים יויי	TI CHYPTACACC	A GLLIGGE	I GCICCIONIC	3000 3060
75			T CACTCACA!	A CTGAGCCTC	C GALLCCLI	G GITHINGS	3120
		m 001m01m0	որ Մարդարական արա	וא ככתבדתנים	IG CTTATUTG	T GTTGCATGGG	3180
	CAGGATGG	G AGGCACCT	C CGACTACC	G TCTTTTGC	G TCACCATT	C CTCTCCTCTT	3240
	C.C.C. 1001						

```
GTAATAACAG TCAATTTCCA GATTGGCTTG GATACTTCTT ATTGGACTTT TGTGAATGCT
        TITICAATIT TIGGAAGCAT TGCACTITAT TITIGGCATCA TGTTTGACTT TCATAGTGCT
                                                                                      3360
        GGAATACATG TTCTCTTTCC ATCTGCATTT CAATTTACAG GCACAGCTTC AAACGCTCTG
                                                                                      3420
        AGACAGCCAT ACATTTGGTT AACTATCATC CTGACTGTTG CTGTGTGCTT ACTACCCGTC
                                                                                      3480
       GTTGCCATTC GATTCCTGTC AATGACCATC TGGCCATCAG AAAGTGATAA GATCCAGAAG CATCGCAAGC GGTTGAAGGC GGAGGAGCAG TGGCAGCGAC GGCAGCAGGT GTTCCGCCGG
 5
                                                                                      3600
        GGCGTGTCAA CGCGGCGCTC GGCCTACGCC TTCTCGCACC AGCGGGGCTA CGCGGACCTC
                                                                                      3660
                                                                                      3720
        ATCTCCTCCG GGCGCAGCAT CCGCAAGAAG CGCTCGCCGC TTGATGCCAT CGTGGCGGAT
        GGCACCGCGG AGTACAGGCG CACCGGGGAC AGCTGA
10
        Seg ID NO: 70 Protein Sequence
        Protein Accession #: NP_005594.1
15
                                                           41
                                                                        51
                                              31
        MSTERDSETT FDEDSQPNDE VVPYSDDETE DELDDQGSAV EPEQNRVNRE AEENREPFRK
        ECTWOVKAND RKYHEOPHFM NTKFLCIKES KYANNAIKTY KYNAFTFIPM NLFEQFKRAA
        NLYFLALLIL QAVPQISTLA WYTTLVPLLV VLGVTAIKDL VDDVARHKMD KEINNRTCEV
                                                                                       180
        IKDGRFKVAK WKEIQVGDVI RLKKNDFVPA DILLLSSSEP NSLCYVETAE LDGETNLKFK
20
                                                                                       240
        MSLEITDOYL OREDTLATFO GFIECEEPNN RLDKFTGTLF WRNTSFPLDA DKILLRGCVI
                                                                                       300
        RNTDFCHGLV IFAGADTKIM KNSGKTRFKR TKIDYLMNYM VYTIFVVLIL LSAGLAIGHA
        WHEAQVENSS WYLYDGEDDT PSYRGFLIFW GYITVLNYTMV PISLYVSVEV IRLGQSHFIN WDLQMYYAEK DTPAKARTTT LNEQLGQIHY IFSDKTGTLT QNINTFKKCC INGQIYGDHR
                                                                                       420
                                                                                       480
                                                                                       540
        DASOHNHNKI EQVDFSWNTY ADGKLAFYDH YLIEQIQSGK EPEVRQFFFL LAVCHTVMVD
25
        RTDGQLNYQA ASPDEGALVN AARNFGFAFL ARTQNTITIS ELGTERTYNV LAILDFNSDR
        KRMSIIVRTP EGNIKLYCKG ADTVIYERLH RMNPTKQETQ DALDIFANET LRTLCLCYKE
        IEEKEFTEWN KKFMAASVAS TNRDEALDKV YEEIEKDLIL LGATAIEDKL QDGVPETISK
                                                                                       720
        LAKADIKIWV LTGDKKETAE NIGFACELLT EDTTICYGED INSLLHARME NQRNRGGVYA
                                                                                       780
        KFAPPVQESF FPPGGNRALI ITGSWLNEIL LEKKTKRNKI LKLKFPRTEE ERRMRTQSKR
30
        RLEAKKEQRQ KNFVDLACEC SAVICCRVTP KQKAMVVDLV KRYKKAITLA IGDGANDVNM
IKTAHIGVGI SGQEGMQAVM SSDYSFAQFR YLQRLLLVHG RWSYIRMCKF LRYFFYKNPA
                                                                                       900
                                                                                       960
        FTLVHFWYSF FNGYSAQTAY EDWFITLYNV LYTSLPVLLM GLLDQDVSDK LSLRFPGLYI
                                                                                       1020
        VGQRDLLFNY KRFFVSLLHG VLTSMILFFI PLGAYLQTVG QDGEAPSDYQ SFAVTIASAL
                                                                                       1080
        VITVNFQIGL DTSYWTFVNA FSIFGSIALY FGIMFDFHSA GIHVLFPSAF QFTGTASNAL
                                                                                       1140
35
        RQPYIWLTII LTVAVCLLPV VAIRFLSMTI WPSESDKIQK HRKRLKAEEQ WQRRQQVFRR
                                                                                       1200
        GVSTRRSAYA FSHQRGYADL ISSGRSIRKK RSPLDAIVAD GTAEYRRTGD S
        Seq ID NO: 71 DNA sequence
40
        Nucleic Acid Accession #: NM_138784.1
         Coding sequence: 334-816
                                               31
                                                           41
         GGGGATACGG AAAACAGAAT AGAAGCACAG AACAAGGACT ATTGTATATA AGAGAAGCAG
                                                                                         60
 45
         GTGTTAATGT AAGTTGCTGT GGAATGACTG TTTTCAAGAA GAGAGAAGGA GCCAATATAT
                                                                                       120
         CTACTTTCAT TAAGAAGCTG AAATTAAATT TGGATTTCCT TCTTTCCAAA GCTGAGACAC
        GATGCCAAA AAGCGATTGC TGTGATTGGA GCTGGAATTA GCGGACTGGG GGCCATCAAG
TGCTGCCTGG ATGAAGATCT GGAGCCCACC TGCTTTGAAA GAAATGATGA TATTGGACAT
                                                                                       240
                                                                                       300
         CTCTGGAAAT TTCAAAAAAA TACTTCAGAG AAAATGCCTA GTATCTACAA ATCTGTGACC
                                                                                       360
 50
         ATCAATACTT CCAAGGAGAT GATGTGCTTC AGTGACTTCC CTGTCCCTGA TCATTTTCCC
         AACTACATGC ACAACTCCAA ACTCATGGAC TACTTCGGGA TGTATGCCAC ACACTTTGGC
CTCCTGAATT ACATTCGTTT TAAGACTGAA GTGCAAAGTG TGAGGAAGCA CCCAGATTTT
                                                                                        480
                                                                                        540
         TCTATCAATG GACAATGGGA TGTTGTTGTG GAGACTGAAG AGAAACAAGA GACTTTGGTC
                                                                                        600
         TTTGATGGGG TCTTAGTTTG CAGTGGACAC CACACAGATC CCTACTTACC ACTTCAGTCC
 55
         TTCCCAGGCA TTGAGAAATT TGAAGGCTGT TATTTCCATA GTCGGGAATA CAAAAGTCCC
         GAGGACTTTT CAGGGAAAAG AATCATAGTG ATCGGCATTG GAAATTCTGG AGTGGATATT
                                                                                        780
         GCGGTGGAGC TCAGTCGTGT AGCAAAACAG ATTTGACCAG TAGGAACTGA GATTCAACGT
                                                                                        840
         CCCCAAGACT GCAAAAGTAC CTACAATCAA ACAAATTAAT ATATTTCCTA ATTGGATCAG
         CATGCAGACA AGTTTACAAA TATATTACAG AAAGATTTGA AGAGGGATTC TGGTTACGTT
CAGTTAAGCA GGACACTAAT CCTGAACAAT CTGATGTATT AAAGTTTCTA ATGTTTGTAT
CTTTGGTTTG ATGCATACAA TAGAGTGGAA GTCTGTAGTA GTTAATATGA TGATAATTCG
                                                                                        960
 60
                                                                                       1020
                                                                                       1080
          CTTCTAAATT TAAATCCTTA TTTATATATG AAGCATAGCT ATGTCAATGT CCAGGGAAGC
                                                                                       1140
         ATTITIAAAT AGTAAATCAG AAACATGTAA ACTAGTGAAT ACAATTITCT ATTITICATT
                                                                                       1200
         CAGAAATTTG TTGTCATAGA TGCAGCCTTT ATCTGGAAAT CAGTGGGCAG CTCTGGTCAA
GCACAGCATG GCGACCACTG TGTAGTATTT TACCACCTAA TCCTTAGTAG CCAACACTGT
                                                                                       1260
  65
                                                                                       1320
          TARATCTGCA TARTGGGTAG CATATGARTA ARATARTATC TTGTARARAR ARARARARA
          AAAAAAAAA AAAA
  70
          Seq ID NO: 72 Protein sequence:
          Protein Accession #: NP_620139.1
                                                31
          MPSIYKSVTI NTSKEMMCFS DFPVPDHFPN YMHNSKLMDY FGMYATHFGL LMYIRFKTEV
  75
          QSVRKHPDFS INGQWDVVVE TEEKQETLVF DGVLVCSGHH TDPYLPLQSF PGIEKFEGCY
          FHSREYKSPE DFSGKRIIVI GIGNSGVDIA VELSRVAKQI
```

Seq ID NO: 73 DNA sequence . Nucleic Acid Accession #: NM_003661.1 Coding sequence: 1..1152

```
5
                                                                                         51
          ATGAGTGCAC TTTTCCTTGG TGTGGGAGTG AGGGCAGAGG AAGCTGGAGC GAGGGTGCAA
          CAAAACGTTC CAAGTGGGAC AGATACTGGA GATCCTCAAA GTAAGCCCCT CGGTGACTGG
                                                                                                            120
          GCTGCTGGCA CCATGGACCC AGAGAGCAGT ATCTTTATTG AGGATGCCAT TAAGTATTTC
                                                                                                           180
10
          AAGGAAAAAG TGAGCACACA GAATCTGCTA CTCCTGCTGA CTGATAATGA GGCCTGGAAC
                                                                                                            240
          GGATTCGTGG CTGCTGCTGA ACTGCCCAGG AATGAGGCAG ATGAGCTCCG TAAAGCTCTG
          GACAACCTTG CAAGACAAAT GATCATGAAA GACAAAAACT GGCACGATAA AGGCCAGCAG
TACAGAAACT GGTTTCTGAA AGAGTTTCCT CGGTTGAAAA GTGAGCTTGA GGATAACATA
                                                                                                            360
                                                                                                            420
          AGAAGGCTCC GTGCCCTTGC AGATGGGGTT CAGAAGGTCC ACAAAGGCAC CACCATCGCC
                                                                                                            480
          AATGTGGTGT CTGGCTCTCT CAGCATTTCC TCTGGCATCC TGACCCTCGT CGGCATGGGT
                                                                                                            540
15
          CTGGCACCCT TCACAGAGGG AGGCAGCCTT GTACTCTTGG AACCTGGGAT GGAGTTGGGA
ATCACAGCCG CTTTGACCGG GATTACCAGC AGTACCATGG ACTACGGAAA GAAGTGGTGG
                                                                                                            660
          ACACAAGCCC AAGCCCACGA CCTGGTCATC AAAAGCCTTG ACAAATTGAA GGAGGTGAGG
                                                                                                            720
                                                                                                            780
          GAGTTTTTGG GTGAGAACAT ATCCAACTTT CTTTCCTTAG CTGGCAATAC TTACCAACTC
          ACACGAGGCA TTGGGAAGGA CATCCGTGCC CTCAGACGAG CCAGAGCCAA TCTTCAGTCA
GTACCGCATG CCTCAGCCTC ACGCCCCCGG GTCACTGAGC CAATCTCAGC TGAAAGCGGT
                                                                                                            840
20
                                                                                                            900
          GAACAGGTGG AGAGGGTTAA TGAACCCAGC ATCCTGGAAA TGAGCAGAGG AGTCAAGCTC
                                                                                                            960
                                                                                                            1020
          ACGGATGTGG CCCCTGTAAG CTTCTTTCTT GTGCTGGATG TAGTCTACCT CGTGTACGAA
          TCAAAGCACT TACATGAGGG GGCAAAGTCA GAGACAGCTG AGGAGCTGAA GAAGGTGGCT
          CAGGAGCTGG AGGAGAAGCT AAACATTCTC AACAATAATT ATAAGATTCT GCAGGCGGAC
                                                                                                            1140
25
          CAAGAACTGT GA
          Seq ID NO: 74 Protein Sequence
          Protein Accession #: NP_003652.1
30
                                                                                          51
                                                          31
          MSALFLGVGV RAEEAGARVQ QNVPSGTDTG DPQSKPLGDW AAGTMDPESS IFIEDAIKYF
          KEKVSTQNLL LLLTDNEAWN GFVAAAELPR NEADELRKAL DNLARQMIMK DKNWHDKGQQ
                                                                                                            120
           YRNWFLKEFP RLKSELEDNI RRLRALADGV QKVHKGTTIA NVVSGSLSIS SGILTLVGMG
                                                                                                            180
35
          LAPTEGGSL VLLEPGMELG ITAALTGITS STMDYGKKWW TQAQAHDLVI SALDKIKKWK EFLGENISNF LSLAGNTYQL TRGIGKDIRA LRRARANLQS VFHASASRPR VTEPISAESG EQVERVNEPS ILEMSRGVKL TDVAPVSFFL VLDVVYLVYE SKHLHEGAKS ETAEELKKVA
                                                                                                             240
                                                                                                             300
                                                                                                             360
           QELEEKLNIL NNNYKILQAD QEL
 40
           Seg ID NO: 75 DNA sequence
           Nucleic Acid Accession #: NM_014452.1
           Coding sequence: 1..1968
                                                           31
                                                                           41
                                                                                          51
 45
                                          21
           ATGGGGACCT CTCCGAGCAG CAGCACCGCC CTCGCCTCCT GCAGCCGCAT CGCCCGCCGA
           GCCACAGCA CACACAGA CACACAGCA CACCACCACA CACCACCAGA CACCACAGA ACAGAGAGC CTCAGATTCT CTCCTGCTG GATTCCTTAG CACCACCACA ACCGCCAGG TACACAGAGGC CTCAGATTCT CACCAGCAGAA CCTATGTCT TGAGCATGT CCAGCAGGAA CCTATGTCT TGAGCATGT
                                                                                                              180
                                                                                                              240
 50
           ACCAGCAGA TGCTAACCTG TGACAAGTGT CCAGCAGGAA CCTATGTCTC TGAGCATTGT ACCAACACAA GCCTGCGCGT CTGCAGCAGT TGCCCTGTGG GGACCTTTAC CAGGCATGAC AATGGCATAG AGAAATGCCA TGACCGAGAA TGCACTGCC CATGGCCAAT GATTGAGAAA TGCCTTGTG CTGCCTTGAC TGACCGAGAA TGCACTTGCC CACCTGGCAT GTTCCAGTCT
                                                                                                              300
                                                                                                              420
            AACGCTACCT GTGCCCCCCA TACGGTGTGT CCTGTGGGTT GGGGTGTGCG GAAGAAAGGG
                                                                                                              480
            ACAGAGACTG AGGATGTGCG GTGTAAGCAG TGTGCTCGGG GTACCTTCTC AGATGTGCCT
                                                                                                              540
 55
            TCTAGTGTGA TGAAATGCAA AGCATACACA GACTGTCTGA GTCAGAACCT GGTGGTGATC
            AAGCCGGGGA CCAAGGAGAC AGACAACGTC TGTGGCACAC TCCCGTCCTT CTCCAGCTCC
                                                                                                              660
            ACCTCACCTT CCCCTGGCAC AGCCATCTTT CCACGCCCTG AGCACATGGA AACCCATGAA
GTCCCTTCCT CCACTTATGT TCCCAAAGGC ATGAACTCAA CAGAATCCAA CTCTTCTGCC
TCTGTTAGAC CAAAGGTACT GAGTAGCATC CAGGAAGGGA CAGTCCCTGA CAACACAAGC
                                                                                                              720
                                                                                                              780
                                                                                                              840
  60
            TCAGCAAGGG GGAAGGAAGA CGTGAACAAG ACCCTCCCAA ACCTTCAGGT AGTCAACCAC
                                                                                                              900
            CAGCAAGGCC CCCACCACAG ACACATCCTG AAGCTGCTGC CGTCCATGGA GGCCACTGGG
                                                                                                              960
            GGCGAGAAGT CCAGCACGCC CATCAAGGGC CCCAAGAGGG GACATCCTAG ACAGAACCTA
                                                                                                              1020
            CACAAGCATT TTGACATCAA TGAGCATTTG CCCTGGATGA TTGTGCTTTT CCTGCTGCTG
                                                                                                              1080
            GTGCTTGTGG TGATTGTGGT GTGCAGTATC CGGAAAAGCT CGAGGACTCT GAAAAAGGGG
  65
            CCCCGGCAGG ATCCCAGTGC CATTGTGGAA AAGGCAGGGC TGAAGAAATC CATGACTCCA
                                                                                                              1200
            CCCGGCAGG ATCCCAGTGC CATTGTGGAA AAGGCAGGGC TGAAGAAATC CATGACTCAA
ACCCAGAACC GGGAGAAATG GATCTACTAC TGCAATGGCC ATGGTATCGA TATCCTGAAG
CTTGTAGCAG CCCAAGTGGG AAGCCAGTGG AAAGATATCT ATCAGTTTCT TTGCAATGGC
AGTGAGAGGG AGGTTGCTGC TTTCTCCAAT GGGTACACAG CCGACCACGA GCGGGCCTAC
                                                                                                              1260
                                                                                                               1320
                                                                                                               1380
            AGTGAGAGGG AGGTTGCTGC TTTCTCCAAT GGGTGACACAG GGGGCTAC
GCAGCTCTGC AGCACTGGAC CATCCGGGGC CCCGAGGCCA GCTTGCCCA GCTAATTAGC
GCCCTGGGCC AGCACCGGAG AAACGATGTT GTGAGAGAAA TTCGTGGGCT GATGGAGAAC
ACCACCCAGC TGGAAACTG CAAACTAGCT CTCCCGATGA GCCCCAGCCC GCTTAGCCCG
AGCCCCATCC CCAGCCCCAA CGCGAAACTT GAGAATTCG CTCTCCTGAC GGTGGAGCCT
                                                                                                               1440
  70
                                                                                                               1500
                                                                                                               1560
                                                                                                               1620
             TCCCCACAGG ACAAGAACAA GGGCTTCTTC GTGGATGAGT CGGAGCCCCT TCTCCGCTGT
                                                                                                               1680
             GACTCTACAT CCAGCGGCTC CTCCGCGCTG AGCAGGAACG GTTCCTTTAT TACCAAAGAA
AAGAAGGACA CAGTGTTGCG GCAGGTACGC CTGGACCCCT GTGACTTGCA GCCTATCTTT
                                                                                                               1740
   75
                                                                                                               1800
             GATGACATGC TCCACTTTCT AAATCCTGAG GAGCTGCGGG TGATTGAAGA GATTCCCCAG
             GCTGAGGACA AACTAGACCG GCTATTCGAA ATTATTGGAG TCAAGAGCCA GGAAGCCAGC
                                                                                                               1920
```

## CAGACCCTCC TGGACTCTGT TTATAGCCAT CTTCCTGACC TGCTGTAG

Seg ID NO: 76 Protein Seguence

```
Protein Accession #: NP_055267.1
 5
                                                           41
                                                                       51
        MGTSPSSSTA LASCSRIARR ATATMIAGSL LLLGFLSTTT AQPEQKASNL IGTYRHVDRA
        TGQVLTCDKC PAGTYVSEHC TNTSLRVCSS CPVGTFTRHE NGIEKCHDCS QPCPWPMIEK
                                                                                      120
10
        LPCAALTDRE CTCPPGMFQS NATCAPHTVC PVGWGVRKKG TETEDVRCKQ CARGTFSDVP
                                                                                      180
        SSVMKCKAYT DCLSQNLVVI KPGTKETDNV CGTLPSFSSS TSPSPGTAIF PRPEHMETHE
        VPSSTYVPKG MNSTESNSSA SVRPKVLSSI QEGTVPDNTS SARGKEDVNK TLPNLQVVNH
                                                                                      300
        OOGPHHRHIL KLLPSMEATG GEKSSTPIKG PKRGHPRQNL HKHFDINEHL PWMIVLFLLL
                                                                                      360
        VLOVIVUCSI RESSRTLKKG PRODPSAIVE KAGLKKSMTP TONREKWIYY CNGHGIDILK
LVAAQVGSQW KDIYQFLCNA SEREVAAFSN GYTADHERAY AALQHWTIRG PEASLAQLIS
                                                                                      420
15
                                                                                      480
        ALROHRRNDV VEKIRGLMED TTQLETDKLA LPMSPSPLSP SPIPSPNAKL ENSALLTVEP
                                                                                      600
        SPODKNIKGFF VDESEPLLRC DSTSSGSSAL SRNGSFITKE KKDTVLRQVR LDPCDLQPIF
        DDMLHPLNPE ELRVIEEIPQ AEDKLDRLFE IIGVKSQEAS QTLLDSVYSH LPDLL
20
        Seq ID NO: 77 DNA sequence
        Nucleic Acid Accession #: NM_003105.3
        Coding sequence: 123..6767
25
        TGGCCTCGCG CTGCACATTC TCTCCTGGCG GCGCGCCAC CTGCAGTAGC GTTCGCCCGA
                                                                                      120
        ACATGGCGAC ACGGAGCAGC AGGAGGGAGT CGCGACTCCC GTTCCTATTC ACCCTGGTCG
        CACTGCTGCC GCCCGGAGCT CTCTGCGAAG TCTGGACGCA GAGGCTGCAC GGCGGCAGCG
                                                                                      240
        CGCCCTTGCC CCAGGACCGG GGCTTCCTCG TGGTGCAGGG CGACCCGCGC GAGCTGCGGC
                                                                                      300
30
                                                                                      360
        TGTGGGCGCC CGGGGATGCC AGGGGGGCCGA GCCGCGGGA CGAGAAGCCG CTCCGGAGGA
        AACGGAGCGC TGCCCTGCAG CCCGAGCCCA TCAAGGTGTA CGGACAGGTT AGTCTGAATG
        ATTCCCACAA TCAGATGGTG GTGCACTGGG CTGGAGAGAA AAGCAACGTG ATCGTGGCCT
                                                                                      480
         TGGCCCGAGA TAGCCTGGCA TTGGCGAGGC CCAAGAGCAG TGATGTGTAC GTGTCTTACG
                                                                                      540
        ACTATGGAAA ATCATTCAAG AAAATTTCAG ACAAGTTAAA CTTTGGCTTG GGAAATAGGA
                                                                                      600
35
        GTGAAGCTGT TATCGCCCAG TTCTACCACA GCCCTGCGGA CAACAAGCGG TACATCTTTG CAGACGCTTA TGCCCAGTAC CTCTGGATCA CGTTTGACTT CTGCAACACT CTTCAAGGCT TTTCCATCCC ATTTCGGGCA GCTGATCTCC TCCTACACAG TAAGGCCTCC AACCTTCTCT
                                                                                      660
                                                                                      720
                                                                                      780
         TGGGCTTTGA CAGGTCCCAC CCCAACAAGC AGCTGTGGAA GTCAGATGAC TTTGGCCAGA
                                                                                      840
         CCTGGATCAT GATTCAGGAA CATGTCAAGT CCTTTTCTTG GGGAATTGAT CCCTATGACA
                                                                                      900
40
         AACCAAATAC CATCTACATT GAACGACACG AACCCTCTGG CTACTCCACT GTCTTCCGAA
GTACAGATTT CTTCCAGTCC CGGGAAAACC AGGAAGTGAT CCTTGAGGAA GTGAGAGATT
                                                                                      960
                                                                                      1020
         TTCAGCTTCG GGACAAGTAC ATGTTTGCTA CAAAGGTGGT GCATCTCTTG GGCAGTGAAC AGCAGTCTTC TGTCCAGCTC TGGGTCTCCT TTGGCCGGAA GCCCATGAGA GCAGCCCAGT
                                                                                      1080
                                                                                       1140
         TTGTCACAAG ACATCCTATT AATGAATATT ACATCGCAGA TGCCTCCGAG GACCAGGTGT
                                                                                       1200
45
         TTGTGTGTGT CAGCCACAGT AACAACCGCA CCAATTTATA CATCTCAGAG GCAGAGGGGC
TGAAGTTCTC CCTGTCCTTG GAGAACGTGC TCTATTACAG CCCAGGAGGG GCCGGCAGTG
                                                                                       1260
                                                                                       1320
         ACACCTTGGT GAGGTATTTT GCAAATGAAC CATTTGCTGA CTTCCACCGA GTGGAAGGAT
                                                                                       1380
         TGCAAGGAGT CTACATTGCT ACTCTGATTA ATGGTTCTAT GAATGAGGAG AACATGAGAT
                                                                                       1440
         CGGTCATCAC CITTGACAAA GGGGGAACCT GGGAGTTTCT TCAGGCTCCA GCCTTCACGG
                                                                                       1500
 50
         GATATGGAGA GAAAATCAAT TGTGAGCTTT CCCAGGGCTG TTCCCTTCAT CTGGCTCAGC
                                                                                       1560
         GCCTCAGTCA GCTCCTCAAC CTCCAGCTCC GGAGAATGCC CATCCTGTCC AAGGAGTCGG
                                                                                       1620
         CTCCAGGCCT CATCATCGCC ACTGGCTCAG TGGGAAAGAA CTTGGCTAGC AAGACAAACG
         TGTACATCTC TAGCAGTGCT GGAGCCAGGT GGCGAGAGGC ACTTCCTGGA CCTCACTACT
                                                                                       1740
         ACACATGGGG AGACCACGGC GGAATCATCA CGGCCATTGC CCAGGGCATG GAAACCAACG
                                                                                       1800
 55
         AGCTAAAATA CAGTACCAAT GAAGGGGAGA CCTGGAAAAC ATTCATCTTC TCTGAGAAGC
                                                                                       1860
          CAGTGTTTGT GTATGGCCTC CTCACAGAAC CTGGGGAGAA GAGCACTGTC TTCACCATCT
                                                                                       1920
          TTGGCTCGAA CAAAGAGAAT GTCCACAGCT GGCTGATCCT CCAGGTCAAT GCCACGGATG
                                                                                       1980
          CCTTGGGAGT TCCCTGCACA GAGAATGACT ACAAGCTGTG GTCACCATCT GATGAGCGGG
                                                                                       2040
          GGAATGAGTG TTTGCTGGGA CACAAGACTG TTTTCAAACG GCGGACCCCC CATGCCACAT
                                                                                       2100
 60
          GCTTCAATGG AGAGGACTTT GACAGGCCGG TGGTCGTGTC CAACTGCTCC TGCACCCGGG
                                                                                        2160
         AGGACTATGA GTGTGACTTC GGTTTCAAGA TGAGTGAAGA TTTGTCATTA GAGGTTTGTG
TTCCAGATCC GGAATTTTCT GGAAAGTCAT ACTCCCCTCC TGTGCCTTGC CCTGTGGGTT
                                                                                       2220
                                                                                       2280
          CTACTTACAG GAGAACGAGA GGCTACCGGA AGATTTCTGG GGACACTTGT AGCGGAGGAG
                                                                                        2340
          ATGTTGAAGC GCGACTGGAA GGAGAGCTGG TCCCCTGTCC CCTGGCAGAA GAGAACGAGT
                                                                                        2400
 65
          TCATTCTGTA TGCTGTGAGG AAATCCATCT ACCGCTATGA CCTGGCCTCG GGAGCCACCG
                                                                                        2460
          AGCAGTTGCC TCTCACCGGG CTACGGGCAG CAGTGGCCCT GGACTTTGAC TATGAGCACA
                                                                                        2520
          ACTIGITITIGIA TIGGICCIGAC CIGGICCTIGG ACGICATICA GCGICCICTGI TIGAATIGAA
                                                                                        2580
          GCACAGGGCA AGAGGTGATC ATCAATTCTG GCCTGGAGAC AGTAGAAGCT TTGGCTTTTG
                                                                                        2640
          AACCCCTCAG CCAGCTGCTT TACTGGGTAG ATGCAGGCTT CAAAAAGATT GAGGTAGCTA
ATCCAGATGG CGACTTCCGA CTCACAATCG TCAATTCCTC TGTGCTTGAT CGTCCCAGGG
                                                                                        2700
  70
                                                                                        2760
          CTCTGGTCCT CGTGCCCCAA GAGGGGGTGA TGTTCTGGAC AGACTGGGGA GACCTGAAGC
                                                                                        2820
          CTGGGATTTA TCGGAGCAAT ATGGATGGTT CTGCTGCCTA TCACCTGGTG TCTGAGGATG
TGAAGTGGCC CAATGGCATC TCTGTGGACG ACCAGTGGAT TTACTGGACG GATGCCTACC
                                                                                        2880
                                                                                        2940
          TGGAGTGCAT AGAGCGGATC ACGTTCAGTG GCCAGCAGCG CTCTGTCATT CTGGACAACC
                                                                                        3000
  75
          TCCCGCACCC CTATGCCATT GCTGTCTTTA AGAATGAAAT CTACTGGGAT GACTGGTCAC
                                                                                        3060
          AGCTCAGCAT ATTCCGAGCT TCCAAATACA GTGGGTCCCA GATGGAGATT CTGGCAAACC
                                                                                        3120
          AGCTCACGGG GCTCATGGAC ATGAAGATTT TCTACAAGGG GAAGAACACT GGAAGCAATG
                                                                                        3180
```

3240

```
CCTGTGTGCC CAGGCCATGC AGCCTGCTGT GCCTGCCCAA GGCCAACAAC AGTAGAAGCT
        GCAGGTGTCC AGAGGATGTG TCCAGCAGTG TGCTTCCATC AGGGGACCTG ATGTGTGACT
                                                                                         3300
        GCCCTCAGGG CTATCAGCTC AAGAACAATA CCTGTGTCAA AGAAGAGAAC ACCTGTCTTC
                                                                                         3360
       GCAACCAGTA TCGCTGCAGC AACGGGAACT GTATCAACAG CATTTGGTGG TGTGACTTTG
                                                                                         3420
        ACAACGACTG TGGAGACATG AGCGATGAGA GAAACTGCCC TACCACCATC TGTGACCTGG
                                                                                         3480
 5
        ACACCCAGTT TCGTTGCCAG GAGTCTGGGA CTTGTATCCC ACTGTCCTAT AAATGTGACC
                                                                                         3540
       TTGAGGATGA CTGTGGAGAC AACAGTGATG AAAGTCATTG TGAAATGCAC CAGTGCCGGA
GTGACGAGTA CAACTGCAGT TCCGGCATGT GCATCCGCTC CTCCTGGGTA TGTGACGGG
                                                                                         3600
                                                                                         3660
        ACAACGACTG CAGGGACTGG TCTGATGAAG CCAACTGTAC CGCCATCTAT CACACCTGTG
                                                                                         3720
10
        AGGCCTCCAA CTTCCAGTGC CGAAACGGGC ACTGCATCCC CCAGCGGTGG GCGTGTGACG
                                                                                         3780
        GGGATACGGA CTGCCAGGAT GGTTCCGATG AGGATCCAGT CAACTGTGAG AAGAAGTGCA
                                                                                         3840
       ATGGATTCOS CTGCCCAAAC GGCACTTGCA TCCCATCCAG CAAACATTGT GATGGTCTGC GTGATTGCTC TGATGGCTCC GATGAACAGC ACTGCGAGCC CCTCTGTACG CACTTCATGG ACTTTGTGT TAAGAACCGC CAGCAGTGCC TGTTCCACTC CATGGTCTGT GACGGAATCA
                                                                                         3900
                                                                                          3960
                                                                                         4020
15
        TCCAGTGCCG CGACGGGTCC GATGAGGATG CGGCGTTTGC AGGATGCTCC CAAGATCCTG
                                                                                         4 D B O
        AGTTCCACAA GGTATGTGAT GAGTTCGGTT TCCAGTGTCA GAATGGAGTG TGCATCAGTT TGATTTGGAA GTGCGACGGG ATGGATGATT GCGGCGATTA TTCTGATGAA GCCAACTGCG AAAACCCCAC AGAAGCCCCA AACTGCTCCC GCTACTTCCA GTTTCGGTGT GAGAATGGCC
                                                                                          4140
                                                                                          4200
                                                                                          4260
        ACTGCATCCC CAACAGATGG AAATGTGACA GGGAGAACGA CTGTGGGGAC TGGTCTGATG
                                                                                         4320
        AGAAGGATTG TGGAGATTCA CATATTCTTC CCTTCTCGAC TCCTGGGCCC TCCACGTGTC
20
                                                                                          4380
        TGCCCAATTA CTACCGCTGC AGCAGTGGGA CCTGCGTGAT GGACACCTGG GTGTGCGACG
                                                                                          4440
        GGTACCGAGA TTGTGCAGAT GGCTCTGACG AGGAAGCCTG CCCCTTGCTT GCAAACGTCA
                                                                                          4500
        CTGCTGCCTC CACTCCCACC CAACTTGGGC GATGTGACCG ATTTGAGTTC GAATGCCACC
                                                                                          4560
        AACCGAAGAC GTGTATTCCC AACTGGAAGC GCTGTGACGG CCACCAAGAT TGCCAGGATG
                                                                                          4620
        GCCGGGACGA GGCCAATTGC CCCACACACA GCACCTTGAC TTGCATGAGC AGGGAGTTCC
                                                                                          4680
25
        AGTGCGAGGA CGGGGAGGCC TGCATTGTGC TCTCGGAGCG CTGCGACGGC TTCCTGGACT
                                                                                          4740
        GCTCGGACGA GAGCGATGAA AAGGCCTGCA GTGATGAGTT GACTGTGTAC AAAGTACAGA
ATCTTCAGTG GACAGCTGAC TTCTCTGGGG ATGTGACTTT GACCTGGATG AGGCCCAAAA
                                                                                          4800
                                                                                          4860
        AAATGCCCTC TGCTTCTTGT GTATATAATG TCTACTACAG GGTGGTTGGA GAGAGCATAT
                                                                                          4920
        GGAAGACTCT GGAGACCCAC AGCAATAAGA CAAACACTGT ATTAAAAGTC TTGAAACCAG
ATACCACGTA TCAGGTTAAA GTACAGGTTC AGTGTCTCAG CAAGGCACAC AACACCAATG
                                                                                          4980
30
                                                                                          5040
        ACTITGIGAC CCIGAGGACC CCAGAGGGAT TGCCAGATGC CCCTCGAAAT CTCCAGCTGT
                                                                                          5100
        CACTCCCCAG GGAAGCAGAA GGTGTGATTG TAGGCCACTG GGCTCCTCCC ATCCACACCC
                                                                                          5160
        ATGGCCTCAT CCGTGAGTAC ATTGTAGAAT ACAGCAGGAG TGGTTCCAAG ATGTGGGCCT
                                                                                          5220
        CCCAGAGGGC TGCTAGTAAC TTTACAGAAA TCAAGAACTT ATTGGTCAAC ACTCTATACA
CCGTCAGAGT GGCTGCGGTG ACTAGTCGTG GAATAGGAAA CTGGAGCGAT TCTAAATCCA
                                                                                          5280
35
                                                                                          5340
         TTACCACCAT AAAAGGAAAA GTGATCCCAC CACCAGATAT CCACATTGAC AGCTATGGTG
                                                                                          5400
        AAAATTATCT AAGCTTCACC CTGACCATGG AGAGTGATAT CAAGGTGAAT GGCTATGTGG
                                                                                          5460
         TGAACCTTTT CTGGGCATTT GACACCCACA AGCAAGAGAG GAGAACTTTG AACTTCCGAG
                                                                                          5520
         GAAGCATATT GTCACACAAA GTTGGCAATC TGACAGCTCA TACATCCTAT GAGATTTCTG
                                                                                          5580
40
         CCTGGGCCAA GACTGACTTG GGGGATAGCC CTCTGGCATT TGAGCATGTT ATGACCAGAG
                                                                                          5640
         GGGTTCGCCC ACCTGCACCT AGCCTCAAGG CCAAAGCCAT CAACCAGACT GCAGTGGAAT
                                                                                          5700
         GTACCTGGAC CGGCCCCCGG AATGTGGTTT ATGGTATTTT CTATGCCACG TCCTTTCTTG
                                                                                          5760
         ACCTCTATCG CAACCCGAAG AGCTTGACTA CTTCACTCCA CAACAAGACG GTCATTGTCA
                                                                                          5820
         GTAAGGATGA GCAGTATTTG TTTCTGGTCC GTGTAGTGGT ACCCTACCAG GGGCCATCCT CTGACTACGT TGTAGTGAAG ATGATCCCGG ACAGCAGGCT TCCACCCCGT CACCTGCATG
                                                                                          5880
45
                                                                                          5940
         TGGTTCATAC GGGCAAAACC TCCGTGGTCA TCAAGTGGGA ATCACCGTAT GACTCTCCTG
                                                                                          6000
         ACCAGGACTT GTTGTATGCA ATTGCAGTCA AAGATCTCAT AAGAAAGACT GACAGGAGCT
                                                                                          6060
         ACAAAGTAAA ATCCCGTAAC AGCACTGTGG AATACACCCT TAACAAGTTG GAGCCTGGCG
                                                                                           6120
         GGAAATACCA CATCATTGTC CAACTGGGGA ACATGAGCAA AGATTCCAGC ATAAAAATTA
                                                                                           6180
 50
         CCACAGTTTC ATTATCAGCA CCTGATGCCT TAAAAATCAT AACAGAAAAT GATCATGTTC
                                                                                          6240
         TTCTGTTTTG GAAAAGCCTG GCTTTAAAGG AAAAGCATTT TAATGAAAGC AGGGGCTATG
                                                                                          6300
         AGATACACAT GTTTGATAGT GCCATGAATA TCACAGCTTA CCTTGGGAAT ACTACTGACA
                                                                                           6360
         ATTTCTTTAA AATTTCCAAC CTGAAGATGG GTCATAATTA CACGTTCACC GTCCAAGCAA
                                                                                           6420
         GATGCCTTTT TGGCAACCAG ATCTGTGGGG AGCCTGCCAT CCTGCTGTAC GATGAGCTGG
                                                                                           64B0
 55
         GGTCTGGTGC AGATGCATCT GCAACGCAGG CTGCCAGATC TACGGATGTT GCTGCTGTGG
TGGTGCCCAT CTTATTCCTG ATACTGCTGA GCCTGGGGGT GGGGTTTGCC ATCCTGTACA
CGAAGCACCG GAGGCTGCAG AGCAGCTTCA CCGCCTTCGC CAACAGCCAC TACAGCTCCA
                                                                                           6540
                                                                                           6600
                                                                                           6660
         GGCTGGGGTC CGCAATCTTC TCCTCTGGGG ATGACCTGGG GGAAGATGAT GAAGATGCCC
                                                                                           6720
         CTATGATAAC TGGATTTTCA GATGACGTCC CCATGGTGAT AGCCTGAAAG AGCTTTCCTC
                                                                                           6780
 60
         ACTAGAAACC AAATGGTGTA AATATTTTAT TTGATAAAGA TAGTTGATGG TTTATTTTAA
                                                                                           6840
         AAGATGCACT TTGAGTTGCA ATATGTTATT TTTATATGGG CCAAAAACAA AAAACAAAAA
                                                                                           6900
          Seq ID NO: 78 Protein Sequence
 65
         Protein Accession #: NP_003096.1
                                                                            51
                                    21
                                                 31
          MATRSSRRES RLPFLPTLVA LLPPGALCEV WTQRLHGGSA PLPQDRGFLV VQGDPRELRL
 70
          WARGDARGAS RADEKPLRRK RSAALOPEPI KVYGQVSLND SHNQMVVHWA GEKSNVIVAL
                                                                                           120
          ARDSLALARP KSSDYYVSYD YGKSFKKISD KLNFGLGNRS EAVIAQFYHS PADNKRYIFA
DAYAQYLMIT FDFCNTLQGF SIPFRAADLL LHSKASNLLL GFDRSHPNKQ LWKSDDFGQT
                                                                                           180
                                                                                            240
          WIMIQEHVKS FSWGIDPYDK PNTIYIERHE PSGYSTVFRS TDFFQSRENQ EVILEEVRDF
                                                                                            300
          QLRDKYMFAT KVVHLLGSEQ QSSVQLWVSF GRKPMRAAQF VTRHPINEYY IADASEDQVF
                                                                                           360
  75
          VCVSHSNNRT NLYISEAEGL KPSLSLENVL YYSPGGAGSD TLVRYFANEP FADFHRVEGL
                                                                                            420
          QGVYIATLIN GSMNEENMRS VITFDKGGTW EFLQAPAFTG YGEKINCELS QGCSLHLAQR
          LSQLLNLQLR RMPILSKESA PGLIIATGSV GKNLASKTNV YISSSAGARW REALPGPHYY
                                                                                            540
```

	TWGDHGGIIT AIAQGMETNE LKYST	NEGET WKTFIFSEKP	VFVYGLLTEP (	GEKSTVFTIF	600
	GSNKENUHSW IJIOVNATDA LGVPO	TENDY KLWSPSDERG	NECLLGHKTV :	FKRRTPHATC	660
	FNGEDFDRPV VVSNCSCTRE DYECT	FGFKM SEDLSLEVCV	PDPEFSGKSY	SPPVPCPVGS	720 780
5	TYRRTRGYRK ISGDTCSGGD VEARI QLPLTGLRAA VALDFDYEHN CLYW	EGELV PCPLAEENEF	TENAVRESTY	KIDLASGATE LETUENLAFE	840
)	PLSQLLYWVD AGFKKIEVAN PDGD	ADDAMO VIČKUCUMOS	LVLVPOEGVM	FWTDWGDLKP	900
	GIYRSNMDGS AAYHLVSEDV KWPNO	SISVED OWIYWTDAYL	ECIERITESG	OORSVILDNL	960
	PHPYATAURK NETYWDDWSO LSIF	ASKYS GSOMEILANO	LTGLMDMKIF	YKGKNTGSNA	1020
	CUPPECSLIC LEKANNERSC RCPE	VSSSV LPSGDLMCDC	POGYQLKNNT	CVKEENTCLR	1080
10	MOVECONONC INCIMMENTED NECO	MSDER NCPTTICOLD	TOFRCOESGT	CIPLSYKCDL	1140
	EDDOGDNSDE SHCEMHOCRS DEVN	SSGMC IRSSWVCDGD	NDCRDWSDEA	NCTAIYHTCE	1200
	ASNFQCRNGH CIPQRWACDG DTDC	DOGSDE DPVNCEKKON	GFRCPNGTCI	PSSKHCDGLR	1260 1320
	DCSDGSDEQH CEPLCTHFMD FVCK	RQQCL FHSMVCDGII	QCREGSDEDA .	AFAGCSQUFE VEOPDCENCH	1380
15	FHKVCDEFGF QCQNGVCISL IWKC CIPNRWKCDR ENDCGDWSDE KDCG	OGMODIC GDYSDEANCE	DNVVDCCCCT	COMPANDE	1440
13	YRDCADGSDE EACPLLANVT AAST	TOLGR CORFEFECHO	PKTCIPNWKR	CDGHODCODG	1500
	DESCRIPTION OF THE PROPERTY OF THE	PACTVI SERCHGFIDC	SDESDEKACS	DELTVYKVQN	1560
	LOWINDESCO VILTWMPPKK MPSA	CVYNV YYRVVGESIW	KTLETHSNKT	NIAPKAPKED	1620
	THE PROPERTY OF STANFARD PARTY	TPECI PDAPRNIOLS	LPREAEGVIV	GHWAPPIHTH	1680
20	CLIDEVIUEV SPECSKMWAS ORAA	ENFTEI KNLLVNTLYT	VRVAAVTSRG	IGNWSDSKSI	1740
	TTIKOKVIDD PDIHIDSYGE NYLS	TLTME SDIKVNGYVV	NLPWAFDTHK	QERRTLNFRG	1800
	SILSHKVGNL TAHTSYEISA WAKT	OLGDSP LAFEHVMTRG	VRPPAPSLKA	KAINQTAVEC	1860 1920
	TWTGPRNVVY GIFYATSFLD LYRN	PKSLTT SLHNKTVIVS	KDEQILIVK	DI.IDKTDRSV	1980
25	DYVVVKMIPD SRLPPRHLHV VHTG KVKSRNSTVE YTLNKLEPGG KYHI	KIZAAI WERDECIKIA	TVSISAPDAL	KIITENDHVL	2040
23	LFWKSLALKE KHFNESRGYE IHMF	DOLON MAKESTRII	FFKISNLKMG	HNYTFTVQAR	2100
	CLFGNQICGE PAILLYDELG SGAD	ASATOA ARSTDVAAVV	VPILFLILLS	LGVGFAILYT	2160
	KHRRLQSSFT AFANSHYSSR LGSA	IFSSGD DLGEDDEDAP	MITGFSDDVP	MVIA	
	1224124001				
30	Seq ID NO: 79 DNA sequence				
	Nucleic Acid Accession #:	Eos sequence			
	Coding sequence: 120-755				
	1 11 21	31	41	51	
35	- ī - ī - I - I - I - I - I - I - I - I	i	1	1	
55	CONCOUNTE COUTGOCAGE GEGO	GAGGCA GCGTGAAGCT	GGGGCCTGCT	CCCCGCAGCC	60
	TOTAL PROPERTY OF THE PROPERTY	GAGACC TATGTTGCTG	GCCCCCCAGA	ACCCGCAACA	120
	TGGCAGATGG GGCAAAGGCC AACC	CCAAAG GGTTCAAAAA	GAAGGTGCTG	GATAGATGCT	180 240
40	TCTCTGGGTG GAGGGGCCCA CGCT	TCGGGG CCTCCTGTCC	TTCAAGAACC	CTCTCCACAG	300
40	GCCTGGGTAT GAAGAAGTTC TTCA CTCACGGCAG CCTGCTCAAC CTGA	CCGTGG CCATCCTTGC	CCTCACAGGG	AGGAGCGCCA	360
	TCCTGTCCTT CGTGGGCTAC GGTT	AGGCCA IGGIGGAGGC	GGGCCGTGGC	CAGCCCAAGG	420
	A TO A COMPANY AND CONCENTRAL CARE	CCCACG ACTGCTGCTA	CCAGGAACTC	TTTGACCAAG	480
	COMMONOR COL CENTRESCRIC CAC	'ATGATC ACACCATCGA	GAACAACACT	GAGATAGICI	540
45	CONCERN COM CARCACACA GAGI	YITGACA AGCAGACATG	CATGTGTGAC	ANGANCATOG	600
	THE PROPERTY OF TATELAR COAC ACC	<b>PACCCAG AGGAGTACCG</b>	TGGCTTCCTC	ANIGICIACI	660
	CONTRACTOR CARCECCOARC TECT	CCATCT ATGAACCGCC	CCCTGAGGAG	GICACCIGCA	720 780
	GTCACCAATC CCCAGCGCCC CCC	CCCCTC CCTAGAGCCT	CIGAGGITIG	CCCACCCCAG	840
50	CGGGAGGAGG GTCTGGCTTG GGGA GAGCCTGAGG GTTGCTGGTT GCC	CCAGAC GAGGIGCAGG	CAGGGIAGGA	TCAGCTCTCA	900
50	GAGCCTGAGG GTTGCTGGTT GCC GAGGACTCAG GAAGGCCTGG GTC	TCACTC CCCCACCCA	GCCCCAGGCA	TGGGTGCCTC	960
	and a second and a	CCACCC ACCGACCTTA	TAGGGGTCIC	ICCIGNOGOI	1020
	ACCOUNT ACCOUNTING GAGI	AGGAGG GGCCTCTGAG	TGGGGCCTCT	GIIGCIGGCG	1080
	AND ADDRESS AS MODERATED OF CITY	ACAAAGT CTGAGCCTTA	GAAAGICIGG	GCCIGAGCAI	1140
55	ACCORDING ACCORDINATED ATO	TOGGOO CAAGATCACA	GGAAGGCAGA	TIGCIGGICA	1200 1260
	ALLEGO COMPCOCCENG CCC	TOAGOT GATOCOACAG	GATGGCCIGG	GGIGGIGGCI	1320
	ACTITIGGET TGAAGETETE TAG CACTGAGGTG GCCATGAGTE CAG	AGCCCCA TTCACAGAGG	TOTOCACTOC	TGAGTGTCCC	1380
	CACTGAGGTG GCCATGAGTC CAG AGCCCTGAAG TCTAGCCTCA GAG	CACACA CCCTAGGGGA	ACAGAGCCAC	ACACCCAGGT	1440
60		ואודמידממממ מהמהמהמ	CITICAACACU	INCHMOLET	1500
00		CCACATC ACCCCAACC	TGCTCTGCC	CACCACGIOG	1560
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCCTCC GGGTCCCTG/	A CAGACACIO	CCICCIOCC	1620
	PROCCACCCA GAA	CACTICCA GGGGGGACCC	A CACCCTCICI	CCC1000C10	1680
	THE PROPERTY OF THE PROPERTY O	CCCTCCT GGCCTGCAC	C IGGAACAGC	CCCMGMCMC	1740 1800
65		TCCCTCC CCTCTCCCC	A GGCGTCACA	i GICCCHIIGG	1860
		ACCCACC TCAGTGAAG	A GGGAAACGI7	ACCHOOOVOV	1920
	GCATCAAGGC GGGAGGCAGC CTG GGAAGCTTCT AGAAGGCAGT AAG	CARCACC CTCCTGARG	G AUAUUUUAUA	4 MOMIGGGNOC	1980
	ALCO CLOCKCYC ACA	CCCACCA GCAGGGACG	G GCCTCCAGG	AMCACAGAGG	2040
70		CCCTCCC TTCCTGTGT	G GGGGGTGGAN	2 CIGGGGCION	2100
70		ייירעיים אויין אייין אייי	T CICCAGGIG	" WCCIINCCII	2160
		וארדראכת הדראתראתר	C TUCAUGUAG	CHOCCCCACC	2220
	TGCCCGAAAA CCACTGAAGC CAC	CCTCCGC CCGACGTCA	A CGGGGATCC	A CTAGTTTAGA	2280
	GOGCGGCCCC CGCGTGC				
75		nience •			
	Seq ID NO: 80 Protein sec	seguence			

Seq ID NO: 80 Protein sequence: Protein Accession #: Eos sequence

```
MADGAKANPK GFKKKVLDRC FSGWRGPRFG ASCPSRTSRS SLGMKKPFTV AILAGSVLST
                                                                                        60
        AHGSLLNLKA MVEAVTGRSA ILSFVGYGCY CGLGGRGQPK DEVDWCCHAH DCCYQELFDQ
                                                                                      120
 5
        GCHPYVDHYD HTIENNTEIV CSDLNKTECD KQTCMCDKNM VLCLMNQTYR EBYRGFLNVY
        COGPTPNCSI YEPPPEEVTC SHOSPAPPAP P
        Seq ID NO: 81 DNA sequence
        Nucleic Acid Accession #: NM_018136.1
10
        Coding sequence: 38..2218
                                                           41
                                                                        51
        GAAATCTGTA CGAACTATTC AGGCTGCTTT TAGAGGCATG AAAGTTAGAC AAAAATTGAA
        AAATGTATCA GAGGAAAAGA TGGCAGCCAT TGTTAACCAA TCTGCACTCT GCTGTTACAG
AAGCAAAACT CAGTATGAAG CTGTTCAAAG TGAAGGTGTT ATGATTCAAG AGTGGTATAA
15
                                                                                       180
        AGCTTCTGGC CTTGCTTGTT CACAGGAAGC AGAGTATCAT TCTCAAAGTA GGGCTGCAGT
                                                                                       240
        AACAATTCAA AAAGCTTTTT GTAGAATGGT CACAAGAAAA CTGGAAACAC AGAAATGTGC
                                                                                       300
        TGCCCTACGG ATTCAGTTCT TCCTTCAGAT GGCTGTGTAT CGGAGAAGAT TTGTTCAGCA
        GAAAAGAGCT GCTATCACTT TACAGCATTA TTTTAGGACG TGGCAAACCA GAAAACAGTT
TTTACTATAT AGAAAAGCAG CAGTGGTTTT ACAAAATCAC TACAGAGCAT TTCTGTCTGC
                                                                                       420
20
                                                                                       480
        AAAACATCAA AGACAAGTCT ATTTACAGAT CAGAAGCAGT GTTATCATTA TTCAAGCTAG
                                                                                       540
        AAGTAAAGGA TTTATACAGA AACGGAAGTT TCAGGAAATT AAAAATAGCA CCATAAAAAT
        TCAGGCTATG TGGAGGAGAT ATAGAGCCAA GAAATATTTA TGTAAAGTGA AAGCTGCCTG
        CAAGATTCAA GCCTGGTATA GATGTTGGAG AGCACACAAA GAATATCTAG CTGTATTAAA
                                                                                       720
25
        AGCTGTTAAA ATTATTCAAG GTTGCTTCTA TACCAAACTA GAGAGAACAC GGTTTTTGAA
                                                                                       780
        TGTGAGAGCA TCAGCAATTA TCATTCAGAG AAAATGGAGA GCTATACTTC CTGCAAAGAT
        AGCTCATGAA CACTTCTTAA TGATAAAAAG ACATCGAGCT GCTTGTTTGA TCCAAGCACA
                                                                                       900
        TTATAGAGGA TATAAAGGAA GGCAGGTCTC TCTTCGGCAG AAATCTGCTG CTTTGATCAT
                                                                                       960
        THAMAGGA TATAMAGGA GGCAGGCTGG AAAGCATGAA AGGATAAAAT ATATTGAATT
TAAAAAATCT ACAGTTATCC TACAAGCACT GGTGCGTGGT TGGCTAGTAC GAAAAAGATT
                                                                                       1020
30
                                                                                       1080
        1140
        GAATGCTGTT AGAATTCAAA GAGCCTATAA ACTTTACCTG GCTGTGAAGA ATGCTAACAA
GCAGGTTAAT TCAGTCATCT GTATTCAGAG ATGGTTTCGA GCAAGATTAC AAGAAAAGAG
                                                                                       1200
                                                                                       1260
        ATTTATTCAG AAATATCATA GCATCAAAAA GATTGAGCAT GAAGGTCAAG AATGTCTGAG
                                                                                       1320
35
        CCAGCGAAAT AGGGCTGCAT CAGTAATACA GAAAGCAGTG CGCCATTTTC TCCTCCGTAA
                                                                                       1380
        AAAGCAGGAA AAATTCACTA GTGGAATCAT TAAAATTCAG GCATTATGGA GAGGCTATTC
                                                                                       1440
         TTGGAGGAAG AAAAATGATT GTACAAAAAT TAAAGCTATA CGACTAAGTC TTCAAGTTGT
                                                                                       1500
        TAATAGGGAG ATTCGAGAAG AAAACAAACT CTACAAAAGA ACTGCACTTG CACTTCATTA
CCTTTTGACA TATAAGCACC TTTCTGCCAT TCTTGAGGCC TTAAAACACC TAGAGGTAGT
                                                                                       1560
                                                                                        1620
40
         TACTAGATTG TCTCCACTTT GTTGTGAGAA CATGGCCCAG AGTGGAGCAA TTTCTAAAAT
                                                                                       1680
         ATTTGTTTTG ATCCGAAGTT GTAATCGCAG TATTCCTTGT ATGGAAGTCA TCAGATATGC
                                                                                        1740
        TGTGCAAGTC TTGCTTAATG TATCTAAGTA TGAGAAAACT ACTTCAGCAG TTTATGATGT AGAAAATTGT ATAGATATAC TATTGGAGCT TTTGCAGATA TACCGAGAAA AGCCTGGTAA
                                                                                        1800
                                                                                        1860
         TAAAGTIGCA GACAAAGGCG GAAGCATTIT TACAAAAACT TGTIGTTIGT TGGCTATTIT
                                                                                        1920
 45
        ACTGAAGACA ACAAATAGAG CCTCTGATGT ACGAAGTAGG TCCAAAGTTG TTGACCGTAT
TTACAGTCTC TACAAACTTA CAGCTCATAA ACATAAAATG AATACTGAAA GAATACTTTA
                                                                                        1980
                                                                                        2040
         CAAGCAAAAG AAGAATTCTT CTATAAGCAT TCCTTTTATC CCAGAAACAC CTGTAAGGAC
                                                                                        2100
         CAGAATAGTT TCAAGACTTA AGCCAGATTG GGTTTTGAGA AGAGATAACA TGGAAGAAAT
                                                                                        2160
         CACAAATCCC CTGCAAGCTA TTCAAATGGT GATGGATACG CTTGGCATTC CTTATTAGTA
                                                                                        2220
 50
         AATGTAAACA TTTTCAGTAT GTATAGTGTA AAGAAATATT AAAGCCAATC ATGAGTACGT
AAAGTGATTT TTGCTCTCTG TGTACAACTT TTAAAATCTG ACTTTGTTTT AAAAAAAAACAT
                                                                                        2280
         AAACTGTTCA TTACATTCTT CATTTTTATC ATTTATAGTT TTATGCATGT AATAAACTAA
                                                                                        2400
         TATGTCATAA GATG
 55
         Seq ID NO: 82 Protein Sequence
         Protein Accession #: NP_060606.1
                                   21
                                                31
  60
          MKVROKLKNV SEEKMAAIVN QSALCCYRSK TQYEAVQSEG VMIQEWYKAS GLACSQEABY
         HSQSRAAVTI QKAFCRMVTR KLETOKCAAL RIQFFLQMAV YRRRFVQQKR AAITLQHYFR
TWQTRKQFLL YRKAAVVLQN HYRAFLSAKH QRQVYLQIRS SVIIIQARSK GFIQKRKFQE
                                                                                        120
                                                                                         180
          IKNSTIKIQA MWRRYRAKKY LCKVKAACKI QAWYRCWRAH KEYLAVLKAV KIIQGCFYTK
          LERTRFLNVR ASAIIIQRKW RAILPAKIAH EHFLMIKRHR AACLIQAHYR GYKGRQVSLR
                                                                                         300
  65
          QKSAALIIQK YIRAREAGKH ERIKYIEFKK STVILQALVR GWLVRKRFLE QRAKIRLLHP
                                                                                         360
          TAAAYYHLNA VRIQRAYKLY LAVKNANKQV NSVICIQRWF RARLQEKRFI QKYHSIKKIE
                                                                                         420
          HEGQECLSQR NRAASVIQKA VRHFLLRKKQ EKFTSGIIKI QALWRGYSWR KKNDCTKIKA
                                                                                         480
          IRLSLQVVNR EIREENKLYK RTALALHYLL TYKHLSAILB ALKHLEVVTR LSPLCCENMA
                                                                                         540
          QSGAISKIFV LIRSCNRSIP CMEVIRYAVQ VLLNVSKYEK TTSAVYDVEN CIDILLELLQ
                                                                                         600
  70
          IYREKPGNKV ADKGGSIFTK TCCLLAILLK TTNRASDVRS RSKVVDRIYS LYKLTAHKHK
                                                                                         660
          MNTERILYKQ KKNSSISIPF IPETPVRTRI VSRLKPDWVL RRDNMEEITN PLQAIQMVND
          Seq ID NO: 83 DNA sequence
  75
          Nucleic Acid Accession #: NM_000612.2
```

Coding sequence: 553..1095

```
21
       TTCTCCCGCA ACCTTCCCTT CGCTCCCTCC CGTCCCCCC AGCTCCTAGC CTCCGACTCC
       CTCCCCCCT CACGCCCGCC CTCTCGCCTT CGCCGAACCA AAGTGGATTA ATTACACGCT
                                                                                     120
       TTCTGTTTCT CTCCGTGCTG TTCTCTCCCG CTGTGCGCCT GCCCGCCTCT CGCTGTCCTC
 5
       TCTCCCCCTC GCCCTCTCTT CGGCCCCCCC CTTTCACGTT CACTCTGTCT CTCCCACTAT
       CTCTGCCCCC CTCTATCCTT GATACAACAG CTGACCTCAT TTCCCGATAC CTTTTCCCCC
                                                                                     300
       CCGAAAAGTA CAACATCTGG CCCGCCCCAG CCCGAAGACA GCCCGTCCTC CCTGGACAAT
CAGACGAATT CTCCCCCCCC CCCCAAAAAA AAAAGCCATC CCCCCGCTCT GCCCCGTCGC
                                                                                     360
       ACATTCGGCC CCCGCGACTC GGCCAGAGCG GCGCTGGCAG AGGAGTGTCC GGCAGGAGGG
CCAACGCCCG CTGTTCGGTT TGCGACACGC AGCAGGGAGG TGGGCGGCAG CGTCGCCGGC
10
                                                                                     480
                                                                                     540
                                                                                     600
       TTCCAGACAC CAATGGGAAT CCCAATGGGG AAGTCGATGC TGGTGCTTCT CACCTTCTTG
       GCCTTCGCCT CGTGCTGCAT TGCTGCTTAC CGCCCCAGTG AGACCCTGTG CGGCGGGGAG
                                                                                     660
       CTGGTGGACA CCCTCCAGTT CGTCTGTGGG GACCGCGGCT TCTACTTCAG CAGGCCCGCA
       AGCCGTGTGA GCCGTCGCAG CCGTGGCATC GTTGAGGAGT GCTGTTTCCG CAGCTGTGAC
                                                                                     780
15
       CTGGCCCTCC TGGAGACGTA CTGTGCTACC CCCGCCAAGT CCGAGAGGGA CGTGTCGACC
                                                                                     840
       CCTCCGACCG TGCTTCCGGA CAACTTCCCC AGATACCCCG TGGGCAAGTT CTTCCAATAT
                                                                                     900
       GACACCTGGA AGCAGTCCAC CCAGCGCCTG CGCAGGGGCC TGCCTGCCCT CCTGCGTGCC
                                                                                     960
       CGCCGGGGTC ACGTGCTCGC CAAGGAGCTC GAGGCGTTCA GGGAGGCCAA ACGTCACCGT
                                                                                     1020
20
       CCCCTGATTG CTCTACCCAC CCAAGACCCC GCCCACGGG GCGCCCCCCC AGAGATGGCC
                                                                                     1080
       AGCAATCGGA AGTGAGCAAA ACTGCCGCAA GTCTGCAGCC CGGCGCCACC ATCCTGCAGC
                                                                                     1140
       CTCCTCCTGA CCACGGACGT TTCCATCAGG TTCCATCCCG AAAATCTCTC GGTTCCACGT CCCCCTGGGG CTTCTCCTGA CCCAGTCCCC GTGCCCCGCC TCCCCGAAAC AGGCTACTCT
                                                                                     1200
                                                                                     1260
       CCTCGGCCCC CTCCATCGGG CTGAGGAAGC ACAGCAGCAT CTTCAAACAT GTACAAAATC
                                                                                     1320
25
       GATTGGCTTT AAACACCCTT CACATACCCT CCCCCC
       Seq ID NO: 84 Protein Sequence
       Protein Accession #: NP_000603.1
30
        MGIPMGKSML VLLTFLAFAS CCIAAYRPSE TLCGGELVDT LQFVCGDRGF YFSRPASRVS
                                                                                     60
                                                                                     120
       RRSRGIVEEC CFRSCDLALL ETYCATPAKS ERDVSTPPTV LPDNFPRYPV GKFFQYDTWK
       QSTQRLRRGL PALLRARRGH VLAKELEAFR EAKRHRPLIA LPTQDPAHGG APPEMASNRK
35
        Seq ID NO: 85 DNA sequence
       Nucleic Acid Accession #: XM_092643.1
       Coding sequence: 1-5352
40
                                 21
        ATGACTGAAG CCATTACAGA AGCAGCAGTA GCCTCAAGTG AGGAGGTGTC AGAGGAAAGA
        GACGACCTGG GGCCTCTTGA ATTACATGAC AGTGGTACCT TTCAACAAGT CGTGAACCTT
                                                                                      120
        CTGGACATCA TTGACAGCGA GTCAGCAAAG ACGGACACAA CAGGGGCAGG CCTTGACATG
                                                                                      180
45
        CGGAAGACCC TGGCCTCGGT GATAATCATG GAGAAGGCCA CCACTGAGCC TTCTGTAGTG
        ATAAACACTC TCATCCGCTG CCTGCAGGTG CCAGAGATTT CCACCCAGCG CAAGGTCAAC
ATTTACAACA TCCTCCAGGA CATCATCCAG CAGGAGGGG AGCTGGAGGA GCAGTGCGTG
                                                                                      300
                                                                                      360
        CAGAGGCTGG TGGCCATTGC CTCCAAGGAG ATGAGGGAGA TCCCAGAGAT GGAGGGCTAT
                                                                                      420
        ATGAAGGCAG AGGTGGCCAG CGACACACTG GTGGCTCTGT CCCGAAACCA CTTCAGCTTG
50
        GTCATGTACG AGCTGCAGCA CCACCTCAAG CCCCTCAACC TCACTGATGA ATTTGTCATC
        ATCACACTGG CCAAGCTGGC CAACGGCAAT GTGTTTGAGT TCATGCCATA CATGGGCATC
                                                                                      600
        ACCCTGGCTA CCATATTCAC CATGCTGAGA CTTGCCAATG AAGCCAAGAT ACGCCAGGCG
                                                                                      660
        ATCTGCAGTG CCATGGAGAC CTTCTGTGAG ACGGTGCAGT TTTATCTGAA GCACCTGGAG
        GAGAGGGTG ACCCCGTGAT GACTGAGGAG GAGTTTGCCC TGAAGGTGTT CCCCATGTAT
GCTTACTTCG TGACAGTGTG GCTGAGGCAC TACAACCCCG AGGTGAAGCT GGGGGTGATC
AAGTCCCTGA AGCCCATGCT CGGCCTCCTT CTGCCCAACG ATGACCTGCG GGAGCAGGTC
 55
                                                                                      840
                                                                                      900
         TACGACTACA TCCCCCTGCT GCTGGCGGAG TACCAGGGCA GTCTGGAGGT CTTGAGGCAG
                                                                                      960
         ATCCTGGAAC TGTCAGTCAC CACCAACACC CCTGTCCCCC AAATGCAGCT ACACACCATT
                                                                                     1020
        TTCACAGAAC TGCACGTCCA GGTGTGCAAC AAGGCCCCGG CCCAGCATCA GTACAGCAGC CAGAATCTGA TGGAGATGGT GCACTGCTTC GTAGCCCTTG CTCGCTCCTA CCCCAAGGAG
                                                                                     1080
 60
                                                                                     1140
         CTGATGAAGT TCTTCTTCAG CCAGATGGAG ACAAACAAGG AGGCCGTCCG CGTGGGGACT
                                                                                     1200
         CTGAATCTGA TTAGGGCTAT AGTGAGCGCA GATGAGCCCA GGATGAGTAT CAGGGCCATC
         TACCTGGCTA TCCGGGTAGT CAAGAACACC ATCTCTGATA CCCGGTCCAA GGTGAGGATG
                                                                                     1320
         GCTATTCTCC ACATCATTGG GCAGTTGGCT CTCTGTGGCT ACCAGGAGAG AATCAAAGGC
                                                                                     1380
 65
         TGGGGCCTGA AGTACCTGTC TGTGCAGCTG ACCTTATCCA CCTACAAACT GACAAATCGC
                                                                                     1440
         CGGGAGAAGT TTTATCAGAG GGACTTGGAG GAGAGGATGG TCCACAAAGT CACCATGGAC
                                                                                      1500
         ACTOTGAAGA TCATTACCTC TTCTGTCAGT GGGATGACCA CCGAGTTTTG GGTGAGGCTG
                                                                                      1560
         CTGTGCTACA TCATGGAGAC AGACTACGTG GAAGCTTTGA CTCCTATCTG TATCAGCCTC
                                                                                      1620
         ACAAACCTGG CAGAACACCA GCTCCATGGC CAGGATGTGG ATGTCAGCGT GGCTGGCAAG
                                                                                      1680
 70
         AGCAGGCAAG TGGACCTGCC TGCACCTCAG AAGCTGCTGG CCCGTCTCCT GGTGCTGATG
                                                                                      1740
         TCATCACCTT ACAAGGGGGA GGGTCGTGGG ATAGCCATGC TCAACCTCTT GAGGACCCTG
AGCCAGAGCA TCGCACCCTC CATGGCCGAC ATGTGGGAGC TGGAGATTGC GCTACTGGTC
                                                                                      1800
                                                                                      1860
         CGGTACCTGG AAGAACATAC TGAGTTCACT TGGGATCAGA AAGCCTGGGA AGACAAGCTG
                                                                                      1920
         ATTCAGTTTC TGCGAAACTC CCTCAAGAAG ACCCGGGGGT CTAGCTGGAG CCTGCGCTTG
                                                                                      1980
 75
         AGTAAAGAGC TGAACAACCA GATTGCGAGC TTTGACAGCC CCTCTCTGGA GAAGGGCTTT
                                                                                      2040
         CTGTACCGGG CCTTGGGCTT CACCTTGGCC ACAGGCCTGG AGGCCAGCAA GGTGGAGGTC
                                                                                      2100
         CTGCTGTTGG AGCTGCTGTA CAAGACGGAC TACAGCAATG ACTTTGACAG CGAGGGTGTG
```

```
ATTATGTGCT TTGGCCTGTG TGCCCGGGGC CAGGTAAAAA CGGTGCTGAA TGTGCTTCAT 2220
        GACTTCGAGG AGAGGATCCA GGAGTCAGAG CAGTCCTGGC AGATCAGTGC TTGGCGGAAG 2280
        GACCATCCCT GGAGGCGGGA GACAGTGAAA AGTGCCCTCA TGGTGATGTA TAGCTGCGTG
        GCCTCCTACT GCCACCCCA GTTGCTCCTC AACCTCGTGG ACAGCCCCAT CACCGCTAAG
                                                                                              2400
        ATCATTCACC ATTATGTCAG CAGCTGCCAG GACATCTGTC TCAAAATGGC CTTCATGAAG
                                                                                             2460
 5
        AGTGTTGTGC AGGTTACCAA GGCCATCAAC AACATCAAGG ACCTGGAGGA CTTTCACTTT
                                                                                              2520
        GCCCAGAAGA CGACTCTTAC CAGCATTATA GTGGCGGTCA TCAAGGCAGA ACCGACTGAC AACCTGGTTT CTCCAGTGCG AGCCTTGGCG ATGGAGGGCCC TCTCGCACCT GAGCAAGCTG
                                                                                              2580
         AAGCCTTTCT ACTCCACAGA GGAAAACAGT GAGCTGATGG ATATCAGCAT ACATTCTGTA
                                                                                              2700
10
        ATTTCTCTCC AACTCCCAGG AGAGGACAAT GAGTCCATTA AGACCCTGTA TGCAAATGCC
                                                                                              2760
                                                                                              2820
         CTGAGCTCCC TGGAGCAGCT GATGGAGAGC CTCCTGCAGA GGCAGCTGGA CCCCAAGGGG
         CTGCAGGAGA TGGTGCAGCT CCTGGAAAAG TGGATCTTGT CGGAGAAAGA ATGGGAGCGG
GAAAAGGCCG TGAGCCTCCA TCTCTATCTC ATGTGGATTT ATGTCCACAG CACTGCTGTC
                                                                                              2940
         TGTATCCACC TARAGETGGG GCAGTTTGGC ACAATGGTCG GACTCATTGC CCCGTGCACC
TGTGATGCCC ATCAAAGAAC CCGCATGGCC TCAATGAATG TCCTGTCCAG CCTGCTAGAT
                                                                                              3000
                                                                                              3060
15
         CTTCACGCAA GCCAGACCTG CTCCTTGTGG GGCCCTTCCA AGCAGAAGGA GCTTGAGAAA
TGTAAGGGGG ACCTCCAGAG CACAGATGTG GAGAAGATCT TCTGTGCATC CTCCAGAATC
                                                                                              3180
         GCCAAGGTGG TCTGCATGGA GTTTAGCTGC GATGAGGTGG TCTCGCTCAT CCAGAAGCTC
                                                                                              3240
                                                                                              3300
         TGCGAGAACA CTGGGGCCAT GAACCTGCAG CATGACAAGG CCTCTGTCAC CTGGATAGCC
         TTCTTCCTCC AGATGGGGC CAAGGAGCTG GAGGACAAGG TGGCCGAGAT CCTGACTGCC
ATCCTGGTGC ACCTGCCGGT GGTGGACCAC CCAGAGGTGC GGCGCCTTCT CATTGACGGC
20
                                                                                              3420
         ATCCTGGTGC TGGCGCACCA CCACCAGGAC ACCATCCTCA CATCGCTCCT GAGGCAGCCA CTGCCCATGG AGAGCCACCT GGCAGAGGTG TGGCTGGCAG TGTCGGAGAA CGTGCCCTTC
                                                                                              3480
                                                                                              3540
         GCCCGGACCA TGCTCCACAG CCTGATGGGC CGGCTGCAGT CACGGCTCAG CCCCAGAATC
         AGTGCCACCT CCAAGGCTGA CATCTGGCGC CTGGCTGCGG TGGACCCCCT GATGACCCTG
TGCACCATCC ACCTTCTCAT TCAGAAGCTG GATGAGAATG ACAAGCTCCC GGACTTCCTC
                                                                                              3660
25
                                                                                              3720
         CCTGACCTCA TCTACACCCT CCTGCTGCAG CTTGGAAGCA GCCACCGACC AGAGGCCGCC
                                                                                              3780
         CCGCCGGTCT TGAAGATGTG GAAGCTGGTC CACACCACTC CTCTGCCGGA GGAGATGAAC
                                                                                              3840
         CTGCAAAGGT GCTCTCGAGG GCGGGTCACT ATCAAGTCCA TGCAGCTCTT GTTCAAGAGA
         GTCAAGAGCC AGCACCTGGC ACATACCCTG GACGAGCAGG CAGTGTGGGA CCTCCTGCAG
                                                                                              3960
30
         GACGGCGGGA CATTCCTGGA GGGTGTGAGC CTGCTGGCCA GGCTGTGCAT GCAGCACGTG
                                                                                              4020
                                                                                              4080
         GAGGGCCACA GGCAGAGGCT GGCCGAGCTG GTGCTCAGGG GCATGGACTC AGAAGTCCTG
         AGCTGCCGCA TCAGCAGCAC AGCGGTCTGC GTGGAAATGA GGCACCGGTT CATGAGCGGC
CCAGTTCTGT ACCAGGAGAA GCTGCTGAAG CCGGCAGCTT TGCTGCTGGA GAAGGGTGCC
                                                                                              4200
         GACCAGGAGG AAGACGAGGC CCTGCGGGTG CTGTCCCTGC GCGCCCTCGG CAACATGGCC
                                                                                              4260
35
          CTGGGCGCCC CCAAGAAGGT GAAGCAGTAC CGGAAGGTCT TGCTGGAGAA GTGCCTGGGC
                                                                                               4320
         CCCCTGAGGG AGCCCGTGAG CAACAGCGTG ACTGCCGAGG GCATGGAGGC CCTGACCAAG
         ATCCTGGCTG AGCTCCGGGA AGGGGATGTG GGGTCCTCTT TCGACGCCAT GTCTGAGCAG
                                                                                               4440
          TGCAGGATCT TCTTCGACAA CGAGAGCGAG CTGCTGCGTC TGAAAGCCTT CATCCTCTTT
                                                                                               4500
         TGCAGGATCT TCTTCAAAG GGAAGCTCC AAGAAGCATT TCTTCAAAGG GGAGGTGAAG
GGAAGCTGGA TCCCCTCAT GCTGCACTCC CAGGACCCCT GCTCCAATGC AGCCCAAGTA
                                                                                               4560
40
          AGATACATCC TGGGCTTTGT GTCCCAGTCT GGGGCCCGCT GTTCCCCGAG GAAACAGGTC
                                                                                               4680
          CTTGGGTCTG CTGGCTCGGC CTGTATGGCT ACCATGTTTC AGTGTGTGCA CTTCTGGGGC
                                                                                               4740
          TGGAAGTCCC TGGAGCATCC CTCAGGGCCA AGTGATACCG CTACTGATGA CAAGATGACC
                                                                                               4800
          GTTTTCCAGA CAACCATGTG CTCCATCCTG ACTCGGAAAA AGCCGGCTGT TCTCTACCGC
45
          TTCTTGCTAG AAACAATGGC CTATGTTAAA AATAACTTGT CAAGAATCAG AATCGCTGCT
TGCAACTTGG CAGGAATTAT TATGAAGCAG ATGTCTACAC ATTATCTGAA AAAGCTGGAC
                                                                                               4920
                                                                                               4980
          TTCCCAGCAT TACGGAATTC CCTCCAGGAA CTACAGCTGG ACCCGGATCC CGGGCCCACT
                                                                                               5040
          GGCCCAAAGG GTCGGAAACT ACCTTTGTGT CTTCACTCGG AGTTCATCCA CACGCATGCT
GACAGCGTGC CTAAGGCCAG GCACTGTGCC AAGCGAGCAG GTAAACCAGG ACTTCCAAAC
                                                                                               5100
                                                                                               5160
 50
          TGTTCCCAGT CCAACTGCCA AAGGAATTCA CCATCCGGG TCCCATCAAC AGGAGAGAGC
TGCTATGCTG TCCAAAATCC AACCCGTGCT AAAGCCTTCT CTGGAACAGT GGTCTTCAAA
                                                                                               5220
                                                                                               5280
          CTGTTTTGTG GAGCAAATGG TGACTTGATT TCCTGCCCAG TGATAAAGAG TATTGCTGCT
          AAACAAGCTT GA
 55
          Seg ID NO: 86 Protein sequence:
           Protein Accession #: XP_092643.1
                                                    31
 60
           MTEAITEAAV ASSEEVSEER DDLGPLELHD SGTFQQVVNL LDIIDSESAK TDTTGAGLDM
          RKTLASVIIM EKATTEPSVV INTLIRCLQV PEISTQRKVN IYNILQDIIQ QEGELEEQCV
QRLVAIASKE MREIPEMEGY MKAEVASDTL VALSRNHFSL VMYELQHHLK PLNLTDEFVI
                                                                                                 120
                                                                                                 180
           ITLAKLANGN VFEFMPYMGI TLATIFTMLR LANEAKIRQA ICSAMETFCE TVQFYLKHLE
ESVYPVMTEE EFALKVFPMY RYFVTVWLRH YNPEVKLGVI KSLKPMLGLL LPNDDLREQV
                                                                                                 240
 65
           YDYIPLLLAE YQGSLEVLRQ ILELSVTTNT PVPQMQLHTI FTELHVQVCN KAPAQHQYSS
                                                                                                 360
           QNLMEMVHCF VALARSYPKE LMKFFFSQME TNKEAVRVGT LNLIRAIVSA DEPRMSIRAI
                                                                                                 420
           YLAIRVVKNT ISDTRSKVRM AILHIIGQLA LCGYQERIKG WGLKYLSVQL TLSTYKLTNR
                                                                                                  480
           REKFYQRDLE ERMVHKVTMD TVKIITSSVS GMTTEFWVRL LCYIMETDYV EALTPICISL
           TNLAEHQLHG QDVDVSVAGK SRQVDLPAPQ KLLARLLVLM SSPYKGEGRG IAMLNLLRTL
                                                                                                  600
  70
           SQSIAPSMAD MWELBIALLV RYLEEHTEFT WDQKAWEDKL IQFLRNSLKK TRGSSWSLRL
                                                                                                  660
           SKBLNNQIAS FDSPSLEKGF LYRALGFTLA TGLEASKVEV LLLELLYKTD YSNDFDSEGV
IMCFGLCARG QVKTVLNVLH DFEERIQESE QSWQISAWRK DHPWRRSTVK SALMVMYSCV
                                                                                                  720
                                                                                                  780
            ASYCHPOLLL NLVDSPITAK IIHHYVSSCQ DICLKMAFMK SVVQVTKAIN NIKDLEDFHF
                                                                                                  840
           AQKTTLTSII VAVIRAEPTD NLVSPVRALA MEALSHLSKL KPFYSTEENS ELMDISIHSV
ISLQLPGEDN ESIKTLYANA LSSLEQLMES LLQRQLDPKG LQEMVQLLEK WILSEKEWER
                                                                                                  900
  75
                                                                                                  960
            EKAVSLHLYL MWIYVHSTAV CIHLKLGQFG TMVGLIAPCT CDAHQRTRMA SMNVLSSLLD
            LHASQTCSLW GPSKQKELEK CKGDLQSTDV EKIPCASSRI AKVVCMEPSC DEVVSLIQKL
                                                                                                1080
```

```
CENTGAMNLQ HDKASVTWIA FFLQMRAKEL EDKVAEILSA ILVHLPVVDH PEVRRLLIDG
                                                                                               1140
         ILLLAHHHQE TILTSLLRQP LPMESHLAEV WLAVSENVPF ARTMLHSLMG RLQSRLSPRI
                                                                                               1200
        SATSKADIWR LAAVDPLMTL CTHLLIQKL DENDKLPDFL PDLIVILLQ LOSSHRPEAA
PPVLKMWKLV HTTPLPEEMN LQRCSRGRVT IKSMQLLFKR VKSQHLAHTL DEQAVWDLLQ
                                                                                               1260
                                                                                               1320
        DGGTFLEGVS LLARLCMOHV EGHRQRLAEL VLRGMDSEVL SCRISSTAVC VEMRHRFMSG
                                                                                               1380
        PVLYQEKLLK PAALLLEKGA DQSEDEALRV LELRALGNMA LGAPKKVKQY RKVLLEKCLG
PLREPYSNSV TAEGMEALTK ILAELREGDV GSSFDAMSEQ CRIFFDNESE LLRLKAFILF
GKLARVVGMS KKHFFKGEVK KAWIPLMLHS QDPCSNAAQV RYILGFVSQS GARCSPRKQV
                                                                                               1440
                                                                                               1500
                                                                                               1560
        LGSAGSACMA TMFQCVHFWG WKSLEHPSGP SDTATDDKMT VFQTTMCSIL TRKKPAVLYR
                                                                                               1620
10
         FLLETMAYVK NNLSRIRIAA CNLAGIIMKQ MSTHYLKKLD FPALRNSLQE LQLDPDPGPT
                                                                                               1680
         GPKGRKLALC LHSEFIHTHA DSVPKARHCA KRAGKPGLPN CSQSNCQRNS PSGVPSTGES
         CYAVQNPTRA KAPSGTVVFK LFCGANGDLI SCPVIKSIAA KQA
         Seg ID NO: 87 DNA sequence
15
        Nucleic Acid Accession #: CAT cluster
                                                                                51
         CACTTCTCCC TCTCCTTAGT TCTCCGGTAA CCAAACCTTC TCTCGTTATA TACCCAATGA
         TAAAACCAAA GTAATGTTGT ACAGGTTAAA GATTCAAAAC AAACCATAGC AACTGAAACA
20
         GGGTATCAGG ACGCAAATGC TTGGCTGGAA TGGATTAAAC ATTCTGTTGC AGGCTAAACA
                                                                                                 180
         AAAGCGCCTG TTACACTTGT GTGACAGGCA GGCCAGAGAC CCAAATTGTT CCCTTTCCAC
                                                                                                 240
         TTGGGTGGTC CTCTCACAGA CCGGGCATGA GCTGTGTGGT AGCTCTCTTC CAGAACCCCA
                                                                                                 300
        CAGCCTGGGG TGGTGAGTCA TGCAAGACTC TTTCACTGGT GTTCCCTGAG GTCAAGAGCC
CTGCAGGTCA GCCCTGAGGA CTATCCGGCC TCCAGCCCCT GATGTTAACT TCACCTCATG
CCTTTCACGG CAGGGGAAA AGTTAGCATT CCTTGGAGAC TTAACAGGGT GCAGTGAAAC
                                                                                                 420
25
                                                                                                 480
         CAGGCCTTTT GAAGAGCTTA CCAATCAGTC TGCCCTTGTT CATCCCCGAG CAGATGTGTG
                                                                                                 540
         GTGGTATTGC TGGGGACTAC TGCTGGGTAC TCTGCCAAGT AATTAGAGCA GCACTCATGC
         TCTAGTCCAA CTGGCCATCC CTTTCACCCT AGCATTCTGT CAATATGATA AAAAAAAATG
TAAAGAAGTG CCTCACGTGG GTCCTTGACC CCCATGTTTA TATAAACACT ATTGGGTTCT
                                                                                                 660
30
         ATGAGGAGAA CCCGATGA
         Seg ID NO: 88 DNA sequence
         Nucleic Acid Accession #: FGENESH predicted
35
         Coding sequence: 1..759
                                                    31
                                                                  41
                                                                                 51
         ATGCAGGAAG AAACAGGCTG GCAGCTTGGG GAAAGGATTC TTACATACCA CGGCGACCAG
          GTAACTCTGT GCACAGACCC AGAAGAAAGT AGAAAAATAA GTTTTGGAGG AAACCTCATT
                                                                                                  120
40
          GTGAACACAC CTCACCAGGT CAGAACTATC CTAAGTCAGA AAGCAGAAAG GTGGCTTACT
                                                                                                  180
         GACTCCAGAA TCTTAAAGTA TGAGGCTATT CTCTTAGAAA AAGATGATTT AACATTAACC ACTGATAATT CACTTAACCC AGCAGGTTTC CTAACAGGGG ATCTATATCA AAAGAGAGAG
                                                                                                  240
                                                                                                  300
          CACACATGTT TAGTTTTAAT TAATTACCAT ACAAAGGTCC GACCAGACCT AGGAGAAACT
                                                                                                  360
          CCCTTCAGGA CGGACAACA CTTTATAGAT GGTTCCTCC AGGTGATAGA GGGAAAAGA
TACAATGGGT ATCAGTAAT TGATAGAGA ACTCTTGTAG AAATAGAGTT AGGAAAATTG
CCTAATAATT GGTCTGCTCA AACATGTGAG CTGTTTGCAC TCAGCCAAGC CTTAAAGGAC
                                                                                                  420
 45
                                                                                                  480
                                                                                                  540
          TTACAGAACC AGGAAGGAAC CATCTATACA GATTCTAAGT ACGCCTTTGG AGTGGCTCAT
                                                                                                  600
          ACATTTGGAA AAATTTGGAC TGAACGAGGT CTTATTAATA GCAAATGCCA AGACTTGGTC
          CATAAGGAAT TAATCACCCA AGTATTAACT AACCTTCAGC TGCCAAAAGA AACAGCTATT
                                                                                                  720
 50
          GACCATGTCC CCGGACACCA AAAAAGCCTT TCTTTTTAA
          Seq ID NO: 89 Protein Sequence
          Protein Accession #: FGENESH predicted
 55
                                                     31
          MQEETGWQLG ERILTYHGDQ VTLCTDPEES RKISFGGNLI VNTPHQVRTI LSQKAERWLT
DSRILKYEAI LLEKDDLTLT TDNSLNPAGF LTGDLYQKRE HTCLVLINYH TKVRPDLGET
                                                                                                   120
           PFRTGQHFID GSSQVIEGKR YNGYSVIDRE TLVEIELGKL PNNWSAQTCE LFALSQALKD
                                                                                                   180
 60
           LONGEGTIYT DSKYAFGVAH TFGKIWTERG LINSKCODLV HKELITQVLT NLQLPKETAI
           DHVPGHOKSL SP
           Seq ID NO: 90 DNA sequence
Nucleic Acid Accession #: NM_000756.1
Coding sequence: 186..776
 65
                                        21
                                                     31
           AGAAACTCAG AGACCAAGTC CATTGAGAGA CTGAGGGGAA AGAGAGGAGA GAAAGAAAAA
  70
           GAGAGTGGGA ACAGTAAAGA GAAAGGAAGA CAACCTCCAG AGAAAGCCCC CGGAGACGTC
TCTCTGCAGA GAGGCGGCAG CACCCGGCTC ACCTGCGAAG CGCCTGGGAA GCGAGTGCCC
                                                                                                   120
                                                                                                   180
           CTAACATGCG GCTGCCGCTG CTTGTGTCCG CGGGAGTCCT GCTGGTGGCT CTCCTGCCCT
                                                                                                    240
           GCCCGCCATG CAGGCGCTC CTGAGCCGCG GGCCGGTCCC GGGAGCTCGG CAGGCGCCGC AGCACCCTCA GCCCTTGGAT TTCTTCCAGC CGCCGCCGCA GTCCGAGCAG CCCCAGCAGC
                                                                                                   300
                                                                                                   360
  75
           CGCAGGCTCG GCCGGTCCTG CTCCGCATGG GAGAGGAGTA CTTCCTCCGC CTGGGGAACC
                                                                                                    420
            TCAACAAGAG CCCGGCCGCT CCCCTTTCGC CCGCCTCCTC GCTCCTCGCC GGAGGCAGCG
           GCAGCCGCCC TTCGCCGGAA CAGGCGACCG CCAACTTTTT CCGCGTGTTG CTGCAGCAGC
```

```
TGCTGCTGCC TCGGCGCTCG CTCGACAGCC CCGCGGCTCT CGCGGAGCGC GGCGCTAGGA
       ATGCCCTCGG CGGCCACCAG GAGGCACCGG AGAGAGAAAG GCGGTCCGAG GAGCCTCCCA
                                                                                      660
        TCTCCCTGGA TCTCACCTTC CACCTCCTCC GGGAAGTCTT GGAAATGGCC AGGGCCGAGC
                                                                                      720
        AGTTAGCACA GCAAGCTCAC AGCAACAGGA AACTCATGGA GATTATTGGG AAATAAAACG
        GTGCGTTTGG CCAAAAAGAA TCTGCATTTA GCACAAAAAA AATTTAAAAA AATACAGTAT
                                                                                      840
 5
        TCTGTACCAT AGCGCTGCTC TTATGCCATT TGTTTATTTT TATATAGCTT GAAACATAGA
                                                                                      900
       GGGAGGAGG GAGAGACCT ATACCCCTTA CTTAGCATGC ACAAAGTGTA TTCACGTGCA
GCAGCAACAC AATGTTATTC GTTTTGTCTA CGTTTAGTTT CCGTTTCCAG GTGTTTATAG
                                                                                      960
        TGGTGTTTTA AAGAGAATGT AGACCTGTGA GAAAACGTTT TGTTTGAAAA AGCAGACAGA
                                                                                      1080
        AGTCACTCAA TTGTTTTTGT TGTGGTCTGA GCCAAAGAGA ATGCCATTCT CTTGGGTGGG
10
                                                                                      1140
        TAAGACTAAA TCTGTAAGCT CTTTGAAACA ACTTTCTCTT GTAAACGTTT CAGTAATAAA
                                                                                      1200
                                                                                      1260
        ACATCTTTCC AGTCCTTGGT CAGTTTGGTT GTGTAAGAGA ATGTTGAATA CTTATATTTT
        TAATAAAAGT TGCAAAGGT
15
        Seq ID NO: 91 Protein Sequence
        Protein Accession #: NP 000747.1
        MRLPLLVSAG VLLVALLPCP PCRALLSRGP VPGARQAPQH PQPLDFFQPP PQSEQPQQPQ
ARPVLLRMGE EYFLRLGNLN KSPAAPLSPA SSLLAGGSGS RPSPEQATAN FFRVLLQQLL
                                                                                      60
20
        LPRRSLDSPA ALAERGARNA LGGHQEAPER ERRSEEPPIS LDLTFHLLRE VLEMARAEQL
                                                                                      180
        AQQAHSNRKL MEIIGK
25
        Seq ID NO: 92 DNA sequence
        Nucleic Acid Accession #: NM_004217.1
        Coding sequence: 58..1092
                                                                       51
30
        GGCCGGGAGA GTAGCAGTGC CTTGGACCCC AGCTCTCCTC CCCCTTTCTC TCTAAGGATG
GCCCAGAAGG AGACTCCTA CCCCTGGCCC TACGGCCGAC AGACGGCTCC ATCTGGCCTG
                                                                                      120
        AGCACCCTGC CCCAGCGAGT CCTCCGGAAA GAGCCTGTCA CCCCATCTGC ACTTGTCCTC
                                                                                      180
        ATGAGCCGCT CCAATGTCCA GCCCACAGCT GCCCCTGGCC AGAAGGTGAT GGAGAATAGC
        AGTGGGACAC CCGACATCTT AACGCGGCAC TTCACAATTG ATGACTTTGA GATTGGGCGT
                                                                                      300
35
        CCTCTGGGCA AAGGCAAGTT TGGAAACGTG TACTTGGCTC GGGAGAAGAA AAGCCATTTC
                                                                                      360
        ATCGTGGCGC TCAAGGTCCT CTTCAAGTCC CAGATAGAGA AGGAGGGCGT GGAGCATCAG
        CTGCGCAGAG AGATCGAAAT CCAGGCCCAC CTGCACCATC CCAACATCCT GCGTCTCTAC
                                                                                       480
        AACTATTTT ATGACCGGAG GAGGATCTAC TTGATTCTAG AGTATGCCCC CCGCGGGGAG
                                                                                       540
        CTCTACAAGG AGCTGCAGAA GAGCTGCACA TTTGACGAGC AGCGAACAGC CACGATCATG
                                                                                       600
40
        GAGGAGTTGG CAGATGCTCT AATGTACTGC CATGGGAAGA AGGTGATTCA CAGAGACATA
                                                                                       660
         AAGCCAGAAA ATCTGCTCTT AGGGCTCAAG GGAGAGCTGA AGATTGCTGA CTTCGGCTGG
                                                                                       720
        TCTGTGCATG CGCCCTCCCT GAGGAGGAAG ACAATGTGTG GCACCCTGGA CTACCTGCCC CCAGAGATGA TTGAGGGGCG CATGCACAAT GAGAAGGTGG ATCTGTGGTG CATTGGAGTG
                                                                                       780
                                                                                       840
        CTTTGCTATG AGCTGCTGGT GGGGAACCCA CCCTTTGAGA GTGCATCACA CAACGAGACC CTTTGCGCAC TCGTCAAGGT GGACCTAAAG TTCCCCGCTT CTGTGCCCAC GGGAGCCCAG GACCTCATCT CCAAACTGCT CAGGCATAAC CCCTCGGAAC GGCTGCCCCT GGCCCAAGGTC
                                                                                       900
45
                                                                                       1020
         TCAGCCCACC CTTGGGTCCG GGCCAACTCT CGGAGGGTGC TGCCTCCCTC TGCCCTTCAA
                                                                                       1080
         TCTGTCGCCT GATGGTCCCT GTCATTCACT CGGGTGCGTG TGTTTGTATG TCTGTGTATG
                                                                                       1140
         TATAGGGGAA AGAAGGGATC CCTAACTGTT CCCTTATCTG TTTTCTACCT CCTCCTTTGT
 50
         TTAATAAAGG CTGAAGCTTT TTGT
         Seq ID NO: 93 Protein Sequence
         Protein Accession #: NP_004208
 55
                                               31
         MAQKENSYPW PYGRQTAPSG LSTLPQRVLR KEPVTPSALV LMSRSNVQPT AAPGQKVMEN
         SSGTPDILTR HFTIDDFEIG RPLGKGKFGN VYLAREKKSH FIVALKVLFK SQIEKEGVEH
                                                                                        120
         QLRREIEIQA HLHHPNILRL YNYFYDRRRI YLILEYAPRG ELYKELQKSC TFDEQRTATI
                                                                                        180
 60
         MEELADALMY CHGKKVIHRD IKPENLLIGL KGELKIADFG WSVHAPSLRR KTMCGTLDYL
PPEMIEGRMH NEKVDLWCIG VLCYELLVGN PPFESASHNE TYRRIVKVDL KFPASVPTGA
                                                                                        240
          QDLISKLLRH NPSERLPLAQ VSAHPWVRAN SRRVLPPSAL QSVA
          Seq ID NO: 94 DNA sequence
  65
          Nucleic Acid Accession #: NM_007019.1
          Coding sequence: 41..580
                                                                         51
  70
          GGCACGAGCG AGTTCCTGTC TCTCTGCCAA CGCCGCCCGG ATGGCTTCCC AAAACCGCGA
          CCCAGCCGCC ACTAGCGTCG CCGCCGCCCG TAAAGGAGCT GAGCCGAGCG GGGGCGCCGC
                                                                                        120
          CCGGGGTCCG GTGGGCAAAA GGCTACAGCA GGAGCTGATG ACCCTCATGA TGTCTGGCGA
                                                                                        180
          TAAAGGGATT TCTGCCTTCC CTGAATCAGA CAACCTTTTC AAATGGGTAG GGACCATCCA
          TGGAGCAGCT GGAACAGTAT ATGAAGACCT GAGGTATAAG CTCTCGCTAG AGTTCCCCAG
                                                                                        300
  75
          TGGCTACCCT TACAATGCGC CCACAGTGAA GTTCCTCACG CCCTGCTATC ACCCCAACGT
                                                                                        360
          GGACACCCAG GGTAACATAT GCCTGGACAT CCTGAAGGAA AAGTGGTCTG CCCTGTATGA
                                                                                        420
          TGTCAGGACC ATTCTGCTCT CCATCCAGAG CCTTCTAGGA GAACCCAACA TTGATAGTCC
```

```
CTTGAACACA CATGCTGCCG AGCTCTGGAA AAACCCCACA GCTTTTAAGA AGTACCTGCA
         AGAAACCTAC TCAAAGCAGG TCACCAGCCA GGAGCCCTGA CCCAGGCTGC CCAGCCTGTC
                                                                                                 600
         CTTGTGTCGT CTTTTTAATT TTTCCTTAGA TGGTCTGTCC TTTTTGTGAT TTCTGTATAG
                                                                                                 660
         GACTCTTTAT CTTGAGCTGT GGTATTTTTG TTTTGTTTTT GTCTTTTAAA TTAAGCCTCG
                                                                                                 720
         5
         Seq ID NO: 95 Protein Sequence
         Protein Accession #: NP_008950.1
10
                                                                                51
         MASQNRDPAA TSVAAARKGA EPSGGAARGP VGKRLQQELM TLMMSGDKGI SAFPESDNLF
         KWVGTIHGAA GTVYEDLRYK LSLEPPSGYP YNAPTVKFLT PCYHPNVDTQ GNICLDILKE
                                                                                                 120
         KWSALYDVRT ILLSIQSLLG EPNIDSPLNT HAAELWKNPT AFKKYLQETY SKQVTSQEP
15
         Seg ID NO: 96 DNA seguence
         Nucleic Acid Accession #: AK055663
         Coding sequence: 38..1423
20
                                                                                 51
                                                                   41
         AGAACGGCTT CCGGCGGGAG CTGTGCAGCT CCTTATCATG GGGACAATTC ATCTCTTTCG
                                                                                                 60
         AAAACCACAA AGATCCTTTT TTGGCAAGTT GTTACGGGAA TTTAGACTTG TAGCAGCTGA
                                                                                                 120
         CCGAAGGTCC TGGAAGATAC TGCTCTTTGG TGTAATAAAC TTGATATGTA CTGGCTTCCT
GCTTATGTGG TGCAGTTCTA CTAATAGTAT AGCTTTAACT GCCTATACTT ACCTGACCAT
25
         TTTTGATCTT TTTAGTTTAA TGACATGTTT AATAAGTTAC TGGGTAACAT TGAGGAAACC
TAGCCCTGTC TATTCATTTG GGTTTGAAAG ATTAGAAGTC CTGGCTGTAT TTGCCTCCAC
                                                                                                 300
                                                                                                 360
          AGTCTTGGCA CAGTTGGGAG CTCTCTTTAT ATTAAAAGAA AGTGCAGAAC GCTTTTTGGA
         ACAGCCCGAG ATACACACG GAAGATTATT AGTTGGTACT TTTGTGGCTC TTTGTTTCAA CCTGTTCACG ATGCTTCTA TTCGGAATAA ACCTTTTGCT TATGTCTCAG AAGCTGCTAG
                                                                                                  480
30
                                                                                                 540
          TACGAGCTGG CTTCAAGAGC ATGTTGCAGA TCTTAGTCGA AGCTTGTGTG GAATTATTCC
                                                                                                 600
          GGGACTTAGC AGTATCTTCC TTCCCCGAAT GAATCCATTT GTTTTGATTG ATCTTGCTGG
                                                                                                  660
          AGCATTIGCT CTTTGTATTA CATATATGCT CATTGAAATT AATAATTATT TTGCCGTAGA
                                                                                                  720
          CACTGCCTCT GCTATAGCTA TTGCCTTGAT GACATTTGGC ACTATGTATC CCATGAGTGT
GTACAGTGGG AAAGTCTTAC TCCAGACAAC ACCACCCCAT GTTATTGGTC AGTTGGACAA
                                                                                                  780
35
                                                                                                  840
          ACTCATCAGA GAGGTATCTA CCTTAGATGG AGTTTTAGAA GTCCGAAATG AACATTTTTG
                                                                                                  900
          GACCCTAGGT TTTGGCTCAT TGGCTGGATC AGTGCATGTA AGAATTCGAC GAGATGCCAA
          TGAACAAATG GTTCTTGCTC ATGTGACCAA CAGGCTGTAC ACTCTAGTGT CTACTCTAAC
                                                                                                  1020
          TGTTCAAATT TTCAAGGATG ACTGGATTAG GCCTGCCTTA TTGTCTGGGC CTGTTGCAGC CAATGTCCTA AACTTTTCAG ATCATCACGT AATCCCAATG CCTCTTTTAA AGGGTACTGA
                                                                                                  1080
 40
                                                                                                  1140
          TGATTGAAC CCAGTTACAT CAACTCCAGC TAAACCTAGT AGTCCACCT CAGAATTTCA
ATTTAACACT CCTGGGAAAA ATGTGAACCC AGTTATCTT CTAAACACAC AAACAAGGCC
TTATGGTTTT GGTCTCAATC ATGGACACAC ACCTTACAGC AGCATGCTTA ATCAAGGACT
                                                                                                  1200
                                                                                                  1260
                                                                                                  1320
          TGGAGTTCCA GGAATTGGAG CAACTCAAGG ATTGAGGACT GGTTTTACAA ATATACCAAG
                                                                                                  1380
 45
          TAGATATGGA ACTAATAATA GAATTGGACA ACCAAGACCA TGATAGACTC TAACTTATTT
TTATAAGGAA TATTGACTCC TTGGCTTCCA ATTTATTTAG TAATCCAACT TTGCATTGAC
                                                                                                  1440
                                                                                                  1500
          TGTTTAATCA TTTACTCTAA ATGTTAGATA ATAGTAGTCT TGTTCACATT TCATGAAACC
TATGAAACTA TATTTTGTA AAATGTATTT GTGACAGTGA AATCCTCGTA AATGTTAAAG
                                                                                                  1560
                                                                                                  1620
          GCTTTAAATA GGCTTCCTTT AGAAAATGTG TTTCTTTAAA TTTGGATTTT GGTATCTTTG
                                                                                                  1680
 50
          GTTTTGTAGT TGACTGCAGT GTGATGTGAC CTTACCTTTA TAAGAGCCAC TTGATGGAGT AGATCTGTCA CATTACTAAG ATACGATATT TCTTTTTTT TCCGAGACGG AGTCTTGCTC
                                                                                                  1740
                                                                                                  1800
           TGCCACTGTG CCCGGCCAAT ACATTATTAT TAACTTAAGG CTGTACTTTA TTAAGGCTTC
CTTAGTTTTT GTTTTGTTT GTTTTTTGAG ATGGAGTCTC ACTCTGTCGC CCAGGCTGGA
                                                                                                  1860
                                                                                                   1920
           ATGACTCHA CTICACTGCAA CCTCGCCTC CTCGATTCAA ATGATTCTCC
TGCCTCAGCC TCCCGAGTAG CTGGGATTAA AGGACCTG CACCACGCC AGCTAATTTT
TGTATTTTTA GTAAAGACGG GGGATTTCAC CATGTTGGCC AGGCTGGTCT TGAACTCCTG
                                                                                                  1980
  55
                                                                                                   2040
                                                                                                   2100
           ACCTCATGAT CCACCCACCT TAGCCTCCCA AAGTGCTGGG ATTAGGTGTG AGCCACCGCA
                                                                                                   2160
           CCTGGCCGAT ATTITCTITA ATGAAATTTA TAAATATGCT TCTTGAATAA TACACATTTT GGGAAAGGGA AAAATGTCTG TTCAAAAAGT AAAGGTCTCT TTTATAGCTT TTCCAAACTT
                                                                                                   2220
                                                                                                   2280
  60
           AATTGCTAAA TTTTTCTTTG AGGTTCTCCT GAATTATGTC TTACAAACTA AAAGCAAAAA
           TTTTTAGCAG AAATTTTGGA ATACATTCTA TCTAGCACAA TTTGAATTTT TAATTATCAA
                                                                                                   2400
           GATTTTTGTT AAAGTTTCTC TCCTTTAAAA ATTTTAGTAC ATTTGTAAAT
           Seq ID NO: 97 Protein Sequence
  65
           Protein Accession #: BAB70980.1
                                                      31
                                        21
           MGTIHLFRKP QRSFFGKLLR EFRLVAADRR SWKILLFGVI NLICTGFLLM WCSSTNSIAL
  70
            TAYTYLTIFD LFSLMTCLIS YWVTLRKPSP VYSFGFERLE VLAVFASTVL AQLGALFILK
                                                                                                   120
            ESAERFLEQP EIHTGRLLVG TFVALCFNLF TMLSIRNKPF AYVSEAASTS WLQEHVADLS
                                                                                                   180
            RSLCGIIPGL SSIFLPRMNP FVLIDLAGAF ALCITYMLIE INNYFAVDTA SAIAIALMTF
                                                                                                    240
            GTMYPMSVYS GKVLLQTTPP HVIGQLDKLI REVSTLDGVL EVRNEHFWTL GFGSLAGSVH
                                                                                                    300
            VRIRRDANEQ MVLAHVTNRL YTLVSTLTVQ IFKDDWIRPA LLSGPVAANV LNFSDHHVIP
MPLLKGTDDL NPVTSTPAKP SSPPPEFSFN TPGKNVNPVI LLNTQTRPYG FGLNHGHTPY
                                                                                                    360
  75
            SSMLNQGLGV PGIGATQGLR TGFTNIPSRY GTNNRIGQPR P
```

```
Nucleic Acid Accession #: CAT cluster
   5
           ATGGACTTAA CCAATGCTTC ACAAATACCA AGAAAAAAAT ATTTCAATGT GATAAATATA
           GGAAAGTTTT TCATAAATTT TCAAATTCAA ACTGACATAA GAGAAGACAT ACGGGAAAAA
                                                                                                          120
           AGACCTITCA AATGTATAGA ATGTGGCAAA GCTTTTAACA AGTTTTCAAC CCTTACTACA
           CATAAGAAAA TICATACTAG AGAGAAACCC TACAAATGTG AAGAATGTGG CAAAGCCTTC AACTGGTCCT CATACCTTAC TATACATAAG AGAATCATA CTGGAGAGAA ACTCTACAAA TGTGAAGAAT GTGGCAAAGC CTTCAACTGG TCCTCATACC TTACTGCATA TAAGATAACT
                                                                                                          240
                                                                                                          300
  10
                                                                                                          360
           CATACTAGAG AGAAACCCTA CAAATGTGAA GAATGTGGCA AAGCCTTTAA GTACTCCTCG
           AACCTCACTA CACATAAGAT AATTCATACT GGAGAGCATC TCTACAAGTG TGAAGAATGT
           GGCAAAGCGT TTAACCATGC TGCATGCTTC TTTGTCATTT TGAAGATTTG A
  15
           Seq ID NO: 99 DNA sequence
           Nucleic Acid Accession #: FGENESH predicted
           Coding sequence: 1..531
  20
                                                                                         51
           ATGGACTTAA CCAATGCTTC ACAAATACCA AGAAAAAAT ATTTCAATGT GATAAATATA GGAAAGTTTT TCATAAATTT TCAAATTCAA ACTGACATAA GAGAAGACAT ACGGGAAAAA
                                                                                                           120
            AGACCTTTCA AATGTATAGA ATGTGGCAAA GCTTTTAACA AGTTTTCAAC CCTTACTACA
                                                                                                           180
            CATAAGAAAA TTCATACTAG AGAGAAACCC TACAAATGTG AAGAATGTGG CAAAGCCTTC
25
           AACTGGTCCT CATACCTTAC TATACATAAG AGAATTCATA CTGGAGAGAA ACTCTACAAA
TGTGAAGAAT GTGGCAAAGC CTTCAACTGG TCCTCATACC TTACTGCATA TAAGATAACT
                                                                                                           300
                                                                                                           360
           TGTGAGAGA TGGGCAAGC CTTACTGG CATACTGG CATACTAGAG AGAACCCTA CAAATGTGAA GAATGTGACA AAGCCTTTAA GTACTCCTCG CACATAAGAT AATTCATACT GGAGAGCATC TCTACAAGTG TGAAGAATGT
                                                                                                           420
            GGCAAAGCGT TTAACCATGC TGCATGCTTC TTTGTCATTT TGAAGATTTG A
  30
            Seq ID NO: 100 Protein Sequence
            Protein Accession #: FGENESH predicted
  35
            MDLTNASQIP RKKYPNVINI GKFFINFQIQ TDIREDIREK RPFKCIECGK AFNKFSTLTT
            HKKIHTREKP YKCEECGKAF NWSSYLTIHK RIHTGEKLYK CEECGKAFNW SSYLTAYKIT
                                                                                                            120
            HTREKPYKCE ECGKAFKYSS NLTTHKIIHT GEHLYKCEEC GKAFNHAACF FVILKI
   40
            Seg ID NO: 101 DNA sequence
            Nucleic Acid Accession #: NM_032589.1
            Coding sequence: 147-422
   45
                                           21
                                                           31
             GGCACGAGGT CTTGTTATGC AAATAGGCTT CCCACTTGGC AGGGGCCGTC TTGTCCACTC
             GTTTCTGTAA ACATGGGTGG CAAAAAGAGA AGATGGAGCT GCCATTTAGA ACATGCCTAA
                                                                                                            120
             TCCCAGCTTC ATCTTGCTGA GCAAAAATGA AGGAGCCTGG ACCCAACTTT GTTACTGTGA
GAAAGGGTCT TCATTCATTC AAGATGGCAT TTGTTAAGCA CCTACTGCTG GAGTGCAGTG
                                                                                                            240
   50
             GTTCAATCAC GGATCACTGC AGCCTCCACC TCCCAGTTCA AGAAATTCTC ATGTCTCAGC
                                                                                                            300
            GITCAATCAC GGATCACTGC AGCCTCCACC TCCCAGTTCA AGAAATTCTC ATGTCTCAGC CTCCTGAGCA GCTAGGATTA CAGACAAACC TTGGAAATCA AGAAAGTTCT GGAATGATGA AGCTGTTCAT GCCAAGACCG AAAGTGTGG CCCAGTATGA GTCCATTCAG TTCATGCCGT GACAATTTTC TTGGAACTCC TTTTTATTGT TAGTTCTCAC TTGTTTCCAT ATTTAGTGAA TGTACATTTA ATTGCAAAGC TGTCATTAAT AAAAATTCTT ATAGTACCTC ACTGCAC
                                                                                                            360
    55
             Seq ID NO: 102 Protein sequence:
Protein Accession #: NP_115978.1
    60
                                                                                           51
                                            21
                                                            31
              MKEPGPNFVT VRKGLHSFKM AFVKHLLLEC SGSITDHCSL HLPVQEILMS QPPEQLGLQT
              NLGNOESSGM MKLFMPRPKV LAQYESIQFM P
    65
              Seq ID NO: 103 DNA sequence
              Nucleic Acid Accession #: NM_014501.1
              Coding sequence: 60..737
    70
                                             21
              GGCGGACCGA AGAACGCAGG AAGGGGGCCG GGCGGACCCG CCCCCGGCCC GCCGCAGCCA
              TGAACTCCAA CGTGGAGAAC CTACCCCGC ACATCATCG CCTCGTGTC AAAGGAGTGA
CGACACTGAC CGCAGACCCA CCCGATGGCA TCAAGGTCTT TCCCAACGAG GAGGACCTCA
CGACACTCCA GGTCACCATC GAGGGCCCTG AGGGACCCC ATATGCTGGA GGTCTGTTCC
                                                                                                             120
                                                                                                              240
    75
              GCATGAAACT CCTGCTGGGG AAGGACTTCC CTGCCTCCCC ACCCAAGGGC TACTTCCTGA
                                                                                                              300
              CCAAGATCTT CCACCCGAAC GTGGGGGCCA ATGGCGAGAT CTGCGTCAAC GTGCTCAAGA
GGGACTGGAC GGCTGAGCTG GGCATCCGAC ACGTACTGCT GACCATCAAG TGCCTGCTGA
                                                                                                              360
```

Sed ID NO: 98 DNA sequence

```
TCCACCCTAA CCCCGAGTCT GCACTCAACG AGGAGGCGGG CCGCCTGCTC TTGGAGAACT
                                                                                                         480
         ACGAGGAGTA TGCGGCTCGG GCCCGTCTGC TCACAGAGAT CCACGGGGGG GCCGACGGCAG GGCCGAAGCC GGTCGGGCCC TGGCCAGTGG CACTGAAGCT TCCTCCACCG
                                                                                                         540
                                                                                                         600
         ACCCTGGGGC CCCAGGGGGC CCGGGAGGGG CTGAGGGTCC CATGGCCAAG AAGCATGCTG
                                                                                                         660
         GCGAGCGCGA TAAGAAGCTG GCGGCCAAGA AAAAGACGGA CAAGAAGCGG GCGCTGCGGG
                                                                                                         720
 5
                                                                                                         780
         CGCTGCGGCG GCTGTAGTGG GCTCTCTTCC TCCTTCCACC GTGACCCCAA CCTCTCCTGT
         CCCCTCCCTC CAACTCTGTC TCTAAGTTAT TTAAATTATG GCTGGGGTCG GGGAGGGTAC
         AGGGGGCACT GGGACCTGGA TTTGTTTTTC TAAATAAAGT TGGAAAAGCA
10
         Seq ID NO: 104 Protein Sequence
         Protein Accession #: NP_055316.1
                                                        31
                         11
         MNSNVENLPP HIIRLVYKEV TTLTADPPDG IKVFPNEEDL TDLQVTIEGP EGTPYAGGLF
15
         RMKLLLGKOF PASPPKGYFL TKIFHPNVGA NGEICVNVLK RDWTAELGIR HVLLTIKCLL
IHPNPESALN EEAGRLLLEN YEEYAARARL LTEIHGGAGG PSGRAEAGRA LASGTEASST
                                                                                                         120
                                                                                                         180
         DPGAPGGPGG AEGPMAKKHA GERDKKLAAK KKTDKKRALR ALRRL
20
          Seq ID NO: 105 DNA sequence
          Nucleic Acid Accession #: NM_005101
          Coding sequence: 76..573
25
                                        21
                                                         31
                         11
          CGGCTGAGAG GCAGCGAACT CATCTTTGCC AGTACAGGAG CTTGTGCCGT GGCCCACAGC
          CCACAGCCCA CAGCCATGGG CTGGGACCTG ACGGTGAAGA TGCTGGCGGG CAACGAATTC
          CAGGTGTCCC TGAGCAGCTC CATGTCGGTG TCAGAGCTGA AGGCGCAGAT CACCCAGAAG
ATTGGCGTGC ACGCCTTCCA GCAGCGTCTG GCTGTCCACC CGAGCGGTGT GGCGCTGCAG
                                                                                                          180
                                                                                                          240
30
          ATTGGGTGC ACGCCTTCCA GCAGGCTCTG GCTGTCCACC GCAGGGGTCT GCCGTGCAG
GACAAGGGTCC CCCTTGCCAG CCAGGGCCTG GGCCCTGGCA GCACGGTCCT GCTGGTGGTG
GACAAATGCG ACGAACCTCT GAGCATCCTG GTGAGGAATA ACAAGGGCCG CAGCAGCACC
TACGAGGTCC GGCTGACGC GACCGTGAGC AGCACGTGAG GGACCAGGTC
GGTTGCAGG ACGACCTGTT CTGGCTGACC TCCGAGGGA AGCCCCTGGA GGACCAGGTC
CCGCTGGGGG AGTACCGCCT CAGCCCCCTG AGCACCGTGT TCATGAATCT GCCCCTGCGG
                                                                                                          300
                                                                                                          420
                                                                                                          480
                                                                                                          540
35
          GGAGGCGGCA CAGAGCCTGG CGGGCGGAGC TAAGGGCCTC CACCAGCATC CGAGCAGGAT
          CAAGGGCCGG AAATAAAGGC TGTTGTAAGA GAAT
           Seg ID NO: 106 Protein Sequence
40
           Protein Accession #: NP_005092
                                          21
                                                         31
           MGWDLTVKML AGNEFQVSLS SSMSVSELKA QITQKIGVHA FQQRLAVHPS GVALQDRVPL
           ASQGLGPGST VLLVVDKCDE PLSILVRNNK GRSSTYEVRL TQTVAHLKQQ VSGLEGVQDD
                                                                                                           120
45
           LFWLTFEGKP LEDQLPLGEY GLKPLSTVFM NLRLRGGGTE PGGRS
           Seq ID NO: 107 DNA sequence
           Nucleic Acid Accession #: NM_006018
 50 -
           Coding sequence: 1..1161
                                                                                         51
                                                          31
           ATGAATCGGC ACCATCTGCA GGATCACTTT CTGGAAATAG ACAAGAAGAA CTGCTGTGTG
           TTCCGAGATG ACTICATEC CAAGGTGTTG CCGCCGGTGT TGCGCCTGGA GTTTATCTTT GGGCTTCTG GCAACGGCGT TGCCCTGTGG ATTTTCTGTT TCCACCTCAA GTCCTGGAATGCCT TCCACCTGGAA GTTTCCTGTT TCCACCTCAA GTCCTGGCAA GTACCTGAA TTCTACTGAT CAACCTGGCA GTAGCTGACT TTCTACTGAT CATCTGCCTG
                                                                                                           120
 55
                                                                                                            240
            CCGTTCGTGA TGGACTACTA TGTGCGGCGT TCAGACTGGA AGTTTGGGGA CATCCCTTGC
                                                                                                            300
           CGGCTGGTGC TCTCATGTT TGCCGGCGT TCAGACTGGA AGTTTGGGGA CATCCCTTGC
CGGCTGGTGC TCTTCATGTT TGCCATGAAC CGCCAGGGCA GCATCATCTT CCTCACGGTG
GTGGCGGTAG ACAGGTATTT CCGGGTGGTC CATCCCCACC ACGCCCTGAA CAAGAATCTCC
AATTGGACAG CAGCCATCAT CTCTTGCCTT CTTGGCGTA TCACTGTTGG CCTAACAGTC
CACCTCCTGA AGAAGAAGGTT GCTGATCCAG AATGGCCCTG CAAATGTGTG CATCAGCTTC
                                                                                                            360
 60
                                                                                                            480
                                                                                                            540
            AGCATCTGCC ATACCTTCCG GTGGCACGAA GCTATGTTCC TCCTGGAGTT CCTCCTGCCC CTGGGCATCA TCCTGTTCTG CTCAGCCAGA ATTATCTGGA GCCTGCGGCA GAGACAAATG
                                                                                                            600
                                                                                                            660
            720
  65
                                                                                                            780
                                                                                                            840
                                                                                                            900
                                                                                                            960
            CCAGATAATA ACCGCAGCAC GAGCGTCGAG CTCACAGGGG ACCCCAACAA AACCAGAGGC
                                                                                                            1020
  70
            GCTCCAGAGG CGTTAATGGC CAACTCCGGT GAGCCATGGA GCCCCTCTTA TCTGGGCCCA
                                                                                                            1080
            ACCTCAAATA ACCATTCCAA GAAGGGACAT TGTCACCAAG AACCAGCATC TCTGGAGAAA
            CAGTTGGGAT GTTGCATCGA G
  75
             Seg ID NO: 108 Protein Sequence
             Protein Accession #: NP_006009.1
                                                                                          51
                                                           31
                                                                           41
                            11
```

PCT/US02/21338

```
MNRHHLQDHF LEIDKKNCCV FRDDFIAKVL PPVLGLEFIF GLLGNGLALW IFCFHLKSWK SSRIFLFNLA VADFLLIICL PFVMDYYVRR SDWKFGDIPC RLVLFMFAMN RQGSIIFLTV
                                                                                                            120
          VAVDRYFRVV HPHHALNKIS NWTAAIISCL LWGITVGLTV HLLKKKLLIQ NGPANVCISF
                                                                                                            180
 5
          SICHTFRWHE AMFLLEFLLP LGIILFCSAR IIWSLRQRQM DRHAKIKRAI TFIMVVAIVF
                                                                                                            240
          VICPLPSVVV RIRIFWLLHT SGTONCEVYR SVDLAFFITL SFTYMNSMLD PVVYYFSSPS
          FPNFFSTLIN RCLORKMTGE PDNNRSTSVE LTGDPNKTRG APEALMANSG EPWSPSYLGP
          TSNNHSKKGH CHOEPASLEK OLGCCIE
10
          Seg ID NO: 109 DNA sequence
          Nucleic Acid Accession #: NM_005030.2
          Coding sequence: 63..1874
                                                                                         51
15
          GGCACGAGGG AGCGTGCGG AGGCTCTGCT CGGATCGAGG TCTGCAGCGC AGCTTCGGGA
GCATGAGTGC TGCAGTGACT GCAGGGAAGC TGGCACGGCC ACCGGCCGAC CCTGGGAAAG
                                                                                                            120
          COGGGGTCCC CGGAGTTGCA GCTCCCGGAG CTCCGGCGGC GGCTCCACCG GCGAAAGAGA
                                                                                                            180
          TCCCGGAGGT CCTAGTGGAC CCACGCAGCC GGCGGCGCTA TGTGCGGGGC CGCTTTTTGG
          GCAAGGGCGG CTTTGCCAAG TGCTTCGAGA TCTCGGACGC GGACACCAAG GAGGTGTTCG
CGGGCAAGAT TGTGCCTAAG TCTCTGCTGC TCAAGCCGCA CCAGAGGGAG AAGATGTCCA
20
                                                                                                            360
          TGGAAATATC CATTCACCGC AGCCTCGCCC ACCAGCACGT CGTAGGATTC CACGGCTTTT
                                                                                                            420
          TCGAGGACAA CGACTTCGTG TTCGTGGTGT TGGAGCTCTG CCGCCGGAGG TCTCTCCTGG
          AGCTGCACAA GAGGAGGAAA GCCCTGACTG AGCCTGAGGC CCGATACTAC CTACGGCAAA
          TTGTGCTTGG CTGCCAGTAC CTGCACCGAA ACCGAGTTAT TCATCGAGAC CTCAAGCTGG
                                                                                                            600
25
          GCAACCTTTT CCTGAATGAA GATCTGGAGG TGAAAATAGG GGATTTTGGA CTGGCAACCA
                                                                                                            660
          GCAACCTTTT CCTGAATGAA GATCTGGAGG TGAAAATAGG GGATTTTGA CTGGAACCA
AAGTCGAATA TGACGGGGAG AGGAAGAAC CCCTGTGTG GACTCCTAAT TACATAGCTC
CCGAGGTGCT GAGCAAGAAA GGGCACAGTT TCGAGGTGA TGTGTGGTCC ATTGGGTGTA
TCATGTATAC CTTGTTAGTG GGCAAACCAC CTTTTGAGAC TTCTTGCCTA AAAGAGACCT
ACCTCCGGAT CAAGAAGAAT GAATACAGTA TTCCCAAGCA CATCAACCCC GTGGCCGCCT
CCCTCATCCA GAAGATGCTT CAGACAGATC CCACTGCCCG CCCAACCAT AACGAGCTGC
CCCTCATCCA GAAGATGCTT CAGACAGATC CACTGCCCG CCCAACCATT AACGAGCTGC
                                                                                                            720
                                                                                                            900
30
                                                                                                             960
          TTAATGACGA GTTCTTTACT TCTGGCTATA TCCCTGCCCG TCTCCCCATC ACCTGCCTGA
          CCATTCCACC AAGGITTICG ATTGCTCCCA GCAGCCTGGA CCCCAGCAAC CGGAAGCCCC TCACAGTCCT CAATAAAGGC TTGGAGAACC CCCTGCCTGA GCGTCCCCGG GAAAAAGAAG
                                                                                                             1080
                                                                                                             1140
           AACCAGTGGT TCGAGAGACA GGTGAGGTGG TCGACTGCCA CCTCAGTGAC ATGCTGCAGC
                                                                                                             1200
35
           AGCTGCACAG TGTCAATGCC TCCAAGCCCT CGGAGCGTGG GCTGGTCAGG CAAGAGGAGG
                                                                                                             1260
          AGUTGUACAG TUTCAATGCC TCCAAGCCT CGGAGCGTGG GCTGGTCAGG CAAGAGGAGG
CTGAGGATCC TGCCTGCATC CCCATCTTCT GGGTCAGCAA GTGGGTGGAC TATTCGGACA
AGTACGGCCT TGGGTATCAG CTCTGTGATA ACAGCGTGGG GGTGCTCTTC AATGACTCAA
CACGCCTCAT CCTCTACAAT GATGGACA GCCTGCAGTA CATAGAGCGT GACGGCACTG
                                                                                                             1320
                                                                                                             1380
                                                                                                             1440
           AGTCCTACCT CACCGTGAGT TCCCATCCCA ACTCCTTGAT GAAGAAGATC ACCCTCCTTA
                                                                                                             1500
 40
           AGTECTACUT CACCOTGAGT TOCCATCOA MCTCTTGAT GAAGAAGAT ACCCCTACA
AATATTCCG CAATTACATG AGCGAGCACT TGCTGAAGGC AGGTGCCAAC ATCACGCAGC
GCGAAGGTGA TGAGCTGGCC CGGCTGCCCT ACCTACGGAC CTGGTTCCGC ACCCGAGCG
CCATCATCCT GCACCTCAGC AACGGCAGCG TGCAGATCAA CTTCTTCCAG GATCACCA
AGCTCATCTT GTGCCCACTG ATGGCAGCCG TGACCTACAT CGACGAGAAC CGGGCACCTCC
AGCTCATCTT GTGCCCACTG ATGGCAGCCG TGACCTACAT CGACGAGAAC CCGGCACCTCC
                                                                                                             1560
                                                                                                             1620
                                                                                                             1680
                                                                                                             1740
           1800
 45
                                                                                                             1860
                                                                                                              1920
           ATCTGGGGCC CATACTGGTT GGCTCCCGCG GTGCCATGTC TGCAGTGTGC CCCCCAGCCC
                                                                                                              1980
           CGGTGGCTGG GCAGAGCTGC ATCATCCTTG CAGGTGGGGG TTGCTGTGTA AGTTATTTTT
GTACATGTTC GGGTGTGGGT TCTACAGCCT TGTCCCCCTC CCCCTCAACC CCACCATATG
                                                                                                              2040
                                                                                                              2100
 50
            AATTGTACAG AATATTTCTA TTGAATTCGG AACTGTCCTT TCCTTGGCTT TATGCACATT
                                                                                                              2160
            55
            Seq ID NO: 110 Protein Sequence
            Protein Accession #: NP_005021.2
                                                           31
                                            21
            MSAAVTAGKL ARAPADPGKA GVPGVAAPGA PAAAPPAKEI PEVLVDPRSR RRYVRGRFLG
 60
            KGGFAKCFEI SDADTKEVFA GKIVPKSLLL KPHQREKMSM EISIHRSLAH QHVVGFHGFF
            EDNDFVFVVL ELCRRSLLE LHKRRKALTE PEARYYLRQI VLGCQYLHRN RVIHRDLKLG
NLFLNEDLEV KIGDFGLATK VEYDGERKKT LCGTPNYIAP EVLSKKGHSF EVDVWSIGCI
                                                                                                              180
                                                                                                              240
            MYTLLVGKPP FETSCLKETY LRIKKNEYSI PKHINPVAAS LIQKMLQTDP TARPTINELL
                                                                                                              300
            NDEFFTSGYI PARLPITCLT IPPRFSIAPS SLDPSNRKPL TVLNKGLENP LPERPREKEE
PVVRETGEVV DCHLSDMLQQ LHSVNASKPS ERGLVRQEEA EDPACIPIEW VSKWVDYSDK
  65
                                                                                                               420
             YGLGYQLCDN SVGVLFNDST RLILYNDGDS LQYIERDGTE SYLTVSSHPN SLMKKITLLK
                                                                                                               480
             YFRNYMSEHL LKAGANITFR EGDELARLPY LRTWFRTRSA IILHLSNGSV QINFFQDHTK
                                                                                                               540
             LILCPLMAAV TYIDEKROFR TYRLSLLEEY GCCKELASRL RYARTMVDKL LSSRSASNRL
  70
             Seq ID NO: 111 DNA sequence
             Nucleic Acid Accession #: NM_005409.3
             Coding sequence: 94..378
   75
                                                            31
             TTECTTTEAT GTTEAGEATT TETACTECTT CCAAGAAGAG CAGCAAAGET GAAGTAGEAG
```

269

```
CAACAGCACC AGCAGCAACA GCAAAAAACA AACATGAGTG TGAAGGGCAT GGCTATAGCC
         TTGGCTGTGA TATTGTGTGC TACAGTTGTT CAAGGCTTCC CCATGTTCAA AAGAGGACGC
                                                                                                   180
         TGTCTTTGCA TAGGCCCTGG GGTAAAAGCA GTGAAAGTGG CAGATATTGA GAAAGCCTCC
        TGTCTTTGCA TAGGCCTGG GGTAGCAA ATAGGAGTGA TTATTACCCT GAAAGAAAAT AAAGGACAAC GATGCCTAAA TCCCAAATCG AAGCAAGCAA GGCTTATAAT CAAAAAAGTT
                                                                                                   360
  5
         GAAAGAAAGA ATTTTTAAAA ATATCAAAAC ATATGAAGTC CTGGAAAAGG GCATCTGAAA
                                                                                                   420
        AACCTAGAAC AAGTTTAACT GTGACTACTG AAATGACAAG AATTCTACAG TAGGAAACTG AGACTTTTCT ATGGTTTTGT GACTTTCAAC TTTTGTACAG TTATGTGAAG GATGAAAGGT
         GGGTGAAAGG ACCAAAAACA GAAATACAGT CTTCCTGAAT GAATGACAAT CAGAATTCCA
                                                                                                   600
         CTGCCCAAAG GAGTCCAGCA ATTAAATGGA TTTCTAGGAA AAGCTACCTT AAGAAAGGCT
10
                                                                                                   660
         GGTTACCATC GGAGTTTACA AAGTGCTTTC ACGTTCTTAC TTGTTGTATT ATACATTCAT
                                                                                                   720
         GCATTTCTAG GCTAGAGAAC CTTCTAGATT TGATGCTTAC AACTATTCTG TTGTGACTAT
GAGAACATTT CTGTCTCTAG AAGTTATCTG TCTGTATTGA TCTTTATGCT ATATTACTAT
                                                                                                   780
                                                                                                   840
         GAGAACATTT CIGICIA ANGICATTAT TACTGGAGTC AAGCCCTTAT AAGTCAAAAG
CATCTATGTG TCGTAAAGCA TTCCTCAAAC ATTTTTCAT GCAAATACAC ACTTCTTTCC
                                                                                                   900
                                                                                                   960
15
         CCAAATATCA TGTAGCACAT CAATATGTAG GGAAACATTC TTATGCATCA TTTGGTTTGT
TTTATAACCA ATTCATTAAA TGTAATTCAT AAAATGTACT ATGAAAAAAA TTATACGCTA
TGGGATACTG GCAACAGTGC ACATATTTCA TAACCAAATT AGCAGCACCG GTCTTAATTT
GATGTTTTC AACTTTTAT CATTGAGATG TTTTGAAGCA ATTAGGATAT GTGTGTTTAC
                                                                                                   1080
                                                                                                   1140
                                                                                                   1200
         TGTACTTTTT GTTTTGATCC GTTTGTATAA ATGATAGCAA TATCTTGGAC ACATTTGAAA
TACAAAATGT TTTTGTCTAC CAAAGAAAAA TGTTGAAAAA TAAGCAAATG TATACCTAGC
AATCACTTTT ACTTTTGTA ATTCTGTCTC TTAGAAAAAT ACATAATCTA ATCAATTTCT
ACTTTTTGTA ATTCTGTCTC TTAGAAAAAT ACATAATCTA ATCAATTTCT
                                                                                                   1260
20
                                                                                                   1320
                                                                                                   1380
         TTGTTCATGC CTATATACTG TAAAATTTAG GTATACTCAA GACTAGTTTA AAGAATCAAA
                                                                                                   1440
         25
         Seq ID NO: 112 Protein Sequence
         Protein Accession #: NP_005400.1
                                                                    41
                                                     31
30
         MSVKGMAIAL AVILCATVVQ GFPMFKRGRC LCIGPGVKAV KVADIEKASI MYPSNNCDKI
         EVIITLKENK GQRCLNPKSK QARLIIKKVE RKNF
 35
          Seq ID NO: 113 DNA sequence
         Nucleic Acid Accession #: NM_001110.1
          Coding sequence: 470..2716
                                                      31
                                       21
 40
          GAATTCGAGG ATCCGGGTAC CATGGGCGGC GGCAGGCCTA GCAGCACGGG AACCGTCCCC
          CGCGCGCATG CGCGCCCCC TGAAGCGCCT GGGGGACGGG TATGGGCGGG AGGTAGGGGC
                                                                                                    120
          GCGGCTCCGC GTGCCAGTTG GGTGCCCGCG CGTCACGTGG TGAGGAAGGA GGCGGAGGTC
                                                                                                    180
          GGAGGAAGGA AACGAACGAG GGGGAGGGAG GTCCCTGTTT TGGAGGAGCT AGGAGCGTTG
 45
          CCGGCCCCTG AAGTGGAGGCT AGAGGGAGGT GCTTCGCCGT TCTCCCTGCC AGGGGAGGTC CCGGCCTTCCC GTGGAGGCTC CGGACCAAGC CCCTTCAGCT TCTCCCTCCG GATCGATGTG
                                                                                                    360
                                                                                                     420
          CTGCTGTTAA CCCGTGAGGA GGCGGCGGCG GCGGCAGCG CAGCGGAAGA TGGTGTTGCT
GAGAGTGTTA ATTCTGCTCC TCTCCTGGGC GGCGGGGATG GGAGGTCAGT ATTGGGAATCC
                                                                                                     480
          TTTAAATAAA TATATCAGAC ATTATGAAGG ATTATCTTAC AATGTGGATT CATTACACCA
 50
          AAAACACCAG CGTGCCAAAA GAGCAGTCTC ACATGAAGAC CAATTTTTAC GTCTAGATTT
                                                                                                     660
           CCATGCCCAT GGAAGACATT TCAACCTACG AATGAAGAGG GACACTTCCC TTTTCAGTGA
                                                                                                     720
          TGAATTTAAA GTAGAAACAT CAAATAAAGT ACTTGATTAT GATACCTCTC ATATTTACAC
           TGGACATATT TATGGTGAAG AAGGAAGTTT TAGCCATGGG TCTGTTATTG ATGGAAGATT
                                                                                                     B40
           TGAAGGATTC ATCCAGACTC GTGGTGGCAC ATTTTATGTT GAGCCAGCAG AGAGATATAT
                                                                                                     900
  55
           TGAAGGATTC ATCCAGACTC GIGGIGGCAC ATTITATOTI GAAGATGATA TTAACTATCC
TAAAGACCGA ACTCTGCCAT TTCACTCTGT CATTITATCAT GAAGATGATA TTAACTATCC
CCATAAATAC GGTCCTCAGG GGGGCTGTGC AGATCATTCA GTATTTGAAA GAATGAGGAA
                                                                                                     960
          ATACCAGATG ACTGGTGTAG AGGAAGTAAC ACAGATACCT CAAGAAAGAAC ATGCTGCTAA
TGGTCCAGAA CTTCTGAGGA AAAAACGTAC AACTTCAGCT GAAAAAAAAA CTTGTCAGAT
TTATATTCAG ACTGATCATT TGTTCTTTAA ATATTACGGA ACACGAGAAG CTGTGATTGC
                                                                                                     1080
                                                                                                     1140
                                                                                                      1200
  60
           CCAGATATCC AGTCATGTTA AAGCGATTGA TACAATTTAC CAGACCACAG ACTTCTCCGG
                                                                                                      1260
           AATCCGTAAC ATCAGTTTCA TGGTGAAACG CATAAGAATC AATACAACTG CTGATGAGAA
                                                                                                      1320
           GGACCCTACA AATCCTTTCC GTTTCCCAAA TATTGGTGTG GAGAAGTTTC TGGAATTGAA
TTCTGAGCAG AATCATGATG ACTACTGTTT GGCCTATGTC TTCACAGACC GAGATTTTGA
                                                                                                      1380
                                                                                                      1440
           TGATGGCGTA CTTGGTCTGG CTTGGGTTGG AGCACCTTCA GGAAGCTCTG GAGGAATATG
                                                                                                      1500
  65
           TGARABARAGT ARACTCTATT CAGATGGTAA GAAGAGTCC TRAACCACTG GAATTATTAC
TGTTCAGAAC TATGGGTCT ATGTACCTCC CAAAGTCTCT CACATTACTT TTGCTCAGA
AGTTGGACAT AACTTTGGAT CCCCACATGA TTCTGGAACA GAGTGCACA CAGGAGAATC
                                                                                                      1560
                                                                                                      1620
                                                                                                      1680
            TAAGAATTTG GGTCAAAAAG AAAATGGCAA TTACATCATG TATGCAAGAG CAACATCTGG
                                                                                                      1740
           GGACAAACTT AACAACAATA AATTCTCACT CTGTAGTATT AGAAATATAA GCCAAGTTCT
                                                                                                      1800
  70
            TGAGAAGAAG AGAAACAACT GTTTTGTTGA ATCTGGCCAA CCTATTTGTG GAAATGGAAT
                                                                                                      1860
            GGTAGAACAA GGTGAAGAAT GTGATTGTGG CTATAGTGAC CAGTGTAAAG ATGAATGCTG
                                                                                                      1920
            CTTCGATGCA AATCAACCAG AGGGAAGAAA ATGCAAACTG AAACCTGGGA AACAGTGCAG
                                                                                                      1980
            TCCAAGTCAA GGTCCTTGTT GTACAGCACA GTGTGCATTC AAGTCAAAGT CTGAGAAGTG
                                                                                                      2040
            TCGGGATGAT TCAGACTGTG CAAGGGAAGG AATATGTAAT GGCTTCACAG CTCTCTGCCC
                                                                                                      2100
  75
            AGCATCTGAC CCTAAACCAA ACTTCACAGA CTGTAATAGG CATACACAAG TGTGCATTAA
                                                                                                      2160
            TGGGCAATGT GCAGGTTCTA TCTGTGAGAA ATATGGCTTA GAGGAGTGTA CGTGTGCCAG
            TTCTGATGGC AAAGATGATA AAGAATTATG CCATGTATGC TGTATGAAGA AAATGGACCC
                                                                                                      2280
```

```
ATCAACTTGT GCCAGTACAG GGTCTGTGCA GTGGAGTAGG CACTTCAGTG GTCGAACCAT
        CACCCTGCAA CCTGGATCCC CTTGCAACGA TTTTAGAGGT TACTGTGATG TTTTCATGCG
GTGCAGATTA GTAGATGCTG ATGGTCCTCT AGCTAGGCTT AAAAAAGCAA TTTTTAGTCC
                                                                                         2400
                                                                                         2460
                                                                                         2520
        AGAGCTCTAT GAAAACATTG CTGAATGGAT TGTGGCTCAT TGGTGGGCAG TATTACTTAT
        GGGAATTGCT CTGATCATGC TAATGGCTGG ATTTATTAAG ATATGCAGTG TTCATACTCC
                                                                                          2580
  5
         AAGTAGTAAT CCAAAGTTGC CTCCTCCTAA ACCACTTCCA GGCACTTTAA AGAGGAGGAG
                                                                                         2640
        ACCTCCACAG CCCATTCAGC AACCCCAGCG TCAGCGGCCC CGAGAGAGTT ATCAAATGGG
                                                                                         2700
        ACACATGAGA CGCTAACTGC AGCTTTTGCC TTGGTTCTTC CTAGTGCCTA CAATGGGAAA
                                                                                         2760
        ACTICACTCC AAAGAGAAAC CTATTAAGTC ATCATCTCCA AACTAAACCC TCACAAGTAA CAGTTGAAGA AAAATGGCA AGAGATCATA TCCTCAGACC AGGTGGAATT ACTTAAATTT TAAAGCCTGA AAATTCCAAT TTGGGGTGG GAGGTGGAAA AGGAACCCAA TTTCTTATG
                                                                                         2820
                                                                                         2880
10
                                                                                         2940
        AACAGATATT TTTAACTTAA TGGCACAAAG TCTTAGAATA TTATTATGTG CCCCGTGTTC
                                                                                         3000
                                                                                         3060
        CCTGTTCTTC GTTGCTGCAT TTTCTTCACT TGCAGGCAAA CTTGGCTCTC AATAAACTTT
         TACCACAAAT TGAAATAAAT ATATTTTTT CAACTGCCAA TCAAGGCTAG GAGGCTCGAC
                                                                                          3120
        CACCTCAACA TIGGAGACAT CACTIGCCAA TGTACATACC TIGTTATATG CAGACATGTA
TITCTTACGT ACACTGTACT TCTGTGTGCA ATTGTAAACA GAAATTGCAA TATGGATGTT
                                                                                         3180
15
                                                                                         3240
                                                                                          3300
         TCTTTGTATT ATAAAATTTT TCCGCTCTTA ATTAAAAATT ACTGTTTAAT TGACATACTC
        AGGATAACAG AGAATGGTGG TATTCAGTGG TCCAGGATTC TGTAATGCTT TACACAGGCA
         GTTTTGAAAT GAAAATCAAT TTACCCCATG GTACCCGGAT CCTCGAATTC
20
         Seq ID NO: 114 Protein Sequence
         Protein Accession #: NP_001101.1
                                                             41
25
         MVLLRVLILL LSWAAGMGGQ YGNPLNKYIR HYEGLSYNVD SLHQKHQRAK RAVSHEDQFL
         RLDFHAHGRH FNLRMKRDTS LFSDEFKVET SNKVLDYDTS HIYTGHIYGE EGSFSHGSVI
                                                                                          120
         DGRFEGFIQT RGGTFYVEPA ERYIKDRTLP FHSVIYHEDD INYPHKYGPQ GGCADHSVFE
                                                                                          180
         RMRKYQMTGV EEVTQIPQEE HAANGPELLR KKRTTSAEKN TCQLY1QTDH LFFKYYGTRE
                                                                                          240
         AVIAQISSHV KAIDTIYQTT DESGIRNISP MVKRIRINTT ADEKDETNEF REPNIGVEKE
30
         LELNSEQNHD DYCLAYVFTD RDFDDGVLGL AWVGAPSG9S GGICEKSKLY SDGKKKSLNT
                                                                                          360
         GIITVQNYGS HVPPKVSHIT FAHEVGHNFG SPHDSGTECT PGESKNLGQK ENGNYIMYAR
                                                                                          420
         ATSGDKLNNN KFSLCSIRNI SQVLEKKRNN CFVESGQPIC GNGMVEQGBE CDCGYSDQCK
                                                                                          480
         DECCFDANQP EGRKCKLKPG KQCSPSQGPC CTAQCAFKSK SEKCRDDSDC AREGICNGFT
                                                                                          540
         ALCPASDPKP NFTDCNRHTQ VCINGQCAGS ICEKYGLEEC TCASSDGKDD KELCHVCCMK
35
         KMDPSTCAST GSVQWSRHFS GRTITLQPGS PCNDFRGYCD VFMRCRLVDA DGPLARLKKA
IFSPELYENI AEWIVAHWWA VLLMGIALIM LMAGFIKICS VHTPSSNPKL PPPKPLPGTL
                                                                                          660
                                                                                          720
         KRRRPPQPIQ QPQRQRPRES YQMGHMRR
40
         Seq ID NO: 115 DNA sequence
         Nucleic Acid Accession #: NM_000577.2
         Coding sequence: 41...520
                                                31
                                                              41
 45
         GGCACGAGGG GAAGACCTCC TGTCCTATCA GGCCCTCCCC ATGGCTTTAG AGACGATCTG
         CCGACCCTCT GGGAGAAAAT CCAGCAAGAT GCAAGCCTTC AGAATCTGGG ATGTTAACCA
GAAGACCTTC TATCTGAGGA ACAACCAACT AGTTGCCGGA TACTTGCAAG GACCAAATGT
                                                                                          180
         CAATTTAGAA GAAAAGATAG ATGTGGTACC CATTGAGCCT CATGCTCTGT TCTTGGGAAT
CCATGGAGGG AAGATGTGCC TGTCCTGTGT CAAGTCTGGT GATGAGACCA GACTCCAGCT
                                                                                          240
                                                                                           300
 50
          GGAGGCAGTT AACATCACTG ACCTGAGCGA GAACAGAAAG CAGGACAAGC GCTTCGCCTT
         CATCCGCTCA GACAGTGGCC CCACCACCAG TTTTGAGTCT GCCGCCTGCC CCGGTTGGTT CCTCTGCACA GCGATGGAAG CTGACCAGCC CGTCAGCCTC ACCAATATGC CTGACGAAGG
                                                                                           420
                                                                                           480
          CGTCATGGTC ACCAAATTCT ACTTCCAGGA GGACGAGTAG TACTGCCCAG GCCTGCCTGT
                                                                                           540
          TCCCATTCTT GCATGGCAAG GACTGCAGGG ACTGCCAGTC CCCCTGCCCC AGGGCTCCCG
 55
          GCTATGGGGG CACTGAGGAC CAGCCATTGA GGGGTGGACC CTCAGAAGGC GTCACAACAA
                                                                                           660
          CCTGGTCACA GGACTCTGCC TCCTCTTCAA CTGACCAGCC TCCATGCTGC CTCCAGAATG
                                                                                           720
          GTCTTTCTAA TGTGTGAATC AGAGCACAGC AGCCCCTGCA CAAAGCCCTT CCATGTCGCC
                                                                                           780
          TCTGCATTCA GGATCAAACC CCGACCACCT GCCCAACCTG CTCTCCTCTT GCCACTGCCT
                                                                                           900
          CTTCCTCCCT CATTCCACCT TCCCATGCCC TGGATCCATC AGGCCACTTG ATGACCCCCA
 60
          960
          TTTAAGGGTT TGTGGAAAAT GAAAATTAGG ATTTCATGAT TTTTTTTTT CAGTCCCCGT
GAAGGAGAGC CCTTCATTTG GAGATTATGT TCTTTCGGGG AGAGGCTGAG GACTTAAAAT
                                                                                           1020
          ATTCCTGCAT TTGTGAAATG ATGGTGAAAG TAAGTGGTAG CTTTTCCCTT CTTTTTCTTC
                                                                                           1140
          TITITITGTG ATGTCCCAAC TTGTAAAAAT TAAAAGTTAT GGTACTATGT TAGCCCCATA
ATTTTTTTT TCCTTTTAAA ACACTTCCAT AATCTGGACT CCTCTGTCCA GGCACTGCTG
                                                                                           1200
  65
                                                                                           1260
          CCCAGCCTCC AAGCTCCATC TCCACTCCAG ATTTTTTACA GCTGCCTGCA GTACTTTACC
                                                                                           1320
          TCCTATCAGA AGTTTCTCAG CTCCCAAGGC TCTGAGCAAA TGTGGCTCCT GGGGGTTCTT
TCTTCTCTC CTGAAGGAAT AAATTGCTCC TTGACATTGT AGAGCTTCTG GCACTTGGAG
                                                                                           1380
                                                                                           1440
          ACTTGTATGA AAGATGGCTG TGCCTCTGCC TGTCTCCCCC ACCAGGCTGG GAGCTCTGCA
                                                                                           1500
  70
          GAGCAGGAAA CATGACTCGT ATATGTCTCA GGTCCCTGCA GGGCCAAGCA CCTAGCCTCG
CTCTTGGCAG GTACTCAGCG AATGAATGCT GTATATGTTG GGTGCAAAGT TCCCTACTTC
                                                                                           1560
                                                                                           1620
           1680
          АЛЛАЛ ЛАЛАЛАЛАЛ ДАЛАЛАЛА АЛЛАЛАЛА
  75
           Seq ID NO: 116 Protein Sequence
           Protein Accession #: NP_000568.1
```

```
MALETICAPS GRKSSKMOAF RIWDVNOKTF YLRNNQLVAG YLQGPNVNLE EKIDVVPIEP
                                                                                                 60
                                                                                                 120
         HALFLGIHGG KMCLSCVKSG DETRLQLEAV NITDLSENRK QDKRFAFIRS DSGPTTSFES
 5
         AACPGWFLCT AMEADOPVSL TNMPDEGVMV TKFYFQEDE
         Seg ID NO: 117 DNA sequence
         Nucleic Acid Accession #: CAT cluster
10
                                                                                 51
                                      21
         GCACTITAGC TCAGTGATGG ATTITAAGAA CGATTACACC TGTCGCCTGT GGTCTGACTC
         CAGGCACTCG CGTCAGGTAC TTCTGCTCCA GGATAGCTTT ATGAATTGCT CTGACAGCAT
         CATCAATGGT TCCTTTCGTG CGCTTGGCTT TATTCATGAG GCTCAGGTCG GGGAAAGACT
15
         GATGGTCCAC TGTGACAGCA AGACAGGTAA TGCAAATACG GATTTCATCT GGGTGGGTCC
                                                                                                  240
         GATEGICCAC TEGCTAGAGC CEGATAAAGA GATEGAAAAC TTITACGTGT TTCACAATGG
AAGTCTGGTT ATAGAAAGCC CTCGTTTTGA GGATGCTGGA GTGTATTCTT GTATCGCAAT
                                                                                                  300
                                                                                                  360
         GAATAAGCAA CGCCTGTTAA ATGAAACTGT GGACGTCACA ATAAATGTGA GCAATTTCAC
         TGTAAGCAGA TCCCATGCTC ATGAGGCATT TAACACAGCT TTTACCACTC TTGCTGCTTG
CGTGGCCAGT ATCGTTTTGG TACTTTTGTA CCTCTATCTG ACTCCATGCC CCTGCAAGTG
                                                                                                  480
20
                                                                                                  540
                                                                                                  600
         TAAAACCAAG AGACAGAAAA ATATGCTACA CCAAAGCAAT GCCCATTCAT CGATTCTCAG
         TCCTGGCCCC GCTAGTGATG CCTCCGCTGA TGAACGGAAG GCAGGTGCAG GTAAAAGAGT
         GGTGTTTTTG GAACCCCTGA AGGATACTGC AGCAGGGCAG AACGGGAAAG TCAGGCTCTT
                                                                                                  720
         TCCCAGCGAG GCAGTGATAG CTGAGGGCAT CCTAAAGTCC ACGAGGGGGA AATCTGACTC
                                                                                                  780
25
         AGATTCAGTC AATTCAGTGT TTTCTGACAC ACCTTTTGTG GCGTCCACTT AA
         Seq ID NO: 118 DNA sequence
         Nucleic Acid Accession #: AB032989.1
30
         Coding sequence: 1..1316
          CCCATTCCTT GCCCAGTTAC ACAGCACTAC TGGACCTCAG TCACAACAAC CTGAGCCGCC
         TGCGGGCCGA GTGGACCCCC ACGCGCCTGA CCCAACTGCA CTCCCTGCTG CTGAGCCACA
35
         ACCACCTGAA CTTCATCTCC TCTGAGGCCT TTTCCCCGGT ACCCAACCTG CGCTACCTGG
ACCTCTCCTC CAACCAGCTG CGTACACTGG ATGAGTTCCT GTTCAGTGAC CTGCAAGTAC
                                                                                                   180
                                                                                                  240
          TGGAGGTGCT GCTGCTCTAC AATAACCACA TCATGGCGGT GGACCGGTGC GCCTTCGATG
                                                                                                   300
         TGGAGGTGCT GCTGCTCTAC AATAACCACA TCATGGCGGT GGACCGGTGC GCCTTCGATG
ACATGGCCCA GCTGCAGAAAC CTCTACTTGA GCCAGAACCA GATCTCTCGC TCTCCCTCTGG
AACTGGTCAA GGAAGGAGCC AAGCTAACCGC CCTGGATCTC TCTTCTAACA
AGCTGAAGAA CTTGCCATTG CCTGACCTGC AGAAGCTGCC GGCCTGGATC AAGAATGGGC
TGTACCTACA TAACAACCCC CTGAACTGCG ACTGTGAGCT CTACCAGCTG TTTTCACACT
                                                                                                   360
 40
                                                                                                   480
                                                                                                   540
          GGCAGTATCG GCAGCTGAGC TCCGTGATGG ACTTTCAAGA GGATCTGTAC TGCATGAACT
          CCAAGAAGCT GCACAATGTC TTCAACCTGA GTTTCCTCAA CTGTGGCGAG TACAAGGAGC
          GTGCCTGGGA GGCCCACCTG GGTGACACCT TGATCATCAA GTGTGACACC AAGCAGCAAG
                                                                                                   720
 45
          GGATGACCAA GGTGTGGGTG ACACCAAGTA ATGAACGGGT GCTAGATGAG GTGACCAATG
GCACAGTGAG TGTGTCTAAG GATGGCAGTC TTCTTTTCCA GCAGGTGCAG GTCGAGGACG
                                                                                                   780
          GTGGTGTGTA TACCTGCTAT GCCATGGGAG AGACTTTCAA TGAGACACTG TCTGTGGAAT
          TGAAAGTGCA CAATTTCACC TTGCACGGAC ACCATGACAC CCTCAACACA GCCTATACCA
CCCTAGTGGG CTGTATCCTT AGTGTGGTCC TGGTCCTCAT ATACCTATAC CTCACCCCTT
                                                                                                   960
                                                                                                   1020
 50
          GCCGCTGCTG GTGCCGGGGT GTAGAGAAGC CTTCCAGCCA TCAAGGAGAC AGCCTCAGCT
                                                                                                   1080
          CTTCCATGCT TAGTACCACA CCCAACCATG ATCCTATGGC TGGTGGGGAC AAAGATGATG
GTTTTGACCG GCGGGTGGCT TTCCTGGAAC CTGCTGGACC TGGGCAGGGT CAAAACGGCA
                                                                                                    1200
          AGCTCAAGCC AGGCAACACC CTGCCAGTGC CTGAGGCCAC AGGCAAGGGC CAACGGAGGA
TGTCGGATCC AGAATCAGTC AGCTCGGTCT TCTCTGATAC GCCCATTGTG GTGTGAGCAG
                                                                                                   1260
                                                                                                   1320
  55
          GATGGGTTGG TGGGGAGATT CTGCCCCAGG AGAGGTAATG CACCCCTGAA GGATATGAGG
           GGATGGAAGA GAGGGCTGGC TGCCCAAGGG AATGGATTCC TCCTGACCTC AAGGGAATTG
                                                                                                    1440
           GTCCCAGGTA CAACAGAGAG CAAGACCCCA AACAGGGCGT GGCTGCCACG ATTTTCAAAT
                                                                                                    1500
           GGGGGTATAT TAATCCTCAG GCAAATGCTA CACCCGTACC CAAAGCCCTG CCAATTCTCA
                                                                                                    1560
           GTGTGGTAGA GGAAGAGAAG CATGTCTGAG TTGGATGGGA ATGAGGAAGG AGTGAGGGGA
                                                                                                    1620
  60
           AGAACAGATT CCCTAAACTT TCATGAGGTC ATCCCTAGCT CCTTAAGAGA AAAACATTTA
                                                                                                    1680
           GAAAAAAAA TTTTTCTAT CTCTGCCCAC CCACACCTGT GATGTTGTGT GTGTTGGGGG
                                                                                                    1740
           AGCTTCCACA GGAGCCACAC TGGGGAAAAG CTGTAGTATC TTCTTTGTTT AGCAAGTCAA
                                                                                                    1800
           ACTICACAGC TGGGGAAGTI GAAAACCTIT GGAAAATGAG TCAGGAAAAG GCTGAGACCT
           CARTCGGTAA CAATTCCCCA AAGCTGTTGT AAGACTTTGC ATTAAAGCCT TTCTTTTTCC
                                                                                                    1920
  65
           TGATGTGCCC TGGGTGGATG GATCTTTGCA GGAGCCTGGC CTGCTGCCTT TTAGTTACAA
                                                                                                    1980
           CAGCAATGTG GGATGTGGTA TCTGTGCCTT GTCCTGGGAC CAATGGCACA GAGGGTTATA
                                                                                                    2040
           GCATGAACTG AAGGGTCCAT GTCACAGCAT AGGTGCCAGC ACGAAACTTG TAGATGGGGG
GTGAATTCCA GATAGGCTAA TTCCCTGGTT GGTGAAACCC TTGGTTAGTA TTTGATTCCC
                                                                                                    2100
                                                                                                    2160
           GTGARITCUA GATAGGUTAA TTCCCTGGIT GGTGAAACCU TIGGITAGTA TITGATTCCC
AGCATCTGTG TGTCAGGCCA GAGTGGGGGC TGCTGAAGGC AGAGCTTTTA TGGATGCCTG
CCACAGACGT GGTACATGGG CCCACTTCAC GATAGAAGGA TGAAGGTAAA TCAGCCTCTA
TTATGTAGCA TCCAGCTGGA CCTAGCTGAT TCTCAATGTA TGCCATCTCT TCATCCAGTC
                                                                                                    2220
  70
                                                                                                    2280
                                                                                                    2340
           TCCTTATCAA GCTCAGGTGG GATTCTGAAT TTTCCCTAAT ATGCTGCTCT GTAAAGGGAG
GAGTCCAAGA AAGCCTGGCC CCAGCTGGCT TAGAGTAGGC TTGGCGATAG TGAAAATCCA
                                                                                                     2400
                                                                                                    2460
           GTATATATCT CCTCTGTGTG GACAAGGTTG CCTTGCTCCT CTCAGAGATA CCACCTCTGC
                                                                                                    2520
  75
                                                                                                     2580
            TGCAAAGTCA AAGCATGGGG TTTTGACATC AGAAGGGTTG GAATTGGGTG GTCTCTACCC
            CAGAATGGCA ATTTGGAGTG CAGCTTCAAG TTCTGCCCTC TCCACAGATT CCAGGCAATC
            CTGAAGCAGA GATAATCAGT AGTACTAAAC TTTCAGAAGG GGAGTTCTGC CACCCCATTC
                                                                                                    2700
```

2760

2820

```
CTCAACATTC CATTCCATCC AAGGTTGCAG AATACTTTGA GTATGGAGAT GACCGATCCC
        TITAACCITT CCCTTTGACT ATACTGCATG CCCTGTGAGT GGCTGCTCTG AGCTTTGGCG
                                                                                       2880
        GGGGATGAGC AGGGTGAAGG TGAAAATGTT CTCTGATGTT GGTTTTTCTT AGTGTCTCTT
                                                                                       2940
 5
        CTCTCCCACG TTTCTAGTCC ATTGGAAGTT CTCCAGATCC TCTAGATTTC TGACCTCTTT
                                                                                       3000
       TTACATTCTA AGAGGTGTCA TTTACCTGTG GGTGAGGGGC TTGGAGGGCC TGACTATTAA
GCTTCCTATT ATGATTGGGG AAGGGGACTC AACATCTTCC CCTTGTCTGG TCCTGGGAAC
                                                                                       3060
                                                                                       3120
        TCAAGACTGC TGTCCATCCT TTATTAGTAA CCTAGTTTTG TTGAGAGAGA GGTGCAGCAT
        TTCCCTCAAG TACCTGCATG CTCATAGGTA TGCATGCTTA TAGGTATGCA TGCACACCAG
                                                                                       3240
10
        CACCTTGACT TCCACCAGGA CAGTGAATCT GTAGTCCCCA TTAATGATAC TCTCAGAATG
                                                                                       3300
        GTCTCCACCA ATGTGCACAA CTTCATGCAC ACAATTGTAT TCCTCTTTAG GAGAGACAGT
                                                                                       3360
        GACCATGCCA GGCTCTTCAA ATACACACTC CTGTATTTTC ATTTCTGAAC TCCCTGAAGC
                                                                                       3420
        TTCACCCACA TCTCCATGGC ACTGAATCAC TTTTCTGCCC AGGCTGGAGT TAGAAGAACC
                                                                                       3480
        ATGGTTGAA GGCCTTGGGA GAAGAGGTGG TAAGGAGCTA CCTGGTTCTT TGGACTCCTC
                                                                                       3540
15
        AGAAACCTCC CGTGAAGACT ATATATATGA GCAATATATG AGCAATTAAG ATAGAACTAG
                                                                                       3600
        GTCATTGAAG GACTCAGAAG GAAACTGGCA AGGGGCTAAG TAGCTGTGAG CTGCTCTTCC
                                                                                       3660
        TGTTAACTGT CCTCAGGAGA GAAAAGTTGT CTTGATTTAT TCCAGAGACT CCTGAGAATT
                                                                                       3720
        TTGTTACTGG AGCTATAGGA ACTAGGACTC CCTCCTCAGA CTCATCAGGA AATCTGGGAA
                                                                                       3780
        AATCTCATCT CCATGCTGCA GTCTCCCGC TTGGCACCAT CTAGGGCTCT GAAGATCTTT
AAAGTGAGCG TTAAATGAAG CAGGCCTTCT GGGGCATCGT GATGGAGCTC CTGAGGACTG
                                                                                       3840
20
                                                                                       3900
        GGAGGGCCGT TTTCTTCATA ATTCCTACCC AGTTTAGGGA ATGAGAAAAG GCCCTGTGGC
        TCTTAAGTCT CCTGACTATA TCCACTAGTT TGGCCTTGAG TTTGAGACAC CTGGTAGATG
                                                                                       4020
        TACCTGGCTG CCCTACCAAG AGATTTGATT TGTTTCTTCC CGTGGTTTCA GGTGATAGAA
                                                                                       4080
        CCCAAAGGTA GCTTTTTAAT TGGAGAATTG AATAATCAGC ATATGTAAGC GCACTAGAAC
                                                                                       4140
        CCTGTGTTGA AAACTGCCAG GTGTGGGTAT AAGAAAAGGC CGAGAGATCA CCACCTCCTC
25
                                                                                       4260
        TTACCCTACC CCACACCCAT AAACCAGACA TGTCTCCCAG GAAGCAGGTG TCCCTGGACA
        CAGAGGATGA CAGGGCTCTA CAATCTGTGT AATTATTATT ATTATTATTA TTTTGTATTT
                                                                                       4320
                                                                                       4380
        ATGGGGCCCA AGAAAGGGGC CAGGAGAGGG TACACCCCAG CTGGGGAGAG CAAAGCAGAT
        GGATCCAGTT TTCTGTGTGT TCTTACCTCT GTACTTCCTC GTAGCTCTGC TGACAAAGCA
AGCAGGCCTC CCGTGTCCAA GACCCCATTC CTCCCACTTG TGTACACCTA GGCTGGCAAA
30
                                                                                       4500
        TCTTGGAGCC TCTGGGCTCT GAAAACTAGA CAATGATCAT TAAACCTGGC TTGAGTCTCT
                                                                                       4560
        Seq ID NO: 119 Protein Sequence
35
        Protein Accession #: BAA86477.1
                    11
                                 21
                                              31
                                                           41
        HSLPSYTALL DLSHNNLSRL RAEWTPTRLT QLHSLLLSHN HLNFISSEAF SPVPNLRYLD
        LSSNQLRTLD EFLFSDLQVL EVILLYNNHI MAVDRCAFDD MAQLQKLYLS QNQISRFPLE
LVKEGAKLPK LTLLDLSSNK LKNLPLPDLQ KLPAWIKNGL YLHNNPLNCD CELYQLFSHW
40
                                                                                       120
        QYRQLSSVMD FQEDLYCMNS KKLHNVFNLS FLNCGEYKER AWEAHLGDTL 11KCDTKQQG
                                                                                       240
        MTKVWVTPSN ERVLDEVTNG TVSVSKDGSL LFQQVQVEDG GVYTCYAMGE TFNETLSVEL
                                                                                       300
        KVHNFTLHGH HDTLNTAYTT LVGCILSVVL VLIYLYLTPC RCWCRGVEKP SSHQGDSLSS
                                                                                       360
45
        SMLSTTPNHD PMAGGDKDDG FDRRVAFLEP AGPGQGQNGK LKPGNTLPVP EATGKGQRRM
        SDPESVSSVF SDTPIVV
        Seq ID NO: 120 DNA sequence
        Nucleic Acid Accession #: NM_005071
50
        Coding sequence: 9..1703
                                                                        51
        GATAGACCAT GAGCAGCCAT GGCAACAGCC TGTTCCTTCG GGAGAGCGGC CAGCGGCTGG
        GCCGGGTGGG CTGGCTGCAG CGGCTGCAGG AAAGCCTGCA GCAGAGAGCA CTGCGCACGC
                                                                                       120
55
        GCCTGCGCCT GCAGACCATG ACCCTCGAGC ACGTGCTGCG CTTCCTGCGC CGAAACGCCT
                                                                                       180
        TCATTCTGCT GACGGTCAGC GCCGTGGTCA TTGGGGTCAG CCTGGCCTTT GCCCTGCGCC
                                                                                       240
        CATATCAGCT CACCTACCGC CAGATCAAGT ACTTCTCTTT TCCTGGAGAG CTTCTGATGA
GGATGCTGCA GATGCTGGTG TTACCTCTCA TTGTCTCCAG CCTGGTCACA GGTATGGCAT
                                                                                       360
60
         CCCTGGACAA CAAGGCCACG GGGCGGATGG GGATGCGGGC AGCTGTGTAC TACATGGTGA
                                                                                       420
        CCACCATCAT CGCGGTCTTC ATCGGCATCC TCATGGTCAC CATCATCCAT CCCGGGAAGG
GCTCCAAGGA GGGCTGCAC CGGGAGGGCC GGATCGAGAC CATCCCCACA GCTGATGCCT
                                                                                        480
         TCATGGACCT GATCAGAAAT ATGTTTCCAC CAAACCTTGT GGAGGCCTGC TTCAAACAGT
                                                                                        600
        TCAAGACGCA GTACAGCACG AGGGTGGTAA CCAGGACCAT GGTGAGGACA GAGAACGGGT
                                                                                        660
         CTGAGCCGGG TGCCTCCATG CCTCCTCCAT TCTCAGTGGA GAACGGAACC AGCTTCCTGG
                                                                                        720
65
        AAAATGTCAC TCGGGCCTTG GGTACCCTGC AGGAGATGCT GAGCTTTGAG GAGACTGTAC CCGTGCCTGG CTCCGCCAAT GGCATCAACG CCCTGGGCCT CGTGGTCTTC TCTGTGGCCT
                                                                                        780
                                                                                        840
         TTGGGCTGGT CATTGGTGGC ATGAAACACA AGGGCAGAGT CCTCAGGGAC TTCTTCGACA
                                                                                        900
         GCCTCAATGA GGCTATTATG AGGCTGGTGG GCATCATTAT CTGGTATGCA CCTGTGGGCA
                                                                                        960
        TCCTGTTCCT GATTGCTGG AGATTCTGG AGATGGAGA CATGGCCGTC CTGGGGGGTC AGCTGGGCAT GTACACCCTG ACCGTCATCG TGGGCCTGTT CCTCCATGCC GGCATTGTCC TTCCCCTCAT CTACTTCCTC GTCACTCACC GGAACCCCTT CCCCTTCATT GGGGGCATGC
70
                                                                                        1080
                                                                                        1140
         TACAAGCCCT CATCACCGCT ATGGGCACGT CTTCCAGCTC GGCAACGCTG CCCATCACCT
                                                                                        1200
         TCCGCTGCCT GGAGGAGGGC CTGGGTGTGG ACCGCCGCAT CACCAGGTTC GTCCTGCCCG
                                                                                        1260
         TGGGCGCCAC GGTCAACATG GATGGCACTG CCCTCTACGA GGCCCTGGCT GCCATCTTCA
75
                                                                                        1320
         TTGCTCAAGT TAACAACTAC GAGCTCAACC TGGGTCAGAT CACAACCATC AGCATCACGG
                                                                                        1380
         CCACAGCAGC CAGTGTTGGG GCTGCTGGCA TCCCCCAGGC GGGTCTGGTC ACCATGGTCA
                                                                                        1440
         TTGTGCTTAC GTCGGTCGGC TTGCCCACGG AAGACATCAC GCTCATCATC GCCGTGGACT
```

CTCCATCGAG AGGTCTTTGC AGTTGTGGTT GTGAGGCCAG AGGAACTTAA GAAGAATGAG

PCT/US02/21338 WO 03/003906

1560

```
GGTTCCTTGA CCGGCTTCGC ACAATGACCA ACGTACTGGG GGACTCAATT GGAGCGGCCG
         TCATCGAGCA CTTGTCTCAG CGGGAGCTGG AGCTTCAGGA AGCTGAGCTT ACCCTCCCCA
                                                                                           1620
         GCCTGGGGAA ACCCTACAAG TCCCTCATGG CACAGGAGAA GGGGGCATCC CGGGGACGGG
                                                                                           1680
         GAGGCAACGA GAGTGCTATG TGAGGGGCCT CCAGCTCTG
 5
         Seq ID NO: 121 Protein Sequence
         Protein Accession #: NP_005062
                                                               41
                                                31
10
         MSSHGNSLFL RESGORLGRV GWLQRLQESL QQRALRTRLR LQTMTLEHVL RFLRRNAFIL
        LTVSAVVIGV SLAFALRPYQ LTYRQIKYFS FPGELLMRML QMLVLPLIVS SLVTGMASLD
NKATGRMGMR AAVYMVTTI IAVFIGILMV TIIHPGKGSK EGLHREGRIE TIPTADAFMD
         LIRNMPPPNL VEACFKQFKT QYSTRVVTRT MVRTENGSEP GASMPPPFSV ENGTSFLENV
                                                                                           240
15
         TRALGTLQEM LSFEETVPVP GSANGINALG LVVFSVAFGL VIGGMKHKGR VLRDFFDSLN
                                                                                            300
        EAIMRLVGII IWYAPVGILF LIAGKILEME DMAVLGGQLG MYTLTVIVGL FLHAGIVLPL
IYFLVTHRNP PPFIGGMLQA LITAMGTSSS SATLPITPRC LEEGLGVDRR ITRFVLPVGA
                                                                                            360
         TVMMDGTALY EALAAIFIAQ VNNYELNLGQ ITTISITATA ASVGAAGIPQ AGLVTMVIVL
                                                                                            480
         TSVGLPTEDI TLIIAVDWFL DRLRTMTNVL GDSIGAAVIE HLSQRELELQ EAELTLPSLG
                                                                                           540
20
         KPYKSLMAQE KGASRGRGGN ESAM
         Seg ID NO: 122 DNA sequence
         Nucleic Acid Accession #: NM_031966.1
         Coding sequence: 178..1479
25
         ACGAACAGGC CAATAAGGAG GGAGCAGTGC GGGGTTTAAA TCTGAGGCTA GGCTGGCTCT
         TCTCGGCGTG CTGCGGCGGA ACGGCTGTTG GTTTCTGCTG GTTGTAGGTC CTTGGCTGGT
         TCTGGGCTG GTGTTCTGCT TCTCCCCGGT GAGCTGCTGC CTGGTGAAGA GGAAGCCATG
GCGCTCCGAG TCACCAGGAA CTCGAAAATT AATGCTGAAA ATAAGGCGAA GATCAACATG
30
                                                                                            240
         GCAGGCGCAA AGCGCGTTCC TACGGCCCCT GCTGCAACCT CCAAGCCCGG ACTGAGGCCA
                                                                                            300
         AGAACAGCTC TTGGGGACAT TGGTAACAAA GTCAGTGAAC AACTGCAGGC CAAAATGCCT
ATGAAGAAGG AAGCAAAACC TTCAGCTACT GGAAAAGTCA TTGATAAAAA ACTACCAAAA
                                                                                            360
         CCTCTTGAAA AGGTACCTAT GCTGGTGCCA GTGCCAGTGT CTGAGCCAGT GCCAGAGCCA
                                                                                            480
35
         GAACCTGAGC CAGAACCTGA GCCTGTTAAA GAAGAAAAAC TTTCGCCTGA GCCTATTTTG
                                                                                            540
         GTTGATACTG CCTCTCCAAG CCCAATGGAA ACATCTGGAT GTGCCCCTGC AGAAGAAGAC
                                                                                            600
         CTGTGTCAGG CTTTCTCTGA TGTAATTCTT GCAGTAAATG ATGTGGATGC AGAAGATGGA
                                                                                            660
         GCTGATCCAA ACCTTTGTAG TGAATATGTG AAAGATATTT ATGCTTATCT GAGACAACTT
                                                                                            720
         GAGGAAGAGC AAGCAGTCAG ACCAAAATAC CTACTGGGTC GGGAAGTCAC TGGAAACATG
40
                                                                                            780
         AGAGCCATCC TAATTGACTG GCTAGTACAG GTTCAAATGA AATTCAGGTT GTTGCAGGAG
                                                                                            840
         ACCATGTACA TGACTGTCTC CATTATTGAT CGGTTCATGC AGAATAATTG TGTGCCCAAG
         AAGATGCTGC AGCTGGTTGG TGTCACTGCC ATGTTTATTG CAAGCAAATA TGAAGAAATG
                                                                                            960
         TACCCTCCAG AAATTGGTGA CTTTGCTTTT GTGACTGACA ACACTTATAC TAAGCACCAA
                                                                                            1020
         TACCETCUAG AAATTAGITA CITTEGETTIT GIACTGACA ACACTITAC TAGGCCACAA
ATCAGACAGA TGGAAATGAA GATTCTAAGA GCTTTAAACT TEGGTCTGGG TCGGCCTCTACCACT TCCTTCGGAG ACCATCTAAG ATTGGAGAGG TTGATGTCGA GCAACATACT
TTGGCCAAAT ACCTGATGGA ACTAACTATG TTGGACTATG ACATGGTGCA CTTTCCTCCT
TCTCAAATTG CAGCAGGAGC TTTTTGCTTA GCACTGAAAA TTCTGGATAA TGGTGAATGG
45
                                                                                            1080
                                                                                            1140
                                                                                            1200
                                                                                            1260
         ACACCAACTC TACAACATTA CCTGTCATAT ACTGAAGAAT CTCTTCTTCC AGTTATGCAG CACCTGGCTA AGAATGTAGT CATGGTAAAT CAAGGACTTA CAAAGCACAT GACTGTCAAG
                                                                                            1320
                                                                                            1380
50
         AACAAGTATG CCACATCGAA GCATGCTAAG ATCAGCACTC TACCACAGCT GAATTCTGCA
                                                                                            1440
         CTAGTTCAAG ATTTAGCCAA GGCTGTGGCA AAGGTGTAAC TTGTAAACTT GAGTTGGAGT
                                                                                            1500
         1560
         AAAAAAA AAAAAAAA
55
         Seq ID NO: 123 Protein Sequence
         Protein Accession #: NP_114172.1
                                                 31
                                    21
60
         MALRYTRNSK INAENKAKIN MAGAKRYPTA PAATSKPGLR PRTALGDIGN KYSEQLQAKM
         PMKKEAKPSA TGKVIDKKLP KPLEKVPMLV PVPVSEPVPE PEPEPPEPV KEEKLSPEPI
LVDTASPSPM ETSGCAPAEE DLCQAFSDVI LAVNDVDAED GADPNLCSEY VKDIYAYLRQ
                                                                                             180
          LEBEQAVRPK YLLGREVTGN MRAILIDWLV QVQMKFRLLQ ETMYMTVSII DRFMQNNCVP
                                                                                             240
65
         KKMLOLVGVT AMPIASKYBE MYPPEIGDPA FVTDNTYTKH QIRQMEMKIL RALNFGLGRP
                                                                                             300
          LPLHFLRRAS KIGEVDVECH TLAKYLMELT MLDYDMVHFP ESQIAAGAFC LALKILDNGE
WTETLQHYLS YTEESLLPVM QHLAKNVVMV NQGLTKHMTV KNKYATSKHA KISTLPQLNS
          ALVODLAKAV AKV
 70
          Seq ID NO: 124 DNA sequence
          Nucleic Acid Accession #: Eos sequence
          Coding sequence: 13-1424
 75
                                                  31
                                                                41
          TAGAAGTTTA CAATGAAGTT TCTTCTAATA CTGCTCCTGC AGGCCACTGC TTCTGGAGCT
          CTTCCCCTGA ACAGCTCTAC AAGCCTGGAA AAAAATAATG TGCTATTTGG TGAAAGATAC
```

```
TTAGAAAAT TTTATGGCCT TGAGATAAAC AAACTTCCAG TGACAAAAAT GAAATATAGT
       GGAAACTTAA TGAAGGAAAA AATCCAAGAA ATGCAGCACT TCTTGGGTCT GAAAGTGACC
                                                                                   240
       GGGCAACTGG ACACATCTAC CCTGGAGATG ATGCACGCAC CTCGATGTGG AGTCCCCGAT
                                                                                   300
       GTCCATCATT TCAGGGAAAT GCCAGGGGGG CCCGTATGGA GGAAACATTA TATCACCTAC AGAATCAATA ATTACACCACC TGACATGAAC CGTGAGGATG TTGACTACGC AATCCGGAAA
       GCTTTCCAAG TATGGAGTAA TGTTACCCCC TTGAAATTCA GCAAGATTAA CACAGGCATG
                                                                                   480
       GCTGACATTT TGGTGGTTTT TGCCCGTGGA GCTCATGGAG ACTTCCATGC TTTTGATGGC
                                                                                   540
       AAAGGTGGAA TCCTAGCCCA TGCTTTTGGA CCTGGATCTG GCATTGGAGG GGATGCACAT
                                                                                   600
       TTCGATGAGG ACGAATTCTG GACTACACAT TCAGGAGGCA CAAACTTGTT CCTCACTGCT GTTCACGAGA TTGGCCATTC CTTAGGTCTT GGCCATTCTA GTGATCCAAA GGCCGTAATG TTCCCCACCT ACAAATATGT TGACATCAAC ACATTTCGCC TCTCTGCTGA TGACATACGT
10
                                                                                   780
       GGCATTCAGT CCCTGTATGG AGACCCAAAA GAGAACCAAC GCTTGCCAAA TCCTGACAAT
                                                                                   840
       TCAGAACCAG CTCTCTGTGA CCCCAATTTG AGTTTTGATG CTGTCACTAC CGTGGGAAAT
       AAGATCTTTT TCTTCAAAGA CAGGTTCTTC TGGCTGAAGG TTTCTGAGAG ACCAAAGACC
15
       AGTGTTAATT TAATTTCTTC CTTATGGCCA ACCTTGCCAT CTGGCATTGA AGCTGCTTAT
                                                                                  1020
       GAAATTGAAG CCAGAAATCA AGTTTTTCTT TTTAAAGATG ACAAATACTG GTTAATTAGC
                                                                                  1080
       AATTTAAGAC CAGAGCCAAA TTATCCCAAG AGCATACATT CTTTTGGTTT TCCTAACTTT GTGAAAAAAA TTGATGCAGC TGTTTTTAAC CCACGTTTTT ATAGGACCTA CTTCTTTGTA
                                                                                  1140
       GATAACCAGT ATTGGAGGTA TGATGAAAGG AGACAGATGA TGGACCCTGG TTATCCCAAA
                                                                                  1260
20
       CTGATTACCA AGAACTTCCA AGGAATCGGG CCTAAAATTG ATGCAGTCTT CTACTCTAAA
                                                                                  1320
       1380
       TGGTTTTTGT TAGTTCACTT CAGCTTAATA AGTATTTATT GCATATTTGC TATGTCCTCA
                                                                                  1500
       1560
25
       TTATATAAAA TACATAATAT TTTTCAATTT TGAAAACTCT AATTGTCCAT TCTTGCTTGA
                                                                                  1620
       CTCTACTATT AAGTTTGAAA ATAGTTACCT TCAAAGCAAG ATAATTCTAT TTGAAGCATG
       CTCTGTAAGT TGCTTCCTAA CATCCTTGGA CTGAGAAATT ATACTTACTT CTGGCATAAC 1740
TAAAATTAAG TATATATATT TTGGCTCAAA TAAAATTG
30
       Seq ID NO: 125 Protein sequence:
       Protein Accession #: Eos sequence
                                                                     51
       MKFLLILLLQ ATASGALPLN SSTSLEKNNV LFGERYLEKF YGLEINKLPV TKMKYSGNLM
35
       KEKIOEMOHF LGLKVTGQLD TSTLEMMHAP RCGVPDVHHF REMPGGPVWR KHYITYRINN
                                                                                   120
       YTPDMNREDV DYAIRKAPQV WSNVTPLKFS KINTGMADIL VVFARGAHGD PHAFDGKGGI
       LAHAFGPGSG IGGDAHFDED EFWTTHSGGT NLFLTAVHEI GHSLGLGHSS DPKAVMFPTY
       KYVDINTFRL SADDIRGIQS LYGDPKENQR LPNPDNSEPA LCDPNLSFDA VTTVGNKIFF
                                                                                   300
        FKDRFFWLKV SERPKTSVNL ISSLWPTLPS GIEAAYEIEA RNQVFLPKDD KYWLISNLRP
40
                                                                                   360
       EPNYPKSIHS FGFPNFVKKI DAAVFNPRFY RTYFFVDNQY WRYDERRQMM DPGYPKLITK
                                                                                   420
        NFOGIGPKID AVFYSKNKYY YFFQGSNQFE YDFLLQRITK TLKSNSWFGC
        Seq ID NO: 126 DNA sequence
45
        Nucleic Acid Accession #: NM_000077.2
       Coding sequence: 272..742
                                                         41
                                                                     51
                                            31
                                21
        CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC
50
        TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG
                                                                                    180
        GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG
                                                                                    240
        GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGGA GCAGCATGGA
                                                                                    300
        GCCTTCGGCT GACTGGCTGG CCCCACGCCG GGCCCGGGGT CGGGTAGAGG AGGTGCGGGC
GCTGCTGGAG GCGGGGGCG TGCCCAACGC ACCGAATAGT TACGGTCGGA GGCCGATCCA
                                                                                    360
55
                                                                                    420
        GGTCATGATG ATGGGCAGCG CCCGAGTGGC GGAGCTGCTG CTGCTCCACG GCGCGGAGCC
                                                                                    480
        CAACTGCGCC GACCCCGCCA CTCTCACCCG ACCCGTGCAC GACGCTGCCC GGGAGGGCTT
                                                                                    540
        CCTGGACACG CTGGTGGTGC TGCACCGGGC CGGGGCGCGG CTGGACGTGC GCGATGCCTG
        GGGCCGTCTG CCCGTGGACC TGGCTGAGGA GCTGGGCCAT CGCGATGTCG CACGGTACCT
                                                                                    660
60
        GCGCGCGGCT GCGGGGGGCA CCAGAGGCAG TAACCATGCC CGCATAGATG CCGCGGAAGG
                                                                                    720
        TCCCTCAGAC ATCCCGATT GAAAGAACCA GAGAGGCTCT GAGAAACCTC GGGAAACTTA
GATCATCAGT CACCGAAGGT CCTACAGGGC CACAACTGCC CCCGCCACAA CCCACCCCGC
                                                                                    780
        TTTCGTAGTT TTCATTTAGA AAATAGAGCT TTTAAAAAATG TCCTGCCTTT TAACGTAGAT
ATATGCCTTC CCCCACTACC GTAAATGTCC ATTTATATCA TTTTTTATAT ATTCTTATAA
                                                                                    900
65
                                                                                    960
        AAATGTAAAA AAGAAAAACA CCGCTTCTGC CTTTTCACTG TGTTGGAGTT TTCTGGAGTG
                                                                                    1020
        AGCACTCACG CCCTAAGCGC ACATTCATGT GGGCATTTCT TGCGAGCCTC GCAGCCTCCG
        1140
                                                                                    1200
 70
        ATTTTCATTC ATTCACTC
        Seq ID NO: 127 Protein Sequence
        Protein Accession #: NP_000068.1
 75
         MEPAAGSSME PSADWLATAA ARGRVEEVRA LLEAGALPNA PNSYGRRPIQ VMMMGSARVA
        ELLLLEGAEP NCADPATLTR PVHDAAREGF LDTLVVLHRA GARLDVRDAW GRLPVDLAEE
```

LGHRDVARYL RAAAGGTRGS NHARIDAAEG PSDIPD Seq ID NO: 128 DNA sequence Nucleic Acid Accession #: NM_058196.1 Coding sequence: 104..421 TGTGTGGGGG TCTGCTTGGC GGTGAGGGGG CTCTACACAA GCTTCCTTTC CGTCATGCCG 10 GCCCCCACCC TGGCTCTGAC CATTCTGTTC TCTCTGGCAG GTCATGATGA TGGGCAGCGC CCGAGTGGCG GAGCTGCTGC TGCTCCACGG CGCGGAGCCC AACTGCGCCG ACCCCGCCAC 180 TCTCACCCGA CCCGTGCACG ACGCTGCCCG GGAGGGCTTC CTGGACACGC TGGTGGTGCT GCACCGGGCC GGGGCGGC TGGACGTGCG CGATGCCTGG GGCCGTCTGC CCGTGGACCT 240 300 GGCTGAGGAG CTGGGCCATC GCGATGTCGC ACGGTACCTG CGCGCGGCTG CGGGGGGCAC 15 CAGAGGCAGT AACCATGCCC GCATAGATGC CGCGGAAGGT CCCTCAGACA TCCCCGATTG 420 AAAGAACCAG AGAGGCTCTG AGAAACCTCG GGAAACTTAG ATCATCAGTC ACCGAAGGTC 480 CTACAGGGCC ACAACTGCCC CCGCCACAAC CCACCCCGCT TTCGTAGTTT TCATTTAGAA AATAGAGCTT TTAAAAATGT CCTGCCTTTT AACGTAGATA TAAGCCTTCC CCCACTACCG 540 TAAATGTCCA TTTATATCAT TTTTTATATA TTCTTATAAA AATGTAAAAA AGAAAAACAC 660 20 CGCTTCTGCC TTTTCACTGT GTTGGAGTTT TCTGGAGTGA GCACTCACGC CCTAAGCGCA 720 CATTCATGTG GGCATTTCTT GCGAGCCTCG CAGCCTCCGG AAGCTGTCGA CTTCATGACA AGCATTTTGT GAACTAGGGA AGCTCAGGGG GGTTACTGGC TTCTCTTGAG TCACACTGCT 780 840 25 Seq ID NO: 129 Protein Sequence Protein Accession #: NP_478103.1 MMMGSARVAE LLLLHGAEPN CADPATLTRP VHDAAREGFL DTLVVLHRAG ARLDVRDAWG 30 RLPVDLAEEL GHRDVARYLR AAAGGTRGSN HARIDAAEGP SDIPD Seq ID NO: 130 DNA sequence Nucleic Acid Accession #: NM_058197.1 35 Coding sequence: 272..646 CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC 40 TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA 120 GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG 180 GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGAGGG GGAGAGCAGG CAGCGGCCG CGGGAGCAG CATGGAGCCG GCGGCGGGA GCAGCATGGA GCCGGCGGCG GGGAGCAGCA TGGAGCCTTC GGCTGACTGG CTGGCCACGG CCGCGGCCCG 240 360 45 GGGTCGGGTA GAGGAGGTCC GGGCGCTGCT GGAGGCGGG GCGCTGCCCA ACGCACCGAA TAGTTACGGT CGGAGGCCGA TCCAGGTGGG TAGAAGGTCT GCAGCGGAG CAGGGGATGG CGGCGACTC TGGAGGACGA AGTTTGCAGG GGAATTGGAA TCAGGTAGCG CTTCGATTCT 420 480 CCGGAAAAAG GGGAGGCTTC CTGGGGAGTT TTCAGAAGGG GTTTGTAATC ACAGACCTCC 600 TCCTGGCGAC GCCCTGGGGG CTTGGGAAAC CAAGGAAGAG GAATGAGGAG CCACGCGCGT 660 50 ACAGATCTCT CGAATGCTGA GAAGATCTGA AGGGGGGAAC ATATTTGTAT TAGATGGAAG 720 TCATGATGAT GGGCAGCGCC CGAGTGCGGG AGCTGCTGCT GCTCCACGGC GCGGAGCCCA ACTGCGCCGA CCCCGCCACT CTCACCCGAC CCGTGCACGA CGCTGCCCGG GAGGGCTTCC 780 TGGACACGCT GGTGGTGCTG CACCGGGCCG GGGCGCGGCT GGACGTGCGC GATGCCTGGG 900 GCCGTCTGCC CGTGGACCTG GCTGAGGAGC TGGGCCATCG CGATGTCGCA CGGTACCTGC GCGCGGCTGC GGGGGGCACC AGAGGCAGTA ACCATGCCCG CATAGATGCC GCGGAAGGTC CCTCAGACAT CCCCGATTGA AAGAACCAGA GAGGCTCTGA GAAACCTCGG GAACTTAGAT 960 55 1020 CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT 1140 CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA TGTAAAAAAA AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTC TGGAGTGAGC 1200 1260 60 ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA 1380 GCTGTCGACT TCATGACAAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT 1440 CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT 1500 TTCATTCATT CACTC 65 Seq ID NO: 131 Protein Sequence Protein Accession #: NP_478104.1 31 70 MEPAAGSSME PAAGSSMEPS ADWLATAAAR GRVEEVRALL EAGALPNAPN SYGRRPIQVG

RRSAAGAGDG GRLWRTKFAG ELESGSASIL RKKGRLPGEF SEGVCNHRPP PGDALGAWET

75 Seq ID NO: 132 DNA sequence
Nucleic Acid Accession #: NM_058195.1
Coding sequence: 163..684

	1 CCTCCCTACS	11 GGCGCCTCCG	21 GCAGCCCTTC	31 CCGCGTGCGC	41 AGGGCTCAGA	51 GCCGTTCCGA	60
5	GATCTTGGAG GGGCGCGCTC GTGGGTCCCA	GTCCGGGTGG AGGGAAGGCG GTCTGCAGTT	GAGTGGGGGT GGTGCGCGCC AAGGGGGCAG	GGGGTGGGG TGCGGGGCGG GAGTGGCGCT GGAGGCGGCG	TGGGGGTGAA AGATGGGCAG GCTCACCTCT	GGTGGGGGGC GGGGCGGTGC GGTGCCAAAG	120 180 240 300
10	TTGGTGACCC CACATCCCGC GTGCTGATGC	TCCGGATTCG GGCTCACGGG TACTGAGGAG	GCGCGCGTGC GGAGTGGGCA CCAGCGTCTA	GGCCCGCCGC GCGCCAGGGG GGGCAGCAGC	GAGTGAGGGT CGCCCGCCGC CGCTTCCTAG	TTTCGTGGTT TGTGGCCCTC AAGACCAGGT	360 420 480
	CTGCGCCGAC GGACACGCTG	CCCGCCACTC GTGGTGCTGC	TCACCCGACC ACCGGGCCGG	GCTGCTGCTG CGTGCACGAC GGCGCGGCTG	GCTGCCCGGG GACGTGCGCG	AGGGCTTCCT ATGCCTGGGG	540 600 660 720
15	CGCGGCTGCG CTCAGACATC CATCAGTCAC	GGGGGCACCA CCCGATTGAA CGAAGGTCCT	GAGGCAGTAA AGAACCAGAG ACAGGGCCAC	GGGCCATCGC CCATGCCCGC AGGCTCTGAG AACTGCCCCC AAAAATGTCC	ATAGATGCCG AAACCTCGGG GCCACAACCC	CGGAAGGTCC AAACTTAGAT ACCCCGCTTT	780 840 900 960
20	TGCCTTCCCC TGTAAAAAG ACTCACGCCC GCTGTCGACT	CACTACCGTA AAAAACACCG TAAGCGCACA TCATGACAAG ACACTGCTAG	AATGTCCATT CTTCTGCCTT TTCATGTGGG CATTTTGTGA	TATATCATTT TTCACTGTGT CATTTCTTGC ACTAGGGAAG AACCAAAGCT	TTTATATATT TGGAGTTTTC GAGCCTCGCA CTCAGGGGGG	CTTATAAAAA TGGAGTGAGC GCCTCCGGAA TTACTGGCTT	1020 1080 1140 1200 1260
25	Seq ID NO: Protein Acc	133 Proteir					
20	1	11	21	31	41	51	
30	VRVFVVHIPR	LTGEWAAPGA	PAAVALVLML	aaelgpggge Lrsorlgoop Gaapgrgaag	LPRRPGHDDG	QRPSGGAAAA	60 120
35	Seq ID NO: Nucleic Aci Coding sequ	d Accession	1 #: NM_023	915			
40	1	11	21	31 	41	51 	
	CACAATTCAG GACACAATTG	GCAACAGGAG TCTTGCCGGT	CGACGGGCCA GCTTTATCTC	CCAAATAACG GGAAAGAACA ATTATATTTG AGGAATAAAA	CCACCCTTCA TGGCAAGCAT	CAATGAATTT CTTGCTGAAT	60 120 180 240
45	AAAAACATAG GATGCAGGAT TTTTATGCAA	TGGTTGCAGA TTGGACCTTG ACATGTATAC	CCTCATAATG GTACTTCAAG TTCCATCGTG	ACGCTGACAT TTTATTCTCT TTCCTTGGGC CGGATGTACA	TTCCATTTCG GCAGATACAC TGATAAGCAT	AATAGTCCAT TTCAGTTTTG TGATCGCTAT	300 360 420 480
50	AATGGTCAGC GTCAAATGGC ATTCTGATCG	CAACAGAGGA ATACGGCAGT GATGTTACAT	CAATATCCAT CACCTATGTG AGCCATATCC	GTTTTGTCTT GACTGCTCAA AACAGCTGCT AGGTACATCC AACCAGAGCA	AACTTAAAAG TGTTTGTGGC ACAAATCCAG	TCCTTTGGGG CGTGCTGGTG CAGGCAATTC	540 600 660 720 780
55	TTTTTTACCT GACAGGCTTT TTCTTGTCTG TTTTCAAGAA	GCTTTCTACC TAGATGAATC CGTGTAATGT GGCTGTTCAA	ATATCACTTG TGCACAAAA TTGCCTGGAT AAAATCAAAT	TGCAGAATTC ATCCTATATT CCAATAATTT ATCAGAACCA ATATATTATG	CTTTTACTTT ACTGCAAAGA ACTTTTTCAT GGAGTGAAAG	TAGTCACTTA AATTACACTT GTGTAGGTCA CATCAGATCA	840 900 960 1020
60	Seq ID NO: Protein Acc	135 Proteir cession #: N					
	1	11	21	31 	41	51 	
65	GLAVWIFFHI FYANMYTSIV	RNKTSFIFYL FLGLISIDRY	KNIVVADLIM LKVVKPFGDS	GKNTTLHNEP TLTFPFRIVH RMYSITPTKV NSCLFVAVLV	DTIVLPVLYL DAGFGPWYFK LSVCVWVIMA	IIFVASILLN FILCRYTSVL VLSLPNIILT	60 120 180 240
70				CRIPFTFSHL IRTRSESIRS			300
75	Seq ID NO: Nucleic Ac: Coding sequ	ld Accession	n # : NM_005	329.1			
	i İ	11 	21 	31 	41 	51 	
					27	7	

```
ATGCCGGTGC AGCTGACGAC AGCCCTGCGT GTGGTGGGCA CCAGCCTGTT TGCCCTGGCA
                                                                                    60
                                                                                    120
       GTGCTGGGTG GCATCCTGGC AGCCTATGTG ACGGGCTACC AGTTCATCCA CACGGAAAAG
       CACTACCTGT CCTTCGGCCT GTACGGCGCC ATCCTGGGCC TGCACCTGCT CATTCAGAGC
       CTTTTTGCCT TCCTGGAGCA CCGGCGCATG CGACGTGCCG GCCAGGCCCT GAAGCTGCCC
                                                                                    240
 5
       TCCCCGCGC GGGCTCGGT GGCACTGTGC ATTGCCGCGT ACCAGGAGGA CCCTGACTAC
                                                                                    300
       TTGCGCAAGT GCCTGCGCTC GGCCCAGCGC ATCTCCTTCC CTGACCTCAA GGTGGTCATG
GTGGTGGATG GCAACCGCCA GGAGGACGCC TACATGCTGG ACATCTTCCA CGAGGTGCTG
                                                                                    360
                                                                                    420
       GGCGGCACCG AGCAGGCCGG CTTCTTTGTG TGGCGCAGCA ACTTCCATGA GGCAGGCGAG
                                                                                    480
       GGTGAGACGG AGGCCAGCCT GCAGGAGGGC ATGGACCGTG TGCGGGATGT GGTGCGGGCC
                                                                                    540
10
                                                                                    600
       AGCACCTTCT CGTGCATCAT GCAGAAGTGG GGAGGCAAGC GCGAGGTCAT GTACACGGCC
       TTCAAGGCCC TCGGCGATTC GGTGGACTAC ATCCAGGTGT GCGACTCTGA CACTGTGCTG
                                                                                    660
       GATCCAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
                                                                                    720
       GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
                                                                                    780
       GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
                                                                                    840
15
       CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
                                                                                    900
       GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
       ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                                    1020
       ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
                                                                                    1080
       TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC
                                                                                    1140
20
       TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                                    1200
       TTCTACCGGG GCCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
                                                                                    1260
       ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC
                                                                                    1320
                                                                                    1380
       CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC
       ATCAACAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                                    1440
25
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGGAG GGCTGGCCTA CACAGCTTAT
                                                                                    1500
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
                                                                                   1560
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
                                                                                    1620
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GA
30
       Seq ID NO: 137 Protein Sequence
       Protein Accession #: NP 005320.1
                                            31
35
       MPVQLTTALR VVGTSLPALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
                                                                                    60
       LFAFLEHRRM RRAGQALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
                                                                                   120
       VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
       STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                                    240
       VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                                    300
       DWYHOKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
YFREWLYNSL WPHKHHLWMT YESVVTGFFF FFLIATVIQL FYRGRIWNIL LFLLTVQLVG
40
                                                                                    360
       IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNPIG
                                                                                    480
       LIPVSIWVAV LLGGLAYTAY CQDLFSETEL APLVSGAILY GCYWVALLML YLAIIARRCG
       KKPEOYSLAF AEV
45
       Seq ID NO: 138 DNA Sequence
       Nucleic Acid Accession #: NM_001327.1
       Coding sequence: 89..631
50
                                                                     51
       AGCAGGGGGC GCTGTGTGTA CCGAGAATAC GAGAATACCT CGTGGGCCCT GACCTTCTCT
CTGAGAGCCG GGCAGAGGCT CCGGAGCCAT GCAGGCCGAA GGCCGGGCA CAGGGGGTTC
55
       GACGGGCGAT GCTGATGGCC CAGGAGGCCC TGGCATTCCT GATGGCCCAG GGGGCAATGC
                                                                                    180
       TGGCGGCCCA GGAGAGGCGG GTGCCACGGG CGGCAGAGGT CCCCGGGGCG CAGGGGCAGC
                                                                                    240
       AAGGGCCTCG GGGCCGGGAG GAGGCGCCCC GCGGGGTCCG CATGGCGGCG CGGCTTCAGG
                                                                                    300
       GCTGAATGGA TGCTGCAGAT GCGGGGCCAG GGGGCCGGAG AGCCGCCTGC TTGAGTTCTA
                                                                                    360
       CCTCGCCATG CCTTTCGCGA CACCCATGGA AGCAGAGCTG GCCCGCAGGA GCCTGGCCCA
GGATGCCCCA CCGCTTCCCG TGCCAGGGGT GCTTCTGAAG GAGTTCACTG TGTCCGGCAA
                                                                                    420
60
                                                                                    480
       CATACTGACT ATCCGACTGA CTGCTGCAGA CCACCGCCAA CTGCAGCTCT CCATCAGCTC
CTGTCTCCAG CAGCTTTCCC TGTTGATGTG GATCACGCAG TGCTTTCTGC CCGTGTTTTT
                                                                                    540
                                                                                    600
       GGCTCAGCCT CCCTCAGGGC AGAGGCGCTA AGCCCAGCCT GGCGCCCCTT CCTAGGTCAT
                                                                                    660
       GCCTCCTCCC CTAGGGAATG GTCCCAGCAC GAGTGGCCAG TTCATTGTGG GGGCCTGATT
                                                                                    720
65
       GTTTGTCGCT GGAGGAGGAC GGCTTACATG TTTGTTTCTG TAGAAAATAA AACTGAGCTA
       Sea ID NO: 139 Protein Sequence
       Protein Accession #: NP_001318.1
70
       MQAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPGGGA
PRGPHGGAAS GLNGCCRCGA RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG
                                                                                    120
       VLLKEPTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM WITQCFLPVF LAQPPSGQRR
75
```

Seq ID NO: 140 DNA Sequence Nucleic Acid Accession #: Eos sequence

	Coding sequ	ence: 534	159				
5	GAAGGCCAGG CCTGATGGCC	11 CCTGACCTTC GCACAGGGG CAGGGGGCAA GCGCAGGGGC	TTCGACGGGC TGCTGGCGGC	GATGCTGATG CCAGGAGAGG	GCCCAGGAGG CGGGTGCCAC	CCCTGGCATT GGGCGGCAGA	60 120 180 240
10	CCGCATGGCG GACAGCCGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC	GTGCCGCTTC TGCTTCAGTT GTCTCCAGCA CTCAGGCTCC CTCCTCCCCT TTGTCGCTGG	TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGGCAG AGGGAATGGT	GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA	CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT	CAGGAGGCCG GCAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG	300 360 420 480 540 600
15	CTGAGCTA	141 Protein		······································		<u> </u>	
		cession #: E		3			
20	1	11	21 1	31	41	51 1	
25		STGDADGPGG AQDGRCPCGA SGQRR					60 120
23							
30	Nucleic Aci	142 DNA Sec id Accession Lence: 246	1 #: NM_1304	167.2			
50	1	11	21	31 1	41	51 I	
	AGGCAGAGCT	CTGCAAGGAG	AGGTTGTGTC	TTCGTTCTTT	CCGCCATCTT	CGTTCTTTCC	60
35	CTGGTAATTT	TTCTTTCTCA AGTTGTGAGT	GAATGTGTGG	AGGAGCCAGC	GGGCTTAGGA	CAGGTCCTGT	120 180
	GGCACAGTCC	GTGGCTTTGA GGCGCCATGG	GCCGGTAATC	CCTCGCGGTG	GTCCTCCGCC TGGAACGAGG	TTCCCCCAGG GAGGAAGTGA	240 300
	GAGATATGAG	TGAGCATGTA AGTTGGACCT	ACAAGATCCC	AATCCTCAGA	AAGAGGAAAT	GACCAAGAGT	360 420
40	AGGAACCACC	AACTGATAAT	CAGGGTATTG	CACCTAGTGG	GGAGATCAAA	AATGAAGGAG	480
	CACCTGCTGT	TCAAGGGACT ACCTGGAGAT	GATGTGGAAG GGTCCTGATG	TCAGGGAGGG	GGAACTGGCT	ACTTTTGATC	540 600
45	CCACTAAAGT	GCTGGAAGCA AGAATATTGT	GGTGAAGGGC	AACTATAGGT	TTAAACCAAG	ACAAATGAAG	660 720
		143 Proteir cession #: N					
50	1	11	21	31	41	51	
		SERGNDQESS QQELALLKIE				SGEIKNEGAP	60
55	Nucleic Ac:	144 DNA Sec id Accession Lence: 824	n #: NM_0014	476.1		•	,
60	1	11	21 	31 	41 	51 	
	TGAGATTCAT CCAAGGCGCT	TGTGAGGCAG CTGTGTGAAA ATGTACAGCC AACCAGCAAC	TATGAGTTGG TCCTGAAGTG	CGAGGAAGAT ATTGGGCCTA	CGACCTATTA TGCGGCCCGA	TTGGCCTAGA GCAGTTCAGT	60 120 180 240
65	GCAGCTGCTC GCTGATAGCC GGGCAGGAGG CAATCACAGT	AGGAGGGAGA AGGAACAGGG	GGATGAGGA TCACCCACAG AAATCCAGAG GACACGTTGA	GCATCTGCAG ACTGGGTGTG GAGGTGAAAA AATGATGCAG	GTCAAGGGCC AGTGTGAAGA CGCCTGAAGA GCTGCTCCTA	GAAGCCTGAA TGGTCCTGAT AGGTGAAAAG	300 360 420 480
70				IACAGCCTTC	1GCAMAA		
		145 Protein cession #: 1	NP_001467.1				
75	1	11 	21 	31 	41 	51 	
	MSWRGRSTYY	WPRPRRYVQP KPEADSQEQG	PEVIGPMRPE				60

Seq ID NO: 146 DNA Sequence Nucleic Acid Accession #: NM_005562 Coding sequence: 90..3671

5

	1	11	21 	31]	41 	51 	
10	ACAGCGGAGC	GCAGAGTGAG	AACCACCAAC	CGAGGCGCCG	GGCAGCGACC	CCTGCAGCGG	60
10	AGACAGAGAC	TGAGCGGCCC	GGCACCGCCA	TGCCTGCGCT	CTGGCTGGGC	TGCTGCCTCT	120
	GCTTCTCGCT	CCTCCTGCCC	GCAGCCCGGG	CCACCTCCAG	GAGGGAAGTC	TGTGATTGCA	180
				GGGAACTTCA			240
				ATGGCATTCA			300
1.5				GTTTGCCCTG			360
15				GGTGCAGCTG			420
				ACATGCTCAC			480
				GTGACCCAGC			540
				TTACTGGAGA			600
20				CTGAGGGCTG			660 720
20				AATACAGTGT TCCAACGAAA			780
				GCTCAGCCCA			840
				AACAGGTGAG			900
				ACCCATCTGC			960
25				TGCCACTTGG			1020
				AGCATCCAAG			1080
				GGAATCTCAC			1140
				ACAATGTGAC			1200
				AGTGTATATG			1260
30				AGAGAGATTC			1320
				GAGGGGCCTG			1380
				AGTGTGCTGA			1440
				CATGTCCCTG			1500
~ ~	CAGTGATGCC	GGAGACGGAG	GAGGTGGTGT	GCAATAACTG	CCCTCCCGGG	GTCACCGGTG	1560
35				TTGGGGACCC			1620
				ACAATGTGGA			1680
				GTATCCACAA			1740
				CATTGGCTCC			1800
40				AGCCTGTAGG			1860
40				ACTGTGAGCA			1920
				ATCAGTTTAT ATGGAGTAGT			1980 2040
				AGGACATTCT			2100
				TGGCCAAGGT			2160
45				CTGTGGAAAG			2220
73				GGCTCATCAC			2280
				ACATTCCTGC			2340
				CCACAAGATT			2400
				AAACTGAGGA			2460
50				TCGGAAGCGG			2520
	CTGTGGTGCA	AGGGCTTGTG	GAAAAATTGG	AGAAAACCAA	GTCCCTGGCC	CAGCAGTTGA	2580
				CAGATAGGTC			2640
				TCAGTGATCA			2700
				TCTCAACGCT			2760
55				ACTGGAAAGA			2820
				ATCAGCTGCT			2880
				GCAATGCCAC			2940
				AGGTGGACAA			3000 3060
60				AGAAGGTTTC CTGCTGATGC			3120
00				TTGAACAGGA			3180
				CCATGGAAAA			3240
				AAAGGAAGGA			3300
				CCCAGAAGGT			3360
65				CATTAGACGG			3420
				TCTTACTGGA			3480
	AGACCCAGAT	CAACAGCCAA	CTGCGGCCCA	TGATGTCAGA	GCTGGAAGAG	AGGGCACGTC	3540
	AGCAGAGGGG	CCACCTCCAT	TTGCTGGAGA	CAAGCATAGA	TGGGATTCTG	GCTGATGTGA	3600
	AGAACTTGGA	GAACATTAGG	GACAACCTGC	CCCCAGGCTG	CTACAATACC	CAGGCTCTTG	3660
70	AGCAACAGTG	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
				GGATGGGGAC			3780
	TATGCTCAGG	TCAACTGACC	TGACCCCATT	CCTGATCCCA	TGGCCAGGTG	GTTGTCTTAT	3840
	TGCACCATAC	TCCTTGCTTC	CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
75	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960 4020
15				TCCTGGAATT			4020
	ATAGTCAACT	TATTUTTIGA	GIAAIGIGAC	TAAAGGAAAA GCAACCCAGT	WWCI LIGHTI	CCACTABART	4140
				TCTTGCTGAT			4200
	ACIAI IGCCI	CHIMITOTCC	*C10CMGC1	CIGAT	Changiteet		

4260

```
AGGACCTGTA AGGCAGGCCC ATTCAGAGCT ATGGTGCTTG CTGGTGCCTG CCACCTTCAA
                                                                                   4320
        GTTCTGGACC TGGGCATGAC ATCCTTTCTT TTAATGATGC CATGGCAACT TAGAGATTGC
                                                                                   4380
        ATTTTATTA AAGCATTTCC TACCAGCAAA GCAAATGTTG GGAAAGTATT TACTTTTTCG
                                                                                   4440
 5
        GTTTCAAAGT GATAGAAAAG TGTGGCTTGG GCATTGAAAG AGGTAAAATT CTCTAGATTT
        ATTAGTCCTA ATTCAATCCT ACTTTTCGAA CACCAAAAAT GATGCGCATC AATGTATTTT
                                                                                   4560
       4620
                                                                                   4680
        TTACCTCCAT CCATCCTTCC AACATATATT TATTGAGTAC CTACTGTGTG CCAGGGGCTG
                                                                                   4740
10
        GTGGGACAGT GGTGACATAG TCTCTGCCCT CATAGAGTTG ATTGTCTAGT GAGGAAGACA
                                                                                   4800
        AGCATTTTTA AAAAATAAAT TTAAACTTAC AAACTTTGTT TGTCACAAGT GGTGTTTATT
                                                                                  4860
       GCAATAACCG CTTGGTTTGC AACCTCTTTG CTCAACAGAA CATATGTTGC AAGACCCTCC CATGGGGGCA CTTGAGTTTT GGCAAGGCTG ACAGAGCTCT GGGTTGTGCA CATTTCTTTG
                                                                                  4920
                                                                                  4980
        CATTCCAGCT GTCACTCTGT GCCTTTCTAC AACTGATTGC AACAGACTGT TGAGTTATGA
                                                                                   5040
15
        TAACACCAGT GGGAATTGCT GGAGGAACCA GAGGCACTTC CACCTTGGCT GGGAAGACTA
                                                                                   5100
        TGGTGCTGCC TTGCTTCTGT ATTTCCTTGG ATTTTCCTGA AAGTGTTTTT AAATAAAGAA
                                                                                  5160
        CAATTGTTAG ATGCC
        Seq ID NO: 147 Protein Sequence
20
        Protein Accession #: NP_005553
                                                                    51
                                21
                    11
                                           31
        MPALWLGCCL CFSLLLPAAR ATSRREVCDC NGKSRQCIFD RELHROTGNG FRCLNCNDNT
25
       DGIHCEKCKN GFYRHRERDR CLPCNCNSKG SLSARCDNSG RCSCKPGVTG ARCDRCLPGF
HMLTDAGCTQ DQRLLDSKCD CDPAGIAGPC DAGRCVCKPA VTGERCDRCR SGYYNLDGGN
                                                                                  120
                                                                                  180
        PEGCTQCFCY GHSASCRSSA EYSVHKITST FHQDVDGWKA VQRNGSPAKL QWSQRHQDVF
        SSAQRLDPVY FVAPAKFLGN QQVSYGQSLS FDYRVDRGGR HPSAHDVILE GAGLRITAPL
                                                                                  300
        MPLGKTLPCG LTKTYTFRLN EHPSNNWSPQ LSYFEYRRLL RNLTALRIRA TYGEYSTGYI
                                                                                  360
30
        DNVTLISARP VSGAPAPWVE QCICPVGYKG QFCQDCASGY KRDSARLGPF GTCIPCNCQG
                                                                                  420
        GGACDPDTGD CYSGDENPDI ECADCPIGFY NDPHDPRSCK PCPCHNGFSC SVMPETEEVV
        CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
                                                                                  540
       CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
NCEHGAFSCP ACYNQVKIQM DQFMQQLQRM EALISKAQGG DGVVPDTELE GRMQQAEQAL
                                                                                  600
                                                                                  660
35
        QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYQNRVRDTH
        RLITOMOLSL AESEASLONT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR
                                                                                  780
        ETEDYSKOAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE
                                                                                  840
        ADRSYCHSLR LLDSVSRLOG VSDOSFOVEE AKRIKOKADS LSTLVTRHMD EFKRTOKNLG
                                                                                  900
       NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
40
        QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE
                                                                                  1020
        IEQEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVQMVITE
                                                                                  1080
        AOKVDTRAKN AGVTIODTIN TLDGLIHLMD OPLSVDEEGL VLLEOKLSRA KTOINSOLRP
                                                                                  1140
        MMSELEERAR QORGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ
45
        Seq ID NO: 148 DNA Sequence
        Nucleic Acid Accession #: NM_021048.2
        Coding sequence: 327..1436
50
        GGCACGAGGG AGAAGCGAGG TTCTCGTTCT GAGGGACAGG CTTGAGATCG GCTGAAGAGA
        GCGGGCCCAG GCTCTGTGAG GAGGCAAGGG AGGTGAGAAC CTTGCTCTCA GAGGGTGACT
        CAAGTCAACA CAGGGAACCC CTCTTTTCTA CAGACACAGT GGGTCGCAGG ATCTGACAAG
                                                                                  180
        AGTCCAGGTT CTCAGGGGAC AGGGAGAGCA AGAGGTCAAG AGCTGTGGGA CACCACAGAG
                                                                                  240
        CAGCACTGAA GGAGAAGACC TGCCTGTGGG TCCCCATCGC CCAAGTCCTG CCCACACTCC
55
                                                                                  300
        CACCTGCTAC CCTGATCAGA GTCATCATGC CTCGAGCTCC AAAGCGTCAG CGCTGCATGC
                                                                                  360
        CTGAAGAAGA TCTTCAATCC CAAAGTGAGA CACAGGGCCT CGAGGGTGCA CAGGCTCCCC
                                                                                  420
       TGGCTGTGGA GGAGGATGCT TCATCATCCA CTTCCACCAG CTCCTCTTTT CCATCCTCTT
TTCCCTCCTC CTCCTCTTCC TCCTCCTCCT CCTGCTATCC TCTAATACCA AGCACCCCAG
                                                                                  480
                                                                                  540
60
       AGGAGGTTTC TGCTGATGAT GAGACACCAA ATCCTCCCCA GAGTGCTCAG ATAGCCTGCT
        CCTCCCCCTC GGTCGTTGCT TCCCTTCCAT TAGATCAATC TGATGAGGGC TCCAGCAGCC
                                                                                  660
       AAAAGGAGGA GAGTCCAAGC ACCCTACAGG TCCTGCCAGA CAGTGAGTCT TTACCCAGAA
GTGAGATAGA TGAAAAGGTG ACTGATTTGG TGCAGTTTCT GCTCTTCAAG TATCAAATGA
                                                                                  720
                                                                                  780
        AGGAGCCGAT CACAAAGGCA GAAATACTGG AGAGTGTCAT AAAAAATTAT GAAGACCACT
                                                                                  840
65
        TCCCTTTGTT GTTTAGTGAA GCCTCCGAGT GCATGCTGCT GGTCTTTGGC ATTGATGTAA
                                                                                  900
        AGGAAGTGGA TCCCACTGGC CACTCCTTTG TCCTTGTCAC CTCCCTGGGC CTCACCTATG
                                                                                  960
       ATGGGATGCT GAGTGATGTC CAGAGCATGC CCAAGACTGG CATTCTCATA CTTATCCTAA GCATAATCTT CATAGAGGGC TACTGCACCC CTGAGGAGGT CATCTGGGAA GCACTGAATA
                                                                                  1020
                                                                                  1080
        TGATGGGGCT GTATGATGGG ATGGAGCACC TCATTTATGG GGAGCCCAGG AAGCTGCTCA
                                                                                  1140
70
        CCCAAGATTG GGTGCAGGAA AACTACCTGG AGTACCGGCA GGTGCCTGGC AGTGATCCTG
                                                                                  1200
        CACGGTATGA GTTTCTGTGG GGTCCAAGGG CTCATGCTGA AATTAGGAAG ATGAGTCTCC
                                                                                  1260
        TGAAATTTTT GGCCAAGGTA AATGGGAGTG ATCCAAGATC CTTCCCACTG TGGTATGAGG
                                                                                  1320
        AGGCTTTGAA AGATGAGGAA GAGAGAGCCC AGGACAGAAT TGCCACCACA GATGATACTA
                                                                                  1380
        CTGCCATGGC CAGTGCAAGT TCTAGCGCTA CAGGTAGCTT CTCCTACCCT GAATAAAGTA
                                                                                  1440
75
        AGACAGATTC TTCACTGTGT TTTAAAAGGC AAGTCAAATA CCACATGATT TTACTCATAT
                                                                                  1500
        GTGGAATCTA AAAAAAAAA AAAAAAA
```

ACCCAGGGTG TGAACATGTT CTCCATTTTC AAGCTGGAAG AAGTGAGCAG TGTTGGAGTG

```
Seq ID NO: 149 Protein Sequence
        Protein Accession #: NP_066386.1
 5
        MPRAPKRORC MPEEDLOSOS ETOGLEGAÇA PLAVEEDASS STSTSSSFPS SFPSSSSSS
        SSCYPLIPST PEEVSADDET PNPPQSAQIA CSSPSVVASL PLDQSDEGSS SQKEESPSTL
        QVLPDSESLP RSEIDEKVTD LVQFLLFKYQ MKEPITKAEI LESVIKNYED HFPLLFSEAS
        ECMLLVFGID VKEVDPTGHS FVLVTSLGLT YDGMLSDVQS MPKTGILILI LSIIFIEGYC
                                                                                         240
10
        TPEEVIWEAL NMMGLYDGME HLIYGEPRKL LTQDWVQENY LEYRQVPGSD PARYEPLMGP
RAHAEIRKMS LLKFLAKVNG SDPRSFPLWY EEALKDEEER AQDRIATTDD TTAMASASSS
                                                                                         300
        ATGSFSYPE
        Seg ID NO: 150 DNA Sequence
15
        Nucleic Acid Accession #: NM_003695
        Coding sequence: 12..398
                                                                         51
20
        CGACATCAGA GATGAGGACA GCATTGCTGC TCCTTGCAGC CCTGGCTGTG GCTACAGGGC
        CAGCCCTTAC CCTGCGCTGC CACGTGTGCA CCAGCTCCAG CAACTGCAAG CATTCTGTGG
        TCTGCCCGGC CAGCTCTCGC TTCTGCAAGA CCACGAACAC AGTGGAGCCT CTGAGGGGGA
                                                                                         180
        ATCTGGTGAA GAAGGACTGT GCGGAGTCGT GCACACCCAG CTACACCCTG CAAGGCCAGG
TCAGCAGCGG CACCAGCTCC ACCCAGTGCT GCCAGGAGGA CCTGTGCAAT GAGAAGCTGC
                                                                                         240
                                                                                         300
25
        ACAACGCTGC ACCCACCCGC ACCGCCCTCG CCCACAGTGC CCTCAGCCTG GGGCTGGCCC
        TGAGCCTCCT GGCCGTCATC TTAGCCCCCA GCCTGTGACC TTCCCCCCAG GGAAGGCCCC
                                                                                         420
        TCATGCCTTT CCTTCCCTTT CTCTGGGGAT TCCACACCTC TCTTCCCCAG CCGGCAACGG
GGGTGCCAGG AGCCCCAGGC TGAGGGCTTC CCCGAAAGTC TGGGACCAGG TCCAGGTGGG
CATGGAATGC TGATGACTTG GAGCAGGCCC CACAGACCCC ACAGAGGATG AAGCCACCCC
                                                                                         480
                                                                                         540
30
        ACAGAGGATG CAGCCCCCAG CTGCATGGAA GGTGGAGGAC AGAAGCCCTG TGGATCCCCG
        GATTTCACAC TCCTTCTGTT TTGTTGCCGT TTATTTTGTA CTCAAATCTC TACATGGAGA
        TAAATGATTT AAACC
        Seq ID NO: 151 Protein Sequence
35
        Protein Accession #: NP_003686
                                                                         51
        MRTALLLLAA LAVATGPALT LRCHVCTSSS NCKHSVVCPA SSRFCKTTNT VEPLRGNLVK
40
        KDCAESCTPS YTLQGQVSSG TSSTQCCQED LCNEKLHNAA PTRTALAHSA LSLGLALSLL
        AVILAPSL
        Seq ID NO: 152 DNA Sequence
        Nucleic Acid Accession #: NM_006398.1
45
        Coding sequence: 19..516
        GGCCCCTTGT CTGCAGAGAT GGCTCCCAAT GCTTCCTGCC TCTGTGTGCA TGTCCGTTCC
50
        GAGGAATGGG ATTTAATGAC CTTTGATGCC AACCCATATG ACAGCGTGAA AAAAATCAAA
        GAACATGTCC GGTCTAAGAC CAAGGTTCCT GTGCAGGACC AGGTTCTTTT GCTGGGCTCC
                                                                                         180
        AAGATCTTAA AGCCACGGAG AAGCCTCTCA TCTTATGGCA TTGACAAAGA GAAGACCATC CACCTTACCC TGAAAGTGGT GAAGCCCAGT GATGAGGAGC TGCCCTTGTT TCTTGTGGAG
                                                                                         240
                                                                                         300
        TCAGGTGATG AGGCAAAGAG GCACCTCCTC CAGGTGCGAA GGTCCAGCTC AGTGGCACAA
55
        GTGAAAGCAA TGATCGAGAC TAAGACGGGT ATAATCCCTG AGACCCAGAT TGTGACTTGC
        AATGGAAAGA GACTGGAAGA TGGGAAGATG ATGGCAGATT ACGGCATCAG AAAGGGCAAC
                                                                                         480
        TTACTCTTCC TGGCATCTTA TTGTATTGGA GGGTGACCAC CCTGGGGATG GGGTGTTGGC AGGGGTCAAA AAGCTTATTT CTTTTAATCT CTTACTCAAC GAACACATCT TCTGATGATT
                                                                                         540
        TCCCAAAATT AATGAGAATG AGATGAGTAG AGTAAGATTT GGGTGGGATG GGTAGGATGA
                                                                                         660
60
        AGTATATTGC CCAACTCTAT GTTTCTTTGA TTCTAACACA ATTAATTAAG TGACATGATT
                                                                                         720
        TTTACTAATG TATTACTGAG ACTAGTAAAT AAATTTTTAA GGCAAAATAG AGCATTC
        Seg ID NO: 153 Protein Sequence
        Protein Accession #: NP_006389.1
65
                                                                         51
        MAPNASCLCV HVRSEEWDLM TFDANPYDSV KKIKEHVRSK TKVPVQDQVL LLGSKILKPR
RSLSSYGIDK EKTIHLTLKV VKPSDEELPL FLVESGDEAK RHLLQVRRSS SVAQVKAMIE
70
        TKTGIIPETQ IVTCNGKRLE DGKMMADYGI RKGNLLFLAS YCIGG
        Seq ID NO: 154 DNA Sequence
        Nucleic Acid Accession #: BC017490.1
        Coding sequence: 74..2788
75
        GTGGGTCACG TGAACCACTT TTCGCGCGAA ACCTGGTTGT TGCTGTAGTG GCGGAGAGGA
```

PCT/US02/21338 WO 03/003906

120

```
TCGTGGTACT GCTATGGCGG AATCATCGGA ATCCTTCACC ATGGCATCCA GCCCGGCCCA
        GOGTOGGOGA GGCAATGATO CTCTCACCTC CAGCCCTGGC CGAAGCTCCC GGCGTACTGA
                                                                                      180
        TGCCCTCACC TCCAGCCCTG GCCGTGACCT TCCACCATTT GAGGATGAGT CCGAGGGGCT
                                                                                      240
        CCTAGGCACA GAGGGCCCCC TGGAGGAAGA AGAGGATGGA GAGGAGCTCA TTGGAGATGG
                                                                                      300
        CATGGAAAGG GACTACCGCG CCATCCCAGA GCTGGACGCC TATGAGGCCG AGGGACTGGC
        TCTGGATGAT GAGGACGTAG AGGAGCTGAC GGCCAGTCAG AGGGAGGCAG CAGAGCGGGC
                                                                                      420
        CATGCGGCAG CGTGACCGGG AGGCTGGCCG GGGCCTGGGC CGCATGCGCC GTGGGCTCCT
                                                                                      480
        GTATGACAGC GATGAGGAGG ACGAGGAGCG CCCTGCCCGC AAGCGCCGCC AGGTGGAGCG
                                                                                      540
        GGCCACGGAG GACGGCGAGG AGGACGAGGA GATGATCGAG AGCATCGAGA ACCTGGAGGA
10
        TCTCAAAGGC CACTCTGTGC GCGAGTGGGT GAGCATGGCG GGCCCCCGGC TGGAGATCCA
                                                                                      660
        CCACCGCTTC AAGAACTTCC TGCGCACTCA CGTCGACAGC CACGGCCACA ACGTCTTCAA
GGAGCGCATC AGCGACATGT GCAAAGAGAA CCGTGAGAGC CTGGTGGTGA ACTATGAGGA
                                                                                      720
                                                                                      780
        CTTGGCAGCC AGGGAGCACG TGCTGGCCTA CTTCCTGCCT GAGGCACCGG CGGAGCTGCT
        GCAGATCTTT GATGAGGCTG CCCTGGAGGT GGTACTGGCC ATGTACCCCA AGTACGACCG
                                                                                      900
15
        CATCACCAAC CACATCCATG TCCGCATCTC CCACCTGCCT CTGGTGGAGG AGCTGCGCTC
                                                                                      960
       GCTGAGGCAG CTGCATCTGA ACCAGCTGAT CCGCACCAGT GGGGTGGTGA CCAGCTGCAC TGGCGTCCTG CCCCAGCTCA GCATGGTCAA GTACAACTGC AACAAGTGCA ATTTCGTCCT
                                                                                      1020
                                                                                      1080
        GGGTCCTTTC TGCCAGTCCC AGAACCAGGA GGTGAAACCA GGCTCCTGTC CTGAGTGCCA
                                                                                      1140
        GTCGGCCGGC CCCTTTGAGG TCAACATGGA GGAGACCATC TATCAGAACT ACCAGCGTAT
                                                                                      1200
20
        CCGAATCCAG GAGAGTCCAG GCAAAGTGGC GGCTGGCCGG CTGCCCCGCT CCAAGGACGC
                                                                                      1260
       CATTCTCCTC GCAGATCTGG TGGACAGCTG CAAGCCAGGA GACGACATA AGCTGACTGC CATCTATCAC AACAACTATG ATGGCTCCCT CAACACTGCC AATGGCTTCC CTGTCTTTGC
                                                                                      1320
                                                                                      1380
        CACTGTCATC CTAGCCAACC ACGTGGCCAA GAAGGACAAC AAGGTTGCTG TAGGGGAACT
                                                                                      1440
        GACCGATGAA GATGTGAAGA TGATCACTAG CCTCTCCAAG GATCAGCAGA TCGGAGAGAA
                                                                                      1500
        GATCTTTGCC AGCATTGCTC CTTCCATCTA TGGTCATGAA GACATCAAGA GAGGCCTGGC
25
                                                                                      1560
        TCTGGCCCTG TTCGGAGGGG AGCCCAAAAA CCCAGGTGGC AAGCACAAGG TACGTGGTGA
        TATCAACGTG CTCTTGTGCG GAGACCCTGG CACAGCGAAG TCGCAGTTTC TCAAGTATAT
                                                                                      1680
        TGAGAAAGTG TCCAGCCGAG CCATCTTCAC CACTGGCCAG GGGGCGTCGG CTGTGGGCCT
                                                                                      1740
       CACGGCGTAT GTCCAGCGGC ACCCTGTCAG CAGGGAGTGG ACCTTGGAGG CTGGGGCCCT
GGTTCTGGCT GACCGAGGAG TGTGTCTCAT TGATGAATTT GACAAGATGA ATGACCAGGA
                                                                                      1800
30
                                                                                      1860
        CAGAACCAGC ATCCATGAGG CCATGGAGCA ACAGAGCATC TCCATCTCGA AGGCTGGCAT
                                                                                      1920
        CGTCACCTCC CTGCAGGCTC GCTGCACGGT CATTGCTGCC GCCAACCCCA TAGGAGGGCG
                                                                                      1980
       CTACGACCCC TCGCTGACTT TCTCTGAGAA CGTGGACCTC ACAGAGCCCA TCATCTCACG
CTTTGACATC CTGTGTGTGG TGAGGGACAC CGTGGACCCA GTCCAGGACG AGATGCTGGC
CCGCTTCGTG GTGGGCAGCC ACGTCAGACA CCACCCCAGC AACAAGGAGG AGGAGGGGCT
                                                                                      2040
                                                                                      2100
35
                                                                                      2160
        GGCCAATGGC AGCGCTGCTG AGCCCGCCAT GCCCAACACG TATGGCGTGG AGCCCCTGCC
                                                                                      2220
        CCAGGAGGTC CTGAAGAAGT ACATCATCTA CGCCAAGGAG AGGGTCCACC CGAAGCTCAA
CCAGATGGAC CAGGACAAGG TGGCCAAGAT GTACAGTGAC CTGAGGAAAG AATCTATGGC
                                                                                      2280
                                                                                      2340
        GACAGGCAGC ATCCCCATTA CGGTGCGGCA CATCGAGTCC ATGATCCGCA TGGCGGAGGC
                                                                                      2400
40
        CCACGCGCGC ATCCATCTGC GGGACTATGT GATCGAAGAC GACGTCAACA TGGCCATCCG
                                                                                      2460
        CGTGATGCTG GAGAGCTTCA TAGACACACA GAAGTTCAGC GTCATGCGCA GCATGCGCAA
                                                                                      2520
       GACTITIGCC CGCTACCTIT CATTCCGGCG TGACAACAAT GAGCTGTTGC TCTTCATACT GAAGCAGTTA GTGGCAGAGC AGGTGACATA TCAGCGCAAC CGCTTTGGGG CCCAGCAGGA
                                                                                      2580
                                                                                      2640
        CACTATTGAG GTCCCTGAGA AGGACTTGGT GGATAAGGCT CGTCAGATCA ACATCCACAA
                                                                                      2700
45
        CCTCTCTGCA TTTTATGACA GTGAGCTCTT CAGGATGAAC AAGTTCAGCC ACGACCTGAA
                                                                                      2760
        AAGGAAAATG ATCCTGCAGC AGTTCTGAGG CCCTATGCCA TCCATAAGGA TTCCTTGGGA
                                                                                      2820
        TTCTGGTTTG GGGTGGTCAG TGCCCTCTGT GCTTTATGGA CACAAAACCA GAGCACTTGA
        TGAACTCGGG GTACTAGGGT CAGGGCTTAT AGCAGGATGT CTGGCTGCAC CTGGCATGAC
                                                                                      2940
                                                                                      3000
        TGTTTGTTTC TCCAAGCCTG CTTTGTGCTT CTCACCTTTG GGTGGGATGC CTTGCCAGTG
50
        TGTCTTACTT GGTTGCTGAA CATCTTGCCA CCTCCGAGTG CTTTGTCTCC ACTCAGTACC TTGGATCAGA GCTGCTGAGT TCAGGATGCC TGCGTGTGT TTAGGTGTTA GCCTTCTTAC
                                                                                      3060
                                                                                      3120
        ATGGATGTCA GGAGAGCTGC TGCCCTCTTG GCGTGAGTTG CGTATTCAGG CTGCTTTTGC
                                                                                      3180
        TGCCTTTGGC CAGAGAGCTG GTTGAAGATG TTTGTAATCG TTTTCAGTCT CCTGCAGGTT
                                                                                      3240
        TCTGTGCCCC TGTGGTGGAA GAGGGCACGA CAGTGCCAGC GCAGCGTTCT GGGCTCCTCA
                                                                                      3300
55
        GTCGCAGGGG TGGGATGTGA GTCATGCGGA TTATCCACTC GCCACAGTTA TCAGCTGCCA
        TTGCTCCCTG TCTGTTTCCC CACTCTCTTA TTTGTGCATT CGGTTTGGTT TCTGTAGTTT
        Seq ID NO: 155 Protein Sequence
60
        Protein Accession #: AAH17490.1
                                                          41
                    11
                                 21
                                             31
                                                                       51
        MAESSESFTM ASSPAGRERG NDPLTSSPGE SSERTDALTS SPGEDLPPFE DESEGLLGTE
65
        GPLEEEEDGE ELIGDGMERD YRAIPELDAY EAEGLALDDE DVEELTASQR EAAERAMRQR
                                                                                      120
        DREAGRGIGR MRRGLLYDSD EEDEERPARK RRQVERATED GEEDEEMIES IENLEDLKGH
SVREWUSMAG PRLEIHHRPK NPLRTHVDSH GHNVFKERIS DMCKENRESL VVNYEDLAAR
                                                                                      180
                                                                                      240
        EHVLAYFLPE APAELLQIFD EAALEVVLAM YPKYDRITNH IHVRISHLPL VEELRSLRQL
        HLNQLIRTSG VVTSCTGVLP QLSMVKYNCN KCNFVLGPFC QSQNQEVKPG SCPECQSAGP
                                                                                      360
70
        FEVNMEETIY QNYQRIRIQE SPGKVAAGRL PRSKDAILLA DLVDSCKPGD EIELTGIYHN
                                                                                      420
        NYDGSLNTAN GFPVFATVIL ANHVAKKDNK VAVGELTDED VKMITSLSKD QQIGEKIFAS
                                                                                      480
        IAPSIYGHED IKRGLALALF GGEPKNPGGK HKVRGDINVL LCGDPGTAKS QFLKYIEKVS
        SRAIFTTGQG ASAVGLTAYV QRHPVSREWT LEAGALVLAD RGVCLIDEFD KMNDQDRTSI
                                                                                      600
        HEAMEQQSIS ISKAGIVTSL QARCTVIAAA NPIGGRYDPS LTFSENVDLT EPIISRFDIL
                                                                                      660
        CVVRDTVDPV QDEMLARFVV GSHVRHHPSN KEEEGLANGS AAEPAMPNTY GVEPLPQEVL
75
                                                                                      720
        KKYIIYAKER VHPKLNOMDO DKVAKMYSDL RKESMATGSI PITVRHIESM IRMAEAHARI
        HLRDYVIEDD VNMAIRVMLE SFIDTQKFSV MRSMRKTFAR YLSFRRDNNE LLLFILKQLV
        AEQVTYQRNR FGAQQDTIBV PEKDLVDKAR QINIHNLSAF YDSELFRMNK FSHDLKRKMI
                                                                                      900
```

LOOF

Seq ID NO: 156 DNA Sequence

```
Nucleic Acid Accession #: NM_002497.1
  5
         Coding sequence: 135..1472
                       11
                                    21
                                                  31
                                                                              51
         GGCACGAGTA GGGGTGGCGG GTCAGTGCTG CTCGGGGGCT TCTCCATCCA GGTCCCTGGA
10
         GTTCCTGGTC CCTGGAGCTC CGCACTTGGC GCGCAACCTG CGTGAGGCAG CGCGACTCTG
         GCGACTGGCC GGCCATGCCT TCCCGGGCTG AGGACTATGA AGTGTTGTAC ACCATTGGCA
                                                                                              180
         CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT
                                                                                              240
         GGAAAGAACT TGACTATGGC TCCATGACAG AAGCTGAGAA ACAGATGCTT GTTTCTGAAG
                                                                                              300
         TGAATTTGCT TOGTGAACTG AAACATCCAA ACATCGTTCG TTACTATGAT CGGATTATTG
                                                                                              360
15
         ACCGGACCAA TACAACACTG TACATTGTAA TGGAATATTG TGAAGGAGGG GATCTGGCTA
GTGTAATTAC AAAGGGAACC AAGGAAAGGC AATACTTAGA TGAAGAGTTT GTTCTTCGAG
                                                                                              420
                                                                                              480
         TGATGACTCA GTTGACTCTG GCCCTGAAGG AATGCCACAG ACGAAGTGAT GGTGGTCATA
                                                                                              540
         CCGTATTGCA TCGGGATCTT AAACCAGCCA ATGTTTTCCT GGATGGCAAG CAAAACGTCA
                                                                                              600
         AGCTTGGAGA CTTTGGGCTA GCTAGAATAT TAAACCATGA CACGAGTTTT GCAAAAACAT
20
         TTGTTGGCAC ACCITATTAC ATGTCTCCTG AACAAATGAA TCGCATGTCC TACAATGAGA AATCAGATAT CTGGTCATTG GGCTGCTTGC TGTATGAGTT ATGTGCATTA ATGCCTCCAT
                                                                                              720
                                                                                              780
         TTACAGCTTT TAGCCAGAAA GAACTCGCTG GGAAAATCAG AGAAGGCAAA TTCAGGCGAA
                                                                                              840
         TTCCATACCG TTACTCTGAT GAATTGAATG AAATTATTAC GAGGATGTTA AACTTAAAGG
         ATTACCATCG ACCTTCTGTT GAAGAAATTC TTGAGAACCC TTTAATAGCA GATTTGGTTG
CAGACGAGCA AAGAAGAAAT CTTGAGAGAA GAGGGCGACA ATTAGGAGAG CCAGAAAAAT
                                                                                              960
25
                                                                                             1020
         CGCAGGATTC CAGCCCTGTA TTGAGTGAGC TGAAACTGAA GGAAATTCAG TTACAGGAGC
                                                                                             1080
         GAGAGCGAGC TCTCAAAGCA AGAGAAGAAA GATTGGAGCA GAAAGAACAG GAGCTTTGTG
         TTCGTGAGAG ACTAGCAGAG GACAAACTGG CTAGAGCAGA AAATCTGTTG AAGAACTACA
                                                                                             1200
        GCTTGCTAAA GGAACGGAAG TTCCTGTCTC TGGCAAGTAA TCCAGAACTT CTTAATCTTC CATCCTCAGT AATTAAGAAG AAAGTTCATT TCAGTGGGGA AAGTAAAGAG AACATCATGA
                                                                                             1260
30
                                                                                             1320
         GGAGTGAGAA TTCTGAGAGT CAGCTCACAT CTAAGTCCAA GTGCAAGGAC CTGAAGAAAA
                                                                                             1380
        GGCTTCACGC TGCCCAGCTG CGGGCTCAAG CCCTGTCAGA TATTGAGAAA AATTACCAAC TGAAAAGCAG ACAGATCCTG GGCATGCGCT AGCCAGGTAG AGAGACACAG AGCTGTGTAC AGGATGTAAT ATTACCAACC TTTAAAGACT GATATTCAAA TGCTGTAGTG TTGAATACTT
                                                                                             1440
                                                                                             1500
                                                                                             1560
35
         GGCCCCATGA GCCATGCCTT TCTGTATAGT ACACATGATA TTTCGGAATT GGTTTTACTG
                                                                                             1620
        TTCTTCAGCA ACTATTGTAC AAAATGTTCA CATTTAATTT TTCTTTCTTC TTTTAAGAAC ATATTATAAA AAGAATACTT TCTTGGTTGG GCTTTTAATC CTGTGTGGA TTACTAGTAG GAACATGAGA TGTGACATTC TAAATCTTGG GAGAAAAAAT AATATTAGGA AAAAAATATT
                                                                                             1680
                                                                                             1740
                                                                                             1800
         TATGCAGGAA GAGTAGCACT CACTGAATAG TTTTAAATGA CTGAGTGGTA TGCTTACAAT
                                                                                             1860
40
        TGTCATGTCT AGATTTAAAT TTTAAGTCTG AGATTTTAAA TGTTTTTGAG CTTAGAAAAC
                                                                                             1920
        CCAGTTAGAT GCAATTTGGT CATTAATACC ATGACATCTT GCTTATAAAT ATTCCATTGC
                                                                                             1980
        TCTGTAGTTC AAATCTGTTA GCTTTGTGAA AATTCATCAC TGTGATGTTT GTATTCTTTT
                                                                                             2040
        TTTTTTCTG TTTAACAGAA TATGAGCTGT CTGTCATTTA CCTACTTCTT TCCCACTAAA
                                                                                             2100
        TAAAAGAATT CTTCAGTTA
45
        Seg ID NO: 157 Protein Seguence
        Protein Accession #: NP_002488.1
                                    21
                                                 31
50
        MPSRAEDYEV LYTIGTGSYG RCQKIRRKSD GKILVWKELD YGSMTEAEKQ MLVSEVNLLR
        ELKHPNIVRY YDRIIDRINT TLYIVMEYCE GGDLASVITK GTKERQYLDE EFVLRVMTQL
        TLALKECHRR SDGGHTVLHR DLKPANVFLD GKQNVKLGDF GLARILNHDT SFAKTFVGTP
YYMSPEQMNR MSYNEKSDIW SLGCLLYELC ALMPPFTAFS QKELAGKIRE GKFRRIPYRY
                                                                                             180
                                                                                             240
55
        SDELNEITR MLNLKDYHRP SVEEILENPL IADLVADEQR RNLERRGRQL GEPEKSQDSS
                                                                                             300
        PVLSELKLKE IQLQERERAL KAREERLEQK EQELCVRERL AEDKLARAEN LLKNYSLLKE
        RKPLSLASNP ELLNLPSSVI KKKVHFSGES KENIMRSENS ESQLTSKSKC KDLKKRLHAA
        OLRAOALSDI EKNYOLKSRO ILGMR
60
        Seq ID NO: 158 DNA Sequence
        Protein Accession #: Eos sequence
                                                               41
                                                                             51
65
        TGAGTTTGCC CCCTTACCCC CATCCCAGTG AATATTTGCA ATTCCTAAAG ACGTGTTTTG
        ATTGTCACAC CTGGGTGGGG AACATGCTAC TGGCATCTAA TGCATAGAGG GCAGTAATGC TGCTAAACAT CTTTCAACGC ACAGGACAGA GCCCCACAAA AGAGAATTAT CTAGCCCCAA
                                                                                             120
                                                                                             180
        ATGTCCATAA CACTGCTGTT GAGAAAACCT ACCGCAGGAT CTTACTGGGC TTCATAGGTA
        AGCTTGCCTT TGTTCTGGCT TCTGTAGATA TATAAAATAA AGACACTGCC CAGTCCCTCC
CTCAACGTCC CGAGCCAGGG CTCAAGGCAA TTCCAATAAC AGTAGAATGA ACACTAAATA
TTGATTTCAA AATCTCAGCA ACTAGAAGAA TGACCAACCA TCCTGGTTGG CCTGGGACTG
70
                                                                                             360
                                                                                             420
        TCCTAGTTTT AGCATTGAAA GTTTCAGGTT CCAGGAAAGC CCTCAGGCCT GGGCTGCTGG
                                                                                             480
        TCACCCTAGC AGCTGAGGGA CTCTTCAATA CAGAATTAGT CTTTGTGCAC TGGAGATGAA
        TATACTTTAA TITGTAACAT GIGAAAACAT CTATAAACAT CTACTGAAGC CTGTTCTGTC
                                                                                             600
75
        TGCACCGACA TITTCATTGA GTACGGATTC TTCCTACCAG ATACAGCTGC TCTACAACTT
                                                                                             660
        TOGAGGGCTG GTATAAAACT AGCTTTTACC TATTTTTAAA AATTACATGA ATAGTAAAAA
                                                                                             720
        CTTGGATTAA CCCAGTATTC GGGTATTTTC AATTTCCTTG GGAGCTTAGA GGACGGACAA
        ATAAAAAGAT TATTTCAACA TCAAATATAY GCTATTGTTT ACATATGAAG ATAACCACAT
                                                                                             840
```

	ATATGTATAA CATTTACTAT	ATTCACCGTT	ACTTTTTAGC	AATACTATAA	AATCCAACAG	AAAAAATAG	900
5	Seq ID NO: Nucleic Act Coding sequ	ld Accession	t#: Eos sec	quence			
10	TCATCGCGGG TTCCTCAGAC TGCCGGTGGC	ACTAATTTTC TGAGAACTGT ACTACTGAGA	21 GAAGCTGACT CTTAAAATTT TTCCAGTATA GACGAGGTGC	AGACTTGCAC TACATCAAGT CAGGGTGGTT	AGTAAGGACT CACTGAGATC CCTGAAAGTG	TCAACTGACC TCCAGCACCC CCTGAGCCCC	60 120 180 240
15	TGATCGCGGT TCAGCAGGCA CCAGGCCCAG CAGAGAGAGA	GGTGTCCCTC CATGGCCCAC CCCTGGCCAC CATCCCAATG	ATCATGCTGA TTCCTGCAGG AAGAGTGAAC CATCATCCAC TCTGATTCCC	CCTGCTTCCT AGATACTGAA CTGCTGTCAA TTTACAGGCA	CACCGCCATC AGCGGCCAGT AGAGATGAAG TGACAGCGAC	AACTACCTGC CTCCAGGTTC GAGACTCAGA ACACCCTCAG	300 360 420 480 540 600
20	ACACACAAGT AGAACATAAA TCTGGTATTT GAATTCCAAA	CGTCTTTTCT GGAAATCACA TGTCAACCCT TATTTTTAAT	AGTTCGCCTC GACCCTGGAG GATTATGTCA GCTCTGTCTG GGGGTCCAGT	AACTAAAAAA ATGTCAATCC AGCCAGCGGA TCTCTATGGA	TGACTCCCCG AGAAAGACAC ATATGATCAA TTCTTACATT	CTGGACTATG AAGCCCAGTT GTGGCCATGT TAATTTGTAG	660 720 780 840
25	CAAAAAGAAT CCTGGTCTGT AAAACAGGCC TAAAGTATGA	GTGGAGAAGA ACCCAAAAAA AATGCCCCGG GAACTATGGA	TTAAACAAGG AAACTGATAA GCTGTTCGTT CAAGAAAGGT GTCCATCAGC	ATACACAGAG CCTCAAAAAC TGAGATCAGA AGAGATAGTA	GTCCTCAAGA AAAAACAAGG TGTTAGGAAG GTGAAGTCTC	CCCATGGACT CTTGGCTGGG AACTTTCAGG TCCCCAGGGA	900 960 1020 1080
30		TTGAGCTCTT	CAGCTGTTGT TAATTATTGG				1200 1260
35		ession #: E	los sequence				
40	HPPAVKEMKE	TQTERDIPMS	21 LQACFLTAIN DSLYRHDSDT YVNVNPERHK	PSDSLDSSCS	SPPACQATED	VDYTQVVFSD	60 120
45	Seq ID NO: Nucleic Aci Coding sequ	id Accession	1 #: NM_0121	.52			
	1	11	21	31	41	51	
50	GACAAGCACA GGAACAAAGC TCTAATTCTC TACCTGTTGG	TGGACTTTTT TTGTGATTGT TGGTCATCGC CTAATTTAGC	GGATGTTCAC TTATAATAGG TTTGTGTGTT GGCAGTGATC TGCTGCCGAT TTCAAAAACT	AGCAACACTG GGGACGTTTT AAAAACAGAA TTCTTCGCTG	ATACTGTCGA TCTGCCTGTT AATTTCATTT GAATTGCCTA	TGACTGGACA TATTTTTTT CCCCTTCTAC TGTATTCCTG	60 120 180 240 300 360
55	GGGCTTCTGG AGGCACATGT CTGCTCATTT TGGAATTGCC	ACAGTAGCTT CAATCATGAG TGCTTGTCTG TCTGCAACAT	GACTGCTTCC GATGCGGGTC GGCCATCGCC CTCTGCCTGC	CTCACCAACT CATAGCAACC ATTTTTATGG TCTTCCCTGG	TGCTGGTTAT TGACCAAAAA GGGCGGTCCC CCCCCATTTA	CGCCGTGGAG GAGGGTGACA CACACTGGGC CAGCAGGAGT	420 480 540 600
60	CTGCGGATCT TCCATCAGCC GCGTTTGTGG AGGCAGTGTG	ACGTGTACGT GCCGGAGGAC TATGCTGGAC GCGTGCAGCA	GTCCAACCTC CAAGAGGAAA ACCCATGAAG CCCGGGCCTG TGTGAAAAGG	ACCAACGTCT CTAATGAAGA GTGGTTCTGC TGGTTCCTGC	TGTCTCCGCA CGGTGATGAC TCCTCGACGG TGCTGGCGCT	TACAAGTGGG TGTCTTAGGG CCTGAACTGC GCTCAACTCC	660 720 780 840 900
65	ATGATCTGCT GTCCTCAGCA	GCTTCTCTCA GGAGTGACAC	CTCCTACAAG GGAGAACCCA AGGCAGCCAG CTAAACTCTG	GAGAGGCGTC TACATAGAGG	CCTCTCGCAT ATAGTATTAG	CCCCTCCACA CCAAGGTGCA	960 1020 1080 1140
70		162 Protein cession #: 1					
75	FHFPFYYLLA LVIAVERHMS	NLAAADFFAG IMRMRVHSNL		GPVSKTLTVN LVWAIAIFMG	RWFLRQGLLD AVPTLGWNCL	SSLTASLTNL CNISACSSLA	60 120 180 240

VMTVLGAFVV CMTPGLVVLL LDGLNCRQCG VQHVKRWFLL LALLNSVVNP IIYSYKDEDM 300 YGTMKKMICC FSQENPERRP SRIPSTVLSR SDTGSQYIED SISQGAVCNK STS

Seq ID NO: 163 DNA Sequence Nucleic Acid Accession #: NM_020242 Coding sequence: 72..4240

5

	1	11	21	31	41	51	
10	i	i	Î	1	ì	1	
٠.	CAGTCGCGCG	CGGTGCAGTC	GGGAGGTGGA	GGCACCGGCT	GCATTGTTTT	CGGGATCGAG	60
				AACTGAGTTA			120
				CATCAAAGTT			180
15				GCAGAACTTA			240
13				GCCCAAGACC TGCAACTGTG			300 360
				TGCATATGGA			420
				TAATTTTTCT			480
••				AATTGATCGT			540
20				TATTGAAATC			600
				CTTAAGGGAG			660
				CTCAGCTGCT			720
,				AACATCAATG AATGGAGAAA			780 840
25				AGCAGGATCT			900
				TAACATAAAT			960
				TAATGGAAAA			1020
				TTCCCTTGGA			1080
20				TTTTGGGGAA			1140
30				GGCAGTAGTA			1200
				GCTCAAAGAA CAGAGACAAA			1260 1320
				GAAATCTGAA			1380
				CCTCAAAAAG			1440
35				AATAATACGC			1500
	ATCCCGGGGA	GGTTTTCTGC	CTGAGGAGCA	GGATCGTTTG	CTCTCAGAAT	TAAGGAATGA	1560
				CCACCCCAGA			1620
	AAATCATTCC	CTCAGGGAGG	AGAATAGAAG	ACTGAGATTA	TTAGAGCCTG	TGAAAAGAGC	1680
40				ACTAGAAAAA` ATTTTCACCT			1740 1800
70				ACAACTCCTG			1860
				AGAACTTACT			1920
				GAACCTTAAT			1980
15				TCAGCTGAAT			2040
45				CCAACTTCAT			2100
	AAGCCCTGAA	ATGGGAAGCT	TTGGCTCTCT	ATACACTCAG	AATTCTAGCA	TATTAGATAA	2160
	TGATATATTA	AATGAGCCAG	ACCANCANT	GATGAATGAA GAGTGCTCTT	CAAGCTTTTG	TOGATON	2220 2280
				TGTTGACAAA			2340
50				TGATTGGACC			2400
	CTCACAGTTG	AATGTCCTTG	AAAAGCAGCT	TCAAGAGACT	CAAACTAAAA	ATGACTTTTT	2460
				CCTTCATTCT			2520
				GAATCAGGAG			2580
55				AGATAATCTC CTATGACAAC			2640 2700
-				AAACTTCAAA			2760
				TGAGGCAGAA			2820
				CAGTTCTAAA			2880
۲۸				GGCCAAGTGT			2940
60	ACAGAAACTA	GAAGAGAGCT	TGCTTGCTAC	TGAAAAAGTG	ATCAGTTCCC	TGGAAAAGTC	3000
	TAGAGATTCT	GATAAGAAAG	TTGTAGCTGA	CCTCATGAAC	CAGATCCAGG	AGCTAAGAAC	3060
				CACCCTGAAA AGAAGAGAGC			3120 3180
				CCTTAGGCTG			3240
65				TCATGCCACT			3300
	AGAGGCCTCA	AAAAAACACT	CGGGGCTGCT	GCAGTCTGCC	CAGGAAGAAC	TGACCAAGAA	3360
				GCTAAACCAA			3420
	GAAGAAGAAT	GAATATAACT	TCAAAATGAG	GCAACTAGAA	CATGTGATGG	ATTCTGCTGC	3480
70				TCACTTTCAA AAGAGCCTCT			3540
, ,	TGTAACAAA	CTABATGADA	ACAGAGABOT	CAAAAATGCT	GARATCCTCA	GAATGAAGGA	3600 3660
	GCAGTTGCGT	GAAATGGAAA	ACCTACGCCT	GGAAAGTCAG	CAGTTAATAG	AGAAAAACTG	3720
	GCTCCTGCAA	GGTCAGCTGG	ATGATATTAA	AAGACAAAAG	GAAAACAGTG	ATCAGAATCA	3780
75	TCCAGATAAT	CAACAGCTGA	AGAATGAACA	AGAAGAAAGT	ATCAAAGAAA	GACTTGCAAA	3840
75				GAAAGCAGAC			3900
	CCTTTACAAC	AAAGAGATGG	AATGCCTTAG	AATGACTGAT	GAAGTCGAAC	GAACCCAAAC	3960
				ACAACTGAGA GGAAATGTTA			4020 4080
	ADAMONADA	GAGAGAACAT	CCCMGGMGAT	GGWWYIGIIM	ひじんみいしんんじじ	IGGWGIGICI	4000

```
TGCTGAGGAA AATGGAAAGT TGGTAGGTCA CCAAAATTTG CATCAGAAGA TTCAGTACGT
        AGTGCGACTA AAGAAGGAAA ATGTCAGGCT TGCTGAGGAG ACAGAAAAGT TGCGTGCCGA
        AAATGTATTT TTAAAAGAAA AGAAAGAAG TGAATCTTGA GGATTCCGGT CAGCTACCTA
                                                                                        4260
        GGCATCACCT TGTTTGAAGA TGTTTCTTCT CTTTTACAAG TAAGACCTAC TCCTGGCCAC
                                                                                        4320
        TTAGGAGAGC TGAATTTATG GACCTTAATT ATTAAATGTT TATAAGGTGG TGGTAACCAC
                                                                                        4380
        CTCAAGTTTC TGATGAACAT TCTGCATCCA TATACACCCT GTGACAGTCA GCAGTCTGCT
                                                                                        4440
        ATTAAGTGGC CTACTTCAAG GCTTTGAATC AACTTAAGGG AAAACCTTTT GTCTTTGTAA
                                                                                        4500
        AAATAAAAGC CTGTAGCTAA GGTTTACAGT GGACATTAGC CAGATCATTT TCTTCTTAGA
                                                                                        4560
        TTATGCCATA ATCTCCTTTG ATTCTTATGG AAGTTCTAAC AATATATGGT GGTTCCAACA
                                                                                        4620
        CCTGCAGTGA GTTTAATGAC TGACTTAGTA GCAGGTACAA GAAGCAAACT TGTTAATATA
GATTATTTT GTATTCTTAC TTTAGGTATT TTACTTGAGC ATTTTCCATG ACTGTAAATA
10
                                                                                        4680
        AAGCCATTTT TTAAGATAAA AAAAAAAAAA AAAAA
        Seq ID NO: 164 Protein Sequence
15
        Protein Accession #: NP_064627
                                                                         51
        MAPGCKTELR SVINGQSNQP SNEGDAIKVF VRIRPPAERS GSADGEONLC LSVLSSTSLR
20
        LHSNPEPKTF TFDHVADVDT TQESVFATVA KSIVESCMSG YNGTIFAYGQ TGSGKTFTMM
        GPSESDNFSH NLRGVIPRSF EYLFSLIDRE KEKAGAGKSF LCKCSFIEIY NEQIYDLLDS
                                                                                        180
        ASAGLYLREH IKKGVFVVGA VEQVVTSAAE AYQVLSGGWR NRRVASTSMN RESSRSHAVF
                                                                                        240
        TITIESMEKS NEIVNIRTSL LNEVDLAGSE ROKDTHAECM RLKEAGNINR SLSCLGOVIT
ALVDVGNGKQ RHVCYRDSKL TPLLRDSLGG NAKTAIIANV HPGSRCFGET LSTLNFAQRA
                                                                                        300
25
        KLIKNKAVVN EDTOGNVSQL QAEVKRLKEQ LAELASGQTP PESFLTRDKK KTNYMEYFQE
                                                                                        420
        AMLFFKKSEQ EKKSLIEKVT QLEDLTLKKE KPIQSNKMIV KFREDQIIRL EKLHKESRGG
                                                                                        480
        FLPEEQDRLL SELRNEIQTL REQIEHHPRV AKYAMENHSL REENRRLRLL EPVKRAQEMD
                                                                                        540
        AQTIAKLEKA FSEISGMEKS DKNQQGFSPK AQKEPCLFAN TEKLKAQLLQ IQTELNNSKQ
                                                                                        600
        EYEEFKELTR KRQLELESEL QSLQKANLNL ENLLEATKAC KRQEVSQLNK IHAETLKIIT
                                                                                        660
30
        TPTKAYQLHS RPVPKLSPEM GSFGSLYTQN SSILDNDILN EPVPPEMNEQ AFEAISEELR
                                                                                        720
        TVOECMSALO AKLDEEHKN LKLQOHVDKL EHHSTOMOEL FSSERIDWTK QQEELLSQLN
VLEKQLQETQ TKNDFLKSEV HDLRVVLHSA DKELSSVKLE YSSFKTNQEK EFNKLSERHM
                                                                                        780
                                                                                        840
        HVQLQLDNLR LENEKLLESK ACLQDSYDNL QEIMKFEIDQ LSRNLQNFKK ENETLKSDLN
                                                                                        900
        NLMELLEAEK ERNNKLSLOP EEDKENSSKE ILKVLEAVRO EKOKETAKCE QOMAKVOKLE
                                                                                        960
35
        ESLLATEKVI SSLEKSRDSD KKVVADLMNQ IQELRTSVCE KTETIDTLKQ ELKDINCKYN
                                                                                        1020
        SALVDREESR VLIKKQEVDI LDLKETLRLR ILSEDIERDM LCEDLAHATE QLNMLTEASK
                                                                                        1080
        KHSGLLOSAO EELTKKEALI QELQHKLNQK KBEVEQKKNE YNFKMRQLEH VMDSAAEDPQ
        SPKTPPHFQT HLAKLLETQE QEIEDGRASK TSLEHLVTKL NEDREVKNAE ILRMKEQLRE
                                                                                        1200
        MENLRLESQQ LIEKNWLLQG QLDDIKRQKE NSDQNHPDNQ QLKNEQEESI KERLAKSKIV
                                                                                        1260
40
        EEMLKMKADL EEVQSALYNK EMECLRMTDE VERTQTLESK AFQEKEQLRS KLEEMYEERE
                                                                                        1320
        RTSQEMEMLR KQVECLAEEN GKLVGHQNLH QKIQYVVRLK KENVRLAEET EKLRAENVFL
        KEKKRSES
        Seq ID NO: 165 DNA Sequence
45
       Nucleic Acid Accession #: CAT cluster
        TTTTTTTTT TTTTTCACA TGCTGATGTT GCTGCCGATG ATTTCAACGC CTGGCTTTGA
50
        GATTCOGTGA GTAGTCTTGA ATAATTTAAA ATTCGAAAAT CAAATTCTAC TTATTTTCTC
                                                                                        120
        TTAATGCTAT TGTATTTCCT AATTCTCAGC TTTAACATGT AAGAAAGTAC TTTCGCTAGG
                                                                                        180
        GGTCTTAATT GAATGGTGGG GTCGAGATGA CTGCGTCAGA ATTAAATCTC TGGAAGACCT
CTGAGCTCCT TTTAAAATCA TCAACAAGCG AAAATCCTTA TCAATAGCGA TGTGGGAATG
                                                                                        240
                                                                                        300
        CATTAGGTAC AGTATTTAA ACATACAAAA CCTAGGCATA TTAAAAAGCA CTCCTCTGGT
55
        AATTTAATAA GGAATAATGA TGTCCTTAAG TTTATTTTAA TCAGCAAGTA TGACTCAATT
                                                                                        420
        TGAAAATATG AGAACAAATA GATTTAAATA GGAACACCCA GTAAACTATG GTATGCAAAT
                                                                                        480
        AAACTCAGAG GTAAACTTGT GAATACATAA ATCTAAATAA GTCAGTTACC ATCAAAATAT
TACGTGATCC TATATTTTTC TGTCCACGTC TTAAAAGTAT TTTTTACCTT GGGGCTTTAT
                                                                                        540
        TTTCTTTCCC TCTTCCCAAG ATTATCCAAG GCAGTTCCAA TACGCGTTTT CAATAATGGT
        AATTAAACTT TIGGGGGTA ATCGCCAGCT GTTTCCAGAA AAATACTTT AATAGGTGGT
AGTCCTCCCT GTAACTGGGT TITTCCCGGGA ATCCGGGGGG GGCATGTTGT TITTATTGTC
GCCATTTTTG TITCGTCTTT TITGTTTTGT TGGTGGTCAG GTTTTCTTTT CATAGCGGGG
GAGAAGATTT TGGTCGGACT AGCGCCATCC AGCGGGTTTA GAGAAGGAGC ACACTTTTCC
60
                                                                                        720
                                                                                        780
        CCGAATAGTG GCTTTTGGAT GAACAATGAA
65
        Seq ID NO: 166 DNA Sequence
        Nucleic Acid Accession #: NM 006953.1
        Coding sequence: 33..896
70
                                  21
                                               31
        CCGTTCCGCG CTCTGGCGGC TCCTCCCGGG CGATGCCTCC GCTCTGGGCC CTGCTGGCCC
        TOGGCTGCCT GCGGTTCGGC TCGGCTGTGA ACCTGCAGCC CCAACTGGCC AGTGTGACTT TCGCCACCAA CAACCCCACA CTTACCACTG TGGCCTTGGA AAAGCCTCTC TGCATGTTTG
                                                                                        120
                                                                                        180
75
        ACAGCAAAGA GGCCCTCACT GGCACCCACG AGGTCTACCT GTATGTCCTG GTCGACTCAG
        CCATTTCCAG GAATGCCTCA GTGCAAGACA GCACCAACAC CCCACTGGGC TCAACGTTCC
                                                                                        300
        TACAAACAGA GGGTGGGAGG ACAGGTCCCT ACAAAGCTGT GGCCTTTGAC CTGATCCCCT
                                                                                        360
        GCAGTGACCT GCCCAGCCTG GATGCCATTG GGGATGTGTC CAAGGCCTCA CAGATCCTGA
```

```
GCCTCTGTAA CGCACCCCTG TCGGCAGCCA CGGAGTACAG GTTCAAGTAT GTCCTGGTCA
        ATATGTCCAC GGGCTTGGTA GAGGACCAGA CCCTGTGGTC GGACCCCATC CGCACCAACC
                                                                                             600
        660
                                                                                             720
        TTGCCCTCAG CCTCGTGGAC ATGGGGAGTT CTGATGGGGA AACGACTCAC GACTCCCAAA
                                                                                             7BO
        TCACTCAGGA GGCTGTTCCC AAGTCGCTGG GGGCCTCGGA GTCTTCCTAC ACGTCCGTGA
                                                                                             840
        ACCGGGGGCC GCCACTGGAC AGGGCTGAGG TGTATTCCAG CAAGCTCCAA GACTGAGCCC
                                                                                            900
        AGCACCACCC CTGGGCAGCA GCATCCTCCT CTCTGGCCTT GCCCCAGGCC CTGCAGGGGT
GGTTGTCACA CCCTGACTTC AGGGAAGGTG AAACAGGGCT TGTCCCTCCA ACTGCAGGAA
                                                                                             960
10
        AACCCTTAAT AAAATCTTCT GATGAGTTCT AAAAAAAA
        Seq ID NO: 167 Protein Sequence
        Protein Accession #: NP_008884.1
15
        MPPLWALLAL GCLRFGSAVN LQPQLASVTF ATMNPTLTTV ALEKPLCMFD SKEALTGTHE
        VYLYVIVDSA ISRNASVQDS TNTPLGSTFL QTEGGRTGPY KAVAFDLIPC SDLPSLDAIG
DVSKASQILN AYLVRVGANG TCLMDPNFQG LCNAPLSAAT EYRFKYVLVN MSTGLVEDQT
20
                                                                                             180
        LWSDPIRING LTPYSTIDTW PGRRSGGMIV ITSILGSLPF FLLVGFAGAI ALSLVDMGSS
DGETTHDSQI TQEAVPKSLG ASESSYTSVN RGPPLDRAEV YSSKLQD
25
        Seq ID NO: 168 DNA Sequence
        Nucleic Acid Accession #: NM_005672.1
        Coding sequence: 18..389
30
        AGGGAGAGGC AGTGACCATG AAGGCTGTGC TGCTTGCCCT GTTGATGGCA GGCTTGGCCC
        TGCAGCCAGG CACTGCCCTG CTGTGCTACT CCTGCAAAGC CCAGGTGAGC AACGAGGACT
        GCCTGCAGGT GGAGAACTGC ACCCAGCTGG GGGAGCAGTG CTGGACCGCG CGCATCCGCG
                                                                                             180
        CAGTTGGCCT CCTGACCGTC ATCAGCAAAG GCTGCAGCTT GAACTGCGTG GATGACTCAC
                                                                                             240
        AGGACTACTA CGTGGGCAAG AAGAACATCA CGTGCTGTGA CACCGACTTG TGCAACGCCA
GCGGGGGCCCA TGCCCTGCAG CCGGCTGCCG CCATCCTTGC GCTGCTCCCT GCACTCGGCC
35
                                                                                             300
        TGCTGCTCTG GGGACCCGGC CAGCTATAGG CTCTGGGGGG CCCCGCTGCA GCCCACACTG
        GGTGTGGTGC CCCAGGCCTT TGTGCCACTC CTCACAGAAC CTGGCCCAGT GGGAGCCTGT
                                                                                             480
        CCTGGTTCCT GAGGCACATC CTAACGCAAG TTTGACCATG TATGTTTGCA CCCCTTTTCC CCNAACCCTG ACCTTCCCAT GGGCCTTTTC CAGGATTCCN ACCNGGCAGA TCAGTTTTAG
                                                                                             540
40
        TGANACANAT CCGCNTGCAG ATGGCCCCTC CAACCNTTTN TGTTGNTGTT TCCATGGCCC
                                                                                             660
        AGCATTITCC ACCCTTAACC CTGTGTTCAG GCACTTNTTC CCCCAGGAAG CCTTCCCTGC
                                                                                             720
        CCACCCCATT TATGAATTGA GCCAGGTTTG GTCCGTGGTG TCCCCCGCAC CCAGCAGGGGACCAGCCAATC AGGAGGGCCC AGTAAAGGCT GAGATGAAGT GGACTGAGTA GAACTGGAGG
                                                                                             780
45
        ACAAGAGTTG ACGTGAGTTC CTGGGAGTTT CCAGAGATGG GGCCTGGAGG CCTGGAGGAA
                                                                                             900
        GGGGCCAGGC CTCACATTTG TGGGGNTCCC GAATGGCAGC CTGAGCACAG CGTAGGCCCT
         TAATAAACAC CTGTTGGATA AGCCAAAAAA
        Seg ID NO: 169 Protein Seguence
50
        Protein Accession #: NP_005663.1
         MKAVLLALLM AGLALQPGTA LLCYSCKAQV SNEDCLQVEN CTQLGEQCWT ARIRAVGLLT
55
         VISKGCSLNC VDDSQDYYVG KKNITCCDTD LCNASGAHAL QPAAAILALL PALGLLLWGP
         Seq ID NO: 170 DNA Sequence
         Nucleic Acid Accession #: NM_006952.1
60
         Coding sequence: 11..793
                                    21
         AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT
         ARTICICARA ARGIGARAG ACARCICARC MITCHIGO TICCAGGA TOCOTTOTTO TEGRARATOR ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG
65
         GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT
         TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTCAC ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA
                                                                                             300
                                                                                             360
70
         TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA
                                                                                             480
         CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA
                                                                                             540
                                                                                             600
         AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG
75
         CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG
                                                                                             720
         ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG
         AATTGAATAT TAAGAA
```

ATGCCTACCT GGTCAGGGTG GGTGCCAACG GGACCTGCCT GTGGGATCCC AACTTCCAGG

```
Seq ID NO: 171 Protein Sequence
       Protein Accession #: NP_008883.1
       MAKDNSTVRC FQGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW
                                                                                120
       IGIFVGICLF CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL
       PLKQMLERYQ NNSPPNNDDQ WKNNGVTKTW DRLMLQDNCC GVNGPSDWQK YTSAFRTENN
                                                                                180
       DADYPWPROC CVMNNLKEPL NLEACKLGVP GFYHNOGCYE LISGPMNRHA WGVAWFGPAI
10
       LCWTFWVLLG TMFYWSRIEY
       Seq ID NO: 172 DNA Sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..672
15
                                                                  51
       ATGAGGCTCC AAAGACCCCG ACAGGCCCCG GCGGGTGGGA GGCGCGCGCC CCGGGGGCGGG
       CGGGGCTCCC CCTACCGGCC AGACCCGGGG AGAGGCGCGC GGAGGCTGCG AAGGTTCCAG
20
       AAGGGCGGGG AGGGGGCGCC GCGCGCTGAC CCTCCCTGGG CACCGCTGGG GACGATGGCG
                                                                                180
       CTGCTCGCCT TGCTGCTCGT CGTGGCCCTA CCGCGGGTGT GGACAGACGC CAACCTGACT
                                                                                240
       GCGAGACAAC GAGATCCAGA GGACTCCCAG CGAACGGACG AGGGTGACAA TAGAGTGTGG
                                                                                300
       TGTCATGTTT GTGAGAGAGA AAACACTTTC GAGTGCCAGA ACCCAAGGAG GTGCAAATGG
       ACAGAGCCAT ACTGCGTTAT AGCGGCCGTG AAAATATTTC CACGTTTTTT CATGGTTGCG
                                                                                420
25
       AÁGCAGTGCT CCGCTGGTTG TGCAGCGATG GAGAGACCCA AGCCAGAGGA GAAGCGGTTT
                                                                                480
       CTCCTGGAAG AGCCCATGCC CTTCTTTTAC CTCAAGTGTT GTAAAATTCG CTACTGCAAT
                                                                                540
       TTAGAGGGGC CACCTATCAA CTCATCAGTG TTCAAAGAAT ATGCTGGGAG CATGGGTGAG
                                                                                600
       AGCTGTGGTG GGCTGTGGCT GGCCATCCTC CTGCTGCTGG CCTCCATTGC AGCCGGCCTC
       AGCCTGTCTT GA
30
       Seg ID NO: 173 Protein Seguence
       Protein Accession #: Eos sequence
                                                                  51
35
       MRLQRPRQAP AGGRRAPRGG RGSPYRPDPG RGARRLRRPQ KGGEGAPRAD PPWAPLGTMA
       LLALLLVVAL PRVWTDANLT ARQRDPEDSQ RTDEGDNRVW CHVCERENTF ECQNPRRCKW
                                                                                120
       TEPYCVIAAV KIFPRFFMVA KQCSAGCAAM ERPKPEEKRF LLEEPMPFFY LKCCKIRYCN
       LEGPPINSSV FKEYAGSMGE SCGGLWLAIL LLLASIAAGL SLS
40
       Seq ID NO: 174 DNA Sequence
       Nucleic Acid Accession #: XM_057014
       Coding sequence: 143..874
45
       GGGAGGGAGA GAGGCGCGCG GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG
       CGCGGCGGAG CCAGACGCTG ACCACGTTCC TCTCCTCGGT CTCCTCCGCC TCCAGCTCCG
50
       CGCTGCCCGG CAGCCGGGAG CCATGCGACC CCAGGGCCCC GCCGCCTCCC CGCAGCGGCT
                                                                                180
       CCGCGGCCTC CTGCTGCTCC TGCTGCTGCA GCTGCCCGCG CCGTCGAGCG CCTCTGAGAT CCCCAAGGGG AAGCAAAAGG CGCAGCTCCG GCAGAGGGAG GTGGTGGACC TGTATAATGG
                                                                                240
                                                                                300
       AATGTGCTTA CAAGGGCCAG CAGGAGTGCC TGGTCGAGAC GGGAGCCCTG GGGCCAATGG
       CATTCCGGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG
                                                                                420
55
       TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC
                                                                                480
       ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG
                                                                                540
                                                                                600
       CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA
                                                                                660
       AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG
CACTTCTTCT GTGGAAGGAC TITGTGAAGG AATTGGTGCT GGATTAGTGG ATGTTGCTAT
                                                                                720
60
                                                                                780
       CTGGGTTGGC ACTTGTTCAG ATTACCCAAA AGGAGATGCT TCTACTGGAT GGAATTCAGT
                                                                                840
       TTCTCGCATC ATTATTGAAG AACTACCAAA ATAAATGCTT TAATTTTCAT TTGCTACCTC
                                                                                900
       TTTTTTTATT ATGCCTTGGA ATGGTTCACT TAAATGACAT TTTAAATAAG TTTATGTATA
                                                                                960
       CATCTGAATG AAAAGCAAAG CTAAATATGT TTACAGACCA AAGTGTGATT TCACACTGTT
                                                                                1020
65
       TITAAATCTA GCATTATICA TITTGCTTCA ATCAAAAGTG GTTTCAATAT TITTTTTAGT
                                                                                1080
       TGGTTAGAAT ACTTTCTTCA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT
                                                                                1140
       GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT
                                                                                1200
       TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA
                                                                                1260
       СААССТТААА ААААААААА АААА
70
       Seq ID NO: 175 Protein Sequence
       Protein Accession #: XP_057014
                                          31
                                                      41
                                                                  51
75
       MRPQGPAASP QRLRGLLLLL LLQLPAPSSA SEIPKGKQKA QLRQREVVDL YNGMCLQGPA
       GVPGRDGSPG ANGIPGTPGI PGRDGFKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL
                                                                                120
       GKIAECTFTK MRSNSALRVL FSGSLRLKCR NACCORWYFT FNGAECSGPL PIEAIIYLDQ
```

```
GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIIIEB 240
        Seg ID NO: 176 DNA Seguence
       Nucleic Acid Accession #: XM_084007
       Coding sequence: 1..2268
                                              31
                                                           41
                                                                        51
                                 21
10
       ATGGCGAGGA AGTTATCTGT AATCTTGATC CTGACCTTTG CCCTCTCTGT CACAAATCCC
        CTTCATGAAC TAAAAGCAGC TGCTTTCCCC CAGACCACTG AGAAAATTAG TCCGAATTGG
                                                                                        120
        GAATCTGGCA TTAATGTTGA CTTGGCAATT TCCACACGGC AATATCATCT ACAACAGCTT
                                                                                        180
       TTCTACCGCT ATGGAGAAAA TAATTCTTTG TCAGTTGAAG GGTTCAGAAA ATTACTTCAA AATATAGGCA TAGATAAGAT TAAAAGAATC CATATACACC ATGACCACGA CCATCACTCA
                                                                                        240
                                                                                        300
15
       GACCACGAGC ATCACTCAGA CCATGAGCGT CACTCAGACC ATGAGCATCA CTCAGACCAC
                                                                                        360
       GAGCATCACT CTGACCATGA TCATCACTCC CACCATAATC ATGCTGCTTC TGGTAAAAAT
                                                                                        420
        AAGOGAAAAG CTCTTTGCCC AGACCATGAC TCAGATAGTT CAGGTAAAGA TCCTAGAAAC
                                                                                        480
       AGCCAGGGGA AAGGAGCTCA CCGACCAGAA CATGCCAGTG GTAGAAGGAA TGTCAAAGGAC AGTGTTAGTG CTAGTGAAGT GACCTCAACT GTGTACAACA CTGTCTCTGA AGGAACTCAC
                                                                                        540
20
        TTTCTAGAGA CAATAGAGAC TCCAAGACCT GGAAAACTCT TCCCCAAAGA TGTAAGCAGC
                                                                                        660
        TCCACTCCAC CCAGTGTCAC ATCAAAGAGC CGGGTGAGCC GGCTGGCTGG TAGGAAAACA
                                                                                        720
       ANTGAATCTG TGAGTGAGCC CCGAAAAGGC TTTATGTATT CCAGAAACAC AAATGAAAAT CCTCAGGAGT GTTTCAATGC ATCAAAGCTA CTGACATCTC ATGGCATGGG CATCCAGGTT
                                                                                        780
                                                                                        840
       CCGCTGAATG CAACAGAGTT CAACTATCTC TGTCCAGCCA TCATCAACCA AATTGATGCT
                                                                                        900
25
        AGATCTTGTC TGATTCATAC AAGTGAAAAG AAGGCTGAAA TCCCTCCAAA GACCTATTCA
                                                                                        960
       TTACAAATAG CCTGGGTTGG TGGTTTTATA GCCATTTCCA TCATCAGTTT CCTGTCTCTG CTGGGGGTTA TCTTAGTGCC TCTCATGAAT CGGGTGTTT TCAAATTTCT CCTGAGTTTC CTTGTGGCAC TGGCCGTTGG GACTTTGAGT GGTGATGCTT TTTTACACCT TCTTCCACAT
                                                                                        1020
                                                                                        1080
                                                                                        1140
       TCTCATGCAA GTCACCACCA TAGTCATAGC CATGAAGAAC CAGCAATGGA AATGAAAAGA
                                                                                        1200
30
                                                                                        1260
       GGACCACTTT TCAGTCATCT GTCTTCTCAA AACATAGAAG AAAGTGCCTA TTTTGATTCC
       ACGTGGAAGG GTCTAACAGC TCTAGGAGGC CTGTATTTCA TGTTTCTTGT TGAACATGTC CTCACATTGA TCAACAATT TAAAGATAAG AAGAAAAGA ATCAGAAGAA ACCTGAAAAT
                                                                                        1320
                                                                                        1380
       GATGATGATG TGGAGATTAA GAAGCAGTTG TCCAAGTATG AATCTCAACT TTCAACAAAT
                                                                                        1440
        GAGGAGAAAG TAGATACAGA TGATCGAACT GAAGGCTATT TACGAGCAGA CTCACAAGAG
                                                                                        1500
       CCCTCCCACT TIGATICTCA GCAGCCTGCA GTCTTGGAAG AAGAAGAGGT CATGATAGCT
CATGCTCATC CACAGGAAGT CTACAATGAA TATGTACCCA GAGGGTGCAA GAATAAATGC
35
                                                                                        1560
       CATTCACATT TCCACGATAC ACTCGGCCAG TCAGACGATC TCATTCACCA CCATCATGAC
                                                                                        1680
        TACCATCATA TTCTCCATCA TCACCACCAC CAAAACCACC ATCCTCACAG TCACAGCCAG
                                                                                        1740
       CGCTACTCTC GGGAGGAGCT GAAAGATGCC GGCGTCGCCA CTTTGGCCTG GATGGTGATA ATGGGTGATG GCCTGCACAA TTTCAGCGAT GGCCTAGCAA TTGGTGCTGC TTTTACTGAA
                                                                                        1800
40
       GGCTTATCAA GTGGTTTAAG TACTTCTGTT GCTGTGTTCT GTCATGAGTT GCCTCATGAA
                                                                                        1920
       TTAGGTGACT TTGCTGTTCT ACTAAAGGCT GGCATGACCG TTAAGCAGGC TGTCCTTTAT
                                                                                        1980
       AATGCATTGT CAGCCATGCT GGCGTATCTT GGAATGGCAA CAGGAATTTT CATTGGTCAT
                                                                                        2040
       TATGCTGAAA ATGTTTCTAT GTGGATATTT GCACTTACTG CTGGCTTATT CATGTATGTT
                                                                                        2100
45
       GCTCTGGTTG ATATGGTACC TGAAATGCTG CACAATGATG CTAGTGACCA TGGATGTAGC
                                                                                        2160
       CGCTGGGGGT ATTTCTTTTT ACAGAATGCT GGGATGCTTT TGGGTTTTGG AATTATGTTA
                                                                                       2220
        CTTATTTCCA TATTTGAACA TAAAATCGTG TTTCGTATAA ATTTCTAG
        Seg ID NO: 177 Protein Seguence
50
        Protein Accession #: XP_084007
                                                            41
        MARKLSVILI LTFALSVTNP LHELKAAAFP QTTEKISPNW ESGINVDLAI STROYHLOOL
55
                                                                                        120
        FYRYGENNSL SVEGFRKLLQ NIGIDKIKRI HIHHDHDHHS DHEHKSDHER HSDHEHHSDH
        EHHSDHDHHS HHNHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD
        SVSASEVTST VYNTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT
       NESVSEPRKG FMYSRNTNEN PQECFNASKL LTSHGMGIQV PLNATEFNYL CPAIINQIDA
                                                                                        300
        RSCLIHTSEK KAEIPPKTYS LOIAWVGGFI AISIISFLSL LGVILVPLMN RVFFKFLLSF
LVALAVGTLS GDAPLHLLPH SHASHHHSHS HEEPAMEMKR GPLFSHLSSQ NIEESAYFDS
                                                                                        360
60
                                                                                        420
        TWKGLTALGG LYFMFLVEHV LTLIKQFKDK KKKNQKKPEN DDDVEIKKQL SKYESQLSTN
        BEKVDTDDRT EGYLRADSQE PSHFDSQQPA VLEEEEVMIA HAHPQEVYNE YVPRGCKNKC
                                                                                        540
        HSHFHDTLGQ SDDLIHHHHD YHHILHHHHH QNHHPHSHSQ RYSREELKDA GVATLAWMVI
                                                                                        600
        MGDGLHNFSD GLAIGAAFTE GLSSGLSTSV AVFCHELPHE LGDFAVLLKA GMTVKQAVLY
                                                                                        660
65
        NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS
        RWGYFFLQNA GMLLGFGIML LISIFEHKIV FRINF
        Seq ID NO: 178 DNA Sequence
        Nucleic Acid Accession #: BC010423
70
        Coding sequence: 248..1780
                                               31
        CACAGCGTGG GAAGCAGCTC TGGGGGAGCT CGGAGCTCCC GATCACGGCT TCTTGGGGGT
75.
        AGCTACGGCT GGGTGTGTAG AACGGGGCCG GGGCTGGGGC TGGGTCCCCT AGTGGAGACC
                                                                                        120
        CAAGTGCGAG AGGCAAGAAC TCTGCAGCTT CCTGCCTTCT GGGTCAGTTC CTTATTCAAG
                                                                                        180
        TCTGCAGCCG GCTCCCAGGG AGATCTCGGT GGAACTTCAG AAACGCTGGG CAGTCTGCCT
        TTCAACCATG CCCCTGTCCC TGGGAGCCGA GATGTGGGGG CCTGAGGCCT GGCTGCTGCT
```

```
GCTGCTACTG CTGGCATCAT TTACAGGCCG GTGCCCCGCG GGTGAGCTGG AGACCTCAGA
         CGTGGTAACT GTGGTGCTGG GCCAGGACGC AAAACTGCCC TGCTTCTACC GAGGGGACTC
                                                                                             420
         CGGCGAGCAA GTGGGGCAAG TGGCATGGGC TCGGGTGGAC GCGGGCGAAG GCGCCCAGGA
                                                                                             480
        ACTAGGGCTA CTGCACTCCA AATACGGGCT TCATGTGAGC CCGGCTTACG AGGGCCGGGT
GGAGCAGCCC CCGCCCCAC GCAACCCCCT GGACGGCTCA GTGCTCCTGC GCAACGCAGT
                                                                                             540
         GCAGGCGGAT GAGGGCGAGT ACGAGTGCCG GGTCAGCACC TTCCCCGCCG GCAGCTTCCA
                                                                                             660
        GGCGCGGCTG CGGCTCCGAG TGCTGGTGCC TCCCCTGCCC TCACTGAATC CTGGTCCAGC ACTAGAAGAG GGCCAGGGCC TGACCCTGGC AGCCTCCTGC ACAGCTGAGG GCAGCCCAGC
                                                                                             720
                                                                                             780
         CCCCAGCGTG ACCTGGGACA CGGAGGTCAA AGGCACAACG TCCAGCCGTT CCTTCAAGCA
                                                                                             840
10
         CTCCCGCTCT GCTGCCGTCA CCTCAGAGTT CCACTTGGTG CCTAGCCGCA GCATGAATGG
                                                                                             900
         GCAGCCACTG ACTTGTGTGG TGTCCCATCC TGGCCTGCTC CAGGACCAAA GGATCACCCA
                                                                                             960
        CATCCTCCAC GTGTCCTTCC TTGCTGAGGC CTCTGTGAGG GGCCTTGAAG ACCAAAATCT
GTGGCACATT GGCAGAGAAG GAGCTATGCT CAAGTGCCTG AGTGAAGGGC AGCCCCTCC
                                                                                             1020
                                                                                             1080
        CTCATACAAC TIGACACGIG TIGATGGGCC TCTGCCCAGT GGGGTACGAG TIGATGGGGA
CACTTTGGGC TTTCCCCCAC TIGACCACTGA GCACAGCGGC ATCTACGTCT GCCATGTCAG
                                                                                             1140
15
                                                                                             1200
        CAATGAGTTC TCCTCAAGGG ATTCTCAGGT CACTGTGGAT GTTCTTGACC CCCAGGAAGA CTCTGGGAAG CAGGTGGACC TAGTGTCAGC CTCGGTGGTG GTGGTGGGTG TGATCGCCGC ACTCTTGTTC TGCCTTCTGG TGGTGGTGGT GGTGCTCATG TCCCGATACC ATCGGCGCAA
                                                                                             1260
                                                                                             1320
                                                                                             1380
        GGCCCAGCAG ATGACCCAGA AATATGAGGA GGAGCTGACC CTGACCAGGG AGAACTCCAT
                                                                                             1440
20
        CCGGAGGCTG CATTCCCATC ACACGGACCC CAGGAGCCAG CCGGAGGAGA GTGTAGGGCT
                                                                                             1500
        GAGAGCCGAG GGCCACCCTG ATAGTCTCAA GGACAACAGT AGCTGCTCTG TGATGAGTGA
                                                                                             1560
        AGAGCCCGAG GGCCGCAGTT ACTCCACGCT GACCACGGTG AGGGAGATAG AAACACAGAC
                                                                                             1620
        TGAACTGCTG TCTCCAGGCT CTGGGCGGGC CGAGGAGGAG GAAGATCAGG ATGAAGGCAT
                                                                                             1680
        CAAACAGGCC ATGAACCATT TTGTTCAGGA GAATGGGACC CTACGGGCCA AGCCCACGGG
                                                                                             174D
25
        CAATGGCATC TACATCAATG GGCGGGGACA CCTGGTCTGA CCCAGGCCTG CCTCCCTTCC CTAGGCCTGG CTCCTTCTGT TGACATGGGA GATTTTAGCT CATCTTGGGG GCCTCCTTAA ACACCCCCAT TTCTTGCGGA AGATGCTCCC CATCCCACTG ACTGCTTGAC CTTTACCTCC
                                                                                             1800
                                                                                             1860
                                                                                             1920
        AACCCTTCTG TTCATCGGGA GGGCTCCACC AATTGAGTCT CTCCCACCAT GCATGCAGGT
                                                                                             1980
        CACTGTGTGT GTGCATGTGT GCCTGTGTGA GTGTTGACTG ACTGTGTGTG TGTGGAGGGG
                                                                                             2040
        TGACTGTCCG TGGAGGGGTG ACTGTGTCCG TGGTGTGTAT TATGCTGTCA TATCAGAGTC AAGTGAACTG TGGTGTATGT GCCACGGGAT TTGAGTGGTT GCGTGGGCAA CACTGTCAGG
30
                                                                                             2100
                                                                                             2160
        GTTTGGCGTG TGTGTCATGT GGCTGTGTGT GACCTCTGCC TGAAAAAGCA GGTATTTTCT
                                                                                             2220
        CAGACCCCAG AGCAGTATTA ATGATGCAGA GGTTGGAGGA GAGAGGTGGA GACTGTGGCT
                                                                                             2280
        CAGACCCAGG TGTGCGGGCA TAGCTGGAGC TGGAATCTGC CTCCGGTGTG AGGGAACCTG
TCTCCTACCA CTTCGGAGCC ATGGGGGCAA GTGTGAAGCA GCCAGTCCCT GGGTCAGCCA
GAGGCTTGAA CTGTTACAGA AGCCCTCTGC CCTCTGGTGG CCTCTGGGCC TGCTGCATGT
                                                                                             2340
35
                                                                                             2400
                                                                                             2460
        ACATATTTC TGTAAATATA CATGCGCCGG GAGCTTCTTG CAGGAATACT GCTCCGAATC
                                                                                             2520
        ACTITIAATT TITITCTTT TITITCTTG CCCTTTCCAT TAGTTGTATT TITTATTTAT
                                                                                             2580
        TTTTATTTTT ATTTTTTTT AGAGTTTGAG TCCAGCCTGG ACGATATAGC CAGACCCTGT
40
        СТОТААААА АССААААССС ААААААААА ААААААААА
        Seq ID NO: 179 Protein Sequence
        Protein Accession #: AAH10423
45
                                   21
                                                                             51
        QVGQVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA
        DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS
                                                                                             180
50
        VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL
                                                                                             240
        HVSFLAEASV RGLEDQNLWH IGREGAMLKC LSEGQPPPSY NWTRLDGPLP SGVRVDGDTL
                                                                                             300
        GFPPLTTEHS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL
         FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA
         EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDQDEGIKQ
                                                                                             480
55
        AMNHFVQENG TLRAKPTGNG IYINGRGHLV
        Seq ID NO: 180 DNA Sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 482..3007
60
        AACTGAGCTA ACAAGAAATA CTAGAAAAGG AGGAAGGAGA ACATTGCTGC AGCTTGGATC
        TACAACCTAA GAAAGCAAGA GTGATCAATC TCAGCTCTGT TAAACATCTT GTTTACTTAC
TGCATTCAGC AGCTTGCAAA TGGTTAACTA TATGCAAAAA AGTCAGCATA GCTGTAAAGT
                                                                                             120
65
        ATGCCGTGAA TTTTAATTGA GGGAAAAAGG GACAATTGCT TCAGGATGCT CTAGTATGCA
                                                                                             240
         CTCTGCTTGA AATATTTTCA ATGAAATGCT CAGTATTCTA TCTTTGACCA GAGGTTTTAA
                                                                                             300
        CTTTATGAAG CTATGGGACT TGACAAAAAG TGATATTTGA GAAGAAAGTA CGCAGTGGTT
GGTGTTTTCT TTTTTTTAAT AAAGGAATTG AATTACTTTG AACACCTCTT CCAGCTGTGC
                                                                                             360
70
        ATTACAGATA ACGTCAGGAA GAGTCTCTGC TTTACAGAAT CGGATTTCAT CACATGACAA
                                                                                             480
         CATGAAGCTG TGGATTCATC TCTTTTATTC ATCTCTCCTT GCCTGTATAT CTTTACACTC
                                                                                             540
        CCARACTCCA GTGCTCTCAT CCAGAGGCTC TTGTGATTCT CTTTGCAATT GTGAGGAAAA AGATGGCACA ATGCTAATAA ATTGTGAAGC AAAAGGTATC AAGATGGTAT CTGAAATAAG
                                                                                             600
                                                                                             660
         TGTGCCACCA TCACGACCTT TCCAACTAAG CTTATTAAAT AACGGCTTGA CGATGCTTCA
                                                                                             720
75
         CACAAATGAC TTTTCTGGGC TTACCAATGC TATTTCAATA CACCTTGGAT TTAACAATAT
                                                                                             780
         TGCAGATATT GAGATAGGTG CATTTAATGG CCTTGGCCTC CTGAAACAAC TTCATATCAA
                                                                                             840
         TCACAATTCT TTAGAAATTC TTAAAGAGGA TACTTTCCAT GGACTGGAAA ACCTGGAATT
         CCTGCAAGCA GATAACAATT TTATCACAGT GATTGAACCA AGTGCCTTTA GCAAGCTCAA
```

```
CAGACTCAAA GTGTTAATTT TAAATGACAA TGCTATTGAG AGTCTTCCTC CAAACATCTT
         CCGATTTGTT CCTTTAACCC ATCTAGATCT TCGTGGAAAT CAATTACAAA CATTGCCTTA
                                                                                                    1080
        TGTTGGTTTT CTCGAACACA TTGGCCGAAT ATTGGATCTT CAGTTGGAGG ACAACAAATG
GGCCTGCAAT TGTGACTTAT TGCAGTTAAA AACTTGGTTG GAGAACATGC CTCCACAGTC
                                                                                                    1140
                                                                                                    1200
         TATAATTGGT GATGTTGTCT GCAACAGCCC TCCATTTTTT AAAGGAAGTA TACTCAGTAG
                                                                                                    1260
         ACTANAGANG GANTCTATTT GCCCTACTCC ACCAGTGTAT GANGANCATG AGGATCCTTC
                                                                                                    1320
         AGGATCATTA CATCTGGCAG CAACATCTTC AATAAATGAT AGTCGCATGT CAACTAAGAC
                                                                                                    1380
        CACGTCCATT CTARAACTAC CCACCARAGC ACCAGGTTTG ATACCTTATA TTACARAGCC ATCCACTCAA CTTCCAGGAC CTTACTGCCC TATTCCTTGT AACTGCAAAG TCCTATCCCC
                                                                                                    1440
                                                                                                    1500
10
         ATCAGGACTT CTAATACATT GTCAGGAGCG CAACATTGAA AGCTTATCAG ATCTGAGACC
                                                                                                    1560
        TCCTCCGCAA AATCCTAGAA AGCTCATTCT AGCGGGAAAT ATTATTCACA GTTTAATGAA GTCTGATCTA GTGGAATATT TCACTTTGGA AATGCTTCAC TTGGGAAACA ATCGTATTGA AGTTCTTGAA GAAGGATCGT TTATGAACCT AACGAGATTA CAAAAACTCT ATCTAAATGG
                                                                                                    1620
                                                                                                    1680
                                                                                                    1740
         TAACCACCTG ACCAAATTAA GTAAAGGCAT GTTCCTTGGT CTCCATAATC TTGAATACTT
15
         ATATCTTGAA TACAATGCCA TTAAGGAAAT ACTGCCAGGA ACCTTTAATC CAATGCCTAA
                                                                                                    1860
        ACTTAAAGTC CTGTATTTAA ATAACAACCT CCTCCAAGTT TTACCACCAC ATATTTTTTC AGGGGTTCCT CTAACTAAGG TAAATCTTAA AACAAACCAG TTTACCCATC TACCTGTAAG
                                                                                                    1920
                                                                                                    1980
         TAATATTTTG GATGATCTTG ATTTACTAAC CCAGATTGAC CTTGAGGATA ACCCCTGGGA
                                                                                                    2040
         CTGCTCCTGT GACCTGGTTG GACTGCAGCA ATGGATACAA AAGTTAAGCA AGAACACAGT
                                                                                                    2100
20
        GACAGATGAC ATCCTCTGCA CTTCCCCCGG GCATCTCGAC AAAAAGGAAT TGAAAGCCCT AAATAGTGAA ATTCTCTGTC CAGGTTTAGT AAATAACCCA TCCATGCCAA CACAGACTAG
                                                                                                    2160
                                                                                                    2220
        TTACCTTATG GTCACCACTC CTGCAACAAC AACAAATACG GCTGATACTA TTTTACGATC
                                                                                                    2280
         TCTTACGGAC GCTGTGCCAC TGTCTGTTCT AATATTGGGA CTTCTGATTA TGTTCATCAC
                                                                                                    2340
        TATTGTTTTC TGTGCTGCAG GGATAGTGGT TCTTGTTCTT CACCGCAGGA GAAGATACAA AAAGAAACAA GTAGATGAGC AAATGAGAGA CAACAGTCCT GTGCATCTTC AGTACAGCAT
                                                                                                    2400
25
                                                                                                    2460
         GTATGGCCAT AAAACCACTC ATCACACTAC TGAAAGACCC TCTGCCTCAC TCTATGAACA
        GCACATGGTG AGCCCCATGG TTCATGTCTA TAGAAGTCCA TCCTTTGGTC CAAAGCATCT
                                                                                                    2580
        GGAAGAGGAA GAAGAGAGGA ATGAGAAAGA AGGAAGTGAT GCAAAACATC TCCAAAGAAG
                                                                                                   2640
        TCTTTTGGAA CAGGAAAATC ATTCACCACT CACAGGGTCA AATATGAAAT ACAAAACCAC GAACCAATCA ACAGAATTTT TATCCTTCCA AGATGCCAGC TCATTGTACA GAAACATTTT
                                                                                                   2700
30
                                                                                                   2760
         AGAAAAAGAA AGGGAACTTC AGCAACTGGG AATCACAGAA TACCTAAGGA AAAACATTGC
         TCAGCTCCAG CCTGATATGG AGGCACATTA TCCTGGAGCC CACGAAGAGC TGAAGTTAAT
                                                                                                    2880
        GGAAACATTA ATGTACTCAC GTCCAAGGAA GGTATTAGTG GAACAGACAA AAAATGAGTA
TTTTGAACTT AAAGCTAATT TACATGCTGA ACCTGACTAT TTAGAAGTCC TGGAGCAGCA
                                                                                                   2940
                                                                                                    3000
35
        AACATAGATG GAGAGTTTGA GGGCTTTCGC AGAAATGCTG TGATTCTGTT TTAAGTCCAT
                                                                                                    3060
        ACCTTGTAAA TAAGTGCCTT ACGTGAGTGT GTCATCAATC AGAACCTAAG CACAGCAGTA
                                                                                                   3120
        AACTATGGGG AAAAAAAAAG AAGAAGAAAA GAAACTCAGG GATCACTGGG AGAAGCCATG
GCATTATCTT CAGGCAATTT AGTCTGTCCC AAATAAAATC AATCCTTGCA TGTAAATC
                                                                                                   3180
                                                                                                   3238
40
         Seq ID NO: 181 Protein Sequence
         Protein Accession #: Eos sequence
45
         MKLWIHLFYS SLLACISLHS OTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS
        VPPSRPFQLS LLNNGLIMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN
HNSLEILKED TFHGLENLEF LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF
RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS
                                                                                                   120
        IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT
                                                                                                   300
50
        TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP PPQNPRKLIL AGNIIHSLMK SDLVEYPTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG
                                                                                                   360
                                                                                                    420
         NHLTKLSKGM FLGLHNLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPHIFS
        GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV
TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS
LTDAVPLSVL ILGLLIMFIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVHLQYSM
                                                                                                   540
                                                                                                   600
55
         YGHKTTHHTT ERPSASLYEQ HMVSPMVHVY RSPSFGPKHL EEEEERNEKE GSDAKHLQRS
                                                                                                    720
         LLEQENHSPL TGSNMKYKTT NQSTEFLSFQ DASSLYRNIL EKERELQQLG ITEYLRKNIA
                                                                                                    780
        QLQPDMEAHY PGAHEELKLM ETLMYSRPRK VLVEQTKNEY FELKANLHAE PDYLEVLEQQ
60
        Seg ID NO: 182 DNA Seguence
        Nucleic Acid Accession #: XM_035292.2
        Coding sequence: 1..1524
65
        ATGGCGGGTG CGGGCCCGAA GCGGCGCGCG CTAGCGGCGC CGGCGGCCGA GGAGAAGGAA
        GAGGCGCGG AGAAGATGCT GGCCGCCAAG AGCGCGGACG GCTCGGCGCC GGCAGGCGAG
                                                                                                   120
70
        GGCGAGGGC TGACCCTGCA GCGGAACATC ACGCTGCTCA ACGGCGTGGC CATCATCGTG
GGGACCATTA TCGGCTCGGG CATCTTCGTG ACGCCCACGG GCGTGCTCAA GGAGGCAGGC
                                                                                                   180
                                                                                                    240
         TCGCCGGGGC TGGCGCTGGT GGTGTGGGCC GCGTGCGGCG TCTTCTCCAT CGTGGGCGCG
         CTCTGCTACG CGGAGCTCGG CACCACCATC TCCAAATCGG GCGGCGACTA CGCCTACATG
                                                                                                   360
         CTGGAGGTCT ACGGCTCGCT GCCCGCCTTC CTCAAGCTCT GGATCGAGGT GCTCATCATC CGGCCTTCAT CGCAGTACAT CGTGGCCCTG GTCTTCGCCA CCTACCTGCT CAAGCCGCTC
                                                                                                    420
75
                                                                                                    480
         TTCCCCACCT GCCCGGTGCC CGAGGAGGCA GCCAAGCTCG TGGCCTGCCT CTGCGTGCTG
         CTGCTCACGG CCGTGAACTG CTACAGCGTG AAGGCCGCCA CCCGGGTCCA GGATGCCTTT
         GCCGCCGCCA AGCTCCTGGC CCTGGCCCTG ATCATCCTGC TGGGCTTCGT CCAGATCGGA
                                                                                                    660
```

```
AAGGGTGATG TGTCCAATCT AGATCCCAAC TTCTCATTTG AAGGCACCAA ACTGGATGTG
                                                                                                       720
         GGGAACATTG TGCTGGCATT ATACAGCGGC CTCTTTGCCT ATGGAGGATG GAATTACTTG
AATTTCGTCA CAGAGGAAAT GATCAACCCC TACAGAAACC TGCCCCTGGC CATCATCATC
                                                                                                        780
                                                                                                        840
          TCCCTGCCCA TCGTGACGCT GGTGTACGTG CTGACCAACC TGGCCTACTT CACCACCCTG
  5
          TCCACCGAGC AGATGCTGTC GTCCGAGGCC GTGGCCGTGG ACTTCGGGAA CTATCACCTG
         GGCGTCATGT CCTGGATCAT CCCCGTCTTC GTGGGCCTGT CCTGCTTCGG CTCCGTCAAT GGGTCCCTGT TCACATCCTC CAGGCTCTTC TTCGTGGGGT CCCGGGAAGG CCACCTGCCC TCCATCCTCT CCATGATCCA CCCACAGCTC CTCACCCCCG TGCCGTCCCT CGTGTTCACG
                                                                                                        1020
                                                                                                        1080
                                                                                                        1140
          TGTGTGATGA CGCTGCTCTA CGCCTTCTCC AAGGACATCT TCTCCGTCAT CAACTTCTTC
                                                                                                        1200
10
         AGCTTCTTCA ACTGGCTCTG CGTGGCCCTG GCCATCATCG GCATGATCTG GCTGCGCCAC
                                                                                                        1260
         AGAAAGCCTG AGCTTGAGCG GCCCATCAAG GTGAACCTGG CCCTGCCTGT GTTCTTCATC
CTGGCCTGCC TCTTCCTGAT CGCCGTCTCC TTCTGGAAGA CACCCGTGGA GTGTGGCATC
                                                                                                       1320
                                                                                                        1380
         GGCTTCACCA TCATCCTCAG CGGGCTGCCC GTCTACTTCT TCGGGGTCTG GTGGAAAAAC
         AAGCCCAAGT GGCTCCTCCA GGGCATCTTC TCCACGACCG TCCTGTGTCA GAAGCTCATG
                                                                                                       1500
15
         CAGGTGGTCC CCCAGGAGAC ATAG
         Sec ID NO: 183 Protein Sequence
          Protein Accession #: XP_035292.2
20
         MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLORNI TLLNGVAIIV
         GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                                                       120
         LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSPEGTKLDV
                                                                                                       180
25
                                                                                                       240
         GNIVLALYSG LFAYGGMYL NEVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL STEMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLPV SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNNLCVAL AIIGMIWLRH RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN KPKWLLQGIF STTVLCQKLM QVVPQET
                                                                                                        300
                                                                                                       360
                                                                                                       420
30
         Seq ID NO: 184 DNA Sequence
         Nucleic Acid Accession #: NM_005268.1
         Coding sequence: 1..822
35
                                       21
                                                                      41
                                                       31
         ATGAACTGGA GTATCTTTGA GGGACTCCTG AGTGGGGTCA ACAAGTACTC CACAGCCTTT
         GGGCGCATCT GGCTGTCTCT GGTCTTCATC TTCCGCGTGC TGGTGTACCT GGTGACGGCC
                                                                                                       120
40
         GAGCGTGTGT GGAGTGATGA CCACAAGGAC TTCGACTGCA ATACTCGCCA GCCCGGCTGC
TCCAACGTCT GCTTTGATGA GTTCTTCCCT GTGTCCCATG TGCGCCTCTG GGCCTGCAG
                                                                                                       180
                                                                                                       240
         CTTATCCTGG TGACATGCCC CTCACTGCTC GTGGTCATGC ACGTGGCCTA CCGGGAGGTT
                                                                                                        300
         CAGGAGAAGA GGCACCGAGA AGCCCATGGG GAGAACAGTG GGCGCCTCTA CCTGAACCCC
                                                                                                       360
         GGCAAGAAGC GGGGTGGGCT CTGGTGGACA TATGTCTGCA GCCTAGTGTT CAAGGCGAGC
                                                                                                       420
45
         GTGGACATOG COTTTCTCTA TGTGTTCCAC TCATTCTACC CCAAATATAT CCTCCCTCCT
GTGGTCAAGT GCCACGCAGA TCCATGTCCC AATATAGTGG ACTGCTTCAT CTCCAAGCCC
                                                                                                       480
                                                                                                       540
         TCAGAGAAGA ACATTTTCAC CCTCTTCATG GTGGCCACAG CTGCCATCTG CATCCTGCTC
                                                                                                       600
         AACCTCGTGG AGCTCATCTA CCTGGTGAGC AAGAGATGCC ACGAGTGCCT GGCAGCAAGG
AAAGCTCAAG CCATGTGCAC AGGTCATCAC CCCCACGGTA CCACCTCTTC CTGCAAACAA
GACGACCTCC TTTCGGGTGA CCTCATCTTT CTGGGCTCAG ACAGTCATCC TCCTCTCTTA
                                                                                                       660
                                                                                                       720
50
                                                                                                       780
         CCAGACCGCC CCCGAGACCA TGTGAAGAAA ACCATCTTGT GA
         Seg ID NO: 185 Protein Seguence
         Protein Accession #: NP_005259.1
55
                                       21
         MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
                                                                                                       60
         SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
60
         GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
                                                                                                       180
         SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
         DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
          Seq ID NO: 186 DNA Sequence
65
         Nucleic Acid Accession #: NM_002391.1
         Coding sequence: 25..457
                                       21
                                                                      41
                                                                                     51
                                                       31
70
         CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
         CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                                                       120
         CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG CGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                                                       180
                                                                                                       240
                                                                                                        300
75
         TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
          CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC
                                                                                                       420
         ARAGGCCARA GCCARGRARAG GGRAGGGRARA GGRACTAGRAG CCARGCCTGG ATGCCARGGRAGCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCRGGCCCG AGATGTGACC
                                                                                                        480
                                                                                                       540
```

```
CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC
                                                                                      600
        ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT
                                                                                      660
        TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
        ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
 5
        Seq ID NO: 187 Protein Sequence
        Protein Accession #: NP_002382.1
10
                                 21
                                              31
                                                                       51
        MOHRGFLILT LLALLALTSA VAKKKOKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT
        CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI
        RVTKPCTPKT KAKAKAKKGK GKD
15
        Seg ID NO: 188 DNA Sequence
        Nucleic Acid Accession #: NM_015507
        Coding sequence: 241-1902
20
                                                                       51
        CCGCAGAGGA GCCTCGGCCA GGCTAGCCAG GGCGCCCCCA GCCCCTCCCC AGGCCGCGAG
                                                                                      60
        OGCCCCTGCC GCGGTGCCTG GCCTCCCCTC CCAGACTGCA GGGACAGCAC CCGGTAACTG
                                                                                      120
        CGAGTGGAGC GGAGGACCCG AGCGGCTGAG GAGAGAGGAG GCGGCGGCTT AGCTGCTACG
25
        GGGTCCGGCC GGCGCCCTCC CGAGGGGGGC TCAGGAGGAG GAAGGAGGAC CCGTGCGAGA
        ATGCCTCTGC CCTGGAGCCT TGCGCTCCCG CTGCTGCTCT CCTGGGTGGC AGGTGGTTTC
                                                                                      300
        GGGAACGCGG CCAGTGCAAG GCATCACGGG TTGTTAGCAT CGGCACGTCA GCCTGGGGTC
TGTCACTATG GAACTAAACT GGCCTGCTGC TACGGCTGGA GAAGAAACAG CAAGGGAGTC
TGTGAAGCTA CATGCGAACC TGGATGTAAG TTTGGTGAGT GCGTGGGACC AAACAAATGC
                                                                                      360
                                                                                      420
30
        AGATGCTTTC CAGGATACAC CGGGAAAACC TGCAGTCAAG ATGTGAATGA GTGTGGAATG
                                                                                      540
        AAACCCCGGC CATGCCAACA CAGATGTGTG AATACACACG GAAGCTACAA GTGCTTTTGC
                                                                                      600
        CTCAGTGGCC ACATGCTCAT GCCAGATGCT ACGTGTGTGA ACTCTAGGAC ATGTGCCATG
                                                                                      660
        ATAAACTGTC AGTACAGCTG TGAAGACACA GAAGAAGGGC CACAGTGCCT GTGTCCATCC
        TCAGGACTCC GCCTGGCCCC AAATGGAAGA GACTGTCTAG ATATTGATGA ATGTGCCTCT
                                                                                      780
35
        GGTAAAGTCA TCTGTCCCTA CAATCGAAGA TGTGTGAACA CATTTGGAAG CTACTACTGC
AAATGTCACA TTGGTTTCGA ACTGCAATAT ATCAGTGAC GATATGACTG TATAGATATA
                                                                                      840
                                                                                      900
        AATGAATGTA CTATGGATAG CCATACGTGC AGCCACCATG CCAATTGCTT CAATACCCAA
        GGGTCCTTCA AGTGTAAATG CAAGCAGGGA TATAAAGGCA ATGGACTTCG GTGTTCTGCT
                                                                                    1020
        ATCCCTGAAA ATTCTGTGAA GGAAGTCCTC AGAGCACCTG GTACCATCAA AGACAGAATC
                                                                                    1080
40
        AAGAAGTTGC TTGCTCACAA AAACAGCATG AAAAAGAAGG CAAAAATTAA AAATGTTACC
                                                                                    1140
        CCAGAACCCA CCAGGACTCC TACCCCTAAG GTGAACTTGC AGCCCTTCAA CTATGAAGAG
                                                                                    1200
        ATAGTTTCCA GAGGCGGGAA CTCTCATGGA GGTAAAAAAG GGAATGAAGA GAAAATGAAA
                                                                                    1260
        GAGGGGCTTG AGGATGAGAA AAGAGAAGAG AAAGCCCTGA AGAATGACAT AGAGGAGCGA
                                                                                    1320
        AGCCTGCGAG GAGATGTGTT TTTCCCTAAG GTGAATGAAG CAGGTGAATT CGGCCTGATT
                                                                                    1380
45
        CTGGTCCAAA GGAAAGCGCT AACTTCCAAA CTGGAACATA AAGATTTAAA TATCTCGGTT
                                                                                    1440
        GACTGCAGCT TCAATCATGG GATCTGTGAC TGGAAACAGG ATAGAGAAGA TGATTTTGAC
        TGGAATCCTG CTGATCGAGA TAATGCTATT GGCTTCTATA TGGCAGTTCC GGCCTTGGCA
                                                                                    1560
        GGTCACAAGA AAGACATTGG CCGATTGAAA CTTCTCCTAC CTGACCTGCA ACCCCAAAGC
                                                                                    1620
        AACTTCTGTT TGCTCTTTGA TTACCGGCTG GCCGGAGACA AAGTCGGGAA ACTTCGAGTG
                                                                                    1680
50
        TTTGTGAAAA ACAGTAACAA TGCCCTGGCA TGGGAGAAGA CCACGAGTGA GGATGAAAAG
                                                                                    1740
        TGGAAGACAG GGAAAATTCA GTTGTATCAA GGAACTGATG CTACCAAAAG CATCATTTTT
                                                                                    1800
        GAAGCAGAAC GTGGCAAGGG CAAAACCGGC GAAATCGCAG TGGATGGCGT CTTGCTTGTT
TCAGGCTTAT GTCCAGATAG CCTTTTATCT GTGGATGACT GAATGTTACT ATCTTTATAT
                                                                                    1860
                                                                                    1920
        TTGACTTTGT ATGTCAGTTC CCTGGTTTTT TTGATATTGC ATCATAGGAC CTCTGGCATT
55
        TTAGAATTAC TAGCTGAAAA ATTGTAATGT ACCAACAGAA ATATTATTGT AAGATGCCTT
                                                                                    2040
        TCTTGTATAA GATATGCCAA TATTTGCTTT AAATATCATA TCACTGTATC TTCTCAGTCA
TTTCTGAATC TTTCCACATT ATATTATAAA ATATGGAAAT GTCAGTTTAT CTCCCCTCCT
                                                                                    2100
                                                                                    2160
        CAGTATATCT GATTTGTATA AGTAAGTTGA TGAGCTTCTC TCTACAACAT TTCTAGAAAA
                                                                                    2220
        TAGAAAAAA AGCACAGAGA AATGTTTAAC TGTTTGACTC TTATGATACT TCTTGGAAAC
                                                                                    2280
60
        TATGACATCA AAGATAGACT TTTGCCTAAG TGGCTTAGCT GGGTCTTTCA TAGCCAAACT
                                                                                    2340
        Seg ID NO: 189 Protein Sequence
        Protein Accession #: NP_056322.2
65
                                                                       51
                                             31
        MPLPWSLALP LLLSWVAGGP GNAASARHHG LLASAROPGV CHYGTKLACC YGWRRNSKGV
                                                                                       60
        MPLIPWISLADE LILISWVARDER GNAASARHING LLASARQFGV CHIGITALACC TGWRRINSKGV
CEATCEPECK FGECVGPINKC RCPPGYTGKT CSQDVNECGM KRPROQHRCV NTHESYKCFC
LSGHMLMPDA TCVNSRTCAM INCQYSCEDT EEGPQCLCPS SGLRLAPNGR DCLDIDECAS
                                                                                      120
70
        GKVICPYNRR CVNTFGSYYC KCHIGFELQY ISGRYDCIDI NECTMDSHTC SHHANCPNTQ
        GSPKCKCKQG YKGNGLRCSA IPENSVKEVL RAPGTIKDRI KKLLAHKNSM KKKAKIKNVT
PEPTRTPTPK VNLQPFNYEE IVSRGGNSHG GKKGNEEKMK EGLEDEKREE KALKNDIEER
                                                                                      300
                                                                                      360
        SLRGDVFFPK VNEAGEFGLI LVQRKALTSK LEHKDLNISV DCSFNHGICD WKQDREDDFD
                                                                                      420
75
        WNPADRDNAI GFYMAVPALA GHKKDIGRLK LLLPDLQPQ9 NFCLLFDYRL AGDKVGKLRV
        FVKNSNNALA WEKTTSEDEK WKTGKIQLYQ GTDATKSIIF EAERGKGKTG EIAVDGVLLV
        SGLCPDSLLS VDD
```

Seq ID NO: 190 DNA Sequence Nucleic Acid Accession #: NM_006475 Coding sequence: 12..2522

	couring sequ	161106: 12					
5	1	11	21	31	41	51	
•	Ī	Ī	1	1	1	1	
		GATGATTCCC					60
		CGCCAACAAT					120
10		CCCAAATGTC					180
10		TAAGAACTGG					240
		CCCTGGTTAT					300
		TGTTTATGGC					360 420
		AAAACTGAGG GGCTTGGGAC					480
15		ATTACTGAAT					540
13		AAATGGCATG					600
	ACCATTATCC	TAATGGGGTT	GTCACTGTTA	ATTGTGCTCG	AATCATCCAT	GGGAACCAGA	660
		TGGTGTTGTC					720
••	TTCAAGACTT	CATTGAAGCA	GAAGATGACC	TTTCATCTTT	TAGAGCAGCT	GCCATCACAT	780
20		GGAGGCCCTT					840
		GAAACTTCCA					900
	CCGAAGCTCT	TATGAAGTAC	CACATCTTAA	ATACTCTCCA	GTGTTCTGAG	TCTATTATGG	960
	GAGGAGCAGT	CTTTGAGACG	CTGGAAGGAA	ATACAATTGA	GATAGGATGT	GACGGTGACA	1020
25	GTATAACAGT	AAATGGAATC	AAAATGGTGA	ACAAAAAGGA	TATTGTGACA	AATAATGGTG	1080 1140
23		GATTGATCAG GCAAACCACC					1200
		TGGAGAATAC					1260
		GGTTCAGCGC					1320
		TAATGAGCTT					1380
30	TCAGAGTCTT	CGTATATCGT	ACAGCTGTCT	GCATTGAAAA	TTCATGCATG	GAGAAAGGGA	1440
		GAGAAACGGT					1500
		TGAAAAGTTA					1560
		CTTGAAAGAG					1620
25	CCAATGATGC	TTTTAAGGGA	ATGACTAGTG	AAGAAAAAGA	AATTCTGATA	CGGGACAAAA	1680
35		AAACATCATT					1740
		TGTTACTAAC					1800 1860
	AAGTAAATGA	TACACTTCTG AATTCATGTT	GIGAAIGAAI	TGAAATCAAA	ACCACACACA	CCTCTTCCAA	1920
	ATCATCAACT	GCTGGAAATA	CTTAGATAGAT	TARTCARACA	CATCCAAATT	AAGTTTGTTC	1980
40	GTGGTAGCAC	CTTCAAAGAA	ATCCCCGTGA	CTGTCTATAC	AACTAAAATT	ATAACCAAAG	2040
		AAAAATTAAA					2100
		AACAAAAGTC					2160
		AACTGAAGTG					2220
4.5		GCCTGTGGAA					2280
45	GTCCTGAAAT	AAAATACACT	AGGATTTCTA	CTGGAGGTGG	AGAAACAGAA	GAAACTCTGA	2340
	AGAAATTGTT	ACAAGAAGAG	GTCACCAAGG	TCACCAAATT	CATTGAAGGT	CECACCAACE	2400 2460
	ATTTATTTGA	AGATGAAGAA CAAAAAAGTT	CARCOTTOTA	CARCACCATT	AGACACACCC	CCTTCTCACT	2520
		AAACCAGAAA					2580
50		GAGCCAAGTT					2640
		TGAACACAAA					2700
		GCCTCCTGTG					2760
		ATTAAAAGTT					2820
		TACAATTCAA					2880
55		TATGTTATGG					2940
		AAAAATAGGT					3000 3060
		GAGTGGGTTT TTGTCATATG					3120
		TTCAGATATA					3180
60		AAAAAGTGGT					
•••	C.1.1.1.1.1.1.1.1						
		191 Protein					
CE	Protein Acc	cession #: P	BAA02836.1				
65							
	1	11	21	31	41	51	
		LLLLIVNPIN	ANNIHVEVITE		DATECATION	CTKKKAABGAO	60
		QKTTVLYECC					120
70		SFTYFAPSNE					180
		NLGLFINHYP					240
		RAAAITSDIL					300
	MKYHILNTLQ	CSESIMGGAV	PETLEGNTIE	IGCDGDSITV	NG I KMVNKKO	IVTNNGVIHL	360
25	IDQVLIPDSA	KQVIELAGKQ	QTTFTDLVAQ	LGLASALRPD	GEYTLLAPVN	NAFSDDTLSM	420
75		NHILKVKVGL					480
		IIKPAEKSLH					540
		ILIRDKNALQ					600
	TLLVNELKSK	ESDIMTTNGV	TWAANKTPAB	WILLAGNINGP	PETTMKTIKA	TOTKLAKGSL	660

```
PKEIPVTVYT TKIITKVVEP KIKVIEGSLQ PIIKTEGPTL TKVKIEGEPE PRLIKEGETI
        TEVINGEPII KKYTKIIDGV PVEITEKETR EERIITGPEI KYTRISTGGG ETEETLKKLL
                                                                                          780
        QEEVTKVTKF IEGGDGHLFE DEEIKRLLQG DTPVRKLQAN KKVQGSRRRL REGRSQ
        Seg ID NO: 192 DNA Seguence
        Nucleic Acid Accession #: NM_006670
        Coding sequence: 85..1347
                                                                          51
                                                             41
10
        CCGGCTCGCG CCCTCCGGGC CCAGCCTCCC GAGCCTTCGG AGCGGGCGCC GTCCCAGCCC
                                                                                           60
        AGCTCCGGGG AAACGCGAGC CGCGATGCCT GGGGGGTGCT CCCGGGGCCC CGCCGCCGGG
                                                                                          120
        GACGGGCGTC TGCGGCTGGC GCGACTAGCG CTGGTACTCC TGGGCTGGGT CTCCTCGTCT
                                                                                          180
        TOTOCCACOT COTOGGCATO CTCOTTOTOC TOCTOGGCGC COTTCOTGGC TTCCGCCCAGC CCCCGCTGCC GGACCAGTGC CCCGCGCTGT GCGAGTGCTC CGAGGCAGCG
                                                                                          240
15
         CGCACAGTCA AGTGCGTTAA CCGCAATCTG ACCGAGGTGC CCACGGACCT GCCCGCCTAC
                                                                                          360
        GTGGGCAACC TCTTCCTTAC CGGCAACCAG CTGGCCGTGC TCCCTGCCGG CGCCTTCGCC
CGCCGCCGC CGCTGGCGGA GCTGGCCGC CTCAACCTCA GCGGCAGCCG CCTGGACGAG
                                                                                          420
                                                                                          480
        GTGCGCGCG GCGCCTTCGA GCATCTGCCC AGCCTGCGCC AGCTCGACCT CAGCCACAAC
20
        CCACTGGCCG ACCTCAGTCC CTTCGCTTTC TCGGGCAGCA ATGCCAGCGT CTCGGCCCCC
                                                                                          600
        AGTCCCCTTG TGGAACTGAT CCTGAACCAC ATCGTGCCCC CTGAAGATGA GCGGCAGAAC
                                                                                          660
        CGGAGCTTCG AGGGCATGGT GGTGGCGGCC CTGCTGGCGG GCCGTGCACT GCAGGGGCTC CGCCGCTTGG AGCTGGCCAG CAACCACTTC CTTTACCTGC CGCGGATGT GCTGGCCCAA
                                                                                          720
        CTGCCCAGCC TCAGGCACCT GGACTTAAGT AATAATTCGC TGGTGAGCCT GACCTACGTG
                                                                                          840
25
        TCCTTCCGCA ACCTGACACA TCTAGAAAGC CTCCACCTGG AGGACAATGC CCTCAAGGTC
                                                                                          900
        CTTCACAATG GCACCCTGGC TGAGTTGCAA GGTCTACCCC ACATTAGGGT TTTCCTGGAC
                                                                                          960
        AACAATCCCT GGGTCTGCGA CTGCCACATG GCAGACATGG TGACCTGGCT CAAGGAAACA
GAGGTAGTGC AGGGCAAAGA CCGGCTCACC TGTGCATATC CGGAAAAAAT GAGGAATCGG
                                                                                         1020
                                                                                         1080
        GTCCTCTTGG AACTCAACAG TGCTGACCTG GACTGTGACC CGATTCTTCC CCCATCCCTG
                                                                                         1140
30
        CAAACCTCTT ATGTCTTCCT GGGTATTGTT TTAGCCCTGA TAGGCGCTAT TTTCCTCCTG
GTTTTGTATT TGAACCGCAA GGGGATAAAA AAGTGGATGC ATAACATCAG AGATGCCTGC
                                                                                         1200
                                                                                         1260
        AGGGATCACA TGGAAGGGTA TCATTACAGA TATGAAATCA ATGCGGACCC CAGATTAACA
                                                                                         1320
        AACCTCAGTT CTAACTCGGA TGTCTGAGAA ATATTAGAGG ACAGACCAAG GACAACTCTG
                                                                                         1380
        CATGAGATGT AGACTTAAGC TTTATCCCTA CTAGGCTTGC TCCACTTTCA TCCTCCACTA TAGATACAAC GGACTTTGAC TAAAAGCAGT GAAGGGGATT TGCTTCCTTG TTATGTAAAG TTTCTCGGTG TGTTCTGTTA ATGTAAGACG ATGAACAGTT GTGTATAGTG TTTTACCCTC
                                                                                         1440
35
                                                                                         1500
         TTCTTTTCT TGGAACTCCT CAACACGTAT GGAGGGATTT TTCAGGTTTC AGCATGAACA
                                                                                         1620
        TGGGCTTCTT GCTGTCTGTC TCTCTCTCAG TACAGTTCAA GGTGTAGCAA GTGTACCCAC
                                                                                         1680
        ACAGATAGCA TTCAACAAAA GCTGCCTCAA CTTTTTCGAG AAAAATACTT TATTCATAAA
                                                                                         1740
40
        TATCAGTTTT ATTCTCATGT ACCTAAGTTG TGGAGAAAAT AATTGCATCC TATAAACTGC
                                                                                         1860
        CTGCAGACGT TAGCAGGCTC TTCAAAATAA CTCCATGGTG CACAGGAGCA CCTGCATCCA
        AGAGCATGCT TACATTTTAC TGTTCTGCAT ATTACAAAAA ATAACTTGCA ACTTCATAAC
                                                                                         1920
        TTCTTTGACA AAGTAAATTA CTTTTTTGAT TGCAGTTTAT ATGAAAATGT ACTGATTTTT
                                                                                         1980
        45
        ATTCTTAAAA GAA
         Seq ID NO: 193 Protein Sequence
        Protein Accession #: CAA82324.1
50
        MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD
        OCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLAVLPAGA FARRPPLAEL
                                                                                         <sup>-</sup>120
         AALNLSGSRL DEVRAGAFEH LPSLRQLDLS HNPLADLSPF AFSGSNASVS APSPLVELIL
                                                                                          180
55
        NHIVPPEDER QNRSFEGMVV AALLAGRALQ GLRRLELASN HFLYLPRDVL AQLPSLRHLD
                                                                                          240
        HANDMYNELS TYVSFRNLTHL ESLHLENNAL KVILINGTLAE LOGLPHIRVF LDNNPWVCDC
HMADMYNLK ETEVVQGKDR LTCAYPEKMR NRVLLELNSA DLDCDPILPP SLQTSYVFLG
                                                                                          300
         IVLALIGAIF LLVLYLNRKG IKKWMHNIRD ACRDHMEGYH YRYEINADPR LTNLSSNSDV
60
        Seg ID NO: 194 DNA Seguence
        Nucleic Acid Accession #: NM_014400
        Coding sequence: 86..1126
65
                                   21
                     11
         GGTTACTCAT CCTGGGCTCA GGTAAGAGGG CCCGAGCTCG GAGGCGGCAC ACCCAGGGGG
         GACGCCAAGG GAGCAGGACG GAGCCATGGA CCCCGCCAGG AAAGCAGGTG CCCAGGCCAT
                                                                                          120
        GATCTGGACT GCAGGCTGGC TGCTGCTGCT GCTGCTTCGC GGAGGAGCGC AGGCCCTGGA
                                                                                          180
70
        GTGCTACAGC TGCGTGCAGA AAGCAGATGA CGGATGCTCC CCGAACAAGA TGAAGACAGT
                                                                                          240
         GAAGTGCGCÇ CCGGGCGTGG ACGTCTGCAC CGAGGCCGTG GGGGCGGTGG AGACCATCCA
                                                                                          300
        GAGATACTIC TOCGTGGCAS TGCSGGGTTG GGGTTGGGGA CTCCCCGGCA AGAATGACCG
CGGCCTGGAT CTTCACGGGC TTCTGGCGTT CATCCAGCTG CAGCAATGCG CTCAGGATCG
                                                                                          360
                                                                                          420
         CTGCAACGCC AAGCTCAACC TCACCTCGCG GGCGCTCGAC CCGGCAGGTA ATGAGAGTGC
                                                                                          480
75
        ATACCCGCCC AACGCGTGG AGTGCTACAG CTGTGTGGGC CTGAGCCGGG AGGCGTGCCA
GGGTACATCG CCGCCGGTCG TGAGCTGCTA CAACGCCAGC GATCATGTCT ACAAGGGCTG
CTTCGACGGC AACGTCACCT TGACGGCAGC TAATGTGACT GTGTCCTTGC CTGTCCGGGG
                                                                                          540
                                                                                           600
                                                                                           660
         CTGTGTCCAG GATGAATTCT GCACTCGGGA TGGAGTAACA GGCCCAGGGT TCACGCTCAG
```

	TECCTOTET	TOCCAGOGGT	ССССТСТАА	CTCTGACCTC	CCAACAAGA	CCTACTTCTC	780
	1000100101	CC F CCCCCCCC	TOTOTOTO	CCCTCCAGAG	CCCACCACTC	TOCOCCTONAC	840
				AGTGAGACCC			900
							960
5				GGGAGTAGAA			
,				CCACCAGGAC			1020
				TAATAAAGGC			1080
				TGGTGTCCTA			1140
				TGGGTACCCC			1200
10				TGTTTTTCCA			1260
10				AATAAAATAC			1320
				GTATCCTTCT			1380
				AAGTCAGCTG			1440
	AGGATGCTAA	GCTTCCTACT	CACTTTCTCC	TAGCCAGCCT	GGACTTTGGA	GCGTGGGGTG	1500
	GGTGGGACAA	TGGCTCCCCA	CTCTAAGCAC	TGCCTCCCCT	ACTCCCCGCA	TCTTTGGGGA	1560
15				CTGTGAGCTC			1620
	CTTATGTCTG	TGTGTGATCA	GTTTCTGGCA	CATAAATGCC	TCAATAAAGA	TTTAATTACT	1680
	TTGTATAGTG						
	Seg ID NO:	195 Protein	Sequence				
20		ession #: 1					
	rioccia Ac		033225				
	1	11	21	31	41	51	
	i	†*		Ĩ.	1	ī	
	MDDVDAVAGEO	I AMTUTACUTY	LIJI PCCAOA	LECYSCVQKA	DDCCGDMRNA	TANKE DESTRUCT	60
25							
20				DRGLDLHGLL			120
				CQGTSPPVVS			180
				LSGSCCQGSR			240
				PMPAPTSQTP		DEEPRLTGGA	300
20	AGHQDRSNSG	QYPAKGGPQQ	PHNKGCVAPT	AGLAALLLAV	AAGVLL		
30							
		196 DNA Sec					
			1 #: NM_0065	536			
	Coding sequ	ence: 109	2940				
2.5							
35	1	11	21	31	41	51	
	1	1	l	1	1		
	ACCTAAAACC	TTGCAAGTTC	AGGAAGAAAC	CATCTGCATC	CATATTGAAA	ACCTGACACA	60
	ATGTATGCAG	CAGGCTCAGT	GTGAGTGAAC	TGGAGGCTTC	TCTACAACAT	GACCCAAAGG	120
				TGGAGGCTTC TTTGTGACTC			120 180
40	AGCATTGCAG	GTCCTATTTG	CAACCTGAAG	TTTGTGACTC	TCCTGGTTGC	CTTAAGTTCA	
40	AGCATTGCAG GAACTCCCAT	GTCCTATTTG TCCTGGGAGC	CAACCTGAAG TGGAGTACAG	TTTGTGACTC CTTCAAGACA	TCCTGGTTGC ATGGGTATAA	CTTAAGTTCA TGGATTGCTC	180
40	AGCATTGCAG GAACTCCCAT ATTGCAATTA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT	TTTGTGACTC CTTCAAGACA CAGAACCTCA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG	180 240
40	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT	180 240 300 360
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA	180 240 300 360 420
40 45	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA AGATGATCCA	180 240 300 360 420 480
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATTT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT	180 240 300 360 420 480 540
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATTT GAGGCCGAGT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT	180 240 300 360 420 480 540
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAC CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTAACAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT AGGCACATGG ACATTCATTT GAGGCCGAGT ACAATGACAA	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC	180 240 300 360 420 480 540 600 660
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT TTAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT	CAACCTGAAG TGGAGTACAG ACCTGAGAAA CCTATTTAAT CACATGGAAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AGGTGTTCAT	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT AGGGCACATGG ACATTCATTT GAGGCCGAGT ACAATGACAA CTGACATCAC	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT	180 240 300 360 420 480 540 600 660 720
45	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGC GTGTGTGAAA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG	CAACCTGAAG TGGAGTACAG ACCTGAGAAA CATAGTGAAA CATAGTGAAAA AACAGCTGGC GGGTGTGTC TAAAGTGACA CCCCCAAGAA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AGGTGTTCAT AACTGTATTA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATTT GAGGCCGAGT ACAATGACAA CTGACATCAC TTAGTAAGCT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA	180 240 300 360 420 480 540 600 660 720 780
	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGG GTGTGTGAAA GGATGCACCT	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATT TACGGATCAC GATGAGTATA AGGTGTTCTA AACTGTATTA AATGCAACTG	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATGT GAGGCCGAGT ACAATGACAA CTGACATCAA TTAGTAAAGCT CATCAATAAT CATCAATAAT CATCAATAAT	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA	180 240 300 360 420 480 540 600 660 720 780 840
45	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGCCC ATAAATGGGC GTGTGTGAAA AGGTTTATCTT	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA ATTTTGTAAT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AGGTGTTCAT AATGTATTA AATGCAACTG GCAAGTACCC	TCCTGGTTGC ATGGGTATAA ATGGGTATAA GAGAGATATT ACAGCAAAAT GGGCACATGG ACATTCATTT GAGGCCGAGT ACAATGACAA CTGACATCAC TTAGTAAGCT CATCAATTAA ACAACCAAGA	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA AGTTCATAAAGAAAAGA	180 240 300 360 420 480 540 600 660 720 780 840 900
45	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGCACCT AGTTTATCTT CTACAGAACC	GTCCTATTTG TCCTGGGAGC ATCCTCAGTT TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA ATTTTGTAAT CCTCAGAAGT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATC AAGTGTTCAT AACTGTTATTA AATGCAACTG GCAAGTACCC GCATGGGATG	TCCTGGTTGC ATGGTATAA CATGGAACAT GAAGAGTATT ACAGCAAATG GGGCACATG ACATCATT GAGGCCGAGT ACATGACAA CTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAG	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC	180 240 300 360 420 480 540 600 660 720 780 840 900
45	AGCATTGCAG GAACTCCAT ATTACACTAATA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGCCC ATAAATGGGCCC ATTATCTAAAGACC TTTCTACCAAC TTTCACCACA TTTCACCACA	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCCAT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACAGCTGGC GGGTGTGTTC CTAAAGTGACA CCCCCAAGAA ATTTTGTAAT CCTCAGAAGT	TTTGTGACTC CTTCAAGACA CCAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AGGTGTTCAT AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGAGCACATGG ACATTCACTT GAGGCCGAGT ACAATGACAA CTGACATCACC CTTAGTAAGCT CATCAATAAT ACAACCAAGA CTCCTCCCAC	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTT	180 240 300 360 420 480 540 660 720 780 840 900 960 1020
45	AGCATTGCAG GAACTCCCAT ATTGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGCCC ATAAATGGGC GTGTGTGAAA GGATGCACCT AGTTTATCTT CTACAGAACC TTTCACACAC GTACAGGCTG	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCCAT GTGACAAAGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAA CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA ATTTGTAAT CCTCAGAAGT GAATGGACT GAATGGACT GAATGGACT GATTGTAAT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG TACGGATCAC GATGAGTATA AGGTGTTCAT AACTGTATTA AATGCAACTG GCAAGGATACC GCATGGGATC GCATGGGATC GGAGTTCCAC GTGCTGCAT GGGCTCCAC GTGCTGCATC	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT ACAGCACATGG ACAATGACAA TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACGA TAATCACGA TAATCACGA TCTCCCCAC TGTCCAGCAA	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTGCTT GATGGCAGG	180 240 300 360 420 480 540 660 720 780 840 900 960 1020
45	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGCACCT CTACAGAACC TTCACCACA GTTATATCTT CTACAGAACC TTCACCACA GTACAGGCTG GTACAGGCTG GTACAGGACG GTACAGACA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AAATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA ACGTTGCAGG GCTTTCCCAT GTGACAAAGT TCCTTCAACT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCAA ATTTGAT CCTCAGAAGT GAATGGACT GAATGGACT ACCTCAGAAGT ACCTCAGAAGT ACCTCAGAAGT ACCTCAGAAGT ACCACAACAAGCC ACAACAAGCC	TTTGTGACTC CTTCAAGAC CCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AAGGTGTTCAT AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGATTTT	TCCTGGTTGC ATGGGTATAA CATGGAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACACTCACTTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAG TTGTCCAGCAA ATTTGATGCA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA CCTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTGAA	180 240 300 360 420 480 540 660 720 780 840 900 900 1020 1080
45	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGC GTGTGTGAAA GGATGCACCT AGTTTATCTT CTACAGAACC TTCACAGACC TTCACAGAAC ATTCATACCTA	GTCCTATTTG TCCTGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC CTAAAGTGACA ACCCCAAGAA ATTTTGTAAT CCTCAGAAGT GGACTGGC GGTCTGTTTAAT ACTCCAGAAGT GGACTGGC TGCCAGTTTC TGCAGTTTT TGCAGTTTT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAAG	TCCTGGTTGC ATGGGTATAA CATGGAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTGACTATT GAGGCCGAGT ACAATGACAA CTTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAGA TAATCACAGA ATTTGATGCA GAGAGATCAC GGAGAGATCAC GAGAGATCAC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTGAC ATTCTCGCTTGAC ATTCTCGCTTGAC GATTGTCGAAA AGCCCAAGAA AGCCCAGCTA	180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200
45	AGCATTGCAG GAACTCCCAT ATTACAATA ATAACTGAAG ATAAAGATT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGCC ATAAATGGGCC ATAAATGGCC TTGTGTGAAA GGATGCACCT CTACAGAACC TTTCCACACA GTACAGGCTG GCTGACAGAC ATTCATACC CACCAAATTA	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT ACTCCGTTG AAAATCAAAT AAGGTCCTTG AAATCAAAT ATTCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTTGACAA TCAGCAAAGT ACAGCAATGA ACAGCAATGA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA ATTTTGTAAT CCTCAGAAGT GAATGGACT GGCTGTTTA ACAACAAGCT TGCCAGTTCT TGCAGATT TGCAGAAGT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGGTATA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA CCAAGTACCG GAGATCCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG TTGCTGGTTT	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GAGCACATGG GCACATGG ACAATGACAA CTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACGA ATTTGATGCA ATTTGATGCA CATCATCACC CATCATCACC TGTCCACCAA ATTTGATGCA CATCATCACC CATATCTGCC CATATCTGCC	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTGAA AGCCCAGGTA AGCCCAGCTA CACCACTGTA	180 240 300 360 420 480 540 660 720 780 840 960 1020 1140 1200 1260
45	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGC GTGTGGAAA GGATGACAC TTCACCACA GTTACACCACA GTACACGCTG GCTGACAGAC ATTCATACACT ACCACAATTA TCACCAAAATTA TCACCAAAATTA	GTCCTATTTC TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTCCAT TCGTGCAAAT TCGTGCAAT TCGTGGGCAT TCGTTCAACT TCGTGGGCAT ACAGCAATGA CAGACATCAG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GGACTCGCCAAGAAGT CGTCTGGCTTTAACTGACACCCAA ATTTTGTAAT CCTCAGAAGT GAACTGGCTTTAACAACAGCC TGCCAGTTTC TGATCGAAAG CATTTGTTCA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGATATCA GAGGGAAAAT TACGGATCAC GATGAGTATCA AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG GTGCTGGATG GCAGGATTTT GACAGCAAAG TTGCTGGTTT GGCCTTAAGA	TCCTGGTTGC ATGGGTATAA CATGGAACAT GAAGAGTATT ACAGCAAAAT GGGCCAATG ACATTCATTT GAGGCCAGT ACAATGACAA CTGACATCAC TTAGTAGGCT CATCAATAAT ACAACCAAGA TAATCACAGA CTCTCCCAC TGTCCAGCA ATTTGATGC AGAGAATAGCA ACATCTCCCAC CACAGATTTGATGCA ACATCTCCCAC ACATCACT ACATCACACA ATTTGATGCA ACATCTGCC AAGAATTTGA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCAGCAAAC CTCTGCTGAC ATTCTGCTGAC ATTCTCGCTTAC AGGCATGTTGTAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC AGCCCACGAG GATTGTTGAA AGCCCCTGTA CACCCCTGTAA CGTGGTTGAA	180 240 300 360 420 480 540 660 720 840 900 960 1020 1080 1140 1200 1260 1320
45 50 55	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGC GTGTGTGAAA GGATGCACCT CTACCACA GTATCACCACA GTACAGCCT GTACAGACC TTCACCACA ATCATCACT ACCACATTCATCACAAATTA TCACCAAATTA AAACTGAAATA	GTCCTATTTG TCCTGGGGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AAATCAGAGG ATGATAACTTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCAAT TCCTTCAACT TCGTGGGCAT TCGTGGGCAT ACAGCAATGA CAGAACATCA CAGAACATCAC GAAAAGCTTA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA AATTTGTAAT CCTCAGAAGT GAATGGACT GGTCTGTTTA ACAACAAGCC TGCCAGTTC TGAATGGACT TGCAGTTC TGATTGATA ACAACAAGCC TGCCAGTTTC TGATTGATAC TGGTTGTTTG	TTTGTGACTC CTTCAAGACCA CCAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AAGGTGTTCAT AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG TTGCTGGTT TGGCTGATT TGGCTGTATT TGGCTTATTA AATGTAATTA AATGTAATTA AATGTAATTA AATGTAATTA AATGTAATTA AATGTAATTA AATGTAATTA AATGTAATTA	TCCTGGTTGC ATGGGTATAA CAGCAAAAT GAAGACATAT GAGCCCAGT ACACCATGC ACATTCATT GAGGCCCAGT ACACCAATAAC CTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAAGA ATTTGACAGA ATTTGATGCA GAGAGTCAC GAGAGATCAC CATATCTGC CATCACCAA ATTTGATGCA GAGAGTCAG CATATCTGCC CATCAGCAA ATTTGATGCA GAGAGTCAG CATATCTGCC CATATCTGCC CATATCTGCC CATATCTGCC CATATCTGCA TGACCAGCGG TGACCAGCGG	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCCGCTT GATGGCAGAG GATTGTTGAA AGCACCACTGAA AGCCCACTGTA AGCCCACTGTA AGCCCACTGTA AGCGCACTGTAA AGCTGATGAAA AGGTGGTTGAA AGGTGATAAAG	180 240 300 360 420 480 660 660 720 780 840 900 960 1020 1140 1240 11200 11320 11380
45	AGCATTGCAG GAACTCCAT ATTACACTAAA ATAACTATAA ATAACTAAA ATAACATAA TCATATGAAA TCATATGAAA TACACCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGCC ATAAATGGGCC TTTCTGACAAC TTCACCACA GTACAGGCTG GCTGACAGAC CTTCACCACA ATTCATACCT CACCAAATTA TCAGCTAAAA AACTGAATC CTTCTGACAA CTTCTTGACA	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT ACATCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATCCAT GTGACAAGT TCCTTCCAT GTGACAAGT TCCTTCACA TCGTGGCAA GCTTTCCCAT GTGACAAGT TCCTTCACAT ACAGCAATGA CAGCAATGA CAGCAATGA CAGAAAGCTTA ATTGCTTACC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TATTTGTAAT ACAACAGCC GGTCTGTTTAAT ACAACAAGC TGCCAGTTTAACAACAAGC TGCCAGTTTC TGATCGAAAG CATTTGTTAA TGGCTCGTTTC TGATCGAAAG CATTTGTTCA TGGCTCGTGTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC	TTTGTGACTC CTTCAAGACA CCAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA AACTGTATTA CCAAGTACCC GCATGGGATG GCAGGATTCCAC GTGCTGGATG GCAGAATTTTT GACAGCAAAG TTGCTGGTTT GGGCTTAAGA ATGATATTAG AGCAGTGGTT	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTTGACATCAC CTTAGTAAGCT CATCAATAAT ACAACCAAGA CTCCTCCCAC TGTCCAGCAA ATTTGATGA GAGGATTGA GAGAGATTCA CACAGCGG CAACAATTCA	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTTGAA AGCCCACTGTA AGCCCACTGTA CGCTGGTTGAC ATCTCTGCTT CATGGCTTAAA AGCCCACTGTA CACCACTGTA CGCTGGTTGAA AGATGATAAAG CTCCATTGCC	180 240 300 360 420 480 540 660 720 780 840 900 1020 1080 1140 1260 1380 1380
45 50 55	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGGCCC GTGTGGAAA GGATGACAC GTTACACACA GTTATCTT CTACACACA GTACACGCTG GCTGACAGAC ATTCATACCT CACAAATTA TACACCTAAAA AAACTGAATG CTTCTTGCCA CTGCGTTCACACAC CTCCTGCGTTCAC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA CTGTGGGTTGA AGATGTCCAT TCGTGGGCAT TCGTGGGCAT ACAGCAATGA CAGACATCA GAAAAGCTTA ATTGCTTACC CTGCAGCCCC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCAAGAA ATTTGTAAT CCTCAGAAGT GGCCCCAAGAA CCTCAGAAGT CGCCAGAAGT CGCCAGTTTC TGCCAGTTTC TGATCGAAGC CATTGTTCA CATTGTTCA CATTGTTCA CATTGTTCA CATTGTTCA CATTGTTCA CATTGTTCA TGGCCTCTTG CACTGTCCT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGATATCA GAGGGAAAAT TACGGATCAC GATGAGTATCA AATGCAACTG GCAAGTACCC GCATGGGATG GCAGGTACCC GCATGGGATG GCAGGATTTT GACAGCAAAG TGCAGGATT GACAGCAAAG ATGAATTTA ATGAATTTT GACAGCAAAG ATGAATTTACAC ATGAATATTACAC ATGAATATTACAC ATGAATATTAC	TCCTGGTTGC ATGGGTATAA CATGGAACAT GAAGACATAT GAGCCCAGT ACATCATTCATTT GAGGCCAGT ACAATGACAA CTGACATCAC TTAGTAGGCT CATCAATAAT ACAACCAGA ATTTGATGCA GAGGATCAG CTCCCAC GAGGATCAG CATTTGATGCA ATTTGATGCA GAGGATCAG CATATTTGATGCA GAGGATCAG CATATTTGATGCA GAGGATCAG CATATCACAGA CATATCACAGA CATATCACAGA CATATCACAGA CATATCACAGA CAACAATTCA GACCAGCGG CAACAATTCA GTCTTACAGG	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCAGCAAAC CTCTGCTGAC ATTCTCGCTGAC ATTCTCGCTTAC AGCACCAAAC CTCTGCTGAC ATTCTCGCTTAC AGCACCAAAC GATGGTAAA AGCACCATAA GCTCCAGTAA AGCACCTTAA AGCACCTTAAA GGTGGTTGAA AGATGATAAG CTCCATTGCC AGGTTTAAAG	180 240 300 360 420 480 540 600 660 720 840 900 960 1020 1140 1250 1320 1320 1320 1440 1500
45 50 55	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGCCCC GTGTGTGAAA GGATGCACCT TTCACCACA GTTATCTTC CTACCACA GTACAGCCTG GTCACACAC ATTCATCACA ATCATCACAC ATTCATCACA ATCATCACAC ATTCATCCC CACCAAATTA AAACTGAATG CTTCTTTGCAC CTGGGTTCAT CTTCTTTGCAC CTGGGTTCAT	GTCCTATTTG TCCTGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AAATCAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGATGTGCAG GCTTTCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA CAGACATCAG GAAAAGCTTA ATTGCTTACC CTGCAGCCCC CAGATATATC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA ACCCCAAGAA TAGCACCAA ATTTGAT CCTCAGAAGT GGTCTGTTTAAT ACAACAAGCC TGGCAGTTTA ACAACAAGCC TGCAGTTTC TGATTGATT ACACTGACAC TGCAGTTTC TGATTGATTA CCTCAGTTTC TGATTGATTA ACAACAAGCC TGCAGTTTC TGATTGATTA CATTGTTCA TGGCTCTGTG CACTGTGTGAAACTCGAGAAACTCCAAT	TTTGTGACTC CTTCAAGAC CCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACTATATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AACTGTATTA AACTGTATTA AATGCAACC GCATGGGATG GCAAGTACCC GCATGGGATG GCAGGATTTT GACAGCAAAG TTGCTGGATT TGCTGGATT GGCTTAAGA ATGATATTAG AGCAGTGGTT AGGGATGTTTT GACAGCAAGA ATGATTATCAC AGCATGATTTC AACTGATTTT	TCCTGGTTGC ATGGGTATAA CATGCAACAT GAAGAGTATT ACAGCAAAGT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAGA TAATCACAGA CTCTCCCAC TGTCCAGCAA ATTTGATGCA GAGAGATCAG GAGAGATCAG CATATCTGCC CATCAACAAT TGACCAGCAA TAATCTGCC CATCAACAAC TGACCAGCAA TTAGTATCACAG AGGATTTGA TGACCAGCGG CAACAATTCA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA ACCACCTAAT GTTCATGCAA ACCACCAAC CTCTGCTGAC ATTCTCCGCTT GATGGCAGAG GATTGTTGAA AGCACCATGTA CGCGTTGAA AGCTCATTAC AGGCATTAC ACCACTGTA CGGGTTGAA AGATGATAAG CTCCATTGCC AGGTTTAAAG TAGAATTTCC	180 240 300 360 420 480 660 660 720 780 900 960 1020 1140 1240 1320 1380 1440 1560
45 50 55	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAACTGAAG ATAACTGAAG ATAACTGAAG TCATATGAAA TCATATGAAC TTCCTACTGA GAATGGGCCC ATAAATGGGC GTGTGTGAAA GGATGCACCT CTACCAGAACC TTCACCACA GTACAGGCTG GCTGACAGAC ATTCATACCT CACCAAATTA TCAGCTAAAA AACTGAATG CTTCTTGGCA CTGCTTCATTCTT TCTGGAACTG TCTTGGTAT	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGGTGCTTG GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA CAGCAATGA CAGCAATGA AAAGCTTA ATTGCTTACC CTGCAGCCCC CGAGACATCTC GAGACATCTC CAGACATCTC CAGACATCTC CAGACATCT CAGACATTTT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACAGCTGGC GGGTGTGTTC CTAAAGTGACA ATTTGTAAT CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GGACTGGTTTT GGATCGGTTTT TGAATGGACA TGCCAGTTTC TGCAGTTTC TGCAGTTTC TGCAGTTTC TGATCGAAG CATTTGTTAA CATTGTTAA CATTGTAC CATTGTTG AAACTCCAGA AAACTCCAGA AAACTCCAGA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG TTGCTGGTTG TGCTGGTTG TGCTGGTTG TGCTGGTTG TGCTGGTTA ATGCTGGTTT GACAGCAAAG TTGCTGGTTT GACAGCAAAG TTGCTGGTTT GACAGCTTAAGA ATGATATTAG AGCAGTGGTT GAATGATTATACA AGCATGATTG GAATGATTG AATTATACACTTTG ATTCAGCTTTG	TCCTGGTTGC ATGGGTATAA CAGCAAAAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACAATGACAA CTGACATGAC TTAGTAAGCT CATCAATAAT ACAACCAGA TAATCACGA TAATCACAGA ATTTCAGCA GAGAGTTAC GAGAGTTAC GAGAGTTAC GAGAGTTAC GAGAGTTAC GAGAGTTAC ATGCCACCAA AGGATTCA GACAACTTC GTCTTACAGCA ATGCTTACAGCA ATGCTTACAGCA ATGCTTACAGCA ATGCTTACAGCA ATGCTTACAGCA AAGGATTCA GTCTTACAGCA AAGATACAGG	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAAGAA GTTCATGCAA ACCCACAAC CTCTGCTGAC ATTCTCGCTGAC ATTCTCGCTTA AGCACAAAC CTCTGCTGAC ATTCTGGCAGG GATTGTTGAA AGCCCACTGTA CACCACTGTA CACCACTGTA CACCACTGTA AGGTGGTAAAAG CTCCATTGCC AGGTTTAAAG CTCCATTGCC AGGTTTAAAG TAGAAATTTCC TGAAAATGTC	180 240 300 360 420 480 660 660 720 780 840 900 1020 1140 1200 1140 1320 1380 1440 1560 1560
45 50 55 60	AGCATTGCAG GAACTCCAT ATTACACTAA ATAACTGAAG ATAAAGATT TCATATGAAA TACACCTAC TTCCTACTGA GAATGGGCCC ATAAATGGGCCC ATAAATGGGCCC ATTATCTAC ATTACACAC GGTGACACAC GTCACACAC GTCACACAC GTCACACAC CTCACACAC CACAAATTA TCAGCTAAAA AAACTGAATG CTTCTTGGCA CTGGGTTCAT TTCTTTGTCA CTGGGTACT TTCTTTGTCA CTGGGTACT CTCTGGAACTC CTCTGGTACT CTCTGGAACTC CTCTGGTACT CTCTGGAACTC AAACCTCACC	GTCCTATTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT ACATCCGTTG AAAATCAAAT AAAGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCCAT GTGACAAAGT TCCTTCACAT TCGTGGGCAT ACAGCAATGA CAGCAATGA CAGAAAGCTTA ATTGCTTACC CTGCAGCCCC CAGAAATTTTA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC CACCAAGAA TTTTTGTAAT ACAACAAGCC GGCTGTTTA ACAACAAGC TGCCAGTTTC TGATCGAAAG CATTTGTTAA TGGCTCTGTG CACTGTGTC CACTGTGTC AAACCACACACACACACACACACACACACACACACAC	TTTGTGACTC CTTCAAGACA CCAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AAGGTGTTCAT AATGCAACTG GCAAGTACCC GCATGGGATG GCAGTCCAC GTGCTGGATG GCAGATTTTT GACAGCAAAG TTGCTGGTTT GGCGTTAAGA ATGATATTAG AGCAGTATTA GAGCATGATTG GAAGTATTAC AGCATGATTT GAATTATCAC AGCATGATTG AATTATCAC AGCATGATTA ATTCACCTTG	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTGACTA TCTGACATCAC TTAGTAAGCT CATCAATCAC TAGTACAGC CATCACTCCCC ATGACCAGC ATTACTCAGC ATTACTCAGC ATTACTCAGC ATTACTCAGC ATTACTCAGC ATTACTCAGC ATTACTCGC AAGATTCA GCAACATTCA GTCTTCCAGC AAGATTCA GTCTTCCAGC ATGCTTTCAG ATGCTTTCAG ATGCTTTCAGG ATGCTTTCAGG ATACTTTCAGG ATACTTTCAGG ATACTTTCAGG ATACTTTCAGG ATACTTTCAGG ATACTGTGGG AAGATTCAGG	CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTTGAA AGCCCAGCTA CACCACTGTA GGTGGTTGAA AGATTTCC AGGTTTAAAG TTCATGATAAG CTCCATTGCC AGGTTTAAAG CTCCATTGCC AGGTTTAAAG CTCCATTGCC AGGTTTAAAG CTCAATAGC CAGAATTTCC CAACGACACT	180 240 300 360 420 480 540 660 780 840 900 1020 1140 1260 1320 1380 1440 1500 1620 1680
45 50 55	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGCCC GTGTGTGAAA GGATGCACCT TTCTACCACA GGTTATCTT CTACCACA GTTATCTT CTACCACA GTCTACACACA GTCTACACACA GTCTACACACA TTCACACACA ATCATCACAC CTCCTACAAATTA AAACTGAATG CTTCTTTGCCA TCTCTTGCCA TCTCTTGCACAC TCTCTTGCACAC TTCTTTGTC TCTGGAACTG AAACCTCACC ATGTTTCTTAC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGGTCCTTG AGTGCAA GCTTTCCCAT TGTGCAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA CAGACATCAC GAAAAGCTTA ATTGCTTACC CTGCAGCCCC CAGATATATC GAGACATTTA TACATTGAA TTACGTGGCA TACATTGAA TTACGTGGCA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA ATTTGTAAT CCTCAGAAGT GGCTGTTT ACAACAGCT TGCCAGTTTA ACAACAAGCC TGCCAGTTTC TGATCGATAA CATTTGTTAA CATTTGTAAT ACACCAGT CACTTGTTC ACTTGTTCA CATTTGTTCA TGGCTCTTGT CACTGTGTTC AATCTGGAG AAACTCCAAT CCAGCAACAT CCAGCAACAT CCAGCAACAT GCCCAGTTGT TCAAACACGTG GCCCAGTTGT GCCCAGTTGT TCAAACACATG GCCCAGTTGT GCCCAGTTGT TCAAACACATG GCCCAGTTGT GCCCAGTTGT TAAACACATG	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATCA GATGAGTATCA GCAAGTACCA GCAAGGATACCA GCAAGGATCAC GCATGGATG GCAGGATTCCAC GCAGGATTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG TTGCTGGTTT GGGCTTAAGA ATGATATTAC AGCAGTGGTT GAATTATCAC AGCATGATTG ATTCAGCTTG ATTCAGCTTG ACTGGGATA CCTCCTGAGA	TCCTGGTTGC ATGGGTATAA CAGCAAAAT GAAGACATGGGCACATGG ACATTCATTT GAGGCCGAGT ACAACATCACTTAGTAGACT CATCAATAAT ACAACCAAGA TAATCACAGA TAATCACAGA ATTTGATGC GAGAGATCAC CATCAATAAT TGTCCAGCAA ATTTGATGCC CATATCTCCC AAGGATTGA TGACCAGGG CATATCTGCC AAGGATTGA TGACCAGGG CAACATTCA AAGATTCACAGA AATGCTTCACA AAATACAGGG TTCTTACAGG AAAGATTCAC AAAGATTCACGC AAAGATTCACGC TTCTTCCAC AAAGTACAGG TTCTTCACG AAATACAGG TTCTTCTGGG TTATATTATT	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATTCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATCAAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTTAA AGCACCAAC CCCATGTA CGCTGTAAA CCCACTGTA CGTGGTTGAA AGATGATAAG CTCCATTGCC TGAAGAATTTCC TGAAAATGTC CAACGACACT TGATCCTGAT	180 240 300 360 420 540 600 660 720 780 840 900 960 1020 1140 1260 1320 1380 1440 1500 1560 1680 1740
45 50 55 60	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGACCT CTACCACA GTATCACACA GTATCACACA ATTCATCACACA ATTCATCACACA ATTCATCCT CACCAAATTA TCAGCTAAA AAACTGAATC CTTCTTGGCA CTGGTTCATT CTCTTGGCA CTGGTTCATC TCTTTGTTC TCTGGAACTC AAACTCACAC ATGTTTCATC AAACTCACAC ATGTTCATC AAACTCACAC ATGTTTCATC AAACTCACAC ATGTTTCACC AAGGAAAAT GGACGAAAAAT GGACGAAAAAT GGACGAAAAAT	GTCCTATTTG TCCTGGAGC ATCCTCAGTT TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTTT ACTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCAT TCGTGGGCAT TCGTGGGCAT ACAGCAATGA CAGAATGA CAGAATGA CAGAATGA CAGAATGA CAGAATTAA ATTGCTTACC CTGCAGCCC CAGATATATC CAGACATTTT ACAATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATTGAA ATTACATGAA ACTACACAAA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA AATTTGTAAT CCTCAGAAGT GAATGGACT GGCCGTTTTT TGAATGGACT GGTCTGTTTA ACAACAAGCC TGCCAGTTTC TGATTGAAA CATTGAAA CATTGAAA CATTGAAA CATTGATAC CATTGTCA AAACTCGAA AAACTCCAAA AAACAAGTC CAGCAACAT CAAGCAACAT CAAGCAACAT CAAGCAACAT AAACACAGTG GGCCAGTGTT TAATTTTATC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGGTTCAT AACTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATT GACACCAAGATTTT GGCGTTATT GGCGTTATA ATGATATTA AGGATATTA AGGATATTA AGCAGAAG TTGCTGGTTT GACAGCAAGA TTGCTGGTTT CACTGTGTT CACTGTGTT CACTGTGTT CACTGTGTT CACTGTGTT ACTGTGGTT ACTGTGGTT ACTGTGGTT ACTGTGGATA CCTCCTGAGA ACCAATCTAA	TCCTGGTTGC ATGGGTATAA CAGCAAAAT GAAGACATGG GACAATGC ACATGCAATGACAA CTGACATGAC TTAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAGA TAATCACAGA TAATCACAGA TATTCTGCC CATCAGCAA ATTTGATGCA GAGAGTTAG GAGAGTTAG GAGAGTTAG TACACCAG TGTCCAGCAA TATTCTGCC CATCACTACAGA TAGCATCAG TGTCCAGCAA TTTGATCAG GAGAGTTAG TGACCAGCG CAACATTCA TGACCACCG TTCTTACAGG ATACTGTCGA ATACTGTCGA ATACTGTGGG TTATTATTTTC CTTTCGGAC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCAGCT GATGGCAGAG GATTGTTGAA AGCACCATAT CACCACTGTA AGCCACTGTA AGCTCATTGCA AGTGTGAA AGATGATAAG TCCATTGCC AGGTTAAAG TTCATTCCATTGCC TGAAAATGTC CAACGACACT TAGATCTCTGAT AGCTAGTT CATCCTGAT AGCTAGTT AGTCTGAT AGCTAGTCT TGATCCTGAT AGCTAGTCTT	180 240 300 360 420 480 660 660 720 780 840 900 960 1020 1140 1200 1140 1320 1380 1440 1560 1660 1620 1680
45 50 55 60	AGCATTGCAG GAACTCCAT ATTACACATA ATAACTAGAA ATAACTAGAA ATAACTGAG TACACCTAC TTCCTACTGA GAATGGGCC ATAAATGGGCC ATAAATGGCC TTCCTACTGA GGATGCACCT AGTTTATCTT CTACCACA GTACAGCTG GCTGACAGAC TTCACCACA GTACAGGCTG CTGACAGAC CTCCTACACA ATTCATACCT CACCANATTA TCACCTAAAT CTTCTTGGCA CTGGTTCAT TCTTTGTC TCTGGAACTC AACCTCAC ATGTTTCTTG AAACCTCAC ATGTTTCTTG AACCTCAC ATGTTTCTAC ATGTTTCTAC ATGTTTCTAC AGCAAAAT TGGATTCAT TGGGATCAC ATGTTTCTAC AGCAAAAT TGGATTCAT TCTGGAACTC AGGACGAAAAT TGGATTCCAG TGGATACAAT TGGATTCCAG TGGATACAT TGGATTCCAG TGGATCCAC ATGTTTCTAC ATGTTTCTAC ATGGATTCCAG TGGATCCAC ATGTTTCTAC ATGGATCCAC ATGTTTCTAC ATGTTTCTAC ATGGATCCAC ATGTTTCTAC AT	GTCCTATTTG TCCTGGGGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAAGTCCTTG TTATCTACAA AGGTCCTTG TCCTTGGTTGA GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA AAAGCTTAC CTGCAGCCCC CAGATATATC CAGACATTAC ATTGCTTACA TTACATTGAA TTACATTGAA TTACATTGAA TACAGCACAAA GAACACCAAA GAACACCAAA	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACAGCTGGC GGGTGTGTTC CTAAAGTGACA ATTTGTAAT CCCCAAGAA ATGTTGATA ACACCGAA ATTTGTAAT CCTCAGAAGT GGACTGGTTTA CCTCAGAAGT GAATGGACA CATTTGTTAA CCTCAGAAGT CAACAAGCC TGCCAGTTTC TGATCGAAA CATTTGTTGA CACTTGTGT CACTGTGTG CACTGTGCT CACTGT CACTGTGCT CACTGT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTATAATATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GACAGCATATT GACAGCAAAG TTGCTGGTTT GGGCTTAAGA ATGATATTAG AGCAGTACTT GACAGCTACT GACAGCTTCCAC GTGCTGGTT CACAGCTAAG TTGCTGGTT CACAGCTAAG TTGCTGGTT CACAGCTAAC ATGATATTACA ACCAATCTAA TGGACTTACA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTTGACATCAC TTAGTAAGCT CATCAATAAT ACAACCAGA ACAACCAGA ATTTGATGACGA CATCTCCCAC AGGAGTTCAC GAGGATTCAC GAGGAGTTCAC GACAATTCA GACAGCGG CAACAATTCA GTCTTACAGG ATGCTTACAGG ATGCTTACAGG TTATATATT	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAGAA AGTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTGTGAC ATTCTGTGAC AGCCATAT GATTGTCATAAG GATTGTTGAA AGCCCAGCTA CACCACTGTA CGCATGTTAAG GTTGTTAAG TCCATTGCC AGGTTTAAAG CTCATTGCC AGGTTTAAAG CTCATTGCC TGAAAATGTC CAACGACACT TGATCCTGAT TGATCCTGAT TGCCATCAT TACCCATCAT	180 240 300 360 420 480 540 600 660 720 780 840 900 1020 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800
45 50 55 60	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGACA GAATGGACA GATTAGAAA AACATTACTACACACA ATTACACACA ATTACACACAA ATTACACACAA ATTACTACACACA ATTCATACCT CACCAAATTA TCAGCTAAAA AACTGAATG CTTCTTGGCA CTGGGTTCAT TCTTTGCCA ATTCTTTGCCA ATTCTTTGCCA ATTCTTTGCCA ATTCTTTCTC CTGGACTGC ATTCTTCACACACA ATTCTTTCTTC CTGGACTGC ATTCTTTCTC AACCTCCACC ATGTTTCTAG GGCGAAATT GGCGAAATT CTCTTCACAC ATGTTTCTAG GGCGAAAAT TCCTCACC ATGTTTCTAG GGCGAAAAT TCCTCACC ATGTTTCACAC TCTCTCCACA TCTCTCCACA TCTCTCCACA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAAATGT AATACAGAG ATGATAACTTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA CTGTGGGTTGA AGATGTCCAT TCGTGGGCAT TCCTTCAACT TCGTGGGCAT ACAGCAATGA ACAGCAATGA CTGCAGCCC CAGATATATC CAGACACTCAA TTACGTGGCA TTACACTACAC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA ATTTGTAAT CCTCAGAAGT AGCACCCA GAATGGACT GGCTGTTTA ACAACAAGC TGCCAGTTTC TGATCGAAG CATTGTTCA TGGTCTGTTG CACTGTGTC CACTGTGC CACTGTGC CACTGTGCT CACTGTGC CACTGTGCT CCCTGGGCAC GCCAGTGGT TAATTTTATC CCCTGGGCAC GACAGTGACC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGATAGATA CAGAGATACA GATGGGAAAAT TACGGATCAC GCAAGTACCA GCAAGTACCA GCAAGTACCA GCAAGTACCA GCAGGATG GCAGGATG GCAGGATT GACAGCAAAG ATGAATTT GACAGCAAAG ATGATTACAC ACTGTATACA ATGAATTT CACCAGCAAGA ATGATATTACAC ACTGTGGATG ATTCAGCTT CACCATCAGA ATCAGCTACA ACTGTGGATA ACTGTGGATA CCTCCTGAGA ACCAATCTAA TGGACTTACA TCTCGCGCCT	TCCTGGTTGC ATGGTATAA CATGCAACAT GAAGACATAT GAAGCCCAGT ACACTCACTT GAGGCCAATGC ACATTCATTT GAGGCCAATCA CTGACATCAC TTAGTAAGCT CATCAATCAC ACACCACAC ACATCACAC ACATCACAC ACATCACC ACACACAC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCACCAAAC CTCTGCTGAC ATTCTCGCTGAC ATTCTCGCTTAC AGGCATTTTAAGAA AGCACCAAAC CTCTGCTGAC ATTCTCGCTTAC AGTGTTGAA AGCACCATAAC CTCTGTTGAA AGCACCATTAAC CTCATTGCC AGGTTTAAAG AGATTATCC TGAAAATGTC TGAAAATGTC TGAACACTT TGATCCTGAT AGCTACTCTT TACCCATCAT TGCCCCCA	180 240 300 480 540 660 720 780 840 900 960 1020 1140 1260 1320 1380 1440 1500 1560 1680 1740 1860 1860 1920
45 50 55 60 65	AGCATTGCAG GAACTCCAT ATTACAAAGATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGACCCTAC TTCACCACA GTACAGCTG GTACAGACC TTCACCACA GTACAGACC TTCACAGAACC TTCACACAATTA AAACTGAATG CTTCTTGGCA CTGGGTCAT CTTCTTGGCA CTGGGTCAT TCCTTGGAACTG AACCTCACC AAACTCAATTA GGATTCCAG GGAGAAAAT TGGATTCCAG GGCGATTCCAG GGAGAAAAT TGGATTCCAG GGCGAAATT TGGATTCCAG GGCGAAAAT TGGATTCCAG GGCGAAAAT TGGATTCCAG GCCACTTGGAA CTCTTGCAAG CCCCCTTGGA	GTCCTATTTG TCCTGGGGGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AAATCAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGATGTGCAG GCTTTCCACT TCGTGGGCAT TCGTGGGCAT ACAGCAATGA CAGACATCAG GAAAAGCTTAA ATTACTTACA ATTACTTACA ATTACTTACAC GAAAAGT TCCTCAACT CTGCAGCCCC CTGCAGCCCC CAGATATATC AGACATTTA ATTACTTACA ATTACATTGA ATTACGTGGCA ACTACACAAA GAACAGCTAA CACTAAAA CACTGAAAGT AAGCCTTTGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCAA AATTTGAT CCTCAGAAGT GGATGTTA ACACCAA ACAGCTGGC GGATGTGTT GATGGACT GGTCTGTTT GGTCTGTTT TGATGACA CCCCAAGAAT CCAGAAGT CACAGTTT CACAGTACA TGGCTCTGTG CACTTGTGTC CACTGTGCTC CACTGGGACAT AAACACAGT GGCCAGTGGT TAATTTTATC GCCTGGGCAC GGCAAGGACAT TAATTTTATC GCCTGGGCAC GACAGTGAC GACAGTGAC GACAGTGAC GACAGTGAC	TTTGTGACTC CTTCAAGAC CTTCAAGAC CCAGAACCTCA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATTA AATGCAACTC GCATGGATCAC GCAGGATCCC GCATGGGATG GCAGGTTCCAC GTGCTGGATG GCAGGAATTTT GACAGCAAAG TTGCTGGATG ATGATATTAG AGCATTACAC AGCATGATTT GACTTGATT GACTTGGATT GACTTGGATT GACTTGGATT ACTTGGATT ACTTGGATT CACTTGGATA ACTTGAGTT ACTTGGATT TGGACTTCAA TGGACTTAAA TGGACTTAAA TGGACTTCAA TCTCGGCCT AGCCTCCATT	TCCTGATTGC ATGGGTATAA CAGCAAATG GAAGACATGG GACATGC GACATGC ACATCATT GAGGCCGAGT ACAGCACATG CATCACATCA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA ACCACCAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTAAAG AGCACCATGTA AGCCCAGTAA CCCATGTA AGCACCATGTA AGCACACTGTA CGGGTTGAA AGATATACC TGATCATAAG TTCATTGCC TGAAAATGTC CAACGACACT TGATCCTGAT AGCTAGTCTT ACCCATCGT TGATCCTGAT TGGTCCCCCAT TGTGCCCCCA TGTGATGAT	180 240 300 360 420 480 660 660 720 780 840 960 1020 1140 1250 1320 1380 1440 1560 1680 1680 1740 1800 1800 1800
45 50 55 60	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAACTGAAG ATAACTGAAG ATAACTGAAG TCATATGAAA TCATATGAAC TTCCTACTGA GAATGGGCCC ATGTGTGAAA GGATGCACCT AGCTACACA AGTTTATCTT CTACCACAC GTACAGGCTG GCTGACAGAC ATTCATACCT CACCAAATTA TCACCAAATTA TCACCTAAAA CCTACAAACT TCCTGCAAC ATGTTTCTTG AACCTCACC ATGTTTCTTC AGCACACA TCTTCTGCAC ATGTTCTTCAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTTCTAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTTCTAC AGCACTACAC ATGTTTCTAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTCTACAC TCTGCAAG TCTCTGCAAG TCTCTGCAAG TCTCTGCAAG TCCTTGCAAG TCCTTCCAAT	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT ACATCAGGAG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATTTT ATCATTGAT ATTACATGAGCA TTACATGACA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATATT ATCAATTGAA TTACGTGGCA CACTCCAGAAAGT CCCTGAAAGT TAGCCTTGTAAAGT TAGCCTTGTAAAGCT TGAAACGGG	CAACCTGAAG TGGAGTACAG ACTGAGAAT CCTATTTAAT CACATGGAAA ACATGGAAA AACAGCTGGC GGGTGTGTTC CTAAAGTGACA ATTTTGTAAT CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GGACTGGTTTTC GATTGGAAA ACAACAAGCC TGCCAGTTTC TGATGAAAG CATTTGTAAT CCAGTTTC TGATGAAAG CATTTGTAAT CCAGTTTC TGATGAAAG CATTTGTTAA CACTGAGAG CATTTGTTG AAACTCGAAG CCAGTGGTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGTG CCCGGCACAT TAATTTTATC CCCTGGGCAC CACAGTGACC CACAGTTTTATCC CACAGTACC CACAGTGACC CACAGTGACC CACAGTTTTATCC CACAGTACC CACAGTTTTATCC CACAGTACC CACAGTAC CAC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAC GAGGGAAAAT TACGGATCAC GATGGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GCAGAATTTCACC GCATGGATG TGCTGGATG TGCTGGATG TGCTGGTTATA ATGCAAATTTA AATGCAAAGT TGCTGGTTCAC TGCTGGATG CACAGCAAAG TTGCTGGTTATA ATGCACTCAC ATGCTTATACA TGCATGATAC ATCCTCTGAGA ACCAATCTAA TGGACTTACA TCTCGCGCCT ACTCCCTTAATG	TCCTGATTGC ATGGGTATAA CAGCAAAAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACAATGACAA CTGACATGACA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAGAA AGTTCATGCA ATCCTGTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGGCTA AGCCAAGT CACCACTGTA AGCCACTGTA AGCCACTGTA AGCTGTGAC AGTTTTAAG GTTGTTGAA AGTTGATAAG CTCCATTGCC AGGTTTAAAG TAGAATTTCC TGAAAATGTC CAACGACACT TGATCCTGAT AGCTAGTTT TACCCATCAT TGTGCCCCCA TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCATT TGCCCACAGTT	180 240 300 480 540 660 720 780 840 900 960 1020 1140 1260 1320 1380 1440 1500 1560 1680 1740 1860 1860 1920
45 50 55 60 65	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAACTGAAG ATAACTGAAG ATAACTGAAG TCATATGAAA TCATATGAAC TTCCTACTGA GAATGGGCCC ATGTGTGAAA GGATGCACCT AGCTACACA AGTTTATCTT CTACCACAC GTACAGGCTG GCTGACAGAC ATTCATACCT CACCAAATTA TCACCAAATTA TCACCTAAAA CCTACAAACT TCCTGCAAC ATGTTTCTTG AACCTCACC ATGTTTCTTC AGCACACA TCTTCTGCAC ATGTTCTTCAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTTCTAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTTCTAC AGCACTACAC ATGTTTCTAC ATGTTTCTAC TCTGGAACTC AACCTCACC ATGTTCTACAC TCTGCAAG TCTCTGCAAG TCTCTGCAAG TCTCTGCAAG TCCTTGCAAG TCCTTCCAAT	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT ACATCAGGAG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATTTT ATCATTGAT ATTACATGAGCA TTACATGACA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATGA CAGCAATATT ATCAATTGAA TTACGTGGCA CACTCCAGAAAGT CCCTGAAAGT TAGCCTTGTAAAGT TAGCCTTGTAAAGCT TGAAACGGG	CAACCTGAAG TGGAGTACAG ACTGAGAAT CCTATTTAAT CACATGGAAA ACATGGAAA AACAGCTGGC GGGTGTGTTC CTAAAGTGACA ATTTTGTAAT CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GGACTGGTTTTC GATTGGAAA ACAACAAGCC TGCCAGTTTC TGATGAAAG CATTTGTAAT CCAGTTTC TGATGAAAG CATTTGTAAT CCAGTTTC TGATGAAAG CATTTGTTAA CACTGAGAG CATTTGTTG AAACTCGAAG CCAGTGGTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGTG CCCGGCACAT TAATTTTATC CCCTGGGCAC CACAGTGACC CACAGTTTTATCC CACAGTACC CACAGTGACC CACAGTGACC CACAGTTTTATCC CACAGTACC CACAGTTTTATCC CACAGTACC CACAGTAC CAC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAC GAGGGAAAAT TACGGATCAC GATGGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GCAGAATTTCACC GCATGGATG TGCTGGATG TGCTGGATG TGCTGGTTATA ATGCAAATTTA AATGCAAAGT TGCTGGTTCAC TGCTGGATG CACAGCAAAG TTGCTGGTTATA ATGCACTCAC ATGCTTATACA TGCATGATAC ATCCTCTGAGA ACCAATCTAA TGGACTTACA TCTCGCGCCT ACTCCCTTAATG	TCCTGATTGC ATGGGTATAA CAGCAAAAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACAATGACAA CTGACATGACA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCATGCAA ACCACCAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTAAAG AGCACCATGTA AGCCCAGTAA CCCATGTA AGCACCATGTA AGCACACTGTA CGGGTTGAA AGATATACC TGATCATAAG TTCATTGCC TGAAAATGTC CAACGACACT TGATCCTGAT AGCTAGTCTT ACCCATCGT TGATCCTGAT TGGTCCCCCAT TGTGCCCCCA TGTGATGAT	180 240 300 360 420 480 660 660 720 780 840 960 1020 1140 1250 1320 1380 1440 1560 1680 1680 1740 1800 1800 1800
45 50 55 60 65	AGCATTGCAG GAACTCCAT ATTAGCAATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGACA GAATGGACA GTGTGTGAAA GGATGACAC TTCACACACA GTTACACACA GTTACACACA GTTACACACA ATCATACTCACACA ATCATACTC CACCAAATTA TCAGCACAATTA TCAGCTAAAA AACTGAATG CTTCTTGGCA TCTCTTGCA ATCTTTTTTTT TCTGGACTG TCTGGACTG GGGATCAC ATCTTTTCTAG GACCACACTCAC ATGTTTCTAG GGCGAAATA TCTCTGCAAG GCCACTGTGG TTCTTGCAAG GCCACTGTGG TATCCCAAG TTCTTGCAAG GCCACTGTGG TATCCCAAG TATCCCAAG TCTCTGCAAG GCACCTGTGG TATCCCAAG TATCCCAAG TATCCCAAG TATCCCAAG TCTCTGCAAG GCACCTGTGG TATCCCAAG TATCCCAACA TATCCAACA TATCCCAACA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAAATGT AATACAGAG ATGATAACTTT ACCTCCGTTG AAAATCAAAAT AAGGTCCTTG TTATCTACAA CTGTGGGTTGA AGATGTGCAG GCTTTCCCAT TCGTGGGCAT TCCTCAACT TCGTGGGCAT ACAGCAATGA CAGACATCAC GAAAAGCTTAA ATTGCTTACC CTGCAGCCC CAGATATATC AGGCAATTAC TACAGCACC ACTACACAAA TTACGTGGCA TACACAAAA TACGTGCA ACTACACAAA CCCTGAAAGT AAGCCTTAA CCCTGAAAGT AAGCCTTAA CCCTGAAAGT AAGCCTTAA CCCTGAAAGT AAGCCTTAGC CTGGAACACGG CTGGAACATCC CTGGAACACGG CTGGAACATCC CTGGAACACGG CTGGAACACGG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCAAGAA ATGGACCA ATTTGTAAT CCTCAGAAGT GGCCCGAAGAA ACACTGGC GAATGGACT CCTCAGAAGT ACACAGACA CCCCAGAAGT CCTCAGAAGC GATTGTTA ACACAGCC TGCCAGTTTC TGATCGAAG CATTGTTCA TGGCTCTGTG CACTGTGCT CACTGTGCT CACTGTGCT CACTGTGCT TAATTTTATC GCCTGGTG GCCAGTGCT TAATTTTATC GCCTGGCAC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC GACAGTGACC CGATTTATCCC TGTTACCCTG	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAACAAGA GCTAATAATA GAGGGAAAAT TACGGATCAC GATGAGTATCA GATGGATTATA AATGCAACTG GCAAGGATGCC GCATGGGATG GCAGGATTCCAC GCAGGATTTTA GACAGCAAAG ATGAATTTT GACAGCAAAG ATGAATTACA ATGAATTACA ATGAATTACA ATGAATTACA ATGAATTACA ACTGTGGTT GACATGATTACA ACTGTGGTT CACATCAGA ATGAATTACA ATCAGCTAAGA ATGAATTACA ATCAGCTTG ATTCAGCTTG ATTCAGCTTG ATCCCTGAGA ACCAATCTAA TCGCCCCT AGCCTCCATT AGCCTCCATT ATTCTTAATG AGACTCCTTTG AGACTCCTTTG AGACTCCTTTG AGACTCCTTTT	TCCTGGTTGC ATGGTTATA ACAGCAAAT GAAGACATGGGCACATG GACATCATTT GAGGCCAGT ACATCACTT GAGGCCAGT ACATCACTCACTCACATAC CTACATCAC TTAGTAGAGC CTCTCCAC ACATCACTCCAC ACATCACTCAC ACATCACTCAC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT TTTTAAGAA AGTTCATGCA ATCCTGTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGCTGAC ATTCTGGCTA AGCCAAGT CACCACTGTA AGCCACTGTA AGCCACTGTA AGCTGTGAC AGTTTTAAG GTTGTTGAA AGTTGATAAG CTCCATTGCC AGGTTTAAAG TAGAATTTCC TGAAAATGTC CAACGACACT TGATCCTGAT AGCTAGTTT TACCCATCAT TGTGCCCCCA TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCCAT TGTGCCCCATT TGCCCACAGTT	180 240 300 360 420 480 540 660 720 780 840 900 1020 1020 1140 1260 1320 1380 1440 1560 1680 1740 1800 1920 1980 1990 2040 2100
45 50 55 60 65	AGCATTGCAG GAACTCCAT ATTACAAAGATTA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGCACCT TTCACCACA GTTATATCTT CTACCACA GTTATATCTT CTACCACA GTACAGACC GTCTACAGACC TTCACCACA ATTCATACCT CACCAAATTA AAACTGAATG CTTCTTGCAC ATGGTTTCTT CTGGAACTG AAACTTCATC AAGATTCAG GACCACAC TGGATTCAG GACCACAC TGCTTATCAG GACCACCC AGCCTGCACA TCCACCACAC TTCTTTCTCC AAGATTCAG GACCACCC AGCCCACCAC TCCTCCCAC TCCTCCCCAC TCCTCCCAC TCCTCCCAC TCCTCCCAC TCCTCCCCAC TCCTCCCAC TCCTCCCCAC TCCTCCCAC TCCTCCCAC TCCTCCCCAC TCCTCCCCCAC TCCTCCCCCCAC TCCTCCCCCAC TCCTCCCCCAC TCCTCCCCCCCC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AAATCAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGGTCCTTG TGTGCAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA CAGACATCAC GAAAAGCTTA ATTGCTTACC CTGCAGCCC CTGCAGCCC CTGCAGCCC CAGATATATC GAGACATTTA ATCATTGAA TTACATTGAA TTACATTGAA CACACAAA GAACAGCTTA CAGACAGTTA ACAGTAGCA CAGACAGTTA ATGATTTACC AGACACTTA ATGATTTACA ATACACAAA GAACAGCTTA CCCTGAAAGT CAGACAGTTTGT TGAAACAGCTA AAGCCTTTGT TGAAACAGCT CTGAAAGT CTGAGAGT CAGAGATC CTGGAGATC CTGTTTTT CTGAGATC CTGGAGATC CTGTTTT CTGATTGGAGATC CTGGAGATC CTGTATGT CTGTTT CTGTGTGAGT CTGTT CTGTT CTGTT CTGTT CTGTT CTGTT CTGTT CTGTT CTGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA ACCCCAAGAA TAGCACCAA AATTGTAAT CCTCAGAAGT GGCTGTTTA ACAACAAGCC TGGCAGTTTA ACAACAAGCC TGCAGTTTC TGATTGATTA ACAACAAGCC TGCAGTTTC CACTGTGTC CACTGGTGAAACTC CAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CACTGTGTC GCCTGGGCA CATTTTATCC GCAAAGAGAC ATTTTATCCC TGTTACCCTG	TTTGTGACTC CTTCAAGAC CTTCAAGAC CCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA CAGGACACTC GAGGGAAAAT TACGGATCAC GCAGGATCAC GCAGGGATC GCAGGATCCAC GCAGGGATC GCAGGATC GCAGGATCT GACGCTACAGA ATGATATTA AGCTTCAC ATGCTGGATG ACCAGTGGTT CACTGGATG CCTCTGAGA ACCATCTACA ATGATATCAC ATTCAGCTTG ATTCAGCTTG ATTCAGCTTG ATTCAGCTTC ACCTCTGAGA ACCAATCTAA TGGACTTACA TCTGGGCT ACCTCCATT ATTCTTAATG AGCACCCTTG AGACCCTTG ATTCTTTAATG AGACCCTTG AGACCCTTG AGACCCTTG AGACCCTTG ATTCTTTATTC	TCCTGGTTGC ATGGGTATAA CAGCAAACAT GAAGAGTATTA ACAGCAAAGAT GAAGACATGCAACAT GAGGCACAATGCAA CTGACATCACT TAGTAAGCT CATCAATAAT ACAACCAAGA TAATCACAGA TAATCACAGA TATCACAGA ATTTGATAGCT GCCAGCAA ATTTGATCAC GAGAGATCAG GAGAGTTGA TGCCAGCAA ATTTGATCAC GAGAGTTGA TGCCAGCAG AAGGATTTGA TGCCAGCGG CAACAATTCA AAAGTACAGG TTATATTATT CTTTTCGGAC CCCACTGACAA CCCAACTCAC TTCCTCATCC CCACTGTCAC ATGAGGATCAC CCACTGTCAC CCACTGTCAC ATGAGTGAGG CCTTTCCTCATCC CCACTGTCAC CCACTGTCAC ATGAGTGAGG CCCTTTGCTGC CCCCTTTGCTGC CCCCTTTGCTGC CCCTTTGCTGC CCCTTTGCTGC CCCTTTGCTGC CCCTTTGCTGC CCTTTGCTGC CTTTGCTGC CTTTGCTGC CCTTTGCTGC CTTTGCTGC CTTTTCCTTC CTTTTCCTTC CTTTTCCTTC CTTTTCCTTC CTTTTCCTTC CTTTTCTCTC CTTTTCCTTC CTTTTC CTTTTTC CTTTTC CTTTTC CTTTTC CTTTTC CTTTTC CTTTTC CTTTTC CTTTTC CTTTTTC CTTTT	CTTAAGTTCA TGGATTGCTC TAAGGAAAT ANAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAAGAA GTTCACCAAAC CTCTGCTGAC ATTCTCGCTAC AGCACCAAAC CTCTGCTGAC ATTCTCGCTTAC AGGCATTATT GATGCCAACAC CTCTGCTGAC ATTCTCGCTTAAA AGCACCATAA GGTGGTTGAA AGGTGATAAG TCCATTGCC AGGTTTAAAG TAGAATTTCC TGAACACACT TGAACACT TGACCACTT TGCCCCCA TGTGCCCCA TGTGCCCCA TGTGCCCCAT TGCCACAGTT AGCTGATATT TGCCACAGTT AGGTGCTGAT	180 240 300 360 420 480 540 660 720 780 840 900 1020 1020 1140 1260 1320 1380 1440 1560 1680 1740 1800 1920 1980 1990 2040 2100
45 50 55 60 65 70	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAAAGATTT TCATATGAAA TAAACGCTAC TTCCTACTGA GAATGGCCCC ATGTGTGAAA GGATGAACCT AGGTTCACACA GTACAGACC TTCACAGACC TTCACAGACC TTCACAGACC TTCACAGACC CTACAGACC ATCATACTT CACACAATTA TCAGCTAAA AACTGAACC TTCTTGGCA CTGGTCAAT TCTTTGTTC TCTGGAACT AAACTGAATG GAGGTTCAT TCTTTGTTC TCTGGAACT AACCTCACC ATGTTTCATC AACCTCACC ATGTTTCATC GGACGAAAAT TGGATCCAG GGACGAAAAT TGGATCCAG GCCACTGGG TATACACAG GTTATAAAAA GTTATAAAAAA TATAGCTTGAA	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA ACAGCAATGA ACAGCAATGA ATTGCTTACC CTGCAGCCCT CAGATATATC CAGACATTTA ATTCATTGAA ATTCATTGAA ACTCAGCACTT ATCAATTGAA ACCCTGAAAG CCTGAAAGT TGAACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT ATGATGGAAT AAGCCTTTA AGCCTTTAGACAGGG CTGGAGATCT TGAACAGGG CTGGAGATCT ATGATGGAAT AAGTGCATGT	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA ATTTTGTAAT CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GAATGGACT GGTCGTTTT GAATGGACA GGTCTGTTTA ACAACAAGCC TGCCAGTTTC TGATGAAG CATTTGTAAT CCACTGTGTG CACTGTGTG CACTGTGCTC CACAGTGAC GCAAGTGAC GGAAGAGAC ATTTTATCC TGTTACCGTG TTACTCGAGG CAATCACTCT	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAC GAGGGAAAAT TACGGATCAC GAGGGATCAC GCAGGATCAC GCAGGGATG GCAGGATCCAC GCATGGGATG GCAGGATTT GCAGCAAAG TTGCTGGATT GACAGCAAAG TTGCTGGTTT GACATCACA ATGATATTAC ATCTGCGCTT ATTCTGCGCCT ATTCTTCACT AGCCTCCAT ATTCTTAATG AGCCTCCAT ATTCTTAATG AGCCCTTCA TTTCTTCACCTCT ATTCTTAATG AGCCCCTTC ATTCTTAATG AGCCCCTTC ATTCTTAATG AGACTCCTTC TATTTTTTTT TCCCCGCGCT TATTCTTTAATG AGACTCCTTC TATTTTTTTTT TCCCCAGCATAA	TCCTGATTGC ATGGTATAA CAGCAAAAT GAAGACATGG GACACATGG GACATGCAA CTGACATGACA	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAGAA AGACCAAAC CTCTGCTGAC ATTCTCGCTGAC ATTCTCGCTGAC ATTCTCGCTGAC ATTCTCGCTTGAT GATGGCAGAG GATTGTTGAA AGCCCACTGTA AGCCCACTGTA AGCTCATTGCC AGGTTTAAAG TCCATTGCC TGAAAATGTC CAACGACACT TGATCCTGAT AGCTACAT TGTGACCATCAT TGTGCCCCCA TGTGATCATTT TGCCACCAT TGTGATCATT TGCCACCAT TGTGATCATT TGCCACCAT TGTGATCATT TGCCACCAT TGTGATCATT TGCCACCAT TGTGATCAT TGTGATCATT TGCCACCAT TGTGATCATT TGCCACCAT TAGTGCTCCAT TGTGATCATT TGCCACCAT TAGTGATCATT TGCCACCAGTT AAGTGCTCAT TAATTGTAGAA CCACTCTATT	180 240 300 360 420 480 660 660 720 780 840 900 1020 1140 1120 11320 11380 1440 1560 1620 1680 1740 1860 1980 2040 2160 2220
45 50 55 60 65	AGCATTGCAG GAACTCCAT ATTACACATA ATRACATAA TCATATGAAA TCATATGAAA GATGGGCCC ATGTTGTGAAA GGATGACCT CTACCACAC GTACAGGCTG GCTGACAGAC CTACAGAACC TTCACCACA ATTCATACCT CACCAAATTA TCAGCTAAAA CTTCTTGGCA CTGGTTCAT TCTTGTCAC AGACTCACA AGACTCACA AGACTCACA AGACTCACA TCTTGGAAC CTGGTACAT CTCTGGAACT CTCTGGAAC TCTTGGAAC TCTTGGAAC TCTTGCAAG GCCACATGG CCACCAGAGA TTATACAATA TATACCTTGAA GCCCAGAGA TTATAAAAA TATAGCTTGA TCACGCGAGGT CCACGGGGTC CCAGGGGTC CCAGGGGGTC CCAGGGGTC CCAGGGGGTC CCAGGGGTC CCAGGGTC CCAGGGGTC CCAGGGTC CCAGGGGTC CCAGGGTC CCAGGTC CCAGGTC CCAGGTC CCAGGTC CCAGGGTC CCAGGGTC CCAGGTC CCAGGTC CC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAAGTCCTTG TTATCTACAA CTGTGGTTGA GCTTTCCCAT GTGACAAAGT TCCTTCAACT TCCTGGGCAC GAAAAGCTTA ATGCTTACC CTGCAGCCCC CAGATATATC ATTCATTCAACT TCATGGGCAT ATCATTGAA ATTCCTTCAACT ATCATTGAA ATTCCTTCAACT TCCAGCCCC CAGATATATC CTGAGCACC CAGATATATC ATCACTAAACT TACATTGAA CCCTGAAAGT AAGCCTTTAGC CTGAAAGT AAGCCTTTAGT AAGTGGAAT AAGTGGAAT AAGTGGAAT AAGTGGAAT AAGTGGAAT AAGTGCATGT AAGTGCATGT AAGTGCATGT AAGTGCATGT AAGTGCATGT AAGTGCATGT AAGTGCATGT	CAACCTGAAG TGGAGTACAG ACTGAGAAT CCTATTTAAT CACATGGAAA ACATGGAAA AACAGCTGGC GGGTGTGTTC CACAGAGA TAGCACCCAAGAA TTTGTAAT CCCCAAGAA TTGTGTAAT CACAGAGT GAATGGACT GAATGGACT GAATGGACT GAATGGACT GAATGGACT TGCAGATT TGCAGATT TGCAGATT CACTGAGAG CATTTGTTCA AAATTGTTCA AAATTGTTCA AAATTGTTC CACTGTGCT CACTGTGCT CACTGTGTC CACTGTGCT CACTGTGCC TGATCACTC TGATCACGT TTACTCGAGG CAATCACTCT TTACCCAGGT TTACCAGGT TTACCA	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCACA GAGGGAAAAT TACGGATCAC GATGGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GAGCTTCCAC GTGCTGGATG GCAGAATTTT GACAGCAAAG TTGCTGGTT GACAGCTAATA AGCAGTATTA AGCATGATT GACTTCCTGAGA ATTCATCAC ACTCCTGAGA TCTCCTGAGA TCTCCTTAACA TCTCCTGAGCT TATTCTTAAT AGACTTCTT ATTCTTAATT AGACTCCTTG TATTTTTTCT CCCAGCATAA TACACAGCAA	TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTTAGTAAGCT CATCAATAAT ACAACCAGA ACAACCAGA ACAACCAGA ATTTGATGACA ATTTGATGAC AGGGATTCA GAGGGATTCA GAGAGATTCA GAGAGATTCA GACAGTTCA AAGATCAGA AAGATCAG TTACTGGC CAACAATTCA GTCTTACAGG ATACTTTCAG AAGATTCAG CCTTACCAG ATCTTTCCGAC CCTGAACAA CCAACTCAGC CTTTCCTGCC CCCTGAACAA CCAACTCAGC CCCTGAACAA CCAACTCAGC CCCTGAACAA CCACTGTCAC ATGATGGAG CCCCCACGC CCCCCTGCACAATAT	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAGAA AGCACAAAC CTCTGCTGAC ATTCTGTGAC ATTCTGTGAC ATTCTGTGAC AGCACTAAT GATTGTCATGAC AGCACAGAC ATTCTGGTGAC ATTCTGGTTAA GGATGTTGAA AGCACAGAT CACACTGTA CACCACTGTA TGGATCATC TGAAAATGTC TGAACACT TGTGCCCCCA TGTGCCCCA TGTGCCCCAT TGCCACAGTT AGGTGCTGAT AAATGTTAAA CACCTCTATT TCCCACAGTT AGGTGCTGAT AAATGTTAAA CACCTCTATT TCAGATGAAT	180 240 300 360 420 480 660 660 720 780 840 900 1020 1140 1120 11320 11380 1440 1560 1620 1680 1740 1860 1980 2040 2160 2220
45 50 55 60 65 70	AGCATTGCAG GAACTCCAT ATTAGCAAA ATAACTGAAG ATAAAGATTT TCATATGAAA TACACCCTAC TTCCTACTGA GAATGGCCC GTGTGTGAAA GGATGCACC TTCACCACA GTTATCTT CTACCACA GTTATCTT CTACCACA GTCTACACAC GTCTACACAC GTCTACACAC TTCACCACA ATTAATCT CTCACACAC TTCACCACA ATTACT CTCTCTGCAAATT TCAGGTAAAA AAACTGAATG CTTCTTGCCA GGAGTCCAT TCTTTGCCA GGAGTCCAC TCCTCCAC ATTCTTCCC ATGTTCACC ATGTTTCTC ATGTTCACC ATGTTTCACC ATGTTCACC ATGTTTCACC ATGTTCACC ATGTTTCACC ATGTTCACC ATGTTTCACC ATGTTCACC ATGTTTCACC ATGTTCACC ATGTTTCACC	GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AGGCAAATGT ACATCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA AGGTCCTTG AGATGTGCAG GCTTTCCCAT TGTGCAAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA GAAAAGCTTA ACAGCAATGA CAGACATTA ATTGCTTACC CTGCAGCCC CAGATATATC GAGACATTTA ATTACTTACAA TACATTGAA TTACGTGGCA ACTACACAAA CAACAGCAA CAACAGCAT ACAGCACTTGT ACAGCACTTGT ACAGCACTTGT ACAGCACTTGT ACAGCACTTGT AGGCCTTTGT AGGCATGTAAACAGCAA AGGCTTTGT AGGCTGGAAGT AGGTCGAATGT AAGTCATGTA AATCAGTAGG	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA ACAGGTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA ACACAGCAGA ACACAGAAT ACACACAGAC CCCCAAGAA TAGCACCCAA CCCCAAGAA TAGCACCCAA CATTGTAAT CCTCAGAAGT GGCTGTTTC TGATCGATC TGCCAGTTTC TGATCGATC AAATCTGGAG AAACTCCAAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT CCAGCAACAT TAATTTATCC GCCAGTGGC GACAGTGGC TAATTTATCC TGTTCCAGG CAATCACCT TTACTCGAGG CAATCACCT TTACTCGAGG CAATCACCT TGTTACCAGGT CAGAAATGAG CAGAAATGAG CACAGGATGAC TTACTCGAGG CAATCACTCT TGTACCAGGT CAGAAATGAG CAGAAATGAG	TTTGTGACTC CTTCAAGACA CCTACAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA TACGGATACA AACTGTATTA AATGCAACTC GCAGGATG GCAGGATCCAC GCATGGGATG GCAGAATTTT GACAGCAAAGA TTGCTGGTTG TTGCTGGTTG AATTATACAC AGCATGATTAC ACCAATCTAA ACCAATCTAA TCTCGGCCT AGCCTCCATT ATTCTTAATA TCTCGCGCCT AGCTTCCTTC TATTTTTCT CCCAGCATAA TACACACCAA TACCACCAA TACCACCCAA TACCACCAA TACCACCCAA TACCACCCAA TACCACCCAA TACCACCCAA TACCACCCAA TACCACCAA TACCACCCAA TACCACCAA TACCACCCAA TACCACCAA TACCACCCAA TACCAACCA	TCCTGGTTGC ATGGGTATAA ACAGCAAAAT GAAGACATGGAACAT GAGCCAATGGAACAT GAGCCCAGT ACACTCACTT GAGGCCAATGCAA CTGACATCAC CATCAATAAT ACACCAAGA TAATCACAGA TAATCACAGA TATCACAGA ATTTGATGC GAGAGATTGA ATTTGATGC AAGATTTGA TGCCAGCAA ATTTGATCACG AAGATTTGA TGCCAGCAG AAGATTTGA TGCCAGCAG AAGATTTGA CATATCTGCC CAACTATCTGCC CACTTTCCTC CCCTGACAA CCCAGCTGCACA CCACTTCCAC CCACTTGCTC CCACTTCCT CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTTCCTC CCACTTCCAC CCACTCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTCAC CCACTTCCAC CCACTTCCAC CCACTTCCAC CCACTCAC CCACTC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAAGAAA AGATGATCCA CACACTAAT GTTTGTCCAT ACCTTTCTTAC AGGCATTTT TTTTAAAGAA GTTCATCATCAT GTTTCATCAT ACTTTCTAC AGGCATTTT TTTTAAAGAA GTCCAAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTAAA AGCACCATGTA CACCACTGTA CGGGTTGAA AGATTTCC TGAACACTCTAC TGATCCATTGCC TGATCATAC TGATCCTGAT AGCTAGTTT TACCCATCAT TGGTCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TTTCACATCAT TGCCCCCA TGTGATCAT TTCACATCAT TCAGATCAT TCAGATCAAT TAGCCCAAGTC	180 240 300 360 420 480 660 660 720 780 900 960 1020 1140 1260 1320 1380 1440 1500 1560 1680 1740 1890 1980 2040 2100 2100 2100 2220 22280 2340
45 50 55 60 65 70	AGCATTGCAG GAACTCCAT ATTACAAAGATTT TCATATGAAA TAAACTGAAG ATAACTGAAG ATAACTGCTAC TTCCTACTGA GAATGGGCCC GTGTGTGAAA GGATGACCT CTACCACA GTATCATATTATCTT CTACCACA ATTCATCACACA GTACAGCTG GCTGACAGAC ATTCATCCT CACCAAATTA TCAGCTAAA AAACTGAATC CTTCTTGGCA CTGGTTCAT CTCTGGAACT TCCTGGAACT AAACTCACA GGACGAAATA TCCTCTCGCA GGACGAAAT TCCTCTGGCA TCCTCCACGAG GTATACATA GGATTCACA GGACGAAAT TCCTCCAGGAG TTTATACATA GAGCCAGAGA GTTATACATA CCACCTCAGG TATACAATG AGCCCAGAGA GTTATACATG CCACGGGAGT CCACCTGGACTG AAACTCGAAC TCCCACGGAG TTATACATA AAACTGAAC TCCCACAGGA TTATACATA CCACCTCAGGAG TTATACATG CCACGGAGT CCCCACGGAG CCCCCAGGAG CCCCCAGAG CCCCCAGGAG CCCCCAGGAG CCCCCAGGAG CCCCCAGGAG CCCCCAGGAG CCCCCAGGAG CCCCCAGAG CCCCCAGAG CCCCCCAGAG CCCCCCAGAG CCCCCCAGAG CCCCCCAGAG CCCCCCCAG CCCCCCCC	GTCCTATTTG TCCTGGAGC ATCCTCAGGT ATATACCTGC AGGCAAATGT AAATACAGAGG ATGATAACTTT ACTCCGTTG AAAATCAAAT AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATGTGCAG GCTTTCCATT TCGTGGGCAT TCGTGGGCAT ACAGCAATGA CAGAAATGA CAGAAATGA CAGAAATGA CAGAAATGA CAGAATTAC CAGAAATGA CAGAATTAC CAGACATTAC ATTACATTAC	CAACCTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACA CCCCCAAGAA TAGCACCCAA AATTTGTAAT CCTCAGAAGT GAATGGACT GGTCGTTTGTAAT CCTCAGAAGT GAATGGACT GGTCGTTTC TGATCGATTC TGATCGATAC CACTGTGCTC TGAAATCTCAGA TAACCAGTG TTATTTATCC TGAAAATGAC CTTTACCCTG TTACCAGGG CAATCACTCT TGTACCAGGT CAGAAATGAGC CAGAAATGAGC CAGAAATCACTCT TGTACCAGGT CAGAAATGAGC CAGAAATCACTCT TGTACCAGGT CAGAAAATGAGA AGTGCTCGGGA AGTGCTCGCGA AGTGCTCGCGA AGTGCTCGGA AGTGCTCGGGA AGTGCTCGCGA AGTGCTCGCA AGTGCTCGC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAC GAGGGAAAAT TACGGATCAC GAGGGATCAC GCAGGGATG GCAGGATC GCAGGGATG GAGCTTCCAC GTGCTGGAT GACACCAAG TTGCTGGTT GACACCAAG TTGCTGGTT GACATATAC AGCATACT GACATCTAC ATTCAGCTT ATTCAGCTTC ACTCTGCAGC ACCAATCTAA TGGACTTACA TCTCGCGCCT ACCCCCATT ATTCTTAATG AGCCTCCATT ATTCTTAATG AGCACCCAT TATCTTTCT CCCAGCATAA TACCAGCAA GAGGAGCGAA GAGGAGCGAA GAGGAGCGAA GAGCACCAAC TCCCAGCATAA TACCACGCAA TCCCCAGCATAA TACCACGCAA GAGGAGCGAA GAGGAGCGAA GAGGAGCGAA GTTCCAGCTG GTTCCAGCTAC GTTCAGCTAC GTTCCAGCTAC GTTCCAGCTA	TCCTGGTTGC ATGGGTATAA ATGGGTATAA CAGCAAAAT GAAGAAAT GAGCAAAAT GAGCCCAGT ACAATGACAA CCAATGACAA CCAATGACAA CCAATGACAA CCAATGACAA ACAATCAAGA TAATCACAGA TAATCACAGA TAATCACAGA ATTTGATGAG GAGAGATCAG GAGAGATCAG GAGAGATCAG ATTTGATCAGC CATCACCAA TAGCACCAG ATGCCCCCCC CACCAGCAA TATTCTGCG CACCAGCAA TACCAGCA TTATTTACAGG ATACTTCAG AAAGTACAGG TTCTTCAG AAAGTACAGG TTATATTATT CTTTTCGGAC CCCACTGACCAA CCACTGTCAC ATGATGAGG CTCCTTATCC CCACTGTCAC ATGATGAGG CCCCCAGC ACGGTAATAT AGTGGGGCTT GCCCCCACCC	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAGAAAT AAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTT TTTTAAGAA GTTCATGCAA AGCACCAAAC CTCTGCTGAC ATTCTCAGCT GATGGCAGAG GATTGTTGAA AGCACCACTAT CACCACTGTA AGCCCACTGTA AGCTGATAAG CTCCATTGCC AGGTTTAAAG TGGAGAATTCC TGAAAATGTC CAACGACACT TAGCCACCACTT TAGCCACCACTT TGGTCCCCCA TGGTAGATATT TGGCCCCCA TGGTATGATT TGGCCCCCA TGTGATCATT TGCCACCAGTT AGGTTGCTGAT AGGTTGCTTT TGCCACCAGTT AGGTTGCTCCC TGTGATAGTT TGCCACCAGTT AGGTTGCTCCC TGTGATGATT TGCCACCAGTT AGGTTGCTT TCCACAGTT TGCCACCAGTT AGGTTGCTCTT TCCACAGTT TGCCACCAGTT TGCCACAGTT TCAGATCATAT TCAGATCATAT TCAGATCATAT TCAGATCATAT TCAGATCATAT TCAGATCATAT TGCCACAGTC TGATGTTTT TCAGATCATT TCAGATCATAT TCAGATCAT TCAGAT TCAGATCAT TCAGATCAT TCAGATCAT TCAGATCAT TCAGATCAT TCAGATCAT TCA	180 240 300 360 420 480 660 660 6720 780 840 900 960 1020 1140 11200 1140 11320 11380 1440 1560 1620 1620 1620 1740 1860 1980 2040 2160 22160 2220 2280 2400
45 50 55 60 65 70	AGCATTGCAG GAACTCCAT ATTACAATA ATAACTGAAG ATAACTGAAG ATAACTGAAG ATAACTGAAG TCATATGAAA TAAACGGCC TTCCTACTGA GAATGGGCCC ATGTGTGAAA GGATGCACCT AGTTTATCTT AGTTTATCTT AGTTCACACA GTACAGGCTG GCTGACAGAC CTTCACAGAAC ATTCATACCT CACCAAATTA TCAGCTAAAA AACTGAATG CTTCTTGGCA CTGGTTCATC TCTGGAACTG AAACTGAATG TCTTTGTTC TCTGGAACTG AACTTCATCAC ATGTTTCATC TCTGGAACTG AACTTCACAC ATGTTTCATC TCTGGAACTG AACTTCACC ATGTTTCTTG CACCAATTA TGGATTCAG GCACGAGA TCTTTGTAG TCTTGCAG GCACGAGA TTTATAAAAA TATAGCTTGA CCACGGGGT CCTCCAAGGA TATAGAATG TATAGCAATG AGCCCAAGGA ATTATAAAAAA TATAGCTTGA CCACGGGGT CCTCCAAGGA AGCTCCAAGGA AGCTCCAAGGA AGCTCCAAGGA AGCTCCAAGGA AGCTCCAAGGA AGCTCCAAGGA CCACCATGCA CCACCATGCA CCACCATGCA CCACCATGCA CCACCATGCA	GTCCTATTTG TCCTGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG AAAATCAAAT AAAGTCCTTG TTATCTACAA CTGTGGTTGA GCTTTCCCAT GTGACAAGT TCCTTCAACT TCGTGGGCAT ACAGCAATGA CAGCAATGA CACTACACAAA CACTCGAGCCCC CAGAACATTTT ATCAATTGAA CCCTGAAAGT TACACTAGC CTGAAAGT TAGACTTGT TGGAGCCTTGT TGGAGCCTTGT AGACTTGTA AAGTGCATGT AAATTATTGA	CAACCTGAAG TGGAGTACAG ACTGAGAAT CCTATTTAAT CACATGGAAA ACATGGAAA AACAGCTGGC GGGTGTGTTC CTAAAGTGACT CCCCAAGAA ATTTTGTAAT CCTCAGAAGT GAATGGACT GAATGGACT GAATGGACT GAATGGACT GGCCAGTTTC TGACAAGCC CACTTTGTTAA ACAACAGCC CACTTTGTTG CACTGTGTG CACTGTGTG CACTGTGTG CACTGTGCTG CACTGTGCTG CACTGTGCTG CACTGTGCTG CACTGTGCTG CACTGTGCC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCTC CACTGTGCCC CACTGTGCTC CACTGTGCCC CACTGTCCC CACTGCCC CACTCC CACTGCCC CACTGCC CACTGCCC CACTGCCC CACTGCCC CACTGCCC CACTGCC	TTTGTGACTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AATGCAACTG GCAAGTACCC GCATGGGATG GCAGTTCCAC GTGCTGGATG GCAGAATTTT CAGCTTAATA ATGCAATG TTGCTGGATG TGCTGGATG TGCTGGATG TGCTGGATG TGCTGGATT CACAGCAAAG TTGCTGGTTAATA ATGCAATGTTAATA ATGCAATGTTAATA ATGCAATGTTAATA ATGCATGATTAA ATGCATGATTAA ATTCACCTTCAAGA TTCCTGCAGCT ATTCTTAATA ACCAATCTTAA TGGACTCCTTTA ATTCTTTATTCC CCCAGCATAA TACCACGCAA GAGGAGCGAA ATCCAAGCAA GAGGAGCGAA ATCCAAGCAA GAGGAGCGAA ATCCACGCTT TATTTTTCT TCCCCAGCATAA TACCACGCAA AGGGAGCGAA AGTTCCAGCTT GTAAAAGTAG	TCCTGGTTGC ATGGGTATAA ATGGGAAAAT GAAGAGTATT ACAGCAAAAT GGGCACATGG ACATTGCATT GAGGCCGAGT ACAATGACAA CTTGACATCAC TTAGTAAGCT CATCACTATAAT ACAACCAGA ACAACCAGA ATTCTGCCAC ATGTCAGCAA ATTTGATGCA GAGAGTTCAC GTCTTACAGG ATGTTCAGCAA AGGATTCA GTCTTACAGG ATACTTCAGCA AAGATTCAG GTCTTACAGG TTATATATT CTTTTCGGAC CCTGAACAA CCAACTCAGC CTTTCCTGC CCCTGACCAA ATGTGTGGA CCACTGTCC CCACTGTCC CCACTGTCC CCACTGTCC CCACTGCC AGGGTAATAT AGTGGGGCTT GCCCCCCACC AGGGTAATAT AGTGGGGCTT GCCCCCCCCC CCACAGATTATA AGTGGGGCTT GCCCCCCACC AGGGTAATAT AGTGGGGCTT GCCCCCCACC AGGGTAATAT AGTGGGGCTT GCCCCCCACC AGGGTAATAT	CTTAAGTTCA TGGATTGCTC TAAGGAAAT TAAAGAAA AGATGATCCA CACACTAAT GTTTGTCCAT ACCTTTCTTAC AGGCATTTT TTTTAAAGAA GTTCATCATCAT GTTTCATCAT ACTTTCTAC AGGCATTTT TTTTAAAGAA GTCCAAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGAG GATTGTTAAA AGCACCATGTA CACCACTGTA CGGGTTGAA AGATTTCC TGAACACTCTAC TGATCCATTGCC TGATCATAC TGATCCTGAT AGCTAGTTT TACCCATCAT TGGTCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TGCCCCCA TGTGATCAT TTTCACATCAT TGCCCCCA TGTGATCAT TTCACATCAT TCAGATCAT TCAGATCAAT TAGCCCAAGTC	180 240 300 360 420 480 540 660 660 720 780 840 960 1020 1140 1260 1320 1380 1440 1550 1620 1680 1740 1860 1980 2040 2160 2220 2280 2340 2460

```
AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA 2580
         AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT
                                                                                               2640
         GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG
                                                                                               2760
  5
         CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA
                                                                                               2820
         GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT CATACTTTAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA
                                                                                               2880
                                                                                               2940
                                                                                                3000
         CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
                                                                                               3060
10
         ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                                               3120
         CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                                               3180
                                                                                               3240
         AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
         TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                                               3360
15
         TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                                               3420
                                                                                               3480
         TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                                               3540
         TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
                                                                                               3600
         TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
                                                                                               3660
20
         TACCTAGGAA A
         Seq ID NO: 197 Protein Sequence
         Protein Accession #: NP_006527
25
                                     21
                                                   31
                                                                  41
                                                                                51
                       11
         MTQRSIAGPI CNLKFVTLLV ALSSELPFLG AGVQLQDNGY NGLLIAINPQ VPENQNLISN
         IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH
GDDPYTLQYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND
                                                                                                 120
                                                                                                 180
30
         KPFYINGQNQ IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI
         MFMQSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP
                                                                                                 300
         TFSLVQAGDK VVCLVLDVSS KMAEADRLLQ LQQAAEFYLM QIVEIHTFVG IASFDSKGEI
RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGP EVVEKLNGKA YGSVMILVTS
                                                                                                 360
                                                                                                 420
         GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKPFVPDI SNSNSMIDAP
35
         SRISSGTGDI FQQHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL
                                                                                                 540
         FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS
AVPPATVEAF VERDSLHFPH PVMIYANVKQ GPYPILNATV TATVEPETGD PVTLRLLDDG
                                                                                                 600
                                                                                                 660
         AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN
         IQMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE
                                                                                                 780
40
         LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS
                                                                                                 840
         PQISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY
         LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL
45
         Seq ID NO: 198 DNA Sequence
         Nucleic Acid Accession #: NM_001944
         Coding sequence: 84..3083
                                                   31
                                                                                51
50
         TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
         TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
                                                                                                120
         CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAÁAAACGT GAATGGGTGA
                                                                                                 180
55
         AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
         TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG
                                                                                                 360
         ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                                                 420
                                                                                                 480
         AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
60
         ATCCTCCAGT ATTTTCACAA CAAATTTTCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
                                                                                                 600
         ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                                                 660
                                                                                                 720
         GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
         ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                                                 840
65
         GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                                                 900
                                                                                                 960
         TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
         GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
                                                                                               1080
         AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                                               1140
70
         CTGAATTICA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
                                                                                               1200
         AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
                                                                                               1320
         ATCAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
                                                                                               1380
                                                                                               1440
75
         ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
         CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC
                                                                                               1560
         CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG
                                                                                               1620
```

```
TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG 1740
        CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                                         1800
        ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG
GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT
                                                                                         1860
        CAGGGAGGCT GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                                         1980
        TGGCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                                         2040
        GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                                         2100
        GAGCCCATCC TGAGGACAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
                                                                                         2160
                                                                                         2220
10
        TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
                                                                                         2280
        GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                                         2340
                                                                                         2400
        GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
                                                                                         2460
        TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                                         2520
        TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT
15
                                                                                         2580
        TOTTGATCIA TGATAGATAA GEGEGAATG ACACGUTET TECHNOLOGI TECHNOLOGI TGATGCTGAT GACCTGATG ACACGUTETT GGACCCAAAT TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
                                                                                         2640
                                                                                         2700
        CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
                                                                                         2760
        CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                                         2820
20
        CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
                                                                                         2880
        TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                                         2940
        CACTTCTCAC ACAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
        CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
                                                                                         3060
        ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                                         3120
        ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
25
                                                                                         3180
        TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                                         3240
        TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
        TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
30
        Seg ID NO: 199 Protein Sequence
        Protein Accession #: NP 001935
35
        MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRROKRE WVKFAKPCRE
        GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
                                                                                          120
        PSPLITCRAL NAQQLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                                          180
                                                                                          240
        DKDGEGLSTQ CECNIKVKDV NDNFPMPRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHQSVI
40
                                                                                          360
        SRYRVQSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                                          420
        SNYKYVMGRN DGGYLMIDSK TABIKFVKNM NRDSTFIVNK TITABVLAID EYTGKTSTGT
VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                                          480
        ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                                          600
        TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT COCGACSTGG VTGGFTPVPD
GSEGTINGWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
45
                                                                                          660
                                                                                          720
        MITKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GQSGTMRTRH STGGTNKDYA
        DGAISMNPLD SYFSQKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSPIADD
                                                                                          840
        LDDSPLDSLG PKFKKLAEIS LGVDGEGKEV QPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                                          900
50
        LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
        VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
        Seq ID NO: 200 DNA Sequence
55
        Nucleic Acid Accession #: NM_020411
        Coding sequence: 86..526
                                                              41
60
        GGACCTGGGA AGGAGCATAG GACAGGGCAA GGCGGGATAA GGAGGGGCAC CACAGCCCTT
        AAGGCACGAG GGAACCTCAC TGCGCATGCT CCTTTGGTGC CCACCTCAGT GCGCATGTTC
                                                                                          120
        ACTGGGCGTC TTCCCATCGG CCCCTTCGCC AGTGTGGGGA ACGCGGCGGA GCTGTGAGCC
GGCGACTCGG GTCCCTGAGG TCTGGATTCT TTCTCCGCTA CTGAGACACG GCGGACACAC
                                                                                           180
        ACAAACACAG AACCACACAG CCAGTCCCAG GAGCCCAGTA ATGGAGAGCC CCAAAAAGAA
                                                                                           300
65
        GAACCAGCAG CTGAAAGTCG GGATCCTACA CCTGGGCAGC AGACAGAAGA AGATCAGGAT
                                                                                          360
        ACAGCTGAGA TCCCAGTGGG CGACATGGAA GGTGATCTGC AAGAGCTGCA TCAGTCAAAC ACCGGGGATA AATCTGGATT TGGGTTCCGG CGTCAAGGTG AAGATAATAC CTAAAGAGGA
                                                                                           420
        ACACTGTAAA ATGCCAGAAG CAGGTGAAGA GCAACCACAA GTTTAAATGA AGACAAGCTG
                                                                                           540
        AAACAACGCA AGCTGGTTTT ATATTAGATA TTTGACTTAA ACTATCTCAA TAAAGTTTTG
70
        CAGCTTTCAC CAAAAAAAAA AAAAAA
        Seg ID NO: 201 Protein Sequence
        Protein Accession #: NP_065144.1
75
                                                                           51
                                                              41
        MLLWCPPOCA CSLGVFPSAP SPVWGTRRSC EPATRVPEVW ILSPLLRHGG HTQTQNHTAS
                                                                                            60
         PRSPVMESPK KKNOOLKVGI LHLGSRQKKI RIQLRSQCAT WKVICKSCIS QTPGINLDLG
```

SGVKVKIIPK EEHCKMPEAG EEOPOV

```
Seq ID NO: 202 DNA Sequence
         Nucleic Acid Accession #: AA172056
  5
         Coding sequence: 121..339
         TTTAGCCACC AGAGGANTTC TCTTGAAATA CCCAAAATCC ATCAGTATCT TGAATCATGC
                                                                                                  60
         TGGATTTTGA AGAATCTTA AGAAGCCATG TAAAGGGGG TCTCTGGCCT TGAAATAGTG
ATGTTTTTTA TACAGAAGG AGAATGCAGA ATGGTCAGAC TATCATGCAC TGTTAAATTT
10
                                                                                                120
         GATTTCAAGA AATTACAGGA AAACTTTCCA AAGTTCCATC TCACAGAANN TTATTTTNCC
                                                                                                 240
         AAGAATTCCA AGATAAGTIT AGTTTTATGG AAGACTITTA TGTGGTTTTT ACTCACTCTT
                                                                                                 300
         CATCTCAGAC ATCGACAGAT GATTACATCA CTTATAGTTC TAGTAAATTT ATTAATATAA AACTCAGAGA CATTCCAATA TCCACATTGC TTACACCATT AGGCATAGAT TCAGTGTCAG
                                                                                                 360
15
                                                                                                 420
         CTATGACAAT TGAAAATGAG CTGTTTTGTG ATTTAAAGGT TTAAATTTCT CTAACCAAAC
         TGCTTGATCC AGATGCAGGA CTGCAAATGT TAATATTTGT TCTGGAAGAA CAATCAAATA
                                                                                                 540
         AGACTTAAGA GGAAAGGGAA TGGCCACAAT CCACCTGAAA TTTTTTCTTA AAAAGTGTGC AGCCTACTAA ATCAGAATGA AAATAGAAGT ACAAGATTAT AAACAAAATG CAATCAAACT
                                                                                                 600
                                                                                                 660
20
         TTTCTTAAGC TTACCTAAAG TTATTTCATC TGAAAATTTC AAGCAACTTT GTTCAACATT
         AAATTGACAA TCTAAACTAA CAAGTCTTTT GAATTTATGC ATGGTAGTAA ACATTCTCTC
                                                                                                 780
         TATTAACTTT ATTACCTAAG GCTAAACCTA AAATTTTTAA GCAAAATTAG AAAAATAGTC
TTCACTCATC AAAAAATAAA GTTTGTTACA TTTAGTATTT TCCCAATAAA ATTGGTCGTT
CTTGGTTTTT TATTTGGAGA GTCTGTGCAA AATGTCACTA AAAATAAATT AGCACTAGAA
                                                                                                 840
                                                                                                 900
25
         ATTATTTCTA AATACCAAA
         Seg ID NO: 203 DNA Seguence
         Nucleic Acid Accession #: NM_005656.1
         Coding sequence: 57..1535
30
                       11
                                     21
                                                   31
                                                                  41
                                                                                51
         GTCATATTGA ACATTCCAGA TACCTATCAT TACTCGATGC TGTTGATAAC AGCAAGATGG
         CTTTGAACTC AGGGTCACCA CCAGCTATTG GACCTTACTA TGAAAACCAT GGATACCAAC
                                                                                                120
35
         CGGAAAACCC CTATCCCGCA CAGCCCACTG TGGTCCCCAC TGTCTACGAG GTGCATCCGG
                                                                                                180
         CTCAGTACTA CCCGTCCCC GTGCCCCAGT ACGCCCCGAG GGTCCTGACG CAGGCTTCCA
ACCCCGTCGT CTGCACGCAG CCCAAATCCC CATCCGGGAC AGTGTGCACC TCAAAGACTA
                                                                                                 240
         AGAAAGCACT GTGCATCACC TTGACCCTGG GGACCTTCCT CGTGGGAGCT GCGCTGGCCG
                                                                                                360
         CTGGCCTACT CTGGAAGTTC ATGGGCAGCA AGTGCTCCAA CTCTGGGATA GAGTGCGACT
CCTCAGGTAC CTGCATCAAC CCCTCTAACT GGTGTGATGG CGTGTCACAC TGCCCGGGG
                                                                                                420
40
                                                                                                480
         GGGAGGACGA GAATCGGTGT GTTCGCCTCT ACGGACCAAA CTTCATCCTT CAGATGTACT
         CATCTCAGAG GAAGTCCTGG CACCCTGTGT GCCAAGACGA CTGGAACGAG AACTACGGGC
                                                                                                 600
         GGGCGGCCTG CAGGGACATG GGCTATAAGA ATAATTTTTA CTCTAGCCAA GGAATAGTGG
                                                                                                 660
         ATGACAGCGG ATCCACCAGC TITATGAAAC TGAACACAAG TGCCGGCAAT GTCGATATCT
ATAAAAAACT GTACCACAGT GATGCCTGTT CTTCAAAAGC AGTGGTTTCT TTACGCTGTT
                                                                                                 720
45
         TAGCCTGCGG GGTCAACTTG AACTCAAGCC GCCAGAGCAG GATCGTGGGC GGTGAGAGCG
                                                                                                 840
        CGCTCCCGGG GGCCTGGCCC TGGCAGGTCA GCCTGCACGT CCAGAACGTC CACGTGTGCG
GAGGCTCCAT CATCACCCCC GAGTGGATCG TGACAGCCGC CCACTGCGTG GAAAAACCTC
                                                                                                900
                                                                                                960
         TTAACAATCC ATGGCATTGG ACGGCATTTG CGGGGATTTT GAGACAATCT TTCATGTTCT
50
         ATGGAGCCGG ATACCAAGTA CAAAAAGTGA TTTCTCATCC AAATTATGAC TCCAAGACCA
                                                                                               1080
         AGAACAATGA CATTGCGCTG ATGAAGCTGC AGAAGCCTCT GACTTTCAAC GACCTAGTGA
AACCAGTGTG TCTGCCCAAC CCAGGCATGA TGCTGCAGCC AGAACAGCTC TGCTGGATTT
                                                                                               1140
                                                                                               1200
         CCGGGTGGGG GGCCACCGAG GAGAAAGGGA AGACCTCAGA AGTGCTGAAC GCTGCCAAGG
                                                                                               1260
         TGCTTCTCAT TGAGACACAG AGATGCAACA GCAGATATGT CTATGACAAC CTGATCACAC
                                                                                               1320
55
         CAGCCATGAT CTGTGCCGGC TTCCTGCAGG GGAACGTCGA TTCTTGCCAG GGTGACAGTG
GAGGGCCTCT GGTCACTTCG AACAACAATA TCTGGTGGCT GATAGGGGAT ACAAGCTGGG
                                                                                               1380
                                                                                               1440
         GTTCTGGCTG TGCCAAAGCT TACAGACCAG GAGTGTACGG GAATGTGATG GTATTCACGG
                                                                                               1500
         ACTGGATTTA TCGACAAATG AAGGCAAACG GCTAATCCAC ATGGTCTTCG TCCTTGACGT
                                                                                               1560
         CGTTTTACAA GAAAACAATG GGGCTGGTTT TGCTTCCCCG TGCATGATTT ACTCTTAGAG
                                                                                               1620
60
         ATGATTCAGA GGTCACTTCA TTTTTATTAA ACAGTGAACT TGTCTGGCTT TGGCACTCTC
TGCCATACTG TGCAGGCTGC AGTGGCTCCC CTGCCCAGCC TGCTCTCCCT AACCCCTTGT
                                                                                               1680
         CCGCAAGGGG TGATGGCCGG CTGGTTGTGG GCACTGGCGG TCAATTGTGG AAGGAAGAGG
                                                                                               1800
         GTTGGAGGCT GCCCCCATTG AGATCTTCCT GCTGAGTCCT TTCCAGGGGC CAATTTTGGA
                                                                                               1860
         TGAGCATGGA GCTGTCACTT CTCAGCTGCT GGATGACTTG AGATGAAAAA GGAGAGACAT
                                                                                               1920
         GGAAAGGAG ACAGCCAGGT GGCACCTGCA GCGGCTGCCC TCTGGGGCCA CTTGGTAGTG
TCCCCAGCCT ACTCACAAG GGGATTTTGC TGATGGGTTC TTAGAGCCTT AGCAGCCCTG
65
                                                                                               1980
                                                                                               2040
         GATGGTGGCC AGAAATAAAG GGACCAGCCC TTCATGGGTG GTGACGTGGT AGTCACTTGT
                                                                                               2100
         AAGGGGAACA GAAACATTIT TGTTCTTATG GGGTGAGAAT ATAGACAGTG CCCTTGGTGC GAGGGAAGCA ATTGAAAAGG AACTTGCCCT GAGCACTCCT GGTGCAGGTC TCCACCTGCA
                                                                                               2160
                                                                                               2220
70
         CATTGGGTGG GGCTCCTGGG AGGGAGACTC AGCCTTCCTC CTCATCCTCC CTGACCCTGC
         TCCTAGCACC CTGGAGAGTG AATGCCCCTT GGTCCCTGGC AGGGCGCCAA GTTTGGCACC
                                                                                               2340
         ATGTCGGCCT CTTCAGGCCT GATAGTCATT GGAAATTGAG GTCCATGGGG GAAATCAAGG
                                                                                               2400
         ATGCTCAGTT TAAGGTACAC TGTTTCCATG TTATGTTTCT ACACATTGAT GGTGGTGACC 2460
         CTGAGTTCAA AGCCATCTT
75
```

Seq ID NO: 204 Protein Sequence Protein Accession #: NP_005647.1

	1 1:	1 21	31	41	51		
	MAT MECCEDES	TODANEMICA	ODENBYDAOD	TVVPTVYEVH	מוופפסטאס	AOT.IVEGAVO	60
5	SNPVVCTQPK	SPSGTVCTSK	TKKALCITLT	LGTFLVGAAL	AAGLLWKFMG	SKCSNSGIEC	120
				LYGPNFILQM KLNTSAGNVD			180 240
	CLACGVNLNS	SRQSRIVGGE	SALPGAWPWQ	VSLHVQNVHV	CGGSIITPEW	IVTAAHCVEK	300
10				VISHPNYDSK GKTSEVLNAA			360 420
10				NIWWLIGDTS			480
	TDWIYRQMKA	NG					
15	-	205 DNA Sec	•				
13		id Accession Lence: 238	1 #: XM_0445 .2751	533			
	1	11	21	31	41	Ś1	
20	Ī	1	1	1	1	Ī	
20				CGCCGGCGGG			60 120
				GCGGACCGCG			180
				CGGGACACCG			240
25				CTCGCCGCCC			300
23				CTGCTCCTGC			360 420
				GCCCTTCTGC			480
	CTGTACGTGG	GTGCTCGAGA	GGCCCTCTTT	GCACTCAGTA	GCAACCTCAG	CTTCCTGCCA	540
20				GCAGACGCAG			600
30				CAAAACTACA GCAGCCTTCA			660 720
				GAGAAGGGGA			780
	AAGGCCGTT	GTCCCTTCGA	CCCGAATTTC	AAGTCCACTG	CCCTGGTGGT	TGATGGCGAG	840
35				GGGAATGACC			900
22				CTCAACTGGC AGCTTGCAAG			960 1020
				GAGTTCTTTG			1080
	ATTGCCCGCA	TCTGCAAGGG	CGATGAGGGT	GGAGAGCGGG	TGCTACAGCA	GCGCTGGACC	1140
40				CGGCCCGACG			1200
40				CCCCAGGACT			1260 1320
	ACAATGAAGG	ATGTGCAGAG	AGTCTTCAGC	GGCCTCTACA	AGGAGGTGAA	CCGTGAGACA	1380
				CCCACACCCC			1440
45				TCCCTGCAGC CAGGTCCGAA			1500 1560
73				CACCGCGTCC			1620
				CGGCTCCACA			1680
				TTCTCATCGG			1740 1800
50				GCGGCCTCAC TGTGGGGACT			1860
-	TACTGTGCTT	GGAGCGGCTC	CAGCTGCAAG	CACGTCAGCC	TCTACCAGCC	TCAGCTGGCC	1920
				GCCAGCGCCA			1980
				GGGGAGAAGC			2040 2100
55				TCGGCCTCCT			2160
	GACCTGCTGC	TGGTGGGCAC	CCAACAGCTG	GGGGAGTTCC	AGTGCTGGTC	ACTAGAGGAG	2220
				CCAGAGGTGG			2280 2340
				ATTATCAGCA AGGTCCTACT			2400
60				CCAGTTTTAT			2460
				GAATGTGCCA			2520
				CTCAACGGCC GACAGCCCCC			2580 2640
						CCCAGTGTGC	2700
65						AGAGCTGACT	2760
						CAACTGGACC	2B20
						GGAGCCTTGG AGACACCCAA	
						GGTGGAACAG	
70	TGCTCCTTAT	GTAAACTGAG	CCCTTTGTTT	AAAAAACAAT	TCCAAATGTG	AAACTAGAAT	3060
						TGGCCTCCCA	
						CCTCACCAAC ACTGCAGATT	
						GTAGTTGTTG	
75	CTGCCGTCGT	CCCACCACCT	CAGGGACCAG	AGGGCTAGGT	TGGCACTGCG	GCCCTCACCA	3360
						GTGGCCACAC	
						CCTCAGAATT	3480 3540
	SHOUGHONG						

5	GTCCTCTCCC TCAACACTGC	CAGTCCCCAG CCAGCACAGG	TTCACCCTCC GGCCCTGAAT	ACTCAAACAC ATCCCTCACC TTATGTGGTT TGAAGAATTA	TTCCTCCACT TTTATACATT	CTAAGGGATA	3600 3660 3720		
	Seq ID NO:	206 Protein	n Sequence						
	Protein Accession #: XP_044533.6								
	1	11	21	31	41	51			
10	i ·	î	ĩ	ī	i -	ī			
	MINTAMGINS	WI.AAPWGAI.P	PRPPLLLLLL	LLLLLOPPPP	TWALSPRISE	PLGSEERPFL	60		
				FALSSNLSFL			120		
				TAAFSPMCTY			180		
				OGNDPAISRS			240		
15				FEFFENTIVS			300		
				SPODWRDTLF			360		
				VPTPRPGACI			420		
				VHRVPGLHHT			480		
~~	PRVHIIEELQ	IFSSGQPVQN	LLLDTHRGLL	YAASHSGVVQ	VPMANCSLYR	SCGDCLLARD	540		
20	PYCAWSGSSC	KHVSLYQPQL	ATRPWIQDIE	GASAKDLCSA	SSVVSPSPVP	TGEKPCEQVQ	600		
	FQPNTVNTLA	CPLLSNLATR	LWLRNGAPVN	ASASCHVLPT	GDLLLVGTQQ	LGEPOCWSLE	660		
	EGFQQLVASY	CPEVVEDGVA	DQTDEGGSVP	VIISTSRVSA	PAGGKASWGA	DRSYWKEFLV	720		
				GECASVHPKT			780		
25	PLDHRGYQSL	SDSPPGSRVF	TESEKRPLSI	QDSFVEVSPV	CPRPRVRLGS	EIRDSVV			

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

- A method of detecting a bladder cancer-associated transcript in a cell from a patient,
 the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13.
- 2. The method of Claim 1, wherein the biological sample comprises isolated nucleic acids.
 - 3. The method of Claim 2:
 - a) wherein the nucleic acids are mRNA; or
 - b) further comprising the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.
 - 4. The method of Claim 1, wherein the polynucleotide:
 - a) comprises a sequence as shown in Tables 1A-13; or
 - b) is immobilized on a solid surface.

20

- 5. The method of Claim 1, wherein the patient is:
 - a) undergoing a therapeutic regimen to treat bladder cancer; or
 - b) suspected of having bladder cancer.
- 25 6. An isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-13.
 - 7. The nucleic acid molecule of Claim 6, which is labeled.
- 30 8. An expression vector comprising the nucleic acid of Claim 7.

- 9. A host cell comprising the expression vector of Claim 8.
- 10. An isolated polypeptide which is encoded by a nucleic acid molecule havingpolynucleotide sequence as shown in Tables 1A-13.
 - 11. An antibody that specifically binds a polypeptide of Claim 10.
 - 12. The antibody of Claim 11, further conjugated to an effector component.
 - 13. The antibody of Claim 12, wherein the effector component is a fluorescent label.
 - 14. The antibody of Claim 12, wherein the effector component is a radioisotope or a cytotoxic chemical.
 - 15. The antibody of Claim 11, which is
 - a) an antibody fragment; or
 - b) a humanized antibody

10

15

- 20 16. A method of detecting a bladder cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody of Claim 11.
 - 17. The method of Claim 16, wherein the antibody is further conjugated to an effector component.
 - 18. The method of Claim 17, wherein the effector component is a fluorescent label.
 - 19. A method for identifying a compound that modulates a bladder cancer-associated polypeptide, the method comprising the steps of:

a) contacting the compound with a bladder cancer-associated polypeptide, the
polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at
least 80% identical to a sequence as shown in Tables 1A-13; and

b) determining the functional effect of the compound upon the polypeptide.

5

- 20. A drug screening assay comprising the steps of
 - a) administering a test compound to a mammal having bladder cancer or a cell isolated therefrom;
 - b) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-13 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of bladder cancer.