TAREA THEVENENIN Y NORTON

Circuito para analizar

Para el análisis, denominaremos la resistencia de 670 ohms como resistencia 1, la resistencia de 470 ohms como resistencia 2, y la resistencia de 1000 ohms como resistencia 3.

Voltaje equivalente de Thevenin

El voltaje que debe ser calculado es el que pasa por R2, tomando en cuenta que el circuito cerrado tendría a R1 y R2 como resistencias en serie.

$$V_{Th} = \left(\frac{470}{670 + 470}\right)(12) = \frac{4.9474 \, V}{4.9474 \, V}$$

Resistencia equivalente de Thevenin

La resistencia equivalente de thevenin, será el resultado de la suma entre la resistencia 3 y el paralelo de las resistencias 1 y 2.

$$R_{th} = 1000 + \left(\frac{670 * 470}{670 + 470}\right) =$$
1276. 2281 Ω

Circuito equivalente de Thevenin

El circuito equivalente de Thevenin posee un voltaje de $4.9474\,V$ y una resistencia de $1276.2281\,\Omega$.

Corriente equivalente de Norton

Para encontrar la corriente equivalente de Norton, primero se debe encontrar la resistencia total del circuito.

$$R_T = 670 + \left(\frac{1000 * 470}{1000 + 470}\right) = 989.7279 \,\Omega$$

Con este valor, se puede obtener la corriente que pasa en todo el circuito.

$$I = \frac{12}{989.7279} = 0.0121 A$$

Finalmente, luego de obtener la corriente total del circuito, se procede a calcular la corriente por I_N.

$$I_N = \left(\frac{470}{1000 + 470}\right)(0.0121) = 3.8687 \times 10^{-3} A = \frac{3.8687 \, mA}{1000 + 470}$$

Resistencia equivalente de Norton

Para encontrar la resistencia equivalente de Norton, se debe encontrar la suma de la resistencia 3 y el paralelo de las resistencias 1 y 2.

$$R_N = 1000 + \left(\frac{670 * 470}{670 + 470}\right) =$$
1276. 2281 Ω

Circuito equivalente de Norton

El circuito equivalente de Norton para este ejercicio resulta con una fuente de corriente de $3.8687\ mA$ y una resistencia de $1276.2281\ \Omega$.