

Ηλιάνα Κόγια (AEM: 10090) ilianakogia@ece.auth.gr

1 SVM - binary classification

1.1 Dual Problem Soft Margin

Quadratic Programming Problem (Convex) - Kernel trick

$$\max_{a} Q(a) = \sum_{j=1}^{m} \alpha_{j} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y_{i} y_{j} K(x_{i}, x_{j}) \alpha_{i} \alpha_{j}$$
subject to
$$0 \le a_{i} \le C, \forall i = 1, \dots, m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

Χρησιμοποιούμε την συνάρτηση τετραγωνικού προγραμματισμού solvers.qp της python της βιβλιοθήκης cvxopt και η αντιστοιχία για το συγκεκριμένο πρόβλημα είναι η παρακάτω: Η μορφή του προβλήματος που δέχεται η cvxopt είναι η ακόλουθη:

Standard QP cvxopt

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} \tag{1.1}$$

subject to
$$\mathbf{G}\mathbf{x} \le \mathbf{h}$$
 (1.2)

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1.3}$$

Soft Margin dual SVM problem:

$$\min_{\alpha} \frac{1}{2} \alpha^T \mathbf{Q} \alpha - \mathbf{1}^T \alpha \tag{1.4}$$

subject to
$$-\alpha_i \le 0$$
 (1.5)

$$\alpha_{\mathbf{i}} \le \mathbf{C}$$
 (1.6)

$$\mathbf{y}^{\mathsf{T}}\boldsymbol{\alpha} = \mathbf{0} \tag{1.7}$$

με

$$P = Q = yy^T K (1.8)$$

Ο τύπος που χρησιμοποιείται για το bias υπολογίζεται πάνω στα support vector τα οποία προκύπτουν για όλους τους θετικούς συντελεστές Lagrange alpha, δηλαδή είναι:

$$b = \frac{1}{Ns} \sum_{n \in S} (y_n - \sum_{m \in S} \alpha_m y_m K(x_m, x_n))$$
 (1.9)

1.2. Training 3

1.2 Training

Δοκιμάστηκαν διάφοροι συνδυασμοί των εκάστοτε παραμέτρων για τα Kernel: linear, rbf, polynomial:

Linear Kernel:

$$K(x, y) = x^T y \tag{1.10}$$

RBF Kernel:

$$K(x,y) = \exp(-\gamma ||x - y||^2)$$
(1.11)

Polynomial Kernel:

$$K(x, y) = (x^{T}y + c)^{d}$$
 (1.12)

Σημείωση:

Επιλέχθηκαν για classification οι κλάσεις airplane και automobile της Cifar-10

Τα δεδομένα εκπαίδευσης κανονικοποιήθηκαν στο [-1,1] και οι πίνακες Gram των Kernel υλοποιήθηκαν με την metrics.pairwise της Python για λόγους ταχύτητας.

1.3 Linear Kernel results

С	Train	Test	Support	Time
	accuracy	accuracy	Vectors	(s)
0.001	0.832	0.824	4635	660
0.01	0.8536	0.824	4325	607
0.1	0.8818	0.811	4123	575
0.5	0.8987	0.795	3940	562
1	0.9056	0.7915	3858	552

Παρατηρούμε ότι όσο αυξάνεται η παράμετρος C ο αριθμός των support vector μειώνεται. Επίσης, αυξάνεται η ακρίβεια στο train set ενώ μειώνεται στο test set, δηλαδή έχουμε overfitting όσο μεγαλώνει το C. Όπως είναι αναμενόμενο ο χρόνος είναι μεγαλύτερος όταν έχουμε μεγαλύτερο αριθμό sv, διότι οι υπολογισμοί για to bias και τον προβλέψεων y_{pred} που γίνονται στα support vector και όχι σε όλο το training set είναι περισσότεροι.

1.4. RBF Kernel results

4

1.4 RBF Kernel results

gamma	С	Train	Test	Support	Time
	,	accuracy	accuracy	Vectors	(s)
0.0004	0.1	0.8326	0.844	5574	1477
	1	0.893	0.879	4285	1078
	10	0.9639	0.9135	3681	933
	100	0.9997	0.907	3720	974
	1000	1.0	0.903	3689	1041

gamma	С	Train	Test	Support	Time
5		accuracy	accuracy	Vectors	(s)
0.004	0.1	0.8496	0.8325	7444	2049
	1	0.9929	0.892	6819	1837
	10	1.0	0.8975	7199	1995
	100	1.0	0.8975	7228	2022
	1000	1.0	0.8975	7191	2072

Για τιμή του γ επιλέγεται αρχικά η τιμή 0.0004 που βρίσκεται εντός των 3/10000 και 6/10000 (numOfsumples = 10000) και παρατηρούμε ότι πετυχαίνουμε σχετικα καλή ακρίβεια, ενώ έπειτα αυξάνοντας το γ κατα μία ταξη για ίδιες τιμές του C προκύπτει μικρότερη ακρίβεια.

 Γ ια σταθερό γ διαπιστώνουμε ότι όσο αυξάνεται το C ο αριθμός των sv μπορεί είτε να μειώνεται είτε να αυξάνεται

 Γ ια $\gamma = 0.004$ και C > 10 δεν παρατηρείται διαφορά στην ακρίβεια και στον αριθμό των sv.

Το μοντέλο που επιτυγχάνει καλύτερη ακρίβεια 0.9135 και ταυτόχρονα μια ανεκτή τιμή gap μεταξύ train και test data (καλό generalization), αλλά και αριθμό sv που δεν υπερβαίνει το 50% των training δειγμάτων(=10,000) είναι για τις παραμέτρους $\gamma = 0.0004$ και C = 10. Ο αντίστοιχος confusion matrix:

1.4. RBF Kernel results 5

Παρατίθενται ακόμα κάποια παραδείγματα σωστής και εσφαλμένης ταξινόμησης: automobile true:

airplane true:

automobile but predicted airplane:

airplane but predicted automobile

automobile but predicted airplane:

1.5 Polynomial Kernel results

С	coef	gamma	degree	Train	Test	Support	Time
				accuracy	accuracy	Vectors	(s)
100	0	1/3072	2	0.9849	0.8775	4319	772
			3	0.9693	0.861	5202	973
			4	0.9273	0.83	7120	1270
			5	0.8769	0.8095	7873	1413
С	coef	gamma	degree	Train	Test	Support	Time
				accuracy	accuracy	Vectors	(s)
1000	0	1/3072	2	1.0	0.869	4138	777
			3	0.9981	0.8605	4541	855
			4	0.9785	0.8305	5727	1012
	20		5	0.9363	0.799	6504	1181
С	coef	gamma	degree	Train	Test	Support	Time
			30000	accuracy	accuracy	Vectors	(s)
10000	0	1/3072	2	1	0.87	4212	862
			3	1	0.859	4463	980.
			4	0.9979	0.8355	6526	1238
			5	0.9812	0.798	8436	1672

Παρατηρούμε ότι όσο αυξάνεται ο βαθμός του polynomial kernel και για σταθερό C εχουμε αρκετά μεγάλο αριθμό sv>50% του training set για d=4 ή 5

Επιπλέον παρατίθενται τα διαγράμματα των accuracy συναρτήσει των βαθμών d για σταθερο C

$$C = 100$$

C = 1000

C = 10000

Σημειώνεται ότι μικρότερο overfitting έχουμε για C=100.

Παρατηρήση:

Μπορούμε να επιτύχουμε παρόμοιες τιμές accuracy για διαφορετικά Kernel και για διαφορετικές παραμέτρους ωστόσο διαφέρει ο αριθμός των support vector και έτσι η πολυπλοκότητα του μοντέλου.

2 Compare SVM - kNN - NearestCentroid

Εξετάστηκε το ίδιο πρόβλημα classification (airplane/automobile) και είχε τα ακόλουθα αποτελέσματα για το test set:

Accuracy:

<u>kN</u>	Nearest Centroid	
k = 1	k = 1 k = 3	
71.5	69.45	1

Το καλύτερο μοντέλο που επιτύχαμε όσον αφορά το accuracy με το SVM ήταν για το test set 91.35 % με χρήση RBF Kernel και παραμέτρους $\gamma = 0.0004$ και C = 10.

 Δ ιαπιστώνουμε ότι με το νευρωνικό επιτυγχάνεται φανερά καλύτερη απόδοση, σε σχέση με τους παραπάνω δύο αλγορίθμους, ωστόσο με μεγαλύτερη πολυπλοκότητα.