第九章历年期末试题

1. (**2017** 年) 设 $x = r \cos \theta$, $y = r \sin \theta$, 则极坐标系 (r, θ) 中的累次积分

$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta+\sin\theta}}^1 f(r\cos\theta, r\sin\theta) dr$$

可化为直角坐标系(x, y)中的累次积分(

(A)
$$\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} f(x,y) dy$$

(B)
$$\int_0^1 \mathrm{d}x \int_{1-x}^{\sqrt{1-x^2}} \frac{f(x,y)}{\sqrt{x^2+y^2}} \, \mathrm{d}y$$

(C)
$$\int_0^1 dx \int_x^{\sqrt{1-x^2}} f(x, y) dy$$

(A)
$$\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} f(x,y) dy$$
 (B) $\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} \frac{f(x,y)}{\sqrt{x^2+y^2}} dy$ (C) $\int_0^1 dx \int_x^{\sqrt{1-x^2}} f(x,y) dy$ (D) $\int_0^1 dx \int_x^{\sqrt{1-x^2}} \frac{f(x,y)}{\sqrt{x^2+y^2}} dy$

2. (2014年) 二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可以写成 ().

(A)
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx$$
 (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$$

(C)
$$\int_0^1 \mathrm{d}x \int_0^1 f(x,y) \,\mathrm{d}y$$

$$\mathbf{(D)} \int_0^1 \mathrm{d}x \int_0^{\sqrt{x-x^2}} f(x,y) \mathrm{d}y$$

3. (2013 年) 设函数 f(x,y) 为连续函数,二次积分 $\int_0^2 dx \int_x^2 f(x,y) dy$ 交换积分次 序后等干().

(A)
$$\int_0^2 \mathrm{d}y \int_0^y f(x,y) \mathrm{d}x$$

(B)
$$\int_0^1 dy \int_0^y f(x, y) dx$$

(C)
$$\int_0^2 dx \int_v^2 f(x, y) dy$$

(D)
$$\int_0^2 dy \int_0^2 f(x, y) dx$$

4. (2012年) 设函数 f(x,y) 为连续函数,二次积分 $\int_0^1 dy \int_{y^2}^y f(x,y) dx$ 交换积分次 序后等干().

(A)
$$\int_0^1 \mathrm{d}x \int_{x^2}^x f(x,y) \mathrm{d}y$$

(B)
$$\int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy$$

(C)
$$\int_0^1 dx \int_{\sqrt{x}}^x f(x,y) dy$$

(D)
$$\int_0^1 dx \int_x^{x^2} f(x, y) dy$$

5. (2010 年) 设 f(x,y) 为连续函数,二次积分 $\int_0^1 dy \int_y^{\sqrt{y}} f(x,y) dx$ 交换积分次序后 等于(

(A)
$$\int_0^1 \mathrm{d}x \int_{\sqrt{x}}^x f(x,y) \mathrm{d}y$$

(B)
$$\int_0^1 \mathrm{d}x \int_{x^2}^x f(x,y) \, \mathrm{d}y$$

(C)
$$\int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy$$

(D)
$$\int_0^1 dx \int_x^{x^2} f(x, y) dy$$

6. (2016年) 交换二次积分
$$\int_{-1}^{0} dx \int_{0}^{1+x} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy =$$

7. (2015年) 设区域
$$D = \{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge 0\}$$
, 则 $\iint_D \frac{x + y}{x^2 + y^2} dx dy = \underline{\hspace{1cm}}$.

- 8. (2014年) 若 D 是由 $|x| \le 1$, $|y| \le 1$ 围成的正方形区域,则 $\iint_D x^2 dx dy =$ ______
- 9. (2013年) 二重积分 $\iint_{x^2+y^2\leq 1} e^{x^2+y^2} dx dy =$ _____.
- **10.** (2012年) 已知 $f(x,y) = xy + 2 \iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$, 且 f(x,y)连续,则 f(x,y) =
- **11.** (2011年) 二重积分 $\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(\arctan \frac{y}{x}) dy$ 在极坐标系中表示为_______.
- 12. (2010 年) 已知 $\int_0^1 f(x) dx = \frac{1}{3}$, 则 $\iint_D f(x) f(y) dx dy = _____,$ 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$.
- **13.** (2017 年) 计算二重积分 $\iint_D \frac{xy}{\sqrt{1+y^3}} d\sigma$, 其中 D 是由 $x = \sqrt{y}$, x = 0 与 y = 1 所围成的区域.
- 14. (2017年) 计算二重积分 $\iint_D \sqrt{x^2 + y^2} d\sigma$, 其中 $D = \{(x, y) | x \le x^2 + y^2 \le 1, y \ge 0\}$.
- **15.** (2016 年) 计算 $\iint_D x y \, dx \, dy$, 其中 D 是由直线 y = 2, y = x, y = 2x 所围成的面积.
- **16.** (2016年) 计算 $\iint_D \frac{\mathrm{d}x\,\mathrm{d}y}{\sqrt{x^2+y^2}\sqrt{4-(x^2+y^2)}}$, 其中 $D=\{(x,y)|1\leq x^2+y^2\leq 2\}$.
- 17. (2015年) 计算二重积分 $\iint_D y e^{\frac{x}{y}} dx dy$, 其中区域 D 由直线 y = x, x = 0, y = 1 围成.

- **18.** (2014 年) 求二重积分 $\iint_D \cos \sqrt{x^2 + y^2} \, dx \, dy$, 其中 D 为环形域 $\pi^2 \le x^2 + y^2 \le 4\pi^2$.
- **19.** (2013年) 求积分 $\iint_D (x^2 + y) dx dy$, 其中 D 由曲线 $y = x^2$ 与 $x = y^2$ 围成。
- **20.** (**2012** 年) (本题满分 8 分) 求积分 $\iint_D \ln \sqrt{x^2 + y^2} dx dy$,其中 D 为环形域 $1 \le x^2 + y^2 \le e^2$ 。
- **21.** (2011 年) $\iint_D \frac{y}{1+x^6} dx dy, \ \ \, \sharp \mapsto D = \{(x,y) | 0 \le y \le x, 0 \le x \le 1\}.$
- **22.** (2011年) $\iint_D \sqrt{x^2 + y^2} dx dy$, 其中 $D = \{(x, y) | x^2 + y^2 \le 1, 0 \le y \le x\}$.
- **23**. (**2010**年) 求积分 $\iint_D \sin \sqrt{x^2 + y^2} dx dy$, 其中 D 为环形域 $\pi^2 \le x^2 + y^2 \le 4\pi^2$.