Anti-oxidant Anti-inflammation evaluation for subjects ingesting seaweed fulvescens extract

Yonggab Kim Kamruzzaman

July 28, 2019

1/9

Objective

 To evaluate the effect of ingestion of seaweed fulvescens extract on postprandial oxidative stress

Data

- Sample : 36 individuals
 - Cross-over(3 groups)
- Clinical data
 - ROS(blood), MDA(urine), ox-LDL(blood)
- Proteome data(urine)
 - 38 (EGF, IL6,)

Data

Data Layout

Sample ID	Group	Week	Hour	Proteome1	Proteome2	
Sample 1	High	0	0	33.86	122.4306759	
	High	0	2	20.46	144.8632612	• • •
	High	0	6	19.32	257.705067	• • •
	Low	1	0	27.49	291.6198791	• • •
	Low	1	2	22.72	213.642376	• • •
	Low	1	6	36.14	122.1773002	• • •
	Placebo	2	0	22.6	199.5918112	• • •
	Placebo	2	2	36.17	232.1971831	• • •
	Placebo	2	6	34.27	179.2464443	• • •
Sample 2	Low	0	0	30.63	192.3319045	

Data

• For simplicity, assume following data structure. (2 x 2 cross-over design)

- There are treatment group and control group. And we dont consider the Hour repeated measurements, only consider Week repeated measurements.
- Assume we have just two samples.

Methods

- We can apply following two models in this data structure.
 - Linear mixed effect model
 - 2 Generalized estimating equation (GEE) model

Linear mixed effect model

- Let, y_{ijk} is the observation for i^{th} sequence (i = 1, 2), j^{th} subject $(j = 1, 2, ..., n_i)$, k^{th} period (k = 1, 2)
- The model can be defined as:

$$y_{ijk} = \beta_0 + \beta_1 X_{trt} + \beta_2 X_{Period} + \beta_{12} X_{trt} X_{Period} + S_{ij} + \varepsilon_{ijk}$$

where $S_{ii} \sim N(0, \sigma_s^2)$ and $\varepsilon_{iik} \sim N(0, \sigma^2)$

• Two dummy variables are:

$$X_{trt} = \begin{cases} 1, & \text{subject is in Treatment;} \\ 0, & \text{Otherwise} \end{cases}$$
 $X_{Period} = \begin{cases} 1, & \text{Subject is in Period 2;} \\ 0, & \text{Otherwise.} \end{cases}$

Linear mixed effect model

Matrix form

Generalized estimating equation (GEE) model

- Let, y_{ij} be the response from subject i at period j for $j = 1, 2, ..., n_i$ and i = 1, 2, ..., N.
- Response variable is binary, $y_{ij} \sim B(1, \pi_{ij})$ where $\pi_{ij} = Pr(y_{ij} = 1)$.
- y_{ij} is defined as $y_{ij} = \begin{cases} 1, & i^{th} \text{ subject at } j^{th} \text{ period is in treatment;} \\ 0, & i^{th} \text{ subject at } j^{th} \text{ period is in control.} \end{cases}$
- Vector of measurements for i^{th} subject: $\mathbf{y_i} = (y_{i1}, y_{i2}, \dots, y_{in_i})'$.
- Vector of measurements for all subjects: $\mathbf{Y} = (\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_N})'$.
- Let, $V_i = Cov(\mathbf{y_i})$: $n_i \times n_i$ variance-covariance matrix

