Exponents and Logarithms

Exponents

Exponential functions are functions with the variable in the exponent of the expression.

The Base

The exponential function f(x) with base b in simplest form:

$$f(x) = b^x$$
 or $y = b^x$

The base *b* must be a **positive constant** and *x* is any real number. Note that while the base can technically be 1, that would be meaningless because 1 raised to any power is always 1. This implies the following are *not* exponential functions:

$$f(x) = x^2$$
 $g(x) = 1^x$ $h(x) = x^x$
x is the base base of 1 x is both base and exponent

Common bases are 10 (what we are used to dealing with), 2 (called binary and used in computer science), and the natural base, e, or Euler's number or sometimes Napier's constant.

Note that "Euler" is a German name, Leonhard Euler (1707–1783), a Swiss mathematician and scientist, and is pronounced OY-ler, as "eu" in German is pronounced "OY."

e = 2.71828182845904523536028747135266249775724709369995...

Notations

No different than when the variable x was the base. Note the Greek upper case letter Pi (Π) is an operation analogous to Sigma (Σ) but the operation is multiplication ("product") instead of addition ("sum").

b^x	is equivalent to	$\prod_{1}^{\lambda} b$
b^{-x}	is equivalent to	$\frac{1}{b^x}$
$b^{1/x}$	is equivalent to	$\sqrt[x]{b}$

Graphs and Transformations

b^x	Basic form. <i>y</i> -intercept is at 1 and is asymptotic to the <i>x</i> -axis when moving toward $x = -\infty$
$b^x \pm c$	Vertical translation, shift up (+) or down (–) by <i>c</i>
$b^{x\pm c}$	Horizontal translation, shift left (+) or right (–) by <i>c</i>
b^{-x}	Reflection about the <i>y</i> -axis
$-b^x$	Reflection about the <i>x</i> -axis

Note the shift up and shift left by one unit and the reflections about the *x*-axis and *y*-axis.

Logarithms

Inverse Functions

An inverse function is the reverse, that is, undoes, the action of a function.

For a function f(x), you plug in a value for x and you get y. Imagine the function f as a "black box" that you cannot see inside. You enter a value for x on the left and the function's corresponding value y comes out on the right. Move from left to right.

For the inverse function, you plug in the value for *y* and you get the corresponding *x*. as if you are moving now from right to left.

Note that inverse functions are undefined in cases that would result in division by zero.

Logarithm as Inverse of Exponent

A logarithm is an inverse function of an exponent. For some base b and exponent x:

$$y = b^x$$
 then $x = \log_b y$

Note the notation of the logarithm function: "log" followed by the base as a subscript. Note that many times when using a logarithmic base of 10 (referred to as common log), the 10 subscript may be omitted. When the base is Euler's number, *e*, the logarithm function is referred to as the natural logarithm, or just "natural log," and uses "ln" without a subscript instead of "log_e."

Examples

Base 10:
$$10^3 = 1,000$$
 therefore $\log_{10} 1000 = 3$
Base 2: $2^4 = 16$ therefore $\log_2 16 = 4$

Note this is the basis for using hexadecimal (base 16) numbers in computers as a shorthand for binary, where each value represents a set of four bits.

Natural Logarithm, base e: $e^2 = 7.389$ therefore $\ln 7.389 = 2$

Graph

Note how the graphs of the logarithm and exponent are symmetrical about the 45° line.

