Assignment Assignment6-FundamentalForces due 03/04/2022 at 11:59pm PST

1. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A particle of mass m = 3.13kg and charge q = 1.77C is moving in a region where there is a constant magnetic field $\vec{B} = 0.78$ T \hat{k} .

At a particular instant the particle is at the origin, moving with velocity $\vec{v} = 2.58 \frac{\text{m}}{\text{s}} \hat{i} - 5.33 \frac{\text{m}}{\text{s}} \hat{j}$.

The particle moves in a circle under the influence of only the Lorentz force.

(The input below will accept answers with no more than 1 What is the magnitude of the Lorentz force on the particle?

What is the location of the center of the circle around which the particle moves? (Hint: You will need to find the unit vector direction of the acceleration and the radius of the circle the particle travels in.)

Center at $\vec{r} = \underline{\qquad} m\hat{i} + \underline{\qquad} m\hat{j}$

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

- 8.175
- -12.084
- −5.849

2. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A moon of mass $m = 5.77 \times 10^{20} \text{kg}$ orbits a planet. The moon's orbit is circular with a radius $R = 3.83 \times 10^8 \text{m}$. The moon is moving at speed $|\vec{v}| = 0.93 \times 10^3 \frac{\text{m}}{\text{s}}$.

(The input below will accept answers with no more than 1 What is the mass of the planet? Note: You can assume that the planet's mass is large enough that its centre is approximately the centre-of-mass of the planet-moon system.

 $----\times 10^{24}$ kg

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 4.966

3. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

Three charges are located as follows:

Charge 1 with $q_1 = 3.49 \times 10^{-4}$ C is at $\vec{r}_1 = 33.5$ m $\hat{i} + 18.5$ m \hat{j} .

Charge 2 with $q_2 = -4.19 \times 10^{-4}$ C is at $\vec{r}_2 = 33.5 \text{m} \hat{i} + 38.4 \text{m} \hat{j}$.

Charge 3 with $q_3 = 3.04 \times 10^{-4}$ C is at $\vec{r}_3 = 48.1$ m $\hat{i} + 38.4$ m \hat{j} .

(The input below will accept answers with no more than 1 What is the magnitude of the net force on q_3 due to q_1 and q_2

____ N

What angle does the net force on q_3 make with the positive x-axis \hat{i} ? with the y-axis \hat{j} ?

Angle with \hat{i} : ______ degrees Angle with \hat{j} : ______ degrees

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

- 4.627
- 164.148
- 74.148

4. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A charge $q_1 = -2.53$ C is held fixed at $\vec{r}_1 = 15.7$ m \hat{j} .

A charge $q_2 = -1.27$ C is held fixed at $\vec{r}_2 = 37.1$ m \hat{j} .

A third charge Q is placed at $\vec{r}_O = y\hat{j}$.

(The input below will accept answers with no more than 1 What is the value of y for which Q is in equilibrium?

m

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 28.226

5. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

Three masses are located as follows:

Mass 1 with $m_1 = 6.19 \times 10^6$ kg is at $\vec{r}_1 = 33.5$ m $\hat{i} + 18.5$ m \hat{j} .

Mass 2 with $m_2 = 5.15 \times 10^6 \text{kg}$ is at $\vec{r}_2 = 53.4 \text{m} \hat{i} + 18.5 \text{m} \hat{j}$.

Mass 3 with $m_3 = 3.72 \times 10^6$ kg is at $\vec{r}_3 = 53.4$ m $\hat{i} + 33.1$ m \hat{j} .

(The input below will accept answers with no more than 1

What is the magnitude of the net force on m_3 due to m_1 and m_2

_

____ N

What angle does the net force on m_3 make with the positive x-axis \hat{i} ? with the y-axis \hat{j} ?

Angle with \hat{i} : ______ degrees Angle with \hat{j} : ______ degrees

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

- 7.757
- 105.192

1

• 164.808

6. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A mass m = 29.6kg is on a frictionless slope which makes an angle of $\theta = 19.6^{\circ}$ with the horizontal.

The mass is attached to a spring with $k = 205 \frac{\text{N}}{\text{m}}$.

The mass is initially held at rest in a location where the spring is unstretched.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The mass is released from rest and slides down the slope stretching the spring.

(The input below will accept answers with no more than 1 At the instant that the mass's acceleration vanishes how much has the spring been stretched from its equilibrium length?

_____ III

UVic Problem ID: 38301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 0.475