# Supporting Information for The Measurement of

# Partisan Sorting for 180 Million Voters

Jacob R. Brown\*and Ryan D. Enos<sup>†</sup>

## <sub>4</sub> S1 Data Processing

- 5 The analysis in this manuscript relies on the spatial processing technique of Geohashing.
- 6 Geohash is a public domain encoding system that stores spatial location data in strings of
- <sup>7</sup> letters and numbers. This technique is an application of z-order curves, transforming multi-
- 8 dimensional data to a single dimension to allow for more efficient processing of such data
- Niemeyer (2008). These techniques were applied to the latitude and longitude coordinates
- of the residence of each registered voter in the United States, so that k-means analysis can
- 11 identify the nearest neighbors and measure distances between neighbors for each voter in
- the nationwide voterfile. This data processing plan was developed in collaboration with the
- 13 Harvard University's Center for Geographic Analysis (CGA), and CGA implemented the
- nearest neighbors analysis and distance calculations. The processing was implemented on
- 15 Amazon Web Services (AWS) across 10 Postgres instances with PostGIS add-ons. Processing
- of the entire file in this setup took approximately 4 weeks in continuous computation time.
- The output was dataset of 1000 x 180,735,645 rows listing the 1,000 nearest neighbors of

<sup>\*</sup>Institute for Quantitative Social Science and Department of Government, Harvard University, jrbrown@g.harvard.edu

 $<sup>^{\</sup>dagger} Institute$  for Quantitative Social Science and Department of Government, Harvard University,  ${\tt renos@gov.harvard.edu}$ 

each voter, with columns for the neighbor's partisanship and the distance they live from the voter.

With these data in hand, we calculated weighted averages of Spatial Partisan exposure and Isolation and other partisan segregation, racial segregation, and general summary statistics for each voter in the file. This stage of the analysis was also conducted on AWS, using an instance calibrated for parallel processing in R. Total computation time for this stage was over 200 hours, completed in multiple installments.

Table S1 shows the percent of each voter in the voterfile with non-missing values for
each variable after our additions to the original L2 file. In geographic-based analysis, voters
missing the geographic variable are not included in the analysis. Note that 93% of the US
population lives in a CBSA and 75% of the US population lives in a Census Place. Gender,
race, and age are used in the imputation process described in Section S5 where we also
discuss how we imputed missing values for those variables.

Table S1: Coverage of Variables in Voterfile

| Variable                  | Coverage |
|---------------------------|----------|
| State                     | 100%     |
| CBSA                      | 93.89%   |
| County                    | 100%     |
| Census Place              | 71.99%   |
| Zip                       | 99.44%   |
| Tract                     | 100%     |
| Precinct                  | 98.59%   |
| Density                   | 99.97%   |
| Urban Area Classification | 100%     |
| Gender                    | 99.55%   |
| Race                      | 91.18%   |
| Age                       | 98.33%   |
| Party                     | 100%     |



Figure S1: Exposure and Isolation with a=2

Nationwide distribution of partisan Spatial Isolation and Exposure separately for Democrats (blue) and Republicans (red) with a=2. Solid vertical lines represent mean values and dashed lines represent median values. Colored cells present spatially weighted proportion of out-party (Exposure) or in-party (Isolation) neighbors across percentiles. The distributions are weighted by the posterior partisan probabilities.

# 31 S2 Results with Different Weights

- In the main analysis, we calculated partisan exposure with a=1. The distributions of Spatial
- Exposure and Isolation with a=2 is in Figure S1. In this case, distance is given significantly
- more weight than other neighbors so that the nearest neighbor becomes extremely important
- in shaping the partisan environment and exposure and isolation become even more extreme
- than when weights are constructed with a = 1.
- Weights can also be constructed, not by neighbor distance, but by rank of neighbor
- 38 closeness, so that the first closest neighbor to each voter, regardless of distance, is given
- 39 the most weight, the second closest, the next most weight, etc. Distributions with this
- weighting scheme are in Figure S2. In this case, distance is given less significance so that the

Table S2: Spatial Exposure/Isolation with a=2 Quantiles

| Type      | Party      | 1%   | 10%  | 25%  | 50%  | 75%  | 90%  | 99%  |
|-----------|------------|------|------|------|------|------|------|------|
| Exposure  | Democratic | 0.00 | 0.00 | 0.01 | 0.13 | 0.43 | 0.70 | 1.00 |
| Exposure  | Republican | 0.00 | 0.00 | 0.01 | 0.21 | 0.50 | 0.78 | 1.00 |
| Isolation | Democratic | 0.00 | 0.20 | 0.49 | 0.76 | 0.98 | 1.00 | 1.00 |
| Isolation | Republican | 0.00 | 0.11 | 0.41 | 0.68 | 0.99 | 1.00 | 1.00 |

Quantiles of exposure/isolation for segregation measures constructed with squared distance weights.

Table S3: Spatial Exposure/Isolation with Neighbor Rank Weights Quantiles

| Type                  | Party                                                | 1%             | 10%            | 25%            | 50%            | 75%            | 90%            | 99%            |
|-----------------------|------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Exposure<br>Isolation | Democratic<br>Republican<br>Democratic<br>Republican | $0.07 \\ 0.16$ | $0.16 \\ 0.33$ | $0.25 \\ 0.45$ | $0.36 \\ 0.62$ | $0.49 \\ 0.79$ | $0.63 \\ 0.91$ | $0.86 \\ 0.98$ |

Quantiles of exposure/isolation for segregation measures constructed with neighbor rank weights.

- nearest neighbor, no matter how far apart is given the most weight, resulting in exposure
- and isolation becoming, on average, less extreme.

### 43 S3 Comparison of Spatial Exposure to Other Measures

# of Segregation

- We present distributions of exposure when it is measured using existing approaches and
- 6 compare these to Spatial Exposure and Isolation. All of these comparisons are to apsatial
- measures, either using individual voters or areal units to calculate segregation. In our anal-
- 48 yess, our primary measure of partisan exposure and isolation are averages of exposure to
- 49 neighbors of each party in a voter's 1,000 nearest neighbors, weighted by the inverse dis-
- tance the voter lives from each neighbor. An exposure measure that does not weight for
- of distance is making the strong assumption that distance does not matter, so that the spatial
- distribution of partisan within the 1,000 nearest neighbors is uninformative as to partisan
- 53 context.
- We present comparisons for: 1) Aspatial individual exposure, that is exposure with the



Figure S2: Exposure and Isolation weighted by neighbor closeness rank

Nationwide distribution of partisan Spatial Isolation and Exposure separately for Democrats (blue) and Republicans (red) with weighting my neighbor closeness rank. Solid vertical lines represent mean values and dashed lines represent median values. Colored cells present spatially weighted proportion of out-party (Exposure) or in-party (Isolation) neighbors across percentiles. The distributions are weighted by the posterior partisan probabilities.

1,000 nearest neighbors as the unit of analysis but unweighted by distance between individuals. 2) Asptial aggregate exposure, that is exposure with areal units as the unit of analysis. We present these using cities/towns, ZIP codes, and Census Tracts. 3) Aspatial aggregate exposure calculated from 2016 precinct-level election returns, rather than individual partisanship recorded on or imputed from the voterfile.

For all comparisons, a consistent pattern emerges of aspatial measures understating the true extent of isolation and exposure on average and distributions exposure and isolation quite different than when accounting for distance. For each alternative approach, we show the nation-wide distributions of exposure and isolation, the percentage-point and percent change (censored at 100%) for each individual voter with the alternative measure compared to the spatially-weighted measure, and the absolute percentage-point and percent change for each individual voter when using the alternative measure. These comparisons of absolute changes are important because while not accounting for the distance between voters, on average, creates downward bias in measures of segregation, segregation is also significantly overstated for a large proportion of voters, meaning that the absolute bias is large and both over and understates segregation.

### <sup>1</sup> S3.1 Individual Spatial versus Aspatial Measures

Here, we present comparison statistics of weighted versus unweighted partisan exposure measures based on the 1,000 nearest neighbors. In Figure S3 we show the spatially weighted and unweighted distributions and in Figure S4 we show the nationwide distribution of the change in exposure for each individual voter when we weight by distance. In Figure S5 we show the absolute differences between spatial and aspatial measures. For many voters, the change is small, likely reflecting homogeneity within their 1,000 nearest neighbors. But for a large portion of voters, we see that not accounting for the spatial relationships between them and their neighbors significantly distorts the measurement of partisan exposure and



Figure S3: Spatial versus Aspatial Exposure/Isolation

Nationwide distribution of individual spatial (left) and aspatial (right) partisan isolation and exposure separately for Democrats (blue) and Republicans (red). Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

- 80 isolation. For both parties, partisan isolation appears lower, and exposure appears higher,
- when distance is not incorporated, with fewer Democrats living in extreme isolation (> 0.95).
- The Republican distributions spreads with the incorporation of distance.

#### 83 S3.2 City-based Measures

- <sup>84</sup> Here, we present comparison statistics of the weighted individual partisan exposure and
- isolation to city-based aspatial exposure and isolation. The nationwide distribution in Fig-
- <sub>86</sub> ure S6 is less smooth with the city-based measure and the extreme exposure and isolation
- are reduced. The individual differences between the city-based measure and the individual
- spatially-weighted measure are in Figure S7 and the absolute differences are in Figure S8.

#### $_{ ext{ iny S}}$ S3.3 ZIP code-based Measures

- <sub>90</sub> Here, we present comparison statistics of the weighted individual partisan exposure and
- isolation to ZIP code-based aspatial exposure and isolation. The nationwide distribution in
- <sub>92</sub> Figure S9 also reduces extreme exposure and isolation. The individual differences between
- the ZIP code-based measure and the individual spatially-weighted measure are in Figure S10
- <sup>94</sup> and the absolute differences are in Figure S11.



Figure S4: Individual Differences in Spatial versus Aspatial Exposure/Isolation

Nationwide distribution of individual-level changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point difference in spatial and aspatial exposure, while the histograms on the right show the percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S5: Individual Absolute Differences in Spatial versus Aspatial Exposure/Isolation

Nationwide distribution of individual-level absolute changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point absolute difference in spatial and aspatial exposure, while the histograms on the right show the absolute percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S6: Individual Spatial Versus City-based Aspatial Exposure/Isolation

Nationwide distribution of spatial (left) and aspatial city-based (right) partisan isolation and exposure separately for Democrats (blue) and Republicans (red). Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S7: Individual Differences in Spatial versus City-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point difference in spatial and city-based aspatial exposure, while the histograms on the right show the percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S8: Individual Absolute Differences in Spatial versus City-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level absolute changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point absolute difference in spatial and aspatial exposure, while the histograms on the right show the absolute percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S9: Individual Spatial Versus ZIP code-based Aspatial Exposure/Isolation

Nationwide distribution of spatial (left) and aspatial ZIP code-based (right) partisan isolation and exposure separately for Democrats (blue) and Republicans (red). Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

Table S4: Precinct-Based Aspatial Exposure/Isolation Quantiles

| Measure    | Type      | Party      | 1%     | 10%    | 25%    | 50%    | 75%   | 90%   | 99%    |
|------------|-----------|------------|--------|--------|--------|--------|-------|-------|--------|
|            | Exposure  | Democratic | 0.03   | 0.12   | 0.18   | 0.31   | 0.44  | 0.55  | 0.71   |
| City       | Exposure  | Republican | 0.12   | 0.25   | 0.35   | 0.46   | 0.58  | 0.70  | 0.84   |
| City       | Isolation | Democratic | 0.22   | 0.38   | 0.48   | 0.62   | 0.76  | 0.83  | 0.96   |
|            | Isolation | Republican | 0.11   | 0.24   | 0.35   | 0.47   | 0.58  | 0.67  | 0.83   |
|            | Exposure  | Democratic | -0.36  | -0.20  | -0.12  | -0.05  | 0.02  | 0.11  | 0.31   |
| Difference | Exposure  | Republican | -0.43  | -0.23  | -0.14  | -0.06  | 0.02  | 0.11  | 0.28   |
| Difference | Isolation | Democratic | -0.31  | -0.12  | -0.03  | 0.05   | 0.13  | 0.21  | 0.39   |
|            | Isolation | Republican | -0.28  | -0.11  | -0.03  | 0.06   | 0.15  | 0.25  | 0.44   |
|            | Exposure  | Democratic | -95.89 | -73.82 | -46.65 | -19.75 | 6.53  | 38.97 | 162.64 |
| Percent    | Exposure  | Republican | -76.22 | -50.41 | -34.03 | -14.88 | 4.29  | 23.26 | 85.96  |
| Change     | Isolation | Democratic | -53.32 | -21.50 | -5.05  | 7.50   | 21.23 | 40.99 | 104.37 |
|            | Isolation | Republican | -65.56 | -27.32 | -6.46  | 11.89  | 34.92 | 70.01 | 218.89 |
|            | Exposure  | Democratic | 0.00   | 0.02   | 0.04   | 0.09   | 0.15  | 0.23  | 0.39   |
| Absolute   | Exposure  | Republican | 0.00   | 0.02   | 0.04   | 0.10   | 0.17  | 0.25  | 0.44   |
| Difference | Isolation | Democratic | 0.00   | 0.02   | 0.04   | 0.09   | 0.16  | 0.24  | 0.41   |
|            | Isolation | Republican | 0.00   | 0.02   | 0.04   | 0.10   | 0.18  | 0.26  | 0.45   |
| Absolute   | Exposure  | Democratic | 0.52   | 5.38   | 14.48  | 31.56  | 56.66 | 82.72 | 162.73 |
| Percent    | Exposure  | Republican | 0.37   | 3.82   | 10.10  | 22.62  | 38.66 | 54.91 | 89.50  |
|            | Isolation | Democratic | 0.24   | 2.47   | 6.56   | 15.00  | 27.91 | 45.59 | 104.38 |
| Change     | Isolation | Republican | 0.34   | 3.49   | 9.60   | 22.14  | 41.76 | 72.69 | 218.89 |

Quantiles of exposure/isolation for a spatial segregation measures constructed based on city-level proportion Democrat/Republican. The top row presents the nationwide quantiles for exposure and isolation under this definition. The second row presents the individual differences between the main exposure/isolation measures and the city-based measure. The third row presents the individual percentage difference between the main exposure/isolation measures and the city-based measure. The fourth row presents the individual absolute differences between the main exposure/isolation measures and the city-based measure. The fifth row presents the individual absolute percentage difference between the main exposure/isolation measures and the city-based measure.



Figure S10: Individual Differences in Spatial versus ZIP code-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point difference in spatial and ZIP code-based aspatial exposure, while the histograms on the right show the percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S11: Individual Absolute Differences in Spatial versus Zip code-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level absolute changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point absolute difference in spatial and aspatial exposure, while the histograms on the right show the absolute percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

Table S5: Zip Code-Based Aspatial Exposure/Isolation Quantiles

| Measure    | Type      | Party      | 1%     | 10%    | 25%    | 50%    | 75%    | 90%    | 99%    |
|------------|-----------|------------|--------|--------|--------|--------|--------|--------|--------|
|            | Exposure  | Democratic | 0.02   | 0.09   | 0.20   | 0.36   | 0.50   | 0.60   | 0.76   |
| 77:        | Exposure  | Republican | 0.12   | 0.22   | 0.30   | 0.40   | 0.52   | 0.64   | 0.84   |
| Zip        | Isolation | Democratic | 0.19   | 0.33   | 0.43   | 0.57   | 0.74   | 0.87   | 0.97   |
|            | Isolation | Republican | 0.11   | 0.29   | 0.41   | 0.53   | 0.64   | 0.72   | 0.84   |
|            | Exposure  | Democratic | -0.45  | -0.22  | -0.12  | -0.04  | 0.02   | 0.10   | 0.31   |
| Difference | Exposure  | Republican | -0.42  | -0.23  | -0.15  | -0.06  | 0.02   | 0.12   | 0.37   |
| Difference | Isolation | Democratic | -0.30  | -0.11  | -0.02  | 0.04   | 0.13   | 0.23   | 0.48   |
|            | Isolation | Republican | -0.36  | -0.13  | -0.03  | 0.06   | 0.16   | 0.25   | 0.44   |
|            | Exposure  | Democratic | -91.05 | -63.95 | -41.53 | -18.31 | 5.37   | 33.50  | 141.52 |
| Percent    | Exposure  | Republican | -89.17 | -63.86 | -39.64 | -15.85 | 5.69   | 28.89  | 128.96 |
| Change     | Isolation | Democratic | -66.57 | -21.56 | -4.12  | 6.37   | 23.57  | 50.68  | 159.26 |
|            | Isolation | Republican | -67.64 | -27.84 | -7.22  | 10.59  | 31.29  | 56.83  | 160.38 |
|            | Exposure  | Democratic | 0.00   | 0.01   | 0.03   | 0.08   | 0.15   | 0.25   | 0.46   |
| Absolute   | Exposure  | Republican | 0.00   | 0.02   | 0.04   | 0.10   | 0.17   | 0.26   | 0.47   |
| Difference | Isolation | Democratic | 0.00   | 0.01   | 0.03   | 0.08   | 0.16   | 0.25   | 0.48   |
|            | Isolation | Republican | 0.00   | 0.02   | 0.05   | 0.10   | 0.19   | 0.27   | 0.47   |
| Absolute   | Exposure  | Democratic | 8.95   | 36.05  | 58.47  | 81.69  | 105.37 | 133.50 | 241.61 |
| Percent    | Exposure  | Republican | 0.41   | 4.18   | 11.26  | 25.67  | 46.95  | 70.75  | 129.01 |
| Change     | Isolation | Democratic | 0.18   | 1.91   | 5.50   | 14.40  | 31.31  | 56.92  | 159.27 |
| Change     | Isolation | Republican | 32.36  | 72.16  | 92.78  | 110.59 | 131.29 | 156.83 | 260.40 |

Quantiles of exposure/isolation for a spatial segregation measures constructed based on zip code-level proportion Democrat/Republican. The top row presents the nation wide quantiles for exposure and isolation under this definition. The second row presents the individual differences between the main exposure/isolation measures and the zip code-based measure. The third row presents the individual percentage difference between the main exposure/isolation measures and the zip code-based measure. The fourth row presents the individual absolute differences between the main exposure/isolation measures and the zip code-based measure. The fifth row presents the individual absolute percentage difference between the main exposure/isolation measures and the zip code-based measure.



Figure S12: Individual Spatial Versus Census Tract-based Aspatial Exposure/Isolation Nationwide distribution of spatial (left) and aspatial Census Tract-based (right) partisan isolation and exposure separately for Democrats (blue) and Republicans (red). Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

#### 95 S3.4 Census Tract-based Measures

Here, we present comparison statistics of the weighted individual partisan exposure and isolation to Census Tract-based aspatial exposure and isolation. The nationwide distribution in Figure S12 also reduces extreme exposure and isolation. The individual differences between the Census Tract-based measure and the individual spatially-weighted measure are in Figure S13 and the absolute differences are in Figure S14.

#### 101 S3.5 Precinct-based Measures

Here, we present comparison statistics of the weighted individual partisan exposure and isolation to precinct-based aspatial exposure and isolation. In this case precincts are based on vote
returns, rather than partisanship constructed from the voterfile. The nationwide distribution in Figure S15 shows similarities to the individual-based spatially-weighted distribution
but the the individual differences between the precinct-based measure and the individual
spatially-weighted measure in Figure S16 and the absolute differences in Figure S17 show
the downward bias on segregation found with other aspatial measures.



Figure S13: Individual Differences in Spatial versus Census Tract-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point difference in spatial and Census Tract-based aspatial exposure, while the histograms on the right show the percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S14: Individual Absolute Differences in Spatial versus Census Tract-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level absolute changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point absolute difference in spatial and aspatial exposure, while the histograms on the right show the absolute percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

Table S6: Census Tract-Based Aspatial Exposure/Isolation Quantiles

| Measure    | Type      | Party      | 1%     | 10%    | 25%    | 50%    | 75%   | 90%   | 99%    |
|------------|-----------|------------|--------|--------|--------|--------|-------|-------|--------|
|            | Exposure  | Democratic | 0.01   | 0.07   | 0.18   | 0.35   | 0.50  | 0.61  | 0.77   |
| Tract      | Exposure  | Republican | 0.11   | 0.21   | 0.29   | 0.39   | 0.51  | 0.64  | 0.85   |
| Hact       | Isolation | Democratic | 0.18   | 0.32   | 0.43   | 0.58   | 0.76  | 0.89  | 0.97   |
|            | Isolation | Republican | 0.10   | 0.29   | 0.42   | 0.54   | 0.65  | 0.73  | 0.84   |
|            | Exposure  | Democratic | -0.44  | -0.20  | -0.10  | -0.03  | 0.01  | 0.09  | 0.28   |
| Difference | Exposure  | Republican | -0.38  | -0.21  | -0.13  | -0.05  | 0.02  | 0.11  | 0.38   |
| Difference | Isolation | Democratic | -0.27  | -0.10  | -0.02  | 0.03   | 0.11  | 0.21  | 0.47   |
|            | Isolation | Republican | -0.36  | -0.12  | -0.03  | 0.05   | 0.14  | 0.23  | 0.40   |
|            | Exposure  | Democratic | -85.71 | -55.53 | -35.94 | -15.56 | 5.14  | 30.56 | 136.99 |
| Percent    | Exposure  | Republican | -88.33 | -60.92 | -36.69 | -14.37 | 5.22  | 28.01 | 137.64 |
| Change     | Isolation | Democratic | -64.27 | -19.59 | -3.57  | 4.34   | 19.65 | 46.73 | 167.28 |
|            | Isolation | Republican | -65.46 | -26.20 | -6.91  | 8.99   | 27.38 | 49.07 | 137.87 |
|            | Exposure  | Democratic | 0.00   | 0.01   | 0.02   | 0.06   | 0.13  | 0.22  | 0.45   |
| Absolute   | Exposure  | Republican | 0.00   | 0.01   | 0.04   | 0.09   | 0.16  | 0.23  | 0.45   |
| Difference | Isolation | Democratic | 0.00   | 0.01   | 0.03   | 0.07   | 0.14  | 0.23  | 0.48   |
|            | Isolation | Republican | 0.00   | 0.01   | 0.04   | 0.10   | 0.17  | 0.25  | 0.45   |
| Absolute   | Exposure  | Democratic | 0.41   | 4.15   | 11.26  | 24.97  | 43.09 | 64.12 | 137.05 |
|            | Exposure  | Republican | 0.34   | 0.58   | 10.05  | 23.93  | 44.39 | 68.95 | 137.64 |
| Percent    | Isolation | Democratic | 0.12   | 1.33   | 4.05   | 11.65  | 27.75 | 53.58 | 167.28 |
| Change     | Isolation | Republican | 0.29   | 2.98   | 8.09   | 18.81  | 34.28 | 54.81 | 137.87 |

Quantiles of exposure/isolation for a spatial segregation measures constructed based on tract-level proportion Democrat/Republican. The top row presents the nation wide quantiles for exposure and isolation under this definition. The second row presents the individual differences between the main exposure/isolation measures and the tract-based measure. The third row presents the individual percentage difference between the main exposure/isolation measures and the tract-based measure. The fourth row presents the individual absolute differences between the main exposure/isolation measures and the tract-based measure. The fifth row presents the individual absolute percentage difference between the main exposure/isolation measures and the tract-based measure.



Figure S15: Individual Spatial Versus Precinct-based Aspatial Exposure/Isolation

Nationwide distribution of spatial (left) and aspatial Precinct-based (right) partisan isolation and exposure separately for Democrats (blue) and Republicans (red). Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.



Figure S16: Individual Differences in Spatial versus Precinct-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point difference in spatial and Precinct-based aspatial exposure, while the histograms on the right show the percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

Table S7: Precinct-Based Aspatial Exposure/Isolation Quantiles

| Measure    | Type      | Party      | 1%     | 10%    | 25%    | 50%    | 75%   | 90%   | 99%    |
|------------|-----------|------------|--------|--------|--------|--------|-------|-------|--------|
|            | Exposure  | Democratic | 0.01   | 0.06   | 0.18   | 0.36   | 0.53  | 0.66  | 0.83   |
| Precinct   | Exposure  | Republican | 0.08   | 0.17   | 0.26   | 0.37   | 0.50  | 0.63  | 0.85   |
| Precinct   | Isolation | Democratic | 0.13   | 0.28   | 0.41   | 0.57   | 0.76  | 0.89  | 0.97   |
|            | Isolation | Republican | 0.09   | 0.30   | 0.44   | 0.57   | 0.69  | 0.78  | 0.89   |
|            | Exposure  | Democratic | -0.57  | -0.24  | -0.12  | -0.04  | 0.01  | 0.08  | 0.26   |
| Difference | Exposure  | Republican | -0.33  | -0.18  | -0.11  | -0.04  | 0.04  | 0.14  | 0.48   |
| Difference | Isolation | Democratic | -0.25  | -0.10  | -0.02  | 0.03   | 0.12  | 0.24  | 0.60   |
|            | Isolation | Republican | -0.46  | -0.16  | -0.06  | 0.02   | 0.12  | 0.20  | 0.36   |
|            | Exposure  | Democratic | -87.62 | -59.36 | -38.56 | -17.33 | 4.66  | 33.61 | 202.01 |
| Percent    | Exposure  | Republican | -85.39 | -55.88 | -33.19 | -11.17 | 9.61  | 43.94 | 251.06 |
| Change     | Isolation | Democratic | -59.16 | -18.65 | -3.83  | 4.69   | 23.17 | 64.65 | 312.02 |
|            | Isolation | Republican | -69.68 | -30.59 | -11.46 | 4.57   | 21.71 | 42.64 | 135.30 |
|            | Exposure  | Democratic | 0.00   | 0.01   | 0.03   | 0.07   | 0.15  | 0.26  | 0.57   |
| Absolute   | Exposure  | Republican | 0.00   | 0.01   | 0.04   | 0.09   | 0.15  | 0.23  | 0.49   |
| Difference | Isolation | Democratic | 0.00   | 0.01   | 0.03   | 0.07   | 0.15  | 0.26  | 0.60   |
|            | Isolation | Republican | 0.00   | 0.02   | 0.04   | 0.09   | 0.16  | 0.25  | 0.49   |
| Absolute   | Exposure  | Democratic | 0.46   | 4.67   | 12.40  | 27.00  | 46.80 | 69.82 | 202.01 |
| Percent    | Exposure  | Republican | 0.37   | 3.81   | 10.52  | 24.60  | 45.69 | 72.36 | 251.06 |
|            | Isolation | Democratic | 0.15   | 1.51   | 4.34   | 12.35  | 31.14 | 68.14 | 312.02 |
| Change     | Isolation | Republican | 0.29   | 2.90   | 7.56   | 17.13  | 31.98 | 52.10 | 135.30 |

Quantiles of exposure/isolation for a spatial segregation measures constructed based on precinct votes hare. The top row presents the nationwide quantiles for exposure and isolation under this definition. The second row presents the individual differences between the main exposure/isolation measures and the precinct-based measure. The third row presents the individual percentage difference between the main exposure/isolation measures and the precinct-based measure. The fourth row presents the individual absolute differences between the main exposure/isolation measures and the precinct-based measure. The fifth row presents the individual absolute percentage difference between the main exposure/isolation measures and the precinct-based measure.



Figure S17: Individual Absolute Differences in Spatial versus Precinct-based Aspatial Exposure/Isolation

Nationwide distribution of individual-level absolute changes in partisan Exposure and Isolation separately for Democrats (blue) and Republicans (red). The histograms on the left show the percentage point absolute difference in spatial and aspatial exposure, while the histograms on the right show the absolute percent change. Solid vertical lines represent mean values and dashed lines represent median values. The distributions are weighted by the posterior partisan probabilities.

## S4 Nearest Neighbor Analysis up to 50,000 Neighbors

In our analysis we measure partisan residential context by determining the 1,000 nearest 110 neighbors to each voter. Prior to conducting this analysis, we took a random sample of 111 10,000 voters and located their 50,000 nearest neighbors, so as to determine the number of 112 nearest neighbors at which adding more neighbors the the analysis is not informative as to a 113 voter's Spatial Exposure and Isolation. For these 10,000 voters, we calculated their Spatial 114 Exposure and Isolation at varying levels of neighbors from 5 up to 50,000. Figure S18 plots 115 the distribution percentiles of Spatial Exposure and Isolation for this sample across number 116 of neighbors. We see that the major changes in Spatial Exposure and Isolation that result 117 from adding more neighbors to the analysis levels off after 1,000 neighbors. Above that, 118 more neighbors add little information to our proximity-weighted measures. 119



Figure S18: Change in Spatial Exposures by Number of Neighbors

Lines display the percentiles of of Democratic and Republican Spatial Exposure/Isolation at different levels of neighbors for the sample of 10,000 voters where we identified their 50,000 nearest neighbors. The solid lines represent the median or 50th percentile, the dashed line represent the 25th and 7th percentiles, and the dotted lines the 10th and 90th percentiles. The horizontal dashed black line represents the 1,000 neighbor mark. We see that the major changes in Spatial Exposure and Isolation that result from adding more neighbors to the analysis levels off after 1,000 neighbors. Above that, more neighbors add little information to our proximity-weighted measures.

### 120 S5 Imputation of Partisanship

Our analyses rely on imputations of partisanship for voters not registered to a political party 121 in the voterfile. We impute partial partial for voters who do not have partial 122 recorded through a three-step process. First, we code remaining non-partisans as Democrat 123 or Republican based on the last partisan primary in which they voted: most states that do not 124 record partisanship — and some that do record partisanship — have open primaries, so voters 125 can cast a ballot in either parties' primary, providing an indication of partisan attachment 126 (Table S9). Next, we code individuals registered to third parties with clear ideological 127 leans into the Democrat or Republican classification. Table S8 shows our classifications of 128 each third party. Lastly, we impute partisanship for the remaining non-partisans through 129 a Bayesian process combining the individual-level probability of different combinations of 130 voter demographics conditional on partisanship based on a nationwide sample of voterfile 131 validated respondents from the Cooperative Congressional Election study (CCES), with a 132 geographic prior based on the 2016 vote share of the precinct in which the voter lives, net 133 the Republican and Democratic counts in that precinct. 134

Precinct level vote shares were constructed from data provided by the MIT Election 135 Lab and augmented with data collected from individual states. Using a series of spatial and 136 tabular joins, we successfully merge 98.59% of voters with their precinct-level returns. There 137 is some variation in the success of merging across states, ranging from 0% non-merged in 138 several states to 13.01% in South Dakota, which is a state in which some counties do not 139 have spatially defined precinct, but in which voters can vote in whatever voting precinct 140 they choose. For voters for whom we could not put in a precinct, we instead constructed a 141 geographic prior from county-level returns (Table S10). 142

To construct the individual level probability, we use the voterfile validated sample of CCES respondents (that is voters who, prior to anonymization, are matched to individuals on

the voterfile so that aspects of their identity are confirmed against official records) and for four variables, race, age, gender, and turnout in the 2016 election, we calculate the probability of 146 every unique combination, conditional on self-reported partisanship (Democrat, Republican, 147 or independent, where "lean" Democrat or Republican were incorporated into Democrat or 148 Republican). We coarsen age into quantiles (18-34, 35-50, 51-62, > 63) for this analysis, and 149 group CCES respondents into strata based on these four variables. We then calculate the 150 proportion of the three partisan groups in the CCES sample (lean Democrat, Republican, 151 or true independent) who fit into each strata. We then ascribe, to each unclassified non-152 partisan in the nationwide file, the probabilities of their demographic makeup conditional 153 on each partisan group. 12

$$Pr(X_{i} = x | D_{i}) = \frac{\sum_{j=1}^{n_{D}} \mathbb{I}(X_{j} = x)}{n_{D}}$$

$$Pr(X_{i} = x | R_{i}) = \frac{\sum_{j=1}^{n_{R}} \mathbb{I}(X_{j} = x)}{n_{R}}$$

$$Pr(X_{i} = x | I_{i}) = \frac{\sum_{j=1}^{n_{R}} \mathbb{I}(X_{j} = x)}{n_{I}}$$

where  $X_i$  is the demographic makeup of voter i in the nationwide voterfile,  $X_j$  is the demographic makeup of CCES respondent j,  $n_D$  is the number of self-reported Democrats in the CCES sample,  $n_R$  is the number of self-reported Republicans in the CCES sample, and  $n_I$  is the number of self-reported independents in the CCES sample.

159

The geographic prior is constructed by taking the precinct-level (or county for small

<sup>&</sup>lt;sup>1</sup>810,364 voters in the L2 voterfile do not have a gender listed. For these voters, we imputed Male or Female gender based on their age and first name, using the R package gender, which compares name and age to census data on frequency of male and female names across years. With this we successfully impute gender for all but 60,407 of the voters with missingness in the gender variable.

<sup>&</sup>lt;sup>2</sup>3,017,665 voters in the L2 file do not have their age recorded on the voter list. For these voters, we impute their age by taking the median age of other voters in the file with the same first name and same gender. We do this for all voters with missingness save those in Wisconsin, where, relying on Yougov survey data indicating that voters with no age in the voterfile are overwhelmingly in the 18-34 age demographic, we categorize their age in the youngest stratum. In this way, we were able to successfully impute age for all but 381,926 of the voters with missingness in the age variable.

portion of voters, see above) probability that a non-Democrat or Republican cast a vote for the Republican or Democratic candidate in 2016. This is done by taking the number 161 of votes for the Republican candidate in the 2016 general election – Donald Trump – and 162 the Democratic candidate—Hillary Clinton – and subtracting the number of Republicans 163 (registered, third party lean, or by primary voting) from the vote count for the Republican 164 candidate and subtracting the number of Democrats from the vote count for the Democratic 165 candidate. The remaining votes for the Republican (Democrat), after accounting for the 166 registered Republicans (Democrats) over the remaining total votes cast after accounting for 167 the registered Republicans (Democrats) defines the geographic prior of being a Republican 168 (Democrat). The probability of being an independent is 1 minus the probability of being a 169 Democrat or Republican. This is: 170

$$\begin{split} Pr(\mathbf{R}_p) &= \frac{\text{Trump Votes}_p - \text{Republicans}_p}{\text{Total Votes}_p - \text{Republicans}_p - \text{Democrats}_p} \\ Pr(\mathbf{D}_p) &= \frac{\text{Clinton Votes}_p - \text{Democrats}_p}{\text{Total Votes}_p - \text{Republicans}_p - \text{Democrats}_p} \\ Pr(\mathbf{I}_p) &= 1 - Pr(\mathbf{D}_p) - Pr(\mathbf{R}_p) \end{split}$$

With these probabilities, we use Bayes formula to construct the posterior probability of being a Democrat, Republican or Independent:

$$Pr(\mathbf{R}_{i}|X_{i}) = \frac{Pr(X_{i}|\mathbf{R}_{i})Pr(\mathbf{R}_{c})}{Pr(X_{i}|\mathbf{R}_{i})Pr(\mathbf{R}_{c}) + Pr(X_{i}|\mathbf{D}_{i})Pr(\mathbf{D}_{c}) + Pr(X_{i}|\mathbf{I}_{i})Pr(\mathbf{I}_{c})}$$

$$Pr(\mathbf{D}_{i}|X_{i}) = \frac{Pr(X_{i}|\mathbf{D}_{i})Pr(\mathbf{R}_{c})}{Pr(X_{i}|\mathbf{R}_{i})Pr(\mathbf{R}_{c}) + Pr(X_{i}|\mathbf{D}_{i})Pr(\mathbf{D}_{c}) + Pr(X_{i}|\mathbf{I}_{i})Pr(\mathbf{I}_{c})}$$

$$Pr(\mathbf{I}_{i}|X_{i}) = \frac{Pr(X_{i}|\mathbf{I}_{i})Pr(\mathbf{R}_{c})}{Pr(X_{i}|\mathbf{R}_{i})Pr(\mathbf{R}_{c}) + Pr(X_{i}|\mathbf{D}_{i})Pr(\mathbf{D}_{c}) + Pr(X_{i}|\mathbf{I}_{i})Pr(\mathbf{I}_{c})}$$

With this process, we classify 89% of voters not registered to a major party as lean

173

Democrats or lean Republicans.<sup>3</sup> Table S11 shows the percent of the electorate classified as Democrats, Republicans, and Independents at each step of the imputation process prior to the Bayesian imputation, then shows the weighted averages of the posterior probabilities that result from our multi-step imputation.

Figure S19 shows the distribution of posterior partisanship probabilities separately for 178 Democratic and Republican partisanship across (a) all voters where we impute partisanship 170 using the Bayesian imputation, (b) all voters who are not registered to the Democratic or 180 Republican party in the L2 files, so for whom we code partisanship through their primary 181 voting, third party affiliation, or Bayesian imputation, and (c) all voters in the L2 file, 182 registered to a major party or otherwise. Voters who are registered to a major party, vote 183 in a partisan primary, or are registered to a party with a clear ideological lean will have 184 a posterior partisan probability of 1 for the appropriate party and 0 for the out-party. 185 This is reflected in the distribution of all voters, where the most common posterior values 186 are overwhelmingly 0's and 1's. We further observe this pattern in the distribution across 187 unaffiliated voters – voters not registered as Democrats or Republicans – for whom some 188 imputation is required. In the distribution of voters for whom we were unable to code based 189 on primary voting or third party affiliation, and thus relied on Bayesian imputation, we see some posteriors between 0 and 1.

 $<sup>^359.89\%</sup>$  of the electorate is not registered to the Democratic or Republican party in the L2 voterfile. We can compare this to the partisan breakdown after our three-step imputation, where the weighted (weighted by posterior partisan probability) proportion of the electorate that is Independent is just 6.58%. 100% - 6.58%/59.89% = 89.01%.



Figure S19: Posterior Partisanship

Histograms show the distribution of posterior partisanship probabilities separately for Democratic and Republican partisanship across (a) all voters where we impute partisanship using the Bayesian imputation, (b) all voters who are not registered to the Democratic or Republican party in the L2 files, so for whom we code partisanship through their primary voting, third party affiliation, or Bayesian imputation, and (c) all voters in the L2 file, registered to a major party or otherwise. Note that voters who are registered to a major party, vote in a partisan primary, or are registered to a party with a clear ideological lean will have a posterior partisan probability of 1 for the appropriate party and 0 for the out-party. Solid vertical lines plot the median of each distribution.

Table S8: Parties Coded as Lean Democrat/Lean Republican

|                 | Party                        | Code                           |
|-----------------|------------------------------|--------------------------------|
| 1               | Democratic                   | Lean Democrat                  |
| 2               | Republican                   | Lean Republican                |
| 3               | Non-Partisan                 | Unknown                        |
| 4               | Registered Independent       | Unknown                        |
| 5               | American Independent         | Lean Republican                |
| 6               | Other                        | Unknown                        |
| 7               | Libertarian                  | Lean Republican                |
| 8               | Independence                 | Unknown                        |
| 9               | Unknown                      | Unknown                        |
| 10              | Green                        | Lean Democrat                  |
| 11              | Declined to State            | Unknown                        |
| 12              | Conservative                 | Lean Republican                |
| 13              | Peace and Freedom            | Lean Democrat                  |
| 14              | Working Family Party         | Lean Democrat                  |
| 15              | Constitution                 | Lean Republican                |
| 16              | Reform                       | Unknown                        |
| 17              | Constitutional               | Lean Republican                |
| 18              | Natural Law                  | Unknown                        |
| 19<br>20        | Women's Equality Party       | Lean Democrat<br>Unknown       |
| $\frac{20}{21}$ | Moderate                     | Unknown<br>Lean Democrat       |
| $\frac{21}{22}$ | Progressive<br>American      | Lean Democrat Unknown          |
| 23              | Mountain                     | Unknown                        |
| $\frac{23}{24}$ | Liberal                      | Lean Democrat                  |
| 25              | Green Libertarian            | Lean Democrat                  |
| 26              | Socialist                    | Lean Democrat                  |
| 27              | Independent Democrat         | Lean Democrat                  |
| 28              | Patriot                      | Unknown                        |
| 29              | Independent Republican       | Lean Republican                |
| 30              | Socialist Labor              | Lean Democrat                  |
| 31              | Christian                    | Unknown                        |
| 32              | Harold Washington Democrat   | Lean Democrat                  |
| 33              | Communist                    | Lean Democrat                  |
| 34              | Taxpayers                    | Unknown                        |
| 35              | Social Democrat              | Lean Democrat                  |
| 36              | Consumer                     | Unknown                        |
| 37              | Right to Life                | Lean Republican                |
| 38              | Citizens                     | Unknown                        |
| 39              | Whig                         | Unknown                        |
| 40              | Rainbow                      | Lean Democrat                  |
| 41              | Freedom                      | Unknown                        |
| 42              | Anarchist                    | Unknown                        |
| 43              | Bull Moose                   | Unknown                        |
| 44              | Populist                     | Unknown                        |
| 45              | Tea                          | Lean Republican                |
| 46              | Prohibition                  | Unknown                        |
| 47              | Free Choice                  | Unknown                        |
| $\frac{48}{49}$ | Federalist Worker's Party    | Unknown<br>Lean Democrat       |
| 49<br>50        | Worker's Party<br>Labor      | Lean Democrat<br>Lean Democrat |
| 50<br>51        | Harold Washington Republican | Lean Republican                |
| 52              | Harold Washington            | Lean Democrat                  |
| 53              | Individualist                | Unknown                        |
| 54              | Alliance                     | Unknown                        |
| 55              | Citizens Republican          | Lean Republican                |
| 56              | Natural Party                | Unknown                        |
| 57              | Grass Roots                  | Unknown                        |
| 58              | Tax                          | Unknown                        |
|                 |                              |                                |
| 59              | Solidarity                   | Unknown                        |

Table S9: State Registration Rules and Primary Types

|    | State                | State Recorded PID | Democratic primary type | Republican primary type |
|----|----------------------|--------------------|-------------------------|-------------------------|
| 1  | Alabama              | No                 | Closed                  | Open                    |
| 2  | Alaska               | Yes                | Open                    | Closed                  |
| 3  | Arizona              | Yes                | Semi-closed             | Semi-closed             |
| 4  | Arkansas             | Yes (optional)     | Open                    | Open                    |
| 5  | California           | Yes                | Top-two                 | Top-two                 |
| 6  | Colorado             | Yes                | Semi-closed             | Semi-closed             |
| 7  | Connecticut          | Yes                | Closed                  | Closed                  |
| 8  | Delaware             | Yes                | Closed                  | Closed                  |
| 9  | District of Columbia | Yes                | Closed                  | Closed                  |
| 10 | Florida              | Yes                | Closed                  | Closed                  |
| 11 | Georgia              | No                 | Open                    | Open                    |
| 12 | Hawaii               | No                 | Open                    | Open                    |
| 13 | Idaho                | Yes                | Semi-closed             | Semi-closed             |
| 14 | Illinois             | No                 | Open                    | Open                    |
| 15 | Indiana              | No                 | Open                    | Open                    |
| 16 | Iowa                 | Yes                | Open                    | Open                    |
| 17 | Kansas               | Yes                | Semi-closed             | Semi-closed             |
| 18 | Kentucky             | Yes                | Closed                  | Closed                  |
| 19 | Louisiana            | Yes                | Non-partisan            | Non-partisan            |
| 20 | Maine                | Yes                | Closed                  | Closed                  |
| 21 | Maryland             | Yes                | Closed                  | Closed                  |
| 22 | Massachusetts        | Yes                | Semi-closed             | Semi-closed             |
| 23 | Michigan             | No                 | Open                    | Open                    |
| 24 | Minnesota            | No                 | Open                    | Open                    |
| 25 | Mississippi          | No                 | Open                    | Open                    |
| 26 | Missouri             | No                 | Open                    | Open                    |
| 27 | Montana              | No                 | Open                    | Open                    |
| 28 | Nebraska             | Yes                | Semi-closed             | Semi-closed             |
| 29 | Nevada               | Yes                | Closed                  | Closed                  |
| 30 | New Hampshire        | Yes                | Semi-closed             | Semi-closed             |
| 31 | New Jersey           | Yes                | Semi-closed             | Semi-closed             |
| 32 | New Mexico           | Yes                | Closed                  | Closed                  |
| 33 | New York             | Yes                | Closed                  | Closed                  |
| 34 | North Carolina       | Yes                | Semi-closed             | Semi-closed             |
| 35 | North Dakota         | No                 | Open                    | Open                    |
| 36 | Ohio                 | No                 | Open                    | Open                    |
| 37 | Oklahoma             | Yes                | Semi-closed             | Closed                  |
| 38 | Oregon               | Yes                | Closed                  | Closed                  |
| 39 | Pennsylvania         | Yes                | Closed                  | Closed                  |
| 40 | Rhode Island         | Yes                | Semi-closed             | Semi-closed             |
| 41 | South Carolina       | No                 | Open                    | Open                    |
| 42 | South Dakota         | Yes                | Semi-closed             | Semi-closed             |
| 43 | Tennessee            | No                 | Open                    | Open                    |
| 44 | Texas                | No                 | Open                    | Open                    |
| 45 | Utah                 | Yes                | Semi-closed             | Semi-closed             |
| 46 | Vermont              | No                 | Open                    | Open                    |
| 47 | Virginia             | No                 | Open                    | Open                    |
| 48 | Washington           | No                 | Non-partisan            | Non-partisan            |
| 49 | West Virginia        | Yes                | Semi-closed             | Semi-closed             |
| -  | Wisconsin            | No                 | Open                    | Open                    |
| 50 | VV ISCOIISIII        |                    |                         |                         |

Table S10: State-level voter to precinct matches

|                 | State          | Precinct Matches | County Matches | Total Voters | Percent Precinct | Percent County |
|-----------------|----------------|------------------|----------------|--------------|------------------|----------------|
| 1               | Alabama        | 2725805          | 216864         | 2942669      | 92.63%           | 7.37%          |
| 2               | Alaska         | 440960           | 5891           | 446851       | 98.68%           | 1.32%          |
| 3               | Arizona        | 3355012          | 70571          | 3425583      | 97.94%           | 2.06%          |
| 4               | Arkansas       | 1349036          | 65582          | 1414618      | 95.36%           | 4.64%          |
| 5               | California     | 18196337         | 3859           | 18200196     | 99.98%           | 0.02%          |
| 6               | Colorado       | 3015783          | 123998         | 3139781      | 96.05%           | 3.95%          |
| 7               | Connecticut    | 2119260          | 3380           | 2122640      | 99.84%           | 0.16%          |
| 8               | DC             | 396394           | 48             | 396442       | 99.99%           | 0.01%          |
| 9               | Delaware       | 619808           | 311            | 620119       | 99.95%           | 0.05%          |
| 10              | Florida        | 12338852         | 6432           | 12345284     | 99.95%           | 0.05%          |
| 11              | Georgia        | 5465155          | 3775           | 5468930      | 99.93%           | 0.07%          |
| 12              | Hawaii         | 636251           | 134            | 636385       | 99.98%           | 0.02%          |
| 13              | Idaho          | 681658           | 19089          | 700747       | 97.28%           | 2.72%          |
| 14              | Illinois       | 7705542          | 36662          | 7742204      | 99.53%           | 0.47%          |
| 15              | Indiana        | 3716361          | 40913          | 3757274      | 98.91%           | 1.09%          |
| 16              | Iowa           | 1885254          | 2172           | 1887426      | 99.88%           | 0.12%          |
| 17              | Kansas         | 1456847          | 94437          | 1551284      | 93.91%           | 6.09%          |
| 18              | Kentucky       | 2856862          | 40351          | 2897213      | 98.61%           | 1.39%          |
| 19              | Louisiana      | 2763402          | 10876          | 2774278      | 99.61%           | 0.39%          |
| 19<br>20        | Maine          | 849285           | 54260          | 903545       | 93.99%           | 6.01%          |
| $\frac{20}{21}$ | Maryland       | 3798705          | 311            | 3799016      | 99.99%           | 0.01%          |
| $\frac{21}{22}$ | Massachusetts  | 4020865          | 36088          | 4056953      | 99.11%           | 0.01%          |
|                 |                |                  | 244            |              |                  |                |
| 23              | Michigan       | 6643980          |                | 6644224      | 100.00%          | 0.00%          |
| 24              | Minnesota      | 3144404          | 515            | 3144919      | 99.98%           | 0.02%          |
| 25              | Mississippi    | 1704121          | 70162          | 1774283      | 96.05%           | 3.95%          |
| 26              | Missouri       | 3307305          | 267974         | 3575279      | 92.50%           | 7.50%          |
| 27              | Montana        | 556203           | 17874          | 574077       | 96.89%           | 3.11%          |
| 28              | Nebraska       | 975054           | 75018          | 1050072      | 92.86%           | 7.14%          |
| 29              | Nevada         | 1401254          | 41825          | 1443079      | 97.10%           | 2.90%          |
| 30              | New Hampshire  | 808929           | 88             | 809017       | 99.99%           | 0.01%          |
| 31              | New Jersey     | 5330146          | 13094          | 5343240      | 99.75%           | 0.25%          |
| 32              | New Mexico     | 1077260          | 89             | 1077349      | 99.99%           | 0.01%          |
| 33              | New York       | 10820724         | 447366         | 11268090     | 96.03%           | 3.97%          |
| 34              | North Carolina | 5897797          | 17601          | 5915398      | 99.70%           | 0.30%          |
| 35              | North Dakota   | 327978           | 6117           | 334095       | 98.17%           | 1.83%          |
| 36              | Ohio           | 7189406          | 4410           | 7193816      | 99.94%           | 0.06%          |
| 37              | Oklahoma       | 1551914          | 128206         | 1680120      | 92.37%           | 7.63%          |
| 38              | Oregon         | 2593732          | 204739         | 2798471      | 92.68%           | 7.32%          |
| 39              | Pennsylvania   | 7643777          | 501            | 7644278      | 99.99%           | 0.01%          |
| 40              | Rhode Island   | 690427           | 803            | 691230       | 99.88%           | 0.12%          |
| 41              | South Carolina | 2811852          | 43177          | 2855029      | 98.49%           | 1.51%          |
| 42              | South Dakota   | 416486           | 62290          | 478776       | 86.99%           | 13.01%         |
| 43              | Tennessee      | 3245682          | 0              | 3245682      | 100.000%         | 0.00%          |
| 44              | Texas          | 13223300         | 5243           | 13228543     | 99.96%           | 0.04%          |
| 45              | Utah           | 1332678          | 44331          | 1377009      | 96.78%           | 3.22%          |
| 46              | Vermont        | 408720           | 37             | 408757       | 99.99%           | 0.01%          |
| 47              | Virginia       | 4922433          | 55586          | 4978019      | 98.88%           | 1.12%          |
| 48              | Washington     | 4136953          | 86870          | 4223823      | 97.94%           | 2.06%          |
| 40<br>49        | West Virginia  | 1070862          | 4154           | 1075016      | 99.61%           | 0.39%          |
| -               | Wisconsin      |                  |                |              | 99.99%           | 0.39% $0.01%$  |
| 50<br>51        | Wyoming        | 4445976          | 659            | 4446635      |                  |                |
|                 |                | 231091           | 1298           | 232389       | 99.44%           | 0.56%          |

Table S11: Partisan Breakdowns at Each Imputation Stage

| Party                                 | L2                       | Primary Coding                                                           | After:<br>Third Party Coding  | Full Imputation         |
|---------------------------------------|--------------------------|--------------------------------------------------------------------------|-------------------------------|-------------------------|
| Democrat<br>Independent<br>Republican | 23.16% $59.89%$ $16.95%$ | $\begin{array}{ c c c }\hline 34.70\%\\ 36.38\%\\ 28.92\%\\ \end{array}$ | $34.88\% \ 35.60\% \ 29.52\%$ | 50.54% $6.58%$ $42.88%$ |



Figure S20: Exposure and Isolation with Imputation (left) and without (right).

## S6 Results without Imputation

Figure S20 displays the results with imputation next to the results without imputation. We see that imputing for partisanship added many Democrats living in high isolation to the Democratic distribution, while the Republican isolation distribution shifted slightly towards higher isolation. Exposure increases as there are now very few independents left in the sample.

### 198 S7 Imputation Accuracy

In order to assess the accuracy of our imputation, we surveyed 12,221 voters, randomly sampled after stratification by state and whether partisanship was visible on the voterfile with an over-sample of non-partisans. Respondents were contacted by email from email addresses linked to the voterfile by the vendor L2. In the survey we validate L2's linking, finding that, conditional on getting a response, 86.1% of respondents report to being the person to whom the email address was matched in the voter list. We limit our analysis to these voters (n = 10, 519).

To conduct the survey, we sent emails containing the invitation to participate in our online 206 Qualtrics survey to 1,753,493 unique voters. Of these emails, 47.2% bounced, indicating 207 that the email was invalid or that our email was rejected by a server, perhaps for spam 208 protection. Thus, 925,339 unique voters received an invitation to participate in the survey, 209 and we received 12,221 responses, a response rate of 1.3\%, which is similar to the single-digit 210 response rates expected for modern phone or email surveys. In our analysis of the survey, we 211 construct survey weights to account for non-response and report results with and without 212 these weights below. 213

Using these data, we assess validity and accuracy of our imputation in two ways: first
by comparing our imputed partisanship to self-reported partisanship (again including "lean"
partisans in the parties) and also by comparing the ideology of imputed and non-imputed
voters.

Figure S21 plots the imputed posterior partisanship probabilities for our survey respondents who are not registered as Democrats or Republicans against their rates of self-reported partisanship. A perfect correlation would follow the 45 degree lines in these figures. We see that our partisan predictions are strongly correlated with self-reported partisanship, and approach the levels of accuracy that we might expect given the levels of partisan instability

in survey response (see main text). We are most accurate when our imputation is most confident, where much of the support of our imputation lies, in the survey sample and in the unaffiliated voter population, and at the high ends, we approach the levels of accuracy possible with the proportions of partisans in our sample.

To more systematically test the accuracy of the imputation, we compute Brier Scores de-227 tailing the mean squared error, or the average squared deviation of each survey respondent's 228 posterior partisan probability from their actual partisanship. A Brier score is designed to 229 assess the magnitude of deviations for a probabilistic forecast, and produces a statistic on a 0 230 to 1 scale, with 0 being zero deviations, or perfect accuracy, and 1 being complete deviations, 231 or zero accuracy. Brief Scores can be inverted (1-score) and interpreted similar to the rate 232 of accuracy of the forecast. Thus, when we observe a Brier score of 0.23 (0.24 unweighted) 233 for Democratic partisanship and 0.23 (.25 unweighted) for Republican partisanship, this in-234 dicates our forecast is accurately predicting partisanship at rates of approximately 77% for 235 both parties. Figure S22 further illustrates the accuracy of the forecast, plotting the his-236 togram of raw squared deviations across units, as well as the average and median squared 237 deviations. We see that most of the units have very small deviations, with the medians very 238 close to 0. Figures S23 and S24 demonstrate the consistency of these patterns for survey respondents living in different states, different types of urban areas, and different densities. In comparing our imputed partisanship to self-reported partisanship, we present un-241 weighted survey results and results that incorporate survey weights created to make the 242 survey population more comparable to the population of voters for whom we imputed parti-243 sanship, that is voters not explicitly registered as Democrats or Republicans in the L2 voter 244

<sup>4</sup>This is,

Brier Score<sub>p</sub> = 
$$\frac{1}{n} \sum_{i=1}^{n} [P(p)_i - \mathbb{I}(p_i = p)]^2$$

where the Brier score for predicting p partisanship is the summation of the squared deviations of  $P(p)_i$  (the posterior partisan probability of p partisanship for respondent i) from  $\mathbb{I}(p_i = p)$  (an indicator variable equaling 1 if the survey respondent reports as being p partisanship).



Figure S21: Percent self-report Partisan Category by Posterior Partisan Probability

LOESS lines plotting the relationship between posterior partisan probability (Democratic on left, Republican on right) and the rates of survey respondents reporting as the corresponding partisanship. The correlation is limited to the subset of survey respondents (n=7,087) who are not registered with a major political party. Black lines plot the LOESS curve with survey weights incorporated, red/blue lines without survey weights. The 45-degree grey line plots a perfect 1-to-1 relationship between posterior partisan probability and self-reported partisanship. The horizontal dotted lines show the rates at which survey respondents who are registered Democrats/Republicans self-report partisanship in agreement (or disagreement for the lower lines) with their actual partisan registration. That is, the upper blue (red) dotted line represents the proportion of survey respondents we know are registered Democrats (Republicans) who self report as Democrats (Republicans), and the lower dotted line represents the proportion who do not self report as Democrats (Republicans). These lines represent lower and upper bounds on how accurate we can expect our forecast to appear when measured against survey data. The histogram on the bottom plots the frequency distribution of posterior partisan probabilities across the unaffiliated subset.



Figure S22: Brier Score Distributions

Brier score distribution for survey respondents not registered to the Democratic or Republican party (n = 7,087). The left panel shows the distribution weighted by survey weights, and the right panel shows unweighted distribution. Dashed vertical lines show the median and solid vertical lines show the mean for the distribution.

lists. These weights incorporate observable information on race, age, gender, vote history, and the type of urban area (major, minor, or outside) and population density in which the respondent lives. We also model response bias within the sample of people emailed surveys along the same observable variables. The survey weights are the combination of these models.

To construct the weights, we first model the likelihood of having an email address attached to voter records for each unaffiliated voter in the nationwide voter list.

$$P(\text{Email}_i|\mathbf{X}_i) = g^{-1}(\beta\mathbf{X}_i)$$

where  $g^{-1}(\cdot)$  is the inverse-logit function,  $\mathbf{X}_i$  is a vector of covariate values for voter i's state of residence, pre-imputation partisan identification, race, age, gender, whether or not they voted in 2016, the category (High, Medium, Low, Very low) of population density of the tract in which they live, and the type of urban area (Major, Minor, Outside Metro area) in which they live.

Next, we model the likelihood of a voter with an email being contacted for our survey.

257



Figure S23: Brier Score Distributions by State

Brier score distribution for survey respondents not registered to the Democratic or Republican party, subset by each state. The left panel shows the distribution weighted by survey weights, and the right panel shows unweighted distribution. Dashed vertical lines show the median and solid vertical lines show the mean for the distribution.



Figure S24: Brier Score Distributions by Urban Area and Density

Brier score distribution for survey respondents not registered to the Democratic or Republican party, subset by urban area type and density. The left panel shows the distribution weighted by survey weights, and the right panel shows unweighted distribution. Dashed vertical lines show the median and solid vertical lines show the mean for the distribution.

Potential survey respondents were randomly sampled after stratification by state and whether partisanship was visible on the voterfile with an over-sample of non-partisans. We then multiply the probability of having an email with the probability of contact to produce a design probability (probability of having an email and receiving a survey invite) for each voter in our survey contact list.

 $P(\text{Contact}_i|\text{State}_i, \text{Partisan Registration}) = g^{-1}(\beta_0 + \beta_1 \text{State}_i + \beta_2 \text{Partisan Registration})$ 

$$P(\text{Email}_i \cap \text{Contact}_i | \mathbf{X}_i) = P(\text{Email}_i | \mathbf{X}_i) \times P(\text{Sampled}_i | \text{State}_i, \text{Partisan Registration})$$

After receiving responses, we model the likelihood of receiving a response within our contacted sample. We then multiple response probability with our design probability to get the overall probability of having an email, being contact, and getting a response. We re-scale these weights as is common practice so that their sum reflects the total number of respondents.

$$P(\text{Response}_i|\mathbf{X}_i) = g^{-1}(\beta \mathbf{X}_i)$$

$$\text{Survey Weight}_i = \frac{1/(P(\text{Email}_i \cap \text{Contact}_i \cap \text{Response}_i | \mathbf{X}_i))}{\sum_{i=1}^n 1/(P(\text{Email}_i \cap \text{Contact}_i \cap \text{Response}_i | \mathbf{X}_i))} \times n$$

where n is the number of survey respondents.

268

Figure S25 and Table S12 detail the distribution of weights across the entire survey sample and the subset that are not registered as Republicans or Democrats. Tables S13 through S17 and Figure S26 demonstrate how the survey sample (weighted and unweighted) compares



Figure S25: Survey Weights Histogram

Distribution of survey weights across the entire survey sample (n = 12, 221) in the top panel and the subset of the survey sample comprised of voters not registered to major political party (n = 7, 087) in the bottom panel. Weights are scaled so that the sum equals the total number of respondents in the sample.

across key observable variables (race, gender, population density, urban area, 2016 turnout, 272 and age) to the entire population of registered voters in the US, the entire population of 273 US voters not registered to a major party, the subset of voters for whom L2 has an email, 274 and the sample of voters whom we sent an invitation to participate in the survey. Across 275 variables, the survey sample is comparable to the populations from which it was drawn, but 276 is older, has higher proportions of men, Whites, people living in lower population densities 277 and outside of major urban areas, and higher levels of 2016 turnout than the comparison 278 populations. Once survey weights are incorporated these levels look very similar across 279 variables. 280

We can also validate the premise and accuracy of our imputation by examining the political ideology of imputed to non-imputed voters. If the voters we impute have, on average,

Table S12: Survey Weights Percentiles

|   | Sample              | 0% | 1% | 10% | 25%            | 50% | 75% | 90% | 99% | 100%            |
|---|---------------------|----|----|-----|----------------|-----|-----|-----|-----|-----------------|
| _ | All<br>Unaffiliated |    |    |     | $0.41 \\ 0.11$ | -   |     |     |     | $0.06 \\ 36.57$ |

Percentiles of survey weights across the entire survey sample (n = 12, 221) in the top row and the subset of the survey sample comprised of voters not registered to major political party (n = 7, 087) in the bottom row. Weights are scaled so that the sum equals the total number of respondents in the sample.

Table S13: Race Survey Comparison

|   | Sample              | White  | Black  | Hispanic | Asian | Other  |
|---|---------------------|--------|--------|----------|-------|--------|
| 1 | Survey              | 80.24% | 3.28%  | 3.94%    | 1.78% | 10.76% |
| 2 | Survey Weighted     | 66.06% | 11.15% | 9.35%    | 3.24% | 10.19% |
| 3 | Unaffiliated Voters | 65.30% | 10.32% | 10.12%   | 3.10% | 11.15% |
| 4 | All Voters          | 64.06% | 10.65% | 11.20%   | 2.99% | 11.10% |
| 5 | L2 Emails           | 65.32% | 10.17% | 10.36%   | 2.90% | 11.25% |
| 6 | Survey Invitation   | 70.98% | 8.72%  | 6.57%    | 2.55% | 11.18% |

Table S14: Gender Survey Comparison

|   | Sample              | Male   | Female |
|---|---------------------|--------|--------|
| 1 | Survey              | 50.89% | 48.93% |
| 2 | Survey Weighted     | 46.16% | 53.84% |
| 3 | Unaffiliated Voters | 47.74% | 52.04% |
| 4 | All Voters          | 46.78% | 53.01% |
| 5 | L2 Emails           | 46.14% | 53.70% |
| 6 | Survey Invitation   | 47.01% | 52.80% |

Table S15: Population Density Survey Comparison

|   | Sample              | High density | Medium density | Low density | Very low density |
|---|---------------------|--------------|----------------|-------------|------------------|
| 1 | Survey              | 11.37%       | 27.76%         | 33.04%      | 27.79%           |
| 2 | Survey Weighted     | 17.72%       | 29.20%         | 29.46%      | 23.62%           |
| 3 | Unaffiliated Voters | 14.89%       | 29.40%         | 30.90%      | 24.77%           |
| 4 | All Voters          | 18.97%       | 28.90%         | 29.15%      | 22.92%           |
| 5 | L2 Emails           | 19.50%       | 30.29%         | 29.32%      | 20.86%           |
| 6 | Survey Invitation   | 12.96%       | 27.46%         | 30.76%      | 28.77%           |



Figure S26: Age Survey Comparison

Distribution of age for the survey sample, the weighted survey sample, the entire population of registered voters in the US, the entire population of US voters not registered to a major party, the subset of voters for whom L2 has an email, and the sample of voters whom we sent an invitation to participate in the survey. Vertical solid lines plot the mean and vertical dashed lines plot the median of the distributions.

Table S16: Urban Area Survey Comparison

|   | Sample              | Major  | Minor  | Outside Metro area |
|---|---------------------|--------|--------|--------------------|
| 1 | Survey              | 38.78% | 53.21% | 8.01%              |
| 2 | Survey Weighted     | 55.11% | 38.03% | 6.86%              |
| 3 | Unaffiliated Voters | 54.36% | 38.88% | 6.76%              |
| 4 | All Voters          | 55.70% | 38.18% | 6.13%              |
| 5 | L2 Emails           | 58.65% | 36.38% | 4.96%              |
| 6 | Survey Invitation   | 40.75% | 50.21% | 9.03%              |

Table S17: 2016 Turnout Survey Comparison

|   | Sample              | Vote 2016 |
|---|---------------------|-----------|
| 1 | Survey              | 89.89%    |
| 2 | Survey Weighted     | 70.41%    |
| 3 | Unaffiliated Voters | 66.22%    |
| 4 | All Voters          | 70.02%    |
| 5 | L2 Emails           | 79.19%    |
| 6 | Survey Invitation   | 74.48%    |

very different political ideology than those not imputed, then imputing for the purposes of
measuring partisan exposure could be misleading because it would artificially inflate the
levels of exposure to ideologically (dis)similar voters. On the other hand, if imputed and
non-imputed voters have similar ideologies, it demonstrates that not imputing would be a
mistake because it would cause us to understate levels of exposure to these ideologies.

Across a number of tests, we find strong consistency between imputed and non-imputed 288 voters in our survey data. In Figure S27, we compare responses on a 7-point scale of ideology 289 from "Extremely Liberal" to "Extremely Conservative." This ideology scale is standard on 290 large-scale political science surveys, such as the American National Election Study. Com-291 paring imputed and non-imputed voters yields similar distributions within party, as defined 292 by self-reported responses to a three item question about their partisanship. For Democrats 293 (N=2,914) a Kolmogorov-Smirnov test for a difference in distributions between imputed 294 and non-imputed voters yields D = 0.022, p = 0.893, not allowing us to reject the null 295 hypothesis of no difference in distributions at p < .05. Kolmogorov-Smirnov for Republicans (N = 3,067) also shows similar ideology across imputed and non-imputed voters (D = 0.029, p = 0.564). In Figure S28 we also compare ideology across imputed and non-imputed partisans within party but further subset the data by states in which party registration is possible (see Table S9). Within party, the ideology across imputed and non-imputed individuals and different types of states is very similar.

We can also use ideology to validate that our imputations reflect ideological variation so 302 that the probability of partisanship is correlated with ideology, that is those we impute as 303 more likely to be Republican are more conservative than those we impute as more likely to be 304 Democrats. We do this in Figure S29 where we show that our posterior probability of being 305 a Democrat (Pr(D)) is correlated with two measures of ideology and that the variation is 306 consistent across imputed and non-imputed voters and across states with and without party 307 registration. The first is on the self-reported scale of ideology, where 1 means "Extremely 308 Liberal" and 7 means "Extremely Conservative". In the top figure, as Pr(D) increases 309 (divided into five quantiles on the x-axis), the average self-reported ideology also becomes 310 more liberal. In the lower figure, we scale ideology using survey respondents' statement of being "for" or "against" eight issues before Congress. These were (issues were presented in 312 random order): 313

- 1. Repeal Affordable Care Act: Would repeal the Affordable Care Act of 2009 (also known as Obamacare).
- 2. American Health Care: Would repeal the tax penalties on individuals for not maintaining health coverage and on employers for not offering coverage. Would end subsidies to help people purchase insurance and would end funding for states that expanded Medicaid.

319

320

321

322

323

3. Financial CHOICE Act: Allows banks to not be subject to the heightened regulatory requirements of Dodd-Frank by maintaining enough reserve funds to withstand a financial downturn. Grants the president the power to fire the head of the Consumer Financial Protection Bureau and the Federal Housing Finance Agency at any time and without cause. Repeals a rule which prevents commercial banks from making speculative investments for their own profits.



Figure S27: Distribution of self-reported ideology for self-described Republicans and Democrats among voters for whom partisanship was or was not imputed.



Figure S28: Distribution of self-reported ideology for self-described Republicans and Democrats among voters for whom partisanship was or was not imputed and by whether state records party identification.

- 4. Kate's Law: Increases criminal penalties for individuals in the country illegally who are convicted of certain crimes, deported, and then re-enter the U.S. illegally.
- 5. Countering America's Adversaries Through Sanctions Act: Places sanctions on Iran, North Korea, and Russia. Sets into law sanctions imposed by the Obama administration for Russia's interference in Ukraine, Syria, and the 2016 presidential election. Requires the president to get congressional approval before easing or lifting sanctions on Russia.
- 6. No Sanctuary for Criminals: Withholds federal funds from states and localities that do not follow federal immigration laws.
- 7. Assault Weapons Ban of 2019: Makes it a crime to knowingly import, sell, manufacture, transfer, or possess a semiautomatic assault weapon or large capacity ammunition feeding device.
- 8. Impeaching Donald Trump, President of the United States, for high crimes and misdemeanors.
- 9. Federal Civilian Workforce Pay Raise Fairness Act of 2019: increases by 2.6% the rates of basic pay for federal civilian employees for 2019.
- We then scale their responses to extract a measure of latent ideology for each voter using
  the method developed by Clinton, Jackman, and Rivers (2004). This is the same method
  that has been used to scale the ideology of Members of Congress and voters in previous
  research Tausanovitch and Warshaw (2013). The scale is arbitrary, with a mean of 0, max of
  2.23, and min -1.96. More negative scores mean more liberal. The median Democrat in our
  data has a score of -1.07, the median Republican 0.87, and the median Independent -0.08.
  We examine the correlation between this measure and Pr(D) and, once again, find that as Pr(D) increases, their issue-scaled ideology also becomes more liberal, as indicated by lower
  scores on this latent dimension.



Figure S29: Relationship between Pr(D) and self-reported ideology (top) and with ideology as scaled from issue support (bottom).

## 6 S8 Relative Exposure Robustness to Dropping Same-

## household Neighbors

347

Here, we present the robustness of our Relative Exposure results to calculating Spatial 348 Exposure and Isolation without including neighbors who live in the same household as the voter, leaving a measure of partisan exposure to other voters with which a voter does not live. In day to day life, a good deal of exposure to politics likely comes from people living 351 in the same household, so including household members makes sense. However, for Relative 352 Exposure statistics, the comparison between Democrats and Republicans living in the same 353 geography, we want to know if they are robust to dropping same-household neighbors to 354 demonstrate that the differences between Democrats and Republicans who live in the same 355 town and neighborhood are not attributable only to different patterns in cohabitants, but 356 to actual choices of where to live in relation to one's neighbors. 357

We identify cohabitants by finding voters registered at the exact same address. Figure S30 presents the distribution of how many neighbors (from the original 1,000) are left across voters after we drop their same-household neighbors. We see that many voters live with 0, 1 or 2 cohabitants and very few live with more than 3 registered cohabitants.<sup>5</sup>

After dropping same-household neighbors, we do see reductions in the differences between
the partisan environments of Democrats and Republicans living in the same geographies.
However, even down to the neighborhood (Census Tract) level, we still see meaningful differences between Democrats and Republicans. Figure S31 presents the distribution of Relative
Exposure across different baseline geographies. We further test whether these differences are
statistically significant, by estimating t-tests, weighting by the population of each unit, on
the within-geography difference between Democratic and Republican partisan environments.

<sup>&</sup>lt;sup>5</sup>To appear as neighbors in our analysis, these cohabitants must be registered to vote. This precludes children and other cohabitants who are unregistered by choice or for other reasons.



Figure S30: Neighbors after Dropping Same-Household Neighbors Nationwide distribution of the number of neighbors in our analysis after dropping neighbors who live with the voter.

Tables S18 and S19 present the results of this analysis for the main results (with all 1,000 neighbors) and the results where we drop same-household neighbors. We see that results are consistent in direction and significance across baseline geographies for the main results and the results without same-household neighbors.



Figure S31: Relative Exposure Without Same-household Neighbors by Geography

Weighted nationwide distribution of relative exposure without same-household neighbors across geographic units for Democrats (blue) and Republicans (red). Distributions are weighted by population and the y-axis represents the number of individual voters. Solid vertical lines represent mean values and dashed lines represent median values. Geographies are ordered from bottom to top in decreasing size.

Table S18: Relative Exposure Significance Tests

|    | Estimate | Std. Error | t value  | $\Pr(> t )$ | Geography | Party      |
|----|----------|------------|----------|-------------|-----------|------------|
| 1  | -0.256   | 0.009      | -29.319  | 0.000       | State     | Democratic |
| 2  | -0.256   | 0.009      | -28.936  | 0.000       | State     | Republican |
| 3  | -0.221   | 0.002      | -96.106  | 0.000       | CBSA      | Democratic |
| 4  | -0.222   | 0.002      | -92.412  | 0.000       | CBSA      | Republican |
| 5  | -0.184   | 0.001      | -153.723 | 0.000       | County    | Democratic |
| 6  | -0.185   | 0.001      | -148.504 | 0.000       | County    | Republican |
| 7  | -0.128   | 0.000      | -336.673 | 0.000       | City/Town | Democratic |
| 8  | -0.128   | 0.000      | -321.880 | 0.000       | City/Town | Republican |
| 9  | -0.130   | 0.000      | -332.932 | 0.000       | Zip Code  | Democratic |
| 10 | -0.128   | 0.000      | -326.899 | 0.000       | Zip Code  | Republican |
| 11 | -0.113   | 0.000      | -436.315 | 0.000       | Tract     | Democratic |
| 12 | -0.110   | 0.000      | -431.786 | 0.000       | Tract     | Republican |

Table S19: Relative Exposure Significance Tests – No Household Neighbors

|    | Estimate | Std. Error | t value  | $\Pr(> t )$ | Geography | Party      |
|----|----------|------------|----------|-------------|-----------|------------|
| 1  | -0.182   | 0.009      | -21.115  | 0.000       | State     | Democratic |
| 2  | -0.184   | 0.009      | -20.934  | 0.000       | State     | Republican |
| 3  | -0.147   | 0.002      | -59.687  | 0.000       | CBSA      | Democratic |
| 4  | -0.150   | 0.003      | -57.891  | 0.000       | CBSA      | Republican |
| 5  | -0.105   | 0.001      | -86.645  | 0.000       | County    | Democratic |
| 6  | -0.107   | 0.001      | -83.150  | 0.000       | County    | Republican |
| 7  | -0.065   | 0.000      | -168.840 | 0.000       | City/Town | Democratic |
| 8  | -0.067   | 0.000      | -162.023 | 0.000       | City/Town | Republican |
| 9  | -0.048   | 0.000      | -162.902 | 0.000       | Zip Code  | Democratic |
| 10 | -0.047   | 0.000      | -157.161 | 0.000       | Zip Code  | Republican |
| 11 | -0.030   | 0.000      | -206.082 | 0.000       | Tract     | Democratic |
| 12 | -0.030   | 0.000      | -199.716 | 0.000       | Tract     | Republican |

## S9 Within-Race Partisan Segregation

To test the extent to which partisan segregation is distinct from racial segregation, we com-374 pare our measures of partisan segregation to the same measures but with exposure and 375 isolation only calculated among other white voters. Among white voters, the distribution of 376 the difference between Spatial Exposure and Isolation calculated among all voters and only 377 among their white neighbors are narrowly centered around 0, indicating that, on average, 378 partisan isolation within race for whites mirrors general partisan segregation (Figure S32) 379 and that high levels of partisan isolation remain, even when accounting for racial isolation. 380 Figure S33 shows the same for non-whites, where there is more change from baseline results 381 when looking only within group. 382



Figure S32: Partisan Segregation vs. White-only Partisan Segregation

Distribution for white voters of differences between partisan segregation calculated from all 1,000 nearest neighbors and partisan segregation calculated only from white neighbors. Positive Isolation values means that a voter appears less isolated by partisanship when we look only at their white neighbors. Positive Exposure values means that a voter appears to have less cross-party exposure when we only look at their white neighbors. Distributions are plotted separately for Democrats (blue) and Republicans (red). Solid lines represent mean values and dashed lines represent median values. Distributions are weighted by posterior partisan probabilities.



Figure S33: Partisan Segregation vs. Within-race Partisan Segregation

Distributions for Black, Hispanic and Asian voters of the differences between partisan segregation calculated from all 1,000 nearest neighbors and partisan segregation calculated only from neighbors of the same race. Positive Isolation values means that a voter appears less isolated by partisanship when we look only at their same-race neighbors. Positive Exposure values means that a voter appears to have less cross-party exposure when we only look at their within-race neighbors. Distributions are plotted separately for Democrats (blue) and Republicans (red). Solid lines represent mean values and dashed lines represent median values. Distributions are weighted by posterior partisan probabilities.

## References

- Clinton, Joshua, Simon Jackman, and Douglas Rivers. 2004. "The Statistical Analysis of Roll Call Data." *American Political Science Review* 98(2): 355–370.
- Niemeyer, Gustavo. 2008. "Geohash.org.".
- Tausanovitch, Chris, and Christopher Warshaw. 2013. "Measuring Constituent Policy Pref-
- erences in Congress, State Legislatures, and Cities." The Journal of Politics 75(02): 330–
- 342.