Computer ystems & rogramming

Lecture #8 – The Stack and The Heap

Aykut Erdem // Koç University // Spring 2021

Recap

- Pointers and Parameters
- Double Pointers
- Arrays in Memory
- Arrays of Pointers

Pointers Practice

* Wars: Episode I (of 2)

In variable declaration, * creates a pointer.

```
char ch = 'r';
```

ch stores a char

```
char *cptr = &ch;
```

cptr stores an address of a char

(points to a char)

(points to a char *)

0xf0 ch 0xe8 0xf0 cptr 0xe0 0xe8 strptr

* Wars: Episode II (of 2)

In <u>reading values from/storing values</u>, * dereferences a pointer. OxfO

Increment value stored in ch

```
char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
```

char **strptr = &cptr;

* Wars: Episode II (of 2)

In <u>reading values from/storing values</u>, * dereferences a pointer. OxfO

```
char ch = 'r';
ch = ch + 1;
```

```
char *cptr = &ch;
*cptr = *cptr + 1;
```

char **strptr = &cptr;

Increment value stored in ch

Increment value stored at memory address in cptr (increment char pointed to)

* Wars: Episode II (of 2)

In <u>reading values from/storing values</u>, * dereferences a pointer. OxfO

```
char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;
```

Increment value stored in ch

Increment value stored at memory address in cptr (increment char pointed to)

```
char **strptr = &cptr;
*strptr = *strptr + 1;
```

Increment value stored at memory address in cptr (increment address pointed to) strptr

Pen and paper: A * Wars Story

```
1 void binky() {
      int a = 10;
      int b = 20;
      int *p = &a;
      int *q = \&b;
```

- Lines 2-5: Draw a diagram.
- Line 7: Update your diagram.
- Line 8: Update your diagram.

Pen and paper: A * Wars Story

```
1 void binky() {
                                              • Lines 2-5: Draw a diagram.
       int a = 10;
                                              • Line 7: Update your diagram.
       int b = 20;
                                              • Line 8: Update your diagram.
       int *p = &a;
       int *q = \&b;
                                   Oxffe800
                                                            0xffe808
                                                           0xffe800
                               a
                                     20
                                                 p
                                   0xffe804
                                                            0xffe810
                                                           0xffe804
                                     20
                               b
```

Pen and paper: A * Wars Story

```
1 void binky() {
      int a = 10;
      int b = 20;
      int *p = &a;
      int *q = \&b;
6
```

- Lines 2-5: Draw a diagram.
- Line 7: Update your diagram.
- Line 8: Update your diagram.

Plan for Today

- The Stack
- The Heap and Dynamic Memory
- realloc

Disclaimer: Slides for this lecture were borrowed from

—Nick Troccoli's Stanford CS107 class

Lecture Plan

- The Stack
- The Heap and Dynamic Memory
- realloc

Memory Layout

- We are going to dive deeper into different areas of memory used by our programs.
- The **stack** is the place where all local variables and parameters live for each function. A function's stack "frame" goes away when the function returns.
- The stack grows downwards when a new function is called and shrinks upwards when the function is finished.


```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```

Memory Stack a: 42 argc: 1 b: 17 argv: 0xfff0


```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```



```
void func2() {
    int d = 0;
void func1() {
    int c = 99;
    func2();
int main(int argc, char *argv[]) {
    int a = 42;
    int b = 17;
    func1();
    printf("Done.");
    return 0;
```

<u>Memory</u>

0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u> main argc: Stack argv: 0xfff0 factorial

0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u> main argc: Stack argv: 0xfff0 factorial factorial factorial

0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```


 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u> main argc: Stack argv: 0xfff0 factorial factorial factorial Returns 1 factorial 0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u> main argc: Stack argv: 0xfff0 factorial factorial Returns 2 factorial

0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u> main argc: Stack argv: 0xfff0 factorial Returns 6 factorial 0x0

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u>

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u>

 Each function call has its own stack frame for its own copy of variables.

```
int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
```

<u>Memory</u>

- The stack behaves like a...well...stack! A new function call **pushes** on a new frame. A completed function call **pops** off the most recent frame.
- Interesting fact: C does not clear out memory when a function's frame is removed. Instead, it just marks that memory as usable for the next function call. This is more efficient!
- A stack overflow is when you use up all stack memory. E.g. a recursive call with too many function calls.
- What are the limitations of the stack?

```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
Memory
char *create_string(char ch, int num) {
    char new str[num + 1];
                                                                  main
    for (int i = 0; i < num; i++) {
                                                                  argc:
                                                                          str:
        new str[i] = ch;
                                                       Stack
                                                                  argv: 0xfff0
    new str[num] = '\0';
                                                                  create_string
    return new str;
                                                                  ch: 'a'
                                                                           num: 4
                                                                          '\0'
                                             Returns e.g. 0xff50
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
                                                                  new_str:
```

0x0

```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```



```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
                                                     Stack
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
    Problem: local variables go away when a function
    finishes. These characters will thus no longer exist,
    and the address will be for unknown memory!
```

Memory main str: 0xff50 argc: 1 0x0

```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
```

Memory main str: 0xff50 argc: 1 Stack 0x0

Stacked Against Us

This is a problem! We need a way to have memory that doesn't get cleaned up when a function exits.

Lecture Plan

- The Stack
- The Heap and Dynamic Memory
- realloc

```
Memory
char *create_string(char ch, int num) {
    char new str[num + 1];
                                                                   main
    for (int i = 0; i < num; i++) {
                                                                   argc:
                                                                           str:
        new str[i] = ch;
                                                        Stack
                                                                   argv: 0xfff0
    new str[num] = '\0';
                                                                   create_string
    return new_str;
                                                                  ch: 'a'
                                                                           num: 4
                                                                          '\0'
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str);
                           Us: hey C, is there a way to
    return 0;
                           make this variable in memory
                                                                   new_str:
                           that isn't automatically
                           cleaned up?
                                                               0x0
```

```
char *create_string(char ch, int num) {
    char new str[num + 1];
    for (int i = 0; i < num; i++) {
        new str[i] = ch;
    new str[num] = '\0';
    return new_str;
int main(int argc, char *argv[]) {
    char *str = create string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
                    C: sure, but since I don't know
                    when to clean it up anymore,
                    it's your responsibility...
```

Memory main argc: str: Stack argv: 0xfff0 create_string ch: 'a' num: 4 '\0' new str: 0x0

- The heap is a part of memory that you can manage yourself.
- The heap is a part of memory below the stack that you can manage yourself. Unlike the stack, the memory only goes away when you delete it yourself.
- Unlike the stack, the heap grows upwards as more memory is allocated.

The heap is **dynamic memory** – memory that can be allocated, resized, and freed during **program runtime**.

malloc

```
void *malloc(size_t size);
```

To allocate memory on the heap, use the **malloc** function ("memory allocate") and specify the number of bytes you'd like.

- This function returns a pointer to the **starting address** of the new memory. It doesn't know or care whether it will be used as an array, a single block of memory, etc.
- **void** *means a pointer to generic memory. You can set another pointer equal to it without any casting.
- The memory is not cleared out before being allocated to you!
- If malloc returns NULL, then there wasn't enough memory for this request.

```
Memory
char *create_string(char ch, int num) {
    char *new_str = malloc(sizeof(char) * (num + 1));
                                                                 main
    for (int i = 0; i < num; i++) {
                                                                 argc:
                                                                         str:
        new str[i] = ch;
                                                      Stack
                                                                 argv: 0xfff0
    new str[num] = '\0';
                                                                 create_string
    return new str;
                                                                 ch: 'a'
                                                                         num: 4
                                                                 new_str: 0xed0
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
                                                                      '\0'
    return 0;
                                                      Heap
                                                             0x0
```

```
Memory
char *create_string(char ch, int num) {
    char *new_str = malloc(sizeof(char) * (num + 1));
                                                                  main
    for (int i = 0; i < num; i++) {
                                                                  argc:
                                                                          str:
        new str[i] = ch;
                                                       Stack
                                                                  argv: 0xfff0
    new str[num] = '\0';
                                              Returns e.g. 0xed0
                                                                  create_string
    return new_str;
                                                                  ch: 'a'
                                                                          num: 4
                                                                  new_str: 0xed0
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
                                                                        '\0'
    return 0;
                                                       Heap
                                                              0x0
```

```
Memory
char *create_string(char ch, int num) {
    char *new str = malloc(sizeof(char) * (num + 1));
                                                                  main
    for (int i = 0; i < num; i++) {
                                                                         str: 0xed0,
                                                                  argc:
        new str[i] = ch;
                                                       Stack
                                                                  argv: 0xfff0
    new str[num] = '\0';
                                              Returns e.g. 0xed0
                                                                  create_string
    return new_str;
                                                                  ch: 'a'
                                                                          num: 4
                                                                  new_str: 0xed0
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
                                                                       '\0'
    return 0;
                                                       Heap
```

0x0

```
Memory
char *create_string(char ch, int num) {
    char *new_str = malloc(sizeof(char) * (num + 1));
                                                              main
    for (int i = 0; i < num; i++) {
                                                                     str: 0xed0.
                                                              argc: 1
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
                                                    Heap
                                                           0x0
```

```
Memory
char *create_string(char ch, int num) {
    char *new_str = malloc(sizeof(char) * (num + 1));
                                                              main
    for (int i = 0; i < num; i++) {
                                                                     str: 0xed0.
                                                              argc: 1
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
                                                    Heap
                                                           0x0
```

```
Memory
char *create_string(char ch, int num) {
    char *new_str = malloc(sizeof(char) * (num + 1));
                                                              main
    for (int i = 0; i < num; i++) {
                                                                      str: 0xed0.
                                                               argc: 1
        new str[i] = ch;
    new str[num] = '\0';
    return new str;
int main(int argc, char *argv[]) {
    char *str = create_string('a', 4);
    printf("%s", str); // want "aaaa"
    return 0;
                                                    Heap
                                                           0x0
```

Exercise: malloc multiples

Let's write a function that returns an array of the first len multiples of mult.

```
1 int *array_of_multiples(int mult, int len) {
2    /* TODO: arr declaration here */
3
4    for (int i = 0; i < len; i++) {
5        arr[i] = mult * (i + 1);
6    }
7    return arr;
8 }</pre>
```

Line 2: How should we declare arr?

```
A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len + 1));
E. Something else
```


Exercise: malloc multiples

Let's write a function that returns an array of the first len multiples of mult.

```
int *array_of_multiples(int mult, int len) {
    /* TODO: arr declaration here */

for (int i = 0; i < len; i++) {
    arr[i] = mult * (i + 1);
}
return arr;
}
</pre>

• Use a por returned or Malloc's
```

Line 2: How should we declare arr?

```
A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len + 1));
E. Something else
```

- Use a pointer to store the address returned by malloc.
- Malloc's argument is the number of bytes to allocate.
- 1 This code is missing an assertion.

Always assert with the heap

Let's write a function that returns an array of the first len multiples of mult.

```
int *array_of_multiples(int mult, int len) {
   int *arr = malloc(sizeof(int) * len);
   assert(arr != NULL);
   for (int i = 0; i < len; i++) {
      arr[i] = mult * (i + 1);
   }
   return arr;
}</pre>
```

- If an allocation error occurs (e.g. out of heap memory!), malloc will return NULL. This is an important case to check **for robustness**.
- assert will crash the program if the provided condition is false. A memory allocation error is significant, and we should terminate the program.

Other heap allocations: calloc

```
void *calloc(size_t nmemb, size_t size);
calloc is like malloc that zeros out the memory for you—thanks, calloc!
```

You might notice its interface is also a little different—it takes two parameters, which are multiplied to calculate the number of bytes (nmemb * size).

```
// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));
// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int i = 0; i < 20; i++) scores[i] = 0;</pre>
```

 calloc is more expensive than malloc because it zeros out memory. Use only when necessary!

Other heap allocations: strdup

```
char *strdup(char *s);
```

strdup is a convenience function that returns a **null-terminated**, heap-allocated string with the provided text, instead of you having to **malloc** and copy in the string yourself.

```
char *str = strdup("Hello, world!"); // on heap
str[0] = 'h';
```

Implementing strdup

How can we implement **strdup** using functions we've already seen?

```
char *myStrdup(char *str) {
    char *heapStr = malloc(strlen(str) + 1);
    assert(heapStr != NULL);
    strcpy(heapStr, str);
    return heapStr;
}
```

Cleaning Up with free

```
void free(void *ptr);
```

- If we allocated memory on the heap and no longer need it, it is our responsibility to delete it.
- To do this, use the free command and pass in the starting address on the heap for the memory you no longer need.
- Example:

```
char *bytes = malloc(4);
...
free(bytes);
```

free details

Even if you have multiple pointers to the same block of memory, each memory block should only be freed **once**.

You must free the address you received in the previous allocation call; you cannot free just part of a previous allocation.

```
char *bytes = malloc(4);
char *ptr = malloc(10);
...
free(bytes);
...
free(ptr + 1);
```

Cleaning Up

You may need to free memory allocated by other functions if that function expects the caller to handle memory cleanup.

```
char *str = strdup("Hello!");
...
free(str);  // our responsibility to free!
```

Memory Leaks

- A memory leak is when you allocate memory on the heap, but do not free it.
- Your program should be responsible for cleaning up any memory it allocates but no longer needs.
- If you never free any memory and allocate an extremely large amount, you may run out of memory in the heap!

However, memory leaks rarely (if ever) cause crashes.

- We recommend not to worry about freeing memory until your program is written. Then, go back and free memory as appropriate.
- Valgrind is a very helpful tool for finding memory leaks!

free Practice

Freeing Memory

Where should we free memory below so that all memory is freed properly?

```
char *str = strdup("Hello");
2
     assert(str != NULL);
3
     char *ptr = str + 1;
     for (int i = 0; i < 5; i++) {
5
          int *num = malloc(sizeof(int));
6
          assert(num != NULL);
          *num = i;
8
          printf("%s %d\n", ptr, *num);
9
      printf("%s\n", str);
10
```

Freeing Memory

Where should we free memory below so that all memory is freed properly?

```
char *str = strdup("Hello");
2
     assert(str != NULL);
3
     char *ptr = str + 1;
4
     for (int i = 0; i < 5; i++) {
5
          int *num = malloc(sizeof(int));
6
          assert(num != NULL);
          *num = i;
          printf("%s %d\n", ptr, *num);
8
9
          free(num);
10
     printf("%s\n", str);
11
12
     free(str);
```

Demo: Pig Latin

pig_latin.c

Lecture Plan

- The Stack
- The Heap and Dynamic Memory
- realloc

realloc

```
void *realloc(void *ptr, size_t size);
```

- The **realloc** function takes an existing allocation pointer and enlarges to a new requested size. It returns the new pointer.
- If there is enough space after the existing memory block on the heap for the new size, **realloc** simply adds that space to the allocation.
- If there is not enough space, **realloc** moves the memory to a larger location, frees the old memory for you, and returns a pointer to the new location.

realloc

```
char *str = strdup("Hello");
assert(str != NULL);
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);
```

realloc

- realloc only accepts pointers that were previously returned my malloc/etc.
- Make sure to not pass pointers to the middle of heap-allocated memory.
- Make sure to not pass pointers to stack memory.

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous (smaller) one was already reclaimed by realloc.

```
char *str = strdup("Hello");
assert(str != NULL);
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);
```

Heap allocator analogy: A hotel

Request memory by size (malloc)

Receive room key to first of connecting rooms

Need more room? (realloc)

- Extend into connecting room if available
- If not, trade for new digs, employee moves your stuff for you

Check out when done (free)

You remember your room number though

Errors! What happens if you...

- Forget to check out?
- Bust through connecting door to neighbor? What if the room is in use? Yikes...
- Return to room after checkout?

Demo: Pig Latin Part 2

pig_latin.c

Heap allocation interface: A summary

```
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);
```

Compare and contrast the heap memory functions we've learned about.

Heap allocation interface: A summary

```
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);
```

Heap **memory allocation** guarantee:

- NULL on failure, so check with assert
- Memory is contiguous; it is not recycled unless you call free
- realloc preserves existing data
- calloc zero-initializes bytes, malloc and realloc do not

Undefined behavior occurs:

- If you overflow (i.e., you access beyond bytes allocated)
- If you use after free, or if free is called twice on a location.
- If you realloc/free non-heap address

Engineering principles: stack vs heap

Stack ("local variables")

Heap (dynamic memory)

- Fast
 Fast to allocate/deallocate; okay to oversize
- Convenient.

 Automatic allocation/ deallocation;
 declare/initialize in one step
- Reasonable type safety
 Thanks to the compiler
- Not especially plentiful Total stack size fixed, default 8MB
- Somewhat inflexible
 Cannot add/resize at runtime, scope dictated by control flow in/out of functions

Engineering principles: stack vs heap

Stack ("local variables")

- Fast
 Fast to allocate/deallocate; okay to oversize
- Convenient.

 Automatic allocation/ deallocation;
 declare/initialize in one step
- Reasonable type safety
 Thanks to the compiler
- ! Not especially plentiful
 Total stack size fixed, default 8MB
- Somewhat inflexible
 Cannot add/resize at runtime, scope dictated by control flow in/out of functions

Heap (dynamic memory)

- Plentiful.

 Can provide more memory on demand!
- Very flexible.
 Runtime decisions about how much/when to allocate, can resize easily with realloc
- Scope under programmer control
 Can precisely determine lifetime
- Lots of opportunity for error
 Low type safety, forget to allocate/free
 before done, allocate wrong size, etc.,
 Memory leaks (much less critical)

Stack and Heap

- Generally, unless a situation requires dynamic allocation, stack allocation is preferred. Often both techniques are used together in a program.
- Heap allocation is a necessity when:
 - you have a very large allocation that could blow out the stack
 - you need to control the memory lifetime, or memory must persist outside of a function call
 - you need to resize memory after its initial allocation

Recap

- The Stack
- The Heap and Dynamic Memory
- realloc

Next time: C Generics - void *