

Vizualizace dat

František Kynych 19. 9. 2024 | MVD

Část I.: Úvod, dělení dat

Důvod vizualizace dat

- Efektivní přenos informace uživateli
- Získání přehledu nad velkým množstvím informací
- Z vizualizace můžeme rychleji zjistit, co se nám snaží data říct
- Důležitý prvek zdravotnictví, business inteligence (BI), vzdělávání a mnoha dalších odvětví

Zdroj: http://edu.techmania.cz/encyklopedie/matematika/geometrie/fraktaly

Systém vizualizace dat

Druhy dat

Základní dělení typů dat:

- Kvalitativní
 - Kategoriální
 - Lze je zařadit do kategorií, ale nelze je kvantifikovat
- Kvantitativní
 - Numerická
 - Lze je charakterizovat číselnou hodnotou

Druhy dat

Hodnoty	Diskrétní	Spojité
Seřazené	Ordinální - S, M, L, XL Kvantitativní - 1, 2, 3	Intervalové - teplota - nadmořská výška
Neseřazené (nelze je porovnat)	Nominální - geometrické tvary Kategorie - národnost	Opakující se (cyklické) - Hue v HSV modelu

Závislé a nezávislé proměnné

- Nezávislá proměnná
 - Ta, se kterou manipulujeme
- Závislá proměnná
 - Měřená proměnná
- Účel
 - Pomoc při rozhodování o tom, jak nejlépe zobrazit data
- Příklad
 - Vztah klíč ->hodnota
 - Nezávislá prom. -> závislá prom.

Část II.: Základní možnosti vizualizace

Sloupcový graf

Liniový graf

Také čárový nebo spojnicový graf

Bodový graf

Ganttův diagram

Tabulka

Co použít?

Χ

		Nezávislá	
		Diskrétní	Spojitá
Závislá	Kvantitativní Spojitá	Sloupcový graf	Liniový graf
	Kvantitativní Diskrétní	Sloupcový graf	Sloupcový graf
Nezávislá	Kvantitativní Spojitá	Ganntův diagram	Bodový graf
	Diskrétní	Tabulka	Ganntův diagram

Část III.: Další možnosti vizualizace a kdy je využít

Porovnání hodnot

Bullet chart Q1 Q2 Q3 Q4 B 100 200 300 320

Zdroj: help.qlik.com/en-US/sense/June2020/Subsystems/Hub/Content/Resources/Images/ex_gen_bullet_chart.png

Waterfall chart

Zdroj: https://en.wikipedia.org/wiki/Waterfall_chart

Porovnání hodnot

Radar chart

Zdroj: https://en.wikipedia.org/wiki/Radar_chart

Polar chart

Zdroj: https://www.anychart.com/products/anychart/gallery/Polar_Charts/

Porovnání hodnot

Pictogram chart

Zdroj: https://dataforvisualization.com/charts/pictogram-chart/

Heat map

7droi: https://datavizcatalogue.com/methods/heatmap.html

Porovnání rozložení

Beeswarm plot

Zdroj: https://www.originlab.com/doc/Origin-Help/Beeswarm-Plot

Histogram

Vizualizace rozložení

Density plot

Zdroj: https://datavizcatalogue.com/methods/density_plot.htm

Box and Whisker Plot

Scale 100 90 Upper Extreme 80 Upper Quartile 70 60 Median 50 40 Lower Quartile 30 Whisker 20 10 Lower Extreme Outlier/single data point

Zdroj: https://datavizcatalogue.com/methods/box_plot.htm

Treemap

Zdroj: https://finviz.com/map.ash

Jak vzniká treemap

Jak vzniká treemap

Jak vzniká treemap

Stejným způsobem pokračujeme dále (levou část rozdělíme na třetiny, ...)

Sunburst chart

Zdroi: https://datavizcatalogue.com/methods/sunburst_diagram.html

Dendrogram

Zdroj: https://www.data-to-viz.com/graph/dendrogram.html

Vizualizace propojení

Sankey diagram

Zdroj: https://www.highcharts.com/blog/tutorials/what-is-a-sankey-diagram/

Chord diagram

Zdroj: https://www.data-to-viz.com/graph/chord.html

Vizualizace trendu

Area chart

Evolution of Bitcoin price 15000 10000 2014 2015 2016 2017 2018 date

Zdroj: https://www.data-to-viz.com/graph/area.html

Stream chart

Zdroj: https://dataforvisualization.com/charts/stream-chart/

Geografické vizualizace

Area chart

Zdroj: https://gisgeography.com/dot-distribution-graduated-symbols-proportional-symbol-maps/

Zdroj: https://graphics.stanford.edu/papers/flow map layout/

Část IV.: Redukce dimenzionality dat pro vizualizaci

PCA – opakování z USU

Principal Component Analysis

PCA – opakování z USU

- Principal Component Analysis
- Slouží k dekorelaci příznaků nebo k redukci počtu příznaků
- 1. Normalizujeme data **X**
- 2. Vypočteme kovarianční matici dat $oldsymbol{arSigma}_{X}$
- 3. Vypočteme vlastní čísla λ a vlastní vektory v kovarianční matice Σ_X
- 4. Vybereme **n** vlastních vektorů příslušejících **n** největším vlastním číslům (vznikne menší matice **V** obsahující vlastní vektory)
- 5. Transformujeme data do nižší dimenze

t-SNE

- t-distributed Stochastic Neighbor Embedding
- Často využíváno pro vizualizaci dat
 - Redukce dat do 2 nebo 3 dimenzí
- Dokáže najít i nelineární vztahy mezi daty
 - Často najde strukturu tam, kde jiné algoritmy ne
- Intuice
 - Pokud hodnoty ve vyšší dimenzi spadají do jednoho clusteru
 - -> měly by i v nižší dimenzi
- Iterativní algoritmus

t-SNE algoritmus

- 1. Výpočet pravděpodobnostního rozdělení hodnot
 - S jakou pravděpodobností jsou dva body sousedé

$$p_{j|i} = \frac{\exp(\frac{\|x_i - xj\|^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(\frac{\|x_i - xk\|^2}{2\sigma_i^2})}$$

- 2. Náhodná projekce dat do nižší dimenze a spočteme pro ně studentovo p. rozdělení
- 3. Minimalizace KL divergence (jak moc se dvě p. rozdělení liší)

t-SNE parametry

- Dimenze výsledného prostoru
- Perplexita
 - Použito pro výběr variance Gaussova rozdělení
 - Často vede k velkým změnám ve výsledné vizualizaci
 - Intuice
 - Počet sousedů, kteří mají vliv na daný bod
 - Doporučená hodnota 5 až 50
- Learning rate, počet iterací, ...

Část V.: Knihovny a nástroje pro vizualizaci dat

Nejpopulárnější Python knihovny

Matplotlib

- Knihovna inspirovaná Matlab prostředím
- Jednoduchá manipulace a úprava většiny částí grafu
- Velké množství knihoven, které rozšiřují Matplotlib

2. Plotly

- S menším množstvím řádků se vytvoří esteticky příjemnější grafy
- Postaveno na původním Plotly.js
 - Možnost interaktivních webových vizualizací

3. Seaborn

- Rozšiřuje Matplotlib knihovnu
 - Graficky lepší grafy
 - Lepší spolupráce s knihovnou Pandas

Nástroje pro vizualizaci dat

- Nástroje umožňující jednoduchou vizualizaci a analýzu dat
- Možnost propojení s tabulkami, databázemi nebo cloudy
- Jednodušší pro práci s daty
 - Často bez potřeby programování
 - Drag & drop
- Vytvoření interaktivních dashboardů
- Power BI, Tableau, Qlik Sense, IBM Congos, ...

Tableau

- Jeden ze zástupců aplikací pro vizualizaci dat v business intelligence
- Zvládne pracovat s velkým množstvím dat
 - Lokálně / na cloudu
 - Ostatním platformy jsou často limitovány (např. Power BI)
- Pomáhá čistit a kombinovat data pro analýzu
- Možnost vytvoření reportů, dashboardů nebo stories
- Studentská licence

Tableau

Schneiderman's mantra

- Organizační principy pro vytváření vizualizačních systémů
 - Lze uplatnit i na jiné úlohy
- Overview First
 - Poskytnou celistvý pohled na data
- 2. Zoom and Filter
 - Přiblížení k bodu zájmu poskytne detailnější pohled
- 3. Details on Demand
 - Např. zobrazení tooltipu

Užitečná literatura / kurzy

- KIRK, Andy. *Data visualisation: a handbook for data driven design*. 2nd Edition. Los Angeles: SAGE, [2019]. ISBN 978-1-5264-6892-5.
- <u>t-SNE vliv parametrů</u>

