

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/28

SUMMER – 2013 EXAMINATION MODEL ANSWER

Subject: ENGINEERING MATHEMATICS

Subject Code: 12013

Important Instructions to examiners:

• The model answer shall be the complete solution for each and every question on the question paper.

• Numerical shall be completely solved in a step by step manner along with step marking.

• All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert.

• In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors.

• In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors.

• In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment.

• In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator.

• Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: (12013) Page No: 2/28 Summer 2013

Que.	Sub.	M. 1.1	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
1)		Attempt any ten of the following:		20
	(a)	If $f(x) = x^2 - 2x + 5$, find $f(1) + f(2)$		
	Ans.	Given, $f(x) = x^2 - 2x + 5$		
		$\therefore f(1) + f(2)$	1/2	
		$= (1)^{2} - 2(1) + 5 + (2)^{2} - 2(2) + 5$	1	
		=4+5		
	(1-)	=9	1/2	02
	(b)	If $f(x) = x^2 + 4$, then show that $f(x+1) - f(x+1) = 4x$		
	Ans.	$Given f(x) = x^2 + 4$		
	Alls.	$\therefore f(x+1) = (x+1)^2 + 4$		
		$=x^2+2x+1+4$		
		$= x^2 + 2x + 5$	1	
		$\therefore f(x+1) = x^2 + 2x + 5$	1	
		Consider $f(x+1) - f(x-1)$		
		$= x^2 + 2x + 5 - \left(x^2 - 2x + 5\right)$		
		$= x^2 + 2x + 5 - x^2 + 2x - 5$ = 4x	1	02
			1	
	c)	Evaluate: $\lim_{x\to 4} \frac{x^2 - 16}{x - 4}$		
	Ans.	$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$		
		$=\lim_{x\to 4} \frac{(x-4)(x+4)}{4}$	1	
		$=\lim_{x\to 4}\frac{\sqrt{x}}{x-4}$		
		$=\lim_{x\to 4}(x+4)$		02
		=4+4=8	1	, ,
		OR		
		$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$		
		$= \lim_{x \to 4} \frac{x^2 - (4)^2}{x - 4}$	1	
		$=2(4)^{2-1}$		02
		=2(4)=8	1	

Subject Code: (12013) Page No: 3/28 Summer 2013

Que.	Sub.	M 11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
1.	d)	Evaluate: $\lim_{x\to 0} \frac{\tan 3x}{\tan 5x}$		
	Ans.	$\lim_{x \to 0} \frac{\tan 3x}{\tan 5x}$ $= \lim_{x \to 0} \frac{\frac{\tan 3x}{x}}{\frac{x}{\tan 5x}}$ $= \frac{\left(\lim_{x \to 0} \frac{\tan 3x}{3x}\right).3}{\left(\lim_{x \to 0} \frac{\tan 5x}{5x}\right).5}$	1/2	
		$=\frac{(1)3}{(1)5} = \frac{3}{5}$	1/2	02
	(e) Ans	Evaluate: $\lim_{x \to 0} \frac{e^{2x} - e^{3x}}{x}$ $\lim_{x \to 0} \frac{e^{2x} - e^{3x}}{x}$ $= \lim_{x \to 0} \frac{e^{2x} - 1 - e^{3x} + 1}{x}$ $= \lim_{x \to 0} \left[\frac{(e^{2x} - 1) - (e^{3x} - 1)}{x} \right]$ $= \lim_{x \to 0} \frac{e^{2x} - 1}{x} - \lim_{x \to 0} \frac{e^{3x} - 1}{x}$	1/2	
		$= \left(\lim_{x \to 0} \frac{e^{2x} - 1}{2x}\right) \cdot 2 - \left(\lim_{x \to 0} \frac{e^{3x} - 1}{3x}\right) \cdot 3$	1	
		= (1)2 - (1)3 $= -1$	1/2	02
	(f)	Differentiate with respect to x : $3^x + x^3 + \sin x + 3^3$		
	Ans.	Let $y = 3^x + x^3 + \sin x + 3^3$ diff.w.t.to x $\frac{dy}{dx} = 3^x \log 3 + 3x^2 + \cos x$	02	02
	g) Ans	Find $\frac{dy}{dx}$, given that $y = x \sin x$ $y = x \sin x$		

Subject Code: (12013) Page No: 4/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Model allsweis	Marks	Marks
1.		$\frac{dy}{dx} = x \frac{d}{dx} (\sin x) + \sin x \frac{d}{dx} (x)$ $\frac{dy}{dx} = x \cos x + \sin x$	02	02
	(h)	Differentiate with respect to x : $y = \log(x^2 + 2x + 5)$		
	Ans	$y = \log(x^{2} + 2x + 5)$ $\frac{dy}{dx} = \frac{1}{x^{2} + 2x + 5} \cdot \frac{d}{dx}(x^{2} + 2x + 5)$ $\frac{dy}{dx} = \frac{2x + 2}{x^{2} + 2x + 5}$	1	02
	(i) Ans	If $y = \frac{e^x}{x+1}$, find $\frac{dy}{dx}$ $y = \frac{e^x}{x+1}$		
		$\frac{dy}{dx} = \frac{(x+1)\frac{d}{dx}(e^{x}) - e^{x}\frac{d}{dx}(x+1)}{(x+1)^{2}}$ $\frac{dy}{dx} = \frac{(x+1)e^{x} - e^{x}1}{(x+1)^{2}}$ $\frac{dy}{dx} = \frac{e^{x}(x+1-1)}{(x+1)^{2}}$	1	
	(j) Ans	$\frac{dy}{dx} = \frac{xe^x}{(x+1)^2}$ Find mean of the following data: $40,72,83,57,94,49,65,79,87,64.$	1	02
		N=10 $\therefore \text{ Mean,} \bar{x} = \frac{40 + 72 + 83 + 57 + 94 + 49 + 65 + 79 + 87 + 64}{10}$ $\bar{x} = \frac{690}{10}$ $\bar{x} = 69$	1	02
	k)	Following are marks of 10 students:		
		25,30,40,15,69,75,45,52,60,65.		
	Ans	Arrange the data in increasing order:		

Page No: 5/28 Subject Code: (12013) Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1.	Que.	$15,25,30,40,45,52,60,65,69,75.$ $N=10=\text{even}$ $Median = \frac{\left(\frac{N}{2}\right)^{th} \text{ place of observation} + \left(\frac{N}{2}+1\right)^{th} \text{ place of observation}}{2}$ $= \frac{\left(\frac{10}{2}\right)^{th} \text{ place of observation} + \left(\frac{10}{2}+1\right)^{th} \text{ place of observation}}{2}$ $= \frac{\left(5\right)^{th} \text{ place of observation} + \left(6\right)^{th} \text{ place of observation}}{2}$ $= \frac{45+52}{2}$	1/2	
		$=\frac{97}{2}=48.5$	1/2	02
	(1)	Evaluate: $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$		
	Ans.	$\lim_{x \to 0} (1+2x)^{\frac{1}{x}}$ $= \left[\lim_{x \to 0} (1+2x)^{\frac{1}{2x}}\right]^{2}$ $= e^{2}$	1	02
2)	(a)	Attempt any four of the following:		
		If $f(x) = \frac{x+3}{4x-5}$ and $t = \frac{3+5x}{4x-1}$ then show that $f(t) = x$		
	Ans.	$f(t) = \frac{t+3}{4t-5}$ $= \frac{\left(\frac{3+5x}{4x-1}\right)+3}{4\left(\frac{3+5x}{4x-1}\right)-5}$ $= \frac{3+5x+12x-3}{12+20x-20x+5}$ $= \frac{17x}{12+20x-20x+5}$	2	
		$= \frac{17}{17}$ $= x$	1/2	04

Page No: 6/28

Subject Code: (12013) Summer 2013

2.	b)	If $f(x) = \frac{1}{x}$, then show that $f(x) - f(x+1) = f(x^2 + x)$		
	Ans	Given $f(x) = \frac{1}{x}$		
		Consider,		
		f(x)-f(x+1)		
		$=\frac{1}{x}-\frac{1}{x+1}$	1	
		$=\frac{x+1-x}{x(x+1)}$		
		$=\frac{1}{x^2+x}$	2	04
		$= f\left(x^2 + x\right)$	1	
	c)	Evaluate: $\lim_{x \to 2} \left[\frac{1}{x-2} + \frac{6x}{8-x^3} \right]$		
	Ans.	$\lim_{x \to 2} \left[\frac{1}{x - 2} + \frac{6x}{8 - x^3} \right]$		
		$= \lim_{x \to 2} \left[\frac{1}{x - 2} - \frac{6x}{x^3 - 8} \right]$		
		$= \lim_{x \to 2} \left[\frac{1}{x - 2} - \frac{6x}{x^3 - (2)^3} \right]$	1/2	
		$= \lim_{x \to 2} \left[\frac{1}{x - 2} - \frac{6x}{(x - 2)(x^2 + 2x + 4)} \right]$		
		$= \lim_{x \to 2} \frac{1}{(x-2)} \left[1 - \frac{6x}{x^2 + 2x + 4} \right]$		
		$= \lim_{x \to 2} \frac{1}{(x-2)} \left[\frac{x^2 + 2x + 4 - 6x}{x^2 + 2x + 4} \right]$	1	
		$= \lim_{x \to 2} \frac{1}{(x-2)} \left[\frac{x^2 - 4x + 4}{x^2 + 2x + 4} \right]$		
		$= \lim_{x \to 2} \frac{1}{(x-2)} \left[\frac{(x-2)^2}{x^2 - 2x + 4} \right]$	1	
		$= \lim_{x \to 2} \frac{(x-2)}{x^2 - 2x + 4}$		04
		$=\frac{0}{4}=0$	1/2	U 4
	d)	Evaluate: $\lim_{x \to 1} \frac{\sqrt{x+4} - \sqrt{5}}{x-1}$		

Subject Code: (12013) Page No: 7/28 Summer 2013

Que.	Sub.	M 11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
No. 2)	e) Ans	$\lim_{x \to 1} \frac{\sqrt{x+4} - \sqrt{5}}{x-1}$ $= \lim_{x \to 1} \frac{\sqrt{x+4} - \sqrt{5}}{x-1} \times \frac{\sqrt{x+4} + \sqrt{5}}{\sqrt{x+4} + \sqrt{5}}$ $= \lim_{x \to 1} \frac{x+4-5}{(x-1)(\sqrt{x+4} + \sqrt{5})}$ $= \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x+4} + \sqrt{5})}$ $= \lim_{x \to 1} \frac{1}{\sqrt{x+4} + \sqrt{5}}$ $= \frac{1}{\sqrt{1+4} + \sqrt{5}}$ $= \frac{1}{2\sqrt{5}}$ Evaluate: $\lim_{x \to 0} \frac{\cos x - \cos 2x}{x^2}$ $\lim_{x \to 0} \frac{\cos x - \cos 2x}{x^2}$ $= \lim_{x \to 0} \frac{-2\sin\left(\frac{x+2x}{2}\right) \cdot \sin\left(\frac{x-2x}{2}\right)}{x^2}$ $= \lim_{x \to 0} \frac{\sin\left(\frac{3x}{2}\right) \cdot \sin\left(\frac{-x}{2}\right)}{x}$ $= -2\lim_{x \to 0} \frac{\sin\left(\frac{3x}{2}\right) \cdot \sin\left(\frac{-x}{2}\right)}{x}$ $= -2\left[\lim_{x \to 0} \frac{\sin\left(\frac{3x}{2}\right)}{\frac{3x}{2}}\right] \cdot \frac{3}{2}\left[\lim_{x \to 0} \frac{\sin\left(\frac{-x}{2}\right)}{\frac{-x}{2}}\right] \cdot \frac{-1}{2}$ $= -2(1)\left(\frac{3}{2}\right)(1)\left(\frac{-1}{2}\right)$ $= \frac{3}{2}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04

Subject Code: (12013) Page No: 8/28 Summer 2013

Que.	Sub.	M - 1-1	Manlan	Total
No.	Que.	Model answers	Marks	Marks
2)	f)	Evaluate: $\lim_{x\to 0} \frac{3^x - 2^x}{\sin \pi x}$		
	Ans	$\lim_{x \to 0} \frac{3^{x} - 2^{x}}{\sin \pi x}$ $= \lim_{x \to 0} \frac{3^{x} - 1 - 2^{x} + 1}{\sin \pi x}$ $\lim_{x \to 0} \frac{3^{x} - 1 - 2^{x} + 1}{\sin \pi x}$	1/2	
		$= \lim_{x \to 0} \frac{(3^{x} - 1) - (2^{x} - 1)}{\sin \pi x}$ $= \lim_{x \to 0} \frac{(3^{x} - 1) - (2^{x} - 1)}{x} \cdot \frac{x}{\sin \pi x}$	1/2	
		$= \left[\lim_{x \to 0} \frac{3^{x} - 1}{x} - \lim_{x \to 0} \frac{2^{x} - 1}{x} \right] \cdot \left(\lim_{x \to 0} \frac{\pi x}{\sin \pi x} \right) \cdot \frac{1}{\pi}$	1	
		$= (\log 3 - \log 2) \frac{1}{\pi}$	2	04
		OR		
		$=\frac{1}{\pi}(\log 3 - \log 2)$		
3)		Attempt any four of the following:		
	a) Ans.	Differentiate w.r.to $x : \sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$		
	Alls.	Let $y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$ $y = \sqrt{\frac{2\sin^2 x}{2\cos^2 x}}$	2	
		$y = \sqrt{\tan^2 x}$	1	
		$y = \tan x$ $\therefore \frac{dy}{dx} = \sec^2 x$	1	04
		OR		
		$Let y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$		
		$y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \times \frac{1 - \cos 2x}{1 - \cos 2x}$		
		$y = \sqrt{\frac{\left(1 - \cos 2x\right)^2}{1 - \cos^2 2x}}$	1/2	

Subject Code: (12013) Page No: 9/28 Summer 2013

Que.	Sub.	26.11	36.1	Total
No.	Que.	Model answers	Marks	Marks
3)		$y = \sqrt{\frac{(1 - \cos 2x)^2}{\sin^2 2x}}$ $y = \frac{1 - \cos 2x}{\sin 2x}$ $y = \frac{1 - \cos 2x}{\sin 2x}$	1/2	
		$y = \frac{1}{\sin 2x} - \frac{\cos 2x}{\sin 2x}$	1	
		$y = \cos ec 2x - \cot 2x$	2	04
		$\frac{dy}{dx} = -2\cos ec 2x \cot 2x + 2\cos ec^2 2x$	2	
	b) Ans	Diff. $\cos^{-1}(2x^2 - 1)$ w.r.to $\sin^{-1}(2x\sqrt{1 - x^2})$		
		Let $y = \cos^{-1}(2x^2 - 1)$ and		
		$z = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$		
		Put $x = \cos \theta$		
		$\therefore y = \cos^{-1}\left(2\cos^2\theta - 1\right)$		
		$=\cos^{-1}(\cos 2\theta)$ $y=2\theta$		
		$\therefore y = 2\cos^{-1} x$	1	
		$\frac{dy}{dx} = \frac{-2}{\sqrt{1-x^2}}$	1/2	
		and $z = \sin^{-1}\left(2\cos\theta\sqrt{1-\sin^2\theta}\right)$		
		$z = \sin^{-1} \left(2\cos\theta\sin\theta \right)$		
		$z = \sin^{-1}(\sin 2\theta)$	1	
		$z = 2\theta$ $z = 2\cos^{-1} x$	1/2	
			/2	
		$\frac{dz}{dx} = \frac{-2}{\sqrt{1 - x^2}}$		
		$\therefore \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}}$		
		$=\frac{\frac{-2}{\sqrt{1-x^2}}}{\frac{-2}{\sqrt{1-x^2}}}$		

Subject Code: (12013) Page No: 10/28 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3)		$\therefore \frac{dy}{dz} = 1$	1	04
		If $e^y = y^x$, prove that $\frac{dy}{dx} = \frac{(\log y)^2}{\log y - 1}$		
	Ans	Given $e^y = y^x$		
		$\therefore \log e^y = \log y^x$		
		$\therefore y \log e = x \log y$		
		$\therefore y = x \log y$	1	
		$\frac{dy}{dx} = x \frac{1}{y} \frac{dy}{dx} + \log y$		
		$\left(1 - \frac{x}{y}\right) \frac{dy}{dx} = \log y$		
		$\left(\frac{y-x}{y}\right)\frac{dy}{dx} = \log y$	1	
		$\frac{dy}{dx} = \frac{y \log y}{y - x}$		
		$\frac{dy}{dx} = \frac{y \log y}{y - \frac{y}{\log y}} \qquad(\because \text{ by eq. 1})$	1	04
		$\frac{dy}{dy} = \frac{y(\log y)^2}{1 + (\log y)^2}$		
		$\frac{dy}{dx} = \frac{(\log y)^2}{\log y - 1}$	1	
	e)	Differentiate w.r.to $x : x \sin^{-1} x + \sqrt{1 - x^2}$		
	Ans	Let $y = x \sin^{-1} x + \sqrt{1 - x^2}$		
		$\therefore \frac{dy}{dx} = x \frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x + \frac{1}{2\sqrt{1 - x^2}} \frac{d}{dx} (1 - x^2)$	2	
		$= \frac{x}{\sqrt{1-x^2}} + \sin^{-1} x - \frac{2x}{2\sqrt{1-x^2}}$	1	
		$\sqrt{1-x^2} \qquad 2\sqrt{1-x^2}$ $= \sin^{-1} x$	1	04
	f) Ans	If $13x^2 + 2x^2y + y^3 = 1$, find $\frac{dy}{dx}$ at $(1, -2)$		
		$13x^2 + 2x^2y + y^3 = 1$		
	j		<u> </u>	

Subject Code: (12013) Page No: 11/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	$\therefore 26x + 2\left(x^2 \cdot \frac{dy}{dx} + y \cdot 2x\right) + 3y^2 \frac{dy}{dx} = 0$	2	Marks
4)		$\frac{1}{26x+2}\left(x \cdot \frac{1}{dx} + y \cdot 2x\right) + 3y \cdot \frac{1}{dx} = 0$ $26x+2x^2 \cdot \frac{dy}{dx} + 4xy + 3y^2 \cdot \frac{dy}{dx} = 0$ $26x+4xy + \left(2x^2 + 3y^2\right) \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-26x - 4xy}{2x^2 + 3y^2} = \frac{-18}{14} = \frac{-9}{7}$ Attempt any four of the following: Find equation of tangent and normal to the curve $2x^2 - xy + 3y^2 = 18$	1+1	04
	a)	at point (3,1)		
	Ans	$2x^{2} - xy + 3y^{2} = 18$ $4x - \left(x\frac{dy}{dx} + y \cdot 1\right) + 6y\frac{dy}{dx} = 0$ $4x - x\frac{dy}{dx} - y + 6y\frac{dy}{dx} = 0$ $(-x + 6y)\frac{dy}{dx} = -4x + y$ $dy -4x + y$	1	
		$\frac{dy}{dx} = \frac{-4x + y}{-x + 6y}$ at (3,1) $\frac{dy}{dx} = \frac{-11}{3} = m, \text{slope of tangent}$ $y - y_1 = m(x - x_1)$ $y - 1 = \frac{-11}{3}(x - 3)$ $11x + 3y - 36 = 0 \text{equation of tangent}$	1	
		$-\frac{1}{m} = \frac{3}{11}, \text{ slope of normal}$ $y - y_1 = \frac{3}{11}(x - x_1)$ $3x - 11y + 2 = 0 \text{equation of normal}$	1	04
	d)	Divide number 80 into two parts so that the product is maximum.		

Subject Code: (12013) Page No: 12/28 Summer 2013

Que.	Sub.	Model engager	Marks	Total
No.	Que.	Model answers	IVIAIKS	Marks
4)	Ans	Consider these numbers are x and $80-x$		
		Product $P = x(80 - x)$		
		$P = 80x - x^2$		
		$\frac{dP}{dx} = 80 - 2x$	1	
		Given that product is maximum		
		$\therefore \frac{dP}{dx} = 0$	1	
		$\therefore 80 - 2x = 0$ $x = 40$	1	
		and $80 - x = 80 - 40$	1	04
		= 40		
	c) Ans	Find radius of curvature of curve $y = x^3$ at point (1,1)		
	Alls	Given $y = x^3$		
		$\therefore \frac{dy}{dx} = 3x^2$		
		$\frac{dy}{dx} = 3x^2$ $\frac{d^2y}{dx^2} = 6x$	1	04
		At (1,1):		
		$\frac{dy}{dx} = 3$		
		$\frac{dy}{dx} = 3$ $\frac{d^2y}{dx^2} = 6$	1	
		∴ Radius of curvatureis, $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$		

Subject Code: (12013) Page No:13/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No. 4)	Que.	$\rho = \frac{\left[1 + \left(3\right)^2\right]^{\frac{3}{2}}}{6}$ $\rho = \frac{\left(10\right)^{\frac{3}{2}}}{6}$ $\rho = 5.27$	1	Marks 04
	d) Ans	An open box is made up of rectangular sheet of card board measuring $16 \text{ cm} \times 10 \text{ cm}$ by cutting of equal squres from the corners and turning up the sides. Find the sides of the squres so that volume of box is maximum. Let length of square $= x$ \therefore length of box $=16-2x$ breadth of box $=10-2x$ Volume $V=l\times b\times h$ $= (16-2x)(10-2x)x \qquad (\because h = \text{length of square})$ $V = 160x - 52x^2 + 4x^3$ $\therefore \frac{dV}{dx} = 160 - 104x + 12x^2$ Given that Volume is maximum $\therefore \frac{dV}{dx} = 0$ $160 - 104x + 12x^2 = 0$ $3x^2 - 26x + 40 = 0$	1 1	
		$x = \frac{20}{3} \qquad \text{OR} \qquad x = 2$ $\therefore \text{ Sides of square is either } 20/3 \text{ or } 2$	1	04

Subject Code: (12013) Page No: 14/28 Summer 2013

Que.	Sub. Que.			N	Model an	swers				Marks	Total Marks
4)	e)	Find mode gra	phically	for the f	ollowing	:					
		Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70		
		No. of Students	4	8	12	15	12	6	3		
	Ans	Marks distributed in the state of the state	ibution rrectly. ulue of r	: 2 mark 1 mark node. No	s for plo for draw ote the vo	ing line alue 35 i e in case	ints and a of mode s approx	to X-axi, imate va h.	s. lue.	04	04

Subject Code: (12013) Page No: 15/28 Summer 2013

Que.	Sub.							36.1	Total
No.	Que.			N	Model answ	vers		Marks	Marks
4)	f)	Find median	for the	followin	g data by (Ogive cur	ve method:		
		Score	0-10	10-20	20-30	30-40	40-50		
		frequency	5	12	16	4	3		
			-		•	-1			
	Ans	C.I.	Freq.		C.F.(less	than)			
		0-10	5		5				
		10-20	12		17				
		20-30	16		33				
		30-40	4		37				
		40- 50	3		40				
			N=40					1	
		N/2=20							
						scale			
		· · · · · · · · · · · · · · · · · · ·				X-axis	Umits		
						Y-axis	umits		
		100							
		35							
		25-							
		/ 20							
		1 10-							
		5 1	h is a	10- 10	35 40 45 3	70	>		
		0(0,0) 5	C.I.		n = 22.5			03	04
		, v							
		Marks distr	<u>ribution</u> :	: 1 mark	for C.F.ta	ble (less i	than or more than).	
		1 mark for p							
		drawing line	e of medi	an to X-	axis.				
		1 mark for v	alue of n	nedian. 1	Note the vo	alue 22.5	is approximate va	lue.	
		Difference o	f 0.5 or	-0.5 is ac	cceptable i	in case of	graph.		

Subject Code: (12013) Page No: 16/28 Summer 2013

Que.	Sub.					lodel a	newar	•c				Marks	Total
No.	Que.				1 v	iouei a	1118 W C1	.5				Walks	Marks
5)		Attemp	t any f	our of	the foll	owing	:						
	a)	Find mo	ode of t	he follo	owing;								
		C.I.	0-5	5-10	10-13	5 15-	20 2	0-25	25-30	30-35	35-40	-	
		Freq.	3	5	9	15	2	0	16	10	2		
	Ans											_	
		Class i	interva	l Fro	equency								
		0)-5		3								
		5-	-10		5								
		10)-15		9								
		15	-20		15 f1								
		20	-25	2	20 fm								
		25	-30		16 f1								
		30	-35		10								
		35	-40		2								
		Mode =	$=L+\left(\frac{1}{2}\right)$	$\frac{f_m - f_m}{2f_m - f_1}$	$\left(\frac{f_1}{f_2}\right) \times$	c							
		=	20+	$\frac{20-}{40-15}$	$\left(\frac{15}{-16}\right) \times$	5						3	04
		=	22.778	3	ŕ							1	
	(b)	Find me	an of f	ollowii	ng data	by step	devia	ntion r	nethod:				
		Wt in k	κg	10-	20-	30-	40-	50-	60-	70-	80-		
				20	30	40	50	60	70	80	90		
		No of p	pers.	16	21	20	28	10	3	1	1		

Subject Code: (12013) Page No: 17/28 Summer 2013

Que.	Sub.]	Model answer	S		Marks	Total
No.	Que.				-			Marks
5)	Ans.							
		C.I.	xi	fi	$d_i = \frac{x_i - A}{c}$	fidi		
		10-20	15	16	-3	-48		
		20-30	25	21	-2	-42		
		30-40	35	20	-1	-20		
		40-50	45 (A)	28	0	0		
		50-60	55	10	1	10		
		60-70	65	3	2	6		
		70-80	75	1	3	3		
		80-90	85	1	4	4		
				$\sum_{i=100} f_i = 100$		$\sum f_i d_i = -87$	02	
		$\therefore \text{ Mean, } \overline{x} = \lambda$	` ′				1	
			$45 + \left(\frac{-87}{100}\right) \times 10$ 66.3)			1	
	c)		following set i	s more consist	ent?			
		set	Mean	Standard	deviation			
		I	80	6.0				
	Ans	II	60	7.2				
		$C.V.(I) = \frac{\sigma}{x} \times$	$100 = \frac{6}{80} \times 100$					

Subject Code: (12013)

Summer 2013

Page No: 18/28

Que.	Sub.												Total
No.	Que.				Mode	el ansv	vers					Marks	Marks
5)	d)	C.V.(I) = 7.5 C.V.(II) = $\frac{\sigma}{x}$; C.V.(II) = 12 \therefore C.V.(I) < C \therefore Set I is more	e.V.(II)	sistent.								1 1 1 1	04
		Mid value	115	125	135	145	155	165	175	185	195		
		Freq.	6	25	48	72	116	60	38	22	3		
	Ans												
	Alls	Class			fi		C.F	.(less	than)				
							0,1						
		110-12	0		6			6					
		120-13	0		25			31					
		130-14	0		48			79					
		140-15	0		72			151					
		150-16	0		116			267					
		160-17	0		60			327					
		170-18	0		38			365					
		180-19	0		22			387					
		190-20	0		3			390				1	
				$\sum f$	$r_i = 390$)=N							

Subject Code: (12013) Page No: 19/28 Summer 2013

Que.	Sub.				Mo	del ansv	uare				Marks	Total
No.	Que.				WIO	uci alisv	VCIS				Warks	Marks
5)	e)	The mea	$\begin{aligned} \text{Median} &= L + \left(\frac{N/2 - f_c}{f_m}\right) \times c \\ &= 150 + \left(\frac{195 - 151}{116}\right) \times 10 \\ &= 153.79 \end{aligned}$ The mean of 60 observations was calculated as 276 mm afterwards it was noticed that one observation was recorded wrongly as 337 instead of 373. Find correct mean.									04
	Ans f)	Given x Mean, x	$x = 276, l$ $x = \frac{\sum x_i}{N}$ $276 = \frac{2}{5}$ $= 16560$ $\text{exted Surface Mean}$	$V = 60$ $\sum_{i} x_{i}$ $= 165$ $= 1659$ $= 276.6$	560 – 33′ 596 ected Su N 6	7+373 <u>um</u>	30- 34 7	35- 39	40- 44 9	44- 49 6	1 2	04
												04

Subject Code: (12013) Page No: 20/28 Summer 2013

Que.	Sub. Que.			Mod	el answers			Marks	Total Marks
5)	Ans								
		C.I.	xi	fi	fixi	$\left d_{i}\right = \left x_{i} - \overline{x}\right $	$f_i d_i $		
								-	
		9.5-14.5	12	4	48	18	72		
		14.5-19.5	17	6	102	13	78	-	
		19.5-24.5	22	10	220	8	80	-	
		24.5-29.5	27	5	135	3	15		
		29.5-34.5	32	7	224	2	14	-	
		34.5-39.5	37	3	111	7	21		
		39.5-44.5	42	9	378	12	108		
		44.5-49.5	47	6	282	17	102		
				$\sum f_i = 50$	$\sum f_i x_i = 1500$		490	2	
								_	
		Mean, $\bar{x} = \sum_{n=1}^{\infty} \frac{1}{n}$	$\frac{\sum x_i}{N} = \frac{1}{N}$	$\frac{500}{50} = 30$				1	
		Mean, $\bar{x} = \sum_{x=0}^{\infty}$ \therefore M.D. = $\sum_{x=0}^{\infty}$	$\frac{f_i d_i}{N} = \frac{1}{N}$	$\frac{490}{50} = 9.8$				1	04
		FOR CE/EJ	<u>/ME</u>						
6)		Attempt any	four of	f the followin	ıg:				
	a) Ans	Find modulu	ıs and a	rgument of c	complex no. $\frac{(3+i)}{2}$	$\frac{)(1-i)}{2+i}$			
		Let $z = \frac{(3+i)^2}{2}$	$\frac{(1-i)}{1+i}$						

Subject Code: (12013) Page No: 21/28 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
No. 5)	Que. Ans.	$= \frac{3-3i+i-i^2}{2+i}$ $= \frac{4-2i}{2+i}$ $= \frac{4-2i}{2+i} \times \frac{2-i}{2-i}$ $= \frac{8-4i-4i+2i^2}{(2)^2-i^2}$ $= \frac{6-8i}{5} = \frac{6}{5} - \frac{8}{5}i$ $ z = \sqrt{\left(\frac{6}{5}\right)^2 + \left(\frac{-8}{5}\right)^2}$ $= \sqrt{\frac{100}{25}} = \sqrt{4} = 2$ $x > 0, y < 0$ $\therefore \theta = 2\pi - \tan^{-1}\left(\frac{-8/5}{6/5}\right)$ $\therefore \theta = 2\pi - \tan^{-1}\left(4/3\right)$ OR	1 1 1	Marks 04
	b) Ans.	$\therefore \theta = \tan^{-1}\left(\frac{-8/5}{6/5}\right)$ $\theta = -\tan^{-1}\left(4/3\right)$ Simplify: $\frac{(\cos 2\theta + i\sin 2\theta)(\cos \theta - i\sin \theta)^4}{(\cos 3\theta + i\sin 3\theta)(\cos 5\theta - i\sin 5\theta)}$ $\frac{(\cos 2\theta + i\sin 2\theta)(\cos \theta - i\sin \theta)^4}{(\cos 3\theta + i\sin 3\theta)(\cos 5\theta - i\sin 5\theta)}$ $= \frac{(\cos \theta + i\sin \theta)^2(\cos \theta + i\sin \theta)^{-4}}{(\cos \theta + i\sin \theta)^3(\cos \theta + i\sin \theta)^{-5}}$ $= (\cos \theta + i\sin \theta)^3(\cos \theta + i\sin \theta)^{-5}$ $= (\cos \theta + i\sin \theta)^{2-4-3+5}$ $= (\cos \theta + i\sin \theta)^0$ $= 1$ Using Euler's formula prove that; i) $\sin^2 \theta + \cos^2 \theta = 1$ ii) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	1 2 1	04

Subject Code: (12013) Page No: 22/28 Summer 2013

Que.	Sub.		T.,	Total
No.	Que.	Model answers	Marks	Marks
6)	Ans	i) $\sin^2 \theta + \cos^2 \theta$ $= \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$ $= \frac{1}{4i^2} \left(e^{i\theta} - e^{-i\theta}\right)^2 + \frac{1}{4} \left(e^{i\theta} + e^{-i\theta}\right)^2$ $= \frac{-1}{4} \left(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right) + \frac{1}{4} \left(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right)$ $= \frac{1}{4} \left(4e^{i\theta}e^{-i\theta}\right) = \frac{1}{4} \left(4e^{0}\right)$ $= 1$	1	
	d)	ii) $\cos^2 \theta - \sin^2 \theta$ $= \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 - \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2$ $= \frac{1}{4} \left(e^{i\theta} + e^{-i\theta}\right)^2 - \frac{1}{4i^2} \left(e^{i\theta} - e^{-i\theta}\right)^2$ $= \frac{1}{4} \left(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right) - \left(\frac{-1}{4}\right) \left(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right)$ $= \frac{1}{4} \left(2e^{2i\theta} + 2e^{-2i\theta}\right) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $= \cos 2\theta$ Express $(1+i)$ in polar form and show that $(1+i)^8 + (1-i)^8 = 32$	1	04
	Ans	Let $z = 1 + i$ $\therefore x = 1, y = 1$ $r = z = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$ $\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1}{1}\right)$ $\theta = \tan^{-1}(1) = \frac{\pi}{4}$ $z = r(\cos\theta + i\sin\theta)$ $(1+i) = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ $(1+i)^8 = \left[\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^8$	1	

Subject Code: (12013) Page No: 23/28 Summer 2013

Que.	Sub.	Model enginers	Marks	Total
No.	Que.	Model answers	Iviaiks	Marks
6)		$(1+i)^8 = 16(\cos 2\pi + i\sin 2\pi)$	1	
		Similarly, $(1-i)^8 = 16(\cos 2\pi - i \sin 2\pi)$		
		$\therefore (1+i)^8 + (1-i)^8$		
		$= 16(\cos 2\pi + i\sin 2\pi) + 16(\cos 2\pi - i\sin 2\pi)$		
		$=16(\cos 2\pi + i\sin 2\pi + \cos 2\pi - i\sin 2\pi)$	1	
		$=32\cos 2\pi$		
		= 32	1	04
	e)	Separate into real and imaginary parts of $\frac{(1+i^3)^2}{(3-i)^3}$		
	Ans	$\frac{\left(1+i^3\right)^2}{\left(3-i\right)^3}$		
		$= \frac{1+2i^3+\left(i^3\right)^2}{\left(3\right)^3-3\left(3\right)^2i+3\left(3\right)i^2-i^3}$	1	
		$= \frac{1 - 2i + i^6}{27 - 27i - 9 + i}$ $= 1 - 2i - 1$	1	
		$= \frac{1 - 2i - 1}{18 - 26i}$ $= \frac{-2i}{18 - 26i}$		
		$= \frac{-2i}{18 - 26i} \times \frac{18 + 26i}{18 + 26i}$ $= -36i - 52i^{2}$	1	
		$=\frac{-36i-32i}{324+676}$		04
		$= \frac{52}{1000} - \frac{36i}{1000} = \frac{13}{250} - \frac{9i}{250}$	1	
	f)	Find all roots of $(1-i)^{\frac{1}{4}}$		
	Ans.	Let $z = 1 - i$		
		$\therefore x = 1, y = -1$ $r = z = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$	1/2	
		$\theta = 2\pi - \tan^{-1}\left(\left \frac{y}{x}\right \right) = 2\pi - \tan^{-1}\left(\left -1\right \right)$	1/2	

Subject Code: (12013) Page No: 24/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
6)		$z = r \left[\cos(2\pi n + \theta) + i\sin(2\pi n + \theta)\right]$ $\left(1 - i\right) = \sqrt{2} \left[\cos\left(2\pi n + \frac{\pi}{4}\right) + i\sin\left(2\pi n + \frac{\pi}{4}\right)\right]$	1	
		$(1-i)^{\frac{1}{4}} = \left\{ \sqrt{2} \left[\cos\left(2\pi n + \frac{\pi}{4}\right) + i\sin\left(2\pi n + \frac{\pi}{4}\right) \right] \right\}^{\frac{1}{4}}$ $= \left(\sqrt{2}\right)^{\frac{1}{4}} \left[\cos\left(\frac{8\pi n + 4\pi}{16}\right) + i\sin\left(\frac{8\pi n + 4\pi}{16}\right) \right]$ Put $n = 0, 1, 2, 3$	1	
		$ \left(\sqrt{2} \right)^{\frac{1}{4}} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \qquad \left(\sqrt{2} \right)^{\frac{1}{4}} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) $ $ \left(\sqrt{2} \right)^{\frac{1}{4}} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right), \qquad \left(\sqrt{2} \right)^{\frac{1}{4}} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) $	1	04
		For Computer/Information Technology		
6)		Attempt any four of the following:		
	a)	Find the approximate root of the equation $x^3 - x - 4 = 0$ by bisection method (3 iterations)		
	Ans	Let $f(x) = x^3 - x - 4$ f(1) = -4 < 0 f(2) = 2 > 0 \therefore root lies in (1,2)	1	
		$x_1 = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$	1	
		f(1.5) = -2.125 < 0		
		:. the root lies in (1.5,2) $x_1 + b = 1.5 + 2$	1	
		$x_2 = \frac{x_1 + b}{2} = \frac{1.5 + 2}{2} = 1.75$ $f(x_2) = -0.39 < 0$		
		\ -/		
		: the root lies in (1.75,2) $x_3 = \frac{x_2 + b}{2} = \frac{1.75 + 2}{2} = 1.875$	1	04

Subject Code: (12013) Page No: 25/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Widder allswers	Iviaiks	Marks
6)		OR		
		$\operatorname{Let} f(x) = x^3 - x - 4$		
		f(1) = -4 < 0 f(2) = 2 > 0		
		f(2) = 2 > 0	1	
		\therefore root lies in $(1,2)$		
		a b $x = \frac{a+b}{2}$ $f(x)$		
		1 2 1.5 -2.125		
		1.5 2 1.75 -0.39	1+1+1	
		1.75 2 1.875		04
	b)	Using Regula-Falsi method, find the root of the equation		
		$x^3 - 3x + 1 = 0$ (3 iterations).		
	Ans	Let $f(x) = x^3 - 3x + 1$		
		f(0) = 1 > 0 f(1) = -1 < 0	1	
		f(1) = -1 < 0	1	
		: the root lies in $(0,1)$		
		$x_{1} = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{0 - (1)}{-1 - (1)} = \frac{1}{2} = 0.5$	1	
		$f(x_1) = -0.375 < 0$		
		\therefore the root lies in $(0,0.5)$		
		$x_{2} = \frac{x_{1}f(b) - bf(x_{1})}{f(b) - f(x_{1})} = 0.36$	1	
		$f(x_2) = -0.033 > 0$		
		\therefore the root lies in $(0,0.36)$		
		$x_{3} = \frac{x_{1}f(x_{2}) - x_{2}f(x_{1})}{f(x_{2}) - f(x_{1})} = 0.34$	1	04
		OR		
		f(0) = 1 > 0		
		f(1) = -1 < 0	1	

Subject Code: (12013) Page No: 26/28 Summer 2013

Que.	Sub.	Model answers						Marks	Total
No. 6)	Que.	\therefore the root lies in $(0,1)$						Marks	
		a	b	f(a)	f(b)	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)	1+1+1	
		0	1	1	-1	0.5	-0.375		04
		0	0.5	1	-0.375	0.36	-0.033		
		0	0.36	1	-0.033	0.34			
	c) Ans	only.		-	n method .	$x^3 + 2x - 20 = 0$ up two	iterations		
		Let, $f(x) = f(x) = f(x) = 1$	-8 < 0 $-3 > 0$	2x - 20					
		$f'(x)$ $\therefore f'(2)$	$=3x^2+$	2				1	
		$\therefore f'(2)$)=14						
		∴ Initial	root x_0	= 2					
		$x_1 = x_0 -$	$-\frac{f\left(x_{0}\right)}{f'\left(x_{0}\right)}$	$=2-\frac{(-8)}{14}$	$\frac{1}{2} = 2.57$			1½	
		f(2.57)	= 2.11	8	and	f'(2.57) = 21.81			04
		$x_2 = x_1 -$	$\frac{f(x_1)}{f'(x_1)}$	$=2.57-\frac{1}{2}$	$\frac{2.11}{21.81} = 2.4$	7		1½	
	d)	Using	Gauss	elimina	ation me	ethod, solve the $=1,4x-3y-z=3$	following		
	Ans	Given, x	·	z = 2 $2z = 1$	•	-			
		x + 2y + 6x + 2y	-4z=2		and +	9x+3y-6z=3 $4x-3y-z=3$		1.1	
		$\frac{-}{-5x+5z}$	z = 0			13x - 7z = 6		1+1	

Subject Code: (12013) Page No: 27/28 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
6)		$-7x + 7z = 0$ $13x - 7z = 6$ $6x = 6$ $\therefore x = 1$	1	04
		y = 0 $z = 1$ Note: In the above solution, first y is eliminated and then z is eliminated to find the value of x first. If in case the problem is solved by elimination of another unknown i. e., either first y or z, appropriate marks to be given as per above scheme of marking. Let us see, how the solution becomes by eliminating first z and then y to get the value of , as illustrated below: $2x + 2y + 2z = 4$ $3x + y - 2z = 1$	1	
		3x + y - 2z = 1 +	1+1	
		$-5x + 7y = -5$ $\frac{5x + 7y = 5}{10y = 0}$ $\therefore y = 0$ $x = 1$ $z = 1$	1 1	04
	e) Ans	Solve using Jacobi's method. (three iterations only) $10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15$ $x = \frac{1}{10}(13 - y - 2z)$ $y = \frac{1}{10}(14 - 3x - z)$ $z = \frac{1}{10}(15 - 2x - 3y)$ Starting with $x_0 = y_0 = z_0 = 0$ I) $x_1 = 1.3$ $y_1 = 1.4$ $z_1 = 1.5$	1	

Subject Code: (12013) Page No: 28/28 Summer 2013

Que.	Sub.	Model engages	Marks	Total
No.	Que.	Model answers		Marks
6)		I) $x_{2} = 0.86$ $y_{2} = 0.86$ $z_{2} = 0.82$ II) $x_{3} = 1.05$	1	04
		$y_3 = 1.06$ $z_3 = 1.07$	1	
	f)	Solve using Gauss-Seidal method.(three iterations) $10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14$		
	Ans	$x = \frac{1}{10}(12 - y - z)$ $y = \frac{1}{10}(13 - 2x - z)$ $z = \frac{1}{10}(14 - 2x - 2y)$ Starting with $y_0 = z_0 = 0$ I) $x_1 = 1.2$ $y_1 = 1.06$ $z_1 = 0.948$	1	
		$II)$ $x_2 = 0.9992$ $y_2 = 1.02$ $z_2 = 0.999$ $III)$	1	
		$x_3 = 0.998$ $y_3 = 1.00$ $z_3 = 1.00$	1	04