PROMPT ENGINEERING

PATTERNS FOR RAG IMPLEMENTATIONS

INTRODUCTION

Generative AI models are powerful but often generate inaccurate or irrelevant responses.

- Retrieval-Augmented Generation (RAG)
 solves this by using external knowledge for
 better accuracy.
- Prompt Engineering is key to improving RAG performance.

Let's explore how to craft better prompts for successful RAG implementation!

RETRIEVAL PROMPT

In RAG, retrieval prompts enhance query quality before retrieving documents.

Three key techniques:

- Query Expansion
- Contextual Continuity
- Hypothetical Document Embeddings (HyDE)

QUERY EXPANSION

- What? Improves query wording for better document retrieval.
- How? Add synonyms, related terms, and domain-specific keywords.

Example

"Expand the query {query} into 3 search-friendly versions using synonyms and related terms. Prioritize technical terms from {domain}."

CONTEXTUAL CONTINUITY

- What? Uses previous conversation history to refine the query.
- Why? Ensures continuity and relevance in retrieval.

Example

"Based on the user's previous query about {history}, rewrite their new query: {new query} into a standalone search query."

HyDE

HYPOTHETICAL DOCUMENT EMBEDDINGS

- What? Generates a hypothetical answer to guide retrieval.
- Why? Helps find documents closer to the expected response.

Example

"Write a hypothetical paragraph answering {user query}.

Use this text to find relevant documents."

GENERATION PROMPT

Once documents are retrieved,

generation prompts guide the LLM to
produce accurate responses.

Key techniques:

- Explicit Retrieval Constraints
- Chain of Thought (CoT) Reasoning
- Extractive Answering
- Contrastive Answering

 \rightarrow

EXPLICIT RETRIEVAL CONSTRAINTS

- What? Forces LLM to generate answers only from retrieved documents.
- Why? Prevents hallucinations and ensures reliability.

Example

"Answer using ONLY the provided document sources: {documents}. If the answer isn't there, say 'I don't know.'

Do not use prior knowledge."

COT

CHAIN OF THOUGHT REASONING

- What? Breaks down complex reasoning step by step.
- Why? Helps generate structured and logical responses.

Example

"Based on the retrieved context: {retrieved documents}, answer {query} step by step, first identifying key facts, then reasoning through the answer."

EXTRACTIVE ANSWERING

- What? Extracts relevant text directly from retrieved documents.
- Why? Ensures precise and unchanged responses (useful for legal, medical use cases).

Example

"Extract the most relevant passage from {retrieved documents} that answers {query}. Return only the exact text without modification."

CONTRASTIVE ANSWERING

- What? Provides multiple perspectives on the same query.
- Why? Useful for debates, legal cases, and critical analysis.

Example

"Based on {retrieved documents}, provide a balanced analysis of {query} by listing pros and cons, with supporting evidence from the retrieved context."

CONCLUSION

- RAG enhances LLM accuracy by retrieving relevant knowledge.
- Well-crafted prompts are key to improving both retrieval and generation.

Don't forget to like, comment, and save...