Instituto Superior de Engenharia do Porto Curso Preparatório 2006/2007 Prova de avaliação de Introdução à Informática (Módulo de algoritmia) Março de 2007

Duração 1h30m

Nome:		
Número:		

1) Implemente a função *leve3pague2(qtd inteiro, preço_unit real)* que partir do número de unidades compradas (*qtd*), e do preço unitário (*preço_unit*) calcule a quantia total a pagar de acordo com a regra leve 3 pague 2.

RESOLUÇÃO

2) Escreva um algoritmo que calcule o factorial de um número sabendo que:

$$\mathtt{factorial}(n) = \left\{ \begin{array}{ll} n = 0 & \to & 1 \\ n \geq 1 & \to & n * \mathtt{factorial}(n-1) \end{array} \right.$$

Exemplo: factorial(5)=5*4*3*2*1=120.

RESOLUÇÃO

```
ED: n, i, fact INTEIRO
INICIO

fact ←1
LER (n)
REPETIR PARA i=n ATÉ 2, PASSO -1
fact←fact*i
FPARA
FIM
```

3) Apresente a traçagem do seguinte algoritmo, assumindo que na linha 1 o utilizador atribui 222 à variável n.

```
ED: n, n1,a, aux INTEIRO
      INICIO
1
            LER(n)
2
            n1\leftarrow n
3
            aux←0
4
            REPETIR ENQUANTO n>0
5
                   a←n%10
6
                   aux\leftarrow aux*10+a
7
                   n←n DIV 10
            FENQUANTO
8
            SE aux=n1 ENTAO
                   ESCREVER (n1 "é capicua")
            SENAO
                   ESCREVER (n1 "não é capicua")
10
            FSE
      FIM
```

RESOLUÇÃO

	n	n1	a	aux	n>0	aux=n1	Saida
1	222						
2	222	222					
3	222	222		0			
4	222	222		0	V		
5	222	222	2	0			
6	222	222	2	2			
7	22	222	2	2			
4	22	222	2	2	V		
5	22	222	2	2			
6	22	222	2	22			
7	2	222	2	22			
4	2	222	2	22	V		
5	2	222	2	22			
6	2	222	2	222			
7	0	222	2	222			
4	0	222	2	222	F		
8	0	222	2	222		V	
9	0	222	2	222	_		222 é capicua

4) Complete o seguinte algoritmo de forma a determinar quantos elementos são iguais à média. Assuma que a função *mediaVector(v (100) inteiro, n inteiro)* já esta implementada. Defina as variáveis que entender necessário.

```
ED: vec(100), nelem, i,conta,
                                                 INTEIRO
media
                                                        REAL
INICIO
      ESCREVER ("Digite quantos elementos quer inserir")
      LER(nelem)
      REPETIR ENQUANTO nelem<0 OU nelem>100
            ESCREVER ("O número de elementos inválido!!!")
            ESCREVER ("Digite um numero do intervalo ]0,100]")
            LER(nelem)
      FENQUANTO
      REPETIR PARA i=0 ATÉ nelem-1, PASSO 1
            LER(vec(i))
      FPARA
      media← mediaVector(vec,nelem)
      REPETIR PARA i=0 ATÉ nelem-1, PASSO 1
            SE vec(i)=media ENTAO
                  conta←conta+1
            FSE
      FPARA
FIM
```