VIII - Intégration

I - Primitives

Définition 1 - Primitive

Soit f une fonction continue sur un intervalle I. Une *primitive* de f est une fonction dérivable F sur I telle que, pour tout $x \in I$, F'(x) = f(x).

Exemple 1

Soit F la fonction définie sur \mathbb{R}_+^* par $F(x) = x \ln(x) - x$. Comme la fonction logarithme népérien est dérivable sur \mathbb{R}_+^* , alors F est dérivable et pour tout $x \in]0,1]$,

$$F'(x) = \ln(x) + x \cdot \frac{1}{x} - 1 = \ln(x).$$

Ainsi, F est une primitive de ln sur \mathbb{R}_+^* .

Théorème 1 - Primitives de fonctions continues

Toute fonction continue sur un intervalle I admet des primitives. Si F et G sont des primitives d'une fonction f continue sur I, alors il existe un réel c tel que $\forall x \in I$, F(x) = G(x) + c.

Exemple 2

Si G est une primitive de la fonction ln sur \mathbb{R}_+^* , alors il existe un réel c tel que

$$\forall x \in \mathbb{R}_+^*, G(x) = x \ln(x) - x + c.$$

Proposition 1 - Primitives des fonctions usuelles 🖏				
	Fonction $f(x)$	Primitive $F(x)$	Intervalle	
	c	cx	\mathbb{R}	
	$x^a, a \neq -1$	$\frac{1}{a+1}x^{a+1}$	\mathbb{R}_+^* ou \mathbb{R}^* ou \mathbb{R}	
	$\frac{1}{x}$	$\ln(x)$	$]0,+\infty[$	
	$e^{ax}, a \neq 0$	$\frac{1}{a} e^{ax}$	\mathbb{R}	

Exemple 3

Une primitive de la fonction définie sur \mathbb{R}_+^* par $f(x)=x^{1/4}$ est donnée par

$$F(x) = \frac{1}{\frac{1}{4} + 1} x^{1/4 + 1} = \frac{4}{5} x^{5/4}.$$

Proposition 2 - Primitive de fonctions composées $\mathfrak{C}^{\mathfrak{p}}_{\mathfrak{p}}$

Soit u une fonction dérivable telle que u' soit continue.

Fonction $f(x)$	Primitive $F(x)$
$\lambda u'(x) + \mu v'(x)$	$\lambda u(x) + \mu v(x)$
$u'(x)u^a(x), a \neq -1$	$\frac{1}{a+1}u^{a+1}(x)$
$rac{u'(x)}{u(x)}$	$\ln u(x) $
$u'(x) e^{u(x)}$	$e^{u(x)}$
u'(x)v'(u(x))	v(u(x))

Chapitre VIII - Intégration D 2

Exemple 4

La fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{\ln(x)}{x}$ est de la forme u'(x)u(x) où $u(x) = \ln(x)$. Ainsi, une primitive de f est donnée par $F(x) = \frac{1}{2}(\ln(x))^2$.

II - Intégrale sur un segment

Définition 2 - Intégrale d'une fonction continue 🗱

Soient f une fonction continue sur [a,b] et F une primitive de f. L'intégrale de f sur [a,b] est le réel défini par

$$\int_{a}^{b} f(x) \, \mathrm{d}x = [F(x)]_{a}^{b} = F(b) - F(a).$$

Exemple 5

En utilisant les primitives usuelles,

- $\int_0^1 (3x^2 + 4) e^{x^3 + 4x} dx = \left[e^{x^3 + 4x} \right]_0^1 = e^5 1.$

Théorème 2 - Intégrale et Primitive

Soient f une fonction continue définie sur I et $a \in I$. On note $F(x) = \int_a^x f(t) dt$. Alors, F est l'unique primitive de f qui s'annule en a. En particulier, pour tout réel $x \in I$, F'(x) = f(x).

II.1 - Propriétés de l'intégrale

Définition 3 - Fonctions continues par morceaux

Soit f une fonction définie sur un intervalle $I = \bigcup_{k=0}^{n}]a_k, b_k[$. On suppose que f est continue par morceaux sur I, i.e. continue sur chacun des intervalles $]a_k, b_k[$ et prolongeable par continuité e, a_k et b_k . Alors, $\int_a^b f(x) \, \mathrm{d}x = \sum_{k=0}^n \int_{a_k}^{b_k} f(x) \, \mathrm{d}x$.

Proposition 3 - Relation de Chasles

Soient f une fonction continue par morceaux sur un intervalle I et a, b et c des réels de I. Alors,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Exemple 6 - Fonction définie par morceaux

Soit f la fonction définie par f(x) = 0 si $x \le 1$ et f(x) = x - 1 sinon. Alors,

$$\int_{-1}^{2} f(x) dx = \int_{-1}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$
$$= \int_{-1}^{1} 0 dx + \int_{1}^{2} (x - 1) dx$$
$$= 0 + \left[\frac{(x - 1)^{2}}{2} \right]_{1}^{2} = 0 + \frac{1}{2} - 0 = \frac{1}{2}.$$

Chapitre VIII - Intégration D 2

Proposition 4 - Linéarité de l'intégrale

Soient f et g des fonctions continues par morceaux sur [a,b] et λ un réel. Alors,

$$\int_a^b f(x) + \lambda g(x) dx = \int_a^b f(x) dx + \lambda \int_a^b g(x) dx.$$

Exemple 7

En utilisant les primitives usuelles,

$$\int_{1}^{2} \frac{12}{x} + 5x^{3} dx = 12 \int_{1}^{2} \frac{1}{x} dx + 5 \int_{1}^{2} x^{3} dx$$

$$= 12 \left[\ln(x)\right]_{1}^{2} + 5 \left[\frac{x^{4}}{4}\right]_{1}^{2}$$

$$= 12 \left(\ln(2) - \ln(1)\right) + 5 \left(\frac{2^{4}}{4} - \frac{1}{4}\right)$$

$$= 12 \ln(2) + \frac{5}{4} \cdot 15.$$

Proposition 5 - Croissance de l'intégrale (I)

Soit f une fonction continue par morceaux sur [a, b]. Si $a \le b$ et, pour tout $x \in [a, b]$, $f(x) \ge 0$, alors $\int_a^b f(x) dx \ge 0$.

Exemple 8

Soient
$$F(x) = \int_0^x \frac{e^t}{(t+1)^2} dt$$
 et $0 \le x \le y$. Alors,

$$F(y) = \int_0^y \frac{e^t}{(t+1)^2} dt = \int_0^x \frac{e^t}{(t+1)^2} dt + \int_x^y \frac{e^t}{(t+1)^2} dt$$

$$= F(x) + \int_0^y \frac{e^t}{(t+1)^2} dt$$

Or,
$$\frac{\mathrm{e}^t}{(t+1)^2} \geqslant 0$$
 pour tout $t \in [x,y]$ et $x \leqslant y$, donc $\int_x^y \frac{\mathrm{e}^t}{(t+1)^2} \, \mathrm{d}t \geqslant 0$. Ainsi, $F(x) \leqslant F(y)$ et F est croissante.

Proposition 6 - Croissance de l'intégrale (II)

Soient f et g deux fonctions continues par morceaux sur [a,b]. Si $a\leqslant b$ et pour tout $x\in [a,b],$ $f(x)\leqslant g(x),$ alors $\int_a^b f(x)\,\mathrm{d}x\leqslant\int_a^b g(x)\,\mathrm{d}x.$

Exemple 9

Pour tout $x \in [0,1], x+1 \ge 1$. Ainsi

$$0 \leqslant \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x \leqslant \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}.$$

Proposition 7 - Inégalité triangulaire

Soit f une fonction continue par morceaux sur [a,b]. Si $a \leq b$, alors

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \, \, \mathrm{d}t.$$

Exemple 10

Soient $n \in \mathbb{N}$ et $x \geqslant 0$. Comme la fonction exponentielle est croissante,

$$\left| \int_0^x \frac{(-t)^n}{n!} e^t dt \right| \le \int_0^x |(-t)^n| \frac{e^t}{n!} dt \le \frac{e^x}{n!} \int_0^x t^n dt \le \frac{x^{n+1} e^x}{(n+1)!}.$$

Proposition 8 - Positivité de l'intégrale des fonctions continues

Soit f une fonction continue sur [a, b]. Si f est à valeurs positives, alors $f \equiv 0$ si et seulement si $\int_a^b f(t) dt = 0$.

Exemple 11 - Contre-exemple

La propriété précédente est fausse si f est seulement continue par morceaux. Par exemple, si f(x) = 0 sur]0,1] et f(1) = 1. Alors, f est non nulle et $\int_0^1 f(x) dx = 0$.

II.2 - Calculs d'intégrales

Théorème 3 - Intégration par parties

Soient u et v deux fonctions de classe \mathscr{C}^1 sur [a,b]. Alors,

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

Exemple 12 - 🚓

• Calculons $\int_0^1 x e^{2x} dx$.

On pose $\begin{cases} u(x) = x \\ u'(x) = 1 \end{cases}$ et $\begin{cases} v'(x) = e^{2x} \\ v(x) = \frac{e^{2x}}{2} \end{cases}$. Comme u et v sont de classe \mathscr{C}^1 sur [0,1], d'après la formule d'intégration

par parties,

$$\int_0^1 x e^{2x} dx = \left[x \frac{e^{2x}}{2} \right]_1^2 - \int_1^2 \frac{e^{2x}}{2} dx = \frac{2e^4}{2} - \frac{e^2}{2} - \left[\frac{e^{2x}}{4} \right]_1^2$$
$$= e^4 - \frac{e^2}{2} - \frac{e^4}{4} + \frac{e^2}{4} = \frac{3e^4}{4} - \frac{e^2}{4}.$$

• Calculons $\int_{1}^{2} \ln(x) dx$.

On pose $\begin{cases} u(x) = \ln(x) \\ u'(x) = \frac{1}{x} \end{cases}$ et $\begin{cases} v'(x) = 1 \\ v(x) = x \end{cases}$. Comme u et v sont de classe \mathscr{C}^{1} sur [1,2], d'après la formule d'intégration par parties,

$$\int_{1}^{2} \ln(x) dx = [\ln(x)x]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \cdot x dx$$

$$= 2\ln(2) - 1\ln(1) - \int_{1}^{2} 1 dx$$

$$= 2\ln(2) - [x]_{1}^{2} = 2\ln(2) - 2 + 1 = 2\ln(2) - 1.$$

Théorème 4 - Changement de variable

Soient $f \in \mathcal{C}(I, \mathbb{R})$ et φ une fonction de [a, b] dans I de classe \mathcal{C}^1 . Alors,

$$\int_{\varphi(a)}^{\varphi(b)} f(u) du = \int_a^b f(\varphi(t))\varphi'(t) dt.$$

Exemple 13 - 🗫

Calculons $\int_0^1 \frac{\mathrm{d}x}{\mathrm{e}^x + 1}$ à l'aide du changement de variable $t = \ln(u)$.

La fonction $\varphi:[1,e]\to[0,1],\ u\mapsto \ln(u)$ est de classe \mathscr{C}^1 . Ainsi,

$$\int_0^1 \frac{\mathrm{d}x}{\mathrm{e}^x + 1} = \int_1^{\mathrm{e}} \frac{1}{u + 1} \times \frac{1}{u} \, \mathrm{d}u$$

$$= \int_1^{\mathrm{e}} \left[\frac{1}{u} - \frac{1}{1 + u} \right] \, \mathrm{d}u$$

$$= \int_1^{\mathrm{e}} \frac{\mathrm{d}u}{u} - \int_1^{\mathrm{e}} \frac{\mathrm{d}u}{1 + u} = [\ln(u)]_1^{\mathrm{e}} - [\ln(1 + u)]_1^{\mathrm{e}}$$

$$= 1 - \ln(1 + \mathrm{e}) + \ln(2).$$

II.3 - Formule de Taylor avec reste intégral

Théorème 5 - Formule de Taylor avec reste intégral

Soient $n \in \mathbb{N}$ et $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} sur I. Alors, pour tout $(a, x) \in I^2$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Exemple 14

• La fonction $f: x \mapsto \ln(1+x)$ est de classe \mathscr{C}^2 sur $]-1, +\infty[$. De plus, pour tout x > -1,

$$f'(x) = \frac{1}{1+x}$$
 et $f''(x) = -\frac{1}{(1+x)^2}$.

D'après la formule de Taylor avec reste intégral, pour tout x>-1,

$$\ln(1+x) = 0 + \frac{x}{1} \cdot \frac{1}{1+0} + \int_0^x \frac{(x-t)}{1!} \times \left(-\frac{1}{(1+t)^2}\right) dt$$
$$\ln(1+x) - x = -\int_0^x \frac{x-t}{(1+t)^2} dt.$$

Si $x \ge 0$ et $t \in [0, x]$, alors $\frac{x - t}{(1 + t)^2} \ge 0$ et $\ln(1 + x) - x \le 0$.

Si $-1 < x \le 0$ et $t \in [x, 0]$, alors $\frac{x-t}{(1+t)^2} \le 0$ et $\ln(1+x)-x \le 0$.

Finalement,

$$\forall x > -1, \ln(1+x) \leqslant x.$$

• Comme la fonction exponentielle est de classe \mathscr{C}^{∞} sur \mathbb{R} , pour tout x réel,

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \int_0^x \frac{(x-t)^n}{n!} e^t dt.$$

Si $x \ge 0$ et $t \in [0, x]$, alors

$$0 \leqslant e^{t} \leqslant e^{x}$$

$$0 \leqslant \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt \leqslant \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{x} dt \leqslant \frac{x^{n+1}}{(n+1)!} e^{x}$$

$$0 \leqslant e^{x} - \sum_{k=0}^{n} \frac{x^{k}}{k!} \leqslant \frac{x^{n+1}}{(n+1)!} e^{x}.$$

D'après le théorème d'encadrement, $\lim_{n\to+\infty}\sum_{k=0}^n\frac{x^k}{k!}=\mathrm{e}^x$. Si $x\leqslant 0$ et $t\in[x,0]$, d'après l'inégalité triangulaire,

$$\left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right| \le \int_x^0 \frac{|x-t|^n}{n!} e^t dt$$

$$\le \int_x^0 \frac{(t-x)^n}{n!} dt$$

$$\le \frac{x^{n+1}}{(n+1)!}.$$

On conclut comme précédemment que $\lim_{n\to+\infty}\sum_{k=0}^n\frac{x^k}{k!}=\mathrm{e}^x$.

Chapitre VIII - Intégration D 2

III - Intégrales généralisées

Dans tout ce paragraphe, I désigne un intervalle de $\mathbb R$ d'extrémités a et b, où $-\infty \leq a < b \leq +\infty$.

III.1 - Définition

Définition 4 - Convergence

Soit f une fonction continue par morceaux sur I.

- Si I = [a, b[et f est continue sur [a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x \mapsto \int_a^x f(t) dt$ possède une limite finie lorsque x tend vers b.
- Si I =]a, b] et f est continue sur]a, b]. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x \mapsto \int_x^b f(t) dt$ possède une limite finie lorsque x tend vers a.
- Si I =]a, b[et f est continue sur]a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge s'il existe $c \in]a, b[$ tel que $\int_a^c f(t) dt$ et $\int_a^b f(t) dt$ soient convergentes.

Dans tous les cas, si l'intégrale ne converge pas, elle diverge.

Exemple 15

La fonction ln est continue sur]0,1]. De plus, pour tout $\varepsilon > 0$,

$$\int_{\varepsilon}^{1} \ln(t) dt = [t \ln(t) - t]_{\varepsilon}^{1} = -1 - \varepsilon \ln(\varepsilon) + \varepsilon.$$

Ainsi, $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \ln(t) dt = -1$ et $\int_{0}^{1} \ln(t) dt$ converge.

Théorème 6 - Intégrales de référence

(i). Intégrales de Riemann sur $[1, +\infty]$.

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \text{ converge si et seulement si } \alpha > 1. \text{ Alors,}$$

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha - 1}.$$

(ii). Intégrales de Riemann sur [0,1].

$$\int_0^1 \frac{\mathrm{d}t}{t^\alpha} \quad \text{converge si et seulement si } \alpha < 1. \text{ Alors,}$$

$$\int_0^1 \frac{\mathrm{d}t}{t^\alpha} = \frac{1}{1-\alpha}.$$

(iii). Fonction exponentielle.

$$\int_0^{+\infty} e^{-\alpha t} dt \text{ converge si et seulement si } \alpha > 0. \text{ Alors,}$$

$$\int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}.$$

(iv). Fonction logarithme.

$$\int_0^1 \ln(t) dt \text{ converge. De plus, } \int_0^1 \ln(t) dt = -1.$$

III.2 - Propriétés

Proposition 9 - Linéarité

Soit $\lambda \in \mathbb{R}$. Si $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent, alors $\int_a^b (f(t) + \lambda g(t)) dt$ converge et

$$\int_{a}^{b} (f(t) + \lambda g(t)) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt.$$

Chapitre VIII - Intégration

Proposition 10 - Relation de Chasles

On suppose que $\int_a^b f(t) dt$ converge et $c \in]a, b[$. Alors, $\int_a^c f(t) dt$ et $\int_a^b f(t) dt$ convergent et

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt.$$

Proposition 11 - Croissance de l'intégrale

On suppose que $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent.

- (i). Si, pour tout $x \in I$, $f(x) \ge 0$, alors $\int_a^b f(t) dt \ge 0$.
- (ii). Si, pour tout $x \in I$, $f(x) \leqslant g(x)$, alors $\int_a^b f(t) dt \leqslant \int_a^b g(t) dt.$

Théorème 7 - Inégalité triangulaire

Si $\int_a^b |f(t)| dt$ est convergente et $a \le b$, alors $\int_a^b f(t) dt$ converge et

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \int_{a}^{b} |f(t)| \, \mathrm{d}t.$$

Théorème 8 - Positivité

Soit $f:I\to\mathbb{R}$ une fonction continue telle que $\int_I |f(t)| \, \mathrm{d}t$ converge. Si $\int_I |f(t)| \, \mathrm{d}t=0$, alors f est nulle sur I.

III.3 - Preuves d'existences

Proposition 12 - Intégrale faussement impropre

Soit f une fonction continue sur le segment [a, b]. Alors, les intégrales de f sur [a, b], [a, b], [a, b] et [a, b] sont égales.

Exemple 16

Montrons que $\int_0^1 t \ln(t) dt$ est convergente. On note f la fonction définie sur]0,1] par $f(t)=t\ln(t)$.

- La fonction f est continue sur]0,1].
- D'après les croissances comparées, $\lim_{t\to 0} f(t) = 0$. Ainsi, f est prolongeable par continuité en 0.

Finalement, l'intégrale de f sur]0,1] est bien définie.

Proposition 13 - Fonctions à valeurs positives

Si f est valeurs positives sur [a, b[, alors $\int_a^b f(t) dt$ converge si et seulement si $x \mapsto \int_a^x f(t) dt$ est majorée sur [a, b[.

Théorème 9 - Domination locale

Soient f, g deux fonctions continues de [a, b[dans \mathbb{R}_+ .

- S'il existe un réel c tel que $\forall x \in [c, b[, 0 \le f(x) \le g(x)]$ et $\int_{c}^{b} g(t) dt$ converge, alors $\int_{c}^{b} f(t) dt$ converge.
- Si $f(x) \sim_b g(x)$, alors $\int_a^b f(x) dx$ converge si et seulement si $\int_a^b g(x) dx$ converge.

Chapitre VIII - Intégration

Exemple 17

• Soit $n \in \mathbb{N}^*$. Étudions $\int_0^{+\infty} x^n e^{-x} dx$.

 $\star x \mapsto x^n e^{-x}$ est continue sur $[0, +\infty[$

 \star Comme $\lim_{x\to +\infty} x^{n+2}\,\mathrm{e}^{-x}=0,$ il existe un réel c tel que, pour tout $x \geqslant c$.

$$x^{n+2} e^{-x} \le 1$$
, soit $x^n e^{-x} \le \frac{1}{x^2}$.

$$\int_{c}^{x} t^{n} e^{-t} dt \leqslant \int_{c}^{x} \frac{1}{t^{2}} dt \leqslant \frac{1}{c} - \frac{1}{x} \leqslant \frac{1}{c}.$$

Comme $t^n e^{-t} \ge 0$, la fonction $x \mapsto \int_0^x t^n e^{-t} dt$ est croissante et majorée par $\frac{1}{c}$ donc convergente. Ainsi, $\int_{-\infty}^{+\infty} t^n e^{-t} dt converge.$

* Comme $x \mapsto x^n e^{-x}$ est continue sur [0, c], son intégrale sur ce segment est bien définie.

Finalement, $\int_{0}^{+\infty} x^n e^{-x} dx$ converge.

• Étudions $\int_0^1 \frac{\mathrm{d}x}{1-x^2}$.

 $\star t \mapsto \frac{1}{1-t^2}$ est continue sur [0,1].

 $\star \frac{1}{1-t^2} = \frac{1}{(1+t)(1-t)} \sim_1 \frac{1}{2(1-t)}$.

Comme $\lim_{t\to 1} \frac{2(1-t)}{1-t^2} = 1$, il existe c < 1 tel que pour tout $x \geqslant c$,

$$\frac{1}{2} \leqslant \frac{2(1-x)}{1-x^2}$$
, soit $\frac{1}{4(1-x)} \leqslant \frac{1}{1-x^2}$.

$$\int_{c}^{x} \frac{1}{1-t^{2}} dt \geqslant \int_{c}^{x} \frac{4}{(1-t)} dt \geqslant \frac{1}{4} \left(-\ln(1-x) + \ln(1-c)\right).$$

Comme $\lim_{x\to 1} \ln(1-x) = -\infty$, l'intégrale $\int_0^1 \frac{\mathrm{d}x}{1-x^2}$ n'est pas convergente.

III.4 - Méthodes de calculs

Utiliser les méthodes de calcul sur un segment (primitivation, intégration par parties, changement de variable), puis étudier la limite.

D 2

Exemple 18

Soit $n \in \mathbb{N}$. Calculons $I_n = \int_0^{+\infty} x^n e^{-x} dx$.

• Si n=0. Pour tout $x\geqslant 0$.

$$\int_0^x e^{-t} dt = \left[-e^{-t} \right]_0^x = 1 - e^{-x}.$$

Ainsi, $I_0 = \int_0^{+\infty} e^{-x} dx = 1$.

• Si $n \ge 1$. Soit $M \ge 0$. On pose $\begin{cases} u(x) = x^n \\ u'(x) = nx^{n-1} \end{cases}$ et $\begin{cases} v'(x) = e^{-x} \\ v'(x) = -e^{-x} \end{cases}$ Comme

u et v sont de classe \mathscr{C}^1 sur [0,M], d'après la formule d'intégration par parties

$$\int_0^M x^n e^{-x} dx = \left[-x^n e^{-x} \right]_0^M + \int_0^M nx^{n-1} e^{-x} dx$$
$$= -M^n e^{-M} + n \int_0^M x^{n-1} e^{-x} dx.$$

D'après le théorème des croissances comparées, lorsque $M \to +\infty$, on obtient la relation :

$$I_n = nI_{n-1}.$$

 \bullet On montre alors par récurrence que, pour tout n entier naturel, $I_n = n!$.