The Ontological Modal Collapse as a Collapse of the Square of Opposition

Christoph Benzmüller and Bruno Woltzenlogel Paleo

Abstract. The *modal collapse* that afflicts Gödel's modal ontological argument for God's existence is discussed from the perspective of the modal square of opposition.

Mathematics Subject Classification (2010). Prim. 03A02; Sec. 68T02. Keywords. Modal Logics, Higher-Order Logics, Ontological Argument.

1. Introduction

Attempts to prove the existence (or non-existence) of God by means of abstract, ontological arguments are an old tradition in western philosophy, with contributions by several prominent philosophers, including St. Anselm of Canterbury, Descartes and Leibniz. Kurt Gödel studied and further improved this argument, bringing it to a mathematically more precise form, as a chain of axioms, lemmas and theorems in a modal logic [23, 30], shown in Fig. 1.

Gödel defines God as a being who possesses all *positive* properties and states a few reasonable (but debatable) axioms that such properties should satisfy. The overall idea of Gödel's proof is in the tradition of Anselm's argument, who defined God as some entity of which nothing greater can be conceived. Anselm argued that existence in the actual world would make such an assumed being even greater; hence, by definition, God must exist. However, for Anselm existence was treated as a predicate and the possibility of God's existence was assumed as granted. These issues were criticized by Kant and Leibniz, respectively, and successfully addressed by Gödel.

Nevertheless, Gödel's work still leaves room for criticism. In particular, his axioms are so strong that they entail a *modal collapse* [?, 31]: everything that is the case is so necessarily. There has been an impressive body of recent and ongoing work (cf. [31, 19, 3, 2, ?, 18] and the references therein) proposing solutions for the modal collapse. The goal of this short note is merely to remark that the modal collapse is a collapse of the modal square of opposition.

A1 Either a property or its negation is positive, but not both:

$$\forall \varphi [P(\neg \varphi) \leftrightarrow \neg P(\varphi)]$$

A2 A property necessarily implied by a positive property is positive:

$$\forall \varphi \forall \psi [(P(\varphi) \land \Box \forall x [\varphi(x) \to \psi(x)]) \to P(\psi)]$$

T1 Positive properties are possibly exemplified:

$$\forall \varphi [P(\varphi) \to \Diamond \exists x \varphi(x)]$$

D1 A God-like being possesses all positive properties:

$$G(x) \equiv \forall \varphi [P(\varphi) \to \varphi(x)]$$

A3 The property of being God-like is positive:

C Possibly, a God-like being exists:

$$\Diamond \exists x G(x)$$

A4 Positive properties are necessarily positive:

$$\forall \varphi [P(\varphi) \to \Box P(\varphi)]$$

D2 An essence of an individual is a property possessed by it and necessarily implying any of its properties:

$$\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi(\psi(x) \to \Box \forall y(\varphi(y) \to \psi(y)))$$

T2 Being God-like is an essence of any God-like being:

$$\forall x[G(x) \to G \ ess \ x]$$

D3 Necessary existence of an individual is the necessary exemplification of all its essences:

$$NE(x) \equiv \forall \varphi [\varphi \ ess \ x \to \Box \exists y \varphi(y)]$$

A5 Necessary existence is a positive property:

L1 If a god-like being exists, then necessarily a god-like being exists:

$$\exists x G(x) \to \Box \exists y G(y)$$

L2 If possibly a god-like being exists, then necessarily a god-like being exists:

$$\Diamond \exists x G(x) \to \Box \exists y G(y)$$

T3 Necessarily, a God-like being exists:

$$\Box \exists x G(x)$$

FIGURE 1. Scott's version of Gödel's ontological argument [30].

2. A Collapse of the Modal Square

A crucial step of most ontological arguments is the claim that if God's existence is possible, then it is necessary. This is Lemma L2 in Gödel's proof. In the modal square of opposition (Fig. ??), this is an unusual situation in which the **I** corner must imply and entail the **A** corner, in the particular case when ϕ is $\exists x G(x)$. Gödel's proof shows that his axioms are strong enough

```
MC Everything that is the case is so necessarily: \forall \phi [\phi \to \Box \phi] MC' Everything that is possible is necessary: \forall \phi [\Diamond \phi \to \Box \phi] MC" Modalities collapse: \forall \phi [\phi \leftrightarrow \Diamond \phi \leftrightarrow \Box \phi]
```

FIGURE 2. Modal Collapse [?, ?].

to invert the direction of entailment for the sentence at issue. The question, however, is whether the axioms are not too strong, also allowing the inverted entailment for arbitrary ϕ . That is essentially the question asked by Sobel [?]; and his proof of the modal collapse (MC) provides an affirmative answer. It is possible to show that this form of the modal collapse entails (in modal logic K) a collapse of the modal square (MC'): the subcontraries entail (and even imply) the contraries. Furthermore, in any modal logic where the accessibility relation is reflexive (i.e. where the axiom T $(\forall \phi[\Box \phi \to \phi])$ holds)

ToDo: include figure of Modal Square of Opposition.

3. Conclusions

Various slightly different versions of axioms and definitions have been considered by Gödel and by several philosophers who commented on his proof (cf. [31, 3, 2, 19, 1, 18]).

In theoretical philosophy, formal logical confrontations with such ontological arguments had been so far (mainly) limited to paper and pen. Up to now, the use of computers was prevented, because the logics of the available theorem proving systems were not expressive enough to formalize the abstract concepts adequately. Gödel's proof uses, for example, a complex higher-order modal logic (HOML) to handle concepts such as *possibility* and *necessity* and to support quantification over individuals and properties.

controversies, care with parameters

ToDo: Leibniz calculemus, Rushby, Zalta [27, 28]

The technique enabling this analysis is the embedding of quantified modal logics into higher-order logics [10, 9, 6], for which automated theorem provers exist [?, ?, ?, ?]. This technique has already been successfully employed in the verification and reconstruction of Gödel's proof [?], and a detailed mathematical description of the technique is available in [?].

References

- [1] R.M. Adams, 'Introductory note to *1970', in Kurt Gödel: Collected Works Vol. 3: Unpubl. Essays and Letters, Oxford Univ. Press, (1995).
- [2] A.C. Anderson and M. Gettings, 'Gödel ontological proof revisited', in *Gödel'96:*Logical Foundations of Mathematics, Computer Science, and Physics: Lecture
 Notes in Logic 6, 167–172, Springer, (1996).
- [3] C.A. Anderson, 'Some emendations of Gödel's ontological proof', Faith and Philosophy, 7(3), (1990).
- [4] P.B. Andrews, 'General models and extensionality', Journal of Symbolic Logic, 37(2), 395–397, (1972).
- [5] P.B. Andrews, 'Church's type theory', in *The Stanford Encyclopedia of Philosophy*, ed., E.N. Zalta, spring 2014 edn., (2014).
- [6] C. Benzmüller, 'HOL based universal reasoning', in Handbook of the 4th World Congress and School on Universal Logic, ed., J.Y. Beziau et al., pp. 232–233, Rio de Janeiro, Brazil, (2013).
- [7] C. Benzmüller and D. Miller, 'Automation of higher-order logic', in Hand-book of the History of Logic, Volume 9 Logic and Computation, Elsevier, (2014). Forthcoming; preliminary version available at http://christophbenzmueller.de/papers/B5.pdf.
- [8] C. Benzmüller, J. Otten, and Th. Raths, 'Implementing and evaluating provers for first-order modal logics', in *Proc. of the 20th European Conference on Artificial Intelligence (ECAI)*, pp. 163–168, (2012).
- [9] C. Benzmüller and L.C. Paulson, 'Exploring properties of normal multimodal logics in simple type theory with LEO-II', in *Festschrift in Honor of Peter B. Andrews on His 70th Birthday*, ed., C. Benzmüller et al., 386–406, College Publications, (2008).

- [10] C. Benzmüller and L.C. Paulson, 'Quantified multimodal logics in simple type theory', Logica Universalis, 7(1), 7–20, (2013).
- [11] C. Benzmüller, F. Theiss, L. Paulson, and A. Fietzke, 'LEO-II a cooperative automatic theorem prover for higher-order logic', in *Proc. of IJCAR 2008*, number 5195 in LNAI, pp. 162–170. Springer, (2008).
- [12] C. Benzmüller and B. Woltzenlogel-Paleo, 'Formalization, mechanization and automation of Gödel's proof of God's existence', arXiv:1308.4526, (2013).
- [13] C. Benzmüller and B. Woltzenlogel-Paleo, 'Gödel's God in Isabelle/HOL', Archive of Formal Proofs, (2013).
- [14] C. Benzmüller and B. Woltzenlogel-Paleo, 'Gödel's God on the computer', in Proceedings of the 10th International Workshop on the Implementation of Logics, EPiC Series. EasyChair, (2013). Invited abstract.
- [15] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program Development, Springer, 2004.
- [16] J.C. Blanchette and T. Nipkow, 'Nitpick: A counterexample generator for higher-order logic based on a relational model finder', in *Proc. of ITP 2010*, number 6172 in LNCS, pp. 131–146. Springer, (2010).
- [17] C.E. Brown, 'Satallax: An automated higher-order prover', in *Proc. of IJCAR* 2012, number 7364 in LNAI, pp. 111 117. Springer, (2012).
- [18] R. Corazzon. Contemporary bibliography on ontological arguments: http://www.ontology.co/biblio/ontological-proof-contemporary-biblio.htm.
- [19] M. Fitting, Types, Tableaux and Gödel's God, Kluwer, 2002.
- [20] M. Fitting and R.L. Mendelsohn, First-Order Modal Logic, volume 277 of Synthese Library, Kluwer, 1998.
- [21] D. Gallin, Intensional and Higher-Order Modal Logic, North-Holland, 1975.
- [22] P. Garbacz, 'PROVER9's simplifications explained away', Australasian Journal of Philosophy, **90**(3), 585–592, (2012).
- [23] K. Gödel, Appx.A: Notes in Kurt Gödel's Hand, 144–145. In [31], 2004.
- [24] L. Henkin, 'Completeness in the theory of types', Journal of Symbolic Logic, 15(2), 81–91, (1950).
- [25] R. Muskens, 'Higher Order Modal Logic', in Handbook of Modal Logic, ed., P Blackburn et al., 621–653, Elsevier, Dordrecht, (2006).
- [26] T. Nipkow, L.C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for Higher-Order Logic, number 2283 in LNCS, Springer, 2002.
- [27] P.E. Oppenheimer and E.N. Zalta, 'A computationally-discovered simplification of the ontological argument', Australasian Journal of Philosophy, 89(2), 333–349, (2011).
- [28] J. Rushby, 'The ontological argument in PVS', in Proc. of CAV Workshop "Fun With Formal Methods", St. Petersburg, Russia,, (2013).
- [29] S. Schulz, 'E a brainiac theorem prover', AI Communications, 15(2), 111–126, (2002).
- [30] D. Scott, Appx.B: Notes in Dana Scott's Hand, 145–146. In [31], 2004.
- [31] J.H. Sobel, Logic and Theism: Arguments for and Against Beliefs in God, Cambridge U. Press, 2004.
- [32] G. Sutcliffe, 'The TPTP problem library and associated infrastructure', Journal of Automated Reasoning, 43(4), 337–362, (2009).

- [33] G. Sutcliffe and C. Benzmüller, 'Automated reasoning in higher-order logic using the TPTP THF infrastructure.', *Journal of Formalized Reasoning*, **3**(1), 1–27, (2010).
- [34] B. Woltzenlogel-Paleo and C. Benzmüller, 'Automated verification and reconstruction of Gödel's proof of God's existence', $OCG\ J$., (2013).

Christoph Benzmüller
Department of Mathematics and Computer Science
Arnimallee 7
Room 115
14195 Berlin
Germany
e-mail: c.benzmueller@gmail.com

Bruno Woltzenlogel Paleo Favoritenstraße 9 Room HA0402 1040 Wien Austria

e-mail: bruno.wp@gmail.com