UN VISTAZO A LA TOKENIZACIÓN

Presentan

Daniel Ayala Zamorano

DAZ23AYALA@GMAIL.COM

Laura Natalia Borbolla Palacios

I.N. BORBOLLA, 42@GMAIL, COM

RICARDO QUEZADA FIGUEROA

QF7.RICARDO@GMAIL.COM

SANDRA DÍAZ SANTIAGO

SDIAZS@GMAIL.COM

Primera Reunión de Ciberseguridad para la Industria 4.0 Puebla, 14 de octubre de 2018

> ESCUELA SUPERIOR DE CÓMPUTO INSTITUTO POLITÉCNICO NACIONAL

Contenido

El problema de la protección de datos bancarios

La tokenización en otros contextos

¿Qué es la tokenización?

Clasificación del PCI

Métodos reversibles: FFX y BPS

Métodos irreversibles: TKR, AHR y DRBG

Resultados y conclusiones

EL PROBLEMA DE LA PROTECCIÓN DE DATOS BANCARIOS

► El crecimiento del comercio en línea, aunado a sistemas débilmente protegidos propició un incremento en los robos de datos bancarios.

Pérdidas debidas al fraude en línea (2001-2012) [1].

EL PROBLEMA DE LA PROTECCIÓN DE DATOS BANCARIOS

- ▶ En el 2004 se publicó el PCI $DSS^1[2]$.
- ► Hasta este momento el enfoque era proteger la información en donde sea que se encuentre.
- ► A pesar de la publicación del estándar, las filtraciones de datos no han cesado.

¹Payment Card Industry, Data Security Standard

LA TOKENIZACIÓN EN OTROS CONTEXTOS

- ► Moneda de uso particular sin valor legal.
- ► Componente de seguridad en la comunicación por sesiones.
- ► Componente léxico de una gramática.
- ► Una unidad lingüística básica.
- ► Problema social.

¿Qué es la tokenización en criptografía?

- ► Es la sustitución de datos sensibles por valores representativos sin una relación directa.
- ► Existen muchas empresas que proveen el servicio de tokenización, pero lo hacen sin detallar la forma en la que se realiza [3]-[5].
- ► En 2011, el PCI publicó su guía de tokenización [6].

Arquitectura de sistema tokenizador: operación de tokenización.

¿Qué es la tokenización en criptografía?

- ► Es la sustitución de datos sensibles por valores representativos sin una relación directa.
- ► Existen muchas empresas que proveen el servicio de tokenización, pero lo hacen sin detallar la forma en la que se realiza [3]-[5].
- ► En 2011, el PCI publicó su guía de tokenización [6].

Arquitectura de sistema tokenizador: transacción bancaria.

CLASIFICACIÓN DE LOS ALGORITMOS TOKENIZADORES CLASIFICACIÓN DEL PCI [6]

- ▶ Reversibles: se puede regresar, a partir del token, al número de tarjeta original.
 - ▶ Criptográficos: cifran el token y descifran la tarjeta.
 - ▶ No criptográficos: ocupan una base de datos para guardar la relación entre números de tarjetas y tokens.
- ► Irreversibles: no se puede regresar al número de tarjeta a partir del token.
 - ► Autenticables: permiten validar cuando un token corresponde a un número de tarjeta dado.
 - ▶ No autenticables: no permiten hacer la validación anterior.

CLASIFICACIÓN DE LOS ALGORITMOS TOKENIZADORES CLASIFICACIÓN PROPUESTA

- ► Criptográficos: ocupan primitivas criptográficas en su operación.
 - ► Reversibles: cifran el token y descifran la tarjeta.
 - ► Irreversibles: ocupan una base de datos para guardar la relación entre números de tarjetas y tokens.
- ▶ No criptográficos: no ocupan nada relacionado con la criptografía.

MÉTODOS REVERSIBLES: FFX Y BPS

- ▶ Métodos que utilizan cifrados que preservan el formato.
- ► Cifran la tarjeta y descifran el token.
- ➤ Se volvieron estándares en 2016 y fueron renombrados por el NIST a FF1 y FF3 respectivamente.
- ► Están basados en redes Feistel.

COMPARATIVA: FFX Y BPS

Características	FFX	BPS
Longitud de cadena	[4,36] caracteres	hasta $56 \cdot 2^{128}$
		caracteres
Primitiva criptográfica	AES CBC-MAC	AES
Tamaño de llave	128 bits	128 bits
Tamaño de tweak	menor a 2 ⁶⁴ bits	64 bits
Número de rondas	12, 28 o 24	8 recomendadas

Comparativa de FFX y BPS.

MÉTODOS IRREVERSIBLES: TKR, AHR Y DRBG

- Utilizan varias primitivas criptográficas (cifrados por bloque, funciones hash, generadores pseudoaleatorios).
- ► Requieren guardar la relación tarjeta-token.
- ► Su desempeño está ligado a la base de datos.

MÉTODOS IRREVERSIBLES: TKR, AHR Y DRBG

Características	TKR	AHR	DRBG
Primitivas criptográficas	Cifrado por bloque.	Cifrado por bloque y función hash.	Función hash o cifrado por bloque.
Tamaño de llave	16 bytes	32 bytes	-
Función para mantenerse en el dominio	Función RN	Caminata cíclica	-

 ${\it Caracter\'isticas\ de\ los\ algoritmos\ tokenizadores\ irreversibles}.$

RESULTADOS

Tokenización y detokenización.

RESULTADOS

Generación de tokens.

Conclusiones

- ▶ La tokenización es una aplicación de la criptografía.
- ► La denominación no criptográfica del PCI es contradictoria.
- ► Los algoritmos reversibles son más últiles cuando se necesita tanto tokenizar como detokenizar con frecuencia.
- ► Los algoritmos irreversibles son más últiles cuando se requiere detokenizar con frecuencia.

Bibliografía I

- [1] John S. Kiernan. Credit Card And Debit Card Fraud Statistics. https://wallethub.com/edu/credit-debitcard-fraud-statistics/25725/. Consultado en marzo de 2018 (vid. pág. 3).
- [2] Payment Card Industry Security Standards Council. Data Security Standard - Version 3.2. 2016. URL: https://www.pcisecuritystandards.org/documents/ pci_dss_v3-2.pdf (vid. pág. 4).
- [3] Shift4 Payments. The History of TrueTokenization. https://www.shift4.com/dotn/4tify/trueTokenization.cfm. Consultado en agosto de 2018 (vid. págs. 6, 7).

Bibliografía II

- [4] Braintree. Tokenization Secures CC Data and Meet PCI Compliance Requirements.

 https://www.braintreepayments.com/blog/using
 - tokenization-to-secure-credit-card-data-and-meet-pci-compliance-requirements/. Consultado en marzo de 2018 (vid. págs. 6, 7).
- [5] Securosis. Understanding and Selecting a Tokenization Solution.

https://securosis.com/assets/library/reports/ Securosis_Understanding_Tokenization_V.1_.0_.pdf. Consultado en febrero de 2018 (vid. págs. 6, 7).

Bibliografía III

[6] Payment Card Industry Security Standards Council. Tokenization Product Security Guidelines - Irreversible and Reversible Tokens. 2015. URL: https://www.pcisecuritystandards.org/documents/ Tokenization_Product_Security_Guidelines.pdf (vid. págs. 6-8).

Gracias por su atención.

UN VISTAZO A LA TOKENIZACIÓN

Presentan

Daniel Ayala Zamorano

DAZ23AYALA@GMAIL.COM

Laura Natalia Borbolla Palacios

I.N. BORBOLLA, 42@GMAIL, COM

RICARDO QUEZADA FIGUEROA

QF7.RICARDO@GMAIL.COM

SANDRA DÍAZ SANTIAGO

SDIAZS@GMAIL.COM

Primera Reunión de Ciberseguridad para la Industria 4.0 Puebla, 14 de octubre de 2018

> ESCUELA SUPERIOR DE CÓMPUTO INSTITUTO POLITÉCNICO NACIONAL

