$11a_{210} \ (K11a_{210})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{36} - u^{35} + \dots - 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{36} - u^{35} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} + u\\u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{14} + 7u^{12} + 16u^{10} + 11u^{8} - 2u^{6} + 1\\-u^{14} - 8u^{12} - 23u^{10} - 28u^{8} - 14u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3}\\u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{16} + 9u^{14} + 31u^{12} + 50u^{10} + 37u^{8} + 12u^{6} + 4u^{4} + 1\\u^{18} + 10u^{16} + 39u^{14} + 74u^{12} + 71u^{10} + 38u^{8} + 18u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{25} + 14u^{23} + \dots + 6u^{3} + u\\u^{27} + 15u^{25} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{25} + 14u^{23} + \dots + 6u^{3} + u\\u^{27} + 15u^{25} + \dots + 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{34} + 4u^{33} - 80u^{32} + 76u^{31} - 712u^{30} + 640u^{29} - 3712u^{28} + 3144u^{27} - 12568u^{26} + 9996u^{25} - 29012u^{24} + 21652u^{23} - 46856u^{22} + 33008u^{21} - 53996u^{20} + 36580u^{19} - 45668u^{18} + 30752u^{17} - 29624u^{16} + 20396u^{15} - 15384u^{14} + 10740u^{13} - 6764u^{12} + 4600u^{11} - 2980u^{10} + 1824u^9 - 1312u^8 + 688u^7 - 460u^6 + 268u^5 - 128u^4 + 92u^3 - 20u^2 + 12u - 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{36} + u^{35} + \dots + u^2 + 1$
c_2, c_5, c_7	$u^{36} + 9u^{35} + \dots + 2u + 1$
c_3, c_4, c_9 c_{10}	$u^{36} + u^{35} + \dots + 2u + 1$
c ₈	$u^{36} + u^{35} + \dots + 24u + 5$
c_{11}	$u^{36} - 9u^{35} + \dots + 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{36} + 9y^{35} + \dots + 2y + 1$
c_2, c_5, c_7	$y^{36} + 37y^{35} + \dots + 18y + 1$
c_3, c_4, c_9 c_{10}	$y^{36} + 41y^{35} + \dots + 2y + 1$
c ₈	$y^{36} - 3y^{35} + \dots - 6y + 25$
c_{11}	$y^{36} + y^{35} + \dots - 30y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.039758 + 0.866938I	2.43227 - 2.98822I	-1.17573 + 2.50595I
u = 0.039758 - 0.866938I	2.43227 + 2.98822I	-1.17573 - 2.50595I
u = 0.528849 + 0.662164I	5.28964 + 8.99184I	2.24371 - 8.34910I
u = 0.528849 - 0.662164I	5.28964 - 8.99184I	2.24371 + 8.34910I
u = -0.529498 + 0.643326I	5.68597 - 2.74218I	3.17354 + 3.44962I
u = -0.529498 - 0.643326I	5.68597 + 2.74218I	3.17354 - 3.44962I
u = 0.434530 + 0.674620I	-2.03776 + 5.19435I	-3.33716 - 9.21025I
u = 0.434530 - 0.674620I	-2.03776 - 5.19435I	-3.33716 + 9.21025I
u = 0.279015 + 0.697032I	-3.00780 + 0.17019I	-7.29367 - 0.75206I
u = 0.279015 - 0.697032I	-3.00780 - 0.17019I	-7.29367 + 0.75206I
u = -0.401351 + 0.583059I	0.07417 - 1.89235I	3.15479 + 4.52320I
u = -0.401351 - 0.583059I	0.07417 + 1.89235I	3.15479 - 4.52320I
u = -0.588252 + 0.276624I	6.75859 - 1.08065I	5.91547 + 2.62482I
u = -0.588252 - 0.276624I	6.75859 + 1.08065I	5.91547 - 2.62482I
u = 0.596249 + 0.252176I	6.48998 - 5.15115I	5.34177 + 2.63886I
u = 0.596249 - 0.252176I	6.48998 + 5.15115I	5.34177 - 2.63886I
u = -0.014393 + 1.396600I	1.85163 - 3.15004I	0. + 2.61659I
u = -0.014393 - 1.396600I	1.85163 + 3.15004I	0 2.61659I
u = -0.383996 + 0.360002I	0.721812 - 0.963189I	5.72873 + 5.37633I
u = -0.383996 - 0.360002I	0.721812 + 0.963189I	5.72873 - 5.37633I
u = 0.469156 + 0.145748I	-0.55346 - 2.03006I	1.12004 + 4.04451I
u = 0.469156 - 0.145748I	-0.55346 + 2.03006I	1.12004 - 4.04451I
u = -0.04789 + 1.52934I	-5.61681 - 2.13861I	0
u = -0.04789 - 1.52934I	-5.61681 + 2.13861I	0
u = -0.11001 + 1.57378I	-7.26818 - 3.72706I	0
u = -0.11001 - 1.57378I	-7.26818 + 3.72706I	0
u = -0.15462 + 1.58238I	-1.80521 - 5.25682I	0
u = -0.15462 - 1.58238I	-1.80521 + 5.25682I	0
u = 0.15565 + 1.58986I	-2.30348 + 11.52240I	0
u = 0.15565 - 1.58986I	-2.30348 - 11.52240I	0

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.08438 + 1.59811I	-10.84150 + 1.55360I	0
u =	0.08438 - 1.59811I	-10.84150 - 1.55360I	0
u =	0.12378 + 1.59576I	-9.75368 + 7.25706I	0
u =	0.12378 - 1.59576I	-9.75368 - 7.25706I	0
u =	0.01864 + 1.60315I	-5.85535 - 2.75781I	0
u =	0.01864 - 1.60315I	-5.85535 + 2.75781I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{36} + u^{35} + \dots + u^2 + 1$
c_2, c_5, c_7	$u^{36} + 9u^{35} + \dots + 2u + 1$
c_3, c_4, c_9 c_{10}	$u^{36} + u^{35} + \dots + 2u + 1$
c_8	$u^{36} + u^{35} + \dots + 24u + 5$
c_{11}	$u^{36} - 9u^{35} + \dots + 8u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{36} + 9y^{35} + \dots + 2y + 1$
c_2, c_5, c_7	$y^{36} + 37y^{35} + \dots + 18y + 1$
$c_3, c_4, c_9 \ c_{10}$	$y^{36} + 41y^{35} + \dots + 2y + 1$
c ₈	$y^{36} - 3y^{35} + \dots - 6y + 25$
c_{11}	$y^{36} + y^{35} + \dots - 30y + 1$