Binärlogarithmus

$$\log_2 x = \frac{\log x}{\log 2}$$

Entscheidungsgehalt

 $H_0 = \log_2 K$ mit K =Anzahl Symbole

Informationsgehalt

$$I(a_k) = -\log_2 P(a_k)$$
 [Bit]

- Je kleiner $P(a_k)$, desto größer I.
- Wenn $P(a_k) = 1$, dann $I(a_k) = 0$.

Entropie – mittlerer Info.gehalt

$$H = -\sum_{k=1}^K \left[P(a_k) \cdot \log_2 P(a_k)
ight] ext{[Bit]}$$

- ullet Wenn alle Sym. gleich wahrscheinlich $I(a_k)=H_0=H$
- Max. bei $P(a_k) = \frac{1}{K}$
- Einfachere Berechnung bei $P(a_k) = \frac{i_k}{c}$:

$$H = rac{c \cdot \log(c) - \sum\limits_{k=1}^{K} \left[i_k \cdot \log(i_k)
ight]}{c \cdot \log(2)} \; ext{[Bit]}$$

Redundanz

$$R = H_0 - H$$
 [Bit]

ullet relative Red. $oldsymbol{R} = rac{oldsymbol{H}_0 - oldsymbol{H}}{oldsymbol{H}}$

Ideale Codewortlänge

$$n = -\log_2 P(a_k)$$
 [Bit]

Mittlere Codewortlänge

$$\overline{m} = \sum_{k=1}^K \left[P(a_k) \cdot m_k
ight] ext{[Bit]}$$

Verbundentropie

$$H(a_i, a_j) = -\sum_{i=1}^I \sum_{j=1}^J \left[P(a_i, a_j) \cdot \log_2(P(a_i, a_j))
ight] ext{[Bit]}$$

• Einfachere Berechnung bei $P(a_i,a_j) = \frac{m_{ij}}{c}$:

$$H(a_i, a_j) = rac{c \cdot \log(c) - \sum\limits_{i=1}^{I} \sum\limits_{j=1}^{J} \left[m_{ij} \cdot \log(m_{ij})
ight]}{c \cdot \log(2)}$$
 [Bit]

Bedingte Entropie

$$H(a_i|a_j) = -\sum_{i=1}^I \sum_{j=1}^J \left[P(a_i,a_j) \log_2(P(a_i|a_j))
ight] ext{[Bit]}$$

Beziehungen zw. den Entropien

$$H(a_i, a_j) = H(a_i|a_j) + H(a_j)$$

Datenrate eines Kanals

$$C = 2 \cdot B \cdot \log_2(L)$$
 [Bit/s]

 $\bullet\,$ mit Anzahl der unterschiedlichen Amplituden \boldsymbol{L}

$$C = B \cdot \log_2 \left(1 + rac{S}{N}
ight)$$

für $\frac{S}{N} \ll 1$:

$$C pprox 1.44 \cdot rac{B}{ ext{Hz}} \cdot rac{S}{N} ext{ [Bit/s]}$$

für $\frac{S}{N}\gg 1$:

$$Cpprox 0.332\cdotrac{B}{ ext{Hz}}\cdotrac{SNR}{ ext{dB}}$$

Kanalkapazität

$$C = \max_{P(a_k)} \left[T(X;Y)
ight]$$

Transinformation

$$T(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = T(Y;X)$$

Kanal ist

- verlustifrei, wenn Verlustinformation H(X|Y) = 0.
 - ightarrow C ist maximal, wenn alle Eingangssym. gleich wahrscheinlich
- deterministisch, wenn Störungsinformation H(Y|X) = 0.
 - $\rightarrow C$ ist maximal, wenn alle Ausgangssym. gleich wahrscheinlich
- ungestört, wenn er sowohl verlustfrei als auch deterministisch ist
 - ightarrow C ist maximal, wenn alle Ausgangssym. gleich wahrscheinlich oder alle Eingangssym. gleich wahrscheinlich

Theorem der Kanalcodierung

Wenn $H' \leq C'$ gilt, dann existiert immer eine Kanalcodierung, welche eine Übertragung der Quellensymbole mit beliebig kleiner Fehlerwahrscheinlichkeit ermöglicht (u. U. nur mit großem Aufwand).

Kraft'sche Ungleichung

Für einen eindeutigen, binären Code mit K Codewörtern der Länge m_k gilt:

$$\sum_{k=1}^{K} 2^{-m_k} \le 1$$

Theorem der Quellencodierung

Die mittlere Länge \overline{m} eines Präfixcodes kann stets so gewählt werden, dass gilt:

$$H \le \overline{m} < H + 1$$

Beim Huffman-Code:

$$H \le \overline{m} < H + p_{\max} + 0.086$$

bzw. wenn $p_{\text{max}} > 0.5$:

$$H \le \overline{m} < H + p_{\max}$$

Transformationen

- WHT Walsh-Hadamard Einfach; Rechteck-Funktion mit -1 und 1.
- DFT Diskrete-Fourier
- DCT Diskrete-Cosinus Guter Kompromiss;
- KLT Karhunen-Loeve individuelle Basisfunktionen.

Präcodierungen

- Lauflängencodierung
- Burrows-Wheeler-Transformation
- Lempel-Ziv-Verfahren
- Move-to-Front-Codierungen
- Transformationen (z. B. DCT)
- Teilband-Zerlegungen

2×2 -WHT-Hintransformation

$$F(u,v)=rac{1}{2}\sum_{x=0}^1\sum_{y=0}^1f(x,y)\cdot(-1)^{x\cdot u+y\cdot v}$$
 für $u=0,1$ und $v=0,1$

2 × 2-WHT-Rücktransformation

$$f(x,y)=rac{1}{2}\sum_{u=0}^1\sum_{v=0}^1F(u,v)\cdot(-1)^{x\cdot u+y\cdot v}$$
 für $x=0,1$ und $y=0,1$

1D-DCT-Hintransformation

$$F(u) = rac{C(u)}{\sqrt{N}} \cdot \sum_{x=0}^{N-1} \left[f(x) \cdot \cos rac{(2x+1) \cdot u \cdot \pi}{2N}
ight] ext{ für } u = 0, 1, \dots, N-1$$
 $C(u) = egin{cases} 1 & ext{ für } u = 0 \ \sqrt{2} & ext{ sonst} \end{cases}$

1D-DCT-Rücktransformation

$$f(x) = \sum_{u=0}^{N-1} \left[rac{C(u)}{\sqrt{N}} \cdot F(u) \cdot \cos rac{(2x+1) \cdot u \cdot \pi}{2N}
ight] \quad ext{für } x = 0, 1, \dots, N-1$$
 $C(u) = egin{cases} 1 & ext{für } u = 0 \ \sqrt{2} & ext{sonst} \end{cases}$

2D-DCT-Hintransformation

$$F(u,v) = \frac{2}{N}C(u)C(v)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}\left[f(x,y)\cdot\cos\frac{(2x+1)\cdot u\cdot\pi}{2N}\cdot\cos\frac{(2y+1)\cdot v\cdot\pi}{2N}\right]$$

$$C(u) = egin{cases} rac{1}{\sqrt{2}} & ext{für } u = 0 \ 1 & ext{sonst} \end{cases}$$

2D-DCT-Rücktransformation

$$f(x,y) = \frac{2}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \left[C(u)C(v)F(u,v) \cdot \cos \frac{(2x+1) \cdot u \cdot \pi}{2N} \cdot \cos \frac{(2y+1) \cdot v \cdot \pi}{2N} \right]$$

$$C(u) = \begin{cases} \frac{1}{\sqrt{2}} & \text{für } u = 0\\ 1 & \text{sonst} \end{cases}$$

Allgemeines

Datenkompression Optimierung

- Bestimmte Mindestkompression (Kanälen mit begrenzter Datenrate)
- Echtzeit (z.B. bei Videokonferenz-Systemen oder digitalen Videorecordern)
- Bei verlustbehafteter DK bestimmte Mindestqualität nicht unterschreiten
- Maximale Decodierungszeit darf nicht überschritten werden (Videokonferenzsystemen, Bildtelefonen)

Quantisierung Optimierung

- Minimierung der Quantisiererfehlerleistung (objektives Maß)
- Minimierung der subjektiven Wahrnehmbarkeit von Fehlern Bildtelefonen)

wahrnehmungsbasierte Codierung

Perception-based coding

Vektor-Quantisierung

Aufwand beim Encoder ist deutlich größer als beim Decoder. Gut für Broadcast.

Huffman

Dekrementieren und mit Einsen auffüllen 11 101 100 011 010 0011 0010 0001 0000

Kommazahl zu Binär

In TR mit 2 multiplizieren wenn vor Komma ungerade: 0 wenn gerade: 1

LZ Algorithmen

LZ78

• Wörterbuch zu Beginn leer

LZW

• Wörterbuch zu Beginn gefüllt