COMP229: Introduction to Data Science Lecture 20: a change of a linear basis

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

A basis of vectors

Why was the past lecture called "invariants of operators"? The determinant and the trace are invariants under an equivalence between matrices (under a change of a basis discussed today).

Definition 20.1. Vectors $\vec{v_1}, \ldots, \vec{v_n} \in \mathbb{R}^n$ form a *basis* if the matrix A with the columns $\vec{v_1}, \ldots, \vec{v_n}$ has $\det A \neq 0$. Then any vector $\vec{v} \in \mathbb{R}^n$ can be written as a unique linear combination $\sum_{i=1}^n \lambda_i \vec{v_i}$ with some coefficients $\lambda_i \in \mathbb{R}$.

Images of the basis vectors

The standard basis in \mathbb{R}^n : each vector $\vec{e_i}$ has coordinate 1 on the i-th place, 0 anywhere else.

The basis vectors
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ map to $\frac{\beta}{\beta}$ the columns $\begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$, $\begin{pmatrix} -\sin \beta \\ \cos \beta \end{pmatrix}$.

For any linear map $\vec{v} \mapsto A\vec{v}$ in \mathbb{R}^n , the columns of the matrix A are images of the basis vectors.

What if we change basis vectors: replace $\vec{e_1}$, $\vec{e_2}$.

Will the matrix change, will the map change?

From the green to the red basis

From the old basis to the new basis

Let a new basis be $\vec{v_1} = 3\vec{e_1} + \vec{e_2}$, $\vec{v_2} = -2\vec{e_1} + \vec{e_2}$.

This change can be represented by the matrix

$$C = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}, \text{ because } (\vec{v_1}, \vec{v_2}) = C(\vec{e_1}, \vec{e_2})$$

considered as a simple matrix identity:

$$\left(\begin{array}{cc} 3 & -2 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 3 & -2 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

The vector $\vec{v} = (2,1)_v$ in the new basis $(\vec{v_1}, \vec{v_2})$ is $2\vec{v_1} + \vec{v_2} = 2(3\vec{e_1} + \vec{e_2}) + (-2\vec{e_1} + \vec{e_2}) = 4\vec{e_1} + 3\vec{e_2}$ has the coordinates $(4,3)_e$ in the old basis $(\vec{e_1},\vec{e_2})$.

The same vector in the two bases

In the matrix form the last identity is $\vec{r_e} = C\vec{r_v}$, where $\vec{r_e}$, $\vec{r_v}$ represented the same point in the bases $(\vec{e_1}, \vec{e_2})$, $(\vec{v_1}, \vec{v_2})$: $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Invert:
$$C^{-1} = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$
.

The point with coordinates $(4,3)_e$ in the old basis $(\vec{e_1},\vec{e_2})$ has these coordinates in the basis $(\vec{v_1},\vec{v_2})$:

$$C^{-1}\begin{pmatrix} 4\\3 \end{pmatrix}_e = \frac{1}{5}\begin{pmatrix} 1&2\\-1&3 \end{pmatrix}\begin{pmatrix} 4\\3 \end{pmatrix} = \begin{pmatrix} 2\\1 \end{pmatrix}_{V}.$$

The same rotation in the new basis

Let A be a matrix of a linear operator in the basis $(\vec{e_1}, \vec{e_2})$, e.g. the rotation around 0 through $\pi/2$ has

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_e$$
, any $\vec{r_e} \in \mathbb{R}^2$ maps to $\vec{s_e} = A\vec{r_e}$.

When we change to the new basis $(\vec{v_1}, \vec{v_2})$, the same vectors change their coordinates according to the transition matrix C: $\vec{r_e} = C\vec{r_v}$, $\vec{s_e} = C\vec{s_v}$.

Then $C\vec{s_v} = A(C\vec{r_v})$, $\vec{s_v} = (C^{-1}AC)\vec{r_v}$, which proves

Claim 20.2. In the new basis $(\vec{v_1}, \vec{v_2}) = C(\vec{e_1}, \vec{e_2})$, the operator $\vec{r_e} \mapsto A\vec{r_e}$ becomes $\vec{r_v} \mapsto (C^{-1}AC)\vec{r_v}$.

An example for the new rotation matrix

$$A \cdot C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 3 & -2 \end{pmatrix}.$$

$$C^{-1}AC = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}.$$

Indeed, we rotate $\vec{v}_1 = (3,1)_e$, $\vec{v}_2 = (-2,1)_e$ as follows: $\vec{v}_1 \mapsto (-1,3)_e = \vec{v}_1 + 2\vec{v}_2 = (1,2)_v$ and $\vec{v}_2 \mapsto (-1,-2)_e = -\vec{v}_1 - \vec{v}_2 = (-1,-1)_v$ as predicted by the matrix $C^{-1}AC$ above. So the operator is the same, but the matrix changes.

An extra check for a point

What's happened with the point $(4,3)_e = (2,1)_v$?

In the basis $(\vec{e_1}, \vec{e_2})$, the point is rotated to the new point $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}_e = \begin{pmatrix} -3 \\ 4 \end{pmatrix}_e$.

In the basis $(\vec{v_1}, \vec{v_2})$, the same point is rotated to $\begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}_v = \begin{pmatrix} 1 \\ 3 \end{pmatrix}_v$, which is indeed

$$\vec{v_1} + 3\vec{v_2} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_e + 3 \begin{pmatrix} -2 \\ 1 \end{pmatrix}_e = \begin{pmatrix} -3 \\ 4 \end{pmatrix}_e.$$

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Find the matrix of the operator with

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 in the basis $\vec{v_1} = (3, 1), \ \vec{v_3} = (1, 2).$

Another operator in the new basis

The transition matrix
$$C = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$
 has columns

equal to
$$\vec{v}_1$$
, \vec{v}_3 and $C^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$.

The matrix of the operator in the new basis is

$$C^{-1}AC = \frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -3 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}.$$

Question. What happens with $\vec{v} = (4,3)_e$?

Answer to the quiz and summary

Answer. The point
$$(4,3)_e = (1,1)_v$$
 is rotated through $-\pi/2$ to the point $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}_e = \begin{pmatrix} 3 \\ -4 \end{pmatrix}_e = \begin{pmatrix} 2 \\ -3 \end{pmatrix}_v = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}_v$.

- When an old basis is replaced by a new basis, the columns of the transition matrix C are the new basis vectors (in the old basis).
- A linear operator with a matrix A in the old basis has the matrix $C^{-1}AC$ in the new basis.