Estructuras Discretas INF-313

Sergio Hernández, Mónica Acevedo shernandez@ucm.cl, macevedo@ucm.cl

Facultad de Ciencias de la Ingeniería

Introducción

• Dado dos grafos G y G' nos interesa saber si son iguales (isomorfos).

Introducción

• Dado dos grafos G y G' nos interesa saber si son iguales (isomorfos).

Definición

Dos grafos G = (V, E) y G' = (V', E') son **isomorfos** si existe f una función biyectiva $f : V \mapsto V'$, tal que para cualquier elemento v y w pertenecientes a V tenemos:

$$\{v,w\} \in E \iff \{f(v),f(w)\} \in E'$$
 (1)

Propiedades invariantes

Número de vértices	5
Número de aristas	5
Grado de los vertices	2
Conexiones	G y G' son conexos
Ciclos	G y G' son aciclicos
Valores propios	G y G' tienen valores propios iden-
	ticos

Biyección

Resultado

Teorema

Dos grafos G = (V, E) y G' = (V', E') son **isomorfos** si y solo si existe una matriz de permutación P y algún orden de sus vértices, tal que sus matrices de adyacencia A(G) y A(G') son iguales.

$$A(G) = P \times A(G') \times P^{T}$$
(2)

Resultado

Teorema

Dos grafos G = (V, E) y G' = (V', E') son **isomorfos** si y solo si existe una matriz de permutación P y algún orden de sus vértices, tal que sus matrices de adyacencia A(G) y A(G') son iguales.

$$A(G) = P \times A(G') \times P^{T}$$
 (2)

A(G) =									
	v_1	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> 4	<i>V</i> ₅				
v_1	0	0	1	1	0				
<i>V</i> ₂	0	0	0	1	1				
<i>V</i> 3	1	0	0	0	1				
<i>V</i> ₄	1	1	0	0	0				
<i>V</i> ₅	0	1	1	0	0				

4/0

A(G') =								
	v_1'	v_2'	v_3'	v_4'	v_5'			
v_1'	0	0	1	1	0			
v_2'	0	0	0	1	1			
v_3'	1	0	0	0	1			
v_4'	1	1	0	0	0			
v_5'	0	1	1	0	0			

Grafos Homeomorfos

Definición

Dado cualquier grafo G = (V, E), es posible obtener un nuevo grafo al dividir una arista de G con vértices adicionales. Dos grafos G y G' son **homeomorfos**, si es posible obtenerlos a partir del mismo grafo o grafos isomorfos al aplicar este método.

Grafos Homeomorfos

Definición

Dado cualquier grafo G = (V, E), es posible obtener un nuevo grafo al dividir una arista de G con vértices adicionales. Dos grafos G y G' son **homeomorfos**, si es posible obtenerlos a partir del mismo grafo o grafos isomorfos al aplicar este método.

Los grafos a) y b) en la figura no son isomorfos, aunque son homoeomorfos puesto que pueden obtenerse a partir del grafo c) al agregar vértices apropiados.

Caminos y Conectividad

Trayectorias o Caminos

Dado un grafo G = (V, E), una trayectoria o camino es una secuencia alternada de vértices y aristas de la forma

 v_0 , e_1 , v_1 , e_2 , v_2 , \cdots , e_{n-1} , v_{n-1} , e_n , v_n

donde cada arista e_i contiene a los vértices v_{i-1} y v_i (que aparecen a los lados de e_i en la secuencia). El número n de aristas se denomina longitud del camino. Cuando no hay ambiguedad, un camino se denota por su secuencia de vértices (v_0, v_1, \cdots, v_n) . Se dice que el camino es cerrado si $v_o = v_n$. En caso contrario, se dice que el camino o trayectoria es de v_0 a v_n o entre v_0 y v_n , o que une v_0 y v_n .

Un camino o trayectoria simple es en el que todos los vértices son distintos (en el que todas las aristas son diferentes se denomina recorrido). Un ciclo es un camino cerrado de longitud 3 o más donde todos los vértices son distintos excepto $v_0 = v_n$. Un ciclo de longitud k se denomina k-ciclo.

Si consideramos las siguientes secuencias del grafo de la figura:

- $\alpha = (P_4, P_1, P_2, P_5, P_1, P_2, P_3, P_6)$
- $\beta = (P_4, P_1, P_5, P_2, P_6)$
- $\gamma = (P_4, P_1, P_5, P_2, P_3, P_5, P_6)$
- $\delta = (P_4, P_1, P_5, P_3, P_6)$

¿Cuáles son nuestras apreciaciones según la definición anterior?

Conectividad y componentes conexos

Conexo

Un grafo G = (V, E) es conexo si existe un camino entre dos de sus vértices.

Suponga que G es un grafo. Un subgrafo conexo H de G se denomina **componente conexo de G** si H no está contenido en ningún subgrado conexo más grande de G.

Conectividad y componentes conexos

Conexo

Un grafo G = (V, E) es conexo si existe un camino entre dos de sus vértices.

Suponga que G es un grafo. Un subgrafo conexo H de G se denomina **componente conexo de G** si H no está contenido en ningún subgrado conexo más grande de G.

Ejemplo: el grafo de la figura tiene tres componentes conexos, dado por los subgrafos de vértices $\{A, C, D\}$, $\{E, F\}$ y $\{B\}$

Distancia y diámetro

Distancia y diámetro

Considere un grafo conexo G. La distancia entre los vértices u y v en G, que se escribe d(u,v), es la longitud de la ruta más corta entre u y v. El diámetro G, lo cual se escribe diam(G), es la distancia máxima entre dos puntos cualesquiera en G

Distancia y diámetro

Distancia y diámetro

Considere un grafo conexo G. La distancia entre los vértices u y v en G, que se escribe d(u,v), es la longitud de la ruta más corta entre u y v. El diámetro G, lo cual se escribe diam(G), es la distancia máxima entre dos puntos cualesquiera en G

Ejemplo: el grafo de la figura tiene d(A, F) = 3 y diam(G) = 4

Puntos de corte y puentes

Definición

Sea G un grafo conexo. Un vértice v en G se denomina **punto de corte** si G - v es disconexo. (G - v es el grafo obtenido a partir de G al eliminar v y todas las aristas que contienen a v). Una arista e de G se denomina **puente** si G - e es disconexo (G - e es el grafo obtenido a partir de G al eliminar la arista e).

Puntos de corte y puentes

Definición

Sea G un grafo conexo. Un vértice v en G se denomina **punto de corte** si G - v es disconexo. (G - v es el grafo obtenido a partir de G al eliminar v y todas las aristas que contienen a v). Una arista e de G se denomina **puente** si G - e es disconexo (G - e es el grafo obtenido a partir de G al eliminar la arista e).

Ejemplo: De acuerdo al grafo anterior la arista $\{D, F\}$ es un puente y los vértices D y F son puntos de corte.

Aplicación de Grafos

- Durante el siglo XIII, en Prusia el rio Pregel cruzaba la ciudad dejando dos pequeñas islas que se conectaban a traves de 7 puentes.
- Utilizando teoría de grafos, podemos modelar el problema si asumimos que los puentes corresponden a las aristas de un grafo.
- Supongamos que deseamos recorrer el grafo visitando cada puente solamente una vez, llegando finalmente al vértice inicial.

Ciclos Eulerianos

Ciclos Eulerianos

Dado un grafo G, un ciclo Euleriano es una trayectoria que visita cada una de las aristas solamente una vez, es decir recorrido cerrado.

Ciclos Eulerianos

Ciclos Eulerianos

Dado un grafo G, un ciclo Euleriano es una trayectoria que visita cada una de las aristas solamente una vez, es decir recorrido cerrado.

Teorema (Euler, 1736)

Un grafo conexo es Euleriano si y solo si cada vertice tiene grado par.

Figure: Grafo no conexo $G = G_1 \cup G_2$. Existen dos sub-grafos conexos G_1 y G_2 para los cuales existe una trayectoria entre cada uno de los vértices del sub-grafo.

Figure: Grafo conexo G. Cada v \tilde{A} $\hat{\mathbb{C}}$ rtices es par, por lo tanto podemos garantizar que existe un ciclo Euleriano.

Ciclos Hamiltonianos

Dado un grafo G, un ciclo Hamiltoniano es una trayectoria que visita cada uno de las vértices solamente una vez.

Ciclos Hamiltonianos

Dado un grafo G, un ciclo Hamiltoniano es una trayectoria que visita cada uno de las vértices solamente una vez.

Figure: Grafo conexo G = (V, E) con |V| = 5 y |E| = 6. Los vértices tienen grado impar por lo tanto el grafo no tiene un ciclo Euleriano. El grafo no tiene

Figure: Grafo conexo G = (V, E) con |V| = 5 y |E| = 8. Los vértices tienen grado **impar** por lo tanto el grafo no tiene un ciclo Euleriano. El grafo **si** tiene un ciclo Hamiltoniano.

¿Cuál de los siguientes grafos es euleriano? ¿Cuál de los siguientes grafos es hamiltoniano?

Al observar los grafos conexos pueden ser hamiltonianos. De acuerdo a G. A. Dirac se tiene una condición suficiente:

Teorema

Sea G un grafo conexo con n vértices. Entonces G es hamiltoniano si $n \ge 3$ y $n \le grd(v)$ para cada vértice v en G.

