The Usage of Counter Revisited: Second-Preimage Attack on New Russian Standardized Hash Function

Jérémy Jean¹

joint work with:

Jian Guo¹ Gaëtan Leurent² Thomas Peyrin¹

Lei Wang¹

¹Nanyang Technological University, Singapore

²INRIA. France

SAC 2014 - August 14, 2014

Expandable message attack

Streebog: new Russian hash function.

- New hash function standard in Russia.
- Standardized name: GOST R 34.11-2012
- Nickname of that function: Streebog.
- Previous standard: GOST R 34.11-94.
 - Theoretical weaknesses.
 - Rely on the GOST block cipher from the same standard.
 - This block cipher has also been weakened by third-party cryptanalysis.

Introduction

- ► Two versions: Streebog-256 and Streebog-512.
- ▶ 10* padding: $m_1||\cdots||m_t||m$ (blocks of 512 bits).
- Compression function: g.
- ▶ Checksum: Σ , over the message blocks m_i (addition modulo 2^{512}).
- ► Counter: *N*, HAIFA input to *g* over the number of processed bits.
- ▶ Three stages: initialization, message processing and finalization.

Specifications: compression function.

- ► Simplification: the counter counts #blocks, not #bits.
- \blacktriangleright g compresses (h_{i-1}, i, m_i) to h_i using: $h_i = f(h_{i-1} \oplus i, m_i) \oplus h_{i-1}$.
- Our attack is independent of the specifications of f (deterministic).

- g is one instantiation of a HAIFA compression function.
- ► The counter is simply XORed to the input of the *f* function.

$$h_i = h_{i-1} \oplus f(h_{i-1} \oplus i, m_i) \iff$$

$$h_i = h_{i-1} \oplus f(h_{i-1} \oplus i, m_i) \iff$$

$$h_i = h_{i-1} \oplus f(h_{i-1} \oplus i, m_i) \iff$$

$$h_i = h_{i-1} \oplus f(h_{i-1} \oplus i, m_i) \iff$$

$$h_i = h_{i-1} \oplus f(h_{i-1} \oplus i, m_i) \iff \begin{cases} h_i = \mathbf{F}(h_{i-1} \oplus i, m_i) \oplus i, \\ \mathbf{F}(x, m_i) = f(x, m_i) \oplus x. \end{cases}$$

The function *F* is independent of the counter value!

Iteration of the equivalent compression function.

- ▶ We have an equivalent representation of the compression function.
- lts iteration allows to combine the counter additions.

$$\Delta(i) \stackrel{\text{def}}{=} i \oplus (i+1),$$
 $F_{\Delta(i)}(X,Y) \stackrel{\text{def}}{=} F(X,Y) \oplus \Delta(i).$

Relations between functions $F_{\Delta(i)}$ for $1 \le i \le t$ (1/2).

Recall that t is the number of full blocks $m_1 | \cdots | m_t | m$, | m | < 512. We observe that:

- For all even i, $\Delta(i) = i \oplus (i+1) = 1$. \implies The same function F_1 is used every other time.
- Sequence of $\Delta(i)$ is very structured.

$$i$$
: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 $\Delta(i)$: 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31 1 3 1 7 1 3 1 15

Let s > 0, and denoting $\langle i \rangle$ the s-bit binary representation of $i < 2^s - 1$:

$$\Delta(i+2^s) = (1||\langle i \rangle) \oplus (1||\langle i+1 \rangle) = \langle i \rangle \oplus \langle i+1 \rangle = \Delta(i).$$

More generally: $F_{\Delta(i)} = F_{\Delta(i+j\cdot 2^s)}$ for all $0 \le i \le 2^s - 1$ and $j \ge 0$.

For example, with s = 2, F_1 and $F_{1+2^2} = F_5$ are equal.

Relations between functions $F_{\Delta(i)}$ for $1 \le i \le t$ (2/2).

Given an integer s > 0, we have:

$$\forall i \in \{0,\ldots,2^s-2\}, \quad \forall j>0: \qquad F_{\Delta(i)}=F_{\Delta(j\cdot 2^s+i)}$$

	512 – <i>s</i> bits	s bits
	j	< i >
\oplus	j	< i+1>
=	0	< i⊕(i+1)>
	$\Delta(i+i\cdot 2^s)$	

Consequently:

- The same sequence of $2^s 1$ functions are used in the domain extension algorithm.
- ► This seems weaker than a true HAIFA mode.

Equivalent description of stage 2 of the domain extension.

- The last function differs in each 2^s-chunk. \implies We call it $G_i = F_{\Delta(i \times 2^s - 1)}$.
- We define I as the number of $(2^s 1)$ -chains of F functions: $I = \left| \frac{t}{2s} \right|$. Moreover, let p be the remainder of t modulo 2^s .
- That is: the function $F_{2^{\bullet}-2} \circ \cdots F_1 \circ F_0$ is reused / times.

Streebog is one choice of counter usage from the HAIFA framework.

Consequences of this choice:

- Counters at steps i and i + 1 can be combined.
- Distinction of compression function calls in the HAIFA framework not achieved.
- ▶ Domain extension similar to a Merkle-Damgård scheme.
 - ⇒ Possibility to apply existing known second-preimage attacks.

Cryptographic consequences of the HAIFA instantiation.

Streebog is one choice of counter usage from the HAIFA framework.

Consequences of this choice:

- Counters at steps i and i + 1 can be combined.
- Distinction of compression function calls in the HAIFA framework not achieved.
- ▶ Domain extension similar to a Merkle-Damgård scheme.
 - ⇒ Possibility to apply existing known second-preimage attacks.

Our second-preimage attacks on Streebog (security level: 2⁵¹²):

- Using a diamond structure:
 - ▶ Original message of at least 2¹⁷⁹ blocks.
 - ▶ 2³⁴² compression function evaluations.
- Using a expandable message:
 - Original message of at least 2²⁵⁹ blocks.
 - ▶ 2²⁶⁶ compression function evaluations.

Diamond structure (1/2)

Diamond structure:

- Introduced in [KK06].
- Complete binary tree.
- Nodes: chaining values.
- ▶ Edges: 1-block *n*-bit messages.
- ▶ Depth *d*.

Construction:

- Levels constructed sequentially.
- Complexity: $2^{(n+d)/2}$ calls.
- Evaluation done in [KK13].

Diamond structure (2/2)

Diamond used in our attack:

- Root h_{\wedge} .
- Depth $d = 2^s 1$.
- F_i 's used to join the levels.
- $\#leaves=2^{2^{s}-1}$.

Remarks:

- Same function at each level in the original attack on Merkle-Damgård.
- Here, full control of the counter effect in the $(2^s - 1)$ -chains with different functions F_i .

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_0 to hit h'_0 .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value *N*.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- 1. Construction of the diamond.
- 2. Randomize m_{\diamond}^{\searrow} to hit h_{\diamond}' .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

- Construction of the diamond.
- 2. Randomize m_{\diamond} to hit h'_{\diamond} .
- 3. Deduce the counter value N.
- 4. Construct 2⁵¹²-multicollision.

- 5. Randomize L blocks to match |M|.
- 6. Pick about 2^{n-d} m_{\diamond}^{\nearrow} to hit the diamond.
- 7. Evaluate reduced checksum σ .
- 8. Use multicollision to match $\Sigma \sigma$.

Expandable message attack

Time complexity T

$$T = 2^{(n+d)/2} + 512 \times 2^{n/2} + 2^{n-\log_2(l)} + 2^{n-d},$$

with:

- Construction of the diamond.
- Joux's multicollision using 512 two-block messages.
- Connect the root of the diamond to the original message.
- Connect the multicollision to one leaf of the diamond.

Minimize with:

- $d = n/3 = 2^s 1$ the depth of the diamond, i.e. $s = \lceil \log_2(n/3) \rceil$.
- as long as $I = \left\lfloor \frac{t}{2^s} \right\rfloor$ is $I \ge 2^{n/3}$, i.e. $t \ge \lceil 2^{n/3 + \log_2(n/3)} \rceil$.
- For Streebog-512: $T = 2^{342}$ for $|M| > 2^{179}$.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length *L* and solve the checksum.

Time complexity T

$$T = 512 \times 2^{n/2} + 256 \times 2^{n/2} + 2^{n-1},$$

with:

- Joux's multicollision using 512 two-block messages.
- Construction of the expandable message.
- Connect the expandable message to the challenge $(I = \lfloor \frac{t}{2^s} \rfloor)$.

Minimize with:

- ▶ $l > 2^{n/2}/n$, i.e. more than 2^{259} blocks in the original message.
- ▶ T about $n \cdot 2^{n/2}$, i.e. 2^{266} CF evaluations (s = 11).

Comparison of the two attacks

Expandable message attack

Conclusion

- We study Streebog, the Russian hashing standard.
- ▶ The hash function instantiates the HAIFA framework.
- We propose an equivalent representation that hijack the counter effect of Streebog-512.
- Consequently, one can reuse previous second-preimage attack strategies:
 - using a diamond structure,
 - using an expandable message.
- The two attacks have time complexity T for message length > L:
 - $T = 2^{342}$ and $L = 2^{179}$,
 - $T = 2^{266}$ and $L = 2^{259}$.

Conclusion

- We study Streebog, the Russian hashing standard.
- The hash function instantiates the HAIFA framework.
- We propose an equivalent representation that hijack the counter effect of Streebog-512.
- Consequently, one can reuse previous second-preimage attack strategies:
 - using a diamond structure,
 - using an expandable message.
- The two attacks have time complexity T for message length > L:
 - $T = 2^{342}$ and $L = 2^{179}$.
 - $T = 2^{266}$ and $I = 2^{259}$

Thank you!

Expandable message

- ► Expandable messages due to [KS05]
- Multicollision with different lengths:
 - ▶ t pairs with lengths $(1, 2^k + 1)$, $0 \le k < t$.
 - ▶ Set of 2^t messages with length in $[t, 2^t + t 1]$.
 - \blacktriangleright All reach the same final chaining value x_* .
- Construction of a message m of length t + L using the binary representation of L, that link IV to x_* .
- Second-preimage attack on MD:
 - Link x_* to original message using random blocks.
 - This gives the length to use in the expandable message.
 - ► HAIFA prevents using an expandable message with the counter input.

Expandable messages in Streebog

- ► Here, the counter input is weak.
- We can still apply the expandable message technique:
 - The functions $F_{\Delta(i)}$ are independent of the counter,
 - but the inner calls are not the same (HAIFA, not MD).
- Small example: 4 messages from h to x_2 .
 - Find (m'_3, m_3) of lengths $(1, 2^3 + 1)$ colliding on x_3 .
 - Find (m'_2, m_2) of lengths $(1, 2^2 + 1)$ colliding on x_2 .
 - The 4-message structure has lengths in $\{2, 6, 10, 14\}$.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length L and solve the checksum.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length L and solve the checksum.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length L and solve the checksum.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length L and solve the checksum.

- 1. Construct the 2⁵¹²-multicollision.
- 2. Construct the expandable message.
- 3. Randomize m_* to hit h'_* .
- 4. Deduce the counter value.
- 5. Choose the valid length *L* and solve the checksum.

Complexity analysis.

Time complexity T

$$T = 512 \times 2^{n/2} + 256 \times 2^{n/2} + 2^{n-1},$$

with:

- Joux's multicollision using 512 two-block messages.
- Construction of the expandable message.
- Connect the expandable message to the challenge $(I = \lfloor \frac{t}{2^s} \rfloor)$.

Minimize with:

- ▶ $l > 2^{n/2}/n$, i.e. more than 2^{259} blocks in the original message.
- ▶ T about $n \cdot 2^{n/2}$, i.e. 2^{266} CF evaluations (s = 11).

Bibliography I

John Kelsey and Tadayoshi Kohno.

Herding hash functions and the Nostradamus attack.

In Serge Vaudenay, editor, *EUROCRYPT 2006*, volume 4004 of *LNCS*, pages 183–200. Springer, May / June 2006.

Tuomas Kortelainen and Juha Kortelainen.

On diamond structures and trojan message attacks.

In Kazue Sako and Palash Sarkar, editors, *ASIACRYPT* (2), volume 8270 of *Lecture Notes in Computer Science*, pages 524–539. Springer, 2013.

John Kelsey and Bruce Schneier.

Second preimages on n-bit hash functions for much less than 2n work.

In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 474–490. Springer, May 2005.