\mathcal{T} iempo: 2 horas y 20 minutos \mathcal{P} untaje \mathcal{T} otal: 32 puntos \mathcal{I} \mathcal{S} emestre 2013

Segundo Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos y procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

1. Sean $A = \{1, 2, 3, 7\}$ y \mathcal{R} una relación sobre A, tal que

$$G_{\mathcal{R}} = \{(1,3), (1,7), (3,1), (3,2), (7,2)\}$$

y sea S otra relación sobre A, definida por

$$aSb \Leftrightarrow a+b \text{ es par}$$

- (a) Determine el gráfico de $S \circ R$. (3 puntos)
- (b) Determine la matriz asociada a $(\overline{\mathcal{R}} \cap \mathcal{S})^{-1}$ (3 puntos)
- 2. Sobre \mathbb{R} , se define la relación \mathcal{R} de acuerdo al criterio

$$a\mathcal{R}b \iff a-b \in \mathbb{Z}$$

- (a) Pruebe que \mathcal{R} es una relación de equivalencia (4 puntos)
- (b) Determine explícitamente la clase de equivalencia de 0. (1 punto)
- 3. Sobre $\mathbb{N} \times \mathbb{N}$ se define la relación \mathcal{R} de acuerdo al siguiente criterio:

$$(a,b) \mathcal{R}(c,d) \iff [a+d < b+c \land a=c]$$

- (a) Pruebe que \mathcal{R} es antisimétrica (2 puntos)
- (b) Brinde un contraejemplo que verifique que \mathcal{R} no es total. (1 punto)

- 4. Considere la función $f: \mathbb{R} \{6\} \longrightarrow \mathbb{R} \{5\}$ definida por $f(x) = \frac{3}{x-6} + 5$
 - (a) Pruebe que f es biyectiva. (4 puntos)
 - (b) Determine $f^{-1}(x)$. (1 punto)
- 5. Sea $A=\{2,3,4,6,12\}$. Considere la función $f:A\times A\longrightarrow \mathbb{N}$ tal que f(a,b)=ab. Dados los conjuntos $B=\{(2,2),(3,4),(2,6)\}$ y $C=\{2,4,6\}$
 - (a) Determine f(B) y $f^{-1}(C)$ (3 puntos)
 - (b) ξ Es f inyectiva?, ξ es f sobreyectiva? Explique. (2 puntos)
- 6. Sean \mathcal{R} , \mathcal{S} y \mathcal{T} tres relaciones sobre un conjunto A, con A no vacío. Si se sabe que \mathcal{R} es transitiva y se cumple que $a(\mathcal{R} \circ \mathcal{S}) b \wedge b(\mathcal{T} \circ \mathcal{R}) c$, pruebe que $a[(\mathcal{T} \circ \mathcal{R}) \circ S] c$. (4 puntos)
- 7. Sea $f:A\to B$ una función inyectiva y sean $E,D\subseteq A$ tales que $E\cap D=\phi$. Pruebe que $f(E)\cap f(D)=\phi$.