Two-stage cluster sampling estimation

Week 7 (5.3)

Stat 260, St. Clair

Design: One-Stage Cluster Sample

Defined: We take a SRS of n clusters and survey every observation unit in selected clusters.

https://spot.pcc.edu/~evega/section-4.html

Design: <u>Two-Stage Cluster Sample</u>

Defined: We take a **SRS of clusters** and take a **SRS of observation units** within each selected cluster.

Design: Two-Stage Cluster Sample

- Primary Sampling Units (PSU): clusters
 - $\circ N$ clusters in the population
 - $\circ \, \, n$ number of clusters sampled
- 2 Secondary Sar
 - Secondary Sampling Units (SSU): observation units
 - $\circ \; y_{ij}$ is the measurement for unit j in cluster i
 - $\circ \,\,\, M_i$ is the number of observation units in cluster i
 - $\star \circ m_i \leq M_i$ is the sampled observation units in cluster i
 - $M_0 = \sum_{i=1}^N M_i$ is the total number of observation units in the population

- A SRS of 40 school districts was selected from the 757 districts in the state. dname gives district name and dnum is a numerical ID for each district.
 - Data from a SRS of schools within each selected district was collected. sname gives a 40 character name and snum gives a numerical ID for each school.

$$O(1) = 0$$

2) Obs. units = schools

m; = # of schools sampled in district i

M; = total & schools in district i

JEDA = 1 4 M; 65

Inclusion probabilities: Two-Stage Cluster

This = P(obs-unit j from cluster i selected)

= P(elaster i sampled) × P(unit j cluster)

= P(elaster i sampled) × P(selected | j selected)

= SRS & ze n from 2 SRS of m; from M: What is the probability that unit i from cluster i is selected?

Sampling weights: Two-Stage Cluster

What is the sampling weight for unit i from cluster i under a one-stage cluster

design?

the sampling weight for unit
$$j$$
 from cluster i under a one-stage cluster i

Wij = $\frac{1}{m_i}$

#of units in cluster i

represented by one sampled unit

one sampled cluster.

Estimation plan: Two-Stage Cluster

• One option! Use an unbiased Horvitz-Thompson estimator to estimate the (overall) population total

$$\hat{t}_{HT} = \sum_{\text{sampled units}} w_{ij}y_{ij}$$

$$\hat{t}_{HT} = \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \frac{N}{N} \sum_{j$$

Population Total: Two-Stage Cluster

- Parameter: $t = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^{N} t_i$
- Unbiased Estimator:

$$\hat{t}_{\,unb} = \sum_{i=1}^n rac{N}{n} M_i ar{y}_i = \sum_{i=1}^n rac{N}{n} \hat{t}_{\,i} \, .$$

where \hat{t}_i is the *estimated* total response in cluster i.

• Standard error:

$$SE(\hat{t}_{unb}) = \sqrt{N^2 \left(1 - rac{n}{N}
ight) rac{s_t^2}{n} + rac{N}{n} \sum_{i=1}^n \left(1 - rac{m_i}{M_i}
ight) M_i^2 rac{s_i^2}{m_i}}$$

where s_t is the sample standard deviation of *estimated* cluster totals and s_i is the sample SD within cluster i.

Population Mean: Two-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is known
- Unbiased Estimator:

$$\hat{ar{y}}_{unb} = rac{\hat{t}_{\,unb}}{M_0}$$

• Standard error:

$$SE(\hat{ar{y}}_{unb}) = rac{SE(\hat{t}_{unb})}{M_0}$$

Population Proportion: Two-Stage Cluster

• Parameter:
$$p=rac{t}{M_0}$$

- Use formulas for mean where
 - $oldsymbol{\hat{y}}_i = \hat{p}_i$ is cluster sample proportion
 - \circ \hat{t}_i estimates the number of observation units in cluster i that are a "success"

$$m{s}_i^2 = rac{m_i}{m_i - 1} \hat{p}_i (1 - \hat{p}_i)$$

Estimate the number of schools that have over 50% of students who are eligible for a subsidized meal.

```
> schools$meals level <- ifelse(schools$meals > 50, "above 50%", "50%
 > glimpse(schools)
 Rows: 126
 Columns: 11
 $ sname
                  <chr> "Alta-Dutch Flat Elementary", "Tenaya Elementar
                  <int> 3269, 5979, 4958, 4957, 4956, 4915, 2548, 2550.
   snum
                  <chr> "Alta-Dutch Flat Elem", "Big Oak Flat-Grvlnd Ur
   dname
  $ dnum
                  <int> 15, 63, 83, 83, 83, 117, 132, 132, 132, 152, 15
  $ api00
                  <int> 821, 773, 600, 740, 716, 811, 472, 520, 568, 59
 $ growth
                  <int> 36, 55, -32, 0, 5, 32, 40, 26, -21, 6, -10, 29
 $ meals
                  <int> 27, 43, 33, 11, 5, 25, 78, 76, 68, 42, 63, 54,
 $ ell
                  <int> 0, 0, 5, 4, 2, 5, 38, 34, 34, 23, 42, 24, 3, 6,
 $ enroll
                  <int> 152, 312, 173, 201, 147, 234, 184, 512, 543, 33
→ district_size <int> 1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
 $ meals level <chr>> "50% or below", "50% or below", "50% or below",
```

```
> schools_by_district <- schools %>%
+ group_by(dnum) %>% # group by cluster (district number)
+ summarize(p_hat = mean(meals_level == "above 50%"),
+ m_i = n(), # sample size per cluster
+ M_i = first(district_size), # pop size per cluster # schools
+ t_hat_i = M_i*p_hat) %>%
+ arrange(desc(M_i)) # arrange by big to small clusters
> kable(schools_by_district, digits = 2)
```

+ nub = 2 %

		P:	M:	Mi.	<u>ti</u>	_
<u></u>	dnum	p_hat	m_i	M_i	t_hat_i	
(620	1.00	5	72	72.0	= £,
2	570	0.80	5	36	28.8	- + 2
	575	0.00	5	28	0.0	
	638	0.40	5	14	5.6	
	200	1.00	5	11	11.0	
	731	0.20	5	9	1.8	
	596	0.00	5	7	0.0	

Estimate the number of schools that have over 50% of students who are eligible for a subsidized meal.

* schools -> "raw"
date

But, we should be using the survey package instead:

```
> schools$N <- 757 # N
> schools$n <- 40 # n
> schools <- schools %>%
     group_by(dnum) %>% # group by cluster (district number)
     mutate(m_i = n()) # m_i = sample size per cluster
> summary(schools$m_i)
  Min. 1st Ou. Median Mean 3rd Ou. Max.
                     5
> schools$wts <- (757/40)*schools$district_size/schools$m_i => \(\nu\)
> summary(schools$wts)
  Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
        18.93 18.93
                        40.70
                                26.50
                                       272.52
 18.93
```

mutate presenves size of schools data ->
rows = schools

But, we should be using the survey package instead:

```
> schools_design <- svydesign(id= ~dnum + snum,

+ fpc= ~N + district_size,

+ weights = ~wts,

+ data=schools)

> svytotal(~meals_level, schools_design, deff = TRUE)

total SE DEff

meals_level50% or below 2399.69 551.19 5.9451

meals_levelabove 50% 2728.99 1410.37 88.9246
```

Funb = 2729 St(Funb) = 1410

Population Mean: Two-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- What if M_0 is unknown!

Population Mean: Two-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is unknown
- Biased Ratio Estimator:

eator:
$$\hat{\bar{y}}_r = \frac{\sum_{i=1}^n \hat{t}_i}{\sum_{i=1}^n M_i} = \frac{\sum_{i=1}^n M_i \bar{y}_i}{\sum_{i=1}^n M_i} = \frac{\sum_{i=1}^n M_i \bar{y}_i}{\sum_{i=1}^n M_i} = \frac{\sum_{i=1}^n M_i \bar{y}_i}{\sum_{i=1}^n M_i}$$

• **Standard error:** for large *n*:

$$SE(\hat{ar{y}}_r) pprox \sqrt{\left(1 - rac{n}{N}
ight) rac{\sum_{i=1}^n (M_i ar{y}_i - \hat{ar{y}}_r M_i)^2}{n ar{M}^2 (n-1)} + rac{1}{n N ar{M}^2} \sum_{i=1}^n \left(1 - rac{m_i}{M_i}
ight) M_i^2 rac{s_i^2}{m_i}}$$

Population Total: Two-Stage Cluster

- Parameter: $t=M_0ar{y}_{\mathcal{U}}$
- Assume that M_0 is known!!
- Biased Ratio Estimator:

$$\hat{t}_{\,r}=M_0\hat{ar{y}}_{\,r}$$

• Standard error: for large n

$$SE(\hat{t}_{\,r})pprox M_0SE(\hat{ar{y}}_{\,r})$$

Estimate the *proportion* of schools that have over 50% of students who are eligible for a subsidized meal.

Hof 5chools meals 750%

That I schools

Example: California API scores
$$\mathcal{L}_r = \frac{\mathcal{L} \mathcal{L}_i}{\mathcal{L}_M} = \frac{72 + 28.8 + 04...}{72 + 36 + 284...}$$

> kable(schools_by_district, digits = 2)

dnum	p_hat	m_i	M_i	t_hat_i
620	1.00	5	72	72.0
570	0.80	5	36	28.8
575	0.00	5	28	0.0
638	0.40	5	14	5.6
200	1.00	5	11	11.0
731	0.20	5	9	1.8
596	0.00	5	7	0.0
639	0.00	5	7	0.0
781	0.00	5	6	0.0
295	0.00	5	5	0.0
403	0.00	5	5	0.0
480	0.40	5	5	2.0

Estimate the *proportion* of schools that have over 50% of students who are eligible for a subsidized meal.

But, we should be using the survey package instead:

```
> svymean(~meals_level, schools_design, deff = TRUE)
                                     SF DFff
                           mean
meals_level50% or below 0.46790 0.14486_10.8
                       0.53210 0.14486 10.8
meals_levelabove 50%
```

$$\hat{p}_{r} = .532$$

SE(\hat{p}_{r}) = .145