

Undergraduate – Last Year Project Project Ref no.: 09 Semester 8 Final Evaluation

Crowd sensing Road Surface Data with Geo-spatial Visualization for Augmenting Navigation of Ground Vehicles

Team:

Keyur Kulkarni 1913026

Paras Shah 1913036

Jangala Sai Keerthana 1913083

Guide:

Prof. Chaitali Kulkarni

Sr. No	Contents
1>	Problem Statement
2>	How our system can be useful
3>	Literature Survey
4>	Functional Flowchart
5>	Hardware
6>	Detection Algorithm
7>	Software
8>	Possible Improvements

Problem Definition

• Create a system that measures and analyzes information about the condition of the road surface to assist vehicles in navigation.

Objectives

- Creation of a sensor-based data acquisition system for road surface quality.
- Building a database of information about road quality.
- Deriving conclusions from acquired data to assist in navigation of vehicles.

How our System can be useful?

- The Government Authorities.
- The Logistics businesses.
- Common People.

Literature Survey

Sr. No.	TITLE	Publication Details	Remarks
1	The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring	Presented in Mobisys '08, June 17-20	 Importance of mobility in spatiotemporal coverage of Road Surface. Implementation of delay-tolerant, reliable transmission scheme. Analysis of possible positions for accelerometer placement. Considering/Recognizing road features that represent the actual road anomalies Filtering acceleration data to remove false positives. ML model, that recognizes acceleration profiles, classifies events in near real-time.
	Wireless Sensor Networks Composed of Standard Microcomputers and Smartphones for Applications in Structural Health Monitoring	Sensors (MDPI Journal), 2019	 Wireless sensor networks have attracted great attention for applications in structural health monitoring A prototypical implementation demonstrates the feasibility of integrating smartphones as data acquisition nodes into the network, utilizing their internal sensors. The results confirm the high performance of the measurement system in terms of stable sampling at high sampling rates up to 1 kHz. Limitations seen in the results provided are mostly due to the use of very cheap MEMS-based sensors, where the costs of a single node are below 50 e, not accounting for power supply and enclosure.

Sr. No		Publication Details	Remarks
3		Proceedings of the IEEE, Vol. 105, No. 01, January 2017	 The car as an urban sensing platform. Exploration of an immense CAN sensory data set. Focus our attention on specific examples dealing with: weather and environmental sensing, road safety, driver behaviour analysis.
4	Crowdsensing Framework for Monitoring Bridge Vibrations using Moving Smartphones	Proceedings of the IEEE, Vol. 106, No. 4, April 2018	 Condition Monitoring and Evaluation of Civil Structures. Mobile Sensor Networks as a Scalable Monitoring Solution Civic Data Collection through Human Mobility. Measuring Vibrations in Civil Engineering using Smartphones Data collection for SHM has relied on fixed sensor networks, which must be designed, installed, and maintained by experienced personnel.

Project Process

5 Steps

Functional Flowchart

Hardware

Accelerometer Working

Image Source: sparksfun

Micro-Controllers

Image Source : sparksfun

Image Source : RandomNerdTutorials

Accelerometers

Image Source: sparksfun

Image Source: components101

Deployment Setup

Detection Algorithm

Pothole Detection Algorithm

Kalman Estimation Algorithm

Equations for Kalman Estimation Algorithm

The equations of Kalman prediction algorithm at nth iteration are as follows,

```
Step 1 > (Kalman\ Gain)_n = \frac{[(Error\ in\ Estimated\ Value)_{n-1}]}{[(Error\ in\ Estimated\ Value)_{n-1}] + [(Error\ in\ Measured\ Value)_{n-1}]}
```

```
Step 2 > (Estimated Value)<sub>n</sub> = (Estimated Value)<sub>n-1</sub> + [(Kalman Gain)<sub>n</sub>] *
    [ (Measured Value)<sub>n</sub> - (Estimated Value)<sub>n-1</sub> ]
```

Step 3 > (Error in Estimated Value)_n = $[1 - (Kalman Gain)_n] * (Error in Estimated Value)_{n-1}$

Step 4 >
$$(DELTA)_n = (Measured Value)_n - (Estimated Value)_n$$

Estimated and Measured Values vs. Time

Variation of Delta Z w.r.t. Threshold vs. Time

Limitations of Kalman

Software

Retrieval of GPS Co-ordinates

NEO-6M GPS Module

GPS Location Application Working

Communication between Node MCU and Mobile Application for GPS Co-ordinates

GPS Locator Application Flowchart

GPS Location Getter Application Process

4 Steps

IP Recognition

The mobile
Application
detects the IP
address assigned
to the mobile in
the local network.

Server Creation

Server is initialized via the mobile application on the mobile itself.

Geo-Locator

This API gets the current location with the help of mobile GPS sensor.

Request-Reply Model

The Application replies to the client with the latest GPS-co-ordinates.

Realtime Database

FirebaseRealtime Data Database

Main Application Flowchart

Mobile Application Process

5 Steps

User Input

The application accepts source and destination addresses from the user.

Geo-Coding

An API that maps
String addresses
into their
respective
latitude and
longitude.

Direction API

An API that
accepts two sets
of co-ordinates
and returns the
"Geometry" of the
route/routes
between the two
inputs.

Pre-Processing of Route

Decoding the route geometry and synchronization with the database.

Visualization of the Route.

Plotting of route and Pothole Markers on the map.

Possible Improvements

- Designing of PCB for robustness and compactness.
- FFT algorithm to evaluate the frequency of change of acceleration values.
- Deployment on 2-4-wheeler vehicles in large numbers for aggregating data.
- Evaluating multiple routes, between source and destination based on road surface quality.

References

- Pothole Patrol -http://nms.lcs.mit.edu/papers/p2-mobisys-2008.pdf
- WSNs Composed of Microcomputers-https://www.mdpi.com/1424-8220/19/9/2070
- Good Vibrations-https://ieeexplore.ieee.org/ielaam/5/8326750/8326771-aam.pdf
- <u>Driving DNA-https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7795269</u>
- <u>ParkNet-https://www.researchgate.net/publication/221234396_ParkNet_Drive-by_Sensing_of_RoadSide_Parking_Statistics#:~:text=Based%20on%20500%20miles%2_0of,adequate%20coverage%20in%20a%20city.</u>
- <u>City Scanner- http://senseable.mit.edu/papers/pdf/20180522_Anjomshoaa-etal_CityScanner_IEEE-IoT.pdf</u>

THANK YOU

QUESTIONS? COMMENTS? SUGGESTIONS?