	MACHINE LEARNING	L T P J C
		2 0 2 4 4
Pre-requisite	Nil	Syllabus version
		v1.0
Course Objectiv		
2. Differentiate realgorithms.3. To analyze the	reprehend the concept of supervised and unsupervised lear egression, classification and clustering techniques and to e performance of various machine learning techniques and ing machine learning algorithms.	implement their
Expected Cours	e Outcome: characteristics of machine learning that makes it useful t	
3. Gain knowled4. Choose an app5. Realize metho6. Choose a suitachosen model for	on for classification and regression approaches in real-worge to combine machine learning models to achieve better propriate clustering technique to solve real world problem ds to reduce the dimension of the dataset used in machine a given real world problems. Itting edge technologies related to machine learning applications.	r results. ns. e learning algorithms. e performance of the
What is Machine	troduction to Machine Learning Learning, Examples of Various Learning Paradigms, Pe Finite and Infinite Hypothesis Spaces, PAC Learning	3 hour erspectives and Issues,
version spaces,	i fine and millio trypodiesis spaces, 17te Learning	
	pervised Learning - I	4 hour
Generalization en	from Examples, Linear, Non-linear, Multi-class and Murror bounds: VC Dimension, Decision Trees: ID3, Classin: Linear Regression, Multiple Linear Regression, Logis	fication and Regression
Module:3 Su	pervised Learning - II	5 hour
Neural Networks	:: Introduction, Perceptron, Multilayer Perceptron, Suppo Kernel Functions, K-Nearest Neighbors	
Module:4 En	semble Learning	3 hour
Ensemble Learni	ng Model Combination Schemes, Voting, Error-Correcti m Forest Trees, Boosting: Adaboost, Stacking	
Dagging, Kando		
	nsupervised Learning - I	7 hour
Module:5 Ur Introduction to	clustering, Hierarchical: AGNES, DIANA, Partitional: R g, Self-Organizing Map, Expectation Maximization, Gau	7 hour K-means clustering, K- assian Mixture Models
Module:5 Ur Introduction to o Mode Clusterin	clustering, Hierarchical: AGNES, DIANA, Partitional: k	K-means clustering, K-
Module:5 Ur Introduction to o Mode Clusterin Module:6 Ur	clustering, Hierarchical: AGNES, DIANA, Partitional: Reg, Self-Organizing Map, Expectation Maximization, Gau	K-means clustering, K- assian Mixture Models 3 hour
Module:5 Ur Introduction to o Mode Clusterin Module:6 Ur Principal compo	clustering, Hierarchical: AGNES, DIANA, Partitional : Reg, Self-Organizing Map, Expectation Maximization, Gaunsupervised Learning - II	K-means clustering, K- assian Mixture Models 3 hour

2 hours

Module:8

Industry Expert talk

Recent Trends

	Ţ.	Total Lecture ho	urs:	30 hours			
Text Book(s)							
1.	Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India, Third Edition 2014						
Refe	rence Books						
1.	Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Academic Press, 4th edition, 2008, ISBN:9781597492720.						
2.	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning, MIT Press, 2012						
3.	Tom Mitchell, Machine Learning, McGraw Hill, 3rd Edition, 1997.						
4	Charu C. Aggarwal, Data Classification Algorithms and Applications , CRC Press, 2014						
5	Charu C. Aggarwal, DATA CLUSTERING Algorithms and Applications, CRC Press, 2014						
	6 Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012 Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
	of Challenging Experiments (Indicate)			emmai			
1.	Implement Decision Tree learning.				2 hours		
2.	Implement Logistic Regression.				2 hours		
3.	Implement classification using Multilayer perceptron.				2 hours		
4.	Implement classification using SVM				2 hours		
5.	Implement Adaboost				2 hours		
6.	Implement Bagging using Random Forests				2 hours		
7.	Implement K-means Clustering to Find Natural Patterns in Data.				2 hours		
8.	Implement Hierarchical clustering.				2 hours		
9.	Implement K-mode clustering	2 hours					
10	Implement Principle Component A	2 hours					
11	Implement Multiple Correspondence Analysis for Dimensionality Reduction.				2 hours		
12	Implement Gaussian Mixture Model Using the Expectation Maximization.				n. 2 hours		
13	Evaluating ML algorithm with balanced and unbalanced datasets.				2 hours		
14	Comparison of Machine Learning algorithms.				2 hours		
15.	Implement k-nearest neighbors algo	2 hours					
	urs 30 hours						
Mode of assessment: Project/Activity							
Recommended by Board of Studies 04-04-2014							
Approved by Academic Council No. 37 Date 16-06-2015							