LungCapData

Amira Ibrahim

October 2, 2019

```
LungCapData <- read.delim(file.choose(),header = TRUE)
attach(LungCapData)</pre>
```

check names

```
names(LungCapData)
## [1] "LungCap" "Age" "Height" "Smoke" "Gender" "Caesarean"
```

summary of data:

```
summary(LungCapData)
```

```
##
      LungCap
                                      Height
                                                 Smoke
                                                             Gender
                        Age
   Min. : 0.507
                   Min. : 3.00
##
                                  Min. :45.30
                                                 no:648
                                                           female:358
   1st Qu.: 6.150
                   1st Qu.: 9.00
                                  1st Qu.:59.90
                                                 yes: 77
                                                          male :367
##
## Median: 8.000
                   Median :13.00
                                  Median :65.40
## Mean : 7.863
                   Mean :12.33
                                  Mean
                                       :64.84
## 3rd Qu.: 9.800
                   3rd Qu.:15.00
                                  3rd Qu.:70.30
                   Max. :19.00
## Max.
         :14.675
                                  Max. :81.80
## Caesarean
## no:561
##
   yes:164
##
##
##
```

relation between Gender and Smoke:

Gender & Smoking

categorical variables by chisq test:

H0: No relation between smoking frequency and gender

```
chisq.test(Table1 , correct = TRUE)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: Table1
## X-squared = 1.7443, df = 1, p-value = 0.1866

p-value > 0.05 , Fail to reject H0
```

calculate OR , RR :

library(epiR)

```
## Loading required package: survival
## Warning: package 'survival' was built under R version 3.6.1
## Package epiR 1.0-2 is loaded
## Type help(epi.about) for summary information
##
```

```
epi.2by2(Table1 , method = "cohort.count" , conf.level = 0.95)
                Outcome +
                             Outcome -
                                            Total
                                                          Inc risk *
## Exposed +
                                              358
                                                                87.7
                      314
                                    44
## Exposed -
                      334
                                    33
                                              367
                                                                91.0
## Total
                      648
                                    77
                                              725
                                                                89.4
##
                    Odds
## Exposed +
                   7.14
## Exposed -
                   10.12
## Total
                    8.42
##
## Point estimates and 95% CIs:
                                                0.96 (0.92, 1.01)
## Inc risk ratio
## Odds ratio
                                                0.71 (0.44, 1.14)
## Attrib risk *
                                                -3.30 (-7.79, 1.19)
## Attrib risk in population *
                                                -1.63 (-5.32, 2.06)
                                                -3.76 (-9.12, 1.34)
## Attrib fraction in exposed (%)
## Attrib fraction in population (%)
                                                -1.82 (-4.34, 0.64)
## Test that odds ratio = 1: chi2(1) = 2.077 \text{ Pr} > chi2 = 0.15
## Wald confidence limits
## CI: confidence interval
## * Outcomes per 100 population units
Odds of Females not smoking are 0.71 times odds of males not smoking
1/0.71
## [1] 1.408451
Odds of males not smoking are 1.4 times odds of Females not smoking
check normality
library(moments)
skewness(LungCap)
## [1] -0.2274017
accepted level from -1 to +1
kurtosis(LungCap)
## [1] 2.68148
accepted level from -2 to +2 may to +3
boxplot(LungCap)
```



```
hist(LungCap,freq = FALSE)
lines(density(LungCap),col="red",lwd=1)
```

Histogram of LungCap

###visually , data is normally distributed

One-sample t-test for lung Capacity:

Test H0 = 8, conf.interval = 0.95:

```
t.test(LungCap , mu=8 , alternative = "two.sided" , conf.level = 0.95)

##

## One Sample t-test

##

## data: LungCap

## t = -1.3842, df = 724, p-value = 0.1667

## alternative hypothesis: true mean is not equal to 8

## 95 percent confidence interval:

## 7.669052 8.057243

## sample estimates:

## mean of x

## 7.863148
```

p-value >0.05, fail to reject H0

Relation between Smoke & lung Capacity:

H0: mean of smokers = mean of non smokers:

```
boxplot(LungCap~Smoke , main = "Effect of smoking on lung capacity")
```

Effect of smoking on lung capacity

check variance:

```
var(LungCap[Smoke == "yes"])

## [1] 3.545292

var(LungCap[Smoke == "no"])

## [1] 7.431694

so variance not equal

t.test(LungCap~Smoke , mu=0 , alternative = "two.sided" , var.eq = F, conf.level = 0.95)

## Welch Two Sample t-test
## ## data: LungCap by Smoke
```

```
## t = -3.6498, df = 117.72, p-value = 0.0003927
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.3501778 -0.4003548
## sample estimates:
## mean in group no mean in group yes
## 7.770188 8.645455
```

p-value < 0.05, reject H0, Smoking has a significant effect on lung capacity

fit a model of the relation between Age, LungCap:

use simple linear regression

```
model1 <- lm(LungCap~Age)
plot(Age,LungCap,main = "Relation between Age & Lung Capacity")
abline(model1 ,col=2 , lwd=3)</pre>
```

Relation between Age & Lung Capacity

correlation between Lung capacity & Age

```
cor(Age,LungCap ,method="pearson")
## [1] 0.8196749
```

there is +ve strong correlation

Denisty plots: check if the response variable is close to normal:

```
library(e1071)

## Warning: package 'e1071' was built under R version 3.6.1

##

## Attaching package: 'e1071'

## The following objects are masked from 'package:moments':

##

## kurtosis, moment, skewness

par(mfrow=c(1, 2)) # divide graph area in 2 columns

plot(density(LungCap), main="Density Plot: lung capacity", ylab="Frequency")

# density plot for 'lung capacity'

polygon(density(LungCap), col="blue")

plot(density(Age), main="Density Plot: Age", ylab="Frequency") # density plot for 'dist'

polygon(density(Age), col="blue")
```

Density Plot: lung capacity

Freduency 0.00 0.10 0.02 0 5 10 15 N = 725 Bandwidth = 0.6418

Density Plot: Age

built linear model equation:

```
model1 <- lm(LungCap~Age)
model1</pre>
```

Equation: lungCap = 1.1469 + 0.5448 * Age

increase in 1 year of Age associated with 0.5448 increase in lung Capacity

check the residuals and significance

```
H0: slope = 0
summary(model1)
##
## Call:
## lm(formula = LungCap ~ Age)
##
## Residuals:
      Min
               1Q Median
                                3Q
                                       Max
## -4.7799 -1.0203 -0.0005 0.9789 4.2650
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14686
                          0.18353
                                   6.249 7.06e-10 ***
## Age
               0.54485
                          0.01416 38.476 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.526 on 723 degrees of freedom
## Multiple R-squared: 0.6719, Adjusted R-squared: 0.6714
## F-statistic: 1480 on 1 and 723 DF, p-value: < 2.2e-16
```

p-value <0.05, reject H0, there is significant diffrence

67% of the variation in Lung Capicity is explained by Age

test H0: variation mean squared regression = variation mean squared errors

```
sqrt(2.3)
## [1] 1.516575
p-value < 0.05 , reject H0</pre>
```

Getting the coeffecient confedience interval:

```
## 2.5 % 97.5 %
## (Intercept) 0.7865454 1.5071702
## Age 0.5170471 0.5726497
```

confedience interval not pass through zero , there is significant diffrence

visualize the assumption

```
plot(model1)
```

confint(model1)

Residuals vs Fitted. Used to check the linear relationship assumptions. A horizontal line, without distinct patterns is an indication for a linear relationship, what is good.

Normal Q-Q. Used to examine whether the residuals are normally distributed. It's good if residuals points follow the straight dashed line.

Scale-Location (or Spread-Location). Used to check the homogeneity of variance of the residuals (homoscedasticity). Horizontal line with equally spread points is a good indication of homoscedasticity.

Residuals vs Leverage. Used to identify influential cases, that is extreme values that might influence the regression results when included or excluded from the analysis.

fit a model using Age & Height as explanatory variables :

$$H0 B0=B1=B2=0$$

```
mlr <- lm(LungCap~Age+Height , data = LungCapData)
summary(mlr)

##
## Call:
## lm(formula = LungCap ~ Age + Height, data = LungCapData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4080 -0.7097 -0.0078 0.7167 3.1679</pre>
```

```
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.747065 0.476899 -24.632 < 2e-16 ***
## Age
               0.126368
                        0.017851
                                   7.079 3.45e-12 ***
## Height
               ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.056 on 722 degrees of freedom
## Multiple R-squared: 0.843, Adjusted R-squared: 0.8425
## F-statistic: 1938 on 2 and 722 DF, p-value: < 2.2e-16
p-value < 0.05 , reject H0
84.25% of variation in lung capacity is explained by Age and Height
Equation: lung capacity = -11.747 + (0.126Age) + (0.278Height)
increase in 1 year of Age with an increase in 0.126 of lung capacity adjusting for Height
```

pearson correlation between Age ,Height:

```
cor(Age , Height, method = "pearson")
## [1] 0.8357368
```

there is +ve strong correlation

Getting the coeffecient confedience interval :

```
confint(mlr)

## 2.5 % 97.5 %

## (Intercept) -12.68333877 -10.8107918

## Age 0.09132215 0.1614142

## Height 0.25894454 0.2979192
```

confedience interval not pass through zero , there is significant diffrence

visualize the assumption

```
plot(mlr)
```


Residuals vs Fitted. Used to check the linear relationship assumptions. A horizontal line, without distinct patterns is an indication for a linear relationship, what is good.

Normal Q-Q. Used to examine whether the residuals are normally distributed. It's good if residuals points follow the straight dashed line.

Scale-Location (or Spread-Location). Used to check the homogeneity of variance of the residuals (homoscedasticity). Horizontal line with equally spread points is a good indication of homoscedasticity.

Residuals vs Leverage. Used to identify influential cases, that is extreme values that might influence the regression results when included or excluded from the analysis.

If we convert Height into categorical variable:

```
creat Height categorical A<50 , B=50-55 , c=55-60 , D=60-65 , E=65-70 , F>70  
CatHeight <- cut(Height,breaks = c(0,50,55,60,65,70,100), labels = c("A","B","C","D","E","F"))
```

fit model using Age, Height (as categorical variable) as explanatory variables:

```
m2 <- lm(LungCap~Age+CatHeight)
summary(m2)</pre>
```

##

```
## Call:
## lm(formula = LungCap ~ Age + CatHeight)
## Residuals:
##
               1Q Median
                                3Q
## -3.8719 -0.7751 0.0281 0.7521 3.4160
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97553
                          0.29394
                                     3.319 0.00095 ***
## Age
                0.20110
                           0.01859
                                   10.816 < 2e-16 ***
## CatHeightB
                                     4.668 3.62e-06 ***
                1.48361
                           0.31780
## CatHeightC
               2.68562
                           0.29818
                                    9.007 < 2e-16 ***
## CatHeightD
               3.93857
                           0.30623
                                   12.862 < 2e-16 ***
## CatHeightE
               5.00703
                                   15.596 < 2e-16 ***
                           0.32105
## CatHeightF
               6.53873
                           0.34635 18.879 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.159 on 718 degrees of freedom
## Multiple R-squared: 0.812, Adjusted R-squared: 0.8104
## F-statistic: 516.8 on 6 and 718 DF, p-value: < 2.2e-16
Lung capacity = 0.976 + 0.201 Age + 1.484 Xb + 2.686 Xc + 3.939 Xd + 5.007 Xe + 6.539 Xf
lung capacity for category A = 0.976 + 0.201 Age ###lung capacity for category B = 2.46 + 0.201
0.201 Age
lung capacity for category c = 3.67 + 0.201 Age ###lung capacity for category D = 4.92 +
lung capacity for category E = 5.99 + 0.201 Age ###lung capacity for category F = 7.25 + 0.201
0.201 Age
```

plot Data with different colors For Height categories:

```
plot(Age[CatHeight=="A"], LungCap[CatHeight=="A"] , col=2,xlim = c(0,20), ylim = c(0,15),xlab = "Age" ,
points(Age[CatHeight=="B"], LungCap[CatHeight=="B"],col=3)
points(Age[CatHeight=="C"], LungCap[CatHeight=="C"],col=4)
points(Age[CatHeight=="D"], LungCap[CatHeight=="D"],col=5)
points(Age[CatHeight=="E"], LungCap[CatHeight=="E"],col=6)
points(Age[CatHeight=="F"], LungCap[CatHeight=="F"],col=7)
legend(0,15.5,legend = c("A","B","C","D","E","F"),col = 2:7,pch = 1,cex = 0.8)
abline(a=0.976,b=0.201,col=2,lwd=3)
abline(a=2.46,b=0.201,col=3,lwd=3)
abline(a=3.67,b=0.201,col=4,lwd=3)
abline(a=4.92,b=0.201,col=5,lwd=3)
abline(a=5.99,b=0.201,col=6,lwd=3)
abline(a=7.25,b=0.201,col=7,lwd=3)
```

Lung capacity according to Age & Height categories

increase in 1 year associate with 0.201 change in lung capacity independent on Height categories

Age effect is the same for all Height categories

visualize the assumption

plot(m2)

Residuals vs Fitted. Used to check the linear relationship assumptions. A horizontal line, without distinct patterns is an indication for a linear relationship, what is good.

Normal Q-Q. Used to examine whether the residuals are normally distributed. It's good if residuals points follow the straight dashed line.

Scale-Location (or Spread-Location). Used to check the homogeneity of variance of the residuals (homoscedasticity). Horizontal line with equally spread points is a good indication of homoscedasticity.

Residuals vs Leverage. Used to identify influential cases, that is extreme values that might influence the regression results when included or excluded from the analysis.

fit model using Age, Smoking as explanatory variables:

```
mlr1 <- lm(LungCap~Age+Smoke)</pre>
summary(mlr1)
##
## Call:
## lm(formula = LungCap ~ Age + Smoke)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                  3Q
                                          Max
##
   -4.8559 -1.0289 -0.0363 1.0083
                                      4.1995
##
## Coefficients:
```

```
##
              Estimate Std. Error t value Pr(>|t|)
                           0.18299
                                    5.933 4.61e-09 ***
## (Intercept)
               1.08572
               0.55540
                           0.01438
                                   38.628 < 2e-16 ***
                                   -3.473 0.000546 ***
## Smokeyes
               -0.64859
                           0.18676
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.514 on 722 degrees of freedom
## Multiple R-squared: 0.6773, Adjusted R-squared: 0.6764
## F-statistic: 757.5 on 2 and 722 DF, p-value: < 2.2e-16
67% of variation in lung capacity is explained by Age & Smoke
Equation: LungCap = 1.086 + (0.555Age) + (-0.649Smoke yes)
lung capacity in non smokers = 1.086 + (0.555*Age)
lung capacity in smokers = 0.437 + (0.555*Age)
```

Plot the data to differ between Smokers & non smokers:

```
plot(Age[Smoke=="no"],LungCap[Smoke=="no"] , col="blue" , ylim = c(1,15),xlab = "Age" , ylab = "Lung Cap
points(Age[Smoke=="yes"], LungCap[Smoke=="yes"],col="red",pch=16)
legend(3,15,legend = c("Non Smokers","Smokers"),col = c("blue","red"),pch = c(1,16),bty = "n")
abline(a=1.08,b=0.555,col="blue",lwd=3)
abline(a=0.431,b=0.555,col="red",lwd=3)
```

Lung capacity according to Age & Smoke

increase in 1 year associate with 0.555 change in mean lung capacity , this increase is the same in

Smokers & non Smokers

For Smokers mean lung capacity decreased by 0.649, this decrease is the same in All ages Effect of Age is independent on Smoking & vise versa , So no interaction between Age and Smoke

Getting the coeffecient confedience interval:

```
confint(mlr1)
## 2.5 % 97.5 %
## (Intercept) 0.7264702 1.4449793
## Age 0.5271678 0.5836240
## Smokeyes -1.0152473 -0.2819294
```

visualize the assumption

```
plot(mlr1)
```


Residuals vs Fitted. Used to check the linear relationship assumptions. A horizontal line, without distinct patterns is an indication for a linear relationship, what is good.

Normal Q-Q. Used to examine whether the residuals are normally distributed. It's good if residuals points follow the straight dashed line.

Scale-Location (or Spread-Location). Used to check the homogeneity of variance of the residuals (homoscedasticity). Horizontal line with equally spread points is a good indication of homoscedasticity.

Residuals vs Leverage. Used to identify influential cases, that is extreme values that might influence the regression results when included or excluded from the analysis.

fit model for all variables

```
mlr2 <- lm(LungCap~ Age+Height+Smoke+Gender+Caesarean,data = LungCapData)
summary(mlr2)
##
## Call:
  lm(formula = LungCap ~ Age + Height + Smoke + Gender + Caesarean,
       data = LungCapData)
##
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                                     3.0172
   -3.3388 -0.7200
                    0.0444
                             0.7093
##
```

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -11.32249 0.47097 -24.041 < 2e-16 ***
                0.16053
                          0.01801
                                  8.915 < 2e-16 ***
## Age
## Height
                ## Smokeyes
               0.38701
                          0.07966 4.858 1.45e-06 ***
## Gendermale
## Caesareanyes -0.21422
                          0.09074 - 2.361
                                         0.0185 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.02 on 719 degrees of freedom
## Multiple R-squared: 0.8542, Adjusted R-squared: 0.8532
## F-statistic: 842.8 on 5 and 719 DF, p-value: < 2.2e-16
85.32% of variation in Lung capacity is explained by other variables
equation: Lung capacity = -11.32 + (0.16Age) + (0.26Height) + (-0.061Smoke yes) +
(0.38 \text{Gender male}) +
      (-0.21*caesarean yes)
Lung Capacity of non Smokers males = -10.94 + (0.16Age) + (0.26Height)
Lung Capacity of Smokers males = -11.001 + (0.16Age) + (0.26Height)
Lung Capacity of non Smokers females (caesarean) = -11.53 + (0.16Age) + (0.26Height)
Lung Capacity of non Smokers females (non caesarean) = -11.32 + (0.16Age) + (0.26Height)
Lung Capacity of Smokers females (caesarean) = -11.591 + (0.16Age) + (0.26Height)
Lung Capacity of Smokers females (non caesarean) = -11.381 + (0.16Age) + (0.26Height)
```

Getting the coeffecient confedience interval:

```
confint(mlr2)
```

```
##
                     2.5 %
                                  97.5 %
## (Intercept) -12.2471338 -10.39783728
## Age
                 0.1251765
                             0.19588271
## Height
                 0.2443581
                             0.28386751
## Smokeyes
                -0.8568861 -0.36223237
## Gendermale
                 0.2306230
                             0.54340035
## Caesareanyes -0.3923590 -0.03607738
```

confedience interval not pass through zero , there is significant diffrence

visualize the assumption

```
plot(mlr2)
```


Fitted values
Im(LungCap ~ Age + Height + Smoke + Gender + Caesarean)

Im(LungCap ~ Age + Height + Smoke + Gender + Caesarean)

Residuals vs Fitted. Used to check the linear relationship assumptions. A horizontal line, without distinct patterns is an indication for a linear relationship, what is good.

Normal Q-Q. Used to examine whether the residuals are normally distributed. It's good if residuals points follow the straight dashed line.

Scale-Location (or Spread-Location). Used to check the homogeneity of variance of the residuals (homoscedasticity). Horizontal line with equally spread points is a good indication of homoscedasticity.

Residuals vs Leverage. Used to identify influential cases, that is extreme values that might influence the regression results when included or excluded from the analysis.