# Adopting and Adapting High Performance Computing Tools for Soil Moisture Modelling

Leobardo Valera, Ricardo Llamas, Rodrigo Vargas, and Michela Taufer







## **Modeling HPC Performance**

Model of runtime for Hadoop runs for different parameter values











#### **Modeling Performance vs. Soil Moisture**

Step-by-step analogy between prediction of idle times in HPC systems and soil moisture modeling over fine-grain gridded spaces

Hypothesis: we can adopt and adapt HPC tools used for performance predictions and modeling to predict and model soil moisture patterns

Performance data and the soil moisture data are both multidimensional spatial data



**Multi-resolution Spatial Data** 













| Dataset                   | Source                                                                                      | Resolution / Scale                                             |
|---------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ESA-CCI                   | European Space<br>Agency Climate<br>Change Initiative                                       | Space: 0.25 arc-<br>degrees (~27 km)<br>Time: 24 hours         |
| DEM                       | Hydroshare (1-<br>km) [4], United<br>States Digital<br>Elevation Model<br>(90-m, 10-m, 1-m) | 1 km, 3 arc-second<br>(~90 m),<br>⅓ arc-second (~10 m),<br>1 m |
| Terrestrial<br>Ecoregions | Commission for<br>Environmental<br>Cooperation                                              | 1:10,000,000                                                   |
| NSMN                      | National Soil<br>Moisture Network                                                           | Space: point based<br>Time: daily                              |

### Question: Can we directly adopt the HPC techniques?



#### Question: Can we directly adopt the HPC techniques?



Naive application of SBM to SM data modeling

Soil moisture m<sup>3</sup>/m<sup>3</sup>

#### Answer: No, we need to adapt the techniques to our data



#### Answer: No, we need to adapt the techniques to our data



#### **SOMOSPIE Workflow**





#### Use Case I: Models from Sensor Data vs. Satellite Data



#### Use Case I: Models from Sensor Data vs. Satellite Data



#### **Use Case II: Wildfire Simulations Integrating Soil Moisture Models**

Replication of the Gatlinburg wildfire using FDS simulator and augmented model of the region (including imapc of soil moisture) Soil moisture m3/m3 0 209 - 0 210 0.210 - 0.211 0 211 -0 212 0.212 - 0.214 0 0 214 - 0 216 0.216 - 0.218 0.218 - 0.221 0.222 - 0.225 0 0 225 - 0 230 0.230 - 0.234 0.234 - 0.238 0 238 - 0 243 0 243 - 0 249 0.249 - 0.256 0.256 - 0.264 0.264 - 0.274 0.274 - 0.286 0.286 - 0.297 0.297 - 0.307

0.307 - 0.347