

On real tobots
Alpha Go (2015)
RL+ DNN?
O Sparse / delayed feedback
2) data distribution is non-stationary
- determined by the agent's actions
· Most of the DNN theory no longer apply
Exploration VS exploitation
· local minima.
3) Training DNN with PL was thought to be
inherently unstable.
(Tsitsikis & Van Roy 1997)

Dan (Deep a Networks)
CNN Shation value function (Q) Shat, It, S. Tabular Q-learning: 2xperience
Tabular Q - learning: D Start with a guess for each Q(s,a) &-g D interact with environment using Policy based on Q (3) Updates (based on Bellman Equations)
$Q(S_t, a_t) \leftarrow Q(S_t, a_t) + d_t$ $\left(Y_t + V_{a} \times Q(S_{t+1}, a) - Q(S_t, a_t)\right)$ $target$
Problems: (DNN/CNN -> Q) D Correlation between Successive updates
D) Correlation between D(St. At) and the target
High-tevel idea: D-learning took supervised (RL) Learning

Apply Q-update on batches of past experience
instead of soline
DExperience replay (Lin, 1993)
D Previously used for better data efficiency
3 Wakes the data distribution More Stationary
Use an old set of weights to compute the target (target network)
Keeps the target function from changing too quickly target
$L_{i}(D_{i}) = \overline{L}_{s,a,s,r,D} \left(r + r \log Q(s',a';D_{i}) - r \right)$
Q(S,a; D;)

NFQ (Riedmiller, 2005)

Target Network Intuition

- Changing the value of one action will change the value of other actions and similar states.
- The network can end up chasing its own tail because of bootstrapping.
- Somewhat surprising fact bigger networks are less prone to this because they alias less.

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r \sim D} \left(\underbrace{r + \gamma \max_{a'} Q(s',a';\theta_i^-)}_{\text{target}} - Q(s,a;\theta_i) \right)^2$$

.

because they can use action repeats but these are two successive

MacBook Pro

DQN Training Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Neural Fitted Q Iteration

- NFQ (Riedmiller, 2005) trains neural networks with Q-learning.
- Alternates between collecting new data and fitting a new Q-function to all previous experience with batch gradient descent.

```
NFQ_main() {
input: a set of transition samples D; output: Q-value function Q_N
k=0
init_MLP() \rightarrow Q_0;
Do {
generate_pattern_set P = \{(input^l, target^l), l = 1, \dots, \#D\} where:
input^l = s^l, u^l,
target^l = c(s^l, u^l, s'^l) + \gamma \min_b Q_k(s'^l, b)
Rprop_training(P) \rightarrow Q_{k+1}
k:= k+1
} WHILE (k < N)
```

DQN can be seen as an online variant of NFQ.

similar method to dqn was neural fitted cue iteration so

MacBook Pro

Lin's Networks

- Long-Ji Lin's thesis "Reinforcement Learning for Robots using Neural Networks" (1993) also trained neural nets with Q-learning.
- Introduced experience replay among other things.
- Lin's networks did not share parameters among actions.

ATARI Network Architecture

- Convolutional neural network architecture:
 - o History of frames as input.
 - o One output per action expected reward for that action Q(s, a).
 - Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

one output per action so not only by today's standards

MacBook Pro

DQN/Mini-batch Q-learning
Pros
/ Robinst
Robust
GPU friendly
Cons;
Slow
Slow [1255 RNN friendly (less successful in 30 environment)
Beyond DON
O fast training
2 on or off-policy methods
3) flexibility _discrete or continuous actions
feedforward Vecurrent Models
Asynchronous Methods for DRL

(Naih 2016) (AsyncRL)
AsyncRL
Parallel actor-learners (CPU threads)
online asynchronous updates
(Recht 2011, Lian 2015)
RL algorithm:
Value-based / policy-based
1-step Q-learning
Parallel actor-learners compute Unline 1-14
update.
y = r + V max Q (5', α'; θ-)
$\Delta \theta \leftarrow \Delta \theta + \frac{9(y-\alpha(s,\alpha;\theta))^2}{}$
99

N-step Q-learning

a-learning with a uniform mixture of backups of length 1 through N.

te, Vtt., Vtt., ..., Vtt. max Xa Q(a, Stent)

 $\Delta\theta = \Delta\theta + \frac{3(Y - Q(S_{t}, Q_{t}; \theta))^{2}}{3\theta}$

Variation of "Incremental multi-step Q-learning"
(Peng & Williams 1995)

	Asynchronous	Advantage Actor-critic
		(A3C)
\mathcal{D}	Agent Leavis	a policy a state value function
		a state value function
(2)	bootstapped	N-step returns
) reduce	Variance
	Over REINFO	PCE With a baseline
ক্ত		- Mustiplied by an estimate adventage
	2 642	
√ _{\text{\ti}}\text{\te}\tint{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\texin}	log Trat St, 0) (N Y K Y K + Y N + 1 V (St+N+1) - V (St)
(Critic/value	function is trained with n-step
		(by Minimizing the MSE)
		$ \gamma^{N+1} \vee (S_{t+Nt_1}; \Theta^-) - \vee (S_t; \Theta)^2 $

ABC tends to dominate the Value-based
Methods

A3C - ATARI Results

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorilla	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

O DeepMind

Atari and if you train for four days then you

MacBook Pro

Pros of N-Step methods:

O faster reward propagation

2) No need for target network

(3) easier training of RNN

ASC Pros (fast, RNN friendly) (Stable, Scalable)
(Stable, Scalable)
Cors (Not GPU friendly)
IMPALA: distributed deep RL, (2018)
Scale up (A3c)
V-Trace algorithm
DMLab-30 Task Sex"
(Multi-)
Dan is more stable than A3c
off-policy harms actor-critic method

Deep RL
Mini-batch training on GPUs
2 Deep Res Net and LSTM.
3 Adam / RMSProp optimizers

Deep RL

Practical Advice - Getting Started

- Start with a simple problem.
 - Something solvable in under a minute on your local machine.
 - Make it similar to the problem you really want to solve.
 - Ideally it should have knobs for controlling its difficulty.
- Plot the training curves (averaged over multiple episodes).
- Visualize the policy.
- Visualize the value function.
- Visualize everything you can think of.

has some of the properties of the real problem you want to

Practical Advice - Neural Nets

- Doing early experiments with a small network can help iterate faster.
 - This can also backfire (DQN and target networks).
- Reasonable strategy:
 - Run a few progressively larger nets to find what's sufficient for experimenting.
 - Periodically try larger nets to max out performance and verify assumptions.
- Be careful with initialization:
 - Visualize the initial policy to make sure it gets some rewards.
- Try RMSProp and/or Adam.
- Test deep learning tricks before incorporating them: dropout, batch norm, etc.
- See John Schulman's excellent guide http://joschu.net/docs/nuts-and-bolts.pdf

