

Serijska komunikacija

Serijska komunikacija MCU

- Universal Synchronous Asynchronous Receiver Transmitter (USART)
- Serial Peripheral Interface (SPI)
- Inter-Integrated circuit (I²C)
- Controller Area Network (CAN)
- Local Interconnect Network (LIN)
- Universal Seral Bus (USB)
- Ethernet
- Infrared
- Radio
- Wi-Fi
- Zigbee

USART (RS-232)

- Koriste se 2 pina (RC6 i RC7 kod PIC 16F877A)
- Kod sinhronog prenosa, RC6 se koristi za prenos takta, a RC7 za prenos podataka
- U asinhronom režimu podaci se simultano mogu slat (RC6/Tx) i primati (RC7/Rx)
- Zbog potrebe za višim (i simetričnim) naponskim nivoima, potrebna je eksterna komponenta za napajanje linija (TTL nivou se mogu koristiti za rastojanja do 1m, do 10m koristi se ± 12 V, a do 100m ± 25 V)

PIC 16F87X pinovi za serijsku komunikaciju

PIC 16F87X registri

RCSTA – Receive Status & Control

TXSTA – Transmit Status & Control

SPBRG – Baud Rate Generator

TXREG – predajni bafer

RCREG – prijemni bafer

Indirect addr.(*)	00h
TMR0	01h
PCL	02h
STATUS	03h
FSR	04h
PORTA	05h
PORTB	06h
PORTC	07h
PORTD ⁽¹⁾	08h
PORTE ⁽¹⁾	09h
PCLATH	0Ah
INTCON	0Bh
PIR1	0Ch
PIR2	0Dh
TMR1L	0Eh
TMR1H	0Fh
T1CON	10h
TMR2	11h
T2CON	12h
SSPBUF	13h
SSPCON	14h
CCPR1L	15h
CCPR1H	16h
CCP1CON	17h
RCSTA	18h
TXREG	19h
RCREG	1Ah
CCPR2L	1Bh
CCPR2H	1Ch
CCP2CON	1Dh
ADRESH	1Eh
ADCON0	1Fh
	20h
General Purpose	
Register	
96 Bytes	
55 57105	
	7Fh
Bank 0	-

		_
Indirect addr.(*)	80h	II
OPTION_REG	81h	
PCL	82h	
STATUS	83h	
FSR	84h	
TRISA	85h	
TRISB	86h	
TRISC	87h	
TRISD ⁽¹⁾	88h	
TRISE ⁽¹⁾	89h	
PCLATH	8Ah	
INTCON	8Bh	
PIE1	8Ch	L
PIE2	8Dh	
PCON	8Eh	
	8Fh	
	90h	
SSPCON2	91h	
PR2	92h	
SSPADD	93h	
SSPSTAT	94h	
	95h	
	96h	
	97h	
TXSTA	98h	
SPBRG	99h	
	9Ah	
	9Bh	
CMCON	9Ch	
CVRCON	9Dh	
ADRESL	9Eh	
ADCON1	9Fh	
	A0h	
General		
Purpose		
Register		
80 Bytes		
	EEh	
	EFh F0h	\vdash
accesses 70h-7Fh	7 011	
	FFh	
Bank 1		

ndirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	101h	OPTION REG	181h
PCL	102h	PCL	182h
STATUS	103h	STATUS	183h
FSR	104h	FSR	184h
	105h		185h
PORTB	106h	TRISB	186h
	107h		187h
	108h		188h
	109h		189h
PCLATH	10Ah	PCLATH	18Ah
INTCON	10Bh	INTCON	18Bh
EEDATA	10Ch	EECON1	18Ch
EEADR	10Dh	EECON2	18Dh
EEDATH	10Eh	Reserved ⁽²⁾	18Eh
EEADRH	10Fh	Reserved ⁽²⁾	18Fh
	110h		190h
	111h		191h
	112h		192h
	113h		193h
	114h		194h
	115h		195h
	116h		196h
General	117h	General	197h
Purpose Register	118h	Purpose Register	198h
16 Bytes	119h	16 Bytes	199h
,	11Ah	,	19Ah
	11Bh		19Bh
	11Ch		19Ch
	11Dh		19Dh
	11Eh		19Eh
	11Fh		19Fh
	120h		1A0h
_		0	IAUII
General Purpose		General Purpose	
Register		Register	
80 Bytes		80 Bytes	
,			1556
	16Fh		1EFh
accesses	170h	accesses	1F0h
70h-7Fh	17Fh	70h - 7Fh	1FFh
Bank 2	17111	Bank 3	ILLI

USART

- Tx je na visokom nivou kada nema podataka za slanje
- Kada se napuni bafer za slanje preko serijske komunikacije (TXREG, 19h), podaci se automatski šalju (uz dodavanje start i stop bitova)
- Prvo se šalje bit najmanje težine
- Prijem počinje nakon detekcije opadajuće ivice start bita (semplovanje počinje nakon 1.5 bitskih perioda)
- Po završetku prijema jednog bajta, javlja se prekid koji signalizira da treba pročitati RCREG (1Ah) pre nego što se upiše sledeći bajt
- Brzina slanja/prijema, tj brzina rada šift-registra definisana je sadržajem SPBRG (Baud Rate Generator Register, 99h), koji ima postskaler za deljenje izlazne frekvencije sa 16 ili 64, zavisno od stanja BRGH kontrolnog bita u TXSTA registru (Transmit Status and Control Register, 98h)

<u> </u>													
-				R/W-0	R/W-0	R/W-0	R/W-0	U-0					
		<u></u>		CSRC	TX9	TXEN	SYNC	1					
+		Register		bit 7									
		<u>.</u>											
<u>+</u>		b	bit 7	CSRC: Cloc	k Source Se	lect bit							
, 		Ð		Asynchronou	us mode:								
No.				Don't care.									
		_		Synchronous	-	asserated in	stavaally fran	n DDC)					
		Q		1 = Master n 0 = Slave mo	•		•	ii bKG)					
		Control	bit 6	TX9 : 9-bit Tr	•		, , ,						
		\Box		1 = Selects 9	9-bit transmi	ssion							
		Ó		0 = Selects 8-bit transmission									
	bit 5 TXEN: Transmit Enable bit 1 = Transmit enabled 0 = Transmit disabled Note: SREN/CREN overrides TXEN in Syn												
		7		1 = Transmit									
	S	nd		o = Transmit disabled									
	×	<u>a</u>		Note: S	SREN/CREN	l overrides	TXEN in Syr	nc mode.					
		S	bit 4	SYNC: USA	RT Mode Se	elect bit							
	_	Status		1 = Synchro									
		¥		0 = Asynchro									
		ţ	bit 3	Unimpleme									
March & Comment		S	bit 2	BRGH: High		Select bit							
1967		ij		Asynchronou 1 = High spe									
A PART AND		=		0 = Low spe									
-				Synchronous									
		S		Unused in th	is mode.								
			bit 1	TRMT: Trans	smit Shift Re	gister Statu	s bit						
1. 1. 19 16 16		(Tran		1 = TSR em	pty								
		—		0 = TSR full									
			bit 0	TX9D: 9th bi	t of Transmi	t Data, can	be Parity bit						
0 1													

R/W-0

BRGH

R-1

TRMT

R/W-0

TX9D

bit 0

RCSTA (Receive Status and Control Register)	
---	--

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x						
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D						
	bit 7							bit 0						
L:1 7	OPEN: Co.	ial Dark Frank	LI_ L'4											
bit 7	J. 2 J.	rial Port Enal port enabled		DC7/DV/D1	and DC6/I	TV/CV nine a	e corial por	t nine\						
		oort disabled		RCTRAID	aliu KC0/ i	A/CK pills a	is serial por	t pilis)						
bit 6	RX9 : 9-bit	Receive Ena	able bit											
		s 9-bit recept												
		8-bit recept												
bit 5		gle Receive	Enable bit											
	Asynchron Don't care.													
		us mode – N	/laster:											
		es single rec												
		Disables single receive This bit is cleared after reception is complete.												
		us mode – S	-	complete.										
	Don't care.													
bit 4	CREN: Co	ntinuous Re	ceive Enabl	e bit										
	Asynchron													
		s continuous es continuou												
	Synchrono													
		s continuous		til enable bit	CREN is cl	eared (CRE	N overrides	SREN)						
		es continuou												
bit 3		ddress Dete ous mode 9-												
		es address d			pt and load	of the receiv	e buffer wh	en RSR<8>						
	is set													
		es address (,	l bytes are r	eceived and	I ninth bit ca	n be used a	s parity bit						
bit 2		ming Error b		ha.adia.a	DODEO	:-4		- II - I						
	1 = Framin 0 = No frar	g error (can ning error	be updated	by reading	RCREG reg	ister and red	ceive next v	alid byte)						
bit 1		errun Error	bit											
		n error (can		by clearing b	oit CREN)									
	o = No ove													
bit 0	RX9D: 9th	bit of Recei	ived Data (c	an be parity	bit but must	t be calculat	ed by user f	irmware)						

Brzina komunikacije

- Bitovi SPEN (RCSTA[7]) i TRISC [7:6] moraju biti postavljeni da bi se omogućio USART
- Mogući su sledeći modovi:
 - Asinhroni (full-duplex)
 - Sinhroni master (half-duplex)
 - Sinhroni slave (half-duplex)
- Brzina slanja/prijema zavisi od frekvencije osnovnog oscilatora (F_{OSC}), vrednosti upisane u SPBRG registru i stanja BRGH bita po sledećoj formuli:

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64 (X + 1))	Baud Rate = Fosc/(16 (X + 1))
1	(Synchronous) Baud Rate = Fosc/(4 (X + 1))	N/A

Legend: X = value in SPBRG (0 to 255)

Blok dijagram slanja

Koraci za USART slanje

- Inicijalizovati SPBRG na željenu brzinu rada (baud rate).
 Ako je potrebna veća brzina, postaviti BRGH.
- Omogućiti asinhroni serijski port resetovanjem SYNC i postavljanjem SPEN bitova.
- Ako su prekidi prihvatljivi u tekućem režimu rada, postaviti bit TXIE.
- Ako je potrebno prenositi 9 bitova, postaviti TX9 bit
- Omogućiti slanje postavljanjem bita TXEN, što takođe postavlja i TXIF
- Ako se koriste 9 bitova, 9-ti bit upisati u TX9D
- Učitati bajt za slanje u TXREG (čime se pokreće slanje)
- Ako se koriste prekidi, proveriti da li su bitovi GIE (Global Interrupt Enable) i PEIE (Peripheral Interrupt Enable) u registru INTCON postavljeni

Blok dijagram prijema

Koraci za USART prijem

- Inicijalizovati SPBRG SPBRG na željenu brzinu rada (baud rate).
 Ako je potrebna veća brzina, postaviti BRGH.
- Omogućiti asinhroni serijski port resetovanjem SYNC i postavljanjem SPEN bitova.
- Ako su prekidi prihvatljivi u tekućem režimu rada, postaviti bit RCIE.
- Ako je potrebno prenositi 9 bitova, postaviti RX9 bit
- Omogućiti prijem postavljanjem bita CREN
- Fleg bit RCIF se postavlja kada je završen prijem, a prekid se generiše, ako postavljen RCIE
- Pročitati RCSTA, da bi se očitao 9. bit (ako je omogućen) i utvrdilo da li postoji greška u prijemu
- Očitati 8 primljenih bitova iz RCREG
- Ako se desila greška, obrisati je resetovanjem bita CREN
- Ako se koriste prekidi, proveriti da li su bitovi GIE (Global Interrupt Enable) i PEIE (Peripheral Interrupt Enable) u registru INTCON postavljeni

SPI magistrala

- Serial Peripheral Interface (SPI) je sinhroni serijski komunikacioni interfejs za komunikaciju na kratkim rastojanjima (najčešće u okviru *embedded* sistema)
- Razvila Motorola sredinom 80-tih
- Full-duplex komunikacija sa master-slave arhitekturom (samo 1 master)
- Master inicira komunikaciju; u konfiguraciji više slave uređaja, selekcija se vrši SS (Slave Select) signalom
- Magistrala sa 4 linije:
 - SCLK (Serial Clock) izlaz iz mastera
 - MOSI (Master Output Slave Input) izlazni podaci mastera
 - MISO (Master Input Slave Output) izlazni podaci slave-a
 - SS (Slave Select) izlaz iz mastera; selekcija slave-a niskim nivoom

SPI prenos podataka

- Master prvo konfiguriše takt, a zatim selektuje slave uređaj
- Nekada je potrebno da master sačeka izvesno vreme pre aktiviranja takta
- Tokom svakog otkucaja takta ostvaruje se full-duplex komunikacija (master šalje jedan bit preko MOSI linije, koji slave prihvata, dok istovremeno slave šalje jedan bit preko MISO linije ka masteru; komunikacija je dvosmerna čak i kada samo jedan ima podatke za slanje)
- Komunikacija uključuje dva pomeračka registra, povezana u virtuelni prsten
- Podaci se obično šalju od msb ka lsb; nakon onoliko taktova kolika je dužina pomeračkih registara, master i slave su razmenili njihovu sadržinu (a nakon toga se pune nove vrednosti i proces nastavlja)

SPI konfiguracije

Nezavisni *slave* uređaji

Daisy-chain

PIC 16F87X pinovi za SPI komunikaciju

Blok dijagram SPI moda

Registri:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Rec/Trans Buffer (SSPBUF)
- SSP Shift Register (SSPSR)

SSPSTAT (94h) statusni registar

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0

bit 7 SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in Slave mode.

bit 6 CKE: SPI Clock Select bit

1 = Transmit occurs on transition from active to Idle clock state

0 = Transmit occurs on transition from Idle to active clock state

Note: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

bit 5 D/A: Data/Address bit

Used in I²C mode only.

bit 4 **P:** Stop bit

Used in I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.

bit 3 S: Start bit

Used in I²C mode only.

bit 2 R/W: Read/Write bit information

Used in I²C mode only.

bit 1 UA: Update Address bit

Used in I^2C mode only.

bit 0 BF: Buffer Full Status bit (Receive mode only)

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

SSPCON1 (14h) kontrolni registar 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| hit 7 | | | | • | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

- 1 = The SSPBUF register is written while it is still transmitting the previous word. (Must be cleared in software.)
- 0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. (Must be cleared in software.)
- 0 = No overflow

Note: In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit

- 1 = Idle state for clock is a high level
- 0 = Idle state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.

0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled.

0011 = SPI Master mode, clock = TMR2 output/2

0010 = SPI Master mode, clock = Fosc/64

0001 = SPI Master mode, clock = Fosc/16 0000 = SPI Master mode, clock = Fosc/4

Note: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

I²C magistrala

- I²C (Inter-Integrated Circuit) je sinhrona, multi-master serijska magistrala sa skretnim paketima
- Uveo Philips Semiconductor 1982.
- Koristi se za povezivanje sporih periferija na kratkim rastojanjima (u okviru ploče) na procesore i mikrokontrolere
- Koristi dve bidirekcione linije: SCL (clock do 1MHz) i SDA (data)
- Referentni model ima 7-bitne adrese, ali postoji i 10-bitna ekstenzija, što omogućuje masteru da poveže do 1023 slave uređaja
- Brzina prenosa podataka od 10kb/s, preko 100kb/s i 400kb/s, do 1Mb/s i 3.4Mb/s

I²C komunikacija

- Master je inicijalno u modu za slanje i šalje START signal, za kojim sledi 7 bitova adrese slave-a sa kojim želi da komunicira
- Zatim sledi 1 bit koji definiše da li želi da upiše (0) ili da čita (1) podatak od slave-a
- Ako je slave na magistrali, odgovara ACK bitom (niska aktivna vrednost)
- Master nastavlja sa slanjem ili prijemom, a slave ga prati odgovarajućim režimom
- I adresa i podaci šalju se počinjući od msb
- START bit se signalizira prelaskom SDA sa visokog na niski nivo, dok je SCL (clock) na visokom, STOP prelaskom SDA sa niskog na visoko, dok se sve ostale promene SDA javljaju dok je SCL na niskom nivou

I²C komunikacija

- Ako master želi da šalje podatke slave-u (write), on uzastopno šalje bajtove, dok slave šalje ACK bitove nakon svakog bajta
- Ako master želi da prima podatke da slave-a (read), slave uzastopno šalje bajtove, dok master šalje ACK bitove nakon svakog bajta, osim poslednjeg
- Master završava poruku slanjem STOP signala ukoliko želi da završi transakciju ili šalje novi START signal da bi zadržao kontrolu nad magistralom za narednu poruku (ako se transakcija sastoji od više poruka)

PIC 16F87X pinovi za I²C komunikaciju

Blok dijagram I²C moda

Mrežni (žičani) linkovi

- CAN magistrala
- LIN magistrala
- USB
- Ethernet

- **Controller Area Network (CAN)** razvijena je 80-tih godina (protokol je zvanično objavljen 1986.) za komunikaciju podsistema u motornim vozilima (kontrola motora, vazdušni jastuci, kočioni sistem,...)
- Dvožična magistrala (upredena parica, karakteristične impedanse 120Ω) koja povezuje sve ECU (*electronic control units*) korišćenjem opencollector (žičanih "ili") veza
- ISO 11898-2 (high speed CAN) omogućuje brzinu prenosa podataka do 1MB/s (5MB/s za CAN-FD), ima linearnu topologiju i na oba kraja je zatvorena otpornikom od 120Ω (max. dužina 40m)
- ISO 11898-3 (low speed ili fault tolerant CAN) omogućuje brzinu prenosa podataka do 125kB/s, ima linearnu topologiju, topologiju zvezde ili višestruke zvezde i na krajevima je zatvorena otpornikom od 100 Ω (do

Electronic

control unit 1

ECU2

CAN Hi

CAN Lo

Actuators

Current

+12 V

drive

etc

Sensors

500m)

- Kada se prenosi 0, CAN High raste ka 5V, a CAN Low pada ka 0V (tj. povećava se razlika na ~2V), a kada se prenosi 1 ne napajaju se (obe linije na istom potencijalu)
- Poruke se sastoji od ID-a (koji određuje i prioritet), podataka (do 8B), CRC-a, ACK bitova
- Svi čvorovi mogu da šalju podatke, ali ne istovremeno
- CAN specifikacija bitove naziva:
 - "dominantnim" (logička "0", aktivno napajanje od strane pošiljaoca)
 - "recesivnim" (logička "1", otpornik pasivno vraća napajanje)

- Neaktivno stanje predstavljeno je recesivnim nivoom (logičko "1")
- Ako jedan čvor šalje dominantni bit, a drugi recesivni, nastaje kolizija i dominantni pobeđuje
- Obzirom da se prvo prenosi 11-bitni ID, čvor sa manjim brojem pobeđuje i bez zastoja nastavlja da šalje poruku, a čvor sa većim brojem se povlači (rešavanje prioriteta u realnom vremenu)
- CAN mreža može da bude konfigurisana da radi sa dva formata okvira:
 - Standardni (osnovni) 11-bit ID
 - Prošireni 29-bit ID (11-bit osnovni + 18-bit proširenje)
- Format se specificira IDE bitom, koje je dominantan (0) u slučaju osnovnog formata, tj. recesivan (1) u slučaju proširenog formata

	Start ID Bits											The Rest of the Frame	
	Bit	10	9	8	7	6	5	4	3	2	1	0	The Rest of the Flame
Node 15	0	0	0	0	0	0	0	0	1	1	1	1	
Node 16	0	0	0	0	0	0	0	1	Stopped Transmitting				
CAN Data	0	0	0	0	0	0	0	0	1	1	1	1	

- CAN ima 4 tipa okvira:
 - Data sadrži podatke
 - Remote zahtev za slanjem od odgovarajućeg čvora
 - Error šalje čvor koji je otkrio grešku
 - Overload unosi kašnjenje između Data ili Remote okvira

Data okvir (osnovni)

- SOF (Start of Frame) početak okvira (1 bit)
- ID identifikator/prioritet (11 bitova, zelena)
- RTR (Remote Transmission Request) mora biti 0 za Data okvir (1 bit, plava)
- IDE (*Identifier Extension*) mora biti 0 za osnovni format (1 bit)
- DLC (*Data Length Code*) br. bajtova u Data delu (4 bita, žuta)
- Data korisni podaci koji se šalju (0-64 bita, crvena)
- CRC kontrolna suma (15 bitova)
- CRCD (CRC Delimiter) mora biti 1 (1 bit)
- ACKS (ACK Slot) pošiljalac postavlja 1, a primalac potvrđuje sa 0 (1 bit)
- ACKD (ACK Delimiter) mora biti 1 (1 bit)
- EOF (End of Frame) mora biti 1 (7 bitova)

Umetanje bitova (Bit Stuffing)

 Da bi se održala sinhronizacija (jer se koristi NRZ kodiranje), bit suprotnog polariteta se umeće nakon 5 uzastopnih bitova istog polariteta

LIN magistrala

- LIN (Local Interconnection Network) je serijski mrežni protokol za komunikaciju komponenata unutar vozila
- Nastaje kao "jeftina" varijanta mreže, jer je CAN skup za implementaciju na svakoj komponenti u vozilu
- Kasnih 90-tih formiran je LIN konzorcijum (BMW, Volkswagen Group, Audi Group, Volvo, Mercedes-Benz) koji 2002 objavljuje prvu verziju (tačnije v1.3) LIN specifikacije
- LIN je "broadcast serijska" mreža koja obuhvata 16 čvorova (1 master i do 15/16 slave čvorova)
- Sve poruke inicira master, a najviše 1 slave odgovara (master može sam odgovoriti na svoju poruku, tada se ponaša kao slave)
- Pošto sve poruke inicira master, nema kolizije

Master

MCU

USART TX

LIN se može javiti kao podsistem, povezan na *backbone* koga čini
CAN

LIN transceiver Slave

MCU

+ LIN

TRX

Slave

MCU

+ LIN

TRX

LIN format okvira

- Master postavlja na mrežu zaglavlje (Break, Sync i ID), a slave koji prepozna ID dopunjuje ostatak poruke (Data i Checksum)
- **Break** svaki LIN okvir počinje sa 13 dominantnih i 1 recesivnim bitom
- Sync 0x55, omogućuje slave uređajima da utvrde bitsku brzinu prenos i sinhronizuju se sa masterom
- ID identifikator poruke (6+2 bita; 6 za ID, 2 msb za proveru parnosti ⇒ 64 različita ID)
 - 0-59 Data okviri
 - 60-61 dijagnostički okviri (uvek 8B u Data delu)
 - 62 rezervisano za korisnička proširenja
 - 63 rezervisano za buduća unapređenja protokola
- **Data** 1-8B korisnih podataka koje prosleđuje *slave*
- Checksum 8-bitna kontrolna suma (suma svih bajtova i oduzimanje 255, svaki put kada se dostigne ili premaši 256; sabiraju se samo Data bajtovi (klasični algoritam) ili i ID ("unapređeni" algoritam)
- Za svaki ID, u planskoj tabeli, čuva se razmak između okvira

Universal Serial Bus (USB)

- Industrijski standard za komunikaciju između računara, periferija i drugih računara
- 4 provodnika: D+ i D- (upredena parica za prenos signala), napajanje (+5V, za napajanje uređaja koji zahtevaju manje od 500mA) i uzemljenje
- 2 tipa standardnih konektora: A (ravni) i B (četvrtasti) i 3 tipa mini i mikro konektora: A, B i AB
- Brzine od 1.5Mb/s (v1.0 low speed), preko 12Mb/s (v1.0 full speed), 480Mb/s (v2.0), 5Gb/s (v3.0), 10Gb/s (v3.1), 20Gb/s (v3.2) do 40Gb/s (v4.0)
- Za detalje pogledati vežbe

Ethernet

- Najčešća implementacija lokalne mreže
- Brzine od 10Mb/s, preko 100Mb/s i 1GB/s, do 100Gb/s
- Za format poruka i protokol za komunikaciju pogledati vežbe iz Računarskih mreža
- Microchip nudi podršku za 10Mb/s Ethernet kroz:
 - nezavisne kontrolere sa SPI interfejsom (npr. ENC28J60)
 - module integrisane u PIC MCU (npr. PIC18F97J60)

Bežični linkovi

- Infrared
- Radio
- Wi-Fi
- Zigbee

Infrared (IR)

- Već dugo se koristi za upravljanje TV uređajima i drugim kućnim aparatima
- Frekvencija svetlosnih impulsa je neznatno ispod vidljivog dela spektra, tako da ambijentalna svetlost ne utiče na prijemnik
- Potrebna je optička vidljivost (moguća je refleksija od okolnih površina)
- Potreban je posrednik (MCP2122) za komunikaciju
 PIC MCU (preko USART-a) i IR transivera TFDU 4100
- TFDU 4100 ima IR LED i PIN fotodiodu

Infrared (IR)

- Potreban je 16x viši takt od takta kojim USART šalje bitove
- Kada se šalje 0, javlja se impuls koji uključuje IR LED (1 ne stvara impuls)
- Impuls je širini ~3 taktna intervala i javlja se na 7 taktova od ivice podatka
- Podrazumeva se 1 start i 1 stop bit (resinhronizacija na 10 bitova)

Radio-veza

- Upravljanje preko radio-veze (modelima aviona, brodova i automobila), bila je jedna od prvih primena ovog vida komunikacije
- Identifikacija radio frekvencijom (RFID) se koristi za promet robe, identifikaciju životinja, sigurnosne sisteme i sl. (pasivni identifikator sadrži MCU i predajnik, koga preko magnetne zavojnice napaja čitač ID-a; primer pasivnog RFID uređaja je Microchip MCRF355)
- Daljinski radio-upravljani prekidači koriste se za automatske kapije, motorna vozila i sl.

Wi-Fi

- Najpoznatiji tip bežične komunikacije je "bežična lokalna mreža" (WLAN)
- Radi na 2.4GHz, sa kanalima razdvojenim po 5MHz
- Domet ~50m
- Microchip Wi-Fi transiver malog dometa MRF24WB0Mx (vezuje se preki SPI porta) i omogućuje prenos brzinom 2Mb/s
- Zahteva sa PIC18 ili jači MCU, jer je TCP/IP stek potreban za komunikaciju prilično zahtevan

Zigbee

- Mrežni sistem namenjen nadgledanju i upravljanju
- Podržava topologiju zvezde, stabla i meša
- Čine ga mali uređaji, male potrošnje (obično napajani baterijom) koji komuniciraju brzinom 20-900 kb/s, na frekvenciji 868MHz (Evropa), 915MHz (SAD) ili 2.4GHz
- Tri uloge uređaja: koordinator, ruter i krajnji uređaj
- Svaka mreža mora da ima jednog koordinatora (u topologiji zvezde, koordinator je centralni čvor)
- Zigbee ruteri proširuju komunikaciju na mrežnom nivou i omogućuju topologije stabla i meša
- Microchip MRF24J40XX je 2.4GHz Zigbee RF transiver koji se povezuje preko SPI porta (SDI, SDO, CS i SCK) na MCU i omogućuje prenos podataka brzinom 250 ili 625 kb/s

Poređenje serijskih linkova

Link	MCU/ Port	Configuration	Protocol/Type	Signal	Data	Typical Speed (bits/s)	Interface	Error Check	Range	Typical Applications
RS-232	All PICs USART	Synchronous Asynchronous	RS-232	TTL or diff. voltage drive	1 byte	9600-115,200	Voltage driver ±12V	Parity	100m	Simple slow serial port, wireless transceiver
RS-422	USART Asynch	Up to 10 receivers	RS-232 based	Differential transceivers	1 byte	10M max	Voltage driver ±6V	Parity	1km	PLC programmer, small controller network
RS-485	USART Asynch	Up to 256 Transceivers	RS-232 based	Differential transceivers	1 byte	10M max	Voltage driver +12V/-6V	Parity	1km	Industrial control systems
SPI	MSSP	Hardware slave select	Master/slave	TTL on board	1 byte	10M max	2-wire 5V supply	None	1m	Link MCUs and peripherals Interface with RF transceivers
I ² C	MSSP	Software slave address	Master/slave	TTL on board	1 byte frame	1M max	2-wire 5V Supply	None.	1m	Memory expansion Sensor interface
CAN	18FXX upwards	ECU network	Peer to peer addressing	Differential transceivers	8 byte frame	1M max	2-wire 12V supply	CRC	10m	High-performance motor vehicle control system
LIN	All PICs RS-232	Master + 16 slaves	Broadcast system	Wired OR transceivers	8 byte frame	10k max	1-wire with 12V pull-up	Checksum	10m	Low-cost motor vehicle control network
Infrared	USART	Master/slave	Point to point	IR transceiver	1 byte	9600-115,200	IR diode & photo-detector	Parity, CRC	10m	TV remote control
Radio Control	PWM	Hand-held 2/4 channel RF	Pulse width modulation	1-2ms	N/A	50 pulses per sec	2.4GHz band carrier	N/A	1km	Model craft remote control

Poređenje serijskih linkova

Link	MCU/ Port	Configuration	Protocol/Type	Signal	Data	Typical Speed (bits/s)	Interface	Error Check	Range	Typical Applications
RFID	RS-232	RF transceiver + RFID tag	Simple data frame	Simple pulse modulation	104-bit ID code	70k max	13.56MHz carrier	Checksum	0.1m	Product, customer, etc. Identification tag
Keeloq	Host I ² C	Remote tag transmitter	Secure Encryption	Simple PCM	32 bits	N/A	433MHz Carrier	Block cypher	100m	Motor vehicle remote locking
USB	Selected PICs	Master +127 slaves	1 to 1 or star network	Differential transceivers	1023	V1 12M V2 480M	2-wire with 5V supply	CRC	10m	Temporary connection to peripherals, memory, etc.
Zigbee	SPI, 24F upwards	WPAN	Lower level networking	Wireless transceivers	Not specified	250k or 625k	2.4GHz transceiver	CRC	100m	Small wireless network for sensor control and data logging
Ethernet	Selected PICs	Server + LAN	Distributed network	Differential transceivers	1500	10M-1 G	2-pair	CRC	1km	Internet monitoring and control
Wi-Fi	SPI, 18F upwards	RF transceiver network + server	Full TCP/IP	Multichannel FDM	1500	2 M max	2.4GHz transceiver	CRC	100m	Internet monitoring and control

