## **EJEMPLOS DE CLASE – MODELOS EQUIVALENTES**

1. Dado el siguiente circuito hallar el equivalente Thévenin entre los puntos A y B.



**Rta:**  $R_{Th} = 4 \Omega$ ,  $V_{Th} = 3 V$ 

2. Dado el siguiente circuito hallar el equivalente Thévenin entre los puntos A y B.



**Rta:**  $R_{Th} = 7 \Omega$ ,  $V_{Th} = 60 V$ 

**3.** Encuentre la corriente (i) entre que pasa a través de la resistencia de  $10\Omega$ .



**Rta:** i = 1 A

**4.** Dados los siguientes circuitos encuentre sus equivalentes Norton y Thévenin respectivamente:



3A **1 5**Ω

**Rta:**  $R_N = 14 \Omega, I_N = 2 A$ 

**Rta:**  $R_{Th} = 5 \Omega, V_{Th} = 15 V$ 

**5.** La fuente de una señal tiene un voltaje de circuito abierto de 10~mV y una corriente de cortocircuito de  $10~\mu A$ . ¿Cuál es la resistencia de la fuente?

Rta:  $R_{Th} = 1 k\Omega$ 

**6.** Calcule el equivalente Thévenin del siguiente circuito.



**Rta:**  $R_{Th} = -1 \Omega$ ,  $V_{Th} = 6 V$ 

7. Calcule el equivalente Thévenin del siguiente circuito.



**Rta:** 
$$R_{Th} = \frac{4}{6}k\Omega = 666.67 \Omega$$
,  $V_{Th} = \frac{4}{3}V = 1.33 V$ 

8. Encuentre el equivalente Norton del circuito mostrado a continuación.



**Rta:**  $R_N = 7.58 \,\Omega$ ,  $I_N = 1.13 \,A$ 

9. Encuentre el equivalente Norton del circuito mostrado a continuación.



**Rta:**  $R_N = -3 \Omega$ ,  $I_N = -24 A$