

Course Code				
Course Category	Basic Sciences			
Course Title	Transform Technique & Vector			
	Calculus(TTVC)			
Total Teaching Hrs and Credits	Lectures	Tutorial	Laboratory	Credits
	30	15		2+1=03

Pre-requisites:

• LADC & IC (Mathematics in F. Y. B. Tech)

Course Objectives:

- 1. To understand integral transform techniques and their applications.
- 2. To learn vectors calculus for applications in engineering field.

Course Outcomes:

After completion of this course students will be able to

- 1. Solve problems related to Fourier Transforms
- 2. Solve problems using Z transforms
- 3. Apply the knowledge of vector calculus for solving engineering problems

Course Contents:

- 1. Fourier Transform
- 2. Z-Transform
- 3. Vector Differential Calculus
- 4. Vector Integral Calculus

Tutorial Exercises:

- 1. Fourier Sine and Cosine Transforms.
- 2. Finite & Discrete Fourier Transform
- 3. Z-Transform and Inverse Z-Transform.
- 4. Solution of Difference Equation
- 5. Vector differentiation- problems on tangential & normal component, velocity, acceleration.
- 6. Gradient, divergence and curl.
- 7. Work done, Green's Lemma
- 8. Stoke's and Divergence Theorem.

Two tutorials will be conducted using Mathematical Software. Tutorial shall be engaged in four batches (batch size of 15 students) per division.

Learning Resources:

Reference Books

- 1. KreyszigErwin, "Advanced Engineering Mathematics", 10th edition, Wiley Eastern Limited 2015.
- 2. O' Neil Peter, "Advanced Engineering Mathematics", 8th edition, Cengage Learning 2015.

- 3. Greenberg Michael D., "Advanced Engineering Mathematics", 2nd edition, Pearson 2009.
- 4. Grewal B.S., "Higher Engineering Mathematics", 43rd edition Khanna Publishers 2014

Supplementary Reading:

Weber H.J. and Arfken G.B. "Mathematical Methods For Physicists", 6th edition, Academic Press 2011.

Web Resources:

http://nptel.ac.in/courses/111105035/6 http://nptel.ac.in/courses/111105090

MOOCs:

https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/

Pedagogy:

- 1. Co-teaching
- 2. Audio- video techniques
- 3. Tutorials and class tests

Assessment Scheme:

Class Continuous Assessment: 100 Marks

Assignment/ short term Question answers Tests	Tutorial	Mid Term Test	Total
20 Marks	50 Marks	30 Marks	100 Marks

Laboratory Continuous Assessment: NA

Term End Examination: 50 marks

Dr. Prasad Khandekar Dean

Syllabus: Theory

Module	Contents	Workload in Hrs
No.	Contents	Theory
	Fourier Transform: Fourier Integral theorem, Fourier Sine and	
1	Cosine Transforms, Inverse Fourier Transform.	08
	Finite Fourier Transform, Discrete Fourier Transform.	
2	Z-Transform: Definition, Properties, Z- transform of standard	08
	sequences and their inverse, solution of difference equations.	Vo
3	Vector Differential calculus: Physical interpretation of Vector	
	differentiation, Vector differential operator, Gradient,	07
	Divergence and Curl, Directional derivative, Vector identities.	
4	Vector integral Calculus: Line, Surface and Volume integration,	
	Work done, Green's Lemma, Stoke's and Divergence Theorem.	07
	Applications in Engineering field(branch specific)	

Tutorial:

Module	Contents	Workload in Hrs
No.	Contents	Tutorial
1	Fourier Sine and Cosine Transforms.	02
2	Finite & Discrete Fourier Transform	02
3	Z-Transform and Inverse Z-Transform.	02
4	Solution of Difference Equation	02
5	Vector differentiation- problems on tangential & normal component, velocity, acceleration.	02
6	Gradient, divergence and curl.	02
7	Work done, Green's Lemma	02
8	Stoke's and Divergence Theorem.	01