Introduction Support Vector Machine

Support vector machine was first coined in 1960. It's a supervised learning algorithm used to separate the data sets into two possible classes.

Introduction Support Vector Machine

SVM basically draws a decision boundary to separate the two data sets from each other. The data points touching the decision boundary are called support vectors

Non linear SVM Support Vector Machine Kernel Technique

Kernel Technique is used for the non linear SVM where we go form lower dimension to higher dimension for non linear data.

Low dimension

Kernel Technique

Kernel Technique

Kernel Technique

Kernel Technique

Kernel Technique

Kernel Technique

Three types of Kernel:

1): Linear Kernel

2): Polynomial Kernel

3): Radial basis Kernel

Applications Support Vector Machine

- 1): Text categorization
- 2): Image classification
- 3): Face detection
- 4): Hand-written text detection
- 5): Biometrics

Project

Support Vector Machine

Breast cancer data

```
#Step1: Load all the libraries
from sklearn import datasets
from sklearn.model selection import train test split
from sklearn import svm
from sklearn import metrics
#Step2: Load the data
d = datasets.load breast cancer()
#Now to explore the data
print(d)
```


Breast cancer Support Vector Machine **Project** data #Step3: Clean the data: Data is already clean #Step4: Split the data into train and test x_train, x_test, y_train,y_test=train_test_split(d.data,d.target,test_size=0.4,random_state=209) #Step5: Create the machine model model = svm.SVC(kernel='linear') #Step6: Train the machine model using fit method model.fit(x train, y train) >> SVC(C=1.0, break ties=False, cache size=200, class weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear', max iter=-1, probability=False, random state=None, shrinking=True, tol=0.001, verbose=False)

Breast cancer Project Support Vector Machine #Step7: Prediction of the model prediction=model.predict(x test) print(prediction) >> array([0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0])

Project

Support Vector Machine

Breast cancer data

#Print the classification report
c_report=metrics.classification_report(y_test,y_pred=prediction)
print(c_report)

>>

		precision	recall	f1-score	support
	0	0.91	0.90	0.91	94
	1	0.93	0.94	0.94	134
accur	accuracy			0.93	228
macro	avg	0.92	0.92	0.92	228
weighted	avg	0.93	0.93	0.93	228

Project

Support Vector Machine

Breast cancer data

#Print the classification report
c_report=metrics.classification_report(y_test,y_pred=prediction)
print(c_report)

>>

	precision	recall	f1-score	support
0	0.91	0.90	0.91	94
1	0.93	0.94	0.94	134
accuracy			0.93	228
avg	0.92	0.92	0.92	228
avg	0.93	0.93	0.93	228
	1 acy avg	0 0.91 1 0.93 acy	0 0.91 0.90 1 0.93 0.94 acy avg 0.92 0.92	0 0.91 0.90 0.91 1 0.93 0.94 0.94 acy 0.92 0.92 0.92

COMPLETE CODES ON ONE PAGE

from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import svm from sklearn import metrics d = datasets.load_breast_cancer() x_train, x_test, y_train,y_test=train_test_split(d.data,d.target,test_size=0.4,random_state=209) model = svm.SVC(kernel='linear') model.fit(x_train,y_train) prediction=model.predict(x_test) accuracy=metrics.accuracy_score(y_test,y_pred=prediction) c_report=metrics.classification_report(y_test,y_pred=prediction)