1 函數的極限

1. 函數的極限有分成左極限和右極限:

• 左極限: $\lim_{x\to a^-}f(x)=L$,表示當 x 趨近於 a 時,f(x) 從左邊接近 L。

• 右極限: $\lim_{x \to a^+} f(x) = L$, 表示當 x 趨近於 a 時 , f(x) 從右邊接近 L \circ

2. 如果左極限和右極限都存在且相等,則稱 $\lim_{x\to a} f(x) = L$ 。

3. 如果 $\lim_{x\to a} f(x)$ 存在,且 f(a) = L,則稱 f(x) 在 x = a 處**連續**。

4. **勘根定理**:假設 f(x) 在 [a,b] 連續,且 f(a)f(b)<0,則存在 $c\in(a,b)$ 使 得 f(c)=0 \circ

例題:

1. 已知 f(x) 是三次實係數多項式且 k 為一個常數。若 $\lim_{x\to 2} \frac{f(x)}{x-2} = -5$, $\lim_{x\to 3} \frac{f(x)}{x-3} = 7$,且 $\lim_{x\to 1} \frac{f(x)+k}{x-1}$ 存在,求 $\lim_{x\to 1} \frac{f(x)+k}{x-1}$ 的值。

2. 設 P 點在抛物線 $y = x^2$ 上且在第一象限,O 為原點。在 x 軸正向上取一點 Q,使的 $\overline{OP} = \overline{OQ}$,接直線 \overline{QP} 交 y 軸於 R 點。當 P 點沿著抛物線趨近於原點時, R 點的座標趨近於何值?

3. 設 $f(x) = (x-16)^2(x-17)^2 + 3x$,請證明至少有一個時數 c 使得 f(c) = 50。

4. 承上題,已知其中一個 c 介於 16 與 17 之間,請求出 c 的值。

5. 請求出以下函數的極限:

(a)
$$\lim_{x\to 6} \left(\frac{2x-17}{x^2-7x+6} + \frac{x-5}{x-6} \right)$$

(b)
$$\lim_{x \to 1} \frac{1}{x-1} \left(\frac{1-x^{20}}{1-x} - 20 \right)$$

(c)
$$\lim_{x \to -1} \frac{|x^2 - 2x - 3|}{x + 1}$$

(d)
$$\lim_{x \to 0} \frac{|2 + 3x - x^2| - 2}{x}$$

(e)
$$\lim_{x \to 0} x^2 [\frac{1}{x}]$$

2 微分

- 1. 微分的概念是描述函數在某點的變化率。簡言之,我們討論當 x 在某點有極小的變化時,f(x) 的變化量。微分也可以稱作為**導數**。
- 2. 因此, 導數的公式可以寫成:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

,同時也能表現成

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- ,其中 $h \neq x a$ 的變化量。
- 3. 如果說 f(x) 在某一點可微,則代表 f(x) 在該點**連續且極限存在**。
- 4. **萊布尼茲符號**: 導數也可以用萊布尼茲符號表示為 $\frac{dy}{dx}$, 其中 y = f(x) 。
- 5. 導數的幾何意義是函數圖形在某點的切線斜率。
- 6. 微分的計算規則:
 - (a) 常數函數的導數為零: $f(x) = c \Rightarrow f'(x) = 0$ 。
 - (b) 幂函數的導數: $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$ 。
 - (c) 和差法則: $f(x) = g(x) + h(x) \Rightarrow f'(x) = g'(x) + h'(x)$ 。
 - (d) 乘法法則: $f(x) = g(x)h(x) \Rightarrow f'(x) = g'(x)h(x) + g(x)h'(x)$ 。
 - (e) 除法法則: $f(x) = \frac{g(x)}{h(x)} \Rightarrow f'(x) = \frac{g'(x)h(x) g(x)h'(x)}{(h(x))^2}$ 。
 - (f)
 鏈式法則:如果 y=g(u)且 u=f(x),則 y'=g'(u)f'(x)。

3

- (g) 指數函數的導數: $f(x) = a^x \Rightarrow f'(x) = a^x \ln(a)$ °
- (h) 對數函數的導數: $f(x) = \log_a(x) \Rightarrow f'(x) = \frac{1}{x \ln(a)}$ °

例題:

- 1. 下列哪些函數在 x=0 處可微?
 - (a) f(x) = x + |x|
 - (b) f(x) = x|x|
 - (c) f(x) = x [x]
 - (d) $f(x) = \sqrt{|x|}$
 - (e) $f(x) = x^2 \sin \frac{1}{x}, x \neq 0; 0, x = 0$
- 2. 請計算下列函數的導函數:

(a)
$$f(x) = 3x^2 - 5x + 2$$

(b)
$$f(x) = \sqrt{x^2 + 1}$$

(c)
$$f(x) = \frac{x^2+1}{x-1}$$

(d)
$$f(x) = (2x+1)^{200}$$

(e)
$$f(x) = (2x+1)^{100}(2-3x)^{200}$$

- 3. 已知兩個曲線 $y=x^3+ax$ 和 $y=x^2+bx+c$ 都通過點 P(1,2),且他們在點 P 處的切線斜率相等。求 a,b,c 的值。
- 4. 設 f(x)=(x-a)(x-b)(x-c),其中 a,b,c 為實數,且 a>b>c,a+c>2b。 請排序 f'(a),f'(b),f'(c) 的大小。

- 6. 已知直線 x+y=2 和曲線 $y=ax^3$ 相切,求 a 的值。
- 7. 設函數 $f(x) = |(x-1)^3(x+1)|$, 選出正確的選項:
 - (a) f(x) 在 x=1 處導數存在
 - (b) f(x) 在 x = -1 可微分
 - (c) f'(0) = -2
 - (d) $\lim_{x \to 1} f(x) = f(1)$
 - (e) f(x) 在 x = -1 處連續