FLUKA Update

Ethan Cline

ewcline@mit.edu

LNS Massachusetts Institute of Technology

> Simulation Meeting January 15, 2024

Electronics Hardness

All important risks of damage to electronics can be score in FLUKA

- Cumulative damage
 - Energy deposition (ionizing)
 - Lattice displacement (1-MeV *n* equivalent fluxes, non-ionizing)
- Single event upsets
 - $\bullet\,$ "High" energy hadrons (> 20 MeV), not significant with 30 MeV beam energy

Simulated Shielding

As a starting point:

- 1 cm thick lead sheet around GEMs, 10 cm high, no roof, for gammas
- 5 cm thick borated polyethylene around chamber, for neutrons

Unfortunately, exact placement of permanent magnets is still up in the air, can impact shielding

Acceptable Levels

- Non-ionizing energy loss (NIEL)
 - A quick literature search indicates a total 1 MeV n equiv. flux $\mathcal{O}(10^{14})/\text{cm}^{-2}$ has a noticeable impact on SiPM breakdown voltage
 - Dark current begins to increase $\mathcal{O}(10^{10})/\text{cm}^{-2}$, and we lose single photon resolution
- Ionizing energy loss (IEL)
 - Surface current density roughly doubles around 10⁵ Gy
 - Plastic damage at 10⁸ Gy

NIEL reference

https://www.sciencedirect.com/science/article/pii/S0168900218315055

IEL reference

https://www.sciencedirect.com/science/article/pii/S0168900213007420?via%3Dihub

FLUKA Results

- 1 MeV n equiv. NIEL
 - With shielding we see $\mathcal{O}(10^{10})/\text{cm}^{-2}/\text{hour}$
 - Indicates we can run for 10⁴ hours before we begin to see any impact on scintillator resolution and dark current
- γ -related IEL
 - With shielding we see 10⁴ Gy
 - Indicates we can run for 10 hours before dark current begins to increase
 - Can run for 10⁴ hours before damage to plastic becomes serious

Bonus: Presented on minor hot spots near experiment hall roof from γ at collab meeting. Those spots disappear completely with additional experiment shielding.

Next Steps

- Implement detectors in FLUKA
- Understand dark current limits
- Implement slanted lead shielding