RSA fast encryption with short public exponent

- RSA ops with public exponent e can be speeded-up
 - Encryption, Digital signature verification
 - The public key e can be chosen to be a very small value and RSA is still secure
 - Values
 - e = 3 #MUL + #SQ = 2 (commonly used in practice)
 - e = 17 #MUL + #SQ = 5
 - $e = 2^{16}+1$ #MUL + #SQ = 17 (avoid small exp attack)
 - $-\gcd(e,\Phi(n))=1$ must hold.

Apr-25

The RSA Cryptosystem

61

61

RSA encryption overhead: exercise [

- Exercise
 - Assume a 2048-bit modulus and a 32-bit CPU
 - Determine decryption computing overhead (expression)

= 2048+1024 = 3072 multiplications

and those are 2048 bolls multiplications. So we have to split them In blocks of 32 bolls. Result in principle would be 2-2048 bolls, so we take modulo on of the multiplication.

Result = axb mode

Apr-2

The RSA Cryptosystem

63

63

RSA encryption overhead: exercise [

- Solution (naïve multiplication)
 - On average #MUL+#SQ = 1.5 × 2048 = 3072 long
 multiplications each of which involves 2018-bit operands
 - Cost of a single long-number multiplication
 - Each operand requires 2048/32 = 64 x 32-bit words
 - Each long-number multiplication requires $64^2 = 4096$ integer multiplications (antique multiplication as 32 bilk × 32 b
 - Modulo reduction requires $64^2 = 4096$ integer multiplications
 - In total 4096 + 4096 = 8192 integer multiplications for a single long multiplication
 - Total number of integer multiplications
 - 3072 × 8192 = 25.165.824 integer multiplications

Apr-25 The RSA Cryptosystem

64 * In a 32 bills stroke set we can perform 32 bill multiplication.

Birg over feed its to make all rows x columns multiplications:

So 642 32 bills multiplications. The remainder its of an alleger discrete, completely is squared again. So 642 additional discrete multiplication.

So 8132 discrete multiplications for a single long multiplication.

Last skep: 3072 long multiplications so (1)

RSA encryption overhead: exercise

64

- · Solution (Montgomery multiplication) Makes multiple, and modulus more afficient
 - Montgomery Multiplication interleaves multiplication and reduction so
 - Number of integer multiplications for one 64×32-bit
 Montgomery multiplication = 4096
 - Total number of integer multiplications = 3072 × 4096
 12.582.912
- Intuition
 - At each step, the Montgomery method avoids the slow division that naive multiplication leans on, cutting the work nearly in half

Apr-25 The RSA Cryptosystem

65

(The	le	1.1/2	. 1	Dublic	Ko,	0.00	a. olda		Commo	ou/s/s	an all	do	mand		Comp	~ 44 a	16 F)ES	1 <i>t'</i> 5	
(X)	a	lot	more	t Tha	l's	Why	you	have	2-3	onde	ns of	mag	milmolo	sk	own.	Cavip.	ovicot		,,,	W	
						_															

RSA encryption

- '70s-'80s: only hardware implementation
- Today, an RSA decryption takes \approx 100 μ s on high-speed hw
- End '80s, software implementation becomes possible
- Today, 2048-bit RSA takes ≈10 ms on a 2 GHz CPU
 - Throughput = $2048/(10\times10^{-3})$ = 2048×100 = 204.800 bit/s
 - $-\approx$ 3 orders of magnitude slower than symmetric encryption

Apr-25

The RSA Cryptosystem

66

66

RSA Fast decryption

- There is no easy way to accelerate RSA when the private exponent d is involved
 - sizeof(d) = sizeof(n) to discourage brute force attack
 - It can be shown that sizeof(d) ≥ 0.3 sizeof(n)
- One possible approach is based on the Chinese Remainder Theorem (CRT)
 - We do not prove the theorem
 - We just apply it

Apr-2

The RSA Cryptosystem

67

67