ECON 7710 TA Session

Week 5

Jiarui(Jerry) Qian

University of Virginia, Department of Economics arr3ra@virginia.edu

Sep 2023

Outline

Suggested Solutions to Homework II

2 Practice Questions

Question 1

Setup:

- We know X and Y are independent. Define the 4 random variables as follows:
 - $A = \max\{X, Y\}$
 - $B = \min\{X, Y\}$
 - $C = \max\{2X, Y\}$
 - $D = \min\{X^3, Y\}$
- For Max

$$P(\max\{X,Y\} \leq a) = P(X \leq a \text{ and } Y \leq a) = F_X(a) * F_Y(a)$$

For Min

$$P(\min\{X,Y\} > b) = P(X > b \text{ and } Y > b) = (1 - F_X(b))(1 - F_Y(b))$$

- Since you flip the inequality of CDF:
 - $P(X > b) = 1 F_X(b)$ and $P(Y > b) = 1 F_Y(b)$
- $F_B(\cdot) = P(\min\{X, Y\} \le b) = 1 P(\min\{X, Y\} > b)$

Question 1

- $A = \max\{X, Y\}$
 - $F_A(a) = P(A \le a) = P(\max\{X, Y\} \le a) = F_X(a) * F_Y(a)$
- $B = \min\{X, Y\}$
 - $F_B(b) = P(B \le b) = P(\min\{X, Y\} \le b) = 1 (1 F_X(b))(1 F_Y(b)) = F_X(b) + F_Y(b) F_X(b) * F_Y(b).$
- $C = \max\{2X, Y\}$, notice 2x is monotonically increasing in x.
 - $F_C(c) = P(C \le c) = P(\max\{2X, Y\} \le c) = P(2X \le c \text{ and } Y \le c) = P(X \le \frac{c}{2}) * P(Y \le c) = F_X(\frac{c}{2}) * F_Y(c)$
- $D = \min\{X^3, Y\}$, notice X^3 is monotonically increasing in X.
 - $F_D(d) = P(D \le d) = P(\min\{X^3, Y\} \le d) = 1 ((1 F_X(d^{\frac{1}{3}}))(1 F_Y(d))) = F_X(d^{\frac{1}{3}}) + F_Y(d) F_X(d^{\frac{1}{3}}) * F_Y(d)$

Question 2.a

- Setup:
 - Unit Square: $S = \{0 \le x \le 1 \text{ , } 0 \le y \le 1\}$
 - CDF: $F_{X,Y}(x,y) = P(X \le x, Y \le y) = \frac{1}{2}(xy + min\{x,y\})$
- a How the CDF behave outside the unit square? 4 Cases:
 - When x > 1, y > 1: We already have F(1,1) = 1. Meanwhile, $F(x,y) \in [0,1]$ and it is nondecreasing. So we know F(x,y) = 1 when x > 1 and y > 1.
 - When $x \in [0,1]$ and y>1: Then we know $F(x,y)=P(X \le x,\ Y \le y)=P(X \le x)$, when $0 \le x \le 1$ and y=1. Then we know $F(x,y)=\frac{1}{2}(2x)=x$. (It depends on x only)
 - When x>1 and $y\in[0,1]$: Then we know $F(x,y)=P(X\leq x,\ Y\leq y)=P(Y\leq y)$, when $0\leq y\leq 1$ and x=1. Then we know $F(x,y)=\frac{1}{2}(2y)=y$. (It depends on y only)
 - When x < 0 or y < 0: We know $F(0,y) = 0, \forall y \ge 0$ and $F(x,0) = 0, \forall x \ge 0$. We also know CDF is nondecreasing and the value of CDF lies between 0 to 1. Therefore F(x,y) = 0 if x < 0 or y < 0.

Question 2.a

To sum up, we know when (x, y) lies outside the unit square, we know:

$$F(x,y) = \begin{cases} 1, & \text{For } x \in (1,\infty), \ y \in (1,\infty) \\ x, & \text{For } x \in [0,1], \ y \in (1,\infty) \\ y, & \text{For } x \in (1,\infty), \ y \in [0,1] \\ 0, & \text{For } x \in (-\infty,0) \text{ or } y \in (-\infty,0) \end{cases}$$

Question 2.b

b We know the CDF is

$$F_{X,Y}(x,y) = \begin{cases} 0, & \text{For } x \in (-\infty,0) \text{ or } y \in (-\infty,0) \\ \frac{1}{2}(xy + \min\{x,y\}), & \text{For } x \in [0,1], \ y \in [0,1] \\ x, & \text{For } x \in [0,1], \ y \in (1,\infty) \\ y, & \text{For } x \in (1,\infty), \ y \in [0,1] \\ 1, & \text{For } x \in (1,\infty), \ y \in (1,\infty) \end{cases}$$

• Denote marginal CDF of X as $F_X(x)$ and marginal CDF of Y as $F_Y(y)$. We know:

$$F_X(x) = \lim_{y \to +\infty} F_{X,Y}(x,y) = egin{cases} 0, & ext{For } x \in (-\infty,0) \ x, & ext{For } x \in [0,1] \ 1, & ext{For } x \in (1,\infty) \end{cases}$$

Likewise, we know:

$$F_Y(y) = \lim_{x \to +\infty} F_{X,Y}(x,y) = egin{cases} 0, & \text{For } y \in (-\infty,0) \\ y, & \text{For } y \in [0,1] \\ 1, & \text{For } y \in (1,\infty) \end{cases}$$

Question 2.c

- c We know U = log X, and V = log Y, both are monotonically increasing functions.
- We denote CDF of (U, V) as $F_{U,V}(u, v)$. So we know $F_{U,V}(u, v) = P(U \le u, V \le v) = P(\log X \le u, \log Y \le v) = P(X \le e^u, Y \le e^v)$ As we know from a), the CDF of (X, Y) is

$$F_{X,Y}(x,y) = \begin{cases} 0, & \text{For } x \in (-\infty,0) \text{ or } y \in (-\infty,0) \\ \frac{1}{2}(xy + \min\{x,y\}), & \text{For } x \in [0,1], \ y \in [0,1] \\ x, & \text{For } x \in [0,1], \ y \in (1,\infty) \\ y, & \text{For } x \in (1,\infty), \ y \in [0,1] \\ 1, & \text{For } x \in (1,\infty), \ y \in (1,\infty) \end{cases}$$

Therefore, we know CDF of (U, V) is

$$F_{U,V}(u,v) = \begin{cases} \frac{1}{2}(e^{u+v} + min\{e^u,e^v\}), & \text{for } u \in (-\infty,0], v \in (-\infty,0] \\ e^u, & \text{for } u \in (-\infty,0], v \in (0,\infty) \\ e^v, & \text{for } u \in (0,\infty), v \in (-\infty,0] \\ 1, & \text{for } u \in (0,\infty), v \in (0,\infty) \end{cases}$$

Question 2.d

- d We are asked if the following distributions
 - $oldsymbol{0}$ joint distribution of X and Y
 - marginal distribution of X and Y
 - \odot joint distribution of U and V

has a density w.r.t. Lebesgue measure respectively.

- We also know that a distribution does not have a density w.r.t. the Lebesgue Measure if it places positive probability on a set has Lebesgue Measure zero.
- A formal discussion can be found here. In our case, you need to know any line in \mathbb{R}^2 has a Lebesgue measure zero.
- In other words, we want to see if we can find any line in R^2 with a positive probability.

Question 2.d.1

d.1 Joint distribution of X and Y has no density w.r.t Lebesgue measure The CDF of (X, Y) is

$$F_{X,Y}(x,y) = \begin{cases} 0, & \text{For } x \in (-\infty,0) \text{ or } y \in (-\infty,0) \\ \frac{1}{2}(xy + \min\{x,y\}), & \text{For } x \in [0,1], \ y \in [0,1] \\ x, & \text{For } x \in [0,1], \ y \in (1,\infty) \\ y, & \text{For } x \in (1,\infty), \ y \in [0,1] \\ 1, & \text{For } x \in (1,\infty), \ y \in (1,\infty) \end{cases}$$

This CDF can tell us a a lot:

1 Within the unit square, it does not have a derivative at any point along the line when x = y (kink of min function).

2

$$\frac{\partial F(x,y)}{\partial x \partial y} = \begin{cases} \frac{1}{2} & x \in [0,y), \ y \in (0,1] \\ \frac{1}{2} & x \in (y,1], \ y \in [0,1) \\ 0 \text{ Outside of the unit square} \end{cases}$$

3 Probability of drawing a pair of (x, y) outside of unit square is 0.

$$\frac{\Pr(0 \le X < Y, 0 < Y \le 1) = \int_0^1 \int_0^Y \frac{1}{2} dx dy = \frac{1}{4}}{\Pr(Y < X \le 1, 0 \le Y < 1) = \int_0^1 \int_y^1 \frac{1}{2} dx dy = \frac{1}{4}} \right\} \Rightarrow \frac{1}{2} \text{ of the missing mass is on line } X = Y$$

Question 2.d.2

d.2 • We already know marginal distribution of X is:

$$F_X(x) = \begin{cases} 0, & \text{For } x < 0 \\ x, & \text{For } x \in [0, 1] \\ 1, & \text{For } x > 1 \end{cases}$$

And marginal distribution of Y is:

$$F_Y(y) = egin{cases} 0, & {\sf For} \ y < 0 \ y, & {\sf For} \ y \in [0,1] \ 1, & {\sf For} \ y > 1 \end{cases}$$

- For $F_X(x)$, if we pick an arbitrary line in unit square, the marginal probability will always be 0 because y is contained in the line but there is no y in $F_X(x)$. Same logic for $F_Y(y)$.
- So we know marginal distribution of X and Y have a density w.r.t. the Lebesgue Measure.

Question 2.d.3

d.3 • We already know the CDF of (U, V) is

$$F_{U,V}(u,v) = \begin{cases} \frac{1}{2}(e^{u+v} + min\{e^u, e^v\}), & \text{For } u \in (-\infty, 0], \ v \in (-\infty, 0] \\ e^u, & \text{For } u \in (-\infty, 0], \ v \in (0, \infty) \\ e^v, & \text{For } u \in (0, \infty), \ v \in (-\infty, 0] \\ 1, & \text{For } u \in (0, \infty), \ v \in (0, \infty) \end{cases}$$

 Similarly, we follow the steps in d.1 and set our line with Lebesgue Measure of zero as

$$\{(u, v) : u = v, \text{ For, } u \in (-\infty, 0], v \in (-\infty, 0]\}$$

- Then we will get a positive probability on a set has Lebesgue measure zero, which means the joint distribution of *U* and *V* does not have a density w.r.t. the Lebesgue Measure.
- In summary, joint distributions(d.1, d.3) don't have a density. Marginal distributions(d.2) have a density.

Question 2.e

- 2.d tells us when x, y are in unit square:
 - With mass $=\frac{1}{2}$, $\frac{\partial F(x,y)}{\partial x \partial y} = \frac{1}{2}$, when $x \neq y$
 - With mass $=\frac{1}{2}$, when x=y
- This tells us the distribution of X, Y should be a **mixture** of
 - a bivariate uniform distribution (X, Y are independent)
 - and uniform on the line x = y (X, Y are perfectly correlated).
- In other words, half of the time, pair (x, y) is drawn uniformly from the unit square, half of the time it is drawn from the line x = y.
- For the conditional distribution X|Y, it should also be a **mixture**.
 - Half of the time
 X will be drawn independently of the value of Y from [0,1]
 [Continuous Part].
 - Half of the time
 X will be equal to the value of Y [Discrete Part].

Question 2.e.1, 2.e.2

Then we know:

• Partial density function for the continuous part:

$$f_{X|Y}(x|y) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{Otherwise} \end{cases}$$

• Partial probability mass function for the discrete part:

$$g_{X|Y}(x|y) = egin{cases} 1 & x = y, & (x,y) \in [0,1] \times [0,1] \\ 0 & \text{Otherwise} \end{cases}$$

Then the we know:

$$E[X|Y] = \frac{1}{2} \int_0^1 x dx + \frac{1}{2}y = \frac{1}{4} + \frac{1}{2}y$$

And by symmetry, we know:

$$E[Y|X] = \frac{1}{4} + \frac{1}{2}x$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Question 2.e.3, 2.e.4

• Likewise, the distribution of U, V is also a mixture of bivariate uniform distribution [Continuous Part] and a uniform on the line u = v [Discrete Part].

Then we know:

Partial density function for the continuous part:

$$f_{U|V}(u|v) = egin{cases} e^u & u \in (-\infty,0] \\ 0 & \text{Otherwise} \end{cases}$$

• Partial probability mass function for the discrete part:

$$g_{U|V}(u|v) = egin{cases} 1 & u = v, \ (u,v) \in (-\infty,0] imes (-\infty,0] \ 0 & ext{Otherwise} \end{cases}$$

Then we know:

$$E[U|V] = \frac{1}{2} \int_{-\infty}^{0} u e^{u} du + \frac{1}{2} v = \frac{1}{2} ([u e^{u}]_{-\infty}^{0} - \int_{-\infty}^{0} e^{u} du) + \frac{1}{2} v$$

Question 2.e.3, 2.e.4

$$E[U|V] = \frac{1}{2} \int_{-\infty}^{0} u e^{u} du + \frac{1}{2} v = \frac{1}{2} ([u e^{u}]_{-\infty}^{0} - \int_{-\infty}^{0} e^{u} du) + \frac{1}{2} v$$

We know: $\lim_{u \to 0} ue^u = 0$. We also know

$$\lim_{u\to -\infty}ue^u=\lim_{u\to -\infty}rac{u}{e^{-u}}=\lim_{u\to -\infty}rac{1}{-e^{-u}}=0$$
 by L'Hôpital's rule. So

$$E[U|V] = \frac{1}{2}(v - \int_{-\infty}^{0} e^{u} du) = \frac{1}{2}v - \frac{1}{2}$$

By symmetry, we know:

$$E[V|U] = \frac{1}{2}u - \frac{1}{2}$$

Jerry Qian (UVA Econ)

Deciding whether certain random variables are independent or not is one type of question that Denis likes a lot. Check C&B4.2 for details.

2016 Midterm Q3 & 2018 Midterm Q2

Random variables X and Y have a joint density

$$f(x,y) = \begin{cases} \frac{1}{2}(1+xy), & \text{if } |x| < 1 \text{ and } |y| < 1\\ 0, & \text{otherwise} \end{cases}$$

- 1 Are X and Y independent? Prove or disprove.
- 2 Are X^2 and Y^2 independent? Prove or disprove.

Hint:

- 1 Random variables are independent iff joint density $f(x,y) = f_X(x) * f_Y(y)$, where are $f_X(x)$ and $f_Y(y)$ are marginal densities. Or joint CDF $F(x,y) = F_X(x) * F_Y(y)$, where $F_X(x)$ and $F_Y(y)$ are CDF of X and Y
- 2 Think about how to find the joint CDF of (X^2, Y^2)

Random variables X and Y have a joint density

$$f(x,y) = egin{cases} rac{1}{2}(1+xy), & ext{if } |x| < 1 ext{ and } |y| < 1 \ 0, & ext{otherwise} \end{cases}$$

Marginal densities:

$$f_X(x) = \int_{-1}^1 \frac{1}{2} (1 + xy) dy = 1, \quad f_Y(y) = 1 \text{ (By Symmetry)}$$

Clearly, $f_X(x) * f_Y(y) = 1 \neq f(x, y)$. So X and Y are not independent.

Random variables X and Y have a joint density

$$f(x,y) = egin{cases} rac{1}{2}(1+xy), & ext{if } |x| < 1 ext{ and } |y| < 1 \ 0, & ext{otherwise} \end{cases}$$

The joint CDF for (X^2, Y^2) is $P(X^2 \le x, Y^2 \le y) =$

$$\begin{cases} P(-\sqrt{x} \leq X \leq \sqrt{x}, -\sqrt{y} \leq Y \leq \sqrt{y}) \ x \in [0, \infty), y \in [0, \infty) \\ 0 \quad \text{Otherwise} \end{cases}$$

$$= \begin{cases} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} (1 + uv) du dv^1 \ x \in [0, 1), y \in [0, 1) \\ 0 \quad \text{Otherwise} \end{cases}$$

$$= \begin{cases} 2\sqrt{x} \sqrt{y} \ x \in [0, 1), y \in [0, 1) \\ 0 \quad \text{Otherwise} \end{cases}$$

¹Distinguish variables and numbers

From part 1, Random variables X and Y have a marginal densities

$$\begin{cases} f_X(x) = 1 \\ f_Y(y) = 1 \end{cases}$$

Marginal distribution function of X^2 :

$$P(X^2 \le x) = \begin{cases} P(-\sqrt{x} \le X \le \sqrt{x}) & x \in [0,1) \\ 0 & \text{Otherwise} \end{cases} = \begin{cases} \int_{-\sqrt{x}}^{\sqrt{x}} 1 du & x \in [0,1) \\ 0 & \text{Otherwise} \end{cases}$$

$$\Rightarrow F_{X^2}(x) = \begin{cases} 2\sqrt{x} & x \in [0,1) \\ 0 & \text{Otherwise} \end{cases}$$

$$F_{Y^2}(y) = \begin{cases} 2\sqrt{y} & y \in [0,1) \\ 0 & \text{Otherwise} \end{cases}$$

$$F_{X^2,Y^2}(x,y) = \begin{cases} 2\sqrt{x}\sqrt{y} & x \in [0,1), y \in [0,1) \\ 0 & \text{Otherwise} \end{cases}$$

$$X^2 \text{ and } Y^2 \text{ are not independent since } F_{X^2,Y^2}(x,y) \ne F_{X^2}(x) * F_Y^2(y)$$

20 / 22

2021 Midterm Q2

Let (Ω, \mathcal{F}, P) be the probability space. Provide a necessary and sufficient condition on P such that for any pair of events $A \neq B \in \mathcal{F}$, $P(A \cap B) = 0$. i.e. any pair of non-identical events on that probability space are independent.

Hints: What means $A \neq B$ in set theory? How to say independence of random variables.

2021 Midterm Q2

Let (Ω, \mathcal{F}, P) be the probability space. Provide a necessary and sufficient condition on P such that for *any* pair of events $A \neq B \in \mathcal{F}$, $P(A \cap B) = 0$. i.e. any pair of non-identical events on that probability space are independent.

- $A \neq B \Leftrightarrow A = B^C$. So $P(A \cap B) = P(B^C \cap B) = P(B^C) * P(B)$ by independence.
- Since $P(A \cap B) = 0$, we know $P(B^C \cap B) = P(B^C) * P(B) = 0$.
- So either
 - P(B) = 0
 - Or $P(B^C) = 0 \Leftrightarrow P(B) = 1$
- Then we know the necessary and sufficient condition on P is

$$P(\cdot) = 0$$
 or $P(\cdot) = 1$