

Reuniones

Hay N montañas puestas en una línea horizontal, numeadas de 0 a N-1 de izquierda a derecha. La altura de la montaña i es H_i ($0 \le i \le N-1$). Exactamente, una persona vive en la cima de cada montaña.

Debes organizar Q reuniones, numeadas de 0 a Q-1. A la reunión j ($0 \le j \le Q-1$) asisitirá toda la gente viviendo en las montañas de L_j a R_j , inclusive ($0 \le L_j \le R_j \le N-1$). Para esta reunión, debes elegir una montaña x como el lugar de reunión ($L_j \le x \le R_j$). Esta reunión tiene un costo, el cual es calculado como sigue:

- El costo de los paricipantes de cada montañay ($L_j \leq y \leq R_j$) es la altura máxima de las montañas entre la montañas x e y, inclusive. En particular, el costo del participante de la montaña x es H_x , la altura de la montaña x.
- El costo de la reunión es la suma de los costos de todos los participantes.

Para cada reunión, quieres encontrar el costo mínimo de realizarla.

Observe que todos los participantes vuelven a sus propias montañas después de cada reunión; así que el costo de una reunión no está influenciada por las reuniones previas.

Detalles de implementación

Debes implementar la siguiente función:

- ullet H: un arreglo de tamaño N, representando las alturas de las momtañas.
- ullet L y R: arreglos de tamaño Q, representando el rango de los participantes en las reuniones.
- Esta función debe devolver un arreglo C de tamaño Q. El valor de C_j ($0 \le j \le Q 1$) debería ser el costo mínimo posible de realizar la reunión j.
- ullet Note que los valores de N y Q son los tamaños de los arreglos, y pueden ser obtenidos como se indica en la nota de implementación.

Ejemplo

Sea
$$N=4$$
, $H=[2,4,3,5]$, $Q=2$, $L=[0,1]$, and $R=[2,3]$.

El evaluador llama minimum_costs([2, 4, 3, 5], [0, 1], [2, 3]).

La reunión j=0 tiene $L_j=0$ y $R_j=2$, entonces tendrá la asistencia de la gente viviendo en las montañas 0, 1, y 2. Si la montaña 0 es escogida como el lugar de reunión, el costo de la reunión 0 es calculada como sigue:

- El costo del participante de la montaña 0 es $\max\{H_0\}=2$.
- El costo del participante de la montaña 1 es $\max\{H_0, H_1\} = 4$.
- El costo del participante de la montaña 2 es $\max\{H_0, H_1, H_2\} = 4$.
- Por lo tanto, el costo de la reunión 0 es 2+4+4=10.

Es imposible organizar una reunión 0 con el costo mínimo, entonces, el costo mínimo de la reunión 0 es 10.

La reunión j=1 tiene $L_j=1$ y $R_j=3$, entonces tendrá la asistencia de la gente que vive en las montañas 1, 2, and 3. Si la montaña 2 es escogida como el lugar de reunión, el costo de la reunión 1 es calculada como sigue:

- El costo del participante de la montaña 1 es $\max\{H_1, H_2\} = 4$.
- El costo del participante de la montaña 2 es $\max\{H_2\}=3$.
- El costo del participante de la montaña 3 es $\max\{H_2,H_3\}=5$.
- Por lo tanto, el costo de la reunión 1 es 4+3+5=12.

Es imposible organizar una reunión 1 con el costo mínimo, entonces, el costo mínimo de la reunión 1 es 12.

Los archivos sample-01-in.txt y sample-01-out.txt en el paquete comprimido adjunto corresponde a este ejemplo. Otros ejemplos de entrada y salida están disponibles en el paquete.

Restricciones

- $1 \le N \le 750000$
- 1 < Q < 750000
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$

- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j, R_j) \neq (L_k, R_k) \ (0 \leq j < k \leq Q 1)$

Subtareas

- 1. (4 puntos) $N \le 3\,000$, $Q \le 10$
- 2. (15 puntos) $N \leq 5\,000$, $Q \leq 5\,000$
- 3. (17 puntos) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 2$ ($0 \leq i \leq N-1$)
- 4. (24 puntos) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)
- 5. (40 puntos) Sin restricciones adicionales

Evaluador de ejemplo

El evaluador de ejemplo lee la entrada en el siguiente formato:

- línea 1:NQ
- ullet línea 2: $H_0 \ H_1 \cdots H_{N-1}$
- línea 3+j ($0 \leq j \leq Q-1$): L_j R_j

El evaluador de ejemplo imprime el valor de retorno de minimum_costs en el siguiente formato:

• línea 1 + j ($0 \le j \le Q - 1$): C_j