

Manuale Sviluppatore

Jawa Druids

Versione -

Data approvazione -

Responsabile | Mattia Cocco

Redattori | Alfredo Graziano

Igli Mezini

Verificatori

Stato | Approvato

Lista distribuzione | Jawa Druids

Prof. Tullio Vardanega Prof. Riccardo Cardin

Uso Esterno

Sommario

Il documento ha lo scopo di presentare le tecnologie e l'architettura del sistema agli sviluppatori interessati al software GDP - $Gathering\ Detection\ Platform$.

Registro delle modifiche

Versione	Data	Autore	Ruolo	Modifica	Verificatore
v1.0.0	-	Mattia Cocco	Responsabile	Approvazione del documen- to per RQ	-
v0.0.2	2021-04-04	Mattia Cocco	Progettista	Stesura § 4	Andrea Dorigo
v0.0.1	2021-04-02	Alfredo Gra- ziano	Progettista	Stesura § 1	Igli Mezini

Indice

1	Intr	oduzione 5
	1.1	Scopo del documento
	1.2	Scopo del prodotto
	1.3	Glossario
2	Rec	quisiti di sistema 6
3	Pro	cedure di installazione 7
	3.1	Download della repository
	3.2	Installazione delle dipendenze
	3.3	Inizializzazione del modulo di acquisizione
		3.3.1 Aggiunta di una webcam
	3.4	Inizializzazione modulo Prediction
	3.5	Inizializzazione modulo Web-App
4	Tec	nologie coinvolte 10
	4.1	Tecnologie
		4.1.1 Python
		4.1.2 Kafka
		4.1.3 MongoDB
		4.1.4 Spring Boot
		4.1.5 Apache Maven
		4.1.6 Java
		4.1.7 HTML 5
		4.1.8 CSS 3
		4.1.9 Leaflet
		4.1.10 Vue.js
		4.1.11 Node.js
		4.1.12 Bootstrap
		4.1.13 JSON
	4.2	Librerie di terze parti
		4.2.1 OpenCV
		4.2.2 Yolo V3
		4.2.3 Pandas
		4.2.4 Scikit-learn
		4.2.5 Mongoengine
		4.2.6 NumPv

		4.2.7 4.2.8 4.2.9	Pylint	15 15
5	Arc		Prettier	15 16
	5.1	Archit	ettura modulo Acquisition	16
		5.1.1	Diagramma dei Package	16
		5.1.2	Diagrammi di attività	17
	5.2	Archit	ettura modulo Prediction	21
		5.2.1	Diagramma dei package	21
		5.2.2	Diagramma di attività	
	5.3	Archit	ettura modulo Web-app	
		5.3.1	Diagrammi dei package	
		5.3.2	Diagrammi delle classi	
		5.3.3	Diagramma di sequenza	
		5.3.4	Diagramma di attività	
6	Glo	ssario		28

Elenco delle figure

5.1	Diagramma dei package del modulo Acquisition	16
5.2	Diagramma di attività dell'eseguibile Detection	17
5.3	Diagramma di sotto-attività dell'acquisizione delle previsioni meteo	18
5.4	Diagramma di sotto-attività di download e taglio frame	19
5.5	Diagramma di sotto-attività del conta persone	19
5.6	Diagramma di attività di Kafka	20
5.7	Diagramma dei package del modulo Acquisition	21
	Diagramma di attività dell'eseguibile Detection	
5.9	Diagramma dei package di Spring	23
5.10	Diagramma dei package del modulo Acquisition	24
5.11	Diagramma delle classi di Spring	25
5.12	Diagramma di sequenza di Spring	26
5.13	Diagramma di attività del modulo Web-app	27

1 Introduzione

1.1 Scopo del documento

Il documento si propone come guida introduttiva del software *GDP*: Gathering Detection Platform, indirizzata agli sviluppatori che ci lavoreranno. Nello specifico è presentata l'architettura del prodotto e l'organizzazione del codice sorgente ed inoltre sono indicate la procedura di installazione in locale e le tecnologie coinvolte.

1.2 Scopo del prodotto

In seguito alla pandemia del virus COVID-19 è nata l'esigenza di limitare il più possibile i contatti fra le persone, specialmente evitando la formazione di assembramenti. Il progetto GDP: Gathering Detection Platform di Sync Lab ha pertanto l'obiettivo di creare una piattaforma in grado di rappresentare graficamente le zone potenzialmente a rischio di assembramento, al fine di prevenirlo. Il prodotto finale è rivolto specificatamente agli organi amministrativi delle singole città, cosicché possano gestire al meglio i punti sensibili di affolamento, come piazze o siti turistici. Lo scopo che il software intende raggiungere non è solo quello della rappresentazione grafica real-time ma anche quella di poter riuscire a prevedere assembramenti in intervalli futuri di tempo.

Al tal fine il gruppo Jawa Druids si prefigge di sviluppare un prototipo software in grado di acquisire, monitorare ed analizzare i molteplici dati provenienti dai diversi sistemi e dispositivi, a scopo di identificare i possibili eventi che concorrono all'insorgere di variazioni di flussi di utenti. Il gruppo prevede inoltre lo sviluppo di un'applicazione web da interporre fra i dati elaborati e l'utente, per favorirne la consultazione.

1.3 Glossario

Allo scopo di evitare ambiguità a lettori esterni si aggiunge in appendice un glossario dei termini ambigui o specifici utilizzati nel presente documento che verranno segnalati con una G a pedice.

2 Requisiti di sistema

3 Procedure di installazione

Questa sezione esporrà le procedure di installazione all'interno del sistema operativo Linux_G , più precisamente Ubuntu_G 20.04 LTS, in quanto utilizzato anche per lo sviluppo del software stesso. Rimane comunque possibile installare il software su altri sistemi operativi soddisfando le dipendenze necessarie, ma non verrà qui esplicitato.

3.1 Download della repository

Per scaricare correttamente i contenuti della repository_G è necessario installare git e git-lfs(Git Large File Storage). Su Ubuntu_g 20.04, questo è possibile eseguendo il comando:

```
sudo apt install git git-lfs
```

assumendo che le principali repository per i pacchetti di Ubuntu siano attive (Universe, Multiverse).

Questo passaggio è richiesto poiché GitHub (il sito che ospita la repository del progetto) consente l'upload di file con dimensioni massime fino a 100MB. L'utilizzo di *Git Large File Storage* permette l'upload e il download di file che superano questo limite, ed in particolare permette l'upload e download dei pesi necessari all'algoritmo YOLOv3 per il rilevamento di oggetti (più precisamente per il rilevamento delle persone in un'immagine), il quale ha una dimensione maggiore di 200MB. Maggiori informazioni riguardo *Git Large File Storage* sono reperibili all'indirizzo:

```
https://git-lfs.github.com.
```

È dunque possibile clonare correttamente la repository_c relativa al progetto *Gathering-Detection-Platform* con il seguente comando:

```
git clone https://github.com/Andrea-Dorigo/gathering-detection-platform.git
```

3.2 Installazione delle dipendenze

Dopo aver eseguito il passo sopra descritto, è necessario installare le dipendenze necessarie a far eseguire il prodotto software, adeguatamente. Per fare ciò è sufficiente aprire il terminale all'interno della cartella gathering-detection-platform, ed eseguire il seguente comando:

sudo apt install python3-opencv python3-pip mongo maven npm && pip3 install mongoe

Una volta conclusa questa operazione con esito positivo, il programma potrà essere eseguito.

3.3 Inizializzazione del modulo di acquisizione

Per eseguire il modulo di acquisizione, in modo da iniziare a raccogliere i dati dalle webcam salvate, basterà posizionarsi all'interno della cartella acquisition/main/, e da terminale eseguire il comando:

```
python3 detect.py
```

Se i passi precedenti sono stati eseguiti correttamente allora si visualizzeranno sul terminale i vari passaggi che svolge il modulo.

3.3.1 Aggiunta di una webcam

L'aggiunta di una nuova webcam al modulo di acquisizione è possibile attraverso dei pochi semplici passi:

- 1. Trovare una webcam disponibile all'interno del sito https://www.whatsupcams.com/;
- 2. Inserire il link all'interno del file *webcams.json* seguendo lo schema prestabilito per impostare i parametri della webcam;
- 3. Salvare il file e l'aggiunta è ultimata.

Per una questione di codifica, il link della webcam dev'essere conforme a quelle già presenti, ovvero provenire da https://www.whatsupcams.com/.

3.4 Inizializzazione modulo Prediction

Per eseguire il modulo di predizione, che tramite il machine-learning $_G$ si occupa di calcolare, appunto, le predizioni del periodo di tempo futuro, bisogna posizionarsi all'interno della cartella "prediction" ed eseguire il seguente comando da terminale:

```
python3 DataPrediction.py
```

In tal modo verrà attivato il modulo per le predizioni sui dati.

3.5 Inizializzazione modulo Web-App

Per avviare la web-app $_G$, e le sue funzioni, si devono eseguire alcuni comandi, sempre da terminale, a partire dalla cartella webapp.

1. posizionarsi all'interno della cartella "webapp" ed eseguire:

```
mvn spring-boot:run
```

2. posizionarsi all'interno della cartella "vue-js-client-crud" ed eseguire:

```
npm install
```

3. infine, all'interno della stessa cartella bisogna eseguire:

```
npm run
```

Il primo comando inizializza il server di Spring_G che fornisce i servizi per prelevare le informazioni dal database, mentre i comandi successivi installano prima npm_G e successivamente le dipendenze di ogni file necessarie alla web- app_G .

4 Tecnologie coinvolte

In questa sezione vengono elencate le tecnologie, e librerie di terze parti, utilizzate per sviluppare il prodotto software, Gathering-Detection-Platform.

4.1 Tecnologie

4.1.1 Python

Si tratta di un linguaggio di programmazione definito "ad alto livello" rispetto alla maggior parte di essi. Si tratta di un linguaggio orientato ad oggetti, utile a sviluppare script_G, computazione numerica e sviluppare software_G. Nel progetto Gathering-Detection-Platform, Python_G è il linguaggio su cui si basa tutto il backend_G, compreso il modulo del machine-learning_G.

- versione utilizzata: 3.8.x;
- link download: https://www.python.org/downloads/.

4.1.2 Kafka

 $Kafka_G$ viene utilizzato, dal modulo acquisizione, come tramite per inviare i dati ad altre applicazioni utilizzando uno standard di comunicazione comune. È stato scelto in quanto acquisisce flussi di dati da diverse fonti e permette a molte applicazioni di scambiarsi dati mediante esso, il suo scopo è quello di "centro smistamento" dei dati.

- versione utilizzata: 2.8.0;
- link download: https://kafka.apache.org/downloads.

4.1.3 MongoDB

 $\operatorname{MongoDB}_G$ è stato scelto come database_G nel quale salvare i dati ottenuti dal modulo di acquisizione e dal modulo di machine-learning_c. Si tratta di un database_c non relazionale e orientato ai documenti. Classificato come tipo NoSQL_G , $\operatorname{MongoDB}_c$ non utilizza la classica struttura basata su tabelle, invece si basa sui tipi di documenti JSON_G , facilitando così l'integrazioni di alcuni tipi di dati.

- versione utilizzata: 4.4.4;
- link al sito: https://www.mongodb.com/it.

4.1.4 Spring Boot

Spring_c è un framework_G open source_G per lo sviluppo di applicazioni su piattaforma Java_G. A questo framework_c sono associati altri progetti, in particolare Spring Boot_G che permette di creare una applicazione autoconfigurata che avvia un server_G, il quale mette a disposizione i servizi sviluppati attraverso il codice.

• versione utilizzata: 2.4.4;

• link al sito: https://spring.io/projects/spring-boot.

4.1.5 Apache Maven

È una tecnologia utilizza per la gestione software, basati su Java, e build automation. Per la gestione si serve di un costrutto denominato POM (Project Object Model), ovvero un file XML_G in cui vengono dichiarate le dipendenze necessarie fra il progetto e le varie librerie utilizzate. Maven, si occupa di scaricare automaticamente eventuali librerie o plug-in, mancanti in una cartella predefinita.

• versione utilizzata: 3.6.3;

• link al sito: https://maven.apache.org/download.cgi .

4.1.6 Java

Si tratta di una piattaforma che ha come caratteristica principale il fatto di rendere possibile scrittura ed esecuzione di applicazioni indipendenti dall'hardware_G di esecuzione. Il risultato è una virtualizzazione dalla piattaforma stessa, che rende così il linguaggio Java_G, e i relativi programmi, portabili su piattaforme hardware_G diverse.

• versione utilizzata: 11.x;

• link download: https://www.java.com/it/download/.

4.1.7 HTML 5

 HTML_G , acronimo di HyperText Markup Language, è un linguaggio di mark up per siti web. Era stato ideato per la formattazione e impaginazione di pagine ipertestuali sul web. Oggi giorno viene utilizzato soprattutto per gestire la separazione tra la struttura logica della pagina web e la sua rappresentazione, gestita dal CSS_G . Nel progetto questo linguaggio viene utilizzato per sviluppare la parte di web-app_G, interagendo con anche Java_G, CSS_G , Bootstrap_G e Vue.js_G.

4.1.8 CSS 3

Il CSS_c è il principale linguaggio utilizzato per definire la formattazione dei siti e pagine web. L'utilizzo del CSS_c permette di separare i contenuti della pagina $HTML_c$ dal proprio layout $_G$, ma anche di rendere la programmazione più chiara e facile da utilizzare, garantendo il riutilizzo di codice e facilitando la manutenzione. Nel progetto viene utilizzato per formattare il layout $_c$ estetico della web-app $_c$.

4.1.9 Leaflet

Leaflet $_G$ è una libreria JavaScript $_G$ per sviluppare mappe geografiche, utilizzata nel progetto per realizzare la heat-map $_G$.

• versione utilizzata: 1.7.1;

• link al sito: https://leafletjs.com/.

4.1.10 Vue.js

È un framework JavaScript_G, configurato come Model-Control-View_G per la creazione di interfacce utente e applicazione single-page_G. Supporta molte funzionalità, anche avanzate, grazie ad una serie di librerie di supporto dedicate che sono ufficialmente mantenute.

• versione utilizzata: 2.6.12;

• link al sito: https://vuejs.org/.

4.1.11 Node.js

È un runtime system open-source_c, orientato ad oggetti, per l'esecuzione di codice JavaScript_c. Molti moduli di questa tecnologia sono proprio scritti in JavaScript_c, ed essendo appunto open-source_c, programmatori esterni possono crearne ed aggiungerne altri. A differenza di JavaScript_c che in origine era lato client_G, Node.js_G viene utilizzato lato server_c, ad esempio per produzioni di pagine dinamiche. Implementa il paradigma "JavaScript everywhere" in modo da unificare lo sviluppo di applicazioni web intorno ad un unico linguaggio di programmazione, JavaScript_c.

• versione utilizzata: 14.16.x;

• link download: https://nodejs.org/it/download/.

4.1.12 Bootstrap

Framework_c open-source_c che, mediante le proprie librerie, viene utilizzato per uniformare i vari componenti che compongono un'interfaccia web, oltre che per crearli.

• versione utilizzata: 4.3.1;

• link download: https://getbootstrap.com/docs/5.0/getting-started/download/.

4.1.13 JSON

Si tratta di un formato testuale necessario per l'esportazione ed importazione dei dati presenti nel modulo di salvataggio dati, mediante $MongoDB_c$, ed esterni al database. È un formato dati diffuso per lo scambio di essi in applicazioni client-server. Basato su oggetti, ovvero coppie chiave/valore, e supporta una moltitudine di dati diversi. Infine è di facile lettura per l'utente e non necessita particolari procedure per modificarlo.

4.2 Librerie di terze parti

Insieme alle tecnologie sopra citate, sono state anche integrate delle librerie di terze parti.

4.2.1 OpenCV

OpenCV è una libreria software, multipiattaforma specializzata nella visione artificiale in tempo reale. È stata integrata nel modulo adibito alla cattura immagini in tempo reale, in linguaggio python,.

• versione utilizzata: 4.2.0;

• link al sito: https://opencv.org/.

4.2.2 Yolo V3

Si tratta di uno script_c in linguaggio python_c per il riconoscimento real-time_G di oggetti in una foto. Viene utilizzato nel modulo di acquisizione dati per il riconoscimento e conteggio delle persone presenti in un singolo frame.

• link al sito: https://pjreddie.com/darknet/yolo/.

4.2.3 Pandas

È una libreria veloce, potente e flessibile creata appositamente per modellare dati e manipolarli mediante appositi strumenti. Utilizzata nel modulo di machine-learning, basata su python,

- versione utilizzata: 1.2.1;
- link all'installazione: https://pandas.pydata.org/getting_started.html .

4.2.4 Scikit-learn

È una libreria open source di apprendimento automatico per il linguaggio di programmazione Python_c. Al suo interno sono presenti numerosi algoritmi, per la manipolazione dati, tra cui quelli di regressione, utilizzati nel *modulo* di machine-learning_c.

- versione utilizzata: 0.24.1;
- link all'installazione: https://scikit-learn.org/stable/install.html .

4.2.5 Mongoengine

Si tratta di un document-object mapper $_G$ basato su python $_g$ ed ideato per lavorare assieme a MongoDB $_g$ da python $_g$.

- versione utilizzata: 0.24.1;
- link alla repo_g: https://github.com/MongoEngine/mongoengine.

4.2.6 NumPy

Libreria open-source_c, basata sul linguaggio python_c. Fornisce un grosso supporto a grandi matrici e array multidimensionli, inoltre integra molte funzioni matematiche adatte a lavorare su tali strutture dati.

- versione utilizzata: 1.20.1;
- link all'installazione: https://numpy.org/install/.

4.2.7 Pylint

Strumento utilizzato per l'analisi statica del codice sorgente Python_c. Viene quindi adottato per controllare la presenza di errori nel codice, con l'obiettivo di applicare uno standard codifica e di promuovere buone prassi di scrittura del codice

- versione utilizzata: 2.7.3;
- link al sito: https://pypi.org/project/pylint/.

4.2.8 Checkstyle

Strumento che permette di eseguire l'analisi statica del codice java $_{\sigma}$ utilizzato nello sviluppo di un progetto software $_{\sigma}$.

• versione utilizzata: 2.17;

• link alla repo_c: https://github.com/checkstyle/checkstyle.

4.2.9 ESLint

Strumento di analisi del codice statico per identificare i le problematiche trovate nel codice $JavaScript_{\sigma}$.

• versione utilizzata: 2.1.19;

• link alla repo: https://www.npmjs.com/package/eslint.

4.2.10 Prettier

Strumento per il controllo automatico della formattazione del codice scritto in linguaggio JavaScript $_c$.

• versione utilizzata: 6.3.2;

• link al sito: https://prettier.io/.

5 Architettura del Prodotto

L'architettura generale del software, Gathering-Detection-Platform è un'architettura monolitica distribuita. Si tratta di due file eseguibili, scritti in Python, che sono rispettivamente il modulo Acquisition e il modulo Prediction. Il primo viene utilizzato per acquisire le informazione estrapolate dalle live webcams delle città, il secondo invece viene utilizzato per calcolare predizioni su periodi di tempo futuri, utilizzando il machine-learning. Entrambi sono collegati ad un database, il quale serve per salvare ed esportare i dati in esso. Il terzo, ed ultimo, modulo riguarda la web-app, vera e propria, che permette all'utente utilizzatore di visualizzare la heat-map, relativa alla città.

5.1 Architettura modulo Acquisition

5.1.1 Diagramma dei Package

Figura 5.1: Diagramma dei package del modulo Acquisition

5.1.2 Diagrammi di attività

Figura 5.2: Diagramma di attività dell'eseguibile Detection

Figura 5.3: Diagramma di sotto-attività dell'acquisizione delle previsioni meteo

Figura 5.4: Diagramma di sotto-attività di download e taglio frame

Figura 5.5: Diagramma di sotto-attività del conta persone

Figura 5.6: Diagramma di attività di Kafka

5.2 Architettura modulo Prediction

5.2.1 Diagramma dei package

Figura 5.7: Diagramma dei package del modulo Acquisition

5.2.2 Diagramma di attività

Figura 5.8: Diagramma di attività dell'eseguibile Detection

5.3 Architettura modulo Web-app

5.3.1 Diagrammi dei package

Figura 5.9: Diagramma dei package di Spring

Figura 5.10: Diagramma dei package del modulo Acquisition

5.3.2 Diagrammi delle classi

Figura 5.11: Diagramma delle classi di Spring

5.3.3 Diagramma di sequenza

Figura 5.12: Diagramma di sequenza di Spring

5.3.4 Diagramma di attività

Figura 5.13: Diagramma di attività del modulo Web-app

6 Glossario

 \mathbf{A}

Application client-server Applicazioni single-page

 \mathbf{B}

Back-end

Interfaccia con la quale il gestore di un sito web dinamico ne gestisce i contenuti e le funzionalità. A differenza del frontend $_G$, l'accesso al backend è riservato agli amministratori del sito che possono accedere dopo essersi autenticati.

Bootstrap

Build automation

In informatica è l'atto di scrivere o automatizzare un'ampia varietà di compiti che gli sviluppatori software fanno nelle loro attività quotidiane di sviluppo.

 \mathbf{C}

Client

CSS

Linguaggio utilizzato per la formattazione di documenti HTML. Serve per separare i contenuti delle pagine HTML dalla loro formattazione o layout, inoltre permette una programmazione più chiara e una più facile manutenibilità del codice stesso.

 \mathbf{D}

Database Document-object manager Duplicare

 \mathbf{F}

Framework

Utilizzato per descrivere la struttura operativa nella quale viene elaborato un dato software. Un framework, in generale, include software di supporto, librerie, un linguaggio per gli script e altri software che possono aiutare a mettere insieme le varie componenti di un progetto.

\mathbf{H}

Heat-map

Rappresentazione grafica dei dati dove i singoli valori contenuti in una matrice sono rappresentati da colori.

\mathbf{J}

Java

Linguaggio di programmazione ad alto livello, orientato agli oggetti e a tipizzazione statica, che si appoggia sull'omonima piattaforma software di esecuzione, specificamente progettato per essere il più possibile indipendente dalla piattaforma hardware di esecuzione. Le principali caratteristiche di Java sono la portabilità, cioè il codice sorgente e' compilato in bytecode e può essere eseguito su ogni PC che ha JVM (Java Virtual Machine), e la robustezza.

Javascript

Linguaggio di programmazione orientato ad oggetti ed eventi. Utilizzato specificatamente per la programmazione Web lato client. Aggiunge al sito effetti dinamici tramite funzioni invocate da un'azione eseguita sulla pagine Web(es. click del mouse, movimento del mouse, caricamento pagina).

\mathbf{L}

Layout

Leaflet

Libreria open-source $_G$ di JavaScript che permette la realizzazione di mappe interattive che funzionano efficientemente sia su desktop che su mobile.

Linux

\mathbf{M}

Machine-learnig

Metodo di analisi dati che automatizza la costruzione di modelli analitici. È una branca dell'Intelligenza Artificiale e si basa sull'idea che i sistemi possono imparare dai dati, identificare modelli autonomamente e prendere decisioni con un intervento umano ridotto al minimo.

Maven

(Apache) Maven è uno strumento di gestione progetti software basati su Java e Build Automation. Supporta anche altri linguaggi quali C#, Ruby e Scala. Mediante il file POM.xml vengono descritte le dipendenze fra il progetto e le varie versioni di librerie necessarie nonché le dipendenze fra di esse. Maven effettua automaticamente il download delle librerie necessarie tra i vari repository_G definiti scaricandoli in locale o in un repository centralizzato lato sviluppo.

Ciò permette un maggior controllo in caso si debba andare a cercare una determinata libreria. MongoDB MVC

 \mathbf{N}

 $egin{aligned} \mathbf{Node.js} \\ \mathbf{NoSQL} \end{aligned}$

0

Open source

Un software open-source è reso tale per mezzo di una licenza attraverso cui i detentori dei diritti favoriscono la modifica, lo studio, l'utilizzo e la redistribuzione del codice sorgente.

P

Pom

Python

Python è un linguaggio di programmazione ad alto livello, rilasciato pubblicamente per la prima volta nel 1991 dal suo creatore Guido van Rossum, supporta diversi paradigmi di programmazione, come quello orientato agli oggetti (con supporto all'ereditarietà multipla), quello imperativo e quello funzionale, ed offre una tipizzazione dinamica forte. Python è un linguaggio pseudocompilato: un interprete si occupa di analizzare il codice sorgente e, se sintatticamente corretto, di eseguirlo. Questa caratteristica rende Python un linguaggio portabile. Una volta scritto un sorgente, esso può essere interpretato ed eseguito sulla gran parte delle piattaforme attualmente utilizzate, semplicemente basta la presenza della versione corretta dell'interprete.

\mathbf{R}

Real-time

Repository

Ambiente di un sistema informativo in cui vengono conservati e gestiti file, documenti e metadati relativi ad un'attività $_G$ di progetto.

 \mathbf{S}

Script

Server

Software

Spring

In informatica Spring è un framework $_G$ open-source $_G$ per lo sviluppo di applicazioni su piatta-

forma $Java_G$. Spring Boot

 \mathbf{U}

Ubuntu

 \mathbf{V}

Vue.js

Framework, open-source, per lo sviluppo di applicazioni web, interfacce utente e applicazioni a singola pagina.

 \mathbf{W}

Web-app

 \mathbf{X}

 \mathbf{XML}