東北大学工学部編入学試験過去問解答

comimome

https://github.com/comimome/

2023年11月22日

目次

1		はじ	ごめ	に																								2
2		令和	1 5	年	度	数	対学	ź																				3
	問題 I																		 									3
	問 1	L																	 									3
	問 2	2																	 									3
	問 3	3																	 									4
	問 4	1																	 									4
	問題I	Ι																	 									5
	問題T	TT																										5

はじめに

● 令和5年度 数学

問題Ⅰ

問1

-ベクトル AB を求め,その大きさを計算する.AB は

$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$

となる. よって

$$|\overrightarrow{AB}| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{9} = 3$$

である.

問 2

線分 AB と球面 α の交点を C とおく. 球面 β が球面 α と共有点を持つ条件は問 1 より以下のようになる.

$$|\overrightarrow{AB}| + |\overrightarrow{AC}| \ge r \ge |\overrightarrow{AB}| - |\overrightarrow{AC}|$$
$$3 > r > 2$$

問 3

円 S は |DF| を半径に持つため,

$$|DF|^2 \pi = \frac{5\pi}{9}$$
$$|DF|^2 = \frac{5}{9}$$

となる. また図から次のような関係が成り立つ.

$$|AD|^2 = |AF|^2 + |DF|^2$$

 $|BD|^2 = |BF|^2 + |DF|^2$

|AD|=1, |BD|=r, $|BF|=|AB|-|AF|=\sqrt{10}-|AF|$ であるため,上2式は次のようになる.

$$1 = |AF|^2 + \frac{5}{9}$$

$$r^2 = \{3 - |AF|\}^2 + \frac{5}{9}$$

整理すると

$$r^{2} = \left\{3 - \sqrt{1 - \frac{5}{9}}\right\}^{2} + \frac{5}{9} = 6$$
$$r = \sqrt{6}$$

となる.

問 4

円 S の中心座標は点 F, 円 S を含む平面の方程式の法線ベクトルはベクトル \overrightarrow{AB} に等しい.問 3 から点 F は線分 AB を 2: 7 に内分する点であるため,点 F の座標は,

$$\left(\frac{7 \cdot 2 + 2 \cdot 4}{9}, \frac{7 \cdot 3 + 2 \cdot 5}{9}, \frac{7 \cdot (-1) + 2 \cdot (-2)}{9}\right) = \left(\frac{22}{9}, \frac{31}{9}, \frac{-11}{9}\right)$$

となる. また平面の方程式は問1から

$$2\left(x - \frac{22}{9}\right) + 2\left(y - \frac{31}{9}\right) - \left(z + \frac{11}{9}\right) = 0$$
$$2x + 2y - z - 11 = 0$$

となる.

問題Ⅱ

問題Ⅲ