Оглавление

Введение
1. Проектирование заряда твердого топлива
1.1. Выбор формы заряда 6
1.2. Выбор твердого ракетного топлива
1.3. Термодинамический расчет характеристик
1.4. Расчет внутрибаллистических характеристик
2. Расчет тепловых потоков и толщины слоя теплозащитного
покрытия в КС
3. Расчет и проектирование корпуса РДТТ
4. Расчет и проектирование соплового блока
4.1. Профилирование сужающейся части сопла
4.2. Профилирование трансзвуковой части сопла
4.3. Профилирование сверхзвуковой части сопла
5. Расчет потерь удельного импульса
6. Расчет воспламенительного устройства
Список литературы
Приложение А. Характеристики ТРТ
Приложение Б. Термодинамический расчет

Введение

Ракетным двигателем на твердом топливе (РДТТ) называется двигатель прямой реакции, в котором химическая энергия твердого топлива преобразуется сначала в тепловую, а затем — в кинетическую энергию продуктов сгорания (ПС), истекающих с большой скоростью в окружающее пространство. Находящийся в камере сгорания (КС) заряд твердого топлива, являющийся источником химической энергии и рабочего тела, выполняется определенной формой, массой и размером.

РДТТ нашли широкое применение в роли вспомогательных ракетных двигателей для коррекции траектории и стабилизации летательных аппаратов, торможения и посадки, маршевых двигателей многоступенчатых баллистических ракет и ракетоносителей для вывода космических аппаратов на орбиту.

Целью данного дипломного проекта является разработка РДТТ третьей ступени ракеты-носителя.

Необходимость разработки РДТТ в данном случае определяется рядом его преимуществ перед жидкостный ракетный двигатель (ЖРД):

- 1. Сравнительная простота конструкции РДТТ, связанная с размещением заряда твердого топлива в камере сгорания, что позволяет исключить сложные системы подачи топлива. Сопловой блок, как правило, не требует принудительного охлаждения. В конструкции РДТТ, за исключением органов управления вектором тяги, отсутствуют подвижные части.
- 2. Простота эксплуатации ракет с РДТТ, предопределенная простотой конструкции РДТТ, отсутствием необходимости в сложных регламентных проверках и предпусковых технологических операциях.
- 3. Постоянная готовность к действию, поскольку стабильность свойств современных твердых топлив и конструкционных материалов

позволяет длительно хранить РДТТ в снаряженном состоянии на стартовых позициях.

4. Надежность и безотказность. Надежность действия какой-либо установки равна произведению надежностей отдельных агрегатов, из которых она состоит. Следовательно, чем больше отдельных агрегатов входит в состав двигательной установки, тем меньше и ее надежность в целом. Так как РДТТ прост по своей конструкции и не имеет отдельных сложных агрегатов, то и надежность его работы велика.

Для достижения основной цели дипломного проекта поставлены следующие задачи:

- 1. Проектирование заряда твердого топлива.
- 2. Разработка корпуса двигателя.
- 3. Разработка конструкции соплового блока.
- 4. Расчет теплозащитного покрытия (ТЗП).
- 5. Проектирование воспламенительного устройства.

В технологической части рассматривается технологический процесс изготовления заряда из смесевого твердого ракетного топлива, прочно скрепленного с корпусом РДТТ.

В организационно-экономической части поставлена задача определения затрат на проектирование и производство.

В части посвященной экологии и промышленной безопасности необходимо провести экологическую экспертизу наземной огневой отработки РДТТ. Выявить основные вредные факторы и разработать мероприятия по обеспечению безопасности персонала и окружающей среды.

Задание на проектирование

Исходными данными для проектирования являются импульс тяги РДТТ, время работы двигателя, среднее давление в камере сгорания, диаметр «ведущего» и «ведомого» зарядов, численные значения которых приведены в таблице Таблица 0.1.

Таблица 0.1 – Исходные данные

Импульс тяги РДТТ $J_{_{\mathrm{T}}}$, к $\mathrm{H}\cdot\mathrm{c}$	1500
Время работы двигателя $\tau_{_{\mathrm{p}}}$, с	45±5
Среднее давление в камере сгорания $p_{_{\rm K}}$, МПа	5
Диаметр «ведомого» заряда D , м	0,5
Диаметр «ведущего» заряда d , м	0,02

1. Проектирование заряда твердого топлива

1.1. Выбор формы заряда

Торцевой заряд твердого топлива, несмотря на ряд преимуществ, таких как простота расчета баллистических характеристик, высокая технологичность, высокий коэффициент заполнения камеры сгорания [1] имеет главный недостаток, ограничивающий его использование в маршевых двигателях — малая величина площади поверхности горения при значительной толщине свода.

В качестве решения данной проблемы выбрана следующая концепция заряда: по оси расположен заряд вспомогательного топлива («ведущий») пренебрежимо малого диаметра, что позволяет торцевой поверхности основного заряда («ведомый») при выгорании глухой вершины конуса не разгораться по сферической поверхности.

Параметры горения топлив «ведущего» и «ведомого» зарядов определяют массово-габаритные характеристики изделия, влияют на поведение двигателя (конечный импульс) после выгорания «ведущего» заряда ввиду наличия дегрессивно догорающих остатков [2]. Таким образом, поиск подходящей пары топлив для «ведущего» и «ведомого» зарядов является важной задачей оптимизации при проектировании РДТТ.

На рисунке Рисунок 1.1 представлен общий вид заряда с внутренней конической поверхностью горения и осевым ускорительным зарядом.

На рисунке Рисунок 1.2 представлены параметры горения составного заряда с коническим углублением.

Рисунок 1.1 — Общий вид заряда с внутренней конической поверхностью горения и осевым ускорительным зарядом. А — заряд основного топлива, В — центральный заряд быстрогорящего («ведущего») топлива, 0 — исходная поверхность горения, 2 — поверхность горения, соответствующая началу догорания остаточной части основного заряда топлива.

Рисунок 1.2 – Параметры горения составного заряда с коническим углублением.

Торцевой заряд с коническим углублением при достаточно малом угле конуса обеспечивает необходимую начальную площадь поверхности горения и величину тяги.

Подобная конфигурация заряда позволяет гармонично организовать утопленное в заряд сопло, что повысит коэффициент заполнения камеры и улучшит массогабаритные показатели двигателя.

1.2. Выбор твердого ракетного топлива

Для обеспечения заданных условий работы РДТТ, необходимо подобрать топливо из имеющейся базы данных, которое будет максимально удовлетворять исходным данным.

В современных ракетных двигателях на твердом топливе чаще используют смесевое твердое ракетное топливо (СТРТ), чем баллиститное твердое ракетное топливо (БТРТ).

Стремительное развитие и использование СТРТ как в нашей стране, так и за рубежом обусловлено более высокими энергомассовыми и другими характеристиками по сравнению с БТРТ [3].

Подбор топлива осуществляется путем выбора из композиций, приведенных в приложении A.

Массоприход с поверхности заряда твердого топлива определяется по следующей зависимости [4]:

$$\dot{m} = \rho_{\rm T} \cdot u_1 \cdot p_{\rm K}^{\nu} \cdot F_{\rm r},$$

где $\rho_{_{\rm T}}$ – плотность топлива, $u_{_{\rm I}}$ – единичная скорость горения, ν – показатель в законе горения, $p_{_{\rm K}}$ – давление в камере сгорания, $F_{_{\rm T}}$ – площадь горения.

Тогда массоприход с поверхности горения для рассматриваемой конфигурации:

$$\dot{m}_{\Sigma} = \rho_{\text{Tl}} \cdot u_{\text{rl}} \cdot F_{\text{rl}} + \rho_{\text{T2}} \cdot u_{\text{r2}} \cdot F_{\text{r2}},$$

где индекс 1 используется для топлива «ведомого» заряда, индекс 2 используется для «ведущего» заряда.

Угол наклона конуса горящей поверхности определяется следующей зависимостью:

$$\sin\frac{\alpha}{2} = \frac{u_{r1}}{u_{r2}} = \frac{u_{11} \cdot p_{\kappa}^{\nu_{1}}}{u_{12} \cdot p_{\kappa}^{\nu_{2}}} = \frac{u_{11}}{u_{12}} \cdot p_{\kappa}^{\nu_{1}-\nu_{2}}.$$

Тогда площадь горения «ведомого»:

$$F_{\rm rl} = \frac{\pi}{4} \cdot \frac{D^2 - d^2}{\frac{u_{11}}{u_{12}} \cdot p_{\rm K}^{\nu_1 - \nu_2}},$$

где D-внешний диаметр «ведомого», d-внутренний диаметр «ведомого».

Получаем итоговую зависимость:

$$\dot{m}_{\Sigma} = \rho_{\text{Tl}} \cdot u_{12} \cdot p_{\text{K}}^{\nu_2} \cdot \frac{\pi}{4} \cdot \left(D^2 - d^2\right) + \rho_{\text{T2}} \cdot u_{12} \cdot p_{\text{K}}^{\nu_2} \cdot \frac{\pi \cdot d^2}{4}.$$

В результате расчета, учитывая полученные значения расхода топлива при заданном диаметре заряда и угол наклона конуса горящей поверхности, что позволяет гармонично организовать утопленное в заряд сопло, для «ведущего» заряда выбрано топливо марки ПХН — 2М, для «ведомого» выбрано топливо марки ПХА — 4М.

Характеристики комбинации представлены в таблице

Таблица 1.1 и таблице Таблица 1.2.

Таблица 1.1 - Xарактеристики топлива $\Pi XH - 2M$

	Окислитель	перхлорат	30		
	Окислитель	нитрония, %	30		
Состав	Горючее	порошкообразный	60		
	1	алюминий, %			
	ГСВ	поливинилхлорид,	10		
		%			
Усл	повная химиче	еская формула	$C_{5,268}H_{4,800}O_{12,375}N_{2,062}Cl_{3,663}Al_{22,237}$		
Энта	льпия образов	ания $H_{_{\Pi}},rac{\kappa Дж}{\kappa \Gamma}$	-64,39		
	Закон гој	рения	$U = 14,5 \cdot \left(\frac{p}{98066,5}\right)^{0.19}$		
Г	Ілотность топл	пива $\rho_{\scriptscriptstyle \rm T}, \frac{{\rm K}\Gamma}{{ m M}^3}$	2430		
	Теплопровод	цность c , $\frac{\mathcal{J}_{K}}{K\Gamma\cdotK}$	$0,932 \cdot 10^3$		
Коэффи	щиент теплопр	роводности $\lambda, \frac{B_T}{M \cdot K}$	4,5		
Коэффи	щиент линейн	ого расширения α,	4		
	$\frac{1}{K}$		$2 \cdot 10^{-4}$		
Мини	мальное давле	ние устойчивого	0,7		
	горения р	, кПа 	~, <i>,</i>		
Эксплуа		тервал температур	[240;293]		
	T,K	•	, , 3		

Таблица 1.2 – Характеристики топлива ПХА – 4М

	Окислитель	перхлорат аммония, %	35
Состав	Горючее	порошкообразный алюминий, %	20
	ГСВ	нитразол, %	45
Усл	повная химиче	ская формула	$C_{5,213}H_{24,948}O_{28,408}N_{7,428}Cl_{2,979}Al_{7,413}$
Энта	льпия образов	ания $H_{_{\Pi}},rac{\mathrm{к}\mathrm{Д}\mathrm{ж}}{\mathrm{к}\mathrm{\Gamma}}$	-2034
	Закон гор	рения	$U = 6,49 \cdot \left(\frac{p}{98066,5}\right)^{0.24}$
Γ	Ілотность топл	ива $\rho_{\scriptscriptstyle \mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	1800
	Теплопровод	цность c , $\frac{\mathcal{J} \mathbf{x}}{\mathbf{k} \mathbf{r} \cdot \mathbf{K}}$	$1,084 \cdot 10^3$
Коэффи	щиент теплопр	ооводности $\lambda, \frac{B_T}{M \cdot K}$	0,94
Коэффи	щиент линейн $\frac{1}{K}$	ого расширения α,	$3,4\cdot 10^{-4}$
Мини	мальное давле горения <i>р</i>	ние устойчивого , кПа	30
Эксплуа	тационный ин T, K	тервал температур	[220;320]

1.3. Термодинамический расчет характеристик

С помощью программы «TERRA» [5] проводится термодинамический расчет горения в камере сгорания, расширения в сопле и равновесного состава продуктов сгорания.

В приложении Б приводятся результаты термодинамического расчета.

1.4. Расчет внутрибаллистических характеристик

Для получения основных параметров РДТТ необходимо провести расчет внутрибаллистических характеристик.

Из результатов термодинамического расчета выбранной пары топлив используется значения равновесной температуры продуктов сгорания $T_{\kappa}=3906,2~{\rm K},$ показателя адиабаты k=1,19, удельного импульса $J_{\rm y}=2938,36~{\rm \frac{M}{c}}$.

Приведенная скорость потока продуктов сгорания в выходном сечении сопла:

$$\lambda_a = \sqrt{\frac{k+1}{k-1} \cdot \left[1 - \left(\frac{p_a}{p_{_{\rm K}}}\right)^{\frac{k-1}{k}}\right]} = \sqrt{\frac{1,19+1}{1,19-1} \cdot \left[1 - \left(\frac{0,03 \cdot 10^6}{5 \cdot 10^6}\right)^{\frac{1,19-1}{1,19}}\right]} = 2,544.$$

Газодинамические функции:

$$f(\lambda_a) = (1 + \lambda_a^2) \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda_a^2\right)^{\frac{1}{k-1}} =$$

$$= (1 + 2,544^2) \cdot \left(1 - \frac{1,19-1}{1,19+1} \cdot 2,544^2\right)^{\frac{1}{1,19-1}} = 0,1003,$$

$$q(\lambda_a) = \lambda_a \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda_a^2\right)^{\frac{1}{k-1}} \cdot \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} =$$

$$= 2,951 \cdot \left(1 - \frac{1,19-1}{1,19+1} \cdot 2,544^2\right)^{\frac{1}{1,19-1}} \cdot \left(\frac{1,19+1}{2}\right)^{\frac{1}{1,19-1}} = 0,055.$$

Комплекс:

$$A(k) = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \cdot \sqrt{\frac{2 \cdot k}{k+1}} = \left(\frac{2}{1,19+1}\right)^{\frac{1}{1,19-1}} \cdot \sqrt{\frac{2 \cdot 1,19}{1,19+1}} = 0,646.$$

Расход:

$$\dot{m}_{_{\rm T}} = \rho_{_{\rm T}1} \cdot u_{_{12}} \cdot p_{_{\rm K}}^{_{_{V_2}}} \cdot \frac{\pi}{4} \cdot \left(D^2 - d^2\right) + \rho_{_{\rm T}2} \cdot u_{_{12}} \cdot p_{_{\rm K}}^{_{_{V_2}}} \cdot \frac{\pi \cdot d^2}{4} = 10,823 \frac{{\rm K}\Gamma}{{\rm c}}.$$

Площадь критического сечения:

$$F_{\text{kp}} = \frac{\dot{m}_{\text{T}} \cdot \sqrt{\chi \cdot R \cdot T_{\text{K}}}}{\varphi_{\text{c}} \cdot A(k) \cdot p_{\text{K}}} =$$

$$= \frac{10,823 \cdot \sqrt{0,95 \cdot 376,087 \cdot 3906,2}}{0,93 \cdot 0,646 \cdot 5 \cdot 10^{6}} = 0,00426 \text{ m}^{2},$$

где $\chi=0,95$ – коэффициент, учитывающий потери энергии на нагрев стенок камеры сгорания и на неполноту сгорания твердого топлива, $\varphi_{\rm c}=0,93$ – коэффициент потерь в сопле.

Диаметр критического сечения:

$$d_{\text{kp}} = \sqrt{\frac{4 \cdot F_{\text{kp}}}{\pi}} = \sqrt{\frac{4 \cdot 0,00426}{\pi}} = 73,6 \text{ mm}.$$

Площадь выходного сечения сопла:

$$F_a = \frac{F_{\text{kp}}}{q(\lambda_a)} = \frac{0,00426}{0,055} = 0,077 \text{ m}^2.$$

Диаметр выходного сечения сопла:

$$d_a = \sqrt{\frac{4 \cdot F_a}{\pi}} = \sqrt{\frac{4 \cdot 0,077}{\pi}} = 314 \text{ mm}.$$

Выгорание «ведущего» заряда.

Площадь горения:

$$F_{\rm f} = \frac{\pi}{4} \cdot \frac{\left(D^2 - d^2\right)}{\frac{u_{11}}{u_{12}} \cdot \left(p_{\rm k}\right)^{v_1 - v_2}} + \frac{\pi \cdot d^2}{4} =$$

$$= \frac{\pi}{4} \cdot \frac{\left(0.5^2 - 0.02^2\right)}{\frac{6.49}{14.5} \cdot \left(\frac{5 \cdot 10^6}{98066.5}\right)^{0.24 - 0.19}} + \frac{\pi \cdot 0.023^2}{4} = 0.36 \text{ m}^2.$$

Скорость горения:

$$u = u_{12} \cdot \left(\frac{p_{\kappa}}{98066,5}\right)^{v} = 14.5 \cdot \left(\frac{5 \cdot 10^{6}}{98066,5}\right)^{0.19} = 30,604 \frac{\text{MM}}{\text{c}},$$

где u_{12} –единичная скорость горения «ведущего» топлива; ν –показатель в законе горения.

Для расчёта изменения поверхности горения используется геометрический метод, в основе которого лежит допущение о равномерности поля скорости горения топлива, т.е. одинаковой скорости горения во всех направлениях. Из этого допущения следует, что скорость горения всегда нормальна к поверхности горения, и процесс выгорания происходит параллельными (эквидистантными) слоями.

Полученные данные используются для расчета давления в камере сгорания, скорости горения заряда и тяги по времени работы РДТТ в зависимости от величины сгоревшего свода заряда.

Расчет давления в зависимости от площади горения:

$$p_{\kappa i} = \left[\frac{F_{\kappa i} \cdot \rho_{\kappa} \cdot \left(\frac{u_{1}}{98066, 5^{\upsilon}} \right) \cdot \sqrt{\chi \cdot R \cdot T_{\kappa}}}{\varphi_{c} \cdot F_{\kappa p} \cdot A(k)} \right]^{\frac{1}{1-\nu}}.$$

Скорость горения:

$$u_i = u_1 \cdot \left(\frac{p_{\kappa i}}{98066,5}\right)^{\nu}.$$

Время работы:

$$t_{pi} = t_{pi-1} + \frac{e_i - e_{i-1}}{u_{ri-1}}.$$

Тяга:

$$P_{i} = \varphi_{c} \cdot p_{\kappa i} \cdot F_{\kappa p} \cdot \frac{f(\lambda_{a})}{q(\lambda_{a})}.$$

Результаты расчета представлены в таблице Таблица 1.3.

Таблица 1.3 — Зависимости площади горения, давления в камере сгорания и скорости от величины сгоревшего свода «ведущего» заряда

No॒	t_p , c	е, м	F_{Γ} , M^3	p_{κ} , МПа	$u, \frac{MM}{c}$	Р, Н
1	0	0	0,36	5	30,604	36046,96
2	1,33	0,0408	0,36	5	30,604	36046,96
3	2,67	0,0816	0,36	5	30,604	36046,96
4	4	0,1224	0,36	5	30,604	36046,96
5	5,33	0,1632	0,36	5	30,604	36046,96
6	6,67	0,2040	0,360	5	30,604	36046,96
7	8	0,2448	0,36	5	30,604	36046,96
8	9,33	0,2856	0,36	5	30,604	36046,96
9	10,67	0,3264	0,36	5	30,604	36046,96
10	12	0,3673	0,36	5	30,604	36046,96
11	13,33	0,4081	0,36	5	30,604	36046,96
12	14,67	0,4489	0,36	5	30,604	36046,96
13	16	0,4897	0,36	5	30,604	36046,96
14	17,33	0,5305	0,36	5	30,604	36046,96
15	18,67	0,5713	0,36	5	30,604	36046,96
16	20	0,6121	0,36	5	30,604	36046,96
17	21,33	0,6529	0,36	5	30,604	36046,96
18	22,67	0,6937	0,36	5	30,604	36046,96
19	24	0,7345	0,36	5	30,604	36046,96
20	25,33	0,7753	0,36	5	30,604	36046,96
21	26,67	0,8161	0,36	5	30,604	36046,96

22	28	0,8569	0,36	5	30,604	36046,96
23	29,33	0,8977	0,36	5	30,604	36046,96
24	30,67	0,9385	0,36	5	30,604	36046,96
25	32	0,979	0,36	5	30,604	36046,96
26	33,33	1,0201	0,36	5	30,604	36046,96
27	34,67	1,0609	0,36	5	30,604	36046,96
28	36	1,1018	0,36	5	30,604	36046,96
29	37,33	1,1426	0,36	5	30,604	36046,96
30	38,67	1,1834	0,36	5	30,604	36046,96
31	40	1,2242	0,36	5	30,604	36046,96

Горение дегрессивных остатков.

Зависимости площади горения, давления в камере сгорания, скорости и тяги от величины сгоревшего свода при горении дегрессивных остатков представлены в таблице

Таблица 1.4.

Таблица 1.4 — Зависимости площади горения, давления в камере сгорания и скорости от величины сгоревшего свода дегрессивных остатков

Nº	t_p , c	е, м	F_{Γ} , M^3	$p_{\scriptscriptstyle \rm K}$, МПа	$u, \frac{MM}{c}$	Р, Н
1	40,89	0,0074	0,355	4,910	16,601	35402,41
2	41,79	0,0074	0,347	4,756	16,475	34293,89
3	42,70	0,0074	0,334	4,514	16,269	32546,36
4	43,62	0,0074	0,314	4,170	15,963	30069,85
5	44,57	0,0074	0,287	3,708	15,520	26738,33
6	45,55	0,0074	0,251	3,099	14,865	22343,86
7	46,59	0,0074	0,193	2,196	13,686	15835,38
8	48,76	0,0074	0	0	0	0

Полный импульс тяги:

$$J_{\rm T} = \int_{\tau_0}^{\tau_1} P(\tau) d\tau = 1563,181 \text{ kH} \cdot \text{c}.$$

2. Расчет тепловых потоков и толщины слоя теплозащитного покрытия в КС

В процессе работы РДТТ основные элементы конструкции и узлы испытывают значительные тепловые нагрузки, наибольшая доля теплового потока реализуется в КС.

Возможные негативные эффекты:

- 1. Нагрев элементов конструкции, ухудшение прочностных характеристик.
- 2. Разрушение конструкционных материалов, которые обеспечивают газодинамический профиль сопла, что приводит к изменению критического сечения, искажению профиля сопла.
- 3. Осаждение конденсированной фазы на газодинамический профиль двигателя.

Расчет тепловых потоков проводится по методике В.С. Авдуевского для следующих начальных условий [6]:

- 1. давление в камере сгорания $p_{\kappa} = 5 \text{ M}\Pi a$;
- 2. температура $T_{\kappa} = 3906,2 \text{ K};$
- 3. диаметр критического сечения $d_{\text{кp}} = 0.074 \text{ m};$
- 4. газовая постоянная $R = 376,087 \frac{Дж}{кг \cdot K}$;
- 5. показатель адиабаты k = 1,19;
- 6. массовая доля конденсированных частиц z = 0.374;
- 7. полная энтальпия ПС $I_{\kappa} = 2030,06 \frac{\text{Дж}}{\text{кг}}$;
- 8. коэффициент динамической вязкости $\eta = 1,035 \cdot 10^{-4} \, \Pi \text{a} \cdot \text{c}$;
- 9. теплоёмкость продуктов сгорания $C_p = 6,492 \frac{\kappa \text{Дж}}{\text{кг} \cdot \text{K}}$.

Теплозащитное покрытие должно обеспечивать:

- 1. надежную защиту стенки КС от воздействия тепловых потоков;
- 2. надежную адгезию к корпусу и защитно-крепящему слою;
- 3. сохранение собственных несущих свойств в условиях упругой деформации;
- 4. стабильность свойств при длительном хранении;

В качестве материала ТЗП применяется композиционный материал с основой связующего из термопластичного полимера и дисперсноволокнистого наполнителя из керамики.

Данный аблятор обладает следующими характеристиками:

- 1. Плотность материала покрытия $\rho_{_{\rm II}} = 1300 \ \frac{{\rm K}\Gamma}{{\rm M}^3}.$
- 2. Удельная теплоёмкость покрытия $C_{pn} = 2600 \ \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$.
- 3. Коэффициент теплопроводности $\lambda_{_{\Pi}} = 0.9 \, \frac{\mathrm{BT}}{\mathrm{M} \cdot \mathrm{K}}$.
- 4. Температура поверхности газового тракта $T_w = 2500 \text{ K}$.
- 5. Полная энтальпия материала покрытия $I_{\rm n} = -4 \cdot 10^6 \ \frac{\rm Дж}{\rm кг}$.
- 6. Массовое содержание связующего $\phi = 0.6$.
- 7. Удельная теплота абляции материала $Q_{\rm n} = 3 \cdot 10^6 \ \frac{\rm Дж}{\rm кг}$.

Исходные данные для расчета цилиндрической части приведены в таблице Таблица 2.1 – Параметры цилиндрической частиТаблица 2.1.

Таблица 2.1 – Параметры цилиндрической части

No	<i>t</i> , c	$W, \frac{M}{c}$	$d_{\scriptscriptstyle 9}$, mm
1	0	25	500
2	3,79	25	500
3	7,59	27	500
4	11,39	30	500
5	15,18	32	500
6	18,98	35	500
7	22,77	37	500
8	26,57	40	500
9	30,36	42	500
10	34,16	45	500
11	37,95	47	500
12	41,75	48	500
13	45,54	50	500

Исходные данные для расчета заднего днища приведены в таблице Таблица 2.2.

Таблица 2.2 – Параметры заднего днища

No	t, c	$W, \frac{M}{c}$	$d_{\scriptscriptstyle 3}$, мм		
1	48,76	50	500		
2	48, 76	62,5	458,33		
3	48, 76	75	416,67		
4	48, 76	87,5	375		
5	48, 76	100	333,33		
6	48, 76	112,5	291,67		
7	48, 76	125	250		
8	48, 76	137,5	208,33		
9	48, 76	150	166,67		
10	48, 76	162,5	125		
11	48, 76	175	83,33		
12	48, 76	187,5	41,67		

Число Маха в данной зоне:

$$M = \frac{W}{\sqrt{k \cdot R \cdot T_{_{\rm K}}}},$$

где W — характерная скорость течения газа.

Статическая температура ПС:

$$T_{\kappa}^{1} = \frac{T_{\kappa}}{1 + \frac{k-1}{2} \cdot M^{2}}.$$

Коэффициент восстановления температуры:

$$r = \sqrt[3]{\text{Pr}} = \sqrt[3]{0.37} = 0.718$$
,

где Pr- критерий Прандтля.

Температура ПС на адиабатической стенке:

$$T_r = T_{\kappa}^1 \cdot \left[1 + \frac{k-1}{2} \cdot r \cdot M^2 \right].$$

Энтальпия ПС на адиабатической стенке:

$$H_r = C_p \cdot T_r,$$

где C_p — теплоёмкость продуктов сгорания.

Энтальпия ПС при температуре стенки T_w :

$$H_w = C_p \cdot T_w = 6,492 \cdot 10^3 \cdot 2500 = 16230,975 \frac{\text{K} \square \text{K}}{\text{K} \Gamma}.$$

Плотность ПС при температуре стенки T_w :

$$\rho_{w} = \frac{p_{K}}{R \cdot T_{w}} = \frac{5 \cdot 10^{6}}{376,087 \cdot 2500_{w}} = 5,318 \frac{K\Gamma}{M^{3}}.$$

Значение числа Рейнольдса и Прандтля у стенки:

$$\operatorname{Re}_{w} = \frac{\rho_{w} \cdot W \cdot d_{9}}{\eta_{w}},$$

$$Pr_{w} = \frac{\eta_{w} \cdot C_{p}}{\lambda_{w}} = \frac{1,035 \cdot 10^{-4} \cdot 6,492}{0,356} = 1,889,$$

где $d_{_{9}}$ – эквивалентный размер области; $\eta_{_{W}}$ – коэффициент динамической вязкости; $\lambda_{_{W}}$ – коэффициент теплопроводности.

Значение числа Стантона на идеальной стенке:

$$St^* = 0.0296 \cdot \text{Re}_w^{-0.2} \cdot \text{Pr}_w^{-0.6} \cdot \left(\frac{H_w}{H_r}\right)^{0.39} \cdot \left(1 + r \cdot \frac{k-1}{2} \cdot M^2\right)^{0.11}.$$

Значение числа Стантона для реальных условий:

$$St = St^* \cdot k_{\scriptscriptstyle \rm B} \cdot k_{\scriptscriptstyle \rm III} \cdot k_{\scriptscriptstyle \rm T} \cdot k_{\scriptscriptstyle \rm p},$$

где $k_{_{\rm B}}$ — коэффициент, учитывающий вдув газа в результате разложения газа, $k_{_{\rm B}}$ = 0,9; $k_{_{\rm III}}$ — коэффициент, учитывающий шероховатость стенки, $k_{_{\rm III}}$ = 1,095; $k_{_{\rm T}}$ — коэффициент, учитывающий влияние турбулентности пульсаций, $k_{_{\rm T}}$ = 1; $k_{_{\rm P}}$ — коэффициент, учитывающий влияние конденсированных частиц ПС, $k_{_{\rm P}}$ = 1+0,0246 · Re $_{_{\rm W}}^{-0.3}$ · $z^{2.45}$ = 1.

Плотность конвективного теплового потока к стенке камеры сгорания:

$$\alpha = \rho_{w} \cdot W \cdot St \cdot C_{p},$$

$$q_{K} = \alpha (T_{K} - T_{W}),$$

где α – коэффициент теплоотдачи.

Далее рассчитывается значение плотности радиационного теплового потока.

Значение степени черноты стенки $\varepsilon_{w} = 0.8$.

Для определения степени черноты продуктов сгорания используется методика, изложенная в [7]. Из результатов термодинамического расчета находятся мольные концентрации молекул воды $C_{\rm H_2O}=6,897~\frac{\rm MОЛЬ}{\rm K\Gamma}$ и углекислого газа $C_{\rm CO_2}=1,145~\frac{\rm MОЛЬ}{\rm K\Gamma}$. Парциальные давление указанных молекул рассчитываются с использованием значения молекулярной массы газообразных продуктов сгорания $\mu_{\rm r}=0,022~\frac{\rm K\Gamma}{\rm MOЛЬ}$ по зависимостям:

$$\begin{split} p_{\rm H_2O} &= C_{\rm H_2O} \cdot \mu_{_{\Gamma}} \cdot p_{_{\rm K}} = 6,897 \cdot 0,022 \cdot 5 \cdot 10^6 = 7,624 \,\, {\rm fap} \,, \\ p_{\rm CO_2} &= C_{\rm CO_2} \cdot \mu_{_{\Gamma}} \cdot p_{_{\rm K}} = 1,145 \cdot 0,022 \cdot 5 \cdot 10^6 = 1,266 \,\, {\rm fap} \,. \end{split}$$

Далее, принимая характерный диаметр излучающего объема, равным характерному размеру зоны, определяем среднюю длину пути луча:

$$l=0,9\cdot d_{_{9}}.$$

По номограмме находим интегральные излучательные способности трехатомных молекул и газообразных ПС в целом:

$$\begin{split} \varepsilon_{\rm H_2O} &= 0,24\,, \\ \varepsilon_{\rm CO_2} &= 0,035\,, \\ \varepsilon_{_{\Gamma}} &= \varepsilon_{_{\rm H_2O}} + \varepsilon_{_{\rm CO_2}} - \varepsilon_{_{\rm H_2O}} \cdot \varepsilon_{_{\rm CO_2}} = 0,24 + 0,035 - 0,24 \cdot 0,035 = 0,267\,. \end{split}$$

Будем считать, что плотность конденсированной фазы составляет $\rho_{\text{к.ф.}} = 2200 \frac{\text{кг}}{\text{м}^3} \, .$

Среднемассовый диаметр конденсированных частиц ПС:

$$d_{43} = 10,68 \cdot d_{\mathrm{kp}}^{-0.293} \cdot \left(1 - e^{-11,28 \cdot z \cdot t_{\mathrm{k}} \cdot \frac{p_{\mathrm{k}}}{10^6}}\right) =$$

$$= 10,68 \cdot 0,0736^{0.293} \cdot \left(1 - e^{-11,28 \cdot 0,374 \cdot 0,5 \cdot \frac{5 \cdot 10^6}{10^6}}\right) = 4,972 \text{ MKM},$$

где $t_{\kappa} = 0.5 \text{ c}$.

Тогда эффективный коэффициент ослабления луча в продуктах сгорания:

$$d = 0.042 \cdot \frac{1}{\rho_{\kappa.\phi.}} \cdot \sqrt[3]{\frac{T_{\kappa}}{d_{43}^{2}}} \cdot z =$$

$$= 0.042 \cdot \frac{1}{2200} \cdot \sqrt[3]{\frac{3906.2}{(4.972)^{2}}} \cdot 0.374 = 0.025,$$

Эффективная излучательная способность продуктов сгорания:

$$\varepsilon_{\text{nc}} = 1 - (1 - \varepsilon_{\Gamma}) \cdot e^{(-d \cdot l)}$$
.

Плотность радиационного теплового потока:

$$q_{p} = \mathcal{E}_{w} \cdot \mathcal{E}_{nc} \cdot \sigma_{0} \cdot \left(T_{\kappa}^{4} - T_{w}^{4}\right),$$

где σ_0 – постоянная Стефана-Больцмана, $\sigma_0 = 5,67 \cdot 10^{-8} \frac{\text{BT}}{\text{M}^2 \cdot \text{K}^4}$.

Скорость уноса массы материала ТЗП рассчитывается в предположении равенства начальной температуры ТЗП $T_{n0} = 293 \; \mathrm{K}$:

$$U_{_{\Pi}} = \frac{q_{_{\mathrm{K}}} + q_{_{\mathrm{p}}}}{\rho_{_{\Pi}} \cdot \left(Q_{_{\Pi}} + \varphi(I_{_{\mathrm{K}}} - I_{_{\Pi}}) + C_{_{p\Pi}}(T_{_{W}} - T_{_{\Pi0}})\right)},$$

где I_{κ} – полная энтальпия ПС.

Примем, что максимально допустимая температура силовой оболочки выполненной, например, из органопластика, под материалом ТЗП равна $T_{_{\rm M}} = 500~{\rm K}$. Тогда с учетом определенных выше значений необходимая толщина слоя абляционного ТЗП рассчитывается по формуле:

$$S_{\Pi} = \frac{a_{\Pi}}{U_{\Pi}} \cdot \ln \left(\frac{T_{W} - T_{\Pi 0}}{T_{M} - T_{\Pi 0}} \right) + U_{\Pi} \cdot t,$$

где $a_{\scriptscriptstyle \Pi}$ – коэффициент температуропроводности покрытия.

Аналогичным образом рассчитывается потребные значения толщин ТЗП в других характерных зонах камеры сгорания РДТТ. При этом изменяются в расчете только характерная скорость течения газа и эквивалентный размер диаметра. Результаты расчета приведены в таблице Таблица 2.3 и Таблица 2.4.

Таблица 2.3 – Результаты расчета для цилиндрической части

M	T_{κ}^{1} , K	T_r , K	H_r , $\frac{кДж}{к\Gamma}$	$Re_{w} \cdot 10^{-6}$	$St^* \cdot 10^3$	$St \cdot 10^3$	$\alpha, \frac{\kappa BT}{M^2 \cdot K}$	$q_{\scriptscriptstyle \mathrm{K}}, \frac{\mathrm{MBT}}{\mathrm{M}^2}$	<i>l</i> , м	$\mathcal{E}_{ ext{nc}}$	$q_{\rm p}, \frac{{ m MBT}}{{ m M}^2}$	$U_{_{\Pi}}, \frac{\mathrm{MM}}{\mathrm{c}}$	$\delta_{_{\Pi}},\ { m MM}$
0,0189	3906,33	3906,425	25362,0325	0,6422606	1,17055	1,15372	0,9958	1,4003448	0,45	0,274799	2,4151479	0,263536	2,3912438
0,0189	3906,33	3906,425	25362,0325	0,6422606	1,17055	1,15372	0,99583	1,4003448	0,45	0,274799	2,4151479	0,263536	3,3913696
0,0204	3906,35	3906,462	25362,2753	0,6936415	1,152667	1,13609	1,0591	1,4892626	0,45	0,274799	2,4151479	0,269677	4,3836526
0,0227	3906,38	3906,524	25362,6744	0,7707128	1,128626	1,11239	1,1521	1,6202173	0,45	0,274799	2,4151479	0,278722	5,4342314
0,0242	3906,41	3906,568	25362,9638	0,8220936	1,114147	1,09812	1,2132	1,7060570	0,45	0,274799	2,4151479	0,284651	6,5348997
0,0265	3906,45	3906,64	25363,433	0,8991649	1,09435	1,07860	1,3033	1,8328371	0,45	0,274799	2,4151479	0,293408	7,7152468
0,0280	3906,48	3906,692	25363,7691	0,9505458	1,082249	1,06667	1,3626	1,9161434	0,45	0,274799	2,4151479	0,299162	8,9184475
0,0302	3906,53	3906,775	25364,3083	1,0276170	1,065498	1,05016	1,4503	2,0394371	0,45	0,274799	2,4151479	0,307678	10,221698
0,0318	3906,56	3906,834	25364,6911	1,0789979	1,055146	1,03995	1,5081	2,1206003	0,45	0,274799	2,4151479	0,313284	11,522892
0,0340	3906,62	3906,928	25365,3004	1,1560692	1,040678	1,02569	1,5935	2,2409122	0,45	0,274799	2,4151479	0,321594	12,943663
0,0355	3906,66	3906,994	25365,7299	1,2074500	1,03166	1,01680	1,6499	2,3202244	0,45	0,274799	2,4151479	0,327072	14,339195
0,0363	3906,68	3907,028	25365,9517	1,2331405	1,027322	1,01253	1,6780	2,3596256	0,45	0,274799	2,4151479	0,329793	15,678150
0,0378	3906,72	3907,099	25366,4092	1,2845213	1,018962	1,00429	1,7337	2,4379392	0,45	0,274799	2,4151479	0,335202	17,145222

Таблица 2.4 – Результаты расчета для заднего днища

M	T_{κ}^{1} , K	T_r , K	H_r , $\frac{кДж}{к\Gamma}$	$Re_{w} \cdot 10^{-6}$	$St^* \cdot 10^3$	$St \cdot 10^3$	$\alpha, \frac{\kappa B_T}{M^2 \cdot K}$	$q_{\scriptscriptstyle \rm K}, \frac{{ m MBT}}{{ m M}^2}$	<i>l</i> , м	$\mathcal{E}_{_{ m IIC}}$	$q_{\rm p}, \frac{{ m MBT}}{{ m m}^2}$	$U_{_{\Pi}}, \frac{\mathrm{MM}}{\mathrm{c}}$	$\delta_{_{\Pi}}$, mm
0,0378	3906,72	3907,099	25366,4092	1,2845213	1,018962	1,00429	1,73370731	2,4379392	0,45	0,274799	2,4151467	0,335202	18,224466
0,0473	3907,01	3907,604	25369,6923	1,4718474	0,99155	0,97726	2,10882420	2,9654285	0,412	0,274119	2,4091728	0,371224	19,798430
0,0568	3907,37	3908,223	25373,7056	1,6056517	0,974391	0,96035	2,48679033	3,4969245	0,375	0,273439	2,4031933	0,407521	21,417090
0,0662	3907,80	3908,953	25378,4496	1,6859342	0,964867	0,95096	2,87289370	4,0398631	0,337	0,272758	2,3972082	0,444608	23,096477
0,0757	3908,29	3909,797	25383,9247	1,7126951	0,961761	0,94790	3,27273765	4,6021236	0,3	0,272076	2,3912175	0,48303	24,857168
0,0851	3908,85	3910,753	25390,1315	1,6859342	0,964714	0,95081	3,69313566	5,1932873	0,262	0,271394	2,3852212	0,523447	26,727188
0,0946	3909,47	3911,821	25397,0706	1,6056517	0,974082	0,96005	4,14333821	5,8263621	0,225	0,270711	2,3792192	0,566759	28,747073
0,1041	3910,16	3913,003	25404,7427	1,4718474	0,991079	0,97680	4,63720988	6,5208445	0,187	0,270027	2,3732117	0,614312	30,979683
0,1135	3910,91	3914,298	25413,1486	1,2845213	1,018317	1,00365	5,19782860	7,3091865	0,15	0,269343	2,3671985	0,668347	33,531512
0,1230	3911,73	3915,706	25422,2891	1,0436736	1,061365	1,04609	5,86905958	8,2530715	0,112	0,268658	2,3611797	0,733126	36,606792
0,1325	3912,62	3917,227	25432,1652	0,7493041	1,133934	1,11762	6,75276198	9,4957338	0,075	0,267973	2,3551552	0,81854	40,681906
0,1419	3913,57	3918,862	25442,7778	0,4014129	1,284514	1,26607	8,19608561	11,525335	0,037	0,267287	2,3491251	0,958308	47,384707

3. Расчет и проектирование корпуса РДТТ

Корпус РДТТ — часть РДТТ, предназначенная для образования КС, размещения заряда твердого ракетного топлива, монтажа узлов и агрегатов, а также для соединения узла РДТТ с перемещающимся аппаратом.

Так как одной из особенностей РДТТ является то, что корпус двигателя одновременно является и корпусом, и «баком», и камерой сгорания, то к нему выдвигается ряд требований:

- 1. Должен выдерживать внутренние нагрузки, которые обусловлены рабочим процессом;
- 2. Корпус должен быть спроектирован так, чтобы в системе корпус заряд возникало минимальное количество возмущений;
- 3. Конструкция должна быть оптимальной с точки зрения интеграции в состав подвижного аппарата;
- 4. Конструкция должна быть технологична;
- 5. Масса конструкции должна быть минимальной.

Основные задачи:

- 1. Выбор формы корпуса;
- 2. Выбор материалов;
- 3. Расчет толщины корпуса;
- 4. Выбор соединений и их расчет.

В настоящее время в РДТТ применяются в основном обечайки из трех типов материалов: металлические, из композиционных материалов и комбинированные. Широко используются композитные корпуса типа «кокон» (углепластиковые, органопластиковые и др.), изготавливаемые из волокна, пропитанного термостойким связующим, путем спирально-кольцевой намотки на оправку.

Корпус проектируемого РДТТ выполнен методом непрерывной намотки лентой органопластика на основе арамидных волокон, пропитанных эпоксидным связующим.

В качестве материала силовой оболочки принят композиционный материал – органопластик на основе армирующего материала – органоволокна марки «АРМОС» 600-А-К ТУ 6-12-172-91 и связующего марки ЭДТ-10 ОСТ 3-4759-80. Основные характеристики приведены в таблице Таблица 3.1.

Таблица 3.1 – Основные характеристики материала силовой оболочки корпуса

Прочность волокна, МПа	2500
Модуль упругости, ГПА	97
Плотность, $\frac{\Gamma}{\text{см}^3}$	1,350
Содержание связующего, %	25-30

4. Расчет и проектирование соплового блока

Сопло — это часть РДТТ, образующая канал переменного сечения, в котором осуществляется преобразование тепловой энергии топлива в кинетическую энергию истекающей струи ПС, основным назначением которого является создание тяги.

На сопло воздействуют следующие нагрузки:

- 1. Тепловое воздействие
- 2. Скоростной напор
- 3. Механическое воздействие
- 4. Химическое взаимодействие ПС с конструкционными материалами
- 5. Эрозионное воздействие двухфазного потока на трансзвуковую часть сопла
- 6. Внешнее воздействие

С учетом основного предназначения сопла и особенностей нагрузок качество профилирования контура сопла определяет массово-габаритные и тягово-импульсные характеристики, как двигательной установки (ДУ), так и летательного аппарата (ЛА) в целом. Поэтому проектирование соплового блока является одним из основных вопросов, для решения которого необходимо выполнить ряд задач:

- 1. Выбор типа сопла, расчет геометрических размеров характерных сечений.
- 2. Определение необходимости регулирования тяги РДТТ.
- 3. Построение геометрического профиля сужающейся, трансзвуковой и расширяющейся частей сопла.
- 4. Определение потерь удельного импульса и расчет действительных характеристик РДТТ.
- 5. Конструкционная проработка соплового блока.

6. Учет влияния сопла на другие узлы и агрегаты.

Требования, предъявляемые к соплу РДТТ:

- 1. Сопловой блок должен выдерживать все факторы рабочего процесса: давление, температура, воздействие конденсированной фазы, воздействие космического излучения и др.
- 2. Сопловой блок должен удовлетворять эксплуатационным требованиям (удобство транспортировки, возможность управления вектором тяги и др.).
- 3. Сопловой блок должен обеспечивать минимальность осевых габаритов двигателя.
- 4. Сопловой блок должен быть технологичным в изготовлении.

4.1. Профилирование сужающейся части сопла

В настоящее время в конструкциях РДТТ используются сопла, у которых сужающаяся и трансзвуковая части располагаются в районе камеры сгорания — так называемые утопленные сопла. Профилирование профиля утопленной части сопла может выполняться поверхностью, образованной вращением эллипса с полуосями *а* и *b* относительно оси сопла [7].

Причем:

$$\frac{a}{b} = 2$$
.

Для уменьшения эрозии сопла входное сечение выполняется в соответствии с рекомендацией:

$$\frac{R_{_{\mathrm{BX}}}}{R_{_{\mathrm{Kp}}}} > 1,25$$
, $R_{_{\mathrm{Kp}}} = 36,8 \text{ MM} = 0,0368 \text{ M}$, $\frac{R_{_{\mathrm{BX}}}}{R_{_{\mathrm{Kp}}}} = 1,5$.

Тогда:

$$R_{\text{BX}} = 1,5 \cdot 36,8 = 55,2 \text{ mm},$$

$$b = R_{\text{BX}} - R_{\text{Kp}} = 55,2 - 36,8 = 18,4 \text{ mm},$$

$$a = 2 \cdot b = 2 \cdot 18,4 = 36,8 \text{ mm}.$$

4.2. Профилирование трансзвуковой части сопла

Неоптимальный профиль критического сечения сопла, как и неверный профиль сужающейся части, может привести к возникновению системы скачков уплотнения, которые снижают энергетические характеристики соплового блока в целом.

Минимальную длину обеспечивает сверхзвуковой профиль с угловой точкой, в котором сопряжение дозвукового и сверхзвукового участков сопла выполнено с изломом [7].

4.3. Профилирование сверхзвуковой части сопла

Для профилирования сверхзвуковой части сопла можно использовать метод Рао (огибающих). Данный метод позволяет построить контур сверхзвуковой части сопла, близкий К контуру, получаемому использовании точных методик, основанных на интегрировании дифференциальных уравнений в частных производных, описывающих сверхзвуковое течение идеального газа [7].

Из внутрибаллистического расчета известны следующие геометрические характеристики:

$$R_{\text{kp}} = 36.8 \text{ mm} = 0.0368 \text{ m},$$

$$R_a = \frac{d_a}{2} = \frac{0.314}{2} = 0.157 \text{ m} = 157 \text{ mm}.$$

Методика приближенного построения такого профиля включает в себя нахождение углов $\beta_{\rm BX}$, β_a и относительной длины расширяющейся части, а образующая описывается параболой общего вида, которая строится геометрическим методом по координатам двух точек и касательным в них.

Безразмерный диаметр выходного сечения сопла:

$$\overline{D}_a = \frac{d_a}{d_{\text{kp}}} = 4,26.$$

Принимаем $\beta_a = 10^\circ$.

Для рассчитанных \bar{D}_a и выбранного угла β_a по таблице [9, кн. 1, с. 355...362] определяется относительная длина расширяющейся части сопла $\bar{X}_a=11$ и угол входа в сопло $\beta_{\text{вх}}\approx 33^\circ$.

Длина профилированного участка:

$$L = \overline{X}_a \cdot R_{\text{kp}} = 11 \cdot 0,0368 = 0,405 \text{ M}.$$

5. Расчет потерь удельного импульса

Потери удельного импульса можно разделить на ряд составляющих:

$$\xi_{\text{\tiny CYM}} = \xi_{\text{\tiny pac}} + \xi_{\text{\tiny TP}} + \xi_{\text{\tiny S}} + \xi_{\text{\tiny YT}} + \xi_{\text{\tiny XH}} \,, \label{eq:xi_mass}$$

где $\xi_{\rm pac}$ – потери удельного импульса из-за рассеяния потока; $\xi_{\rm rp}$ – потери удельного импульса из-за трения потока; $\xi_{\rm s}$ – потери из-за наличия в ПС конденсированной фазы; $\xi_{\rm yr}$ – потери из-за утопленности сопла; $\xi_{\rm xh}$ – потери из-за химической неравновесности.

Потери удельного импульса из-за рассеяния потока:

$$\xi_{\text{pac}} = (0,906 - 0,029 \cdot y_{a0}) \cdot \left[\sin \left(\frac{\beta_{\text{BX}} + 1,1 \cdot \beta_{a}}{4,1} \right) \right] =$$

$$= (0,906 - 0,029 \cdot 4,27) \cdot \left[\sin \left(\frac{33^{\circ} + 1,1 \cdot 10^{\circ}}{4,1} \right) \right] = 0,0271,$$

где
$$y_{a0} = \frac{d_a}{d_{\text{kp}}} = 4,27$$
.

Потери удельного импульса из-за трения потока:

$$\begin{split} \xi_{\text{Tp}} &= 0,00272 \cdot \sqrt{y_{a0} - 1} \cdot \left(\frac{2,62}{k^2 \cdot \overline{T}_{\text{cT}}^{0,33}} - 1\right) \cdot \left(1 + 3,98 \cdot \left(\frac{k_s}{d_{\text{kp}}}\right)^{0,3}\right) \cdot \left(\frac{L_a}{d_{\text{kp}}}\right)^{0,1} = \\ &= 0,00272 \cdot \sqrt{4,27 - 1} \cdot \left(\frac{2,62}{1,19^2 \cdot 0,6^{0,33}} - 1\right) \cdot \left(1 + 3,98 \cdot \left(\frac{0,0005}{0,0736}\right)^{0,3}\right) \cdot \left(\frac{0,4418}{0,0736}\right)^{0,1} = \\ &= 0,00786, \end{split}$$

где $\overline{T}_{\rm cr}$ — температурный фактор; $k_{\rm s}$ — шероховатость внутренней стенки сопла.

Потери из-за наличия в ПС конденсированной фазы:

$$\xi_s = \xi_{s0} \cdot k_1 \cdot k_2 \cdot k_3,$$

$$\xi_{s0} = z \cdot \frac{d_{43}^{-1.5}}{\left(d_{\text{kp}} \cdot 10^3\right)^{1.33}} = 0,0269,$$

$$k_1 = 1,047 - 0,0013 \cdot \frac{p_{\text{k}}}{10^5} = 0,982,$$

$$k_2 = 1,112 - 0,037 \cdot y_{a0} = 0,954,$$

 $\xi_s = 0,0269 \cdot 0,982 \cdot 0,954 = 0,0253.$

где k_1 – коэффициент, учитывающий абсолютное значение давления в камере сгорания РДТТ и обусловливающий снижение потерь при увеличении давления торможения вследствие ускорения процессов скоростной релаксации потока; k_2 — коэффициент, учитывающий влияние геометрической степени расширения сопла РДТТ, обусловливающего уменьшение двухфазных потерь за счет снижения градиента скорости потока по длине сопла.

Потери из-за утопленности сопла:

$$\xi_{\rm vt} = 0.01.$$

Потери из-за химической неравновесности:

$$\xi_{\text{\tiny XH}} = 0,333 \cdot \left(1 - \frac{J_{\text{\tiny y.3}}}{J_{\text{\tiny y}}}\right) \cdot \frac{2 \cdot 10^6}{p_{\text{\tiny K}}} = 0,333 \cdot \left(1 - \frac{2851}{2938,36}\right) \cdot \frac{2 \cdot 10^6}{5 \cdot 10^6} = 0,00396 \,.$$

Коэффициент потерь φ_c :

$$\varphi_{\rm c} = 1 - \xi_{\rm cym} = 1 - (\xi_{\rm pac} + \xi_{\rm Tp} + \xi_{s} + \xi_{\rm yr} + \xi_{\rm xh}) = 0.93.$$

6. Расчет воспламенительного устройства

Основным назначением системы воспламенения является зажигание топливного заряда РДТТ за заданное время по определенному закону и при выполнении совокупности дополнительных требований:

- 1. Обеспечение заданной скорости нарастания давления в КС при выходе на режим.
- 2. Отсутствие забросов давления при воспламенении заряда за установленный предел.
- 3. Надежность, приемлемость массово-габаритных характеристик, эксплуатационные требования.

Основными задачами при проектировании системы воспламенения являются:

- 1. Выбор способа воспламенения.
- 2. Выбор конструктивной схемы системы воспламенения, её пространственного размещения в камере сгорания.
- 3. Выбор марки воспламенительного состава.
- 4. Определение массовых, геометрических параметров системы воспламенения.

Так как в космических условиях требуется большее время для воспламенения топлива, то в качестве воспламенителя используем РДТТ малой тяги.

Список литературы

- 1. Фахрутдинов И.Х. Конструкция и проектирование ракетных двигателей твердого топлива / И.Х. Фахрутдинов, А.В. Котельников. Рипол Классик, 1987. 328 с.
- 2. Шишков А.А. Рабочие процессы в ракетных двигателях твердого топлива: Справочник / А.А. Шишков, С.Д. Панин, Б.В. Румянцев. М.: Машиностроение, 1988. 240 с.
- 3. Генералов М.Б. Основные процессы и аппараты производства твердого ракетного топлива: учеб. пособие. М.: Ун-т машиностроения, 2013. 232 с.
- 4. Дорофеев А.А. Основы теории тепловых ракетных двигателей. Теория, расчет и проектирование: Учебник / А.А. Дорофеев. – 3-е изд. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. – 571 с.
- 5. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
- 6. Александренков В.П., Ягодников Д.А. Расчет коэффициентов тепломассообмена в сопле Лаваля РДТТ. Методические указания к домашнему заданию по курсу «Теплозащита и прочность конструкций РДТТ». Москва: МГТУ им. Н.Э. Баумана, 2014. 19 с.
- 7. Ягодников Д.А., Андреев Е.А. Основы проектирования ракетных двигательных установок на твердом топливе. Методическое пособие по курсовому и дипломному проектированию. М.: МГТУ им. Н.Э. Баумана, 2008. 112с.
- 8. Феодосьев В.И. Сопротивление материалов. Изд-во МГТУ им. Н.Э. Баумана, 2004.- 592 с.
- 9. Основы теории и расчета ракетных двигателей / Васильев А.П., Кудрявцев В.М., Кузнецов В.А. и др.; под ред. Кудрявцева В.М. 4 изд. М.: Высшая школа, 1993

Приложение А. Характеристики ТРТ

Топливо ARCADENE - 253A.

Условная химическая формула:

$$C_{9,490}H_{36,776}O_{23,667}N_{6,754}Cl_{5,532}Al_{6,672}$$

$$H_{\Pi} = -2123 \frac{\kappa Дж}{\kappa \Gamma}.$$

Закон горения:

$$U = 1,554 \cdot \left(\frac{p}{98066,5}\right)^{0,26}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1800 \ \frac{\text{K}\Gamma}{\text{M}^3}.$$

Топливо ARCIT - 373D.

Условная химическая формула:

$$C_{9,574}H_{37,389}O_{21,189}N_{5,039}Cl_{6,468}Al_{7,734}$$

$$H_{_{\Pi}} = -1934 \frac{\mathrm{K} \square \mathrm{K}}{\mathrm{K} \Gamma}.$$

Закон горения:

$$U = 3,49 \cdot \left(\frac{p}{98066,5}\right)^{0,22}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1770 \frac{\kappa \Gamma}{M^3}$$
.

Топливо RD – 2435.

Условная химическая формула:

$$\begin{split} C_{11,035}H_{39,940}O_{25,296}N_{7,637}Cl_{5,362}S_{0,008}Al_{4,447}Na_{0,016}\\ H_{_{\Pi}} = -1979\frac{\mathrm{K}\mathrm{\rlap/J}\mathrm{\rlap/K}}{\mathrm{K}\mathrm{\rlap/\Gamma}}. \end{split}$$

Закон горения:

$$U = 0.635 \cdot \left(\frac{p}{98066.5}\right)^{0.693}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1770 \frac{K\Gamma}{M^3}.$$

Топливо ТР – H – 3062.

Условная химическая формула:

$$C_{6,148}H_{36,049}O_{26,532}N_{6,284}Cl_{6,133}Al_{5,94}$$

$$H_{_{\Pi}} = -2229 \frac{\mathrm{K} \square \mathrm{K}}{\mathrm{K} \Gamma}.$$

Закон горения:

$$U = 5.11 \cdot \left(\frac{p}{98066.5}\right)^{0.22}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1820 \frac{\kappa \Gamma}{M^3}.$$

Топливо ПХА – 3М.

Условная химическая формула:

$$C_{10,664}H_{43,856}O_{22,469}N_{5,617}Cl_{5,617}Al_{7,042}$$

$$H_{_{\Pi}} = -1934\frac{\mathrm{K}\mathrm{ДЖ}}{\mathrm{K}\mathrm{\Gamma}}.$$

Закон горения:

$$U = 3,44 \cdot \left(\frac{p}{98066,5}\right)^{0,26}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1740 \frac{\kappa \Gamma}{M^3}.$$

Топливо ПХА-4М.

Условная химическая формула:

$$C_{5,213}H_{24,948}O_{28,408}N_{7,428}Cl_{2,979}Al_{7,413}$$

$$H_{_{\Pi}} = -2034 \frac{\mathrm{кДж}}{\mathrm{к\Gamma}}.$$

Закон горения:

$$U = 6,49 \cdot \left(\frac{p}{98066,5}\right)^{0,24}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1800 \frac{K\Gamma}{M^3}$$
.

Топливо ПХА-5М.

Условная химическая формула:

$$C_{10,694}H_{72,745}O_{17,362}N_{4,341}Cl_{4,341}Al_{11,332}$$

$$H_{_{\Pi}} = -1685\frac{\mathrm{K}\mathrm{ДЖ}}{\mathrm{K}\mathrm{\Gamma}}.$$

Закон горения:

$$U = 3,44 \cdot \left(\frac{p}{98066,5}\right)^{0,26}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 1530 \frac{\kappa \Gamma}{M^3}.$$

Топливо ПХК-1М.

Условная химическая формула:

$$\begin{split} C_{9,981}H_{19,961}O_{20,208}K_{5,052}Cl_{5,052}Al_{5,930} \\ H_{_{\rm II}} = -2426\frac{{\rm K}\text{Дж}}{{\rm K}\text{\Gamma}}. \end{split}$$

Закон горения:

$$U = 4,72 \cdot \left(\frac{p}{98066,5}\right)^{0,28}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 2040 \ \frac{\text{KT}}{\text{M}^3}.$$

Топливо ПХН-2М.

Условная химическая формула:

$$C_{5,268}H_{4,800}O_{12,375}N_{2,062}Cl_{3,663}Al_{22,237}$$
 $H_{_{\rm II}}=-64,39rac{{
m K}{
m J}{
m K}{
m K}}{
m K}{
m \Gamma}.$

Закон горения:

$$U = 14,5 \cdot \left(\frac{p}{98066,5}\right)^{0,19}, \frac{MM}{c}.$$

Плотность топлива:

$$\rho = 2430 \ \frac{\text{K}\Gamma}{\text{M}^3}.$$

Приложение Б. Термодинамический расчет

Исходный состав:

(C5.213H24.948O28.408N7.428C12.979A17.413[-2034] - 0.998) +

(C5.268H4.800O12.375N2.062Cl3.663Al22.237[-64.39] - 0.002)

Состав, моль/кг: С 5.4755 H 26.1645 O 29.8067 N 7.7914 Cl3.1303 Al7.8151

1-й параметр: p(кам) =5

2-й параметр: I = -2030.061

Расширение: p(a), $M\Pi a = 0.03$ (равновесное)

Равновесные параметры при р(кам)=5 МПа, р=5 МПа (камера, СИ):

p=5 T=3906.2 v=0.183784 S=8.87345 I=-2030.06

U=-2878.85 M=31.9669 Cp=1.81663 k=1.14876 Cp'=6.49239

k'=1.18683 Ap=0.0005576 Bv=0.0005198 Gt=0.218428e-6 MMg=22.1076

Rg=376.087 Cpg=1.94772 kg=1.2393 Cp'g=7.84797 k'g=1.2147

Mu=0.0001035 Lt=0.355691 Lt'=2.19692 Pr=0.566496 Pr'=0.36956

A=1008.29 z=0.374489 Bm=0.140977 n= - w=0

Mach=0 Frel= - F'= - alpha=0.877379 Dens= -

Равновесные концентрации (моль/кг):

e-=0.1763e-4 O=0.75926 O+=0.1903e-10 O-=0.1925e-5

O2 = 0.66859 O2 + = 0.3311e-8 O2 - = 0.2681e-6 O3 = 0.6176e-5

H = 1.7385 H + = 0.5057e-10 H - = 0.4006e-6 H2 = 2.9299

H2+=0.4980e-11 H3+=0.2307e-9 OH=2.2669 OH+=0.1011e-8

OH = 0.6179e-5 HO2 = 0.00369 HO2 = 0.2324e-8 H2O = 6.8972

H2O+ = 0.1836e-7 H2O2 = 0.3782e-3 H3O+ = 0.6359e-6 C1 = 0.8259

Cl = 0.4649e-9 Cl = 0.3415e-3 Cl2 = 0.00121 ClO = 0.00636

ClO2 = 0.1040e-5 Cl2O = 0.1411e-6 HCl = 2.1448 HOCl = 0.00166

N = 0.0018 N2 = 3.6807 N2 + 0.1407e-11 N3 = 0.9000e-8

NO = 0.42609 NO + = 0.1801e-5 NO2 = 0.3703e-3 NO2 + = 0.7581e-10

NO2- = 0.1265e-7 NO3- = 0.7657e-11 N2O = 0.7474e-4 N2O3 = 0.2847e-9

NH2 = 0.2041e-3NH = 0.5990e-3NH3 = 0.7342e-4NH4+=0.1076e-9N2H2 = 0.4018e-7N2H4 = 0.4661e-11HN = 0.2700e-8HNO = 0.5472e-3C2 = 0.2852e-11CINO = 0.6171e-4CINO2 = 0.4729e-8C = 0.1988e-6CO = 4.3293CO+ = 0.1414e-9CO2 = 1.1454CO2+ = 0.3645e-9C2O = 0.1326e-7C3O2 = 0.3724e-11CH = 0.6470e-7CH2 = 0.4623e-7CH3 = 0.4132e-7CH4 = 0.6017e-8C2H = 0.1785e-10 C2H2 = 0.1249e-9HCO = 0.4915e-3HCO+ = 0.3964e-7 COOH = 0.2144e-3H2CO = 0.9655e-5CH2OH = 0.2178e-7 CCl = 0.1051e-6CC12 = 0.6990e-9C1CO = 0.6937e-4C12CO = 0.3928e-7 CHCl = 0.8576e-8 CH2Cl = 0.5135e-8 CH3Cl = 0.2316e-9CN = 0.2395e-5 CN = 0.4361e-8NCN = 0.6690e-9CNN = 0.1243e-10C1CN = 0.2148e-6A1 = 0.00585A1+=0.3873e-3A12 = 0.1606e-6A10 = 0.2132e-4A10 = 0.05109A1O2 = 0.00751A1O2 = 0.6171e-6A12O = 0.00201A12O2 = 0.00406A12O3(c) = 3.6729A12O3 = 0.1708e-3A1H = 0.6295e-3A1H2 = 0.2841e-5A1H3 = 0.1001e-6A1OH = 0.21227HAIO = 0.4356e-3 HAIO2 = 0.00553A1(OH)2 = 0.02454Al(OH)3 = 0.01162AlCl = 0.0653A1C12 = 0.00325A1C13 = 0.3629e-3A12C16 = 0.2360e-11CIAIO = 0.02986 CI2AIO = 0.1618e-3 AIHCI = 0.2127e-3 AIH2CI = 0.3556e-5A1N = 0.1330e-4A1C = 0.5165e-9

Равновесные параметры при р(кам)=5 МПа, р=2.9199 МПа (кр. сечение, СИ):

p=2.91985T=3745.24 v = 0.298465S=8.87345I=-2511.45 U = -3313.55M=31.7231Cp=1.81432k=1.14712 Cp'=6.40452 Ap=0.0005698 Bv=0.0005338 Gt=0.372558e-6 MMg=22.1177 k=1.1794Rg=375.915 Cpg=1.94768 kg=1.23917 Cp'g=8.09876 k'g=1.2064 Mu=0.0001007 Lt=0.344362 Lt'=2.19376 Pr=0.569505 Pr'=0.371725 z=0.381007 Bm=0.141254 w = 981.214A=981.214 n=1.10933F'=0.0003042 Isp=1869.37 Mach=1 Frel=1B=1520.9Равновесные концентрации (моль/кг):

$$e-=0.1198e-4$$
 $O=0.68983$ $O+=0.6825e-11$ $O-=0.9407e-6$ $O2=0.64372$ $O2+=0.1539e-8$ $O2-=0.1215e-6$ $O3=0.3381e-5$

H = 1.6493H+=0.1896e-10H = 0.1866e - 6H2 = 2.8714H2+=0.1499e-11OH = 2.1042H3+=0.9081e-10OH + = 0.4034e-9OH = 0.3231e-5HO2 = 0.00268HO2-=0.8699e-9H2O = 7.1094H2O+=0.8444e-8H2O2 = 0.2529e-3H3O+=0.3715e-6C1 = 0.8214C1+ = 0.1976e-9C1 = 0.2411e-3C12 = 0.9920e-3C10 = 0.00494C1O2 = 0.6039e-6C12O = 0.7881e-7HC1 = 2.1899HOC1 = 0.00125N = 0.00124N2 = 3.7081N3 = 0.3840e-8NO = 0.37263NH2 = 0.1197e-3NH3 = 0.4496e-4NH4+ = 0.4552e-10N2H2 = 0.1704e-7CO2 = 1.2132C = 0.8503e-7CO = 4.2618CO+ = 0.5214e-10CH2 = 0.1798e-7CH3 = 0.1679e-7CH4 = 0.2396e-8C2H = 0.4593e-11C2H2 = 0.3832e-10 HCO = 0.3005e-3 HCO+ = 0.1924e-7 COOH = 0.1365e-3CH4O = 0.1566e-9 CH2OH = 0.8171e-8CC1 = 0.4575e-7CC12 = 0.2795e-9CICO = 0.4176e-4 C12CO = 0.2113e-7CHC1 = 0.3349e-8 CH2C1 = 0.1975e-8HClCO = 0.7862e-6CN = 0.1144e-5CN = 0.1529e-8NCN = 0.2214e-9CNN = 0.3469e-11 C2N2 = 0.1526e-11NCO = 0.1084e-5HCN = 0.1214e-4A12 = 0.5108e-7A1O = 0.03536A10 = 0.1053e-4A1O2 = 0.00452A12O = 0.00113A1O2 = 0.2848e-6A12O2 = 0.00235A12O3(c) = 3.7368A12O3 = 0.8785e-4A1H = 0.3503e-3A1H2 = 0.1167e-5A1H3 = 0.3747e-7A1OH = 0.15982HA1O = 0.2516e-3HA1O2 = 0.00389Al(OH)2 = 0.01578A1(OH)3 = 0.00805AlCl = 0.05001A1C12 = 0.00223A1C13 = 0.2671e-3CIAIO = 0.02361 CI2AIO = 0.1011e-3 AIHCI = 0.1140e-3 AIH2CI = 0.1664e-5A1N = 0.5755e-5A1C = 0.1402e-9

Равновесные параметры при р(кам)=5 МПа, р=0.03 МПа (вых. сечение, СИ):

T=2689.63v=19.0665S=8.87345I=-5753.08 p=0.03U = -6261.67M=29.4801Cp=1.77501k=1.13612 Cp'=5.33012 Ap=0.0006401 Bv=0.0006205 Gt=0.0000353 MMg=23.5421 k'=1.12573 Rg=353.17 Cpg=1.89218 kg=1.22948 Cp'g=7.726 k'g=1.14572Pr=0.601173 Pr'=0.392882 Mu=0.0000805 Lt=0.25341 Lt'=1.58326 A=790.025z=0.397834 Bm=0.147118 n=1.10213 w = 2728.74

Mach=3.454 Frel=22.9709 F'=0.0069873 Isp=2938.36 B= -

Равновесные концентрации (моль/кг):