Reinforcement Learning Solving MDPs

Marcello Restelli

March-April, 2015

Brute Force

Marcello Restelli

Policy Search

Oynamic
Programming
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Solving an MDP means finding an optimal policy
- A naive approach consists of
 - enumerating all the deterministic Markov policies
 - evaluate each policy
 - return the best one
- The number of policies is **exponential**: $|\mathcal{A}|^{|\mathcal{S}|}$
- Need a more intelligent search for best policies
 - restrict the search to a subset of the possible policies
 - using **stochastic optimization** algorithms

What is Dynamic Programming?

Marcello Restelli

Policy Searc

Dynamic Programming Policy Iteration Value Iteration Extensions to

Dynamic Programming

Programmin

- Dynamic: sequential or temporal component to the problem
- Programming: optimizing a "program", i.e., a policy
 - c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Marcello Restelli

Policy Search

Dynamic Programming Policy Iteration

Policy Iteration Value Iteration Extensions to Dynamic Programming

- Dynamic Programming is a very general solution method for problems which have two properties:
 - Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
 - Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives revursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

Marcello Restelli

Policy Search

Dynamic Programming

Value Iteration
Extensions to
Dynamic
Programming

- Dynamic Programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- Prediction
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma, \mu \rangle$ and policy π (i.e., MRP $\langle \mathcal{S}, P^{\pi}, R^{\pi}, \gamma, \mu \rangle$)
 - Output: value function V^{π}
- Control
 - Input: MDP $\langle S, A, P, R, \gamma, \mu \rangle$
 - Output: value function V^* and optimal policy π^*

Other Applications of Dynamic Programming

Marcello Restelli

Policy Searc

Dynamic Programming

Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin Dynamic Programming is used to solve many other problems:

- Scheduling algorithms
- String algorithms (e.g., sequence alignment)
- Graph algorithms (e.g., shortest path algorithms)
- Graphical models (e.g., Viterbi algorithm)
- Bioinformatics (e.g., lattice models)

Finite-Horizon Dynamic Programming

Marcello Restelli

Policy Search

Dynamic Programming

Policy Iteration Value Iteration Extensions to Dynamic Programming

Linear Programmir Principle of optimality: the tail of an optimal policy is optimal for the "tail" problem

- Backward induction
 - Backward recursion

$$V_k^*(s) = \max_{a \in \mathcal{A}_k} \left\{ R_k(s, a) + \sum_{s' \in \mathcal{S}_{k+1}} P_k(s'|s, a) V_{k+1}^*(s') \right\}, \quad k = N - 1, \dots, 0$$

Optimal policy

$$\pi_k^*(s) \in arg \max_{a \in \mathcal{A}_k} \left\{ R_k(s, a) + \sum_{s' \in \mathcal{S}_{k+1}} P_k(s'|s, a) V_{k+1}^*(s') \right\}, \quad k = 0, \dots, N-1$$

- Cost: $N|\mathcal{S}||\mathcal{A}|$ vs $|\mathcal{A}|^{N|\mathcal{S}|}$ of brute force policy search
- From now on, we will consider infinite-horizon discounted MDPs

Policy Evaluation

Marcello Restelli

Policy Search

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

- For a given policy π compute the state-value function V^{π}
- Recall
 - State–value function for policy π :

$$oldsymbol{V}^{\pi}(s) = \mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t} extit{r}_{t} | extit{s}_{0} = s
ight\}$$

• Bellman equation for V^{π} :

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{\pi}(s') \right]$$

- ullet A system of $|\mathcal{S}|$ simultaneous linear equations
- Solution in **matrix** notation (complexity $O(n^3)$):

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

Iterative Policy Evaluation

Marcello Restelli

Policy Search

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin Iterative application of Bellman expectation backup

•
$$V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_k \rightarrow V_{k+1} \rightarrow \cdots \rightarrow V^{\pi}$$

• A full policy–evaluation backup:

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V_k(s') \right]$$

- A sweep consists of applying a backup operation to each state
- Using synchronous backups
 - At each iteration k + 1
 - For all states $s \in S$
 - Update $V_{k+1}(s)$ from $V_k(s')$

Example Small Gridworld

Marcello Restelli

Policy Search

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

†
←
†
actions

1	2	3
5	6	7
9	10	11
13	14	
	9	5 6 9 10

r = -1 on all transitions

- Undiscounted episodic MDP
 - \bullet $\gamma = 1$
 - All episodes terminate in absorbing terminal state
- Transient states 1,...,14
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- Reward is -1 until the terminal state is reached

Policy Evaluation in Small Gridworld

Marcello Restelli

Policy Search

Programmi Policy Iteration

Value Iteration Extensions to Dynamic

Linear Programmir V_{k} for the Random Policy

-1.0 -1.0 -1.0 0.0

0.0

k = 0

k = 1

$$k = 2$$

$$\begin{vmatrix}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7
\end{vmatrix}$$

 $\begin{array}{c} \text{Greedy Policy} \\ \text{w.r.t.} \ V_k \end{array}$

Policy Evaluation in Small Gridworld

Marcello Restelli

Policy Search

Dynamic

Policy Iteration

Value Iteration Extensions to Dynamic Programming

Linear Programmin k = 3 $\begin{vmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{vmatrix}$

k = 10 0.0 | -6.1 | -8.4 | -9.0 -6.1 | -7.7 | -8.4 | -8.4 -8.4 | -8.4 | -7.7 | -6.1 -9.0 | -8.4 | -6.1 | 0.0

k = ° 0.0 | -14. | -20. | -22. -14. | -18. | -20. | -20. -20. | -20. | -18. | -14. -22. | -20. | -14. | 0.0

Policy Improvement

Marcello Restelli

Policy Searc

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

- Consider a **deterministic policy** π
- For a given state s, would it **better** to do an action $a \neq \pi(s)$?
- We can improve the policy by acting greedily

$$\pi'(s) = arg \max_{a \in \mathcal{A}} Q^{\pi}(s, a)$$

• This improves the value from **any** state *s* over one step

$$Q^{\pi}(s, \pi'(s)) = \max_{a \in A} Q^{\pi}(s, a) \ge Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

Policy Improvement Theorem

Marcello Restelli

Policy Search

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

Theorem

Let π and π' be any pair of deterministic policies such that

$$Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s)$$
 , $\forall s \in S$

Then the policy π' must be as good as, or better than π

$$V^{\pi'}(s) \geq V^{\pi}(s)$$
 , $s \in \mathcal{S}$

Proof.

$$\begin{split} V^{\pi}(s) & \leq & Q^{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \right] \\ & \leq & \mathbb{E}_{\pi'} \left[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) | s_t = s \right] \\ & \leq & \mathbb{E}_{\pi'} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 Q^{\pi}(s_{t+2}, \pi'(s_{t+2})) | s_t = s \right] \\ & \leq & \mathbb{E}_{\pi'} \left[r_{t+1} + \gamma r_{t+2} + \dots | s_t = s \right] = V^{\pi'}(s) \end{split}$$

Policy Iteration

Marcello Restelli

Policy Searc

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin • What if improvements stops $(V^{\pi'} = V^{\pi})$?

$$Q^{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} Q^{\pi}(s,a) = Q^{\pi}(s,\pi(s)) = V^{\pi}(s)$$

- But this is the Bellman optimality equation
- ullet Therefore $V^{\pi}(s)=V^{\pi'}(s)=V^*(s)$ for all $s\in\mathcal{S}$
- So π is an **optimal** policy!

$$\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \cdots \rightarrow \pi^* \rightarrow V^* \rightarrow \pi^*$$

Example of Policy Iteration Jack's Car Rental

Marcello Restelli

Policy Search

Dynamic Programmin Policy Iteration Value Iteration Extensions to Dynamic Programming

- States: Two locations, maximum of 20 cars each
- Actions: Move up to 5 cars between two locations overnight
- **Reward**: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - **Poisson distribution**, *n* returns/request with probability $\frac{\lambda^n}{n!}e^{-\lambda}$
 - First location: average requests = 3, average returns =
 - Second location: average requests = 4, average returns = 2

Example of Policy Iteration Jack's Car Rental

Marcello Restelli

Policy Search

Dynamic

Policy Iteration

Extensions to Dynamic

Modified Policy Iteration

Marcello Restelli

Policy Searc

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Does policy evaluation **need to converge** to V^{π} ?
- Or should we introduce a **stopping condition**
 - ullet e.g., ϵ -convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1

Generalized Policy Iteration

Marcello Restelli

Policy Search

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Policy evaluation: Estimate V^{π}
 - e.g., Iterative policy evaluation
- Policy improvement: Generate $\pi' > \pi$
 - e.g., Greedy policy improvement

Principle of Optimality Determinisitic Shortest Path

Restelli

Policy Search

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programming

- Problem: reach goal state g from start state s₁ with min cost
- Each action a from state s leads to:
 - **Deterministic** transition P(s'|s, a) = 1 iff s' = succ(s, a)
 - Reward R(s, a) negative (is a **cost**)
 - Undiscounted $\gamma = 1$

Theorem

A path $s_1, a_1, s_2, a_2, \dots, s_T$ is optimal if and only if:

- For any **intermediate** state s_t along the solution path
- s_t, a_t, \dots, s_T is an **optimal path** from s_t to g

Principle of Optimality

Marcello Restelli

Policy Searc

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Specifically, consider subdividing the path after one step
- Then an optimal path from s consists of:
 - An optimal first action a*
 - Followed by an optimal path from $s' = succ(s, a^*)$
- Therefore the value of an optimal path must satisfy:

$$V^*(s) = \max_{a \in A} R(s, a) + V^*(s')$$

Determinisitic Value Iteration

Marcello Restelli

Policy Searc

Programmic
Programmir
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- If we know the solution to **subproblems** $V^*(s')$
- Then it is easy to construct the solution to $V^*(s)$

$$V^*(s) \leftarrow \max_{a \in \mathcal{A}} R(s, a) + V^*(s')$$

- The idea of value iteration is to apply these updates iteratively
- e.g., Starting from the goal and working backward

Value Iteration in MDPs

Marcello Restelli

Policy Search

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Many MDPs don't have a finite horizon
- They are tipically loopy
- So there is no "end" to work backwards from
- However, we can still propagate information backwards
- Using **Bellman optimality equation** to backup V(s) from V(s')
- \bullet Each subproblem is "easier" due to discount factor γ
- Iterate until convergence

Principle of Optimality in MDPs

Marcello Restelli

Policy Search

Programming
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

Theorem

A policy $\pi(a|s)$ achieves the **optimal value** from state s, $V^{\pi}(s) = V^{*}(s)$, if and only if

- For any state s' reachable from s
- π achieves the optimal value from state s', $V^{\pi}(s') = V^*(s')$

So an optimal policy $\pi^*(a|s)$ must consist of:

- an optimal first action a*
- followed by an optimal policy from successor state s'

$$V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^*(s')$$

Value Iteration

Marcello Restelli

Policy Search

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin

- **Problem**: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V^*$
- Using synchronous backups
 - At each iteration k + 1
 - ullet For all states $oldsymbol{s} \in \mathcal{S}$
 - Update $V_{k+1}(s)$ from $V_k(s')$
- Unlike policy iteration there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration demo:

http://www.cs.ubc.ca/ poole/demos/mdp/vi.html

Convergence and Contractions

Marcello Restelli

Policy Search

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin Define the max–norm: $||V||_{\infty} = \max_{s} |V(s)|$

Theorem

Value Iteration converges to the optimal state-value function $\lim_{k\to\infty} V_k = V^*$

Proof.

$$\|V_{k+1} - V^*\|_{\infty} = \|T^*V_k - T^*V^*\|_{\infty} \le \gamma \|V_k - V^*\|_{\infty} \le \cdots \le \gamma^{k+1} \|V_0 - V^*\|_{\infty} \to \infty$$

Theorem

$$\|V_{i+1} - V_i\|_{\infty} < \epsilon \Rightarrow \|V_{i+1} - V^*\|_{\infty} < \frac{2\epsilon\gamma}{1-\gamma}$$

Synchronous Dynamic Programming Algorithms

Marcello Restelli

Policy Search

Dynamic
Programming
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Policy Evaluation (Iterative)
Control	Bellman Expectation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on **state–value function** $V^{\pi}(s)$ or $V^{*}(s)$
- Complexity $O(mn^2)$ **per iteration**, for m actions and n states
- Could also apply to **action–value function** $Q^{\pi}(s, a)$ or $Q^{*}(s, a)$
- Complexity O(m²n²) per iteration

Efficiency of DP

Marcello Restelli

Policy Searc

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- To find optimal policy is polynomial in the number of states...
- but, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables: curse of dimensionality
- In practice, classical DP can be applied to problems with a few millions states
- Asynchronous DP can be applied to larger problems, and appropriate for parallel computation
- It is surprisingly easy to come up with MDPs for which methods are not practical

Complexity of DP

Marcello Restelli

Policy Search

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- DP methods are polynomial time algorithms for fixed-discounted MDPs
- Value Iteration: $O(|\mathcal{S}|^2|\mathcal{A}|)$ for each iteration
- Policy Iteration: Cost of policy evaluation + Cost of policy iteration
 - Policy evaluation:
 - Linear system of equations: $O(|\mathcal{S}|^3)$ or $O(|\mathcal{S}|^{2.373})$
 - Iterative: $O\left(|\mathcal{S}|^2 \frac{\log(\frac{1}{\epsilon})}{\log(\frac{1}{\gamma})}\right)$
 - Policy improvement: recently proven to be $O\left(\frac{|\mathcal{A}|}{1-\gamma}\log\left(\frac{|\mathcal{S}|}{1-\gamma}\right)\right)$
- Each iteration of P1 is computationally more expensive than each iteration of VI
- PI typically requires fewer iterations to converge than VI
- Exponentially faster than any direct policy search
- Number of states often grows exponentially with the number of state variables

Asynchronous Dynamic Programming

Marcello Restelli

Policy Search

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- DP methods described so far used synchronous backups
 - i.e., all state are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected
- Three ideas for asynchronous DP:
 - In-place DP
 - Prioritized sweeping
 - Real-time DP

In-place Dynamic Programming

Marcello Restelli

Policy Searc

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmir • Synchronous value iteration stores two copies of value function for all $s \in S$

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_{old}(s') \right)$$

 $V_{old} \leftarrow V_{new}$

 In-place value iteration only stores one copy of value function

for all
$$s \in \mathcal{S}$$

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s') \right)$$

Prioritized Sweeping

Marcello Restelli

Policy Searc

Programmir
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin Use the magnitude of Bellman error to guide state selection, e.g.,

$$\left| \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_k(s') \right) - V(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

Marcello Restelli

Policy Search

Programmir
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programmin • Idea: only states that are relevant to agent

- Use agent's experience to guide the selection of states
- After each time-step s_t, a_t, r_{t+1}

$$a_t \in arg \max_{a \in \mathcal{A}} \left(R(s_t, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s_t, a) V(s')
ight)$$

Backup the state s_t

$$V(s_t) \leftarrow \max_{a \in \mathcal{A}} \left(R(s_t, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s_t, a) V(s') \right)$$

Theorem

If $V_0 \geq V^*$ then $\exists \bar{t}$ such that a_t are optimal for all $t \geq \bar{t}$ (where $\bar{t} < \infty$ with probability 1)

Full-Width Backups

Marcello Restelli

Policy Searc

Programming
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Dynamic programming uses full-width backups
- For each backup (synchronous or asynchronous)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- Dynamic programming is effective for medium-size problems (millions of states)
- For large problems dynamic programming suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows **exponentially** with number of states variables
- Even one backup can be too expensive

Sample Backups

Marcello Restelli

Policy Searc

Programmic
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- Reinforcement Learning techniques exploit sample backups
- Sample backups do not use reward function R and transition dynamics P
- Uses sample rewards and sample transitions $\langle s, a, s', r \rangle$
- Advantages
 - Model-free: no prior knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - ullet Cost of backups is constant, independent of $n=|\mathcal{S}|$

Approximate Dynamic Programming

Marcello Restelli

Policy Searc

Programmin
Policy Iteration
Value Iteration
Extensions to

Dynamic Programming

Linear Programmin

- Approximate the value function
- Using a function approximator $V^{\theta}(s) = f(s, \theta)$
- Apply dynamic programming to V^{θ}
 - ullet e.g., **Fitted Value Iteration** repeats at each iteration k
 - Sample states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{S}$, estimate target value using Bellman optimality equation

$$ilde{V}_k(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_k^{\theta}(s') \right)$$

• Train next value function V_{k+1}^{θ} using targets $\{\langle s, \tilde{V}_k(s) \rangle\}$

Infinite Horizon Linear Programming

Marcello Restelli

Policy Search

Programmic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programming Recall, at value iteration convergence we have

$$\forall s \in \mathcal{S}: \quad V^*(s) = \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^*(s') \right\}$$

LP formulation to find V*:

$$\begin{array}{ll} \min_{V} & \sum_{s \in \mathcal{S}} \mu(s) V(s) \\ \text{s. t.} & V(s) \geq R(s, a) + \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s'), \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A} \end{array}$$

- |S| variables
- \bullet $|\mathcal{S}||\mathcal{A}|$ constraints

Theorem

V* is the solution of the above LP.

Theorem Proof

Marcello Restelli

Policy Search

Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programming Let T^* be the **optimal Bellman operator**, then the LP can be written as:

$$\min_{V} \quad \mu^{T} V$$
 s. t. $V \geq T^{*}(V)$

- Monotonicity property: if $U \ge V$ then $T^*(U) \ge T^*(V)$.
- Hence, if $V \ge T^*(V)$ then $T^*(V) \ge T^*(T^*(V))$, and by repeated application,

$$V \geq T^*(V) \geq T^{*2}(V) \geq T^{*3}(V) \geq \cdots \geq T^{*\infty}(V) = V^*$$

- Any **feasible solution** to the LP must satisfy $V \ge T^*(V)$, and hence must satisfy $V \ge V^*$
- Hence, assuming all entries μ are positive, V^* is the **optimal solution** to the LP

Dual Linear Program

Marcello Restelli

Policy Search

Dynamic
Programming
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

Linear Programming

$$\max_{\lambda} \sum_{s \in S} \sum_{a \in A} \lambda(s, a) R(s, a)$$

s. t.
$$\sum_{\substack{a' \in \mathcal{A} \\ \lambda(s,a) \geq 0}}^{s \in \mathcal{S}} \frac{\lambda(s',a')}{\lambda(s,a)} = \mu(s) + \gamma \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \lambda(s,a) P(s'|s,a), \quad \forall s' \in \mathcal{S}$$

Interpretation

- $\lambda(s, a) = \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a)$
- Equation 2: ensures λ has the above meaning
- Equation 1: maximize expected discounted sum of rewards
- Optimal policy: $\pi^*(s) = arg \max_a \lambda(s, a)$

Complexity of LP

Marcello Restelli

Policy Searc

Dynamic
Programmin
Policy Iteration
Value Iteration
Extensions to
Dynamic
Programming

- LP worst-case convergence guarantees are better than those of DP methods
- LP methods become impractical at a much smaller number of states than DP methods do