

INTRODUCTION À NUMPY (ET MATPLOTLIB+PANDAS)

Vincent Guigue vincent.guigue@agroparistech.fr

Artificial Intelligence & Machine Learning

	Input (X)	Output (Y)	Application
_			PP
	email ->>	spam? (0/1)	spam filtering
	audio	text transcript	speech recognition
	English	Chinese	machine translation
	ad, user info \longrightarrow	click? (0/1)	online advertising
	image, radar info 🛶	position of other cars	self-driving car
	image of phone -	defect? (0/1)	visual inspection

Al: computer programs that engage in tasks which are, for now, performed more satisfactorily by human beings because they require high-level mental processes.

Marvin Lee Minsky, 1956

N-AI (Narrow Artificial Intelligence), dedicated to a single task

≠ **G-Al (General Al)**, which replaces humans in complex systems.

Andrew Ng, 2015

Introduction Of Organisation Organisation

The Ingredients of Artificial Intelligence

Machine Learning Definition

- Collecting labeled dataset
- 2 Training classifier
- Exploiting the model

Organisation

Machine Learning Definition

- Collecting labeled dataset
- 2 Training classifier
- Exploiting the model

Machine Learning Definition

- Collecting labeled dataset
- 2 Training classifier
- 3 Exploiting the model

Programmation orientée données

- **Python** : langage unificateur (codage *vs* wrapper)
 - Calcul scientifique : numpy
 - Machine-learning: scikit-learn, pandas, matplotlib
 - Deep-learning: pytorch
 - Environnement de développement: Visual Studio Code / jupyter-notebook

Où se trouve les leviers de performance?

Dans les modèles... Mais surtout dans les chaînes de traitements !

ORGANISATION

Introduction

Organisation

Organisation (optim-iste/ale) du semestre

■ 5 séances - Machine Learning

- 1.5 séances numpy = Mise à niveau en python, numpy, matplotlib
- 1 séance scikit-learn = outils de base de pour la régression et la classification + évaluation robuste
- 1 séance chaine de traitement, sélection de variables et pre-processing
- 1 séance visualisation des données et optimisation des hyperparamètres
- 0.5 séance Support projet en machine learning

■ 8 séances - Deep Learning en pytorch

- 1 séance Introduction à pytorch, structure de données et gradient
- 1 séance Perceptron & réseau de neurones
- 1 séance Convolutional Neural Network & application en image
- 1 séance Apprentissage de représentation (Embedding) & systèmes de recommandation
- 1 séance Réseaux de neurones récurrents (RNN)
- 1 séance Calcul d'attention (pour les RNN)
- 1 séance Architecture Transformer
- 1 séance Projet

3 séries de slides + notebooks

 \Rightarrow

1 séance et demi

- Python & numpy
- 2 Classification bayesienne
- 3 Algorithme(s) de gradient
- ⇒ On ne va pas tout faire! Mais on peut expliquer les idées
- ⇒ Chacun doit en tirer un message personnel optimal :-)

Conclusion : passer à un nouveau langage...

■ Cout faible

■ une fois que vous avez compris la logique générale

■ Cout non négligeable:

- Comprendre les forces et les faiblesses du langage
 - ... Et des environnements de développement
- Adapter sa manière de programmer (e.g. calculer un décile)
- Reprendre les bons reflexes (=aller vite)

```
⇒ https://github.com/vguigue/tuto_numpy
```