Problems at least as hard as Clique

1905072 - Mahir Labib Dihan

November 24, 2024

Outline

■ We will see 3 Parameterized Reductions.

Outline

■ From Dominating Set to Set Cover.

Theorem 13.10

Theorem

There is a parameterized reduction from Dominating Set to Set Cover.

Theorem 13.10: Construction

The reduction starts with an instance (G, k) of Dominating Set, and outputs an equivalent instance (\mathcal{F}, U, k) of Set Cover.

 \blacksquare Let G be an undirected graph. We create an instance (\mathcal{F},U,k) of Set Cover as follows.

Ğ

 \blacksquare We let U := V(G).

G

$$U = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$
$$S_1 = \{v_1, v_2, v_3\}$$

G

G

Theorem 13.10

We now claim that G admits a dominating set of size k if and only if (\mathcal{F},U,k) is a yes-instance.

Theorem 13.10: Necessity

- ightharpoonup Suppose that D is a dominating set of size k in G.
- ightharpoonup Then the union of the corresponding k sets of F covers U.
- ▶ An uncovered element would correspond to a vertex of *G* not dominated by *D*.

■ Suppose that D is a dominating set of size k in G.

Then the union of the corresponding k sets of F covers U: an uncovered element would correspond to a vertex of G not dominated by D.

 $S_2 = \{v_1, v_2, v_3, v_4\}$ $S_3 = \{v_1, v_2, v_3, v_5\}$ $S_4 = \{v_2, v_4, v_5, v_6\}$ $S_5 = \{v_3, v_4, v_5\}$ $S_6 = \{v_4, v_5\}$

Theorem 13.10: Sufficiency

- ightharpoonup Suppose that the union of k sets in F is U.
- ightharpoonup Then the corresponding k vertices of G dominate every vertex.
- lackbox A vertex not dominated in G would correspond to an element of U not covered by the k sets.

Outline

■ From Set Cover to Dominating Set on Tournaments.

Tournament

Definition

A tournament is a directed graph T such that for every pair of vertices $u,v\in V(T)$, exactly one of (u,v) or (v,u) is a directed edge (also often called an arc) of T.

k-paradoxical tournament

Definition

Sufficiently small tournaments that do not admit a dominating set of size k.

k-paradoxical tournament

Definition

Sufficiently small tournaments that do not admit a dominating set of size k.

Theorem 13.14

Theorem

There is a parameterized reduction from Set Cover to Dominating Set on Tournaments.

Theorem 13.14: Construction

The reduction starts with an instance (\mathcal{F},U,k) of Set Cover, and outputs an equivalent instance (T,k+1) of Dominating Set on Tournaments.

 $\blacksquare \text{ Let } U = \{e_1, e_2, e_3, e_4, e_5, e_6\} \text{ and } \mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}.$

 $U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$

 $\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$

 $X_3 = \{e_1, e_2, e_5\}$

Let
$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
 and $\mathcal{F} = \{A_1, A_2, A_3, A_4, A_5\}.$

The first step is a construction of a (k+1)-paradoxical tournament $S=T_{k+1}$ on

$$r_{k+1}$$
 vertices.
$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$C = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

Theorem 13.14: Vertex Set

The vertex set of the constructed tournament T is defined as follows:

- (i) For every $e \in U$, create a set of r_{k+1} vertices $V_e = \{v_{e,w} : w \in V(S)\}$, one for each vertex of S. Let $V_w = v_{e,w} : e \in U$, and let $V_U = \bigcup_{e \in U} V_e = \bigcup_{w \in V(S)} V_w$.
- (ii) For every $X \in \mathcal{F}$, create one vertex v_X . Let $V_{\mathcal{F}} = v_X : X \in \mathcal{F}$.
- (iii) Moreover, create one vertex v^* .

■ The vertex set of the constructed tournament T is defined as follows:

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(i) For every $e \in U$, create a set of r_{k+1} vertices $V_e = \{v_{e,w} : w \in V(S)\}$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

$$w_1$$

$$w_2$$

$$S$$

 $\blacksquare \text{ Let } V_w = v_{e,w} : e \in U,$

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

lacksquare Let $V_U = \bigcup_{e \in U} V_e = \bigcup_{w \in V(S)} V_w$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(ii) For every $X \in \mathcal{F}$, create one vertex v_X .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

 \blacksquare Let $V_{\mathcal{F}} = v_X : X \in \mathcal{F}$.

$$U = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\}$$

$$V_{e_{1}} \quad V_{e_{2}} \quad V_{e_{3}} \quad V_{e_{4}} \quad V_{e_{5}} \quad V_{e_{6}}$$

$$V_{w_{1}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{1}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{2}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{4}} \quad V_{w_{5}} \quad V_{w_{5}} \quad V_{w_{5}} \quad V_{w_{5}} \quad V_{w_{5}} \quad$$

(iii) Moreover, create one vertex v^* .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

 v^*

Theorem 13.14: Edge Set

We now create the edge set of T.

- (i) For every set $X \in \mathcal{F}$ and every element $e \in U$, if $e \in X$ then introduce an edge from v_X to every vertex of V_e , and if $e \notin X$ then introduce an edge from every vertex of V_e to v_X .
- (ii) For every set $X \in \mathcal{F}$, introduce an edge (v^*, v_X) .
- (iii) For every element $e \in X$ and $w \in V(S)$, introduce an edge $(v_{e,w}, v^*)$.
- (iv) For every $w_1, w_2 \in V(S)$ with $w1 \neq w2$, introduce an edge from every vertex of V_{w1} to every vertex of V_{w2} if $(w_1, w_2) \in E(S)$, and introduce the reverse edges if $(w_2, w_1) \in E(S)$.
- (v) For every $w \in V(S)$, put edges between vertices of V_w arbitrarily.
- (vi) Finally, put the edges between vertices of $V_{\mathcal{F}}$ arbitrarily.

(i) For every set $X \in \mathcal{F}$ and every element $e \in U$, if $e \in X$ then introduce an edge from v_X to every vertex of V_e .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(i) ...And if $e \notin X$ then introduce an edge from every vertex of V_e to v_X .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(ii) For every set $X \in \mathcal{F}$, introduce an edge (v^*, v_X) .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(iii) For every element $e \in X$ and $w \in V(S)$, introduce an edge $(v_{e,w}, v^*)$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(iv) For every $w_1, w_2 \in V(S)$ with $w_1 \neq w_2$, introduce an edge from every vertex of V_{w_1} to every vertex of V_{w_2} if $(w_1, w_2) \in E(S)$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(v) For every $w \in V(S)$, put edges between vertices of $\ensuremath{V_w}$ arbitrarily (To make tournament).

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

(vi) Finally, put the edges between vertices of $V_{\mathcal{F}}$ arbitrarily (To make tournament).

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

■ It is easy to see that the constructed digraph T is indeed a tournament.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

Theorem 13.14

We now claim that (\mathcal{F},U,k) is a yes-instance if and only if T admits a dominating set of size k+1.

Theorem 13.14: Necessity

- Assume first that $\mathcal{G} \subseteq \mathcal{F}$ is a subfamily of size at most k such that $\bigcup \mathcal{G} = U$. Consider $D = \{v^*\} \cup \{v_X : X \in \mathcal{G}\}$.
- ▶ Clearly $|D| \le k+1$, and observe that D is a dominating set of T: each vertex of $V_{\mathcal{F}}$ is dominated by v^* , while each vertex $v_{e,w} \in V_U$ is dominated by a vertex $v_X \in D$ for $X \in G$ such that $e \in X$.

Assume first that $\mathcal{G} \subseteq \mathcal{F}$ is a subfamily of size at most k such that $\bigcup \mathcal{G} = U$ (\mathcal{G} is a set-cover).

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

■ Consider $D = \{v^*\} \cup \{v_X : X \in \mathcal{G}\}$. Clearly $|D| \le k + 1$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

■ Consider $D = \{v^*\} \cup \{v_X : X \in \mathcal{G}\}$. Clearly $|D| \le k+1$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

$$w_1$$

 \blacksquare Observe that D is a dominating set of T: each vertex of $V_{\mathcal{F}}$ is dominated by v^* .

$$U = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\}$$

$$V_{e_{1}} \quad V_{e_{2}} \quad V_{e_{3}} \quad V_{e_{4}} \quad V_{e_{5}} \quad V_{e_{6}}$$

$$V_{w_{1}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{1}} \quad V_{w_{2}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{1}} \quad V_{w_{2}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$V_{w_{3}} \quad V_{w_{4}} \quad V_{w_{5}} \quad V_{$$

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

Theorem 13.14: Sufficiency

- ightharpoonup Conversely, suppose that T admits a dominating set D such that $|D| \leq k+1$.
- lacktriangle Since D has to dominate v^* , either D contains v^* or at least one vertex of V_U .
- ▶ Consequently, $|D \cap V_{\mathcal{F}}| \leq k$. Let $\mathcal{G} = \{X \in \mathcal{F} : v_X \in D\}$. Clearly $|\mathcal{G}| \leq k$, so it suffices to prove that $\bigcup \mathcal{G} = U$.

■ Conversely, suppose that T admits a dominating set D such that $|D| \le k + 1$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

$$w_1$$

■ Since D has to dominate v^* , either D contains v^* or at least one vertex of V_U .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

 \blacksquare Consequently, $|D \cap V_{\mathcal{F}}| \leq k$. Which means V_F contains at most k vertices of D.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

■ Let $\mathcal{G} = \{X \in \mathcal{F} : v_X \in D\}$. Clearly $|\mathcal{G}| \leq k$. So, it suffices to prove that $\bigcup \mathcal{G} = U$.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

Theorem 13.14: Sufficiency

We will prove this by contradiction!!

For the sake of contradiction assume that there exists some $e_1 \in U$ that does not belong to any set of \mathcal{G} .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

For the sake of contradiction assume that there exists some $e_1 \in U$ that does not belong to any set of \mathcal{G} .

$$U = \{\mathbf{e}_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$

$$X_3 = \{e_1, e_2, e_5\}$$

Since S is (k+1)-paradoxical, we have that there exists some vertex $w_1 \in V(S)$ that is not dominated by Z in S.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
$$\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$$
$$X_3 = \{e_1, e_2, e_5\}$$

lacksquare V_U can't dominate V_{w_1} and $V_{\mathcal{F}}$ can't dominate V_{e_1} .

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$
 $\mathcal{F} = \{X_1, X_2, X_3, X_4, X_5\}$
 $X_3 = \{e_1, e_2, e_5\}$
 v_1
 v_2
 v_3
 v_4
 v_5
 v_7
 v_8
 v_8
 v_8
 v_8

Theorem 13.14: Sufficiency

We infer that v_{e_1,w_1} is not dominated by D at all, which contradicts the assumption that D is a dominating set in T.

Outline

■ From Dominating Set to Connected Dominating Set.

Connected Dominating Set

Definition

Connected Dominating Set is the variant of Dominating Set where we additionally require that the dominating set induce a connected graph.

Theorem 13.15

Theorem

There is a parameterized reduction from Dominating Set to Connected Dominating Set.

Theorem 13.15: Construction

Let (G,k) be an instance of Dominating Set. We construct a graph G^\prime the following way.

- (i) For every vertex $v \in V(G)$, two adjacent vertices v^x, v^y are created in G'.
- (ii) We make the set $\{v^x:v\in V(G)\}$ a clique K of size |V(G)|.
- (iii) We make v^x and u^y adjacent if v and u are adjacent in G.

 \blacksquare Let (G,k) be an instance of Dominating Set. We construct a graph G' the following way.

(ii) We make the set $\{v^x:v\in V(G)\}$ a clique K of size |V(G)|.

(iii) We make v^x and u^y adjacent if v and u are adjacent in G.

Theorem 13.15: Proof

We claim that (G,k) is a yes-instance of Dominating Set if and only if (G',k) is a yes-instance of Connected Dominating Set.

Theorem 13.15: Necessity

- ▶ Suppose first that $S = \{v_1, ..., v_k\}$ is a dominating set of size k in G.
- ▶ Then we claim that $S' = \{v_1^x, ..., v_k^x\}$ is a connected dominating set of size k in G'.
- ightharpoonup Clearly, G'[S'] is a clique and hence it is connected.
- ▶ To see that S' is a dominating set in G', observe that v_1^x dominates K, and if u is dominated by v_i in G, then u^y is dominated by v_i^x in G'.

■ Suppose first that $S = \{v_1, ..., v_k\}$ is a dominating set of size k in G.

Then we claim that $S' = \{v_1^x, ..., v_k^x\}$ is a connected dominating set of size k in G'.

 \blacksquare Clearly, G'[S'] is a clique and hence it is connected.

■ To see that S' is a dominating set in G', observe that v_1^x dominates K, and if u is dominated by v_i in G, then u^y is dominated by v_i^x in G'.

Theorem 13.15: Sufficiency

- \blacktriangleright Let S' be a connected dominating set of size k in G'.
- ▶ Let v be in S if at least one of v^x and v^y is in S'; clearly, $|S| \le |S'| = k$.
- \blacktriangleright We claim that S is a dominating set of G.
- ▶ Consider any vertex $u \in V(G)$.
- lackbox Vertex u^y of G' is dominated by some vertex v^x or v^y that belongs to S'.
- ▶ Then v is in S and, by the construction of G', it dominates u in G, as required.

 \blacksquare Let S' be a connected dominating set of size k in G'.

■ Let v be in S if at least one of v_x and v_y is in S'; clearly, $|S| \leq |S'| = k$.

■ We claim that S is a dominating set of G.

lacktriangledown Consider any vertex $u \in V(G)$. Vertex u^y of G' is dominated by some vertex v^x or v^y that belongs to S'.

 \blacksquare Then v is in S and, by the construction of G', it dominates u in G, as required.

Thank You :)