NAME: Final version 019

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (b) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.
- (c) The distribution of heights of adult men
- (d) The distribution of annual income for NBA basketball players where only a few are high-paid superstars.

BHCC Mat-181

2. (15 Points)

In a deck of strange cards, there are 326 cards. Each card has an image and a color. The amounts are shown in the table below.

	green	red	yellow	Total
bike	39	15	30	84
cat	20	12	32	64
rug	42	23	13	78
wheel	25	49	26	100
Total	126	99	101	326

- (a) What is the probability a random card is yellow?
- (b) What is the probability a random card is both a cat and yellow?
- (c) What is the probability a random card is a bike given it is yellow?
- (d) What is the probability a random card is either a bike or red (or both)?
- (e) Is a bike or a wheel more likely to be yellow?
- (f) What is the probability a random card is a rug?
- (g) What is the probability a random card is green given it is a bike?

3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	89	11
В	141	9
C	99	4
D	62	15

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)	
Α	98.02	
В	135.3	
C	98.92	
D	62.6	

Which specimen is the most unusually small (relative to others of its type)?

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 103.9 millimeters and a standard deviation of 9.8 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 107.7 and 117.8 millimeters?

5. (10 points)

A species of duck is known to have a mean weight of 264.2 grams and a standard deviation of 16 grams. A researcher plans to measure the weights of 64 of these ducks sampled randomly. What is the probability the **sample mean** will be between 260.7 and 262.7 grams?

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Vireo griseus*. She randomly samples 21 adults of *Vireo griseus*, resulting in a sample mean of 10 grams and a sample standard deviation of 0.786 grams. Determine a 95% confidence interval of the true population mean.

_		
7.	(15	points)

A student is taking a multiple choice test with 1000 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 527 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

X	У	xy
41	69	
34	48	
41	40	
10	58	
54	49	
88	28	
33	60	
$\sum X =$	$\sum y =$	$\sum xy =$
$\bar{X} =$	$\bar{y} = s_y = s_y = s_y$	
$s_{x} =$	$s_y =$	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of *a* and *b*.)

(e) Please plot the data and a corresponding regression line.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.21. If 213 trials occur, what is the probability of getting at least 32 but at most 57 successes?

In other words, let $X \sim \text{Bin}(n = 213, p = 0.21)$ and find $P(32 \le X \le 57)$.

Use a normal approximation along with the continuity correction.

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 110. You decide to run two-tail test on a sample of size n = 11 using a significance level α = 0.1.

You then collect the sample:

109.2	111	109.5	113.9	124.2
116.3	114.2	111.3	102.3	128.7
114.4				

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?