Zadanie projektowe 3

Sprawozdanie

Kurs: Projektowanie efektywnych algorytmów

Prowadzący: mgr inż. Antoni Sterna

Grupa: E01-60h (środa 13:15-15:00)

Autor: Mirosław Kuźniar (nr indeksu: 248870)

Spis treści

1	Wst	ęp teoretyczny	3
	1.1	Problem optymalizacyjny	3
	1.2	Metody ewolucyjne	
	1.3	Algorytm genetyczny	
	1.3.		
2	Najv	ważniejsze aspekty implementacji	
	2.1	Generowanie początkowej populacji	6
	2.2	Metoda sukcesji	6
	2.3	Lokalna optymalizacja	6
3	Imp	lementacja algorytmów	
4		ı eksperymentu	
	4.1	Rozmiar problemu	
	4.2	Dane testowe	6
5	Wyr	niki pomiarów	
	5.1	Wpływ wielkości populacji oraz obu metod krzyżowania	7
	5.2	Wpływ współczynnika krzyżowania	8
	5.3	Porównanie Tabu Search i Algorytmu Genetycznego	9
6	Ome	ówienie wyników	
7	Wni	oski	10

1 Wstęp teoretyczny

1.1 Problem optymalizacyjny

Rozważanym problemem optymalizacyjnym jest problem komiwojażera (ang. Travelling Salesman Problem). Zgodnie z definicją polega on na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. W praktyce często opisuje się go jako problem komiwojażera/wędrownego sprzedawcy który wyruszając z miasta początkowego musi odwiedzić każde z pozostałych miast tylko raz i wrócić do miasta początkowego. Ponadto trasa, którą przebędzie musi być minimalna pod względem przyjętego kosztu (np. odległości, czasu, kosztów ekonomicznych itp.). Warto także wspomnieć, że zgodnie z definicją grafu pełnego musi istnieć połączenie z danego miasta do wszystkich pozostałych.

Problem komiwojażera należy do klasy problemów NP – trudnych. Problemy z tej klasy opisywane są jako takie dla których (najprawdopodobniej) nie można skonstruować algorytmów wielomianowych, czyli algorytmów efektywnych obliczeniowo.

Wyróżniamy dwa rodzaje problemu komiwojażera:

- Symetryczny problem komiwojażera (STSP), w którym waga krawędzi przyjmuje jedną wartość bez względu na kierunek poruszania się, tzn. odległość z miasta A do miasta B jest taka sama jak z miasta B do miasta A,
- Asymetryczny problem komiwojażera (ATSP), w którym waga krawędzi może przyjąć różne wartości w zależności od kierunku przemieszczania się, tzn. odległość z miasta A do miasta B może być różna niż z miasta B do miasta A.

Rozważanym dalej rodzajem będzie asymetryczny problem komiwojażera (ATSP).

Pomimo swojej złożoności problem komiwojażera nie jest tylko tematem dysput akademickich ale także znajduje zastosowanie w praktycznych aplikacjach. Dla przykładu, wydajne rozwiązania TSP są często wykorzystywane w tzw. dostawach ostatniej mili (ang. last mile delivery), gdzie towar przemieszczany jest z węzła transportowego, takiego jak skład lub magazyn do klienta. Dostawy te stanowią główne źródło różnic kosztów w całym łańcuchu dostaw. Dlatego wiele firm z sektora logistyki dąży do zminimalizowania kosztów dostawy ostatniej mili wykorzystując wydajne algorytmy bazujące na problemie komiwojażera.

1.2 Metody ewolucyjne

Stanowią rodzaj heurystycznego przeszukiwania przestrzeni rozwiązań naśladujący naturalne procesy ewolucji. Poszukiwanie polega, na tworzeniu rozwiązania opartego na współpracy osobników wykorzystujących wiedzę o przestrzeni rozwiązań oraz na przekazywaniu tej wiedzy kolejnym pokoleniom z wykorzystaniem mechanizmów ewolucyjnych. Metody ewolucyjne umożliwiają:

- szybsze przeszukiwanie przestrzeni rozwiązań
- przeszukanie większej przestrzeni rozwiązań
- unikanie pułapki ekstremum lokalnego

1.3 Algorytm genetyczny

Algorytm genetyczny opiera się na ewolucji darwinowskiej. Środowisko ma ograniczone zasoby. Przeżywają i rozmnażają się osobniki najlepiej przystosowane. W procesie rozmnażania powstają potomkowie na ogół lepiej przystosowani od rodziców. Czasami u potomstwa mogą występować losowe zmiany zmieniające ich przystosowanie. Wynikiem tego jest coraz lepiej przystosowana populacja do warunków środowiska.

Ogólny schemat algorytmu genetycznego prezentuje się następująco:

wybór populacji początkowej chromosomów (losowy) ocena przystosowania chromosomów sprawdzanie warunku zatrzymania

selekcja chromosomów - wybór populacji macierzystej
krzyżowanie chromosomów z populacji rodzicielskiej
mutacja - może być również wykonana przed krzyżowaniem
ocena przystosowania chromosomów

utworzenie nowej populacji wg. modelu sukcesji wyprowadzenie najlepszego rozwiązania

1.3.1 Operatory genetyczne

- Selekcja polega na wyborze z bieżącej populacji osobników, których materiał genetyczny zostanie poddany operacji krzyżowania oraz mutacji i przekazany osobnikom potomnym. Metody selekcji:
 - Ruletkowa
 - Rankingowa
 - Turniejowa populację dzieli się na szereg dowolnie licznych grup.
 Następnie z każdej z nich wybiera się osobnika o najlepszym przystosowaniu

• Krzyżowanie - polega na wymianie materiału genetycznego pomiędzy losowo wybranymi parami osobników. W wyniku krzyżowania powstają nowe osobniki, które mogą wejść w skład nowej populacji. Krzyżowanie zachodzi z prawdopodobieństwem $p_c \in (0.6, 1.0)$. Metody krzyżowania:

OX - Ordered Crossover

W krzyżowaniu OX potomków tworzy się na podstawie pod tras pobranych z rodziców (sekcji dopasowania) oraz ich uzupełnienia tak żeby nie powstał konflikt

- PMX Partially Mapped Crossover
- EX Edge Crossover
- SXX Subtour Exchanged Crossover
- PX Partition Crossover
- Mutacja polega na zamianie wartości losowo wybranego genu. Celem użycia operatora mutacji jest zapewnienie zmienności chromosomów. Zachodzi z prawdopodobieństwem $p_m \in (0.01, 0.1)$. Metody mutacji:
 - Insertion przestawia losowo wybrane miasto na inną pozycję

$$\pi = <\pi(1), \dots, \pi(i-1), \underbrace{\pi(i)}_{\pi(i)}, \pi(i+1), \dots, \pi(j-1), \underbrace{\pi(j)}_{\pi(j)}, \pi(j+1), \dots, \pi(n) >$$

$$\pi' = <\pi(1), \dots, \pi(i-1), \underbrace{\pi(j)}_{\pi(j)}, \underbrace{\pi(i)}_{\pi(i)}, \pi(i+1), \dots, \pi(j-1), \pi(j+1), \dots, \pi(n) >$$

Inversion - wybiera losowo podciągi miast i zamienia ich kolejność

Transposition - zamienia dwa losowo wybrane miasta

$$\pi = <\pi(1), \dots, \pi(i-1), \underbrace{\pi(i)}_{\pi(i)}, \pi(i+1), \dots, \pi(j-1), \underbrace{\pi(j)}_{\pi(j)}, \pi(j+1), \dots, \pi(n) >$$

$$\pi = <\pi(1), \dots, \pi(i-1), \underbrace{\pi(j)}_{\pi(i)}, \pi(i+1), \dots, \pi(j-1), \underbrace{\pi(i)}_{\pi(i)}, \pi(j+1), \dots, \pi(n) >$$

Displacement - zamienia w wybranym losowo podciągu miast pierwsze z ostatnim

2 Najważniejsze aspekty implementacji

2.1 Generowanie początkowej populacji

Populacja początkowa została utworzona w sposób losowy. Dla wszystkich osobników populacji stworzono permutację od 1...n-1 a następnie przetasowano z użyciem funkcji std::random shuffle.

2.2 Metoda sukcesji

Wytworzenie populacji nowego pokolenia polegało na przeniesieniu ustalonego procentu najlepiej przystosowanych osobników z poprzedniego pokolenia do nowego. Zauważono, że w przypadku gdy nowa populacja nie zawiera najlepszych osobników z poprzedniego pokolenia błąd względny uzyskiwanego rozwiązania jest znacznie większy.

Aby skutecznie wyodrębnić najlepiej przystosowanych osobników posortowano populację względem funkcji dopasowania za pomocą funkcji std::sort. Następnie wybrano odpowiednią liczbę osobników o najmniejszych indeksach

2.3 Lokalna optymalizacja

Aby dodatkowo polepszyć wyniki uzyskiwane za pomocą algorytmu genetycznego zaimplementowano mechanizm lokalnej optymalizacji. Dla każdego nowopowstałego osobnika (po operacji krzyżowania i mutacji) zostaje znaleziony najlepszy sąsiad i to on jest wpisywany do nowej populacji.

3 Implementacja algorytmów

Wybranym językiem programowania jest C++. Algorytmy operują na zmiennych dziesiętnych int lub zmiennoprzecinkowych float. Do przechowywania danych wykorzystano strukturę danych z biblioteki STL – vector.

4 Plan eksperymentu

4.1 Rozmiar problemu

W przypadku algorytmu genetycznego testy efektywności przeprowadzono dla trzech przykładów wyraźnie różniących się rozmiarem. Wykorzystano instancje o rozmiarze 17, 43 i 403 miast.

4.2 Dane testowe

Przykłady testowe zaczerpnięto ze strony http://staff.iiar.pwr.wroc.pl/antoni.sterna/pea/PEA testy.htm. Wykorzystano pliki br17 o rozwiązaniu optymalnym 39, p43 o rozwiązaniu optymalnym 5620 oraz rbg403 o rozwiązaniu optymalnym 2465.

5 Wyniki pomiarów

5.1 Wpływ wielkości populacji oraz obu metod krzyżowania

Instancja:					
br17			Cza	s [s]	
	•	10	30	60	100
Rozmiar populacji	Metoda mutacji	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]
50	Transposition	0,00	0,00	0,00	0,00
50	Insertion	0,00	0,00	0,00	0,00
100	Transposition	0,00	0,00	0,00	0,00
100	Insertion	0,00	0,00	0,00	0,00
150	Transposition	0,00	0,00	0,00	0,00
150	Insertion	0,00	0,00	0,00	0,00

	•				
Instancja:					
p43			Cza	s [s]	
	•	10	30	60	100
Rozmiar populacji	Metoda mutacji	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]
50	Transposition	0,37	0,27	0,20	0,09
50	Insertion	0,48	0,41	0,30	0,25
100	Transposition	0,30	0,21	0,09	0,05
100	Insertion	0,44	0,16	0,05	0,05
150	Transposition	0,32	0,28	0,27	0,14
150	Insertion	0,43	0,32	0,25	0,14

Instancja:					
rbg403	Czas [s]				
		10	30	60	100
Rozmiar populacji	Metoda mutacji	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]
50	Transposition	87,87	67,99	58,38	50,30
50	Insertion	92,05	72,09	59,23	54,48
100	Transposition	79,51	62,60	52,90	46,21
100	Insertion	76,43	66,73	58,46	47,79
150	Transposition	72,29	68,60	49,74	43,25
150	Insertion	71,97	57,69	46,61	45,23

5.2 Wpływ współczynnika krzyżowania

Instancja: Najlpesza kombinacja:		Wsółczynnik mutacji:
br17	50 Transposition	0,01

	Czas [s]					
	10 30 60 100					
Współczynnik krzyżowania	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]		
0,5	0,00	0,00	0,00	0,00		
0,7	0,00	0,00	0,00	0,00		
0,9	0,00	0,00	0,00	0,00		

Instancja:	Najlpesza kombinacja:	Wsółczynnik mutacji:		
p43	100 Insertion	0,01		

	Czas [s]				
	10 30 60 10				
Współczynnik krzyżowania	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]	
0,5	0,50	0,46	0,44	0,05	
0,7	0,44	0,41	0,25	0,09	
0,9	0,48	0,27	0,09	0,05	

Instancja: Najlpesza kombinacja:		Wsółczynnik mutacji:
rbg403	150 Insertion	0,01

	Czas [s]					
	10 30 60 100					
Współczynnik krzyżowania	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]		
0,5	75,17	58,22	48,11	41,22		
0,7	69,82	62,72	49,41	43,20		
0.9	63.45	58.01	54.69	40.08		

5.3 Porównanie Tabu Search i Algorytmu Genetycznego

Instancja:	Najlpesza kombinacja:	Wsółczynnik mutacji:	Współczynnik krzyżowania
br17	50 Transposition	0,01	0,7

	Czas [s]					
	10	10 30 60 100				
Algorytm	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]		
Tabu Search	0,00	0,00	0,00	0,00		
Algorytm genetyczny	0,00	0,00	0,00	0,00		

Instancja:	Najlpesza kombinacja:	Wsółczynnik mutacji:	Współczynnik krzyżowania
p43	100 Insertion	0,01	0,9

	Czas [s]			
	10	30	60	100
Algorytm	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]
Tabu Search	1,30	1,28	0,98	0,93
Algorytm genetyczny	0,48	0,27	0,09	0,05

Instancja:	Najlpesza kombinacja:	Wsółczynnik mutacji:	Współczynnik krzyżowania
rbg403	150 Insertion	0,01	0,5

	Czas [s]			
	10	30	60	100
Algorytm	Błąd [%]	Błąd [%]	Błąd [%]	Błąd [%]
Tabu Search	64,14	61,05	50,43	47,42
Algorytm genetyczny	75,17	58,22	48,11	41,22

6 Omówienie wyników

W pierwszej części pomiarów przedstawione zostały uzyskiwane wyniki dla różnych rozmiarów populacji oraz zaimplementowanych metod mutacji. Zauważyć można, że w przypadku instancji br17 niezależnie od czasu, metody mutacji czy wielkości populacji uzyskiwano wynik optymalny. W przypadku instancji p43 wyróżniającą się kombinacją jest wielkość populacji równa 100 i Insertion jako metoda mutacji. Pozwala osiągnąć błąd rzędu setnych procenta przy dostatecznie długim czasie działania algorytmu. W przypadku instancji rbg403 wyróżniającą się kombinacją jest wielkość populacji równa 150 i Insertion jako metoda mutacji pozwalająca osiągnąć wynik rzędu 40 – 50% przy odpowiednim czasie działania.

Kolejno omówiony zostanie wpływ zmiennego współczynnika krzyżowania na uzyskane wyniki. Jako punkt odniesienia przyjęto najlepsze kombinacje wielkość populacji i metody mutacji z poprzedniego zadania. W przypadku instancji br17 ponownie zmiana współczynnika nie ma wpływu na wyniki, gdyż zawsze zostaje osiągnięte rozwiązanie optymalne. W przypadku instancji p43 najlepsze wyniki osiągnięto dla współczynnika krzyżowania 0,9. A w przypadku instancji rbg403 dla 0,5.

Ostatnią częścią będzie porównanie działania Algorytmu Genetycznego z Tabu Search zaimplementowanym w poprzedni etapie. Dla instancji br17 oba algorytmy osiągają rozwiązanie optymalne. W przypadku instancji p43 można wyraźnie zauważyć, że lepsze wyniki są osiągane przez Algorytm Genetyczny. W przypadku instancji rbg403 podobnie, z tą różnicą, że przewaga GA zaczyna być zauważalna przy dłuższych czasach wykonania algorytmów.

7 Wnioski

Podczas formułowania wniosków należy pamiętać, że testowaniu podlegał algorytm oparty na metodzie ewolucyjnej. Jedną z jego cech jest to, że nie daje gwarancji uzyskania rozwiązania optymalnego. W ogólności jednak jest w stanie uzyskać rozwiązanie zbliżone do optymalnego w akceptowalnym czasie. Wyniki badania algorytmu genetycznego wpisują się w te cechę. Przy ograniczonym czasie jest w stanie uzyskać dobre wyniki. Warto także zauważyć, że zwiększenie czasu pracy algorytmu wpływa pozytywnie na jakość zwracanych przez niego rozwiązań.

Jest to nawet bardziej zauważalne niż w przypadku poprzednio zaimplementowanych algorytmów symulowanego wyżarzania i przeszukania z zakazami. W algorytmie genetycznym widać znaczą poprawę w przypadku działania przez dłuższy czas. Szczególnie tyczy się to większych instancji gdzie wydłużenie czasu pracy może powodować nawet dwukrotne polepszenie wyników.