Héctor Carlos Guimaray Huerta

Análisis Funcional

– Ejercicios resueltos –

28 de marzo de 2024

Universidad Nacional de Ingeniería

Dedicado a lo(a)s matemático(a)s peruano(a)s del pasado y del futuro.

Prólogo

El prólogo cubre comentarios introductorios que preceden al texto de un libro y que están escritos por una *persona distinta del autor o editor* del libro. Si corresponde, el prólogo precede al prefacio escrito por el autor o editor del libro.

Lima, marzo 2024

Héctor Carlos Guimaray Huerta

Prefacio

Un prefacio es la declaración preliminar de un libro, generalmente escrita por el *autor o editor* de una obra, que establece su origen, alcance, propósito, plan y público objetivo, y que a veces incluye reflexiones posteriores y agradecimientos de asistencia.

Cuando está escrito por una persona distinta al autor, se le llama prólogo. El prefacio o prólogo se diferencia de la introducción, que trata del tema de la obra.

Habitualmente se incluyen agradecimientos como última parte del prefacio.

Lima, marzo 2024

Héctor Carlos Guimaray Huerta

Agradecimientos

Agradezco a Carlos Alonso Aznarán Laos con la ayuda en la digitación en LATEX.

Índice general

Parte I Título

1	Espa	acio vectorial normado	3
	1.1	Subespacio vectorial normado	3
	Refe	rencias	4
	1.2	Isomorfismo en espacio vectorial normado	5
	1.3	Distancia en espacio vectorial normado	5
	1.4	Diámetro de conjunto en espacio vectorial normado	5
	1.5	Bola en espacio vectorial normado	5
	1.6	Esfera en espacio vectorial normado	5
	1.7	Normas equivalentes en espacio vectorial normado	5
	1.8	Conjunto abierto en espacio vectorial normado	5
	1.9	Conjunto cerrado en espacio vectorial normado	5
	1.10	Vecindad en espacio vectorial normado	5
	1.11	Entorno en espacio vectorial normado	5
	1.12	Topología fuerte en espacio vectorial normado	5
	1.13	Punto interior en espacio vectorial normado	5
	1.14	Punto exterior en espacio vectorial normado	5
	1.15	Punto de frontera en espacio vectorial normado	5
		Punto aislado en espacio vectorial normado	5
	1.17	Punto de acumulación en espacio vectorial normado	5
	1.18	Conjunto Bolzano-Weierstrass en espacio vectorial normado	5
		Punto de clausura en espacio vectorial normado	5
		Conjunto separado en espacio vectorial normado	5
		Conjunto denso en espacio vectorial normado	5
	1.22	Espacio vectorial normado separable	5
	1.23	Lema de Riesz en espacio vectorial normado	5
	1.24	Sucesión en espacio vectorial normado	5
		Punto límite de sucesión en espacio vectorial normado	5
		Límite de sucesión en espacio vectorial normado	5
	1.27	Sucesión de Cauchy en espacio vectorial normado	5

xiv Índice general

	1.28	Teorema de Bolzano-Weierstrass para conjunto infinito en espacio	_
	4.00	vectorial normado finito dimensional	5
	1.29	Teorema de Bolzano-Weierstrass para sucesión en espacio	_
	1.20	vectorial normado finito dimensional	5
		Base de Schauder en espacio vectorial normado	5
		Base de Hilbert en espacio vectorial normado	5
		Función en espacio vectorial normado	5
		Isometría en espacio vectorial normado	5
		Función contraída en espacio vectorial normado	5
		Límite de función en espacio vectorial normado	5
		Función continua en espacio vectorial normado	5
		Función uniformemente continua en espacio vectorial normado	5
		Función homeomorfa en espacio vectorial normado	5
		Sucesión de funciones en espacio vectorial normado	5
		Límite de sucesión de funciones en espacio vectorial normado	5
		Serie de funciones en espacio vectorial normado	5
		Conjunto acotado en espacio vectorial normado	5
		Conjunto totalmente acotado en espacio vectorial normado	5
		Conjunto completo en espacio vectorial normado	5
		Función lineal continua en espacio vectorial normado	5
		Función lineal acotada en espacio vectorial normado	5
		Espacio de funciones lineales acotadas en espacio vectorial normado	
		Colección puntualmente acotado en espacio vectorial normado	5
		Colección uniformemente acotado en espacio vectorial normado	5
		Espacio dual topológico en espacio vectorial normado	5
		Conjunto compacto en espacio vectorial normado	5
		Conjunto conexo en espacio vectorial normado	5
	1.53	Conjunto convexo en espacio vectorial normado	5
2	Espa	acio de Banach	7
	2.1	Espacio de Banach	7
3	_	acio producto interno	9
	3.1	Espacio producto interno	9
	3.2	Ortogonalidad en espacio producto interno	9
	3.3	Teorema de Pitágoras en espacio producto interno	9
	3.4	Desigualdad de Bessel en espacio producto interno	9
4	Espa	acio de Hilbert	11
	4.1	Espacio de Hilbert	11
	4.2	Límite de sucesión espacio de Hilbert	11
	4.3	Teorema de Banach-Steinhaus en espacio de Hilbert	11
	4.4	Teorema de Representación de Riesz en espacio de Hilbert	11
	4.5	Límite débil de sucesión en espacio de Hilbert	11
	4.6	Teorema de descomposición ortogonal en espacio de Hilbert	11

5	Teoremas importantes
J	•
	5.1 Teorema de extensión de Hahn-Banach en espacio vectorial
	5.2 Principio de Acotación Uniforme en espacio de Banach
	5.3 Teorema del gráfico cerrado en espacio de Banach
	5.4 Teorema de la función abierta en espacio de Banach

Parte I Título

Diseñe la página de título de su parte y, si lo desea, un breve texto introductorio (máximo una página) en su página al revés.

Capítulo 1

Espacio vectorial normado

Resumen Cada capítulo debe ir precedido de un resumen (no más de 200 palabras) que resuma el contenido.

Definición 1.1 Sea X un espacio vectorial sobre \mathbb{R} (\mathbb{C}), $\| \ \| : X \to \mathbb{R}$ se llama norma real (compleja) en X si:

i) $||x|| = 0 \implies x = 0$.

Definida, Separación.

ii) $\|\lambda x\| = |\lambda| \|x\| \ \forall x \in X, \lambda \in \mathbb{R} (\mathbb{C}).$

Absolutamente Homogénea,

Homogeneidad Positiva.

iii) $||x + y|| \le ||x|| + ||y|| \, \forall x, y \in X$.

Desigualdad Triangular, Subaditiva.

 $\|x\|$ se llama norma de x. $(X, \|\ \|)$ se llama espacio vectorial real (complejo) normado.

1.1 Subespacio vectorial normado

- **1.1** Sea *X* un espacio vectorial normado. Luego, $x = 0 \implies ||x|| = 0$.
- **1.2** Sea X un espacio vectorial normado. Luego, $x \neq 0 \implies ||x|| \neq 0$.
- **1.3** Sea (X, || ||) un espacio vectorial normado. Luego: $||x|| \ge 0 \ \forall x \in X$. Positiva
- **1.4** Sea $\| \|$ una norma en X. Luego, $d(x, y) = \|x y\|$ es una métrica en X. Es decir, todo espacio vectorial normado es un espacio métrico. d se llama métrica inducida por la norma $\| \|$.
- **1.5** Sea (X, || ||) un espacio vectorial normado. Luego: $||x|| \ge 0 \, \forall x \in X$.
- **1.6** Sean X un espacio vectorial, $\{x_1, x_2, \ldots, x_n\} \subset X$ linealmente independiente. Si $\| \| : \langle \{x_1, x_2, \ldots, x_n\} \rangle \to \mathbb{R}$ donde $\|x\| = \sum_{k=1}^n |\lambda_k|$ y $x = \sum_{k=1}^n \lambda_k x_k$, entonces $\|x\| \ge 0$.
- **1.7** Sea X un espacio vectorial normado. Luego, $x \ne 0$ si y solo si ||x|| > 0.

- **1.8** Sea (X, || ||) un espacio vectorial normado n-dimensional, $\varphi \colon \mathbb{R}^n \to X$ donde $||x||_* = ||\varphi(x)||$. Luego, $||x||_* \ge 0$.
- **1.9** Sean $(X, \| \|)$ un espacio vectorial normado de dimensión $n, \{v_1, \ldots, v_n\}$ una base de $X, f: X \to \mathbb{R}^n$, donde $f(x) = (y_1, \ldots, y_n), x = \sum_{k=1}^n y_k v_k$. Si $\|y\|_* = \|f^{-1}(y)\|$, entonces $\|y\|_* \ge 0$.
- **1.10** Sean X un espacio vectorial, $\{x_1, x_2, \dots, x_n\} \subset X$ linealmente independiente. Luego, $\| \| : \langle \{x_1, x_2, \dots, x_n\} \rangle \to \mathbb{R}$ donde $\|x\| = \sum_{k=1}^n |\lambda_k|$ y $x = \sum_{k=1}^n \lambda_k x_k$, es una norma.
- **1.11** Sean
- 1.12 Sean
- **1.13** Sean
- 1.14 Sean
- 1.15 Sean
- 1.16 Sean
- 1.17 Sean
- 1.18 Sean
- 1.19 Sean
- 1.20 Sean

Referencias

- 1. Broy, M.: Software engineering from auxiliary to key technologies. In: Broy, M., Dener, E. (eds.) Software Pioneers, pp. 10-13. Springer, Heidelberg (2002)
- Dod, J.: Effective substances. In: The Dictionary of Substances and Their Effects. Royal Society of Chemistry (1999) Available via DIALOG. http://www.rsc.org/dose/title of subordinate document. Cited 15 Jan 1999
- 3. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1997)
- Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura. Appl. 169, 321–354 (1995)

- 1.2 Isomorfismo en espacio vectorial normado
- 1.3 Distancia en espacio vectorial normado
- 1.4 Diámetro de conjunto en espacio vectorial normado
- 1.5 Bola en espacio vectorial normado
- 1.6 Esfera en espacio vectorial normado
- 1.7 Normas equivalentes en espacio vectorial normado
- 1.8 Conjunto abierto en espacio vectorial normado
- 1.9 Conjunto cerrado en espacio vectorial normado
- 1.10 Vecindad en espacio vectorial normado
- 1.11 Entorno en espacio vectorial normado
- 1.12 Topología fuerte en espacio vectorial normado
- 1.13 Punto interior en espacio vectorial normado
- 1.14 Punto exterior en espacio vectorial normado
- 1.15 Punto de frontera en espacio vectorial normado
- 1.16 Punto aislado en espacio vectorial normado
- 1.17 Punto de acumulación en espacio vectorial normado
- 1.18 Conjunto Bolzano-Weierstrass en espacio vectorial normado
- 1.19 Punto de clausura en espacio vectorial normado
- 1.20 Conjunto separado en espacio vectorial normado
- 1.21 Conjunto denso en espacio vectorial normado
- 1.22 Espacio vectorial normado separable
- 1.23 Lema de Riesz en espacio vectorial normado
- 1.24 Sucesión en espacio vectorial normado
- 1.25 Punto límite de sucesión en espacio vectorial normado

Capítulo 2 Espacio de Banach

2.1 Espacio de Banach

Capítulo 3 Espacio producto interno

- 3.1 Espacio producto interno
- 3.2 Ortogonalidad en espacio producto interno
- 3.3 Teorema de Pitágoras en espacio producto interno
- 3.4 Desigualdad de Bessel en espacio producto interno

Capítulo 4 Espacio de Hilbert

- 4.1 Espacio de Hilbert
- 4.2 Límite de sucesión espacio de Hilbert
- 4.3 Teorema de Banach-Steinhaus en espacio de Hilbert
- 4.4 Teorema de Representación de Riesz en espacio de Hilbert
- 4.5 Límite débil de sucesión en espacio de Hilbert
- 4.6 Teorema de descomposición ortogonal en espacio de Hilbert

Capítulo 5 Teoremas importantes

- 5.1 Teorema de extensión de Hahn-Banach en espacio vectorial
- 5.2 Principio de Acotación Uniforme en espacio de Banach
- 5.3 Teorema del gráfico cerrado en espacio de Banach
- 5.4 Teorema de la función abierta en espacio de Banach

Soluciones

Problemas del Capítulo 1

1.1

$$x = 0$$

$$||x|| = ||0||$$

$$= ||0x||$$

$$= |0| ||x||$$

$$= 0 ||x||$$

- **1.2** Asumamos que $||x|| = 0 \implies x = 0$. Contradicción. $||x|| \neq 0$.
- 1.3 Se tiene que:

$$||x + y|| \le ||x|| + ||y||$$

Sea y = -x.

$$||x + (-x)|| \le ||x|| + ||-x||$$

 $||0|| \le 2 ||x||$
 $0 \le 2 ||x||$

 $\therefore \, \forall x \in X : \|x\| \geq 0.$

1.4

$$\begin{array}{l} \text{i)} \ d\left(x,y\right) = 0 \ \text{si} \ y \ \text{solo} \ \text{si} \ x = y. \\ d\left(x,y\right) = 0 \iff \|x-y\| = 0 \iff x-y = 0 \iff x = y. \\ \text{ii)} \ d\left(x,y\right) = d\left(y,x\right) \forall x,y \in X. \\ d\left(x,y\right) = \|x-y\| = \|-(y-x)\| = |-1| \, \|y-x\| = \|y-x\| = d\left(y,x\right). \\ \text{iii)} \ d\left(x,y\right) \leq d\left(x,z\right) + d\left(z,y\right) \forall x,y,z \in X. \end{array}$$

16 Soluciones

$$d\left({x,y} \right) = \left\| {x - y} \right\| = \left\| {x - z + z - y} \right\| \le \left\| {x - z} \right\| + \left\| {z - y} \right\| = d\left({x,z} \right) + d\left({z,y} \right).$$

1.5 d(x, y) = ||x - y|| es una métrica en X. Se tiene que $d(x, y) \ge 0 \, \forall x, y \in X \implies ||x - y|| \ge 0 \, \forall x, y \in X$. Sea $y = 0 \implies ||x|| \ge 0 \, \forall x \in X$.

 $\textbf{1.6} \ |\lambda_k| \geq 0 \, \forall k \in \mathbb{N} \implies \sum_{k=1}^n |\lambda_k| \geq 0 \implies \|x\| \geq 0.$

1.7

- (⇒) Se tiene que $||x|| \ge 0 \,\forall x \in X$. Asumamos que $||x|| = 0 \implies x = 0$. Contradicción. ∴ ||x|| > 0.
- (\Leftarrow) Asumamos que $x = 0 \implies ||x|| = 0$. Contradicción ∴ $x \neq 0$.

1.8

Sea $x \in \mathbb{R}^n$.

$$\varphi(x) \in X \|\varphi(x)\| \ge 0$$
$$\|x\|_* \ge 0.$$

- **1.9** .
- **1.10** .
- **1.11** .
- **1.12** .
- **1.13** .
- **1.14** .
- **1.15** .
- **1.16** .
- **1.17** .
- **1.18** .
- **1.19** .
- **1.20** .