5.2.3 L'algorithme

Algorithme PPPP(P)

Entrée: Un ensemble P de points du plan avec au moins deux points.

Sortie: La paire de points les plus proches.

- 1. Construire les tableaux P_x et P_y .
- 2. Renvoyer PPPP_{REC}(P_x , P_y).

Algorithme PPPP_{REC} (P_x, P_y)

Entrée: Deux tableaux de points (les mêmes) triés selon *x* et selon *y*. Sortie: La paire de points les plus proches.

- 1. Si $|P_x| = 2$ ou 3, renvoyer la paire de points de P_x les plus proches.
- 2. Extraire le point médian de P_x , et soit x^* son abscisse.
- 3. Soit $A = \{(x, y) \in P_x : x \le x^*\}$ et $B = \{(x, y) \in P_x : x > x^*\}$. Construire les tableaux A_x , B_x , A_y et B_y à partir de x^* , P_x et P_y .
- 4. Calculer $(a, a') = PPPP_{REC}(A_x, A_y)$ et $(b, b') = PPPP_{REC}(B_x, B_y)$
- 5. Calculer $\delta = \min \{ \text{dist}(a, a'), \text{dist}(b, b') \}$. Soit $S = \{(x, y) \in P_y : |x^* x| < \delta \}$. Construire S_y à partir de P_y .
- 6. Pour chaque point $s_i \in S_y$, calculer min $\{ dist(s_i, s_j) : j \in \{i + 1, ..., i + 7\} \}$.
- 7. Soit (s,s') la paire de points les plus proches calculée à l'étape 6. Renvoyer la paire de points les plus proches parmi (s,s'), (a,a') et (b,b').

On a supposé que la ligne L du médian p^* ne contient qu'un seul point. Mais que se passe-t-il si cela n'est pas le cas? Comment modifier l'algorithme pour qu'il marche efficacement dans tous les cas?

5.2.4 Complexité

Soit T(n) la complexité en temps de l'algorithme $\operatorname{PPPP}_{REC}(P_x, P_y)$ lorsqu'il est appliqué à des tableaux P_x , P_y de n points chacun. La complexité en temps de l'algorithme PPPP appliqué à un ensemble P de n points est alors $O(n\log n) + T(n)$. En effet, $O(n\log n)$ est le temps nécessaire pour trier les n points (selon x et selon y) avec un algorithme de tri de cette complexité, comme le tri-fusion (cf. le section 5.1), auquel il faut ajouter le temps T(n) de calcul pour $\operatorname{PPPP}_{REC}(P_x, P_y)$.

Il n'est pas difficile de voir que chaque étape, sauf peut-être l'étape 4 qui est récur-