#include <iostream> #include <vector> using namespace std; class ZeroOneKnapsack { public: int knapsack(int n, vector<int>& vals, vector<int>& wts, int cap) { vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));for (int i = 1; $i \le n$; i++) { for (int j = 1; $j \le cap$; j++) { $if (j \ge wts[i - 1]) {$ int remainingCap = j - wts[i - 1]; if (dp[i - 1][remainingCap] + vals[i - 1] >dp[i - 1][j]) { dp[i][j] = dp[i - 1][remainingCap] +vals[i - 1]; } else { dp[i][j] = dp[i - 1][j];} else { dp[i][j] = dp[i - 1][j];return dp[n][cap]; } **}**; int main() { ZeroOneKnapsack solution; // Input parameters int n = 5; vector<int> vals = $\{15, 14, 10, 45, 30\};$ vector<int> wts = $\{2, 5, 1, 3, 4\};$ int cap = 7: // Compute maximum value using knapsack int maxVal = solution.knapsack(n, vals, wts, cap); // Output the maximum value cout << "Maximum value that can be obtained: " << maxVal << endl; return 0; }

Dry Run of the ZeroOneKnapsack Problem:

Input:

0/1 KnapSack in C++

```
n = 5;
vals = {15, 14, 10, 45, 30};
wts = {2, 5, 1, 3, 4};
cap = 7;
```

Step 1: Initialize the DP Table

We initialize a 2D DP table of size (n + 1) x (cap + 1) to store the maximum values obtainable for each subproblem. Each cell dp[i][j] will represent the maximum value achievable with the first i items and a knapsack capacity of j.

Initially, the DP table is filled with zeros:

i∖j	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0

Step 2: Fill the DP Table

We iterate through each item (i = 1 to n) and each knapsack capacity (j = 1 to cap). The idea is to decide whether to include the current item or not.

Item 1 (Value = 15, Weight = 2)

- **Capacity 1**: dp[1][1] = 0 (Cannot include this item as the weight is greater than the capacity)
- Capacity 2: dp[1][2] = max(dp[0][2], dp[0] [0] + 15) = max(0, 15) = 15
- Capacity 3: dp[1][3] = max(dp[0][3], dp[0] [1] + 15) = max(0, 15) = 15
- Capacity 4: dp[1][4] = max(dp[0][4], dp[0] [2] + 15) = max(0, 15) = 15
- Capacity 5: dp[1][5] = max(dp[0][5], dp[0] [3] + 15) = max(0, 15) = 15
- Capacity 6: dp[1][6] = max(dp[0][6], dp[0] [4] + 15) = max(0, 15) = 15
- Capacity 7: dp[1][7] = max(dp[0][7], dp[0] [5] + 15) = max(0, 15) = 15

i∖j	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0

i١	j 0	1	2	3	4	5	6	7
1	0	0	15	15	15	15	15	15
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0

Item 2 (Value = 14, Weight = 5)

- Capacity 1 to 4: The weight is greater than the capacity, so we can't include this item.
- Capacity 5: dp[2][5] = max(dp[1][5], dp[1] [0] + 14) = max(15, 14) = 15
- Capacity 6: dp[2][6] = max(dp[1][6], dp[1] [1] + 14) = max(15, 14) = 15
- Capacity 7: dp[2][7] = max(dp[1][7], dp[1] [2] + 14) = max(15, 29) = 29

i∖j	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	15	15	15	15	15	15
2	0	0	15	15	15	15	15	29
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0

Item 3 (Value = 10, Weight = 1)

- Capacity 1: dp[3][1] = max(dp[2][1], dp[2][0] + 10) = max(0, 10) = 10
- Capacity 2: dp[3][2] = max(dp[2][2], dp[2] [1] + 10) = max(15, 10) = 15
- Capacity 3: dp[3][3] = max(dp[2][3], dp[2] [2] + 10) = max(15, 25) = 25
- Capacity 4: dp[3][4] = max(dp[2][4], dp[2] [3] + 10) = max(15, 25) = 25
- Capacity 5: dp[3][5] = max(dp[2][5], dp[2] [4] + 10) = max(15, 25) = 25
- Capacity 6: dp[3][6] = max(dp[2][6], dp[2] [5] + 10) = max(15, 25) = 25
- Capacity 7: dp[3][7] = max(dp[2][7], dp[2] [6] + 10) = max(29, 25) = 29

i∖j	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	15	15	15	15	15	15
2	0	0	15	15	15	15	15	29
3	0	10	15	25	25	25	25	29
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0

Item 4 (Value = 45, Weight = 3)

- Capacity 1 to 2: Cannot include this item.
- **Capacity 3**: dp[4][3] = max(dp[3][3], dp[3] [0] + 45) = max(25, 45) = 45
- **Capacity** 4: dp[4][4] = max(dp[3][4], dp[3] [1] + 45) = max(25, 55) = 55
- Capacity 5: dp[4][5] = max(dp[3][5], dp[3] [2] + 45) = max(25, 55) = 55
- Capacity 6: dp[4][6] = max(dp[3][6], dp[3] [3] + 45) = max(25, 70) = 70
- Capacity 7: dp[4][7] = max(dp[3][7], dp[3][4] + 45) = max(29, 70) = 70

Item 5 (Value = 30, Weight = 4)

- Capacity 1 to 3: Cannot include this item.
- Capacity 4: dp[5][4] = max(dp[4][4], dp[4] [0] + 30) = max(55, 30) = 55
- Capacity 5: dp[5][5] = max(dp[4][5], dp[4] [1] + 30) = max(55, 30) = 55
- Capacity 6: dp[5][6] = max(dp[4][6], dp[4] [2] + 30) = max(70, 30) = 70
- Capacity 7: dp[5][7] = max(dp[4][7], dp[4] [3] + 30) = max(70, 75) = 75

Step 3: Final DP Table

i∖j	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
_	0	0	15	15	15	15	15	15
_	0	0	15	15	15	15	15	29
3	0	10	15	25	25	25	25	29
4	0	10	15	45	55	55	70	70
5	0	10	15	45	55	55	70	75

Result:

The maximum value that can be obtained with a knapsack capacity of 7 is 75.

Output:

Maximum value that can be obtained: 75

The maximum value that can be obtained is stored in dp[5][7] = 75.