Intro to Neural Nets

Week 5: Convolutional NNs (ConvNets)

Today's Agenda

Modern Image-Network Architectures

Mitigating vanishing gradients in deep networks.

Image-to-Image Prediction Tasks

- Image segmentation, Image super-resolution.
- Transpose convolution operations for up-sampling.

Visualizing What a CNN is Learning

• Try to visualize what components of an image your model's feature extractions are detecting.

Image-Classification Architectures

Vanishing Gradients

Recall That Certain Activations Make Vanishing Gradients More Likely

As we approach 0 or 1 at a node's output, changes to input parameters have little impact...

However, Regardless of Activation This Can Be an Issue

• For deep networks, parameters at front of network tend to have a much smaller influence on ultimate loss function. Accordingly, gradients for those early parameters can be very small.

Solution: Residual Connections

Provide a 'Short-cut' From Loss Function to Front-end Weights

- We include feed-forward layers as usual, but we also add short-cut connections around the layers.
- We typically incorporate these residual connections either via an 'Add' layer or a 'Concatenate' layer.
- Note that conformity of the tensor shapes will be very important here you'll start encountering shape conformity errors if you are not careful!

Listing 9.2 Residual block where the number of filters changes

```
1 from tensorflow import keras
2 from tensorflow.keras import layers
3
4 inputs = keras.Input(shape=(32, 32, 3))
5 x = layers.Conv2D(32, 3, activation="relu")(inputs)
6 residual = x
7 x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
8 residual = layers.Conv2D(64, 1)(residual)
9 x = layers.add([x, residual])
```

Image-to-Image Prediction

Super-Resolution

- Take a high-resolution image, pixelate it, then try to predict the high resolution from the pixelated version.
- Q: What kind of activation and loss function will make sense in this task?

Image-to-Image Prediction

Image-Segmentation

- Take an image and its segment mask, then try to predict the segment associated with each pixel from the original picture.
- Q: What kind of activation function and loss function will make sense in this task?

Topology for Image-to-Image

Auto-Encoder Architecture

- Down-sample and then Up-sample back to same dimensionality
- We do not use down-sample using pooling (because they force attention to the whole image as we learn higher level features). Instead, we use larger strides. This enables 'dimensionality' reduction while maintaining a focus on local portions of the image.
- We then 'up-sample' back to the original dimensionality using a transpose of the convolutional operation. This is a form of autoencoder architecture.

Convolution

Recall What A Convolution Is...

• It's a down-sampling approach (it compresses information)

Transpose Convolution

Transpose of a Convolution

- Instead of Input (+padding) * filter (+stride) = output, this calculates the inverse operation, to upsample.
- Here, s is the Convolution stride, p is the Convolution padding, k = is the Convolution kernel width/height; thus, s' is the stride of the transpose convolution (always 1), z = padding around each pixel element, p' is the final padding around the image for the transpose operation.

Visualizing What a CNN is Learning

Visualizing Layer Activations

• For a given layer, we plot the 2D feature map for each channel (filter). Each one will capture independent features of the image – plotting each layer's activation (output) can show us what pixels are being identified in the pictures to produce a prediction.

Visualizing What a CNN is Learning

Class Activation Maps

- Generate a heatmap on the original input image that indicates what 'components' (feature maps) of the input image most drive the final classification assignment.
- The idea here is to calculate the gradient of the output class w.r.t. mapped features from the input image, and then highlight the pixel where the high-gradient features were most present.

Questions?