PED-STD-H28/2B 20 August 1991 SUPERSEDING FED-STD-H28/2A 20 April 1984 (See Note)

FEDERAL STANDARD SCREW-THREAD STANDARDS FOR FEDERAL SERVICES SECTION 2 UNIFIED INCH SCREW THREADS— UN AND UNR THREAD FORMS

This standard was approved by the Commissioner, Federal Supply Service, General Services Administration, for the use of all Federal agencies.

AMSC N/A AREA THDS

DISTRIBUTION STATEMENT A. -Approved for public release; distribution is unlimited.

INFORMATION SHEET ON FEDERAL STANDARDS

This Federal Standard is issued in loose-leaf form to permit the insertion or removal of new or revised pages and sections.

All users of Federal Standards should keep them up to date by inserting revised or new pages as issued and removing superseded and canceled pages.

New and revised pages will be issued under Change Notices which will be numbered consecutively and will bear the date of issuance. Change Notices should be retained and filed in front of the standard until such time as they are superseded by a reissue of the entire standard.

FOREWORD

This section was developed to provide Unified Inch Screw Threads for the Federal Services. It was formerly known as "Unified Thread Form and Thread Series for Bolts, Screws, Nuts, Tapped Holes and General Applications". FED-STD-H28/2A was a complete revision of FED-STD-H28/2 dated 31 March 1978. It added the material previously identified as FED-STD-H28/3 dated 31 March 1978, which was known as "Unified Threads of Special Diameters, Pitches, and Lengths of Engagement". Material from Appendices A3 and A5 of FED-STD-H28 dated 31 March 1978 was revised and became Appendices A and B, respectively, of FED-STD-H28/2A.

FED-STD-H28/2A was prepared by the Defense Industrial Supply Center (DLA-IS) and incorporated the American National Standard for Unified Inch Screw Threads, ANSI Bl.1-1982. Significant changes from the previous issues included the following:

- (1) Added UNR, external thread form with mandatory rounded root.
- (2) Revised tolerance requirements for lead and flank angles.
- (3) Added requirements for control of surface texture, chamfers, and rolled thread lead-ins and run-outs.
- (4) Added requirement that inspection methods for acceptability are in accordance with FED-STD-H28/20.

FED-STD-H28/2B incorporates the American National Standard for Unified Inch Screw Threads, ASME Bl.1-1989 which superseded ANSI Bl.1-1982 and its supplement, ANSI/ASME Bl.1a-1984. It updates the FED-STD-H28/2A dated 20 April 1984 and improves the legibility of the tables. Appendix C was added to provide information about the obsolute American National form threads.

SECTION 2 - Unified Inch Screw Threads - UN and UNR Thread Forms

- 1. Scope. This section provides the standard for unified inch screw threads to be used by the Federal Services.
- 1.1 Limitations. Only UN and UNR screw threads are covered in this section. For UNJ threads (controlled external thread rounded root with increased basic minor diameter) see FED-STD-H28/4 (MIL-S-8879). For UNM threads (miniature threads) see FED-STD-H28/5.

1.2 Application.

- 1.2.1 <u>UN form screw threads</u>. The UN thread is intended for general purpose fastening applications. Its external thread root may be either flat or rounded.
- 1.2.2 UNR form screw threads. The UNR form applies only to external threads. Its design form is the same as that of the external UN thread except that the root is required to be rounded. UNR threads are applied most often to high volume commercial fastener threads produced by rolling.

NOTE: The mandatory rounded root of the UNR thread greatly reduces the concentration of stress, hence increases the fatigue life of threaded parts.

2. Referenced documents.

2.1 Government publications. The issues of the following documents in effect on the date of invitation for bids or request for proposal form a part of this standard to the extent specified herein.

Pederal standards.

FED-STD-H28/1 - Nomenclature, Definitions and Letter Symbols for Screw Threads

FED-STD-H28/6 - Gages and Gaging for Unified Screw Threads

FED-STD-H28/20 - Inspection Methods for Acceptability of UN, UNR, UNJ, M and MJ Screw-Threads

(Activities outside the Federal Government may obtain copies of Federal specifications, standards, and commercial item descriptions as outlined under General Information in the Index of Federal Specifications, Standards, and Commercial Item Descriptions. The Index, which includes cumulative bi-monthly supplements as issued, is for sale on a subscription basis by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

(Single copies of this standard and other Federal specifications, standards and commercial item descriptions required by activities outside the Federal Government for bidding purposes are available from the General Services Administration Specification Section, Room 6654, 7th and D Streets, S.W., Washington, DC 20407; telephone (202) 708-9205.

(Federal Government activities may obtain copies of Federal standardization documents, and the Index of Federal Specifications, Standards, and Commercial Item Descriptions from established distribution points in their agencies.)

2.2 Other publications. The following documents form a part of this standard to the extent specified herein. Unless a specific issue is identified, the issue in effect on date of invitation for bids or request for proposal shall apply.

American National Standards.

ASME Bl.1-1989 - Unified Inch Screw Threads (UN and UNR Thread Form)

ANSI/ASME B46.1 - Surface Texture - Surface Roughness, Waviness and Lay

(Application for copies should be addressed to the American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, NY 10017 or the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.)

3. <u>Definitions</u>. The terms applicable to this standard are defined in FED-SID-H28/1.

4. General requirements.

- 4.1 Screw threads. Unified inch screw threads shall be in accordance with ASME Bl.1-1989 and this Federal Standard. Only Standard Series Unified Screw Threads, listed in Table 3A of ASME Bl.1-1989, shall be used for new design for the Federal Services unless prior approval has been granted by the procurement authority to deviate from them. Coarse and fine thread series are preferred.
- 4.2 <u>Accetability</u>. Screw thread inspection methods for acceptability shall be in accordance with FED-SID-H28/20. The required gaging system shall be specified in accordance with that standard.
- 4.3 <u>Gages and gaging</u>. Gages and gaging shall be in accordance with FED-STD-H28/6.

5. Detailed requirements.

- 5.1 <u>Diameter-pitch combinations.</u> When standard size screw threads referred to in 4.1 cannot be used, the designer should choose preferred sizes of special threads listed in Table 3B of ASME Bl.1-1989. If this is not possible, consideration should be given to the following sub-paragraphs in the choice of thread.
- 5.1.1 <u>Preferred non-standard diameters.</u> Whenever possible, the nominal diameter should be selected from series of diameter increments as follows:

Diameter range	First choice increment	Second choice increment
inch	inch	inch
0.25 to 0.6 above 0.6 to 1.5 above 1.5 to 6.0 above 6 to 16 above 16 to 24	0.05 0.1 0.25 0.5 1.0	 0.05 0.1 0.25 0.5

It is recommended that diameters less than 0.25 inch conform to the standard sizes as there is virtually no necessity for the selection of a diameter not included in those sizes. Also, the coarse and fine thread series provide ample choice of diameter-pitch combinations.

- 5.1.2 Preferred non-standard pitches. Whenever possible, the pitch should be selected from one of the following: 40, 36, 32, 28, 24, 20, 16, 12, 10, 8, 6 and 4 threads per inch. Intermediate pitches should be used only when absolutely necessary. Pitches coarser than 4 threads per inch are not recommended. The curves shown in Figure 2.B.2 of Appendix B cover the practical diameter limits suggested for each pitch.
- 5.2 Thread class selection. Standard Unified thread classes and their applications are described in Section 4 of ASME Bl.1-1989. When selecting a thread class, consideration should first be given to the use of a class 2A external thread with a class 2B internal thread since these classes are designed for general use. Before specifying class 3A/3B series, it must be considered whether the additional production cost, necessary for the tighter fit and tolerance is justified. If a fit looser than the standard class 1A/1B is required, the non-preferred class 1AR may be specified for an external thread of 16 threads per inch and coarser. This special class combines the larger allowance of the old American National class 1 thread with the Unified class 1A tolerance. See 5.2.2 for class 1AR allowance.

- 5.2.1 Replacements for obsolete American National thread classes. When threads specified with the obsolete American National thread classes are to be replaced by unified threads, the following guidelines are provided:
 - a. American National class 1 coarse thread sizes (NC-1) is approximately equivalent to Unified class 1A/1B series. Class 1 fine thread series (NF-1) is approximately equivalent dimensionally to Unified class 2A/2B series. Standard Unified series threads should be considered prior to approval of replacement by non-standard threads.
 - b. American National class 2 coarse thread series (NC-2), 8 thread series (8N-2), 12 thread series (12N-2), 16 thread series (16N-2), and extra fine thread series (NEF-2) are most nearly equivalent to Unified series UNC-2A/2B, 8UN-2A/2B, 12UN-2A/2B, 16UN-2A/2B and UNEF-2A/2B, respectively. Class 2 fine thread series (NF-2) is approximately equivalent dimensionally to Unified class 3A/3B series, but the use of class 2A/2B series should be considered prior to approval of replacement by class 3A/3B.
 - c. American National class 3 series NC-3, NF-3, NEF-3, 8N-3, 12N-3 and 16N-3 are most nearly equivalent to Unified class 3 series UNC-3A/3B, UNF-3A/3B, UNEF-3A/3B, 8UN-3A/3B, 12UN-3A/3B and 16UN-3A/3B, respectively.
 - d. There is no Unified thread class equivalent to the old American National class 4 which required selective fit of parts due to the possibility of interference.
- 5.2.2 Thread allowance and tolerance. Allowances and tolerances specified for standard Unified thread classes are described in Section 5 of ASME Bl.1-1989. For the special external thread class IAR, tolerances are the same as for class IA and allowances are as follows:

Threads per inch	Class 1AR allowance
	inch
16	0.0018
14	0.0021
12	0.0024
. 10	0.0028
8	0.0034
6	0.0044
4	0.0064
•	t e e e e e e e e e e e e e e e e e e e

To complement paragraph 5.6 of ASME Bl.1-1989, recommended tap drill sizes and hole size limits before threading, for different lengths of engagement, are included in Appendix A.

- 5.3 <u>Designation</u>. Designation of Unified screw threads is in accordance with section 6 of ASME Bl.1-1989. Nominal size shall be stated in decimals. The symbol UNS is applicable to any thread:
 - (1) having the basic Unified thread form
 - and (2) with limits based upon Unified formulations
 - and (3) which is not in the standard series listed in Table 3A of ASME Bl.1-1989.
- 5.4 Limits of size. See section 8 of ASME Bl.1-1989 for limits of size of standard and preferred non-standard threads and for information used for calculation of non-standard thread size limits which are not tabulated. For class IAR, calculate as for class IA except allowance is tabulated in 5.2.2. The following example illustrates the procedure necessary to calculate the limits of size of a non-standard thread; this follows the outlines in tables IA and IB of ASME Bl.1-1989:

External thread, 2.500 - 28UNS-2A Length of engagement, 1 inch

```
Maximum major diameter = Nominal size - allowance
                         (section 13 of ASME Bl.1-1989)
                       = 2.5000 - 0.0014 (from table 32 of ASME Bl.1-1989)
                       = 2.4986
Minimum major diameter = Maximum major diameter - tolerance
                         (section 13 of ASME Bl.1-1989)
                       = 2.4986 - 0.0065 (from table 31 of ASME Bl.1-1989)
                       = 2.4921
Maximum pitch diameter = Maximum major diameter - h
                        (table 6, col. 13 of ASME B1.1-1989)
                       = 2.4986 - 0.0232 (rounded from 0.023197)
                       = 2.4754
Minimum pitch diameter = Maximum pitch diameter - tolerance
                         (section 13 of ASME Bl.1-1989)
                       = 2.4754 - 0.0056 (from table 34 of ASME B1.1-1989)
                       = 2.4698
                       = Maximum major diameter - 2h
Nominal (maximum)
minor diameter
                         (table 6, col. 15 of ASME B1.1-1989)
                       = 2.4986 - 0.0387 (rounded from 0.03866)
                       = 2.4599
```

Internal thread, 2.500 - 28UNS-2B (to mate with the above thread)

Minimum minor diameter = Nominal size - 2h_n (table 6, col. 15 of ASME Bl.1-1989)

= 2.5000 - 0.0387 (rounded from 0.03866)

= 2.4613 which is rounded to 2.461

Maximum minor diameter = Minimum minor diameter + tolerance

(section 13 of ASME Bl.1-1989)

= 2.4613 + 0.0063 (from table 39 of ASME Bl.1-1989 for length of engagement of 0.4D)

= 2.4676 which is rounded to 2.468

Minimum pitch diameter = Nominal size - h_b (table 6, col. 13 of ASME B1.1-1989)

= 2.5000 - 0.0232 (rounded from 0.023197

= 2.4768

Maximum pitch diameter = Minimum pitch diameter + tolerance

(section 13 of ASME Bl.1-1989)

= 2.4768 + 0.0073 (from table 37 of ASME Bl.1-1989

= 2.4841

Nominal (minimum) major = Minimum size .

diameter

= 2.5000

Factors used in the design of threads, particularly special threads, are presented in Appendix B. It is to be noted that deviations from standard tolerances for major diameter of the external thread and for minor diameter of internal thread may be necessary in order to arrive at the optimum design.

5.5 Surface texture.

- 5.5.1 The threads shall have a smooth finish and be free from flaws and other defects, such as fins, nicks and burrs, that would make them unsuitable for the purpose intended.
- 5.5.2 Workmanship shall be consistent with the tolerances specified herein. Surface texture of threads produced to this standard shall not exceed 100 microinch arithmetical average roughness (Ra) for cut threads and 63 microinch (Ra) for rolled and ground threads in accordance with ANSI/ASME B46.1.

NOTE: Coarse and fine pitch threads with rough surface texture are more likely to cross-thread. Threads with chamfered entering ends have the least tendency to cross-thread when assembled with power tools.

5.6 Chamfer.

- 5.6.1 All entering ends of externally threaded fasteners and threaded components shall have 45° chamfers (approximately) from minor diameters or slightly below minor diameters, unless otherwise specified.
- 5.6.2 All entering ends of internally threaded fasteners and threaded components shall have nominal 90° -120° countersinks to or slightly greater than the thread major diameters, unless otherwise specified.

5.7 Rolled threads.

5.7.1 Completely formed threads. A completely formed thread follows the thread profile, within the tolerance zone over an axial distance of one pitch (see figure 2.1).

5.7.2 Incomplete formed threads.

- 5.7.2.1 The lead-in thread is measured from the end of the product to the start of the first complete thread where the major diameter is equal to the minimum allowable major diameter and the thread root is equal to the maximum minor diameter. This should not exceed 2P (see figure 2.2).
- 5.7.2.2 The run-out thread is measured between the transition point of the product and the first thread root which is completely formed, where the minor diameter equals the maximum permissible minor diameter and the major diameter of the last fully formed thread equals the minimum permissible major diameter. When root radius is specified, the last completely formed root at the minor diameter must meet the requirement. See figure 2.3 for full shank fastener, figure 2.4 for pitch diameter shank fastener, figure 2.5 for shoulder bolt, figure 2.6 for oversize diameter shank fastener and figures 2.7 and 2.8 for threaded to head fasteners.

6. Notes.

6.1 Supersession note. In addition to superseding FED-STD-H28/2A dated 20 April 1984, this document also supersedes Appendix Al of FED-STD-H28 dated 31 March 1978.

FIGURE 2.1 COMPLETELY FORMED EXTERNAL THREAD

FIGURE 2.2 INCOMPLETE FORMED EXTERNAL THREADS, LEAD-IN THREADS

FIGURE 2.3 INCOMPLETE FORMED THREADS, FULL SHANK FASTENER - STANDARD DIAMETER

FIGURE 2.4 INCOMPLETE FORMED THREADS, PITCH DIAMETER
SHANK FASTENER

FIGURE 2.5 FULL SHANK FASTENER-STANDARD DIAMETER,

OPTIONAL CONFIGURATION (SHOULDER BOLT)

FIGURE 2.6 FULL SHANK FASTENER-OVERSIZE DIAMETER

FIGURE 2.7 FULL SHANK FASTENER-THREADED TO HEAD

FIGURE 2.8 PITCH DIAMETER SHANK FASTENER-THREADED TO HEAD

APPENDIX A

TAP DRILL SIZES AND RECOMMENDED HOLE SIZE LIMITS BEFORE THREADING

10. Scope. This appendix provides suggested tap drill sizes and recommended hole size limits applicable prior to forming internal Unified screw threads. It is not a mandatory part of the standard. The information contained herein is intended for guidance only.

20. Tap drill sizes.

20.1 General. To assure that the minor diameter of an internal thread is held within specified limits, it may be necessary to use a reamer to finish the hole. A variety of factors enters into the production of a clean, round, straight hole of the correct diameter. For a discussion of these and other data on drilling and tapping, reference may be made to "Drilled Holes for Tapping", a publication of the United States Cutting Tool Institute, 1230 Keith Building, Cleveland, OH 44115.

20.2 Tabulated data.

- 20.2.1 Table II.A.1 gives minor diameter limits and corresponding percentages of thread for all standard series threads up to and including 3.75 inch diameter for classes IB and 28. Table II.A.2 is a similar table for class 3B. These tables also list sizes of drills that may be expected to drill holes within or near the specified minor diameter limits. The diameter of the drill, the probable hole size, and the corresponding percentages of thread are tabulated.
- 20.2.2 As a drill may normally be expected to cut oversize, probable hole sizes are tabulated that are derived from probable mean oversizes, also tabulated. The following is quoted from the above-mentioned report: "... a series of tests was conducted by drill manufacturers. Using six sizes of drills ranging from 1/16" to 1" in diameter, a total of 2,808 holes were drilled in cast iron and steel. Regular high speed steel drills were used with drilling equipment of the type normally found in metal working shops... The average depth of hole drilled was equal to 1-1/2 times the drill diameter. Measurement of the hole was made at midpoint of the depth drilled.... The average of the...amounts oversize...shows a marked increase in amount oversize for drills larger than 3/4". For this size range reaming is recommended."

20.2.3 Percent of thread listed in tables is the ratio in percent of the actual height of thread to the value 0.75H; this value is the basic thread height of the obsolete American National Thread Profile. Since the basic height of a Unified Thread Profile is 0.625H, the maximum percent thread permissible is 83.3%. Due to allowances for drills to cut oversize or due to lack of availability of drills within specified minor diameter limits, tap drills listed in tables II.A.1 and II.A.2 may show greater than 83.3% threads. This indicates that the drill size is smaller than the minimum thread minor diameter and additional machining of the hole may be necessary in order to permit economical tapping.

30. Recommended hole size limits before threading.

30.1 General. For short length of engagement, the hole diameter required prior to threading should be held near the minimum limit to maximize thread height for maximum joint strength. As length of engagement increases, it is advantageous to increase the hole diameter for more economical tapping with less risk of tap breakage. Therefore, the following recommendations were developed (also see 30.2 below):

Length of Engagement	Minimm Hole Size	Maximum Hole Size
Up to and including 0.33D	Minimum minor dia	Min minor dia plus 1/2 minor dia tolerance
Above 0.33D thru 0.67D	Min minor dia plus 1/4 minor dia tolerance	Min minor dia plus 3/4 minor dia tolerance
Above 0.67D thru 1.5D	Min minor dia plus 1/2 minor dia tolerance	Max minor dia (min minor dia plus tolerance)
Above 1.5D thru 3.0D	Min minor dia plus 3/4 minor dia tolerance	Max minor dia plus 1/4 minor dia tolerance (see 30.2)

From the foregoing it will be seen that the difference between limits in each range is the same and equal to half of the minor diameter tolerance. This is a general rule. However, the minimum differences for sizes below 0.25 in. are equal to the minor diameter tolerances given in tables 39 and 40 in ASME B1.1-1989 for lengths of engagement to and including 0.33D. For lengths of engagement greater than 0.33D for sizes 0.25 in. and larger, the minimum values are adjusted so that the difference between limits is never less than 0.0040 in.

30.2 Tabulated data. Recommended hole size limits for standard Unified threads and some special (UNS) threads are given in tables II.A.3 and II.A.4. For other special threads, calculate in accordance with 30.1 above; use minimum minor diameter and tolerance from table 3B of ASME Bl.1-1989, or calculate in accordance with section 8 of ASME-Bl.1-1989 using appropriate tolerance from table 39 or 40 of ASME Bl.1-1989 for tolerance ratio of 1 or from formulas in paragraph 5.8.2 of ASME Bl.1-1989. Tabulated hole sizes and hole sizes calculated in accordance with 30.1 are not mandatory unless the thread designation states the modified minor diameter limits and the designation MOD in accordance with paragraph 6.7 in ASME Bl.1-1989. If modified minor diameter limits are not specified, acceptance will be in accordance with standard minor diameter limits.

NOTE: Recommended maximum hole sizes in 30.1, for lengths of engagement greater tha 1.5D are outside standard minor diameter limits. They are not included in tables II.A.3 and II.A.4. Use of a minor diameter larger than standard will result in a reduction in shear area of the external threads of the mating part. If manufacturing process permits, maximum hole size before threading should be maintained at the high end of the standard minor diameter limits.

30.3 Other considerations. When tapping relatively soft materials, especially with fine pitch threads, there is a tendency for the material to be squeezed down towards the root of the tap so that the minor diameter of the tapped hole may become smaller than the diameter of the drilled hole. It may be necessary to try a different size drill or different style tap to assure a satisfactory thread.

R TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and

														j
		Percent you thread	74	81 53	S 65	52 28	56.25	87 C 69 0 5	0 0 0 4 0 0 0 8	5 8 22 02	8 2 5 5 6 6 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7	36 11 65	5522	72 72 64 60 55
	thread	Probable hole size	1n 0.0480 .0484	.0565	.0640	.0697	0717	0800	. 0829 . 0839 . 08780	.0910 .0955 .0955	.0910 .0955 .0958	1003	1038	.1063 .1088 .1120 .1126 .1136
15 and 25	percent of	Probable oversize, mean	4, 2100.0 20015	.0015	.0015	. 0017 7100.	.0017	. 0019 . 0019 . 0019	6100 6100 6100	. 0020	. 0020	. 0023		. 0023 . 0023 . 0026 . 0026 . 0026
Crasses 1	Top drills and	Percent V of thread	83 81	69 22 22 22 23 23 23 23 23 23 23 23 23 23	 : : : : : : : : : : : : : : : : : :	283		8F%60	3868	8473	#8¢#	25 25 54	282.89	84 78 70 65 65 65
ulteaus,	Te	8172	1n 0.0465 .0469	.0550 .0595 .0595	.0625	.0670 .0700	0700	.0760 .0781 .0785		.0860 .0890 .0935	.0935 .0938 .0960	.0980	1040	1040 1065 1100 1110
SCLEW LIL		Dr.111 8122	th \$56 {3/64	454 153 153	(1/16	450	149	5,64		3,42		139	858	25 2 2 E
OILLIEU S	diameter,	Percentify of thread	53.0	52.7	52.7	53.0	52.7	53.6	. 53.9	. 55.7	56.2	57.9	57.9	59.1
193716	3 minor threads	Maximm	In 0.0514	.0623	.0635	7670.	.0753	.0865	.0865	.0939	.0968	.1062	.1079	.m.
tap det	ses 18 and 28 internal	Percenty of thread	83,1	83.3	63.1	83.2	83.3	83.5	83.2	83.4	83.5	83.4	83.3	83.8
7 - 7.00.77	Clanses	Minima	fn 0.0465	.050	.0580	.0667	1690.	.0764	7670.	.0849	≯ 680°	6260.	1004	* 01.
		Denig- nation	CINE	25	an and	S.	- E	LINC	ž.	ມູ	ь 5	ວຸກັ	ь 5	ı nc
1		Threads per Inch	80	64	72	26	2	48	ß	40	48	40	2	r.
		Thread size	nt 7.	.073	.073	980**	980.	660.	660.	.112	.112	.125	.125	.138

1/100% of thread = 0.75H (see 20.2.3).

TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and 2B - Continued

	,		•							} }		
	Threads	P Red	Class	ees 18 and 28 Internal	alnor thread	dlameter,		Fi .	Tap drills and percent	ğ	thread	-
Thread mize	per Inch	nation	Minimm	Percent Volument Volument	Maximus	Percent ¹ / of thread	Dr.11.1	size	Percent!	Probable overeize, mean	Probable hole size	Percent y of thread
ñ			5		5		5	a .	Ę	500	4 5	, ₇
.138	9	b 5	ш.	83.1	911.	58.5		1130	SE 88	.0026	1156	260
.164	æ	D.	0.11.	83.8	921.	61.6	129	.1360	6 9 P	.0029	.1389	92
. 164	%	A S	.134	83.1	.142	61.0	(9/21 2/21 2/21 2/21 2/21 2/21 2/21 2/21	1405	65		1434	5. t. c.
. 190	72	n n	.165	83.1	.156	62.8	126	.1440 .1470 .1495	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.0032	.1502 .1502 .1527 .1552	2763
. 190	32	æ	.156	83.8	.164	0.	82228	1562 1562 1570 1590	38.13.t		.1572 .1594 .1602 .1622	61 23 68 68
. 216	75	ນູຮ	171.	83.1	.181	6.3	11/4 11/4 11/4 11/4	9171. 1730 1771.	73 72 67		.1754 .1765 .1805	55 66 60
.216	28	- E	771.	1.19	.186	4.7	2222	1770 1800 1820 1850	. 78 73 67.		1805 1835 1855 1885	5 6 6 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
. 216	32	a se	.182	83.8	.190	0.3	3/2	.1820 .1850 .1875	84 57 57 67		.1855 .1885 .1910 .1925	75 62 88 28 28
. 250	R	uc	.196	93.1	.207	66.2	11/66	1960 1990 2010 2011	88221	0 8100 8100 8100 8100 8100	.1998 .2028 .2048 .2069	F E 5 9 5 5
.250	28	ኒያዊ	.211	84.1	.220	64.7	257	. 2055 . 2130 . 2188	62	.0038	. 2093 . 2168 . 2226	52.5
.250	32	CARES UNG	216	83.1	.224	64.0	(%) (%) (%)	188 2210 2210	F # 8	8000 8000 8000	.2248	6 2 70
.3125	. 18	UNC	.252	63.8	. 265	65.8	* °	.2570	11	.0038	.2608	72 99
.3125	R	3	.258	83.9	072.	65.6	L 0 =	. 2570 . 2610 . 2660	2362	86.00 14.00 16.00	.2608	80 73 65

1/100% of thread = 0.75H (see 20.2.3).

TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and ZB - Continued

			Class	isee 18 and 28 internal	atror	diameter,			p drills and	Tap drills and percent of t	thread	
Thread size	Threads par Inch	Dealg- netion	Minima	Percent!	Hextram	Percent!	Drill size	R	Percent!	Probable over al ze, maden	Probable hole size	Percent! of thread
ч			ឆ		5		s	5		5	5	
.3125	32	š	.267	84.1	E.	65.6	æ ⊷ 13	322	\$ 5. 8 8 5. 8	888	. 2761 . 2761 . 2811	2 5 33
.3125	87	3	.274	83.0	.282	65.7	,	2810 2810 2812	F 3 5		.2852 .2854	\$ & \$
.3125	33	CASE P	672.	82.5	. 286	65.3	{ K	.2810	25	.0042	.2852	55
.3125	36	52 5	.282	84.5	.269	65.1	7.25 H	385.	3:	862	.2896	: 5
. 375	16	D.S.	.307	87.8	.321	66.5	\$7.16	3125	22	9000	.3204	22 63
.375	20	3	.321	83.1	.332	66.2		3230	28.8	8.8 8.8	.3274	- 50 50
375	24	&555	.330	63.1	.340	7.13	0 =	338	£ 5	300	3364	
.375	28	3	.336	84.1	.345	64.7	- R - 11/32	3,30	B. 79	90 50 50 50 50 50	3434	33
.375	32	AND.	.341	83.8	.349	6.2	11/32	88	£5	.0045	.3483	% %
.375	36	9	.345	83.1	.352	63.7	<u>ه</u>	88	, £	.006	.3525	25
. 4375	71	OM.	.360	83.5	.376	66.3	{ T 23/64	3580	25	9000	3626	ಷ 🎗
.4375	16	5	076.	83.1	.384	62.9	٠ ۲	38	E	9046	3796	۲ S
. 4375	8	A S	.383	83.9	395	65.4	*	2860	<u>ن</u> ې د	350	.3906	- - E &
.4375	28	ATA TO	.399	63.0	.407	65.1	K/G	4040	22	9	4086	36;
. 4375	32	ž	.404	82.5	117	65,3 :-	11/32	4062	35	8 8 8 8	903	* 8
. 500	21	82	01).	83.1	.428	86.5	{ 1	.4130	8;	.0047	.417	98 98
. 500	.	5	.417	63.1	134	0.99	3/2	513	22	6	4266	£.
985. 985.	9 8	55	£ + .	83.8 83.1	. 1 57	£ 5.7 86.3	\$1/2 \$2/62	.4531	22		4578	:ខៈ
95. 98.	ឧឧ	233	461 384	83.8	Š.	23 7.0.	25,33	4688 888	5F	.0048 848	4736 4736	ខន
.5625	77	CAC.	.472	83.6	.490	67.0	15/33	4688	42	8400.	.4892	82 68
. 5625	16	5	.495	83.1	.509	62.9	0,5062	88	F \$	8400	.5110	<u>ت</u> ق
. 5625	18	ars	.502	83.6	218.	65.8	1/2	5005 5062	78	299	.5048	82
1 / 1000		'										

1/100% of thread = 0.75H (see 20.2.3).

TMBLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and ZB - Continued

1/ 100% of thread = 0.75H (see 20.2.3).

	Threads	- Pesig	Class	soce 1B and 2B internal	s minor diameter threads	eter,		Tap	drills and	percent of	thread	
Thread size	per Inch	nation	Minimm	Percent Y of thread	Max Impo	Percent! of thread	Drill 8128		Percent Vof thread	Probable oversize, mean	Probable hole size	Percent you
th .5625 .5625	2 30	75 E	44 508 517	83.9	tn .520	65.4	In 33/64 33/64 0.5203	11 15156 15156 15203	72 87 88	.0048 .0048	in .5204 .5204	65 78 69
.5625	32 8		.524	83.0	.532	65.3	{ 0.5263 17/32 17/32	5263	385	.0049	.5361 .5312 .5361	55 53
.625 .625	72 93	555	.527 .535	63.0 83.1 83.8	.546	66.9 66.5 66.5	17/32 35/64 { 9/16	.5312	87 27 1	. 0049	.5361 .5518 .5674	55 68 17
.625	81 K	5 5	.565	83.1	578	65.1	9/16	.5687 .5687	787	0049	. 5736 . 5674 . 5736	282
. 625 . 625 . 625	2 8 2 8 2 8	5 5 5 5 5	.580 .586 .596	84.1 84.1	295 295 295	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/64 37/64 0.5828 19/32	.5781 .5928 .5938	26	0049	5830 5830 7823 5967	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
. 6875 . 6875 . 6875 . 6875	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 5555 6 5555	. 597 . 633 . 642 . 642	83.1 83.1 83.9 84.1 83.0	.634 .645 .652 .657	67.0 65.9 65.4 65.7	19/32 39/64 5/8 41/64 21/32 21/32	.5938 .6094 .6250 .6406 .6406 .6562	25 t t t t t t t t t t t t t t t t t t t	.0049 .0049 .0050 .0050 .0050	. 5987 . 6143 . 6300 . 6456 . 6612	682 77 57 55
.750 .750 .750 .750 .750	10 12 13 13 13	2 8 55 8 5 5 8 5 5 8 5	.642 .660 .682 .696 .711	83.1 83.1 83.8 83.1 84.1	.663 .678 .696 .707.	67.0 66.5 66.5 64.7	41/64 21/32 21/32 43/64 11/16 5/64 23/32	.6406 .6562 .6562 .6719 .6875 .7031	94 72 72 72 72 72 72	.0050 .0050 .0050 .0050 .0050 .0051	.6456 .6612 .6612 .6769 .6925 .7082 .7239	5 4 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
.8125 .8125 .8125 .8125	73888	2553	.722 .745 .758 .774	833.6 833.9 823.9	.740 .759 .770 .782	85.7 85.7 8.7	47/64 37.4 49/64 25/32 25/32	.7344 .7500 .7656 .7812 .7812	2t 22 2t	. 0051 . 0052 . 0052 . 0052	.7395 .7552 .7708 .7864	21.28.82
. 875 . 875 	12	2 s s	. 755 287.	83.1	.803	56.5	49/64 25/32 54/64 54/64	.7656 .7812 .7969 .7969	76 72 72	. 0052 . 0052 . 0052	.7708 .7864 .8021	72 82 67
							{ 0.8024 13/16	.8024	78	.0052	.8076	62

TABLE II.A.1 - Tap drill sizes, Unified &crew threads, classes 1B and ZB - Continued

	Threads	- Design	Classes	, -, -,	B and 28 minor diameter, internal threads	eter,		Ta l	Tap drills and percent of thread	ercent of th	read	
Thread size	per Inch	netion	Minimm	Percent!/ of thread	Maximum	Percent Y of thread	Dr.111	size	Percent you of thread	Probable oversize, nean	Probable hole size	Percenty . of thread
nl .875 .875 .875	16 20 28 32	83 R B	In .807 .821 .836 .841	83.8 83.1 84.1 83.6	tn .821 .832 .845	66.5 66.2 64.7	In 13/16 53/64 27/32 27/32	fr .0125 .0125 .0438 .0438	15 25 70 77	In .0053 .0054 .0055	10 .8178 .8335 .8493	5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
.9375 .9175 .9175 .9375	12 16 20 28 32 32	2 2 2 3 3 3 S	.870 .883 .889	83.6 83.9 83.9 83.0	. 884 . 895 . 907	67.0 65.9 65.4 65.7	\$5/64 \$5/64 7/8 \$7/64 29/32	.8438 .8594 .8750 .8906 .9062	18 17 17 17 17	. 0055 . 0057 . 0059 . 0060	.8493 .8650 .8807 .8965 .9122	81 67 62 55 62
1.000 1.000 1.000 1.000 1.000 1.000	12 12 14 16 20 28 32	A A A A A A A A A A A A A A A A A A A	.865 .910 .923 .932 .946 .961	83.1 83.0 83.8 84.1 84.1	.890 .928 .946 .957 .970	66.5 66.5 66.5 64.0	55,64 7/8 29/32 59/64 60,9274 15/16 11/32 31/32	.8594 .8750 .9062 .9219 .9274 .9375 .9315	837 77 72 70 77 77 77	.0059 .0059 .0060 .0060 .0061 .0061 .0063 .0063	.8653 .8809 .9122 .9279 .9279 .9335 .9437 .9594	23 53 53 53 53 53 53 53
1.0625 1.0625 1.0625 1.0625 1.0625 1.0625	112 112 118 118 118 118 118	AN A	.927 .972 .995 1.008 1.008	83.4 83.1 83.8 83.8	.952 .990 1.009 1.015 1.010	68.0 67.0 65.9 65.8	\$ 59/64 0.9274 15/16 31/32 61/64 1 1 1/64	.9219 .9274 .9375 .9688 .9844 1.0000 1.0000 1.0156	87 27 27 27 70 70 70	.0060 .0061 .0065 .0065 .0069 .0069	.9279 .9135 .9437 .9753 .9753 .9751 1.0069 1.0069 1.0226	25 5 2 2 3 3 3 5 2 5 5 5 5 5 5 5 5 5 5 5
1.125 1.125 1.125 1.125 1.125 1.125 1.125	7 112 116 118 20 20	CAL	.970 .990 1.035 1.065 1.065 1.071	83.5 83.1 83.1 83.1 83.1 84.1	. 998 1.015 1.053 1.071 1.078 1.082	68.4 67.7 66.5 65.5 65.1	{ 31/32 63/64 1 1/32 1 1/36 1 1/36 1 1/36 1 1/36 1 1/36 1 1/36 1 1/36 1 1/36	.9688 .9844 1.0000 1.0312 1.0469 1.0625 1.0625 1.0781 1.0781	94 77 77 77 77 65 65	. 0062 . 0067 . 0069 . 0071 . 0072	.9750 .9911 1.0069 1.0381 1.0541 1.0699	86 53 88 73 73 73 73 73 73 73 73 73 73 73 73 73
1,1875 1,1875 1,1875	12 g	353	1.052 1.097 1.120	83.6 83.6 83.1	1.077	63.0 67.0 65.9	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0625 1.0938 1.1250	77 87 77			

1/100% of thread = 0.75H (see 20.2.3).

100% of thread = 0.75H (see 20.2.3).

Per cent. of thread - Continued Probable hole size thread percent of Probable oversize, mean A - Tap drill sizes, Unified screw threads, classes 1B and drills and Percenty of thread ğ in 1.1250 1.1406 1.1406 1.1406 1.0938 1.1250 1.1562 1.1719 1.1875 1.1875 1.2031 1.2031 1.2031 Drill size 3/16 13/64 15/64 15/64 1/4 9/32 19/64 5/16 5/16 21/64 11/32 11/64 3/16 3/16 3/16 1/32 1/4 1/4 11/64 9/32 Percent \mathcal{Y} of thread 65.1 66.7 66.2 65.9 65.8 65.4 Classes 18 and 28 ainor diameter, internal threads 1.145 Maximum 1.123 1.196 1.203 1.207 1.240 1.202 1.259 1.265 1.270 1.225 1.265 1.303 1.321 1.328 1.332 1.288 1.365 1.384 1.390 1.395 1.407 1.327 Percent y of thread 83.5 83.1 83.8 83.8 83.9 83.0 83.9 83.8 83.1 83.6 8.1.1 83.1 83.8 83,1 Minimum 1,160 1, 182 1.190 1.315 1.257 1.370 1.383 1.393 1.133 1. 196 1. 211 1.17 1.245 1.252 1.195 1.240 1.307 1.302 1.347 1, 222 Dealg-nation TABLE II.A.1 Z E 3533 3 3 5 S R R 물 33 33 3 33 3 3 3 P de 829 7 2222 22 22 22 22 16 22 22 Thread size 1.4375 1.4375 1.4375 1.4375 1.1875 1.3125 1.3125 1.3125 1.3125 1.3125 1.4375 1.4375 1.4375 1.250 1.250 1.375 1.375 1.375 1.375 1,250 1,250 1,250 1.250 1.375 1.375

TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and ZB - Continued

t (1																									
	Percent Vof thread																										
thread	Probable hole size																										
percent of	Probable oversize, mean																										
rap drills and	Percent // of thread	67	67.67	97	;t 69	Z 59	79	12	. 787	: [79	87	197	:=	£ 59	12	187 79	2.5	67	22	6 V	32	84 78	87 79	22
E	3120	fn 1.3125	1.3281	1.4062	1.4375	1.4531	1.3906	1.4219	1.4688	1.5000	1.5000	1.5156	1.4531	1.4844	1.5312	1.5625	1.5625	1.5781	1.5000	1.5312	1.5938	1.6094	1.6250	1.6406	1.5312	1.5625	1.5938
	Drill etze	L ⊶.	1 2764					1 27/64	· — -	٠ ١	1 2/2	-	{ 1 29/64 1 15/32			4-	1 9/16	-	\[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		(1 19/32		1 5/8	1 2/2		1 9/16	
eter,	Percent ³ / of thread	69.3	67.7	66.5	8.58 8.58	66.2	69.1	68.0	67.0	62.9	65.8	65.4	69.3	67.7	66.5	66.5	65.1	66.2	69.1		20.00	65.9	65.8	65.4	70.1	69.3	
a minor diameter, threads	Maxima	In 1,350	1.390	1.428	1.446	1.457	1.413	1.452	1.490	1.509	1.515	1.520	1.475	1.515	1.553	1.571	1.578	1.582	1.538	-	1,614	1.634	1.640	1.645	1.568	1.600	- 1
ea 18 and 28	Percent ^J / of thread	83.1	83.1	83.1	63.6	83.1 84.1	83.4	83.4	83.6	83.1	83.8	63.9	83.1	83.1	63.1	83.8	83.1	83.1	83.4		* · · · ·	83.1	83.8	63.9	83.1	83.1	
Classes	Minimm	tn 1.320	1.365	1.410	1.432	1.446	1.382	1.427	1.472	1.495	1.502	1.508	1.445	1.490	1.535	1.557	1.565	1.571	1.507		1.334	1.620	1.627	1.633	1.534	1.570	
	Desig- nation	ac	3	355		33	3	5	3	3	AEE.	3	3	5	3	3	THE C	3	3		5 3	5 3	END.	3	a e	ş	
1	Threads per Inch	9	6 0	ξĭ	16	88	9	æ	12	16	18	50	9	8	12	16	18	20	9	đ	. 5	16	81	50	ī,	ص	
	Thread size	tn 1.500	1.500	1.500	1.500	1.500	1.5625	1.5625	1.5625	1.5625	1.5625	1.5625	1.625	1.625	1.625	1.625	1.625	1.625	1.6875	1 6036	1 6875	1.6875	1.6875	1.6875	1.750	1.750	

 $1 \sqrt{1008}$ of thread = 0.75H (see 20.2.3).

담	TABLE 11	II.A.1 -	Tap drill	ill sizes,	, Unified	вскем	threads, c	classes	113 and	2B - Continued	inned	
	7		Classes	ises 18 and 28 Internal	B minor diameter threads	ater,		Tap	drills and	percent of thread	pro	
Thread size	per per Inch	nation	Minima	Percent y o Unseed	Maximum	Percenty of thread	Dr 111 8	81 20	Percent Vof thread	Probable oversize, mean	Probable · bole size	Percent!/ of thread
rī			ıı		Ψ,		I .	ŧ.				
1.750	•	ž	1.615	83.1	1.640	7.79	1 5/8	1.6250	3.5.0			
1.750	71	ž	1.660	83.1	1.678	66.5		1.6562	67			
1.750	92	35	1.682	83.8 83.1	1.696	66.5 66.2	1 11/16	1.6875	57.			
1.8125	ø	Š	1.632	83.4	1.663	69.1	1 5/8	1.6250	P & Z			
1.8125	0	ŝ	1.677	83.4	1.702	68.0		1.6719	. 68			
1.8125	12	\$	1.722	83.6	1.740	67.0	1 23/32	1.7188	67			
1.8125 1.8125	22 02	33	1.745	83.1 83.9	1.759	65.9 65.4		1.7500	: 4 %			
1.875	છ	3	1.695	83.1	1.725	69.3	1 45/64	1.7031	67			
1.875	60 9	3	1.740	83.1	1,765	57.7		1.7500	12.6			
1.875	3 22 23	5 55	1.807	83.1 83.8 83.1	1.821	66.5 66.2	1 51/64 1 13/16 1 53/64	1.7969	: E E E			
1.9375	ø	ŝ	1.757	83.4	1.788	69.1		1.7656	96			
1.9375	œ	3	1.802	83.4	1.827	68.0	1 51/64	1.7969	187			
1.9375	7.7	ž	1.847	83.6	1.865	61.0		1.8438	97			
1.9375	3 55	33	1.870	83.1	1.884	65.9	1 57/64	1.8750	77 27			
2.000	4.5	akc	1.759	83.5	1.795	11.0		1.7812	76			
2.000	ه د	8 E	1.820	83.1	1.850	69.3	<u> </u>	1.6438	225			
2.000	21	5 5	1.910	93.1	1.928	6.5		1.9062	:6:			
2.000	28	33	1.932	83.8	1.946	66.5 66.2	1 15/16	1.9375	: 5 5			
2.0625	91	ນ ອ	1.995	83.1	2.009	62.9	7	2.0000	F			
		.										

1/100% of thread = 0.75H (see 20.2.3).

TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 1B and 2B - Continued

	Percenty of thread						
Q	Probable hole size						
percent of thread	Probable oversize, mean						
Tap drills and percent	Percent 1/2 of thread	79 77 77 77 77 96	72 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	77 77 85 77 96	7. 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	97 177 177 177 196	77 87 77 87 77 96
Ta	size	1.9531 1.9688 2.0000 2.0312 2.0625	2.1250 2.0000 2.0312 2.0625 2.1250 2.1250 2.1875 2.1875	2.2500 2.1875 2.2500 2.2835 2.3125 2.3125	2.3750 2.2500 2.350 2.3750 2.4062 2.4375 2.4375	2.3438 2.3750 2.4375 2.5000 2.5312 2.5625	2.5625 2.5625 2.6250 2.6562 2.6875 2.6875
	111.70	in 61/64 { 1 61/64 { 1 31/32 2 1/32 2 1/16 2 1/16	{ 2 1/8 2 1/32 2 1/16 2 1/16 2 3/32 2 3/16 2 3/16 2 3/16 2 3/16	2 1/4 2 3/16 2 1/4 58 mm 2 5/16 2 5/16	2 3/8 2 7/32 2 5/16 2 5/16 2 13/32 2 13/32 2 7/16	{ 2 11/32 2 7/16 2 1/75 2 1/72 2 17/32 2 9/16 2 9/16	2 1/2 2 9/16 2 5/8 2 2/8 2 21/32 2 11/16 2 11/16
meter,	Percent ^L of thread	69.3 67.7 66.5 66.5	65.9 71.0 69.3 67.7 66.5 66.2	65.9 67.7 66.5 66.2	65.9 71.7 69.3 67.7 66.5	69.3 67.7 66.5 66.5	71.7 69.3 67.7 66.5 66.5
B minor diameter threads	Maximum	In 1.975 2.015 2.053 2.071 2.082	2.134 2.045 2.100 2.140 2.178 2.196 2.207	2.25 2.26 2.265 2.303 2.312 2.312	2,384 2,267 2,350 2,428 2,446 2,446 2,446	2, 475 2, 615 2, 515 2, 553 2, 553 2, 571	2.517 2.600 2.600 2.640 2.678 2.696 2.707
ses 18 and 78 Internal	Percent you	83.1 83.1 83.8 83.8	83.1 83.1 83.1 83.1 83.1	88 88 88 83 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	83.4 83.1 83.1 83.1	83.1.1 83.1.1 83.1.1 83.1.1	83.4 83.1 83.1 83.1 83.8
Classes	Minima	in 1.945 1.990 2.035 2.057 2.057	2.120 2.090 2.070 2.115 2.160 2.182 2.196	2.245 2.195 2.240 2.265 2.307 2.321	2.370 2.229 2.320 2.365 2.410 2.416	2.354 2.445 2.535 2.535 2.537	2.479 2.570 2.615 2.660 2.682 2.696
	nation	8 8585	22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S 35555	0 0 55555	3 33335	55555
	incads fuch	6 8 112 116 20	25. 4 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	. 6 12 13 15 16 17 16	16 112 112 20 20	. 9	20 11 B 6 4
	Thread size	In 2.125 2.125 2.125 2.125 2.125	2.1875 2.250 2.250 2.250 2.250 2.250 2.250	2.3125 2.375 2.375 2.375 2.375 2.375	2.4375 2.500 2.500 2.500 2.500 2.500 2.500	2.625 2.625 2.625 2.625 2.625 2.625	2.750 2.750 2.750 2.750 2.750 2.750

TABLE II.A.1 - Tap drill sizes, Unified screw threads, classes 18 and 28 - Continued

		•
	Percent Vof thread	
hread	Probable hole size	
Tap drills and percent of thread	Probable oversize, mean	
p drills an	Percenty of thread	######################################
138	8 i ze	2.6250 2.6875 2.7500 2.7500 2.78125 2.8125 2.8125 2.8125 2.8126 2.9134 2.9175 3.0000 3.2500 3.2500
	Drill 6128	th 2 5/8 2 11/16 2 3/4 2 25/32 2 13/16 2 13/16 2 13/16 2 16/16 2 15/16 3 1/4 3 1/4
me ter,	Percent ¹ / of thread	71.7 69.3 67.7 66.5 66.5 66.2 67.7 66.5 66.5 71.7
lB and 2B minor diemeter, internal threads	Maximum	in 2.642 2.725 2.765 2.803 2.821 2.832 2.850 2.928 2.928 2.928 2.928 2.957 3.017
	Percenty of thread	83.4 83.1 83.1 83.1 83.8 83.4 83.1 83.4 83.4
Classes	Minimm	10 2.604 2.695 2.740 2.740 2.807 2.820 2.820 2.820 2.910 2.932 2.932 3.479
Desig-	nation	ad a sesse sesse
Threads	g ji G	4 4 4 8 2 2 2 2 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4
	Thread size	2.875 2.875 2.875 2.875 2.875 3.000 3.000 3.000 3.000 3.250

1/100% of thread = 0.75H (see 20.2.3).

TRBLE II.A.2 - Tap drill sizes, Unified screw threads, class 3B

				7					1				
	Threada	Design	C1488 3B	minor diameter,	ter, internal	1 threads		ag.	Tap dellls and	percent of	thread	İ	
Thread size	g g	nation	Minima	Percent ¹ / of thread	Naxima	Percent y of thread	Ocill gize		Percent V of thread	Probable oversize, mean	Probable bole size	Percent Vof thread	
n i 090.	8	ZN T	in 0.0465	93.1	in 0.0514	52.9	In 156 3/64	in 0.0465 .0469	83 81	4. 2100.0 2100.	1n 0.0480 .0484	74	
.073	2	DIKC.	.0561	83.3	.0623	52.7	151	0550	861	. 001. 2100.	.0565	ឌន	
£70.	72	3	989	83.1	.0635	52.7	1736	8.9. 8.1	28	200. 200.	.0640	2 5	
980.	28	S	.0667	83.2	.0737	53.0	15 20 20	0790. 0700. 07.00	282	.0017	.0717	75 62 69	
980.	3	n e	.0691	83.3	.0753	52.7	*** ***	0700	123	.0017	.0717	223	
660.	89	CAC	.0764	83.5	.0845	53.6	5/64 5/64 147 146	.0760 .0781 .0785	85%6	.0019	.0800 .0804 .0829	8269	
660.	3 5	. P.	7670.	83.2	.0865	53.9		0820	3	. 0019 . 0019 . 0019	. 0829 . 0819 . 0879	\$ \$ \$ \$ \$	
.112	6	<u>ي</u> م	. 0849	83.4	.0939	55.7	3222	0860 0890 0935 8180	8478	.0019	.0979 .0910 .0955	25 SS 55 25	
.112	8	25	.0894	83.5	9960	56.2	2222	0890 0890 8160 0900	8228	. 9020 . 9020 . 9020 . 9020	.0955 .0958 .0980	60 60 52 52	
.125	\$	25	6260.	83.4	.1062	57.9	138	.0980	8228		.1003 .1018 .1038	55 I 28	
.125	\$ 	25	.1004	83.3	.1079	57.9	200	.1015 .1040 .1065	828	. 0023	.1038 .1063	822X	
.138	23		.1040	83.8	.1140	59.1	7/84	1040	4 E 5 6 6 6	26.6.6.6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	.1063 .1088 .1120 .1126	85223	
.138	Ç	AN	. 1110	63.1	.1186	59.7	2222	.1130 .1110 .1130 .1150	8782	. 0026 . 0026 . 0026	.1136 .1136 .1136 .1186	22 × 20 03	
1/ 1008	oę	thread =	0.75н ((see 20.2.	.3).						·		

25

TABLE II.A.2 - Tap drill sizes, Unified screw threads, class 3B - continued

Threads	Desig- nation	Class 38	minor diameter	ter, internal			Tar	Tap drills and	d percent of		1
		Minima	Percent Vol.	Harimin	Percenty of thread	Dr111 8	9 ize	Percent you of thread	Probable oversize, mean	Probable hole size	Percent of thread
32	25	n 0001.	83.8	In 1389	61.8	fr (29	1360 1360	69 7	th .0029	1389	62
38	A	.1340	83.1	.1416	62.1	824 824 824 824 824 824 824 824 824 824	1405	888	200.00	.1434	75.
24	D M	.1450	83.1	.1555	63.7	126	1440	ឧសសស	.0032 .0032 .0032 .0032	.1472 .1502 .1527 .1552	79 79 64 64 61
32	345	.1560	83.8	.1641	63.8	\$/32 \$732 \$21 \$21	1562 1570 1590 1610	88 17 17 17	.0032 .0032 .0032	.1594 .1602 .1622 .1642	75 73 68 64
24) S	0171.	83.1	.1807	65.2	11/64 117 115 115	1719 1710 1710 1800	22 27 67 67	.0035 2003 2003 2003	.1754 . .1765 . .1805	75 73 60 60
	ь 5	0771.	84.1	.1857	65.3		.1800 .1820 .1820	2 826	.0035 .0035 .0035	.1805 .1835 .1855	C 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
32	J. J	.1820	83.8	.1895	65.3	## X ## ## ## ## ## ## ## ## ## ## ## ##	.1820 .1850 .1875	2 87 05 05 05 05 05 05 05 05 05 05 05 05 05	.0035 .0035 .0035 .0035	.1885 .1910 .1925	75 62 58 58
50	מיכ	.1960	83.1	.2067	66.7	19 13/64 16/64	.1960 .1990 .2010 .2031	86 2 Z Z Z	.0038 .0038 .0038 8.003	.2028 .2048 .2069	CC 0 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
28	TAT.	.2110	84.1	.2190	B. 99	13 1772	. 2055 . 2130 . 2130	886	8.00 8.00 8.00	.2168	63 28 28
32	ATOM IN	.2160	83.8	6222.	66.8	{ 7/32 1/32 1/2	2210	:	0038	.2226	67
18	25	.2520	83.8	. 2630	68.6	F 0	.2570	ננ	.0038	.2608	75
20	3	.2580	83.9	.2680	68.5	⊾ ∪ =	2570	85 67 67	600	.2608	3 5 5 5
24	355	.2670	84.1	.2754	68.5	==-	7,50	:8;	117	. 2701	19 19
28	3	.2740	63.0	.2807	68.5	, 7	27.70	: = :	100	2811	: 85
32	Jan.	.2790	82.5	.2847	68.5	4 K	2810	2 2	2 64 5	2852	è (6

1/ 100% of thread = 0.75H (see 20.2.3).

1/100% of thread = 0.75H (see 20.2.3).

Percent thread **58512888** 28282828288 **5818185888** - continued Probable hole size Tap drills and percent of thread 1324 13274 13274 13434 13434 .3626 .3640 .3796 .3916 .3906 4086 4108 4177 4266 4266 4422 4578 4578 4736 .4736 .4892 .5048 .5110 .5204 .5204 .5312 .5312 5361 5518 5518 5574 5674 5630 5630 5637 5647 5667 Probable oversize, mean 用 900000 9046 0047 0047 0047 0047 0047 TABLE II.A.2 - Tap drill sizes, Unified screw threads, class Percent! of thread 55 B 5 E 5 827262 22 83 77 即な市けながけ 4 3125 3125 3320 3320 3330 3438 3580 3750 3770 3860 3906 .4688 .4844 .5000 .5000 .5062 .5156 .5156 .5263 .4130 .4219 .4375 .4375 .4531 .4646 8126 2 27/64 7/16 29/64 11.8 mm Pr 111 15/32 31/64 1/2 1/2 0.5062 33/64 33/64 0.5263 17/32 25/15 11/32 Percent y of thread In minor diameter, internal threads 69.7 69.8 69.8 69.2 8.02 70.7 69.8 69.2 71.771.671.3 71.9 71.3 69.8 6.0 72.2 72.1 70.4 72.7 71.3 **Paximus** 3182 .3297 .3372 .3426 .3469 3800 3916 .4284 .4419 .4537 .4676 .4719 .5040 5106 5162 5730 4094 4843 .5391 .5463 .5662 5244 5301 5787 5869 .5926 4051 Percent of thread 83.1 84.1 83.8 83.1 83.9 83.0 82.5 83.0 83.1 83.8 83.1 84.1 84.1 83.8 93.9 83.1 83.1 83.1 83.1 Hinima Class 4170 4120 4610 4610 .3210 .3300 .3360 .3410 .3700 3830 4040 4950 .5170 .5240 5270 5350 5570 .5710 .5910 .3600 .5020 .5080 .5650 5800 Dealg-ration ្តិ ទីទីទី 2255 <u>1</u> Ę 3 3 3 Threads inch Per 13 28 32 32 32 32 22 22 22 2282 97 28 8 Thread size 4375 . 4375 4375 4375 4375 5625 . 5625 5625 . 5625 . 5625 .5625 .5625 27. 27. 27. 27. 88888 625 625 625 . 625 .625 in 375

1/100% of thread = 0.75H (see 20.2.3).

		-							
		Percent. J	25 25 25 25 25 25 25 25 25 25 25 25 25 2	60 82 71 71 78 64	2 22 2	23828413	25 15 28 24 15 28	81 72 72 63 63 63	83 73 81 68
continued	thread	Probable hole size	In .5987 .6300 .6456 .6456 .6546	.6456 .6612 .6925 .7082 .7138	.7334 .7552 .700 .7828	.7708 .7864 .8021 .8076 .8178 .8335 .8420	.8493 .8807 .9017	.8653 .8805 .9122 .9135 .9137 .9594 .9709	.9279 .9315 .9437 .9753
≅ ,	d percent of	Probable oversize, mean	th .0049 .0050 .0050 .0050 .0050	.0050 .0050 .0050 .0051	.0052 .0052 .0052 .0052	.0052 .0052 .0052 .0053 .0054 .0054	.0057 .0057 .0059 .0059	. 0059 . 0050 . 0060 . 0061 . 0061 . 0063	. 0060 . 0061 . 0065 . 0065
class	Tap drills and	Percently of thread	87 77 72 87 87	04 77 72 75	85 55 57 57	50 48 50 50 50 50 50 50 50 50 50 50 50 50 50	97 77 70 70 71	67 77 84 77 77 77	68 76 76 77
threads,	£	H	In .5938 .6406 .6406 .6406 .6496	.6406 .6562 .6875 .7031 .7188	.7283 .7500 .7656 .7776	.7656 .7812 .7969 .8024 .8125 .8438	.8750 .8906 .8957 .9062	.6594 .8750 .9062 .9219 .9374 .9311 .9645	.9219 .9374 .9375 .9688 1.0000
screw thr		Dr.111 8	19/32 5/8 41/64 41/64 116.5 mm	41/64 21/32 11/16 45/64 23/33	18.5 mm 3/4 49/64 19.75 mm 25/32	49/64 25/32 51/64 0.8024 13/16 53/64 21.25 mm	27/32 7/8 57/64 22.75 mm	\$53,64 7/8 29/32 \$59/64 \$0.9274 15/16 61/64 24.5 mm	\$59/64 0.9274 15/16 31/32
Unified s	al threads	Percent do thread	73.0 72.8 71.3 70.4 69.8 69.2	73.5 73.3 72.9 71.3 69.8 69.2	73.5 72.9 71.3 69.8 69.2	74.1 73.5 72.9 71.3 69.6	73.9 72.9 71.3 69.8	74.1 74.1 73.8 72.9 71.3 69.8 69.2	74.1
sizes	Class 38 minor diameter, internal	Maxima	in .6085 .6284 .6412 .6494 .6594 .6594	.6545 .6707 .6908 .7037 .7176	.7329 .7533 .7662 .7801	.7681 .7952 .8068 .8158 .8287 .8426	.8575 .8783 .8912 .9051	. 9197 . 9118 . 9408 . 9537 . 9576	.9422 .9823 1.0033
p dr111		Percent ³ / of thread	83.6 83.1 83.9 84.1 83.0	83.1 83.1 84.1 84.1	83.8 83.1 83.9 83.0	83.0 83.0 83.0 83.1 83.1	83.6 83.1 83.0 62.5	83.1 83.1 83.0 83.8 84.1 84.1	83.4 83.6 83.1
1.2 - Tap		Minima	10 .5970 .620 .6330 .6420 .6490	.6420 .6600 .6820 .6960 .7110	.7220 .7450 .7580 .7740	.7550 .7850 .7980 .8070 .810	.8470 .8700 .8830 .8990	.8650 .9100 .9230 .9460 .9460	.9270 .9720
E II.A.2	Designation		333333	9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32538	LE SE	2553	urc urc urc urc urc urc urc urc	5 5 5
TABLE	Threads	per Inch	16 16 24 28 28 32	35 S C C C C C C C C C C C C C C C C C C	32 8 9 6 12	11 14 14 20 28 28 28	12 20 28 32 32	12 8 14 14 14 15 8 13 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	B 112 16
		Thread size	nl .6875 .6875 .6875 .6875 .6875	750 750 750 750 750 87	. 9125 . 9125 . 9125 . 9125 . 9125	278, 278, 278, 278, 278, 278,	216 216 216 216 216	1.000 1.000 1.000 1.000 1.000 1.000	1.0625 1.0625 1.0625

TABLE II.A.2 - Tap drill sizes, Unified screw threads, class 38 - continued

	73							·
	Percent Vof thread	77 18 52	E 22 E 5 8 8					
t thread	Probable hole size	in 1.0069 1.0226 1.0383	.9750 .9911 1.0069 1.0383					
d percent of	Probable oversize, mean	nd .0069 .00700	.0062 .0067 .0069 .0071					
Tap drills and	Percent V of thread	87 72 67	987 776 777 877	72 67	£8£8££	877 747 852 852	61 12 12 12 13	90 70 70 70 70 70 70 70 70 70
Ta	size	In 1.0000 1.0156 1.0312	.9688 .9844 1.0000 1.0312 1.0625	1.0781	1.0625 1.0938 1.1250 1.1250 1.1406	1.0938 1.1250 1.1562 1.1875 1.1875 1.2031 1.2106	1.1719 1.1875 1.2188 1.2500 1.2500 1.2656 1.2795	1.1875 1.2031 1.2344 1.2500 1.3125 1.3125 1.3281 1.3386
	Dr [1] 6	1 1 1/64 1 1/32	{ 31/32 63/64 1 1 1/32 1 1/16 1 1/16	1 5/64	1 1/16 1 3/32 1 1/8 1 1/8 1 9/64 29.25 mm	1 3/32 1 1/8 1 5/32 1 3/16 1 3/16 / 1 13/64	{ 1 11/64 1 3/16 1 3/16 1 1/32 1 1/4 1 1/64 32.5 m	1 3/16 1 13/64 1 15/64 1 1/4 1 5/16 1 5/16 1 2/64 34 mm
1 threads	Percent ¹ / of thread	72.1 71.3 69.8	74.1 74.1 74.1 72.9	71.3	74.1 74.1 72.9 72.1 71.3	74.1 74.1 74.1 72.9 72.1 69.8	74.1 74.1 72.9 72.1 71.3	74.1 74.1 74.1 72.9 72.1 71.3 69.8
minor diameter, internal threads	Maximum	1, 0105 1, 0162 1, 0161	.9875 1.0047 1.0448 1.0658 1.0730	1.0787 1.0926	1.0672 1.1073 1.1283 1.1355 1.1412 1.1551	1.1125 1.1297 1.1698 1.1908 1.1980 1.2037 1.2176	1.1922 1.2323 1.2533 1.2605 1.2662 1.2662	1.2146 1.2547 1.2948 1.3158 1.3230 1.3287 1.3287
	Percent Vof thread	83.8 83.9 83.0	. 63.5 83.1 83.8 83.8	83.1 84.1	833.4 833.6 833.9 93.9	83.5 83.1 83.1 84.1	83.4 83.6 83.9	83.1 83.1 83.1 83.1 83.1 83.1 84.1
Class 39	Minimm	tn 1.0020 1.0080 1.0240	.9700 .9900 1.0350 1.0570 1.0650	1.0710	1.0520 1.0970 1.1200 1.1370 1.1330	1.0950 1.1150 1.1600 1.1820 1.1900 1.1960 1.2110	1.1770 1.2220 1.2450 1.2520 1.2580 1.2740	1.1950 1.2400 1.2850 1.3070 1.3150 1.3310
Dealor	nation	CAN CAN		35	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e e e e e e	8 8 8 8 8	2 3 3 3 3 3 3
Threads	per Inch	18 20 28	7 8 112 116	29	12 16 16 20 20 20	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 28 28 28 28 28	28 28 B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Thread size	fn 1.0625 1.0625 1.0625	1.125 1.125 1.125 1.125 1.125	1.125 1.125	1.1875 1.1875 1.1875 1.1875 1.1875	1.250 1.250 1.250 1.250 1.250 1.250	1.3125 1.3125 1.3125 1.3125 1.3125 1.3125	1.375 1.375 1.375 1.375 1.375 1.375 1.375

1/100% of thread = 0.75H (see 20.2.3).

1/100% of thread = 0.75H (see 20.2.3).

continued	nt of thread	uble Probable Percent ¹ / _O iize, hole of un size thread	u					
class 3B - c	drills and percent	Percent Probable of oversize, thread mean	5					11111
threads,	Tap dr	Pero Orill size of three	In fn	1 5/16 1.3125 97 1 21/64 1.3281 79 1 21/64 1.3594 97 1 3/8 1.3750 77 1 11/16 1.4052 77 1 7/16 1.4375 77 1 7/16 1.4375 77 1 7/16 1.4375 37 37 mm 1.4567 93		1.5000 1.5625 1.5625 1.5781 1.5000	33/64 1.5156 79 9/16 1.5625 77 19/32 1.5938 87 5/8 1.6250 77 41/64 1.6406 72	17/32 1.5312 84 35/64 1.5469 78 9/16 1.5625 87 37/64 1.5781 79
Unified screw	1 threads	Percent Jof of thread	74.1 74.1 74.1 72.9 1 72.1 1 71.3 1 59.8	74.1 { 1 1 1 1 1 1 1 1 1				74.1 74.1 11.1 11.1 11.1 11.1
sizes,	iter, internal	Maximm	In 1.2771 1.3172 1.3573 1.3783 1.3855 1.3912 1.4051	1.3396 1.3797 1.4198 1.4480 1.4480 1.4537 1.4576	1.4021 1.4422 1.4823 1.5033 1.5162 1.5162 1.5162	1.5448 1.5658 1.5730 1.5787	1.5672 1.6073 1.6283 1.6355 1.6412	1.5875
Tap drill	minor diameter,	Percent Jof Of thread	83.4 83.4 83.1 83.1 83.9	83.1 83.1 83.1 83.1 84.1	83.1. 83.1. 83.1. 83.1.	83.1 83.1 83.1 83.1	83.4 83.6 83.8 83.9	83.1
II.A.2 - 7	Class 3B	Minima	in 1.2570 1.3020 1.3470 1.3700 1.3700 1.3990	1.3200 1.3650 1.4100 1.4400 1.4460 1.4460	1,3820 1,4270 1,426 1,5020 1,5080 1,4450 1,4450	1.5350 1.5570 1.5650 1.5710 1.5070	1.5520 1.5970 1.6200 1.6270 1.6330	1.5340
TABLE I	Desig-	nation	22223	an de	RE REER ER	e eeee	2222	C AS
T	Threads	per Inch	6 112 16 16 20 20 20	6 112 116 118 20 20 20	6 20 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	112 118 20 20	112 116 120 20	37 Vp
		Thread size	In 1.4375 1.4375 1.4375 1.4375 1.4375 1.4375 1.4375 1.4375	1.500 1.500 1.500 1.500 1.500 1.500	1.5625 1.5625 1.5625 1.5625 1.5625 1.5625 1.625	1.625 1.625 1.625 1.625 1.625	1.6875 1.6875 1.6875 1.6875 1.6875	1,750

1/ 100% of thread = 0.75H (see 20.2.3).

Percent Volume Probable hole size continued 5 percent of thread Probable oversise, 1 四 drille and Percent! sizes, Unified screw threads, class 8 In 1.6094 1.6250 1.6562 1.6875 1.7031 1.6250 1.6406 1.6719 1.6875 1.7188 1.7188 1.7656 1.7969 1.8125 1.8438 1.8750 1.8906 2.0000 2.0112 2.0112 2.0625 2.0625 1.7500 1.7812 1.8125 1.6281 1.9281 1.9750 1.9062 1.9375 1.9531 2.0000 2.0000 2.0312 2.0525 2.1250 2.1562 2.1815 2.1815 2.1250 1 39/64 21/32 11/16 45/64 0<u>4</u> [1] 45/64 3/4 25/32 13/16 53/64 252 22222 \$ Percent 1/ of thread minor diameter, internal threads 72.9 Haximo 1.8396 1.8396 1.8797 1.9198 1.9408 1.9537 2.0033 L. 6297 1.6698 1.6908 1.7037 1.6521 1.6922 1.7323 1.7533 1.7662 1.7146 1.7547 1.7948 1.8158 1.771 1.0172 1.8783 1.8783 1.8912 2.0047 2.0047 2.0448 2.0658 2.0658 2,1283 2,0361 2.0896 2.1297 2.1698 2.1908 2.2037 Percenty of thread - Tap drill Ħ Minimo 1.8200 1.8200 1.8650 1.9100 1.9320 1.9950 Class 1.6600 1.6920 1.6960 1.6320 1.7220 1.6950 1.7400 1.7850 1.6070 1,7570 1,6020 1,8470 1.9450 1.9900 2.0350 2.0570 2.0710 2.1200 2,0090 2.0700 2.1150 2.1600 1.1820 2.1960 1.6150 1.6770 TABLE II.A.2 Perion retion 2 233333 5 33535 35535 3 3 333 3 335 33333 8 <u>5</u> 改訂以目の 228 ភ្នំ _{ខេ}ង ដង់ នង Bize 1.9375 1.8125 1.8125 1.8125 1.8125 1.9375 1.9375 2.000 2.000 2.000 2.000 2.000 2.1875 1.0125 1.875 1.875 1.875 1.875 1.750 21.23 Thread

Class 3	m	minor diemeter,	er, Internal			Tap	p drills and	d percent of	thread	
nation H	Hinima	Percenty of thread	Nextms	Percent // of thread	Dr.111	a is	Percent!/ of thread	Probable oversize, men	Probable hole sire	Percent V of thread
~	tr .2450	83.1	In 2.2533	72.9	2 7 7	1.2500	11	s	UŢ	
n n n	.1950	83.1	2.2346	74.1	2 3/16	2.1875	64			
N 101 14	2,3210	3.8.1	2.3158 2.3287	72.9	2 5/16 2 5/16 2 5/16	2.3125	848			
~	.3700	83.1	2,3783	72.9	2 3/B	2.3750	+			
7	.2290	83.4	2.2594	74.1		2.2188	87			
rini r	.3650	83.1	2.3396	74.1	25/16	2.3125	. F. C.			
تمنمن	4320	83.8	2.4408	72.9		2.4375	% 7.6			
N	.3540	83.4	2.3844	74.1		2,3438	67		·	
تمتم	450	63.1	2.4646	74.1	7 W M	2.4375	× 18 1			
_ 7 _ 7 _ 7	2.5350 2.5570 2.5710	83.1 83.1	2.5448 2.5658 2.5787	74.1	2 17/32 2 9/16 2 9/16	2.5312 2.5625 2.5625	873			
ه تب	4790	83.6	2.5094	74.1		2.5000	11			
	2.6150	93.1	2.6297	74.1		2.5625	£ C.			
	6960	83.1 83.1	2.7037	72.9	2 11/16 2 11/16 2 11/16	2.6875	846			
ni o	05040	83.4	2.6344	74.1		2.6250	£3			
~ ~ ~	2.7400	83.1	2.7547	74.1	2 3/4	2.7500	:FE			
تدند	.8210	83.8 83.1	2.8158 2.8287	72.9 71.3		2.6125 2.8125	5.2			
તં તં	.7290	83.4	2.7594	74.1	2 3/4 2 13/16	2.7500	£5			
N N	.9100	93.1	2.9198	77.7	2 7/6	2.9134	83			
NN	. 9320	83.8 83.1		72.9	2 15/16	2.9375	F 2			

1/100% of thread = 0.75H (see 20.2.3).

- continued TABLE II.A.2 - Tap drill sizes, Unified screw threads, class 3B

			Class 38	Class 38 minor diam	eter, inte	ameter, internal threads		Tal	o drill and r	Tap drill and percent of thread	Pro-	
	Threads											
Thread size		Desig- nation	Minimm	Percent ¹ / of Thread	Maximm	Percent ¹ / of Thread	Drill size		Percent / of Thread	Probable owersize, mean	Probable Per hole Braize Tr	Percent Vof Thread
đ			5		иŢ		чī	r;		5	Ę	
3.250	•	D E	2.9790	83.4	3.0094	74.1	۳	3.0000	н			
3.500	· 	D D	3.2290	83.4	3.2594	74.1	3 1/4	3.2500	11			
3.750	•	UNC	3.4790	83.4	3.5094	74.1	3 1/2	3 1/2 3.5000	+			

1/ 100% of thread = 0.75H (see 20.2.3).

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes LB and 28 (see 30.1) 1/

· · · · · · · · · · · · · · · · · · ·	 	<u> </u>			
	Ì	M.	nor diameter o	of internal th	reads
Nominal size in inches and threads per inch	Series designation	Minimm	Percent ² / of Thread	3/ Maximum	Percent ² / of Thread
1	2	3	4	5	6
.060-80 or No. 0-80	UNE?	in 0.0465	83.1	in 0.0514	53.0
.073-64 or No. 1-64 .073-72 or No. 1-72	UNC	.0561	83.3 83.1	.0623 .0635	52.7 52.7
.086-56 or No. 2-56	UNC UNP	.0667	83.2 83.3	.0737 .0753	53.0 52.7
.099-48 or No. 3-48 .099-56 or No. 3-56	UNC	.0764	83.5 83.2	.0845 .0865	53.6 53.9
.112-40 or No. 4-40 .112-48 or No. 4-48	UNC	.0849	83.4 83.5	.0939 .0968	55.7 56.2
.125-40 or No. 5-40 .125-44 or No. 5-44	UNC	.0979	83.4 83.3	.1062 .1079	57.9 57.9
.138-32 or No. 6-32 .138-40 or No. 6-40	UNC	.104	83.8 83.1	.114	59.1 58.5
.164-32 or No. 8-32 .164-36 or No. 8-36	UNC	.130	83.8 83.1	.139	61.6 61.0
.190-24 or No. 10-24 .190-32 or No. 10-32	UNC	.145	83.1 83.8	.156 .164	62.8 64.0
.216-24 or No. 12-24	UNC	.171	83.1 84.1	.181 .186	64.7 64.7
.216-28 or No. 12-28 .216-32 or No. 12-32	UNEP UNEP	.177 .182	83.8	.190	64.0
.250-20 or 1/4-20 .250-28 or 1/4-28	UNC	.196 .211	83.1 84.1	.207	66.2 64.7
.250-28 or 1/4-28	UNEF	216	83.8	.224	64.0
.250-36 or 1/4-36	UNS	.220	83.1	.226	66.5 .
.3125-18 or 5/16-18	נואכ	.252	83.8	.265	65.B
.3125-20 or 5/16-20	20UN	.258	83.9	.270	65.4 65.6
.3125-24 or 5/16-24 .3125-28 or 5/16-28	UNP 2BUN	.267	84.1 83.0	.277	65.7
.3125-25 or 5/16-32	UNEF	279	B2.5	.286	65.3
.3125-36 or 5/16-36	UNS	.282	84.5	.289	65.1
.375-16 or 3/8-16	UNC	.307	83.8	.321	66.5
.375-20 or 3/8-20	20 0 N	.321	83.1	.332	66.2
.375-24 or 3/8-24	UNP	.330	83.1	.340	64.7
.375-28 or 3/8-28	28UN	.336	84.1	.345	64.7 64.0
.375-32 or 3/8-32 .375-36 or 3/8-36	UNEET UNS	.341	83.8 83.1	.349 .352	63.7
.4375-14 or 7/16-14	unc	.360	83.5	.376	66.3
.4375-16 or 7/16-16	16JN	.370	83.1	. 384	65.9
.4375-20 or 7/16-20	UNF	.383	83.9	.395	65.4
.4375-28 or 7/16-28 .4375-32 or 7/16-32	unez? 32un	.399	83.0 82.5	.407	65.7 65.3
	UNG	.410	83.1	.428	66.5
.500-12 or 1/2-12 .500-13 or 1/2-13	UNC	.417	83.1	.434	66.0
.500-13 or 1/2-13 .500-16 or 1/2-16	16UN	.432	83.8	.446	66.5
.500-20 or 1/2-20	UNF	.446	83.1	.457	66.2
.500-28 or 1/2-28	UNEEF	.461	84.1	.470	64.7
.500-32 or 1/2-32	3 2UN	.466	83.8	. 474	64.0
	<u></u>	<u>u</u>	L	<u> </u>	

See footnotes at end of table.

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 18 and 28 (see 30.1) 1/ - continued 3/

Recommended hole size limits for different lengths of engagement								
	offe, 0 pains		D thru 0.67D	1	thru 1.50	 Nominal size in inches		
Minimum	Maximum	Minimum	Harimm	Minimum	Maximum	and threads per inch		
7	8	9	10	11	12	1		
in	in	in	in .	in	in	.060-80 or No. 0-80		
0.0465	0.0500	0.0479	0.0514	0.0479	0.0514			
.0561	.0599	.0580	.0618	.0585	.0623	.073-64 or No. 1-64		
.0580	.0613	.0596	.0629	.0602	.0635	.073-72 or No. 1-72		
.0667	.0705	.0686	.0724	.0699	.0737	.086-56 or No. 2-56		
.0691	.0724	.0707	.0740	.0720	.0753	.086-64 or No. 2-64		
. •0764	.0804	.0785	. 0825	.0805	.0845	.099-48 or No. 3-48		
•0797	.0831	.0814	. 0848	.0831	.0865	.099-56 or No. 3-56		
.0849	.0849	.0871	.0916	.0894	.0939	.112-40 or No. 4-40		
.0894	.0931	.0912	.0949	.0931		.112-48 or No. 4-48		
-0979	.1020	.1000	.1041	.1021	.1062	.125-40 or No. 5-40		
-1004		.1023	.1060	.1042	.1079	.125-44 or No. 5-44		
.104	.109	.106	.112	.109	.114	.138-32 or Bo. 6-32		
.111	.115	.113	.117	.115		.138-40 or Bo. 6-40		
.130	.135	.132	.137 -	.134	.139	.164-32 or No. 8-32		
.134	.138	.136	.140	.138	.142	.164-36 or No. 8-36		
.145	.150	.147	.153	.150	.156	.190-24 or No. 10-24		
.156	.160	.158	.162	.160	.164	.190-32 or No. 10-32		
.171	.176	.173	.178	.176	.181	.216-24 or No. 12-24		
.177	.182	.179	.184	.181	.186	.216-28 or No. 12-28		
.182	.186	.184	.188	.186	.190	.216-32 or No. 12-32		
.196	.202	.199	.204 [°]	.202	.207	.250-20 or 1/4-20		
.211	.216	.213	.218	.216	.220	.250-28 or 1/4-28		
.216	.220	.218	.222	.220	.224	.250-32 or 1/4-32		
.220	.223	.221	.225	.222	.226	.250-36 or 1/4-36		
- 252	.259	.256	. 262	.259	.265	.3125-18 or 5/16-18		
- 258	.264	.261	. 267	.264	.270	.3125-20 or 5/16-20		
- 267	.272	.270	. 275	.272	.277	.3125-24 or 5/16-24		
- 274	.278	.276	. 280	.278	.282	.3125-28 or 5/16-28		
- 279	.282	.280	. 284	.282	.286	.3125-32 or 5/16-32		
- 282	.286	.283	. 287	.285	.289	.3125-36 or 5/16-36		
. 307	.314	.311	.318	.314	.321	.375-16 or 3/8-16		
. 321	.327	.324	.330	.327	.332	.375-20 or 3/8-20		
. 330	.335	.332	.337	.335	.340	.375-24 or 3/8-24		
. 336	.340	.338	.343	.340	.345	.375-28 or 3/8-28		
. 341	.345	.343	.347	.345	.349	.375-32 or 3/8-32		
. 345	.348	.343	.350	.348	.352	.375-36 or 3/8-36		
. 360 . 370 . 383 . 399 . 404	.368 .377 .389 .403 .407	.364 .373 .386 .401 .405	.372 .380 .392 .405 .409	.368 .377 .389 .403 .407	.376 .384 .395 .407	.4375-14 or 7/16-14 .4375-16 or 7/16-16 .4375-20 or 7/16-20 .4375-28 or 7/16-28 .4375-32 or 7/16-32		
. 410 . 417 . 432 . 446 . 461 . 466	.419 .425 .439 .452 .466	.414 .421 .436 .449 .463	. 423 . 430 . 443 . 454 . 468 . 472	.419 .425 .439 .452 .466 .470	.428 .434 .446 .457 .470	.500-12 or 1/2-12 .500-13 or 1/2-13 .500-16 or 1/2-16 .500-20 or 1/2-20 .500-28 or 1/2-28 .500-32 or 1/2-32		

TABLE II.A.1 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes IB and 28 (see 30.1) 1/- continued

and threads per inch designation Minimum of Thread Thread 1 2 3 4 5 6 .5625-12 or 9/16-12 UNC .472 83.6 .490 675625-16 or 9/16-16 16UN .495 83.1 .509 655625-18 or 9/16-18 UNF .502 83.8 .515 65.	ad
and threads per inch designation Minimum of Thread Thread of Thread Thread 1 2 3 4 5 6 1 2 3 4 5 6 in i	ad
and threads per inch designation Minimum of Thread Thread 1 2 3 4 5 6 .5625-12 or 9/16-12 UNC .472 83.6 .490 675625-16 or 9/16-16 16UN .495 83.1 .509 655625-18 or 9/16-18 UNF .502 83.8 .515 65.	ad
1 2 3 4 5 6 in in in in .5625-12 or 9/16-12 UNC .472 83.6 .490 675625-16 or 9/16-16 16UN .495 83.1 .509 655625-18 or 9/16-18 UNF .502 83.8 .515 65.	
in in in .5625-12 or 9/16-12 UNC .472 83.6 .490 675625-16 or 9/16-16 16UN .495 83.1 .509 655625-18 or 9/16-18 UNF .502 83.8 .515 65.	0
.5625-12 or 9/16-12 UNC .472 83.6 .490 67.1 .5625-16 or 9/16-16 16UN .495 83.1 .509 65.1 .5625-18 or 9/16-18 UNF .502 83.8 .515 65.1	
.5625-16 or 9/16-16 16UN .495 83.1 .509 65. .5625-18 or 9/16-18 UNF .502 83.8 .515 65.	
.5625-18 or 9/16-18 UNF .502 83.8 .515 65.	Б
F606 10 10 10 10 10 10 10 10 10 10 10 10 10	
. 3023-20 01 9/16-20	
.5625-28 or 9/16-28	
.625-11 or 5/8-11 UNC .527 83.0 .546 66.	
.625-12 or 5/8-12 12UN .535 83.1 .553 66. .625-16 or 5/8-16 16UN .557 83.8 .571 66.	
505 30 50 30	
405 an at an 1 an 1 an 1	
1 100	
.625-24 or 5/8-24 UNZF .580 83.1 .590 64. .625-28 or 5/8-28 28UN .586 84.1 .595 64.	
.625-32 or 5/8-32 32LN .591 83.8 .599 64.1	
.6875-12 or 11/16-12 12UN .597 83.6 .615 67.0 .6875-16 or 11/16-16 16UN .620 83.1 .634 65.0	
.6875-18 or 11/16-18 UNS .627 83.8 .640 65.8	
.6875-20 or 11/16-20 20UN .633 83.9 .645 65.4	
.6875-24 or 11/16-24 UNEF .642 84.1 .652 65.0	
.6875-28 or 11/16-28 28UN .649 83.0 .657 .65.	
.6875-32 or 11/16-32 32UN .654 82.5 .661 65.	
.750-10 or 3/4-10 UNC .642 83.1 .663 67.0)
.750-12 or 3/4-12 12UN .660 83.1 .678 66.5	
.750-16 or 3/4-16 UNF .682 83.8 .696 66.5	5
.750-18 or 3/4-18 UNS .690 83.1 .703 65.1	
.750-20 or 3/4-20 UNEF .696 83.1 .707 66.3	
.750-28 or 3/4-28	
.750-32 or 3/4-32 32UN .716 83.8 .724 64.6	,
.8125-12 or 13/16-12 12UN .722 83.6 .740 67.0	
.8125-16 or 13/16-16 12UN .745 83.1 .759 65.5	
.8125-18 or 13/16-18 UNS .752 83.8 .765 65.6 .8125-20 or 13/16-20 UNEF .758 83.9 .770 65.4	
.8125-20 or 13/16-20 UNEF758 83.9770 65.48125-28 or 13/16-28 28UN774 83.0782 65.7	
.8125-32 or 13/16-32 3ZUN .779 82.5 .786 65.3	
.875-9 cr 7/8-9 UNC .755 83.1 .778 67.2	1
.875-12 or 7/8-12 12uN .785 83.1 .803 66.5	
.875-14 or 7/8-14 UNF .758 83.0 .814 65.7	
.875-16 or 7/8-16 16UN .807 93.8 .821 66.5	
.875-18 or 7/8-18 UNS 83.1 828 65.1	
.875-20 or 7/8-20 UNEF .821 83.1 .832 66.3	
.875-28 or 7/8-28 28UN .836 84.1 .845 64.7	7
.875-32 or 7/8-32 32UN 83.8 83.8 64.0	Ì
.9375-12 or 15/16-12 12UN .847 83.6 865 67.0)
.9375-16 or 15/16-16 16UN .870 83.1 .884 65.9	
.9375-20 or 15/16-20 UNEF .883 83.9 .895 65.4	
.9375-28 or 15/16-28 28UN .899 83.0 .907 65.7	
.9375-32 or 15/16-32 32UN .994 82.5 .911 65.3	ļ

TABLE II.A.3— Recommended hole size limits before threading for different lengths of engagement, standard
Unified and some UNS threads, classes 1B and ZB (see 30.1) 1/- continued

Poor	nonded hele a	ing lining 6				21. Th - courtinated
	luding 0.33D	11	thru 0.67D	Above 0.67	gement D thru 1.5D	Nominal size in inches
Minimm	Maximm	Minimm	Maximum	Minimm	Maximum	and threads per inch
7	8	9	10	11	12	1
in	in	in	in	 	 	 -
.472	.481	.477	.486	in .481	. in	.5625-12 or 9/16-12
. 495	.502	.498	505	.502	.509	
.502	.509	.506	.512	.509		.5625-16 or 9/16-16
.508	.514	.511	.517	.514	.515	.5625-18 or 9/16-18
.517	.522	.520	.525	.522	.527	.5625-20 or 9/16-20
524	.528	.526	.530	.528	5327	.5625-24 or 9/16-24
529	.532	.530	.534	.532	.532 .536	.5625-28 or 9/16-28 .5625-32 or 9/16-32
.527	.536	.532	.541	. 536	.546	.625-11 or 5/8-11
.535	.544	.539	548	.544	.553	.625-12 or 5/8-12
-557	.564	.561	.568	.564	.571	.625-16 or 5/8-16
-56 5	.571	.568	.574	.571	.578	.625-18 or 5/8-18
.571	.577	.574	.580	.577	.582	.625-20 or 5/8-20
.580 ·	-585	.582	.587	.585	.590	.625-24 or 5/8-24
. 586	.590	.588	.593	.590	.595	.625-28 or 5/8-28
.591	.595	.593	.597	.595	.599	.625-32 or 5/8-32
.597	.606	.602	.611	.606	.615	.6875-12 or 11/16-12
.620	.627	.623	.630	.627	.634	.6875-16 or 11/16-16
.627	.634	.630	. 637	.634	.640	.6875-18 or 11/16-18
.633	.639	.636	.642	.639	.645	.6875-20 or 11/16-20
.642	.647	.645	.650	.647	652	.6875-24 or 11/16-24
- 649	.653	.651	.65 5	.653	.657	.6875-28 or 11/16-28
. 654	-657	.655	.659	-657	.61	.6875-32 or 11/16-32
.642	.652	.647	.658	.652	.663	.750-10 or 3/4-10
. 660	.669	.664	.673	.669	.678	.750-12 or 3/4-12
.682	.689	.686	.693	.689	.696	.750-16 or 3/4-16
-690	.696	.693	.699	. 696	.703	.750-18 or 3/4-18
. 696	702	.699	.704	.702	.707	.750-20 or 3/4-20
.711	.716	.713	.718	.716	.720	.750-28 or 3/4-28
.716	.720 -	.718	.722	.720	.724	.750-32 or 3/4-32
.722	.731	.727	.736	.731	.740	.8125-12 or 13/16-12
.745	.752	.748	.755	.752	.795	.8125-16 or 13/16-16
-752 750	.759	.756	.762	.759	.765	.8125-18 or 13/16-18
.758 .774	.764	.761	.767	.764	.770	.8125-20 or 13/16-20
.779	.778 .782	.776 .780	.780 .784	.778 .782	.782 .786	.8125-28 or 13/16-28 .8125-32 or 13/16-32
.755	,			l l		<u> </u>
. 735 . 785	.766	.760	.772	.766	.778	-875-9 or 7/8-9
.765 .798	.794	.789	.798	.794	.803	.875-12 or 7/8-12
.807	-806	.802	.810	.806	.814	.875-14 or 7/8-14
.815	.814 .821	.811	.618	.814	.821	.875-16 or 7/8-16
.821	.827	.818	.824	.821	.828	.875-18 or 7/8-18
.836	.840	.824	.830 .843	.827	.832	875-20 or 7/8-20
.841	.845	.838 .843	.847	.840 .845	.845 .849	.875-28 or 7/8-28 .875-32 or 7/8-32
.847	.856	.852	.861	.856	.865	.9375-12 or 15/16-12
.870	.877	.873	.880	.877	.884	.9375-16 or 15/16-16
.883	.889	.B86	.892	.889	.895	.9375-20 or 15/16-20
.899	.903	.901	.905	.903	.907	.9375-28 or 15/16-28
.904	.907	.905	.909	907	.911	.9375-32 or 15/16-32
. 304	.307	.903	.307	.50/	1311	.3373-34 04 13/10-32

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes IB and 28 (see 30.1) 1/2 - continued

0.112143 (11.11 20.11	e un threats,	, Classes II	- and 20 (See	30.1) 1/	- continued
- C P ,		Mino	r diameter of	internal thre	ads
Nominal size in inches and threads per inch	Series designation	Minimo	Percent ² / of Thread	3/ Haziman	Percent ² / of Thread
1	2	3	4	5	. 6
1.000-8 1.000-12 1.000-14 1.000-16 1.000-18 1.000-20 1.000-28 1.000-32	UNC UNP UNS 16UN UNS UNEP 28UN 32UN	.865 .910 .923 .932 .940 .946 .961	83.1 83.0 83.8 83.1 83.1 84.1	.890 .928 .938 .946 .953 .957 .970	67.7 66.5 66.8 66.5 65.1 66.2 64.7
1.0625-8 1.0625-12 1.0625-14 1.0625-16 1.0625-18 1.0625-20 1.0625-28	SUN 17UN UNS 16UN UNSEF 20UN 28UN	.927 .972 .985 .995 1.002 1.008	83.4 83.6 83.5 83.1 83.8 83.9	.952 .990 1.001 1.009 1.015 1.020 1.032	68.1 67.0 66.3 65.9 65.8 65.4 65.7
1.125-7 1.125-8 1.125-12 1.125-16 1.125-18 1.125-20 1.125-28	UNC BUN UNF 15UN UNEF 20UN 25UN	0.970 .990 1.035 1.057 1.065 1.071	83.5 83.1 83.1 83.8 83.1 83.1	0.998 1.015 1.053 1.071 1.078 1.082 1.095	68.4 67.7 66.5 66.5 65.1 66.2 64.7
1.1875-8 1.1875-12 1.1875-16 1.1875-18 1.1875-20 1.1875-28	BUN 1 ZIN 1 SUN UNEP 20UM 2 BUN	1.052 1.097 1.120 1.127 1.133 1.149	83.4 83.6 83.1 83.8 83.9	1.077 1.115 1.134 1.140 1.145 1.157	68.1 67.0 65.9 65.8 65.4 65.7
1.250-7 1.250-8 1.250-12 1.250-16 1.250-18 1.250-20 1.250-28	UNC BUN URSP 1 SUN URBEF 20UN 2BUN	1.095 1.115 1.160 1.182 1.190 1.196 1.211	83.5 83.1 83.1 83.8 83.1 83.1	1.123 1.140 1.178 1.196 1.203 1.207	68.4 67.7 66.5 66.5 65.1 66.2 64.7
1.3125-8 1.3125-12 1.3125-16 1.3125-18 1.3125-20 1.3125-28	EUN 1 ZUN 1 GUN UNEUP 2 CUUN 2 BUN	1.177 1.222 1.245 1.252 1.258 1.274	83.4 83.6 83.1 83.8 83.9	1.202 1.240 1.259 1.265 1.270 1.282	68.1 67.0 65.9 65.8 65.4 65.7
1.375-6 1.375-8 1.375-12 1.375-16 1.375-18 1.375-20 1.375-28	unc Bun Unc 1 Gun Uncer 2 Cun 2 Sun	1.195 1.240 1.285 1.307 1.315 1.321 1.336	83.1 83.1 83.8 83.1 83.1 83.1	1.225 1.265 1.303 1.321 1.328 1.332 1.345	69.3 67.7 66.5 66.5 65.1 66.2 64.7
1.4375-6 1.4375-8 1.4375-12 1.4375-16 1.4375-18 1.4375-20 1.4375-28	GLN 8UN 1 ZLN 1 GUN UNEP 20UN 28UN	1.257 1.302 1.347 1.370 1.377 1.383 1.399	83.4 83.6 83.1 83.8 83.9 83.0	1.288 1.327 1.365 1.384 1.390 1.395	69.1 68.1 67.0 65.9 65.8 65.4 65.7
1.500-6 1.500-8 1.500-12 1.500-16 1.500-18 1.500-20 1.500-28	urc Bln Urp 16ln Urep 20ln 28ln	1.320 1.365 1.410 1.432 1.440 1.446	83.1 83.1 83.1 83.8 83.1 83.1	1.350 1.390 1.428 1.446 1.453 1.457 1.470	69.3 67.7 66.5 66.5 65.1 66.2 64.7

FED-STD-H28/2B

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 18 and 28 (see 30.1) 1/2 continued

Minimum Maximum Minimum Maximum Minimum Maximum Maximum <t< th=""><th>ize in inches ads per inch 1. 1000-8 1000-12 1000-14 1000-16 1000-18 1000-20 1000-28</th></t<>	ize in inches ads per inch 1. 1000-8 1000-12 1000-14 1000-16 1000-18 1000-20 1000-28
Minimum Maximum Minimum Maximum Minimum Maximum Maximum <t< td=""><td>000-8 000-12 000-14 000-16 000-18 000-20 000-28</td></t<>	000-8 000-12 000-14 000-16 000-18 000-20 000-28
7 8 9 10 11 12 1 .865 .677 .871 .884 .877 .890 1.0 .910 .919 .914 .923 .919 .928 1.0 .923 .931 .927 .934 .931 .938 1.0 .932 .939 .936 .943 .939 .946 1.0 .940 .946 .943 .949 .946 .953 1.0 .946 .952 .949 .954 .952 .957 1.0	000-8 000-12 000-14 000-16 000-18 000-20
.865 .677 .871 .884 .877 .890 1.0 .910 .919 .914 .923 .919 .928 1.0 .923 .931 .927 .934 .931 .938 1.0 .932 .939 .936 .943 .939 .946 1.0 .940 .946 .943 .949 .946 .953 1.0 .946 .952 .949 .954 .952 .957 1.0	000-8 000-12 000-14 000-16 000-18 000-20
.910 .919 .914 .923 .919 .928 1.0 .923 .931 .927 .934 .931 .938 1.0 .932 .939 .936 .943 .939 .946 1.0 .940 .946 .943 .949 .946 .953 1.0 .946 .952 .949 .954 .952 .957 1.0	000-12 000-14 000-16 000-18 000-20 000-28
.923 .931 .927 .934 .931 .938 1.0 .932 .939 .936 .943 .939 .946 1.0 .940 .946 .943 .949 .946 .953 1.0 .946 .952 .949 .954 .952 .957 1.0	000-14 000-16 000-18 000-20 000-28
.932 .939 .936 .943 .939 .946 1.0 .940 .946 .943 .949 .946 .953 1.0 .946 .952 .949 .954 .952 .957 1.0	000-16 000-18 000-20 000-28
.946 .952 .949 .954 .952 .957 1.0)00-20)00-28
063 066 11 063 1 060 11 063)00-28
000 000	100-34
.927 .940 .934 .946 .940 .952 1.0)625 - 8
	1625-12
007 1 3 000 1 000 1 100	1625-14 .
1.002 1.009 1.006 1.012 1.009 1.015	0625-16 0625-18
1.009 1.014 1.011 1.017 1.014 1.020 1.0	625-20
1.024 1.028 1.026 1.030 1.028 1.032 1.0	625-28
0.970 0.984 0.977 0.991 0.984 0.998 1.1 .990 1.002 .996 1.008 1.002 1.015 1.1	25-7
	. 25-8 . 25- 12
1.057 1.064 1.061 1.068 1.064 1.071 1.11	25-16
	25-18
	.25-20 .25-28
	875-8
1.097 1.106 1.102 1.111 1.106 1.115 1.40	875-12
1.120 1.127 1.123 1.130 1.127 1.134 1.11	875-16
1.127 1.134 1.130 1.137 1.134 1.140 1.1 1.133 1.139 1.136 1.142 1.139 1.145 1.1	.875-18
. 1 tam 1 t tam 11 t tam 1 t t t t 1 t 1 t 1 t 1 t 1 t 1 t 1 t	875-20 875-28
1.095 1.109 1.102 1.116 1.109 1.123 1.2	50-7
	50-8
1.160 1.169 1.164 1.173 1.169 1.178 1.2 1,182 1.189 1.186 1.193 1.189 1.196 1.2	50-12 50-16
1.190 1.196 1.193 1.199 1.196 1.203 1.20	50-18
1.195 1.202 1.199 1.204 1.202 1.207 1.2	50-20
	50-28
1.177	125-8
	125-12 125-16
	125-18
1.258 1.264 1.261 1.267 1.264 1.270 1.31	125-20
	125-28
1.195 1.210 1.202 1.218 1.210 1.225 1.37	
	75–8 75–12
	75-12 75-16
1.315 1.321 1.318 1.324 1.321 1.328 1.37	75-18
	75-20
	75-28
	375-6 375-8
1.347 1.356 1.352 1.361 1.356 1.365 1.43	375–12
	375-16
	375-18 375-20
	175-28
1.320 1.335 1.327 1.343 1.335 1.350 1.50	- •
1.365 1.377 1.371 1.384 1.377 1.390 1.50 1.410 1.419 1.414 1.423 1.419 1.428 1.50	
	00-12 00-16
1.440 1.446 1.443 1.449 1.446 1.453 1.50	
1.446 1.452 1.449 1.454 1.452 1.457 1.50	0-20
1.461 1.466 1.463 1.468 1.466 1.470 1.50	0-28

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard to the Unified and some UNS threads, classes 1B and 2B (see 30.1) 1/ - continued

Unified ar	nd some UNS threa	ds, classes H	3 and 28 (see	$30.1) \perp / - \alpha$	ontinued
		Minor	diameter of	internal thre	adş
Nominal size in inches and threads per inch	Series designation	Minimm	Percent ² / of Thread	<u>3</u> / Maximum	Percent ² / of Thread
1	2	3	4	5	6
	<u> </u>	in		in	•
1.5625-6	6UN	1.382	83.4	1.413	69.1
1.5625-8	8UN	1.427	83.4	1.452	68.1
1.5625-12	12UN	1.472	83.6	1.490	67.0
1.5625-16	16UN	1.495	83.1	1.509	65.9
1.5625-18	UNEP	1.502	83.8	1.515	65.8
1.5625-20	20UN	1.508	83.9	1.520	65.4
1.625-6	GUN	1.445	83.1	1.475	69.3
1.625-8	BUN	1.490	83.1	1.515	67.7
1.625-12	1 <i>2U</i> N	1.535	83.1	1.553	66.5
1.625-16	16UN	1.557	83.8	1.571	66.5
1.625-18	UNEF	1.565	83.1	1.578	65.1
1.625-20	20UN	1.571	83.1	1.582	66.2
1.6875-6	GUN	1.507	83.4	1.538	69.1
1.6875-8	SUN	1.552	83.4	1.577	68.1
1.6875-12	1.2UN	1.597	83.6	1.615	67.0
1.6875-16	1.6UN	1.620	83.1	1.634	65.9
1.6875-18	UNESP	1.627	83.8	1.640	65.8
1.6875-20	2.0UN	1.633	83.9	1.645	65.4
1.750-5	UNC	1.534	83.1	1.568	70.1
1.750-6	GUN	1.570	83.1	1.600	69.3
1.750-8	BUN	1.615	83.1	1.640	67.7
1.750-12	1.2UN	1.660	83.1	1.678	66.5
1.750-16	1.6UN	1.682	83.8	1.696	66.5
1.750-20	2.0UN	1.696	83.1	1.707	66.2
1.8125-6	6UN	1.632	83.4	1.663	69.1
1.8125-8	8UN	1.677	83.4	1.702	68.1
1.8125-12	12UN	1.722	83.6	1.740	67.0
1.8125-16	16UN	1.745	83.1	1.759	65.9
1.8125-20	20UN	1.758	83.9	1.770	65.4
1.875-6	6UN	1.695	83.1	1.725	69.3
1.875-8	8UN	1.740	83.1	1.765	67.7
1.875-12	12UN	1.785	83.1	1.803	66.5
1.875-16	16UN	1.807	83.8	1.821	66.5
1.875-20	20UN	1.821	83.1	1.832	66.2
1.9375-6	6UN	1.757	83.4	1.788	69.1
1.9375-8	8UN	1.802	83.4	1.827	68.1
1.9375-12	12UN	1.847	83.6	1.865	67.0
1.9375-16	16UN	1.870	83.1	1.884	65.9
1.9375-20	2UUN	1.883	83.9	1.895	65.4
2.000-4.5	UNC	1.759	83.5	1.795	71.0
2.000-6	GUN	1.820	83.1	1.850	69.3
2.000-8	BUN	1.865	83.1	1.890	67.7
2.000-12	12UN	1.910	83.1	1.928	66.5
2.000-16	16UN	1.932	83.8	1.946	66.5
2.000-20	20UN	1.946	83.1	1.957	66.2

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 1B and 2B (see 30.1) $\underline{1}/$ - continued

) 1/ - continued
	<u> </u>		<u>:</u>	ngths of engag	ement	
To and incl	uding 0.33D	Above 0.330	thru 0.67D	Above 0.67D	thru 1.50	Nominal size in inches and threads per inch
Minimm	Maximum	Minimum	Maximum	Minimum	Maximum	an circons ber men
7	8	9	10	п	12	1
in	in	in	in	in	in	
1.382 1.427 1.472 1.495 1.502	1.397 1.440 1.481 1.502 1.509	1.390 1.434 1.477 1.498 1.506	1.405 1.446 1.486 1.505	1.397 1.440 1.481 1.502	1.413 1.452 1.490 1.509	1.5625-6 1.5625-8 1.5625-12 1.5625-16
1.508	1.514	1.511	1.512 1.517	1.509 1.514	1.515 1.520	1.5625-18 1.5625-20
1.445 1.490 1.535 1.557 1.565 1.571	1.460 1.502 1.544 1.564 1.571	1.452 1.496 1.539 1.561 1.568 1.574	1.468 1.508 1.548 1.568 1.574 1.580	1.460 1.502 1.544 1.564 1.571	1.475 1.515 1.553 1.571 1.578 1.582	1.625-6 1.625-8 1.625-12 1.625-16 1.625-18 1.625-20
1.507 1.552 1.597 1.620 1.627 1.633	1.522 1.565 1.606 1.627 1.634 1.639	1.515 1.558 1.602 1.623 1.630	1.530 1.571 1.611 1.630 1.637 1.642	1.522 1.565 1.606 1.627 1.634 1.639	1.538 1.577 1.615 1.634 1.640 1.645	1.6875-6 1.6875-8 1.6875-12 1.6875-16 1.6875-18 1.6875-20
1.534 1.570 1.615 1.660 1.682 1.696	1.550 1.585 1.627 1.669 1.689 1.702	1.542 1.577 1.621 1.664 1.686 1.699	1.559 1.593 1.634 1.673 1.693 1.704	1.550 1.585 1.627 1.669 1.689	1.568 1.600 1.640 1.678 1.696 1.707	1.750-5 1.750-6 1.750-8 1.750-12 1.750-16 1.750-20
1.632 1.677 1.722 1.745 1.758	1.647 1.690 1.731 1.752 1.764	1.640 1.684 1.727 1.748 1.761	1.655 1.696 1.736 1.755 1.767	1.647 1.690 1.731 1.752 1.764	1.663 1.702 1.740 1.759 1.770	1.8125-6 1.8125-8 1.8125-12 1.8125-16 1.8125-20
1.695 1.740 1.785 1.807 1.821	1.710 1.752 1.794 1.814 1.827	1.702 1.746 1.789 1.811 1.824	1.718 1.758 1.798 1.818 1.830	1.710 1.752 1.794 1.814 1.827	1.725 1.765 1.803 1.821 1.832	1.875-6 1.875-8 1.875-12 1.875-16 1.875-20
1.757 1.802 1.847 1.870 1.883	1.772 1.815 1.856 1.877 1.889	1.765 1.808 1.852 1.873 1.886	1.780 1.821 1.861 1.880 1.892	1.772 1.815 1.856 1.877 1.889	1.788 1.827 1.865 1.884 1.895	1.9375-6 1.9375-8 1.9375-12 1.9375-16 1.9375-20
1.759 1.820 1.865 1.910 1.932 1.946	1.777 1.835 1.877 1.919 1.939 1.952	1.768 1.827 1.871 1.914 1.936 1.949	1.786 1.843 1.884 1.923 1.943	1.777 1.835 1.877 1.919 1.939 1.952	1.795 1.850 1.890 1.928 1.946 1.957	2.000-4.5 2.000-6 2.000-8 2.000-12 2.000-16 2.000-20

TABLE II.A.3 Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 1B and 2B (see 30.1) 1/ - continued

	,	Minor diameter of internal threads						
Nominal size in inches and threads per inch	Series designation	Minimum Percent ² / Of Thread		<u>3</u> / Maximum	Percent ² / of Thread			
11	2	3	4	5	6			
	·	in		in				
2.0625-16	UNS	1.995	83.1	2.009	65.9			
2.125-6	600	1.945	83.1	1.975	69.3			
2.125-8	SON .	1.990	83.1	2.015	67.7			
2.125-12	120N	2.035	83.1	2.053	66.5			
2.125-16	16UN	2.057	83.8	2.071	66.5			
2.125-20	20UN	2.071	83.1	2.082	66.2			
2.1875-16	UNS	2.120	83.1	2.134	65.9			
2.250-4.5	UNC	2.009	83.5	2.045	71.0			
2.250-6	6UN	2.070	83.1	2.100	69.3			
2.500-4	UNC	2.229	83.4	2.267	71.7			
2.750-4	UNIC	2.479	83.4	2.517	71.7			
3.000-4	UNC	2.729	83.4	2.767	71.7			
3.250-4	UNC	2.979	83.4	3.017	71.7			

. .

TABLE II.A.3 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, classes 1B and 2B (see 30.1) 1/ - continued

o and incl	uding 0.33D	Above 0.330 thru 0.670		Above 0.670	thru 1.5D	Nominal size in inches
Minimm	Maximm	Minimm	Maximum	Minimm	Maximum	and threads per inch
7	8	9	10	11	12	1
in	in	in	in	in	in	
1.995	2.002	1.998	2.005	2.002	2.009	2.0625-16
1.945	1.960	1.952	1.968	1.960	1.975	2.125-6
1.990	2.002	1.996	2.008	2.002	2.015	2.125-8
2.035	2.044	2.039	2.048	2.044	2.053	2.125-12
2.057	2.064	2.061	2.068	2.064	2.071	2.125-16
2.071	2.077	2.074	2.080	2.077	2.082	2.125-20 _i
2.120	· 2.127	2.1 2 3	2.130	2.127	2.134	2.1875-16
2.009	2.027	2.018	2.036	2.027	2.045	2,250-4.5
2.070	2.085	2.077	2.093	2.085	2.100	2.250-6
2.229	2.248	2.239	2.258 -	2.248	2.267	2.500-4
2.479	2.498	2.489	2.508	2.498	2.517	2.750-4
2.729	2.748	2.739	2.758	2.748	2 .76 7	3.000–4
2.979	2.998	2.989	3.008	2.998	3 .017	3.250-4

^{1/} The differences between limits are equal to the minor diameter tolerances for lengths of engagement to and including 0.33D. However, the minimum values for lengths of engagement greater than 0.33D in sizes 0.25 in. and larger are adjusted so that the difference between limits is never less than 0.0040 in. For diameter-pitch combinations other than those given in this table, see 30.2.

Hole size limits for diameter-pitch combinations which do not appear in this table may be obtained by use of values in this table provided there is a diameter-pitch combination in the table:

(1) with the same pitch and

EXAMPLE: To obtain the values for the 4.000-8UN-1B or 2B thread, add 2.000 to values for the 2.000-8UN thread shown in the table. These values would then become: 3.865, 3.877, 3.871, 3.884, 3.877, 3.890. The percentages of thread will remain unchanged.

- 2/ Based on values as rounded off in the preceding column. 100 percent of thread = 0.758 (see 20.2.3).
- 3/ Based on a length of engagement equal to the nominal diameter.

⁽²⁾ with a diameter that is less by an integral amount than the diameter-pitch combination for which hole size values are desired. (NOTE: Values in the table for nominal sizes less than 0.25 in. cannot be used for this purpose.)

TARKE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, stands
- - Dnified and some UNS threads, class 3B (see 30.1) 1/

Onlined an	o some ores threat	15, 11055 36	(See 30.1/ <u>1</u> /				
		Minor diameter of internal threads					
Nominal size in inches and threads per inch	Series designation	Minimum	Percent ² / of Thread	<u>3</u> / Maximum	Percent ² / of Thread		
1	2	3	4	5	6		
.060-80 or No. 0-80	UNF	in 0.0465	83.1	in 0.0514	53.0		
.073-64 or No. 1-64	UNC	.0561	83.3	.0623	52.7		
.073-72 or No. 1-72	UNF	.0580	83.1	.0635	52.7		
.086-56 or No. 2-56	UNC	.0667	83.2	.0737	53.0		
.086-64 or No. 2-64	UNF	.0691	83.3	.0753	52.7		
.099-48 or No. 3-48	UNC	.0764	83.5	.0845	53.6		
.099-56 or No. 3-56	UNF	.0797	83.2	.0865	53.9		
.112-40 or No. 4-40	UNC	.0849	83.4	.0939	55.7		
.112-48 or No. 4-48	UNF		83.5	.0968	56.2		
.125-40 or No. 5-40	UNC	.0979	83.4	.1062	57.9		
.125-44 or No. 5-44	UNF	.1004	83.3	.1079	57.9		
.138-32 or No. 6-32	UNC	.1040	83.8	.1140	59.1		
.138-40 or No. 6-40	UNF	.1110	83.1	.1186	59.7		
.164-32 or No. 8-32	UNC	.1300	83.8	.1309	61.8		
.164-36 or No. 8-36		.1340	83.1	.1416	62.1		
.190-24 or No. 10-24	UNC	.1450	83.1	.1555	63.7		
.190-32 or No. 10-32	UNF	.1560	83.8	.1641	63.8		
.216-24 or No. 12-24	UNC	.1710	83.1	.1807	65.2		
.216-28 or No. 12-28	UNF	.1770	84.1	.1857	65.3		
.216-32 or No. 12-32	UNEP	.1820	83.8	.1895	65.3		
. 250-20	UNC	.1960	83.1	.2067	66.7		
. 250-28	UNF	.2110	84.1	.2190	66.8		
. 250-32	UNEF	.2160	83.8	.2229	66.8		
. 250-36	UNS	.2200	83.1	.2258	67.1		
.3125-18	UNC	. 2520	83.8	.2630	68.6		
.3125-20	20UN	. 2580	83.9	.2680	68.5		
.3125-24	UNF	. 2670	84.1	.2754	68.5		
.3125-28	28UN	. 2740	83.0	.2807	68.5		
.3125-32	UNEF	. 2790	82.5	.2847	68.5		
.3125-36	UNS	. 2820	84.5	.2877	68.7		
.375-16	UNC	.3070	83.6	.3182	70.0		
.375-20	20UN	.3210	83.1	.3297	69.7		
.375-24	UNF	.3300	83.1	.3372	69.8		
.375-28	28UN	.3360	84.1	.3426	69.8		
.375-32	UNEF	.3410	83.8	.3469	69.2		
.375-36	UNS	.3450	83.1	.3501	69.0		
. 4375–14	UNC	.3600	83.5	.3717	70.9		
. 4375–16	16UN	.3700	83.1	.3800	70.8		
. 4375–20	UNF	.3830	83.9	.3916	70.7		
. 4375–28	UNEF	.3990	83.0	.4051	69.8		
. 4375–32	3ZUN	.4040	82.5	.4094	69.2		

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (see 30.1) 1/ - continued

·	<u></u>		NS threads, cl			,
			different len			,λ.
To and inclu	ncluding 0.33D Above 0.33D thru 0.6		thru 0.67D	Above 0.67D thru 1.5D		Nominal size in inches and threads per inch
Minimum	Maximum	Minimum	Maximm	Minimm	Maximum	
7	8	9	10	11	12	1
in	in	in	in	in	in	.060-80 or No. 0-80
0.0465	0.0500	0.0479	0.0514	0.0479	0.0514	
.0561	.0599	.0580	.0618	.0585	.0623	.073-64 or No. 1-64
.0580	.0613	.0596	.0629	.0602	.0635	.073-72 or No. 1-72
.0667	.0705	.0686	.0724	.0699	.0737	.086-56 or No. 2-56
.0691	.0724	.0707	.0740	.0720	.0753	.086-64 or No. 2-64
.0764	.0804	.0785	.0825	.0805	.0845	.099-48 or No. 3-48
.0797	.0831	.0814	.0848		.0865	.099-56 or No. 3-56
. 0849	.0894	.0871	.0916	.0894	.0939	.112-40 or No. 4-40
. 0894	.0931	.0912	.0949	.0931	.0968	.112-48 or No. 4-48
.0979	.1020	.1000	.1041	.1021	.1062	.125-40 or No. 5-40
.1004	.1041	.1023	.1060	.1042	.1079	.125-44 or No. 5-44
.1040	.1091	.1066	.1115	.1091	.1140	.138-32 or No. 6-32
.1110	.1148	.1128	.1167	.1147	.1186	.138-40 or No. 6-40
.1300	.1345	.1324	.1367	.1346	.1389	.164-32 or No. 8-32
.1340	.1377	.1359	.1397	.1378	.1416	.164-36 or No. 8-36
.1450	.1502	.1475	.1528	.1502	.1555	.190-24 or No. 10-24
.1560	.1601	.1582	.1621	.1602	.1641	.190-32 or No. 10-32
.1710	.1758	.1733	.1782	.1758	.1807	.216-24 or No. 12-24
.1770	.1815	.1794	.1836	.1815	.1857	.216-28 or No. 12-28
.1820	.1858	.1841	.1877	. 1859	.1895	.216-32 or No. 12-32
.1960	.2013	.1986	.2040	.2013	.2067	.250-20
.2110	.2152	.2131	.2171	.2150	.2190	.250-28
.2160 .2200 -	.2196	.2172	.2212	.2189	.2229	.250-32 .250-36
. 2520	.2577	.2551	.2604	.2577	.2630	.3125-18
. 2580	.2632	.2608	.2656	.2632	.2680	.3125-20
. 2670	.2714	.2694	.2734	.2714	.2754	.3125-24
. 2740	.2772	.2749	.2789	.2767	.2807	.3125-28
. 2790	.2817	.2792	.2832	.2807	.2847	.3125-32
. 2820	.2850	.2823	.2863	.2837	.2877	.3125-36
.3070 .3210 .3300 .3360 .3410 .3450	.3127 .3253 .3336 .3395 .3441 .3475	.3101 .3231 .3314 .3370 .3415	.3155 .3275 .3354 .3410 .3455 .3490	.3128 .3253 .3332 .3386 .3429 .3461	.3182 .3297 .3372 .3426 .3469 .3501	.375-16 .375-20 .375-24 .375-28 .375-32 .375-36
.3600	.3660	.3630	.3688	.3659	.3717	.4375-14
.3700	.3749	.3723	.3774	.3749	.3800	.4375-16
.3830	.3875	.3855	.3896	.3875	.3916	.4375-20
.3990	.4020	.3995	.4035	.4011	.4051	.4375-28
.4040	.4066	.4040	.4080	.4054	.4094	.4375-32

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (see 30.1) 1/2 - continued

Unified a	nd some UNS thre	ads, class 38	(see 30.1) <u>1</u> /	- continued			
		Minor diameter of internal threads					
Nominal size in inches and threads per inch	Series designation	Minimm	Percent ² / of Thread	3/ Maximum	Percent ² / of Thread		
1	2	3	4	5	6		
		in		in	1		
.500-12 .500-13 .500-16 .500-20 .500-28 .500-32	UNS UNC 16UN UNF UNEP 3ZUN	.4100 .4170 .4320 .4460 .4610 .4660	83.1 83.8 83.1 84.1 84.1	.4223 .4284 .4419 .4537 .4676	71.8 71.7 71.6 71.3 69.8 69.2		
5625-12 .5625-16 .5625-18 .5625-20 .5625-24 .5625-28 .5625-32	UNC 16UN UNF 20UN UNDP 28UN 32UN	.4720 .4950 .5020 .5080 .5170 .5240	83.6 83.1 83.8 83.9 84.1 83.0 82.5	.4843 .5040 .5106 .5162 .5244 .5301	72.2 72.1 71.9 71.3 70.4 69.8 69.2		
.625-11 .625-12 .625-16 .625-18 .625-20 .625-24 .625-28 .625-32	UNC 1 ZUN 16UN UNF 20UN UNEF 2BUN 3 ZUN	.5270 .5350 .5570 .5650 .5710 .5800 .5860	83.0 83.1 83.8 83.1 83.1 83.1 84.1	.5391 .5463 .5662 .5730 .5787 .5869 .5926	72.7 72.7 72.4 72.1 71.3 70.4 69.8 69.2		
.6875-12 .6875-16 .6875-18 .6875-20 .6875-24 .6875-28 .6875-32	120N 160N UNS 200N UNEP 280N 320N	.5970 .6200 .6270 .6330 .6420 .6490	83.6 83.1 83.8 83.9 84.1 83.0 82.5	.6085 .6284 .6355 .6412 .6494 .6551	73.0 72.8 72.1 71.3 70.4 69.8 69.2		
.750-10 .750-12 .750-16 .750-18 .750-20 .750-28 .750-32	UNC 12UN UNF UNS UNEF 28UN 32UN	.6420 .6600 .6820 .6900 .6960 .7110	83.1 83.8 83.1 83.1 84.1 83.6	.6545 .6707 .6908 .6980 .7037 .7176	73.5 73.3 72.9 72.1 71.3 69.8 69.2		
.8125-12 .8125-16 .8125-18 .8125-20 .8125-28 .8125-32	120N 160N UNS UNS UNS 280N 320N	.7220 .7450 .7520 .7580 .7740 .7790	83.6 83.1 83.8 83.9 83.0 82.5	.7329 .7533 .7605 .7662 .7801 .7844	73.5 72.9 72.1 71.3 69.8 69.2		
.875-9 .875-12 .875-14 .875-16 .875-18 .875-20 .875-28	UNC 12UN UNF 16UN UNS UNEF 28UN 37UN	.7550 .7850 .7980 .8070 .8150 .8210 .8360	83.1 83.0 83.8 83.1 83.1 84.1 83.8	.7681 .7952 .8068 .8158 .8230 .8287 .8426	74.1 73.7 73.5 72.9 72.1 71.3 69.8 69.2		
.9375-12 .9375-16 .9375-20 .9375-28 .9375-32	12UN 16UN UNEP 28UN 32UN	.8470 .8700 .8830 .8990 .9040	83.6 83.1 83.9 83.0 82.5	.8575 .8783 .8912 .9051 .9094	73.9 72.9 71.3 69.8 69.2		

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (see 30.1) 1/ - continued

	Unified and some UNS threads, class 3B (see 30.1) 1/ - continued					
Records	ended hole si	ze limits for	different le	ngths of enga	gement	١.
To and incl	uding 0.33D	Above 0.33D	thru 0.670	Above 0.67	D thru 1.5D	Nominal size in inches
Minimo	Maximum	Minimum	Maximum	Minimm	Maximum	and threads per inch
7	8	9	10	11	12	1
in	in	in	in	in	ín	
.4100	-4161	-4129	.4192	.4160	.4223	.500-12
. 41.70 - 4320	.4225	-4196	.4254	. 4226	- 4284	.500-13
.4460	.4371 .4498	.4347	.4395 .4517	.4371	-4419 .I	.500-16
-4610	.4645	-4620	.4660	.4497 .4636	.4537 .4676	.500-20
- 4660	.4691	.4665	.4705	.4679	.4719	.500-28 .500-32
- 4720	.4783	.4753	.4813	. 4783	.4843	.5625–12
- 4950	-4994	- 4971	.5017	. 4994	.5040	.5625-16
.5020	.5065	-5045	-5086	.5065	.5106	.5625-18
- 5080	.5123	.5102	-5142	.5122	.5162	.5625~20
.5170	.5209	.5186	-5226	.5204	.5244	.5625–24
. 5240	.5270	. 5245	- 5285	. 5261	.5301	.5625-28
.5290	.5316	.5290	.5330	.5304	.5344	.5625–32
. 5270	.5328	-5298	.5360	.5329	.5391	.625–11
.5350	-5406	-5377	.5435	.5405	.5463	.625-12
. 5570	-5617	-5596	.5640	.5618	.5662	.625-16
. 5650	.5690	.5669	.5710	-568 9	.5730	.625-18
.5710	-5748	.5727	.5767	.5747	.5787	.625-20
5800	.5834	-5611	-5851	.5829	.5869	.625-24
- 5860	-5895	-5870	.5910	. 5886	.5926	.625-28
.5910	.5941	-5915	-5955	.5929	.5969	.625-32
. 5970	.6029	.6001	. 6057	.6029	.6085	.6875–12
.6200	-6241	-6219	-6262	-6241	.6284	.6875~16
.6270	.6315	.6294	.6335	.6314	.6355	.6875-18
.6330 .6420	.6373	.6352	.6392	.6372	.6412	.6875-20
.6490	.6459 .6520	.6436 .6495	. 6476 . 6535	.6454 .6511	.6494 .6551	.6875-24 .6875-28
.6540	.6566	.6540	.6580	.6554	.6594	.6875–32
.6420	.6481	.6449	-6513	.6481	.6545	.750-10
6600	.6652	.6626	.6680	.6653	.6707	.750-12
. 6820	.6866	-6844	.6887	.6865	.6908	.750-16
. 6900	.6940	. 6919	- 6960	.6939	.6980	.750-18
6960	.6998	.6977	.7017	6997	.7037	.750-20
7110	.7145	.7120	.7160	.7136	.7176	.750-28
.7160	.7191	.7165	-7205	.7179	.7219	.750-32
.7220	.7276	. 7250	.7303	.7276	.7329	.8125-12
.7450	.7491	.7469	.7512	.7490	.7533	.8125-16
.7520	.7565	.7544	-7585	.7564	.7605	.8125-18
7580	-7623	.7602	.7642	.7622	.7662	.8125-20
.7740	.7770	.7745	.7785	.7761	.7801	.8125-28
-7790	.7816	-7790	.7830	-7804	.7844	.8125-32
.7550	.7614	-7580	.7647	.7614	.7681	.875-9
.7850	.7 9 00 (-7874	-7926	.7900	.7952	.875-12
.7980	.8022	.8000	.8045	.8023	8068	.875–14
.8070	8116	. 8094	.8137	.8115	.8158	.875–16
.8150	B190	.8169	.8210	.8189	.8230	.875–18
.8210	.8248	.8227	.8267	.8247	.8287	.875-20
.8360	.8395	-8370	.8410	.8386	.8426	.875–28
.8410	-8441	.8415	.8455	.8429	.8469	.875-32
.8470	.8524	.84 9 9	-8550	.B524	.8575	.9375-12
.8700	.8741	.8719	.8762	.8740	.8783	-9375-16
.8830	-8873	.8852	.8892	.8872	.8912	.9375-20
.8990	.9020	.8995	.9035	.9011	.9051	.9375-28
.9040	-9066	.9040	.9080	.9054	.9094	.9375-32

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 38 (see 30.1) 1/ - continued

Unified and	some UNS threa	ds, class 38	(see 30.1)	1/ - continue	≈ d
		Mino	r diameter of	internal thre	ads .
Nominal size in inches and threads per inch	Series designation	Minimo	Percent ² / of Thread	3/ Maximum	Percent ² / of Thread
1	2	3	4	5	6
		in		in	
1.000-8 1.000-12 1.000-14 1.000-16 1.000-18 1.000-20 1.000-28 1.000-32	UNC UNF UNS 16UN UNS UNEP 28UN 3ZUI	.8650 .9100 .9230 .9320 .9400 .9460 .9610	83.1 83.1 83.0 83.8 83.1 83.1 84.1 83.8	.8797 .9198 .9315 .9408 .9480 .9537 .9676	74.1 74.1 73.8 72.9 72.1 71.3 69.8 69.2
1.0625-8 1.0625-12 1.0625-14 1.0625-16 1.0625-18 1.0625-20 1.0625-28	BUN 12UN UNS 1GUN UNEP 20UN 2BUN	.9270 .9720 .9850 .9950 1.0020 1.0080 1.0240	83.4 83.6 83.5 83.1 83.8 83.9	.9422 .9823 .9940 1.0033 1.0105 1.0162	74.1 74.1 73.8 72.9 72.1 71.3 69.8
1.125-7 1.125-8 1.125-12 1.125-16 1.125-18 1.125-20 1.125-28	UNC SUN UNF 16UN UNEF 20UN 28UN	0.9700 .9900 1.0350 1.0570 1.0650 1.0710 1.0860	83.5 83.1 83.1 83.8 83.1 83.1	0.9875 1.0047 1.044B 1.0658 1.0730 1.0787	74.1 74.1 74.1 72.9 72.1 71.3 69.8
1.1875-8 1.1875-12 1.1875-16 1.1875-18 1.1875-20 1.1875-28	BUN 1.20N 1.60N UNEF 20UN 28UN	1.0520 1.0970 1.1200 1.1270 1.1330 1.1490	83.4 83.6 83.1 83.8 83.9 83.0	1.0672 1.1073 1.1283 1.1355 1.1412 1.1551	74.1 74.1 72.9 72.1 71.3 69.8
1.250-7 1.250-8 1.250-12 1.250-16 1.250-18 1.250-20 1.250-28	UNC BUN UNF 16UN UNEF 20UN 2BUN	1.0950 1.1150 1.1600 1.1820 1.1900 1.1960 1.2110	83.5 63.1 83.1 83.8 83.1 83.1	1.1125 1.1297 1.1698 1.1908 1.1980 1.2037	74.1 · 74.1 74.1 72.9 72.1 71.3 69.8
1,3125-8 1,3125-12 1,3125-16 1,3125-18 1,3125-20 1,3125-28	BUN 1.71M 1.61M UNEF 20UN 28UN	1.1770 1.2220 1.2450 1.2520 1.2528 1.2740	83.4 83.6 83.1 83.9 83.9	1.1922 1.2323 1.2533 1.2605 1.2662 1.2801	74.1 74.1 72.9 72.1 71.3 69.8
1.375-6 1.375-8 1.375-12 1.375-16 1.375-18 1.375-20 1.375-28	UNC SUN UNF 16UN UNEF 20UN 28UN	1.1950 1.2400 1.2850 1.3070 1.3150 1.3210 1.3360	83.1 83.1 83.8 83.1 83.1 83.1	1.2146 1.2547 1.2948 1.3158 1.3230 1.3287 1.3426	74.1 74.1 74.1 72.9 72.1 71.3 69.8
1.4375-6 1.4375-8 1.4375-12 1.4375-16 1.4375-18 1.4375-20 1.4375-28	GUN BUN 1 ZUN 1 GUN UNEF 20UN 28UN	1.2570 1.3020 1.3470 1.3700 1.3770 1.3830 1.3990	83.4 83.4 83.6 83.1 83.8 83.9	1.2771 1.3172 1.3573 1.3783 1.3855 1.3912 1.4051	74.1 74.1 74.1 72.9 72.1 71.3 69.8

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (see 30.1) 1/ - continued

Perior	Recommended hole size limits for different lengths of engagement						
	luding 0.33D		thru 0.670		D thru 1.5D	Nominal size in inches	
Ninimm	Maximum	Minima	Maximum	Minimum	Maximum	and threads per inch	
7	8	9	10	11	12	1	
in .8650 .9100 .9230 .9320 .9400	in .8722 .9148 .9271 .9366 .9440	in .8684 .9123 .9249 .9344 .9419	in .8759 .9173 .9293 .9387 .9460	in .8722 .9148 .9271 .9365 .9439	in .8797 .9198 .9315 .9468 .9480	1.000-8 1.000-12 1.000-14 1.000-16 1.000-18	
.9460 .9610 .9660	.9498 .9645 .9691	.9477 .9620 .9665	.9517 .9660 .9705	.9497 .9636 .9679	.9537 .9676 .9719	1.000-20 1.000-28 1.000-32	
.9720 .9850 .9950 1.0020 1.0080 1.0240	.9773 .9896 .9991 1.0065 1.0123	.9748 .9874 .9865 1.0044 1.0102	.9364 .9798 .9918 1.0012 1.0085 1.0142	.9347 .9773 .9896 .9990 1.0064 1.0122 1.0261	.9823 .9940 1.0033 1.0105 1.0162 1.0301	1.0625-8 1.0625-12 1.0625-14 1.0625-16 1.0625-18 1.0625-20 1.0625-28	
0.9700 .9900 1.0350 1.0570 1.0650 1.0710	0.9790 -9972 1.0398 1.0616 1.0690 1.0748 1.0895	0.9747 .9934 1.0373 1.0594 1.0669 1.0727 1.0870	0.9833 1.0009 1.0423 1.0637 1.0710 1.0767	0.9789 .9972 1.0398 1.0615 1.0689 1.0747	0.9875 1.0047 1.0448 1.0658 1.0730 1.0787	1.125-7 1.125-8 1.125-12 1.125-16 1.125-18' 1.125-20 1.125-28	
1.0520 1.0970 1.1200 1.1270 1.1330 1.1490	1.0597 1.1023 1.1241 1.1315 1.1373 1.1520	1.0559 1.0998 1.1219 1.1294 1.1352 1.1495	1.0634 1.1048 1.1262 1.1335 1.1392 1.1535	1.0597 1.1023 1.1240 1.1314 1.1372 1.1511	1.0672 1.1073 1.1283 1.1355 1.1412 1.1551	1.1875-8 1.1875-12 1.1875-16 1.1875-18 1.1875-20 1.1875-28	
1.0950 1.1150 1.1600 1.1820 1.1900 1.1960 1.2110	1.1040 1.1222 1.1648 1.1866 1.1940 1.1998 1.2145	1.0997 1.1184 1.1623 1.1844 1.1919 1.1977 1.2120	1.1083 1.1259 1.1673 1.1887 1.1960 1.2017 1.2160	1.1039 1.1222 1.1648 1.1865 1.1939 1.1997 1.2136	1.1125 1.1297 1.1698 1.1908 1.1980 1.2037 1.2176	1.250-7 1.250-8 1.250-12 1.250-16 1.250-18 1.250-20 1.250-28	
1.1770 1.2220 1.2450 1.2520 1.2580 1.2740	1.1847 1.2273 1.2491 1.2565 1.2623 1.2770	1.1809 1.2248 1.2469 1.2544 1.2602 1.2745	1.1884 1.2298 1.2512 1.2585 1.2642 1.2785	1.1847 1.2273 1.2490 1.2564 1.2622 1.2761	1.1922 1.2323 1.2533 1.2605 1.2662 1.2801	1.3125-8 1.3125-12 1.3125-16 1.3125-18 1.3125-20 1.3125-28	
1.1950 1.2400 1.2850 1.3070 1.3150 1.3210 1.3360	1.2046 1.2472 1.2898 1.3116 1.3190 1.3248 1.3395	1.1996 1.2434 1.2873 1.3094 1.3169 1.3227 1.3370	1.2096 1.2509 1.2923 1.3137 1.3210 1.3267 1.3410	1.2046 1.2472 1.2898 1.3115 1.3189 1.3247 1.3386	1.2146 1.2547 1.2948 1.3158 1.3230 1.3287 1.3426	1.375-6 1.375-8 1.375-12 1.375-16 1.375-18 1.375-20 1.375-28	
1.2570 1.3020 1.3470 1.3700 1.3770 1.3830 1.3990	1.2671 1.3097 1.3523 1.3741 1.3815 1.3873 1.4020	1.2621 1.3059 1.3498 1.3719 1.3794 1.3852 1.3995	1.2721 1.3134 1.3548 1.3762 1.3835 1.3892 1.4035	1.2671 1.3097 1.3523 1.3740 1.3814 1.3872 1.4011	1.2771 1.3172 1.3573 1.3783 1.3855 1.3912 1.4051	1.4375-6 1.4375-8 1.4375-12 1.4375-16 1.4375-18 1.4375-20 1.4375-28	

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 38 (see 30.1) 1/ - continued

	nd some UNS thu		- (DCC DUIL	A - COULT	nuea
The second second		Mino	or diameter of	internal three	ads
Nominal size in inches and threads per inch	Series designation	Minimum	Percent ² /	3/ 'Maximum	Percent ² /
		 	Thread		Thread
1	2	3	4 -	5	6
		in		in	
1.500-6	UNC	1.3200	83.1	1.3396	74.1
1.500-8	SEUN!	1.3650	83.1	1.3797	74.1
1.500-12	UNE	1.4100	83.1	1.4198	74.1
1.500-16	160N	1.4320	B3.8	1.4408	72.9
1.500-18	UNEP	1.4400	B3.1	1.4480	72.1
1.500-20	20UN	1.4460	83.1	1.4537	71.3
1.500-28	28UN	1.4610	84.1	1.4676	69.8
1.5625-6	60N	1.3820	83.4	1.4021	74.1
1.5625-8	BUN	1.4270	83.4	1.4422	74.1
1.5625-12	120N	1.4720	83.6	1.4823	74.1
1.5625-16	16UR	1.4950	83.1	1.5033	72.9
1.5625-18	UNEP	1.5020	83.8	1.5105	72.1
1.5625-20	20UN	1.5080	83.9	1.5162	71.3
1.625-6	60N	1.4450	83.1	1.4646	74.1
1.625-8	SUN	1.4900	83.1	1.5047	74.1
1.625-12	120N	1.5350	83.1	1.5448	74.1
1.625-16	160N	1.5570	B3.0	1.5658	72.9
1.625-18	UNEEF	1.5650	83.1	1.5730	72.1
1.625-20	200N	1.5710	83.1	1.5787	71.3
1.6875-6	60N	1.5070	B3.4	1.5271	74.1
1.6875-8	BUN	1.5520	83.4	1.5672	74.1
1.6875-12	I 2UN	1.5970	83.6	1.6073	74.1
1.6875-16	161N	1.6200	83.1	1.6283	72.9
1.6875-18	UNEF	1.6270	83.8	1.6355	72.1
1.6875-20	20UN	1.6330	83.9	1.6412	71.3
1.750-5	UNC	1.5340	83.1	1.5575	74.1
1.750-6	6UN	1.5700	83.1	1.5896	74.1
1.750-8	BUN	1.6150	83.1	1.6297	74.1
1.750-12	1.2UN	1.6600	83.1	1.6698	74.1
1.750-16	16UN	1.6820	83.8	1.6908	72.9
1.750-20	20UN	1.6960	83.1	1.7037	71.3
1.8125-6	GUN	1.6320	83.4	1.6521	74.1
1.8125-8	BUN	1.6770	83.4	1.6922	74.1
1.8126-12	12UN	1.7220	83.6	1.7323	74.1
1.8125-16	16UN	1.7450	83.1	1.7533	72.9
1.8125-20	20UN	1.7580	83.9	1.7662	71.3
1.8125~6	GUN	1.6950	83.1	1.7146	74.1
1.8125~8	8UN	1.7400	83.1	1.7547	74.1
1.8125~12	12UN	1.7850	83.1	1.7948	74.1
1.8125-16	1608	1.8070	83.8	1.8158	72.9
1.8125~20	20UN	1.8210	83.1	1.8287	71.3
1.9375-6	€N.	1.7570	83.4	1.7771	74.1
1.9375-B	BUN	1.8020	83.4	1.8172	74.1
1.9375-12	1200	1.8470	83.6	1.8573	74.1
1.9375-16	16UN	1.8700	83.1	1.8783	72.9
1.9375-20	20UN	1.8830	B3.9	1.8912	71.3
2.000-4.5	UNC	1.7590	83.5	1.7861	74.1
2.000-6	6UN	1.8200	83.1	1.8396	74.1
2.000-8	BUN	1.8650	83.1	1.8797	74.1
2.000-12	1ZUN	1.9100	83.1	1.9198	74.1
2.000-16	1600	1.9320	83.6	1.9408	72.9
2,000-20	20121	1.9460	83.1	1.9537	71.3
2.0625~16	uns	1.9950	83.1	2.0033	72.9

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 3B (see 30.1) 1/ - continued

	onfiled and some one direads, class in (see 30.1) 1/ - continued					
_ Recour	ended hole s	ize limits for	different le	ngths of enga	gement	
To and incl	uding 0.33D	Above 0.330	thru 0.67D	Above 0.67	D thru 1.5D	Nominal size in inches and threads per inch
Minima	Maximum	Minimum	Maximum	Minimum	Maximum	dia didoct per light
7	8	9	10	11	12	1
in	in	in	in	in	in	
1.3200	1.3296	1.3246	1.3346	1.3296	1.3396	1.500-6
1.3650	1.3722	1.3684	1.3759	1.3722	1.3797	1.500-8
1.4100	1.4148	1.4123	1.4173	1.4148	1.4198	1.500-12
1.4320 1.4400	1.4366	1.4344	1.4387	1.4365	1.4408	1.500-16
1.4460	1.4440 1.4498	1.4419 1.4477	1.4460 1.4517	1.4439	1.4480	1.500-18
1.4610	1.4645	1.4620	1.4660	1.4497 1.4636	1.4537 1.4676	1.500-20 1.500-28
		<u> </u>	}	}	25.107.5	1.500 20
1.3820	1.3921	1.3871	1.3971	1.3921	1.4021	1.5625-6
1.4270	1.4347	1.4309	1.4384	1.4347	1.4422	1.5625-8
1:4720	1.4773	1.4748	1.4798	1.4773	1.4823	1.5625-12
1.4950	1-4991	1.4969	1.5012	1.4990	1.5033	1.5625-16
1.5020	1.5065	1.5044	1.5085	1.5064	1.5105	1.5625-18
1.5080	1.5123	1.5102	1.5142	1.5122	1.5162	1.5625-20
1.4450	1.4546	1.4496	1.4596	1.4546	1.4646	1.625-6
1.4900	1.4972	1.4934	1.5009	1.4972	1.5047	1.625-8
1.5350	1.5398	1.5373	1.5423	1.5398	1.5448	1.625-12
. 1.5570	1.5616	1.5594	1.5637	1.5615	1.5658	1.625-16
1.5650	1.5690	1.5669	1.5710	1.5689	1.5730	1.625-18
1.5710	1.5748	1.5727	1.5767	1.5747	1.5787	1.625-20
1.5070	1.5171	1.5121	1.5221	1.5171	1.5271	1.6875-6
1.5520	1.5597	1.5559	1.5634	1.5597	1.5672	1.6875-8
1.5970	1.6023	1.5998	1.6048	1.6023	1.6073	1.6875-12
1.6200	1.6241	1.6219	1.6262	1.6240	1.6283	1.6875-16
1.6270	1.6315	1.6294	1.6335	1.6314	1.6355	1.6875-18
1.6330	1.6373	1.6352	1.6392	1.6372	1.6412	1.6875-20
1.5340	1.5455	1.5395	1.5515	1.5455	1.5575	1.750-5
1.5700	1.5796	1.5746	1.5846	1.5796	1.5896	1.750-6
1.6150	1.6222	1.6184	1.6259	1.6222	1.6297	1.750−8
1.6600	1.6648	1.6623	1.6673	1.6648	1.6698	1.750-12
1.6820 1.6960	1.6866 1.6998	1.6844	1.6887 1.7017	1.6865 1.6997	1.6908 1.7037	1.750-16 1.750-20
	1.0350	1.0377	1.,01,	1.0957	1.7037	
1.6320	1.6421	1.6371	1.6471	1.6421	1.6521	1.8125-6
1.6770	1.6847	1.6809	1.6884	1.6847	1.6922	1.8125-8
1.7220	1.7273	1.7248	1.7298	1.7273	1.7323	1.8125-12
1.7450	1.7491 1.7623	1.7469	1.7512	1.7490 1.7622	1.7533	1.8125-16 1.8125-20
1.7580	1.7023	1.7602	1.7642	1.7022	1.7662	1.6225-20
1.6950	1.7046	1.6996	1.7096	1.7046	1.7146	1.875-6
1.7400	1.7472	1.7434	1.7509	1.7472	1.7547	1.875-8
1.7850	1.7898	1.7873	1.7923	1.7098	1.7948	1.875-12
1.8070	1.8116	1.8094	1.8137	1.8115	1.8158	1.875-16
1.8210	1.8248	1.8227	1.8267	1.8247	1.8287	1.875-20
1.7570	1.7671	1.7621	1.7721	1.7671	1.7771	1.9375-6
1.8020	1.8097	1.8059	1.8134	1.8097	1.8172	1.9375-8
1.8470	1.8523	1.8498	1.8548	1.8523	1.8573	1.9375-12
1.8700	1.8741	1.8719	1.8762	1.8740	1.8783	1.9375-16
1.8830	1.8873	1.8852	1.8892	1.8872	1.8912	1.9375-20
1.7590	1.7727	1.7661	1.7794	1.7728	1.7861	2.000-4.5
1.8200	1.8296	1.8246	1.8346	1.8296	1.8396	2.000-6
1.8650	1.8722	1.8684	1.8759	1.8722	1.8797	2.000-B
1.9100	1.9148	1.9123	1.9173	1.9148	1.9198	2.000-12
1.9320 1.9460	1.9366	1.9344	1.9387 1.9517	1.9365	1.9408 1.9537	2.000-16 2.000-20
1,2400	1.9498	1,7477	1.571	1.747	1.533/	2.000-20
1.9950	1.9991	1.9969	2.0012	1.9990	2.0033	2.0625-16
	L	_	L	<u> </u>		<u> </u>

TABLE II.A.4 - Recommended hole size limits before threading for different lengths of engagement, standard Unified and some UNS threads, class 38 (see 30.1) 1/ - continued

		Mino	r diameter of	internal thre	ads
Nominal size in inches and threads per inch	Series designation	Minimum	Percent ² / of Thread	<u>3</u> / Maximum	Percent ² / of Thread
1	2	3	4	5	` 6
		in		in .	
2.125-6 2.125-8 2.125-12 2.125-16 2.125-20 2.1875-16	SUN SUN 1 ZUN 1 SUN 20UN UNS	1.9450 1.9900 2.0350 2.0570 2.0710 2.1200	83.1 83.1 83.8 83.1 83.1	1.9646 2.0047 2.0448 2.0658 2.0787 2.1283	74.1 74.1 74.1 72.9 71.3 72.9
2.250-6 2.500-4 2.750-4 3.000-4 3.250-4	GEN UNC UNC UNC UNC	2.0700 2.2290 2.4790 2.7290 2.9790	83.1 83.4 83.4 83.4 83.4	2.0896 2.2594 2.5094 2.7594 3.0094	74.1 74.1 74.1 74.1 74.1

TABLE II.A.4 = Recommended hole size limits before threading for different lengths of engagement, standard Unified and some DAS threads, class 3B (see 30.1) 1/ - continued

To and incl	uding 0.330	Above 0.33	thru 0.670	Above 0.671	thru 1,50	Nominal size in inches
Hinima	Maximu	Minimm	Maximum	Minimum	Naxima	and threads per inch
7	8	9	10	n	12	1
ai	in	in	in	in	in	
1.9450	1.9546	1.9496	1.9596	1.9546	1.9646	2.125-6
1.9900	1.9972	1.9934	2.0009	1.9972	2_0047	2-125-8
2.0350	2.0398	2.0373	2.0423	2.0398	2.044B	2.125-12
2.0570	2.0616	2.0594	2.0637	2.0615	2.0658	2.125-16
2.0710	2.0748	2.0727	2.0767	2.0747	2.0787	2.125-20
2.1200	2.1241	2.1219	2.1262	2.1240	2.1293	2.1875-16
2.0090	2.0227	2.0161	2.0294	2.0228	2.0361	2.250-4.5
2.0700	2.0796	2.0746	2.0846	2.0796	2.0896	2.250-6
2.2290	2.2444	2.2369	2.2519	2.2444	2.2594	2.500-4
2.4790	2.4944	2.4869	2.5019	2.4944	2.5094	2.750-4
2.7290	2.7444	2.7369	2.7519	2.7444	2.7594	3.000~4
2.9790	2.9944	2.9869	3.0039	2.9944	3.0094	3.250-4

^{1/} The differences between limits are equal to the minor dismeter tolerances for lengths of engagement to and including 0.330. However, the minimum values for lengths of engagement greater than 0.330 in sizes 0.25 in. and larger are adjusted so that the difference between limits is never less than 0.0040 in. For dismeterpitch combinations other than those given in this table, see 30.2.

Hole size limits for dismeter-pitch combinations which do not appear in this table may be obtained by use of values in this table provided there is a dismeter-pitch combination in the table:

(1) with the same pitch and

ECREPTE: To obtain the values for the 4.000-8CR-38 thread, add 2.000 to values for the 2.000-8CR thread shown in the table. These values would then become: 3.8650, 3.8722, 3.8684, 3.8759, 3.8722, 3.8797. The percentages of thread will remain unchanged.

⁽²⁾ with a diameter that is less by an integral amount than the diameter of the diameter-pitch combination for which hole size values are desired. (NOTE: Values in the table for nominal sizes less than 1.00 in, cannot be used for this purpose.)

^{2/} Based on values as rounded off in the preceding column. 100 percent of thread = 0.75H (see 20.2.3).

^{3/} Based on length of engagement equal to the nominal diameter.

APPENDIX B

DESIGN OF UNIFIED SCREW THREADS

40. Scope. This appendix provides guidelines which may be used in the design of unified screw threads for threaded parts. It is not a mandatory part of the standard. The information contained herein is intended for guidance only. It supplements information contained in Appendix B of ASME Bl.1-1989.

50. General.

- 50.1 Introduction. In general, any given problem in thread design may be susceptible to several more or less satisfactory solutions based on the preliminary selection of certain elements of the design and the proper adjustment of the other elements. In other words, thread design is to a large extent empirical and is partially based on previous experience with similar designs and the judgment of the designer. Accordingly, it is not practicable to present a definite system of approach to the design of a threaded assembly but merely to present a discussion of various design factors.
- 50.2 Factor relationships. The interrelation of length of engagement, minimum major diameter of the external thread, maximum minor diameter of the internal thread, and the strength of the assembled thread needs to be understood and carefully considered in order to produce the optimum design of a special thread. It is not economical to use either a length of thread engagement which is longer than required or shorter than that which will develop the full strength of the externally threaded member. Other factors, such as control of tap breakage, proper seating of a threaded part on a shoulder, the prevention of cross threading, conditions of loading when the assembled parts are not concentric, and possible collapse of a hollow externally threaded member, require careful analysis and adjustment of the design with respect to selection of the diameter-pitch combination, the class of thread, length of engagement, and major and minor diameter tolerances.
- 50.3 Thread fit considerations. A close fitting thread assembly under some conditions may fail, whereas the cause of failure may be eliminated by providing a looser fit. A cap screw that seats only on one side of the bearing surface under the head may break off when the screw is tightened. When a screw has a large bearing surface under the head or when the head must be square with a projecting pin, sufficient pitch diameter clearance must be provided to allow for any out-of-squareness of the screw axis with the bearing surface under the head. Thus, as large a pitch diameter tolerance as possible, together with providing proper tolerances on squareness of face with the thread axis where seating is required, may avoid the necessity for specifying a heat treated bolt.

50.4 Standard threads. Use of standard threads is required in accordance with 4.1. Information on preferred sizes and classes for special threads appears in 5.1 and 5.2. Whenever practicable, lengths of engagement for coarse, fine, 4, 6 and 8 thread series should be between 5 pitches and 1 1/2 diameters; for all other series they should be between 5 and 15 pitches. Application of these principles will help keep costs of manufacture and gaging to a minimum.

60. Eccentricity of assembly and cross threading.

Note: Table 6 of ASME Bl.1-1989 includes tables of 0.375H, 0.75H and H.

In assembly and use, the combined tolerances and allowances on both mating parts should not allow threads to disengage on one side when assembly is eccentric. The axis of the internal thread can be displaced radially from coincidence with the axis of the external thread by an amount equal to the sum of the pitch diameter tolerances and the allowance. This radial displacement may be sufficient so that the flank contact is entirely on one side and on the opposite side the crest of the external thread will be in line with the crest of the internal thread with the following results when the screw is constrained in such a position in a tapped hole: (1) There will be danger of crossing the threads in starting, and (2) the screw may pull out of the hole when tension is exerted in this constrained position. The minimum amount of overlap is arbitrary and controversial, but the following general rule can be used in lieu of more specific data:

As the first step to assure the minimum safe overlap on both sides when the assembly is concentric, the difference between the minimum major diameter of the external thread and the maximum minor diameter of the internal thread should not be less than twice the addendum of the external thread (0.75H). Otherwise stated, the sum of the major-diameter tolerance and allowance, if any, of the external thread and the minor-diameter tolerance of the internal thread should not be greater than 4/3 the addendum of the external thread, 0.5H. This provides for a minimum of 50 percent thread engagement. As the second step, to assure that minimum safe overlap on one side when the assembly is eccentric, the difference between the maximum pitch diameter of the internal thread and the minimum pitch diameter of the external thread should not be greater than the basic thread height (0.625H). Otherwise stated, the sum of the pitch-diameter tolerances of both threads and the allowance, if any, should not be greater than the basic thread height (0.625H). This provides for an eccentric assembly condition equal to half the basic thread height (0.3125H) and zero minimum overlap on one side. If the results from the limits of size selected violate the above rules, the tolerances should be reduced by using a closer class of tolerance, assuming tolerances consistent with manufacturing possibility, or a coarser pitch should be used to increase the amount of overlap. The major-diameter tolerance of the external thread or minor-diameter tolerance of the internal thread should not be less than the pitch-diameter tolerance of the respective thread to maintain thread form. Also, it should be noted that, if the tolerance on the minor diameter of the internal thread must necessarily be large, the major diameter of the external thread must be held close to the maximum major diameter and vice versa.

70. Strength factors.

- 70.1 Tensile stress area. Tests have shown that externally threaded parts fail in tension at loads corresponding to those of unthreaded parts with diameters midway between their pitch and minor diameters. Formulas (la) and (lb) in table II.B.1 provide stress area based upon a diameter approximately midway between minimum pitch diameter and minimum minor diameter. These formulas have been applied successfully to steel and other metals with ultimate strengths up to 180,000 psi and are often used for product acceptance. Tensile stress areas for standard sizes are tabulated in section 11 of ASME BI.1-1989.
- 70.2 Shear areas at minimum material. The geometric shear area of an internal thread at minimum material is equal to the area of that thread which is intersected by a cylinder with a diameter equal to the minimum major diameter of the mating external thread over the length of engagement. This is identified in figure 2.B.l for a one pitch section and formulas (2a) and (2b) in table II.B.l are used for calculation. Similarly, the geometric shear area of an external thread at minimum material is equal to the area of that thread which is intersected by a cylinder with a diameter equal to the maximum minor diameter of the mating internal thread. This is also identified in figure 2.B.l for a one pitch section and formulas (4a) and (4b) in table II.B.l are used for calculation.

TABLE II.B.1 Formulas for screw thread strength factors

Portula number	· Characteristic	formula	Reference paragraph
(la)	Tensile Stress Area	$\lambda_{\rm B} = 3.1416 \left(\frac{d_2 \text{bsc}}{2} - \frac{38}{16} \right)^2$	70.1
(1b)		$A_B = 0.7854 \left(d_{\text{Desc}} \cdot \frac{0.9743}{n} \right)^2$	70.1
(2a)	Shear area, internal threads (Min material ext and int threads)	$AS_{11}min = 3.1416nEE d_{min} \left[\frac{1}{2n} + 0.57735 \left(d_{min} - D_{2}max \right) \right]$	70.2
(2 b)		AS _n min = 3.1416d _{min} [0.875-0.57735n (1d + 1D ₂ + es)] LE	70.2
(3)	Shear area, internal threads (Simplified: for d equal to or greater than 0.250 inch)	AS _n = 3.14160 ₂ bsc 3 LE 4	70.4
(4a)	Shear area, external threads (Min material ext and int threads)	AS_min = 3.1416 n LE D_max $\left[\frac{1}{2n} + 0.57735 \left(d_2 \min - D_1 \max\right)\right]$	70.2
(4b)	_	AS _B min = 3.14160 ₂ max [0.75-0.57735 n(TD ₁ + Td ₂ + es)LE	70.2
(5)	Shear area, external threads (Simplified)	NS ₆ = 3.14160 ₂ bac 5 IR	70.4
(6a)	Shear area, external threads (Basic size ext and int threads)	$AS_g max = 3.1416D_1 bec \frac{3}{4} \left(\frac{12}{bac} \text{ from Pig 2.B.2}\right) d_{bac}$	70.3
(6b)		AS _g max = 3.1416D ₁ bac = 3 LE	70.3
(7)	Shear area, combined failure	AS = 3.14160_bec 12	70.5
(8)	ShmAr stress area ratio	H ₁ = Formula (6a) or (6b) Formula (2a) or (2b)	70.7.5
(9)	Material strength ratio	BS a Area Area Area Area Area Area Area Ar	70.7.5

Notation: $d = major dismeter, external thread (was <math>D_n$)

 d_2 = pitch diameter, external thread (was E_g)

 $D_1 = minor dismeter, internal thread (was <math>K_n$)

 D_2 = pitch diameter, internal thread (was E_n)

es = allowence, external thread (wes G)

LE = length of thread engagement (was Le)

n = number of threads per inch

 UTS_{n} = ultimate tensile strength of internally threaded part

UTS_a = ultimate tensile strength of externally threaded part

Td, Td2, TD1, TD2 * tolerance on d, d2, D1, D2, respectively

12, 0.1875H = half external thread addendum (tabulated in Table 6 of ASPE B1.1-1989)

bec, max, min - modifiers demoting basic, maximum and minimum values, respectively

TABLE II.B.2 Formulas for screw thread design

Pormula number	Characteristic	Formula	Peference paragraph
(11)	Tensile stress, externally threaded part - pure tension	St = F A from (la) or (lb)	70.6
(12)	Combined tensile stress, externally threaded part	$S_t' = S_a' + \frac{S_t}{2}$	70.6
•		with $S_t = \frac{P}{0.7854 \left[\left(d_1 \min_{h} \right)^2 - d_h^2 \right]}$	
		$s_s' = \sqrt{\frac{s_t}{2}}^2 + (s_s)^2$	
		$S_{s} = \frac{T \ d_{1}min}{0.1963 \left[\left(d_{1}min \right)^{4} - d_{h}^{4} \right]}$	
(13)	Length of engagement based upon . combined shear failure of external and internal threads	$LE = \frac{4A_8^* \text{ from (la) or (lb)}}{3.1416 \text{ d}_2 \text{bsc}}$	70.7.3
(14)	Length of engagement based upon shear of external thread	LE = \frac{2A_s^4 \text{ from (la) or (lb)}}{AS_s \text{ from (4a) or (4b)}} TE	70.7.4
(15)	Length of engagement based upon developing full tensile strength of external thread with threads at basic size — used with (16)	TE 2A* from (la) or (lb) AS _g from (6b) TE	70.7.5
(16)	Length of engagement based upon shear of internal thread	LE = LE from (15) x R ₁ from (8) R ₂ from (9)	70.7.5
	$\left(\frac{R_1}{R_2}\right)$ is greater than 1	·	<u> </u>

Notes: 1. Where A_S^* is indicated, subtract 0.7854d $_h^2$ from A_S for a hollow part.

2. Numbers in parenthesis are formula numbers from Table II and from this table.

Notation: $d_1 min = minimum minor diameter, external thread, flat form (was K_min), inch. In formula (12), <math>d_1 min = d_2 bac - \frac{3}{4}B = d_{bac} - \frac{1.2990}{n}$

 d_h = hole diameter, externally threaded part, inch. If there is no hole, d_h = 0

F = axial load on externally threaded part, lb

S_a = shear stress, psi

 S_{ϵ}^{f} = combined shear stress, pai

 T = transmitted wrench torque in threaded section (approximately half of the applied wrench torque), in.-1b.

 \dagger LE = in formulas (14) and (15) no value of LE is required on the right-hand sides of the formulas since ${\rm AS}_g$ is given in terms of LE.

FIGURE 2.B.1 SHEAR AREAS AT MINIMUM MATERIAL

- 70.3 Shear areas at basic size. The geometric shear area of an external thread at basic size is equal to the area of a basic size thread which is intersected by a cylinder with a diameter equal to the basic minor diameter. Formulas (6a) and (6b) of table II.B.l are used for calculation. The geometric shear area of an internal thread at basic size is not ordinarily used for calculations.
- 70.4 Shear area simplified formulas. Formulas (3) and (5) in table II.B.1 are simplified formulas for internal and external thread shear areas. They are based upon empirical data and give shear areas which vary from the geometric minimum material shear areas. In some cases, test data agrees more closely with these simplified formula shear areas than with geometric shear areas.

- 70.5 Shear area, combined failure of external and internal threads. When the mating external and internal threads are on parts manufactured from materials of approximately equal strength, failure will usually take place in both threads simultaneously. Thread bending during failure changes the thread geometry in this case so that effective shear area is significantly smaller than those calculated from formulas discussed in 70.2, 70.3 and 70.4 above. Formula (7) in table II.B.l is an empirical formula which gives an approximate equivalent for this case. Numerically, it describes a failure at the pitch diameter of one of the threads.
- 70.6 Tensile stress. Formula (11) in table II.B.2 is often used for acceptance of externally threaded fasteners with ultimate tensile strength, yield strength, or some other selected stress level applied to St in order to determine the required axial test load. When threads are used in a joint, a tightening torque is applied to overcome friction under a bolt head or nut, to overcome thread friction, and to develop the axial load. This torque results in a shear stress, which when combined with the tensile stress from the axial load, causes an increase in the effective tensile stress. Formula (12) in table II.B.2 describes this situation. Experience has shown that for a solid externally threaded part, the combined stress is generally about 20% greater than the tensile stress calculated from formula (11). Therefore, in this case, the combined stress is often assumed to be 1.2St or is not considered due to satisfactory experience with the Factor of Safety used.

70.7 Length of engagement, LE.

70.7.1 If failure of a fastening system using standard threaded fasteners should occur it is generally more economical that the externally threaded part will break rather than that either the external or internal thread will strip. In other words, the length of thread engagement should be sufficient to develop the full strength of the screw. Thus, the length of internal thread and the dimensions of this thread, particularly its minor diameter, should be such that, taking into account a possible difference in strength of material of the internal and external threads, the threaded portion of the externally threaded part will break before either the external or internal threads strip. Due to this situation, lengths of engagement formulas are derived from shear formulas with tensile stress area A replaced by 2AS because the required area in shear is twice the tensile stress area in order to develop the full strength of the externally threaded part. This relationship is based upon experiments made by the National Bureau of Standards in 1929, in which it was found that for hot-rolled and cold-rolled steel, and brass screws and nuts, this factor varied from 1.7 to 2.0. The effect of combined stress is not taken into account in calculation of LE because the added shear load affects both tensile and shear stresses in approximately the same proportion.

- 70.7.2 All formulas for length of engagement, given in table II.B.2 yield approximate values since they are based in part upon shear areas which are not exact due to nut dilation which varies with geometry, friction forces, and material properties. Also, the effectiveness of partial threads, in the countersinks (or chamfers) on the ends of the internal thread, is not always the same. For calculations, approximately half the countersink depth may be considered in the length of engagement. It is advisable that calculations of length of engagement and corresponding load capabilties of a threaded joint be checked by actual tests, for critical joints.
- 70.7.3 When the externally and internally threaded parts are made from materials of approximately the same strength, required length of engagement in formula (13) of table II.B.2 may be applied. This assumes a combination failure of both threads (see 70.5).
- 70.7.4 When the strength of the internal thread materially exceeds that of the external thread, required length of engagement in formula (14) of table II.B.2 may be applied. This assumes shear of the external thread and uses the geometric shear area of the minimum external thread (see 70.2). A slightly longer or shorter length of engagement will be indicated if the simplified formula (5) in table II.B.1 is used.
- 70.7.5 When the strength of the external thread materially exceeds that of the internal thread, required length of engagement in formula (16) of table II.B.2 is used. This is based upon the internal thread stripping load being equal to the nominal external thread stripping load which will develop full strength of the externally threaded part... If R_1/R_2 is less than 1, see 70.7.4 and if approximately equal to 1, see 70.7.3.
- 70.7.6 For an adjusting or lead screw of if the connection will be frequently unscrewed, the calculated LE should be increased to allow for the expected wear on the flanks of the threads during the useful life of the components.
- 70.7.7 For tapped holes in sheet metal, the maximum size of the screw to be specified should be such that the thickness of sheet equals the LE required to develop full strength. In order to use the largest possible screw, it is necessary that the tolerance, TD1, on the minor diameter of the hole should be the practical minimum. If it should prove to be impracticable to reduce the minor diameter tolerance to such a value, it may be necessary to decrease the minimum minor diameter of the internal thread and to increase the minor diameter tolerance by the same amount. If this is done, the maximum minor diameter of the screw must be reduced by the same amount to prevent interference and the minor diameter of the GO thread ring gage must likewise be decreased, as this is the only control of the minor diameter of the screw. In all such cases, where dimensions are altered from those calculated according to the standard, the threads should be designated as specified in section 6.7 of ASME B1.1-1989.

70.7.8 For retaining collars on shafts where the expected axial force resisted by the collar is appreciably less than the tensile force that the shaft itself is capable of resisting, LE need only be long enough to withstand the expected axial force on the collar. If $F_{\rm c}$ is the axial force to be carried by the collar, UTS $_{\rm s}$ is the tensile strength of the shaft and UTS $_{\rm n}$ is the tensile strength of the collar, calculate the required length of engagement from one of the following formulas:

a. Collar thread strip:
$$IE = \frac{2F_C}{UTS_n \times AS_n \text{ from (2a), (2b) or (3)}}$$

$$IE$$

b. Shaft thread strip:
$$LE = \frac{2F_C}{VTS_S \times AS_S \text{ from (4a), (4b) or (5)}}$$
 LE

c. Combination thread stripping when UTS_s = UTS_n approximately:

$$LE = \frac{2F_C}{UIS_S \text{ or } UIS_n \times AS \text{ from (7)}}$$

Note: Numbers in parenthesis are formula numbers from table II.B.1.

70.7.9 For hollow, thin wall threaded parts as the wall thickness of either or both the internal and external members becomes thin, the tendency of the external member to enlarge and the internal member to neck down in the thread means that an IE greater than given by formula must be used, also that the tolerances on minor diameter of the internal thread and major diameter of the external thread, TD₁ and Td, must be small to obtain the maximum practicable depth of thread engagement. For components having threads on thin-wall tubing, tests under actual working conditions should be made to determine proper selection of wall thicknesses, length of engagement, and pitch of thread.

80. Thread proportions in relation to tapping.

- 80.1 In the production of threads it is considered impractical to tap a thread unless its nominal diameter is greater than six times the basic thread height; therefore, when the ratio of D to h is less than 6, the use of a larger diameter, a finer pitch of thread, or both, should be considered.
- 80.2 The size of D_1 is a factor in controlling tap breakage. Tap breakage is infrequent if the diameter of the tap is over 0.5 in. or if the length of thread to be tapped is less than 0.5D. For sizes less than 0.5 in. and length of thread over 0.5D, tap breakage can be minimized by use of a large D_1 , that is TD_1 maximum. However, this means that LE may have to be increased to develop the full strength of the screw.

90. Examples of thread design.

90.1 Gum barrel thread. A gum barrel is subjected to an internal explosive pressure that produces a tensile stress in the threaded end. The length of engagement of the threads should be sufficient to produce a minimum area in shear on the threads of the screw in line with the minor diameter of the tapped hole threads equal to twice the stress area of the threaded portion of the barrel. Assume that the thread on the barrel is 1.500-80N-2A and the minimum internal diameter of the barrel at the threaded end is 0.792 inch.

Note: Symbol notation and formula numbers in parenthesis are in accordance with tables II.B.1 and II.B.2.

a. Required length of engagement is found using formula (14) for a hollow part.

$$IE = \frac{2\left(A_{S} - 0.7854d_{h}^{2}\right)}{3.1416n D_{1} max \left[\frac{1}{2n} + 0.57735 \left(d_{2} min - D_{1} max\right)\right]}$$
 with $A_{S} = 0.7854 \left(d_{bSC} - \frac{0.9743}{n}\right)^{2}$. In this case, A_{S} may be read as

1.492 from table 13 of ASME Bl.1-1989.

$$d_h = 0.792$$
 $n = 8$

 D_1 max = 1.390 from table 3A of ASME B1.1-1989.

 $d_2min = 1.4093$ from table 3A of ASME B1.1-1989.

b. Calculating from the above yields a required length of engagement of 0.777 inch. By reducing the internal thread minor diameter tolerance by half, the resulting D₁ max is reduced to 1.3775 inches, and the required length of engagement is reduced to 0.714 inch. 90.2 Screws mounting bracket to cast iron part. The dimension is required for the largest steel cap screw that can be used to hold a bracket on a cast iron body. The tensile strength of the steel is 60,000 psi, the tensile strength of the cast iron 20,000 psi, and the thickness of the cast iron is such that the length of thread engagement cannot exceed 1.750 in. The screws on the top-side of the bracket will be in tension.

Note: Symbol notation and formula numbers in parenthesis are in accordance with tables II.B.1 and II.B.2.

- a. Since the external thread material is considerably stronger than that of the internal thread material, in accordance with 70.7.5, formula (16) will be used to calculate the length of engagement required. This formula is applied for LE based upon shear of the internal thread. To confirm this assumption, R_1/R_2 should be calculated.
- b. R_1 cannot be calculated from formula (8) until a thread size is selected. By definition, however, R_1 is the ratio of external thread shear area to internal thread shear area. An approximation of R_1 , can be made using the simplified formulas for shear areas so

Approximate
$$R_1 = \frac{\text{Formula } (5)}{\text{Formula } (3)} = 0.833$$

c. R2 is calculated from formula (9).

$$R_2 = \frac{UIS_n}{UIS_s} = \frac{20000}{60000} = 0.333$$

- d. From b and c above, $R_1/R_2 = 2.5$ approximately. This value being greater than 1 confirms the use of formula (16) for calculation of length of engagement.
- e. From formula (16) it is seen that the length of engagement must be approximately 2.5 times as long as that required if shear in the external thread were the controlling factor. Thus, since the maximum available LE is 1.750 inches, the approximate LE required for the screw to develop full strength is 1.750/2.5 = 0.700 inch.
- f. Inasmuch as the hole is tapped in cast iron, a relatively coarse thread would be required, that is UNC or coarser. The most readily available screws would be UNC. Select thread sizes from figure 2.B.2 which yield LE of approximately 0.700 inch. Figure 2.B.2 was developed from formula (15).

For
$$1^n - 8UNC$$
, LE/D = 0.594 and LE = 0.594

For
$$1\frac{1}{8}$$
 - 7UNC, LE/D = 0.592 (est.) and LE = 0.656

For
$$1\frac{1}{4}$$
 - 7UNC, LE/D = 0.600 (est.) and LE = 0.750

- For a bracket screw the preferred thread class is 2A so the selected thread is $1 \frac{1}{8} 70NC 2A$ for the cap screw. The corresponding hole in the body would have a $1 \frac{1}{8} 70NC 2B$ thread.
 - h. The thread should be checked in accordance with formula (16). Formula (16) may be expressed as follows:

LE =
$$\frac{2A_{S}}{3.1416D_{1}\min \times \frac{3}{4}} \times \frac{R_{1}}{R_{2}}$$

with $A_s = 0.7854 \left(d_{bSC} - \frac{0.9743}{n} \right)^2$. In this case, A_s may be read as

0.763 from table 8 of ASME B1.1-1989.

 $D_1 min = 0.970$ from table 3A of ASME Bl.1-1989.

$$R_1 = \frac{\text{Formula (6b)}}{\text{Formula (2a)}} = \frac{\frac{3}{4} \times D_1 \min}{n \cdot \min \left[\frac{1}{2n} \times 0.57735 \text{ (dmin - D_2 max)} \right]}$$

n = 7

dmin = 1.1064 from table 3A of ASME B1.1-1989.

 D_2 max = 1.0416 from table 3A of ASME B1.1-1989.

so $R_1 = 0.863$

 $R_1 = 0.333$ from c above.

i. Calculating from the above yields a required length of engagement of 1.729 inches. This is acceptable since it is less than the maximum available engagement length of 1.750.

THREAD ENCACEMENT CHART FOR DETERMINING NOMINAL (MINIMUM) LENGTH OF

APPENDIX C

AMERICAN NATIONAL FORM OF THREAD

- 100. Scope. This appendix provides general information about the obsolete American National form screw threads. It is not a mandatory part of the standard. See 5.2.1 for selection of standard Unified screw thread classes to replace the American National form threads.
- 110. <u>Profiles.</u> Basic profile is the same as that of the Unified screw thread except that the width of the flat at the root is 0.125P. The design profile for internal threads is the same as that of the Unified screw thread, i.e., width of flat at the root is 0.250P.
- 120. Thread classes. There are 5 classes of American National form threads. For information on Class 5, see FED-STD-H28/23, Class 5 Interference-Fit Screw Threads. See below for other classes.
- 120.1 <u>Allowances</u>. Only Class 1 external threads have an allowance. Class 4 external threads have a negative allowance on the pitch diameter only. Allowances are shown in Table II.C.1.
- 120.2 Tolerances. Pitch diameter tolerances for external and internal threads are shown in Table II.C.2. External thread major diameter tolerances for Classes 1 and 2 equal twice their respective pitch diameter tolerances; the Class 3 and 4 tolerances are the same as the Class 2. Internal minor diameter tolerances for Classes 1, 2, 3 and 4 are equal to 0.1 times the design (minimum) minor diameters.

120.3 Formulas.

Note: Pitch, P = 1/threads per inch.

120.3.1 Internal thread.

Min. major dia. = basic major dia.

Min. pitch dia. = min. major dia. - 0.649519P

Max. pitch dia. = min. pitch dia. + TD, from Table II.C.2

Min. minor dia. = min. major dia. - 1.082532P

Max. minor dia. = min. minor dia. + 0.1 (min. minor dia.)

120.3.2 External thread.

Class 1 max. major dia. = basic major dia. - es, from Table II.C.1

Classes 2, 3, 4 max. major dia. = basic major diameter

- Min. major dia. = max. major dia. Td from Table II.C.2

 Classes 1, 2, 3 max. pitch dia. = max. major dia. 0.649519P

 Class 4 max. pitch dia. = max. major dia. 0.649519P + esa from Table II.C.1

 Min. pitch dia. = max. pitch dia. Td2 from Table II.C.2

 Max. minor dia. = max. major dia. 1.226869P
- 130. Designations. Standard American National form threads are designated the same as the Unified threads except that series indicator does not use the "U" and class does not have the "A" or "B" indication for "external" or "internal". Thus, a standard thread designation might read "1/2-13NC-2", for example. A series designator "NS" is used for special combinations of diameters, pitches and lengths of engagement.
- 140. <u>Gages</u>. Gages are designed in accordance with the principles of Unified thread gage design. See FED-STD-H28/6, Gages and Gaging for Unified Screw Threads UN and UNR Thread Forms.

TABLE II.C.1 - Allowance for American National Screw Threads:

Threads per inch, tpi	Class 1 allowance es _l	··· Class 4 negative allowance, es ₄		
	inch	inch		
80	0.0007			
72	0.0007			
64	0.0007			
56	0.0008	Į.		
48	0.0009			
44	0.0009			
40	0.0010			
36	0.0011			
32	0.0011			
28	0.0012	0.0002		
24	0.0013	0.0003		
20	. 0.0015	0.0003		
18	0.0016	0.0003		
16	0.0018	0.0004		
14	0.0021	0.0004		
13	0.0022	0.0004		
1.2	0.0024	0.0005		
11	0.0026	0.0005		
10	0.0028	0.0006		
9	0.0031	0.0006		
8	0.0034	0.0007		
7	0.0039	0.0008		
6	0.0044	0.0009		
5 4 1/2	0.0052	0.0010		
	0.0057	0.0011		
4	0.0064	0.0013		

TABLE II.C.2 - Tolerances for American National Screw Threads

	Pitch diameter tolerances Internal and external threads					dia. tols. al threads
Threads per inch,	Class 1	Class 2	Class 3	Class 4	Class l	Classes 2,3,4,
tpi	TD ₂ /Td ₂	TD ₂ /Td ₂	TD ₂ /Td ₂	170 ₂ /17d ₂	Td	Td
	inch	inch	inch	inch	inch	inch
80	0.0024	0.0017	0.0013		0.0048	0.0034
72	0.0025	0.0018	0.0013		0.0050	0.0036
64 ⁻	0.0026	0.0019	0.0014		0.0052	0.0038
56	0.0028	0.0020	0.0015	ļ	0.0056	0.0040
48	0.0031	0.0022	0.0016		0.0062	0.0044
44	0.0032	0.0023	0.0016		0.0064	0.0046
40	0.0034	0.0024	0.0017		0.0068	0.0048
36	0.0036	0.0025	0.0018		0.0072	0.0050
32	0.0038	0.0027	0.0019		0.0076	0.0054
28	0.0043	0.0031	0.0022	0.0011	0.0086	0.0062
24	0.0046	0.0033	0.0024	0.0012	0.0092	0.0066
20	0.0051	0.0036	0.0026	0.0013	0.0102	0.0072
18	0.0057	0.0041	0.0030	0.0015	0.0114	0.0082
16	0.0063	0.0045	0.0032	0.0016	0.0126	0.0090
14	0.0070	0.0049	0.0036	0.0018	0.0140	0.0098
13	0.0074	0.0052	0.0037	0.0019	0.0148	0.0104
12	0.0079	0.0056	0.0040	0.0020	0.0158	0.0112
11	0.0085	0.0059	0.0042	0.0021	0.0170	0.0118
10	0.0092	0.0064	0.0045	0.0023	0.0184	0.0128
9 ·	0.0100	0.0070	0.0049	0.0024	0.0200	0.0140
8	0.0111	0.0076	0.0054	0.0027	0.0222	0.0152
7	0.0124	0.0085	0.0059	0.0030	0.0248	0.0170
6	0.0145	0.0101	0.0071	0.0036	0.0290	0.0202
5	0.0169	0.0116	0.0082	0.0041	0.0338	0.0232
4 1/2	0.0184	0.0127	0.0089	0.0044	0.0368	0.0254
4	0.0204	0.0140	0.0097	0.0048	0.0408	0.0280

^{1/} Minor diameter tolerance for internal thread is one-tenth of the minimum minor diameter.

MILITARY INTERESTS:

Custodians:

· Army - AR

Navy - AS

Air Force - 99

Review Activities:

Army - CR, EA, ER, ME Air Force - 11, 15, 82

User Activities:

Army - AT, MI

CIVIL AGENCY COORDINATING ACTIVITIES:

GSA - 7FXE

DOT - ACO

NASA - JFK

PREPARING ACTIVITY:

DLA - IS

(DoD Project THDS-0082)

STAP	NDARDIZATION DOCUMENT IN (See Instructions - Re	
1. DOCUMENT NUMBER	2. DOCUMENT TITLE	
FED_STD_H28/2R	Unified Inch Screw Threa	ds-UN and UNR Thread Forms
3. NAME OF SUBMITTING ORGA	ANIZATION	4. TYPE OF ORGANIZATION (Mark one)
		VENDON
		USER
b. ADDRESS (Street, City, State, Zi	P Code)	MANUFACTURER
		L. MANDENCY ON LA
		OTHER (Specify):
5. PROBLEM AREAS		
4. Paragraph Number and Wording	;	
		·
b. Recommended Wording:		
		·
c, Resson/Retionals for Recomm		
L. Preside / Presidente Por President	ungedon.	
	•	·
5. REMARKS		
·		
		·
74. NAME OF BUBMITTER (Last, F	ins MI) - Optional	b. WORK TELEPHONE NUMBER (Include A
		Code) - Optional -
c. MAILING ADDRESS (Street, City	, State, ZIP Code) — Optional	B. DATE OF SUBMISSION (YYMNDD)

DD FORM 1426

Source: http://assiphelvioilis Emmissionadedo@@@l@fi20T14:36Z