Unidad 1: Análisis Combinatorio Álgebra y Geometría Analítica II (R-121) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Reglas Básicas

1.1. Regla de la Suma

Si una primera tarea puede realizarse de m formas, y una segunda de n formas, y no es posible realizarlas simultáneamente, entonces la tarea general puede realizarse de m + n formas.

Def/ Intervalo Entero: $m, n, k \in \mathbb{N}, m \le n$, notamos $[\![m, n]\!] = \{m, m+1, ..., n\} = \{k : m \le k \le n\}$. Luego, $|\![m, n]\!| = n - m + 1$.

Def/ Un conjunto X tiene **cardinalidad** n, con $n \in \mathbb{N}$ si existe una función biyectiva $f : [1, n] \to X$ y se denota |X| = n. Definimos $|\emptyset| = 0$. Todo conjunto que tenga cardinalidad n se llamará **finito**.

Teorema 1: Principio de Adición: Sean A, B conjuntos finitos disjuntos, entonces $|A \cup B| = |A| + |B|$. **D**/ Existen $m, n \in \mathbb{N}$ y dos funciones biyectivas $f : [1, m] \to A$ y $g : [1, n] \to B$. Luego definimos:

$$h: \llbracket 1, m+n \rrbracket \to A \cup B: h(x) = \left\{ \begin{array}{ll} f(x), & x \in \llbracket 1, m \rrbracket \\ g(x-m), & x \in \llbracket m+1, m+n \rrbracket \end{array} \right.$$

Vemos que h es una función biyectiva. Luego $|A \cup B| = m + n = |A| + |B|$.

Corolario 1a: $A_1, A_2, ..., A_n$ conjuntos disjuntos dos a dos, entonces $|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^n |A_i|$. Corolario 1b: Sean A, B conjuntos finitos, entonces $|A \cup B| = |A| + |B| - |A \cap B|$.

1.2. Regla del Producto

Si un procedimiento se puede descomponer en dos etapas, de manera que existen m resultados posibles para la primera, y para cada uno de estos resultados existen n resultados posibles para la segunda etapa, entonces el procedimiento total se puede realizar de $m \cdot n$ formas.

Teorema 2: Formalización de la Regla del Producto: Sean A, B finitos, entonces $|A \times B| = |A| \cdot |B|$ $\mathbf{D}/A = \{a_1, ..., a_m\}$ y $B = \{b_1, ..., b_n\}$, probaremos que $|A \times B| = mn$. Fijamos n, inducción sobre m. Si m = 1: $A \times B = \{(a_1, b_1), ..., (a_1, b_n)\}$. Definiendo $f : [1, n] \to A \times B$. $f(i) = (a_1, b_i)$, resulta que f es biyectiva y $|A \times B| = n = 1 \cdot n$. Suponemos que $|A \times B| = mn$ y probamos para m + 1. Tenemos $A = \{a_1, ..., a_m, a_{m+1}\}$, luego $A \times B = ((A - \{a_{m+1}\}) \times B) \cup (\{a_{m+1}\} \times B)$. Luego, por el Principio de Adición y la Hipótesis Inductiva, resulta que $|A \times B| = mn + m = (m+1)n$.

Corolario 2: $A_1, A_2, ..., A_n$ conjuntos finitos, entonces $|A_1 \times A_2 \times ... \times A_n| = \prod_{i=1}^n |A_i|$.

2. Permutaciones

 $\mathbf{Def}/$ Dada una colección de n objetos distintos, cualquier disposición (lineal) de estos objetos se denomina **permutación** de la colección.

Si existen n objetos distintos a los que podemos denotar con $a_1, a_2, ..., a_n$ y r es un entero $1 \le r \le n$, entonces, por la regla del producto, el número de permutaciones de tamaño r para los n objetos es $n \times (n-1) \times (n-2) \times ... \times (n-r+1)$ y lo notaremos P(n,r). Definimos P(n,0) = 1.

$$P(n,r) = n \cdot (n-1) \cdot \dots \cdot (n-r+1) \cdot \frac{(n-r) \cdot (n-(r+1) \cdot \dots \cdot 3 \cdot 2 \cdot 1)}{(n-r) \cdot (n-(r+1) \cdot \dots \cdot 3 \cdot 2 \cdot 1)} = \frac{n!}{(n-r)!}$$

Preguntarnos cuantas funciones $f: X \to X$ existen es equivalente a preguntarnos cuántas disposiciones lineales con repeticiones pueden realizarse.

Teorema 3: Sean A, B conjuntos finitos con |A| = m, |B| = n, si $\mathcal{F}(A, B)$ es el conjunto de todas las funciones de A en B, entonces $|\mathcal{F}(A, B)| = n^m$.

Dem/ Si ponemos $A = \{a_1, ..., a_m\}$, entonces $f(a_i) = b_i$, donde b_i es alguno de los n elementos de B. Luego, se puede identificar a f con la m-upla $(f(a_1), f(a_2), ..., f(a_m)) \in B \times B \times ... \times B$. Por la Regla del Producto, la cantidad de elementos de $B \times B \times ... \times B$ es n^m . Luego, $|\mathcal{F}(A, B)| = n^m$.

Nota: Sabemos que el conjunto de todos los subconjuntos de A se llama conjunto de partes de A. Si definimos la **función característica** como $\mathcal{X}_B: A \to \{0,1\}/\mathcal{X}_B(x) = \left\{ \begin{array}{ll} 0, & x \notin B \\ 1, & x \in B \end{array} \right.$, se puede ver que $\mathcal{X}_\emptyset(x) = 0$ y $\mathcal{X}_A(x) = 1$. La correspondencia $B \leftrightarrow \mathcal{X}_B$ es biunivoca. Contar la cantidad de subconjuntos B en A es equivalente a contar la cantidad de funciones caracteristicas \mathcal{X}_B cuyo dominio es A existen. Aplicando el T3, resulta $\mathcal{P}(A) = |\mathcal{F}(A, \{0,1\})| = 2^n$.

Nota: Como cualquier subconjunto de $A \times B$ es una relación de A en B, luego $\mathcal{F}(A, B) \subseteq \mathcal{P}(A \times B)$ y se verifica $|\mathcal{F}(A, B)| = m^n \le 2^m n = \mathcal{P}(A \times B)$, y utilizaremos la siguiente notación: $\mathcal{F}_b = \{f \in \mathcal{F}(A, B) : f \text{ es biyectiva}\}$

Preguntarnos cuántas funciones inyectivas $f: X \to X$ pueden realizarse es equivalente a cuántas permutaciones existen.

Teorema 4: Si $|A| = m, |B| = n, m \le n$, entonces $|\mathcal{F}_i(A, B)| = \frac{n!}{(n-m)!}$

Dem/ Sea $A = \{a_1, ..., a_m\}$, podemos identificar a f con la m-upla $(f(a_1), ..., f(a_m))$, donde debido a la inyectividad de f aseguramos que hay n valores posibles para $f(a_1), n-1$ para $f(a_2), ..., y$ finalmente n - (m-1) para $f(a_m)$. Luego, $|\mathcal{F}_i(A, B)| = n(n-1)(n-2)...(n-(m-1)) = \frac{n!}{(n-m)!}$

Corolario 3: Si m = n, entonces $|\mathcal{F}_b(A, B)| = n!$

Def/ Sea |A| = n, llamaremos **permutación** de n elementos de A a cualquier función inyectiva $f : [1, n] \to A$. Se representa con la n-upla $(a_1, ..., a_n)$, donde $a_i \in A$ son todos distintos.

Corolario 4: Sea $r \leq n$, entonces P(n) = n! y $P(n,r) = \frac{n!}{(n-r)!}$

Def/ Permutaciones con repetición: Si existen n objetos, con n_1 de un primer tipo, n_r de un r-esimo tipo, donde $n_1 + ... + n_r = n$, entones existen $\frac{n!}{n_1!...n_r!}$ disposiciones lineales de los n objetos.

Def/ Disposiciones circulares: los elementos se disponen en una forma circular en lugar de lineal. Fijar un elemento en una disposición circular, transforma el problema a una disposición lineal.

3. Combinaciones

Si existen n objetos distintos, cada combinación de r objetos, sin hacer referencia al orden, corresponde a r! permutaciones de tamaño r de los n objetos. Luego, el número de combinaciones está dado por:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{(n-r)!r!}, \quad \text{donde } 0 \le r \le n$$

Como no nos interesa el orden, si tomamos las permutaciones de r elementos tomados de n, tenemos r! permutaciones de esos r elementos que corresponden a la misma combinación.

Def/ Se denomina **número combinatorio** al definido por $\binom{n}{r} := \frac{n!}{(n-r)!r!}, \forall n \in \mathbb{N}_0, r \in \mathbb{N}_0 : 0 \le r \le n.$

Proposición 1: Sea $n \in \mathbb{N}_0$, $\forall r \in \mathbb{N}_0 : 0 \le r \le n$, $\binom{n}{k}$ es un numero natural.

Dem/ Caso base: n=0, luego $\binom{0}{0}=1\in\mathbb{N}$. Luego, la H.I. es: $\binom{n}{k}\in\mathbb{N}, \forall\ 0\leq k\leq n$, y suponiendo que vale para h, probamos para h+1: $\binom{h+1}{k}=\frac{h+1}{(h+1-k)!k!}=\binom{h}{k-1}+\binom{h}{k}\in\mathbb{N}$. Y por la H.I., sabemos que ambos términos son naturales, luego su suma también lo es.

Def/ Una **cadena** de largo n es una disposición, donde en cada lugar se puede usar cualquier caracter de un alfabeto de largo r. Por la Regla del Producto existen r^n cadenas. Sea $x = x_1x_2...x_n$ una cadena, se define el **peso** de x, wt(x), como $x_1 + x_2 + ... + x_n$.

Proposición 2: Sea $r \leq n$ dos enteros no negativos, entonces:

$$\begin{array}{c} \blacksquare \binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n}{r} \\ \mathbf{Dem/} \text{ Si } n = r, \text{ entonces } \binom{n}{r} = 1, \, \binom{n-1}{r-1} = 1 \text{ y } \binom{n-1}{n} = \binom{n-1}{r} = 0. \text{ Luego, } 1 = 1 + 0 \\ \text{Si } r < n, \, \binom{n-1}{r-1} + \binom{n-1}{r} = \frac{r}{r} \cdot \frac{(n-1)!}{(n-r)!(r-1)!} + \frac{(n-1)!}{((n-1)-r)!r!} \cdot \frac{(n-r)}{(n-r)} = \frac{r(n-1)!}{(n-r)!r!} + \frac{(n-1)!(n-r)!}{(n-r)!r!} = \\ = \frac{r(n-1)! + (n-1)!(n-r)!}{(n-r)!r!} = \frac{(n-1)!(r+(n-r))}{(n-r)!r!} = \frac{n!}{(n-r)!r!} = \binom{n}{r} \\ \blacksquare \end{array}$$

3.1. Binomio de Newton

Teorema 5: Sean $x, y \in \mathbb{R}, n \in \mathbb{N}$

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \dots + \binom{n}{n}x^0 y^n = \sum_{k=0}^n \binom{n}{k}x^{n-k}y^k$$

Dem/ Va por inducción: n=1, claramente se verifica. Suponemos que $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ y probamos que $(x+y)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n+1-k} y^k$:

$$(x+y)^{n+1} = (x+y) \cdot (x+y)^n = x(x+y)^n + y(x+y)^n \stackrel{HI}{=} x \left(\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k\right) + y \left(\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k\right) = \\ = \sum_{k=0}^n \binom{n}{k} x^{n-k+1} y^k + \sum_{k=0}^n \binom{n}{k} x^{n-k} y^{k+1} = \sum_{k=0}^n \binom{n}{k} x^{n-k+1} y^k + \sum_{k=1}^{n+1} \binom{n}{k-1} x^{n-k+1} y^k \\ = \binom{n}{0} x^{n-0+1} y^0 + \sum_{k=1}^n \binom{n}{k} x^{n-k+1} y^k + \sum_{k=1}^n \binom{n}{k-1} x^{n-k+1} y^k + \binom{n}{n} x^0 y^{n+1} \\ = x^{n+1} + \sum_{k=1}^n x^{n-k+1} y^k \binom{n}{k} + \binom{n}{k-1} + y^{n+1} \\ = x^{n+1} + \sum_{k=1}^n x^{n-k+1} y^k \binom{n+1}{k} + y^{n+1} = \\ \end{cases}$$

Como
$$a^{k+1} = \binom{k+1}{k+1} a^{k+1} b^{k+1-(k+1)}$$
 y $b^{k+1} = \binom{k+1}{0} a^0 b^{k+1-0}$, tenemos que: $= \sum_{k=0}^{n+1} x^{n-k+1} + y^k$

Corolario 6:

- $\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0$ **Dem**/ Sea x = 1, y = -1, aplicando el T5, tenemos $\sum_{k=0}^{n} \binom{n}{k} 1^{n-k} (-1)^k = (-1+1)^n = 0$
- $\sum_{k=0}^{n} {n \choose k} = 2^n$ **Dem**/ Sea x = 1, y = 1, aplicando el T5, tenemos $\sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^k = (1+1)^n = 2^n$

Teorema del Multinomio: Sean $n_1, n_2, ...n_r \in \mathbb{N}_0/n_i \le n, i = 1, 2, ..., r \text{ y } n_1 + n_2 + ... + n_r = n,$ entonces el coeficiente de $x_1^{n_1}, x_2^{n_2}, ..., x_r^{n_r}$ en el desarrollo de $(x_1 + x_2 + ... + x_r)^n$ es $\frac{n!}{n_1! n_2! ... n_r!}$

4. Combinaciones con Repeticiones: Distribuciones

Si X es un conjunto con n elementos distintos, y queremos elegir r pero tenemos la posibilidad de repetir objetos en la elección, estamos considerando todas las disposiciones de r letras \mathbf{x} y n-1 |, que se calcula: $\frac{(r+n-1)!}{r!(n-1)!} = \binom{n+r-1}{r}$. Luego, el número de combinaciones de r objetos tomados de X permitiendo repeticiones es C(r+n-1,r).

5. Principio de las Casillas

Teorema 7: $m, n \in \mathbb{N}$ tales que n > m entonces no existe ninguna función inyectiva $f : [1, n] \to [1, m]$. **Dem**/ Sea $H := \{n \in \mathbb{N} : \text{ existe un } n > m \text{ y existe una funcion } f : [1, n] \to [1, m] \text{ inyectiva } \}$, hay que demostrar que $H = \emptyset$. Vamos por el absurdo, suponiendo que es un subconjunto de los \mathbb{N} no vacio, ergo, tiene primer elemento, digamos h. Luego, por definición, existe un m < n y una funcion $f : [1, n] \to [1, m]$ inyectiva. Y sea c = f(h), entonces definimos:

$$g: \llbracket 1, m \rrbracket \to \llbracket 1, m \rrbracket, g(i) = \left\{ \begin{array}{ll} i & i \neq c, i \neq m \\ m & i = c \\ c & i = m \end{array} \right.$$

Y g es biyectiva, luego $\forall i \in [1, h-1], f(i) \neq c$. Luego $g(f(i)) \neq m$. Finalmente, definiendo j en $[\![1, h-1]\!]$ como j(i) = g(f(i)), resultara que $j(i) \in [\![1, m-1]\!]$. Y asi encontramos una inyectiva $j : [\![1, h-1]\!] \to [\![1, m-1]\!]$, donde m-1 < h-1, pero entonces $h-1 \in H$, lo cual es absurdo. Esto proviene de suponer $H \neq \emptyset$. Luego, $H = \emptyset$.

Y este teorema nos dice que si quisieramos ubicar n objetos en m casillas, entonces tendremos que poner más de un elemento en alguna de las casillas.

6. Principio de las Casillas Generalizado

Si queremos disponer n objetos en m casillas, al menos una caja debe contener no menos de $\left\lceil \frac{n}{m} \right\rceil$ y existirá otra caja que contendrá no más de $\left\lfloor \frac{n}{m} \right\rfloor$ objetos.

Nombre	Orden?	Repeticiones?	Formula	Ejemplo
Permutación	Si	No	n!	De cuantas formas se pueden ordenar 10 chicos? 10!
K-Permutación	Si	No	$\frac{n!}{(n-k)!}$	Si hay 10 chicos, y queremos seleccionar 5, de cuantas maneras se pueden ordenar esos 5? $\frac{10!}{(10-5)!}$
R-Permutación	Si	Si	k^n	Banderas de 3 bandas con 4 colores? 4^3
Anagrama	Si	No	$\frac{n!}{n_1! \cdot \dots \cdot n_r!}$	Combinaciones BANANA = $\frac{6!}{1!3!2!}$.
				Trayectorias escalonadas $(2,1)$ a $(7,4) = \frac{(5+3))!}{5!3!}$
Combinación	No	No	$\frac{n!}{(n-r)!r!}$	Elegir 3 cartas de un mazo de 52? $\frac{52!}{(52-3)!3!}$
				36 chicos, 4 grupos de 9: $\binom{36}{9} \cdot \binom{27}{9} \cdot \binom{18}{9} \cdot \binom{9}{9}$
R-Combinación	No	Si	$\frac{(n+r-1)!}{r!(n-1)!}$	7 amigos, 4 menues? $\frac{(7+4-1)!}{7!3!}$
(r cruces)				Soluciones enteras de $\sum_{i=1}^{4} x_i = 7? \frac{(7+4-1)!}{7!4!}$