Assignment2 Report Q3

170050043 170050044 170050078

02 September 2019

In the equation of weights,

$$w_h(j,k) = \frac{exp(-\frac{||f(R_j) - f(R_k)||^2}{h^2})}{\sum_{j \in \Lambda} \exp(-\frac{||f(R_j) - f(R_k)||^2}{h^2})}$$

Filtered Intensity = $\sum_{j \in \Lambda} w_h(j, k) f(j)$

- The optimal parameter we found for h (or) σ^* is 0.1 and optimal RMSD(Root mean squared difference) is 0.0321, 0.0314, 0.0 respectively for grass, honeyCombReal, barbara figures.
- We used a Gaussian distribution centered at the center pixel of patch of 9*9, and standard deviation 1 on the patches to make it more isotropic.

 $h = 0.0900(0.9 \ \sigma^*) \ RMSD = 0.0321$

 $h = 0.1100(1.1 \ \sigma^*) \ RMSD = 0.0326$

 $h = 0.1000(\sigma^*) RMSD = 0.0321$

honeyCombReal:

 $h = 0.0900(0.9~\sigma^*)~RMSD = 0.0320$

 $h = 0.1100(1.1 \ \sigma^*) \ RMSD = 0.0312$

 $h = 0.1000(\sigma^*) RMSD = 0.0314$

barbara:

 $h = 0.0900(0.9 \sigma^*) RMSD = 0.0282$

 $h = 0.1100(1.1 \sigma^*) RMSD = 0.0268$

 $h = 0.1000(\sigma^*) RMSD = 0.0273$

These above written values may change as the noise we add, as the randn would change. In most of cases run, we found $\sigma^* = 0.1$ giving less RMSD than other two.

- Time taken: For the *grass* figure, it takes around 30 seconds to generate the output. For the *honeyCombReal* figure, it takes 90 around seconds to generate the output. For the *barbara* figure, it takes around 400 seconds to generate output.
- Grass:

• Honey:

• Barbara:

• Gaussian with center at (0,0) and $\sigma = 1$:

