

Sri Vidya College of Engineering and Technology Virudhunagar – 626 005 Department of Computer Science and Engineering

Class:	III CSE, V Semester
Subject Code:	CS 2304
Subject:	System Software
Prepared by	Kaviya P

Unit IV

Basic macro processor functions - Macro Definition and Expansion - Macro Processor Algorithm and data structures - Machine-independent macro processor features - Concatenation of Macro Parameters - Generation of Unique Labels - Conditional Macro Expansion - Keyword Macro Parameters-Macro within Macro-Implementation example - MASM Macro Processor - ANSI C Macro language.

Textbook:

T1. Leland L. Beck, "System Software – An Introduction to Systems Programming", 3rd Edition, Pearson Education Asia, 2006.

Lesson Plan 1	Basic Macro Processor Functions – Macro Definition And Expansion		
Lesson Plan 2	Macro Processor Algorithm And Data Structures		
Lesson Plan 3	Machine Independent Macro Processor Features – Concatenation Of Macro Parameters, Generation Of Unique Labels		
Lesson Plan 4 & 5	Conditional Macro Expansion		
Lesson Plan 6	Keyword Macro Parameters		
Lesson Plan 7 &8	Macro Within Macro		
Lesson Plan 9	nn 9 Implementation Example – MASM		

Staff in-charge HOD-CSE

1. Topics to be covered

- Basic Macro Processor Functions
- Macro Definition and Expansion

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

 To enable students to understand basic macro processor functions, macro definition and expansion

4. Outcome (s):

- Able to understand basic Macro Processor Functions.
- Able to explain Macro Definition.
- Able to explain Macro Expansion.

5. Link sheet:

Define Macro.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 181 - 186.

9. Application

Introduction

- A macro represents a commonly used group of statements in the source programming language
- The macro processor replaces each macro instruction with the corresponding group of source language statement, this is called expanding macros
- The functions of a macro processor essentially involve the substitution of one group of characters or lines for another

Basic Macro Processor Functions

- Macro Definition and Expansion
- Macro Processor Algorithms and Data structures

Macro Definition and Expansion

- The MACRO statement identifies the beginning of a macro definition
- The symbol in the label field is the name of the instruction
- The entries in the operand field identify the parameter of the macro instruction
- Each parameter begins with the character &
- The MEND assembler directive marks the end of the macro definition
- A macro invocation statement gives the name of the macro instruction being invoked and the arguments to be used in expanding the macro

Use of macros in a SIC/XE

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	RDBUFF	MACRO	&INDEV,&BUFAL	OR, &RECLTH
15				
20		MACRO	TO READ RECORD :	INTO BUFFER
25				
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50		TD	=X'&INDEV'	TEST INPUT DEVICE
55		. JEQ	*-3	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	*+11	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	*-19	HAS BEEN REACHED
90		STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

100	WRBUFF	MACRO	&OUTDEV,&BUFAD	R,&RECLTH
105	•			
110		MACRO TO	WRITE RECORD F	ROM BUFFER
1 1 5				
120		CLEAR	X	CLEAR LOOP COUNTER
125		LDT	&RECLTH	
130		LDCH	&BUFADR,X	GET CHARACTER FROM BUFFER
135		TD	-X'LOUTDEV'	TECT OUTPUT DEVICE
140		JEQ	*-3	LOOP UNTIL READY
145		$W\!D$	=X'&OUTDEV'	WRITE CHARACTER
150		TIXR	T	LOOP UNTIL ALL CHARACTERS
155		JLT	*-14	HAVE BEEN WRITTEN
160		MEND		
165				
170	•	MAIN PR	OGRAM	
175	•			
180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190	CLOOP	RDBUFF	F1, BUFFER, LENG	GTH READ RECORD INTO BUFFER
195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#0	
205		JEQ	ENDFIL	EXIT IF EOF FOUND
210		WRBUFF	05, BUFFER, LENG	TH WRITE OUTPUT RECORD
215		J	CLOOP	LOOP
220	ENDFIL	WRBUFF	05, EOF, THREE	INSERT EOF MARKER
225		J	@RETADR	
230	EOF	BYTE	C'EOF'	
235	THREE	WORD	3	
240	RETADR	RESW	1	
245	LENGTH	RESW	1	LENGTH OF RECORD
250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
255		END	FIRST	
Program w	vith Macro F	vnanded		

Program with Macro Expanded

5	COPA	START	0	COPY FILE FROM INPUT TO OUTPUT
180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190	.CLOOP	RDBUFF	F1, BUFFER, LENGTH	READ RECORD INTO BUFFER
190a	CLOOP	CLEAR	X	CLEAR LOOP COUNTER
190b		CLEAR	A	
190c		CLEAR	S	
190d		+LDT	#4096	SET MAXIMUM RECORD LENGTH
190e		TD ·	=X'F1'	TEST INPUT DEVICE
190f		JEQ	*-3	LOOP UNTIL READY
190g		RD	=X'F1'	READ CHARACTER INTO REG A
190h		COMPR	A,S	TEST FOR END OF RECORD
1 9 0i		JEQ	*+11	EXIT LOOP IF EOR
190j		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
190k		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
1901		JLT	*-19	HAS BEEN REACHED
190m		STX	LENGTH	SAVE RECORD LENGTH

195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#0	
205		JEQ	ENDFIL	EXIT IF EOF FOUND
210		WRBUFF	05, BUFFER, LENGTH	WRITE OUTPUT RECORD
210a		CLEAR	X	CLEAR LOOP COUNTER
210b		LDT	LENGTH	
210c		LDCH	BUFFER, X	GET CHARACTER FROM BUFFER
210d		TD	=X'05'	TEST OUTPUT DEVICE
210e		JEQ	*-3	LOOP UNTIL READY
210f		WD	=X'05'	WRITE CHARACTER
210g		TIXR	T	LOOP UNTIL ALL CHARACTERS
210h		$\pi\pi$	*-14	HAVE BEEN WRITTEN
215		J	CLOOP	LOOP
220	.ENDFIL	WRBUFF	05,EOF,THREE	INSERT EOF MARKER
2 20a	ENDFIL	CLEAR	X	CLEAR LOOP COUNTER
220b		LDT	THREE	
2 20 c		LDCH	EOF,X	GET CHARACTER FROM BUFFER
220d		TD	=X'05'	TEST OUTPUT DEVICE
220e		JEQ	*-3	LOOP UNTIL READY
220f		WD	=X'05'	WRITE CHARACTER
220g		TIXR	T	LOOP UNTIL ALL CHARACTERS
220h		JLT	*-14	HAVE BEEN WRITTEN
225		J	@RETADR	
מלכ		v	emiank	
230	EOF	BYTE	C'EOF'	
235	EOF THREE	-		
		BYTE	C'EOF'	
235	THREE	BYTE WORD	C'EOF'	LENGTH OF RECORD
235 240	THREE RETADR	BYTE WORD RESW	C'EOF' 3 1	LENGTH OF RECORD 4096-BYTE BUFFER AREA

VIRUDHUNAGAR	2 opar amont of computer science to highering	DENT CERTIFICATION
Class	III CSE	
Subject Code	CS2304	
Subject	System Software	
Prepared By	Kaviya.P	
Lesson Plan for	Macro Processor Algorithm And Data Structures	
Time:	50 Minutes	
Lesson. No	2/9	

1. Topics to be covered

Macro Processor Algorithm and Data Structures

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

To enable students to understand macro processor algorithm and data structures

4. Outcome (s):

• Able to explain macro processor algorithm and data structures.

5. Link sheet:

- Define algorithm.
- Define data structure.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 186 - 191.

9. Application

ROM

Macro Processor Data Structures

- The macro definitions themselves are stored in definition table (DEFTAB), which contains the macro prototype and the statements that make up the macro body
- The macro names are entered into NAMTAB, which serves as an index to DEFTAB
- For each macro instruction defined NAMTAB contains pointers to the beginning and end of the definition in DEFTAB
- The third data structure is an argument table (ARGTAB), which is used during the expansion of macro invocations
- When a macro invocation statement is recognized, the arguments are stored in ARGTAB according to their position in the argument list

Algorithm for a One-pass Macro Processor

```
begin {macro processor}
   EXPANDING := FALSE
    while OPCODE # 'END' do
       begin
          GETLINE
           PROCESSLINE
       end {while}
end {macro processor}
procedure PROCESSLINE
   begin
       search NAMTAB for OPCODE
       if found then
          EXPAND
       else if OPCODE = 'MACRO' then
          DEFINE
       else write source line to expanded file
    end {PROCESSLINE}
```

Figure 4.5 Algorithm for a one-pass macro processor.

```
procedure DEFINE
     begin
        enter macro name into NAMTAB
        enter macro prototype into DEFTAB
        LEVEL := 1
        while LEVEL > 0 do
            begin
               GETLINE
               if this is not a comment line then
                   begin
                      substitute positional notation for parameters
                      enter line into DEFTAB
                      if OPCODE = 'MACRO' then
                          LEVEL := LEVEL + 1
                      else if OPCODE = 'MEND' then
                          LEVEL := LEVEL - 1
                   end {if not comment}
            end {while}
        store in NAMTAB pointers to beginning and end of definition
     end {DEFINE}
procedure EXPAND
   begin
       EXPANDING := TRUE
       get first line of macro definition (prototype) from DEFTAB
       set up arguments from macro invocation in ARCTAR
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
              GETLINE
              PROCESSLINE
          end {while}
       EXPANDING := FALSE
    end {EXPAND}
procedure GETLINE
    begin
       if EXPANDING then
          begin
              get next line of macro definition from DEFTAB
              substitute arguments from ARGTAB for positional notation
          end {if}
       else
          read next line from input file
    end {GETLINE}
```


VIRUDHUNAGAR	The state of the s
Class	III CSE
Subject Code	CS2304
Subject	System Software
Prepared By	Kaviya.P
Lesson Plan for	Machine Independent Macro Processor Features –
	Concatenation of Macro Parameters, Generation of Unique Labels
Time:	50 Minutes
Lesson. No	3/9

1. Topics to be covered

- Machine Independent Macro Processor Concatenation of Macro Parameters
- Generation of Unique Labels

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

• To enable students to understand machine independent macro processor features – Concatenation of macro parameters & Generation of unique labels.

4. Outcome (s):

- Able to explain concatenation of macro parameters.
- Able to explain generation of unique labels.

5. Link sheet:

• Define macro processor.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 192 - 195.

9. Application

Machine-Independent Macro Processor Features

- Concatenation of Macro Parameters
- Generation of Unique Labels
- Conditional Macro Expansion
- Keyword Macro Parameters

Concatenation of Macro Parameters

- Most macro processors allow parameters to concatenated with other character strings
- If similar processing is to be performed on each series of variables, the programmer might want to incorporate this processing in to a macro instruction
- The body of the macro definition might contain a statement like "LDA X&ID1" in which the parameter &ID is concatenated after the character string X and before the character string 1
- If the macro definition contained both &ID and &ID1 as parameters, the situation would be ambiguous
- Most macro processors deal with this problem by providing a special concatenation operator (e.g. →)
- LDA X&ID→1

יעם	A ACID	/ 1			
1	SUM	MACRO	&ID	SUM	A
2		LDA	$X\&ID\rightarrow 1$	ı	
3		ADD	X&ID→2	\downarrow	
4		ADD	X&ID→3	LDA	XA1
5		STA	X&ID→S	ADD	XA2
			*******	ADD	£AX
б		MEND		STA	XAS
				SUM	BETA
				1	
				•	
				LDA	XBETA1
				ADD	XBETA2
				ADD	XBETA3
				STA	XBETAS

Generation of Unique Labels

- Relative addressing in a source statement may be acceptable for short jumps such as "JEQ *-3*
- For longer jumps spanning several instructions, such notation is very inconvenient, errorprone and difficult to read
- Allow the creation of special types of labels
- Each symbol beginning with \$ has been modified by replacing \$ with \$xx, where xx is a two character alphanumeric counter of the number of macro instructions expanded
- For the first macro expansions, xx will have the value AA
- For succeeding macro expansions, xx will be set to AB, AC, etc

25	RDBUFF	MACRO	&INDEV,&BUF	ADR,&RECLTH
30		CLEAR	X	CLEAR LOOP COUNTER
35		${\tt CLEAR}$	A	
40		CLEAR	Ş	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		$\rm JLT$	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

|--|--|

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	${ m TD}$	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
CO		RD	$-\mathbf{x}\cdot\mathbf{r}1$	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

VIRUDHUNAGAR	1	ANT CERT
Class	III CSE	·
Subject Code	CS2304	
Subject	System Software	
Prepared By	Kaviya.P	
Lesson Plan for	Conditional Macro Expansion	
Time:	50 Minutes	
Lesson. No	4 & 5/9	

1. Topics to be covered

Conditional Macro Expansion

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

To enable students to understand conditional macro expansion

4. Outcome (s):

• Able to explain conditional macro expansion.

5. Link sheet:

Define macro.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 195 - 201.

9. Application

Conditional Macro Expansion

- Most macro processors can modify the sequence of statements generated for a macro expansion, depending on the arguments supplied in the macro invocation
- The IF statement evaluates a Boolean expression that is its operand
- If the value of this expression is TRUE, the statements following the IF are generated until an ELSE is encountered
- Otherwise, these statements are skipped, and the statements following the ELSE are generated
- The ENDIF statement terminates the conditional expression that was begun by the IF statement
- The macro processor must maintain a symbol table that contains the values of all macro-time variables used
- Entries in this table are made or modified when SET statements are processed
- The implementation outlined above does not allow for nested IF structures
- WHILE: a macro-time looping statement
- The WHILE statement specifies that the following lines, until the next ENDW statement, are to be generated repeatedly as long as a particular condition is true
- The macro-time variable &CTR is used to count the number of times the lines following the WHILE statement have been generated

Use of Macro-time Conditional Statements

CSC OI I	viacio-time	Conditional	Statements	
2 5	RDBUFF	MACRO	&INDEV,&BUFADI	R,&RECLTH,&EOR,&MAXLTH
26		IF	(&EOR NE '')	
2 7	&EORCK	SET	1	
28		ENDIF		
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
38		IF	(&EORCK EQ 1)	
40		LDCH	=X'&EQR'	SET EOR CHARACTER
4 2		RMO	A,S	
4 3		ENDIF		
44		IF	(&MAXLTH EQ '	′)
45		+LDT	#4096	SET MAX LENGTH = 4096
4 6		ELSE		
4 7		+LDT	#TAXAM&#</td><td>SET MAXIMUM RECORD LENGTH</td></tr><tr><td>48</td><td></td><td>ENDIF</td><td></td><td></td></tr><tr><td>50</td><td>\$LOOP</td><td>TD</td><td>=X'&INDEV'</td><td>TEST INPUT DEVICE</td></tr><tr><td>55</td><td></td><td>JEQ</td><td>\$LOOP</td><td>LOOP UNTIL READY</td></tr><tr><td>60</td><td></td><td>RD</td><td>=X'&INDEV'</td><td>READ CHARACTER INTO REG A</td></tr><tr><td>63</td><td></td><td>IF</td><td>(&EORCK EQ 1)</td><td></td></tr><tr><td>65</td><td></td><td>COMPR</td><td>A,S</td><td>TEST FOR END OF RECORD</td></tr><tr><td>70</td><td></td><td>JEQ</td><td>\$EXIT</td><td>EXIT LOOP IF EOR</td></tr><tr><td>73</td><td></td><td>ENDIF</td><td></td><td></td></tr><tr><td>75</td><td></td><td>STCH</td><td>&BUFADR,X</td><td>STORE CHARACTER IN BUFFER</td></tr><tr><td>80</td><td></td><td>TIXR</td><td>${f T}$</td><td>LOOP UNLESS MAXIMUM LENGTH</td></tr><tr><td>85</td><td></td><td>JLT</td><td>\$LOOP</td><td>HAS BEEN REACHED</td></tr><tr><td>90</td><td>\$EXIT</td><td>STX</td><td>&RECLTH</td><td>SAVE RECORD LENGTH</td></tr><tr><td>95</td><td></td><td>MEND</td><td></td><td></td></tr><tr><td></td><td></td><td>DUBLIEE</td><td>E3 BIJE DECI OA</td><td>2048</td></tr></tbody></table>	

RDBUFF F3, BUF, RECL, 04, 2048

30 35		CLEAR CLEAR	X A	CLEAR LOOP COUNTER
40		LDCH		SET EOR CHARACTER
42		RMO	A,S	
47		+LDT	#2048	SET MAXIMUM RECORD LENGTH
50	\$AALOOP		=X'F3'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60 65		RD COMPR	=X'F3'	READ CHARACTER INTO REG A TEST FOR END OF RECORD
70		JEO	A,S \$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUF, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		$\mathbf{J}\mathbf{L}\mathbf{T}$	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	RECL	SAVE RECORD LENGTH
	•	RDBUFF	OE, BUFFER, LENG	TH,,80
30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
47		+LDT	#80	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'0E'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'0E'	READ CHARACTER INTO REG A
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
87		JLT	\$ABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH
		RDBUFF	F1, BUFF, RLENG,	04
	·	102011	11,5011,105140,	, 0 ±
30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
40		LDCH	=X'04'	SET EOR CHARACTER
42		RMO	A,S	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$ACLOOP	\mathbf{TD}	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$ACLOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$ACEXIT	EXIT LOOP IF EOR
75		STCH	BUFF, X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$ACLOOP	HAS BEEN REACHED
90	\$ACEXIT	STX	RLENG	SAVE RECORD LENGTH

Ugo of	Maara tima	looning Sto	tomonta	
_	Macro-time RDBUFF	MACRO	&INDEV,&BUFADF	ARECTTH & EOR
25 27	&EORCT	SET	%NITEMS (&EOR)	(, dillionin, desir
30	&EORC1	CLEAR	X	CLEAR LOOP COUNTER
		CLEAR	A	CDD1111 2001 000110
35 45		+LDT	#4096	SET MAX LENGTH = 4096
45 =0	čt OOD	TD	=X'&INDEV'	TEST INPUT DEVICE
50 = c	\$LOOP	JEQ	\$LOOP	LOOP UNTIL READY
55 60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
60 63	&CTR	SET	1	
	or IR	WHILE	(&CTR LE &EORG	ा ग)
64		COMP	=X'0000&EOR[&C]	
65 70		JEQ	\$EXIT	•••,
70 71	&CTR	SET	&CTR+1	
	&CIR	ENDW	acin'i	
73 75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
75 80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
		JLT	\$LOOP	HAS BEEN REACHED
85	čevim	STX	&RECLTH	SAVE RECORD LENGTH
90	\$EXIT	MEND	WINECETII	Onve tadora allive
100		METAL		
		RDBUFF	F2, BUFFER, LENG	TH, (00,03,04)
30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$AALOOP	TD	=X'F2'	TEST INPUT DEVICE
5 5		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F2'	READ CHARACTER INTO REG A
65		COMP	=X'000000'	
70		JEQ	\$AAEXIT	
65		COMP	=X'000003'	
70		JEQ	\$AAEXIT	•
65		COMP	=X'000004'	
70		J E Q	\$AAEXIT	
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
			4337 AAD	OAC DUUN DU'AL'ALI

\$AALOOP

LENGTH

 \mathbf{JLT}

STX

85

90

\$AAEXIT

HAS BEEN REACHED

SAVE RECORD LENGTH

WIRUDHUNAGAR		ENT CERT
Class	III CSE	
Subject Code	CS2304	
Subject	System Software	
Prepared By	Kaviya.P	
Lesson Plan for	Keyword Macro Parameters	
Time:	50 Minutes	
Lesson. No	6/9	

1. Topics to be covered

• Keyword Macro Parameters

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

• To enable students to understand keyword macro parameters

4. Outcome (s):

• Able to explain keyword macro parameters.

5. Link sheet:

• Define macro.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 202 - 204.

9. Application

Keyword Macro Parameters

- Positional parameter: parameters and arguments were associated with each other according to their positions in the macro prototype and the macro invocation statement
- Keyword parameters: each argument value is written with a keyword that named the corresponding parameter
- Each parameter name is followed by an equal sign, which identifies a keyword parameter
- The parameter is assumed to have the default value if its name does not appear in the macro invocation statement

Use of Keyword Parameters in Macro Instructions

25	RDBUFF	MACRO		FADR=, &RECLTH=, &EOR=04, &MAXLTH=4096
26		$_{ m IF}$	(&EOR NE '')	
27	&EORCK	SET	1	
28		ENDIF		
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
38		IF	(&EORCK EQ 1)	
40		LDCH	=X'&EOR'	SET EOR CHARACTER
4 2		RMÔ	A,S	
43		ENDIF		
47		+LDT	#&MAXLTH	SET MAXIMUM RECORD LENGTH
50	\$L00P	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$L00P	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63		IF	(&EORCK EQ 1)	
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
73		ENDIF		
7 5		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$ L OOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95	,	MEND		

VIRUDHUNAGAR		
Class	III CSE	
Subject Code	CS2304	
Subject	System Software	
Prepared By	Kaviya.P	
Lesson Plan for	Macro Within Macro	
Time:	50 Minutes	
Lesson. No	7&8/9	

1. Topics to be covered

• Macro within Macro

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

• To enable students to understand macro within macro

4. Outcome (s):

• Able to explain macro within macro.

5. Link sheet:

Define macro.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software - An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 204 - 209.

9. Application

Macro within Macro

- Macro within macro can be solved if the macro processor is being written in a programming language that allows recursive calls
- The compiler would be sure that previous value of any variables declared within a procedure were saved when that procedure was called recursively
- If would take care of other details involving return from the procedure

Example of Nested Macro Invocation

le of Nested N	Aacro Invoca	tion	
RDBUFF	MACRO	&BUFADR, &RECLI	TH,&INDEV
-			
-	MACRO TO	READ RECORD I	NTO BUFFER
	CLEAR	X	CLEAR LOOP COUNTER
	CLEAR	A	
	CLEAR	S	
	+LDT	#4096	SET MAXIMUM RECORD LENGTH
\$LOOP	RDCHAR	& INDEV	READ CHARACTER INTO REG A
	COMPR	A,S	TEST FOR END OF RECORD
	JEQ	\$EXIT	EXIT LOOP IF EOR
	STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
	TIXR	T	LOOP UNLESS MAXIMUM LENGTH
	JLT	\$LOOP	HAS BEEN REACHED
\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
	MEND		
RDCHAR	MACRO	VII.3 (
	MACRO	TO READ CHAI	RACTER INTO REGISTER A
	TD	=X,%IN,	TEST INPUT DEVICE
	JEQ	*-3	LOOP UNTIL READY
	RD	=X'&IN'	READ CHARACTER
	TATEMENT		
	RDBUFF \$LOOP \$EXIT RDCHAR	RDBUFF MACRO MACRO TO CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR TLDT \$LOOP RDCHAR COMPR JEQ STCH TIXR JLT STX MEND RDCHAR MACRO MACRO TD JEQ RD	. MACRO TO READ RECORD I CLEAR X CLEAR A CLEAR S +LDT #4096 \$LOOP RDCHAR &INDEV COMPR A,S JEQ \$EXIT STCH &BUFADR,X TIXR T JLT \$LOOP \$EXIT STX &RECLTH MEND RDCHAR MACRO &IN . MACRO TO READ CHAP . TD =X'&IN' JEQ *-3 RD =X'&IN'

(b)

RDBUFF BUFFER, LENGTH, F1

NRUDHUNAGAR OF		
Class	III CSE	
Subject Code	CS2304	
Subject	System Software	
Prepared By	Kaviya.P	
Lesson Plan for	Implementation Example – MASM	
Time:	50 Minutes	
Lesson. No	9/9	

1. Topics to be covered

• Implementation Example – MASM

2. Skills addressed:

Listening

3. Objectives of this lesson plan:

• To enable students to understand Implementation Example – MASM

4. Outcome (s):

• Able to explain MASM macro processor.

5. Link sheet:

Define macro processor.

6. Evocation:

7. Lecture notes (attached)

8. Text Book

• Leland L. Beck, "System Software – An Introduction to Systems Programming",

3rd Edition, Pearson Education Asia, 2006. PP 213 - 216.

9. Application

MASM Macro Processor

- The macro processor of MASM is integrated with Pass 1 of the assembler
- MASM generates the unique names of local labels in the form ??n, where n is a hexadecimal number in the range 0000 to FFFF
- .ERR: signals to MASM that an error has been detected
- EXITM: directs MASM to terminate the expansion of the macro
- &: is a concatenation operator
- ;; is a macro comment, serves only as documentation for the macro definition
- ; is an ordinary assembler language comment, included as part of the macro expansion
- IRP: sets the macro-time variable to a sequence of values specified in <...>
- The statements between the TRP and the matching ENDM are generated once for each value of the variable

Examples of MASM Macro and Conditional Statements

```
ABSDIF
              MACRO
                        OP1, OP2, SIZE
1
2
              LOCAL
                        EXIT
3
              IFNB
                        <SIZE>
                                      ;; IF SIZE IS NOT BLANK
                                           THEN IT MUST BE E
4
              IFDIF
                        <SIZE>, <E>
                                      ;;
               ; ERROR -- SIZE MUST BE E OR BLANK
5
6
               .ERR
7
              EXITM
8
              ENDIF
                                      ;; END OF IFDIF
9
                                      ;; END OF IFNB
              ENDIF
10
                                      ; COMPUTE ABSOLUTE DIFFERENCE
              MOV
                        SIZE&AX,OP1
                        SIZE&AX,OP2
                                      ;; SUBTRACT OP2 FROM OP1
11
              SUB
                                      ;; EXIT IF RESULT GE 0
12
              JNS
                        EXIT
                                           OTHERWISE CHANGE SIGN
13
              NEG
                        SIZE&AX
                                      ;;
14
      EXIT:
15
              ENDM
```

ABSDIF J,K

MOV AX,J ; COMPUTE ABSOLUTE DIFFERENCE SUB AX,K
JNS ??0000
NEG AX

??0000:

(b)

Figure 4.13 Example of MASM iteration statement.

5