Course Outline

TOPICS

- 1. What is Machine Learning and Image Processing
- 2. Traditional Features, K-NN classifier
- 3. Linear Classification
- 4. Perceptron Algorithm, Sigmoid Activation Function, Gradient Descent
- 5. Stochastic Gradient Descent, Back-Propagation
- 6. Multi-Layer Neural Network
- 7. Convolution and Pooling
- 8. Mid-Term Examination
- 9. Mid-Term Examination
- 10. Convolutional Neural Networks.
- 11. Training Convolutional Neural Networks: Hyper-Parameters, Activation functions, initialization, dropout, batch normalization
- 12. Recurrent Neural Networks
- 13. Applications of Convolutional Neural Networks for Image Segmentation and Object Classification
- 14. Project Presentations

Difference Between NN and CNN

NN:

- Resemble to human brain: interconnected neurons, transmit signal.
- Input Layer, Hidden Layers, Output Layer.
- Inputs are in the Array form.
- Filters are in the Array form

CNN:

- Similar to NN but convolution exist.
- Convolutional Layer, ReLU Layer (called Activation), Pooling Layer, Fully Connected Layer.
- Inputs are in the Matrix form.
- Filters are in the Matrix form

LeNet5

CNN called LeNet by Yann LeCun (1998)

Lenet5: The first CNN structure was proposed by Yann LeCun in 1998.

- Applied on MNIST and ASCII characters for document classification.
- Specifically, characters and digits are segmented and forwarded to CNN to determine its label.

- How can we find the edges in images?
- Answer: Using derivative operation to remove redundant information (homogenous regions).
- Perform derivative operation through –x axis and –y axis.

Image: I

Horizantal Edges: $\frac{dI}{dy} \cong \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}$

Image: I

Vertical Edges: $\frac{dI}{dx} \cong \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

Image: I

EdgeMap= $\left|\frac{dI}{dx}\right| + \left|\frac{dI}{dy}\right|$

As an alternative way, we can convolve the image with filters.

Horizantal Filter:
$$F_x = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Horizantal Edges: $\frac{dI}{dx} \cong I * F_x$ *: refers convolution

Vertical Filter:
$$F_y = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Vertical Edges: $\frac{dI}{dy} \cong I * F_y$ *: refers convolution

convolve

0	0	0	20	20	20
0	0	0	20	20	20
0	0	0	20	20	20
		=			
20	20	20	0	0	0
20	20	20	0	0	0

gradient

0	0	0	0
60	20	-20	-60
60	20	-20	-60
0	0	0	0

con

convolve

0	0	0	20	20	20
0	0	0	20	20	20
0	0	0	20	20	20
20	20	20	0	0	0
20	20	20	0	0	0
20	20	20	0	0	0

gradient

0	60	60	0
0	20	20	0
0	-20	-20	0
0	-60	-60	0

0	0	0	20	20	20
0	0	0	20	20	20
0	0	0	20	20	20
20	20	20	0	0	0
20	20	20	0	0	0
20	20	20	0	0	0

Gradient Strengthness
$$\Delta I \cong \left| \frac{dI}{dx} \right| + \left| \frac{dI}{dy} \right|$$

Gradient Direction
$$\theta = \tan^{-1}(\frac{dI}{dy} / \frac{dI}{dx})$$

gradient strength

0	60	60	0
60	40	40	60
60	40	40	60
0	60	60	0

Padding

padding:1

va]	lid

Convolution

$$o = \frac{n + 2p - f}{s} + 1$$

Ex1:

$$f = 3 \times 3$$

 $n = 6, f = 3, p = 0, s = 1$
out = $\frac{6+2\cdot0-3}{1}+1=4$
out = 4×4

Ex3:

$$f = 3 \times 4 = h \times w$$

 $I = 6 \times 6$
 $n = 6, h = 3, p = 1, s = 1$
 $h_{out} = \frac{6 + 2 \cdot 1 - 3}{1} + 1 = 6$
 $w_{out} = \frac{6 + 2 \cdot 1 - 4}{1} + 1 = 5$
 $I_{new} = 6 \times 5$

Ex2:

$$f = 3 \times 3$$

 $n = 6 \times 6$, $f = 3$, $p = 1$, $s = 1$
out = $\frac{6 + 2 \cdot 1 - 3}{1} + 1 = 6$
out = 6×6

Ex4:

$$f = 3 \times 5 = h \times w$$

 $I = 12 \times 8$
 $n = 6, h = 3, p = 1, s = 1$
 $h_{out} = \frac{12 + 2 \cdot 1 - 3}{1} + 1 = 12$
 $w_{out} = \frac{8 + 2 \cdot 1 - 5}{1} + 1 = 6$
 $I_{new} = 12 \times 6$

p:padding

h:height

w: width

f: filter, $f \times f$ or $h \times w$

I: image $n \times n$

s:stride

out:output

padding 0 stride 1

convolve output -20-20-20-20

padding 1 stride 1

padding 1 stride 2

valid

same valid

padding 1, stride 2

wrong padding

0	0	0	0	0	0	0	0	
0	0	0	0	20	20	20	0	
0	0	0	0	20	20	20	0	
0	0	0	0	20	20	20	0	
0	20	20	20	0	0	0	0	
0	20	20	20	0	0	0	0	
0	20	20	20	0	0	0	0	
0	0	0	0	0	0	0	0	

output

0	60	60	0
60	40	40	60
60	40	40	60
0	60	60	0

padding 3, stride 3

true padding

1	1	1
0	0	0
-1	-1	-1

$$o = \frac{n+2p-f}{s} + 1$$

$$6 = \frac{6+2 \cdot p - 3}{2} + 1$$

$$10 = 6+2 \cdot p - 3$$

$$7 = 2 \cdot p$$

$$p = 3.5$$

wrong padding

$$6 = \frac{6+2 \cdot p - 3}{3} + 1$$

$$15 = 6+2 \cdot p - 3$$

$$12 = 2 \cdot p$$

$$p = 3$$

true padding

$$\mathbf{p} = \frac{\mathbf{f} - 1}{2}$$

Convolution over Volume

input $32 \times 32 \times 3$

pad:0 stride:1

 28×28

1 filter

 $5 \times 5 \times 3$

output $28 \times 28 \times 2$

2 filter

 $5 \times 5 \times 3$

output $28 \times 28 \times 6$

6 filter

 $5 \times 5 \times 3$

Convolution over Volume

input 32×32×3

Convolution over Volume

Max Pooling

10	25	12	3	67	23	0	77
8	1	4	5	12	1	44	3
11	3	12	12	3	5	11	5
2	46	12	12	2	23	21	34
1	5	8	99	12	11	1	3
0	5	22	2	45	1	23	3
1	89	22	23	13	9	5	7
12	1	2	34	1	5	5	3

25	12	67	77
46	12	23	34
5	99	45	23
89	34	9	7

 4×4

max-pool: reduce the dimsion by [2,2]

Convolution LeNet5

input		32x32	
conv1	5x5 @6	28x28x6	
pool	2x2	14x14x6	
conv2	5x5x6 @16	10x10x16	
pool	2x2	5x5x16	
FC	5x5x16 @120	1x120	
FC	1x120 @84	1x84	
out	1x84 @10	1x10	predicted
		1x10	ground Truth

ReLU Activation

25	-12	67	77
46	12	-23	34
5	99	45	23
-89	34	9	7

25	0	67	77
46	12	0	34
5	99	45	23
0	34	9	7

Softmax Loss

$$\mathbf{p} \cong \frac{\mathbf{e}^{\mathbf{x}_i}}{\sum_{i=1}^n \mathbf{e}^{\mathbf{x}_i}}$$

$$e^{x_i} = \begin{bmatrix} 2.7183 & 2.7183 & 20.0855 & 54.5982 \end{bmatrix}$$

$$\sum_{i=1}^{n} e^{x_i} = (2.7183 + 2.7183 + 20.0855 + 54.5982) = 80.1203$$

$$p \cong \frac{e^{x_i}}{\sum_{i=1}^{n} e^{x_i}} = \begin{bmatrix} 0.0339 & 0.0339 & 0.2507 & 0.6815 \end{bmatrix}$$

Convolution LeNet5

input		32x32	
conv1	5x5 @6	28x28x6	
reLU		28x28x6	
pool	2x2	14x14x6	
conv2	5x5x6 @16	10x10x16	
reLU		10x10x16	
pool	2x2	5x5x16	
FC	5x5x16 @120	1x120	
FC	1x120 @84	1x84	
out	1x84 @10	1x10	predicted
		1x10	softmax
		1x10	ground Truth