Elektronika 1 – Izrazi za 2. Međuispit

Ak. god. 2009/10

Kapacitet upravljačke elektrode (MOSFET).

$$C_G = C_{ox}WL$$
, $K = \mu_n C_{ox} \frac{W}{L} \rightarrow K = \mu_n C_G \frac{1}{L^2}$

Usporedba n- i p-MOS tranzistora.

	i_D	K	$U_{GS0} > 0$	$U_{GS0} < 0$
n-MOS	$i_D > 0$	K > 0	obogać.	osirom.
p-MOS	$i_D < 0$	K < 0	osirom.	obogać.

Uvjet vođenja tranzistora (MOSFET).

$$nMOS \rightarrow U_{GS} > U_{GSO}$$

$$pMOS \rightarrow U_{GS} < U_{GS0}$$

Područja rada tranzistora (MOSFET).

Granica između dva područja rada:

$$U_{DSS} = U_{GS} - U_{GS0}$$

	Triodno područje	Područje zasićenja
n-MOS	$U_{DS} < U_{DSS}$	$U_{DS} > U_{DSS}$
p-MOS	$U_{DS} > U_{DSS}$	$U_{DS} < U_{DSS}$

Struja i_D u pojedinim područjima rada (MOSFET).

Za triodno područje:

$$i_D = K \left[(U_{GS} - U_{GS0}) U_{DS} - \frac{U_{DS}^2}{2} \right]$$

Za područje zasićenja:

$$i_D = \frac{K}{2}(U_{GS} - U_{GS0})^2 (1 + \lambda U_{DS})$$

Dinamički parametri tranzistora.

Općenito vrijedi:

$$g_m = \frac{\partial i_d}{\partial u_{gs}}, \qquad g_d = \frac{\partial i_d}{\partial u_{ds}}, \qquad r_d = \frac{1}{g_d},$$
 $\mu = r_d g_m$

Izrazi za triodno područje:
$$g_m = KU_{DS}, \qquad g_d = K(U_{GS} - U_{GS0} - U_{DS})$$

Izrazi za područje zasićenja:

$$g_m = K(U_{GS} - U_{GS0})(1 + \lambda U_{DS}),$$

 $g_d = \frac{K\lambda}{2}(U_{GS} - U_{GS0})^2$

Statička analiza sklopova s MOS tranzistorima.

$$U_{GG} = \frac{R_2}{R_1 + R_2} U_{DD}, \qquad R_G = R_1 || R_2$$

$$U_{GG} = U_{GS} + i_D R_S, \qquad U_{DD} = U_{DS} + i_D (R_S + R_D)$$

$$i_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

Koncentracije većinskih nosilaca "u dubini".

Za bipolarne npn tranzistore:

$$n_{0E} \approx N_D$$
, $p_{0B} \approx N_A$

Koncentracije manjinskih nosilaca "u dubini".

Za bipolarne npn tranzistore:

$$p_{0E} = rac{n_i^2}{n_{0E}}, \qquad n_{0B} = rac{n_i^2}{p_{0B}}$$

gdje je n_i intrinzična koncentracija na temperaturi T.

Rubne koncentracije manjinskih nosioca.

Za bipolarne npn tranzistore (NAP):

$$p_{E0} = p_{0E} \exp\left(\frac{U_{BE}}{U_T}\right), \qquad n_{B0} = n_{0B} \exp\left(\frac{U_{BE}}{U_T}\right)$$
 $n_{Bw} = n_{0B} \exp\left(\frac{U_{BC}}{U_T}\right), \qquad p_{C0} = p_{0C} \exp\left(\frac{U_{BC}}{U_T}\right)$

gdje NAP označava normalno-aktivno područje.

Struje manjinskih nosioca.

Za bipolarne npn tranzistore:

$$I_{nE} = qSD_{nB} rac{n_{B0}}{w_B}, \qquad I_{pE} = qsD_{pE} rac{p_{E0}}{w_E}$$

pri čemu vrijedi

$$D_n = \mu_n U_T, \qquad D_n = \mu_n U_T$$

Struje pojedinih strana bipolarnog tranzistora.

Za bipolarne npn tranzistore:

$$I_E = -(I_{nE} + I_{pE}), \qquad I_B = I_R + I_{pE}, \qquad I_C \approx I_{nC}$$

gdje je I_R rekombinacijska struja:

$$I_R = I_{nE} - I_{nC}$$

Faktori bipolarnog tranzistora (NAP).

Istosmjerni faktor strujnog pojačanja u spoju zajedničke baze:

$$\alpha = \frac{I_C}{-I_E} = \beta^* \gamma$$

Istosmjerni faktor strujnog pojačanja u spoju zajedničkog emitera:

$$\beta = \frac{I_C}{I_R} = \frac{\alpha}{1 - \alpha}$$

Transportni faktor:

$$\beta^* = \frac{I_{nC}}{I_{nE}} = 1 - \frac{1}{2} \left(\frac{w_B}{L_{nB}}\right)^2$$

Faktor injekcije (efikasnost emitera):

$$\gamma = \frac{I_{nE}}{-I_E}$$

Ovaj materijal isključivo je namjenjen kao podsjetnik pri rješavanju zadataka za vježbu, te pripremu za ispit. Autor ne odgovara za moguće negativne posljedice korištenja ovog podsjetnika na ispitu. Autor: Marko Gulin

Pojačalo u spoju:	Naponsko pojačanje – A _V	Ulazni otpor – R _{ul}	Izlazni otpor – R _{iz}
Zajedničkog uvoda	$-g_m(r_d\big R_D \big R_T)$	R_G	$R_D r_d$
Zajedinčkog uvoda s degeneracijom	$\frac{-\mu(R_D R_T)}{(1+\mu)R_S + r_d + R_D R_T}$	R_G	$R_D [(1+\mu)R_S+r_d]$
Zajedničke upr. elektrode	$g_m(r_d R_D R_T)$	$R_S \frac{1}{g_m}$	$R_D [r_d + (1+\mu)(R_S R_g)]$
Zajedinčkog odvoda (uvodsko sljedilo)	$\frac{g_m(r_d R_S R_T)}{1+g_m(r_d R_S R_T)}$	R_G	$R_S \frac{1}{g_m}$

Slika 1. Pojačalo u spoju zajedničkog uvoda

Slika 2. Pojačalo u spoju zajedničkog uvoda s uvodskom degeneracijom

Slika 3. Pojačalo u spoju zajedničke upravljačke elektrode