

# Improving Image Clustering With Multiple Pretrained CNN Feature Extractors

J. Guérin<sup>1</sup>, O. Gibaru<sup>1</sup>, S. Thiery<sup>1</sup>, E. Nyiri<sup>1</sup> & B. Boots<sup>2</sup>

<sup>1</sup>LISPEN, Arts et Métiers ParisTech, Lille, France

<sup>2</sup>School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA

Contact: joris.guerin@ensam.eu

### 1- Image Clustering

- ► Inputs: Set of unlabelled images.
- ► Outputs: Images grouped into clusters.



**Fig. 1:** Example of inputs/outputs of the image clustering problem

Remark: User defined number of clusters.

### 2- Standard Approach



**Fig. 2:** Standard "pretrained CNN feature extraction + clustering" pipeline

### **Feature extraction:**

- Many pretrained architectures publicly available.
- Choice of architecture (NN) and layer (L) important [1] but often arbitrary.

### **Clustering:**

- Standard clustering methods: K-means (KM), Agglomerative Clustering (AC)
- Deep end-to-end clustering methods:
  - Partitionning method: **IDEC** [2].
  - Graph-based method: JULE [3].

### 3- Intuition



**Fig. 3:** 2D t-SNE visualization of features extracted by the last layer of three pretrained CNNs for the COIL100 dataset.

- Many possible ways to solve ImageNet.
- Different CNNs might contain complementary information
- ---> Ensemble methods

### 4- Proposed approach

- ► Use all available pretrained nets to generate different views of the original data. This creates a multi-view clustering (MVC) problem.
- ► Use a multi-input MLP to solve MVC within any existing deep clustering frameworks.

# Deep multi-view clustering network (MVnet) Deep feature extractors FE Unsupervised image set Concatenate mlpout Clusters

**Fig. 4:** Proposed multi-view generation + deep multi-view clustering (DMVC) approach to solve the Image Clustering problem.

# 5- Datasets description

**Table 1:** Datasets used for our experiments.

| Dataset    | COIL100 | UMist  | VOC2007  |
|------------|---------|--------|----------|
| # Images   | 7200    | 575    | 2841     |
| # Classes  | 100     | 20     | 20       |
| Image Size | 128x128 | 112x92 | Variable |

## 6- Experimental results

**Table 2:** Comparison of clustering performance (NMI) of DMVC against different MV clustering methods and different fixed CNN features.

|             | VOC2007 |       | COIL100 |       | UMist |       |
|-------------|---------|-------|---------|-------|-------|-------|
|             | JULE    | IDEC  | JULE    | IDEC  | JULE  | IDEC  |
| VGG16       | 0.687   | 0.666 | 0.989   | 0.963 | 0.920 | 0.771 |
| VGG19       | 0.684   | 0.677 | 0.994   | 0.963 | 0.933 | 0.742 |
| InceptionV3 | 0.768   | 0.760 | 0.984   | 0.957 | 0.823 | 0.705 |
| Xception    | 0.759   | 0.779 | 0.986   | 0.955 | 0.829 | 0.707 |
| ResNet50    | 0.679   | 0.691 | 0.997   | 0.973 | 0.919 | 0.784 |
| CC          | 0.718   | 0.587 | 0.995   | 0.886 | 0.855 | 0.699 |
| MVEC        | 0.785   | 0.782 | 0.996   | 0.977 | 0.963 | 0.797 |
| DMVC-fix    | 0.792   | 0.730 | 0.996   | 0.973 | 0.963 | 0.737 |
| DMVC        | 0.810   | -     | 0.995   | -     | 0.971 | -     |

- Using several pretrained CNNs enables to
  - Improve image clustering,
  - Avoid the feature extractor selection problem.
- Multi-view clustering can be improved by adopting end-to-end training.
- These two ideas can be combined to obtain state-of-the-art results at image clustering.

### 7- Learned representations

**Table 3:** Comparison of clustering performance (NMI) of a simple method (KMeans) applied to different representations of the dataset.

|                    | VOC2007 | COIL100 | UMist |
|--------------------|---------|---------|-------|
| InceptionV3        | 0.624   | 0.932   | 0.680 |
| InceptionV3 + JULE | 0.754   | 0.938   | 0.775 |
| DMVC-fix           | 0.759   | 0.961   | 0.895 |
| DMVC               | 0.786   | 0.964   | 0.973 |

- ► DMVC enables to get a single unified feature representation despite the initial split into multiple views.
- This new feature representation separates the original data better and is more compact.





(a) InceptionV3 features

(b) InceptionV3 + JULE





(c) DMVC-fix

(d) DMVC

**Fig. 5:** 2D t-SNE visualization of the features extracted from the UMist dataset at different stages of the DMVC framework.

### 8- References

- [1] J. Guérin, O. Gibaru, S. Thiery, and E. Nyiri, "Cnn features are also great at unsupervised classification," arXiv preprint arXiv:1707.01700, 2017.
- [2] X. Guo, L. Gao, X. Liu, and J. Yin, "Improved deep embedded clustering with local structure preservation," in *International Joint Conference on Artificial Intelligence (IJCAI-17)*, 2017, pp. 1753–1759.
- [3] J. Yang, D. Parikh, and D. Batra, "Joint unsupervised learning of deep representations and image clusters," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2016, pp. 5147–5156.