互联网数据下的模型探索

盖坤 - 阿里妈妈 2017/07/09

提纲

- 1. 互联网数据和经典模型
- 2. 分片线性模型和学习算法MLR
- 3. 大规模ID特征+MLR实践
- 4. 深层用户兴趣分布网络

互联网数据

- 典型问题:CTR预估
- 数据特点
 - 样本量大 百亿样本
 - 特征维度大 无损表示—id特征 原始特征轻松超十亿级
 - 稀疏数据
- 经典做法
 - 简单线性模型Logistic Regression
 - 稀疏正则 L1-Norm 特征筛选
 - 处理非线性:人工特征工程
- 问题
 - 人工能力有限,很难对非线性模式挖掘完全充分
 - 依赖人力和领域经验,方法推广到其它问题的代价大:不够智能

已有非线性模型

- 分析已有的非线性算法 @2011
 - Kernel方法 (kernel svm): 复杂度太高
 - Tree based方法(例GBDT)
 - 大规模弱特征上表现为记忆历史行为 缺乏推广性
 - 跟到叶子路径: if(user id==useri && item id == itemj)条件判断
 - 矩阵分解(Topic Model, LDA等)
 - 适用于两种id的情况,不适合多种id输入
 - Factorization machines:

$$f(x) = \sum_{i,j} \langle v_i, v_j \rangle x_i x_j$$

- 只拟合有限次关系(二次关系)
- 无法拟合其它非线性关系:例如三种特征的交叉,值的高阶变换等。
- 需要的特性
 - 足够强的非线性拟合能力
 - 良好的泛化能力
 - 规模化能力

分片线性模型

- 挑战:如何从大规模数据中挖掘出推广性好的非线性模式?
- 我们提出:分片线性学习算法MLR @2011
 - 名称:Mixture of Ir (MLR)
 - 任意强非线性拟合能力
 - 模型复杂度可控(分片数)
 - 平衡欠拟合和过拟合
 - 每分片对应足够量样本,并用线性规律拟合,得到好的推广性
 - 适合大规模化高维度数据,并有特征选择能力

EXX

模型形式

分而治之形式

聚类划分

划分内预测

$$f(x) = g\left(\sum_{i} \pi_{i}(x, \mu) \eta_{i}(x, w)\right)$$

主要在用的形式:

$$f(x) = \sum_{i=1}^{m} \frac{e^{\mu_i \cdot x}}{\sum_{j=1}^{m} e^{\mu_j \cdot x}} \cdot \frac{1}{1 + e^{-w_i \cdot x}}$$

- Softmax划分, LR预测[MOE]
- 神经网络视角:

$f(x) = \sum_{i=1}^{m} \frac{e^{\mu_i \cdot x}}{\sum_{j=1}^{m} e^{\mu_j \cdot x}} \cdot \frac{1}{1 + e^{-w_i \cdot x}} \qquad f(x) = \left(\sum_{i=1}^{m} \frac{e^{\mu_i \cdot x_u}}{\sum_{j=1}^{m} e^{\mu_j \cdot x_u}} \cdot \frac{1}{1 + e^{-w_i \cdot x_a}}\right) \cdot \frac{1}{1 + e^{-w \cdot x_2}}$

MOE&LR级联

如何学习参数

• 模型形式:
$$f(x;\theta) = \sum_{i=1}^{m} \frac{e^{\mu_i \cdot x}}{\sum_{j=1}^{m} e^{\mu_j \cdot x}} \cdot \frac{1}{1 + e^{-w_i \cdot x}} \qquad f(x) = \left(\sum_{i=1}^{m} \frac{e^{\mu_i \cdot x_u}}{\sum_{j=1}^{m} e^{\mu_j \cdot x_u}} \cdot \frac{1}{1 + e^{-w_i \cdot x_a}}\right) \cdot \frac{1}{1 + e^{-w \cdot x_a}}$$

- 参数矩阵: $\theta = [w_1, ..., w_m, \mu_1, ..., \mu_m]$
- 分类经验损失: $l(f(x_i; \theta), y_i) = -(y_i \log(f(x_i; \theta)) + (1 y_i) \log(1 f(x_i; \theta)))$
- 特征选择:同一维度对应多个权重 分组稀疏正则

$$\|\theta\|_{2,1} = \sum_{i} \sqrt{\sum_{k} \theta_{ik}^2}$$

目标函数:

$$\min_{\theta} \quad g(\theta) = \sum_{i} l(f(x_i; \theta), y_i) + \lambda \|\theta\|_{2,1} + \beta \|\theta\|_{1}$$

目标函数分析

目标函数:

$$\min_{\theta} \quad g(\theta) = \sum_{i} l(f(x_i; \theta), y_i) + \lambda ||\theta||_{2,1} + \beta ||\theta||_1$$

- 难度和挑战:
 - 非凸
 - 非光滑(不可导,不存在次梯度)
 - 实际面对超大规模数据,高维度
- 我们提出针对非凸非光滑目标的快速优化方法
 - 证明处处方向可导
 - 寻优最优下降方向:解析解
 - 拟牛顿法加速
 - Scalability: 计算量对数据量线性
- Why not EM?
 - EM只适用于条件概率连乘模型形式,而我们的方法对非正则部分可导的形式通用。
 - E-Step后转化为一个凸问题。
 - 参数小,无非光滑正则时这个凸问题可以用牛顿法求解(MOE算法)。
 - 但我们的情况:1.参数维度特别大,2.有非光滑正则。凸问题难度不比原问题小。
 - EM没有带来便利。

MLR算法

- 目标函数: $f(\Theta) = loss(\Theta) + \lambda ||\Theta||_{2,1} + \beta ||\Theta||_1$
- 分析:
 - 非光滑范数导致不可导
 - 可以证明:处处方向可导
 - 寻找最速下降方向?
- 最速下降方向:

$$d_{ij} = \begin{cases} s - \beta sign(\Theta_{ij}), & \Theta_{ij} \neq 0 \\ \max\{|s| - \beta, 0\} sign(s), & \Theta_{ij} = 0, \|\Theta_{i}.\|_{2,1} \neq 0 \\ \frac{\max\{\|v\|_{2,1} - \lambda, 0\}}{\|v\|_{2,1}} v, & \|\Theta_{i}.\|_{2,1} = 0, \end{cases}$$

- 整体算法:
 - 拟二阶加速:基于最速下降方向(代替负梯度)的L-BFGS 做方向修正
 - 象限约束:一次更新不跨象限,变号则用0截断 [as OWL-QN]
 - Line Search确定步长
 - 一阶补足保证收敛:二阶方向无法下降时,弃用二阶,用最速下降法
 - 结束:最速下降法无法下降时

MLR特性

特点

- 分而治之
- 分片数足够多时,有非常强的非线性能力
- 模型**复杂度可控**:有较好泛化性能
- 具有自动特征选择作用
- 可以适用于大规模高维度数据

工程实现

- 数据并行,模型并行
- MPI协议,支持独立部署或部署于ODPS
- 实际运行例子:数亿特征(MLR无需人工交叉,特征膨胀不严重),数百亿样本,分片数m=12。每个job 150台机器。

实验1:聚类和分类联动

实验2:高阶拟合

• 三种id特征交叉实验:

特征1	特征2	特征3	类别	mlr预测概率(2分片)	Libfm预测概率(topic数20)
0	0	0	1	0.999954	0.507501
1	0	0	0	0.000050	0.494845
0	1	0	0	0.000058	0.496506
0	0	1	0	0.000045	0.494050
0	1	1	1	0.999965	0.501566
1	0	1	1	0.999969	0.491462(分错)
1	1	0	1	0.999927	0.502185
1	1	1	0	0.000038	0.520136(分错)

- mlr具有更强的非线性拟合能力,不局限于二次函数
 - 可以在更少的参数下拟合更高阶非线性信息(例如多类id交叉)

MLR:模型对比

- MLR vs. LR
 - 例子: 推荐宝贝ranking数据

测试AUC	预估ctr	预估pcvr
LR	0.700112	0.748859
MLR(m=51)	0.713173	0.775776
提升值(百分点绝对值)	+1.3061	+2.6917

- MLR vs. GBDT(boosting)
 - 低维数据对比

AUC	GBDT (tree:800,depth:6)	MLR (m=50)	MLR(m=150,未收敛 模型)	MLR(150,收敛模 型)
训练集 (前一天)	0.664416	0.660369	0.664559	0.666423
测试集 (后一天)	0.661497	0.665067	0.665884	0.667163

- 此外,GBDT不适合超高维度数据

大规模id特征+MLR实践

任务:

- 预估(user, item)的CTR

特征设置:

– 用户行为:访问/收藏/购买过的 shopid/categoryid

- 用户属性:性别、年龄、地域等

Item特征: itemid/shopid/categoryid

• 行为id vs. 用户id

- 用户id→用户兴趣点:用户兴趣点 拟合 训练数据中的目标item。历史记忆属性重。

- 行为id:行为id→行为兴趣点 拟合目标item。学习的是行为→后续兴趣的模式。更具泛化性。

– 我们倾向行为id做特征。但是用户id在训练时可以用来做兴趣点的偏置项。

模型算法:MLR

- 对比LR, AUC提升1个点以上。

- 测试AUC对比(LS-PLM代表MLR算法)

Model	1	2	3	4	5	6	7
LS-PLM	0.6645	0.6593	0.6588	0.6620	0.6606	0.6596	0.6594
LR	0.6499	0.6445	0.6444	0.6467	0.6467	0.6463	0.6454

结构化先验

特征分组:

- 用户特征只用来聚类
- Item特征只用来分类
- 实测:

初始分组训练+全放开refine

优于 分组训练

优于 直接全放开训练

线性偏置

- 位置偏差
- 强特征(例如级联模型的输出)
- 这些特征放在单独线性sigmoid中

$$f(x) = \left(\sum_{i=1}^{m} \frac{e^{\mu_i \cdot x_u}}{\sum_{j=1}^{m} e^{\mu_j \cdot x_u}} \cdot \frac{1}{1 + e^{-w_i \cdot x_a}}\right) \cdot \frac{1}{1 + e^{-w \cdot x_2}}$$

Common Feature

- 数据冗余:
 - 同一个用户的多个样本,特征中有大量重复的特征段
 - 同一个pv展示多个推荐宝贝,多个样本的用户特征完全相同。
 - 一个用户不同时刻的样本,用户特征中也有大量冗余部分
 - 平铺成样本向量时,同样数据复制多次
 - 用户部分有值id平均数量 远大于 item部分有值id平均数量 浪费严重
- 计算冗余:相同特征段的Embedding叠加的计算也是相同的
- Common Feature

• 实际对比

Dataset	Without Comm. Feat.	With Comm. Feat.
Memory used per worker	89.2 GB	3.1 GB
Total time per ite.	121s	10s

- 应用:
 - 持续迭代优化以MLR为核心的预估模型,是直通车定向、钻展广告等业务线近几年收入能力 提升的主要动力之一

深度学习

- 我们如何看深度学习:
 - 1. 优化方法标准化,模型设计和优化方法解耦
 - 2. 模型设计组件化
 - 以上两个特点使得我们可以设计以往难以handle的复杂模型
- 复杂就足够了么?
 - 浅层模型:例如单隐层神经元,近邻法,Kernel方法,可以任意复杂
 - 缺点:记忆性强,泛化能力不够
 - 哪些可能影响泛化能力:
 - 深度 vs. 宽度
 - 网络结构和数据匹配度: CNN 、 LSTM 等
- 我们试图回答:
 - 互联网数据上应该有什么样的网络结构组件?

用户兴趣表示

- 目前流行的处理方法:
 - 同一类用户行为:一组行为id→一组embedding向量→Pooling/RNN→固定长度向量 也称为用户兴趣点

– 目标ad:adId→embedding向量 宝贝兴趣点

- 后面接交叉处理单元。最简单的:内积。或:多层神经网络。

- 用户兴趣用一个向量表示:
 - k维向量最多表达k个独立兴趣 but 实际独立兴趣可能有很多
 - 简单办法:增大k。 but 极大增大计算负担,并且导致过拟合!
- 我们的动机:
 - 能否在低维兴趣空间中表达复杂的用户兴趣?
- 方法:用户兴趣不再用一个点表示,转而用一个分布
 - 分布可以是任意多峰的,可表达任意多独立兴趣
 - 宝贝仍在同一个低维空间中表达
 - 不正交也可以表达独立的兴趣,增加了低维兴趣空间的容纳能力
 - 例子:二维空间,想象12个时钟方向可以表示12个独立兴趣
 - 甚至1维空间可以表达无限多独立兴趣!

用户兴趣分布

- 电商用户行为特点:
 - Diversity:多需求并发 行为序列是多个需求子序列的并集
 - Local Activation:你在具体注意到某个商品时,决定通常只其中一个或部分需求有关
- 用户兴趣分布:
 - 用户兴趣强度: $V_{\mu}(x)$,表现出的兴趣向量随测试点x不同而变
 - 预估场合里,x就是我们要去预估的item的兴趣点
- 用户兴趣点:
 - $-V_u=\sum_i V_i$
 - $V_u(x) = \sum_i f(V_i, V_x) V_i$
 - 用户兴趣点是行为兴趣点的叠加
 - 非统一叠加,权重依赖正在看的商品
 - 根据目标商品,反向激活和过滤用户历史行为,只剩下相关的行为子序列
 - 如何反向激活和过滤,根据数据学习
 - 等价于Attention机制

深层用户兴趣分布网络

利用结构化数据

自适应正则

- 过拟合问题
 - 参数量极大 and 模型复杂
- 正则 vs. 稀疏
 - 0值特征理论上也有正则计算,则计算不可接受
- 我们的方法:

$$w_{i} \leftarrow w_{i} - \eta \left[\frac{1}{b} \sum_{(x_{j}, y_{j}) \in B} \frac{\partial L(f(x_{j}), y_{j})}{\partial w_{i}} + \lambda \frac{1}{n_{i}} w_{i} I_{i} \right]$$

$$I_{i} = \begin{cases} 1, \exists (x_{j}, y_{j}) \in B, s.t. [x_{j}]_{i} \neq 0 \\ 0, \text{ other wises} \end{cases}$$

- 其中 x_j , y_j 表示第j个样本和标签,i是特征维度下标, w_i 表示第i维特征对应的参数向量, n_i 表示第i维特征的非零总频次。
- 特征出现频次越高,单次正则压制约小;频次越低,单次正则压制越大
- 激活函数Dice:Prelu的改进

$$y_{i} = a_{i}(1 - p_{i})y_{i} + p_{i}y_{i}$$
$$p_{i} = \frac{1}{1 + e^{-\frac{y_{i} - E[y_{i}]}{\sqrt{Var[y_{i}] + \epsilon}}}}$$

激活权重展示

用户兴趣分布展示

正则效果

业务数据集上效果

Table 3: Comparison of model performance.

	GAUC	GAUC gain on Base
Base Model	59.59%	0.0%
Base Model with Drop out	59.70%	0.11%
Base Model with adaptive_reg	60.31%	0.72%
DIN Model with adaptive_reg	60.60%	1.01%
DIN Model with adaptive_reg and Dice	60.83%	1.24%

AI@Alibaba

- AI是阿里巴巴重要的技术方向
 - 既注重现有业务上的实用性,也注重长期对未来的储备
- 我们的团队
 - 机器学习模型算法
 - 机器学习平台
 - 视觉图像
 - NLP
 - 广告机制和策略
 - 客户端优化
 - 在线引擎和工程架构

OCR刷新ICDAR BornDigital数据集最好成绩

OCPC算法 @KDD 2017

• 如果你对技术有强烈热情,渴望突破和改变,欢迎加入我们!

邮箱: jingshi.gk@taobao.com

微博: heavenfireray

- 本文主要资料:
 - Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction. https://arxiv.org/abs/1704.05194
 - Deep Interest Network for Click-Through Rate Prediction. https://arxiv.org/abs/1706.06978

感谢聆听

阿里妈妈愿与您一起成长!

