

Université internationale de Casablanca, Faculté de Commerce et de Gestion 2018/2019

Prof. M. Khabouze

Série 3

Exercice 1: dérivable en un point :

Montrer que les fonctions suivantes sont dérivables en x_0 :

a)
$$f(x) = \sqrt{x}$$
 avec 2

a)
$$f(x) = \sqrt{x}$$
 avec $x_0 = 2$
b) $g(x) = x^3$ avec $x_0 = 1$

Exercice 2: Equation de la tangente

- a. Déterminer l'équation de la tangente de la fonction f au point x_0 avec : $f(x) = x^3 + 4$ et $x_0 = 2$
- b. Soit g une fonction définie par : $g(x) = ax^2 x + 1$.

Déterminer la valeur de α telle que la droite tangente de la fonction g en $x_0 = 1$ est parallèle à la droite d: y = 2x + 3

Exercice 3 : Calcul des dérivées :

Calculer les dérivées premières des fonctions suivantes :

$$1) f(x) = x^2 e^x$$

$$2) g(x) = \ln(x^4)$$

3)
$$h(x) = \frac{3x-5}{x-2}$$

1)
$$f(x) = x^2 e^x$$
 2) $g(x) = \ln(x^4)$ 3) $h(x) = \frac{3x-5}{x-2}$ 4) $l(x) = \frac{1}{(x^2+x+1)^5}$

$$5) k(x) = \frac{1}{\sqrt{x^3 - x}}$$

Exercice 4: Calcul des extrema:

Déterminer les extrema locaux des fonctions suivantes :

1)
$$f(x) = 5(x+2)^4 - 3$$

$$2) g(x) = x^2 e^x$$

$$3) h(x) = x - \sqrt{x}$$

Exercice 5 : Règle de l'Hospital :

Calculer les limites suivantes :

a.
$$\lim_{x \to 0} \frac{\ln(x^2 + x + 1)}{x} =$$

b.
$$\lim_{x \to 0} \frac{3\cos(x)-1}{x^2} =$$

Exercice 6: Variation des fonctions:

Etudier la variation des fonctions suivantes :

a.
$$f(x) = x^2 e^x$$

b.
$$g(x) = 2x^3 + x^2 - 1$$