CURSUL 3: INELE

G. MINCU

1. IDEALE

Definiția 1. Fie R un inel, iar I o submulțime nevidă a lui R. Spunem că I este **ideal stâng** al lui R dacă sunt îndeplinite condițiile:

- i) $\forall x, y \in I \ x y \in I$.
- ii) $\forall a \in R \ \forall x \in I \ ax \in I$.

Definiția 2. Fie R un inel, iar I o submulțime nevidă a lui R. Spunem că I este **ideal drept** al lui R dacă sunt îndeplinite condițiile:

- i) $\forall x, y \in I \ x y \in I$.
- ii) $\forall a \in R \ \forall x \in I \ xa \in I$.

Definiția 3. Fie R un inel, iar I o submulțime nevidă a sa. I se numește **ideal bilateral** al lui R dacă este atât ideal stâng, cât și ideal drept al lui R.

Observația 1. Orice ideal al unui inel R este subgrup aditiv al lui R.

Observația 2. Dacă inelul R este comutativ, orice ideal stâng al său este și ideal drept, iar orice ideal drept al său este și ideal stâng.

Exemplul 1. Orice inel are ca ideale bilaterale pe $\{0\}$ și pe el însuși.

Exemplul 2. Mulţimea idealelor lui \mathbb{Z} este $\{n\mathbb{Z} : n \in \mathbb{N}\}.$

Exemplul 3. Multimea idealelor lui \mathbb{Z}_n este $\{\widehat{d} \cdot \mathbb{Z}_n : d|n\}$.

Exemplul 4. Fie k un corp comutativ. Mulţimea idealelor lui k[X] este $\{fk[X]: f \in k[X]\}$.

Demonstrație: Fie k un corp comutativ și I un ideal al lui k[X]. Dacă $I=\{0\}$, atunci I=0k[X]. În caz contrar, mulțimea $I\setminus\{0\}$ este nevidă; fie $f\in I\setminus\{0\}$ un polinom de grad minim. Evident, $fk[X]\subset I$. Fie $g\in I$. Conform teoremei de împărțire cu rest, există $q,r\in k[X]$ astfel încât g=fq+r și grad r< grad f. Din aceste relații rezultă mai întâi că $r\in I$, iar apoi, datorită alegerii lui f, că r=0. Prin urmare, g=fq, deci $g\in fk[X]$. \square

G. MINCU

2

Exemplul 5. i) Fie R şi S două inele, iar I şi J ideale de acelaşi tip ale lui R, respectiv S. Atunci, $I \times J$ este ideal de acelaşi tip al lui $R \times S$.

ii) Dacă R şi S sunt inele unitare, iar I este ideal în $R \times S$, atunci există idealele I_R şi I_S în R, respectiv în S, de acelaşi tip cu I, astfel încât $I = I_R \times I_S$.

Exercițiul 1. i) Generalizați afirmațiile din exemplul 5 la cazul a n inele $(n \in \mathbb{N}^*)$.

ii) Demonstrați afirmațiile din exemplul 5.

Problemă suplimentară: Rămân adevărate afirmațiile din exemplul 5 pentru o infinitate de inele?

Exemplul 6. Fie R un inel. Atunci, $I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in R \right\}$ este ideal stâng al lui $\mathcal{M}_2(R)$, dar nu este ideal drept al acestui inel.

Exercițiul 2. Dați exemplu de ideal drept al unui inel care să nu fie ideal stâng al acelui inel!

Propoziția 1. Fie R un inel și I un ideal stâng (respectiv, drept) al său. Dacă I conține un element inversabil la stânga (respectiv, la dreapta), atunci I = R.

Demonstrație: Fie I un ideal stâng al inelului R, iar $a \in I$ un element inversabil la stânga. Fie $r \in R$. Atunci, $r = (ra^{-1})a \in I$. Prin urmare, I = R. \square

Exercițiul 3. Demonstrați afirmația referitoare la ideale la dreapta din propoziția anterioară!

Corolarul 1. Dacă inelul R este corp, atunci singurele sale ideale sunt $\{0\}$ şi R.

Exercițiul 4. Este adevărată reciproca afirmației din corolarul 1?

Exemplul 7. Fie R un inel şi I,J ideale (stângi, drepte, respectiv bilaterale) ale lui R. Atunci $\{a+b:a\in I,b\in J\}$ este ideal (stâng, drept, respectiv bilateral) al lui R.

Definiția 4. Idealul definit în exemplul 7 se numește suma idealelor I și J.

Exercițiul 5. Definiți suma mai multor ideale!

Propoziția 2. Fie R un inel şi $(I_{\alpha})_{\alpha \in A}$ o familie de ideale (stângi, drepte, respectiv bilaterale) ale sale. Atunci, $\bigcap_{\alpha \in A} I_{\alpha}$ este ideal (stâng, drept, respectiv bilateral) al lui R.

Exercițiul 6. Demonstrați propoziția 2!

Definiția 5. Fie R un inel şi $M \subset R$. Prin **idealul (stâng, drept, respectiv bilateral al) lui** R **generat de** M înțelegem intersecția tuturor idealelor (stângi, drepte, respectiv bilaterale) ale lui R care conțin pe M.

Observația 3. Fie R un inel și $M \subset R$. Idealul (stâng, drept, respectiv bilateral) al lui R generat de M este cel mai mic ideal (stâng, drept, respectiv bilateral) al lui R care conține M.

Notăm de obicei cu (M) idealul bilateral al lui R generat de M.

Propoziția 3. Fie R un inel unitar și $M \subset R$. Atunci:

i) Idealul stâng al lui R generat de M este

$$\left\{ \sum_{i=1}^{n} a_i x_i : n \in \mathbb{N}, a_i \in R, x_i \in M \right\}.$$

ii) Idealul drept al lui R generat de M este

$$\left\{ \sum_{i=1}^{n} x_i a_i : n \in \mathbb{N}, a_i \in R, x_i \in M \right\}.$$

iii) Idealul bilateral al lui R generat de M este

$$\left\{ \sum_{i=1}^{n} a_i x_i b_i : n \in \mathbb{N}, a_i, b_i \in R, x_i \in M \right\}.$$

 $\begin{array}{ll} \textit{Demonstrație:} & \text{Notăm cu } (M) \text{ idealul stâng generat de } M \text{ și cu } I \\ \text{mulțimea } \left\{ \sum_{i=1}^n a_i x_i : n \in \mathbb{N}, a_i \in R, x_i \in M \right\}. & \text{Este evident că } I \subset (M). \text{ Pe de altă parte, deoarece } I \leq^s R \text{ și } M \subset I, \text{ obținem și } (M) \subset I. \\ \text{Celelalte două afirmații se probează analog.} & \Box \end{array}$

Definiția 6. Dacă R este un inel, iar a un element al său, atunci idealul (stâng, drept, respectiv bilateral) al lui R generat de $\{a\}$ se numește **ideal** (stâng, drept, respectiv bilateral) **principal** ale lui R.

Observația 4. Dacă R este un inel, iar a un element al său, atunci: Idealul stâng principal al lui R generat de a este egal cu Ra. Idealul drept principal al lui R generat de a este egal cu aR. Idealul bilateral principal al lui R generat de a este egal cu RaR. Pentru acest ideal se folosește de obicei notația (a).

2. Subinele, ideale şi morfisme

Propoziția 4. Fie $f: R \to S$ un morfism de inele. Atunci:

- i) Dacă R' este subinel al lui R, atunci f(R') este subinel al lui S.
- ii) Dacă S' este subinel al lui S, atunci $f^{-1}(S')$ este subinel al lui R.
- iii) Dacă J este ideal (stâng, drept, respectiv bilateral) al lui S, atunci $f^{-1}(J)$ este ideal (stâng, drept, respectiv bilateral) al lui R.
- iv) Dacă f este surjectiv, iar I este ideal (stâng, drept, respectiv bilateral) al lui R, atunci f(I) este ideal (stâng, drept, respectiv bilateral) al lui S.

Definiția 7. Fie $f: R \to S$ un morfism de inele. Numim **nucleul** lui f, și notăm ker f, mulțimea $\{a \in R : f(a) = 0\}$.

Observația 5. Conform propoziției 4, dacă $f: R \to S$ este un morfism de inele, atunci ker f este ideal bilateral al lui R.

Propoziția 5. Morfismul de inele $f: R \to S$ este injectiv dacă şi numai dacă ker $f = \{0\}$.

Exercițiul 7. Demonstrați această propoziție!

Exercițiul 8. Folosind propoziția 5, redemonstrați faptul că orice morfism de corpuri este injectiv!

Teorema de corespondență pentru ideale. Fie $f: R \to S$ un morfism surjectiv de inele. Notăm cu \mathcal{M} mulțimea idealelor lui R care conțin ker f și cu \mathcal{N} mulțimea idealelor lui S. Atunci aplicațiile $\Phi: \mathcal{M} \to \mathcal{N}, \, \Phi(I) = f(I)$ și $\Psi: \mathcal{N} \to \mathcal{M}, \, \Psi(J) = f^{-1}(J)$ sunt inverse una celeilalte.

3. INEL FACTOR

3.1. Construcția inelului factor. Fie R un inel, iar I un ideal bilateral al lui R. Cum I este subgrup normal al grupului (R, +), putem construi grupul factor R/I. Dacă $\widehat{a} = \widehat{a'}$ și $\widehat{b} = \widehat{b'}$ în acest grup, atunci $a - a' \in I$ și $b - b' \in I$, de unde deducem că $ab - a'b' = a(b - b') + (a - a')b' \in I$, deci $\widehat{ab} = \widehat{a'b'}$ în R/I. Prin urmare, operația $\widehat{a} \cdot \widehat{b} = \widehat{ab}$ este corect definită pe R/I.

Exercițiul 9. Arătați că $(R/I, +, \cdot)$ este inel.

Definiția 8. Inelul $(R/I, +, \cdot)$ se numește inelul factor al lui R în raport cu idealul bilateral I.

Observația 6. Date fiind un inel R și un ideal bilateral I al acestuia, inelul factor R/I are:

- multimea subiacentă $\{a + I : a \in R\},\$
- adunarea (a + I) + (b + I) = (a + b) + I, şi
- înmultirea (a+I)(b+I) = (ab) + I.

Notație uzuală: Vom folosi frecvent atunci când lucrăm în inelul R/Inotația \hat{a} în loc de a+I. Cu această notație, observația anterioară se rescrie astfel:

Observația 7. Date fiind un inel R și un ideal bilateral I al acestuia, inelul factor R/I are:

- multimea subiacentă $\{\widehat{a} : a \in R\},\$
- adunarea $\widehat{a}+\widehat{b}=\widehat{a+b}$, și înmulțirea $\widehat{ab}=\widehat{ab}$.

Observația 8. În inelul factor R/I avem:

- $\widehat{a} = \widehat{b} \Leftrightarrow a b \in I$
- $\widehat{a} = \widehat{0} \Leftrightarrow a \in I$.

Exemplul 8. Dat fiind $n \in \mathbb{N}$, inelul factor $\frac{\mathbb{Z}}{n\mathbb{Z}}$ este \mathbb{Z}_n .

Propoziția 6. Fie R un inel, iar I un ideal bilateral al lui R. Atunci:

- i) Dacă R este comutativ, atunci R/I este comutativ.
- ii) Dacă R este unitar, atunci R/I este unitar (cu unitatea 1+I).

Exercițiul 10. Demonstrați propoziția 6.

Propoziția 7. Fie R un inel (unitar), iar I un ideal bilateral al lui R. Atunci, $\pi: R \to R/I$, $\pi(a) = a + I$ este morfism (unitar şi) surjectiv de inele. In plus, $\ker \pi = I$.

Exercițiul 11. Demonstrați propoziția 7.

Definiția 9. Morfismul π din propoziția 7 se numește **proiecția** (sau surjecția) canonică a lui R pe R/I.

Proprietatea de universalitate a inelului factor. Fie R un inel, Iun ideal bilateral în R, $\pi: R \to R/I$ proiecția canonică, iar $f: R \to S$ un morfism de inele. Atunci:

- i) Dacă $\ker \pi \subset \ker f$, atunci există un unic morfism de inele $u: R/I \to I$ S cu proprietatea $f = u \circ \pi$.
- ii) u este injectiv dacă și numai dacă $\ker \pi = \ker f$.
- iii) u este surjectiv dacă şi numai dacă f este surjectiv.

G. MINCU

6

4. Teorema fundamentală de izomorfism pentru inele

Teorema fundamentală de izomorfism pentru inele. Fie $f:R\to S$ un morfism de inele. Atunci, $\widetilde{f}:\frac{R}{\ker f}\to \mathrm{Im}\ f,\ \widetilde{f}(\widehat{a})=f(a)$ este un izomorfism. Deci, $\frac{R}{\ker f}\overset{\sim}{\to} \mathrm{Im}\ f.$

Demonstrație: Dacă $\widehat{a} = \widehat{b}$, atunci $a - b \in \ker f$, deci f(a - b) = 0, de unde f(a) = f(b). Prin urmare, \widetilde{f} din enunț este corect definită. \widetilde{f} este în mod evident morfism surjectiv de inele. $\ker \widetilde{f} = \{\widehat{a} \in R / \ker f : \widetilde{f}(\widehat{a}) = \widehat{0}\} = \{\widehat{a} \in R / \ker f : f(a) = 0\} = \{\widehat{a} \in R / \ker f : a \in \ker f\} = \{\widehat{0}\}$, deci \widetilde{f} este și injectivă. \square

Corolarul 2. Fie $n, d \in \mathbb{N}$ cu d|n. Atunci, $\frac{\mathbb{Z}_n}{\widehat{d}\mathbb{Z}_n} \stackrel{\sim}{\to} \mathbb{Z}_d$.

Exercițiul 12. Demonstrați corolarul 2.

Corolarul 3. Fie R, S două inele, iar I și J ideale bilaterale ale lui R, respectiv S. Atunci, $\frac{R \times S}{I \times J} \stackrel{\sim}{\to} \frac{R}{I} \times \frac{S}{J}$.

Exercițiul 13. Demonstrați corolarul 3.

Lema chineză a resturilor. Fie R un inel comutativ şi unitar şi I,J două ideale ale lui R cu proprietatea că I+J=R. Atunci, $\frac{R}{I\cap J}\stackrel{\sim}{\to} \frac{R}{I}\times \frac{R}{J}$.

References

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, București, 1986.