Машинное обучение (Machine Learning) Визуализация данных с использованием tSNE

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

Содержание

- Методы визуализации и понижения размерности
- Метод t-SNE

Методы визуализации и понижения размерности

"Хорошая" визуализация (требования)

- Каждый объект с большой размерностью представляется объектом с малой размерностью
- Сохранение "соседства" двух объектов в разных пространствах
- Удаленные точки соответствуют отличающимся объектам
- Масштабируемость

Более формально

- Точка данных это точка x_i в исходном пространстве \mathbb{R}^D
- Образ точка y_i в пространстве \mathbb{R}^2 или \mathbb{R}^3 . Каждый образ соответствует одной исходной точке
- Алгоритм визуализации выбирает положение образов в \mathbb{R}^2 или \mathbb{R}^3 в соответствии с определенными правилами (в основном для сохранения пространственной структуры данных)

Диаграммы рассеяния

Методы сокращения размерности

Линейный дискриминантный анализ (LDA)

- LDA является параметрическим, так как предполагает унимодальное нормальное распределение данных
- Если распределения существенно не Гауссовы, то LDA не сохраняет сложную структуру данных
- LDA может быть ошибочным, когда разделяющая информация содержится не столько в средних, сколько в дисперсии данных

Многоразмерное масштабирование (MDS: Multi-Dimensional Scaling)

Многоразмерное масштабирование упорядочивает точки с малой размерностью так, чтобы минимизировать несходство между попарными расстояниями в исходном пространстве и пространстве малой размерности

$$Cost = \sum_{i < j} (d_{ij} - \hat{d}_{ij})^2, \quad d_{ij} = \|x_i - x_j\|^2, \quad \hat{d}_{ij} = \|y_i - y_j\|^2$$

Отображение, которое сохраняет локальную геометрию (LLE)

- LLE (Locally Linear Embedding) метод:
- Идея сделать локальные конфигурации точек в пространстве малой размерности похожими на локальные конфигурации в пространстве высокой размерности

$$Cost = \sum_{i} \left\| x_i - \sum_{j \in N(i)} w_{ij} x_j \right\|^2, \quad \sum_{j \in N(i)} w_{ij} = 1$$

• Фиксированные веса

$$Cost = \sum_{i} \left\| y_i - \sum_{j \in N(i)} w_{ij} y_j \right\|^2$$

• Найти *y*, который минимизирует потери при ограничениях: *y* имеют единичную дисперсию для каждой размерности

Метод t-SNE

Beроятностная версия локального MDS: Stochastic Neighbor Embedding (SNE)

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

Основная идея SNE - конвертировать близость каждой пары точек в исходном пространстве \mathbb{R}^D большой размерности в вероятность того, что одна точка данных связана с другой точкой как с ее соседом.

SNE сохраняет локальную структуру данных в \mathbb{R}^2 или \mathbb{R}^3

Мера сходства точек в исходном пространстве

• Преобразование многомерного Евклидового расстояния между точками в условные вероятности, отражающие сходство точек x_i в \mathbb{R}^D :

$$p_{j|i} = \frac{e^{-\left\|x_i - x_j\right\|^2 / 2\sigma_i^2}}{\sum_k e^{-\left\|x_i - x_k\right\|^2 / 2\sigma_i^2}}$$

• $p_{j|i}$ показывает, насколько точка x_j близка к точке x_i при гауссовом распределении вокруг x_i с заданным отклонением σ_i .

Мера сходства точек в исходном пространстве

$$p_{j|i} = \frac{e^{-\left\|x_i - x_j\right\|^2 / 2\sigma_i^2}}{\sum_k e^{-\left\|x_i - x_k\right\|^2 / 2\sigma_i^2}}$$

 Отклонение σ_i для каждой точки выбирается так, чтобы точки в областях с большей плотностью имели меньшую дисперсию или фиксированную оценку перплексии (оценка эффективного количества «соседей» для x_i):

$$2^{H(p_{j|i})} = 2^{-\sum_{x} p_{j|i} \log_2 p_{j|i}}$$

• Симметричная мера сходства точек (для упрощения вычисления градиента):

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}, \quad p_{ii} = 0.$$

Мера сходства точек в пространстве малой размерности

• Условные вероятности, отражающие сходство точек y_i в \mathbb{R}^2 или \mathbb{R}^3 :

$$q_{j|i} = rac{\mathrm{e}^{-\left\|y_i - y_j \right\|^2 / 2\sigma_i^2}}{\sum_k \mathrm{e}^{-\left\|y_i - y_k \right\|^2 / 2\sigma_i^2}}, \quad \sigma_i = 1/\sqrt{2}$$

• Симметричная мера сходства точек:

$$q_{ij} = \frac{q_{j|i} + q_{i|j}}{2n}, \quad q_{ii} = 0$$

Кульбак-Лейблер дивергенция

- Если точки y_i и y_j корректно моделируют сходство между точками x_i и x_j , то соответствующие условные вероятности p_{ii} и q_{ii} будут эквивалентны
- Распределение (p_{ij}) фиксировано, (q_{ij}) может меняться
- Мы хотим, чтобы (p_{ij}) и (q_{ij}) были бы как можно ближе.
- Используем дивергенцию Кульбака-Лейблера

$$extit{Cost} = \sum_{i} extit{KL}(P_i || Q_i) = \sum_{i} \sum_{j} extit{p}_{ji} \log rac{p_{ij}}{q_{ij}}$$

Дивергенция Кульбака-Лейблера и градиент

Градиент:

$$\frac{\partial Cost}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j)$$

Распределение Стьюдента

• t-распределение Стьюдента с одной степенью свободы (Коши распределение)

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|y_i - y_k\|^2\right)^{-1}}, \quad q_{ii} = 0$$

- Тяжелые хвосты: решается проблема скученности (расстояние между двумя точками в \mathbb{R}^2 , соответствующими двум среднеудаленным точкам в \mathbb{R}^D , должно быть существенно больше, чем расстояние, которое позволяет получить гауссово распределение)
- Проще с вычислительной точки зрения (нет экспоненты)

t-распределение Стьюдента и градиент

• Градиент:

$$\frac{\partial Cost}{\partial y_{i}} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) \frac{y_{i} - y_{j}}{1 + ||y_{i} - y_{j}||^{2}}$$

• Затем в цикле t = 1, ..., T:

$$Y(t) = Y(t-1) + \eta \frac{\partial Cost}{\partial Y} + \alpha(t) (Y(t-1) - Y(t-2))$$

• η — параметр, определяющий скорость обучения, α — коэффициент инерции.

Примеры того, что получается

Еще примеры того, что получается

Как эффективно использовать t-SNE

Wattenberg, et al. "How to Use t-SNE Effectively", Distill, 2016.

(http://distill.pub/2016/misread-tsne/)

t-SNE в R

- R-пакет tsne (Package 'tsne')
- tsne(X, initial_config = NULL, k = 2, initial_dims = 30, perplexity = 30, max_iter = 1000, min_cost = 0, epoch_callback = NULL, whiten = TRUE, epoch = 100)
- Интересное описание с реализацией: https://habrahabr.ru/post/267041/

Ресурсы

 Visualizing MNIST: An Exploration of Dimensionality Reduction http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Вопросы

?