18. 5. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年10月16日

REC'D 10 JUN 2004

PCT

WIPO

出 願 番 号 Application Number:

特願2003-356211

[ST. 10/C]:

i

[JP2003-356211]

出 願 人 Applicant(s):

PSジャパン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月12日

今井康

【書類名】 特許願 【整理番号】 X1031173 【あて先】 特許庁長官 殿 【国際特許分類】 C08L 51/04 【発明者】 【住所又は居所】 東京都文京区小石川一丁目4番1号 PSジャパン株式会社内 【氏名】 遠藤 茂 【特許出願人】 【識別番号】 500199479 【氏名又は名称】 PSジャパン株式会社 【代表者】 荒浪 淳 【代理人】 【識別番号】 100108693 【弁理士】 【氏名又は名称】 鳴井 義夫 【選任した代理人】 【識別番号】 100068238 【弁理士】 【氏名又は名称】 清水 猛 【選任した代理人】 【識別番号】 100095902 【弁理士】 【氏名又は名称】 伊藤 穣 【選任した代理人】 【識別番号】 100103436 【弁理士】 【氏名又は名称】 武井 英夫 【手数料の表示】 【予納台帳番号】 048596 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【包括委任状番号】

0011546

【書類名】特許請求の範囲 【請求項1】

(A) ゴム変性スチレン系樹脂 100 重量部、(B) ハロゲン化合物を有さない難燃成分 $0.5\sim10$ 重量部からなり、成分(A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim2.5\mu$ mであって、成分(B) はその分子量が $200\sim200$ であり且つ 500 における加熱重量減少残さが 20%以上で、100 200 に溶融点を持ち、成分(A)中に円または楕円粒子状に分散し、下記式(1)の関係を持つことを特徴とする滴下難燃性ゴム変性スチレン系樹脂組成物。

0. $0.4 \le (D f/D r) \le 1.0 \cdots (1)$

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中のゴム状重合体粒子の面積平均粒子径を表わす)

【請求項2】

成分(B)が下記式(2)であらわされるリン系難燃剤である請求項1記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【化1】

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim12$ のアルキル基、炭素数 $5\sim10$ のシクロアルキル基、炭素数 $7\sim20$ のアラルキル基または炭素数 $6\sim15$ のアリール基を示す)

【請求項3】

更に成分 (B) 以外のハロゲン化合物を有さない難燃成分 (C) を 0. 1~10重量部含む請求項1又は2に記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【請求項4】

成分 (C) が下記式 (3) の化合物を含み、且つ成分 (B) の含有量を超えないこと特徴とする請求項3記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【化2】

(式中、nは $1\sim10$ の正数であり、 $A1\sim A4$ は各々独立に、フェニル基、トリル基またはキシリル基である。また、nが2以上の場合、複数あるA3 は各々同一でも異なってもよい。またRは下記式(R1) \sim (R4) から選ばれる基である)

【請求項5】

更に相溶化剤として、極性基を有する構造単位を必須単位とした(共)重合体成分(D)を、0.2~10重量部を含む請求項1~4のいずれか1項に記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【請求項6】

(A) ゴム変性スチレン系樹脂がゴム変性ポリスチレン系樹脂であって、(a):ゴム状重合体 $3\sim10$ 重量%を含み、(b):ゴム変性スチレン系樹脂中の溶剤不溶分の割合が $10\sim26$ 重量%、(c): [(b)/(a)] ≤ 3.5 、(d):ゴム変性スチレン系樹脂のトルエン中での膨潤指数が $9.0\sim11.0$ である請求項 $1\sim5$ のいずれか 1 項に記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【請求項7】

UL94規格のV-2を満たす電気・電子機器内部部品用である請求項1~6のいずれか1項に記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【請求項8】

UL94規格のV-2を満たす電気・電子機器外装用である請求項1~6のいずれか1項に記載の滴下難燃性ゴム変性スチレン系樹脂組成物。

【書類名】明細書

【発明の名称】剛性、面衝撃強度、外観に優れた滴下難燃性ゴム変性スチレン系樹脂組成物

【技術分野】

[0001]

本発明は、ハロゲン化合物を有さない剛性、面衝撃強度、外観に優れた滴下難燃性ゴム変性スチレン系樹脂組成物に関する。更に詳しくは、滴下難燃性、剛性、面衝撃強度、耐熱性、流動性、外観バランスに優れた難燃性ゴム変性スチレン系樹脂組成物に関する。

【背景技術】

[0002]

従来、スチレン系樹脂は耐衝撃性、成形加工性、剛性等の良好なバランスを有する安価な汎用樹脂として、電気・電子機器や食品包装材料に広く使用されている。これらの製品のうち、電気・電子機器等に関しては難燃化が要求されることが多く、スチレン系樹脂と難燃剤を混合したスチレン系難燃樹脂が多く使用されている。スチレン系樹脂の難燃化方法としては、従来よりハロゲン系難燃剤が多く使用されているが、現在は環境問題などからノンハロゲン系の難燃剤を使用するスチレン系樹脂の要求が強い。

さらに、電気・電子機器の内部部品には、UL94規格V-2の滴下型難燃材料が使用されることが多くなっており、これら内部部品は薄肉で複雑な形状を有するものが多い。従って、これら材料には成形時の流動性、剛性、耐衝撃性が必要になる。また、オーディオ機器等の電気機器の外装材にも同じく滴下型難燃材料が使用される場合が多い。これら外装用途では、上記性能に加え更に成形時の外観が良好なことも要求される。

[0003]

このような、剛性、耐衝撃性、流動性、外観の良い難燃樹脂材料の要求に対し、例えばポリフェニレンエーテル、ポリカーボネートを利用した難燃樹脂が多く開発されている。ポリフェニレンエーテル、ポリカーボネートは燃焼時比較的多くのチャー(炭化物)を形成し、表面を被覆するため樹脂内部で発生する分解ガスの燃焼場への供給を遅延させることにより、難燃性を付与できる。これらの樹脂は、リン系難燃剤やシリコン系難燃剤の添加により、一層の難燃効果を発揮する。しかしながら、ポリフェニレンエーテルは流動性に劣り、難燃樹脂組成物にした時、成形性に劣るという欠点をもつ。また、ポリカーボネートも成形性に劣るとともに、加水分解性があるため、リサイクル性に劣るという欠点を有する。

[0004]

一方で燃焼時にチャーを形成しない樹脂は、それ自身が易燃焼性であり、一般にハロゲン化合物を使用せずに難燃化した場合、難燃剤を大量に添加する必要があるため、難燃性と物性バランスを両立するのが困難である。例えばスチレン系樹脂は、燃焼時のチャー形成能力が少なく、それ自体の難燃性は非常に低い。これらの樹脂は従来ハロゲン系難燃剤を用いずに難燃化することには困難を伴う。ハロゲン系難燃剤を用いずに難燃化する従来技術としては、赤リンを添加する方法、ポリフェニレンエーテルやポリカーボネートを添加する方法、ポリフェニレン系難燃剤を添加する方法、ポリフェニレン系難燃剤を添加する方法等がある。このうち法、無機系難燃剤を添加する方法、シリコン系難燃剤を添加する場合には市スフィンガスが発生する為安全性に問題があり、また外観が悪くなる欠点がある。一般的な有機リン系難燃剤を添加する場合には耐熱や剛性が低下すること、ポリフェニレンエーテルを添加する場合には成形性が低下すること、ポリカーボネートを添加する場合には成形性やリサイクル性が低下すること、シリコン系難燃剤を添加する場合には、難燃性が十分に得られないことや高価になる等の欠点を有する。

特に製品の薄肉化に関しては、剛性の向上に寄与する可能性のある無機系難燃剤の添加が効果的と考えられるが、従来の無機系難燃剤は、難燃性が不十分で耐衝撃性や外観が極度に低下する欠点があった。

[0005]

これらの問題に対し、特許文献1では、スルホン酸基を有するスチレン系樹脂を中心と出証特2004-3039367

した、特定性状を有する難燃成分を含有した難燃樹脂組成物を開示しており、耐衝撃性、 耐熱性、流動性、外観に優れた効果を示しているが、スルホン酸基を有するスチレン系樹 脂の製造が汎用的ではなく、また剛性に関する記述もない。

特許文献2では、耐熱性に非常に優れたリン系難燃剤を含有するスチレン系難燃樹脂組 成物を開示しているが、通常該リン系難燃剤は耐衝撃性低下の度合いが激しく、その改良 方法や更に剛性、外観に関する記述は無い。

また、特許文献3においても、特許文献2同様の耐熱性と難燃性に優れた難燃性熱可塑 性樹脂組成物の開示があるが、具体例となっている対象樹脂はポリフェニレンエーテルや ナイロン、ポリカーボネート等であり、スチレン系樹脂を主体とした樹脂組成物の開示は なく、また滴下難燃性、外観、流動性に関する記述もない。

一方、特許文献4において、特許文献2、3と同様の耐熱性と難燃性に優れたスチレン 系の難燃性熱可塑性重合体組成物の開示があるが、耐衝撃性の低下が激しく、また滴下難 燃性、流動性、剛性、外観に関する記述もない。

したがって、従来の技術において、スチレン系樹脂のようなチャー形成能の低い易燃焼 性樹脂に対して、ハロゲン化合物を有さないで、高い剛性を有し、滴下難燃性、耐衝撃性 、耐熱性、流動性及び外観バランスに優れた難燃樹脂組成物を得ることは困難であった。

[0006]

【特許文献1】特開2002-155179号公報

【特許文献2】特開2002-037973号公報

【特許文献3】特開平05-163288号公報

【特許文献4】特表2002-526585号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明はかかる現状に対し、チャー形成能の低いゴム変性スチレン系樹脂においても、 ハロゲン化合物を有さずに、剛性に優れ、且つ面衝撃強度(耐衝撃性)、耐熱性、流動性 、外観(光沢)バランスに優れる、電気・電子機器に好適な滴下難燃性ゴム変性スチレン 系樹脂組成物を提供することを課題とする。

【課題を解決するための手段】

[0008]

上記課題を解決するため、本発明者が鋭意検討を重ねた結果、ゴム変性スチレン系樹脂 に、ハロゲン化合物を有さない難燃成分を粒子状に微分散させ、且つ、ゴム変性スチレン 系樹脂中に分散するゴム状重合体粒子の面積平均粒子径と難燃成分粒子の面積平均粒子径 の比が特定範囲に入ることを特徴とする難燃樹脂組成物が本課題を達成することを見出し 本発明に至った。

即ち、本発明は(A)ゴム変性スチレン系樹脂100重量部、(B)ハロゲン化合物を 有さない難燃成分0.5~10重量部からなり、成分(A)中に分散するゴム状重合体の 面積平均粒子径が $0.1\sim2.5$ μ mであって、成分(B) はその分子量が $200\sim20$ 00であり且つ500℃における加熱重量減少残さが20%以上で、100℃~300℃ に溶融点を持ち、成分(A)中に円または楕円粒子状に分散し、下記式(1)の関係を持 つことを特徴とする剛性、面衝撃強度、耐熱性、流動性、外観に優れた滴下難燃性ゴム変 性スチレン系樹脂組成物である。

0. $0.4 \le (D f/D r) \le 1.0 \cdots (1)$

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中のゴム状重合体粒子の 面積平均粒子径を表わす)

尚、上記「500℃における加熱重量減少残さ」は、後述する [実施例] 「成分 (B) の分析値:(a)加熱重量減少残さ」での定義を意味する。

[0009]

本発明において重要なことは、チャー形成能の高い難燃成分をゴム変性スチレン系樹脂 中のゴム状重合体粒子の面積平均粒子径との比が特定範囲になるよう微分散させることに

ある。スチレン系樹脂と適度な相溶性を有するチャー形成能の高い難燃成分を適切な範囲 で微分散させることにより、ポリフェニレンエーテルを添加した時のような成形性の低下 を招かず、耐熱性の低下もなく、また100℃~300℃に溶融点をもつことにより燃焼 時にチャー化した分散成分が連結し表面を均一に被覆する効果が高まり、結果的に難燃性 の効果が高まると考えられる。また、チャー形成能の高い難燃成分の分子量を比較的小さ くし、且つ混練方法や相溶化剤によって分散状態を制御することにより、より均一に微分 散するようになり、その結果剛性と難燃性が向上するものと考えられる。また、ゴム変性 スチレン系樹脂中のゴム状重合体と微分散した該難燃成分の各粒子径を最適範囲にするこ とにより、面衝撃強度を高いレベルで維持できる。メカニズムは明らかではないが、破壊 時のゴム状重合体粒子のクレーズ発生領域と該難燃成分の位置がクレーズからクラックへ の進行を妨げるものと考えられる。また、難燃成分が100~300℃に融点を持つこと により、混練及び/又は成形過程中に実質的に一旦溶融し、その後、微小な球状または楕 円状の粒子となり表面近傍に流動方向に配向するために、通常のゴム粒子や無機粒子に見 られる表面近傍での突出が無くなるため、外観に悪影響を及ぼさないものと考えられる。 以上の効果から、 剛性、面衝撃強度、耐熱性、流動性、外観に優れた滴下難燃樹脂性ス チレン系樹脂組成物の達成が可能となる。

【発明の効果】

[0010]

本発明の滴下難燃性ゴム変性スチレン系樹脂組成物は、剛性、面衝撃強度、耐熱性、流動性、及び外観のバランスに優れた効果を有する。

【発明を実施するための最良の形態】

[0011]

以下、本発明について詳細に説明する。まず、本発明におけるゴム変性スチレン系樹脂とは、スチレン系樹脂マトリクス中にゴム状重合体粒子が分散しており、ゴム状重合体の存在下にスチレン系単量体を重合させることにより製造することができる。

本発明におけるスチレン系単量体としては、スチレンの他、αーメチルスチレン、αーメチルpーメチルスチレン、αーメチルスチレン、mーメチルスチレン、pーメチルスチレン、ビニルトルエン、エチルスチレン、イソブチルスチレン、tーブチルスチレンあるいはブロモスチレン、クロロスチレン、インデンなどが例示できるが、スチレンが好ましい。これらのスチレン系単量体は一種もしくは二種以上使用することができる。

[0 0 1 2]

また、必要に応じ、スチレン系単量体と共重合可能な他の不飽和単量体と組み合わせて使用しても良い。共重合可能な他の不飽和単量体としては、アクリル酸、メタクリル酸などの不飽和カルボン酸やアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチル、アクリル酸エチルなどの不飽和カルボン酸のアルキルエステル、更にアクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミドなどがあげられる。これらは、2種以上組み合わせて使用することができる。これら、スチレン系単量体と共重合可能な不飽和単量体は、50重量%以下であることが好ましい。

[0013]

ゴム状重合体とは、ポリブタジエン、ポリイソプレン、天然ゴム、ポリクロロプレン、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合体などを使用することができるがポリブタジエンまたはスチレンーブタジエン共重合体が好ましい。ポリブタジエンは、シス含有率の高いハイシスポリプタジエン、シス含有率の低いローシスポリブタジエンの双方を用いることができる。また、スチレンーブタジエン共重合体は、ランダム構造、ブロック構造の双方を用いることができる。これらのゴム状重合体は一種もしくは二種以上使用することができる。また、ブタジエン系ゴムを水素添加した飽和ゴムを使用することもできる。

[0014]

ゴム変性スチレン系樹脂がゴム変性ポリスチレン系樹脂(ハイインパクトポリスチレン 出証特2004-3039367

(HIPS)) の場合、これらのゴム状重合体の中で特に好ましいのは、シス1, 4結合 が90モル%以上で構成されるハイシスポリブタジエンである。該ハイシスポリブタジエ ンにおいては、ビニル1, 2結合が6モル%以下で構成されることが好ましく、3モル% 以下で構成されることが特に好ましい。また該ハイシスポリブタジエンの構成単位に関す る異性体であるシス1,4、トランス1,4、ビニル1,2構造を有するものの含有率は 、赤外分光光度計を用いて測定し、モレロ法によりデータ処理することにより算出できる 。また、該ハイシスポリプタジエンは、公知の製造法、例えば有機アルミニウム化合物と コバルトまたはニッケル化合物を含んだ触媒を用いて、1,3ブタジエンを重合して容易 に得ることができる。

[0015]

また、ゴム変性スチレン系樹脂がアクリロニトリルを含むアクリロニトリルーブタジエ ンースチレン(ABS)系樹脂の場合は、乳化重合にて得られるポリプタジエンゴム、ス チレンープタジエン共重合体、アクリロニトリループタジエン共重合体ゴムが好んで用い られるが、このうちポリブタジエンゴムが特に好ましい。乳化重合にて得られるゴムの場 合、ゴムのミクロ構造はシス含有率の低いローシスポリプタジエンになる。

ゴム変性スチレン系樹脂中に含まれるゴム状重合体の含有量(a)は、HIPS系樹脂 の場合、3~10重量%が好ましく、更に好ましくは4~8重量%である。ゴム状重合体 の含有量が3重量%より少ないとスチレン系樹脂の耐衝撃性が低下し、また10重量%を 越えると剛性が低下する。また、ABS系樹脂の場合、5~20重量%が好ましく、更に 好ましくは10~15重量%である。

[0016]

ゴム状重合体粒子は、スチレン系樹脂マトリクス樹脂中に粒子状に分散している。ゴム 状重合体粒子の面積平均粒子径は 0. 1~ 2. 5 μ mの範囲にあることが好ましい。特に 、ゴム変性スチレン系樹脂がHIPS系樹脂の場合、0. 4 ~ 2. 5 μ mの範囲にあるこ とが特に好ましく、ゴム変性スチレン系樹脂がABS系樹脂の場合には 0. 1~0. 4 μ mの範囲にあることが特に好ましい。該粒子径が0.1μm未満では耐衝撃性が低下し、 又2. 5μmを超えると外観、剛性、難燃性が低下することがある。

ゴム変性スチレン系樹脂中の溶剤不溶分の割合(b)は、HIPS系樹脂の場合、溶剤 にはメチルエチルケトン/メタノール混合溶液を用い、不溶分割合10~26重量%が好 ましく、より好ましくは15~20重量%である。該割合(b)が10重量%より少ない と耐衝撃性が低下し、また26重量%を越えると剛性が低下する。また、ABS樹脂の場 合、溶剤にはアセトンを用い、不溶分割合10~26重量%が好ましく、より好ましくは 15~20重量%である。

[0017]

尚、上記「ゴム変性スチレン系樹脂中の溶剤不溶分の割合(b)」は、後述する[実施 例] 「成分(A)の分析値:(3)溶剤不溶分の割合(%)(ゲル含量と定義)」での定 義を意味する。

また、ゴム変性スチレン系樹脂中のゴム状重合体含有量(a)と上記溶剤不溶分(b) の割合は、 [(b)/(a)]≦3.5であることが耐衝撃性に好ましい範囲である。

ゴム変性スチレン系樹脂がHIPS系樹脂の場合、トルエン中での膨潤指数(e)は9 . 0~11. 0の範囲が好ましく、9. 5~10. 5が更に好ましい。9. 0未満である と、耐衝撃性が低下し、11.0を超えると剛性が低下する。 尚、上記「ゴム変性ポリ スチレンのトルエン中での膨潤指数 (e) 」は、後述する [実施例] 「成分 (A) の分析 値:(6)ゴム変性ポリスチレンのトルエン中での膨潤指数」での定義を意味する。

[0018]

本発明において、最も耐衝撃性、流動性バランスが良好な範囲は、上記効果の組み合わ せにより、ゴム変性スチレン系樹脂がHIPS系樹脂の場合、(a):ゴム状重合体含有 量3~10重量%、(b):ゴム変性スチレン系樹脂中の溶剤不溶分の割合が10~26 重量%、(c): [(b)/(a)]≤3.5、(d):ゴム変性スチレン系樹脂中に分 散しているゴム状重合体の面積平均粒子径が 0. 4~2. 5 μm、(e):トルエン中で

の膨潤指数が9.0~11.0になることである。

また、ゴム変性スチレン系樹脂がABS系樹脂の場合、最も耐衝撃性、流動性バランスが良好な範囲は、(a):ゴム状重合体含有量 $5\sim 2$ 0 重量%、(b):溶剤不溶分の割合が $10\sim 2$ 6 重量%、(c): [(b)/(a)] ≤ 2 . 0、(d):ゴム変性スチレン系樹脂中に分散しているゴム状重合体の面積平均粒子径が 0. $1\sim 0$. 4 μ mになることである。

[0019]

スチレン系樹脂の分子量は、還元粘度で $0.4\sim0.8d1/g$ の範囲にあることが好ましく、更に好ましくは $0.45\sim0.7d1/g$ の範囲である。還元粘度の測定条件は、ポリスチレンの場合トルエン溶液中で30%、濃度0.5g/d1の条件で、また不飽和ニトリルースチレン系共重合体の場合メチルエチルケトン溶液中で30%、濃度0.5g/d1の条件にて測定する。

ゴム変性スチレン系樹脂の製造方法は特に制限されるものではないが、ゴム状重合体の存在下、スチレン系単量体(および溶媒)を重合する塊状重合(または溶液重合)、または反応途中で懸濁重合に移行する塊状 - 懸濁重合、またはゴム状重合体ラテックスの存在下、スチレン系単量体を重合する乳化グラフト重合にて製造することができる。塊状重合においては、ゴム状重合体とスチレン系単量体および必要に応じて有機溶媒、有機過酸化物、連鎖移動剤を添加した混合溶液を完全混合型反応器または槽型反応器と複数の槽型反応器を直列に連結し構成される重合装置に連続的に供給することにより製造することができる。

[0020]

本発明において、ハロゲン化合物を有さない難燃成分(B)は、成分(B)が成分(A)中に粒子状に分散し、且つ成分(A)中に分散するゴム状重合体の面積平均粒子径(Dr)と成分(B)の面積平均粒子径(Df)との間に、下記式(1)の関係を持つことが、特に面衝撃強度を高く保つために必要である。

0. $0.4 \le (D f/D r) \le 1.0 \cdots (1)$

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中のゴム状重合体粒子の面積平均粒子径を表わす)

更に好ましい(Df/Dr)の範囲は、0.06以上0.5以下である。(<math>Df/Dr)の値が0.04を下回ると、面衝撃強度の低下傾向があり、また1.0を上回ると、面衝撃強度、剛性、外観、滴下燃焼性のバランスが悪化する。

また、成分(B)の500 \mathbb{C} における加熱重量減少残さが20%以上であることが好ましく、更に好ましくは加熱重量残さが30%以上である。加熱重量残さが20%未満であると難燃性が低下する。また、成分(B)は $100\mathbb{C} \sim 300\mathbb{C}$ に溶融点を持つことが好ましく、溶融点が $100\mathbb{C}$ 未満であると耐熱性が低下し、また $300\mathbb{C}$ より高いと面衝撃強度、剛性、外観が低下する。また、成分(B)の分子量は $200\sim2000$ であることが好ましく、分子量が2000を下回ると金型汚染が発生し易くなり、2000を超えると難燃性が低下する。

[0021]

成分(B)は、上記を満足するものであれば特に限定されない。例としては、下記式 (2)、(4)であらわされるリン系難燃剤があげられる。

【化3】

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim12$ のアルキル基、炭素数 $5\sim10$ のシクロアルキル基、炭素数 $7\sim20$ のアラルキル基または炭素数 $6\sim15$ のアリール基を示す)

【0022】 【化4】

(式 (4) 中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim12$ のアルキル基、炭素数 $5\sim10$ のシクロアルキル基、炭素数 $7\sim20$ のアラルキル基または炭素数 $6\sim15$ のアリール基を示す)

[0023]

式(2)、(4)における、R、R'の例としては、炭素数 $1\sim12$ のアルキル基としては、メチル、エチル、プロピル、イソプロピル、n-プチル、t-プチル、ネオペンチル等が挙げられる。炭素数 $5\sim10$ のシクロアルキル基としては、シクロヘキシル、シクロオクチル等が挙げられる。炭素数 $7\sim20$ のアラルキル基としては、ベンジル、フェネチル、フェニルプロピル、ナフチルメチル、2-フェニルイソプロピル等が挙げられる。炭素数 $6\sim15$ のアリール基としては、フェニル、ナフチル、アントラニル、キシリル、トリメチルフェニル、ジーt-プチルフェニル、ジーt-プチルフェニル等が挙げられる

これらの中でも、式(2)であらわされるリン系難燃剤が特に好ましく、更にRがメチル、エチル、プロピル、イソプロピル、nーブチル、tーブチルやシクロヘキシル、ベンジル、フェネチル、フェニルプロピル、2ーフェニルイソプロピルであることが好ましく、更に好ましくはベンジル及びフェネチルである。

[0024]

式(2)により表されるの難燃剤の製法は、一般的に隣接ジオール骨格に例えばR、R,に相当するアルキル、シクロアルキル、アラルキルまたはアリールホスホン酸ジクロリドを反応させることにより得られる。これらの反応は、例えば特開昭54-157156号公報、特開昭53-39698号公報に開示されている。具体的には、ペンタエリスリトールに、メチルホスホン酸ジクロリド、フェニルホスホン酸ジクロリド、ベンジルホスホン酸ジクロリド等を反応させることにより得られる。

また、式(4)により表されるの難燃剤の製法は、一般的に隣接ジオール骨格にオキシ3塩化リンを反応させた後に、例えばR、R,に相当するフェノール性水酸基等を反応させることにより得られる。これらの反応は、例えば特開平9-183786号公報やJ.Org.Chem.、24巻、630~635ページ(1959)に記載されている方法がある。具体的には、ペンタエリスリトールにオキシ3塩化リンを反応させた後、フェノ

 $-\nu$ 、2, 6-ジメチルフェノール、クレゾール等を反応させることによって得られる。 【0025】

本難燃樹脂組成物は成分(A)と成分(B)の他、成分(C)を補助的な難燃剤として用いることにより更に難燃性及び機械的物性バランスが好ましくなる。 成分(C)として用いる難燃剤は成分(B)以外のリン系難燃剤や無機系難燃剤、シリコン系難燃剤があげられるが特に制限はない。リン系難燃剤としては、有機リン、、赤リン、無機系リン化合物があげられる。有機リンの例としては、例えば、ホスフィン、ホスフィンオキシド、ビホスフィン、ホスホニウム塩、ホスフィン酸塩、リン酸エステル、亜リン酸エステル等を挙げることができる。より具体的には、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリプチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート、トリスノニルフェニルフェニートなどのリン酸エステルジフェニルホスフェート、トリスノニルフェニルフェニートなどのリン酸エステルジフェニルネオベンチルフォスファイト、ペンタエリスリトールジエチルジフォスファイト、ジネオペンチルハイポフォスファイト、フェニルピロカテコールフォスファイトなどを挙げることができ、更に、

[0026]

縮合リン酸エステル系難燃剤は、下記式(3)の化合物が挙げられ、式(3)の具体例としては、ビスフェノールAビス(ジフェニルホスフェート)、ビスフェノールAビス(ジー2,6-ジキシレニルホスフェート)、ビスフェノールAビス(ジクレジルホスフェート)、レゾルシノールビス(ジー2,6-ジキシレニルホスフェート)等が挙げられる。

【化5】

$$A_1 - O - P - O - R - P - O - A_4$$
 (3)

(式中、nは $1\sim10$ の正数であり、 $A1\sim A4$ は各々独立に、フェニル基、トリル基またはキシリル基である。また、nが2以上の場合、複数あるA3 は各々同一でも異なってもよい。またRは下記式(R1) \sim (R4) から選ばれる基である)

[0027]

赤リンとは、一般の赤リンの他に、表面をあらかじめ、水酸化アルミニウム、水酸化マ 出証特2004-3039367 グネシウム、水酸化亜鉛、水酸化チタンよりえらばれる金属水酸化物の被膜で被覆処理さ れたもの、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタンより選 ばれる金属水酸化物及び熱硬化性樹脂よりなる被膜で被覆処理されたもの、水酸化アルミ ニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタンより選ばれる金属水酸化物の液 膜の上に熱硬化性樹脂の被膜で二重に被覆処理されたものなども好適に用いることができ る。

本発明において使用する上記無機系リン酸塩は、ポリリン酸アンモニウムが代表的であ

これらリン系難燃剤は単独または2種類以上を併用して用いることができる。 無機系 難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタル サイト、水酸化カルシウム、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニ ウム、酸化スズの水和物等の無機金属化合物の水和物、ホウ酸亜鉛、メタホウ酸亜鉛、メ タホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、ムーカルシウム、炭酸カルシウム、炭 酸バリウム、酸化マグネシウム、酸化モリブデン、酸化ジルコニウム、酸化スズ、酸化ア ンチモン等が挙げられる。これらは、1種でも2種以上を併用してもよい。この中で特に 、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、ハイドロタルサ イトからなる群から選ばれたものが好ましい。

[0028]

更に、シリコン系難燃剤としては、例えば、RSiOを含む化合物が挙げられ、Rは例 えば、フェニル基、キシリル基等のアリール基、メチル基、プロピル基等のアルキル基、 また、アルケニル基等がある。一般的に、ポリオルガノシロキサン類があげられる。

これらハロゲン化合物を含有しない難燃成分 (C) の中でも特に好ましいのは、式 (3)で表される縮合リン酸エステルであり、特に好ましい化合物はビスフェノールAビス (ジフェニルホスフェート)、ビスフェノールAビス(ジー2.6-ジキシレニルホスフェ ート)、レゾルシノールビス(ジフェニルホスフェート)、レゾルシノールビス(ジー2 **, 6 - ジキシレニルホスフェート)である。**

[0029]

本発明においては、成分(A)と成分(B)の分散粒子径の関係が最も重要である。成 分(A) ゴム変性スチレン系樹脂中のゴム状重合体粒子の粒子径のコントロールは公知の 方法で実施できる。例えば、ゴム変性スチレン系樹脂を塊状重合(または溶液重合)や塊 状一懸濁重合する場合は、重合の進行に伴ってゴム状重合体粒子を相転作用によって作り 出す際、系の粘度や反応器の攪拌回転数による操作、開始剤等によるグラフト反応の操作 、あるいはこれらの組み合わせにより所望の範囲にコントロールすることができる。また 、ゴム状重合体ラテックスの存在下、スチレン系単量体を重合する乳化グラフト重合にて 製造する場合は、初期のゴム状重合体ラテックスの粒子径によってコントロールすること ができる。

これらのゴム状重合体の粒子径は、単分散に近い形態、粒子径分布の広い形態、2山分 布を有する形態いずれも可能であるが、粒子径分布の広い形態、 2 山分布を有する形態が 面衝撃強度が強くなり特に好ましい。

[0030]

一方、成分(B)の分散状態は、成分(A)の分散の関係により、面衝撃強度を向上さ せる上において重要で、また、それ自身においては、滴下難燃性、剛性、外観を良好に保 つために重要である。即ち、より適度に微分散させることが必要である。分散粒径のコン トロールは、混練による方法、及び/または相溶化剤による方法があげられる。混練によ り分散粒子を所望の範囲に微粒子化する方法は、2軸押出機を用いること、混練温度を成 分(B)の溶融温度付近の温度にし、混練時のせん断によりコントロールする方法などが 挙げられる。

また、相溶化剤成分(D)により成分(B)の分散粒径をコントロールすることもでき る。相溶化剤としては、極性基を有する構造単位を必須単位とした(共)重合体成分であ ることが好ましい。極性基を有する構造単位を必須単位とした重合体成分とは、例えば(メタ)アクリル酸単位、(メタ)アクリル酸アルキルエステル単位、(メタ)アクリロニ トリル単位、無水マレイン酸単位、Nフェニルマレイミド単位、エポキシ基を有する単位 、アミド基を有する単位等が挙げられ、これらは単独に用いても、2つ以上を共重合させ た重合体としても良い。また、スチレン系単位等非極性単位との共重合体とすることも可 能である。

[0031]

これらの中でも、(メタ)アクリル酸アルキルエステル単位からなる重合体、および該 単位とスチレンとの共重合体、アクリロニトリルとスチレンとの共重合体が好ましい。(メタ)アクリル酸アルキルエステル単位からなる重合体の場合、ブチルアクリレート、メ チルメタクリレート、2エチルヘキシルアクリレートの単独重合体及び共重合体、または スチレンとの共重合体が好ましい。アクリロニトリルとスチレンの共重合体の場合、スチ レンとアクリロニトリルの組成比を、1~30重量%の範囲で広く有し、且つ平均アクリ ロニトリル重量%が5~20重量%である共重合体も相溶性の点から好ましい。共重合の 形は、ポリスチレンに極性成分がブロックまたはグラフト重合した重合体のいずれも可能 である。

[0032]

成分(D)の重量平均分子量は1000~50000の範囲にあることが好ましい。 各成分の添加量は、成分(A)100重量部に対し、成分(B)0.5~10重量部が 好ましく、更に好ましくは成分(B)が1~7重量部である。

成分 (B) の配合量が 0.5 重量部未満であると滴下難燃性が悪化し、10重量部より 多いと耐衝撃性、外観、滴下難燃性が低下する。

成分(C)を使用する場合0.1~10重量部配合するのが好ましく、特には1~7重 量部配合するのが好ましい。

本発明の難燃樹脂組成物の製造方法としては、特に制限はないが、例えば成分(A)、 (B) (及び必要に応じ成分 (C)) を一括ブレンドし、2 軸押出機で溶融混練する方法 や成分(A)+(B)をブレンドし、2軸押出機で溶融混練する途中で必要に応じ成分(C)をサイドフィードする方法、また同様に成分(A)を溶融混練する途中で成分(B) (及び必要に応じ成分(C))をサイドフィードする方法、更には、成分(A)+(B) の一部をブレンドし、2軸押出機で溶融混練する途中で成分(B)の残分(及び必要に応 じ成分(C))をサイドフィードする方法などがあげられる。

[0033]

また、ゴム変性スチレン系樹脂を製造する過程で、成分(B)及び/又は成分(C)を 直接第1の反応機に供給する方法や反応機と反応機の連結ラインから注入する方法、更に は最終反応機からペレット化するまでのラインから注入する方法もとることも可能である

なお、本発明のゴム変性スチレン系樹脂を得るにあたり、必要に応じシリコンオイル、 ミネラルオイル、可塑剤、潤滑剤、酸化防止剤等の添加剤を重合過程の任意の位置で添加 することができ、また、押出機で溶融混練する際に添加することも可能である。

【実施例】

[0034]

以下、実施例に基づき本発明を詳細に説明する。なお、本発明は実施例により限定され るものではない。以下に用いる部数は重量部とする。

尚、本発明の実施例における測定方法は以下のとおりである。

以下に記す%は、特に断らない限りは重量%を意味する。

成分(A)の分析値:

(1) ゴム状重合体中のシス1, 4 結合量(%)

赤外分光光度計を用いて測定し、モレロ法によりデータ処理することにより算出した。

(2)スチレン系樹脂中のゴム状重合体の含有量(%)(ゴム含量と定義)

プタジエンセグメントの結合様式を踏まえた上で、熱分解ガスクロマトグラフイーを測 定し、ブタジエンセグメント量からゴム状重合体の含有量を算出した。

[0035]

(3) 溶剤不溶分の割合(%)(ゲル含量と定義)

ゴム変性スチレン系樹脂約1g(W)を精秤し、樹脂がゴム変性ポリスチレン樹脂の場合メチルエチルケトン/メタノール混合溶媒(混合重量比90/10)を、樹脂がABS樹脂の場合はアセトンを20ミリリットル加え、振とう機で60分かけ溶解させる。次に、R20A2型ローターを備えた日立製作所製himacCR20型遠心分離機を用い、0℃、20,000rpmで60分遠心分離後、上澄み液をデカンテーションにより除去し、沈殿した不溶分重量を精秤する(Wc)。ゲル含量は以下の式により求める。

ゲル含量 (b) =W c/W×100

- (4) ゴム量に対するゲル含量の割合
- (2) より求めたゴム含量 (a) と (3) より求めたゲル含量 (b) により、次の式により求めた。

ゴム量に対するゲル量の割合= [(b)/(a)]

[0036]

(5) ゴム状重合体の面積平均粒子径

四酸化オスミウムで染色した難燃性ゴム変性スチレン系樹脂組成物から厚さ75nmの超薄切片を作成、電子顕微鏡撮影し、倍率10000倍の写真(図1参照)にした。写真中、黒く染色された粒子が成分(A)中に含まれるゴム状重合体である。図1に示す写真から成分(A)中のゴム状重合体粒子の粒子径を測定し、数式(N1)により面積平均粒子径を算出した。

平均粒子径=ΣniDri³/ΣniDri² (N1)

ここで、niは粒子径Driのゴム状重合体粒子の個数、また、粒子径Driは写真中の粒子面積から円相当径とした時の粒子径である。本測定は、写真を200dpiの解像度でスキャナーに取り込み、画像解析装置IP-1000(旭化成社製)の粒子解析ソフトを用いて測定した。

[0037]

(6) ゴム変性スチレン系樹脂のトルエン中での膨潤指数

ゴム変性スチレン系樹脂約1gを遠心分離用沈殿管に入れ、トルエン20ミリリットル加え、振とう機で60分かけ溶解させる。次に、R20A2型ローターを備えた日立製作所製himacCR20型遠心分離機を用い、0℃、20,000rpmで60分遠心分離後、上澄み液をデカンテーションにより除去し、膨潤したトルエン不溶分重量を精秤する(Ws)。次に、膨潤したトルエン不溶分を真空乾燥機に入れ、130℃、1時間常圧乾燥した後、30分真空乾燥し、乾燥後のトルエン不溶分重量を精秤する(Wd)。膨潤指数は以下の式により求める。

膨潤指数=Ws/Wd

[0038]

(7)還元粘度

還元粘度はスチレン系樹脂の分子量の指標となる。(3)溶剤不溶分の割合にて得られる遠心分離後の上澄み液にメタノールを添加し、スチレン系樹脂を析出させる。濾過後、乾燥させ試料とする。樹脂がポリスチレンの場合、トルエン溶液中で30 \mathbb{C} 、濃度0.5 g/dlの条件で測定し、また樹脂が不飽和ニトリルースチレン系共重合体の場合、メチルエチルケトン溶液中で30 \mathbb{C} 、濃度0.5 g/dlの条件にて測定する。

[0039]

成分(B)の分析値:

(a)加熱重量減少残さ

熱重量天秤試験(TGA法)を用いて測定し、チャー形成能力の指標とした。島津製作所製熱重量測定装置TGA-50を用い、窒素20ml/分の気流下、10℃/分にて昇温し、500℃での残量(%)を加熱重量減少残さとした。

(b)溶融点

示差熱試験(DSC法)を用いて測定した。島津製作所製熱流東示差走査熱量計DSC

-50を用い、窒素 20 m l / 分の気流下、10 \mathbb{C} / 分にて昇温し、ベースラインと吸熱ピーク立ち上がり部の各接線の交点とした。

[0040]

(c) 面積平均粒子径

四酸化オスミウムで染色した難燃性ゴム変性スチレン系樹脂組成物から厚さ75 n m の超薄切片を作成、電子顕微鏡撮影し、倍率10000倍の写真(図1参照)とした。写真中、黒く染色された粒子が成分(A)中に含まれるゴム状重合体であり、白く抜けた穴が(B)成分である。(B)成分は超薄切片作成時、切片から脱離する場合があり、その場合白く抜けた穴となる。ここで測定対象の(B)成分は、グレー色に染色されている粒子及び白く抜けた穴とする。図1に示す写真から(B)成分の粒子径を測定し、数式(N2)により平均粒子径を算出した。

平均粒子径=ΣniDfi³/ΣniDfi² (N2)

ここで、niは粒子径Dfiの(B)成分粒子の個数、また、粒子径Dfiは写真中の粒子面積から円相当径とした時の粒子径である。本測定は、写真を200dpiの解像度でスキャナーに取り込み、画像解析装置IP-1000(旭化成社製)の粒子解析ソフトを用いて測定した。

[0041]

難燃性ゴム変性スチレン系樹脂組成物の性能評価方法:

各種性能の評価方法については以下に示すとおりである。剛性は曲げ弾性率で、耐衝撃性はシャルピー衝撃強度及び面衝撃強度で、耐熱性は加熱変形温度で、流動性はメルトフローレートで、外観は光沢値及び光沢値の低下度合いを測定することにより評価した。

(1)シャルピー衝撃強度

ペレットを成形機J100E-P(日本製鋼社製)で、シリンダー温度220℃、金型 温度45℃(ISO294-1の条件)にて成形し、試験はISO179に基づき実施した。

(2) 面衝擊強度

成形機IS-55EPN(東芝機械社製)で、金型温度を45℃、シリンダー温度220℃の条件にて、70mm×150mm×2mm厚みの試験片を作成した。試験はデュポン式ダート試験機(東洋精機社製)を用い、撃心受け台直径9.4mm、撃心突端の直径6.2mm、荷重1kgの条件で、試験片中央部に対してミサイルを落下させ、試験片が50%破壊を示す荷重により、破壊エネルギーを求めた。なお、測定上限界は50kg・cmである。

[0042]

- (3) 加熱変形温度
 - (1) で得られるISO試験片を用い、ISO75-2に基づき測定した。
- (4) メルトフローレート
 - ISO1133に基づき200℃にて測定した。
- (5)曲げ弾性率
 - ISO178に基づき測定した。
- (6) 光沢値及び光沢保持率
- (1) で得られるISO試験片を用い、JISK7015に準じ、流動末端箇所を60 度角度にて測定した。光沢保持率は、相当する成分(A)のみの標準組成物試験片に対し 、難燃成分が入った組成物試験片の光沢の保持率(%)とした。

(7) 難燃性

米国アンダーライターズ・ラボラトリー・インコーポレーションより出版された「UL94安全規格:機器の部品用プラスチック材料の燃焼試験」の7~10項目に記載の94V-2(以下「V-2」)基準に従い、3.0mm及び1.5mm短冊試験片にて測定した。

[0043]

実施例、比較例で用いた原材料は以下のものを用いた。

(1) ゴム変性スチレン系樹脂

ゴム変性スチレン系樹脂($HIPS1\sim HIPS6$ 、 $ABS1\sim 2$)は参考例 $1\sim 8$ の方法にて製造した。

「参考例1] HIPS1の製造方法

スチレン単量体 8 5 重量%にローシスポリブタジエンゴム(残留不飽和結合が 1 , 4 ーシス 3 6 %、 1 , 4 ートランス 5 2 %、 1 , 2 ービニル 1 2 %で、ムーニー粘度が 5 5 、 5 %スチレン溶液粘度が 1 6 5 センチポイズのもの)を 2 . 0 重量%溶解した溶液に、エチルベンゼン 1 2 重量%、 1 、 1 ービス(t ーブチルパーオキシ) 3 , 3 , 5 ートリメチルシクロヘキサン(日本油脂社製:商品名パーヘキサ 3 M) 0 . 0 3 重量%、 α メチルスチレンダイマー 0 . 1 0 重量% および酸化防止剤 0 . 0 5 重量%を加えた原料液を、内容積 6 リットルの攪拌機付き槽型第 1 反応器に連続的に 2 リットル/ h r . にて供給し、第 1 反応器出口の固形分濃度 3 0 %とするよう、温度を調節し、相転換を完了させ粒子を形成させた。また、第 1 反応機の攪拌数は、ゴム状重合体粒子径が所望になるよう適宜調整した。更に、内容積 6 リットルの攪拌器付き槽型第 2 反応器、及び同型、同容量の第 3 反応器にて重合を継続させた。その際、第 2 、第 3 反応器出口の固形分濃度を各々 5 0 ~ 6 0 %、 7 0 ~ 7 9 %になるよう槽内温度を調整した。次いで、 2 3 0 $\mathbb C$ の真空脱揮装置に送り未反応スチレン単量体および溶媒を除去し、押出機にて造粒し、ゴム強化スチレン系樹脂組成物を得た。該 H I P S の分析値は表 1 に示すとおりである。

[0044]

[参考例2] HIPS2の製造方法

参考例 1において、ゴム量、1、1-ビス(t-ブチルパーオキシ)3, 3, 5-トリメチルシクロヘキサンと α メチルスチレンダイマーの添加量、及び第 1 反応機の攪拌数を適宜調整して、表 1に示す性質のH I P S 2 を得た。

[参考例3] HIPS3の製造方法

参考例1において、使用するゴムをハイシスポリブタジエンゴム(残留不飽和結合が1,4-シス96%、1,4-トランス2%、1,2-ビニル2%で、ムーニー粘度が43、5%スチレン溶液粘度135センチポイズのもの)に変更し、1、1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサンとαメチルスチレンダイマーの添加量、及び第1反応機の攪拌数を適宜調整して、表1に示す性質のHIPS3を得た。

参考例 1 において、ゴム量、1、1 ービス(t ーブチルパーオキシ) 3 , 3 , 5 ートリメチルシクロヘキサンと α メチルスチレンダイマーの添加量、及び第 1 反応機の攪拌数を適宜調整して、表 1 に示す性質のH I P S 4 \sim 6 を得た。

[参考例7]ABS1の製造方法

[参考例4~6] HIPS4~6の製造方法

ポリブタジエンラテックス(重量平均粒子径0.32ミクロン)固形分30部、イオン交換水100部を10リットル反応器に入れ、気相部を窒素置換した後、この初期溶液を70℃に昇温した。次に、以下に示す組成からなる水溶液(A)と単量体混合液(B)を反応器に8時間にわたり連続的に添加して重合した。

[0045]

添加終了後、1時間温度を保ち、反応を完結させた。水溶液(A)の組成は次のとおりである。

硫酸第一鉄0.005部

ソジウムホルムアルデヒドスルホキシラート(SFS) 0. 1部

エチレンジアミンテトラ酢酸二ナトリウム (EDTA) 0.05部

イオン交換水50部

単量体混合液(B)の組成は次のとおりである。

アクリロニトリル21部

スチレン49部

tードデシルメルカプタン (t-DM) 0.8部

クメンハイドロパーオキサイド (CHP) O. 1部

[0046]

このようにして得られたABSラテックスに、酸化防止剤を添加した後、硫酸アルミニウムをポリマーに対し1.0部加え、凝固させた。更に、十分な脱水、水洗を行った後、乾燥させグラフト重合体粉末(C)を得た。これに、スチレン70%、アクリロニトリル30%からなる単量体混合物を溶液重合して得られた共重合体を混合し、(a) ゴム分が15%になるように、押出機にて混練、ペレット化した。得られたABS1のその他分析値は、(b) ゲル含量22.5%、(b) ゲル含量/(a) ゴム含量は1.5、面積平均粒子径0r は 0.25μ m、還元粘度は0.5であった。

[参考例8] ABS2の製造方法

参考例 7 において、ポリプタジエンラテックスを重量平均粒子径 0. 1 2 ミクロンとした以外は参考例 7 と同様に実施した。得られた A B S 2 の分析値は、 (a) ゴム含量 1 5%、 (b) ゲル含量 2 1%、 (b) ゲル含量 / (a) ゴム含量は 1. 4、面積平均粒子径 D r は 0. 1 μ m、還元粘度は 0. 5 であった。

[0047]

(2) 成分(B)

式(2)で表される成分(B)($B-1\sim B-4$)は表 2 に示す R、R の置換基を有するものを使用した。性状を表 2 にまとめた。また、式(4)で表わされる成分(B)(B-5)についても表 2 に示す R、R の置換基を有するものを使用した。性状を表 2 に記した。

<u>(3)成分(C)</u>

C-1:市販のトリフェニルフォスフェートを使用した。

C-2:下記式(5)の化合物を用いた。市販の大八化学(株)製、商品名CR733Sを用いた。ここで、nはn=1のものが65重量%、 $n \ge 2$ が35重量%であった。

【化6】

[0048]

C-3:下記式(6)の化合物を用いた。市販の大八化学(株)製、商品名CR741を用いた。ここで、nはn=1のものが85重量%、 $n \ge 2$ が13重量%であった。500 %における加熱重量残さは4%、常温で液体であり、分子量(平均値)は739である

【化7】

[0049]

C-4:下記式 (7) の化合物を用いた。市販の大八化学 (株) 製、商品名 PX200 を用いた。500 ℃における加熱重量残さは 4%、融点は 96 ℃であり、分子量は 686 である。

【化8】

[0050]

<u>(4)成分(D)</u>

D-1:スチレンとアクリル酸エステル化合物との共重合体として、東亞合成社製のARUFON/XFM-920 (Tg=51 $^{\circ}$ C、重量平均分子量3800)を使用した。

D-2:ブチルアクリレートと2エチルヘキシルアクリレートの共重合体として、東亞合成社製のARUFON/UP-1021 (Tg=-71 $^{\circ}$ 、重量平均分子量1600)を使用した。

「比較例1~2]

表3の組成比の成分(A)、(B)、及び離型剤としてステアリン酸亜鉛0.2 部を、一括混合し、二軸押出機(ウエルナー社製 Z S K 2 5 mm、L/D=42)を用い、250℃で溶融押出を行い、ペレットを得た。この際、スクリュー回転数は300 r pm、吐出量は10 k g/h r であった。このようにして得られたペレットを前述の射出成形機を用い、各成形試験片を作成し、物性及び難燃性評価を実施した。結果を表3に示す。比較例1では成分(B)を有しないため難燃性を持たず、比較例2では成分(B)を有しているものの量が少なく滴下難燃性が悪化する。

[0051]

[実施例1]

成分(B)を表3に示す量に変更した以外は、比較例2と同様の方法で押出、成形、試験を実施した。結果を表3に示す。いずれも、良好な物性バランス、良好な滴下難燃性能を有している。

[実施例2~3]

表3に記した組成、混練条件に変更した以外は実施例1と同様の方法で押出、成形、試験を実施した。いずれも、良好な物性バランス、良好な滴下難燃性能を有している。

「比較例3]

表3に記した混練条件に変更した以外は実施例1と同様の方法で押出、成形、試験を実施した。混練条件により難燃成分の分散粒子径が大きくなり、その結果粒子径比(Df/Dr)は本発明の範囲を超えてしまったため、光沢及び光沢保持率、1.5mm厚みの滴下難燃性が悪化する。

[0052]

[比較例 4]

難燃成分(B)の量を表3に記したとおり増量した以外は実施例1と同様の方法で押出、成形、試験を実施した。難燃成分(B)の量が本発明の範囲を超えてしまったため、面衝撃強度、光沢及び光沢保持率、3.0mm厚みの滴下難燃性が悪化する。

[実施例4~7、比較例5]

使用するゴム変性スチレン系樹脂(A)を表1、表4に記したものに変更した以外は実施例1と同様の方法で押出、成形、試験を実施した。ゴム変性スチレン系樹脂中のゴム状重合体の分散粒子径が本発明の範囲を超えた比較例5においては、光沢、曲げ弾性率及び滴下難燃性が悪化する。

「比較例6]

表4に記した混練条件に変更した以外は実施例6と同様の方法で押出、成形、試験を実施した。混練条件により難燃成分の分散粒子径が大きくなり、その結果粒子径比(Df/

Dr) は本発明の範囲を超えてしまったため、光沢及び光沢保持率が悪化する。

[0053]

[実施例8~9、比較例7]

使用するゴム変性スチレン系樹脂(A)に参考例7~8により製造したABS1及びABS2を使用し、混練条件を表5に記した条件に変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。粒子径比(Df/Dr)が本発明の範囲を超えてしまった比較例7では、光沢保持率、3.0mm厚み滴下難燃性が悪化する。

[実施例10~13]

使用する難燃成分(B)、混練条件を表5に記したとおり変更した以外は、実施例1と 同様の方法で押出、成形、試験を実施した。いずれも、良好な物性バランス、良好な滴下 難燃性能を有している。

[0054]

[比較例8~9]

本発明の難燃成分(B)を使用せずに、表6記載の溶融点を持たない難燃成分を用いた 以外は、実施例1と同様の方法で一括混合、押出、成形、試験を実施した。比較例8では 、難燃成分の分散粒子径が大きく本発明の範囲をはずれ、光沢、滴下難燃性が悪い。比較 例9では、難燃成分は非常に細かく微分散するものの、難燃成分の特徴が本発明の範囲を はずれるため、滴下難燃性が悪い。

[比較例10~12]

表6記載の組成の成分(A)及び離型剤としてステアリン酸亜鉛0.2部を混合し、また成分(C)は押出し機途中からサイドフィードして230℃で溶融押出を行った。その他は実施例1と同様の方法で成形、試験を実施した。難燃剤は樹脂中に分散せず、加熱変形温度、滴下難燃性が悪化する。

[0055]

「比較例13]

表6記載の組成の各成分を一括混合し、その他は実施例1と同様の方法で押出、成形、 試験を実施した。難燃剤は樹脂中に分散せず、加熱変形温度、滴下難燃性が悪化する。

[実施例14~16]

表6~7の組成の成分(A)~(D)を一括混合し、押出し条件を表6~7に記載した 温度に変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。いずれも 、良好な機械的物性バランス、良好な滴下難燃性能を有していた。

[0056]

[比較例14]

表7の組成の成分(A)~(D)を一括混合し、押出し条件を表6~7に記載した温度に変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。成分(B)の分散粒子径が小さくなり、粒子径比(Df/Dr)が本発明の範囲より低下した結果、加熱変形温度及び1.5mm厚み滴下難燃性が悪化した。

[実施例17~20]

表7記載の組成、押出条件に変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。実施例 $16\sim18$ においては、成分(C)は押し出し機途中からサイドフィードした。いずれも、良好な物性バランス、滴下難燃性能を有している。

[0057]

【表1】

表1

	参考例	参考例	参考例	参考例	参考例	参考例
	1	2	3	4	5	6
	HIPS1	HIPS2	HIPS3	HIPS4	HIPS5	HIPS6
シス1,4結合	35	35	98	35	35	35
量(%)				:		
(a) ゴム含量	3	5	8	8	6	10
(%)						
(b) ゲル含量	15	15	25	30	20	28
(%)					,	
(b) / (a)	5.0	3.0	3. 1	3. 75	3.3	2.8
面積平均粒	1.6	1.3	1.2	2.7	0.52	1.3
子径 Dr (μm)					!	
膨潤指数	10.0	10.5	10.0	11.5	9.5	11.0
運元粘度 (d)	0.7	0.7	0.7	0.7	0.7	0.53
∕g)						

【0058】 【表2】

表2

	B-1	B-2	B – 3	B-4	B-5
式(2)中のR、R'	ベンジル	フェニル	メチル	フェニル エチル	
式(4)中のR、R'	_		_	_	フェニル
500℃重量減少残渣	29%	32%	28%	26%	35%
溶融点	255℃	265℃	248℃	250℃	194℃
分子量	317	303	241	345	335

[0059]

【表3】

表3

	比較例	比較例	実施例	実施例	実施例	比較例	比較例
	1	2	1	2	3	3	4
(A)成分							
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2
	100	100	100	100	100	100	100
(B)成分							
種類	無し	B-1	B-1	B-1	B-1	B-1	B-1
添加量		0.3	3	7	7	7_	12
混練条件							
押出し温度(℃)	250	250	250	250	250	200	250
回転数 (rpm)	300	300	300	300	200	200	300
(B)成分の面積平均 粒子径Df(μm)	:	0.12	0.15	0. 25	1.0	1 -	
一種サイン (μm)		U. 12	0.15	U. Zo	1.2	1.5	1.3
粒子径比(Df/Dr)	_	0.09	0.12	0.19	0. 92	1. 2	1.0
12, 22, 21, 21,		0.00	0.72	0.15	0.02	1.2	1.0
物性値				-			
シャルピー衝撃強度	10	10	9	6	5	4	3
(k J ∕m²)							
面衝撃強度(kg·cm)	20	20	20	15	13	9	7
ALLEGENAL OF CUD-	0.590	0.540	0 000	0.550	0.500	0.000	
曲げ弾性率(MPa)	2,530	2, 540	2, 630	2, 770	2, 700	2, 670	3, 000
加熱変形温度 (℃)	74	74	ar		70	ar	
加熱変形温度(し)	14	14	75	76	76	75	76
メルトフローレート (g / 10min)	7	7	7	8	8	8	10
7 (8)	,		•		U	U	10
光沢(%)	78	78	78	77	73	68	68
光沢保持率(%)		100	100	99	94	87	87
UL94 難燃性							
(3.0mm 厚み)							
試験結果	不適合	不適合	V-2	V-2	V-2	V-2	不適合
UL94 難燃性							
(1.5mm 厚み) 試験結果	不適合	不適合	V-2	V-2	V-2	不滋ム	vo
政 教和未	小河口	小週省	V-2	V-Z	v-Z	不適合	V-2

[0060]

【表4】

表4

	実施例	実施例	比較例	実施例	比較例	実施例
	4	5	5	6	6	7
(A)成分						
HIPS 種	HIPS1	HIPS3	HIPS4	HIPS5	HIPS5	HIPS6
	100	100	100	100	100	100
(B)成分	=					
種類	B-1	B-1	B-1	B-1	B-1	B-1
添加量	3	3	3	3	3	3
混練条件						
押出し温度(℃)	250	250	250	250	200	250
回転数(rpm)	300	300	300	300	300	300
(B)成分の面積平均			_		,-	
粒子径D f (μm)	0. 12	0.11	0.12	0.12	1.0	0.12
粒子径比(Df/Dr)	0.08	0.09	0.04	0. 29	1.92	0.09
物性値						
シャルピー衝撃強度 (k J /m²)	5	12	10	8	7	14
面衝擊強度(kg·cm)	14	45	60	35	20	50
曲げ弾性率(MPa)	2, 900	2, 400	1,950	2, 700	2,600	2, 100
加熱変形温度 (℃)	76	74	72	75	74	74
メルトフローレート(g /10min)	8	7	5	7	7	10
光沢(%)	76	75	45	88	75	72
光沢保持率(%)	100	100	100	100	85	99
UL94 難燃性						
(3.0mm 厚み)						
試験結果	V-2	V-2	不適合	V-2	V-2	V-2
UL94 難燃性						
(1.5mm 厚み)						
試験結果	V-2	V-2	不適合	V-2	V-2	V-2

[0061]

【表 5】

表5

	22.0							
	比較例	実施例	実施例	実施例	実施例	実施例	実施例	
	7	8	9	10	11	12	13	
(A)成分								
HIPS 種	ABS1	ABS1	ABS2	HIPS2	HIPS2	HIPS2	HIPS2	
	100	100	100	100	100	100	100	
(B)成分								
種類	B-1	B-1	B-1	B-2	B-3	B-4	B-5	
添加量	3	3	3	5	5	5	5	
混練条件								
押出し温度 (℃)	200	250	250	260	250	250	200	
回転数 (rpm)	300	300	300	300	300	300	300	
(B)成分の面積平均								
粒子径Df(µm)	0.35	0.12	0.10	0. 2	0. 25	0.09	0. 35	
粒子径比(Df/Dr)	1.4	0.48	1.0	0.15	0. 19	0.07	0. 27	
42-14-4-								
物性値	1.5			_	_	_	_	
シャルピー衝撃強度 (k J /m²)	15	21	9	7	7	8	5	
面衝撃強度(kg·cm)	35	50	16	18	17	20	10	
TOTAL TOTAL (1/2 CHI)	00	00	10	10	1.	40	13	
曲げ弾性率(MPa)	2,800	2,910	2, 980	2,650	2, 650	2, 680	2, 650	
		,	-,	3, 333	_,	2,000	2,000	
加熱変形温度(℃)	78	80	81	73	73	72	75	
メルトフローレート(g / 10min)	2	2	2	8	8	9	7	
의소:C (6/\	oe.	0.5	00	70	, ac			
光沢(%) 光沢保持率(%)	86 89	96 100	99 100	76 97	75 96	78	66	
UL94 難燃性	03	100	100	71	50	100	85	
(3.0mm 厚み)								
試験結果	不適合	V-2	V-2	V-2	V-2	V-2	V-2	
UL94 難燃性							, 5	
(1.5mm 厚み)								
試験結果	V-2	V-2	V-2	V-2	V-2	V-2	V-2	

[0062]

【表 6】

表6

	比較例	比較例	比較例	比較例	比較例	比較例	実施例
(1)	8	9	10	11	1 2	13	14
(A)成分							
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2
	100	100	100	100	100	100	100
難燃成分				_			
種類	1*	2*	無し	無し	無し	無し	B-1
添加量	10	5					3
(C) 成分	4>	,					
種類	無し	無し	C-1	C-2	C-3	C-4	無し
添加量			7	7	7	7	
(D)成分	Acc. 1	無し	無し	無し	無し	無し	D-1
種類 添加量	無し	無し	無し	無し	無し	無し	υ–1 2
混練条件			·				
押出し温度(℃)	230	250	230	230	230	230	250
回転数(rpm)	300	300	300	300	300	300	300
難燃成分の面積平均粒							
子径D f (μm)	2. 3	0.02	_	_	_	_	0.10
粒子径比(Df/Dr)	1.8	0.02					0. 08
物性値	,						
シャルビー衝撃強度	3	5	7	7	7	8	7
(k J ∕m²)							
面衝擊強度(kg·cm)	5	17	18	17	18	17	22
曲(f弾性率 (MPa)	3, 200	2, 900	2,600	2,610	2, 620	2, 650	2, 650
	,		-		ļ. ·		·
加熱変形温度(℃)	78	76	66	64	67	68	72
メルトフローレート(g/10min)	5	8	14	15	13	12	9
光沢(%)	35	73	78	78	78	78	78
光沢保持率(%)	45	94	100	100	100	100	100
UL94 難燃性							
(3.0mm 厚み)			1]	
試験結果	不適合	不適合	V-2	不適合	不適合	不適合	V-2
UL94 難燃性							
(1.5mm 厚み)		1					1
試験結果	不適合	不適合	V-2	V-2	不適合	V-2	V-2
					.		

^{1*} 水酸化マグネシウム(キスマ5B、平均2次粒子径0.8μm、協和化学工業社製)

[0063]

^{2*} 二酸化珪素 (アエロジル200、平均1次粒子径5nm、日本アエロジル社製)

^{(1*、2*}は溶融点をもたない)

【表7】

表7

	実施例	実施例	比較例	実施例	実施例	実施例	実施例
	15	16	14	17	18	19	20
(A)成分							
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2
	100	100	100	100	100	100	100
(B)成分							
種類	B-1	B-5	B-1	B-1	B-1	B-1	B-1
添加量	3	3	3	2	2	2	2
(C)成分 種類	無し	無し	無し	C-1	C-2	C-3	C-4
1	,,,,	,,,,,	,	2	2	2	2
(D)成分							
種類	D-2	D-2	D-2	無し	無し	無し	無し
添加量	2	2	4				
混練条件 押出し温度(℃)	250	950	950	250	250	950	954
押品し温度(し) 回転数 (rpm)	300	250 300	250 300	250 300	250 300	250 300	250 300
(B)成分の面積平均	000		000	000	องบ	300	300
粒子径Df(μm)	0.10	0. 20	0.04	0. 20	0.21	0. 21	0. 22
粒子径比(Df/Dr)	0.08	0. 15	0. 03	0. 15	0.16	0.16	0.17
		<u> </u>					
物性値							
シャルピー衝撃強度 (k J /m²)	7	6	6	6	6	7	7
面衝撃強度(kg·cm)	19	17	19	18	19	18	19
All a state that the	0.0-0	0.000	0.550	0.6=0			
曲げ弾性率(MPa)	2, 650	2, 600	2, 550	2, 650	2, 600	2, 610	2, 620
加熱変形温度 (℃)	73	72	68	72	70	71	72
441		_			_		
メルトフローレート (g /10min)	8	9	10	11	11	10	9
光沢(%)	78	75	78	78	78	78	78
光沢保持率(%)	100	96	100	100	100	100	100
UL94 難燃性							
(3.0mm 厚み)	wo	W 6	,, ,		••		••
試験結果 UL94 難燃性	V-2	V-2	V-2	V-2	V-2	V-2	V-2
UL94 異EX公1生 (1.5mm 厚み)							
試験結果	V-2	V-2	不適合	V-2	V-2	V-2	V-2
	_	_					· ~

【産業上の利用可能性】

[0064]

本発明の滴下難燃性ゴム変性スチレン系樹脂組成物は、剛性、面衝撃強度、耐熱性、流動性、及び外観のバランスに優れるため、トナーカートリッジ等の薄肉で複雑な形状の電子・電気機器内部部品として使用されるV-2材料に好適であり、またオーディオ等の複

ページ: 22/E

雑な形状の電子・電気機器外装用部品として使用されるV-2材料に好適である。 【図面の簡単な説明】

[0065]

【図1】本発明の実施例2に相当するゴム状重合体及び成分(B)の粒状構造を示した透過型電子顕微鏡写真(右下隅の[-]は 1μ mの長さを示す。)。図1中、黒く染色された粒子が成分(A)中に含まれるゴム状重合体であり、白く抜けた穴が微分散している難燃成分(B)である。

【図2】本発明の比較例3に相当するゴム状重合体及び成分(B)の粒状構造を示した透過型電子顕微鏡写真(右下隅の「-」は1 μ m の長さを示す。)。

【書類名】図面 【図1】

【図2】

ページ: 1/E

【 曹類名 】 要約 書

【要約】

【課題】 ハロゲン化合物を有さない、滴下難燃性、剛性、面衝撃強度、耐熱性、流動性、外観バランスに優れた、電気・電子機器内部部品及び外装用部品に好適な滴下難燃性ゴム変性スチレン系樹脂組成物の提供。

【解決手段】 (A) ゴム変性スチレン系樹脂 100重量部、(B) ハロゲン化合物を有さない難燃成分 $0.5\sim10$ 重量部からなり、成分 (A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim3.0$ μ mであって、成分 (B) はその分子量が $200\sim200$ 0であり 100 ~ 300 ~ 100 ~ 100

0. $0.4 \le (D f/D r) \le 1.0 \cdots (1)$

【選択図】

なし

特願2003-356211

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-356211

受付番号

50301718650

書類名

特許願

担当官

第六担当上席 0095

作成日

平成15年10月17日

<認定情報・付加情報>

【提出日】

平成15年10月16日

特願2003-356211

出願人履歷情報

識別番号

[500199479]

1. 変更年月日

2003年 4月14日

[変更理由]

名称変更

住 所

東京都文京区小石川1丁目4番1号

氏 名 PSジャパン株式会社