ECE2 Mathématiques

EML 2000

Exercice 1:

On considère une matrice carrée d'ordre 3 :

$$J = \left(\begin{array}{ccc} 0 & 2 & 1\\ 0 & -1 & 2\\ 0 & 1 & 0 \end{array}\right)$$

et l'endomorphisme f de \mathbb{R}^3 de matrice J dans la base canonique de \mathbb{R}^3 .On considère, pour tout nombre réel a, la matrice carrée réelle d'ordre 3:

$$M_a = \left(\begin{array}{ccc} a & 2 & 1\\ 0 & a - 1 & 2\\ 0 & 1 & a \end{array}\right).$$

- 1. a) Déterminer les valeurs propres et les sous-espaces propres de f.
 - b) Montrer que J est diagonalisable. Déterminer une matrice réelle diagonale D d'ordre trois et une matrice réelle inversible P d'ordre trois telles que $J = PDP^{-1}$
 - c) En déduire que, pour tout nombre réel a, il existe une matrice réelle diagonale D_a d'ordre trois, que l'on calculera, telle que $M_a = PD_aP^{-1}$.
 - d) Quel est l'ensemble des nombres réels a tels que M_a soit inversible?
- 2. On se propose, dans cette question, de déterminer l'ensemble des nombres réels a tels qu'il existe une matrice carrée réelle d'ordre trois vérifiant $X^2 = M_a$.
 - a) Soient a un nombre réel et X une matrice carrée réelle d'ordre trois tels que $X^2 = M_a$
 - (i) Montrer que X commute avec M_a , puis que X commute avec J.
 - (ii) On note h l'endomorphisme de \mathbb{R}^3 de matrice X dans la base canonique de \mathbb{R}^3 . Déduire de la question précédente que tout vecteur propre de f est vecteur propre de h.
 - (iii) Établir qu'il existe une matrice réelle diagonale Δ d'ordre trois telle que $X=P\Delta P^{-1}$ et montrer : $\Delta^2=D_a$.
 - (iv) En déduire : $a \ge 2$.
 - b) Réciproquement, montrer que, pour tout nombre réel a supérieur ou égal à 2, il existe une matrice carrée réelle X d'ordre trois telle que $X^2 = M_a$.
 - c) Conclure.

Exercice 2:

On considère la fonction $f:]-1; +\infty[\to \mathbb{R}$ définie, pour tout x de $]-1; +\infty[$, par :

$$f(x) = \begin{cases} 1 & \text{si } x = 0\\ \frac{\ln(1+x)}{x} & \text{si } x \in]-1; 0[\ \cup\]0; +\infty[\end{cases}.$$

- 1. a) Montrer que f est continue sur $]-1;+\infty[$.
 - b) Montrer que f est de classe C^1 sur]-1;0[et sur $]0;+\infty[$ Pour tout réel x de $]-1;0[\cup]0;+\infty[$, calculer f'(x)

ECE2 Mathématiques

- c) Montrer que f'(x) tend vers $-\frac{1}{2}$ lorsque x tend vers 0.
- d) En déduire que f est de classe C^1 sur $]-1;+\infty[$.
- 2. Montrer : $\forall x \in]-1; +\infty[, \frac{x}{x+1} \ln(1+x)] \le 0$ En déduire les variations de f. On précisera les limites de f en -1 et $+\infty$.
- 3. Montrer que, pour tout $x \in \left] -\frac{1}{2}; +\infty \right[$, l'intégrale $\int_{-\infty}^{x2xf(t-dt)} existe$.
- 4. On considère la fonction $F: \left] -\frac{1}{2}; +\infty \right[\to \mathbb{R}$ définie, pour tout x de $\left] -\frac{1}{2}; +\infty \right[$, par $: F(x) = \int_{-\infty}^{x^2 x^2 f(t-dt)} dt$.
 - a) Montrer que F est dérivable sur $\left]-\frac{1}{2};+\infty\right[$ et que F est croissante.
 - **b)** Montrer que $\forall x \in [0; +\infty[, F(x) \ge xf(2x)]$.
 - c) En déduire que F(x) tend vers $+\infty$ quand x tend vers $+\infty$.
 - d) Montrer que l'intégrale $\int_{-1}^{-1-\frac{1}{2}f(t)} dt$. est convergente. En déduire que la fonction F admet une limite finie de $-\frac{1}{2}$. On ne cherchera pas à calculer cette limite.

Exercice 3:

Soit a un entier strictement positif. On dispose d'un jeu usuel de 2n cartes (n = 16 ou 26) qui contient donc deux rois rouges, et on envisage deux jeux d'argent régis par les protocoles suivants.

I Premier protocole

Les cartes du jeu sont alignés sur une table de façon alétoire. Le joueur découvre les cartes, de gauche à droite jusqu'à obtenir le premier roi rouge. On note X la variable aléatoire égale au rang d'apparition du premier roi rouge et $\mathbb{E}(X)$ son espérance.

- 1. Montrer: $\forall k \in \{1, ..., 2n-1\}, P([X=k]) = \frac{2n-k}{n(2n-1)}$
- 2. Montrer: $\mathbb{E}(X) = \frac{2n+1}{3}$ On rappelle que pour tout entier naturel $p \geqslant 1$, on a : k=1 $pk^2 = \frac{p(p+1)(2p+1)}{6}$.
- 3. Le joueur paie un franc chaque fois qu'il découvre une carte et gagne a francs losqu'il obtient le premier roi rouge. On note G_1 la variable aléatoire égale au gain algébrique du joueur. Ainsi, si le premier roi rouge apparaît à la $k^{i\grave{e}me}$ carte découverte, G_1 est égale à a-k. Déterminer l'espérance de la variable aléatoire G_1 .

II Deuxième protocole

Les 2n cartes du même jeu sont alignés sur une table de façon aléatoire, mais cette fois-ci, le joueur peut découvrir au maximum n cartes. Le joueur paie un franc chaque fois qu'il découvre une carte

ECE2 Mathématiques

et gagne a francs losqu'il obtient le premier roi rouge. On note G_2 la variable aléatoire égale au gain algébrique du joueur. Ainsi, si le premier roi rouge apparaît à la $k^{i\grave{e}me}$ carte découverte $(k\leqslant n),\ G_2$ est égale à a-k, et si le joueur n'obtient pas de roi rouge à l'issue des n premiers tirages, alors G_2 est égale à -n.

- 1. Pour tout entier $k \in \{1,...,n\}$, déterminer $P\left([G_2=a-k]\right)$.
- 2. Vérifier : $P([G_2 = -n]) = \frac{n-1}{2(2n-1)}$.
- 3. Montrer: $\mathbb{E}(G_2) = \frac{3(3n-1)a (7n^2 1)}{6(2n-1)}$.

III Comparaison des deux protocoles

On suppose le jeu constitué de 32 cartes (n = 16). Déterminer, selon les valeurs de a, le protocole le plus favorable au joueur. Justifier la réponse.