1. Tenim un programa que llegeix tots els elements d'una matriu A de 8×8 elements. Cada element és un nombre enter de la mateixa mida que la paraula del processador, 64 bits. La matriu està desada en la memòria per files:

$$A = \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} & a_{0,5} & a_{0,6} & a_{0,7} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} \\ a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} \\ a_{5,0} & a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7} \\ a_{6,0} & a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7} \\ a_{7,0} & a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,5} & a_{7,7} \end{pmatrix}$$

Valor				
a _{0,0}				
a _{0,1}				
•••				
a _{0,7}				
a _{1,0}				
a _{7,7}				

The question as stated is not quite answerable. A word has been defined to be 32-bits. We need to know whether the system is "byte-addressable" (you can access an 8-bit chunk of data) or "word-addressable" (smallest accessible chunk is 32-bits) or even "half-word addressable" (the smallest chunk of data you can access is 16-bits.) You need to know this to know what the lowest-order bit of an address is telling you.

El programa accedeix els elements en aquest ordre. En aquest exercici ens centrarem només en els accessos a dades.

- **1.1** El sistema té una memòria cau de dades de 16 KiB mapejada directament i adreçable per byte, amb un bus d'adreces de 64 bits i 8 paraules per línia.
- a. Quantes línies té la memòria cau?
- b. Quina és la mida dels bits de la línia (tag, index, offset)?
- c. Amb la memòria cau inicialment buida, quants hits i quants miss hi ha? Quina és la taxa de hits del programa en %?

MP

mida caché =
$$16 \text{ KiB} = 2^4 + 2^{10} = 2^{14} \text{ Bytes}$$

mida paraula = $64 \text{ bits} = 8 \text{ Bytes} = 2^3 \text{ Bytes}$ (B)
paraules per bloc = $8 \text{ Bytes} = 2^3 \text{ Bytes}$ (W)
mida bus adreces = $64 \text{ bits} = 8 \text{ Bytes} = 2^3 \text{ Bytes}$

1.11			
TAG	i	W	В
50	8	3	3

$$num\ blocs\ (C) = \frac{mida\ cache}{mida\ bloc}$$

$$mida\ bloc = paraules\ per\ bloc \times mida\ paraula = 8 \times 8 = 64\ Bytes = 2^6 Bytes$$

$$num\ blocs\ (C) = \frac{2^{14}}{2^6} = 2^8 Bytes$$

 $C = K \cdot S$; $C = num \ blocs$; $K = num \ camins$; $S = num \ conjunts$

en
$$MP : K = 1; S = C$$

 $C = S = 2^8 \rightarrow i = 8$
mida $adreça = 64$ bits
 $TAG = 64 - 8 - 3 - 3 = 50$

$$num \ misses = 8 \\ Miss \ rate = \frac{num \ misses}{num \ total \ d'instruccions} = \frac{8}{8 \times 8} = \frac{8}{64} = 0.125 = 12.5\%$$

 Hit $rate = 1 - 0.125 = 0.875 = 87.5\%$

Byte Adress	Binary Adress	TAG	Index	Offset	Hit/Miss
4096	001 0000 0000 0000	0	01 0000 00	00 0000	Miss
4104	001 0000 0000 1000	0	01 0000 00	00 1000	Hit
					hits
4152	001 0000 0011 1000	0	01 0000 00	11 1000	Hit
4160	001 0000 0100 0000	0	01 0000 01	00 0000	Miss
					hits
4224	001 0000 1000 0000	0	01 0000 10	00 0000	Miss
					hits
4288	001 0000 1100 0000	0	01 0000 11	00 0000	Miss
					hits
4352	001 0001 0000 0000	0	01 0001 00	00 0000	Miss
					hits
4416	001 0001 0100 0000	0	01 0001 01	00 0000	Miss
					hits
4480	001 0001 1000 0000	0	01 0001 10	00 0000	Miss
					hits
4544	0001 0001 1100 0000	0	01 0001 11	00 0000	Miss
					hits
4600	001 0001 1111 1000	0	01 0001 11	11 1000	Hit

- **1.2** Ara modifiquem el sistema de l'exercici anterior amb una memòria cau també de 16 KiB, però ara amb 16 paraules per línia.
- a. Quantes línies té la memòria cau?
- b. Quina és la mida dels bits de la línia (tag, index, offset)?
- c. Amb la memòria cau inicialment buida, quants hits i quants miss hi ha? Quina és la taxa de hits del programa en %?

mida caché = $16 \text{ KiB} = 2^4 + 2^{10} = 2^{14} \text{ Bytes}$ mida paraula = $64 \text{ bits} = 8 \text{ Bytes} = 2^3 \text{ Bytes}$ (B) paraules per bloc = $16 \text{ Bytes} = 2^4 \text{ Bytes}$ (W) mida bus adreces = $64 \text{ bits} = 8 \text{ Bytes} = 2^3 \text{ Bytes}$

1411							
TAG	i	W	В				
50	7	4	3				

 $num\ blocs\ (C) = \frac{mida\ cache}{mida\ bloc}$ $mida\ bloc = paraules\ per\ bloc \times mida\ paraula = 16 \times 8 = 128\ Bytes = 2^7 Bytes$ $num\ blocs\ (C) = \frac{2^{14}}{2^7} = 2^7 Bytes$

$C = K \cdot S$; $C = num \ blocs$; $K = num \ camins$; $S = num \ conjunts$

en
$$MP : K = 1; S = C$$

 $C = S = 2^7 \rightarrow i = 7$
mida adreça = 64 bits
 $TAG = 64 - 7 - 4 - 3 = 50$

$$num \ misses = 4 \\ Miss \ rate = \frac{num \ misses}{num \ total \ d'instruccions} = \frac{4}{8 \times 8} = \frac{4}{64} = 0.0625 = \textbf{6}.\textbf{25}\%$$
 Hit $rate = 1 - 0.0625 = 0.9375 = \textbf{93}.\textbf{75}\%$

Byte Adress	Binary Adress	TAG	Index	Offset	Hit/Miss
4096	001 0000 0000 0000	0	01 0000 0	000 0000	Miss
4104	001 0000 0000 1000	0	01 0000 0	000 1000	Hit
					hits
4216	001 0000 0111 1000	0	01 0000 0	111 1000	Hit
4224	001 0000 1000 0000	0	01 0000 1	000 0000	Miss
					hits
4352	001 0001 0000 0000	0	01 0001 0	000 0000	Miss
					hits
4480	001 0001 1000 0000	0	01 0001 1	000 0000	Miss
					hits
4592	001 0001 1111 0000	0	01 0001 1	111 0000	Hit
4600	001 0001 1111 1000	0	01 0001 1	111 1000	Hit

2. La memòria cau és important per proporcionar una jerarquia de memòria d'alt rendiment als processadors. A continuació, es mostra una llista de referències d'adreces de memòria de 64 bits, donades com a adreces de paraules:

0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5,0x2c, 0xba, 0xfd

a. Per a cadascuna d'aquestes referències, identifiqueu l'adreça de paraula binària, l'etiqueta i l'índex amb una memòria cau mapejada directament amb 16 blocs d'una paraula. Indiqueu també si cada referència és un hit o un miss, assumint que la memòria cau és inicialment buida.

mida adreça = 64 bits num blocs (C) = $16 = 2^4$ Bytes paraules per bloc = $1 = 2^0$ (W) mida paraula = 1 Byte = 2^0 (B)

PII							
TAG	i	W	В				
60	4	0	0				

 $C = K \cdot S$; $C = num \ blocs$; $K = num \ camins$; $S = num \ conjunts$

en MP:
$$K = 1$$
; $S = C$
 $C = S = 2^4 \rightarrow i = 4$
 $TAG = 64 - 4 - 0 - 0 = 60$

$num\ hits = 0$
0
Hit Rate $=\frac{0}{12}=0 \rightarrow 0\%$
12
$Miss\ Rate = 100 - 0 = 100\%$

Hex Adress	Binary Adress	TAG	Index	Offset	Hit/Miss
0x03	0000 0011	0000	0011	-	Miss
0xb4	1011 0100	1011	0100	-	Miss
0x2b	0010 1011	0010	1011	-	Miss
0x02	0000 0010	0000	0010	-	Miss
0xbf	1011 1111	1011	1111	-	Miss
0x58	0101 1000	0101	1000	-	Miss
0xbe	1011 1110	1011	1110	-	Miss
0x0e	0000 1110	0000	1110	-	Miss
0xb5	1011 0101	1011	0101	-	Miss
0x2c	0010 1100	0010	1100	-	Miss
0xba	1011 1010	1011	1010	-	Miss
0xfd	1111 1101	1111	1101	-	Miss

b. Per a cadascuna d'aquestes referències, identifiqueu l'adreça de paraula binària, l'etiqueta, l'índex i l'offset donada una memòria cau mapejada directament amb blocs de dues paraules i una mida total de vuit blocs. Indiqueu també si cada referència és un hit o un miss, assumint que la memòria cau és inicialment buida.

mida adreça = 64 bits num blocs (C) = 8 = 2^3 Bytes paraules per bloc = $2 = 2^1$ (W) mida paraula = 1 Byte = 2^0 (B)

MIL							
TAG	i	W	В				
60	3	1	0				

 $C = K \cdot S$; $C = num \ blocs$; $K = num \ camins$; $S = num \ conjunts$

en MP:
$$K = 1$$
; $S = C$
 $C = S = 2^3 \rightarrow i = 3$
 $TAG = 64 - 3 - 1 - 0 = 60$

	7
$num\ hits = 3$	
3	
Hit Rate = $\frac{1}{12}$ = 0.25 \rightarrow 25 %	
12	
$Miss\ Rate = 100 - 0.25 = 75\%$	
$Miss\ Rate = 100 - 0.25 = 75\%$	

Hex Adress	Binary Adress	TAG	Index	Offset	Hit/Miss
0x03	0000 0011	0000	001	1	Miss
0xb4	1011 0100	1011	010	0	Miss
0x2b	0010 1011	0010	101	1	Miss
0x02	0000 0010	0000	001	0	Hit
0xbf	1011 1111	1011	111	1	Miss
0x58	0101 1000	0101	100	0	Miss
0xbe	1011 1110	1011	111	0	Hit
0x0e	0000 1110	0000	111	0	Miss
0xb5	1011 0101	1011	010	1	Hit
0x2c	0010 1100	0010	110	0	Miss
0xba	1011 1010	1011	101	0	Miss
0xfd	1111 1101	1111	110	1	Miss

- c. Optimitzeu un disseny de memòria cau per a les referències indicades. Hi ha tres dissenys de memòria cau mapejada directament, tots amb un total de vuit paraules de dades:
- 1) C1 té blocs d'una paraula,
- 2) C2 compta amb blocs de dues paraules, i
- 3) C3 té blocs de 4 paraules.

CALCULEU HIT/MISS RATES PER A CADA CACHÉ EN FUNCIÓ DE LES REFERÈNCIES DONADES

C1 $paraules per bloc = 1 = 2^0 (W)$

num blocs (C) =
$$\frac{total\ paraules}{paraules\ per\ boc} = \frac{8}{1} = \frac{2^3}{2^0} = 2^3$$

 $paraules per bloc = 2 = 2^1 (W)$

num blocs (C) =
$$\frac{total\ paraules}{paraules\ per\ boc} = \frac{8}{2} = \frac{2^3}{2^1} = 2^2$$

 $paraules\ per\ bloc = \ 4 = 2^2\ (W)$

num blocs (C) =
$$\frac{total\ paraules}{paraules\ per\ boc} = \frac{8}{4} = \frac{2^3}{2^2} = 2^1$$

MP

TAG	i	W	В
61	3	0	0

MP

TAG	i	W	В
61	2	1	0

MP

TAG	i	W	В
61	1	2	0

			C1		C2		C3	
Hex Adress	Binary Adress	TAG	Index	Hit/Miss	Index	Hit/Miss	Index	Hit/Miss
0x03	0000 0011	0000 0	011	Miss	01	Miss	0	Miss
0xb4	1011 0100	1011 0	100	Miss	10	Miss	1	Miss
0x2b	0010 1011	0010 1	011	Miss	01	Miss	0	Miss
0x02	0000 0010	0000 0	010	Miss	01	Miss	0	Miss
0xbf	1011 1111	1011 1	111	Miss	11	Miss	1	Miss
0x58	0101 1000	0101 1	000	Miss	00	Miss	0	Miss
0xbe	1011 1110	1011 1	110	Miss	11	Hit	1	Hit
0x0e	0000 1110	0000 1	110	Miss	11	Miss	1	Miss
0xb5	1011 0101	1011 0	101	Miss	10	Hit	1	Miss
0x2c	0010 1100	0010 1	100	Miss	10	Miss	1	Miss
0xba	1011 1010	1011 1	010	Miss	01	Miss	0	Miss
0xfd	1111 1101	1111 1	101	Miss	10	Miss	1	Miss

$$num\ peticions\ a\ memòria = 12$$

$$Hit\ Rate = \frac{num\ cache\ hits}{num\ peticions\ a\ memòria}$$

$$Miss\ Rate = \ 1 - Hit\ Rate$$

C1
$$num \ hits = 0$$

$$Hit \ Rate = \frac{0}{12} = 0 \longrightarrow 0\%$$

$$Miss \ Rate = 100 - 0 = 100\%$$

C2

num hits = 2

Hit Rate =
$$\frac{2}{12}$$
 = 0.1667 \rightarrow 16.67%)

Miss Rate = 100 - 16.67 = 83.33%

C3
$$num \ hits = 1$$

$$Hit \ Rate = \frac{1}{12} = 0.0833 \rightarrow 8.33\%$$

$$Miss \ Rate = 100 - 8.33 = 91.67\%$$