Classification problem for experiment-5:

a) Varying tree depth(D).

Two classes:

D = 2

D = 2

D = 5

D = 20

On increasing tree depth, the performance of the forest improves as shorter trees(with lesser D) give less precise information as compared to longer trees.

a)Varying tree depth(D).

Four Classes:

D = 2

D = 10

D = 5

D = 20

Similarly here, the performance of the model improves significantly upto D = 10 and then slowly reaches convergence.

b) Varying number of trees(T) in the forest.

Two Classes:

$$T = 10$$

T = 5

$$T = 20$$

Increasing the number of trees seems to improve the accuracy of the model.

b) Varying number of trees (T) in the forest.

Four Classes:

T = 2

T = 5

T = 10 T = 20

Increasing the number of trees has improved the accuracy of the model here as well.

c)Varying number of candidate feature response functions(F) per split node.

Two Classes:

F = 2

$$F = 10$$

$$F = 50$$

c)Varying number of candidate feature response functions(F) per split node.

Four Classes:

F = 2

F = 5

$$F = 20$$

F = 50

d) Varying $\,$ number of candidate thresholds per feature $\,$ response(L) $\,$ function

Two Classes:

L = 2

L = 5

L = 20

L = 50

d)Varying number of candidate thresholds per feature response(L) function

Four Classes:

L = 2

L = 5

L = 20

L = 50

