

Introduzione al laboratorio

Organizzazione dei laboratori (1)

24 ore in 6 settimane => 4 ore settimanali

- 2 hr su **Zoom** (solo io): ripasso, "pillole" di teoria e esercizio caso di studio svolto insieme
 - Lezione SINCRONA, REGISTRATA (ricordatemelo!!)
 - **ORARIO**: giovedì, ore 11:30-13:30 (si inizia puntuali)
 - Registrazioni disponibili su Ariel
 - Link: https://zoom.us/i/94255671991?pwd=TkFzSmpHNG5uSXd6akZ5Y1RnNDFOUT09
- 2 hr su **Discord** (con i tutor): esercizi che gli studenti svolgono individualmente o <u>in gruppo</u>
 - Lezione SINCRONA, NON REGISTRATA
 - **ORARIO**: giovedì, ore 14:30-16:30 (si inizia puntuali)

3

Organizzazione dei laboratori (2)

Settimana	Argomenti
WEEK 1 - 9-13/11/20	Diagrammi dei casi d'uso per l'analisi dei requisiti (scenari e storie), specifica dei requisiti
WEEK 2 - 16-20/11/20	Diagrammi di sequenza vs diagrammi di attività
WEEK 3 - 23-27/11/20	Macchine di stato vs diagrammi attività
WEEK 4 - 30/11- 4/12/20	Java e persistenza dei dati (JDBC, Hibernate), Java Swing
WEEK 5 - 7-11/12/20	Design pattern MVC e DAO
WEEK 6 - 14-18/12/20	Altri design pattern Diagramma delle componenti e di deployment Dai modelli al codice

ANCORA DIAGRAMMI DEI CASI D'USO

5

Relationships between Use Cases

«extend» - Relationship

- The behavior of one use case (extending use case) may be integrated in the behavior of another use case (base use case) but does not have
- Both use cases may also be executed independently of each other.

- A decides if B is executed.
- Extension points define at which point the behavior is integrated.
- Conditions define under which circumstances the behavior is integrated.

© BIG / TU Wien

7

Relationships between Use Cases

«extend» - Relationship: Extension Points

- Extension points are written directly within the use case.
- Specification of multiple extension points is possible.
- Example:

© BIG / TU Wien

LAB 2 DIAGRAMMI DELLE CLASSI E DI SEQUENZA

DIAGRAMMA DELLE CLASSI

21

Diagramma delle classi

- Rappresenta le *classi* che compongono il sistema, cioè le collezioni di oggetti, ciascuno con il proprio stato e comportamento (attributi ed operazioni)
- Specifica, mediante **associazioni**, le relazioni fra le classi

Come estrarre le classi? (1)

FASE 1: MODELLO DI DOMINIO (classi di analisi)

- Una classe di analisi modella un concetto o entità del problema: se la specifica dei casi d'uso è buona i concetti basilari sono già in evidenza
- Di sicuro non è possibile estrarre classi, attributi e metodi in modo completo (e automatico) da un testo
- **NB**: Le classi di analisi non sopravvivranno necessariamente alla progettazione.

Come estrarre le classi? (2)

Metodi:

- Analisi nome-verbo:
 - Si analizza tutta la documentazione disponibile, selezionando nomi, aggettivi e verbi:
 - Nomi: spesso potenziali candidati per classi
 - Aggettivi: spesso corrispondono ad attributi
 - Verbi: spesso corrispondono a metodi/operazioni o responsabilità di classe
- Analisi CRC (Class-Responsibilities-Collaborators):
 - post-it divisi in tre sezioni per ognuna delle 3 categorie
 - si individuano:
 - i nomi delle classi
 - un insieme ristretto di responsabilità (cose che la classe sa/fa)
 - Un insieme di classi collaboratori (alle quali viene richiesto comportamento/informazione).

25

Come estrarre le classi? (3)

FASE 2: DIAGRAMMA DELLE CLASSI

- · Identificare le classi
- Inserire gli attributi della classe indicando nome, tipo e se:
 - o Pubblico +
 - o Privato -
 - o Protetto #
 - Ristretto al package ~
- Inserire i metodi indicando il *nome*, i parametri e il tipo di ritorno
- · Aggiungere le associazioni indicando il *nome* e la *molteplicità*.
 - Anche ruolo, visibilità e navigabilità.

Class diagram: classi (1)

• Una classe è una tipologia di oggetti, con propri attributi e operazioni

Rappresentazione di una classe in UML:

 Automobile
 Nome

 marca modello colore targa
 Attributi (proprietà)

 cambiaTarga cambiaColore
 Operazioni (metodi)

27

Class diagram: classi (2)

- **Nome**: inizia con una lettera maiuscola, non è sottolineato e non contiene underscore
- Attributi: proprietà i cui valori identificano un oggetto istanza della classe e ne costituiscono lo stato; iniziano con una lettera minuscola
- Operazioni/Metodi: insieme di funzionalità che esprimono il comportamento di un oggetto, ovvero ciò che ogni oggetto di questa classe può fare

Class diagram: aggregazione

- Aggregazione: tipo particolare di associazione
 - esprime concetto "è parte di " (part of), che si ha quando un insieme è relazionato con le sue parti

Class diagram: composizione

E' un caso particolare di aggregazione in cui:

- la parte (componente) **non** può esistere da sola, cioè senza la classe composto
- una componente appartiene <u>ad un solo</u> composto

33

Diagrammi di interazione

 Diagrammi che descrivono la cooperazione tra un insieme di oggetti che collaborano per realizzare un fine comune

DIAGRAMMI DI SEQUENZA Scopi:

- strumento di progettazione: metodo alternativo per documentare il comportamento di un singolo scenario (uno stesso caso d'uso).
- strumento di convalida: realizzati utilizzando le classi per convalidare la corretta identificazione

35

Costruttore Descrizione Sintassi Linea di vita / Lifeline Esistenza dell'oggetto ad un particolare istante Barra di attivazione Periodo durante il quale l'oggetto esegue un'azione Nome:

Costruttore Descrizione Sintassi Messaggio di creazione Crea un nuovo nodo Messaggio di distruzione Distrugge un nodo Elementi: Messaggi Nome: Nome: Nome: Nome:

39

Diagrammi di interazione (2)

Quando usare i diagrammi di sequenza?

- Per descrivere interazione tra attori/oggetti/classi
 - A volte sono di aiuto per identificare le classi
- NON per descrivere comportamento (strutture di controllo)
 - Activity diagram