上海科技大学

2022-2023 学年第一学期期末考试卷

开课单位:物质学院		
授课教师:张石磊	学号:	
考试科目:凝聚态拓扑物理	学院:	
课程代码: PHYS2122	班级:	

考生须知:

1. 请严格遵守考场纪律, 禁止任何形式的作弊行为。

- 2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置。
- 3.参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不准相互讨论,不准交换材料。

考试成绩录入表:

题目	1	2	3	4	5	6	7	8	9	10	总分
计分											
复核											

评卷人签名: 复核人签名:

日期: 日期:

1 Multiple Choice Questions

1. (6) Consider a mapping from a S^2 order parameter space $\vec{n} = (n_1, n_2, n_3)$ of a vector field onto a two-dimensional real-space $\vec{r} = (r_1, r_2)$ with boundaries. Which of the following mappings correspond to a topological index of 1? (colormap indicates n_3 component)

Answer (

2. (6) Which of the following properties are from fermion particles?

Answer (

A.
$$[a_i, a_i^{\dagger}] = \delta_{i,j}$$
.

$$\begin{aligned} & \mathbf{B}.~\{a_i,a_j^{\dagger}\} = \delta_{i,j}.\\ & \mathbf{C}.~[a_i,a_j] = 0. \end{aligned}$$

C.
$$[a_i, a_j] = 0$$
.

D.
$$\{a_i, a_j\} = 0$$
.

3. (6) Which of the following quantities are naturally quantised:

Answer (

- A. Magnetic charge q_m .
- B. Electric charge q_c .
- C. Berry phase γ that is picked up in an adiabatic process.
- D. Anomalous Hall conductivity σ_{xy} . E. Topological winding number in a $S^2 \to S^2$ map.

4. (6) One-band tight-binding model in a two-dimensional square lattice can be described by:

$$\mathcal{H} = -2t \sum_{k} a_k^{\dagger} a_k [\cos(k_x a) + \cos(k_y a)] , \qquad (1)$$

where t is real-valued hopping constant. Evaluate the topological property of this band:

Answer (

- A. It is topologically trivial, as the kernel Hamiltonian cannot be parametrised in a form of $\sigma \cdot \vec{H}$.
- B. It is topologically trivial, as $u_{n,k}(r)$ function is independent of k.
- C. It is topologically nontrivial, as it carries Chern number of N=1.
- D. It is topologically nontrivial, as the Hamiltonian describes $S^2 \to S^2$ mapping, which associates integer topological
- E. It is not sure unless the Berry phase is computed.
- F. It is not sure, as it depends on the choice of t.

Answer (
A. Gaussian curvatureB. Vector potentialC. Monopole chargeD. Magnetic fieldE. Berry curvature	
6. (6) Two-band tight be described by:	-binding Su-Schrieffer-Heeger (SSH) model in one-dimensional chiral lattice can
	$\mathcal{H} = \sum_{k} (a_k^{\dagger}, b_k^{\dagger}) \begin{pmatrix} 0, & -t_1 - t_2 e^{-ika} \\ -t_1 - t_2 e^{ika}, & 0 \end{pmatrix} \begin{pmatrix} a_k \\ b_k \end{pmatrix} . \tag{2}$
where t_1 and t_2 are real $ +\rangle$:	l-valued hopping constants. Evaluate the topological property of the upper band
Answer ()
ately puts forward to the e B. It is topologically nontr in k-space, leading to a Ch C. It is topologically trivia D. It is topologically trivia E. It is not sure unless the	l, as it carries Chern number of $N=0$. l, as the Hamiltonian describes $S^2\to S^1$ mapping, from which topology cannot be defined.
7. (6) Which of the fo vature:	llowing quantities are mathematically equivalent to geometrical Gaussian cur-
Answer ()
A. Berry connectionB. Vector potentialC. Monopole chargeD. Magnetic fieldE. Berry curvature	
a set of basis in form of is a $ \phi_k\rangle$ wave function	cond-quantisation version of atomic waves. It is then obvious that one can define of creation/annihilation operators in k -space. This means that at each k , there a assigned. Now consider a two-band phonon model in two-dimensional atomic ion modes, e.g., acoustic mode (band) and optical mode (band). Evaluate the the bands:
Answer ()
B. They are topologically in N = 1.C. It is not sure unless the	crivial, as $\vec{A}(\vec{k}) = i \langle \phi_k \nabla_k \phi_k \rangle$ leads to zero. nontrivial, as this corresponds to $S^2 \to S^2$ mapping, from which topology can be found to be Berry phase is computed. As the defined, as it is a boson system.

5. (6) Which of following quantities are mathematically equivalent to Berry connection:

 $\bf 9.$ $\bf (6)$ Which of following electronic structures MUST NOT be a topological insulator:

Answer (

10. (6) Which of the following quantities have the physical interpretation in the unit of a solid angle:

Answer (

- A. $\iint_{\mathrm{BZ}} dk_x dk_y \vec{H} \cdot (\frac{\partial \vec{H}}{\partial k_y} \times \frac{\partial \vec{H}}{\partial k_x})$ B. $\oint_C \vec{A}(\vec{k}) \cdot d\vec{l}$ C. Monopole charge q_m D. Anomalous Hall conductivity σ_{xy}

- E. $\iint_{\text{BZ}} \vec{B}(\vec{k}) \cdot d\vec{s}$

2 Fill in the Blanks

1. (9) Consider a quantum system with its eigenstate $ n\rangle$, which varies by a parameter R , i.e., $ n(\mathbf{R}) $ In an adiabatically varying- R process, after a cyclic loop,	$\mathbf{R}) angle.$
the Berry connection is written as ().
the Berry curvature is written as ().
Therefore the geometric phase that is picked up by the cyclic process is ($$)
2. (9) Quantum Hall effect is an experimentally observable effect in real materials. To perform experiment, it is usually required the following:	the
()
Consequently, the resistivity ρ_{xx} switches between zero and non-zero at different magnetic field. This is due to ().
At the same time, the Hall conductivity σ_{xy} is quantised, written as ().
3. (9) For a many-body magnetic system, continuous approximation allows the magnetic configurate to be a vector field described by $\mathbf{m}(\mathbf{r})$, where \mathbf{m} is normalised unit vector magnetisation, and \mathbf{r} described two-dimensional space. Consider the energy density in the form of	
$w = A(\nabla \mathbf{m})^2 + D\mathbf{m} \cdot (\nabla \times \mathbf{m}) - \mathbf{m} \cdot \mathbf{B}$,	(3)
The dimensionality of the order parameter space is thus (). The dimensionality of the physical space is thus (). A topological index can take the values of ().	

4. (13) A quantum system has three degeneracies as its ground state, labeled as $ \phi_n^{n'}\rangle$, where v labels the degeneracies. An adiabatic evolution $\hat{H}(\mathbf{p})$ in a parameter space of \mathbf{p} perturbs the system's ground state with its local eigenfunction of $ \phi_v(\mathbf{p})\rangle$. The initial state is defined as $ \phi_v(\mathbf{p}_0)\rangle$ at \mathbf{p}_0 .	
If the system pauses at \mathbf{p}_1 , how many \mathbf{p} -dependent eigenvalues are expected? (
Will the local gauge transformation be performed? () If yes, the gauge transformation will be().	
Their associating local basis at \mathbf{p}_1 will be derived as ()
The picked-up Berry phase is ().	
The parameter space of \mathbf{p} can be mapped into another parameter space of \mathbf{R} , such that $ \phi_v(\mathbf{p})\rangle = \phi_v(\mathbf{R})\rangle = \phi_v(\mathbf{R})\rangle$. The cyclic path (starts at $\mathbf{R_0}$ and eventually returns to $\mathbf{R_0}$) in \mathbf{R} -space, denoted as \mathcal{R}_L , encounters two distinct U-matrices in order to diagonalise $\hat{H}(\mathbf{R})$, denoted as $U_1(\mathcal{R}_L)$ and $U_2(\mathcal{R}_L)$.	
How many p -dependent eigenvalues are expected during the loop? ()	
Will the local gauge transformation be performed? () If yes, the gauge transformation will be().	
Their associating local basis at \mathbf{R}_0 will be derived as (
The picked-up Berry phase is ().	