Homework 9

STA 4321/5325, Fall 2019, MWF 8:30am

Professor: Aaron J. Molstad

Due date: Monday, November 25th, 2019

All work must be shown for complete credit. W.M.S. denotes the course textbook, *Mathematical Statistics with Applications*. Problem #8 is worth 2pts of extra credit.

1. Let the joint density function of random pair (U, V) be

$$f_{U,V}(u,v) = \left\{ \begin{array}{ll} \frac{1}{4}(u+2v) & 0 < v < 1, \ 0 < u < 2 \\ 0 & \text{otherwise} \end{array} \right.$$

In Homework 8, we showed

$$f_U(u) = \begin{cases} \frac{(u+1)}{4} & 0 < u < 2\\ 0 & \text{otherwise} \end{cases}$$

What is the density function of the random variable $Z = 9/(U+1)^2$?

- 2. Let Z be a standard normal random variable and let $Y_1=Z$ and $Y_2=Z^2$.
 - (a) What are $E(Y_1)$ and $E(Y_2)$?
 - (b) What is ${\rm E}(Y_1Y_2)$? (Hint: ${\rm E}(Y_1Y_2)={\rm E}(Z^3)$ and the MGF of the standard normal is $M_Z(t)=e^{\frac{t^2}{2}}$.)
 - (c) What is $Cov(Y_1, Y_2)$?
 - (d) Are Y_1 and Y_2 independent? If not, provide some information which contradicts their independence.
- 3. A worker leaves for work between 9:00am and 9:30am and takes between 45 and 55 minutes to arrive. Let the random variable Y denote this worker's time of departure, and the random variable X the travel time. Assuming that Y and X are independent and uniformly distributed, find the probability that the worker arrives at work before 10:00am.
- 4. Suppose the distribution of X, conditional on U=u, is $N(u,u^2)$ where the marginal distribution of U is uniform $(0,\theta)$.
 - (a) Find E(X), Var(X), and Cov(X, U).
 - (b) Prove that X/U and U are independent.

5. (W.M.S 6.29) The speed of a molecule in a uniform gas at equilibrium is a random variable V whose density function is given by

$$f_V(v) = av^2 e^{-bv^2}, \quad v > 0$$

where b=m/2kT with k,T, and m denoting Boltzmann's constant, the absolute temperature, and the mass of the molecule, respectively, and a is some normalizing constant (so that the density integrates to one).

- (a) Derive the distribution of $W=mV^2/2$, the *kinetic energy* of the molecule. (Hint: what a makes W a Gamma random variable?)
- (b) Find E(W).
- 6. Let X have a distribution function given by

$$F_X(x) = \begin{cases} 0 & y < 0 \\ 1 - e^{-y^2} & y \ge 0 \end{cases}$$

Find a transformation g(U) such that if U has a uniform distribution on the interval (0,1), g(U) has the same distribution as Y.

7. Let X_1 and X_2 be two random variables with joint density

$$f_{X_1,X_2}(x_1,x_2) = \left\{ \begin{array}{ll} e^{x_1} & 0 \leq x_2 \leq x_1 < \infty \\ 0 & \text{otherwise} \end{array} \right.$$

- (a) Compute $P(X_1 < 2, X_2 > 1)$.
- (b) Compute $P(X_1 \geq 2X_2)$.
- (c) Compute $P(X_1 X_2 \ge 1)$
- 8. (Optional) (W.M.S, 6.52) Let V_1 and V_2 be independent Poisson random variables with means λ_1 and λ_2 , respectively.
 - (a) What is the probability distribution function of $V_1 + V_2$?
 - (b) What is the conditional probability function of Y_1 given that $Y_1 + Y_2 = m$?