

TTK4135 – Lecture 3 Optimality Conditions for Constrained Optimization (KKT & 2nd order)

Lecturer: Lars Imsland

Purpose of Lecture

- Repetition of definitions:
 - Gradient, Hessian
 - Feasible Set
 - Local vs Global Optima
- Conditions for optimality
 - KKT conditions (1st order, necessary conditions)
 - Examples
 - Constraint qualifications
 - 2nd order conditions (necessary and sufficient)
- Reference: Chapter 12.3, 12.5 (12.8, 12.9) in N&W

Administrative

 We need more members in the reference group. Please volunteer in the chat!

- The first Matlab assessment is now active
 - Do not be intimidated by the amount of text. The task is probably simpler than you think.
 - You have unlimited attempts. You can discuss the problem with your classmates.
 - It is not obligatory, but will count 4% (...) towards your grade

General Optimization Problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Example:

$$\min (x_1 - 2)^2 + (x_2 - 1)^2$$

min $(x_1 - 2)^2 + (x_2 - 1)^2$ subject to $\begin{cases} x_1^2 - x_2 \le 0, \\ x_1 + x_2 \le 2. \end{cases}$

Feasible Set

Feasible set: Collection of all points that satisfy all constraints:

$$c_1(x) = x_2 \ge 0$$

$$c_2(x) = 1 - x_1^2 - x_2^2 \ge 0$$

The feasible set is the intersection of the grey and blue area

Feasible set: $\Omega = \{x \in \mathbb{R}^n \mid c_i(x) = 0, i \in \mathcal{E}; c_i(x) \geq 0, i \in \mathcal{I}\}$

Gradient and Hessian

• The gradient (or first derivative) of a function f(x) of several variables is defined as

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^{\top}$$

• The matrix of second partial derivatives of f(x) is known as the *Hessian*, and is defined as

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \frac{\partial^2 f}{\partial x_n x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

• We will frequently use $\nabla^2_{xx} \mathcal{L}(x^*, \lambda^*)$, the Hessian of the Lagrangian

Local and Global Optima

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$
 (P)

A point x^* is a global solution to (P) if $x^* \in \Omega$ and $f(x) \ge f(x^*)$ for $x \in \Omega$.

A point x^* is a local solution to (P) if $x^* \in \Omega$ and there is a neighborhood \mathcal{N} of x^* such that $f(x) \geq f(x^*)$ for $x \in \mathcal{N} \cap \Omega$.

Convex optimization problems: local solutions are global.

Unconstrained Optimality Conditions

$$\min_{x \in \mathbb{R}^n} f(x)$$

We want to test a point x^* for local optimality:

Necessary condition:

$$\nabla f(x^*) = 0$$
 (stationarity)

Sufficient condition:

$$x^*$$
 stationary and $\nabla^2 f(x^*) > 0$

Simple example: Ball and Spring

To find position at rest, minimize potential energy!

$$\min_{x \in \mathbb{R}^2} \quad \underbrace{x_1^2 + x_2^2}_{\text{spring}} + \underbrace{mx_2}_{\text{gravity}}$$
subject to $c_1(x) = 1 + x_1 + x_2 \ge 0$

$$c_2(x) = 3 - x_1 + x_2 \ge 0$$

Ball and Spring: No Constraints

$$\min_{x \in \mathbb{R}^2} \qquad x_1^2 + x_2^2 + mx_2$$

Contour lines of f(x)

Gradient of
$$f(x)$$
 $\nabla f(x) = \begin{pmatrix} 2x_1 \\ 2x_2 + m \end{pmatrix}$

Unconstrained minimum:

$$\nabla f(x^*) = 0 \Rightarrow \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{m}{2} \end{pmatrix}$$

Ball and Spring: With one (active) constraint

$$\min_{x \in \mathbb{R}^2} \quad x_1^2 + x_2^2 + mx_2$$

subject to
$$c_1(x) = 1 + x_1 + x_2 \ge 0$$

$$c_2(x) = 3 - x_1 + x_2 \ge 0$$

Gradient $\nabla c_1(x)$ of active constraint

Inactive constraint $c_2(x)$

Constrained minimum:

$$\nabla f(x^*) = \lambda_1 \nabla c_1(x^*)$$

Lagrange multiplier

Ball and Spring: With two active constraints

$$\min_{x \in \mathbb{R}^2} \quad x_1^2 + x_2^2 + mx_2$$

subject to
$$c_1(x) = 1 + x_1 + x_2 \ge 0$$

$$c_2(x) = 3 - x_1 + x_2 \ge 0$$

Constrained minimum at "equilibrium of forces":

$$\nabla f(x^*) = \lambda_1 \nabla c_1(x^*) + \lambda_2 \nabla c_2(x^*), \quad \lambda_1, \ \lambda_2 \geq 0$$
 "Constraint forces"

The Lagrangian

For constrained optimization problems, introduce modification of objective function:

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

- Multipliers for equality constrains may have both signs in a solution
- Multipliers for inequality constraints cannot be negative (cf. shadow prices)
- For (inequality) constraints that are *inactive*, multipliers are zero

KKT Conditions (Theorem 12.1)

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = 0, \qquad \text{(stationarity)}$$

$$c_i(x^*) = 0, \quad \forall i \in \mathcal{E},$$

$$c_i(x^*) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_i^* \geq 0, \quad \forall i \in \mathcal{I},$$

$$(\text{dual feasibility})$$

$$(\text{complementarity condition/} \text{complementary slackness})$$
 Either $\lambda_i^* = 0 \quad \text{or} \ c_i(x^*) = 0$

(strict complimentarity: Only one of them is zero)

KKT Ex. 1

KKT Ex. 2

KKT Ex. 2, cont'd

KKT Ex. 2, cont'd

Solvability of KKT conditions

- KKT conditions can only be solved for very simple problems
 - The main complexity is the complementarity conditions that is, deciding which constraints are active or not
- What is then the use of the KKT conditions?
 - Algorithms for LP and QP are constructed by searching for points that fulfill the KKT conditions
 - LPs and (some) QPs are convex KKT are necessary and sufficient
 - For nonlinear programming, we use KKT to check whether a certain iterate is a candidate solution
 - In general KKT are *necessary* conditions!

Multipliers: "Shadow prices"

What happens if we relax a constraint?

Feasible set becomes larger, so new minimum $f(x_{\varepsilon}^*)$ becomes smaller.

How much would we gain?

$$f(x_{\varepsilon}^*) \approx f(x^*) - \lambda \varepsilon$$

That is: The Lagrangian multipliers are the "hidden cost" (aka "shadow prices") of constraints

KKT Conditions (Theorem 12.1)

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

(strict complimentarity: Only one of them is zero)

Constraint Qualifications

Recall:

Tangent Cone

The tangent cone to a set Ω at a point $x \in \Omega$, denoted by $T_{\Omega}(x)$, consists of the limits of all (secant) rays which originate at x and pass through a sequence of points $p_i \in \Omega - \{x\}$ which converges to x.

Active Set

The active set A(x) at any feasible point x consists of the equality constraint indices from \mathcal{E} together with the indices of the inequality constraints i for which $c_i(x) = 0$. That is,

$$\mathcal{A}(x) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| c_i(x) = 0 \right\}$$

Set of (linearized) Feasible Directions

Given a feasible point x and the active constraint set A(x), the set of linearized feasible directions F(x) is

$$\mathcal{F}(x) = \left\{ d \mid d^{\top} \nabla c_i(x) = 0, \text{ for all } i \in \mathcal{E}, \\ d^{\top} \nabla c_i(x) \ge 0, \text{ for all } i \in \mathcal{A}(x) \cap \mathcal{I} \right\}$$

- Note 1: The definition of $T_{\Omega}(x)$ depends on the geometry of the feasible set Ω .
- Note 2: The definition of $\mathcal{F}(x)$ depends on the algebraic definition of the constraints.

Constraint Qualifications

 Constraint Qualifications are needed to rule out special cases where optimal solutions does not fulfill the KKT conditions

A constraint qualification is an assumption that ensures similarity of the constraint set Ω and its linearized approximation, in a neighborhood of a point x^* .

- In other words: Constraint qualifications ensure that the linearized feasible set $\mathcal{F}(x^*)$ and the tangent cone $T_{\Omega}(x^*)$ are the same
- The most used Constraint Qualification is LICQ:

Given the point x and the active set $\mathcal{A}(x)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla c_i(x), i \in \mathcal{A}(x)\}$ is linearly independent.

- Other constraint qualifications exists (N&W 12.6, not syllabus)
- Note: LICQ implies uniqueness of Lagrange multipliers

LICQ Ex.

2nd Order Conditions: Critical Cone

- Say there are directions $w \in \mathcal{F}(x^*)$ that does not lead to an increase in the objective function, that is $w^\mathsf{T} \nabla f(x^*) = 0, \ w \neq 0$. How do we decide whether x^* is actually a minimum?
- Second-order conditions answer this by looking at the curvature (2nd derivative) in these directions
- Define the critical cone:

$$w \in \mathcal{C}(x^*, \lambda^*) \Leftrightarrow \begin{cases} \nabla c_i(x^*)^\top w = 0, & \forall i \in \mathcal{E}, \\ \nabla c_i(x^*)^\top w = 0, & \forall i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0, \\ \nabla c_i(x^*)^\top w \ge 0, & \forall i \in \mathcal{A}(x^*) \cap \mathcal{I} \end{cases}$$

- Note: $C(x^*, \lambda^*) \subseteq F(x^*)$. Difference: Inequalities with positive Lagrange multiplier treated as equalities
- $\mathcal{C}(x^*,\lambda^*)$ contains the "undecided" directions from $\mathcal{F}(x^*)$, the directions where decrease/increase cannot be decided from $\nabla f(x^*)$ alone

Critical cone Ex.

$$\min_{x \in \mathbb{R}^2} \qquad x_1$$

$$x_{2}$$

s.t.
$$c_1(x) = x_2 \ge 0$$

$$c_2(x) = -(x_1 - 1)^2 - x_2^2 + 1 \ge 0$$

2nd Order Conditions: Necessary & Sufficient

Second-order necessary conditions (Theorem 12.5):

Suppose that x^* is a local solution and that the LICQ condition is satisfied. Let λ^* be the Lagrange multiplier vector for which the KKT conditions are satisfied. Then

$$w^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w \ge 0, \quad \text{for all } w \in \mathcal{C}(x^*, \lambda^*)$$

Second-order sufficient conditions (Theorem 12.6):

Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Lagrange multiplier vector λ^* such that the KKT conditions are satisfied. Suppose also that

$$w^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0, \quad \text{for all } w \in \mathcal{C}(x^*, \lambda^*), w \neq 0$$

Then x^* is a strict local solution.

2nd order cond., Ex.

$$\min_{x \in \mathbb{R}^2} \quad x_1$$

s.t. $c_1(x) = x_2 \ge 0$
$$c_2(x) = -(x_1 - 1)^2 - x_2^2 + 1 \ge 0$$

Example:

$$\min_{x \in \mathbb{R}^2} \quad f(x) = \frac{1}{2} \left((x_1 - 1)^2 + x_2^2 \right)$$
s.t. $c_1(x) = -x_1 + \beta x_2^2 = 0$

s.t.
$$c_1(x) = -x_1 + \beta x_2^2 = 0$$

Positive Definiteness

A square, symmetric matrix A is positive definite if the following equivalent conditions hold:

• There is a positive scalar α such that

$$x^{\top} A x \ge \alpha x^{\top} x$$
, for all $x \in \mathbb{R}^n$.

- $x^{\top}Ax > 0$, for all $x \neq 0$.
- If all eigenvalues $\lambda_i > 0$.

We also write A > 0 when A is PD.

A square matrix A is positive semidefinite if

$$x^{\top} A x \ge 0$$
, for all $x \in \mathbb{R}^n$

We also write A > 0 when A is PSD.

Visualizations

Positive Definite $x^T P x = x_1^2 + x_2^2$

Positive Semi-definite $x^T P x = x_1^2 + 2x_1x_2 + x_2^2$

Indefinite $x^T P x = x_1^2 - x_2^2$