Klausur (27.07.2007): Technische Grundlagen der Informatik 2 Rechnerorganisation SS 2007

Vorname	:	
Name	:	
Matrikelnummer	:	
Studiengang	:	

Aufgabe	1	2	3	4	5	6	7	8	9	\sum
max. Punkte	11	7	8	12	8	10	15	15	14	100
erreichte Punkte										
Korrektor										

Wichtige Hinweise:

- Deckblatt ausfüllen
- Kopf aller abgegebenen Seiten ausfüllen, d.h. mit Namen und Matrikelnummer versehen
- für die Lösungen sind die Aufgabenblätter zu verwenden
- für die Lösungen darf weder Bleistift noch Rotstift verwendet werden
- der Lösungsweg muss nachvollziehbar sein
- Taschenrechner, Vorlesungsskript und Übungsmitschriften sind **nicht** erlaubt
- Mobiltelefone sind auszuschalten
- Betrugsversuche werden mit einem Nichtbestehen der Klausur geahndet

Aufgabe 1 (11 Punkte)

- (a) Nennen Sie drei Formen der Darstellung negativer Zahlen im Binärsystem und stellen Sie jeweils die Zahl –4 als 8 Bit breite Zahl dar.
- **(b)** Beschreiben Sie das Vorgehen bei Zero-Extension (Nullerweiterung) und bei Sign-Extension (Vorzeichenerweiterung) und geben Sie die Wirkung beider Verfahren an.

(c) Grenzen Sie die Begriffe Assemblerprogramm, Maschinenprogramm, Mikroprogramm gegeneinander ab.

(d) Nennen Sie drei typische Register eines Interface-Adapters und deren Nutzen.

(e) Beschreiben Sie das Prinzip der Fließbandverarbeitung (pipelining) und deren Nutzen.

Aufgabe 2 (7 Punkte)

(a) Geben Sie zu den beiden Rechenbeispielen das jeweilige Bitmuster des Ergebniswerts sowie die jeweiligen Zustände der Condition-Code-Bits an.

- **(b)** Wandeln Sie die 2-Komplementzahl 1010.0110 in eine Gleitpunktzahl mit folgendem Format um:
 - 1 Vorzeichenbit s, 4 Exponentenbits e, 11 Fraction-Bits f, (Bias b=7)

Aufgabe 3 (8 Punkte)

Es sind die Zahlen 100111001 (Multiplikand) und 11100111 (Multiplikator) mit Hilfe des Booth-Algorithmus miteinander zu multiplizieren.

Name:

(a) Führen Sie zunächst die notwendigen Umformungen (Komplementbildung, Booth-Recording) durch!

(b) Multiplizieren Sie nun die beiden Zahlen miteinander!

(c) Angenommen, Multiplikand und Multiplikator würden vertauscht. Inwiefern würde sich dann der Berechnungsaufwand verändern, wenn die Multiplikation wiederum mit dem Booth-Algorithmus durchgeführt werden würde? Notieren Sie die zur Ermittlung des quantitativen Unterschiedes notwendigen Zwischenschritte!

Führen Sie mit den Zahlen 0100100 (Dividend) und 0101 (Divisor) eine Division **ohne** Rückstellen des Zwischenrestes durch.

Name:

(a)

(b) Stellen Sie den Verlauf der Division, d.h. jeden Teilschritt, auf dem Zahlenstrahl dar. Beschriften Sie die wichtigen Punkte und die Sprünge!

(c) Nennen Sie für den obigen Dividenden den größten Divisor der zu einem Divisionsüberlauf führen würde!

Aufgabe 5 (8 Punkte)

Gegeben ist das folgende VIP-Assemblerprogramm:

```
ORG
            3
            RES
   U
                     1
   V
            EQU
                     3
                     3,4,5
            DAT
   Start
            LDX
                     #V
5
                     U[IX]
            LDA
            ADD
                     W
            STA
                     @W
            HLT
            END
                     Start
10
```

Geben Sie für die relevanten Codezeilen die Adressierungsart und alle neugeschriebenen Werte mit den dazugehörigen Zieladressen (Register, Speicherzelle) an.

Nr.	Adressierungsart	Zieladresse	Wert

Aufgabe 6 (10 Punkte)

Gegeben ist das folgende VIP-Assemblerprogramm:

1	ORG	15	
2	Cnt	RES	1
3	Len	EQU	4
4	Arr	DAT	1,2,3,4,5
5	Start	LDX	#0
6		STX	Cnt
7	L1	LDA	Arr[IX]
8		ADDX	#1
9		LSR	
10		BCC	L2
11		LDA	Cnt
12		ADD	#1
13		STA	Cnt
14	L2	CMPX	#Len
15		BNE	L1
16		HLT	
17		END	Start

(a) Assemblieren Sie das Programm bis einschließlich Zeile 10! Notieren Sie die Werte hexadezimal.

Inhalt

Speicheradresse

(b) Beschreiben Sie kurz die Funktionalität des Programms

Der Befehlssatz des VIP soll um einen Befehl CMPAX erweitert werden. Dieser vergleicht die Inhalte der Register AC und IX (AC–IX) und beeinflusst als Ergebnis ausschließlich die Bedingungsbits in SR. Alle Register- und Speicherinhalte, die möglicherweise nachfolgend noch benötigt werden, dürfen durch den Befehl nicht verändert werden.

Befehl	Code	z	n	С	٧	#	0	[IX]	Wirkung
CMPAX	0×C0	х	Х	Х	Х	 -	-	-	SR neu setzen

(a) Entwickeln Sie den Zustandsgraphenausschnitt des VIP für den CMPAX-Befehl.

(b) Ergänzen Sie die PLA-Steuertabelle um die erforderlichen Zeilen.

		S	R		IR				R	egis	ter	y_n					М	$ux y_n$			ALU y_C
Z_i	z	n	С	٧	Code	Z_j	0	1	2	3	4	5	6	D	7	8	9	Α	В	Ε	$s_{04}u_0$
0	-	-	-	-	-		0	0	0	0	1	1	0	0	Х	Х	00	010	11	Х	XXXXXX

Aufgabe 8 (15 Punkte)

Das nebenstehende Speicherabbild zeigt die Realisierung einer einfach verketteten Liste. Jedes Listenglied entspricht einem 16-Bit-Speicherwort und besteht aus einem Zahlenwert value und einem Zeiger next mit der Adresse des nächsten Listengliedes. Das letzte Glied der Liste wird durch next=0 gekennzeichnet. Die Speicherzelle mit der symbolischen Adresse first enthält den Zeiger auf das erste Listenglied. Mit dem Zeigerwert 0 wird eine leere Liste angezeigt.

Schreiben Sie ein VIP-Assemblerprogramm, das die Summe der Zahlenwerte ermittelt. Benutzen/ergänzen Sie dazu die vorgegebenen Codefragmente.

```
ORG 0
first
liste DAT 0x0105,0x0204,0x0300,0x0403,0x0502
sum
```

Start

END Start

Aufgabe 9 (14 Punkte)

Schreiben Sie ein Unterprogramm, das zwei mit Hilfe des Stacks übergebene Werte (call-by-value) addiert und das Ergebnis an eine ebenfalls übergebene Adresse schreibt (call-by-reference).

1	ORG	0	
2	a	DAT	5
3	b	DAT	3
4	У	RES	1
5	Start	LDA	a
6		PUSH	
7		LDA	b
8		PUSH	
9		LDA #y	
10		PUSH	
11		JSR	Add
12		HLT	

VIP-Befehlssatz

ALU-Operationen

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				arithmetische Operationen	logische Operationen
	s_1	S_2	s_3	\parallel	$s_4 = 1$
$ = X \lor Y + u_0 $ $ = X \lor Y + u_0 $ $ = X + u_0 $ $ = X \land Y - 1 + u_0 $ $ = X \land Y - 1 + u_0 $ $ = X \lor Y + (X \land \overline{Y}) + u_0 $ $ = X - Y - 1 + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + 1 + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + u_0 $ $ = (X \land \overline{Y}) + (X \land \overline{Y}) +$		0	0	Ш	
$ = X \lor \overline{Y} + u_0 $ $ = X + u_0 $ $ = X \land V - 1 + u_0 $ $ = (X \lor Y) + (X \land \overline{Y}) + u_0 $ $ = X - Y - 1 + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = (X \land Y) + X + u_0 $ $ = (X \lor Y) + (X \land \overline{Y}) + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \lor Y) + X + u_0 $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor Y) $ $ = (X \lor Y) + (X \lor$	_	0	Н		
$ = X + u_0 $ $ = X \wedge \overline{Y} - 1 + u_0 $ $ = (X \vee Y) + (X \wedge \overline{Y}) + u_0 $ $ = X - Y - 1 + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge \overline{Y}) + X + u_0 $ $ = (X \wedge Y) - 1 + u_0 $ $ = X + Y + u_0 $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + (X \wedge Y) + u_0 $ $ = (X \wedge Y) + u_0 + u_0 $ $ = (X \wedge Y) + u_0 + u_0 + u_0 $ $ = (X \wedge $		Н	0		X
$ = X \wedge \overline{Y} - 1 + u_0 $ $ = (X \vee Y) + (X \wedge \overline{Y}) + u_0 $ $ = X - Y - 1 + u_0 $ $ = (X \wedge \overline{Y}) + X + u_0 $ $ = (X \wedge \overline{Y}) + X + u_0 $ $ = (X \wedge Y) - 1 + u_0 $ $ = X + Y + u_0 $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + X + u_0 $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) + (X \wedge \overline{Y}) $ $ = (X \wedge Y) + (X \wedge \overline{Y}) + (X \wedge \overline$	_	Н	Н	Ш	
$= (X \lor Y) + (X \land \overline{Y}) + u_0$ $= X - Y - 1 + u_0$ $= (X \land \overline{Y}) + X + u_0$ $= (X \land Y) - 1 + u_0$ $= (X \land Y) - 1 + u_0$ $= X + Y + u_0$ $= (X \lor \overline{Y}) + (X \land \overline{Y}) + u_0$ $= (X \lor \overline{Y}) + (X \land \overline{Y}) + u_0$ $= (X \lor Y) + X + u_0$ $= X - 1 + $	_	0	0	II.	
$ = X - Y - 1 + u_0 $ $ = (X \wedge \overline{Y}) + X + u_0 $ $ = (X \wedge Y) - 1 + u_0 $ $ = X + Y + u_0 $ $ = (X \vee Y) + (X \wedge \overline{Y}) + u_0 $ $ = (X \vee Y) + (X \wedge \overline{Y}) + u_0 $ $ = X - 1 + u_0 $	\vdash	0	Н		
$ = (X \land \overline{Y}) + X + u_0 $ $ = (X \land Y) - 1 + u_0 $ $ = X + Y + u_0 $ $ = (X \lor Y) + (X \land \overline{Y}) + u_0 $ $ = (X \lor \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + X + u_0 $ $ = X - 1 + u_0 $ $ = X \cdot 2^{-1} $ $ = X \cdot 2^{-1} $ $ = X \Rightarrow 1 $	\vdash	Н	0	II.	X =
$ = (X \land Y) - 1 + u_0 $ $ = X + Y + u_0 $ $ = (X \lor Y) + (X \land Y) + u_0 $ $ = (X \land Y) + (X \land Y) + u_0 $ $ = (X \land Y) + X + u_0 $ $ = X - 1 + u_0 $ $ = X \cdot 2^{-1} $ $ = X \Rightarrow 1 $	_	Н	Н		Ш
$ = X + Y + u_0 $ $ = (X \lor \overline{Y}) + (X \land \overline{Y}) + u_0 $ $ = (X \land Y) + X + u_0 $ $ = X - 1 + u_0 $ $ = X \cdot 2^{-1} $ $ = X \triangleright 1 $ $ = X \triangleright 1 $ $ = X \triangleright 1 $ $ = X \rightarrow 1 $ $ = X \rightarrow 1 $	0	0	0		
$= (X \lor \overline{Y}) + (X \land \overline{Y}) + u_0 Z =$ $= (X \land Y) + X + u_0 Z =$ $= X - 1 + u_0 Z =$ $= X \cdot 2^{-1} Z =$ $= X \triangleright 1 Z =$ $= X \triangleright 1 Z =$ $= X \cdot 2 + u_0 Z =$	0	0	Н	Ш	= X
	0	Н	0	II	
	0	Н	Н		
	П	0	0	II	
$= X \triangleright 1$ $= X \cdot 2 + u_0$ Z	\vdash	0	Н		Ш
$=X\cdot 2+u_0$	\vdash	Н	0	Ш	
	Н	П	Н	II.	

		ماران		S	SR-Inhalt		٥	drac	Adressiering	٥٥	
	Befehl	(hex.)	Z	<u>_</u>	U	>	•	#	0	≧ٍ	Wirkung
	HT	00	-	-		,	,	1			Anhalten
	NOP	01	1	- 1	,	- 1	,	1	1	,	Nichts
	NOT	02	×	×	0	0		,	ı	,	AC := \neg AC, 1-Komplement
	NEG	03	×	×	×	×	1	ī	ī	,	AC := $0 - AC$, 2-Komplement
	ASL	04	×	×	AC_{15}	×	1	ī	ī	,	$AC := AC \times 2$
	ASR	02	×	×	AC_0	0	•	ı	ı	,	AC := AC $\times 2^{-1}$, AC ₁₅ := AC ₁₅
	TST	90	×	×	AC_{15}	0	ı	ī	ī	,	$AC := AC \times 2$
	LSR	20	×	×	AC_0	0	1		ī	,	AC_{15}
	PUSH	80	1	1		-	1	ı	ı	1	RAM[SP-1] := AC, SP := SP-1
1	POP	60	×	×	0	0			ı	,	AC := RAM[SP], $SP := SP+1$
	JMP	10					>	,			PC := Op
;	BPL	11	ı	1	1	-	>	ı	ı	,	
J- y ₆	BMI	12	1	1	,	1	>	ī	ī	,	PC := Op if SR = < 0
	BCC	13	1	1	,	-1	>	ı	ī		PC := Op if $SR = kein$ Übertrag
	BCS	14	1	1	,	1	>	ı	ı	1	$PC := Op \; if \; SR = \ddot{U} bertrag$
7	BVC	15	1	1	,	1	>	ī	ī	,	PC := Op if SR = kein Überlauf
	BVS	16	1	1	,	-	>	ì	ì	,	PC := Op if SR = Überlauf
	BEQ	17	1	1	,	1	>	ı	ī	-	PC := Op if SR = = (Null)
1	BNE	18	1	1	,	1	>	ì	ì	,	$PC := Op \text{ if } SR = \neq (Null)$
-	BGT	19	ī	1	1	-	>	ī	ī	,	PC := Op if SR = >
	BGE	1A	1	1	,	1	>	ì	ì	,	PC := Op if SR = \geq
	BLE	18	1	1	,	-	>	ı	ı	1	PC := Op if SR = \leq
	BLT	1C	1	1	,	1	>	ī	ī	,	PC := Op if SR = <
	BGTU	1D	ı	1	1	-	>	ı	ı	,	PC := Op if SR = > (vorzeichenlos)
	BGEU	13	1	1	1	,	>	ı	ı	,) ∧I Ⅱ
	BLEU	11	i	ī	,	1	>	i	i	,	$:= Op \; if \; SR = \leq 0$
	BLTU	14	ı	1		-	>	1	ı	,	= Op if SR = < (vorzeichenlos)
	JSR	1F		-		-	>	,	,	-	PC := Op, RAM[SP-1] := PC, SP := SP-1
	LDA	2023	×	×	0	0	>	>	>	>	, ,
	KDX	282B	×	×	0	0	>	>	>	>	
	RDS	2427	×	×	0	0	, ,	>	, ,		Ш
	STA	3033	ı	ı		1	>	, `	>	>	Op := AC
	<u>×</u>	383B	ı	ı	1	1	>	>	>	>	
	WRS	3437	ı	ı	,	1	, `	>	, `	1	RAM[SP+Op] := AC
	ADD	4043	×	×	×	×	>	>	>	>	نٰ
	ADDX	484B	×	×	×	×	>	>	>	>	+ <u>×</u>
	SUB	5053	×	×	×	×	>	>	>	>	:= AC
	SUBX	585B	×	×	×	×	>	>	>	>	Ш
	CMP	6063	×	×	×	×	>	1	1	,	AC – Op
	CMPX	686B	×	×	×	×	>	>	>	>	IX – Op
	AND	7073	×	×	0	0	>	>	>	>	:= AC ^ Op (
	OR	8083	×	×	0	0	>	>	>	>	:= AC \
_	XOR	9093	×	×	0	0	>	>	>	>	$AC := AC \oplus Op (bitpaarweise)$

x/-: Statusbit wird verändert/ wird nicht verändert $\sqrt{/-:}$ Adressierungsart verfügbar/ nicht verfügbar Op: Operand gemäß Adressierungsart

 $s_{0.4}; \quad {\sf ALU-Steuervektor} \ (y_C = s_0.. u_0) \\ X/Y: \quad {\sf linker/rechter ALU-Eingang} \ (2{\sf -Komplement-Wert oder Bitvektor}) \\ Z: \quad {\sf ALU-Ausgang} \\ \rhd: \quad {\sf Vorzeichenbehafteter Rechts-Shift}$