

Introduction to JGI & MycoCosm

Steven Ahrendt, PhD (he/him)
Data Scientist
Fungal & Algal Genomics Program



### **Joint Genome Institute**



#### The Evolution of JGI as a National User Facility



functional capabilities for



- US Department of Energy User Facility
- Located at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA
- Leading the integration and application of genomics for energy and environmental research

#### Science programs:

- Fungal & Algal Program
- Plant Program
- Metagenome Program
- Microbial Program
- DNA Synthesis Science Program
- Metabolomics Program
- Secondary Metabolites



# The Fungal & Algal Team





Igor Grigoriev ivgrigoriev@lbl.gov Fungal & Algal Program Lead





- Software developers
- Data scientists
- Postdoctoral scholars
- Interns



























# JGI Fungal Genomics – A growing field



### 2004:

1<sup>st</sup> basidiomycete genome published



White rot fungus

Phanerochaete chrysosporium





# **JGI Community Science Program**











Short & long reads

Metabolomics



|   | Proposal Call Type      | Review Frequency | Next Submission<br>Deadline | Next Review Date |
|---|-------------------------|------------------|-----------------------------|------------------|
| • | CSP Annual              | Annual           | Spring 2025                 | August 2024      |
|   | FICUS JGI-EMSL          | Annual           | Spring 2025                 | June 27-28 2024  |
|   | CSP New Investigator    | Annual           | Oct 4, 2024                 | Dec 2024         |
|   | CSP Functional Genomics | Annual           | Jan 30, 2025                | March 2025       |

for Proposals

Calls



**Bioinformatics** 



MODOLOGICAL

TFBS

# **1000 Fungal Genomes Project**



Goal: Produce a reference genome for every family of fungi



105 participants: 1080 total projects 220 await DNA/RNA; 140 in progress

720 completed: 318 published

### NEXT: Toward 10,000 fungal genomes

- 3-5 references per family within 1KFG project



- Environmental genomics: MAGs, forays, Myco-Ed

# Integrative Multi-omics





## **Conserved Genes of Unknown Function**









Total Unique PFAM Domains: 80

Total Unique Uniprot: 126

Total Genes: 162,087 Total Unique Species: 1,753 Total Annotated Genes: 0 Total Unique PDB:66

Updated: 2024-03-08

#### Conserved Genes Families of Unknown Function: 202

| ## Gene | s Expressed<br>Genes % | Genes with<br>Phenotypes | Unique<br>Species | Proteins<br>with PFAM<br>Domains | PFAM<br>Domains<br>Count | Protein PFAM Domains                                        | Uniprot HMM Hint | PDB<br>HMM<br>Hint | AlphaFold<br>pLDDT | Foldseek<br>PDB Hint | Conserved<br>In | User<br>Curated<br>Models | Avg.<br>Protein<br>Length |
|---------|------------------------|--------------------------|-------------------|----------------------------------|--------------------------|-------------------------------------------------------------|------------------|--------------------|--------------------|----------------------|-----------------|---------------------------|---------------------------|
| 1 1,64  | 1 84                   | 1                        | 461               | 0                                | 0                        |                                                             |                  |                    | <u>78</u>          |                      | Fungi           | 0                         | 244                       |
| 2 1,34  | <u>8</u> 50            | 1                        | 726               | 2                                | 2                        | • 2OG-Fe dioxygenase:1 • 2OG-Fe(II) oxygenase superfamily:1 | A0A093V829_TALMA | <u>6NIE</u>        | 88                 |                      | Universal       | 0                         | 356                       |

## **Myco-Ed Genomics**



### **Mycological Curriculum for Education and Discovery**

- A Course-Based Undergraduate
  Research Experience (CURE) that
  consists of coordinated hands-on
  experiments across fungal biology
  teaching labs with the goals of:
  - Training students and professors in laboratory techniques and data analyses
  - Compiling original data for improving fungal genomic resources
  - Empowering students through isolation and genome sequencing of new fungal species





1) Isolate environmental fungi





2) Conduct standardized growth experiments

# JGI project flow





# **Eukaryotic annotation pipeline**







### **External Genomes**

- Import annotations (collaborators, GenBank)
- Can apply filtering
- · Removal of TEs, alleles, isoforms, etc.
- Make comparable with internal genomes

### **Manual Validation and QC**



- Species tree
  - phylogenetic neighborhood
- Genome assembly
  - size, N50/L50, repeats, ploidy
- Gene model sources
  - different algorithms contribute models
- Protein length distribution
  - short models removed
- Gene model lengths & structure
  - introns, exons, UTRs
- Gene model support
  - blast, PFAM, RNAseq
- Completeness
  - CEGMA, BUSCO



Gene Models Length and Structure

Species Tree for clustering run 2782

|                                               |         | Phchr2          | Triab1_1        | Phibr1          | Gansp1          | Bjead1_1        | Glotr1_1        | Phaca1          |
|-----------------------------------------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                               |         | FilteredModels1 | FilteredModels1 | FilteredModels1 | FilteredModels1 | FilteredModels2 | FilteredModels1 | FilteredModels4 |
| # genes                                       | 4—°     | 13,602          | 14,978          | 16,170          | 12,910          | 15,473          | 11,846          | 13,937          |
| Protein<br>length<br>(median)                 | <u></u> | 332             | 333             | 329             | 355             | 334             | 347             | 313             |
| Exon<br>Length<br>Median                      | <u></u> | 157             | 147             | 140             | 148             | 153             | 146             | 159             |
| Gene<br>length<br>(median)                    | <u></u> | 1,416           | 1,461           | 1,347           | 1,541           | 1,424           | 1,500           | 1,448           |
| Transcript<br>length<br>(median)              | <u></u> | 1,184           | 1,159           | 1,058           | 1,182           | 1,168           | 1,191           | 1,190           |
| Intron<br>length<br>(median)                  | <u></u> | 54              | 59              | 55              | 60              | 53              | 55              | 55              |
| #spliced genes                                | <u></u> | 12,066          | 13,359          | 14,453          | 11,812          | 13,958          | 10,764          | 11,242          |
| % spliced                                     |         | 88.71           | 89.19           | 89.38           | 91.49           | 90.21           | 90.87           | 80.66           |
| Introns<br>per<br>spliced<br>gene<br>(median) | <u></u> | 4               | 4               | 4               | 4               | 4               | 4               | 4               |
| Exons per<br>gene<br>(median)                 | #-•     | 4               | 4               | 4               | 5               | 4               | 5               | 4               |
| Gene<br>Density<br>(Mbp)                      | њ.:     | 386.98          | NO DATA         | 323.63          | 326.65          | 362.11          | 318.60          | 301.06          |

## **Fungal-Algal Genomics Parallels**





1st fungal genome

2004

1st algal genome





~50 fungal genomes

~10 algal genomes

To angular government

2009





2,500+ fungal genomes

2022

150+ algal genomes



- pan-genomes
- multi-omes
- modeling
- synthesis

10,000 Fungal genomes

2030

1,000+ algal genomes



## JGI's Fungal & Algal Genomics Resources



mycocosm.jgi.doe.gov



phycocosm.jgi.doe.gov



### Genome portals provide:

- data access
- visualization
- analysis tools

### Allow researchers to:

- Explore gene models within species
- Compare gene content between species

### Connect with us!



### **Joint Genome Institute**



https://twitter.com/jgi http://www.youtube.com/user/JointGenomeInstitute https://www.linkedin.com/company/joint-genome-institute







https://jgi.doe.gov/category/podcasts/







