ממ"ך 11

Note: I'll be using e.g. $\neg(A \cup B)$ to represent the complement of $(A \cup B)$ (My editor doesn't support superscript or overline)

2

ב

Prove:

if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

I'll be proving: $(C\subseteq A \land A\subseteq C) \lor (C\subseteq B \land B\subseteq C)$ Since it's equivalent to $(C=A) \lor (C=B)$

First: proof that C⊆A v C⊆B

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$

C⊆A v C⊆B

Second: proof that $A\subseteq C$ \vee $B\subseteq C$

 $A \in P(A)$

 $P(A) \subseteq P(A) \cup P(B) // union definition$

 $A \in P(A) \cup P(B)$

Given $P(C) = P(A) \cup P(B) \Rightarrow A \in P(C)$

A⊆C

 $B\in P(B)$

 $P(B) \subseteq P(A) \cup P(B) // union definition$

 $B \in P(A) \cup P(B)$

Given $P(C) = P(A) \cup P(B) \Rightarrow B \in P(C)$

B⊆C

Since $C\subseteq A \lor C\subseteq B$ and $A\subseteq C$ and $B\subseteq C$, we conclude that: $C\subseteq A \lor C\subseteq B \land A\subseteq C \land B\subseteq C$

Therefore