Desafío: Estudio Comparativo de Sistemas Oscilantes*

Objetivo general

Modelar y validar, a partir de simulaciones interactivas, la dependencia funcional del período de oscilación T con respecto a variables físicas en dos sistemas clásicos: el péndulo simple y el sistema masa-resorte. Determinar experimentalmente los exponentes de dichas dependencias mediante técnicas de linealización.

Número de sesiones: 2 (cada una de 1.5 h)

Conexiones

Este desafío integra los cuatro pilares del enfoque STEM:

- Ciencia (Science): Analiza fenómenos físicos reales como el movimiento oscilatorio y sus dependencias.
- Tecnología (Technology): Uso de simulaciones interactivas (PHET) y software para visualización y análisis.
- Ingeniería (Engineering): Diseño y validación de modelos mediante experimentación virtual y ajuste funcional.
- Matemáticas (Mathematics): Linealización de funciones, ajuste logarítmico y modelación funcional.

Organización de sesiones: En la primera sesión, los estudiantes realizan todas las mediciones y experimentaciones usando los simuladores. En la segunda sesión, entregan el informe escrito y presentan una sustentación oral de máximo 10 minutos por grupo. El profesor asignará aleatoriamente a cada grupo el sistema que deben exponer (péndulo o masa-resorte), por lo tanto, todos los estudiantes deben prepararse para ambos.

Planteamiento del desafío

Determina experimentalmente la relación funcional del período T de oscilación en:

^{*}Guía basada en simulaciones interactivas con PHET.

• Péndulo simple: $T = C \cdot L^{\alpha} \cdot g^{\beta}$

• Masa-resorte: $T = C \cdot m^{\alpha} \cdot k^{\beta}$

Usa transformaciones logarítmicas para determinar los exponentes α y β sin asumir expresiones teóricas. Utiliza tus conocimientos de funciones, potencias y logaritmos para obtener las dependencias funcionales mediante ajuste lineal.

Simulaciones interactivas

• PHET: Laboratorio de péndulo simple

■ PHET: Laboratorio de masa-resorte

Actividades por sistema

A. Péndulo simple

- 1. Explora la dependencia de T con la longitud L (manteniendo g fija) y luego con la gravedad g (manteniendo L fija).
- 2. Mide T para distintos valores (mínimo 5) de cada variable.
- 3. Grafica $\log T$ vs $\log L$ y $\log T$ vs $\log g$. Halla las pendientes (exponentes α y β).
- 4. Interpreta físicamente los resultados y redacta tu modelo final.

B. Sistema masa-resorte

- 1. Explora la dependencia de T con la masa m (manteniendo k fija) y con la constante elástica k (manteniendo m fija).
- 2. Registra valores de T y aplica transformación logarítmica.
- 3. Grafica $\log T$ vs $\log m$ y $\log T$ vs $\log k$. Extrae los exponentes.
- 4. Compara con el modelo del péndulo y discute diferencias.

Preguntas orientadoras

- **Péndulo:** ¿Que influencia tiene la longitud y la gravedad sobre T? Es la masa relevante?
- Resorte: ¿Cómo varía T con la masa o la constante elástica? Influye la amplitud?
- Comparación: ¿Qué diferencias matemáticas y físicas existen entre ambos sistemas?

Evaluación

Informe escrito (3.0 puntos)

Criterio	Puntaje	Descripción
Diseño del modelo experimental	0-0.5	Estrategia bien planteada, con variables controladas y replicabilidad.
Linealización y análisis	0-1.0	Gráficas log-log correctas, ajuste adecuado, obtención de pendientes.
Interpretación de exponentes	0 – 0.5	Relación de α , β con el fenómeno físico.
Comparación entre sistemas	0-0.5	Argumentos bien estructurados sobre diferencias y semejanzas.
Redacción y presentación	0-0.5	Lenguaje claro, presentación gráfica adecuada, organización.

Sustentación oral (2.0 puntos)

Criterio	Puntaje	Descripción
Comprensión del fenómeno	0-0.5	Dominio del concepto de oscilación y su modelación.
Explicación del ajuste	$0\!-\!0.5$	Claridad en el procedimiento matemático.
Interpretación crítica Uso de la simulación	$0-0.5 \\ 0-0.5$	Justificación de resultados y validación del modelo. Aplicación efectiva y consciente del simulador.

Nota definitiva: Suma de nota de informe (3.0) más la nota de la sustentación (2.0) para un total de 5.0.