DES Algorithm

BLOCK CIPHER

Overview

- Overview of the DES Algorithm.
- Encrypts blocks of size 64 bits.
- Uses a key of size 56 bits.

- Symmetric cipher: uses same key for encryption and decryption.
- Uses 16 rounds which all perform the identical operation
- Different subkey in each round derived from main key

- Key 64 bit.
- Quantity = 8bit parity + 56 bit key.
- Every 8th key is the parity bit.
- Uses a key of size 56 bits.

- Symmetric cipher: uses same key for encryption and decryption.
- Uses 16 rounds which all perform the identical operation
- Different subkey in each round derived from main key

00010011	1
00110100	2
01010111	(1)
01111001	_
10011011	<u>_</u>
10111100	ϵ
11011111	7
11110001	8

		1	PC-1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Example: From the original 64-bit key

 $\mathbf{K} = 00010011\ 00110100\ 01010111\ 01111001\ 10011011\ 101111100\ 11011111$

we get the 56-bit permutation

Activate Windows

 \mathbf{K} + = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 000111

$$C_0 = 1111000 0110011 0010101 0101111$$

 $D_0 = 0101010 1011001 1001111 0001111$

$C_{\theta} = 11110000110011001010101011111$ $D_{\theta} = 01010101011100111001111100011111$	$C_9 = 01010101011111111100001100110$ $D_9 = 00111100011110101010101110011$	Iteration Number	Number of Left Shifts
$C_I = 111000011001100101010111111$ $D_I = 1010101011001100111100011110$ $C_2 = 1100001100110010101010111111$	$C_{I\theta} = 01010101111111110000110011001$ $D_{I\theta} = 111100011111010101011011001100$	2	1
$D_2 = 0101010110011001111000111101$ $C_3 = 00001100110010101010111111111$	$C_{II} = 01010111111111000011001100101$ $D_{II} = 1100011110101010101100110011$	3 4	2 2
$D_3 = 0101011001100111100011110101$ $C_4 = 00110011001010101011111111100$	$C_{12} = 010111111111100001100110010101$ $D_{12} = 0001111010101010110011001111$	5	2
$D_4 = 0101100110011110001111010101$ $C_5 = 110011001010101011111111110000$	$C_{I3} = 01111111110000110011001010101$ $D_{I3} = 0111101010101011001100111100$	8	2 2
$D_5 = 0110011001111000111101010101$ $C_6 = 001100101010101111111111000011$	$C_{I4} = 1111111000011001100101010101$ $D_{I4} = 1110101010101100110011110001$	10 11	2 2
$D_6 = 1001100111100011110101010101$ $C_7 = 1100101010101111111111100001100$	$C_{IS} = 1111100001100110010101010111$ $D_{IS} = 1010101010110011001111000111$	12 13	2 2
$D_7 = 0110011110001111010101010101$ $C_8 = 001010101011111111110000110011$ $D_8 = 10011110001111010101010101$	$C_{16} = 1111000011001100101010101010101010101$	14 15 16	2 2 1

```
C_0 = 111100001100110010101011111
                                      C_9 = 01010101011111111100001100110
                                                                             Number of
D_{\theta} = 0101010101100110011110001111
                                      D_{q} = 0011111000111110101010101110011
                                                                           Left Shifts
C_I = 11100001100110010101010111111
                                      C_{10} = 01010101111111110000110011001
D_I = 1010101011001100111100011110
                                      D_{10} = 1111000111101010101011001100
C_2 = 11000011001100101010101111111
                                      C_{II} = 010101111111111000011001100101
D_2 = 0101010110011001111000111101
                                      D_{II} = 1100011110101010101100110011
C_3 = 00001100110010101010111111111
D_3 = 0101011001100111100011110101
                                      C_{12} = 010111111111100001100110010101
                                      D_{12} = 0001111010101010110011001111
C_4 = 0011001100101010111111111100
D_4 = 0101100110011110001111010101
                                      C_{I3} = 011111111110000110011001010101
                                      D_{13} = 01111010101010110011001111100
C_5 = 110011001010101011111111110000
D_5 = 0110011001111000111101010101
                                      C_{I4} = 11111111000011001100101010101
C_6 = 001100101010101111111111000011
                                      D_{14} = 1110101010101100110011110001
D_6 = 1001100111100011110101010101
                                      C_{15} = 1111100001100110010101010111
C_7 = 11001010101011111111100001100
                                      D_{15} = 1010101010110011001111000111
D_7 = 0110011110001111010101010101
                                      C_8 = 00101010101111111110000110011
                                      D_{16} = 0101010101100110011110001
D_8 = 10011110001111010101010111001
```

		PC	-2 48	8 bit	
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

$$C_I = 11100001100110010101010111111$$

 $D_I = 1010101011001100111100011110$

 $K_I = 000110\ 110000\ 001011\ 101111\ 1111111\ 000111\ 000001\ 110010$

For the other keys we have

```
K_2 = 011110 \ 011010 \ 111011 \ 011001 \ 110110 \ 111100 \ 100111 \ 100101
K_3 = 010101 \ 0111111 \ 110010 \ 001010 \ 010000 \ 101100 \ 1111110 \ 011001
K_4 = 011100 \ 101010 \ 110111 \ 010110 \ 110110 \ 110011 \ 010100 \ 011101
K_5 = 0111111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000
K_6 = 011000 \ 111010 \ 010100 \ 1111110 \ 010100 \ 000111 \ 101100 \ 101111
K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 1111100
K_8 = 111101 \ 111000 \ 101000 \ 111010 \ 110000 \ 010011 \ 101111 \ 111011
K_9 = 111000\ 001101\ 1011111\ 101011\ 111011\ 011110\ 011110\ 000001
K_{10} = 101100\ 0111111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111
K_{II} = 001000\ 010101\ 1111111\ 010011\ 110111\ 101101\ 001110\ 000110
K_{12} = 011101\ 010111\ 000111\ 110101\ 100101\ 000110\ 011111\ 101001
K_{I3} = 100101\ 1111100\ 0101111\ 010001\ 1111110\ 101011\ 101001\ 000001
K_{14} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010
K_{I5} = 101111 111001 000110 001101 001111 010011 111100 0010 
K_{16} = 110010 \ 110011 \ 110110 \ 001011 \ 000011 \ 100001 \ 011111 \ 110100
```


			IP				
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

 $\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1111$

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010 1010 1010 1010 1010 1010

$$L_{\theta} = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1$$
 $R_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1$

Mangler Function

E BIT-SELECTION TABLE

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

 $R_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$ $\mathbf{E}(R_{\theta}) = 011110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101$

```
R_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010
\mathbf{E}(R_{\theta}) = 011110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101
K_{I} = 000110\ 110000\ 001011\ 101111\ 111111\ 000111\ 000001\ 110010
```

$$K_I + \mathbf{E}(R_{\theta}) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100\ 100111.$$

$$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010$$

1011 0101 1001 0111

S-Box (Substitute and Shrink)

- · 48 bits => 32 bits. (8*6 => 8*4)
- 2 bits used to select amongst 4 substitutions for the rest of the 4-bit quantity

Example:

e.			Middle 4 bits of input														
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outer hite	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits		0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

```
K_I + \mathbf{E}(R_{\theta}) = 011000\ 010001\ 0111110\ 111010\ 100001\ 100110\ 010100\ 100111.
```

$$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010$$

1011\ 0101\ 1001\ 0111

f= 0010 0011 0100 1010 1010 1001 1011 1011

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

$$L_{\theta} = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1$$
 $R_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1$

f = 0010 0011 0100 1010 1010 1001 1011 1011

			IP^{-1}				
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	1.4	54	22	62	30
37	5	45	1.3	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

 $L_{16} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100$ $R_{16} = 0000\ 1010\ 0100\ 1100\ 1101\ 1001\ 1001\ 0101$

 $R_{16}L_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010\ 00110010$

 $IP^{-I} = 10000101 \ 11101000 \ 00010011 \ 01010100 \ 00001111 \ 00001010 \ 10110100 \ 00000101$

$\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101$

M = 0123456789ABCDEF

K = 133457799BBCDFF1

C=85E813540F0AB405

 $IP^{-I} = 10000101\ 11101000\ 00010011\ 01010100\ 000011111\ 00001010\ 10110100$

which in hexadecimal format is

85E813540F0AB405.

1110 1111

This is the encrypted form of $\mathbf{M} = 0123456789 \text{ABCDEF}$: namely, $\mathbf{C} = 85E813540F0 \text{AB}405$.

M = 0123456789ABCDEF

K = 133457799BBCDFF1

C=85E813540F0AB405

DES Decryption

Question-1

3.1. As stated in Sect. 3.5.2, one important property which makes DES secure is that the S-boxes are nonlinear. In this problem we verify this property by computing the output of S_1 for several pairs of inputs.

Show that $S_1(x_1) \oplus S_1(x_2) \neq S_1(x_1 \oplus x_2)$, where " \oplus " denotes bitwise XOR, for:

1.
$$x_1 = 000000$$
, $x_2 = 000001$
2. $x_1 = 111111$, $x_2 = 100000$

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0
 14
 4
 13
 1
 2
 15
 11
 8
 3
 10
 6
 12
 5
 9
 0
 7

 1
 0
 15
 7
 4
 14
 2
 13
 1
 10
 6
 12
 11
 9
 5
 3
 8

 2
 4
 1
 14
 8
 13
 6
 2
 11
 15
 12
 9
 7
 3
 10
 5
 0

 3
 15
 12
 8
 2
 4
 9
 1
 7
 5
 11
 3
 14
 10
 0
 6
 13

Lets try for x of i where i from 1 to 5

$$S[0]: (x_0, \underbrace{x_1, x_2, x_3, x_4}_{column}, x_5) \rightarrow (y_0, y_1, y_2, y_3)$$

 $(1, 1, 0, 0, 1, 1): row 3, column 9, S[0](1, 1, 0, 0, 1, 1) = 11 = (1, 0, 1, 1)$

Question-1 Solution

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2.	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

```
S[0]: (x_0, \underbrace{x_1, x_2, x_3, x_4}_{column}, x_5) \rightarrow (y_0, y_1, y_2, y_3)
```

(1, 1, 0, 0, 1, 1): row 3, column 9, S[0](1, 1, 0, 0, 1, 1) = 11 = (1, 0, 1, 1)

1.
$$x_1 = 0000000$$
, $x_2 = 0000001$ $00 = 0$, $0000 = 0$, $s(x_1) = 14 = 1110$,

2.
$$x_1 = 1111111$$
, $x_2 = 1000000$ $11 = 3, 1111 = 15, s(x1) = 13 = 1101,$

1.Right 1110 \oplus 0000 =1110, Left 000000 \oplus 000001 = 000001, s(x3) = 0000,

2.Right $1101 \oplus 0100 = 1001$, Left $111111 \oplus 100000 = 011111$, s(x3) = 1000,

$$01 = 1,0000 = 0, s(x2) = 0 = 0000$$

$$10 = 2,0000 = 0, s(x2) = 4 = 0100$$

1110≠0000

1001≠1000

(NOT LINEAR)

Question-2

3.2. We want to verify that $IP(\cdot)$ and $IP^{-1}(\cdot)$ are truly inverse operations. We consider a vector $x = (x_1, x_2, \dots, x_{64})$ of 64 bit. Show that $IP^{-1}(IP(x)) = x$ for the first

five bits of x, i.e. for x_i , i = 1, 2, 3, 4, 5.

Lets try for x of i where i from 1 to 5

x1,x2,x3,x4,x5

Initial Permutation

			II)			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Final Permutation

			II	> -1			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Question-2 Solution

Lets try for x of i (where i from 1 to 5)

x1, x2, x3, x4, x5

x40, x8, x48, x16, x56

x1 , x2, x3 , x4, x5

Initial Permutation

	IP											
8	10 2	18	26	34	42	50	58					
16	12 4	20	28	36	44	52	60					
24	14 6											
32	16 8			-			-					
40			25									
48	11 3	19	27	35	43	51	59					
56	13 5											
64	15 7	23	31	39	47	55	63					
64	15 7	23	31	39	47	55	5					

Final Permutation

M = 0123456789ABCDEF

K = 133457799BBCDFF1

C=85E813540F0AB405

Assignment

Use DES to encrypt and decrypt a message with the following requirements for the DES:

- •Message will be entered in hexadecimal format you will have to convert it to binary.
- •Key will be entered in hexadecimal format you will have to convert it to binary.
- You have to show every step results in the CLI (sub keys and each permutations results)
- •S box will be the same in our Assignment only but in real life scenario it suppose to be different.
- •You should decrypt the message and get the original one in hexadecimal format.
- •Will be submitted on blackboard by max 20th of Nov 2021, and will be discussed on the next lab.

S ₅			Middle 4 bits of input														
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011