ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 2 DIODOS DE JUNÇÃO PN

1. OBJETIVO

Verificar as características de condução e de chaveamento de um díodo de junção PN, a característica de ruptura do diodo zener e sua aplicação como estabilizador de tensão.

2. INTRODUÇÃO TEÓRICA

Um díodo de junção PN é de maneira simplista a justaposição de dois cristais semicondutores: um tipo N e outro tipo P. Um cristal semicondutor tipo P é basicamente um cristal enriquecido com impurezas trivalentes, ou seja, rico em lacunas (portadores de corrente positivos). Um cristal semicondutor tipo N é um cristal enriquecido com impurezas penta-valentes, ou seja, rico em elétrons livres (portadores de corrente negativos).

2.1. BARREIRA DE POTENCIAL DA JUNÇÃO

- a) A barreira de potencial devido a difusão de elétrons do lado N para o lado P e de lacunas do lado P para o lado N;
- Polarização Direta: superação da barreira de potencial propicia a circulação de corrente.
- Polarização Reversa: reforça a região de depleção, bloqueia a passagem da corrente elétrica.

2.2. CARACTERÍSTICAS IXV e ESPECIFICAÇÕES COMUNS

 V_p tensão direta corrente direta lε corrente direta de pico de trabalho **I**FWM corrente direta média I_{F(AV)} V_R tensão reversa tensão de pico reversa repetitiva V_{RRM} corrente reversa I_R corrente reversa de IRSM pico não repetitiva faixa de frequência de operação C_{d} capacitância

2.3. SIMBOLOGIA E ENCAPSULAMENTO

2.4. TEMPOS DE CHAVEAMENTO DO DIODO

Chamamos de chaveamento às passagens do estado de condução (ligado) para o de não-condução (desligado) e vice-versa. Os tempos envolvidos são:

t_{rf} - tempo de recuperação direta (diferença entre os tempos de 10% e 90% de resposta);

tn. - tempo de recuperação reversa (decaimento a zero da densidade de portadores minoritários em excesso);

tsто - tempo de armazenamento (carga minoritário cai a zero);

ttrn - tempo de transição (intervalo entre a anulação da carga minoritária e a recuperação nominal do díodo).

2.5. DIODO ZENER

O diodo zener é um dispositivo destinado a trabalhar polarizado reversamente (na região de ruptura). Quando ocorre a ruptura, uma ampla corrente pode circular pelo dispositivo com d.d.p. entre seus terminais aproximadamente constante. É um diodo de junção PN especialmente dopado para permitir propriedades de polarização inversa controladas.

2.5.1. MECANISMOS DE RUPTURA DA JUNÇÃO

- Efeito Zener: campo elétrico, na junção PN reversamente polarizada, suficientemente forte para romper ligações covalentes;
- Efeito Avalanche: portadores gerados termicamente são acelerados pelo campo elétrico adquirindo energia suficiente para romper ligações covalentes gerando novos portadores e assim sucessivamente.

2.5.2. COEFICIENTES DE TEMPERATURA

- Coeficiente POSITIVO: ruptura por avalanche (Vz > 5V aproximadamente);
- Coeficiente NEGATIVO: ruptura por zener (Vz < 5V aproximadamente);
- Coeficiente NULO: Vz = 5V (na faixa de 4,5 a 6,0V).

COMPENSAÇÃO DO EFEITO DE TEMPERATURA:

- 1º processo: usar um diodo zener com coeficiente de temperatura nulo:
- 2° processo: usar um díodo comum diretamente polarizado em série com o diodo zener com coeficiente de temperatura de mesmo valor, mas com sentido contrário (compensação BACK TO BACK).

2.5.3. ESCOLHA DO DIODO ZENER

Máxima Potência de Dissipação: Pzmax = Vz.Izmax

Obs.: É conveniente usar como I_{ZMAX} 80% de I_{ZMAX} especificada pelo manual do fabricante. A resistência zener diminui com o **aumento** de I_z e aumenta aproximadamente 3%/⁹C.

2.5.4. CARACTERÍSTICA V x I E IMPEDÂNCIA ZENER

Impedância Zener:

 $Rz = \Delta Vz/\Delta Iz$

Capacitância Zener : Cz depende da área da secção reta da junção e consequentemente da potência do zener, tendo-se aproximadamente

10pF≤Cz≤10.000pF.

SIMBOLOGIA E CIRCUITO EQUIVALENTE

3. PARTE EXPERIMENTAL

3.1. VERIFICAÇÃO DA INTEGRIDADE DOS DIODOS SEMICONDUTORES E DO DIODO ZENER

3.1.1- Com um multímetro selecionado para teste de diodos verifique a integridade dos diodos semicondutores 1N4004/7 e 1N4148, pela medição das tensões nos sentidos direto e reverso. Anote as leituras do multímetro nas duas situações.

V_D= V_D=

1N4004/7

1N 4148

3.1.2- Com um multímetro selecionado para teste de diodos verifique a integridade do diodo zener pela medição das tensões nos sentidos direto e reverso. Anote as leituras do multímetro nas duas situações.

3.2. CURVA CARACTERÍSTICA V x I

- 3.2.1- Regule a fonte de CC para uma corrente máxima de 100 mA
- 3.2.2- Monte o circuito da figura abaixo.

3.2.3- Regule a tensão da fonte CC para que a tensão no diodo se estabeleça conforme tabela abaixo e para cada tensão no diodo, anote a tensão da fonte CC e meça a corrente no resistor R..

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
	0,2 V	
	0,4 V	
	0,5 V	
	0,6 V	
	0,7 V	

3.2.4- Estabeleça os valores mostrados na tabela abaixo para a fonte CC e meça a tensão no diodo e a corrente no resistor R.

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
5 V		
10 V		
15 V		
20 V		

3.2.5- - Inverta a polaridade da fonte CC, conforme mostra o circuito da figura abaixo.

3.2.6- Estabeleça os valores de tensão mostrados na tabela abaixo para a fonte CC e meça a tensão no diodo e a corrente no resistor R

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
5 V		
10 V	-	
15 V		
20 V		
30 V		

3.2.7- Substitua o diodo retificador usado acima por um diodo zener e repita os passos 3.1.2 a 3.1.6.

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
	0,2 V	
	0,4 V	
	0,5 V	
	0,6 V	
	0,7 V	

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
5 V		
10 V		
15 V		
20 V		

Tensão na Fonte CC	Tensão no diodo	Corrente no resistor
5 V		
10 V		
15 V		
20 V		
30 V		

3.3. DÍODO COMO CHAVE

3.3.1- Monte o circuito da figura mostrada abaixo.

- 3.3.2- Ajuste o gerador de funções para a forma de onda mostrada na figura acima, com tensão de 10 Vpp e OFFSET = 0.
- 3.3.3- Para as frequências de 200 Hz, 5 kHz e 20 kHz, verifique com o osciloscópio as formas de onda de entrada v(t) e sobre o resistor.

3.3.4- Substitua o diodo retificador do circuito pelo diodo de sinal (1N4148). Compare os resultados e justifique as diferenças.

