Produced by: Dr. Brenda Mullally Ruth Barry

bmullally@wit.ie rbarry@wit.ie

Department Computing Maths and Physics Waterford Institute of Technology

www.wit.ie moodle.wit.ie

MSc Enterprise Software Systems

Business Intelligence

Objectives

- Business analyst perspective
- Explain reasons for sparsity
- Provide examples of measure aggregation properties
- Explain use of each operator
- Discuss motivation for relational database representation of multidimensional data
- Explain importance of grain determination
- Provide examples of types of fact tables

Business Analyst Perspective

Data Cube Basics

Business analyst model

- ▶ Factors or influencing variables of interest
- Quantitative variables
- Multidimensional arrangement

Terminology

- Dimension: subject label for a row or column
- Member: value of dimension
- Measure: quantitative variables stored in cells

Sales Data Cube Example

Notes on Dimensions and Measures

- Hierarchical dimensions with sub members
- Sparsity
 - Many cells do not have values
 - Increases with dimension detail and number of dimensions
- Measures
 - Derived measures
 - Multiple measures in cells

Measure Aggregation Properties

Additive

- Summarized by addition across all dimensions
- Common measures such as sales, cost, and profit

Semi-Additive

- Summarized by addition in some but not all dimensions such as time
- Periodic measurements such as account balances and inventory levels

Non-Additive

- Cannot be summarized by addition through any dimension
- Historical facts such as unit price for a sale

Measure Aggregation Example

Dimensions

- Course: course id, degree, department, and college
- Student: student id, major, department, and college
- Time: semester, academic year, academic decade

Measures:

- Credit hours
- Grade
- Unit tuition
- Tuition
- Aggregation properties for measures: ?

Motivation for Table Design

- Lack of scalability and integration of data cube storage engines
- Dominance of relational model and products
- Large amounts of research and development on relational database features for data warehouses
- Predominant usage of relational databases for large data warehouses

Multidimensional Data Representations

Grain

- Finest level of detail for a fact table
- Determined by the finest level of each dimension
- Completely specify related dimensions
- Determine size of fact tables using dimension cardinalities and sparsity
- Tradeoff
 - Flexibility and size
 - Trend towards finer grains

Grain Example

Sales fact table grain

- Coarse: customer postal codes (1,000), product type (100), store (200), week (52)
- Fine: individual customer (200,000), individual product (2,000), store (200), day (365)
- Sparsity: coarse (5%), fine (75%)

Impact

- Higher storage requirements for fine grain
- More reporting flexibility for fine grain

Types of Fact Tables

Transaction

- Most common
- Usually additive measures

Snapshot

- Periodic or accumulating view of asset level
- Usually semi-additive measures

Factless

- Event occurrence
- No measures, just FKs

Fact Table Examples

Transaction	Periodic	Factless
Store	Account	Student
Product	Account Type	Semester
Customer	Balance Date	Course
Associate	Dividend Date	Faculty
Date	Balance	Date
Quantity	Transaction Count	Period
Extended Price	Dividend Cumulative	
	Dividend Current Year	

DW Design

- Explain schema patterns
- Explain patterns for historical integrity
- Reflect on the importance of historical integrity

Star Schema Example

Constellation Schema Example

Snowflake Schema Example

Time Representation for Fact Tables

Alternatives

- Timestamp
- Time dimension table for organization specific calendar features

Variations

- Time of day columns
- Accumulating fact table for representation of multiple events

Historical Integrity for Dimensions

- Primarily an issue for dimension changes
- Fact rows no longer historically accurate after a dimension update
- Determine importance of history preservation for dimension columns
- Some inaccuracy tolerated with summary query results

Historical Integrity Examples

Type I Representation

Customer

CustId

CustName

CustPhone

CustStreet

CustCity

CustState

CustZip

CustNation

Type II Representation

Customer

CustId

VersionNo

CustName

CustPhone

CustStreet

CustCity

CustCityBegEffDate

CustCityEndEffDate

CustState

CustZip

CustNation

Type III Representation

Customer

CustId

CustName

CustPhone

CustStreet

CustCityCurr

CustCityCurrBegEffDate

CustCityCurrEndEffDate

CustCityPrev

CustCityPrevBegEffDate

CustCityPrevEndEffDate

CustCityPast

CustCityPastBegEffDate

CustCityPastEndEffDate

CustState

CustZip

CustNation

