

Question 31. Predict which of the following will have appreciable concentration of reactants and products:

(a)
$$Cl_2(g) \implies 2Cl(g)$$
; $K_c = 5 \times 10^{-39}$

(b)
$$Cl_2(g) + 2NO(g) \implies 2NOCl(g)$$
; $K_c = 3.7 \times 10^8$

(b)
$$Cl_2(g) + 2NO(g) \Longrightarrow 2NOCl(g)$$
; $K_c = 3.7 \times 10^8$
(c) $Cl_2(g) + 2NO_2(g) \Longrightarrow 2NO_2Cl(g)$; $K_c = 1.8$.

Answer: Following conclusions can be drawn from the values of K. (a) Since the value of K_c is very small, this means that the molar concentration of the products is very small as compared to that of

the reactants.

- (b) Since the value of K_c is quite large, this means that the molar concentration of the products is very large as compared to that of the reactants.
- (c) Since the value of K_c is 1.8, this means that both the products and reactants have appreciable concentration.

Question 32. The value of K_c for the reaction $3O_2(g) \rightarrow 2O_3(g)$ is 2.0 $\rm x\,10^{-50}$ at 25°C. If equilibrium concentration of O₂ in air at 25°C is 1.6 $\times 10^{-2}$, what is the concentration of \mathbb{Q}_{3} ?

Answer:

$$3\overline{O}_2(g) \Longrightarrow 2O_3(g)$$

$$K_c = \frac{[O_3]^2}{[O_2]^3} \quad \text{or} \quad (2.0 \times 10^{-50}) = \frac{[O_3]^2}{(1.6 \times 10^{-2})^3}$$

or
$$[O_3]^2 = (2.0 \times 10^{-50}) \times (1.6 \times 10^{-2})^3$$
 $[O_3]^2 = 8.192 \times 10^{-56}$ or $[O_3] = (8.192 \times 10^{-56})^{1/2} = 2.86 \times 10^{-28} \text{ M}.$

The reaction $CO(g) + 3H_2(g) \Longrightarrow CH_4(g) + H_2O(g)$ is at equilibrium at 1300 K in a 1L flask. It also contain 0.30 mol of CO, 0.10 mol of H, and 0.02 mol of H₂O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, K_c for the reaction at the given temperature is 3.90.

Answer:

$$CO(g) + 3H_2(g) \Longrightarrow CH_4(g) + H_2O(g)$$

According to available data

$$K_c = \frac{[\text{CH}_4] \times [\text{H}_2\text{O}]}{[\text{CO}] \times [\text{H}_2]^3}$$
 or $3.90 = \frac{[\text{CH}_4] \times [0.02]}{[0.30] \times [0.1]^3}$

$$[CH_4] = \frac{(3.9) \times (0.30) \times (0.001)}{(0.02)} = 5.85 \times 10^{-2} M$$

Question 34. What is meant by conjugate acid-base pair? Find the conjugate acid/base for the following species: HNO₂, CH⁻, HClO₄, OH⁻, CO₃²⁻, S²⁻

Answer: An acid-base pair which differs by a proton only (HA \rightarrow $A^{-} + H^{+}$) is known as conjugate acid-base pair.

Conjugate acid: HCN, H₂O, HCO₃-, HS-.

Conjugate base: NO_2^- , ClO_4^- , O_2^-

Question 35. Which of the following are Lewis Acids? H_2O , BF_3 , H^+ and NH^{4+}

Answer: BF₃, H⁺ ions are Lewis acids.

Question 36. What will be the conjugate bases for the Bronsted acids? HF, H_2SO_4 and H_2CO_3 ?

Answer: Conjugate bases: F⁻, HSO⁻₄, HCO⁻₃.

Question 37. Write the conjugate acids for the following Bronsted bases:

 NH_2 , NH_3 and $HCOO^-$

Answer: NH₃, NH₄⁺ and HCOOH

Question 38.The species $\rm H_2O$, $\rm HCO_3^-$, $\rm HSO_4^-$ and $\rm NH_3$ can act both as Bronsted acid and base. For each case, give the corresponding conjugate acid and base.

Answer:

Question 39. Classify the following species into Lewis acids and Lewis bases and show how these can act as Lewis acid/Lewis base? (a) OH^- ions (b) F^- (c) H^+ (d) BCl_3

Answer:

- (a) OH⁻ ions can demate an electron pair and act as Lewis base.
- (b) F⁻ ions can donate an electron pair and act'as Lewis base.
- (c) H⁺ ions can accept an electron pair and act as Lewis acid.
- (d) BCl₃ can accept an electron pair since Boron atom is electron deficient. It is a Lewis acid.

Question 40. The concentration of hydrogen ions in a sample of soft drink is 3.8×10^{-3} M. What is the pH value?

Answer: $pH = -\log[H^+] = -\log(3.8 \times 10^{-3}) = -\log 3.8 + 3 = 3 - 0.5798$ = 2.4202 = 2.42

****** END ******