Corrigé du DM 9

Exercice 1: correction par pair

- A Mettre la lettre A dans la marge chaque fois qu'une injectivité est bien démontrée.
- \fbox{B} Mettre la lettre B dans la marge chaque fois qu'une non-injectivité est bien démontrée.
- \fbox{C} Mettre la lettre C dans la marge chaque fois qu'une surjectivité est bien démontrée.
- $\boxed{ \mathbf{D} }$ Mettre la lettre D dans la marge chaque fois qu'une non-surjectivité est bien démontrée.

Exercice 2: le prof s'en charge

les correcteurs rapportent les copies lundi 25.

Exercice 1. Exemples d'applications. I: injective. S: surjective.

•
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x+y \end{array} \right.$$
 $\boxed{I: \mathrm{non}; S: \mathrm{oui}}$

L'application f est surjective : tout réel y s'écrit y = y + 0 = f((y, 0)). Mais elle n'est pas injective : 1 a pour antécédents $(1, 0), (0, 1), (\frac{1}{2}, \frac{1}{2})...$

•
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (y,x) \end{array} \right.$$
 $I: \text{oui}; S: \text{oui}$

L'application g est surjective : tout couple (x,y) de \mathbb{R}^2 admet (y,x) comme antécédent. Si on trouve cela plus clair, on peut écrire : tout couple (a,b) de \mathbb{R}^2 admet (b,a) comme antécédent (mais c'est la même phrase! les variables sont muettes).

L'application g est aussi injective : si (x,y) et (x',y') sont deux couples tels que g(x,y)=g(x',y'), alors (y,x)=(y',x') et donc (x,y)=(x',y').

Écrivons une preuve plus courte : on a $g \circ g = \mathrm{id}_{\mathbb{R}^2}$; par caractérisation des bijections, g est bijective et $g^{-1} = g$.

•
$$h: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,x) \end{array} \right.$$
 $I: \operatorname{non}; S: \operatorname{non}$

La fonction h n'est pas injective puisque les couples (1,2) et (1,666) ont la même image par h.

Elle n'est pas surjective puisque les images par h ont forcément deux coordonnées identiques, ce qui n'est pas le cas de tout élément de \mathbb{R}^2 !

Par exemple, le couple (1,2) ne saurait avoir d'antécédent par h.

•
$$i: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ x & \mapsto & (x^2, x^3) \end{array} \right.$$
 $I: \text{oui}; S: \text{non}$

Les images par i ont une première coordonnée positive, ce qui n'est pas le cas de tous les éléments de \mathbb{R}^2 . Par exemple, (-1,0) ne saurait avoir d'antécédent par i, qui n'est donc pas surjective.

L'application i est injective : montrons-le. Soient deux réels a et b. Supposons i(a)=i(b), c'est-à-dire $(a^2,a^3)=(b^2,b^3)$. En particulier, $a^3=b^3$ et donc a=b par injectivité de la fonction $x\mapsto x^3$, qui est injective car strictement croissante.

•
$$j: \left\{ \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{R} & \to & \mathbb{C}^* \\ (r,\theta) & \mapsto & re^{i\theta} \end{array} \right.$$
 $I: \operatorname{non}; S: \operatorname{oui}$

Les couples (1,0) et $(1,2\pi)$ ont la même image : j n'est pas injective. En revanche, nous savons que tout nombre complexe z non nul s'écrit $z = re^{i\theta} = j(r,\theta)$, où r est le module de z et θ un argument : j est surjective.

•
$$k: \left\{ \begin{array}{ccc} \mathbb{N}^2 & \to & \mathcal{P}(\mathbb{N}) \\ (n,p) & \mapsto & \llbracket n,p \rrbracket \end{array} \right.$$
 $I: \operatorname{non}; S: \operatorname{non}$

La fonction k n'est pas injective : $k(2,1) = \emptyset = k(3,1)$.

Elle n'est pas surjective non plus. En effet, l'image d'un couple par k est soit vide, soit un intervalle d'entiers <u>consécutifs</u>. Par exemple, $\{1,3\}$ est une partie de $\mathbb N$ qui ne saurait avoir d'antécédent par k, qui n'est pas surjective.

•
$$L: \left\{ \begin{array}{ccc} \mathcal{C}^0(\mathbb{R},\mathbb{R}) & \to & \mathcal{C}^1(\mathbb{R},\mathbb{R}) \\ u & \mapsto & \left(x \mapsto \int_0^x u(t) \mathrm{d}t\right) \end{array} \right.$$
 $I: \mathrm{oui}; S: \mathrm{non}$

Si u est une fonction continue sur \mathbb{R} , alors L(u) est une fonction qui s'annule en 0. Toutes les fonctions ne sont pas dans ce cas! Par exemple, la fonction exp est appartient à l'ensemble d'arrivée. Puisqu'elle ne s'annule pas en 0, elle ne saurait avoir d'antécédent par L: l'application L n'est pas surjective. Montrons que L est injective. Soient u et v deux fonctions continues sur \mathbb{R} . Supposons L(u) = L(v). Le théorème fondamental de l'analyse nous apprend que L(u) est une primitive de v sur \mathbb{R} . En dérivant l'égalité v0, on obtient donc v1.

Exercice 2

1. Un nombre complexe non nul et son inverse ont la même image par f. Par exemple, on a

$$f(2) = \frac{5}{2} = f(1/2)$$

L'application f n'est pas injective.

2. Afin d'examiner la surjectivité, on considère $\omega \in \mathbb{C}$; il nous faut déterminer si ω a au moins un antécédent par f dans \mathbb{C}^* .

L'équation $f(z) = \omega$, sur \mathbb{C}^* , est équivalente à $z^2 - \omega z + 1 = 0$.

On sait que cette équation du second degré à coefficients complexes a toujours au moins une solution (une "racine" du trinôme).

L'application f est surjective.

- 3. On montre l'égalité $f(\mathbb{U}) = [-2, 2]$ par double inclusion.
 - Soit $y \in f(\mathbb{U})$. Il existe $u \in \mathbb{U}$ (un complexe de module 1) tel que y = f(u). On a $f(u) = u + \frac{1}{u} = u + \overline{u} = 2\text{Re}(u)$. Il existe $\theta \in [0, 2\pi[$ tel que $u = e^{i\theta},$ d'où $y = 2\cos(\theta) \in [-2, 2]$.
 - Soit $y \in [-2, 2]$. Or, il existe $\theta \in [0, \pi]$ tel que $y = 2\cos(\theta)$ [on peut même préciser en posant $\theta = \arccos(x/2)$]. On a donc $y = f(e^{i\theta}) \in f(\mathbb{U})$
- 4. On montre l'égalité $f^{-1}(\mathbb{R}) = \mathbb{R}^* \cup \mathbb{U}$ par double inclusion.
 - Soit $z \in \mathbb{R}^* \cup \mathbb{U}$.

Dans le cas où $z \in \mathbb{R}^*$, on a clairement $f(z) = z + \frac{1}{z} \in \mathbb{R}$. Dans le cas où $z \in \mathbb{U}$, on a $z^{-1} = \overline{z}$ et $f(z) = z + \frac{1}{z} = z + \overline{z} = 2\operatorname{Re}(z) \in \mathbb{R}$. Dans les deux cas, $f(z) \in \mathbb{R}$, c'est-à-dire $z \in f^{-1}(\mathbb{R})$

• Soit $z \in f^{-1}(\mathbb{R})$. Alors, $z \in \mathbb{C}^*$ et $f(z) = z + \frac{1}{z} \in \mathbb{R}$. On a donc $f(z) = \overline{f(z)}$, soit $z + \frac{1}{z} = \overline{z} + \frac{1}{\overline{z}}$. En multipliant par $z\overline{z}$ on obtient

$$z^2\overline{z} + \overline{z} = \overline{z}^2 + z$$
 soit $(z - \overline{z})(|z|^2 - 1) = 0$.

On obtient donc que $z = \overline{z}$ ou que |z| = 1.

Finalement, on a bien prouvé que $z \in \mathbb{R}^* \cup \mathbb{U}$.

Exercice 3

1. Supposons que f est injective. Montrons que $f_{|A}$ est injective. Soit $(x, x') \in A^2$.

Supposons que $f_{|A}(x) = f_{|A}(x')$, c'est-à-dire f(x) = f(x').

Puisque f est injective, on a x = x'.

- 2. Supposons que $f_{|A}$ est surjective. Montrons que f est surjective. Soit $y \in F$. Il possède un antécédent par $f_{|A|}$ dans A, notons-le x. L'élément x est a fortiori un antécédent de y par f dans E!
- 3. Soit $f: x \mapsto x^2$, définie sur \mathbb{R} . Sa restriction de f à \mathbb{R}_+ est injective alors que f, bien entendu, ne l'est pas (elle est paire!)
 - L'identité sur \mathbb{R} est surjective. Sa restriction à \mathbb{R}_+ n'est pas surjective si on continue de considérer R comme ensemble d'arrivée : les réels négatifs n'ont pas d'antécédent.

Exercice 4

- Supposons que f, g et h sont bijectives. Alors les fonctions $g \circ f$ et $h \circ g$ sont bijectives comme composées de fonctions bijectives.
- Supposons que $g \circ f$ et $h \circ g$ sont bijectives.
- L'injectivité de $h \circ g$ donne celle de g (d'après une proposition du cours).
- La surjectivité de $g \circ f$ donne celle de g (idem).

La fonction g est injective et surjective : g est bijective

Sa réciproque q^{-1} existe! Elle permet d'écrire

$$f = g^{-1} \circ (g \circ f)$$
 et $h = (h \circ g) \circ g^{-1}$.

Puisque g^{-1} et $g \circ f$ sont des bijections, par composition f est bijective Puisque $h \circ g$ et g^{-1} sont des bijections, par composition h est bijective