CS 241 – Week 6 Tutorial

Regular Languages: DFAs and Regular Expressions

Spring 2015

Summary

- DFA problems
- Regular Expressions

1 Regular Languages Review

An alphabet (denoted Σ) is a finite set of symbols.

- $\{a,b,c\}$
- {*b*}
- {*to*, *be*, *or*, *not*}
- $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

A word (over an alphabet Σ) is finite sequence of symbols from Σ .

Example

- bac, aba, c given that $\Sigma = \{a, b, c\}$
- ε ,b, bb, bbb given that $\Sigma = \{b\}$
- to be or not to be, not to be (one word formed from the alphabet) $\Sigma = \{to, be, or, not\}$
- DEADBEEF, FACE given that $\Sigma = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

A language is a set of words. A Regular Language R is a sets of words where either:

- \bullet R is the empty language
- \bullet R contains a single word
- R is the union of two regular languages
- $\bullet \ R$ is the concatenation of two regular languages
- $R = L^* = \bigcup_{i=0}^{\infty} L^i$ where L is a regular language, $L^0 = \{\varepsilon\}$ and for $i > 0, L^i = L \cdot L^{i-1}$

Deterministic Finite Automaton (DFA)

A Deterministic Finite Automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, \mathcal{A}, \delta)$ where:

 Σ – the input alphabet

Q – finite set of states

 $q_0 \in Q$ – a starting state in the set of states

 $\mathcal{A} \subseteq Q$ – set of accepting states

 $\delta: Q \times \Sigma \to Q$ – the transition function

Regular Expressions

Regular expressions are a means of expressing regular languages using combinations of symbols and specialized operations:

Concatenation (ab) - a matching word has a followed by b Alternation (a|b) - a matching word has a or b but not both Repetition (a^*) - a matching word has 0 or more occurrences of a

Furthermore, we can group expressions into subexpressions using parenthesis. For example, $a(a|b)^*$ matches an a followed by 0 or more a's and b's. Note that this is all essentially just shorthand for the rather verbose set notation for regular languages.

2 DFA Problems

Draw DFA diagrams for the following languages:

- 1. The language of strings over $\Sigma = \{a, b, c\}$ that contain only one a and an even number of c's (no restriction on number of b's).
- 2. The language of strings over $\Sigma = \{0, 1\}$ that end in 1011.
- 3. The language of strings over $\Sigma = \{0, 1, 2, 3\}$ which are integers whose digit sum is 3. Leading zeros are permitted.
- 4. The language of strings over $\Sigma = \{a, b, c\}$ that end in cab and contain an even number of a's (no restriction on the number of b's or c's).

3 Regular Expression Problems

Build the following languages using combinations of finite languages with regular operations (set notation):

- 1. Construct the language of binary strings whose second letter is a '0' and whose 5th is a '1'.
- 2. Construct the language of binary strings that contain the substring "110101".

Provide a regular expression for each of the following languages:

- 1. $\Sigma = \{x, y\}, L = \{xx, xy, yx, yy\}$
- 2. $\Sigma = \{G, C, A, T\}, L = \text{all strings containing GACAT}$

- 3. Convert your solutions to the two regular language problems above into regular expressions.
- 4. Strings over the alphabet $\Sigma = \{a, b, +, -, *, /\}$ representing valid arithmetic expressions with no parentheses. All operators should be binary (thus a + -b is not valid) and multiplication must be written explicitly (thus a * b is valid but ab is not).
- 5. $\Sigma = \{0,1,2\}, L = \{x \in \Sigma^* | \text{x contains an even number of 0's and at least one 1.} \}$