Convolutional Neural Networks

Ulrich Finkler, Wei Zhang

CSCI-GA.3033-022 HPML

Convolutional Neural Networks

CNN - Motivations

• Fully-Connected Neural Networks for image recognition/classification:

1. Dimension Problem:

Reshaping to 1D: loosing the spatial structure

2. Size Problem:

- Example features: $1000 \times 1000 \times 3$ [Y × X × RGB]
- Weights: 3M just for first layer
- 100 layers: about 300M DP weights => 2.4GB model
 size

3. Overfitting problem:

One weight per pixel leads to overfitting

Fully Connected Layers 1 to 4 (FC)

Convolution Example – Vertical Edge Detection

dot

6 x 6 image

8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0

0	24	24	0
0	24	24	0
0	24	24	0
0	24	24	0

$$(8 \times 1 + 8 \times 0 + 8 \times (-1)) \times 3 = 0$$

$$(8 \times 1 + 8 \times 0 + 0 \times (-1)) \times 3 = 24$$

Padding

Convolution

- Image size 6×6 (n = 6)
- Filter size $f = 3 \times 3$ (f = 3)
- Output: 4×4 (n' = 4)
- Output size formula:
 - size: **n'** × **n'**
 - where n' = n f + 1

6 x 6 image

8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0

3 x 3 filter

1	0	-1
1	0	-1
1	0	-1

dot

4 x 4 image

0	24	24	0
0	24	24	0
0	24	24	0
0	24	24	0

• Problem:

- Edges are used less by the convolution (less relevant)
- Output image shrinks
- Sometimes image is not a multiple of the filter

Padding - Definition

- Padding:
 - Extend input image adding a "frame"
- Convolution size:
 - Input image: **n** × **n**
 - Filter: **f** × **f**
 - Output image: n' × n'
 - Without padding:

- With padding of p:
 - n' = n + 2p f + 1
- More definitions:
 - "Same" convolution: convolution with padding when output image and input image size are the same
 - "Valid" convolution: no padding
- In PyTorch you have to specify the size of the padding (Default is 0)

- Example Convolution with padding of 1:
 - 1. Do padding and obtain a 8 x 8 image
 - 2. Do convolution and obtain a 6 x 6 image

Stride

- Sometimes we want to obtain a **smaller output image** than the standard convolution or we want to have a lighter computation
- We can have the filter jump a few pixels at each step (stride)
- There are several implications:
 - The compute time will diminish
 - The output size also will diminish
 - The convolution will be less fine-grained (precise)

Stride - Definition

• Stride:

- Jump S elements when moving filter
- If filter falls outside image:
 - ignore computation: no output
- Convolution size:
 - Input image: n × n
 - Filter: f × f
 - Output image: n' × n'
 - Stride size: s
 - With padding of p and stride s:

$$n' = \left\lfloor \frac{n + 2p - f}{s} + 1 \right\rfloor$$

- Example Convolution with stride of 2
 - Input image: 7x7
 - Filter: 3x3
 - Stride: 2
 - Output image **n'** × **n'** : 3x3

$$\mathbf{n'} = \left[\frac{7 + 0 - 3}{2} + 1 \right] = 3$$

Convolution vs. Cross-correlation

What we have been using is actually called cross-correlation

Math Actual Convolution:

 take the transpose of the filter before doing the dot product

Deep Learning:

 Taking the transpose doesn't significantly affect the results so is omitted to save compute time

Convolution Layer with 3 dimensions

32x32x3 image

5x5x3 filter

- Preserve the spatial structure of the image
- Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"
- Filters always extend the full depth of the input volume (the 3 channels in this example)

Output image: Activation Map

dot product + bias)

Multiple filters Activation Map

- If we had 6 5x5x3 filters, we'll get 6 separate activation maps
- We stack these up to get a "new image" of size 28x28x6!

Convolutional Network

 A Convolution Network is a sequence of Convolutional Layers, interspersed with activation functions

Receptive field

- A convolutional layer operates over a local region of the input to that layer
- The effective receptive field of a convolutional layer is the size of the input region to the network that contributes to a layers' activations
- For example:
 - if the first convolutional layer has a receptive field of 3x3 then it's effective receptive field is also 3x3
 - However if the second layer also has a 3x3 filter, then it's (local) receptive field is 3x3, but it's effective receptive field is 5x5

Convolution example – Image Classification

• Says whether a picture is of an X or an O

Feature recognition Example

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- Add them up.
- Divide by the total number of pixels in the feature [optional: to normalize values]

Feature recognition

Feature recognition

Feature recognition

Convolution: Search every possible match

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution Layer

Using Multiple Filters: One image becomes a stack of features (filtered images)

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually the same window size).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum (or average) value.

Max Pooling

Max Pooling

A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

Rectified Linear Units (ReLUs)

Layers get stacked

Layers get stacked

Classification with a Fully Connected Layer

 Stack of images obtained with multiple filters can be the input of FC layer

CNN Application Example

• <u>Classifications of multispectral colorectal cancer tissues using convolution neural network, J Pathol Inform 2017, 8:1</u>

Batch Normalization Layer

- Distribution of each layer input changes during training
 - Because weights change after each update (step)
- Batch Normalization is used to normalize the distribution of the inputs
 - Use of higher learning rate
 - Faster convergence
 - In Pytorch:
 - BatchNorm1d(), BatchNorm2D(), BatchNorm3D()
 - Based on the formula from paper: https://arxiv.org/abs/1502.03167

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

CNN in PyTorch Example - MNIST

```
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7*7*32, 10)
```

```
def forward(self, x):
    out = self.layer1(x)
    out = self.layer2(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out
```

2D Convolution in CUDA

- N is the image
- M is the filter (mask)
- Padding elements (or ghost cells) are set to 0
- Padding can also used to have alignment for better CUDA performance
 - alignment to 4,8,16 required for best performance

Simple 2D Convolution in CUDA

- *in* is the input image
 - Assume already allocated
- out is the output image
 - Assume already allocated
- Set all pixels to 0 (including padding)
- If our thread is outside the boundaries h and w we skip the computation

```
_global__ void convolution_2D_basic_kernel(unsigned char * in, unsigned char *
filter. unsigned char * out,
         int filterwidth, int w, int h) {
      int Col = blockIdx.x * blockDim.x + threadIdx.x;
      int Row = blockIdx.y * blockDim.y + threadIdx.y;
      if (Col < w && Row < h) {
          int pixVal = 0;
          N start col = Col - (filterwidth/2);
          N start row = Row - (filterwidth/2);
         for(int j = 0; j < filterwidth; ++j) {</pre>
              for(int k = 0; k < filterwidth; ++k) {</pre>
                  int curRow = N Start row + j;
                  int curCol = N_start_col + k;
                  // Verify we are inside the boundaries h and w
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol] * filter[j*filterwidth+k];
          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal);
```

Standard CNN Networks

LeNet -1998

- First CNN paper
- No Padding
- Few parameters: 60K
- Sigmoid/Tanh activation
- Different filters would look at different channels to reduce computation cost
- Paper: "Gradient Based Learning Applied to Document Recognition"
 Yann LeCun Leon Bottou Yoshua Bengio and Patrick Haner

LeNet

- First CNN network
- Note how tensors become deeper
- Relatively small network applied to classification of handwritten numbers

AlexNet - 2012

- First time CNN perform so well on ImageNet dataset (15M images)
- Won 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) Classification with 15.4% top-5 error rate (next best entry: 26.2%)
- Parameters:
 - About 60M
- Training algorithm and hardware:
 - Model parallelism with 2 GTX 580 Fermi GPUs for 6 days
- ReLU, Dropout, Normalization, regularization etc.
- Relevance: show power of CNN => started DL trend
- Paper: "ImageNet Classification with Deep Convolutional Neural Networks" Krizhevsky, Sutskever, Hinton.

AlexNet

- Larger model than before: 60M
- 3x3 convolutions and max-pool layers

AlexNet – Model Parallelism with 2 GPUs

AlexNet architecture (May look weird because there are two different "streams". This is because the training process was so computationally expensive that they had to split the training onto 2 GPUs)

https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

VGG - 2014

- Simple but deep models
- Very regular structure
- Trained on 4 Nvidia Titan Black for 2/3 weeks (data parallelism)
- 7.3% error rate on ILSVRC 2014 Classification
- About 138M parameters
- Paper: "VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION" Karen Simonyan & Andrew Zisserman

VGG

- 2 layers of convolutions interleaved with a pool layer
- Convolutions filters get deeper at each layer

GoogleNet (Inception v1)

- Deeper networks, with computational efficiency
 - 22 layers
 - Efficient "Inception" module
 - No FC layers
 - Only 5 million parameters!
 - 12x less than AlexNet
 - ILSVRC'14 classification winner
 - (6.7% top 5 error)
- Inception module: design a good local network topology (network within a network) and then stack these modules on top of each other
- Paper: Going Deeper with Convolutions. Szegedy et al., 2014

Inception module

Inception module

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)
- Concatenate all filter outputs together depth-wise
- What is the problem with this?
- → Computational complexity

Inception module

Naive Inception module

- Conv Ops:
 - [1x1 conv, 128] 28x28x128x1x1x256
 - [3x3 conv, 192] 28x28x192x3x3x256
 - [5x5 conv, 96] 28x28x96x5x5x256
- Total: 854M ops
- Very expensive computation
- Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!
- Solution: bottleneck layers that use 1x1 convolutions to reduce feature depth

1x1 Bottleneck convolution

- Each filter has size 1x1xC_{in} and performs a C_{in}-dimensional dot product
- Preserves spatial dimensions, reduces depth!
- Projects depth to lower dimension (= combination of feature maps)

HPML

Inception module - Bottleneck layers

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

Inception module

- Using same parallel layers as naive example, and adding 1x1 conv with 64 filter bottlenecks:
- Conv Ops:
 - [1x1 conv, 64] 28x28x64x1x1x256
 - [1x1 conv, 64] 28x28x64x1x1x256
 - [1x1 conv, 128] 28x28x128x1x1x256
 - [3x3 conv, 192] 28x28x192x3x3x64
 - [5x5 conv, 96] 28x28x96x5x5x64
 - [1x1 conv, 64] 28x28x64x1x1x256
- Total: 358M ops
 - Compared to 854M ops for naive version
- Bottleneck can also reduce depth after pooling layer (480 compared to 672)

ResNet - Residual block

The (degradation) problem:

 With network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error.

The core insight:

 Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution to the deeper model by construction: the layers are copied from the learned shallower model, and the added layers are identity mapping. The existence of this constructed solution indicates that a deeper model should produce no higher training error than its shallower counterpart.

$$z^{[l+1]} = W^{[l+1]} a^{[l]} + b^{[l+1]}$$

$$a^{[l+1]} = g(z^{[l+1]})$$

$$z^{[l+2]} = W^{[l+2]} a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$$

Residual Networks Benefits

- Easier to optimize and to train "residual" than default layers
- Think about it as computing a "delta" or a slight change of the original input

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

from: "Deep Residual Learning for Image Recognition" Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

- 34 layer plain becomes 34 layers residual adding shortcut (skip) links
- Dotted shortcut: dimensions change and a transformation is needed to reduce dimensions
- /2 means stride 2 or pool 2x2 (reduce size by 4)

ResNet - 2015

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Uses Residual blocks
- Ultra Deep: 152 layers
- 3.57% error rate on ILSVRC
 2014 Classification
- Paper: "Deep Residual Learning for Image Recognition" Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

And then? Bigger, deeper, hybrid

- From then 4 versions of GoogleNet/Inception were proposed
 - A nice guide on the differences between them: https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
- Deeper Resnet (up to 500 layers)
- Hybrid Inception-ResNet
- Other bigger and deeper network architectures:
 - PolyNet
 - NASNet and PNASNet
 - DenseNet
 - SENet154
 - Xception
 - •

A comparison

- A comparison of several CNN architectures on ImageNet dataset
- From: https://github.com/Cadene/pretrained-models.pytorch

Model	Acc@1	Acc@5
PNASNet-5-Large	82.736	95.992
NASNet-A-Large	82.566	96.086
SENet154	81.304	95.498
PolyNet	81.002	95.624
SE-ResNeXt101_32x4d	80.236	95.028
InceptionResNetV2	80.17	95.234
InceptionV4	80.062	94.926
DualPathNet107_5k	79.746	94.684
DualPathNet131	79.432	94.574
DualPathNet92_5k	79.4	94.62
DualPathNet98	79.224	94.488
SE-ResNeXt50_32x4d	79.076	94.434
ResNeXt101_64x4d	78.956	94.252
Xception	78.888	94.292
SE-ResNet152	78.658	94.374

Model	Acc@1	Acc@5
SE-ResNet101	78.396	94.258
ResNeXt101_32x4d	78.188	93.886
FBResNet152	77.84	93.84
SE-ResNet50	77.636	93.752
DenseNet161	77.56	93.798
ResNet101	77.438	93.672
FBResNet152	77.386	93.594
InceptionV3	77.294	93.454
DenseNet201	77.152	93.548
DualPathNet68b_5k	77.034	93.59
CaffeResnet101	76.4	92.9
CaffeResnet101	76.2	92.766
DenseNet169	76.026	92.992
ResNet50	76.002	92.98
DualPathNet68	75.868	r- 92.774

Model	Acc@1	Acc@5
DenseNet121	74.646	92.136
VGG19_BN	74.266	92.066
NASNet-A-Mobile	74.08	91.74
ResNet34	73.554	91.456
BNInception	73.522	91.56
VGG16_BN	73.518	91.608
VGG19	72.08	90.822
VGG16	71.636	90.354
VGG13_BN	71.508	90.494
VGG11_BN	70.452	89.818
ResNet18	70.142	89.274
VGG13	69.662	89.264
VGG11	68.97	88.746
SqueezeNet1_1	58.25	80.8
Alexnet	56.432	79.194

Lesson key points

- Convolutional Neural Networks
 - Convolution
 - Padding and Stride
 - Channels and Activation Map
 - Max Pooling
 - Batch Normalization
- Standard CNN Networks

- Part of this material has been adapted from the video <u>"How do Convolutional Neural Networks work?"</u> under the <u>Creative Commons License</u>
- Part of this material has been inspired by John Kenny's course "Designing, Visualizing and Understanding Deep Neural Networks" @ UC Berkeley (https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks)