CSC 236 Tutorial 8

Harry Sha

July 12, 2023

Selection Sort

Descending Sequences

Selection Sort

Trace

To get an idea of how this algorithm works, trace the algorithm on input I=[3,236,36,23,2,6]

Notation

If l_1 and l_2 are lists, then define $l_1 \prec l_2$ to mean $\forall x \in I_1, \forall b \in I_2.a \leq b$. That is everything in I_1 is less than anything in l_2 .

If l_1 is a number, then $l_1 \leq l_2$ is short for $[l_1] \leq l_2$, same for l_2 .

Lemma

What do lines 4-8 do? If it helps, you can imagine lines 4-8 being extracted as a helper function that takes in i and l.

What are the preconditions and postconditions of lines 4-8?

Make a claim about these lines and prove it is correct!

Lemma

Lemma. If l is a list of natural numbers, and $i \in \mathbb{N}$, such that $0 \le i < \text{len}(l)$ at the start of line 4, by line 8, l[i] is swapped with the l[k] where $l[k] \le l[i+1]$.

To prove the lemma, it suffices to show that at the beginning of line 8, $\min_i dx$ is such that $\lceil \min_i dx \rceil$ is minimal in $\lceil (i+1) \rceil$ (since line 8 does the swapping).

We now analyze lines 4-7.

Precondition. *I* is a list of natural number of length $n, i \in \mathbb{N}$, such that $0 \le i < n$. **Postcondition.** $I[\min_i dx] \le I[i+1:]$

Loop Invariant. P(k). After the kth iteration,

- a.) j = i + 1 + k.
- $\texttt{b.)} \ /[\texttt{min_idx}] \preceq /[i+1:j].$

Initialization. P(0). j is initialized to i+1, and l[i+1:j]=l[i+1:i+1]=[j], and $l[\min_i dx] \leq [j]$ is vacuously true.

Maintenance. Let $k \in \mathbb{N}$ and suppose P(k). We'll show P(k+1). Note that j is incremented by the for loop and hence $j_{k+1} = j_k + 1 = i + 1 + k + 1$, so P(k+1).a is true. We'll now show P(k+1).b.

By the inductive hypothesis, $I[\min_i \mathrm{dx}_k] \leq I[i+1:j_k]$. If $I[j_k] < I[\min_i \mathrm{dx}]$, then since $\min_i \mathrm{dx}_{k+1} = j$, and otherwise $\min_i \mathrm{dx}_{k+1} = \min_i \mathrm{dx}_k$. In the first case, $I[j_k] < I[\min_i \mathrm{dx}]$, and $I[\min_i \mathrm{dx}] \leq I[i+1:j_k]$, so $I[j_k] \leq I[i+1:j_k+1]$. In the second case $I[j_k] \geq I[\min_i \mathrm{dx}]$, so $I[\min_i \mathrm{dx}] \leq I[i+1:j_k+1]$, since $j_{k+1} = j_k + 1$, this completes the induction.

Termination. The for loop terminates after iteration k where $j_k = n$. By P(k).b, we have that $I[\min_i dx_k] \leq I[i+1:j_k]$. Since $j_k = n$, we have $I[\min_i dx_k] \leq I[i+1:]$ This concludes the proof of the claim.

Armed with this lemma, prove the correctness of selection_sort.

Precondition. *I* is a list of of natural numbers. **Postcondition.** Returns a sorted version of *I*

Loop Invariant. P(k): After iteration k,

- a.) i = k.
- b.) *I*[: *k*] is sorted
- c.) $I[: k] \leq I[k:]$

Initialization. P(0):

- a.) i is initialized to 0.
- b.) I[: 0] = [] is (vacuously) sorted.
- c.) Since I[: 0] = [], $I[: k] \leq I[k:]$ is also vacuously true.

Maintenance. Let $k \in \mathbb{N}$, and suppose P(k). We'll show P(k+1).

P(k+1).a follows from the mechanics of the for loop (it just gets incremented by 1).

By P(k).b, we have $I_k[:k]$ is sorted. By the lemma, we have that I_{k+1} is I_k with a minimal element in $I_k[k:]$ swapped to index k. By P(k).c, we have $I_k[:k] \leq I_k[k:]$, so $I_{k+1}[:k] \leq I_{k+1}[k]$. Thus, $I_{k+1}[:k+1]$ is still sorted, so P(k+1).b holds.

Then, since $l_{k+1}[k] \leq l_k[k:]$, and $l_k[:k] \leq l_k[k:]$, we have $l_{k+1}[:k+1] \leq l_{k+1}[k+1:]$, so P(k+1).c holds.

Termination. The for loop terminates after n iterations. By P(n).b, we have $I_n[:n] = I$ is sorted, as required.

Selection Sort

Descending Sequences

Descending Sequences

Prove the following loops terminate. The following examples come from Course Notes by Vassos Hadzilacos.

Hint - for some of them it might be easier to use the descending sequence method.

```
▶ Precondition: x, y \in \mathbb{N}.
▶ Postcondition: True.

1 while x \neq 0 or y \neq 0 do

2 if x \neq 0 then

3 x := x - 1

4 else

5 x := 16

6 y := y - 1

end if

8 end while
```

Figure 2.3: A loop with an interesting proof of termination

Solution (sketch)

x+17y. First, need to show that x+17y is always a natural number (i.e. it doesn't go negative at some point). Prove this formally by induction. Informal argument: x and y at decremented by at most 1 in each iteration. If the while check passes, x,y are both at least 1. Thus, x,y are always non-negative.

The next step is to show that x + 17y is decreasing.

Let x_n, y_n be the value of x and y at the start of the nth iteration. Show $x_{n+1} + 17y_{n+1} < x_n + 17y_n$ in each case split (exercise).

- \blacktriangleright Precondition: $x, y \in \mathbb{N}$ and x is even.
- 1 while $x \neq 0$ do
- 2 if $y \ge 1$ then
- 3 y := y 3; x := x + 2
 - 4 else
- 5 x := x 2
- \mathbf{end} if
- 7 end while

Solution (sketch)

2+y+x. Show this is always non-negative. Sketch: Show $y\geq -2$, and $x\geq 0$. For the $x\geq 0$ part, use the fact that x starts off as even and is only ever incremented/decremented by 2. Again, the formal proof is by induction.

To show that this is decreasing, note that the value of 2 + y + x either decreases by 1 in the if case or decreases by 2 in the else case.

- **9.** Prove that the following program halts for every input $x \in \mathbb{N}$.
 - ▶ Precondition: $x \in \mathbb{N}$. y := x * xwhile $y \neq 0$ do
- x := x 1
- y := y 2 * x 1
- end while

Hint: Derive (and prove) a loop invariant whose purpose is to help prove termination.

Let P(n) be the predicate. $y_n = x_n^2$ and $x_n = x_0 - n$. We'll show that for all $n \in \mathbb{N}.(P(n))$.

Base case.
$$y_0 = x_0 \cdot x_0 = x_0^2$$
. Also $x_0 = x_0 - 0$

Inductive step. Let $k \in \mathbb{N}$ and suppose P(k). Then, we have

$$y_{k+1} = y_k - 2x_{k+1} - 1$$

$$= x_k^2 - 2(x_k - 1) - 1$$

$$= x_k^2 - 2x_k + 1$$

$$= (x_k - 1)^2$$

$$= x_{k+1}^2$$

Thus, at the start of iteration x_0 , $y_{x_0} = (x_{x_0})^2 = (x_0 - x_0)^2 = 0$, thus the while check fails and the loop terminates.