OLASILIK TEORISI VE ISTATISTIK

Kesikli Olasılık Dağılımından Yararlanarak Olasılık Hesaplama

 Olasılık dağılımları rasgele değişken için bir fonksiyon vereceği için bu fonksiyon yardımıyla istenilen olasılıklar, tüm örneklem uzayını tek tek yazmadan elde edilecektir. Örneğin;

$$P(X=a)$$
, $P(X \le a)$, $P(X \ge a)$ ve $P(a \le X \le b)$

olasılıkları toplam alınarak bulunabilir:

$$P(X = a) = p(a)$$
 $P(X \ge a) = \sum_{x_k=a}^{\infty} P(x_k)$

$$P(X \le a) = \sum_{x_k = -\infty}^{a} P(x_k) \quad P(a \le X \le b) = \sum_{x_k = a}^{b} P(x_k)$$

 Örnek: Bir zarın iki kez atılmasında üste gelen yüzlerdeki sayıların toplamı raslantı değişkenimiz ise olasılık dağılımını bulup bu dağılımdan yararlanarak

a-
$$P(10 \le X) = ?$$
 b- $P(4 > X) = ?$ c- $P(9 < X \le 12) = ?$

- Çözüm: Bu problemde olasılık dağılımın bulmak için S örneklem uzayını oluşturalım.
- P(X=x_i)'nin aldığı değerleri verebilecek bir fonksiyon

$$P(X=x_i)=(6-|x_i-7|)/36$$

Bu fonksiyondan yararlanarak,

• a)

$$P(10 \le X) = \sum_{x_i=10}^{12} P(X = x_i) = \sum_{x_i=10}^{12} \left(\frac{6 - |x_i - 7|}{36} \right)$$

$$\frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{1}{6}$$

• b)

$$P(4 > X) = \sum_{x_i = -\infty}^{3} P(X = x_i) = \sum_{x_i = -\infty}^{1} P(X = x_i) + \sum_{x_i = 2}^{3} P(X = x_i)$$

$$= 0 + \left(\frac{6 - |2 - 7|}{36} + \frac{6 - |3 - 7|}{36}\right)$$

• C)

$$P(9 < X \le 12) = \sum_{x_i=10}^{12} P(X = x_i) = \sum_{x_i=10}^{12} \left(\frac{6 - |x_i - 7|}{36} \right)$$

$$\frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{1}{6}$$

Kesikli Dağılımlarda Ortalama

- Raslantı değişkenlerinde beklenen değer bir merkezi eğilim ölçüsü olan ortalamadır.
- Örnek1: Bir kitapta sayfalardaki yanlış sözcük sayılarının sayısı belirlenmiştir. Sayfaların % 81 inde hiç yanlış bulunmamıştır. % 17 sinde 1, % 2 sinde 2 yanlış sözcük bulunmuştur.Burada X raslantı değişkeni yanlış sözcük sayısı olarak belirlenmiş ise,
- P(X=0)=0.81; P(X=1)=0.17; P(X=2)=0.02
- Bu kitapta ortalama yanlış sözcük sayısı ne kadardır?

$$0 \times 0.81 + 1 \times 0.17 + 2 \times 0.02 = 0.21$$

- **Tanım:** Bir kesikli RD'inin ortalaması,
- μx=E(X) dir ve E(X)= ∑xP(X = x)
 eşitliği ile bulunur.
- E(X), X raslantı değişkeninin beklenen değeri adını alır.
- Beklenen değer, raslantı değişkeninin çok sayıda denemede alacağı değerlerin uzun dönem ortalaması olarak görülebilir.
- Beklenen değer ile ilgili özellikler:
- k herhangi bir sabit sayı olmak üzere;
- *E(k)=k; **E(kX)=kE(X) dır.

• Örnek: Bir beyaz eşya servis istasyonunda günlük verilen hizmetler için olasılık dağılımı aşağıdaki tabloda verilmiştir:

Günlük verilen servis sayısı(X)	Olasılık P(X=x)	xP(X=x)
• 0	0.075	0×0.075
• 1	0.100	1×0.100
• 2	0.250	2×0.250
• 3	0.200	3×0.200
• 4	0.175	4×0.175
• 5	0.150	5×0.150
• 6	0.050	6×0.050

$$E(X) = \mu x = 2.95$$

Kesikli Dağılımlarda Varyans

- Tanım: X kesikli bir raslantı değişkeni olsun.
- Ortalamadan sapmaların karelerinin beklenen değeri

$$E(x - \mu_x)^2$$

 $E(x-\mu_x)^2 \\ \bullet \quad \text{varyansdır,} \quad {\sigma_x}^2 \quad \text{ile gösterilir.}$

$$\sigma_x^2 = \sum_x (x - \mu_x)^2 P(X = x)$$

olarak hesaplanır. Bu formülün daha basit hesaplama şekli:

$$\sigma_x^2 = E(X^2) - \mu_x^2 = \sum_x x^2 P(X = x) - \mu_x^2$$

Varyans'ın kare kökü standart sapmadır ve $^{\mathbf{\sigma}_{\mathrm{x}}}$ ile gösterilir.

- Varyans ile ilgili özellikler:
- k herhangi bir sabit sayı olmak üzere;
- V(k)=0 ; $V(k)=k^2 V(X)$
- Örnek 3: Kitap sayfalarındaki yazım hataları ile ilgili problemde varyans ve standart sapma bulalım.

$$\sigma_{\rm x}^2 = 0.25 - (0.21)^2 = 0.2059$$

• ve standart sapma $\sigma_x = \sqrt{0.2059} = 0.45$

olarak elde edilir.

Örnek: Servis istasyonunun günlük hizmeti için varyans ve standart sapma bulalım.

•	Günlük verilen servis sayısı(X)	Olasılık P(X=x)	$x^2 P(X=x)$
•	0	0.075	$0^2 \times 0.075$
•	1	0.100	$1^2 \times 0.100$
•	2	0.250	$2^2 \times 0.250$
•	3	0.200	$3^2 \times 0.200$
•	4	0.175	$4^2 \times 0.175$
•	5	0.150	$5^2 \times 0.150$
•	6	0.050	$6^2 \times 0.050$

• $E(X) = \mu x = 2.95$ bulunmuştu.

Varyans ise,
$$\sigma_x^2 = \sum_x x^2 P(X = x) - \mu_x^2 = 2,5475$$

- Standart sapma, $\sigma x=1,596$

Kesikli Olasılık Dağılımları

Bu bölümde kesikli raslantı değişkenlerinde sık raslanan bazı özel olasılık dağılımlarına değineceğiz.

Bernoulli Dağılımı

- Olasılık konularında verdiğimiz örneklerde tek bir deneme için ortaya çıkacak sonuçlar iki durum içeriyorsa, Bernoulli dağılımı söz konusudur.
- Örneğin, paranın tek atışında Y ya da T gelmesi, tek bir oyunda kazanma ya da kaybetme vb.

- Tanım: X raslantı değişkeni başarı için 1, başarısızlık için 0 değerini alsın.
- X'in olasılık fonksiyonu;
- P(X=1)=p
- P(X=0)=1-p=q
- olur.
- Ya da
- $P(X=x)=p^{x}(1-p)^{1-x}$ x=0,1
- ise bu dağılıma bernoulli dağılımı denir.

• Bernoulli dağılımının beklenen değeri ve varyansı aşağıda verilmiştir:

• $E(X)=\mu=p$; $\sigma^2 = E(X^2) - [E(X)]^2 = pq$

Binom Dağılımı (İki Terimli Dağılım)

Bernoulli denemelerinin n kez tekrarlandığını düşünelim. Bu denemelerde başarılı sonuçların toplam sayısı X R.D. olarak gösterilsin. X R.D. aşağıdaki koşulları sağlıyorsa bir binom R.D. olarak isimlendirilir.

- Deneyde iki sonuç vardır. Başarılı olma olasılığı p, başarısız olma olasılığı (1-p)=q dur.
- Deney boyunca yapılan n deneme aynı koşullar altında gerçekleştirilir.
- Bir tek deneme için başarılı olma olasılığı p her deneme için aynı, başarısızlık olasılığı q da her deneme için aynıdır.
- Denemeler birbirinden bağımsızdır.
- Deney boyunca n sabit kalır

Örnekler:

- 3 çocuklu ailelerde kız çocuk sayısı
- Bir paranın 4 kez atılmasında yazıların sayısı
- Kusurlu oranı 0,03 olan bir üretimde, 10'arlık ürün içeren paketlerde kusurlu parça sayısı