ILAB: An Interactive Labelling Strategy for Intrusion Detection

Anaël Beaugnon, Pierre Chifflier, Francis Bach anael.beaugnon@ssi.gouv.fr

ANSSI, ENS Paris, INRIA

RAID 2017

- 1 Context and Problem
- 2 ILAB
- 3 Comparison with state-of-the-art
- 4 ILAB in Practice

Intrusion Detection System

Traditional Detection Methods

Precise detection rules built by security experts

- ✓ Easy to control the false alert rate
- ✓ Alerts easy to interpret
- X Not robust to attack variations or new attacks

Traditional Detection Methods

Precise detection rules built by security experts

- ✓ Easy to control the false alert rate
- ✓ Alerts easy to interpret
- X Not robust to attack variations or new attacks

Machine Learning!

Machine Learning

Machine Learning

Lack of Representative Training Data!

- \times Public datasets \neq deployment environments
- Crowd-sourcing is not suited for Computer Security

Anaël Beaugnon RAID 2017 - ILAB 6/23

Lack of Representative Training Data!

- \times Public datasets \neq deployment environments
- Crowd-sourcing is not suited for Computer Security

In-situ labelling with Active Learning
Annotate data from the deployment environment

Anaël Beaugnon RAID 2017 - ILAB 6/23

Issues

- Waiting-periods
- Sampling bias

Sampling Bias Issue

Sampling Bias Issue

Maximize the performance of the detection model for a given expert time spent annotating.

Challenges

- Avoid sampling bias
- Maintain short waiting-periods

- 1 Context and Problem
- 2 ILAB
- 3 Comparison with state-of-the-art
- 4 ILAB in Practice

Annotations Queries

Close to the decision boundary

Annotations Queries

► Close to the decision boundary

Clusters = User-defined Families

Annotations Queries

- Close to the decision boundary
- Center of the clusters

Clusters = User-defined Families

Annotations Queries

- Close to the decision boundary
- Center of the clusters
- ► Edge of the clusters

Clusters = User-defined Families

Reduce Waiting-Periods

Divide and conquer approach

- Reduced complexity
- Annotations during computations

Reduce Waiting-Periods

Divide and conquer approach

- Reduced complexity
- Annotations during computations

ILAB Active Learning Strategy

Avoid sampling bias while keeping short waiting-periods

- 1 Context and Problem
- 2 ILAB
- 3 Comparison with state-of-the-art
- 4 ILAB in Practice

Simulations on Fully Labelled Datasets

nstances #features
,000 113 ,826 122

State-of-the-art methods

- Uncertainty sampling [1]
- Görnitz et al. [2]
- ► Aladin [3]
 - 1 Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004
 - 2 Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013
 - 3 Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008

ILAB avoids sampling bias as Aladin.

Anaël Beaugnon RAID 2017 - ILAB 16/23

ILAB induces shorter waiting-periods than Aladin.

ILAB avoids sampling bias while keeping low waiting-periods.

	Uncertainty [1]	Görnitz [2]	Aladin [3]	ILAB
No sampling bias	X	X	✓	√
Short waiting-periods	✓	×	X	1

- 1 Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004
- 2 Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013
- 3 Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008

- 1 Context and Problem
- 2 ILAB
- 3 Comparison with state-of-the-art
- 4 ILAB in Practice

Anomaly detection from NetFlow data

Unlabelled Pool				
Num. flows	$1.2 \cdot 10^{8}$			
Num. IP	463,913			
Num. features	134			
-				

Anomaly detection from NetFlow data

Unlabelled Pool			
Num. flows	$1.2 \cdot 10^{8}$		
Num. IP	463,913		
Num. features	134		

Initial Annotations

- 70 Malicious: Obvious scans (TRW alerts)
- ▶ 70 Benign: Web, SMTP, DNS (random sampling)

Only obvious scans: many ports, or many IP adresses are scanned.

ILAB graphical user interface for annotating

Annotation procedure: about 4 hours

10 iterations, 100 annotations at each iteration.

Only 0.21% of the IP addresses are annotated

Only 1,000 IP adresses are annotated out of the 463,913.

Many Families Discovered

stealthy scans, TCP Syn flooding, backscatter, etc.

The expert has spent 99% of his time annotating

The expert has waited less than 40 seconds between each iteration.

An effective Active Learning strategy for Computer Security experts!

https://github.com/ANSSI-FR/SecuML

An effective Active Learning strategy for Computer Security experts!

https://github.com/ANSSI-FR/SecuML

