CSE508 Information Retrieval

Winter 2024 Assignment-3

Name: Aniketh 29th March Roll No: 2020360

Dataset Overview

The dataset contains a total of X rows, each representing a product review. The dataset includes several features such as 'reviewText', 'overall' rating, and 'asin' (Amazon Standard Identification Number), among others. I filter by the product 'Turntable'.

Preprocessing Steps

Handling Missing Values:

- Missing values in the 'reviewText' column were replaced with empty strings to ensure compatibility with text-based models.
- Any other missing values in other columns were handled appropriately based on the context.

Handling Duplicates:

- Duplicate rows, if any, were identified and removed to ensure each review is unique. Other Preprocessing Steps:
 - Text normalization techniques were applied to the 'reviewText' column, including converting text to lowercase and removing special characters.
 - The 'overall' rating column was used to create a new target variable 'Rating_Class' by categorizing ratings into 'Good', 'Average', and 'Bad' based on predefined criteria.
 - a. Removing the HTML Tags.
 - b. Removing accented characters.
 - c. Expanding Acronyms. I did not perform any acronym expansion as this would have created some confusion for my products and brands names
 - d. Removing Special Characters
 - e. Lemmatization
 - f. Text Normalizer

EDA

Top 20 most reviewed brands:

Jensen 1303

Audio-Technica 1149

WOCKODER 797

Pyle 795

Crosley 758

Victrola 462

ION Audio 450

Sony 320

Micca 305

Electrohome 254

Teac 228

BoxLegend 166

Pro-Ject 147

GOODNEW 135

Numark 115

Sylvania 115

lon 114

Pioneer 111

1byone 102

Turntable Toys 96 Top 20 least reviewed brands: Accessory Genie 10 10 TDK LuguLake 8 8 Vibe MUSITREND 8 Milestone Av Technologies 7 PAXCESS 7 7 Intellitouch Thorens 7 CD Supply 6 Craig Electronics 6 Miles Kimball 5 TacPower 5 jWIN 5 GE Grace Digital 5 it.innovative technology 5 Empire Scientific 5 **UPBRIGHT** 5

Sharp

5

Year with maximum reviews: 2015

Year with highest number of customers: 2015

Number of reviews for the year with the highest number of customers: 1198

Number of unique users for the year with the highest number of customers: 1185

Feature Engineering

I used a word2vec model to create tokens and then embeddings for the words in the corpus, using libraries from nltk.

Using this feature engineering I performed analysis to identify words similar to good/bad to test out the word2vec model.

Most similar words to 'good': [('amazing', 0.9634362459182739), ('ok', 0.9464921355247498), ('fantastic', 0.9458152651786804), ('expected', 0.9328287243843079), ('impressed', 0.9251856207847595)]

Most similar words to 'bad': [('point', 0.954521656036377), ('expecting', 0.9475014209747314), ('fair', 0.945181131362915), ('hype', 0.9437717199325562), ('considering', 0.9437171220779419)]

Data Split

Post this stage I created a train/test split for the data using scikit-learn library, and also performed some steps to adapt the data for training. I created a category column and applied a custom function on it to transform the ratings values to 3 categories. And filled nan values withe mpty reviews.

Models

Post this I created 5 ML Models to train an test the accuracy on our dataset. For all these models I resorted to using tfidf vectorizer as this gave me more efficient and better results.

1. Logistic regression

	precision	recall	f1-score	support
Average	0.18	0.24	0.21	170
Bad	0.61	0.55	0.58	340
Good	0.88	0.88	0.88	1783

accuracy			0.78	2293
macro avg	0.56	0.55	0.55	2293
weighted avg	0.79	0.78	0.79	2293

2. Multinomial Naive Bayes

pr	ecision	recall f	1-score	support
PI	00101011	100411 1	1 50010	Dappore
Average	0.00	0.00	0.00	170
Bad	1.00	0.02	0.03	340
Good	0.78	1.00	0.88	1783
accuracy			0.78	2293
macro avg	0.59	0.34	0.30	2293
weighted avg	0.75	0.78	0.69	2293

3. XG Boost Classifier

prec	ision r	ecall f1-s	score sup	port
Average	0.40	0.10	0.16	170
Bad	0.80	0.47	0.59	340
Good	0.85	0.98	0.91	1783
accuracy			0.84	2293
macro avg	0.69	0.52	0.56	2293
weighted avg	0.81	0.84	0.81	2293

4. Support Vector Classifier

prec	ision	recall f1-s	core sup	pport
Average	1.00	0.02	0.03	170
Bad	0.97	0.09	0.16	340
Good	0.79	1.00	0.88	1783
accuracy			0.79	2293
macro avg	0.92	0.37	0.36	2293
weighted avg	0.83	0.79	0.71	2293

5. Custom Transformer Model

precisi	ion	recall	f1-sco	re	support	
0	0.48	0.1	.2	0.20	1	170
1	0.78	0.6	58	0.73		340

2	0.89	0.97	0.93	1783
accuracy			0.87	2293
macro avg	0.72	0.59	0.62	2293
weighted avg	0.84	0.87	0.84	2293