Global air pollution modelling

University of Utrecht, The Netherlands Global and geo-health data center

Meng Lu

Overview

- Introduction
 - Spatio-temporal epidemiology
 - Air pollution modelling and exposure assessment for health research

• Global air pollution modelling

Spatio-temporal Epidemiology

Spatiotemporal epidemiology: The description and analysis of geographical data, specifically health outcome data and factors that may explain variations in these outcome data over space. factors: environmental, demographic, genetic, habits, infectious risk factors.

Environmental epidemiology: Spatiotemporal epidemiology that focuses on how environmental exposures impact human health.

Origin
1854 John Snow,
Identify possible causes of cholera outbreaks.

Texts in Statistical Science

Spatio-Temporal Methods in Environmental Epidemiology

Gavin Shaddick James V. Zidek

Exposome

Link environment to health:

Challenge: detailed space-time paths over a large population and long time period may not be available.

Air pollution

-- Consists of chemicals or particles in the atmosphere that poses health and environmental threats.

What risk factors drive the most death and disability combined?

Mortality:

World: more than 3.2—8.8 millions death a year

Most measured air pollutants and their health impacts

O3

 NO_2

SO₂

CO

PMx

Little is known about how air pollutant affect health over a population

Why is global air pollutant mapping and exposure assessment important?

- Unequally distributed ground monitors
- Consistent comparison

Shaddock et al., 2018

Remote sensing measurements: OMI (Ozone Monitoring Instrument)

Date of Launch 15 July 2004

At nadir 13 km × 24 km

NO₂, SO₂, BrO, OCIO, O₃ (36 km × 48 km)

Spectral bands: ultraviolet and visible (270 to 500 nm)

Zoom in mode 13 km× 12 km

Daily global coverage

Tropomi

(TROPOspheric Monitoring Instrument)

launched 2017, available from Feb 2018

7 km x 7 km

Tropomi

NO2, O3 (7km × 28km), SO2, methane and CO

Spectral bands:

ultraviolet and visible (270–500 nm), near-infrared (675–775 nm), shortwave infrared (2305–2385 nm) spectral bands.

zoom in mode: $7 \text{ km} \times 3.5 \text{ km}$

Spectral bands of Tropomi

Product	Spectrometer	Application
Ozone	UV, UVIS	Ozone layer monitoring, UV-index forecast, Climate monitoring
NO ₂	UVIS	Air quality forecast and monitoring
СО	SWIR	Air quality forecast and monitoring
CH₂O	UVIS	Air quality forecast and monitoring
CH ₄	SWIR	Climate monitoring
SO ₂	UVIS	Air quality forecast and monitoring, Climate monitoring, Volcanic plume detection
Aerosol	UVIS, NIR	Air quality forecast and monitoring, Climate monitoring, Volcanic plume detection
Clouds	UVIS, NIR	Climate monitoring
UV-Index	UVIS	UV index forecast

ТКОРОМІ	UV		UVIS		NIR		SWIR	
Band	1	2	3	4	5	6	7	8
Spectral coverage [nm]	270-320		320-495		675 - 775		2305 – 2385	
Full spectral coverage [nm]	267 - 332		303 - 499		660 - 784		2299 - 2390	
Spectral resolution [nm]	0.49		0.54		0.38		0.25	
Spectral sampling ratio	6.7		2.5		2.8		2.5	
Spatial sampling [km²]	7 x 28	7 x 3.5				7 x 3.5	7 x 7	

Air pollution modelling methods

- Statistical methods: regression, Kriging
- Chemical transportation models: GEOS-CHEM
- Hybrid: Kalman filter

Land use regression (LUR)

Predicting air pollution and analyzing the sources.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Sensor measurements:

Station measurements

Remote sensing measurements:

OMI (250 km) Tropomi (8 km)

•••

GIS predictors:

Population Road length within a buffer Distance to roads Traffic load

••

Predictor variables in buffers

Major road length

LUR Prediction

Spatiotemporal dynamic of air pollution showing road effects

Global NO₂ mapping: Larken et al. 2017 (100m):

LUR model Lasso, continental variable as prediction

Limitations:

- Linear relationship
- Road effects not modelled
- Only evaluated by Rsquared and RMSE
- Does not include RS measurement

Can tree-based machine learning methods and Tropomi improve global NO2 mapping?

Data: OpenAQ

Predictors

Emission-related

Road length within 25 m – 300 m radius ring

- Highway, primary roads, secondary roads, tertiary roads, unpaved roads

Industry area within 25 m – 300 m radius ring

Background

Road length within 300 m - 5000 m radius ring

Population: 1 km, 3 km, 5 km

Industry area 300m - 5km

Monthly wind speed (0.5 degree)

Monthly temperature (0.5 degree)

Surface concentration from Satellite products and the GEOS-CHEM

Satellite measured NO2 column density

Distance to coast

Method

Comparing different statistical learning methods

Trees-based

- Random forest
- Stochastic gradient boosting
- Extreme gradient bossting

Regularized regression

- Ridge
- Lasso
- ElasticNet

Mechamical model

- Nonlinear regression integrating air distribution mechanisms

Compare global and national models

Four national models:

US (100), China (1400), Germany (350), Spain (350)

A global model

Result: global model accuracy

RMSE: root mean

squared error

MAE: mean absolute

error

IQR: interquartile range

LM: Multiple linear

regression

RF: random forest

SGB: Stochastic gradient

boosting

XGB: xgboost

Result: global and national models RF vs. Lasso

CN: China

DE: Germany

ES: Spain

Conclusion: random forest is more suitable than Lasso for a global NO2 maping and using random forest can achieve an accuracy as good as national models.

Germany

Important emition-related variables

National model of Germany

Ranked top 20 by Random Forest

- Primary road 25m, 50 m, 100 m
- Local road 25m, 50 m, 100 m, 300 m

Ranked top 20 by XGBoost

- Primary road 50 m, 100 m
- Highway 50 m
- Local road 25m, 50 m, 100 m, 300 m

Selected by LASSO

- Primary road 25m, 50 m, 100 m
- Highway 50m, 100 m
- Local road 100 m, 300m

Global model

Ranked top 20 by Random Forest*

- Primary road 50 m, 100 m
- *Highway 100 m ranked 26

Ranked top 20 by XGBoost

- Primary road 50 m, 100 m
- Highway 100 m
- Local road 25 m, 50 m, 100m

Selected by LASSO

- Primary road 50 m, 100 m
- Highway 50 m, 100 m
- Local road 25 m, 50 m, 100m

Germany

RMSE: root mean

squared error

MAE: mean absolute

error

IQR: interquartile range

LM: Multiple linear

regression

RF: random forest

SGB: Stochastic gradient

boosting

XGB: xgboost

Prediction from different methods

China

RMSE: root mean squared error

MAE: mean absolute

error

IQR: interquartile range

LM: Multiple linear

regression

RF: random forest

SGB: Stochastic gradient

boosting

XGB: xgboost

Conclusion

- The validation results indicate that tree-based methods are more suitable than Lasso for a global NO2 maping and their global models can achieve an accuracy as good as national models.
- The differences in validataion accuracy between statistical learning methods are small.
- The patterns of spatial predictions using different methods are notably different.
- Field tracking measurements may be needed for validation.

- [1] Shaddock et al., 2018: Environ. Sci. Technol.201852169069-9078
- [2] https://www.theguardian.com/sustainable-business/2016/jul/05/how-air-pollution-affects-your-health-infographic
- [3] http://www.tropomi.eu/sites/default/files/files/agu_veefkind.pdf

China

RMSE: root mean squared error

MAE: mean absolute

error

IQR: interquartile range

LM: Multiple linear

regression

RF: random forest

SGB: Stochastic gradient

boosting

XGB: xgboost

