Optimization methods Lecture 1: Introduction. Convex sets. Convex functions

Alexandr Katrutsa

Modern State of Artificial Intelligence Masters Program Moscow Institute of Physics and Technology

What is this course about?

Basic theory

- Convex sets and convex functions
- Optimality conditions
- Introduction to duality

Numerical methods

- First order methods and their accelerated versions
- Quasi-Newton methods
- ▶ Introduction to stochastic gradient methods
- Introduction to combinatorial optimization and convex relaxations

The place of this course in the program

- When you train some neural network, you solve some optimization problem
- ▶ Possible issues in this process will be discussed in the course
- ▶ How to solve these issues we will also discuss

Lectures and webinars are once a week

- ► Lectures and webinars are once a week
- ▶ Home assignments are after every lecture

- ▶ Lectures and webinars are once a week
- ► Home assignments are after every lecture
- Grading policy will be announced during webinar

- Lectures and webinars are once a week
- ► Home assignments are after every lecture
- Grading policy will be announced during webinar
- ► Lecture slides are here: https://github.com/amkatrutsa/opt_modern_ai_ms

References

- ► S. Boyd and L. Vandenberghe *Convex Optimization* https://web.stanford.edu/~boyd/cvxbook/
- ▶ J. Nocedal, S. J. Wright *Numerical Optimization*
- ▶ I. Goodfellow et al *Deep learning book*

▶ Formalization of the problem of selecting an element from a set

- ► Formalization of the problem of selecting an element from a set
- Justification of the decision correctness

- ► Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis
 - portfolio optimization

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis
 - portfolio optimization
 - optimal control

- Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis
 - portfolio optimization
 - optimal control
 - signal processing

- ▶ Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis
 - portfolio optimization
 - optimal control
 - signal processing
 - parameters estimation in statistic

- Formalization of the problem of selecting an element from a set
- Justification of the decision correctness
- Wide range of applications:
 - machine learning: classification, clustering, regression
 - molecular modeling
 - risk analysis
 - portfolio optimization
 - optimal control
 - signal processing
 - parameters estimation in statistic
 - many-many others

Main steps for exploiting optimization methods in solving real-world problems:

1. Define objective function

- 1. Define objective function
- 2. Define feasible set

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis
- 4. Selection of the best algorithm for the stated problem

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis
- 4. Selection of the best algorithm for the stated problem
- 5. Algorithm implementation and verification its correctness

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

 $\mathbf{x} \in \mathbb{R}^n$ — target vector

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ target vector
- $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ objective function

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ target vector
- $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ objective function
- $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ constraint functions

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, $i = 1, \dots, m$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, $i = 1, \dots, m$

• Linear classifier $\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, $i = 1, \dots, m$

- ▶ Linear classifier $\hat{y} = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$
- $\begin{cases} \mathbf{w}^{\top} \mathbf{x}_i + b > 1, & y_i = +1 \\ \mathbf{w}^{\top} \mathbf{x}_i + b < -1, & y_i = -1 \end{cases}$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, i = 1, ..., m

- Linear classifier $\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$
- $\begin{cases}
 \mathbf{w}^{\top} \mathbf{x}_i + b > 1, & y_i = +1 \\
 \mathbf{w}^{\top} \mathbf{x}_i + b < -1, & y_i = -1
 \end{cases}$
- $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1$

Possible separating hypelplanes

Q: How to define the separating hyperplane uniquely?

► For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

► For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

► For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

 We want to maximize this distance or margin between two classes

► For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

 We want to maximize this distance or margin between two classes

The final optimization problem

$$\begin{split} \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2 \\ \text{s.t. } y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1, \ i = 1,\dots,m \end{split}$$

Optimal separating hyperplane

Definition

A point x^* is called a point of **global** minimum, if $f(x) \ge f(x^*)$ for all x from the feasible set.

Definition

A point \mathbf{x}^* is called a point of **global** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from the feasible set.

Definition

A point \mathbf{x}^* is called a point of **local** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from some neighborhood of point \mathbf{x}^* and from feasible set.

Definition

A point \mathbf{x}^* is called a point of **global** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from the feasible set.

Definition

A point \mathbf{x}^* is called a point of **local** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from some neighborhood of point \mathbf{x}^* and from feasible set.

Another form of problem statement

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
$$f_j(\mathbf{x}) \le 0, \ j = p+1, \dots, m,$$

How to solve such problems?

In general case:

- ▶ NP-complete, i.e. very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

How to solve such problems?

In general case:

- ▶ NP-complete, i.e. very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

However, some classes of optimization problems can be solved very efficiently

How to solve such problems?

In general case:

- ▶ NP-complete, i.e. very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

However, some classes of optimization problems can be solved very efficiently

- Linear programming
- Linear least-squares problems
- Low-rank approximation problem
- Convex optimization

Main stages in optimization theory development

- ▶ 1940s linear programming
- ▶ 1950s quadratic programming
- ▶ 1960s geometric programming
- ▶ 1990s polynomial interior point methods for convex conic optimization problems

 \blacktriangleright Huge-scale optimization problems $(\sim 10^8-10^{12})$

- Huge-scale optimization problems ($\sim 10^8 10^{12}$)
- Distributed optimization methods

- lacktriangle Huge-scale optimization problems $(\sim 10^8-10^{12})$
- Distributed optimization methods
- Fast tensor methods

- Huge-scale optimization problems ($\sim 10^8 10^{12}$)
- Distributed optimization methods
- Fast tensor methods
- Stochastic methods

- Huge-scale optimization problems ($\sim 10^8 10^{12}$)
- Distributed optimization methods
- Fast tensor methods
- Stochastic methods
- Non-convex structured optimization problems

- ▶ Huge-scale optimization problems ($\sim 10^8 10^{12}$)
- Distributed optimization methods
- Fast tensor methods
- Stochastic methods
- Non-convex structured optimization problems
- Applications of convex optimization

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &\leq 0, \ i = 1, \dots, m \\ \mathbf{A}\mathbf{x} &= \mathbf{b} \end{aligned}$$

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

▶ f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

▶ f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

no analytical solution

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i=1,\ldots,m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

• f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

- no analytical solution
- efficient algorithms

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

• f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

- no analytical solution
- efficient algorithms
- special modeling helps to convert such problems to some standard form

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

► Local minimum is also global minimum

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Local minimum is also global minimum
- Necessary optimality condition is also sufficient

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Local minimum is also global minimum
- Necessary optimality condition is also sufficient

Questions:

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- ► Local minimum is also global minimum
- Necessary optimality condition is also sufficient

Questions:

Can any convex optimization problem be efficiently solved?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Local minimum is also global minimum
- Necessary optimality condition is also sufficient

Questions:

- Can any convex optimization problem be efficiently solved?
- Is it possible to solve non-convex optimization problems efficiently?

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

Polyhedron

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- ► Polyhedron
- Hyperplanes

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- Polyhedron
- Hyperplanes
- ▶ Balls in *any proper* norm and ellipsoids

Convex sets

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- Polyhedron
- Hyperplanes
- Balls in any proper norm and ellipsoids
- Set of symmetric and non-negative definite matrices

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Proof

▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \rightarrow \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- ▶ Since \mathcal{X}_i is convex for all $i \in \mathcal{I}$, $\mathbf{z} \in \mathcal{X}_i$, $\forall i \in \mathcal{I}$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- ▶ Since \mathcal{X}_i is convex for all $i \in \mathcal{I}$, $\mathbf{z} \in \mathcal{X}_i$, $\forall i \in \mathcal{I}$
- ▶ Therefore, $\mathbf{z} \in \mathcal{X}$ and \mathcal{X} is convex set

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

Proof

lackbox Let ${\mathcal X}$ be a convex set and ${\mathbf x},{\mathbf y}\in{\mathcal X}$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- ▶ Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Show that $\alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y}) \in f(\mathcal{X})$, where $\alpha \in [0, 1]$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- ▶ Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Show that $\alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y}) \in f(\mathcal{X})$, where $\alpha \in [0, 1]$
- Indeed,

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) = \alpha(\mathbf{A}\mathbf{x} + \mathbf{b}) + (1 - \alpha)(\mathbf{A}\mathbf{y} + \mathbf{b}) = \mathbf{A}(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) + \mathbf{b} = \mathbf{A}\mathbf{z} + \mathbf{b} = f(\mathbf{z}),$$

where
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}$$

Theorem

Minkowski sum of two convex sets is convex set.

Theorem

Minkowski sum of two convex sets is convex set.

Proof

▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$

Theorem

Minkowski sum of two convex sets is convex set.

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$

Theorem

Minkowski sum of two convex sets is convex set.

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$
- Indeed, $\alpha \hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1-\alpha)\tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1-\alpha)\tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Theorem

Minkowski sum of two convex sets is convex set.

Proof

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$
- Indeed, $\alpha \hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1-\alpha)\tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1-\alpha)\tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Corollary

Linear combination of convex sets is convex set

Theorem

Minkowski sum of two convex sets is convex set.

Proof

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$
- Indeed, $\alpha \hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1-\alpha)\tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1-\alpha)\tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Corollary

Linear combination of convex sets is convex set

Exercise

Proof that Cartesian product of convex sets is convex

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0, \ \theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

- Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$
- ▶ Second-order cone $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid ||\mathbf{x}||_2 \leq t\} \rightarrow$ Second-order cone programming (SOCP)

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

- Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$
- ▶ Second-order cone $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid ||\mathbf{x}||_2 \leq t\} \rightarrow$ Second-order cone programming (SOCP)
- Symmetric positive semi-definite matrices $\mathbf{S}^n_+ \to \mathsf{Semidefinite}$ programming (SDP)

Convex hull

Definition

Convex hull of the set G is called such set conv(G) that

- ightharpoonup it is an intersection of all convex sets containing $\mathcal G$
- ▶ it is a set of all convex combinations of points from G

$$conv(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{G}, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}$$

lacktriangleright it is a minimal convex set containing ${\cal G}$

 Assume that you face with optimization problem with non-convex feasible set

- Assume that you face with optimization problem with non-convex feasible set
- ▶ You can convexify feasible set with its convex hull

- ► Assume that you face with optimization problem with non-convex feasible set
- You can convexify feasible set with its convex hull
- ► Solve the problem in the new feasible set

- Assume that you face with optimization problem with non-convex feasible set
- You can convexify feasible set with its convex hull
- Solve the problem in the new feasible set
- Recover approximate solution of the original problem from the solution of the problem with convex feasible set

Definition

Sets A, B are called separated if there exists vector $\mathbf{a} \neq 0$ and a number b such that

- $\mathbf{a}^{\top}\mathbf{x} + b \geq 0$ for all $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{\top}\mathbf{y} + b \leq 0 \text{ for all } \mathbf{y} \in \mathcal{B}.$

Definition

Sets A, B are called separated if there exists vector $\mathbf{a} \neq 0$ and a number b such that

- $\mathbf{a}^{\mathsf{T}}\mathbf{x} + b \geq 0$ for all $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{\top}\mathbf{y} + b \leq 0 \text{ for all } \mathbf{y} \in \mathcal{B}.$

Theorem

Let A and B convex and non-intersected sets. Then there exists separating hyperplane.

Definition

Sets A, B are called separated if there exists vector $\mathbf{a} \neq 0$ and a number b such that

- $\mathbf{a}^{\top}\mathbf{x} + b \geq 0$ for all $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{\top}\mathbf{y} + b \leq 0 \text{ for all } \mathbf{y} \in \mathcal{B}.$

Theorem

Let A and B convex and non-intersected sets. Then there exists separating hyperplane.

Proof

lacktriangle Assume that the distance between ${\cal A}$ and ${\cal B}$ is positive:

$$\inf_{\mathbf{x}\in A,\ \mathbf{y}\in B}\|\mathbf{x}-\mathbf{y}\|_2>0$$

Definition

Sets A, B are called separated if there exists vector $\mathbf{a} \neq 0$ and a number b such that

- $\mathbf{a}^{\mathsf{T}}\mathbf{x} + b > 0$ for all $\mathbf{x} \in \mathcal{A}$
- $\mathbf{a}^{\mathsf{T}}\mathbf{v} + b \leq 0$ for all $\mathbf{v} \in \mathcal{B}$.

Theorem

Let A and B convex and non-intersected sets. Then there exists separating hyperplane.

Proof

 \blacktriangleright Assume that the distance between \mathcal{A} and \mathcal{B} is positive:

$$\inf_{\mathbf{x} \in A, \ \mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|_2 > 0$$

▶ Let $c \in A$ and $d \in B$ are points where infimum is attained

Definition

Sets A, B are called separated if there exists vector $\mathbf{a} \neq 0$ and a number b such that

- $\mathbf{a}^{\mathsf{T}}\mathbf{x} + b \geq 0$ for all $\mathbf{x} \in \mathcal{A}$
- $\mathbf{a}^{\top}\mathbf{y} + b \leq 0$ for all $\mathbf{y} \in \mathcal{B}$.

Theorem

Let A and B convex and non-intersected sets. Then there exists separating hyperplane.

Proof

Assume that the distance between \mathcal{A} and \mathcal{B} is positive:

$$\inf_{\mathbf{x} \in A, \ \mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|_2 > 0$$

- ▶ Let $c \in A$ and $d \in B$ are points where infimum is attained
- ► Consider $f(\mathbf{x}) = \mathbf{a}^{\top}\mathbf{x} + b$, where $\mathbf{a} = \mathbf{d} \mathbf{c}$ and $b = \frac{\|\mathbf{d}\|_2^2 \|\mathbf{c}\|_2^2}{2}$

- ▶ Show that $f(\mathbf{y}) \ge 0$ for all $\mathbf{y} \in B$
- ▶ Assume we have $\mathbf{u} \in B$ such that $f(\mathbf{u}) < 0$

$$f(\mathbf{u}) = (\mathbf{d} - \mathbf{c})^{\top} (\mathbf{u} - \frac{1}{2} (\mathbf{d} + \mathbf{c})) = (\mathbf{d} - \mathbf{c})^{\top} (\mathbf{u} - \mathbf{d}) + \frac{1}{2} \|\mathbf{d} - \mathbf{c}\|_2^2$$

- $(\mathbf{d} \mathbf{c})^{\top} (\mathbf{u} \mathbf{d}) < 0$
- Note that

$$\left. \frac{d}{dt} \|\mathbf{d} - \mathbf{c} + t(\mathbf{u} - \mathbf{d})\|_{2}^{2} \right|_{t=0} = 2(\mathbf{d} - \mathbf{c})^{\top}(\mathbf{u} - \mathbf{d}) < 0$$

therefore, for $t \in (0,1]$

$$\|\mathbf{d} - \mathbf{c} + t(\mathbf{u} - \mathbf{d})\|_2 \le \|\mathbf{d} - \mathbf{c}\|_2.$$

▶ A point $d + t(u - d) \in B$ is closer to c, than tod, we have a contradiction.

Q: does the existence of separating hyperplane imply the non-intersection of convex sets?

Summary on the convex sets

- ▶ Definition and geometric interpretation of convex set
- Three main cones
- Operations that preserve convexity
- Separating hyperplane theorem

Convex function

Definition

```
Function f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R} is called convex (strictly convex), if \mathcal{X} is convex set and \forall \mathbf{x}_1, \mathbf{x}_2 \in X and \alpha \in [0,1] (\alpha \in (0,1)) we have: f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)
```

Convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called convex (strictly convex), if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$) we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Definition

Function f is concave, if function -f is convex.

Convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called convex (strictly convex), if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$) we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \ \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Definition

Function f is concave, if function -f is convex.

Examples of convex functions

- x^p for $x \ge 0$ and $p \ge 1$
- $\triangleright x \log x$, where x > 0
- **▶** ||x||
- $\blacktriangleright \log \left(\sum_{i=1}^n e^{x_i} \right)$
- $ightharpoonup \log \det \mathbf{X} \text{ for } \mathbf{X} \in \mathbf{S}^n_{++}$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

Proof

1. Let f be a convex function

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ▶ Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set
 - $\begin{array}{l} \bullet \ \ (\mathbf{x}_1, f(\mathbf{x}_1)) \ \text{and} \ \ (\mathbf{x}_2, f(\mathbf{x}_2)) \in \mathrm{epi} \ f, \ \text{then} \\ \ \ (\alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha) f(\mathbf{x}_2)) \in \mathrm{epi} \ f \end{array}$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set
 - $\begin{array}{l} \blacktriangleright \ (\mathbf{x}_1, f(\mathbf{x}_1)) \ \text{and} \ (\mathbf{x}_2, f(\mathbf{x}_2)) \in \mathrm{epi} \ f \text{, then} \\ (\alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha) f(\mathbf{x}_2)) \in \mathrm{epi} \ f \end{array}$
 - \blacktriangleright From the definition of epigraph follows convexity of f

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1,\mathbf{x}_2 \in X$ in $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1,\mathbf{x}_2 \in X$ in $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

► Convexity ⊃ strict convexity ⊃ strong convexity

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ in $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

- ▶ Convexity ⊃ strict convexity ⊃ strong convexity
- ► Theoretical analysis of methods in the case of strongly convex functions significantly differs from the one for convex functions

Gradient and hessian: preliminaries

Consider $f: \mathbb{R}^n \to \mathbb{R}$

► Directional derivative

$$f'_{\mathbf{d}}(\mathbf{x}) = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

- ▶ Gradient $f'(\mathbf{x})$ is a vector such that $[f'(\mathbf{x})]_i = \frac{\partial f}{\partial x_i}$
- ▶ Hessian is a square matrix $f''(\mathbf{x})$ such that $[f''(\mathbf{x})]_{ij} = \frac{\partial f}{\partial x_i x_j}$

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \geq 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \geq 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

Proof: if f is convex

▶ By definition: $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$

We consider convex function as strongly convex function with m=0.

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \geq 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

Proof: if f is convex

- ▶ By definition: $f(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 \alpha)f(\mathbf{x}_2)$
- Re-write in the form $f(\mathbf{x}_2 + \alpha(\mathbf{x}_1 \mathbf{x}_2)) \le f(\mathbf{x}_2) + \alpha(f(\mathbf{x}_1) f(\mathbf{x}_2)) \text{ or }$ $\frac{f(\mathbf{x}_2 + \alpha(\mathbf{x}_1 \mathbf{x}_2)) f(\mathbf{x}_2)}{\alpha} \le f(\mathbf{x}_1) f(\mathbf{x}_2)$

We consider convex function as strongly convex function with m=0.

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \ge 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

Proof: if f is convex

- ▶ By definition: $f(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 \alpha)f(\mathbf{x}_2)$
- ► Re-write in the form $f(\mathbf{x}_2 + \alpha(\mathbf{x}_1 \mathbf{x}_2)) \le f(\mathbf{x}_2) + \alpha(f(\mathbf{x}_1) f(\mathbf{x}_2)) \text{ or }$ $\frac{f(\mathbf{x}_2 + \alpha(\mathbf{x}_1 \mathbf{x}_2)) f(\mathbf{x}_2)}{\alpha} \le f(\mathbf{x}_1) f(\mathbf{x}_2)$
- ▶ If $\alpha \to 0$, then

$$\langle f'(\mathbf{x}_2), \mathbf{x}_1 - \mathbf{x}_2 \rangle \le f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

• Consider $\mathbf{z} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$

- Consider $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Write two inequalities for \mathbf{z}, \mathbf{x}_1 and \mathbf{z}, \mathbf{x}_2

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

- Consider $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- ▶ Write two inequalities for \mathbf{z}, \mathbf{x}_1 and \mathbf{z}, \mathbf{x}_2

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Sum these inequalities

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

- Consider $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Write two inequalities for \mathbf{z}, \mathbf{x}_1 and \mathbf{z}, \mathbf{x}_2

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Sum these inequalities

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Strongly convex case

To prove the claim for the strongly convex case, the same arguments can be provided for function $f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|_2^2$.

- Consider $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- ▶ Write two inequalities for \mathbf{z}, \mathbf{x}_1 and \mathbf{z}, \mathbf{x}_2

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Sum these inequalities

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Strongly convex case

To prove the claim for the strongly convex case, the same arguments can be provided for function $f(\mathbf{x}) - \frac{m}{2} ||\mathbf{x}||_2^2$.

Exercise

Prove that f is strongly convex $\Leftrightarrow f(\mathbf{x}) - \frac{m}{2} ||\mathbf{x}||_2^2$ is convex.

Illustration for the first order criterion

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Proof

Consider expansion in Taylor series up to the second order

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle$$

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Proof

► Consider expansion in Taylor series up to the second order

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle$$

▶ If $f''(\mathbf{x}) \succeq m\mathbf{I}$, then $\frac{1}{2}\langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle \geq \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$, and according to the first order criterion f is convex

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Proof

Consider expansion in Taylor series up to the second order

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle$$

- ▶ If $f''(\mathbf{x}) \succeq m\mathbf{I}$, then $\frac{1}{2}\langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} \mathbf{x} \rangle \geq \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, and according to the first order criterion f is convex
- ▶ If there exists a point \mathbf{z} such that $f''(\mathbf{z}) \not\succeq m\mathbf{I}$, then we can find direction \mathbf{d} such that $\mathbf{d}^{\top} f''(\mathbf{z}) \mathbf{d} \leq m$

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Proof

Consider expansion in Taylor series up to the second order

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle$$

- ▶ If $f''(\mathbf{x}) \succeq m\mathbf{I}$, then $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} \mathbf{x} \rangle \ge \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, and according to the first order criterion f is convex
- ▶ If there exists a point \mathbf{z} such that $f''(\mathbf{z}) \not\succeq m\mathbf{I}$, then we can find direction \mathbf{d} such that $\mathbf{d}^{\top} f''(\mathbf{z}) \mathbf{d} \leq m$
- ▶ In this case according to the first order criterion *f* is non-convex. Thus, we get a contradiction.

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

Proof

Consider expansion in Taylor series up to the second order

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} - \mathbf{x} \rangle$$

- ▶ If $f''(\mathbf{x}) \succeq m\mathbf{I}$, then $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})\mathbf{y} \mathbf{x} \rangle \ge \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, and according to the first order criterion f is convex
- ▶ If there exists a point \mathbf{z} such that $f''(\mathbf{z}) \not\succeq m\mathbf{I}$, then we can find direction \mathbf{d} such that $\mathbf{d}^{\top} f''(\mathbf{z}) \mathbf{d} \leq m$
- ▶ In this case according to the first order criterion *f* is non-convex. Thus, we get a contradiction.

Reminder

If you want to check the definiteness of a square symmetric matrix, you should use definition or Sylvester criterion

▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...,m} f_i(\mathbf{x})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...,m} f_i(\mathbf{x})$ is convex
- ► The sum of convex functions with non-negative coefficients is convex function

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...,m} f_i(\mathbf{x})$ is convex
- ► The sum of convex functions with non-negative coefficients is convex function
- ▶ Scalar composition $h(f(\mathbf{x}))$

Local minimum of convex function is also a global minimum

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

Proof

Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 \le \delta$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 < \delta$
- $f(\mathbf{x}^*) \le f(\mathbf{z}) \le \alpha f(\mathbf{y}^*) + (1 \alpha) f(\mathbf{x}^*) < f(\mathbf{x}^*)$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 < \delta$
- $f(\mathbf{x}^*) \le f(\mathbf{z}) \le \alpha f(\mathbf{y}^*) + (1 \alpha) f(\mathbf{x}^*) < f(\mathbf{x}^*)$
- ▶ We get a contradiction, therefore assumption is incorrect and x* is a point of global minimum

Definition

Definition

A set $C^n = \{ \mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0, \ \mathbf{x} \ge 0 \}$ is called copositive cone.

 $ightharpoonup \mathcal{C}^n$ is convex

Definition

- $ightharpoonup \mathcal{C}^n$ is convex
- $ightharpoonup \mathbf{S}_+^n \subset \mathcal{C}^n$

Definition

- $ightharpoonup \mathcal{C}^n$ is convex
- $ightharpoonup \mathbf{S}_{+}^{n} \subset \mathcal{C}^{n}$
- ▶ The problem of check $X \notin C^n$ is co-NP complete!

Definition

- $ightharpoonup \mathcal{C}^n$ is convex
- $ightharpoonup \mathbf{S}^n_+ \subset \mathcal{C}^n$
- ▶ The problem of check $X \notin C^n$ is co-NP complete!
- ightharpoonup The conic optimization problem with the feasible set \mathcal{C}^n is NP-hard

Definition

- $ightharpoonup \mathcal{C}^n$ is convex
- $ightharpoonup \mathbf{S}^n_+ \subset \mathcal{C}^n$
- ▶ The problem of check $X \notin C^n$ is co-NP complete!
- ightharpoonup The conic optimization problem with the feasible set \mathcal{C}^n is NP-hard

Definition

A set $C^n = \{ \mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0, \ \mathbf{x} \ge 0 \}$ is called copositive cone.

- $ightharpoonup \mathcal{C}^n$ is convex
- $ightharpoonup \mathbf{S}^n_+ \subset \mathcal{C}^n$
- ▶ The problem of check $X \notin C^n$ is co-NP complete!
- lacktriangle The conic optimization problem with the feasible set \mathcal{C}^n is NP-hard

Example

The problem of search the maximum independence set of vertices in graph reduces to the convex optimization problem with feasible set C^n . More details see here

Given the matrix $\mathbf{Q} \in \mathbf{S}_{++}^n$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}$$

Given the matrix $\mathbf{Q} \in \mathbf{S}_{++}^n$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

Feasible set is non-convex

Given the matrix $\mathbf{Q} \in \mathbf{S}_{++}^n$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

- Feasible set is non-convex
- ▶ Objective function is convex

Given the matrix $\mathbf{Q} \in \mathbf{S}_{++}^n$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

- Feasible set is non-convex
- ▶ Objective function is convex

Given the matrix $\mathbf{Q} \in \mathbf{S}_{++}^n$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

- Feasible set is non-convex
- Objective function is convex

Q: what meaning of \mathbf{x}^* and $f(\mathbf{x}^*)$?

Theorem

If function
$$f$$
 is convex, then $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where $\sum\limits_{i=1}^k \alpha_i = 1, \ \alpha_i \geq 0.$

Theorem

If function
$$f$$
 is convex, then $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where $\sum\limits_{i=1}^k \alpha_i = 1, \ \alpha_i \geq 0.$

Proof by induction

▶ Base k = 2 holds according to the definition

Theorem

If function f is convex, then $f\left(\sum_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where $\sum_{i=1}^k \alpha_i = 1, \ \alpha_i \geq 0$.

Proof by induction

- ▶ Base k = 2 holds according to the definition
- Assume the inequality holds for k=m-1: $f\left(\sum_{i=1}^{m-1}\alpha\mathbf{x}_i\right)\leq \sum_{i=1}^{m-1}\alpha_i f(\mathbf{x}_i) \text{ and } \sum_{i=1}^{m-1}\alpha_i=1,\ \alpha_i\geq 0$

Theorem

If function
$$f$$
 is convex, then $f\left(\sum_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where $\sum_{i=1}^k \alpha_i = 1, \ \alpha_i \geq 0$.

Proof by induction

- ▶ Base k = 2 holds according to the definition
- Assume the inequality holds for k=m-1: $f\left(\sum^{m-1}\alpha\mathbf{x}_i\right)\leq\sum^{m-1}\alpha_if(\mathbf{x}_i)\text{ and }\sum^{m-1}\alpha_i=1,\ \alpha_i\geq0$

► Consider
$$k = m$$
: $f\left(\sum_{i=1}^{m} \hat{\alpha}_{i} \mathbf{x}_{i}\right) = f\left(\sum_{i=1}^{m-1} \hat{\alpha} \mathbf{x}_{i} + \hat{\alpha}_{m} \mathbf{x}_{m}\right) = f\left((1 - \hat{\alpha}_{m})\sum_{i=1}^{m-1} \frac{\hat{\alpha}_{i}}{1 - \hat{\alpha}_{m}} \mathbf{x}_{i} + \hat{\alpha}_{m} \mathbf{x}_{m}\right) \leq (1 - \hat{\alpha}_{m}) f\left(\sum_{i=1}^{m-1} \frac{\hat{\alpha}_{i}}{1 - \hat{\alpha}_{m}} \mathbf{x}_{i}\right) + \hat{\alpha}_{m} f(\mathbf{x}_{m}) \leq \sum_{i=1}^{k} \alpha_{i} f(\mathbf{x}_{i})$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1$$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1$$

► The generalization of Jensen's inequality gives the inequality for the convex function of the expected value

$$f(\mathbb{E}(\mathbf{x})) \le \mathbb{E}(f(\mathbf{x}))$$

Convex, strictly convex and strongly convex functions

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function
- Operations that preserve convexity

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function
- Operations that preserve convexity
- Jensen inequality