Discord : Luckymai						
Group : OUTPLAY						
Obscure Binary Search Trees:						
Knight's Travails:						
Text Editor:						

Name : Lucky Laurens

Tree Simulations:

3 children is not allowed, so we pushing up a key

3 children is not allowed, so we pushing up a key again.

3 children is not allowed, so we pushing up a key into parent.

Insert 37:

37 is more than 35, less than 80, less than 45, less than 40.

Do single right rotation on 40 45 and 80.

Recolor the parent, uncle, and grandparent

because there are 2 reds in a row, do right rotation on 45

there are still 2 reds in a row, do right rotation on 45

0037 0040

Merge 40 and 80.

Move 40 into child, and up 37 into parent.

b. Insert

Disjoint Sets and Graphs:

Prim's Algorithm

Minimum spanning tree = 2 + 3 + 5 + 1 + 6 + 7 + 8 + 12 = 44

Kruskal Algorithm

Minimum spanning tree = 2 + 3 + 5 + 1 + 6 + 7 + 8 + 12 = 44

• Shortest Path from I to A

	Α	В	С	D	E	F	G	Н	I
I	INF	INF	INF	INF	INF	181	21	41	01
G	INF	INF	INF	19G	13G	16G	21	41	Χ
Н	INF	INF	5H	19G	9H	16G	Χ	41	Χ
С	11C	18C	5H	19G	9H	16G	Χ	Х	Х
Е	11C	18C	Χ	19G	9H	16G	Χ	Х	Х
Α	11C	18C	Χ	19G	Χ	16G	Χ	Χ	Х

I -> G = 2

I -> H = 4

I->H->C=5

I -> H -> E = 9

I -> H -> C -> A = 11

So, the sortest path from I to A is 11.

• Shortest Path from F to C

	Α	В	С	D	Е	F	G	Н	1
F	INF	12F	INF	16F	INF	0F	14F	INF	18F
В	19B	12F	25B	16F	INF	Χ	14F	INF	18F
G	19B	Χ	25B	16F	25G	Χ	14F	17G	16G
D	19B	Χ	25B	16F	25G	Χ	Χ	17G	16G
1	19B	Χ	25B	Χ	25G	Χ	Χ	17G	16G
Н	19B	Χ	18H	Χ	22H	Χ	Χ	17G	Χ
С	19B	Х	18H	Х	22H	Χ	Х	Х	Х

F->B = 12

F->G = 14

F->D = 16

F->G->I= 16

F->G->H = 17

F->G->H->C = 18

So, the shortest path from F to C is 18.