Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017706

International filing date: 29 November 2004 (29.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-316251

Filing date: 29 October 2004 (29.10.2004)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

30.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年10月29日

出 願 番 号

特願2004-316251

Application Number: [ST. 10/C]:

[JP2004-316251]

出 願 人
Applicant(s):

塩野義製薬株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月14日

【書類名】 特許願 【整理番号】 04P00097 【提出日】 平成16年10月29日 特許庁長官殿 【あて先】 【国際特許分類】 A61K 31/41 C07D261/02 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 福井 喜一 【氏名】 【発明者】 塩野義製薬株式会社 大阪府大阪市福島区鷺洲5丁目12番4号 【住所又は居所】 内 笹谷 隆司 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 松村 謙一 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 石塚 夏樹 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 矢野 利定 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 神田 泰彦 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 長命 信雄 【氏名】 【特許出願人】 【識別番号】 000001926 塩野義製薬株式会社 【氏名又は名称】 【代理人】 【識別番号】 100108970 【弁理十】 山内 秀晃 【氏名又は名称】 06-6455-2056 【電話番号】 【選任した代理人】 【識別番号】 100113789

【先の出願に基づく優先権主張】【出願番号】 特願2003-403274

【弁理士】

【出願日】

【電話番号】

【氏名又は名称】

平成15年12月 2日

杉田 健一

06-6455-2056

【先の出願に基づく優先権主張】

【出願番号】

特願2004-121635

【出願日】

平成16年 4月16日

【先の出願に基づく優先権主張】

【出願番号】

特願2004-167941

【出願日】

平成16年 6月 7日

【手数料の表示】

【予納台帳番号】

044602

【納付金額】

16,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

9720909

【包括委任状番号】

9905998

【書類名】特許請求の範囲

【請求項1】

式(I):

【化1】

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を 有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を 有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキ シカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよい アシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置 換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキ シ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒド ラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を 有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換 基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置 換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノ

または置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級 アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルス ルホニルまたは置換基を有していてもよいアリールスルホニルである)、- C R¹² R¹³ C O-, $-(CR^{12}R^{13})mO-$, $-(CR^{12}R^{13})mS \pm t t t -O(CR^{12}R^{13})m-$ 数である)であり、

 X^2 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、 $-CR^{26}=CR^{27}-$ (ここで R^{26} および \mathbb{R}^{27} は各々独立して水素または低級アルキルである)、 $-\mathbb{N}\,\mathbb{R}^{14}$ ー(ここで \mathbb{R}^{14} は 水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換 基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリール スルホニルである)、 $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または 低級アルキルである)または $-COCR^{24}R^{25}-(CCCR^{24}およびR^{25}$ は各々独立して 水素または低級アルキルである)であり、

 X^{3} Lt $C O O R^{17}$, $C (= N R^{17}) N R^{18} O R^{19}$,

(ここで $\mathbb{R}^{17} \sim \mathbb{R}^{19}$ は各々独立して水素または低級アルキルである)であり、 但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 およ 接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接す る炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一 緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって結合を形成してもよ く、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と 一緒になって環を形成してもよい)

で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が-O-である化合物、 R^1 が非置換低級アルキルかつ X^2 が $-CH_2$ -である化合物、 および \mathbb{R}^2 が水素かつ \mathbb{X}^2 が-O-である化合物を除く)、その製薬上許容される塩または それらの溶媒和物。

【請求項2】

 R^1 がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいア リールまたは置換基を有していてもよいヘテロ環式基である、請求項1記載の化合物、そ の製薬上許容される塩またはそれらの溶媒和物。

【請求項3】

R²が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい 低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級 アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいカルバモイル 、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオであ る、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項4】

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していても

【請求項5】

 R^3 および R^4 が各々独立して水素、低級アルキルまたは置換基を有していてもよいアリールである、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項6】

 R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項7】

 \mathbb{R}^9 および \mathbb{R}^{10} が各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

但し、 R^9 および R^{10} は R^6 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^6 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって結合を形成してもよく、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項8】

 X^1 がO、S、 NR^{11} (ここで R^{11} は水素または置換基を有していてもよい低級アルキルである)または CH_2CO である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項9】

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項10】

R¹が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲン、 置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシ)またはヘテロ環式基であり、

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいイミノ、低級アルキルスルホニル、置換基を有していてもよいアリールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基としては、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、カルバモイル、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシ)またはアリールチオであり、

 R^3 および R^4 が各々独立して、水素、低級アルキルまたは置換基を有していてもよいアリール(置換基としては、ハロゲン)であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン)または置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)であり、

 R^9 および R^{10} が各々独立して水素、ハロゲン、シアノ、低級アルキルまたは低級アルコ キシであり、

 X^{1} はO、S、NHまたはCH₂COであり、 $X^{3} UCOOR^{17}$, $C (= NR^{17}) NR^{18}OR^{19}$,

【化3】

(ここで $\mathbb{R}^{17} \sim \mathbb{R}^{19}$ は各々独立して水素または低級アルキルである) である、 但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 およ 接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接す る炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一 緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^{9} は R^{25} と一緒になって結合を形成してもよ く、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と 一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩また はそれらの溶媒和物。

【請求項11】

 X^2 が単結合、-O-、-SO-、 $-SO_2-$ または $-CR^{26}=CR^{27}-$ (ここで R^{26} およ TR^{27} は各々独立して水素または低級アルキルである)、である、請求項 $1\sim 1$ 0のいず れかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項12】

 X^2 が-C R^{15} R^{16} - (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒に なって結合を形成している、または \mathbb{R}^{16} は \mathbb{R}^{9} および \mathbb{R}^{15} は \mathbb{R}^{10} と各々一緒になって結合 を形成している)である、請求項 $1\sim10$ のいずれかに記載の化合物、その製薬上許容さ れる塩またはそれらの溶媒和物。

【請求項13】

 X^2 が $-NR^{14}-$ (ここで R^{14} は水素、低級アルキル、アシル、低級アルキルスルホニル または \mathbb{R}^{14} は \mathbb{R}^6 と共に隣接する原子と一緒になって環を形成している)、 $-\mathbb{C}\,\mathbb{R}^{15}\,\mathbb{R}^{16}$ - (ここで \mathbb{R}^{15} および \mathbb{R}^{16} は \mathbb{R}^{6} と共に隣接する炭素原子と一緒になって環を形成してい る、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 または、 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^{9} と一 緒になって結合を形成している)または $-COCR^{24}R^{25}-$ (ここで R^{24} は R^{6} と共に隣 接する炭素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成してい る)である、請求項 $1\sim10$ のいずれかに記載の化合物、その製薬上許容される塩または それらの溶媒和物。

【請求項14】

R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有して いてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有して いてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカル ボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル 、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を 有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり、

 X^2 は- 0 - であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項15】

R⁹はR¹⁶と一緒になって結合を形成しており、

 R^{10} は水素またはハロゲンであり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1 \sim 3 の整数)であり、

 \dot{X}^2 は $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項16】

R¹がハロゲン、置換基を有している低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり、

 X^2 は単結合または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項17】

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-であり、

 X^2 が $-NR^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、 $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している)、または $-COCR^{24}R^{25}-$ (ここで R^{24} は R^6 と共に隣接する炭素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項18】

 R^9 は R^{16} と一緒になって結合を形成しており、

 X^1 は-O-、-S-であり、

 X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している、または R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである) である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項19】

 R^9 は R^{10} と一緒になって環を形成しており、

 X^1 は-O-、-S-であり、

 X^2 は単結合または $-CR^{15}R^{16}-($ ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

【請求項20】

請求項 $1\sim19$ のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物。

【請求項21】

請求項 $1\sim19$ のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使用する医薬組成物。

【書類名】明細書

【発明の名称】ペルオキシソーム増殖活性化受容体アゴニスト活性を有するイソキサゾール誘導体

【技術分野】

[0001]

本発明はペルオキシソーム増殖活性化受容体(以下、PPARとする)アゴニスト活性を有し、医薬として有用な化合物に関する。

【背景技術】

[0002]

細胞内顆粒であるペルオキシソームを増殖させるペルオキシソーム増殖薬は、脂質代謝の重要な調節因子であると考えられている。そのペルオキシソーム増殖薬によって活性化される核内受容体PPARは、内分泌、代謝、炎症等に関わる多機能な受容体であることが判明しており、そのリガンドが種々の医薬品として応用可能であるとして近年活発な研究が行われている。

[0003]

PPARは種々の動物臓器からサブタイプ遺伝子が見出されており、ファミリーを形成している。哺乳類においてはPPARα、PPARδ (PPARβと呼ばれることもある) およびPPARγの3種のサブタイプに分類されている。

$[0\ 0\ 0\ 4]$

高脂血症薬として用いられているフィブラート類は $PPAR\alpha$ の活性化を介した血清脂質改善遺伝子群の転写促進によりその活性を示すと考えられている。また、骨代謝および非ステロイド性抗炎症薬の活性発現に $PPAR\alpha$ が関与している可能性も示唆されている

[0005]

インスリン抵抗性改善剤であるチアゾリジンジオン系化合物はPPAR γ のリガンドである。これらの化合物が血糖降下作用、脂質低下作用、脂肪細胞分化誘導作用等を示すことから、PPAR γ アゴニストは糖尿病、高脂血症、肥満等の治療薬としての開発が期待される。また、PPAR γ アゴニストは慢性膵炎、炎症性大腸炎、糸球体硬化症、アルツハイマー症、乾癬、パーキンソン症、バセドウ氏病、慢性関節リウマチ、癌(乳癌、結腸癌、前立腺癌等)および不妊等の治療薬となり得るとして期待されている。

[0006]

PPAR & を脂肪細胞特異的に過剰発現させたトランスジェニックマウスが太りにくいこと等が報告されており、PPAR & アゴニストは抗肥満薬、糖尿病薬になり得ると考えられている。さらにPPAR & アゴニストは結腸癌、骨粗しょう症、不妊、乾癬、多発性硬化症等の治療薬としても可能性も示唆されている。

[0007]

これらの知見より、PPARアゴニストは高脂血症、糖尿病、高血糖、インスリン抵抗性、肥満、動脈硬化、アテローム性動脈硬化、高血圧、シンドロームX、炎症、アレルギー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、乾癬等)、骨粗しょう症、不妊、癌、アルツハイマー症、パーキンソン症、バセドウ氏病等の治療または予防に有用であるとして期待されている(非特許文献1参照)。

[0008]

 確認されていない。

[0009]

特許文献3にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、FXR NR1H4受容体のリガンドであり高コレステロール血症や高脂血症に有用であると記載されているが、PPARアゴニスト活性については記載されていない。

[0010]

特許文献4にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、動脈硬化や高血圧に有用である 旨開示されているが、PPARアゴニスト活性については記載されていない。

[0011]

特許文献5および6には、チアゾール化合物、オキサゾール化合物およびイミダゾール 化合物がPPAR&アゴニスト活性を有することが記載されているが、イソキサゾール化 合物については示唆されていない。

[0012]

特許文献7には、末端が桂皮酢酸であるイソキサゾール化合物が記載されている。甲状腺受容体アンタゴニスト活性を有することが記載されているが、PPARアゴニスト活性については記載されていない。

[0013]

[0014]

【特許文献1】国際公開第W〇99/11255号パンフレット

【特許文献2】国際公開第WO99/58510号パンフレット

【特許文献3】国際公開第WO03/15771号パンフレット

【特許文献4】欧州特許出願公開第0558062号明細書

【特許文献5】国際公開第WO01/00603号パンフレット

【特許文献6】国際公開第WO02/14291号パンフレット

【特許文献7】国際公開第WO01/36365号パンフレット

【特許文献8】国際公開第WO03/084916号パンフレット

【非特許文献 1】 カレント メディシナル ケミストリー (Current Medicinal Chemis try) 、 2003年、第10巻、第267-280頁

【発明の開示】

【発明が解決しようとする課題】

[0015]

本発明の目的は、優れたPPARアゴニストを提供することにある。

【課題を解決するための手段】

[0016]

本発明者らは、鋭意研究の結果、以下の優れたPPARアゴニストの合成に成功した。イソキサゾールの4位が水素でありかつ末端がフェノキシ酢酸である化合物が特許文献8で公知となっている。しかし、本発明者らは、4位の水素をメチルなど他の置換基に置換した化合物が、置換前の化合物と比較して、PPAR転写活性が大きく改善されることを見出した。また、末端の側鎖をフェノキシ酢酸から桂皮酸に置換した化合物が、置換前の化合物と比較して、薬物代謝酵素に対する阻害が少ないことを見出した。

[0017]

本発明は、

(1)式(I):

【化1】

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいアコ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいとドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいアロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級

アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり、

 X^2 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、 $-CR^{26}=CR^{27}-$ (ここで R^{26} および R^{27} は各々独立して水素または低級アルキルである)、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)または $-COCR^{24}R^{25}-$ (ここで R^{24} および R^{25} は各々独立して水素または低級アルキルである)であり、

 $X^{3} UCOOR^{17}$, $C (=NR^{17}) NR^{18}OR^{19}$,

【化2】

(ここで $R^{17} \sim R^{19}$ は各々独立して水素または低級アルキルである)であり、但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって結合を形成してもよく、 R^9 は R^{10} は R^{15} と共に隣接する炭素原子と一緒になって持合を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と 大に R^{10} は R^{15} と R^{10} は R^{15} と 大に R^{10} は R^{15} と $R^$

で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が-O ーである化合物、 R^1 が非置換低級アルキルかつ X^2 が一 CH_2 ーである化合物、および R^2 が水素かつ X^2 が一O ーである化合物を除く)、その製薬上許容される塩または それらの溶媒和物、

- (2) R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (3) R^2 が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいカルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (4) R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいカルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (5) R^3 および R^4 が各々独立して水素、低級アルキルまたは置換基を有していてもよいアリールである、(1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物

- (6) R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 0 は R^{24} 0 と共に降接する炭素原子と一緒になって環を形成してもよい、(1) 記載の化合物、その製薬上許容される塩またはそ
- 合物、その製薬上許容される塩またはそれらの溶媒和物、 (8) X^1 がO、S、N R^{11} (ここで R^{11} は水素または置換基を有していてもよい低級アルキルである) または CH_2CO である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (9) X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (10) R^1 が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシ)またはヘテロ環式基であり、

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいイミノ、低級アルキルスルホニル、置換基を有していてもよいアリールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基としては、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、カルバモイル、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシ)またはアリールチオであり、

 R^3 および R^4 が各々独立して、水素、低級アルキルまたは置換基を有していてもよいアリール(置換基としては、ハロゲン)であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン)または置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)であり、

 R^9 および R^{10} が各々独立して水素、ハロゲン、シアノ、低級アルキルまたは低級アルコキシであり、

 X^{1} dO、S、NHまたはCH₂COであり、 X^{3} dCOOR¹⁷、C (=NR¹⁷) NR¹⁸OR¹⁹、

それらの溶媒和物、

(ここで $R^{17}\sim R^{19}$ は各々独立して水素または低級アルキルである)である、但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって環を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよい、(1)記載の化合物、その製薬上許容される塩または

(11) X^2 が単結合、-O-、-SO-、 $-SO_2-$ または $-CR^{26}=CR^{27}-$ (ここで R^{26} および R^{27} は各々独立して水素または低級アルキルである)、である、 $(1)\sim(10)$ のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

 $(1\ 2)\ X^2$ が $-C\ R^{15}\ R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している、または R^{16} は R^9 および R^{15} は R^{10} と各々一緒になって結合を形成している)である、(1)~(10)のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(13) X^2 が $-NR^{14}-$ (ここで R^{14} は水素、低級アルキル、アシル、低級アルキルスルホニルまたは R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、-C R^{15} $R^{16}-$ (ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、または、 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している)または $-COCR^{24}R^{25}-$ (ここで R^{24} は R^6 と 共に隣接する炭素原子と一緒になって結合を形成している)である、(1) \sim (10) のいずれかに記載の化合物、その製薬上許容される 塩またはそれらの溶媒和物、

(14) R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいとドラジノカルボニル、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰が各々独立して水素であり、

 X^{1} は-O-、-S-、- ($CR^{12}R^{13}$) mO-または- ($CR^{12}R^{13}$) mS- (ここで

 \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{13} は $\mathbb{R}^$

 X^2 は- O - であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(15) R⁹ は <math>R¹⁶ と一緒になって結合を形成しており、

 R^{10} は水素またはハロゲンであり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(16) R^1 がハロゲン、置換基を有している低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり、

 X^2 は単結合または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(17) R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は-O-、-S-であり、

 X^2 が $-NR^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、 $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している)、または $-COCR^{24}R^{25}-$ (ここで R^{24} は R^6 と共に隣接する炭素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(18) R^9 は R^{16} と一緒になって結合を形成しており、

 X^1 d-O-, -S- \overline{c} b,

 X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している、または R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(19) R⁹ は R¹⁰ と一緒になって環を形成しており、

 X^1 は-O-、-S-であり、

 X^2 は単結合または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(20) (1) \sim (19) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物、

(21) (1) ~ (19) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使

用する医薬組成物、を提供する。 さらには、以下の発明も提供する。 (X1)式(I):

【化39】

(式中、

R¹およびR²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいへテロ環式基であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 R^9 および R^{10} は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、 R^9 は R^{16} と一緒になって結合を形成してもよく、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})$ mO-または $-O(CR^{12}R^{13})$ m-(ここで $-CCR^{12}$ および $-CCR^{12}$ ないないであり、 $-CR^{12}$ ないないであり、 $-CR^{12}$ ないないであり、 $-CR^{12}$ ないない。

 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{16} は R^{9} と一緒になって結合を形成してもよい)であり、

 X^{3} it COOR¹⁷, C (= NR¹⁷) NR¹⁸OR¹⁹, [11.40]

(ここで $\mathbb{R}^{17} \sim \mathbb{R}^{19}$ は各々独立して水素または低級アルキルである)である)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X 2) R^1 がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、(X 1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X3) R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(X1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X4) R^3 および R^4 が共に水素である、(X1) 記載の化合物、その製薬上許容される 塩またはそれらの溶媒和物。

(X 5) R^5 および R^6 が各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、 R^7 および R^8 は共に水素である、(X 1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X6) R^9 および R^{10} が共に水素である、(X1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

 $(X7) X^1 が - O - 、 - S - 、 - N R^{11} - (ここで R^{11} は水素または置換基を有していてもよい低級アルキルである)または<math>- C H_2 C O -$ である、(X1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X8) X^2 が単結合または-O-である、(X1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X9) X^3 がカルボキシである、(X1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

(X10) (X1) \sim (X9) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物。

(X11) (X1) \sim (X9) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使用する医薬組成物。

(好ましくは上記化合物のうち、 X^3 が $-COOR^{17}$ であり、 X^2 が $-CR^{15}R^{16}$ ーであり、かつ R^{16} が水素または低級アルキルである化合物を除いた化合物である)を提供する。

[0018]

さらに、上記化合物、その製薬上許容される塩またはそれらの溶媒和物を投与することを特徴とする、PPAR活性化方法、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療方法および/または予防方法を提供する。

[0019]

別の態様として、PPAR活性化のための医薬、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療および/ま

【発明の効果】

[0020]

後述の試験結果から明らかなとおり、本発明化合物はPPARアゴニスト作用を示し、本発明化合物は医薬品、特に高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療および/または予防のための医薬として非常に有用である。

【発明を実施するための最良の形態】

[0021]

本明細書中において、「ハロゲン」とは、フッ素、塩素、臭素およびヨウ素を包含する。特にフッ素および塩素が好ましい。

[0022]

[0023]

「低級アルケニル」とは、任意の位置に1以上の二重結合を有する炭素数2~10、好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状のアルケニルを包含する。具体的にはビニル、プロペニル、イソプロペニル、ブテニル、イソブテニル、プレニル、ブタジエニル、ペンテニル、イソペンテニル、ペンタジエニル、ヘキセニル、イソヘキセニル、ヘキサジエニル、ヘプテニル、オクテニル、ノネニルおよびデセニル等を包含する。

[0024]

「低級アルキニル」とは、炭素数 $2\sim10$ 、好ましくは炭素数 $2\sim6$ 、さらに好ましくは炭素数 $2\sim4$ の直鎖状または分枝状のアルキニルを意味し、具体的には、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらは任意の位置に 1 以上の三重結合を有しており、さらに二重結合を有していてもよい。

[0025]

「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アルケ ニル」、「置換基を有していてもよい低級アルキニル」の置換基としてはハロゲン、ヒド ロキシ、置換基を有していてもよい低級アルコキシ、アミノ、低級アルキルアミノ、アリ ールアミノ、ヘテロ環アミノ、アシルアミノ、低級アルコキシカルボニルアミノ、メルカ プト、低級アルキルチオ、アシル、アシルオキシ、置換基を有していてもよいイミノ、カ ルボキシ、低級アルコキシカルボニル、カルバモイル、低級アルキルカルバモイル、チオ カルバモイル、低級アルキルチオカルバモイル、カルバモイルオキシ、低級アルキルカル バモイルオキシ、チオカルバモイルオキシ、低級アルキルチオカルバモイルオキシ、スル ファモイル、低級アルキルスルファモイル、低級アルキルスルホニル、低級アルキルスル ホニルオキシ、シアノ、ニトロ、シクロアルキル、シクロアルキルオキシ、置換基を有し ていてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していて もよいアリールチオ、置換基を有していてもよいアリール低級アルコキシ、置換基を有し ていてもよいアリールスルホニルオキシ、置換基を有していてもよいヘテロ環式基(ここ で置換基とはハロゲン、ヒドロキシ、低級アルキル、ハロゲノ低級アルキル、ヒドロキシ 低級アルキル、低級アルケニル、低級アルコキシ、アリール低級アルコキシ、ハロゲノ低 級アルコキシ、カルボキシ、低級アルコキシカルボニル、カルバモイル、低級アルキルカ ルバモイル、アリールカルバモイル、アシルアミノ、メルカプト、低級アルキルチオ、ア ミノ、低級アルキルアミノ、アシル、アシルオキシ、シアノ、ニトロ、フェニル、ヘテロ環式基等)が挙げられ、任意の位置がこれらから選択される1以上の基で置換されていてもよい。

[0026]

「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アルケニル」、「置換基を有していてもよい低級アルキニル」等の置換基としての「ヘテロ環式基」として好ましくはモルホリノ、ピペリジノ、ピペラジノ、フリル、チエニルまたはピリジルである。

[0027]

「ハロゲノ低級アルキル」、「ヒドロキシ低級アルキル」、「低級アルコキシ」、「ハロゲノ低級アルコキシ」、「アリール低級アルコキシ」、「ヒドロキシ低級アルコキシ」、「低級アルキルアミノ」、「低級アルキルチオ」、「低級アルキルスルホニル」、「低級アルキルスルホニル」、「低級アルキルカルバモイル」、「低級アルキルチオカルバモイル」、「低級アルキルカルバモイル」、「低級アルキルチオカルバモイル」、「低級アルキルメルファモイル」、「低級アルキシ」、「低級アルキルチオカルバモイルオキシ」、「低級アルキルスルファモイル」、「低級アルコキシカルボニル」および「低級アルコキシカルボニルアミノ」の低級アルキル部分は上記「低級アルキル」と同様である。

[0028]

「置換基を有していてもよい低級アルコキシ」、「置換基を有していてもよい低級アルコキシカルボニル」、「置換基を有していてもよい低級アルキルチオ」、「置換基を有していてもよい低級アルキルスルホニルオキシ」および「置換されていてもよいイミノ」の置換基は上記「置換基を有していてもよい低級アルキル」の置換基と同様である。

[0029]

「アシル」とは(a)炭素数 $1\sim10$ 、さらに好ましくは炭素数 $1\sim6$ 、最も好ましくは炭素数 $1\sim3$ の直鎖もしくは分枝状のアルキルカルボニルもしくはアルケニルカルボニル、(b)炭素数 $4\sim9$ 、好ましくは炭素数 $4\sim7$ のシクロアルキルカルボニル、(c)炭素数 $7\sim11$ のアリールカルボニルおよび(d)ホルミルを包含する。具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、シクロプロピルカルボニル、シクロヘキシルカルボニル、シクロオクチルカルボニルおよびベンゾイル等を包含する。

[0030]

-「アシルアミノ」および「アシルオキシ」のアシル部分は上記「アシル」と同様である

[0031]

「置換基を有していてもよいアシル」の置換基としては上記「置換基を有していてもよい低級アルキル」の置換基と同様のものが挙げられる。さらに、シクロアルキルカルボニルおよびアリールカルボニルは低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニルおよび/またはヒドロキシ低級アルケニル等で置換されていてもよい。

[0032]

「置換基を有していてもよいアミノ」の置換基としては上記「置換基を有していてもよい低級アルキル」と同様のものが挙げられる。さらに低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニルおよび/またはヒドロキシ低級アルケニル等で置換されていてもよい。

[0033]

「置換基を有していてもよいカルバモイル」、「置換基を有していてもよいチオカルバモイル」、「置換基を有していてもよいカルバモイルオキシ」、「置換基を有していてもよいチオカルバモイルオキシ」、「置換基を有していてもよいヒドラジノカルボニル」の置換基としては上記「置換基を有していてもよい低級アルキル」と同様のものが挙げられ

る。

[0034]

「シクロアルキル」とは、炭素数3~8、好ましくは5または6の環状のアルキルを包含する。具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルおよびシクロオクチル等が挙げられる。

[0035]

「アリール」とは、フェニル、ナフチル、アントリルおよびフェナントリル等を包含する。また、他の非芳香族炭化水素環式基と縮合しているアリールも包含し、具体的にはインダニル、インデニル、ビフェニルイル、アセナフテニルおよびフルオレニル等が挙げられる。他の非芳香族炭化水素環と縮合している場合、結合手はいずれの環に有していてもよい。アリールの好ましい例としてはフェニルが挙げられる。

[0036]

「置換基を有していてもよいアリール」の置換基としては、特に記載のない限り、上記「置換基を有していてもよい低級アルキル」の置換基と同様のものが挙げられる。さらに、低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニル、ヒドロキシ低級アルケニル、アルキレンジオキシおよび/またはオキソ等で置換されていてもよい。

[0037]

「アリールオキシ」、「アリールチオ」、「アリール低級アルコキシ」、「アリールアミノ」および「アリールスルホニルオキシ」のアリール部分は上記「アリール」と同様である。

[0038]

「置換基を有していてもよいアリールオキシ」、「置換基を有していてもよいアリールチオ」および「置換基を有していてもよいアリールスルホニルオキシ」の置換基は特に記載のない限り、上記「置換基を有していてもよいアリール」の置換基と同様である。

[0039]

「ヘテロ環式基」とは、O、SおよびNから任意に選択されるヘテロ原子を環内に1以 上有するヘテロ環を包含し、具体的にはピロリル、イミダゾリル、ピラゾリル、ピリジル 、ピリダジニル、ピリミジニル、ピラジニル、トリアゾリル、トリアジニル、テトラゾリ ル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル 、チアジアゾリル、フリルおよびチエニル等の5~6員のヘテロアリール;インドリル、 イソインドリル、インダゾリル、インドリジニル、キノリル、イソキノリル、シンノリニ ル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリ ジニル、ベンゾピラニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサ ゾリル、ベンズオキサジアゾリル、ベンゾイソチアゾリル、ベンゾチアゾリル、ベンゾチ アジアゾリル、ベンゾフリル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル 、イミダゾピリジル、トリアゾロピリジル、イミダゾチアゾリル、ピラジノピリダジニル 、キナゾリニル、テトラヒドロキノリル、テトラヒドロベンゾチエニル等の2環の縮合へ テロ環式基;カルバゾリル、アクリジニル、キサンテニル、フェノチアジニル、フェノキ サチイニル、フェノキサジニル、ジベンゾフリル等の3環の縮合ヘテロ環式基;インドリ ニル、ジオキサニル、チイラニル、オキシラニル、オキサチオラニル、アゼチジニル、チ アニル、ピロリジニル、ピロリニル、イミダゾリジニル、イミダゾリニル、ピラゾリジニ ル、ピラゾリニル、ピペリジル、ピペリジノ、ピペラジニル、ピペラジノ、モルホリニル 、モルホリノ、オキサジアジニル、ジヒドロピリジル等の非芳香族へテロ環式基を包含す る。ヘテロ環式基が縮合環式基である場合、結合手をいずれの環に有していてもよい。

$I \cap A \cap A \cap I$

 \mathbb{R}^1 および \mathbb{R}^2 としての「ヘテロ環式基」の好ましい例はピリジル、モルホリノ、ピペラジノまたはピペリジノである。

[0041]

「置換基を有していてもよいヘテロ環式基」の置換基は上記「置換基を有していてもよ 出証特2004-3122736

[0042]

「ヘテロ環アミノ」のヘテロ環部分は上記「ヘテロ環式基」と同様である。

[0043]

 $\lceil R^6$ は R^{14} と共に隣接する原子と一緒になって環を形成」する、または $\lceil R^{14}$ は R^6 と 共に隣接する原子と一緒になって環を形成」するとは、 R^{14} と R^{6} が、式(I)のベンゼ ン環に縮合する1~3のヘテロ原子を持つ4~7員環を形成することを意味する。ベンゼ ン環との縮合複素環の好ましい例は、置換基を有していてもよい2環のヘテロ環であり、 例えば、インドール、ベンズイミダゾール、1H-インダゾール、2,3-ジヒドロインドール 、1,2,3,4-テトラヒドロキノリン、2,3-ジヒドロ-1,4-ベンゾオキザジン、 2,3-ジヒドロ ベンズチアゾール、2,3-ジヒドロベンズオキサゾール、1,2-ジヒドロキノリン、1,4-ジヒ ドロキノリン等が挙げられる。「置換基を有していてもよい2環のヘテロ環」の置換基は 、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基である。置換基として は、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を 有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を 有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基 を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよ いアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリ ールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特に、ベンゼン環に 縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、置換基を有し ていてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有 していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよいヘテロ環」の好ましい例は、

【化41】

(式中、

 R^5 、 R^7 、 R^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい 低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低 級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低 級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、 置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基 を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、 \mathbb{R}^9 および \mathbb{R}^{10} は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノ または置換基を有していてもよいアリールであり、

 $R^{20} \sim R^{22}$ は各々独立して水素、ハロゲン、ヒドロキシ、シアノ、置換基を有していても よい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよ い低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよ い低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミ ノ、置換基を有していてもよいイミノ、置換基を有していてもよいアリール、置換基を有 していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を 有していてもよいヘテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級 アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルス ルホニルまたは置換基を有していてもよいアリールスルホニル)、-CR¹²R¹³CO-、 $-(CR^{12}R^{13})mO-,-(CR^{12}R^{13})mS-または<math>-O(CR^{12}R^{13})m-($ ここ で \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{13} は名々独立して水素または低級アルキルであり、 \mathbb{R}^{13} は あり(特に好ましくは、一〇一、一S一、特に一S一である)、 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)である。

[0044]

 $\lceil R^6 \land R^9$ および R^{10} は隣接する炭素原子と一緒になって環を形成」する、または $\lceil R \rceil$ 9 および R^{10} と R^6 は隣接する炭素原子と一緒になって環を形成」するとは、 R^6 と R^9 およ $m oldsymbol{U}\,R^{10}$ が、式 m (I) のベンゼン環に縮合する $m 0\sim3$ のヘテロ原子を持つ $m 4\sim7$ 員環を形成 することを意味する。ベンゼン環との縮合環の好ましい例は、置換基を有していてもよい 炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)または置換 基を有していてもよい2環のヘテロ環である。例えば、インドール、ベンゾチオフェン、 ベンゾフラン、ベンゾイソキサゾール、1H-インダゾール、ナフタレン、キナゾリン、イ ソキノリン、2H-クロメン、1,4-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン 等が挙げられる。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換 基を有していてもよいナフタレン) 」および「置換基を有していてもよい 2 環のヘテロ環 」の置換基は、式(Ⅰ)中のベンゼン環上の置換基と同様の置換基及びオキソ基である。 置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキ ル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニ ル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキル チオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有 していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有してい てもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特に、 ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、 置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ 、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有し ていてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ま しい例は、

【化42】

(式中、

 R^5 、 R^7 、 R^8 および R^{20} ~ R^{22} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を 有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有 していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有 していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいヘテロ環式基であり、

 X^1 は-O-、-S-、-NR 11 -(ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、-CR 12 R 13 CO-、- (CR 12 R 13) mO-、- (CR 12 R 13) mS-または-O (CR 12 R 13) m- (ここで 12 および 13 は各々独立して水素または低級アルキルであり、mは 12 3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

R¹⁴は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルであり、

 R^{15} 、 R^{16} 、 R^{26} および R^{27} は各々独立して水素または低級アルキルであり、 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)である。

[0045]

 $\lceil R^6$ は R^9 と共に隣接する炭素原子と一緒になって環を形成」する、または $\lceil R^9$ は R^6 と共に隣接する炭素原子と一緒になって環を形成」するとは、 R^6 と R^9 が、式(I)のベ ンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成することを意味する。べ ンゼン環との縮合環の好ましい例は、置換基を有していてもよい炭素数8~11の環の炭 素環 (特に、置換基を有していてもよいナフタレン) または置換基を有していてもよい 2 環のヘテロ環である。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、 置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテ 口環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基であ る。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級ア ルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アル キニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アル キルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基 を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有し ていてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特 に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキ シ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキル チオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

【化43】

(式中、

 R^5 、 R^7 、 R^8 、 R^{20} および R^{21} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり(特に好ましくは、-O-、-S-、特に-S-である)、 R^{15} および R^{16} は各々独立して水素または低級アルキルであり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)である。

[0046]

 $\lceil R^6 \lor R^{15}$ および R^{16} は隣接する炭素原子と一緒になって環を形成しする、または \lceil R^{15} および R^{16} と R^{6} は隣接する炭素原子と一緒になって環を形成」するとは、 R^{6} と R^{15} および \mathbb{R}^{16} が、式(I)のベンゼン環に縮合する $0 \sim 3$ のヘテロ原子を持つ $4 \sim 7$ 員環を 形成することを意味する。ベンゼン環との縮合環の好ましい例は、置換基を有していても よい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)または 置換基を有していてもよい2環のヘテロ環である。例えば、インドール、ベンゾチオフェ ン、ベンゾフラン、ベンゾイソキサゾール、1H-インダゾール、ナフタレン、キナゾリン 、イソキノリン、2H-クロメン、1,4-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタ レン等が挙げられる。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、 置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテ ロ環 | の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基であ る。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級ア ルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アル キニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アル キルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基 を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有し ていてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特 に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキ シ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキル チオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数 $8 \sim 11$ の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい 2 環のヘテロ環」の好ましい例は、

【化44】

(式中、

 R^5 、 R^7 、 R^8 および $R^{20} \sim R^{22}$ は各々独立して水素、ハロゲン、ヒドロキシ、置換基を 有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有 していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有 していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有してい てもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリー ルオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテ 口環式基であり、

 \mathbb{R}^9 および \mathbb{R}^{10} は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノ または置換基を有していてもよいアリールであり、

R²³は各々独立して水素、置換基を有していてもよい低級アルキル、置換基を有していて もよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していて もよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有して いてもよいアリールスルホニル、置換基を有していてもよいアミノ、置換基を有していて もよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルス ルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}C$ O-, $-(CR^{12}R^{13})$ mO-, $-(CR^{12}R^{13})$ mS- $\pm tit-O(CR^{12}R^{13})$ m-(ここで \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{12} の整 数である)であり(特に好ましくは、-O-、-S-、特に-S-である)、 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)である。

[0047]

 $\lceil \operatorname{R}^6$ は R^{24} と共に隣接する炭素原子と一緒になって環を形成」する、または $\lceil \operatorname{R}^{24}$ は R^6 と共に隣接する炭素原子と一緒になって環を形成」するとは、 R^6 と R^{24} が、式(I) のベンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成することを意味する 。ベンゼン環との縮合環の好ましい例は、置換基を有していてもよい炭素数8~11の環 の炭素環または置換基を有していてもよい2環のヘテロ環である。「置換基を有していて もよい炭素数8~11の環の炭素環」および「置換基を有していてもよい2環のヘテロ環 | の置換基は、式 (I) 中のベンゼン環上の置換基と同様の置換基及びオキソ基である。 置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキ ル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニ ル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキル チオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有 していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有してい てもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特に、 ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、 置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ 、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

【化45】

(式中、

 R^5 、 R^7 、 R^8 および R^{20} \sim R^{23} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 、 R^{10} および R^{25} は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、-N R^{11} - (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、-C R^{12} R^{13} C O-、- (C R^{12} R^{13}) m O-、- (C R^{12} R^{13}) m S-または-O (C R^{12} R^{13}) m - (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整

数である) であり(特に好ましくは、-O-、-S-、特に-S-である)、 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)である。

[0048]

「 R^9 は R^{25} と一緒になって結合を形成」する、または「 R^{25} は R^9 と一緒になって結合を形成」するとは、

【化46】

(式中、

 R^{10} および R^{24} は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)であることを意味する。

[0049]

「 R^9 は R^{10} と一緒になって環を形成」するとは、 R^9 と R^{10} が、 $0\sim3$ のヘテロ原子を持つ $3\sim7$ 員環を形成することを意味する。該環の好ましい例は、置換基を有していてもよい炭素数 $3\sim7$ の炭素単環または置換基を有していてもよいヘテロ単環である。例えば、シクロアルカン(シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサンおよびシクロヘプタン)およびオキサン等が挙げられる。「置換基を有していてもよい長妻を有していてもよい「置換基を有していてもよい「置換基を有していてもよい「置換基を有していてもよい「置換基を有していてもよい「である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキール、置換基を有していてもよい低級アルカニル、置換基を有していてもよい低級アルカニル、置換基を有していてもよいでもよいでもよいでリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいのテロ環式基、オキツである。特に、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキルが好ましい

なお、「置換基を有していてもよい炭素数3~7の炭素単環(特に、置換基を有していてもよい3員環)」および「置換基を有していてもよいへテロ単環」の好ましい例は、

【化47】

(式中、

R⁵、R⁶、R⁷、R⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数である)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 X^2 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、-C=C-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい下シル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである) $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)または $-COCR^{23}R^{24}-$ (ここで R^{23} および R^{24} は各々独立して水素または低級アルキルである)

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)である。

[0050]

「 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成」する、または「 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成」するとは、 R^{15} と R^{10} が、 $0 \sim 3$ のヘテロ原子を持つ $4 \sim 7$ 員環を形成することを意味する。該環の好ましい例は、置換基を有していてもよい炭素数 $3 \sim 7$ の炭素単環または置換基を有していてもよいヘテロ単環である。例えば、チオフェン、ピリミジン、フラン、ピリジン、イミダゾール、イソチアゾール、イソキサゾール、ピリダジン、ピラジン、チアゾール、オキサゾール等が挙げられる。

特に、 R^{16} が R^9 と一緒になって結合を形成している場合、 R^9 および R^{10} が R^{15} と共に隣接する炭素原子と一緒になって環を形成している場合が好ましい。「置換基を有していてもよい炭素数 $3\sim7$ の炭素単環」および「置換基を有していてもよいヘテロ単環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよい低級アルキルチオ、置換基を有し

ていてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリ ール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチ オ、置換基を有していてもよいヘテロ環式基、オキソである。特に、ハロゲン、ヒドロキ シ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキル チオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数3~7の炭素単環(特に、置換基を有してい てもよいフェニル)」および「置換基を有していてもよいヘテロ単環」の好ましい例は、

【化48】

 R^5 、 R^7 、 R^8 、 R^{20} および R^{21} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を 出証特2004-3122736 有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{16} は各々独立して水素または低級アルキルであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})mO-$ (ここで $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mO-$ (ここで $-(CR^{12}R^{13})mO-$ (ここで $-(CR^{12}R^{13})mO-$) である)、 $-(CR^{12}R^{13})mO-$ (ここで $-(CR^{12}R^{13})mO-$) である)である。

[0051]

「 R^9 は R^{16} と一緒になって結合を形成」する、または「 R^{16} は R^9 と一緒になって結合を形成」するとは、

【化4】

(式中、

 R^{10} および R^{15} は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)であることを意味する。

[0052]

 $\bar{\Gamma}$ R¹⁶はR^{$\bar{9}$}およびR¹⁵はR¹⁰と各々一緒になって結合を形成」するとは、

【化49】

(式中、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である)であることを意味する。

[0053]

本発明化合物には、各々の化合物の生成可能であり、製薬上許容される塩を包含する。「製薬上許容される塩」としては、例えば塩酸、硫酸、硝酸またはリン酸等の無機酸の塩;パラトルエンスルホン酸、メタンスルホン酸、シュウ酸またはクエン酸等の有機酸の塩;アンモニウム、トリメチルアンモニウムまたはトリエチルアンモニウム等の有機塩基の塩;ナトリウムまたはカリウム等のアルカリ金属の塩;およびカルシウムまたはマグネシ

ウム等のアルカリ土類金属の塩等を挙げることができる。

[0054]

本発明化合物はその溶媒和物を包含し、化合物(I)に対し、任意の数の溶媒分子と配位していてもよい。好ましくは水和物である。

[0055]

本発明化合物(I)が不斉炭素原子を有する場合には、ラセミ体および全ての立体異性体(ジアステレオマー、鏡像異性体等)を含む。また、本発明化合物(I)が二重結合を有する場合には、二重結合の置換基配置につき、幾何異性体が存在するときはそのいずれをも含む。

[0056]

本発明化合物(I)は、例えば次の方法で合成する事が出来る。

(第1法)化合物(I a)($X^1=O$ 、($CR^{12}R^{13}$)mO、O($CR^{12}R^{13}$)m)の合成

【化5】

(式中、AおよびDは一方がOHで他方が(CR¹²R¹³)mOHであるか、共にOHであり、その他の記号は前記と同義)

式 (II-1) および式 (III) で示される化合物は公知の化合物を用いてもよく、公知化合物から常法により誘導された化合物を用いてもよい。

[0057]

(第 2 法) 化合物(I b)($X^1 = O$ 、S またはN R^{11})の合成

【化6】

(式中、LGはハロゲン、低級アルキルスルホニルオキシ等の脱離基であり、その他の記号は前記と同義)

式(II-2)で示される化合物と式(III)で示される化合物を反応させることにより、化合物(Ib)を合成することもできる。反応は適当な溶媒中、塩基存在下、 $-10\sim180$ C、好ましくは $0\sim150$ Cで、 $0.5\sim90$ 時間行えばよい。溶媒は上記第 1 法に記載と同様の溶媒を用いることができる。塩基としては例えば金属水素化物(例、水素化ナトリウム、水素化カリウムなど)、金属水酸化物(例、水酸化ナトリウム、水酸化カリウム、水酸化バリウムなど)、金属炭酸塩(例、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸セシウムなど)、金属アルコキシド(例、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tert- で、tert- Cを取り、tert- Cを取り、tert

式(II-2)および式(III)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0058]

(第3法) 化合物 (Ic) (X¹=CR¹²R¹³CO) の合成

式(Ic)で示される化合物で表される化合物は以下のルートで合成できる。

【化7】

(式中、 X^2 はO、Sまたは NR^{14} であり、Rは低級アルキル、LGはハロゲン、低級アルキルスルホニル等の脱離基、Hа lはハロゲン、Proは保護基であり、その他の記号は前記と同義)

式(II-3)で示される化合物と式(IV)で示される化合物を付加反応に付し、式(V)で示される化合物を得る。反応は、好ましくは適当な溶媒中、塩基存在下で-50 $\mathbb{C}\sim150$ \mathbb{C} 、好ましくは-20 $\mathbb{C}\sim100$ \mathbb{C} で、 $0.5\sim60$ 時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。

次に化合物(V)を酸で処理して式(VI)で示される化合物を得る。反応は酢酸、水等の溶媒中または無溶媒下、塩酸、硫酸等の酸を用いて0 $C\sim180C$ 、好ましくは20 $C\sim150C$ で、0.5 ~90 時間反応させればよい。目的化合物が R^{13} が水素である場合は本工程で目的化合物が得られるが、目的化合物が R^{13} が置換基を有していてもよい低級アルキルである場合には、本工程の後または次工程の後等、適当な段階で常法によりアルキル化すればよい。

最後に化合物(VI)を脱保護し、得られたフェノール体とハロゲン化合物を反応させて目的化合物(Ic)を得る。脱保護は常法により行うことができる。反応は塩基存在下、適当な溶媒中で目的とする $CR^9R^{10}X^3$ 基を有する対応するハロゲン化物と-10~180 C、好ましくは0~150 Cで0.5~90 時間反応させればよい。溶媒としては上記第 1 法に記載のものを用いることができる。塩基としては、上記第 2 法に記載のものを

用いることができる。式(II-3)および式(VI)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0059]

(第 4 法)化合物(I d)($X^3 = C$ (= NH)NHOH)の合成式(I d)で表される化合物は以下の方法で合成できる。

【化8】

(式中、各記号は前記と同義)

式(V I I I)で示される化合物をヒドロキシルアミンと反応させ、目的化合物(I d)を得ることができる。反応は適当な溶媒中で 0 \mathbb{C} ~ 1 5 0 \mathbb{C} 、好ましくは 2 0 \mathbb{C} ~ 1 0 \mathbb{C} で 0 . 5 時間 \sim 9 0 時間反応させればよい。溶媒としては上記第 1 法に記載のものを用いることができる。塩基としては、上記第 2 法に記載のものを用いることができる。

式(VIII)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0060]

(第 5 法) 化合物 (I e) ($X^3 =$ オキサジアゾロン) の合成

【化9】

(式中、各記号は前記と同義)

上記第 4 法で得られた式(I d)で示される化合物とCDI、ホスゲン、トリホスゲン等を反応させ、目的化合物(I e)を得ることができる。反応は適当な溶媒中で-30 ~150 ℃、好ましくは0 ℃ -100 ℃ -100 ℃ -100 0 . -100 0 時間反応させればよい。溶媒としては上記第 -10 1 法に記載のものを用いることができる。塩基としては、上記第 -10 2 法に記載のものを用いることができる。

目的化合物(Ie)のオキサジアゾロンが R^{17} で置換されている化合物である場合、上記方法により R^{17} がHである化合物を得た後、常法により置換基を導入する反応に付せばよい。

[0061]

(第6法) 化合物 (If) ($X^3 =$ オキサジアジノン) の合成

【化10】

(式中、各記号は前記と同義)

上記第 4 法で得られた式(I d)で示される化合物とハロゲン化合物を反させ、目的化合物(I e)を得ることができる。反応は適当な溶媒中で-30 $\mathbb{C} \sim 150$ \mathbb{C} 、好ましくは 0 $\mathbb{C} \sim 100$ \mathbb{C} で0. 5 時間 ~ 90 時間反応させればよい。溶媒としては上記第 1 法に記載のものを用いることができる。塩基としては、上記第 2 法に記載のものを用いることができる。

[0062]

(第7法) 化合物 (Ig) (X¹=0, SまたはNR¹¹) の合成

式(Ig)で示される化合物で表される化合物は以下のルートで合成できる。

【化11】

(式中、各記号は前記と同義)

式(II-2)で示される化合物と式(IX)で示される化合物を付加反応に付し、式(X)で示される化合物を得る。反応は好ましくは適当な溶媒中、塩基存在下で-50 \sim -150 \sim 、好ましくは-20 \sim -100 \sim で、0.5 \sim 60時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。

次に化合物(X)を化合物(X I)とカップリング反応に付し、式(I g)で示される化合物を得る。反応は、好ましくは適当な溶媒中、塩基およびパラジウム触媒存在下で-50 \mathbb{C} ~200 \mathbb{C} 、好ましくは20 \mathbb{C} ~150 \mathbb{C} で、0.5~60時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。パラジウム触媒としては種々パラジウム触媒を用いることができるが、好ましくはトリス(ビスベンジリデンアセトン)ジパラジウムをトリーのートリルホスフィンと組み合わせたもの、または酢酸パラジウムとトリフェニルホスフィンと組み合わせたものなどが用いられる。

式(II-2)、式(IX)および式(XI)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0063]

上記のいずれかの方法により得られた化合物が $X^3 = COOR^{17}$ のエステル体である場合、この化合物を常法により加水分解して $X^3 = COOH$ のカルボン酸体を得ることができる。

必要に応じ、上記製造法の適当な段階においていずれかの置換基を公知の有機合成反応 を利用し、異なる置換基に変換してもよい。

例えば、いずれかの化合物がハロゲンを有している場合、DMF、テトラヒドロフラン等の溶媒中、水素化ナトリウム、水素化カリウム等の塩基および水酸化アルカリ金属、炭酸水素アルカリ金属、炭酸アルカリ金属、有機塩基等の脱酸剤存在下、-20℃~100℃でアルコールと反応させれば置換基が低級アルコキシに変換された化合物が得られる。

また、いずれかの化合物がヒドロキシを有している場合、二クロム酸ピリジニウム、ジョーンズ試薬、二酸化マンガン、過マンガン酸カリウム、四酸化ルテニウム等の酸化剤とジメチルホルムアミド、テトラヒドロフラン、ジクロロメタン、ベンゼン、アセトン等の溶媒中で反応させることにより、置換基がカルボキシに変換された化合物が得られる。

[0064]

また、必要であれば、適当な段階で化合物のアミノまたはヒドロキシを常法により保護した後に反応に付し、適当な段階で酸または塩基で処理して脱保護してもよい

アミノ保護基としてはフタルイミド、低級アルコキシカルボニル、低級アルケニルオキシカルボニル、ハロゲノアルコキシカルボニル、アリール低級アルコキシカルボニル、トリアルキルシリル、低級アルキルスルホニル、ハロゲノ低級アルキルスルホニル、アリールスルホニル、低級アルキルカルボニル、アリールカルボニル等を使用することができる

ヒドロキシ保護基としてはアルキル(t-ブチル等)、アラルキル(トリフェニルメチル、ベンジル)、トリアルキルシリル(t-ブチルジメチルシリル、トリイソプロピルシリル等)、アルキルジアリールシリル(t-ブチルジフェニルシリル等)、トリアラルキルシリル(トリベンジルシリル等)、アルコキシアルキル(メトキシメチル、1-エトキシエチル、1-メチル-1-メトキシエチル等)、アルコキシアルコキシアルコキシアルキル(メトキシエトキシメチル等)、アルキルチオアルキル(メチルチオメチル等)、テトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル等)、テトラヒドロチオピラニル(テトラヒドロチオピラニル(テトラヒドロチオピラニル(テトラヒドロチオピラン-2-イル等)、テトラヒドロチオフラニル(テトラヒドロチオフラン-2-イル等)、アラルキルオキシアルキル(ベンジルオキシメチル等)アルキルスルホニル、アシル、2-トルエンスルホニル等が挙げられる。

脱保護反応はテトラヒドロフラン、ジメチルホルムアミド、ジエチルエーテル、ジクロロメタン、トルエン、ベンゼン、キシレン、シクロヘキサン、ヘキサン、クロロホルム、酢酸エチル、酢酸ブチル、ペンタン、ヘプタン、ジオキサン、アセトン、アセトニトリルまたはそれらの混合溶媒等の溶媒中、ヒドラジン、ピリジン、水酸化ナトリウム、水酸化カリウム等の塩基または塩酸、トリフルオロ酢酸、フッ化水素酸等の酸を用いて行えばよい。

[0065]

本発明化合物のうち、好ましい化合物は以下の通りである。

1)式:

【化12】

で示される部分 (A部分) が下記のいずれかである化合物、 【0066】

【表1】

$$\begin{bmatrix}
R^{2} & R^{3} & R^{4} \\
N & R^{5}
\end{bmatrix} = \begin{bmatrix}
R^{20} & R^{3} & R^{4} \\
CH_{2} & R^{3} & R^{4}
\end{bmatrix}$$

$$A \qquad a1$$

A1	プ a1		1		
3 1	a1				
1.0		4-CI	0	Н	H,H
A2	a1	4-CI	0	Н	Ме,Ме
A3	a1	4-CI	0	H	Et,Et
A4	a1	4-CI	0	Н	H.Et
A5	a1	4-CI	0	Н	H,Ph
A6	a1	4-CI	0	Н	H,C6H4-4-F
A7	a1	4-CI	0	Me	H,H
A8	a1	4-CI	0	Me	Ме,Ме
A9	a1	4-CI	0	Me	Et,Et
A10	a1	4-CI	0	Me	H.Et
A11	a1	4-CI	0	Me	H,Ph
A12	a1	4-CI	0	Me	H,C6H4-4-F
A13	a1	4-Ci	0	ОМе	н,н
A14	a1	4-CI	0	OMe	Me,Me
A15	a1	4-CI	0	OMe	Et,Et
A16	a1	4-CI	0	OMe	H.Et
A17	a1	4-CI	0	OMe	H,Ph
A18	a1	4-CÎ	0	OMe	H,C6H4-4-F
A19	a1	4-C1	0	CH2OH	H,H
A20	a1	4-CI	0	CH2OH	H,C6H4-4-F
A21	a1	4-Cl	0	CH2OMe	H,H
A22	a1	4-CI	0	CH2OMe	Me,Me
A23	a1	4−Cl	0	CH2OMe	Et,Et
A24	a1	4-CI	0	CH2OMe	H.Et
A25	a1	4-CI	0	CH2OMe	H,Ph
A26	a1	4-CI	0	CH2OMe	H,C6H4-4-F
A27	a1	4−CI	0	CF3	Н,Н
A28	a1	4-CI	0	CF3	Ме,Ме
A29	a1	4-CI	0	CF3	Et,Et
A30	a1	4-CI	0	CF3	H.Et
A31	a1	4−CI	0	CF3	H,Ph
A32	a1	4–CI	0	CF3	H,C6H4-4-F
A33	a1	4–CI	0	CH2OPh	н,н

【表2】

A34	a1	4-CI	o l	CH2OPh	H,C6H4-4-F
A35	a1	4-CI	0	CH2OCH2Ph	H.H
A36	a1	4-CI	0	CH2OCH2Ph	H,C6H4-4-F
A37	a1	4-CI	0	CH2-morpholino	Н,Н
A38	a1	4-Cl	0	CH2-morpholino	Me,Me
A39	al	4-CI	0	CH2-morpholino	Et,Et
A40	a1	4-CI	0	CH2-morpholino	H.Et
A41	a1	4-CI	0	CH2-morpholino	H,Ph
A42	a1	4-CI	0	CH2-morpholino	H,C6H4-4-F
A43	a1	4-CI	0	CH2NHBu	H,H
A44	a1	4-CI	0	CH2NHBu	H,C6H4-4-F
A45	a1	4-CI	0	C≣CPh	H,H
A46	a1	4–CI	0	C≡CPh	H,C6H4-4-F
A47	a1	4-CI	0	Ph	H,H
A48	a1	4-CI	0	Ph	H,C6H4-4-F
A49	a1	4-CI	0	C6H4-4-CF3	Н,Н
A50	a1	4-CI	0	C6H4-4-CF3	H,C6H4-4-F
A51	a1	4-CI	0	C6H4-3-CF3	H,H
A52	а1	4-CI	0	C6H4-3-CF3	H,C6H4-4-F
A53	a1	4-CI	0	C6H4-4-OH	H,H
A54	a1	4-CI	0	· С6Н4-4-ОН	H,C6H4-4-F
A55	a1	4-Ci	0	CH2Ph	H,H
A56	a1	4-CI	0	CH2Ph	H,C6H4-4-F
A57	a1	4−CI	0	CH2C6H4-4-CF3	H,H
A58	a1	4-CI	0	CH2C6H4-4-CF3	Me,Me
A59	a1	4-CI	0	CH2C6H4-4-CF3	Et,Et
A60	a1	4-CI	0	CH2C6H4-4-CF3	H.Et
A61	a1	4-CI	0	CH2C6H4-4-CF3	H,Ph
A62	a1	4–CI	0	CH2C6H4-4-CF3	H,C6H4-4-F
A63	a1	4-CI	0	CH2C6H4-4-OCF3	H,H
A64	a1	4–CI	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A65	a1	4-CI	0	CH2C6H4-4-Ph	H,H
A66	a1	4-CI	0	CH2C6H4-4-Ph	H,C6H4-4-F
A67	a1	4–CI	0	CH2C6H4-2-CI	H,H
A68	a1	4-CI	0	CH2C6H4-2-CI	H,C6H4-4-F
A69	a1	4−CI	0	(CH2)2Ph	Н,Н
A70	a1	4-CI	0	(CH2)2Ph	H,C6H4-4-F
A71	a1	4–CI	0	SPh	H,H
A72	a1	4-CI	0	SPh	H,C6H4-4-F
A73	a1	4-CI	0	NH2	H,H
A74	a1	4-CI	0	NH2	H,C6H4-4-F
A75	a1	4-CI	0	NHMe	H,H
A76	a1	4-CI	0	NHMe	H,C6H4-4-F
A77	a1	4-CI	0	CH2-piperazino-Ph	јн,н

【表3】

A78	a1	4-CI	0	CH2-piperazino-Ph	H,C6H4-4-F
A79	a1	4-CI	0	CH2-piperidino	H,H
A80	a1	4-CI	0	CH2-piperidino	H,C6H4-4-F
A81	a1	4-CI	0	OCH2Ph	н,н
A82	a1	4-CI	0	OCH2Ph	H,C6H4-4-F
A83	a1	4-CI	0	Ac	н,н
A84	a1	4-CI	0	Ac	H,C6H4-4-F
A85	a1	4-CI	0	CONH2	н,н
A86	a1	4-CI	0	CONH2	H,C6H4-4-F
A87	a1	4-CI	0	CSNH2	H,H
A88	a1	4-C1	0	CSNH2	H,C6H4-4-F
A89	a1	4-CI	0	OCONH2	Н,Н
A90	a1	4-CI	0	OCONH2	H,C6H4-4-F
A91	a1	4-CI	0	OCSNH2	н,н
A92	a1	4-CI	0	OCSNH2	H,C6H4-4-F
A93	a1	4-CI	0	OSO2Me	н,н
A94	a1	4-CI	0	OSO2Me	H,C6H4-4-F
A95	a1	4−CI	0	OSO2Ph	н,н
A96	a1	4-CI	0	OSO2Ph	H,C6H4-4-F
A97	a1	4-CI	0	I	H,H
A98	a1	4-CI	0	I	H,C6H4-4-F
A99	a1	4-CI	1	Н	H,H
A100	a1	4−CI	1	Н	Me,Me
A101	a1	4-Ci	1	Н	Et,Et
A102	а1	4-CI	1	į H	H.Et
A103	a1	4-CI	1	H	H,Ph
A104	a1	4-CI	1	Н	H,C6H4-4-F
A105	a1	4-CI	1	Me	H,H
A106	a1	4-CI	1	Me	Me,Me
A107	a1	4-CI	1	Me	Et,Et
A108	a1	4-Cl	1	Me	H.Et
A109	a1	4-CI	1	Me	H,Ph
A110	a1	4-CI	1	Me	H,C6H4-4-F
A111	a1	4-CI	1	OMe	н,н
A112	a1	4-CI	1	OMe	Ме,Ме
A113	a1	4–CI	1	OMe	Et,Et
A114	a1	4-CI	1	OMe	H.Et
A115	a1	4-CI	1	OMe	H,Ph
A116	a1	4-Cl	1	OMe	H,C6H4-4-F
A117	a1	4-CI	1	CH2OH	H,H
A118	a1	4-CI	1	CH2OH	H,C6H4-4-F
A119	a1	4-CI	1	CH2OMe	H,H
A120	a1	4-CI	1	CH2OMe	Me,Me
A121	a1	4-CI	1	CH2OMe	Et,Et

【0069】

A122	a1	4-CI	1	CH2OMe	H.Et
A123	a1	4-CI	1	CH2OMe	H,Ph
A124	a1	4-CI	1	CH2OMe	H,C6H4-4-F
A125	а1	4−CI	1	CF3	H,H
A126	a1	4-Cl	1	CF3	Ме,Ме
A127	a1	4-CI	1	CF3	Et,Et
A128	a1	4-Cl	1	CF3	H.Et
A129	a1	4-Ci	1	CF3	H,Ph
A130	a1	4-CI	1	CF3	H,C6H4-4-F
A131	a1	4-CI	1	CH2OPh	H,H
A132	a1	4-CI	1	CH2OPh	H,C6H4-4-F
A133	a1	4-CI	1	CH2OCH2Ph	H,H
A134	a1	4-CI	1	CH2OCH2Ph	H,C6H4-4-F
A135	a1	4-CI	1	CH2-morpholino	H,H
A136	a1	4-CI	1	CH2-morpholino	Ме,Ме
A137	a1	4-CI	1	CH2-morpholino	Et,Et
A138	a1	4-CI	1	CH2-morpholino	H.Et
A139	a1	4-Cl	1	CH2-morpholino	H,Ph
A140	a1	4-CI	1	CH2-morpholino	H,C6H4-4-F
A141	a1	4-CI	1	CH2NHBu	H,H
A142	a1	4-CI	1	CH2NHBu	H,C6H4-4-F
A143	a1	4-CI	1	C≣CPh	н,н
A144	a1	4-CI	1	C≣CPh	H,C6H4-4-F
A145	a1	4-CI	1	Ph	H,H
A146	a1	4-CI	1	Ph	H,C6H4-4-F
A147	a1	4-CI	1	C6H4-4-CF3	H,H
A148	a1	4-CI	1	C6H4-4-CF3	H,C6H4-4-F
A149	a1	4-CI	1	C6H4-3-CF3	H,H
A150	a1	4-CI	1	C6H4-3-CF3	H,C6H4-4-F
A151	al	4-CI	1	C6H4-4-OH	н,н
A152	a1	4-CI	1	C6H4-4-OH	H,C6H4-4-F
A153	a1	4-CI	1	CH2Ph	H,H
A154	a1	4-CI	1	CH2Ph	H,C6H4-4-F
A155	a1	4-CI	1	CH2C6H4-4-CF3	H,H
A156	a1	4-CI	1	CH2C6H4-4-CF3	Ме,Ме
A157	a1	4-CI	1	CH2C6H4-4-CF3	Et,Et
A158	a1	4-CI	1	CH2C6H4-4-CF3	H.Et
A159	a1	4-CI	1	CH2C6H4-4-CF3	H,Ph
A160	a1	4-CI	1	CH2C6H4-4-CF3	H,C6H4-4-F
A161	a1	4-CI	1	CH2C6H4-4-OCF3	Н,Н
A162	a1	4-CI	1	CH2C6H4-4-OCF3	H,C6H4-4-F
A163	a1	4−CI	1	CH2C6H4-4-Ph	н,н
A164	a1	4-CI	1	CH2C6H4-4-Ph	H,C6H4-4-F
A165	a1	4-CI	1	CH2C6H4-2-CI	н,н

【表 5】

A166	a1	4-CI	1	CH2C6H4-2-CI	H,C6H4-4-F
A167	a1	4-CI	1	(CH2)2Ph	н,н
A168	a1	4-CI	1	(CH2)2Ph	H,C6H4-4-F
A169	a1	4-CI	1	SPh	н,н
A170	a1	4-CI	1	SPh	H,C6H4-4-F
A171	a1	4-Cl	1	NH2	н,н
A172	a1	4-CI	1	NH2	H,C6H4-4-F
A173	a1	4-CI	1	NHMe	н,н
A174	at	4-CI	1	NHMe	H,C6H4-4-F
A175	a1	4-CI	1	CH2-piperazino-Ph	I '
A176	a1	4-CI	1	CH2-piperazino-Ph	i i
A177	al	4-CI	1	CH2-piperidino	H,H
A178	al	4-CI	1	CH2-piperidino	H,C6H4-4-F
A179	a1	4-CI	1	OCH2Ph	н,н
A180	a1	4-CI	1	OCH2Ph	H.C6H4-4-F
A181	a1	4-CI	1	Ac	н,н
A182	a1	4-CI	1	Ac	H.C6H4-4-F
A183	a1	4-CI	1	CONH2	н,н
A184	a1	4-CI	1	CONH2	H,C6H4-4-F
A185	a1	4-CI	1	CSNH2	н,н
A186	a1	4-Ci	1	CSNH2	H,C6H4-4-F
A187	a1	4-CI	1	OCONH2	н,н
A188	a1	4-CI	1	OCONH2	H,C6H4-4-F
A189	а1	4-CI	1	OCSNH2	H,H
A190	a1	4-CI	1	OCSNH2	H,C6H4-4-F
A191	a1	4−CI	1	OSO2Me	н,н
A192	a1	4-CI	1	OSO2Me	H,C6H4-4-F
A193	a1	4-CI	1	OSO2Ph	H,H
A194	a1	4-CI	1	OSO2Ph	H,C6H4-4-F
A195	a1	4-CI	1	1	H,H
A196	a1	4-CI	1	I	H,C6H4-4-F
A197	a1	4-CI	2	Н	H,H
A198	a1	4-CI	2	Н	Me,Me
A199	a1	4−CI	2	Н	Et,Et
A200	a1	4-CI	2	Н	H.Et
A201	a1	4-CI	2	Н	H,Ph
A202	a1	4-CI	2	Н	H,C6H4-4-F
A203	a1	4-CI	2	Me	H,H
A204	a1	4-CI	2	Me	Me,Me
A205	a1	4-Ci	2	Me	Et,Et
A206	a1	4–CI	2	Me	H.Et
A207	a1	4-Ci	2	Me	H,Ph
A208	a1	4-CI	2	Me	H,C6H4-4-F
A209	a1	4–CI	2	ОМе	H,H

[0071]

【表6】

A210	a1	4-CI	2	OMe	Me,Me
A211	a1	4-CI	2	OMe	Et,Et
A212	a1	4-C1	2	OMe	H.Et
A213	a1	4-CI	2	OMe	H,Ph
A214	at	4-CI	2	OMe	H,C6H4-4-F
A215	at	4-Ci	2	CH2OH	н,н
A216	a1	4-CI	2	CH2OH	H,C6H4-4-F
A217	a1	4−CI	2	CH2OMe	Н,Н
A218	a1	4-CI	2	CH2OMe	Me,Me
A219	a1	4-CI	2	CH2OMe	Et,Et
A220	a1	4-CI	2	CH2OMe	H.Et
A221	a1	4-CI	2	CH2OMe	H,Ph
A222	a1	4-CI	2	CH2OMe	H,C6H4-4-F
A223	a1	4-CI	2	CF3	Н,Н
A224	a1	4-CI	2	CF3	Ме,Ме
A225	a1	4-CI	2	CF3	Et,Et
A226	a1	4-CI	2	CF3	H.Et
A227	a1	4-CI	2	CF3	H,Ph
A228	a1	4−Cl	2	CF3	H,C6H4-4-F
A229	a1	4-CI	2	CH2OPh	н,н
A230	a1	4-CI	2	CH2OPh	H,C6H4-4-F
A231	a1	4−CI	2	CH2OCH2Ph	H,H
A232	a1	4-CI	2	CH2OCH2Ph	H,C6H4-4-F
A233	a1	4-CI	2	CH2-morpholino	H,H
A234	a1	4-CI	2	CH2-morpholino	Me,Me
A235	a1	4-CI	2	CH2-morpholino	Et,Et
A236	a1	4–CI	2	CH2-morpholino	H.Et
A237	a1	4–CI	2	CH2-morpholino	H,Ph
A238	a1	4-CI	2	CH2-morpholino	H,C6H4-4-F
A239	a1	4–CI	2	CH2NHBu	Н,Н
A240	al	4-CI	2	CH2NHBu	H,C6H4-4-F
A241	a1	4-CI	2	C≡CPh	H,H
A242	a1	4-CI	2	C≣CPh	H,C6H4-4-F
A243	a1	4-CI	2	Ph	H,H
A244	a1	4-CI	2	Ph	H,C6H4-4-F
A245	a1	4-CI	2	C6H4-4-CF3	H,H
A246	a1	4-CI	2	C6H4-4-CF3	H,C6H4-4-F
A247	a1	4-CI	2	C6H4-3-CF3	H,H
A248	al	4-CI	2	C6H4-3-CF3	H,C6H4-4-F
A249	a1	4-CI	2	C6H4-4-OH	H,H
A250	a1	4-Cl	2	C6H4-4-OH	H,C6H4-4-F
A251	a1	4-CI	2	CH2Ph	H,H
A252	a1	4-Cl	2	CH2Ph	H,C6H4-4-F
A253	a1	4-CI	2	CH2C6H4-4-CF3	H,H

【0072】 【表7】

A254	a1	4-CI	2	CH2C6H4-4-CF3	Me,Me
A255	a1	4-CI	2	CH2C6H4-4-CF3	Et,Et
A256	a1	4-C!	2	CH2C6H4-4-CF3	H.Et
A257	a1	4-CI	2	CH2C6H4-4-CF3	H,Ph
A258	a1	4-CI	2	CH2C6H4-4-CF3	H,C6H4-4-F
A259	a1	4-CI	2	CH2C6H4-4-OCF3	н,н
A260	a1	4-CI	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A261	a1	4-CI	2	1	н,н
A262	a1	4-CI	2	CH2C6H4-4-Ph	H,C6H4-4-F
A263	a1	4-CI	2	CH2C6H4-2-CI	н,н
A264	a1	4-CI	2	CH2C6H4-2-CI	H,C6H4-4-F
A265	a1	4-CI	2	(CH2)2Ph	H,H
A266	a1	4-CI	2	(CH2)2Ph	H,C6H4-4-F
A267	a1	4-CI	2	SPh	H,H
A268	a1	4-CI	2	SPh	H,C6H4-4-F
A269	a1	4-CI	2	NH2	H,H
A270	a1	4-CI	2	NH2	H,C6H4-4-F
A271	a1	4-CI	2	NHMe	H,H
A272	a1	4-CI	2	NHMe	H,C6H4-4-F
A273	a1	4-CI	2	CH2-piperazino-Ph	
A274	a1	4-CI	2	CH2-piperazino-Ph	H,C6H4-4-F
A275	a1	4-CI	2	CH2-piperidino	H,H
A276	a1	4−CI	2	CH2-piperidino	H,C6H4-4-F
A277	a1	4−CI	2	OCH2Ph	H,H
A278	a1	4−CI	2	OCH2Ph	H,C6H4-4-F
A279	a1	4-CI	2	Ac	H,H
A280	a1	4-Ci	2	Ac	H,C6H4-4-F
A281	a1	4 - Cl	2	CONH2	H,H
A282	a1	4-Ci	2	CONH2	H,C6H4-4-F
A283	a1	4-CI	2	CSNH2	H,H
A284	a1	4-CI	2	CSNH2	H,C6H4-4-F
A285	a1	4-CI	2	OCONH2	H,H
A286	a1	4-CI	2	OCONH2	H,C6H4-4-F
A287	a1	4-CI	2	OCSNH2	H,H
A288	a1	4-CI	2	OCSNH2	H,C6H4-4-F
A289	a1	4-CI	2	OSO2Me	H,H
A290	a1	4-CI	2	OSO2Me	H,C6H4-4-F
A291	a1	4-CI	2	OSO2Ph	H,H
A292	a1	4-CI	2	OSO2Ph	H,C6H4-4-F
A293	a1	4-CI	2	I	H,H
A294	a1	4-CI	2	I	H,C6H4-4-F
A295	a1	4-CF3	0	H	H,H
A296	a1	4-CF3	0	Н	Me,Me
A297	a1	4-CF3	0	Н	Et,Et

【0073】 【表8】

A298	a1	4-CF3	0	Н	H.Et
A299	a1	4-CF3	0	Н	H,Ph
A300	a1	4-CF3	0	Н	H,C6H4-4-F
A301	a1	4-CF3	0	Me	н,н
A302	a1	4-CF3	0	Me	Me,Me
A303	a1	4-CF3	0	Ме	Et,Et
A304	a1	4-CF3	o	Me	H.Et
A305	a1	4-CF3	0	Me	H,Ph
A306	a1	4-CF3	0	Me	H,C6H4-4-F
A307	a1	4-CF3	o	OMe	н,н
A308	a1	4-CF3	ol	OMe	Ме,Ме
A309	al	4-CF3	0	OMe	Et,Et
A310	a1	4-CF3	0	OMe	H.Et
A311	a1	4-CF3	0	OMe	H,Ph
A312	a1	4-CF3	0	OMe	H,C6H4-4-F
A313	a1	4-CF3	0	CH2OH	H,H
A314	a1	4-CF3	0	CH2OH	H,C6H4-4-F
A315	a1	4-CF3	0	CH2OMe	Н,Н
A316	a1	4-CF3	0	CH2OMe	Me,Me
A317	a1	4-CF3	0	CH2OMe	Et,Et
A318	a1	4-CF3	0	CH2OMe	H.Et
A319	a1	4-CF3	0	CH2OMe	H,Ph
A320	a1	4-CF3	0	CH2OMe	H,C6H4-4-F
A321	a1	4-CF3	0	CF3	H,H
A322	a1	4-CF3	0	CF3	Me,Me
A323	a1	4-CF3	0	CF3	Et,Et
A324	a1	4-CF3	0	CF3	H.Et
A325	a1	4-CF3	0	CF3	H,Ph
A326	a1	4-CF3	0	CF3	H,C6H4-4-F
A327	a1	4-CF3	0	CH2OPh	H,H
A328	a1	4-CF3	0	CH2OPh	H,C6H4-4-F
A329	a1	4-CF3	0	CH2OCH2Ph	H,H
A330	a1	4-CF3	0	CH2OCH2Ph	H,C6H4-4-F
A331	a1	4-CF3	0	CH2-morpholino	H,H
A332	a1	4-CF3	0	CH2-morpholino	Me,Me
A333	a1	4-CF3	0	CH2-morpholino	Et,Et
A334	a1	4-CF3	0	CH2-morpholino	H.Et
A335	a1	4-CF3	0	CH2-morpholino	H,Ph
A336	a1	4-CF3	0	CH2-morpholino	H,C6H4-4-F
A337	a1	4-CF3	0	CH2NHBu	H,H
A338	a1	4-CF3	0	CH2NHBu	H,C6H4-4-F
A339	a1	4-CF3	0	C≡CPh	H,H
A340	a1	4-CF3	0	C≡CPh	H,C6H4-4-F
A341	a1	4-CF3	0	Ph	н,н

【0074】 【表9】

A342	a1 Ì	4-CF3	0	Ph	H,C6H4-4-F
A343	a1	4-CF3	0	C6H4-4-CF3	H,H
A344	a1	4-CF3	0	C6H4-4-CF3	H,C6H4-4-F
A345	a1	4-CF3	0	C6H4-3-CF3	H,H
A346	a1	4-CF3	o	C6H4-3-CF3	H,C6H4-4-F
A347	a1	4-CF3	0	C6H4-4-OH	H,H
A348	a1	4-CF3	0	C6H4-4-OH	H,C6H4-4-F
A349	a1	4-CF3	0	CH2Ph	H,H
A350	a1	4-CF3	0	CH2Ph	H,C6H4-4-F
A351	a1	4-CF3	0	CH2C6H4-4-CF3	H,H
A352	a1	4-CF3	0	CH2C6H4-4-CF3	Ме,Ме
A353	a1	4-CF3	0	CH2C6H4-4-CF3	Et,Et
A354	a1	4-CF3	0	CH2C6H4-4-CF3	H.Et
A355	a1	4-CF3	0	CH2C6H4-4-CF3	H,Ph
A356	a1	4-CF3	0	CH2C6H4-4-CF3	H,C6H4-4-F
A357	a1	4-CF3	0	CH2C6H4-4-OCF3	H,H
A358	a1	4-CF3	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A359	a1	4-CF3	0	CH2C6H4-4-Ph	H,H
A360	a1	4CF3	0	CH2C6H4-4-Ph	H,C6H4-4-F
A361	a1	4-CF3	0	CH2C6H4-2-CI	H,H
A362	a1	4-CF3	0	CH2C6H4-2-Cl	H,C6H4-4-F
A363	a1	4-CF3	0	(CH2)2Ph	H,H
A364	a1	4-CF3	0	(CH2)2Ph	H,C6H4-4-F
A365	a1	4-CF3	0	SPh	H,H
A366	a1	4-CF3	0	SPh	H,C6H4-4-F
A367	a1	4-CF3	0	NH2	H,H
A368	a1	4-CF3	0	NH2	H,C6H4-4-F
A369	a1	4-CF3	0	NHMe	H,H
A370	a1	4-CF3	0	NHMe	H,C6H4-4-F
A371	a1	4-CF3	0	CH2-piperazino-Ph	
A372	a1	4-CF3	0	CH2-piperazino-Ph	H,C6H4-4-F
A373	a1	4-CF3	0	CH2-piperidino	H,H
A374	a1	4-CF3	0	CH2-piperidino	H,C6H4-4-F
A375	a1	4-CF3	0	OCH2Ph	H,H
A376	a1	4-CF3	0	OCH2Ph	H,C6H4-4-F
A377	a1	4-CF3	0	Ac	H,H
A378	a1	4-CF3	0	Ac	H,C6H4-4-F
A379	a1	4-CF3	0	CONH2	H,H
A380	a1	4-CF3	0		H,C6H4-4-F
A381	a1	4-CF3	0		H,H
A382	a1	4-CF3	0	1	H,C6H4-4-F
A383	a1	4-CF3	0	}	н,н
A384	a1	4-CF3	0		H,C6H4-4-F
A385	a1	4-CF3	0	OCSNH2	н,н

【0075】 【表10】

A386	a1	4-CF3	0	OCSNH2	H,C6H4-4-F
A387	a1	4-CF3	0	OSO2Me	н,н
A388	a1	4-CF3	0	OSO2Me	H,C6H4-4-F
A389	a1	4-CF3	0	OSO2Ph	H,H
A390	a1	4-CF3	0	OSO2Ph	H,C6H4-4-F
A391	a1	4-CF3	0	I	н,н
A392	a1	4-CF3	0	I	H,C6H4-4-F
A393	a1	4-CF3	1	Н	н,н
A394	a1	4-CF3	1	Н	Me,Me
A395	a1	4-CF3	1	Н	Et,Et
A396	a1	4-CF3	1	Н	H.Et
A397	a1	4-CF3	1	Н	H,Ph
A398	a1	4-CF3	1	Н	H,C6H4-4-F
A399	a1	4-CF3	1	Me	Н,Н
A400	a1	4-CF3	1	Me	Me,Me
A401	a1	4-CF3	1	Me	Et,Et
A402	a1	4-CF3	1	Me	H.Et
A403	a1	4-CF3	1	Me	H,Ph
A404	a1	4-CF3	1	Me	H,C6H4-4-F
A405	a1	4-CF3	1	OMe	H,H
A406	a1	4-CF3	1	OMe	Me,Me
A407	a1	4-CF3	1	OMe	Et,Et
A408	a1	4-CF3	1	OMe	H.Et
A409	a1	4-CF3	1	OMe	H,Ph
A410	a1	4-CF3	1	OMe	H,C6H4-4-F
A411	a1	4-CF3	1	CH2OH	H,H
A412	a1	4-CF3	1	CH2OH	H,C6H4-4-F
A413	a1	4-CF3	1	CH2OMe	H,H
A414	a1	4-CF3	1	CH2OMe	Me,Me
A415	a1	4-CF3	1	CH2OMe	Et,Et
A416	a1	4-CF3	1	CH2OMe	H.Et
A417	a1	4-CF3	1	CH2OMe	H,Ph
A418	a1	4-CF3	1	CH2OMe	H,C6H4-4-F
A419	a1	4-CF3	1	CF3	H,H
A420	a1	4-CF3	1	CF3	Me,Me
A421	a1	4-CF3	1	CF3	Et,Et
A422	a1	4-CF3	1	CF3	H.Et
A423	a1	4-CF3	1	CF3	H,Ph
A424	a1	4-CF3	1	CF3	H,C6H4-4-F
A425	a1	4-CF3	1	CH2OPh	H,H
A426	a1	4-CF3	1	CH2OPh	H,C6H4-4-F
A427	a1	4-CF3	1	CH2OCH2Ph	H,H
A428	a1	4-CF3	1	CH2OCH2Ph	H,C6H4-4-F
A429	a1	4-CF3	1	CH2-morpholino	H,H

[0076]

【表11】

A430	a1	4-CF3	1	CH2-morpholino	Me,Me
A431	a1	4-CF3	1	CH2-morpholino	Et,Et
A432	a1	4-CF3	1	CH2-morpholino	H.Et
A433	a1	4-CF3	1	CH2-morpholino	H,Ph
A434	a1	4-CF3	1		H,C6H4-4-F
A435	a1	4-CF3	1	CH2NHBu	н,н
A436	a1	4-CF3	1	CH2NHBu	H,C6H4-4-F
A437	a1	4-CF3	1	C≡CPh	н,н
A438	a1	4-CF3	1	C≣CPh	H,C6H4-4-F
A439	a1	4-CF3	1	Ph	H,H
A440	a1	4-CF3	1	Ph	H,C6H4-4-F
A441	a1	4-CF3	1	C6H4-4-CF3	H,H
A442	a1	4-CF3	1	C6H4-4-CF3	H,C6H4-4-F
A443	a1	4-CF3	1	C6H4-3-CF3	H,H
A444	a1	4-CF3	1	C6H4-3-CF3	H,C6H4-4-F
A445	a1	4-CF3	1	C6H4-4-OH	H,H
A446	a1	4-CF3	1	C6H4-4-OH	H,C6H4-4-F
A447	a1	4-CF3	1	CH2Ph	H,H
A448	a1	4-CF3	1	CH2Ph	H,C6H4-4-F
A449	a1	4-CF3	1	CH2C6H4-4-CF3	H,H
A450	a1	4-CF3	1	CH2C6H4-4-CF3	Me,Me
A451	a1	4-CF3	1	CH2C6H4-4-CF3	Et,Et
A452	a1	4-CF3	1	CH2C6H4-4-CF3	H.Et
A453	a1	4-CF3	1	CH2C6H4-4-CF3	H,Ph
A454	a1	4-CF3	1	CH2C6H4-4-CF3	H,C6H4-4-F
A455	a1	4-CF3	1	CH2C6H4-4-OCF3	H,H
A456	a1	4-CF3	1	CH2C6H4-4-OCF3	H,C6H4-4-F
A457	a1	4-CF3	1	CH2C6H4-4-Ph	H,H
A458	a1	4-CF3	1	CH2C6H4-4-Ph	H,C6H4-4-F
A459	a1	4-CF3	1	CH2C6H4-2-CI	H,H
A460	a1	4-CF3	1	CH2C6H4-2-CI	H,C6H4-4-F
A461	a1	4-CF3	1	(CH2)2Ph	H,H
A462	a1	4-CF3	1	(CH2)2Ph	H,C6H4-4-F
A463	a1	4-CF3	1	SPh	H,H
A464	a1	4-CF3	1	SPh	H,C6H4-4-F
A465	a1	4-CF3	1	NH2	H,H
A466	a1	4-CF3	1	NH2	H,C6H4-4-F
A467	a1	4-CF3	1	NHMe	H,H
A468	a1	4-CF3	1	NHMe	H,C6H4-4-F
A469	a1	4-CF3	1	CH2-piperazino-Ph	1
A470	a1	4-CF3	1	CH2-piperazino-Ph	1
A471	a1	4-CF3	1	CH2-piperidino	H,H
A472	a1	4-CF3	1	CH2-piperidino	H,C6H4-4-F
A473	a1	4-CF3	1	OCH2Ph	Н,Н

【0077】 【表12】

A474	a1	4-CF3	1	OCH2Ph	H,C6H4-4-F
A475	a1	4-CF3	1	Ac	H,H
A476	a1	4-CF3	1	Ac	H,C6H4-4-F
A477	a1	4-CF3	1	CONH2	H,H
A478	a1	4-CF3	1	CONH2	H,C6H4-4-F
A479	a1	4-CF3	1	CSNH2	H,H
A480	a1	4-CF3	1	CSNH2	H,C6H4-4-F
A481	a1	4-CF3	1	OCONH2	н,н
A482	a1	4-CF3	1	OCONH2	H,C6H4-4-F
A483	a1	4-CF3	1	OCSNH2	H,H
A484	a1	4-CF3	1	OCSNH2	H,C6H4-4-F
A485	a1	4-CF3	1	OSO2Me	н,н
A486	a1	4-CF3	1	OSO2Me	H,C6H4-4-F
A487	a1	4-CF3	1	OSO2Ph	H,H
A488	a1	4-CF3	1	OSO2Ph	H,C6H4-4-F
A489	a1	4-CF3	1	I	н,н
A490	a1	4-CF3	1	I	H,C6H4-4-F
A491	a1	4-CF3	2	Н	н,н
A492	a1	4-CF3	2	Н	Ме,Ме
A493	a1	4-CF3	2	Н	Et,Et
A494	a1	4-CF3	2	Н	H.Et
A495	a1	4-CF3	2	Н	H,Ph
A496	a1	4-CF3	2	Н	H,C6H4-4-F
A497	a1	4-CF3	2	Me	H,H
A498	a1	4-CF3	2	Me	Ме,Ме
A499	a1	4-CF3	2	Ме	Et,Et
A500	a1	4-CF3	2	Ме	H.Et
A501	a1	4-CF3	2	Ме	H,Ph
A502	a1	4-CF3	2	Ме	H,C6H4-4-F
A503	a1	4-CF3	2	OMe	H,H
A504	a1	4-CF3	2	OMe	Me,Me
A505	a1	4-CF3	2	OMe	Et,Et
A506	a1	4-CF3	2	OMe	H.Et
A507	a1	4-CF3	2	OMe	H,Ph
A508	a1	4-CF3	2	OMe	H,C6H4-4-F
A509	a1	4-CF3	2	CH2OH	H,H
A510	a1	4-CF3	2	CH2OH	H,C6H4-4-F
A511	a1	4-CF3	2	CH2OMe	H,H
A512	a1	4-CF3	2	CH2OMe	Me,Me
A513	a1	4-CF3	2	CH2OMe	Et,Et
A514	a1	4-CF3	2	CH2OMe	H.Et
A515	a1	4-CF3	2	CH2OMe	H,Ph
A516	a1	4-CF3	2	CH2OMe	H,C6H4-4-F
A517	a1	4-CF3	2	CF3	H,H

【表13】

A518	a1	4-CF3	2	CF3	Me,Me
A519	a1	4-CF3	2	CF3	Et,Et
A520	a1	4-CF3	2	CF3	H.Et
A521	a1	4-CF3	2	CF3	H,Ph
A522	a1	4-CF3	2	CF3	H,C6H4-4-F
A523	a1	4-CF3	2	CH2OPh	н,н
A524	a1	4-CF3	2	CH2OPh	H,C6H4-4-F
A525	a1	4-CF3	2	CH2OCH2Ph	Н,Н
A526	a1	4-CF3	2	CH2OCH2Ph	H,C6H4-4-F
A527	a1	4-CF3	2	CH2-morpholino	н,н
A528	a1	4-CF3	2	CH2-morpholino	Me,Me
A529	a1	4-CF3	2	CH2-morpholino	Et,Et
A530	a1	4-CF3	2	CH2-morpholino	H.Et
A531	a1	4-CF3	2	CH2-morpholino	H,Ph
A532	a1	4-CF3	2	CH2-morpholino	H,C6H4-4-F
A533	a1	4-CF3	2	CH2NHBu	H,H
A534	a1	4-CF3	2	CH2NHBu	H,C6H4-4-F
A535	a1	4-CF3	2	C≣CPh	H,H
A536	a1	4-CF3	2	C≡CPh	H,C6H4-4-F
A537	a1	4-CF3	2	Ph	H,H
A538	a1	4-CF3	2	Ph	H,C6H4-4-F
A539	a1	4-CF3	2	C6H4-4-CF3	H,H
A540	a1	4-CF3	2	C6H4-4-CF3	H,C6H4-4-F
A541	a1	4-CF3	2	C6H4-3-CF3	H,H
A542	a1	4-CF3	2	C6H4-3-CF3	H,C6H4-4-F
A543	aí	4-CF3	2	C6H4-4-OH	H,H
A544	a1	4-CF3	2	C6H4-4-OH	H,C6H4-4-F
A545	a1	4-CF3	2	CH2Ph	H,H
A546	a1	4-CF3	2	CH2Ph	H,C6H4-4-F
A547	a1	4-CF3	2	CH2C6H4-4-CF3	H,H
A548	a1	4-CF3	2	CH2C6H4-4-CF3	Me,Me
A549	a1	4-CF3	2	CH2C6H4-4-CF3	Et,Et
A550	a1	4-CF3	2	CH2C6H4-4-CF3	H.Et
A551	a1	4-CF3	2	CH2C6H4-4-CF3	H,Ph
A552	a1	4-CF3	2	CH2C6H4-4-CF3	H,C6H4-4-F
A553	a1	4-CF3	2	CH2C6H4-4-OCF3	I
A554	a1	4-CF3	2	CH2C6H4-4-OCF3	ł .
A555	al	4-CF3	2	CH2C6H4-4-Ph	H,H
A556	a1	4-CF3	2	CH2C6H4-4-Ph	H,C6H4-4-F
A557	a1	4-CF3	2	CH2C6H4-2-CI	H,H
A558	a1	4-CF3	2	CH2C6H4-2-CI	H,C6H4-4-F
A559	a1	4-CF3	2	(CH2)2Ph	H,H
A560	a1	4-CF3	2	(CH2)2Ph	H,C6H4-4-F
A561	a1	4-CF3	2	SPh	H,H

【0079】 【表14】

A562	a1	4-CF3	2	SPh	H,C6H4-4-F
A563	a1	4-CF3	2	NH2	H,H
A564	a1	4-CF3	2	NH2	H,C6H4-4-F
A565	a1	4-CF3	2	NHMe	н,н
A566	a1	4-CF3	2	NHMe	H,C6H4-4-F
A567	a1	4-CF3	2	CH2-piperazino-Ph	i '
A568	a1	4-CF3	2	CH2-piperazino-Ph	
A569	a1	4-CF3	2	CH2-piperidino	н,н
A570	a1	4-CF3	2	CH2-piperidino	H,C6H4-4-F
A571	a1	4-CF3	2	OCH2Ph	H,H
A572	a1	4-CF3	2	OCH2Ph	H,C6H4-4-F
A573	a1	4-CF3	2	Ac	н,н
A574	a1	4-CF3	2	. Ac	H,C6H4-4-F
A575	a1	4-CF3	2	CONH2	н,н
A576	a1	4-CF3	2	CONH2	H,C6H4-4-F
A577	a1	4-CF3	2	CSNH2	H,H
A578	a1	4-CF3	2	CSNH2	H,C6H4-4-F
A579	at	4-CF3	2	OCONH2	H,H
A580	a1	4-CF3	2	OCONH2	H,C6H4-4-F
A581	a1	4-CF3	2	OCSNH2	H,H
A582	a1	4-CF3	2	OCSNH2	H,C6H4-4-F
A583	a1	4-CF3	2	OSO2Me	H,H
A584	a1	4-CF3	2	OSO2Me	H,C6H4-4-F
A585	a1	4-CF3	2	OSO2Ph	H,H
A586	a1	4-CF3	2	OSO2Ph	H,C6H4-4-F
A587	a1	4-CF3	2	I	H,H
A588	a1	4-CF3	2	I	H,C6H4-4-F
A589	a1	H	0	Н	H,H
A590	a1	3-F	0	Н	Ме,Ме
A591	a1	2−Me	0	н	Et,Et
A592	a1	3−OMe	0	Н	H.Et
A593	a1 i	4-OH	0	Н	H,Ph
A594	a1	4-OMe	0	Н	H,C6H4-4-F
A595	a1	2–Ac	0	Me	H,H
A596	a1	4-CH=CH2	ı	Ме	Me,Me
A597	a1	4-CF3, 3-F	1	Me	Et,Et
A598	a1	4-OCF3	0	Ме	H.Et
A599	a1	4-SMe	0	Me	H,Ph
A600	al	3,5-difluoro	i		H,C6H4-4-F
A601	a1	H	0		H,H
A602	a1	3-F	0	* * * * * * * * * * * * * * * * * * * *	Me,Me
A603	a1	2-Me	0		Et,Et
A604	a1	3-OMe	0		H.Et
A605	a1	4–0H	0	OMe	H,Ph

【0080】 【表15】

A606	a1	4-OMe	0	OMe	H,C6H4-4-F
A607	a1	2-Ac	0	CH2OH	Н,Н
A608	a1	4-CH=CH2	0	CH2OH	H,C6H4-4-F
A609	a1	4-CF3, 3-F	0	CH2OMe	H,H
A610	a1	4-0CF3	0	CH2OMe	Me,Me
A611	a1	4-SMe	0	CH2OMe	Et,Et
A612	a1	3,5-difluoro	0	CH2OMe	H.Et
A613	a1	Н	0	CH2OMe	H,Ph
A614	a1	3-F	0	CH2OMe	H,C6H4-4-F
A615	a1	2-Me	0	CF3	н,н
A616	a1	3-OMe	0	CF3	Me,Me
A617	a1	4-OH	0	CF3	Et,Et
A618	a1	4-OMe	0	CF3	H.Et
A619	a1	2-Ac	0	CF3	H,Ph
A620	a1	4-CH=CH2	0	CF3	H,C6H4-4-F
A621	a1	4-CF3, 3-F	0	CH2OPh	H,H
A622	a1	4-0CF3	0	CH2OPh	H,C6H4-4-F
A623	a1	4-SMe	0	CH2OCH2Ph	H,H
A624	a1	3,5-difluoro	0	CH2OCH2Ph	H,C6H4-4-F
A625	a1	н	0	CH2-morpholino	H,H
A626	a1	3-F	0	CH2-morpholino	Me,Me
A627	a1	2-Me	0	CH2-morpholino	Et,Et
A628	a1	3-OMe	0	CH2-morpholino	H.Et
A629	a1	4-OH	0	CH2-morpholino	H,Ph
A630	a1	4-OMe	0	CH2-morpholino	H,C6H4-4-F
A631	a1	2-Ac	0	CH2NHBu	H,H
A632	a1	4-CH=CH2	0	CH2NHBu	H,C6H4-4-F
A633	al	4-CF3, 3-F	0	C≡CPh	H,H
A634	a1	4-OCF3	0	C≣CPh	H,C6H4-4-F
A635	a1	4-SMe	0	Ph	H,H
A636	a1	3,5-difluoro	0	Ph	H,C6H4-4-F
A637	a1	Н	0	C6H4-4-CF3	H,H
A638	a1	3-F	0	C6H4-4-CF3	H,C6H4-4-F
A639	a1	2-Me	0	C6H4-3-CF3	H,H
A640	a1	3-OMe	0	C6H4-3-CF3	H,C6H4-4-F
A641	a1	4-OH	0	C6H4-4-OH	H,H
A642	a1	4-OMe	0	C6H4-4-OH	H,C6H4-4-F
A643	a1	2-Ac	0	CH2Ph	H,H
A644	a1	4-CH=CH2		CH2Ph	H,C6H4-4-F
A645	a1	4-CF3, 3-F	Ι.	CH2C6H4-4-CF3	H,H
A646	a1	4-OCF3	0	CH2C6H4-4-CF3	
A647	a1	4−SMe	0	CH2C6H4-4-CF3	i
A648	a1	3,5-difluoro	i .	CH2C6H4-4-CF3	1
A649	a1	Н	0	CH2C6H4-4-CF3	H,Ph

【表16】

A650	a1	3-F	0	CH2C6H4-4-CF3	H,C6H4-4-F
A651	a1	2-Me	0	CH2C6H4-4-OCF3	H,H
A652	a1	3-OMe	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A653	a1	4-OH	0	CH2C6H4-4-Ph	H,H
A654	аĭ	4-OMe	0	CH2C6H4-4-Ph	H,C6H4-4-F
A655	a1	2-Ac	0	CH2C6H4-2-CI	H,H
A656	a1	4-CH=CH2	0	CH2C6H4-2-CI	H,C6H4-4-F
A657	a1	4-CF3, 3-F	0	(CH2)2Ph	H,H
A658	a1	4-OCF3	0	(CH2)2Ph	H,C6H4-4-F
A659	a1	4−SMe	0	SPh	H,H
A660	a1	3,5-difluoro	0	SPh	H,C6H4-4-F
A661	a1	Н	0	NH2	H,H
A662	a1	3-F	0	NH2	H,C6H4-4-F
A663	a1	2−Me	0	NHMe	H,H
A664	a1	3-OMe	0	NHMe	H,C6H4-4-F
A665	a1	4–0H	0	CH2-piperazino-Ph	
A666	a1	4-OMe	0	CH2-piperazino-Ph	H,C6H4-4-F
A667	a1	2-Ac	0	CH2-piperidino	Н,Н
A668	a1	4-CH=CH2	0	CH2-piperidino	H,C6H4-4-F
A669	a1	4-CF3, 3-F	0	OCH2Ph	H,H
A670	a1	4-0CF3	0	OCH2Ph	H,C6H4-4-F
A671	a1	4−SMe	0	Ac	H,H
A672	a1	3,5-difluoro	1	Ac	H,C6H4-4-F
A673	a1	H	0	CONH2	H,H
A674	a1	3-F	0	CONH2	H,C6H4-4-F
A675	a1	2-Me	0	CSNH2	H,H
A676	at	3-OMe	0	CSNH2	H,C6H4-4-F
A677	a1	4-OH	0	OCONH2	H,H
A678	a1	4-OMe	0	OCONH2	H,C6H4-4-F
A679	a1	2-Ac	0	OCSNH2	H,H
A680	a1	4-CH=CH2		OCSNH2	H,C6H4-4-F
A681	a1	4-CF3, 3-F	ı	OSO2Me	H,H
A682	a1	4-OCF3	0	OSO2Me	H,C6H4-4-F
A683	a1	4−SMe	0	OSO2Ph	H,H
A684	a1	3,5-difluore		1 _	H,C6H4-4-F
A685	al	H	0	ł	H,H
A686	a1	3-F	0	<u> </u>	H,C6H4-4-F H,H
A687	al	H		H	1 '
A688	a1	3-F		H	Me,Me
A689	al	2-Me		H	Et,Et H.Et
A690	a1	3-OMe		· i	H,Ph
A691	a1	4-OH		i -	H,C6H4-4-F
A692	a1	4-OMe		1	H,H
A693	a1	2-Ac	1		Me,Me
A694	a1	4-CH=CH		***	Et,Et
A695	a1	4-CF3, 3-	r 1	Me	j⊏t,⊏t

[0 0 8 2]

【表17】

					1
A696	a1	4-OCF3	1	Me	H.Et
A697	a1	4-SMe	1	Me	H,Ph
A698	a1	3,5-difluoro	1	Me	H,C6H4-4-F
A699	аĭ	н	1	OMe	H,H
A700	a1	3-F	1	OMe	Ме,Ме
A701	a1	2-Me	1	OMe	Et,Et
A702	a1	3-OMe	1	OMe	H.Et
A703	a1	4-OH	1	OMe	H,Ph
A704	a1	4−OMe	1	OMe	H,C6H4-4-F
A705	a1	2-Ac	1	CH2OH	H,H
A706	a1	4-CH=CH2	1	CH2OH	H,C6H4-4-F
A707	a1	4-CF3, 3-F	1	CH2OMe	H,H
A708	a1	4-OCF3	1	CH2OMe	Me,Me
A709	a1	4-SMe	1	CH2OMe	Et,Et
A710	al	3,5-difluoro	1	CH2OMe	H.Et
A711	a1	н	1	CH2OMe	H,Ph
A712	a1	3-F	1	CH2OMe	H,C6H4-4-F
A713	a1	2-Me	1	CF3	H,H
A714	a1	3-OMe	1	CF3	Me,Me
A715	a1	4-OH	1	CF3	Et,Et
A716	a1	4-OMe	1	CF3	H.Et
A717	a1	2-Ac	1	CF3	H,Ph
A718	a1	4-CH=CH2	1	CF3	H,C6H4-4-F
A719	a1	4-CF3, 3-F	1	CH2OPh	H,H
A720	a1	4-OCF3	1	CH2OPh	H,C6H4-4-F
A721	at	4-SMe	1	CH2OCH2Ph	H,H
A722	a1	3,5-difluoro	1	CH2OCH2Ph	H,C6H4-4-F
A723	a1	н	1	CH2-morpholino	H,H
A724	a1	3-F	1	CH2-morpholino	Me,Me
A725	a1	2-Me	1	CH2-morpholino	Et,Et
A726	a1	3-OMe	1	CH2-morpholino	H.Et
A727	a1	4-OH	1	CH2-morpholino	H,Ph
A728	a1	4-OMe	1	CH2-morpholino	H,C6H4-4-F
A729	a1	2-Ac	1	CH2NHBu	H,H
A730	a1	4-CH=CH2	1	CH2NHBu	H,C6H4-4-F
A731	a1	4-CF3, 3-F	1	C≣CPh	H,H
A732	a1	4-OCF3	1	C≣CPh	H,C6H4-4-F
A733	a1	4-SMe	1	Ph	H,H
A734	al	3,5-difluoro	1	Ph	H,C6H4-4-F
A735	a1	н	2	C6H4-4-CF3	H,H
A736	a1	3-F	2	C6H4-4-CF3	H,C6H4-4-F
A737	a1	2-Me	2	C6H4-3-CF3	H,H
A738	a1	3-OMe	2	C6H4-3-CF3	H,C6H4-4-F
A739	a1	4-OH	2	C6H4-4-OH	н,н
A740	a1	4-OMe	2	C6H4-4-OH	H,C6H4-4-F
A741	a1	2-Ac	2	CH2Ph	н,н
1, , .		•	•	•	

[0083]

【表18】

A742	a1	4-CH=CH2	2	CH2Ph	H,C6H4-4-F
A743	a1	4-CF3, 3-F	2	CH2C6H4-4-CF3	н,н
A744	a1	4-OCF3	2	CH2C6H4-4-CF3	Me,Me
A745	a1	4-SMe	2	CH2C6H4-4-CF3	Et,Et
A746	a1	3,5-difluoro	2	CH2C6H4-4-CF3	H.Et
A747	a1	· H	2	CH2C6H4-4-CF3	H,Ph
A748	a1	3-F	2	CH2C6H4-4-CF3	H,C6H4-4-F
A749	a1	2-Me	2	CH2C6H4-4-OCF3	H,H
A750	a1	3-OMe	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A751	a1	4-0H	2	CH2C6H4-4-Ph	н,н
A752	a1	4-OMe	2	CH2C6H4-4-Ph	H,C6H4-4-F
A753	a1	2-Ac	2	CH2C6H4-2-CI	н,н
A754	a1	4-CH=CH2	2	CH2C6H4-2-CI	H,C6H4-4-F
A755	a1	4-CF3, 3-F	2	(CH2)2Ph	н,н
A756	a1	4-0CF3	2	(CH2)2Ph	H,C6H4-4-F
A757	a1	4−SMe	2	SPh	H,H
A758	a1	3,5-difluoro	2	SPh	H,C6H4-4-F
A759	a1	н	2	NH2	H,H
A760	a1	3-F	2	NH2	H,C6H4-4-F
A761	a1	2-Me	2	NHMe	H,H
A762	a1	3-OMe	2	NHMe	H,C6H4-4-F
A763	a1	4-OH	2	CH2-piperazino-Ph	1
A764	a1	4-OMe	2	CH2-piperazino-Ph	H,C6H4-4-F
A765	a1	2-Ac	2	CH2-piperidino	H,H
A766	a1	4-CH=CH2	2	CH2-piperidino	H,C6H4-4-F
A767	a1	4-CF3, 3-F	2	OCH2Ph	H,H
A768	a1	4-OCF3	2	OCH2Ph	H,C6H4-4-F
A769	a1	4−SMe	2	Ac	H,H
A770	a1	3,5-difluoro	2	Ac	H,C6H4-4-F
A771	a1	H	2	CONH2	Н,Н
A772	a1	3-F	2	CONH2	H,C6H4-4-F
A773	a1	2−Me	2	CSNH2	Н,Н
A774	a1	3-OMe	2	CSNH2	H,C6H4-4-F
A775	a1	4-OH	2	OCONH2	H,H
A776	a1	4-OMe	2	OCONH2	H,C6H4-4-F
A777	a1	2-Ac	2	OCSNH2	H,H
A778	a1	4-CH=CH2	2	OCSNH2	H,C6H4-4-F
A779	a1	4-CF3, 3-F	,	OSO2Me	H,H
A780	al	4-OCF3	2	OSO2Me	H,C6H4-4-F
A781	a1	4-SMe	2	OSO2Ph	H,H
A782	a1	3,5-difluoro	2	OSO2Ph	H,C6H4-4-F
A783	a1	H	2	I	H,H
A784	a1	3-F	2	I	H,C6H4-4-F

[0084]

【表19】

$$\begin{bmatrix}
R^2 & R^3 & R^4 \\
N & R^4
\end{bmatrix} = \begin{bmatrix}
R^3 & R^4 \\
R^1 & O & R^4
\end{bmatrix}$$

$$A \qquad a7$$

A部分No.	タイプ	R1	R2	R3,R4
A2353	a7	Me	Н	H,H
A2354	a7	Me	H	Me,Me
A2355	a7	Me	H	Et,Et
A2356	a7	Me	Н	H.Et
A2357	a7	Me	Н	H,Ph
A2358	a7	Me	Н	H,C6H4-4-F
A2359	а7	Me	Me	H,H
A2360	a7	Me	Me	Ме,Ме
A2361	a7	Ме	Me	Et,Et
A2362	a7	Me	Me	H.Et
A2363	a7	Ме	Me	H,Ph
A2364	а7	Ме	Me	H,C6H4-4-F
A2365	a7	Me	CH2OMe	H,H
A2366	а7	Ме	CH2OMe	Me,Me
A2367	a7	Me	CH2OMe	Et,Et
A2368	a7	Me	CH2OMe	H.Et
A2369	a7	Me	CH2OMe	H,Ph
A2370	a7	Me	· CH2OMe	H,C6H4-4-F
A2371	a7	Me	CF3	H,H
A2372	a7	Me	CF3	Ме,Ме
A2373	a7	Me	CF3	Et,Et
A2374	a7	Me	CF3	H.Et
A2375	a7	Me	CF3	H,Ph
A2376	a7	Me	CF3	H,C6H4-4-F
A2377	a7	Me	CH2OH	H,H
A2378	a7	Me	CH2OH	H,C6H4-4-F
A2379	a7	Ме	CH2NHBu	H,H
A2380	a7	Me	CH2NHBu `	H,C6H4-4-F
A2381	a7	Ме	CH2C≡CH	H,H
A2382	a7	Ме	CH2C≡CH	H,C6H4-4-F
A2383	a7	Me	OMe	Н,Н
A2384	a7	Me	OMe	H,C6H4-4-F
A2385	a7	Ме	NH2	H,H
A2386	a7	Me	NH2	H,C6H4-4-F

【0085】 【表20】

A2387	a7	Me	NHMe	Н,Н
A2388	а7	Ме	NHMe	H,C6H4-4-F
A2389	a7	Me	CH2OPh	H,H
A2390	a7	Me	CH2OPh	H,C6H4-4-F
A2391	a7	Me	CH2OCH2Ph	H,H
A2392	а7	Me	CH2OCH2Ph	H,C6H4-4-F
A2393	а7	Me	CH2-morpholino	H,H
A2394	a7	Me	CH2-morpholino	H,C6H4-4-F
A2395	а7	Me	CH=CH-pyridyl	H,H
A2396	а7	Me	CH=CH-pyridyl	H,C6H4-4-F
A2397	а7	Me	C≡CPh	H,H
A2398	a7	Me	C≡CPh	H,C6H4-4-F
A2399	а7	Me	Ph	H,H
A2400	a7	Me	Ph	H,C6H4-4-F
A2401	a7	Me	C6H4-4-CF3	H,H
A2402	а7	Ме	C6H4-4-CF3	Me,Me
A2403	a7	Me	C6H4-4-CF3	Et,Et
A2404	а7	Ме	C6H4-4-CF3	H.Et
A2405	а7	Ме	C6H4-4-CF3	H,Ph
A2406	a7	Ме	C6H4-4-CF3	H,C6H4-4-F
A2407	а7	Ме	C6H4-3-CF3	H,H
A2408	а7	Ме	C6H4-3-CF3	H,C6H4-4-F
A2409	a7	Ме	C6H4-4-OH	H,H
A2410	a7	Ме	C6H4-4-OH	H,C6H4-4-F
A2411	a7	Ме	CH2Ph	H,H
A2412	a7	Ме	CH2Ph	H,C6H4-4-F
A2413	a7	Ме	CH2C6H4-4-CF3	H,H
A2414	a7	Me	CH2C6H4-4-CF3	Me,Me
A2415	a7	Ме	CH2C6H4-4-CF3	Et,Et
A2416	a7	Me	CH2C6H4-4-CF3	H.Et
A2417	a7	Me	CH2C6H4-4-CF3	H,Ph
A2418	a7	Me	CH2C6H4-4-CF3	H,C6H4-4-F
A2419	а7	Me	CH2C6H4-4-OCF3	H,H
A2420	a7	Me	CH2C6H4-4-OCF3	H,C6H4-4-F
A2421	a7	Me	CH2C6H4-4-Ph	H,H
A2422	a7	Me	CH2C6H4-4-Ph	H,C6H4-4-F
A2423	a7	Me	CH2C6H4-2-CI	H,H
A2424	а7	Me	CH2C6H4-2-CI	H,C6H4-4-F
A2425	a7	Me	(CH2)2Ph	H,H
A2426	a7	Me	(CH2)2Ph	H,C6H4-4-F
A2427	a7	Me	CH2-piperazino-Ph	H,H
A2428	a7	Me	CH2-piperazino-Ph	Me,Me
A2429	a7	Me	CH2-piperazino-Ph	Et,Et
A2430	a7	Me	CH2-piperazino-Ph	H.Et

[0086]

【表21】

A2431	a7	Me	CH2-piperazino-Ph	H,Ph
A2432	а7	Me	CH2-piperazino-Ph	H,C6H4-4-F
A2433	а7	Me	CH2-piperidino	H,H
A2434	a7	Me	CH2-piperidino	H,C6H4-4-F
A2435	a7	Me	SPh	H,H
A2436	a7	Me	SPh	H,C6H4-4-F
A2437	a7	Me	OCH2Ph	н,н
A2438	a7	Me	OCH2Ph	H,C6H4-4-F
A2439	a7	Me	Ac	н,н
A2440	a7	Me	Ac	H,C6H4-4-F
A2441	a7	Me	CONH2	H,H
A2442	a7	Me	CONH2	H,C6H4-4-F
A2443	a7	Me	CSNH2	H,H
A2444	а7	Me	CSNH2	H,C6H4-4-F
A2445	a7	Me	OCONH2	H,H
A2446	a7	Me	OCONH2	H,C6H4-4-F
A2447	a7	Me	OCSNH2	H,H
A2448	а7	Me	OCSNH2	H,C6H4-4-F
A2449	a7	Me	OSO2Me	H,H
A2450	а7	Me	OSO2Me	H,C6H4-4-F
A2451	a7	Me	OSO2Ph	H,H
A2452	a7	Me	OSO2Ph	H,C6H4-4-F
A2453	а7	Me .	I	H,H
A2454	а7	Me	I	H,C6H4-4-F
A2455	a7	CF3	Н	H,H
A2456	a7	CF3	н	Me,Me
A2457	a7	CF3	Н	Et,Et
A2458	a7	CF3	Н	H.Et
A2459	a7	CF3	Н	H,Ph
A2460	a7	CF3	Н	H,C6H4-4-F
A2461	a7	CF3	Me	H,H
A2462	a7	CF3	Me	Me,Me
A2463	a7	CF3	Me	Et,Et
A2464	a7	CF3	Me	H.Et
A2465	a7	CF3	Me	H,Ph
A2466	a7	CF3	Me	H,C6H4-4-F
A2467	a7	CF3	CH2OMe	H,H
A2468	а7	CF3	CH2OMe	Me,Me
A2469	a7	CF3	CH2OMe	Et,Et
A2470	a7	CF3	CH2OMe	H.Et
A2471	a7	CF3	CH2OMe	H,Ph
A2472	a7	CF3	CH2OMe	H,C6H4-4-F
A2473	a7	CF3	CF3	H,H
A2474	a7	CF3	CF3	Me,Me

[0087]

【表22】

A2475	а7	CF3	CF3	Et,Et
A2476	а7	CF3	CF3	H.Et
A2477	a7	CF3	CF3	H,Ph
A2478	a7	CF3	CF3	H,C6H4-4-F
A2479	a7	CF3	CH2OH	H,H
A2480	a7	CF3	CH2OH	H,C6H4-4-F
A2481	a7	CF3	CH2NHBu	H,H
A2482	a7	CF3	CH2NHBu	H,C6H4-4-F
A2483	a7	CF3	CH2C≡CH	H,H
A2484	a7	CF3	CH2C ≡ CH	H,C6H4-4-F
A2485	a7	CF3	OMe	H,H
A2486	а7	CF3	OMe	H,C6H4-4-F
A2487	a7	CF3	NH2	н,н
A2488	а7	CF3	NH2	H,C6H4-4-F
A2489	а7	CF3	NHMe	H,H
A2490	a7	CF3	NHMe	H,C6H4-4-F
A2491	а7	CF3	CH2OPh	H,H
A2492	а7	CF3	CH2OPh	H,C6H4-4-F
A2493	а7	CF3	CH2OCH2Ph	H,H
A2494	a7	CF3	CH2OCH2Ph	H,C6H4-4-F
A2495	a7	CF3	CH2-morpholino	H,H
A2496	a7	CF3	CH2-morpholino	H,C6H4-4-F
A2497	a7	CF3	CH=CH-pyridyl	H,H
A2498	a7	CF3	CH=CH-pyridyl	H,C6H4-4-F
A2499	a7	CF3	C≣CPh	H,H
A2500	a7	CF3	C≣CPh	H,C6H4-4-F
A2501	a7	CF3	Ph	H,H
A2502	a7	CF3	Ph	H,C6H4-4-F
A2503	a7	CF3	C6H4-4-CF3	H,H
A2504	a7	CF3	C6H4-4-CF3	Me,Me
A2505	a7	CF3	C6H4-4-CF3	Et,Et
A2506	a7	CF3	C6H4-4-CF3	H.Et
A2507	a7	CF3	C6H4-4-CF3	H,Ph
A2508	a7	CF3	C6H4-4-CF3	H,C6H4-4-F
A2509	a7	CF3	C6H4-3-CF3	H,H
A2510	а7	CF3	C6H4-3-CF3	H,C6H4-4-F
A2511	a7	CF3	C6H4-4-OH	H,H
A2512	a7	CF3	C6H4-4-OH	H,C6H4-4-F
A2513	a7	CF3	CH2Ph	H,H
A2514	a7	CF3	CH2Ph	H,C6H4-4-F
A2515	a7	CF3	CH2C6H4-4-CF3	H,H
A2516	а7	CF3	CH2C6H4-4-CF3	Me,Me
A2517	a7	CF3	CH2C6H4-4-CF3	Et,Et
A2518	a7	CF3	CH2C6H4-4-CF3	H.Et

[0088]

【表23】

A2519	a7	CF3	CH2C6H4-4-CF3	H,Ph
A2520	a7	CF3	CH2C6H4-4-CF3	H,C6H4-4-F
A2521	a7	CF3	CH2C6H4-4-OCF3	н,н
A2522	a7	CF3	CH2C6H4-4-OCF3	H,C6H4-4-F
A2523	a7	CF3	CH2C6H4-4-Ph	н,н
A2524	a7	CF3	CH2C6H4-4-Ph	H,C6H4-4-F
A2525	a7	CF3	CH2C6H4-2-CI	н,н
A2526	a7	CF3	CH2C6H4-2-CI	H,C6H4-4-F
A2527	a7	CF3	(CH2)2Ph	н,н
A2528	a7	CF3	(CH2)2Ph	H,C6H4-4-F
A2529	a7	CF3	CH2-piperazino-Ph	Н,Н
A2530	a7	CF3	CH2-piperazino-Ph	Me,Me
A2531	a7	CF3	CH2-piperazino-Ph	Et,Et
A2532	а7	CF3	CH2-piperazino-Ph	H.Et
A2533	а7	CF3	CH2-piperazino-Ph	H,Ph
A2534	а7	CF3	CH2-piperazino-Ph	H,C6H4-4-F
A2535	а7	CF3	CH2-piperidino	H,H
A2536	a7	CF3	CH2-piperidino	H,C6H4-4-F
A2537	a7	CF3	SPh	H,H
A2538	a7	CF3	SPh	H,C6H4-4-F
A2539	а7	CF3	OCH2Ph	H,H
A2540	a7	CF3	OCH2Ph	H,C6H4-4-F
A2541	a7	CF3	Ac	H,H
A2542	а7	CF3	Ac	H,C6H4-4-F
A2543	a7	CF3	CONH2	H,H
A2544	а7	CF3	CONH2	H,C6H4-4-F
A2545	а7	CF3	CSNH2	H,H
A2546	а7	CF3	CSNH2	H,C6H4-4-F
A2547	a7	CF3	OCONH2	H,H
A2548	а7	CF3	OCONH2	H,C6H4-4-F
A2549	a7	CF3	OCSNH2	H,H
A2550	a7	CF3	OCSNH2	H,C6H4-4-F
A2551	a7	CF3	OSO2Me	H,H
A2552	a7	CF3	OSO2Me	H,C6H4-4-F
A2553	a7	CF3	OSO2Ph	H,H
A2554	a7	CF3	OSO2Ph	H,C6H4-4-F
A2555	a7	CF3	I	H,H
A2556	a7	CF3	I	H,C6H4-4-F
A2557	a7	CH=CHPh	H	1 '
A2558	a7	CH=CHPh	H	Me,Me
A2559	a7	CH=CHPh	Н	Et,Et
A2560	a7	CH=CHPh	H H	H.Et H,Ph
A2561	a7	CH=CHPh		1 '
A2562	a7	CH=CHPh	н	H,C6H4-4-F

【0089】 【表24】

A2563	a7	CH=CHPh	Me	н,н
A2564	a7	CH=CHPh	Me	Me,Me
A2565	а7	CH=CHPh	Me	Et,Et
A2566	a7	CH=CHPh	Me	H.Et
A2567	a7	CH=CHPh	Me	H,Ph
A2568	a7	CH=CHPh	Me	H,C6H4-4-F
A2569	a7	CH=CHPh	CH2OMe	H,H
A2570	а7	CH=CHPh	CH2OMe	Me,Me
A2571	а7	CH=CHPh	CH2OMe	Et,Et
A2572	a7	CH=CHPh	CH2OMe	H.Et
A2573	а7	CH=CHPh	CH2OMe	H,Ph
A2574	а7	CH=CHPh	CH2OMe	H,C6H4-4-F
A2575	a7	CH=CHPh	CF3	H,H
A2576	a7	CH=CHPh	CF3	Me,Me
A2577	а7	CH=CHPh	CF3	Et,Et
A2578	а7	CH=CHPh	CF3	H.Et
A2579	а7	CH=CHPh	CF3	H,Ph
A2580	a7	CH=CHPh	CF3	H,C6H4-4-F
A2581	a7	CH=CHPh	CH2OH	н,н
A2582	a7	CH=CHPh	CH2OH	H,C6H4-4-F
A2583	a7	CH=CHPh	CH2NHBu	H,H
A2584	a7	CH=CHPh	CH2NHBu	H,C6H4-4-F
A2585	a7	CH=CHPh	CH2C≡CH	H,H
A2586	a7	CH=CHPh	CH2C≡CH	H,C6H4-4-F
A2587	а7	CH=CHPh	OMe	H,H
A2588	a7	CH=CHPh	OMe	H,C6H4-4-F
A2589	a7	CH=CHPh	NH2	H,H
A2590	а7	CH=CHPh	NH2	H,C6H4-4-F
A2591	а7	CH=CHPh	NHMe	H,H
A2592	a7	CH=CHPh	NHMe	H,C6H4-4-F
A2593	a7	CH=CHPh	CH2OPh	H,H
A2594	a7	CH=CHPh	CH2OPh	H,C6H4-4-F
A2595	a7	CH=CHPh	CH2OCH2Ph	H,H
A2596	a7	CH=CHPh	CH2OCH2Ph	H,C6H4-4-F
A2597	a7	CH=CHPh	CH2-morpholino	H,H
A2598	a7	CH=CHPh	CH2-morpholino	H,C6H4-4-F
A2599	a7	CH=CHPh	CH=CH-pyridyl	H,H
A2600	a7	CH=CHPh	CH=CH-pyridyl	H,C6H4-4-F
A2601	a7	CH=CHPh	C≡CPh	H,H
A2602	а7	CH=CHPh	C≣CPh	H,C6H4-4-F
A2603	а7	CH=CHPh	Ph	H,H
A2604	a7	CH=CHPh	Ph	H,C6H4-4-F
A2605	a7	CH=CHPh	C6H4-4-CF3	H,H
A2606	a7	CH=CHPh	C6H4-4-CF3	Ме,Ме

【表25】

A2607	a7	CH=CHPh	C6H4-4-CF3	Et,Et
A2608	a7	CH=CHPh	C6H4-4-CF3	H.Et
A2609	a7	CH=CHPh	C6H4-4-CF3	H,Ph
A2610	a7	CH=CHPh	C6H4-4-CF3	H,C6H4-4-F
A2611	a7	CH=CHPh	C6H4-3-CF3	н,н
A2612	a7	CH=CHPh	C6H4-3-CF3	H,C6H4-4-F
A2613	a7	CH=CHPh	C6H4-4-OH	H,H
A2614	a7	CH=CHPh	C6H4-4-OH	H,C6H4-4-F
A2615	a7	CH=CHPh	CH2Ph	H,H
A2616	a7	CH=CHPh	CH2Ph	H,C6H4-4-F
A2617	a7	CH=CHPh	CH2C6H4-4-CF3	H,H
A2618	a7	CH=CHPh	CH2C6H4-4-CF3	Ме,Ме
A2619	a7	CH=CHPh	CH2C6H4-4-CF3	Et,Et
A2620	а7	CH=CHPh	CH2C6H4-4-CF3	H.Et
A2621	a7	CH=CHPh	CH2C6H4-4-CF3	H,Ph
A2622	a7	CH=CHPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2623	a7	CH=CHPh	CH2C6H4-4-OCF3	H,H
A2624	a7	CH=CHPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2625	a7	CH=CHPh	CH2C6H4-4-Ph	H,H
A2626	a7	CH=CHPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2627	a7	CH=CHPh	CH2C6H4-2-CI	H,H
A2628	a7	CH=CHPh	CH2C6H4-2-CI	H,C6H4-4-F
A2629	a7	CH=CHPh	(CH2)2Ph	H,H
A2630	a7	CH=CHPh	(CH2)2Ph	H,C6H4-4-F
A2631	a7	CH=CHPh	CH2-piperazino-Ph	H,H
A2632	a7	CH=CHPh	CH2-piperazino-Ph	Me,Me
A2633	a7	CH=CHPh	CH2-piperazino-Ph	Et,Et
A2634	a7	CH=CHPh	CH2-piperazino-Ph	H.Et
A2635	a7	CH=CHPh	CH2-piperazino-Ph	H,Ph
A2636	a7	CH=CHPh	CH2-piperazino-Ph	H,C6H4-4-F
A2637	a7	CH=CHPh	CH2-piperidino	H,H
A2638	a7	CH=CHPh	CH2-piperidino	H,C6H4-4-F
A2639	a7	CH=CHPh	SPh	H,H
A2640	a7	CH=CHPh	SPh	H,C6H4-4-F
A2641	a7	CH=CHPh	OCH2Ph	H,H
A2642	a7	CH=CHPh	OCH2Ph	H,C6H4-4-F
A2643	a7	CH=CHPh	Ac	H,H
A2644	a7	CH=CHPh	Ac	H,C6H4-4-F
A2645	a7	CH=CHPh	CONH2	H,H
A2646	a7	CH=CHPh	CONH2	H,C6H4-4-F
A2647	a7	CH=CHPh	CSNH2	H,H
A2648	a7	CH=CHPh	CSNH2	H,C6H4-4-F
A2649	a7	CH=CHPh	OCONH2	H,H
A2650	a7	CH=CHPh	OCONH2	H,C6H4-4-F

【0091】 【表26】

A2651	a7	CH=CHPh	OCSNH2	н,н
A2652	a7	CH=CHPh	OCSNH2	H,C6H4-4-F
A2653	a7	CH=CHPh	OSO2Me	н,н
A2654	а7	CH=CHPh	OSO2Me	H,C6H4-4-F
A2655	а7	CH=CHPh	OSO2Ph	н,н
A2656	a7	CH=CHPh	OSO2Ph	H,C6H4-4-F
A2657	a7	CH=CHPh	I	н,н
A2658	а7	CH=CHPh	1	H,C6H4-4-F
A2659	а7	≡ CPh	Н	Н,Н
A2660	а7	≡ CPh	Н	Me,Me
A2661	а7	≡CPh	Н	Et,Et
A2662	a7	≡ CPh	н	H.Et
A2663	a7	≡CPh	Н	H,Ph
A2664	а7	≡ CPh	н	H,C6H4-4-F
A2665	а7	≡ CPh	Me	H,H
A2666	а7	≡CPh	Me	Me,Me
A2667	а7	≡ CPh	Me	Et,Et
A2668	а7	≡ CPh	Me	H.Et
A2669	а7	≡ CPh	Me	H,Ph
A2670	а7	≡ CPh	Me	H,C6H4-4-F
A2671	а7	≡ CPh	CH2OMe	H,H
A2672	a7	≡CPh	CH2OMe	Ме,Ме
A2673	а7	≡ CPh	CH2OMe	Et,Et
A2674	a7	≡CPh	CH2OMe	H.Et
A2675	а7	≡ CPh	CH2OMe	H,Ph
A2676	a7	≡CPh	CH2OMe	H,C6H4-4-F
A2677	а7	≡CPh	CF3	H,H
A2678	а7	≡CPh	CF3	Ме,Ме
A2679	а7	≡CPh	CF3	Et,Et
A2680	a7	≡CPh	CF3	H.Et
A2681	а7	≡CPh	CF3	H,Ph
A2682	a7	≡CPh	CF3	H,C6H4-4-F
A2683	a7	≡CPh	CH2OH	H,H
A2684	a7	≡CPh	CH2OH	H,C6H4-4-F
A2685	a7	≡CPh	CH2NHBu	H,H
A2686	a7	≡CPh	CH2NHBu	H,C6H4-4-F
A2687	a7	≡ CPh-	CH2C≡CH	H,H
A2688	a7	≡CPh	CH2C≡CH	H,C6H4-4-F
A2689	a7	≡CPh	OMe	H,H
A2690	a7	≡CPh	OMe	H,C6H4-4-F
A2691	a7	≡CPh	NH2	Н,Н
A2692	a7	≡CPh	NH2	H,C6H4-4-F
A2693	a7	≡CPh	NHMe	Н,Н
A2694	a7	≡ CPh	NHMe	H,C6H4-4-F

[0092]

【表27】

A2695	a7	≡CPh	CH2OPh	 н,н
A2696	а7	≣CPh	CH2OPh	H,C6H4-4-F
A2697	а7	≡CPh	CH2OCH2Ph	H,H
A2698	а7	≡CPh	CH2OCH2Ph	H,C6H4-4-F
A2699	a7	≣CPh	CH2-morpholino	н,н
A2700	a7	≣CPh	CH2-morpholino	H,C6H4-4-F
A2701	a7	≡CPh	CH=CH-pyridyl	н,н
A2702	a7	≣CPh	CH=CH-pyridyl	H,C6H4-4-F
A2703	а7	≡CPh	C≡CPh	н,н
A2704	a7	≡CPh	C≣CPh	H,C6H4-4-F
A2705	а7	≡CPh	Ph	Н,Н
A2706	а7	≡CPh	Ph	H,C6H4-4-F
A2707	a7	≡CPh	C6H4-4-CF3	H,H
A2708	a7	≡ CPh	C6H4-4-CF3	Me,Me
A2709	a7	≡CPh	C6H4-4-CF3	Et,Et
A2710	a7	≡CPh	C6H4-4-CF3	H.Et
A2711	a7	≡CPh	C6H4-4-CF3	H,Ph
A2712	а7	≡CPh	C6H4-4-CF3	H,C6H4-4-F
A2713	a7	≡CPh	C6H4-3-CF3	Н,Н
A2714	a7	≡CPh	C6H4-3-CF3	H,C6H4-4-F
A2715	a7	≡CPh	C6H4-4-OH	H,H
A2716	а7	≡CPh	C6H4-4-OH	H,C6H4-4-F
A2717	a7	≡ CPh	CH2Ph	H,H
A2718	a7	≡CPh	CH2Ph	H,C6H4-4-F
A2719	a7	≡CPh	CH2C6H4-4-CF3	H,H
A2720	a7	≡ CPh	CH2C6H4-4-CF3	Me,Me
A2721	a7	∃CPh	CH2C6H4-4-CF3	Et,Et
A2722	а7	≘ CPh	CH2C6H4-4-CF3	H.Et
A2723	а7	≡CPh	CH2C6H4-4-CF3	H,Ph
A2724	a7	≡CPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2725	а7	≡CPh	CH2C6H4-4-OCF3	H,H
A2726	а7	≡CPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2727	а7	≡CPh	CH2C6H4-4-Ph	H,H
A2728	a7	≡CPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2729	а7	≡CPh	CH2C6H4-2-CI	H,H
A2730	a7	≡CPh	CH2C6H4-2-CI	H,C6H4-4-F
A2731	a7	≡CPh	(CH2)2Ph	H,H
A2732	а7	≡CPh	(CH2)2Ph	H,C6H4-4-F
A2733	a7	≡CPh	CH2-piperazino-Ph	H,H
A2734	a7	≡CPh	CH2-piperazino-Ph	Me,Me
A2735	a7	≡CPh	CH2-piperazino-Ph	Et,Et
A2736	a7	≡CPh	CH2-piperazino-Ph	H.Et
A2737	a7	≡CPh	CH2-piperazino-Ph	H,Ph
A2738	a7	≡CPh	CH2-piperazino-Ph	H,C6H4-4-F

【0093】 【表28】

A2739	a7	≡ CPh	CH2-piperidino	 н,н
A2740	a7	≡CPh	CH2-piperidino	H,C6H4-4-F
A2741	a7	≡CPh	SPh	H,H
A2742	a7	≡CPh	SPh	H,C6H4-4-F
A2743	a7	≡CPh	OCH2Ph	H,H
A2744	a7	≡CPh	OCH2Ph	H,C6H4-4-F
A2745	a7	≡CPh	Ac	H,H
A2746	а7	≣CPh	Ac	H,C6H4-4-F
A2747	a7	≣CPh	CONH2	н,н
A2748	a7	≣CPh	CONH2	H,C6H4-4-F
A2749	а7	≡ CPh	CSNH2	H,H
A2750	a7	≣ CPh	CSNH2	H,C6H4-4-F
A2751	a7	≣CPh	OCONH2	H,H
A2752	a7	≡CPh	OCONH2	H,C6H4-4-F
A2753	a7	≡CPh	OCSNH2	H,H
A2754	a7	≡ CPh	OCSNH2	H,C6H4-4-F
A2755	a7	≡ CPh	OSO2Me	H,H
A2756	а7	≡ CPh	OSO2Me	H,C6H4-4-F
A2757	a7	≡CPh	OSO2Ph	H,H
A2758	a7	≡ CPh	OSO2Ph	H,C6H4-4-F
A2759	а7	≡ CPh	I	H,H
A2760	a7	≡ CPh	I	H,C6H4-4-F
A2762	a7	F	Н	Me,Me
A2763	a7	Et	Н	Et,Et
A2764	a7	iBu	Н	H.Et
A2765	a7	CH=CHMe	Н	H,Ph
A2766	a7	ОН	Н	H,C6H4-4-F
A2767	a7	OEt	Me	H,H
A2768	а7	COPh	Me	Me,Me
A2769	a7	4-pyridyl	Me	Et,Et
A2770	a7	morpholino	Me	H.Et
A2771	а7	NHiPr	Me	H,Ph
A2773	a7	F	CH2OMe	H,H
A2774	a7	Et	CH2OMe	Me,Me
A2775	а7	iBu	CH2OMe	Et,Et
A2776	a7	CH=CHMe	CH2OMe	H.Et
A2777	a7	ОН	CH2OMe	H,Ph
A2778	a7	OEt	CH2OMe	H,C6H4-4-F
A2779	a7	COPh	CF3	H,H
A2780	a7	4-pyridyl	CF3	Me,Me
A2781	a7	morpholino	CF3	Et,Et
A2782	a7	NHiPr	CF3	H.Et
A2784	a7	F	CF3	H,C6H4-4-F
A2785	a7	Et	CH2OH	Н,Н

[0094]

【表29】

A2786	a7	iBu	CH2OH	H,C6H4-4-F
A2787	а7	CH=CHMe	CH2NHBu	Н,Н
A2788	a7	он	CH2NHBu	H,C6H4-4-F
A2789	a7	OEt	CH2C≡CH	H,H
A2790	a7	COPh	CH2C≡CH	H,C6H4-4-F
A2791	a7	4-pyridyl	OMe	н,н
A2792	a7	morpholino	OMe	H,C6H4-4-F
A2793	a7	NHiPr	NH2	нн
A2795	a7	F	NHMe	н,н
A2796	a7	Et	NHMe	H,C6H4-4-F
A2797	а7	iBu	CH2OPh	Н,Н
A2798	а7	CH=CHMe	CH2OPh	H,C6H4-4-F
A2799	а7	ОН	CH2OCH2Ph	H,H
A2800	a7	OEt	CH2OCH2Ph	H,C6H4-4-F
A2801	a7	COPh	CH2-morpholino	H,H
A2802	a7	4-pyridyl	CH2-morpholino	H,C6H4-4-F
A2803	a7	morpholino	CH=CH-pyridyl	H,H
A2804	а7	NHiPr	CH=CH-pyridyl	H,C6H4-4-F
A2806	a7	F	C≡CPh	H,C6H4-4-F
A2807	a7	Et	Ph	H,H
A2808	a7	iBu	Ph	H,C6H4-4-F
A2809	a7	CH=CHMe	C6H4-4-CF3	H,H
A2810	a7	ОН	C6H4-4-CF3	Ме,Ме
A2811	a7	OEt	C6H4-4-CF3	Et,Et
A2812	a7	COPh	C6H4-4-CF3	H.Et
A2813	a7	4-pyridyl	C6H4-4-CF3	H,Ph
A2814	a7	morpholino	C6H4-4-CF3	H,C6H4-4-F
A2815	a7	NHiPr	C6H4-3-CF3	H,H
A2817	a7	F	C6H4-4-OH	H,H
A2818	a7	Et	C6H4-4-OH	H,C6H4-4-F
A2819	a7	iBu	CH2Ph	H,H
A2820	а7	CH=CHMe	CH2Ph	H,C6H4-4-F
A2821	a7	ОН	CH2C6H4-4-CF3	H,H
A2822	a7	OEt	CH2C6H4-4-CF3	Me,Me
A2823	a7	COPh	CH2C6H4-4-CF3	Et,Et
A2824	a7	4-pyridyl	CH2C6H4-4-CF3	H.Et
A2825	a7	morpholino	CH2C6H4-4-CF3	H,Ph
A2826	a7	NHiPr	CH2C6H4-4-CF3	H,C6H4-4-F
A2828	a7	F -	CH2C6H4-4-OCF3	H,C6H4-4-F
A2829	a7	Et	CH2C6H4-4-Ph	H,H
A2830	a7	iBu	CH2C6H4-4-Ph	H,C6H4-4-F
A2831	a7	CH=CHMe	CH2C6H4-2-CI	H,H
A2832	a7	OH	CH2C6H4-2-CI	H,C6H4-4-F
A2833	a7	OEt	(CH2)2Ph	 Н,Н

【0095】 【表30】

A2834	a7	COPh	(CH2)2Ph	H,C6H4-4-F
A2835	a7	4-pyridyl	CH2-piperazino-Ph	H,H
A2836	a7	morpholino	CH2-piperazino-Ph	Me,Me
A2837	a7	NHiPr	CH2-piperazino-Ph	Et,Et
A2839	a7	F	CH2-piperazino-Ph	H,Ph
A2840	a7	Et	CH2-piperazino-Ph	H,C6H4-4-F
A2841	a7	iBu	CH2-piperidino	н,н
A2842	a7	CH=CHMe	CH2-piperidino	H,C6H4-4-F
A2843	a7	ОН	SPh	Н,Н
A2844	a7	OEt	SPh	H,C6H4-4-F
A2845	a7	COPh	OCH2Ph	н,н
A2846	a7	4-pyridyl	OCH2Ph	H,C6H4-4-F
A2847	a7	morpholino	Ac	Н,Н
A2848	a7	NHiPr	Ac	H,C6H4-4-F
A2850	a7	F	CONH2	H,C6H4-4-F
A2851	a7	Et	CSNH2	H,H
A2852	a7	iBu	CSNH2	H,C6H4-4-F
A2853	a7	CH=CHMe	OCONH2	н,н
A2854	a7	ОН	OCONH2	H,C6H4-4-F
A2855	a7	OEt	OCSNH2	H,H
A2856	a7	COPh	OCSNH2	H,C6H4-4-F
A2857	a7	4-pyridyl	OSO2Me	н,н
A2858	a7	morpholino	OSO2Me	H,C6H4-4-F
A2859	a7	NHiPr	OSO2Ph	H,H
A2861	a7	F	I	H,H
A2862	a7	Et	I	H,C6H4-4-F
A3385	a7	CH2OMe	Me	H,H
A3386	a7	CH2OMe	Me	Me,Me
A3387	а7	CH2OMe	Me	Et,Et
A3388	a7	CH2OMe	Me	H.Et
A3389	а7	CH2OMe	Me	H,Ph
A3390	a7	CH2OMe	Me	H,C6H4-4-F
A3397	a7	CH2OH	Me	H,H
A3552	a7	CH2-piperazino-Ph	CF3	H.Et
A3553	a7	CH2-piperazino-Ph	CF3	H,Ph
A3554	а7	CH2-piperazino-Ph	CF3	H,C6H4-4-F
A3555	a7	CH2-piperidino	CF3	H,H
A3556	a7	CH2-piperidino	CF3	H,C6H4-4-F
A3557	a7	SPh	CF3	H,H
A3558	a7	SPh	CF3	H,C6H4-4-F
A3559	a7	OCH2Ph	CF3	H,H
A3560	a7	OCH2Ph	CF3	H,C6H4-4-F
A3561	a7	Ac	CF3	H,H
A3562	a7	Ac	CF3	H,C6H4-4-F

[0096]

【表31】

A3563	a7	CONH2	CF3]н,н
A3564	a7	CONH2	CF3	H,C6H4-4-F
A3565	а7	CSNH2	CF3	H,H
A3566	a7	CSNH2	CF3	H,C6H4-4-F
A3567	a7	OCONH2	CF3	н,н
A3568	a7	OCONH2	CF3	H,C6H4-4-F
A3569	a7	OCSNH2	CF3	H,H
A3570	a7	OCSNH2	CF3	H,C6H4-4-F
A3571	a7	OSO2Me	CF3	H,H
A3572	a7	OSO2Me	CF3	H,C6H4-4-F
A3573	а7	OSO2Ph	CF3	H,H
A3574	а7	OSO2Ph	CF3	H,C6H4-4-F
A3575	a7	I	CF3	H,H
A3576	а7	I	CF3	H,C6H4-4-F
A3627	a7	C6H4-4-CF3	CH=CHPh	Et,Et
A3628	а7	C6H4-4-CF3	CH=CHPh	H.Et
A3629	a7	C6H4-4-CF3	CH=CHPh	H,Ph
A3630	a7	C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3631	a7	C6H4-3-CF3	CH=CHPh	н,н
A3632	a7	C6H4-3-CF3	CH=CHPh	H,C6H4-4-F
A3633	a7	C6H4-4-OH	CH=CHPh	H,H
A3634	a7	C6H4-4-OH	CH=CHPh	H,C6H4-4-F
A3635	a7	CH2Ph	CH=CHPh	H,H
A3636	a7	CH2Ph	CH=CHPh	H,C6H4-4-F
A3637	a7	CH2C6H4-4-CF3	CH=CHPh	H,H
A3638	a7	CH2C6H4-4-CF3	CH=CHPh	Me,Me
A3639	a7	CH2C6H4-4-CF3	CH=CHPh	Et,Et
A3640	a7	CH2C6H4-4-CF3	CH=CHPh	H.Et
A3641	a7	CH2C6H4-4-CF3	CH=CHPh	H,Ph
A3642	a7	CH2C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3643	a7	CH2C6H4-4-OCF3	CH=CHPh	H,H
A3644	а7	CH2C6H4-4-OCF3	CH=CHPh	H,C6H4-4-F
A3645	a7	CH2C6H4-4-Ph	CH=CHPh	H,H
A3646	а7	CH2C6H4-4-Ph	CH=CHPh	H,C6H4-4-F
A3647	a7	CH2C6H4-2-CI	CH=CHPh	Н,Н
A3648	a7	CH2C6H4-2-CI	CH=CHPh	H,C6H4-4-F
A3649	a7	(CH2)2Ph	CH=CHPh	H,H
A3650	а7	(CH2)2Ph	CH=CHPh	H,C6H4-4-F
A3651	a7	CH2-piperazino-Ph	CH=CHPh	Н,Н
A3652	a7	CH2-piperazino-Ph	CH=CHPh	Me,Me
A3704	a7	CH2OH	≡CPh	H,C6H4-4-F
A3705	a7	CH2NHBu	≡CPh	H,H
A3706	а7	CH2NHBu	≣CPh	H,C6H4-4-F
A3707	a7	CH2C≡CH	≡CPh	H,H
A3708	a7	CH2C≡CH	≡CPh	H,C6H4-4-F
A3709	a7	OMe	≡CPh	Н,Н

[0097]

【表32】

A3710	a7	OMe	≡CPh	H,C6H4-4-F
A3711	a7	NH2	≡CPh	н,н
A3712	a7	NH2	≡CPh	H,C6H4-4-F
A3712	a7	NHMe	≡CPh	H,H
A3714	a7	NHMe	≡CPh	H,C6H4-4-F
A3715	a7	CH2OPh	≡CPh	н,н
A3716	a7	CH2OPh	≡CPh	H,C6H4-4-F
A3717	a7	CH2OCH2Ph	≡CPh	Н,Н
A3718	a7	CH2OCH2Ph	≡CPh	H,C6H4-4-F
A3719	a7	CH2-morpholino	≡CPh	н,н
A3720	a7	CH2-morpholino	≡CPh	H,C6H4-4-F
A3720 A3721	a7	CH=CH-pyridyl	≡CPh	н,н
A3722	a7	CH=CH-pyridyl	≡ CPh	H,C6H4-4-F
A3723	a7	C≣CPh	≡CPh	H,H
A3724	a7	C≣CPh	≡CPh	H,C6H4-4-F
A3725	a7	Ph	≡CPh	H,H
A3726	a7	Ph	≡ CPh	H,C6H4-4-F
A3727	a7	C6H4-4-CF3	≡CPh	н,н
A3728	a7	C6H4-4-CF3	≡CPh	Ме,Ме
A3806	a7	CH2OH	iBu	H,C6H4-4-F
A3807	a7	CH2NHBu	CH=CHMe	H,H
A3808	a7	CH2NHBu	ОН	H,C6H4-4-F
A3809	a7	CH2C≡CH	OEt	H,H
A3810	a7	CH2C≡CH	COPh	H,C6H4-4-F
A3811	a7	OMe	4-pyridyl	H,H
A3812	a7	OMe	morpholino	H,C6H4-4-F
A3813	a7	NH2	NHiPr	H,H
A3814	a7	NH2	н	H,C6H4-4-F
A3815	a7	NHMe	F	H,H
A3816	a7	NHMe	Et	H,C6H4-4-F
A3817	a7	CH2OPh	iBu	H,H
A3818	a7	CH2OPh	CH=CHMe	H,C6H4-4-F
A3819	а7	CH2OCH2Ph	OH	H,H
A3820	a7	CH2OCH2Ph	OEt	H,C6H4-4-F
A3821	а7	CH2-morpholino	COPh	Н,Н
A3822	а7	CH2-morpholino	4pyridyl	H,C6H4-4-F
A3823	a7	CH=CH-pyridyl	morpholino	H,H
A3824	а7	CH=CH-pyridyl	NHiPr	H,C6H4-4-F
A3825	a7	C≣CPh	Н	H,H
A3826	а7	C≣CPh	F	H,C6H4-4-F
A3827	a7	Ph	Et	H,H
A3828	a7	Ph	iBu	H,C6H4-4-F
A3829	a7	C6H4-4-CF3	CH=CHMe	н,н
A3830	a7	C6H4-4-CF3	ОН	Me,Me

【0098】 【表33】

A部分No.	タイプ	R20	n	R2	R3,R4
A3883	a1	4-CI	0	Ме	H,4-pyridyl
A3884	a1	4-CI	0	CH2OMe	H,CH2CH=CH2
A3885	a1	4-CI	0	CH2-morpholino	H,C≡CPh
A3886	a1	4-CF3	0	CH2C6H4-4-CF3	H,CH=CH2
A3887	a1	4-CF3	0	OMe	H,C6H4-4-Ph
A3888	a1	4-CF3	0	CF3	H,CH2C≡CH
A3889	a1	4-CF3	0	Ме	H,CH=CHPh
A3890	a1	4-CF3	0	CH2OMe	H,3-furyl

[0099]

2) 式:

【化13】

で示される部分(B部分)が下記のいずれかである化合物、 【0100】

【表34】

	D	
B部分 No.	X1	R5,R6,R7,R8
B1	S	н,н,н,н
B2	S	H,Me,H,H
В3	S	H,nPr,H,H
B4	s	H,OCH2CF3,H,H
B5	S	н,он, н,н
B6	s	H,OMe,H,H
В7	S	H,SMe,H,H
В8	s	Me,H,H,H
В9	s	OMe,H,H,H
B10	s	H, SPh,H,H
B11	S	Ме,Ме,Ме
B12	s	Н,Ме,Н,Ме
B13	S	OCH2CF3,H,H,H
B14	S	CI,CI,H,H
B15	S	CI,H,H,H
B16	s	H,CI,H,H
B17	S	H,F,H,H
B18	S	F,F,H,H
B19	S	F,H,H,H
B20	S	H,CH2CH=CH2,H,H
B21	0	Н,Н,Н,Н
B22	0	H,Me,H,H
B23	0	H,nPr,H,H
B24	0	H,OCH2CF3,H,H
B25	0	н,он, н,н
B26	0	H,OMe,H,H
B27	0	H,SMe,H,H
B28	0	Me,H,H,H
B29	0	OMe,H,H,H
B30	0	Me,Me,H,H
B31	0	Me,Me,Me
B32	0	H,OPh,H,H
B33	0	OCH2CF3,H,H,H
B34	0	CI,CI,H,H
B35	0	CI,H,H,H
B36	0	H,CI,H,H
B37	0	H,F,H,H
B38	0	F,F,H,H
B39	0	F,H,H,H
B40	0	H,CH2CH=CH2,H,H
B41	CH2CO	H,H,H,H

[0101]

【表35】

B42	CH2CO	H,Me,H,H
B43	CH2CO	H,nPr,H,H
B44	CH2CO	H,OCH2CF3,H,H
B45	CH2CO	H,OH, H,H
B46	CH2CO	H,OMe,H,H
B47	CH2CO	H,SMe,H,H
B48		
B49	CH2CO	CI,H,H,H
B50	CH2CO	OMe,H,H,H
B51	CH2CO	Me,Me,H,H
B52	CH2CO	Me,CH=CH2,Me,Me
B53	CH2CO	H,Me,H,NHMe
B54	CH2CO	OCH2CF3,H,H,H
	CH2CO	CI,CI,H,H
B55	CH2CO	CI,H,H,H
B56	CH2CO	H,F,H,H
B57	CH2CO	H,CH2CH=CH2,H,H
B58	NH	H,H,H,H
B59	NH	H,Me,H,H
B60	NH	H,nPr,H,H
B61 B62	NH NH	H,OCH2CF3,H,H H,OH, H,H
B63	NH	H,OMe,H,H
B64	NH	1 ' ' '
B65	NH	H,SMe,H,H Me,H,H,H
B66	NH	OMe,H,H,H
B67	NH	Me,CH≡CH,H,H
B68	NH	Me,Me,Me,Me
B69	NH	H,Ac,H,H
B70	NH	OCH2CF3,H,H,H
B71	NH	CI,CI,H,H
B72	NH	CI,H,H,H
B73	NH	H,F,H,H
B74	NH	H,CH2CH=CH2,H,H
B75	NMe	Н,Н,Н,Н
B76	NMe	H,Me,H,H
B77	NMe	H,nPr,H,H
B78	NMe	H,OCH2CF3,H,H
B79	NMe	н,он, н,н
B80	NMe	H,OMe,H,H
B81	NMe	H,SMe,H,H
B82	NMe	Me,H,H,H
B83	NMe	H,Ph,H,H
B84	NMe	Me,Me,H,H
B85	NMe	Me,Me,Me
B86	NMe	H,Me,H,Me
B87	NMe	OCH2CF3,H,H,H
B88	NMe	CI,CI,H,H
B89	NMe	CI,H,H,H

[0102]

【表36】

B90	NMe	н,ғ,н,н
B91	NMe	H,CH2CH=CH2,H,H
B92	NEt	H,H,H,H
B93	NMe	H,Me,H,H
B94	NCH2Ph	H,nPr,H,H
B95	NAc	H,OCH2CF3,H,H
B96	NCOEt	H,OMe,H,H
B97	NCOPh	Me,H,H,H
B98	NSO2Me	H,Ph,H,H
B99	NSO2Et	Me,Me,H,H
B100	NSO2Ph	Me,Me,Me,Me
B101	NSO2C6H4-p-Me	OCH2CF3,H,H,H
B102	CH2O	Н,Н,Н,Н
B103	CH2O	H,Me,H,H
B104	CH2O	H,nPr,H,H
B105	CH2O	H,OCH2CF3,H,H
B106	CH2O	н,он, н,н
B107	CH2O	H,OMe,H,H
B108	CH2O	H,CI,H,H
B109	CH2O	Me,H,H,H
B110	CH2O	H,Ph,H,H
B111	CH2O	Me,Me,H,H
B112	CH2O	Me,Me,Me
B113	CH2O	H,Me,H,Me
B114	CHEtO	OCH2CF3,H,H,H
B115	OCH2	H,H,H,H
B116	OCH2	H,Me,H,H
B117	OCH2	H,nPr,H,H
B118	OCH2	H,OCH2CF3,H,H
B119	OCH2	н,он, н,н
B120	OCH2	H,OMe,H,H
B121	OCH2	H,SMe,H,H
B122	OCH2	Me,H,H,H
B123	OCH2	H,Ph,H,H
B124	OCH2	H,F,H,H
B125	OCH2	Me,Me,Me
B126	OCH2	H,Me,H,Me
B127	OCHMe	OCH2CF3,H,H,H

【0 1 0 3】 3)式: 【化 1 4】 X2 X2 X3

で示される部分 (C部分) が下記のいずれかである化合物。 【0104】

【表37】

C部分No.	タイプ	X2	R9,R10	R17
C1	c1	0	H,H	Н
C2	c1	Ō	H,H	Me
C3	c1	Ö	Me,H	Н
C4	c1	Ö	Me,H	Me
C5	c1	ŏ	Et,H	Н
	c1	ŏ	CH2OMe,H	Me
C6	c1	Ö	nPr.H	H
C7	1 1	0	nPr,H	Me
C8	c1	0	Me,Me	H
C9	c1	0		Ме
C10	c1	0	Ph,Me	H
C11	c1	S	H,H	Me
C12	c1	5	H,H	
C13	c1	S	CH2Ph,H	H
C14	c1	S S	Me,H	Me
C15	c1	S	Et,H	H
C16	c1	S	Et,H	Et
C17	c1	S S S	nPr,H	H
C18	c1	s	nPr,H	iPr
C19	c1	s	Me,Me	H
C20	c1	s	Me,Me	Me
C21	c1	NH	H,H	H
G22	c1	NH	H,H	Me
C23	c1	NH	Me,H	H
C24	c1	NH	Me,H	Me
C25	c1	NH	Et,H	H
C26	c1	NH	Et,H	Me
G27	c1	NH	nPr,H	Н
C28	c1	NH	nPr.H	Me
C29	c1	NH	Me,Me	H
	1	NH	Me,Me	tBu
C30	c1	NEt	H,H	H
C31	c1	NMe	H,H	Me
C32	c1	NCH2Ph	Me,H	H
C33	c1		Me,H	Ме
C34	c1	NAc	Et,H	H
C35	c1	NCOEt		Me
C36	c1	NCOPh	Et,H	
C37	c1	NSO2Me	nPr,H	H
C38	c1	NSO2Et	nPr,H	Me
C39	c1	NSO2Ph	Me,Me	H
C40	c1	NSO2C6H4-p-Me	Me,Me	Me
C41	c1	*1	*1	H
C42	c1	*1	*1	Me
C43	c2	0	Н,Н	H
C44	c2	単結合	¦H,H	H
C45	c2	S	H,Η	H
C46	c2	CH2	∖H,H	H
C47	c2	NH	H,H	H
C48	c2	*1	*1	H
C49	c3	0	H,H	H
C50	c3	Ŏ	н,н	Ме
C51	63	ŏ	Me,H	Н
C52	c3	ŏ	Me,H	Me
C53	c3	1	Et,H	Н
1000	1 00		1	, .,

【0105】 【表38】

C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C72 C73 C74 C75 C76 C77 C78 C79 C80 C81 C82 C83 C84 C85 C89 C80 C81 C82 C83 C84 C85 C86 C87 C87 C87 C87 C87 C88 C87 C88 C87 C88 C88	333333333333333333333333333333444444555555	ののののは結結結結ののののののは 単単単単単 のののののは のののののは は のは のは のののののは は のは の	OEt,H nPr,H Me,Me Me,Me Me,Me H,H OMe,H Et,H nPr,He Me,Me H,H H,H H,H H,H H,H H,H H,H H,H H,H H,	MH MH H H H H H H H H H H H H H H H H H
[S		
C91	с5	NH	H,H	Н
		•		
C93	c6	単結合	П,П Н,Н	H
C95	c6	S	H,H	н
C96	с6	CH2	H,H	н
C97	c6	NH	H,H	H
C98	с6	*2	*2	Н
C99	c1	CH2	H,H	H
C100	c1	CH2	H,Me	Me
C101	c1	CH2	H,H H,Me	Me
C102	<u>c1</u>	CH2	[1 1,1VIE	INIC

[0106]

具体的には、化合物(I)のA部分、B部分およびC部分の組み合わせが下記の通りで ある化合物が好ましい。

[0107]

【表39】

22 33 4 5 6 7 8 9 10 11 12 13 14 14 14 14	A7 A12 A13 A18 A21 A26 A27 A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	C1 C3 C7 C11 C21 C32 C41 C43 C49 C81 C87		44 45 46 47 48 49 50	A321 A326 A331 A336 A351 A356 A399 A404	B4 B4 B4 B4 B4 B4	C1 C3 C7 C11 C21 C32 C41		159 160 161 162 163	A2466 A2467 A2472 A2473 A2478 A2503	B78 B78 B78 B78 B78	C21 C32 C41 C43 C49
3 2 2 5 6 6 7 7 8 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	A13 A18 A26 A27 A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1 B1 B1 B1 B1	C7 C11 C21 C32 C41 C43 C49 C81		45 46 47 48 49 50	A331 A336 A351 A356 A399 A404	B4 B4 B4 B4 B4	C7 C11 C21 C32		160 161 162 163	A2472 A2473 A2478	B78 B78 B78	C41 C43
2 5 6 6 7 7 7 8 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	A18 A21 A26 A27 BA32 BA37 DA42 A57 PA62 BA105 A110	B1 B1 B1 B1 B1 B1 B1 B1	C11 C21 C32 C41 C43 C49 C81 C87		46 47 48 49 50	A336 A351 A356 A399 A404	B4 B4 B4 B4	C11 C21 C32		161 162 163	A2473 A2478	B78 B78	C43
5 6 7 8 9 10 11 12 13 14 14	A21 A26 A27 A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1 B1 B1	C21 C32 C41 C43 C49 C81 C87		47 48 49 50	A351 A356 A399 A404	B4 B4 B4	C21 C32		162 163	A2478	B78	ł
6 7 8 9 10 11 12 13 14	A26 A27 A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1 B1 B1	C32 C41 C43 C49 C81 C87		48 49 50	A356 A399 A404	B4	C32	i		A2503		C49
7 8 9 10 11 12 13 14 14	A27 A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1 B1	C41 C43 C49 C81 C87	İ	49 50	A399 A404						•	
8 9 10 11 12 13 14 18	A32 A37 A42 A57 A62 A105 A110	B1 B1 B1 B1 B1	C43 C49 C81 C87		50	A404		O-1	1	164	A2508	B78	C81
9 10 12 12 14 14 18	A37 A42 A57 A62 A105 A110	B1 B1 B1 B1	C49 C81 C87				B4	C43		165	A2515	B78	C87
10 11 12 13 14 18	A42 A57 A62 A105 A110	B1 B1 B1	C81 C87	1		A405	B4	C49		166	A2520	B78	C93
11 12 13 14 14 10	A57 A62 A105 A110	B1 B1	C87		52	A410	В4	C81	- 1	167	A2529	B78	C99
12 13 14 13 10	A62 A105 A110	B1	1 1	- 1		A413	B4	C87	1	168	A2534	B78	C102
13 14 13 10	A105 A110	1				A418	В4	C93	i		A2563	B92	C1
14 13 10	4 A110	l B1	C93			A419	B4	C99	ł		A2568	B92	СЗ
13 10	4	1 0.	C99	- 1		A424	В4	C102			A2569	B92	C7
10	Δ111	B1	C102	Ì		A429	B21	C1	- 1		A2574	B92	C11
	ייירוך	B2	C1	ı		A434	B21	C3	1		A2575	B92	C21
1	A116	B2	C3	İ		A449	B21	C7	I		A2580	B92	C32
	7 A119	B2	C7			A454	B21	C11			A2605	B92	C41
1/	B A124	B2	C11	- 1		A497	B21	C21			A2610	B92	C43
	9 A125	B2	C21			A502	B21	C32			A2617	B92	C49
	0A130	B2	C32			A503	B21	C41	l		A2622	B92	C81
2	1 A135	B2	C41			A508	B21	C43			A2631	B92	C87
	2 A140	B2	C43			A511	B21	C49			A2636	B92	C93
	3 A155	B2	C49	ł		A516	B21	C81	1		A2665	B92	C99
	4 A160	B2	C81	-		A517	B21	C87			A2670	B92	C102
	5 A203	B2	C87			A522	B21	C93	1		A2671	B93	C1
	6 A208	B2	C93	1		A527	B21	C99			A2676	B93	C3
	7 A209	B2	C99			A532	B21	C102			A2677	B93	l l
	8 A214	B2	C102			A547	B22	C1	li		A2682	B93	C11
	9 A217	В3	C1			A552	B22	C3			A2707	B93	C21
	0 A222	В3	СЗ			A2359	B59	C21			A2712	B93	
	1 A223	B3	C7	1		A2364	B59	C32			A2719	B93	1
	2 A228	ВЗ	C11			A2365	B59	1	1 1		A2724	B93	1
	3 A233	B3	C21			A2370		C43			A2733	1	C49
	4 A238	ВЗ	C32			A2371	1	C49			2 A2738	B93	
	5 A253	В3	C41			A2376	B59	1	'		- , 12,00	1	100.
	6 A258	ВЗ	C43			A2401	B59						
	7 A301	ВЗ	C49			A2401	B59	i i					
	8 A306	В3	C81			A2413	B59	1					
ł .	9 A307	В3	C87			A2413	1	C102					
l .	0 A312	В3	C93			A2418	1	C102	Į				
1	11 A315	B3	C99			A2427	B78	•	1				
2		В3	C102			ヘーハ・フグ・フィン		17.372	1				

【0108】 【表40】

No.	A	В	С	28	A27	B46	C11		331	A105	B92	
241		B2	C3	280	6 A27	B47	C21		332	A105	B93	C49
242	ŀ	В3	C7	28	7 A27	B48	C32	İ	333	A105	B94	C81
243		B4	C11	28	3 A27	B49	C41	-	334	A105	B95	C87
244		B5	C21	289	A27	B50	C43		335	A105	B96	C93
245	l.	B6	C32	29	A27	B51	C49		336	A105	B97	C99
246	ì	B7	C41	29	1 A27	B52	C81	ı	337	A105	B98	C102
247	1	B8	C43	29:	2 A27	B53	C87	ı	338	A111	B99	C1
248	1	B9	C49	29	3 A27	B54	C93		339	A111	B100	! E
249		B10	C81	29	4 A27	B55	C99	l	340	A111	1	C7
250	1	B11	C87	29	5 A27	B56	C102			A111	B102	
251	l	B12	C93	29	6 A37	B57	C1		342	A111	B103	1 .
252	1	B13	C99	29	7 A37	B58	C3		343	A111	B104	
253	1	B14	C102	29	8 A37	B59	C7	1		A111	B105	
1	A13	B15	C1	29	9 A37	B60	C11		345	A111	B106	1 I
1	A13	B16	СЗ	30	0 A37	B61	C21			A111	B107	
1	A13	B17	C7	30	1 A37	B62	C32			A111	B108	
	A13	B18	C11	30	2 A37	B63	C41			A111	B109	
	A13	B19	C21	30	3 A37	B64	C43			A111	B110	
	A13	B20	C32	30	4 A37	B65	C49	H		A111	B111	
	A13	B21	C41	30	5 A37	B66	C81			A111	1	C102
	A13	B22	C43		6 A37	B67	C87		i	A119	B113	
1	A13	B23	C49		7 A37	B68	C93			A119	B114	
	A13	B24	C81		8 A37	B69	C99			A119	B115	1
	A13	B25	C87	30	9 A37	B70	C102			A119	B116	
	A13	B26	C93	31	0 A57	B71	C1			A119	B117	1 1
	A13	B27	C99	1 1	1 A57	B72	C3		l .	A119	B118	
	A13	B28	C102		2 A57	B73	C7			A119	B119	
268	A21	B29	C1	1 1	3 A57	B74	C11		1	A119	B120	1 1
269	A21	B30	СЗ	1 1	4 A57	B75	C21			A119	B121	
270	A21	B31	C7	1 1	5 A57	B76	C32	1	t .	A119	B122	
271	A21	B32	C11		6 A57	B77	C41	1		A119	B123	1
272	A21	B33	C21	1 1	7 A57	B78	C43			A119	B124	1 1
273	A21	B34	C32	1 1	8 A57	B79	C49			A119	B125	
274	1 A21	B35	C41		9 A57	B80	C81	İ		A119	1	C102
27	5 A21	B36	C43	1 1	0 A57	B81	C87		1	A223	B127	
270	6 A21	B37	C49	1 1	21 A57	B82				A223	B1 B2	C3 C7
27	7 A21	B38	C81	1 1	22 A57		C99	1	I .	A223		1 1
27	B A21	B39	C87		23 A57	I .	C102			A223	B3	C11
279	A21	B40			24 A105	B85	1			A223	B4	G21 G32
28	A21	B41		1 1	25 A105	B86	L .			A223	B5	C32
	1 A21	1	C102		26 A105	B87	1	1		A223	B6 B7	C43
	2 A27		C1	1 1	27 A105	2	C11		9	A223 A223	B8	C49
28	3 A27		C3		28 A105		C21			A223	B9	C81
28	4 A27	B45	C7		29 A105	1	C32				l l	C87
				3	30 A105	Bal	C41	I	1 3/	6 A223	סום	1007

[0109]

【表41】

ا معملاته ا	B11 C93	423 A307	B57 C3	469 A429	B103 C32
377 A223		424 A307	B58 C7	470 A429	B104 C41
378 A223	1 1 1	425 A307	B59 C11	471 A429	B105 C43
379 A223		426 A307	B60 C21	472 A429	B106 C49
380 A233	B14 C1	427 A307	B61 C32	473 A429	B107 C81
381 A233	B15 C3	428 A307	B62 C41	474 A429	B108 C87
382 A233	B16 C7	429 A307	B63 C43	475 A429	B109 C93
383 A233	B17 C11	430 A307	B64 C49	476 A429	B110 C99
384 A233	B18 C21	431 A307	B65 C81	477 A429	B111 C102
385 A233	B19 C32	432 A307	B66 C87	478 A449	B112 C1
386 A233	B20 C41 B21 C43	433 A307	B67 C93	479 A449	B113 C3
387 A233		434 A307	B68 C99	480 A449	B114 C7
388 A233	1 1 1	435 A307	B69 C102	481 A449	B115 C11
389 A233	B23 C81 B24 C87	436 A315	B70 C1	482 A449	B116 C21
390 A233	B25 C93	437 A315	B71 C3	483 A449	B117 C32
391 A233		438 A315	B72 C7	484 A449	B118 C41
392 A233	1 1 1 1	439 A315	B73 C11	485 A449	B119 C43
393 A233	B27 C102 B28 C1	440 A315	B74 C21	486 A449	B120 C49
394 A253	B29 C3	441 A315	B75 C32	487 A449	B121 C81
395 A253	B30 C7	442 A315	B76 C41	488 A449	B122 C87
396 A253	B31 C11	443 A315	B77 C43	489 A449	B123 C93
397 A253	B32 C21	444 A315	B78 C49	490 A449	B124 C99
398 A253	B32 C21	445 A315	B79 C81	491 A449	B125 C102
399 A253	B34 C41	446 A315	B80 C87	492 A497	B126 C1
400 A253 401 A253	B35 C43	447 A315	B81 C93	493 A497	B127 C3
401 A253	B36 C49	448 A315	B82 C99	494 A497	B1 C7
403 A253	B37 C81	449 A315	B83 C102	495 A497	B2 C11
404 A253	B38 C87	450 A419	B84 C1	496 A497	B3 C21
405 A253	B39 C93	451 A419	B85 C3	497 A497	B4 C32
406 A253	B40 C99	452 A419	B86 C7	498 A497	B5 C41
407 A253	B41 C102	453 A419	B87 C11	499 A497	B6 C43
407 A233	B42 C1	454 A419	B88 C21	500 A497	B7 C49
409 A301	B43 C3	455 A419	B89 C32	501 A497	B8 C81
410 A301	B44 C7	456 A419	B90 C41	502 A497	B9 C87
411 A301	B45 C11	457 A419	B91 C43	503 A497	B10 C93
412 A301	B46 C21	458 A419	B92 C49	504 A497	B11 C99
413 A301	B47 C32	459 A419	B93 C81	505 A497	B12 C102
414 A301	B48 C41	460 A419	B94 C87	506 A503	B13 C1
415 A301	B49 C43	461 A419	B95 C93	507 A503	B14 C3
416 A301	B50 C49	462 A419	B96 C99	508 A503	B15 C7
417 A301	B51 C81	463 A419	B97 C102	509 A503	B16 C11
418 A301	B52 C87	464 A429	B98 C1	510 A503	B17 C21
419 A301	B53 C93	465 A429	B99 C3	511 A503	B18 C32
420 A301	B54 C99	466 A429	B100 C7	512 A503	B19 C41
421 A301	B55 C102	467 A429	B101 C11	513 A503	B20 C43
422 A307	B56 C1	468 A429	B102 C21	514 A503	B21 C49
	· <u> </u>	•			
[011	0.1				

【表42】

1 545/4500	B22 C81	561 A2	365 B68	C102	607 A2427	B114	C11
515 A503	B23 C87	562 A2		21	·	B115	- 1
516 A503	B24 C93	563 A2		33	609 A2427	B116	C32
517 A503	B25 C99	564 A2		27	610 A2427	B117	
518 A503	B26 C102	565 A2		211	611 A2427	B118	
519 A503	B27 C1	566 A2		021	612 A2427	B119	C49
520 A511	B28 C3	567 A2	1 [032	613 A2427	1	C81
521 A511	B29 C7	568 A2		041	614 A2427	1	C87
522 A511	B30 C11	569 A2	1 1	C43	615 A2427	B122	
523 A511	B31 C21	570 A2		C49	616 A2427	B123	C99
524 A511	B31 C21	571 A2		C81	617 A2427		C102
525 A511 526 A511	B33 C41	572 A2		C87	618 A2461	B125	C1
527 A511	B34 C43	573 A2	1 1	C93	619 A2461	B126	СЗ
527 A511 528 A511	B35 C49	574 A2		C99	620 A2461	B127	C7
528 A511 529 A511	B36 C81	575 A2	l i	C102	621 A2461	l I	C11
529 A511 530 A511	B37 C87	576 A2		C1	622 A2461	B2	C21
530 A511 531 A511	B38 C93	577 A2		C3	623 A2461	В3	C32
531 A511	B39 C99	578 A		C7	624 A2461	B4	C41
532 A511	B40 C102			C11	625 A2461	B5	C43
534 A2359	B41 C1	580 A		C21	626 A2461	B6	C49
535 A2359	B42 C3	581 A	1 1	C32	627 A2461	B7	C81
536 A2359	B43 C7	582 A		C41	628 A2461	B8	C87
537 A2359	B44 C11	583 A		C43	629 A2461	B9	C93
538 A2359	B45 C21	584 A	1 1	C49	630 A2461	B10	C99
539 A2359	B46 C32	585 A	1	C81	631 A2461	B11	C102
540 A2359	B47 C41	586 A		C87	632 A2467	B12	C1
541 A2359	B48 C43	587 A	2401 B94	C93	633 A2467	B13	C3
542 A2359	B49 C49	588 A		C99	634 A2467	B14	C7
543 A2359	B50 C81	589 A		C102	635 A2467	B15	C11
544 A2359	B51 C87	590 A	2413 B97	C1	636 A2467	B16	C21
545 A2359	B52 C93	591 A	2413 B98	C3	637 A2467	B17	C32
546 A2359	B53 C99	592 A	2413 B99	C7	638 A2467	B18	C41
547 A2359	B54 C102	1 1 1		C11	639 A2467	B19	C43
548 A2365	B55 C1	594 A	2413 B101	G21	640 A2467	B20	C49
549 A2365	B56 C3	595 A	2413 B102	C32	641 A2467	B21	C81
550 A2365	B57 C7	596 A	2413 B103	C41	642 A2467	B22	C87
551 A2365	B58 C11	597 A	2413 B104	C43	643 A2467	B23	C93
552 A2365	B59 C21	598 A	2413 B105	C49	644 A2467	B24	C99
553 A2365	B60 C32	599 A	1		645 A2467	B25	C102
554 A2365	B61 C41	600 A	l l		646 A2473	B26	C1
555 A2365	B62 C43	601 A	2413 B108		647 A2473	B27	C3
556 A2365	B63 C49	1 1 1	·- · · ·	C99	648 A2473	B28	C7
557 A2365	B64 C81			C102	649 A2473	B29	C11
558 A2365	B65 C87	1 1 1	A2427 B111		650 A2473	B30	
559 A2365	B66 C93		A2427 B112	1 1 1	651 A2473	B31	C32
560 A2365	B67 C99	606 A	A2427 B113	C7	652 A2473	B32	C41

【0111】 【表43】

	653	A2473	B33	C43		684	A2617	B64	C87		715	A2665	B95	C102
	654	A2473	B34	C49		685	A2617	B65	C93		716	A2671	B96	C1
	655	A2473	B35	C81		686	A2617	B66	C99		717	A2671	B97	СЗ
	656	42473	B36	C87		687	A2617	B67	C102		718	A2671	B98	C7
	657	42473	B37	C93		688	A2631	B68	C1		719	A2671	B99	C11
	658	42473	B38	C99		689	A2631	B69	C3		720	A2671	B100	C21
	659	42473	B39	C102		690	A2631	B70	C7		721	A2671	B101	C32
	660	42605	B40	C1		691	A2631	B71	C11		722	A2671	B102	C41
	661	A2605	B41	C3		692	A2631	B72	C21		723	A2671	B103	C43
	662	A2605	B42	C7		693	A2631	B73	C32		724	A2671	B104	C49
	663 A	A2605	B43	C11		694	A2631	B74	C41		725	A2671	B105	C81
ļ	664 A	A2605	B44	C21		695	A2631	B75	C43		726	A2671	B106	C87
	665 A	A2605	B45	C32		696	A2631	B76	C49		727	A2671	B107	C93
	666 A	A2605	B46	C41	ı	697	A2631	B77	C81		728	A2671	B108	C99
	667 A	A2605	B47	C43		698	A2631	B78	C87		729	A2671	B109	C102
	668 A	A2605	B48	C49	l		A2631	B79	C93		730	A2677	B110	C1
į	669 A	A2605	B49	C81		700	A2631	B80	C99		731	A2677	B111	C3
	670 A	A2605	B50	C87		701	A2631	B81	C102		732	A2677	B112	C7
		12605	B51	C93		702	A2665	B82	C1		733	A2677	B113	C11
	672 A	\2605	B52	C99		703	A2665	B83	C3		734	A2677	B114	C21
ļ	673 A	12605	B53	C102		704	A2665	B84	C7		735	A2677	B115	C32
	674 A	12617	B54	C1		705	A2665	B85	C11		736	A2677	B116	C41
	675 △		- 1	C3		706	A2665	B86	C21	- 1	737	A2677	B117	C43
	676 A			C7		707	A2665	B87	C32	- 1	738	A2677	B118	
			- 1	C11			A2665	B88	C41		739	A2677	B119	C81
			1	C21			A2665		C43		740	A2677	B120	C87
	679 A	1	- 1	C32			A2665		C49	- 1	741	A2677	B121	
Į	680 A		- 1	C41		ı	A2665		C81	1	742	A2677	B122	
	681 A		- 1	C43	ŀ		A2665		C87	L	743	A2677	B123	C102
1	682 A		1	C49			A2665		C93					
	683 A	2617	B63	C81	I	714	A2665	B94	C99					

[0112]

【表44】

No.	Α	В	С		784	A21	B58	C41		825	A57	B3	C83
744		B2	G2		785	A21	B59	C43		826	A57	В4	C84
745		В3	C3		786	A21	B78	C44		827	A57	B21	C85
746		В4	C4		787		B92	C45	1	828	A57	B22	C86
747	Į.		C5		788	A21	B93	C46		829	A57	B23	C87
748	l		C6		789	A21	B102	C47		830	A57	B24	C88
749	ì		C7		790	A21	B115	C48		831	A57	B42	C89
750	1	B24			791	A27	B1	C49		832	A57	B58	C90
751	l	B42	C9		792	A27	B2	C50		833	A57	B59	C91
752	A7	B58	C10		793	A27	B3	C51		834	A57	B78	C92
753	A7	B59	C11		794	A27	B4	C52]]	835	A57	B92	C93
754	A7	B78	C12		795	A27	B21	C53		836	A57	B93	C94
755	A7	B92	C13		796	A27	B22	C54		837	A57	B102	C95
756	A7	B93	C14		797	A27	B23	C55		838	A57	B115	1 1
757	A7	B102	C15		798	A27	B24	C56	1	839	A105	B1	C97
758	A7	B115	C16		799	A27	B42	C57		840	A105	B2	C98
759	A13	B1	C17	<u>ן</u>	800	A27	B58	C58			A105	B3	C99
760	A13	B2	C18		801	A27	B59	C59		842	A105	B4	C100
761	A13	В3	C19		802	A27	B78	C60		843	A105	í	C101
762	A13	B4	C20		803	A27	B92	C61			A105	1	C102
763	A13	B21	C21		804	A27	B93	C62			A105	I .	C1
764	A13	B22	C22		805	A27	B102	1			A105	ì	C2
765	A13	B23	C23	t	806	A27	B115	C64			A105	1	C3
766	A13	B24	C24		807	A37	B1	C65			A105	Ł	C4
767	A13	B42	C25		808	A37	B2	C66			A105		C5
768	A13	B58	C26	1	809	A37	B3	C67] i		A105	B78	C6
769	A13	B59	C27	İ	810	A37	B4	C68	1		A105	ł	C7
770	A13	B78	C28		811	A37	B21	C69			A105	B93	C8
771	A13	B92	C29	ļ		A37	B22	C70			A105	B102	1
772	A13	B93	C30	į .	1	A37	B23	C71			A105	B115	1 1
773	A13	B102	C31			A37	B24	C72			A111	B1	C11
774	A13	B115	C32	}	1	A37	B42	C73			A111	B2	C12
775	A21	B1	C33		1	A37	B58	L			A111	B3	C13
776	A21	B2	C34	1	1	A37	1	C75		1	A111	1	C14
777	A21	B3	C35		I	A37	B78	C76		ł .	A111	1	C15
778	A21	B4	C36		li e	A37	B92	i		1	A111		C16
779	A21	B21	C37			A37		C78		l .	A111	B23	C17
780	A21	B22	C38		I.	A37	ľ	C79	1		A111		C18
	A21	B23	1		1	A37		C80		ŧ	A111	į.	C19
782	A21	B24	i		ł	A57	B1	C81	1		A111		1
783	A21	B42	C41	1	824	1 A57	B2	C82	1	865	A111	B59	C21

【表45】

۔ ا	بمامم	44 1	B78	loga I	i	907 A	233	B21	C63	1	948	A301	B93	C2	
1	366 A1			C23		908 A			C64	ł	949	A301	B102	C3	
	367 A1	1	B93	C24	1	909 A	1		C65		950	A301	B115	C4	ļ
	368 A1		B102	i i	1	910 A	1	B24	C66	ļ	951	A307	В1	C5	
	369 A1		B115	l i		911 A		B42	C67	ļ	952	A307	B2	C6	ļ
l	370 A1		B1	C27		912 A			C68			A307	B3	C7	1
ı	871 A1		B2	C28		913	- 1	B59	C69		954	A307	B4	C8	l
	B72 A1		B3	C29		914	ļ.		C70		955	A307	B21	C9	
L.	873 A ⁻ 874 A ⁻		B4	C30		915			C71		956	A307	B22	C10	
1	875 A		B21	C31		916	1	B93	C72		957	A307	B23	C11	
	876 A		B22	C32		917		B102	C73		958	A307	B24	C12	1
	870 A		B23	1		918		B115	C74		959	A307	B42	C13	1
	878 A		B24	1			A253	B1	C75		960	A307	B58	C14	
	879 A		B42	1			A253	B2	C76		961	A307	B59	C15	
	880 A		B58	1	1		A253	В3	C77		962	A307	B78	C16	
	881 A		B59	1		The state of the s	A253	B4	C78		963	A307	B92	C17	
1	882 A		B78	1			A253	B21	C79		964	4 A307	B93	C18	1
	883 A		B92	1	1	924	A253	B22	C80	Ì	96	A307		C19	
	884 A		B93	l .		925	A253	B23	C81		96	6 A307		C20	
ł	885 A		1	2 C41		926	A253	B24	C82		96	7 A315	B1	C21	
Ì	886 A			5 C41		927	A253	B42	C83		į.	8 A315	B2	C22	
	887 A		B1	C43		928	A253	B58	C84		1	9 A315	B3	C23	1
	888 A		B2	C44		929	A253	B59	C85	1	I.	0 A315	B4	C24	
1	889		ВЗ	C45		930	A253	B78	C86		1	1 A315	B21	l l	
1	890		В4	C46		931	A253	B92	C87		l l	2 A315	B22	1	- 1
	891	A223	B21	1 C47		932	A253	B93			1	3 A315	B23		- 1
ı	892	4223	B22	2 C48		933	A253	l l	2 C89			4 A315	B24	1	
1	893	4223	B23	3 C49		934	A253	1	5 C90		1	5 A315	B42	- 1	- 1
1	894	A223	B24	4 C50	1	1	A301	B1	1			6 A315	B58	1	- 1
	895	A223	B4:	2 C51		1	A301	B2		1		77 A315	B59	ŀ	
İ	896	A223	B5	8 C52		1	A301	B3	1		l.	/8 A315	- 1	1	1
-	897	A223	B5	9 C53		1	A301	B4	1	1		79 A315	1		
1	898	A223	B7		- 1	1	A301	B2			1	30 A315 31 A315	- 1	02 C35	- 1
	899	A223	1	2 C55	1		A301	l l	2 C96			32 A315		5 C36	- 1
	900	A223	1	3 C56	1	1	A301	B2		1	4	B3 A419	1	1 _	1
	901	A223		02 C57		1	A301	i	4 C98			84 A419	1	1	- 1
1	1	A223	L L	15 C58	1	l .	3 A 301	B4			i i	85 A419	1	i	
	903	A233	•			1	4 A301	B5	1			86 A419	L		ŀ
		A233		- 1		1	5 A301	BS	- 1	ı	1	87 A419		- 1	
		A233		l			6 A301	B7	- 1	۲		88 A419	-1	2 C4	
	906	A233	3 B	4 C62	·	94	7 A301	DS	92 C1	i	1 3	-op (41)	1 52	- 10,	- 1

【表46】

989	410	B23	C43	1	1030	A449	B115	C84		1071	A511	B42	C23	
990		1	C44	1	1031	l	В1	C85		1072	A511	B58	C24	
990		B42		1	1032	l l	B2	C86	1	1073	A511	B59	C25	
992	- 1	1	C46	İ	1033		ВЗ	C87	- [1074	A511	B78	C26	l
993		B59	- 1		1034			C88	ļ	1075	A511	B92	C27	
994		1	C48			A497	- 1	C89	ŀ	1076	A511	B93	C28	ì
995	ì		C49	l	l l	A497	B22	C90	ı	1077	A511	B102	C29	١
996			C50	Į		A497		C91		1078	A511	B115	C30	
1 1	A419	B102				A497	B24	C92	·	1079	A2359	B1	C31	
	A419	B115				A497	B42	C93		1080	A2359	B2	C32	
	A429	B1	C53			A497	B58	C94		1081	A2359	B3	C33	
1000		B2	C54		1041	A497	B59	C95		1082	A2359	B4	C34	١
1000		B3	C55		1042	A497	B78	C96	1	1083	A2359	B21	C35	
1002		B4	C56		1043	A497	B92	C97		1084	A2359	B22	C36	
1002		B21	C57		1044	A497	B93	C98		1085	A2359	i	C37	١
1 1	A429	B22	C58		1045	A497	B102	C99		1086	A2359	B24	C38	1
1 1	A429	B23	C59	i	1046	A497	B115	C100			A2359		C39	1
	A429	B24	C60		1047	A503	B1	C101	ļ '		A2359	B58		l
	A429	B42	C61	l	1048	A503	B2	C102		1	A2359	B59		ł
1	A429	B58	C62		1049	A503	B3	C1		1	A2359	B78		١
L	A429	B59	C63		1050	A503	B4	C2	1	1	A2359	B92	į.	١
ľ	A429	B78	C64		1051	A503	B21	C3	1	1	A2359	ı	i i	١
1011	A429	B92	C65	1	1052	2 A503	B22	C4	1	1	A2359	l l	2 C45	١
	A429	B93	C66	1		A503	B23	1	1	I .	4 A2359	1	5 C46	١
1013	A429	B10	2 C67		1054	4 A503	B24		1		5 A2365	l l	C47	- [
1014	A429	B11	C68	ł	105	5 A503	B42	i	1		6 A2365		C48	•
1015	A449	B1	C69	1	105	6 A503	B58	i	1	1	7 A2365	1	1	- 1
1016	A449	B2	C70	1		7 A503	B59	i	1	1	8 A2365	1		- 1
1017	A449	В3	C71	ļ	1	8 A503	B78				9 A2365	1	- 1	1
1018	A449	B4	C72	1		9 A503	B92	1		1	0 A2365	1	- 1	
1019	A449	B21	C73	1		0 A503	B93	Ĭ	-	1	1 A2365			- 1
1020	A449	B2:	2 C74			1 A503	- 1	2 C13			2 A2365	1	į į	
102	1 A449	B23	3 C75	1		2 A503	l	5 C14			1		8 C56	
102	2 A449	B24	4 C76			3 A511	B1	1			4 A236	1	9 C57	
102	3 A449	B4	2 C77			4 A511	B2	- 1	1		5 A236		8 C58	
102	4 A449	B5	8 C78	1		35 A511	B3	i			06 A236	1	2 C59	
102	5 A449	B5		1	L	6 A511	B4	1	1)7 A236)8 A236	- 1	3 C60	
102	6 A449	1	8 C80		Ł	67 A511	B2				09 A236		i i	
102	7 A449	- 1	2 C81	1		38 A511	1	1			10 A236			
102	8 A449	1	3 C82			69 A511	1	j i	1		11 A237		i	
102	9 A449	B16	02 C83	ļ	10	70 A511	B2	4 C22	.	1 ''	11/1/201	. 1 5	100	-

[0115]

【表47】

1112 A2371 E	32 C64	1153 A2413	B59 C3	1194	A2467	B4	C44
1112/1201	33 C65	1154 A2413	B78 C4	1195	A2467	B21	C45
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	34 C66	1155 A2413	B92 C5	1196	A2467	B22	C46
	321 C67	1156 A2413	B93 C6	1197	A2467	B23	C47
	322 C68	1157 A2413	B102 C7	1198	A2467	B24	C48
1 1	323 C69	1158 A2413	B115 C8	1199	A2467	B42	C49
1	324 C70	1159 A2427	1 1	1200	A2467	B58	C50
	342 C71	1160 A2427	1 1	1201	A2467	B59	C51
1	358 C72	1161 A2427		1202	A2467	B78	C52
	359 C73	1162 A2427	B4 C12	1203	A2467	B92	C53
1	378 C74	1163 A2427	B21 C13	1204	A2467	B93	C54
	392 C75	1164 A2427	B22 C14	1205	A2467	B102	C55
	393 C76	1165 A2427	B23 C15	1206	A2467	B115	C56
	102 C77	1166 A2427	B24 C16	1207	A2473	B1	C57
1	115 C78	1167 A2427	B42 C17	1208	A2473	B2	C58
1 1	B1 C79	1168 A2427	B58 C18	1209	A2473	В3	C59
1 1	B2 C80	1169 A2427	B59 C19	1210	A2473	B4	C60
1 1 1	B3 C81	1170 A2427	B78 C20	1 1	A2473	B21	C61
1130 A2401	B4 C82	1171 A2427	B92 G21	1212	A2473	B22	C62
1131 A2401	B21 C83	1172 A2427	B93 C22	1 1	A2473	B23	C63
1132 A2401	B22 C84	1173 A2427	B102 C23	1 1	1 A2473	B24	C64
1133 A2401	B23 C85	1174 A242	1 1	1 1	A2473	B42	C65
1134 A2401	B24 C86	1175 A2461	1 1		A2473	B58	C66
1135 A2401	B42 C87	1176 A246	1 1		7 A2473	B59	C67
1136 A2401	B58 C88	1177 A246	1 1	1 1	B A2473	B78	C68
1137 A2401	B59 C89	1178 A246	1 1	1 1	9 A2473	B92	C69
1138 A2401	B78 C90	1179 A246	1 1	1 1	0 A2473	B93	C70
1139 A2401	B92 C91	1180 A246	1 1	1 1	1 A2473	1	1 1
	B93 C92	1181 A246	1 1	1 1	2 A2473	i	1 1
1	B102 C93	1182 A246	1 1	1 1	3 A2605	l.	C73
1142 A2401 I	B115 C94	1183 A246	1 1	1 1	4 A2605	l	C74
1143 A2413	B1 C95	1184 A246	1 1	1 1	5 A2605	1	C76
1144 A2413	B2 C96	1185 A246	1 1	1 1	6 A2605	1	
1145 A2413	B3 C97	1186 A246	1 1		7 A2605		C77
1146 A2413	B4 C98	1187 A246	1 1		8 A2605 9 A2605		C79
1147 A2413	B21 C99	1188 A246	1 1		9 A2605		C80
1148 A2413	B22 C100	1189 A246	1 1	1 1	1 A2605	l .	C81
1149 A2413	B23 C101	1190 A246	1 1	1 1	2 A2605		C82
1150 A2413	B24 C102	1191 A246	I I		3 A2605	1	C83
1151 A2413	B42 C1	1192 A246	·	1 1	4 A2605	1	C84
1152 A2413	B58 C2	1193 A246	7 65 643	1 1 123	-1/12000	, 1 = , 0	1

【0116】 【表48】

							,	
1235	A2605	B92	C85		1264	A2631	B58	C12
1236	A2605	B93	C86	.	1265	A2631	B59	C13
1237	A2605	B102	C87		1266	A2631	B78	C14
1238	A2605	B115	C88		1267	A2631	B92	C15
1239	A2617	B1	C89		1268	A2631	B93	C16
1240	A2617	B2	C90	1	1269	A2631	B102	C17
1241	A2617	В3	C91		1270	A2631	B115	C18
1242	A2617	В4	C92		1271	A2665	B1	C19
1243	A2617	B21	C93		1272	A2665	B2	C20
1244	A2617	B22	C94	. 1	1273	A2665	В3	C21
1245	A2617	B23	C95		1274	A2665	B4	C22
1246	A2617	B24	C96		1275	A2665	B21	C23
1247	A2617	B42	C97		1276	A2665	B22	C24
1248	A2617	B58	C98		1277	A2665	B23	C25
1249	A2617	B59	C99		1278	A2665	B24	C26
1250	A2617	B78	C100		1279	A2665	B42	C27
1251	A2617	B92	C101		1280	A2665	B58	C28
1252	A2617	B93	C102	1 1	1281	A2665	B59	C29
1253	A2617	B102	C1		1282	A2665	B78	C30
1254	4 A2617	B115	C2		1283	A2665	B92	C31
125	A2631	B1	C3	'	1284	A2665	B93	C32
125	6 A2631	B2	C4			A2665		C33
125	7 A2631	B3	C5		1286	A2665	B115	C34
125	8 A2631	B4	C6		1287	A2671	B1	C35
125	9 A2631	B21	C7		1288	A2671	B2	C36
126	0 A2631	B22	C8	1		A2671		C37
126	1 A2631	B23	C9	1	l	A2671	B4	C38
126	2 A2631	B24	C10		1	A2671	B21	C39
126	3 A2631	B42	C11		1292	2 A2671	B22	C40

1293	A2671	B23	C41
1294	A2671	B24	C41
1295	A2671	B42	C43
1296	A2671	B58	C44
1297	A2671	B59	C45
1298	A2671	B78	C46
1299	A2671	B92	C47
1300	A2671	B93	C48
1301	A2671	B102	C49
1302	A2671	B115	C50
1303	A2677	B1	C51
1304	A2677	B2	C52
1305	A2677	B3	C53
1306	A2677	B4	C54
1307	A2677	B21	C55
1308	A2677	B22	C56
1309	A2677	B23	C57
1310	A2677	B24	C58
1311	A2677	B42	C59
1312	A2677	B58	C60
1313	A2677	B59	C61
1314	A2677	B78	C62
1315	A2677	B92	C63
1316	A2677	B93	C64
1317	A2677	B102	C65
1318	A2677	B115	C66

【表49】

No.	Α	В	С	ſ	1364	A13	B22	C41	[1410	A26	B22	C1
1319		B1	C5		1365		B22	C59		1411	A26	B22	C5
1320	1	B1	C41		1366	A18	В1	C1		1412	A26	B22	C41
1321	1	B1	C59		1367	A18	B1	C5		1413	A26	B22	C59
1322	I .	B2	C1		1368		B1	C41		1414	A27	B1	C1
1323		B2	C5		1369		B1	C59		1415	A27	B1	C5
1324		B2	C41		1370	A18	B2	C1		1416	A27	B1	C59
1325	1	B2	C59		1371	A18	B2	C5		1417	A27	B2	C1
1326	II .	B21	C1		1372	A18	B2	C41		1418	A27	B2	C5
1327	1	B21	C5		1373	A18	B2	C59		1419	A27	B2	C41
1328		B21	C41		1374	A18	B21	C1		1420	A27	B2	C59
1329		B21	C59		1375	A18	B21	C5		1421	A27	B21	C1
1330		B22	C1		1376	A18	B21	C41		1422	A27'	B21	C5
1331		B22	C5		1377	A18	B21	C59		1423	•	B21	C41
1332		B22	C41		1378	A18	B22	C1		1424		B21	C59
1333		B22	C59		1379	A18	B22	C5		1425		B22	C1
1	A12	B1	C1		1380	A18	B22	C41		1426		B22	C5
	A12	B1	C5		1381	A18	B22	C59		1427		B22	C41
1	A12	В1	C41		1382	A21	B1	C1		1428	1	B22	C59
1	A12	В1	C59		1383	A21	B1	C5		1429	1	B1	C1
1338	A12	B2	C1		1384	A21	B1	C41		1430	1	B1	C5
	A12	B2	C5		1385	1	B1	C59		1431	I .	B1	C41
1340	A12	B2	C41		1386	A21	B2	C1		l	A32	B1	C59
134	1 A12	B2	C59		1387	A21	B2	C5		Į.	A32	B2	C1
1342	2 A12	B21	C1		1388	A21	B2	C41		ı	A32	B2	C5
1343	3 A12	B21	C5		1	A21	B2	C59		1	A32	B2	C41
1344	4 A12	B21	C41		1	A21	B21	C1	1	l	A32	B2	C59
134	5 A12	B21	C59		1	A21	B21	C5			A32	B21	C1
134	6 A12	B22	C1		B	2 A21	B21	C41		i	A32	B21	C5
134	7 A12	B22	C5		1	A21	B21	C59	1	!	A32	B21	C41 C59
134	B A12	B22	C41		1	A21	B22	C1		1	A32	B21	1
134	9 A12	B22	C59			A21	B22	C5		1	A32	B22 B22	C1 C5
135	0 A13	B1	C1			A21	B22	C41	1	L .	A32	B22	C41
	1 A13	B1	C5		1	7 A21	B22	t			A32 A32	B22	C59
	2 A13	B1	C41			B A26	B1	C1		1	A37	B1	C1
	3 A13	B1	C59		1	A26	B1	C5		1	A37	B1	C5
	4 A13	B2	C1		4	A26	B1	C41 C59		1	7 A37	B1	C41
- 1	5 A13	B2	C5		1	1 A26	B1	C1	İ		A37	B1	C59
	6 A13	B2	C41			2 A26	B2	C5		1	A37	B2	C1
	7 A13	B2	C59		1	3 A26	B2 B2	C41		1	A37	B2	C5
1	8 A13	B21	C1			4 A26	B2	C59		1	1 A37	B2	C41
	9 A13	B21	1			5 A26	B21	- 1			2 A37	B2	C59
	0 A13	B21			•	6 A26	B21	1		1	3 A37	B21	C1
•	1 A13	B21			1	7 A26	B21			1	4 A37	B21	C5
	2 A13	B22		1		8 A26	B21	1		1	5 A37	B21	C41
136	3 A13	B22	C5	_	140	9 A26 _	DZ 1	1009		143	5/10/	1221	104.

【表50】

ı					Г	1500	100	DOI	ΩE	ſ	1548	A 1 1 1	B21	C1
	1456		B21	C59		1502		B21	C5		1549			C5
	1457		B22	C1		1503		B21	C41		1550		l 1	C41
	1458		B22	C5		1504		B21	C59		i		B21	C59
	1459		B22	C41	İ	1505		B22	C1		1551		1 1	C1
	1460	A37	B22	C59		1506	i	B22	C5		1552		i 1	i i
	1461	A42	B1	C1		1507	1	B22	C41		1553		B22	C5
	1462		B1	C5		1508		B22	C59		1554		B22	C41
	1463	A42	B1	C41			A105	B1	C1		1555		B22	C59
	1464	A42	B1	C59			A105	B1	C5		1556		B1	C1
	1465	A42	B2	C1			A105	B1	C41			A116	B1	C5
	1466	A42	B2	C5	ļ		A105	B1	C59			A116	B1	C41
	1467	A42	B2	C41	ļ		A105	B2	C1			A116	B1	C59
	1468	A42	B2	C59			A105	B2	C5			A116	B2	C1
	1469	A42	B21	C1			A105	B2	C41	ļ		A116	B2	C5
	1470	A42	B21	C5			A105	B2	C59			A116	B2	C41
	1471	A42	B21	C41			A105	B21	C1	ļ		A116	B2	C59
	1472	A42	B21	C59		1518	A105	B21	C5	İ	l	A116	B21	C1
	1473	A42	B22	C1		i .	A105	B21	C41		!	A116	B21	C5
	1474	A42	B22	C5			A105	B21	C59			A116	B21	C41
	1475	A42	B22	C41		1521	A105	B22	C1			A116	B21	C59
	1476	A42	B22	C59		1522	A105	B22	C5		i	A116	B22	C1
	1477	A57	B1	C1		Į	A105	B22	C41		l	A116	B22	C5
	1478	A57	B1	C5		7	A105	B22	C59			A116	B22	C41
	1479	A57	B1	C41	İ	1525	A110	B1	C1		l	A116	B22	C59
	1480	A57	B1	C59		1526	A110	B1	C5	ļ	l .	A119	B1	C1
	1481	A57	B2	C1		1527	A110	B1	C41	}	ł	A119	B1	C5
	1482	A57	B2	C5		1528	A110	B1	C59	1	Į.	A119	B1	C41
	1483	A57	B2	C41		1529	A110	B2	C1		ł	A119	B1	C59
	1484	A57	B2	C59	ŀ	1530	A110	B2	C5		ţ	A119	B2	C1
	1485	A57	B21	C1	Ì	1531	A110	B2	C41		1	A119	B2	C5
	1486	A57	B21	C5		1532	A110	B2	C59		l .	A119	B2	C41
	1487	A57	B21	C41		1533	A110	B21	C1		ł	A119	B2	C59
	1488	A57	B21	C59		1534	A110	B21	C5		1	A119	B21	C1
	1489	A57	B22	C1		1535	A110	B21	C41		1	A119	B21	C5
	1490	A57	B22	C5		1536	A110	B21	C59		1	A119	B21	C41
	1491	A57	B22	C41		1	A110	B22	C1			A119	B21	C59
	1492	A57	B22	C59		1	A110	B22	C5		l.	A119	B22	C1
	1493	A62	В1	C1	ļ		A110		C41			A119	B22	1
	1494	A62	B1	C5		1	A110	B22	C59		1	A119	B22	C41
	1495	A62	B1	C41			I A111	B1	C1		1	A119	B22	C59
	1496	A62	B1	C59			2 A111	B1	C5		1	A124	B1	C1
	149	7 A62	B2	C1			A111	B1	C41		1	A124	B1	C5
	1	A62	B2	C5		1	4 A111	В1	C59			A124	B1	C41
	1499	A62	B2	C41			5 A111	B2	C5		1	A124	B1	C59
	1500	A62	B2	C59		1	6 A111	B2	C41	1		A124	B2	C1
	150	1 A62	B21	C1		154	7 A111	B2	C59		1593	A124	B2	C5

【表51】

1594 A124	B2	C41
1595 A124	B2	C59
1596 A124		C1
1597 A124		C5
1598 A124	I 1	C41
1599 A124		C59
! !		C1
1600 A124		C5
1601 A124		
1602 A124	<u></u>	C41 C59
1603 A124		1
1604 A125		C1
1605 A125	!	C5
1606 A125	B1	C41
1607 A125	B1	C59
1608 A125	B2	C1
1609 A125	B2	C5
1610 A125	B2	C41
1611 A125	B2	C59
1612 A125	B21	C1
1613 A125	B21	C5
1614 A125	B21	C41
1615 A125	B21	C59
1616 A125	B22	C1
1617 A125	B22	C5
1618 A125	B22	C41
1619 A125	B22	C59
1620 A130	B1	C1
1621 A130	В1	C5
1622 A130	B1	C41
1623 A130	В1	C59
1624 A130	B2	C1
1625 A130	B2	C5
1626 A130	B2	C41
1627 A130	B2	C59
1628 A130	B21	C1
1629 A130	B21	C5
1 1	B21	C41
1630 A130	l l	1 1
1631 A130	B21	
1632 A130	B22	1
1633 A130	B22	1
1634 A130	B22	1
1635 A130	B22	
1636 A135	B1	C1
1637 A135	B1	C5
1638 A135	B1	C41
1639 A135	B1	C59

1640 A135		C1
1641 A135	1	C5
1642 A135		C59
1643 A135		C1
1644 A135	1	C5
1645 A135	B21	C41
1646 A135	B21	C59
1647 A135	B22	C1
1648 A135	B22	C5
1649 A135	B22	C41
1650 A135	B22	C59
1651 A140	B1	C1
1652 A140	B1	C5
1653 A140	B1	C41
1654 A140	B1	C59
1655 A140	B2	C1
1656 A140	B2	C5
1657 A140	B2	C41
1658 A140	B2	C59
1659 A140	B21	C1
1660 A140	B21	C5
1661 A140	B21	C41
1662 A140	B21	C59
1663 A140	B22	C1 C5
1664 A140	B22 B22	C41
1665 A140	B22	C59
1666 A140	B1	C1
1667 A155 1668 A155	B1	C5
1669 A155	B1	C41
1670 A155	B1	C59
1670 A155	B2	C1
1671 A155	B2	C5
1673 A155	B2	C41
1674 A155	B2	C59
1675 A155	B21	C1
1676 A155	B21	C5
1677 A155	B21	C41
1678 A155	B21	C59
1679 A155	B22	C1
1680 A155	B22	C5
1681 A155	B22	C41
1682 A155	B22	1
1683 A160	В1	C1
1684 A160	B1	C5
1685 A160	В1	C41

1686 A160	В1	C59
1687 A160	J—— I	C1
1688 A160	B2	C5
1689 A160	B2	C41
1690 A160	B2	C59
1691 A160	B21	C1
1692 A160	B21	C5
1693 A160	B21	C41
1694 A160	B21	C59
1695 A160	B22	C1
1696 A160	B22	C5
1697 A160	B22	C41
1698 A160	B22	C59
1699 A203	В1	C1
1700 A203	B1	C5
1701 A203	В1	C41
1702 A203	В1	C59
1703 A203	B2	C1
1704 A203	B2	C5
1705 A203	B2	C41
1706 A203	B2	C59
1707 A203	B21	C1
1708 A203	B21	C5
1709 A203	B21	C41
1710 A203	B21	C59
1711 A203	B22	C1
1712 A203	B22	C5
1713 A203	B22	C41
1714 A203	B22	C59
1715 A208	В1	C1
1716 A208	B1	C5
1717 A208	В1	C41
1718 A208	В1	C59
1719 A208	B2	C1
1720 A208	B2	C5
1721 A208	B2	C41
1722 A208	В2	C59
1723 A208	B21	C1
1724 A208	B21	C5
1725 A208	B21	C41
1726 A208	B21	C59
1727 A208	B22	C1
1728 A208	B22	1
1729 A208	B22	
1730 A208	B22	1
1731 A209	B1	C1

[0120]

【表52】

1734 A209 B1 C59 1780 A222 B1 C5 1826 A228 B22 C C1 1735 A209 B2 C1 1781 A222 B1 C41 1827 A233 B1 C 1736 A209 B2 C5 1782 A222 B1 C59 1828 A233 B1 C 1737 A209 B2 C41 1783 A222 B2 C1 1829 A233 B1 C 1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1744 A209 B21 C59 1788 A222 B21 C1 1833 A233 B2 C 1744 A209 B22 C1 1789 A222 B21 C41 1834 A233 B21 C	_
1734 A209 B1 C59 1780 A222 B1 C5 1826 A228 B22 C C1 1735 A209 B2 C1 1781 A222 B1 C41 1827 A233 B1 C 1736 A209 B2 C5 1782 A222 B1 C59 1828 A233 B1 C 1737 A209 B2 C41 1783 A222 B2 C1 1829 A233 B1 C 1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1744 A209 B21 C59 1788 A222 B21 C1 1833 A233 B2 C 1744 A209 B22 C1 1789 A222 B21 C41 1834 A233 B21 C	
1735 A209 B2 C1 1781 A222 B1 C41 1827 A233 B1 C 1736 A209 B2 C5 1782 A222 B1 C59 1828 A233 B1 C 1737 A209 B2 C41 1783 A222 B2 C1 1829 A233 B1 C 1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1740 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C59 1788 A222 B21 C1 1833 A233 B2 C 1744 A209 B22 C1 1789 A222 B21 C5 1834 A233 B21 C 1744 A209	41
1736 A209 B2 C5 1782 A222 B1 C59 1828 A233 B1 C 1737 A209 B2 C41 1783 A222 B2 C1 1829 A233 B1 C 1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C59 1788 A222 B21 C1 1833 A233 B2 C 1742 A209 B22 C1 1788 A222 B21 C5 1834 A233 B2 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1744 A209	59
1737 A209 B2 C41 1783 A222 B2 C1 1829 A233 B1 C 1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1744 A209 B22 C1 1789 A222 B21 C5 1834 A233 B2 C 1745 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C1 1837 A233 B21 C 1746 A209 B22	
1738 A209 B2 C59 1784 A222 B2 C5 1830 A233 B1 C 1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1744 A209 B22 C1 1789 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1746 A209 B22 C59 1792 A222 </td <td>5</td>	5
1739 A209 B21 C1 1785 A222 B2 C41 1831 A233 B2 C 1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1743 A209 B22 C1 1789 A222 B21 C51 1835 A233 B21 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C59 1791 A222 B22 C1 1837 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A	41
1740 A209 B21 C5 1786 A222 B2 C59 1832 A233 B2 C 1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1743 A209 B22 C1 1789 A222 B21 C41 1835 A233 B21 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C59 1791 A222 B22 C1 1837 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748	59
1741 A209 B21 C41 1787 A222 B21 C1 1833 A233 B2 C 1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1743 A209 B22 C1 1789 A222 B21 C41 1835 A233 B21 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C41 1791 A222 B22 C1 1837 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C5 1848 A233 B21 C 1749 A214 B1 C41 1794 A222 B22 C59 1840 A233 B22 C 1750 <td< td=""><td>1</td></td<>	1
1742 A209 B21 C59 1788 A222 B21 C5 1834 A233 B2 C 1743 A209 B22 C1 1789 A222 B21 C41 1835 A233 B21 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B21 C 1749 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C1 1841 A233 B22 C 1751	5
1743 A209 B22 C1 1789 A222 B21 C41 1835 A233 B21 C 1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B21 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1750 A214 B1 C51 1796 A223 B1 C1 1841 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A21	41
1744 A209 B22 C5 1790 A222 B21 C59 1836 A233 B21 C 1745 A209 B22 C41 1791 A222 B22 C1 1837 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1750 A214 B1 C51 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C5 1798 A223 B1 C41 1843 A238 B1 C 1753 A21	59
1745 A209 B22 C41 1791 A222 B22 C1 1837 A233 B21 C 1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C41 1795 A223 B1 C1 1841 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 <td>1</td>	1
1746 A209 B22 C59 1792 A222 B22 C5 1838 A233 B21 C 1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C41 1795 A223 B1 C1 1841 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C1 1845 A238 B1 C 1755 A214	5
1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C41 1795 A223 B1 C1 1841 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A233 B22 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214	41
1747 A214 B1 C1 1793 A222 B22 C41 1839 A233 B22 C 1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C41 1795 A223 B1 C1 1841 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214	59
1748 A214 B1 C5 1794 A222 B22 C59 1840 A233 B22 C 1749 A214 B1 C41 1795 A223 B1 C1 1841 A233 B22 C 1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1753 A214 B2 C5 1798 A223 B2 C1 1844 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C1 1845 A238 B1 C 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C 1757 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C 1757 A214	
1750 A214 B1 C59 1796 A223 B1 C5 1842 A233 B22 C 1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C 1757 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C 1757 A214	5
1751 A214 B2 C1 1797 A223 B1 C41 1843 A238 B1 C 1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C 1757 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C	41
1752 A214 B2 C5 1798 A223 B1 C59 1844 A238 B1 C 1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C 1756 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C	59
1753 A214 B2 C41 1799 A223 B2 C1 1845 A238 B1 C1 1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C2 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C3 1756 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C3 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C3	
1754 A214 B2 C59 1800 A223 B2 C5 1846 A238 B1 C 1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C 1756 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C	
1755 A214 B21 C1 1801 A223 B2 C41 1847 A238 B2 C41 1756 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C5 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C0	41
1756 A214 B21 C5 1802 A223 B2 C59 1848 A238 B2 C C59 1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C C59 1849 A238 B2 C C59 1849 A238 B2 C C59 1849 A238 B2 C C C C C C C C C C C C C C C C C C	59
1757 A214 B21 C41 1803 A223 B21 C1 1849 A238 B2 C	
1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
	41
1700/1211 1221 1000	59
1759 A214 B22 C1 1805 A223 B21 C41 1851 A238 B21 C	
1700/7214 1522 150	5
170174211 1522 1511 1524	41
1702/1211 222 000	59
1763 A217 B1 C1 1809 A223 B22 C41 1855 A238 B22 C	
1704/4217 151 150	5
1700/1217	41
1700/1217	59
1707/1217	1
1,00,121,	5
1,00,121, 5 0.1.	41
1770,7277	59
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
1772/7217 1521 150	5
1770 7 2 1 0 1 1 1 1 1 1 1 1 1	41
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	59
1,,0,121, 1322 01	1
1770,1217 1522 150	55
1777 A217 B22 C41 1823 A228 B22 C1 1869 A253 B21 C	41

【表53】

				_		
18	370 A	253	B21	C	59	
18	B71 A	253	B22	C	1	
18	872 A	253	B22	C	5	
1	873 A	253	B22	C	41	
	874 A		B22	C	59	
1	875	1258	B1	c	:1	
	876		B1	C	5	
	877		В1	C	41	
	878		B1		559	
	879		B2		1	
	880		B2		25	
	881		B2	(241	
1	882		B2		C 59	
	883		B21		31	
	884		B21) 5	
1	885		B2	ı (c	C41	
	1886		B2	ιk	C59	
		A258	B2:	2	C1	
		A258	B2:	2	C5	
	1	A258	B2:	2	C41	
١.	1890	A258	B2	2	C59	
	1891	A301	B1		C1	
1	1892	A301	B1	ŀ	C5	
	1893	A301	B1		C41	
	1894	A301	B1	-	C59	1
	1895	A301	B2		C1	
1	1896	A301	B2	.	C5	
	1897	A301	B2	.	C41	
	1898	A301	B2	:	C59	1
	1899	A301	B2	1	C1	١
	1900	A301	B	21	C5	-
1	1901	A301	B	21	C41	
1	1902	A301	B	21	C59	1
	1903	A301	B	22	C1	
		1A301	B		C5	
1		A301	B		C41	
1	1906	6 A301	B		C59	
-		7 A306	В	1	C1	1
ļ		8 A306	•	1	C5	Ì
		9 A306			C41	- 1
١		0 A306	1		C59	۱
		1 A306	- 1		C1	
		2 A306			C5	
		3 A306	1	2	C41	
		4 A306		2	C59)
	191	5 A306) E	21	C1	

1916 A306	B21	C5
1917 A306	B21	C41
1918 A306	B21	C59
1919 A306	B22	C1
1920 A306	B22	C5
1921 A306	B22	C41
1922 A306	B22	C59
1923 A307	B1	C1
1924 A307	B1	C5
1925 A307	B1	C41
1926 A307	B1	C59
1927 A307	B2	C1
1928 A307	B2	C5
1929 A307	B2	C41
1930 A307	B2	C59
1931 A307	B21	C1
1932 A307	B21	C5
1933 A307	B21	C41
1934 A307	B21	C1
1935 A307	B22	C5
1936 A307	B22	G41
1937 A307	B22	C59
1938 A307 1939 A312	B1	C1
1940 A312	B1	C5
1941 A312	В1	C41
1942 A312	B1	C59
1943 A312	B2	C1
1944 A312	B2	C5
1945 A312	B2	C41
1946 A312	B2	C59
1947 A312	B21	C1
1948 A312	B21	C5
1949 A312	B21	C41
1950 A312	B21	C59
1951 A312	B22	2 C1
1952 A312	B22	2 C5
1953 A312		
1954 A312		
1955 A315		C1
1956 A315		C5
1957 A315		C41
1958 A315		C59
1959 A315		,
1960 A31		1
1961 A31	5 B2	C41

1	1962	A3	115	B	2	C	59	
•	1963	Αŝ	315		21	င	1	
	1964	Αŝ	315	B	21	C	5	
	1965	A3	315	В	21	C	41	
	1966	Αŝ	315	В	21	C	59	
	1967	A	315	В	22	C	1	l
	1968	A:	315	В	22	C	5	١
	1969	A:	315	В	22	c	41	
	1970	A:	315	В	22	C	59	١
	1971	A	320	В	1	C	1	
	1972	A	320	B	1	C	5	ļ
	1973	Α	320	В	1		41	
İ	1974	A	320	E	11	C	59	١
	1975	A	320	E	32	C	21	
	1976	A	320	E	32	C	25	1
	1977	'ΙΑ	320	E	32	- 1 -	241	
ļ	1978	A	320	E	32	9	259	ĺ
	1979	ŀΑ	320	- 1-	321	- 1	21	1
١	1980	P	320	E	321	- []	C5	1
	1981	i A	320	- 17	321	- 1	C41	
١	1982			- 1	321	- 1	C59	-
	1983	3 <i>A</i>	320	- 1	322		C1	١
١	1984	4 /	320		322	· 1	C5	ļ
			\320	- 1	322	ì	C41	
١		- 1	\320	- 1	B22	- 1	C59	
		- 1	\321	- 1	B1	- 1	C1	
		- 1	4321	- 1	B1	1	C5	
			4321	- 1	B1	- 1	C41 C59	
			A321	- 1	B1	- 1	C1	
		- 1	A321 A321	- 1	B2 B2		C5	
		-1	A321	- 1	B2		C41	
	l	- 1	A321	- 1	B2		C59	
		- 1	A321		B2	1	C1	
	1	- 1	A321		B2		C5	
	1	ı	A321		B2	1	C41	
	,	1	A321		В2	1	C59	
	٠	ا ـ ا	A321		B2	2	C1	
	1		A321		B2	2	C5	
			A321		B2	2	C41	
			A321		B2	2	C59	ŀ
	ı		A326		В1		C1	
	20	04	A326	õ	B	į	C5	
			A32		B		C41	
	1		A320		B.		C59)
	20	07	A32	6	B:	2	C1	_

【表54】

															1
ſ	2008	A326	B2	C5	:	2054	A351		C59		2100		1	C5	ĺ
١	2009	A326	B2	C41	ļ	2055	A351	B2	C1		2101			C41	ı
İ	2010	A326	B2	C59	İ	2056	A351	B2	C5			A404	l i	C59	ĺ
1	2011	A326	B21	C1		2057	A351	B2	C41	1		A404	1	C1	
١	2012	A326	B21	C5	İ	2058	A351	B2	C59		2104	A404	B2	C5	
1	2013	4	B21	C41	ĺ	2059	A351	B21	C1		2105	A404	B2	C41	İ
1	2014		- 1	C59	İ	2060	A351	B21	C5		2106	A404	B2	C59	ı
١	2015			C1		2061	A351	B21	C41		2107	A404	B21	C1	Į
١	2016			C5	i	2062		B21	C59		2108	A404	B21	C5	
	2017			C41		2063		B22	C1		2109	A404	B21	C41	l
1	2018			C59	j	2064		B22	C5		2110	A404	B21	C59	
ļ	2019		B1	C1		2065		B22	C41		2111	A404	B22	C1	١
١	2020		B1	C5	ļ	2066		B22	C59	Ī	2112	A404	B22	C5	l
1	2021		B1	C41			A356	В1	C1		2113	A404	B22	C41	l
١	2022		B1	C59			A356	В1	C5			A404	B22	C59	١
1	2023		B2	C1			A356	B1	C41			A405	В1	C1	١
	2024		B2	C5			A356	B1	C59			A405	B1	C5	١
	2025		B2	C41			A356	B2	C1			A405	B1	C41	١
١	2026		B2	C59			A356	B2	C5			A405	В1	C59	١
	2027		B21	C1			A356	B2	C41			A405	B2	C1	ļ
١	2028		B21	C5			A356	B2	C59			A405	B2	C5	١
	2029		B21	C41			A356	B21	C1			A405	B2	C41	l
	2030		B21	C59			A356	B21	C5			A405	B2	C59	١
	2031		B22	C1			A356	B21	C41			A405	B21	C1	l
-	2032		B22	C5		ł	A356	B21	C59			A405	B21	C5	1
		A331	B22	C41			A356	B22	C1			A405	B21	C41	
		A331	B22	C59			A356	B22	C5			A405	B21	C59	
		A336	B1	C1		Į.	A356	B22	C41			A405	B22	C1	١
		A336	В1	C5		1	A356	B22	C59			A405	B22	C5	
		A336	B1	C41		1	A399	В1	C1			A405	B22	C41	
	1	A336	B1	C59		ı	A399	В1	C5			A405	B22	C59	-
		A336	B2	C1		1	A399	B1	C41			A410	B1	C1	
		A336	B2	C5		1	A399	В1	C59		1	A410	B1	C5	i
		A336	B2	C41		1	A399	B2	C1	,		A410	B1	C41	
		A336	B2	C59		1	A399	B2	C5	Ì	B .	A410	В1	C59	
		A336	B21	C1		I.	A399	B2	C41	ļ	ŀ	A410	B2	C1	
	1	A336	B21	C5			A399	B2	C59		1	A410	B2	C5	
		A336	B21	C41		1	A399	B21	C1			A410	B2	C41	
	L	A336	B21	C59		1	A399	B21	C5			A410	B2	C59	
	1	A336	B22	C1		I	A399	B21	C41			A410	B21	C1	
		A336	B22	C5		1	A399	B21	C59		i i	A410	B21	C5	
	•	A336	B22	C41		1	A399	B22	C1			A410	B21	C41	
	1	A336	B22	C59		•	A399	B22	C5		1	A410	B21	C59	
	1	A351	B1	C1		1	A399	B22	C41		1	A410	B22	C1	
	1	A351	B1	C5			A399	B22	C59		I .	A410	B22	C5	
	i .	A351	B1	C41	ļ	l.	A404	B1	C1			A410	B22	C41	
	1 2000	7700	1	1011	ł			1=:		_*			1		_

[0123]

【表55】

2146 A410	B22	C59
2147 A413	B1	C1
2148 A413	B1	C5
2149 A413	B1	C41
2150 A413	B1	C59
2151 A413	B2	C1
2152 A413	B2	C5
2153 A413	B2	C41
2154 A413	B2	C59
i i	B21	C1
2155 A413		C5
2156 A413	B21	1 1
2157 A413	B21	C41
2158 A413	B21	C59
2159 A413	B22	C1
2160 A413	B22	C5
2161 A413	B22	C41
2162 A413	B22	C59
2163 A418	B1	C1
2164 A418	В1	C5
2165 A418	B1	C41
2166 A418	B1	C59
2167 A418	B2	C1
2168 A418	B2	C5
2169 A418	B2	C41
2170 A418	B2	C59
2171 A418	B21	C1
2171 A418	B21	C5
	B21	C41
2173 A418	B21	C59
2174 A418	I.	C1
2175 A418	B22	1 1
2176 A418	B22	C5
2177 A418	B22	C41
2178 A418	B22	C59
2179 A419	B1	C1
2180 A419	B1	C5
2181 A419	B1	C41
2182 A419	B1	C59
2183 A419	B2	C1
2184 A419	B2	C5
2185 A419	B2	C41
2186 A419	B2	C59
2187 A419	B21	C1
2188 A419	B21	C5
2189 A419	B21	C41
2190 A419	B21	C59
2191 A419	B22	1
210174110		

2192 A419	B22	C5
2193 A419	B22	C41
2194 A419	B22	C59
2195 A424	B1	C1
2196 A424	B1	C5
2197 A424	B1	C41
2198 A424	B1	C59
2199 A424	B2	C1
2200 A424	B2	C5
2201 A424	B2	C41
2202 A424	B2	C59
2203 A424	B21	C1
2204 A424	B21	C5
2205 A424	B21	C41
2206 A424	B21	C59
2207 A424	B22	C1
2208 A424	B22	C5
2209 A424	B22	C41
2210 A424	B22	C59
2211 A429	B1	C1
2212 A429	B1	C5
2213 A429	B1	C41
2214 A429	B1	C59
2215 A429		C1
2216 A429		C5
2217 A429	B2	C41
2218 A429	B2	C59
2219 A429	B21	C5
2220 A429		C41
2221 A429		C59
2222 A429	B22	C1
2223 A429	j.	C5
2224 A429	l l	C41
2225 A429		C59
2226 A434		C1
2227 A434		C5
2228 A434		C41
2229 A434	i	C59
2230 A434		C1
2231 A434	- 1	C5
2232 A434		C41
2233 A43		C59
2234 A43	-	C1
2235 A43	1	C5
2236 A43		C41
2237 A43	4 B21	C59

_				
		A434		C1
Į		A434		C5
		A434	B22	C41
		A434	B22	C59
	2242	A449	B1	C1
ŀ	2243	A449	B1	C5
١	2244	A449	B1	C41
Į	2245	A449	B1	C59
İ	2246	A449	B2	C1
	2247	A449	B2	C5
Ì	2248	A449	B2	C41
	2249	A449	B2	C59
1	2250	A449	B21	C1
	2251	A449	B21	C5
	2252	A449	B21	C41
		A449	B21	C59
	2254	A449	B22	C1
1	2255	A449	B22	C5
		A449	B22	C41
		A449	B22	C59
Ì	2258	A454	B1	C1
1	2259	A454	B1	C5
	2260	A454	B1	C41
		A454	B1	C59
İ	2262	A454	B2	C1
	2263	A454	B2	C5
	2264	A454	B2	C41
	2265	A454	B2	C59
		A454	B21	C1
	2267	A454	B21	C5
ļ	2268	A454	B21	C41
	2269	A454	B21	C59
	2270	A454	B22	C1
ļ	227	A454	B22	C5
	2272	2 A454	B22	C41
	2273	A454	B22	C59
	2274	4 A497	B1	C1
	227	5 A497	B1	C5
	227	6 A497	B1	C41
	227	7 A497	B1	C59
	227	8 A497	B2	C1
	227	9 A497	B2	C5
	228	0 A497	B2	C41
	228	1 A497	B2	C59
	228	2 A497	B21	C1
	228	3 A497	B21	C5

【0124】 【表56】

0004 4407	B21 C41	
2284 A497	1771 1744 1	
2285 A497		
2286 A497	1 1	
2287 A497	B22 C5	
2288 A497	B22 C41	
2289 A497	B22 C59	
2290 A502	B1 C1	
2291 A502	B1 C5	
2292 A502	B1 C41	
2293 A502	B1 C59	
2294 A502	B2 C1	
2295 A502	B2 C5	
2296 A502	B2 C41	
2297 A502	B2 C59	
2298 A502	B21 C1	
2299 A502	B21 C5	
2300 A502	B21 C41	
2301 A502	B21 C59	
2302 A502	B22 C1	
2303 A502	B22 C5	
2304 A502	B22 C41	
2305 A502	B22 C59	
2306 A503	B1 C1	l
2307 A503	B1 C5	
2308 A503	B1 C41	
2309 A503	B1 C59	١
2310 A503	B2 C1	
2311 A503	B2 C5	
2312 A503	B2 C41	l
2312 A503	B2 C59	
2314 A503	B21 C1	
2314 A503	B21 C5	l
2315 A503	B21 C59	1
2316 A503	B22 C1	
1 1	B22 C5	
2318 A503	B22 C41	
2319 A503	B22 C59	
2320 A503 2321 A508	B1 C1	
1 1	1 1 .	
2322 A508	B1 C5 B1 C41	
2323 A508	1 1	
2324 A508	1 -	
2325 A508	B2 C1	
2326 A508	B2 C5	-
2327 A508	B2 C41	١
2328 A508	B2 C59	١
2329 A508	B21 C1	

2330 A508	B21	C5
2331 A508	B21	C41
2332 A508	B21	C59
2333 A508	B22	C1
2334 A508	B22	C5
2335 A508	B22	C41
2336 A508	B22	C59
2337 A511	B1	C1
2338 A511	B1	C5
2339 A511	B1	C41
2340 A511	B1	C59
2341 A511	B2	C1
2342 A511	B2	C5
2343 A511	B2	C41
2344 A511	B2	C59
2345 A511	B21	C1
2346 A511	B21	C5
2347 A511	B21	C41
2348 A511	B21	C59
2349 A511	B22	C1
2350 A511	B22	C5
2351 A511	B22	C41
2352 A511	B22	C59
2353 A516	B1	C1
2354 A516	B1	C5
2355 A516	B1	C41
2356 A516	B1	C59
2357 A516	B2	C1
2358 A516	B2	C5
2359 A516	B2	C41 C59
2360 A516 2361 A516	B2	C59
2361 A516 2362 A516	B21 B21	C5
2362 A516 2363 A516	B21	C41
2363 A516 2364 A516	B21	C59
2364 A516	B21	C1
2365 A516	B22	C5
2360 A516	B22	C41
2368 A516	B22	C59
2369 A517	B1	C1
2309 A517 2370 A517	B1	C5
2370 A517	B1	C41
2371 A517	B1	C59
2372 A517	B2	C1
2374 A517	B2	C5
2375 A517	B2	C41
20,07,017		

2376 A517	B2	C59
2377 A517	B21	C1
2378 A517	B21	C5
2379 A517	B21	C41
2380 A517	B21	C59
2381 A517	B22	C1
2382 A517	B22	C5
2383 A517	B22	C41
2384 A517	B22	C59
2385 A522	В1	C1
2386 A522	B1	C5
2387 A522	B1	C41
2388 A522	B1	C59
2389 A522	B2	C1
2390 A522	B2	C5
2391 A522	B2	C41
2392 A522	B2	C59
2393 A522	B21	C1
2394 A522	B21	C5
2395 A522	B21	C41
2396 A522	B21	C59
2397 A522	B22	C1
2398 A522	B22	C5
2399 A522	B22	C41
2400 A522	B22	C59
2401 A527	B1	C1
2402 A527	B1	C5
2403 A527	B1	C41
2404 A527	B1	C59
2405 A527	B2	C1
2406 A527	B2	C5
2407 A527	B2	C41
2408 A527	B2	C59
2409 A527	B21	C1
2410 A527	B21	C5
2411 A527	B21	C41
2412 A527	B21	C59
2413 A527	B22	C1
2414 A527	B22	C5
2415 A527	B22	C41
2416 A527	B22	C59
2417 A532	B1	C1
2418 A532	B1	C5
2419 A532	B1	C41
2420 A532	В1	C59
2421 A532	B2	C1

【表57】

2422	A532	B2	C5	ſ	3619	A2359	B2	C1	ſ	3665	A2370	B1	C41
2423	1		C41	İ	3620	A2359	B2	C5		3666	A2370	В1	C59
2424	- 1	B2	C59	İ	3621	A2359	B2	C41		3667	A2370	B2	C1
2425		B21	C1	ĺ	3622	A2359	B2	C59		3668	A2370	B2	C5
2426			C5	İ	3623	A2359	B21	C1		3669	A2370	B2	C41
2427		B21	C41	1	3624	A2359	B21	C5		3670	A2370	B2	C59
2428	- 1		C59	ĺ	3625	A2359	B21	C41		3671	A2370	B21	C1
2429	A532		C1	ŀ	3626	A2359	B21	C59	ļ	3672	A2370	B21	C5
2430	A532	B22	C5		3627	A2359	B22	C1		3673	A2370	B21	C41
2431	A532	B22	C41	1	3628	A2359	B22	C5		3674	A2370	B21	C59
2432	A532	B22	C59		3629	A2359	B22	C41		3675	A2370	B22	C1
2433	A547	В1	C1	1	3630	A2359	B22	C59		3676	A2370	B22	C5
2434	A547	В1	C5		3631	A2364	B1	C1		3677	A2370	B22	C41
2435	A547	В1 -	C41	ĺ	3632	A2364	B1	C5		3678	A2370	B22	C59
2436	A547	В1	C59		3633	A2364	B1	C41			A2371	BI	C1
2437	A547	B2	C1		3634	A2364	B1	C59			A2371	B1	C5
2438	A547	B2	C5		3635	A2364	B2	C1			A2371	B1	C41
2439	A547	B2	C41		3636	A2364	B2	C5			A2371	B1	C59
2440	A547	B2	C59		3637	A2364	B2	C41			A2371	B2	C1
2441	A547	B21	C1		3638	A2364	B2	C59			A2371	B2	C5
2442	A547	B21	C5		3639	A2364	B21	C1			A2371	B2	C41
2443	A547	B21	C41		3640	A2364	B21	C5			A2371	B2	C59
2444	A547	B21	C59		3641	A2364	B21	C41			A2371	B21	C1
2445	A547	B22	C5		3642	A2364	B21	C59			A2371	B21	C5
2446	A547	B22	C41	i		A2364	B22	C1			A2371	B21	C41
2447	A547	B22	C59		1	A2364	B22	C5			A2371	B21	C59
2448	A552	В1	C1		l .	A2364	B22	C41			A2371	B22	C1
2449	A552	B1	C5		l	A2364	B22	C59			A2371	B22	C5
2450	A552	B1	C41		1	A2365	B1	C1		!	A2371	B22	C41
2451	A552	B1	C59			A2365	B1	C5			A2371	B22	C59
2452	A552	B2	C1		1	A2365	B1	C41		!	A2376	B1	C1
2453	A552	B2	C5		1	A2365	B1	C59		i	A2376	B1	C5
1	A552	B2	C41		I.	A2365	B2	C1		1	A2376	B1	C41
	A552	B2	C59		L	A2365	B2	C5	1		A2376	B1	C59
1	A552	B21	C1		ì	A2365	B2	C41		t	A2376	B2	C1
1	A552	1	C5		4	A2365	B2	C59		:	A2376	i	C5
1	A552	B21	C41	ı	1	A2365		C1		ŧ .	A2376	Į.	C41
1	A552	B21	C59		1	A2365	l l	C5		I .	A2376	1	C59
1	A552	B22	C1			A2365	i	C41		1	A2376	ı	C1
	A552	B22	C5		1	A2365	1	C59	-		A2376		C5
i i	A552	B22	C41		1	A2365		C1			A2376	1	C41
1	A552	B22	C59		1	A2365		C5		1	A2376	1	C59
1	A2359	B1	C1			A2365	1	C41			A2376		C1
	A2359		C5		lt .	A2365		C59		1	A2376		C5
	A2359	1	C41		1	A2370		C1		1	A2376	1	C41
3618	A2359	B1	C59	j	3664	1 A2370	B1	C5		3/10	A2376	B22	C59

[0126]

【表58】

-					_					_				
	3711	A2401	B1	C1	1	3757	A2413	B22	C41	1	3803	A2432	B22	C1
	3712	A2401	B1	C5	ŀ	3758	A2413	B22	C59		3804	A2432	B22	C5
	3713	A2401	B1	C41		3759	A2418	B1	C1		3805	A2432	B22	C41
	3714	A2401	В1	C59		3760	A2418	В1	C5	1	3806	A2432	B22	C59
	3715	A2401	B2	C1		3761	A2418	В1	C41	İ	3807	A2461	В1	C1
	3716	A2401	B2	C5		3762	A2418	B1	C59		3808	A2461	B1	C5
	3717	A2401	B2	C41		3763	A2418	B2	C1		3809	A2461	В1	C41
	3718	A2401	B2	C59		3764	A2418	B2	C5		3810	A2461	B1	C59
Ì	3719	A2401	B21	C1	İ	3765	A2418	B2	C41		3811	A2461	B2	C1
	3720	A2401	B21	C5		3766	A2418	B2	C59		3812	A2461	B2	C5
ı	3721	A2401	B21	C41		3767	A2418	B21	C1		3813	A2461	B2	C41
l	3722	A2401	B21	C59	}	3768	A2418	B21	C5	Ì	3814	A2461	B2	C59
ļ	3723	A2401	B22	C1		3769	A2418	B21	C41		3815	A2461	B21	C1
Į	3724	A2401	B22	C5		3770	A2418	B21	C59		3816	A2461	B21	C5
	3725	A2401	B22	C41		3771	A2418	B22	C1		3817	A2461	B21	C41
	3726	A2401	B22	C59		3772	A2418	B22	C5		3818	A2461	B21	C59
ĺ	3727	A2406	В1	C1		3773	A2418	B22	C41	1	3819	A2461	B22	C1
İ	3728	A2406	B1	C5		3774	A2418	B22	C59		3820	A2461	B22	C5
l	3729	A2406	B1	C41		3775	A2427	B1	C1		3821	A2461	B22	C41
I	3730	A2406	В1	C59		3776	A2427	B1	C5		3822	A2461	B22	C59
1	3731	A2406	B2	C1		3777	A2427	B1	C41		3823	A2466	В1	C1
Í	3732	A2406	B2	C5		3778	A2427	B1	C59		3824	A2466	B1	C5
	3733	A2406	B2	C41		3779	A2427	B2	C1		3825	A2466	В1	C41
	3734	A2406	B2	C59		3780	A2427	B2	C5	1 1	3826	A2466	В1	C59
	3735	A2406	B21	C1		3781	A2427	B2	C41		3827	A2466	B2	C1
l	3736	A2406	B21	C5		3782	A2427	B2	C59		3828	A2466	B2	C5
	3737	A2406	B21	C41		3783	A2427	B21	C1		3829	A2466	B2	C41
1	3738	A2406	B21	C59		3784	A2427	B21	C5		3830	A2466	B2	C59
ı	3739	A2406	B22	C1		3785	A2427	B21	C41		3831	A2466	B21	C1
l		A2406	B22	C5		3786	A2427	B21	C59		3832	A2466	B21	C5
		A2406	B22	C41		3787	A2427	B22	C1		3833	A2466	B21	C41
		A2406	B22	C59		3788	A2427	B22	C5		3834	A2466	B21	C59
ļ		A2413	B1	C1				B22	C41		3835	A2466	B22	C1
I		A2413	B1	C5		1	A2427	B22	C59		3836	A2466	B22	C5
		A2413	B1	C41		3791	A2432	B1	C1		3837	A2466	B22	C41
I		A2413	B1	C59				B1	C5			A2466	B22	C59
İ	3747	A2413	B2	C1		3793	A2432	B1	C41		3839	A2467	B1	C1
l		1 1	B2	C5				B1	C59			A2467	B1	C5
l			B2	C41				B2	C1		1	A2467	B1	C41
		1	1	C59				B2	C5			A2467	В1	C59
I			l ł	C1				B2	C41			A2467	B2	C1
				C5				B2	C59				B2	C5
١		1 1		C41				B21	C1			A2467	B2	C41
-				C59				B21	C5			A2467	B2	C59
				C1				B21	C41	İ		A2467	B21	C1
L	3756	A2413	B22	C5		3802	A2432	B21	C59		3848	A2467	B21	C5

[0127]

【表59】

	3849 A246	7 E	321	C41	
	3850 A246	7 E	321	C59	
	3851 A246	7 [322	C1	
	3852 A246	7]	322	C5	
	3853 A246	7 1	B22	C41	
	3854 A246	7 1	B22	C59	
	3855 A247	2 1	В1	C1	
	3856 A247	2	B1	C5	
l	3857 A247	2	В1	C41	
l	3858 A247	2	B1	C59	l
	3859 A247	2	B2	C1	l
	3860 A247		B2	C5	i
	3861 A247	2	B2	C41	
	3862 A247	2	B2	C59	
١	3863 A247	2	B21	C1	١
l	3864 A247	2	B21	C5	l
	3865 A247	2	B21	C41	١
l	3866 A247	2	B21	C59	
١	3867 A247	2	B22	C1	١
Ì	3868 A247	72	B22	C5	
١	3869 A247	12	B22	C41	
١	3870 A247	72	B22	C59	١
1	3871 A247	73	B1	C1	
ļ	3872 A247		B1	C5	
	3873 A247	73	В1	C41	
	3874 A247	73	B1	C59	l
1	3875 A24		B2	C1	
١	3876 A24	73	B2	C5	
	3877 A24		B2	C41	1
١	3878 A24	73	B2	C59	
١	3879 A24	73	B21	C1	
	3880 A24	73	B21	C5	
	3881 A24	73	B21	C41	ļ
	3882 A24	73	B21	C59	
	3883 A24	73	B22	C1	
	3884 A24		B22	C5	
	3885 A24		B22	C41	
	3886 A24		B22	C59	
	3887 A24		B1	C1	
	3888 A24		B1	C5	
	3889 A24		B1	C41	
	3890 A24		B1	C59	
	3891 A24		B2	C1	
	3892 A24		B2	C5	
	3893 A24		B2	C41	
	3894 A24	78	B2	C59	

3895	A2478	B21	C1
3896	A2478	B21	C5
3897	A2478	B21	C41
3898	A2478	B21	C59
3899	A2478	B22	C1
3900	A2478	B22	C5
3901	A2478	B22	C41
3902	A2478	B22	C59
3903	A2503	B1	C1
3904	A2503	B1	C5
3905	A2503	B1	C41
	A2503	B1	C59
	A2503	B2	C1
	A2503	B2	C5
	A2503	B2	C41
	A2503	B2	C59
	A2503	B21	01
	A2503	B21	C5
	A2503	B21	C41
	A2503	B21	C59
	A2503	B22	C1
	A2503	B22	C5
	A2503	B22	C41
	A2503	B22	C59
	A2508	B1	C1
	A2508	B1	C5
	A2508	B1	C41
	2 A2508	B1	C59
	3 A2508	B2	C1
	4 A2508	B2	C5
	A2508	B2	C41
	A2508		C59
	7 A2508	1	C5
ľ	8 A2508	1	C41
1	9 A2508	1	C59
1	0 A2508 1 A2508		C1
393		1	C5
1	2 A2508	1	
	3 A2508	i	i
,	4 A2508	1	C59
1	5 A2515		l.
1	6 A2515		C5 C41
1	7 A2515		
1	8 A2515		C59
	9 A2515		C1 C5
394	0 A2515	5 B2	ြပ္

3941	A2515	B2	C41
3942	A2515	B2	C59
3943	A2515	B21	C1
3944	A2515	B21	C5
3945	A2515	B21	C41
	A2515	B21	C59
	A2515	B22	C1
	A2515	B22	C5
-	A2515	B22	C41
	A2515	B22	C59
	A2520	B1	C1
	A2520	Bi	C5
	A2520	В1	C41
	A2520	В1	C59
	A2520	B2	C1
	A2520	B2	C5
	A2520	B2	C41
	A2520	B2	C59
	A2520	B21	C1
	A2520	B21	C5
	A2520	B21	C41
	A2520		C59
		B21 B22	C1
	A2520	1	C5
	A2520	B22	1
	A2520	B22	C41
İ	A2520	B22	C59
1	A2529	B1	C1
1	A2529	B1	C5
1	A2529	B1	C41
1	A2529	B1	C59
1	A2529	B2	C1
1	A2529	B2	C5
1	A2529	B2	C41
	A2529	B2	C59
1	A2529	B21	C1
	A2529	B21	C5
	A2529	B21	C41
3978	1	B21	C59
1	A2529	1	C1
1	A2529		C5
	A2529		C41
3982	2 A2529	B22	C59
	A2534		C1
	1 A2534	L L	C5
3988	5 A2534	B1	C41
3986	6 A2534	B1	C59

【0128】 【表60】

	3987	A2534	B2	C1	
İ	3988	A2534	B2	C5	
	3989	A2534	B2	C41	
	3990	A2534	B2	C59	
	3991	A2534	B21	C1	
	3992	A2534	B21	C5	
	3993	A2534	B21	C41	
ļ	3994	A2534	B21	C59	
İ	3995	A2534	B22	C1	١
	3996	A2534	B22	C5	
۱	3997	A2534	B22	C41	
l	3998	A2534	B22	C59	
	3999	A2563	B1	C1	١
l	4000	A2563	B1	C5	
1	4001	A2563	B1	C41	
	4002	A2563	B1	C59	
١	4003	A2563	B2	C1	
	4004	A2563	B2	C5	
	4005	A2563	B2	C41	
١	4006	A2563	B2	C59	
	4007	A2563	B21	C1	
1	4008	A2563	B21	C5	
1	4009	A2563	B21	C41	١
	4010	A2563	B21	C59	١
	4011	A2563	B22	C1	١
	4012	A2563	B22	C5	
١	4013	A2563	B22	C41	١
١	4014	A2563	B22	C59	١
	4015	A2568	B1	C1	ļ
1	4016	A2568	B1	C5	١
1	4017	A2568		C41	١
-	4018	A2568	B1	C59	
١		A2568	- 1	C1	١
		A2568		C5	
	4021	L	i i	C41	
ļ		2 A2568		C59	
		A2568	- [
		1 A2568	- 1		
		5 A2568	Į.		
	•	6 A2568	1		
į		7 A2568			
		8 A2568			
		9 A2568			
		0 A2568	1		
	I.	1 A2569	1	C1	
	403	2 A2569	B1	C5	

4033 A2569	В1	C41
4034 A2569	B1	C59
4035 A2569	B2	C1
4036 A2569	B2	C5
4037 A2569	B2	C41
4038 A2569	B2	C59
4039 A2569	B21	C1
4040 A2569	B21	C5
4041 A2569	B21	C41
4042 A2569	B21	C59
4043 A2569	B22	C1
4044 A2569	B22	C5
4045 A2569	B22	C41
4046 A2569	B22	C59
4047 A2574	B1	C1
4048 A2574	B1	C5
4049 A2574	B1	C41
4050 A2574	B1	C59
4051 A2574	B2	C1
4052 A2574	B2	C5 C41
4053 A2574	B2	C59
4054 A2574	B2 B21	C1
4055 A2574 4056 A2574	B21	C5
4050 A2574 4057 A2574	B21	C41
4057 A2574 4058 A2574	1	C59
4059 A2574		C1
4060 A2574	B22	C5
4061 A2574	1	C41
4062 A2574		C59
4063 A2575		C1
4064 A2575	l	C5
4065 A2575	В1	C41
4066 A2575	В1	C59
4067 A2575	B2	C1
4068 A2575	B2	C5
4069 A2575	B2	C41
4070 A2575	B2	C59
4071 A2575	B21	C1
4072 A2575	B21	C5
4073 A2575	- 1	C41
4074 A2575	- 1	C59
4075 A2575	1	
4076 A2575		
4077 A2578	1	1
4078 A257	B22	C59

4079	42580	B1	C1
4080	42580	B1	C5
4081	42580	B1	C41
4082	A2580	B1	C59
4083	A2580	B2	C1
4084	A2580	B2	C5
4085	A2580	B2	C41
4086	A2580	B2	C59
4087	A2580	B21	C1
4088	A2580	B21	C5
4089	A2580	B21	C41
4090	A2580	B21	C59
4091	A2580	B22	C1
4092	A2580	B22	C5
4093	A2580	B22	C41
4094	A2580	B22	C59
4095	A2605	В1	C1
4096	A2605	В1	C5
4097	A2605	В1	C41
4098	A2605	В1	C59
4099	A2605	B2	C1
4100	A2605	B2	C5
4101	A2605	B2	C41
4102	A2605	B2	C59
4103	A2605	B21	C1
4104	A2605	B21	C5
4105	A2605	B21	C41
4106	A2605	B21	C59
4107	A2605	B22	C1
4108	A2605	B22	C5
4109	A2605	B22	C41
4110	A2605	B22	C59
4111	A2610	B1	C1
4112	A2610	B1	C5
4113	A2610	B1	C41
4114	A2610	B1	C59
4115	A2610	B2	C1
4116	A2610	B2	C5
4117	A2610	B2	C41
4118	A2610	B2	C59
4119	A2610	B21	C1
4120	A2610	B21	C5
	A2610		C41
4122	A2610	B21	C59
4123	A2610	B22	C1
4124	1A2610	B22	C5

[0129]

【表61】

4125	A2610	B22	C41
4126	A2610	B22	C59
4127	A2617	В1	C1
4128	A2617	B1	C5
4129	A2617	В1	C41
4130	A2617	В1	C59
4131	A2617	B2	C1
4132	A2617	B2	C5
	A2617	B2	C41
4134	A2617	B2	C59
4135	A2617	B21	C1
4136	A2617	B21	C5
4137	A2617	B21	C41
4138	A2617	B21	C59
4139	A2617	B22	C1
4140	A2617	B22	C5
4141	A2617	B22	C41
4142	A2617	B22	C59
4143	A2622	B1	C1
4144	A2622	В1	C5
4145	A2622	В1	C41
4146	A2622	В1	C59
4147	A2622	B2	C1
4148	A2622	B2	C5
4149	A2622	B2	C41
4150	A2622	B2	C59
4151	A2622	B21	C1
4152	A2622	B21	C5
4153	A2622	B21	C41
4154	A2622	B21	C59
4155	A2622	B22	C1
i	A2622	B22	C5
1	A2622	B22	C41
4158	A2622	B22	C59
4159	A2631	B1	C1
4160	A2631	B1	C5
	A2631	B1	C41
1	A2631	B1	C59
1	A2631	B2	C1
	A2631	B2	C5
4165	A2631	B2	C41
1	A2631	B2	C59
	A2631	B21	C1
1	A2631	B21	C5
1	A2631	B21	C41
4170	A2631	B21	C59

4171	A2631	B22	C1
4172	A2631	B22	C5
4173	A2631	B22	C41
4174	A2631	B22	C59
4175	A2636	B1	C1
4176	A2636	В1	C5
4177	A2636	B1	C41
4178	A2636	B1	C59
4179	A2636	B2	C1
1	A2636	B2	C5
	A2636	B2	C41
1	A2636	B2	C59
1	A2636	B21	C1
1	A2636	B21	C5
1	A2636	B21	C41
1	A2636	B21	C59
	A2636	B22	C1
1	A2636	B22	C5
	A2636	B22	C41 C59
1	A2636	B22	C1
i	A2665	B1 B1	C5
	A2665 A2665	В1	C41
	A2665	B1	C59
T .	A2665	B2	C1
1	A2665	B2	C5
1	A2665	B2	C41
1	A2665	B2	C59
1	A2665	B21	C1
1	A2665	B21	C5
1	A2665	B21	C41
4202	A2665	B21	C59
4203	A2665	B22	C1
4204	A2665	B22	C5
4205	A2665	B22	C41
1	A2665	B22	C59
1	A2670	B1	C1
	A2670	B1	C5
1	A2670	B1	C41
	A2670	B1	C59
ı	A2670	B2	C1
	A2670	B2	C5
ł	A2670	B2	C41
1	A2670	B2	C59
1	A2670 A2670	B21	C5
4210	MZ0/U	B21	00

4217	A2670	B21	C41
4218	A2670	B21	C59
4219	A2670	B22	C1
4220	A2670	B22	C5
4221	A2670	B22	C41
4222	A2670	B22	C59
4223	A2671	В1	C1
4224	A2671	B1	C5
· ·	A2671	B1	C41
	A2671	B1	C59
4227	A2671	B2	C1
	A2671	B2	C5
	A2671	B2	C41
	A2671	B2	C59
	A2671	B21	C1
	A2671	B21	C5
1	A2671	B21	C41
	A2671	B21	C59
	A2671	B22	C1
i	A2671	B22	C5
4237		B22	C41
	A2671	B22	C59
	A2676	B1	C1
	A2676	B1	C5
4241		B1	C41
	A2676	B1	C59
i	A2676	B2	C1
	A2676	B2	C5
i	A2676	B2	C41
ł .	A2676	B2	C59
	A2676	B21	C1
l .	A2676	B21	C5
	A2676	B21	C41
	A2676	B21	C59
i .	A2676	B22	C1
1	A2676	B22	C5
	A2676	B22	C41
1	A2676	B22	C59
I	A2677	B1	C1
	A2677	B1	C5
l .	A2677	B1	C41
1	A2677	B1	C59
1	A2677	B2	C1
Į.	A2677	ļ — —	C5
1	A2677	B2	1
1	A2677	B2	C59
4202	ואבטוו	B2	1008

【0130】 【表62】

	4263	A2677	B21	C1
	4264	A2677	B21	C5
	4265	A2677	B21	C41
		A2677	B21	
	4267	A2677	B22	01
	4268	A2677	B22	C5
	4269	A2677	B22	C41
	4270	A2677	B22	C59
	4271	A2682	B1	C1
	4272	A2682	B1	C5
١	4273	A2682	B1	C41
١	4274	A2682	B1	C59
	4275	A2682	B2	C1
١	4276	A2682	B2	C5
	4277	A2682	B2	C41
	4278	A2682	B2	C59
İ		A2682	1	
١		A2682		· · · ·
	4281	A2682	2 B2	1
	4282	A2682	1	
١		A2682		1
		A2682		
١		A2682		
1		A2682		_ 1
1		A270		1
1		A270	. i .	C5
l	. —	A270	1	C41
		A270		C59
		A270		1 -
١		2 A270	- 1	1 - 1
1		3 A270	- 1	
		4 A270		1
١		5 A270		1
١		6 A270		
١		7 A270		
		B A270	1	1
		9 A270	- 1	
		0 A270	- 1	· 1
		1 A270	1	
	1	2 A270		
	430	3 A271	2 B	C1

	4304	A2712	B1	C5
		A2712	B1	C41
	4306	A2712	B1	C59
	4307	A2712	B2	C1
	4308	A2712	B2	C5
	4309	A2712	B2	C41
	4310	A2712	B2	C59
	4311	A2712	B21	C1
	4312	A2712	B21	C5
	4313	A2712	B21	C41
	4314	A2712	B21	C59
	4315	A2712	B22	C1
	4316	A2712	B22	C5
	4317	A2712	B22	C41
	4318	A2712	B22	C59
	4319	A2719	B1	C1
	4320	A2719	В1	C5
	4321	A2719	B1	C41
	4322	A2719	В1	C59
	4323	A2719	B2	C1
ļ		A2719	B2	C5
l		A2719	B2	C41
		A2719	B2	C59
١	4327	A2719	B21	C1
	4328	A2719	B21	C5
	4329	A2719	B21	C41
	_	A2719	B21	C59
l	4331	A2719	B22	C1
l		A2719	B22	C5
١		A2719	B22	C41
l		A2719	B22	C59
l		A2724	B1	C1
		A2724	B1	C5
ı		7 A2724	B1	C41
		B A2724	B1	C59
		A2724	B2	C1
	4340	A2724		C5
	434	1 A2724		C41
		2 A2724		C59
		3 A2724		C1
	434	4 A2724	B21	C5

	4345	A2724	B21	C41		
	4346	A2724	B21	C59		
	4347	A2724	B22	C1		
	4348	A2724	B22	C5		
	4349	A2724	B22	C41		
	4350	A2724	B22	C59		
	4351	A2733	B1	C1		
	4352	A2733	B1	C5		
	4353	A2733	В1	C41		
l	4354	A2733	В1	C59		
l	4355	A2733	B2	C1		
	4356	A2733	B2	C5 C41 C59 C1		
	4357	A2733	B2			
	4358	A2733	B2			
	4359	A2733	B21			
١	4360	A2733	B21	C5		
	4361	A2733	B21	C41		
١	4362	A2733	B21	C59		
l	4363	A2733	B22	C1		
l	4364	A2733	B22	C5		
١	4365	A2733	B22	C41		
١	4366		B22	C59		
١	4367	A2738	B1	C1		
l	4368	A2738	B1	C5		
١	-	A2738	B1	C41		
l	4370	A2738	B1	C59		
		A2738	B2	C1		
١		A2738	B2	C5		
1		A2738	B2	C41		
		A2738	B2	C59		
		A2738	B21	C1		
		A2738	B21	C5		
		A2738	B21	C41		
		A2738	B21	C59		
		A2738	B22	C1		
	l .	A2738	B22	C5		
	438	4	B22	C41		
	438	2 A2738	B22	C59		

【表63】

No.	Α	В	С		5194	A3885	B21	C59		5238	A3888	B2	C59
	A3883	B1	C1		5195	A3885	B22	C1		5239	A3888	B21	C1
1	A3883	B1	C5		5196	A3885	B22	C5		5240	A3888	B21	C5
1	A3883	B1	C41	i	5197	A3885	B22	C41		5241	A3888	B21	C41
· ·	A3883	В1	C59		5198	A3885	B22	C59		5242	A3888	B21	C59
	A3883	B2	C1		5199	A3886	B1	C1		5243	A3888	B22	C1
i i	i .	B2	C5		5200	A3886	В1	C5		5244	A3888	B22	C5
ž.	A3883	ŧ .	C41		5201	A3886	В1	C41		5245	A3888	B22	C41
1	A3883	B2	C59		5202	A3886	В1	C59		5246	A3888	B22	C59
1	A3883	B21	C1		5203	A3886	B2	C1		5247	A3889	B1	C1
i i	A3883	B21	C5		5204	A3886	B2	C5		5248	A3889	В1	C5
	A3883	B21	C41		5205	A3886	B2	C41		5249	A3889	B1	C41
i	A3883	B21	C59		5206	A3886	B2	C59		5250	A3889	B1	C59
1	A3883	B22	C1		5207	A3886	B21	C1		5251	A3889	B2	C1
1	A3883	B22	C5		5208	A3886	B21	C5		5252	A3889	B2	C5
	A3883	B22	C41		5209	A3886	B21	C41		5253	A3889	B2	C41
1	A3883	B22	C59		5210	A3886	B21	C59		5254	A3889	B2	C59
li li	A3884	В1	C1		5211	A3886	B22	C1		5255	A3889	B21	C1
	A3884	В1	C5		5212	A3886	B22	C5			A3889	B21	C5
i	A3884	В1	C41		5213	A3886	B22	C41			A3889	B21	C41
5170	A3884	В1	C59		5214	A3886	B22	C59			A3889	B21	C59
5171	A3884	B2	C1		5215	A3887	B1	C1	'		A3889	B22	C1
5172	A3884	B2	C5]	l .	A3887	B1	C5			A3889	B22	C5
5173	A3884	B2	C41			A3887	B1	C41	1	ł .	A3889	B22	C41
5174	1 A3884	B2	C59		i	A3887	B1	C59		1	A3889	B22	C59
517	A3884	B21	C1	1	1	A3887	B2	C1	İ	ı	A3890	В1	C1
5170	A3884	B21	C5		l	A3887	B2	C5			A3890	B1	C5
517	7 A3884	B21	C41		1	A3887	B2	C41		į.	A3890	B1	C41
517	A3884	B21	C59			A3887	B2	C59			A3890	B1	C59
5179	9 A3884	B22	C1	1	l	A3887	B21	C1		į.	A3890	B2	C1
518	A3884	B22	C5		i	A3887	B21	C5		1	A3890	B2	C5
518	1 A3884	B22	C41		1	A3887	B21	C41		,	A3890	B2	C41
	2 A3884		C59		i	A3887	B21	C59		i .	A3890	1	C59
518	3 A3885	B1	C1		1	A3887	B22	C1		I	A3890	B21 B21	C1 C5
	4 A3885		C5			A3887	B22	C5		1	A3890	1	1
	5 A3885	i	C41			A3887		C41	ŀ	1	A3890		C41
	6 A3885		C59	1		A3887	1		-	1	A3890 A3890		C59
II.	7 A3885	i i	C1			A3888	1	C1		1	1		1
1	8 A3885		C5		1	2 A3888	1	C5		1	A3890		•
	9 A3885	1	C41		1	A3888	1	C41			A3890		1
į.	0 A3885	•	C59	1	1	4 A3888		C59		52/8	3 A3890	DZZ	C59
	1 A3885				1	A3888		C1					
	2 A3885	1			1	A3888		C5					
519	3 A3885	B21	C41		523	7 A3888	lR _S	C41	1				

するが、特に高脂血症、異脂肪症、脂質代謝異常、低HDL症、高LDL症、高VLDL症、高TG症、糖尿病、高血糖、インスリン抵抗性、肥満、神経性多食症、動脈硬化、アテローム性動脈硬化、高血圧、シンドロームX、虚血性疾患、炎症、アレルギー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、乾癬、湿疹等)、骨粗しょう症、不妊、癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)、アルツハイマー症、パーキンソン症、バセドウ氏病の予防および/または治療に対して有効である。特に、PPARアゴニスト活性を有する本発明化合物のうち、PPARる選択的アゴニスト活性を有する化合物は、高いHDL上昇作用が期待できること、副作用が軽減され得ること等の理由から優れた医薬品となり得る。

[0133]

本発明化合物をPPARアゴニスト用医薬組成物として投与する場合、経口的、非経口的のいずれの方法でも投与することができる。経口投与は常法に従って錠剤、顆粒剤、散剤、カプセル剤、丸剤、液剤、シロップ剤、バッカル剤または舌下剤等の通常用いられる剤型に調製して投与すればよい。非経口投与は、例えば筋肉内投与、静脈内投与等の注射剤、坐剤、経皮吸収剤、吸入剤等、通常用いられるいずれの剤型でも好適に投与することができる。本発明化合物は経口吸収性が高いため、経口剤として好適に使用できる。

[0134]

本発明化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤、 希釈剤等の各種医薬用添加剤とを必要に応じて混合し医薬製剤とすることができる。注射 剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい。

具体的には、賦形剤としては乳糖、白糖、ブドウ糖、デンプン、炭酸カルシウムもしくは結晶セルロース等、結合剤としてはメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ゼラチンもしくはポリビニルピロリドン等、崩壊剤としてはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンプン、アルギン酸ナトリウム、カンテン末もしくはラウリル硫酸ナトリウム等、滑沢剤としてはタルク、ステアリン酸マグネシウムもしくはマクロゴール等が挙げられる。坐剤の基剤としてはカカオ脂、マクロゴールもしくはメチルセルロース等を用いることができる。また、液剤もしくは乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加しても良く、経口投与の場合には嬌味剤、芳香剤等を加えても良い。

[0135]

本発明化合物のPPARアゴニスト用医薬組成物としての投与量は、患者の年齢、体重、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、成人に経口投与する場合、通常 $0.05\sim100$ mg/kg/日であり、好ましくは $0.1\sim10$ mg/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通常 $0.005\sim10$ mg/kg/日であり、好ましくは $0.01\sim1$ mg/kg/日の範囲内である。これを 111回~数回に分けて投与すれば良い。

[0136]

以下に実施例を示し、本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。

[0137]

実施例

実施例中、各略語の意味は以下の通りである。

のほんりょしく	
Ме	メチル
Εt	エチル
nВи	nーブチル
t B u	tertーブチル
n P r	nープロピル
Ρh	フェニル
Βn	ベンジル

アセチル Αc メタンスルホニル Msトリメチルシリル TMS ピリジニウムクロロクロメート PCC 1, 1, -カルボニルジイミダゾール CDI1,8-ジアザビシクロ[5.4.0]ウンデセー7-エン DBU 1. 2-ジメトキシエタン DME ジフェニルメチル DPM3-tertーブチルジメチルシリル TBS 4-トリフルオロメチルフェニル TFMP[0138]【化15】 1) LiN(TMS)₂ COOEt

$$R^{1}$$
 R^{2} R^{2} R^{2} R^{2} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{5} R^{2} R^{4} R^{5

参考例1

5-(4-トリフルオロメチルフェニル) -イソキサゾール-3-カルボン酸エチルエステル $(R^1=TFMP、R^2=H、1-1-1)$

乾燥エーテル60m1にリチウムビス(トリメチルシリル)アミド溶液15m1を加え、内温-70℃以下に冷却し、4-トリフルオロメチルアセトフェノン2.82gのエーテル15m1溶液を内温-65℃以下に保ち6分間で滴下した。その後バスを除き室温で17時間攪拌し反応液にエーテル100m1を加え氷冷、析出した結晶を濾過しピルベートのリチウム塩を第1晶として2.9g得、さらに濾液を濃縮しエーテルで希釈し氷冷することで第2晶を610mg得た。このリチウム塩3.5gにエタノール35m1、塩酸ヒドロキシルアミン1.22gを加え20時間還流した。溶媒留去後、水を加え、クロロホルムで抽出、有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化合物を無色結晶として2.55g得た。収率60%

【0139】 $(1-1-2) \sim (1-1-4)$ も同様に合成した。 【0140】 【表64】

No	\mathbb{R}^1	\mathbb{R}^2	NMR
1-1-1	TFMP	H	1.46(3H,t,J=6.9Hz),4.49(2H,q,J=6.9Hz),7.04(1 H,s),7.77(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
1-1-2	TFMP	Me	1.46(3H,t,J=6.9Hz),2.47(3H,s),4.49(2H,q,J=6.9 Hz),7.78(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
1-1-3	p-Cl-C ₆ H ₄ -	Н	1.45(3H,t,J=7.2Hz),4.48(2H,q,J=7.2Hz),6.92(1 H,s),7.47(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz)
1-1-4	ピリジンー 4ーイル	Н	1.46(3H,t,J=7.2Hz),4.50(2H,q,J=7.2Hz),7.12(1 H,s),7.68(2H,d,J=6.0Hz),8.79(2H,d,J=6.0Hz)

[0141]

参考例 2

5-プロモー4-メチルーイソキサゾールー3-カルボン酸エチルエステル(1-2-1) 【0 1 4 2】

4-メチル-5-オキソ-2,5-ジヒドロイソキサゾール-3-カルボン酸エチルエ ステル6. 45gとオキシ臭化リン54.0gの混合物にトリエチルアミン5.3m1を 加え、80℃で2時間攪拌した。その後反応液を氷中に注ぎ、エーテルで抽出、飽和食塩 水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリ カゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を薄黄色 の油状物として7.36 g得た。収率80%

 1 H-NMR(CDC1₃): 1.43(3H, t, J=7.2Hz), 2.19(3H, s), 4.45(2H, q, J=7.2Hz).

[0143]

【化17】

参考例3

4-メチル-5-(4-トリフルオロメチルフェニル)ーイソキサゾール-3-カルボン 酸エチルエステル $(R^1 = TFMP, 1-1-2)$

化合物 (1-2-1) 243 mgをDME6 mlに溶解し、4ートリフルオロメチルフ ェニルボロン酸285mg、炭酸カリウム420mg、PdC12(dppf)81mg を加え、100℃で7時間攪拌した。その後反応液に水を加え、酢酸エチルで抽出、飽和 食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣を シリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を無 色の結晶として239mg得た。収率80%

[0144]【化18】

参考例 4

[5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3-イル]メタノール($R^1 = T F M P$, $R^2 = H$, 2 - 1 - 1)

5-(4-トリフルオロメチルフェニル)ーイソキサゾール-3-カルボン酸エチルエ ステル(1-1-1)1.0gをメタノール15m1に溶解し、氷冷水下、水素化ホウ素 ナトリウム358mgを加え、5分後室温に戻し更に2時間攪拌した。反応液に10℃以 下で1M塩酸を加え弱酸性とした後、減圧下溶媒を留去、残留液に水を加えクロロホルム で抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得 られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標 記化合物を結晶として820mg(収率96%)得た。これを酢酸エチルーヘキサンから 再結晶し、融点111−113℃の結晶を得た。

[0145]

(2-1-2) ~ (2-1-9) も同様に合成した。

[0146]

【表65】

No	\mathbb{R}^1	\mathbb{R}^2	NMR(CDCl ₃)
2-1-1	TFMP	H	2.04(1H,t,J=6.0Hz),4.85(1H,d,J=6.0Hz),6.70(1H,s),
			7.74(2H,d,J=8.4Hz), 7.91(2H,d,J=8.4Hz)
2-1-2	TFMP	Me	1.97(1H,t,J=6.6Hz),4.80(2H,m),7.76(2H,d,J=8.4Hz),
			7.85(2H,d,J=8.4Hz)
2-1-3	4-Cl- C ₆ H ₄ -	H	4.82(2H,s),6.58(1H,s),7.50(2H,d,J=8.7Hz),7.72(2H,d
			,J=8.7Hz)
2-1-4	4-Cl- C ₆ H ₄ -	Et	1.25(3H,t,J=7.2Hz),2.68(2H,q,J=7.2Hz),4.80(2H,s),
•			7.47(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
2-1-5	Me	H	2.30(1H,s),2.42(3H,d,J=0.6Hz),4.71(2H,s),6.04(1H,q
			,J=0.6Hz)
2-1-6	Et	H	1.30(3H,t,J=7.5Hz),2.23(1H,s),2.77(2H,qd,J=7.5,0.6
			Hz),4.72(2H,s),6.04(1H,t,J=0.6Hz)
2-1-7	Br	Me	2.03(3H,s),2.06(1H,brt,J=7.5Hz),4.73(2H,d,
			J=5.7Hz)
2-1-8	モルホリン	Me	1.98(3H,s),3.35-3.38(4H,m),3.78-3.82(4H,m),
	ー4ーイル		4.60(2H,s)
2-1-9	ピリジン-4-	H	2.20(1H,brs),4.85(2H,s),6.81(1H,s),7.65(2H,d,J=6.0
	イル		Hz),8.75(2H,d,J=6.0Hz)

【0147】 【化19】

参考例 5

第1工程 保護

3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフェニル) イソキサゾール ($R^1=TFMP$ 、 $R^2=H$ 、2-2-1-1)

[5-(4-)リフルオロメチルフェニル)イソキサゾールー3ーイル]メタノール(2-1-1)8.31g、t-ブチルジメチルシリルクロライド5.67g、イミダゾール3.49g、塩化メチレン160mlの混合物を2時間攪拌した。反応液に水を加えクロロホルムで2回抽出した。有機層を水、飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:9)で溶出し、標記化合物を無色結晶として11.5g得た。収率94%。

 $^{1}H-NMR(CDC1_{3}): 0.14(6H, s), 0.94(9H, s), 4.82(2H, s), 6.68(1H, s), 7.73(2H, d, J=8.4 Hz), 7.91 (2H, d, J=8.4 Hz).$

[0148]

第2工程 4位修飾

(リチオ化法)

TBS 体 $\rightarrow R^1 = TFMP$ 、 $R^2 = Br$

3-tert-ブチルジメチルシリルオキシメチル-5-(4-)リフルオロメチルフェニル) イソキサゾール (2-2-1-1) 9. 50 gをテトラヒドロフラン 190 m 1 に溶解した。この溶液にn-ブチルリチウムのヘキサン溶液(1.57 M)を-78 $^{\circ}$

で15分かけて滴下した。-78℃で70分間攪拌後、臭素9.36gを10分かけて滴下した。-78℃で2時間攪拌後、室温まで昇温し10%亜硫酸ナトリウム水溶液を加え反応を停止した。酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、標記化合物を黄色の油状物として11.6g得た。収率100%

¹H-NMR(CDCl₃): 0.16(6H, s), 0.94(9H, s), 4.81(2H, s), 7.77(2H, d, J=8.1 Hz), 8.1 8(2H, d, J=8.1 Hz).

[0149]

(クロスカップリング法)

TBS体、 $R^2 = B r \rightarrow R^1 = TFMP$, $R^2 = ベンジル$

4-ベンジル-3-(tert-ブチルジメチルシリルオキシメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾール(2-2-2-2)

亜鉛196mgをテトラヒドロフラン2m1に懸濁し、1,2-ジブロモエタン28mgを加えて5分間、クロロトリメチルシラン16mgを加えて5分間攪拌した。ベンジルブロマイド376mgをテトラヒドロフラン4m1に溶解し、これを反応液に滴下した。30分間還流後、反応液を4-ブロモー3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール(2-2-2-1)376mg、酢酸パラジウム11mg、トリシクロヘキシルホスフィン(14mg、テトラヒドロフラン4m1の混合液に滴下し30分間還流した。反応液に水を加え、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:50)で溶出し、標記化合物を黄色結晶として358mg得た。収率80%

 1 H-NMR(CDC1₃): 0.03(6H, s), 0.86(9H, s), 4.13(2H, s), 4.66(2H, s), 7.14-7.31(5H, m), 7.67(2H, d, J=8.4 Hz), 7.76(2H, d, J=8.4 Hz).

[0150]

第3工程 脱保護

4-ベンジル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イル〕メタノール($R^1=$ TFMP、 $R^2=$ Bn、2-2-3-1)

4-ベンジル-3-(tert-ブチルジメチルシリルオキシメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾール(2-2-2-2)358mgをテトラヒドロフラン8m1に溶解し、tetra-ブチルアンモニウムフルオライド0.88m1(1Mテトラヒドロフラン溶液)を加えた。室温で1時間攪拌後、水を加え反応を停止した。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標記化合物を無色結晶として207mg得た。収率78%。

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$: 4.10(2H,s), 4.62(2H,s), 7.15-7.34(5H,m), 7.70(2H,d,J=8.7Hz),7.77(2H,d,J=8.7Hz).

[0151]

(2-2-3-2) ~ (2-2-3-4) も同様に合成した。

[0152]

【表66】

No	\mathbb{R}^1	\mathbb{R}^2	第2工程	NMR
2-2-3-	TFMP	Bn	クロスカッ	0.03(6H,s),0.86(9H,s),4.13(2H,s),4.66(2H,s),7.1
1			プリング法	4-7.31(5H,m),7.67(2H,d,J=8.4Hz),
				7.76(2H,d,J=8.4Hz)
2-2-3-	TFMP	Br	リチオ化法	2.15(1H,brs),4.82(2H,s),7.49(2H,d,J=8.7Hz),7.
2			_	98(2H,d,J=8.7Hz)
2-2-3-	TFMP	CH	リチオ化法	3.74(1H,t,J=7.5Hz),4.89(2H,d,J=7.5Hz),7.88(2
3		О		H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz),10.10(1H,s)
2-2-3-	TFMP	SPh	リチオ化法	0.04(6H,s),0.85(9H,s),4.74(2H,s),7.11-
4		ļ		7.26(5H,m),7.70(2H,d,J=8.7Hz),8.22(2H,d,J=8.
				7Hz)

【0153】 【化20】

$$R^{1}$$
 OH ハロゲン化 R^{2} OH R^{1} OH

参考例6

[5-(4-クロロフェニル) -イソキサゾール-3-イル] -メタノール (2-1-3) 2.51 gと塩化メチレン 25 m 1 の溶液に、氷冷下N-ブロムこはく酸イミド 2.16 gを加え、30分攪拌後、更に常温で16時間反応した。反応液をクロロホルムで希釈した後、氷水下 1 M水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン (1:2) で溶出し、標記化合物を結晶として 1.4 1 g 得た。収率 4 9 %

[0154]

(2-3-2) および (2-3-3) はハロゲン化剤として一塩化ヨウ素を用い、同様に合成した。

[0155]

【表67】

No	\mathbb{R}^1	\mathbb{R}^2	NMR
2-3-1	4-Cl- C ₆ H ₄ -	Br	2.18(1H,t,J=6.6Hz),4.82(2H,d,J=6.6Hz),7.49(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz)
2-3-2	Me	I	2.11(1H,t,J=6.6Hz),2.47(3H,s),4.69(2H,d,J=6.6Hz)
2-3-3	Et	I	1.30(3H,t,J=7.5Hz),2.82(2H,q,J=7.5Hz),4.70(2H,s)

[0156]

【化21】

参考例 7

5-(4-1)フルオロメチルフェニル)ーイソキサゾールー3ーカルボン酸エチルエステル(1-1-2)1.03gを無水テトラヒドロフラン10m1に溶解し、氷-メタノール冷却下、1Mメチルマグネシウムブロミド7.3m1を加え、反応液を室温に戻して24時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色の結晶を得た。これをエーテルーヘキサンより再結晶し標記化合物を7.38mg得た。収率7.5%

融点126-127℃

 $^{1}\text{H-NMR}\left(\text{CDCl}_{3}\right):\ 1.71\left(6\text{H,s}\right),\ 2.38\left(3\text{H,s}\right),\ 7.75\left(2\text{H,d,J=8.4Hz}\right),\ 7.81\left(2\text{H,d,J=8.4Hz}\right).$

【0157】 【化22】

参考例8

第1工程 酸化

4-x+v-5-(4-1) -4y+v-v-3-2 -4y+v-v-3-2 -4y+v-v-3-2 -4y+v-v-3-2 -4y+v-v-3-2 -4y+v-2 -4y+v-2 -4y+v-3-2 -4y+v-

化合物(2-1-2)4. 88gを塩化メチレン200m1に溶解し、ピリジニウムクロロクロメート 8. 30gを加え、室温下 22時間攪拌した。その後反応液をシリカゲル濾過し、クロロホルムで洗浄後、濾液を減圧下留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色の結晶を得た。これをヘキサンより再結晶し標記化合物を 4.14g得た。収率 86%

 $^{1}\text{H-NMR}(\text{CDC1}_{3}): 2.49(3\text{H,s}), 7.79(2\text{H,d,J=8.1Hz}), 7.87(2\text{H,d,J=8.1Hz}), 10.23(1\text{H,s}).$

[0158]

第2工程 アルキル化

 $1-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]-プロパン-1-オール <math>(R^4=E\ t\ ,\ 2-5-2-1)$

第1工程で得られた化合物(2-5-1-1)765mgを無水テトラヒドロフラン2 0m1に溶解し、-70℃で1 Mエチルマグネシウムブロマイド3.2m1を加え、さらに1.5時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標記化合物を無色の結晶として345mg得た。収率40% [0159]

同様に(2-5-2-2)を合成した。

[0160]

【表68】

No	\mathbb{R}^4	NMR
2-5-2-1	Et	1.05(3H,t,J=7.5Hz),1.92-2.04(2H,m),2.30(3H,s),4.83
	1	(1H,t,J=6.6Hz),7.75(2H,t,J=8.4Hz), 7.83(2H,d,J=8.4Hz)
2-5-2-2	4-F- C ₆ H ₄ -	2.03(3H,s),6.03(1H,s),7.05-7.11(2H,m),7.42-
		7.47(2H,m),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)

[0161]

参考例 9

(4-x+v-5-v+v-4-4v-4v+v-v-3-4v)-x+v-1(4-x+v-5-v+v-4-4v-4v+v-4v-4v-3-4v)-x+v-1

[0162]

【化23】

化合物(2-1-7)1.66gをモルホリン5mlに溶解し、140℃で2時間攪拌した。その後反応液に水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(2:1)で溶出し、標記化合物を薄黄色の結晶として1.14g得た。収率66%

 $^{1}\text{H-NMR}(\text{CDCl}_{3}): 1.98(3\text{H,s}), 3.35-3.38(4\text{H,m}), 3.78-3.82(4\text{H,m}), 4.60(2\text{H,s}).$

【0163】 【化24】

参考例 1 0 A法(LG=OMs)

メタンスルホン酸 4 ーホルミルー 5 ー (4 ートリフルオロメチルフェニル)ーイソキサゾールー 3 ーイルメチルエステル(R^1 = T F M P、 R^2 = C H O, R^3 、 R^4 = H、3 - 1 - 1 - 1

化合物(2-2-4-2)1. 79gを塩化メチレン30m1に懸濁し、氷冷下メタンスルホニルクロライド0.61m1、トリエチルアミン1.38m1を加え、1時間攪拌した。その後反応液に水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、クロロホルムで溶出し、無色の結晶を得た。これにヘキサンを加えて粉砕後濾取し、標記化合物を無色の結晶として2.21g得た。融点129-130 収率96%

 $[0 \ 1 \ 6 \ 4]$

同様に (3-1-1-2) を合成した。

[0165]

【表69】

No	\mathbb{R}^1	R ²	NMR
3-1-1-1	TFMP	СНО	3.21(3H,s),5.58(2H,s), 7.88(2H,d,J=8.4Hz),8.01(2H,d,J=8.4Hz),10.14(1H,s)
3-1-1-2	モルホリ ンー4ー イル	Me	2.01(3H,s),3.05(3H,s),3.38-3.41(2H,m),3.79- 3.82(2H,m), 5.16(2H,s)

[0166]

参考例11 B法(LG=C1)

[5-(4-0)ロローフェニル)ーイソキサゾールー3ーイル]ーメタノール(2-1-3)1.73g、クロロホルム30mlの溶液に塩化チオニル2.1gを加え、氷冷下ピリジン630mgとクロロホルム2mlの溶液を3分で滴下。室温で5時間攪拌した。反応後減圧下溶媒を留去。残渣にクロロホルムと水を加えで抽出。有機層は水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化合物を結晶として1.72g得た。収率92%

[0167]

同様に(3-1-2-2)~(3-1-2-15)の化合物を合成した。

[0168]

【表70】

No	R 1	R ²	R 3, R 4	NMR
3-1-2-1				
3-1-2-1	4-Cl- C ₆ H ₄ -	H	H,H	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4
	F0773 F0			Hz),7.73(2H,d,J=8.4Hz)
3-1-2-2	TFMP	H	H,H	4.66(2H,s),6.45(1H,s),7.75(2H,d,J=9.0
				Hz),7.91(2H,d,J=9.0Hz)
3-1-2-3	TFMP	Me	H,H	2.33(3H,s),4.65(2H,s),7.76(2H,d,J=8.7
				Hz),7.85(2H,d,J=8.7Hz)
3-1-2-4	TFMP	CHO	H,H	4.89(2H,s),7.87(2H,d,J=8.7Hz),8.03(2
				H,d,J=8.7Hz),10.17(1H,s)
3-1-2-5	TFMP	Me	H,Et	1.15(3H,t,J=7.5Hz),2.30(2H,qd,J=7.5,
1				7.5Hz),4.93(1H,t,J=6.6Hz),7.76(2H,t,
				J=8.4Hz), 7.83(2H,d,J=8.4Hz)
3-1-2-6	TFMP	Me	H,4-F-	2.14(3H,s),6.62(1H,s),7.07-
		2.20	C ₆ H ₄ -	7.13(2H,m),7.50-7.55(2H,m),
			06114	7.75(2H,d,J=8.4Hz),7.81(2H,d,J=8.4H
				z)
3-1-2-7	TFMP	SPh	H,H	4.55(2H,s),7.13-
0121	111711	DI II	11,11	7.27(5H,m),7.73(2H,d,J=8.7Hz),8.25(
				2H,d,J=8.7Hz)
3-1-2-8	TFMP	Bn	H,H	4.15(2H,s),4.41(2H,s),7.15-
0-1-2-0	1 I WIL	Ъп	11,11	
				7.35(5H,m),7.71(2H,d,J=8.7Hz),7.78(
3-1-2-9	4-Cl-C ₆ H ₄ -	Н	H,H	2H,d,J=8.7Hz)
3-1-2-9	4-CI-C ₆ П ₄ -	п	H,H	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4
0.1.0.10	4 OLO II	D	TTTT	Hz),7.73(2H,d,J=8.4Hz)
3-1-2-10	4-Cl-C ₆ H ₄ -	Br	H,H	4.46(2H,s),7.50(2H,d,J=8.7Hz),7.99(2
	1			H,d,J=8.7Hz)
3-1-2-11	4-Cl-C ₆ H ₄ -	Et	H,H	1.28(3H,t,J=7.5Hz),2.72(2H,q,J=7.5H
ĺ				z),4.64(2H,s),7.47(2H,d,J=8.4Hz),7.65
				(2H,d,J=8.4Hz)
3-1-2-12	Br	Me	H,H	2.06(3H,s),4.56(2H,s)
				·
3-1-2-13	ピリジン-	H	H,H	4.66(2H,s),6.85(1H,s),7.67(2H,d,J=6.0
	4-イル		-	Hz),8.77(2H,d,J=6.0Hz)
3-1-2-14	Me	Ī	H,H	2.49(3H,s),4.53(2H,s)
		_		
3-1-2-15	Et	I	H,H	1.31(3H,t,J=7.5Hz),2.83(2H,q,J=7.5H
		_		z)4.53(2H,s)
	L	[<i>U)</i> T. <i>UU</i> (<i>L</i> II , <i>S)</i>

[0169]

参考例12

[3-クロロメチルー 5-(4-トリフルオロメチルフェニル)-イソキサゾールー 4-イル]-メタノール (3-2-1)

【0170】 【化25】

3-クロロメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー4-カルバルデヒド(3-1-2-4)203 m g とメタノール5 m 1 の溶液に氷冷下、水素化ホウ素ナトリウム21 m g を加え室温にて2 時間攪拌した。反応後減圧下溶媒を留去。

残渣に水を加えクロロホルムで抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:へキサン(1:3)で溶出し、標記化合物を結晶として210mg得た。収率87%

【0171】 【化26】

1) チオカルバモイル化 2) Horner-Emmons 反応

2) Horner-Emmons 反 3) 転位反応

参考例 1 3

第一工程 チオカルバモイル化

ジメチルチオカルバミン酸 2-フルオロー4-ホルミルフェニルエステル(R=3-F、 R^1 $^7=Me$ 、4-1-1)

3-フルオロー4-ビドロキシベンズアルデヒド 5.00g、N, N-ジメチルチオカルバモイルクロリド 5.29g、トリエチルアミン 4.33g、N, N-ジメチルアミノピリジン 436mg、ジオキサン 50m1 の混合物を 3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶として 7.05g 得た。収率 71%

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$: 3.39(3H, s), 3.47(3H, s), 7.27(7.35(1H, m), 7.67(7.74(2H, m), 9.97(1H, s).

[0172]

第2工程 Horner-Emmons 反応

3-(4-i) ジェン・ 3-(4-i) メチャン・ 3-(4-i) アクリル酸 メチルエステル $(R=3-F, R^{17}=Me, 5-1-1)$

ジメチルチオカルバミン酸 2-7ルオロー4-ホルミルフェニルエステル(4-1-1) 7. 05g、ジメチルホスホノ酢酸メチル5. 89g、塩化リチウム 1. 57g、ジメチルホルムアミド 70m1 の混合物に 1, 8-ジアザビシクロ [5.4.0] ウンデカー 7-エン 5.16g を加え、室温で 2.5 時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶として 7.50g 得た。収率 86%

 1 H-NMR(CDC1₃): 3.37(3H, s), 3.46(3H, s), 3.81(3H, s), 6.39(1H, d, J=15.9 Hz), 7. 12(1H, m), 7.30(7.35(2H, m), 7.63(1H, d, J=15.9Hz).

[0173]

第3工程 転位反応

3-(4-ジメチルカルバモイルスルファニルー<math>3-フルオロフェニル)アクリル酸 メチルエステル(R=3-F、 $R^{17}=Me$ 、6-1-1)

3-(4-i)メチルチオカルバモイルオキシー3-iフルオロフェニル)アクリル酸 メチルエステル(5-1-1) 7. 00 gとジフェニルエーテルの混合物を265 Cで30 分間攪拌した。反応液を室温に冷却後、シリカゲルクロマトに付し、クロロホルムで溶出し、標記化合物を無色結晶として 7. 00 g 得た。収率 100 %

[0174]

同様に(6-1-2)~(6-1-17)を合成した。

[0175]

【表71】

No	R	R^{17}	NMR
6-1-1	3-F	Me	3.04(3H,br),3.13(3H,br),3.82(3H,s),
			6.45(1H,d,J=16.2Hz),7.26-7.31(2H,m),
			7.48-7.53(1H, m), 7.64(1H, d, J=16.2 Hz)
6-1-2	3-OMe	Me	2.95-3.20(6H,m),3.82(3H,s),3.90(3H,s),
6-1-2	2-01416	1110	6.45(1H,d,J=15.9Hz),6.95-7.18(2H,m),
			7.48(1H,d,J=7.8Hz), 7.67(1H, d, J=16.2 Hz)
6-1-3	2-OMe	Me	2.96-3.18(6H,m),3.80(3H,s),3.89(3H,s),
0-1-9	Z-O1416	1410	6.53(1H,d,J=16.2Hz),7.06-7.13(2H,m),
			7.49(1H,d,J=8.1Hz), 7.96(1H, d, J=16.2 Hz)
6-1-4	3-Br, 5-OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.89(3H,s),
0-1-4	0-D1, 0-O1110	11120	6.45(1H,d,J=15.9Hz),7.26(1H,brs),
	†		7.48(1H,brs),7.59(1H, d, J=15.9 Hz)
6-1-5	2-OMe, 6-	Me	2.90-3.20(6H,m),3.79(3H,s),3.88(6H,s),
0-1-0	OMe	2.20	6.73(2H,s) 6.88(1H, d, J=16.2 Hz),
			8.08(1H, d, J=16.2 Hz)
6-1-6	3-OEt	Me	1.34(3H,t,J=6.9Hz),1.43(3H,t,J=6.6Hz),2.90-
0-1-0	0 020		3.30(6H,m),4.12(2H,q,J=6.9Hz),
		1	4.27(2H,q,J=7.2Hz),6.43(1H,d,J=15.9Hz)
			7.04(1H,d,J=1.5Hz),7.12(1H,dd,J=7.8Hz,1.8
		1	Hz),7.48(1H,d,J=7.8Hz)
			7.64(1H, d, J=15.9 Hz)
6-1-7	3-Br	Me	2.95-3.23(6H,m),3.81(3H,s),
" .		İ	6.45(1H,d,J=15.9Hz),7.45(1H,dd,J=8.1Hz,2.
			1Hz),7.60(1H,d,J=16.2Hz),
			7.6(1H,d,J=8.1Hz), 7.81(1H,J=2.1Hz)
6-1-8	3,5-diBr	Me	2.80-3.20(6H,m),3.74(3H,s),
			6.90(1H,d,J=15.9Hz),7.60(1H,d,J=15.9Hz),
			8.21(2H,s)
6-1-9	3Cl,5OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.90(3H,s),
	ĺ		6.45(1H,d,J=16.2Hz),6.96(1H,d,J=1.5Hz),7.
			31(1H,d,J=1.5Hz), 7.60(1H, d, J=16.2Hz)
6-1-10	3-OMe, 5-	Me	2.85-3.35(6H,m),3.82(3H,s),
	OMe		3.89(6H,s),6.46(1H,d,J=15.9Hz)
			6.76(2H,s),7.66(1H, d, J=15.9Hz)
6-1-11	2-Cl	Me	2.90-3.20(6H,m),3.82(3H,s),
ţ			6.44(1H,d,J=15.9Hz),7.36-7.60(2H,m),
!		<u> </u>	7.60(1H,d,J=8.1Hz), 8.06(1H,J=16.2 Hz)
6-1-12	3-Br, 5-OEt	Me	1.42(3H,t,J=7.2Hz),2.85-3.35(6H,m),
			3.01(3H,s),4.10(2H,q,J=7.2Hz),
			6.43(1H,d,J=15.9Hz),6.97(1H,brs),
			7.46(1H,brs), 7.57 (1H, d, J=15.9 Hz)
6-1-13	2-F	Me	2.95-3.15(6H,m),3.82(3H,s),
			6.55(1H,d,J=16.5Hz),7.26-7.33(2H,m),
			7.52(1H,d,J=7.8Hz), 7.79(1H,J=16.2 Hz)
6-1-14	2-Me	Me	2.43(3H,s),3.04(3H,br),3.09(3H,br), 3.81(3H,
			s),6.37(1H,d,J=15.9Hz),7.33-7.35(2H,m),
			7.54(1H,d,J=8.7Hz),7.94(1Hm,d,J=15.9Hz)

[0176]

【表72】

6-1-15	H	Me	3.06(6H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz), 7.51(4H,brs),7.68(1H,d,J=15.9Hz)
6-1-16	2-Me, 3-OMe	Me	3.02(3H,Br),3.12(3H,Br),3.82(3H,s),3.88(3H,s),6.37(1H,d,J=15.9Hz),7.07(1H,s),7.32(1H,s),7.92(1H,d,J=15.9Hz)
6-1-17	3-Cl	Me	3.05(3H,br),3.13(3H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz),7.40(1H,dd,J=1.8Hz,8.1Hz),7.5 8-7.63(3H,m)

[0177]

参考例 14(5-ビドロキシインドール-1-イル)酢酸メチルエステル【化 50】

第1工程

(5-ベンジルオキシインドール-1-イル) 酢酸メチルエステル

 1 H-NMR (CDC1₃) δ : 3.74(3H,s), 4.82(2H,s), 5.10(2H,s), 6.47(1H,dd,J=0.6,3.3Hz), 6.94-7.50 (10H,m).

第2工程

(5-ヒドロキシインドール-1-イル) 酢酸メチルエステル

(5 ーベンジルオキシインドールー 1 ーイル) 酢酸メチルエステル 4 0 0 m g のテトラヒドロフラン 5 m 1 ーメタノール 5 m 1 溶液に 1 0 %パラジウム炭素 1 2 0 m g を加え水素雰囲気下室温で 3 時間撹拌した。反応液を濾過し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト(酢酸エチル:ヘキサン(2: 3) で溶出)精製し、標記化合物を 2 5 6 m g 得た。収率 9 2 %。

 1 H-NMR (CDC1₃) δ : 3.74(3H,s), 4.49(1H,s), 4.82(2H,s), 6.44(1H,d,J=3.0Hz), 6.79(1H,dd,J=2.7,9.0Hz), 7.04(1H,d,J=2.7Hz), 7.06(1H,d,J=3.0Hz), 7.10(1H,d,J=9.0Hz)

[0178]

参考例 1 5

(5-ジメチルカルバモイルスルファニルインドール-1-イル) 酢酸メチルエステル 【化51】

$$\begin{array}{c} \text{Me}_2\text{NCOCI} \\ \text{Et}_3\text{N, DMAP} \\ \text{CO}_2\text{Me} \end{array}$$

(5-ジメチルチオカルバモイルオキシインドール-1-イル) 酢酸メチルエステル

(5ーヒドロキシインドールー1ーイル) 酢酸メチルエステル724mg、N, Nージメチルチオカルバモイルクロリド523mg、トリエチルアミン0.59m1、N, Nージメチルアミノピリジン43mg、ジオキサン7m1の混合物を3時間30分間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノールで洗浄し、標記化合物を褐色結晶として443mg得た。収率43%

 1 H-NMR (CDC1₃) δ : 3.37(3H, s), 3.48(3H, s), 3.75(3H, s), 4.84(2H, s), 6.55(1H, d, J=3.3Hz), 6.95(1H, dd, J=2.4, 9.0Hz), 7.12(1H, d, J=3.3Hz), 7.23(1H, d, J=9.0Hz), 7.29(1 H, d, J=2.4Hz).

第2工程

(5-ジメチルカルバモイルスルファニルインドール-1-イル) 酢酸メチルエステル

 1 H-NMR (CDCl₃) δ : 3.07(6H,s), 3.73(3H,s), 4.85(2H,s), 6.55(1H,d,J=3.3Hz), 7.1 0(1H,d,J=3.3Hz), 7.08-7.35 (2H,m), 7.78(1H,d,J=1.5Hz).

[0179]

参考例16

2-(4-i) ジェーン 2-(4-i) ジェーン 2-(4-i) ジェーン 2-(4-i)

【化52】

第1工程

2- (4-ニトロフェニル) チオフェン-3-カルボン酸メチルエステル

4-ブロモニトロベンゼン3. 49g、チオフェン-3-カルボン酸メチルエステル3.

44g、テトラキストリフェニルホスフィンパラジウム 1.0、酢酸カリウム 2.54g、トルエン 35m1 の混合物を 60 時間加熱還流した。反応液に水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:6)で溶出)標記化合物を 2.78g 得た。収率 61%。

 $^{1}\text{H-NMR}$ (CDC13) δ : 3.77(3H,s), 7.37(1H,d,J=5.4Hz), 7.56(1H,d,J=5.4Hz), 7.67(2H,d,J=9.0Hz), 8.26(2H,d,J=9.0Hz).

第2工程

2- (4-アミノフェニル) チオフェン-3-カルボン酸メチルエステル

鉄318mg、2規定塩酸95ml、2-(4-ニトロフェニル)チオフェンー3-カルボン酸メチルエステル250mg、エタノール4.8ml-水1.2mlの混合物を15分間加熱還流した。反応液を冷却後濾過し減圧下濃縮した。得られた残渣をシリカゲルク

ロマト後(酢酸エチル:ヘキサン(1:2)で溶出)標記化合物を213mg得た。収率96%。

 1 H-NMR (CDC1₃) δ : 3.75(3H,s), 4.23(2H,brs), 6.73(2H,d,J=8.7Hz), 7.15(1H,d,J=5.4Hz), 7.33(2H,d,J=8.7Hz), 7.46(1H,d,J=5.4Hz).

第3工程

2- (4-ヒドロキシフェニル)チオフェン-3-カルボン酸メチルエステル

 $2-(4-r \le J \supset x = n)$ チオフェンー 3-nルボン酸メチルエステル 790 m g の水 90 m 1- 濃硫酸 5.3 m 1 懸濁液を-4 $\mathbb C$ に冷却し、亜硝酸ナトリウム 237 m g の水溶液 2.5 m 1 を 5 分間で滴下した。-4 $\mathbb C$ で 40 分間撹拌後、硝酸銅(II) 3.77 g の水溶液 15 m 1、酸化銅(I) 822 m g を加え同温度で 20 分、室温で 45 分間撹拌した。反応液に水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:3)で溶出)標記化合物を 363 m g 得た。収率 46%。 1 H-NMR(CDC13) $\delta:3.76(3H,s)$,4.49(1H,brs),6.84(2H,d,J=8.4Hz),7.19(1H,d,J=5.7Hz),7.39(2H,d,J=8.4Hz),7.48(1H,d,J=5.7Hz).

第4工程

2-(4-i) (4-i) メチルチオカルバモイルオキシフェニル)チオフェン-3-i カルボン酸メチルエステル

2-(4-ヒドロキシフェニル)チオフェン-3-カルボン酸メチルエステル530mg、N,N-ジメチルチオカルバモイルクロリド336mg、トリエチルアミン0.38ml、N,N-ジメチルアミノピリジン28mg、ジオキサン6mlの混合物を5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノールで洗浄し、標記化合物を褐色結晶として632mg得た。収率87%。

 $^{1}\text{H-NMR}$ (CDCl₃) δ : 3.36(3H,s), 3.48(3H,s), 3.74(3H,s), 7.11(2H,d,J=8.7Hz), 7.24 (1H,d,J=5.4Hz), 7.50(1H,d,J=5.4Hz), 7.51(2H,d,J=8.7Hz).

第5工程

2- (4-ジメチルカルバモイルスルファニルフェニル)チオフェン-3-カルボン酸メ チルエステル

2-(4-i)メチルチオカルバモイルオキシフェニル)チオフェン-3-iカルボン酸メチルエステル 660mg とジフェニルエーテル 6m1 の混合物を 270 で 1 時間 30 分間 攪拌した。反応液を室温に冷却後、シリカゲルクロマト(酢酸エチル:ヘキサン(1:4)で溶出)に付し標記化合物を 601mg 得た。収率 91%

 1 H-NMR (CDC1₃) δ : 3.06(6H, brs), 3.74(3H, s), 7.25-7.55(6H, m).

【実施例1】

[0180]

 $(\alpha-1 法)$

【化27】

 $\{2-メチル-4-[5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-(1) - イルメトキシ]-フェノキシ - 作酸メチルエステル(<math>R^1=TFMP$ 、 $R^2=R^3=R^4=H$ 、R=2-Me、 $R^{17}=Me$ 、 $\alpha-1-1$)

[5-(4-)リフルオロメチルフェニル) -イソキサゾール-3-イル] メタノール (2-1-1) 2 4 3 m g 、 + リフェニルホスフィン 2 6 6 m g 、 4 - (クロロスルホニルーフェノキシ) - 酢酸メチルエステル 1 7 6 m g とテトラヒドロフラン 8 m 1 に氷冷下

1, 1'-(アゾジカルボニル)ジピペリジン 252 m g を加え、ついで室温で 20 時間 攪拌した。反応液にクロロホルムと水を加え有機層を分離。無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を無色結晶として 270 m g(収率 64%)得た。収率 64

これを酢酸エチルーへキサンの混合溶媒で再結晶すると融点107-109℃の結晶が 得られた。

【実施例2】

[0181]

 $(\alpha - 2 法)$

【化28】

 $\{2-$ メチルー4-[5-(4-トリフルオロメチルフェニル) ーイソキサゾールー 3 ーイルメチルスルファニル] ーフェノキシ $\}$ 一酢酸エチルエステル $\{R^1=TFMP,R^2=R^3=R^4=H,R=2-Me,R^9=R^{10}=H,R^{17}=Et,\alpha-2-1\}$

3-2000メチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール(3ー1ー2-1)277mg、(4ーメルカプトー2ーメチルーフェノキシ)ー酢酸エチルエステル255mgをアセトニトリル5mlに溶解し、炭酸セシウム740mgを加え、80℃で2時間加熱攪拌した。アセトニトリルを留去後、水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:6)で溶出し、無色の結晶を得た。これをエーテルー石油エーテルから再結晶し、標記化合物を無色の結晶として358mg得た。融点63-64℃ 収率75%

【実施例3】

[0182]

 $(\alpha - 3 法)$

【化29】

Hal = Br, 1

 $[2-メチルー4-[4-(4-トリフルオロメチルベンジル)-5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル] フェノキシ] 酢酸エチルエステル(Hal=Br、<math>R^1$ =TFMP、 R^2 =4ートリフルオロメチルベンジル、 α -3-8)

亜鉛111mgをテトラヒドロフラン2m1に懸濁し、1, 2-ジブロモエタン16mgを加えて5分間、クロロトリメチルシラン9mgを加えて5分間攪拌した。反応液にp-トリフルオロメチルベンジルブロミド297mgを加え、30分間還流した。室温に冷却後、[4-[4-ブロモ-5-(4-トリフルオロメチルフェニル)イソキサゾールー

3-4ルメチルスルファニル] -2-メチルフェノキシ] 酢酸エチルエステル ($\alpha-2-22$) 300 mg、酢酸パラジウム 6 mg、トリシクロヘキシルホスフィン 16 mg を加え 45 分間還流した。反応液に水を加え、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン (1:9) で溶出し、標記化合物を無色結晶として 239 mg 得た。収率 68%

【実施例4】

[0183]

(a - 4 法)

【化30】

 $\{4-[4-ブチルアミノメチル-5-(4-トリフルオロメチルフェニル) ーイソキサゾール-3-イルメチルスルファニル] <math>-2-$ メチルーフェノキシ $\}$ 一酢酸 tert rt でチルエステル $(R^1=TFMP、<math>R^2=CH_2NHnBu$ 、 $R^{17}=tBu$ 、 $\alpha-4-1$)

化合物($\alpha-2-16$) 238 mg、n-7 チルアミン43 mgをメタノール6 m1に溶解し、室温下26時間攪拌した後、水素化ホウ素ナトリウム36 mgを加え1時間攪拌した。反応液に水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をアルミナクロマトに付し、酢酸エチル:ヘキサン(1:6)で溶出し、標記化合物を無色の油状物として225 mg得た。収率85%

[0184]

同様に $\{2-$ メチルー4-[4-モルホリンー4-イルメチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメチルスルファニル]-フェノキシ-で酸エチルエステル($\alpha-4-2$)を得た。

【実施例5】

[0185]

 $(\alpha - 5 法)$

【化31】

 $\{4-[4-メトキシメチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イルメトキシ]-2-メチルーフェノキシ<math>\}$ 一酢酸 $(\alpha-5-1)$

 $\{4-[4-ヒドロキシメチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメトキシ]-2-メチルーフェノキシ<math>\}$ -酢酸エチルエステル $\{\alpha-2-11\}$ 210mgのテトラヒドロフラン3ml溶液に水素化ナトリウム19mgを加え室温で30分間攪拌した。反応液にヨウ化メチル90mgのテトラヒドロフラン0.5ml溶液を加え、更に16時間攪拌した。その後、氷冷水下、1M水酸化ナトリウム溶液を

1.5 m l 加え、室温で5時間攪拌した。反応溶液に氷、希塩酸を加え中和し酢酸エチルで抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(2:1)で溶出し、標記化合物を無色結晶として175 m g 得た。収率86%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

【実施例6】

[0186]

(a-6法)

【化32】

第1工程 アルキル化

(3-(4-ベンジルオキシー3-メチルーフェニル)-2-[4-メチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー<math>3-イルメチル]-3-オキソープロピオン酸エチルエステル $(\alpha-6-1-1)$

水冷下テトラヒドロフラン $7 \, \text{ml}$ に水素化ナトリウム $4 \, 8 \, \text{mg}$ を加え、次いで $3-(4-\sqrt{2})$ ルオキシー $3-\sqrt{2}$ ルーフェニル) $-3-\sqrt{2}$ キソープロピオン酸エチルエステル $3 \, 7 \, 5 \, \text{mg}$ のテトラヒドロフラン溶液 $6 \, \text{ml}$ を $1 \, 5 \, \text{分間}$ で滴下した。室温に戻し $3-\sqrt{2}$ ロメチル $-3-\sqrt{2}$ チル $-5-(4-\sqrt{2})$ と $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ を加え、 $1 \, 7 \, \text{時間加熱還流した}$ の $1 \, 8 \, 7 \, \text{mg}$ の

第2工程 脱炭酸

1-(4-ビドロキシ-3-メチル-フェニル)-3-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]-プロパン-1-オン $(\alpha-6-2-1)$

上記で得られたエステル($\alpha-6-1-1$) 5 3 0 mg に酢酸 4 m l 、濃塩酸 1. 2 m l を加え 6 時間加熱還流した。冷却後氷冷水に注ぎアンモニア水で中和、酢酸エチルを加え抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を無色結晶として 2 1 0 mg 得た。収率 5 8 %。これを酢酸エチルーヘキサンの混合溶媒で再結晶し、結晶を得た。

 ${}^{1}\text{HNMR}(\text{CDC1}_{3}): 2.26(3\text{H}, \text{s}), 2.27(3\text{H}, \text{s}), 3.07(2\text{H}, \text{t}, \text{J}=7.8\text{Hz}), 3.48(2\text{H}, \text{t}, \text{J}=7.8\text{Hz}), 6.81(1\text{H}, \text{d}, \text{J}=8.4\text{Hz}), 7.74-7.85(6\text{H}, \text{m}).$

第3工程 アルキル化

(2-メチルー4- [3- [4-メチルー5- (4-トリフルオロメチルフェニル) ーイソキサゾールー3-イル] ープロピオニル ーフェノキシ)ー酢酸メチルエステル($\alpha-$

6 - 3 - 1

上記で得られたフェノール化合物($\alpha-6-2-1$) 130 mgとジメチルホルムアミド3 m 1 の溶液にブロモ酢酸メチルエステル55 mg、炭酸カリウム50 mg、ヨウ化カリウム9 mgを加えた後、室温で7時間攪拌した。その後氷冷水に注ぎクロロホルムで抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を結晶として140 mg得た。収率93%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

第4工程 加水分解

(2-メチルー4- $\{3-$ [4-メチルー5- (4-トリフルオロメチルフェニル)-イソキサゾールー3-イル]-プロピオニル $\}-$ フェノキシ)-酢酸 $(\alpha-6-4-1)$

上記エステル($\alpha-6-3-1$) 130 m g をテトラヒドロフラン 4.5 m 1 に溶解させた後、1 M 水酸化リチウム水溶液 0.57 m 1 を加え室温で 1 時間攪拌した。次いで氷冷水下、1 M 塩酸にて中和した。減圧下溶媒を濃縮し、残留液を水で希釈し、氷冷下析出した結晶を濾取して標記化合物を 110 m g 得た。収率 87%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

【実施例7】

[0187]

 $(\alpha - 7 法)$

【化33】

第1工程

[2-x+n-4-[4-x+n-5-(4-h)] [2-x+n-4-[4-x+n-5-(4-h)] [2-x+n-4-[4-x+n-5-(4-h)] [2-x+n-4-[4-x+n-5-(4-h)] [2-x+n-4-[4-x+n-5-(4-h)] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1] [2-x+n-4-1]

3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾール(3-1-2-3) 2 2 5 mg、(4-メルカプトー2-メチルフェニル)アセトニトリル 1 4 0 mg、炭酸セシウム 5 8 5 mg、アセトニトリル 5 mlの混合物を室温で 2 0 時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄

、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、トルエン:酢酸エチル(95:5)で溶出し、標記化合物を黄色結晶として300mg得た。収率92%

 1 H-NMR(CDCl₃): 2.29(3H, s), 2.31(3H, s), 3.63(2H, s), 4.14(2H, s), 7.26-7.28(3H, m), 7.74(2H, d, J=8.4 Hz), 7.82(2H, d, J=8.4 Hz)

[0188]

同様の方法で、 $[2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ] フェニル] アセトニトリル <math>(\alpha-7-1-2$ 、 $X^1=O)$ を得た。収率 8.8%、R.f=O. 2.5 (メルク社シリカゲルプレート、酢酸エチル:ヘキサン=1:3で展開)。

[0189]

第2工程

N-Eドロキシ-2-[2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾール<math>-3-イルメチルスルファニル] フェニル] アセトアミジン ($\alpha-7-2-1$)

[2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサ ゾールー3ーイルメチルスルファニル] フェニル] アセトニトリル (α -7-1-1) 3 0 0 m g、ヒドロキシルアミン塩酸塩259 m g、28%ナトリウムメトキシド 0.7 6 m 1、メタノール10 m 1 の混合物を20時間還流した。減圧下溶媒を留去した後、残 渣に水を加えた。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。標記化合物を無色結晶として299 m g 得た。収率92%

[0190]

同様の方法で、N-ヒドロキシ-2-[2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾール-3-イルメトキシ] フェニル] アセトアミジン ($\alpha-7-2-2$ 、 $X^1=0$) を得た。収率 5.7%

[0191]

第3工程

3-[2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー<math>3-イルメチルスルファニル] ベンジル] -4H-[1, 2, 4] オキサジアゾールー5-オン $(\alpha-7-3-1)$

Nーヒドロキシー2ー [2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル] フェニル] アセトアミジン $(\alpha-7-2-1)$ 299 mg、1, 1'ーカルボニルジイミダゾール123 mg、1, 8ージアザビシクロ [5, 4, 0] ウンデセー7ーエン419 mg、テトラヒドロフラン10 m1の混合物を室温で1時間攪拌した。反応液に水を加え、1M)塩酸で中和した。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、トルエン:酢酸エチル(95:5)で溶出した。得られた粗物をアセトンより再結晶し標記化合物を無色結晶として133 mg得た。収率42%

【実施例8】

[0192]

 $(\alpha - 7 法)$

Nーヒドロキシー2ー [2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメタノール] フェニル] アセトアミジン $(\alpha-7-2-2)$ 100mg、メチルブロモアセテート55mg、炭酸セシウム155mg、ジメチルホルムアミド3m1の混合物を室温で20時間、100℃で1時間攪拌した。反応液に水を加えた後、エーテルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾

燥した。減圧下溶媒を留去した後、残渣をシリカゲルクロマトに付し、クロロホルム:アセトニトリル (95:5) で溶出し標記化合物を黄色結晶として40mg得た。収率37%

【実施例9】

[0193]

(a - 8 法)

【化34】

 $3-\{2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ] フェニル アクリル酸 メチルエステル <math>(R^1=TFMP, R^2=Me, R^3=R^4=H, R=2-Me, R^{17}=Me, \alpha-8-10)$

3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾール(3-1-2-3)223 mg および 3-(4-ヒドロキシー2-メチルフェニル)アクリル酸 メチルエステル200 mgのアセトニトリル8 m 1 溶液に炭酸セシウム 3-16 mg を加え、室温で24時間、60で3時間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:4)で溶出)、酢酸エチル、ヘキサンの混合溶媒で再結晶し、標記化合物を無色結晶として268 mg 得た。収率 74%

【実施例10】

[0194]

(α-9法)

【化35】

$$R^3$$
 R^4 LG R^3 R^4 R^4 R^2 R^3 R^4 R^4 R^2 R^3 R^4

 $3-\{3-x\}$ トキシー4ー [4-xチルー 5-(4-) リフルオロメチルフェニル) イソキサゾールー 3- イルメチルスルファニル〕 フェニル $\{ P0$ アクリル酸メチルエステル($\{ R1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ R $\{ P1\} \}$ Ne、 $\{ P1\} \}$ R $\{ P1\} \}$ Ne、 $\{ P1\} \}$ Ne $\{$

3-(4-i)メチルカルバモイルスルファニルー3-iメトキシフェニル)アクリル酸メチルエステル(6-1-2)224mg、1 mo1/Lナトリウムメトキシドメタノール溶液 1.3 mLの混合物を 2 時間還流後、氷冷下に 1 M塩酸にて中和した。酢酸エチルで抽出後、有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残査をアセトニトリル4mLに溶解し、3-2-1-2-3)209mg、炭酸セシウム296mgを加え、室温で2時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、クロロホルムで溶出し、標記化合物を無色結晶として227mg得た。収率65%

【実施例11】

[0195]

 $(\alpha-10法)$

第1工程 アルキル化

3-(4-ブロモ-2-フルオロフェノキシメチル)-4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾール($R^1=$ TFMP, $R^2=$ Me, $R^3=$ R $^4=$ H,R=2-F,X=0、 $\alpha-10-1-1)$

3-クロロメチルー4-メチルー5-(トリフルオロメチルフェニル)イソキサゾール(3-1-2-3)1. 5 g、4-ブロモー2-フルオロフェノール1. 2 5 g、炭酸セシウム 2. 1 3 g、アセトニトリル 2 0 m 1 の混合物を 7 5 度で 1 1 時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をn-ヘキサンで洗浄し、標記化合物を結晶として 1 . 8 2 g 得た。収率 7 8 %

[0196]

同様に $(\alpha-10-1-2)$ ~ $(\alpha-10-1-5)$ を合成した。

[0197]

【表73】

No.	R	X	NMR
α-10-1-1	2-F	. 0	2.35(3H,s),5.25(2H,s),7.00-7.30(3H,m), 7.76(2H,d,J=8.1Hz), 7.84(2H,d,J=8.1Hz)
α-10-1-2	Н	0	2.28(3H,s),4.12(2H,s),7.25-7.45(4H,m), 7.74(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-10-1-3	3,5-diF	0	2.40(3H,s),5.25(2H,s),7.06-7.16(2H,m), 7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-1-4	3-CF ₃	S	2.29(3H,s),4.17(2H,s),7.51(2H,d,J=8.4Hz), 7.62(1H,dd,J=8.4Hz,2.1Hz),7.74(2H,d,J=8.4Hz), 7.77(1H,d,J=2.1Hz),7.81(2H,d,J=8.4Hz)
α-10-1-5	2-CF ₃	S	2.29(3H,s),4.16(2H,s),7.43(1H,dd,J=8.4Hz,2.4Hz), 7.62(1H,d,J=8.4Hz),7.65(1H,d,J=2.4Hz), 7.74(2H,d,J=8.7Hz),7.81(2H,d,J=8.7Hz)

[0198]

第2工程 Heck 反応

 $3-\{3-7\nu$ オロー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3-41 (R^1 =TFMP, R^2 =Me, R^3 = R^4 =H, R=3-F, X=0, R^{17} = Me、 $\alpha-1$ 0-2-1)

3-(4-) ロモー 2- フルオロフェノキシメチル)-4- メチルー5-(4-) リフルオロメチルフェニル)イソキサゾール($\alpha-1$ 0-1-1)0.35g、アクリル酸メチル1.06g、酢酸パラジウム(II)37mg、トリエチルアミン0.16g、トリフェニルホスフィン86mg、ジメチルホルムアミド2m1の混合物をアルゴン気流中100度で11時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(n- ヘキサン/酢酸エチル)により精製し、標記化合物を結晶として0.33g得た。収率92%

[0199]

(α-11法) 【化53】

$$R^{5}$$
 R^{20} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{5} R^{2} R^{3} R^{4} R^{5} R^{7} R^{8} R^{7} R^{8}

 $\{5-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾールー <math>3-4$ ルメトキシ] インドールー1-4ル 酢酸メチルエステル(R^1 =TFMP, R^2 =Me, R^3 = R^4 = R^5 = R^7 = R^8 = R^2 0= R^2 1=R1, a-11-1)

(5ーヒドロキシインドールー1ーイル) 酢酸メチルエステル200mgのアセトニトリル5ml溶液に3ークロロメチルー4ーメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール224mgおよび炭酸セシウム318mgを加え、室温で15時間、60℃で1時間30分間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:4)で溶出)標記化合物を243mg得た。収率67%。

【0200】 (α-12法) 【化54】

 $2-\{4-[4-x+v-5-(4-y-v+v-3-4-y-2)]$ インキサゾールー 3-4+y-2 (R¹ = TFMP, R^2 = Me, R^3 = R^6 = R^6 = R^7 = R^8 = H, R^3 = R^4 = R^5 = R^6 = R^7 = R^8 = H, R^4 = R^5 = R^6 = R^7 = R^8 = H, R^8 = H, R^8 = R^8 = H, R^8 = R^8 = H, R^8 = R^8 = H, R^8 = R^8

2-(4-i)メチルカルバモイルスルファニルフェニル)チオフェン-3-iカルボン酸メチルエステル321mgのメタノール7m1溶液に1規定ナトリウムメトキシド溶液(メタノール溶液)1.5m1を加え3時間加熱還流した。反応液を冷却後2規定塩酸と氷水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣249mgのアセトニトリル5m1溶液に3-2mg00 のアセトニトリルm12 のロメチルm14 のメチルm15 の「4 の のアセトニトリンキサゾールm12 の回メチルm14 の のでは、 を温でm15 のででででででででです。 ないのでは、

【実施例12】

[0201]

(β-1法)

【化37】

 $\{2-$ メチルー4-[5-(4-トリフルオロメチルフェニル) ーイソキサゾールー3-イルメチルスルファニル] ーフェノキシ $\}$ 一酢酸($R^1=TFMP$ 、 $R^2=R^3=R^4=R^9=R^{10}=H$ 、R=2-Me、 $X^1=S$ 、 $\beta-1-2$)

 $\{2-x+n-4-[5-(4-h)]$ フルオロメチルフェニル)ーイソキサゾールー3ーイルメチルスルファニル]ーフェノキシ $\}$ ー酢酸エチルエステル($\alpha-2-1$)226 mgをテトラヒドロフラン5mlに溶解し、1M水酸化リチウム1mlを加え、室温下17時間攪拌した。その後氷冷下反応液に1M塩酸1mlを加え中和した後、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し無色の固体を得た。これをメタノールー水より再結晶し標記化合物を206mg得た。収率97%

【実施例13】

[0202]

(β-2法)

【化38】

 $3-\{3-7$ ルオロー4-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ] フェニル $\}$ アクリル酸(10)($R^1=$ TFMP, $R^2=$ Me, $R^3=$ R $^4=$ H,R=3-F, $X^1=0$, $R^{17}=$ Me、 $\beta-2-15$)

 $3-\{3-7\nu$ オロー $4-[4-\sqrt{5}\nu-5-(4-\gamma)7\nu$ オロメチルフェニル) イソキサゾールー $3-4\nu$ トキシ] フェニル $\{7-1\}\nu$ アクリル酸メチルエステル $\{\alpha-10-2-1\}\nu$ 0. $\{7-1\}\nu$ 7 g 、 $\{4-1\}\nu$ 7 g 、 $\{4-1\}\nu$ 7 g で $\{4-1\}\nu$ 7 g で $\{4-1\}\nu$ 7 g を 得た。 板出した結晶を水洗した後アセトンより再結晶して標記化合物 0. 7 g を 得た。 収率 9 1 %

【0203】 (β-3法)

【化55】

$$R^{20}$$
 R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{20} R^{21} R^{21} R^{21} R^{20} R^{21} R

 $\{5-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ]インドールー1ーイル}酢酸メチルエステル242mgのテトラヒドロフラン2.5ml-メタノール2.5ml溶液に2規定水酸化ナトリウム溶液0.41mlを加え室温で2時間撹拌した。反応液に2規定塩酸0.5mlと水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をアセトンーへキサンの混合溶媒で再結晶し、標記化合物を203mg得た。収率87%。$

【0204】 (β-4法) 【化56】

 $\{5-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾール<math>-3-4$ ルメチルスルファニル] インドール-1-4ル} 酢酸(\mathbb{R}^1 =TFMP, \mathbb{R}^2 =Me, \mathbb{R}^3 = \mathbb{R}^4 = \mathbb{R}^5 = \mathbb{R}^7 = \mathbb{R}^8 = \mathbb{R}^2 0= \mathbb{R}^2 1= \mathbb{R}^3 1= \mathbb{R}^4 5= \mathbb{R}^5 5= \mathbb{R}^7 5= \mathbb{R}^8 5= \mathbb{R}^2 1= \mathbb{R}^3 5

(5-ジメチルカルバモイルスルファニルインドールー1ーイル) 酢酸メチルエステル220mgのメタノール5m1溶液に2規定水酸化ナトリウム溶液3m1を加え8時間加熱還流した。反応液に2規定塩酸と水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣177mgのアセトニトリル5m1溶液に3ークロロメチルー4ーメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール207mgおよび炭酸セシウム290mgを加え、60℃で1時間30分間撹拌した。反応液に2規定塩酸と水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(クロロホルム:メタノール(20:1)で溶出)アセトンーへキサンの混合溶媒で再結晶し、標記化合物を50mg得た。収率15%。

【0205】 (β-5法) 【化57】

 $2-\{4-[4-x+v-5-(4-y)]$ フェニル オフェニル イソキサゾールー3 ーイルメチルスルファニル フェニル チオフェンー3ーカルボン酸メチルエステル347 mgのテトラヒドロフラン7 mlーメタノール3.5 ml溶液に2規定水酸化ナトリウム溶液0.43 mlを加え室温で2時間撹拌した。反応液に2規定水酸化ナトリウム溶液0.1 mlを追加し60℃で1時間30分間攪拌した。冷却後、反応液に2規定塩酸1.5 mlと水20 mlを加え析出した結晶を濾取、水洗後乾燥した。得られた粗結晶をアセトンーへキサンの混合溶媒で再結晶し、標記化合物を289 mg得た。収率86%。

[0206]

以下、同様にして以下の化合物を合成した。

[0207]

【表74】

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-1-2	α-1	F ₃ C	Ме	0	Н,Н	Ме	oil	2.29(3H,s),2.32(3H,s),3.80(3H,s),4.61(2H,s)5.13 (2H,s),6.67(1H,d,J=9.0Hz),6.79(1H,dd,J=9.0,2.7 Hz),6.86(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.8 4(2H,J=8.1Hz)
α-1-3	α-1	F ₃ C	Ме	0	Ме,Ме	Ме	oil	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56 (2H,s),6.49–6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1 Hz)

[0208]

【表75】

No	合成 法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-2	<i>α</i> −2	F ₃ C	Ме	S	Н,Н	Et	63-64	1.29(3H,t,J=7.2Hz),2.23(3H,s),2.24(3H,s),4.03(2 H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d,J= 8.4Hz),7.18(1H,dd,J=8.4,2.1Hz),7.23(1H,J=2.1H z),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-2-4	α−2		Ме	S	Н,Н	Et	58-59	1.30(3H,t,J=7.2Hz),1.91(3H,s)2.25(3H,s),3.34(4 H,t,J=4.8Hz),3.79(4H,t,J=4.8Hz),3.87(2H,s),4.26 (2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.4Hz),7. 71-7.22(2H,m)
α-2-5	α−2	0	Ме	0	н,н	Ме	112- 113	1.99(3H,s)2.27(3H,s),3.37(4H,t,J=4.8Hz),3.78-3.81(4H,m),4.60(2H,s),4.93(2H,s),6.65(1H,d,J=8.7Hz),6.76(1H,dd,J=8.7,3.0Hz),6.83(1H,dJ=3.0Hz)
α-2-6	α−2	cı	Ме	S	H,H	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),2.24(3H,s),4.01(2 H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d,J= 8.7Hz),7.18(1H,dd,J=8.4,2.4Hz),7.22(1H,J=2.4H z),7.46(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
α-2-7	α-2	a		S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.22(3H,s),3.93(3H,s),4.25(2 H,q,J=7.2Hz),4.61(2H,s)6.58(1H,d,J=9.0Hz),7.12 -7.14(2H,m),7.26-7.32(5H,m),7.42-7.45(4H,m)
α-2-8	α-2	CI	F ₃ C	S	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.93(3H,s),4.25(2 H,q,J=7.2Hz),4.61(2H,s)6.57(1H,d,J=8.1Hz),7.07 -7.12(2H,m),7.29- 7.46(6H,m),7.70(2H,d,J=8.1Hz)
α-2-9	α-2	F ₃ C	Me	S	H,Et	Et	oil	1.07(3H,t,J=7.5Hz),1.28(3H,t,J=7.2Hz),1.98-2.17(2H,m), 2.21(3H,s),2.26(3H,s),4.03(1H,dd, J=8.4,7.5Hz),4.24(2H,q,J=7.2Hz),4.60(2H,s),6.57 (1H,d,J=8.1Hz),7.09-7.14(2H,m),7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
α-2-10	α-2	F ₃ C	Me	S	H, 4-F- C6H4	Et	oil	1.28(3H,t,J=7.2Hz),2.09(3H,s),2.20(3H,s),4.22(2 H,q,J=7.2Hz),4.60(2H,s),5.28(1H,s),6.55(1H,d,J= 8.4Hz), 6.95-7.03(2H,m),7.06-7.14(2H,m),7.32- 7.38(2H,m),7.73(2H,dJ=8.4Hz),7.80(2H,d,J=8.4 Hz)

[0209]

【表76】

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-11	α-2	F ₃ C	но	S	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.23(3H,s),4.11(2H,s),4.24(2H,q,J=7.2Hz),4.61(2H,s),4.66(2H,s),6.60(1H,d, J=8.4Hz),7.15(1H,dd,J=8.4,2.4Hz),7.22(1H,d,J= 2.4Hz),7.77(2H,d,J=8.1Hz),796(2H,d,J=8.1Hz)
α-2-12	α-2	F ₃ C		Ø	н,н	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.82(2H,s),4.10(2H,s),4.25(2H,q,J=6.9Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.11-7.73(7H,m),7.68(2H,d,J=8.1Hz),7.76(2H,d,J=8.1Hz)
α-2-13	α-2	F ₃ C	S.	S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.96(2H,s),4.25(2H,q,J=7.2Hz),4.60(2H,s),6.59(1H,d,J=8.1Hz),7.07-7.28(7H,m),7.70(2H,d,J=9.Hz),8.22(2H,d,J=9.0Hz)
α-2-14	α-2	Ме	I	s	н,н	Et	53-54	1.29(3H,t,J=7.2Hz),2.24(3H,s),2.44(3H,s),3.92(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz),7.17(1H,dd,J=8.4,2.4Hz),7.19(1H,d,J=2.4Hz)
α-2-15	α-2	F ₃ C		s	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.25(3H,s),2.92- 2.99(4H,m),3.79(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz),7.09- 7.26(7H,m),7.70(4H,s)
α-2-16	α-3	F ₃ C	OHC-	s	н,н	tBu	oil	1.47(9H,s),2.24(3H,s),4.28(2H,s),4.51(2H,s),6.6 0(1H,d,J=8.4Hz),7.18- 7.24(2H,m),7.84(2H,d,J=8.7Hz),8.03(2H,d,J=8.7 Hz),10.10(1H,d,J=0.6Hz)

[0210]

【表77】

No	合成法	R1	R2	X1	R3,R4	X ² X ³	mp	NMR(CDCl3 or DMSO-d6)
α-2-17	α-2	F ₃ C	Ме	s	н,н	Me COOEt	oil	1.23(3H,t,J=7.2Hz),1.66(3H,d,J=6. 9Hz),2.22(3H,s),4.02(2H,s),4.20(2 H,q,J=7.7Hz),4.71(1H,q,J=6.9Hz),6 .79(2H,d,J=9.0Hz),7.33(2H,d,J=9.0 Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d, J=8.1Hz)
α-2-18	α-2	F ₃ C	Ме	s	H,H	Et COOEs	oîl	1.06(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.93- 2.02(2H,m),2.22(3H,s),4.03(2H,s),4.16- 4.23(2H,m),4.51(1H,t,J=6.3Hz),6.8 0(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),8.13(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-2-19	α-2	F ₃ C	Me	s	н,н	nPr COOEt	oil	0.97(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.48-1.57(2H,m),1.86-1.96(2H,m),2.22(3H,s),4.02(2H,s),4.19(2H,q,J=7.2Hz),4.54-4.58(1H,m),6.79(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
α-2-2	0 α-2	F ₃ C	M	e	6 H.nP	,O ,COOE1	oil	0.90(3H,t,J=7.2Hz),1.27(3H,t,J=7.2Hz),1.55- 1.62(2H,m),2.22(3H,s),2.59(2H,t,J=7.5Hz),4.02(2H,s),4.24(2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.1Hz),7.17- 7.22(2H,m),7.74(2H,d,J=8.3Hz),7.8 1(2H,d,J=8.3Hz)
α-2-2	21 α-2	a	В	r	s H,H	_0COOEt	55-57	2(2H,s),4.25(2H,q,J=7.2Hz),4.61(2 H,s),6.61(1H,d,J=8.4Hz),7.19- 7.26(2H,m),7.48(2H,d,J=9.0Hz),7.9 8(2H,d,J=9.0Hz)
α-2-	22 α-2	F ₃ C	E	3r	S H,F	_0COOE		1.30(3H,t,J=7,2Hz),2.25(3H,s),4.0 4(2H,s),4.25(2H,q,J=7,2Hz),4.61(2 H,s),6.62(1H,d,J=8.4Hz),7.19– 7.23(2H,m),7.77(2H,d,J=9.0Hz),8.1 6(2H,d,J=9.0Hz)

[0211]

【表78】

			т				Γ	NMR(CDGI3 or DMSO-d6)
No	合成法	R1	R2	X1	R3,R4	R17		1.30(3H,t,J=7.2Hz),2.21(3H,s),2.40(3H,
α-3-1	α-3	Ме	F ₃ C	s	н,н	Et	oil	s),3.98(2H,s),4.26(2H,q,J=7.2Hz),4.61(2 H,s),6.56(1H,d,J=8.4Hz),7.06- 7.12(2H,m),7.41(2H,d,J=8.1Hz),7.68(2H ,d,J=8.1Hz)
α-3-2	α-3	Me	F ₃ C	0	н.н	Me	105-107	2.25(3H,s),2.48(3H,s),3.78(3H,s),4.59(2 H,s),5.01(2H,s),6.61- 6.72(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H ,d,J=8.4Hz)
α-3-3	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil	1.28(3H,t,J=7,2Hz),2.21(3H,s),3.94(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.57(1H,d,J=8.4Hz),6.90(1H,d,J=9.0Hz),7.07-7.12(2H,m),7.43(3H,m),7.56(2H,s),7.72(2H,d,J=8.4Hz)
α-3-4	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.95(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.58(1H,d,J=9.0Hz),7.09(2H,m),7.51-7.74(8H,m) 1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,d),3.83(2H
α-3-5	5 α-3	F ₃ C	F ₃ CO	s	н,н	Et	oil	s),4.12(2H,s),4.25(2H,q),4.61(2H,s),6.99 (1H,d,J=8.4Hz),7.09-7.14(6H,m),7.71- 7.72(4H,m)
α-3-	6 α-	F ₃ C	_=	s	H,F	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),4.13(2H,s),4.24(2H,q,J=7.2Hz),4.56(2H,s),6.58(1H,d,J=8.4Hz),7.23(3H,m),7.41-7.42(2H,m),7.52-7.55(2H,m),7.77(2H,d,J=9.0Hz),8.30(2H,d,J=9.0Hz)
α-3-	7 α-	3 F ₃ C	Ph-	S	з н,	i Et		Rf=0.34 (EtOAc:Hexane=1:3 メルク社シリカゲル)
α-3-	-8 α-	3 F ₃ C	F ₃ C-	. ;	s H,	H E	oil	1.29(3H, t, J=7.2 Hz), 2.22(3H, s), 3.83(2H, s), 4.15(2H, s), 4.25(2H, q, J=7.2 Hz), 4.61(2H, s), 6.59(1H, d, J=7.8Hz), 7.09-7.12(2H, m), 7.23(2H, d, J=8.1Hz), 7.55(2H, d, J=8.1Hz), 7.71(4H, s)
α-3	-9 α	-3 F ₃ C	F ₃ CO	+	s H,	нЕ		1.29(3H,t,J=6.9Hz),2.23(3H,s),3.84(2H,s),4.15(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.1Hz),6.99-7.14(5H,m),7.29-7.35(1H,m),7.70-7.71(4H,m)
α-3-	-10 α	-3 F ₃ C	F ₃ C		s H	,H E	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.14(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.09-7.13(2H,m),7.29-7.53(4H,m),7.71(4H,s)

【表79】

		F ₃ C				
No	合成法	R2	X1	X^2 X^3 R^9 R^{10}	mp	NMR(CDCl3 or DMSO-d6)
α-4-1	α-4	nBuNHCH2-	S	OCH2COOtBu		0.93(3h,t,J=7.5Hz),1.33- 1.60(13H,m),2.24(3H,s), 2.69 (2H,t,J=6.9Hz), 3.73(2H,s),4.12(2H,s),4.50(2H,s), 6.59 (1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.1Hz), 7.21(1H, d, J=2.1Hz),7.74(2H,d,J=8.1Hz), 8.04 (2H,d, J=8.1Hz)
α-4-2	α-4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S	OCH2COOEt		1.29(3H,t,J=7.2Hz),2.25(3H,s),2.44(4H,m),3. 54(2H,s),3.68(4H,m), 4.19(2H,q,J=7.2Hz),4.19(2H,s),4.25(2H, q, J=7.2 Hz),4.61(2H,s),6.61 (1H,d,J=8.4Hz), 7.18(1H, dd, J=8.4,2.1Hz),7.22(1H,m), 7.75(2H,d, J=8.4Hz), 7.96(2H,d,J=8.4Hz)
α-5-1	α-5	−CH2OMe	s	осн2соон	105-107	2.24(3H,s), 3.43(3H,s),4.12(2H,s), 4.46(2H,s),4.66 (2H,s), 6.65(1H,d, J=8.5Hz),7.18-7.24(2H,m),7.76(2H, d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
α-6-3-1	α-6	Me	CH2CO	OCH2COOMe	133-134	2.26(3H,s),2.33(3H,s),3.08(2H,t,J=7.5Hz),3. 50(2H,t,J=7.5Hz),6.72(1H,d,J=9.0Hz)),7.72– 7.87(6H,m).
α-6-4-1	α-6	Me	CH2CO	осн2соон	191-194	2.27(3H,s),2.34(3H,s),3.08(2H,t,J=7.2Hz),3. 50(2H,t,J=7.2Hz),4.72(2H,s),6.77(1H,d,J=9. 0Hz),7.73-7.88(6H,m).
α-7-2-1	α-7	Me	s	CH2C(=NH)NHOH		MS m/e 452 (MH+)
α-7-2-2		Me	0	CH2C(=NH)NHOH	152-154	2.32(6H,s),3.42(2H,s),5.17(2H,s),6.8- 6.90(2H,m),7.14(1H,d,J=7.8Hz),7.75(2H,d,J =8.1Hz),7.84(2H,d,J=8.1Hz) MS m/e 420 (MH+)
α-7-3-1	α-7	Me	s	N-0	203- 204.5	2.29(3H,s),2.31 (3H,s), 3.83(2H,s),4.06(2H,s),7.11-7.22(3H,m), 7.76(2H,d,J=8.6Hz),7.82 (2H, d,J=8.6 Hz)
α-7-3-2	α-7	Me	О	The state of the s	190-192	2.33(6H,s),3.80(2H,s),5.18(2H,s),6.86(2H,m),7.15(1H,d,J=8.1Hz),7.77(2H,d,J=8.7Hz),7.8,7(2H,d,J=8.7Hz)
α-7-3-3	α-7	Me	s	N-0	156.5- 158.5	2.18(3H,s),2.28(3H,s),4.01(2H,s),4.97(2H,s), 6,75(1H,d,J=8.4Hz),7.19- 7.21(2H,m),7.74(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz),9.93(1H,br)
α-7-3-4	α-7	Ме	0	N-O	163-165	2.24(3H,s),2.32(3H,s),4.96(2H,s),5.14(2H,s), 6.80- 6.88(3H,m),7.75(2H,d,J=8.6Hz),7.84(2H,d,J =8.6Hz)
α-7-4-1	α-7	Ме	0		166.5- 168.5	2.32(3H,s), 2.34(3H,s), 3.68(2H,s),4.18(2H,s),5.19(2H,s),6.87- 6.90(2H, m),7.12(1H,d, J=8.1Hz), 7.24 (1H,br),7.75(2H,d,J=8.4Hz), 7.85(2H, d, J=8.4Hz)

【表80】

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-3	β−1	F ₃ C	Ме	S	H,H	129-131	2.24(3H,s),2.25(3H,s),4.04(2H,s),4.67(2H, s),6.65(1H,d,J=8.1Hz),7.18- 7.23(2H,m),7.74(2H,d,J=8.1Hz),7.82(2H,d ,J=8.1Hz)
β-1-4	β-1	F ₃ C	Ме	0	Н,Н	136-138	2.28(3H,s),2.31(3H,s)4.62(2H,s),5.13(2H,s),6.71(1H,d,J=9.0),6.80(1H,dd,J=9.0,2.7 Hz),6.87(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
β-1-6	β-1	N N	Ме	S	Н,Н	134-136	1.88(3H,s)2.15(3H,s),3.24- 3.27(4H,m),3.67(4H,t,J=4.8Hz),3.94(2H,s) ,4.69(2H,s),6.77(1H,d,J=8.4Hz)7.15- 7.21(2H,m),13.00(1H,brs)
β-1-7	β-1		Ме	0	Н,Н	126-127	1.94(3H,s)2.17(3H,s),3.28- 3.32(4H,m),3.67- 3.70(4H,m),4.61(2H,s),4.90(2H,s),6.72- 6.86(3H,m)12.89(1H,brs)
β-1-8	β-1	CI	Ме	S	H,H	157-159	2.21(3H,s),2.24(3H,s),4.02(2H,s),4.66(2H,s),6.65(1H,d,J=8.4Hz),7.20(1H,dd,J=8.4,2.4Hz),7.22(1H,m),746(2H,d,J=9.0Hz),7.63(2H,d,J=9.0Hz)
β-1-9	β-1	CI		S	H,H	131-132	2.22(3H,s),3.93(3H,s),4.66(2H,s)6.62(1H,d,J=9.0Hz),7.14-7.16(2H,m),7.27-7.33(5H,m),7.42-7.45(4H,m)
β-1- 10	β-1	CI	F ₃ C	s	H,H	131-133	2.22(3H,s),3.93(3H,s),4.67(2H,s)6.62(1H,d,J=8.1Hz),7.10-7.14(2H,m),7.30-7.47(6H,m),7.70(2H,d,J=8.1Hz)
β-1- 11	β-1	F ₃ C	Me	0	Ме,Ме	115-116	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56(2H,s),6.49-6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1Hz)

[0214]

【表81】

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-12	β-1	F ₃ C	Ме	s	H,Et	115-117	1.07(3H,t,J=7.5Hz),1.98-2.16(2H,m), 2.20(3H,s),2.29(3H,s),4.04(1H,t,J=7.5Hz),4.65(2H,s),6.61(1H,d,J=8.1Hz),7.10-7.14(2H,m),7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
β-1-13	β-1	F ₃ C	Ме	s	H, 4-F-C6H4	110-112	2.29(3H,s),2.20(3H,s),4.67(2H,s),5.29(1H,s),6.59(1H,d,J=8.4Hz), 6.96–7.15(4H,m),7.32–7.37(2H,m),7.73(2H,dJ=8.4Hz),7.79(2H,d,J=8.4Hz)
B-1-14	β-1	F ₃ C	но	s	н,н	138–139	2.23(3H,s),4.11(2H,s),4.66(2H,d,J=3.6),3. 34(1H,br.s),6.64(1H,d,J=8.4Hz),7.16- 7.29(2H,m),7.77(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β-1-15	β-1	F ₃ C	MeO	s	н,н	105–107	2.24(3H,s),3.43(3H,s),4.12(2H,s),4.46(2H,s),4.66(2H,s),6.65(1H,d,J=8.5Hz),7.18-7.24(2H,m),7.76(2H,d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
β-1-16	β-1	F ₃ C		s	н,н	oil 183–186 (as HClsalt)	2.23(3H,s),2.49(4H,m),3.62(2H,s),3.69(4 H,m),4.18(2H,s),4.64(2H,s),6.65(1H,d,J= 9.0Hz),7.18- 7.21(2H,m),7.74(2H,d,J=7.8Hz),790(2H,d ,J=7.8Hz)
β-1-17	β-1	F ₃ C		s	н,н	138-139	2.23(3H,s),3.83(2H,s),4.12(2H,s),4.66(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.16(2H,m),7.24-7.31(m,5H),7.08(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz)
β-1-18	β-1	F ₃ C	O's.	s	н,Н	123-124	2.23(3H,s),3.97(2H,s),4.67(2H,s),6.63(1H .d,J=8.1Hz),7.08-7.26(7H,m), 7.70(2H,d,J=8.4Hz),8.22(2H,d,J=8.4Hz)
β-1-19	β-1	Ме	I	s	н,н	126-127	2.24(3H,s),2.44(3H,s),3.92(2H,s),4.66(2H,s),6.64(1H,d,J=8.1Hz),7.18(2H,dd,J=8.1,1.8Hz),7.22(2H,d,J=1.8Hz)
β-1-20	β-1	Me	F ₃ C	s	н,н	oil	2.21(3H,s),2.40(3H,s),3.98(2H,s),4.66(2H,s),6.60(1H,d,J=8.1Hz),7.08-7.12(2H,m),7.42(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
β-1-21	β-1	Ме	F ₃ C	0	н,н	153-154	2.25(3H,s),2.49(3H,s),4.62(2H,s),5.02(2H,s),6.65- 6.73(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
β-1-22	β-1	F ₃ C	F ₃ C	s	н,н	136.5-137.5	2.22(3H,s),3.95(2H,s),4.67(2H,S),6.62(1 H,d,J=8.1Hz),7.11- 7.14(2H,m),7.47(2H,d,J=8.4Hz),7.60(4H, s),7.72(2H,d,J=8.4Hz)
β-1-23	β -1	F ₃ C	F ₃ C	s	н,н	128-129.5	2.22(3H,s),3.95(2H,s),4.67(2H,s),6.62(1H,d,J=9.0Hz),7.13-7.15(2H,m),7.50-7.74(8H,m)

【表82】

No	合成法	R1	R2	Χī	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β -1-24	β-1	F ₃ C	F ₃ CO	s	н,н	135-136	2.23(3H,s),3.84(2H,s),4.12(2H,s),4.67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.14(6H,m),7.71-7.72(4H,m)
β-1 -2 5	β-1	F ₃ C	<u> </u>	S	н,н	196–197.5	2.19(3H,s),4.13(2H,s),4.55(2H,s),6.63(1H ,d,J=8.4Hz),7.28(2H,m), 7.41- 7.43(3H,s),7.53(2H,s),7.79(2H,d,J=8.4Hz),8.31(2H,d,J=8.4Hz)
β-1-26	β-1	F ₃ C	Ph—	s	н,н	137-138	2.22(3H,s),3.87(2H,s),4.16(2H,s),4.65(2H,s),6.63(1H,d,J=9.0Hz),7.14-7.21(4H,m),7.34-7.56(7H,m),7.70(2H,d,J=8.1Hz),7.78(2H,d,J=8.1Hz)
β-1-27	β-1	F ₃ C	BuNHCH2-	s	н,н	177-178	0.84(3h,t,J=7.2Hz),1.22- 1.45(4H,m),2.14(3H,s), 2.56 (2H,t,J=7.2Hz), 3.72(2H,s),4.27(2H,s),4.63(2H,s), 6.76(1H,d,J=8.4Hz),7.15-7.23(2H,m), 7.91(2H,d,J=8.4Hz), 8.08(2H,d,J=8.4Hz)
β-1-28	β-1	F ₃ C		s	н,н	150-152	2.24(3H,s),2.93- 2.30(4H,m),3.79(2H,s),4.67(2H,s),6.65(1 H,d,J=8.1Hz),7.09- 7.29(7H,m),7.70(4H,s)
β-1-29	β-1	F ₃ C	F ₈ C-{	s	н,н	141.5-142.5	2.23(3H,s),3.84(2H,s),4.12(2H,s),4,67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.13(2H,m),7.24(2H,d,J=8.7Hz),7.56(2H,d,J=8.7Hz),7.71(4H,s)
β-1-30	β-1	F ₃ C	F ₃ CQ	s	н,н	130-132	2.23(3H,s),3.85(2H,s),4.13(2H,s),4.67(2H,s),6.64(1H,d,J=9.6Hz),6.99-7.15(5H,m),7.30-7.35(1H,m),7.71(4H,s)
β-1-31	β-1	F ₃ C	F ₃ C	s	н,н	127-128.5	2.23(3H,s),3.84(2H,s),3.84(2H,s),4.67(2H,s),6.63(1H,d.J=8.4Hz),7.11-7.14(2H,m),7.27-7.53(4H,m),7.71(4H,s)

[0216]

【表83】

No	合成法	R1	R2	ХI	R6	X ² X ³ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
β-1-32	β-1	F ₃ C	Me	S	Н	Ме	121-122	1.65(3H,d,J=6.9Hz),2.24(3H,s),4.0 3(2H,s),4.77(1H,q,J=6.9Hz),6.82(2 H,d,J=9.0Hz),7.34(2H,d,J=9.0Hz),7 .74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4 Hz)
β-1-33	β−1	F ₃ C	Me	Ø	н	Et COOH	116-118	1.09(3H,t,J=7.5Hz),1.99- 2.04(2H,m),2.24(3H,s),4.03(2H,s),4 .56- 4.60(1H,m),6.82(2H,d,J=8.7Hz),7.3 3(2H,d,J=8.7Hz),7.73(2H,d,J=8.5H z),7.81(2H,d,J=8.5Hz)
β-1-34	β-1	F ₃ C	Me	s	Н	nPr COOH	75.5- 77.5	0,97(3H,t,J=7.2Hz),1.50- 1.60(2H,m),1.91- 2.00(2H,m),2.24(3H,s),4.03(2H,s),4 .61- 4.65(1H,m),6.82(2H,d,J=8.7Hz),7.3 5(2H,d,J=8.7Hz),7.73(2H,d,J=8.7H z),7.81(2H,d,8.7Hz)
β-1-35	β-1	F _a C	Me	s	nPr	_0COOH	85-87	0.89(3H,t,J=7.2Hz),1.51- 1.63(2H,m),2.24(3H,s),2.58(2H,t,J =7.2Hz),4.03(2H,s),4.66(2H,m),6.7 0(1H,d,J=8.4Hz),7.17- 7.24(2H,m),7.74(2H,d,J=8.6Hz),7.8 1(2H,d,J=8.6Hz)
β -1-36	β-1	CI	Br	s	н	_осоон	150-151	2.24(3H,s),4.03(2H,s),4.66(2H,s),6. 65(1H,d,J=8.4Hz),7.21-7.26 (2H,m), 7.47 (2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz)

[0217]

【表84】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{8}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α-8-1	α-8		Me	0	H.H	Н	Н	Н	Н	DPM		2.32(3H,s), 5.23(2H,s),
α-0-1	α -υ	الما	,,,,	Ĭ		, ,,						6.45(1H,d,J=15.9Hz), 7.01(1H,s),
												7.05(2H,d,J=9.0Hz), 7.20-7.40(10H,m),
	!	F ₃ C										7.51(2H,d,J=8.7Hz), 7.71(1H,d,J=15.9Hz),
												7.75(2H,d,J=8.7Hz), 7.84(2H,d,J=8.7Hz)
α-8-2	α-8		Me	0	H,H	OMe	Н	Н	H	DPM		2.34(3H,S),3.01(3H,s),5.20(2H,s),
							. !					6.45(1H,d,J=15.9Hz), 7.00-
											l	7.41(13H,m),7.02(1H,s),
i		F ₃ C									1	7.69(1H,d,J=15.9Hz), 7.74(2H,d,J=8.7Hz),
İ												7.83(2H,d,J=8.7Hz)
α-8-3	α-8		CO2Me	0	H,H	Н	Ξ	Ή	Н	DPM		3.81(3H,s),5.41(2H,s),6.46(1H,d,J=16.2Hz
ļ					·	ĺ),7.02-
	ļ						ĺ		l			7.42(14H,m),7.52(1H,d,J=8.7Hz),7.72(1H,
		F ₃ C									ŀ	d,J=16.2Hz),7.78(2H,d,J=8.4Hz),8.09(2H,
							_	L				d.J=8.4Hz)
α-8-4	α−8	_	OCH2CF	0	H,H	Н	Н	Н	Н	Me		4.44(2H,q,J=7.8Hz), 5.27(2H,s),
		ر م	3				l				l	6.47(1H,d,J=16.2Hz),
							1				1	7.01(1H,s)7.04(2H,d,J=8.7Hz), 7.24-
]		F ₃ C					l			1		7.44(10H,m),7.53(2H,d,J=9Hz), 7.71(1H,d,J=15.9Hz),
						1						7.77(1H,d,J=15.9H2), 7.77(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz)
			0) 1000	<u> </u>	1771	Н	Н	Н	H	DPM	-	3.42(3H,s),4.50(2H,s),5.29(2H,s),6.46(1H,
α-8-5	α−8	ļ	CH2OC	0	H,H	"	["	"	"	DEM		d.J=16.2Hz),7.01-7.06(2H,m),7.26-
Ì			НЗ				1	i		1	ľ	7.41(12H,m),7.52(1H,d,J=8.7Hz),7.71(1H,
<u> </u>		F ₃ C			1		į .			1	l .	d,J=16.2Hz),7.78(2H,d,J=8.4Hz),7.93(2H,
					1	1			i	1		d,J=8.4Hz).
α-8-6	α-8		Н	0	Н.	H	H	H	Н	DPM	ļ	6.40(1H,d,J=15.9Hz),6.51(1H,s),6.62(1H,s
" " "	" "		i	_	4-F-		1			ŀ	-),7.00-7.13(5H,m),7.28-
				1	C6H4					1		7.39(10H,m),7.45-
	ĺ	F ₃ C	-					1	İ			7.56(4H,m),7.67(1H,d,J=15.9Hz),7.70(2H,
	1	ļ			İ							d,J=8.7Hz),7.85(2H,d,J=8.7Hz)
α-8-7	α-B		CO2Me	0	H,H	Н	Ме	Н	Н	tBu		1.54(9H,S),2.43(3H,S),3.81(3H,S),5.38(2H
			1			1	1	1				,s),6.22(1H,d,J=15.9Hz),6.83-
			1	1								6.91(2H,m),7.54(1H,d,J=9.3Hz),7.78(2H,d,
		F ₃ C									1	J=8.1Hz),7.83(1H,d,J=15.9Hz),8.09(2H,d,
		1			1	1	1	1				J=8.1Hz)
	<u> </u>		011055	1	1 1111	 	104	Н	H	Me	+	2.44(3H,S),3.42(3H,S),3.80(3H,S),4.50(2H
α-8-8	α-8	Į.	CH2OC	0	H,H	H	Ме	"	"	Me		s),5.27(2H,s),6.28(1H,d,J=15.9Hz),6.85-
			H3	1		1				1		6.93(2H,m),7.53(1H,d,J=8.4Hz),7.74(2H,d,
		F ₃ C										J=8.7Hz),7.92(2H,d,J=15.9Hz),7.93(1H,d,
		"								}	•	J=8.7Hz)
α-8-9	α-8	 	н	0	Н.	H	Me	H	Н	Me	†	2.40(3H,S),3.79(3H,S),6.25(1H,d,J=15.6H
α -8-9	α-8			١	4-F-	''	1	1	1"			z),6.50(1H,S),6.62(1H,S),6.83-
1				1	C6H4			1				6.90(2H,m),7.06-7.15(2H,m),7.46-
		F ₃ C										7.56(3H,m),7.70(2H,d,J=8.4Hz),7.83-
				1	1		1		1			7.92(3H,m)
L			_1		J			٠				1

[0218]

【表85】

No {	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α-8-10	α-8		Me	0	H,H	H	Me	Н	Н	Me		2.32(3H,S),2.44(3H,S),3.80(3H,S),5.21(2H
" " "	"						I			İ		,s),6.28(1H,d,J=15.9Hz),6.84-
	ŀ		Î				ŀ		- 1			6.92(2H,m),7.54(1H,d,J=8.4Hz),7.75(2H,d,
		F ₃ C		}		l	l		İ	1		J=8.4Hz),7.84(2H,d,J=8.4Hz),7.91(1H,d,J
]			- 1		=15.9Hz)
α-8-11	α-8		CH2OEt	0	H,H	OMe	Н	Н	Н	Me		1.26(3H,t,J=6.9Hz),3.58(2H,q,J=6.9Hz),3.
	-			1					[90(3H,s),4.60(2H,s),5.35(2H,s),6.45(1H,d,
							- 1		1			J=15.9Hz),7.02(1H,s),7.06-
ļ [1	FaC										7.13(3H,m),7.27-
		. 3-		ŀ			- 1					7.42(10H,m),7.69(1H,d,J=15.9Hz),7.77(2
												H,d,J=8.4Hz),7.94(1H,d,J=8.1Hz)
α-8-12	α-8		CH2OEt	0	H,H	Н	Ме	Н	н	Me		1.23(3H,t,J=6.9Hz),2.44(3H,s),3.58(2H,q,
1				i								J=6.9Hz),3.80(3H,s),4.54(2H,s),5.27(2H,s
),6.28(1H,d,J=15.9Hz),6.87-
		F ₃ C										6.91(2H,m),7.54(1H,d,J=8.1Hz),7.77(2H,d,
1												J=8.4Hz),7.92(1H,d,J=15.9Hz),7.93(2H,d,
						1.			ļ.,.			J=8.41Hz)
α-9-1	α−9		CH2OC	S	H,H	Н	H	Н	Н	Me		3.44(3H,s),3.80(3H,s),4.29(2H,s),4.51(2H,s),6.40(1H,d,J=15.9Hz),7.40-
			H3	!								7.47(4H,m),7.63(1H,d,J=15.9Hz),7.76(2H,
<u> </u>		F ₃ C										dJ=8.4Hz),7.85(1H,d,J=8.4Hz)
					1111	OCF	Н	Н	Н	Me		2.31(3H,s),3.81(3H,s),4.11(2H,s),6.41(1H,
α-9-2	α−9		Me	S	H,H	3	н	"	"	Me		d.J=15.9Hz),7.34-
						3	ļ	ŀ				7.60(4H,m),7.74(2H,d,J=8.4Hz),7.81(2H,d,
		F ₃ C						}		ļ		J=8.4Hz)
	0		н	s	Н,	Н	Me	н	Н	Me		2.35(3H,S),3.80(3H,S),5.68(1H,S),6.31(1H
α-9-3	α-9		"		4-F-	l ''		l ''	''			,d,J=15.9Hz),6.70(1H,S),7.01-
			1		C6H4				i			7.10(2H,m),7.12-7.18(2H,m),7.39-
		F ₃ C							Ì			7.48(3H,m),7.71(2H,d,J=8.4Hz),7.86(2H,d,
-		ì	ì	1	1	ŀ	1			l		J=8.4Hz)7.86(1H,d,J=15.9Hz)
α-9-4	α-9		Me	s	H,H	Н	Ме	Н	Н	Ме		2.29(3H,S),2.41(3H,S),3.81(3H,S),4.19(2H
" "	-			i	ļ							,s),6.33(1H,d,J=15.9Hz),7.22-
1				1			1	l		l	İ	7.28(2H,m),7.49(1H,d,J=9.0Hz),7.74(1H,d,
1 1		F ₃ C ~		1		1				1		J=8.4Hz),7.82(2H,d,J=8.4Hz),7.90(2H,d,J
1							<u> </u>	<u></u>	ļ.,	ļ		=15.9Hz)
α-9-5	α-9		CH2OM	S	H,H	Н	Ме	H	H	Ме		2.41(3H,S),3.44(3H,S),3.81(3H,S),4.28(2H
			e					1		1		(s),4.50(2H,s),6.33(1H,d,J=15.9Hz),7.24-
				1	1			ļ				7.26(2H,m),7.49(1H,d,J=9.0Hz),7.76(2H,d,
		1.30	1	1	1	1	1	1				J=9.0Hz),7.86(2H,d,J=9.0Hz),7.90(1H,d,J =15.9Hz)
			 	<u> </u>	 	 ,,	10	-	L	Me	-	3.79(3H,s),6.38(2H,d,J=16.2Hz),6.69(1H,s
α-9-6	α-9	1	Н	s	H,	H	Н	Н	H	Me).7.02-7.08(2H,m).7.31-
				1	4-F- C6H4		1	1			1	7.40(6H,m),7.60(1H,d,J=16.2Hz),7.71(2H,
		F ₃ C	1		Con4	1						d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
		 	14-	s	H,H	F	l LI	Н	Н	Me	+	2.31(3H,s),3.81(3H,s),4.19(2H,s),6.41(1H,
α-9-7	α−9		Me)	17,6	'	''	["	1''	""		d,J=15.9Hz),7.22-7.27(2H,m),7.45-
		I- a		1					1		1	7.50(1H,m),7.59(1H,d,J=15.9Hz),7.75(2H,
		F ₃ C		1					1	1		d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-9-8	α-9		Me	s	H.H	ОМ	Н	Н	H	Me	T	2.28(3H,s),3.73(3H,s),3.87(3H,s),4.35(2H,
α -9-0	u v		1	_	""		'		'			s),6.71(1H,d,J=15.9Hz),7.29-
		F ₀ C								1		7.47(3H,m),7.63(1H,d,J=15.9Hz),7.88-
1 1		1.30	1	1	i	1	1	1	1	1	i	7.97(4H,m)

[0219]

【表86】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α-9-9	α−9	F ₃ C	CF3	S	H,H	Н	Me	Н	Н	Ме		2.41(3H,S),3.80(3H,s),4.27(2H,s),6.34(1H,d,J=15.9Hz),7.25-7.28(2H,m),7.48-7.51(1H,d,J=8.7Hz),7.78(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz),7.90(1H,d,J=15.9Hz)
α-9-10	α−9	F ₃ C	CH2OEt	S	H,H	Н	Ме	Ξ	I	Me		1.27(3H,t,J=6.9Hz),2.41(3H,S),3.60(2H,q, J=6.9Hz),3.80(3H,s),4.28(2H,s),4.55(2H,s),6.33(1H,d,J=15.6Hz),7.23– 7.26(2H,m),7.47– 7.50(1H,m),7.75(2H,d,J=8.4Hz),7.86(2H,d, J=8.4Hz),7.90(1H,d,J=15.6Hz)
α-9-11	α−9	F ₃ C	Me	S	Н,Н	H	O Me	Н	Ħ	Me		2.30(3H,S),3.79(3H,s),3.89(3H,s),4.21(2H, s),6.49(1H,d,J=16.2Hz),6.95- 6.99(2H,m),7.41(1H,d,J=8.4Hz),7.74(2H,d, J=8.7Hz),7.82(2H,d,J=8.7Hz),7.90(1H,d,J =16.2Hz)
α-9-12	α−9	F ₃ C	Me	S	Н,Н	OEt	H	Н	Н	Me		1.50(3H,t,J=7.2Hz),2.31(3H,s),3.81(3H,s), 4.15(3H,q,J=7.2Hz),4.19(2H,s),6.39(1H,d, J=15.9Hz),6.97(1H,d,J=1.2Hz),7.08(1H,d d,J=1.2Hz,9.0Hz),7.42(1H,d,J=9.0Hz),7.6 2(1H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz),7.8 1(2H,d,J=8.4Hz)
α-9-13		F ₃ C	Me	S	Н,Н	OMe		Br	H	Ме		2.35(3H,s),3.81(3H,s),3.92(3H,s),4.11(2H, s),6.41(1H,d,J=15.9Hz),6.93(1H,d,J=1.5H z),7.36(1H,d,J=1.5Hz),7.54(1H,d,J=15.9H z),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)
α-9-14	α-9	F ₃ C	Ме	S	H,H	Ħ	O Me	Н	O Me	Me		2.31(3H,S),3.78(3H,S),3.88(6H,S),4.23(2H,S), 6.62(2H,S),6.82(1H,d,J=16.2Hz),7.74(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz),
α−9−15	α−9	F ₃ C	Me	S	H,H	OEt	Ŧ	Br	Н	Me		1.52(3H,t,J=7.2Hz),2.35(3H,s),3.09(3H,s), 4.15(2H,s),4.14(2H,q,J=7.2Hz),6.39(1H,d, J=16.2Hz),6.92(1H,d,J=1.8Hz),7.33(1H,d, J=1.8Hz),7.52(1H,d,J=15.9Hz),7.73(2H,d, J=8.4Hz),7.79(2H,d,J=8.4Hz)
α-9-16	α−9	F ₃ C	Me	S	H,H	Br	Η	Br	Н	Ме		2.34(3H,S),3.81(3H,S),4.16(2H,S),6.42(1H, d,J=15.9Hz),7.48(1H,d,J=15.9Hz),7.72– 7.76(4H,m),7.80(2H,d,J=8.7Hz)
α-9-17	α−9	a	Н	S	H,H	Н	Ме	π	H	Me		2.39(3H,s),3.80(3H,S),4.19(2H,s),6.32(1H,d,J=15.9Hz),6.52(1H,s),7.17–7.20(2H,m),7.40–7.45(3H,m),7.67(2H,d,J=8.4Hz),7.89(1H,d,J=15.9Hz)
α-9-18	α−9	cı 🔍	Н	S		ОМе			Н	Me		3.80(3H,s),3.93(3H,S),4.18(2H,s),6.39(1H,d,J=15.9Hz),6.54(1H,s),7.07(1H,dd,J=7.8,1.5Hz),7.32(1H,d,J=8.1Hz),7.40-7.43(2H,m),7.62(1H,d,J=15.9Hz),7.64-7.67(2H,m)
α-9-19	α−9	F ₃ C	н	S	Н,Н	Н	Ме	H	H	Ме		2.40(3H,s),3.80(3H,s),4.21(2H,s),6.32(1H,d,J=15.9Hz),6.63(1H,s),7.18-7.20(2H,m),7.47(1H,d,J=8.7Hz),7.71(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz),7.89(1H,d,J=15.9Hz)

[0220]

【表87】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-9-20	α-9		- н	s	H.H	OMe	Н	Н	н	Me	<u> </u>	3.80(3H.s),3.93(3H,s),4.20(2H,s),6.39(1H,
a 3 20	u J		· · · · · · · · · · · · · · · · · · ·						''			d.J=15.9Hz),6.64(1H,s),6.97(1H,d,J=1.5H
			1						1			z),7.07(1H,dd,J=1.5Hz,8.1Hz),7.32(1H,d,J
l i		' 30										=8.1Hz),7.62(1H,d,J=15.9Hz),7.30(2H,d,J
												=8.1Hz),7.84(2H,d,J=8.1Hz)
α-9-21	α-9		CH2OEt	s	H,H	OMe	Н	Н	н	Ме		1.27(3H,t,J=7.2Hz),3.61(2H,q,J=7.2Hz),3.
"												81(3H,s),3.93(3H,s),4.27(2H,s),4.57(2H,s),
												6.40(1H,d,J=15.9Hz),6.98(1H,d,J=1.5Hz),
		F ₃ C									1	7.09(1H,dd,J=7.8,1.5Hz),7.43(1H,d,J=7.8
												Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J=8.1
												Hz),7.86(1H,d,J=8,1Hz)
α-9-22	α−9		Me	S	H,H	OMe	Н	Н	Ме	Ме		2.30(3H,s),2.36(3H,s),3.82(3H,s),3.90(3H,
												s),4.17(2H,s),6.34(1H,d,J=15.9Hz),7.00(1
		F ₃ C										H,s),7.25(1H,s),7.72-7.93(5H,m)
								<u> </u>				0.44(01) \ 0.04(01) \ 0.00(01) \ \ 4.00(01)
α-9-23	α−9		CH2OMe	S	H,H	OMe	Н	Н	Н	Me		3.44(3H,s),3.81(3H,s),3.93(3H,s),4.26(2H,
1										1		s),4.52(2H,s),6.41(1H,d,J=16.4Hz),6.98(1 H,d,J=1.8Hz),7.09(1H,dd,J=1.8Hz,8.1Hz),
		F ₃ C				ì						7.43(1H,d,J=8.1Hz),7.63(1H,d,J=15.9Hz),
1		[l			,			7.75(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz)
	- 0				1111	CI	Н	н	Н	Me		2.32(3H,s),3.81(3H,s),4.23(2H,s),6.40(1H,
α-9-24	α-9		Me	s	H,H	0	"	n	n	IVIE		d.J=16.8Hz),7.37-7.41(1H,m),7.52-
	ļ	F ₃ C						ĺ				7.60(3H,m),7.74(2H,d,J=8.4Hz),7.81(2H,d,
	İ	ľ			1							J=8.4Hz)
α-10-2	n-10		Me	s	H,H	Н	Н	н	H	Me		2.29(3H,s),3.80(3H,s),4.19(2H,s),6.40(1H,
-2	α-10		ME	3	11,11	''	''	۱"	''	1410		d,J=15.9Hz),7.40-7.84(9H,m)
-2	}	F ₃ C						ļ				
	- 10	<u> </u>			H.H	F	Н	Н	Н	Me	 -	2.35(3H,s),3.00(3H,s),5.31(2H,s).
α-10-2	α-10		Me	0	П,П	-	п	n	"	Me	1	6.31(1H,d,J=15.9Hz),7.10-
-1		F ₃ C							Ì	i		7.34(3H,m),7.59(1H,d,j=15.9Hz),7.76(2H,d
		"			1	1			i			,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-10-2	α-10		Me	0	H,H	F	н	F	Н	Me	1-	2.41(3H,s),3.81(3H,s),5.32(2H,s),6.34(1H,
-3	μ-10		1 ""	ľ	11,11	'	١	'	''	"""		d,J=15.9Hz),7.083(2H,d,j=8.7Hz),7.52(1H,
"		F ₃ C						1	ļ.		1	d,J=15.9Hz),7.76(2H,d,J=8.4Hz),7.86(2H,
		i		ĺ		1			İ		1	d,J=8.4Hz)
α-10-2	α-10		Me	s	Н,Н	CF3	Н	Н	H	Me	1	2.31(3H,s),3.816(3H,s),4.247(2H,s),6.4
-4		_						İ			1	63(1H,d,J=15.9Hz),7.60-7.80(8H,m)
1	1	F ₃ C		ļ					1			
	- 15	ļ		_	1111	1.	C.F	Н	Н	Ma	+	2.31(3H,s),3.82(3H,s),4.22(2H,s),6.39(1H,
α-10-2	α-10		Me	S	H,H	H	CF 3	"	"	Me	1	d.J=15.9Hz).7.56-
-5	1	F ₃ C					l 3		1	1		8.06(4H,m),7.74(2H,d,J=8.7Hz),7.82(2H,d,
				1	1	1				1		J=8.7Hz)
		+	CF3	s	H,H	OMe	H	Н	Н	Me	+-	3.81(3H,s),3.93(3H,s),4.25(2H,s),6.41(1H,
α-X-1			l ors	"	17,67	- CIVIE	1"	"	''	""		d,J=15.9Hz)),6,91(1H,d,J=1.5Hz),7.07(1H
		F ₃ C				1			1			,dd,J=7.8Hz,1.5Hz),7.41(1H,d,J=7.8Hz),7.
		153C			1					1		63(1H,d,J=15.9Hz),7.77(2H,dJ=8.1Hz),7.
					1					1	1	83(2H,d,J=8.1Hz)
α-X-2	+	 	CH2OCH2	s	H.H	ОМе	Н	H	Н	Me	\top	3.81(3H,s),3.92(3H,s),3.96(2H,q,J=8.4Hz),
" ^ 2		_	CF3		''''		1	1	'	1	1	4.25(2H,s),4.77(2H,s),6.40(1H,d,J=15.6Hz
			1		1	1				1)),6.98(1H,d,J=1.8Hz),7.08(1H,dd,J=7.8H
		F ₃ C			1							z,1.8Hz),7.40(1H,d,J=7.8Hz),7.62(1H,d,J=
			1	1	1					1		15.6Hz),7.76(2H,dJ=8.4Hz),7.85(2H,d,J=
	1	1	t	1	1	1		1		E .	1	8.4Hz)

[0221]

【表88】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-X-3		F ₃ C	CH2O(CH 2)2OMe	S	Н	ОМе	Н	Н	Н	Ме		3.39(3H,s),3.57-3.60(2H,m),3.69- 3.72(2H,m),3.81(3H,s),3.92(3H,s),4.28(2H,s),4.66(2H,s),6.40(1H,d,J=15.9Hz)),6.97(1H,d,J=1.8Hz),7.09(1H,dd,J=8.1Hz,1.8Hz),7.43(1H,d,J=8.1Hz),7.63(1H,d,J=15.9Hz),7.74(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
α-X-4		F ₃ C	CH2OnPr	S	н,н	OMe	Н	Н	H	Ме		0.95(3H,t,J=7.5Hz),1.59- 1.71(2H,m),3.50(2H,d,J=6.6Hz),3.81(3H,s),3.92(3H,s),4.26(2H,s),4.56(2H,s),6.40(1 H,d,J=15.9Hz)),6.97(1H,d,J=1.8Hz),7.08(1H,dd,J=7.8Hz,1.8Hz),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=15.9Hz),7.74(2H,dJ=8.1Hz),7.87(2H,d,J=8.1Hz)
α-X-5		F ₃ C	CH2OnPr	S	н,н	Н	O Me	Н	O Me	Me		0.97(3H,t,J=7.5Hz),160- 1.72(2H,m),3.51(2H,d,J=6.6Hz),3.78(3H,s),3.87(6H,s),4.32(2H,s),4.57(2H,s),6.63(2H,s),6.81(1H,d,J=16.5Hz),7.75(2H,dJ=8.4Hz),7.86(2H,d,J=8.4Hz),8.04(1H,d,J=16.5Hz)
α-X-6		F ₃ C	Et	S	н,н	H	O Me	H	O Me	Me		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3. 78(3H,s),3.88(6H,s),4.24(2H,s),6.63(2H,s), 6.82(1H,d,J=16.2Hz),7.44(2H,dJ=8.4Hz), 7.81(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz)
α-X-7		F ₃ C	CO2H	S	H,H	Н	O Me	Н	O Me	Ме		3.62(2H,q,J=10.2),,3.78(3H,s),388(6H,s),4 .33(2H,s),6.58(2H,s),6.81(1H,d,J=16.5Hz), 7.79(4H,brs),8.03(1H,d,J=16.5Hz)
α-X-8		F ₃ C	CH2OCH2 cPr	S	Н,Н	Н	O Me	Н	O Me	Me		0.22-0.27(2H,m),0.56-0.63(2H,m),1.06-1.19(1H,m),3.40(2H,d,J=7.2Hz),3.78(3H,s),3.87(6H,s),4.33(2H,s),4.59(2H,s),6.63(2H,s),6.81(1H,d,J=16.2Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz)
α-X-9		F ₃ C	Me	s	H,H	CI	Н	Н	Н	Me		
α-X-10		F ₃ C	Me	S	н,н	Н	F	Н	F	Me		2.30 (3H, s), 3.81 (3H, s), 4.21 (2H, s), 6.68 (1H, d, J=16.5 Hz), 6.99 (2H, d, J=9.3 Hz), 7.70 (1H, d, J=16.5 Hz), 7.75 (2H, d, J=8.4 Hz), 7.82 (2H, d, J=8.4 Hz)
α-X-11		F ₃ C	CH2OEt	S	н,н	Н	O Me	Н	O Me	Ме		1.28 (3H, t, J=6.9 Hz), 3.62 (2H, q, J=6.9 Hz), 3.78 (3H, s), 3.88 (6H, s), 4.32 (2H, s), 4.58 (2H, s), 6.63 (2H, s), 6.81 (1H, d, J=16.5 Hz), 7.76 (2H, d, J=8.4 Hz), 7.85 (2H, d, J=8.4 Hz), 8.04 (1H, d, J=16.5 Hz)
α-X-12	2	F ₃ C	Me	S	н,н	Me	Н	Н	Н	Ме		
α-X-1	3	F ₃ C	Me	s	н,н	Н	Me	Н	Ме	Me		2.21(3H,s),2.47(6H,s),3.80(3H,s),3.87(2H, s),6.41(1H,d,J=15.9Hz),7.24(2H,s,),7.58(1 H,dJ=15.9Hz),7.74(2H,d,J=8.4Hz),7.80(2 H,d,J=8.4Hz)

[0222]

【表89】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мp	NMR(CDCI3 or DMSO-d6)
α-X-14		F ₃ C	Ме	S	H,H	Н	Cł	Н	Н	Ме		
α-X-15		F ₃ C	Me	S	H,H	Н	F	Н	Н	Me		
α-X-16		F ₃ C	Ме	S	H,H	Me	Н	Ме	Н	Me		
α-X-17		F ₃ C	Ме	S	H,H	Et	Н	Н	Н	Ме		1.21(3H,t,J=7.5Hz).2.29(3H,s).2.74(2H,q, J=7.5Hz).3.80(3H,s).4.18(2H,s).6.41(1H,d, J=16.2Hz),7.30~7.50(3H,m).7.63(1H,d,J= 15.9Hz),7.74(2H,d,J=8.4Hz),7.81(2H,d,J= 8.4Hz)
α-X-18		F ₃ C	Me	S	н,н	Et	Н	Н	Н	Ме		

[0223]

【表90】

					R' '0'						
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β −2−1	β-2		Ме	0	H,H	Η	Н	Τ	Τ	224-	2.35(3H,s), 5.25(2H,s),
1										224.5	6.32(1H,d,J=15.6Hz), 7.07(2H,d,J=8.7Hz),
		F ₃ C									7.54(2H,d,J=8.7Hz), 7.65(1H,d,J=16.2Hz),
											7.78(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz)
β-2-2	β-2		Me	0	H,H	ОМ	Н	Н	Н		2.38(3H,s), 3.93(3H,s), 5.30(2H,s),
						е				235.5	6.33(1H,d,J=15.9Hz), 7.01-7.20(3H,m),
		F ₃ C									7.64(1H,d,J=15.9Hz), 7.782(2H,d,J=8.4Hz),
]								'			7.87(2H,d,J=8.4Hz)
B −2−3	β-2		CO2Me	0	H,H	Н	Н	Н	Н	201-203	3.83(3H,s),5.43(2H,s),6.33(1H,d,J=15.9Hz),
,	,										7.06(2H,d,J=8.7Hz),7.54(2H,d,J=8.7Hz),7.6
	}	F ₃ C									6(1H,d,J=15.9Hz),7.80(2H,d,J=8.7Hz),8.10
		,									(2H,d,J=8.7Hz)
β-2-4	β-2		Ме	S	H,H	Н	н	н	Н		2.31(3H,s), 4.25(2H,s), 7.36-7.52(4H,m),
										215.5	7.64(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),
		F₃C´ 🎺									7.85(2H,d,J=8.4Hz)
β −2−5	β-2		OCH2	0	H,H	Н	Н	Н	Н		4.86(2H,q,J=9.0Hz), 5.45(2H,s),
	· .	\sim	CF3								6.42(1H,d,J=15.9Hz), 7.14(2H,d,J=8.1Hz),
Ì	'										7.56(1H,d,J=15.9Hz),
		F ₃ C′ V									7.69(2H,d,J=8.4Hz),
								L.,			7.97(2H,d,J=8.4Hz),8.07(2H,d,J=8.4Hz)
β-2-6	β-2	~ <i>/</i>	Me	NH	H,H	Н	Н	Н	н		2.26(3H,S), 4.45(2H,d,J=5.7Hz),
											6.18(1H,d,J=15.9Hz),6.72(2H,d,J=8.4Hz),6. 82-6.90(1H,m),7.36-7.50(3H,m),
	l	F₃C´ ✓			ĺ .		ĺ				7.91(2H,d,J=8.4Hz), 7.96(2H,d,J=8.4Hz)
B-2-7	B-2		CH2O	0	H.H	H	H	Н	H	215-217	3.43(3H,s),4.52(2H,s),5.03(2H,s),6.32(1H,d,
P -2-/	ρ-2		CH3	O	11,11	l ''	''	'	·	210 217	J=15.9Hz),7.06(2H,d,J=8.7Hz),7.53(2H,d,J
	İ	F ₃ C	0.10								=8.7Hz),7.65(1H,d,J=15.9Hz),7.79(2H,d,J=
	1	30									8.7Hz),7.93(2H,d,J=8.7Hz)
β −2−8	β-2		Н	0	H,	Н	Н	Н	Н	211-213	5.71(1H,s),6.38(1H,d,J=15.9Hz),6.76(1H,s),
]	ļ				4-F-C6H4						7.02-7.08(2H,m),7.33-
1	ļ	F ₃ C									7.50(6H,m),7.59(1H,d,J=15.9Hz),7.72(2H,d,
						<u> </u>		lacksquare	<u> </u>		J=8.7Hz),7.87(2H,d,J=8.7Hz)
β −2−9	β-2		CH2O	s	H,H	Н	H	Н	Н	182-183	3.45(3H,s),4.29(2H,s),4.52(2H,s),6.39(1H,d,
			CH3						İ	1	J=16.2Hz),7.42(2H,d,J=8.7Hz),7.47(2H,d,J
		F ₃ C					1				=8.7Hz),7.63(1H,d,J=16.2Hz),7.77(2H,d,J=
	0.6		CO2Me	0	H.H	Н	Me	Н	Н	105-106	8.1Hz),7.87(2H,d,J=8.1Hz) 2.46(3H,S),3.82(3H,S),5.40(2H,s),6.30(1H,d
β-2- 10	β−2		COZME	U	","	"	ivie	"	"	190-190	J=15.6Hz),6.85-
10							}			[6.94(2H,m),7.60(1H,d,J=8,4Hz),7,78(2H,d,J
]	F₃C Ô								1	=8.4Hz),8.03(1H,d,J=15.6Hz),8.09(2H,d,J=
	1	1			1		1				8.4Hz)
	<u> </u>	L		<u> </u>			<u> </u>		ــــــــــــــــــــــــــــــــــــــ		

[0224]

【表91】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-2- 11	β-2	F ₃ C	CH2O CH3	0	H,H	I	Ме	H	H	179-180	CDCl3 & (300 MHz) 2.46(3H,S),3.42(3H,S),4.51(2H,S),5.28(2H,S),6.30(1H,d,J=15.9Hz),6.87- 6.96(2H,m),7.59(1H,d,J=8.4Hz),7.78(2H,d,J=8.7Hz),7.93(2H,d,J=8.7Hz),8.02(1H,d,J=15.9Hz)
β-2- 12	β-2	F ₃ C	Н	0	H, 4-F-C6H4	Н	Ме	Н	H	220-221	2.41(3H,S),6.26(1H,d,J=15.9Hz),6.51(1H,S),6.62(1H,S),6.86-6.93(2H,m),7.06- 7.16(2H,m),7.48- 7.58(3H,m),7.70(2H,d,J=9.0Hz),7.86(2H,d,J =9.0Hz)7.97(1H,d,J=15.9Hz)
β-2- 13	β-2	F ₃ C	Ме	0	н,н	H	Me	I	I	206–207	2.32(3H,S),2.46(3H,S),5.22(2H,s),6.30(1H,d ,J=15.6Hz),6.86- 6.96(2H,m),7.59(1H,d,J=8.4Hz),7.76(2H,d,J =8.7Hz),7.85(2H,d,J=8.7Hz),8.02(1H,d,J=1 5.6Hz)
β-2- 14	β-2	F ₃ C	Me	S	Н,Н	OC F3	Н	Н	Н	260-265	2.30(3H,S), 4.51(2H,s), 6.64(1H,d,J=16.2Hz), 7.60(1H,d,J=15.9Hz), 7.70-7.84(3H,m),7.91(2H,d,J=8.7Hz), 7.95(2H,d,J=8.7Hz)
β-2- 15	β-2	F ₃ C	Ме	0	H,H	F	H	Н	Н	261- 262.5	2.30(3H,S), 5.43(2H,s), 6.49(1H,d,J=15.9Hz), 7.34- 7.60(2H,m),7.54(1H,d,J=15.9Hz),7.71(1H,d, J=12.3Hz), 7.93(2H,d,J=8.4Hz), 8.00(2H,d,J=8.4Hz),
β-2- 16	β-2	F ₃ C	Ме	0	H,H	F	Н	F	H		2.35(3H,S), 5.36(2H,s), 6.61(1H,d,J=16.2Hz), 7.51(1H,d,J=16.2Hz),7.62(2H,d,J=9.6Hz), 7.93(2H,d,J=8.1Hz), 8.00(2H,d,J=8.1Hz),
β-2- 17	β-2	F ₃ C	Н	S	H, 4-F-C6H4	H	Ме	Η	Н		2.37(3H,S),5.70(1H,S),6.32(1H,d,J=15.9Hz),6.70(1H,S),7.01-7.10(2H,m),7.13- 7.20(2H,m),7.42- 7.52(3H,m),7.72(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)7.95(1H,d,J=15.9Hz)
β-2- 18	β-2	F ₃ C	Ме	S	H,H	Н	Me	H	Н	218-219	2.28(3H,S),2.36(3H,S),4.42(2H,s),6.42(1H,d ,J=15.9Hz),7.24~ 7.34(2H,m),7.67(1H,d,J=8.1Hz),7.74(1H,d,J=15.9Hz),7.91(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-2- 19	β-2	F ₃ C	GH2O Me	S	Н,Н	Н	Me			184.5 187	2.42(3H,S),3.44(3H,S),4.29(2H,s),4.51(2H,s),6.35(1H,d,J=15.9Hz),7.25-7.27(2H,m),7.52(1H,d,J=9.0Hz),7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),7.99(1H,d,J=15.9Hz)
β-2- 20	β-2	F ₃ C	Н	S	H, 4-F-C6H4	Н	H	Н	Н	191.5- 193.5	5.71(1H,s),6.39(1H,d,J=16.2Hz),6.69(1H,s), 7.02-7.08(2H,m),7.32- 7.49(6H,m),7.68(1H,d,J=16.2Hz),7.71(2H,d, J=8.4Hz),7.86(2H,d,J=8.4Hz)

[0225]

【表92】

No 合成法 R1 R2 X1 R3,R4 R5 R6 R7 R8 mp NMR(CDCI3 or DMSO-d6) \$\beta -2	J=8.7Hz), 16.2Hz),8. =16.2Hz),7.76(2H,d, =15.9Hz), 7.69(2H,d, 3.40(1H,d, 10(1H,dd, 12),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J=8.7Hz), 16.2Hz),8. =16.2Hz),7.76(2H,d, =15.9Hz), 7.69(2H,d, 3.40(1H,d, 10(1H,dd, 12),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.2Hz),8. =16.2Hz), 7.76(2H,d, =15.9Hz), 7.69(2H,d, 10(1H,dd, 10(1H,dd, 12),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=16.2Hz), 7.76(2H,d, =15.9Hz), 7.69(2H,d, 3.40(1H,d, 10(1H,dd, 1z),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.76(2H,d, =15.9Hz), 7.69(2H,d, 3.40(1H,d, 10(1H,dd, 1z),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.76(2H,d, =15.9Hz), 7.69(2H,d, 3.40(1H,d, 10(1H,dd, 1z),7.63(1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=15.9Hz), 7.69(2H,d, 6.40(1H,d, 10(1H,dd, z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=15.9Hz), 7.69(2H,d, 6.40(1H,d, 10(1H,dd, z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.69(2H,d, 6.40(1H,d, 10(1H,dd, 1z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.40(1H,d, 10(1H,dd, 1z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.40(1H,d, 10(1H,dd, 1z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10(1H,dd, z),7.63(1),7.82(2H
e	10(1H,dd, z),7.63(1),7.82(2H
24 e J=15.9Hz),7.02(1H,d,J=1.5Hz),7.1 β-2- β-2 25 CF3 S H,H H Me H H 194-196 (2.42(3H,S),4.27(2H,s),6.32(1H,d,J=8.1Hz)) β-2- 25 F ₃ C CF3 S H,H H Me H H 194-196 (2.42(3H,S),4.27(2H,s),6.32(1H,d,J=8.7Hz),7.25-7.28(2H,m),7.51(1H,d,J=8.7Hz),7.28(2H,m),7.51(1H,d,J=8.7Hz),7.28(2H,m),7.51(1H,d,J=8.4Hz),7.28(2H,m),7.51(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.25-7.28(2H,m),7.75(2H,d,J=8.4Hz),7.28(2	z),7.63(1),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$),7.82(2H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=15.9Hz)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=15.9Hz)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I H,a,J≈I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20/011 = 1
15.9Hz),7.25- 7.28(2H,m),7.75(2H,d,J=8.4Hz),7. =8.4Hz),7.99(1H,d,J=15.9Hz) 15.9Hz 199-201 2.30(3H,S),3.89(2H,S),4.22(2H,S),6.96- 7.00(2H,m),7.43(1H,d,J=8.4Hz),7. =8.7Hz),7.82(2H,d,J=8.7Hz),7.92(6.2Hz) 15.9Hz 15.9H	
F ₃ C Representation of the second of the	+(111,0,0-
B-2- β-2	87(2H d.1
β-2- β-2	B / (E / 1, E, E
e J=16.2Hz),6.96-7.00(2H,m),7.43(1H,d,J=8.4Hz),7.=8.7Hz),7.82(2H,d,J=8.7Hz),7.92(6.2Hz)	5.47(1H,d
7.00(2H,m),7.43(1H,d,J=8.4Hz),7. =8.7Hz),7.82(2H,d,J=8.7Hz),7.92(6.2Hz)	
6.2Hz)	75(2H,d,J
	1H,d,J=1
B-2- B-2 Me S H.H H OEt H H 215-216 1.50(3H.t.J=7.2Hz).2.31(3H.s).4.1	
+P = +P = 4 $+m = + +m = + +m = + +m = +m = +m = +m$	6(3H,q,J
28 =7.2Hz),4.20(2H,s),6.39(1H,d,J=1	
99(1H,d,J=1.2Hz),7.10(1H,dd,J=1	
F ₃ C Hz),7.44(1H,d,J=7.8Hz),7.70(1H,d	
z),7.74(2H,d,J=8.7Hz),7.82(2H,d,J	I=8.7Hz)
R-2- R-2 Me S H.H OM H Br H 246-247 2.30(3H,s),3.86(3H,s),4.18(2H,s).6	270/1112
29 J=15.9Hz),7.39(1H,s),7.51(1H,d,J) 7.58(1H,s),7.90(4H,s)	–10.5H2),
F ₃ C	
β-2- β-2 Me S H,H H OM H O 176.5- 2.301(3H,S), 3.879(6H,s), 4.527(2	2H.s).
30 e Me 178 (6.637(1H,d,J=16.2Hz),	
6.761(2H,s),7.848(1H,d,J=16.2Hz),
7.906(2H,d,J=8.7Hz), 7.964(2H,d,	
β-2- β-2 Me S H,H Br H H H 220.5- 2.310(3H,S), 4.515(2H,s),	
31 222 6.535(1H,d,J=15.9Hz),	
7.535(1H,d,J=15.9Hz),	
7.615(1H,d,J=8.4Hz),7.75-8.10(6	
β-2- β-2 Me S H,H OEt H Br H 228-229 1.36(3H,t,J=6.6Hz),2.30(3H,s),4.1	H,m),
32 =6.6Hz),4.21(2H,s),6.69(1H,d,J=1	H,m),
F ₃ C 37(1H,s),7.50(1H,d,J=15.6),7.56(1	H,m), 4(2H,q,J
(4H,s)	H,m), 4(2H,q,J 5.6Hz),7.

[0226]

【表93】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-2- 33	β-2	F ₃ C	Me	S	H,H	Br	H	Br			2.33(3H,S),4.16(2H,s),6.41(1H,d,J=15.9Hz) ,7.47(1H,d,J=15.9Hz),7.74(2H,br.s),7.75(2 H,d,J=8.4Hz),7.81(2H,d,J=8.7Hz)
β-2- 34	β-2	cı	Н	S	H,H	н	Ме	H	H		2.41(3H,S).4.20(2H,s),6.33(1H,d,J=15.9Hz) ,6.53(1H,s),7.19-7.21(2H,m),7.40- 7.45(2H,m),7.51(1H,d,J=9.0Hz),7.65- 7.70(2H,m),7.98(1H,d,J=15.9Hz)
β -2- 35	β-2	cı	H	S	H,H	OM e	н	I			3.94(3H,S),4.19(2H,s),6.39(1H,d,J=15.9Hz),6.54(1H,s),7.08(1H,dd,J=7.8,1.5Hz),7.32(1 H,d,J=8.1Hz),7.40-7.44(2H,m),7.62- 7.67(2H,m),7.68(1H,d,J=15.9Hz)
β-2- 36	β-2	F ₃ C	Me	S	H,H	OM e	Н	O Me	I	242.5	2.28(3H,S), 3.78(6H,s), 4.04(2H,s), 6.66(1H,d,J=15.9Hz), 6.98(2H,brs),7.54(1H,d,J=15.9Hz), 7.91(4H,brs)
β-2- 37	β-2	F ₃ C	Me	S	H,H	OM e	Н	CI	H	235.5	2.30(3H,S), 3.06(3H,s),4.17(2H,s), 6.71(1H,d,J=15.9Hz), 7.36(1H,brs),7.45(1H,brs),7.52(1H,d,J=15. 9Hz),7.80-8.00(4H,m)
β-2- 38	β-2	F ₃ C	H	S	н,н	H	Ме	Н	H	179.5- 181.5	2.40(3H,s),4.12(2H,s),6.31(1H,d,J=15.9Hz), 6.66(1H,s),7.19- 7.21(2H,m),7.50(1H,d,J=8.4),7.72(2H,d,J=8.1Hz),7.87(2H,d,J=8.1Hz),7.90(1H,d,J=15.9)
β-2- 39	β-2	F ₃ C	Н	S	H,H	OM e	Н	H	H	207-209	3.95(3H,s),4.21(2H,s),6.39(1H,d,J=16.2Hz), 6.68(1H,s),7.02(1H,d,J=1.5Hz),7.08(1H,dd, J=1.5Hz,8.1Hz),7.33(2H,d,J=8.1Hz),7.62(1 H,d,J=16.2Hz),7.72(2H,d,J=8.1Hz),7.86(2H ,d,J=8.1)
β-2- 40	β-2	F ₃ C	CH2OE t	s .	н,н	OM e	Н	Н	Н	188-190	1.27(3H,t,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.9 4(3H,s),4.28(2H,s),4.58(2H,s),6.41(1H,d,J= 15.9Hz),7.00(1H,d,J=1.5Hz),7.12(1H,dd,J= 7.8,1.5Hz),7.45(1H,d,J=8.1Hz),7.72(1H,d,J=15.9Hz),7.75(2H,d,J=8.1Hz),7.86(1H,d,J=8.1Hz)
β-2- 41	β-2	F ₃ C	CH2OE t	0	н,н	OM e	Н	Н	H	203-204	1.21(3H,t,J=7.2Hz),3.59(2H,q,J=7.2Hz),3.9 10(3H,s),4.61(2H,s),5.35(2H,s),6.31(1H,d,J =15.9Hz),7.06- 7.14(3H,m),7.64(1H,d,J=15.9Hz),7.77(2H,d, J=8.1Hz),7.94(1H,d,J=8.1Hz)
β-2- 42	β-2	F ₃ C	CH2OE t	0	н,н	Н	Me	Н	Н	189-191	1.22(3H,t,J=7.2Hz),2.46(3H,s),3.59(2H,q,J =7.2Hz),4.55(2H,s),5.29(2H,s),6.30(1H,d,J= 15.9Hz),6.88- 6.93(2H,m),7.59(1H,d,J=8.7Hz),7.77(2H,d,J =8.1Hz),7.94(2H,d,J=8.1Hz),8.01(1H,d,J=1 5.9Hz)
β-2- 43	β-2	F ₃ C	Ме	S	H,H	CF3	Н	Н	H		2.28(3H,S), 4.57(2H,s), 6.69(1H,d,J=15.9Hz), 7.64(1H,d,J=15.9Hz), 7.82-8.08(7H,m),
β-2- 44	β-2	F ₃ C	Ме	S	H,H	Н	CF3	Н	Н	189-190	2.30(3H,S), 4.56(2H,s), 6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m), 7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz), 8.01(1H,d,J=8.4Hz)

[0227]

【表94】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-2- 45	β−2	F ₃ C	Me	S	H,H	OM e	Н	Н	Me		2.30(3H,s),2.36(3H,s),3.91(3H,s),4.17(2H, s),6.31(1H,d,J=15.9Hz),7.03(1H,s),7.24(1 H,s),7.72-7.83(4H,m), 7.90(1H,d,J=15.9Hz)
β-2- 46	β-2	F ₃ C	CH2O Me	S	H,H	OM e	Н	Н	Н		3.45(3H,s),3.93(3H,s),4.26(2H,s),4.53(2H, s),6.39(1H,d,J=15.9Hz),7.01- 7.11(2H,m),7.42(1H,d,J=7.8Hz),7.63(1H,d, J=15.9Hz),7.76(2H,d,J=8.1Hz),7.86(2H,d, J=8.1Hz)
β-2- 47	β-2	F ₃ C	Me	S	н,н	Ι	Cl	Н	Н		2.29(3H,S), 4.52(2H,s), 6.61(1H,d,J=15.9Hz), 7.41(1H,dd,J=8.4Hz,1.8Hz),7.63(1H,d,J=1 .8Hz),7.81(1H,d,J=15.9Hz),7.89(1H,d,J=8. 4Hz), 7.91(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz),
β-2- 49	β-2	F ₃ C	Me	S	н,н	н	F	Н	Н	222	2.29(3H,S), 4.51(2H,s), 6.56(1H,d,J=16.2Hz), 7.24-7.47(2H,m), 7.59(1H,d,J=16.2Hz), 7.78(1H,t,J=8.1Hz), 7.90(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz)
β-2- 50	β-2	F ₃ C	Me	S	H,H	Ме	H	Ме	Н	241- 241.5	2.19(3H,S), 2.39(6H,s),4.01(2H,s), 6.53(1H,d,J=14.4Hz), 7.40– 7.54(3H,m),792(4H,brs)
β-2- 51	β-2	F ₃ C	Me	S	H,H	CI	H	Н	Н		2.33(3H,s),4.24(2H,s),6.39(1H,d,J=15.9Hz),7.41(1H,dd,J=1.5Hz),8.4Hz),7.53- 7.55(2H,m),7.56(1H,d,J=15.9Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz)
β-X-1		F ₃ C	CF3	S	H,H	OM e	Ϊ	Ή	H	l	3.94(3H,s),4.26(2H,s),6.42(1H,d,J=16.2Hz))7.01(1H,d,J=1.5Hz),7.09(1H,dd,J=7.8Hz, 1.5Hz),7.43(1H,d,J=7.8Hz),7.71(1H,d,J=1 6.2Hz),7.77(2H,dJ=8.7Hz),7.83(2H,d,J=8. 7Hz)
β-X-2		F ₃ C	CH2O CH2GF 3	S	Н,Н	OM e	Н	Н	H	212- 214	3.92(3H,s),3.97(2H,q,J=8.7Hz),4.25(2H,s), 4.77(2H,s),6.39(1H,d,J=16.2Hz)),7.00(1H, d,J=1.5Hz),7.09(1H,dd,J=7.8Hz,1.5Hz),7. 40(1H,d,J=7.8Hz),7.62(1H,d,J=16.2Hz),7. 76(2H,dJ=8.1Hz),7.85(2H,d,J=8.1Hz)
β-X-3		F ₃ C	CH2O(CH2)2 OMe	S	Н	OM e	Н	H	Ħ	146- 148	3.39(3H,s),3.57-3.60(2H,m),3.69-3.72 (2H,m),3.93(3H,s),4.29(2H,s),4.66(2H,s),6. 40(1H,d,J=15.9Hz)),6.99(1H,d,J=1.8Hz),7. 11(1H,dd,J=7.8Hz,1.5Hz),7.45(1H,d,J=7.8 Hz),7.71(1H,d,J=15.9Hz),7.74(2H,dJ=8.4 Hz),7.89(2H,d,J=8.4Hz)
β-X-4		F ₃ C	CH2On Pr	S	н,н	OM e	Н	Н	Н	1	0.96(3H,t,J=7.5Hz),1.60-1.72(2H,m), 3.51(2H,d,J=6.6Hz),3.94(3H,s),4.28(2H,s), 4.57(2H,s),6.41(1H,d,J=16.2Hz)),7.00(1H, d,J=1.8Hz),7.12(1H,dd,J=7.8Hz,1.8Hz),7. 45(1H,d,J=7.8Hz),7.72(1H,d,J=16.2Hz),7. 75(2H,dJ=8.4Hz),7.87(2H,d,J=8.4Hz)
β-X-5		F ₃ C	GH2On Pr	S	H,H	Н	OMe	Н	ОМе	166- 167	0.97(3H,t,J=7.5Hz),161-1.72(2H,m), 3.52(2H,d,J=6.6Hz),3.89(6H,s),4.33(2H,s), 4.57(2H,s),6.63(2H,s),6.82(1H,d,J=16.5Hz),7.75(2H,dJ=8.4Hz),7.85(2H,d,J=8.4Hz),8 1.14(1H,d,J=16.5Hz)

[0228]

【表95】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-X-6		F ₃ C	Et	S	Н,Н	H		н	OMe		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3. 89(6H,s),4.25(2H,s),6.63(2H,s),6.83(1H,d, J=16.5Hz),7.74(2H,dJ=8.4Hz),7.81(2H,d, J=8.4Hz),8.14(1H,d,J=16.5Hz)
β-X-7		F ₃ C	CO2H	S	н,н	н	ОМе	H	OMe	221(d ec)	3.74(2H,s),3.87(6H,s),4.35(2H,s),6.61(2H,s),6.80(1H,d,J=16.2Hz),7.76(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz),8.05(1H,d,J=16.5Hz)
β-X-8		F ₃ C	CH2O CH2cP r	S	н,н	Н	OMe	Н	OMe	165- 167	0.22-0.27(2H,m),0.57-0.63(2H,m),1.06- 1.19(1H,m),3.40(2H,d,J=6.9Hz),3.89(6H,s) ,4.34(2H,s),4.60(2H,s),6.63(2H,s),6.82(1H,d,J=16.2Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz),8.13(1H,d,J=16.2Hz)
β-X-9		F ₃ C	Ме	S	н,н	CI	Н	н	н	219- 220	
β-X- 10		F ₃ C	Me	S	H,H	Н	Ŧ	Ξ	F		2.29(3H,s),4.57(2H,s),6.51(1H,d,J=16.5Hz),7.35(2H,d,J=9.9Hz),7.48(1H,d,J=16.5Hz),7.91(2H,d,J=8.4Hz),7.96(2H,d,J=8.4 Hz)
β-X- 11		F ₃ C	CH2OE t	S	H,H	H	OMe	I	OMe	147- 148	1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. 87(6H,s),4.53 (2H,s), 4.58 (2H,s),6.63 (1H,d,J=16.2Hz),6.76(2H,s),7.84(1H,d,J=16.2Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d,J=8.4Hz)
β-X- 12		F ₃ C	Me	s	н,н	Ме	H	H	H	196- 198	
β-X- 13		F ₃ C	Me	S	H,H	Н	Me	Н	Me	248- 249	2.19(3H,s),2.38(6H,s),4.52(2H,s),6.54(1H,d,J=15.9Hz),7.46(2H,s,),7.48(1H,dJ=15.9Hz),7.92(4H,brs)
β-X- 14		F ₃ C	Ме	S	Н,Н	Н	CI	Н	Н	225- 226),7.41(1H,d,J=8.4Hz),7.63(1H,t,J=1.8Hz), 7.89(1H,d,J=8.4Hz),7.91(2H,d,J=8.7Hz),7. 96(2H,d,J=8.7Hz)
β-X- 15		F ₃ C	Ме	S	H,H	Н	F	Н	Н	221- 222),7.24-7.47(2H,m), 7.59(1H,d,J=16.2Hz),7.78(1H,t,J=8.1Hz)7 .90(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-X- 16		F ₃ C	Ме	S	Н,Н	Ме	Н	Ме	н		d,J=14.4Hz),7.40– 7.54(3H,m),7.92(4H,brs)
β-X- 17		F ₃ C	Ме	S	н,н	Et	Н	Н	Н	199.5	1.14(3H,t,J=7.2Hz),2.28(3H,s),2.66(2H,q, J=7.2Hz),4.41(2H,s),6.52(1H,d,J=15.9Hz), 5 7.50-7.62(4H,m) 7.90(2H,d,J=8.7Hz),7.94(2H,d,J=8.7Hz)
β-X- 18		F ₃ C	CONH2	S	н,н	Н	OMe	H	OMe	226- 227	

[0229]

【表96】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11-1	α-11	F ₃ C	Ме	0	Н,Н	н	Н	н	н	Н	н	н	Ме		2.34(3H,s),3.75(3H,s),4.83(2H,s),5.23(2H,s),6.51(1H,d,J=3.0Hz),6.97(1H,dd,J=2.4,9.0Hz),7.08(1 H,d,J=3.0Hz),7.16(1H,d,J=9.0H z),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=9.0Hz),7.85(2H,d,J=9.0Hz).
α-XX-1		F ₃ C	Me	0	н,н	н	н	н	Ме	н	н	н	Et		1.21(3H,t,J=7.2Hz),1.80(3H,d,J=7.2H,z),2.34(3H,s),4.16(2H,q,J=7.2Hz),5.0 7(1H,q,J=7.2Hz),5.22(2H,s),6.51(1H,d,J=3.0Hz),6.95(1H,dd,J=8.7,2.4Hz), 7.25(3H),7.74(2H,d,J=8.7Hz),7.84(2H,d,J=8.7Hz)
α-XX-2		F ₃ C	Me	0	H,H	Н	Н	Н	nP r	Н	Н	Н	Et		0.93(3H,t,J=7.2Hz),1.22(3H,t,J=7.2Hz),1.23(2H),2.17(2H),2.34(3H,s),4.15(2H,q,J=7.2Hz),4.92(1H,dd,J=9.3,6.3Hz),5.22(2H,s),6.51(1H,d,J=3.3Hz),6.95(1H,dd,J=9.0,2.4Hz),7.26(3H),7.74(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz)
α-XX-3		F ₃ C	CH2OEt	Ø	н,н	Н	н	Н	Н	Н	Н	н	Me		1.25(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3.74(3H,s),4.18(2H,s),4.47(2H,s),4.83(2H,s),6.50(1H,dd,J=3.0,0.9Hz),7.09(1H,d,J=3.0Hz),7.17(1H,d,J=8.7Hz),7.31(1H,dd,J=8.7,1.8Hz),7.74(3H),7.88(2H,d,J=8.7Hz)
α-XX-4		F ₃ C	CH2OnP r	s	Н,Н	Н	н	Н	н	Н	н	н	Ме		0.94(3H,t,J=7.2Hz),1.63(2H),3.46(2H, t,J=6.6Hz),3.74(3H,s),4.18(2H,s),4.46 (2H,s),4.83(2H,s),6.50(1H,dd,J=3.0,0. 9Hz),7.09(1H,d,J=3.0Hz),7.17(1H,d,J =8.4Hz),7.30(1H,dd,J=8.4,1.8Hz),7.74 (3H),7.89(2H,d,J=8.7Hz)
α-XX-5	-	CI	Ме	0	н,н	Ме	Н	н	н	н	Н	н	Ме		2.33(3H,s),2.45(3H,s),3.74(3H,s),4.82 (2H,s),5.17(2H,s),6.53(1H,d,J=3.3Hz),7.04(2H,s),7.08(1H,d,J=3.3Hz),7.46(2H,d,J=8.7Hz),7.67(2H,d,J=8.7Hz)
α-XX-6		CI	Ме	s	н,н	н	н	н	Н	Н	н	н	Ме		2.18(3H,s),3.74(3H,s),4.07(2H,s),4.83 (2H,s),6.50(1H,dd,J=3.3,0.6Hz),7.08(1H,d,J=3.3Hz),7.17(1H,d,J=8.7Hz),7. 29(1H,dd,J=8.7,1.8Hz),7.44(2H,d,J=8.7Hz),7.62(2H,d,J=8.7Hz),7.74(1H,d,J=1.8Hz)
α-XX-7	7	F ₃ CO	Me	0	н,н	Ме	н	Н	н	н	Н	н	Ме		2.34(3H,s),2.45(3H,s),3.74(3H,s),4.8 2(2H,s),5.17(2H,s),6.53(1H,d,J=3.0H z),7.04(2H,s),7.08(1H,d,J=3.0Hz),7.3 4(2H,d,J=9.0Hz),7.76(2H,d,J=9.0Hz)

[0230]

【表97】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-XX-8		F ₃ C	CH≃NOE t	0	н,н	Ме	Н	н	н	н	н	Н	Ме		1.25(3H.t,J=7.2Hz),2.47(3H,s),3.75(3 H,s),4.13(2H,q,J=7.2Hz),4.83(2H,s),5. 35(2H,s),6.53(1H,dd,J=3.3,0.6Hz),7.0 7(3H),7.77(2H,d,J=8.1Hz),7.93(2H,d, J=8.1Hz),8.23(1H,s)
α-XX-9		F ₃ C	CH2OnP r	o	н,н	н	н	н	Н	н	н	н	Ме		0.92(3H,t,J=7.2Hz),1.57- 1.68(2H,m),3.50(2H,d,J=6.6Hz),3.74(3H,s),4.57(2H,s),4.83(2H,s),5.28(2H,s),6.51(1H,dd,J=3.3Hz,J=0.9Hz)),6.96(1H,dd,J=8.7Hz,J=2.4Hz),7.08(1H,d,J=3.3Hz),7.16(1H,d,J=9.0Hz),7.26(1H,d,J=0.9Hz),7.76(2H,d,J=8.1Hz),7.97(2H,d,J=8.1Hz),7.12(2Hz),7.1
α-XX- 10		F ₃ C	CH2OC H2cPr	S	Н,Н	Ι	н	н	н	н	н	н	Ме		0.19-0.24(2H,m),0.53- 0.60(2H,m),1.03- 1.16(1H,m),3.35(2H,d,J=7.2Hz),3.74(3H,s),4.19(2H,s),4.48(2H,s),4.83(2H,s),6.50(1H,dd,J=3.3Hz,0.9Hz),7.08- 7.31(3H,m),7.72- 7.75(3H,m),7.90(1H,d,J=8.7Hz)
α-XX- 11		F ₃ C	Me	S	н,н	н	н	н	н	н	Me	Ме	Ме		2.18(3H,s),2.19(3H,s),2.29(3H,s),3.7 3(3H,s),4.08(2H,s),4.76(2H,s),7.07(1 H,d,J=8.7Hz),7.22(1H,dd,J=8.7Hz,J= 1.5Hz),7.57(1H,d,J=1.5Hz),7.71- 7.81(4H,m)
α-XX- 12		F ₃ C	CH2OEt	S	н,н	Н	н	н	н	Н	Me	Ме	Ме		1.24(3H,t,J=6.9Hz),2.18(3H,s),2.29(3 H,s),3.56(2H,q,J=6.9Hz),.3.73(3H,s),4 .17(2H,s),4.45(2H,s),4.75(2H,s),7.06(1H,d,J=8.4Hz),7.22(1H,dd,J=8.4Hz,J =1.5Hz),7.58(1H,d,J=1.5Hz),7.74(2H,d,J=8.1Hz),788(2H,d,J=8.1Hz)
α-XX- 13		F ₃ C	CH=NOE t	s	н,н	н	н	Н	Н	н	н	н	Ме		
α-XX- 14		cı	CH2OEt	s	Н,Н	Me	н	Н	Н	н	Н	н	Ме		
α-XX- 15		F ₃ C	Me	0	н,н	н	н	Н	н	Н	nPr	н	Ме		
α-XX- 16		F ₃ C	Me	0	н,н	Н	Н	Н	Н	н	Et	Н	Ме		
α-XX- 17		F ₃ C	Me	0	H,H	н	Н	Н	Н	Н	CN	н	Me		
α-XX- 18		F ₃ C	Me	s	н,н	н	н	н	Н	н	н	H	Ме		

[0231]

【表98】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-XX- 19	LIMA	F ₃ C	Me	0	н,н	Н	н	Н	н	Н	Н	Me	Me		
α-XX- 20			CH2OEt	0	н,н	н	н	Н	Н	н	Н	н	Me		
α-XX- 21		F ₃ C	Me	0	н,н	н	OMe	н	H	Н	н	н	Me		
α-XX-		F ₃ C	Wie		11,11	''	Owie	''	-	-	, n	П	IVIC		
22		F ₃ C	Ме	0	H,H	Ме	н	н	Н	н	н	н	Ме	_	
α-XX- 23		F ₃ C	CH2OEt	0	н,н	Ме	Н	н	Н	Н	Н	н	Ме		
α-XX- 24		F ₃ C	Ме	0	н,н	н	Н	н	н	Н	Ме	н	Me		
α-XX- 25		F ₃ C	Me	0	н,н	Et	н	Н	Ħ	н	Н	н	Me		
α-XX- 26		F ₃ C	Ме	0	н,н	Ме	н	н	н	н	Me	н	Me		
αXX- 27		F ₃ C	Ме	S	н,н	ОМе	н	н	н	н	н	н	Ме		
α-XX- 28		F ₃ C	Ме	0	н,н	GH2 OMe	Н	Н	Ħ	Н	Н	н	Ме		
α-XX- 29		F ₃ C	GH2OEt	s	н,н	Me	н	Н	н	н	Н	Н	Ме		
α-XX- 30		F ₃ C	Ме	0	н,н	н	Н	Н	Н	н	CH=N OMe	н	Ме		
α-XX- 31		F ₃ C	Ме	0	н,н	н	н	Н	н	н	CH=N OEt	н	Me		
α-XX- 32		F ₃ C	Ме	S	н,н	Me	Н	н	н	н	Н	Н	Ме		
α-XX- 33		cı	Me	0	н,н	Me	Н	н	н	н	Me	н	Ме		

[0232]

【表99】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-XX- 34		F ₃ C	GH2OEt	0	н,н	Ме	н	н	н	H.	Me	н	Me		
α-XX- 35		F ₃ C	н	s	H, p- FC6H4	н	н	Н	н	н	Н	н	Ме		3.74 (3H, s), 4.82 (2H, s), 5.49 (1H, s), 6.48 (1H, dd, J=3.3, 0.9 Hz), 6.68 (1H, s), 7.01 (2H, dd, J=8.7, 8.7 Hz), 7.08(1H,d,J=3.3Hz),7.11(1H,dd,J=8.4, 0.9 Hz),7.20 (1,dd,J=8.4,1.2 Hz), 7.41 (2H, dd, J=8.7, 5.4 Hz), 7.67–7.72 (3H, m), 7.85 (2H, d, J=8.4 Hz)
α-XX- 36		F ₃ C	CH=NOn Pr	0	н,н	Me	н	Н	Н	н	н	Н	Ме		0.91 (3H, t, J=7.5 Hz), 1.62-1.70 (2H, m), 2.48 (3H, s), 3.75 (3H, s), 4.03 (2H,t,J=6.9Hz),4.84 (2H, s), 5.36 (2H, s), 6.54 (1H, d, J=3.3 Hz), 7.03-7.10 (3H, m), 7.78 (2H, d, J=8.7 Hz), 7.94 (2H, d, J=8.7 Hz), 8.25 (1H, s)

【0233】 【表100】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-1	F ₃ C	Ме	S	Н,Н	Н	H	н	Ħ	Н	Н	Н
AA-2	F ₃ C	Me	0	Н,Н	H	Н	Н	Ме	Н	Н	Н
AA-3	F ₃ C	Ме	S	H,H	Н	Н	Н	Ме	Н	Н	н
AA-4	F ₃ C	Me	0	H,H	Н	Н	Н	Et	Н	Н	Н
AA-5	F ₃ C	Me	S	H,H	Н	Н	Н	Et	Н	Н	Н
AA-7	F ₃ C	Ме	S	н,н	Н	Н	н	nPr	Н	Н	Н

[0234]

【表101】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA8	F ₃ C	Me	0	Н,Н	Н	Н	Н	Ме	Ме	Н	Н
AA-9	F ₃ C	Ме	S	Н,Н	Н	I	Н	Ме	Ме	Н	H
AA-11		Ме	S	н,н	Н	H	H	Н	Н	Н	Ме
AA-12	F ₃ C	Ме	0	н,н	Н	I	Н	Н	H	Н	OMe
AA-13	F ₃ C	Ме	S	H,H	Н	Н	H	Н	Н	Н	OMe
AA-14	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	Ме	Ме
AA-16	F ₃ C	Ме	0	H,H	Н	Н	Н	H	Н	Me	H
AA-17	F ₃ C	Me	S	H,H	Н	Н	Н	Н	H	Ме	П
AA-19	F ₃ C	Ме	S	H,H	Н	Н	H	Н	Н	Et	Н
AA-21	F ₃ C	Ме	S	H,H	H	Н	Н	H	Н	nPr	Н
AA-22	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
AA-23	F ₃ C	Me	S	н,н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
AA-24	F ₃ C	Ме	0	н,н	Н	Н	Н	H	Н	CH2CONH2	H
AA-25	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	Н	CH2CONH2	Н
AA-26	F ₃ C	Ме	0	H,H	Н	H	Н	Н	Н	CH2CH2OH	Н

【表102】

No	RI	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-27	F ₃ C	Ме	S	Н,Н	Н	H	Н	Н	Н	CH2CH2OH	H
AA-28	F ₃ C	Ме	0	н,н	H	H	Н	н	H	CH2CH2OMe	Н
AA-29	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	Н	CH2CH2OMe	Н
AA-30	F ₃ C	Ме	0	Н,Н	Н	ОМе	Н	Н	Н	Н	Н
AA-31	F ₃ C	Ме	S	H,H	Н	ОМе	Н	Н	H	H	Н
AA-32	F ₃ C	Ме	0	н,н	Н	Ме	Н	Н	Н	Н	H
AA-33	F ₃ C	Ме	S	H,H	H	Ме	Н	Н	Н	Н	Н
AA-34	F ₃ C	Me	0	н,н	Н	Н	Ме	Н	н	Н	Н
AA-35	F ₃ C	Ме	S	H,H	Н	Н	OMe	Н	Н	Н	Н
AA-36	F ₃ C	Me	0	H,H	Н	Н	ОМе	Н	Н	Н	Н
AA-37	F ₃ C	Ме	S	Н,Н	Н	Н	Ме	Н	Н	Н	Н
AA-38	F ₃ C	MeOGH 2	0	H,H	Н	Н	Н	Н	Н	Н	Н
AA-39	F ₃ C	MeOCH 2	S	H,H	Н	Н	Н	Н	Н	Н	Н
AA-40	F ₃ C	EtOCH2	0	Н,Н	Н	Н	Н	H	Н	Н	Н

【表103】

No	合成法	R1	R2	X1	R3.R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-3-1	β-3	F ₃ C	Me	0	н,н	I	Н	Н	H	H	н	Ħ	159-	2.34(3H,s),4.88(2H,s),5.23(2H,s),6.52 (1H,d,J=3.0Hz), 6.98(1H,dd,J=2.4,9.0Hz),7.08(1H,d,J=3.0Hz),7.17(1H,d,J=9.0Hz),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=8.4Hz),7.84(
β-4-1	β-4	F ₃ C	Me	S	Н,Н	н	н	Н	Н	н	Н	Н		2H,d,J=8.4 Hz). 2.23(3H,s),4.18(2H,s),4.79(2H,s),6.36 (1H,d,J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S),7.90(2H,d,J=9.0Hz),7.94(2H,d,J=9.0 Hz).
β-XX-1		F ₃ C	Me	0	Н,Н	Н	Н	Н	Me	H	H	Н	ŧ	1.70(3H,d,J=7.2Hz),2.31(3H,s),5.24(2H,s),5.27(1H,q,J=7.2Hz),6.40(1H,d,J=3.0Hz),6.88 (1H,dd,J=9.0,2.4Hz),7.25(1H,d,J=2.4Hz),7.35(1H,d,J=9.0Hz),7.43(1H,d,J=3.0Hz),7.92(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-XX-2		F ₃ C	Ме	0	Н,Н	Н	Н	Н	nPr	Н	Н	Н		0.84(3H,t,J=7.2Hz),1.10(2H),2.11(2H,q,J=7 .2Hz),2.31(3H,s),5.13(1H,t,J=7.2Hz),5.24(2 H,s),6.41(1H,d,J=3.0Hz),6.88(1H,dd,J=9.0, 2.4Hz),7.25(1H,d,J=2.4Hz),7.40(1H,d,J=9.0 Hz),7.42(1H,d,J=3.0Hz),7.92(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-XX-3		F ₃ C	CH2OEt	S	H,H	Н	Н	Н	Н	Н	Н	Н	1	1.13(3H,t,J=6.9Hz),3.51(2H,q,J=6.9Hz),4.2 2(2H,s),4.49(2H,s),4.92(2H,s),6.39(1H,d,J= 2.7Hz),7.18(1H,dd,J=8.4,1.8Hz),7.34(2H),7. 65(1H,d,J=1.8Hz),7.93(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz)
β-XX-4		F ₃ C	CH2OnPr	S	Н,Н	Н	Н	Н	Н	Н	Н	Н	1	0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=6. 6Hz),4.23(2H,s),4.49(2H,s),5.00(2H,s),6.40(1H,d,J=3.0Hz),7.19(1H,dd,J=8.4,1.8Hz),7.3 6(2H),7.66(1H,d,J=1.8Hz),7.92(2H,d,J=8.7 Hz),7.98(2H,d,J=8.7Hz)
β-XX-5		CI	Ме	0	н,н	Me	Η	Н	Н	H	Н	H		2.29(3H,s),2.33(3H,s),4.94(2H,s),5.17(2H,s),6.40(1H,d,J=3.3Hz),7.03(1H,d,J=9.0Hz),7.17(1H,d,J=9.0Hz),7.29(1H,d,J=3.3Hz),7.63(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
β-XX-6		CI	Ме	S	н.н	н	Н	Н	Н	н	H	Н	164 166	2.18(3H,s),4.18(2H,s),4.99(2H,s),6.41(1H,d, J=3.0Hz),717(1H,dd,J=8.4,1.8Hz),7.35(2H), 7.60(2H,d,J=8.7Hz),7.64(1H,d,J=1.8Hz),7.7 2(2H,d,J=8.7Hz)
β-XX-7		F ₃ CO	Ме	0	H,H	Ме	Н	Н	Н	н	Н	Н	178- 180	2.30(3H,s),2.33(3H,s),4.94(2H,s),5.18(2H,s) ,6.40(1H,dd,J=3.3,0.6Hz),7.03(1H,d,J=9.0H z),7.17(1H,d,J=9.0Hz),7.29(1H,d,J=3.3Hz), 7.56(2H,d,J=8.7Hz),7.90(2H,d,J=8.7Hz)

[0237]

【表104】

No	合成法	R1	R2	X1	R3.R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-XX-8	H 397/A	F ₃ C	CH=NOEt	0	Н,Н	Ме	Н	Н	Н	Н	H		174	1.17(3H,t,J=6,9Hz),2.32(3H,s),4.06(2H,q,J=6,9Hz),4.95(2H,s),5.34(2H,s),6.40(1H,d,J=2.7Hz),7.02(1H,d,J=8.7Hz),7.17(1H,d,J=8.7Hz),7.29(1H,d,J=2.7Hz),7.95(2H,d,J=8.4Hz),8.10(2H,d,J=8.4Hz),8.10(2H,d,J=8.4Hz),8.36(1H,s)
β-XX-9		F ₃ C	CH2OnPr	0	H,H	Н	Н	H	H	H	H	Н	132	0.92(3H,t,J=7.2Hz),1.56- 1.68(2H,m),3.49(2H,d,J=6.6Hz),4.57(2H,s), 4.87(2H,s),5.28(2H,s),6.52(1H,d,J=3.0Hz),6 .96(1H,dd,J=8.7Hz,J=2.4Hz),7.07(1H,d,J=3 .0Hz),7.15(1H,d,J=8.7Hz),7.26(1H,d,J=2.4Hz) z),7.76(2H,dJ=8.4Hz),7.97(2H,d,J=8.4Hz)
β-XX- 10		F ₃ C	CH2OCH2 cPr	S	н,н	Н	н	Н	Н	Н	н	Н	142	0.19-0.24(2H,m),0.53-0.60(2H,m),1.04- 1.16(1H,m),3.35(2H,d,J=6.9Hz),4.18(2H,s), 4.50(2H,s),4.85(2H,s),6.50(1H,d,J=3.3Hz),7 .07(1H,d,J=3.3Hz),7.16(1H,d,J=8.4Hz),7.29 (1H,dd,J=8.4Hz,1.8Hz),7.72- 7.75(3H,m),7.90(1H,d,J=8.7Hz)
β-XX- 11		F ₃ C	Me	s	Н,Н	н	Н	Н	Н	Н	Ме	Me	133	2.17(3H,s),2.20(3H,s),2.28(3H,s),4.07(2H,s),4.77(2H,s),7.05(1H,d,J=8.4Hz),7.21(1H,dd,J=8.4Hz,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.7 2(2H,d,J=8.4Hz)
β-XX- 12		F ₃ C	CH2OEt	S	н,н	H	н	Н	Н	Н	Ме	Ме		1.24(3H,t,J=6,9Hz),2.17(3H,s),2.28(3H,s),3. 56(2H,q,J=6,9Hz),4.17(2H,s),4.46(2H,s),4.7 7(2H,s),7.06(1H,d,J=8.1Hz),7.23(1H,dd,J=8.1Hz,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.74(2H,d,J=8.1Hz),7.87(2H,d,J=8.1Hz)
β-XX- 13		F ₃ C	CH=NOEt	S	н,н	Н	Н	Н	Н	H	Н	Н	159- 160	
β-XX- 14		CI	CH2OEt	S	Н,Н	Ме	Н	Н	Н	Н	н	Н	170- 172	
β-XX- 15		F ₃ C	Ме	0	H,H	н	Н	Н	Н	Н	nPr	Н	163- 164	
β-XX- 16		F ₃ C	Ме	0	H,H	Н	Н	Н	Н	Н	Et	H	145- 147	
β-XX- 17	-	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	GN	Н	207- 209	
β-XX- 18	-	F ₃ C	Me	s	н,н	Н	н	Н	Н	Н	Н	H	208- 209	J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S),7.90(2H,d,J=9.0Hz),7.94(2H,d,J=9.0 Hz).
β-XX- 19		F ₃ C	Ме	0	H,H	Н	Н	F	i F	H	Н	Me	204 205	

[0238]

【表105】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-XX- 20	and 1 Septemb	F ₃ C	CH2OEt	0	Н,Н	Н	Н	Н	Н	H	Н	H	144	1.24(3H,t,J=7.0Hz),3.60(2H,q,J=7.0Hz),4.5 8(2H,s),4.88(2H,s),5.28(2H,s),6.52(1H,d,J= 3.0Hz),6.97(1H,dd,J=3.0Hz,9.0Hz),7.08(1H,d,J=3.0Hz),7.16(1H,d,J=9.0Hz),7.26(1H,d,J=3.0Hz),7.76(2H,d,J=7.8Hz),7.96(2H,d,J=7.8Hz).
β-XX- 21		F ₃ C	Me	0	н,н	Н	OMe	H	н	Н	Н	Н	189	2.38(3H,s),3.91(3H,s),4.86(2H,s),5.25(2H,s),6.47(1H,d,J=3.0Hz),6.74(1H,s),6.97(1H,d,J=3.03Hz),7.28(1H,s),7.74(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),7.
β-XX- 22		F ₃ C	Me	0	н,н	Ме	Н	Н	H	н	Н	Н	203	2.30(3H,s),2.34(3H,s),4.95(2H,s),5.20(2H,s),6.41(1H,d,J=3.0Hz),7.04(1H,d,J=8.7Hz),7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.93(2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-XX- 23		F ₃ C	CH2OEt	О	н,н	Ме	н	Н	н	н	Н	Н	197	1.23(3H,t,J=6.9Hz),2.34(3H,s),3.53(2H,q,J =6.9Hz),4.59(2H,s),4.95(2H,s),5.23(2H,s),6. 41(1H,d,J=3.0Hz),7.04(1H,d,J=9.0Hz),7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.97(2H,d,J=8.1Hz),8.05(2H,d,J=8.1Hz).
β-XX- 24		F ₃ C	Ме	0	H,H	Н	H	Н	Н	H	Ме	Н	161	2.30(3H,s),2.35(3H,s),4.81(2H,s),5.24(2H,s),6.84(1H,s),6.96(1H,dd,J=2.4Hz,8.7Hz),7.18(1H,d,J=2.4Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz).
β-XX- 25		F ₃ C	Me	0	Н,Н	Et	Н	H	Н	Н	H	Н		1.25(3H,t,J=7.5Hz),2.38(3H,s),2.93(2H,q,J =7.2Hz),4.88(2H,s),5.20(2H,s),6.56(1H,d,J= 3.0Hz),7.06- 7.12(3H,m),7.75(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz).
β-XX- 26		F ₃ C	Ме	0	H,H	Me	Н	Н	Н	н	Ме	Н	119- 121	2.37(3H,s),2.49(3H,s),2.62(3H,s),4.78(2H,s),5.15(2H,s),6.81(1H,s),6.96(1H,d,J=8.7Hz),7.02(1H,d,J=8.7Hz),7.75(2H,d,J=9.0Hz),7.8 6(2H,d,J=9.0 Hz).
β-XX- 27		F ₃ C	Me	S	H,H	ОМе	H	H	Н	Н	Н	Н	167- 168	2.40(3H,s),4.08(3H,s),4.85(2H,s),5.22(2H,s),6.67(1H,d,J=3.3Hz),6.88(1H,d,J=9.0Hz).7.02-7.08(2H,m),7.75(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).
β-XX- 28		F ₃ C	Me	0	H,H	CH2 OMe	Н	Н	Н	Н	Н	Н		2.34(3H,s),3.24(3H,s),4.65(2H,s),4.97(2H,s) ,5.23(2H,s),6.49(1H,d,J=3.3Hz),7.09(1H,d,J=9.0Hz),7.30- 7.38(2H,m),7.93(2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-XX- 29		F ₃ C	CH2OEt	S	Н,Н	Ме	Н	Н	Н	Н	H	Н	182- 184	1.23(3H,t,J=7.2Hz),2.64(3H,s),3.55(2H,q,J=7.2Hz),4.08(2H,s),4.43(2H,s),4.86(2H,s),6. 57(1H,d,J=3.3Hz),7.03(1H,d,J=8.7Hz),7.07(1H,d,J=3.3Hz),7.36(1H,d,J=8.7Hz),7.74(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz).
β-XX- 30		F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	CH= NO Me	Н	196- 198	
β-XX- 31		F ₃ C	. Me	0	H,H	Н	Н	Н	Н	Н	CH= NOE t		170- 171	

[0239]

【表106】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21	i i i i	NMR(CDCl3 or DMSO-d6)
B-XX-			Me	s	H,H	Me	Н	Н	Ι	Н	Н	Н		2.20(3H,s),2.64(3H,s),3.99(2H,s),4.86(2H,s)
32														,6.55(1H,d,J=3.3Hz),7.03(1H,d,J=8.1Hz).7.
		F ₃ C	1					ļ '						07(1H,d,J=3.3Hz),7.35(1H,d,J=8.1Hz),7.73(
		. 3-			· '			L						2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz).
B-XX-			Me	0	н,н	Me	Н	Н	Н	Н	Me	Н		2.33(3H,s),2.48(3H,s),2.61(3H,s),4.77(2H,s)
33								1	ì				122	,5.13(2H,s),6.80(1H,s),6.95(1H,d,J=8.7Hz),
				ŀ]				1			ŀ		7.02(1H,d,J=8.7Hz),7.47(2H,d,J=8.7Hz),7.6
ł		•						1						7(2H,d,J=8.7Hz).
B-XX-			CH2OEt	0	нн	Ме	Н	Н	Н	Н	Me	Н		1.25(3H,t,J=7.0Hz),2.49(3H,s),2.62(3H,s),3.
34]	1		l	1					108	61(2H,q,J=7.0Hz),4.60(2H,s),4.77(2H,s),5.2
						ļ		1		1	ļ			1(2H,s),6.81(1H,s),6.97(1H,d,J=9.0Hz),
		F ₃ C				Ì						1		7.03(1H,d,J=9.0Hz),7.77(2H,d,J=9.0Hz),7.9
	!	1	1			ļ						l		7(2H,d,J=9.0 Hz).
β-XX-			Н	s	Н,	Н	Н	Н	Н	Н	Н	Н		4.98 (2H, s), 5.81 (1H, s), 6.39 (1H, d,
35]		p-	ļ		ł	İ		i		148	J=3.0 Hz), 7.18 (2H, dd, J=9.0, 8.9 Hz).
-					FC6H4		1		1		1			7.18-7.20 (1H, m), 7.33 (1H, d, J=8.7 Hz),
		F ₂ C		l	1			ļ		1	ŀ		1	7.34 (1H, d, J=3.0 Hz), 7.51 (1H, s), 7.60
		J- 3-		1	1	İ	1					i		(2H, dd, J=8.9, 5.4 Hz), 7.65 (1H, s), 7.89
				ı			l		<u> </u>		<u></u>	<u></u>		(2H, d, J=8.4 Hz), 8.09 (2H, d, J=8.4 Hz)
B-XX-			CH=NOnP	0	H,H	Me	Н	Н	Н	H	Н	Н	125.0	0.80 (3H, t, J=7.5 Hz), 1.49-1.61 (2H, m).
36			r	1	1	ļ		ļ	1	ŀ		1	-	2.30 (3H, s), 3.93 (2H, t, J=6.9 Hz), 4.88
			.}					1					127.0	(2H, s), 5.32 (2H, s), 6.38 (1H, d, J=3.3 Hz),
				1		1		}	Ì	1		1	1	6.91 (1H, d, J=8.7 Hz), 7.14 (1H, d, J=8.7
]	[F ₃ C		ŀ				1		1				Hz), 7.27 (1H, d, J=3.3 Hz), 7.93 (2H, d,
			1					1						J=8.4 Hz), 8.08 (2H, d, J=8.4 Hz), 8.35 (1H,
			1	Ι.			<u> </u>				ļ.,,		1	s)

【0240】 【表107】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-2	F ₃ C	Me	S	Н,Н	Н	Н	H	Ме	Н	Н	Н
BB-3	F ₃ C	Me	0	H,H	Н	H	Н	Et	H	Н	Н
BB-4	F ₃ C	Ме	S	H,H	Н	Н	Н	Et	Н	· H	Н
BB-6	F ₃ C	Ме	S	н,н	Н	Н	Н	nPr	Н	Н	Н

【表108】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-7	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Ме	Ме	Н	Н
	F ₃ C	Ме	S	H,H	H	H	H	Ме	Ме	н	Н
BB-10	F ₃ C	Me	S	H,H	H	H	H	Н	H	Н	Ме
BB-11	F ₃ C	Me	0	н,н	Н	Ħ	H	Н	H	Н	OMe
BB-12	F ₃ C	Ме	S	H,H	Н	Н	Н	Н	Н	Н	OMe
BB-13	F ₃ C	Ме	0	H,H	Н	H	Н	Н	Н	Me	Me
BB-15	F ₃ C	Ме	0	н,н	H	Н	Н	Н	Н	Ме	H
BB-16	F ₃ C	Ме	S	H,H	Н	Н	Н	H	Н	Me	Н
BB-18	F ₃ C	Ме	S	н,н	H	H	H	Н	Н	Et	Н
BB-20	F ₃ C	Ме	S	н,н	Н	Н	Н	H	Н	nPr	Н
BB-21	F ₃ C	Ме	0	H,H	Н	Н	Н	Н	Н	CH2CH2NMe2	H
BB-22	F ₃ C	Ме	S	H,H	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
BB-23	F ₃ C	Me	0	H,H	Н	Н	Н	Н	Н	CH2CONH2	Н
BB-24	F ₃ C	Ме	S	Н,Н	Н	H	Н	H	Н	CH2CONH2	Н
BB-25	F ₃ C	Ме	0	Н,Н	H	Н	н	Н	Н	CH2CH2OH	Н

【表109】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-26	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	СН2СН2ОН	Н
BB-27	F ₃ C	Me	0	Н,Н	Н	Н	H	H	Н	CH2CH2OMe	Н
BB-28	F ₃ C	Me	S	Н,Н	Н	H	H	H	H	CH2CH2OMe	Н
BB-29	F ₃ C	Me	0	Н,Н	Н	OMe	Н	H	Н	н	Н
BB-30	F ₃ C	Ме	S	Н,Н	Н	ОМе	H	I	H	Н	Н
BB-31	F ₃ C	Ме	0	H,H	Н	Ме	H	Н	Н	Н	Ή
BB-32	F ₃ C	Ме	S	Н,Н	H	Ме	Н	Ι	H	H	Н
BB-33	F ₃ C	Ме	0	Н,Н	Н	Н	Ме	н	H	Н	H
BB-34	F ₃ C	Me	S	н,н	Н	Н	ОМе	Н	H	Н	Н
BB-35	F ₃ C	Me	0	Н,Н	Н	Н	OMe	Н	Н	Н	
BB-36	F ₃ C	Ме	S	H,H	Н	Н	Ме	Н	Н	Н	H
BB-37	F ₃ C	MeOCH 2	0	Н,Н	Н	H	Н	Н	Н	Н	Н
BB-38	F ₃ C	MeOCH 2	S	Н,Н	Н	Н	Н	Н	Н	Н	Н
BB-39	F ₃ C	EtOGH2	0	H,H	Н	Н	Н	Н	Н	Н	H

[0243]

【表110】

								T
						_ ()		NMR(CDCl3 or DMSO-d6)
No	合成法	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ R ¹⁷	mp	
						P ⁷ H ^o	<u> </u>	
γ-X-1			Me	0	H,H	N= CO ₂ Et		1.28(3H,t,J=7.2Hz),2.33(3H,s),4.25(2H,g,J=7,2Hz),4.86(2H,s),5.25(2H,s),7.02(
		F ₃ C						2H,d,J=8.7Hz),7.71(2H,d,J=9.0Hz),7.7
								4(2H,d,J=8.4Hz),7.83(2H,d,J=9.0Hz)
γ-X-2	,		Me	0	Н,Н	J=N CO₂Et		1.25(3H,t,J=7.2Hz),2.34(3H,s),4.22(2H ,g,J=7.2Hz),5.12(2H,s),5.24(2H,s),7.15(
}								1H,dd,J=9.0Hz,2.4Hz),7.28(2H,m),7.75
		F ₃ C						(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz),7.9
γ-X-3			Me	0	H.H	S=3 00 5:	ļ	7(1H,d,J=0.9Hz)
/ - ^ - 3	ę i		we,		n,n	CO₂Et		
		F ₃ C						
γ-X-4			Ме	S	Н,Н	S-\ CO ₂ Et		
		F ₃ C			ł			
		1-30						
γ-X-5			CH2OEt	0	н.н	Me. CO ₂ Et		1.24(3H,t,J=7.2Hz),1.26((3H,d,J=7.2Hz),2.45(3H,s),3.59(2H,t,J=6.9Hz),3.82(
							l	2H,s),4.17(2H,q,J=7.2Hz),4.58(2H,s),5.
]	F ₃ C						33(2H,s),7.22(1H,d,J=8.7Hz),7.23(1H,d
					i			,J=0.9Hz),7.60(1H,d,J=8.7Hz),7.78(2H,
γ-X-6			CH=NOEt	0	H.H	S-7 00 5	-	d,J=8,7Hz),),796(2H,d,J=8.7Hz) 1.21(3H,t,J=7.2Hz),1.25((3H,d,J=7.2H
/ ^ •			011 11020	ľ	''''	Me CO ₂ Et		z),2.45(3H,s),3.81(1H,d,J=0.9Hz),4.06(
1							l	2H,t,J=7.2Hz),4.17(2H,q,J=6.9Hz),5.43
		F ₃ C]			(2H,s),7.19(1H,d,J=8.7Hz),7.22(1H,d,J =0.9Hz),7.58(1H,d,J=8.7Hz),7.77(1H,d,
		_						J=8.1Hz),7.91(2H,d,J=8.1Hz),),8.21(1H
								,s)
γ-X-7			CH2OEt	s	Н,Н	S CO ₂ Me		1.26(3H,t,J=6.9Hz),2.64(3H,s),3.58(2H
			1					t,J=6.9Hz),3.70(3H,s),3.83(2H,s),4.19(2H,s),4.50(2H,s),7.36(1H,s),7.52-
		F ₃ C	1					7.57(2H,m),7.75
							<u> </u>	(2H,d,J=8.7Hz),),787(2H,d,J=8.7Hz)
γ-X-8			Ме	s	H,H	S CO₂Me		2.25(3H,s),,2.63(3H,s),3.70(3H,s),3.83(2H,d,J=0.9Hz),4.09(2H,s),7,36(1H,s),7,
							1	52-
		F ₃ C			Ì			7.57(2H,m),7.73(2H,d,J=8.4Hz),),780(2
	<u> </u>	<u> </u>	L		<u> </u>			H,d,J=8.4Hz)

[0244]

【表111】

No	合成法	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ R ¹⁷	mp	NMR(CDCi3 or DMSO-d6)
γ-X-9		F ₃ C	Me	0	н,н	CO₂Me		
γ-X-10		F ₃ C	Me	S	Н,Н	O CO₂Me		
γ-X-11		F ₃ C	Me	S	H,H	CO ₂ Me		

【0245】 【表112】

[0246]

【表113】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO₂Me
AAA-5	F ₃ C	Ме	0	Н,Н	HN CO ₂ Me
AAA-6	F ₃ C	Ме	S	н,н	HN CO ₂ Me
AAA-7	F ₃ C	Me	0	Н,Н	Me N CO ₂ Me
AAA-8	F ₃ C	Me	S	H,H	Me CO ₂ Me
AAA-9	F ₃ C	Ме	0	H,H	S CO ₂ Me
AAA-11	F ₃ C	Me	0	H,H	CO ₂ Me
AAA-12	F ₃ C	Me	S	н,н	CO ₂ Me
AAA-13	F ₃ C	Ме	0	н,н	O-N CO ₂ Me
AAA-14	F ₃ C	Me	S	Н,Н	O−N CO₂Me
AAA-15	F ₃ C	Ме	0	H,H	HN-N CO ₂ Me
AAA-16	F ₃ C	Me	S	H,H	HN-N CO ₂ Me
AAA-17	F ₃ C	Me	0	H,H	Me N-N CO ₂ Me
AAA-18	F ₃ C	Ме	S	Н,Н	Me N-N CO ₂ Me

[0247]

【表114】

				———	
No	R1	R2	Χı	R3,R4	R ⁵ X ² CO ₂ Me
AAA-19	F ₃ C	Ме	0	н,н	CO ₂ Me
AAA-20	F ₃ C	Ме	S	Н,Н	CO ₂ Me
AAA-21	F ₃ C	Ме	0	Н,Н	N CO ₂ Me
AAA-22	F ₃ C	Ме	S	Н,Н	N CO ₂ Me
AAA-23	F ₃ C	Ме	0	Н,Н	CO ₂ Me
AAA-24	F ₃ C	Ме	S	H,H	CO ₂ Me
AAA-25	F ₃ C	Ме	0	н,н	CO₂Me
AAA-26	F ₃ C	Ме	S	н,н	CO₂Me
AAA-27	F ₃ C	Ме	0	Н,Н	N_CO₂Me
AAA-28	F ₃ C	Ме	S	н,н	N_CO ₂ Me
AAA-29	F ₃ C	Me	0	Н,Н	N_CO ₂ Me
AAA-30	F ₃ C	Ме	S	н,н	N_CO₂Me
AAA-31	F ₃ C	Ме	0	н,н	N CO₂Me

【0248】 【表115】

No	R1	R2	Х1	R3,R4	R ⁵
AAA-32	F ₃ C	Ме	S	Н,Н	N_CO ₂ Me
AAA-35	F ₃ C	Ме	0	H,H	O CO ₂ Me
AAA-36	F ₃ C	Ме	S	Н,Н	N CO ₂ Me
AAA-37	F ₃ C	Me ·	0	H,H	S CO ₂ Me
AAA-38	F ₃ C	Ме	S	H,H	S CO ₂ Me
AAA-39	F ₃ C	Ме	0	H,H	CO ₂ Me
AAA-40	F ₃ C	Me	S	H,H	CO ₂ Me
AAA-42	F ₃ C	Ме	S	Н,Н	CO ₂ Me
AAA-43	F ₃ C	Ме	0	Н,Н	O CO₂Me
AAA-44	F ₃ C	Ме	S	н,н	O CO ₂ Me
AAA-45	F ₃ C	Ме	0	Н,Н	N_CO ₂ Me
AAA-46	F ₃ C	Ме	S	H,H	N_CO ₂ Me

【0249】 【表116】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-47	F ₃ C	Ме	0	н,н	O CO ₂ Me
AAA-48	F ₃ C	Ме	S	Н,Н	N CO₂Me
AAA-49	F ₃ C	Me	0	н,н	O CO₂Me
AAA-50	F ₃ C	Ме	S	H,H	O _N _CO₂Me

[0250]

【表117】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{8}
 R^{8}

No	合成法	R1	R2	X1	R3,R4	R ⁶ X ² CO ₂ H	mp	NMR(CDCl3 or DMSO-d6)
γ-XX-1		F ₃ C	Ме	0	Н,Н	N= CO ₂ H	222	2.37(3H,s),4.95(2H,s),5.27(2H,s),7.09(2 H,m),7.66(1H,d,J=8.7Hz),7.78(2H,d,J=8. 4Hz),7.88(2H,d,J=8.1Hz),8.11(1H,s)
γ-XX-2		F ₃ C	Ме	0	Н,Н	N CO ₂ H		2.35(3H,s),5.12(2H,s),5.25(2H,s),7.18(1 H,m),7.33(1H,m),7.75- 7.98(4H,m),7.98(1H,s)
γ-XX-3		F ₃ C	Ме	0	H,H	S CO₂H	163- 164	
γ-XX-4		F ₃ C	Ме	S	н,н	S_CO₂H	143	
γ-XX-5		F ₃ C	CH2OEt	0	H,H	Me CO ₂ H	181- 182	1.33(3H,t,J=7.2Hz),2.45(3H,s),3.59(2H,t, J=7.2Hz),3.86(2H,d,J=0.9Hz),4.58(2H,s) ,5.32(2H,s),7.23(1H,d,J=8.7Hz),7.24(1H, d,J=0.9Hz)),7.58(1H,d,J=8.7Hz),7.77(2H ,d,J=8.7Hz),)795(2H,d,J=8.7Hz)
γ-XX-6	3	F ₃ C	CH=NOEt	0	Н,Н	Me S CO ₂ H	160- 162	1
γ-xx-	7	F ₃ C	CH2OEt	S	H,H	Me S CO ₂ H	164	,s),7.38(1H,s),7.52-7.57(2H,m),7.74 (2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
γ-XX-	В	F ₃ C	Ме	S	Н,Н	Me S CO ₂ H	190- 191	- 2.25(3H,s),2.63(3H,s),3.82(2H,s),4.09(2 H,s),7.39(1H,s),7.51-7.60(2H,m),7.74 (2H,d,J=8.7Hz),),7.80(2H,d,J=8.7Hz)
γ-XX-	9	F ₃ C	Ме	0	Н,Н	CO ₂ H	177	J=9.6Hz),7.76(2H,d,J=8.4Hz),7.85(2H,d, J=8.4Hz).
γ -XX 10	-	F ₃ C	Me	S	Н,Н	CO₂H		1.97(1H,m),2.24(1H,m),2.30(3H,s),2.48(1H,m),2.98(2H,m),3.06(2H,m),4.25(2H,s) ,7.27(2H,m),7.72~7.83(4H,m),7.94(1H,d, J=8.1Hz)

[0251]

【表118】

No	合成法	R1	R2	Х1	R3,R4	R ⁵ X ² CO ₂ H	NMR(CDCl3 or DMSO-d6)
γ -XX-	!	F ₃ C	Me	S	н,н	CO ₂ H	2.30(3H,s),3.00(2H,t,J=6.9Hz),3.42(2H,t d,J=6.3Hz,1.8Hz),4.27(2H,s),6.89(2H,t,J =1.8Hz),7.33(1H,m),7.74(1H,d,J=8.4Hz), 7.81(1H,d,J=8.7Hz)

[0252]

【表119】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{8}
 R^{8}

[· · · · · · · · · · · · · · · · · · ·					
No	R1	R2	X1	R3,R4	R^5 X^2 CO_2H R^8 R^7 $N=$
BBB-2	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBB-3	F ₃ C	Ме	0	H,H	N CO ₂ H
BBB-4	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBB-5	F ₃ C	Ме	0	H,H	HN CO ₂ H
BBB-6	F ₃ C	Ме	S	H,H	HN CO ₂ H
BBB-7	F ₃ C	Ме	0	Н,Н	Me CO ₂ H
BBB-8	F ₃ C	Ме	S	H,H	Me CO ₂ H
BBB-9	F ₃ C	Ме	О	H,H	S_CO ₂ H

[0253]

【表120】

		·		,	
No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ H
BBB-11	F ₃ C	Ме	0	н,н	CO ₂ H
BBB-12	F ₃ C	Ме	S	H,H	CO ₂ H
BBB-13	F ₃ C	Me	0	H,H	O-N CO ₂ H
BBB-14	F ₃ C	Me	S	Н,Н	O-N CO ₂ H
BBB-15	F ₃ C	Ме	0	Н,Н	HN-N CO ₂ H
BBB-16	F ₃ C	Me	S	Н,Н	HN-N CO ₂ H
BBB-17	F ₃ C	Me	0	H,H	Me N-N CO ₂ H
BBB-18	F ₃ C	Ме	S	H,H	Me N-N CO ₂ H
BBB-19	F ₃ C	Me	0	Н,Н	CO ₂ H
BBB-20	F ₃ C	Me	S	н,н	CO ₂ H
BBB-21	F ₃ C	Ме	0	н,н	N CO₂H
BBB-22	F ₃ C	Ме	S	H,H	N CO ₂ H
BBB-23	F ₃ C	Ме	0	H,H	CO₂H

【表121】

No	R1	R2	X1	R3,R4	R ⁵
BBB-24	F ₃ C	Me	S	Н,Н	CO ₂ H
BBB-25	F ₃ C	Ме	0	Н,Н	CO ₂ H
BBB-26	F ₃ C	Ме	S	H,H	CO ₂ H
BBB-27	F ₃ C	Ме	0	Н,Н	N_CO ₂ H
BBB-28	F ₃ C	Me	S	н,н	N_CO ₂ H
BBB-29	F ₃ C	Me	0	H,H	N CO₂H
BBB-30	F ₃ C	Me	S	н,н	N_CO ₂ H
BBB-31	F ₃ C	Me	0	Н,Н	N CO ₂ H
BBB-32	F ₃ C	Ме	S	Н,Н	O N CO ₂ H
BBB-35	F ₃ C	Ме	0	H,H	O CO ₂ H
BBB-36	F ₃ C	Me	S	H,H	N CO ₂ H
BBB-37	F ₃ C	Me	0	Н,Н	S CO ₂ H
BBB-38	F ₃ C	Me	S	Н,Н	S CO₂H

【0255】 【表122】

	·····				
No	R1	R2	X1	R3,R4	R ⁵
BBB-39	F ₃ C	Ме	0	Н,Н	O CO₂H
BBB-40	F ₃ C	Me	S	H,H	O CO₂H
BBB-42	F ₃ C	Me	S	н,н	CO ₂ H
BBB-43	F ₃ C	Ме	0	н,н	N CO₂H
BBB-44	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBB-45	F ₃ C	Ме	0	H,H	O CO₂H
BBB-46	F ₃ C	Me	S	H,H	CO ⁵ H
BBB-47	F ₃ C	Ме	0	H,H	O CO ₂ H
BBB-48	F ₃ C	Ме	S	н,н	O CO ₂ H
BBB-49	F ₃ C	Ме	0	H,H	O CO ₂ H
BBB-50	F ₃ C	Ме	S	H,H	O CO ₂ H

[0256]

【表123】

				r	4. O			
No	合成法	Ri	R2	Х1	R3,R4	R ⁵ R ⁶ CO ₂ R ¹⁷	mp	NMR(GDCl3 or DMSO-d6)
α-12-1	α-12	F ₃ C	Me	s	H,H	S CO ₂ Me		2.29(3H,s),3.74(3H,s),4.21(2H,s),7.2 3-7.52(6H,m),7.74(2H,d,J=8.7Hz), 7.83(2H,d,J=8.7Hz).
α - XXX-1		F ₃ CO	CH2OEt	s	H,H	S CO ₂ Me		
α XXX-2		F ₃ C	CH2OEt	S	Н,Н	S CO ₂ Me		
α – XXX-3		F ₃ C	CH2OnP r	S	H,H	S CO₂Me		
α- XXX-4		F ₃ C	Ме	0	Н,Н	N N N CO ₂ Me		
α- XXX-5		F ₃ C	Me	0	H,H	N S CO ₂ Me		2.34(3H,s),3.85(3H,s),5.26(2H,s),7.11(2H,d,J=8.7Hz),7.76(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz),7.85(2H,d,J=8.7Hz)8.88(1H,s)
α- XXX-6		F ₃ C	Me	0	н,н	N S CO ₂ Me		2.33(3H,s),2.74(3H,s),3.81(3H,m),5.25(2H,s),7,09(2H,d,J=9.0Hz),7.76(4H,d,J=8.7Hz),7.85(2H,d,J=8.1Hz)
α- XXX-7		F ₃ C	Me	S	H,H	CO ₂ H		

[0257]

【表124】

$$R^2$$
 R^3
 R^4
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

					56
No	R1	R2	X1	R3,R4	R ⁵ → R ⁸ CO₂Me
AAAA-1	\\ \	Ме	0	H,H	S
	F₃C				CO ₂ Me
AAAA-2	~ /	MeOCH	0	H,H	\$
	F ₃ C	2			CO ₂ Me
AAAA-3	\\ \tag{\chi}	MeOCH	S	H,H	\$
	F ₃ C	2			CO ₂ Me
AAAA-4	~	EtOCH2	0	H,H	s S
	F ₃ C				CO₂Me
AAAA-5		EtOCH2	S	H,H	
	F ₃ C				CO ₂ Me
AAAA-7		Ме	S	H,H	N s
	F ₃ C				CO ₂ Me
AAAA-8		Ме	0	H,H	N O
	F ₃ C				CO ₂ Me
AAAA-9		Ме	S	H,H	N N
	F ₃ C				CO₂Me
AAAA-		Me	0	H,H	s N
10	F ₃ C				CO ₂ Me
AAAA-		Ме	S	H,H	S N
11	F ₃ C	<u>.</u>			CO ₂ Me
AAAA-		Me	0	Н,Н	° N
12	F ₃ C				CO₂Me

[0258]

【表125】

	····				P ₆
No	R1	R2	X1	R3,R4	R ⁵ R ⁵ CO ₂ Me
AAAA- 13	F ₃ C	Ме	S	Н,Н	ON CO₂Me
AAAA- 14	F ₃ C	Ме	0	н,н	O-N CO ₂ Me
AAAA- 15	F ₃ C	Ме	S	H,H	O-N CO ₂ Me
AAAA- 16	F ₃ C	Me	0	H,H	S-N CO ₂ Me
AAAA- 17	F ₃ C	Me	S	н,н	S-N CO ₂ Me
AAAA- 18	F ₃ C	Ме	0	н,н	N-O CO ₂ Me
AAAA- 19	F ₃ C	Ме	S	H,H	N ^{-Q} CO₂Me
AAAA- 20	F ₃ C	Me	0	H,H	N-S CO₂Me
AAAA- 21	F ₃ C	Ме	S	H,H	N S CO ₂ Me
AAAA- 22	F ₃ C	Me	0	Н,Н	CO ₂ Me
AAAA- 23	F ₃ C	Me	S	н,н	CO ₂ Me
AAAA- 25	F ₃ C	Ме	S	H,H	N N CO ₂ Me
AAAA- 26	F ₃ C	Ме	0	H,H	N CO ₂ Me
AAAA- 27	F ₃ C	Me	S		N CO₂Me
28	F ₃ C	Me	0	н,н	N ² N CO ₂ Me

【0259】 【表126】

No	Rí	R2	X1	R3,R4	H ⁵ H ⁶ CO ₂ Me
AAAA- 29	F ₃ C	Me	S	Н,Н	N°N CO₂Me
AAAA- 30	F ₃ C	Ме	0	H,H	N N N CO ₂ Me
AAAA- 31	F ₃ C	Ме	S	H,H	N N CO ₂ Me

[0260]

【表127】

				п	U			
No	合成法	R1	R2	X1	R3,R4	R ⁵ CO ₂ H	mp	NMR(CDCl3 or DMSO-d6)
β -5-1	β−5	F ₃ C	Me	S	н,н	S CO ₂ H	139- 141	2.52(3H,s),4.20(2H,s),7.26(1H,d,J=5.4Hz),7.4 1(2H,d,J=8.7Hz),7.45(2H,d,J=8.7Hz),7.54(1H, d,J=5.4Hz),7.72(2H,d,J=8.4Hz),7.81(2H,d,J= 8.4Hz).
β - XXX-1		F ₃ CO	CH2OEt	S	н,н	S CO ₂ H	106- 107	
β - XXX-2		F ₃ C	CH2OEt	S	H,H	S CO ₂ H		1.27(3H,t,J=6.9Hz),3.60(3H,t,J=6.9Hz),4.31(2H,s),4.54(2H,s),7.24-7.29(1H,m),7.40- 7.56(5H,m),7.75(2H,d,J=8.4Hz),7.87(2H,d,J= 8.4Hz).
β - XXX-3		F ₃ C	CH2OnPr	S	Н,Н	S CO ₂ H	132- 133	0.96(3H,t,J=7.3Hz),1.57- 1.74(2H,m),3.50(3H,t,J=7.3Hz),4.30(2H,s),4.5 4(2H,s),7.25(1H,d,J=5.4Hz),7.42(2H,d,J=8.7H z),7.46(2H,d,J=8.7Hz),7.53(1H,d,J=5.4Hz),7.7 4(2H,d,J=8.1Hz),7.88(2H,d,J=8.1Hz).
β- XXX-4		F ₃ C	Ме	0	H,H	N N N CO ₂ H	182	
β - XXX-5		F ₃ C	Me	0	н,н	N S CO ₂ H	258- 259	2.36(3H,s),5.27(2H,s),7.11(2H,m),7.80(4H,m), 7.86(2H,m),8.92(1H,s)
β – XXX-6		F ₃ C	Me	0	H,H	Me N S CO ₂ H	233- 234	2.31(3H,s),2.68(3H,s),5.34(2H,s),7.12(2H,d,J =8.7Hz),7.74(2H,d,J=8.7Hz),7.93(2H,d,J=8.4 Hz),8.00(2H,d,J=8.4Hz)
β - XXX-7		F ₃ C	Ме	S	H,H	CO₂H	153- 155	

[0261]

【表128】

[0262]

【表129】

	 				26
No	R1	R2	X1	R3,R4	R ⁵ R ⁰ CO ₂ H
BBBB- 14	F ₃ C	Ме	0	Н,Н	O-N CO ₂ H
BBBB- 15	F ₃ C	Ме	S	Н,Н	O-N CO ₂ H
BBBB- 16	F ₃ C	Ме	0	Н,Н	S-N CO ₂ H
BBBB- 17	F ₃ C	Ме	S	Н,Н	S-N CO ₂ H
BBBB- 18	F ₃ C	Ме	0	Н,Н	N-0 CO ₂ H
BBBB- 19	F ₃ C	Ме	S	Н,Н	N-0 CO ₂ H
BBBB- 20	F ₃ C	Ме	0	Н,Н	N-S CO ₂ H
BBBB- 21	F ₃ C	Ме	S	H,H	N-S CO ₂ H
BBBB- 22	F ₃ C	Ме	0	Н,Н	СО2Н
BBBB- 23	F ₃ C	Ме	S	Н,Н	CO2H
BBBB- 25	F ₃ C	Ме	S	Н,Н	N N N CO ₂ H
BBBB- 26	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBBB- 27	F ₃ C	Ме	S	H,H	N CO ₂ H
BBBB- 28	F ₃ C	Ме	0	H,H	N=N CO ₂ H

【表130】

No	R1	R2	X1	R3,R4	AS HS CO ₂ H
BBBB- 29	F ₃ C	Ме	S	н,н	N°N CO ₂ H
BBBB- 30	F ₃ C	Ме	0	H,H	N CO ₂ H
BBBB- 31	F ₃ C	Ме	S	н,н	N N N CO ₂ H

[0264]

【表131】

			_,				_	т				1		
No	合成法	RI	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
β- 3-2	β-3	F ₃ C	5	s	н,н	ОМе	Н	н	н	F	н	Me		2.57(6H),3.71(6H),3.89(3H,s),3.91(3H,s),4.29(2H,s),4.63(2H,s),6.87(1H,d,J=35.1Hz),7.16(2H),7.44(1H,d,J=8.4Hz),7.74(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
β- 2-52	β-2	F ₃ CO	CH2OEt	s	н,н	ОМе	н	н	H	F	н	Me		1.26(3H,t,J=6.9Hz),3.60(2H,q,J=6.9Hz),3.89(3H,s),3.91(3H,s),4.26(2H,s),4.55(2H,s),6.88(1H,d,J=35.1Hz),7.16(2H),7.32(2H,d,J=9.0Hz),7.44(1H,d,J=8.4Hz),7.78(2H,d,J=9.0Hz)
β- 2-53	β−2	CI	CH2OEt	s	н,н	OMe	н	Н	Н	F	н	Ме		1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.9Hz),3.89(3H,s),3.91(3H,s),4.26(2H,s),4.54(2H,s),6.88(1H,d,J=34.8Hz),7.16(2H),7.45(3H),7.67(2H,d,J=8.4Hz)
β- 2-54	β−2	F ₃ C	Ме	s	н,н	OMe	Н	Н	н	CI	н	Ме		2.31(3H,s),3.90(3H,s),3.93(3H,s),4. 20(2H,s),7.37(1H,dd,J=8.1,1.5Hz),7 .44(1H,d,J=1.5Hz),748(1H,d,J=8.1 Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz),7.86(1H,s)
β- 2-55	β-2	F ₃ C	CH2OEt	s	н,н	OMe	Н	Н	Н	CI	Н	Ме		1.27(3H,t,J=6.9Hz),3.61(2H,q,J=6.9Hz),3.90(3H,s),3.93(3H,s),4.29(2H,s),4.57(2H,s), 7.35(1H,dd,J=8.4,1.5Hz),7.44(1H,d,J=1.5Hz),7.48(1H,d,J=8.4Hz),7.74(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),7.86(1H,s)
β- 2-56	β-2	F ₃ C	CH=NOM e	s	Н,Н	OMe	н	н	н	Gì	н	Ме		3,90(3H,s),3.93(3H,s),3.99(3H,s),4. 43(2H,s),7.39(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.77(2H,d,J=8.1Hz),7.77(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz),7.86(1H,s),8.17(1H,s)
β- 2-57	β-2	F ₃ C	CH=NOE	t S	н,н	OMe	; }-	i H	Н	C	н	Me		1.38(3H,t,J=6.9Hz),3.90(3H,s),3.92 (3H,s),4.23(2H,q,J=6.9Hz),4.43(2H, s),7.38(1H,dd,J=8.1,1.5Hz),7.44(1H ,d,J=1.5Hz),7.51(1H,d,J=8.1Hz),7.7 5(2H,d,J=8.4Hz),7.81(2H,d,J=8.4H z),7.86(1H,s),8.19(1H,s)

[0265]

【表132】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
β- 2-58	β-2	CI	CH2OEt	S	н,н	ОМе	Н	Ħ	Н	CI	Н	Me		1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.9Hz),3.90(3H,s),3.92(3H,s),4.27(2H,s),4.54(2H,s),7.36(1H,dd,J=8.1,1.5Hz),7.46(1H,d,J=1.5Hz),7.46(2H,d,J=8.7Hz),7.48(1H,d,J=8.1Hz),7.67(2H,d,J=8.7Hz),7.85(1H,s)
β- 2-59	β−2	cı	CH=NOEt	s	н,н	OMe	Н	н	н	CI	Н	Ме		1.33(3H,t,J=7.2Hz),3.90(3H,s),3.92 (3H,s),4.22(2H,q,J=7.2Hz),4.41(2H,s),7.38(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.47(2H,d,J=8.7Hz),7.5 1(1H,d,J=8.1Hz),7.62(2H,d,J=8.7Hz),7.86(1H,s),8.17(1H,s)
β- 2-60	β-2	F ₃ CO	CH2OEt	s	н,н	OMe	Н	Н	H	CI	н	Ме		1.27(3H,t,J=6.9Hz),3.60(2H,q,J=6.9Hz),3.90(3H,s),3.93(3H,s),4.28(2H,s),4.55(2H,s),7.33(2H,d,J=9.0Hz),7.36(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.47(1H,d,J=8.1Hz),7.78(2H,d,J=9.0Hz),7.86(1H,s)
β- 2-61	β−2	F ₃ CO	CH2OnPr	s	н,н	OMe	Н	н	н	Cl	Н	Me		0.95(3H,t,J=7.5Hz),1.65(2H),3.50(2 H,t,J=6.6Hz),3.90(3H,s),3.93(3H,s), 4.28(2H,s),4.54(2H,s),7.32(2H,d,J= 8.7Hz),7.36(1H,dd,J=8.1,1.5Hz),7.4 4(1H,d,J=1.5Hz),7.47(1H,d,J=8.1H z),7.78(2H,d,J=8.7Hz),7.86(1H,s)
β- 2-62	β-2	F ₃ CO	CH=NOEt	s	н,н	OMe	н	н	н	CI	н	Ме		1.33(3H,t,J=6.9Hz),3.90(3H,s),3.92 (3H,s),4.23(2H,q,J=6.9Hz),4.42(2H,s),7.34(2H,d,J=9.0Hz),7.38(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.5 1(1H,d,J=8.1Hz),7.73(2H,d,J=9.0Hz),7.86(1H,s),8.17(1H,s)
β - 2-63	β-2	F ₃ C	CH2OnPi	s	н,н	OMe	Н	Н	Н	F	н	Me		0.96(3H,t,J=7.5Hz),160-1.71 (2H,m),3.51(2H,d,J=6.3Hz),3.90(3H,s),3.91(3H,s),4.27(2H,s),4.56(2H,s),6.88(1H,d,J=34.8Hz),7.15-7.18 (2H,m),7.44(1H,dJ=8.4Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
β- 2-64	β-2	F ₃ C	CH2CF3	s	н,н	OMe	; F	1 F	Н	ı F	н	Me		3.66(2H,q,J=10.2),,3.90(3H,s),391(3H,s),4.28(2H,s),6.88(1H,d,J=34.8 Hz),7.14-7.17(2H,m),7.41 (1H,dJ=8.4Hz),7.77-7.78(4H,m)
β- 2-6!	β-2	F ₃ C	Et	s	; н,н	ОМ	∋ F	-1 F	1	l F	Н	М		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3.90(3H,s),3.92(3H,s),4.19(2H,s),6.89(1H,d,J=34.8Hz),7.15-7.19 (2H,m),7.44(1H,dJ=8.7Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
β - 2-6		F ₃ C	CH2OCH cPr	12 5	ь н,н	ОМ	e l	H I	- ! }	-i F	- н	м	e	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.19(1H,m),3.40(2H,d, J=6.9Hz),3.90(3H,s),391(3H,s),4.2 8(2H,s),4.59(2H,s),6.95(1H,d,J=34, 2Hz),7.18(1H,d,J=8.4Hz),7.19(1H,s,J=8.4Hz),7.87(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)

[0266]

【表133】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
β - 2-67	β-2	F ₃ C	Ме	s	н,н	Н	н	н	Ξ	F	Н	Ме		
β- 2-68	β-2	F ₃ C	CH2OEt	s	н,н	Н	Н	н	н	F	н	Me		
β- 2-69	β-2	F ₃ C	CH2OMe	s	н,н	н	Н	H	н	F	н	Me		
β- 2-70	β-2	F ₃ C	CH2OEt	s	н,н	н	н	Н	н	CI	н	Ме		
β- 2-71	β-2	F ₃ C	н	s	H, 4-F- C6H4	OMe	н	н	н	F	н	Ме		
β- 2-72	β−2	F ₃ C	CH2OCH2 CH2F	s	н,н	OMe	н	н	н	F	н	Ме		
β- 2-73	β-2	F ₃ C	CH2SnPr	s	н,н	ОМе	Н	Н	Н	F	н	Ме		0.95(3H,t,J=7.2Hz),1.59(2H,m),2.4 9(2H,t,J=7.2Hz),3.87(2H,s),3.90(3 H,s),3.91(3H,s),4.34(2H,s),6.88(1H,d,J=35.1Hz),7.15-7.18(2H,m),7.45 (1H,d,J=8.4Hz), 7.75(2H,d,J=8.7Hz)
β- 2-74	β-2	F ₃ C	CH2SO2r Pr	s	н,н	OMe		Н	і Н	F	н	Ме		1.08(3H,t,J=7.5Hz),1.91(2H,m),3.0 4(2H,m),3.89-3.90(6H,m),4.45 (2H,s),4.50(2H,s),6.88(1H,d,J=34.8 Hz),7.15-7.17(2H,m),7.42(1H,d, J=8.4Hz),7.77(2H,d,J=8.1Hz),7.97(2H,d,J=8.1Hz)
β- 2-75	β-2	F ₃ C	CH2OiP	rS	н,н	OMe	}	1 1	4 }	I F	Н	Me		1,25(6H,d,J=6.3Hz),3.76(1H,m),3.8 9(3H,s),3.91(3H,s),4.27(2H,s),4.56(2H,s),6.88(1H,d,J=35.1Hz),7.15- 7.17(2H,m),7.45(1H,d,J=8.4Hz),7.7 4(2H,d,J=8.4Hz),7.86(2H,d,J=8.4H z)
β - 2-7		F ₃ C	CH2OnF	Pr S	6 н,н	н		Н	-1 F	i F	Н	М	•	0.96(3H,t,J=7.5Hz),1.60-1.72 (2H,m),3.50(2H,t,J=6.6Hz),3.89(3H,s),4.30(2H,s),4.55(2H,s),6.88(1H,d,J=34.8Hz),7.43(2H,d,J=8.7Hz),7.57 (2H,d,J=8.7Hz),7.75(2H,d,J=8.1Hz),7.87(2H,d,J=8.1Hz)
β- 2-7	β-2	F ₃ C	Ch2OE	t s	s н,н	ОМ	е	H	н	-l F	F H	М	е	1.25(3H,t,J=7.5Hz),2.55(2H,q,J=7.5Hz),3.87-3.91(8H,m),4.34(2H,s),6.88(1H,d,J=34.8Hz),7.15-7.18(2H,m),7.45(1H,d,J=8.7Hz),7.76 (2H,d,J=8.4 Hz),7.87 (2H,d,J=8.4 Hz)

[0267]

【表134】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	RI	5 1	R17	mp	NMR(CDCl3 or DMSO-d6)
β- 2-78	法 β-2	F ₃ C	CH=NOnP	S	н,н	OMe	Н	Н	н	F	н		Ме		0.97(3H,t,J=7.5Hz),1.68-1.81 (2H,m),3.89-3.91(6H,m),4.13 (2H,t,J=6.9Hz),4.41(2H,s),6.87(1H,d,J=35.1Hz),7.17-7.19(2H,m),7.47 (1H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz),8.20 (1H,s)
β - 2-79	β-2	F ₃ C	CH=NOEt	S	Н,Н	н	Н	Н	н	CI	н		Et		1.35(3H,t,J=7.2Hz),1.38(3H,t,J=7.2 Hz),4.24(2H,q,J=7.2Hz),4.35(2H,q, J=7.2Hz), 4.46 (2H, s), 7.47 (2H, d, J=8.4 Hz), 7.75-7.84 (7H, m), 8.20 (1H, s)
β- 2-80	β-2	F ₃ C	CH=NO(C H2)2F	S	Н,Н	OMe	н	н	н	F	Н		Me		3.90 (3H, s), 3.91(3H, s), 4.38 (2H, s), 4.41(2H,d,J=28.8Hz),4.70 (2H, d, J=47.4Hz),6.89(1H,d,J=34.8Hz),7.1 7-7.19(2H,m),7.47(1H,d,J=8.4Hz),7.76 (2H, d, J=8.4 Hz), 7.81 (2H, d, J=8.4 Hz), 8.28 (1H, s)
β- 2-81	β-2	F ₃ C		s	н,н	OMe	Н	Н	н	F	ŀ	-	Me		3.88 (3H, s), 3.89 (3H, s), 3.98 (2H, s),4.07(2H,s),5.94(2H,s),6.57-6.60 (2H,m),6.72(1H,d,J=8.4Hz),6.87(1H,d,J=35.1Hz),7.13-7.16(2H,m),7.36 (1H,d,J=8.4Hz),7.68(2H,d,J=8.7Hz),7.74(2H,d,J=8.7Hz)
β- 2-82	β-2	F ₃ C	Me	s	н,н	Н	н	н	Н	CN	,	1	Ме		
β - 2-83	β-2	F ₃ C	Ме	s	н,н	Ме	Н	н	н	F	,	1	Ме		
β- 2-85	β-2	F ₃ C	- N O	s	н,н	OMe	Н	Н	н	F	1	H	Me		
β- 2-86	β-2	F ₃ C	. Ly	s	н,н	ОМе	e H	ı H	Н	F		H	Ме		
β- 2-8	1 8-7	F ₃ C	CH2OMe	s	н,н	OMe	e F	ł F	ı F	l F	-	Н	Ме		
β- 2-8		F ₃ C	Me	s	н,н	Н	ŀ	1 }	1 F	1 01	Иe	Н	Me	,	2.08(3H,s),2.28(3H,s),3.81(3H,s),5. 04(2H,s),6.89(2H,dt,J=8.4Hz),7.07(1H,d,J=9.3Hz),7.29(2H,d,J=8.4Hz), 7.36(1H,s)7.37(1H,d,J=4.5Hz)
β- 2-8		F ₃ C	Me	S	н,н	Н	ŀ	1 1	- I	1 1	4 1	Me	Ме		2.30(3H,s),2.56(3H,s),4.24(3H,s),5. 27(2H,s),7.08(2H,dt,J=9.0Hz),7.46 2H,d,J=8.4Hz),7.75(1H,s)7.81(2H,c,J=9.0Hz),7.88(2H,d,J=8.4Hz)

[0268]

【表135】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
β- 2-90	法 β-2	F ₃ C	Me	s	н,н	н	н	Н	Н	Me	Ме	Ме		2.15(3H,s),2.27(2H,d,J=6.9Hz),2.28 (3H,s),4.16(3H,s),5.22(2H,s),7.08(2 H,d,J=8.4Hz),7.41(2H,d,J=8.7Hz),7 .76(2H,d,J=8.7Hz),7.84(2H,d,J=8.4 Hz)
β- 2-91	β−2	F ₃ C	Me	s	н,н	Н	Н	Н	н	Н	Et	Ме		
β- 2-92	β-2	F ₃ C	Me	S	н,н	н	н	Н	н	CI	н	Me		2.29(3H,s),3.89(3H,s),4.22(2H,s),7. 44(2H,d,J=8.4Hz),7.70-7.86(7H,m)
β- 2-93	β−2	F ₃ C	Ме	s	н,н	н	Н	н	н	Me	н	Ме		
β- 2-94	β−2	F ₃ C	Me	S	н.н	OMe	н	Н	н	Ме	Н	Me		
β- 2-95	β-2	F ₃ C	Me	s	н,н	OMe	Н	н	н	CI	н	Ме		
β- 2-96	β-2	F ₃ C	Me	s	н,н	OMe	н	н	н	F	н	Me		
β- 2-97	β-2	F ₃ C	Me	s	н,н	Et	н	Н	Н	F	н	tBı		1.21(3H,t,J=7.5Hz),1.57(9H,s),2.29 (3H,s),2.74(2H,q,J=7.5Hz),4.18(2H, s),6.77(1H,d,35.1Hz),7.28°7.50(3H, m),7.74(2H,d,J=8.4Hz),7.81(2H,d,J =8.4Hz)
β- 2-98	β-2	F ₃ C	CH2OEt	s	н,н	ОМе	н	н	н	F	н	Ме	:	
β- 2-99		F ₃ C	CH=NOM e	s	н,н	OMe	, Н	Н	н	F	н	Me	•	
β - 2- 100	β −2	F ₃ C	CH=NOE	t S	н,н	ОМе	e F	i ŀ	ı H	F	Н	Me	•	1.34(3H,t,J=7.2Hz),3.90(3H,s),3.91 (3H,s),4.24(2H,q,J=6.9Hz),4.41(2H, s),6.89(1H,d,J=35.1Hz),7.14~7.30(2H,m)7.48(1H,t,J=8.4Hz),7.76(2H, d,J=8.7Hz),7.82(2H,d,J=8.7Hz),8.2 0(1H,s)
β- 2- 101	β-2	F ₃ C	CH2OEt	: C	н,н	F	1	1 1	1 +	F	Н	М	е	1.22(3H,t,J=6.9Hz),3.60(2H,q,J=6. 9Hz),3.89(3H,s),4.58(2H,s),5.37(2H,s),4.30(2H,s),6.84(1H,d,J=34.2Hz),7.18(1H,d,J=8.7Hz),7.34(1H,d,J=8.4Hz),7.49(1H,d,J=12.6Hz),7.77(2H,d,J=8.4Hz),7.92(2H,d,J=8.4Hz)

[0269]

【表136】

					R'' 'O									
No	合成法	R1	R2	ХI	R3,R4	R5	R6	R7	R	8	R10	R15	mp	NMR(CDCI3 or DMSO-d6)
β- 3-3	β-3	F ₃ C	حير مر	s	н,н	OMe	Н	н	ŀ	-1	F	Н	94–97	2.74(4H),2.88(2H),3.62(4H),3.74(2 H),3.84(3H,s),4.41(2H,s),4.64(2H,s),7.02(1H,d,J=36.3Hz),7.31(2H),7.4 8(1H,d,J=8.4Hz),7.93(2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz)
β- 2- 102	β−2	F ₃ CO	CH2OEt	s	н,н	ОМе	н	Н		Н	F	Н	217- 219	1.14(3H,t,J=6.9Hz).3.54(2H,q,J=6.9Hz),3.84(3H,s),4.35(2H,s),4.53(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7.47(1H,d,J=8.4Hz),7.57(2H,d,J=9.0Hz),7.90(2H,d,J=9.0Hz)
β- 2- 103	β-2	cı	CH2OEt	s	H,H	OMe	н	Н	1	Н	F	Н	175- 177	1.14(3H,t,J=7.2Hz),3.53(2H,q,J=7. 2Hz),3.84(3H,s),4.34(2H,s),4.52(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7. 47(1H,d,J=8.4Hz),7.64(2H,d,J=8.7 Hz),7.78(2H,d,J=8.7Hz)
β- 2- 104	β-2	F ₃ C	Ме	s	н,н	OMe	Н	F	1	н	CI	н	183- 185	2.29(3H,s),3.86(3H,s),4.38(2H,s),7. 54(3H),7.90(2H,d,J=8.7Hz),7.94(1 H,s),7.95(2H,d,J=8.7Hz)
β - 2- 105	β-2	F ₃ C	CH2OEt	s	н,н	ОМе	Н	1	4	Н	CI	Н	173- 175	1.15(3H,t,J=6.9Hz),3.55(2H,q,J=6. 9Hz),3.86(3H,s),4.40(2H,s),4.57(2H ,s),7.54(3H),7.93(1H,s),7.94(2H,d,J =8.4Hz),7.99(2H,d,J=8.4Hz)
β- 2- 106	β-2	F ₃ C	CH=NO Me	s	н,н	ОМ	н	ŀ	Н	Н	CI	н	205– 207	54(3H),7.93(1H,s),7.93(2H,d,J=8.4 Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
β- 2- 107	β-2	F ₃ C	CH=NOI	s	Н,Н	ОМ	е Н	1 1	н	Н	CI	Н	184- 186),7.93(1H,s),7.93(2H,d,J=8.4Hz),8.0 3(2H,d,J=8.4Hz),8.35(1H,s)
β - 2- 108	β-2	CI	CH2OE	t S	н,н	ОМ	e F	1	н	Н	CI	Н	154- 156	,s),7.53(3H),7.64(2H,d,J=8.4Hz),7.7 8(2H,d,J=8.4Hz),7.93(1H,s)
β - 2- 109	β-2	CI	CH=NO t	ES	Н,Н	ОМ	e l	1	Н	Н	CI	Н	206- 208	7.64(2H,d,J=8.4Hz),7.83(2H,d,J=8 4Hz),7.94(1H,s),8.30(1H,s)
β - 2- 110	β-2	F ₃ CO	CH2OE	it	н,н	OM	le l	4	н	н	CI	н	174 176	

[0270]

【表137】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R	8 F	₹10	R15	mp	NMR(CDCl3 or DMSO-d6)
β- 2- 111	法 β-2	F ₃ CO	CH2OnP r	s	н,н	OMe	н	Н	-	1	Cì	Н	159- 161	0.85(3H,t,J=7.2Hz),1.53(2H),3.44(2 H,t,J=6.3Hz),3.86(3H,s),4.38(2H,s), 4.54(2H,s),7.55(5H),7.91(2H,d,J=8. 7Hz),7.93(1H,s)
β - 2- 112	β-2	F ₃ CO	CH=NOE t	s	Н,Н	ОМе	Н	н	ŀ	1	Cl	н	179-	1.25(3H,t,J=7.2Hz),3.84(3H,s),4.14 (2H,q,J=7.2Hz),4.48(2H,s),7.55(5H),7.93(1H,s),7.95(2H,d,J=8.7Hz),8.3 1(1H,s)
β- 2- 113	β-2	F ₃ C	CH2OnP r	s	н,н	ОМе	н	H	1 1	4	F	н		0.96(3H,t,J=7.2Hz),1.60- 1.72(2H,m),3.52(2H,d,J=6.6Hz),3.9 2(3H,s),4.28(2H,s),4.58(2H,s),6.95(1H,d,J=34.2Hz),7.17-7.19(2H,m), 7.45(1H,dJ=8.4Hz),7.74(2H,d,J=8. 4Hz),7.87(2H,d,J=8.4Hz)
β- 2- 114	β-2	F ₃ C	CH2CF3	s	н,н	OMe	Н	1	1	H	F	н	211- 214	3.66(2H,q,J=10.2),3.91(3H,s),4.27(2H,s),6.90(1H,d,J=34.5Hz),7.14– 7.20(2H,m),7.40(1H,dJ=8.1Hz),7.7 5–7.71(4H,m)
β- 2- 115	β-2	F ₃ C	Et	s	н,н	OMe	Н	-	1	н	F	н	217- 218	1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3.92(3H,s),4.19(2H,s),6.91(1H,d,J=34.8Hz),7.16-7.20(2H,m),7.43(1H,dJ=8.1Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
β- 2- 116	β-2	F ₃ C	CH2OC H2cPr	s	н,н	ОМе	Н		Н	н	F	Н	214- 217	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.17(1H,m),3.40(2H,d, J=6.9Hz),3.91(3H,s),4.28(2H,s),4.5 9(2H,s),6.91(1H,d,J=34.5Hz),7.15- 7.19(2H,m),7.44(1H,d,J=6.9Hz),7.7 4(2H,d,J=8.1Hz), 7.89(2H,d,J=8.4Hz)
β- 2- 117	β-2	F ₃ C	Me	s	н,н	н	H	1	н	н	F	Н	193- 194.5	1
β- 2- 118	β-2	F ₃ C	CH2OE	s	н,н	н	F	1	н	Н	F	н	173- 175	
β- 2- 119	β-2	F ₃ C	CH2OM e	s	н,н	н	+	4	н	н	F	н	167- 168	ł
β - 2- 120	β-2		CH2OE	t S	н,н	н		+	н	Н	CI	Н	157 158	1
β - 2- 12	· β-:	F ₃ C	Н	s	H, 4-F- C6H		ie i	н	н	н	F	н	170 171	
β 2- 12	β-	² F ₃ C	CH2OC H2CH2		н,н	OM	1e	н	н	Н	F	н	216 218	1

[0271]

【表138】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	7 R	88	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β- 2- 123	法 β-2	F ₃ C	CH2SnP r	S	н,н	ОМе	Н	н		н	F	Н	193-	0.81(3H,t,J=7.2Hz),1.46(2H,m),2.4 7(2H,t,J=7.2Hz),3.85(3H,s),3.92(2 H,s),4.39(2H,s),7.02(1H,d,J=36.3H z),7.31-7.32(2H,m),7.48(1H,d, J=8,4Hz),7.94(2H,d,J=8,4Hz),8.01(2H,d,J=8,4 Hz)
β- 2- 124	β-2	F ₃ C	CH2SO2 nPr	S	н,н	ОМе	H	۲	1	н	F	Н	220.5 - 222.0	1.08 (3H, t, J=7.5 Hz), 1.91 (2H, m), 3.06 (2H, m), 3.90 (3H, s), 4.47 (2H, s), 4.49 (2H, s), 6.90 (1H, d, J=34.5 Hz), 7.15-7.18 (2H, m), 7.41 (1H, d, J=7.8 Hz), 7.78 (2H, d, J=8.4 Hz), 7.97 (2H, d,
β- 2- 125	β−2	F ₃ C	CH2OiPr	s	н,н	OMe	Н	ŀ	-1	Н	F	Н	227- 228	7.30-7.32 (2H, m), 7.47 (1H, d, J=8.7 Hz), 7.94 (2H, d, J=8.7 Hz), 7.99 (2H, d, J=8.7 Hz)
β- 2- 126	β-2	F ₃ C	CH2OnP r	s	н,н	н	Н		H	н	F	H	173- 175	0.85(3H,t,J=7.5Hz), 1.48-1.60 (2H, m), 3.45 (2H, t, J=6.6 Hz), 4.47 (2H, s), 4.56 (2H, s), 7.02 (1H, d, J=36.6 Hz), 7.49 (2H, d, J=8.4 Hz), 7.65 (2H, d, J=8.4 Hz), 8.00 (2H, d, J=8.4 Hz)
β- 2- 127	β-2	F ₃ C	Ch2OEt	S	н,н	ОМ	e H	1	н	Н	F	Н	212.0 214.5	Hz), 7.16-7.20 (2H, m), 7.44 (1H, d, J=8.1 Hz), 7.76 (2H, d, J=8.4 Hz), 7.88 (2H, d, J=8.4 Hz)
β - 2- 128	β-2	F ₃ C	CH=NO	n s	н,н	ОМ	e H	1	Н	н	F	н	192.0 - 193.	Hz),4.44(2H,s), 7.00 (1H, d, J=30.0) Hz), 7.28-7.31 (2H, m), 7.46 (1H, d, J=8.1Hz), 7.91 (2H, d, J=8.4 Hz), 8.01 (2H, d, J=8.4 Hz), 8.34 (1H, s)
β - 2- 129	β-2	F ₃ C	CH=NO	E	н,н	Н	1	Н	н	Н	C	Н	206 208	Hz), 7.89-7.93 (3H, m), 8.01 (2H, d, J=8.1 Hz), 8.34 (1H, s)
β · 2-	· β −:	F ₃ C	CH=NC GH2)2		s Н,Н	ON	1e	Н	Н		i F	Н	222	J=8.1 Hz), 7.93 (2H, d, J=8.4 Hz), 8.05 (2H, d, J=8.4 Hz), 8.44 (1H, s)
β 2- 13	- ß-	F ₃ C		>	S H,F	1 01	Мe	Н	H	1	-1 F	- Н	183 - 186	6.79 (1H. d. J=8.1 Hz), 7.02 (1H, d

[0272]

【表139】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R	8 1	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β- 2- 132	β-2	F ₃ C	Me	s	н,н	Н	н	Н	-	,	CN	н	250- 255	
β- 2- 133	β-2	F ₃ C	Ме	s	H,H	Ме	н	н	1	4	F	н	214- 216	
β- 2- 135	β-2	F ₃ C	~N_O_	s	н,н	ОМе	н	Н		н	F	н	158- 160	
β- 2- 136	β-2	F ₃ C	ZZ Z	s	н,н	OMe	Н	F	1	н	F	н	148- 150	
β- 2- 137	β−2	F ₃ C	CH2OM e	s	н,н	ОМе	н		4	н	F	н		
β- 2- 138	β-2	F ₃ C	Ме	s	н,н	Н	н	ł	-1	Н	ОМе	н	157- 160	2.30(3H,s),3.80(3H,s),4.21(2H,s),7. 07(1H,s),7.42(2H,d,J=8.7Hz),7.70(2H,d,J=8.4Hz,),7.74(2H,d,J=8.7Hz) ,7.82(2H,d,J=8.4Hz)
β- 2- 139	β-2	F ₃ C	Ме	s	н,н	н	Н		н	н	н	Ме	223- 226	2.30(3H,s),2.53(3H,s),4.20(2H,s),6. 13(1H,s),7.43(4H,brd,J=4.8Hz),7.7 6(2H,d,J=8.1Hz),7.84(2H,d,J=8.4H z)
β- 2- 140	<i>B</i> −2	F ₃ C	Me	s	н,н	Н	Н		н	н	Mie	Ме	145- 145	1.78(3H,q,J=1.5Hz),2.28(3H,s),2.33 (3H,q,J=1.5Hz),4.17(2H,s),7.08(1H, d,J=8.4Hz),7.09(1H,d,J=8.1Hz),7.4 2(2H,d,J=8.1Hz),7.74(2H,d,J=8.1H z),7.82(2H,d,J=8.4Hz)
β - 2- 141	β-2	F ₃ C	Me	s	н,н	Н	F	,	н	н	н	Et	174- 175	1.07(3H,t,J=7.5Hz),2.29(3H,s),3.09 (2H,q,J=7.5Hz),4.20(2H,s),6.04(1H, s),4.14(2H,s),7.41(4H,brs),7.74(2H, d,J=8.4Hz),7.82(2H,d,J=8.1Hz)
β- 2- 142	β-2	F ₃ C	Ме	s	н,н	н	F	1	н	Н	CI	Н	198.5 - 199.5	2.29(3H,s),4.48(2H,s),7.53(2H,d,J= 8.4Hz),7.84~8.00(7H,m)
β - 2- 14:	β-2	F ₃ C	Ме	s	н,н	Н	1	4	Н	Н	Me	e H	172- 173	DMSO 2.02(3H,s),2.28(3H,s),3.85(3H,s),4. 42(2H,s),7.44(2H,d,J=8.4Hz),7.48(2H,d,J=8.4Hz),7.55(1H,s),7.91(2H, d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
β- 2- 14	- β –:	F ₃ C	Me	S	ы,н	ОМ	1e	Н	н	1	i M	e H	174.5 - 175.5	DMSO 2.05(3H,s),2.28(3H,s),3.85(3H,s),4. 32(2H,s),7.04-7.12(2H,m), 7.46(1H,d,J=8.4Hz),7.90(2H,d,J=8 7Hz),7.95(2H,d,J=8.7Hz)

[0273]

【表140】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β - 2- 145	β-2	F ₃ C	Me	S	н,н	ОМе	н	н	н	CI	Н		
β- 2- 146	β-2	F ₃ C	Ме	s	н,н	OMe	н	Н	н	F	H	211.5 -213	DMSO 2.28(3H,s)3.84(3H,s),4.36(2H,s),7.0 3(1H,d,J=36.6Hz),7.2-7.36(3H,m), 7.50(1H,d,J=8.1Hz),7.91(2H,d,J=8. 7Hz),7.95(2H,d,J=8.7Hz)
β- 2- 147	β−2	F ₃ C	Me	s	н,н	Et	н	н	н	F	н	200- 201	DMSO 1.14(3H,t,J=7.5Hz),2.28(3H,s),2.26 (2H,q,J=7.5Hz),4.42(2H,s),6.99(1H, d,J=36.9Hz),7.50-7.62(3H,m)7.91 (2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β - 2- 148	β-2	F ₃ C	CH2OEt	s	н,н	ОМе	Н	Н	Н	F	Н	250- 255(d ecom.	9Hz),3,83(3H,s)4.32(2H,s),4.55(2H, s),6.73(1H,d,J=37.2Hz),7.14-7.28 (2H,m),7.41(1H,d,J=8.1Hz),7.94(2H ,d,J=8.7Hz),8.00(2H,d,J=8.7Hz)
β- 2- 149	β-2	F ₃ C	CH=NO Me	s	н,н	ОМе	H	1	! H	F	н	250(d	DMSO 3.81(3H,s),3.92(3H,s),4.01(2H,s),6. 74(1H,d,J=36.9Hz),7.14-7.22 (2H,m),7.40(1H,d,J=8.4Hz),7.93(2H,d,J=8.7Hz),8.03(2H,d,J=8.7Hz),8.3 4(1H,s)
β- 2- 150	β-2	F ₃ C	CH=NO t	Es	н,н	ОМ	e F	 	1 1	ł F	Н	209- 210.	1a.1=366Hz) /.3UCH.S)./.3TCLD.Q.
β- 2- 151	β-2	F ₃ C	CH2OE	et C) н,н	F	1	1 1	-1 1	-t F	н	205- 206	1 d J=36.3Hz), /.45(1H,t,J=8./Hz), /.

[0274]

【表141】

					R ¹	O'										
No	合成法	R1	R2	ХI	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
GG-1		F ₃ C		s	н,н	OM e	н	н	н	Н	Н	Me	н	Ме		1.28(3H,d,J=6.9Hz),2.57(2H),3.2 5(1H),3.63(3H,s),3.85(3H,s),4.05 (2H,s),4.09(2H,s),6.02(1H),6.29(1H),6.74(2H),7.30(1H,d,J=7.8Hz) ,7.35(1H),7.72(2H,d,J=8.4Hz),7.8 1(2H,d,J=8.4Hz)
CC-2		F ₃ C	€6	\$	н,н	н	н	н	н	н	Н	Me	Н	Ме		1.27(3H,d,J=6.9Hz),2.56(2H),3.2 5(1H),3.61(3H,s),4.05(2H,s),4.06 (2H,s),6.03(1H),6.30(1H),7.15(2H ,d,J=8.1Hz),7.31(2H,d,J=8.1Hz), 7.35(1H),7.73(2H,d,J=8.4Hz),7.8 2(2H,d,J=8.4Hz)
GC-3		F ₃ C	CH2O(C H2)2F	S	н,н	OM e	н	Н	н	н	Н	Ме	н	Me		1.28(3H,t,J=7.2Hz),2.49-2.64 (2H,m),3.19-3.31(1H,m),3.63(3H, s),3.73-3.76(1H,m),3.83-3.86 (1H,m),3.88(3H,s),4.19(2H,s),4.5 1-4.53(1H,m),4.64(2H,s),4.67- 4.69(1H,m),6.73-6.77(2H,m), 7.32(1H,d,J=7.8Hz),7.75(2H,dJ= 8.4Hz),7.90(2H,d,J=8.4Hz)
CC-4		F ₃ CO	CH2OEt	S	н,н	OM e	н	Н	н	н	н	Ме	н	Ме		1.25(3H,t,J=6.9Hz),1.28((3H,d,J=7.2Hz),2.48-2.64(2H,m),3.19-3.31(1H,m),3.58(2H,q,J=7.2Hz),3.62(3H,s),388(3H,s),4.17(2H,s),4.51(2H,s),6.72-6.76(2H,m),7.30-7.34(2H,m),7.77-7.82(2H,m)
cc-	5	F ₃ C	(GH2)2O Et	s	н,н	OM e	н	Н	Н	ц	Н	Me	H	Ме		1.16(3H,t,J=6.9Hz),1.29((3H,d,J=7.2Hz),2.49-2.65(2H,m),2.99 (2H,t,J=6.6Hz),3.20-3.32(1H,m),3.47(2H,q,J=6.9Hz),3.63(3H,s),3.68(2H,q,J=6.6Hz),388(3H,s),4.17(2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=7.8Hz),7.72(2H,d,J=8.4 Hz),7,90(2H,d,J=8.4Hz)
cc-	6	CI	CH2OE	s s	н,н	OM e	1 н	ŀ	1 1	1 1	1 11	M	еН	Me	,	1.25(3H,t,J=6.9Hz),1.28((3H,d,J=6.9Hz),2.48-2.64(2H,m),3.19-3.31(1H,m),3.57(2H,q,J=6.9Hz),63(3H,s),3.88(3H,s),4.17(2H,s),4.51(2H,s),6.71-6.77(2H,m),7.32(1H,d,J=7.8Hz),7.44-7.48(2H,m),7.66-7.71(2H,m)

[0275]

【表142】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
CC-7	法	MeO	Me	S	н,н	OM e	Н	Н	Н	Н	Н	Ме	н	Me		1.28(3H,d,J=6.9Hz),2.20(3H,s),2. 48-2.65(2H,m),3.19-3.31(1H,m), 3.63(3H,s),3.86(3H,s),3.88(3H,s), 4.07(2H,s),6.70-6.79(2H,m), 6.96-7.00(2H,m),7.34 (1H,d,J=7.8Hz),7.60-7.63(2H,m)
CC-8		CI	CH=NOE t	s	н,н	ОМ	н	Н	Н	Н	н	Ме	н	Me		
CC-9		F ₃ CO	CH=NOE t	S	н,н	ОМ	н	н	Н	н	н	Ме	н	Me		
CC- 10		F ₃ C	CH2OMe	s	н,н	OM e	н	н	н	Н	Н	Me	н	Ме		
CC- 11		F ₃ CO	GH2OnP	s	н,н	OM e	н	Н	Н	н	н	Me	н	Ме		
CC- 12		F ₃ C	Me	s	н,н	OM e	н	Н	ŀ	I F	i H	Me	H	Me		1.28(3H,d,J=7.2Hz),2.26(3H,s),2. 47-2.62(2H,m),3.22-3.29(1H,m), 3.62(3H,s),3.89(3H,s), 4.10(2H,s),6.73- 6.76(2H,m),7.32(1H,d, J=7.8Hz),7.73(2H,d,J=8.1Hz),7.8 0(2H,d,J=8.1Hz)
CC- 13	-	F ₃ C	CH=NOr Pr	s	н,н	OM e	Н	ŀ	4 1	1 1	-1 F	M	e H	М	е	0.98(3H,t,J=7.5Hz),1.29(3H,d,J=6.9Hz),1.69-1.81(2H,m),2.48-2.65(2H,m),3.19-3.32(1H,m),3.63(3H,s),3.88(3H,s),4.13(2H,t,J=6.9Hz),4.30(2H,s),6.72-6.76(2H,m),7.33(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.20(1H,s)
CC 14	1	F ₃ C	CH=NO CH2)2I		н,н	Oh e	1 1	1	н	Н	Н	-i N	le l	i M	е	1.29(3H,d,J=7.2Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.63 (3H,s),3.8(3H,s),4.28(2H,s),4.39(2H,d,J=28.5Hz), 4.69(2H,d,J=47.4Hz),6.73- 6.77(2H,m),7.32(1H,d, J=7.5Hz),7.76(2H,d,J=8.4Hz),7.8 3(2H,d,J=8.4Hz), 8.26 (1H, s) 1.29(3H,d,J=6.9Hz),2.49-2.65
CC 1!	1	F ₃ C	(CH2)2 Me	O s	н,н	O	M I	4	н	н	н	н	- 1	, -1 N	1e	1.29(3H,d,J=6,9Hz),Z.48 ⁻² ,203 (2H,m),2.99(2H,t,J=6.9Hz),3.22 ⁻ 3.35(4H,m),3.63(3H,s),3.64(2H,t, J=6.9Hz),3.88(3H,s),4.15(2H,s),6 .72-6.77(2H,m),7.33(1H,d,J=7.8 Hz),7.73(2H,d,J=8.4Hz),7.88(2H d,J=8.4Hz)

[0276]

【表143】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
CC- 16	_法	F ₃ C		S	н,н	OM e	Н	н	н	Н	н	Ме	Н	Ме		1.29(3H,d,J=6.9Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.84(3H,s),3.91(2H,s),4.05 (2H,s),5.93(2H,s),6.56-6.59 (2H,m),6.70-6.76(3H,m),7.29(1H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz),7.7
CC- 17		F ₃ C	CH=NOc Pen	s	Н,Н	OM e	Н	Н	н	Н	н	Ме	Н	Ме		1.29(3H,d,J=6.9Hz),1.6-1.8(8H,m),2.48-2.65(2H,m),3.19-3.31 (1H,m),3.63(3H,s),3.87(3H,s),4.3 0(2H,s),4.78(1H,m),6.72-6.76 (2H,m),7.32(1H,d,J=7.8 Hz), 7.75 (2H,d,J=8.7Hz),7.84(2H,d,J=8.7 Hz), 8.16(1H,s)
CC- 18		F ₃ C	CH=NOi Pr	S	н,н	OM e	Н	н	Н	н	Н	Ме	н	Ме		1.29(3H,d,J=6.9Hz),1.32(6H,d,J=6.6Hz),2.48-2.65(2H,m),3.19-3.31(1H,m),3.63(3H,s),3.87(3H,s),4.30(2H,s),4.41-4.49(1H,m),6.72-6.76(2H,m),7.32(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.18(1H,s)
CC- 19		F ₃ C	CH=NO Me	s	н,н	OM e	Н	н	н	Н	н	Me	Н	Ме		1.29(3H,d,J=6.9Hz),2.48-2.65 (2H,m),3.20-3.29(1H,m),3.63(3H,s),3.88(3H,s),3.97(3H,s),4.30(2H,s),6.73-6.79(2H,m),7.34(1H,d,J=7.5Hz),7.75(2H,d,J=8.4Hz),7.8 (2H, d, J=8.4 Hz), 8.15 (1H, s)
GG- 20		F ₃ C	CH=NO(CH2)2CI	S	Н,Н	OM e	Н	Н	H	H	н	Me	Н	Me		1.29(3H,d,J=6.6Hz),2.49-2.66 (2H,m),3.20-3.32(1H,m),3.64(3H, s),3.78(2H,t,J=5.7Hz),3.88(3H,s), 4.28(2H,s),4.38(2H,t,J=5.7Hz),6. 73-6.77(2H,m),7.32(1H,d,J=7.5 Hz), 7.77 (2H, d, J=8.4 Hz), 7.82 (2H, d, J=8.4 Hz), 8.26 (1H, s)
CC- 21	-	CI	CH2OnP	s	н,н	OM e	н	F	1 1	1 1	H H	Me	e H	Me	2	0.94(3H,t,J=7.5Hz),1.28(3H,d,J=7.2Hz),1.60-1.67(2H,m),2.48-2.64(2H,m),3.19-3.31(1H,m),3.47(2H,t,J=6.6Hz),3.63(3H,s),3.88(3H,s),4.17(2H,s),4.50(2H,s),6.72-6.76(2H,m),7.32(1H,d,J=7.8Hz),7.45 (2H, d, J=8.4Hz),7.70 (2H, d, J=8.4Hz)
CC- 22		F ₃ CO	CH=NO Me	s	н,н	OM e	н		- 1	4 1	4 H	і М	e ŀ	М	е	1.29(3H,d),2.48-2.65(2H,m),3.19 -3.32(1H,m),3.63(3H,s),3.88(3H, s),3.97(3H,s),4.29(2H,s),6.73- 6.77(2H,m),7.32-7.35(3H,m), 7.75(2H,d,J=8.7 Hz), 8.13 (1H, s)
CC 23	i i	F ₃ C	Me	s	н,н	н	Н	,	1	Н	н	М	e i	і м	е	
GC 24		F ₃ C	CH2OE	t S	н,н	OM e	1 1	, [H	н	н	і М	e l	-i M	е	

[0277]

【表144】

	<u>∧</u> #1												Γ			NMR(CDCl3 or DMSO-d6)
No	合成 法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	MINIT(ODOIS OF DIVISOR GO)
CC- 25		F ₃ C	CH2OnP r	s	н,н	ом е	н	Н	Н	Н	Н	Ме	н	Ме		
CC- 26		F ₃ C	CH2OCH 2cPr	S	н,н	OM e	н	н	Н	н	Н	Ме	Н	Me		
CC- 27		F ₃ C	CH2OEt	0	H,H	OM e	н	Н	н	н	н	Me	н	Ме		
CC- 28		F ₃ C	CH2OnP r	0	н,н	OM e	Н	Н	н	Н	н	Ме	н	Ме		
CC- 29		F ₃ C	Ме	0	н,н	OM e	н	н	Н	Н	Н	Me	Н	Ме		
GC- 30		F ₃ C	CH2OEt	0	н,н	F	Н	Н	н	Н	Н	Ме	н	Ме		
CC- 31		F ₃ C	CH2OnP r	0	н,н	F	Н	Н	Н	Н	н	Ме	Н	Ме		
CC- 32		F ₃ C	Ме	0	н,н	F	н	Н	Н	Н	Н	Me	н	Me	,	
CC-		F ₃ C	CH2OEt	s	н,н	н	Н	Н	Н		ı H	Me	Me	Me	,	
CC-		F ₃ C	Me	s	Н,Н	н	Н	Н	ı H	, -	Н	М	e Mo	Me	•	
CC- 35	-	F ₃ C	Me	s	н,н	Н	Н	1	} F	1 1	Н	М	в	M	е	2.09(3H,s),2.30(3H,s),2.59(2H,m),3.22(2H,m),4.11(3H,s),5.17(2H,s),7.15(2H,d,J=8.4Hz),7.34(2H,d,J=8.1Hz),7.73(2H,d,J=8.7Hz),7.81(d,J=8.1Hz)
CC- 36	,	F ₃ C	CH2OE	t S	н,н	Н	Н	ł	1 1	-1 1	-i I-	і М	e H	ı M	е	1.25(3H,t,J=6.9Hz),1.26(3H,d,J=7.2Hz),2.55(2H),3.27(1H),3.58(2H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
CC 37	1	F ₃ C	CH2On	Ps	н,н	1	I F	1	H	H	H	1 M	le l	1 N	e	0.95(3H,t,J=7.5Hz),1.27(3H,d,J=6.9Hz),1.65(2H),2.55(2H),3.23(1H),3.48(2H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,s),7.15(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
CC 38		CI	Me	s	; Н,Н	O!	VI H	1	н	н	нп	-1 N	le i	-1 N	1e	1.28(3H,d,J=8.4Hz),2.21(3H,s),2 55(2H)3.23(1H),3.62(3H,s),3.88(3H,s),4.07(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.44(2H,d

[0278]

【表145】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R	10 F	₹15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
	法																,J=8.4Hz),7.61(2H,dJ=8.4Hz)
CC- 39		CI	Me	S	н,н	н	н	н	Н	н		н	Me	н	Ме		1.26(3H,d,J=6.9Hz),2.20(3H,s),2. 55(2H)3.24(1H),3.61(3H,s),4.09(3H,s),7.14(2H,d,J=8.1Hz),7.34(1 H,d,J=8.4Hz),7.44(2H,d,J=8.4Hz),7.62(2H,dJ=8.4Hz)
CC- 40		F ₃ CO	Ме	s	н;н	OM e	н	Н	Н	H		Н	Ме	н	Me		1.27(3H,d,J=6.9Hz),2.23(3H,s),2. 56(2H)3.25(1H),3.62(3H,s),3.88(3H,s),4.08(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.71(2H,d ,J=8.4Hz)
GG- 41		F ₃ C	Me	S	н,н	F	Н	н	н	F	1	н	Me	Н	Me		1.27(3H,d,J=6.9Hz),2.27(3H,s),2. 55(2H)3.25(1H),3.62(3H,s),4.09(2H,s),6,91-7.00(2H,m),7.35 (1H,t,J=8.1Hz),7.73(2H,dJ=8.4H z),7.81(2H,d,J=8.4Hz)
CG- 42		F ₃ CO	CH2OEt	s	н,н	F	Н	Н	F	1 1	-1	Н	Ме	Н	Ме		1.25(3H,t,J=8.4Hz),1.26(3H,t,J=6.9Hz),2.55(2H)3.26(1H),3.59(2H,g,J=6.9Hz),3.62(3H,s),4.18(2H,s),4.53(2H,s),6.95(2H,d,J=8.7Hz),7.32-7.39(3H,m),7.79(2H,dJ=8.7Hz)
CC- 43	-	F ₃ C	CH2OEt	s	н,н	F	н		l F	1 1	Н	Н	Ме	н	Me		1.26(3H,d,J=6.9Hz),1.27(3H,d,J 8.1Hz),2.55(2H)3.27(1H),3.61(2l ,q,J=8.2Hz),3.62(3H,s),6,95(2H, ,J=9.6Hz),7.37(1H,t,J=7.5Hz),7. 5(2H,dJ=8.4Hz), 7.83(2H,d,J=8.4Hz)
CC- 44	1	F ₃ C	CH=NOE	s	н,н	F	Н	, ,	4 1	H	Н	н	Ме	Н	Me	,	1.27(3H,d,J=8.1Hz),1.34(3H,t,J 7.2Hz),2.55(2H)3.25(1H),3.62(3 ,s),4.26(2H,q,,J=7.2Hz),4.31(2H s),6,04(2H,d,J=9.4Hz),7.36(1H, J=8.2Hz),7.82(2H,d,J=8.2Hz)
CC 45		CI	CH2OEt	s	н,н	F	-	1 1	4	Н	Н	н	Ме	н	М	9	1.25(3H,t,J=7.2Hz),2.54(2H),3. 4(1H),3.58(2H,q,J=7.2Hz),3.62 H,s),6.93(2H,d,J=9.6Hz),7.37(1 t,J=7.2Hz),7.46(2H,d,J=8.4Hz) 68(2H,d,J=8.4Hz)
CC 46	1	F ₃ C	Me	s	н,н	ŀ	1 1	=	н	н	н	н	Me	, H	м	е	
GC 47	;-	F ₃ C	CH2OE	t S	н,н	1	1	F	н	Н	н	н	M	e F	i M	е	1.27(3H,t,J=6.9Hz),1.29(3H,d, 6.9Hz),2.61(2H),3.59(2H,q,J=6 Hz),3.63(3H,s),4.23(2H,s),4.53 H,s),7.08-7.15(3H,m),7.75(2H J=8.4Hz),7.87(2H,d,J=8.4Hz)
CC 4	i i	F ₃ C	CH2OnF	s	H,H		Н	F	н	Н	н	н	М	e l	-l M	le	0.97(3H,t,J=7.2Hz),1.28(3H,d, 6.9Hz),1.64(2H),2.61(2H),3.49 H,s),3.62(3H,s),4.23(2H,s),4.53 H,s),7.07-7.14(3H,m),7.75(2H

[0279]

【表146】

No	合成 法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
	<u>, , , , , , , , , , , , , , , , , , , </u>															J=8.4Hz),7.87(2H,d,J=8.4Hz)
CC- 49		F ₃ C	CH=NOE t	s	Н,Н	н	F	н	H	Н	н	Me	н	Me		1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6.9Hz),2.61(2H),3.53(1H),3.62(3H,s),4.23(2H,qJ=6.9Hz),4.37(2H,s),7.10-7.15(3H,m),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
GC- 50		F ₃ C	Me	S	н,н	Н	Ме	н	Н	н	н	Ме	н	Ме		1.22(3H,d,J=7.2Hz),2.24(3H,s),2. 34(3H,s),2.55(2H),3.51(1H,),3.62 (3H,s),4.11(2H,s),7.09-7.24(3H, m),7.71(2H,d,J=8.4Hz),7.82(2H,d ,J=8.4Hz)
CC- 51		F ₃ C	CH=NOE t	S	н,н	Н	Ме	Н	Н	Н	н	Me	Н	Ме		1.22(3H,d,J=6.9Hz),2.35(3H,t,J=7.2Hz),2.34(3H,s),2.55(2H),3.49(1H,),3.63(3H,s),4.22(2H),4.35(2H,s)7.10(1H,d,J=8.1Hz),7.22(1H,d,J=4.8Hz),7.76(2H,d,J=8.4Hz),7.8 3(2H,d,J=8.4Hz)
CC- 52		CI	CH2OEt	s	н,н	н	Ме	Н	Н	Н	н	Me	н	Ме		1.21(3H,d,J=6.9Hz),1.25(3H,t,J=6.9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.56(2H,q,J=6.9Hz),3.62(3H,s),4.19(2H,s),4.47(2H,s),7.10(1H,d,J=8.1Hz),7.19-7.25(2H,m),7.46(2H,d,J=8.4Hz),7.67(2H,d,J=8.4Hz)
CC- 53		F ₃ C	CH2OEt	s	н,н	н	Me	; H	Н	H	н	Ме	н	Ме		1.22(3H,d,J=6.9Hz),1.26(3H,t,J=6.9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.57(2H,q,J=6.9Hz),3.62(3H,s),4.01(2H,s),4.50(2H,s),7.13(1H,d,J=7.8Hz),7.19-7.25(2H,m),7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
CC- 54	1	F ₃ C	CH=NOE	s	н,н	Н	Н	F	1 }	1 1	H	Me	H	Ме	:	1.27(3H,t,J=7.2Hz),1.35(3H,t,J=7.2Hz),2.47-2.64(2H,m),3.18-3.31(1H,m),3.62(3H,s),4.23(2H,q,J=7.2Hz),4.35(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)
GC 55		F ₃ C	CH=NOI	s	н,н	OM e	` ⊩	1 1	1 1	-1 1	- -	I Me	e H	Me		1.29(3H,t,J=6.9Hz),1.33(3H,t,J=6.9Hz),2.48-2.65(2H,m),3.17-3.32(1H,m),3.63(3H,s),3.87(3H,s),4.22(2H,q,J=6.9Hz),4.30(2H,s),6.70-6.80(2H,m),7.33(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.18(1H,s)

[0280]

【表147】

					B1 '	`O´										
No	合成	RI	R2	X1	R3,R4	R5	R6	R7	R8	R	R	10	R15	R16	mp	NMR(CDCi3 or DMSO-d6)
CCC -1	法	F ₃ C	Co^	s	н,н	OM e	Н	H	Н	Н		H	Me	Н	oil	1.31(3H,d,J=6.9Hz),2.60(2H),3.2 4(1H),3.85(3H,s),4.05(2H,s),4.08 (2H,s),6.02(1H),6.29(1H),6.74(2H),7.30(1H,d,J=7.8Hz),7.34(1H),7. 72(2H,d,J=8.4Hz),7.801(2H,d,J= 8.4Hz)
CCC -2		F ₃ C	(C)	S	Н,Н	Н	н	Н	Н	l F		н	Me	Н	oil	1.29(3H,d,J=6.9Hz),2.59(2H),3.2 4(1H),4.04(2H,s),4.06(2H,s),6.03 (1H),6.30(1H),7.15(2H,d,J=8.4Hz),7.32(2H,d,J=8.4Hz),7.35(1H),7. 72(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
ccc		F ₃ C	CH2O(C H2)2F	S	н,н	OM e	н	Н	+	-1 1	4	н	Ме	н		1.30(3H,t,J=6.9Hz),2.52-2.68 (2H,m),3.18-3.30(1H,m),72-3.75 (1H,m),3.82-3.85(1H,m),3.87 (3H,s),4.19(2H,s),4.50-4.53(1H,m),4.63(2H,s),4.66-4.68(1H,m),6.73-6.80(2H,m),7.32(1H,d,J=8.4Hz),7.4(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
CCC -4		F ₃ CO	CH2OEt	S	н,н	OM e	Н	Н	1	Н	H	н	Ме	Н		1.25(3H,t,J=7.2Hz),1.30((3H,d,J =7.2Hz),2.52-2.68(2H,m),3.18- 3.30(1H,m),3.57(2H,q,J=7.2Hz),3 .88(3H,s),4.17(2H,s),4.51(2H,s),6 .71-6.77(2H,m),7.30- 7.34(2H,m),7.77-7.81(2H,m)
COC -5		F ₃ C	(CH2)2C Et	s	н,н	OM e	IH	.	1	н	Н	н	Me	э H		1.15(3H,t,J=7.2Hz),1.32((3H,d,J=6.9Hz),2.54-2.69(2H,m),2.90 (2H,t,J=6.6Hz),3.19-3.31(1H,m) 3.46(2H,q,J=7.2Hz),3.63(2H,t,J=6.6Hz),3.87(3H,s),4.14(2H,s),6.6 3-6.78(2H,m),7.33(1H,d,J=7.8 Hz),7.72(2H,d,J=8.4Hz),),7.89(2 H,d,J=8.4Hz)
 -6		CI CI	CH2OE	it S	н,н	OM e	1 H	1	Н	Н	н	н	М	еН		1.24(3H,t,J=6.9Hz),1.30((3H,d,J=6.9Hz),2.52-2.68(2H,m),3.18-3.30(1H,m),3.56(2H,q,J=6.9Hz),.878(3H,s),4.16(2H,s),4.50(2H,s),6.72-6.77(2H,m),7.33(1H,d,J=7.5Hz),7.42-7.47(2H,m),7.66-7.70(2H,m)

[0281]

【表148】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10) R1	5 F	₹16	mp	NMR(CDCl3 or DMSO-d6)
CCC -7	法	MeO	Ме	s	н,н	OM e	н	Н	Н	Н	Н	M	е	н		1.31(3H,d,J=6.9Hz),2.20(3H,s),2. 53-2.69(2H,m),3.19-3.31(1H,m), 3.86(3H,s),3.88(3H,s),4.07(2H,s), 6.73(1H,s),6.76(1H,d,J=7.8Hz),6. 96-7.03(2H,m),7.34(1H,d,J=7.8 Hz),7.59-7.63(2H,m)
CCC -8		CI	CH=NOE t	s	н,н	OM e	н	Н	н	Н	н	м	е	н	101- 103	
-9		F ₃ CO	CH=NOE	s	Н,Н	OM e	н	Н	Н	Н	н	М	е	н	84- 86	
CCC -10		F ₃ C	CH2OMe	s	н,н	OM e	н	Н		1 }	i F	i N	le	н	oil	1.31(3H,d,J=6.9Hz),2.52-2.69 (2H,m),3.18-3.30(1H,m),3.42 (3H,s),3.88(3H,s),4.18(2H,s),4.48 (2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=8.1Hz),7.74(2H,d,J=8.1 Hz),7,87(2H,d,J=8.1Hz)
CCC -11		F ₃ CO	CH2OnP	s	н,н	OM e	н	F	1 1	4 1	1 1	-i N	Лe	Н	oil	0.94(3H,t,J=7.2Hz),1.31(3H,d,J=6.9Hz),1.58-1.70(2H,m),2.52-2.69(2H,m),3.19-3.30(1H,m),3.48(2H,t,J=6.6Hz),3.88(3H,s),4.17(2H,s),4.50(2H,s),6.73-6.77 (2H,m),7.30-7.34(3H,m),7.80 (2H,d,J=9.0Hz)
CCC -12	1	F ₃ C	Me	s	н,н	OM e	Н		1	Н	H !	H 1	Иe	Н	115. 5- 117. 5	3.88(3H,s),4.10(2H,s),6.73-6.77 (2H,m),7.33(1H,d,J=8.1Hz),7.73(2H,d,J=8.1Hz), 7.80(2H,d,J=8.1Hz)
CCC -13		F ₃ C	CH=NO	n s	н,н	OM e	, j F	1	Н	н	н	Н	Ме	н	71.0 - 72.0	3.8 /(3H,s),4.13(2H,t,0=0.9Hz),4. 30(2H,s),6.73(1H,s),6.76(1H,d,J= 7.8Hz),7.34(1H,d,J=7.8Hz), 7.75 (2H, d, J=8.1 Hz), 7.84 (2H, d, J=8.1 Hz), 8.19 (1H, s)
CC0		F ₃ C	CH=NO GH2)2		s Н,Н	Officer		-1	Н	н	н	Н	Ме	Н	92.0 93.	1.31 (3H, d, J=6.9 Hz), 2.52-2.70 (2H, m), 3.19-3.31 (1H, m), 3.87 (3H, s), 4.28 (2H, s), 4.38 (2H, d, J=28.5 Hz), 4.68 (2H, d, J=47.4 Hz), 6.74-6.78 (2H, m), 7.33 (1H, d, J=7.8 Hz), 7.76 (2H, d, J=8.4 Hz), 7.83 (2H, d, J=8.4 Hz), 8.23 (1H, s)
CC -1		F ₃ C	(CH2)2 Me	:0	S H,F	O	M e	Н	Н	Н	Н	Н	Me	, F	1 l -	1.32(3H,d,J=6.9Hz),2.54-2.69(2 0 H,m),2.89(2H,t,J=6.9Hz),3,21-3, 33(4H,m),3.59(2H,t,J=6.9Hz),3.6 7(3H,s),4.13(2H,s),6.74-6.78(2H,s),7.33(1H,d,J=7.8Hz),7.73(2H,d

[0282]

【表149】

No	合成法	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R9	R1	0 R	15	R16	mp	NMR(CDCl3 or DMSO-d6)
	<u> </u>											\top				J=8.7Hz),7.86(2H,d,J=8.7Hz)
CCC -16		F ₃ C		s	н,н	OM e	н	Н	Н	н	Н		Иe	Н	70.0 - 72.0	1.31 (3H, d, J=7.2 Hz), 2.53-2.59 (2H, m), 3.21-3.28 (1H, m), 3.83 (3H, s), 3.90 (2H, s), 4.04 (2H, s), 5.94 (2H, s), 6.55-6.58 (2H, m), 6.70-6.76 (3H, m), 7.28 (1H, d, J=8.1 Hz), 7.68 (2H, d, J=8.4 Hz), 7.74 (2H, d, J=8.4 Hz)
CCC -17		F ₃ C	CH=NOc Pen	S	н,н	OM e	Н	Н	н	Н	ŀ	1	Me	Н	-	1.32 (3H, d, J=6.9 Hz), 1.59-1.86 (8H, m), 2.53-2.70 (2H, m), 3.21-3.29 (1H, m), 3.87 (3H, s), 4.30 (2H, s), 4.78 (1H, m), 6.73-6.77 (2H, m), 7.33 (1H, d, J=7.8 Hz), 7.75 (2H, d, J=8.4 Hz), 7.84 (2H, d, J=8.4 Hz), 8.16 (1H, s)
CCC -18		F ₃ C	CH=NOi Pr	S	н,н	OM e	Н	Н	Н	F	1 1	1	Me	Н	86.0 - 87.0	1.30-1.33 (9H, m), 2.53-2.70 (2H, m), 3.19-3.31 (1H, m), 3.87 (3H, m), 4.30 (2H, s), 4.39-4.51 (1H, m), 6.73-6.78 (2H, m), 7.34 (1H, d, J=7.8 Hz), 7.75 (2H, d, J=8.4 Hz), 7.84 (2H, d, J=8.4 Hz), 8.18 (1H, s)
CCC -19		F ₃ C	CH=NO Me	s	н,н	OM e	Н	H	I F	1 1	-1 1	1	Me	н	-	1.31 (3H, d, J=6.9 Hz), 2.53-2.70 (2H, m), 3.19-3.31 (1H, m), 3.87 (3H, s), 3.97 (3H, s), 4.30 (2H, s), 6.73-6.77 (2H, m), 7.35 (1H, d, J=7.8 Hz), 7.75 (2H, d, J=8.4 Hz), 7.83 (2H, d, J=8.4 Hz), 8.15 (1H, s)
CCC -20	1	F ₃ C	CH=NO(CH2)2CI	S	н,н	OM e	Н	}	1 +	1	H	н	Me	н	105. 5- 107. 0	4.28 (2H, s), 4.37 (2H, t, J=5.7
CCC -21		CI	GH2OnF r	s	н,н	OM e	Н		H 1	Н	Н	Н	Me	Н	oil	(2H, s), 6.73-6.77 (2H, m), 7.33 (1H, d, J=7.5 Hz), 7.45 (2H, d, J=8.4 Hz), 7.69 (2H, d, J=8.4 Hz)
GC(-22	1	F ₃ CO	CH=NO Me	s	н,н	OM e	1 5	1	H	Н	н	Н	Me	₽H	. -	1.31 (3H, d, J=6.9 Hz), 2.52-2.70 (2H, m), 3.19-3.31 (1H, m), 3.87 (3H, s), 3.96 (3H, s), 4.29 (2H, s), 6.73-6.77 (2H, m), 7.33-7.35 (3H, m), 7.74 (2H, d, J=8.7 Hz) 8.12 (1H, s)

[0283]

【表150】

No	合成 法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
CCC -23		F ₃ C	Ме	s	н,н	н	н	H	Н	Н	Н	Ме	н	86- 88	
CCC -24		F ₃ C	CH2OEt	s	Н,Н	OM e	н	Н	Н	Н	н	Me	н	82- 84	
CCC -25		F ₃ C	CH2OnP r	s	н,н	OM e	н	н	н	Н	Н	Ме	н	65– 69	
CCC -26		F ₃ C	CH2OCH 2cPr	s	н,н	OM e	Н	Н	Н	н	н	Ме	н	55- 58	
CCC -27		F ₃ C	CH2OEt	0	Н,Н	OM e	Н	Н	Н	Н	Н	Ме	Н	121- 123	
CCC -28		F ₃ C	CH2OnP r	0	н,н	OM e	н	Н	н	Н	н	Ме	н	127- 129	
CCC -29		F ₃ C	Мe	0	н,н	OM e	н	н	Н	Н	Н	Ме	н	96- 98	
-30		F ₃ C	CH2OEt	0	н,н	F	н	н	Н	 	н	Me	н	124- 126	
CCC -31		F ₃ C	CH2OnP	0	н,н	F	Н	Н	H	1 1	н	Me	Н	122- 124	
CCC -32	1	F ₃ C	Me	0	н,н	F	Н	Н	1	1 1	1 H	Me	н	113- 115	
CCC		F ₃ C	CH2OEt	s	Н,Н	Н	Н	Н	1 +	4	4 H	Me	e Me	90- 92	
CCC		F ₃ C	Me	s	Н,Н	Н	Н	+	, ,	-1 1	4 F	М	e Me	108- 109	
CCC -35		F ₃ C	Me	s	н,н	н	н		1 1	4	H F	ı M	e H		1.28(3H,d,J=7.2Hz),2.30(3H,s),2. 59(2H,m),3.24(1H,m),4.11(3H,s), 4.79(2H,s,),7.15(2H,d,J=8.4Hz),7 .34(2H,d,J=8.4Hz),7.74(2H,m),7. 81(2H,m)
CC0		F ₃ C	CH2OE	t S	н,н	Н		1	4	Н	H I	i M	e H	83- 84	1.13(3H,t,J=6.9Hz),1.18(3H,d,J=6.9Hz),3.15(1H),3.51(2H),4.32(2 H,s),4.50(2H,s),7.22(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz),7.93(2H,d,J=8.7Hz),7.99(2H,d,J=8.4Hz)

[0284]

【表151】

No	合成 法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R	9 F	210	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
CCC -37	冶	F ₃ C	CH2OnP	s	н,н	Н	н	Н	н	Н	1	н	Me	Н	59-	0.94(3H,t,J=7.2Hz),1.29(3H,d,J=6.9Hz),1.64(2H),2.58(2H),3.26(1H),3.47(3H,t,J=6.6Hz),4.21(2H,s),4.49(2H,s),7.15(2H,d,J=8.4Hz),7.34(2H,d,J=8.4Hz),7.74(2H,dJ=8.4Hz),7.87(2H,d,J=8.4Hz)
CCC -38		CI	Ме	s	н,н	OM e	Н	Н	н	F	1	Н	Me	H		1.30(3H,d,J=6.9Hz),2.21(3H,s),2. 65(2H),3.24(1H),3.87(3H,s),4.07(2H,s),6,72- 6.78(2H,m),7.32(1H,d,J=8.4Hz),7. .44(2H,d,J=8.4Hz),7.61(2H,dJ=8. 4Hz)
CCC -39		CI	Me	s	Н,Н	Н	Н	Н	H	1 1	1	н	Me	н	149- 150	1.29(3H,d,J=6.9Hz),2.19(3H,s),2. 59(2H)3.24(1H),4.09(2H,s),7.14(2H,d,J=8.4Hz),7.34(2H,d,J=8.4H z),7.44(2H,d,J=8.4Hz),7.62(2H,d J=8.4Hz)
CCC -40		F ₃ CO	Ме	s	н,н	OM e	н	Н		1	н	н	Me	Н	75- 76	1.30(3H,d,J=6.9Hz),2.23(3H,s),2. 60(2H),3.24(1H),3.88(3H,s),4.07(2H,s),6,72- 6.78(2H,m),7.32(3H,d,J=8.4Hz),7 ,71(2H,d,J=8.4Hz)
CCC -41	1	F ₃ C	Me	s	н,н	F	н	Н		+	н	н	Me	н	117- 118	1H,s),6.96(1H,m,),7.35(1H,d,)-6. 4Hz),7.73(2H,d,J=8.4Hz),7.80(2 H,d,J=8.4Hz)
CCC -42		F ₃ CO	CH2OEt	: S	н,н	F	Н	1	1	Н	Н	н	Ме	н	55- 56	s),6,94(2H,d,J=9.0Hz),7.31- 7.40(3H,m,),7.79(2H,d,J=8.4Hz)
GGC -43	1	F ₃ C	CH2OE	t S	н,н	F	H	l 1	-1	н	Н	н	Me	e H	87-	s),6,94(2H,d,J=9.0Hz),7.36(3H,t, J=7.5Hz),7.74(2H,d,J=8.4Hz),7.8 7(2H,d,J=8.4)
GG(-44		F ₃ C	CH=NO	E s	н,н	F	.	1 1	H	н	н	н	M	e H	148	1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6.9Hz),2.58(2H),3.24(1H),3.59(2H),4.31(2H,s),6,94(2H,d,J=9.0Hz),7.37(3H,t,J=7.5Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d,J=8.4),8.16(1H,s)
CCC	- i	CI	CH2OE	t S	H,H	F	- 1	-1	н	н	н	Н	м	e F	60	1.25(3H,tJ=6.9Hz),1.28(3H,d,J=6.9Hz),2.59(2H),3.23(1H),3.59(2H,d,J=6.9Hz),4.18(2H,s),4.51(2H,d,J=6.9Hz),7.37(3H,d,J=7.5Hz),7.46(2H,d,J=8.4Hz),7.7(2H,d,J=8.4Hz)
CC -4	1	F ₃ C	Me	S	: н,н	ŀ	1	F	Н	н	н	F	ı	le H	-1	

[0285]

【表152】

No	合成	R1	R2	X1	R3,R4	R5	R6	R7	RE	R	9 1	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
CCC -47	法	F ₃ C	GH2OEt	s	н,н	Н	F	Н	Н	F	1	н	Ме	н		1.26(3H,tJ=6.9Hz),1.30(3H,d,J=6.9Hz),2.64(2H),3.49(1H),3.59(2H,q,J=6.9Hz),4.23(2H,s),4.52(2H,s),7.07-7.14(3H,m,),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4)
CCC -48		F ₃ C	CH2OnP r	s	н,н	н	F	н	F	1 1	+	Н	Ме	н	72- 73	0.96(3H,tJ=7.2Hz),1.30(3H,d,J=7.2Hz),1.67(2H),2.65(2H),3.49(3H),4.23(2H,s),4.52(2H,s),7.07-7.14(3H,m,),7.75(2H,d,J=8.1Hz),7.87(2H,d,J=8.1)
CCC -49		F ₃ C	CH=NOE	s	н,н	Н	F	н	ŀ	1	Н	н	Me	н	122- 123	7.82(2H,d,J=8.4)
CCC -50		F ₃ C	Me	s	н,н	Н	Ме	Н		H	Н	Н	Ме	н	74- 75	(2H,s),7.11- 7.24(3H,m),7.73(2H,d,J=8.4Hz),7 .81(2H,d,J=8.4Hz)
CCC -51		F ₃ C	CH=NOE	s	Н,Н	Н	Me	e F	1	н	Н	н	Me	Н	103	1.24(3H,d,J=6.9Hz),1.34(3H,t,J=7.2Hz),2.33(3H,s),2.59(2H),3.48(-1H),4.22(2H,q,J=6.9Hz),4.34(2H,s)7.11(1H,d,J=8.1Hz),7.21-7.26(2H,m),7.75(2H,d,J=8.4Hz),7,83(2H,d,J=8.4Hz)
CCC -52		CI	CH2OE-	t S	н,н	Н	M	e H	4	н	Н	Н	Me	H	82- 83	,s),4.467(2H,s),7.10(1H,d,J=8.1H z),7.19-7.25(2H,m),7.45(2H,d, J=8.4Hz),7.68(2H,d,J=8.4Hz)
CCC -50	- 1	F ₃ C	CH2OE	t S	Н,Н	Н	м	e	Н	н	Н	н	M	е	66 67	,7.19-7.25(2H,m),7.75(2H,d, J=8.4Hz),7.87(2H,d,J=8.4Hz)
CC0 -5	1	F ₃ C	CH=NO	E	s H,H	F	4 1	4	н	н	Н	1 H	ı M	e l	. 5	2. H,d,J=8.4Hz),7.34(2H,d,J=8.4Hz 3.),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.33(1H,s)
CC -5	- 1	F ₃ C	CH=NC	ÞE ,	S H,F	01	M e	Н	Н	Н	 	-1 l	-1 N	le l	_ 1 '	1.21(3H,t,J=6.9Hz),1.26(3H,t,J=6.9Hz),3.02-3.20(1H,m),3.79 (3H,s),4.14(2H,q,J=6.9Hz),4.33(2H,s),6.82(1H,dd,J1=7.82Hz,J2=1.2Hz),6.90(1H,d,J=1.2Hz),7.29(1H,d,J=7.8Hz),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.32(1H,s)

[0286]

【表153】

					R ¹	0										NMR(CDCl3 or DMSO-d6)
No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R			R20	R17	mp	
3-3-4	β-3	F ₃ C	CH2OnPr	S	Н,Н	н	Н	H	H	}	4	Me	Н	Ме		CDCl ₃ 0.95(3H,t,J=7.2Hz),1.64(2H),3.48(2H,t,J=6.6Hz),3.67(3H,s),3.71(3H, s),3.73(2H,s),4.23(2H,s),4.50(2H,s),7.03(1H,s),7.18(1H,dd,J=8.4,1.5) Hz),7.42(1H,dd,J=1.5,0.6Hz),7.50(1H,dd,J=8.4,0.6Hz),7.74(2H,d,J=9.0Hz),7.89(2H,d,J=9.0Hz)
β -4-2	β-4	F ₃ CO	CH2OnPr	S	н.н	Н	Н	Н		1	H	Me	Н	Me		
β- (XXX-1		F ₃ C	Me	0	H,H	Н	Н	Н	1	1	Н	Н	H	Me		
β – (XXX-2		F ₃ C	Me	0	н,н	Н	Н	H		H	Н	Me	Н	Me		
β- xxxx-:	3	F ₃ C	Me	C	H,H	Н	H	1	1	н	Н	nPr		M		0.94(3H,t,J=7,5Hz),1.59-1.70(2h
β- XXXX-	4	CI CI	CH2OnF	27 8	S H,H	Н	H		4	H	H	Me				m),3.46(3H,t,J=6.6Hz),3.69(3H,s),3.71(3H,s),3.73(2H,s),4.22(2H,s),48(2H,s),7.03(1H,m), 7.19 (1H, G), J=8.1, 1.5 Hz), 7.42 (1H, m), 7. (2H, d), J=8.4 Hz), 7.50 (1H, J=8.1 Hz), 7.70 (2H, d, J=8.4 Hz)
β- xxx-	-5	F ₃ C	Ме		0 н,н	F	1 1	4	H	Me	H	M			le	CDCl3 1.57(3H,d,J=6.9Hz),2.34(3H,s),3 6(3H,s),3.71(3H,s),3.96(1H),5.26 H,s),6.85-6.92(3H,m),7.56(1H,d J=8,7Hz),7.75(2H,d,J=8.7Hz),7. (2H,dJ=8.7Hz)
β- XXXX		F ₃ C	CH201	Et	О Н.	1 1	H	Н	Н	н	н	N	le	H P	Ae	CDCl3 1.26(3H,t,J=6.9Hz),3.60(2H),3.1 3H,s),3.71(3H,s),3.73(2H,s)4.58 H,s),5.32(2H,s),6.85-6.95(3H,r) 7.49(1H,d,J=8.4Hz),7.75(2H,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d

[0287]

【表154】

— т	A		R2	X1	R3.R4	R5	R7	R8	R) In	110	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
Nο β – XXXX-7	合成法	F ₃ C	CH2OnPr	0	Н,Н	н	Н	Н	Н			Me	Н	Ме		CDCl3 0.92(3H,t,J=7.2Hz),1.25(2H,tJ=7. 2Hz),1.61(2H),3.69(3H,s),3.71(3H,s),3.73(2H,s),4.57(2H,s),5.52(2H,s),6.85-6.95(2H,m),7.49(1H,d,J=8.4Hz),7.75(2H,dJ=7.1Hz),7.95(2H,d,J=7.1Hz)
β – XXXX-8		F ₃ C	CH2OEt	0	н,н	Н	Н	Н	М	е	Н	Me	H	Ме		CDCl3 1.24(3H,t,J=6.9Hz),1.58(3H,d,J=8. 4Hz),3.60(2H),3.66(3H,s),3.71(2H,s),4.58(2H,s),5.32(2H,s),6.84-6.92 (3H,m),7.56(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.96(2H,d,J=8.4Hz)
β- XXXX-9		F ₃ C	Me	S	Н,Н	Н	Н	Н	1	H	Н	Ме	H	Me		CDCl3 2.24(3H,s),3.69(3H,s),3.71(3H,s),3. 73(3H,s),4.12(2H),4.14(2H,s),6.61(2H,d,J=9.0Hz),7.03-7.52(4H,m,), 7.73(2H,dJ=8.1Hz),7.80(2H,d,J=8. 1Hz)
β- xxxx- 10		F ₃ C	Me	0	н,н	Н	Н	Н	I N	Лe	Me	Me	Н	M		GDCl3 1.65(6H,s,),2.35(3H,s),3.60(2H),3. 63(3H,s),3.70(3H,s),5.26(2H,s),6.8 2-6.92(3H,m),7.53(1H,d,J=8.4Hz), 7.64(2H,d,J=8.4Hz),7.83(2H,dJ=8.4Hz)
β- XXXX- 11	-	F ₃ C	Ме	S	н,н	Н	н	}-	1	Me	Н	Me	H	М	е	CDCl3 1.58(3H,s),2.26(3H,s),3.65(3H,s),3. 70(3H,s),3.98(1H),4.10(2H,s),6,99(1H,s),7.17(1H,dd,J=8.4,J=1.5Hz),7 .38(1H,d,J=1.5Hz),7.57(1H,dJ=8.7 Hz),7.73(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
β- XXXX- 12	-	F ₃ C	CH2OE	tS	Н,Н	H	H	1	H	Н	Н	М	e H	I M	le	CDCl3 1.23(3H,t,J=6.9Hz),3.58(2H,q,J=7.2Hz),3.69(3H,s),3.71(3H,s),3.73(2H,s),4.23(2H,s),4.514(2H,s),7.03(1H,s),7.19(14H,dd,J=8.1Hz,J=0.9Hz),7.43(1H,m),7.50(1H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
β – XXXX 13	:-	F ₃ C	CH2OE	t S	5 H,H	1	1 1	1	Н	Ме	Н	N	le l	1 1	/le	
β- ×××× 14	(-	F ₃ CO	CH2OI	Et	S H.F	1 1	-1 !	H	Н	Н	H	I M			Me	CDCl3 1.25(3H,t,J=6.9Hz),3.57(2H,q,J=6.9Hz),3.69(3H,s),3.71(3H,s),3.73(3H,s),4.22(2H,s),4.49(2H,s),7.18(1H,dd,J=8.4,J=1.2Hz),7.32(2H,d,J=8.4Hz),7.42(1H,s),7.50(1H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
β - XXXX 15	x-	CI	CH20	Et	S H,I	1	Н	Н	н	Н		- I	Me	Н	Me	

[0288]

【表155】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
β- XXXX- 16			CH=NOEt	S	Н,Н	Н	Н	Н	Н	H	Me	H	Ме		CDCl3 1.35(3H,d,J=7.21Hz),3.69(2H,s,),3. 72(3H,s),3.73(2H,s),4.24(2H,q,J=6,9Hz),4.36(2H,s,),7.02(1H,s,),7.19(1H,dd,J=8.4,J=1.5Hz),7.43(1H,d,J=0.9Hz),7.51(1H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)

【0289】 【表156】

					n	U								
No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20		NMR(CDCl3 or DMSO-d6)
β-3-5	β-3	F ₃ C	CH2OnPr	S	н,н	Н	Н	Н	н	Ħ	Ме	Н	110	0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=6.6Hz),3.60(2H,s),3.70(3H,s),4.31(2H,s),4.53(2H,s),7.09(1H,dd,J=8.1,1.5Hz),7.23(1H,s),7.46(1H,d,J=8.1Hz),7.51(1H,d,J=1.5Hz),7.93(2H,d,J=8.7Hz)
β-4-3	β-4	F ₃ CO	CH2OnPr	S	н,н	Н	н	н	Н	Н	Ме	Н	96-98	
β - XXXXX- 1		F ₃ C	Me	0	н,н	Н	Н	H	H	H	H	Н	213	
β- XXXXX- 2		F ₃ C	Me	0	H,H	Н	Н	H	Н	H	Ме	Н	166- 167	
β – XXXXX- 3		F ₃ C	Me	0	H,H	Н	Н	Н	Н	Н	nPr	H	155- 157	
β- XXXXX- 4	-	CI	CH2OnPr	S	Н,Н	Н	Н	Н	H	Н	Ме	Н	133.5	0.94 (3H, t, J=7.5Hz), 1.57-1.69 (2H, m), 3.46 (2H, t, J=6.6 Hz), 3.71 (3H, s), 3.76 (2H, s), 4.22 (2H, s), 4.47 (2H, s), 7.03 (1H, s), 7.19 (1H, dd, J=8.4, 1.5 Hz), 7.42 (1H, m), 7.45 (2H, d, J=8.4 Hz), 7.50 (1H, d, J=8.4 Hz), 7.69 (2H, d, J=8.4 Hz)
β – XXXXX- 5	-	F ₃ C	Ме	0	н,н	Н	Н	Н	Ме	Н	Ме	Н	156- 157	1.59(3H,d,J=9.0Hz),2.34(3H,s),3.70(3H,s), 3.97(1H),5.26(2H,s),6.86(1H,dd,J=8.7Hz, J=2.1Hz),6.92(1H,s),7.56(1H,d,J=8.7Hz),7.74(2H,d,J=8.4Hz),7.83(2H,dJ=8.7Hz)

[0290]

【表157】

., 1	合成法	Ri	R2	X1	R3,R4	R5	R7	R8	F	R9	R10	R23	R20		NMR(CDCl3 or DMSO-d6)
No β – XXXXX– 6	古成法		CH2OEt	0	н,н	н	Н	Н		Н	Н	Me	н	126- 140	1.23(3H,t,J=7.2Hz),3.60(2H),3.71(3H,s),3. 75(2H,s)4.57(2H,s),5.32(2H,s),6.87(1H,dd ,J=8.4Hz,J=2.1Hz),6.93(1H,d,J=1.8Hz),6.
Ů		F ₃ C			,										95(1Hs)7.48(1H,d,J=8.4Hz),7.75(2H,d,J= 8.4Hz),7.95(2H,dJ=8.4Hz)
β – XXXXX– 7			CH2OnPr	0	н,н	Н	Н	Н		Н	H	Ме	Н	122- 123	0,92(3H,t,J=7.2Hz),1.63(2H),3.49(3H,t,J=6.6Hz),3.71(3H,s,),3.75(2H,s),4.57(2H,s),5.31(2H,s),6.87(2H,dd,J=8.7Hz,J=2.1Hz),6.93(1H,d,J=1.8Hz),6.95(1H,s),7.49(1H,s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1H_s),7.49(1
		F ₃ C													=8.7Hz),7.76(2H,dJ=7.1Hz),7.96(2H,d,J=7.1Hz)
β – XXXXX- 8		F ₃ C	CH2OEt	0	н,н	Н	Н	Н		Me	н	Ме	H	129- 130	1,23(3H,t,J=6,9Hz),1.59(3H,d,J=7.2Hz),3. 60(2H),3.71(3H,s),3.97(1H),4.57(2H,s),5.3 1(2H,s),6.86(1H,dd,J=8.7Hz,J=2.1Hz),6.9 1(1H,d,J=1.8Hz),6.92(1H,s),7.56(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.
B-			Me	s	Н,Н	Н	Н	H	+	Н	Н	Ме	Н	124-	4Hz)
XXXXX-	-	F ₃ C												125	d,J=1.5Hz),7.49(1H,dd,J=8.4Hz,J=2.1Hz), 7.72(2H,dJ=8.4Hz),7.79(2H,d,J=8.4Hz)
β – XXXXX- 10	-	F ₃ C	Ме	0	Н,Н	Н	н	F	1	Ме	Ме	Ме	Н	198- 199	s),6.83(1H,dd,J=8.4Hz,J=2.1Hz),6.87(1H, s),6.91(1H,d,J=2.4Hz),7.57(1H,d,J=6.0Hz ,7.74(2H,d,J=8.4Hz),7.83(2H,dJ=8.4Hz)
β- XXXXX- 11	-	F ₃ C	Me	s	н,н	Н	Н	1	4	Ме	Н	Me	Н	135- 136	1
β – XXXXX 12	-	F ₃ C	CH2OEt	S	Н,Н	Н	Н		Н	Н	Н	Me	н	102	- 1.25(3H,t,J=6.9Hz),3.57(2H,q,J=7.2Hz),3 71(3H,s),3.7(2H,s),4.23(2H,s),7.03(1H,s), .18(14H,dd,J=8.1Hz,J=0.9Hz),7.42(1H,s), 7.49(1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz),7 87(2H,d,J=8.4Hz)
β- xxxxx 13	(F ₃ C	CH2OE1	: 5	Б Н,Н	Н	F	1	Н	Ме	Н	M	е Н		0 1.25(3H,t,J=6.9Hz),1.57(3H,d,J=7.2Hz),3 59(2H),3.70(3H,s),3.97(1H),4.23(2H,s),4. 0(2H,s),7.00(1H,s),7.17(1H,dd,J=8.7Hz,J 2.1Hz),7.40(1H,d,J=1.8Hz),7.57(1H,d,J=1.7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.4Hz)
β – XXXXX 14	<-	F ₃ CO	CH2OE	t	S H,H	F	1 1	4	Н	Н	Н	М	e H	85-	36 1.25(3H,t,J=6.9Hz),3.57(2H),3.71(3H,s), 57(2H,s),4.22(2H,s),4.48(2H,s),7.03(1H,s 7.18(14H,dd,J=8.1Hz,J=0.9Hz),7.32(1H, 7.6Hz),7.42(1H,d,J=1.2Hz),7.49(1H,d,J= 2Hz),7.79(4H,d,J=8.4Hz)
β - XXXXX 15		CI CI	CH2OE	t	S H,ŀ	1 1	1 1	4	Н	Н	۲	М	le F	12	74(2H,s),4.22(2H,s),4.43(2H,s),7.03(1H, 7.18(1H,dd,J=8.1Hz,J=0.9Hz),7.41– 7.51(4H,m),7.68(2H,d,J=8.4Hz)
β- XXXX 16	x-	F ₃ C	CH=NO	Et	S H,F	1 1	1	Н	Н	Н	ŀ	l N	le l	1 72-	73 1,35(3H,t,J=6.9Hz),3.72(3H,s),3.76(2H,s),4.24(2H),4.36(2H,s),7.03(1H,s),7.20(1H,J=8.4Hz),7.44(1H,s,),7.50(1H,d,J=8.4Hz),7.74(1H,d,J=8.4Hz),7.83(4H,d,J=8.4Hz)

[0291]

【表158】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{2}
 R^{7}
 R^{8}

				R'	·O							
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
β- 3-6	β-3	CI	CH2OEt	s	н,н	н	н	н	н	Ме		
β - 2- 153	β-2	F ₃ CO	CH2OEt	s	н,н	Н	н	н	н	Me		
β- 2 154	β−2	F ₃ C	Me	s	н,н	Н	Н	Н	Н	Ме		CDCl ₃ 1.14-1.18(2H,m),1.58-1.62(2H,m),2.26 (3H,s),3.61(3H,s),4.15(2H,s),7.27(2H,d,J =8.7Hz), 7.36 (2H, d, J=8.7 Hz), 7.73 (2H, d, J=8.1 Hz), 7.81 (2H, d, J=8.1Hz)
β- 2- 155	β-2	F ₃ C	CH2OnP r	s	н,н	н	Н	Н	Н	Ме		CDCl ₃ 0.96(3H,t,J=7.5Hz),1.14-1.17(2H,m), 1.58-1.69(4H,m),3.49(2H,t,J=6.6Hz), 3.62(3H,s),4.24(2H,s),4.51(2H,s),7.27(2 H, d,J=8.4Hz),7.36(2H,d,J=8.4 Hz), 7.75 (2H, d, J=8.7 Hz), 7.88 (2H, d, J=8.7 Hz)
β - 2- 156	β-2	F ₃ C	CH=NOE	s	н,н	Н	н	н	н	Ме		CDCl ₃ 1.15-1.18(2H,m),1.35(3H,t,J=7.2Hz), 1.57-1.61(2H,m), 3.62 (3H, s), 4.34 (2H, q,J=7.2Hz),4.38(2H,s),7.27(2H,d,J=8.4H z),7.38(2H,d,J=8.4Hz),7.76(2H,d,J=8.4H z),7.82(2H,d,J=8.4Hz), 8.18 (1H, s)
β - 2- 157	β-2	F ₃ C	CH=NO Me	s	н,н	н	н	н	н	Ме		CDCl ₃ 1.14-1.20(2H,m),1.58-1.61(2H,m),3.62 (3H,s),3.98(3H,s),4.38(2H,s),7.27(2H,d,J=8.1Hz),7.38(2H,d,J=8.1Hz),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz),8.15 (1H, s)
β - 2- 158	β −2	F ₃ C	CH2OE	s	н,н	Н	Н	Н	н	Me	oil	

[0292]

【表159】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{0}
 R^{2}
 R^{8}

				R							
No	合成法	R1	R2	Х1	R3,R4	R5	R6	R7	R8	Мр	NMR(CDCl3 or DMSO-d6)
β- 3-7	β-3	CI	CH2OEt	s	н,н	Н	н	н	н	86-88	
β- 2- 159	β-2	F ₃ CO	CH2OEt	s	н,н	н	н	Н	н	83-84	
β- 2- 160	β-2	F ₃ C	Me	s	н,н	Н	н	н	н	136.0- 137.0	1.22-1.26(2H,m),1.65-1.68(2H,m), 2.24 (3H, s), 4.14 (2H, s), 7.29 (2H, d, J=8.1 Hz), 7.36 (2H, d, J=8.1 Hz), 7.73 (2H, d, J=8.7 Hz), 7.81 (2H, d, J=8.7 Hz)
β- 2- 161	β−2	F ₃ C	CH2OnP r	S	H,H	н	Н	H	Н	76-77	0.85 (3H, t,J=7.5 Hz), 1.09-1.13 (2H, m), 1.41-1.45(2H,m), 1.47-1.59 (2H, m), 3.43(2H,t,J=6.6Hz),4.36(2H, s), 4.52(2H, s), 7.28 (2H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 7.94 (2H, d, J=8.7 Hz), 8.00 (2H, d, J=8.7 Hz), 12.34 (1H, br s)
β - 2- 162	β-2	F ₃ C	CH=NOE	s	н,н	н	н	н	Н	144.5- 146.0	(2H, d, J=8.4 Hz), 7.75 (2H, d, J=8.4 Hz), 7.81 (2H, d, J=8.4 Hz), 7.81 (2H, d, J=8.4 Hz), 8.17 (1H, s)
β- 2- 163	β-2	F ₃ C	CH=NO Me	s	H,H	н	Н	н	н	142.5- 144.5	1.1=8.4 Hz) /.38 (ZH, 0, 0=0.4 1127, 7.70
β- 2- 164	β-2	F ₃ C	CH2OE	t S	н,н	Н	Н	н	н		

[0293]

【表160】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
β- 3-8	β-3	F ₃ C	Ме	S	Н,Н	н	Н	н	н	Ме		1.95(2H,m,),2.26(3H,s),2.49(2H,dd,J=1 3.2Hz,J=2.1Hz),3.54(2H,td,J=10.5Hz,J=2.1Hz),3.66(3H,s),3.92(2H,td,J=12.0 Hz,J=3.6Hz),4.15(2H,s),7.30(2H,d,J=8.7Hz),7.39(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
β- 3-9	β-3	F ₃ C	Me	s	н,н	н	Н	н	н	Н		1.96(2H,td,J=11.6Hz),2.26(3H,s),2.48(2H,d,J=12.0Hz),3.60(2H,t,J=11.6Hz),3. 92(2H,dt,J=12.0Hz,3.6Hz),4.14(2H,s),7 .23-7.41(4H,m),7.71~7.82(4H,m)

【0294】 【表161】

No	合成	R1	R2	X1	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-1		F ₃ C	Me	s	н,н	н	CH2	Н	Н	Ме		
DD-2		F ₃ C	Me	s	н,н	CI	単結合	Н	н	Ме		·
DD-3		F ₃ C	Ме	s	н,н	Н	単結合	Н	н	Ме		
DD-4		F ₃ C	Me	s	Н,Н	н	CH=CH	H	н	Ме		2.27(3H,s),3.24(2H,d,J=6.9Hz),3.71(3H,s),4.13(2H,s),6.28(1H,dt,J=15.9Hz,J=6.9Hz),6.44(1H,d,J=15.9Hz),7.29(2H,d,J=8.7Hz),7.35(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz)

[0295]

【表162】

No	合成 法	R1	R2	X1	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-5		F ₃ C	Ме	s	н,н	Н	単結合	Ме	Н	Ме		1.27(3H,d,J=7.2Hz),2.24(3H,s),2.56(2H,m),3.25(1H,m),3.61(3H,s),4.11(2H,s),7.1 5(2H,d,J=8.1Hz),7.34(2H,d,J=8.4Hz),7.7 3(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
DD-6		F ₃ C	CH2OEt	s	н,н	Н	単結合	Me	н	Ме		1.26(3H,t,J=7.2Hz),1.48(3H,d,J=7.5Hz), 3.58(2H,q,J=7.2Hz),3.65(3H,s),4.23(2H,s),4.52(2H,m),7.24(2H,d,J=8.4Hz),7.38(2H,d,J=8.4Hz),7.88(2H,d,J=7.8Hz),7.88(2H,d,J=7.8Hz)
DD-7		F ₃ C	CH2OEt	S	н,н	H	単結合	н	Ħ	Me		1.26(3H,d,J=7.2Hz),3.59(2H,q,J=7.2Hz), 3.59(2H,s),3.68(3H,s),4.23(2H,s),4.52(2 H,s),7.21(2H,d,J=8.4Hz),7.38(2H,d,J=8. 4Hz),7.75(2H,d,J=8.1Hz),7.87(2H,d,J=8. 4Hz)
DD-8		F ₃ C	Ме	s	н,н	н	O Me	н	н	Ме		1.91(3H,s),2.31(3H,s)3.73(3H,s),4.17(2H,s),4.34(2H,s),7.28(2H,d,J=8.4Hz),7.42(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
DD-9		F ₃ C	Ме	S	н,н	н	O M	н	н	Me		2.28(3H,s),3.10(3H,s),3.77(3H,s),4.15(2 H,s),4.43(2H,s),7.39- 7.42(4H,m,),7.74(2H,dJ=8.4Hz),7.82(2H,d,J=8.4Hz)
DD- 10		F ₃ C	Ме	s	н,н	Н	NH	Н	н	Me		12.29(3H,s),3.61(3H,s),3.89(1H,s),3.91(1 H,s)4.03(2H,s),6.49(2H,d,J=8.4Hz),7.13(2H,d,J=8.4Hz),7.89-7.96(4H,m)
DD- 11		F ₃ C	Ме	S	н,н	Н	Me N X	Н	н	Me		2.20(3H,s),3.06(3H,s),3.71(3H,s),3.98(2 H,s),4.06(2H,s),6.61(2H,d,J=9.0Hz),7.29 (2H,d,J=9.0Hz),7.74(2H,dJ=8.1Hz),7.83(2H,d,J=8.1Hz)
DD- 12		F ₃ C	Ме	0	н,н	н	Me - N -	н	Н	Me		
DD 13		F ₃ C	Ме	0	н,н	Н	0=0	, н	н	Me		
DD 14		F ₃ C	Ме	0	н,н	н	0,0	н	Н	Me		

[0296]

No	合成法	R1	R2	X1	R3,R4	R5	X2	R9	R10	Мр	NMR(CDCl3 or DMSO-d6)
DDD -1		F ₃ C	Ме	s	н,н	Н	CH2	н	Н	157- 158.5	
DDD -2		F ₃ C	Ме	s	н,н	CI	単結合	Н	Н	163- 164	
DDD -3		F ₃ C	Me	s	н,н	н	単結合	н	Н	141- 143	
DDD -4		F ₃ C	Me	s	Н,Н	Н	сн=сн	н	н	147-	2.27(3H,s),3.29(2H,d,J=6.9Hz),4.14(2H,s),6.27(1H,dt,J=16.2Hz,J=6.6Hz),6.46(1H,d,J=16.2Hz),7.35(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
DDD -5		F ₃ C	Me	s	Н,Н	н	単結合	Ме	н		1.48(3H,d,J=7.2Hz),2.24(3H,s),3.70(1H, q,J=7.2Hz),4.13(2H,s),7.25(2H,d,J=8.4H z),7.37(2H,d,J=8.4Hz),7.73(2H,d,J=8.4H z),7.80(2H,d,J=8.4Hz)
DDD -6		F ₃ C	CH2OEt	s	н,н	н	単結合	Ме	н	98-100	1.26(3H,t,J=6.9Hz),1.50(2H,d,J=7.2Hz), 3.58(2H,q,J=6.9Hz,),3.73(1H,q,J=7.2Hz), 4.23(2H,s),4.51(2H,s),7.26(2H,d,J=8.4Hz),7.39(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
DDD -7		F ₃ C	CH2OEt	S	н,н	н	単結合	Н	н	118- 119	1.25(3H,t,J=7.2Hz),3.58(2H,q,J=7.2Hz), 3.59(2H,s,),4.22(2H,s),4.51(2H,s),7.20(2 H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.74(2 H,d,J=8.1Hz),7.85(2H,d,J=8.1Hz)
DDD -8		F ₃ C	Ме	s	н,н	Н	O Me	н	н	171- 172	1.80(3H,s),2.26(3H,s),4.21(2H,s),4.39(2 H,s),7.33(2H,dJ=8.4Hz),7.48(2H,d,J=8.4 Hz),7.91(2H,d,J=8.4Hz),7.93(2H,d,J=8.4 Hz)
DDD -9		F ₃ C	Ме	s	н,н	н	O Me	н	Н	174- 175	2.25(3H,s),3.07(3H,s),3.35(2H,s),4.39(2 H,s),7.40(2H,d,J=8.4Hz),7.46(2H,d,J=8. 4Hz,),7.91(2H,d,J=8.4Hz),7.95(2H,d,J=8 .4Hz)
DDD -10		F ₃ C	Me	S	н,н	Н	NH	н	Н	158- 159	2.19(3H,s),3.78(2H,s),4.03(2H,s),6.49(2 H,d,J=8.7Hz),7.13(2H,d,J=8.7Hz),7.91(2 H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
DDD -11		F ₃ C	Ме	s	н,н	н	Me N N	н	н	106- 107	2.19(3H,s),2.95(3H,s),4.07(2H,s),4.09(2 H,s),659(2H,d,J=8.7Hz),7.21(2H,d,J=8.7 Hz),7.91(2H,dJ=8.7Hz),7.95(2H,d,J=8.1 Hz)

[0297]

【表164】

No	合成法	R1	R2	X1	R3,R4	R5	X2	R9	R10	Мр	NMR(CDCl3 or DMSO-d6)
DDD -12		F ₃ C	Ме	0	н,н	н	Me N N	Н	н		
DDD -13		F ₃ C	Me	0	н,н	н	0=15 0=15	Н	Н	165- 167	
DDD -14		F ₃ C	Ме	0	н,н	Н	0,0	 н	Н	132- 140	

【0298】 【表165】

				- 13	- 0							
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
EE -1		F ₃ C	Ме	S	н,н	Н	н	н	н	Ме		
EE- 2		F ₃ C	Me	S	н,н	Н	Н	н	Н	н		

【0299】 【表166】

					R'	0 0		
No	合成法	R1	R2	X1	R3,R4	R^5 X_2 R^6	mp	NMR(CDCl3 or DMSO-d6)
EEE-		F ₃ C	Ме	0	Н,Н	CO ₂ Et	·	
EEE-		F ₃ C	Ме	0	H,H	CO₂H	216- 217	

PPAR遺伝子転写活性化アッセイはキメラ転写因子による核内レセプターの活性検出 系を用いた。すなわち酵母の転写因子であるGAL4のDNA結合ドメインとレセプター のリガンド結合ドメインとの融合蛋白質を発現するプラスミドおよびレポータープラスミ ドの2つのプラスミドをCHO細胞へ一過性にトランスフェクションし、レポータープラ スミドにコードされているGAL4の認識配列を含むプロモーターの活性を指標にするこ とによりレセプターの活性化度を検出するものである。

[0301]

プラスミド:ヒトPPARδ (hPPARδ) およびα (hPPARα) のリガンド結 合領域(δ:aa 139~C末端; α :aa 167~C末端)はHuman Universal Quick-Clone cDNA (CLONTECH社) を用いてPCR増幅により得た。増幅されたcDNAはそれぞれpCR2.1-T OPOベクター (Invitrogen社) にサブクローニングした後、シークエンスを行い塩基配列 を確認した。得られた各々の c D N A フラグメントをさらに p B I N D ベクター (Promeg a社)にサブクローニングすることにより、酵母転写因子GAL4のDNA結合ドメイン との融合蛋白質を発現するプラスミドを構築した。レポータープラスミドはpG51uc ベクター(Promega社)を使用した。

[0302]

細胞培養およびトランスフェクション:CHO細胞を10%FBS-αMEM中で培養した。9 6ウェルプレート (Costar社) を用いて、トリプシン処理にて剥離したCHO細胞を1ウ ェル当たり20000個、および上記の手順にて得られた2つのプラスミドを1ウェル当 たりそれぞれ25 ngを製造者のインストラクションに従いFuGene試薬(Roche社)を用 いてトランスフェクションた。

[0303]

転写活性化能の測定:上記手順にてトランスフェクションしたCHO細胞をDMSOに溶 解した試験化合物があらかじめ 0. $5 \mu 1$ スポットされた各ウェルに $1 0 0 \mu 1$ ずつ分注し た。細胞と試験化合物は共に24時間СО2インキュベーター内にて培養した後、ルシフ ェラーゼ発光基質ピッカジーンLT2. 0 (東洋インキ社)を1ウェル当たり100μ1 添加することによってルシフェラーゼ活性を測定した。測定はLUMINOUS СTー 9000D (DIA-IATRON社) を用いた。

[0304]

PPARδについては、得られた発光量から飽和発光量の1/2量を示す試験化合物の 濃度をエクセルにて計算し、試験化合物のPPAR &活性化作用におけるEC50値を算出 した。結果を表119に示す。

[0305]

PPAR α については試験化合物の濃度 1 μ Mおよび 1 0 μ Mにおいて、DMSOを対照 として発光量が何倍になったかを算出し、上昇率とした。結果を表120に示す。

[0306]

	EC ₅₀ (nM)
No.	hPPAR δ
比較例化合物 $F_3C \longrightarrow O \longrightarrow N$ Me	37
α-7-3-1	9.5
β-1-3	9.9
β-1-15	1.5
β-1-8	11
β-4-1	16
β-5-1	14

[0307] 【表168】

No.	hPPARα								
	1μΜ	10 µ M							
β-1-32	22.9	44.5							
β-1-33		40.7							

[0308]

試験例2 СҮР2С9酵素阻害試験

CYP2C9酵素阻害試験は、ヒト肝ミクロソームを用いて、CYP2C9の典型的な 反応であるトルブタミド4位水酸化活性を指標にして行う。

[0309]

反応条件は以下のとおり:基質、 $5 \mu M$ トルブタミド(14 C標識化合物);反応時間、 30分;反応温度、37℃;蛋白濃度、0.25mg/mL(ヒト肝ミクロソーム、15 pol、Lot. 210296、米国XenoTech社)。

[0310]

HEPES Buffer (pH7.4)中に蛋白 (ヒト肝ミクロソーム)、薬物溶液、基質を上 記の組成で加え、反応の補酵素であるNADPHを添加して反応を開始する。所定の時間 反応後、2N 塩酸溶液を加え除蛋白することによって反応を停止する。クロロホルムで 残存する基質薬物および生成する代謝物を抽出し、溶媒を留去したものをメタノールで再 溶解する。これをTLCにスポットして、クロロホルム:メタノール:酢酸=90:10 :1で展開し、イメージングプレートに約14~20時間コンタクトさせた後、BAS2 000で解析する。代謝物であるトルブタミド4位水酸化体の生成活性について、薬物を 溶解した溶媒を反応系に添加したものをコントロール (100%) とし、被検薬物溶液を 加えたものの残存活性(%)を算出する。

[0311]

【表169】

No.	EC ₅₀ (nM) HPPARδ	残存活性 (%) CYP2C9
比較例化合物 F_3C ON Me	37	28
β-2-38	35	47

【書類名】要約書

【要約】

【課題】 ペルオキシソーム増殖活性化受容体アゴニストとして有用な化合物を提供する。

【解決手段】式(I):

【化1】

(式中、

 $R^{1} \sim R^{10}$ は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル等であり、 X^{1} は- O- 、- S- 、- N R 11 - (ここで R 11 は水素または低級アルキル等)、- C R 12 R 13 C O- 、- (C R 12 R 13) m O- または- O (C R 12 R 13) m- (ここで R 12 および R 13 は各々独立して水素または低級アルキルであり、mは 1- 3 の整数)等であり、 X^{2} は単結合、- O- 、- S- 、- N R 14 - (ここで R 14 は水素または低級アルキル等、 R^{14} は R 6 と共に隣接する原子と一緒になって環を形成してもよい)または- C R 15 R 16 - (ここで R 15 および R 16 は各々独立して水素または低級アルキルであり、 R^{15} は R 6 または R 10 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{16} は R 9 と一緒になって結合を形成してもよい)であり、 X^{3} は C O O R 17 または C (= N R 17) N R 18 O R 19 等である)

で示される化合物、それらの製薬上許容される塩またはそれらの溶媒和物。

【選択図】 なし

特願2004-316251

出願人履歴情報

識別番号

[000001926]

1. 変更年月日

1990年 8月23日

[変更理由]

新規登録

住 所

大阪府大阪市中央区道修町3丁目1番8号

塩野義製薬株式会社 氏 名