# Kommunikationstechnik - S4

Raphael Nambiar Version: 23. Mai 2023

## **OSI-Modell**

#### Dienst

Klassifizierung von Diensten:

| Verbindungsorientiert    | verbindungslos                 |
|--------------------------|--------------------------------|
| Verbindungs-Aufbau nötig | Jederzeit Nachrichten schicken |
| Ziel muss bereit sein    | Ziel muss nicht «bereit» sein  |

| Zuverlässig              | Unzuverlässig          |
|--------------------------|------------------------|
| Kein Datenverlust        |                        |
| Sicherung durch          | Möglicher Datenverlust |
| Fehler-Erkennung         | Keine Sicherung        |
| -/ Korrektur             |                        |
| Text-Nachrichten, Backup | Streaming              |
| Dateidienste             | Voip                   |

## Schicht

Eine Schicht hat die Aufgabe der darüberliegenden Schicht bestimmte Dienste zur Verfügung zu stellen. Die Schichten benötigen kein Wissen über die Realisierung der darunterliegenden Schicht.



## Protokoll

Ein Protokoll ist eine Sammlung von Nachrichten, Nachrichtenformaten und Regeln zu deren Austausch. In der Technik ist ein Kommunikationsprotokoll eine Vereinbarung, die festlegt wie eine Datenübertragung zwischen Kommunikationspartnern abläuft.

## Übertrangungsmedien

## Ausbreitungsgeschwindigkeit

Lichtgeschwindigkeit im Vakuum:

$$c_0 = 299'792'458m/s$$

Ausbreitungsgeschwindigkeit in Medien:

$$c_{Medium} = 200'000km/s = \frac{2}{3}c_0$$

# Beispiel:

Licht im Glas, Brechnungsindex n=1.5

$$c_{Glas} = \frac{c_0}{n} = 200'000km/s$$

## Signaldämpfung

Signaldämpfung bezeichnet die Leistungsabnahme eines Signals.

- Je grösser die Bandbreite (Hz), desto höhere Datenraten (bit/s) übertragen
- Je kleiner die Dämpfung ist, desto grössere Distanzen können erreicht werden
- Senkt man die Bitrate (bei gleicher Dämpfung), können grössere Distanzen erreicht werden

$$dB = 10 \cdot log(\frac{P_1}{P_2})$$

$$dB = 10 \cdot log(\frac{U_1}{U_2})^2$$

# Signal-Rausch-Verhältnis (SNR)

Das SNR ist ein Mass für die Qualität eines Signals. Es gibt an, wie stark das Signal im Vergleich zum Rauschen ist.

$$SNR = 10 \cdot log(\frac{P_{Signal}}{P_{Noise}})$$

In dB angegeben.

## Signale und Störungen



Mögliche Ursachen der Störungen:

- Übersprechen zwischen den Leitungen
- Rauschen des Empfängers
- Einstreuungen durch andere Geräte / Anlagen (Motoren etc.)

## Kabeltypen

- Koaxialkabel → Geeignet für hochfrequente Signale
- Twinaxial-Kabel → Hoher Schutz
- Twisted Pair (TP) → Häufig im Einsatz (Shielded / Unshielded)
- Glasfaser → Hohe Bandbreite, Geringe Dämpfung, Resistent

## Schirmeigenschaften

- Drahtgeflecht →niederfrequente Einstreuungen
- Metallisch beschichtete Folien → hochfrequente Störungen

xx/vTP worin TP für Twisted Pair steht:



# TP Kabel und Störungen

- TP Kabel sind anfälliger auf Störungen als Koaxialkabel oder Glasfasern
- Störungen werden kapazitiv oder induktiv eingekoppelt z.B. von parallel geführten Leitungen oder Motoren etc.
- Bei Störungen von benachbarten Leitungen spricht man von Übersprechen oder Nebensprechen (crosstalk)

# Fausregel:

- Kappazitive Störung → Abschirmung
- ullet Induktive Störung o twisted

#### Lichtwellenleiter

- Zentrum aus Kernglas mit hoher optischer Dichte (Brechungsindex 1.5)
- Vom Mantelglas umschlossen, geringere optische Dichte (Brechungsindex 1.48)
- Lichtstrahlen breiten sich im Kernglas aus und werden am Mantelglas totalreflektiert

 Die Eigenwellen (Ausbreitungswege der Lichtstrahlen) werden als Moden bezeichnet.

## **Physical Layer**

# Arten der Kommunikation (Verkehrsbeziehung)

- Simplex → Ein Kanal, in eine Richtung
- Halbduplex → Ein Kanal, abwechslungsweise in zwei Richtungen
- Vollduplex → Ein Kanal pro Richtung

## Arten der Verbindungen (Kopplung)

**Punkt** - **Punkt** Direkte Verbindung zweier Kommunikationspartner



Vollduplex

**Shared Medium** Mehrere Partner verwenden das gleiche Medium



## Serielle asynchrone Übertragung



 $LSB = {\sf Least}$  Significant Bit,  $MSB = {\sf Most}$  Significant Bit

## Wichtig:

Übertragener Wert ablesen: LSB zuerst, MSB zuletzt  $1101^{\circ}0100 \rightarrow LSB$  zuerst  $\rightarrow 0100^{\circ}1101$ 

# Serielle synchrone Übertragung





# Datenübertragungsrate

- $\bullet \ \, \mathsf{Baudrate} \to \mathsf{Symbole} \; \mathsf{pro} \; \mathsf{Sekunde}$
- Zeichenrate → Zeichen pro Sekunde

# Frequenz

Die Frequenz ist die Anzahl der Schwingungen pro Sekunde. Masseinheit Hertz (Hz)

#### Bit-Dauer

 $\mathsf{T}\left[\mathsf{s}\right] = \mathsf{Bit}\text{-}\mathsf{Dauer},\,\mathsf{B} = \mathsf{Baud}$ 

$$T = \frac{1}{B}$$

## maximale Symbolrate

Die maximale Symbolrate  $f_s$  (Baud) ist gleich der doppelten Bandbreite B (Hz) des Übertragungskanals.

Einheit: Baud (Bd)

Nyquist:

$$f_s = 2 \cdot B$$

#### Maximal erreichbare Bitrate

R [bit/s] = Bitrate

$$R \leqslant 2B \cdot log_2 M$$
$$log_2(x) = \frac{log_{10}(x)}{log_{10}(2)}$$

#### **Bandbreite**

Die Bandbreite hängt von der Übertragungsstrecke und der Stärke des Signals im Vergleich zu den vorhandenen Störungen, ab.

- Eigenschaft des Übertragungskanals und durch das Medium begrenzt
- Masseinheit Hertz (Hz)

## Kanalkapazität

Berücksichtigt für einen realen Kanal das Signal-zu-Rausch Leistungverhältnis S/N (Shannon) Einheit Bit/s (bps)

$$C_s = B \cdot log_2(1 + \frac{S}{N})$$

$$log_2(x) = \frac{log_{10}(x)}{log_{10}(2)}$$