Phase Portraits: Example 1

Friday, July 3, 2020 1:36 PM

ODE and Initial Condition	Fixed Points	Stability
$\frac{dy}{dt} = -y + 2$ $y_0 = -1, t = 0$	y=2	stable

Demos Page 1

- 1) Draw the phase portrait. Sketch $\frac{dy}{dt}$ vs. $y(\frac{dy}{dt})$ on the y-axis, y on the x-axis)
- 2) Determine the fixed points.
- a. Find all the points where dy/dt = 0.
 b. Mark those points on the phase portrait.
 3) Determine the stability of each fixed point.
- - a. Draw a right arrow (\rightarrow) in all regions where $\frac{dy}{dt} > 0$ b. Draw a left arrow (\leftarrow) in all regions where $\frac{dy}{dt} < 0$ c. Fixed point is *stable* if the arrows
 - converge to the point: \rightarrow * \leftarrow
 - d. Fixed point is unstable if the arrows diverge from the point: $\leftarrow * \rightarrow$
- 4) Draw the anticipated solution based on completed phase portrait.
 - a. y(t) trends towards a stable fixed point
 - b. y(t) trends away from an unstable fixed point
 - c. All fixed points are horizontal lines (by definition, a fixed point doesn't change with time, so that's just a horizontal line).