Least-Squares Circle Fit

R. Bullock

Given a finite set of points in \mathbb{R}^2 , say $\{(x_i, y_i) | 0 \le i < N\}$, we want to find the circle that "best" (in a least-squares sense) fits the points. Define

$$\overline{x} = \frac{1}{N} \sum_{i} x_{i}$$
 and $\overline{y} = \frac{1}{N} \sum_{i} y_{i}$

and let $u_i = x_i - \overline{x}$, $v_i = y_i - \overline{y}$ for $0 \le i < N$. We solve the problem first in (u, v) coordinates, and then transform back to (x, y).

Let the circle have center (u_c, v_c) and radius R. We want to minimize $S = \sum_i (g(u_i, v_i))^2$, where $g(u, v) = (u - u_c)^2 + (v - v_c)^2 - \alpha$, and where $\alpha = R^2$. To do that, we differentiate $S(\alpha, u_c, v_c)$.

$$\frac{\partial S}{\partial \alpha} = 2 \sum_{i} g(u_i, v_i) \frac{\partial g}{\partial \alpha}(u_i, v_i)$$
$$= -2 \sum_{i} g(u_i, v_i)$$

Thus $\partial S/\partial \alpha = 0$ iff

$$\sum_{i} g(u_i, v_i) = 0$$
 Eq. 1

Continuing, we have

$$\frac{\partial S}{\partial u_c} = 2 \sum_i g(u_i, v_i) \frac{\partial g}{\partial u_c}(u_i, v_i)$$

$$= 2 \sum_i g(u_i, v_i) 2(u_i - u_c)(-1)$$

$$= -4 \sum_i (u_i - u_c) g(u_i, v_i)$$

$$= -4 \sum_i u_i g(u_i, v_i) + 4 u_c \underbrace{\sum_i g(u_i, v_i)}_{= 0 \text{ by Eq. 1}}$$

Thus, in the presence of **Eq. 1**, $\partial S/\partial u_c = 0$ holds iff

$$\sum_{i} u_{i} g(u_{i}, v_{i}) = 0$$
 Eq. 2

Similarly, requiring $\partial S/\partial v_c = 0$ gives

$$\sum_{i} v_{i} g(u_{i}, v_{i}) = 0$$
 Eq. 3

Expanding Eq. 2 gives

$$\sum_{i} u_{i} \left[u_{i}^{2} - 2 u_{i} u_{c} + u_{c}^{2} + v_{i}^{2} - 2 v_{i} v_{c} + v_{c}^{2} - \alpha \right] = 0$$

Defining $S_u = \sum_i u_i, \ S_{uu} = \sum_i u_i^2, \ \textit{etc.}$, we can rewrite this as

$$S_{uuu} - 2u_c S_{uu} + u_c^2 S_u + S_{uvv} - 2v_c S_{uv} + v_c^2 S_u - \alpha S_u = 0$$

Since $S_u = 0$, this simplifies to

$$u_c S_{uu} + v_c S_{uv} = \frac{1}{2} (S_{uuu} + S_{uvv})$$
 Eq. 4

In a similar fashion, expanding **Eq. 3** and using $S_v = 0$ gives

$$u_c S_{uv} + v_c S_{vv} = \frac{1}{2} (S_{vvv} + S_{vuu})$$
 Eq. 5

Solving Eq. 4 and Eq. 5 simultaneously gives (u_c, v_c) . Then the center (x_c, y_c) of the circle in the original coordinate system is $(x_c, y_c) = (u_c, v_c) + (\overline{x}, \overline{y})$.

To find the radius R, expand **Eq. 1**:

$$\sum_{i} \left[u_i^2 - 2 u_i u_c + u_c^2 + v_i^2 - 2 v_i v_c + v_c^2 - \alpha \right] = 0$$

Using $S_u = S_v = 0$ again, we get

$$N (u_c^2 + v_c^2 - \alpha) + S_{uu} + S_{vv} = 0$$

Thus

$$\alpha = u_c^2 + v_c^2 + \frac{S_{uu} + S_{vv}}{N}$$
 Eq. 6

and, of course, $R = \sqrt{\alpha}$.

See the next page for an example!

Example: Let's take a few points from the parabola $y = x^2$ and fit a circle to them. Here's a table giving the points used:

i	x_i	y_i	u_i	v_{i}
0	0.000	0.000	-1.500	-3.250
1	0.500	0.250	-1.000	-3.000
2	1.000	1.000	-0.500	-2.250
3	1.500	2.250	0.000	-1.000
4	2.000	4.000	0.500	0.750
5	2.500	6.250	1.000	3.000
6	3.000	9.000	1.500	5.750

Here we have N=7, $\overline{x}=1.5$, and $\overline{y}=3.25$. Also, $S_{uu}=7$, $S_{uv}=21$, $S_{vv}=68.25$, $S_{uuu}=0$, $S_{vvv}=143.81$, $S_{uvv}=31.5$, $S_{vuu}=5.25$. Thus (using **Eq. 4** and **Eq. 5**) we have the following 2×2 linear system for (u_c,v_c) :

$$\begin{bmatrix} 7 & 21 \\ 21 & 68.25 \end{bmatrix} \begin{bmatrix} u_c \\ v_c \end{bmatrix} = \begin{bmatrix} 15.75 \\ 74.531 \end{bmatrix}$$

Solving this system gives $(u_c, v_c) = (-13.339, 5.1964)$, and thus $(x_c, y_c) = (-11.839, 8.4464)$. Substituting these values into **Eq. 6** gives $\alpha = 215.69$, and hence R = 14.686. A plot of this example appears below.

