

Sean P, Q y R las compuertas NAND en paralelo

$$\overline{P} = A B C$$
 $\overline{Q} = A \overline{B} C$

$$\overline{Q} = A \overline{B} C$$

$$\overline{R} = \overline{A} B C$$

$$P = \overline{(A B C)}$$

$$P = \overline{(A B C)}$$
 $Q = \overline{(A \overline{B} C)}$ $R = \overline{(\overline{A} B C)}$

$$R = (\overline{A} B C)$$

$$F = \overline{(P \ Q \ R)} = \overline{\left(\overline{(A \ B \ C)} * \overline{\left(A \ \overline{B} \ C\right)} * \overline{\left(\overline{A} \ B \ C\right)}\right)}$$

$$F = (A B C + A \overline{B} C + \overline{A} B C) = C (A B + A \overline{B} + \overline{A} B) = C (A + \overline{A} B) = \overline{C} (A + B)$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

	ВС	00	01	11	10
Α		$\overline{B} \ \overline{C}$	\overline{B} C	В С	В <u>С</u>
0	\overline{A}	0	0	1	0
1	A	0	1	1	0

F = BC + AC

TABLA 1

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

	ВС	00	01	11	10
Α		$\overline{B} \overline{C}$	\overline{B} C	<i>B C</i>	$B\overline{C}$
0	\overline{A}	1	0	1	1
1	A	1	0	0	1

$$\overline{F} = \overline{B} C + A C = C (A + \overline{B})$$

Ahora nos piden armar el circuito pero solo usando compuertas NAND y luego solo NOR

Que se puede simplificar un poco más, debido a que 2 NAND en serie = 2 NOT en serie = nada

Veamos ahora si lo podemos hacer solamente con NOR

Nuevamente se puede simplificar donde haya dos compuertas NOR en serie:

Se desea activar una señal de alarma /ALRM cuando se intente encender el motor de un auto y alguno de los dos ocupantes del asiento delantero esté sentado y no haya abrochado su cinturón de seguridad.

Para ello se cuenta con dos sensores de presencia que activan las señales /CONDUCTOR y /ACOMPAÑANTE activas en bajo cuando hay una persona ubicada en los asientos respectivos. Además se deben tener en cuenta las señales CINTUR_COND y CINTUR_ACOM que se activan en alto cuando los cinturones de seguridad respectivos han sido abrochados. También hay una señal CONTACTO activa en alto que indica si se activó la llave de encendido.

a) Realice el diagrama de Karnaugh para la generación de la señal /ALRM. A partir de lo obtenido, diseñe el circuito lógico necesario para generar la señal de alarma.

Sea A = CONTACTO

 $\mathbf{B} = \mathsf{CONDUCTOR}$

C = ACOMPAÑANTE

D = CINTUR_COND

E = CINTUR ACOM

 $\mathbf{F} = \mathsf{ALRM}$

J	BD	00	01	11	10
Α		$\overline{B} \overline{D}$	\overline{B} D	BD	$B \overline{D}$
0	\overline{A}	0	0	0	0
1	Α	1	0	0	0

K	CE	00	01	11	10
Α		$\overline{C} \overline{E}$	\overline{C} E	CE	$C \overline{E}$
0	\overline{A}	0	0	0	0
1	Α	1	0	0	0

Sea:

J = Sonar alarma de Conductor

K = Sonar alarma de Acompañante

F	K	0	1
J		Ī	J
0	\overline{K}	0	1
1	K	1	1

$$F = J + K = A \overline{B} \overline{D} + A \overline{C} \overline{E}$$
$$F = A (\overline{B} \overline{D} + \overline{C} \overline{E})$$

Otra forma de encararlo, usando 4 variables:

	CE	00	01	11	10
BD		$\overline{C} \overline{E}$	\overline{C} E	CE	$C \overline{E}$
00	$\overline{B} \overline{D}$	1	1	1	1
01	\overline{B} D	1	0	0	0
11	BD	1	0	0	0
10	$B \overline{D}$	1	0	0	0

Esto sí parece tener más sentido, pero recordar que en este caso no estoy considerando A.

Puedo hacer otra tabla para incluir dicha entrada, pero si A = 0 deja todo en cero.

$$F = A\left(\overline{B}\ \overline{D} + \overline{C}\ \overline{E}\right)$$

Usando solo compuertas NAND:

Simplificando doble negación:

EJERCICIO 4

	ВС	00	01	11	10
Α		$\overline{B} \overline{C}$	\overline{B} C	<i>B C</i>	$B \overline{C}$
0	\overline{A}	1	0	0	0
1	A	0	0	1	0

Tabla SOP, busco donde haya dado 1 la salida, dejando las variables como productos y sumando cada caso.

$$F = A B C + \overline{A} \overline{B} \overline{C}$$

$$F = A B C + \overline{(A+B)} \overline{C} = A B C + \overline{(A+B+C)}$$

La Fig. 2 muestra un multiplicador binario de dos bits $(X = x1 \times 0)$, (Y = y1 y0). Diseñe su circuito lógico teniendo en cuenta que el resultado se encuentra expresado en cuatro bits (Z = z3 z2 z1 z0).

Tabla para MSB de Z, es decir, z0 (resultado es impar)

X/Y	00	01	11	10
00	0	0	0	0
01	0	<mark>1</mark>	<mark>1</mark>	0
11	0	<mark>1</mark>	<mark>1</mark>	0
10	0	0	0	0

$$z_0 = x_0 y_0$$

Tabla para el bit 1 de Z, es decir, z1

(resultado es 2, 3 ó 6)

X/Y	00	01	11	10
00	0	0	0	0
01	0	0	<mark>1</mark>	<mark>1</mark>
11	0	<mark>1</mark>	0	<mark>1</mark>
10	0	<mark>1</mark>	<u>1</u>	0

$$z_1 = y_1 \, \overline{x_1} \, x_0 + x_1 \, \overline{y_1} \, y_0 + x_0 \, y_1 \, \overline{y_0} + y_0 \, \overline{x_1} \, x_0$$

Tabla para el bit 2 de Z, es decir, z2 (resultado es 4 ó 6)

X/Y	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	<mark>1</mark>
10	0	0	<mark>1</mark>	<mark>1</mark>

$$z_2 = x_1 y_1 \overline{y_0} + y_1 x_1 \overline{x_0} = x_1 y_1 (\overline{x_0} + \overline{y_0})$$

Tabla para el MSB de Z, es decir, z3

(resultado es 9)

X/Y	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	1	0
10	0	0	0	0

$$z_3 = x_0 x_1 y_0 y_1$$

EJERCICIO 7

Tabla 2

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

	ВС	00	01	11	10
Α		$\overline{B} \overline{C}$	\overline{B} C	ВС	$B\overline{C}$
0	\overline{A}	0	<mark>1</mark>	0	<mark>1</mark>
1	A	<mark>1</mark>	0	0	0

$$F = \overline{A} \, \overline{B} \, C + \overline{A} \, B \, \overline{C} + A \, \overline{B} \, \overline{C} = \overline{A} \left(\overline{B} \, C + B \, \overline{C} \right) + A \, \overline{B} \, \overline{C}$$
$$F = \overline{A} \left(B \, XOR \, C \right) + A \, \overline{B} \, \overline{C} = \overline{A} \left(B \oplus C \right) + A \, \overline{B} \, \overline{C}$$

Tabla 3

A	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1

Tabla 3						
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	0		

	CD	00	01	11	10
AB		$\overline{C} \overline{D}$	\overline{C} D	C D	$C \overline{D}$
00	$\overline{A} \overline{B}$	0		0	<mark>1</mark>
01	$\overline{A} B$	<mark>1</mark>	0	<mark>1</mark>	0
11	A B	0		0	
10	$A \overline{B}$	<mark>1</mark>	0	<mark>1</mark>	0

$$F = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} C \overline{D} + \overline{A} B \overline{C} \overline{D} + \overline{A} B C D + A B \overline{C} D + A B \overline{C} D + A B \overline{C} D$$

$$+ A B C \overline{D} + A \overline{B} \overline{C} \overline{D} + A \overline{B} C D$$

$$F = \overline{A} \, \overline{B} \, \left(\overline{C} \, D + C \, \overline{D} \right) + \overline{A} \, B \, \left(\overline{C} \, \overline{D} + C \, D \right) + A \, B \, \left(\overline{C} \, D + C \, \overline{D} \right) + A \, \overline{B} \, \left(\overline{C} \, \overline{D} + C \, D \right)$$

$$F = \left(\overline{C}D + C\overline{D}\right)\left(\overline{A}\overline{B} + AB\right) + \left(\overline{C}\overline{D} + CD\right)\left(\overline{A}B + A\overline{B}\right)$$

 $F = (C \ XOR \ D) \ (A \ XNOR \ B) + (C \ XNOR \ D) \ (A \ XOR \ B) = (C \oplus D) \overline{(A \oplus B)} + \overline{(C \oplus D)} (A \oplus B)$

Tabla 4						
Α	В	С	D	F		
0	0	0	0	1		
0	0	0	1	1		
0	0	1	0	X		
0	0	1	1	1		
0	1	0	0	X		
0	1	0	1	X		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	0		

1	Tabla 4							
1	0	0	1	1				
1	0	1	0	0				
1	0	1	1	1				
1	1	0	0	0				
1	1	0	1	1				
1	1	1	0	0				
1	1	1	1	1				

	CD	00	01	11	10
AB		$\overline{C}\overline{D}$	\overline{C} D	C D	$C \overline{D}$
00	$\overline{A} \overline{B}$	<mark>1</mark>	<mark>1</mark>	_ <mark>1</mark>	X
01	$\overline{A} B$	X	X	1	
11	A B	0	<mark>1</mark>	<mark>1</mark>	0
10	$A \overline{B}$	0	<mark>1</mark>	1	0

$$F = \overline{A} + D$$

La expresión anterior se obtuvo dejando X = 1, y formando grupos de 8

Tabla 5 A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 **0** 0 0 1 1 **0** 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 10001

1	al)la	a !	5
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

	CD	00	01	11	10
AB		$\overline{C} \overline{D}$	\overline{C} D	C D	$C\overline{D}$
00	$\overline{A} \overline{B}$	<mark>1</mark>	0	0	0
01	$\overline{A} B$	<mark>1</mark>	0	0	0
11	A B	0	0	0	0
10	$A \overline{B}$	<mark>1</mark>	0	0	0

$$F = \overline{A} \ \overline{C} \ \overline{D} + \overline{B} \ \overline{C} \ \overline{D} = \overline{C} \ \overline{D} \left(\overline{A} + \overline{B} \right) = \overline{(C+D)} \ \overline{(A \ B)} = \overline{A \ B + C + D}$$

EJERCICIO 8

Sea **X** = es positivo

Y = es mayor a 3

Z = es menor que -4

А3	A2	A1	A0	NUM	Х	Υ	Z
0	0	0	0	0	1	0	0
0	0	0	1	1	1	0	0
0	0	1	1	3	1	0	0
0	0	1	0	2	1	0	0
0	1	1	0	6	1	1	0
0	1	1	1	7	1	1	0
0	1	0	1	5	1	1	0
0	1	0	0	4	1	1	0
1	0	0	0	-8	0	0	1
1	0	0	1	-7	0	0	1
1	0	1	1	-5	0	0	1
1	0	1	0	-6	0	0	1
1	1	1	0	-2	0	0	0
1	1	1	1	-1	0	0	0
1	1	0	1	-3	0	0	0
1	1	0	0	-4	0	0	0

0	Ü	4	1	1		
0	0	-8	0	0		
0	1	-7	0	0		
1	1	-5	0	0		
1	0	-6	0	0		
1	0	-2	0	0		
1	1	-1	0	0		
0	1	-3	0	0		
0	0	-4	0	0		
$X = \overline{a_3}$						
	Λ —	u_3				

$$X = \overline{a_3}$$

$$Y = \overline{a_3} a_2$$

$$Z = a_3 \overline{a_2}$$

Х	A1 A0	00	01	11	10
A3 A2		$\overline{A1} \overline{A0}$	$\overline{A1} A0$	A1 A0	$A1 \overline{A0}$
00	$\overline{A3} \overline{A2}$	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>
01	$\overline{A3}$ A2	1	1	1	<mark>1</mark>
11	A3 A2	0	0	0	0
10	$A3\overline{A2}$	0	0	0	0

Υ	A1 A0	00	01	11	10
A3 A2		$\overline{A1} \overline{A0}$	$\overline{A1} A0$	A1 A0	$A1 \overline{A0}$
00	$\overline{A3} \overline{A2}$	0	0	0	0
01	$\overline{A3}$ A2	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	
11	A3 A2	0	0	0	0
10	$A3\overline{A2}$	0	0	0	0

Z	A1 A0	00	01	11	10
A3 A2		$\overline{A1} \overline{A0}$	$\overline{A1} A0$	A1 A0	$A1\overline{A0}$
00	$\overline{A3} \overline{A2}$	0	0	0	0
01	$\overline{A3}$ A2	0	0	0	0
11	A3 A2	0	0	0	0
10	$A3\overline{A2}$	<mark>1</mark>	1	<mark>1</mark>	<mark>1</mark>

S0	S1	S2	٧
0	0	0	0
0	0	1	0
0	1	1	1
0	1	0	0
1	1	0	1
1	1	1	1
1	0	1	1
1	0	0	0

	S1 S2	00	01	11	10
S0		$\overline{S1} \overline{S2}$	$\overline{S1}$ S2	S1 S2	$S1\overline{S2}$
0	<u>50</u>	0	0	<mark>1</mark>	0
1	<i>S</i> 0	0	<mark>1</mark>	<mark>1</mark>	_ <mark>1</mark>

$$V = S_1 S_2 + S_0 S_2 + S_0 S_1 = S_0 (S_1 + S_2) + S_1 S_2$$

EJERCICIO 10

$$M = \overline{(x_2 \oplus y_2)} * \overline{(x_1 \oplus y_1)} * \overline{(x_0 \oplus y_0)}$$

$$N = x_2 \overline{y_2} + \overline{(x_2 \oplus y_2)} * \left(x_1 \overline{y_1} + \overline{(x_1 \oplus y_1)} * x_0 \overline{y_0}\right)$$

$$P = \overline{x_2} y_2 + \overline{(x_2 \oplus y_2)} * \left(\overline{x_1} y_1 + \overline{(x_1 \oplus y_1)} * \overline{x_0} y_0\right)$$

EJERCICIO 11

С	S
0	Α
1	В

	EF	00	01	11	10
ABCD		$\overline{E} \overline{F}$	$\overline{E} F$	EF	$E\overline{F}$
0000	$\overline{A} \overline{B} \overline{C} \overline{D}$	0	0	0	0
0001	$\overline{A} \overline{B} \overline{C} D$	0	0	_ <mark>1</mark>	0
0011	$\overline{A} \overline{B} C D$	0	0	<mark>1</mark>	1
0010	$\overline{A} \overline{B} C \overline{D}$	0	0	0	1
0110	$\overline{A} B C \overline{D}$	0	<mark>1</mark>	0	<mark>1</mark>
0111	$\overline{A} B C D$	0	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>
0101	$\overline{A} B \overline{C} D$	0	<mark>1</mark>	<mark>1</mark>	0
0100	$\overline{A} B \overline{C} \overline{D}$	0	<mark>1</mark>	0	0
1100	$AB\overline{C}\overline{D}$	<mark>1</mark>	<mark>1</mark>	0	0
1101	$AB\overline{C}D$	_ <mark>1</mark>	1	_ <mark>1</mark>	0
1111	ABCD	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>
1110	$ABC\overline{D}$	<mark>1</mark>	<mark>1</mark>	0	1
1010	$A \overline{B} C \overline{D}$	<mark>1</mark>	0	0	<mark>1</mark>
1011	$A \overline{B} C D$	1	0	1	1
1001	$A \overline{B} \overline{C} D$	1	0	1	0
1000	$A \overline{B} \overline{C} \overline{D}$	<mark>1</mark>	0	0	0

Grupo de 8 = 3 variables

Grupo de 4 = 4 variables

Grupo de 2 = 5 variables

$$S = A \overline{E} \overline{F} + B \overline{E} F + \overline{A} \overline{B} D E F + \overline{A} B D F$$
$$+ A B D F + A \overline{B} D E F$$
$$+ \overline{A} C E \overline{F} + A C E \overline{F}$$

$$S = A \overline{E} \overline{F} + B \overline{E} F + B D F + \overline{B} D E F + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + D F (B + \overline{B} E) + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + D F (B + E) + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + E (C \overline{F} + D F) + B D F$$

$$S = \overline{E} (A \overline{F} + B F) + E (C \overline{F} + D F)$$

$$S = \overline{F} (A \overline{E} + C E) + F (B \overline{E} + D E)$$

