Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Компьютерные сети

Лабораторная работа 2

Выполнили:

Кривоносов Егор Дмитриевич Марков Петр Денисович

Группа: Р33111

Преподаватель:

Тропченко Андрей Александрович

2022 г.

Санкт-Петербург

Цель работы

Исследование влияния свойств канала связи на качество передачи сигналов при различных методах физического и логического кодирования, используемых в цифровых сетях передачи данных. В процессе выполнения учебноисследовательской работы необходимо:

- для заданного исходного сообщения и заданных методов кодирования выполнить исследование качества передачи физических сигналов по каналу связи в зависимости от уровня шумов в канале, степени рассинхронизации передатчика и приёмника и уровня граничного напряжения (которое можно трактовать как уровень затухания сигнала);
- сравнить рассматриваемые методы кодирования;
- выбрать и обосновать наилучший метод для передачи исходного сообщения по реальному каналу связи с учетом затухания, шумов в канале и рассинхронизации.

Этап 1. Формирование сообщения

Исходное сообщение: Кривоносов Е.Д.

В шестнадцатеричном коде: CA F0 E8 E2 EE ED EE F1 EE E2 20 C5 2E C4 2E

Первые четыре байта: CA F0 E8 E2

Сообщение, которое будет передано в программу: \E2E8F0CA

Этап 2. Скриншот работы программы

Network Fourier 2.0 : frame time = 1.94

Этап 3. Результаты исследований

Шестнадцатеричный код сообщения: E2 E8 F0 CA			Методы кодирования					
			NRZ	RZ	M-II	4B/5B	Scramb	
Полоса пропускания <i>идеального</i> канала связи	Номера гармоник	min	2	2	38	2	8	
		max	24	24	56	32	26	
	Частоты, МГц	min	0.3	0.3	5.9	0.3	1.3	
		max	3.8	3.8	8.8	4	4.1	
Минимальная полоса пропускания идеально связи		ео канала	3.5	3.5	2.9	3.7	2.8	
Уровень <i>шума</i>		max	0.04	0.03	0.00	0.02	0.16	
Уровень <i>рассинхронизации</i>		max	0.38	0.51	0.01	0.11	0.25	
Уровень <i>граничного напряж.</i>		max	0.05	0.04	1.00	0.03	0.18	
Процент ошибок при тах уровнях и <i>миним</i> полосе пропускания КС		иальной	1.85%	2.15%	0.00%	2.20%	6.22%	
Уровень <i>шума</i>		ср.	0.05					
Уровень <i>рассинхронизации</i>		ср.	0.25					
Уровень <i>граничного напряж.</i>		ср.	0.26					
Полоса пропускания <i>реального</i> канала связи	Гармоники	min	2	3	32	0	2	
		max	28	48	56	38	28	
	Частоты, МГц	min	0.3	0.5	5.0	0	0.3	
		max	4.4	7.5	8.8	4.8	4.4	
<i>Требуемая</i> полоса пропускания <i>реального</i> связи		канала	4.1	7.0	3.8	4.8	4.1	

Анализ

NRZ героически выдерживал значения параметров искажения по отдельности, но в совокупности это все вылилось в процент ошибки = 1.85%. По сути, значение коварное и стоило бы выбрать другой метод. Но, пойдем от противного:

- RZ с более высоким параметром рассинхронизации показал себя хуже, чем NRZ.
- Что касается М2: за счет того, что мы определяем, какой бит закодирован в середине битового интервала, при любом граничном напряжении шум в канале не будет восприниматься как информативный сигнал, поэтому, при максимальном граничном напряжении у нас все хорошо и ошибок нет. Но, все же уровень шума, который мы способны вытерпеть без искажения не такой уж и высокий (так скажем равен 0), да и уровень рассинхронизации удручает, ведь, казалось бы, М2 самосинхронизируемый метод. Зато при этом имеет минимальную полосу пропускания среди своих конкурентов.
- В случае 4В/5В ситуация неприятная. При мизерных уровнях параметров мы получаем большой процент ошибки, это нас не устраивает.
- Скремблирование показал себя максимально ужасно. При достаточно неплохих показателях Уровней шума и граничного напряжения мы получаем процент ошибок аж 6.22%, что нам не подходит. Полоса пропускания не такая высокая, как у NRZ, RZ и 4B/5B.

Можно составить таблицу, чтобы подсчитать результаты:

	NRZ	RZ	M-II	4B/5B	Scramb
Уровень <i>шума</i>	0.04	0.03	0.00	0.02	0.16
Уровень <i>рассинхронизации</i>	0.38	0.51	0.01	0.11	0.25
Уровень граничного напряж.	0.05	0.04	1.00	0.03	0.18
Процент ошибок	1.85%	2.15%	0.00%	2.20%	6.22%
Полоса пропускания реального канала связи	4.1	7.0	3.8	4.8	4.1
Рейтинг:	1 (12 бал.)	4 (16 бал.)	2 (13 бал.)	5 (21 бал.)	3 (14 бал.)

Вывод

Таким образом, лучшим способом физического кодирования, показавшим суммарно лучший результат, является NRZ. Среди методов логического кодирования лучшим оказался метод Скремблирования (NRZ).