

S
622.33
L3rLbc
1987
**Northern
Engineering and
Testing, Inc.
Report of
Investigation, Red
Lodge/Bearcreek
Subsidence**

Northern
Engineering
and Testing, Inc.

**REPORT OF INVESTIGATION
RED LODGE/BEARCREEK
SUBSIDENCE POTENTIAL STUDY**

STATE DOCUMENTS COLLECTION

SEP 18 1991

MONTANA STATE LIBRARY
1515 E. 6th AVE.
HELENA, MONTANA 59620

PLEASE RETURN

MONTANA STATE LIBRARY

S 622.33 L3rLbc 1987 c.1
Report of investigation, Red Lodge/Bearc

3 0864 00073101 1

DATE DUE

APR 22 1998

Digitized by the Internet Archive
in 2014

<https://archive.org/details/reportofinvestig1987nort>

Northern

Engineering
and Testing, Inc.

600 South 25th Street
P. O. Box 30615
Billings, MT 59107
(406) 248-9161

October 30, 1987

State of Montana
Department of State Lands
Abandoned Mine Reclamation Bureau
1625 11th Avenue
Helena, Montana 59620

Attention: Mr. Dick Juntunen

Subject: Report of Investigation Red Lodge/Bearcreek
Subsidence Potential Study
Project No. 87-3001.D

Gentlemen:

In accordance with our Professional Services Agreement dated January 1, 1987 and Work Plan dated March 20, 1987 with revisions dated May 19, 1987 and August 31, 1987 we have performed a subsidence potential study for abandoned coal mines in the Red Lodge/Bearcreek area of Montana. The purpose of this study was to identify locations where the potential for subsidence can be considered low, medium or high. We understand this information will be utilized by the Abandoned Mine Reclamation Bureau for determining if a subsidence insurance program is desirable.

The study primarily focused on the potential for subsidence at presently developed locations such as business and residential areas and public roads. The potential for subsidence at adjoining areas which are undeveloped or used for agricultural purposes was considered using empirical relationships rather than analytical prediction techniques.

One relatively shallow (less than 100 feet deep) adit was encountered extending under Highway 308 between Washoe and Bearcreek near the present entrance to the Red Lodge Coal Company. In our Work Plan Revision dated August 31, 1987, we proposed to backfill this adit. A separate report will be submitted detailing our recommendations for backfilling. No other locations of relatively shallow workings were identified beneath presently developed areas.

The analysis we performed considered the following modes of subsidence:

- 1) Chimney Subsidence
- 2) Roof Collapse (Beam Theory)
- 3) Pillar Crushing
- 4) Pillar Punching

State of Montana
Attn: Mr. Dick Juntunen
Helena, Montana

October 30, 1987
Page Two

No single failure mode is favored; the most probable mode changes from one seam or location to another. Our analysis indicates at most locations the critical load condition for modes 2, 3 and 4 occurred while the mines were in operation, because mine dewatering caused roofs and pillars to support saturated overburden while under present conditions most areas support the buoyant weight of overburden. The calculated factor of safety for those failure modes is estimated to have increased by a factor of about 1.7 following closure and aquifer recharge into the mines.

The subsidence potential beneath presently developed areas is generally low. Exceptions to this generalization are identified in the report.

The following report presents the investigations and analysis in detail, and maps in the Appendix show our interpretation of subsidence potentials.

We sincerely appreciate the opportunity to conduct this interesting and challenging study. Should you have any questions regarding this report please contact us at your convenience.

Respectfully submitted,

Larry G. O'Dell, P.E.

John M. Pool, P.E.

T A B L E O F C O N T E N T S

	<u>Page No.</u>
I. <u>INTRODUCTION</u>	1
II. <u>GENERAL GEOLOGY</u>	1 - 2
III. <u>INVESTIGATIONS</u>	
A. Map and Surficial Conditions Study	2
B. Subsurface Explorations	2 - 4
C. Laboratory Testing	5
IV. <u>ANALYSIS</u>	5 - 8
A. Chimney Subsidence	8 - 10
B. Roof Collapse	10 - 16
C. Pillar Crushing	16 - 18
D. Pillar Punching	18
E. Trough Subsidence Geometries	19
V. <u>SUMMARY AND CLOSING</u>	19 - 24
<u>BIBLIOGRAPHY</u>	25

APPENDIX A - Plate Nos. 1 through 6

Drill Logs followed by Photographs	
Maps:	
Red Lodge Depth of Cover Map	(87-3001.D-1)
Bearcreek Depth of Cover Map	(87-3001.D-2)
Red Lodge Cumulative Mined Thickness	(87-3001.D-3)
Bearcreek Cumulative Mined Thickness	(87-3001.D-4)
Red Lodge Subsidence Potential Map	(87-3001.D-5)
Bearcreek Subsidence Potential Map	(87-3001.D-6)
Cross Sections of Mine Limits	(87-3001.D-7)

APPENDIX B - Calculations: Beam Analysis and Pillar Crushing

I. INTRODUCTION

The objectives of our work scope were :

1. Develop a subsidence potential map for the town of Red Lodge
2. Prepare plans and specifications for remedial alternatives where shallow workings extend under Highway 308.

During the course of our study these two objectives were modified slightly to limit remedial alternatives to locations where workings under Highway 308 are shallow, and extended the subsidence potential study area to include the Bearcreek area.

The Red Lodge/Bearcreek Project is located in south central Montana. Underground mining began in the 1880's and substantially ceased in the 1930's. A few mines continued operating until the 1950's when virtually all mining ceased.

Within the Red Lodge area a total of seven seams were mined, resulting in multiple extractions beneath much of the area. Detailed mine maps were kept and are now the property of Meridian Minerals Company.

Within the Bearcreek area documentation of mine locations is poorly defined. Although some maps exist, ties to surface reference points were generally not made. Observation of the available maps indicates multiple seam extractions were not made.

A more thorough presentation of the mining history was presented by others (4) in a previous study. Since that subject was not part of our work scope it is not repeated in this report.

II. GENERAL GEOLOGY

The geologic profile in the Red Lodge area typically consists of coarse grained alluvium overlying the Fort Union Formation. The thickness of alluvium is variable, ranging from a few feet to about 100 feet. It consists of gravel, sand, cobbles and boulders. A somewhat similar profile exists in the Bearcreek area except the materials overlying the Fort Union Formation are a combination of colluvium and alluvium and are predominately fine grained sand and clay.

The Fort Union Formation consists of sequences of sandstone, claystone and coal beds. It is locally tilted such that it dips toward the south at angles between 16 to 19 degrees near Red Lodge and at less than 5 degrees in the Bearcreek area.

The average thicknesses and distances between the various coal seams were obtained from cross sections belonging to Meridian Minerals, and are as follows:

<u>Seam No.</u>	<u>Average Thickness, ft.</u>	<u>Depth to Next Seam, ft.</u>
1	9	105
1 1/2	5.5	65
2	8	70
3	10	118
4	10	175
5	8	30
6	6	N/A
Bearcreek	8.5	N/A

Specific conditions at each boring location are described later in this report, and individual boring logs are presented in Appendix A.

III. INVESTIGATIONS

The investigations consisted of the following activities:

- Study of existing mine maps and observation of surficial conditions.
- Subsurface explorations utilizing rotary and coring techniques.
- Borehole photography where practical.

A proposed resistivity survey was not performed after we determined that workings along Highway 308 would likely be deeper than could be reliably detected by that method.

A. Map and Surficial Conditions Study

Maps of the mines were borrowed from Meridian Minerals. The maps show that room and pillar extraction methods were used. It also appears that pillars were robbed from some areas, probably during retreat. Those maps were used to prepare Drawing Nos. 87-3001.D-1 through 4, in Appendix A, which show the depth of cover and cumulative thickness of coal mined from beneath specific locations. These were then used to create the final subsidence potential maps Drawing Nos. 87-3001.D-5 & 6, showing the ratio of depth of cover to mined thickness. Empirical correlations have been developed (7) which utilize that ratio to approximate the subsidence potential. A preliminary subsidence potential map was prepared to help target general locations for detailed subsurface explorations. Maps of individual seams were then studied to select specific hole locations. Our intent was to intersect rooms or adits, and where multiple seams were mined, to intersect rooms in more than one seam. From mine floor elevations shown on the maps, three cross sections were constructed showing the orientations of mined areas with respect to one another and to the ground surface. These are presented on Drawing No. 87-3001.D-7.

B. Subsurface Explorations

The following seven locations were ultimately selected for subsurface explorations:

- Red Lodge Airport
- Highway 308 just east of Red Lodge
- Red Lodge - 14th Street between Hauser and Main
- Washoe Adit under Highway 308
- Washoe Mine adjacent to Highway 308
- Smith Mine No. 2 Adit under Highway 308
- Smith Mine No. 2 Unmapped Adit under Highway 308

Locations of these borings are shown on the drawings in Appendix A. Drilling was performed by Rock Creek Drilling under the supervision of our personnel. The following paragraphs summarize the conditions encountered at each location. Logs of the borings are presented in Appendix A.

After drilling was complete a video tape was made of the boreholes, where practical. The photography met with varying degrees of success. Two factors limited camera use; 1) water turbidity and 2) an underwater depth limitation of 100 feet.

Red Lodge Area

At the airport, DH-1 intersected both the No. 1 1/2 and No. 2 Seams. While approaching the No. 1 1/2 Seam evidence of roof strain and possible collapse began to appear below 117.5 feet and continued down to the coal at 129 feet. The No. 1 1/2 Seam is between 129 and 134 feet; it is highly fractured. We interpret the zone between 117.5 to 129 to be fractures opened by roof collapse. The entire thickness of the coal was present, as shown by the video tape. This indicates a pillar rather than a room was intersected.

The hole continued down to the No. 2 Seam near 204 feet. The rate of drill penetration increased below 200, feet but the video tape does not show a change in the rock. A definite void is present between 204 and 209 feet; then about seven feet of soft broken material is present before the mine floor is encountered. The camera could not progress deeper than 209 feet due to the broken rock. The rubble is interpreted to be roof fall material. The No. 2 Seam averages eight feet thick so it appears roof collapse has progressed only about four feet above the original roof. The increased rate of drill penetration below 200 feet might indicate a weakening of the rock, but it could not be detected by the camera.

On the east bench DH-2 was drilled in an area where mine maps show the No. 1 1/2 Seam was extensively robbed of pillars. This location was selected for the purpose of determining how far upward roof collapse might extend, for comparison with empirical correlations. Our depth of cover map predicted the floor to be close to 350 feet. Continuous coring began at 310 feet and continued to 360 feet. Evidence of roof strain and collapse was noted in the core beginning about 326 feet, where open joints began to appear. Some loss of circulation was encountered but no distinct voids detected. Recovery was good and RQD was high throughout the cored interval. Only a two or three foot interval near 345 feet produced highly broken rock. This suggests total convergence of roof and floor has occurred at this location. A

thin layer of coal and partial circulation loss near 358 feet is interpreted to be the mine floor. The hole was continued down to 370 feet with a tricone rotary bit with no additional evidence of collapse or open joints noted below 360 feet. Turbidity and the camera's depth limitation limited photography to a depth of only 175 feet. Within that depth no evidence of subsidence was noted although several fractured and eroded zones are evident.

On 14th Street, DH-3 encountered a pillar in the No. 4 Seam between about 228 and 237 feet. The core from that interval consists of highly fractured coal. The fracturing was so extensive that laboratory strength tests were not possible. Core recovery above the coal was good; about 95 percent with an RQD of 85 percent, indicating the roof to be relatively intact.

The boring was continued down to intersect the No. 5 Seam near 435 feet. A distinct void was not encountered, but roof strain was evident in the core below 425 feet. Absence of coal in the core verifies that a former room was intersected. Since neither a distinct void nor a significant thickness of rubble was detected, we believe there has been roof-floor convergence, probably due to pillar crushing or punching. The roof strain noted in the core suggests pillar crushing or punching has caused the roof to sag. Borehole photography was not performed due to the camera's underwater depth limitation.

Washoe and Smith Mines

A total of four borings were originally planned at these two sites. Two borings (DH-5 and 6) were made at the Washoe Mine near the locations proposed in our Field Investigation Plan dated May 19, 1987. The holes extended to depths of about 250 and 265 feet. DH-5 attempted to intersect the sloped entry but missed and DH-6 intersected a pillar. In both borings about eight feet of coal was encountered very close to the depths predicted by our depth of cover map. Based upon projections of mine map elevations the Washoe sloped entry should be about 200 feet below Highway 308. Neither boring encountered any evidence to suggest subsidence.

At the Smith Mine, two borings (DH-7 and 8) were planned to intersect adits under Highway 308. West of the present Red Lodge Coal Company entrance two sags are evident in the pavement surface and correspond to mapped adit locations. At this location three holes (DH-7, 7A and 7B) were drilled attempting to intersect an adit. All three borings encountered a similar profile which we interpret to be fill to about 16 feet, then coal and bedrock. It appears the adits were exposed and backfilled during highway construction. The sags most likely represent differential settlement between the fill and natural materials.

East of the Red Lodge Coal Company entrance an adit not shown on the mine maps exists; it is shown on the Montana Highway Department construction drawings where it is identified as a mine shaft. Two drill holes (DH-8 and 9) were required to intersect this adit. The roof is at a depth of 57.8 feet and a void about 9 feet high is present. About seven feet of well cemented sandstone forms the roof. Photography of this hole showed no evidence of roof strain nor was rubble observed on the floor. Turbidity limited sight distance to about one foot so no attempt was made to view in a horizontal direction.

C. Laboratory Testing

Approximately 93 percent of the 154 feet of rock cored was recovered. The following laboratory testing program was preformed to obtain representative material properties for analytical analysis.

Drill Hole No.	Sample Depth, ft.	Unconfined Compression	Splitting Tensile Strength	Unit Weight and Moisture Content
1	123.0 - 124.0		X	X
1	135.0 - 136.0	X		X
1	136.0 - 137.0	X		X
2	311.2 - 312.0			X
2	317.0 - 317.8			X
2	333.4 - 334.1			X
2	344.8 - 345.5			X
2	352.5 - 353.3			X
3	212.0 - 213.0	X		X
3	213.0 - 214.0		X	X
3	225.4 - 226.3	X		X
3	227.6 - 228.3		X	X
3	414.0 - 414.7	X		X
3	414.7 - 415.1		X	X
3	441.2 - 442.0	X		X
N/A	Coal	X		X
N/A	Coal	X		X
Totals:		8	4	17

None of the coal recovered from the drill holes produced samples of sufficient size for laboratory strength tests. Several pieces of coal were provided by the Red Lodge Coal Company, which we understand originated from the Smith No. 2 Seam. From these we were successful in cutting two cubes for compressive strength tests.

Although ASTM D2938 does not require recording axial deformation for unconfined compression of rock cores, we recorded that information so that an approximation of the elastic modulus could be calculated. Plots of these tests are shown on Plates 1 through 6 in Appendix A. The table on page 6 summarizes all of the test results.

IV. ANALYSIS

Having reviewed relevant literature and in consideration of the subsurface conditions encountered, we selected the following methods for analyzing the various failure modes:

SUMMARY OF LABORATORY TEST RESULTS

RED LODGE/BEARCREEK SUBSIDENCE STUDY
RED LODGE, MONTANA

Drill Hole No.	Depth in Feet	Classification	Unconfined Compressive Strength, (Q_u), ksf	Splitting Tensile Strength, (Q_t), ksf	Dry Unit Weight,pcf	Moisture Content, %	Modulus of Elasticity (E), psi
DH-1	123.0-124.0	Claystone	470 350	50	142	5	3.5 x 10 ⁵ 4.2 x 10 ⁵
	135.0-136.0	Sandstone			146	4	
	136.0-137.0	Sandstone			147	4	
DH-2	311.2-312.0	Sandstone	145 150 147 147 142	145 150 147 147 142	142	5	3.5 x 10 ⁵ 4.2 x 10 ⁵
	317.0-317.8	Sandstone			150	2	
	333.4-334.1	Sandstone			147	2	
	344.8-345.5	Claystone			147	3	
	352.5-353.3	Sandstone			142	2	
	212.0-213.0	Claystone	1020 720 410 1000 Smith No. 2 Coal Smith No. 2 Coal	98 82. 69 1000 401 310	152	2	9.6 x 10 ⁵ 6.9 x 10 ⁵ 4.5 x 10 ⁵ 1.0 x 10 ⁶
DH-3	213.0-214.0	Claystone			153	3	
	225.4-226.3	Claystone			151	2	
	227.6-228.3	Claystone			151	2	
	414.0-414.7	Sandstone			138	5	
	414.7-415.1	Sandstone			145	2	
	441.2-442.0	Sandstone			151	2	
N/A	N/A	Smith No. 2 Coal	74	74	11		
N/A	N/A	Smith No. 2 Coal	74	74	10		

<u>Failure Mode</u>	<u>Method and Source</u>
Chimney Subsidence	Empirical: Karfakis; Subsidence over Abandoned Coal Mines
Roof Collapse	Analytical: Wright; Roof Control Through Beam Action and Arching
Pillar Crushing	Analytical: Bieniawski; Rock Mechanics Design in Mining and Tunneling
Pillar Punching	Analytical: Rockaway and Stephenson; Support of Coal Pillars

Based on a series of assumed mine room failures, the predicted geometry of "trough" shaped subsidence features was estimated using methods presented by Peng; Coal Mine Ground Control. That calculation was developed for use in longwall rather than room and pillar extractions, but it is considered a reasonable approximation for complete roof-floor convergence from any failure mode which does not create significant bulking.

The geometry of this coal field includes two aspects not normally considered in most analytical models: 1) multiple seam extractions and 2) inclined beds. The following discussions of the various failure modes include a description of how we considered those two geometric aspects.

In the interest of brevity, the results of our observations and analysis are summarized first, followed by detailed discussions. The summary statements apply equally for the Red Lodge and Bearcreek areas.

<u>Failure Mode</u>	<u>Summary of Analysis</u>
1. Chimney Subsidence	<ul style="list-style-type: none"> a. Appears to be the mode responsible for previous subsidence features. b. Only the Bill Palmer property east of Red Lodge, a small area west of the end of 10th Street, and two small areas in the Bearcreek area are considered to have a high potential for future chimney subsidence.
2. Roof Collapse	<ul style="list-style-type: none"> a. Evidence of roof strain observed in the drill holes is limited to within 20 feet or less of the predicted mine roof elevations. b. Calculations indicate the potential for massive roof collapse to be low. c. Using the beam analysis, the roof of Seam No. 5 is calculated to fail about 15 feet above the mine roof, where a competent layer capable of bridging the span was encountered. The other seams were predicted to have very little roof failure.

- d. For most of the seams, the critical load condition for roof collapse, pillar crushing and pillar punching was during mining because subsequent mine flooding has reduced overburden pressures from saturated to buoyant conditions.
3. Pillar Crushing a. Calculations indicate that beneath presently developed areas future pillar crushing is not likely.
 b. Mines extended deeper than calculations predict pillars should have supported; indicating the coal might be stronger than tests indicate.
4. Pillar Punching a. Pillars are not predicted to punch more than one or two feet, due to underlying competent material.
 b. A short punch distance could initiate the limited roof collapse observed in the borings.

A. Chimney Subsidence

Chimney subsidence is one form of roof collapse. It is a progressive upward movement of a void. This failure mode is favored where rock units are thinly bedded. The thin beds constitute thin beams spanning across a void. The collapse of one reduces support for the one above it.

Figure 1 on page 9 shows the three outcomes of chimney subsidence; it can be arrested by a competent layer, by bulking or form a sinkhole at the surface. For this analysis it is assumed that caving will not be arrested by a competent layer; that is considered in the roof collapse discussion. As illustrated in Figure 1 the collapsed material contains voids and therefore occupies a greater volume than the intact material. Given a sufficient overburden thickness this bulking can effectively fill the void. Figure 2 presents heights of caving ratios for various void geometries and bulking factors. A bulking factor in the range of 0.2 has been inferred as an average value for western coal fields from observations by others(2 & 3). Using that value the maximum height of collapse for this mode is in the range of 5 to 15 times the mined seam thickness, for horizontal seams. For the case of a dipping seam it is possible for conical and elliptical chimneys to progress farther. Those two geometries involve limited areas rather than entire rooms. As a result a sloping floor allows material to initially roll away from the collapse location, so a larger area of the room fills with collapsed material before bulking can begin to fill the immediate chimney location. The additional volume of material cannot be easily quantified because it is a function of several variables including horizontal dimensions of the chimney, floor inclination, and location within the room. For the worst case conditions our calculation indicates the volume of additional material flowing out into an inclined room can be about twice that for a horizontal room. Consequently, for worst case conditions, it is possible for conical and elliptical chimneys having small horizontal dimensions to progress nearly twice as far as indicated by Figure 2. However, small chimneys are more prone to being arrested by a more competent layer and therefore rarely reach the surface.

Figure 1a Caving Arrested by a Competent Stratum

Figure 1b Arrested by Bulking of Roof Debris

Figure 1c. Formation of a Sinkhole at the Surface

Figure 1 Chimney Subsidence Development

DH-2 was intentionally located where maps show extensive pillar robbing. For that area, we would expect the prism geometry of chimney subsidence to most accurately represent the height for collapse to progress. From the condition of the core and projected mine roof elevation, it appears the height of collapse was limited to 20 feet or less. Based on an average seam thickness of 5.5 feet, Figure 2. suggests a bulking factor in the range of 0.3 for that area.

In consideration of the conditions encountered in DH-2 and other borings, along with the special circumstances that could allow conical and elliptical chimneys to propagate farther than indicated by Figure 2, we selected the following criteria to assign subsidence potential:

Overburden to Mined Thickness Ratio	Subsidence Potential
10:1 or less	High
10:1 to 20:1	Moderate
Greater than 20:1	Low

To consider the influence of multiple seams, one begins with an assumed chimney in the deepest seam. If the distance from that seam up to the next is greater than the predicted collapse height, then that lowest seam can be removed from further consideration. If the contrary is true the upward progression can continue. Iterations continue using the summation of mined thicknesses and separations between seams. Using the cross sections shown on Drawing No. 87-3001.D-7 the following conclusion can be made regarding multiple seam chimney subsidence. The only locations where the potential for future chimney subsidence is considered high are on the Bill Palmer property east of Red Lodge, a small area west of the end of 10th Street in Red Lodge, and where adits are shallow in the Bearcreek area. Those areas are shown on the subsidence potential map as having a high potential for future subsidence. Two small areas within the town and part of the runway classify as having a moderate subsidence potential. A reduction of the Red Lodge Subsidence Potential map is presented on page 12.

B. Roof Collapse

The mechanism of mine roof collapse is simply a large scale version of chimney subsidence. The concept of the theory is illustrated in Figure 3. The rock layers above the mine are analyzed as a series of beams. Beam thickness is dependent upon thickness of major rock types or bedding or discontinuity characteristics. Each beam is assigned a unit weight, tensile strength and elastic modulus. Initially calculations are made to estimate the deflection of each beam for determining if beams act independently or as composites. In a system of several beams both independent and composite beams can exist in the profile. A sample calculation is presented in Appendix B along with results of specific cases analyzed. Profiles at specific hole locations were modeled using three or four beams. The first beam consisted of the alluvium, having weight but contributing no strength. Subsequent beam dimensions and material properties were selected based upon the log of each hole and laboratory test results. The idealized profiles and material properties analyzed are presented in Figure 4.

Figure 2 Maximum Height of Stoping

(from Karfakis)

T
7
S

35

36

31

32

T
8
S

2

T
8
S

6

T
9
ST
9
S

11

12

7

R 19 E

R 20 E

APPROXIMATE LIMIT OF MINING

APPROXIMATE LIMIT OF MINING

FAULT LINE

FAULT LINE

Typical Thickness
In Bearcreek Area
8-1/2 feetBEARCREEK SUBSIDENCE POTENTIAL MAP

SCALE 0 500 1000 2000 FEET

R 21 E -12A-

DEPTH OF COVER TO MINED THICKNESS RATIOS	
10:1 or less	HIGH SUBSIDENCE POTENTIAL
10:1 to 20:1	MODERATE SUBSIDENCE POTENTIAL
Greater than 20:1	LOW SUBSIDENCE POTENTIAL
/	INSUFFICIENT DATA

STATE OF MONTANA
DEPARTMENT OF STATE LANDS
MONTANA
BEARCREEK/RED LODGE
SUBSIDENCE STUDY
SUBSIDENCE POTENTIAL MAP

Drawn: LNR
Checked: JMP
Date: 10/29/87

DRAWING NO.
87-30010-6

Figure 3 Deflection of the Roof Beams, Bed Separation, and Roof Stress Variation.

4a. DH-I, No. 1-1/2 & No. 2 Seams

4b. DH-3, No. 4 & No. 5 Seams

Figure 4 – Profiles for Roof Collapse Analysis

After an initial calculation was made the input variables were modified to check the analysis for sensitivity to variations in material properties, mine room widths and beam thickness. From this exercise we determined the following:

- The calculated safety factor is inversely proportional to changes in unit weights.
- The calculated safety factor is directly proportional to changes in beam thickness, tensile strength and modulus.
- Variations in room width have an inverse exponential ($1/x^2$) effect on the calculated safety factor.

The unit weight of materials will vary dramatically depending upon groundwater levels and assumptions made regarding hydrostatic conditions. During mining the rooms were dewatered so the saturated unit weight of overburden was supported. After the mines were closed, those portions which are flooded now support the buoyant unit weight of submerged overburden. This change in unit weights generally increases the calculated safety factor by a factor of about 1.7.

The condition of dipping seams was determined to have little influence on the calculated safety factors. To analyze the condition of multiple extractions, only the rock units between the openings were considered in the beam strength.

In order to analyze a variety of conditions, we developed a spreadsheet computer program for roof beam analysis. The computer program used does not distinguish between individual and composite beam theories, it calculates both. In reviewing the computer generated results in Appendix B, the lowest of the two safety factors listed will represent the applicable theory.

In this analysis failure of all beams must occur before subsidence is expressed on the surface.

A determination of the minimum beam thickness required to span across rooms was made using a calculated safety factor of 1.5 as the limiting value. The value of 1.5 was selected as it allows a reasonable variation in material properties, and we believe those assigned to be slightly conservative. The following table presents the minimum lower beam thickness to provide a calculated safety factor greater than 1.5 for each of the cases illustrated in Figure 4.

Seam No.	Beam Thickness, ft.	Safety Factor
1 1/2	1	1.7
2	1	1.9
4	0.5	1.7
5	1.5*	2.0

* Note: The lower beam, 15 feet thick, was shown to fail. This thickness is in the second beam above the mined seam.

This table shows that massive roof collapse is not likely if bedding planes or discontinuities are farther apart than the minimum beam thickness. Our observations of the core indicates bedding planes and discontinuities are generally greater than 1 to 1.5 feet apart. As a result we would not predict massive roof collapse to be a common failure mode. The only analyzed location where the calculation predicted roof collapse was within the first 15 feet above the No. 5 Seam. That prediction appears to be reasonably consistent with conditions encountered in the borings.

C. Pillar Crushing

Pillars crush when the overburden pressure exceeds the strength of the pillars. Once a pillar fails the overburden load it carried is either transferred to adjacent pillars, which may in turn fail, or the roof collapse mode of failure might occur. Figure 5 illustrates the concept of tributary areas for calculating loads supported by pillars.

As noted earlier, the coal strength has been estimated using cubes cut from samples originating from the Smith No. 2 Seam. Sample calculations and computer generated results for this mode are presented in Appendix B. The analysis included correction factors for the size of cubes and pillar height to width ratios. The calculation is most sensitive to overburden pressure and strength of the coal. As stated previously we believe the critical load condition occurred during mining when rooms were dewatered. The flooded condition generally reduces the overburden pressure and thus increases the safety factor by a factor of about 1.7.

The condition of dipping beds creates changing overburden pressures along the length of rooms. For simplicity we used the average overburden pressure throughout each area analyzed. It is not known how the dipping beds influence the state of stress within pillars. It can be argued that a portion of the overburden load is transmitted through pillars in shear rather than purely compression. Considering that the long dimension of pillars is generally in the direction of dip and the length to height ratio is usually greater than 5 to 10, we believe the influence of these dip angles is negligible.

The rock profiles analyzed were typical of DH-1 and 3. Room and pillar configurations were selected which appeared representative. The calculations generally yield safety factors in the range of 2 to 3 for the submerged condition. Predictably safety factors will decrease down dip, and in deeper seams. For the dewatered condition which existed during mining, pillar failures are often predicted. It is possible the laboratory tests under estimate the coal strength in those seams, or stress redistributions (temporary arching) influenced performance during mining. Observation of the mine maps do not normally show pillar sizes increasing at greater depths. The following table presents the approximate depths below which we would predict pillar crushing to occur for the submerged condition.

5a. Cross Section of Loaded Pillars

5b. Plan View of Typical Pillar Configurations

Figure 5 Pillar Crushing Failure Mode

<u>Seam No.</u>	<u>Approximate Crushing Depth, ft.</u>
1-1/2	700
2	700
4	350
5	800

Comparing these depth estimates with the cross sections on Drawing No. 87-3001.D-7, the following observations are made:

- On the east bench cross section all mines extend significantly deeper than our calculations would predict possible.
- On the Main Street cross section, the mines generally stop near the depths we predict can be supported for the submerged case.
- On the airport cross section, the No. 1-1.2 and No. 4 seams extend below the depths our calculations predict possible.

From these observations the following conclusions are made:

1. Either the coal has greater strength than predicted by laboratory tests, or pillars in these deeper sections have been crushed.
2. Since the mines have been inactive for at least 50 years and flooding has reduced overburden pressures to buoyant conditions, future pillar crushing is unlikely.

D. Pillar Punching

Analysis methods for pillar punching have been developed (8 and 9) which are considered reasonably accurate. Based upon conditions of materials encountered in the borings however, we do not consider a calculation for pillar punching necessary for the following reasons.

- The thickness of soft underclay encountered in the core was thin, typically about one foot or less.
- Floor materials beneath the underclay are very competent such that pillars would obviously crush before the floor would yield.
- The consistency of the underclay is so soft that it was so badly disturbed by coring that samples for strength tests could not be obtained. It is the weakest material encountered.

From these observations we conclude that pillars have probably already punched some distance, but the underlying competent materials prevented punching of more than a few feet. We perceive this limited depth of punching as being the potential catalyst to initiating the limited roof strain and collapse. As pillars move down roof support decreases, and in effect increases the distance roof beams must span.

E. Trough Subsidence Geometries

These calculations were performed utilizing methods presented and referenced by Peng (6). The technique was developed for use in British longwall mines and is generally considered to over estimate subsidence in U.S. mines, especially room and pillar mines. It does allow some modification to trough geometry due to dipping beds. This is purely a graphical method which ignores material strength properties except for their influence on the angle of draw.

Figures 6, 7, 8 and 9 present typical trough geometries for the following cases.

- No. 1 1/2 Seam for subsidence of a single room.
- No. 4 Seam for subsidence of two adjacent rooms if pillar is robbed.
- No. 4 Seam for subsidence of numerous adjoining rooms to simulate mass pillar robbing.
- No. 4 and 5 Seams for subsidence of two overlying areas of mass pillar robbing.

The last case of two overlying areas is not presented in the literature. Our analysis was to predict the trough geometry for subsidence of each area and then use superposition to construct the final geometry.

Figures 6 through 9 suggest that surface subsidence from a single room might only be in the range of a few inches, while multiple room and multiple seam subsidence is predicted to result in much greater surface subsidence. These figures are presented only for informational purposes. We are not aware of any previous subsidence features which can be represented by these constructions. Furthermore the condition of mine roofs and rooms observed in the borings present no indication which would lead us to believe the figures represent potential future surface subsidence. All indications suggest that bulking is preventing mine room failures from being expressed on the surface, except where chimneys have developed in high potential areas.

V. SUMMARY AND CLOSING

Through the process of reviewing mine maps, strategic location of exploration borings, observing subsidence features and performing calculations using representative material properties we believe the following summary statements can be made.

1. Evidence of rock strain is generally limited to less than 20 feet above predicted mine roofs.
2. The perceived failure mode consists of a limited distance of pillar punching followed by some roof collapse which has probably stabilized.
3. Because most of the mines are now flooded, present day conditions are generally less conducive to subsidence than existed during or shortly after the mines were operating.

Figure 6 East-West Trough Geometry for Single Room in No. I-I/2 Seam

Figure 7 East-West Trough Geometry for 2 Adjoining Rooms in No. 4 Seam

Figure 8 North-South Trough Geometry for Multiple Room Extractions in No. 4 Seam

Figure 9 East-West Trough Geometry for Multiple Room Extractions in Seams 4 & 5

4. The potential for future subsidence is considered high only on the Bill Palmer property east of Red Lodge, near the west end of 10th Street, and above shallow adits in the Bearcreek area. It is predicted to consist of chimney subsidences similar to previous occurrences.
5. Two small areas within the town and part of the runway classify as having a moderate potential. The Red Lodge Subsidence Potential map is presented on page 12.

In making the above statements we concede the fact that the mines cover an extensive area and our subsurface explorations are very limited in relation to the mined area. It is therefore possible that conditions different than those encountered exist and might produce future subsidence. However, in view of the information contained in this report and the historical development of subsidence in other western coal fields we believe the potential for future surface expression of mine subsidence beneath presently developed areas is generally low.

BIBLIOGRAPHY

1. Bieniawski; Rock Mechanics Design in Mining and Tunneling, A.A. Balkema, Boston, 1984
2. Brown; Methods of Locating Potential Subsidence Areas, Proceedings of The Governor's Workshop on Mine Subsidence, Laramie, WY, 1986
3. Karfakis; Mechanisms of Subsidence over Abandoned Coal Mines, Proceedings of The Governor's Workshop on Mine Subsidence, Laramie, WY, 1986
4. Kiewit Mining Company; Reclamation Recommendations Red Lodge Coal Field; Sheridan, WY, 1983
5. National Coal Board; Subsidence Engineers Handbook, London, 1975
6. Peng; Coal Mine Ground Control, Second Edition, John Wiley & Sons, New York, 1986
7. Piggot & Eynon; Ground Movements Arising from the Presence of Shallow Abandoned Mine Workings, in Geddes, ed. Large Ground Movements and Structures, Halstead Press, New York, 1977
8. Rockaway & Stephenson; Geotechnical Evaluation of the Support of Coal Pillars in Underground & Coal Mines, Bulletin of the Association of Engineering Geologists, Vol. XIX, No. 1, 1982
9. Vesic; Bearing Capacity of Shallow Foundations, in Winterkorn and Fang, Foundation Engineering Handbook, Van Nostrand Reinhold Co., New York, 1973
10. Wright; Roof Control Through Beam Action and Arching, in Given (editor), SME Mining Engineering Handbook, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1973

APPENDIX A

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-1
DEPTH 135.0'-136.0'
SAMPLE NO.

MOIST UNIT WEIGHT: 153pcf.
DRY UNIT WEIGHT : 146pcf.
MOISTURE CONTENT : 4 %
CLASSIFICATION : Sandstone
HEIGHT TO DIAMETER RATIO: 2.06
RATE OF STRAIN: 0.08%/min.

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-1
DEPTH 136.0'-137.0'
SAMPLE NO.

MOIST UNIT WEIGHT: 153pcf.
DRY UNIT WEIGHT : 147pcf.
MOISTURE CONTENT : 4%
CLASSIFICATION : Sandstone
HEIGHT TO DIAMETER RATIO: 2.05
RATE OF STRAIN: 0.10%/min.

RED LODGE/BEAR CREEK SUBSIDENCE STUDY
RED LODGE, MONTANA

STATE OF MONTANA DEPARTMENT OF STATE LANDS
ABANDONED MINE RECLAMATION BUREAU
HELENA, MONTANA

Northern
Engineering
and Testing, Inc.

JOB NO. 87-3001.DPLATE NO. 2

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-3
DEPTH 212.0'-213.0'
SAMPLE NO.

MOIST UNIT WEIGHT: 155pcf.
DRY UNIT WEIGHT : 152pcf.
MOISTURE CONTENT. : 2 %
CLASSIFICATION : Claystone
HEIGHT TO DIAMETER RATIO: 2.05
RATE OF STRAIN: 0.09%/min.

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-4
DEPTH 225.4'-226.3'
SAMPLE NO.

MOIST UNIT WEIGHT: 155pcf.
DRY UNIT WEIGHT : 151pcf.
MOISTURE CONTENT : 2 %
CLASSIFICATION : Claystone
HEIGHT TO DIAMETER RATIO: 2.09
RATE OF STRAIN: 0.06%/min.

RED LODGE/BEARCREEK SUBSIDENCE STUDY
RED LODGE, MONTANA

STATE OF MONTANA DEPARTMENT OF STATE LANDS
ABANDONED MINE RECLAMATION BUREAU
HELENA, MONTANA

Northern
Engineering
and Testing, Inc.

JOB NO. 87-3001.D PLATE NO. 4

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-3
DEPTH 414.0'-414.7'
SAMPLE NO.

MOIST UNIT WEIGHT: 145pcf.
DRY UNIT WEIGHT : 138pcf.
MOISTURE CONTENT : 5%
CLASSIFICATION : Sandstone
HEIGHT TO DIAMETER RATIO: 2.06
RATE OF STRAIN: 0.09%/min.

NET 158
RED LODGE/BEAR CREEK SUBSIDENCE STUDY
RED LODGE, MONTANA

STATE OF MONTANA DEPARTMENT OF STATE LANDS
ABANDONED MINE RECLAMATION BUREAU
HELENA, MONTANA

Northern
Engineering
and Testing, Inc.

JOB NO. 87-3001.D PLATE NO. 5

UNCONFINED COMPRESSION TEST

DRILL HOLE DH-3
DEPTH 441.2'-442.0'
SAMPLE NO.

MOIST UNIT WEIGHT: 154 pcf.
DRY UNIT WEIGHT : 151 pcf.
MOISTURE CONTENT : 2 %
CLASSIFICATION : Sandstone
HEIGHT TO DIAMETER RATIO: 1.97
RATE OF STRAIN: 0.13%/min.

NET 158
RED LODGE/BEAR CREEK SUBSIDENCE STUDY
RED LODGE, MONTANA

STATE OF MONTANA DEPARTMENT OF STATE LANDS
ABANDONED MINE RECLAMATION BUREAU
HELENA, MONTANA

Northern
Engineering
and Testing, Inc.

JOB NO. 98-3001.D PLATE NO. 6

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-1

SHEET 1 OF 3

DRILL TYPE: SOIL ROCK Schramm Rotadrill	CLIENT State of Montana AMR Program
SIZE, TYPE OF BIT 3" Core 7-7/8 & 6-1/4 Tricone	PROJECT Red Lodge/Bearcreek Subsidence Study
CASING: SIZE 8-5/8" LENGTH 108'	LOCATION Red Lodge Airport
TOTAL NO. OF OVERTBURDEN SAMPLES TAKEN	
Disturbed Undisturbed	
TOTAL NO. CORE BOXES 5	TOTAL CORE RECOVERY FOR BORING (%) 77
REMARKS	
	ELEVATION: TOP OF HOLE Not Determined GROUNDWATER 118' THICKNESS OF OVER-BURDEN, FT. 91.0 DEPTH DRILLED IN- TO ROCK, FT. 134 TOTAL DEPTH OF HOLE, FT. 225 STARTED 7-20-87 COMPLETED 7-23-87 DRILLED BY B. Kupfnar LOGGED BY R. Dombrowski

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-1

SHEET 2 OF 3

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	GEOMECHANICAL		
					DEGREE OF WEATHERING	JOINTS/FT	DISCONTINUITIES
					TYPE	DIP	
80	Poorly Graded GRAVEL with Cobbles and Boulders.						
91	Lean CLAY; very stiff, brown, decomposed claystone.						
101	SANDSTONE; gray, very fine grained, moderately hard to hard rock.						
108	CLAYSTONE; light to dark gray, soft to moderately hard rock, interbedded with thin sandstone seams.						
118	GWL (7-23-87)						
	Becoming broken with thin coal and carbonaceous seams below 117 feet.						
129	COAL No. 1-1/2 Seam, highly fractured.						
134	SANDSTONE; gray, very fine grained, moderately hard to hard rock.	50	21	120-134	SW	I	BJ OX 17°
146.7	CLAYSTONE; dark gray.	96	87	134-154	SW	I	OJ OX 85°
150					SW	I	BJ 80°
160	SANDSTONE; light gray, very fine grained, argillaceous, moderately hard rock.						
180							
190	(continued						

LOG OF EXPLORATION BORING

JOB NO. 87-3001.DHOLE NO. DH-1SHEET 3 OF 3

DEPTH FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
190	SANDSTONE; light gray, very fine grained, argillaceous, moderately hard rock.				
200	VOID				
205	Broken Rock Rubble				
216	CLAYSTONE; Mine Floor				
225	Bottom of Hole				

DH 1
138.0-140.0

DH 1
140.0-142.0

DH 1
142.0 - 144.0

DH 1
144.0 - 146.0

DH /
150.0 - 152.0

DH /
152.0 - 154.0

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH - 2
SHEET 1 OF 4

DRILL TYPE: SOIL ROCK	Bucyrus Erie	CLIENT	State of Montana	AMR Program
SIZE, TYPE OF BIT	3" Core, 7-7/8 Tricone	PROJECT	Red Lodge/Bearcreek	
CASING: SIZE	8-5/8	LENGTH	75'	
TOTAL NO. OF OVERTBURDEN SAMPLES TAKEN		LOCATION	East Bench 8' North of section corner	7,26,4,35
Disturbed	Undisturbed	ELEVATION: TOP OF HOLE	Approximately 5835	GROUNDWATER 27.3
TOTAL NO. CORE BOXES	TOTAL CORE RECOVERY FOR BORING (%)	THICKNESS OF OVER- BURDEN, FT.	DEPTH DRILLED IN- TO ROCK, FT.	TOTAL DEPTH OF HOLE, FT.
8	97	21.0	349	370'
REMARKS	STARTED 8-10-87	COMPLETED 8-19-87		
	DRILLED BY Rock Creek Drilling (B. Kupfner)	LOGGED BY R. Dombrowski		

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-2

SHEET 2 OF 4

(continued)

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-2

SHEET 3 OF 4

DEPTH FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
190					
200					
220					
	CLAYSTONE; Dark gray, soft to moderately hard rock, thinly laminated, occassional coal and carbonaceous seams.				
240					
260					
280					
300	(continued				

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-2

SHEET 4 OF 4

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	GEOMECHANICAL			
					DEGREE OF WEATHERING	JOINTS/FT	DISCONTINUITIES	
LEGEND					TYPE	DIP		
300	CLAYSTONE; Dark gray, soft to moderately hard rock, thinly laminated, occassional coal and carbonaceous seams.							
310	SANDSTONE; Light gray, very fine grained, moderately hard rock, argillaceous seams, some carbon detrius and thin coal layers.	100	100	310-313	SW SW F SW	2 2 2 2	CJ OJ BJ OJ	11° 8°
320								
328.7	CLAYSTONE; Dark gray, carbonaceous, sandy, moderately hard rock, thin sandstone seams, some fractured zones.	100	96	313-333	SW	1	OJ	46° 88° 64°
349	SANDSTONE; Light gray, very fine grained, hard rock.	100	89	333-346.2	MW	2	OJ Gauge	53°
355	CLAYSTONE; Gray, sandy, moderately hard rock	89	81	346.2-360	MW SW	2 1	OJ OJ	76° 65°
358.5	COAL; Highly fractured.				SW	2	OJ	60°
360	CLAYSTONE; Gray, soft at contact then hard.				SW	1	OJ	89°
370	Bottom of Hole				MW	1	CJ	—

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-3

SHEET 1 OF 5

DRILL TYPE: SOIL ROCK Schramm Rotadrill		CLIENT State of Montana AMR Program
SIZE, TYPE OF BIT 7-7/8", 6-1/4" & 3" Core Tricones 10-5/8"		PROJECT Red Lodge/Bearcreek
CASING: SIZE 8-6/8" LENGTH 110'		LOCATION On 14th Street, 170' West of Main Street, 10' South of North Curb
TOTAL NO. OF OVERTBURDEN SAMPLES TAKEN		ELEVATION: TOP OF HOLE GROUNDWATER Not Determined 27
Disturbed	Undisturbed	THICKNESS OF OVER-BURDEN, FT. 108'
TOTAL NO. CORE BOXES 9	TOTAL CORE RECOVERY FOR BORING (%) 76	DEPTH DRILLED IN- TO ROCK, FT. 342.5
REMARKS		TOTAL DEPTH OF HOLE, FT. 450.5
		STARTED 7-23-87 COMPLETED 7-31-87
		DRILLED BY Rock Creek Drilling
		LOGGED BY R. Dombrowski

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-3

SHEET 2 OF 5

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
80	Poorly Graded GRAVEL with cobbles and boulders; very dense, rounded to subrounded, difficult penetration.				
100					
108					
120					
140	SANDSTONE; Gray, very fine grained, moderately well cemented, argillaceous.				
160					
180					

(continued.....)

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-3

SHEET 3 OF 5

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	GEOMECHANICAL			
					DEGREE OF WEATHERING	JONTS / FT	DISCONTINUITIES	
							TYPE	DIP
190	SANDSTONE; Gray, very fine grained, moderately well cemented, argillaceous.							
200								
205								
210								
212								
215								
218								
220	CLAYSTONE; dark gray, sandy, moderately hard rock, laminated, becoming light gray and more sandy below 212 feet with some carbon detritus.	95	89	210-230	F	O	Bd	17°
227.8								
230	COAL; Highly fractured	69	0	230-241				
237	CLAYSTONE; Dark gray, carbonaceous, soft at contact, thinly laminated.							
245								
250								
260								
270								
280	SANDSTONE; Light gray, very fine grained, argillaceous.							
290								
300	(continued							

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-3

SHEET 4 OF 5

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
300					
320					
340	SANDSTONE; Light gray, very fine grained, argillaceous.				
360					
380					
400					

(continued

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-3

SHEET

5 OF 5

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	GEOMECHANICAL			
					DEGREE OF WEATHERING	JOINTS/FT	DISCONTINUITIES	
							TYPE	DIP
410	SANDSTONE: Light gray, very fine grained, argillaceous, with thin coal and claystone seams.				Broken Rock to 41'	3	BJ	18°
420	CLAYSTONE; Dark gray, soft rock, thinly laminated, coal seams, slickensides, thin broken zones.	99	86	410-429	SW	1	BJ	
435	MISSING - Lost core				SW	1	BJ	
437					SW	2	OJ	10°
444	SANDSTONE; Gray, fine grained, thin claystone seams.	80	15	429-443	MW	2	OJ	60°
450.5	CLAYSTONE: Gray, laminated, sandy layers.	100	51	443-450.5	MW	1	OJ	50°
	Bottom of Hole				MW	9	OJ	52°
					F	3	BJ	0°
					F	1	CJ	75°

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-5
SHEET 1 OF 3

DRILL TYPE: SOIL ROCK	Bucyrus Erie	CLIENT	State of Montana	AMR Program		
SIZE, TYPE OF BIT	7-7/8" Tricone	PROJECT	Red Lodge/Bearcreek			
CASING: SIZE	7"	LOCATION	Washoe Sloped Entry North Side Highway 308			
TOTAL NO. OF OVERTBURDEN	SAMPLES TAKEN	ELEVATION: TOP OF HOLE	GROUNDWATER			
Disturbed	Undisturbed	4979*	18.0'			
TOTAL NO. CORE BOXES	N/A	TOTAL CORE RECOVERY FOR BORING (%)	N/A	THICKNESS OF OVER- BURDEN, FT. 47.0'	DEPTH DRILLED IN- TO ROCK, FT. 204.0	TOTAL DEPTH OF HOLE, FT. 251.0
REMARKS				STARTED 7-14-87	COMPLETED 7-16-87	
				DRILLED BY B. Kupfner		
				LOGGED BY R. Dombrowski		

*Elevation interpolated from topographic map.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-5

SHEET 2 OF 3

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R O D	DEPTH, FEET	BLOWS/FOOT
80	CLAYSTONE; dark gray, soft rock, thinly bedded, occasional thin sandstone and coal layers.	-			
105	SANDSTONE; Dark gray, fine grained, moderately cemented, argillaceous.	-			
125	CLAYSTONE; Dark gray, soft to moderately hard rock, thinly laminated, occasional thin sandstone seams.	-			
140	SANDSTONE; Dark gray, fine grained, moderately cemented, argillaceous.	-			
155					
160					
169	SANDSTONE; Dark gray, fine grained, moderately cemented, argillaceous.	-			
180	CLAYSTONE; Dark gray, moderately hard to hard rock, numerous thin sandstone and coal layers.	-			

(continued.....)

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-5

SHEET 3 OF 3

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
190					
200	CLAYSTONE; Dark gray, moderately hard to hard rock, numerous thin sandstone and coal layers.				
220					
237					
237	COAL				
245	SANDSTONE; Dark gray, fine grained, argillaceous, moderately cemented.				
251	Bottom of Hole				

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-6
SHEET 1 OF 3

DRILL TYPE: SOIL ROCK Schramm Air Drill		CLIENT State of Montana AMR Program		
SIZE, TYPE OF BIT 7-7/8 Tricone		PROJECT Red Lodge/Bearcreek		
CASING: SIZE 7" LENGTH 46.7'		LOCATION Washoe Mine Highway 308 South of 4-Mile Marker		
TOTAL NO. OF OVERTBURDEN SAMPLES TAKEN		ELEVATION: TOP OF HOLE GROUNDWATER		
Disturbed	Undisturbed	Not Determined 19		
TOTAL NO. CORE BOXES	TOTAL CORE RECOVERY FOR BORING (%)	THICKNESS OF OVER-BURDEN, FT.	DEPTH DRILLED IN TO ROCK, FT.	TOTAL DEPTH OF HOLE, FT.
REMARKS		38'	228	226
		STARTED 7/16/87	COMPLETED 7/16/87	
		DRILLED BY Bill Kupfner		
		LOGGED BY R. Dombrowski		

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-6

SHEET 2 OF 3

DEPTH FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
80	SANDSTONE; gray, hard rock, well cemented, very fine grained, argillaceous.				
100					
120					
141	COAL				
144	SANDSTONE				
151	COAL				
154					
160					
180	SANDSTONE; light gray, moderately hard rock, well cemented, fine grained, occasional claystone and coal layers.				
	(continued)				

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-6

SHEET 3 OF 3

DEPTH. FT.	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	R Q D	DEPTH, FEET	BLOWS/FOOT
190	CLAYSTONE; gray, moderately hard rock, thinly laminated, some carbon detritus.				
200					
215	SANDSTONE; light gray, moderately hard rock, well cemented.				
230	COAL				
236	SANDSTONE; gray, moderately well cemented, argillaceous.				
260					
266	Bottom of Hole				

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-7,7A,7B
SHEET 1 OF 1

DRILL TYPE: SOIL ROCK	Schramm Air Drill	CLIENT	State of Montana AMR Program	
SIZE, TYPE OF BIT	6-1/4" Tricone		PROJECT	Red Lodge/Bearcreek
CASING: SIZE	7"	LENGTH	7'	LCCATION Smith Mine; Mapped Entry west of entry into Red Lodge Coal Co.
TOTAL NO. OF OVERTBURDEN	SAMPLES TAKEN		ELEVATION: TOP OF HOLE	GROUNDWATER
Disturbed	Undisturbed			Not Encountered
TOTAL NO. CORE BOXES	N/A	TOTAL CORE RECOVERY FOR BORING (%)	THICKNESS OF OVER- BURDEN, FT.	DEPTH DRILLED IN- TO ROCK, FT.
REMARKS	N/A			TOTAL DEPTH OF HOLE, FT.
			STARTED 7/17/87	COMPLETED 7/17/87
			DRILLED BY Paul	
			LOGGED BY R. Dombrouski	

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-8

SHEET 1 OF 1

DRILL TYPE: SOIL ROCK Schramm Rotadrill	CLIENT State of Montana AMR Program
SIZE, TYPE OF BIT 6-1/4" Tricone	PROJECT Red Lodge/Bearcreek
CASING: SIZE 7" LENGTH 7'	LOCATION South Highway 308; Unmapped Smith Mine Adit; E of Entry into Red Lodge Coal Co.
TOTAL NO. OF OVERTBURDEN SAMPLES TAKEN	ELEVATION: TOP OF HOLE GROUNDWATER
Disturbed Undisturbed	Not Determined 52
TOTAL NO. CORE BOXES	THICKNESS OF OVER- DEPTH DRILLED IN- TOTAL DEPTH OF BURDEN, FT. TO ROCK, FT. HOLE, FT.
REMARKS	STARTED 7/17/87 COMPLETED 7/17/87
	DRILLED BY R. Dombrouski
	LOGGED BY R. Dombrouski

Northern

Engineering
and Testing, Inc.

LOG OF EXPLORATION BORING

JOB NO. 87-3001.D

HOLE NO. DH-9

SHEET 1 OF 1

DRILL TYPE: SOIL ROCK	Bucyrus Erie	CLIENT	State of Montana AMR Program		
SIZE, TYPE OF BIT	6-1/4" Tricone		PROJECT	Smith Mine	
CASING: SIZE	7"	LENGTH	10'	LOCATION South Highway, 16' east of DH-8 87° inclination void 13.5' east of DH-8	
TOTAL NO. OF OVERTBURDEN	SAMPLES TAKEN	0	ELEVATION: TOP OF HOLE	GROUNDWATER	
Disturbed 0	Undisturbed 0		Not Determined	50	
TOTAL NO. CORE BOXES	TOTAL CORE RECOVERY FOR BORING (%)		THICKNESS OF OVER- BURDEN, FT.	DEPTH DRILLED IN- TO ROCK, FT.	TOTAL DEPTH OF HOLE, FT.
REMARKS			26	44.0	70.0
			STARTED 8/04/87	COMPLETED 8/04/87	
			DRILLED BY B. Kupfner		
			LOGGED BY R. Dombrowski		

APPENDIX B

Northern

Engineering
and Testing, Inc.

STANDARD COMPUTATION SHEET

PROJECT Pallidger / Enclosed JOB NO. 87-3001.D-5
PURPOSE R.I. Analysis; #1½' com D.H.-1 SHEET 1 OF 4
COMPUTED BY JL CHECKED BY JP DATE 8-25-87

DH-1 V. thin interbedded sandstone and shales (immediate reef)

V. Large Alluvial Gravel

90'

$$\delta = 145 \text{ lb/ft}^2$$

Comments

Lean clay to Claystone

V. soft or, little strength

$$\gamma = 105 \text{ lb/ft}^3$$

Argillaceous Shale/siltstone, Reddish Br.

$$\gamma = 150 \text{ lb/ft}^3$$

12' thick E = 3.0 x 10⁶

elastic 50 psi

118' V. thin interbedded shale w. sandstone (Banded)

12' thick E = EMR - Poor Rx 139 m/sec

$$E_m = 5.32 \text{ GPa} ; 8.455 \times 10^5 \text{ lb/in}^2$$

$$\delta = 140 \text{ lb/ft}^2 ; q_2 = 435 \text{ ft}^2$$

$$E = 300 \text{ psi}$$

$$\phi = 32^\circ$$

$$C = 18.25 \text{ in}$$

Room
Void

L=22'

X = 0'-22'

Northern

Engineering
and testing, Inc.

STANDARD COMPUTATION SHEET

PROJECT _____

JOB NO. _____

PURPOSE _____

SHEET 2 OF 4

COMPUTED BY _____

CHECKED BY _____

DATE _____

- Example Opening Span 22'; 91' gravel overburden + 10' clay + rock
 a) Shale beam: 18' thick $E = 1 \times 10^6$ psi tensile strength 300 psi
 $\gamma = 140 \text{ lb/ft}^3$
 b) Sandstone beam: 7' thick $E = 5 \times 10^6$ psi tensile strength 500 psi
 $\gamma = 150 \text{ lb/ft}^3$ w/ 91' gravel overburden + 10' clay overburden
 c) Assume no tensile strength between bedding calc deflections, is self-loading.

Shale beam

$$q = 140 \text{ lb/ft}^3 (18') \cdot 1' = 2520 \text{ lbs/ft length}$$

$$I = \frac{b l^3}{12} = \frac{l (18)^3}{12} = 486 \quad \text{Max defl. } x = L/2$$

$$\text{deflection } W = \frac{q x^2 (L-x)^2}{24 E I} : \omega = \frac{q \frac{L^2}{4} (\frac{L}{2})^2}{24 E I}$$

$$\omega = \frac{0.520 \left(\frac{22^2}{4}\right) \left(\frac{22}{2}\right)^2}{24 (1 \times 10^6 \text{ psi} \cdot 144 \text{ psi}) (486)} = 2.1966 \times 10^{-5} \text{ ft}$$

Sandstone beam w/ weight of clay and gravel overburden

$$q = 91' \cdot 140 \text{ lbs/ft}^3 + 10' \cdot 105 \text{ lb/ft}^3 + 7' \cdot 150 \text{ lb/ft}^3 + 1' = 15295 \text{ lbs/ft length}$$

$$I = \frac{l (7)^3}{12} = 22.583 \quad \text{defl. at } x = L/2$$

$$\omega = \frac{q \frac{L^2}{4} (\frac{L}{2})^2}{24 E I}$$

$$\omega = \frac{15295 \text{ lbs } \left(\frac{22^2}{4}\right) \left(\frac{22}{2}\right)^2}{24 (5 \times 10^6 \text{ psi} \cdot 144 \text{ psi}) (22.583)} = 4.5 \times 10^{-4} \text{ ft}$$

Sandstone beam deflects more than shale beam so beam is self-loading to not as composite

For this condition if there is no slipping between bedding alone can analyze problem as simple composite beam

If sliding occurs between bedding planes and sandstone and shale then:

$$\frac{M}{E I_{\text{shale}}} = \frac{q (L^2 - 6Lx + 6x^2)}{(E_{\text{shale}} I_{\text{shale}}^3 + E_{\text{sand}} I_{\text{sand}}^3)} \quad \text{with Max tension at } x = L/2$$

Will SHALE fail in tension?

Northern

Engineering
and Testing, Inc.

STANDARD COMPUTATION SHEET

PROJECT _____ JOB NO. _____
PURPOSE _____ SHEET 3 OF 4
COMPUTED BY _____ CHECKED BY _____ DATE _____

$$\frac{M}{(1.44 \times 10^5)(486)} = \frac{17815 \text{ lb}}{\left[1.44 \times 10^5 (16)^2 + 7.2 \times 10^5 (7)^2 \right]} \Rightarrow \frac{8}{1.086768 \times 10^2} = \frac{8022460}{1.086768 \times 10^2}$$

$$q = 91' \cdot 145 + 10' \cdot 105 + 7' \cdot 150 + 18' \cdot 140 = 17815 \text{ lb/length beam}$$

$$\frac{M}{6.99 \times 10^5} = \frac{7.9240372 \times 10^{-2}}{10 - F_1} \quad M = 555256 \quad 10 - F_1$$

$$\sigma_{max} = \frac{555256 \cdot \left(\frac{10}{12}\right)}{486} = 10282.5 \frac{\text{lb}}{\text{in}^2} = 71 \text{ psi}$$

$$F.S. = \frac{300 \text{ psi lab testile of } \sim 45}{71 \text{ psi beam}} = 4.2$$

In case of Shale beam self loading only, that is shale deflects more than sandstone alone producing bed separation between the two; then Tension Failure analysis is

$$\sigma_{max, tensile} = \frac{q L^2}{2 b h^2}$$

$$q = 140 \text{ lb/in}^2 \cdot 18 \cdot 1' = 2520 \text{ lb/in length}$$

$$\sigma_{max} = \frac{2520 \cdot \left(\frac{10}{12}\right)^2}{2 \cdot 1 \cdot 16^2} = 186.2 \text{ lb/in}^2 \text{ or } 13.1 \text{ psi}$$

$$F.S. = \frac{300 \text{ psi}}{13.1} = 23$$

Northern

Engineering
and Testing, Inc.

STANDARD COMPUTATION SHEET

PROJECT Red Ledge / Beauregard

JOB NO.

PURPOSE Analyze According to Cox w/ Youssoir Arch
for compressional and shear failure

SHEET 4 OF 4

COMPUTED BY _____

CHECKED BY _____

DATE _____

$$H = \frac{8hL^2}{3\pi t}$$

1) Consider shale beam 18 ft. thick with 125' of rock in overburden, span 22'. $\gamma_u = 125 \text{ psf assumed}$ No-cohesion along bedding = 50° $\phi = 30^\circ$

where from above $8h = 17815 \text{ lbs/in}^2$
 t = Beam thickness

$$H = \frac{17815(22)^2}{3\pi t} = 79337.6 \text{ lbs/in}^2 = \underline{\underline{551}}$$

$$C = \frac{H}{t} = \frac{17815}{18} = 989 \text{ psf}$$

$$C = \frac{79337.6}{18} = 17741.7 \text{ lbs/in}^2 \text{ or } 123 \text{ psf}$$

$$FS = \frac{435}{132} = 3.3 \rightarrow \text{For Compressional Failure}$$

Calc minimum thickness beam required for stability

$$t = \sqrt{\frac{8hL}{3\pi C}} \quad t = \sqrt{\frac{17815 \times 18}{3\pi (435 \text{ psf})(144 \text{ in}^2)}} = 9.6'$$

$$FS = \frac{13}{9.6} = 1.3$$

Shear Failure:

$$V = \frac{8hL}{t} = \frac{17815(22)}{18} = 43547.8 \text{ lbs/in}^2$$

$$S = S_0 + C \tan \phi \quad S = 0 + 17741.7 \tan 30^\circ = 10248.2 \text{ psf mobilized}$$

Some more ($S = C + C \tan \phi$)

$$FS = \frac{10248.2}{43547.8} = 0.23 \quad \text{which indicates arching forces don't insure prevent minor block falls on road.}$$

$$FS = \frac{\text{Losing Factor}}{\text{Critical Factor}}$$

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 1 1/2 Seam at Dm-1
Span Size, ft. = 22

Layer no.	Unit Weight pcf	Layer Thickness ft.	E psi	Tensile Strength psi	Deflection ft.	F.S. Individual Layer	F.S. Individual Layer	F.S. Composite
						Tensile Failure	Tensile Failure	SUM(D203)
1	148	3.			0.205+23	3.8	#DIV/0!	1.32E+04
2	175	18			#DIV/0!	2.8	#DIV/0!	1.42E+04
3	152	7	45-75	358	3.875-23	11.8	3.8	1.53E+04
4	147	15	45-75	358	3.755-05	32.4	4.3	1.78E+04

REC-1000 / SEABREAK SEDIMENTATION STUDY
Rock Collapse Analysis

Problem Description: No. 1 1/2 Gear at D-1
Span Size, ft. = 35

Layer No.	Unit nof	Layer Thickness ft.	E psi	Tensile Strength psi	Individual		Composite	
					Layer Deflection ft.	Tensile Failure	Layer Deflection ft.	Tensile Failure
1	145	5.		8.00E+03	2.0	=DIV/0!	1.32E+04	
2	105	12		4.00E+03	2.7	=DIV/0!	1.42E+04	
3	152	7	48-25	350	9.40E+03	7.5	2.5	1.53E+04
4	140	13	45-25	350	9.10E+03	20.7	3.1	1.78E+04

HSC-1000 / BEAM DESIGN SUBSIDENCE STUDY
Reo^c Collapse Analysis

Problem Description: No.1 1/2 Beam at Dp-1
Span Size, L_b = 32

Layer No.	Unit No.	Layer Thickness in.	E psi	Tensile Strength psi	Individual Layer		Intralayer Composite		S. (0.003)
					Deflection ft.	Failure	Tensile Failure	Tensile Failure	
1	145	9			8.00E+02	2.5	#DIV/0	1.30E+04	
2	125	12			#DIV/0	2.0	#DIV/0	1.40E+04	
3	150	7	48-15	350	1.96E-03	5.2	2.4	1.53E+04	
4	140	18	45-25	350	1.92E-04	14.4	2.2	1.78E+04	

RED JACKET / BIPROOF® SUBSIDENCE STUDY
Red® Collapse Analysis

Model Description: No.1 J/2 Seam at DM-1
Span Size, ft. = 33

Layer No.	Sect no. ²	Layer ft.	Tensile Strength psi	Deflection ft.	F.S.		Composite EQUATIONS
					Individual Layer Failure	Aver Layer Failure	
1	145	9		0.00E+00	0.0	#DIV/0	1.32E+24
2	125	12		#DIV/0	2.2	#DIV/0	1.42E+24
3	132	7	45-25	352	3.63E-12	3.8	2.3
4	142	13	45-25	350	3.52E-04	10.5	1.78E+24

RED LODGE / APPROXIMATE SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No.1 1/2 Beam at D=1
Span Size, ft.= 32

Layer No.	Unit wt/ft ²	Layer Thickness in.	E psi	Tensile Strength psi	T.S.		F.S.		Sum(DS/FS)
					Individual Layer Deflection %	Individual Layer Failure	Composite Layer Tensile Failure	Composite Layer Failure	
1	143	91			0.22E+00	0.0	#DIV/0!	1.33E+24	
2	125	10			#DIV/0!	0.0	#DIV/0!	1.43E+24	
3	152	7	4E+05	175	3.67E-03	0.9	0.4	1.53E+24	
4	160	18	4E+05	175	3.75E-05	16.1	2.4	1.78E+24	

RET. LOGUE / BEARREEK SUBSIDENCE STUDY
Rock Collapse Analysis

Provier Description: No.1 1/8 Beam at Dn-1
Beam Size, ft.= 25

Layer No.	Unit cc ²	Layer Thickness in.	E psi	Tensile Strength psi	Deflection ft.	F.S. Individual Layer	F.S. Individual Layer	Composite Sum{C2C3}
						Tensile Failure	Tensile Failure	
1	145	.91		2.00E+22	2.0	#DIV/0!	#DIV/0!	1.32E+24
2	125	.72		#DIV/0!	2.0	#DIV/0!	#DIV/0!	1.42E+24
3	150	.7	4E+05	175	9.45E+03	3.6	0.3	1.52E+24
4	142	.95	4E+05	175	9.15E+03	10.4	1.6	1.73E+24

RED LODGE / BEAR CREEK SUBSIDIENCE STUDY
Roof Collapse Analysis

problem Description: No.1 1/2 Beam at D=1
Span Lengt, ft.= 30

Layer No.	Unit in. in.	Layer Thickness in.	I in. in. in. in.	Tensile Strength psi		Individual Deflection ft.		Composite Tensile Failure psi		S14(C003)
				E psi	Layer Failure psi	Layer Failure ft.	Layer Failure psi			
1	143	9.		2.32E+08	0.2	#DIV/0!	1.32E+24			
2	125	12		#DIV/0!	0.0	#DIV/0!	1.42E+24			
3	156	7	4E+25	175	1.96E+08	2.6	0.2	1.53E+24		
4	148	18	4E+25	175	1.90E+24	7.2	1.1	1.78E+24		

RED LIDGE / BEARDMORE SUBLISSION STUDY
Rock Collapse Analysis

Soil Description: No.1 1/2 Seam at D-1
Soil Size, ft. = 35

Layer No.	Unit nof	Layer ft.	Tensile psi	Strength psi	F.S.		F.S. Failure	Composite SUM(CED3)
					Individual Layer	Individual Layer		
1	145	5.			0.00E+00	0.2	#DIV/0!	1.32E+04
2	125	10			#DIV/0!	2.2	#DIV/0!	1.42E+04
3	153	7	4E+05	175	3.63E-22	1.5	0.1	1.53E+04
4	142	13	4E+05	175	3.53E-24	5.3	2.8	1.73E+04

RED LEDGE / SEPRO GREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 1 1/2 Seam at Sh-1
Span Size, ft.= 10

Layer No.	Unit Weight psf	Layer Thickness ft.	E psi	Tensile Strength psi	Deflection in.	F.S.		Sum{F.S.}
						Individual Layer	Individual Layer	
1	145	9		8.22E+27	0.2	#DIV/0!	1.32E+24	
2	135	12		#DIV/0!	0.3	#DIV/0!	1.42E+24	
3	150	7	4E+25	88	3.87E+26	3.8	0.2	1.53E+24
4	140	13	4E+25	88	3.75E+26	8.1	1.2	1.78E+24

RED LEDGE / SEAGREEN SLIPPAGE STUDY
foot Collapse Analysis

Problem Description: No.1 1/2 Beam at D-1
Room Size, ft. = 25

Layer No.	Unit Weight lb/ft ³	Layer Thickness in.	E psi	Tensile Strength psi	F.S.		F.S.		S.M.(CODE)
					Individual Layer	Deflection ft.	Individual Layer	Tensile Failure	
1	145	9			0.00E+00	0.0	#DIV/0!	1.32E-04	
2	125	12			#DIV/0!	0.0	#DIV/0!	1.42E-04	
3	152	7	4E+05	88	9.45E-03	1.9	2.1	1.53E-04	
4	140	12	4E+05	88	9.19E-03	5.1	2.3	1.73E-04	

**RED LIGAND / REARRESTANT SUBSTANCE STUDY
Root Collapsing Analysis**

problem Description: No. 1 1/2 Seats at 3-1
open sizes, etc., 38

Layer No.	Unit Weight kg/m ³	Layer Thickness mm	E GPa	Tensile Strength MPa	Individual		Composite		S.D.(%)
					Layer Deflection mm	Tensile Failure ft.	Layer Deflection mm	Tensile Failure ft.	
1	145	51			0.02E+00	0.8	#DIV/0!	1.32E-24	
2	135	7			#DIV/0!	2.8	#DIV/0!	1.42E-24	
3	152	7	45±05	53	1.35E-22	1.3	0.1	1.55E-24	
4	142	18	45±05	53	1.92E-04	3.5	0.5	1.78E-24	

RED LODGE / BEAR CREEK SUSSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No.1 1/2 Seam at D-1
Span Size, ft. = 88

Layer No.	Unit No.	Layer Thickness in. %	E psi	Tensile Strength psi	Individual		Composite		SUM(DEL3)
					Layer Deflection ft.	Tensile Failure	Layer Deflection ft.	Tensile Failure	
1	145	51			0.00E+00	0.0	#DIV/0!	1.32E+04	
2	135	12			#DIV/0!	0.0	#DIV/0!	1.42E+04	
3	153	7	22-25	353	7.74E-03	11.8	0.6	1.53E+04	
4	140	13	22-25	350	7.50E-05	32.4	4.9	1.73E+04	

RED LODGE / BEAVERCREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No.1 1/2 Seam at D-1
Span Size, ft.= 12

Layer No.	Unit Weight lb/ft ³	Layer Thickness in.	E psi	Tensile Strength psi	Deflection feet	S.S.		F.S.		SUW(GE033)
						Individual Layer	Individual Layer	Tensile Failure	Tensile Failure	
1	145	.1		2.20E+22	2.0	#DIV/0	#DIV/0	1.32E+04	1.32E+04	
3	145	.3		#DIV/0	0.0	#DIV/0	#DIV/0	1.42E+04	1.42E+04	
5	152	.7	1E+28	350	1.55E+02	11.8	0.8	1.53E+04	1.53E+04	
4	148	.5	1E+28	350	1.52E+24	32.4	0.9	1.72E+04	1.72E+04	

RED LODGE / BEARGREEN SUBSIDENCE STUDY
Roof Collapse Analysis

problem Description: Seam No. 2 at Dri-1
Span Size, ft.= 20

Layer No.	Unit pcf	Layer Thickness ft.	Tensile Strength psi	Deflection in.	F.S.		F.S.	
					Individual Layer	Individual Layer	Composite Layer	Composite Layer
1	14.	.81	4E-22	0	8.22E-22	0.0	#DIV/0!	#DIV/0!
2	83	.85	8E-22	0	#DIV/0!	0.0	#DIV/0!	#DIV/0!
3	83	1.26	4E-25	258	1.74E-25	327.5	116.3	116.3
4	83	1.0	4E-25	358	7.32E-25	32.~	1216.2	1216.2

RED LODGE / BEARGREENE SEDIMENTARY STUDY
Rock Collapse Analysis

problem Description: Seam No. 2 at DH-1
com Size, ft.= 25

Layer No.	Unit psi	Layer ft.	Tensile Strength psi	Individual		Composite	
				E	Deflection ft.	Tensile Failure	Tensile Failure
1	141	161	25+22	0	0.00E+00	2.8	#DIV/0!
2	83	25	25+22	2	#DIV/0!	2.3	#DIV/0!
3	83	102	25+25	352	4.25E-06	225.3	74.4
4	83	10	25+25	352	1.75E-24	19.4	776.7

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: Seam No. 2 at D4-1
Span Size, ft. = 30

Layer No.	Unit sof	Layer ft.	Thickness	E psi	Tensile Strength psi	Individual		Composite Layer
						Deflection ft.	Tensile Failure	
1	141	181	8E+00	3	2.28E+00	0.8	#DIV/0!	
2	83	25	8E+00	2	#DIV/0!	2.8	#DIV/0!	
3	83	135	4E+05	352	6.88E+05	145.7	51.7	
4	83	12	4E+05	352	3.65E+24	12.3	342.3	

RED LODGE / BEAR CREEK SUBSIDIANCE STUDY
ROCK Collapse Analysis

problem Description: Seam No. 3 at S=1
Door Size, ft.= 22

Layer No.	Unit Weight psi	Layer Thickness in.	E GPa	Tensile Strength psi	Deflection in.	F.S. Individual	F.S. Individual	Composite layer
						Tensile Failure	Tensile Failure	
1	141	101	8E+20	8	2.78E-08	6.8	4DIV/0	
2	83	25	8E+20	8	#DIV/0!	8.2	#DIV/0!	
3	83	100	4E+20	252	1.74E-26	327.3	116.3	
4	83	5	4E+20	351	2.28E-24	15.2	2471.1	

RED LODGE / BEARGREEN SUBSIDENCE STUDY
Rock Collapse Analysis

problem Description: Seam No. 2 at D-1
room Size, ft.= 20

Layer No.	Unit ccf	Layer Thickness ft.	Tensile Strength psi	Deflection in.	Individual	Individual	Composite Failure
					Layer No.	Tensile Strength psi	
1	141	121	25+25	8	2.20E-22	0.2	#DIV/0
2	63	25	25+25	8	#DIV/0	0.2	#DIV/0
3	63	168	45+45	252	1.74E-06	337.5	118.3
4	63	2	45+25	352	1.80E-03	5.1	6237.7

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: Span No. 2 at D4-1
Room Size, ft.= 35

Layer No.	Unit Weight pcf	Layer Thickness in.	E psi	Tensile Strength psi	Individual		Composite Failure
					Layer Deflection ft.	Layer Failure	
1	141	10	2E+22	2	0.02E-22	2.0	#DIV/0!
2	141	25	2E+22	2	#DIV/0!	2.0	#DIV/0!
3	141	100	4E+22	202	4.25E-26	203.5	74.4
4	141	1	4E+22	352	1.75E-26	1.9	8212.4

RED LIDGE / BEARCREK SUSSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-2
Room Size, ft. = 20

Layer No.	Unit no.	Layer Thickness in. ft.	E psi ksi	Tensile Strength psi ksi	F.S.		F.S. Composite
					Individual Layer	Individual Layer	
1	63	150	28E+03	8	8.00E-04	0.0	#DIV/0!
2	57	104	45E+03	350	1.80E-05	301.2	113.6
3	52	14	75E+03	692	2.22E-05	75.2	894.1
				#DIV/0!	#DIV/0!	#DIV/0!	

423 LOGUE / SPRUCE SUBSIDENCE STUDY
Root Collapse Analysis

Problem Description: No. 4 Seam at S-3
Span Size, ft. = 35

Layer No.	Unit wt. pcf	Layer Thickness ft.	E psi	Individual Layer		Tensile Failure ft.	F.S. #DIV/0!	F.S. #DIV/0!
				Tensile Strength psi	Deflection in.			
1	53	.60	23+20	3	2.00E-22	0.0	#DIV/0!	#DIV/0!
2	87	1.04	45+25	350	4.50E-25	192.3	72.7	72.7
3	92	1.4	75+25	650	5.50E-25	48.7	572.3	572.3
4					#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

REF ID:SE / BEARCAT6K SUBSIDENCE STUDY
Soil Collapse Analysis

Problem Description: No. 4 Seam at S-3
Room Size, ft.: 30

Layer No.	Unit wt. per ft. in	Layer Thickness in	E psi	Tensile		Deflection ft.	Tensile Failure	F.S. Individual	F.S. Individual	F.S. Composite
				Strength psi	Layer Failure					
1	55	102	2E+00	2	0.00E+00	0.0	#DIV/0!			
2	57	104	4E+00	350	9.37E-26	133.9	52.5			
3	59	14	7E+00	680	1.15E-24	33.5	357.4			
4				=DIV/0!	=DIV/0!		=DIV/0!			

RED LODGE / 22400004 ELEVATION 6100'V
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-E

Span Size, ft. = 43

Layer No.	Unit wt. pcf	Layer Thickness ft.	E psi	Strength psi	F.S.		F.S. Tensile Failure
					Individual Layer Deflection ft.	Individual Layer Tensile Failure	
1	53	.63	85-23	0	8.00E-00	0.0	#DIV/0!
2	37	.34	45+05	350	2.95E-05	75.3	28.4
3	32	.14	75-25	632	3.64E-04	15.0	223.3
					#DIV/0!	#DIV/0!	#DIV/0!

RED LOGGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Roof Description: No. 4 Seam at D-3
Span Size, ft. = 32

Layer No.	Unit sq ft	Layer Thickness in.	Tensile Strength psi	F.S.		F.S. Failure
				Individual Deflection ft.	Individual Tensile Failure psi	
33	162	0E+00	0	0.00E+00	0.0	#DIV/0!
37	164	4E+04	350	1.65E+00	381.2	113.5
32	14	7E+04	682	2.38E+04	76.2	854.1
				#DIV/0!	#DIV/0!	#DIV/0!

RED 1000 / GEORGIA SUSPENSION STUDY
Soil Collapse Analysis

Problem Description: No. 4 Seam at D-5
Soil Size: 5 ft. x 3 ft.

Layer No.	Unit sof	Layer Thickness ft.	E psi	Tensile Strength psi	F.S.		F.S. Failure
					Individual Layer ft.	Individual Layer Failure	
1	85	158	25-22	3	2,000-33	2.2	#DIV/0!
2	87	124	45-24	175	1,950-33	150.6	55.8
3	92	14	75-24	682	2,333-24	76.2	834.1
-					#DIV/0!	#DIV/0!	#DIV/0!

480 LOOSE / BEARDED SUBSIDIENCE STUDY
Roof Collapse Analysis

problem Description: No. 4 Seam at D--Z

beam Size, ft.= 32

Layer No.	Unit def	Layer Thickness in.	E psi	Tensile Strength psi	F.S.		F.S. Failure
					Individual Layer	Individual Deflection ft.	
1	83	182	8E+22	8	6.08E-20	0.0	#DIV/0
2	37	184	4E+24	350	1.85E-05	301.5	113.8
3	32	14	7E-24	342	2.35E-04	35.1	447.
4					#DIV/0!	#DIV/0!	#DIV/0!

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-3
Room Size, ft. = 50

Layer No.	Unit Thickness in. ft.	E psi	Tensile Strength psi	S.S.		F.S.	
				Deflection ft.	Layer Failure	Layer Failure	Composite Failure
1	62	182	85+20	8	2.005-20	8.2	#DIV/0
2	37	124	55+04	175	1.853-25	150.6	56.8
3	52	14	75+24	342	2.355-24	35.1	447.1
4				#DIV/0	#DIV/0	#DIV/0	#DIV/0

REC 2000 / BEARCREEK SLEEVING STUDY
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-3
Room Size, ft. = 30

Layer No.	Unit ccf	Layer ft.	Tensile Strength psi	F.S.		F.S.	
				Individual	Deflection ft.	Individual	Composite
1	63	.63	8E+00	6	2.02E+20	8.6	#DIV/0!
2	67	.12	4E+04	175	9.37E-05	65.3	25.1
3	50	3	7E+04	342	2.51E-02	3.8	56.0
				#DIV/0!	#DIV/0!	#DIV/0!	

RED LODGE | BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-3
Span Size, ft.: 32

Layer No.	Unit wt. pcf	Layer Thickness ft.	E psi	Tensile Strength psi	Layer Deflection ft.	F.S.	
						Individual Failure	Composite Failure
1	33	.582	25-32	8	3,885-32	0.8	#DIV/0
2	67	1.34	45-24	175	3,373-35	65.9	25.5
3	52	2	75-24	340	5,552-32	2.4	1446.3
				#DIV/0	#DIV/0	#DIV/0	#DIV/0

RED LODE GEOTECHNICAL SUBSIDENCE STUDY
Rock Collapse Analysis

Problem Description: No. 4 Seam at Dr-3
Cbm Size, ft.³ = 30

Layer No.	Weight lb/cu ft.	Layer Thickness ft.	E psi	Tensile Strength psi	F.S.		F.S. Failure
					Individual Deflection ft.	Individual Tensile Failure	
1	63	162	85-20	6	2.00E-20	2.8	#DIV/0
2	57	134	45-24	175	9.37E-25	66.3	25.8
3	58	1	75-24	344	2.95E-21	1.2	3924.5
a					#DIV/0	#DIV/0	#DIV/0

REF ID: A9295 / GEOROOF SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 4 Seam at D-3
Span Size, ft. = 30

Layer No.	Unit cc ²	Layer ft.	Tensile Strength psi	Individual		Composite	
				E psi	Deflection ft.	Tensile Failure	Tensile Failure
1	83	132	0E+00	8	0.00E+00	8.0	#DIV/0!
2	57	124	4E+04	350	9.37E-05	135.3	50.5
3	52	11	7E+04	650	2.26E-01	2.4	9829.2
				#DIV/0!	#DIV/0!	#DIV/0!	

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Rock Collapse Analysis

Problem Description: No. 5 Seam at DH-3
Load Size, ft.= 20

Layer No.	Unit sq. ^{ft}	Layer Thickness ft.	Tensile Strength psi	F.S.		F.S.	
				Individual	Individual	Composite	Layer
1	54	.223	2E-03	2	3.22E-03	2.3	=DIV/0
2	53	.182	4E-03	3.3	4.32E-07	552.6	343.7
3	53	.12	4E+05	272	8.87E-05	20.9	388.1
4	53	.15	3E+05	150	7.17E-05	17.4	1.1

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Roof Collapse Analysis

problem Description: No. 5 Beam at DH-3
beam Size, ft. = 12

Layer No.	Unit Weight scf	Layer Thickness ft.	E psi	Tensile Strength psi	Deflection ft.	F.S. Individual	F.S. Individual	Composite
						Tensile Failure	Tensile Failure	Tensile Failure
1	84	.25	25-28	8	0.02E+00	0.2	#DIV/0!	
2	62	.25	45-55	350	1.38E-05	353.7	155.3	
3	55	.25	45-55	270	1.97E-04	13.4	213.3	
4	55	.15	25-35	150	1.75E-04	11.1	8.7	

FEED .0005 / BEARDREEK SLIPSTEDGE STLOW
Roof Collapse Analysis

Problem Description: No. 5 Seam at J-1-3
Span Size, ft. = 12

Layer No.	Unit Weight lb. ² / sq. ²	Layer Thickness in.	Tensile			Deflection ft.	Tensile			Failure Strength psi
			S	Strength psi	Layer		Layer	Tensile Failure		
1	84	.285	35+22	2	0.225+22	2.3	50.472			
2	33	.152	45+15	332	1.535+25	15.5	125.3			
3	33	.15	45+15	270	4.095+24	7.3	1480.7			
4	53	.15	55+25	152	3.635+24	7.7	2.5			

RED LOOSE / BEARROCK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 5 Gear at SH-3
Span Size, ft. = 35

Layer No.	Unit Weight ccf	Layer Thickness ft.	Tensile Strength psi	Layer Deflection in.	F.S.		Composite Failure Rate
					Individual Tensile Layer	Individual Failure Layer	
1	84	223	35-28	2	8.023-02	2.2	400/0
2	83	188	45-45	332	4.323-03	152.4	75/2
3	82	13	45-35	270	7.572-04	5.3	1207,-
					=01V/2	=211/2	=017/0

RED LOGUE / BEARGREEN GEOTECHNICAL STUDY
Roof Collapse Analysis

problem description: No. 5 seam at 9-3
con size, ft.= 20

Layer No.	Unit weight psi	Layer Thickness ft.	Tensile Strength psi	F.S.		Composite Layer Failure
				Individual Layer Deflection ft.	Individual Tensile Failure	
1	145	.883	45-00	2	0.005-00	8.2
2	145	.163	45-00	350	0.395-07	316.3
3	150	.2	45-00	272	1.345-04	12.5
4	150	.5	35-05	150	1.205-24	12.5

RED LODGE / BEAVERCREEK SUBSIDENCE STUDY
Prog: Collapse Analysis

Problem Description: No. 5 seam at D4-J
Room Size, ft. = 50

Layer No.	Unit no.	Layer ft.	Thickness in.	Individual		Composite	
				Tensile Strength psi	Deflection ft.	Tensile Failure psi	Tensile Failure
1	148	338	2E-08	3	0.02E-08	3.3	4014.2
2	149	132	4E-05	350	6.59E-07	315.3	135.5
3	155	12	4E-05	270	1.34E-01	13.5	1914.4
4	155	18	2E-05	250	1.02E-04	17.4	1.2

RED CLOUSE / BEAR CREEK SUBSIDENCE STUDY
Soil Collapse Analysis

Problem Description: No. 5 seam at Dm-3
Soil Size, ft.= .35

Layer No.	Unit Weight psi	Layer Thickness ft.	Tensile Modulus psi	Strength psi	Individual		Composite Failure Factors
					Layer Deflection ft.	Tensile Failure psi	
1	146	.358	35+20	0	0.005-00	0.0	#DI/12
2	146	.152	45+15	350	8.765-06	123.3	45.7
3	165	.15	45+85	270	1.265-07	4.1	625.1
4	155	.15	35+35	152	1.125-03	3.4	0.2

RED LOGGE / BEAR CREEK SUBSIDENCE STUDY
Load Collapse Analysis

Problem Description: No. 5 Beam at S-3
Span Size, ft. = 35

Layer No.	Unit Weight lb/ft. ³	Layer Thickness in.	E GPa	Tensile Strength psi	Deflection in.	Individual		Composite	
						Layer Failure Tensile Failure	Layer Failure Tensile Failure	Layer Failure Tensile Failure	Layer Failure Tensile Failure
1	64	258	2E+20	3	2,000+00	3.0	±21V/2		
2	33	158	4E+24	358	4,000+00	150.4	±75.8		
3	62	12	4E+04	277	7,575+00	6.6	±387.7		
4					±51V/2!	±51V/2	±51V/2		

RED JUGDE / BEAMBREAK SUBSIDENCE STUDY
Roof Collapse Analysis

Problem Description: No. 8 Beam at D-1
con Bsize, ft. = 35

Layer No.	Unit cc's	Lever ft.	Thickness in.	Tensile E 10 ⁶ psi	Deflection in.	P.E.		P.S.	
						Individual Layer	Composite Layer	Individual Layer	Composite Layer
1	64	228	.33+24	12	2.205-28	3.6	42.1	3	42.1
2	67	132	.33+24	175	4.333-25	31.3	19.3		
3	69	13	.45+24	135	7.575-23	3.2	54.7		
4					=31v/8	=23v/2	=51v/8		

RED LODGE / BREAKAWAY PLASTICITY STUDY
TODD Collacase Analysis

Problem Description: No. 3 beam at D-3
Com Size, ft.= 15

Layer No.	Unit Weight lb/ft. ³	Layer Thickness in.	Individual		Composite		
			E psi	Tensile Strength psi	Deflection in.	Tensile Failure in.	
1	64	.250	35-00	2	8,000-00	3.3	42.0/2
2	64	.250	35-00	250	1,000-00	33.7	155.5
3	64	.166	35-00	250	7,555-34	6.7	4320.1
4	64	.166	35-00	250	10,000-00	4.0/2	93.7/2

RED LODGE / REDGREEN SUBSIDENCE BELOW
Roof Collapse Analysis

Problem Description: No. 5 Beam at 24-3
Span Size, ft., = 35

Layer No.	Unit Thickness in. ccf	Layer No. %	P.S.		P.S.		Concrete Tensile Strength psi	Deflection Layer Failure %	Layer Tensile Failure %
			Individual	Individual	Layer	Layer			
1	.84	225	354.22	2	2.225-22	3.3	4014.0		
2	.62	45-25	330	1.225-22	351.7	55.3			
3	1	45-65	270	4.933-22	3.7	10885.2			
				=0.14/2	=0.17/2	=0.14/2			

STANDARD COMPUTATION SHEET

PROJECT Ped Ledge / Brackets

JOB NO. 87-3601.D-5

PURPOSE Cales 1½ seam DH-1; Pillar loads

SHEET 1 OF 2

COMPUTED BY FD

CHECKED BY J. Pool

DATE 8-21-87

Pillar # 1

$$P = \frac{(L_p + w_o)(w_p + w_o) \gamma h}{w_p L_p}$$

seam At = 5.5 ft²

$$\left. \begin{array}{l} L_p = 55' \\ w_p = 25' \end{array} \right\} \text{Pillar Dimensions}$$

$$\begin{aligned} L_o &+ w_o = 80' \quad \text{length of rigid beam} \\ \gamma_{beam} &= 145 \text{ lb/ft}^2 \cdot 9.81 \\ \gamma_{beam} &= 140 \text{ lb/ft}^2 \cdot 36' \\ w_o &= 42' \quad \text{width of Tril. Area} \end{aligned}$$

Pillar # 2

$$\begin{array}{l} L_p = 55' \\ w_p = 32' \end{array}$$

$$P = \frac{(32)(55) \cdot 145.95}{55 \cdot 32} = 493.93 \text{ lbs/in} \quad \text{or } 343 \text{ psi}$$

$$L_o + w_o = 80'$$

$$w_o = 25'$$

$$\gamma = 145.95$$

Pillar # 3

$$\begin{array}{l} L_p = 72' \\ w_p = 25' \\ L_o + w_o = 82' \\ w_o = 50' \\ \gamma = 145.95 \end{array}$$

$$P = \frac{(32)(50)(145.95)}{72 \cdot 32} = 422.55 \text{ lbs/in} \quad \text{or } 294.1 \text{ psi}$$

Pillar # 4

$$\begin{array}{l} L_p = 115' \\ w_p = 30' \\ L_o + w_o = 125' \\ w_o = 55' \\ \gamma = 145.95 \end{array}$$

$$P = \frac{(115)(30)(145.95)}{115 \cdot 30} = 370.55 \text{ lbs/in} \quad \text{or } 257 \text{ psi}$$

Pillar # 5

$$\begin{array}{l} L_p = 57' \\ w_p = 31' \\ L_o + w_o = 63' \\ w_o = 62' \\ \gamma = 145.95 \end{array}$$

$$P = \frac{(57)(62)(145.95)}{57 \cdot 31} = 465.13 \text{ lbs/in} \quad 323 \text{ psi}$$

STANDARD COMPUTATION SHEET

PROJECT Red Lodge / Beartooth JOB NO. 27-3001-D-5
 PURPOSE Cores 1½ sec. D14-1 SHEET 2 OF 1
 COMPUTED BY 1 CHECKED BY _____ DATE 8-21-57

Pillar # 6

$$L_p = 30'$$

$$W_p = 25'$$

$$L_w + W_w = 90'$$

$$W_p + W_w = 55'$$

$$S/H = 18595$$

$$P = \frac{(90)(50) 18595}{(25)(85)} = 39378 \text{ lbs/in.}^2 \text{ or } 273.5 \text{ psi}$$

Pillar # 7

$$W_p = 45'$$

$$W_w + L_p = 52'$$

$$S/H = 15375$$

$$P = \frac{(W_w + W_p) \times S/H}{W_p^2}$$

$$P = \frac{(52)(45) 15375}{(45)^2} = 25794 \text{ lbs/in.}^2 \text{ or } 179.1 \text{ psi}$$

Strength of cont. cubes Avg. 2500 psi

Correction for size of cubes: $K = \sqrt{c_s \cdot c_d} = (2500 \text{ psi})\sqrt{2}$

$$K = 3535$$

correction size of pillars $T_i = \frac{K}{6} = \frac{3535}{6} \approx 590 \text{ psi}$

Correction for pillar dimensions = $0.64 + 0.36 \frac{W}{H}$
where $\frac{W}{H}$ = pillar width to height ratio

Pillar No.	Applied Stress psi	Pillar w/H	Strength of Pillar psi	Safety Factor
1	316	$\frac{25}{55} = 4.6$	1355	4.3
2	342	5.8	1541	4.5
3	294	4.6	1300	4.4
4	257	5.5	1546	6.0
5	232	5.6	1567	4.9
6	277	4.6	1355	4.9
7	179	8.2	2119	11.8

RED LEDGE / BEARBREAK SUBSIDENCE STUDY
Column Crushing Analysis

Problem Description: No. 1 1/2 Seam at D-1

Coal Gu.(est) = 2500 Beam Thickness, ft. = .5

u Diaz. or Size, in.= 3

PILLAR No.	PILLAR DIMENSIONS	TRIBUTARY AREA	OVERTBURDEN PRESS psi	PILLAR PRESS psi	SAFETY FACTOR	PILLAR W/- RATIO	PILLAR STRENGTH- psi		
	Length ft.	Width ft.	Length ft.	Width ft.					
1	55	55	62	62	18595	21.6	3.3	1842	
2	55	42	65	53	18595	34.3	4.2	1225	
3	72	55	82	53	18595	294	3.8	1847	
4	115	30	125	53	18595	357	4.6	3.8	1173
5	57	31	55	65	18595	383	3.7	1199	
6	55	25	52	55	18595	321	3.5	1840	
7	46	46	53	53	18595	173	8.5	5.5	1578
8					18595	#DIV/0!	#DIV/0!	0.0	377
9					18595	#DIV/0!	#DIV/0!	0.0	377
10					18595	#DIV/0!	#DIV/0!	0.0	377
11					18595	#DIV/0!	#DIV/0!	0.0	377

REC JUDGE / BEAVERCREEK SUSSIDENCE STUDY
Column Crushing Analysis

Problem Description: No. 1 1/2 Seams at D-1

Cal Bu.(psi) = 2220 Seam Thickness, ft. = .5

u Dia. or Size, in. = 3

PILLAR No.	PILLAR DIMENSIONS		TRIBUTARY AREA		OVERBURDEN STRESS		PILLAR SAFETY FACTOR	PILLAR W/T RATIO	PILLAR STRENGTH psi
	Length ft.	Width ft.	Length ft.	Width ft.	psi psi	psi psi			
1	55	25	60	42	16595	316	2.5	2.1	672
2	55	25	60	42	16595	343	2.5	2.2	672
3	55	25	60	42	16595	370	2.5	2.1	672
4	55	30	60	55	16595	257	3.5	1.9	672
5	55	30	60	55	16595	283	2.5	2.1	672
6	55	30	60	55	16595	310	2.5	2.1	672
7	40	45	53	53	16595	179	7.0	5.0	1258
8					16595	#DIV/0!	#DIV/0!	2.0	302
9					16595	#DIV/0!	#DIV/0!	2.2	348
10					16595	#DIV/0!	#DIV/0!	2.0	322
11					16595	#DIV/0!	#DIV/0!	2.2	322

RED LODGE / BEAR CREEK SUBSIDENCE STUDY
Column Crushing Analysis

Problem Description: No. 1 1/2 Seam at Dmt.

Coal Du. (psi) = 1500 Seam Thickness, ft. = 8

Mu Dia. or Side, in. = 2

PILLAR No.	PILLAR DIMENSIONS			SUBJETORY AREA sq ft.	OVERBURDEN STRESS psi	PILLAR STRESS psi	SAFETY FACTOR	PILLAR W/- RATIO	PILLAR STRENGTH psi
	Length ft.	Width ft.	Height ft.						
1	55	15	88	42	18555	316	2.0	3.1	634
2	55	33	66	66	18555	343	2.0	4.2	735
3	72	33	66	66	18555	294	2.0	4.2	614
4	72	66	66	66	18555	257	2.0	3.7	724
5	72	66	66	66	18555	322	2.0	3.7	718
6	66	66	66	66	18555	321	2.0	3.7	7034
7	66	49	66	66	18555	175	5.3	5.6	942
8					18555	#DIV/0!	#DIV/0!	2.0	635
9					18555	#DIV/0!	#DIV/0!	2.0	620
10					18555	#DIV/0!	#DIV/0!	2.0	610
11					18555	#DIV/0!	#DIV/0!	2.0	600

RED LODGE / EBBROOKE SUBSIDENCE STUDY
Column Crushing Analysis

Problem Description: No. 1 1/2 Beam at D4-1

Coal Gw. (psi) = 1228 Seam Thickness, ft. = 8

Pillar Dia. or Size, in. = 8

PILLAR No.	PILLAR DIMENSIONS	TRIBUTARY AREA	OVERBURDEN STRESS	PILLAR STRESS	SAFETY FACTOR	PILLAR W/T RATIO	PILLAR STRENGTH psi
	Length ft.	Width ft.	ft. sqf	psi			
1	65	65	42	16595	3.8	0.1	416
2	65	65	42	16595	343	1.4	492
3	65	65	42	16595	294	1.4	492
4	65	65	42	16595	257	1.4	492
5	65	65	42	16595	223	1.5	482
6	65	65	42	16595	201	1.4	416
7	65	65	42	16595	179	1.5	482
				16595	#DIV/0!	#DIV/0!	16595
				16595	#DIV/0!	#DIV/0!	16595
				16595	#DIV/0!	#DIV/0!	16595
				16595	#DIV/0!	#DIV/0!	16595

RED JUDGE / BEAR CREEK SUBLIMATION STUDY
Column Crushing Analysis

Problem Description: No. 2 Seam at D-1

Coal Du.(psi) = 2522 Beam Thickness, ft. = .8
Ju Dia. or Size, in.= 8

PILLAR No.	PILLAR DIMENSIONS	TRIBUTARY AREA	OVERBURDEN STRESS	PILLAR STRESS	SAFETY FACTOR	PILLAR W/T RATIO	PILLAR STRENGTH psi
	Length ft.	Width ft.	ft. sq	psi	psi		
66	63	66	33	31422	352	3.1	4,84
74	57	49	145	31422	424	2.7	1,29
76	60	60	360	31422	450	2.3	1,24
82	58	46	268	31422	414	2.7	1,12
65	58	55	320	31422	562	2.9	1,17
73	60	47	276	31422	527	2.8	1,24
77	62	62	396	31422	557	2.8	1,17
78	63	47	289	31422	534	1.3	1,17
72	63	76	466	31422	543	1.4	507
				31422	#DIV/0!	0.8	377
				31422	#DIV/0!	0.2	377

FED LODGE / SEABROOK SUBSIDENCE STUDY
Column Crushing Analysis

Problem Description: No. 2 Seam at 2-1

Steel Sui (psi) = 25000 Beam Thickness, ft. = .3
Sui Dia. or Size, in. = 2

PILLAR NO.	PILLAR DIMENSIONS			TEMPORARY AREA	OVERBURDEN STRESS	PILLAR STRESS	SAFETY RATIO	PILLAR SIZE	PILLAR SUI
	Length ft.	Width in.	Length in.						
.66	22	66	66	25220	315	630	4.8	1225	
.42	27	57	57	25220	324	644	4.4	1250	
.93	18	57	57	25220	261	636	3.1	1042	
.58	22	66	66	25220	315	630	4.8	1225	
.66	62	122	122	25220	457	630	7.3	1173	
.66	62	127	127	25220	453	630	7.4	1173	
.66	62	122	122	25220	471	630	7.3	1173	
.66	62	122	122	25220	749	630	12.0	1173	
.72	62	76	76	25220	671	630	10.7	1177	
				25220	#DIV/0!	#DIV/0!	0.0	1177	
				25220	#DIV/0!	#DIV/0!	0.0	1177	

RED LOUPE / SEAFORK SUBSIDIANCE STUDY
Column Crushing Analysis

Problem Description: No. 2 Seam at 2-1.

Coal Distanc = 8220 Seam Thickness, ft. = 8

Co Dist. or Side, in. = 3

PILLAR No.	PILLAR DIMENSIONS		TRIAXIAL FREQ	OVERBURDEN STRESS PSI	PILLAR STRESS PSI	SAFETY FACTR	PILLAR S/ - PRESSURE PSI	PILLAR STRENGT PSI
	Length in.	Width in.						
65	32	52	55	25220	215	3.1	4.0	581
67	37	43	43	25120	224	3.7	4.4	674
70	35	38	45	25320	231	3.3	3.9	822
72	38	36	43	25220	232	3.7	4.6	866
75	35	32	43	25220	247	2.6	3.9	939
77	35	37	43	25220	423	3.6	4.2	821
78	35	32	43	25320	471	2.8	3.8	953
79	35	31	43	25220	743	1.3	1.8	928
79	32	75	35	25220	516	1.4	1.2	756
				25220	4017/21	4017/21	0.2	322
				25320	4017/21	4017/21	2.0	322

RE: 2008 / BENTONBURG SURFACE STATION
THERMOMETER CIRCUITS

Problem Description: 10.4 Scan at 24-2

Total D.L. 25.00 ft. = 7500' Seaw. Thickness, ft. = 12'

RED LODGE / PEACOCK SCREEN SUSSIDENCE STUDY
Column Unloading Analysis

Problem Description: No. 4 Beam at D-3

Coal G. (psi) = 2522 Beam Thickness, in. = 12

Filler or Size, in. = 2

PILLAR No.	PILLAR DIMENSIONS % ft.	TRI-PARTY AREA ft. ²	OVERBURDEN STRESS psi ²	PILLAR STRESS psi	SAFETY FACTOR	PILLAR W/ RATIO	PILLAR STRENGTH psi
63	10	35	37	18322	273	1.0	753
64	10	35	45	13302	275	1.1	844
73	10	35	45	15322	306	1.0	821
72	10	35	44	18322	322	1.7	881
92	10	35	42	18322	377	1.5	955
73	10	35	44	13322	395	1.5	955
76	10	35	41	18322	395	1.5	955
73	10	35	43	18322	3.1	6.6	221
				18322	#DIV/0!	#DIV/0!	377
				18322	#DIV/0!	#DIV/0!	377
				18322	#DIV/0!	#DIV/0!	377

RED LODGE / SEDGWICK SUBSIDENCE STUDY
Column Spacing Analysis

Problem Description: No. 3 Seam at D-3

Coal Units(?) = 3520 Beam Thickness, ft. = 5
In Dia. or Side, in. = 2

PILLAR No.	PILLAR DIMENSIONS			SUBSTRATE AREA		OVERBURDEN		PILLAR STRESS psi	PILLAR STRESS psi	PILLAR S/FS RATIO	PILLAR S/FS
	Length ft.	Width ft.	Length ft.	Width ft.	Length ft.	Width ft.	Length ft.				
123	62	155	40	72222	1857	6.5	2.5	937			
124	63	152	40	72222	975	1.8	3.2	1214			
125	67	155	52	72222	952	1.0	3.4	1853			
126	69	152	50	72222	916	1.0	3.0	1122			
127	68	155	50	72222	783	1.0	4.1	1252			
128	69	155	52	72222	214	1.0	3.3	1267			
72	62	69	52	72222	385	1.8	3.4	1053			
				72222	#DIV/0!	#DIV/0!	0.2	377			
				72222	#DIV/0!	#DIV/0!	0.2	377			
				72222	#DIV/0!	#DIV/0!	0.2	377			
				72222	#DIV/0!	#DIV/0!	0.2	377			

REC EDGE / BEGPOREK CLASSIFICATION STUDY
Column Distressing Analysis

Problem Description: No. 5 Beam at E--3

Coal St. (psi) = 2022 Seam Thickness, ft. = 8
id Dia. or Side. L. (ft.) = 1

PILLAR No.	PILLAR LENGTH ft.	PILLAR WIDTH ft.	TRAILORY AREA ft. ²	OVERTUREN STRESS psi ²	PILLAR STRESS psi	SAFETY FACTOR	PILLAR W/H RATIO	PILLAR STRENGTH psi
1	20	10	100	42320	517	1.6	3.5	597
2	25	10	100	42320	570	1.8	3.8	1244
3	27	10	100	42320	585	1.8	3.4	1053
4	33	10	100	42320	635	1.1	3.5	1129
5	33	10	100	42320	647	1.9	4.1	1250
6	33	10	100	42320	592	1.3	3.3	1257
7	36	10	100	42320	634	1.6	3.4	1053
				42320	#DIV/0!	#DIV/0!	2.2	377
				42320	#DIV/0!	#DIV/0!	3.2	377
				42320	#DIV/0!	#DIV/0!	3.2	377
				42320	#DIV/0!	#DIV/0!	2.2	377

REF. CODE / SEPARATION SUBSTANCE STUDY
Column Crushing Calculations

Problem Description: No.5 Gear at D=3

coal dia. (in.) = 8228 Seam Thickness, ft. = 5
id dia. or size, in. = 2

PILLAR NO.	PILLAR LENGTH, ft.	PILLAR WIDTH, %	TRIBUTARY AREA, sq. ft.	OVERRIDDEN STRESS, psi	PILLAR STRESS, psi	SAFETY FACTOR	PILLAR A/H RATIO	PILLAR STRENGTH, psi
1	122	53	165	46	42520	6.7	2.3	750
2	124	54	168	46	42520	5.2	3.2	811
3	127	57	173	46	42520	5.5	3.4	874
4	128	58	175	46	42520	5.6	3.5	888
5	129	59	176	46	42520	5.7	3.5	898
6	130	60	177	46	42520	5.7	3.5	908
7	137	67	184	46	42520	5.4	3.4	874
8					42520	#DIV/0!	2.2	322
9					42520	#DIV/0!	2.2	322
10					42520	#DIV/0!	2.2	322
11					42520	#DIV/0!	2.2	322

RED LODGE / BEAR CREEK SAGITTANCE STUDY
Column Crushing Analysis

Problem Description: No. 5 Seam at D4-S

Total Strata = 1500 Seam Thickness, Ft. = 6

SL Dia. on Edge, in. = 12

PILLER No.	PILLER DIMENSIONS			TRIAXIAL AREA	OVERBURDEN STRESS psi	PILLER SAFETY FACTOR	SOLAR %	PILLER STRENGTH psi
	Length in.	Width in.	Length ft.	Width ft.	CSF	SFSI		
128	23	105	43	42500	577	1.2	2.5	550
129	24	103	43	42500	572	1.1	2.2	523
130	25	99	43	42500	568	1.2	2.4	568
131	26	95	43	42500	563	1.3	2.0	572
132	27	91	43	42500	558	1.4	1.7	542
133	28	87	43	42500	553	1.1	2.4	568
134	29	83	43	42500	547	1.7	2.1	523
135	30	79	43	42500	542	1.1	2.4	568
136	31	75	43	42500	536	1.1	2.4	568
137	32	71	43	42500	531	1.1	2.4	568
138	33	67	43	42500	524	1.1	2.4	568
139	34	63	43	42500	#DIV/0!	#DIV/0!	0.8	523
140	35	59	43	42500	#DIV/0!	#DIV/0!	0.3	223
141	36	55	43	42500	#DIV/0!	#DIV/0!	0.2	223
142	37	51	43	42500	#DIV/0!	#DIV/0!	0.2	223

RED LODGE / SOUTHWEST SUBSIDENCE STUDY
Rock Collapse Analysis

Problem Description: No. 3 Gear at Dr-3
Room Size, ft. = 35

Layer No.	Unit Weight lb/ft ³	Layer Thickness in.	Individual		Composite		
			Tensile Strength psi	Deflection ft.	Tensile Failure psi	Deflection ft.	
1	64	213	25-20	2	0.00E+00	3.2	451/2
2	63	181	45-24	.75	4.00E+00	53.6	33.8
3	60	111	45-24	.75	3.00E+00	1.7	112.1
4					=0.0V/2	=0.0V/2	=0.0V/2

T 7 S

T 7 S

T 8 S

T 8 S

STATE OF MONTANA DEPARTMENT OF STATE LANDS HELENA, MONTANA BEARCREEK/RED LODGE SUBSIDENCE STUDY	
CUMULATIVE THICKNESS OF MINED SEAMS	
Drawn LNR	Checked JMP
Date 10/29/87	
Northern	Engineering Consulting Inc.
DRAWING NO. 97-30010-4	

T
7
S

35

36

31

32

T
8
S

2

T
8
S

6

ENTRY TUNNEL
DH-5
DH-6

DH-7, 7A, 7B

BEARCREEK HIGHWAY
DH-8
DH-9

APPROXIMATE LIMIT OF MINING

Typical Thickness
In Bearcreek Area
8-1/2 feetT
9
S

11

12

T
9
S

FAULT LINE

APPROXIMATE LIMIT OF MINING

7

FAULT LINE

DEPTH OF COVER TO MINED THICKNESS RATIOS	
10:1 or less	HIGH SUBSIDENCE POTENTIAL
10:1 - 20:1	MODERATE SUBSIDENCE POTENTIAL
Greater than 20:1	LOW SUBSIDENCE POTENTIAL
Diagonal lines	INSUFFICIENT DATA

R 19 E

R 20 E

R 21 E

BEARCREEK SUBSIDENCE POTENTIAL MAP
SCALE 0 500 1000 2000 FEETDrawn: LNR
Checked: JMP
Date: 10/29/87

STATE OF MONTANA
DEPARTMENT OF STATE LANDS
HELENA, MONTANA
BEARCREEK/RED LODGE
SUBSIDENCE STUDY
CROSS SECTIONS OF MINE LIMITS

Northern
Engineering
and Testing, Inc.

Drawn: LNR
Checked: JMP
Scale: 1" = 500'
Date: 10/29/87

DRAWING NO.
87-3001.D-7

