# **Automatic Image Segmentation to Preprocess Pediatric Stool Photos**

Brian A Cohn<sup>1</sup>, Austin Lamb<sup>1</sup>, Pavle Medvidovic<sup>1</sup>, Jamie Chen<sup>1</sup>, Melissa K Trieu<sup>1</sup>, Nikki Jamshidbaigi<sup>1</sup>, Jaya Punati<sup>2</sup>, Hillel Naon<sup>2</sup>, Tanaz F Danialifar<sup>2</sup>, Raza A Patel<sup>3</sup>, and Susan M Dallabrida<sup>4</sup>

- 1. ObvioHealth USA, Inc
- 2. Children's Hospital of Los Angeles, Division of Gastroenterology, Hepatology, and Nutrition
- 3. Intermountain Healthcare & Primary Children's Hospital, Department of Pediatrics
- 4. SPRIM Inc

## **Objectives**

Collecting unstructured data in the form of image capture from patients in a clinical trial can be a useful mechanism to improve the quality of patient reported data. However, there are practical challenges that can be associated with the collection of patient images such as resolution/quality, sizing and potential PHI acquisition. In an effort to develop mechanisms for ingesting and cleaning such data quickly and effectively, we developed image segmentation algorithms on caregiver-provided pediatric stool photos—extracting only the pixels of stool from a photo and thereby omitting PHI, body parts, and the background.

#### **Methods**

We collected 720 images of diaper stool from freely accessible online sources, and an additional 212 infant and toddler stool photos from an internal study with parents (n=9). After manually segmenting all 932 photos, we created training and test sets of ~80/20% respectively.

### **Results**

Figure 1. Sample input image (a) from the labeled test set, with with manually-annotated trush mask in (d). The algorithm predicts ((c). We illustrate the close overlap in (b).









|   | Model                                        | Train/Test; data source      | Training Epoch | Mean IoU |
|---|----------------------------------------------|------------------------------|----------------|----------|
| Α | Baseline SegNet from Cornell Paper           | 80-20; online:sprim          | 110            | 47%      |
| С | Baseline SegNet from Cornell Paper           | 80-20 mixed online and sprim | 167/9          | 33%      |
| D | Model with Gaussian Blur and No Weight Decay | 80-20 online:sprim           | 100            | 71.20%   |
| E | Model with Gaussian Blur and No Weight Decay | 80-20 mixed online and sprim | 199            | 82.60%   |

**Table 1.** Stool segmentation performance across varying training-set, test-set combinations and varying preprocessing tecniques.

For our use case with pediatric stool, we replicated the model architecture from a literature paper performed on adult stool in a toilet (Hachuel et al. 2019), and then performed a variety of hyperparameter experiments, recording the Mean Intersection over Union score for each model (IoU). Image augmentation resulted in 9050 total images (with 1810 reserved for a test set). When training the model architecture on the non data augmented dataset, we achieved an IoU score of 47%. When trained on the data augmented dataset, we achieved a Mean IoU score of 33%. This is significantly lower than the adult stool application in Hachuel et al. To create a new, improved model more suited for the pediatric use case, we modified the network with Gaussian blurring as a pre-processing step and eliminated weight decay. With our new model, we achieved a mean IoU score of 71.2% on the non data augmented dataset, and with the augmented dataset we achieved a mean IoU of 82.6%. Therefore, our new model performs as well as the state of the art in Hachuel et al. on the new use case of pediatric stool on a diaper background.

#### **Conclusions**

Parents are asked to recall characteristics of stool consistency, record a diary, or take photos of stool in diaper assist their pediatric the gastroenterologist in making an accurate diagnosis of their child. We provide evidence that image segmentation is a viable method for segmenting stool from the pictures collected by caregivers. This ultimately creates an important preprocessing step before providing photos to central raters of a clinical study, or in organizing a monthly stool report for a clinician. Furthermore, this work provides a foundation for training new algorithms for analyzing stool consistency or color in a context without bias from the diaper or background.

#### References

Aman, Berthold Albert, et al. "Real Time Versus Photographic Assessment of Stool Consistency Using the Brussels Infant and Toddler Stool Scale: Are They Telling Us the Same?." Pediatric Gastroenterology, Hepatology & Nutrition 24.1 (2021): 38.

Bakshi, B., et al. "How reliably can paediatric professionals identify pale stool from cholestatic newborns?." Archives of Disease in Childhood-Fetal and Neonatal Edition 97.5 (2012): F385-F387.

Bliss, Donna Zimmaro, et al. "Reliability of a stool consistency classification system." Journal of WOCN 28.6 (2001): 305-313.

Chumpitazi, Bruno P., et al. "Bristol Stool Form Scale reliability and agreement decreases when determining Rome III stool form designations." Neurogastroenterology & Motility 28.3 (2016): 443-448.

Chumpitazi, Bruno P., et al. "Creation and initial evaluation of a Stool Form Scale for children." The Journal of pediatrics 157.4 (2010): 594-597.

Franciscovich, Amy, et al. "PoopMD, a mobile health application, accurately identifies infant acholic stools." PLoS One 10.7 (2015): e0132270.

Gulati, Reema, et al. "Usefulness of assessment of stool form by the modified bristol stool form scale in primary care pediatrics." Pediatric gastroenterology, hepatology & nutrition 21.2 (2018): 93.

Lane, Mariella M., et al. "Reliability and validity of a modified Bristol Stool Form Scale for children." The Journa of pediatrics 159.3 (2011): 437-441.

Saps, M., et al. "Assessment of commonly used pediatric stool scales: a pilot study." Revista de gastroenterologia de Mexico 78.3 (2013): 151-158.

Vandenplas, Yvan, et al. "Development of the Brussels Infant and Toddler Stool Scale ('BITSS'): protocol of the study." BMJ open 7.3 (2017): e014620.



