Décisions et Jeux Expressions des préférences

Pierre-Henri WUILLEMIN

LIP6 pierre-henri.wuillemin@lip6.fr

moodle https://moodle-sciences-22.sorbonne-universite.fr/course/view.php?id=4521

 ${\tt mattermost \ https://channel.lip6.fr/etudmasterandro/channels/coursdj23fev}$

Rappel

But du cours : formalisation de la prise de décision (humaine)

Entre alternatives : [C1]

• [C2-3] Dans un contexte d'incertitude vis-à-vis des conséquences de la décision :

- [C4-7] multi-décideurs, multicritères multiobjectifs:
- [C8-10] dans un contexte d'incertitude vis-à-vis de décisions d'autres agents :

Rappel

Modèles mathématiques pour la Décision Relations binaires et Préférences

Rappel: Relation binaire

Relation binaire

Une relation binaire \odot sur un ensemble $\mathcal Y$ est représenté par une partition $(\mathcal{R}, \mathcal{R}')$ de $\mathcal{Y} \times \mathcal{Y}$. Et l'on note :

Relations et préférences

$$\forall x, y \in \mathcal{Y}, x \odot y \iff (x, y) \in \mathcal{R}$$

- $non(x \odot y)$ ne signifie pas $y \odot x$.
- La donnée de \mathcal{R} suffit pour connaître parfaitement la relation \odot .

Expression des préférences

Le Décideur exprime ses choix par une relation ⊙ telle que :

- y est l'ensemble de ses choix possibles.
- Pour chaque couple $(x,y) \in \mathcal{Y} \times \mathcal{Y}$, la relation exprime une de ces affirmations:
 - \bigcirc $x \bigcirc y$ et non $(y \bigcirc x)$ "Je préfère strictement x à y."
 - 2 $\operatorname{non}(x \odot y)$ et $y \odot x$ "Je préfère strictement y à x."
 - \bigcirc $x \bigcirc y$ et $y \bigcirc x$ "Je suis indiférrent au choix entre x et y"
 - \bigcirc non($x \odot y$) et non($y \odot x$) "Je ne peux rien affirmer sur ma préférence entre x et y".

On note alors habituellement \odot par \succ .

Rappel

Propriétés de $x \odot y$

Rappel

Soit une relation \odot sur \mathcal{Y} .

- · réflexive $\iff \forall y \in \mathcal{Y}, y \odot y.$
- ⊙ irréflexive $\iff \forall v \in \mathcal{Y}, \mathsf{non}(v \odot v).$
- ⊙ symétrique $\iff \forall x, y \in \mathcal{Y}, x \odot y \Rightarrow y \odot x.$
- ⊙ asymétrique $\iff \forall x, y \in \mathcal{Y}, x \odot y \Rightarrow \text{non}(y \odot x).$
- ⊙ antisymétrique $\iff \forall x, y \in \mathcal{Y}, x \odot y \text{ et } y \odot x \Rightarrow x = y.$
- ⊙ transitive $\iff \forall x, y, z \in \mathcal{Y}, x \odot y \text{ et } y \odot z \Rightarrow x \odot z.$
- ⊙ complète $\iff \forall x, y \in \mathcal{Y}, x \odot y \text{ ou } y \odot x.$

Préordre large

 est un préordre large si et seulement si elle est réflexive et transitive.

Ordre strict

est un ordre strict
 si et seulement si elle est irréflexive et transitive.

un ordre strict est nécessairement asymétrique.

équivalence

est une équivalence
 si et seulement si elle est réflexive, symétrique et transitive.

Une équivalence est donc un préordre large symétrique.

Relations et préférences

Soit $\mathcal S$ un sous-ensemble de $\mathcal Y \times \mathcal Y$ représentant une relation notée \succ . Soit $\mathcal I$ un sous-ensemble de $\mathcal Y \times \mathcal Y$ représentant une relation notée \sim .

Union de relation

La relation union de \succ et \sim , notée \succeq , est définie par $\mathcal{R} = \mathcal{S} \cup \mathcal{I}$.

$$\forall x, y \in \mathcal{Y}, x \succeq y \iff (x, y) \in \mathcal{R}$$
$$\iff (x, y) \in \mathcal{S} \cup \mathcal{I}$$
$$\iff x \succ y \text{ ou } x \sim y$$

- Par extension, on peut noter \succeq comme $\succ \cup \sim$.
- ullet \leftarrow et \sim sont dits disjoints $\iff \mathcal{S}$ et \mathcal{I} sont disjoints dans \mathcal{Y} .

Préordre large total

Une relation \odot est totale lorsque, pour tout couple (x,y) de $\mathcal{Y} \times \mathcal{Y}$, on a $x \odot y$ ou $y \odot x$.

- Une relation non totale est appelée partielle.
- Que les préférences du Décideur soient représentées par une relation totale indique que ce Décideur est capable de comparer tout élément et d'indiquer sa préférence sur toute alternative possible dans \mathcal{Y} .

Antisymétrie et ordre large

antisymétrie

Une relation \odot est antisymétrique si et seulement si $\forall x, y \in \mathcal{Y}, x \odot y$ et $y \odot x \Rightarrow x = y$.

- Ne pas confondre antisymétrie et asymétrie.
- Noter l'utilisation d'une relation particulière : "=".

Ordre large

Un préordre large antisymétrique est appelé un ordre large.

La partie symétrique d'un ordre large est donc l'égalité.

Rationalité des préférences

Soient deux relations \succ et \sim sur \mathcal{Y} .

Préférences rationnelles

Les relations \succ et \sim expriment des **préférences rationnelles** sur ${\mathcal Y}$ si :

- ② ≻ est asymétrique.
- Leur union

 est transitive.
 - $x \succ y$ est alors lue comme "x est strictement préféré à y".
 - $x \sim y$ est lue comme "x est indifférent à y".

On peut restreindre la transitivité uniquement sur \succ , ce qui permet de traiter des indifférences non transitives : $x \sim y$ et $y \sim z$ et non $(x \sim z)$.

Rappel

 $Si \succ et \sim expriment des préférences rationnelles sur <math>\mathcal{Y}$ Alors

- > est un ordre strict.
- ~ est une **équivalence**.
- > est un **préordre large**.

[réciproque] Soit \succeq un préordre large sur \mathcal{Y} . Alors, avec \succ et \sim définies par:

Relations et préférences

0000000000

- $x \succ y \iff x \succeq y$ et $non(y \succeq x)$ (partie asymétrique de \succ)
- $x \sim y \iff x \succeq y \text{ et } y \succeq x \text{ (partie symétrique de } \succ \text{)}$
- ≥ est l'union de > et ~. Ces trois relations vérifient l'hypothèse de rationalité.

Ensemble des admissibles

Ce qui suit s'applique à tout préordre large mais est trivial lorsque le préordre est total.

Objectif : fournir les définitions et les concepts permettant d'éliminer du champs de l'étude des éléments certainement non préférés.

Admissibles

Soit \succeq un préordre large sur \mathcal{Y} . On appelle **ensemble des admissibles** un ensemble $\mathcal{A} \subset \mathcal{Y}$ définie par :

$$\forall a \in \mathcal{A}, \nexists y \in \mathcal{Y}, y \succ a$$

- A peut être vide.
- L'ensemble des admissibles est appelé aussi ensemble des optima de Pareto ou encore ensemble des efficaces.

Ensemble des admissibles (2)

On peut remarquer que :

$$\forall x, y \in \mathcal{A}, \mathsf{non}(x \succ y) \text{ et } \mathsf{non}(y \succ x)$$

c'est à dire, $\forall x, y \in \mathcal{A}, x$ et y sont indifférents ou incomparables.

Mais si \succ est total, comme $x \succ y$ ou $y \succ x$, on a $x \sim y$.

D'où une nouvelle caractérisation de A:

Si
$$\succeq$$
 est total,
si $(\exists a \in \mathcal{Y}, \forall x \in \mathcal{Y}, a \succeq x)$ alors $(y \in \mathcal{A} \iff y \sim a)$

Rappel

Parfois, il n'y a pas d'admissible. Il nous faut donc une notion moins forte que l'admissibilité pour proposer des alternatives quand même.

Ensemble complet

Soit \succeq un préordre large sur \mathcal{Y} . Soit $\mathcal{E} \subset \mathcal{Y}$.

- \mathcal{E} essentiellement complet $\iff \forall y \notin \mathcal{E}, \exists e \in \mathcal{E}, e \succeq y$
- \mathcal{E} complet $\iff \forall y \notin \mathcal{E}, \exists e \in \mathcal{E}, e \succ y$

Remarques

- Un ensemble complet est essentiellement complet.
- ullet ${\cal Y}$ est un ensemble complet.
- Un ensemble complet minimal $\mathcal E$ est tel que le Décideur ne se sente pas léser de devoir choisir dans $\mathcal E$ plutôt que dans $\mathcal Y$; alors que le choix dans tout sous-ensemble strict de $\mathcal E$ serait ressenti comme contraignant.

Admissible vs. ensemble complet

- Tout ensemble complet contient l'ensemble des admissibles.
- Si l'ensemble des admissibles est complet alors il est complet minimal.
- Un ensemble complet minimal ne peut contenir c et c' tels que $c \succ c'$.
- Le seul ensemble complet minimal possible est l'ensemble des admissibles.
- Si \mathcal{Y} est fini, l'ensemble des admissibles \mathcal{A} est complet (et donc complet minimal).

Préordres produits

Dans le cadre de problèmes de décision collectives ou multicritères, il est nécessaire de pouvoir étendre des préférences pour chaque individu/critère par une préférence sur l'ensemble produit.

Soient, $\forall i \in \{1, ..., n\}, \succeq_i$ préordre large total sur \mathcal{Y}_i . $\mathcal{Y} = \mathcal{Y}_1 \times ... \times \mathcal{Y}_n$ peut être alors muni d'une relation binaire \succeq vérifiant :

$$(y_1,\ldots,y_n)\succeq (x_1,\ldots,x_n)\iff \forall i,y_i\succeq_i x_i$$

Remarque : On peut de même définir un produit d'ordre stricts :

$$(y_1,\ldots,y_n)\gg(x_1,\ldots,x_n)\iff \forall i,y_i\succ_i x_i$$

Attention : \succ et \gg sont différentes.

Propriétés des préordres produits

Soit $\mathcal{Y} = \mathcal{Y}_1 \times \ldots \times \mathcal{Y}_n$ muni de \succeq , produit des \succeq_i .

L'ensemble des admissibles \mathcal{A} de (\mathcal{Y},\succeq) est caractérisé par :

$$a = (a_1, \ldots, a_n) \in \mathcal{A} \iff \nexists y \in \mathcal{Y}, \begin{cases} \forall i, & y_i \succeq_i a_i \\ \exists k, & y_k \succ_k a_k \end{cases}$$

L'ensemble des faiblement admissibles \mathcal{A}_f de (\mathcal{Y},\succeq) est caractérisé par :

$$a = (a_1, \ldots, a_n) \in \mathcal{A}_f \iff \nexists y \in \mathcal{Y}, y \gg a$$

Autres représentations des préférences Fonction de choix

Rappel

Fonctions de choix

Une relation de préférence n'est pas directement observable. Ce que l'on peut observer, ce sont les *choix* opérés par le décideur dans telle ou telle situation. La relation de préférence n'est donc qu'une construction hypothétique cherchant à expliquer au mieux les choix observés. C'est P. Samuelson qui a été à l'origine de cette vision des choses avec sa *théorie des préférences révélées* élaborée dans le cadre de l'étude du comportement du Consommateur en Économie.

Soit $\mathcal{P}(\mathcal{Y})$ l'ensemble des parties de l'ensemble des choix \mathcal{Y} et $\mathcal{P}^*(\mathcal{Y}) = \mathcal{P}(\mathcal{Y}) \setminus \{\emptyset\}$ l'ensemble de ses parties non-vides.

fonction de choix

Une fonction de choix est une application $\mathit{Ch}(.):\mathcal{P}^*(\mathcal{Y})\to\mathcal{P}^*(\mathcal{Y})$ telle que

$$\forall A \in \mathcal{P}^*(\mathcal{Y}), \ \mathit{Ch}(A) \subseteq A.$$

Fonctions de choix et préférences : le cas fini

Lorsque $\mathcal Y$ est fini, on peut donner des hypothèses très simples sous lesquelles il existe une relation de préférence, qui est un préordre total, telle que, pour tout $\mathcal A$, l'ensemble $\mathit{Ch}(\mathcal A)$ choisi dans $\mathcal A$ n'est autre que l'ensemble des admissibles de $\mathcal A$ pour cette relation.

'Comportement' de Ch(): propriétés (α) et (β) de Sen

$$(\alpha) \begin{array}{l} x \in \mathcal{B} \subseteq \mathcal{A} \\ x \in \mathit{Ch}(\mathcal{A}) \end{array} \} \Rightarrow x \in \mathit{Ch}(\mathcal{B})$$

$$(\beta) \begin{array}{l} x, y \in \mathit{Ch}(\mathcal{B}) \\ \mathcal{B} \subseteq \mathcal{A} \\ y \in \mathit{Ch}(\mathcal{A}) \end{array} \} \Rightarrow x \in \mathit{Ch}(\mathcal{A})$$

Avec ces propriétés, avec ${\mathcal Y}$ fini :

- Si \succeq est un préordre total sur \mathcal{Y} , alors la fonction Adm qui associe à \mathcal{E} l'ensemble des admissibles de \mathcal{E} est une fonction de choix qui satisfait (α) et (β) .
- ② Réciproquement, une fonction de choix vérifiant (α) et (β) est la fonction Adm d'un préordre total \succeq

Fonction d'utilité

Rappel 00

Fonctions d'utilité

Utilité

Rappel

Soit \succeq un préordre large sur \mathcal{Y} , $U: \mathcal{Y} \to \mathbb{R}$ est une fonction d'utilité représentant \succeq lorsque :

$$x \succeq y \iff U(x) \ge U(y)$$

Soit $U: \mathcal{Y} \to \mathbb{R}$ une fonction d'utilité représentant (\mathcal{Y},\succeq) alors $V: \mathcal{Y} \to \mathbb{R}$ est également une telle fonction d'utilité, si et seulement si $\exists \varphi: \mathbb{R} \to \mathbb{R}$, fonction strictement croissante telle que $V = \varphi \circ U$.

Tout préordre large total n'est pas représentable par une fonction d'utilité!

Existence de fonctions d'utilité

Séparabilité

Avec \succeq préordre total, (\mathcal{Y},\succeq) est dit parfaitement séparable s'il existe $\mathcal{A} \subset \mathcal{Y}$. \mathcal{A} fini ou dénombrable tel que

$$\forall x, y \in \mathcal{Y}, x \succ y \Rightarrow \exists a \in \mathcal{A}, x \succeq a \succeq y$$

CNS d'existence d'une fonction d'utilité

Une condition nécessaire et suffisante pour que \succeq préordre total sur $\mathcal Y$ soit représentable par une fonction d'utilité est que (\mathcal{Y}, \succeq) soit parfaitement séparable.

Classes de propriétés

Soit \succeq un préordre large total sur $\mathcal Y$ représenté par une fonction d'utilité $U:\mathcal Y\to\mathbb R$.

Il existe alors une famille $\mathcal{U}=\{\varphi\circ U, \varphi \text{ strictement croissante}\}$ de fonctions d'utilités représentant \succeq sur $\mathcal{Y}.$

On distingue $\mathcal{U}_L = \{ \varphi_L \circ U, \varphi_L \text{ strictement croissante linéaire} \} \in \mathcal{U}$. Plus précisément, φ_L est de forme $\varphi_L(x) = a \cdot x + b$ avec a > 0.

ordinalité

Une propriété sur U est dite **ordinale** si elle est vérifiée pour tout élément de U.

cardinalité

Une propriété sur U est dite **cardinale** si elle n'est vérifiée que pour tout élément de \mathcal{U}_L .

Une propriété ordinale : les courbes d'indifférence

Soit U(.) une fonction d'utilité représentant le préordre large total \succeq .

$$x \sim y \iff U(x) = U(y)$$

Courbe d'indifférence

On appelle courbes d'indifférence ou niveaux d'utilité les familles d'éléments de \mathcal{Y} vérifiant U(x) =cte.

On note bien que ces courbes sont les mêmes quelque soit l'utilité $V=\Phi\circ U$ choisie.

Ordre lexicographique \geq_L dans \mathbb{R}^n

Dans \mathbb{R}^n , \geq_L est définie par $\forall x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)$:

$$x \ge_L y \Leftrightarrow \exists i \in \{1, \dots, n\}, \begin{cases} \forall j \in \{1, \dots, i-1\}, x_j = y_j \\ \text{et} \\ x_i \ge y_i \end{cases}$$

- $\bullet \geq_L$ est un ordre (large) total.
- La relation $>_L$ définie par $x>_L y \Leftrightarrow [x\geq_L y \text{ et } x\neq y]$ est un ordre strict total.

Théorème

 \geq_L n'est pas représentable par une fonction d'utilité.

Dans \mathbb{R}^2 , \geq_L est définie par $\forall x = (x_1, x_2), y = (y_1, y_2)$:

$$x \ge_L y \Leftrightarrow \operatorname{ou} \left\{ \begin{array}{l} x_1 > y_1 \\ x_1 = y_1 \text{ et } x_2 \ge y_2 \end{array} \right.$$

Démonstration Supposons qu'il existe une fonction d'utilité u.

 $lack orall r \in \mathbb{R}$, on peut alors associer l'intervalle $[u(r,\mathbf{0}),u(r,\mathbf{1})]$ de \mathbb{R} qui est non-dégénéré, puisque $(r,\mathbf{1})>_L(r,\mathbf{0})\Rightarrow u(r,\mathbf{1})>u(r,\mathbf{0})$;

• Ces intervalles sont deux à deux disjoints, puisque $r' > r \Rightarrow u(r', 0) > u(r, 1)$;

● Par l'axiome du choix, on peut sélectionner dans chacun de ces intervalles un rationnel q_r ∈ ℚ; nécessairement : r ≠ r' ⇒ q_r ≠ q_rr.

lack On obtient ainsi une injection $r\mapsto q_r$ de $\mathbb R$ dans $\mathbb Q$, ce qui est impossible puisque $\mathbb Q$ est dénombrable alors que $\mathbb R$ ne l'est pas (cf. la diagonale de Cantor)

On a montré par l'absurde que u ne peut exister

