

University of Washington AMATH 301B Winter 2015

Instructor: Dr. King-Fai Li

Quiz 1 Due: Friday Jan 23, 2015

Student's Name: Student's ID#:	
Student's NetID:	
 Box your final answers Show your steps for page 1 	artial credits
Problem 1 . Let A be a 40×60 a matrix and v be a 40×1 vector. In Matlab, write the code to	that does the following:
(a) Access the next-to-last column of A . A(:,end-1) or A(:,59)	(4 points)
(b) Returns a new 60×1 vector containing the matrix multiplication product of A and	v. (4 points)
A'*v	
Problem 2 . Write down the values of the indicated variables after the execution of the fol	lowing programs:
<pre>count=0; for j=1:2:10 count=count+1;</pre>	
count= 3	(4 points)
Problem 3. Let A be a 4×4 matrix. Consider the Matlab statement [G1,G2,G3] = lu	(A).
(a) If v is a 4×1 vector, then which (Gaussian Elimination, forward substitution, or back carried out for the statement G1\v?	substitution) will be (4 points)
Forward substitution	
(b) What will the following Matlab statement return?	(4 points)
diag(G1) = [1 1 1 1]' or ones(4,1) $also accept [1 1 1 1] and ones(1,4) without transpose$	
Problem 4. Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 7 \\ 2 \\ 5 \end{bmatrix}$. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the solution is to be obtained using iterative methods. In Matlab, define $\mathbf{B1} = \mathbf{diag}$ (\mathbf{diag} ($\mathbf{A}\mathbf{x} = \mathbf{b}$)	
B3=triu(A). Furthermore, [V1,D1]=eig((B1+B2)\B3) and [V2,D2]=eig(D1=diag([0,-2,-2]) and D2=diag([0,0,0]).	
(a) Is A strictly diagonally dominant? Why? No. (2pts)	(4 points)
Because $ a_{11} < a_{12} + a_{13} $ or any other rows (2 pts)	
(b) Will the Jacobi's method converge? Why?	(4 points)
Yes. (2pt Because eigenvalues D2 are zeros, i.e. absolute values less than one (2 pt	