Solution of question 9.3.8

Gagan Singla - EE22BTECH11021

Question: Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

- (a) all the five cards are spades?
- (b) only 3 cards are spades?
- (c) none is a spade?

Solution: Let us define:

Parameter	Value	Description
n	5	number of cards drawn
p	$\frac{1}{4}$	drawing a spade card
q	$\frac{3}{4}$	drawing any other card
$\mu = np$	<u>5</u> 4	mean of the distribution
$\sigma^2 = npq$	15 16	variance of the distribution
Y	{0,1,2,3,4,5}	Number of spade cards drawn

(i) Gaussian Distribution

The gaussian distribution function is defined as:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad (x \in Y) \quad (1)$$

(a) If we consider all cards to be spades,

$$Y = 5 \tag{2}$$

Substituting values in (1),

$$p_Y(5) = \frac{1}{\sqrt{2\pi \left(\frac{15}{16}\right)}} e^{-\frac{\left(5 - \frac{5}{4}\right)^2}{2\left(\frac{15}{16}\right)}}$$
(3)

$$= \frac{1}{\sqrt{2\pi\left(\frac{15}{16}\right)}}e^{-\frac{15}{2}} \tag{4}$$

 $= 0.0001245 \tag{5}$

(b) If we consider 3 cards to be spades,

$$Y = 3 \tag{6}$$

Substituting values in (1),

$$p_Y(3) = \frac{1}{\sqrt{2\pi\left(\frac{15}{16}\right)}} e^{-\frac{\left(3-\frac{5}{4}\right)^2}{2\left(\frac{15}{16}\right)}} \tag{7}$$

$$=\frac{1}{\sqrt{2\pi\left(\frac{15}{16}\right)}}e^{-\frac{49}{30}}\tag{8}$$

$$= 0.044$$
 (9)

(c) If we consider 0 cards to be spades,

$$Y = 0 \tag{10}$$

Substituting values in (1),

$$p_Y(0) = \frac{1}{\sqrt{2\pi\left(\frac{15}{16}\right)}} e^{-\frac{\left(0-\frac{5}{4}\right)^2}{2\left(\frac{15}{16}\right)}}$$
(11)

$$= \frac{1}{\sqrt{2\pi\left(\frac{15}{16}\right)}} e^{-\frac{5}{6}} \tag{12}$$

$$= 0.0978$$
 (13)

(ii) Gaussian vs Binomial Comparison

Y	Gaussian	Binomial
0	0.0978	0.2373
3	0.044	0.08789
5	0.0001245	0.00098

(iii) Binomial vs Gaussian Graph

(iv) Solving using Q function Q function is defined

$$Q(x) = \int_{x}^{\infty} f(x) dx$$
 (14)

then CDF of Y is:

$$\Pr(Y < x) = \int_{-\infty}^{x} f(x) dx \qquad (15)$$
$$= 1 - \int_{x}^{\infty} f(x) dx \qquad (16)$$

$$=1-Q(x) \tag{17}$$

and for finding $Pr\left(Z = \frac{X - \mu}{\sigma}\right)$ Using approximation.

$$\Pr\left(Z = \frac{Y - \mu}{\sigma}\right) \approx \Pr\left(\frac{Y + 0.5 - \mu}{\sigma} < Z < \frac{Y - 0.5 - \mu}{\sigma}\right)$$

$$\approx \Pr\left(Z < \frac{Y + 0.5 - \mu}{\sigma}\right) - \Pr\left(Z < \frac{Y - 0.5 - \mu}{\sigma}\right)$$

$$\approx Q\left(\frac{Y - 0.5 - \mu}{\sigma}\right) - Q\left(\frac{Y + 0.5 - \mu}{\sigma}\right)$$
(19)

$$Y = 5$$
 (21)
 $Pr(Z = 3.872) \approx Q(3.356) - Q(4.389)$ (22)
 ≈ 0.0003888 (23)

$$Y = 3$$
 (24)
 $Pr(Z = 1.8073) \approx Q(1.2909) - Q(2.3237)$ (25)
 ≈ 0.08828 (26)

$$Y = 0$$
 (27)
 $Pr(Z = -1.2909) \approx Q(-1.8073) - Q(-0.7745)$ (28)
 ≈ 0.1839 (29)