Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -2200.000 -2300.000 -2400.000 Radiell fart m/s -2500.000 -2600.000 -2700.000 -2800.000 -2900.000 500 2000 ò 1000 1500 2500 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 1.40e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE B) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE C) stjerna fusjonerer hydrogen til helium i et skall rundt kjer-

nen

STJERNE D) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

STJERNE E) det finnes noe jern i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.420e+06 kg/m3̂ og temperatur 35 millioner K.

Kjernen i stjerne B har massetet
thet 6.417e+06 kg/m3̂ og temperatur 34 millioner K.

Kjernen i stjerne C har massetet
thet 3.218e+06 kg/m3 og temperatur 21 millioner K.

Kjernen i stjerne D har massetet
thet 7.745e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne E har massetet
thet 2.143e+06 kg/m3̂ og temperatur 16 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: denne stjerna er lengst vekk

Påstand 3: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 13.98

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

Figur C tilsynelatende størrelseklasse 20.28

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.976e+05 kg/m3̂ og temperatur 19.64 millioner K.

Kjernen i stjerne B har massetet
thet $3.784\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 17.71 millioner K.

Kjernen i stjerne C har massetet
thet $1.638\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 29.40

millioner K.

Kjernen i stjerne D har massetet
thet 2.700e+05 kg/m3̂ og temperatur 23.82 millioner K.

Kjernen i stjerne E har massetet
thet 3.740e+05 kg/m3̂ og temperatur 21.71 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_Figur_4$..png

Observasjon er gjort 117.16 dager etter første observasjon.

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.76 buesekunder i løpet av et millisekund.

42.30

37.60

28.20

28.20

14.10

9.40

4.70

0.00

4.70

9.40

14.10

18.80

23.50

28.20

37.60

42.30

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.87180 km/t.

Filen 3E.txt

Tog1 veier 86400.00000 kg og tog2 veier 119600.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 502 km/s.

Filen 4E.txt

Massen til gassklumpene er 10800000.00 kg.

Hastigheten til G1 i x-retning er 57600.00 km/s.

Hastigheten til G2 i x-retning er 65400.00 km/s.

Filen 4G.txt

Massen til stjerna er 49.25 solmasser og radien er 4.20 solradier.