Street-Fighting Mathematics

✓ Most material is from Sanjoy Mahajan's edX course 6.SFMx and book Street-Fighting Mathematics

Estimating Quantities

- ✓ Break it down into parts you can estimate
- ✓ Don't be afraid to lump errors will cancel out
- ✓ Make sure the dimensions work out

Multiplying large numbers [5.1]

- \checkmark Convert numbers to scientific notation $k \cdot 10^n$
- \checkmark Lump k into 1 (0 to 1.8), few (1.8 to 5.6), 10 (5.6 to 10)
- $\sqrt{few^2} = 10$
- \checkmark Add powers of multiplicands $n_1, n_2, ...$

Fractional changes [5.2]

$$(m + \Delta m\%)(n + \Delta n\%) \approx m \cdot n + (\Delta m + \Delta n)\%$$

- \checkmark Ex: 4% increase in sides of rectangle \rightarrow 8% increase in area
- \checkmark Ex: inflation by 10% + discount of 15% \rightarrow 5% decrease
- ✓ Ex: division, n = -1. $1/13 \approx 1/10 30\% = 0.07$
- ✓ Ex: square roots, n = 1/2, $\sqrt{10} \approx \sqrt{9} + (1/2)(1/9) \approx 3.17$

Improving fractional estimations

- ✓ Increase the accuracy of the big part, e.g. by multiplying both numerator and denominator by a convenient number.
- \checkmark Ex: $1/13 \cdot 8/8 = 8/104 \approx 8/100 4\% = 0.0768$
- ✓ In the case of division, results in a quadratic improvement: $\frac{\Delta x^{-1}}{x^{-1}} \approx -1 \cdot \frac{\Delta x}{x} + (-1)^2 \cdot \frac{\Delta x}{x}^2$ $\checkmark \text{ Ex: } \sqrt{10} = \sqrt{360/6} \approx \sqrt{361/6} = 19/6 \approx 3.167$
- ✓ Polva's method:
 - $\sqrt{2} = \sqrt{4/3}/\sqrt{2/3} \approx (1 + (1/6))/(1 (1/6)) = 7/5 \approx 1.4$
- ✓ Another ex: $\ln 2 = \ln \frac{4}{3} \ln \frac{2}{3} \approx \frac{1}{3} (-\frac{1}{3}) = \frac{2}{3}$

Useful approximations

- $\sqrt{(1+z)^n} \approx 1 + nz, z \ll 1 \text{ and } nz \ll 1$
- $\sqrt{(1+z)^n} \approx e^{nz}, z \ll 1 \text{ and } nz \text{ unrestricted}$
- $\sqrt{\ln(1+z)} \approx z$, small z
- $\sqrt{\ln(2)} \approx 0.7$
- $\sqrt{\ln(10)} \approx 2.3$
- ✓ Ex: 5% bacteria mutated per round, how many unmutated after 140 rounds?
 - $0.95^{140} = (1 1/20)^{140} \approx e^{-140/20} \approx e^{-6.9} \approx 10^{-3} = 0.001$

- $\checkmark \sin \theta \approx \theta$ at small angles
- $\checkmark \cos \theta \approx 1 \frac{\theta^2}{2}$ at small angles
- ✓ Rule of 72: if a quantity increases x% per time unit (e.g. year), it doubles in 72/x time units (years).

Estimating from bounds

- \checkmark Estimate a lower bound l and an upper bound u for the desired quantity
- ✓ Your estimate = GeometricMean $(l, u) = \sqrt{l \cdot u}$

Guessing a Formula

Dimensional analysis [1]

- ✓ You can only make meaningful comparisons with items of the same dimension.
- Gather together the elements you think play a role in the
- ✓ Compare dimensions to guess at formula.
- ✓ Ex: Impact speed v: dim LT^{-1} , g: dim LT^{-2} , height h: dim L. $v \sim \sqrt{q \cdot h}$
- √ Special cases:
 - Exponents must be dimensionless.
 - -d/dt = 'a little bit of t': dim T
- $-d^2t =$ 'a little bit of a little bit of t': dim T
- $-dt^2 = \dim T^2$
- Summation and integration signs do not affect dimensions.
- ✓ Warning: there will sometimes be > 1 solution!
- ✓ Take advantage of symmetries. Consider solutions such as $a^2 + ab + b^2$.
- ✓ Additive terms must all have the same dimensions.
- ✓ To judge between solutions find the constant term, try easy cases.

Easy cases [2]

- $\checkmark \text{ Try } x = 0, 1, y, \infty$
- √ Reduce dimensions
- \checkmark When n has arbitrary range, try a small number of terms

Solving formulae

Quadratic equations [5.HW]

$$ax^2 + bx + c = 0$$

- $\checkmark x \approx 0$. Remove small ax^2 term, $x \approx -c/b$
- $\checkmark x \gg 1$. Remove small c, $x \approx -b/a$
- \checkmark Substitute existing estimates of x into eqn to iterate better

Evaluating integrals

- ✓ Can you use one of the approximations above to simplify the integrand? (ideally to exponential)
- Don't be afraid to extend the bounds to infinity
- $\checkmark \int_{-\infty}^{\infty} e^{-\alpha t^2} dt = \sqrt{\pi/\alpha}$
- ✓ Archimedes' theorem: an inverted parabola encloses 2/3 of a rectangle's area
- \checkmark 1/e technique: Find the width Δx that produces a change of e, use the resulting rectangle area as an estimate.

✓ Full-Width Half-Maximum (FWHM) technique: find the width where the u-value is half the maximum.

Evaluating derivatives

✓ Significant change approximation:

$$\frac{df}{dx} \sim \frac{\text{significant } \Delta f \text{ near } x}{\Delta x}$$
significant Δx

 $\frac{d^2x}{dt^2} \sim \frac{\text{significant } \Delta x}{(\Delta t \text{that produces a significant } \Delta x)^2}$

Find the convergence point of a recurrence relation

- \checkmark Substitute x for x_n and x_{n-1} etc, and solve.
- \checkmark Ex: $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n}), n \ge 0$
- \checkmark Solve with: $x = \frac{1}{2}(x + \frac{2}{3}) \rightarrow x = \sqrt{2}$

Finding a closed formula for a summation

✓ Use the Euler-MacLaurin summation formula:

$$\begin{split} \sum_a^b f(k) &= \int_a^b f(k) dk + \frac{f(b) + f(a)}{2} + \frac{f'(b) - f'(a)}{12} - \\ &\qquad \qquad \frac{f^{(3)}(b) - f^{(3)}(a)}{720} + \dots \end{split}$$

Layout by dror on StackOverflow