Inner Product & Norms

Note Title

LECTURE 05

* Inner Product

Def. The inner product between Two vectors X, Y & IR is defined as m

 $X^Ty = \sum_{i=1}^{m} x_i y_i \in \mathbb{R}$

and is also written as $X \cdot Y$, (X, Y), or (X, Y).

The l^2 -norm of $X \in \mathbb{R}^m$ is defined as $\|X\|_2 := \sqrt{X^T X} = \sqrt{\sum_{i=1}^n |X_i|^2}$, which is the Euclidean length of X. This is often written as $\|X\|$.

The angle α between X, $y \in \mathbb{R}^m$, can be computed by $\cos \alpha = \frac{X^T y}{\|X\| \|Y\|}$

$$\frac{\text{projy } X = (11 \times 11 \cos \alpha)}{-\frac{X^{T} y}{11 \cdot y \cdot 11^{2}}} y$$

* Vector Norms

→ to quanify (or measure) the size (or length) of a vector

Def. A norm is a function
$$\|\cdot\|: \mathbb{R}^m \to \mathbb{R}$$
 s.t.

∀ X, y ∈ \mathbb{R}^m , ∀ x ∈ \mathbb{R}

(3)
$$\| d \times \| = |d| \| \times \|$$

Examples
$$p-norms$$
 (or $l-norms$)

$$\|X\|_{1} := \sum_{i=1}^{m} |X_{i}|$$

$$|X = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} X_{1} \\ X$$

$$\| \times \|_{p} := \left(\sum_{i=1}^{m} |x_{i}|^{p} \right)^{\frac{1}{p}}$$

$$\| \times \|_{p} := \left(\sum_{i=1}^{m} |x_{i}|^{p} \right)^{\frac{1}{p}}$$

$$\| \times \|_{p} := \left(\sum_{i=1}^{m} |x_{i}|^{p} \right)^{\frac{1}{p}}$$

Exercise: What is the vector $X \in \mathbb{R}^2$ that achieves $\max ||X||_1$ subject to $||X||_2 = 1$?

* Matrix Norms

One can view an mxn matrix as a vector of length mn, then use one of the vector norms.

Def. The Frobenius (Hilbert-Schmidt) norm of $A \in \mathbb{R}^{m \times n}$ is defined as $\|A\|_{F} := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$

$$= \left(\sum_{j=1}^{n} \| A_{j} \|_{2}^{2} \right)^{1/2}$$

$$=\int tr(A^TA)$$

=
$$\int tr(AA^T)$$

Def. For $X \in \mathbb{R}^{m \times n}$, $tr(X) := \sum_{i=1}^{m \times n} x_{ii}$ is called the trace of X.

· However, I different types of matrix norms called induced matrix norms (often called operator norms), which are defined in terms of the behavior of a matrix as an operator between its normed domain and range space.

and range space.

Def. Let $A \in \mathbb{R}^{m \times n}$. Then the induced matrix (or operator) norm is defined as

 $||A||_p := \sup_{X \in \mathbb{R}^n} \frac{||A \times ||_p}{||X \mid||_p}$

In other words, || A ||p is the smallest constant C satisfying || A || ||p || × E ||R^n||.

Example Consider $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$

Compute 11 All, 11 All, 11 All,

Hence, sup
$$||A \times ||_1 = \max ||A \times ||_1$$

 $= |2|+|2|=|-2|+|-2|=4$
achieved for $X = [0,1]^T$, $[0,-1]^T$.
In fact,
 $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \rightarrow ||\begin{bmatrix} 2 \\ 2 \end{bmatrix}||_1 = 2+2=4$
 $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \rightarrow ||\begin{bmatrix} -2 \\ -2 \end{bmatrix}||_1 = |-2|+|-2|$
 $= 4$

How about
$$||A||_2$$
?

 \Rightarrow as I'll prove later, the largest eigenvalue $||A||_2 = \sqrt{\lambda_{max}(A^TA)}$ of A^TA .

 $||X||_2 = ||-1$

In this case $||A||_2 \approx 2.9208$ = the length of the major semi axis of the ellipsis. =inally, $||A||_{\infty}$.

From this figure, we can see
$$11A11 = 3$$
.

In fact,
$$\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2y \\ y \end{bmatrix}$$

$$= 3 \quad \text{at} \quad {\binom{x}{y}} = {\binom{1}{1}} \text{ or } {\binom{-1}{-1}}$$

• The p-norm of a diagonal matrix

Say
$$D = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

O dm

So,
$$\|D\|_2 = \max_{1 \le i \le m} |di|$$

• The 1-norm of a matrix

$$A \in \mathbb{R}^{m \times n}$$
 $\|A\|_1 = \max \|A_j\|_1$
 $1 \le j \le n$

i.e., $\max . of 1-norms of col. vec's.$

(Proof) Suppose
$$X \in \mathbb{R}^n$$

Then $\|A \times \|_1 = \|\sum_{j=1}^n x_j a_j\|_1$

via the
$$\sum_{j=1}^{n} |X_{j}| ||A_{j}||_{1}$$
triangle $= \max_{1 \le j \le n} ||A_{j}||_{1} \cdot \sum_{j=1}^{n} |X_{j}|$
 $= \max_{1 \le j \le n} ||A_{j}||_{1} \cdot ||X_{j}||_{1}$

Now can this bound be attained at some $x? \Rightarrow yes!$ Let $||a_k||_1 = \max_{1 \le j \le n} ||a_j||_1$

Then set
$$X = e_R$$

$$\Rightarrow \frac{\|Ae_R\|_1}{\|e_R\|_1} = \|A_R\|_1$$

• The 2-norm of a matrix
$$A \in \mathbb{R}^{m \times n}$$

$$\|A\|_{2} = \sqrt{\lambda \max(A^{T}A)}$$

where $\lambda \max(A^TA)$ is the largest (positive) eigenvalue of A^TA .

(Proof) Note the def. of
$$\|A\|_2$$
, i.e., $\|A\|_2 = \sup_{\|X\|_2=1} \|AX\|_2$

Consider functions:

$$f(\times) := \|A \times \|_{2}^{2} = (A \times)^{\mathsf{T}} (A \times)$$

$$= X^T A^T A X$$

$$= X^{\mathsf{T}} A^{\mathsf{T}} A X .$$

$$g(X) := \|X\|^2 = X^{\mathsf{T}} X$$

Then consider the following problem (x) Maximize f(x) subject to g(x)=1

) This can be solved by the method of Lagrange multipliers (MAT 21C)

In other words, define

$$h(x,\lambda) := f(x) - \lambda(g(x)-1)$$

The solution to (*)
$$\iff$$
 $\frac{\partial h}{\partial x_i} = 0$, 1 \le i \le n with $g(x) = 1$

Can show that
$$\frac{\partial R}{\partial x_i} = 0$$
 $1 \le i \le n$

leads to $\frac{\partial R}{\partial x} = 0$

i.e., $2 A^T A \times -2 \lambda \times = 0$

Now $g(X) = X^T \times = 1$
 $X^T A^T A \times = \lambda \times X^T \times = \lambda$

Finally, $X^T A^T A \times = \lambda \times X^T \times = \lambda \times X^T \times = \lambda \times X^T \times X^T$

• The ∞ -norm of a matrix $A \in \mathbb{R}^{m \times n}$ $\|A\|_{\infty} = \max_{1 \le i \le m} \|a_{i}.\|_{\frac{1}{2}}$ ith row vector of A

Note: Let $X \in \mathbb{R}^k = \mathbb{R}^{k \times 1}$ Then $X^T \in \mathbb{R}^{1 \times k} = a$ row vector with k entries $\|X^T\|_1 = \|X\|_1 = \sum_{j=1}^{k} |X_j|$ also, note $A = \begin{bmatrix} a_1 \\ \vdots \end{bmatrix}$

(Proof)
$$\|A \times \|_{\infty} = \max_{1 \le i \le m} |A_i \cdot X|$$

$$= \max_{1 \le i \le m} \left| \sum_{1 \le i \le m} |A_{ij} \times X_{ij} \right|$$

$$\leq \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}| |X_{j}|$$

$$\leq \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}| |X_{ij}|$$

$$\leq \|X\|_{\infty} \cdot \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}|$$
So, $\|A \times \|_{\infty} \leq \max_{1 \le i \le m} |A_{ii}| |A_{ii}|$
Suppose $\|X\|_{\infty} = 1$. Then for which X , the equality $\|A \times \|_{\infty} = \max_{1 \le i \le m} |A_{ii}| |A_{ii}|$
is attained?

$$\Rightarrow \text{Let } \|A_{k} \cdot \|_{1} = \max_{1 \le i \le m} |A_{ii} \cdot \|_{1}$$
Then define X as $X_{ij} = \begin{cases} 1 & \text{if } A_{kj} \ge 0 \\ -1 & \text{if } A_{kj} < 0 \end{cases}$
Clearly $\|X\|_{\infty} = 1$ and $\|A_{ii} \cdot X_{ij}\|_{\infty} = 1$ and $\|A_{ii} \cdot X_{ij}\|_{\infty} = 1$

$$= \sum_{j=1}^{n} |\alpha_{ij}|$$

$$= ||\alpha_{i} \cdot ||_{1} \quad 1 \leq i \leq m$$

But if i=k, this becomes an equality,

and the max. is a dieved!