Otimização de Sistemas

1. Revisão de Álgebra Linear

1.1 Matrizes

1.1.1. Definição

Conjunto de elementos ordenados em forma retangular.

 $\operatorname{Ex}:A_{(mxn)}$

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 & 8 \\ 1 & 7 & 4 & 9 \\ 0 & 1 & 5 & 6 \end{bmatrix}$$

1.1.2. Notação:

Ex:.

$$A(m \times n) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

1.1.3. Matrizes Especiais

- a) Matriz nula : $a_{ij}=0, \forall i,j (i\leq m;j\leq n)$.
- b) $Matriz\ quadrada:\ m=n\ (ordem\ n).$
- c) Matriz diagonal : m=n , $a_{ij}=0, \forall i\neq j$.
- d) Matriz identidade (**E** ou **I**): matriz diagonal com $a_{i,i} = 1$.

- e) Matriz simétrica : m = n, $a_{ij} = a_{ji}$, $\forall i, j$.
- f) Matriz transposta de $\mathbf{A}_{(mxn)}$: $\mathbf{A}^{T}(nxm)$, $\mathbf{a}_{ij}^{T} = \mathbf{a}_{ji}$
- g) Matriz triangular:

$$a_{ij} = 0 \forall i > j$$
 (superior)

$$a_{ij} = 0 \forall i < j$$
 (inferior).

h) *Matriz vetor*: matriz (nx1).

1.1.4. Operações com matrizes

a) Igualdade: $\mathbf{A}_{(mxn)} = \mathbf{B}_{(mxn)}$, se $a_{ij} = b_{ij}$, $\forall i, j$.

b) Adição :
$$\mathbf{C}_{(mxn)} = \mathbf{A}_{(mxn)} + \mathbf{B}_{(mxn)} \Rightarrow c_{ij} = a_{ij} + b_{ij}, \forall i, j$$
.

c) Multiplicação por uma constante λ:

$$\mathbf{B}_{(mxn)} = \lambda.\mathbf{A}_{(mxn)} \Longrightarrow b_{ij} = \lambda.a_{ij}, \forall i, j.$$

d) Multiplicação de matrizes :

$$\mathbf{A}_{(mxn)}.\mathbf{B}_{(nxp)} = \mathbf{C}_{(mxp)}$$

onde

$$c_{ik} = \sum_{j=1}^{n} a_{ij}.b_{jk}, \quad \forall i, k$$

Notas: i) $A.B \neq B.A$

ii)
$$\mathbf{A}.\mathbf{E} = \mathbf{E}.\mathbf{A} = \mathbf{A}$$
, onde $(\mathbf{A}, \mathbf{E}_{(nxn)})$

e) Propriedades das operações com matrizes:

1.
$$(A + B) + C = A + (B + C)$$

2.
$$\alpha \cdot (\lambda \mathbf{A}) = \lambda \cdot (\alpha \mathbf{A}) = (\alpha \lambda) \mathbf{A}$$

3.
$$A + B = B + A$$

4.
$$\mathbf{A}(\lambda . \mathbf{B}) = (\lambda . \mathbf{A}) \mathbf{B} = \lambda . (\mathbf{A}\mathbf{B})$$

5.
$$(\alpha + \lambda)\mathbf{A} = \alpha\mathbf{A} + \lambda\mathbf{A}$$

6.
$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$$

7.
$$A(BC) = (AB)C$$

8.
$$A(B+C) = AB + AC$$

9.
$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

1.1.5. Determinantes

$$p = a_{\alpha 1,1}.a_{\alpha 2,2}....a_{\alpha n,n}$$

 $\alpha_1,\alpha_2,...,\alpha_n \text{ são números distintos, } \alpha_i \neq \alpha_k. \text{ Essa seqüência é uma permutação do}$ conjunto $\{1,2,...,n\}$. Uma "inversão" na seqüência $\alpha_1,\alpha_2,...,\alpha_n$ acontece cada vez que $\alpha_i>\alpha_k, \text{ para } i< k \,.$

Ex:

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4 = 2,3,1,4$ possui 2 inversões.

O n° de inversões de uma seqüência é designado por $N(\alpha_1,\alpha_2,...,\alpha_n)$.

Determinante de uma matriz $\bf A$ de ordem n é a soma dos termos p obtidos por todas as permutações possíveis da seqüência $\alpha_1,\alpha_2,...,\alpha_n$, multiplicados por (-1) elevado ao número de inversões das respectivas seqüências:

$$|\mathbf{A}| = \det(\mathbf{A}) = \sum (-1)^{N(\alpha 1, \dots, \alpha n)} . \mathbf{a}_{\alpha 1, 1} . \mathbf{a}_{\alpha 2, 2} ... \mathbf{a}_{\alpha n, n}$$

$$\mathrm{Ex}: \left| \mathbf{A} \right| = \begin{vmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{21} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{vmatrix} =$$

$$(-1)^0 \, a_{11}.a_{22}.a_{33} + (-1)^2 \, a_{21}a_{32}.a_{13} + (-1)^2 \, a_{31}.a_{12}.a_{23} + (-1)^1 \, a_{21}.a_{12}.a_{33} + (-1)^3 \, a_{31}.a_{22}.a_{13} + (-1)^1 \, a_{11}.a_{32}.a_{23}.$$

1.1.5.1. Propriedades dos determinantes

- a) Se $a_{ij} = 0 \forall i$ ou $a_{ij} = 0 \forall j \Rightarrow \det \mathbf{A} = 0$ (singular).
- b) $b_{ij} = \lambda . a_{ij}$, j = 1, 2, ..., n ou $i = 1, 2, ..., n \Rightarrow \det \mathbf{B} = \lambda . \det \mathbf{A}$.
- c) **B** é obtida pela permuta de duas linhas ou duas colunas de $A \Rightarrow \det B = \det A$.
- d) Se $a_{ij} = \lambda . a_{kj}$, j = 1, 2, ..., n ou $a_{ij} = \lambda . a_{ik}$, $i = 1, 2, ..., n \Rightarrow \det \mathbf{A} = 0$.
- e) Se $b_{ij} = a_{ij} + \lambda . a_{kj}, j = 1, 2, ..., n;$ $i \neq k$ ou $b_{ij} = a_{ij} + \lambda . a_{ik}$ i = 1, 2, ..., n;; $j \neq k \Rightarrow \det \mathbf{A} = \det \mathbf{B}$.

1.1.5.2. Co-fator, menor complementar

$$A_{ij} = (-1)^{i+j}.M_{ij}$$

1.1.5.3. Expansão do determinante em co-fatores

$$\det \mathbf{A} = a_{i1}.A_{i1} + a_{i2}.A_{i2} + ... + a_{in}.A_{in} = a_{lj}.A_{lj} + a_{ej} + A_{2j} + ... + a_{nj}.A_{nj}$$

1.1.6. Determinante de uma matriz triangular

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdot \begin{vmatrix} a_{33} & a_{34} & \cdots & a_{2n} \\ 0 & a_{44} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdot a_{23} \cdot a_{23}$$

1.1.7. "Rank" de uma matriz, *r* :

Seja $A_{(mxn)}$. Se:

- a) Existe pelo menos uma submatriz S de A, de ordem r, com det $S \neq 0$;
- b) Toda submatriz **T** de **A**, de ordem $r_l > r$, possui det **T** = 0;

então r é o "rank",

1.1.8. Matriz inversa

$$\mathbf{B} = \mathbf{A}^{-1} \iff \mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{E}$$

Notas: i)
$$(AB)^{-1} = B^{-1}A^{-1}$$

ii)
$$A^{-1} = (cof A)^T / \det A$$

1.2. Sistemas de equações lineares - tratamento matricial

1.2.1. Conversão

$$\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \cdots & + & a_{1n}x_n & = & b_1 \\ \vdots & \vdots \\ a_{i1}x_1 & + & a_{i2}x_2 & + & \cdots & + & a_{in}x_n & = & b_i \\ \vdots & \vdots \\ a_{n1}x_1 & + & a_{i2}x_2 & + & \cdots & + & a_{nn}x_n & = & b_n \end{cases}$$

A i-ésima equação: $\sum_{k=1}^{n} a_{ik} \cdot x_k = b_i$

$$\begin{bmatrix} \mathbf{a}_{11} \\ \mathbf{a}_{21} \\ \vdots \\ \mathbf{a}_{n1} \end{bmatrix} x_1 + \dots + \begin{bmatrix} \mathbf{a}_{1n} \\ \mathbf{a}_{2n} \\ \vdots \\ \mathbf{a}_{nn} \end{bmatrix} x_n = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$$

$$A_1.x_1 + A_2.x_2 + ... + A_nx_n = \mathbf{b}$$
 ou $\mathbf{A}\mathbf{x} = \mathbf{b}$.

1.2.2. Regra de Cramer

$$x_i = \frac{\Delta_i}{\Delta}; \Delta = \det A$$

$$\Delta_{i} = \det \left[A_{1} A_{2} \cdots b \cdots A_{n} \right]$$

1.2.3. Método de Eliminação de Gauss - Jordan

Consiste em diagonalizar a matriz dos coeficientes, através de operações elementares na matriz aumentada: $\bar{A} = [A : b]$.

As operações elementares são:

- a) permuta de linhas;
- b) multiplicação de uma linha por uma constante;
- c) substituição de uma linha por seu valor adicionado a outra linha multiplicada por uma constante.

Ex : Resolva:

$$2x_1 + 2x_2 + 4x_3 = 10$$
$$x_1 + x_2 + 3x_3 = 9$$
$$x_1 + 3x_2 + 4x_3 = 17$$

A matriz aumentada é:

$$\bar{\mathbf{A}} = \begin{bmatrix} 2 & 2 & 4 & \vdots & 10 \\ 1 & 1 & 3 & \vdots & 9 \\ 1 & 3 & 4 & \vdots & 17 \end{bmatrix} \xrightarrow{} L_2 - 1/2L_1$$

$$\bar{A} = \begin{bmatrix} 1 & 1 & 2 & \vdots & 5 \\ 0 & 0 & 1 & \vdots & 4 \\ 0 & 2 & 2 & \vdots & 12 \end{bmatrix} \rightarrow L_3 / 2$$

$$\bar{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 4 & \vdots & 5 \\ 0 & 1 & 1 & \vdots & 6 \\ 0 & 0 & 1 & \vdots & 4 \end{bmatrix} \Rightarrow \begin{aligned} \mathbf{x}_1 &= -5 \\ \mathbf{x}_2 &= 2 \\ \mathbf{x}_3 &= 4 \end{aligned}$$

1.3. Espaços Vetoriais

1.3.1. Conceitos e Notação

Espaço vetorial é o conjunto de todos os vetores com número de coordenadas igual à dimensão do espaço. Ex.: O espaço vetorial R^m é o conjunto de todos os vetores (pontos) com m coordenadas reais.

1.3.2. Combinação Linear

Sejam $A_1,A_2,...,A_n\in R^m$ e $x_1,...,x_n\in R$. Então $b=x_1.A_1+x_2.A_2+...+x_n.A_n$ é um vetor do R^m , chamado *combinação linear* dos vetores $A_1,A_2,...,A_n$.

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \dots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

1.3.3. Vetores Linearmente Independentes (L.I.)

Se a equação vetorial:

$$A_1.x_1 + A_2.x_2 + ... + A_n.x_n = \mathbf{0}$$

for satisfeita apenas quando $x_1 = x_2 = ... = x_n = 0$, então os vetores $A_1, A_2, ..., A_n$ são L.I. Caso contrário, diz-se que eles são *linearmente dependentes* (L.D.), isto é, algum vetor A_i pode ser obtido a partir de uma combinação linear dos demais vetores.

Ex:

$$m = 3, n = 2, A_1 = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \cdot \mathbf{x}_1 + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \cdot \mathbf{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{x}_1 = 0 \quad \mathbf{e} \quad \mathbf{x}_2 = 0$$

Logo, A_1 e A_2 são L.I..

1.3.4. Dimensão de um espaço vetorial

 $\acute{\mathrm{E}}$ um número igual à quantidade máxima de vetores L.I., pertencentes ao espaço vetorial.

1.3.5. Base

Um conjunto de vetores $e_1, e_2, ..., e_n \in \mathbb{R}^m$ constitui-se em uma base do \mathbb{R}^m se:

- a) Eles forem L.I.
- b) Qualquer vetor $x \in \mathbb{R}^m$ puder ser obtido por uma combinação linear de $e_1, e_2, ..., e_n \in \mathbb{R}^m$, isto é,

$$x = x_1.e_1 + x_2.e_2 + ... + x_n.e_n$$
.

Pode-se provar que qualquer base de R^m possui *m* vetores.

Ex:
$$e_I = \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix}$$
 constituem-se em uma base do R³, pois:

$$x_1.e_1 + x_2.e_2 + ... + x_n.e_n = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = x_2 = x_3 = 0 \text{ (L.I.)}.$$

Se
$$x \in \mathbb{R}^3 \Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, isto é, x é uma combinação linear de

 $e_1, e_2 e e_3$.

1.3.6. Rank de uma Matriz

Através da expansão do determinante em co-fatores, pode-se mostrar que o "rank" de uma matriz (m x n) é igual ao nº máximo de colunas (ou de linhas) L.I.

1.3.7. Matriz Base

Se $A_{(mxn)}$ possui m colunas L.I., então a matriz quadrada

$$\mathbf{B} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1m} \end{bmatrix}$$

é uma base de A e a equação A.x = b possui uma solução para qualquer $b \in R^m$.

Ex:
$$A = \begin{bmatrix} 4 & 0 & 1 & 3 & 0 \\ 2 & 1 & 0 & -2 & 0 \\ 6 & 0 & 0 & 5 & 1 \end{bmatrix}$$
 possui uma base $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

1.3.8. Teorema

Para $A_{(nxn)}$, são equivalentes as afirmações:

- a) Existe A^{-1} .
- b) Rank de A é igual a n.
- c) $\det A \neq 0$.

1.4. Solução do sistema A.x = b, sendo $A_{(mxn)}, x_{(nx1)}, b_{(nx1)}$ e m < n.

Considere o sistema de equações lineares:

$$\begin{cases} a_{11}X_1 & + & a_{12}X_2 & + & \cdots & + & a_{1n}X_n & = & b_1 \\ \vdots & \vdots \\ a_{i1}X_1 & + & a_{i2}X_2 & + & \cdots & + & a_{in}X_n & = & b_i \\ \vdots & \vdots \\ a_{m1}X_1 & + & a_{m2}X_2 & + & \cdots & + & a_{mn}X_n & = & b_m \end{cases}$$

onde m < n. Considere rank(A) = m. Então, arbitrando-se os valores de (n-m) variáveis, pode-se obter uma solução. Para cada conjunto de valores arbitrado, obtém-se uma solução distinta.

1.4.1. Solução básica

Sejam $A_{(mxn)}$ e $B=\begin{bmatrix}A_{j1}&,&A_{j2}&,&\dots&,&A_{jm}\end{bmatrix}$ uma base de A. Para qualquer $b\in R^m$, uma solução x tal que

$$\begin{bmatrix} \mathbf{A}_{j1} & \mathbf{A}_{j2} & \dots & \mathbf{A}_{jm} \\ \mathbf{x}_{j2} \\ \vdots \\ \mathbf{x}_{jm} \end{bmatrix} = \mathbf{b} \ \mathbf{e} \ \mathbf{x}_i = \mathbf{0} \ \mathbf{para} \ i \neq j_1, \dots, j_m.$$

é chamada de solução básica do sistema. As variáveis x_{ij} são chamadas básicas e as demais não-básicas.

Ex: O sistema:

$$4x_1 + 0x_2 + x_3 + x_4 + 0x_5 = -10$$

 $2x_1 + x_2 + 0x_3 - 2x_4 + 0x_5 = 6$
 $2x_1 + 0x_2 + 0x_3 + 2x_4 + x_5 = 14$

possui uma solução básica dada por :

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} . x_2 + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} . x_3 + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} . x_5 = \begin{bmatrix} -10 \\ 6 \\ 14 \end{bmatrix}$$

e $x_1 = x_4 = 0$. Segue que $x_2 = 6$, $x_3 = -10$ e $x_5 = 14$. O conjunto das variáveis básicas, para esta solução, é $\{x_2, x_3, x_5\}$, cujos índices formam o conjunto Base $\{2,3,5\}$.

Outra solução básica pode ser obtida, através de operações (transformações) elementares na matriz aumentada do sistema, para se obter o conjunto Base {2,3,1}:

$$\bar{\mathbf{A}} = \begin{bmatrix} 4 & 0 & 1 & 1 & 0 & \vdots & -10 \\ 2 & 1 & 0 & -2 & 0 & \vdots & 6 \\ 2 & 0 & 0 & 2 & 1 & \vdots & 14 \end{bmatrix} \rightarrow \begin{array}{c} \mathbf{L}_1 - 2\mathbf{L}_3 \\ \rightarrow \mathbf{L}_2 - \mathbf{L}_3 \\ \rightarrow 1/2\mathbf{L}_3 \end{array}$$

$$\bar{A} = \begin{bmatrix} 0 & 0 & 1 & -3 & -2 & \vdots & -38 \\ 0 & 1 & 0 & -4 & -1 & \vdots & -8 \\ 1 & 0 & 0 & 1 & 1/2 & \vdots & 7 \end{bmatrix} \Rightarrow \begin{cases} P/x_4 = x_5 = 0, \\ x_1 = 7, x_2 = -8, x_3 = -38 \end{cases}$$

O número máximo de soluções básicas possíveis é:

$$C_3^5 = \frac{5!}{3!2!} = 10$$

1.4.2. Solução compatível básica

Considere que são impostas restrições às variáveis do sistema anterior, do tipo: $x_i \ge 0$, i = 1,...,5. As soluções básicas encontradas não são *compatíveis* com a restrição acima. Soluções básicas que atendem às restrições de desigualdade são chamadas de *soluções compatíveis básicas*.

De uma maneira geral, tem-se:

$$\sum_{j=1}^{n} a_{ij}.x_{j} = b_{i}, i = 1,...,m$$

$$x_{i} \ge 0, j = 1,...,n$$
 $(m < n)$

1.5. Sistemas de Inequações Lineares

$$\sum_{j=1}^{n} a_{ij}.x_{j} \le b_{i}, i = 1,..., m$$
ou A.x \le b

Esse sistema pode ser transformado em um sistema de equações lineares, através da introdução de novas variáveis:

$$\sum_{j=1}^{n} a_{ij}.x_{j} + x_{n+i} = b_{i}, i = 1,...,m$$
$$x_{n+i} \ge 0$$

Para $A.x \ge b$, tem-se

$$\sum_{j=1}^{n} a_{ij}.x_{j} - x_{n+1} = b_{i}, i = 1,..., m$$
$$x_{n+i} \ge 0$$

As variáveis x_{n+i} , i = 1,...,m, são chamadas variáveis de folga.

1.6. Sistemas de Equações Lineares com variáveis não negativas

$$\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \cdots & + & a_{1n}x_n & \geq & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \cdots & + & a_{2n}x_n & \leq & b_2 \\ \vdots & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \cdots & + & a_{mn}x_n & \leq & b_m \end{cases} \quad x_i \geq 0, i = 1,..., n, i \neq k$$

A introdução de m variáveis de folga transforma o sistema de inequações em um sistema de equações, conforme mostrado anteriormente. A fim de trabalhar com variáveis não negativas, substitui-se x_k por $x_k^{'}-x_k^{''}$, sendo $x_k^{'}\geq 0$ e $x_k^{''}\geq 0$.

1.7. Convexidade

1.7.1. Definição

Diz-se que $b \in \mathbb{R}^m$ é uma combinação convexa dos vetores $A_1, A_2, ..., A_n \in \mathbb{R}^m$ se:

$$b = \alpha_1.A_1 + ... + \alpha_n A_n$$

com :
$$\sum_{i=1}^{n} \alpha_{i} = 1 e \alpha_{i} \ge 0 \text{ para } i = 1,..., n$$

1.7.2. Interpretação geométrica

 Ex_1 : Se A_3 é uma combinação convexa de A_1 e A_2 , então:

$$A_3 = \alpha . A_1 + (1 - \alpha) . A_2$$

$$A_3 = \alpha . A_1 + A_2 - \alpha . A_2$$

$$(A_3 - A_2) = \alpha (A_1 - A_2).$$

Isto é : os vetores (A_3-A_2) e (A_1-A_2) têm a mesma direção, já que $\alpha\in R$.

 $Ex_2:$

$$A_4 = \alpha . A_1 + (1 - \alpha) . A_3$$

$$A_5 = (1 - k) . A_2 + k . A_4$$

$$= (1 - k) . A_2 + k . A_4$$

$$= (1 - k) . A_2 + k . \alpha . A_1 + k (1 - \alpha) . A_3$$

$$= (k . \alpha) . A_1 + (1 - k) . A_2 + [k (1 - \alpha)] . A_3$$

Se
$$0 \le \alpha \le 1$$
 e $0 \le k \le 1 \Rightarrow$

$$\begin{cases}
0 \le k\alpha \le 1 \\
0 \le l - k \le 1 \\
0 \le l - \alpha \le l \\
0 \le k(l - \alpha) \le l
\end{cases}$$

Como $k\alpha + (1-k) + k(1-\alpha) = 1 \Rightarrow A_5$ é uma combinação convexa de A_1, A_2 e A_3 .

1.7.3. Conjunto Convexo

1.7.3.1. Definição

Seja $C \subset \mathbb{R}^m$ e $A_1, A_2 \in C$, quaisquer.

Seja $b=\alpha_1A_1+\alpha_2A_2$ uma combinação convexa de A_1 e A_2 , com $\alpha_1+\alpha_2=1$, $0\leq\alpha_1,\alpha_2\leq1$.

Se $b \in C \Rightarrow C$ é chamado de *conjunto convexo*.

Ex:

1.7.3.2. Ponto extremo

A é um ponto extremo se a condição $A=\alpha_1A_1+\alpha_2A_2$, com α_1 e α_2 definidos anteriormente, implicar em $A=A_1$ ou $A=A_2$.

2.1. Conceitos

- a) Otimização: alocação de recursos, em geral, limitados entre atividades competitivas, procurando atender a um certo objetivo. A minimização de custos ou a maximização de lucros. Em grande parte dos casos práticos, esse objetivo pode ser expresso por uma função, chamada "função objetivo" ou "função custo", ou ainda de "função critério".
- b) <u>Restrições</u>: são as limitações existentes nos recursos disponíveis ou ainda as limitações físicas que se impõem às variáveis descritivas das atividades. Essas restrições são representadas por equações e/ou inequações.
- c) <u>Programação Linear</u>: problema de otimização em que a função objetivo, bem como as restrições são lineares.

d) <u>Tipos de otimização</u>:

Critério f(x)	Restrições	Domínio das variáveis	Denominação
linear	linear	R ⁿ	PL
convexa	linear	R ⁿ	convexa
	côncava		
quadrática	linear	R ⁿ	quadrática
qualquer	quaisquer	Z ⁿ e I ⁿ	inteira
não-linear	não-linear	R ⁿ	não-linear
qualquer	quaisquer	qualquer	dinâmica

2.2.1. Atividades concorrentes

Considere uma unidade fabril com capacidade para produzir n produtos distintos, com diferentes níveis de consumo de recursos e que produzem lucros distintos. Deseja-se definir o nível de produção de cada produto, de forma que o lucro total obtido seja máximo.

Sejam:

- a) $x_1,...,x_n$: os níveis de produção dos n produtos;
- b) $c_1,...,c_n$: os lucros unitários dos n produtos;
- c) $b_1,...,b_m$: os diferentes recursos disponíveis (limitados), necessários à manufatura dos n produtos;
- d) $a_{i1},...,a_{in}$: os níveis de consumo do recurso i, cujo total é b_i , na fabricação de uma unidade dos produtos $x_1,...,x_n$, respectivamente.

Dessa forma, podemos formular o problema de otimização como:

Maximizar a função:

$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

Sujeita às restrições:

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} (i = 1,...,m) \quad \text{e} \quad x_{j} \ge 0 \quad (j = 1,...,n)$$

Exemplo: Uma fábrica produz os produtos I, II e III com níveis de consumo de recursos conforme a tabela seguinte:

Разимана	Tempo disponível	Hora	s/ unidade dos Pro	dutos
Recursos	(em horas/mês)	I	II	III
MAQ 01	100	2	3	1
MAQ 02	120	1	1	2
MO 01	176	2	2	3
MO 02	132	1	2	1
Lucro Unitár	io (\$)	10	15	20
Produção Má	xima (unid.)	80,0	20,0	40,0

O problema pode ser formulado como:

maximizar
$$z = 10x_1 + 15x_2 + 20x_3$$

como também : $x_1 \le 80.0$; $x_2 \le 20.0$; $x_3 \le 40.00 \rightarrow$ restrições de mercado.

2.2.2. O problema da dieta

Considere que uma pessoa deseja minimizar o custo de sua dieta diária, mantendo os níveis de consumo recomendados para as diferentes vitaminas.

Sejam:

- a) $x_1,...,x_n$: os níveis de consumo dos n alimentos pertencentes à dieta;
- b) b_i : o nível mínimo de consumo da vitamina i;
- c) $a_{i1},...,a_{in}$: as quantidades da vitamina i, contidas nos alimentos 1,...,n, respectivamente;
- d) $c_1,...,c_n$: os custos unitários dos alimentos 1,...,n, respectivamente.

Exemplo: a dieta de uma pessoa deve constar de 03 alimentos, cujos teores de vitaminas, bem como os níveis mínimos de consumo se encontram na tabela seguinte:

	Consumo mínimo	Teor vitami	ínico dos alimento	s (mg/unid)
Vitaminas	diário (mg) A_1 A_2			A_3
A	80	10	5	10
В	70	8	7	6
С	100	15	3	7
D	60	20	2	9
Preços dos alimentos (\$ / unid)		80	32	180

O problema pode então ser formulado como:

minimizar
$$C = 80x_1 + 32x_2 + 180x_3$$

sujeita a:
$$\begin{cases} 10x_1 + 5x_2 + 10x_3 \ge 80 \\ 8x_1 + 7x_2 + 6x_3 \ge 70 \\ 15x_1 + 3x_2 + 7x_3 \ge 100 \\ 20x_1 + 2x_2 + 9x_3 \ge 60 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

2.2.3. O problema do transporte

Consiste em minimizar o custo total do transporte de mercadorias de m centros fornecedores para n centros consumidores.

2.2.4. O problema da designação

Consiste de um caso particular do problema do transporte em que: m = n; $a_i = 1 \quad \forall i; \ b_i = 1 \quad \forall j$. O modelo assume, portanto, a seguinte forma:

$$\min \quad z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$m = n$$

$$sendo \sum_{i=1}^{n} x_{ij} = 1; \sum_{j=1}^{n} x_{ij} = 1$$

$$x_{ij} \ge 0, i = 1, ..., n, j = 1, ..., n.$$

Além dessas restrições, deve-se considerar que:

$$x_{ij} = \begin{cases} 1, \text{ se a origem i corresponder ao destino } j \\ 0, \text{ caso contrário.} \end{cases}$$

2.3. Representação gráfica do processo de solução

Consideremos um problema, simplificado, de atividades concorrentes, consistindo da fabricação de dois produtos (A e B), que consomem horas de máquinas e de mão-de-obra, conforme se apresenta de forma esquemática na tabela abaixo:

Recursos	Tempo disponível	Nível de consur horas / unidad	
	noras/dia	A	В
MAQ 01	13	1	3
MAQ 02	6	1	1
MO 01	6	2	-
MO 02	4	-	1
Lucro unitário (\$)		12	15

O que corresponde a:

$$m\acute{a}x: z = 12x_1 + 15x_2$$

 $x_1 + 3x_2 \le 13$
 $x_1 + x_2 \le 6$
 $sendo: 2x_1 \le 6 \Rightarrow x_1 \le 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

No plano $x_1 \times x_2$, tem-se:

Parametrizando a equação $z = 12x_1 + 15x_2$, obtemos:

$$x_2 = -\frac{4}{5}x_1 + \frac{z}{15}$$
 (1).

Logo, a maximização ocorrerá no ponto em que a função z assumir o máximo valor, que permite a interceptação da reta (1) com a região \overline{OABCDE} .

Este é o ponto C, que possui as coordenadas $x_1^{\circ} = 2.5$ e $x_2^{\circ} = 3.5$.

Com isso, obtemos $z = z^{\circ} = 82.5$.

2.4. Solução algébrica - soluções básicas

$$x_{1} \le 3$$
 $x_{1} + x_{3} = 3$
 $x_{2} \le 4$ $x_{2} + x_{4} = 4$
O sistema $x_{1} + x_{2} \le 6$ evolui para $x_{1} + x_{2} + x_{5} = 6$
 $x_{1} + 3x_{2} \le 13$ $x_{1} + 3x_{2} + x_{6} = 13$
 $x_{1}, x_{2} \ge 0$ $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$

Esse sistema possui uma solução compatível óbvia:

$$\{x_3 = 3, x_4 = 4, x_5 = 6, x_6 = 13, x_1 = 0, x_2 = 0\} \Rightarrow 0(0,0)$$

A função $z = 12x_1 + 15x_2$ assume o valor z = 0 para esta solução. O valor de z crescerá apenas com o crescimento de x_1 ou de x_2 , o que é possível com a entrada de x_1 e/ou x_2 na base. A fim de simplificar o controle sobre o atendimento às restrições, apenas

uma das variáveis será incrementada, por vez. Como a função objetivo cresce mais rapidamente $com x_2$ do que $com x_1$, então x_2 deverá entrar na base.

Adotando uma estratégia conhecida como "gulosa", a variável x_2 deve assumir o maior valor possível. Entretanto, esta não pode crescer a tal ponto de tornar outra variável negativa. Expressando as variáveis básicas em função das não-básicas, descobre-se aquela que mais rapidamente atinge o valor zero, com o crescimento de x_2 . Essa deve então ceder seu lugar na base para x_2 . Portanto:

$$x_3 = 3 - x_1; \quad x_1 = 0$$

 $x_4 = 4 - x_2$
 $x_5 = 6 - x_1 - x_2; \quad x_1 = 0$ $\Rightarrow x_4$ sai da base.
 $x_6 = 13 - x_1 - 3x_2; \quad x_1 = 0$

A nova base é então $\{x_3, x_2, x_5, x_6\}$, cuja solução básica corresponde a:

$${x_3 = 3, x_2 = 4, x_5 = 2, x_6 = 1, x_1 = 0, x_4 = 0} \Rightarrow z = 60.$$

Observar que essa solução corresponde, no plano $x_1 \times x_2$, ao ponto (0, 4), isto é, ao ponto A.

Para saber se z ainda pode crescer, devemos expressá-la em função das variáveis não-básicas:

$$z = 12x_1 + 15(4 - x_4) = 60 + 12x_1 - 15x_4$$

Como z decresce com x_4 , esta deve permanecer fora da base. Mas z cresce com x_1 , que deve então entrar na base. Para definir que variável deve sair da base, expressam-se as variáveis (atualmente) básicas, em função das demais. Observa-se, nas equações abaixo, que a variável x_6 é a que mais limita o crescimento de x_1 .

$$x_3 = 3 - x_1$$

 $x_2 = 4 - x_4; x_4 = 0$
 $x_5 = 6 - x_1 - 4 - x_4 = 2 - x_1; x_4 = 0 \Rightarrow x_6$ deve sair da base
 $x_6 = 13 - x_1 - 12 - x_4 = 1 - x_1; x_4 = 0$

Assim, a nova base fica $\{x_3, x_2, x_5, x_1\}$. Esses procedimentos podem ser implementados sobre a matriz aumentada do sistema de equações:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & \vdots & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 4 \\ 1 & 1 & 0 & 0 & 1 & 0 & \vdots & 6 \\ 1 & 3 & 0 & 0 & 0 & 1 & \vdots & 13 \end{bmatrix} L_3 - L_2$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & \vdots & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 4 \\ 1 & 0 & 0 & -1 & 1 & 0 & \vdots & 2 \\ 1 & 0 & 0 & -3 & 0 & 1 & \vdots & 1 \end{bmatrix} L_1 - L_4$$

$$\begin{bmatrix} 0 & 0 & 1 & 3 & 0 & -1 & \vdots & 2 \\ 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 4 \\ 0 & 0 & 0 & 2 & 1 & -1 & \vdots & 1 \\ 1 & 0 & 0 & -3 & 0 & 1 & \vdots & 1 \end{bmatrix} \Rightarrow \{x_3 = 2, x_2 = 4, x_5 = 1, x_1 = 1, x_4 = 0, x_6 = 0\}$$

Substituindo, na função objetivo, as variáveis básicas pelas não-básicas, usando a segunda e a quarta linhas da matriz aumentada, tem-se:

$$z = 12x_1 + 15x_2 = 12.(1 + 3x_4 - x_6) + 15 \cdot (4 - x_4)$$

$$z = 72 + 21x_4 - 12x_6 \Rightarrow x_4 \text{ deve entrar e } x_6 \text{ permanecer for a da base}$$

$$x_1 = 1 + 3x_4 - x_6; x_6 = 0$$

$$x_2 = 4 - x_4$$

$$x_3 = 2 - 3x_4 - x_6; x_6 = 0$$

$$x_5 = 1 - 2x_4 + x_6; x_6 = 0 \Rightarrow x_5 \text{ cede seu lugar na base para } x_4$$

Logo, tem-se:

$$\begin{bmatrix} 0 & 0 & 1 & 0 & -3/2 & 1/2 & \vdots & 1/2 \\ 0 & 1 & 0 & 0 & -1/2 & 1/2 & \vdots & 7/2 \\ 0 & 0 & 0 & 1 & 1/2 & -1/2 & \vdots & 1/2 \\ 1 & 0 & 0 & 0 & 3/2 & -1/2 & \vdots & 5/2 \end{bmatrix}$$

A nova solução básica é:

$$\{ x_3 = 1/2, \ x_2 = 7/2, \ x_4 = 1/2, \ x_1 = 5/2, x_5 = 0, \ x_6 = 0 \}$$

$$z = 72 + 21x_4 - 12x_6; \ x_4 = 1/2 - 1/2x_5 + 1/2x_6$$

$$z = 72 + 21/2 - 21/2x_5 + 21/2x_6 - 12x_6 \Rightarrow z = 82,5 - 10,5x_5 - 1,5x_6 \Rightarrow z = z^\circ = 82,5$$

A entrada de x_5 ou x_6 na base reduz o valor de z. Logo z = 82,5 é o valor ótimo.

3. O Método Simplex

3.1. Teorema I

"O conjunto de todas as soluções compatíveis de um problema de programação linear é um conjunto convexo".

3.1.1. Demonstração

Seja o problema max
$$z = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
 sujeita a
$$\begin{cases} \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases}$$
 com $c_{(nx1)}$, $x_{(nx1)}$, $A_{(mxn)}$, $b_{(mx1)}$.

Chamando C o conjunto definido por $Ax \le b$ e $x \ge 0$.

Se
$$\mathbf{x}_1 \in C$$
 e $\mathbf{x}_2 \in C$, então:

$$\begin{cases} \mathbf{A}\mathbf{x}_1 \leq \mathbf{b} \Rightarrow \alpha \mathbf{A}\mathbf{x}_1 \leq \alpha \mathbf{b} & \text{ou } \mathbf{A}(\alpha \mathbf{x}_1) \leq \alpha \mathbf{b} \\ \mathbf{A}\mathbf{x}_2 \leq \mathbf{b} \Rightarrow (1-\alpha)\mathbf{A}\mathbf{x}_2 \leq (1-\alpha)\mathbf{b} & \text{ou } \mathbf{A}(1-\alpha)\mathbf{x}_2 \leq (1-\alpha)\mathbf{b} \\ \mathbf{x}_1 \geq 0 & \text{ou somando} : \\ \mathbf{x}_2 \geq 0 \\ \mathbf{A}[\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2] \leq \mathbf{b} \end{cases}$$

Logo:

$$\mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in C$$
 pois:

$$\alpha + (1 - \alpha) = 1$$
 e se $0 \le \alpha \le 1$ $(0 \le 1 - \alpha \le 1)$ e $\mathbf{x} \ge 0$.

Logo C é convexo.

3.2. Teorema II

"Toda solução básica compatível do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é um ponto extremo do conjunto convexo C".

3.2.1. Demonstração

Considere
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 um solução básica compatível.

Então $x_i \ge 0$, i = 1,..., m.

Considere ainda
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
 e $\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \in C, y_i, z_i \ge 0$.

Como $\mathbf{x} \in C$, que é um conjunto convexo, então:

$$\mathbf{x} = \alpha \mathbf{y} + (1 - \alpha) \mathbf{z}, 0 \le \alpha \le 1.$$

Ou ainda:

$$x_i = \alpha y_i + (1 - \alpha)z_1, \ (i \le m)$$

$$x_{i} = 0 = \alpha y_{i} + (1 - \alpha)z_{i}, \ (m < j \le n).$$

- a) Para $0 < \alpha < 1 \Rightarrow y_j = 0, z_j = 0, j = m,...,n$. Assim, $\mathbf{x} = \mathbf{y} = \mathbf{z}$, já que possuem as mesmas variáveis não-básicas.
- b) Para $\alpha = 0 \Rightarrow z_j = 0, j = m,...,n$. Assim, $\mathbf{x} = \mathbf{z}$.
- c) Para $\alpha = 1 \Rightarrow y_j = 0, j = m,...,n$. Assim, $\mathbf{x} = \mathbf{y}$.

Portanto, x é ponto extremo.

3.3. Teorema III

"Se a função objetivo possui máximo (ou mínimo) finito, então existe um ponto extremo do conjunto convexo C, que produz o valor ótimo da função".

3.3.1. Demonstração

A partir do teorema II, conclui-se facilmente que o conjunto de pontos extremos, pertencentes ao espaço de soluções do problema, é um conjunto finito. Portanto, sejam $\mathbf{x}_1, ..., \mathbf{x}_p$ os pontos extremos de C.

Seja $\mathbf{x}_0 \in \mathbf{C}$ um ponto de máximo, isto é:

$$M = z(\mathbf{x}_0) \ge z(\mathbf{x}), \forall \mathbf{x}$$

Para $\alpha_j \ge 0$ e $\sum_{j=1}^p \alpha_j = 1$, $\mathbf{x}_0 = \alpha_1 \mathbf{x}_1 + ... + \alpha_p \mathbf{x}_p$, já que \mathbf{x}_0 pertence ao conjunto convexo C.

Avaliando o valor da função objetivo no ponto \mathbf{x}_0 , tem-se:

$$z(\mathbf{x}_0) = z(\alpha_1 \mathbf{x}_1 + \dots + \alpha_p \mathbf{x}_p) = \alpha_1 z(\mathbf{x}_1) + \dots + \alpha_p z(\mathbf{x}_p)$$

Seja: \mathbf{x}_m um ponto extremo, tal que $z(\mathbf{x}_m) \ge z(\mathbf{x}_i), \forall i = 1,...,p$. Então, combinando essa condição com a equação acima, tem-se:

$$\alpha_1 z(\mathbf{x}_m) + \alpha_2 z(\mathbf{x}_m) + \dots + \alpha_p z(\mathbf{x}_m) \ge z(\mathbf{x}_0)$$
ou $z(\mathbf{x}_m) \sum_{j=1}^p \alpha_j \ge z(\mathbf{x}_0)$

Ou ainda:

$$z(\mathbf{x}_m) \ge z(\mathbf{x}_0)$$

Combinando com

$$z(\mathbf{x}_m) \le z(\mathbf{x}_0) \Longrightarrow z(\mathbf{x}_0) = z(\mathbf{x}_m).$$

3.3.2. Teorema IV

"Se a função objetivo assume valor máximo (mínimo) em mais de um ponto extremo, então a função tem o mesmo valor para qualquer combinação convexa desses pontos extremos".

3.3.3. Demonstração

Sejam $\mathbf{x}_1,...,\mathbf{x}_q$ pontos extremos tais que: $z(\mathbf{x}_1) = z(\mathbf{x}_2) = ... = z(\mathbf{x}_q) = M$.

Seja \mathbf{x} uma combinação convexa de $\mathbf{x}_1, \dots \mathbf{x}_q$. Então:

$$\mathbf{x} = \sum_{j=1}^{q} \alpha_j \mathbf{x}_j, \sum_{j=1}^{q} \alpha_j = 1, \alpha \ge 0,$$

Logo:

$$z(\mathbf{x}) = \sum_{j=1}^{q} \alpha_j z(\mathbf{x}_j) = z(\mathbf{x}_q) \sum_{j=1}^{q} \alpha_j = M.$$

3.4. Forma padrão - Forma canônica

Diz-se que o sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$ está na forma padrão (standard) se $x_i \geq 0$, i=1,...,n e $b_j \geq 0$, j=1,...,m. Se, além disso, o sistema apresenta uma base óbvia, diz-se que ele está na forma canônica.

3.5. Solução através de tabelas

Se a forma canônica do sistema do problema anterior for aumentada de uma equação, correspondendo a função objetivo, tem-se:

$$1z - 12x_1 - 15x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6 = 0
0z + 1x_1 + 0x_2 + 1x_3 + 0x_4 + 0x_5 + 0x_6 = 3
0z + 0x_1 + 1x_2 + 0x_3 + 1x_4 + 0x_5 + 0x_6 = 4
0z + 1x_1 + 1x_2 + 0x_3 + 0x_4 + 1x_5 + 0x_6 = 6
0z + 1x_x + 3x_2 + 0x_3 + 0x_4 + 0x_5 + 1x_6 = 13$$

Fator		Z	x_1	x_2	x_3	x_4	x_5	x_6	b	
limitante	Base	1	-12	-15	0	0	0	0	0	$L_0 + 15L_2$
q										0 2
3/0	x_3	0	1	0	1	0	0	0	3	L_1
<mark>4/1</mark>	x_4	0	0	1	0	1	0	0	4	L_2
6/1	x_5	0	1	1	0	0	1	0	6	$L_3 - L_2$
13/3	x_6	0	1	3	0	0	0	1	13	L_4-3L_2

		z	x_1	x_2	x_3	x_4	x_5	x_6	b	
	Base	1	-12	0	0	15	0	0	60	$L_0 + 12L_4$
3/1	x_3	0	1	0	1	0	0	0	3	$L_1 - L_4$
4/0	x_2	0	0	1	0	1	0	0	4	L_2
2/1	x_5	0	1	0	0	-1	1	0	2	$L_3 - L_4$
1/1	x_6	0	1	0	0	-3	0	1	1	$oxed{L_4}$

		Z	x_1	x_2	x_3	x_4	x_5	x_6	b	
	Base	1	0	0	0	-21	0	12	72	$L_0 + 21/2L_3$
2/3	x_3	0	0	0	1	3	0	-1	2	$L_1 - 3/2L_3$
4/1	x_2	0	0	1	0	1	0	0	4	$L_2 - 1/2L_3$
1/2	x_5	0	0	0	0	2	1	-1	1	$1/2L_3$
1/(-3)	x_1	0	1	0	0	-3	0	1	1	$L_4 + 3/2L_3$

	Z	x_1	x_2	x_3	x_4	x_5	x_6	b	
Ba	ase	0	0	0	0	10.5	1.5	82.5	$z^{\circ} = 82.5$
x_3	3	0	0	1	0	-1.5	0.5	0.5	

$$\begin{vmatrix} x_2 \\ x_4 \\ x_1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} = 0 \quad 1 \quad 0 \quad 0 \quad 0.5 \quad 0.5 \quad 3.5 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0.5 \quad -0.5 \quad 0.5 \\ 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1.5 \quad 0.5 \quad 2.5$$

3.5.1. Generalização

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}; \mathbf{A}_{(mxn)}$$

 $\mathbf{x}, \mathbf{b} \geq \mathbf{0}$

$$a_{oj}^{(0)} = \begin{cases} -c_j, j = 1, ..., n \\ 0, j = n+1, ..., n+m \end{cases}$$

- 1. Identificar uma solução básica compatível inicial.
- 2. Escolher variável não-básica que deve entrar na base.

$$a_{oi} = \min a_{oj}$$
; $j = j_1, ..., j_n$; $j_k \notin B$; dentre $a_{oj} < 0$.

Seleciona-se assim a variável i para entrar na base.

3. Escolher a variável que deve sair da base.

$$q_l = \min \left(q_j = \frac{b_j}{a_{ji}} \right); j = 1,...,m; \text{ dentre os } q_j \ge 0$$

Obs: O índice l identifica a posição no conjunto $B = \{\cdots\}$ da variável básica que deve deixar a base.

- 4. Transforma-se a linha l para $a_{lk}^{(t+1)} = \frac{1}{a_{li}} a_{lk}^{(t)}; k = 1,...,n+m+1.$
- 5. A fim de "zerar" os demais elementos da i-ésima coluna:

$$a_{pk}^{(t+1)} = a_{pk}^{(t)} - \left[\frac{a_{pi}}{a_{li}}a_{lk}\right]^{(t)}, \quad p = 0,1,...,n \neq l$$

$$k = 1,...,n+m+1$$

Retorna-se ao passo dois e repetem-se os demais passos, enquanto o ótimo não for atingido.

3.6. Problemas de minimização

Esses problemas podem ser resolvidos de formas distintas:

3.6.1. Min z = Max (-z)

Maximiza-se o simétrico da função objetivo.

- 3.6.2. Alteram-se os critérios de otimalidade e de entrada na base
- 3.7. Situações especiais

3.7.1. Empate de *v* variáveis na entrada

Escolhe-se arbitrariamente qualquer das "v" variáveis para entrar na base.

Obs: O n° de iterações para alcançar o "ótimo" é função da variável escolhida.

3.7.2. Empate na saída - degeneração

Isso significa que mais de uma variável se anula ao mesmo tempo. Escolhe-se aleatoriamente uma delas para deixar a base.

Nesse caso, variáveis básicas assumem o valor <u>zero</u>. Diz-se que a solução é degenerada.

Ex:
$$\max z = 2x_1 + 3x_2$$

s.a.
$$x_1 \le 3$$

$$x_2 \le 4$$

$$x_1 + 3x_2 \le 12$$

Forma canônica:

$$\begin{cases} z - 2x_1 - 3x_2 = 0 \\ x_1 + x_3 = 3 \\ x_2 + x_4 = 4 \\ x_1 + 3x_2 + x_5 = 12 \end{cases}$$

Fator q	(1)	Z	x_1	x_2	x_3	x_4	x_5	b	
T ator q	Base	1	-2	-3	0	0	0	0	$L_0 + 3L_2$
3/0	x_3	0	1	0	1	0	0	3	L_1
4/1	X_4	0	0	1	0	1	0	4	L_2
12/3	x_5	0	1	3	0	0	1	12	L_3-3L_2
	(2)	Z	x_1	x_2	x_3	x_4	x_5	b	
	Base	1	- 2	0	0	3	0	12	$L_0 + 2L_3$
3/1	x_3	0	1	0	1	0	0	3	$L_1 - L_3$
4/0	x_2	0	0	1	0	1	0	4	L_2
0/1	x_5 x_5	0	1	0	0	-3	1	0	L_3
	(3)	Z	x_1	x_2	x_3	x_4	x_5	b	
	Base	1	0	0	0	-3	2	12	$L_0 + L_1$

3/3	x_3 x_3	0	0	0	1	3	-1	3	$1/3L_1$
4/1	x_2	0	0	1	0	1	0	4	$L_2 - 1/3L_1$
0/(-3)	x_1	0	1	0	0	-3	1	0	$L_3 + L_1$
	(4)	Z	x_1	x_2	x_3	x_4	x_5	b	
	Base	1	0	0	1	0	1	15	$z^{\circ} = 15$
	x_4	0	0	0	1/3	1	-1/3	1	
	x_2	0	0	1	-1/3	0	1/3	3	
	x_1	0	1	0	1	0	0	3	

Se de (1) para (2) escolhermos x_5 em vez de x_4 :

Fator q	(1)	Z	x_1	x_2	x_3	x_4	x_5	b	
T ator q	Base	1	-2	-3	0	0	0	0	$L_0 + L_3$
3/0	x_3	0	1	0	1	0	0	3	L_1
<mark>4/1</mark>	x_4	0	0	1	0	1	0	4	$L_2 - 1/3L_3$
12/3	x_5	0	1	3	0	0	1	12	$1/3L_3$

	(2)	Z	x_1	x_2	x_3	x_4	x_5	b	
	Base	1	<u>-1</u>	0	0	0	1	12	$L_0 + L_1$
3/1	x_3	0	1	0	1	0	0	3	
0/(-1/3)	x_4	0	-1/3	0	0	1	1/3	0	$L_2 + 1/3L_1$
4/(1/3)	x_2	0	1/3	1	0	0	1/3	4	$L_3 - 1/3L_1$

(3)	z	x_1	x_2	x_3	x_4	x_5	b	
Base	1	0	0	1	0	1	15	$Z^{ot} = 15$
x_1	0	1	0	1	0	0	3	
x_4	0	0	0	1/3	1	1/3	1	
x_2	0	0	1	-1/3	0	1/3	3	

3.7.3. Soluções Múltiplas

Ex: max
$$z = x_1 + 3x_2$$

s.a.
$$x_1 \le 3$$

$$x_2 \le 4$$

$$x_1 + 3x_2 \le 13$$

Forma canônica:

$$\begin{cases} z - x_1 - 3x_2 = 0 \\ x_1 + x_3 = 3 \\ x_2 + x_4 = 4 \\ x_1 + 3x_2 + x_5 = 13 \end{cases}$$

Eaton a	(1)	z	x_1	x_2	x_3	x_4	x_5	b	
Fator q	Base	1	-1	-3	0	0	0	0	$L_0 + 3L_2$
3/0	x_3	0	1	0	1	0	0	3	L_1
<mark>4/1</mark>	x_4	0	0	1	0	1	0	4	L_2
13/3	x_5	0	1	3	0	0	1	13	$L_3 - 3L_2$

Fator q	71(2)		1					1	\neg
	(2)	Z	x_1	x_2	x_3	x_4	x_5	Ь	
	Base	1	-1	0	0	3	0	12	$L_0 + L_3$
3/1	x_3	0	1	0	1	0	0	3	L_1-L_3
4/0	x_2	0	0	1	0	1	0	4	L_2
1/1	x_5	0	1	0	0	-3	1	1	L_3

	(3)	Z	x_1	x_2	x_3	x_4	x_5	b	
	Base	1	0	0	0	00	1	13	L_0
2/3	$x_3 x_3$	0	0	0	1	3	-1	2	$1/3L_1$
4/1	x_2	0	0	1	0	1	0	4	$L_2 - 1/3L_1$
1/(-3)	x_1	0	1	0	0	-3	1	1	$L_3 + L_1$

(4)	Z	x_1	x_2	x_3	x_4	x_5	b
Base	1	0	0	0	0	1	13
x_4	0	0	0	1/3	1	-1/3	2/3
x_2	0	0	1	-1/3	0	1/3	10/3
x_1	0	1	0	1	0	0	3

$$z = x_1 + 3x_2$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}; \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^2 = \begin{bmatrix} 3 \\ 10/3 \end{bmatrix}; \quad \mathbf{x} = \alpha \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} + (1 - \alpha) \cdot \begin{bmatrix} 3 \\ 10/3 \end{bmatrix} = \begin{bmatrix} 3 - 2\alpha \\ 10/3 + (2/3)\alpha \end{bmatrix}; \quad z(\mathbf{x}) = 13$$

3.8 Solução Inicial

3.8.1. Todas as restrições do tipo \leq e todos os $b_i \geq 0$

 $\forall x_j \ge 0 \Rightarrow$ forma canônica (solução compatível básica óbvia).

3.8.2. $b_k < 0$, para algum k, ou alguma restrição do tipo \geq .

Nesse caso a solução básica óbvia, composta pelas *variáveis de folga*, será não compatível.

Ex:

$$Max z = 2x_1 + x_2$$

$$x_1 \le 3$$

$$x_2 \le 4$$

$$x_1 + 3x_2 \ge 13$$

Para eliminar esse inconveniente, introduz-se uma *variável artificial* na k-ésima equação, cujo coeficiente deve ter sinal contrário daquele da *variável de folga* da mesma equação.

Ex:

$$x_1 + 3x_2 - x_5 + x_6 = 13$$

A fim de não alterar a k-ésima equação, deve-se garantir que a variável artificial seja nula, quando se atingir o ótimo. Isso pode ser conseguido de duas maneiras:

I. Método do "M grande"

Para não permitir que x_6 pertença à base ótima, altera-se a função-objetivo para:

 $Z_{novo} = Z - Mx_6$, sendo M >> que as quantidades envolvidas no problema.

II. Método da função-objetivo artificial

Constrói-se a função $W = \sum x_{artificial}$, que deve ser minimizada. Obviamente,

 $W^{\acute{o}timo} = 0$ e todos os $x_{i,artificial} = 0$.

Ex:

$$\min W = x_6 \iff m \acute{a} x (-W) = -x_6$$

	(1)	-W	x_1	x_2	x_3	x_4	x_5	x_6	b	
Eaton a	Base	1	0	0	0	0	0	1	0	$L_0 - L_3$ (linha 0
Fator q										em função das
										variáveis não- básicas)
	x_3	0	1	0	1	0	0	0	3	L_1
	x_4	0	0	1	0	1	0	0	4	L_2
	x_6	0	1	3	0	0	-1	1	13	L_3

	(2)									
	Base	1	-1	-3	0	0	1	0	-13	$L_0 + 3L_2$

3/0	x_3	0	1	0	1	0	0	0	3	L_1
<mark>4/1</mark>	x_4	0	0	1	0	1	0	0	4	L_2
13/3	x_6	0	1	3	0	0	-1	1	13	$ \begin{vmatrix} L_1 \\ L_2 \\ L_3 - 3L_2 \end{vmatrix} $

	(3)	-W	x_1	x_2	x_3	x_4	x_5	x_6	b	
	Base	1	-1	0	0	3	1	0	<u>-1</u>	$L_0 + L_3$
3/1	x_3	0	1	0	1	0	0	0	3	$L_1 - L_3$
4/0	x_2	0	0	1	0	1	0	0	4	L_2
1/1	x_6	0	1	0	0	-3	-1	1	1	L_3

(4)	-W	x_1	x_2	x_3	x_4	x_5	x_6	b
Base	1	0	0	0	0	0	1	0
x_3	0	0	0	1	3	1	-1	2
x_2	0	0	1	0	1	0	0	4
x_1	0	1	0	0	-3	-1	1	1

(5)	Z	x_1	x_2	x_3	x_4	x_5	x_6	b	
Base	1	-2	-1	0	0	0	-	0	$L_0 + L_2 + 2L_3$
<mark>Base</mark>	1	0	0	0	-5	<mark>-2</mark>		<mark>6</mark>	
x_3	0	0	0	1	3	1	-	2	
x_2	0	0	1	0	1	0	-	4	
x_1	0	1	0	0	-3	-1	-	1	