5. Seja dada uma função ∇ da qual só sabe duas propriedades: $\nabla \cdot i_1 = id$ e $\nabla \cdot i_2 = id$. Mostre que, necessariamente, ∇ satisfaz também a propriedade natural $f \cdot \nabla = \nabla \cdot (f + f)$.

Resolução

 $\equiv True$; True

Temos de mostrar que $f \cdot \nabla = \nabla \cdot (f+f)$ { $\operatorname{def-+}$, lei (21) } $\equiv f \cdot \nabla = \nabla \cdot [i_1 \cdot f, i_2 \cdot f]$ { $\operatorname{fusão-+}$, lei (22) } $\equiv f \cdot \nabla = [\nabla \cdot i_1 \cdot f, \nabla \cdot i_2 \cdot f]$ { $\nabla \cdot i_1 = id$; $\nabla \cdot i_2 = id$ } $\equiv f \cdot \nabla = [f, f]$ { $\operatorname{universal-+}$, lei (17), $\operatorname{para} k = f \cdot \nabla$ } $\equiv f \cdot \nabla \cdot i_1 = f$; $f \cdot \nabla \cdot i_2 = f$ { $\nabla \cdot i_1 = id$; $\nabla \cdot i_2 = id$ } $\equiv f = f$; f = f { $\operatorname{propriedade}$ reflexiva da igualdade }