University of Toronto at Scarborough

CSCC73H3 Algorithm Design and Analysis, FALL 2018 Assignment No.2: Greedy Algorithms

DUE: September 29, 2018, at 11:59 pm

Student ID: 1005642654

Student Name: KyooSik Lee

1. Description

My greedy solution is the maximum spanning tree.

My greedy algorithm uses a slightly altered Kruskal's algorithm to give a greedy solution. Kruskal's algorithm is originally designed for minimum spanning tree. My algorithm uses Kruskal's algorithm after multiplying -1 to each edge, which will result in maximum spanning tree.

Complexity

Kruskal's algorithm first sort the edge by its weight. The sorting takes $O(E \log E)$ time, where E is the number of edges in the graph.

Correctness

Follow the Kruskal's algorithm.

For any vertex u and v, there is a moment in Kruskal's algorithm that by adding one edge makes Set(u) = Set(v) (before adding e, $Set(u) \neq Set(v)$). Let's call this edge e with bandwidth b_e . And let's call p the greedy path at that moment from u to v.

Figure 1: Moment e unions Set(u) and Set(v)

By Kruskal's algorithm, any edge from the set(u) to set(v) other than e has a smaller bandwidth than b_e . Any path from Set(u) to Set(v) bypassing vertices/vertex outside of

Set(u) and Set(v) will have smaller transmission bottleneck rate. If not, unioning that vertices with either Set(u) or Set(v) must happen before e. If it happened before e then adding e to the maximum spanning tree will result in a cycle, which is a contradiction

For any vertex u and v, by examing every direct path from Set(u) to Set(v) and bypassing path from Set(u) to bypassing vertices/vertex to Set(v) I have examined every possible path in the graph.

Therefore, my greedy algorithm is correct.

2. Description

My greedy algorithm is to buy most profitable per dollar items first.

Profit per Cost p_i is defined by $\frac{m_i-c_i}{c_i}$. My algorithm is to buy largest p_i items and moving on to next largest item until the budget is over. The example table follows.

Item	A	В	\mathbf{C}	D
$\mathbf{Cost/unit}$ c_i	\$40	\$100	\$20	\$25
$MSRP m_i$	\$100	\$240	\$80	\$75
Available Quantity q_i	30	200	500	200
Profit per Cost p_i	\$1.5	\$1.4	\$3	\$2

First look at the item that has largest p_i , and then buy as much as you can with your budget. If you still have budget left, look at the next item that has largest p_i . Repeat this until you have no budget left. If you have no more items to buy, terminate the algorithm.

Complexity

First sorting the items according to its profit per cost takes $O(n \log n)$.

Then comparing each item to the budget will take O(n) time.

Therefore, my algorithm's complexity is $O(n \log n)$.

Correctness

Let's say we have an optimal solution O. Then O has better profit than our solution G. For O and G lets sort each item bought according to it's profit so $p_1 \geq p_2 \geq \cdots \geq p_n$, $p'_1 \geq p'_2 \geq \cdots \geq p'_s$. For money spent on O and G let's sort the money according to the profit each money makes. (Figure 2)

Figure 2: Sorted Money According to Profit

Let's say P(m) is the profit that money m makes. Then there exists m'_k in O where $m'_{k-1} < m_{k-1} \& P(m'_k) \neq P(m_{k-1})$. Then for each money $m'_i (i \geq k)$, the profit m'_i

makes is less than the profit made by money above in the diagram. Then the total profit for O is less than G, which is a contradiction to the fact that O is optimal. Therefore my greedy algorithm is correct.