18.022 Recitation Handout 10 September 2014

1. For each of the following pairs of vectors \mathbf{a} and \mathbf{b} , calculate $\mathbf{a} \cdot \mathbf{b}$ and $\|\mathbf{a}\| \|\mathbf{b}\|$.

(a) $\mathbf{a} = (1,5)$ and $\mathbf{b} = (-2,3)$
(b) $\mathbf{a} = (3, -5)$ and $\mathbf{b} = (2, 0)$
(c) $\mathbf{a} = (-2, 4, 1)$ and $\mathbf{b} = (4, 1, 2)$
(d) Conjecture an inequality relating $ \mathbf{a} \cdot \mathbf{b} $ and $ \mathbf{a} \mathbf{b} $ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
(e) (Fun/Challenge problem) To prove the inequality conjectured in (d) (called the <i>Cauchy-Schwarz inequality</i>), expand the left-hand side of the inequality $\ \mathbf{a} + \lambda \mathbf{b}\ ^2 \ge 0$, where λ is any real number.
2. (1.3.20 in <i>Colley</i>) Suppose that a force $\mathbf{F} = (1, -2)$ is acting on an object moving parallel to the vector $(4, 1)$. Decompose \mathbf{F} into a sum of vectors \mathbf{F}_1 and \mathbf{F}_2 , where \mathbf{F}_1 points along the direction of motion and \mathbf{F}_2 is perpendicular to the direction of motion.
3. (1.3.17 in <i>Colley</i>) Is it ever the case that the projection of a onto b and the projection of b onto a are the same vector? If so, under what conditions?

5. (1.3.23 in *Colley*) Let A, B, and C denote the vertices of a triangle. Let 0 < r < 1. If P_1 is the point on \overline{AB} located r times the distance from A to B and P_2 is the point on \overline{AC} located r times the distance from A to C, use vectors to show that $\overline{P_1P_2}$ is parallel to \overline{BC} and has r times the length of \overline{BC} .

6. (1975 USAMO) Let A, B, C, and D be four points in \mathbb{R}^3 . Use vectors to show that

$$AB^2 + BC^2 + CD^2 + DA^2 \ge AC^2 + BD^2$$
.

(This generalizes the fact that the sum of the squares of the sides of a quadrilateral is at least the sum of the squares of its diagonals.) Make a statement about when equality holds.