DFA

NFA

ASE is regular if 3 a DFA m &+ L(m) = A.

For every NFAN, JDFAM s.t L(N)=L(M).
[Subset Construction] [subset construction]

A S E is regular if 3 a NFA N s.+ L(N)= A.

 $NFA \implies E-transitions.$

13 * pdf - list all files if pdf extension pattern X

L(8)={x matches 8}

Atomic patterns. + Compound patterns.

15 a 15 abc 15 * pdf

≤-alphabet Set.

≤-alphabet

Atomic Pottern

Syntex.	Se mon tics ·
V	12(-8)
- a E E	L(3) L(a) = {a}
- E	$L(\epsilon) = \{ \epsilon \}.$
- Ø	$L(\phi) = \phi$ - motches nothing.
· #	1(#) = 5
. @	L(Q) = E*

Compound patterns.

Syntox	Semantics.
d, B- patterns.	
X+B	$L(\alpha+\beta) = L(\alpha)UL(\beta)$
	((1010)
d NB dB	$L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
\mathcal{AB}	$L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$ $L(\alpha \beta) = \{yz \mid y \in L(\alpha) \text{ and } z \in L(\beta)\}$
	L(~) L(B)
	$L(\alpha)L(B)$ $= \sum_{k=1}^{\infty} \leq \sum_{k=1}^{\infty}$
. ¥- 1	1 () 1 () 2
∠* 	LLL) = LW) U L(x) U LW) U
	$L(\chi^*) = L(\chi)^0 U L(\chi) U L(\chi)^0 - L(\chi^*) = \{x_1 x_2 - x_n \} n \ge 0, x_i \in L(\chi)$
,	151515
at LL	$(2)^{+} = L(2)^{-} U L(2)^{2} U$
	$= L(\lambda)^{\dagger}$
7d L($7\alpha)=\overline{L(\alpha)}=2^{x}-L(\alpha).$

Examples.

$$\underline{z}^* = L(\underline{\omega}) = L(\underline{\#}^*)$$
Lyafomic Ly Compound.

$$ae \leq = L(a) = \{a\}.$$

• Strings with no occurrence of the symbol
$$a$$
.

 $(#17a)^*$

Questions.

- Given string or end &, how hard is it to determine if XEL(x).
- Can you represent every set by some pattern.
- LandBare equivolent if L(A)=L(B). Check for equivalence of patterns.
- E = 7(#Q) @ = #*

 - $\# \equiv a_1 + a_2 + \dots + a_n : \mathcal{L} = \{a_1, a_2, \dots a_n\}$
 - De Morgan laws: XMB = 7 (7x+7B)

Regular Expression. Regul

Atomic Pattern

Compound Pattern.

aez '+

e •

-

Pattern using Ite above Symbols are colled Regular Expressions.

Theorem. Let $A \subseteq \mathcal{E}^*$. The following Statements are equivolent.

- 1) A is regular. 3 a finife automaton M s.+ L(m)=A.
- 2) A= L(x) for some pattern x.
- 3) A = L(d) for some regular expression d.

Proof. 3⇒2 is trivial 2=>1

1=>3 M to regular expression d.