

Graph Theory

3、图的矩阵表示

概念:

关联矩阵, 邻接矩阵, 可达矩阵

无向图的关联矩阵(对图无限制)

无向图 $G=\langle V,E\rangle$,|V|=n,|E|=m,令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G 的关联矩阵,记为M(G).

性质

(1)
$$\sum_{i=1}^{n} m_{ij} = 2$$
 $(j = 1, 2, ..., m)$

(2)
$$\sum_{i=1}^{m} m_{ij} = d(v_i)$$
 ($i = 1, 2, ..., n$)

$$(3) \sum_{i,j} m_{ij} = 2m$$

(4) 平行边的列相同

例

G

$$\mathbf{M}(\mathbf{G}) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

有向图的关联矩阵(无环有向图)

有向图D=<V,E>,令则称 $(m_{ij})_{n\times m}$ 为D的关联矩阵,记为M(D).

$$m_{ij} = \begin{cases} 1, & v_i \ge e_j \text{ 的始点} \\ 0, & v_i \le e_j \text{ 不关联} \\ -1, & v_i \ge e_j \text{ 的终点} \end{cases}$$

性质

(1)
$$\sum_{i=1}^{n} m_{ij} = 0$$
 ($j = 1, 2, ..., m$)

(2)
$$\sum_{j=1}^{m} (m_{ij} = 1) = d^{+}(v_{i}), \quad \sum_{j=1}^{m} (m_{ij} = -1) = d^{-}(v_{i}), \quad i = 1, 2, ..., n$$

$$(3) \sum_{i,j} m_{ij} = 0$$

(4) 平行边对应的列相同

例

$$\mathbf{M}(\mathbf{G}) = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

有向图的邻接矩阵

设D=(V,E)是有向图, $V = \{v_1, \dots, v_n\}$,构造矩阵 $A = [a_{ij}]$ 如下: $\forall i, j (1 \le i, j \le n)$

称A为图D的邻接矩阵。

有向图的邻接矩阵性质

(1)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \quad i = 1, 2, ..., n$$

(2)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \quad j = 1, 2, ..., n$$

- (3) $\sum_{i,j} a_{ij}^{(1)} = m - D$ 中长度为1的通路数
- (4) $\sum_{i=1}^{n} a_{ii}^{(1)} - D$ 中长度为1的回路数

邻接矩阵的含义

定理 设 A 为有向图 D 的邻接矩阵, $V=\{v_1,v_2,...,v_n\}$ 为顶点集,则 A 的 l 次幂 A^l ($l \ge 1$) 中元素

 $a_{ij}^{(l)}$ 为D中 v_i 到 v_j 长度为l的通路数,其中 $a_{ii}^{(l)}$ 为 v_i 到自身长度为l的回路数,而 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$ 为D中长度为l的通路总数, $\sum_{i=1}^{n} a_{ii}^{(l)}$ 为D 中长度为l的回路总数.

推论 设 $B_l = A + A^2 + ... + A^l \ (l \ge 1)$,则 B_l 中元素 $\sum_{i=1}^n \sum_{j=1}^n b_{ij}^{(l)}$ 为D中长度小于或等于 l 的通路数. $\sum_{i=1}^n b_{ii}^{(l)}$ 为D中长度小于或等于 l 的回路数

实例

有向图D如图所示,求 A, A_2, A_3, A_4 ,并回答诸问题:

- (1) D 中长度为1, 2, 3, 4的通路各有多少条? 其中回路分别为多少条?
- (2) D 中长度小于或等于4的通路为多少条? 其中有多少条回路?

实例求解

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

- (1) D中长度为1的通路为8条,其中有1条是回路。 D中长度为2的通路为11条,其中有3条是回路. D中长度为3和4的通路分别为14和17条,回路分别 为1与3条.
- (2) D中长度小于等于4的通路为50条,其中有8条是回路.

有向图的可达矩阵

设D=<V,E>为有向图. $V=\{v_1,v_2,...,v_n\}$, 令

$$p_{ij} = \begin{cases} 1, & v_i \overline{\text{可达}} v_j \\ 0, & \overline{\text{否则}} \end{cases}$$

称 $(p_{ii})_{n \times n}$ 为D的可达矩阵,记作P(D),简记为P.

例: 求下图所示有向图 D 的可达矩阵。

