Unit 3 cont'd Methods of Estimation

once lambda is less than the maximum of x_i then it is 0

$$X_{1,1}, X_{n} \stackrel{i}{\sim} U_{nif}(\Gamma_{0}, X_{1}), \lambda > 0$$

$$P^{if} \quad f_{n}(x) = \frac{1}{\lambda} M(0 \le x \le \lambda)$$

$$L(X_{1,1}, X_{n}, \lambda) = \frac{1}{\lambda^{n}} M(0 \le n_{in}(x_{i})) M(n \times x_{i} \le \lambda)$$

$$(n \times x_{i})^{n} \quad f_{n}(x_{i}) = 1$$

this model does not satisfy the regulatory conditions - i.e. the derivative is not defined throughout so we can't set it to 0 to find the MLE (can't take derivative below max x_i)

Concept Check: Maximum Likelihood Estimator for a Uniform Statistical Model

1/1 point (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} \mathrm{Unif}\,[0,\theta^*]$ where θ^* is an unknown parameter. We constructed the associated statistical model $(\mathbb{R}_{\geq 0},\{\mathrm{Unif}\,[0,\theta]\}_{\theta>0})$ (where $\mathbb{R}_{\geq 0}$ denotes the nonnegative reals).

For any $\theta > 0$, the density of $\mathrm{Unif}\,[0,\theta]$ is given by $f(x) = \frac{1}{\theta}\mathbf{1}\,(x\in[0,\theta])$. Recall that

$$\mathbf{1}(x \in [0, \theta]) = \begin{cases} 1 & \text{if } x \in [0, \theta] \\ 0 & \text{otherwise.} \end{cases}$$

Hence we can use the product formula and compute the likelihood to be

$$L_n\left(x_1,\ldots,x_n,\theta\right) = \prod_{i=1}^n \left(\frac{1}{\theta}\mathbf{1}\left(x_i \in [0,\theta]\right)\right) = \frac{1}{\theta^n}\mathbf{1}\left(x_i \in [0,\theta] \ \forall \ 1 \leq i \leq n\right).$$

For the fixed values (1, 3, 2, 2.5, 5, 0.1) (think of these as observations of random variables X_1, \dots, X_6), what value of θ maximizes L_6 $(1, 3, 2, 2.5, 5, 0.1, \theta)$?

5 **✓ Answer:** 5

Solution:

Observe that

$$L_{6}\left(1,3,2,2.5,5,0.1,\theta\right)=\frac{1}{\theta^{6}}\mathbf{1}\left(\left\{1,3,2,2.5,5,0.1\right\}\subset\left[0,\theta\right]\right).$$

If $\theta < \max\{1,3,2,2.5,5,0.1\}$, then we have $\{1,3,2,2.5,5,0.1\} \not\subset [0,\theta]$. By the definition of the indicator function, this means L_6 $(1,3,2,2.5,5,0.1,\theta)=0$ for $\theta < \max\{1,3,2,2.5,5,0.1\}=5$. Hence, when maximizing L_6 $(1,3,2,2.5,5,0.1,\theta)$, we need to consider $\theta \in [5,\infty)$. Restricted to this interval, we observe that

$$L_6(1, 3, 2, 2.5, 5, 0.1, \theta) = \frac{1}{\theta^n}.$$

The above is a decreasing function on $[5, \infty)$, so the maximum is attained when $\theta = \max\{1, 3, 2, 2.5, 5, 0.1\} = 5$.

Remark: In general, the maximum likelihood estimator for $heta^*$ in this uniform statistical model is

$$\widehat{\theta_n}^{MLE} = \max_{1 \le i \le n} X_i.$$

MLE for a Loaded Die: Likelihood

1/1 point (graded)

You have a loaded (i.e. possibly unfair) six-sided die with the probability that it shows a "3" equal to η and the probability that it shows any other number equal to $(1 - \eta)/5$.

Let X be a random variable representing a roll of this die. You roll this die n times, and record your data set, consisting of the values of the faces as $X_1, X_2, X_3, \ldots X_n$.

Let the outcome of a set of n rolls of the die be modeled by the i.i.d. random variable sequence (X_1, \ldots, X_n) . We model the i'th roll as X_i where $X_i = j$ if the top face of the die shows a "j".

You roll the die n times and observe a sequence of outcomes x_1, \ldots, x_n which contains exactly k outcomes $x_i = 3$. What is the likelihood function $L_n(x_1, \ldots, x_n, \eta)$ for the entire sequence of outcomes?

(Enter **eta** for η .)

eta^k*((1-eta)/5)^(n-k) $\eta^k \cdot \left(\frac{1-\eta}{5}\right)^{n-k}$

Solution:

Denote by $p_{\eta}(x)$ the pmf of X_i . The probability that X_i takes on a value 3 is equal to η and the probability that X_i takes on any other value is $(1 - \eta)/5$. Therefore, using the probability of observing a particular sequence of outcomes, we obtain the likelihood function as

$$L_n(x_1, ..., x_n, \eta) = \prod_{i=1}^n p_{\eta}(x_i)$$
$$= \eta^k \left(\frac{1-\eta}{5}\right)^{n-k}.$$

Note that the above does not contain a combinatorial expression as we are interested in the probability of observing a particular sequence of die rolls and not in the probability of obtaining a certain number of 3's in n rolls.

MLE for a Loaded Die: MLE

1/1 point (graded)

Find the ML estimator $\widehat{\pmb{\eta}}_n^{\mathrm{MLE}}$.

k/n \star Answer: k/n

STANDARD NOTATION

Solution:

Since we are looking for the $\operatorname{argmax}_{\eta \in [0,1]} L_n (x_1, \dots, x_n, \eta)$, we can ignoring any scaling constant in $L_n (x_1, \dots, x_n, \eta)$. Hence, we will maximize $\widetilde{L}_n (x_1, \dots, x_n, \eta) = \eta^k (1 - \eta)^{n-k}$.

Taking the derivative of $\widetilde{L}_n(x_1,\ldots,x_n,\eta)$ with respect to η and setting it to 0, we get

$$\begin{split} k\left(1-\eta\right) &= \left(n-k\right)\eta\\ \Longrightarrow \widehat{\eta}_n^{\text{MLE}} &= \frac{k}{n}. \end{split}$$

Remark: The function $\widetilde{L}_n(x_1,\ldots,x_n,\eta)=\eta^k(1-\eta)^{n-k}$ whose maximizer is $\widehat{\eta}_n^{\rm MLE}$ is the same as the likelihood function for a Bernoulli experiment with parameter η , even though each roll of a die has 6 potential outcomes.