Secondo parziale di Geometria e Algebra (Meccanica) 19-12-2014-A

- 1) a) Trovare l'equazione del cono che proietta la circonferenza $\mathcal{C} \equiv \left\{ \begin{array}{l} x^2 + y^2 4 = 0 \\ z = 1 \end{array} \right.$ dal vertice V(0,0,4).
 - b) Trovare poi il centro ed il raggio della circonferenza L intersezione del cono (del punto a)) con il piano di equazione z=-11.
- 2) Sia $A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 8 \end{pmatrix}$ (A è simmetrica) e sia T il tensore simmetrico associato ad A
- rispetto alla base canonica di \mathbb{R}^3 .
 - a) Diagonalizzare A con una matrice ortogonale U.
 - b) Determinare la decomposizione spettrale del tensore T.
 - c) Trovare $\alpha \in \mathbf{R}$ in modo che T sia ortogonale a $\mathbf{v} \otimes \mathbf{w}$, con $\mathbf{v} = (1, \alpha, 1)$, $\mathbf{w} = (1, 1, 1)$.
- 3) Sia $A = \begin{pmatrix} 3 & 0 & 0 \\ 8 & -1 & 0 \\ 2 & \alpha & 3 \end{pmatrix}$.
 - a) Determinare gli eventuali valori di $\alpha \in \mathbf{R}$ per i quali A è diagonalizzabile.
 - b) Indicato con T il tensore associato ad A rispetto alla base canonica di \mathbf{R}^3 con $\alpha = 1$, trovare il tensore emisimmetrico E di vettore assiale $\mathbf{v}_1 = T((1, 1, 1))$.
- 4) a) Trovare il tensore T((x,y)) in ${\bf R}^2$ sapendo che $T((0,1))=(-1,\alpha)$ e $T((-1,0))=(-\alpha,-1) \ \alpha \in {\bf R}.$
 - b) Determinare gli eventuali $\alpha \in \mathbf{R}$ in modo che T sia un tensore ortogonale e per tali valori descrivere "geometricamente" T((x,y)).

N.B. Tutti i passaggi devono essere opportunamente giustificati.