Grupa 344

Tehnici de Optimizare

Tema 3

Exercițiul 1

Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = x_1^3 x_2^2 (-1 - x_1 - x_2)$.

Calculați explicit primele 2 iterații ale Metodei Gradient Proiectat cu pas constant 1, în următoarele situații:

a)
$$x \in Q$$
, $Q = \{x \in \mathbb{R}^2 \mid x_1 + 2x_2 \le 1\}$

Calculăm gradientul funcției. Acesta va fi:

$$\nabla f(x) = \begin{bmatrix} -3x_1^2x_2^2 - 4x_1^3x_2^2 - 3x_1^2x_2^3 \\ -2x_1^3x_2 - 2x_1^4x_2 - 3x_1^3x_2^2 \end{bmatrix} = \begin{bmatrix} x_1^2x_2^2(-3 - 4x_1 - 3x_2) \\ x_1^3x_2(-2 - 2x_1 - 3x_2) \end{bmatrix}$$

Se observă că mulțimea Q este de tip semiplan cu $a = [1\ 2]^T$, b = 1, deci proiecția va avea forma explicită:

$$\pi_S(x^0) = x^0 - \frac{\max\{0, a^T x^0 - b\}}{||a||^2} a$$
, echivalent cu

$$\pi_Q(x^0) = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix} - \frac{\max\{0, x_1^0 + 2x_2^0 - 1\}}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Alegem $x^0 = [-1 - 1].$

Pas 1:

Calculăm:

$$\nabla f(x^0) = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$y^1 = x^0 - \nabla f(x^0) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \end{bmatrix}$$

Aşadar,

$$x^{1} = \pi_{Q}(y^{1}) = \begin{bmatrix} -5 \\ -4 \end{bmatrix} - \frac{\max\{0, -5 - 8 - 1\}}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \end{bmatrix}$$

Cum $||x^1 - x^0|| > \varepsilon$, continuăm cu pasul 2.

Pas 2:

Calculăm:

$$\nabla f(x^1) = \begin{bmatrix} (-5)^2(-4)^2(-3+4*5+3*4) \\ (-5)^2(-4)^2(-2+2*5+3*4) \end{bmatrix} = \begin{bmatrix} 11600 \\ 10000 \end{bmatrix}$$
$$y^2 = x^1 - \nabla f(x^1) = \begin{bmatrix} -5 \\ -4 \end{bmatrix} - \begin{bmatrix} 11600 \\ 10000 \end{bmatrix} = \begin{bmatrix} -11605 \\ -10004 \end{bmatrix}$$

Aşadar,

$$x^{2} = \pi_{Q}(y^{2}) = \begin{bmatrix} -11605 \\ -10004 \end{bmatrix} - \frac{\max\{0, -11605 - 20008 - 1\}}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -11605 \\ -10004 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -11605 \\ -10004 \end{bmatrix}$$

b) $x \in Q$, $Q = \{x \in R^2 \mid \max\{x_1^2, x_2^2\} \le 1\}$ $Cum\ 0 \le \max\{x_1^2, x_2^2\} \le 1$, înseamnă că și $\min\{x_1^2, x_2^2\} \le 1$, deci condiția devine $x_1^2 \le 1$ și $x_2^2 \le 1$.

$$x_1^2 \le 1$$
 se poate scrie ca $-1 \le x_1 \le 1$, deci Q devine:
$$Q = \{x \in R^2 \mid -1 \le x \le 1\}$$

Se observă că mulțimea Q este de tip box, deci proiecția va avea forma explicită:

$$\pi_{S}(x^{0}) = \max\{-1, \min\{1, x^{0}\}\} = \begin{bmatrix} \max\{-1, \min\{1, x_{1}^{0}\}\} \\ \max\{-1, \min\{1, x_{2}^{0}\}\} \end{bmatrix}$$

Alegem $x^0 = [-1 - 1].$

Pas 1:

Calculăm:

$$\nabla f(x^0) = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$y^1 = x^0 - \nabla f(x^0) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \end{bmatrix}$$

Aşadar,

$$x^{1} = \pi_{Q}(y^{1}) = \begin{bmatrix} \max\{-1, \min\{1, y_{1}^{1}\}\} \\ \max\{-1, \min\{1, y_{2}^{1}\}\} \end{bmatrix} = \begin{bmatrix} \max\{-1, \min\{1, -5\}\} \\ \max\{-1, \min\{1, -4\}\} \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Cum $||x^1 - x^0|| > \varepsilon$, continuăm cu pasul 2.

Pas 2:

Calculăm:

$$\nabla f(x^1) = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$y^2 = x^1 - \nabla f(x^1) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \end{bmatrix}$$

Aşadar,

$$x^{2} = \pi_{Q}(y^{2}) = \begin{bmatrix} \max\{-1, \min\{1, y_{1}^{1}\}\} \\ \max\{-1, \min\{1, y_{2}^{1}\}\} \end{bmatrix} = \begin{bmatrix} \max\{-1, \min\{1, -5\}\} \\ \max\{-1, \min\{1, -4\}\} \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

c) Este problema convexă când $Q = \{x \in \mathbb{R}^2 \mid x_1^2 \le x_2\}$?

Pentru a decide dacă problema este convexă, trebuie să stabilim dacă funcția obiectiv este convexă și mulțimea fezabilă este convexă.

Se observă ca mulțimea Q este de forma unei parabole, deci mulțimea va fi convexă, deoarece oricare 2 puncte alegem din mulțime, punctele de pe segmentul determinat de cele doua puncte se află tot în multime.

Graficul mulțimii este:

Pentru a vedea dacă funcția obiectiv este convexă, calculăm Hessiana funcției:
$$\nabla^2 f(x) = \begin{bmatrix} -6x_1x_2^2 - 12x_1^2x_2^2 - 6x_1x_2^3 & -6x_1^2x_2 - 8x_1^3x_2 - 9x_1^2x_2^2 \\ -6x_1^2x_2 - 8x_1^3x_2 - 9x_1^2x_2^2 & -2x_1^3 - 2x_1^4 - 6x_1^3x_2 \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 6x_1 x_2^2 (-1 - 2x_1 - x_2) & x_1^2 x_2 (-6 - 8x_1 - 9x_2) \\ x_1^2 x_2 (-6 - 8x_1 - 9x_2) & 2x_1^3 (-1 - x_1 - 3x_2) \end{bmatrix}$$

Funcția este convexă dacă Hessiana este semipozitiv definită. Pentru a se îndeplini aceasta condiție, trebuie ca $6x_1x_2^2(-1-2x_1-x_2) \ge 0$ și determinantul să fie >=0.

 $6x_1x_2^2(-1-2x_1-x_2)=-6x_1x_2^2(1+2x_1+x_2)$, insa cum $x_1,x_2 \in R$, nu se poate stabili semnul expresiei, așadar testul este inconcluziv.

De asemenea, din graficul funcției de poate observa că funcția nu este convexă, astfel problema nu este convexă.

