Machine Learning: Exercise Sheet 4

Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg

mblum@informatik.uni-freiburg.de

Exercise 1: Perceptrons

Given is a perceptron with weight vector $(w_0, w_1, w_2)^T = (2, 1, 1)^T$.

(a) Plot the partition of \mathbb{R}^2 that is realized by this perceptron in a diagram and mark the area where the perceptron outputs 1.

$$y = f_{step} \left(w_0 + \langle \vec{w}, \vec{x} \rangle \right)$$

Exercise 1: Perceptrons

Given is a perceptron with weight vector $(w_0, w_1, w_2)^T = (2, 1, 1)^T$.

(b) Which of the perceptrons with the following weight vectors have the same hyperplane and which represent exactly the same classification as the perceptron given above?

	$(w_0,w_1,w_2)^T$	same hyperplane	same classification
(1)	$(1, 0.5, 0.5)^T$	×	×
(II)	$(200, 100, 100)^T$	×	×
(III)	$(\sqrt{2},\sqrt{1},\sqrt{1})^T$		
(IV)	$(-2,-1,-1)^T$	×	

Exercise 2: Perceptron Learning

(a) Apply the perceptron learning algorithm for the following pattern set until convergence. Start with weight vector $(w_0, w_1, w_2, w_3)^T = (1, 0, 0, 0)^T$. Apply the patterns in the given order cyclically. For each step of perceptron learning write down the applied pattern, the classification result and the update of the weight vector.

$$(4,3,6)^T \in \mathcal{N}, \quad (2,-2,3)^T \in \mathcal{P}, \quad (1,0,-3)^T \in \mathcal{P}, \quad (4,2,3)^T \in \mathcal{N}$$

pattern	output	classification	update	new weight vector
				$(1,0,0,0)^T$
$(1,4,3,6)^T \in \mathcal{N}$	$f_{step}(1)$	false positive	$-(1,4,3,6)^T$	$(0, -4, -3, -6)^T$
$(1,2,-2,3)^T\in\mathcal{P}$	$f_{step}(-20)$	false negative	$+(1,2,-2,3)^T$	$(1,-2,-5,-3)^T$
$(1,1,0,-3)^T\in\mathcal{P}$	$f_{step}(8)$	true positive	unchanged	unchanged
$(1,4,2,3)^T \in \mathcal{N}$	$f_{step}(-26)$	true negative	unchanged	unchanged
$(1,4,3,6)^T \in \mathcal{N}$	$f_{step}(-40)$	true negative	unchanged	unchanged
$(1,2,-2,3)^T\in\mathcal{P}$	$f_{step}(-2)$	false negative	$+(1,2,-2,3)^T$	$(2,0,-7,0)^T$
$(1,1,0,-3)^T\in\mathcal{P}$	$f_{step}(2)$	true positive	unchanged	unchanged
$(1,4,2,3)^T \in \mathcal{N}$	$f_{step}(-12)$	true negative	unchanged	unchanged
$(1,4,3,6)^T \in \mathcal{N}$	$f_{step}(-19)$	true negative	unchanged	unchanged
$(1,2,-2,3)^T\in\mathcal{P}$	$f_{step}(16)$	true positive	unchanged	unchanged
finished weight vector $(2.0, -7.0)^T$ classifies all patterns correctly				

.

Exercise 2: Perceptron Learning

(b) Show that the problem given by the following pattern set cannot be solved with a single perceptron. For this purpose, apply the perceptron learning algorithm for the given patterns. Start with weight vector $(w_0, w_1, w_2)^T = (1, 0, 0)^T$.

$$(1,1)^T \in \mathcal{P}, \quad (1,0)^T \in \mathcal{N}, \quad (0,0)^T \in \mathcal{P}, \quad (0,1)^T \in \mathcal{N}$$

pattern	output	classification	update	new weight vector
				$(1,0,0)^T$
$(1,1,1)^T \in \mathcal{P}$	$f_{step}(1)$	true positive	unchanged	unchanged
$(1,1,0)^T \in \mathcal{N}$	$f_{step}(1)$	false positive	$-(1,1,0)^T$	$(0,-1,0)^T$
$(1,0,0)^T \in \mathcal{P}$	$f_{step}(0)$	true positive	unchanged	unchanged
$(1,0,1)^T \in \mathcal{N}$	$f_{step}(0)$	false positive	$-(1,0,1)^T$	$(-1,-1,-1)^T$
$(1,1,1)^T \in \mathcal{P}$	$f_{step}(-3)$	false negative	$+(1,1,1)^{T}$	$(0,0,0)^T$
$(1,1,0)^T \in \mathcal{N}$	$f_{step}(0)$	false positive	$-(1,1,0)^T$	$(-1,-1,0)^T$
$(1,0,0)^T \in \mathcal{P}$	$f_{step}(-1)$	false negative	$+(1,0,0)^T$	$(0,-1,0)^T$

finished, weight vector $(0, -1, 0)^T$ occurs twice the problem is not solvable (cycle theorem)

Exercise 3: Perceptron Networks

Develop a perceptron network with two input variables x_1 and x_2 and at most three perceptrons that exactly classifies the marked area (and the boundary). Illustrate the topology (structure) of the network and the weights of its neurons.

Exercise 4: Nonlinear Feature Spaces

The following training patterns are given:

$$(-3)\in\mathcal{N},(-2)\in\mathcal{N},(-1)\in\mathcal{P},(0)\in\mathcal{P},(1)\in\mathcal{P},(2)\in\mathcal{N},(3)\in\mathcal{N}$$

This pattern set is not linearly separable in \mathbb{R} . We will use nonlinear features in order to classify the patterns using a single perceptron.

- (a) Plot the patterns in input space and mark each positive pattern with output 1 and each negative pattern with output 0.
- (b) Use the function $(h_1, h_2)^T = g(x) = (x, x^2)^T$ to build a feature space for the patterns. Plot the patterns in feature space and mark each positive pattern with output 1 and each negative pattern with output 0. Show that the patterns are linearly separable in feature space (give a perceptron that classifies correctly) or derive a contradiction from the data and the model.
- (c) Use the function $h = g(x) = x^3$ to build a feature space for the patterns. Plot the patterns in feature space and prove or disprove that the patterns are linearly separable in feature space.

→ blackboard

Exercise 5: Winner-takes-all networks

Consider the pattern set and the initial prototypes in the figure below.

- (a) For each input pattern calculate the closest prototype.
- (b) Perform one update of the VQ algorithm ($\epsilon=0.4$) for patterns 1-3 and report the resulting weight vectors of the relevant prototypes.
- (c) Using the initial prototypes, perform one iteration of the k-means algorithm. What are the weight vectors of the resulting prototypes? Does the algorithm converge after the first iteration?

	O	_	,	
#	pattern		#	prototype
1	$(1.7, -1.5)^T$		1	$(6, 4)^T$
2	$(0.9, 1.7)^T$		2	$(0, 5)^{T}$
3	$(0.4, -1.8)^T$		3	$(5, 1)^T$
4	$(1.3, -0.8)^T$			
5	$(2.9, 1.3)^T$			
6	$(7.1, 1.1)^T$			
7	$(5.1, -0.5)^T$			
8	(5.8, 0.0) ¹			
9	$(5.2, 2.1)^T$			
10	$(4.5, 0.3)^T$			
11	$(5.0, 7.0)^T$			
12	$(5.7, 6.9)^T$			
13	$(5.2, 7.8)^T$			
14	$(3.8, 7.2)^T$			
15	$(5.7, 6.5)^T$			

Exercise 6: Programming tasks

 \rightarrow Demo