

Administracija računarskih mreža

Virtuelizacija

Materijal

- sedmo poglavlje (Network Functions
 Virtualization: Concepts and Architecture)
 knjige "Foundations of Modern Networking"
 (Stallings, 2015)
- web izvori navedeni u prezentaciji

Sadržaj

- Virtuelizacija
- Virtuelne mašine
- Kontejneri
- Virtuelizacija mrežnih funkcija

Virtuelizacija

- Stvaranje privida postojanja nečeg
- Virtuelna realnost
- Virtuelna memorija
- Virtuelni LAN
- Virtuelne privatne mreže
- Virtuelne mašine
- NFV (Network Functions Virtualization)

Ideja virtuelizacije

- Pretvaranje fizičkih resursa u logičke (virtuelne)
- Apstrakcija fizičkog hardvera kroz softverske interfejse
- Korisnici, aplikacije i upravljački softver ne zanimaju se fizičkim detaljima

Virtuelizacija u praksi

- Prostora za čuvanje podataka (storage)
 - Razdvajanje logičkog od fizičkog prostora
- Hardvera
 - Virtuelne mašine
- Mreže
 - kombinovanje dostupnih fizičkih mrežnih resursa u vritualne koji se dodjeljuju po potrebi

Virtuelizacija hardvera

- Aplikacije pisane za OS
- Na računaru jedan OS se izvršava u jednom trenutku
- Virtuelizacijske tehnologije
 - na jednom računaru istovremeno izvršavanje više
 OS (više virtuelnih mašina VM)
 - počeo IBM 1970.-ih
 - aktuelizirano 2000.-ih
 - hardver nadrastao softver postao neiskorišten

Virtuelna mašina

- Stvara privid fizičke mašine (hardvera)
- OS "zaključuje" da se izvršava direktno na hardveru
- Omogućava pokretanje OS i procesa u njemu bez promjene OS ili programa
- Monitor virtuelne mašine izvršava se direktno na hardveru i stvara ovaj privid
- Na jednoj fizičkoj mašini može biti više virtuelnih svaka sa svojim OS

 Virtual machine monitor/manager (VMM) ili hypervisor

Konsolidacijski odnos (ratio)

- Broj VM koje računar podržava
 - Inicijalno 4:1 do 12:1

Korist od virtuelizacije

- Potreban manji broj računara (u data centru)
- Manji troškovi (konsolidacija)
 - manja potrošnja energije
 - manje hlađenja potrebno
 - manje kablova
 - manje mrežnih switch-eva
 - manje fizičkog prostora
- Danas je više virtuelnih nego fizičkih servera

Korist od virtuelizacije (2)

- Hardver postaje apstraktan resurs
 - OS i aplikacije dobijaju hardvera koliko im treba
 - nije im bitno kako (od kog fizičkog hardvera)
 - bolja iskorištenost hardvera
 - laka i brza migracija VM na drugi hardver
 - povećane/smanjene potrebe
 - raspoređivanje opterećenja
 - otkaz hardvera

Arhitekture

- VMM posrednik (proxy) između VM i hardvera
- VM softver koji imitira karakteristike fizičkog računara
 - procesor(i)
 - RAM
 - prostor za pohranu
 - mrežne veze
- VM se pokreće kao fizički server sa OS i aplikacijama

Fizički resursi i VM

- Stvarni fizički resursi se raspoređuju među VM (i VM monitorom)
- Svaka VM dobiva dio resursa
- Dijelovi mogu biti različiti
- Monitor VM obavlja mapiranje virtuelnih i fizičkih resursa
- Određena degradacija performansi zbog posredovanja VMM

VM je skup datoteka

- Konfiguracijska datoteka
 - opis virtuelnog računara (CPU, RAM, HD, NIC, I/O, ...)
- Hard disk datoteka(e)
 - virtuelni hard disk
- In-memory datoteka
- Statusna datoteka
- Ostale datoteke

Pravljenje kopije VM

- Kopiranje VM datoteka
- Time se kopira sve:
 - podaci
 - OS
 - aplikacije
 - hardverska konfiguracija
- Mnogo jednostavnije nego za fizički server

Umnožavanje VM

- Kopiranje VM datoteka
 - uz promjenu imena servera i IP adrese (bar)
- Mnogo brže od fizičkih servera
- Upotreba predložaka (urneka, template)
 - standardizovana HW i SW konfiguracija
 - unijeti samo jedinstvene identifikatore
 - softver pravi VM na osnovu ovoga

VM za povećanje pouzdanosti

- Brzo prebacivanje VM sa jednog fizičkog servera na drugi
- Rezervni VM na drugom fizičkom serveru
 - izvršava se paralelno sa primarnim
 - trenutno prebacivanje u slučaju ispada
- Premještanje VM bez gašenja
 - Live Migration, vMotion
 - Ako nema dovoljno HW resursa prebaci na drugi HW

Tipovi hipervizora (VMM)

- Ima li OS između VMM i HW
 - Tip 1: Nema
 - VMware ESXi, Microsoft Hyper-V, open source Xen
 - Tip2 : Ima
 - VMware Workstation i Oracle VM Virtual Box

Applications	Applications		
OS 1	OS 2		
Virtual Machine 1	Virtual Machine 2		
Virtual Machir	ne Monitor (Hypervis	or)	
Shai	red Hardware		

Applications	Applications		
OS 1	OS 2		
Virtual Machine 1	Virtual Machine 2		
Virtual Machir	ne Monitor (Hypervis	or)	
Host O	perating System		
Sha	red Hardware		

Umrežavanje i VM

- Načini rada
 - Bez mreže
 - NAT
 - Premošteno (Bridged)
 - Interna mreža
 - Mreža samo sa monitorom VM (Host-only)

Kontejneri

- 6, 09 (12,18) m x 2,44 m x 2,59 (2,90) m
- malo više od 25 tona tereta

Kontejneri za prevoz (1956.)

- Prije
 - Break bulk shipping
 - Utovar
 - prosječno 200.000 pojedinačnih stvari po brodu
 - brzina 1.3 t/h (oko sedmice po brodu)
 - trošak oko 6 \$ (60 75% troškova prevoza)
 - veliki broj radnika

- Poslije
 - Container shipping
 - Utovar
 - oko 10.000 konteinera po brodu
 - brzina 10.000 t/h
 - trošak oko 0,15 \$
 - velika nezaposlenost u lukama
 - radnika koji su utovarali

Kontejneri za softver (2013.)

- Prije
 - spor i komplikovan"deployment"
 - Razvojno okruženje
 - programski jezik
 - biblioteke
 - OS
 - Produkciono okruženje
 - programski jezik ???
 - biblioteke ???
 - OS ???

- Poslije
 - brz i jednostavan "deployment"
 - Razvojno okruženje
 - kontejner
 - Produkciono okruženje
 - kontejner (isti)

Historija

- chroot (Unix) (1979.)
- jail (FreeBSD) (1990., 2000.)
- Zones (Solaris) (2004.)
- cgroup (2006.)
- LXC (Linux Containers) (2008.)
 - "dyno" (Heroku) (2007.)
- Docker (2013.)

Virtuelizacija kontejnerima

- Softver, virtuelizacijski kontejner, izvršava se na OS
- Stvara (samo) izvršno okruženje za aplikacije
 - a ne kompletan prividni računar ili OS
 - sve aplikacije u kontejnerima na računaru dijele OS (kernel)
 - nema potrebe za poseban
 OS za svaku aplikaciju

VMs vs Containers

Virtual Machines Containers

Konzistentno okruženje

- Predvidivo
- Izolovano od drugih aplikacija
- Može uključivati zavisnosti (dependencies)
 - specifične verzije jezika i biblioteka
- Pruža konzistenciju nezavisno od toga gdje se koristi (pokreće, deploy)
- Veća produktivnost manje promjena okruženja
 - razvojno, testno, produkciono

Pokretanje svugdje

- Kontejneri se mogu pokrenuti, gotovo, bilo gdje
- Na svakom OS (Linux, Windows, Mac)
- Na VM ili fizičkom računaru (bare metal)
- Kod razvojnog inženjera (developer), u lokalnom podatkovnom centru ili u cloud
- Docker image format
 - popularan, gotovo standard

Manje resursa od VM

- Koriste kernel OS na kom su pokrenute
 - ne treba im cijeli OS (u image)
- Manja image datoteka
- Brže pokretanje
- Lakše premještanje
- Lakše umnožavanje
 - bolje skaliraju
- Pogodno za cloud

Podrška savremenom razvoju

- Modularnost
 - male veličina
 - portabilnost
- Podrška za modularne aplikacije
 - umjesto monolitnih
- Mikro servisne arhitekture
- Serverless
- DevOps

Bolje korištenje resursa

- Manje resursa nego VM
- Korištenje (pokretanje, umnožavanje) komponenti (kontejnera) po potrebi
 - granularnije (preciznije)
- Umjesto skaliranje cijele (monolitne) aplikacije
 - zbog opterećenja jedne komponente

Aplikacija -> kontejner

- Containerization
- Pakovanje koda i ostalog potrebnog (dependencies)
 - biblioteke
 - konfiguracije
 - postavke
- u jednu datoteku
- koja se izvršava na (container) runtime engine

Upotreba

- Mikroservisi
- DevOps
- Hibrid, multi-cloud
- Modernizacije i migracija aplikacija

Docker

- De facto standard
- Docker engine
- Docker image

- Арр D App F Docker **Host Operating System** Infrastructure
- Veliki broj aplikacija u obliku pripremljenih Docker *image*
- Jednostavan proces pretvaranja aplikacije u Docker *image*
- Široka podrška
 - OS i cloud platforme

Upravljanje kontejnerima

- Razbijanje (monolitne) aplikacije na mikro servise izvedene kroz kontejnere
- Raste broj kontejnera kojim treba upravljati
 - pogotovo u većim sistemima (hiljade)
- Postaje kompleksno

Orkestracija

- Pokretanje (Provisioning)
- Redundantnost
- Nadzor rada (Health monitoring)
- Alokacija resursa
- Skaliranje i raspoređivanje opterećenja
- Premještanje između fizičkih računara (hosts)

Platforme za orkestraciju

- Apache Mesos
- Nomad
- Docker Swarm
- Kubernetes

Kubernetes

- Razvio Google
- Danas open source (Cloud Native Computing Foundation)

Kubernetes usluge

- Pristup kontejnerima i balansiranje opterećenja
- Orkestracija prostora za pohranu
- Automatska aktivacija (rollout) i povrat (rollback)
- Automatsko raspoređivanje kontejnera
 - na nod-ove prema potrebnim CPU i RAM
- Samo-oporavak
- Upravljanje konfiguracijama i sigurnsonim postavkama

Kubernetes - komponente

- Klaster jedinica kojom upravlja Kuberenetes
- Sastoji se od
 - Nod-ovi
 - čvorovi (VM, fizički računari) na kojim se izvršavaju kontejneri
 - minimalno jedan
 - Pod-ovi
 - grupa kontejnera na nod-ovima
 - logical host (storage, IP adresa)
 - Kontrolna ravan

Kubernetes - komponente

Početne reference

- https://cloud.google.com/containers
- https://www.ibm.com/cloud/learn/containers
- https://www.docker.com/resources/whatcontainer
- https://kubernetes.io/docs/tutorials/kubernet es-basics/

NFV

- Izvedba mrežnih funkcija u softveru u VM
 - Mrežnih uređaja (switch, ruter, ...)
 - Računarsko-mrežnih uređaja (firewall, IDS,...)
 - Network-attached storage: File i DB serveri

Traditional Network **Application Deployment**

Message router

CDN server

VolP Session border controller

WAN acceleration

Deep packet inspection

Firewall

Carrier grade NAT

QoE monitor

IDS/IPS

PE router

BRAS

Radio access network nodes

NFV Network Appliance Deployment

Standard high-volume servers

Standard high-volume storage

Standard high-volume Ethernet switches

(a) Graph representation of an end-to-end network service

(b) Example of an end-to-end network service with VNFs and nested forwarding graphs