

UV Traitement du signal

Cours 1

Introduction au Traitement du Signal

Représentation temporelle des signaux ASI 3

Traitement du Signal

Introduction au TS

□Continu → Discret

Transformation de Fourier

TF en Discret

□Systèmes linéaires continus

Systèmes linéaires Discrets

□Filtrage analogique

□Filtrage Numérique

□ DSP?

Contenu du cours

- Introduction
 - Définition d'un signal
 - Qu'est-ce que le traitement du signal?
 - Chaîne de traitement de l'information
- Classification des signaux
- Signaux élémentaires
- Notions de corrélation
- Notions de distributions
 - Définition d'une distribution
 - Impulsion de Dirac

Signal

- Représentation physique d'une information à transmettre
- Entité qui sert à véhiculer une information

Exemples

- Onde acoustique : courant délivré par un microphone (parole, musique, ...)
- Signaux biologiques : EEG, ECG
- Tension aux bornes d'un condensateur en charge
- Signaux géophysiques : vibrations sismiques
- Finances : cours de la bourse
- Débit de la Seine
- Images
- Vidéos
- etc.

Bruit: Tout phénomène perturbateur pouvant géner la perception ou l'interprétation d'un signal

□ Définitions :

◆Traitement du signal

- Ensemble de techniques permettant de <u>créer</u>, <u>d'analyser</u>, de <u>transformer</u> les signaux en vue de leur exploitation
- Extraction du maximum d'information utile d'un signal perturbé par le bruit

Notion très importante : le bruit

Fonctions du traitement du signal

Créer : Élaboration de signaux

Synthèse : création de signaux par combinaison de signaux

élémentaires

Modulation : adaptation du signal au canal de transmission

modulation d'amplitude (MA)

Fonctions du traitement du signal

- Analyser : Interprétation des signaux
 - Détection : isoler les composantes utiles d'un signal complexe , extraction du signal d'un bruit de fond
 - Identification : classement du signal (identification d'une pathologie sur un signal ECG, reconnaissance de la parole, etc.)

- Fonctions du traitement du signal
 - Transformer: adapter un signal aux besoins
 - Filtrage : élimination de certaines composantes
 - Détection de craquements sur un enregistrement,
 - Détection de bruit sur une image,
 - Annulation d'écho, etc.
 - Codage/compression (Jpeg, mp3, mpeg4, etc.)

La chaîne de traitement de l'information et le TS

Objectifs

Connaissances théoriques élémentaires pour

- Décrire et représenter les signaux
- Comprendre le principe et les limites des méthodes de traitement
- mettre en œuvre des méthodes de traitement simples

Objectifs de ce premier cours :

- Classification des signaux selon différentes catégories (leur dimension, leur évolution, leur énergie, leur morphologie)
- Énergie et puissance
- Notion de corrélation

Classification des signaux

Classification dimensionnelle

- Signal monodimensionnel 1D Fonction d'un seul paramètre, pas forcément le temps : une concentration, une abscisse, etc.
- ◆ Signal bidimensionnel 2D Exemple : image NG $\rightarrow f(x,y)$
- ◆ Signal tridimensionnel 3D Exemple : film NB $\rightarrow f(x, y, t)$

Classification phénoménologique

Evolution déterministe ou aléatoire des signaux

Signaux déterministes

Signaux dont l'évolution en fonction du temps *t* peut être parfaitement décrite grâce à une description mathématique ou graphique.

Sous catégories :

Signal réel

C'est un signal représentant une grandeur physique. Son modèle mathématique est une fonction réelle. Ex. : tension aux bornes d'un C

Classification phénoménologique

Signaux aléatoires (stochastiques)

Signaux dont l'évolution temporelle est imprévisible et dont on ne peut pas prédire la valeur à un temps t.

La description est basée sur les propriétés statistiques des signaux (moyenne, variance, loi de probabilité, ...)

Exemple résultat d'un jet de dé lancé toutes les secondes (moyenne=3.5, écart type :1.87)

Signaux aléatoires stationnaires

Stationnaire si les caractéristiques statistiques ne varient pas au cours du temps.

Classification énergétique

Energie et Puissance des signaux

Soit un signal x(t) défini sur $]-\infty$, $+\infty[$, et T_0 un intervalle de temps

lacktriangle Energie de x(t)

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt \qquad \text{ou} \qquad E = \lim_{T_0 \to \infty} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt$$

ightharpoonup Puissance moyenne de x(t)

$$P = \lim_{To \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt$$

➤ Homogène à E/t

TdS

Cas des signaux périodiques de période T $P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} |x(t)|^2 dt$

Classification énergétique

□ Remarques :

- ◆ Signaux à énergie finie ⇒ puissance moyenne nulle Généralement, cas des signaux représentant une grandeur physique. Signaux transitoires à support borné
- Signaux à énergie infinie ⇒ puissance moyenne non nulle
 Cas des signaux périodiques

Notion valable pour les signaux aléatoires et déterministes

Classification morphologique

2ème partie du cours

Retour sur la notion de bruit

Bruit

- Def. : Tout phénomène perturbateur pouvant géner la perception ou l'interprétation d'un signal
- La notion de bruit est relative, elle dépend du contexte
- Exemple classique du technicien en télécom et de l'astronome :
 - Pour le technicien en télécom :
 - Ondes d'un satellite = signal
 - Signaux provenant d'une source astrophysique = bruit
 - Pour l'astronome :
 - Ondes d'un satellite = bruit
 - Signaux provenant d'une source astrophysique = signal
- ◆ Tout signal physique comporte du bruit = une composante aléatoire
- ◆ Introduction de la notion du rapport signal/bruit

Notion de rapport signal sur bruit

Objectif

Signal = composante déterministe + composante aléatoire.

Déterminer la qualité d'un signal aléatoire ou déterministe ⇒ introduction d'un rapport R_{S/B} quantifiant l'effet du bruit.

$$R_{S/B} = \frac{P_S}{P_b}$$
 ou $R_{S/B}(dB) = 10\log_{10}(R_{S/B})$

 P_s est la puissance du signal et P_b celle du bruit.

Signaux élémentaires continus

Échelon

$$\Gamma(t) = \begin{cases} 0 & \text{pour } t < 0 \\ 1 & \text{pour } t > 0 \end{cases}$$

permet d'exprimer l'établissement instantané d'un régime continu

Exponentielle décroissante

a > 0

$$y(t) = \Gamma(t) \cdot e^{-at}$$

Signal porte ou rectangle

$$\Pi_{\tau}(t) = \begin{cases}
1 & pour |t| \le \frac{\tau}{2} \\
0 & ailleurs
\end{cases}$$

$$\frac{\Pi_{\tau}(t)}{1}$$

$$- \frac{\tau}{2} \qquad \frac{\tau}{2}$$

 τ : largeur de la porte

Peut aussi être défini comme une différence de deux échelons.

Signaux périodiques : sin / cos

Notion d'autocorrélation

Définition

L'autocorrélation réalise une comparaison entre un signal x(t) et ses copies retardées (étude de ressemblance d'un signal avec lui-même au cours du temps)

Pour les signaux à énergie finie

$$C_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot x^*(t-\tau) dt$$

Homogène à une énergie, $C_{rr}(0)$ est l'énergie du signal

Pour les signaux à énergie infinie

$$C_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)x^*(t-\tau)dt$$
 Homogene a une puiss $C_{xx}(0)$ est la puissance movenne du signal

Homogène à une puissance, moyenne du signal

- Propriétés
 - $> |C_{xx}(\tau)| \le C_{xx}(0)$: Maximum en 0
 - ightharpoonup Si x(t) est périodique alors $C_{xx}(t)$ est périodique de même période
 - $\succ C_{rr}(t)$ est paire pour des signaux réels

Notion d'intercorrélation

Définition

L'intercorrélation compare un signal x(t) et un signal y(t) retardée. Elle mesure la similitude entre ces deux signaux

- Pour les signaux à énergie finie $C_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) \cdot y^*(t-\tau) dt$
- Pour les signaux à énergie infinie $C_{xy}(\tau) = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) y^*(t-\tau) dt$

Exemple d'application

Détection par intercorrélation

Autres exemples

Détection de signal périodique noyé dans le bruit Analyse spectrale

Test de "blancheur"

Introduction aux distributions

$$V(t) = \begin{cases} 0 & t < 0 \\ E_o & t > 0 \end{cases}$$

Question : que vaut
$$i(t)$$
? $i(t) = C \frac{dV}{dt}$

i(t) est nul partout. En 0, on ne connaît pas la valeur de i car V(t) est discontinue en 0 et n'est donc pas dérivable en ce point.

Et pourtant, i(t) en 0 existe puisque il y a eu transfert de charge $q = \int i(t)dt = CE_o$

entre l'alimentation et la capacité. Aire sous i(t) = CE_{0} ... étrange non ?

 $\Rightarrow i(t)$ serait une fonction qui vaut 0 partout et l'infini en 0 impossible car on aurait $2^*i(t) = i(t)$, ou $i(t)^2 = i(t)$...

 \Rightarrow *i(t)* n'est donc pas une fonction, c'est une distribution! On l'appelle <u>distribution de Dirac</u>

Distribution de Dirac

Définition

• Si φ est une fonction, la distribution de Dirac ou <u>impulsion de Dirac</u> est définie par : $_{\bullet}$ +∞

 $\delta(\varphi) = \int_{-\infty}^{+\infty} \varphi(t) . \delta(t) dt = \varphi(0)$

=> Dirac appliqué à une fonction = la valeur de la fonction en 0

Remarque : il n'existe pas de fonction δ vérifiant cette propriété

 Cependant pour des raisons de commodités, on la note souvent comme une fonction de t : δ(t), qu'on représente :

Propriétés

- Dirac représente un signal de durée théoriquement nulle et d'énergie finie (=1).
- Notation incorrecte mais commode : $\delta_{(t_1)} = \delta(t t_1)$
- Une impulsion de Dirac à l'instant t_1 donne : $\delta_{(t_1)}(\varphi) = \varphi(t_1)$
- Autre propriété : $x(t) \cdot \delta(t to) = x(to) \cdot \delta(t to)$

Distribution de Dirac

Autres définitions :

Comme une fonction :

$$\delta(x) \begin{cases} \delta(x) = 0 & x \neq 0 \\ +\infty & \int_{-\infty}^{\infty} \delta(x) dx = 1 \end{cases}$$

Remarque1 : ceci est impossible : l'aire sous le pic ne peut être égale à 1...

Remarque2 : l'énergie du Dirac est donc égale à 1

◆À partir du signal porte :

$$\delta(x) = \lim_{\tau \to 0} \frac{1}{\tau} \Pi_{\tau}(x)$$

Peut être vue comme la dérivée d'un échelon

Peigne de Dirac

Définition

C'est une somme infinie d'impulsions de Dirac régulièrement espacées de T_o

$$\coprod_{T_o} = \sum_{k=-\infty}^{+\infty} \delta(t - kT_o)$$

Propriété

$$x(t) \cdot \coprod_{To} = \sum_{k} x(kTo) \cdot \delta (t - kTo)$$

$$x(t) \cdot \lambda_{To}$$

Echantillonnage de la fonction x(t)

Qq éléments sur la théorie des Distributions ...

Définition

On appelle une distribution D, un opérateur sur l'espace vectoriel V de fonctions $\varphi(t)$, indéfiniment dérivable et à support borné.

$$D: V \to \mathbb{C}$$

$$\varphi(t) \to \langle D, \varphi \rangle ou D(\varphi)$$

C ensemble des nombres complexes

Propriétés

$$D(\varphi_1 + \varphi_2) = D(\varphi_1) + D(\varphi_2)$$

$$D(\lambda \varphi) = \lambda D(\varphi)$$
 λ est un scalaire

Dérivation d'une distribution

Soit D une distribution alors la dérivée D' de D définit également une distribution telle que $D'(\varphi) = -D(\varphi')$

■Voir J. Auvray pour plus de précisions