

2IMN20 - Real-Time Systems

Schedulability Tests for Periodic (and Sporadic) Tasks

Geoffrey Nelissen

2023-2024

Online scheduling of periodic tasks

Buttazzo's book, chapter 4

Disclaimer:

Many slides were provided by Dr. Mitra Nasri

Some slides have been taken from Giorgio Buttazzo

Giorgio C. Buttazzo

Hard Real-Time
Computing
Systems
Predictable Scheduling Algorithms
and Applications

Third Edition

Real-Time Systems Series

Agenda

- Necessary vs sufficient schedulability tests
- EDF schedulability test
- Priority assignment for task-level fixed-priority scheduling
 - Rate monotonic (RM)
 - Deadline monotonic (DM)
 - Audsley's Optimal priority assignment algorithm (OPA)
- RM schedulability <u>tests</u>
 - Liu and Layland's test [1973]
 - Hyperbolic bound [2000]
 - A utilization-based test for harmonic tasks

Recall: notations

We consider a computing system that has to execute a set τ of n periodic real-time tasks:

$$\tau = \{\tau_1, \tau_2, \tau_3, ..., \tau_n\}$$

 T_i = period

 C_i = worst-case execution time (WCET)

 D_i = relative deadline

 ϕ_i = offset (or phase)

 σ_i = release jitter

Definition: utilization

• Each task uses the processor for a fraction of time: $U_i = \frac{C_i}{T_i}$

• Hence the total **processor utilization** is: $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$

• *U* is a measure of the **processor load**

Assumptions in this lecture

- We assume
 - **A1.** Tasks are <u>fully preemptive</u>
 - A2. Context switch, preemption, and scheduling overheads are zero
 - **A3.** Tasks are independent:
 - no precedence relations
 - no resource constraints
 - No shared resource accesses
 - •
 - A4. No self-suspension
 - no blocking on I/O operations
 - ...

Feasibility of a task set

A task set τ is **feasible if and only if** there always exists a schedule in which all tasks meet their timing constraints.

Feasibility of a task set

A task set τ is **feasible if and only if** there always exists a schedule in which each task $\tau_i \in \tau$ can execute for C_i units of time within every interval $[r_{i,k}, d_{i,k})$ for all $k \in \mathbb{N}$.

Feasible schedule

A schedule of task set τ is feasible if and only if it respects all timing constraints of τ .

Schedulability of a task set with algorithm A

A task set τ is schedulable with algorithm A if and only if algorithm A always generates a feasible schedule for τ .

Reminder: Feasibility vs. schedulability

Schedulability test

Necessary vs sufficient schedulability tests

Necessary schedulability test for a scheduling algorithm A:

If a task set is schedulable by the scheduling algorithm A

then it certainly passes the test

Sufficient schedulability test for a scheduling algorithm A:

if a task set that passes the test, then it is certainly

schedulable by the scheduling algorithm A

Exact schedulability test for a scheduling algorithm A:
A task set that passes the test if and only if it is schedulable by A

Necessary vs sufficient schedulability tests

A <u>schedulability test</u> for a scheduling algorithm **A** is a **necessary test** if any task set that **does NOT pass** the test is certainly <u>not schedulable</u> by the scheduling algorithm **A**

A <u>schedulability test</u> for a scheduling algorithm A is a <u>sufficient test</u> if any task set that <u>passes</u> the test is certainly <u>schedulable</u> by the scheduling algorithm A

A <u>schedulability test</u> for a scheduling algorithm A is an <u>exact test</u> if any task set that <u>passes</u> the test is certainly <u>schedulable</u> and any task set that <u>does not pass</u> the test is certainly <u>not schedulable</u> by the scheduling algorithm A

Necessary vs sufficient schedulability tests

Utilization-based schedulability tests

A utilization-based schedulability test for an algorithm A is a test that checks whether a function f_A on the utilizations of the tasks in the task set holds.

A necessary utilization-based schedulability test for uniprocessor scheduling

A necessary test for uniprocessor

Can we find a feasible schedule for a task set whose utilization is larger than 1? (U > 1)

A: yes C: depends on the task set

B: depends on the scheduling policy **D:** no

A necessary test for uniprocessor

Can we find a feasible schedule for a task set whose utilization is larger than 1? (U > 1)

A: yes C: depends on the task set

B: depends on the scheduling policy D: no

If U > 1, then the amount of work to be done per unit of time is larger than the unit of time itself!

A utilization-based schedulability test for EDF

EDF

Schedulability test

Liu and Layland 1973

This **test** is both **necessary and sufficient for EDF** (for implicit deadline periodic or sporadic tasks executed on a single core platform)

A preemptive task set τ with $\forall i, D_i = T_i$, is schedulable by EDF if and only if:

$$\sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Any feasible periodic or sporadic task set with $\forall i, D_i = T_i$ and $U \leq 1$ can be scheduled by EDF

How is such a task called?

EDF Optimality

EDF is **optimal** among all algorithms:

If there exists a feasible schedule for Γ , then EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it cannot be scheduled by any algorithm.

Task-level fixed priority scheduling

Fixed-priority scheduling

Two steps to design a timing-predictable periodic task system under fixed-priority scheduling:

- Assign priorities to each task based on its timing constraints.
 - 1. Rate monotonic
 - 2. Deadline monotonic
 - 3. Optimal priority assignment algorithm (OPA)
- Verify the schedulability of the task set using a schedulability test.

In this lecture we limit ourselves to presenting tests for RM. We will cover all priority assignment policies in the next lecture.

Priority assignment for fixed-priority scheduling

Rate monotonic

• Assign priorities monotonically with the activation frequency, a.k.a., rate $(\sim 1/T)$ such that a task with a smaller period gets a higher priority

• Example: $T = 10 \Rightarrow rate = \frac{1}{10}$

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	1	5	5	0.2
$ au_2$	10	40	15	0.25
$ au_3$	1	20	20	0.05

Priority ordering?

Priority assignment for fixed-priority scheduling

Deadline monotonic

• Assign priorities monotonically with the relative deadline of the task, ($\sim 1/D$) such that a <u>task with a smaller relative deadline gets a higher priority</u>

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	1	5	5	0.2
$ au_2$	10	40	15	0.25
$ au_3$	1	20	20	0.05

Priority ordering?

P1 > P2 > P3

Audsley's optimal priority assignment algorithm (OPA)

```
for (each priority level k, lowest first)
   for (each unassigned task \tau_i)
    return unschedulable;
return schedulable (return priorities);
```


Audsley's optimal priority assignment algorithm (OPA)

```
for (each priority level k, lowest first)
    for (each unassigned task \tau_i)
        if (\tau_i) is schedulable at priority k according to an exact schedulability test S
           with all unassigned tasks assumed to have higher priorities) then
              assign \tau_i to priority k;
              break and continue the outer loop;
    return unschedulable;
return schedulable (return priorities);
```


Is FP an optimal scheduling policy with RM, DM or Audsley's priority assignment?

What do you think?

The limitation of fixed-priority scheduling

Fixed-priority scheduling with RM priorities is not an optimal

scheduling policy (in the sense of feasibility)

Neither is it with DM or Audsley's priority assignment

RM-priority assignment is not optimal

Build a feasible task set with $U \leq 1$ that is not schedulable by RM (rate monotonic)

Hint:

What execution times will lead to U<1 and will result in a deadline miss for one of the tasks?

RM-priority assignment is not optimal

Build a feasible task set with $U \leq 1$ that is not schedulable by RM (rate monotonic)

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	3	6	6	0.5
$ au_2$	4	9	9	0.44

	\boldsymbol{n}					
U =	$\sum_{i=1}^{n} i$	$U_i =$	0.5 -	+ 0.4	4 =	0.94
	$\iota - 1$					

A feasible schedule

Fixed-priority scheduling with RM priorities is not an optimal scheduling policy (in the sense of feasibility)

However, if $\forall i, D_i = T_i$ then

the rate-monotonic priority assignment is

an optimal priority assignment among all other fixed priority assignments

Rate Monotonic is optimal

RM is **optimal** among all fixed priority algorithms (if $D_i = T_i$):

If there exists a fixed priority assignment which leads to a feasible schedule for Γ , then the RM assignment is feasible for Γ .

If Γ is not schedulable by RM, then it cannot be scheduled by any fixed priority assignment.

How is such a task called?

Deadline Monotonic is optimal

If $D_i \le T_i$ then the optimal priority assignment is given by Deadline Monotonic (DM):

Optimality

Utilization-based schedulability tests for RM

Building a first utilization-based test for RM

Find a utilization threshold (i.e, a bound) such that ANY task set with utilization lower than that bound is CERTAINLY schedulable by RM

The simplest utilization-based test

For a given task set, check whether or not

$$U \leq U_{th}$$

where U_{th} is the largest utilization such that any task set with $U \leq U_{th}$ is always schedulable by RM.

The simplest utilization-based test

For a given task set, check whether or not

$$U \leq U_{th}$$

where U_{th} is the largest utilization such that any task set with $U \leq U_{th}$ is always schedulable by RM.

The simplest utilization-based test

For a given task set, check whether or not

$$U \leq U_{th}$$

where U_{th} is the largest utilization such that any task set with $U \leq U_{th}$ is always schedulable by RM.

Schedulability of a FP policy is not monotonic with the utilization!

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	3	6	6	0.5
$ au_2$	4	9	9	0.44

U = 0.94

U=1

U = 0.94 (smaller than 1) but not schedulable!

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	3	6	6	0.5
$ au_2$	6	12	12	0.5

U = 1, but it is schedulable by RM!

In this task set, periods are harmonic. Each period divides all smaller ones.

Liu and Layland test for RM

Liu and Layland [1973] derived a value for U_{lb} for the rate monotonic scheduling under certain assumptions:

- **A1.** Every job of τ_i executes for its WCET C_i
- A2. For each task, $T_i = D_i$
- A3. Tasks are <u>fully preemptive</u>
- A4. Context switch, preemption, and scheduling overheads are zero
- **A5.** Tasks are <u>sequential</u> and <u>independent</u>:
 - no precedence relations
 - no resource constraints
 - no blocking on I/O operations
 - no self suspension
 - No shared resource accesses

Hint for the exam: remember the assumptions

Liu and Layland's test for RM

n is the number of tasks in the task set

$$U \le n \cdot \left(2^{1/n} - 1\right)$$

$$\begin{array}{c}
n \to \infty \\
U_{lb} \to ?
\end{array}$$

$$\begin{array}{c}
n \to \infty \\
U_{lb} \to \ln 2 \sim 0.691
\end{array}$$

$$\begin{array}{c}
n \to 2 \\
U_{lb} \to ?
\end{array}$$

$$\begin{array}{c}
u \to 2 \\
U_{lb} \to 0.83
\end{array}$$

Liu and Layland (L&L) test for RM

How happy are we with the L&L RM test?

How happy are we with the L&L RM test?

Hyperbolic bound

The Hyperbolic Bound

• In 2000, **Bini et al.** proved that a set of *n* periodic tasks is schedulable with RM if:

$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

Example

Is the task set feasible?

Yes $U \leq 1$

 U_i 10 10 0.8 0.9 18 18 0.05

$$U = 0.85$$

Does the task set pass the Liu & Layland's test?

No because
$$U = 0.85 > 2(2^{1/2} - 1) \sim 0.83$$

Does the task set pass the hyperbolic-bound test?

Yes because
$$(0.8 + 1) \times (0.05 + 1) = 1.89 < 2$$

Is the task set schedulable by RM?

Yes! Because it passed the hyperbolic bound test!

Hyperbolic bound

Example

Is the task set feasible?

Yes $U \leq 1$

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	3	5	5	0.6
$ au_2$	4	10	10	0.4

Does the task set pass the Liu & Layland's test?

No because
$$U > 2(2^{1/2} - 1) \sim 0.83$$

$$U = 1$$

Does the task set pass the hyperbolic-bound test?

No because
$$(0.4 + 1) \times (0.6 + 1) = 2.24 > 2$$

Is the task set schedulable by RM?

Inconclusive. Those utilization bounds are only sufficient tests, they are not exact. (Note: the task set is in fact schedulable with RM)

$$\sum_{i=1}^{n} U_i \le 1$$

necessary

 $\sum^{n} U_i \le n \big(2^{1/n} - 1 \big)$

Liu and Layland test

 $\prod_{i=1}^{n} (U_i + 1) \le 2$

Hyperbolic bound

The universe of utilization-based tests for RM

Utilization-based tests and RM scheduling

Bad news:

We <u>cannot</u> have a better <u>utilization-based</u> test than the hyperbolic bound!

Hyperbolic bound is tight

It is impossible to build a new utilization-based test A such that it accepts more task sets than the hyperbolic bound test!

In other words, as long as the <u>only information used in a test</u> is the <u>tasks' utilization</u>, that test will <u>never be better</u> than the hyperbolic bound test!

An improved test for harmonic tasks scheduled under RM

A utilization-based test for harmonic tasks

Han et al. [1997] have proven that **rate monotonic** is **optimal** if $\forall \tau_i, D_i = T_i$, $\sigma_i = 0$ and periods are **harmonic** (task periods are multiples of each others).

Hence, if periods are harmonic and $\forall \tau_i, D_i = T_i$, the following schedulability test is both necessary and sufficient for RM

 $U \leq 1$

Try to explain why

C.-C. Han and H.-Y. Tyan. A Better Polynomial-time Schedulability Test for Real-time Fixed-priority Scheduling Algorithms. In IEEE Real-Time Systems Symposium (RTSS), pages 36–45, 1997.

- Is this task set feasible?
- Yes
- No
- Maybe (depends on the scheduling algorithm)

$ au_i$	C_i	T_i	D_i	U_i
1	1	5	5	0.2
2	5	10	10	0.5
3	1	10	10	0.1
4	1	10	10	0.1
5	1	15	15	0.06

$$U = 0.96$$

Is this task set feasible?

- Yes
- No
- Maybe (depends on the scheduling algorithm)

$ au_i$	C_i	T_i	D_i	U_i
1	1	5	5	0.2
2	5	10	10	0.5
3	1	10	10	0.1
4	1	10	10	0.1
5	1	15	15	0.06

$$U = 0.96$$

 Based on its utilization, is this task set schedulable with RM?

- Yes
- No
- Maybe

$ au_i$	C_i	T_i	D_i	U_i
1	1	5	5	0.2
2	5	10	10	0.5
3	1	10	10	0.1
4	1	10	10	0.1
5	1	15	15	0.06

$$U = 0.96$$

 Based on its utilization, is this task set schedulable with RM?

- Yes
- No

Maybe

$ au_i$	C_i	T_i	D_i	U_i
1	1	5	5	0.2
2	5	10	10	0.5
3	1	10	10	0.1
4	1	10	10	0.1
5	1	15	15	0.06

$$U = 0.96$$

What defines an optimal scheduling policy (in the sense of feasibility)?

- For infeasible task sets, it minimizes the number of deadline misses
- It always generates a feasible schedule
- It generates a feasible schedule for a feasible task set

What defines an optimal scheduling policy (in the sense of feasibility)?

- For infeasible task sets, it minimizes the number of deadline misses
- It always generates a feasible schedule

• It generates a feasible schedule for a feasible task set

Which policy is optimal for preemptive independent tasks on single core?

RM

FIFO

EDF

DM

Which policy is optimal for preemptive independent tasks on single core?

RM

FIFO

DM

Pick a correct answer

- Test X is a necessary test for alg. A
- An exact test for B is a sufficient test for A
- Test X is a sufficient test for A and B
- Test Y is not a necessary test for any algorithm

Pick a correct answer

- Test X is a necessary test for alg. A
- An exact test for B is a sufficient test for A
- Test X is a sufficient test for A and B
- Test Y is not a necessary test for any algorithm

Summary

- RM, DM, OPA are all optimal priority assignments for task-level fixed priority scheduling but under different sets of assumptions:
 - RM: independent preemptive sporadic or periodic tasks (with $\sigma_i = 0$), single core, $D_i = T_i$ for all tasks
 - **DM**: independent preemptive sporadic or periodic tasks (with $\sigma_i = 0$), single core, $D_i \leq T_i$ for all tasks
 - OPA: optimal for any set of preemptive tasks if there exists an exact schedulability test
- EDF is optimal for independent preemptive tasks on single core
- Utilization-based tests for RM
 - LL-bound
 - Hyperbolic bound (best possible utilization-based test for RM)

Is rate-monotonic an optimal scheduling policy (in the sense of feasibility)?

