練習問題

- 1. 次の問題にこたえよ
- (1) データベースの 3 層スキーマ構造に関する記述として適切なものはどれか。
 - (ア) 3 層スキーマ構造は、データベースサーバ、アプリケーションサーバ、 及びクライアントの三つの層から成る。
 - →×: これは3層アーキテクチャの話であってスキーマではない
 - (イ) データの論理的関係を示すスキーマと、利用者が欲するデータの見方を示す スキーマを用意することによって、論理データ独立性を実現している。

 $\rightarrow \bigcirc$

- (ウ) 内部スキーマは、データそのものを個々のアプリケーションの立場や コンピュータの立場から離れて記述するものである。
- →×:内部スキーマはコンピュータの立場に立って格納方法を記述するもの
- (エ) 物理的なデータベース構造をユーザが意識する必要がないように、 データを記憶装置上にどのように記憶するか記述したものを 外部スキーマという。
- →×:これは概念スキーマのことを言っている

答えはイ

- (2) 関係代数において、等結合演算と同等の演算を実現できる演算の組合せはどれか
 - (ア) 直積と射影
 - (イ) 直積と選択
 - (ウ) 和と射影
 - (エ)和と選択

答えはイ

- (3) 関数従属に関する記述のうち、適切なものはどれか?ここでA,B,C はあるリレーションの属性の集合とする。
 - (ア) B が A に関数従属し、C が A に関数従属すれば、C は B に関数従属する \times $B \rightarrow A \leftarrow C$
 - (イ) B が A の部分集合であり、C が A に関数従属すれば、C は B に関数従属する \times $B \rightarrow A \leftarrow C$
 - (ウ) B が A の部分集合であれば、A は B に関数従属する
 - × BがAに従属する
 - (x) B と C の和集合が A に関数従属すれば B と C はそれぞれ A に関数従属する

 \bigcirc

答えはエ

2. 以下の映画テーブルについて問題にこたえよ。 映画 (映画 ID, タイトル, 監督, 公開年, 出演者 ID, 出演者名, 役名, 事務所 ID, 事務所名)

(1) 各属性間の関係従属をすべて求め、主キーを決定せよ
映画 ID→タイトル、映画 ID→監督、映画 ID→公開年、映画 ID→出演者 ID
出演者 ID→出演者名、{映画 ID, 出演者 ID}→役名、出演者 ID→事務所 ID, 事務
所 ID→事務所名、出演者 ID→事務所名
以上より、映画 ID と出演者 ID があれば他のすべての属性が一意に定まるので
映画 ID と出演者 ID が主キー。

- (2) 「映画」テーブルは第何正規形かをこたえよ。 第1正規形だが、部分従属があるので第2正規形ではない。
- (3) 「映画」テーブルを第3正規形に分解せよ。 (2の答えが第3正規形であればそのまま何もせずとも良い)

映画 (映画 ID,タイトル, 監督, 公開年)

俳優(<u>俳優 ID</u>, 俳優名, 事務所 ID)事務所 ID は事務所リレーションの外部キー配役(<u>映画 ID</u>, <u>出演者 ID</u>, 役名) 出演者 ID は俳優リレーションの外部キー**事務所 (事務所 ID, 事務所名)**

3. 以下のユーザ登録制オンライン PC ゲームのゲーム記録データベースに関して以下の問題にこたえよ。

ゲーム (ゲーム ID, ゲーム名, メーカー, 発売日) ユーザ (ユーザ ID, ユーザ名) 記録 (ユーザ ID, ゲーム ID, 日時, 得点) 結合記号がないので JOIN と記載しています。

(1) ゲーム名「zoo keeper」をプレイしたユーザ名を求める関係代数、SQL 文を求めよ ρ(U,ユーザ)、ρ(G, ゲーム)、ρ(R, 記録) π_{U.ゲーム名}(σ G.ゲーム名=zoo_keeper*((U JOIN U.ゲーム ID=R.ゲーム ID R) JOIN R. ゲーム ID=G.ゲーム ID G))

select u.ユーザ名

from ユーザ u, ゲーム g, 記録 r where u.ユーザ ID=r.ユーザ ID and g.ゲーム ID=r.ゲーム ID and g.ゲーム名='zoo keeper' (2) 2009/7/20 時点でのゲーム「samegame」の最高得点者を求める関係代数, SQL 文を求めよ

ho (G1, σ 記録・日時<='2009/7/20' \wedge ゲーム・ゲーム名='samegame'(記録 JOIN 記録・ゲーム ID=ゲーム・ゲーム ID ゲーム), ho (G2,G1), ho (U, ユーザ) ho (G3, ho {G1.ユーザ ID,G2.ユーザ ID}(G1 JOIN {G1.得点>=G2.得点} G2))

 π_{-} (ユーザ.ユーザ名)(ユーザ JOIN_{ユーザ.ユーザ ID=G3.ユーザ ID) (G3÷(π_{-} (ユーザ ID)G1))

select u.ユーザ名

from 記録 r, ゲーム g, ユーザ名 u

where r.ゲーム ID=g.ゲーム ID and u.ユーザ ID=r.ユーザ ID

and ゲーム名='samegame' and r. 日時<='2009/7/20'

and r.得点= (select max(得点)

from 記録 r, ゲーム g

where r.ゲーム ID=g.ゲーム ID

and ゲーム名='samegame' and r. 日時<='2009/7/20')

(3) ゲームメーカ「SAGA」のすべてのゲームをプレイしているユーザを求める関係代数および関係論理を求めよ

ρ (G, π_{f-Δ} ID(σ_{メーカー=}'SAGA'ゲーム))
ρ (R, π_{ユーザ} ID, _{f-Δ} ID 記録)
π_{ユーザ名}((R÷G) JOIN _{R.ユーザ} ID=ューザ.ユーザ ID ユーザ)

 $\{P \mid \exists U \ (U \in \mathcal{A} - \forall \land P. \mathcal{A} - \forall A = U. \mathcal{A} - \forall A) \ \land \ \forall G \ (G \in \mathcal{F} - \mathcal{A} \land G. \mathcal{A} - \mathcal{A} = SAGA' \Rightarrow \exists R(R \in 記録 \land U. \mathcal{A} - \forall ID = R. \mathcal{A} - \forall ID \land G. \mathcal{F} - \mathcal{A} ID = R. \mathcal{F} - \mathcal{A} ID)) \}$

- 4. 次の問題にこたえよ
- (1) 次の要求仕様に従ってフィギュアスケートDB のE-R 図を設計せよ。
 - ・選手はID,名前、年齢、国籍、所属をもつ
 - ・大会はID,大会名、開催年、会場をもつ
 - ・実施はID, 種目名(男子シングル、女子シングル、ペアなど)、 プログラム名(ショートプログラム、フリープログラム、コンパルソリーなど)、 実施日時が含まれる
- ・1 つの大会には複数の実施を持つが、1 つの実施は1 つの大会で行われる。

・選手は複数の実施に出場し、得点を得る。

パワポ参照

(2)(1)で作った E-R 図に従ってリレーションスキーマを定義せよ。

大会($\underline{\mathrm{ID}}$ 、大会名 、開催年 、会場)

実施 (<u>ID</u>,、種目名 、プログラム名 、実施日時、大会 ID)

大会 ID は大会リレーションの外部キー

選手(ID、名前、年齢、国籍、所属)

出場(実施 ID、選手 ID、得点)

実施 ID は実施リレーションの外部キー、選手 ID は先週リレーションの外部キー