Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический институт

<u>Техносферная и экологическая безопасность</u> кафедра

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №2

По дисциплине: «Безопасность жизнедеятельности» Тема: Освещение Вариант №1, Задачи №7-12

Преподаватель		Ледяева О.Н.
-	подпись, дата	
Студент КИ21-02/16, 032155797		Патюков Д.А.
	подпись, дата	

Задача №7

Условие: 1. Определить площадь световых проемов и количество окон для помещений, используя данные табл. 1 и формулы (4.1) - (4.3);

- 2. Подсчитать световой коэффициент по формуле (4.4);1
- 3. Определить коэффициент заглубления по формуле (4.5);
- 4. Сделать вывод о соответствии полученных коэффициентов санитарногигиеническим нормам, учитывая, что световой коэффициент для учебного помещения должен составлять не менее 1/6; коэффициент заглубления – не менее 1/2.

Вариант	$N_{\underline{0}}1$
---------	----------------------

№	Предназначение	a,	b,	h,	1,	Расположе	Количеств
вари-	аудитории	M	M	M	M	ние окон	О
анта							студентов
1	Для	12	6	2,8	2	север	43
	практических						
	занятий						

Рассчитаем общий коэффициент светопропускаемости 1.

$$\tau_0 = \tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4,$$

$$\tau_0 = 0.8 \cdot 0.65 \cdot 1 \cdot 1 = 0.52$$

2. Найдём площадь необходимого светового проёма
$$S_0 = \frac{e_{\text{H}} \cdot \eta_0 \cdot \text{K}_{\text{3Д}} \cdot S_n}{\tau_0 \cdot r_1 \cdot 100} = \frac{0.6 * 31 * 1 * 72}{0.52 * 1.9 * 100} \approx 13.55 \text{ м}^2$$

Если брать размеры окна 2.3x1.5 м, то необходимо 4 окна.

3. Рассчитаем световой коэффициент

$$CK = \frac{S_0}{S_n} = \frac{13.55}{72} \approx 0.188$$

4. Рассчитаем коэффициент заглубления

$$K3 = \frac{h_1}{b} = \frac{2.8 - 0.2}{6} \approx 0.4(3)$$

Вывод: Световой коэффициент соответствуем санитарно-гигиеническим нормам, коэффициент заглубления не соответствует этим нормам, необходимо дополнительное искусственное освещение.

Задача 8

Условие: Используя данные табл. 1 по параметрам помещения рассчитать и подобрать необходимое количество ламп.

No	Предназначение	a,	b,	h,	1,	Расположе	Количеств
вари-	аудитории	M	M	M	M	ние окон	О
анта							студентов
1	Для	12	6	2,8	2	север	43
	практических						
	занятий						

1. Найдём необходимый световой поток каждой лампы, лм

$$\Phi = \frac{E \cdot S \cdot k \cdot z}{N \cdot \eta}$$

$$E = 300 \text{ лк}$$

$$S = 12*6 = 72 \text{ m}^2$$

$$k = 1.4$$

$$z = 1,1$$

$$N = S/L^2$$

$$L = \lambda \cdot h$$

$$\lambda = 1.4$$

η – коэффициент использования светового потока.

$$h = H - h_{cb} - h_p = 2.8 - 0 - 0.8 = 2 \text{ M}$$

$$N = S/L^2 = 72/(1.4*2)^2 = 9.2$$

Для прямоугольных помещений:

$$i = \frac{b \cdot a}{h(a+b)} = \frac{12*6}{2(12+6)} = 2$$

Коэффициенты отражения поверхностей помещения: потолка — ρ_n = 70 %, стен — ρ_c = 50 %, рабочей поверхности столов — ρ_p = 30 %.

Подходящая лампа = ЛДОР(люм) с коэффициентом $\eta = 0.56$

$$\Phi = \frac{E \cdot S \cdot k \cdot z}{N \cdot \eta} = \frac{300 * 72 * 1.4 * 1.1}{9.2 * 0.56} = 6456$$
 лм

Тип	Мощ-	Напряже-	Номиналь-	Длина	Диаметр	Средняя
лампы	ность	ние	ный	лампы,	колбы,	продолжи-
	лампы,	на лампе,	световой	MM	MM	тельность
	Вт	В	поток, Лм			горения, ч

ЛХБ 30	30	96	1940	908,8	27	15000
ЛХБ 65	65	110	4400	1514,2	40	13000

Суммарно две лампы ЛХБ 30 и ЛХБ 65 дают необходимое освещение. Каждой модели лампы необходимо по 10 шт.

Задача №9

Условие: Определить коэффициент отражения r и среднюю освещенность E, лк, стены площадью S, M^2 . Дать оценку фона (светлый, средний, темный). Световой поток F, лм, отражается $F_{\text{отр}}$, лм.

Параметры	Варианты исходных данных
S, m ²	4
F, лм	600
F _{отр} , лм	150

1) Рассчитаем коэффициент отражения:

r=F(отр)/F(пад) , где r - коэффициент отражения; $F_{\text{отр}}$ - отраженный световой поток; F - падающий световой поток. r=150/600- фон средний, так как 0.2 < r < 0.4

2) Рассчитаем освещенность рабочей поверхности:

E=F/S , где E - освещенность рабочей поверхности; F - падающего светового потока; S - площадь поверхности E=600/4=150

Ответ: r = 0.25 – фон средний, E = 150 лк.

Задача №10

Условие: Найдите минимальное и максимальное значение освещенности рабочей поверхности, если коэффициент пульсаций освещенности равен K_n , %, а среднее значение освещенности E_{cp} , лк. Предложить три возможных варианта.

Параметры	Варианты исходных данных
Кп, %	5
Е _{ср} , лк	400

1) Коэффициент пульсации светового потока:

$$K = \frac{E_{max} - E_{min}}{2E_{cn}} \cdot 100\%$$

K=(E(max)-E(min))/2E(cp)

1) Путем выражения разности и подстановкой коэффициентов: 5=(E(max)-E(min))/(2*400)*100 E(max)-E(min)=40

2) Из $E_{cp} = 400$ можно найти E_{max} и E_{min} :

$$E(min)=(400*2-40)/2=380$$

$$E(max)=(400*2-40)/2+40=420$$

Ответ: $E(max) = 420\pi \kappa$; $E(min) = 380 \pi \kappa$;

E_{max}	E_{min}
425	385
420	380
415	375

Задача №11

Условие: В производственном помещении площадью S, M^2 , со средним выделением пыли минимальная освещенность по нормам составляет E, лк. Освещение осуществляется светильникам прямого света. Напряжение сети 220 В. Мощность применяемых ламп W_{π} , Вт. Определить мощность осветительной установки W, Вт и число ламп N, необходимое для создания общего равномерного освещения. Расчет произвести методом определения удельной мощности. E_{cp} принять равным 4,15 лк, коэффициент запаса K_3 указан в табл.

Параметры	Варианты исходных данных
S, m ²	84
Е, лк	300
$W_{\scriptscriptstyle \Pi}, B_{\rm T}$	40
K ₃	1.1

1) Найдем мощность осветительной установки:

$$W = \frac{E^*S^*K_3}{1000^*E_4}$$
, где E — нормируемая освещенность, лк; E_{cp} — средняя условная освещенность, в контрольной точке, определяется по графикам пространственных изолюкс, при равномерном размещении осветительных приборов общего освещения, при расходе электроэнергии 1 BT/m^2 ; K_3 — коэффициент запаса; S — площадь освещаемой поверхности. $W=(300*84*1.1)/(1000*4.15)=6.67$ кВт

2) Найдем необходимое число ламп выбранной мощности:

N(w)=W/W(n), где W — мощность осветительной установки кВт; W_π — мощность одной лампы, кВт N(w)=6670/40=167 ламп

Ответ: $W = 6.67 \text{ кВт}, N_w = 167 \text{ ламп}.$

Задача №12

Условие: Рассчитать общее искусственное освещение (определить количество ламп) для помещения, указанного в задаче №1, используя метод светового потока. Помещение характеризуется незначительными пылевыделениями. Норма освещенности для работ, выполняемых в помещении Е, лк. Для освещения используются газоразрядные люминесцентные лампы ЛБ, мощностью 40 Вт, в светильниках ПВЛМ-2 с двумя лампами, создающими световой поток F = 3980 лм, с коэффициентом использования светового потока равным h = 0,85. Определить число светильников в каждом ряду и полную длину всех светильников ряда, приняв минимальное число рядов светильников. Длина светильника l = 1,2 м. Расстояние между светильниками в ряду 0,3 м.

Параметры	Варианты исходных данных
$E_{\scriptscriptstyle \rm JK}, {\rm M}^2$	200

 $N=rac{E^*S^*K^*Z}{n^*F^*h}$, где Z — коэффициент неравномерности освещения; n — число ламп в светильнике; F — световой поток, лм; h — коэффициент использования светового потока; K_3 — коэффициент запаса; E — нормируемая освещенность, лк; S — освещаемая поверхность, M^2 : N=(200*72*1.3*1.2)/(2*3980*0.85)=3.32

3 светильников=> 6 ламп

Ответ: 6 ламп. В 1 ряд (длина кабинета 12 метров) входит 3 светильника. Следовательно, необходимо два ряда по три светильника.