fc-multicategories

Tom Leinster*

Department of Pure Mathematics, University of Cambridge Email: leinster@dpmms.cam.ac.uk Web: http://www.dpmms.cam.ac.uk/~leinster

Notes for a talk at the 70th Peripatetic Seminar on Sheaves and Logic, Cambridge, 28 February 1999

Abstract

What **fc**-multicategories are, and two uses for them.

Introduction

fc-multicategories are a very general kind of two-dimensional structure, encompassing bicategories, monoidal categories, double categories and ordinary multicategories. Here we define what they are and explain how they provide a natural setting for two familiar categorical ideas. The first is the bimodules construction, traditionally carried out on suitably cocomplete bicategories but perhaps more naturally carried out on fc-multicategories. The second is enrichment: there is a theory of categories enriched in an fc-multicategory, which includes the usual case of enrichment in a monoidal category, the obvious extension of this to ordinary multicategories, and the less well known case of enrichment in a bicategory.

To finish we briefly indicate the wider context, including how the work below is just the simplest case of a much larger phenomenon and the reason for the name 'fc-multicategory'.

1 What is an fc-multicategory?

An **fc**-multicategory consists of

• A collection of **objects** x, x', \ldots

^{*}Financial support from EPSRC; curveless diagrams by Paul Taylor's macros

- For each pair (x, x') of objects, a collection of **vertical 1-cells** \downarrow^x , denoted f, f', \dots
- For each pair (x, x') of objects, a collection of **horizontal 1-cells** $x \longrightarrow x'$, denoted m, m', \ldots
- For each $n \geq 0$, objects x_0, \ldots, x_n, x, x' , vertical 1-cells f, f', and horizontal 1-cells m_1, \ldots, m_n, m , a collection of **2-cells**

denoted θ , θ' , ...

- Composition and identity functions making the objects and vertical 1-cells into a category
- A composition function for 2-cells, as in the picture

 $f \circ f_0 \downarrow \xrightarrow{m_1^1} \cdots \qquad \xrightarrow{m_n^{r_n}} \downarrow f' \circ f_n$

 $(n \ge 0, r_i \ge 0, \text{ with } \bullet$'s representing objects)

• An **identity** function

$$x \xrightarrow{m} x' \qquad \longmapsto \qquad 1_x \downarrow \downarrow 1_m \downarrow 1_{x'} \downarrow 1_{x'} \downarrow x \xrightarrow{m} x'$$

such that 2-cell composition and identities obey associativity and identity laws.

Examples

a. Any double category gives an ${f fc}$ -multicategory, in which a 2-cell as at (*) is a 2-cell

in the double category.

b. Any bicategory gives an **fc**-multicategory in which the only vertical 1-cells are identity maps, and a 2-cell as at (*) is a 2-cell

in the bicategory (with $x_0 = x$ and $x_n = x'$).

c. Any monoidal category gives an **fc**-multicategory in which there is one object and one vertical 1-cell, and a 2-cell

is a morphism $M_n \otimes \cdots \otimes M_1 \longrightarrow M$.

- d. Similarly, any ordinary multicategory gives an **fc**-multicategory: there is one object, one vertical 1-cell, and a 2-cell (\dagger) is a map $M_1, \ldots, M_n \longrightarrow M$.
- e. We define an **fc**-multicategory **Span**. Objects are sets, vertical 1-cells are functions, a horizontal 1-cell $X \longrightarrow Y$ is a diagram X and a 2-cell inside

is a function θ making

commute, where $M_n \circ \cdots \circ M_1$ is the limit of the top row of (‡). Composition is defined in the obvious way.

2 Bimodules

Bimodules have traditionally been discussed in the context of bicategories. Thus given a bicategory \mathcal{B} , we construct a new bicategory $\mathbf{Bim}(\mathcal{B})$ whose 1-cells are bimodules in \mathcal{B} (see [CKW] or [Kos]). The drawback is that to do this, we must make certain assumptions about the behaviour of local coequalizers in \mathcal{B} .

However, the **Bim** construction extends to **fc**-multicategories, and working in this context allows us to drop all the technical assumptions: we therefore obtain a functor **Bim**: **fc-Multicat** \longrightarrow **fc-Multicat**. The definition is rather dry, so we omit it here and just give a few examples; the reader is referred to [Lei2, 2.6] for further details.

Examples

a. Let V be the **fc**-multicategory coming from the monoidal category (\mathbf{Ab}, \otimes) (see (c) above). Then $\mathbf{Bim}(V)$ has

objects: rings

vertical 1-cells: ring homomorphisms

horizontal 1-cells $R \longrightarrow S$: (S, R)-bimodules

2-cells: A 2-cell

is a multi-additive map $M_n \times \cdots \times M_1 \xrightarrow{\theta} M$ of abelian groups such that

$$\theta(r_n.m_n, m_{n-1}, \dots) = f(r_n).\theta(m_n, m_{n-1}, \dots)
\theta(m_n.r_{n-1}, m_{n-1}, \dots) = \theta(m_n, r_{n-1}.m_{n-1}, \dots)$$

etc.

b. If V is the **fc**-multicategory **Span** then $\mathbf{Bim}(V)$ has

objects: monads in Span, i.e. small categories

vertical 1-cells: functors

horizontal 1-cells $\mathbb{C} \longrightarrow \mathbb{C}'$: profunctors (i.e. functors $\mathbb{C}^{op} \times \mathbb{C}' \longrightarrow \mathbf{Set}$)

2-cells: A 2-cell

is a natural family of functions

$$M_1(c_0, c_1) \times \cdots \times M_n(c_{n-1}, c_n) \longrightarrow M(Fc_0, F'c_n),$$

one for each $c_0 \in \mathbb{C}_0, \ldots, c_n \in \mathbb{C}_n$.

c. Let V be the **fc**-multicategory coming from a bicategory \mathcal{B} with nicely-behaved local coequalizers. If we discard the non-identity vertical 1-cells from $\mathbf{Bim}(V)$ then we obtain the **fc**-multicategory coming from the traditional bicategory $\mathbf{Bim}(\mathcal{B})$ —e.g. in (a), we get the bicategory of rings and bimodules.

3 Enrichment

We define what a 'category enriched in V' is, for any **fc**-multicategory V. This generalizes the established definitions for monoidal categories and bicategories.

Fix an fc-multicategory V. A category C enriched in V consists of

- a set C_0 ('of objects')
- for each $a \in C_0$, an object C[a] of V
- for each $a, b \in C_0$, a horizontal 1-cell $C[a] \xrightarrow{C[a,b]} C[b]$ in V
- for each $a, b, c \in C_0$, a 'composition' 2-cell

$$C[a] \xrightarrow{C[a,b]} C[b] \xrightarrow{C[b,c]} C[c]$$

$$1 \downarrow comp_{a,b,c} \downarrow 1$$

$$C[a] \xrightarrow{C[a,c]} C[c]$$

• for each $a \in C_0$, an 'identity' 2-cell

$$C[a] = C[a]$$

$$\downarrow id_a \qquad \downarrow 1$$

$$C[a] = C[a]$$

$$C[a] = C[a]$$

(where the equality sign along the top denotes a string of 0 horizontal 1-cells)

such that *comp* and *id* satisfy associativity and identity axioms.

Remark: We haven't used the vertical 1-cells of V in any significant way, but we would do if we went on to talk about functors between enriched categories (which we won't here).

Examples

- a. Let V be (the **fc**-multicategory coming from) a monoidal category. Then the choice of C[a]'s is uniquely determined, so we just have to specify the set C_0 , the C[a,b]'s, and the maps $C[b,c] \otimes C[a,b] \longrightarrow C[a,c]$ and $I \longrightarrow C[a,a]$. This gives the usual notion of enriched category.
- b. If V is an ordinary multicategory then we obtain an obvious generalization of the notion for monoidal categories: so a category enriched in V consists of a set C_0 , an object C[a,b] of V for each a,b, and suitable maps $C[a,b], C[b,c] \longrightarrow C[a,c]$ and $\cdot \longrightarrow C[a,a]$ (where \cdot denotes the empty sequence).
- c. If V is a bicategory then we get the notion of Walters et al (see [BCSW], [CKW], [Wal]).
- d. Let D be a category enriched in (\mathbf{Ab}, \otimes) . Then we get a category C enriched in $\mathbf{Bim}(\mathbf{Ab})$:
 - $C_0 = D_0$ (= objects of D)
 - C[a] is the ring D[a, a] (whose multiplication is composition in D)
 - C[a, b] is the abelian group D[a, b] acted on by C[a] = D[a, a] (on the right) and C[b] = D[b, b] (on the left)
 - \bullet composition and identities are as in D.

So the passage from D to C is basically down to the fact that composition makes D[a,a] into a ring and D[a,b] into a (D[b,b],D[a,a])-bimodule. It's a very mechanical process, and in fact for general V there's a functor

(categories enriched in V) \longrightarrow (categories enriched in Bim(V)).

e. An example of a category enriched in $\mathbf{Bim}(\mathbf{Span})$ (= categories + functors + profunctors ...): C_0 is \mathbb{N} , C[n] is the category of n-dimensional real differentiable manifolds and diffeomorphisms, and the profunctor C[m,n] is the functor

$$\begin{array}{ccc} C[m]^{\mathrm{op}} \times C[n] & \longrightarrow & \mathbf{Set} \\ & (M,N) & \longmapsto & \{\text{differentiable maps } M \longrightarrow N\}. \end{array}$$

- f. Let $\operatorname{\bf ParBjn}$ be the sub-fc-multicategory of $\operatorname{\bf Span}$ in which all horizontal 1-cells are of the form $(X \longleftrightarrow M \rightarrowtail Y)$: so this 1-cell is a partial bijection between X and Y. Let S be a set and $(C_i)_{i\in I}$ a family of subsets. Then we get a category C enriched in $\operatorname{\bf ParBjn}$:
 - $C_0 = I$
 - $C[i] = C_i$
 - $C[i,j] = (C_i \longleftrightarrow C_i \cap C_j \Longrightarrow C_j)$
 - $comp_{i,j,k}$ is the inclusion $C_i \cap C_j \cap C_k \subseteq C_i \cap C_k$
 - id_i is the inclusion $C_i \subseteq C_i \cap C_i$.
- g. Fix a topological space A. Suppose A is nonempty and path-connected; choose a basepoint a_0 and a path $\gamma_a:a_0\longrightarrow a$ for each $a\in A$. Then we get a category C enriched in the homotopy bicategory V of A (where V consists of points of A, paths in A, and homotopy classes of path homotopies in A):
 - $\bullet \ C_0 = A$
 - \bullet C[a] = a

 - composition $C[b,c] \circ C[a,b] \longrightarrow C[a,c]$ is the (homotopy class of the) obvious homotopy from

• identities work similarly.

The wider context

Given a monad T on a category \mathcal{E} (with certain properties), there's a category of T-multicategories (see [Lei1], [Bur] or [Her]). For example:

(\mathcal{E},T)	T-multicategories
(\mathbf{Set},id)	categories
$(\mathbf{Set}, \text{free monoid})$	ordinary multicategories
$(\mathbf{Graph}, \underline{\mathbf{f}}ree \ \underline{\mathbf{c}}ategory)$	fc-multicategories

where $\mathbf{Graph} = [(\bullet \Longrightarrow \bullet), \mathbf{Set}].$

Moreover, if one defines a T-graph to be a diagram $T(C_0)$ in $T(C_0)$ C_0 \mathcal{E} , then there's a forgetful functor T-Multicat T-Graph, this has a left adjoint, and the adjunction is monadic. Write $\mathcal{E}' = T$ -Graph and T' for the induced monad on \mathcal{E}' . Then we can also discuss T'-multicategories, and in fact there's a theory of T-multicategories enriched in a T'-multicategory.

The simplest case is $(\mathcal{E}, T) = (\mathbf{Set}, id)$: then $(\mathcal{E}', T') = (\mathbf{Graph}, \text{free category})$, so we have a theory of categories enriched in an **fc**-multicategory. This is just the theory we discussed above.

A full explanation of these ideas can be found in [Lei2].

References

- [BCSW] Renato Betti, Aurelio Carboni, Ross Street, Robert Walters, Variation through enrichment (1983). *Journal of Pure and Applied Algebra* 29, pp. 109–127.
- [Bur] A. Burroni, T-catégories (1971). Cahiers Top. Geom. Diff., Vol. XII, No. 3, pp. 215–321.
- [CKW] Aurelio Carboni, Stefano Kasangian, Robert Walters, An axiomatics for bicategories of modules (1987). *Journal of Pure and Applied Algebra* 45, pp. 127–141.
- [Her] C. Hermida, Higher-dimensional multicategories (1997). Lecture slides, available via http://www.math.mcgill.ca/~hermida.
- [Kos] Jürgen Koslowski, Monads and interpolads in bicategories (1997). Theory and Applications of Categories, Vol. 3, No. 8, pp. 182–212.
- [Lei1] Tom Leinster, General operads and multicategories (1997). Preprint math.CT/9810053.
- [Lei2] Tom Leinster, Generalized enrichment for categories and multicategories (1999). Preprint math.CT/9901139.
- [Wal] R. F. C. Walters, Sheaves and Cauchy-complete categories (1981). Cahiers Top. Geom. Diff., Vol. XXII, No. 3.