Homework Review and Proofwriting

Andres Buritica

1 Lecture 10 Homework

- 1. Prove that for any positive integer c and any prime p, there is a positive integer x such that $x^x \equiv c \pmod{p}$.
- 2. Let x be an irrational number, and let a and b be real numbers such that $0 \le a < b \le 1$. Prove that there is an integer n such that $a < \{nx\} < b$. Hence prove that there is a power of 2 whose decimal representation starts with 2023.
- 3. Prove that every arithmetic progression a, a + b, ... where gcd(a, b) = 1 has infinitely many terms which are not divisible by any perfect square larger than 1.

2 Lecture 11 Homework

- 1. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(f(m)f(n)) = mn for all positive integers m and n.
- 2. Find all monotonically increasing functions $f: \mathbb{N} \to \mathbb{Z}_{\geq 0}$ such that f(mn) = f(m) + f(n) for all nonnegative integers m and n.
- 3. Let a, b be odd positive integers. Define the sequence c_n by choosing $c_1 = a, c_2 = b$ and for each i > 2 letting c_i be the largest odd divisor of $c_{i-1} + c_{i-2}$. Prove that this sequence is eventually constant (that is, there is an m such that for any i, j > m, $a_i = a_j$).

3 Homework

- 1. The denominators of two irreducible fractions are 600 and 700. Find the minimum value of the denominator of their sum (written as an irreducible fraction).
- 2. We call the *main divisors* of a composite number n the two largest of its divisors other than n. Composite numbers a and b are such that their main divisors coincide. Prove that a = b.
- 3. Suppose a_1, a_2, \ldots is an infinite strictly increasing sequence of positive integers and p_1, p_2, \ldots is a sequence of distinct primes such that $p_n \mid a_n$ for all $n \geq 1$. It turned out that $a_n a_k = p_n p_k$ for all $n, k \geq 1$. Prove that the sequence $\{a_n\}$ consists only of prime numbers.