Satisfaction of a Quantified Predicates

- We haven't discussed how to decide whether a state satisfies a quantified predicate. If the state does not contain the quantified variable, it is not hard to understand the problem: does $\{y=1\}$ satisfies $\forall x. x^2 \ge y-1$? But what if the quantified variable is in the state: does $\{z=4, x=-5\} \models \exists x. x \ge z$?
- $\sigma \vDash \exists x \in S$. p if for one or more witness values $\alpha \in S$, it's the case that $\sigma[x \mapsto \alpha] \vDash p$.
- 1. True or False?
 - a. $\{z = 4, x = -5\} \models \exists x. x \ge z$?

True. We can find x = 5 such that $\{z = 4, x = -5\}[x \mapsto 5] = \{z = 4, x = 5\}$ satisfies $x \ge z$.

b. $\sigma \models \exists x. x^2 \le 0$?

True. x has domain \mathbb{Z} , and we can find x = 0 such that $\sigma[x \mapsto 0]$ satisfies $x^2 \le 0$.

- o From these examples, we can see that if a variable is bounded in an existential quantifier, its current value in a state doesn't affect the satisfaction of the state.
- 2. Which of the following state satisfies $x < 3 \land \exists x. b[x] > 5$?
 - a. $\{x = 0, b = (2, 4, 3, 1)\}$
 - b. $\{x = 1, b = (1, 3, 5, 7)\}$
 - c. $\{x = 2, b = (1, 3, 5, 4)\}$
 - d. $\{x = 3, b = (6, 5, 3, 1)\}$
- $\sigma \vDash \forall x \in S. p$ if for every value $\alpha \in S$, we have $\sigma[x \mapsto \alpha] \vDash p$.
- 3. True or False.
 - a. $\{y=1\} \models \forall x \in \mathbb{Z}. x^2 \ge y-1$?

True. $\{y=1\}(y-1)=0$, and we know that for all integer α , we have $\alpha^2\geq 0$.

b. $\{x = -1\} \models \forall x \in \mathbb{Z}. x^2 \ge x$?

True. We know that for all integer α , we have $\alpha^2 \ge \alpha$.

- o From this example, we can see that if a variable is bounded in a universal quantifier, its current value in a state doesn't matter as well.
- How about "doesn't satisfy"? Without consider the possible runtime error during the evaluation, we can use " $\sigma \not\models p \Leftrightarrow \sigma \models \neg p$ " then apply DeMorgan's Law here:
 - $\circ \quad \sigma \not\models \exists x \in S. p \Leftrightarrow \sigma \vDash \neg \exists x \in S. p \Leftrightarrow \sigma \vDash \forall x \in S. \neg p$
 - $\circ \quad \sigma \not \models \forall x \in S. \, p \Leftrightarrow \sigma \vDash \neg \forall x \in S. \, p \Leftrightarrow \sigma \vDash \exists x \in S. \, \neg p$

Validity of Predicates

- Let p be a proposition or predicate. $\models p$ means $\sigma \models p$ for all σ , and we say p is **valid**. In other words, we can say "It is always true that, p".
 - $\circ \vdash p \Leftrightarrow \forall \sigma \in S. \sigma \vdash p \text{ (where } S \text{ is the collection of all well-formed states that are proper for } p)$
- $\not\models p$ means $\sigma \not\models p$ for **some** σ , and we say p is **invalid**. In other words, we can say "p is not always true".
 - $\circ \quad \not\models p \Leftrightarrow \exists \sigma \in S. \sigma \not\models p$ (where S is the collection of all well-formed states are proper for p)

4. True or False.

a.
$$\models x > 1 \rightarrow x^2 > x$$
 True, because all states satisfy $x > 1 \rightarrow x^2 > x$
b. $\models x > 1 \land x^2 > x$ False, because $\{x = 0\} \not\models x > 1 \land x^2 \ge x$

c.
$$\models \forall x. x > 1 \rightarrow x^2 > x$$
 True

We need to check that whether $\forall \sigma. \sigma \vDash \forall x. x > 1 \rightarrow x^2 > x$. While check whether some $\sigma \vDash \forall x. x > 1 \rightarrow x^2 > x$, we don't need any bindings in σ , since this universal quantified x and its body contains only variable x as well. Therefore, we only need to check whether any one $\sigma \vDash \forall x. x > 1 \rightarrow x^2 > x$, and we can simple pick $\sigma = \emptyset$ to process.

• If p is a predicate about x and x is not a variable being bounded in p, then $\models p \Leftrightarrow \models \forall x. p$.

d.	$\vDash \forall x. x > 1 \land x^2 > x$	False
e.	$\models \exists x. x > 1 \land x^2 > x$	True

5. Is the following predicate valid?

$$\exists y. y \neq 0 \land x * y \neq 0$$

 $\exists y. y \neq 0 \land x * y \neq 0$ is a predicate about x and x is not the variable being bounded here, so semantically its validity is equivalent to $\models \forall x. \exists y. y \neq 0 \land x * y \neq 0$; then it is easy to see this predicate is invalid.

To show it is invalid, we can argue that:

$$\begin{tabular}{ll} $\not\exists y.y \neq 0 \land x * y \neq 0$ \\ \Leftrightarrow $\exists \sigma.\sigma \not\models \exists y.y \neq 0 \land x * y \neq 0$ \\ \Leftrightarrow $\exists \sigma.\sigma \models \neg \exists y.y \neq 0 \land x * y \neq 0$ \\ \Leftrightarrow $\exists \sigma.\sigma \models \forall y. \neg (y \neq 0 \land x * y \neq 0)$ \\ \Leftrightarrow $\exists \sigma.\sigma \models \forall y. \neg (y \neq 0 \land x * y \neq 0)$ \\ \Leftrightarrow $\exists \sigma.\sigma \models \forall y.y = 0 \lor x * y = 0$ \\ \hline \end{tabular} \begin{tabular}{ll} $\mathsf{DeMorgan's Law}$ \\ $\mathsf{DeMorgan's Law}$ \\ $\mathsf{DeMorgan's Law}$ \\ \end{tabular}$$

We can find that $\sigma = \{x = 0\}$ is a witness, since for all possible values of y, we always have y = 0 or x * y = 0.

Syntax of Statements in Our Programming Language

- **Program**: A program is simply a statement, typically a sequence statement.
- In general, a statement is a standalone unit of execution whose purpose is not creating a value (opposite to expression) but creating changes in memory. We usually use letter *S* to represent a statement in our programming language.
- We initially introduce 5 types of statements here, and we will introduce more in future classes.
 - No-op statement: skip
 It simply means do nothing.
 - O Assignment statement: $v \coloneqq e$ or $b[e_0][e_1] \dots [e_{n-1}] \coloneqq e$ Assigning expression e to variable v or assigning expression e to a certain index in an n-dimensional array b.
 - o **Sequence** statement: S; S'

Do S then do S'. Note that S' can be another sequence statement, then we have a longer sequence like: $S_1; S_2; S_3$.

 \circ Conditional statement: if B then S_1 else S_2 fi

Do S_1 if B is evaluated to True, do S_2 if B is evaluated to False.

- A conditional statement and a conditional expression can look alike, we tell one another by context. Note that S_1 and S_2 both must be statements.
- When S_2 is a no-op statement, then we can simply it from **if** B **then** S_1 **else skip fi** to **if** B **then** S_1 **fi** so we don't need to formally define a **if then** statement.
- Iterative statement: while B do S od

A "while loop" with loop condition B and do S in each iteration.

- We don't have "for loops" in our language but we can simulate it using **while do**. For example, if we need: **for** $x = e_1$ **to** e_2 **do** S, we turn it into: $x \coloneqq e_1$; **while** $x < e_2$ **do** S; $x \coloneqq x + 1$ **od**
- 6. Translate the following Java statements into statements in our programming language.

```
a. x = (y == 2) ? 5 + x : 6;
x := if y = 2 then 5 + x else 6 fi
```

b. if
$$(y == 2) \{x = 5 + x; \}$$
 else $\{x = 6; \}$ if $y = 2$ then $x == 5 + x$ else $x == 6$ fi

c. if
$$(y == 2) \{x = 5 + x; \} x = 6$$

if $y = 2$ then $x \coloneqq 5 + x$ fi; $x \coloneqq 6$ or if $y = 2$ then $x \coloneqq 5 + x$ else skip fi; $x \coloneqq 6$

7. Create a program that calculates the power of 2. We run it with input integer n and returns $y = 2^n$; unless n < 0, in which case we return 0.

If we write it with indentation, then one way to write it is as follows.

```
if n < 0 then y := 0 else x := 0; y := 1; while x < n do x := x + 1; y := y + y od
```

It is also acceptable to write it in one line:

if
$$n < 0$$
 then $y := 0$ else $x := 0$; $y := 1$; while $x < n$ do $x := x + 1$; $y := y + y$ od fi

8. Translate the following C statements into statements in our programming language.

a.
$$x = a * + + z$$

 $z \coloneqq z + 1; x \coloneqq a * z$

b.
$$x = a * z + +$$

 $x := a * z; z := z + 1$

c. **while**
$$(--x >= 0)$$
 $z *= x$; $x := x - 1$; **while** $x \ge 0$ **do** $z := z * x$; $x := x - 1$ **od**

d. **while**
$$(x - - >= 0)$$
 $z *= x$;
while $x \ge 0$ **do** $x := x - 1$; $z := z * x$ **od**; $x := x - 1$