Regularization

Johanni Brea

Introduction to Machine Learning

Table of Contents

- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- 3. Regularization Examples

When Linear Models Are Too Flexible

In the old days

Typically n > p (much more data than predictors)

For example: predict blood pressure based on age, gender and body mass index (BMI) (e.g. n = 200 patients, p = 3).

Nowadays: Big Data

Often $n \approx p$ or n < p

For example: predict blood pressure based on 500 000 single nucleotide polymorphisms (SNP) (n = 200, p = 500 000).

⇒ Linear Model perfectly fits the training data.

Making Linear Models Less Flexible

Idea 1: Fix some parameters at zero

$$\hat{y} = f(x) = f(x_1, x_2, \dots, x_p) = \beta_0 + \underbrace{\beta_1}_{=0} x_1 + \underbrace{\beta_2}_{=0} x_2 + \beta_3 x_3 + \dots + \underbrace{\beta_{p-1}}_{=0} x_{p-1} + \beta_p x_p$$

Problem: Many different models to fit; $\binom{p+1}{m}$ combinations of m non-fixed parameters.

Idea 2: constrain the parameters

Minimize the original loss $L(\beta)$ under the constraint $\|\beta\|_2^2 = \sum_{i=1}^p \beta_i^2 \le S$.

This is equivalent to replacing the original loss $L(\beta)$ by

$$L_{L2}(\beta) = L(\beta) + \lambda \|\beta\|_2^2$$

Table of Contents

- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- 3. Regularization Examples

Ridge Regression (L2 Regularization)

$$L_{L2}(\theta) = L(\theta) + \lambda \|\theta\|_2^2$$

with **regularization constant** λ and (squared) **L2 norm** $\|\theta\|_2^2 = \sum_{i=1}^p \theta_i^2$.

- 1. The regularization constant λ is a hyper-parameter.
- 2. Often the intercept $\theta_{\rm O}$ is not regularized.
- 3. If $\lambda = 0$: original loss (no penalty)
- 4. The larger λ , the stronger the impact of the penalty on the result.
- 5. With increasing λ the model becomes less flexible.
- 6. With increasing λ all parameters tend to zero; it happens rarely that one is exactly zero.

Lasso (L1 Regularization)

$$L_{\mathsf{L}1}(\theta) = L(\theta) + \lambda \|\theta\|_1$$

with regularization constant λ and L1 norm $\|\theta\|_1 = \sum_{i=1}^{p} |\theta_i|$.

Points 1-5 from ridge regression are also valid for the Lasso. However:

6. With large λ some parameters are exactly zero (in contrast to ridge regression).

An Alternative Formulation of Regularization

Thanks to a result from constraint optimization (see Karush-Kuhn-Tucker conditions, a generalization of Lagrange multipliers) the above formulations of Ridge Regression and the Lasso are equivalent to a constraint optimization problem:

Ridge Regression

minimize $L(\theta)$ under the constraint that $\|\theta\|_2^2 \le S$. The parameters are confined to a p-ball of radius S with center at the origin.

Lasso

minimize $L(\theta)$ under the constraint that $\|\theta\|_1 \leq S$.

The parameters are confined to a hypercube with edge length *S*, center at the origin and corners on the axes.

S is a (complicated) function of λ and the original loss $L(\theta)$. With increasing S the model becomes more flexible.

Analytical Solutions for Simple Linear Regression

Notation:
$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ridge Regression

$$L(\theta, \lambda) = \langle (y - \theta_{0} - \theta_{1}x)^{2} \rangle + \lambda \theta_{1}^{2}$$

$$\theta_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x \rangle^2 - \langle x^2 \rangle + \lambda}, \qquad \theta_0 = \langle y \rangle - \theta_1 \langle x \rangle$$

Lasso

$$L(\theta,\lambda) = \frac{1}{2} \langle (y - \theta_{0} - \theta_{1}x)^{2} \rangle + \lambda |\theta_{1}|$$

$$\theta_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle - \mathsf{sign}(\theta_1) \lambda}{\langle x \rangle^2 - \langle x^2 \rangle}$$
 or 0 if $|\langle xy \rangle - \langle x \rangle \langle y \rangle| < \lambda$

Standardized Inputs for Regularization

Problem

Assume we find in multiple linear regression on the weather data the following parameters

$$X_1$$
 LUZ_pressure [hPa] $\theta_1 = -1$ [km/h/hPa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

$$X_1$$
 LUZ_pressure [Pa] $\theta_1 = -1/100$ [km/h/Pa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

With regularization $\lambda(\theta_1^2+\theta_2^2)$ we would get different results for measurements in hPa and in Pa, because θ_1 contributes less to the penalty in the latter case.

Solution

Standardize all predictors, such that they have mean 0 and variance 1:

$$\tilde{X}_i = (X_i - \bar{X}_i) / \sqrt{\operatorname{Var}(X_i)}$$

Scaling of the Regularization Constant with *n*

With loss $L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$ the effective regularization depends on the size of the data set.

One can use instead an average loss $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$ or (equivalently) scale the regularization term $L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + n \cdot \lambda \|\theta\|_2^2$

Quiz

- ► The Lasso tends to have larger variance (when fitted on different training sets from the same data generator) but smaller bias (relative to the true data generator) than linear regression.
- Indicate which is correct: as we increase S from 0 to ∞ in L2 regularized linear regression the training error will be
 - A) inverted U shape. B) U shape.
 - C) steadily increasing. D) steadily decreasing. E) constant.
- Indicate which is correct: as we increase S from 0 to ∞ in L2 regularized linear regression the test error will be
 - A) inverted U shape. B) U shape.
 - C) steadily increasing. D) steadily decreasing. E) constant.

Table of Contents

- 1. When Linear Models Are Too Flexible
- 2. Ridge Regression and the Lasso
- 3. Regularization Examples

Polynomial Ridge Regression

With a little bit of L2 regularization ($\lambda = 10^{-4}$) one can prevent overfitting of polynomials with high degrees.

Multiple Logistic Ridge Regression on the Spam Data

n = 2000 emails, p = 801 features (size of the lexicon)

Without regularization

training misclassification rate: 0.0015 test misclassification rate: 0.048

With L2 regularization

training misclassification rate: 0.013 test misclassification rate: 0.041

The Lasso Path for the Weather Data

As we lower λ , BER_wind_peak is the first non-zero factor, BAS_wind_peak the second and LUZ_wind_mean the third.

Summary

- ▶ Regularization allows to lower the flexibility of a model by restricting the parameters to certain areas of the parameter space.
- L1 regularization leads to sparse models with some parameters exactly zero ⇒ great for interpretability.

Suggested Reading

- ► 6.2 Shrinkage Methods
- ▶ 6.4 Considerations in High Dimensions

