1. (New) A method of producing a smoking article with reduced sidestream smoke and increased perceived mildness during smoking comprising:

using for the tobacco rod of the article shredded tobacco and shredded reconstituted tobacco sheet containing activated carbon particles; and

using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater.

- 2. (New) A method according to Claim 1 wherein the activated carbon particles are of vegetable origin.
- 3. (New) A method according to Claim 2 wherein the vegetable origin is coconut.
- 4. (New) A method according to Claim 3 wherein there is a preferential reduction in the aldehyde content of mainstream smoke when said article is smoked.
- 5. (New) A method according to Claim 1 wherein there is a preferential reduction in the aldehyde content of mainstream smoke when said article is smoked.
- 6. (New) A method according to Claim 5 wherein the acrolein and butyraldehydes content of mainstream smoke is reduced.
- 7. (New) A method according to Claim 1 wherein the acrolein and butyraldehydes content

of mainstream smoke is reduced.

- 8. (New) A method according to Claim 7 wherein there is a reduction in the ketone content of mainstream smoke when said article is smoked.
- 9. (New) A method according to Claim 1 wherein there is a reduction in the ketone content of mainstream smoke when said article is smoked.
- 10. (New) A method according to claim 9 wherein the step of using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater consists of using a material having a permeability selected from the group consisting of 25 CORESTA, 50 CORESTA, 80 CORESTA and 180 CORESTA.
- 11. (New) A method according to claim 1 wherein the step of using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater consists of using a material having a permeability selected from the group consisting of 25 CORESTA, 50 CORESTA, 80 CORESTA and 180 CORESTA.
- 12. (New) A method of producing a smoking article with reduced sidestream smoke and increased perceived mildness during smoking comprising:

using for the tobacco rod of the article shredded tobacco and shredded reconstituted tobacco sheet containing activated carbon particles;

using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater; and

hand-rolling the smoking article.

- 13. (New) A method according to Claim 12 wherein the activated carbon particles are of vegetable origin.
- 14. (New) A method according to Claim 13 wherein the vegetable origin is coconut.
- 15. (New) A method according to Claim 14 wherein there is a preferential reduction in the aldehyde content of mainstream smoke when said article is smoked.
- 16. (New) A method according to Claim 12 wherein there is a preferential reduction in the aldehyde content of mainstream smoke when said article is smoked.
- 17. (New) A method according to Claim 16 wherein the acrolein and butyraldehydes content of mainstream smoke is reduced.
- 18. (New) A method according to Claim 12 wherein the acrolein and butyraldehydes content of mainstream smoke is reduced.
- 19. (New) A method according to Claim 18 wherein there is a reduction in the ketone content

of mainstream smoke when said article is smoked.

- 20. (New) A method according to Claim 12 wherein there is a reduction in the ketone content of mainstream smoke when said article is smoked.
- 21. (New) A method according to claim 20 wherein the step of using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater consists of using a material having a permeability selected from the group consisting of 25 CORESTA, 50 CORESTA, 80 CORESTA and 180 CORESTA.
- 22. (New) A method according to claim 12 wherein the step of using as the wrapper of the smoking article a material having a permeability of 20 CORESTA or greater consists of using a material having a permeability selected from the group consisting of 25 CORESTA, 50 CORESTA, 80 CORESTA and 180 CORESTA.

TABLE 1
VAPOUR PHASE ANALYSIS, RESULTS SUMMARY

(Non-ISO 4387 conditions)

	Relative Peak Area				
·	Cont		Test		
Component	Mean	RSD	Mean	RSD	
Isoprene	30.8	3	30.6	4	
Limonene	2.3	33	2.6	17	
Benzene	16.9	5	16.5	3	
Toluene	26.7	9	27.3	4	
Ethylbenzene	4.1	18	4.5	8	
m-+p-Xylene	6.0	19	6.7	8	
o-Xylene	1.4	21	1.6	9	
Styrene	1.5	28	1.7	14	
Acetaldehyde	9.4	4	9.3	3	
Propionaldehyde	2.6	7	2.5	7	
Acrolein	3.5	4	3.2	5	
n-Butyraldehyde	0.48	. 5	0.44	4	
iso-Butyraldehyde	1.3	4	1.2	·4	
Crotonaldehyde	2.6	9 ·	2.5	6	
2-Furaldehyde	1.5	37	1.8	20	
Acetone	110.2	4	99.0	4	
Methylethylketone	29.5	5	26.8 .	4	
3-Methyl-2-butanone	1.6	7	1.5	5	
Diacetyl	55.1	5	50.2	3	
2-Pentanone	0.27	6	0.25	4	
2,3-Pentanedione	3.3	9	3.2	5	
Cyclopentanone	2.2	18	2.2	18	
Furan	5.7	3	5.4	4	
2-Methylfuran	3.9	4	3.9	3	
2,5-Dimethylfuran	6.3	6	6.4	3	
Acetonitrile	12.9	6	12.6	5	
Propionitrile	2.5	7	2.5	4	
n-Butyronitrile	2.5	8	2.5	12	
iso-Butyronitrile	1.1	7	1.1	5	
Methacrylonitrile	0.79	4	0.80	5	
Pyridine	1.3	43	1.5	20	
1-Methylpyrrole	- 1.4	12 ·	1.5	6	
Methyldisulphide	0.62	8	0.56	8	
Thiophene	0.19	- 6	0.19	4	
Replicates	12		11_		

	Test
	as % of Control
	100
	114
	97
	102
	108
	112
	112
	112 98
	97
	92-
	91
	91
	98
	114
	90
	95
	91
	94
	95
	101
	95
	99
	101
	98 98
	102
	96
	102
	115
	107
	91
	98
ı	

Highlighted values are statistically significantly different at a 95% confidence limit (Student-t Test, two-tail)

TABLE 2
SEMIVOLATILES ANALYSIS, RESULTS SUMMARY

. [μg/CIGARETTE				
Γ	Con	trol	Test		
Component	Mean	RSD	Mean	RSD	
Limonene	21.9	13	20.8	10	
Naphthalene	2.0	3	1.9	5	
1-Methylnaphthalene	1.1	3	1.1	5	
2-Methylnaphthalene	1.6	6	1.6	4	
Neophytadiene	127.2	7	108.8	3	
Myosmine	9.3	4	. 10.1	. 3	
Pyrrole	11.3	6	9.6	6	
2-Acetylpyrrole	3.9	5 3	3.6	4	
Indole	9.8	3	9.0	4	
2-Furaldehyde	51.1	5	41.8	5	
2-Acetylfuran	8.6	9 7 ·	7.2	. 4	
2-Furanmethanol	43.4	7 ·	37.2	7	
5-Methyl-2-furfural	25.9	9	22.6	6	
5-Hydroxymethyl-2-furfural	118.7	3	105.4	4	
α-Angelicalactone	23.0	7	19.4	13	
Phenol	79.5	4	71.9	4	
o-Cresol	17.3	4	14.9	3	
p-Cresol	27.5	4	24.6	4	
m-Cresol	12.0	3	10.5	4	
2,3,6-Trimethylphenol	0.6	15	0.5	6	
Pyridine	13.0	14	13.2	7.	
Triacetin	n/d		n/d		
TEGDA	n/d		n/d		
Propan-1,2-diol	126.6	69	85.3	43	
Puffs/cig:	9.0	2	8.9	1	
TPM (mg/cig):	17.9	3	15.5	3	
Replicates	12		12	` '	

Test
as % of Control
95
95
99
99
85
65
189
25
92
94
82
83
86
87
89
84
99
86
89
88
84
102
102
67
01
98
87

n/d - not detected

Detection limits: Triacetin and TEGDA 1µg/cigarette

Highlighted values are statistically significantly different at a 95% confidence limit (Student-t Test, two-tail)

TABLE 3
Sidestream measurements

	SAMPLE	NFDPM (mg/cig)	% REDUCTION	NICOTINE (mg/cig)	% REDUCTION	CO (mg/cig)	CO ₂ (mg/cig)
25 CORESTA	CONTROL TEST	30.1 25.5	- 15.3	7.00 5.74	18.0	76.3 80.5	634 626
50 CORESTA	CONTROL TEST	32.5 28.4	12.6	6,55 6.07	7.3	70.6 76.1	612 682
80 CORESTA	CONTROL TEST	29.1 27.5	5.5	7.09 6.21	12.4	81.9 74.1	629 672
180 CORESTA	CONTROL TEST	33.9 27.5	18.9	7.03 6.07	13.7	77.6 73.6	630 653