第十章 介電質薄膜 SiO₂, Si₃N₄

阻擋層: 氮化矽

- 濕氣及移動離子的阻擋層
- PECVD 氮化物
 - 低沈積溫度 (<450°C)
 - 高沈積速率
 - 矽烷、氨氣及氮氣

電漿

$$SiH_4 + N_2 + NH_3 \rightarrow SiN_xH_y + H_2 + N_2 + NH_3 + \dots$$

• 需要好的階梯覆蓋、高沈積速率、良好的似型性及應力控制

9

介電質抗反射層鍍膜

自旋塗佈矽玻璃:砂氧烷

$$R = CH_3$$
, $R' = R$ or OH $R_nSi(OH)_{4-n}$, $n = 1, 2$ 矽氧烷

11

自旋塗佈矽玻璃 製程步驟

未來趨勢: 低-κ 介電質

- 必須減少RC延遲
 - 低-κ減少C 且銅減少R
- 需高的熱穩定性、高的熱傳導性及製程整合能力
 - CVD
 - CSG ($C_x Si_y O$, $\kappa \sim 2.5$ 3.0) π α -CF ($C_x F_y$, $\kappa \sim 2.5$ 2.7)
 - 自旋塗佈介電質 (SOD)
 - 氫矽酸鹽類 (HSQ, κ ~ 3.0),
 - 多孔的SOD , 如乾凝膠 (κ~2.0-2.5)

13

導電薄膜

- Poly-Si-gate electrode
- 金屬矽化物 -gate electrode
- 鋁合金-conducting lines
- 鈦金屬- buffer layer
- 氮化鈦-TiN-buffer layer
- 鎢金屬-栓塞
- 銅金屬-栓塞, conducting lines***
- 鉭金屬-gate electrode

鋁

- 最常使用之金屬
- 導電度最佳的前四種金屬

-銀 1.6 μ Ω ·cm - 銅 1.7 μ Ω ·cm - Gold silver 2.2 μ Ω ·cm - 鋁 2.65 μ Ω ·cm

• 在1970中葉以前已被作為閘極使用

17

接面尖凸 Al SiO₂ Al Al P⁺ N型矽

電遷移效應

- Al-Si-Cu 合金被使用
- Al-Cu (0.5%) 較普遍

鎢 CVD

- WF₆ 為鎢的先驅物
- •和 SiH4 反應形成成核層
- 和 H_2 反應作為巨量鎢的沈積
- 需要一 TiN層以附著在氧化物上

21

W 栓塞及TiN/Ti 阻擋層/附著層

銅

- 低電阻 (1.7 μΩ·cm),
 - 低功率損耗及較快之IC速率
- 高電遷移阻力
 - 較佳的可靠度
- 對二氧化矽的附著力較差
- 非常難進行乾式蝕刻
 - 銅-鹵素化合物揮發性低

23

銅之沈積

- PVD 種晶層
- ECP 或 CVD 巨量沈積層
- 在巨量銅沈積後進行加熱退火
 - 增加晶粒尺寸
 - 改進導電度

薄片電阻

施加電流 / 並測量電壓 V,

電阻: $R = V/I = \rho L/(wt)$

對一正方形薄片, L = w, 所以 $R = \rho/t =$

 R_{s}

 R_s 單位: 每平方歐姆 (Ω/\square)

蝕刻溝槽與空洞

33

PVD沈積Ta阻擋層與銅種晶層

銅與鉭CMP製程, CVD 氮化矽

