PHYSICS

- 24. The particle have equal and opposite charges but different masses. They trace equal radii in opposite direction but with different time periods.
- Circulation due to I_3 is zero. I_1 and I_2 produce positive circulation. 25.
- 26. Use the idea of symmetry.
- 27.

$$= \frac{(4\pi \times 10^{-7})(2)}{8} = \pi \times 10^{-7} \text{ S.I. units}$$

28.

$$T = 3t, \ \omega = \frac{2\pi}{T} = \frac{2\pi}{3t}$$

29.
$$\tau_g = mg(2a/3)\sin\theta$$
 $T_B = BIa(a\cos\theta)$

$$T_{B} = BIa(a\cos\theta)$$

Net torque is zero.

30.
$$B_1 = \frac{\mu_0}{4\pi} \times \frac{2\pi I}{R} = \frac{\mu_0}{4\pi} \times \frac{2\pi I \times 2\pi}{L}$$
 (: $L = 2\pi R$, for circular loop)

$$B_2 = \frac{\mu_0}{4\pi} \times \frac{1}{(a/2)} \left[\sin 45^0 + \sin 45^0 \right] \times 4$$

Where a = (L/4)

$$\therefore B_2 = \frac{\mu_0 I}{4\pi L} \times 8 \times 4 \times \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] = \frac{\mu_0 I}{4\pi L} \times \frac{64}{\sqrt{2}}$$

$$\therefore \frac{B_1}{B_2} = \left(\frac{\mu_0}{4\pi}\right) \frac{4\pi^2 I}{L} / \frac{\mu_0 I}{4\pi L} \times \frac{64}{\sqrt{2}} = \frac{\pi^2}{8\sqrt{2}}.$$

31. Use right hand thumb rule.

Magnetic force per unit length near end C is more than that near end D.

32.
$$B2\pi r = \mu_0 \int S2\pi r dr$$

For
$$r < a$$
, $RHS = \mu_0 \frac{2\pi kr^4}{4}$

And
$$r < a$$
, $RHS = \mu_0 2\pi \frac{ka^4}{4}$

33.
$$B = \frac{\mu_0 k}{2} = \frac{\mu_0}{2} \sigma v, E = \frac{\sigma}{2 \in \Omega}$$

34. A solenoid can be visualized as a bar magnet. Inside the bar magnet, field lines are directed from south pole to north pole.

SOL. 35 TO 36

PC and CQ are parallel. So, equivalent resistance of the circuit is R/2. In static condition, current through the battery as I = 2V/R.

The current through CP and CQ is i = I/2 = V/R.

Hence,
$$F_1 = F_2 = Bir$$

Consider the FBD of ring and the blocks FBD of ring:

Consider torque about 'C',

$$T_1 r + F_1 r / 2 + F_2 r / 2 = T_2 r$$

FBD of block:
$$T_1 = mg$$
 and $T_2 = 2mg$

So,
$$mgr + Bir^2/2 + Bir^2/2 = 2mgr$$

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-12_Key&Sol's

or
$$i = \frac{mg}{Br} \text{ or } \frac{V}{R} = \frac{mg}{Br}$$

or
$$v = \frac{mgR}{Br}$$

Net torque of tension

$$= (T_2 - T_1)r = mgr = \frac{BVr^2}{R}.$$

Passage-2:- (38,39)

- 38. $\vec{J} \times \vec{B}$ must be parallel to +ve Z-axis.
- 39. $F = BI\Delta x$ $= B(J \ a\Delta y)\Delta x$ $\Rightarrow P = BJa$
- 40. the element of length dx carrying the current i_1 crates a magnetic induction

$$= \frac{\mu_0 i_1}{4\pi a} \left[\sin \alpha_1 + \sin \alpha_2 \right]$$
$$= \frac{\mu_0 i}{2\pi a}, \text{since } \alpha_1 = \alpha_2 = 90^0$$

At the diametrically opposite section Force on the diametrically opposite element

$$dF = \frac{\mu_0 i_1 \times i_1 \times i}{2\pi a}$$

But
$$i_1 = \frac{i}{2\pi R} dx$$

$$dF = \frac{\mu_0}{2\pi a} \left(\frac{i}{2\pi R} dx \right)^2 l = \frac{\mu_0}{2\pi \times 2R} \cdot \frac{i^2}{4\pi^2 R^2} . dx. dx. l$$

Pressure on the element = $\frac{\mu_0}{2\pi . 2R} \cdot \frac{i^2 dx}{4\pi^2 R^2} \cdot \frac{dx \cdot R}{dx \cdot R}$

Since area of element = dxl

$$dP = \frac{\mu_0 i^2}{2\pi . 2R . 4\pi^2 . R^2} \times dx$$

Effective pressure = $\frac{\mu_0 i^2}{2\pi . 2R.4\pi^2 . R^2} \times 2\pi r$

Since $\int dx = 2\pi R$

$$P = \frac{\mu_0 i^2}{8\pi^2 R^2}$$

41.
$$dB = \frac{\mu_0 dI}{2r} = \left(\frac{\mu_0 I}{2r}\right) \left(\frac{N}{b-a}\right) dr$$

42.
$$\frac{B_1}{B_2} = \frac{\frac{I_1}{r_1} + \frac{I_2}{r_2}}{\frac{I_1}{r_1} - \frac{I_2}{r_2}}$$

43.
$$B = \frac{\mu_0 I}{4R} \left(-\hat{i} + \hat{j} \right), \vec{F} = q \quad \vec{V} \times \vec{B}$$

44.
$$r = \sqrt{2}, B = \frac{\mu_0 I}{2\pi r}$$

$$B_y = B_x = 8/\sqrt{2} = 7 \times 10^{-7}$$

$$B_{net}=B_y=7 imes 10^{-7}$$
 .

45.

$$dM = dn \left(\pi a^2 I\right)$$

$$dN = \frac{N}{\pi} d\theta$$

$$M = \int\limits_{-\pi/2}^{\pi/2} dM \cos heta$$