Lecture 08: Sep 17, 2018

Linear Regression

- SLR
- MLR
- Factors and Design Matrices

James Balamuta STAT 385 @ UIUC

Announcements

- hw03 is due on Friday, Sep 21st, 2018 @ 6:00 PM
- Quiz 04 covers Week 3 contents @ CBTF.
 - Window: Sep 18th 20th
 - Sign up: https://cbtf.engr.illinois.edu/sched
- hw01 grade reports released on GitHub.
 - Post on forum detailing how to interpret the <u>grade</u> <u>reports</u>.
 - Got caught using GitHub's web interface? Let's chat.

Last Time

Data Structures

- 1D, 2D, and n Dimensions
- Homogenous (Same) vs. Heterogenous (Different/Mixed)

Coercion

 Changing data from one form to the another either implicitly (R) or explicitly (You).

Missingness and NULL

 The lack of recorded data vs. the lack of an object being created.

Lecture Objectives

- Fitting a linear regression model with data
- Constructing Design Matrices associated with MLR
- Benefits associated with using factors.

SLR

Understand the Algorithm

... weeks of programming saved hours of planning ...

- What logic is being used?
- How does the logic apply in a procedural form?
- Why is this logic present?

SLR in Practice

... finding the line of best fit between two variables ...

^{*} The **blue** line represents the optimal line of best fit.

^{**} The **black** line represents the current line of fit.

^{***} The **red** lines represent distance from points. The goal is to *minimize* these values.

SLR Labeled

... graph components ...

Simple Linear Regression

... handling two parameters ...

Scalar-form

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Expand Matrix

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} 1 & x_{1,1} \\ \vdots & \vdots \\ 1 & x_{n,1} \end{pmatrix}_{n \times 2} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}_{2 \times 1} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}_{n \times 1}$$
Responses

Design Matrix

Error

Matrix-form

$$Y_{n\times 1} = X_{n\times 2}\beta_{2\times 1} + \varepsilon_{n\times 1}$$

Estimating Parameters

... goal is to minimize the Residual Sum Squared (RSS/red lines) ...

$$\hat{\beta} = \underset{\beta_0, \beta_1 \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right)^2$$

Analytical Solutions
$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

Simulating Data for SLR ... generating a test data set ...

Generated Data with 500 observations

```
set.seed(9123)
# Number of observations
n = 500
# Generate a single predictor
x_i = rnorm(n, mean = 2)
# Design matrix w/ intercept: n x 2
X = cbind(1, x_i)
# True beta values: 2 x 1
beta = c(2.5, 4)
# Response variable with error: n x 1
y = X[, 1] * beta[1] +
   X[, 2] * beta[2] +
   rnorm(n, sd = 2) # error term
```

Set seed for reproducibility

Analytical SLR Solution ... solving using equations ...

Estimated Coefficients on Generated Data with 500 observations


```
# Mean of Response (y)
y_mu = mean(y)
# Mean of Predictor (x)
x = X[, 2]
x_mu = mean(x)
# Estimate Slope
beta1_hat =
   sum((x - x_mu) * (y - y_mu)) /
    sum((x - x_mu) ^ 2)
# Estimate Intercept
beta0 hat =
   y_mu - beta1_hat * x_mu
# Check Parameter Difference
cbind(c(beta0_hat, beta1_hat), beta)
      beta_hat beta
#[1,] 2.511657 2.5
#[2,] 4.027985 4.0
```

```
# Write the cost function to minimize
min_rss_slr = function(par, X, y) {
 rss = sum((y - (X[,1]*par[1] + X[, 2] * par[2]))^2)
 return(rss)
# Initial beta parameters values
beta_init = c(0, 0)
# Perform the minimization
model_opt = optim(par = beta_init,
          fn = min_rss_slr, method = "BFGS",
         control = list(trace = TRUE),
          X = X, y = y
# initial value 4545.000693
# final value 4542.177432
# converged
# Check parameter difference
cbind(model_opt$par, beta)
      beta_hat beta
# [1,] 2.511657 2.5
# [2,] 4.027985 4.0
```

Optimizing RSS ... minimizing point distance ...

MLR

Multiple Linear Regression

... scaling SLR to multiple predictors ...

Scalar-form

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{p-1} x_{i,p-1} + \varepsilon_i$$

Matrix-form

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \varepsilon_{n\times 1}$$

SLR vs MLR

Responses

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} x_{i}$$

$$Y_{n \times 1} = X_{n \times 2} \hat{\beta}_{2 \times 1}$$

$$\begin{pmatrix}
\hat{y}_1 \\
\vdots \\
\hat{y}_n
\end{pmatrix}_{n \times 1} = \begin{pmatrix}
1 & x_{1,1} \\
\vdots & \vdots \\
1 & x_{n,1}
\end{pmatrix}_{n \times 2} \begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1
\end{pmatrix}_{2 \times 1}$$
Responses

Design Matrix

$$\hat{\beta} = \underset{\beta_0, \beta_1 \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right)^2$$

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} x_{i,1} + \hat{\beta}_{2} x_{i,2} + \dots + \hat{\beta}_{p-1} x_{i,p-1}$$

$$\hat{Y}_{n\times 1} = X_{n\times p} \hat{\beta}_{p\times 1}$$

$$\begin{pmatrix} \hat{y}_{1} \\ \vdots \\ \hat{y}_{n} \end{pmatrix}_{n\times 1} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p-1} \end{pmatrix}_{n\times p} \begin{pmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \vdots \\ \hat{\beta}_{p-1} \end{pmatrix}$$

Parameters

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left\| \mathbf{y}_{n \times 1} - X_{n \times p} \boldsymbol{\beta}_{p \times 1} \right\|^2$$

Derivations of MLR

http://thecoatlessprofessor.com/statistics/multiple-linear-regression-proofs/

STAT 420 and STAT 425 will focus more on the derivations.

Fitting MLR

... using linear regression ...

Formula

The underlying model for the data

Data
Data to regress over

model_fit =
$$Im(y \sim x1 + x2)$$
, data = data_set)

Inside the *formula*, model terms can be combined using + to give:

$$y_{i} = \beta_{0} + \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \varepsilon_{i}$$

^{*} β_0 represents the intercept term and is automatically included.

^{**} The intercept can be removed by subtracting 1, e.g. $y \sim x - 1$

Example MLR Fit

... fitting data to mtcars ...

```
# Construct a multiple linear regression (3 variables: wt, qsec, intercept)
model_fit = Im(mpg ~ wt + qsec, data = mtcars)

# View the estimated parameters
model_fit
# Call:
# Im(formula = mpg ~ wt + qsec, data = mtcars)
#
# Coefficients:
# (Intercept) wt qsec
# 19.7462 -5.0480 0.9292
```

How formulas generate a design matrix

Constructing a design matrix with the intercept

 $X = model.matrix(mpg \sim wt + qsec, data = mtcars)$

Building a design matrix without the intercept

 $X_noint = model.matrix(mpg \sim wt + qsec - 1, data = mtcars)$

Intercept

(Intercept)	wt	qsec
1	2.62	16.46
1	2.875	17.02
1	2.32	18.61

No Intercept

wt	qsec
2.62	16.46
2.875	17.02
2.32	18.61

X

X_noint

Inference

... understanding the regression model ...

Predicting the Future

... with confidence I can predict what happened yesterday ...

```
# Values to use for prediction
future\_car = data.frame(wt = 0.5, qsec = 12)
# Make prediction
y_hat = predict(model_fit, new_data = future_car)
head(y_hat)
     Mazda RX4
                  Mazda RX4 Wag
                                       Datsun 710
 21.81511
                         21.04822
                                         25.32728
                                           Valiant
# Hornet 4 Drive Hornet Sportabout
                          18.19611
                                       21.06859
# 21.58057
```

Factors

evenion Hierarchy of Data Types

Variable Data

* raw type is missing

Numerical

Continuous

Discrete

numeric

3.14, 10.5, 0.0, -4.8 Decimals

integer

6, 12, 0, -4 Whole Numbers

logical

TRUE (1), FALSE (0) Boolean values

Categorical

ot nie?""orange" "stat

"toad", "got pie?", "orange", "stat 385" Strings

Nominal

Ordinal

factor

"AB", "A", "B", "O" Blood Type

ordered factor

"A", "B", "C", "D", "F" Letter grades

Augmented

Verifying Class in R


```
id = c(1, 2, 3, 55)
class(id)
# [1] "numeric"
sex = c("M", "F", "F", "M")
class(sex)
#[1] "character"
height = c(6.1, 5.5, 5.2, 5.9)
class(height)
# [1] "height"
```

```
# Default way
# Treat as factors
subject_heights = data.frame(
        = c(1, 2, 3, 55),
 sex = c("M", "F", "F", "M"),
 height = c(6.1, 5.5, 5.2, 5.9),
 stringsAsFactors = TRUE
summary(subject_heights)
# Opt out of factors
# Treat as characters
subject_heights_nofct = data.frame(
 id
        = c(1, 2, 3, 55),
 sex = c("M", "F", "F", "M"),
 height = c(6.1, 5.5, 5.2, 5.9),
 stringsAsFactors = FALSE
summary(subject_heights_nofct)
```

Class Difference

height id sex Min. F:2 :5.200 : 1.00 Min. 1st Qu.: 1.75 M:2 1st Qu.:5.425 Median: 2.50 Median :5.700 :15.25 Mean :5.675 Mean 3rd Qu.:5.950 3rd Qu.:16.00 :55.00 :6.100 Max. Max.

id
Min. : 1.00
1st Qu.: 1.75
Median : 2.50
Mean :15.25
3rd Qu.:16.00
Max. :55.00

sex Length:4 Class :character Mode :character

Min. :5.200 1st Qu.:5.425 Median :5.700 Mean :5.675

height

3rd Qu.:5.950 Max. :6.100

stringsAsFactors: An unauthorized biography

♣ Roger Peng # 2015/07/24

Recently, I was listening in on the conversation of some colleagues who were discussing a bug in their R code. The bug was ultimately traced back to the well-known phenomenon that functions like 'read.table()' and 'read.csv()' in R convert columns that are detected to be character/strings to be factor variables. This lead to the spontaneous outcry from one colleague of

Why does stringsAsFactors not default to FALSE????

The argument 'stringsAsFactors' is an argument to the 'data.frame()' function in R. It is a logical that indicates whether strings in a data frame should be treated as factor variables or as just plain strings. The argument also appears in 'read.table()' and related functions because of the role these functions play in reading in table data and converting them to data frames. By default, 'stringsAsFactors' is set to TRUE.

This argument dates back to May 20, 2006 when it was originally introduced into R as the 'charToFactor' argument to 'data.frame()'. Soon afterwards, on May 24, 2006, it was changed to 'stringsAsFactors' to be compatible with S-PLUS by request from Bill Dunlap.

Most people I talk to today who use R are completely befuddled by the fact that 'stringsAsFactors' is set to TRUE by default. First of all, it should be noted that before the 'stringsAsFactors' argument even existed, the behavior of R was to coerce all character strings to be factors in a data frame. If you didn't want this behavior, you had to manually coerce each column to be character.

So here's the story:

In the old days, when R was primarily being used by statisticians and statistical types, this setting strings to be factors made total sense. In most tabular data, if there were a column of the table that was non-numeric, it almost certainly encoded a categorical variable. Think sex (male/female), country (U.S./other), region (east/west), etc. In R, categorical variables are represented by 'factor' vectors and so character columns got converted factor.

Why do we need factor variables to begin with? Because of modeling functions like 'lm()' and 'glm()'. Modeling functions need to treat expand categorical variables into individual dummy variables, so that a categorical variable with 5 levels will be expanded into 4 different columns in your modeling matrix. There's no way for R to know it should do this unless it has some extra information in the form of the factor class. From this point of view, setting 'stringsAsFactors = TRUE' when reading in tabular data makes total sense. If the data is just going to go into a regression model, then R is doing the right thing.

https://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/

Just say **YES** to stringsAsFactors = FALSE

... or feel the wraith of factors ...

Factors

Codifying character values as numbers

```
sex = c("M", "F", "F", "M") # Character vector
sex
# [1] "M" "F" "F" "M"
```

as.numeric(sex_factor) # Access internal level / number representation # [1] 2 1 1 2

sex	levels
"M"	 2
"F"	 1
"F"	 1
•••	•••
"M"	 2

Levels		
id	sex	
1	"F"	
2	"M"	

^{*} Storing data as factors instead of character data on disk will result in lower file sizes.

^{**} Computationally, there are advantages by transforming character values to factors.

Usefulness of Factors

subject_data

 Creating a design matrix for linear regression as they provide a codified dummy variable structure. e.g. FALSE (0) or TRUE (1)

sex	height	sex_F	height
"M"	6.1	0	6.1
"F"	5.5	 1	5.5
"F"	5.2	1	5.2
•••	•••	•••	•••
"M"	5.9	0	5.9
		_	

 Poor if character values (e.g. levels) need to be manipulated or there are too many unique values (e.g. text messages on a phone.)

Design Matrix

Your Turn

create the design matrix for where students sit in class

dist	side		dist_back	side_middle	side_right
"back"	"right"				
"back"	"left"				
"front"	"middle"				
"back"	"middle"				
"front"	"right"				
"front"	"left"				

Why are side_left or dist_front not included as variables?

Limitations of Factors

... no math support ...

```
x = c(3L, -1L, 22L, 9L, 0L, 22L, 9L) # Create Integer Vector

my_factor = as.factor(x)  # Cast integer to factor

my_factor + 10  # Error in an unexpected way

# Warning in Ops.factor(my_factor, 10) : '+' not meaningful for factors

# [1] NA NA NA NA NA NA NA

min(my_factor)  # Show stopping error

# Error in Summary.factor(c(3L, 1L, 5L, 4L, 2L, 5L, 4L), na.rm = FALSE) :

# 'min' not meaningful for factors
```

Fun with Factors

... viewing levels, changing values, and ...

```
levels(my_factor)  # List of Levels
# [1] "-1" "0" "3" "9" "22"

my_factor[1] = 9  # Modify with a pre-existing level
# [1] 9 -1 22 9 0 22 9
# Levels: -1 0 3 9 22

my_factor[2] = 18  # Error if level isn't present already
# Warning in `[<-.factor`(`*tmp*`, 2, value = 18) :
# invalid factor level, NA generated</pre>
```

Recovering Values from a Factor

Translating a factor's levels to an atomic vector

```
# Extract out names of levels by element-wise position.
```

- # For details, see ?`[.factor`
- x_char = levels(my_factor)[my_factor] # Levels treated as positions
- x_char
- #[1] "3" "-1" "22" "9" "0" "22" "9"

Character vector extracted.

Coerce to the appropriate type. (Integer for this example...)

- x_val
- #[1] 3-1 22 9 0 22 9

Integer vector returned so data is recovered!

my_factor		levels
"3"	\longleftrightarrow	3
"-1"	\longleftrightarrow	1
"22"	\longleftrightarrow	5
"9"	\longleftrightarrow	4
"0"		2
"22"		5
"9"		4
	-	

levels(my_factor)		
id	my_factor	
1	"-1"	
2	"0"	
3	"3"	
4	"9"	
5	"22"	

Mapping

Ordered Factors

... making factors have precedence ...

```
yields = c("hi", "low", "med", "low", "med", "low") # Vector of Character Values

yields_fct = factor(yields) # Create factor
# [1] hi low med low med low
# Levels: hi low med

yields_ordered = factor(yields, ordered = TRUE) # Add ordered component
# [1] hi med low med low med low
# Levels: hi < low < med

# Correct ordering from low to high
yields_fixed_order = factor(yields, levels = c("low", "med", "hi"), ordered = TRUE)
# [1] hi med low med low med low
# Levels: low < med < hi</pre>
```

Your Turn

Determine whether the following should be either a factor or an ordered factor

Months: (Jan, Feb, ..., Nov, Dec)

Colors: (red, orange, ..., black, green)

Alphabet: (a, b, ..., y, z)

Recap

SLR and MLR

- Estimating a linear regression with 2 parameters vs. p parameters
- Underlying design matrix construction

Factors

 Provide a mapping of levels to indicator variables inside the design matrix.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

