

(43) International Publication Date 15 March 2001 (15.03.2001)

PCT

(10) International Publication Number WO 01/18250 A2

(51) International Patent Classification⁷: C07K 14/47

C12Q 1/68,

(21) International Application Number: PCT/US00/24503

(22) International Filing Date:

7 September 2000 (07.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

- (71) Applicants: WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH [US/US]; Nine Cambridge Center, Cambridge, MA 02142 (US). MILLENNIUM PHARMACEUTICALS, INC. [US/US]; 75 Sidney Street, Cambridge, MA 02139 (US).
- (72) Inventors: LANDER, Eric, S.; 151 Bishop Allen Drive, Cambridge, MA 02139 (US). GARGILL, Michele; 1 Warwick Park #3, Cambridge, MA 02140 (US). IRELAND,

James, S.; 1 Warwick Park #3, Cambridge, MA 02140 (US). BOLK, Stacey; 202 Baker Street #1, West Roxbury, MA 02132 (US). DALEY, George, Q.; 50 Young Road, Weston, MA 02193 (US). MCCARTHY, Jeanette, J.; 3625 Dupont Street, San Diego, CA 92106 (US).

- (74) Agents: HOGLE, Doreen, M. et al.; Hamilton, Brook, Smith & Reynolds, P.C., Two Militia Drive, Lexington, MA 02421 (US).
- (81) Designated States (national): AU, CA, JP, MX.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

\delta

(54) Title: SINGLE NUCLEOTIDE POLYMORPHISMS IN GENES

(57) Abstract: The invention provides nucleic acid segments of the human genome, particularly nucleic acid segments from a gene, including polymorphic sites. Allele-specific primers and probes hybridizing to regions flanking or containing these sites are also provided. The nucleic acids, primers and probes are used in applications such as phenotype correlations, forensics, paternity testing, medicine and genetic analysis. A role for the thrombospondin gene(s) in vascular disease is also disclosed. Use of single nucleotide polymorphisms in the thrombospondin gene(s) for diagnosis, prediction of clinical course and treatment response, development of therapeutics and development of cell-culture-based and animal models for research and treatment are disclosed.

15

20

SINGLE NUCLEOTIDE POLYMORPHISMS IN GENES

BACKGROUND OF THE INVENTION

The genomes of all organisms undergo spontaneous mutation in the course of their continuing evolution, generating variant forms of progenitor nucleic acid sequences (Gusella, Ann. Rev. Biochem. 55, 831-854 (1986)). The variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form, or may be neutral. In some instances, a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism. In other instances, a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form. In many instances, both progenitor and variant form(s) survive and co-exist in a species population. The coexistence of multiple forms of a sequence gives rise to polymorphisms.

Several different types of polymorphism have been reported. A restriction fragment length polymorphism (RFLP) is a variation in DNA sequence that alters the length of a restriction fragment (Botstein *et al.*, *Am. J. Hum. Genet.* 32, 314-331 (1980)). The restriction fragment length polymorphism may create or delete a restriction site, thus changing the length of the restriction fragment. RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; W090/11369; Donis-Keller, *Cell 51*, 319-337 (1987); Lander *et al.*, *Genetics 121*, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.

Other polymorphisms take the form of short tandem repeats (STRs) that include tandem di-, tri- and tetra-nucleotide repeated motifs. These tandem repeats are also referred to as variable number tandem repeat (VNTR) polymorphisms.

15

20

25

30

VNTRs have been used in identity and paternity analysis (US 5,075,217; Armour et al., FEBS Lett. 307, 113-115 (1992); Horn et al., W0 91/14003; Jeffreys, EP 370,719), and in a large number of genetic mapping studies.

Other polymorphisms take the form of single nucleotide variations between individuals of the same species. Such polymorphisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymorphisms (SNP) occur in protein-coding nucleic acid sequences (coding sequence SNP (cSNP)), in which case, one of the polymorphic forms may give rise to the expression of a defective or otherwise variant protein and, potentially, a genetic disease. Examples of genes in which polymorphisms within coding sequences give rise to genetic disease include β -globin (sickle cell anemia), apoE4 (Alzheimer's Disease), Factor V Leiden (thrombosis), and CFTR (cystic fibrosis). cSNPs can alter the codon sequence of the gene and therefore specify an alternative amino acid. Such changes are called "missense" when another amino acid is substituted, and "nonsense" when the alternative codon specifies a stop signal in protein translation. When the cSNP does not alter the amino acid specified the cSNP is called "silent".

Other single nucleotide polymorphisms occur in noncoding regions. Some of these polymorphisms may also result in defective protein expression (e.g., as a result of defective splicing). Other single nucleotide polymorphisms have no phenotypic effects. Single nucleotide polymorphisms can be used in the same manner as RFLPs and VNTRs, but offer several advantages. Single nucleotide polymorphisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymorphism. The greater frequency and uniformity of single nucleotide polymorphisms means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest than would be the case for other polymorphisms. The different forms of characterized single nucleotide polymorphisms are often easier to distinguish than other types of polymorphism (e.g., by use of assays employing allele-specific hybridization probes or primers).

Only a small percentage of the total repository of polymorphisms in humans and other organisms has been identified. The limited number of polymorphisms identified to date is due to the large amount of work required for their detection by

conventional methods. For example, a conventional approach to identifying polymorphisms might be to sequence the same stretch of DNA in a population of individuals by dideoxy sequencing. In this type of approach, the amount of work increases in proportion to both the length of sequence and the number of individuals in a population and becomes impractical for large stretches of DNA or large numbers of persons.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

Work described herein pertains to the identification of polymorphisms which can predispose individuals to disease, by resequencing large numbers of genes in a large number of individuals. Various genes from a number of individuals have been resequenced as described herein, and SNPs in these genes have been discovered (see the Table and Fig. 3). Some of these SNPs are cSNPs which specify a different amino acid sequence, some of the SNPs are silent cSNPs and some of these cSNPs specify a stop signal in protein translation. Some of the identified SNPs were located in non-coding regions.

The invention relates to a gene which comprises a single nucleotide polymorphism at a specific location. In a particular embodiment the invention relates to the variant allele of a gene having a single nucleotide polymorphism, which variant allele differs from a reference allele by one nucleotide at the site(s) identified in the Table and Fig. 3. Complements of these nucleic acid sequences are also included. The nucleic acid molecules can be DNA or RNA, and can be double-or single-stranded. Nucleic acid molecules can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.

The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or Fig. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and /or Fig. 3 is

determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.

Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.

The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. The results described herein also reveal an important association between alterations, particularly SNPs, in TSP genes, particularly TSP-1 and TSP-4, and vascular disease. In particular, SNPs in these genes which are associated with premature coronary artery disease (CAD)(or coronary heart disease) and myocardial infarction (MI) have been identified and represent a potentially vital marker of upstream biology influencing the complex process of atherosclerotic plaque generation and vulnerability.

Thus, the invention relates to the TSP gene SNPs identified as described herein, both singly and in combination, as well as to the use of these SNPs, and others in TSP genes, particularly those nearby in linkage disequilibrium with these SNPs, for diagnosis, prediction of clinical course and treatment response for vascular disease, development of new treatments for vascular disease based upon comparison of the variant and normal versions of the gene or gene product, and development of cell-culture based and animal models for research and treatment of vascular disease. The invention further relates to novel compounds and

5

10

15

20

25

pharmaceutical compositions for use in the diagnosis and treatment of such disorders. In preferred embodiments, the vascular disease is CAD or MI.

The invention relates to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-1 (e.g., as exemplified by SEQ ID NO: 1), and to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-4 (e.g., as exemplified by SEQ ID NO: 3). Preferred portions are at least 10 contiguous nucleotides and comprise the polymorphic site, e.g., a portion of SEQ ID NO: 1 which is at least 10 contiguous nucleotides and comprises the "G" at position 2210, or a portion of SEQ ID NO: 3 which is at least 10 contiguous nucleotides and comprises the "C" at position 1186. The invention further relates to isolated gene products, e.g., polypeptides or proteins, which are encoded by a nucleic acid molecule comprising all or a portion of the variant allele of TSP-1 or TSP-4 (e.g., SEQ ID NO: 1 or SEQ ID NO: 3, respectively). The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.

The invention further relates to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-1 (e.g., as exemplified by SEQ ID NO: 2), and to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-4 (e.g., as exemplified by SEQ ID NO: 4). Preferred polypeptides are at least 10 contiguous amino acids and comprise the polymorphic amino acid, e.g., a portion of SEQ ID NO: 2 which is at least 10 contiguous amino acids and comprises the serine at residue 700, or a portion of SEQ ID NO: 4 which is at least 10 contiguous amino acids and comprises the proline at residue 387. The invention further relates to isolated nucleic acid molecules encoding such proteins and polypeptides, as well as to antibodies which bind, e.g., specifically, to such proteins and polypeptides.

The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of

10

15

20

25

WO 01/18250 PCT/US00/24503

-6-

the indicated nucleotide positions, wherein presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference nucleotide at one or more of said positions. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) an A at nucleotide position 2210 of SEQ ID NO: 1; or (b) a G at nucleotide position 1186 of SEQ ID NO: 3 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant nucleotide at said position. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of SEQ ID NO: 1 or 1186 of SEQ ID NO: 3. The presence of the reference nucleotide at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant nucleotide at one or more of these positions, or a lower likelihood

5

10

15

20

25

of having severe symptomology. In a particular embodiment, the individual is an individual at risk for development of a vascular disease.

The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference amino acid at one or more of said positions.

The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) an asparagine at amino acid position 700 of SEQ ID NO: 2; or (b) an alanine at amino acid position 387 of SEQ ID NO: 4 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant amino acid at one or more of said positions.

In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a biological sample comprising the TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of SEQ ID NO: 2 or 387 of SEQ ID NO: 4. The presence of the reference amino acid at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual

10

- 15

20

25

10

20

25

having the variant amino acid at one or more of these positions, or a lower likelihood of having severe symptomology. In a particular embodiment, the individual is an individual at risk for development of a vascular disease.

In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product, or active portion thereof, for use in the treatment of vascular diseases. The invention further relates to the use of agonists and antagonists of TSP-1 and TSP-4 activity for use in the treatment of vascular diseases. In a particular embodiment the vascular disease is selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A-1D show the reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1.

Figs. 2A-2C show the reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4.

Fig. 3 shows a table providing detailed information about the SNPs identified herein. Column one shows the internal polymorphism identifier. Column two shows the accession number for the reference sequence in the TIGR database (http://www.tigr.org/tdb/hgi/searching/hgi_reports.html). Column three shows the nucleotide position for the SNP iste. Column four shows the gene in which the polymorphism was identified. Column five shows the polymorphic site and additional flanking sequence on each side of the polymorphism. Column six shows the type of mutation produced by the polymorphism. Columns seven and eight show the reference and alternate (variant) nucleotides, respectively, for the SNP. Columns nine and ten show the reference and alternate (variant) amino acids, respectively, encoded by the alleles of the gene.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a gene which comprises a single nucleotide polymorphism (SNP) at a specific location. The gene which includes the SNP has at least two alleles, referred to herein as the reference allele and the variant allele. The reference allele (prototypical or wild type allele) has been designated arbitrarily and typically corresponds to the nucleotide sequence of the gene which has been deposited with GenBank or TIGR under a given Accession number. The variant allele differs from the reference allele by one nucleotide at the site(s) identified in the Table. The present invention also relates to variant alleles of the described genes and to complements of the variant alleles. The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.

The invention further relates to portions of the variant alleles and portions of complements of the variant alleles which comprise (encompass) the site of the SNP and are at least 5 nucleotides in length. Portions can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long. For example, a portion of a variant allele which is 21 nucleotides in length includes the single nucleotide polymorphism (the nucleotide which differs from the reference allele at that site) and twenty additional nucleotides which flank the site in the variant allele. These nucleotides can be on one or both sides of the polymorphism. Polymorphisms which are the subject of this invention are defined in the Table with respect to the reference sequence deposited in GenBank or TIGR under the Accession number indicated. For example, the invention relates to a portion of a gene (e.g., AT3) having a nucleotide sequence as deposited in GenBank (e.g., U11270) comprising a single nucleotide polymorphism at a specific position (e.g., nucleotide 11918). The reference nucleotide for AT3 is shown in column 8, and the variant nucleotide is shown in column 9 of the Table. The nucleotide sequences of the invention can be double- or single-stranded.

The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide

10

15

20

25

10

15

polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or Fig. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and/or Fig. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.

Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.

DEFINITIONS

A nucleic acid molecule or oligonucleotide can be DNA or RNA, and singleor double-stranded. Nucleic acid molecules and oligonucleotides can be naturally
occurring or synthetic, but are typically prepared by synthetic means. Preferred
nucleic acid molecules and oligonucleotides of the invention include segments of
DNA, or their complements, which include any one of the polymorphic sites shown
in the Table. The segments can be between 5 and 250 bases, and, in specific
embodiments, are between 5-10, 5-20, 10-20, 10-50, 20-50 or 10-100 bases. For
example, the segment can be 21 bases. The polymorphic site can occur within any
position of the segment. The segments can be from any of the allelic forms of DNA
shown in the Table.

As used herein, the terms "nucleotide", "base" and "nucleic acid" are intended to be equivalent. The terms "nucleotide sequence", "nucleic acid sequence", "nucleic acid molecule" and "segment" are intended to be equivalent.

Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen *et al.*, *Science* 254, 1497-1500 (1991). Probes can be any length suitable for specific hybridization to the target nucleic acid sequence. The most appropriate length of the probe may vary depending upon the hybridization method in which it is being used; for example, particular lengths may be more appropriate for use in microfabricated arrays, while other lengths may be more suitable for use in classical hybridization methods. Such optimizations are known to the skilled artisan. Suitable probes and primers can range from about 5 nucleotides to about 30 nucleotides in length. For example, probes and primers can be 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28 or 30 nucleotides in length. The probe or primer preferably overlaps at least one polymorphic site occupied by any of the possible variant nucleotides. The nucleotide sequence can correspond to the coding sequence of the allele or to the complement of the coding sequence of the allele.

As used herein, the term "primer" refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template. The term primer site refers to the area of the target DNA to which a primer hybridizes. The term primer pair refers to a set of primers including a 5' (upstream) primer that hybridizes with the 5' end of the DNA sequence to be amplified and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

5

10

15

20

25

15

20

25

30

As used herein, linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome. It can be measured by percent recombination between the two genes, alleles, loci or genetic markers.

As used herein, polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be as small as one base pair. Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu. The first identified allelic form is arbitrarily designated as the reference form and other allelic forms are designated as alternative or variant alleles. The allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms. A diallelic or biallelic polymorphism has two forms. A triallelic polymorphism has three forms.

Work described herein pertains to the resequencing of large numbers of genes in a large number of individuals to identify polymorphisms which can predispose individuals to disease. For example, polymorphisms in genes which are expressed in liver may predispose individuals to disorders of the liver. By altering amino acid sequence, SNPs may alter the function of the encoded proteins. The discovery of the SNP facilitates biochemical analysis of the variants and the development of assays to characterize the variants and to screen for pharmaceutical that would interact directly with one or another form of the protein. SNPs (including silent SNPs) also enable the development of specific DNA, RNA, or protein-based diagnostics that detect the presence or absence of the polymorphism in particular conditions.

A single nucleotide polymorphism occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site

WO 01/18250 PCT/US00/24503

is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations).

A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A transition is the replacement of one purine by another purine or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Typically the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the base "T" at the polymorphic site, the altered allele can contain a "C", "G" or "A" at the polymorphic site.

The invention also relates to nucleic acid molecules which hybridize to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Hybridizations are usually performed under stringent conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25°C. For example, conditions of 5X SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30°C, or equivalent conditions, are suitable for allele-specific probe hybridizations. Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleotide sequence and the primer or probe used.

The invention also relates to nucleic acid molecules which share substantial sequence identity to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Particularly preferred are nucleic acid molecules and fragments which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein. The percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides or amino acids at corresponding positions are then

5

10

15

20

25

15

20

25

30

compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions x 100). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80% or 90% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul et al., Nucleic Acids Res., 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the. respective programs (e.g., NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. In one embodiment, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (e.g., W=5 or W = 20).

The term "isolated" is used herein to indicate that the material in question exists in a physical milieu distinct from that in which it occurs in nature. For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstance, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC. Preferably, an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present.

I. Novel Polymorphisms of the Invention

Some of the novel polymorphisms of the invention are shown in the Table.

Columns one and two show designations for the indicated polymorphism. Column three shows the Genbank or TIGR Accession number for the wild type (or reference) allele. Column four shows the location of the polymorphic site in the nucleic acid

sequence with reference to the Genbank or TIGR sequence shown in column three.

Column five shows common names for the gene in which the polymorphism is located. Column six shows the polymorphism and a portion of the 3' and 5' flanking sequence of the gene. Column seven shows the type of mutation; N, non-sense, S, silent, M, missense. Columns eight and nine show the reference and alternate nucleotides, respectively, at the polymorphic site. Columns ten and eleven show the reference and alternate amino acids, respectively, encoded by the reference and variant, respectively, alleles. Other novel polymorphisms of the invention are shown in Fig. 3.

10 II. Analysis of Polymorphisms

A. Preparation of Samples

Polymorphisms are detected in a target nucleic acid from an individual being analyzed. For assay of genomic DNA, virtually any biological sample (other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair. For assay of cDNA or mRNA, the tissue sample must be obtained from an organ in which the target nucleic acid is expressed. For example, if the target nucleic acid is a cytochrome P450, the liver is a suitable source.

Many of the methods described below require amplification of DNA from
target samples. This can be accomplished by e.g., PCR. See generally PCR
Technology: Principles and Applications for DNA Amplification (ed. H.A. Erlich,
Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and
Applications (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et
al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and
Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and
U.S. Patent 4,683,202.

Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, *Genomics* 4, 560 (1989), Landegren *et al.*, *Science* 241, 1077 (1988), transcription amplification (Kwoh *et al.*, *Proc. Natl. Acad. Sci. USA* 86, 1173 (1989)), and self-sustained sequence replication (Guatelli *et al.*, *Proc. Nat. Acad. Sci. USA*, 87, 1874 (1990)) and nucleic acid based sequence amplification

10

15

20

25

30

(NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

B. Detection of Polymorphisms in Target DNA

There are two distinct types of analysis of target DNA for detecting polymorphisms. The first type of analysis, sometimes referred to as *de novo* characterization, is carried out to identify polymorphic sites not previously characterized (i.e., to identify new polymorphisms). This analysis compares target sequences in different individuals to identify points of variation, i.e., polymorphic sites. By analyzing groups of individuals representing the greatest ethnic diversity among humans and greatest breed and species variety in plants and animals, patterns characteristic of the most common alleles/haplotypes of the locus can be identified, and the frequencies of such alleles/haplotypes in the population can be determined. Additional allelic frequencies can be determined for subpopulations characterized by criteria such as geography, race, or gender. The *de novo* identification of polymorphisms of the invention is described in the Examples section. The second type of analysis determines which form(s) of a characterized (known) polymorphism are present in individuals under test. There are a variety of suitable procedures, which are discussed in turn.

1. Allele-Specific Probes

The design and use of allele-specific probes for analyzing polymorphisms is described by e.g., Saiki et al., Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one individual but do not hybridize to the corresponding segment from another individual due to the presence of different polymorphic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Some probes

10

15

20

25

30

are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.

Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.

2. Tiling Arrays

The polymorphisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in WO 95/11995. One form of such arrays is described in the Examples section in connection with de novo identification of polymorphisms. The same array or a different array can be used for analysis of characterized polymorphisms. WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymorphism. Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence. The second group of probes is designed by the same principles as described in the Examples, except that the probes exhibit complementarity to the second reference sequence. The inclusion of a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).

3. Allele-Specific Primers

An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, *Nucleic Acid Res.* 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable

15

20

25

product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).

4. Direct-Sequencing

The direct analysis of the sequence of polymorphisms of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam Gilbert method (see Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)).

5. Denaturing Gradient Gel Electrophoresis

Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. Erlich, ed., *PCR Technology*, *Principles and Applications for DNA Amplification*, (W.H. Freeman and Co, New York, 1992), Chapter 7.

6. Single-Strand Conformation Polymorphism Analysis

Alleles of target sequences can be differentiated using single-strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al., Proc. Nat. Acad. Sci. 86, 2766-2770 (1989). Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products. Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence. The

different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.

7. Single-Base Extension

An alternative method for identifying and analyzing polymorphisms is based on single-base extension (SBE) of a fluorescently-labeled primer coupled with fluorescence resonance energy transfer (FRET) between the label of the added base and the label of the primer. Typically, the method, such as that described by Chen et al., (PNAS 94:10756-61 (1997), incorporated herein by reference) uses a locus-specific oligonucleotide primer labeled on the 5' terminus with 5-carboxyfluorescein (FAM). This labeled primer is designed so that the 3' end is immediately adjacent to the polymorphic site of interest. The labeled primer is hybridized to the locus, and single base extension of the labeled primer is performed with fluorescently labeled dideoxyribonucleotides (ddNTPs) in dye-terminator sequencing fashion, except that no deoxyribonucleotides are present. An increase in fluorescence of the added ddNTP in response to excitation at the wavelength of the labeled primer is used to infer the identity of the added nucleotide.

III. Methods of Use

10

15

25

After determining polymorphic form(s) present in an individual at one or more polymorphic sites, this information can be used in a number of methods.

A. Forensics

Determination of which polymorphic forms occupy a set of polymorphic sites in an individual identifies a set of polymorphic forms that distinguishes the individual. See generally National Research Council, The Evaluation of Forensic DNA Evidence (Eds. Pollard et al., National Academy Press, DC, 1996). The more sites that are analyzed, the lower the probability that the set of polymorphic forms in one individual is the same as that in an unrelated individual. Preferably, if multiple sites are analyzed, the sites are unlinked. Thus, polymorphisms of the invention are often used in conjunction with polymorphisms in distal genes. Preferred polymorphisms for use in forensics are biallelic because the population frequencies

10

15

20

of two polymorphic forms can usually be determined with greater accuracy than those of multiple polymorphic forms at multi-allelic loci.

The capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymorphic forms occupying selected polymorphic sites is the same in the suspect and the sample. If the set of polymorphic markers does not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at the crime scene. If frequencies of the polymorphic forms at the loci tested have been determined (e.g., by analysis of a suitable population of individuals), one can perform a statistical analysis to determine the probability that a match of suspect and crime scene sample would occur by chance.

p(ID) is the probability that two random individuals have the same polymorphic or allelic form at a given polymorphic site. In biallelic loci, four genotypes are possible: AA, AB, BA, and BB. If alleles A and B occur in a haploid genome of the organism with frequencies x and y, the probability of each genotype in a diploid organism is (see WO 95/12607):

Homozygote: $p(AA) = x^2$ Homozygote: $p(BB) = y^2 = (1-x)^2$ Single Heterozygote: p(AB) = p(BA) = xy = x(1-x)Both Heterozygotes: p(AB+BA) = 2xy = 2x(1-x)

The probability of identity at one locus (i.e, the probability that two individuals, picked at random from a population will have identical polymorphic forms at a given locus) is given by the equation:

$$p(ID) = (x^2)^2 + (2xy)^2 + (y^2)^2$$
.

These calculations can be extended for any number of polymorphic forms at a given locus. For example, the probability of identity p(ID) for a 3-allele system

20

30

where the alleles have the frequencies in the population of x, y and z, respectively, is equal to the sum of the squares of the genotype frequencies:

$$p(ID) = x^4 + (2xy)^2 + (2yz)^2 + (2xz)^2 + z^4 + y^4$$

In a locus of n alleles, the appropriate binomial expansion is used to calculate p(ID) and p(exc).

The cumulative probability of identity (cum p(ID)) for each of multiple unlinked loci is determined by multiplying the probabilities provided by each locus.

$$cum p(ID) = p(ID1)p(ID2)p(ID3).... p(IDn)$$

The cumulative probability of non-identity for n loci (i.e. the probability that two random individuals will be different at 1 or more loci) is given by the equation: cum p(nonID) = 1-cum p(ID).

If several polymorphic loci are tested, the cumulative probability of nonidentity for random individuals becomes very high (e.g., one billion to one). Such probabilities can be taken into account together with other evidence in determining the guilt or innocence of the suspect.

B. Paternity Testing

The object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymorphisms in the putative father and the child.

If the set of polymorphisms in the child attributable to the father does not match the set of polymorphisms of the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymorphisms in the child attributable to the father does match the set of polymorphisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.

The probability of parentage exclusion (representing the probability that a random male will have a polymorphic form at a given polymorphic site that makes him incompatible as the father) is given by the equation (see WO 95/12607):

15

$$p(exc) = xy(l-xy)$$

where x and y are the population frequencies of alleles A and B of a biallelic polymorphic site.

(At a triallelic site p(exc) = xy(1-xy) + yz(1-yz) + xz(1-xz) + 3xyz(1-xyz))),

where x, y and z and the respective population frequencies of alleles A, B and C).

The probability of non-exclusion is

$$p(non-exc) = 1-p(exc)$$

The cumulative probability of non-exclusion (representing the value obtained when n loci are used) is thus:

cum p(non-exc) = p(non-exc1)p(non-exc2)p(non-exc3).... p(non-excn)

The cumulative probability of exclusion for n loci (representing the probability that a random male will be excluded)

cum p(exc) = 1 - cum p(non-exc).

If several polymorphic loci are included in the analysis, the cumulative probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymorphic marker set matches the child's polymorphic marker set attributable to his/her father.

C. Correlation of Polymorphisms with Phenotypic Traits

organism in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutation confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.

Phenotypic traits include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulimenia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent porphyria). Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms. Some examples of autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease. Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus. Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.

The correlation of one or more polymorphisms with phenotypic traits can be facilitated by knowledge of the gene product of the wild type (reference) gene. The genes in which cSNPs of the present invention have been identified are genes which have been previously sequenced and characterized in one of their allelic forms.

Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic markers sets. To perform such analysis, the presence or absence of a set of polymorphisms (i.e. a polymorphic set) is determined for a set of the individuals, some of whom exhibit a particular trait, and some of which exhibit lack of the trait. The alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest. Correlation can be performed by standard statistical methods such as a K-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. For example, it might be found that the presence of allele A1 at polymorphism A correlates with heart disease. As a further

10

15

20

25

15

20

25

example, it might be found that the combined presence of allele A1 at polymorphism A and allele B1 at polymorphism B correlates with increased milk production of a farm animal.

Such correlations can be exploited in several ways. In the case of a strong correlation between a set of one or more polymorphic forms and a disease for which treatment is available, detection of the polymorphic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient. Detection of a polymorphic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo *in vitro* fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic set and human disease, immediate therapeutic intervention or monitoring may not be justified.

Nevertheless, the patient can be motivated to begin simple life-style changes (e.g., diet, exercise) that can be accomplished at little cost to the patient but confer potential benefits in reducing the risk of conditions to which the patient may have increased susceptibility by virtue of variant alleles. Identification of a polymorphic set in a patient correlated with enhanced receptiveness to one of several treatment regimes for a disease indicates that this treatment regime should be followed.

For animals and plants, correlations between characteristics and phenotype are useful for breeding for desired characteristics. For example, Beitz et al., US 5,292,639 discuss use of bovine mitochondrial polymorphisms in a breeding program to improve milk production in cows. To evaluate the effect of mtDNA D-loop sequence polymorphism on milk production, each cow was assigned a value of 1 if variant or 0 if wildtype with respect to a prototypical mitochondrial DNA sequence at each of 17 locations considered. Each production trait was analyzed individually with the following animal model:

$$Y_{iiknn} = \mu + YS_i + P_i + X_k + \beta_1 + ... + \beta_{17} + PE_n + a_n + e_p$$

where Y_{ijknp} is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record; μ is an overall mean; YS_i is the effect common to all cows calving in year-season; X_k is the effect common to cows in

WO 01/18250

10

15

20

25

30

either the high or average selection line; β_1 to β_{17} are the binomial regressions of production record on mtDNA D-loop sequence polymorphisms; PE_n is permanent environmental effect common to all records of cow n; a_n is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect; and e_p is a random residual. It was found that eleven of seventeen polymorphisms tested influenced at least one production trait. Bovines having the best polymorphic forms for milk production at these eleven loci are used as parents for breeding the next generation of the herd.

D. Genetic Mapping of Phenotypic Traits

The previous section concerns identifying correlations between phenotypic traits and polymorphisms that directly or indirectly contribute to those traits. The present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymorphic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci. (USA) 83, 7353-7357 (1986); Lander et al., Proc. Natl. Acad. Sci. (USA) 84, 2363-2367 (1987); Donis-Keller et al., Cell 51, 319-337 (1987); Lander et al., Genetics 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, Med. J. Australia 159, 170-174 (1993); Collins, Nature Genetics 1, 3-6 (1992).

Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymorphic markers. The distribution of polymorphic markers in an informative meiosis is then analyzed to determine which polymorphic markers co-segregate with a phenotypic trait. See, e.g., Kerem et al., Science 245, 1073-1080 (1989); Monaco et al., Nature 316, 842 (1985); Yamoka et al., Neurology 40, 222-226 (1990); Rossiter et al., FASEB Journal 5, 21-27 (1991).

Linkage is analyzed by calculation of LOD (log of the odds) values. A lod value is the relative likelihood of obtaining observed segregation data for a marker

and a genetic locus when the two are located at a recombination fraction θ , versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, Genetics in Medicine (5th ed, W.B. Saunders Company, Philadelphia, 1991); Strachan, "Mapping the human genome" in The Human Genome (BIOS Scientific Publishers Ltd, Oxford), Chapter 4). A series of 5 likelihood ratios are calculated at various recombination fractions (θ), ranging from $\theta = 0.0$ (coincident loci) to $\theta = 0.50$ (unlinked). Thus, the likelihood at a given value of θ is: probability of data if loci linked at θ to probability of data if loci unlinked. The computed likelihoods are usually expressed as the log₁₀ of this ratio (i.e., a lod score). For example, a lod score of 3 indicates 1000:1 odds against an 10 apparent observed linkage being a coincidence. The use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of θ (e.g., LIPED, MLINK (Lathrop, Proc. Nat. Acad. Sci. (USA) 81, 3443-3446 (1984)). For any particular lod score, a recombination fraction may be determined from 15 mathematical tables. See Smith et al., Mathematical tables for research workers in human genetics (Churchill, London, 1961); Smith, Ann. Hum. Genet. 32, 127-150 (1968). The value of θ at which the lod score is the highest is considered to be the best estimate of the recombination fraction.

Positive lod score values suggest that the two loci are linked, whereas negative values suggest that linkage is less likely (at that value of θ) than the possibility that the two loci are unlinked. By convention, a combined lod score of +3 or greater (equivalent to greater than 1000:1 odds in favor of linkage) is considered definitive evidence that two loci are linked. Similarly, by convention, a negative lod score of 2 or less is taken as definitive evidence against linkage of the two loci being compared. Negative linkage data are useful in excluding a chromosome or a segment thereof from consideration. The search focuses on the remaining non-excluded chromosomal locations.

IV. Modified Polypeptides and Gene Sequences

The invention further provides variant forms of nucleic acids and corresponding proteins. The nucleic acids comprise one of the sequences described

20

WO 01/18250 PCT/US00/24503

-27-

in the Table, column 5, in which the polymorphic position is occupied by one of the alternative bases for that position. Some nucleic acids encode full-length variant forms of proteins. Similarly, variant proteins have the prototypical amino acid sequences encoded by nucleic acid sequences shown in the Table, column 5, (read so as to be in-frame with the full-length coding sequence of which it is a component) except at an amino acid encoded by a codon including one of the polymorphic positions shown in the Table. That position is occupied by the amino acid coded by the corresponding codon in any of the alternative forms shown in the Table.

Variant genes can be expressed in an expression vector in which a variant gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.

The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, *supra*. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, *e.g.*, mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like. As used herein, "gene product" includes mRNA, peptide and protein products.

The protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell

5

10

15

20

25

20

25

30

component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer-Verlag, New York (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology, Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.

The invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated. Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote. See Hogan et al., "Manipulating the Mouse Embryo, A Laboratory Manual," Cold Spring Harbor Laboratory. Inactivation of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 (1989). The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug screening systems.

In addition to substantially full-length polypeptides expressed by variant genes, the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.

Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding prototypical gene products are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies,

Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.

V. Kits

10

15

20

25

30

The invention further provides kits comprising at least one allele-specific oligonucleotide as described herein. Often, the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymorphism. In some kits, the allele-specific oligonucleotides are provided immobilized to a substrate. For example, the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymorphisms shown in the Table. Optional additional components of the kit include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions. Usually, the kit also contains instructions for carrying out the methods.

The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. TSPs are stored in the alpha-granules of platelets and secreted by a variety of mesenchymal and epithelial cells (Majack et al., Cell Membrane 3:57-77 (1987)). Platelets secrete TSPs when activated in the blood by such physiological agonists such as thrombin. TSPs have lectin properties and a broad function in the regulation of fibrinolysis and as a component of the ECM, and are one of a group of ECM proteins which have adhesive properties. TSPs bind to fibronectin and fibrinogen (Lahav et al., Eur J Biochem 145:151-6 (1984)), and these proteins are known to be involved in platelet adhesion to substratum and platelet aggregation (Leung, J Clin Invest 74:1764-1772 (1986)).

Recent work has implicated TSPs in response of cells to growth factors. Submitogenic doses of PDGF induce a rapid but transitory, increase in TSP synthesis and secretion by rat aortic smooth muscle cells (Majack et al., J Biol Chem 101:1059-70 (1985)). PDGF responsiveness to TSP synthesis in glial cells has also been shown (Asch et al., Proc Natl Acad Sci 83:2904-8 (1986)). TSP mRNA levels rise rapidly in response to PDGF (Majack et al., J Biol Chem 262:8821-5 (1987)). TSPs act synergistically with epidermal growth factor to increase DNA synthesis in smooth muscle cells (Majack et al., Proc Natl Acad Sci 83:9050-4 (1986)), and monoclonal antibodies to TSPs inhibit smooth muscle cell proliferation (Majack et al., J Biol Chem 106:415-22 (1988)). TSPs modulate local adhesions in endothelial cells, and TSPs, particularly TSP-1 primarily derived from platelet granules, are known to be an important activator of transforming growth factor beta-1 (TGFB-1) (Crawford et al., Cell 93:1159 (1998)) and appear to be a potential link between platelet-thrombosis and development of atherosclerosis.

To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40 (men) or 45 (women) and 422 general population controls. Cases were drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.

Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=.04.

Specific reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1 are shown in Figs. 1A-1D. Specific reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4 are shown in

10

15

20

25

Figs. 2A-2C. It is understood that the invention is not limited by these exemplified reference sequences, as variants of these sequences which differ at locations other than the SNP sites identified herein can also be utilized. The skilled artisan can readily determine the SNP sites in these other reference sequences which correspond to the SNP sites identified herein by aligning the sequence of interest with the reference sequences specifically disclosed herein, and programs for performing such alignments are commercially available. For example, the ALIGN program in the GCG software package can be used, utilizing a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4, for example.

Two SNPs have been specifically studied as described herein. The first (G334u4) is a change from A (reference nucleotide) to G (alternate or variant nucleotide) at nucleotide position 2210 of the nucleic acid sequence of TSP-1 (Figs. 1A-1D), resulting in a missense amino acid mutation from asparagine (reference) to serine (alternate) at amino acid 700. The second SNP (G355u2) is a change from G (reference) to C (alternate) at nucleotide position 1186 of the nucleic acid sequence of TSP-4 (Figs. 2A-2C), resulting in a missense amino acid alteration from alanine (reference) to proline (alternate) at amino acid 387. With respect to the G355u2 SNP, individuals with CAD carried at least one copy of the variant "C" allele more frequently than control individuals (43% as compared with 34%). With respect to the G355u2 SNP, individuals with MI carried at least one copy of the variant "C" allele more frequently than control individuals (49% as compared with 34%). With respect to the G334u4 SNP, individuals with CAD carried two copies of the variant "G" allele more frequently than control individuals (1.7% as compared with 0.2%). With respect to the G334u4 SNP, individuals with MI carried two copies of the variant "G" allele more frequently than control individuals (2% as compared with 0.2%).

As used herein, the term "polymorphism" refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A

10

15

20

25

15

20

25

30

polymorphic locus may be as small as one base pair, in which case it is referred to as a single nucleotide polymorphism (SNP).

Thus, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of the TSP-1 gene or 1186 of the TSP-4 gene. In a preferred embodiment, the nucleotides present at both of these nucleotide positions are determined. In one embodiment the TSP-1 gene has the nucleotide sequence of SEQ ID NO: 1 and the TSP-4 gene has the nucleotide sequence of SEQ ID NO: 3. The presence of one or more of a G (the variant nucleotide) at position 2210 of SEQ ID NO: 1 or a C (the variant nucleotide) at position 1186 of SEQ ID NO: 1186 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference nucleotide at one or more of these positions. Conversely, the presence of one or more of an A (the reference nucleotide) at position 2210 of SEQ ID NO: 1 or a G (the reference nucleotide) at position 1186 of SEQ ID NO: 3 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease than if that individual had the variant nucleotide at one or more of these positions.

In a particular embodiment, the individual is an individual at risk for development of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease. Vascular diseases include, but are not limited to, atherosclerosis, coronary heart disease, myocardial infarction (MI), stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In preferred embodiments, the vascular disease is CAD or MI.

The genetic material to be assessed can be obtained from any nucleated cell from the individual. For assay of genomic DNA, virtually any biological sample

(other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, skin and hair. For assay of cDNA or mRNA, the tissue sample must be obtained from a tissue or organ in which the target nucleic acid is expressed.

Many of the methods described herein require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H.A. Erlich, Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Patent 4,683,202.

Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, *Genomics* 4, 560 (1989), Landegren *et al.*, *Science* 241, 1077 (1988), transcription amplification (Kwoh *et al.*, *Proc. Natl. Acad. Sci. USA* 86, 1173 (1989)), and self-sustained sequence replication (Guatelli *et al.*, *Proc. Nat. Acad. Sci. USA*, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

The nucleotide which occupies the polymorphic site of interest (e.g., nucleotide position 2210 in TSP-1 and/or nucleotide position 1186 in TSP-4) can be identified by a variety of methods, such as Southern analysis of genomic DNA;

25 direct mutation analysis by restriction enzyme digestion; Northern analysis of RNA; denaturing high pressure liquid chromatography (DHPLC); gene isolation and sequencing; hybridization of an allele-specific oligonucleotide with amplified gene products; single base extension (SBE). In a preferred embodiment, determination of the allelic form of TSP is carried out using SBE-FRET methods as described herein, or using chip-based oligonucleotide arrays as described herein.

The invention also relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular

5

10

15

15

20

25

30

disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a biological sample comprising TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of the TSP-1 gene product (e.g., as exemplified by SEQ ID NO: 2) or 387 of the TSP-4 gene product (e.g., as exemplified by SEQ ID NO: 4). In a preferred embodiment, the amino acids present at both of these amino acid positions are determined. As used herein, the term "relevant portion" of the TSP-1 and TSP-4 proteins is intended to encompass any portion of the protein which comprises the polymorphic amino acid positions. The presence of one or more of a serine (the variant amino acid) at position 700 of SEQ ID NO: 2, or a proline (the variant amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference amino acid at one or more of these positions. Conversely, the presence of one or more of an asparagine (the reference amino acid) at position 700 of SEQ ID NO: 2, or an alanine (the reference amino acid) at position 387 of SEQ I D NO: 4 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease, than if that individual had the varaint amino acid at one or more of these positions.

In a particular embodiment, the individual is an individual at risk for development of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease.

In this embodiment of the invention, the biological sample contains protein molecules from the test subject. *In vitro* techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. Furthermore, *in vivo* techniques for detection of protein include introducing into a subject a labeled anti-protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Polyclonal and/or monoclonal antibodies that specifically bind to variant gene

20

25

30

products but not to corresponding reference gene products, and vice versa, are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof comprising the variant portion. Monoclonal antibodies are screened as are described, for example, in

5 Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.)

Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.

The polymorphisms of the invention may be associated with vascular disease in different ways. The polymorphisms may exert phenotypic effects indirectly via influence on replication, transcription, and translation. Additionally, the described polymorphisms may predispose an individual to a distinct mutation that is causally related to a certain phenotype, such as susceptibility or resistance to vascular disease and related disorders. The discovery of the polymorphisms and their correlation with CAD and MI facilitates biochemical analysis of the variant and reference forms and the development of assays to characterize the variant and reference forms and to screen for pharmaceutical agents that interact directly with one or another form of the protein.

Alternatively, these particular polymorphisms may belong to a group of two or more polymorphisms in the TSP gene(s) which contributes to the presence, absence or severity of vascular disease. An assessment of other polymorphisms within the TSP gene(s) can be undertaken, and the separate and combined effects of these polymorphisms, as well as alternations in other, distinct genes, on the vascular disease phenotype can be assessed.

Correlation between a particular phenotype, e.g., the CAD or MI phenotype, and the presence or absence of a particular allele is performed for a population of individuals who have been tested for the presence or absence of the phenotype. Correlation can be performed by standard statistical methods such as a Chi-squared test and statistically significant correlations between polymorphic form(s) and

15

20

25

30

phenotypic characteristics are noted. This correlation can be exploited in several ways. In the case of a strong correlation between a particular polymorphic form, e.g., the variant allele for TSP-1 and/or TSP-4, and a disease for which treatment is available, detection of the polymorphic form in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual. Detection of a polymorphic form correlated with a disorder in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic form and a particular disorder, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the individual can be motivated to begin simple life-style changes (e.g., diet modification, therapy or counseling) that can be accomplished at little cost to the individual but confer potential benefits in reducing the risk of conditions to which the individual may have increased susceptibility by virtue of the particular allele. Furthermore, identification of a polymorphic form correlated with enhanced receptiveness to one of several treatment regimes for a disorder indicates that this treatment regimen should be followed for the individual in question.

Furthermore, it may be possible to identify a physical linkage between a genetic locus associated with a trait of interest (e.g., CAD or MI) and polymorphic markers that are or are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci. (USA) 83, 7353-7357 (1986); Lander et al., Proc. Natl. Acad. Sci. (USA) 84, 2363-2367 (1987); Donis-Keller et al., Cell 51, 319-337 (1987); Lander et al., Genetics 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, Med. J. Australia 159, 170-174 (1993); Collins, Nature Genetics 1, 3-6 (1992). Linkage studies are discussed in more detail above.

15

20

25

30

In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product for use in the treatment of vascular disease, e.g., CAD and MI. As used herein, a reference TSP gene product is intended to mean gene products which are encoded by the reference allele of the TSP gene. In addition to substantially full-length polypeptides expressed by the genes, the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.

For instance, the polypeptide or protein, or fragment thereof, of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition. The particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation desired. Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents and treatment regimens.

The invention further pertains to compositions, e.g., vectors, comprising a nucleotide sequence encoding reference or variant TSP-1 and/or TSP-4 gene products. For example, reference genes can be expressed in an expression vector in which a reference gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and

15

20

25

30

optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.

The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, *supra*. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, *e.g.*, mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.

It is also contemplated that cells can be engineered to express the reference allele of the invention by gene therapy methods. For example, DNA encoding the reference TSP gene product, or an active fragment or derivative thereof, can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal. In such a method, the cell population can be engineered to inducibly or constitutively express active reference TSP gene product. In a preferred embodiment, the vector is delivered to the bone marrow, for example as described in Corey et al. (Science 244:1275-1281 (1989)).

The invention further relates to the use of compositions (i.e., agonists) which enhance or increase the activity of the reference (or variant) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease. The invention also relates to the use of compositions (i.e., antagonists) which reduce or decrease the activity of the variant (or reference) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease.

20

25

30

The invention also relates to constructs which comprise a vector into which a sequence of the invention has been inserted in a sense or antisense-orientation. For example, a vector comprising a nucleotide sequence which is antisense to the variant TSP-1 or TSP-4 allele may be used as an antagonist of the activity of the TSP-1 or TSP-4 variant allele. Alternatively, a vector comprising a nucleotide sequence of the TSP-1 or TSP-4 reference allele may be used therapeutically to treat vascular diseases. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.

Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters,

15

20

25

30

enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.

The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein. The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a nucleic acid of the invention can be expressed in bacterial cells (e.g., E. coli), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of

10

15

20

25

30

art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention has been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered. Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous

15

20

25

30

recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing a nucleic acid of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.

The invention also relates to the use of the variant and reference gene products to guide efforts to identify the causative mutation for vascular diseases or to identify or synthesize agents useful in the treatment of vascular diseases, e.g., CAD and MI. Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science, 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro activity. Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling

15

20

25

(Smith et al., J. Mol. Biol., 224:899-904 (1992); de Vos et al. Science, 255:306-312 (1992)).

Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials. An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic DNA) that encodes the protein, such that the presence of the protein or nucleic acid is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein, preferably in an allele-specific manner. The nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

The invention also encompasses kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample. For example, the kit can comprise a labeled compound or agent (e.g., nucleic acid probe) capable of detecting protein or mRNA in a biological sample; means for determining the amount of protein or mRNA in the sample; and means for comparing the amount of protein or mRNA in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect protein or nucleic acid.

The following Examples are offered for the purpose of illustrating the present invention and are not to be construed to limit the scope of this invention. The teachings of all references cited herein are hereby incorporated herein by reference.

10

15

20

EXAMPLES

Identification of Single Nucleotide Polymorphisms

The polymorphisms shown in the Table were identified by resequencing of target sequences from individuals of diverse ethnic and geographic backgrounds by hybridization to probes immobilized to microfabricated arrays. The strategy and principles for design and use of such arrays are generally described in WO 95/11995.

A typical probe array used in this analysis has two groups of four sets of probes that respectively tile both strands of a reference sequence. A first probe set comprises a plurality of probes exhibiting perfect complementarily with one of the reference sequences. Each probe in the first probe set has an interrogation position that corresponds to a nucleotide in the reference sequence. That is, the interrogation position is aligned with the corresponding nucleotide in the reference sequence, when the probe and reference sequence are aligned to maximize complementarily between the two. For each probe in the first set, there are three corresponding probes from three additional probe sets. Thus, there are four probes corresponding to each nucleotide in the reference sequence. The probes from the three additional probe sets are identical to the corresponding probe from the first probe set except at the interrogation position, which occurs in the same position in each of the four corresponding probes from the four probe sets, and is occupied by a different nucleotide in the four probe sets. In the present analysis, probes were 25 nucleotides long. Arrays tiled for multiple different references sequences were included on the same substrate.

Publicly available sequences for a given gene were assembled into Gap4

(http://www.biozentrum.unibas.ch/~biocomp/staden/Overview.html). PCR primers covering each exon were designed using Primer 3 (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi). Primers were not designed in regions where there were sequence discrepancies between reads. Genomic DNA was amplified in at least 50 individuals using 2.5 pmol each primer, 1.5 mM MgCl₂, 100 µM dNTPs, 0.75 µM AmpliTaq GOLD polymerase, and 19 ng DNA in a 15 µl reaction. Reactions were assembled using a PACKARD MultiPROBE robotic pipetting station and then put in MJ 96-well tetrad thermocyclers (96°C for 10)

10

15

20

25

30

minutes, followed by 35 cycles of 96°C for 30 seconds, 59°C for 2 minutes, and 72°C for 2 minutes). A subset of the PCR assays for each individual were run on 3% NuSieve gels in 0.5X TBE to confirm that the reaction worked.

For a given DNA, 5 μ l (about 50 ng) of each PCR or RT-PCR product were pooled (Final volume = 150-200 μ l). The products were purified using QiaQuick PCR purification from Qiagen. The samples were eluted once in 35 μ l sterile water and 4 μ l 10X One-Phor-All buffer (Pharmacia). The pooled samples were digested with 0.2 μ DNaseI (Promega) for 10 minutes at 37°C and then labeled with 0.5 nmols biotin-N6-ddATP and 15 μ Terminal Transferase (GibcoBRL Life Technology) for 60 minutes at 37°C. Both fragmentation and labeling reactions were terminated by incubating the pooled sample for 15 minutes at 100°C.

Low-density DNA chips (Affymetrix,CA) were hybridized following the manufacturer's instructions. Briefly, the hybridization cocktail consisted of 3M TMACl, 10 mM Tris pH 7.8, 0.01% Triton X-100, 100 mg/ml herring sperm DNA (Gibco BRL), 200 pM control biotin-labeled oligo. The processed PCR products were denatured for 7 minutes at 100°C and then added to prewarmed (37°C) hybridization solution. The chips were hybridized overnight at 44°C. Chips were washed in 1X SSPET and 6X SSPET followed by staining with 2 µg/ml SARPE and 0.5 mg/ml acetylated BSA in 200 µl of 6X SSPET for 8 minutes at room temperature. Chips were scanned using a Molecular Dynamics scanner.

Chip image files were analyzed using Ulysses (Affymetrix, CA) which uses four algorithms to identify potential polymorphisms. Candidate polymorphisms were visually inspected and assigned a confidence value: high confidence candidates displayed all three genotypes, while likely candidates showed only two genotypes (homozygous for reference sequence and heterozygous for reference and variant). Some of the candidate polymorphisms were confirmed by ABI sequencing. Identified polymorphisms were compared to several databases to determine if they were novel. Results are shown in the Table.

Association of Thrombospondin Gene Polymorphisms with Vascular Disease

To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40 (men) or 45 (women) and 422 general population controls. Cases were

drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.

Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=.04.

-47-

		-4/-										
Alt AA		د	S	×	Ę	>	a	£	z	괴	S	>
AA 198	3	13	U	z	E-	4	괴	F	S	-1	S	Ĺ,
TN JIA	Ø	E	U	IJ	U	₽	υ	U	A	F	A	ڻ
ти 168	S	U	υ	ပ	-	U	£-	٤٠	U	IJ	ပ	₽
Mutation Type	2	S	Σ	Σ	S	Σ	Σ	ς,	Σ	S	S	Σ
Flanking Seq	CTGCAGGAGT [G/A] GCTGGATGAA	CATCTGGACC[C/T]TGCTGGGCAA	GTGCTGGTGT [G/C] CGCAGCCATC	TGCGCGCCAA [C/G] ATGACCAACG	TGTGCTCCAC [T/C] GCCTCCATCC	GCAGAGCACG [C/T] GCAGAGCTGC	ATGGTCGGCC [T/C] GGCATGGACC	GCAAGATGAC [T/C] CAGCGCATGG	TCGCTCATCA [G/A] CTTCTACATC	GGGGCGGCT [G/T] GACCTGCCAA	AGACCCTGTC [G/A] GTGATCATGG	GGAGGAGGAC [T/G] TTTGGGAGCC
Jene Description	, antithrombin III		1, dopamine receptor D1	1, dopamine receptor D1		1, dopamine receptor D1	1, dopamine receptor D1	1, dopamine receptor D1				
	918 AT3	310 DRD1	332 DRD1	DRD1,	522 DRD1	953 DRD1	635 DRD1,	606 DRD1,	845 DRD1	720 DRD1	1044 DRD1	766 DRD1
. Sequence	11918	310	332	369	522	953	635	909	845	720	1044	991
enbank or TIGR Accession Number	011270	M67439	M67439	M67439	M67439	M67439	M67439	M67439	M67439	M67439	M67439	M67439
di %Ai	WIAF-13246	WIAF-12913	WIAF-12914	WIAF-12915	WIAF-12916	WIAF-12917	WIAF-12918	WIAF-12919	WIAF-12920	WIAF-12921	WIAF-12922	WIAF-12923
ojk ib	AT3a7	DRDSu22	DRD5u23	DRD5u24	DRD5u25	DRD5u26	DRD5u27	DRD5u28	DRD5u29	DRD5u30	กหกรม31	D805u32

DRD5u33	WIAF-12924	M67439	777	777 DRD1,	dopamine receptor Dl	TTTGGGAGCC [C/T] GACGTGAATG	S	U	F	a.	ابت
DRD5u34	WIAF-12925	M67439	786	786 DRD1,	dopamine receptor D1	CCGACGTGAA [T/G]GCAGAGAACT	Σ	F	ß	z	×
DRD5u35	WIAF-12926	M67439	687	87 DRD1,	dopamine receptor D1	ACCTACACGC [G/A] CATCTACCGC	Σ	ß	æ	×	Ξ
DRD5u36	WIAF-12927	M67439	1279 DRD1	DRD1,	dopamine receptor D1	GTGCAGCCAC [T/G] TCTGCTCCCG	Σ	F	U	ĹĿ	>
DRD5u37	WIAF-12928	M67.439	1370	1370 DRD1,	dopamine receptor D1	GAAATCGCAG [C/T] TGCCTACATC	Σ	U	٤٠	A	>
DRD5u38	WIAF-12929	M67439	1500	1500 DRD1,	dopamine receptor Dl	ACCCTGTTGC [T/A]GAGTCTGTCT	S	Ę	A	A	A
DRD5u39	WIAF-12930	M67439	1338	1338 DRD1,	dopamine receptor D1	TCTCCTACAA [C/T] CAAGACATCG	S	υ	F	z	z
DRD5u40	WIAF-12931	M67439	1215	1215 DRD1,	dopamine receptor D1	CACTCAACCC [C/A] GTCATCTATG	တ	U	æ	Δ,	O.
DRD5u41	WIAF-12932	M67439	1242	DRD1,	dopamine receptor Dl	ACGCCGACTT [T/C] CAGAAGGTGT	ß	Ę-	U	[24,	Ĩ£,
DRD5u42	WIAF-12933	M67439	1441	1441 DRD1,	dopamine receptor Dl	CGAGGAGGAG [G/A] GTCCTTTCGA	Σ	ပ	æ	U	ဟ
DRD5u43	WIAF-12934	M67439	1460	1460 DRD1,	dopamine receptor Dl	GATCGCATGT [T/C] CCAGATCTAT	Σ	Ę	U	<u>.</u>	တ
DRD5u44	WIAF-12960	M67439	399	399 DRD1,	dopamine receptor D1	TGTCTCTGGC[C/T]GTGTCTGACC	တ	U	H	4	- ∢
DRD5u45	WIAF-12961	M67439	162	162 DRD1,	dopamine receptor D1	TGCCGCCAGG [C/G] AGCAACGGCA	S	υ	U	ပ	U
DRD5u46	WIAF-12962	M67439	195	195 DRD1,	dopamine receptor Dl	GGCAGTTCGC [T/G] CTATACCAGC	လ	Ŧ	U	Ø	A
DRD5u47	WIAF-12963	M67439	264	264 DRD1,	dopamine receptor D1	TGGGGCCCTC [A/G] CAGGTGGTCA	လ	· 4	o	S	S
DRD5u48	WIAF-12964	M67439	465	465 DRD1,	dopamine receptor D1	TGGCCGGTTA[C/T]TGGCCCTTTG	တ	U	E	> -	*
DRD5u49	WIAF-12965	M67439	511	511 DRD1,	dopamine receptor D1	CTTCGACATC [A/T] TGTGCTCCAC	Σ	Æ	Ę	Σ	د
DRD5u50	WIAF-12966	M67439	557	557 DRD1,	dopamine receptor Dl	ATCAGCGTGG [A/G] CCGCTACTGG	Σ	Ą	ی	Ω	₀
DRD5u51	WIAF-12967	M67439	476	476 DRD1,	dopamine receptor Dl	TGGCCCTTTG [G/A] AGCGTTCTGC	Σ.	_O	Ą	U	ம

DRD5u52	WIAF-12968	M67439	1004	1004 DRD1,	dopamine receptor D1	AGCCTGCGCG[C/T]TTCCATCAAG	Σ	U	Ę	Æ	>
DRD5u53	WIAF-12969	M67439	1036	1036 DRD1,	dopamine receptor D1	GGTTCTCAAG [A/C] CCCTGTCGGT	Σ	æ	U	F	a
DRD5u54	WIAF-12970	M67439	859	DRD1,	dopamine receptor Dl	CTACATCCCC [G/A] TTGCCATCAT	Σ	υ	A	>	1
DRDSuSS	WIAF-12971	M67439	931	931 DRD1,	dopamine receptor D1	GATTTCCTCC [C/T] TGGAGAGGGC	s	υ	Ŧ	I.	Ľ
G10u1	WIAF-10234	J04111	1308	JUN, v oncogen	JUN, v-jun avian sarcoma virus 17 1308 oncogene homolog	CCCTCAACGC (C/T) TCGTTCCTCC	တ	ບ	F	A	4
G10u2	WIAF-10235	J04111	1471	JUN, oncoge	JUN, v-jun avian sarcoma virus 17 oncogene homolog	GCTGCTCAAG [C/T] TGGCGTCGCC	S	U	E-	L	ı,
G10u3	WIAF-10253	J04111	2010	JUN, v oncogen	JUN, v-jun avian sarcoma virus 17 2010 oncogene homolog	TGGAGTCCCA [G/A] GAGCGGATCA	S	ပ	A	o	o
G1001n1	WIAF-13746	D26135	993	DGKG, gamma (diacylglycerol kinase, (90kD)	CCCCAGTGGT [G/A] TACCTGAAGG	လ	9	A	>	>
G1001u2	WIAF-13764	D26135	2313	DGKG, gamma (diacylglycerol kinase, (90kD)	atgtgatgag [a/t] gagaaacatc	Σ	ď	£-	æ	s
G1002u1	WIAF-13918	X57206	334	ITPKB, triapho	ITPKB, inositol 1,4,5- 334 trisphosphate 3-kinase B	CCCCAAGATC [A/C] GGACAAGCCT	Σ	A	c	٥	Δ,
G1002u2	WIAF-13925	X57206	575	ITPKB, trispho	ITPKB, inositol 1,4,5- 575 trisphosphate 3-kinase B	CCAACTCAGC (T/C) TTCCTGCATA	S	Ţ	υ	4	A
G1004u1	WIAF-13567	136151	1854	PIK4CA, pho kinase, cat:	phosphatidylinositol 4- catalytic, alpha tide	GCCGCTCAGA [C/T] TCCGAGGATG	S	υ	£-	۵	D
G1006u1	WIAF-12375	HT2690	828	PRKCA,	protein kinase C, alpha	GGTACAAGTT [G/A] CTTAACCAAG	တ	U	Æ	,ı	I.
G1008u1	WIAF-12397	HT2136	300	300 PRKCZ,	protein kinase C, zeta	CTGGCCTGCC[A/G]TGTCCGGGAG	တ	Ø	Ŋ	<u>с</u> ,	۵
G1008u2	WIAF-12398	HT2136	246	246 PRKCZ,	protein kinase C, zeta	AGTGCAGGGA [T/C] GAAGGCCTCA	S	Ę	U	۵	۵ .
G1008u3	WIAF-12399	HT2136	504	PRKCZ,	protein kinase C, zeta	GCTGCCACGG [C/T] CTCGTCCCGC	S	U	F	ڻ	ڻ
G1008u4	WIAF-12403	HT2136	807	807 PRKCZ,	protein kinase C, zeta	agaagaatga [c/t] caaatttacg	S	ű	F		۵
G1008uS	WIAF-12404	HT2136	1514	1514 PRKCZ,	protein kinase C, zeta	GGATTTTCTG [A/T] CATCAAGTCC	Σ	Æ	Ŀ		. >

G1008u6	WIAF-12412	HT2136	166	166 PRKCZ, protein kinase C, zeta	CAAGTGGGTG [G/A] ACAGCGAAGG	Σ	U	Ø	۵ .	z
G1008u7	WIAF-12418	HT2136	260	560 PRKCZ, protein kinase C, zeta	TCCCAAGAGC (C/T) TCCAGTAGAC	Σ	ပ	Ţ	ď	T
G1009u1	WIAF-12396	L05186	2495	PTK2, PTK2 protein tyrosine 2495 kinase 2	TCATCAACAA [G/A] ATGAAACTGG	တ	ပ	. 4	×	×
G1011vl	WIAF-11988	87870X	1250	WNT2, wingless-type MMTV 1250 integration site family member 2	TCCCATGTCA [C/A] CCGGATGACC	Σ	ပ	4	H	Z
61011u2	WIAF-11997	87870X	788	WNT2, wingless-type MMTV 788 integration site family member 2	GACTATGGGA [T/C] CAAATTTGCC	Σ	Ę	υ	<u> </u>	Ŧ
61011u3	WIAF-12014	X07876	1338	WNT2, wingless-type MMTV integration site family member 2	TGCACACATG [C/A] AAGGCCCCCA	z	ပ		ပ	
G1011u4	WIAF-13475	37870X	958	WNT2, wingless-type MMTV 856 integration site family member 2	CCTGATGAAT [C/T] TTCACAAGAA	Σ	_ ပ	£	ت	[Ee
61011u5	WIAF-13476	X07876	958	WNT2, wingless-type MMTV integration site family member 2	GACATGCTGG [C/T] TGGCCATGGC	S	υ	<u></u>	1	ı,
G1011u6	WIAF-13477	X07876	789	MNT2, wingless-type MMTV integration site family member 2	ACTATGGGÄT [C/T] AAATTTGCCC	S	Ü	£-	I	I
G1011u7	WIAF-13478	87870X	823	WNT2, wingless-type MMTV 823 integration site family member 2	TGCAAAGGAA [A/G] GGAAAGGAAA	Σ	A	_ ဗ	<u> </u>	ပ
G1012u1	WIAF-12408	HT48910	1574	WNT2B, wingless-type MMTV 1574 integration site family, member 28 ATACTTGCAA (A/G)GCCCCCAAGA	ATACTTGCAA (A/G)GCCCCCAAGA	S	A	Ŋ	~	К
G1016a1	WIAF-12125	222534	793	793 ACVR1, activin A receptor, type I	type I GGCAAGGGGA[A/G]AATGTTGCCG	S	⋖	IJ	ω	យ
G1016u2	WIAF-12392	222534	373	373 ACVR1, activin A receptor, type I	I CTGGCCAAGC (T/C) GTGGAGTGCT	<u></u> s	Ŀ	Ü	A	4
G1018u1	WIAF-12413	X74210	1150	ADCY2, adenylate cyclase 2 1150 (brain)	CAAATTGCGA [G/T] TGGGTATTAA	Σ	ຍ	Į	>	ū
G1019u1	WIAF-12394	U83867	5475	SPTAN1, spectrin, alpha, non- 5475 erythrocytic l (alpha-fodrin)	GGGACCTAAC [T/C] GGCGTGCAGA	<u>0</u>	Ę۰	U	₽	F

1.							ľ		\mid	Γ
WIAF-12406	9	U83867	1223	SPTAN1, spectrin, alpha, non- 1223 erythrocytic 1 (alpha-fodrin)	GCCCTCATCA (A/G) TGCAGATGAG	Σ	A	z	S	
WIAF-12409	604	083867	3555	SPTAN1, spectrin, alpha, non- 3555 erythrocytic 1 (alpha-fodrin)	CTGAAGGTCT [T/C] ATGGCAGAGG	s		ر ت	1	
WIAF-12415	2415	U83867	3369	SPTAN1, spectrin, alpha, non- 3369 erythrocytic 1 (alpha-fodrin)	TCCGTGAAGC [G/A] AATGAACTAC	တ	U	A		
WIAF-12417	12417	U83867	5839	SPTAN1, spectrin, alpha, non- 5839 erythrocytic 1 (alpha-fodrin)	TGAGACAGAC (T/A) TCACCGTCCA	Σ	£-	A F	н	
WIAF-12393	12393	U45945	631	ATP1B2, ATPase, Na+/K+ 631 transporting, beta 2 polypeptide	CATGAATGTT [A/G] CCTGTGCTGG	Σ	A	Ð	<u> </u>	
WIAF-	WIAF-12400	U45945	432	ATP1B2, ATPase, Na+/K+ transporting, beta 2 polypeptide	GCCGCCCTGG [G/A] CGCTATTACG	S	U	<u>ں</u>	<u> </u>	
WIAF-	WIAF-12401	D89722	395	ARNTL, aryl hydrocarbon receptor 395 nuclear translocator-like	aacattaaga [g/c] gtgccaccaa	Σ	U	U U	<u>~</u>	
WIAF.	WIAF-12407	D89722	681	ARNTL, aryl hydrocarbon receptor 681 nuclear translocator-like	CTCATAGATC [C/T] AAAAACTGGA	Σ	U	T 4	>	
WIAF	WIAF-12410	U85946		Homo sapiens brain secretory protein hSecl0p (HSECl0) mRNA, complete cds.	gatagatttt [C/t] agaagttaaa	Σ	Ú	F	<u>.</u>	
WIAF	WIAF-12402	L47647	1135 CKB,	CKB, creatine kinase, brain	TCGAGATGGA [A/G] CAGCGGCTGG	S	- V	១	ш	
WIAF	WIAF-12405	L47647	499	499 CKB, creatine kinase, brain	GGGAGCGCCG [A/C] GCCATCGAGA	S	A	۳ د	<u></u>	
3	H T P F - 10427	H72269	S TEL	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	GGGATCGCCA [T/C] GGGAACTCAA	· · · · · · · · · · · · · · · · · · ·	Ę	<u></u>	ж.	

WO 01/18250

			T	
. <u>v</u>	Ŋ	ω	, a	Ĺı,
Δ	U	۸	Ъ	<u>σ</u>
H	ပ	4	H	F.
υ		U	٨.	U
Σ	Σ	Σ	Ŋ	Σ
CCCTCCTTCT [C/T] CAAGAACTTT	TCTCCAACTT [G/C] TACAAATTCT	ACTGAATCTG [C/A] AGGCCAGGAT	AATTTGAGCT (A/T) CTTGATAAGG	TCAGAATCAT [C/T] TGATGGATCT
ERCCS, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne 1221 syndrome))	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne 1783 syndrome))	ERCC5, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	ERCC5, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne
1221	1783	2077	3338	3487
HT2269	H72269	HT2269	HT2269	HT2269
WIAF-10429	WIAF-10431	WT DF - 1 04 3 2	WIAF-10446	WT & F - 1 0 4 4 7
G103u2	5,103,13		6103u5	. 91.50

D	ம	α,	۵	Σ
ж	<u> </u>	σ	Ω	<u>F-</u>
9	U	U	U	<u>F</u>
U	₽	<u></u>	H	υ
Σ	Σ	Σ	ν.	Σ
TTCAAGTGAA [C/G] ATGCTGAAAG	CTCTTGACGA [T/G] GACGAAGATG	CCGGACTCTT [T/C] CAGCCATTAA	CTGAGAAAGA [T/C] GCGGAAGATT	TGGAACAGAA [C/T] GAAGACAGAT
ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne 1388 syndrome))	ERCC5, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne 1362 syndrome))	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne 2357 syndrome))	ERCCS, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1388	1362	2357	3109
HT2269	HT2269	HT2269	HT2269	HT2269
WIAF-10448	WIAF-10457	WTAF-10458	WIAF-10459	WIAF-10462
G103u7	93.18	67.6	G103u10	G103u11

WO 01/18250 PCT/US00/24503

-54-

				ERCC5, excision repair cross- complementing rodent repair deficiency, complementation group						
G103u12	WIAF-10463	HT2269	3138	5 (xeroderma pigmentosum, complementation group G (Cockayne 3138 syndrome))	GTTTCCTGTA [T/C] TAAAGCAACT	w	F	U U		
				ERCCS, excision repair cross-complementing rodent repair deficiency, complementation group						
G103u14	WIAF-10484	HT2269	3553	o (xeroueima prymencosum, complementation group G (Cockayne syndrome))	AGAACAGCTG [C/T]GAAAGAGCCA	Σ	U	4 H	>	
				ERCC5, excision repair cross- complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	A PARTECIA (L/T) GGGAGGCCA	Σ	U	<u>F</u>	Σ	
G103u15	WIAF-10485	H12269	6741	ERCCS, excision repair cross-complementing rodent repair						
				deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne	יים אינים אינים (יום / יום אינים	Σ	و		<u> </u>	
G103a16	WIAF-12097	HT2269	3335	3335 syndrome) / ZPK, zipper (leucine) protein	2000 10 10 10 10 10 10 10	· · ·	ر	£-	٥	
G1030u1	WIAF-12411	007358	203	203 Kinase ZPK, zipper (leucine) protein	GCCACCCCAT [G/T] AACCTGGAGG	2	U			
2103002	01571-JWIM			GPR37, G protein-coupled receptor 37 (endothelin receptor type B-		ဟ	٥	Ę-	. 	
G1031a1	WIAF-12124 WIAF-12381	115 7 9 1 1	926	CllORF8, chromosome 11 open reading frame 8	ACGTACATCA (A/C) TGCCTCGACG	Σ	A		<u>F</u>	
G1032u1	WIAF-12381	U57911	926	frame 8	ACGTACATCA (A/C) TGCCTC	GACG		Ψ.	M A C	M D M

Г	· · · · ·					·····r			I		1	T	
_		·œ		0		ш			<u> </u>	<u>F</u>	z		
L	E		<u>~</u>	<u> </u>	S	. ω	. 0	×		<u>+</u>	<u></u>		- 1
-	<u></u>		4	۸	E			U	U	F	4	U	ပ
-	ပ			ڻ	<u>.</u>	۸ ا	Ü		H	<u> </u>	U	F	<u></u>
L	Σ	Σ	Σ	Σ	Σ	S	Σ	Σ	ဟ	υ	Σ	υ	<u> </u>
	TCTGTACCCA [C/T] ACTCTTGTAC	AGGCAACATG [G/C] GTGACTGGAG	TATGTGATGC [G/A] AAAGGAAGAG	TTCATTTTCC [G/A] AATCCTGCTG	CAAGCCTACT [C/T] AACTGCTGGA	AGAAAGAGGA [A/G]GAACTCAAGG	GCACTTGAAG [C/A] AGATTGAGAT	ATGCACTTGA [A/G] GCAGATTGAG		ccrcaccaac [c/T] gcrccccrcr	AAGCTGGTTA[C/A]TGGCGACAGA	CTAACTCCCA (T/C) GCACAGCCTT	TGGACATGAA (T/C) TACAGCCACT
	GJA1, gap junction protein, alpha	GJAl, gap junction protein, alpha	GJA1, gap junction protein, alpha 5501, 43kD (connexin 43)	GJA1, gap junction protein, alpha 5481, 43kD (connexin 43)	. ~	GJA1, gap junction protein, alpha							
	M65188	M65188	M65188	M65188		M65188							
	WIAF-12437		WIAF-12439			WIAF-12442		WINE-12466			WIAF-12488	WIRF-12489	WIAF-12490
	G1033u1	G1033u2	G1033u3	G1033u4	G1033u5	6103306	G1033u7	91122015	9055010	G1033u10	61033u11	61033112	G1033u13

												· · · · · ·	— ,	
. D	a	S.	3	>-	>-	4	Ŧ		Æ	4	٥	z	۵	_0
2	œ	S	∝			S	A	4	۸.	.>	ம			_ 0
<u> </u>	. 4	ပ	٤٠	U	<u> </u>	<u></u> <u></u>	<u> </u>	9		U	υ	<	U	⋖
4	Ŋ	Ę-	U	Ę	U	£→		U	_ A	Ę-	_ ტ	ຶ	<u>+</u>	Ů
Σ	Σ	ω	Σ	S	S	Σ	Σ	Σ	_ &	Σ	Σ	Σ	လ	υ
CCGCAATTAC (A/G) ACAAGCAAGC	GTGGACCAGC [G/A] ACCTTCAAGC	TATTTGTGTC (T/C) GTACCCACAC	CGTTAAGGAT [C/T] GGGTTAAGGG	AACTCTTCTA [T/C]GTTTTCTTCA	 AGTTCAAGTA C/T GGTATTGAAG	CCAGCGACCT [T/G] CAAGCAGAGC	a Caacaagcaa [G/A] Caagtgagca	B CAAAACTGGG [C/G] TAATTACAGT	AGACCTGTGC [A/G] TACACCAACC	GACACCCCAG [T/C] GCCCGGCTAC	TCCACTCGGA [G/C] ATCGTGAAAC	GGGGCTGGCC [G/A] ATACCATCGT	CCATGTTCGA [T/C] GTGCATGTGA	AGGTGGACCA [G/A] CTGTACCGGA
GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA1, gap junction protein, alpha	GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA1, gap junction protein, alpha	GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA1, gap junction protein, alpha 1, 43kD (connexin 43)	GJA	PYGB, phosphorylase, glycogen; brain	PYGB, phosphorylase, glycogen; brain	PYGB, phosphorylase, glycogen;	PYGB, phosphorylase, glycogen; 1583 brain	PYGB, phosphorylase, glycogen;	PYGB, phosphorylase, glycogen;
1069	1250	423	088	GJ 855 1,	576	GJ 1255 1,	1078	1097	1201	177	1465	1583	1774	2449
M65188	M65188	M65188	M65188	M6518B	M65188	M65188	X6.5188	M6 5188	303544	J03544	303544	303544	.103544	J03544
WIAF-12491	WIAF-12492	WIAF-12496	WIAF-12503	WIAF-12504	WIAF-12505	WIAF-12512	41 PA CL - 24 TW	WIAF-12514	WTAF-12443	WIAF-12469	WIAF-12470	WTAF-12471	WIRE-12472	WIAF-12474
G1033u14	G1033u15	G1033u16	G1033u17	61033u18	G1033u19	G1033u20	6103323	2202010	6103411	G1034u2	61034113	41145012	01034115	G1034u6

				phosphorylase, glycogen;	75775442775 (4/7) 557457575	Ŋ	Ú	Ę	ပ	
G1034u7	WIAF-12508	J03544	718	7	ררררפארפפור/ ון פופאיפיפיפי					
G1035u1	WIAF-12484	1097105	1962	DPYSL2, dihydropyrimidinase-like	GCAGAGGAGC (A/G) GCAGAGGATC	Σ	K	IJ	o	<u>~</u>
				PYSL2, dihydropyrimidinase-like		Ç	E	C	٥	۵
G1035u2	WIAF-12485	U97105	2842	Ť٢	ATGACGGACC (T/C) G161616446	2		,		
G1035u3	WIAF-12511	097105	2062	DPYSL2, dihydropyrimidinase-like 2	CCATCACCAT [C/T] GCCAACCAGA	_ &	U	E	н	н
				WASE, Wiskott-Aldrich syndrome-	A COTRAGRET (C/T) CTGTTGCTCA	ß	υ	Ę	S	s
G1036u1	WIAF-12444	D88460	311	LIKE		_				
G1038u1	WIAF-12445	HT2746	994	PCTK2, PCTAIRE protein kinase 2	TAGAAGAAAG [G/A] TATTGCATCG	Σ	U	Æ	>	
G1039u1	WIAF-12429	HT2747	955	serine/threonine kinase, PCTAIRE-3	ATCCAAGAGT [C/T] GCATGTCAGC	Σ	U	F	œ	U
0.000	12458	HT2747	808	serine/threonine kinase,	PCTAIRE-3 CACAGAAGAG [A/T] CGTGGCCCGG	Σ	٨	į-	Ę-	S
G1041u1	WIAF-12459	X72886	544	H. sapiens TYRO3 mRNA.	CAAGTGGCTG [G/C] CCCTGGAGAG	Σ	9	U	A	<u>a</u>
5	WIAE-12460	X72886	693	H. sapiens TYRO3 mRNA.	TTGGCGGGAA [C/T] CGCCTGAAAC	S	ပ	۲	z	z
G1041u3	WIAF-12502	X72886	561	Ξ	AGAGCCTGGC [C/T] GACAACCTGT	S	U	ы	A	A
G1043u1	WIAF-12448	M94055	5481	Human voltage-gated sodium channel mRNA, complete cds.	CTCTGAGTGA [G/A] GATGACTTTG	S	IJ	A	P	மு
21043112	WT&F-12449	M94055	5205	Human voltage-gated sodium channel mRNA, complete cds.	TTGAGACCTT [T/C]GGCAACAGCA	_ν	F	U	(L.	íL.
61043113	WIAF-12450	M94055	5224	Human mRNA,	CATGATCTGC[C/T]TGTTCCAAAT	S	U	Ę	د	L.
61043114	WIAF-12451	M94055	5514	Human voltage-gated sodium channel mRNA, complete cds.	AGGTTTGGGA [G/A] AAGTTTGATC	S		4	ш	ш
G1043u5	WIAF-12452	M94055	5217	Human voltage-gated sodium channel mRNA, complete cds.	GCAACAGCAT (G/C) ATCTGCCTGT	Σ		U	Σ	н
G1043u6	WIAF-12453	M94055	5334	Human voltage-gated sodium channel 8334 mRNA, complete cds.	GCTCAGTTAA (A/G) GGAGACTGTG	N N				×

							-	-	\mid	Γ
21.0431.7	WTAF-12454	M94055	5424	Human voltage-gated sodium channel MRNA, complete cds.	TGTACATCGC [G/C] GTCATCCTGG	s S	U	«	<u> </u>	
0104308	WIAF-12455	M94055	5322	1 sodium channel	ATCACCCTGG [A/C] AGCTCAGTTA	ج د	U	<u> </u>	<u> </u>	<u>.</u>
9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	WTAF-12456	M94055	12001	Human voltage-gated sodium channel MRNA, complete cds.	ATGGCTACAC [G/A] AGCTTTGACA	S S	<u> 4</u>	H	F	
01043010	WIAF-12499	M94055	1170	voltage-gated sodium channel complete cds.	TCTGTGTGAA [G/T] GCTGGTAGAA	υ Σ	F	×	z	
G1046a1	WIAF-13187	US0352	267	ACCN1, amiloride-sensitive cation 267 channel 1, neuronal (degenerin)	TCCCAGCTGT [G/A] ACCCTCTGTA	<u>ა</u>	4	>	>	
G1046a2	WIAF-13188	050352	282	ACCN1, amiloride-sensitive cation 282 channel 1, neuronal (degenerin)	TCTGTAACCT [C/g] AATGGCTTCC	S	ر و		- 1	T
G1046a3	WIAF-13189	U50352	315	ACCN1, amiloride-sensitive cation 315 channel 1, neuronal (degenerin)	TCACCACCAA [C/t]GACCTGTACC	S	U	2		T
G1046a4	WIAF-13190	U50352	386	ACCNI, amiloride-sensitive cation 386 channel 1, neuronal (degenerin)	CCCCATCTGG [C/a] TGACCCCTCC	Σ	<u>к</u>	- A		
	TOICL GAIN	1150352	417	ACCNI, amiloride-sensitive cation	CCCTGCGGCA [G/A] AAGGCCAACT	ς. S	G		0	
G1046d3	WINE-12641	HTS174S	3214	1 124	CAGTCAAAGC [G/A] GCTAAGGGAG	s	<u>ل</u> 2		A	
	WT&R.12642	HT5174S	3199	REST, RE1-silencing transcription	CAAAGGAAGC [C/G]TTGGCAGTCA	S	U U		A	
2004010	12657 MTM	HT5174S	2125	REST, RE1-silencing transcription 2125 factor	CTCCCATGGA [G/T] ACTGCTCAGA	Σ	G F		<u>D</u>	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WTAF-12660	HT5174S	2333	REST, RE1-silencing transcription 2333 factor	GGAACCTGTT [A/C] AGATAGAGCT	Σ	<u>ں</u>		× 0	
21051111	WIAF-12431	HT28321	658	SCNNIG, sodium channel,	ATGACACCTC [C/T] GACTGTGCCA	S	E U		S	
G1051u2	WIAF-12434	HT28321	1735	SCNNIG, sodium channel, 1735 nonvoltage-gated 1, gamma	AAGCCAAGGA [G/A] TGGTGGGCCT	S	5	4	<u>ы</u>	

31051113	WIAF-12473	HT28321	4 09	SCNNIG, sodium channel,	AGTCCCTGTA [T/C] GGCTTTCCAG	S	£+	۷ ک	_ *	
G1051u4	WIAF-12475	HT28321	953	SCNNIG, sodium channel, 953 nonvoltage-gated 1, gamma	AGTCATTTTG (T/C) ACATAAACGA	Σ	E	> د	=	
31051115	WTAF-12476	HT28321	975	SCNNIG, sodium channel, 975 nonvoltage-gated 1, gamma	GAGGAATACA [A/G] CCCATTCCTC	Σ	~	<u>ر</u> ن	S	
G1051u6	WIAF-12477	HT28321	1192		CTGCCTACTC[G/A]CTCCAGATCT	S	ט	S	S	
G1053a1	WIAF-13192	HT2201	4085	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT 4085 syndrome 3)	CGTCCTCTGA [G/A] AGCTCTGTCA	Σ	9	4	× ×	
G1053a2	WIAF-13193	HT2201	2607	SCN5A, sodium channel, voltage- gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	ACTTTGCCGA [C/T] GCCCTGTCTG	N	U	F	۵ ۵	
G1053a3	WIAF-13194	H12201	5828	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT 5828 syndrome 3)	GAGCCCATCA [C/T] CACCACACTC	Σ	υ	F	H	
0105394	WIAF-13202	HT2201	713	SCN5A, sodium channel, voltage- gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	GCGTTCACTT [T/A] CCTTCGGGAC	Σ	F	A	<u>~</u>	
G1053a5	WIAF-13203	HT2201	6148	SCNSA, sodium channel, voltage- gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	CCACAGTGAA [G/T] ATCTCGCCGA	Σ	ပ	F	<u>۸</u>	
G1053a6	WIAF-13204	HT2201	6217	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	GGCCTGGCTG [G/T] CCAGGACACA		ڻ ن	Ę+		

			———			······································					
	S	<u>t.</u>		U	>	«	>-	F	z	-L	E
ı	S	<u>r</u>	*	۵	н	ν	۵	п п		£4	
4	F	ь	ڻ	<u></u> 5	ပ	U	Ę	υ	<		ပ
ڻ	<u> </u>	<u> </u>	υ	A	4	E-	ე	F		<u>. ೧</u>	<u>+</u>
	<u> </u>	w	z	Σ	Σ	Σ	Σ	Σ	Σ	Σ	S
AATGGGCCTC [G/A] GCCCGGGGA	ttggcaagag [c/t] tacaaggagt	TGGTCATGTT [C/T] ATCTACTCCA	TCAACATGTA [C/G] ATCGCCATCA	GTCAAGGGTG [A/G] CTGCGGCAAC	GTACATCGCC [A/G] TCATCCTGGA	GTTCATCTAC [1/6] CCATCTTCGG	TGGTGAAGAT [G/T] ACTTTGAGAT	TTCTGGCTGA [T/C] CTTCAGCATC	GGAGACAGAC [G/A] ACCAGAGCCA	TCTGCTTCTT [C/A] TGCAGCTATA	CAGGGCAGAC (T/G) GTGCGCCCAG
SCNSA, sodium channel, voltage- gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	A, sodium channel, voltage- ed, type IV, alpha polypeptide	sodium channel type IV, alpha	A, sodium channel, voltage- ed, type IV, alpha polypeptide	iA, sodium channel, voltage- ed, type IV, alpha polypeptide	<pre>IA, sodium channel, voltage- ed, type IV, alpha polypeptide</pre>	sodium c	sodium c	sodium channel	4A, sodium channel, voltage- ed, type IV, alpha polypeptide	sodium c	sodium C
SCN5A, gated, (long	SCN4A, gated,	SCN4A, gated,	SCN4A, gated,	SCN4A, gated,	SCN4A, gated,	SCN4A,	SCN4A,	SCN4A,	SCN4A,	SCN4A,	SCN4A,
6324	2252	4559	4856	4777	4863	4566	4923	3595	4203	4811	5555
HT2201	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202	HT2202
WIAF-13205	WIAF-12419	WIAF-12423	WIAF-12424	WIAF-12425	WIAF-12426	WIAF-12427	WIAF-1242B	WIAF-12446	WIAF-12447	WTAF-12495	WIAF-12497
76596	G1054u1	G1054u2	G1054u3	G1054u4	G1054u5	G1054116	G1054117	G1054u8	61054119	01054110	G1054u11

		-				_				
				SCN4A, sodium channel, voltage-						
G1054u12	WIAF-12498	HT2202	5480	ypeptide	CAGGGGACGC [C/T] GGACCCACTA	S	ان	E	4	4
G1059u1	WIAF-12432	HT33704	112	APLP1, amyloid beta (A4) 112 precursor-like protein 1	CGCTGCT[G/A]CCACTATTGC	S	U	æ	L1	.2
G1059u2	WIAF-12433	HT33704	140	APLP1, amyloid beta (A4)	TCTGCGCGCG[C/T]AGCCCGCCAT	z	Ü	Ę	o	*
G1059u3	WIAF-12435	HT33704	1344	APLP1, amyloid beta (A4) 1344 precursor-like protein 1	CAGCATGTGG [C/T] CGCCGTGGAT	Σ	ပ	Ę	Æ	>
G1059u4	WIAF-12457	HT33704	1687	APLP1, amyloid beta (A4)	ATGAGCGAAA [G/A]GTGAATGCGT	S	5	A	×	*
G1059u5	WIAF-12500	HT33704	976	APLP1, amyloid beta (A4) 976 precursor-like protein 1	GGTTCCTGAG [A/G] GCCAAGATGG	S	Æ	U	~	ĸ
G1059u6	WIAF-12501	HT33704	1786	APLP1, amyloid beta (A4) 1786 precursor-like protein 1	GTGAGGCTGT (A/G) TCGGGTCTGC	S	A	Ŋ	>	>
G1060u1	WIAF-12436	HT1418	1744	APLP2, amyloid beta (A4)	CCAAGAATT [C/G] AAGAGGAAAT	Σ	U	U	o	ω
G1060u2	WIAF-12467	HT1418	2213	APLP2, amyloid beta (A4) precursor-like protein 2	ATCAGCCTGG [T/G] GATGCTGAGG	Σ	E	ی	>	9
G1060u3	WIAF-12468	HT1418	2256	APLP2, amyloid beta (A4) 2256 precursor-like protein 2	GCCACGGGAT [C/T] GTGGAGGTTG	S	U	£-		
G1066al	WIAF-13195	HT3538	266	ССКВR, cholecystokinin B	receptor CTTTGGCACC [G/A] TCATCTGCAA	Σ	₀	A	>	ы
G1066a2	WIAF-13196	HT3538	607	ссквк, cholecystokinin В	receptor GGGTGTCTGT [G/A] AGTGTGTCCA	S	U	æ	>	>
G1066a3	WIAF-13206	HT3538	864	CCKBR, cholecystokinin B	receptor CTGCTGCTTC (T/A) GCTCTTGTTC	Σ	- €-	A	-3	_0
G1067u1	WIAF-12478	HT0830	684	KCNA1, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)	AAACGCTGTG (C/T) ATCATCTGGT	ω	U	£-1	U	U
G1067u2	WIAF-12479	HT0830	722	KCNA1, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with 722 myokymia)	GTGCGCTTCT (T/C) CGCCTGCCCC	Σ	Ę×	<u></u> υ	(L)	S

								ŀ	
G1067u3	WIAF-12480	HT0830	804	KCNA1, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with 804 myokymia)	ATTTCATCAC [C/G] CTGGGCACG	S	U	H ن	<u> </u>
G1067u4	WIAF-12509	HT0830	069	KCNA1, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with 690 myokymia)	TGTGCATCAT (C/T) TGGTTCTCCT	ν		H	н
G1068u1	WIAF-12493	HT0831	774	KCNA2, potassium voltage-gated channel, shaker-related subfamily,	TGAACATCAT [T/A] GACATTGTGG	S	E+	I A	н
G1070al	WIAF-13197	HT27728	522	KCNJ6, potassium inwardly- rectifying channel, subfamily J, 522 member 6	CACAGIGACC[T/C]GGCTCTTTT	Σ	F	<u>3</u>	~~
G1070a2	WIAF-13201	HT27728	1244	KCNJ6, potassium inwardly- rectifying channel, subfamily J,	CCCTGGAGGA [T/C] GGGTTCTACG	S	F	O U	
G1070a3	WIAF-13207	HT27728	707	KCNJ6, potassium inwardly- rectifying channel, subfamily J,	ATAAATGCCC[G/A]GAGGGAATTA	S	U	<u>م</u>	۵.
G1071u1	WIAF-12422	HT48672	1534	KCNJ3, potassium inwardly- rectifying channel, subfamily J,	TTCCGGCCAA [C/T] TCAGAAGAAA	S	U	Z F	z
G1073u1	WIAF-12461	HT4556	1127	KCNJI, potassium inwardly- rectifying channel, subfamily J, 1127 member 1	CACTGTGCCA [T/C] GTGCCTTTAT	Σ	£-	Σ U	<u></u>
G1074u1	WIAF-12462	HT27804	289	KCNAB2, potassium voltage-gated channel, shaker-related subfamily, 289 beta member 2	ACCTCTTCGA [T/C] ACAGCAGAAG	σ	£	Ω U	Ω
G1079u1	WIAF-12463	HT27383	1130	potassium channel, inwardly 1130 rectifing (GB:D50582)	ACCTGGCCGA [T/A] GAGATCCTGT	Σ	Ę-	ه 0	<u> </u>
G1079u2	WIAF-12464	HT27383	1192	potassium channel, inwardly 1192 rectifing (GB:D50582)	CGTTACTCTG [T/G] GGACTACTCC	Σ	E	>	<u></u>

							ľ	ľ	-
G1084a3	WIAF-13200	HT0383	2321	KCNB1, potassium voltage-gated channel, Shab-related subfamily, 2321 member 1	GAGTGTGCCA [C/A] GCTTTTGGAC	Σ	ن .	4	F- X
G1084a4	WIAF-13208	нтозвз	870	KCNB1, potassium voltage-gated channel, Shab-related subfamily, 870 member 1	ACAACCCCCA [G/A] CTGGCCCACG	w	U	A	0
G1088u1	WIAF-12516	HT0522	1503	KCNA5, potassium voltage-gated channel, shaker-related subfamily, 1503 member 5	TCCTGGGCAA [G/A] ACCTTGCAGG	S	U	A	× ×
G1088u2	, WIAF-12519	HT0522	1249	KCNAS, potassium voltage-gated channel, shaker-related subfamily,	CGAGCTGCTC [G/A] TGCGCTTCTT	Σ	U	A	Σ >
G1088u3	WIAF-12520	HT0522	973	KCNA5, potassium voltage-gated channel, shaker-related subfamily, 973 member 5	CTCTGGGTCC[G/A]CGCGGGCCAT	Σ	g	æ	4
G1088u4	WIAF-12521	HT0522	1013	KCNA5, potassium voltage-gated channel, shaker-related subfamily.	GTTATCCTCA [T/C] CTCCATCATC	Σ	F	U	H H
G1090u1	WIAF-12651	HT1497	1836	KCNA6, potassium voltage-gated channel, shaker-related subfamily,	CAACCAGCCA [G/A] TGGAGGAGGC	Σ	U	A	S S
G1091u1	WIAF-12714	HT0222	843	KCNA3, potassium voltage-gated channel, shaker-related subfamily, member 3	CATCATCTGG [T/C] TCTCCTTCGA	Σ	H	υ	ت. ا
G1094a1	WIAF-13218	HT27381	1280	KCNJ8, potassium inwardly- rectifying channel, subfamily J, 1280 member 8	GTGTATTCTG [T/a] GGATTACTCC	Σ	F	ro.	<u>ω</u>

KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha m
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member
KCNMAl, potassium large conductance calcium-activated channel, subfamily M, alpha m
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha m
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member
KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha m

							r	}	-	Γ
61095118	W1AF-12546	HT2629	K C C C C C C C C C C C C C C C C C C C	CNMA1, potassium large onductance calcium-activated hannel, subfamily M, alpha member	CTGGCAATGA (T/C) CAGATTGACA	S	F-	O U	Ω	
01120013	WIAF-12548	H72629	2949	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	AGTTTTGGA (C/T) CAAGACGATG	ဟ	U	D L		
G1095u10	WIAF-12549	HT2629	K C C C C C	CNMA1, potassium large onductance calcium-activated hannel, subfamily M, alpha member	TGCACGGGAT [G/A] TTACGTCAAC	Σ	ט	Σ	H	
G109601	WIAF-12547	1,26318	930	PRKM8, protein kinase mitogen- activated 8 (MAP kinase)	TGCTGGTAAT (A/T) GATGCATCTA	S	A	E E	H	
Lingbott	WIAE-12515	9711	2650	DAG1, dystroglycan 1 (dystrophin-	TCTACCTGCA [C/T] ACAGTCATTC	ဟ	Ú	F	<u> </u>	 -
1,1011	WTAF-10385	HT27392	230	meiosis-specific recA homolog,	CAAAGGTATA [C/T] AGATGACAAC	z	υ	F	•	
2,101.15	WTAF-10397	HT27392	1050	meiosis-specific recA homolog,	CCTGAAAATG [A/G] AGCCACCTTC	Σ	Æ	U	<u>ප</u>	
2110013	WTAF-10399	HT27392	674	meiosis-specific recA homolog, 674 HsLim15	TGAACATCAG [A/G] TGGAGCTACT	Σ	A	0	> Σ	
Chorin	WTAF-12647	HT5073	5781	MAP1B, microtubule-associated protein 1B	actatgagaa [g/a] atagagagaa	S	U	A	× ×	
2110602	WIAF-12648	HT5073	5916	MAP1B, microtubule-associated protein 1B	CTGAAGAGGG [C/T] GGGTACTCAT	S	U	Ę-	ڻ ن	
G1106n3	WIAF-12650	HT5073	1837	MAPIB, microtubule-associated protein 1B	AGACAAGCCA [G/A] TAAAAACAGA	Σ	U	A	<u>н</u> >	
2110644	WTAF-12653	HT5073	2476	MAP1B, microtubule-associated 2476 protein 1B	CACCACAGCA [G/A] CTGTCATGGC	Σ	ပ	A	A	
31106115	WIAF-12656	HT5073	3913	MAP1B, microtubule-associated 3913 protein 1B	GCCCAATGAG (A/G) TTAAAGTCTC	Σ	Æ	U) I	
G1106u6	WIAF-12667	HT5073	559	MAP1B, microtubule-associated 559 protein 1B	GATTTTCACC [G/A] ATCAAGAGAT	Σ	U		2	
2007	20024 10111									

							Ì			
G1106u7	WIAF-12668	HT5073	570	MAPIB, microtubule-associated 570 protein 1B	ATCAAGAGAT [C/T] GGGGAGTTAC	S	Ü	F	1	
G1106u8	WIAF-12669	HT5073	6175	MAP1B, microtubule-associated protein 1B	TACTTCCACA (T/C)ACTGTTACGA	Σ	F	U	<u>н</u> Х	
G1106u9	WIAF-12670	HT5073	1215	MAP1B, microtubule-associated	TCACTCTCCA [G/C] TACCTAAACA	Σ	U	ٽ ن	H 0	
G1106u10	WIAF-12672	HT5073	1821	MAP1B, microtubule-associated	aggtaatggt [g/a] aaaaaagaca		U	A	>	
G1106u11	WIAF-12673	HT5073	2727	MAP1B, microtubule-associated protein 1B	GTCCTGCCGA [G/T] TCCCCTGATG	Σ	b	Ŧ	<u> </u>	
01106u12	WTAF-12674	HT5073	2739	MAP1B, microtubule-associated protein 1B	CCCCTGATGA [G/A] GGAATCACTA	s	U	- ≪	- G	ш
G1106n13	WIAF-12676	HT5073	3643	MAP1B, microtubule-associated 3643 protein 1B	AGATGCCACT [G/A] ATGGCAAGGA	Σ	U	۸	2 D	
G1106u14	WIAF-12677	HT5073	3609	MAP1B, microtubule-associated 3609 protein 1B	CACCGCTCAA [C/T] GGATTTTCTG	S	U	F-	z	
G1106u15	WIAF-12682	HT5073	4752	MAPIB, microtubule-associated protein 1B	TTCCAGAGCC [A/T] ACAACAGATG	S	æ	E-	<u>a</u>	۵
G1110u1	WIAF-12517	HT1096	1527	1527 myelin associated glycoprotein	GCGGCCTCGT [G/C] CTCACCAGCA	S	U	U	>	>
G1110u2	WIAF-12518	HT1096	1678	myelin associated glycoprotein	reresecece (s/r) resresectr	Σ	IJ	H	>	ı
G1110u3	WIAF-12522	HT1096	1271	1271 myelin associated glycoprotein	GCCGTGTCAC [C/T] CGAGGATGAT	Σ	U	۴		11
G1113u1	WIAF-12523	HT2242	353	353 myelin transcription factor 1	AATTCCGATC [G/T] GATCCTCAGG	Σ	ပ	F	<u>~</u>	ı
G1116a1	WIAF-13217	HT28451	417	myelin oligodendrocyte glycoprotein (MOG)	CAAGCTTATC [G/A] AGACCCTCTC	w	ပ	A	S	S
G1116a2	WIAF-13219	HT28451	913	myelin oligodendrocyte 913 glycoprotein (MOG)	GCAGATCACT [C/G] TTGGCCTCGT	Σ	U	ß	-	>
G1116a3	WTAF-13220	HT28451	922	myelin oligodendrocyte glycoprotein (MOG)	TCTTGGCCTC [G/A] TCTTCCTCTG	Σ	_o	4		н
G1120u1	WIAF-12525	HT3695	1200	1200 neurofilament, subunit H	TAGAGATAGC [T/C] GCTTACAGAA	S	1	٥	V V	A
G1123m1	WIAF-12542	HT2569	2269	OMG, oligodendrocyte myelin 2269 glycoprotein	CAGCTGCAAC [T/C] CTAACTATTC	S	Ę÷	υ	E	H
G1126u1	WIAF-12526	HT28354	626	PSEN2, presenilin 2 (Alzheimer 626 disease 4)	GAGCGAAGCA [T/C] GTGATCATGC	S	Ţ	U	#	H
G1126u2	WIAF-12527	HT28354	494	PSEN2, presenilin 2 (Alzheimer 494 disease 4)	ATGGAGAA [T/C]ACTGCCCAGT	<u></u>	Ŀ	U	z	z

				PSEN2, presenilin 2 (Alzheimer		_				
G1126u3	WIAF-12528	HT28354	434	434 disease 4)	TAATGTCGGC [C/T] GAGAGCCCCA	S	U	F	Æ	A
G1126u4	WIAF-12543	HT28354	955	PSEN2, presenilin 2 (Alzheimer 550 disease 4)	GACCCTGACC [G/A] CTATGTCTGT	Σ	U	Ø	α	*
G117u1	WIAF-10391	HT27765	156	GTBP, G/T mismatch-binding 156 protein	ACTTCTCACC (A/G) GGAGATTTGG	တ	4	ပ	G.	ь
G117u2	WIAF-10392	HT27765	420	GTBP, G/T mismatch-binding 420 protein	AACGTGCAGA [T/C] GAAGCCTTAA	S	٤	U	Δ	۵
G117u3	WIAF-10407	HT27765	939	GTBP, G/T mismatch-binding 939 protein	CCCACGTTAG [T/C] GGAGGTGGTG	S	E٠	U	S	s
G117u4	WIAF-10411	HT27765	1622	GTBP, G/T mismatch-binding 1622 protein	CATTGTTCGA [G/A] ATTTAGGACT	Σ	<u>.</u>	A	œ	. ×
G117u5	WIAF-10412	HT27765	2405	GTBP, G/T mismatch-binding 2405 protein	GACAGCAGGG [C/T] TATAATGTAT	Σ	ပ	F	đ	>
G117u6	WIAF-10413	HT27765	2387	GTBP, G/T mismatch-binding 2387 protein	AAGAGTCAGA [A/T] CCACCCAGAC	Σ	A	F	z	н
G125u1	WIAF-10371	HT28632	1999	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	CAGTAATTTT [C/T] CTCATCTTGT	Σ	UU	£-	O.	တ
G125u2	WIAF-10372	HT28632	2631	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	taatgaatga [c/a] attgcagata	Σ	U	4	Ω	வ
G125u3	WIAF-10373	HT28632	3084	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	CAATGGAAGA [T/G] GTTCTTGAAC	Σ	€	ც	۵	19
G125u5	WIAF-10375	HT28632	4767	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	CACTTATACC [C/T] CTTGTGTATG	<u></u>	U	۲	ο,	م
G125u6	WIAF-10383	HT28632	8713	ATM, ataxia telangiectasia mutated (includes complementation 8713 groups A, C and D)	ATTCTTGGAT [C/T] CAGCTATTTG	Σ	U	Ę-	م	

				1		— T	T	T	
>	~ ~	>		Δ.	z	U		<	>
بد		>		<u> </u>		v	<u></u>	<u> </u>	
U	ဗ		U	U	E-	· · · · · ·	4	U	F
U	A	U	E-			Ú	ပ	4	
Σ	Σ	S	S	Ŋ	Σ	Σ	v v	Σ	Σ
GACTTTGGCA [C/G] TGACCACCAG	ACTACTGCTC [A/G] GACCAATACT	TTGAAGGTGT (C/T) TTCAGAAGAT	CCAAACACCT [1/C] GTAGAACTCT	TTCAGGAGCC (T/C) ATCATGGCTC	TATATATTAA [G/T] TGGCAGAAAC	CATTCAGATT [C/G] CAAACAAGGA	TTCCACATCT [G/A]GTGATTAGAA	GAGAAATATG (A/C) AGTCTTCATG	aggagaaag [c/t] titaaaaaat
ATM, ataxia telangiectasia mutated (includes complementation 1825 groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation 2924 groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation 6855 groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATM, ataxia telangiectasia mutated (includes complementation 8642 groups A, C and D)	3 5
1825	2924	8967	6954	6855	6801	335	3966	8642	ML (C 535 2)
HT28632	HT28632	HT28632	HT28632	HT28632	HT28632	HT28632	HT28632	HT28632	HT3337
WIAF-10396	WIAF-10398	WIAF-10405	WIAF-10408	WIAF-10409	WIAF-10410	WIAF-10421	WIAF-11607	05 (5 (5 7 3 4 7 3 0)	88888
7.35 ti 3		G125u9	G125u10	G125u11	G125u12	G125u13	6125114	A Leaf Co.	

G136u2	WIAF-10389	HT3337	MI (c	MLH1, muth (E. coli) homolog 1 (colon cancer, nonpolyposis type 2)	ttcaaaatga [a/g] tggttacata	Σ	4	U	2	S
G144n1	WIAF-11638	HT3625	1129	FOS, v-fos FBJ murine osteosarcoma viral oncogene	CCTGTGCACT [C/T] CGGTGGTCAC	Σ	υ.	£-	۵.	s
G1461u1	WIAF-12562	HT0329	684	684 pRB-binding protein	TTGCCAAGAA [G/A] TCCAAGAACC	S	<u>-</u>	A	×	×
G1466u1	WIAF-12571	HT27849	2128 API2,	API2, apoptosis inhibitor 2	ATGATCCATG [G/C] GTAGAACATG	Σ	ن	υ	3	U
G1468u1	WIAF-12563	HT4986	1928	apoptosis inhibitor, neuronal	CCACCAGACC [A/T] GACGAGGGGC	ď	A	Ę+	<u>a</u>	D,
G1468u2	WIAF-12564	HT4986	3057	apoptosis inhibitor, neuronal	TTTGCAATTC [C/G] TTCAAGGGAG	Σ	U	U	۱.	>
G1472u1	WIAF-12565	HT28478	242	BAKI, BCL2-antagonist/killer 1	GGCAGGAGTG [C/T] GGAGAGCCTG	ဟ	U	H	U	U
G1472u2	WIAF-12572	HT28478	509	509 BAK1, BCL2-antagonist/killer l	TGCAGCCCAC [G/A] GCAGAGAATG	S	U	A	F	T
G1473u1	WIAF-12568	HT28606	394	CASP6, caspase 6, apoptosis- 394 related cysteine protease	GGTGTCAACT [G/C] TTAGCCACGC	Σ	Ŋ	U	>	ı
G1473u2	WIAF-12576	HT28606	411	CASP6, caspase 6, apoptosis-	ACGCAGATGC [C/T]GATTGCTTTG	Ŋ	υ	F	A	A
G1479u1	WIAF-12550	7.7090Y	711	ATR, ataxia telangiectasia and Rad3 related	ACTITATIDA [T/C] GGTTCTTACT	Σ	. <u>F</u>	U	Σ	Ę
G1479u2	WIAF-12551	7,090Y	4303	ATR, ataxia telangiectasia and Rad3 related	TTGCGTATGC[T/C]GATAATAGCC	S	Ę-	ن	A	4
G1479u3	WIAF-12552	77090Y	1894	ATR, ataxia telangiectasia and Rad3 related	ATTCTGATGA[T/C]GGCTGTTTAA	o	F	U	Ω	
G1479u4	WIAF-12553	7,090Y	1855	ATR, ataxia telangiectasia and Rad3 related	ATTATGTGG [T/A] ATGCTCTCAC	w	Ħ	A	<u>o</u>	. ن
G1479u5	WIAF-12558	Y09077	ATR, 5287 Rad3	ATR, ataxia telangiectasia and Rad3 related	TCATTCATTA[T/C]CATGGTGTAG	S	E	U	 >+	٨.

G1479u6	WIAF-12559	Y09077	5539	ATR, 5539 Rad3	ataxia telangiectasia and related	CAGCTTTTTA (T/C)GACTCACTGA	S	F	U	>	>
G1479u7	WIAF-12569	70907	1540	ATR, Rad3	ataxia telangiectasia and related	atcctgttat [t/c] gagatgttag		F	J	н	ы
6		7,5000	1030	ATR,	ataxia telangiectasia and	ATTTAATGGA (A/G) GATCCAGACA	S	4	g	ம	ы
G147908	WIAF-125/0	HT27870	3176 BLM,	1	syndrome	AAAATATAAC [G/A] GAATGCAGGA	s		A	Ŀ	Т
G1482u2	WIAF-12561	HT27870	3605 BLM,	BLM,	Bloom syndrome	GAAATAAAGC (C/A) CAAACTGTAC	S		A	4	A
G1482u3	WIAF-12573	HT27870	2677 BLM,	ВГМ,	Bloom syndrome	TATGTATTAC (C/T) GAAAAAGCCT	Σ	U	⊢	۵	رر
G1483ul	WIAF-12597	HT1470	1910	MYBL2, 1910 viral	v-myb avian myeloblastosis oncogene homolog-like 2	ggatgaggat [g/a] tgaagctgat	Σ	₀	A	>	Σ
G1483u2	WIAF-12610	HT1470	244	MYBL2, 244 viral	v-myb avian myeloblastosis oncogene homolog-like 2	atgaggagga [c/t] gagcagctga	S	U	£	۵	۵
G1483u3	WIAF-12611	HT1470	1406	MYBL2, 1406 viral	v-myb avian myeloblastosis oncogene homolog-like 2	CACTGAGAAT (A/G) GCACCAGTCT	Σ	4	U	S	ပ
G1485u1	WIAF-12581	HT1432	1941	BCR,	gion	tggagatgag [a/g] aaatgggtcc	တ	Æ	U	<u>«</u>	£.
G1485u2	WIAF-12582	HT1432	3144	BCR,	breakpoint cluster region	TGACCATCAA [T/C] AAGGAAGATG	s	f٠	U	z	z
G1485u3	WIAF-12583	HT1432	3777	BCR,	breakpoint cluster region	ataacaagga [t/c] gtgtcggtga	S	Ę-	U	Ω	Ω
G1485u4	WIAF-12603	HT1432	2831	вск,	breakpoint cluster region	CAGATCAAGA [G/A] TGACATCCAG	Σ	ပ	A	S	Z
G1485u5	WIAF-12608	HT1432	4217	4217 BCR,	breakpoint cluster region	ATCCCTGCCC[C/T]GGACAGCAAG	Σ	٥	Ŀ	a	I
G1486ul	WIAF-12578	HT33770	1909	BRCA2, 1909 onset	breast cancer 2, early	ATTGATAATG [G/A] AAGCTGGCCA	Σ	ပ	Æ	U	ω
G1486u2	WIAF-12579	HT33770	3623	BRCA2, 3623 onset	breast cancer 2, early	agtttagaaa [a/g] ccaagctaca	S	4	U	×	×
G1486u3	WIAF-12586	HT33770	1341	BRCA2, 1341 onset	breast cancer 2, early	aaatgtagca [a/c]atcagaagcc	Σ	A	U	2	H
G1486u4	WIAF-12594	HT33770	446	BRCA2,	breast cancer 2, early	CTTATAATCA [G/A] CTGGCTTCAA	<u></u>	ပ		0	ø
. 500. 70											

				BRCA2, breast cancer 2, early	つるのののではない。(コノエ)をはまつのでんののか	Σ	E	ر		ر. در
G1486u5	WIAF-12598	HT33770	3013	3013 onsec	ארכאופפווו (ו/כ) אואופפאפער	-		,	,	
G1486u6	WIAF-12599	HT33770	3187	BRCA2, breast cancer 2, early onset	Gaaaaaata [a/t] tgattacatg	Σ	Ą	Ţ	z	I
61486117	WIAF-12604	HT33770	4971	BRCA2, breast cancer 2, early onset	AGCATGTGAG [A/C] CCATTGAGAT	Σ	Æ	U	Ę-	ď
				BRCA2, breast cancer 2, early		-				
G1486u8	WIAF-12607	HT33770	4034	onset	ATGATTCTGT [C/T] GTTTCAATGT	S	ی	F	>	>
				BRCA1, breast cancer 1, early		:			-	
G1487ul	WIAF-12584	HT27632	2536	2536 onset	AGTCAGTGTG [C/G] AGCATTTGAA	Ε	ار	و	τ .	,
				BRCAl, breast cancer 1, early						ſ
G1487u2	WIAF-12587	HT27632	4697	onset	CATCTCAAGA [G/C] GAGCTCATTA	Σ	اق	ر		_
				BRCA1, breast cancer 1, early					;	
G1487u3	WIAF-12595	HT27632	469	469 onset	TCTCCTGAAC [A/G] TCTAAAAGAT	Σ	A	S	Ŧ	œ
G1487u4	WIAF-12600	HT27632	3667	BRCAl, breast cancer 1, early 3667 onset	AGCGTCCAGA [A/G] AGGAGAGCTT	Σ	4	U	~	œ
				BRCAl, breast cancer 1, early						
G1487u5	WIAF-12601	HT27632	3537	3537 onset	TATGGGAAGT [A/G]GTCATGCATC	Σ	A	ပ	S	
				BRCA1, breast cancer 1, early						
G1487u6	WIAF-12602	HT27632	4956	4956 onset	ATCTGCCCAG [A/G]GTCCAGCTGC	Σ	4	S	S	ی
			,	BRCA1, breast cancer 1, early						(
G1487u7	WIAF-12605	HT27632	2090	2090 onset	AGTACAACCA [A/G]ATGCCAGTCA	S	∢	9	2	2
		9	ć	BRCA1, breast cancer 1, early	ないないしないよびに (ペ/の) それそいないのよう	U		4	<u>×</u>	
G1487u8	WIAF-12614	HT27632	233	onset	וכורכאכאלא (פ/א) ופופארכאכא	2	,			
G1492u1	WIAF-12585	HT3506	3912	cell death-associated kinase	TCCAGGTCCG [T/C] GGCCTGGAGA	S	E	U	œ	æ
G1492u2	 WIAF-12593	HT3506	4352	cell death-associated kinase	TACAACACCA [A/G] TAACGGGGCT	Σ	A	ပ	_ z	Ŋ
G1492u3	WIAF-12606	HT3506	2127	2127 cell death-associated kinase	GCAATTTGGA [C/T] ATCTCCAACA	<u> </u>	U	F	۵	۵
61492114	WTAF-12612	HT3506	1605	1605 cell death-associated kinase	TGAAATTTCT [C/T] AGTGAGAACA	Ŋ	<u>ں</u>	E	د,	د,
G1494u1	WIAF-12589	HT28507	366		TTCACCACAC (T/C) TAAGGAGAAC	Σ	<u>.</u>	U	.1	p.
0149511	W128-12580	HT27803	759	CSE1L, chromosome segregation 1	TTTCTTCCCT [G/C] ATCCTGATCT	ဟ	<u></u>	Ų	ب.	ı
				MCC, mutated in colorectal)	Σ		ر	-	د.
G1501u1	WIAF-13502	HT1949	1181	1181 cancers	ראפראיופאר (א/ כ) וורכנאונפר	=	<u>.</u>	2		

				MCC, mutated in colorectal						
G1501u2	WIAF-13503	HT1949	1753	1753 cancers	CAGCTGAGAA [C/T] GCTGCCAAGG	S	U	L	z	z
G1501113	WIAF-13504	HT1949	2344	MCC, mutated in colorectal	TGTCCCTAGC [T/C] GAACTCAGGA	S	Ţ.	U	A	A
910010	WIAF-13521	HT1949	445	MCC, mutated in colorectal .	AGCGAACGAC [G/A] CTTCGCTATG	Ŋ	v	Æ	Т	Į.
5110512	WIAF-13522	HT1949	1504	MCC, mutated in colorectal cancers	AAAGCAATGC [T/C] GAGAGGATGA	S	Ę.	U	Æ	A
G1501u6	WIAF-13527	HT1949	2511	MCC, mutated in colorectal	TICGIGAAIG (A/G) ICIAAAGCGG	Σ	A	ပ	۵	U
G1502u1	WIAF-12633	HT1547	870	CCND1, cyclin D1 (PRAD1: 870 parathyroid adenomatosis 1)	AGTGTGACCC [A/G] GACTGCCTCC	S	Æ	U	a,	G.
G1503u1	WIAF-13741	U37022	1151	CDK4, cyclin-dependent kinase 4	CATGCCAATT[G/A]CATCGTTCAC	Σ	U	4	U	>-
G1503u2	WIAF-13742	U37022	1410	CDK4, cyclin-dependent kinase 4	CTGAAGCCGA [C/T] CAGTTGGGCA	တ	U	F	Ω	Ω
G1503u3	WIAF-13743	U37022	1328	1328 CDK4, cyclin-dependent kinase 4	TATGCAACAC [C/T] TGTGGACATG	Σ	U	£.	a	رر
G1503u4	WIAF-13780	U37022	1194	1194 CDK4, cyclin-dependent kinase 4	TTCTGGTGAC [A/G] AGTGGTGGAA	တ	A	ט	[+	Ę-
G1503u5	WIAF-13781	U37022	1443	1443 CDK4, cyclin-dependent kinase 4	TGATTGGGCT [G/A] CCTCCAGAGG	S	IJ	A	٦	L,
61503116	WIAF-13787	U37022	1633	1633 CDK4, cyclin-dependent kinase 4	CTCTTATCTA [C/T] ATAAGGATGA	Σ	U	£-	π.	¥
		201173	408 c	ERBB3, v-erb-b2 avian erythroblastic leukemia viral concorne homolog 3	CAGACCTCAG [T/C] GCCTCTCTGG	S	F	υ	S	S
6151/01	MIAF-12010	HT3854	1673		GTGAGTGATG (A/C)AGGTTTGAAG	Σ	Ą	U	<u>ы</u>	A
1075101 C15200	MT&F-11629	HT3854	1683	HSPAIL, heat shock 70kD protein-	AAGGTTTGAA [G/A] GGCAAGATTA	S		A	*	×
202010	00911-B4TW	HT3854	1478	HSPAIL, heat shock 70kD protein-	GTCACAGCCA[C/T]GGACAAGAGC	Σ	U	Ę	Ę-	Σ
5155	MINE-11610	HT3854	1443	HSPAIL, heat shock 70kD protein- like 1	TGACGTTTGA [C/T] ATTGATGCCA	S	U	H	Ω	_0
G15204	WIAF-12162	HT1175	2211	DNA excision repair protein ERCC2, 5' end	TGACCGTGGA [C/T] GAGGGTGTCC	<u>s</u>	U	F		
4124010										

		-							H	Γ
G1520u2	WIAF-12166	HT1175	546	DNA excision tepair process secus.	CCCACTGCCG [A/C] TTCTATGAGG	S	A	U	R R	
G1527u1	WIAF-12168	HT0086	GST 577 M2	GSTM2, glutathione S-transferase M2 (muscle)	TCATCTCCCG [A/C] TTTGAGGGCT	Ŋ	A	<u>«</u>	~	
61527112	WIAF-12169	HT0086	644	GSTM2, glutathione S-transferase 644 M2 (muscle)	ACCTGTGTTC (A/T) CAAAGATGGC	Σ	æ	+ +	<u>σ</u>	
G1527u3	WIAF-12171	HT0086	100	GSTM2, glutathione S-transferase	ACTCAAGCTA [C/T] GAGGAAAAGA	ဟ	U	4	>	
G1527u4	WIAF-12172	HT0086	41	GSTM2, glutathione S-transferase 41 M2 (muscle)	GGGGTACTGG [A/G] ACATCCGCGG	Σ	4	2		
G1527u5	WIAF-12173	HT0086	GST 215 M2	GSTM2, glutathione S-transferase M2 (muscle)	GATTGATGGG [A/G] CTCACAAGAT	Σ	A	ט	T	
G1527u6	WIAF-12194	HT0086	GST 238 M2	GSTM2, glutathione S-transferase M2 (muscle)	CCCAGAGCAA [T/C] GCCATCCTGC	ဟ	۲	U	2	
G1528u1	WIAF-11950	HT1811	529	GSTM3, glutathione S-transferase 529 M3 (brain)	GTATATTTGA [C/G] CCCAAGTGCC	Σ	U	U	D B	
G1528u2	WIAF-11951	HT1811	674	GSTM3, glutathione S-transferase 674 M3 (brain)	CAACAAGCCT [G/A] TATGCTGAGC	Σ	U	A))	
G1528u3	WIAF-11989	HT1811	572	GSTM3, glutathione S-transferase 572 M3 (brain)	GGCTTTCATG (T/G) GCCGTTTTGA	Σ	Ŀ	U	ပ ပ	
G1528u4	WIAF-13470	HT1811	240	GSTM3, glutathione S-transferase 240 M3 (brain)	CAGAGCAATG [C/A] CATCTTGCGC	Σ	U	A	۵	
G1529u1	WIAF-14146	HT2006	GS 797 M4	GSTM4, glutathione S-transferase M4	TGGACGCCTT [C/T] CCAAATCTGA	S	U	F	î.	
G153u1	WIAF-12163	HT3856	1212	1212 HSPAIB, heat shock 70kD protein 1	shock 70kD protein 1 TGGGCTGGA[G/A]ACGGCCGGAG	ο	U	4	ω ω	
G153u2	WIAF-12182	HT3856	676	676 HSPAIB, heat shock 70kD protein 1	GGCCGGGGAC [A/G] CCCACCTGGG	Σ	A	ڻ	4	
G153u3	WIAF-12183	HT3856	1695	695 HSPAIB, heat shock 70kD protein 1	TCAGCGAGGC [C/G] GACAAGAAGA	S	U	U	4	
G153u4	WIAF-12189	HT3856	330	330 HSPAIB, heat shock 70kD protein 1	ACAAGGGGA [G/C] ACCAAGGCAT	Σ	U	U	<u>о</u> з	
G153u5	WIAF-12190	HT3856	1053	1053 HSPAIB, heat shock 70kD protein 1	AGCTGCTGCA [A/G] GACTTCTTCA	S	Æ	U	Ö	0
G1530u1	WIAF-11964	HT3010	673	GSTM5, glutathione S-transferase M5	ATTCCTCCGA [G/A] GTCTTTTGTT	Σ	U	A	57	S
G1530u2	WIAF-11995	HT3010	GS 593 MS	GSTM5, glutathione S-transferase M5	GACGCCTTCC [T/C] AAACTTGAAG	Σ	<u> </u>	U	<u>.</u>	Д

				CCTMC Alutathione S-	S-transferase						
6153043	WIAF-13473	HT3010	693 MS			TTGGAAAGTC [A/G] GCTACATGGA	S	A	U	S	S
	O D V C L CO WITH	UT 27460	543	GSTT2, glutathione S-	S-transferase	CTCTCGGCTA [C/T] GAACTGTTTG	တ	U	4	>-	٦
rnsssta	00000		617	, glutathione	S-transferase	GGACTGCCAT [G/A] GACCAGGCCC	Σ	ტ	A	Σ	H
G153302	WIAF-13460	094/214		, glutathione	S-transferase	cacaternes (s/a) secretar	Σ	9	æ	U	ш
G1533u3	WIAF-13461	HT27460	868		S-transferase						
G1533u4	WIAF-13462	HT27460	363	2		TGTTGGGGCC (A/C) CTCATTGGGG	S	A	Ü	۵	۵
61513115	WIAF-13463	HT27460	385	GSTT2, glutathione S- theta 2	S-transferase	CCAGGTGCCC [G/A] AGGAGAAGGT	Σ	ဗ	A	ы	×
61515111	WIAF-11952	HT0436	517	517 HCK, hemopoietic cell	kinase	CCGCGTTGAC [T/C] CTCTGGAGAC	Σ	£-	U	S	ď
G1535u2	WIAF-12013	HT0436	783	83 HCK, hemopoietic cell	kinase	TGGACCACTA [C/T] AAGAAGGGGA	S	ပ	F	>	7-
G1535u3	WIAF-13464	HT0436	357	HCK, hemopoietic cell	kinase	TCATCGTGGT [T/C] GCCCTGTATG	<u>s</u>	Ę-	U	>	>
G1535u4	WIAF-13465	HT0436	387	387 HCK, hemopoietic cell	l kinase	CCATTCACCA [C/T] GAAGACCTCA	S	υ	£-	Ŧ	Ξ
G1535u5	WIAF-13466	HT0436	471	471 HCK, hemopoietic cell	l kinase	CCCTGGCCAC [C/G] CGGAAGGAGG	S	Ü	ပ	F	۲
31535116	WTAF-13467	HT0436	240	240 HCK, hemopoietic cell	l kinase	CCAGCGCCAG [C/T] CCACACTGTC	ဟ	U	E	S	S
G1535u7	WIAF-13468	HT0436	394	}	l kinase	CCACGAAGAC [C/T] TCAGCTTCCA	Σ	υ	F	د	(ta
1,1,0,10	WT & E - 12020	1104045	1514	MSH2, mutS (E. (colon cancer, 1)	coli) homolog 2 nonpolyposis type	GTGAATTAAG (A/G) GAAATAATGA			ပ	~	œ
20,500	MIRE-12044	1104045	MS (0)	MSH2, mutS (E. (colon cancer, 1)	coli) homolog 2 nonpolyposis type	GACTGTGTGA (A/T) TTCCCTGATA	Σ	4	F	(a)	۵
	G C C C K LT	2404011	1452	MSH2, muts (E. (colon cancer, n	coli) homolog 2 nonpolyposis type	agatatggat [c/t] aggtggaaaa	z	υ	۲	٥	*
G1537u3.	WIAF-12076	U04045	MS (C (C 938 1)	MSH2, mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)	homolog 2 yposis type	GACAGTTTGA [A/T] CTGACTACTT	Σ	4	<u> </u>	ы	Ω

									l	ſ
				MSH2, mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type						
G1537u5	WIAF-12077	U04045	1878	1)	TCAGCTAGAT [G/A] CTGTTGTCAG	Σ	G	A	4 F	
G1543u1	WIAF-13856	300119	553	MOS, v-mos Moloney murine sarcoma viral oncogene homolog	GAGTTTCTGG [G/T] CTGAGCTCAA	Σ	ຶ່		A S	
G1543u2	WIAF-13857	300119	621	621 viral oncogene homolog	GCACGCGCAC [G/A] CCCGCAGGGT	S	5	A	-	T
G1544u1	WIAF-12018	US9464	3821	PTCH, patched (Drosophila) 3821 homolog	CATCCCGAAT [C/T] CAGGCATCAC	Σ	U	F	S.	
				PTCH, patched (Drosophila)						
G1544u2	WIAF-12019	US9464	3618	homolog	GCGTGGTCCG [C/T] TTCGCCATGC	S	U	<u>-</u>	ж Ж	
G1544u3	WIAF-12027	U59464	1761	PTCH, patched (Drosophila)	ATTTTGCCAT [G/T] GTTCTGCTCA	Σ	U	F	Σ	
G1544u4	WIAF-12029	US 9464	4074	PTCH, patched (Drosophila)	CTGCCATGGG [C/T] AGCTCCGTGC	S	C	1	<u></u>	
61544115	WIRE-12043	1159464	3845	PTCH, patched (Drosophila)	CCCTCGAACC [C/T] GAGACAGCAG	Σ	Ú	٠	<u>1</u>	
			,	PTCH, patched (Drosophila)		2	,	E	>	
G1544u6	WIAF-12056	U59464	1433	1433 nomotog	רופרופפוופ (ר/ו) ארופוראפופ			1	7	I
G1544u7	WIAF-12058	U59464	3298	PTCH, patched (Drosophila)	CACCGTTCAC [G/C] TTGCTTTGGC	Σ	G	U	> 1	
61644118	WIBE-12062	115 94 64	3986	PTCH, patched (Drosophila)	TCTACTGAAG [G/A] GCATTCTGGC	Σ	صـــــــ	<u> </u>	<u>ы</u>	
27.	200			DATE TO						Γ
G1544u9	WIAF-13489	US9464	1665	parched og	CCATCAGCAA (T/C) GTCACAGCCT	ω	۲	J	z	
0 1 1 1 1	00700	7770311	2306	PTCH, patched (Drosophila)	ABATACTTO (C/T) TTTTACABC	Σ	· ·		C)	
O TREE COLD	2000			PTCH. patched (Drosophila)						
G1544u11	WIAF-13491	U59464	2199	8	GGACACTCTC [A/G] TCTTTTGCTG	S	A	g	S	
G1544u12	WIAF-13492	U59464	2222	PTCH, patched (Drosophila) homolog	AAGCACTATG[C/T]TCCTTCCTC	Σ	U	F-	A >	
21.44.12	MINE . 13600	115 0 4 5 4	1686	PTCH, patched (Drosophila)	TOTTONIGGO (C/T) GOGTTAATOC				<	
CTD##CTD	005CT - 327W	1000				Γ		T	Τ	
G1545u1	WIAF-12032	HT0473	1835	RAGI, recombination activating gene 1	GGACATGGAA [G/A] AAGACATCTT	Σ	U	A	Ω ×	
G1545u2	WIAF-12035	HT0473	2519	RAG1, recombination activating 2519 gene 1	TGACATTGGC (A/G) ATGCAGCTGA	Σ	Ø.	G	N	

•		600	2006	RAG1,	recombination activating	CGGAAAATGA [A/G] TGCCAGGCAG	Σ	A	ပ	z	Ġ
G1545u3	WIAF-12046	R104/3	2100	7	T						
61545114	WIAF-12047	HT0473	3146	RAG1, gene 1	recombination activating	TCATAATGCA [T/C] TAAAAACCTC	S	[-	U	J	.1
	MTAE-12075	HT0473	2513	RAG1, qene 1	recombination activating	CCACTGTGAC (A/T) TTGGCAATGC	Σ	4	F	н	[3 ₄
cncacto	2021			RAG1,	recombination activating		;		8		
G1545u6	WIAF-13484	HT0473	1322	gene 1		GTCGCTGACT [C/T] GGAGAGCTCA	Σ	ن		¥	3
	WIRE, 134 94	HT0473	2571	RAG1, qene l	recombination activating	GAAGTGTATA [A/G] GAATCCCAAT	Σ	A	ט	_×	æ
015#C15	ECECT SUTH			RAG1,	recombination activating					(
G1545u8	WIAF-13498	HT0473	1018	gene 1		TTCTGGCTGA [C/A] CCTGTGGAGA	Σ	ပ	α l		
				RAG1,	recombination activating	ATCTTTACCT [G/C] AAGATGAAAC	S	ပ	Ü		
G1545u9	WIAF-13499	HT04/3	70/7	חבווב ד			-			_	
G1548111	WIAF-12015	HT4999	133	IF127, induci	IFI27, interferon, alpha- inducible protein 27	CTCTGCCGTA[G/A]TTTTGCCCCT	Σ	G	A	>	н
	00000	000	280	IFI27,	IFI27, interferon, alpha-	ATCCTGGGCT [C/T] CATTGGGTCT	Σ	U	F	S	(L,
G154802	WIAF - 13402	n14555						_			
G1548u3	WIAF-13483	HT4999	135	IFI27, ir inducible	interferon, alpha- ole protein 27	CTGCCGTAGT [T/C] TTGCCCCTGG	S	F	U	>	Δ
G155111	WIAF-11634	HT3962	166	CHC1,	chromosome condensation 1	AGCTGGATGT [G/A] CCTGTGGTAA	S	<u> </u>	A	>	>
	SCALL SATIN	2964	1221	CHC1	chromosome condensation 1	CGGCTTCGGC [C/T] TCTCCAACTA	Σ	ပ	[+	,ı	Ŀ
200015	CCOTT JATA	2000							E	:	=
G155u3	WIAF-11636	HT3962	1192	1192 CHC1,	chromosome condensation 1	GCCGGGGCCA [C/T] GTGAGATTCC	S	راد		=	
G155u4	WIAF-11637	HT3962	1267	1267 CHC1,	chromosome condensation 1	TGTACGGCTT [C/T] GGCCTCTCCA	S	U	£4	(L.	íı.
G155u5	WIAF-11649	HT3962	1657	1657 CHC1,	chromosome condensation 1	TGATGGGCAA (A/G) CAGCTGGAGA	S	_ 4	ပ		×
1,099	WTAF-12057	M16038	611	LYN, viral	v-yes-1 Yamaguchi sarcoma related oncogene homolog	GCAAAGTCCC [T/G] TTTAACAAAA	· Σ	F	U		ĸ
				5	emostes idsubemeV (sevena						
G1550u2	WIAF-12061	M16038	1371		oncogene l	TGGCATACAT (C/T)GAGCGGAAGA	S	<u>د</u>	E-	-	н
G1550u3	WIAF-12080	M16038	1059	LYN, 1059 viral	v-yes-1 Yamaguchi sarcoma related oncogene homolog	AAAGGCTTGG [C/T]GCTGGGCAGT	<u> </u>	υ	Ŀ	<u> </u>	<u>.</u>

								•		
G1550u4	WIAF-12081	M16038	966	LYN, v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	AGCCACAGAA [G/A] CCATGGGATA	Ŋ	ی	A	×	×
G1552u1	WIAF-12030	HT4578	2355	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	CCTGCTATTT [A/T] AAAGACTTCT	z	A	F	×	*
G1552u2	WIAF-12031	HT4578	2231	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	acaaagttga [c/t] ttagaagaga	w	U	۲	D	۵
G1552u3	WIAF-12040	HT4578	617	PMS1, postmeiotic segregation 617 increased (S. cerevisiae) 1	TCATGAGCTT [T/C] GGTATCCTTA	S	F	U	G.	(L.
G1552u4	WIAF-12063	HT4578	1723	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TCATGTAACA [A/G] AAAATCAAAT	Σ	A	ပ	×	α
G1552u5	WIAF-12064	HT4578	1732	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	aaaaaatcaa (a/g) tgtaatagat	Σ	A	Ü	z	S
G1552u6	WIAF-12065	HT4578	1660	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TTACCATGTA[A/G]AGTAAGTAAT	Σ	A	U	×	æ
G1552u7	WIAF-12066	HT4578	1975	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	GAACGATACA (A/G)TAGTCAAATG	Σ	4	ဖ	z	ဟ
G1552u8	WIAF-12067	HT4578	1881	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TTTAGAGGAT [G/T] CAACACTACA	Σ	ပ	F	A	S
G1552u9	WIAF-12068	HT4578	2454	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TTTAGACGTT [T/A] TATATAAAAT	Σ	E۰	A	'n	H
G1552u10	WIAF-12069	HT4578	2457	PMS1, postmeiotic segregation 2457 increased (S. cerevisiae) 1	agacgttta (1/c) ataaaatgac	Σ	Ę-	·	>-	π.
G1552u11	WIAF-12082	HT4578	2557	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	ATACCAGGAG (T/C) TTCAATTACT	Σ	L-	υ	Λ	A
G1552u12	WIAF-12083	HT4578	971	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TTTTCTTTCT [G/T] AAAATCGATG	S	ღ	£.	ı	ı

									ĺ	ſ
				ELK3, ELK3, ETS-domain protein						
G1554u1	WIAF-12028	HT4161	1500	1500 Symbol and name provisional.	CTCAGAAATC [C/T] TGATGACGTC	S	U	٤٠	S	S
G1554u2	WIAF-12059	HT4161	1380	ELK3, ELK3, ETS-domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.	CTGCCAGGCT [G/A] CAAGGGCCAA	8	ی	A		1
G1554u3	WIAF-12060	HT4161	1436	ELK3, ELK3, ETS-domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.	CACATGCCAG (T/C) GCCAATCCCC	Σ	£4	ان	>	đ
G1562u1	WIAF-12024	HT28220	804	804 PDCD1, programmed cell death l	GGGCTCAGC [T/C] GACGGCCTC	S	H	U	A	a
G1562u2	WIAF-13488	HT28220	644	644 PDCD1, programmed cell death l	GACCCCTCAG [C/T] CGTGCCTGTG	Σ	U	F	٩	>
G1563u1	WIAF-13493	HT1187	1748	EGFR, epidermal growth factor receptor (avian erythroblastic leukemia viral (v-erb-b) oncogene 1748 homolog)	CCGGAGCCCA [G/A] GGACTGCGTC	Σ	g	4	ec ec	×
21129513	WIAF-13497	HT1187	2073	EGFR, epidermal growth factor receptor (avian erythroblastic leukemia viral (v-erb-b) oncogene	ACGGATGCAC (T/A) GGGCCAGGTC	Ŋ		æ	Ę÷.	T
G1566u1	WIAF-12016	HT27594	235	235 PDCD2, programmed cell death 2	GCGCCGCTGC [C/G] TGGCCGCCCG	Σ	Ü	ပ	۵ı	24
G1566u2	WIAF-12033	HT27594	904	904 PDCD2, programmed cell death 2	TTGGAATTCC[A/G]GGTCATGCCT	Σ	a	U	0	pχ
G1566u3	WIAF-12041	HT27594	331	PDCD2, programmed cell death 2	AATCAACTAC [C/T] CAGGAAAAAC	Σ	U	F	r.	1
G1566u4	WIAF-12071	HT27594	649	649 PDCD2, programmed cell death 2	CCTGAGGTTG [T/C] GGAAAAGGAA	Σ	Ŀ	U	>	A
G1566u5	WIAF-12072	HT27594	633	PDCD2, programmed cell death 2	AGAAGATGAG (A/T) TTATGCCTGA	Σ	A	· [+	н	(t.
G1567u1	WIAF-12042	M95936	293	AKT2, v-akt murine thymoma viral	GAGAGGCCGC [G/A] ACCCAACACC	Σ	ن	4	∝	0

G1572u1	WIAF-12212	HT3998	1894	proto-oncogene c-abl, tyrosine 1894 protein kinase, alt. transcript 2	2 TGTTCCAGGA[A/G]TCCAGTATCT		A	U	ы	ы
G1572u2	WIAF-12233	нТ3998	3694	proto-oncogene c-abl, tyrosine 3694 protein kinase, alt. transcript 2	AGCTTCAGAT [C/T] TGCCCGGCGA	s	Ú	E	1	н
G1572u3	WIAF-12234	HT3998	3721	proto-oncogene c-abl, tyrosine 3721 protein kinase, alt. transcript 2	GCAGTGGTCC [G/A] GCGGCCACTC	တ	ပ	A	СL	Q.
G1573u1	WIAF-12021	HT0642	343	CBL, Cas-Br-M (murine) ecotropic 343 retroviral transforming sequence	TCATGGACAA [G/C] GTGGTGCGGT	Σ	U	U	×	z
G1573u2	WIAF-12022	HT0642	363	CBL, Cas-Br-M (murine) ecotropic	TTGTGTCAGA (A/T) CCCAAAGCTG	Σ	Æ	F	z	н
G1573u3	WIAF-12034	HT0642	2364	CBL, Cas-Br-M (murine) ecotropic	AATATTCAGT [C/T] CCAGGCGCCA	Σ	U	E	S	íe.
G1573u4	WIAF-12049	HT0642	387	CBL, Cas-Br-M (murine) ecotropic	CTAAAGAATA [G/A] CCCACCTTAT	Σ	U	Æ	S	2
G1573u5	WIAF-12050	HT0642	947	CBL, Cas-Br-M (murine) ecotropic 947 retroviral transforming sequence	AACTCATCCT [G/A] GCTACATGGC	Σ	U	4	ပ	S
G1573u6	WIAF-12070	HT0642	2740	CBL, Cas-Br-M (murine) ecotropic	TCGAGAACCT [C/T] ATGAGTCAGG	σ	Ú	£-	1	r.
G1573u7	WIAF-12073	HT0642	661	CBL, Cas-Br-M (murine) ecotropic	TCTTTCCAAG[T/C]GGACTCTTTC	s	H	U	S	S
G1573u8	WIAF-12074	HT0642	2569	CBL, Cas-Br-M (murine) ecotropic 2569 retroviral transforming sequence	CTCTGGATGG [T/C] GATCCTACAA	S	£+	U	U	ဖ
6157319	WIAF-13486	HT0642	2006	CBL, Cas-Br-M (murine) ecotropic coorcopic retroviral transforming sequence	CCGGCACTCA [C/I] TICCATITIC	Σ	Ų	£-	ū	ĹĿ

							-			
				FES, feline sarcoma (Snyder- Theilen) viral (v-fes)/Fujinami						
G1574u1	WIAF-12037	HT1508	2493 fps)	fps) oncogene homolog	AGCGGCCCAG[C/T]TTCAGCACCA	S	U	F)	S	1
G1574u2	WIAF-12051	HT1508	189	FES, feline sarcoma (Snyder- Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v- 189 fps) oncogene homolog	CCCAGCGGT [C/T] AAGAGTGACA	· σ	. 0	۲- >	>	
61574113	WIAF-12052	HT1508	1441	FES, feline sarcoma (Snyder- Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v- fps) oncogene homolog	GAAGCCCTG [C/T] ATGAGCAGCT	Σ	U		Х	
6157404	WIAF-12053	HT1508	FES, Thei avia 2202 fps)		GAGAGGAAGC [C/T] GATGGGGTCT	ν.	U	H	٠ « «	
51274115	WTAF-12054	H71508	FES, Theil aviar 2088 (EDS)		CTGCTGGCAT [G/T] GAGTACCTGG	Σ	ی	F	<u>н</u>	
G1574u6	WIAF-12078	HT1508	1577		GATGGTCTGC[C/T]CCGGCACTTC	Σ	ر	F		
7,172	WIAF-13495	HT1508	579	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-579 fps) oncogene homolog	GTGACAAGGĊ [T/C] AAGGACAAGT	S	Ę	. 0	A A	
G1575u1	WIAF-12079	HT1052	963		TGGGCACCGG [C/T] TGCTTCGGGG	ς.	U	£-	<u></u>	

				FGR Gardner-Rasheed feline				_		
				sarcoma viral (v-fgr) oncogene					<u>-</u>	
G1575u2	WIAF-13487	HT1052	232	homolog	CAGAAGCTAC [G/A] GGGCAGCAGA	Σ	ار	₹	- -	۲
	C. O.C.L. TKIN	HT1 675	С	CRK, v-crk avian sarcoma virus	TGGATCAACA [G/A] AATCCCGATG	ς S		4	0	0
Theoesto	17071 - 1771									
				CRK, v-crk avian sarcoma virus						
G1585u2	WIAF-12036	HT1675	446	446 CT10 oncogene homolog	ACTACAACGT [T/C] GATAGAACCA				\neg	s c
G1587u1	WIAF-12023	HT0590	1473	1473 proto-oncogene dbl	GGCCAATCCA [A/G] TTTGTGGTAC					
G1587u2	WIAF-12025	HT0590	2549	2549 proto-oncogene dbl	GTCCAGGCTT [C/T] TAATGTAGAT					£
G1587u3	WIAF-12026	HT0590	2828	2828 proto-oncogene dbl	GCATCACAAT [C/T] TGCAGAAATC					
G1587u4	WIAF-12038	HT0590	982	982 proto-oncogene dbl	AAATTCTCAG [G/C] AGCTATTATC	Σ	_o		- 1	0
G1587u5	WIAF-12039	HT0590	2343	db1	AACCAATGCA [G/T] CGACACCTTT	Σ	٥	F	- 1	×
G1587u6	WIAF-12048	HT0590	683	proto-oncogene dbl	GACACTGAAG [G/A] AGCTGTCAGT	Σ	Ö			ш
61587117	WTAF-12055	HT0590	2686	proto-oncogene db1	TTCTCTTCAG [C/T] AGAATGATGA	z	U	F	0	
G1587u8	WTAF-13485	HT0590	2136	proto-oncogene dbl	ACTGTGAAGG [T/A] TCTGCTCTGT	S	Ŀ	A	ی	U
G1587u9	WIAF-13496	HT0590	1566	proto-oncogene db1	AAAATCAGAG [C/T] AACTTAAAAA	S	U	F	S	S
					正し出しないからは(正/ひ) こうさいほうなほどな	2	ــــــــــــــــــــــــــــــــــــــ	E	4	
G159u1	WIAF-11616	HT4209	1059	1059 homolog B	AGTACTGGGG [C/1] 1CC1CAG1C1	T				T
				ETS2, v-ets avian erythroblastosis virus E26				-		
G1590ul	WIAF-13897	HT2455	1257	oncogene homolog 2	GCCAGTCTCT [C/G] TGCCTCAATA	S	U	ی]	اد
			•	ETS2, v-ets avian erythroblastosis virus E26	しつ 有力を有る ひしつ (コ/ム) しゃかかかかかかかかかか	u.	· [-		F-	£-
G1590u2	WIAF-13913	HT2455	1107	oncogene nomorog	אוורומפטער (ז/פו ברבעייטיטיבר	-	Τ		Τ	Γ
,	1	1	,	ETS2, v-ets avian erythroblastosis virus E26	economical (P. /G) GTGGAGCAAG	σ		<u>ن</u>	Δ.	
G1590u3	WIAF - 13914	664714	FICT	fortowork amakania						
				HRAS, v-Ha-ras Harvey rat sarcoma						
G1591u1	WIAF-13924	HT2333	417	417 viral oncogene homolog	TCCAGAACCA [T/C] TTTGTGGACG	S	F	U	_	<u> </u>
		011111111111111111111111111111111111111	נטנו	proto-oncogene l-myc, alt.	GCATACCTCA [G/C] TGGCTACTAA	Σ	v	U	S	F
GISSSUI	MIRE - 12202	0//5518	7051	יייייייייייייייייייייייייייייייייייייי	しつかないない (十/ つ) たつかかつかんつつ	ď		۴	>	>
G1597u1	WIAF-12243	HT0410	906	MAS1 oncogen	בראוכוופפו (כ/ ו)פופשפאורר				1	
ເງ 60ນ1	WTAF-11630	HT4247	069	RAD23A, RAD23 (S. cerevisiae) 690 homolog A	AGAGCCAGGT [A/G] TCGGAGCAGC	S	4	U	>	>
6160211	WIAF-14180	HT1903	1321	proto-oncogene pim-1	GTCGCCGGGG [C/A] CCAGCAAATA	Σ	U	A	a.	Ţ

						-	t	ŀ	-	
				REL, v-rel avian reticuloendotheliosis viral						
G1604ul	WIAF-12319	HT2788	1182	1182 oncogene homolog	CCTCCCAAAG [T/C] GCTGGGATTA	2	\top	- ار	0	
1,609,11	WIAF-12358	HT33646	348	RIPK1, receptor (TNFRSF)- interacting serine-threonine kinase 1	GACGCAGGGT [C/T] TCCCATGACC	S	U	>	>	
			6031	DNA repair and recombination	TATGATCGT [C/T] TTAACTGAGG	Σ	U		S	
G161u1	WIAF - 11654	114231	525.1	501 renlication protein Road. 30 kDa	TGCAACTCCT [G/A] CTATTAAGAC	Σ	U		A	
G1610a1 G1610a2	WIAF-12101 WIAF-12102	HT27727	554	replication protein Rpa4,	TACCGTGTAA [C/T] GTGAACCAGC	S	U	E-	z	z
61610u3	WIAF-12307	HT27727	450	450 replication protein Rpa4, 30 kDa	TTCTGCTGCT [G/A] ATGGAGCGAG	Σ	U	4	۵	z
G1610u4	WIAF-12320	HT27727	1037	1037 replication protein Rpa4, 30 kDa	TGATTCATGA (G/C) TGTCCTCATC	Σ	U	U	<u>ы</u>	۵
G1610u5	WIAF-12321	HT27727	857	857 replication protein Rpa4, 30 kDa	TAGAGGACAT [G/A] AACGAGTTCA	Σ	U	4	Σ	н
G1610u6	WIAF-12343	HT27727	539	539 replication protein Rpa4, 30 kDa	GAATTCAGGA [C/T] GTTGTACCGT	σ	U	F		۵
6163011	WTAF-12302	HT3563	4312	DCC, deleted in colorectal carcinoma	ACTCATGAAG [C/T] AGCTTAATGC	z	U	H	0	
G1632u1	WIAF-13572	HT27355	742	tumor suppressor, PDGF receptor 742 beta-like	TTTATGACAT [G/C] AAGCGGGGCT	Σ	U	·	Σ	H
61632112	WIAF-13584	HT27355	1102	tumor suppressor, PDGF receptor beta-like	TGGAAGACTT [C/T] GAGACGATTG	S	U	Ę+	[L	Ĺ.
G1632u3	WIAF-13601	HT27355	258	tumor suppressor, PDGF receptor 258 beta-like	AAGACGCAGT [C/T] TATCATGATG	Σ	υ	E-	S	ĬĿ.
G1633u1	WIAF-13957	HT1778	1263	FER, fer (fps/fes related) tyrosine kinase (phosphoprotein NCP94)	TTCAGGCAAA [T/C] GAGATCATGT	Ŋ	H	U	z	z
5,150	MTAB. 13958	HT1778	2407	FER, fer (fps/fes related) tyrosine kinase (phosphoprotein 2407 NCP94)	Tatgttgtat [C/t] tcgagagtaa	Σ	U	F	اد	[2,
220000	MINE-13505	HT3216	1569	ELK1, ELK1, member of ETS	TCTCGACCCC[C/T]GTGGTGCTCT	S	U	F	Δ,	ام
G1634u2	WIAF-13858	HT3216	456	ELK1, ELK1, member of ETS 456 oncogene family	GGCTGTGGGG [A/G] CTACGCAAGA	S	A	U	U	U
STOCAGE	With touch									

				ELK1, ELK1, member of ETS						
G1634u3	WIAF-13859	HT3216	745	745 oncogene family	AGGCCCAGGC [G/A] GTTTGGCACG	Σ	ပ	A	S	S
G1638u1	WIAF-14172	HT1224	86	98 uracil-DNA glycosylase	GCTGGGACCT [G/C] TTCCACAAAT	_	ပ	ان		
G1643u1	WIAF-13517	HT3751	629	DXS648E, DNA segment on chromosome X (unique) 648 expressed sequence	TACATCCCCA [G/A] TCGTGGCCCT	Σ	g	A	S	z
G1645u1	WIAF-14087	D21089	363	XPC, xeroderma pigmentosum, complementation group C	AAAACCTCAA [G/A] GTTATAAAGG	S	ပ	4	Ж	×
G1645u2	WIAF-14088	021089	2166	XPC, xeroderma pigmentosum, 2166 complementation group C	TGCATTCCAG [6/A] GACACGTGGC	vs	ຽ	4	×	œ
G1645u3	WIAF-14089	D21089	1580	XPC, xeroderma pigmentosum, 1580 complementation group C	GGGAGCCATC [G/A] TAAGGACCCA	Σ	ပ	A	. ~	x
G1645u4	WIAF-14090	D21089	1601	XPC, xeroderma pigmentosum, 1601 complementation group C	AGCTTGCCAG [T/C] GGCATCCTCA	Σ	Ę.	U	>	A
G1645u5	WIAF-14091	D21089	2920	XPC, xeroderma pigmentosum, 2920 complementation group C	CCCATTTGAG (A/C) AGCTGTGAGC	Σ	æ	U	×	a
G1645u6	WIAF-14103	021089	4 0 5	XPC, xeroderma pigmentosum,	ATGACCTCAG [G/A] GACTTTCCAA	<u>ა</u>	9	A.	æ	æ
G1645u7	WIAF-14104	D21089	151	XPC, xeroderma pigmentosum,	GGGACGCGAA [C/G] TGCGCAGCCA	Σ	υ	ပ	1	>
G1645u8	WIAF-14105	D21089	2133	XPC, xeroderma pigmentosum, 2133 complementation group C	AAGCGGTCTA [C/T] TCCAGGGATT	လ	Ü	F	>	>-
G167u1	WIAF-11632	HT4579	83	PMS2L8, postmeiotic segregation increased 2-like 8	CCTATTGATC [G/A] GAAGTCAGTC	Σ	ပ	Æ		0
G167u2	WIAF-11633	HT4579	219	PMS2L8, postmeiotic segregation increased 2-like 8	GAGTGGATCT [T/C] ATTGAAGTTT	S	F	υ	ı	L
G167u3	WIAF-11644	HT4579	768	PMS2LB, postmeiotic segregation 768 increased 2-like 8	TGCCCCCTAG [T/C] GACTCCGTGT	S	F	U	S	S

	T		· · · · · · · · · · · · · · · · · · · 	Т		Ī		1			
	ェ		· vi		S		۵,	တ		<u>~</u>	
ω	_=	=	Δ.		S	F-	<u>a.</u>	Z	Ę-	ပ	ب
	F	g	E	U	υ		<u> </u>	9	Į-	υ	H
<u> </u>	U_	_ 4	U	Ŀ	<u></u>	Α.	U	4	υ	ტ	U
Σ	<u></u>	Σ	Σ	s	N	Σ	N	Σ	Σ	Σ	ဟ
GAAAGCGCCT [G/A] AAACTGACGA	ACTCGGGGCA [C/T] GGCAGCACTT	TCGCAGGAAC [A/G] TGTGGACTCT	CGTCCTGAGA [C/T] CTCAGAAAGA	GGACTGCT [T/C] AACACAAGGG	TGAGCTGTTC [G/C] GATGCTCTGC	CATCCCAGAC (A/G) CGGGCAGTCA	CCTTCGGACC [C/T] CAGGACGTCG	actagtaaaa (a/g) ctggaccttc	ATATTTGCGA [C/T] AAGTAGGATA	CACACAAGGT [G/C] GTGTTATATT	TTGAACACCT [C/T] CCTCGCCGTG
PMS2LB, postmeiotic segregation 1645 increased 2-like 0	PMS2L8, postmeiotic segregation increased 2-like 8	PMS2LB, postmeiotic segregation	PMS2L8, postmeiotic segregation	PMS2LB, postmeiotic segregation 2490 increased 2-like 8	PMS2L8, postmeiotic segregation	PMS2L8, postmeiotic segregation 1555 increased 2-like 8	PMS2L8, postmeiotic segregation increased 2-like 8	PMS2L8, postmeio	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group	ERCC4, excision repair cross- complementing rodent repair deficiency, complementation group	ERCC4, excision repair cross- complementing rodent repair deficiency, complementation group
1645	1512	1619	1432	2490	804	1555	2364	2348	311	797	234 dd
HT4579	HT4579	HT4579	HT4579	HT4579	HT4579	HT4579	0 L J V J D	HT4579	HT48793		HT48793
WIAF-11622	WIAF-11645	WIAF-11646	WIAF-11647	WIAF-11625	WIAF-11619	WTAF-11623	ACALL DATE	MINE-11024	WIME-11697	00071	WIAF-11699
G167u4	6167u5	G167u6	6167u7	G167u8	G167u9	0147415		110,411	ייים מונים מ		G18102

				- apolity viendy noticing						
				Ę						
				group						
G181u4	WIAF-11704	HT48793	808 4		TTTGTGGCAC [C/T] AGCTTGGAGC	z				Т
				ERCC4, excision repair cross-complementing rodent repair						
G181u5	WIAF-11705	HT48793	640 4	eficiency, complementation group	TTCTATGACA[C/T]CTACCATGCT	Σ	U	-	P S	
				ERCC4, excision repair cross-						-
				complementing rodent repair						
618106	WIAF-11670	HT48793	1117		AGAAAGCAAC [C/T] CAAAGTGGGA	Σ	U	F	S d	\top
				R2B, activin A receptor, type					<u></u> (1	
G185u1	WIAF-11668	HT5122	319 IIB		TCTGCAACGA [G/A] CGCTTCACTC	n	T	,	1	T
6185112	WIAF-11707	HT5122	70	ACVR2B, activin A receptor, type	AGACACGGGA [G/C] TGCATCTACT	Σ	ی	U	<u>O</u>	T
				ACVR2B, activin A receptor, type	CCTCACGGAT [T/C] ACCTCAAGGG	Σ		U	<u>∓</u> ⊁	
G185u3	WIAF-11672	HT5122	710				-		-	
618504	WIAF-13542	X77533	ACVI 1109 [11B	12B, activin A receptor, type	GGCTCCTGAG [G/A] TGCTCGAGGG	Σ	U	A	Σ >	
				ACVR2B, activin A receptor, type				£		
G185u5	WIAF-13558	X77533	166	997 IIB	TGCTGAAGAG [C/T] GACCTCACAG				T	T
G187u1	WIAF-11669	HT97400	183	183 androgen	CCAGAGACAG [C/T] GCGACCCGGA	Σ	ان	-	اد	T
[11613]	WIAF-10176	AF025375	414	CXCR4, chemokine (C-X-C motif), 414 receptor 4 (fusin)	ACCTGGCCAT [C/T] GTCCACGCCA	S	U	E	H	
				CCR2, chemokine (C-C motif)						
G193u1	WIAF-10178	D29984	231	231 receptor 2	AGTGCTTGAC [T/A] GACATTTACC	2	- - -	₹	-	T
				CCR2, chemokine (C-C motif)	CATGOTO (G/A) TCCTCATCTT	Σ		Æ	<u>i</u>	
G193u2	WIAF-10179	D29984	06.1	130 receptor 2						
				le cytokine					 	
G194u1	WIAF-10211	D43767	121	subfamily A (Cys-Cys), member 17	ACATCCACGC (A/C) GCTCGAGGGA	S	4			-
				NRAMP1, associa	***************************************	>	Ę-		<u>. α</u>	
G197u1	WIAF-10167	D50403	1515	(might include Leishmaniasis)	GGTGCTAGTC [1/C] GCGCCATCAA	=		,	1] :

G197u2	WIAF-10173	D50403	1629	NRAMP1, natural resistance- associated macrophage protein 1 1629 (might include Leishmaniasis)	CACCTACCTG [G/C] TCTGGACCTG	Σ	U	U	>	
62011	WIAF-10249	U14722	AC 896 IB	VRIB, activin A receptor, type	CGGTACACAG [T/C] GACAATTGAG	Σ	F	U	>	4
620112	WIAF-10250	U14722	ACV 866 IB	ACVRIB, activin A receptor, type IB	GAGCACGGGT [C/T] CCTGTTTGAT	Σ	U	F	S	(E.
			ACI	ACVRIB, activin A receptor, type	CAGAGTTATG (A/T) GGCACTGCGG	Σ	۸	F	<u>—</u>	>
62003	MIAF - 10251	1114722	ACT 1236 TB	ACVRIB, activin A receptor, type	TATATTGGGA [G/C] ATTGCTCGAA	Σ	U	υ	Э	۵
62004	10001-301M	1114722	818	/RlB, activin A receptor, type	GAGATGTC [T/C] CTCCAAAGAC	Σ	Т	S	L.	Q.
1 2020	WIAF-10516	175259	998	Human CTLA4 counter-receptor (B7-2) mRNA, complete cds.	AGCTGTACTT [C/T] CAACAGTTAT	Σ	U	£-	۵	S
12000	WTAF-10204	L31581	85	CCR7, chemokine (C-C motif) 85 receptor 7	GGGGAAACCA (A/G) TGAAAAGCGT	Σ	A	ی	Σ	>
1100020			SC SC	YA2, small inducible cytokine (monocyte chemotactic protein homologue to mouse Signie)	TCACCTGCTG (T/C) TATAACTTCA	တ	E	υ	U	Ų
G211u1	WIAF-10213	M27533	452	80, CD80 antigen (CE qand 1, B7-1 antigen)	TGAAAGAAGT [G/A] GCAACGCTGT	S	ڻ	A	>	>
G215u1	WIAF-11659	M28393	822		GCATCTCTGC [C/T] GAAGCCAAGG	တ	U	۴	A	A
G215u2	WIAF-11723	M28393	159	PRF1, perforin 1 (preforming 159 protein)	TGACCAGCCT [C/T] CGCCGCTCGG	S	U	£-	اد	اد
6215113	WIAF-11724	M28393	96	PRF1, perforin 1 (preforming protein)	CAGAGTGCAA (G/A) CGCAGCCACA	S	ပ	A	~	×
6215114	WIAF-11725	M28393	1377	PRF1, perforin 1 (preforming 1377 protein)	ATAACAACCC [C/T] ATCTGGTCAG	. "	U	(-	ы	О.
G215u5	WIAF-11726	M28393	1326	PRF1, perforin 1 (preforming 1326 protein)	TGAAGCTCTT (C/T) TTTGGTGGCC	S	U	۴	ű.	Ĺ

		C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0	3501	PRF1, perforin 1 (preforming	CGGCGGGAGG [C/T] ACTGAGGAGG	Σ	ပ	Į-	4	>
012120	MIAE-11691	M31932	649	FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GCAGCTCTTC (A/G) CCAATGGGGA	ဟ	A	ی	S	S
G217u2	WIAF-11692	M31932	625	Fc fr IIb,	TCACTGTCCA[A/G]GTGCCCAGCA	σ	A	ပ	o	٥
G217u3	WIAF-11712	M31932	332	FCGR2B, Fc fragment of IgG, low affinity Ilb, receptor for (CD32)	GACTGGCCAG (A/C) CCAGCCTCAG	Σ	Æ	· U	H	م
G217u4	WIAF-11713	M31932	101	FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GGCTTCTGCA [G/T] ACAGTCAAGC	Σ	ິນ	€→	ū	Ж
G218u1	WIAF-10184	M36712	677	CD8B1, CD8 antigen, beta 677 polypeptide 1 (p37)	TTTTACAAAT (A/G) AGCAGAGAAT	2	A	U		
G218u2	WIAF-10188	M36712	326	CD8B1, CD8 antigen, beta 326 polypeptide 1 (p37)	GCTGTGTTTC[G/C]GGATGCAAGC	Σ	9	U	~	ď
G218u3	WIAF-10189	M36712	196	CD8B1, CD8 antigen, beta 196 polypeptide 1 (p37)	CAGTAACATG [C/T] GCATCTACTG	Σ	U	F	œ	U
G218u4	WIAF-10190	M36712	225	CD8B1, CD8 antigen, beta polypeptide 1 (p37)	AGCGCCAGGC [A/C] CCGAGCAGTG	S	_∢	U	4	Æ
G218u5	WIAF-10194	M36712	583	CD8B1, CD8 antigen, beta 583 polypeptide 1 (p37)	GGTGGC [G/A] TCCTGGTTCT	Σ	ပ	a	>	н
G218u6	WIAF-10208	M36712	372	CD8B1, CD8 antigen, beta polypeptide 1 (p37)	TGAAGCCGGA [A/G] GACAGTGGCA	တ	4	U	ш	ப
G218u7	WIAF-10209	M36712	400	CD8B1, CD8 antigen, beta	CTGCATGATC [G/T] TCGGGAGCCC	Σ	ပ	1	_ >	(Li,
G218u8	WIAF-10210	M36712	270	CD8B1, CD8 antigen, beta	TCTGGGATTC [C/T] GCAAAAGGGA	S	<u> </u>	Ŀ	S	S
G218a9	WIAF-10518	M36712	618	CD8B1, CD8 antigen, beta 618 polypeptide 1 (p37)	GAGTGGCCAT [C/G] CACCTGTGCT	Σ	U	U	н	Σ
G218a10	WIAF-13223	M36712	955	CD8B1, CD8 antigen, beta polypeptide 1 (p37)	TTGTAGCCCC [A/G]TCACCCTTGG	Σ	4	ပ	н	>
G218a11	WIAF-13224	M36712	836	CD8B1, CD8 antigen, beta polypeptide 1 (p37)	CTGTGTGTGA [T/C] GTGCATGGGA	-	£-	U	_	
G22u1	WIAF-10301	U86136	6719	Human telomerase-associated 6719 protein TP-1 mRNA, complete cds.	GGTGGTAACC [G/A] TCGGGCTAGA	Σ	<u> </u>	4	>	1

G2 2 u 2	WIAF-10302	U86136	7537	Human telomerase-associated	CTGATGGGAT [C/G] CTATGGAACC	Σ	U	U	н	Σ
7 n 2 2 3 1 1	WIAF-10311	U86136	1798	Human telomerase-associated	ATGATGCCAT (T/C) GATGCCCTCG	ν _j	·F	U	н	н
	WING-10312	3513811	2397	Human telomerase-associated	CTGTCTCTGG [C/T] TGGCCAAAGG	Σ	U	T	4	>
522n4	F1501-341W	186136	3289	sociated	AGAAAGGGAT (A/C) ACCTGCCGCA	S	. A	U	н	1
G22u6	WIAF-10314	086136	3242	rase-as mRNA,	AGAGGCCGCA [T/C] GTCGGATCTC	Σ	۴	υ	U	α
G22u7	WIAF-10315	U86136	4482	Human telomerase-associated	ccertigeet [G/A] cerestecas	Σ	U	Ø	U	١,
22211B	WTAF-10316	U86136	4363	Human telomerase-associated	GTTTGACTGT [G/A] GACCAGCTGC		9	A	>	>
	WIAE-10317	AF 1 ABII	4230	Human telomerase-associated 4230 protein TP-1 mRNA, complete cds.	GTGTCTGAGA [G/A] ACTCCGGACC	Σ	U	«	CC.	×
60775	o ico c skin	3.5. L. J. B. L. J. B	4419	Human telomerase-associated procein TP-1 mRNA, complete	GGGACTAAGA [G/C] CTGGGAAGAA	Σ	9	ບ	S	£-
0.1025	WIAF-10319	086136	5269	Human telomerase-associated protein TP-1 mRNA, complete	TCTCCGATGA [T/C] ACACTCTTTC	Ŋ	E⊢	U	D	٥
G22u12	WIAF-10320	U86136	5015	ase-as mRNA,	GCTGCTCC [C/T] GGAGATGGCA	Σ	υ	£	œ	3
G22u13	WIAF-10321	U86136	5133	Human telomerase-associated protein TP-1 mRNA, complete cds.	GTGGCCTTCT [C/T] CACCAATGGG	Σ	U	€ →	S	(L.
G22u14	WIAF-10322	U86136	7764	Human telomerase-associated 7764 protein TP-1 mRNA, complete cds.	ACAGCCTCC [A/G] TGTGCTACCT	Σ	Æ	U	王	œ

G650u1	WIAF-12323	X52773	862	862 RXRA, retinoid X receptor, alph	retinoid X receptor, alpha CTCGCCGAAC[G/A]ACCCTGTCAC	Σ	Ű	4	۵	z
G650u2	WIAF-12341	X52773	102	102 RXRA, retinoid X receptor, alpha	a TCCTGCCGCT [C/T] GATTTCTCCA	S	. 0	Ŀ	נו	נו
G650u3	WIAF-12348	X52773	673	673 RXRA, retinoid X receptor, alpha	GGCCATGGGC (A/G) TGAAGCGGGA	Σ	4	U	Σ	>
G650u4	WIAF-12349	X52773	905	902 RXRA, retinoid X receptor, alpha	GACAAACAGC[T/C]TTTCACCCTG	Σ	Ŀ	U		D,
G653a1	WIAF-13326	HT1458	439	RARB, retinoic acid receptor, 439 beta	AGGAGAAAGC (T/C) CTCAAAGCAT	လ	E	U	4	A
G655a1	WIAF-13327	J05252	1158	PCSK2, proprotein convertase subtilisin/kexin type 2	CCTTCAGCAA (C/T) GGGAGGAAAA	S	υ	T	z	z
G655a2	WIAF-13334	J05252	678	PCSK2, proprotein convertase 678 subtilisin/kexin type 2	CCTATCCTTA [C/A] CCTCGGTACA	z	ט	Ą	Ā	
G655a3	WIAF-13335	J05252	744	PCSK2, proprotein convertase subtilisin/kexin type 2	TTTCTGCTGC (C/T) GCCAACAACA	S	S	F	A	A
G658ul	WIAF-11856	302943	971	CBG, corticosteroid binding globulin	TCTATGACCT [T/C] GGAGATGTGC	တ	Ţ	U	ı	
G658u2	WIAF-13407	J02943	17.1	CBG, corticosteroid binding globulin	CCTTCATGAC [T/G] CAGAGCTCCC	Σ	Ę-	ט	S	A
G658u3	WIAF-13408	J02943	773	CBG, corticosteroid binding globulin	TTCATGACTC [A/G] GAGCTCCCCT	s	4	U	S	S
G658u4	WIAF-13409	J02943	1046	CBG, corticosteroid binding	TCACCCAGGA [C/T] GCCCAGCTGA	S	υ	₽		۵
G663u1	WIAF-13400	HT3157	1202 TPO,		CGCCACGCGC [G/A] CCTGCGGCCT	S	Г	A		A
G663u2	WIAF-13401	HT3157	1282 TPO,	TPO, thyroid peroxidase	GGCCGCGCCA [G/C] CGAGGTCCCC	Σ	b	S	S	f-
G668al	WIAF-13350	U53506	350	DIO2, deiodinase, iodothyronine, 50 type II	TCGATGCCTA [C/A] AAACAGGTGA	z	υ	Æ	>-	*
G668a2	WIAF-13351	053506	354	DIO2, deiodinase, iodothyronine, type II	TGCCTACAAA [C/A] AGGTGAAATT	Σ	U	4	0	_ ×
G668a3	WIAF-13352	053506	408	DIO2, deiodinase, iodothyronine, type II	TGTCTCCAGT [A/G] CAGAAGGAGG	Σ	A	U	<u></u>	A
G673a1	WIAF-13328	M57464	1723	Human ret proto-oncogene mRNA for 1723 tyrosine kinase.	CGAGCCTGGG [G/A] AGCCCCGGGG	Σ	U	A	ω	×
G673a2	WIAF-13336	M57464	1186	Human ret proto-oncogene mRNA for 1186 tyrosine kinase.	GGCTCGCCGA [T/A] TTGCCCAGAT	Σ	Т	A	F	

T			-					
Ø	Ŀ		~	0	Δ,	£.,	н	· F4
4	- ₽		z	o	4	<u>s</u>	н	⊢
_	_ <		4	4	υ	F-	υ	H
ပ	F	F	E	ပ	ڻ	υ	F	Ú
s	တ	S	Σ	ν	Σ	Σ	σ	ς,
ACTGCCAGGC [G/A] TTCAGTGGCA	TTGGAAAAC [T/A] CTAGGAGAAG	CGAGTGAGCT [T/G] CGAGACCTGC	TCGGCTGGAA [T/A]GAATGGATAA	CTGTGGAGCA [G/A] TGGAAAGCCC	TGTGACTGCT [G/C] CATGCACTGT	AGCACCTACT [C/T] CATGCTGGGC	AGGAAATGAT (T/C)GAGGAACTCC	AAGŢGCACAC [C/T] ATACCAGCCA
Human ret proto-oncogene mRNA for 1227 tyrosine kinase.	Human ret proto-oncogene mRNA for 2118 tyrosine kinase.	Human ret proto-oncogene mRNA for 2238 tyrosine kinase.	GDF10, growth differentiation 1439 factor 10	ERCC3, excision repair cross- complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B 1155;complementing)	ERCC3, excision repair cross- complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	ERCC3, excision repair cross- complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B
1227	2118	2238	1439	1214	1155	1327	926	1430
M57464	M57464	M57464	D49492	HT1115	HT1115	HT1115	HT1115	HT1115
WIAF-13337	WIAF-13338	WIAF-13339	WIAF-13353	WIAF-10434	WIAF-10435	WIAF-10436	WIAF-10461	WI AF-10464
G673a3	G673a4	G673a5	G678al	G68u1	G68u2	G6 8u 3	G 8 8 U 4	

									ľ	
G684al	WIAF-13359	X51801	712	BMP7, bone morphogenetic protein 712 7 (osteogenic protein 1)	GTTTATCAGG [T/G] GCTCCAGGAG	Σ	£-	g	>	U
G684a2	WIAF-13360	X51801	719	BMP7, bone morphogenetic protein 719 7 (osteogenic protein 1)	AGGTGCTCCA [G/A] GAGCACTTGG	S	ტ	Æ	٥	ø
G684a3	WIAF-13361	X51801	962	BMP7, bone morphogenetic protein 796 7 (osteogenic protein 1)	GGCTGGCTGG [1/G] GTTTGACATC	Σ	E	ပ		. 0
G684a4	WIAF-13362	X51801	862	BMP7, bone morphogenetic protein 862 7 (osteogenic protein 1)	GGCCTGCAGC (T/G) CTCGGTGGAG	Σ	F	U	اد	œ
G684a5	WIAF-13363	X51801	658	BMP7, bone morphogenetic protein	ATCTACAAGG [A/G] CTACATCCGG	Σ	A	ß	۵	Ŋ
G684u6	WIAF-13834	X51801	1421	BMP7, bone morphogenetic protein	GCCACTAGCT [C/T] CTCCGAGAAT	1	υ	T		
G685a1	WIAF-13329	D89675	882	BMPRIB, bone morphogenetic 882 protein receptor, type IB	GTTCCCTTTA [T/G] GATTATCTGA	z	£	ဗ	у.	
6685a2	WIAF-13330	D89675	920	BMPR1B, bone morphogenetic 920 protein receptor, type IB	GCTAAATCAA [T/C] GCTGAAGTTA	Σ	F	υ	Σ	į.
G685a3	WIAF-13331	D89675	077	BMPRIB, bone morphogenetic	TATCAGACAG [T/G] GTTGATGAGG	Σ	£-	ບ	>	ŋ
G685a4	WIAF-13340	D89675	1303	BMPR1B, bone morphogenetic	TCCTTATCAT [G/A] ACCTAGTGCC	Σ	_U	A	۵	Z
G685a5	WIAF-13341	D89675	1372	BMPRIB, bone morphogenetic 1372 protein receptor, type IB	GTTACGCCCC [T/G] CATTCCCAAA	Σ	F	ی	S	A
6685a6	WIAF-13342	089675	1173	BMPR1B, bone morphogenetic	TGTTGGACGA [G/A] AGCTTGAACA	S	ຽ	æ	<u></u>	ம
G686u1	WIAF-13816	248923	2705	BMPR2, bone morphogenetic protein receptor, type II 2705 (serine/threonine kinase)	AAATTTGGCA [G/A] CAAGCACAAA	Σ	ڻ	. 4	<u>-</u>	z

		-		TOTAL OF TOTAL						Γ
				or, type II						
G686u2	WIAF-13817	248923	2749	kinase)	TGGAGTTGCC[A/T]AGATGAATAC	z	A	E-	×	
G687a1	WIAF-13343	HT1455	626	626 CALB1, calbindin 1, (28kD)	ATGATCAGGA [C/T] GGCAATGGAT	s	υ	F		۵
22,655	WIAF-11839	HT27700	1075	calcium-sensing receptor	GGGCACAATT [G/C] CAGCTGATGA	Σ	υ	U	_ 4	٦
20000	WIAF-11840	HT27700	1551	calcium-sensing receptor	TACCTGTGGA (C/T) ACCTTTCTGA	S	S	E+		۵
5119695	WIAF-11841	HT27700		receptor	TTACGGATAT [C/T] CTACAATGTG	Σ	ပ	F	S	Ĺe.
5696114	WIAF-11842	HT27700	1698		CCTACAATGT [G/T] TACTTAGCAG	S	ပ	Ŀ	>	>
50000	WIAF-11858	HT27700	1767	calcium-sensing receptor	GGAGAGGGCT [C/T] TTCACCAATG	S	ن	Ę.	٦	-3
G696u6	WIAF-11859	HT27700	1689	calcium-sensing receptor	TACGGATATC [C/T] TACAATGTGT	S	U	E-	S	S
G696u7	WIAF-11860	HT27700	2541	calcium-sensing receptor	regrecters [c/r] Arcreatsca	S	٥	F-	\neg	ان
G696u8	WIAF-11861	HT27700	2581	2581 calcium-sensing receptor	TGTCCTCCTG [G/A] TGTTTGAGGC	Σ		A	-r	Σ
6n9698	WIAF-11863	HT27700	3159	calcium-sensing receptor	rctcccccaa [G/C] cggtccagca	Σ	9	U		2
G696u10	WIAF-11872	HT27700	295	calcium-sensing receptor	TCCTATTCAT [T/A] TTGGAGTAGC	Σ	<u>F-</u>	A		
G696u11	W1AF-11878	HT27700	2941	calcium-sensing receptor	CATTCCAGCC [T/G] ATGCCAGCAC	Σ	Ī	S		
G696u12	WIAF-13386	HT27700	1145	calcium-sensing receptor	AGGGATATCT [G/A] CATCGACTTC			4		>-
G696u13	WIAF-13395	HT27700	670	670 calcium-sensing receptor	GATATTTGCC [A/G] TAGAGGAGAT	Σ				>
G696u14	WIAF-13396	HT27700	2243	2243 calcium-sensing receptor	TTCTGGTCCA [A/G] TGAGAACCAC	Σ	A		$\neg \lceil$	S
G696u15	WIAF-13397	HT27700	2742	2742 calcium-sensing receptor	AGCTGGAGGA [T/C] GAGATCATCT	S	£-i	S	Δ	
G698u1	WIAF-13547	X61598	393	CBP1, collagen-binding protein 1	TCAGCAACTC [G/C] ACGGCGCGCA	s	ც	υ	တ	S
C118095	WTDF-13549	X61598	628	CBP1, collagen-binding protein 1	CGGCGCCTG [C/T] TAGTCAACGC	တ	C	Т	Ţ	ı
		000	1980	colladen-hinding profein	GEGGETECET [G/A] CTATTCATTG	S	<u> </u>	Æ	ı,	<u>۔</u>
G69803	WIAF-12350	HT27657	706	type I receptor	AACGATGTTG [C/A] AGCAGGAACT	Σ	ပ	A	A	ы
G701u2	WIAF-12391	HT27657	841	н	TGGACAAATT [A/T] TACCCAGTGT	Σ	a	۲	7	CL.
	WT D E - 1 4 0 4 6	28t09X	1396	COL10A1, collagen, type X, alpha 1 (Schmid metaphyseal	AGGCATTCCA [G/A] GATTCCCTGG	Σ	ე	æ	ß	α
TR FOLO	01011			3 - 7						
				COLIDAI, collagen, type X, alpha						
16704112	WIAF-14070	X60382	1648	1648 chondrodysplasia)	TGCCAACCAG [G/C] GGGTAACAGG	Σ	٥	<u>ں</u>	9	~

												-	ſ
				COLIOAl, 1 (Schmid	collagen, type X, metaphyseal	уре Х,	alpha						
G704u3	WIAF-14071	X60382	1824	1824 chondrodysplasia)	plasia)			CATACCACGT [G/C] CATGTGAAG	S	5		<u> </u>	T
						,	4						
				COLIUAL, 1 (Schmid	collagen, t metaphyseal	γpe Λ,	arpna	-				-	
G704u4	WIAF-14072	X60382	1582	chondrodysplasia	plasia)			AGTCATGCCT [G/C] AGGGTTTTAT	Σ	5	U	<u>о</u> ы	
				COL11A1,	collagen,	type XI,	alpha						
G705al	WIAF-13228	304177	686 1	1				AGAAGAAAC [T/A]GTGACAATGA	S	-	4	-	T
				COL11A1,	collagen,	type XI,	alpha						
G705a2	WIAF-13229	J04177	698 1	1				TGACAATGAT [T/A] GTTGATTGTA	S	F	A	-	Ī
			c	COL11A1,	collagen,	type XI,	alpha	しませいせい なびおび [ペ/ 北] ひ べし ないしおし なね	Σ.	E	a	ر	
G705a3	WIAF-13230	J041//	888					ואפורכאפאר (ו/א)פופערונוור	:	T	T	T	T
_				COL11A1,	collagen,	type XI,	alpha		:				
G705a4	WIAF-13231	J04177	894	1				AGACTGTGAC [T/A] CTTCAGCACC	Σ		<	2	
G705aS	WIAF-13232	304177	651	COL11A1,	collagen,	type XI,	alpha	TGACGGGAAG [T/A] GGCATCGGGT	Σ	4		×	
				COL11A1,	collagen,	type XI,	alpha						_
G705a6	WIAF-13233	J04177	661	1				TGGCATCGGG [T/A] AGCAATCAGC	Σ	E	A	<u>Θ</u>	
	ACCCL CATC	201	C C C C	COL11A1,	collagen,	type XI,	alpha	コンジング マン・コン・コン・コン・コン・コン・コン・コン・コン・コン・コン・コン・コン・コン	Σ		C.	- 2	
6/05a/	WIAE - 13234	7,7500	1221	-				ימיריים מין ה' ה' שביים מספריי	:		Ţ	Ť	Τ
G705a8	WIAF-13235	304177	2745 1	COL11A1,	collagen,	type XI,	alpha	TGGGTTTCCA [G/A] GTGCCAATGG	Σ	U	Æ	<u>ა</u>	
				COL11A1,	collagen,	type XI,	alpha						
G705a9	WIAF-13236	304177	4385 1	1				GTCCAGAAGG [T/A] CTTCGGGGCA	S	Į.	4	<u>ບ</u>	
				COL11A1,	collagen,	type XI,	alpha						
G705a10	WIAF-13237	J04177	4576 1	1		i		GAAAAAGGTG [A/T] CCGAGGGCTC	Σ	A	F-	2	
				COL11A1,	collagen,	type XI,	alpha						
G705a11	WIAF-13238	J04177	4306	1				GCTAAGGGGG [A/C] AGCAGGTGCA	Σ	A	U	<u>α</u>	
G705a12	WIAF-13239	304177	4837	COLIIAI, 1	collagen,	type XI,	alpha	AGACATACTG [A/G]AGGCATGCAA	Σ	4	ڻ	<u>о</u> в	
				COL11A1,	collagen,	type XI,	alpha						
G705a13	WIAF-13240	J04177	4931	1				AACAAGACAT [C/T] GAGCATATGA	S	U	H	1	
, , , , , ,	SACCE GATES		000	COL11A1,	collagen,	type XI,	alpha	TTTCACACTACA [1, 17]	Σ	F-		<u>ш</u>	
6/05a14	WLAF - 13340	111100	623	1	:						T	T	
G705a15	WIAF-13347	304177	2225 1	COL11A1,	collagen,	type XI,	alpha	GGGAGCCTGG [G/C] CCTCCAGGTC	S	g	υ	<u>ပ</u> ပ	

				COL.1181	collagen.	tvpe XI, alpha						
G7051116	WIAF-13679	304177	5493	1			AATTGATCAA [G/A] TACCTATTGT	Σ	U	A	 	
	000001-38419	771801.	3484	COLLIAL, 1	collagen,	type XI, alpha	GGAGTTCAAG [G/A] TCCTGTTGGT	Σ	Ŋ	A	U	۵
Incorp		104123	5392	COLLIA1,	collagen,	type XI, alpha	GAGATGTCCT [A/T] TGACAATAAT	Σ	A	Į.	<u>~</u>	Œ.
G705u18	WIAF-13/09	11500		COL11A2.	collagen,	type XI, alpha						
 G707u1	WIAF-12363	032169	4996	4996 2			TCCCCTGAGA [C/T] TCCGTGGGGC	Σ	บ	E		CL,
				COL11A2,	collagen,	type XI, alpha	ないないしつがご出来 「水~り」 出しついつご 日本本の	Σ	ڻ	4		
G707u2	WIAF-12374	U32169	3580							T		
2707113	WIAF-12385	U32169	2059	COL11A2, 2	collagen,	type XI, alpha	GCCTGGCTCA [G/A] ACGGACCCCC	Σ	v	A	Ω	2
CT (O)				COL12A1,	collagen,	type XII,				E		
G708a1	WIAF-13354	U73778	1885	alpha 1			GCCTCTCCTC (C/T) TGCAGAGCC	<u> </u>	اِر			
		0,000	0292	COL12A1,	collagen,	type XII,	TGTTGGACAA [G/A] AAATGACAAC	Σ	U	Æ	ы	×
G708a2	WIAF - 13333	2000		COL12A1,	collagen,	type XII,						
	WIAF-13356	U73778	3905				GCTTGTTGCA [A/T] GCTGTGGCAA	Σ	4	F	0	-
				COL12A1,	collagen,	type XII,	なにびけるがでして「な/ひ」でもでしまいではなっ	Σ	U	4	4	Ω
G708a4	WIAF-13357	U73778	7051			- 1	ATTICACAG IC/ATCGGGGTGTA	<u> </u>			Τ	
	1	900	9608	COLIZAL,	collagen,	type XII,	AAGAAGTAAA [G/A] ACATTATTT	S	. 6	Æ	¥	×
G708a5	WIAF-13358	0/2//0		201120	20112202						_	
7,000	WIBE-13364	U73778	1461	COLIZAI, 1461 alpha 1	collagen,	cype Aii,	TGGCTCCTAT [A/T]GCATTGGGAT	Σ	A	۲	S	ان
0 0 0 0 0				COL12A1,	collagen,	type XII,				Ę-	E-	
G708a7	WIAF-13365	U73778	2344	2344 alpha 1			ATTACTTGGA [C/T] TCAAGCTCCA	E				,
				COL12A1,	collagen,	type XII,	Cacataacat [G/a] GAGACCATCT	Σ	ల	Æ	Σ	н
G708a8	WIAF-13366	U7377B	2707			- 1		-				
					collagen,	type XII,		Σ	4	_ <u>E</u> -	ш	>
G708a9	WIAF-13367	U7377B	6592	alpha l			פאפררראופס (א) וזאפררידופיי		1			
				COL12A1,	collagen,	type XII,				A	>	-
G708a10	WIAF-13368	U73778	7434	alpha 1			CCAGGATGAG [6/A] ICAAGAAGGC	_	,			
				COL12A1,	collagen,	type XII,		Σ	ر	<u>.</u>		
G708a11	WIAF-13369	U73778	9108	alpha 1			ACCTCGGGGG [C/G] 16CC1GGGCC	-	,			
				COL12A1,	collagen,	type XII,		Σ	_ ပ	۲	ب۵	· S
G708a12	WIAF-13370	U73778	9111				ורפפפפפיני (כן בורפפפפפיני	-	_			
				COLIZAL,	collagen,	type XII,	CCCCTGGCC [G/A] TCCTGGAAAC	Σ	U	K	œ	Ξ
G708a13	WIAF-13371	U73778	ATA	9196 alpha 1								

				COL.12A1.	collagen.	type XII.					
G708u14	WIAF-13972	U73778	3044	044 alpha 1	1.		CAGTATTTGC [C/A] ACTTACAGCA	S	U	A	4
21,19000	WIBE-13977	872211	5853	COL12A1,	collagen,	type XII,	TGTGACTGTA [G/C] TTCCCGTTTA	Σ	U	<u>\</u> د	
Cinco			6	COL19A1,	collagen,	type XIX,	Spanson (T/S) Second Second	Σ	9	<u>0</u>	<u>.</u>
G710u1	WIAF-12371	D38163	3082	alpha 1			אמפטיייייייייייייייייייייייייייייייייייי		Т	T	Γ
G710u2	WIAF-12388	D38163	2089	COL19A1, alpha 1	collagen,	type XIX,	TCCAGGGACT [C/T] CAGGGAATGA	Σ	U	F	O O
			0 0777	COLISAL,	collagen,	type XV, alpha	Tenggetcca (A/G) GCAGTGAAGA	Σ	. 4	رن ن	s S
G711u1	WIAF-12360	77.27.00	Char	COLISAL.	collagen,	type XV, alpha					
G711u2	WIAF-12372	L25286	4001	1			ATATTCCAAT [A/G] TACTCCTTTG	Σ	A	5	Σ
6331.13	WT&F.12373	1.25286	3867	COL15A1,	collagen,	type XV, alpha	CCATTTGCAA [G/T] ATCTGTCCAC	Σ	U	F	۸ ۵
3				COL15A1,	collagen,	type XV, alpha					
G711a4	WIAF-13372	L25286	395	1			CCAGCAGCAC [C/T] CGTGGTGGCG	တ	U	-	F F
				COL15A1,	collagen,	type XV, alpha			t		
G711a5	WIAF-13373	L25286	3101	1		- 1	AAGGCGACCA [G/A] GGAGCCCAGG	2	,	T	
			0	COL16A1,	collagen,	type XVI,	GGGGAGGGGG [G/A] ATTTCAAGGC	Σ		<u>~</u> 4	<u></u>
G712u1	WIAF-13619	M92642	3608	SPOR ALDINA I		- 1				<u> </u>	1
		2000	7707	COL16A1,	collagen,	type XVI,	CCATGAAAAC [C/T] ATGAAGGGGC	S	υ	į.	<u>+</u>
G/17u2	WIAF - 13620	7407611		4 5110		1					-
G712u3	WIAF-13621	M92642	4707	COL16Al, alpha 1	collagen,	type XVI,	CCAAAGGTGA [A/C] AAAGGGGACA	Σ	A	U	Э
				COL16A1,	collagen,	type XVI,					
G712u4	WIAF-13654	M92642	421	alpha 1			GCCCACGCGA [C/A] GAGTATTCCC	S	ان	4	×
					collagen,	type XVI,		C		-	٥
G712u5	WIAF-13655	M92642	444	alpha 1			GGGGTCTCCC (6/A) 6AGGAGTTTG	,	,	Ī	
				COL16A1,	collagen,	type XVI,		. 2	-		<u> </u>
G712u6	WIAF-13656	M92642	338	alpha 1			CTCATGAAGA [A/C] GICIGCCAIC	Ε	۲	T	T
				COL16A1,	collagen,	type XVI,		:	,		
G712u7	WIAF-13862	M92642	3227	alpha 1			CCTGGTCCTC[C/T]GGGATTGCCA	Σ	راد	_	2
0.00	CAOCT DATE	MODEAD	9912	COL16A1,	collagen,	type XVI,	TCCTGGCTGT [G/T] TTGGGAGCCC	Σ	ပ	H	<u></u>
6/1748	WIAF - 13003	780761	25.								 -
					collagen,	type XVI,	してなりむしょしつ [日/ C] よじつきょじゅつじょ	U	C	Ę-	_ =
G712u9	WIAF-13878	M92642	318				ארכונאונים (כ/ ו) כפארונאפרי	,	,	T	
1	6 6 7		3861	COL16A1,	collagen,	type XVI,	ACAGGCGAGA [A/G] GGGCCAGAAA	Σ	A	<u> </u>	× ∝
G712u10	WIAF-13882	M32042	PACT								

									I	
111111	MTBE-13883	M92642	1309	COL16A1, collagen, type XVI,	GTCAGGAGCT [C/T] TGGGACCCTC	S	U U	F-	고	
271591	WIRF-13344	274615	3504	3504 COLIA1, collagen, type I, alpha 1	alpha 1 TCCTGGTGAA[C/G]AAGGTCCCTC	Σ	U		<u>ы</u> О	
G717u1	WIAF-12639	274616	3988	collagen, type I,	2 ATGAGGAGAC [T/C]GGCAACCTGA	S	F	U	E	
G720u1	WIAF-12367	X14420	3494	COLJAl, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	GGTGCAATCG [G/A] CAGTCCAGGA	Σ	O	a	0	
G720u2	WIAF-12383	X14420	3035	COL3Al, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	GGTGTCAAGG [G/A] TGAAAGTGGG	Σ	9	A	U	۵
G720a3	WIAF-13374	X14420	214	COL3Al, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, 214 autosomal dominant)	TCTTGGTCAG [T/C] CCTATGCGGA	Σ	Ę-	Ü	<u>σ</u>	a.
G720a4	WIAF-13375	X14420	1953	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, 1953 autosomal dominant)	CTGGACCTCA (A/G) GGACCCCCAG	w	A	U	0	o
G720a5	WIAF-13376	X14420	2194	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, 2194 autosomal dominant)	TAGAGGTGGA [G/A] CTGGTCCCCC	Σ	U	A	4	- E
G720a6	WIAF-13377	X14420	373	COL3Al, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, 3731 autosomal dominant)	GGGATTGGAG [G/A] TGAAAAAGCT	Σ	υ	A	U	Ω
G722u1	WIAF-14132	HT3162	140	COL4A2, collagen, type IV, alpha	GAGATTGGCG [C/T] GACTGGTGAT	Σ	υ	£	A	>
G724a1	WIAF-12120	X81053	3892 4	COL4A4, collagen, type IV, alpha 24	CTCGTGGAAA [G/A] AAAGGTCCCC	S	ပ	A	×	×
27.24.=.2	WTAF-12121	X81053	Q 4187 4	COL4A4, collagen, type IV, alpha	GAAAGGACCA [A/G] TGGGATTCCC	Σ	A	g	Σ	>
G724a3	WIAF-12122	X81053	3802 4	COL4A4, collagen, type IV, alpha	ATGATGTGGG [G/A] CCACCTGGTC	S	ڻ و	Æ	U	g
			!							

				COL4A4,	collagen,	type IV, a	alpha				L		
G724a4	WIAF-12123	X81053	1838 4	4				ACCAGGAAAG [C/A] ATGGTGCCTC	Σ	ں	4	=	z
G724u5	WIAF-12364	X81053	376 4	COL4A4,	collagen,	type IV, a	alpha	CTGTTTGCCA [C/T] TGTGTTCCTG	S	U	Ę۰	×	×
21176	W18F-12365	X81053	2018 4	COL4A4,	collagen,	type IV, a	alpha	TCCAGGGGAT [C/G] ATGAAGATGC	Σ	Ų	U	x ,	Ω
				COL4A4,	collagen,	type IV, a	alpha		U	4	ی	>	>
G724u7	WIAF-12366	XB1033	4 / 20		10001	2	-	100000000000000000000000000000000000000	1				
G724u8	WIAF-12377	X81053	3595	COL4A4, 4	collagen,	cype iv, a	arbua	CTGGACCACC [A/G] GGGTGCCCAG	8	A	U	a	۵
				COLABA,	collagen,	type IV, a	alpha						
G724u9	WIAF-12378	X81053	3516	4				GGAGCATCCG [G/C] AGAGCAGGGC	Σ	<u></u>	ں	5	A
				COL4A4,	collagen,	type IV, a	alpha						
G724u10	WIAF-12379	X81053	4288 4	4				CTGGTCTTCC [A/G] GGTCCCAGAG	S	4	ی	_	
G724u11	WIAF-12380	X81053	5140 4	COL4A4,	collagen,	type IV, a	alpha	GCCACTTTT [C/A] GCAAATAAGT	Σ	U	a	ČL,	Ľ
				COL4A4,	collagen,	type IV,	alpha						
G724u12	WIAF-12387	X81053	207 4	4				GACTTGCCTG [C/T] GATGTGGTCT	<u>.</u>	راد			
G727u1	WIAF-12362	D90279	5135	5135 COLSA1,	collagen,	type V, al	lpha 1	alpha 1 TTCAAGGTTT[A/T]CTGCAACTTC	Σ	٨	۲	λ.	Ĺ
G727u2	WIAF-12369	D90279	4686	4686 COL5A1,	collagen,	type V, al	lpha 1	alpha 1 AACAGGGTAT[C/T]ACTGGTCCTT	<u></u>	ပ	F	1	ı
G727u3	WIAF-12370	D90279	4608	4608 COL5A1,	collagen,	type V, a]	lpha 1	alpha 1 TCGGTCCTCC[G/C]GGTGAACAGG	ဟ	ပ	υ	Ъ	ď
G727a4	WIAF-13300	D90279	2034	2034 COL5A1,	collagen,	type V,	lpha 1	alpha 1 Acccccccc(T/A) cccrtcccAC	ဟ	Ę+	A	æ	A
G727a5	WIAF-13301	D90279	2073	2073 COL5A1,	collagen, type	۸ ر	lpha 1	alpha 1 GrGACCCTGG[T/C]CCTTCCGGCC	ဟ	F	ပ	IJ	g
G727a6	WIAF-13302	D90279	3763	3763 COL5A1,	collagen,	type V,	lpha 1	alpha 1 CGGCAGAAA [G/A] GTGATGAAGG	Σ	ဗ	_ 4	U	S
·				COL7A1, co 1 (epidermo dystrophic,	COL7A1, collagen, type V 1 (epidermolysis bullosa, dystrophic, dominant and	/II,	alpha					. 1	
G729u1	WIAF-11844	L02870	2345	2345 recessive)	e)			ATGGACTGGA [G/A] CCAGATACTG	2	او	4	2	

	æ æ	£-	ε Ω	.a .>	L.	F-
-	A	F	H	· E-	ر ب	H 4
<u> </u>		υ -	ū	<u>5</u>	Σ	Σ
	TATCCTGGCG [G/A] CCACTCAGAG S	GACTCGGTGA [C/T] TTTGGCCTGG	CGGACTATGA (G/T) GTGACCGTGA	CCAAGTGACT [G/T] TGATTGCCCT	CGCCGGGAGC [C/T] GGAAACTCCA	GCTTAGCTAC (A/T) CTGTGCGGGT
	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	COL7Al, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 3031 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 1289 recessive)	COL7Al, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 1897 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 1827 recessive)
	3083	3031	1285		189.	182
	L02870	L02870	1.02870	Craco	L02870	102870
	WIAF-11845	WIAF-11846	WTAF-11851		WIAF-11853	WIAF-11854
	G729u2	2729113			672905 672906	G729u7

F	н	I	Ü	U	~	>
A	F	E	α	O	ш	D
4	t-	Н	F	E	A.	Ę-
ပ	υ	U	ပ	U	· ·	A
Σ	Σ	Σ	Σ	Σ	Σ	Σ
GGGCCCTGCT [G/A] CAGTCATCGT	GAGCCAGATĂ [C/T] TGAGTATACG	TCATCTGTCA [C/T] CATTACCTGG	ACCAGGAGAG [C/T] GTGGTATGGC	GGGTGACCGA [G/T] GCTTTGACGG	GGCCATCCGT [G/A] AGCTTAGCTA	AGGATCCGTG [A/T] CATGCCCTAC
COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 2142 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 2353 recessive)	COL/Al, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 2221 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 6585 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 438 recessive)	COL7Al, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 3481 recessive)
2142	2353	2221	65	8169	438	3481
L02870	L02870	102870	L02870	L02870	L02870	102870
WIAF-11864	WIAF-11865	WIAF-11866	WIAF-11869	WIAF-11870	WIAF-11877	WIAF-11882
G729u9	G729u10	G729u11	G729u12	G729u13	G729u14	G729u15

				r		· · · · · · · · · · · · · · · · · · ·		
Q,	م	ڻ	<u>.</u>	<u>.</u>	S	. ×	U	f+
Δ,	Δ	ပ	Δ,			<u>α</u> ς	E	<u> </u>
U	U	υ	F	«	Ę.	4	ဗ	U
F		F		, ,	υ	<u></u> <u></u> <u></u> <u></u>	4	4
N	w	σ	Σ	·თ	Σ	Σ	Σ	တ
ACGGAGAACC [T/C] GGGGACCCTG	TGCCAGGGC [G/C] CGAGGCGAGA	GCTTGGATGG (T/C) GACAAAGGAC	ACCGTGGTTC [C/T] CACTGGACCA	TCCTAGGGCC [G/A] GCTGGAGAAG	CCAGGGAGAT [C/T] CTGGAGAGGA	ATCTTGCAAA [G/A]GATCCGTGAC	ATGGGCAAGG (A/G) AGCCGTTCCC	CAGGCGGGAC [A/G] GCCCGGAAGT
COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 5654 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 7124 recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and 3472 recessive)	COL8A1, collagen, type VIII,	COL9A2, collagen, type IX, alpha
5654	7124	7367	1615	2930	5145	3472	305	936 2
L02870	L02870	102870	102870	102870	102870	102870	X57527	M95610
WIAF-11883	WIAF-11884	WIAF-11885	WIAF-13389	WIAF-13390	WIAF-13399	WIAF-13411	WIAF-13303	WIAF-12616
G729u16	6729u17	G729u18	G729u19	G729u20	G729u21	G729u22	G730al	G732u1

				COL9A2, collagen, type IX, alpha		_	L			
G732u2	WIAF-12617	M95610	969	2	AAGGGAGAGA [C/T] GGGCCCTCAT	S	υ	£.	۵	Δ
G732u3	WIAF-12619	M95610	1288	COL9A2, collagen, type IX, alpha 2	AAGTGGGTGA [C/T] CCAGGGGTGG	Σ	U	H	P	S
G732u4	WIAF-12620	M95610	962	COL9A2, collagen, type IX, alpha 2	CCACCAGGGC [C/G] TAGCGGGTGT	Σ	ပ	ອ	đ	R
G737u1	WIAF-13394	M13436		INHBA, inhibin, beta A (activin A, activin AB alpha polypeptide)	TGCTCCCTG [G/T]	٠.	ڻ	[-		
G738a1	WIAF-13383	M58549	183	183 MGP, matrix Gla protein	ATGGAGAGCT (A/G) AAGTCCAAGA	Σ	A	ပ	×	Э
G738a2	WIAF-13384	M58549	330	330 MGP, matrix Gla protein	GCGCCGAGGG [A/G] CCAAATGAGA	Σ	A	ပ	Ę	A
G739u1	WIAF-11867	U94332		TNFRSF11B, tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	TGCTGAAGTT [A/G] TGGAAACATC	σ	Æ	ပ	J	Ĺ
G739u2	WIAF-11874	094332	1244	TNFRSF11B, tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	GTATCAGAAG [T/C] TATTTTAGA	S	1	υ	7	r)
G743u1	WIAF-13402	HT847	1669	PTHR1, parathyroid hormone 1669 receptor 1	CCCTGGAGAC [C/A] CTCGAGACCA	S	U	A	Ţ	Ŧ.
G747u1	WIAF-12414	303040	123	SPARC, secreted protein, acidic, cysteine-rich (osteonectin)	CTCAGCAAGA [A/G] GCCCTGCCTG	လ	æ	ບ	ம	ω
G748u1	WIAF-12628	HT0157	711	VDR, vitamin D (1,25- dihydroxyvitamin D3) receptor	CCTTCAGGGA (T/C) GGAGGCAATG	Σ	H	ວ	Σ	£-
G748u2	WIAF-12629	HT0157	1171	VDR, vitamin D (1,25-1171 dihydroxyvitamin D3) receptor	CCGCGCTGAT [T/C] GAGGCCATCC	တ	£-	υ	ы	н
G748u3	WIAF-12640	HT0157	27.1	VDR, vitamin D (1,25- dihydroxyvitamin D3) receptor	TTGACCGGAA [C/T] GTGCCCCGGA	S	U	_ا	2	z
G749u1	WIAF-11862	HT3734	679	679 osteopontin, alt. transcript 1	ATCACCTCAC [A/T] CATGGAAAGC	Σ	A	F	H	L.
G749u2	WIAF-11875	HT3734	386	386 osteopontin, alt. transcript l	AAGATGATGA [A/G] GACCATGTGG	ဟ	Æ	U	۵	Ω
G749u3	WIAF-11876	HT3734	419	419 osteopontin, alt. transcript 1	CCATTGACTC [G/A] AACGACTCTG	υ	ပ	A	S	s

						ľ	l	ŀ	-	Γ
6749a4	WIAF-12084	HT3734	171	171 osteopontin, alt. transcript 1	TAAACAGGCT [G/A] ATTCTGGAAG	Σ	0	4	2	<u> </u>
G749u5	WIAF-13387	HT3734	738	738 osteopontin, alt. transcript 1	CCAGGACCTG [A/C]ACGCGCCTTC	Σ	4	U	¥ z	П
G749u6	WIAF-13388	HT3734	716	716 osteopontin, alt. transcript 1	CATACAAGGC [C/A]ATCCCCGTTG	. 1				
G751u1	WIAF-12631	HT5036	410	410 ADM, adrenomedullin	GACAGCAGTC [C/G] GGATGCCGCC	Σ	Ü	<u>-</u>	۵. ا	T
G752u1	WIAF-11843	HT1782	1405	CHGA, chromogranin A (parathyroid secretory protein 1)	CGGCCATTGA [A/G] GCAGAGCTGG	S	4	<u> </u>	<u>ы</u>	·
G752u2	WIAF-11873	HT1782	1187	CHGA, chromogranin A (parathyroid secretory protein 1)	GGACAACCGG [G/A] ACAGTTCCAT	Σ	U	A	Z	
G754a1	WIAF-13382	K02043	663	NPPA, natriuretic peptide precursor A	GTACAATGCC [G/A] TGTCCAACGC	Σ	U	a	Σ >	
G756u1	WIAF-12395	HT3508	2086	dium channel, gated 1 alpha	CAGTTCCTCC [A/G] CCTGTCCTCT	Σ	A	U	4	
6757u1	WIAF-12420	HT28563	797	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	CCTGCAGGCC [A/C] CCAACATCTT	Σ	A	Ü	<u>٦</u>	
675702	WIAF-12421	HT28563	1006	SCNNIB, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	GAACTGAATT [C/T] GGCCTGAAGT	S	U	F	E.	
6757113	WIAF-12430	HT28563	1768	sodium channel, e-gated 1, beta (Liddle	TCATCGACTT [T/C] GTGTGGATCA	S	۲	U	[2.	_
G757u4	WIAF-12494	HT28563	662	SCNNIB, sodium channel, nonvoltage-gated 1, beta (Liddle 662 syndrome)	aagcagctca [g/c] catcagaaaa	Σ	ڻ	U	<u>a</u>	
G757uS	WIAF-12506	HT28563	1091	SCNNIB, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	GATGCTTCAC [G/C] AGCAGAGGTC	Σ	U	U	<u>о</u> ы	
9112365	W1AF-12507	HT28563	1452	SCNNIB, sodium channel, nonvoltage-gated 1, beta (Liddle 1452 syndrome)	ACCTGCATTG [G/T] CATGTGCAAG	Σ	U	۲	<u>></u> ن	
22,520	WTAF-12621	HT27856	415	SCNNID, sodium channel,	CGGGAACCCA [C/T] GTCGGCCGAG	Σ	U	E+	۲. ن	
G758u2	WIAF-12632	HT27856	325	SCNNID, sodium channel, 325 nonvoltage-gated 1, delta	CCTCTTTGAG [C/T] GTCACTGGCA	Σ	U	Ŀ	~	o

C758113	WIRE-12634	HT27856	879	SCNNID, sodium channel,	ATGGCGTCTG [G/A] ACAGCTCAGC	z	ß	4	3	
G758u4	WIAF-12635	HT27856	1138	nnel, delta	CGTGGAGGTG [G/C] AGCTGCTACA	Σ	ပ	U	ы	0
G762u1	WIAF-12622	HT27531	1850 (NPR3, natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)	TAGGAGCTGG (C/T) TTGCTAATGG	ν	U	F		9
G762u2	WIAF-12623	HT27531	NP re (a (a	R3, natriuretic peptide ceptor C/guanylate cyclase C trionatriuretic peptide receptor	AGAAGAAAGT (A/G) ACCTTGGAAA	Σ	4		z	0
G762u3	WIAF-12624	HT27531	1 1791	NPR3, natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor	CAAATCATCA [G/T] GTGGCCTAGA	Σ	ပ	H		υ
G762u4	WIAF-12636	HT27531	NF re (a) (a) (1963 (C)	R3, natriuretic peptide ceptor C/guanylate cyclase C trionatriuretic peptide receptor	GAAGATICCA [T/C] CAGATCCCAT	Σ	E-	ں ،	н	F
G763u1	WIAF-12659	HT3183	NP	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor B)	CTGGGCCCTT [C/T] CCTGATGAAC	Σ	υ	<u>-</u>	S	[Es
G763u2	WIAF-12678	HT3183	NP re (a (a 668 B)	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor B)	TGCCATCACT (T/C) CTGCTGTTGG	ν	F	U		ы
G763u3	WIAF-12684	HT3183	NP re (a 2354 B)	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor B)	TGTTTGAACT [C/T] AAACATATGA	S	ပ	<u> </u>		1

CCCCGTTACT [G/T] TCTCTTTGGG M G GAGCGCCAAG [C/T] GCTCATGCTC M C GTCCCCGTGG [G/A] AGCCTGCAGG S G GCTGGCACAA [A/G] GCTGCGGGCA S A TGATGGCCAC [A/G] TCCCGGAAAT S A TCATGGCCAC [C/A] AGTGTGACAT S A TCCCCTTCAG [C/T] TACCTCGTCG S C TCCCCTTCAG [C/T] TACCTCGTCG S C
TTGCAGG CTGGAAA CTCGTC CTCGTC
NPR1, natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor A) DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme) DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme) DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting cCCC enzyme) DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)
carboxypeptidase converting carboxypeptidase converting carboxypeptidase converting l carboxypeptidase converting
ptidase ptidase ptidase
ptidase ptidase ptidase
carboxypeptidase converting carboxypeptidase converting
beptidyl carboxypeptidase nsin I converting TCAGGTACTT[T/C]GTCAGCTTCA

				AVPR2, arginine vasopressin						
G772ù1	WIAF-12626	HT2121	1064	receptor 2 (nephrogenic diabetes insipidus)	TCAGCAGCAG [C/T] GTGTCCTCAG	S	U	Ŀ	S	
G772u2	WIAF-12627	HT2121	866	AVPR2, arginine vasopressin receptor 2 (nephrogenic diabetes 998 insipidus)	CCTTTGTGCT [A/G] CTCATGTTGC	Ŋ	a	U	<u>د</u> د	
G773u1	WIAF-12644	HT2141	163	SLC6A6, solute carrier family 6 (neurotransmitter transporter, 163 taurine), member 6	CTAGCAAGAT [C/T] GACTTTGTGC	Ŋ	U	F	H	
G773u2	WIAF-12645.	HT2141	445	SLC6A6, solute carrier family 6 (neurotransmitter transporter, 445 taurine), member 6	TCGTCATCCT [G/C] GCCTGGGCCA	S	. g	υ		
G773u3	WIAF-12665	HT2141	289	SLC6A6, solute carrier family 6 (neurotransmitter transporter, 289 taurine), member 6	TGTTTGGGAG [C/T] GGCCTGCCTG	S	٥	ı.	S	
G773u4	WIAF-12666	HT2141	382	SLC6A6, solute carrier family 6 (neurotransmitter transporter, 382 taurine), member 6	CCTTGTTCTC [T/C] GGTATCGGCT	S	T	ນ	S	
G776u1	WIAF-11857	166088	1457	SLC5AS, solute carrier family 5 (sodium iodide symporter), member 5	TAGAAGACCT [C/T] ATCAAACCTC	S	υ	ı. L		
G776u2	WIAF-11871	066088	2039	SLCSA5, solute carrier family 5 (sodium iodide symporter), member 5	GATTGTTG (G/C) TGGGACCTCG	Σ	9	υ 1	υ S	
G776u3	WIAF-13398	880990	3 9781	SLC5A5, solute carrier family 5 (sodium iodide symporter), member 5	GGCTTTTCCT [G/A] GCCTGTGCTT	S	9	A L	ı	
G777u1	WIAF-12646	HT27843	4348 SMRT		ATACAATATC [A/G] GCCAGCCTGG					П
G777u2	WIAF-12654	HT27843	2031 SMRT		CTGAGCTGGG [T/C] AAGCCGCGGC		Т		П	Т
G777u3	WIAF-12655	HT27843	2052 SMRT		AGAGCCCCCT [G/A] ACCTATGAGG					Т
G777u4	WIAF-12675	HT27843	2205 SMRT	+ history about in	CTCGTGAGAT [C/T] GCCAAGTCCC		U E	H (н п	Т
G778u2	WIAF-14093	HT1449	6033 TG,	thyroglobulin	ATGTGAACGA [C/T] GGTGCGATGC	ΣΣ	Т) F	1	T
										1

6	01111 Gara	1449	6894 TG	thyroglobulin	GTATCTCAAT [G/T] TGTTCATCCC	Σ	v	7	1	П
G778u3	WIAF - 14112	111447		**************************************	ATCCCCTCC [T/C] GAGCAGGTCT	S	L	D D	۵.	
G778u4	WIAF-14125	HT1449	2375 16	, tnyrogiobuin			Γ	0	2	Τ
G778u5	WIAF-14136	HT1449	1931	TG, thyroglobulin	AGGATGTCCA [A/6] ISCITITOCS					T
G783u1	WIAF-12649	X97674	4008	H.sapiens mRNA for transcriptional 4008 intermediary factor 2.	CTAGTGGTAT [G/C] CCAGCAACTA	Σ	U	<u>Σ</u>	<u>H</u>	
G783u2	WIAF-12658	X97674	2566	H.sapiens mRNA for transcriptional intermediary factor 2.	GCCTGGCAGT [G/A] AGCTGGACAA	Σ	U	e e	×	
G783u3	WIAF-12671	X97674	3828	H.sapiens mRNA for transcriptional intermediary factor 2.	CTCTGAGGCC [T/C] GGAGTACCAA	S	F	U U	<u>a</u>	
G785u1	WIAF-13385	HT1291	386	TTR, transthyretin (prealbumin, 386 amyloidosis type I)	CCAACGACTC [C/T] GGCCCCCGCC	Ŋ	Ü	F	S	
G787u1	WIAF-12652	HT27477	468	TRIP15: thyroid receptor interacting protein 15	GAAAATTATA (T/C) TTAGAACGAG	S	Ę-	U	X X	
G792u1	WIAF-12661	HT27476	265	thyroid receptor interactor 14	CAGCTGGAAC [G/A] TGAAGAGGGC	Σ	g	A	Σ >	
G793u1	WIAF-12643	HT5152	458	58 thyroid receptor interactor 8	GGAAGCTTTT [C/G] AAAGAATGTT	z	U	U	ν,	
G794u1	WIAF-12664	HT5136	1110	PSMC5, proteasome (prosome, 1110 macropain) 26S subunit, ATPase, 5	GCGTGTGCAC [G/A] GAAGCTGGCA	ω	U	A	H	
G797u1	WIAF-11847	HT3919	140	glutamate receptor 3,	flip isoform CTCACGGAGG[A/G]TTCCCCAACA	S	Æ	U	U U	
G797u2	WIAF-11848	нт3919	759	glutamate receptor 3,	flip isoform GGTTGTGATC[C/T]TAGGGAAACA	S	ပ	[+	1	
G797u3	WIAF-11849	HT3919	1253	glutamate receptor 3, flip	isoform GCTACTGGAA [C/T] GAGTATGAAA	S	υ	H	z	
G797u4	WIAF-11850	нт3919	1770	1770 glutamate receptor 3, flip isoform	isoform TCTTTTCCTA [G/A] TCAGCAGGTT	Σ	ဗ	Æ))	$\neg \Gamma$
G797u5	WIAF-13404	HT3919	2711	2711 glutamate receptor 3, flip isoform	isoform GCTACAACGT [G/A] TATGGAACAG	ဟ	b	a	>	
911/6/5	WIAF-13405	HT3919	2376	2376 glutamate receptor 3, flip isoform	isoform CTCAGCATTA[G/A]GAACGCCTGT	Σ	b	A	<u>مر</u> ن	
G798u1	WIAF-11868	X77748	2655	GRM3, glutamate receptor, 2655 metabotropic 3	TGCAGACGAC [A/G] ACCATGTGCA	S	A	ပ	<u>+</u>	

G798u2	WIAF-11879	X77748	2771	GRM3, glutamate receptor, metabotropic 3	CACAGACTGC (A/G) CCTCAACAGG	Σ	Æ	9	×	œ
G798a3	WIAF-12085	X77748	2699	GRM3, glutamate receptor, metabotropic 3	Greercries [6/c] crerrierr	Σ	ບ	U	U	A
G798a4	WIAF-12086	X77748	2738	GRM3, glutamate receptor, 2738 metabotropic 3	ATCCTGTTTC (A/G) ACCCCAGAAG	Σ	Ą	U		ρĸ
G798a5	WIAF-12087	X77748	2072	GRM3, glutamate receptor, 2072 metabotropic 3	ACACCCTTGG [T/C] CAAAGCATCG	Σ	[-	U	>	4
G798a6	WIAF-12088	X77748	2235	GRM3, glutamate receptor, 2235 metabotropic 3	CCCTGCTGAC [C/T] AAGACAAACT	S	ပ	Ŀ	Ę-	E
G798u7	WIAF-13391	X77748	1131	GRM3, glutamate receptor, metabotropic 3	GCGCCAATGC [C/T] TCCTTCACCT	S	υ	E٠	Æ	A
G799u1	WIAF-11880	M81883	2000	GAD1, glutamate decarboxylase 1 2000 (brain, 67kD)	CAACAAATGC [C/T] TGGAACTGGC	ဟ	U	E	٦.	
G799u2	WIAF-11881	M81883	1822	GAD1, glutamate decarboxylase 1 (brain, 67kD)	AGGGTATACT [C/T] CAAGGATGCA	s	U	E	اد	ū
G799u3	WIAF-13392	M81883	661	GAD1, glutamate decarboxylase 1 (brain, 67kD)	GCGTGGCCCA (T/C) GGATGCACCA	S	H	U	=	x
G799u4	WIAF-13393	M81883	556	GAD1, glutamate decarboxylase 1 (brain, 67kD)	AGCTGATGGC [G/A] TCTTCGACCC	ဟ	ڻ ت	4	æ	Æ
G799u5	WIAF-13410	M81883	1229	GAD1, glutamate decarboxylase 1	CCTCATGGAA [C/T] AAATAACACT	z	υ	Ę-	o	*
G801u1	WIAF-13403	D49394	1596	HTR3, 5-hydroxytryptamine 1596 (serotonin) receptor 3	TTTACCTGCT [A/6] GCGGTGCTGG	တ	Æ	ဗ		1
G803a1	WIAF-13118	U66406	1446	1446 EFNB3, ephrin-B3	CTGGGCCTGG [G/A] GGGTGGAGGT	Σ	9	4	υ	ш
G804u1	WIAF-11887	226653	7237	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	TCACTGATGG [G/T] CACATAAAAG	S	೮	F	U	U
G804u2	WIAF-11901	226653	9351	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	GCAAGCCACT [G/C] GAGGTTAATT	Σ	ပ	U	3	s
G804u3	WIAF-11924	226653	8740	LAMA2, laminin, alpha 2 (merosin, 8740 congenital muscular dystrophy)	ACACTACCCG [A/G] AGAATTGGTC	S	4	ပ	œ	œ

										Ī
G804u4	WIAF-11943	226653	8577	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	ACCAAAATCA (A/G) TGATGGCCAG	Σ	æ	9	z	S
G804a5	WIAF-12089	226653	3372	LAMA2, laminin, alpha 2 (merosin, 3372 congenital muscular dystrophy)	CTCTGTGACT [G/A] CTTCCTCCCT	Σ	ပ	4	U	*
G804a6	WIAF-13227	226653	7047	LAMA2, laminin, alpha 2 (merosin,	GTCAGTCCTC [A/g] GGTGGAAGAT	Σ	A	on.	0	αz
G804u7	WIAF-13437	226653	6791	LAMA2, laminin, alpha 2 (merosin, 6791 congenital muscular dystrophy)	TGTGAGAGCC (C/T) TGGATGGACC	S	Ü	£-	ر.	اد
GB05u1	WIAF-13416	U14755	799	799 LHX1, LIM homeobox protein l	AAGTAACAGC [A/G] GTGTTGCCAA	Σ	A	U	S	g
G805u2	WIAF-13417	014755	743	743 LHX1, LIM homeobox protein 1	GGCGAGGAAC [T/C] CTACATCATC	Σ	Ţ	U	Į,	a,
G805u3	WIAF-13428	U14755	639	639 LHX1, LIM homeobox protein 1	GCCGTCAGG [C/A] ATCTCCCCTA	S	U	A	IJ	U
G806u1	WIAF-11886	AF026547	2656	CSPG3, chondroitin sulfate 2656 proteoglycan 3 (neurocan)	TTGGAGTTCC [A/G] GCCATGTCTA	S	æ	ပ	ď	ď
G806u2	WIAF-11895	AF026547	529	CSPG3, chondroitin sulfate 529 proteoglycan 3 (neurocan)	TGACCTTCGC [T/C] GAGGCCCAGG	S	Ţ	U	A	A
G806u3	WIAF-11896	AF026547	477	CSPG3, chondroitin sulfate	GAGGTGACAG [G/A] TGTTĞTGTTC	Σ	Ŋ	4	ပ	D
G806u4	WIAF-11917	AF026547	68	CSPG3, chondroitin sulfate 89 proteoglycan 3 (neurocan)	ACAGGATATC (A/G) CCGATGCCAG	Σ	A	_O	Ę	A
G806u5	WIAF-11918	AF026547	213	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	AGCGCAGCCC [G/C] AGATGCCCCT	Σ	ပ	U	œ	Ω.
90908	WIAF-11929	AF026547	691	CSPG3, chondroitin sulfate 769 proteoglycan 3 (neurocan)	GCTTTGCCCG [G/A] GAGCTGGGGG	S	ပ	A	~	œ
G806u7	WIAF-11931	AF026547	3148	CSPG3, chondroitin sulfate 3148 proteoglycan 3 (neurocan)	ACATTGATGA [C/T] TGCCTCTGCA	ဟ	υ	£∸	۵	Ω

GBO6uB	WIAF-11949	AF026547	209	CSPG3, chondroitin sulfate 209 proteoglycan 3 (neurocan)	GCCAAGCGCA [G/A] CCCGAGATGC	Σ	g	A	4	[+
G806a9	WIAF-13114	AF026547	3430	CSPG3, chondroitin sulfate 3430 proteoglycan 3 (neurocan)	ATGAAAACAC [G/A] TGGATCGGCC	ഗ	ღ	A	Ę٠	
G806u10	WIAF-13420	AF026547	2113	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	CCAGGGCAGA [C/G] TTCAGAGAAA	Σ	υ	ຽ	Q	ធ
G806u11	WIAF-13431	AF026547	94	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ATATCACCGA [T/G] GCCAGCGAAA	. Σ	T	9	Q	ம
G806u12	WIAF-13432	AF026547	275	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ACAGGACTTG [C/T] CCATCCTGGT	Σ	υ	₽	d.	S
G808a1	WIAF-13117	Y13276	177	TLX, tailless homolog (Drosophila)	GCATGAGCAA [G/a] CCAGCCGGAT	S	ຽ	ø	×	×
G810u1	WIAF-11890	X98248	990	990 SORT1, sortilin 1	ATAAGGATAC [C/A] ACAAGAAGGA	S	ပ	A	Т	T
G810u2	WIAF-11891	X98248	1093	1093 SORT1, sortilin 1	GGCAGCAAAT [G/T] ATGACATGGT	Σ	ß	Ţ	D	Y
G810u3	WIAF-11907	X98248	1683	1683 SORT1, sortilin 1	CAGACGAAGG [T/G] CAATGCTGGC	S	L	G	ပ	ပ
G810u4	WIAF-11908	X98248	1433	1433 SORT1, sortilin 1	ATCTCCCAGA (A/C) ACTGAATGTT	Σ	A	U	×	E+
G810u5	WIAF-11909	X98248	1354	1354 SORT1, sortilin 1	GAAGCCTGAA [A/G]ACAGTGAATG	Σ	A	9	2	۵
G810u6	WIAF-11910	X98248	2180	2180 SORT1, sortilin 1	TACCGGAAAA [T/A] TCCAGGGGAC	Σ	Ţ	A	-	z
G810u7	WIAF-11911	X98248	2264	2264 SORT1, sortilin 1	AACTTTTGA [G/A] TCCGGAAAAA	Σ	ט	A	S	z
G810u8	WIAF-11925	X98248	1993	1993 SORT1, sortilin 1	TCGAGACTAT [G/A] TTGTGACCAA	M	.S	A	۸	I
G810u9	WIAF-11939	X98248	1351	1351 SORT1, sortilin 1	GAGGAAGCCT [G/C] AAAACAGTGA	Σ	5	ပ	Е	ŏ
G810u10	WIAF-11940	X98248	2232	2232 SORT1, sortilin 1	AAGTAAAAGA [C/T] TTGAAAAAAA	S	၁	Т	Q	Ω
G810a11	WIAF-13115	X98248	1769	1769 SORT1, sortilin 1	TCCATGAATA [T/A] CAGCATTTGG	Ж	Т	A	1	N
G810a12	WIAF-13116	X98248	1757	1757 SORTI, sortilin 1	CCTGGAGCTA [G/A] GTCCATGAAT	Σ	5	A	R	×
G811u1	WIAF-11893	HT3676	006	900 synapsin I, alt. transcript 1	TGACCAAGAC [G/A] TATGCCACTG	S	ပ	ď	F	£-
G811u2	WIAF-11894	HT3676	758	synapsin I, alt. transcript l	ACCTTCTACC [C/T] CAATCACAAA	Σ	· U	F	Δ.	Ľ
G811u3	WIAF-11927	HT3676	966	synapsin I, alt. transcript 1	CGTCAGTGTC [A/T] GGGAACTGGA	S	4	H	S	S
G811u4	WIAF-11928	HT3676	1054	synapsin I, alt. transcript 1	CATGTCTGAC [A/G] GATACAAGCT	Σ	A	U	24	U
GBllus	WIAF-13418	HT3676	249	249 synapsin I, alt. transcript 1	TGTCCAACGC [G/A] GTCAAGCAGA	S	g	. 4	Æ	A

Γ				T										T	
-	ω	-		ω		S	α.		<u> </u>	<u> </u>	<u> </u>	<u></u>	 _	١	_ Z
\mid	ω	-	Σ	- 9	Σ	<u> </u>			<u> </u>	<u> </u>	<u>×</u>	<u>+</u>		١	
\vdash	A	<u> </u>	F	٨	· ·		<u> </u>	F	o l	ບ)	F	<u> </u>		-
H	٥	F	٥	9	ပ	F	۸.	U	A	Α.	A.	ပ	Ü		5
-	S	တ	Σ	Σ	Σ	ဟ	Σ	. <u>.</u> .	Σ	Σ	Σ	S	. s		Σ
	TTAAAGTAGA [G/A] CAGGCCGAAT	CCAACCCCGA [T/C] GAGAAGACGA	TACACGACAT [G/T] TTCATGGACA	Tatgacagag [g/a] acagaggatg	GCATCCACAT [G/C] GTGACAGGTC	CTAACTGGTC [T/G] GGATTACAGA	GAAATGAAAC [A/G] GATTCTTGAG	GAGTTTTCA [C/T] TGCACTCAAT	TGTGAGACAC (A/G) GTTCAGATCC	TATAATCCAT [A/C] TACACGGAGT	GATTACCTGC [A/C] AACAGGAATG	CCTTCTATAC [C/T] CCAGAGCCAG	TCCTGAAAGA [C/T] ACCAAGAGCA		CAGACGGAAA (G/T) TGCTCACACC
	432 synapsin I, alt. transcript 1	163 STXIA, syntaxin 1A (brain)	604 STXIA, syntaxin 1A (brain)	939 Human B7 mRNA, complete cds.	619 Human B7 mRNA, complete cds.	HTR2B, 5-hydroxytryptamine 151 (serotonin) receptor 2B	HTR2B, 5-hydroxytryptamine 189 (serotonin) receptor 2B	TPH, tryptophan hydroxylase	TPH, tryptophan hydroxylase	TPH, tryptophan hydroxylase		TPH, tryptophan hydroxylase	TPH, tryptophan hydroxylase		ASMT, acetylserotonin N-
	HT3676	HT4564	HT4564	072508	U72508	HT4230	HT4230	HT2694	HT2694	нт2694	HT2694	HT2694	ur2694		
	WIAF-13419	WIAF-11898			WIAF-11948	WIAF-11897	WIAF-11930	WIAF-11902	WIAF-11903	MT 2004	WTAF-11905	WIAF-11933	MT b E . 1 1 9 2 5		
	G811u6	G812u1	G812u2	G813u1	G813u2	G816u1	G816u2	G818u1	G818u2	0.010.0	4.00	G818u5	20100		

G822u3	WIAF-11936	HT0207	318	methyltransferase	GAAAAGCTTT[C/T]TATCGAAACA	S	ں	1	CL,	Ĺ,
				ASMT, acetylserotonin N-						
GB22U4	WIAF-11937	HT0207	116	듸	AATGACTACG [C/T] CAACGGCTTC	Σ	٥	E-	A	>
G822u5	WIAF-11938	HT0207	930	ASMT, acetylserotonin N- methyltransferase	ACTGGGCAGA [C/T] GGAAAGTGCT	ဟ	Ų	<u>ب</u>	D	۵
0600	CONC. CARD		00.	ASMT, acetylserotonin N-		<u> </u>				,
907789	WIAF - 1342/	M10201	170		ACTACGCCAA [C/A] GGCTTCATGG	Σ	ان	4	z	×
	1			ADAR, adenosine deaminase, RNA-						
G825u1	WIAF-11888	HT4974	236	236 specific	GCTCAGATAC (C/T) AGCAGCCTGG	2	U	ы	0	
G825u2	WIAF-11900	HT4974	3076	ADAR, adenosine deaminase, RNA-3076 specific	TCTTTGACAA [A/G] TCCTGCAGCG	<u>ග</u>	4	_O	×	×
				ADAR, adenosine deaminase, RNA-		_				
G825u3	WIAF-11912	HT4974	2537	2537 specific	CTTGATTGGG [G/C] AGAACGAGAA	Σ	ပ	υ	ω	~
	-			ADAR, adenosine deaminase, RNA-						
G825u4	WIAF-11941	HT4974	3558	3558 specific	GATGCCTATG [A/G] CCTGGAGATC	Σ	æ	ບ	۵	ပ
G825a5	WIAF-12090	HT4974	1305	ADAR, adenosine deaminase, RNA- specific	CCTGAGACCA [A/G] AAGAAACGCA	Σ	Ą	U	×	æ
				ADAR, adenosine deaminase, RNA-		L				
G825u6	WIAF-13426	HT4974	3683	specific	CCGCAGGGAT [C/T] TACTGAGACT	S	υ	H	ر.	.,
G826u1	WIAF-12554	X99383	2109	ADARB1, adenosine deaminase, RNA- specific, B1 (homolog of rat RED1)	AGATTACCAA [A/G] CCCAACGTGT	S	æ	g	×	×
G826u2	WIAF-12566	Х99383	1698	ADARB1, adenosine deaminase, RNA- 1698 specific, B1 (homolog of rat RED1)	RED1) TGTCCTGCAG[T/G]GACAAGATTG	Σ	T	ပ	S	R
				DVL3, dishevelled 3 (homologous						
G829u1	WIAF-13735	U49262	1404		GGGTTGGAGG [T/C] CCGTGACTGC	Σ	<u>[</u>	υ	^	æ
				DNMT1, DNA (cytosine-5-)-	·					
G83u1	WIAF-10449	HT1576	1338	methyltransferase l	ATGATGACCC [G/A] TCTCTTGAAG	S	v	A	d,	a.
G83u2	WIAF-10450	HT1576	1871	<pre>DNMT1, DNA (cytosine-5-)- methyltransferase 1</pre>	AAGCTGGTCT [A/G] CCAGATCTTC	Σ	A	9	¥	Ú
				DNMT1, DNA (cytosine-5-)-						
G83u3	WIAF-10468	HT1576	928	928 methyltransferase 1	AAATCCACAG (A/G)TTTCTGATGA	Σ	4	U	-	>
1				ne-5-)-						
G83u4	WIAF-10469	HT1576	1562	1562 methyltransferase 1	AATTCCGACT [C/T] GACCTATGAG	Σ	J	F.	S	اد.
G83u5	WIAF-10471	HT1576	2424	DNMT1, DNA (cytosine-5-)- 2424 methyltransferase 1	GGGCCACGTC[G/A]GACCCTCTGG	S	G	Æ	S	s
							l	l	l	

									-	
G83u6	WIAF-10473	HT1576	3790	DNMT1, DNA (cytosine-5-)- 3790 methyltransferase 1	GTTCTTCCTC[C/T]TGGAGAATGT	S	υ	Ę	٦	.1
G83u7	WIAF-10486	HT1576	1581	DNMT1, DNA (cytosine-5-)- methyltransferase 1	AGGACCTGAT [C/A] AACAAGATCG	S	U	4	H	н
G832u1	WIAF-12577	13387	1129	PAFAH1B1, platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit (45kD)	AGACATTCAC [A/T] GGACACAGAG	S	4	E	F	E
G835u1	WIAF-12555	U38276	1311	SEMA3F, sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 3F	ccrcrggcrc[c/A]grgrrccgAG	w	Ú	A	S	S
G835u2	WIAF-12556	U38276	1229	SEMA3F, sema domain, immunoglobulin domain (Ig), short 1229 basic domain, secreted, 3F	ACTCACTITG [A/T] TGAGCTCCAG	Σ	4	F		>
G835u3	WIAF-12557	U38276	1473	SEMA3F, sema domain, immunoglobulin domain (Ig), short 1473 basic domain, secreted, 3F	GAACCTTCAC [G/A] CCATCTATGA	S	ပ	æ	E	F
G835a4	WIAF-13138	U38276	1726	SEMAJF, sema domain, immunoglobulin domain (Ig), short 1726 basic domain, secreted, 3F	TGACCAGGAG [A/T] TGGAGGAGCT	Σ	æ	H	Σ	اد
G836u1	WIAF-12592	U28369	1056	SEMAJB, sema domain, immunoglobulin domain (Ig), short 1056 basic domain, secreted, 3B	AACGACGTGG [G/A] CGGCCAGGGC	Σ	ဗ	A	ט	D
G836u2	WIAF-12609	U28369	1479	SEMAJB, sema domain, immunoglobulin domain (Ig), short 1479 basic domain, secreted, 3B	GTCCTGCCCA [C/T] TGGGGGGGG	Σ	٥	T	F	н
G838u1	WIAF-12590	172671	1107	ICAMS, intercellular adhesion	CCCAGCTGGG [A/G] CCCAAGCTCT	Σ	Æ	b	H	Æ
G838u2	WIAF-12591	U72671	996	ICAMS, intercellular adhesion 966 molecule 5, telencephalin	CAGGCAGCTG [A/G] TCTGCAACGT	Σ	4	Ů	н	>

				SOS1, s	son of sevenless						
G840al	WIAF-12109	HT961	2232	(Drosop)	(Drosophila) homolog 1	CTCAGGCAAA [T/C]GGAGTAAGCC	တ	E+	U	z	z
G840a2	WIAF-12110	HT961	2404	SOS1, s	SOS1, son of sevenless 2404 (Drosophila) homolog 1	ACCGTCTGAA [C/G] TTGTAGGGAG	Σ	ပ	U	رر	>
G840u3	WIAF-12213	HT961	3813	SOS1, s	SOS1, son of sevenless	CAAGGGTACC [G/A] CGTCGATGCT	S	۳.	4	ᇟ	Q.
		0.00	2721	SMOH, 8	smoothened (Drosophila)	TTTTGGCTTC (C/G) TGGCCTTTGG	Σ	ပ	<u> </u>	<u>د</u>	>
1014201	NIAE-12133	071/014			smoothened (Drosophila)						
G841u2	WIAF-12179	HT97420	828	858 homolog		CCCAGTTCAT [G/T] GATGGTGCCC	Σ	₀	۲	Σ	-
					smoothened (Drosophila)		•		(
G841u3	WIAF-12185,	HT97420	1164	1164 homolog		CTGTGAGTGG (C/G) ATTTGTTTTG	s :	ا ر	۽ و	، او	ى و
G847u1	WIAF-12588	L41939	2019	2019 EPHB2,	EphB2	GGTCTGCAGT [G/T] GCCACCTGAA	Σ	او	-	او	ار
G847u2	WIAF-12596	L41939	1806	1806 ЕРНВ2,	EphB2	GTGTAACAGA [A/C] GACGGGGTT	S	4	<u>.</u>	<u>~</u>	× :
G847u3	WIAF-12613	L41939	2885	2885 ЕРНВ2,	EphB2	AGGCCATCAA [G/C]ATGGGGCAGT	Σ	ای	ار	<u>∠</u> :	Z
G848u1	WIAF-12685	L40636	2484	2484 EPHB1,	EphB1	GTCAACAGTA [A/G] CCTGGTGTGC	Σ	4	ا و	z :	s :
G848u2	WIAF-12690	L40636	2020	ЕРИВ1,	ЕрћВ1	CCTTCACTTA (T/C) GAGGATCCCA	S	-	ال	-	, !
G849u1	WIAF-11920	D83492	1544	1544 EPHB6,	Ернве	ACCTGTGTGG [C/T] TCATGCAGAG	Σ	ن	H	4	>
G849u2	WIAF-11921	D83492	3301	ЕРНВ6,	ЕрћВб	CTTTGGGATA [C/T] TCATGTGGGA	Σ	U	F	<u>.</u>	Ĺ.
G849u3	WIAF-13412	D83492	1139	1139 EPHB6,	ЕрћВ6	GAGACCTTCA [C/T] CCTTTACTAC	Σ	U	Ħ	۴-	н
G849u4	WIAF-13413	D83492	1895	1895 EPHB6,	ЕрћВ6	TTTGAGGTGC [A/C] AGGCTCAGCA	Σ	A	ں	o	a
G849u5	WIAF-13414	D83492	2338	2338 ЕРНВ6,	Ернве	CTATGACCAG [G/A] CAGAAGACGA	Σ	S	4	A	Ę-
G849u6	WIAF-13415	D83492	2567	2567 EPHB6,	ЕрћВ6	GGGGCTTTGG [C/G] CTTCCTCCTG	Σ	ပ	ی	A	g
G849u7	WIAF-13422	D83492	2860	2860 EPHB6,	Ернве	GGCCATCCAG [G/A] CCCTGTGGGC	Σ	ß	Æ	Ø	F
G849u8	WIAF-13423	D83492	2782	2782 EPHB6,	Ернве	GGAGGTCATT [G/C] GGACAGGCTC	Σ	9	ပ	٥	æ
G849u9	WIAF-13424	D83492	3038	3038 EPHB6,	ЕрһВб	TTCCTCAGGC [A/G] GCGGGAGGGC	Σ	A	ن	ø	×
G849u10	WIAF-13425	D83492	3637	3637 EPHB6,	Ерһве	AGCCATTGGA [C/T] TGGAGTGCTA	S	ں	F	괴	17
G856u1	WIAF-12625	D45906	1323	1323 LIMK2,	LIM domain kinase 2	AGCTGAACCT [G/C] CTGACAGAGT	တ	ی	υ		1
				MADH2,	MADH2, MAD (mothers against		-				
G858ul	WIAF-12630	065019	864	864 homolog	2	TTTGGTGTTC [G/A] ATAGCATATT	S	_U	4	ß	S
	2001. GKTW	102147	196	RAD51,	RAD51 (S. cerevisiae)	TGAAGCAAAT [G/C] CAGATACTTC	Σ	Ö	U	Æ	O.
Ingos	101			1 1 1 1							
G86u2	WIAF-10465	HT1701	861	861 homolog	(E coli Re	GCATCAGCCA [T/C] GATGGTAGAA	Σ	<u>F-</u>	٥	Σ	F

RAD51, RAD51 (S. cerevisiae) 1924 homolog (E. Coli Rech homolog) 1925 transcription factor 4 1925 1							┝	Γ
MIAF-12637 HT0101 2576 9 WIAF-12638 HT0101 1131 9 WIAF-13406 HT33620 3627 2 WIAF-11913 HT4468 714 7 WIAF-11913 HT4468 314 9	RAD51, 924 homolog		TACAGAACAG [A/G] CTACTCGGGT	Σ	<u>ن</u> م		U	
WIAF-12637 HT0101 1131 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		class 3,	CAGCAATGGG [C/t]ATCCCCTCGG	Σ	ט	_=	<u>></u>	$\overline{}$
WIAF-12638 HT0101 1131 9 WIAF-13406 HT33620 3627 2 WIAF-11913 HT4468 714 9 WIAF-11914 HT4468 579			AAATCCCGTA [G/A] TGAATCCAAG	Σ	0	<u>ه</u>	z	
MIAF-11913 HT4468 314 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			TAACAGGAAA [C/T] GTGCAGTTTA	s	υ υ	E E	Z	Ť
MIAF-11989 HT4468 714 2 WIAF-11913 HT4468 314 3	3627	t e	AGATCAGCAG [G/T] GTAGCCCGTG	Σ	U	<u>~</u>	vs .	
MIAP-11913 HT4468 314	714	e carrier family 1 helial high affinity sporter, system	CAGAAGAGTC [C/G] TTCACAGCTG	w	Ų	v	- · · · · · · · · · · · · · · · · · · ·	
WIAF-11914 HT4468 579	314	solute carrier family 1 1/epithelial high affinity e transporter, system mber 1	CTAGAGAAAT [T/A] CTACTTTGCT	Σ	E-	. 4	<u> </u>	
SLCIA1, solute carrier fam (neuronal/epithelial high a	579	solute carrier family 1 1/epithelial high affinity e transporter, system	AAGTCAGTAC [G/A] GTGGATGCCA	S	U	Æ	£4	
GB70u4 WIAF-11922 HT4468 706 Xag), member 1	706	solute carrier family 1 11/epithelial high affinity ce transporter, system ember 1	GAACATGACA [G/A] AAGAGTCCTT	Σ	<u> </u>	Æ	ш	*

				 Bolute carrier family 1 Onal/epithelial high affinity nate transporter, system 					
G870u5	WIAF-11923	HT4468	978	978 Xag), member 1	GGAAGATCAT (A/G) GAAGTTGAAG	Σ	5	1	Ε
רוורכשט	W.TAP11892	HT3187	1004	SLCIA3, solute carrier family 1 (glial high affinity glutamate 1004 transporter), member 3	TTCTCTTAAC [G/C] AAGCCATCAT	Σ	ပ	<u></u> <u> </u>	
1 3 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5				ier family 1 glutamate					
G871u2	WIAF-11915	HT3187	1154	transporter), member 3	TGTTGGCTTA[C/T]TCATTCACGC	Σ	٦ ا	1	(L)
5.11.0	700 LL-2412	187 187	2141	SLC1A3, solute carrier family 1 (glial high affinity glutamate 1412 fransporter) member 3	GCTGCCATT (T/G) TCATTGCTCA	Σ		<u></u>	<u>ک</u>
CD1/05	07/11 1014								
,	2001		7161	SLC1A3, solute carrier family 1 (glial high affinity glutamate	AAACCCTTGG [G/A] TTTTTATTGG	Σ	 	<u> </u>	
GB / TU4	WIAF - LISES	101611	1771						-
687211	WIAF-13433	HT4077	1271	SLCIA2, solute carrier family 1 (glial high affinity glutamate transporter), member 2	CTGTTGGAGC [A/C] ACCATTAACA	S	ď	ج. ن	
				GRM2, glutamate receptor,		Σ	E	<u>-</u>	
G879u1	WIAF-11899	HT28317	12/3	orropic 2		Τ	1	Γ	1
G879u2	WIAF-11932	HT28317	2349	GRM2, glutamate receptor, 2349 metabotropic 2	CTTCTATGTC [A/G] CCTCCAGTGA	Σ	4	E-1	A
			2010	GRM2, glutamate receptor,	angcaagnan [g/n] mgggcnggc	Σ	<u>`</u>	_ _	H E
GB / 9U3	175CT - JWIM	1750311	2	CDNO CLUTTURE TOCONTON			Γ		
G879u4	WIAF-13429	HT28317	2567	stropic 2	CCCAGTTTGT [C/T] CCCACTGTTT	S	U	Ę.	>
				GRM2, glutamate receptor,	A PARAGET (A / A) TOTAGE	Σ	4	U	<u>></u>
G879u5	WIAF-13436	HT28317	2046	ortopic z				T	
G879u6	WIAF-13438	HT28317	2425	GRM2, glutamate receptor, 2425 metabotropic 2	GTGCTTGGCT [G/T] CCTCTTTGCG	Σ	U	Ę.	O.

-	ני	ís.	H				1	.1			υ	>-		۵	œ	æ		S			:	,	. Ξ		z	
	ı,	L	[-		C		3	1	:	,	ღ			ď	~	ບ		4		>		,	<u>a</u>		>-	G
	ڻ	F	U		e		١	Б		L.	ъ	T.		A	ပ	æ		5	,	ای		ن	æ		ro	
J	F	U	4		U		ار	A		4	c	U	Γ	U	٠	U		U		E-		F	Ū		£	
												S		Σ	S	Σ		Σ		Σ		S	Σ		Σ	
CCTCTTCCAG [C/T] CGCAGAAGAA M	AGCCCGACCT [T/G] GGCACCTGCT S	GGACCTGTCG [C/T] TCATCTGCCT	ACCAGCGGAC [A/G] CTCGACCCCC		ATCGCAAATG [C/a] ACAGGACAGG N		TCCTGTCTTC [C/t] TGGCAATGTT	TGTGCACACT [A/9] CCATGTAAGC		TGTGCTGACT[A/t]CCGGGGTGTC M	AAGCCAGAGG [G/a] GTTCTCAAGT	TCATAGACTA [C/t] GATGAACACA		CGAACTCTTG [C/A] CAATAATCGA	AAACAAACCG (T/C) ATCCACCGAA	GAGGCTTCA [G/A] GACGCGAACT		ATTAGTCCAG [C/G] ATCTCAGCTG M		TTTTCTCTGT [T/G] ATTCAATCAC M		TTACCATGTA [T/C] ACCACCTGCA	AACTCAGGCC [C/A] CAGCAGAGCC		GAAGTCGCTC[T/a]ACAACTGCCG	
2463 metabotropic 2	GRM4, glutamate receptor, 2117 metabotropic 4	GRM4, glutamate receptor, 2427 metabotropic 4	GRM4, glutamate receptor,	GRM7, glutamate receptor,	1408 metabotropic 7	GRM7, glutamate receptor,	7 metabotropic 7	GRM7, glutamate receptor,	GRM7, glutamate receptor,	1536 metabotropic 7	GRM7, glutamate receptor,	GRM7, glutamate receptor,	Company of the control of the contro	giulamate otropic 8	GRM8, glutamate receptor, 2016 metabotropic 8	GRM8, glutamate receptor,	GRM8, glutamate receptor,	otropic 8	GRMB, glutamate receptor,	1897 metabotropic 8	GRM8, glutamate receptor,	2364 metabotropic B	GFRA2, GDNF family receptor alpha	to the contract of the second	GFKAI, GDNF IAMIIY IECEPLUI AIPHA	GFRA1, GDNF family receptor alpha
				-	-		2027	1813			2473		-	105	201	1852		207		189		236	1363	-	497	8
HT28317	HT33719	HT33719	9 10 000	n13371	HT48863		HT48863	HT48863		HT48863	HT48863	000	H14666.	095025	U95025	1195025		095025		095025		095025	000000	AF 004	U95847	
WIAF-13439	WIAF-12164	WIAF-12176		WIAF - 12192	WIAF-13140		WIAF-13141	WIAF-13147		WIAF-13148	WIDE-13149		WIAF-13150	 WIAF-11916	WIAF-11945	WT B E - 11946		WIAF-11947		WIAF-13430		WIAF-13435	ACACL TIME	WIRE-1343#	WIAF-13142	
G879u7	G880u1	G880u2		GBBOU3	G883a1		G883a2	G883a3		G883a4	282395		G883a6	G884u1	G884u2	20042		G884u4		G884u5		G884u6		Caasui	G886al	

										ı	
G886a3	WIAF-13151	U95847	781	GFRA1, 1	GDNF family receptor alpha	GCGTGTCCAA (T/c) GATGTCTGCA	S	Т	υ	z	z
G892u1	WIAF-11956	U12140	798	NTRK2, 798 kinase,	neurotrophic tyrosine receptor, type 2	TGGGCANTCC (A/G) TTTACATGCT	S	Ą	ບ	Ωı	Q.
G892u2	WIAF-11957	U12140	834	NTRK2, 834 kinase,	neurotrophic tyrosine receptor, type 2	GGATCAAGAC [T/A] CTCCAAGAGG	S	T	A	F	F
G892u3	WIAF-11958	012140	956	NTRK2, 956 kinase,	neurotrophic tyrosine receptor, type 2	GCAAATCTGG [C/T] CGCACCTAAC	Σ	د	Ţ	æ	۸
GB92u4	WIAF-11960	U12140	1738	NTRK2, 1738 kinase,	neurotrophic tyrosine receptor, type 2	CTCCAAGTTT [G/A] GCATGAAAGG	Σ	U	A	IJ	တ
G892u5	WIAF-11962	U12140	2486	NTRK2, 2486 kinase,	neurotrophic tyrosine receptor, type 2	GTCGGTGGCC[A/G]CACAATGCTG	Σ	Ø	ပ	π.	œ
G892u6	WIAF-11965	012140	1106	NTRK2, 1106 kinase,	neurotrophic tyrosine receptor, type 2	TCCTTAAGGA [T/C]AACTAACATT	Σ	F	, C	н	Ę+
G892u7	WIAF-11966	U12140	2085	NTRK2, 2085 kinase,	neurotrophic tyrosine receptor, type 2	AGGATGCCAG [T/C] GACAATGCAC	S	7	٥	S	တ
G892u8	WIAF-11967	U12140	2230	NTRK2, 2230 kinase,	neurotrophic tyrosine receptor, type 2	GGACCTCAAC [A/C]AGTTCCTCAG	Σ	A	c	×	. 0
G892u9	WIAF-11968	U12140	2223	NTRK2, 2223 kinase,	neurotrophic tyrosine receptor, type 2	AGCATGGGGA [C/T] CTCAACAAGT	v	c	H	0	Q
G892u10	WIAF-11992	U12140	1602	NTRK2, 1602 kinase,	neurotrophic tyrosine receptor, type 2	GTAATGAAAT [C/T] CCTTCCACAG	S	٥	Т	н	I
G892u11	WIAF-11998	U12140	1354	NTRK2, 1354 kinase,	neurotrophic tyrosine receptor, type 2	TACTAAAATA (C/T) ATGTTACCAA	Σ	၁	T	×	¥
G892u12	WIAF-11999	U12140	1944	NTRK2, 1944 kinase,	neurotrophic tyrosine receptor, type 2	CATTIGITCA [G/C]CACATCAAGC	Σ	₀	U	± ⊘	

i								\mid		-	Γ
G892u13	WIAF-12000	012140	2103	NTRK2, 2103 kinase,	neurotrophic tyrosine receptor, type 2	CACGCAAGGA (C/T) TTCCACCGTG	s	ا ا ن		۵	
G892114	WIAF-12001	U12140	18601	NTRK2, 1860 kinase,	neurotrophic tyrosine receptor, type 2	CTGTCATTAT (T/C) GGAATGACCA	s	E C		н	
21.0000	WT DF - 13144	012140	1868	NTRK2, 1868 kinase,	neurotrophic tyrosine receptor, type 2	ATTGGAATGA [C/G] CAAGATCCCT	Σ	U U		٦ د	
G892a16	WIAF-13145	012140	1903	NTRK2, 1903 kinase,	neurotrophic tyrosine receptor, type 2	CCAGTACTT [G/T] GCATCACCAA	Σ	r v	F	U U	
G892a17	WIAF-13146	012140	1965	NTRK2, 1965 kinase,	neurotrophic tyrosine receptor, type 2	gacataacat [t/g] gttctgaaaa	Σ	F	U	н	Σ
G892u18	WIAF-13442	012140	958	NTRK2, 958 kinase,	neurotrophic tyrosine receptor, type 2	AAATCTGGCC [G/T] CACCTAACCT	Σ	<u> </u>	f	4	S
G892u19	WIAF-13446	012140	2502	NTRK2, 2502 kinase,	neurotrophic tyrosine receptor, type 2	TGCTGCCCAT [T/C] CGCTGGATGC	Ŋ	E-	U	Н	
G892u20	WIAF-13447	012140	2317	NTRK2, 2317 kinase,	neurotrophic tyrosine receptor, type 2	GATGCTGCAT [A/T] TAGCCCAGCA	Σ	A	E		L)
G892u21	WIAF-13448	U12140	2364	NTRK2, 2364 kinase,	neurotrophic tyrosine receptor, type 2	CGTCCCAGCA [C/A] TTCGTGCACC	Σ	U	A	Ŧ	٥
G892u22	WIAF-13449	012140	2507	NTRK2, 2507 kinase,	neurotrophic tyrosine receptor, type 2	CCCATTCGCT [G/A] GATGCCTCCA	z	ڻ	A	3	
G892u23	WIAF-13471	012140	2389	NTRK2, 2389 kinase,	1	TTTGGCCACC [A/C] GGAACTGCCT	Ŋ	4	U	<u>~</u>	œ
G892u24	WIAF-13472	U12140	2416	NTRK2, 2416 kinase,	neurotrophic tyrosine receptor, type 2	GGAGAACTTG [C/T] TGGTGAAAAT	Ŋ	U	£	.1	13
G892u25	WIAF-13474	012140	359	NTRK2, 359 kinase,	neurotrophic tyrosine receptor, type 2	GGGATGTCGT [C/T] CTGGATAAGG	Σ	U	F	·	CL.

								ĺ		Ī	
G892u26	WIAF-13479	012140	1044	NTRK2, 1044 kinase,	neurotrophic tyrosine receptor, type 2	TGTATTGGGA (T/C) GTTGGTAACC	Ŋ	£.	U	۵	Ω
G9u1	WIAF-10222	303826	1130	1130 FDXR, £	ferredoxin reductase	GGTATAAGAG [C/T] CGCCCTGTCG	တ	υ	7	ß	. v
G9u2	WIAF-10258	303826	388	FDXR,	ferredoxin reductase	CCGGAGCTGC[A/G]GGAGGCCTAC	Σ	Æ	ပ	o	~
10008	WIAF-11970	HT3470	497	STX4A,	syntaxin 4A (placental)	TGCAATTCAA [T/C] GCAGTCCGAA	Σ	F		Σ	£-
G901u1	WIAF-11969	HT27792	758	758 STX3A,	syntaxin 3A	TGCACACAGT [G/A] GACCACGTGG	S	ပ	A	۸	>
G901u2	WIAF-11971	HT27792	317	317 STX3A,	syntaxin 3A	ACGTCCGGAA [C/A] AAACTGAAGA	Σ	U	4	z	×
G901u3	WIAF-12002	HT27792	611	611 STX3A,	syntaxin 3A	AGCAAGCCCT [C/T] AGTGAGATTG	s	U	۲	ı	٦
G901u4	WIAF-12003	HT27792	606	909 STX3A,	syntaxin 3A	GCTGAATTAA [G/A] AGTGGCCTAA	٠	ပ	A	,	
G901u5	WIAF-12004	HT27792	163	163 STX3A,	syntaxin 3A	ATTGAGGAAA (C/T) TCGGCTTAAC	Σ	U	F	F	ы
G901a6	WIAF-13152	HT27792	82	82 STX3A,	syntaxin 3A	CAGCTGACAC (A/G) GGATGATGAT	Σ	A	S	0	~
G901u7	WIAF-13453	HT27792	828	828 STX3A,	syntaxin 3A	CCGGAAGAAA (T/C) TGATAATTAT	S	£-	U		٦
G901u8	WIAF-13455	HT27792	226	226 STX3A,	syntaxin 3A	TACAGTATCA [T/C] TCTCTCTGCA	Σ	Ę	ں		E+
G902u1	WIAF-13454	HT27744	848	848 STXSA,	syntaxin 5A	ACTTCCAGTC [T/A] GTCACCTCCA	S	Į.	A	S	S
G902u2	WIAF-13456	HT27744	338	338 STX5A,	Byntaxin SA	ATTTCGTGAG [A/G] GCCAAGGGCA	S	A	o	œ	~
		·		CREBL1,	CAMP responsive element						
G905u1	WIAF-12202	HT27789	487	binding	487 binding protein-like 1	TCCAGATCAA [C/T] GTTATCCCCA	S	ن	-	z	z
G905u2	WIAF-12219	HT27789	151	CREBL1, 151 binding	CAMP responsive element protein-like 1	ATTCTGGCCT[A/T]GATGAAGTGG	S	A	£-	ı,	r.
G905u3	WIAF-12230	HT27789	649	CREBL1, 649 binding	CAMP responsive element protein-like 1	AGTCCCTGTC[C/G]CCTTCAGGAT	တ	ບ	ტ	S	S
G906u1	WIAF-12214	HT4372	2127	N-ethylm	2127 N-ethylmaleimide-sensitive factor	aagggaagaa [g/a]gtctggatag	S	ບ	A	. ×	×
G906u2	WIAF-12221	HT4372	514	N-ethylո	514 N-ethylmaleimide-sensitive factor GGGAGAGCCT[G/A]CGACAGGGAA	GGGAGAGCCT [G/A] CGACAGGGAA	Σ	U	4	æ	Ţ
G908u1	WIAF-12201	HT3665	86	RABSA, 98 family	RABSA, member RAS oncogene	GCCCAAATAC (T/G) GGAAATAAAA	တ	F	ڻ	[-	F

						-			-	Γ
	0 C X C C C C C C C C C C C C C C C C C	9 9 9	900	ERCC1, excision repair cross- complementing rodent repair deficiency, complementation group 1 (includes overlapping antisense	Treadersh [C/T] gagecenage	თ	່ບ		z	
Thire	00001-3014	2011								
				ERCC1, excision repair cross-					_:	
				ng rodent repair						
				deficiency, complementation group						
		0.50	252	1 (includes overlapping antisense	Security (4/5) Jeconomical	v	Ü		£-	
G914a1	WIAF-13210	HT3672	252	252 synaptobrevin 1	GCAGTGCTGC [C/A] AAGCTAAAGA	S	U		A	
1				Homo ganiens mRNA for unc-					-	
G915a1	WIAF-12115	D63506	1390	1390 18homologue, complete cds.	TTACCTTGGT [G/A] TTCCCATTGT	Σ	G	A	۸	
				Homo sapiens mRNA for unc-						
G915u2	WIAF-12293	D63506	685	685 18homologue, complete cds.	ACAGCTTGTT [G/A] AAAAAAAGCT	Σ	G	A	ᆈ	
G916al	WIAF-13209	HT28523	308	Huntingtin associated protein 1-308 like protein	GAGCAGTTTT [C/T] GGAGGCCAGC	Σ	ບ	Т	S	
				Huntingtin associated protein 1-						
G916a2	WIAF-13211	HT28523	762	762 like protein	CGGAGGAGTT [G/C] GTGCCCCAGG	Σ	ی	υ	7	
G916a3	WIAF-13212	HT28523	260	Huntingtin associated protein 1- 560 like protein	GAGCTCAGAA [C/T] GTCTCTAAGG	Σ	<u>ں</u>	Ę-	<u>Σ</u>	
				HIP1, huntingtin interacting						
G917u1	WIAF-11972	U79734	1075	1075 protein 1	AGAGCCAGCG [G/A] GTTGTGCTGC	S	ß	A	2	
G917u2	WIAF-11973	U79734	1005	HIP1, huntingtin interacting	GACCACTTAA [T/C] TGAGCGACTA	Σ	F	υ	I	
				HIP1, huntingtin interacting						
G917u3	WIAF-11977	U79734	1539	1539 protein 1	CTGCAAGGCA [G/A] CCTGGAAACT	Σ	ای	A	S	T
				HIP1, huntingtin interacting	ひしょりょうしかい (ボ/ケ) およりおりかいひか	U	ι	E	<u>-</u>	
G917u4	WIAF-12005	0/9/34	817	51	ופפו פפו פין וון ברו פראפאפפ	,	ار	T	Τ	Τ
G917u5	WIAF-12006	079734	1906	HIP1, huntingtin interacting 1906 protein 1	GCTGGAGCCA [G/C] TATCTGGCCT	Σ	U	U	Ξ 0	
G917a6	WIAF-13157	U79734	993	HIP1, huntingtin interacting	AAGGATGAGA [A/G] GGACCACTTA	Σ	Ą	G	. Я	
				CAMK4, calcium/calmodulin-	APPECATOR (TV) GARATTOTTA	v	£	Ú	<u> </u>	
G919u1	WIAF-11974	D30/42	101	10 dependent process Av	שכופנפניים ביי כו מיידיי ימי] ,		1]

G919u2	WIAF-11991	D30742	1139	CAMK4, calcium/calmodulin-	AGAGCCACAA [G/A] GCTAGCCGAG	S	ပ	Æ	×	~
G919u3	WIAF-12007	D30742	834	CAMK4, calcium/calmodulin- 834 dependent protein kinase IV	CATGTTCAGG [A/T] GAATTCTGAA	z	Æ	H	α:	*
G919u4	WIAF-13443	D30742	1088	CAMK4, calcium/calmodulin-	TGGCCTCTTC [C/G] CGCCTGGGAA	w	U	_ ე	ν ₂	S
G920u1	WIAF-11979	X78520	1952	1952 CLCN3, chloride channel 3	ATGACATTCC[T/C]GATCGTCCAG		-	U	Г	d,
G920u2	WIAF-11980	X78520	1819	1819 CLCN3, chloride channel 3	ATAGCCTTCC[C/T]TAATCCATAC	Σ	ပ	7	م	L
G920u3	WIAF-11981	X78520	2094	2094 CLCN3, chloride channel 3	CATTGGAGCG [A/G] TCGCAGGAAG	Σ	Æ	ຍ	1	>
G920u4	WIAF-11983	X78520	2822	2822 CLCN3, chloride channel 3	ATATTTCCG [A/G] AAGCTGGGAC	S	æ	b	~	~
G920u5	WIAF-11984	X78520	2745	2745 CLCN3, chloride channel 3	GCCATTGAAG [C/T] TTCGAAGCAT		ပ	ī		(tr.
G920n6	WIAF-11987	X78520	2499	2499 CLCN3, chloride channel 3	TCCCTTAGCT [G/T] TCCTGACACA	Σ	ပ	۲	>	GL,
G920n7	WIAF-12008	X78520	1251	1251 CLCN3, chloride channel 3	CATCATCAGA [G/A] GTTACTTGGG	Σ	ပ	A	0	S
G920u8	WIAF-12011	X78520	888	888 CLCN3, chloride channel 3	AGTAGTAACA [C/T] TAACAGGATT		Π	£-		.1
G920n9	WIAF-13459	X78520	2804	2804 CLCN3, chloride channel 3	CAATGGAGAT [T/C] GTGGTGGATA		Ţ	U	н	
G921u1	WIAF-11954		931	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosteronerepressed prostate message 2, 931 apolipoprotein J)	Gagagettga [C/T] Caggaaatac	Σ	U	£-	<u></u>	H
G921u2	WIAF-11955	J02908	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, 880 apolipoprotein J)	CCCTCCCAGG [C/T] TAAGCTGCGG	Σ	. 0	F	4	
G921u3	WIAF-11990	02908	1051	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosteronerepressed prostate message 2,	CTCACGCAAG [G/C] CGAAGACCAG	Σ	O	U	ত	

										١	[
					•						
G921u4	WIAF-13469	302908	986	CLU, inhih glycc repre	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, 986 apolipoprotein J)	TCAACACCTC [C/T] TCCTTGCTGG	လ	υ		s	
6923u1	WIAF-11993	M19650	Hum. pho.	Humar phosp cds.	Human 2',3'-cyclic nucleotide 3'- phosphodiesterase mRNA, complete cds.	GAGCTAAGCC [G/A] GGGCAAGCTC	Σ	_O	4	0	
6923u2	WIAF-11994	M19650	1062	Humar phost cds.	Human 2',3'-cyclic nucleotide 3'- phosphodiesterase mRNA, complete cds.	CTAAGCCGGG [G/T] CAAGCTCTAT	Σ	ט	F	> '	
G923u3	WIAF-13445	M19650	1141		Human 2',3'-cyclic nucleotide 3'- phosphodiesterase mRNA, complete cds.	TCTTCACGGG [G/A] TACTACGGGA	S	ပ		<u>ຍ</u>	
G925u1	WIAF-11953	L11315	999	666 CAK,	cell adhesion kinase	GGGTCATGAG [T/C] GTCTGTCTGC	S	Ţ	C	SS	
G925u2	WIAF-11959	L11315	2562 CAK	CAK,	cell adhesion kinase	TGCTGCCCAT [C/T] CGCTGGATGG	s	U	T	1 I	
G925u3	WIAF-11996	L11315	2049	2049 CAK,	cell adhesion kinase	AAGATCTGGT [T/C] AGTCTTGATT	S	Ţ	c	V V	
G925u4	WIAF-13440	L11315	1601 CAK	CAK,	cell adhesion kinase	TACCAGGAGC [C/T] CCGGCCTCGT	Ϋ́	c	Т	J.	
G925u5	WIAF-13441	L11315	1629 CAK	CAK.	cell adhesion kinase	cecccacrc[c/r] ccrccrcrc	S	S	T.	S	
G925u6	WIAF-13451	L11315	2262	CAK.	cell adhesion kinase	TGGAGAACGG [C/Ţ] GACCTCAACC	S	ن	Ŀ	S S	
G926u1	WIAF-11961	AF018956	577	577 NRP1,	, neuropilin 1	TGAAAGCTTT [G/T] ACCTGGAGCC	Σ	ប	F	٥	
G926u2	WIAF-11963	AF018956	1683	1683 NRP1,	, neuropilin 1	CCACGCGATT [C/G]ATCAGGATCT	Σ	U	Ü	r.	
G926u3	WIAF-11975	AF018956	2176	2176 NRP1,	neuropilin 1	GACCTTCTGG [T/C] ATCACATGTC	Σ		U	Ξ >	
G926u4	WIAF-11976	AF018956	2002	2092 NRP1,	, neuropilin 1	TTCCCAAGCT [G/T] ACGAAAATCA	Σ		<u>-</u>	٥	
G926a5	WIAF-13158	AF018956	747	747 NRP1,	neuropilin 1	TTTTTACAC [C/T] GACAGCGCGA	S	U	Ŀ	E E	
G926a6	WIAF-13159	AF018956	966	996 NRP1,	neuropilin 1	ACTTGGGCCT [T/C] CTGCGCTTTG	S	F	U	고	
G926u7	WIAF-13444	AF018956	644	644 NRP1,	neuropilin 1	GAAATCTGGG [A/C] TGGATTCCCT	Σ	A	U	۵	
G926u8	WIAF-13450	AF018956	1738	1738 NRP1,	neuropilin 1	CAGAATGGAG [C/G] TGCTGGGCTG	Σ	U	Ü	7	
G926u9	WIAF-13452	AF018956	537	537 NRP1,	neuropilin 1	TTGTCTTTGC [G/A] CCAAAGATGT	လ	IJ	A	A	
G926u10	WIAF-13457	AF018956	2197	2197 NRP1,	neuropilin 1	TGGGTCCCAC [G/A] TCGGCACACT	Σ	ß	A	н >	
G927u1	WIAF-11978	AF022860	870	870 NRP2,	neuropilin 2	GGATTGCTAA [T/C] GAACAGATCA	s	H	Ü	z	
G927u2	WIAF-11982	AF022860	1674	1674 NRP2,	neuropilin 2	ATGACACCCC [T/G] GACATCCGAA	S	<u>(-</u>	S	Ь	
G927u3	WIAF-11985	AF022860	1250	1250 NRP2,	neuropilin 2	TGGCACTCAG [G/A] TATCGCCCTC	Σ	ပ	A	O U	\neg
G927u4	WIAF-11986	AF022860	1011	1071 NRP2,	, neuropilin 2	ATGGCTACTA[C/T]GTCAAATCCT	S	υ	Į.	<u>~</u>	

		0,00000	200	Cook Sec	2 111	CTTCATCASC (G / B) CCGCATCT	S	وا	4	Ŀ	Ŀ
6927u5	MIRE 12003	AF022000	COUN CCAC	NP D2	2	GCAACCTCAG [G/T] GTCTGGCGCC	Σ	₀	£-	ြ	>
6927117	WIAF-12012	AF022860	123	NRP2,	2	GCTATATCAC [C/T] TCTCCCGGTT	S	ပ	Ŀ	1	4
G927a8	WIAF-13160	AF022860	2427 NRP2	NRP2,	neuropilin 2	CTTTTGCAGT [G/T] GACATCCCAG	S	S	Ţ	>	>
G927a9	WIAF-13161	AF022860	2430 NRP2,	NRP2,	neuropilin 2	TTGCAGTGGA [C/G] ATCCCAGAAA	M	Ü	ß	۵	Э
G927a10	WIAF-13162	AF022860	2463	2463 NRP2,	neuropilin 2	AAGGATATGA [A/G] GATGAAATTG	S	A	9	ω	Ξ
G927a11	WIAF-13163	AF022860	2473	2473 NRP2,	neuropilin 2	AGATGAAATT [G/T] ATGATGAATA	Σ	ی	H	ㅁ	>-
G927u12	WIAF-13480	AF022860	724	724 NRP2,	neuropilin 2	TCGTTCATCG [A/T] CGGGGATCCT	Σ	A	۲	٢٠	S
G927u13	WIAF-13481	AF022860	767	767 NRP2,	neuropilin 2	ATGGCGGTGG [C/T] CAAGGATGGC	Σ	U	<u>F-</u>	4	>
G930a1	WIAF-13164	HT2608	609	GABRA2, (GABA)	gamma-aminobutyric acid A receptor, alpha 2	ACAATGGGAA (G/a) AAATCAGTAG	S	ڻ	rd		ᆇ
G931a1	WIAF-13153	HT2609	1111	GABRA3, (GABA)	gamma-aminobutyric acid A receptor, alpha 3	ACTGGTTCAT [A/9] GCCGTCTGTT	Σ	4	9	н	Σ
G931a2	WIAF-13165	HT2609	1448	GABRA3, 1448 (GABA)	gamma-aminobutyric acid A receptor, alpha 3	TGTCAGCAAG [G/A] TTGACAAAAT	Σ	Ö	4	>	н
G932a1	WIAF-13154	HT27773	1077	GABRA4, 1077 (GABA)	gamma-aminobutyric acid A receptor, alpha 4	CAAAAGAAAG (A/G) CATCAAAGCC	Σ	A	ڻ	₽	A
G932a2	WIAF-13155	HT27773	1189	Gabra4, (Gaba)	gamma-aminobutyric acid A receptor, alpha 4	AGAACAAATG [C/A] TTTGGTTCAC	Σ	U	æ	æ	Ω
G936u1	WIAF-12308	HT3432	1027	GABRB2, (GABA)	gamma-aminobutyric acid A receptor, beta 2	AATTACGATG[C/T]TTCAGCTGCA	Σ		E	۸ .	>
G936u2	WIAF-12327	HT3432	362	GABRB2, 362 (GABA)	gamma-aminobutyric acid A receptor, beta 2	AAGGCTATGA [C/T] ATTCGTCTGA	<u>"</u>	U		Δ	Ω
G936u3	WIAF-12328	HT3432	571	GABRB2, (GABA)	gamma-aminobutyric acid A receptor, beta 2	CTCTGGGTGC (C/T) TGATACCTAT	Σ	ပ	F	۵.	د ـ
G939u1	WIAF-12330	HT2236	1219	GABRR2, (GABA)	gamma-aminobutyric acid receptor, rho 2	CTGGATGGAA [G/C] CTACAGTGAG	Σ	U	Ü	σ	F
G939u2	WIAF-12355	HT2236	1003	GABRR2, 1003 (GABA)	gamma-aminobutyric acid receptor, rho 2	ACCACCATCA (T/C) CACGGCGTG	Σ	E	U		E

						1	Т	1		1	· · · · · · · · · · · · · · · · · · ·	
ы	۵.	E	>	£.,	F	×	ن		Z	>	Δ,	
>	0	×	K	ČL,	Ω,	យ	>	۵	z	A		
4	U	U	F	U	ಸ	ъ	9	U	<u> </u>	F		E
_O	Æ	4	υ	۴	U	ن	4	F	U	U	4	ပ
Σ	Σ	Σ	Σ	S	Σ	Σ	Σ	w	ß	Σ	· σ	<u></u>
CGTCTCCTAC [G/A] TCAAGGCCGT	GTCCTGCTCC[A/C]GTTCACCACT	GATAACAGCA (A/C) GCCACATTTG	CTGGGTAGTG [C/T] AACGTGCAAG	CTGGCCTCTT [T/c] ACCGTGGAGA	CTACCCCAAC [C/a] CAGAAACTAC	GTGTGCCCA [G/a] AGTCCGAGCC	ATCAGCTICT[A/9]CATGCTCTGT	ACCACCTGGA [T/c] GAGTTTAAAA	CCGGCTCCAA [C/t] GCCAACATCA	CTTCACATAG [C/T] CCTTTTGGTA	AAGAGGACCC [A/T] GCTCCATGTG	GCTGGACAGA [C/T] GTGCTCTACT
GABRR2, gamma-aminobutyric acid (GABA) receptor, rho 2	Human putative G protein-coupled receptor (GPR19) gene, complete cds.	Human putative G protein-coupled receptor (GPR19) gene, complete cds.	Human putative G protein-coupled receptor (GPR19) gene, complete 818 cds.	calcium channel, voltage-gated, alpha 1 subunit, L type, alt. 5110 transcript 1	calcium channel, voltage-gated, alpha 1 subunit, L type, alt. 3842 transcript 1	calcium channel, voltage-gated, alpha 1 subunit, L type, alt.	calcium channel, voltage-gated, alpha 1 subunit, L type, alt. transcript 1	calcium channel, voltage-gated, alpha 1 subunit, L type, alt. transcript 1	calcium channel, voltage-gated, alpha 1 subunit, L type, alt. 6616 transcript 1	calcium channel, voltage-gated,	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	calcium channel, voltage-gated, 1614 alpha 1D subunit, DHP-sensitive
1041	785	443	818	5110	3842	5624	5703	5809	6616	1334	1452	1614
HT2236	U64871	U64871	U64871	HT3860	HT3860	HT3860	HT3860	HT3860	HT3860	HT2199	HT2199	HT2199
WIAF-12356	WIRF-13622	WIAF-13624	WIAF-13625	WTAF-13166	WIDE-13167	WIAF-13168	9 A L F L - R & T W	WIAF-13170	WIAF-13171	WIAF-14187	WIAF-14188	2413
1						יים היים היים היים היים היים היים היים			G955a6	G956u1	G956u2	

			<u> </u>				Ī		Ī	ſ
G956u4	WIAF-14190	HT2199	2540	calcium channel, voltage-gated,	GGCAAGTTTA (A/T) TTTTGATGAA	Σ	A	H	z	н
G956u5	WIAF-14191	HT2199	3210	calcium channel, voltage-gated, 3210 alpha 1D subunit, DHP-sensitive	TGCTGAGCAG [T/C] GCTGCCCTGG	Ŋ	Ę-	U	s	S
909269	WIAF-14192	HT2199	3326	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TTGAAGATGA [C/T] AACTTTTGGA	Σ	U	Т	F	н
G956u7	WIAF-14193	HT2199	3274	calcium channel, voltage-gated, 3274 alpha 1D subunit, DHP-sensitive	ACTGGGTTAC [T/C] TTGACTATGC	Σ	Ę-	U	(L.	T.
6956u8	WIAF-14194	HT2199	5127	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TGCCTCTCAA [C/T]AGTGACGGGA	σ	U	F	z	z
695609	WIAF-14195	HT2199	5173	calcium channel, voltage-gated, 5173 alpha 1D subunit, DHP-sensitive	TGCTTTGGTT [C/T]GAACGGCTCT	z	Ú	F	α	
G956u10	WIAF-14200	HT2199	1437	calcium channel, voltage-gated,	CAGATATCGT [A/G]GCTGAAGAGG	S	A	ی	>	>
G956u11	WIAF-14201	HT2199	2567	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	ACCAAGCGGA [G/T] CACCTTTGAC	Σ	g	۔	S	н
G956u12	WIAF-14202	HT2199	4464	calcium calpha 1D	TCACCTTTTT [C/T] CGTCTTTTCC	S	c	Ŀ	Ĺ	(L ₄
G956u13	WIAF-14215	HT2199	6927	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	GCTACAGCGA [C/T] GAAGAGCCAG	တ	Ų	E٠	۵	Ω
G956u14	WIAF-14216	HT2199	6858	calcium channel, voltage-gated,	CCCGAGCCAA [C/T] GGGGATGTGG	S	c	⊢	z	z
695711	WIAF-12306	HT4229	915	calcium channel, voltage-gated, alpha IE subunit, alt. transcript 2	TACATCGAGC [G/A] TGCTTCATGA	Σ	G	æ	٠.	œ
G957u2	WIAF-12309	HT4229	3555	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript 2	GCCACTACAT [C/T] GTGAACCTGC	s	Ü	<u> </u>	н	I

							Τ		Ť		\top		T		Γ			T		1			
I		2		F		Ŧ	-		2		œ		4	4	-	ĹĿ.		[1.	[k	+-	Σ		<u>~</u>
		z		Ę4		0	-	ţ	_او		<u>.,</u>		ان	H	-	S		S	Ĺz.	╬	>		≻
<u>+</u>		_ ပ		Ą		F	-		₹		F		U		-	Ŀ		٢٠	E	+	Æ		E
U		E-		ပ		U	L		و		U		0	A	+	υ		U .		4	<u></u> <u></u>		U
Ø		σ		S		Σ	_		Σ		Σ		Σ	Σ	L	_Σ		Σ		,	Σ		ď
ATGTAGATCA [C/T] GAGAAAAACA		AGAACGAGAA [T/C] GAACGCTGCG		TATGGACCCC [G/A] CCGATGACGG		ATCACCACACACACCACCACCACCACCCACCACCCACCC	יייייייייייייייייייייייייייייייייייייי		GCTGGCAGGA [G/A] GCCTTGATGA		CCCTCCTTTC[C/T]TACAGCTCCC		AACGCTTTGG [G/C] AACCAACAAA	00100000000000000000000000000000000000	ופאכוויים (מ/מ) המינוים	Trgatgccct [c/T] TGATGAGGCC		TGGACAGGAT [C/T] TTCACAGCGT		AGGCTCTCTT [C/T] GACTTCCTCA	CATGCGGCT [G/A] TGGTGCTGGT		をおりりをひを出り(中/の) を出りのものもの。
calcium channel, voltage-gated, alpha 1E subunit, alt. transcript	calcium channel, voltage-gated,	alpha 1E subunit, alt. transcript 2	voltac	alpha 1E subunit, alt. transcript	calcium channel, voltage-gated,	alpha 1E subunit, alt. transcript	2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript	2	calcium channel, voltage-gated,	aipna is subduite, are:	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript			2	CACNB3, calcium channel, voltage-	CACADO CALLO CHANNEL VOltade	dependent, beta 3 subunit	alcium c	dependent, beta 3 subunit	CACNB3, calcium channel, voltage-		CACNB2, calcium channel, voltage-
	7	5181			1,60		5985		3100 2		6492		3839		4753	7966		1288		641			
	H14229	HT4229			H14229		HT4229		HT4229		HT4229		HT4229		HT4229	9 c c c	9777	HT3336		HT3336		H13330	
,	WIAF-12310	WIAF-12313			WIAF-12314		WIAF-12315		WIAF-12329		WIAF-12331		WIAF-12354		WIAF-12357		WIAF-12305	WIAF-12340		WIAF-12345		WIAF-12346	
	G957u3	4:17305			G957u5		G957u6		G957u7		81.738		6957u9		G957u10		G960u1	G960u2		G960u3		G960u4	

G961u2	WIAF-12347	095019	2007	CACNB2, calcium channel, voltage-	CATTTGACTC [G/A] GAAACCCAGG	S	_O -	Æ	S	S
G962u1	WIAF-12324	095020	1423	CACNB4, calcium channel, voltage- 1423 dependent, beta 4 subunit	CCAATTGAAA [G/A] ACGAAGTCTA	Σ	IJ	A	~	×
G962u2	WIAF-12342	095020	167	CACNB4, calcium channel, voltage-	GGAGCAGGTT [G/T] AAAAGATCCG	Σ	U	L	ı	íe.
G962u3	WIAF-12350	095020	1571	CACNB4, calcium channel, voltage- 1571 dependent, beta 4 subunit	ACACTTACAA [A/G] CCCCATAGGA	ဟ	4	ڻ ن	*	×
G965u1	WIAF-12312	040583	1276	CHRNA7, cholinergic receptor,	TCCTGCACGG (T/C) GGGCAACCCC	N	T.	C	ט	g
G968a1	WIAF-12119	HT27592	1008	CHRNA1, cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	acacacaca [c/t] cgctcaccca	S	C	Ţ	н	æ
G968u2	WIAF-12368	HT27592	1136	CHRNA1, cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	aagatttta (c/t) agaagacatt	Σ	ပ	T	Ŀ	н
G973a1	WIAF-13172	HT48774	008	CHRNA2, cholinergic receptor, nicotinic, alpha polypeptide 2 800 (neuronal)	ACACTTCAGA [C/t] GTGGTGATTG	S	ວ	t	٥	۵
G973a2	WIAF-13173	HT48774	927	CHRNA2, cholinergic receptor, nicotinic, alpha polypeptide 2 (neuronal)	CTGGAACCCC [G/a] CTGATTTTGG	Σ	S	rs.	4	(+
G977u1	WIAF-13949	Y08419	366	CHRNAS, cholinergic receptor,	AAGTTATACG [T/C] GTTCCTTCAG	S	Ę+	υ	œ	CK.
G978al	WIAF-13179	Y08417	1331	CHRNB3, cholinergic receptor,	CCATTAGATA [C/a] ATTTCGAGAC	z	υ	æ	,	*
G983a1	WIAF-13214	HT0374	236	236 NPY, neuropeptide Y	GATACTACTC [G/A] GCGCTGCGAC	s	ن ت	A	S	S
G983a2	WIAF-13215	HT0374	290	90 NPY, neuropeptide Y	GAAAACGATC[C/T]AGCCCAGAGA	\neg		Ę-	S	S
G983a3	WIAF-13216	HT0374	111	111 NPY, neuropeptide Y	GCGACTGGGG [C/T] TGTCCGGACT	S	J	T.	J	٦
G987a1	WIAF-13174	HT27830	159	PPYR1, pancreatic polypeptide 159 receptor 1	TGGTCTTCAT [C/T] GTCACTTCCT	s	U	Ę	н	н

008732	WTAE-13175	HT27830	222	PPYR1, pancreatic polypeptide	TGATGTGT [G/A] ACTGTGAGGC	S	U	A	>	-
2000	WTAF-13176	HT27830	322	PPYR1, pancreatic polypeptide receptor 1	GCCGCTGACC (G/T) CCGTCTACAC	Σ	v	Ţ	Α.	S
G987a4	WIAF-13177	HT27830	1074	PPYR1, pancreatic polypeptide receptor 1	TGGAGGAGTC [G/A] GAGCATCTGC	S	ပ	K	S	S
G987a5	WIAF-13178	HT27830	975	PPYR1, pancreatic polypeptide receptor 1	CCTCCACCTG[C/T]GTCAACCCAT	S	U	Ęщ	U	U
G987a6	WIAF-13180	HT27830	615	PPYR1, pancreatic polypeptide receptor 1	AGTTCCTGGC [A/g] GATAAGGTGG	S	A	б	A	4
G987a7	WIAF-13181	HT27830	718	PPYR1, pancreatic polypeptide	GGGCTTCATC [C/T] TGGTCTGTTA	S	υ	£-	.1	اد
G987a8	WIAF-13182	HT27830	745	oancreatic polypeptide	CATCTACCGG [C/t] GCCTGCAGAG	Σ	U	Lt.	æ	U
G987a9	WIAF-13183	HT27830	842	pancreatic polypeptide	GTGATGGTGG [T/A] GGCCTTTGCC	Σ	Į-	A	>	ш
G987a10	WIAF-13184	HT27830	852	PPYR1, pancreatic polypeptide receptor 1	TGGCCTTTGC [C/T] GTGCTCTGGC	S	U	T.	A	4
G987all	WIAF-13185	HT27830	889	PPYR1, pancreatic polypeptide 889 receptor 1	CAACAGCCTG [G/a] AAGACTGGCA	Σ	ပ	ro	ш	*
G987a12	WIAF-13186	HT27830	924	PPYR1, pancreatic polypeptide 924 receptor 1	CCATCTGCCA [C/T] GGGAACCTCA	တ	U	E	×	æ
G989u1	WIAF-13573	D86519	891	891 NPY6R, neuropeptide Y receptor Y6	receptor Y6 TGACTCATGC[C/T]TACTGGGGCA	S	U	ي	A	A
G989u2	WIAF-13588	086519	465	465 NPY6R, neuropeptide Y receptor Y6	receptor Y6 ACCACCCAGC[A/G]TCTAATACAA	ω	A	U	A	A
G989u3	WIAF-13591	D86519	086	980 NPY6R, neuropeptide Y receptor Y6 GAGCCCTTCC [G/A] CAACCTCTCT	GAGCCCTTCC [G/A] CAACCTCTCT	Σ	ပ	Æ		×
G991u1	WIAF-12390	HT97376	336	336 Notch2	AAGGTACTTG [C/T] GTTCAGAAAA	s	U	E	U	ں
G993u1	WIAF-12359	095299	1343	NOTCH4, Notch (Drosophila)	TCCACACTCT [G/T] CCTGTGTCAG	Σ	ც	Ę	U	Œ
G993u2	WIAF-12361	U95299	2020	NOTCH4, Notch (Drosophila) 2020 homolog 4	TAAGGACCAG [A/G] AAGACAAGGC	Σ	4	ပ	×	ω
G993u3	WIAF-12384	095299	5775	NOTCH4, Notch (Drosophila) homolog 4	GGGCCTATTC [G/T] CATTGCCGGA	တ	ပ	F+	S	S
G996a1	WIAF-13213	HT3329	356	OPRM1, opioid receptor, mu 1	CTTAGATGGC [A/G] ACCTGTCCGA	Σ	Æ	ပ		۵
LPLa4	WIAF-13314	HT1320	443		ATGTATGAGA [G/T] TTGGGTGCCA	Σ	<u>ي</u>	۲,		н:
LPLaS	WIAF-13315	HT1320	579	579 LPL, lipoprotein lipase	GACAGGATGT [G/A] GCCCGGTTTA	S	<u>5</u>	₹	>	>

, , , ,	STOCK GATH	111110	609 1.91.	1.	lipoprotein lipase	TGGAGGAGGA [G/A] TTTAACTACC	S	9	4	3 E	
רארושף	DTCCT_JAIN	2000				ししかししからない (な/し) ひなびなななななない	ď		, A	. T	
LPLa7	WIAF-13317	HT1320	1338 LPL,	Ì	iipoprotein lipase	ראאו ואפער (כ/ ע) וערורניונר	,	,			T
Pe IO I	WIAF-13318	HT1320	1117 LPL,		lipoprotein lipase	CAATCTGGGC [T/G] ATGAGATCAA	Σ	<u>.</u>	ای		T
200	UTAE-12310	HT1320	715 L.PI.		lipoprotein lipase	CAGAATTACT [G/A] GCCTCGATCC	Σ	ဗ	ď	3	
LPLAS.	MINE 13313	320	834 1.PI.			CTGGTCGAAG [C/A] ATTGGAATCC	Σ	C	A		
LPLAIO	WIAE-13320	011320	100			GACTTGGAGA IT/A) GTGGACCAGC	Σ	Ę.	A	, C	
LPLall	WIAF-13321	H11320	7025	1		A BATA A GAT IC / G AGGCTGA A A C	z	U	6		
LPLa12	WIAF-13322	HT1320	1595 LPL,	1		TO TO TO TO TO THE TOTAL TO THE	Σ	U		5	
LPLa13	WIAF-13323	HT1320	1597 LPL,			#U####################################		Ę			T
LPLa14	WIAF-13324	HT1320	1606 LPL,	-		אפפר ופאאר (ו/ ב) פפפרפאזיכי		, ,	,	T	
1.01.915	WIAF-13325	HT1320	1611 LPL,		lipoprotein lipase	GAAACTGGGC [G/A] AATCTACAGA		,			1

(This page has been intentionally left blank.)

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

CLAIMS

WE CLAIM:

10

15

- 1. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
- 5 a) obtaining a nucleic acid sample from the individual; and
 - b) determining the nucleotide present at nucleotide position 2210 of the thrombospondin-1 gene,

wherein presence of a G at nucleotide position 2210 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having an A at nucleotide position 2210.

- 2. The method of Claim 1, wherein the thrombospondin-1 gene has the nucleotide sequence of SEQ ID NO: 1.
- 3. The method of Claim 1, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 4. The method of Claim 3, wherein the vascular disease is myocardial infarction.
- 5. The method of Claim 3, wherein the vascular disease is coronary heart disease.
- 6. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - a) obtaining a nucleic acid sample from the individual; and
 - b) determining the nucleotide present at nucleotide position 2210 of the thrombospondin-1 gene,

wherein presence of an A at nucleotide position 2210 is indicative of decreased likelihood of a vascular disease in the individual as compared with an individual having a G at nucleotide position 2210.

- 7. The method according to Claim 6, wherein the thrombospondin-1 gene has the nucleotide sequence of SEQ ID NO: 1.
 - 8. The method according to Claim 6, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 10 9. The method according to Claim 8, wherein the vascular disease is myocardial infarction.
 - 10. The method according to Claim 8, wherein the vascular disease is coronary heart disease.
- 11. A method for predicting the likelihood that an individual will have a vascular disease, comprising the steps of:
 - a) obtaining a DNA sample from an individual to be assessed; and
 - b) determining the nucleotide present at nucleotide position 2210 of the thrombospondin-1 gene,
- wherein presence of a G at nucleotide position 2210 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having an A at nucleotide position 2210.
 - 12. The method according to Claim 11, wherein the thrombospondin-1 gene has the nucleotide sequence of SEQ ID NO: 1.
- 13. The method according to Claim 11, wherein the individual is an individual at risk for development of a vascular disease.

- 14. The method according to Claim 11, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 5 15. The method according to Claim 14, wherein the vascular disease is myocardial infarction.
 - 16. The method according to Claim 14, wherein the vascular disease is coronary heart disease.
- 17. A nucleic acid molecule comprising all or a portion of the nucleic acid

 sequence of SEQ ID NO: 1 wherein said nucleic acid molecule is at least 10 nucleotides in length and wherein the nucleic acid sequence comprises a polymorphic site at nucleotide position 2210 of SEQ ID NO: 1.
- 18. The nucleic acid molecule according to Claim 17, wherein the nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
 - 19. An allele-specific oligonucleotide that hybridizes to the nucleic acid molecule of Claim 17.
- A peptide of SEQ ID NO: 2 which is at least ten contiguous amino acids, wherein the peptide comprises the serine at amino acid position 700 of SEQ
 ID NO: 2.
 - 21. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - obtaining a biological sample comprising thrombospondin-1 protein or relevant portion thereof from the individual; and

- b) determining the amino acid present at amino acid position 700 of the thrombospondin-1 protein,
- wherein presence of an asparagine at amino acid position 700 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having a serine at amino acid position 700.
- 22. The method of Claim 21, wherein the thrombospondin-1 protein has the amino acid sequence of SEQ ID NO: 2.
- The method of Claim 22, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
 - 24. The method of Claim 23, wherein the vascular disease is myocardial infarction.
- 25. The method of Claim 23, wherein the vascular disease is coronary heart disease.
 - 26. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - a) obtaining a biological sample comprising thrombospondin-1 protein or relevant portion thereof from the individual; and
- b) determining the amino acid present at amino acid position 700 of the
 thrombospondin-1 protein,

wherein presence of a serine at amino acid position 700 is indicative of reduced likelihood of a vascular disease in the individual as compared with an individual having an asparagine at amino acid position 700.

25 27. The method according to Claim 26, wherein the thrombospondin-1 protein has the amino acid sequence of SEQ ID NO: 2.

- 28. The method according to Claim 26, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 5 29. The method of Claim 28, wherein the vascular disease is myocardial infarction.
 - 30. The method of Claim 28, wherein the vascular disease is coronary heart disease.
- 31. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - a) obtaining a nucleic acid sample from the individual; and
 - b) determining the nucleotide present at nucleotide position 1186 of the thrombospondin-4 gene,
- wherein presence of a C at nucleotide position 1186 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having an G at nucleotide position 1186.
 - 32. The method of Claim 31, wherein the thrombospondin-4 gene has the nucleotide sequence of SEQ ID NO: 3.
- 33. The method of Claim 31, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
 - 34. The method of Claim 33, wherein the vascular disease is myocardial infarction.

10

- 35. The method of Claim 33, wherein the vascular disease is coronary heart disease.
- 36. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - a) obtaining a nucleic acid sample from the individual; and
 - b) determining the nucleotide present at nucleotide position 1186 of the thrombospondin-4 gene,

wherein presence of a G at nucleotide position 1186 is indicative of decreased likelihood of a vascular disease in the individual as compared with an individual having a C at nucleotide position 1186.

- 37. The method according to Claim 36, wherein the thrombospondin-4 gene has the nucleotide sequence of SEQ ID NO: 3.
- The method according to Claim 36, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease,
 myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
 - 39. The method according to Claim 38, wherein the vascular disease is myocardial infarction.
- 40. The method according to Claim 38, wherein the vascular disease is coronary heart disease.
 - 41. A method for predicting the likelihood that an individual will have a vascular disease, comprising the steps of:
 - a) obtaining a DNA sample from an individual to be assessed; and
- b) determining the nucleotide present at nucleotide position 1186 of the thrombospondin-4 gene,

wherein presence of a C at nucleotide position 1186 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having a G at nucleotide position 1186.

- 42. The method according to Claim 41, wherein the thrombospondin-4 gene has the nucleotide sequence of SEQ ID NO: 3.
 - 43. The method according to Claim 41, wherein the individual is an individual at risk for development of a vascular disease.
- The method according to Claim 41, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease,
 myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
 - 45. The method according to Claim 44, wherein the vascular disease is myocardial infarction.
- 46. The method according to Claim 44, wherein the vascular disease is coronary heart disease.
 - 47. A nucleic acid molecule comprising all or a portion of the nucleic acid sequence of SEQ ID NO: 3 wherein said nucleic acid molecule is at least 10 nucleotides in length and wherein the nucleic acid sequence comprises a polymorphic site at nucleotide position 1186 of SEQ ID NO: 3.
- 20 48. The nucleic acid molecule according to Claim 47, wherein the nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
 - 49. An allele-specific oligonucleotide that hybridizes to the nucleic acid molecule of Claim 47.

- 50. A peptide of SEQ ID NO: 4 which is at least ten contiguous amino acids, wherein the peptide comprises the proline at amino acid position 387 of SEQ ID NO: 4.
- 51. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
 - a) obtaining a biological sample comprising thrombospondin-4 protein or relevant portion thereof from the individual; and
 - b) determining the amino acid present at amino acid position 387 of the thrombospondin-4 protein,
- wherein presence of an alanine at amino acid position 387 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having a proline at amino acid position 387.
 - 52. The method of Claim 51, wherein the thrombospondin-4 protein has the amino acid sequence of SEQ ID NO: 4.
- 15 53. The method of Claim 52, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 54. The method of Claim 53, wherein the vascular disease is myocardial infarction.
 - 55. The method of Claim 53, wherein the vascular disease is coronary heart disease.
 - 56. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising

- a) obtaining a biological sample comprising thrombospondin-4 protein or relevant portion thereof from the individual; and
- b) determining the amino acid present at amino acid position 387 of the thrombospondin-4 protein,
- wherein presence of a proline at amino acid position 387 is indicative of reduced likelihood of a vascular disease in the individual as compared with an individual having an alanine at amino acid position 387.
 - 57. The method according to Claim 56, wherein the thrombospondin-4 protein has the amino acid sequence of SEQ ID NO: 4.

- 58. The method according to Claim 56, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- 15 59. The method of Claim 58, wherein the vascular disease is myocardial infarction.
 - 60. The method of Claim 58, wherein the vascular disease is coronary heart disease.
- 20 61. A nucleic acid molecule selected from the group consisting of the genes listed in the Table, wherein said nucleic acid molecule is at least 10 nucleotides in length and comprises a polymorphic site identified in the Table, wherein a nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
- 25 62. A nucleic acid molecule according to Claim 61, wherein said nucleic acid molecule is at least 15 nucleotides in length.

- 63. A nucleic acid molecule according to Claim 61, wherein said nucleic acid molecule is at least 20 nucleotides in length.
- 64. A nucleic acid molecule according to Claim 61, wherein the nucleotide at the polymorphic site is the variant nucleotide for the gene listed in the Table.
- 5 65. An allele-specific oligonucleotide that hybridizes to a portion of a gene selected from the group consisting of the genes listed in the Table, wherein said portion is at least 10 nucleotides in length and comprises a polymorphic site identified in the Table, wherein a nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
 - 66. An allele-specific oligonucleotide according to Claim 65 that is a probe.
 - 67. An allele-specific oligonucleotide according to Claim 65, wherein a central position of the probe aligns with the polymorphic site of the portion.
 - 68. An allele-specific oligonucleotide according to Claim 65 that is a primer.
- 15 69. An allele-specific oligonucleotide according to Claim 68, wherein the 3' end of the primer aligns with the polymorphic site of the portion.
 - 70. An isolated gene product encoded by a nucleic acid molecule according to Claim 61.
- 71. A method of analyzing a nucleic acid sample, comprising obtaining the
 20 nucleic acid sample from an individual; and determining a base occupying any
 one of the polymorphic sites shown in the Table.
 - 72. A method according to Claim 71, wherein the nucleic acid sample is obtained from a plurality of individuals, and a base occupying one of the polymorphic

positions is determined in each of the individuals, and wherein the method further comprising testing each individual for the presence of a disease phenotype, and correlating the presence of the disease phenotype with the base.

1/8

HT1220 Report

RECORD INFORMATION

 Gene ID:
 1220

 Sequence ID:
 1220

 Protein ID:
 1220

 Through the control of the control

Sequence name: thrombospondin 1, alt. transcript 1

Genome: nucleus
Taxon: Homo sapiens

Locus: 1220

Common Name: thrombospondin 1

Role ID:

Coding sequence length: 3513 nt Transcript sequence length: 5722 nt Expression data: 481987

ACCESSION DATA

HT1220 is derived from accessions(s):

```
SP:P07996 (THROMBOSPONDIN 1 PRECURSOR.)
GB:X04665(Human mRNA for thrombospondin)
GB:X14787(Human mRNA for thrombospondin)
GB:U12471(thrombospondin-p50 {Homo sapiens})
GB:M99425(Human thrombospondin mRNA, 3' end.)
PIR:G01478 (thrombospondin-p50 - human (fragment))
GB:U12471(Human thrombospondin-1 gene, partial cds.)
GB:J04835(Human thrombospondin gene, exons 1, 2 and 3.)
GB:M25631(Homo sapiens (clone lambda-TS-33) thrombospondin (THBS) mRNA, 5' end.)
```

ALTERNATIVE SPLICE INFORMATION

Alternative splice forms for this gene:

HT3987 thrombospondin 1, alt. transcript 2

MAPPING DATA

GDB accession(s) for this gene:

GDB ID: Symbol

Figure 1A

gdb:120438 THBS1

2/8

cDNA FEATURES

Feature	End 5	End 3
		
coding_seq	112	3624
3 ' UT	·3625	5722
spjunc_h	1235	1236

SEQUENCE

nucleotide:

ggacgcacaggcattccccgcgcccttccagcccttcgccgccctcgccaccgctcccggc cgccgcgctccggtacacacaggatccctgctgggcaccaacagctccaccatggggctg tetggeggagacaacagegtgtttgacatetttgaactcaeeggggeegeeegcaagggg tetgggegeegaetggtgaagggeeeegaeeetteeageeeagettteegeategaggat gccaacctgatccccctgtgcctgatgacaagttccaagacctggtggatgctgtgcgg gcagaaaagggtttcctccttctggcatccctgaggcagatgaagaagacccggggcacg ctgctggccctggagcggaaagaccactctggccaggtcttcagcgtggtgtccaatggc aaggegggeaccetggaceteagcetgacegtecaaggaaageageacgtggtgtetgtg gaagaagctctcctggcaaccggccagtggaagagcatcaccctgtttgtgcaggaagac ${\tt agggcccagctgtacatcgactgtgaaaagatggagaatgctgagttggacgtccccatc}$ caaagcgtcttcaccagagacctggccagcatcgccagactccgcatcgcaaaggggggc gtcaatgacaatttccagggggtgctgcagaatgtgaggtttgtctttggaaccacacca gaagacatcctcaggaacaaaggctgctccagctctaccagtgtcctcctcacccttgac aaggacttgcaagccatctgcggcatctcctgtgatgagctgtccagcatggtcctggaa ctcaggggcctgcgcaccattgtgaccacgctgcaggacagcatccgcaaagtgactgaa $\tt gagaacaaagagttggccaatgagctgaggcggcctcccctatgctatcacaacggagtt$ cagtacagaaataacgaggaatggactgttgatagctgcactgagtgtcactgtcagaac ${\tt tcagttaccatctgcaaaaaggtgtcctgcccatcatgccctgctccaatgccacagtt}$ $\verb|cctgatggagaatgctgtcctcgctgttggcccagcgactctgcggacgatggctgtct|\\$ $\verb|ccatggtccgagtggacctcctgttctacgagctgtggcaatggaattcagcagcgggc|\\$ cgctcctgcgatagcctcaacaaccgatgtgagggctcctcggtccagacacggacctgc cacattcaggagtgtgacaaaagatttaaacaggatggtggctggagccactggtccccg tggtcatcttgttctgtgacatgtggtgatggtgatcacaaggatccggctctgcaac $\verb|tctcccagcccccagatgaatgggaaaccctgtgaaggcgaagcgcgggagaccaaagcc|$ ${\tt tgcaagaaagacgcctgccccatcaatggaggctggggtccttggtcaccatgggacatc}$ tgttctgtcacctgtggaggaggggtacagaaacgtagtcgtctctgcaacaaccccgca ccccagtttggaggcaaggactgcgttggtgatgtaacagaaaaccagatctgcaacaag ${\tt caggactgtccaattgatggatgcctgtccaatccctgctttgccggcgtgaagtgtact}$ agctaccctgatggcagctggaaatgtggtgcttgtccccctggttacagtggaaatggc atccagtgcacagatgttgatgagtgcaaagaagtgcctgatgcctgcttcaaccacaat tgcaagccccgtaacccctgcacggatgggacccacgactgcaacaagaacgccaagtgc aactacctgggccactatagcgaccccatgtaccgctgcgagtgcaagcctggctacgct gtgtgcgtggccaatgcgacttaccactgcaaaaaggataattgccccaaccttcccaac ${\tt tcagggcaggaagactatgacaaggatggaattggtgatgcctgtgatgacgatgac}$ ${\tt aatgataaaattccagatgacagggacaactgtccattccattacaacccagctcagtat}$ gactatgacagagatgatgtgggagaccgctgtgacaactgtccctacaaccacaaccca

Figure 1B

gatcaggcagacacagacaacaatggggaaggagacgcctgtgctgcagacattgatgga gacggtatcctcaatgaacgggacaactgccagtacgtctacaatgtggaccagagagac actgatatggatggggttggagatcagtgtgacaattgccccttggaacacaatccggat cagctggactctgactcagaccgcattggagatacctgtgacaacaatcaggatattgat gaagatggccaccagaacaatctggacaactgtccctatgtgcccaatgccaaccaggct gaccatgacaaagatggcaagggagatgcctgtgaccacgatgatgacaacgatggcatt cctgatgacaaggacaactgcagactcgtgcccaatcccgaccagaaggactctgacggc gatggtcgaggtgatgcctgcaaagatgattttgaccatgacagtgtgccagacatcgat gacatctgtcctgagaatgttgacatcagtgagaccgatttccgccgattccagatgatt cctctggaccccaaagggacatcccaaaatgaccctaactgggttgtacgccatcagggt aaagaactcgtccagactgtcaactgtgatcctggactcgctgtaggttatgatgagttt aatgctgtggacttcagtggcaccttcttcatcaacaccgaaagggacgatgactatgct ggatttgtctttggctaccagtccagcagccgcttttatgttgtgatgtggaagcaagtc acccagtcctactgggacaccaaccccacgagggctcagggatactcgggcctttctgtg aaagttgtaaactccaccacagggcctggcgagcacctgcggaacgccctgtggcacaca ggaaacacccctggccaggtgcgcaccctgtggcatgaccctcgtcacataggctggaaa gatttcaccgcctacagatggcgtctcagccacaggccaaagacgggtttcattagagtg gtgatgtatgaagggaagaaatcatggctgactcaggacccatctatgataaaacctat gctggtggtagactagggttgtttgtcttctctcaagaaatggtgttcttctctgacctg aatgctggtattgcaccttctggaactatgggcttgagaaaacccccaggatcacttctc cttggcttccttctttctgtgcttgcatcagtgtggactcctagaacgtgcgacctgcc tcaagaaaatgcagttttcaaaaaacagactcatcagcattcagcctccaatgaataagac atcttccaagcatataaacaattgctttggtttccttttgaaaaagcatctacttgcttc agttgggaaggtgcccattccactctgcctttgtcacagagcagggtgctattgtgaggc catctctgagcagtggactcaaaagcattttcaggcatgtcagagaagggaggactcact agaattagcaaacaaaaccaccctgacatcctccttcaggaacacggggagcagaggcca ${\tt aagcactaaggggagggcgcatacccgagacgattgtatgaagaaaatatggaggaactg}$ $\verb|ttacatgttcggtactaagtcattttcaggggattgaaagactattgctggatttcatga|\\$ tgctgactggcgttagctgattaacccatgtaaataggcacttaaatagaagcaggaaag ggagacaaagactggcttctggacttcctccctgatccccacccttactcatcaccttgc agtggccagaattagggaatcagaatcaaaccagtgtaaggcagtgctggccattgc ctggtcacattgaaattggtggcttcattctagatgtagcttgtgcagatgtagcaggaa aataggaaaacctaccatctcagtgagcaccagctgcctcccaaaggaggggcagccgtg ttctcttttttccgtaattactaggtagttttctaattctctctttttggaagtatgattt ttttaaagtctttacgatgtaaaatatttattttttacttattctggaagatctggctga aggattattcatggaacaggaagaagcgtaaagactatccatgtcatctttgttgagagt cttcgtgactgtaagattgtaaatacagattatttattaactctgttctgcctggaaatt taggcttcatacggaaagtgtttgagagcaagtagttgacatttatcagcaaatctcttg caagaacagcacaaggaaaatcagtctaataagctgctctgccccttgtgctcagagtgg atgttatgggattccttttttctctgttttatcttttcaagtggaattagttggttatcc atttgcaaatgttttaaattgcaaagaaagccatgaggtcttcaatactgttttacccca aaaagagaaaaaatgacaaaaggtgaaacttacatacaaatattacctcatttgttgtg tgactgagtaaagaatttttggatcaagcggaaagagtttaagtgtctaacaaacttaaa gctactgtagtacctaaaaagtcagtgttgtacatagcataaaaactctgcagagaagta ttcccaataaggaaatagcattgaaatgttaaatacaatttctgaaagttatgtttttt tctatcatctggtataccattgctttatttttataaattattttctcattgccattggaa tagaatattcagattgtgtagatatgctatttaaataatttatcaggaaatactgcctgt agagttagtatttctatttttatataatgtttgcacactgaattgaagaattgttggttt ctatttgccaatacctttttctaggaätgtgctttttttttgtacacatttttatccattt tacattctaaagcagtgtaagttgtatattactgtttcttatgtacaaggaacaacaata aatcatatggaaatttatattt

protein:

MGLAWGLGVLFLMHVCGTNRIPESGGDNSVFDIFELTGAARKGSGRRLVKGPDPSSPAFR

Figure 1C

SUBSTITUTE SHEET (RULE 26)

I EDANL I PPVPDDKFQDLVDAVRAEKGFLLLASLRQMKKTRGTLLALERKDHSGQVFSVV SNGKAGTLDLSLTVQGKQHVVSVEEALLATGQWKSITLFVQEDRAQLYIDCEKMENAELD VPIQSVFTRDLASIARLRIAKGGVNDNFQGVLQNVRFVFGTTPEDILRNKGCSSSTSVLL TLDNNVVNGSSPAIRTNYIGHKTKDLQAICGISCDELSSMVLELRGLRTIVTTLQDSIRK VTEENKELANELRRPPLCYHNGVQYRNNEEWTVDSCTECHCQNSVTICKKVSCPIMPCSN ATVPDGECCPRCWPSDSADDGWSPWSEWTSCSTSCGNGIQQRGRSCDSLNNRCEGSSVQT RTCHIQECDKRFKQDGGWSHWSPWSSCSVTCGDGVITRIRLCNSPSPQMNGKPCEGEARE TKACKKDACPINGGWGPWSPWDICSVTCGGGVQKRSRLCNNPAPQFGGKDCVGDVTENQI CNKODCPIDGCLSNPCFAGVKCTSYPDGSWKCGACPPGYSGNGIQCTDVDECKEVPDACF NHNGEHRCENTDPGYNCLPCPPRFTGSQPFGQGVEHATANKQVCKPRNPCTDGTHDCNKN AKCNYLGHYSDPMYRCECKPGYAGNGIICGEDTDLDGWPNENLVCVANATYHCKKDNCPN LPNSGQEDYDKDGIGDACDDDDDDKIPDDRDNCPFHYNPAQYDYDRDDVGDRCDNCPYN HNPDQADTDNNGEGDACAADIDGDGILNERDNCQYVYNVDQRDTDMDGVGDQCDNCPLEH NPDQLDSDSDRIGDTCDNNQDIDEDGHQNNLDNCPYVPNANQADHDKDGKGDACDHDDDN DGIPDDKDNCRLVPNPDQKDSDGDGRGDACKDDFDHDSVPDIDDICPENVDISETDFRRF QMIPLDPKGTSQNDPNWVVRHQGKELVQTVNCDPGLAVGYDEFNAVDFSGTFFINTERDD DYAGFVFGYQSSSRFYVVMWKQVTQSYWDTNPTRAQGYSGLSVKVVNSTTGPGEHLRNAL WHTGNTPGQVRTLWHDPRHIGWKDFTAYRWRLSHRPKTGFIRVVMYEGKKIMADSGPIYD KTYAGGRLGLFVFSQEMVFFSDLKYECRDP

Figure 1D

5/8

HT2143 Report

RECORD INFORMATION

 Gene ID:
 2081

 Sequence ID:
 2143

 Protein ID:
 2125

Sequence name: thrombospondin 4

Genome: nucleus

Taxon: Homo sapiens

Locus: 2081

Common Name: thrombospondin 4

Role ID: 40

Coding sequence length: 2886 nt
Transcript sequence length: 3074 nt
Expression data: THC168897

ACCESSION DATA

HT2143 is derived from accessions(s):

SP:P35443 (THROMBOSPONDIN 4 PRECURSOR.)
GB:Z19585(thrombospondin-4 {Homo sapiens})
GB:Z19585(H.sapiens mRNA for thrombospondin-4)
PIR:A55710 (thrombospondin 4 precursor - human)

cDNA FEATURES

Feature	End	5 End 3
coding_seq	28	2913
3'UT	2914	3074

SEQUENCE

nucleotide:

gaattooggggagcaggaagagccaacatgctggcccogcgggagccgccgtcctcctg ctgcacctggtcctgcagcggtggctagcggcaggcgccaaggccacccccaggtcttt gaccttctcccatcttccagtcagaggctaaacccaggcgctctgctgccagtcctgaca gacccogccctgaatgatctctatgtgatttccaccttcaagctgcagactaaaagttca gccaccatcttcggtctttactcttcaactgacaacagtaaatattttgaatttactgtg atgggacgcttaagcaaagccatcctccgttacctgaagaacgatggaaggtgcattt

Figure 2A

SUBSTITUTE SHEET (RULE 26)

gaattccggggagcaggaagagccaacatgctggccccgcgggagccgccgtcctcctq $\verb|ctgcacctggtcctgcagcggtggctagcggcaggcgcccaggccacccccaggtcttt|$ gacetteteceatettecagteagaggetaaacecaggegetetgetgecagteetgaca $\tt gaccccgcctgaatgatctctatgtgatttccaccttcaagctgcagactaaaagttca$ gccaccatcttcggtctttactcttcaactgacaacagtaaatattttgaatttactgtg atgggacgcttaagcaaagccatcctccgttacctgaagaacgatgggaaggtgcatttg $\verb|gtggtttcaacaacctgcagctggcagacggaaggcggcacaggatcctcctgaggctg|$ agcaatttgcagcgaggggccggctccctagagctctacctggactgcatccaggtggat tccgttcacaatctccccagggcctttgctggcccctcccagaaacctgagaccattgaa ttgaggactttccagaggaagccacaggacttcttggaagagctgaagctggtggtgaga ggctcactgttccaggtggccagcctgcaagactgcttcctgcagcagagtgagccactg gctgccacaggcacaggggactttaaccggcagttcttgggtcaaatgacacaattaaac caactcctgggagaggtgaaggaccttctgagacagcaggttaaggaaacatcatttttg cgaaacaccatagctgaatgccaggcttgcggtcctctcaagtttcagtctccgacccca agcacggtggtcgccccggctccccctgcaccgccaacacgcccacctcgtcggtgtgac tccaacccatgtttccgaggtgtccaatgtaccgacagtagagatggcttccagtgtggg ccctgccccgagggctacacaggaaacgggatcacctgtattgatgttgatgagtgcaaa taccatccctgctacccgggcgtgcactgcataaatttgtctcctggcttcagatgtgac gcctgcccagtgggcttcacagggcccatggtgcagggtgttgggatcagttttgccaag tegatetgegttaataetttgggätettaeegetgtgggeettgtaageeggggtataet ggtgatcagataaggggatgcaaagtggaaagaaactgcagaaacccagagctgaaccct gtcggttgggctggagatggctatatctgtggaaaggatgtggacatcgacagttacccc gacgaagaactgccatgctctgccaggaactgtaaaaaggacaactgcaaatatgtgcca aattctggccaagaagatgcagacagatggcattggcgacgcttgtgacgaggatgct gacggagatgggatcctgaatgagcaggataactgtgtcctgattcataatgtggaccaa aggaacagcgataaagatatctttggggatgcctgtgataactgcctgagtgtcttaaat aacgaccagaaagacaccgatggggatggaagaggagatgcctgtgatgatgacatggat $\tt ggagatggaataaaaaacattctggacaactgcccaaaatttcccaatcgtgaccaacgg$ gacaaggatggtgatggtgtgggggatgcctgtgacagttgtcctgatgtcagcaaccct aaccagtctgatgtggataatgatctggttggggactcctgtgacaccaatcaggacagt gatggagatgggcaccaggacagcacagacaactgccccaccgtcattaacagtgcccag ctggacaccgataaggatggaattggtgacgagtgtgatgatgatgatgacaatgatggt atcccagacctggtgccccctggaccagacaactgccggctggtccccaacccagcccag $\tt gaggatagcaacagcgacggagtgggagacatctgtgagtctgactttgaccaggaccag$ ${\tt gtcatcgatcgacgtctgcccagagaacgcagaggtcaccctgaccgacttcagg}$ gtcctgaaccagggcatggagattgtacagaccatgaacagtgatcctggcctggcagtg gggtacacagcttttaatggagttgacttcgaagggaccttccatgtgaatacccagaca gatgatgactatgcaggctttatctttggctaccaagatagctccagcttctacgtggtc atgtggaagcagacggagcagacatattggcaagccaccccattccgagcagttgcagaa $\verb|cctggcattcagctcaaggctgtgaagtctaagacaggtccaggggagcatctccggaac| \\$ tccctgtggcacacgggggacaccagtgaccaggtcaggctgctgtggaaggactccagg aatgtgggctggaaggacaaggtgtcctaccgctggttcctacagcacaggccccaggtg atagacaccacaatgcgtggaggccgacttggcgttttctgcttctctcaagaaaacatc atctggtccaacctcaagtatcgctgcaatgacaccatccctgaggacttccaagagttt caaacccagaatttcgaccgcttcgataattaaaccaaggaagcaatctgtaactgcttt tcggaacactaaaaccatatatttttaacttcaattttctttagcttttaccaacccaa atatatcaaaacgttttatgtgaatgtggcaataaaggagaagagatcatttttaaaaaa aaaaaaaaaaaa

protein:

MLAPRGAAVLLLHLVLQRWLAAGAQATPQVFDLLPSSSQRLNPGALLPVLTDPALNDLYV ISTFKLQTKSSATIFGLYSSTDNSKYFEFTVMGRLSKAILRYLKNDGKVHLVVFNNLQLA DGRRHRILLRLSNLQRGAGSLELYLDCIQVDSVHNLPRAFAGPSQKPETIELRTFQRKPQ

Figure 2B

7/8

ACDSCPDVSNPNQSDVDNDLVGDSCDTNQDSDGDGHQDSTDNCPTVINSAQLDTDKDGIG DECDDDDDDDGIPDLVPPGPDNCRLVPNPAQEDSNSDGVGDICESDFDQDQVIDRIDVCP ENAEVTLTDFRAYQTVGLDPEGDAQIDPNWVVLNQGMEIVQTMNSDPGLAVGYTAFNGVD FEGTFHVNTQTDDDYAGFIFGYQDSSSFYVVMWKQTEQTYWQATPFRAVAEPGIQLKAVK SKTGPGEHLRNSLWHTGDTSDQVRLLWKDSRNVGWKDKVSYRWFLQHRPQVGYIRVRFYE GSELVADSGVTIDTTMRGGRLGVFCFSQENIIWSNLKYRCNDTIPEDFQEFQTQNFDRFD N

Figure 2C

Poly ID	Poly ID Sequence ID	Position	Gene Description	Flanking Seq	Mutation Ref Type NT		Alt NT	Ref AA	Alt AA
G334u4	G334u4 HT:HT1220_mRNA	2110	THBS1, thrombosp- ondin 1	TGGATGGCTGGCCCA[A/G]TGA Missense A GAACCTGGTGTG	Missense		Ŋ	z	S
G355u2	G355u2 HT:HT2143_ mRNA	1186	THBS4, thrombosp- ondin 4	GAGTGTCGAAATGGA[G/C]CGT GCGTTCCCAACT	Missence	Ŋ	O	4	Ь

Figure 3

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 March 2001 (15.03.2001)

PCT

(10) International Publication Number WO 01/018250 A3

(51) International Patent Classification⁷: C07K 14/47, 14/78

C12Q 1/68,

(US). BOLK, Stacey; 202 Baker Street #1, West Roxbury, MA 02132 (US). DALEY, George, Q.; 50 Young Road, Weston, MA 02193 (US). MCCARTHY, Jeanette,

- (21) International Application Nove
- (21) International Application Number: PCT/US00/24503
- (22) International Filing Date:

7 September 2000 (07.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/153,357 10 September 1999 (10.09.1999) US 60/220,947 26 July 2000 (26.07.2000) US 60/225,724 16 August 2000 (16.08.2000) US

- (71) Applicants: WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH [US/US]; Nine Cambridge Center, Cambridge, MA 02142 (US). MILLENNIUM PHARMACEUTICALS, INC. [US/US]; 75 Sidney Street, Cambridge, MA 02139 (US).
- (72) Inventors: LANDER, Eric, S.; 151 Bishop Allen Drive, Cambridge, MA 02139 (US). GARGILL, Michele; 1 Warwick Park #3, Cambridge, MA 02140 (US). IRELAND, James, S.; 1 Warwick Park #3, Cambridge, MA 02140

(74) Agent: TREANNIE, Lisa, M.; Hamilton, Brook, Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box 9133, Concord, MA 01742-9133 (US).

J., 3625 Dupont Street, San Diego, CA 92106 (US).

- (81) Designated States (national): AU, CA, JP, MX.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 25 July 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

8250 A

(54) Title: SINGLE NUCLEOTIDE POLYMORPHISMS IN GENES

(57) Abstract: The invention provides nucleic acid segments of the human genome, particularly nucleic acid segments from a gene, including polymorphic sites. Allele-specific primers and probes hybridizing to regions flanking or containing these sites are also provided. The nucleic acids, primers and probes are used in applications such as phenotype correlations, forensics, paternity testing, medicine and genetic analysis. A role for the thrombospondin gene(s) in vascular disease is also disclosed. Use of single nucleotide polymorphisms in the thrombospondin gene(s) for diagnosis, prediction of clinical course and treatment response, development of therapeutics and development of cell-culture-based and animal models for research and treatment are disclosed.

INTERNATIONAL SEARCH REPORT

31 Application No PCT/US 00/24503

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68 C07 C07K14/47 C07K14/78 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07K C12Q IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) MEDLINE, SEQUENCE SEARCH, BIOSIS, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° US 5 750 502 A (KLAR AVIHU 1 - 3012 May 1998 (1998-05-12) SEQ ID NO:20 POLYMEROPOULOS M H ET AL: "DINUCLEOTIDE 1-30 Α REPEAT POLYMORPHISM AT THE HUMAN THROMBOSPONDIN GENE THBS1 NUCLEIC ACIDS RESEARCH, vol. 18, no. 24, 1990, page 7467 XP002188932 ISSN: 0305-1048 abstract -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 15. 05. 2002 5 February 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Form PCT/ISA/210 (second sheet) (July 1992)

Fax: (+31-70) 340-3016

van Klompenburg, W

INTERNATIONAL SEARCH REPORT

Inter It Application No PCT/US 00/24503

		 ·
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WANG D G ET AL: "Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 280, 1998, pages 1077-1082, XP002089398 ISSN: 0036-8075 the whole document	 1-30
A .	FAN J ET AL: "Genetic mapping: Finding and analyzing single-nucleotide polymorphisms with high-density DNA arrays" AMERICAN JOURNAL OF HUMAN GENETICS, UNIVERSITY OF CHICAGO PRESS, CHICAGO, US, vol. 61, no. 4, SUPPL, 1 October 1997 (1997-10-01), page 1601 XP002089397 ISSN: 0002-9297 abstract	1-30

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

PCT/US 00/24503

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows: see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-30
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

SINSDOCID: <WO____0118250A3_I_>

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1, claims 1-30

A method for predicting or diagnosing a vascular disease comprising; determining the nucleotide present at position 2210 of the thrombospondin 1 gene (SEQ ID NO:1). A nucleic acid molecule, a peptide (SEQ ID NO:2). A method for predicting or diagnosing a vascular disease comprising; determining the amino acid at position 700 of thrombospondin-1.

Invention 2, claims 31-60

A method for predicting or diagnosing a vascular disease comprising; determining the nucleotide present at position 2210 of the thrombospondin-4 gene (SEQ ID NO:3). A nucleic acid molecule, a peptide (SEQ ID NO:4). A method for predicting or diagnosing a vascular disease comprising; determining the amino acid at position 700 of thrombospondin-4.

Inventions 3 - 2547, claims 61-72

A nucleic acid molecule, an isolated gene product. A method of analyzing a nucleic acid sample. Every invention is characterised by each individual sequence of table 1 (corresponding to SEQ ID NO: 7-2551)

BNSDOCID: <WO____0118250A3_I_>

INTERNATIONAL SEARCH REPORT

Inte | Application No PCT/US 00/24503

	Patent document cited in search repo	rt	Publication date		Patent family member(s)	Publication date
	US 5750502	A	12-05-1998	US AU AU AU CA EP JP WO ZA	5279966 A 713198 B2 1269897 A 677185 B2 3945593 A 2133443 A1 0670895 A1 7508402 T 9320196 A1 9302362 A	18-01-1994 25-11-1999 15-05-1997 17-04-1997 08-11-1993 14-10-1993 13-09-1995 21-09-1995 14-10-1993 15-06-1994
i						

Form PCT/ISA/210 (patent family annex) (July 1992)