Strommessung (R, R_M unbekannt)

 $\label{eq:Gegeben: Quantum Gesucht: R, R_M} \text{Gesucht: R, R}_{\text{M}}$

Wahrer Strom I _W	0,5	А
Messabweichung e	-0,05	А

Spannungsquelle:

Uq	10	V
R _q	2	Ohm

In welchem Wertebereich darf $R_{\rm M}$ liegen, damit der Betrag der Messabweichung ${\bf e}$ nicht größer als 0,05 V wird ?

Messbereichserweiterung Strom

Gegeben: R_M, R_P, I_{MAX} Gesucht: I, R_{M,neu}

Der Messbereich eines Strommessgerätes wird auf einen neuen Endwert erweitert.

Messgerät

R _M	10	Ohm
I _{MAX}	0,1	Α

Das dazu verwendete Bauteil hat den Wert...

R _P	0,1	Ohm

Wie groß ist der neue Bereichsendwert?

Wie groß ist der Widerstand der gesamten Messeinrichtung?

Reale Spannungsquelle

Gegeben: U_A, U_{AL}, I Gesucht: R_i (zuerst R_b berechnen)

Wir betrachten eine reale Stromquelle.

Ohne äußere Beschaltung messen wir eine Klemmenspannung von...

Mit äußerem Widerstand messen wir einen Strom...,

und die am Widerstand abfallende Spannung...

Reale Spannungsquelle

Leerlaufspannung U _{aL}	11	V

Beschaltung mit Rb von außen

Gemessener Strom I	0,1	А
Am Widerstand abfallende Spannung U _a	10,9	V

Wie groß ist der Innenwiderstand R_i ?

In welchem Wertebereich darf R_b liegen damit die Quelle als Spannungsquelle zu betrachten ist ?

I-U Verstärker

Ein Sensor ist als Stromquelle zu betrachten.

Das von ihm gegebene Signal soll verstärkt und in eine Spannung konvertiert werden.

Welcher Verstärkertyp wird benötigt? (ggf. zeichnen)

Wir gehen von einem idealen Verhalten des Verstärkers aus.

Der Strom... soll in die Spannung... konvertiert werden.

Strom I	0,01	А
Spannung U	-10	V

Berechnen sie den Wert der zugehörigen Kenngröße des Verstärkers und den Wert des zugehörigen Bauteils R_G im Rückkopplungspfad der Verstärkung.

U-U Verstärker

Gesucht: R₂(ideal), R₂(real)

Es gelte...

Verstärkerschaltung:

R ₁	199000	Ohm
R _b	500	Ohm

Unbeschalteter Operationsverstärker:

V ₀	100000	/
R _i ′	50	Ohm

Eine Verstärkung **V = 200** soll realisiert werden.

Berechnen sie R_2 (ideal), R_2 (real).

Wie muss R_2 gewählt werden, wenn die realen Eigenschaften des OPV berücksichtigt werden?

Anpassung eines u/u Verstärkers

Gegeben: R_1 , R_2 , $U_{a(OS)}$, R_q Gesucht: I_{OS} , Werte $R_{1,2}$ bei Anpassung an R_q

Ein Signal soll verstärkt werden mit einem u/u- Verstärker.

Der Sensor verhält sich wie eine reale Spannungsquelle mit dem Innenwiderstand $R_{\text{q}}.$

Ein u/u- Verstärker verhält sich annähernd ideal, leider existieren zwei gleiche, reale Eingangsströme in den +/- Eingang des OPV.

$I_{OS}=I_P=I_N \rightarrow$ diese Erzeugen die Spannung $U_A(I_{OS})$

u/u-Verstärker

R ₁	499500	Ohm
R ₂	500	Ohm
U _A (I _{OS})	1	V
R _q		
Spannungsquelle (Sensor)	50	Ohm

Die durch die Eingangsströme erzeugte, störende Ausgangsspannung beträgt U_A(I_{OS}).

Wie groß sind die Eingangsströme?