Артиновы кольца

Артиновы кольца и теорема Крулля о пересечении

2 февраля 2024 года

Артиновы кольца Р. Д.

Артиновость

ОПРЕДЕЛЕНИЕ: Модуль называется **артиновым**, если всякая **убыва- ющая цепочка** подмодулей в нем **стабилизируется**. Кольцо называется **артиновым**, если оно артиново как модуль над собой.

ПРЕДЛОЖЕНИЕ: Фактор и подмодуль артинова модуля артинов. Если $0 \to M \to M' \to M'' \to 0$ — короткая точная тройка, и модули M, M'' артиновы, то и M' артинов. \blacksquare

ЗАМЕЧАНИЕ: Аналогичное утверждение верно и для нетеровых модулей.

ЛЕММА: Пусть $\mathfrak{m}_1,\mathfrak{m}_2,\ldots,\mathfrak{m}_n\subset A$ — последовательность максимальных идеалов таких, что $\prod_{i=1}^n\mathfrak{m}_i=0$. Тогда A артиново если и только если оно нетерово.

ДОКАЗАТЕЛЬСТВО: Рассмотрим цепочку идеалов $\mathfrak{q}_i = \prod_{j=1}^i \mathfrak{m}_j$, $\mathfrak{q}_0 = A$, и факторы $V_i = \mathfrak{q}_{i-1}/\mathfrak{q}_i$. Тогда A нетерово (артиново) тогда и только тогда, когда каждое V_i нетерово (артиново) как A/\mathfrak{m}_i -модуль. Но для поля это синонимы.

Нильрадикал артинова кольца

ПРЕДЛОЖЕНИЕ: В артиновом кольце всякий простой идеал максимален, и их конечное число.

ДОКАЗАТЕЛЬСТВО: Пусть $\mathfrak{p} \subset A$ — простой идеал артинова кольца. Тогда A/\mathfrak{p} — артинова область целостности. Для всякого $x \in A/\mathfrak{p}$ имеем $(x^n) = (x^{n+1})$ для какого-то n и потому $x^n = yx^{n+1}$. В силу **целостности** xy = 1, и потому A/\mathfrak{p} — поле, то есть \mathfrak{p} максимален.

Выпишем счетную последовательность максимальных идеалов \mathfrak{m}_i , и рассмотрим цепочку $\mathfrak{m}_1\supset\mathfrak{m}_1\cap\mathfrak{m}_2\supset\dots$ В какой-то момент выяснится, что $\bigcap_{i=1}^n\mathfrak{m}_i\subset\mathfrak{m}_{n+1}$. Но $\prod_{i=1}^n\mathfrak{m}_i\subset\bigcap_{i=1}^n\mathfrak{m}_i$, и из $\prod_{i=1}^n\mathfrak{m}_i\subset\mathfrak{m}_{n+1}$ и простоты \mathfrak{m}_{n+1} следует $\mathfrak{m}_k\subset\mathfrak{m}_{n+1}$ для некого $k\leqslant n$. Противоречие!

ПРЕДЛОЖЕНИЕ: Нильрадикал артинова кольца нильпотентен.

ДОКАЗАТЕЛЬСТВО: Имеем $\mathfrak{N}^n = \mathfrak{N}^{n+1}$ для какого-то n. Пусть $\mathfrak{N}^n = I \neq 0$. Рассмотрим множество Ξ идеалов J, для которых $IJ \neq 0$. Оно непусто, так как $\mathfrak{N} \in \Xi$. Значит, есть в Ξ и **минимальный идеал** с элементом x таким, что $xI \neq 0$. Тогда (x) и есть минимальный идеал. Но $(xI)I = xI^2 = xI \neq 0$, так что $(xI)I = xI^2 = xI \neq 0$, так что $(xI)I = xI^2 = xI \neq 0$. Иначе говоря, x = xy для какого-то $y \in I \subset \mathfrak{N}$. Значит, $x = xy = xy^2 = \cdots = xy^m = 0$. Противоречие! \blacksquare

Артиновы кольца Р. Д.

Нетеровость артиновых колец

ПРЕДЛОЖЕНИЕ: Пусть $a \in A$ — не нильпотент. Тогда какой-то простой идеал не содержит .

ДОКАЗАТЕЛЬСТВО: Есть простой идеал в локализации $A[a^{-1}]$.

СЛЕДСТВИЕ: Нильрадикал есть пересечение всех простых идеалов. ■

TEOPEMA: (Акиздуки, Хопкинс) Артиновы кольца — это в точности нетеровы кольца размерности Крулля нуль.

ДОКАЗАТЕЛЬСТВО: Пусть $\mathfrak{m}_1, \dots, \mathfrak{m}_n \subset A$ — все максимальные идеалы артинова кольца. Тогда $\mathfrak{N} = \cap \mathfrak{m}_i$, и $\prod \mathfrak{m}_i^k = (\prod \mathfrak{m}_i)^k \subset (\cap \mathfrak{m}_i)^k = \mathfrak{N}^k = (0)$ при каком-то k. По лемме с первого слайда, при таком данном артиновость влечет нетеровость, а размерность нуль мы уже знаем.

Наоборот, пусть A — нетерово кольцо размерности Крулля нуль. Всякий максимальный идеал в нем не просто прост, а **минимален среди простых**, а из-за нетеровости таких **конечное число**. $\mathfrak{N} = \bigcap_{i=1}^n \mathfrak{m}_i$, в силу нетеровости $\mathfrak{N}^k = 0$ и потому $\prod \mathfrak{m}_i^k \subset \mathfrak{N}^k = (0)$. В силу леммы с первого слайда, нетеровость тогда влечет артиновость. \blacksquare

Теорема Крулля о пересечении

TEOPEMA: (Крулля о пересечении) Пусть (A, \mathfrak{m}) — нетерово локальное кольцо. Тогда $\bigcap_{i=1}^{+\infty} \mathfrak{m}^i = 0$.

ДОКАЗАТЕЛЬСТВО: (неправильное) Пусть $M = \bigcap_{i=1}^{+\infty} \mathfrak{m}^i$. Тогда $\mathfrak{m} M = \mathfrak{m} \left(\bigcap_{i=1}^{+\infty} \mathfrak{m}^i\right) = \bigcap_{i=1}^{+\infty} \mathfrak{m} \mathfrak{m}^i = \bigcap_{i=2}^{+\infty} \mathfrak{m}^i$. Поскольку $\mathfrak{m}^i \subset \mathfrak{m}$ при i > 1, это то же, что $\bigcap_{i=1}^{+\infty} \mathfrak{m}^i = M$, то есть $\mathfrak{m} M = M$, и по лемме Накаямы M = 0.

ВОПРОС: Где ошибка?

ПРИМЕР: Рассмотрим кольцо $k[x,y]/(xy-xy^2)$. В нем $xy=xy^2=xy^3=\dots$ Рассмотрим цепь идеалов $(y)\supset (y)^2\supset\dots$ Их пересечение есть нулевой идеал, так что $(x)\bigcap_{i=1}^{+\infty}(y)^i=(0)$. С другой стороны, $\bigcap_{i=1}^{+\infty}(x)(y)^i=\bigcap_{i=1}^{+\infty}(xy^i)=\bigcap_{i=1}^{+\infty}(xy)=(xy)\neq (0)$. Иначе говоря, умножение на идеал не коммутирует с пересечением.

Артиновы кольца

Лемма Артина — Риса

ОПРЕДЕЛЕНИЕ: Пусть M-A-модуль, и $I\subset A$ — идеал. I-фильтрацией называется цепочка подмодулей $M=M_0\supset M_1\supset\dots$ такая, что $IM_i\subset M_{i+1}$. Будем говорить, что I-фильтрация **стабильна**, если начиная с какого-то номера N имеем $I^kM_n=M_{n+k}$, n>N, а k любое.

ЛЕММА: (Э. Артин, Д. Рис) Пусть M — нетеров модуль над нетеровым кольцом A, $I \subset A$ — идеал, и $\{M_i\}$ — стабильная I-фильтрация. Тогда для всякого подмодуля $N \subset M$ фильтрация $N_i = N \cap M_i$ также I-стабильна. **ДОКАЗАТЕЛЬСТВО:** Нам понадобится такое

ОПРЕДЕЛЕНИЕ: Алгеброй Риса называется градуированная алгебра $\bigoplus_{i=0}^{+\infty} I^i$, где $I^0 = A$. Если A нетерово, она конечно порождена над A. Если M снабжен I-фильтрацией, то $\bigoplus_{i=0}^{+\infty} M_i$ — модуль над алгеброй Риса.

Заметим, что I-фильтрация **стабильна** тогда и только тогда, когда модуль $\bigoplus_{i=0}^{+\infty} M_i$ конечно порожден над алгеброй Риса. Тем самым, лемма следует из того, что подмодуль нетерова модуля нетеров.

Доказательство теоремы Крулля о пересечении

ДОКАЗАТЕЛЬСТВО: Фильтрация $A\supset \mathfrak{m}\supset \mathfrak{m}^2\supset \dots$ очевидно стабильна. Ограничивая ее на пересечение $I=\bigcap_{i=1}^{+\infty}\mathfrak{m}^i$, по лемме Артина — Риса имеем, что $I\cap\mathfrak{m}^{n+k}=\mathfrak{m}^k(I\cap\mathfrak{m}^n)$ начиная с какого-то n. В частности, $\mathfrak{m} I=\mathfrak{m}(I\cap\mathfrak{m}^n)=I\cap\mathfrak{m}^{n+1}=I$, и по лемме Накаямы I=0.

Кроме того, лемма Артина — Риса имеет такое

СЛЕДСТВИЕ: Пусть $N \subset M$ — подмодуль нетерова модуля над нетеровым кольцом A, и $I \subset A$ — идеал. Тогда I-адическая топология на N совпадает с ограничением I-адической топологии с M на N.