Logical and Theoretical Foundation of CS C A U

Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

Example solution for Series #7

Technische Fakultät

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer		0 Points
a) The empty clause is a clause without literals.	\bigotimes true	○ false
b) A clause is called trivial if it is empty.	○ true	\bigotimes false
c) \square is falsifiable.	⊗ true) false
d) The resolvant of $(p \lor \neg q \lor s)$ and $(\neg p \lor q \lor r)$ is $(s \lor r)$) true	\bigotimes false
e) The resolvant is satisfiable iff the parent clauses are both satisfiable.	⊗ true) false
f) The empty string is not a word.) true	\bigotimes false
g) For a word $w \in \Sigma^*$ we have $\sum_{a \in \Sigma} w _a = w $.	⊗ true) false
h) For words $u, v \in \Sigma^*$ we have $ uv > u + v $.	\bigcirc true	\bigotimes false
i) For a word $w \in \Sigma^n$ we have $w = w[1]w[2] \dots w[n-1]w[n]$.	⊗ true	○ false
arepsilon arepsilon arepsilon > arepsilon .	○ true	\bigotimes false
Exercise 2 Give the following definitions and notations:		8 Points
a) Unit clause. b) Clausal form of a formula $\varphi \in \Phi$. c) C_1, C_2 clashing clauses. d) Word. e) Repetition.		(1P) (2P) (2P) (1P) (2P)
Solution: a) A clause with exactly one literal. b) If φ has the clauses C_1, \ldots, C_m then $C_{\varphi} = \{C_1, \ldots, C_m\}$ is the clausal form of φ . c) There exists a literal ℓ with $\ell \in C_1$ and $\neg \ell \in C_2$. d) Finite sequence of elements of an alphabet Σ . e) Repetitions are defined inductively: $u^0 = \varepsilon$, $u^{i+1} = uu^i$.		(1P) (2P) (2P) (1P) (2P)
Exercise 3 a) Consider the formula $\varphi = (p \lor q) \land (p \to (\neg(r \lor s) \land q))).$	2	23 Points
 Construct the DAG for φ. Determine with the DAG-algorithm whether the formula is satisfiable or not ar determine a satisfying interpretation. Prove for a clausal form S and a trivial clause C ∈ S that S\C ≡ S holds. 	ıd if it is sa	atisfiable, (5P) (6.5P)

Return till: December 9th, 2019, 12:00 pm Winter Semester 2019/20

Winter Semester 2019/20 Example solution to

2) Decide with the resolution procedure whether

$$\varphi = (p \vee q \vee \neg r) \wedge (\neg q \vee r \vee s) \wedge (p \vee \neg s) \wedge (q \vee r \vee s \vee \neg q) \wedge (\neg p \vee s).$$

is satisfiable or not. (3.5P)

Solution:

a) Firstly we have to apply T on φ .

$$T(\varphi) = T((p \lor q) \land (p \to (\neg(r \lor s) \land q)))$$

$$= T(p \lor q) \land T(p \to (\neg(r \lor s) \land q))$$

$$= \neg(\neg T(p) \land \neg T(q)) \land \neg(T(p) \land \neg T(\neg(r \lor s) \land q))$$

$$= \neg(\neg p \land \neg q) \land \neg(p \land \neg(\neg T(r \lor s) \land T(q)))$$

$$= \neg(\neg p \land \neg q) \land \neg(p \land \neg(\neg T(r) \land \neg T(s)) \land q))$$

$$= \neg(\neg p \land \neg q) \land \neg(p \land \neg((\neg r \land \neg s) \land q))$$

Winter Semester 2019/20 Example solution to

	Thus, especially $\hat{\beta}(C_i) = \text{true}$ and consequently $\hat{\beta}(S \setminus C) = \text{true}$.	(0.5P)
	case 2: $\hat{\beta}(S) = \text{false}$	(0.5P)
	Thus $\hat{\beta}(C) = \text{false or there exists } i \in [m] \text{ with } \hat{\beta}(C_i) = \text{false.}$	(0.5P)
	Since <i>C</i> is trivial, i.e. contains <i>p</i> and $\neg p$, <i>C</i> is a tautology and we have $\hat{\beta}(C) = \text{true}$.	(0.5P)
	This implies that $\hat{\beta}(C_i) = \text{false for some } i \in [m].$	(0.5P)
	Consequently $\hat{\beta}(S \setminus C) = \hat{\beta}(\{C_1, \dots, C_m\}) = \text{false.}$	(0.5P)
2)	Since the second last clause is trivial, we can delete it from the clausal form.	(0.5P)
	Since the first two clause clash on q , we determine the resolvent $p \vee \neg r \vee r \vee s$.	(0.5P)
	Since this clause is trivial, we delete it.	(0.5P)
	Thus only the third clause and the last clause are remaining and and clash, we apply reso	olution
	on s .	(0.5P)
	This leads to $p \vee \neg p$.	(0.5P)
	Since this is a trivial clause, we delete it.	(0.5P)
	Since S is now empty, the formula is satisfiable.	(0.5P)