Centre Number

Candidate Number

Name

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CHEMISTRY 9701/02

Paper 2 Structured Questions AS Core

October/November 2003

1 hour

Candidates answer on the Question Paper.
Additional Materials:
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. You may lose marks if you do not show your working or if you do not use apropriate units.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use		
1		
2		
3		
4		
5		
TOTAL		

This document consists of 11 printed pages and 1 blank page.

SP (SC) S30315/4 © CIE 2003

For Examiner's Use

(a)	sod	t, sodium chloride, forms transparent colourless crystals. Describe the bonding in ium chloride crystals, give the formula of each particle and sketch part of the crystal acture.
		[3]
<i>a</i> .	_	
(b)		plain why crystals of sodium chloride do not conduct electricity, but molten sodium pride does.
		[2]
(c)	(i)	With the aid of a diagram of the cell, outline the manufacture of chlorine from brine (aqueous sodium chloride).
	(ii)	Write the electrode equations, including state symbols.
		anode
		cathode

For
Examiner's
Use

(iii)	Name the two by-products of this electrolysis, and give one commercial use of each.	
	by-product I	
	use	
	by-product II	
	use	
(iv)	Explain, with the aid of an equation, why the chlorine generated from the cell has to be kept away from the liquid in the cathode compartment.	
	[9]	
	[Total · 14]	

studyguide.pk

т	'ho	composition of the	ovhoust good (fum	oo) from a not	eral (gasalina) angina ia
	elov	-	exhaust gases (fume	es) iroin a pei	rol (gasoline) engine is
					7
			Gas	Percentage	
			Gas	by volume	_
			carbon dioxide	9	
			water vapour	8	
			oxygen	4	
			hydrogen	2	
			carbon monoxide hydrocarbons	3–6 0.2	
			HWARACATACAC	U /	
b) (i	•	What gas, omitted tumes?	nitrogen oxides	0.4–0.05	the remainder of the ex
b) (i		fumes?	nitrogen oxides	0.4-0.05 s up most of	
		fumes?	nitrogen oxides from the table, make	0.4-0.05 s up most of	
(ii	i)	fumes? Explain why there is State two gases in	ritrogen oxides from the table, make	0.4-0.05 s up most of ur in the exhau	
(ii	i)	fumes? Explain why there is State two gases in briefly for each the	ritrogen oxides from the table, make s always water vapou the exhaust fumes vapou particular effect on h	0.4-0.05 s up most of ur in the exhau	ust fumes.
(ii	i) i)	Explain why there is State two gases in briefly for each the	ritrogen oxides from the table, make s always water vapou the exhaust fumes vapou particular effect on h	o.4-0.05 s up most of ur in the exhau which are pois umans.	ust fumes.
(ii	i)	Explain why there is State two gases in briefly for each the gas I	nitrogen oxides from the table, make s always water vapou the exhaust fumes v particular effect on h	o.4-0.05 s up most of ur in the exhau which are pois umans.	ust fumes.
(ii	i)	fumes? Explain why there is State two gases in briefly for each the gas I	from the table, make s always water vapou	o.4–0.05 s up most of ur in the exhau which are pois umans.	ust fumes.

For
Examiner's
Use

(iii)	Suggest one reason why the exhaust fumes from a car fitted with a catalytic converter are still hazardous to human health to some degree.	U
	[5]	
	[Total : 8]	

For
Examiner's
Use

(a) ((1)	Explain what is meant by the term standard. Explain what is meant by the term standard.
(ii)	Write an equation, with state symbols, for the $\Delta H_{\ f}^{\circ}$ of water.
(i	ii)	Explain why the $\Delta H^{\rm o}_{\ \rm f}$ for water is identical to the standard enthalpy change of combustion of hydrogen.
		[4]
		en calcium is placed in water, aqueous calcium hydroxide is formed and hydrogen is n off.
((i)	Write the equation for the reaction of calcium with water.
(ii)	When 1.00 g of calcium is placed in 200 g of water, the temperature increases by 12.2 °C when the reaction is completed. The specific heat capacity of water, c , is 4.2 J g ⁻¹ K ⁻¹ .

Calculate the heat released in the experiment.

	(iii)	Calculate the standard enthalpy change of reaction in kJ mol ⁻¹ for your equation in (b)(i) .
(c)	(i)	[4] State <i>Hess' Law</i> .
. ,	``	
	(ii)	Use Hess' Law and your result in (b)(iii) to calculate the $\Delta H_{\mathrm{f}}^{\circ}$ of Ca(OH) ₂ (aq). You also need the $\Delta H_{\mathrm{f}}^{\circ}$ of water which is –286 kJ mol ⁻¹ .
(d)		[4] culate the volume of hydrogen, measured at room temperature and pressure, rated in the experiment described in (b)(ii) .
		[2]
		[Total : 14]

[4]

For Examiner's Use

4 The apparatus shown can be used to prepare ethene from ethanol.

a)	(i)	
	(ii)	Write an equation for this preparation.
		[2]
b)		cribe the colour changes which are observed and write equations for the reaction of one with the following two reagents.
	(i)	bromine
		colour change from to
		equation
	(ii)	cold, dilute, acidified manganate(VII) ions
		colour change from to
		aquation

For
Examiner's
Use

(c)	Draw structures for each of the following polymers showing two repeat units.		
	(i)	poly(ethene)	
	(ii)	pvc [poly(chloroethene)]	
		[2]	
(d)	The	formula of the alkene cyclohexene can be written as shown.	
	(i)	State the molecular formula of cyclohexene.	
	(ii)	Calculate the percentage of carbon by mass in cyclohexene.	

[3]

[Total :11]

5

CH3 ĊH₃

 $\mathrm{CH_3CH_2CH_2CH_2Br}$

		1-bromobutane	2-bromo-2-methylpropane			
(a)	a) 1-Bromobutane reacts with aqueous sodium hydroxide to form butan-1-ol.					
	(i)	Give a balanced equation for this re	eaction.			
	(ii)	Name the type of reaction				
	(iii)	Describe the mechanism of this rea	ction.			
			[5]			
	(b) 1-Bromobutane and 2-bromo-2-methylpropane both react with an ethanolic (alcoholic) solution of sodium hydroxide to form alkenes.					
(b)						
(b)		ition of sodium hydroxide to form alk				
(b)	solu	ition of sodium hydroxide to form alk	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			
(b)	solu (i)	Name the type of reaction	enes.			

(iii)	Hot, concentrated manganate(VII) ions break the double bond in alkenes. Each of
	the two alkenes in (b)(ii) gives CO ₂ and H ₂ O from the terminal group, but the rest
	of the molecule remains as an organic oxidation product. Suggest the formula of
	each of these products.

from I	
from II	
	[5]

(c) Complete the reaction sequence giving the intermediate, the reagents and the conditions for the synthesis of 2,2-dimethylpropanoic acid.

[Total : 13]

BLANK PAGE

