Introduction to Machine Learning

Rasika Bhalerao

Northeastern University
Climate Change Al Summer School 2023

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Machine Learning:

"The science of getting computers to act without being explicitly programmed."

- Andrew Ng

When should we use machine learning?

- Machine learning is not appropriate for every task!
 - If you can solve it analytically, that's better! (More explainable)
- > When you have access to data which "matches" the task
- When errors are allowable
- When it's cost effective
 - Machine learning costs include (i) dataset creation and processing and (ii) model development, deployment, and maintenance

Machine learning strengths and limitations

Strengths

- Performing tasks at scale
- Modeling complex systems
- Generating derived data
- Integrating with other methods, e.g. domain and physical models

Limitations

- "Garbage in, garbage out"
- Inherits biases in data + human design/use
- Assumes patterns are persistent
- Finds correlation, not causation

Types of learning

Supervised learning

Learning to predict or classify labels based on labeled input data Performance feedback

Unsupervised learning

Finding patterns in unlabeled data No performance feedback

Reinforcement learning

Learning well-performing behavior from state observations and rewards Performance feedback

Supervised vs. Unsupervised learning

Supervised

Apple

Apple

Banana

Banana

Unsupervised

Data Types

Continuous

Discrete

Binary

Special case of categorical

Ordinal

How do you feel today?

- 1 Very Unhappy
- 2 Unhappy
- 3 OK
- 4 Happy
- 5 Very Happy

How satisfied are you with our service?

- 1 Very Unsatisfied
- 2 Somewhat Unsatisfied
- 3 Neutral
- 4 Somewhat Satisfied
- 5 Very Satisfied

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Supervised learning: training

Person	Age	Favorite food	Customer?
Cat	8	Sushi	Yes
Elephant	13	Salad	No
Dog	7	Sandwich	Yes
Turtle	15	Sandwich	No

Supervised learning: test / prediction

Person	Age	Favorite food	Customer?
Penguin	6	Sushi	Yes
Snake	15	Soup	No

real-world data

Use on unseen

Person	Age	Favorite food
Chicken	8	Salad

•

Customer? Yes

Supervised learning: categorical versus continuous labels

- Classification: categorical labels
 - Examples: pregnant or not, from which country, which type of road sign
- Regression: continuous labels
 - Examples: future stock price, life expectancy, distance to obstacle

Example: predicting bicycle counts

https://www.climatechange.ai/papers/iclr2023/15

Given: historical data of the number of bicycles in certain locations per hour

Want to predict: number of bicycles in future times at those locations

Which type are the labels? Categorical or continuous?

Supervised models

Model	When to use it?	
KNN	 Little / no training time, large prediction time Given small / medium dataset size 	
Linear / polynomial regression	 Linear / polynomial relationship between input and output Small training time Given small / medium dataset size 	
Logistic regression, SVM, decision tree	Categorical outputGiven small / medium training time	
Neural network	Large training time, large computerGiven large dataset size	

k-Nearest Neighbors Algorithm

Training set: n instances, each with a feature vector and an output category Now, given another (unseen) instance, we want to determine its category Check the k instances in the training data that are closest to your new instance

- Categorical: choose the majority of those values
- Continuous: choose the mean/median of those values

Linear / polynomial regression

Given x ∈ R and y R

Find a function $f: x \rightarrow y$

How?

Define a **loss function** ("error") and minimize it!

Other supervised classifiers

Decision tree

Determining if a word is end-of-sentence: a Decision Tree

Other supervised classifiers

- Decision tree
- Support Vector Machine

Other supervised classifiers

- **Decision tree**
- **Support Vector Machine**
- **Neural Network**

How good is the model?

We define a **metric** to measure and compare accuracy.

- Precision
 - Out of those tested positive, how many are truly positive?
 - \circ TP / (TP + FP)
- Recall
 - Out of those truly positive, how many tested positive?
 - \circ TP / (TP + FN)
- F1 $\frac{2}{\operatorname{recall}^{-1} + \operatorname{precision}^{-1}}$

https://en.wikipedia.org/wiki/F1 score

Overfitting

Solution: Cross-Validation

Split the training data into two non-overlapping sets. Train on one set, and measure performance on the other. Pick the model that does well on the data that you *didn't* train on.

Supervised models

Model	When to use it?	
KNN	 Little / no training time, large prediction time Given small / medium dataset size 	
Linear / polynomial regression	 Linear / polynomial relationship between input and output Small training time Given small / medium dataset size 	
Logistic regression, SVM, decision tree	Categorical outputGiven small / medium training time	
Neural network	Large training time, large computerGiven large dataset size	

Note / life tip

Don't re-implement it yourself!

- Unless you are doing research on the method itself, you are trying to learn how it works, or you are coding in an obscure language where it isn't already implemented
- The already implemented versions are widely used and tested

Note / life tip

Don't re-implement it yourself!

- Unless you are doing research on the method itself, you are trying to learn how it works, or you are coding in an obscure language where it isn't already implemented
- The already implemented versions are widely used and tested

Use these common tools:

- Scikit-learn has most supervised and unsupervised methods you might need
- If you want to build a custom neural network, try using <u>Pytorch</u> or <u>Tensorflow</u>
- There are many task-specific libraries

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Unsupervised Learning

Finding patterns in unlabeled data

Unsupervised Learning

Finding patterns in unlabeled data

DeSantis signs Florida bill banning offshore wind turbines >

Examples:

- Finding clusters
 - Customer segmentation (group customers so you can target advertising)
 - Finding user accounts that are all suspiciously similar
 - Group search results (or news / trending topics)
- Topic modeling (LDA)
- > Figure out important features to use for supervised learning
- > Learn vector representations for words / documents

Clustering

1. Extract features from raw data

Raw Data Item	Feature 1	Feature 2
Apple1	0.4	0.2
Apple2	0.5	0.1
Banana1	1.3	2.1

Clustering

Extract features from raw data

2. Find natural groupings

Raw Data Item	Feature 1	Feature 2
Apple1	0.4	0.2
Apple2	0.5	0.1
Banana1	1.3	2.1
•		•
•		•

Clusters are ambiguous

K-means

- Most well-known popular clustering algorithm
- Usually a baseline
- The algorithm:
 - Iterate until the clusters stop changing:
 - Assign / cluster each example to the closest center
 - Recalculate the centers as the mean of the points in their cluster

K-means example

K-means example: initialize centers randomly

K-means example: assign points to nearest center

K-means example: recalculate centers

K-means example: assign points to nearest center

K-means example: recalculate centers

K-means example: assign points to nearest center

K-means example: recalculate centers

K-means example: assign points to nearest center

A Problem with K-Means: Outliers

- Centroid has to move all the way to the outlier
- Each outlier takes up an entire cluster

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Clustering in Scikit-Learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. near- est-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. near- est-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven clus- ter sizes	Distances between near- est points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven cluster sizes, variable cluster density	Distances between points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance be- tween points

https://scikit-learn.org/stable/modules/clustering.html

Example: climate policy documents

https://www.climatechange.ai/papers/neurips2022/59

Given: Many companies' climate policy documents

Want to know: What is in these documents? Understand vague general categories

It's not labeled. Which unsupervised algorithm might work best?

- A. Flat clustering (KMeans)
- B. Hierarchical clustering
- C. Topic modeling (LDA)

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Reinforcement Learning

Example rewards: PacMan

- One example:
 - 1 if you eat a pill
 - -10 if you get caught by a ghost
 - 2 if you eat a power pill or eat a ghost
 - 0 otherwise
- Another example:
 - -1 at every time step
 - 1,000,000 if you win the level

Exploration vs. Exploitation

- Exploitation: take good actions in each state already taken before to maximize reward
- **Exploration:** take a chance on actions that may have lower value in order to learn more, and maybe find true best action to later exploit

Need to balance the two!

Example: battery charging / discharging policy

https://www.climatechange.ai/papers/iclr2024/16

Given: batteries which can charge and discharge in a complex power grid

Want to know: an optimal charging / discharging policy

Which type(s) of learning could we use?

- A. Supervised learning
- B. Unsupervised learning
- C. Reinforcement learning

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Generative language models predict the next word.

Please turn your homework...

A. in

B. over

C. the

D. agriculture

Large language models (LLMs)

- Huge and trained on large amounts of text (the internet)
 - Large emissions to train (https://www.jmlr.org/papers/v24/23-0069.html)

- Can "hallucinate" facts
- Reproduces the (social) bias from its training set (the internet)

When do we use generative models like GPT?

For each: yes or no?

- ?? To make decisions which we use without a human in the loop
- ?? To look up facts and information which we verify afterwards
- ?? To write code which we run without verifying
- ?? To help write text or code faster while verifying everything it writes

Key take-aways

- Use ML for tasks which:
 - Ask the computer to find and use patterns in data (with errors)
 - Are more cost-effective with ML
 - Have appropriate data
- > Supervised vs. unsupervised vs. reinforcement learning
 - vs. generative models
- Categorical vs. continuous data
 - Images: each pixel is 3 continuous features (RGB)
 - Text: each word is a categorical feature
- Most things can be done in a couple lines of code using <u>Scikit-learn</u>
 - Make use of their <u>code examples</u>