Chapter 5 Project: Apply Nelder-Mead to the Rheology Problem

Matthew Saurette, Tyler "can put his hand in his mouth" Weames, and Sarah Wyse

Math 462 University of British Columbia - Okanagan

December 2020

The Rheology Problem

Viscosity of a system

$$\eta(\dot{\gamma}) = \eta_0 (1 + \lambda^2 \dot{\gamma}^2)^{\frac{\beta - 1}{2}}$$

A function of the strain rate, $\dot{\gamma}$, with parameters η_0 , λ , and β .

Table 1.1. Observed data in rheology of polymeric systems

Observation	Strain rate	Viscosity
i	$\dot{\gamma}_i$ (s^{-1})	$\eta_i (Pa \cdot s)$
1	0.0137	3220
2	0.0274	2190
3	0.0434	1640
4	0.0866	1050
5	0.137	766
6	0.274	490
7	0.434	348
8	0.866	223
9	1.37	163
10	2.74	104
11	4.34	76.7
12	5.46	68.1
13	6.88	58.2

Absolute Error:

$$\epsilon_i(\eta_0, \lambda, \beta) = |\eta_0(1 + \lambda^2 \dot{\gamma}^2)^{\frac{\beta-1}{2}} - \eta_i|$$

Non-smooth optimization problem:

$$\hat{g}(\eta_0, \lambda, \beta) = \sum_{i=1}^{13} \epsilon_i(\eta_0, \lambda, \beta)$$

(Audet and Hare, 2017)

Nelder-Mead Algorithm

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$ and the vertices of an initial simplex $Y^0 = \{y^0, y^1, \dots, y^n\}$

- 0. Initialize:
 - $\begin{array}{ll} \delta^e, \delta^{oc}, \delta^{ic}, \gamma & \quad \text{parameters} \\ k \leftarrow 0 & \quad \text{iteration counter} \end{array}$
- 1. Order and create centroid:

reorder
$$Y^k$$
 so $f(y^0) \le f(y^1) \le ... \le f(y^n)$
set $x^c = \frac{1}{n} \sum_{i=0}^{n-1} y^i$, the centroid of all except the worst point

2. Reflect:

test reflection point
$$x^r = x^c + (x^c - y^n)$$

if $f(y^0) \le f(x^r) < f(y^{n-1})$, then accept x^r and goto 1

Expand:

if
$$f(x^r) < f(y^0)$$
, then test expansion point $x^e = x^c + \delta^e(x^c - y^n)$

4a). Outside Contraction:

$$\mid$$
 if $f(y^{n-1}) \le f(x^r) < f(y^n)$, then test outside contraction $x^{oc} = x^c + \delta^{oc}(x^c - y^n)$

4b). Inside Contraction:

if
$$f(x^r) \ge f(y^n)$$
, then test inside contraction point $x^{ic} = x^c + \delta^{ic}(x^c - y^n)$

5. Shrink:

if all tests fail, then shrink
$$\mathbf{Y}^{k+1} = \{\mathbf{y}^0, \mathbf{y}^0 + \gamma(\mathbf{y}^1 - \mathbf{y}^0), \mathbf{y}^0 + \gamma(\mathbf{y}^2 - \mathbf{y}^0), \dots, \mathbf{y}^0 + \gamma(\mathbf{y}^n - \mathbf{y}^0)\}$$
 (Math 462, UBCO, 2020)

0. Initialize

1. Order

```
when the latter degree arrays \frac{1}{1000} \times \frac{1}{1000} and \frac{1}{1000} \times \frac{1}{1000} in the latter of the latter
```


1 and 2. Calculate centroid and x^r

```
%CALCULATE CENTROID%
xc = zeros(k - 1,1);
for i = 1:k-1
    xc = xc + current_Simplex(:,i);
end
xc = (1/(k-1)).*xc;

%CALCULATE REFLECTION POINT%
xr = xc + (xc - current_Simplex(:,k));
fr = f(xr);
feval = feval + 1;
```


2. Reflect

3. Expand

```
%EXPANSION%
elseif (fr < function_at_simplex(1))
xe = xc + del_e*(xc - current_Simplex(:,k));
fe = f(xe);
feval = feval + 1;
if fe < fr
    current_Simplex(:,k) = xe;
    function_at_simplex(k) = fe;
else
    current_Simplex(:,k) = xr;
function_at_simplex(k) = fr;
end
stepComputed = "partialSort";</pre>
```


4.a) Outside Contraction

```
source(contaction)
source(contaction)
source(contaction)
so(contaction)
so(c
```


4.b) Inside Contraction

```
%INSIDE CONTRACTION%
elseif (fr >= function_at_simplex(k))
    xic = xc + del_ic.*(xc - current_Simplex(:,k));
    fic = f(xic);
    feval = feval + 1;
    if fic < function_at_simplex(k)
        current_Simplex(x,k) = xic;
        function_at_simplex(k) = fic;
        stepComputed = "partialSort";</pre>
```


5. Shrink

```
current_Simplex(:,i) = (1-gamma).*current_Simplex(:,1) + gamma.*current_Simplex(:,i);
  function at simplex(i) = f(current Simplex(i,i));
stepComputed = "fullSort";
   case 'fullSort'
        %Do Insertion Sort to sort the simplex
        for i = 2:k
             key = Yi(:,i);
             fkey = fYi(i);
             i = i-1;
             while ((j \ge 1) \&\& (fkey < fYi(j)))
                  Yi(:,j+1) = Yi(:,j);
                  fYi(j+1) = fYi(j);
                  j - j -1;
             end
             Yi(:,j+1) = key;
             fYi(j+1) = fkey;
        end
```


Examples of Nelder-Mead at work: A nice example

 $f_{best}^{k} = -2 \text{ for } x_{best}^{k} = (0,0)$

Examples of Nelder-Mead at work: Rosenbrock function

$$f(x) = (1 - x_1)^2 + 100(x_2 - x_1)^2$$

min(f(x)) = fillinhere for x = fillinhere

put initial simplex and resulting simplex here $f_{best}^k = fillinhere$ for $x_{best}^k = fillinhere$

Examples of Nelder-Mead at work: Rastrigin function

$$f(x) = 20 + x_1^2 - 10\cos(2\pi x_1) + x_2^2 - 10\cos(2\pi x_2)$$

min(f(x)) = fillinhere for x = fillinhere

put initial simplex and resulting simplex here $f_{best}^k = fillinhere$ for $x_{best}^k = fillinhere$

Examples of Nelder-Mead at work: Rastrigin function

$$f(x) = 20 + x_1^2 - 10\cos(2\pi x_1) + x_2^2 - 10\cos(2\pi x_2)$$

min(f(x)) = fillinhere for x = fillinhere

use a different starting simplex to get a different min that still minimizes put initial simplex and resulting simplex here $f_{best}^k = fillinhere$ for $x_{best}^k = fillinhere$

1.a) Standard parameters with simplex A

Input:

9.5062	9.5062	9.5062	9.5062
-8.4167	-8.4167	-8.4167	-8.4167
8.7269	8.7269	8.7269	8.7269

$$f_{best}^{k} = 32.7239$$

1.b) Standard parameters with simplex B

Input:

$$Y0b = Y0a + (9.5) * ones (3,4);$$

$$del e s = 2;$$

del_oc_s = 1/2;
del ic s = -1/2;

gamma s = 1/2;

9.5062	9.5062	9.5062	9.5062
8.4167	8.4167	8.4167	8.4167
8.7269	8.7269	8.7269	8.7269

$$f_{best}^{k} = 32.7238$$

2.a) New parameters with simplex A

Input:

del_e_na = 4.71;
del_oc_na = 0.65;
del_ic_na = -0.3;
gamma_na = 0.94;

9.5062	9.5062	9.5062	9.5062
-8.4167	-8.4167	-8.4167	-8.4167
8.7269	8.7269	8.7269	8.7269

$$f_{hest}^{k} = 32.7238$$

2.b) New parameters with simplex B

Input:

$$Y0b = Y0a + (9.5)*ones(3,4);$$

del_ic_nb = -0.45;
gamma_nb = 0.01;

9.5062	9.5062	9.5062	9.5062
8.4167	8.4167	8.4167	8.4167
8.7269	8.7269	8.7269	8.7269

$$f_{hest}^{k} = 32.7238$$

