Sveučilište u Zagrebu

Fakultet elektrotehnike i računarstva

Pravilo bodovanja zadataka

Završni ispit iz predmeta TEORIJA INFORMACIJE, 12. veljače 2025.

Završni ispit sastoji se od 5 zadataka. Svaki točno riješen zadatak donosi 10 bodova. U zagradama {·} su navedeni bodovi za svaki dio zadatka ili cijeli zadatak. Zadaci tipa I. dio i II. dio međusobno su neovisni. **Zadaci bez cjelovitog postupka rješavanja neće se uzimati u razmatranje!**

Zadatak 1. {10 bodova} Zadana su četiri paralelna kanala u kojima djeluje aditivni Gaussov bijeli šum Z_i , i=1,...,4, s očekivanjem nula. Isto tako, vrijedi $E\left[Z_1^2\right]=1$, $E\left[Z_2^2\right]=2$, $E\left[Z_3^2\right]=4$ i $E\left[Z_4^2\right]=7$. Na ulazu prvog kanala pojavljuje se signal X_1 , drugog X_2 , trećeg X_3 i četvrtog X_4 . Neka je $E\left[X_1\right]=E\left[X_2\right]=E\left[X_3\right]=E\left[X_4\right]=0$ i $\sum_{i=1}^4 E\left[X_i^2\right]\leq 8$.

- i) {3 boda} Odredite dinamiku (bit/simbol) u zadanom sustavu paralelnih kanala ako se najveća moguća dopuštena snaga signala raspodijeli jednoliko po svim kanalima.
- ii) {7 bodova} Odredite maksimalnu dinamiku u zadanom sustavu kanala (bit/simbol).

Postupak rješavanja:

Neka je
$$P_i = E \lceil X_i^2 \rceil$$
 i $\sigma_{z_i}^2 = E \lceil Z_i^2 \rceil$, $i = 1,...,4$.

Dinamika u sustavu paralelnih kanala jednaka je zbroju dinamika pojedinih kanala, tj.:

$$D = \sum_{i=1}^{4} D_i = \sum_{i=1}^{4} \frac{1}{2} \log_2 \left(1 + \frac{P_i}{\sigma_{z_i}^2} \right) \left[\frac{\text{bit}}{\text{simbol}} \right].$$

- i) Vrijedi $P_1 = P_2 = P_3 = P_4 = 2$, odnosno dobivamo $D_{\text{jednoliko}} \approx 1,76625 \frac{\text{bit}}{\text{simbol}}$.
- ii) Lako se uviđa da prethodno navedeni izraz nema rješenja ako se maksimum dinamike traži deriviranjem jer za snage signala, X_i , mora vrijediti $P_i \ge 0$, i = 1,...,4 i $\sum_{i=1}^4 P_i \le 8$. Ovo nas upućuje na činjenicu da treba provjeriti rubne uvjete.

Ako se najveća moguća dopuštena snaga signala dodijeli samo jednom kanalu i to onom koji ima najmanji šum (prvi kanal) dobije se $D_{X_1} \approx 1,58496 \frac{\text{bit}}{\text{simbol}}$.

Sljedeće što treba provjeriti su slučajevi u kojima se pojedinom kanalu dodijeli snaga 0, a za preostala tri kanala <u>tražimo snage koje maksimiziraju ukupnu dinamiku</u>. Krenimo od kanala s najvećim šumom (četvrti kanal).

$$P_4 = 0$$

Stavljamo $P_1 = 8 - P_2 - P_3$ odnosno dobivamo

$$D = \frac{1}{2}\log_2\left(1 + \frac{8 - P_2 - P_3}{\sigma_{z_1}^2}\right) + \frac{1}{2}\log_2\left(1 + \frac{P_2}{\sigma_{z_2}^2}\right) + \frac{1}{2}\log_2\left(1 + \frac{P_3}{\sigma_{z_3}^2}\right).$$

$$D = \frac{1}{2}\log_2(9 - P_2 - P_3) + \frac{1}{2}\log_2\left(1 + \frac{P_2}{2}\right) + \frac{1}{2}\log_2\left(1 + \frac{P_3}{4}\right).$$

Rješavajući sustav jednadžbi

$$\frac{\partial D}{\partial P_2} = 0$$

$$\frac{\partial D}{\partial P_3} = 0$$

dobivamo

$$P_2 = 3 i P_2 = 1,$$

odnosno

$$P_1 = 8 - P_2 - P_3 = 4$$
.

Za ovaj slučaj maksimalna dinamika je $D_{\text{max}} \approx 1,98289 \frac{\text{bit}}{\text{simbol}}$.

Pokazuje se rješavajući sve ostale slučajeve s jednim kanalom snage 0, kao i slučajeve u kojima se dva kanala uzimaju sa snagom 0, da je prethodno dobivena vrijednost za dinamiku njen maksimum za postojeći sustav i njegove uvjete.

Dva kanala sa snagom 0, dok za ostala dva tražimo snage koje maksimiziraju dinamiku:

$$D_{1.-2.} \approx 1,95943 \ \frac{\text{bit}}{\text{simbol}}, \ D_{1.-3.} \approx 1,70044 \ \frac{\text{bit}}{\text{simbol}},...,D_{3.-4.} \approx 0,844250 \ \frac{\text{bit}}{\text{simbol}}.$$

Zadatak 2. {10 bodova} Zadana je transponirana matrica provjere pariteta, **H**, linearnog binarnog blok koda *K*. Navedeni kôd za dekodiranje koristi standardni niz u kojem se nalaze svi njegovi mogući sindromi i gdje je svakom sindromu pridružen jedinstveni vektor pogreške.

$$\mathbf{H}^T = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- i) {1 bod} Odredite n, k i udaljenost, d(K), zadanog koda.
- ii) {4 boda} Odredite za svaki mogući sindrom njegov jedinstveni vektor pogreške.
- iii) {1 bod} Ako je primljena kodna riječ $\mathbf{c}' = [100101]$, odredite koristeći tablicu dobivenu pod
 - ii) koja je najvjerojatnija poslana kodna riječ.

iv) {4 boda} Pretpostavimo da se u prijenosu kodnih riječi, navedenog koda, koristi komunikacijski kanal u kojem je vjerojatnost ispravnog prijenosa bita jednaka p = 0.98. Također, neka je prijenosna brzina $R=10^7$ bit/s. Odredite koliko se, u prosjeku, kodnih riječi pogrešno dekodira u jednoj minuti.

Postupak rješavanja:

- i) n = 6, k = 2, d(K) = 3
- ii) Ukupno imamo $2^{n-k} = 16$ sindroma. Koristeći matricu **H** određujemo kojem sindromu pripada pojedini vektor pogreške. Vektoru pogreške 000000 pridružen je sindrom 0000. Nadalje, navedeni kôd može ispraviti jednostruke pogreške te tim sindromima pridružujemo 6 vektora pogreške (Masno otisnutim slovima navedeni u niže danoj tablici!). S obzirom na to da se za dekodiranje koristi standardni niz, isti se može iskoristiti i za ispravljanje nekih dvostrukih pogrešaka (Iskoristiti ćemo 9 preostalih sindroma i njima pridružiti vektore pogreške za dvostruke pogreške!).

Vektor pogreške	Sindrom	Vektor pogreške	Sindrom
000000	0000	010001	1001
100000	1100	001010	0110
010000	1000	001001	0101
001000	0100	100010	1110
000100	0011	100001	1101
000010	0010	010100	1011
000001	0001	001100	0111
010010	1010	100100	1111

- iii) Odredimo sindrom za primljenu kodnu riječ $\mathbf{c}' = [100101]$, tj. $s(\mathbf{c}') = \mathbf{c}' \cdot \mathbf{H}^T = [100101] \cdot \mathbf{H}^T = [1110]$. Iz tablice dobivene u dijelu zadatka ii) dobivamo da sindromu [1110] odgovara vektor pogreške $\mathbf{e} = [100010]$. Odnosno, najvjerojatnija poslana kodna riječ je $\mathbf{c} = \mathbf{c}' \oplus \mathbf{e} = [000111]$.
- iv) Koristeći sve sindrome mi smo kôd K na neki način "pojačali", tj. pored ispravljanja jednostrukih pogrešaka možemo ispraviti i 9 dvostrukih. Dobivamo da je vjerojatnost ispravnog dekodiranja kodne riječi jednaka: $p_{\text{isp.}}(\mathbf{c}) = p^6 + 6p^5(1-p) + 9p^4(1-p)^2 \approx 0,997633$. Nadalje, prosječan broj kodnih riječi pogrešno dekodiranih u jednoj minuti računamo kao: $N = 10^7 \frac{\text{bit}}{\text{s}} \cdot 60 \text{ s} \cdot \frac{1}{6} \frac{\text{kodna riječ}}{\text{bit}} \cdot \left(1 p_{\text{isp.}}(\mathbf{c})\right) \approx 236659,81$. Dakle, prosječno se 236660 kodnih riječi pogrešno dekodira u jednoj minuti.

Zadatak 3. {10 bodova} Zadan je dijagram stanja za konvolucijski koder s jednim ulazom i tri izlaza.

- i) {5 boda} Odredite funkcijske generatore kodera.
- ii) {2 boda} Skicirajte konvolucijski koder.
- iii) $\{3 \text{ boda}\}\$ Odredite prijenosnu funkciju kodera T(D) te potom odredite koliko ima putova u dijagramu stanja težine šest, tj. putova koji počinju u stanju 0 i završavaju u stanju 0 nakon određenog broja prijelaza.

Postupak rješavanja:

i) Iz dijagrama stanja zaključujemo da koder ima stanja m_0 i m_1 i da je granična duljina kodera L=2. Neka su, za zadani koder, funkcijski generatori oblika $h_1^{(1)} = \left[h_{m_0}^{(1)}h_{m_1}^{(1)}\right]$, $h_1^{(2)} = \left[h_{m_0}^{(2)}h_{m_1}^{(2)}\right]$ i $h_1^{(3)} = \left[h_{m_0}^{(3)}h_{m_1}^{(3)}\right]$.

Za određivanje funkcijskih generatora pomoći će nam generirajuća matrica koda, **G**, kao i zadani dijagram stanja. Generijajuća matrica, **G**, je oblika:

Ograničit ćemo se na matricu \mathbf{G} dimenzije 4x5. Neka na ulaz kodera dolazi poruka \mathbf{d} =[1110]. Iz dijagrama stanja dobivamo da je kodna riječ \mathbf{c} =[110 011 011 101 000]. Istu poruku kodirajmo koristeći generirajuću matricu \mathbf{G} , dobivamo da je $\left[h_{m_0}^{(1)}h_{m_0}^{(2)}h_{m_0}^{(3)}\right]$ =[110], odnosno $h_{m_0}^{(1)}=1,h_{m_0}^{(2)}=1$ i $h_{m_0}^{(3)}=0$.

Isto tako vrijedi (drugi stupac matrice **G**): $h_{m_1}^{(1)} \oplus h_{m_0}^{(1)} = 0, h_{m_1}^{(2)} \oplus h_{m_0}^{(2)} = 1 \text{ i } h_{m_1}^{(3)} \oplus h_{m_0}^{(3)} = 1, \text{ što daje } h_{m_1}^{(1)} = 1, h_{m_1}^{(2)} = 0 \text{ i } h_{m_1}^{(3)} = 1. \text{ Dakle, funkcijski generatori su: } h_1^{(1)} = \begin{bmatrix} 11 \end{bmatrix}, h_1^{(2)} = \begin{bmatrix} 10 \end{bmatrix} \text{ i } h_1^{(3)} = \begin{bmatrix} 01 \end{bmatrix}.$

ii)

iii)

Prijenosna funkcija definira se kao $T(D) = \frac{x'_a}{x_a}$. Iz dijagrama stanja dobivamo:

$$x_b = D^2 x_a + D^2 x_b \Longrightarrow x_b = \frac{D^2 x_a}{1 - D^2},$$

$$x_a' = D^2 x_b.$$

odnosno $T(D) = \frac{x'_a}{x_a} = \frac{D^4}{1 - D^2} = D^4 \frac{1}{1 - D^2}$. Uzimajući da je $\frac{1}{1 - D^2} = \frac{1}{1 - x}$ i neka je |x| < 1, dobivamo $\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n$, tj.

 $T(D) = \frac{x_a'}{x_a} = \frac{D^4}{1 - D^2} = D^4 \frac{1}{1 - D^2} = D^4 \left(1 + D^2 + D^4 + D^6 + \cdots\right).$ Iz prijenosne funkcije očitavamo da postoji jedan put težine 6.

Zadatak 4. (I. dio, {**5 bodova**}) Odredite je li signal $x(t) = \begin{cases} 5\cos(\pi t) \ [V], -0.5 \le t \le 0.5 \\ 0, \text{ inače} \end{cases}$, signal snage ili signal energije te potom istu izračunajte.

Postupak rješavanja:

Signal je konačnog trajanja → signal energije.

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-0.5}^{0.5} 25 \cos^2(\pi t) dt = \frac{25}{2} \int_{-0.5}^{0.5} (1 + \cos(2\pi t)) dt$$
$$= \frac{25}{2} \left(t \Big|_{-0.5}^{0.5} + \frac{\sin(2\pi t)}{2\pi} \Big|_{-0.5}^{0.5} \right) = 12,5 (1+0) = 12,5 \text{ Ws.}$$

(II. dio, {5 bodova}) Odredite je li vremenski kontinuiran sustav definiran kao $y(t) = x(\sin(t))$ linearan? Napomena: x(t) je ulaz sustava, a y(t) njegov izlaz!

Postupak rješavanja:

$$y(t) = x(\sin(t))$$

Neka je $y_1(t)$ izlaz sustava ako je na ulazu $x_1(t)$, tj.:

$$y_1(t) = x_1(\sin(t))$$

isto vrijedi i za $x_2(t)$, tj.:

$$y_2(t) = x_2(\sin(t))$$

Neka je $x_3(t)$ linearna kombinacija $x_1(t)$ i $x_2(t)$, tj.:

$$x_3(t) = a \cdot x_1(t) + b \cdot x_2(t),$$

gdje su *a* i *b* skalari.

Ako je $x_3(t)$ ulaz sustava, tada je njegov izlaz:

$$y_3(t) = x_3(\sin(t)) = a \cdot x_1(\sin(t)) + b \cdot x_2(\sin(t)) = a \cdot y_1(t) + b \cdot y_2(t).$$

Dakle, zadani sustav je linearan!

Zadatak 5. $\{10 \text{ bodova}\}\ \text{Zadan je binarni linearni Hammingov kôd } [n, k].$

- i) {4 boda} Odredite najmanji Hammingov kôd, [n, k], za koji je kodna brzina R(K) > 0.95.
- ii) {4 boda} Za dobiveni kôd pod i) odredite bitove za provjeru pariteta (zalihosni bitovi) kodne riječi \mathbf{c} ako se na ulazu kodera kanala pojavljuje poruka $\mathbf{d} = \begin{bmatrix} 011...110 \end{bmatrix}$ duljine k bita koja na početku i na kraju ima simbol nula, dok su preostali simboli jedinice. **Napomena:** Koristi se parni paritet!
- iii) {2 boda} Odredite težinu, w(c), dobivene kodne riječi pod ii).

Postupak rješavanja:

Hammingov kôd, s oznakom Ham(r) i $r \ge 2$, je linearan blok kôd za koji je $[n,k] = \lceil 2^r - 1, 2^r - 1 - r \rceil$.

Kodna brzina koda K definira se kao $R(K) = \frac{k}{n}$.

i) Iz uvjeta za kodnu brzinu dobivamo $R(K) = \frac{k}{n} = \frac{2^r - 1 - r}{2^r - 1} > 0,95$, odnosno sređujući prethodnu nejednakost ista postaje $2^r > 20r + 1$.

Iz nejednakosti $2^r > 20r + 1$ dobit ćemo najmanji r za koji je ista zadovoljena, a potom i najmanji Hammingov kôd [n, k].

Dakle,

$$r = 2 \rightarrow 4 \stackrel{?}{>} 41.$$

 $r = 3 \rightarrow 8 \stackrel{?}{>} 61.$
...
 $r = 7 \rightarrow 128 \stackrel{?}{>} 141.$
 $r = 8 \rightarrow 256 \stackrel{\text{T}}{>} 161.$

Dobili smo da je za r = 8 nejednakost $2^r > 20r + 1$ zadovoljena. Dobivena vrijednost određuje najmaji Hemmingov kôd za koji je R(K) > 0.95 i isti je [n,k] = [255,247].

ii) U kodnoj riječi bitovi za provjeru pariteta (zalihosni bitovi) su na pozicijama 2^i , i = 0,1,2,3,... dok su na ostalim pozicijama bitovi poruke. U našem slučaju svaki od 8 bitova za provjeru pariteta (p_1 , p_2 , p_4 , p_8 , p_{16} , p_{32} , p_{64} i p_{128}) kontrolira zajedno sa sobom 128 pozicija unutar kodne riječi \mathbf{c} .

Paritetni bit p_1 (na prvom mjestu u kodnoj riječi) kontrolira zajedno sa sobom sve neparne pozicije u kodnoj riječi, tj.: 1, 3, 5, ..., 255, što daje $p_1 = 0 \oplus \overbrace{1 \oplus 1 \dots 1 \oplus 1}^{125 \text{ jedinica}} \oplus 0 = 1$.

Paritetni bit p_2 (na drugom mjestu u kodnoj riječi) kontrolira zajedno sa sobom sljedeće pozicije u kodnoj riječi 2, 3, 6, 7, ..., 254, 255, što daje $p_2 = 0 \oplus \overbrace{1 \oplus 1 \dots 1 \oplus 1}^{125 \text{ jedinica}} \oplus 0 = 1.$

Paritetni bit p_4 (na četvrtom mjestu u kodnoj riječi) kontrolira zajedno sa sobom sljedeće pozicije u kodnoj riječi 4, 5, 6, 7, 12, 13, 14, 15,..., 252, 253, 254, 255, što daje $p_4 = 1 \oplus 1 \dots 1 \oplus 1 \oplus 0 = 0$.

Za sve ostale bitove za provjeru pariteta (p_8 , p_{16} , p_{32} , p_{64} i p_{128}) vrijedi isti proračun kao i za paritetni bit p_4 .

Dobivamo

$$p_8 = p_{16} = p_{32} = p_{64} = p_{128} = 0.$$

iii) Težina dobivene kodne riječi je $w(\mathbf{c}) = 247$.