Optimization

- 1) One more problem like last time
- 2) "Constrained optimization":

 (agrange multiplies maximize x2+3xy+7

 Subject to constant: x2+y2=25
 - 3) (Thear programming
 - 4) Gradient descent

Example:

Max/min $f(x,y,z)=2x^2+y^2+z^2-2z+xz$ on a cylinder of ladius 3 and height 5

control on (9,000

with base in xy-plane around origin

Things to check!

A - Inside cylinder critical points: fx-fx-fx

B - Bottom face
parametrize in polar
or: plug m 2=0
C - Top face

D - Outer edge face parametrize

E - Top edge
parametite with one variable

F - Bottom edge

parametrite with one variable

Look for critical points

$$f_2 = 2z - 2 + x - 8x - 2 + x = 0$$

$$7x=2$$

 $x=2/3$, $y=0$, $z=19/3$

$$X=1$$
 (as Θ)
 $Y=1$ sin Θ

Parametrize it!

$$2x^2+y^2+z^2-2z+xz$$

$$=(^{2}+(^{2}\cos^{2}\Theta-(v^{2}+1)\cos^{2}\Theta)$$

Candidate points.

(-2/20,9/2) -8/2

Max on outside face of cylhoder.

Parametria it by 0,2:

 $X=3 \cos \theta$ $Y=3 \sin \theta$ $Y=3 \sin \theta$ Find θ , z = to max/minfunction.

f(xy, 7)=2x2+x2+x2

Bottom face:

Plugm Z=D

What XY make Max/min?

$$f(x,y) = 2x^2 + y^2.$$

$$f_{x}=4x$$
 $\Rightarrow x=0, y=0, z=0.$

Edge of bottom fale:

x2+y2=9, Substitute in:

$$(x,y)=9+x^2$$
. Max at $(x=3)=(3,0,0)$

mm at
$$x=0 \rightarrow (0,3,0)$$

(0,-3,0)

agrange multipliers Suppose you want to maximize/minimize $f(x,y)$ subject to a constraint $g(x,y)=c$.
Then the maxemm satisfy $\nabla f(x,y) = \sqrt{29} \text{ Mps}_y.$ $\nabla g(x,y) = \sqrt{29} \text{ Mps}_y.$ $\nabla g(x,y) = \sqrt{29} \text{ Mps}_y.$
Ex. Find a rectangle of perimeter 20 with maximizearea.

maximize f(x,y) = xyconstraint: g(x,y) = 2x + 2y = 20.

Solve:
$$\nabla f = 1$$
 ∇g and $g(x,y) = c$.
 $\langle y, x \rangle = 1 \langle 2, 2 \rangle$ $2x + 2y = 20$.

Three equations:
$$y=21$$
 $X=21$
 $X=y$
 $Y=z$
 $Y=z$

Two ways to think about Df:

- 1) Direction of fastest increase of f
- 2) Respondicular to level curve of f:

 $f(x,y) = x^2 + y^2$ $\nabla f^2(2x, 2y)$

Maximize: f(x,y)=Zx+ySubject to: X2+Y2=4 g(X,y).

Df= > Dg (2,1)=1(2x,2y) moving $x^2+y^2=4$ x2+y2=4 2y=x $(2y)^2 + y^2 = 4$ $y^2 = \frac{4}{5}$ $y = \frac{2}{\sqrt{5}}$ X=±4/13