Aerospace Propulsion

Lecture 20 Rocket Propulsion III

Rocket Propulsion: Part II

- Ideal Rocket Flight
- Less Ideal Rocket Flight
- Multiple Stage Rocket

- Previously analyzed how much thrust a rocket produces
- What can a rocket achieve with that thrust?
- Mass varies dramatically with time
- Assumptions
 - Gravity-free
 - Drag-free
 - Flight direction and thrust aligned
 - Constant mass flow rate and thrust
 - Valid for deep space environments far from massive bodies

Ideal Rocket Equation

•
$$\Delta V = V_e \ln \frac{m_0}{m_{end}}$$

- Ideal Rocket Equation
 - $\Delta V = V_e \ln \frac{m_0}{m_{end}}$
- ΔV represents the maximum velocity increment that could be obtained in an ideal rocket
 - Gravity free
 - Drag free
 - (Deep space away from masses)

- A few forms of the Ideal Rocket Equation
 - $\Delta V = V_e \ln \frac{m_0}{m_{end}}$
- Previously defined $MR = \frac{m_{end}}{m_0}$
 - $\Delta V = V_e \ln \frac{1}{MR} = -V_e \ln MR$
- Showed that $V_e = c$ (e^2 e)
 - $\Delta V = -c \ln MR$
- Taking the exponential

•
$$e^{\frac{\Delta V}{V_e}} = \frac{1}{MR}$$

- A few forms of the Ideal Rocket Equation
 - $\Delta V = V_e \ln \frac{m_0}{m_{end}}$
- Recall that for $p_e = p_a$, we can show
 - $V_e = I_s g_0$
- A common form of the equation is

•
$$\Delta V = I_S g_0 \ln \frac{m_0}{m_{end}}$$

$$\Delta V = -V_e \ln MR$$

$$\Delta V = -I_S g_0 \ln MR$$

- Delta V is useful even when drag/gravity are present
 - Common way to understand how changing rocket parameters will affect its capabilities
 - MR has a logarithmic effect on velocity
 - *I_s* has a linear effect on velocity

MR

Rocket equation is useful for outlining mission requirements

$$\Delta V = V_e \ln \frac{m_0}{m_{end}}$$

$$\Delta V = V_e \ln \left(\frac{\Delta V}{V_e}\right) - 1 + \frac{M_e}{M_{end}}$$

$$\Delta V = V_e \ln \left(\frac{M_{end} + M_p}{M_{end}}\right)$$

$$\Delta V = V_e \ln \left(\frac{M_e}{M_{end}}\right) + \frac{M_e}{M_{end}}$$

$$\Delta V = V_e \ln \left(\frac{M_e}{V_e}\right) - 1 + \frac{M_e}{M_{end}}$$

$$\Delta V = V_e \ln \left(\frac{M_e}{V_e}\right) - 1 + \frac{M_e}{M_{end}}$$

$$\Delta V = V_e \ln \frac{m_0}{M_{end}}$$

$$\Delta V = V_e \ln \frac{m_0}{M_{end}}$$

$$\Delta V = V_e \ln \frac{m_0}{M_e}$$

$$\Delta V = V_e \ln$$

Gravity

•
$$g(h) = g_0 \left(\frac{R}{R+h}\right)^2$$

- g(h): acceleration due to gravity
- R: radius of earth (or other planet)
- h: distance from earth
- Assume gravity is constant (or use average gravity)

•
$$\Delta V = V_e \ln \frac{m_0}{m_{end}} - g \cos \theta \, \Delta t$$

- Average (or constant) value of g
- Average (or constant) angle θ
- Burn time of Δt

- Drag
 - $D = \frac{1}{2} C_D \rho V^2 A_f$
 - D: Drag Force
 - *C_D*: Drag coefficient
 - A_f: Frontal cross-sectional area
 - Given expressions for how the various components vary as a function of elevation and velocity, can compute drag force in ΔV equation
 - For example:
 - - a = 1.2
 - $b = 2.9 \times 10^{-5}$

- Simple Numerical integration techniques
 - Step 1: For a small timestep Δt , compute $\Delta V = V_e \ln \frac{m_t}{m_{t+\Delta t}}$
 - Step 2: For Δt , compute the gravity term
 - Step 3: For Δt , compute the drag term
 - Step 4: Repeat for any other forces worth considering
 - Step 5: Sum all velocity changes
- Allows for variation in θ over flight

Elevation calculations

- Assume a rocket firing directly upward
- Constant exhaust velocity

•
$$h_{max} = \frac{V_e^2 (\ln MR)^2}{2g_0} - V_e t_{end} \left(\frac{MR}{MR - 1} \ln MR - 1 \right)$$

Motivation

- Consider a single stage rocket
- This rocket carries a lot of fuel, but also a lot of structural mass
- While fuel is expelled as its burned, the structural mass that held that fuel remains
- The structure held fuel for Δt , but needs to be accelerated for the entire burn time
 - $\Delta V = V_e \ln \frac{m_0}{m_{end}} \rightarrow \text{higher } m_{end} = \text{lower } \Delta V$
- Ideally, we would shed structural weight when it is no longer necessary

Payload Fuel **Fuel** Fuel Fuel

 $t_1 + \Delta t$

- Solution
 - Create a rocket with multiple stages
 - Each stage has its own structure, propellant, and engine that separates when finished
 - Each stage runs serially
- Multi-stage rockets are very common, especially when it comes to reaching orbit

Payload Fuel **Fuel** Fuel Fuel

Payload
Fuel

 $t_1 + \Delta t$

- Various designs exist with same goal
 - Remove wasted mass when possible
- Payload usually held on last stage
 - Generally, on top of rocket
- Mass that i^{th} stage carries is the sum of its mass with all stages above it
- Launching from an airplane technically counts as multi-staging*

- Total change in velocity is the sum of each stages velocity change
 - $\Delta V_{tot} = \sum_{1}^{n} \Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 + \cdots$
- Ideal rocket equation for staged flight

•
$$\Delta V_{tot} = V_{e,1} \ln \frac{1}{MR_1} + V_{e,2} \ln \frac{1}{MR_2} + V_{e,3} \ln \frac{1}{MR_3} + \cdots$$

- Assuming no gravity or drag
- Assuming end of one stage and beginning of next instantaneous
 - Note that there are usually a few seconds between stages
 - Separation followed by safety buffer

Mass ratios for staged rocket

•
$$MR_1 = \frac{(m_0)_1 - (m_p)_1}{(m_0)_1}$$

•
$$MR_2 = \frac{(m_0)_2 - (m_p)_2}{(m_0)_2}$$

Multiple Stage Rockets TABLE 10.3 Saturn V Apollo flight configuration

Example: Saturn V

- "Saturn V remains the only launch vehicle to carry humans beyond low Earth orbit (LEO)"
- Dramatic decrease in required thrust due to dramatic decrease in mass between stages
- $\zeta_1 = 0.912$
- $\zeta_2 = 0.795$
- $\zeta_3 = 0.507$

