COMP9418: Advanced Topics in Statistical Machine Learning

Variable Elimination

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture introduces ones of the simplest methods for inference
 - It is based on the principle of variable elimination
 - We successively remove variables from the Bayesian network, maintaining its ability to answer queries of interest
- In previous lectures we identified four types of queries
 - Probability of evidence, prior and posterior marginals, MPE and MAP
 - Variable elimination can be used to answer all these types of queries
 - But we will leave MPE and MAP to a future lecture on this topic
- We will discuss the algorithm of variable elimination
 - Its complexity and how to make it more efficient
 - How to implement it in the tutorials
 - Its variants such as bucket elimination

Process of Elimination

- Given this Bayesian network
 - We are interested in computing the marginal P(D, E)

D	E	P(D,E)
d	e	.30443
d	$ar{e}$.39507
$ar{d}$	e	.05957
$ar{d}$	$ar{e}$.24093

- The variable elimination (VE) algorithm,
 - Sums out variable A, B and C to construct a marginal over D and E

Process of Elimination

- Consider the joint distribution over all variables. To sum out variable A
 - Merge all rows that agree on values of B, C, D, and E

Into a single row

В	$\boldsymbol{\mathcal{C}}$	D	E	P(.)
b	С	d	e	.08379 = .06384 + .01995

 Resulting in a table with 16 rows that do not mention variable A

\boldsymbol{A}	В	С	D	Ε	P (.)	
а	b	С	d	e	.06384	
а	b	С	d	$ar{e}$.02736	
а	b	С	$ar{d}$	e	.00336	
а	b	С	$ar{d}$	$ar{e}$.00144	
а	b	\bar{c}	d	e	0	
а	b	$\bar{\mathcal{C}}$	d	$ar{e}$.02160	
а	b	$\bar{\mathcal{C}}$	$ar{d}$	e	0	
а	b	\bar{c}	$ar{d}$	$ar{e}$.00240	
а	$ar{b}$	С	d	e	.21504	
а	$ar{b}$	С	d	$ar{e}$.09216	
а	$ar{b}$	С	$ar{d}$	e	.05376	
а	$ar{b}$	С	$ar{d}$	$ar{e}$.02304	
а	$ar{b}$	\bar{c}	d	e	0	
а	$ar{b}$	\bar{c}	d	$ar{e}$	0	
а	$ar{b}$	\bar{c}	$ar{d}$	e	0	
а	$ar{b}$	$\bar{\mathcal{C}}$	$ar{d}$	$ar{e}$.09600	

A	В	С	D	E	P (.)
\bar{a}	b	С	d	e	.01995
\bar{a}	b	С	d	$ar{e}$.00855
\bar{a}	b	С	$ar{d}$	e	.00105
\bar{a}	b	С	$ar{d}$	$ar{e}$.00045
\bar{a}	b	\bar{c}	d	e	0
\bar{a}	b	\bar{c}	d	$ar{e}$.24300
\bar{a}	b	\bar{c}	$ar{d}$	e	0
\bar{a}	b	$\bar{\mathcal{C}}$	$ar{d}$	$ar{e}$.02700
\bar{a}	$ar{b}$	С	d	e	.00560
\bar{a}	$ar{b}$	С	d	$ar{e}$.00240
\bar{a}	$ar{b}$	С	$ar{d}$	e	.00140
\bar{a}	$ar{b}$	С	$ar{d}$	$ar{e}$.00060
\bar{a}	$ar{b}$	\bar{c}	d	e	0
\bar{a}	$ar{b}$	\bar{c}	d	$ar{e}$	0
\bar{a}	$ar{b}$	\bar{c}	$ar{d}$	e	0
\bar{a}	$ar{b}$	\bar{c}	$ar{d}$	$ar{e}$.09000

Process of Elimination

- An important property of summing out variables
 - The new distribution is as good as the original one
 - lacktriangle As far as answering queries that do not mention A
 - That is $P'(\alpha) = P(\alpha)$ for any event α that does not involve A
- Therefore, if we want to compute a marginal distribution, say, over *D* and *E*
 - We just sum out variables A, B and C from the joint distribution
 - However, this procedure is exponential in the number of variables
- The key insight of VE is that we can sum out variables without constructing the joint probability
 - This allows to sometimes escape the exponential complexity

Factors

- A factor is a function over a set of variables
 - It maps each instantiation of these variables to a non-negative number
 - In some cases the number presents a probability. It may represent a distribution (e.g., f_2) or a conditional distribution (e.g., f_1)
- A factor over an empty set of variables is called trivial
 - It assigns a single number to the trivial instantiation T
- There are two main operations over factors
 - Summing out a variable
 - Multiplying two factors
- These operations are building blocks of many inference algorithms

В	С	D	\int_{1}
b	С	d	.95
b	С	$ar{d}$.05
b	\bar{c}	d	.9
b	\bar{c}	$ar{d}$.1
\overline{b}	С	d	.8
\overline{b}	С	$ar{d}$.2
\overline{b}	\bar{C}	d	0
\overline{b}	\bar{c}	$ar{d}$	1

D	E	f_2
d	e	.448
d	\bar{e}	.192
$ar{d}$	e	.112
$ar{d}$	\bar{e}	.248

Summing Out

- Let f be a factor over variables X and let X be a variable in X.
 - The result of summing out variable X from the factor f is another factor over variables $Y = X \setminus \{X\}$ which we denote by $\sum_X f$
- To illustrate this process consider the factor f_1
 - Summing out variable D results in a new factor $\sum_D f_1$
 - If we sum out all variables, we get a trivial factor

$$rac{\sum_{B}\sum_{C}\sum_{D}f_{1}}{7}$$

$$\left(\sum_{X} f\right)(\mathbf{y}) \stackrel{\text{def}}{=} \sum_{x} f(x, \mathbf{y})$$

В	С	D	f_1	_		
b	С	d	.95			
b	С	$ar{d}$.05	B	С	$\sum_{D} f_1$
b	\bar{C}	d	.9	b	C	1
b	\bar{C}	$ar{d}$.1	b	\bar{C}	1
\overline{b}	С	d	.8	\overline{b}	С	1
\overline{b}	С	$ar{d}$.2	\overline{b}	\bar{C}	1
\overline{b}	\bar{c}	d	0			
\overline{b}	\bar{C}	\bar{d}	1			

Summing Out

- The summing-out operation is commutative
 - Therefore, we can sum out multiple variables without fixing an order
 - This justifies the notation $\sum_{X} f$, where X is a set
- This algorithm provides the pseudocode for summing out any number of variables
 - It is $O(\exp(w))$ time and space
 - w is the number of factor variables
- This operation is also known as marginalization
 - $\sum_{X} f$ is also known as *projecting factor* f on variables Y

$$\sum_{Y} \sum_{X} f = \sum_{X} \sum_{Y} f$$

```
Input: f(X) and Z

Output: \sum_{Z} f

Y \leftarrow X - Z

f' \leftarrow a factor over variables Y where f'(y) = 0 for all y

for each instantiation y do

for each instantiation z do

f'(y) \leftarrow f'(y) + f(yz)

return f'
```

Multiplication

- The second operation over factors is multiplication
 - If we multiply two factors, we construct a new factor over the union of their variables
 - Each instantiation on the new factor is compatible with exactly one instantiation on each original factor
- The result of multiplying two factors $f_1(X)$ and $f_2(Y)$ is another factor over variables $Z = X \cup Y$, denoted by f_1f_2
 - $\bullet (f_1f_2)(\mathbf{z}) \stackrel{\text{def}}{=} f_1(\mathbf{x})f_2(\mathbf{y})$
 - Where x and y are compatible with z, that is $x \sim z$ and $y \sim z$

B	С	D	\int_{1}			
b	С	d	.95			
b	С	$ar{d}$.05	D	E	f_2
b	\bar{c}	d	.9	\overline{d}	e	.448
b	\bar{c}	$ar{d}$.1	d	\bar{e}	.192
\overline{b}	С	d	.8	$ar{d}$	e	.112
\overline{b}	С	$ar{d}$.2	$ar{d}$	\bar{e}	.248
\overline{b}	\bar{C}	d	0			
\overline{b}	\bar{c}	$ar{d}$	1			

В	$\boldsymbol{\mathcal{C}}$	D	E	$f_1(B,C,D)f_2(D,E)$
b	С	d	e	.4256 = (.95).(.448)
b	C	d	\bar{e}	.1824 = (.95).(192)
b	С	$ar{d}$	e	.0056 = (.05)(.112)
:	:	:	:	:
\overline{b}	\bar{c}	$ar{d}$	\bar{e}	.2480 = (1)(.2480)

Multiplication

- Factor multiplication is commutative and associative
 - We can multiply several factors without specifying the order of the multiplication
- This algorithm provides a pseudocode for multiplying m factors
 - It is $O(m \exp(w))$ time and space
 - w is the number of variables in the resulting factor

```
Input: f_1(X_1), ..., f_m(X_m)

Output: \prod_{i=1}^m f_i

\mathbf{Z} \leftarrow \bigcup_{i=1}^m X_i

f \leftarrow a factor over variables \mathbf{Z} where f(\mathbf{z}) = 1 for all \mathbf{z}

for each instantiation \mathbf{z} do

for i = 1 to m do

\mathbf{x}_i \leftarrow instantiation of variables X_i consistent with \mathbf{z}

f(\mathbf{z}) \leftarrow f(\mathbf{z}) f_i(\mathbf{x}_i)

return f
```

- Suppose we want to compute the joint probability distribution for this network
 - We can use the chain rule for Bayesian networks
 - We can multiply the CPTs, viewing each CPT as a factor
- Suppose we want to compute the marginals for variables D and E
 - We need to sum out variables *A*, *B* and *C*

$$P(D, E) = \sum_{A,B,C} \Theta_{E|C} \Theta_{D|BC} \Theta_{C|A} \Theta_{B|A} \Theta_{A}$$

- This is a combination of marginalization and multiplication
- However, it still has the problem of complexity

$$P(a, b, c, d, e) = \theta_{e|c} \theta_{d|bc} \theta_{c|a} \theta_{b|a} \theta_{a}$$

$$\Theta_{E|C} \Theta_{D|BC} \Theta_{C|A} \Theta_{B|A} \Theta_{A}$$

- If f_1 and f_2 are factors and if variable X appears only in f_2 , then
 - If $f_1, ..., f_n$ are the CPTs of a Bayesian network and if we want to sum out variable X
 - We may not need to multiply all these factors first
- For instance,
 - If variable X appears only in factor f_n
 - But, if variable X appears in two factors f_{n-1} and f_n
- In general, we need to multiply all factors f_k that include X and then sum out X from $\prod_k f_k$

$$\sum_{X} f_1 f_2 = f_1 \sum_{X} f_2$$

$$\sum_{X} f_{1} \dots f_{n} = f_{1} \dots f_{n-1} \sum_{X} f_{n}$$

$$\sum_{X} f_{1} \dots f_{n} = f_{1} \dots f_{n-2} \sum_{X} f_{n-1} f_{n}$$

- Consider this network and assume the goal is to compute P(C)
 - We will first eliminate *A* and then *B*
 - There are two factors involving $A: \Theta_A$ and $\Theta_{B|A}$

_A	B	$\Theta_A\Theta_{B A}$
a	b	.54
\boldsymbol{a}	\overline{b}	.06
\bar{a}	b	.08
\bar{a}	\overline{b}	.32

■ Summing out variable *A*, we get

B	$\sum_A \Theta_A \Theta_{B A}$
\overline{b}	.62=.54+.08
\overline{b}	.38=.06+.32

Α	Θ_A	A	В	$\Theta_{B A}$
a	.6	a	b	.9
\bar{a}	.4	a	\overline{b}	.1
		\bar{a}	b	.2
		\bar{a}	\overline{b}	.8

В	\mathcal{C}	$\Theta_{C B}$
b	С	.3
b	\bar{c}	.7
\overline{b}	С	.5
\overline{b}	\bar{C}	.5

Now, we have two factors, and we want to eliminate variable B

В	$\boldsymbol{\mathcal{C}}$	$\Theta_{C B} \sum_A \Theta_A \Theta_{B A}$
b	С	.186
b	\bar{C}	.434
\overline{b}	С	.190
\overline{b}	\bar{c}	.190

<u></u>	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
С	.376
\bar{c}	.624

B	$\sum_A \Theta_A \Theta_{B A}$
b	.62
\overline{b}	.38

В	С	$\Theta_{C B}$
b	С	.3
b	\bar{c}	.7
\overline{b}	С	.5
\overline{b}	\bar{C}	.5

Computing Prior Marginals (VE_PR1)

- This algorithm provides the pseudocode for computing the marginal over some variables Q
 - How much work does this algorithm do?
 - Note that f and f_i differs only one variable $\pi(i)$
- For $\pi = \{A, B\}$ $\sum_{B} \Theta_{C|B} \sum_{A} \Theta_{A} \Theta_{B|A}$

Input: Bayesian network N, query variables \mathbf{Q} , variable ordering π Output: prior marginal $P(\mathbf{Q})$ 1: $S \leftarrow \text{CPTs}$ of network N

2: **for** i = 1 to length of order π **do**

3: $f \leftarrow \prod_k f_k$ where f_k belongs to S and mentions variable $\pi(i)$

 $4: f_i \leftarrow \sum_{\pi(i)} f$

5: replace all factors f_k in S by factor f_i

6: **return** $\prod_{f \in S} f$

• For
$$\pi = \{B, A\}_{2}$$

$$\sum_{A} \Theta_{A} \sum_{B} \Theta_{B|A} \Theta_{C|B}$$

- Therefore, although any order will work
 - Some orders are better than others
 - Since they lead to constructing smaller intermediate factors
- We need to find the best order
 - We will address this problem shortly
 - For now, let us try to formalize how to measure the quality of an elimination order
- If the largest factor has w variables, then the complexity of the lines 3-5 is $O(n \exp(w))$
 - This number is known as the width of the elimination order
 - We want to find the elimination order with the smallest width
 - The algorithm complexity is $O(n \exp(w) + n \exp(|\boldsymbol{Q}|))$

Elimination Order

- Suppose we have two elimination orders π_1 and π_2
 - We want to choose the one with smallest width
 - We can modify the VE_PR1 to register the number of variables in line 4
 - The width is maximum number of variables any factor ever contained

■ With an elimination order *B*, *C*, *A*, *D*

i	$\pi(i)$	S	f_i	W
		$\Theta_A\Theta_{B A}\Theta_{C A}\Theta_{D BC}\Theta_{E C}$		
1	В	$\Theta_A\Theta_{C A}\Theta_{E C}f_1(A,C,D)$	$f_1 = \sum_B \Theta_{B A} \Theta_{D B,C}$	3
2	С	$\Theta_A f_2(A, D, E)$	$f_2 = \sum_{c} \Theta_{C A} \Theta_{E C} f_1(A, C, D)$	3
3	A	$f_3(D,E)$	$f_3 = \sum_A \Theta_A f_2(A, D, E)$	2
4	D	$f_4(E)$	$f_4 = \sum_D f_3(D, E)$	1

- We can compute the width of an order by simply operating on an undirected graph
 - Let $f_1, ..., f_n$ be a set of factors. The *interaction graph* G of these factors is an undirected graph constructed as follows
 - lacktriangle The nodes of G are the variables that appear in factors f_1,\dots,f_n
 - There is an edge between two variables in G iff those variables appear in the same factor
- Another way to visualise the interaction graph is to realise that the variables X_i of f_i form a clique in G
 - For example, $\Theta_A \Theta_{B|A} \Theta_{C|A} \Theta_{D|BC} \Theta_{E|C}$

Elimination order: B, C, A, D

$$S_1: \Theta_A \Theta_{B|A} \Theta_{C|A} \Theta_{D|BC} \Theta_{E|C}$$

$$S_2: \Theta_A \Theta_{C|A} \Theta_{E|C} f_1(A, C, D)$$

$$S_3: \Theta_A f_2(A, D, E)$$

$$S_4$$
: $f_3(D, E)$

$$S_5: f_4(E)$$

- There are two key observations about interaction graphs
 - If G is the interaction graph of factors S, then elimination a variable $\pi(i)$ from S leads to constructing a factor over the neighbours of $\pi(i)$ in G
 - Let S' be the factors that result from eliminating variable $\pi(i)$ from factors S. If G' and G are the interaction graphs of S' and S, respectively, then G' can be obtained from G as follows
 - a) Add an edge to G between every pair of neighbours of variable $\pi(i)$ that are not already connected
 - b) Delete variable $\pi(i)$ from G

OrderWidth

```
Input: Bayesian network N, variable ordering \pi

Output: the width of \pi
G \leftarrow \text{interaction graph of the CPTs in network } N
w \leftarrow 0

for i=1 to length of order \pi do
w \leftarrow \max(w,d), where d is the number of \pi(i)'s neighbours in G
add an edge between every pair of non-adjacent neighbours of \pi(i) in G
delete variable \pi(i) from G
```

- This algorithm provides pseudocode for computing the width of an elimination order
 - One application of OrderWidth is to measure the quality of an ordering before using it
 - However, when the number of orderings is large, we need to do better

- Computing the optimal ordering is an NP-hard problem
 - But there are several heuristic approaches that provide good results
 - One of the most popular is also the simplest: min-degree heuristic
- The min-degree heuristic eliminates the variable that leads to constructing the smallest factor possible
 - It means we should eliminate the variable with the smallest number of neighbours in the current graph
 - Min-degree is optimal when applied to a network with some elimination order of width ≤ 2

MinDegreeOrder

```
Input: Bayesian network N with variables X

Output: an ordering \pi of variables X

G \leftarrow \text{interaction graph of the CPTs in network } N

for i=1 to number of variables in X do

\pi(i) \leftarrow \text{a variable in } X with smallest number of neighbours in G

add an edge between every pair of non-adjacent neighbours of \pi(i) in G

delete variable \pi(i) from G and from G
```

- There is another popular heuristic that is usually more effective than MinDegreeOrder
 - It consists in eliminating the variable that leads to adding the smallest number of edges in G, called *fill-in edges*
 - This heuristic is called fill-in heuristic

MinFillOrder

```
Input: Bayesian network N with variables X

Output: an ordering \pi of variables X

G \leftarrow interaction graph of the CPTs in network N

for i=1 to number of variables in X do

\pi(i) \leftarrow a variable in X that adds the smallest number of edges in G
add an edge between every pair of non-adjacent neighbours of \pi(i) in G
delete variable \pi(i) from G and from X
```

- We now discuss an algorithm for computing the posterior marginal for a set of variables
 - For instance, $Q = \{D, E\}$ and e: A = true, B = false we get the table on the right side
- More generally, given a network N, query Q and evidence e
 - We want to compute the posterior marginal P(Q|e)
 - Prior marginals is a special case of posterior marginals when e
 is the trivial instantiation

D	E	$P(\boldsymbol{Q} \boldsymbol{e})$
d	e	.448
d	\bar{e}	.192
\bar{d}	e	.112
\bar{d}	\bar{e}	.248

- It is more useful to construct a variation called *joint* marginals, P(Q, e)
 - If we take $Q = \{D, E\}$ e: A = true, B = false we get the joint marginal on the right side
 - If we add the probabilities in this factor, we get .48
 - This is the probability of evidence e, since $\sum_{q} P(q, e) = P(e)$
- This means we can compute P(Q|e) by simply normalizing P(Q,e)
 - We also get the probability of evidence e for free
- VE can be extended to compute joint marginals
 - We need start by zeroing out those rows that are inconsistent with evidence e

D	E	$P(\boldsymbol{Q}, \boldsymbol{e})$
d	e	.21504
d	\bar{e}	.09216
\bar{d}	e	.05376
$ar{d}$	\bar{e}	.11904

■ The reduction of factor f(X) given evidence e is another factor over variables X, denoted by f^e

$$f^{e}(x) \stackrel{\text{def}}{=} \begin{cases} f(x), & \text{if } x \sim e \\ 0, & \text{otherwise} \end{cases}$$

• For example, given the factor f and evidence e: E = true, we obtain f^e

D	E	\int
d	e	.448
d	\bar{e}	.192
$ar{d}$	e	.112
$ar{d}$	\bar{e}	.248
D	E	f e
\overline{d}	е	.448
d	\bar{e}	0
$ar{d}$	e	.112
ā		

$$egin{array}{c|c|c} D & E & f^e \\ \hline d & e & .448 \\ \hline ar{d} & e & .112 \\ \hline \end{array}$$

• For this network, if $\mathbf{Q} = \{D, E\}$ and \mathbf{e} : A = true, B = false. The joint marginal $P(\mathbf{Q}, \mathbf{e})$ is

$$P(\boldsymbol{Q}, \boldsymbol{e}) = \sum_{A,B,C} (\Theta_A \Theta_{B|A} \Theta_{C|A} \Theta_{D|BC} \Theta_{E|C})^{\boldsymbol{e}}$$

We can use the following result

$$(f_1, f_2)^e = f_1^e f_2^e$$

Therefore

$$P(\boldsymbol{Q}, \boldsymbol{e}) = \sum_{A,B,C} \Theta_A^{\boldsymbol{e}} \Theta_{B|A}^{\boldsymbol{e}} \Theta_{C|A}^{\boldsymbol{e}} \Theta_{D|BC}^{\boldsymbol{e}} \Theta_{E|C}^{\boldsymbol{e}}$$

- Consider this network. Let $Q = \{C\}$, e: A = true
 - We want to compute $P(\mathbf{Q}, \mathbf{e})$, by eliminating A then B
- We first reduce the network CPTs given evidence e

A	Θ_A	A	В	$\Theta_{B A}$
а	.6	a	b	.9
$\frac{a}{\bar{a}}$.4	a	\overline{b}	.1
		\bar{a}	b	.2
		\bar{a}	\overline{b}	.8

В	\mathcal{C}	$\Theta_{C B}$
b	С	.3
b	\bar{C}	.7
\overline{b}	С	.5
\overline{b}	\bar{C}	.5

- Consider this network. Let $Q = \{C\}$, e: A = true
 - We want to compute $P(\mathbf{Q}, \mathbf{e})$, by eliminating A then B
- We first reduce the network CPTs given evidence e
 - Then we need to evaluate

$$P(Q, e) = \sum_{B} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e} \Theta_{C|B}^{e}$$
$$= \sum_{B} \Theta_{C|B}^{e} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e}$$

A	В	$\Theta_A^{m{e}}\Theta_{B A}^{m{e}}$		В	$\sum_A \Theta_A^{m{e}} \Theta_{B A}^{m{e}}$
a	b	.54	_	b	.54
а	\overline{b}	.06		\overline{b}	.06

$$\begin{array}{c|cccc}
A & \Theta_A^e & & A & B & \Theta_{B|A}^e \\
\hline
a & .6 & & a & b & .9 \\
& & a & \overline{b} & .1 & \\
\end{array}$$

В	С	$\Theta^{m{e}}_{\mathcal{C} B}$
b	С	.3
b	\bar{C}	.7
\overline{b}	С	.5
\overline{b}	\bar{C}	.5

- Consider this network. Let $Q = \{C\}$, e: A = true
 - We want to compute $P(\mathbf{Q}, \mathbf{e})$, by eliminating A then B
- We first reduce the network CPTs given evidence e
 - Then we need to evaluate

$$P(Q, e) = \sum_{B} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e} \Theta_{C|B}^{e}$$
$$= \sum_{B} \Theta_{C|B}^{e} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e}$$

В	С	$\Theta_{C B}^{e} \sum_{A} \Theta_{A}^{e} \Theta_{B A}^{e}$	$C \mid$	$\sum_B \Theta_{C B}^{m{e}} \sum_A \Theta_A^{m{e}} \Theta_{B A}^{m{e}}$
b	С	.162	С	.192
b	\bar{c}	.378	\bar{c}	.408
\overline{b}	С	.030		
\overline{b}	\bar{c}	.030		

В	$\sum_A \Theta_A^{m{e}} \Theta_{B A}^{m{e}}$
b	.54
\overline{b}	.06

В	С	$\Theta^{m{e}}_{\mathcal{C} B}$
b	С	.3
b	\bar{C}	.7
\overline{b}	С	.5
\overline{b}	\bar{C}	.5

- Consider this network. Let $Q = \{C\}$, e: A = true
 - We want to compute $P(\mathbf{Q}, \mathbf{e})$, by eliminating A then B
- We first reduce the network CPTs given evidence e
 - Then we need to evaluate

$$P(Q, e) = \sum_{B} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e} \Theta_{C|B}^{e}$$
$$= \sum_{B} \Theta_{C|B}^{e} \sum_{A} \Theta_{A}^{e} \Theta_{B|A}^{e}$$

- To compute P(C|A = true)
 - We need to normalize this factor, which gives

\mathcal{C}	$\sum_{B} \Theta_{C B}^{e} \sum_{A} \Theta_{A}^{e} \Theta_{B A}^{e}$
С	.192
\bar{c}	.408

$$\begin{array}{c|c}
C & P(C|A = true) \\
\hline
c & .32 \\
\hline
c & .68
\end{array}$$

Computing Joint Marginals (VE_PR2)

```
Input: Bayesian network N, query variables \mathbf{Q}, variable ordering \pi, evidence \mathbf{e}

Output: joint marginal P(\mathbf{Q}, \mathbf{e})

1: S \leftarrow \{f^{\mathbf{e}}: f \text{ is a CPTs of network } N\}

2: for i=1 to length of order \pi do

3: f \leftarrow \prod_k f_k where f_k belongs to S and mentions variable \pi(i)

4: f_i \leftarrow \sum_{\pi(i)} f

5: replace all factors f_k in S by factor f_i

6: return \prod_{f \in S} f
```

- It is not uncommon to run VE_PR2 with empty Q
 - lacktriangle The algorithm will return a trivial factor with the probability of evidence $oldsymbol{e}$