LA TERAPIA INTENSIVA PEDIATRICA

L'utilizzo quotidiano delle apparecchiature biomedicali

D.ssa Claudia Maria Bonardi Dirigente Medico Terapia Intensiva Pediatrica – AO Padova

COS'E' UNA TERAPIA INTENSIVA

- In tutti gli ospedali
- Pazienti ad alta complessità clinica
- Utilizzo di tecnologie altamente avanzate
- Personale sanitario altamente specializzato

Mantenere in equilibrio le funzioni vitali del paziente In condizioni mediche gravi e critiche

Apparecchiature biomediche

- Reparto a tecnologia e monitoraggio altamente specializzato
- Elevato numero di tecnologie biomediche

Il monitoraggio

 Monitoraggio dei pazienti da parte del personale e con monitor / schermi 24 ore su 24

Per controllare parametri vitali

Sostenimento delle funzioni vitali

Le macchine non servono solo a monitorare, ma anche a sostenere le funzioni vitali del paziente, soprattutto cuore, polmoni e rene.

EEG CONVENZIONALE

- Inventato da Hans Berger nel 1929
- Registrazione dell'attività elettrica originata dai processi sinaptici (potenziali elettrici pre- e post-sinaptici) che si verificano nella corteccia cerebrale (connessioni talamo-corticali e cortico-corticali).

Gli impulsi nervosi variano in sincronizzazione e modulazione a seconda dello stato di vigilanza e dell'età del paziente.

EEG convenzionale di superficie

Effettuata tramite elettrodi applicati sullo scalpo in posizioni standardizzate secondo il S.I. 10-20

Legenda:

Fp=frontopolare F=frontale T=temporale C=centrale P=parietale O=occipitale n. dispari = sinistra n. pari = destra z = linea mediana

EEG

Una derivazione EEG è una traccia su un'asse Y-X che esprime le variazioni nel tempo (secondi) della differenza di potenziale elettrico (µV) di un elettrodo rispetto a un altro.

Le oscillazioni hanno caratteristiche bande di frequenza, distribuzioni spaziali e sono associate a differenti stati cerebro-funzionali.

	Frequenze (Hz)
Gamma (y)	> 30
Beta (β)	13-30
Alpha (a)	8-13
Theta (θ)	3-8
Delta (δ)	0-3

Onde fisiologiche

	Frequenze (Hz)
Gamma (γ)	> 30
Beta (β)	13-30
Alpha (a)	8-13
Theta (θ)	3-8
, Delta (δ)	0-3

a: il più frequente e tipico ritmo alfa compare a occhi chiusi in veglia rilassata (bassa attenzione), in sede occipitale.

β: ritmo di un soggetto ad occhi aperti, in fase di arousal, impegnato in un'attività cerebrale qualsiasi. Ritmo tipico del sonno REM.

9: in condizioni fisiologiche, presente nelle prime fasi del sonno (N1-N2). Presente diffusamente nell'infanzia. Nelle età successive suggestivo di solito di processi patologici focali o diffusi.

5: onde lente e ampie. Caratteristiche del sonno NREM.

γ: onde legate a compiti con un'alta elaborazione cognitiva, come la memoria di lavoro, l'attenzione e la percezione. Possono essere aumentate con attività come la meditazione e la neurostimolazione

Monitoraggio neurofisiologico in ICU

- Valutazione della presenza e gravità di un insulto cerebrale
- Valutazione di alterazione acuta dello stato di coscienza
- Monitoraggio/diagnosi di crisi epilettiche, stato di male
- Valutazione della efficacia di terapia
- Acquisizione di informazioni per prognosi a distanza

EEG qualitativo vs EEG quantitativo

- EEG qualitativo di superficie → potenziali elettrici cerebrali registrati allo scalpo
- ► EEG quantitativo → metodo di elaborazione dell'attività elettrica cerebrale implementato con un algoritmo di rielaborazione del segnale EEG con lo scopo di
 - evidenziare alcune componenti caratteristiche delle forme d'onda,
 - trasformare l'EEG in un formato facilmente analizzabile
 - associare valori numerici a alcuni dati specifici dell'EEG per facilitarne l'analisi /
 revisione
 Sedline (DSA)

→ aEEG (CFM)

CSA, SEF, Envelope

CARATTERISTICHE PRINCIPALI:

Visualmente semplificato

Tempo-compresso

Evidenza di vari fattori: frequenza, ampiezza, potenza, ritmicità

Sedline

SedLine è uno strumento che permette la visualizzazione simultanea dell'EEG standard e di indici e spettri del segnale EEG processati e derivati

Utilizza 4 sensori frontali biemisferici

Sedline - PSi

- Il Patient State index (PSi) è un indice per il monitoraggio della profondità dell'analgosedazione e per il monitoraggio cerebrale intraoperatorio e nelle ICU.
- E' un algoritmo che integra, in un unico valore, molteplici parametri quantitativi misurati all'EEG a 4 canali.
- Questi ultimi riflettono diverse componenti dell'attività cerebrale, ad esempio:
 - (1) variazioni di potenza nelle singole bande di frequenza;
- (2) variazioni di simmetria e sincronizzazione tra due regioni/emisferi
 - cerebrali diversi;
 - (3) variazioni di inibizione/attivazione della corteccia frontale

Sedline - PSi

Il PSi corrisponde al livello di analgesia/sedazione in tempo reale di un paziente su una scala da 0 a 100, dove 100 rappresenta un soggetto completamente sveglio.

<u>PSi 25-50:</u> range ottimale per mantenere uno stato ipnotico e di analgosedazione ottimale durante un'anestesia generale

Sedline – Density Spectral Array

Sedline – DSA e farmaci

CFM (Cerebral Function Monitor) o aEEG

- inventato da Maynard e Prior alla fine degli anni '60 nelle ICU dell'adulto
- monitoraggio della funzione elettrica cerebrale in continuo e semplificata ad uso del personale della terapia intensiva
- algoritmo comprende:
 - → filtraggio delle frequenze del segnale (abbattimento delle frequenze <2 Hz e >15 Hz)
 - → rettificazione del segnale
 - → rappresentazione dell'ampiezza in scala semilogaritmica
- → compressione nel tempo (velocità 6 cm/h)

Encefalopatia ipossico-ischemica

Maturazione cerebrale nei neonati

...IL FUTURO...

Tecniche di EEG processato multimodale

ATTIVITA' CARDIACA

- Monitoraggio in continuo
- Elettrocardiogramma
- Defibrillatore
- Pace maker

ELETTROCARDIOGRAMMA

- Riproduzione grafica dell'attività elettrica del cuore registrata a livello della superficie del corpo.
- Nel cuore il potenziale si propaga dagli atri verso i ventricoli
- Gli eletrodi di superficie misurano la differenze di potenziale generate dal muscolo cardiaco durante ogni battito cardiaco

UTILIZZO

- Aritmie
 - Tromboembolie polmonari
- Alterazioni morfologiche del cuore
- Arresto cardiaco

IL DEFIBRILLATORE

La macchina cuore-polmoni

 Macchina che sostituisce la funzione del cuore e dei polmoni in casi di disfunzione cardiaca o polmonare estrema

IL VENTILATORE

 Macchina che sostituisce / aiuta il polmone a scambiare i gas (ossigeno e anidride carbonica) quando il polmone è altamente compromesso

DIALISI

Macchina che sostituisce / aiuta il rene e vicaria la sua funzione eliminando le sostanze tossiche che normalmente vengono espulse dal rene

ECOGRAFIA

- Monitoraggio immediato e bed side di:
 - Cuore
 - Polmone
 - Cervello
 - Addome

PER CONCLUDERE...

- Reparto ad alta complessità
- Utilizzo di apparecchi biomedici ad alta complessità, spesso contemporaneamente
- Necessità di interfaccia user friendly e immediatezza nell'utilizzo

Grazie!

