Decision Procedures in First Order Logic

Decision Procedures for Equality Logic

Outline

✓ Introduction □ Definition, complexity □ Reducing Uninterpreted Functions to Equality Logic □ Using Uninterpreted Functions in proofs □ Simplifications ■ Introduction to the decision procedures ☐ The framework: assumptions and Normal Forms ☐ General terms and notions □ Solving a conjunction of equalities □ Simplifications

Basic assumptions and notations

- Input formulas are in NNF
- Input formulas are checked for satisfiability

- Formula with Uninterpreted Functions: ϕ^{UF}
- **Equality formula:** ϕ^{E}
- We assume each EUF is transformed to EF
 - Brynat and Ackermann Reduction (Left as reading)

First: conjunction of equalities

Input: A conjunction of equalities and disequalities

- 1. Define an equivalence class for each variable. For each equality x = y unite the equivalence classes of x and y. Repeat until convergence.
- 2. For each disequality $u \neq v$ if u is in the same equivalence class as v return 'UNSAT'.
- 3. Return 'SAT'.

Example

$$x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1$$

Is there a disequality between members of the same class?

Next: add Uninterpreted Functions

 $x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)$

Equivalence class

Equivalence class
Decision Procedures
An algorithmic point of view

Equivalence class

Next: Compute the Congruence Closure

 $x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)$

Now - is there a disequality between members of the same class ? This is called the Congruence Closure

And now: consider a Boolean structure

 $x_1 = x_2 \lor (x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2))$

Syntactic case splitting: this is what we want to avoid!

Deciding Equality Logic with UFs

- Input: Equality Logic formula ϕ^{UF}
- Convert ϕ^{UF} to DNF
- For each clause:
 - □ Define an equivalence class for each variable and each function instance.
 - \square For each equality x = y unite the equivalence classes of x and y. For each function symbol F, unite the classes of F(x) and F(y). Repeat until convergence.
 - ☐ If all disequalities are between terms from different equivalence classes, return 'SAT'.
- Return 'UNSAT'.

$$\phi^{E}$$
: $x = y \land y = z \land z \neq x$

■ The Equality predicates: $\{x = y, y = z, z \neq x\}$ which we can break to two sets:

$$E_{=} = \{x = y, y = z\}, \qquad E_{\neq} = \{z \neq x\}$$

■ The Equality Graph $G^{E}(\phi^{E}) = \langle V, E_{=}, E_{\neq} \rangle$ (a.k.a "E-graph")

$$\phi_1^E$$
: $x = y \land y = z \land z \neq x$ unsatisfiable

$$\phi_2^{\rm E}$$
: $x = y \land y = z \lor z \neq x$ satisfiable

The graph $G^{E}(\phi^{E})$ represents an abstraction of ϕ^{E}

It ignores the Boolean structure of ϕ^E

- Dfn: a path made of $E_{=}$ edges is an Equality Path. we write x = *z.
- *Dfn*: a path made of E_{\pm} edges + exactly one edge from E_{\pm} is a *Disequality Path*. We write $x \neq *y$.
- What do they convey?

$$X2 = x4$$
 (due to x2, x5, x4)

$$X2 \neq x4$$
 (due to x2, x5, x1, x4)

What we know

x = y <= \exists \phi. Whose equality graph is G and in any assignment satisfying them, x = y.

- Dfn. *A cycle with one disequality edge is a* Contradictory Cycle.
- In a Contradictory Cycle, for every two nodes x,y it holds that x = y and $x \neq y$.

- Dfn: A subgraph is called satisfiable iff the conjunction of the predicates represented by its edges is satisfiable.
- Thm: A subgraph is unsatisfiable iff it contains a Contradictory cycle
- *Hint: Conjunction of formulas in a c-cyle is unsat.*

■ Thm: Every Contradictory Cycle is either simple or contains a simple contradictory cycle

Simplifications, again

- Let S be the set of edges that are not part of any Contradictory Cycle
- Thm: replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability

Simplification: example

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor \text{True}) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

- $(\neg False \lor True) = True$
- Satisfiable!

Example

$$\neg \varphi^{E} := \begin{pmatrix} (x_{1} \neq x_{2} \lor y_{1} \neq y_{2} \lor f_{1} = f_{2}) \land \\ (u_{1} \neq f_{1} \lor u_{2} \neq f_{2} \lor g_{1} = g_{2}) \land \\ (u_{1} = f_{1} \land u_{2} = f_{2} \land z = g_{1}) \end{pmatrix} \land z \neq g_{2}.$$

$$E_{=} := \{ (f_1 = f_2), (g_1 = g_2), (u_1 = f_1), (u_2 = f_2), (z = g_1) \}$$

 $E_{\neq} := \{ (x_1 \neq x_2), (y_1 \neq y_2), (u_1 \neq f_1), (u_2 \neq f_2), (z \neq g_2) \}.$

$$\varphi^{\mathrm{E}'} := \begin{pmatrix} (\text{TRUE} \ \lor \ \text{TRUE} \ \lor \ \text{TRUE}) \ \land \\ (u_1 \neq f_1 \lor u_2 \neq f_2 \lor g_1 = g_2) \land \\ (u_1 = f_1 \land u_2 = f_2 \land z = g_1 \ \land z \neq g_2) \end{pmatrix}$$

Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.
- There are much better ways to do it than simply transforming it to DNF:
 - □ Semantic Tableaux,
 - □ SAT-based splitting,
 - □ others...
- We will investigate some of these methods later in the course.

Syntactic vs. Semantic splits

■ Now we start looking at methods that split the search space instead. This is called *semantic splitting*.

■ SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.