Дана транспортная сеть, состоящая из 7 вершин, связи между которыми заданы с помощью матрицы инцидентности. Найти оптимальный грузопоток.

$$G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$G_{13}=0;\ G_{24}=0;\ G_{35}=0;\ G_{36}=1;\ G_{37}=1;\ G_{42}=1;\ G_{47}=1;\ G_{53}=0;$$

$$d_1=27;\ d_2=24;\ d_3=d_4=0;\ d_5=-13;\ d_6=-17;\ d_7=-21;$$

$$r_{15}=7;\ r_{27}=5;$$

Матрица промежуточных расходов:

$$C_{kl} = \begin{pmatrix} 0 & 2 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 10 & 0 & 10 & 0 \\ 0 & 10 & 0 & 0 & 9 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Сеть с ограничениями:

i	d_i	(i,j)	C_{ij}	r_{ij}
1	27	(1, 2)	2	-
		(1, 5)	5	7
2	24	(2, 3)	7	-
		(2,7)	10	5
3	0	(3, 4)	10	-
		(3, 6)	10	-
4	0	(4, 2)	10	-
		(4, 5)	9	-
		(4, 7)	7	-
5	-13	(5, 6)	4	-
6	-17	(6, 7)	1	-
7	-21	-	-	-

Решение

Найдем кратчайшие пути:

(1-2): 2	(1-8): 5		1-5: 1, 2, 4, 5 (21)
(2-3): 9	(2-4): 12	(2-10):12	1-6: 1, 2, 3, 6 (19)
(3-4): 19	(3-6): 19		1-7: 1, 2, 4, 7 (19)
(4-5): 21	(4-7): 19		1-8: 1, 8 (5)
(5-6): 25		-	1-10: 1, 2, 10 (12)
(6-7): 20			

(2-3): 7	(2-4): 10	(2-10): 10	2-5: 2, 4, 5 (19)
(3-4): 17	(3-6): 17		2-6: 2, 3, 6 (17)
(4-5): 19	(4-7): 17		2-7: 2, 4, 7 (17)
(5-6): 23		-	2-8: -
(6-7): 18			2-10: 2, 10 (10)

(9-5): 0	(9-8): 0	9-5: 9, 5 (0)
,	(20).0	9-6: 9, 5, 6 (4)
(5-6): 4		
(6-7): 5		9-7: 9, 5, 6, 7 (5)
		9-8: 9, 8 (0)
		9-10: -

(11-7): 0 (11-10): 0	11-5: -
	11-6: -
	11-7: 11, 7 (0)
	11-8: -
	11-10: 11, 10 (0)

Построим опорный план:

	5	6	7	8	10	
1	21 6	19	19 14	5 7	12	27
2	19	17 17	17 ₂	-	10 5	24
9	0 7	4	5	0	-	7
11	-	-	0 5	-	0	5
	13	17	21	7	5	63

Полученный базис:

	v1	v2	v3	v4	v5
u1	6		14	7	
u1 u2 u3 u4		17	2		5
u3	7				
u4			5		

Проверим оптимальность полученного плана:

$$\begin{cases} u_1 + v_1 = 21 \\ u_3 + v_1 = 0 \\ u_1 + v_3 = 19 \\ u_2 + v_3 = 17 \\ u_2 + v_2 = 17 \\ u_2 + v_5 = 10 \\ u_4 + v_3 = 0 \\ u_1 + v_4 = 5 \end{cases}$$

$$\begin{cases} u_1 = 0 \\ u_2 = -2 \\ u_3 = -21 \\ u_4 = -19 \\ v_1 = 21 \\ v_2 = 19 \\ v_3 = 19 \\ v_4 = -19 \\ v_5 = 12 \end{cases}$$

	5	6	7	8	10	
1	21	19 ₀	19	5	12 ₀	0
2	19 ₀	17	17	-	10	-2
9	0	4 -6	5 -7	0 -40	-	-21
11	_	-	0	-	0 -7	-19
	21	19	19	-19	12	•

Опорный план является оптимальным
$$(u_{ij} + v_{ij} - C_{ij} \le 0, i = \overline{1,4}, j = \overline{1,5}).$$

$$F = 6 \cdot 21 + 14 \cdot 19 + 7 \cdot 5 + 17 \cdot 17 + 2 \cdot 17 + 5 \cdot 10 + 7 \cdot 0 + 5 \cdot 0 = 800$$

Найдем оптимальный грузопоток:

1-5: 1, 2, 4, 5 (6)

1-7: 1, 2, 4, 7 (14)

1-8: 1, 8 (7)

2-6: 2, 3, 6 (17)

2-7: 2, 4, 7 (2)

2-10: 2, 10 (5)

9-5: 9, 5 (7)

11-7: 11, 7 (5)

Ответ

F = 800

Оптимальный грузопоток:

