Biopotential electrodes

- Bioelectric signals
- Biopotential electrode models
- Electrode types

Biomedical Electronics and Instrumentation Department of Electronic Engineering

Bioelectric activity

- Electrical signals produced by various bodily activities are used in monitoring / diagnosis
 - Measured signals are generally compared with normal reference signals
 - Variations in signals can provide accurate diagnosis
- Examples include
 - Electrocardiography (ECG) activity of different sections of the heart
 - Electroencephalography (EEG) electrical activity of the brain
 - Electromyography (EMG) electrical activity of the muscles
- Signals are characterised by
 - Amplitude
 - Frequency / time duration
 - Waveshape

Biopotential signals

- Electrical activity is explained by differences in ion concentrations within the body (sodium, Na⁺; cloride, Cl⁻; potassium, K⁺)
 - A potential difference (voltage) occurs between 2 points with different ionic concentrations
 - Cell membranes <u>at rest</u> are more permeable to some ions (e.g. K⁺, Cl⁻) than others (e.g. Na⁺)
 - Na⁺ ions are pumped out of the cells, while K⁺ ions are pumped in
 - Due to a difference in rates of pumping $(Na^+ > K^+)$, a difference in +'ive ion concentration results
 - A -'ive electrical potential is established between the inside and outside of the cell; this is estimated to be approx. -70 mV.
 - Cell is said to be *polarised*

Action potential

- When a cell is electrically stimulated (through the central nervous system), the permeability of the cell membrane changes
 - Na⁺ ions rush into the cell, and K⁺ ions rush out
 - Again, due to a difference in rates of flow, the ion concentration changes (more +'ive ions inside cell than outside)
 - Cellular potential becomes +'ive : 20 40 mV. This lasts for a few milliseconds
 - Cell is said to be depolarised
- After the stimulus, the permeability of the cell membrane returns to its original value, and the rest potential is restored
 - Due to unequal pumping rates of Na⁺ and K⁺ ions
 - Time taken for restoration is called the refractory period
 - Cell is said to be *repolarised* during this time
- The resulting variation in cellular potential with time is known as the action potential

Typical action potential signal

• ECG, EEG etc signals are the resultant of several action potentials produced by a combination of different cells

Action potentials → measured waveforms

 Propagation of action potential through different body tissues produces final waveform recorded by electrodes

Biopotential sensors / electrodes

- Biopotential electrodes transduce *ionic* conduction to *electronic* conduction so that biopotential signals can be viewed and/or stored
- They generally consist of metal contacts packaged so that they can be easily attached to the skin or other body tissues

Metal plate electrodes

Suction electrode

- Different types include surface macroelectrodes, indwelling macroelectrodes
 & microelectrodes
- Skin and other body tissues act as electrolytic solutions

Half-cell potential

 The performance of an electrode may be described in terms of a metal – electrolyte interface

- Electrode discharges some metallic ions into electrolytic solution
 - Increase in # free electrons in electrode and in # +ive cations in solution
- OR ions in solution combine with metallic electrodes
 - Decrease in # free electrons in electrode and in # +ive cations in solution
- As a result, a charge gradient builds up between the electode and electrolyte and this in turn creates a potential difference; i.e. the electrode potential or half-cell potential, V_b.

Electrode double layer

- For both mechanisms, two parallel layers of opositely charged ions are produced; i.e. the electrode double layer:
 - E.g. when metal ions recombine with the electrode:

■ The excess of negative anions is replaced with positive cations in the case of metal ions discharging into solution, and V_h is then < 0.

Polarisation

- A perfectly polarised electrode is one in which there is no net tranfer of charge across the metal / electrolyte interface.
 - Either metal ions are discharged OR electrolytic ions recombine
 - Only displacement current flows
 - Interface impedance is represented as a capacitor
- A perfectly non-polarised electrode is one in which there is no impedance to charge transfer between the metal and electrolyte
 - Both mechanisms of charge transfer occur
 - There is no double layer build up
 - Interface impedance is represented as a resistor
- In practice, both mechanisms occur to some extent and interface impedance therefore has components of resistance *and* capacitance

Electrode circuit model

- Biopotential is measured as the difference in readings between two electrodes
 - Ideally, the half-cell potential is cancelled out
- Model assists in amplifier design (later)
 - Source resistance vs. amplifier input impedance
 - Frequency dependance

Typical electrode materials

reduction reaction
$$E^{o}$$
 (V)
 $Al^{3+} + 3e^{-} \rightarrow Al$ -1.662
 $Zn^{2+} + 2e^{-} \rightarrow Zn$ -0.762
 $Cr^{3+} + 3e^{-} \rightarrow Cr$ -0.744
 $Fe^{2+} + 2e^{-} \rightarrow Fe$ -0.447
 $Cd^{2+} + 2e^{-} \rightarrow Ni$ -0.257
 $Pb^{2+} + 2e^{-} \rightarrow Pb$ -0.126
 $2H^{+} + 2e^{-} \rightarrow H_{2}$ 0.000 Standard Hydrogen electrode

 $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $+0.222$
 $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$ $+0.342$
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $+0.342$ junction potential & it is

 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $+0.521$ also very stable -> hence

 $Ag^{2} + e^{-} \rightarrow Ag$ $+0.780$ used in ECG electrodes!

 $Au^{3+} + 3e^{-} \rightarrow Au$ $+1.498$
 $Au^{4+} + e^{-} \rightarrow Au$ $+1.692$

Problem of half-cell potential

- Typical half-cell potential values (at DC) are much larger than AC measurement signals
 - V_e : 0.1 0.5 V vs. V_{ECG} : 1 2 mV & V_{EEG} : ~ 50 μ V
 - Even if identical electrodes are used and a differential signal is measured, there will be differences in V_e values due to variation in placement positions
- Solutions include :
 - Use of a differential DC amplifier however, small remaining differences will be amplified by the same level as low level signals to be detected.
 - Include a DC offset circuit to subtract the half-cell potential this approach is limited by the time-varying nature of the offset due to motion between the skin and electrode.
 - Include a high pass filter to remove the DC offset this provides the best results for measurement signals with frequency much higher than that of offset variations

Surface electrodes

• These are placed in contact with the skin of the subject

- Problem of motion artifact
 - Electrode movement produces unwanted signals due to change in electrode electrolyte interface

Floating electrodes

 Conductive paste reduces effect of electrode slippage and resulting motion artifact :

Needle electrodes

Mostly used for contacting with internal body tissues :

- (a) Insulated needle electrode
- (b) Coaxial needle electrode
- (c) Bipolar coaxial electrode
- (d) Fine -wire electrode connected to hypodermic needle, before being inserted .
- (e) Cross -sectional view of skin and muscle, showing coiled fine -wire electrode in place

Microelectrodes

Used to measure biopotential signals at the cellular level :

Metal Supported Microelectrodes

- Due to small dimensions (μm), impedance levels are high
 - Amplifier needs very high input impedance

Microtechnology / MEMS

(a) Beam -lead multiple electrode

(b) Multielectrode silicon probe