UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Nejc Ševerkar, Matija Šteblaj Spojena kubična Bezierjeva krpa

RPGO

Kazalo

1	Aproksimacijska shema	•
	1.1 Lokalna shema	
	1.2 Celotna shema	(
2	Interpolacija razsevnih podatkov v prostoru	(
	2.1 Aproksimacija parcialnih odvodov	,
	2.2 Postopek	ð
3	Rezultati implementacije	Ç

1 Aproksimacijska shema

Želimo poiskati preprosto C^1 -ploskev, ki v danih točkah $(x_i, y_i) \in \mathbb{R}^2$, $i = 1, \ldots, n$ interpolira predpisane vrednosti in parcialne odvode (npr. od neke funkcije).

Problema se lotimo na sledeč način: naredimo triangulacijo domene na danih točkah in definiramo lokalno shemo na vsakem trikotniku posebej, kjer poskrbimo za ustrezna ujemanja na presekih (skupnih stranicah) trikotnikov. Pri tem si bomo pomagali z Bézierjevimi krpami stopnje 3.

1.1 Lokalna shema

Spomnimo se, da je parametrizacija Bézierjeve krpe stopnje 3 na nekem trikotniku podana s kontrolnimi točkami b_{ijk} , i+j+k=3 kot:

$$P(u, v, w) = \sum_{i+j+k=3} b_{ijk} B_{ijk}^{3}(u, v, w)$$

$$= u^{3} b_{300} + 3u^{2}v b_{210} + 3u^{2}w b_{201} + 3uv^{2} b_{120}$$

$$+ 3uw^{2} b_{102} + v^{3} b_{030} + 3v^{2}w b_{021} + 3vw^{2} b_{012}$$

$$+ w^{3} b_{003} + 6uvw b_{111}$$

$$(1)$$

in njen odvod v smeri $\mathbf{z} = (z_u, z_v, z_w)$ enak:

$$\frac{\partial P}{\partial \mathbf{z}} = \frac{\partial P}{\partial u} z_u + \frac{\partial P}{\partial v} z_v + \frac{\partial P}{\partial w} z_w = \langle \operatorname{grad}(P), \mathbf{z} \rangle, \tag{2}$$

kjer u, v, w predstavljajo baricentrične koordinate v danem trikotniku.

Recimo, da triangulacijo že imamo, in vzemimo nek trikotnik $\langle V_1, V_2, V_3 \rangle$ v domeni. Določiti moramo točke kontrolne mreže b_{ijk} nad tem trikotnikom:

Predpisane imamo vrednosti $F(V_i)$ in parcialne odvode $F_x(V_i)$, $F_y(V_i)$ za $V_i = (x_i, y_i)$ i = 1, 2, 3. Od tod lahko dobimo odvode v smeri stranic kot:

$$F_{e_i} = \frac{\partial F}{\partial e_i} = (x_{i-1} - x_{i+1})F_x + (y_{i-1} - y_{i+1})F_y = \langle e_i, \operatorname{grad}(F) \rangle,$$

kjer razumemo $0 \equiv 3$ in $4 \equiv 1$ v indeksih.

S pomočjo teh odvodov lahko definiramo kontrolne točke "okoli" enega oglišča trikotnika:

$$b_{300} = F(V_1)$$

$$b_{210} = F(V_1) + \frac{F_{e_3}}{3}$$

$$b_{201} = F(V_1) - \frac{F_{e_2}}{3}$$

Opazimo, da s tako izbiro kontrolnih točk b_{210} in b_{201} interpoliramo smerna odvoda v dveh linearno neodvisnih smereh (smereh stranic) nad ogliščem. Sledi, da s tem interpoliramo prve odvode v vseh smereh (v oglišču).

Na analogen način določimo še ostale "robne" točke:

Ostane nam le še izbira notranje točke b_{111} .

Najprej določimo 3 točke: b_{111}^1 , b_{111}^2 , b_{111}^3 , kjer bo b_{111}^i tak, da bo Bézierjeva krpa s to in prej določenimi kontrolnimi točkami zagotavljala C^1 -zveznost čez stranico e_i . Poglejmo pogoje pri stranici e_1 , za ostali dve pa naredimo simetrično.

Poglejmo si notranjo normalo n_1 na stranico e_1 . Velja:

$$n_1 = -e_3 + \frac{e_3 \cdot e_1}{|e_1|} \frac{e_1}{|e_1|}$$

Če to enačbo razpišemo v baricentričnih koordinatah:

$$n_1 = -e_3 + \frac{e_3 \cdot e_1}{|e_1|} \cdot \frac{e_1}{|e_1|}$$

$$= -(-1, 1, 0) - h_1(0, -1, 1)$$

$$= (1, h_1 - 1, -h_1),$$

kjer je

$$h_1 = -\frac{e_3 \cdot e_1}{|e_1|^2}$$

Če označimo s P_1 parametrizacijo Bézierjeve krpe, ki jo dobimo iz prej določenih b_{ijk} in b_{111}^1 , lahko iz formul 1 in 2 izračunamo $\frac{\partial P_1}{\partial n_1}$. Ta odvod se na stranici e_1 (kjer je u=0) poenostavi v:

$$\frac{\partial P_1}{\partial n_1} = 3I_1v^2 + 6I_2vw + 3I_3w^2,$$

kjer so:

$$I_1 = b_{120} - b_{030} - h_1(b_{021} - b_{030})$$

$$I_2 = b_{111}^1 - b_{021} - h_1(b_{012} - b_{021})$$

$$I_3 = b_{102} - b_{012} - h_1(b_{003} - b_{012})$$

Z upoštevanjem w=1-v (saj je $u+v+w=1,\,u=0$), lahko enačbo preoblikujemo v:

$$\frac{\partial P_1}{\partial n_1} = 3\left((I_1 - 2I_2 + I_3)v^2 + 2(I_2 - I_3)v + I_3 \right)$$

Zdaj izberemo tak b_{111}^1 , da bo ta normalni odvod linearen na stranici e_1 , tj. linearen v parametru v. Dobimo torej enačbo:

$$I_1 - 2I_2 + I_3 = 0$$

Od tod lahko izrazimo:

$$b_{111}^{1} = \frac{1}{2} \left(b_{120} + b_{102} + h_1 (2b_{012} - b_{021} - b_{003}) + (1 - h_1)(2b_{021} - b_{030} - b_{012}) \right)$$

Zakaj taka točka zagotavlja C^1 zveznost čez stranico e_1 ?

Postopek ponovimo na sosednjem trikotniku in dobimo linearen normalen odvod (v nasprotno smer), kar pomeni da je linearen tudi normalen odvod v smeri prvotnega trikotnika. Te dva odvoda se ujemata v ogliščih V_2 , V_3 (shema tam interpolira odvode), torej povsod, ker sta linearna.

1.2 Celotna shema

Parametrizacija na celotnem trikotniku bo konveksna kombinacija parametrizacij P_1 , P_2 , P_3 :

$$P(u, v, w) = \frac{v^2 w^2 P_1 + w^2 u^2 P_2 + u^2 v^2 P_3}{v^2 w^2 + v^2 u^2 + u^2 w^2}$$

$$= u^3 b_{300} + 3u^2 v b_{210} + 3u^2 w b_{201} + 3uv^2 b_{120}$$

$$+ 3uw^2 b_{102} + v^3 b_{030} + 3v^2 w b_{021} + 3vw^2 b_{012}$$

$$+ w^3 b_{003}$$

$$+ 6uvw \frac{v^2 w^2 b_{111}^1 + w^2 u^2 b_{111}^2 + u^2 v^2 b_{111}^3}{v^2 w^2 + v^2 u^2 + u^2 w^2}$$

Tako definirana parametrizacija se na stranicah ujema z ustrezno lokalno parametrizacijo P_i , ki nam zagotavlja C^1 -zveznost čez stranico e_i . Opazimo, da je razlika med našo parametrizacijo in običajno parametrizacijo Bézierjeve krpe le pri točki b_{111} , kjer namesto ene točke, ki bi bila fiksna za vse (u, v, w) vzamemo konveksno kombinacijo točk b_{111}^i , ki se spreminja z različnimi (u, v, w). Intuitivno si torej lahko predstavljamo, da gre za Bézierjevo krpo, kjer se notranja točka spreminja z baricentričnimi koordinatami. Ta interpretacija nam tudi omogoča preprosto posplošitev De Casteljaujevega algoritma za izračun točk na naši ploskvi – za dane parametre najprej izračunamo ustrezen $b_{111}(u, v, w)$, nato izvedemo običajni algoritem.

2 Interpolacija razsevnih podatkov v prostoru

Prejšnjo metodo želimo uporabiti na problemu interpolacije točk $P = (p_i)_{i=1}^n$, kjer je $p_i = (x_i, y_i, z_i) \in \mathbb{R}^3$. Mislimo si, da ti podatki ležijo na grafu neke zvezno odvedljive funkcije $f: \mathbb{R}^2 \to \mathbb{R}$, ki pa je seveda ne poznamo. Spomnimo se, da metoda Goodman-Said zahteva poleg vrednosti še poznavanje parcialnih odvodov prvega reda v točkah $(x_i, y_i)_{i=1}^n$. Ker teh nimamo, jih moramo oceniti.

2.1 Aproksimacija parcialnih odvodov

Recimo, da ocenjujemo parcialna odvoda v testni točki $p_k \in P$ (natančneje sta to parcialna odvoda f v (x_k, y_k)). To bomo storili v treh korakih.

1. Za oceno odvoda v p_k bomo seveda potrebovali neke informacije o vrednostih f v točkah blizu (x_k, y_k) . Vse kar imamo na voljo so točke (x_i, y_i) , torej izmed njih izberemo tiste, ki so (x_k, y_k) dovolj blizu. To naredimo z izborom radija r_k in obravnavo točk $p_j \in P$, za katere velja

$$d((x_j, y_j), (x_k, y_k)) = d_j^k \in (0, r_k].$$

Označimo množico indeksov teh z J_k .

2. Ker tudi med izbranimi točkami prioritiziramo tiste, ki so naši testni točki bližje, jih ustrezno utežimo. Za $j \in J_k$ definiramo

$$w_j^k := \frac{r_k - d_j^k}{r_k \cdot d_j^k},$$

utež točke p_j glede na p_k .

3. Za p_k definirajmo interpolacijski polinom druge stopnje kot

$$p(x,y) := z_k + a(x - x_k)^2 + b(x - x_k) \cdot (y - y_k) + c(y - y_k)^2 + d(x - x_k) + e(y - y_k)$$

kjer so $a, b, c, d, e \in \mathbb{R}$ nedoločeni koeficienti in velja

$$p_x(x_k, y_k) = d$$
 in $p_y(x_k, y_k) = e$.

Ti vrednosti bosta oceni za parcialna odvoda v točki p_k . Da bo to smiselno, mora ta polinom v okolici (x_k, y_k) dobro aproksimirati vrednosti funkcije f, torej vrednosti z_j v točkah (x_j, y_j) za $j \in J_k$. Če upoštevamo še uteži posamezne točke, so vrednosti določene z minimizacijskim problemom

$$\sum_{j \in J_k} (w_j^k \cdot (p(x_j, y_j) - z_j))^2 = \|W_k A u - W_k v\|^2,$$

kjer so za $J_k = \{j_1, j_2, \dots, j_{n_k}\}$

$$W_{k} = \begin{bmatrix} w_{j_{1}}^{k} & & & \\ & w_{j_{2}}^{k} & & \\ & & \ddots & \\ & & & w_{j_{n_{k}}}^{k} \end{bmatrix}, \quad v = \begin{bmatrix} z_{j_{1}} - z_{k} \\ z_{j_{2}} - z_{k} \\ \vdots \\ z_{j_{n_{k}}} - z_{k} \end{bmatrix}, \quad u = \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} \quad \text{in}$$

$$A = \begin{bmatrix} (x_{j_1} - x_k)^2 & (x_{j_1} - x_k) \cdot (y_{j_1} - y_k) & (y_{j_1} - y_k)^2 & (x_{j_1} - x_k) & (y_{j_1} - y_k) \\ (x_{j_2} - x_k)^2 & (x_{j_2} - x_k) \cdot (y_{j_2} - y_k) & (y_{j_2} - y_k)^2 & (x_{j_2} - x_k) & (y_{j_2} - y_k) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (x_{j_{n_k}} - x_k)^2 & (x_{j_{n_k}} - x_k) \cdot (y_{j_{n_k}} - y_k) & (y_{j_{n_k}} - y_k)^2 & (x_{j_{n_k}} - x_k) & (y_{j_{n_k}} - y_k) \end{bmatrix}$$

Seveda to rešujemo z metodo najmanjših kvadratov, kjer pa moramo predpostaviti, da je točk znotraj radija dovolj, torej $|J_k| \ge 5$ (to lahko zagotovimo z implicitno definicijo radija r_k , ki ga definiramo kot razdalja od n-te najbližje točke za $n \ge 6$).

Slika 1: Trije koraki aproksimacije parcialnih odvodov.

2.2 Postopek

Sedaj lahko opišemo postopek interpolacije točk v P, ki poteka v treh korakih

- 1. V vsaki točki $p_k \in P$ ocenimo parcialne odvode.
- 2. Trianguliramo točke $(x_i,y_i)_{i=1}^n$ z neko triangulacijsko metodo.
- 3. Na vsakem trikotniku T konstruiramo lokalno shemo z metodo Goodman-Said in shranimo matriko koeficientov, definiranih v prvem poglavju

$$B_T = \begin{vmatrix} b_{300} & b_{210} & b_{120} & b_{030} \\ b_{201} & \square & b_{021} & \square \\ b_{102} & b_{012} & \square & b_{1112} \\ b_{003} & \square & b_{1113} & b_{1111} \end{vmatrix}$$

Seznam matrik B_T nad vsakem trikotniku Ttriangulacije, skupaj z njo definirajo naš zlepek.

3 Rezultati implementacije

Slika 2: Primerjava aproksimacije funkcije s shemo Goodman-Said (na levi) in Argyris (na desni), pri znanih odvodih na 10-ih točkah. Vidimo, da je Argyrisova shema bolj natančna, a je pri problemu interpolacije točk v prostoru manj primerna, saj moramo za njeno uporabo oceniti poleg prvih še druge parcialne odvode.

Slika 3: Interpolacija točk v prostoru s shemo Goodman-Said.

Slika 4: Interpolacija 10-ih točk na grafu $(x,y)\mapsto \sin(x\cdot y)+\cos(x\cdot y)$ s shemo Goodman-Said.