Prof.: Dr. José Rodrigo de Moraes -	- Modelos Lineares I	1
-------------------------------------	----------------------	---

Universidade Federal Fluminense (UFF)

Instituto de Matemática e Estatística (IME)

Departamento de Estatística (GET)

Professor: Dr. José Rodrigo de Moraes

Nome (completo) do(a) aluno(a):

Curso de Graduação: ______ Data: ____ / ____ /2019

2º Exercício de Aplicação (2º Sem. / 2019) – 2ª PARTE: Modelos Lineares I

Exercício de aplicação (continuação): Alguns estudantes em uma aula de estatística afirmaram que mesmo estudando por meio de exercícios não os ajudou a prepará-los para a prova da disciplina. Visando avaliar tal afirmação, o professor da disciplina resolveu realizar uma análise de regressão linear. Na tabela 1 se encontram os escores do tempo de estudo e do desempenho na prova (ambos os escores estão numa escala de 0 a 100, onde 100 indica "maior tempo de estudo" ou "melhor desempenho") para 18 alunos matriculados na disciplina.

Pede-se:

- h) Calcule o coeficiente de correlação linear de Pearson e intreprete o sentido e o grau da relação entre o tempo de estudo e o desempenho na prova.
- i) Obtenha o efeito estimado do tempo de estudo sobre o desempenho na prova usando o coeficiente de correlação linear de Pearson obtido na letra (h).
- j) Construa a Tabela de Análise de Variância (ANOVA) e interprete as somas dos quadrados no contexto do problema.
- k) Usando o teste F avalie a significância da relação entre o tempo de estudo e o desempenho na prova. A conclusão foi a esperada? Justifique a sua resposta. **OBS:** É necessário definir todas as etapas de realização do teste adotado: 1) Hipóteses a serem testadas; 2) Estatística de Teste (e seu valor observado); 3) Região crítica; 4) Tomada de decisão (inclusive no contexto do problema).
- I) Calcule o valor observado da estatística abaixo:

$$F = \frac{\hat{\beta}_1^2 \sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n e_i^2 / (n-2)}$$

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

- m) Calcule o coeficiente de determinação do modelo e interprete-o no contexto do problema.
- n) Estime o desempenho médio na disciplina para alunos com escore de tempo de estudo igual a 64.
- o) Determine o intervalo de confiança de 95% para o desempenho médio na disciplina dos alunos com escore de tempo de estudo igual a 64.
- p) Estime o desempenho na disciplina para um aluno com escore de tempo de estudo igual a 80.
- q) Determine o intervalo de confiança de 95% para o desempenho na disciplina de um aluno com escore de tempo de estudo igual a 80.
- r) Considerando o escore médio de tempo de estudo, determine os intervalos de confiança e predição, a um nível de 95%.

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

Tabela 1: Escores do tempo de estudo e do desempenho de n=18 alunos matriculados numa disciplina.

•		
Aluno	Tempo de estudo	Desempenho
1	96	95
2	77	80
3	0	0
4	0	0
5	78	79
6	64	77
7	89	72
8	47	66
9	90	98
10	93	90
11	18	0
12	86	95
13	0	35
14	30	50
15	59	72
16	77	55
17	74	75
18	67	66
Total	1045	1105

OBS: Este exercício deve ser resolvido usando o programa R e de forma manuscrita. Todos os cálculos intermediários devem ser mostrados, inclusive as expressões dos estimadores utilizados.