Appendix for the paper "Energy and Spectrum Efficient Federated Learning via High-Precision Over-the-Air Computation"

1 Proof of Theorem 1

Consider a non-convex FL model setting. Under the L-smoothness assumption of the global objective with the expectation taken, we have

$$\mathbb{E}\left[\mathbb{E}_{Q}\left[\mathbb{E}_{Air}\left[f(\mathbf{w}^{r+1}) - f(\mathbf{w}^{r})\right]\right]\right] \\
\leq -\theta\eta\mathbb{E}\left[\mathbb{E}_{Q}\left[\mathbb{E}_{Air}\left[\left\langle\nabla f^{r}, \nabla F_{Q}^{r}\right\rangle\right]\right]\right] + \frac{\theta^{2}\eta^{2}L}{2}\mathbb{E}\left[\mathbb{E}_{Q}\left[\mathbb{E}_{Air}\left[\left\|\nabla F_{Q}^{r}\right\|^{2}\right]\right]\right], \tag{1}$$

where we take the expectation over the sampling and operations. Next, the following lemmas are proposed to bound terms in the above inequality.

Lemma 1.1. The inner product between the stochastic gradient ∇F_Q^r and full batch gradient ∇f^r can be bounded as

$$\mathbb{E}_{\xi^{(r)}} \mathbb{E}_{Q} \mathbb{E}_{Air} \left[\left\langle \nabla f^{r}, \nabla F_{Q}^{r} \right\rangle \right] \\
= \mathbb{E}_{\xi^{(r)}} \left[\left\langle \nabla f^{r}, \frac{1}{K} \sum_{k=1}^{K} \sum_{h=0}^{H-1} \nabla F_{k}^{r,h} \right\rangle \right] \\
\leq \frac{1}{2K} \sum_{k=1}^{K} \sum_{h=0}^{H} \left[-\|\nabla f^{r}\|_{2}^{2} - \|\nabla f_{k}^{r,h}\|_{2}^{2} + L^{2} \|\mathbf{w}^{r} - \mathbf{w}_{k}^{r,h}\|_{2}^{2} \right].$$
(2)

Here, we set $\nabla F_k^r = \sum_{h=0}^{H-1} \nabla F_k^{r,h}$ and $\nabla F_{k,Q}^r = Q\left(\sum_{h=0}^{H-1} \nabla F_k^{(h,r)}\right)$. We further define $\nabla F_Q^r = Air_{\mathcal{K}}\left(Q\left(\sum_{h=0}^{H-1} \nabla F_k^{r,h}\right)\right)$.

Lemma 1.2. Similar to the Lemma D.3 in [11], we can bound the distance between the global model and the local model at r-th communication round under Assumption 2 as follows:

$$\mathbb{E}\left[\|\mathbf{w}^{r} - \mathbf{w}_{k}^{r,h}\|_{2}^{2}\right] \leq \eta^{2} H \sigma^{2} + \eta^{2} \sum_{h=0}^{H-1} H \|\nabla f_{k}^{r,h}\|_{2}^{2}$$
(3)

Lemma 1.3. The last term in (1) can be calculated as

$$\mathbb{E}_{\xi^{(r)}} \mathbb{E}_{Q} \mathbb{E}_{Air} \left[\| Air_{\mathcal{K}} \left(Q \left(\sum_{h=0}^{H-1} \nabla F_{k}^{r,h} \right) \right) \|^{2} \right] \leq \frac{\sigma_{z}^{2}}{p_{b}^{2}} + \sum_{k=1}^{K} \frac{q+p_{b}}{K^{2}p_{b}} \operatorname{Var}(\nabla F_{k}^{r}) + \sum_{k=1}^{K} \frac{q(2-p_{b}) + Kp_{b}}{K^{2}p_{b}} \| \nabla f_{k}^{r} \|^{2}$$

$$(4)$$

Proof.

$$\begin{split} &\mathbb{E}_{\xi^{(r)}} \mathbb{E}_{Q} \mathbb{E}_{Air} \left[\| Air_{K} \left(Q \left(\sum_{h=0}^{K-1} \nabla F_{k}^{r,h} \right) \right) \|^{2} \right] \\ &= \mathbb{E}_{\xi^{(r)},Q} \left[\frac{1}{K^{2}} \left(\| \sum_{k=1}^{K} \nabla F_{k,Q}^{r} \|^{2} + \left(\frac{1}{p_{b}} - 1 \right) \sum_{k=1}^{K} \| \nabla F_{k,Q}^{r} \|^{2} \right) + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \right] \\ &= \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{Q} \left[\| \frac{1}{K} \sum_{k=1}^{K} \nabla F_{k,Q}^{r} \|^{2} + \frac{1}{K^{2}} (\frac{1}{p_{b}} - 1) \sum_{k=1}^{K} \| \nabla F_{k,Q}^{r} \|^{2} \right] \right] + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &= \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{Q} \left[\frac{1}{K^{2}} \sum_{k=1}^{K} \left[\| \nabla F_{k,Q}^{r} - \nabla F_{k}^{r} \|^{2} \right] \right] + \| \frac{1}{K} \sum_{k=1}^{K} \nabla F_{k}^{r} \|^{2} \right] + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &= \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{Q} \left[\frac{1}{K^{2}} \sum_{h=1}^{K} \left[\| \nabla F_{k,Q}^{r} - \nabla F_{k}^{r} \|^{2} \right] + \| \frac{1}{K} \sum_{h=1}^{K} \nabla F_{k}^{r} \|^{2} + \frac{1}{K} (\frac{1}{p_{b}} - 1) \sum_{h=1}^{K} \| \nabla F_{k}^{r} \|^{2} \right] + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &\leq \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{Q} \left[\frac{1}{K^{2}} \sum_{h=1}^{K} \left[\| \nabla F_{k,Q}^{r} - \nabla F_{k}^{r} \|^{2} \right] + \| \frac{1}{K} \sum_{h=1}^{K} \nabla F_{k}^{r} \|^{2} + \frac{1}{K} (\frac{1}{p_{b}} - 1) \sum_{h=1}^{K} \| \nabla F_{k}^{r} \|^{2} \right] + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &\leq \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{Q} \left[\nabla F_{k}^{r} \right] + \| \nabla F_{k}^{r} \|^{2} + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \right] + \frac{1}{K} \left[\frac{1}{p_{b}} - 1 \right] \sum_{k=1}^{K} \| \nabla F_{k}^{r} \|^{2} + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &\leq \sum_{k=1}^{K} \frac{q}{K^{2}p_{b}} \operatorname{Var}(\nabla F_{k}^{r}) + \sum_{k=1}^{K} \frac{q(2 - p_{b}) + Kp_{b}}{K^{2}p_{b}} \| \nabla f_{k}^{r} \|^{2} + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \\ &\leq \sum_{k=1}^{K} \frac{q + p_{b}}{K^{2}p_{b}} \operatorname{Var}(\nabla F_{k}^{r}) + \sum_{k=1}^{K} \frac{q(2 - p_{b}) + Kp_{b}}{K^{2}p_{b}} \| \nabla f_{k}^{r} \|^{2} + \frac{\sigma_{z}^{2}}{p_{b}^{2}} \end{aligned}$$
(5)

According to Assumption 2, we have $Var(\nabla F_k^r) \leq H\sigma^2$. We further have

$$\|\nabla f_{k}^{r}\|^{2} = \|\sum_{h=0}^{H-1} \nabla f_{k}^{r,h}\|^{2} \le H \sum_{h=0}^{H-1} \|\nabla f_{k}^{r,h}\|^{2}. \text{ Therefore, we have}$$

$$\mathbb{E}_{\xi^{(r)}} \mathbb{E}_{Q} \mathbb{E}_{Air} \left[\|\operatorname{Air}_{\mathcal{K}} \left(Q \left(\sum_{h=0}^{H-1} \nabla F_{k}^{r,h} \right) \right) \|^{2} \right]$$

$$\le \frac{q+p_{b}}{Kp_{b}} H\sigma^{2} + H \frac{q(2-p_{b}) + Kp_{b}}{K^{2}p_{b}} \sum_{h=1}^{K} \sum_{k=0}^{H} \|\nabla f_{k}^{r,h}\|^{2} + \frac{\sigma_{z}^{2}}{p_{b}^{2}}$$
(6)

Therefore, by integrating Lemma 1.1, 1.2, and 1.3 into (1), we will have:

$$\mathbb{E}\left[\mathbb{E}_{Q}\left[\mathbb{E}_{Air}\left[f(\mathbf{w}^{r+1}) - f(\mathbf{w}^{r})\right]\right]\right] \\
\leq \frac{\eta\theta}{2K} \sum_{k=1}^{K} \sum_{h=0}^{H} \left[-\|\nabla f^{r}\|_{2}^{2} - \|\nabla f_{k}^{r,h}\|_{2}^{2} + L^{2}\eta^{2}H\left[\sigma^{2} + H\|\nabla f_{k}^{r,h}\|_{2}^{2}\right] \right] + (7) \\
\frac{(q+p_{b})\theta^{2}\eta^{2}L}{2Kp_{b}} H\sigma^{2} + HL\theta^{2}\eta^{2} \frac{q(2-p_{b}) + Kp_{b}}{2K^{2}p_{b}} \sum_{k=1}^{K} \sum_{h=0}^{H} \|\nabla f_{k}^{r,h}\|^{2} + \frac{\theta^{2}\eta^{2}\sigma_{z}^{2}L}{2p_{b}^{2}} \\
= -\frac{\eta\theta H}{2} \|\nabla f^{r}\|_{2}^{2} - \frac{\eta\theta}{2K} (1 - L^{2}\eta^{2}H^{2} - HL\theta\eta \frac{q(2-p_{b}) + Kp_{b}}{Kp_{b}}) \sum_{k=1}^{K} \sum_{h=0}^{H} \|\nabla f_{k}^{r,h}\|_{2}^{2} \\
+ \frac{\theta\eta^{2}LH}{2K} (\eta LHK + \frac{(p_{b} + q)\theta}{p_{b}})\sigma^{2} + \frac{\theta^{2}\eta^{2}\sigma_{z}^{2}L}{2p_{b}^{2}} \\
\text{If we set } 1 - L^{2}\eta^{2}H^{2} - HL\theta\eta \frac{q(2-p_{b}) + Kp_{b}}{Kp_{b}} \geq 0, \text{ we can get} \\
\mathbb{E}\left[\mathbb{E}_{Q}\left[\mathbb{E}_{Air}\left[f(\mathbf{w}^{r+1}) - f(\mathbf{w}^{r})\right]\right]\right] \leq -\frac{\eta\theta H}{2} \|\nabla f^{r}\|_{2}^{2} \\
+ \frac{\theta\eta^{2}LH}{2K} (\eta LHK + \frac{(p_{b} + q)\theta}{p_{b}})\sigma^{2} + \frac{\theta^{2}\eta^{2}\sigma_{z}^{2}L}{2p_{b}^{2}} \tag{8}$$

Next, we sum up the above equation over all R communication rounds and get

$$\frac{1}{R} \sum_{r=0}^{R-1} \|\nabla f^r\|_2^2 \le \frac{2(f(\mathbf{w}^0) - f(\mathbf{w}^*))}{\eta \theta H R}
+ \frac{\eta L}{K} (\eta L H K + \frac{(p_b + q)\theta}{p_b}) \sigma^2 + \frac{\theta \eta L}{H p_b^2} \sigma_z^2
= \frac{2(f(\mathbf{w}^0) - f(\mathbf{w}^*))}{\eta \theta H R} + \frac{\eta \theta L}{K} \frac{(p_b + q)}{p_b} \sigma^2 + \eta^2 L^2 H \sigma^2 + \frac{\theta \eta L \sigma_z^2}{H p_b^2}$$
(9)

2 Proof of Lemma 1

The second-order partial derivative of functions Θ_1 and Θ_2 can be calculated as:

$$\begin{split} \frac{\partial \Theta_{1}}{\partial p_{b}} &= -\frac{A_{0}q}{p_{b}^{2}H} - \frac{B_{0}q}{2p_{b}^{\frac{3}{2}}H^{\frac{1}{2}}(p_{b}+q)^{\frac{1}{2}}} \\ \frac{\partial^{2}\Theta_{1}}{\partial p_{b}^{2}} &= \frac{2q\left(A_{0}\sqrt{H}\left(q\sqrt{p_{b}}+p_{b}^{3/2}\right)\sqrt{p_{b}+q}+\frac{1}{2}Hp_{b}B_{0}\left(p_{b}+\frac{3}{4}q\right)\right)}{H^{3/2}p_{b}^{7/2}(p_{b}+q)^{3/2}} \\ \frac{\partial^{2}\Theta_{1}}{\partial p_{b}\partial H} &= \frac{q\left(A_{0}\sqrt{p_{b}}\sqrt{H}\sqrt{p_{b}+q}+\frac{1}{4}B_{0}p_{b}H\right)}{H^{5/2}\sqrt{p_{b}+q}p_{b}^{5/2}} \\ \frac{\partial\Theta_{1}}{\partial H} &= -\frac{A_{0}(p_{b}+q)}{p_{b}H^{2}} - \frac{1}{2}\frac{B_{0}\sqrt{p_{b}+q}p_{b}}{(p_{b}H)^{3/2}} \\ \frac{\partial^{2}\Theta_{1}}{\partial H^{2}} &= \frac{2\left(A_{0}(p_{b}+q)\sqrt{p_{b}H}+\frac{3}{8}B_{0}\sqrt{p_{b}+q}p_{b}H\right)}{\sqrt{p_{b}H}p_{b}H^{3}} \\ \frac{\partial^{2}\Theta_{1}}{\partial H\partial p_{b}} &= \frac{1}{4}\frac{q(4A_{0}\sqrt{p_{b}+q\sqrt{p_{b}H}+B_{0}p_{b}H})}{p_{b}^{2}H^{2}\sqrt{p_{b}+q}\sqrt{p_{b}H}} \\ \frac{\partial^{2}\Theta_{2}}{\partial p_{b}^{2}} &= \lambda\frac{\ln^{2}p_{b}-3\ln p_{b}+1}{p_{b}\ln^{2}p_{b}(\ln p_{b}-1)^{2}}T^{comm} \\ \frac{\partial^{2}\Theta_{2}}{\partial H^{2}} &= \frac{\partial^{2}\Theta_{2}}{\partial H\partial p_{b}} &= \frac{\partial^{2}\Theta_{2}}{\partial p_{b}\partial H} &= 0 \end{split}$$

We further have $\frac{\partial^2 \Theta_1}{\partial p_b^2} \geq 0$ and $\frac{\partial^2 \Theta_1}{\partial p_b^2} \times \frac{\partial^2 \Theta_1}{\partial H^2} - \frac{\partial^2 \Theta_1}{\partial p_b \partial H} \times \frac{\partial^2 \Theta_1}{\partial H \partial p_b} \geq 0$. Thus, both function $\Theta_1(\phi)$ and $\Theta_2(\phi)$ are positive and convex.

The Hessian matrix of the function Θ_1 can be described as $\begin{bmatrix} \frac{\partial^2 \Theta_1}{\partial p_b^2} & \frac{\partial^2 \Theta_1}{\partial p_b \partial H} \\ \frac{\partial^2 \Theta_1}{\partial H \partial p_b} & \frac{\partial^2 \Theta_1}{\partial H^2} \end{bmatrix},$

where we can find that both $\frac{\partial^2 \Theta_1}{\partial p_b^2}$ and $\begin{vmatrix} \frac{\partial^2 \Theta_1}{\partial p_b^2} & \frac{\partial^2 \Theta_1}{\partial p_b \partial H} \\ \frac{\partial^2 \Theta_1}{\partial H \partial p_b} & \frac{\partial^2 \Theta_1}{\partial H^2} \end{vmatrix}$ are positive. In addition, the Hessian matrix of the function Θ_1 is positive-definite, and we can also easily

the Hessian matrix of the function Θ_1 is positive-definite, and we can also easily obtain that the Hessian matrix of the function Θ_2 is positive semi-definite. Therefore, both function $\Theta_1(\phi)$ and $\Theta_2(\phi)$ are positive and convex.