Convolution Operation

- A Convolution operation is a mathematical way to extract patterns from data (like images).
- It works by sliding a small matrix (called a filter or kernel) over the image, multiplying values, and summing them to create a new image (called a feature map or activation map).
- This helps the system recognize patterns like edges, shapes, or textures.

What is Convolution in Simple Words?

- Convolution = Pattern-matching process
- We use a filter (also called a kernel) to look at small parts of the input (like small windows).
- The filter slides across the input and does **element-wise multiplication**, then adds all values to make a single number.
- This creates a new matrix (called a **feature map** or **convolved output**) that highlights certain features in the input.

How It Works

1. Filter Slides Over Input:

- The kernel (e.g., 3×3 matrix) moves across the input image (left-to-right, top-to-bottom).
- At each position, it performs **element-wise multiplication** between the kernel and the overlapping region of the input, then sums the results.

2. Output Feature Map:

• Each computed value becomes a pixel in the output feature map, highlighting detected features (e.g., edges).

4	4	4	_					
1_{x_1}	1_×0	$1_{\times 1}$	0	0				
O _{×0}	1,	1,0	1	0		4		
0 _{×1}	0,0	1,	1	1				
0	0	1	1	0				
0	1	1	0	0				
Imaga					(Convolved		
Image					Feature			

Example (Edge Detection):

• Input Image (5×5) and Filter (3×3):

```
Input (I): Kernel (K):
[1, 1, 1, 0, 0] [-1, -1, -1]
[0, 1, 1, 1, 0] [-1, 8, -1]
[0, 0, 1, 1, 1] [-1, -1, -1]
[0, 0, 1, 1, 0] (Edge detector)
[0, 1, 1, 0, 0]
```

- Convolution Output (3×3):
 - The filter detects transitions (edges) where pixel values change sharply.

Edge Detection

• Edge detection is → Intensity change

Original Image

Laplacian Edge Detection

How it works?

- The above part is black and the below one is white

Expected output:

We need a filter (kernel) for this (Generally a 3×3 matrix)

- 1. You put the kernel on the image
- 2. Multiply the respective numbers
- 3. Add the sum in the respective cell
- 4. Slide the filter

5. Repeat

- h Above is the filter for horizontal edge detector
- For vertical edge detection, the filter is

• Similarly, there are filters for various other edge detectors.

We don't need to make the filters in CNN. We just give the shape of the matrix

CNN Demo → https://deeplizard.com/resource/pavq7noze2

Image shape \rightarrow (28 × 28)

Filter \rightarrow (3 × 3)

Output → **26 × 26**

Output shape = $(n-m+1) \times (n-m+1)$

RGB Filtering:

Multiple Filters

- You get multiple feature maps
- The channels can act as filters for subsequent layers

Key Parameters in Convolution

Parameter	Meaning
kernel_size	Size of the filter (e.g., 3×3)
stride	Number of steps the filter moves at a time (default: 1)
padding	Adds zeros around the border to preserve dimensions
filters	Number of different filters used (each finds a different pattern)