Math 635 Lecture 11

Thomas Cohn

2/12/21

Recall the theorem and definition stated at the end of the previous lecture...

Thm: Let M be a Riemannian manifold. Then $\exists ! \nabla$ on $\mathcal{E} = TM \to M$ such that

- (a) ∇ preserves the Riemannian metric. (This depends on the choice of Riemannian metric.)
- (b) $\forall X, Y \in \mathfrak{X}(M), \nabla_X Y \nabla_Y X = [X, Y].$ (This does not depend on the choice of Riemannian metric.)

Defn: This ∇ is called the Levi-Civita connection on M.

This theorem is sometimes known as the "Fundamental Theorem of Riemannian Geometry". The second condition – that $\forall X, Y \in \mathfrak{X}(M), \nabla_X Y - \nabla_Y X = [X, Y]$ – is sometimes called a "symmetry condition".

Proof of the theorem: We'll use properties (a) and (b) to find an expression for ∇ . Let $X, Y, Z \in \mathfrak{X}(M)$. Then

$$\begin{split} X\left\langle Y,Z\right\rangle + Y\left\langle Z,X\right\rangle - Z\left\langle X,Y\right\rangle &= \underbrace{\left\langle \nabla_XY,Z\right\rangle}_{\text{(III)}} + \underbrace{\left\langle Y,\nabla_XZ\right\rangle}_{\text{(II)}} + \underbrace{\left\langle \nabla_YZ,X\right\rangle}_{\text{(II)}} + \underbrace{\left\langle Z,\nabla_YX\right\rangle}_{\text{(IV)}} - \underbrace{\left\langle Y,\nabla_ZX\right\rangle}_{\text{(IV)}} - \underbrace{\left\langle \nabla_ZY,X\right\rangle}_{\text{(II)}} \\ &= \underbrace{\left\langle Y\nabla_XZ - \nabla_ZX\right\rangle}_{\text{(I)}} + \underbrace{\left\langle \nabla_YZ - \nabla_ZY,X\right\rangle}_{\text{(II)}} + \underbrace{\left\langle \nabla_XY,Z\right\rangle}_{\text{(III)}} + \underbrace{\left\langle [Y,X] + \nabla_XY,Z\right\rangle}_{\text{(IV)}} \\ &= \left\langle Y,[X,Z]\right\rangle + \left\langle X,[Y,Z]\right\rangle + \left\langle Z,[Y,X]\right\rangle + 2\left\langle Z,\nabla_XY\right\rangle \end{split}$$

Now, we solve for $2\langle \nabla_X Y, Z \rangle$:

$$2\left\langle \nabla_{X}Y,Z\right\rangle =X\left\langle Y,Z\right\rangle +Y\left\langle Z,X\right\rangle -Z\left\langle X,Y\right\rangle -\left(\left\langle X,[Y,Z]\right\rangle +\left\langle Y,[X,Z]\right\rangle +\left\langle Z,[Y,X]\right\rangle \right)$$

This is our defining expression for ∇ , since choosing Z in all possible ways defines $\nabla_X Y$. We claim that defining ∇ in this way gives us the desired connection. (This part of the proof is tedious, so check it out in the textbook if you're interested.) \square

Computation of te Christoffel Symbols in Coordinates

Let (x^1, \ldots, x^n) be coordinates on $U \subseteq M$, and define $X_i = \frac{\partial}{\partial x^i}$, $g_{ij} = \langle X_i, X_j \rangle$. Note that $[X_i, X_j] = 0$.

Recall: The Christoffel symbols $\Gamma_{ij}^{\ell} \in C^{\infty}(U)$ are defined by $\nabla_{X_i} X_j = \Gamma_{ij}^{\ell} X_{\ell}$. We want to compute Γ_{ij}^{ℓ} using the defining expression above. Well,

$$2\left\langle \nabla_{X_i}X_j,X_k\right\rangle = 2\left\langle \Gamma_{ij}^\ell X_\ell,X_k\right\rangle = 2\Gamma_{ij}^\ell g_{\ell k} = X_i(g_{jk}) + X_j(g_{ki}) - X_k(g_{ij})$$

Now, we introduce the matrix g^{-1} , the inverse of $(g_{\ell k})$, with the notation $g^{-1} = (g^{km})$, so that $g_{\ell k}g^{km} = \delta_k^m$. If we multiply both sides by g^{-1} / g^{km} , and sum over k, we get

$$\underbrace{2\Gamma_{ij}^{\ell} \underbrace{g_{\ell k} g^{km}}_{=\delta_{\ell}^{m}} = \sum_{k} g^{km} \left(\frac{\partial g_{jk}}{\partial x^{i}} + \frac{\partial g_{ki}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{k}} \right)}_{=2\Gamma_{ij}^{m}}$$

Thus,

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k} g^{km} \left(\frac{\partial g_{jk}}{\partial x^{i}} + \frac{\partial g_{ki}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{k}} \right)$$

Observe: $[X_i, X_j] = 0 \Leftrightarrow \Gamma_{ij}^m = \Gamma_{ji}^m$. So the number of independent indices of the Christoffel symbols is $\frac{n(n+1)}{2} \cdot n = \frac{n^2(n+1)}{2}$. For example, when n=2 (a surface), there are 6 Christoffel symbols.

Exer: (Do Carmo) For the upper half plane \mathcal{H} (with the metric from HW1), show $\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{22}^1 = 0$, $\Gamma_{11}^2 = \frac{1}{y}$, and $\Gamma_{12}^1 = \Gamma_{22}^2 = -\frac{1}{y}$.

Exer: (HW3) If $M \subset \mathbb{R}^N$, with the induced Riemannian metric from the Euclidean metric on \mathbb{R}^N , and if $\gamma : [a, b] \to M$ and $V \in \Gamma_{\gamma}(TM)$, we can define

$$\frac{\bar{D}V}{dt} = \frac{d}{dt}(V : [a, b] \to \mathbb{R}^n)$$

Claim: If $\frac{D}{dt}$ is the operator associated with the Levi-Civita connection on M, then we have $\frac{DV}{dt}(t) = \pi_{\gamma(t)}[\frac{\bar{D}V}{dt}(t)]$, where $\pi_{\gamma(t)}: \mathbb{R}^N \to T_{\gamma(t)}M$ is the orthogonal projection.

Geodesics

Observe: TM is such that every curve γ into M has a natural lift to TM.

$$\begin{array}{c}
TM \\
\downarrow \\
[a,b] \xrightarrow{\gamma} M
\end{array}$$

In an abuse of notation, we sometimes write " $\dot{\gamma}(t) = \frac{d\gamma}{dt} = (\gamma(t), \dot{\gamma}(t))$ ". We can then consider $\frac{D}{dt}\frac{d\gamma}{dt}$, the acceleration of $\gamma \in \Gamma_{\gamma}(TM)$.

Defn: γ is a geodesic iff $\frac{D}{dt}(\frac{d\gamma}{dt}) = 0$.

Ex: Let $M = S^2 \hookrightarrow \mathbb{R}^3$. Then $\gamma(t) = (\cos(t), \sin(t), 0)$ is a geodesic, as $(\frac{\bar{D}}{dt}\dot{\gamma})(t) = \ddot{\gamma}(t) = -\gamma(t)$. $\gamma(t) \perp T_{\gamma(t)}S^2 \Rightarrow \pi_{\gamma(t)}\frac{\bar{D}}{dt}\dot{\gamma}(t) = 0$.

Observe:

- 1. If γ is a geodesic, then $\frac{d}{dt} \left\langle \frac{d\gamma}{dt} \frac{d\gamma}{dt} \right\rangle = 2 \left\langle \frac{D}{dt} \frac{d\gamma}{dt}, \frac{D}{dt} \frac{d\gamma}{dt} \right\rangle = 0$, so $\left| \left| \frac{d\gamma}{dt} \right| \right|$ is constant with respect to t. In other words, the "speed" of a geodesic is constant.
- 2. If γ is a geodesic, $c \in \mathbb{R}$, then $\gamma_c(t) \stackrel{\text{def}}{=} \gamma(ct)$ is also a geodesic. But other reparameterizations are generally not geodesics. The speed of γ_c is |c| times the speed of γ .