Algorithm Time Analysis

n	num Prime(n)	time (milliseconds)			
		isPrime0	isPrime1	isPrime2	isPrime0 Aj
100,000	9592	315	5	4	353
200,000	27576	712	22	7	1283
300,000	53573	1524	37	9	2792
400,000	87433	2676	56	14	4820
500,000	128971	4114	64	19	7370
600,000	178069	5817	30	23	15580
700,000	234612	7793	36	29	24557
800,000	298563	10106	43	34	31716
900,000	369837	12646	52	40	39964
1,000,000	448335	15558	60	26	48785

my isPrime0 function exhibits a calm increasing trend, suggesting a relatively stable and consistent performance as the input value increases. On the other hand, Ajarn's isPrime0 function shows a sharp increase in computation time around n = 500,000 continuing to rise nearly up to 50,000 milliseconds.

Different computers can have varying processing power, memory, and other factors that can influence the execution speed of programs. In this case, the observed difference in the increasing trend and computation time could be attributed to the disparities in the computational capabilities of the two machines.

Therefore, the performance discrepancy between the two isPrime0 functions is likely a result of differences in the underlying hardware or system configurations of the respective computers on which they are executed.