HitPredict, a zenei népszerűséget előrejelző mélytanulási háló

HitPredict, the music popularity predicting deep learning network (2019 ősz)

Tóth Dániel, Gyurós Péter

Kivonat—Olyan mélytanulási modell létrehozása Keras és Python alapon, mely egy zeneszám zenei tulajdonságai alapján képes pontosan előrejelezni annak jövőbeni népszerűségét.

Abstract—Creation of a neural network with Python and Keras which can accurately predict the future popularity of a song based only on its musical porperties and features.

Kulcsszavak—deep learning, Spotify, zene, népszerűség, regresszió, Keras, Python,

1 BEVEZETŐ

▲ HitPredict a BME VIK "Deep Learning a gyakorlatban Python és LUA alapon" c. tárgyának nagyházifeladat projektjeként készült. Az ajánlott témák közül a "zenei toplista előrejelző" -t választottuk. A zenék toplistán való elhelyezkedését a Spotify, a világ legnépszerűbb zenei streaming szolgáltató alapján mértük. A szolgáltaltást annak széleskörű elterjedtségének köszönhetően választottuk. Továbbá a Spotify rendelkezik a legtöbb előadóval és zeneszámmal az iparban, valamit ehhez elérhetőek a legjobb minőségű adathalmazok. A megoldandó probléma alapvetően regressziós, a zeneszámok csupán zeneiségüket tükröző adatai alapján próbáljuk a zeneszám jövőbeni várható népszerűségét előrejelezni. A népszerűséget jelen esetben a várható streamelések számában mérjük, mely alapján sorolják be toplistát is.

2 MEGVALÓSÍTÁS

2.1 Adatok beszerzése, előkészítése

Az adatokat a Kaggle.com honlapról szereztük be, mely a legnagyobb adattudós és gépi tanulási közösség az interneten. A "Spotify Tracks DB" nevű adatbázist választottuk Zaheen Hamidani összeállításában. Ez az adatbázis több, mint 230,000 zeneszámot tartalmaz, 26 különböző műfajból, műfajonkénti eloszlása egyenletes. Az szerző a Spotify saját API-jából nyeri ki az adatokat így biztosítva a megfelelő minőséget. Az adatbázis .csv formátumú, melyet a pandas könyvtárral egyszerűen tudunk olvasni és kezelni. A zeneszámok sok tulajdonságát tartja számon a

.

Spotify, ezek között példaul: hossz, zenei hangnem, tempó, akusztikusság, hangosság, hangszeresség. A zenei információt nem hordozó datokat, például a zeneszám belső kulcsát eldobtuk az adatbázisból. Az említett adatok nagy része már float típusú, így ezeket már nem kellett tovább feldolgozni. Az előrejelezni kívánt polularity érték a zeneszámokat streamelési számuk alapján előállított eloszlás alapján sorolja be, tehát egy 0-100-ig tartó érték. A kategorikus adatokat például a hangnemet vagy a műfajt one-hot-encoding-nek vetettük alá, így ezekből a műfajok számosságával megegyező méretű vektort készítünk. Ellenőriztük az adatbázist, van-e benne hiányzó adatpont, melyet be kellene helyettesíteni, szerencsére nincs ilyen. Előfordul azonban zeneszám, mely többször is szerepel, ezek esetén mindig egyet tartottunk csupán meg. Az adatbázist a tanítási, teszt és végül validációs részekre bontottuk. 60%-20%-20% arányban osztottuk fel. Az sklearn preprocessing könyvtárából a StandardScaler függvénnyel standardizáltuk az összes adatoszlopot.

2.2 Tanítás

Első lépésként felépítjük a hálót. Ehhez a keretrendszerben a szekvenciális könyvtárat használtuk. A háló először 4 rétegből áll. A bemenet dimeziója az adatpontok dimenziójának felel meg. A kimenet egy skalár, mely a népszerűséget jelzi elő. A loss függvény regressziós feldat révén a mean squared errort választottuk. A tanítás megkezdése előtt az adatbázis egy töredékével teszteltük a háló helyes működését. A túltanítás elkerülése végett ealry stopping módszerrel tanítottuk a hálót 200 epochon keresztül. Az aktuális legjobban teljesítő modell súlyait elmentettük, ha az javult az előzőhöz képest. A háló vázaltos felépítése a következő ábrán látszik:

Layer (type) 	Output Shape	Param #
dense_1 (Dense)	(None, 40)	2040
activation_1 (Activation)	(None, 40)	
dense_2 (Dense)	(None, 30)	1230
activation_2 (Activation)	(None, 30)	
dense_3 (Dense)	(None, 15)	465
activation_3 (Activation)	(None, 15)	
dense_4 (Dense)	(None, 1)	16
Total params: 3,751 Trainable params: 3,751 Non-trainable params: 0		

2.3 Kiértékelés

A háló első eredményei a 92.5 értéket kaptunk, azaz a modell a kívánt értéktől átlagosan 9.7-es eltérést tapasztaltunk. Ez nem nagyszerű, de valós összefüggést mutat a zenei adatok és a népszerűség között. Ezután hiperparaméter optimalizásálással próbálkoztunk, hogy javítani tudjuk a modell eredményeit. Mivel a témához leginkább egy adatfeldolgozási feladatként álltunk hozzá fontosnak tartottuk, hogy a modell minél pontosabban mutassa a különböző oszlopok közötti összefüggéseket. Azonban a deep learning tudomány jelenlegi állása szerint rendkívül nehéz intuitív magyarázatot adni arra, hogy egy adott bementre miért éppen azt a kimentet kapjuk, amit. Az viszont biztos, hogy a modell felépítése, a különböző optimalizációs algoritmusok és egyéb hiperparaméternek nevezett változó rendkívül erősen korrelál a neurális háló által szolgáltatott eredményekkel. Azonban ezek megfelelő meghatározása sem triviális feladat. Sőt az egyik legelterjedtebb módszer a különböző hiperparaméterek kipróbálása, az általuk adott eredmények öszszevetése és ez alapján a legjobb modell megalkotása. A feladat megvalósítása során a hyperas python csomagot használtuk ennek a folyamatnak az automatizálására. Ennek a használatához két függvényt kellet létrehozni, az egyiket az adatok betöltésére a másikat

a modell megalkotására. A másodikban a modell felépítésénél különböző változókat vezettünk be, amelyek közül a hyperas minden tanításhoz mást választott. A hiperparaméterek között szerepelt a rejtett rétegek száma, a rejtett rétegekben lévő neuronok száma, a dropout valószínűsége rétegenként, az aktivációs függvény (ReLu, Leaky ReLu), az optimizer függvény (rmsprop és adam) és a batchek mérete. A hiperoptimalizáció eredményeit loggoltuk egy csv file-ba mely segítségével optimalizálhatjuk a háló felépítését:

3 JÖVŐBELI TERVEK, ÖSSZEFOGLALÁS

A jövőben szeretnénk kiegészíteni a modellt Natural Language Processing hálózattal, mely a zeneszámok dalszövege alapján jelzi előre a nepszerűséget. A legtöbb dalszöveg API azonban nem ingyenes vagy nagyon limitált, így ezt végül nem valósítottuk meg.

REFERENCES

- [1] F. Chollet, "Deep Learning with Python"
- [2] Santanu Pattanayak "Pro Deep Learning with Tensorflow"
- [3] Jojo Moolayil, "Learn Keras for Deep Neural Networks"
- [4] Tobias Domhan "Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves" Available:

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11468/11222

Gyurós Péter A BME VIK harmadéves villamosmérnök hallgatója, az EET tanszéken Mikroelektronikai tervezés specializáción

Tóth Dániel A BME VIK BSc Mérnökirnfomatikus végzős hallgatója, Rendszertervezés specializáció, AUT tanszék