

Circuit Schematic

ac Midband Equivalent

- \succ M_1 body connected to ground, M_2 - M_3 bodies connected to V_{DD}
 - No body effect problem for any of the devices (biggest advantage of this circuit)

➤ Identify M₂-M₃ as a *PMOS current mirror* (perfectly matched)

$$\Rightarrow$$
 $I_{D1} = I_{D2} = I_{D3} = I_{REF}$

- \triangleright This gives the *required value* of V_I
 - ⇒ *DC biasing* of the circuit is *pretty* straightforward
- For ac analysis, we note that node A is both open and short at the same time (similar to npn gain stage with pnp active load)

$$\Rightarrow A_v = v_0/v_i = -g_{m1}R_0$$

 $R_0 (= r_{01} || r_{02})$: *Output resistance* of the circuit

- $ightharpoonup Caution: r_{01} \neq r_{02}$, even though M_1 and M_2 carry the same DC bias current, since $\lambda_n \neq \lambda_p$ (in general)
- This circuit is *immensely useful* since it gives extremely large voltage gain and output resistance
- > Only *problem* is that it needs a *PMOS current* mirror, thus necessitating use of an extra *PMOS*
- An even better design exists, which eliminates the need for this extra PMOS

• A Better CMOS Gain Stage:

- > No body effect issue
- ➤ However, there are *some*design issues
- ➤ M_n-M_p have *same magnitude* of the *threshold voltage*:

$$V_{TN0} = |V_{TP0}|$$

> Process transconductance parameters:

$$k'_{N} = \mu_{n}C'_{ox}$$
 and $k'_{P} = \mu_{p}C'_{ox}$

Circuit Schematic

- ightharpoonup Oxide capacitance per unit area $\left(C'_{ox} = \varepsilon_{ox}/t_{ox}\right)$ same for both devices, since they have same t_{ox}
- \triangleright However, $\mu_n \sim 2\mu_p$ (for Si)
- ightharpoonup Thus, $k'_N = 2k'_P$
- > Ideal DC bias point of the circuit is $V_I = V_0 = V_{DD}/2$ (yields $V_{GSn} = /V_{GSp}/2$ and $V_{DSn} = /V_{DSp}/2$)
- Can be achieved only if the stage is *completely* balanced (same threshold voltage magnitude and same device transconductance parameter)
- \triangleright Thus, k_N and k_P need to be matched

- \triangleright Can be achieved by making $(W/L)_p = 2(W/L)_n$
- ightharpoonup If *CLM effect* is *not that important*, or if $\lambda_n = \lambda_p$, then this procedure works out *just fine*
- However, if $\lambda_n \neq \lambda_p$, then for balancing the circuit, the following relation must hold (show!):

$$k_{P}(1 + \lambda_{p}V_{DD}/2) = k_{N}(1 + \lambda_{n}V_{DD}/2)$$

- \succ Under this condition, $k_N \neq k_P$, but the circuit will be *perfectly matched and balanced*
- > Known as: Stage unmatched by nature, but matched by performance