数字逻辑

• 3-4学时

A. 今天去**郑蓝** B. 今天天气好 **则**C. 今天不上课 **条件(因)** 逻辑运算

B. 今天天气好 A. 今天去郊游 C. 今天不上课 概念 A. 今天去郊游 B. 今天天气好 C. 今天不上课 则 结论(果) 条件(因) 逻辑运算 C. 今天本上课 B. 今天大气好 A. 今天去郊游 并且 逻辑变量 逻辑代数 3

200 概念

逻辑运算

- 是指条件与结论之间的关系,对因果关系进行分析的一种运算
- 结果不表示数制大小,而表示逻辑概念成立还是不成立

逻辑变量

• 逻辑代数是通过逻辑变量表示命题的。

逻辑代数

- 实现逻辑运算的数学工具。
- 英国人乔治·布尔创立,又称布尔代数

2.2逻辑运算

◆ 基本逻辑关系(三种)

- 逻辑与
 逻辑或
 逻辑或
 逻辑非
 NOT
- 逻辑异或 ⊕ XOR

基本逻辑运算

与 AND •

- 条件同时具备,结果发生
- Y=A AND B = $A \otimes B = A \cdot B = AB$

\boldsymbol{A}	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

	OR	
ov.	UK	_
	• • • •	-

- 条件之一具备,结果发生
- Y = A OR B = A + B

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

基本逻辑运算

非 NOT '

• 条件不具备,结果发生

$$Y = A' = NOT A$$

A	Y
0	1
1	0

- 矩阵轮廓符号
- 特定外形符合

基本逻辑运算

异或

•
$$Y = A \oplus B = A' B + AB'$$

\boldsymbol{A}	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

同或

几种常用的复合逻辑运算

2.3 逻辑代数公式

• 基本公式----证明方法: 推演 真值表

	序号	公 式	序号	公 式
变量与常量			10	1' = 0; 0'= 1
	_ 1	0 <i>A</i> = 0	11	1 + A = 1
重叠律	5	1 A = A	12	0 + A = A
互补律_	3	AA = A	13	A + A = A
	4	AA'=0	14	A + A' = 1
交換律	2	AB = BA	15	A + B = B + A
结合律	Ó	A (B C) = (A B) C	16	A + (B + C) = (A + B) + C
分配律-	7	A (B + C) = A B + A C	17	A + B C = (A + B)(A + C)
反演律/德•摩	根	(A B)' = A' + B'	18	(A+B)'=A'B'
	9	(A')' = A		
_	过	表2.3.1的布尔恒等式		

公式证明方法

证明: A + B C = (A +B)(A +C)

真值表法

$$\overline{\Box} = (A+B)(A+C)$$

$$= A+AB+AC+BC$$

$$= A(1+B+C)+BC$$

$$= A+BC = \overline{\Box}$$

公式推演法

ABC	BC	A+BC	A+B	A+C	(A+B) $(A+C)$
000	0	0	0	0	0
001	0	0	0	1	0
010	0	0	1	0	0
011	1	1	1	1	1
100	0	1	1	1	1
101	0	1	1	1	1
110	0	1	1	1	1
111	1	1	1	1	1

若干常用公式

序号	公 式
21	A + A B = A
22	A + A'B = A + B
23	A B + A B' = A
24	A(A+B)=A
25	A B + A' C + B C = A B + A' C
	A B + A' C + B CD = A B + A' C
26	A (AB)' = A B'; A' (AB)' = A'

$$A(1+B)=A$$

$$A + A'B = (A + A')(A + B) = A + B$$
 两项加,某项反为另一项因子,可消除

$$A(A+B) = A + AB = A$$

与包含该变量的和相乘,结果为该变量

$$AB + A'C + BC = AB + A'C + (A + A')BC$$

$$= AB + A'C + ABC + A'BC$$

$$= AB + A'C$$
两项包含 A 和 A' 因子,则剩余因子构成的项多余

逻辑代数基本定理

• 举例:

• 代入定理

在任何一个包含A的逻辑等式中,若以另外一个逻辑式代入式中A的位置,则等式依然成立。

$$A+BC = (A+B)(A+C)$$

$$A+B(CD) = (A+B)(A+CD)$$

$$= (A+B)(A+C)(A+D)$$

$$(A \cdot B)' = A' + B' 以 B \cdot C 代入 B$$
则
$$(A \cdot B \cdot C)' = A' + (BC)'$$

$$A' + B' + C'$$

变换顺序 先括号, 然后乘, 最后加

• 反演定理

• 对任一逻辑式 $Y \Rightarrow Y'$

$$\bullet \Rightarrow +, + \Rightarrow \bullet,$$

$$0 \Rightarrow 1, \quad 1 \Rightarrow 0,$$

原变量 ⇒ 反变量

反变量 ⇒ 原变量

$$Y = A(B + C) + CD$$

 $Y' = (A' + B'C') (C' + D')$
 $= A'C' + B'C' + A'D' + B'C'D'$
 $= A'C' + B'C' + A'D'$

不属于单个变量的上的反号保留不变

$$Y = ((AB' + C)' + D)' + C$$

$$Y' = ((A' + B)C')'D')'C'$$

复习

- 1、基本逻辑运算及符号
- 2、逻辑代数公式:
- 3、逻辑代数定理
 - 代入、反演、对偶

序号	公 式
21	A + A B = A
22	A + A'B = A + B
23	A B + A B' = A
24	A(A+B)=A
25	A B + A' C + B C = A B + A' C
	A B + A' C + B CD = A B + A' C
26	A(AB)' = AB'; A'(AB)' = A'

	公 式	序号	公 式
		10	1' = 0; 0'= 1
1	0 A = 0	11	1 + A= 1
2	1 A = A	12	0 + A = A
3	AA = A	13	A + A = A
4	AA'=0	14	A + A' = 1
5	AB = BA	15	A + B = B + A
6	A (B C) = (A B) C	16	A + (B + C) = (A + B) + C
7	A (B + C) = A B + A C	17	A + B C = (A + B)(A + C)
8	(A B)' = A' + B'	18	(A+B)'=A'B'
	(4.0.4		

作业:

● Y=ABC+DA' +BC(C+D)D; 化简Y

● Y=A+(BC′+D)′, 求Y′以及(Y)″

• 5-6学时

2.5 逻辑函数及其表示方法

● 逻辑函数

- 若以逻辑变量为输入,运算结果为输出,则输入变量值确定以后,输出的取值也随之而定。
 输入/输出之间是一种函数关系。
- Y=F(A,B,C,·····)
- 注:在二值逻辑中,
 - 输入/输出都只有两种取值0/1。

$$Y = A \cdot (B + C)$$

逻辑函数的表示方法

真值表

逻辑式

逻辑图

波形图

卡诺图

其他

• 问题:裁判电路

 比赛规则,一名主裁判,两名副裁判, 每个裁判判定运动员动作合格或不合格。
 要求必须两人以上(且必须包含主裁判) 判定运动员合格,最后结果才为成功, 否则为失败。

分析

- 輸出Y: 1 合格; 0为不合格
- 輸入
 - 主裁: A; 副裁: B、C。
 - ABC取值: 1合格; 0 不合格

逻辑函数的表示方法

A	В	C	Y	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	AB
1	1	0	1	AB
1	1	1	1	AB

- 找出真值表中使 Y=1 的输入变量取值组合。
- 2. 每组输入变量取值对应一个乘 积项,其中取值为1的写原变量, 取值为0的写反变量。
- 3. 将<u>这些变量相加即得 *Y。*</u>

$$Y = AB'C + ABC' + ABC$$

$$ABC = A (B + C)$$

真值表

逻辑式

A	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

真值表

$$Y = AB'C + ABC' + ABC$$

$$= A (B + C)$$

逻辑式

逻辑函数的表示形式(续)---标准逻辑式

最小项之和

- 最小项m
 - m是**乘积项**
 - 包含n个因子
 - n个变量均以原变量和反变量的 形式在m中出现一次
 - 对于n变量函数有2n个最小项

A'B'C', A'B'C, A'BC', A'BCAB'C', AB'C, ABC', ABC $(2^3 = 8 \uparrow)$

最大项之积

- 最大项M
 - M是相加项;
 - 包含n个因子。
 - n个变量均以原变量和反变量的 形式在M中出现一次
 - 对于n变量函数有2ⁿ个最大项

A' + B' + C', A' + B' + C, A' + B + C', A' + B + C A + B' + C', A + B' + C, A + B + C', A + B + C $(2^3 = 8 \uparrow)$

最小项的编号

最小项	取值	对应	编号
	ABC	十进制数	
A'B'C'	0 0 0	0	m_0
A'B'C	0 0 1	1	m_1
A'BC'	0 1 0	2	m_2
A'BC	0 1 1	3	m_3
AB'C'	1 0 0	4	m_4
AB'C	1 0 1	5	m_5
ABC'	1 1 0	6	m_6
ABC	1 1 1	7	m_7

- 在输入变量任一取值下,有且仅有一个最 小项的值为1。(下标系一次为上) 最小项的性质
- 全体最小项之和为1
- 任何两个最小项之积为0。
- 两个相邻的最小项之和可以合并,消去 对因子,只留下公共因子。 (逐續減分)
 - 相邻:仅一个变量不同的最小项

A'BC'与A'BC

A'BC' + A'BC = A'B(C' + C) = A'B

逻辑函数最小项和的形式

$$Y(A, B, C) = ABC' + BC$$

$$= ABC' + BC(A + A')$$

$$= ABC' + ABC + A'BC$$

$$= AB'C'D + BCD' + B'C$$

$$= AB'C'D + (A + A')BCD' + B'C(D + D')$$

$$= AB'C'D + ABCD' + A'BCD' + B'CD'$$

$$= AB'C'D + ABCD' + A'BCD' + (A + A')B'CD + (A + A')B'CD'$$

$$= AB'C'D + ABCD' + A'BCD' + (A + A')B'CD + (A + A')B'CD'$$

$$= AB'C'D + ABCD' + A'BCD' + A'B'CD + A'B'CD + A'B'CD' + A'B'CD'$$

$$= \sum_{n=0}^{\infty} m (2,3,6,9,10,11,14)$$

逻辑函数形式的变换

= (B'C' + A'C)'

与 - 或
$$Y = AC + B'C$$
 $Y'' = (AC + B'C)'' = ((AC)'(B'C)')'$

与 - 或 - 非
 $Y = AC + B'C = \sum_{m = 1}^{m} (2.5.6.7)$
 $Y' = \sum_{m = 1}^{m} (0.1.3.4) = \sum_$

或一非 = ((B + C)' + (A + C')')'

复习

- 真值表、逻辑式、逻辑图、波形图含义及关系
- 逻辑函数标准形式:最小项Σm、最大项∏M
- 逻辑式间转化
 - 与或→与非 (Y')'
 - 与或→与或非 Y=Σm→Y′=Σm→(Y′)′
 - 与或→与或非→与非 Y=(AB+BC)'=((A'+B')'+(B'+C')')'

2.6 逻辑函数的化简

- 公式化简
 - 包含的乘积项已经最少,每个乘积项的因子也最少,称为最简的与-或逻辑式。
- 卡诺图
- Q-M法 (略)

公式化简

反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。

$$Y = AC + B'C + BD' + CD' + A(B + C') + A'BCD' + AB'DE$$

$$= AC + B'C + BD' + CD' + AB + AC' + A'BCD' + AB'DE$$

$$= AC + AC' + A'BCD' + BD' + B'C + CD' + AB + AB'DE$$

$$= A + BD' + B'C + CD' + AB'DE$$

$$= A + B'C + BD'$$

卡诺图化简

- 实质:将逻辑函数的最小项之和的以图形的方式表示出来
- 以2ⁿ个小方块分别代表 n 变量的所有最小项,并将它们排列成矩阵,而且使几何位置相邻的两个最小项在逻辑上也是相邻的(只有一个变量不同),就得到表示n变量全部最小项的卡诺图。

• 二变量卡诺图

三变量的卡诺图

• 五变量的卡诺图

CDE										
AB	000	001	011	010	110	111	101	100		
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4		
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}		
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}		
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}		

如何使用卡诺图表示逻辑函数

- 1. 将函数表示为最 小项之和的形 式 $\sum m_i$ 。
- 2. 在卡诺图上与这 些最小项对应的 位置上添入1, 其余地方添0。

如何利用卡诺图化简

- 依据: 具有相邻性的最小项可合并, 消去不同因子。
 - 在卡诺图中,最小项的相邻性可以从图形中直观地反映出来。
- 合并最小项的原则:
 - 两个相邻最小项可合并为一项,消去一对因子
 - 四个排成矩形的相邻最小项可合并为一项,消去两对因子
 - 八个相邻最小项可合并为一项,消去三对因子
 - 一般规则: 2ⁿ个最小项相邻,并排列成矩形,可以合并,消去

• 两个相邻最小项可合并为一项,

消去一对因子

2020/2/16

34

卡诺图化简的步骤和原则

- 用卡诺图化简函数步骤:
 - 用卡诺图表示逻辑函数
 - 找出可合并的最小项
 - 化简后的乘积项相加
 - · (项数最少,每项因 子最少)

• 卡诺图化简的原则:

- 化简后的乘积项应包含函数式的所有最小项,即覆盖图中所有的1。
- 乘积项的数目最少,即<mark>圈成的</mark>矩形最少。
- 每个乘积项因子最少,即<mark>圈成</mark> **的矩形最大**。

2020/2/16 35

例题

$$Y = ABC + ABD + AC'D + C' \cdot D' + AB'C + A'CD'$$

$$Y = ABC + ABD + AC'D + C' \cdot D' + AB'C + A'CD'$$

2020/2/16

39

2.7 具有无关项的逻辑函数及其化简

约束项

在逻辑函数中,对输入变量取值不是任意的,而有所限制。当限制某些输入变量的取值不能出现时,可以用他们对应的最小项恒等于0来表示。

任意项

在输入变量某些取值下, 函数值为1或 为0不影响逻辑电路的功能, 在这些取 值下为1的最小项称为任意项 逻辑函数中的无关项: 约束项和任意项可以写入函数式,也可不包含在函数式中,因此统称为无关项。

无关项的用途

- 合理地利用无关项,可得更简单的化简结果。
- 加入(或去掉)无关项,应使化简后的项数最少,每项因 子最少……
- 从卡诺图上直观地看,加入无关项的目的是为矩形圈最大, 矩形组合数最少。

A'B'CD+A'BC'D+ABC'D'+AB'C'D+ABCD+ABCD'+AB'CD'=0

或者
$$Y = \sum m(1,7,8) + d(3,5,9,10,12,14,15)$$

例: $Y(A,B,C,D) = \sum m(2,4,6,8)$

约束条项: $m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15} = 0$

AR CE	000	01	11	10
AB ₀₀	0	0	0	1
01	1	X	0	1
11	X	X	X	X
10_	1	0	X	X

$$Y = AD' + BD' + CD'$$

总结

- (工具)逻辑代数基础
 - 与、或、非、异或、同或、与或非、与非、或非的运算及符号
 - 逻辑代数的基本公式、常用公式和代入、反演定理
- (建模)逻辑函数的表示方法
 - 真值表、逻辑图、逻辑式、波形图 及其相互转化
- (实现和优化)逻辑函数变换和化简
 - 逻辑函数变换 与-或→与或非、与非、或非变换
 - 最小项表达、卡诺图的化简、无关项卡诺图化简

二进制逻辑运算的电路实现

上述运算可通过电子元器件实现 常用的电子元器件: 二极管、三极管、电阻等

与电路

本节结束, 谢谢学习

