

Befektetések I.

11. előadás

A számolásokhoz szükséges részek

2023.05.23.

Póra András

pora.andras@gtk.bme.hu

A CAPM-modell elvárt hozama

- A CAPM modell szerint az eszköz elvárt hozama = a kockázatmentes hozam + kockázati prémium;
- A kockázati prémium (tehát a kockázatmentes hozam feletti hozama) = a béta és a piaci portfólió kockázati prémiumának szorzata;
- Alfa (α): az adott papír/portfolió tényleges hozamának a piaci hozam/index feletti része → az aktív kereskedés mérőszáma, eszköze;
- Jensen alfa (α_J): az adott portfolió tényleges hozamának és a CAPM szerinti elvárt hozamának különbsége.

$$r_i = r_f + \beta_i * (r_m - r_f)$$

Kockázati prémium

$$\alpha = r_{ti} - r_{m}$$

$$\alpha_j = r_{ti} - r_i$$

 r_i = az i értékpapír elvárt hozama r_{ti} = az i értékpapír tényleges hozama r_f = a kockázatmentes hozam β_i = az i értékpapír bétája r_m = a piaci hozam.

Mintafeladat

- "A" részvény múltbeli hozama 10% ß=1
- "B" részvény múltbeli hozama 17%,ß = 1,5
- A piaci hozam 11%
- A kockázatmentes hozam 5%
- A CAPM alapján melyik vásárlása előnyösebb?
- Mekkora a részvény alfája?
- Hol helyezkednek el az értékpapírpiaci egyenesen?

- R_A = 5% + 1*(11%-5%) = 11% α = 10%-11%= -1% = Jensen alfa (ha CAPM hozam és a piaci hozam megegyezik, akkor egyenlő), bár ha az alfa negatív, az már önmagában is negatív \rightarrow az értékpapírpiaci egyenes alatt van, el kell adni;
- $R_B = 5\% + 1.5*(11\%-5\%) = 14\% \alpha = 17\%-11\% = 6\%$ Jensen alfa=17%-14%=3% \rightarrow az értékpapírpiaci egyenes felett van, meg kell venni \rightarrow ez az előnyösebb papír.

Iparági elemzés 2: Érzékenység az üzleti ciklusra

- Nem minden iparág ugyanannyira érzékeny az üzleti ciklusra;
- Az érzékenység meghatározásának néhány faktora:
 - 1. Árérzékenység: az árváltozásra hogyan reagál az eladott mennyiség (pl. a hétköznapokban szükséges dolgok nem nagyon érzékenyek);
 - Z. Tőkeáttétel (a fix és változó költségek aránya). Cégek nagyobb változó költség aránnyal nem annyira érzékenyek a ciklusra. A működési tőkeáttétel mértéke (DOL degree of operating leverage) azt jelenti, mennyire érzékeny a profit az értékesítési volumen változására;
 - 3. Pénzügyi tőkeáttétel (a hitelek aránya). A kamatokat minden körülmények között fizetni kell, a ciklustól függetlenül → kvázi fix költségek.

A befektetők nem mindig preferálják az alacsony érzékenységű vállalatokat, csak béta/elvárt hozam és kockázati étvágy kérdése az egész.

DOL= 1+ (Fix költség)/(Profit) = (a profit százalékos változása)/az értékesítés százalékos változása).

Pl. Fix költség: 5 Profit: $1 \rightarrow DOL = 1+5/1=6$

X% változás az értékesítésben 6x% változást fog okozni a profitban 10%-os értékesítés csökkenés esetén 60%-os profitcsökkenés következik be. → 16,67%-os csökkenés esetén az egész profit eltűnik (-100%). És persze mínuszba is mehet.

Osztalék-jelenérték modellek: Dividend Discount Models (DDM)

- Várható osztalék + Eladási ár;
- Hasonlóan a kötvényárazáshoz (csak itt az r az k);
- A végső eladási ár az osztalékok függvénye;
- Minden periódusban kalkulálható ár jövőbeli várható osztalékalapon → P_H a H időpontban vett jelenértéke az összes jövőbeni osztaléknak;
- DDM: a részvényárat végsősoron a részvényesek által felhalmozott pénzáram határozza meg, ami tulajdonképpen az osztalék

$$V_o = \sum_{t=1}^{\infty} \frac{D_t}{\left(1+k\right)^t}$$

Végtelen időtáv

Egy periódusra:

$$V_0 = \frac{E(D_1) + E(P_1)}{1 + k}$$

H periódusra:

$$= \frac{D_1}{1+k} + \frac{D_2}{(1+k)^2} + \dots + \frac{D_H + P_H}{(1+k)^H}$$

D₁,..., D_H és P_H várható értékek

Gordon modell: állandó növekedési ütemű DDM

$$V_0 = \frac{D_0(1+g)}{1+k} + \frac{D_0(1+g)^2}{(1+k)^2} + \frac{D_0(1+g)^3}{(1+k)^3} + \dots$$

- g= az osztalék növekedési üteme;
- D₀= nemrég fizetett osztalék;
- Constant-Growth DDM: Gordonmodell → Myron J. Gordon;
- Ha nincs osztalék-növekedés pl. elsőbbségi részvények.

Növekedés nélküli modell

$$V_o = \frac{D}{k} \cdot \frac{D_{o} = 10\% k = 10\%}{k \cdot V_o = 10/0, 1 = 100\%}$$

$$V_0 = \frac{D_0(1+g)}{k-g} = \frac{D_1}{k-g}$$

- $D_0 = 10$ \$ g=5% k=10%
- $D_1 = 10*1,05=10.5$ \$
- $V_0=10,5/(0,1-0,05)=210$ \$

Újrabefektetés és növekedés

- Osztalékfizetési ráta: a nyereség osztalékként kifizetett része;
- Újrabefektetési hányad (visszatartott nyereséghányad): amit a cég visszaforgat → b;
- OR=1-ÚbH pl. 40% osztalékfizetés esetén 60% az újrabefektetési hányad;
- Az osztalék nominálisan jobban nő, ha magas az újrabefektetési ráta;
- g= ROE*b
- ROE = 15%, b=60% \rightarrow 0,15*0,6 \rightarrow g=0,09=9%
- ROE=15%, b=50% \rightarrow 0,15*0,5 \rightarrow g=0,075=7,5%.

$$g = \frac{\text{Reinvested earnings}}{\text{Book value}} = \frac{\text{Reinvested earnings}}{\text{Total earnings}} \times \frac{\text{Total earnings}}{\text{Book value}} = b \times \text{ROE}$$

Növekedési és nem növekedési komponens a belső értékben

- A cégérték arányos a már meglévő eszközök értékével >
 növekedésmentes érték;
- Ár = növekedésmentes érték+PVGO;

Példák

- ROE=10%, b=60%, k=15%, EPS=E₁=5\$
- D=EPS*(1-b)=5*(1-0,6)= 2\$
- g=ROE*b=0,1*0,6=0,06=6%
- $P_0 = D/(k-g) = 2/(0.15-0.06) = 22.22$ \$
- $NGV_0 = E_1/k = 5$ \$ / 0,15 = 33,33\$
- PVGO= P_0 -NGV₀=22,22\$ 33,33 \$ = -11,11\$ (ROE alacsonyabb, mint k) P_0 = ár
- ROE=20%, b=60%, k=15%, EPS=E₁=5\$
- D=EPS*(1-b)=5*(1-0,6)= 2\$
- g=ROE*b=0,2*0,6=0,12=12%
- $P_0 = D/(k-g) = 2/(0.15-0.12) = 66.66$ \$
- $NGV_0 = E_1/k = 5$ \$ / 0,15 = 33,33\$
- PVGO= P₀-NGV₀=66,66\$ 33,33\$ = 33,33\$ (ROE magasabb, mint k).

$$P_o = \frac{E_1}{k} + PVGO$$

$$PVGO = \frac{D_o(1+g)}{(k-g)} - \frac{E_1}{k}$$

$$NGV_o = \frac{E_1}{k}$$

k = elvárt hozam=piaci tőkésítési ráta

g = az osztalék konstans növekedése = ROE*b

PVGO = Present Value of Growth Opportunities

E1 = várható nyereség a következő periódusban

= EPS

E1 egyenlő D1-el, ha nincs növekedés NGV_o = növekedésmentes érték.

Gazdasági hozzáadott érték/Economic Value Added (EVA)

- ROA, ROC, ROE: teljesítményt elemzik, de a profitabilitás nem mindig elég;
- A cég akkor sikeres, ha a projektjein a hozam nagyobb, mint amit a befektetők maguknak tudnának elérni más befektetésekkel a piacon;
- Tehát ha az (újra-)befeketett tőke hozama nagyobb, mint a tőke alternatívaköltsége -> ROC > k (piaci kapitalizációs ráta=elvárt hozam=részvények tőkeköltsége);
- Gazdasági hozzáadott érték/(EVA): a ROC és a k különbsége, megszorozva a saját tőkével -> a cég alternatívaköltség felett elért nyeresége;
- Az EVA-at jövedelemtöbbletnek is szokták nevezni (residual income).

	Ticker	EVA (\$ billion)	Capital (\$ billion)	ROC (%)	Cost of Capital (%)
Microsoft	MSFT	4.76	81.2	14.2	8.4
ExxonMobil	XOM	3.63	179.06	9.3	7.3
Intel	INTC	3.44	56.34	13.9	7.8
GlaxoSmithKline	GSK	2.13	38.10	11.0	5.4
Google	GOOG	1.36	75.95	10.5	8.7
Home Depot	HD	1.07	28.57	11.2	7.4
Hewlett Packard	HPQ	-0.58	50.88	4.9	6.0
AT&T	T	-1.59	164.38	3.9	4.9

Mutatóelemzés- A ROE felbontása 4.

$$ROE = \frac{\text{Net profit}}{\text{Equity}} = \frac{\text{Net profits}}{\text{Pretax profits}} \times \frac{\text{Pretax profits}}{\text{EBIT}} \times \frac{\text{EBIT}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Assets}} \times \frac{\text{Assets}}{\text{Equity}}$$

$$(1) \times (2) \times (3) \times (4) \times (5)$$

$$ROE = \frac{\text{Adózott nyereség}}{\text{Adózás előtti nyereség}} \times \frac{\text{Adózás előtti nyereség}}{\text{EBIT}} \times \frac{\text{EBIT}}{\text{Árbevétel}} \times \frac{\text{Árbevétel}}{\text{Eszközök}} \times \frac{\text{Eszközök}}{\text{Saját tőke}}$$

$$(1) \times (2) \times (3) \times (4) \times (5)$$

$$ROE = \text{TAX BURDEN} \times \frac{\text{INTEREST}}{\text{BURDEN}} \times \frac{\text{MARGIN X TURNOVER X LEVERAGE}}{\text{SEBESSÉG}}$$

$$ROE = \text{ADÓTEHER} \times \text{KAMATTEHER} \times \frac{\text{MARZS}}{\text{SEBESSÉG}} \times \frac{\text{FORGÁSI}}{\text{SEBESSÉG}} \times \frac{\text{TŐKEÁTTÉTEL}}{\text{SEBESSÉG}}$$

Összesített tőkeáttételi tényező/Compound leverage factor Azok a tényezők, melyekre hat a tőkeáttétel.

ROE= ADÓTEHER X ROA X ÖSSZESÍTETT TŐKEÁTTÉTELI TÉNYEZŐ

 $ROE = Tax burden \times ROA \times Compound leverage factor$

Mutatóelemzés – likviditási ráták

Likviditás: képesség arra, hogy az eszközöket pénzzé konvertáljuk. ← → szolvencia (hosszú távú fizetőképesség).

Likviditási ráta

- = Forgó (éven belüli) eszközök/rövid lejáratú (éven belüli) kötelezettségek;
- A cég mennyire képest a rövid lejáratú tartozásait a forgóeszközökből kifizetni;
- Azaz elkerülni a csődöt rövid távon.

Likviditási gyorsráta

- = (Készpénz + likvid értékpapírok + vevőkövetelések) / rövid lejáratú (éven belüli) kötelezettségek → "savteszt"="lakmuszteszt";
- Ugyanaz a nevező, csak a számláló szűkebb → pénz és pénzhelyettesítők plusz vevőkövetelések;
- Jobban működik azokra a cégekre, ahol a raktárkészlet csak lassan vagy nem konvertálható pénzre.

Készpénzráta

- =(Készpénz + likvid értékpapírok) / rövid lejáratú (éven belüli) kötelezettségek;
- A "leglikvidebb" likviditási ráta;
- Még szűkebb számláló.

A likviditási ráták számlálói. (a nevező mindig ugyanaz: rövid lejáratú kötelezettségek

Mérlegen alapuló mutatók

- Piaci kapitalizáció= részvényszám*ár
- **EBITDA**= Earnings Before Interest, Taxes, Depreciation and Amortization= a "tiszta üzleti" nyereség;
- Nettó jövedelem=adózás utáni nyereség → az "ITDA" után → profit;
- EPS= egy részvényre jutó adózás utáni nyereség;
 Price/Earnings (P/E)= P/EPS→ ár/EPS;
- Price/Book (P/B or P/BV) = P/(BVpS) → egy részvényre jutó jegyzett tőke könyv szerinti értéke a BV;
- Price/Sales = ár/egy részvényre jutó értékesítési bevétel;
- Price/CF= ár/egy részvényre jutó cash flow
- PEG= (P/E)/(az EPS éves növekedési üteme) →
 normalizálja a P/E-t, mivel az amúgy túlértékelné a
 magas növekedésű cégeket;
- ROE (%) = tőkearányos nyereség;
- ROA (%) = eszközarányos nyereség;
- Operating profit margin (%) = Üzemi nyereség/értékesítés nettó árbevétele;
- Net profit margin (%) = adózás utáni nyereség/teljes bevétel.

Price per share	\$ 30.63	
Common shares outstanding (billion)	8.38	
Market capitalization (\$ billion)	\$258	
Latest 12 Months		
Sales (\$ billion)	\$ 73.72	
EBITDA (\$ billion)	\$ 30.71	
Net income (\$ billion)	\$ 16.98	
Earnings per share	\$ 2.00	
Valuation	Microsoft	Industry Avg
Price/Earnings	15.4	17.5
Price/Book	3.9	10.5
Price/Sales	3.5	
Price/Cash flow	10.9	20.5
PEG	1.1	1.2
Profitability		
ROE (%)	27.5	24.9
ROA (%)	15.0	
Operating profit margin (%)	37.9	
Net profit margin (%)	23.0	23.2

- Piaci ár=50\$ Idei EPS=10\$ Tavalyi EPS=8\$
- P/E=50/10=5 EPS növekedési ütem=10/8-1=0,25=25%
- PEG=5/25=0,2

Nade, mi az "igen attraktív" ár? Graham's Margin of Safety

Mikor vegyünk?

Margin of Safety: befektetési elv.

- Csak akkor vesszük meg a papírt, ha <u>a piaci</u> érték szignifikánsan a belső érték alatt van. Mennyivel is? Szignifikáns: a KOCKÁZATI ÉTVÁGYTÓL függ, mondjuk 10%
- Az ötlet Benjamin Grahamtól jön, de a legnevesebb követő Warren Buffett → 50%-al dolgozik (!!!);
- Egy lehetséges mérce: Coefficient of Variation = (1 éves sztenderd szórás) / (1 éves átlagos részvényár).

If (Fair Value \div Market Price) $-1 \ge Margin of Safety <math>\rightarrow Buy$

If (Fair Value \div Market Price) $-1 \ge \text{Coefficient of Variation} \rightarrow \text{Buy}$

Nade, mennyit? The Kelly Criterion and the Stop-loss

Mennyit vegyünk?

Kelly Criterion: fogadások és befektetések "méretezésére".

- Az a méret, amitől pozitív hozamot várhatunk.
- Eszközallokáció és Pénzkezelés/Money Management;
- John Kelly (1956): a Bell Labs (now: NOKIA) kutatója, de nevesebb követők: Warren Buffett, Charlie Munger, Mohnish Pabrai, Bill Gross;
- "W"— a profit valószínűsége = (pozitív hozamú trade-ek száma) / (összes trade); where:
- "R"— nyereség/veszteség ráta = (a nyereséges trade-ek átlagos nyeresége) / (a veszteséges trade-ek átlagos vesztesége);
- "K%" a Kelly százalék = ekkora pozíciót kellene felvenni. Pl. 0,05=5% → a tőkénk, befektetni akart pénzünk 5%-át kellene beletenni;
- Általános szabály:20-25%-nál soha ne többet!

Mikor adjunk el? Ha nyerőben vagyunk, nem kérdés persze.

Stop-loss szabály: a veszteségeink limitálása → Pénzkezelés/Money Management.

- Egy stop-loss megbízást adunk valamennyivel a vételi ár alá -> a margin a VESZTESÉGVISELŐ KÉPESSÉGÜNKTŐL FÜGG;
- Általában 1%, de semmiképpen sem több, mint 20%;
- Ha az eszköz ára le is esik, semmiképpen sem veszítünk többet, mint a margin;
- Persze ha felmegy, újra megvehetjük, és a pozitív hozamú trade-ekkel ellensúlyozhatjuk a margin veszteségét.

$$K\% = W - \frac{(1-W)}{R}$$

$$K\%$$
 = The Kelly percentage

$$W =$$
Winning probability

$$R = \text{Win/loss ratio}$$

A teljesítménymérés hagyományos mutatói: kockázat vs. hozam Egységnyi szórásra eső hozam

$$\frac{r_p}{\sigma_p}$$

r_p a portfólió hozama **σ**_p a portfólió hozamának szórása

Sharpe-mutató

- A kockázatmentesen elérhető hozam feletti többlethozam (tehát a kockázati prémium) és a szórás hányadosa.
- A hozamprémium és a teljes kockázat közötti átváltást írja le.

$$\frac{r_p - r_f}{\sigma_n}$$

rp a portfólió hozamarf a kockázatmentes hozamσp a portfólió hozamának szórása

Treynor-mutató

- Hasonló a Sharpe-mutatóhoz, de a nevezőben csak a piaci kockázatot, tehát a bétát veszi figyelembe;
- Az egységnyi kockázatra jutó prémium
 de csak a piaci kockázat tekintetében;
- Tökéletesen diverzifikált portfólió feltételez (nincs idioszinkratikus, tehát egyedi kockázat).

$$\frac{r_p - r_f}{\beta_p}$$

rp a portfólió hozamarf a kockázatmentes hozamßp a portfólió bétája

A teljesítménymérés mutatói: a veszteség kockázata

Sortino-mutató: a Sharpe, de csak lefelé

• A kockázatmentesen elérhető hozam feletti többlethozam (tehát a kockázati prémium) és lefelé irányuló szórás (a negatív hozamok szórásának) hányadosa.

$$\frac{r_p - r_f}{\sigma_{\!_{\boldsymbol{d}}}}$$

rp a portfólió hozama
rf a kockázatmentes hozam
σd a portfólió hozamának
lefelé irányuló szórása

• A hozamprémium és a csökkenés közötti átváltást írja le.

Sterling-mutató: átlagos csökkenés

- A kockázatmentesen elérhető hozam feletti többlethozam (tehát a kockázati prémium) és az átlagos csökkenés hányadosa.
- A hozamprémium és az átlagos csökkenés közötti átváltást írja le.

$$\frac{r_p - r_f}{AVDD}$$

rp a portfólió hozama rf a kockázatmentes hozam Av DD (drawdown) a portfólió csökkenéseinek átlaga egy periódusban (12 v. 36 hónap)

Calmar-mutató: maximális csökkenés

- A kockázatmentesen elérhető hozam feletti többlethozam (tehát a kockázati prémium) és a maximális csökkenés hányadosa.
- A hozamprémium és a maximális csökkenés közötti átváltást írja le.

$$\frac{r_p - r_f}{Max DD}$$

rp a portfólió hozama
rf a kockázatmentes hozam
Max DD (drawdown) a portfólió
maximális csökkenése a kezdet óta
vagy egy periódusban (12 v. 36
hónap)

A teljesítménymérés: egyéb mutatók Jensen-mutató → Jensen alfa

- Mennyivel teljesített alul vagy felül a portfólió a CAPM-modell alapján elvárható hozamhoz képest?
- A portfólió tényleges, és CAPM-modell alapján elvárt hozamának a különbsége.

Információs (értékelési) hányados

- A portfólió Jensen alfáját viszonyítja a portfólió egyedi kockázatához;
- Annak a kockázatnak az egységre jutó hozamát méri, amit elvileg meg lehetne szüntetni a CAPM szerinti tökéletes diverzifikációval (tehát egy piaci indexportfólióval);
- Minél magasabb, annál elégedett lehet a befektető → hiszen annál nagyobb a többlethozam és/vagy kisebb az egyedi kockázat;
- Általában 0,5 feletti hányados már szép teljesítménynek számít.

$$\alpha_p = r_p - [r_f + \beta_p * (r_m - r_f)]$$

r_p a portfólió hozama

 $r_{\rm m}$ a piaci hozam,

r_f a kockázatmentes hozam

 $\mathbf{G_p}$ pedig a portfólió bétája.

$$\frac{\alpha_p}{\sigma_p}$$
 α_p a portfólió Jensen alfája σ_p a portfólió szórása

Mit tanulhatnak ezen a kurzuson?

Hogyan lehet meggazdagodni?

NOPE. Ezt sajnos nem.

- 1. Most talán azt gondolják, hogy csak akkor veszíthetnek pénzt a tőzsdén, ha lefelé mennek a részvényárak.
- 2. Persze aztán megtanulják, mi az a shortolás, és rájönnek, hogy akkor is lehet pénzt veszíteni, ha az árak felfelé mennek.
- 3. Végül tanulunk az opciókról, és rájönnek, hogy akkor is lehet veszíteni, ha az árfolyam nem megy sehova sem. ©

Komolyra fordítva:

természetesen az ellenkezőjére fogunk törekedni. ©

A legfontosabb szabály:

