

المملكة العربية السعودية وزارة التعليم جامعة جدّة كلية علوم وهندسة الحاسب قسم علوم الحاسب والذكاء الاصطناعي

Lab 8 CCAI 312 Pattern Recognition Third Trimester 2023

Student Name: Ruba Khalid Alsulami

Student ID: 2110618

المملكة العربية السعودية وزارة التعليم جامعة جدّة كلية علوم وهندسة الحاسب قسم علوم الحاسب والذكاء الاصطناعي

Part 1

Lab Assessment

Step1: Create a new notebook and name it "CCAI312 YOURSTUDENTID Lab8 p1"

Step2: Generate the following data X = 2 * np.random.rand(100, 1)

y = 4 + 3 * X + np.random.randn(100, 1)

Step3: Implement the mini-batch gradient descent algorithm,

```
def mini_batch_gradient_descent(X, y, batch_size=20, learning_rate=0.01, num_iterations=1000):
    # Initialize parameters
    b = 0
    m = 0

# Loop over number of iterations
for i in range(num_iterations):
    # Randomly select a batch of data points
    indices = np.random.randint(0, len(X), batch_size)
    X_batch = X[indices]
    y_batch = y[indices]

# Compute gradients
    b_gradient = np.mean(2 * (m * X_batch + b - y_batch))
    m_gradient = np.mean(2 * X_batch * (m * X_batch + b - y_batch))

# Update parameters
    b = b - learning_rate * b_gradient
    m = m - learning_rate * n_gradient
```

Step4: Report the learned parameters when the mini-batch size is 20. Repeat this step with 2 different mini-batch sizes and report the learned parameters.

```
b, m = mini_batch_gradient_descent(X, y, batch_size=20)
print("learned Parameters (Batch Size = 20):")
print("Slope: ', m)
print("Slope: ', m)
print("Learned Parameters (Batch Size = 10):")
b, m = mini_batch_gradient_descent(X, y, batch_size=10)
print("Learned Parameters (Batch Size = 10):")
print("Slope: ', m)
```

Learned Parameters (Batch Size = 20):
Intercept: 3.8875879457943863
Slope: 3.0491010484331458

```
Learned Parameters (Batch Size = 10):
Intercept: 3.89971722200207
Slope: 3.009020014856965
```

```
Learned Parameters (Batch Size = 50):
Intercept: 3.9014029471949856
Slope: 3.047229297611564
```

Step6: Submit a pdf document containing **your code and answers** to Blackboard, name the file as: CCAI312_YOURSTUDENTID_Lab6.pdf.

المملكة العربية السعودية وزارة التعليم جامعة جدّة كلية علوم وهندسة الحاسب قسم علوم الحاسب والذكاء الاصطناعي

Lab Assessment

1. Import the necessary libraries, including pyplot from matplotlib and train test split from sklearn.model selection

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

2. Load the insurance dataset "insurance_data.csv" and show the head of the it.

3. Plot the dataset to get an idea of the data and how it is distributed

```
plt.scatter(df.age,df.bought_insurance,marker='+',color='
red')
```


المملكة العربية السعودية وزارة التعليم جامعة جدّة كلية علوم وهندسة الحاسب قسم علوم الحاسب والذكاء الاصطناعي

4. Import "train_test_split" package and split the data into training/testing sets and split the targets into training/testing sets

```
from sklearn.model_selection import train_test_split
df.shape
X_train, X_test, y_train, y_test =
train_test_split(df[['age']],df.bought_insurance,train_si
ze=0.8)
(27, 2)
```

5. Import the logistic regression package and create Logistic regression object.

6. Train the model using the training sets.

```
lgrgmodel.fit(X_train, y_train)
```


المملكة العربية السعودية وزارة التعليم جامعة جدّة كلية علوم وهندسة الحاسب قسم علوم الحاسب والذكاء الاصطناعي

7. Make predictions using the testing set and show the results. Note that 1: bought insurance and 0: didn't bought insurance

```
lgrg_pred =lgrgmodel.predict(X_test)
```

8. Calculate the score (Accuracy as it is the default metric) of the test set.

