- Deep Learning Ingredient
 - o Algorithm
 - o Data
 - Computation
- Deep (Machine) Learning
 - Representation learning
 - Neural Networks
 - Deep Learning
 - Hierarchical Compositionality
 - End-to-End learning
 - Distributed Representation
 - Complicated Function
 - issues
 - Non-Convex
 - may have multiple local minima
 - Lack of interpretability
 - Reproducibility
- Predictive/supervised modeling
 - Classification → Discrete target
 - ∘ Regression → continuous targeT
- Unsupervised learning
 - Clustering
 - Data compression
 - o Dimensionality Reduction, Manifold learning
 - Data distribution learning
- Self-supervised or predictive learning
 - Self supervision
 - Pretext tasks
- Reinforcement learning → Rewards in sequential Environment
- Active Learning
 - Human in loop
 - o most important data to learn from
- Vision Challenges
 - Viewpoint variation, illumination, Deformation, Occlusion
 - Background clutter ,Intraclass variation
- Instance based learn
 - Expensive, inefficient, Curse of Dimensionality
- Loss function → measure how much the good the predictive function is
 - SVM loss hinge loss
 - Cross Entropy loss → Softmax function
- Regularization
 - Prevent model from doing too well on the training data
 - Simple: L1(lasso), L2 (ridge), Elastic Net (L1+L2)
 - o Complex: Dropout, Batch Normalization, Fraction Pooling, early stopping
- Optimization
 - Gradient Descent
 - Numerical \rightarrow slow, approximate, easy to write
 - Analytic → Fast, exact, error-prone
- Neural Network

- o Perceptron
 - Binary classifier
 - perceptron algorithm
- Multilayer perceptron
 - Requires non-linearity→ else a linear class
 - Activation functions
 - ∘ Sigmoid→ saturation, not zero centered, computational heavy
 - ∘ tanh → zero centered
 - not to use too many
 - \circ ReLU \rightarrow easy to use
 - not zero centered
 - negative crushing
 - ELU, Maxout, leaky ReLU
 - Gradient Descent
 - Back-propagation training algorithm→ localgradient*upstreamgradient
 - Convolutional neural network
 - parameter sharing across different location
 - Convolution kernel and size K
 - Convolve (slide) over spatial location
 - multiple feature maps channel
 - ∘ CNN → pooling → Activation function → Normalization
 - Stacking Convolution
 - o padding P to solve the shrinking with each layer
 - Add zeros around the input
 - Edge gets similar calculation as the insides
 - Receptive Fields
 - What one points see
 - kxk immediate next layer
 - 1+L(k-1) with L layers
 - Downsampling to increase the Receptive field
 - ∘ Stride Convolution S→ Filter shift
 - Output size (W-K+2P)/S+1
 - Pooling layer
 - Nonlinear Downsampling
 - reduce feature size
 - Control overfitting
 - Max pooling
 - average pooling
 - Batch Normalization
 - zero mean, unit variance
 - Differentiable function
 - reduces Internal covariant shift
 - other control parameters
 - Test time: Running average/variance during the training time
 - a linear operation during test time
 - usually in between the CNN/FC and activation function
 - May behave different in test (A bug)
 - Theoretically not well understood!!
 - layer normalization, instance normalization

- Most expensive part
 - Convolutional parts (most memory)
 - Most parameter (flatten layer to FC layers)
- Some architecture
 - AlexNet
 - ZFNet- big alexnet
 - VGG net
 - uses smaller kernel but deep kernel
 - reduces parameters
 - Google net
 - Efficiency
 - o no flattening to FC layer at the end
 - inception layer
 - auxiliary classification (gradient vanishing issues)
 - Aggressive Stem network
 - Global average pooling
 - ResNet
 - Residual network
 - Solve optimization problem → Vanishing gradient issues
 - identity mapping by skip connection
 - Basic block and bottleneck block
 - Pre-activation, BN modification
 - Squeeze and excitation network
- Training Neural network
 - o Go with traditional architecture
 - Go with relu activation
 - Data preprocessing
 - normalize it → covariant shift
 - Weight initialization
 - never all zero symmetric issues
 - initialize randomly → Xavier initialization
 - use regularization
 - L1, L2, Elastic net
 - Drop out (only during training)
 - Prevent coadaptation
 - Drop connection
 - Data augmentation
 - · augmentation
 - mix up
 - Batch normalization
 - Factorial max pooling
 - Optimization
 - SGD → long time required
 - too much noise
 - local minima, saddle point
 - SGD with momentum
 - Second order optimization → inverse of hassian (Jacobian of Gradient)
 - ∘ One time setup→ architecture, regularization
 - Training dynamics

- learning rate schedule: Decay
- hyperparameters optimization
 - Check initial losses
 - overfit small data
 - Find LR
 - Refine and train longer
- Observe learning curves
 - Look for overfit, underfit, goodfit, good learning
- ∘ After training→ ensembles, transfer learning
- Recurrent Neural Networks (Elman RNN)
 - Time series predictions
 - sequence to sequence
 - Requires a lot of memory
 - ∘ vanishing/exploding gradient → Solution: Gradient clipping
- LSTM
- Attention
- Computer vision tasks
 - Classification
 - Semantic Segmentation
 - Object detection
 - Multitask learning loss function
 - Region Proposal Network
 - R-CNN: Region Based CNN → too much training cost
 - Intersection over union
 - Mean Average precision
 - Fast R-CNN
 - Two stage methods
 - Region of interest selection
 - Faster R-CNN→ Region Proposal Network
 - YOLO
 - single shot detection
 - Instance Segmentation
 - Mask R-CNN → Extends Faster R-CNN
- Generative Adversarial Networks

Taxonomy of Generative Models

- Unsupervised
 - k-Means Clustering
 - PCA dimension reduction
 - Feature learning auto-encoder
- Learning the distribution of the data
- Autogressive model → pixelRNN, pixelCNN
- Variational autoencoder → Maximize the lower bound of p(data)
- · GAN

0

- Vanishing gradient problem
- DCGAN
- WGAN → Better gradient and prevent mode collapse
- LSGAN
- BigGAN
- Pix2Pix
- CycleGAN
- $\bullet \ RL \ (\underline{https://smartlabai.medium.com/reinforcement-learning-algorithms-an-intuitive-overview-904e2dff5bbc} \) \\$
 - https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
 - · Random Forest
 - https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html#boosting
 - https://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics
 - https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-

c9214a10a205

- p-value \rightarrow https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/p-value/#:~:text=The%20p%20value%20is%20the,value%20of%200.0254%20is%202.54%25.
 - https://www.investopedia.com/terms/p/p-value.asp
 - Machine learning Glossary (https://developers.google.com/machine-learning/glossary)
- Accuracy https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin

		T	Class F	
d Class	>	True Positives (TP)	False Positives (FP)	
Acquired Class	z	False Negatives (FN)	True Negatives (TN)	

True Positive Rate (TPR) =
$$\frac{TP}{TP + FN}$$

False Positive Rate (FPR) = $\frac{FP}{FP + TN}$
Accuracy (ACC) = $\frac{TP + TN}{TP + FP + TN + FN}$

		Predicted Class		n
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Actual Class	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

• svd /pca (https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca)