

FTABLE

ITEGRALS

PEIRCE

GIFT OF Mrs. G. N. Lewis

Lend

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

SHORT TABLE OF INTEGRALS

BΥ

B. O. PEIRCE

HOLLIS PROFESSOR OF MATHEMATICS AND NATURAL PHILOSOPHY IN
HARVARD UNIVERSITY

SECOND REVISED EDITION

GINN AND COMPANY

BOSTON · NEW YORK · CHICAGO · LONDON ATLANTA · DALLAS · COLUMBUS · SAN FRANCISCO

COPVRIGHT, 1800, 1910 BY GINN AND COMPANY

ALL RIGHTS RESERVED

522.2

Since I cannot hope that these formulas are wholly free from misprints, I shall be grateful to any person who will call my attention to such errors as he may discover.

B. O. PEIRCE,

Harvard University, Cambridge.

7[F]

The Athenaum Press GINN AND COMPANY · PRO-PRIETORS · BOSTON · U.S.A.

Q = 31E 1911 M=11-1

TABLE OF INTEGRALS.

I. FUNDAMENTAL FORMS.

 $1. \int a \, dx = ax.$

$$2. \int af(x) \, dx = a \int f(x) \, dx.$$

3.
$$\int \frac{dx}{x} = \log x$$
. $[\log x = \log(-x) + (2k+1)\pi i]$

4.
$$\int x^m dx = \frac{x^{m+1}}{m+1}$$
, when m is different from -1 .

$$5. \int e^x dx = e^x.$$

$$6. \int a^x \log a \, dx = a^x.$$

7.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x$$
, or $- \exp^{-1}x$.

8.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$$
, or $-\cos^{-1}x$

9.
$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x$$
, or $-\csc^{-1}x$.

10.
$$\int \frac{dx}{\sqrt{2x-x^2}} = \text{versin}^{-1}x, \text{ or } -\text{coversin}^{-1}x.$$

11.
$$\int \cos x \, dx = \sin x$$
, or $-\operatorname{coversin} x$.

12.
$$\int \sin x \, dx = -\cos x, \text{ or versin } x.$$

13.
$$\int \cot x \, dx = \log \sin x.$$

14.
$$\int \tan x \, dx = -\log \cos x.$$

15.
$$\int \tan x \sec x \, dx = \sec x.$$

$$16. \int \sec^2 x \, dx = \tan x.$$

$$17. \int \csc^2 x \, dx = -\cot x.$$

In the following formulas, u, v, w, and y represent any functions of x:

18.
$$\int (u + v + w + \text{etc.}) dx = \int u dx + \int v dx + \int w dx + \text{etc.}$$

$$19 a. \int u \, dv = uv - \int v \, du.$$

19 b.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$$

20.
$$\int f(y) dx = \int \frac{f(y) dy}{\frac{dy}{dx}}$$

II. RATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving (a + bx).

The substitution of y or z for x, where $y \equiv a + bx$, $z \equiv (a + bx)/x$, gives

$$21. \int (a+bx)^m dx = \frac{1}{b} \int y^m dy.$$

22.
$$\int x (a + bx)^m dx = \frac{1}{b^2} \int y^m (y - a) dy.$$

23.
$$\int x^n (a + bx)^m dx = \frac{1}{b^{n+1}} \int y^m (y - a)^n dy.$$

24.
$$\int \frac{x^n dx}{(a+bx)^m} = \frac{1}{b^{n+1}} \int \frac{(y-a)^n dy}{y^m}.$$

25.
$$\int \frac{dx}{x^n (a+bx)^m} = -\frac{1}{a^{m+n-1}} \int \frac{(z-b)^{m+n-2} dz}{z^m} dx$$

Whence

26.
$$\int \frac{dx}{a+bx} = \frac{1}{b} \log (a+bx).$$

27.
$$\int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)}.$$

28.
$$\int \frac{dx}{(a+bx)^3} = -\frac{1}{2b(a+bx)^2}.$$

29.
$$\int \frac{x \, dx}{a + bx} = \frac{1}{b^2} [a + bx - a \log (a + bx)].$$

30.
$$\int \frac{x \, dx}{(a+bx)^2} = \frac{1}{b^2} \left[\log (a+bx) + \frac{a}{a+bx} \right]$$

31.
$$\int \frac{x \, dx}{(a+bx)^3} = \frac{1}{b^2} \left[-\frac{1}{a+bx} + \frac{a}{2(a+bx)^2} \right].$$

32.
$$\int \frac{x^2 dx}{a + bx} = \frac{1}{b^3} \left[\frac{1}{2} (a + bx)^2 - 2a(a + bx) + a^2 \log(a + bx) \right]$$

33.
$$\int \frac{x^2 dx}{(a+bx)^2} = \frac{1}{b^3} \left[a + bx - 2a \log(a+bx) - \frac{a^2}{a+bx} \right].$$

34.
$$\int \frac{dx}{x(a+bx)} = -\frac{1}{a} \log \frac{a+bx}{x}.$$

35.
$$\int \frac{dx}{x(a+bx)^2} = \frac{1}{a(a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x}$$

36.
$$\int \frac{(a+bx)\,dx}{a'+b'x} = \frac{bx}{b'} + \frac{ab'-a'b}{b'^2}\log(a'+b'x).$$

37.
$$\int (a+bx)^n (a'+b'x)^m dx = \frac{1}{(m+n+1)b} \left((a+bx)^{n+1} (a'+b'x)^m - m (ab'-a'b) \int (a+bx)^n (a'+b'x)^{m-1} dx \right).$$

39.
$$\int \frac{dx}{(a+bx)(a'+b'x)} = \frac{1}{ab'-a'b} \cdot \log \frac{a'+b'x}{a+bx}.$$

40.
$$\int \frac{dx}{(a+bx)^n (a'+b'x)^m} = \frac{1}{(m-1)(ab'-a'b)} \left(\frac{1}{(a+bx)^{n-1} (a'+b'x)^{m-1}} - (m+n-2) b \int \frac{dx}{(a+bx)^n (a'+b'x)^{m-1}} \right)$$

41.
$$\int \frac{x \, dx}{(a+bx)(a'+b'x)} = \frac{1}{ab'-a'b} \left(\frac{a}{b} \log(a+bx) - \frac{a'}{b'} \log(a'+b'x) \right).$$

42.
$$\int \frac{dx}{(a+bx)^2(a'+b'x)} = \frac{1}{ab'-a'b} \left(\frac{1}{a+bx} + \frac{b'}{ab'-a'b} \log \frac{a'+b'x}{a+bx} \right)$$

43.
$$\int \frac{x \, dx}{(a+bx)^2 (a'+b'x)} = \frac{-a}{b (ab'-a'b) (a+bx)} - \frac{a'}{(ab'-a'b)^2} \log \frac{a'+b'x}{a+bx}$$

44.
$$\int \frac{x^2 dx}{(a+bx)^2 (a'+b'x)} = \frac{a^2}{b^2 (ab'-a'b) (a+bx)} + \frac{1}{(ab'-a'b)^2} \left[\frac{a'^2}{b'} \log (a'+b'x) + \frac{a (ab'-2 a'b)}{b^2} \log (a+bx) \right].$$

45.
$$\int (a+bx)^{\frac{1}{n}} dx = \frac{n}{(n+1)b} (a+bx)^{\frac{n+1}{n}}.$$

46.
$$\int \frac{dx}{(a+bx)^{\frac{1}{n}}} = \frac{n}{(n-1)b} (a+bx)^{\frac{n-1}{n}}.$$

B. — Expressions Involving $(a + bx^n)$.

47.
$$\int \frac{dx}{c^2 + x^2} = \frac{1}{c} \tan^{-1} \frac{x}{c} = \frac{1}{c} \sin^{-1} \frac{x}{\sqrt{x^2 + c^2}}.$$

48.
$$\int \frac{dx}{c^2 - x^2} = \frac{1}{2c} \log \frac{c + x}{c - x}, \int \frac{dx}{x^2 - c^2} = \frac{1}{2c} \log \frac{x - c}{x + c}.$$

49.
$$\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \tan^{-1}\left(x\sqrt{\frac{b}{a}}\right)$$
, or $\frac{1}{\sqrt{-ab}} \cdot \tanh^{-1}\left(x\sqrt{\frac{-b}{a}}\right)$

50.
$$\int \frac{dx}{a + bx^2} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a} + x\sqrt{-b}}{\sqrt{a} - x\sqrt{-b}}, \text{ if } a > 0, b < 0.$$

51.
$$\int \frac{dx}{(a+bx^2)^2} = \frac{x}{2 \ a \ (a+bx^2)} + \frac{1}{2} a \int \frac{dx}{a+bx^2}$$

52.
$$\int \frac{dx}{(a+bx^2)^{m+1}} = \frac{1}{2 ma} \frac{x}{(a+bx^2)^m} + \frac{2 m-1}{2 ma} \int \frac{dx}{(a+bx^2)^m}$$

$$53. \int \frac{x \, dx}{a + bx^2} = \frac{1}{2b} \log \left(x^2 + \frac{a}{b} \right).$$

54.
$$\int \frac{x \, dx}{(a+bx^2)^{m+1}} = \frac{1}{2} \int \frac{dz}{(a+bz)^{m+1}}$$
, where $z = x^2$.

55.
$$\int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \log \frac{x^2}{a+bx^2}.$$

57.
$$\int \frac{dx}{x^2(a+bx^2)} = -\frac{1}{ax} - \frac{b}{a} \int \frac{dx}{a+bx^2}$$

58.
$$\int \frac{x^2 dx}{(a+bx^2)^{m+1}} = \frac{-x}{2 \ mb \ (a+bx^2)^m} + \frac{1}{2 \ mb} \int \frac{dx}{(a+bx^2)^m}$$

$$59. \int \frac{dx}{x^2(a+bx^2)^{m+1}} = \frac{1}{a} \int \frac{dx}{x^2(a+bx^2)^m} - \frac{b}{a} \int \frac{dx}{(a+bx^2)^{m+1}}.$$

$$\int_{c}^{\infty} \frac{dx}{c^2 - x^2} = \frac{1}{c} \tanh^{-1} \left(\frac{x}{c}\right); \int_{c}^{\infty} \frac{dx}{x^2 - c^2} = -\frac{1}{c} \coth^{-1} \left(\frac{x}{c}\right).$$

60.
$$\int \frac{dx}{a + bx^3} = \frac{k}{3a} \left[\frac{1}{2} \log \left(\frac{(k+x)^2}{k^2 - kx + x^2} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right], \text{ where } bk^3 = a.$$

61.
$$\int \frac{x \, dx}{a + bx^3} = \frac{1}{3bk} \left[\frac{1}{2} \log \left(\frac{k^2 - kx + x^2}{(k+x)^2} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right], \text{ where } bk^3 = a.$$

62.
$$\int \frac{dx}{x(u+bx^n)} = \frac{1}{an} \log \frac{x^n}{a+bx^n}. \qquad \textbf{63.} \int \frac{dx}{(a+bx^n)^{m+1}} = \frac{1}{a} \int \frac{dx}{(a+bx^n)^m} - \frac{b}{a} \int \frac{x^n dx}{(a+bx^n)^{m+1}}.$$

$$\frac{1}{bx^n} = \frac{1}{an} \log \frac{x^n}{a + bx^n}.$$

$$\frac{ax}{x + bx^n} = \frac{1}{an} \log \frac{x}{a + bx^n},$$

$$\frac{x^m dx}{x bx^n} + \frac{1}{b} \int \frac{x^{m-n} dx}{(a + bx^n)^p}$$

64.
$$\int \frac{x^m dx}{(a+bx^n)^{p+1}} = \frac{1}{b} \int \frac{x^{m-n} dx}{(a+bx^n)^p} - \frac{a}{b} \int \frac{x^{m-n} dx}{(a+bx^n)^{p+1}}.$$

65.
$$\int \frac{dx}{x^m (a + bx^n)^{p+1}} = \frac{1}{a} \int \frac{dx}{x^m (a + bx^n)^p} - \frac{b}{a} \int \frac{dx}{x^{m-n} (a + bx^n)^{p+1}}.$$

$$\mathbf{66.} \int x^{m-1} (a + bx^n)^p \, dx = \begin{cases} \frac{1}{b \, (m+np)} \left[\, x^{m-n} \, (a + bx^n)^{\, p + 1} - \, (m-n) \, a \int x^{m-n-1} (a + bx^n)^{\, p \, dx} \, \right] \\ \frac{1}{m+np} \left[\, x^m \, (a + bx^n)^{\, p \, + 1} - \, (m+np+n) \, b \int x^{m+n-1} (a + bx^n)^{\, p \, dx} \, \right] \\ \frac{1}{ma} \left[\, x^m \, (a + bx^n)^{\, p \, + 1} - \, (m+np+n) \, b \int x^{m+n-1} (a + bx^n)^{\, p \, dx} \, \right] \\ \frac{1}{an \, (p+1)} \left[\, - \, x^m \, (a + bx^n)^{\, p \, + 1} + \, (m+np+n) \, \int x^{m-1} (a + bx^n)^{\, p \, + 1} \, dx \, \right] . \end{cases}$$

C. — Expressions Involving $(a + bx + cx^2)$.

Let $X = a + bx + cx^2$ and $q = 4ac - b^2$, then

67.
$$\int \frac{dx}{X} = \frac{2}{\sqrt{q}} \tan^{-1} \frac{2 cx + b}{\sqrt{q}}$$
, or $-\frac{2}{\sqrt{-q}} \cdot \tanh^{-1} \frac{2 cx + b}{\sqrt{-q}}$

68.
$$\int \frac{dx}{X} = \frac{1}{\sqrt{-q}} \log \frac{2 cx + b - \sqrt{-q}}{2 cx + b + \sqrt{-q}}$$
, when $q < 0$.

69.
$$\int \frac{dx}{X^2} = \frac{2cx+b}{qX} + \frac{2c}{q} \int \frac{dx}{X}.$$

70.
$$\int \frac{dx}{X^3} = \frac{2 cx + b}{q} \left(\frac{1}{2 X^2} + \frac{3 c}{qX} \right) + \frac{6 c^2}{q^2} \int \frac{dx}{X}$$

71.
$$\int \frac{dx}{X^{n+1}} = \frac{2 \, cx + b}{nqX^n} + \frac{2 \, (2 \, n - 1) \, c}{qn} \int \frac{dx}{X^n}.$$

72.
$$\int \frac{x \, dx}{X} = \frac{1}{2c} \log X - \frac{b}{2c} \int \frac{dx}{X}$$

73.
$$\int \frac{x \, dx}{X^2} = -\frac{bx + 2 \, a}{qX} - \frac{b}{q} \int \frac{dx}{X}.$$

74.
$$\int \frac{x \, dx}{X^{n+1}} = -\frac{2 \, a + bx}{nqX^n} - \frac{b \, (2 \, n - 1)}{nq} \int \frac{dx}{X^n}.$$

75.
$$\int \frac{x^2}{X} dx = \frac{x}{c} - \frac{b}{2c^2} \log X + \frac{b^2 - 2ac}{2c^2} \int \frac{dx}{X}$$

76.
$$\int \frac{x^2}{X^2} dx = \frac{(b^2 - 2 ac) x + ab}{cqX} + \frac{2 a}{q} \int \frac{dx}{X}$$

77.
$$\int \frac{x^m dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)cX^n} - \frac{n-m+1}{2n-m+1} \cdot \frac{b}{c} \int \frac{x^{m-1}dx}{X^{n+1}} + \frac{m-1}{2n-m+1} \cdot \frac{a}{c} \int \frac{x^{m-2}dx}{X^{n+1}} \cdot \frac{a}{c} \int \frac{x^$$

78.
$$\int \frac{dx}{xX} = \frac{1}{2a} \log \frac{x^2}{X} - \frac{b}{2a} \int \frac{dx}{X}$$
.

79.
$$\int \frac{dx}{x^2 X} = \frac{b}{2 a^2} \log \frac{X}{x^2} - \frac{1}{ax} + \left(\frac{b^2}{2 a^2} - \frac{c}{a}\right) \int \frac{dx}{X}$$

$$\begin{aligned} \textbf{80.} \int \frac{dx}{x^m X^{n+1}} &= -\frac{1}{(m-1) \, a x^{m-1} X^n} - \frac{n+m-1}{m-1} \cdot \frac{b}{a} \int \frac{dx}{x^{m-1} X^{n+1}} \\ &- \frac{2 \, n+m-1}{m-1} \cdot \frac{c}{a} \int \frac{dx}{x^{m-2} X^{n+1}} \cdot \end{aligned}$$

81.
$$\int X^n dx = \frac{1}{2(2n+1)c} \left((b+2cx) X^n + nq \int X^{n-1} dx \right)$$

82.
$$\int \frac{dx}{x X^n} = \frac{1}{2 a (n-1) X^{n-1}} - \frac{b}{2 a} \int \frac{dx}{X^n} + \frac{1}{a} \int \frac{dx}{x X^{n-1}}$$

83.
$$\int \frac{dx}{(a'+b'x)X} = \frac{1}{2(ab'^2 - a'bb' + a'^2e)} \left(b'(\log(a'+b'x)^2 - \log X) + (2a'e - bb')\int \frac{dx}{X}\right).$$

84.
$$\int (a' + b'x) X^n dx = \frac{b'X^{n+1}}{2(n+1)c} + \frac{2a'c - bb'}{2c} \int X^n dx.$$

85.
$$\int \frac{(a'+b'x)\,dx}{X^n} = -\frac{b'}{2\,(n-1)\,c\,X^{n-1}} + \frac{2\,a'c-bb'}{2\,c} \int \frac{dx}{X^n}.$$

86.
$$\int (a'+b'x)^m X^n dx = \frac{1}{(m+2n+1)c} \left(b'(a'+b'x)^{m-1} X^{n+1} + (m+n)(2a'c-bb') \int (a'+b'x)^{m-1} X^n dx - (m-1)(ab'^2-a'bb'+ca'^2) \int (a'+b'x)^{m-2} X^n dx \right).$$

$$87. \int \frac{(a'+b'x)^m dx}{X^n} = \frac{1}{q(n-1)} \left(\frac{(b+2cx)(a'+b'x)^m}{X^{n-1}} - 2(m-2n+3)c \int \frac{(a'+b'x)^m dx}{X^{n-1}} \right)$$

$$-2(m-2n+3)c \int \frac{(a'+b'x)^m dx}{X^{n-1}} + m(2a'c-bb') \int \frac{(a'+b'x)^{m-1} dx}{X^{n-1}} \right)$$

$$= \frac{1}{(m-2n+1)c} \left(\frac{b'(a'+b'x)^{m-1} dx}{X^{n-1}} + (m-n)(2a'c-bb') \int \frac{(a'+b'x)^{m-1} dx}{X^n} \right)$$

$$-(m-1)(ab'^2 - a'bb' + ca'^2) \int \frac{(a'+b'x)^{m-2} dx}{X^n} \right)$$

$$88. \int \frac{X^n dx}{(a'+b'x)^m} = \frac{1}{b'^2(m-1)} \left(\frac{-b'X^n}{(a'+b'x)^{m-1}} + n(bb'-2a'c) \int \frac{X^{n-1} dx}{(a'+b'x)^{m-1}} + 2nc \int \frac{X^{n-1} dx}{(a'+b'x)^{m-2}} \right)$$

$$= -\frac{1}{(m-2n-1)b'^2} \left(\frac{+b'X^n}{(a'+b'x)^{m-1}} + \frac{b'X^n}{(a'+b'x)^{m-1}} \right)$$

$$+ 2 b' n (ab'^2 - a'bb' + ca'^2) \int \frac{X^{n-1} dx}{(a' + b'x)^m}$$

$$+ n (bb' - 2 a'c) \int \frac{X^{n-1} dx}{(a' + b'x)^{m-1}} \cdot \cdot$$

$$\begin{aligned} \mathbf{89.} & \int \frac{dx}{(a'+b'x)^m X^n} \\ & = -\frac{1}{(m-1)(ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(a'+b'x)^{m-1} X^{n-1}} \right. \\ & + (m+n-2)(bb' - 2 ca') \int \frac{dx}{(a'+b'x)^{m-1} X^n} \\ & + (m+2 n-3) c \int \frac{dx}{(a'+b'x)^{m-2} X^n} \right) \\ & = \frac{1}{2 (ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(n-1)(a'+b'x)^{m-1} X^{n-1}} \right. \\ & + (2 a'c - bb') \int \frac{dx}{(a'+b'x)^{m-1} X^n} \\ & + \frac{(m+2 n-3)b'^2}{n+1} \int \frac{dx}{(a'+b'x)^m X^{n-1}} \right) . \end{aligned}$$

If $ab'^2 - a'bb' + ca'^2 = 0$,

$$\int \frac{dx}{(a'+b'x)^m X^n} = \frac{-1}{(m+n-1)(bb'-2a'c)} \left(\frac{b'}{(a'+b'x)^m X^{n-1}} + (m+2n-2)c\int \frac{dx}{(a'+b'x)^{m-1} X^n}\right).$$

D. — RATIONAL FRACTIONS.

Every proper fraction can be represented by the general form:

$$\frac{f(x)}{F(x)} = \frac{g_1 x^{n-1} + g_2 x^{n-2} + g_3 x^{n-3} + \dots + g_n}{x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n}.$$

If a, b, c, etc., are the roots of the equation F(x) = 0, so that

$$F(x) = (x-a)^p (x-b)^q (x-c)^r \cdot \cdot \cdot,$$

then

where the numerators of the separate fractions may be determined by the equations

$$\begin{split} A_{\rm m} &= \frac{\phi_1^{\{m-1\}}(a)}{(m-1)\,!}, \quad B_{\rm m} = \frac{\phi_2^{\{m-1\}}(b)}{(m-1)!} \quad \text{etc., etc.} \\ \phi_1(x) &= \frac{f(x)\,(x-a)^p}{F(x)}, \quad \phi_2(x) = \frac{f(x)\,(x-b)^q}{F(x)}, \quad \text{etc., etc.} \end{split}$$

If a, b, c, etc., are single roots, then $p = q = r = \cdots = 1$, and

$$\frac{f(x)}{F(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \cdot \cdot \cdot$$

$$A = \frac{f(a)}{F'(a)}, \quad B = \frac{f(b)}{F'(b)}, \text{ etc.}$$

where

The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the formulas:

90.
$$\int \frac{h \, dx}{(mx+n)^{l}} = \int \frac{h \, d(mx+n)}{m \, (mx+n)^{l}} = \frac{h}{m \, (1-l) \, (mx+n)^{l-1}},$$
 and
$$\int \frac{h \, dx}{mx+n} = \frac{h}{m} \log (mx+n).$$

If any of the roots of the equation f(x) = 0 are imaginary, the parts of the integral which arise from conjugate roots can be combined and the integral brought into a real form. The following formula, in which $i = \sqrt{-1}$, is often useful in combining logarithms of conjugate complex quantities:

$$\log(x \pm yi) = \frac{1}{2}\log(x^2 + y^2) \pm i\tan^{-1}\frac{y}{x}$$

The identities given below are sometimes convenient:

$$\frac{1}{(a+bx^2)(a'+b'x^2)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{b}{a+bx^2} - \frac{b'}{a'+b'x^2} \right],$$

$$\frac{m+nx}{(k+lx)(a+bx+cx^2)} \equiv \frac{1}{al^2+ck^2-bkl}.$$

$$\left[\frac{l(ml-nk)}{k+lx} + \frac{c(nk-ml)x + (aln+ckm-blm)}{a+bx+cx^2} \right],$$

$$\frac{l+mx^n}{(a+bx^n)(a'+b'x^n)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{bl-am}{a+bx^n} + \frac{a'm-b'l}{a'+b'x^n} \right].$$

$$\frac{1}{(x+a)(x+b)(x+c)} = \frac{A}{x+a} + \frac{B}{x+b} + \frac{C}{x+c},$$
where
$$A = \frac{1}{(a-b)(a-c)}, B = \frac{1}{(b-c)(b-a)}, C = \frac{1}{(c-a)(c-b)}.$$

$$A = \frac{1}{(a-b)(a-c)}, B = \frac{1}{(b-c)(b-a)}, C = \frac{1}{(c-a)(c-b)},$$

$$\frac{1}{(x+a)(x+b)(x+c)(x+g)} = \frac{A}{x+a} + \frac{B}{x+b} + \frac{C}{x+c} + \frac{G}{x+g},$$
where

where

$$A = \frac{1}{(b-a)(c-a)(g-a)}, \quad B = \frac{1}{(a-b)(c-b)(g-b)}, \text{ etc.}$$

III. IRRATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving $\sqrt{a+bx}$.

The substitution of a new variable of integration, $y = \sqrt{a + bx}$, gives

91.
$$\int \sqrt{a + bx} \, dx = \frac{2}{3b} \sqrt{(a + bx)^3}.$$

92.
$$\int x\sqrt{a+bx}\,dx = -\frac{2(2\,a-3\,bx)\sqrt{(a+bx)^3}}{15\,b^2}.$$

93.
$$\int x^2 \sqrt{a + bx} \, dx = \frac{2 \left(8 \, a^2 - 12 \, abx + 15 \, b^2 x^2\right) \sqrt{(a + bx)^8}}{105 \, b^3}$$

94.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}$$

95.
$$\int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b}$$

96.
$$\int \frac{x \, dx}{\sqrt{a + bx}} = -\frac{2(2 \, a - bx)}{3 \, b^2} \sqrt{a + bx}.$$

97.
$$\int \frac{x^2 dx}{\sqrt{a+bx}} = \frac{2 (8 a^2 - 4 abx + 3 b^2 x^2)}{15 b^3} \sqrt{a+bx}.$$

98.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{1}{\sqrt{a}} \log \left(\frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right), \text{ for } a > 0.$$

$$99. \int \frac{dx}{x\sqrt{a+bx}} = \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bx}{-a}}, \text{ or } \frac{-2}{\sqrt{a}} \cdot \tanh^{-1} \sqrt{\frac{a+bx}{a}}.$$

$$100. \int \frac{dx}{x^2 \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{a+bx}}$$

101.
$$\int (a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b} \int y^{1\pm n} dy = \frac{2(a+bx)^{\frac{2\pm n}{2}}}{b(2\pm n)}.$$

$$102. \int x (a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b^2} \left[\frac{(a+bx)^{\frac{4\pm n}{2}}}{4\pm n} - \frac{a(a+bx)^{\frac{2\pm n}{2}}}{2\pm n} \right].$$

103.
$$\int \frac{x^m dx}{\sqrt{a+bx}} = \frac{2x^m \sqrt{a+bx}}{(2m+1)b} - \frac{2ma}{(2m+1)b} \int \frac{x^{m-1} dx}{\sqrt{a+bx}}$$

$$\textbf{104.} \int \frac{dx}{x^n \sqrt{a + bx}} = -\frac{\sqrt{a + bx}}{(n - 1)ax^{n - 1}} - \frac{(2n - 3)b}{(2n - 2)a} \int \frac{dx}{x^{n - 1} \sqrt{a + bx}}$$

105.
$$\int \frac{(a+bx)^{\frac{n}{2}}dx}{x} = b \int (a+bx)^{\frac{n-2}{2}}dx + a \int \frac{(a+bx)^{\frac{n-2}{2}}}{x}dx.$$

106.
$$\int \frac{dx}{x(a+bx)^{\frac{m}{2}}} = \frac{1}{a} \int \frac{dx}{x(a+bx)^{\frac{m-2}{2}}} - \frac{b}{a} \int \frac{dx}{(a+bx)^{\frac{n}{2}}}.$$

107.
$$\int f(x, \sqrt[n]{a+b}x)dx = \frac{n}{b} \int f\left(\frac{z^n - a}{b}, z\right) z^{n-1} dz,$$
where $z^n = a + bx$.

108.
$$\int (a + bx)^{\frac{m}{n}} dx = \frac{n(a + bx)^{\frac{m+n}{n}}}{b(m+n)}.$$

109.
$$\int f(x, (a+bx)^{\frac{m}{n}}, (a+bx)^{\frac{p}{q}}, \cdots) dx$$
$$= \frac{s}{b} \int f\left(\frac{y^{s}-a}{b}, y^{\frac{ms}{n}}, y^{\frac{ps}{q}}, \cdots\right) y^{s-1} dy,$$

where $y^s = a + bx$, and s is the least common multiple of n, q, etc.

B.—Expressions Involving Both $\sqrt{a+bx}$ and $\sqrt{a'+b'x}$.

Let u = a + bx, v = a' + b'x, and k = ab' - a'b, then

110.
$$\int \sqrt{uv} \, dx = \frac{k+2bv}{4bb'} \sqrt{uv} - \frac{k^2}{8bb'} \int \frac{dx}{\sqrt{uv}}$$

111.
$$\int \frac{\sqrt{v} \, dx}{\sqrt{u}} = \frac{1}{b} \sqrt{uv} - \frac{k}{2b} \int \frac{dx}{\sqrt{uv}}.$$

112.
$$\int \frac{x \, dx}{\sqrt{uv}} = \frac{\sqrt{uv}}{bb'} - \frac{ab' + a'b}{2bb'} \int \frac{dx}{\sqrt{uv}}.$$

113.
$$\int \frac{dx}{\sqrt{uv}} = \frac{2}{\sqrt{bb'}} \log \left(\sqrt{bb'u} + b\sqrt{v} \right)$$
$$= \frac{2}{\sqrt{-bb'}} \tan^{-1} \sqrt{\frac{-b'u}{bv}}, \text{ or } \frac{2}{\sqrt{bb'}} \tanh^{-1} \sqrt{\frac{b'u}{bv}}$$
$$= \frac{1}{\sqrt{-bb'}} \sin^{-1} \frac{2bb'x + a'b + ab'}{k}.$$

114.
$$\int \frac{dx}{v\sqrt{u}} = \frac{1}{\sqrt{kb'}} \log \frac{b'\sqrt{u} - \sqrt{kb'}}{b'\sqrt{u} + \sqrt{kb'}} = \frac{2}{\sqrt{-kb'}} \tan^{-1} \frac{b'\sqrt{u}}{\sqrt{-kb'}}$$

115.
$$\int \frac{dx}{v\sqrt{uv}} = -\frac{2\sqrt{u}}{k\sqrt{v}}.$$

116.
$$\int v^m \sqrt{u} \, dx = \frac{1}{(2m+3)b'} \left(2 \, v^{m+1} \sqrt{u} + k \int \frac{v^m \, dx}{\sqrt{u}} \right).$$

$$\begin{aligned} \textbf{117.} \ \int & \frac{\sqrt{u} \ dx}{v^m} = -\frac{1}{(2 \ m - 3) \ b'} \bigg(\frac{2 \sqrt{u}}{v^{m-1}} + k \int \frac{dx}{v^m \sqrt{u}} \bigg) \\ &= \frac{1}{(m-1) \ b'} \bigg(-\frac{\sqrt{u}}{v^{m-1}} + \frac{1}{2} \ b \int \frac{dx}{v^{m-1} \sqrt{u}} \bigg) \end{aligned}$$

118.
$$\int \frac{v^m dx}{\sqrt{u}} = \frac{2}{(2m+1)b} \left(v^m \sqrt{u} - mk \int \frac{v^{m-1} dx}{\sqrt{u}} \right)$$

119.
$$\int \frac{dx}{v^{m}\sqrt{u}} = -\frac{1}{(m-1)k} \left(\frac{\sqrt{u}}{v^{m-1}} + (m-\frac{3}{2})b \int \frac{dx}{v^{m-1}\sqrt{u}} \right).$$
120.
$$\int v^{m}u^{n-\frac{1}{2}}dx = \frac{1}{(2m+2n+1)b'} \left(2v^{m+1}u^{n-\frac{1}{2}} + (2n-1)k \int v^{m}u^{n-\frac{3}{2}}dx \right).$$
121.
$$\int v^{m}u^{-(n+\frac{1}{2})}dx = \frac{1}{(2n-1)k} \left(2v^{m+1}u^{-(n-\frac{1}{2})} - (2m-2n+3)b' \int v^{m}u^{-(n-\frac{1}{2})}dx \right)$$

$$= \frac{2}{(2n-1)b} \left(-v^{m}u^{-(n-\frac{1}{2})}dx \right).$$
122.
$$\int v^{-m}u^{(n-\frac{1}{2})}dx = \frac{-1}{(2m-2n-1)b'} \left(2u^{n-\frac{1}{2}}v^{-(m-1)} + (2n-1)k \int u^{n-\frac{3}{2}}v^{-m}dx \right)$$

123.
$$\int v^{-m} u^{-(n+\frac{1}{2})} dx = \frac{1}{(2n-1)k} \left(2 v^{-(m-1)} u^{-(n-\frac{1}{2})} + (2m+2n-3)b' \int v^{-m} u^{-(n-\frac{1}{2})} dx \right).$$

 $=\frac{1}{(m-1)b'}\left(-u^{n-\frac{1}{2}}v^{-(m-1)}\right)$

 $+(n-\frac{1}{2})b\int u^{n-\frac{3}{2}}v^{-(m-1)}dx$

C. — Expressions Involving
$$\sqrt{x^2 \pm a^2}$$
 and $\sqrt{a^2 - x^2}$

124.
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \log \left(x + \sqrt{x^2 \pm a^2} \right) \right].^*$$

125.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right)$$

126.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log(x + \sqrt{x^2 \pm a^2}).$$

127.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$$
, or $-\cos^{-1} \frac{x}{a}$.

128.
$$\int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\cos^{-1}\frac{a}{x}$$
, or $\frac{1}{a}\sec^{-1}\frac{x}{a}$.

129.
$$\int \frac{dx}{x\sqrt{a^2 \pm x^2}} = -\frac{1}{a} \log \left(\frac{a + \sqrt{a^2 \pm x^2}}{x} \right)^*$$

130.
$$\int \frac{\sqrt{a^2 \pm x^2}}{x} dx = \sqrt{a^2 \pm x^2} - a \log \frac{a + \sqrt{a^2 \pm x^2}}{x}.$$

131.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}.$$

132.
$$\int \frac{x \, dx}{\sqrt{a^2 \pm x^2}} = \pm \sqrt{a^2 \pm x^2}.$$

133.
$$\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}.$$

134.
$$\int x \sqrt{x^2 \pm a^2} dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^3}.$$

135.
$$\int x \sqrt{a^2 - x^2} dx = -\frac{1}{8} \sqrt{(a^2 - x^2)^3}.$$

$$\bullet \log \left(\frac{x + \sqrt{x^2 + a^2}}{a} \right) = \sinh^{-1}\left(\frac{x}{a}\right); \ \log \left(\frac{x + \sqrt{x^2 - a^2}}{a} \right) = \cosh^{-1}\left(\frac{x}{a}\right); \\ \log \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right) = \operatorname{sech}^{-1}\left(\frac{x}{a}\right); \ \log \left(\frac{a + \sqrt{a^2 + x^2}}{x} \right) = \operatorname{csch}^{-1}\left(\frac{x}{a}\right); \\$$

136.
$$\int \sqrt{(x^{2} \pm a^{2})^{3}} dx$$

$$= \frac{1}{4} \left[x \sqrt{(x^{2} \pm a^{2})^{5}} \pm \frac{3 a^{2} x}{2} \sqrt{x^{2} \pm a^{2}} + \frac{3 a^{4}}{2} \log (x + \sqrt{x^{2} \pm a^{2}}) \right]^{\frac{1}{2}}$$
137.
$$\int \sqrt{(a^{2} - x^{2})^{3}} dx$$

$$= \frac{1}{4} \left[x \sqrt{(a^{2} - x^{2})^{3}} + \frac{3 a^{2} x}{2} \sqrt{a^{2} - x^{2}} + \frac{3 a^{4}}{2} \sin^{-1} \frac{x}{a} \right].$$
138.
$$\int \frac{dx}{\sqrt{(x^{2} \pm a^{2})^{3}}} = \frac{\pm x}{a^{2} \sqrt{x^{2} \pm a^{2}}}.$$
139.
$$\int \frac{dx}{\sqrt{(a^{2} - x^{2})^{3}}} = \frac{x}{a^{2} \sqrt{a^{2} - x^{2}}}.$$
140.
$$\int \frac{x dx}{\sqrt{(x^{2} \pm a^{2})^{3}}} = \frac{-1}{\sqrt{x^{2} \pm a^{2}}}.$$
141.
$$\int \frac{x dx}{\sqrt{(a^{2} - x^{2})^{3}}} = \frac{1}{\sqrt{a^{2} - x^{2}}}.$$
142.
$$\int x \sqrt{(x^{2} \pm a^{2})^{3}} dx = \frac{1}{5} \sqrt{(x^{2} \pm a^{2})^{5}}.$$
143.
$$\int x \sqrt{(a^{2} - x^{2})^{3}} dx = -\frac{1}{5} \sqrt{(x^{2} \pm a^{2})^{5}}.$$
144.
$$\int x^{2} \sqrt{x^{2} \pm a^{2}} dx$$

$$= \frac{x}{4} \sqrt{(x^{2} \pm a^{2})^{3}} \mp \frac{a^{2}}{8} x \sqrt{x^{2} \pm a^{2}} - \frac{a^{4}}{8} \log (x + \sqrt{x^{2} \pm a^{2}}).$$
145.
$$\int x^{2} \sqrt{a^{2} - x^{2}} dx$$

$$= -\frac{x}{4} \sqrt{(a^{2} - x^{2})^{3}} + \frac{a^{3}}{8} \left(x \sqrt{a^{2} - x^{2}} + a^{2} \sin^{-1} \frac{x}{a} \right).$$

$$\log z = \sinh^{-1} \left(\frac{z^{2} - 1}{2z} \right) = \cosh^{-1} \left(\frac{z^{2} + 1}{2z} \right); \tanh^{-1} z = -i \cdot \tan^{-1} (zi).$$

* (See Note on pages 20-21.)

146.
$$\int \frac{\sqrt{a^2 \pm x^2} \, dx}{x^3} = -\frac{\sqrt{a^2 \pm x^2}}{2 \, x^2} \pm \frac{1}{2} \int \frac{dx}{x \sqrt{a^2 \pm x^2}}.$$

147.
$$\int x^3 \sqrt{a^2 \pm x^2} \, dx = \left(\pm \frac{1}{5} x^2 - \frac{2}{15} a^2 \right) \sqrt{a^2 \pm x^2}.$$

148.
$$\int \frac{dx}{x^3 \sqrt{a^2 \pm x^2}} = -\frac{\sqrt{a^2 \pm x^2}}{2 a^2 x^2} \mp \frac{1}{2 a^2} \int \frac{dx}{x \sqrt{a^2 \pm x^2}}.$$

149.
$$\int \frac{dx}{x^3 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{2 a^2 x^2} + \frac{1}{2 a^3} \sec^{-1} \left(\frac{x}{a}\right).$$

150.
$$\int \frac{x^2 dx}{\sqrt{x^2 + a^2}} = \frac{x}{2} \sqrt{x^2 \pm a^2} = \frac{a^2}{2} \log (x + \sqrt{x^2 \pm a^2}).$$

151.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

152.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}.$$

153.
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x}.$$

154.
$$\int_{-x^2}^{\infty} \frac{\sqrt{x^2 \pm a^2} \, dx}{x^2} = -\frac{\sqrt{x^2 \pm a^2}}{x} + \log \left(x + \sqrt{x^2 \pm a^2} \right).$$

155.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \sin^{-1} \frac{x}{a}.$$

156.
$$\int \frac{x^2 dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{-x}{\sqrt{x^2 \pm a^2}} + \log(x + \sqrt{x^2 \pm a^2}).$$
*

157.
$$\int \frac{x^2 dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{\sqrt{a^2 - x^2}} - \sin^{-1} \frac{x}{a}.$$

^{* (}See Note on pages 20-21.)

158.
$$\int \frac{f(x^2) dx}{\sqrt{a + cx^2}} = g \int f\left(\frac{au^2}{g^2 - cu^2}\right) \frac{du}{(g^2 - cu^2)},$$
 where $u = \frac{gx}{\sqrt{a + cx^2}}$.

159.
$$\int \frac{xf(x^2) dx}{\sqrt{a + cx^2}} = \frac{1}{c} \int f\left(\frac{u^2 - a}{c}\right) du, \text{ where } u^2 = a + cx^2.$$

D. — Expressions Involving
$$\sqrt{a + bx + cx^2}$$
.

Let $X = a + bx + cx^2$, $q = 4ac - b^2$, and $k = \frac{4c}{q}$. In order to rationalize the function $f(x, \sqrt{a + bx + cx^2})$ we may put $\sqrt{a + bx + cx^2} = \sqrt{\pm c} \sqrt{A + Bx \pm x^2}$, according as c is positive or negative, and then substitute for x a new variable z, such that

$$z = \sqrt{A + Bx + x^2} \pm x, \text{ if } c > 0.$$

$$z = \frac{\sqrt{A + Bx - x^2} - \sqrt{A}}{x}, \text{ if } c < 0 \text{ and } \frac{a}{-c} > 0.$$

$$z = \sqrt{\frac{x - \beta}{a - c}}, \text{ where } a \text{ and } \beta \text{ are the roots of the equation}$$

$$A + Bx - x^2 = 0$$
, if $c < 0$ and $\frac{a}{a} < 0$.

By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals:

160.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{c}} \log \left(\sqrt{X} + x\sqrt{c} + \frac{b}{2\sqrt{c}} \right), \text{ if } c > 0.$$
161.
$$\int \frac{dx}{\sqrt{X}} = \frac{-1}{\sqrt{-c}} \sin^{-1} \left(\frac{2cx + b}{\sqrt{-a}} \right), \text{ or } \frac{1}{\sqrt{c}} \sinh^{-1} \left(\frac{2cx + b}{\sqrt{a}} \right).$$

162.
$$\int \frac{dx}{X\sqrt{X}} = \frac{2(2 cx + b)}{q\sqrt{X}}.$$

163.
$$\int \frac{dx}{X^2 \sqrt{X}} = \frac{2(2 cx + b)}{3 q \sqrt{X}} \left(\frac{1}{X} + 2 k \right)$$

164.
$$\int \frac{dx}{X^{n}\sqrt{X}} = \frac{2(2cx+b)\sqrt{X}}{(2n-1)qX^{n}} + \frac{2k(n-1)}{2n-1} \int \frac{dx}{X^{n-1}\sqrt{X}}$$

165.
$$\int \sqrt{X} dx = \frac{(2 cx + b) \sqrt{X}}{4 c} + \frac{1}{2 k} \int \frac{dx}{\sqrt{X}}$$

166.
$$\int X \sqrt{X} dx = \frac{(2 cx + b) \sqrt{X}}{8 c} \left(X + \frac{3}{2 k} \right) + \frac{3}{8 k^2} \int \frac{dx}{\sqrt{X}}$$

$$167. \int X^2 \sqrt{X} dx$$

$$=\frac{(2\,cx+b)\,\sqrt{X}}{12\,e}\bigg(X^2+\frac{5\,X}{4\,k}+\frac{15}{8\,k^2}\bigg)+\frac{5}{16\,k^3}\!\int\frac{dx}{\sqrt{X}}.$$

168.
$$\int X^n \sqrt{X} \, dx = \frac{(2 \, cx + b) \, X^n \sqrt{X}}{4 \, (n+1) \, c} + \frac{2 \, n+1}{2 \, (n+1) \, k} \int \frac{X^n \, dx}{\sqrt{X}}.$$

169.
$$\int \frac{x \, dx}{\sqrt{X}} = \frac{\sqrt{X}}{c} - \frac{b}{2c} \int \frac{dx}{\sqrt{X}}.$$

170.
$$\int \frac{x \, dx}{X \sqrt{X}} = -\frac{2 \left(bx + 2 \, a\right)}{q \sqrt{X}}$$

171.
$$\int \frac{x \, dx}{X^n \sqrt{X}} = -\frac{\sqrt{X}}{(2 \, n - 1) \, cX^n} - \frac{b}{2 \, c} \int \frac{dx}{X^n \sqrt{X}}.$$

172.
$$\int \frac{x^2 dx}{\sqrt{X}} = \left(\frac{x}{2c} - \frac{3b}{4c^2}\right) \sqrt{X} + \frac{3b^2 - 4ac}{8c^2} \int \frac{dx}{\sqrt{X}}$$

173.
$$\int \frac{x^2 dx}{X\sqrt{X}} = \frac{(2 b^2 - 4 ac) x + 2 ab}{cq \sqrt{X}} + \frac{1}{c} \int \frac{dx}{\sqrt{X}}$$

174.
$$\int \frac{x^2 dx}{X^n \sqrt{X}}$$

$$= \frac{(2b^2 - 4ac)x + 2ab}{(2n-1)cqX^{n-1}\sqrt{X}} + \frac{4ac + (2n-3)b^2}{(2n-1)cq} \int \frac{dx}{X^{n-1}\sqrt{X}}.$$

175.
$$\int \frac{x^3 dx}{\sqrt{X}} = \left(\frac{x^2}{3c} - \frac{5bx}{12c^2} + \frac{5b^2}{8c^3} - \frac{2a}{3c^2}\right) \sqrt{X} + \left(\frac{3ab}{4c^2} - \frac{5b^3}{16c^3}\right) \int \frac{dx}{\sqrt{X}}$$

176.
$$\int x \sqrt{X} dx = \frac{X\sqrt{X}}{3c} - \frac{b}{2c} \int \sqrt{X} dx.$$

177.
$$\int x X \sqrt{X} \, dx = \frac{X^2 \sqrt{X}}{5 \, c} - \frac{b}{2 \, c} \int X \sqrt{X} \, dx$$
.

178.
$$\int \frac{xX^n dx}{\sqrt{X}} = \frac{X^n \sqrt{X}}{(2n+1)c} - \frac{b}{2c} \int \frac{X^n dx}{\sqrt{X}}.$$

180.
$$\int \frac{x^2 X^n dx}{\sqrt{X}} = \frac{x X^n \sqrt{X}}{2(n+1)c} - \frac{(2n+3)b}{4(n+1)c} \int \frac{x X^n dx}{\sqrt{X}} - \frac{a}{2(n+1)c} \int \frac{X^n dx}{\sqrt{X}}.$$

181.
$$\int x^3 \sqrt{X} \, dx = \left(x^2 - \frac{7bx}{8c} + \frac{35b^2}{48c^2} - \frac{2a}{3c} \right) \frac{X\sqrt{X}}{5c}$$
$$+ \left(\frac{3ab}{8c^2} - \frac{7b^3}{32c^3} \right) \int \sqrt{X} \, dx.$$

182.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{a}} \log \left(\frac{\sqrt{X} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}} \right), \text{ if } a > 0.$$

183.
$$\int \frac{dx}{x\sqrt{x}} = \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{bx+2a}{x\sqrt{-q}}\right)$$
, or $\frac{-1}{\sqrt{a}} \sinh^{-1}\frac{2a+bx}{x\sqrt{q}}$.

184.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{2\sqrt{X}}{bx}, \text{ if } a = 0.$$

185.
$$\int \frac{dx}{xX^{n}\sqrt{X}} = \frac{\sqrt{X}}{(2n-1)aX^{n}} + \frac{1}{a} \int \frac{dx}{xX^{n-1}\sqrt{X}} - \frac{b}{2a} \int \frac{dx}{X^{n}\sqrt{X}}.$$

186.
$$\int \frac{dx}{x^2 \sqrt{X}} = -\frac{\sqrt{X}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{X}}$$

187.
$$\int \frac{\sqrt{X} dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}.$$

188.
$$\int \frac{X^n dx}{x\sqrt{X}} = \frac{X^n}{(2n-1)\sqrt{X}} + a \int \frac{X^{n-1} dx}{x\sqrt{X}} + \frac{b}{2} \int \frac{X^{n-1} dx}{\sqrt{X}}$$

189.
$$\int \frac{\sqrt{X} dx}{x^2} = -\frac{\sqrt{X}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} + c \int \frac{dx}{\sqrt{X}}.$$

190.
$$\int \frac{x^m dx}{X^n \sqrt{X}} = \frac{1}{c} \int \frac{x^{m-2} dx}{X^{n-1} \sqrt{X}} - \frac{b}{c} \int \frac{x^{m-1} dx}{X^n \sqrt{X}} - \frac{a}{c} \int \frac{x^{m-2} dx}{X^n \sqrt{X}}$$

191.
$$\int \frac{x^m X^n dx}{\sqrt{X}} = \frac{x^{m-1} X^n \sqrt{X}}{(2n+m)c} - \frac{(2n+2m-1)b}{2c(2n+m)} \int \frac{x^{m-1} X^n dx}{\sqrt{X}} - \frac{(m-1)a}{(2n+m)c} \int \frac{x^{m-2} X^n dx}{\sqrt{X}}.$$

$$\begin{split} \mathbf{192.} & \int \frac{dx}{x^m X^n \sqrt{X}} \\ & = -\frac{\sqrt{X}}{(m-1) \, a x^{m-1} X^n} - \frac{(2\,n+2\,m-3)\,b}{2\,a\,(m-1)} \int \frac{dx}{x^{m-1} X^n \sqrt{X}} \\ & - \frac{(2\,n+m-2)\,c}{(m-1)\,a} \int \frac{dx}{x^{m-2} X^n \sqrt{X}}. \end{split}$$

$$\begin{aligned} \textbf{193.} & \int \frac{X^n \, dx}{x^m \sqrt{X}} = -\frac{X^{n-1} \sqrt{X}}{(m-1) x^{m-1}} + \frac{(2 \, n-1) \, b}{2 \, (m-1)} \int \frac{X^{n-1} \, dx}{x^{m-1} \sqrt{X}} \\ & + \frac{(2 \, n-1) \, c}{m-1} \int \frac{X^{n-1} \, dx}{x^{m-2} \sqrt{X}} \cdot \end{aligned}$$

194.
$$\int f(x, \sqrt{(x-a)(x-b)}) dx$$

$$= 2(a-b) \int f\left\{\frac{bu^2 - a}{u^2 - 1}, \frac{u(b-a)}{u^2 - 1}\right\} \frac{u du}{(u^2 - 1)^2},$$
where $u^2(x-b) = x - a$.

E. — Expressions Involving Products of Powers of (a'+b'x) and $\sqrt{a+bx+cx^2}$.

Let
$$X = a + bx + cx^2$$
, $v = a' + b'x$, $q = 4 ac - b^2$, $\beta = bb' - 2 a'c$, $k = ab'^2 - a'bb' + ca'^2$, then

195.
$$\int \frac{dx}{v\sqrt{X}} = \frac{1}{\sqrt{k}} \log \frac{2k + \beta v - 2b'\sqrt{kX}}{v}$$
$$= \frac{1}{\sqrt{-k}} \tan^{-1} \frac{2k + \beta v}{2b'\sqrt{-kX}}$$
$$= \frac{1}{\sqrt{-k}} \sin^{-1} \frac{2k + \beta v}{b'v\sqrt{-q}}, \text{ if } k \neq 0.$$

196.
$$\int \frac{dx}{v\sqrt{X}} = -\frac{2b'\sqrt{X}}{\beta v}$$
, if $k = 0$:
thus, $\int \frac{dx}{(x \pm 1)\sqrt{x^2 - 1}} = \pm \sqrt{\frac{x \mp 1}{x \pm 1}}$.

197.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{b^t \sqrt{X}}{kv} - \frac{\beta}{2k} \int \frac{dx}{v \sqrt{X}}.$$

198.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{2 b' \sqrt{X}}{3 \beta v^2} - \frac{2 c}{3 \beta} \int \frac{dx}{v \sqrt{X}}$$
, if $k = 0$.

$$\textbf{199.} \int \frac{dx}{vX\sqrt{X}} = \frac{1}{k} \left(\frac{b'}{\sqrt{X}} - \frac{1}{2} \beta \int \frac{dx}{X\sqrt{X}} + b'^2 \int \frac{dx}{v\sqrt{X}} \right)$$

200.
$$\int \frac{v \, dx}{X \sqrt{X}} = -\frac{2 (2 k + \beta v)}{b' q \sqrt{X}}$$

201.
$$\int \frac{v \, dx}{\sqrt{X}} = \frac{b' \sqrt{X}}{c} - \frac{\beta}{2 \, c} \int \frac{dx}{\sqrt{X}}$$

202.
$$\int v \sqrt{X} dx = \frac{b' X \sqrt{X}}{3 c} - \frac{\beta}{2 c} \int \sqrt{X} dx.$$

203.
$$\int \frac{v \, dx}{X^n \sqrt{X}} = -\frac{b^t \sqrt{X}}{(2n-1) \, cX^n} - \frac{\beta}{2 \, c} \int \frac{dx}{X^n \sqrt{X}}$$

204.
$$\int \frac{v X^n dx}{\sqrt{X}} = \frac{b' X^n \sqrt{X}}{(2n+1)c} - \frac{\beta}{2c} \int \frac{X^n dx}{\sqrt{X}}$$

205.
$$\int \frac{dx}{v^m \sqrt{X}} = -\frac{b'\sqrt{X}}{(m-1)kv^{m-1}} - \frac{(2m-3)\beta}{2(m-1)k} \int \frac{dx}{v^{m-1}\sqrt{X}} - \frac{(m-2)c}{(m-1)k} \int \frac{dx}{v^{m-2}\sqrt{X}}, \text{ if } k \neq 0.$$

206.
$$\int \frac{dx}{v^m \sqrt{X}} = -\frac{2 b' \sqrt{X}}{(2 m - 1) \beta v^m} - \frac{2 (m - 1) c}{(2 m - 1) \beta} \int \frac{dx}{v^{m-1} \sqrt{X}}, \text{ if } k = 0.$$

$$\begin{aligned} \mathbf{207.} \int \frac{\sqrt{X} \, dx}{v^m} &= -\frac{b' X \sqrt{X}}{(m-1) \, k v^{m-1}} - \frac{(2 \, m-5) \, \beta}{2 \, (m-1) \, k} \int \frac{\sqrt{X} \, dx}{v^{m-1}} \\ &\qquad \qquad - \frac{(m-4) \, c}{(m-1) k} \int \frac{\sqrt{X} \, dx}{v^{m-2}} \\ &= \frac{1}{(m-1) \, b'^2} \bigg(-\frac{b' \sqrt{X}}{v^{m-1}} + \frac{1}{2} \, \beta \int \frac{dx}{v^{m-1} \sqrt{X}} + c \int \frac{dx}{v^{m-2} \sqrt{X}} \bigg) \\ &= \frac{1}{(m-2) \, b'^2} \bigg(-\frac{b' \sqrt{X}}{v^{m-1}} - k \int \frac{dx}{v^m \sqrt{X}} - \frac{1}{2} \, \beta \int \frac{dx}{v^{m-1} \sqrt{X}} \bigg). \end{aligned}$$

208.
$$\int v^m \sqrt{X} \, dx = \frac{1}{(m+2)c} \left(b' v^{m-1} X \sqrt{X} - (m+\frac{1}{2}) \beta \int v^{m-1} \sqrt{X} \, dx - (m-1) k \int v^{m-2} \sqrt{X} \, dx \right)$$

209.
$$\int \frac{dx}{v^m X^n \sqrt{X}} = -\frac{1}{(m-1)k} \left(\frac{b^t \sqrt{X}}{v^{m-1} X^n} + (m+n-\frac{3}{2}) \beta \int \frac{dx}{v^{m-1} X^n \sqrt{X}} + (m+2n-2) e \int \frac{dx}{v^{m-2} X^n \sqrt{X}} \right), \text{ if } k \neq 0.$$

210.
$$\int \frac{dx}{v^m X^n \sqrt{X}} = \frac{-2}{(2m+2n-1)\beta} \left(\frac{b' \sqrt{X}}{v^m X^n} + (m+2n-1)c \int \frac{dx}{v^{m-1} X^n \sqrt{X}} \right), \text{ if } k = 0.$$

$$211. \int \frac{X^n dx}{v^m \sqrt{X}}$$

$$= -\frac{1}{(m-1)k} \left(\frac{b' X^n \sqrt{X}}{v^{m-1}} + (m-n-\frac{3}{2}) \beta \int \frac{X^n dx}{v^{m-1} \sqrt{X}} \right.$$

$$+ (m-2n-2) c \int \frac{X^n dx}{v^{m-2} \sqrt{X}}$$

$$= -\frac{1}{(m-2n)b'^2} \left(\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (2n-1)k \int \frac{X^{n-1} dx}{v^m \sqrt{X}} \right.$$

$$+ (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}}$$

$$= \frac{1}{(m-1)b'^2} \left(-\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}} \right.$$

$$+ (2n-1) c \int \frac{X^{n-1} dx}{v^{m-2} \sqrt{V}} .$$

$$212. \int \frac{v^{m} X^{n} dx}{\sqrt{X}} = \frac{1}{(m+2n)c} \left(b^{t} v^{m-1} X^{n} \sqrt{X} - (m+n-\frac{1}{2}) \beta \int \frac{v^{m-1} X^{n} dx}{\sqrt{X}} - (m-1) k \int \frac{v^{m-2} X^{n} dx}{\sqrt{X}} \right)$$

$$213. \int \frac{v^{m} dx}{X^{n} \sqrt{X}} = \frac{1}{(m-2n)c} \left(\frac{b^{t} v^{m-1} \sqrt{X}}{X^{n}} - (m-n-\frac{1}{2}) \beta \int \frac{v^{m-1} dx}{X^{n} \sqrt{X}} - (m-1) k \int \frac{v^{m-2} dx}{X^{n} \sqrt{X}} \right).$$

$$\frac{1}{(x+a)(x+b)\sqrt{X}} = \frac{1}{(b-a)(x+a)\sqrt{X}} + \frac{1}{(a-b)(x+b)\sqrt{X}}$$

$$\frac{1}{\sqrt{a+bx+cx^2} \pm \sqrt{a'+b'x+c'x^2}}$$

$$= \frac{\sqrt{a+bx+cx^2} \pm \sqrt{a'+b'x+c'x^2}}{a-a'+(b-b')x+(c-c')x^2}.$$

$$\frac{\sqrt{X}}{(x+a)(x+b)} = \frac{\sqrt{X}}{(b-a)(x+a)} + \frac{\sqrt{X}}{(a-b)(x+b)}.$$

$$\frac{(x+a)\sqrt{X}}{x+b} = \sqrt{X} + \frac{(a-b)\sqrt{X}}{x+b}.$$

$$\int \sqrt{\frac{ax^2+b}{a'x^2+b'}} dx \text{ is an elliptic integral.}$$

$$\int \frac{x\sqrt{a+bx^2}}{\sqrt{a'+b'x^2}} dx = \frac{1}{b'\sqrt{b'}} \int \sqrt{ab'-a'b+by^2} \cdot dy,$$
where
$$y^2 = a' + b'x^2.$$

IV. MISCELLANEOUS ALGEBRAIC EXPRESSIONS.

214.
$$\int \sqrt{2 \, ax - x^2} \cdot dx = \frac{x - a}{2} \sqrt{2 \, ax - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x - a}{a}$$

215.
$$\int \frac{dx}{\sqrt{2 ax - x^2}} = \operatorname{versin}^{-1} \frac{x}{a} = \cos^{-1} \left(1 - \frac{x}{a} \right)$$
$$= 2 \sin^{-1} \sqrt{\frac{x}{2 a}} \cdot$$

216.
$$\int \frac{x^n dx}{\sqrt{2 ax - x^2}} = -\frac{x^{n-1}\sqrt{2 ax - x^2}}{n} - \frac{a(1-2n)}{n} \int \frac{x^{n-1} dx}{\sqrt{2 ax - x^2}}.$$

217.
$$\int \frac{dx}{x^{n}\sqrt{2} \, ax - x^{2}} = \frac{\sqrt{2} \, ax - x^{2}}{a \, (1 - 2 \, n) \, x^{n}} + \frac{n - 1}{(2 \, n - 1) \, a} \int \frac{dx}{x^{n - 1}\sqrt{2} \, ax - x^{2}}.$$

218.
$$\int x^{n} \sqrt{2 \, ax - x^{2}} \cdot dx = -\frac{x^{n-1} \sqrt{(2 \, ax - x^{2})^{3}}}{n+2} + \frac{(2 \, n+1) \, a}{n+2} \int x^{n-1} \sqrt{2 \, ax - x^{2}} \cdot dx.$$

219.
$$\int \frac{\sqrt{2 ax - x^2} \cdot dx}{x^n} = \frac{\sqrt{(2 ax - x^2)^2}}{(3 - 2 n) ax^n} + \frac{n - 3}{(2 n - 3) a} \int \frac{\sqrt{2 ax - x^2} \cdot dx}{x^{n - 1}}.$$

220.
$$\int \frac{dx}{x\sqrt{x^n - a^2}} = \frac{2}{an} \sec^{-1} \left(\frac{x^{\frac{n}{2}}}{a} \right).$$

$$\begin{aligned} & \textbf{221.} \int \frac{dx}{x\sqrt{x^n + a^2}} = \frac{1}{an} \log \frac{\sqrt{a^2 + x^n} - a}{\sqrt{a^2 + x^n} + a}. \\ & \textbf{222.} \int \frac{x^{\frac{1}{2}} dx}{\sqrt{a^3 - x^3}} = \frac{2}{3} \sin^{-1} \left(\frac{x}{a}\right)^{\frac{3}{2}}. \\ & \textbf{223.} \int \frac{dx}{(a + bx^2)\sqrt{x}} = \frac{1}{b\delta^3 \sqrt{2}} \left\{ \log \left(\frac{x + \delta^2 + \sqrt{2}\,\delta^2 x}{\sqrt{a + bx^2}}\right) + \tan^{-1} \left(1 + \frac{\sqrt{2}\,x}{\delta}\right) - \tan^{-1} \left(1 - \frac{\sqrt{2}\,x}{\delta}\right) \right\}. \text{ where } b\delta^4 = a. \\ & \textbf{224.} \int \frac{\sqrt{x} \cdot dx}{a + bx^2} = \frac{1}{b\delta\sqrt{2}} \left\{ \tan^{-1} \left(1 + \frac{\sqrt{2}\,x}{\delta}\right) - \tan^{-1} \left(1 - \frac{\sqrt{2}\,x}{\delta}\right) \right\}. \end{aligned}$$

 $-\log\left(\frac{x+\delta^2+\sqrt{2}\delta^2x}{2\sqrt{x+\delta^2x^2}}\right)$, where $b\delta^4=a^2$

225.
$$\int \frac{x^{\frac{1}{2}} \cdot dx}{a + bx^2} = \frac{2\sqrt{x}}{b} - \frac{a}{b} \int \frac{dx}{(a + bx^2)\sqrt{x}}$$

226.
$$\int \frac{dx}{(a+bx^2)^2 \sqrt{x}} = \frac{\sqrt{x}}{2 a(a+bx^2)} + \frac{3}{4 a} \int \frac{dx}{(a+bx^2)\sqrt{x}}$$

227.
$$\int \frac{\sqrt{x} \cdot dx}{(a+bx^2)^2} = \frac{x^{\frac{3}{2}}}{2 \ a(a+bx^2)} + \frac{1}{4 \ a} \int \frac{\sqrt{x} \cdot dx}{(a+bx^3)}$$

If a_1 , a_2 , a_3 , etc., are the roots of the equation

$$p_0x^n + p_1x^{n-1} + p_2x^{n-2} + \cdots + p_n = 0$$

the integrand in the expression

$$\int \frac{(q_0 x^m + q_1 x^{m-1} + \dots + q_n) dx}{(p_0 x^n + p_1 x^{n-1} + \dots + p_n) \sqrt{a + bx + cx^2}},$$

where m < n, may be expressed as the sum of a number of partial fractions of the form $\frac{A}{(x-a_k)^r \sqrt{a+bx+cx^2}}$, and these can be integrated by the aid of equations given above. Thus,

228.
$$\int \frac{(px+q) dx}{(x-a')(x-b')\sqrt{a+bx+cx^2}} = \frac{q+a'p}{a'-b'} \int \frac{dx}{(x-a')\sqrt{a+bx+cx^2}} - \frac{q+b'p}{a'-b'} \int \frac{dx}{(x-b')\sqrt{a+bx+cx^2}}.$$

229.
$$\int \frac{dx}{(a' + c'x^2)\sqrt{a + cx^2}}$$

$$= \frac{1}{\sqrt{a'(ac' - a'c)}} \tan^{-1} x \sqrt{\frac{(ac' - a'c)}{a'(a + cx^2)}}$$

$$= \frac{1}{2\sqrt{a'(a'c - ac')}} \log \frac{\sqrt{a'(a + cx^2)} + x \sqrt{a'c - ac'}}{\sqrt{a'(a + cx^2)} - x \sqrt{a'c - ac'}}$$

230.
$$\int \frac{x \, dx}{(a' + c'x^2)\sqrt{a + cx^2}}$$

$$= \frac{1}{\sqrt{c'(a'c - ac')}} \tan^{-1} \sqrt{\frac{c'(a + cx^2)}{a'c - ac'}}$$

$$= \frac{1}{2\sqrt{c'(ac' - a'c)}} \log \frac{\sqrt{c'(a + cx^2)} - \sqrt{ac' - a'c}}{\sqrt{c'(a + cx^2)} + \sqrt{ac' - a'c}}$$

where $z^n(a'+b'x)=a+bx$.

232.
$$\int f(x, \sqrt[n]{c + \sqrt[n]{a + bx}}) dx$$

= $\frac{mn}{b} \int f\left\{\frac{(z^n - c)^m - a}{b}, z\right\} (z^n - c)^{m-1} z^{n-1} dz$,

where $z^n = c + \sqrt[m]{a + bx}$.

233.
$$\int f \left\{ x, \left[\frac{a+bx}{a'+b'x} \right]^{\frac{m}{n}}, \left[\frac{a+bx}{a'+b'x} \right]^{\frac{p}{q}}, \cdots \right\} dx$$

$$= s(a'b-ab') \int f \left\{ \frac{a'y'-a}{b-b'y'}, y^{\frac{ms}{n}}, y^{\frac{ps}{q}}, \cdots \right\} \frac{y^{s-1}dy}{(b-b'y')^{2'}}$$

where $y^s(a'+b'x)=a+bx$ and s is the least common multiple of n, q, etc.

234.
$$\int f(x, \sqrt{a+bx+x^2}) dx$$

= $2 \int f\left(\frac{2\sqrt{a} \cdot z - b}{1-z^2}, \frac{z^2\sqrt{a} - bz + \sqrt{a}}{1-z^2}\right) \cdot \frac{(z^2\sqrt{a} - bz + \sqrt{a}) dz}{(1-z^2)^2}$, where $xz + \sqrt{a} = \sqrt{a+bx+x^2}$.

where $u = \sqrt{a + bx + x^2} - x$.

$$\int \frac{dx}{x^4 + a^4} = \frac{1}{4 a^3 \sqrt{2}} \left\{ \log \left(\frac{x^2 + ax\sqrt{2} + a^2}{x^2 - ax\sqrt{2} + a^2} \right) + 2 \tan^{-1} \left(\frac{ax\sqrt{2}}{a^2 - x^2} \right) \right\}.$$

$$\int \frac{dx}{x^4 - a^4} = \frac{1}{4 a^3} \left\{ \log \left(\frac{x - a}{x + a} \right) - 2 \tan^{-1} \left(\frac{x}{a} \right) \right\}.$$

V. TRANSCENDENTAL FUNCTIONS.

236.
$$\int \sin x \cdot f(\cos x) \, dx = -\int f(\cos x) \, d \cos x.$$

237.
$$\int \cos x \cdot f(\sin x) \, dx = \int f(\sin x) \, d \, \sin x.$$

238.
$$\int \sin x \cdot f(\sin x, \cos x) dx = -\int f(\sqrt{1-z^2}, z) dz,$$
where $z = \cos x$.

$$239. \int \frac{dx}{a+b\cos x} = \frac{1}{c(b-a)} \left\{ \int \frac{dz}{z+c} - \int \frac{dz}{z-c} \right\},\,$$

where $z = \tan \frac{1}{2} x$, and $c^2 = (b + a)/(b - a)$. [See 651.

240.
$$\int \frac{dx}{a \pm b \sin x} = \int \frac{2 dz}{a \pm 2 bz + az^2}$$
, where $z = \tan \frac{1}{2}x$.

241.
$$\int f(\sin x) dx = -\int f\left(\cos\left(\frac{\pi}{2} - x\right)\right) d\left(\frac{\pi}{2} - x\right) \cdot$$

242.
$$\int f(\tan x) dx = -\int f \operatorname{etn}\left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right) \cdot$$

243.
$$\int f(\sec x) \, dx = -\int f \csc\left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right) \cdot$$

244.
$$\int \frac{\sin x \cdot f(\sin^2 x) \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \int \frac{f(z) \, dz}{2\sqrt{(1 - z)(1 - k^2 z)}},$$

where $z = \sin^2 x$.

245.
$$\int \frac{\cos x \cdot f(\cos^2 x) \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \int \frac{f(1 - z) \, dz}{2\sqrt{z} (1 - k^2 z)}, \text{ where } z = \sin^2 x.$$

246.
$$\int \frac{\tan x \cdot f(\tan^2 x) dx}{\sqrt{1 - k^2 \sin^2 x}} = \int f\left(\frac{z}{1 - z}\right) \frac{dz}{2(1 - z)\sqrt{1 - k^2 z}},$$
 where $z = \sin^2 x$.

247.
$$\int f(ax+b) dx = \frac{1}{a} \int f(ax+b) d(ax+b).$$

248.
$$\int \sec^{n+2} x \cdot f(\tan x) \, dx = \int (1+z^2)^{\frac{n}{2}} f(z) \, dz; \ z = \tan x.$$

$$249. \int f(\sin x, \, \cos x) \, dx$$

$$= -\int f\left(\cos\left(\frac{\pi}{2} - x\right), \sin\left(\frac{\pi}{2} - x\right)\right) d\left(\frac{\pi}{2} - x\right).$$

250.
$$\int f(x) \cdot \sin^{-1} x \cdot dx = \sin^{-1} x \cdot \phi(x) - \int \frac{\phi(x) dx}{\sqrt{1 - x^2}}, dx,$$
 where $\phi(x) = \int f(x) dx$.

251.
$$\int f(x) \cdot \cos^{-1} x \, dx = \cos^{-1} x \cdot \phi(x) + \int \frac{\phi(x) \, dx}{\sqrt{1 - x^2}}$$

252.
$$\int f(x) \cdot \tan^{-1} x \, dx = \tan^{-1} x \cdot \phi(x) - \int \frac{\phi(x) \, dx}{1 + x^2}$$

253.
$$\int f(x) \cdot \cot^{-1} x \, dx = \cot^{-1} x \cdot \phi(x) + \int \frac{\phi(x) \, dx}{1 + x^2}$$

254.
$$\int f(x, \cos x) dx = -\int f\left(\frac{\pi}{2} - z, \sin z\right) dz$$
, where $z = \frac{\pi}{2} - x$.

255.
$$\int \frac{\sin x \cdot f(\cos x) dx}{a + b \cos x} = -\frac{1}{b} \int f\left(\frac{z - a}{b}\right) \frac{dz}{z},$$
 where $z = a + b \cos x$.

256.
$$\int f(x, \log x) dx = \int f(e^z, z) e^z dz$$
, where $z = \log x$.

257.
$$\int \frac{f(\log x) dx}{x} = \int f(z) dz, \text{ where } z = \log x.$$

258.
$$\int x^m f(\log x) \, dx = \int e^{(m+1)z} f(z) \, dz.$$

259.
$$\int f(\sin x, \cos x, \tan x, \cot x, \sec x, \csc x) dx$$

$$= \int f\left(\frac{2z}{1+z^2}, \frac{1-z^2}{1+z^2}, \frac{2z}{1-z^2}, \frac{1-z^2}{2z}, \frac{1+z^2}{1-z^2}, \frac{1+z^2}{2z}\right)$$

$$\frac{2\,dz}{1+z^2}, \text{ where } z = \tan\frac{x}{2};$$

$$= \int f \left(z, \ \sqrt{1-z^2}, \ \frac{z}{\sqrt{1-z^2}}, \ \frac{1}{\sqrt{1-z^2}}, \ \frac{1}{\sqrt{1-z^2}}, \ \frac{1}{z} \right)$$

$$\frac{dz}{\sqrt{1-z^2}}$$
, where $z=\sin x$;

$$= \int f\left(\frac{z}{\sqrt{1+z^2}}, \frac{1}{\sqrt{1+z^2}}, z, \frac{1}{z}, \sqrt{1+z^2}, \frac{\sqrt{1+z^2}}{z}\right)$$

$$\frac{dz}{1+z^2}$$
, where $z=\tan x$;

$$= \int f\left(\sqrt{z}, \sqrt{1-z}, \sqrt{\frac{z}{1-z}}, \sqrt{\frac{1-z}{z}}, \frac{1}{\sqrt{1-z}}, \frac{1}{\sqrt{z}}\right)$$

$$\frac{dz}{2\sqrt{z(1-z)}}, \text{ where } z = \sin^2 x;$$

$$= \int f\left(\sqrt{\frac{z}{1+z}}, \frac{1}{\sqrt{1+z}}, \sqrt{z}, \frac{1}{\sqrt{z}}, \sqrt{1+z}, \sqrt{\frac{1+z}{z}}\right)$$

$$\frac{dz}{2\sqrt{z(1+z)}}, \text{ where } z = \tan^2 x.$$

260.
$$\int \sin x \, dx = -\cos x$$
. [See 247.]

261.
$$\int \sin^2 x \, dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x = \frac{1}{2} x - \frac{1}{4} \sin 2x.$$

262.
$$\int \sin^3 x \, dx = -\frac{1}{8} \cos x (\sin^2 x + 2).$$

263.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

264.
$$\int \cos x \, dx = \sin x$$
. [See 247.]

265.
$$\int \cos^2 x \, dx = \frac{1}{2} \sin x \cos x + \frac{1}{2} x = \frac{1}{2} x + \frac{1}{4} \sin 2x.$$

266.
$$\int \cos^3 x \, dx = \frac{1}{3} \sin x \, (\cos^2 x + 2).$$

267.
$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$$

268.
$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x.$$

269.
$$\int \sin^2 x \, \cos^2 x \, dx = -\frac{1}{8} \left(\frac{1}{4} \sin 4 \, x - x \right).$$

270.
$$\int \sin x \, \cos^m x \, dx = -\frac{\cos^{m+1} x}{m+1}.$$

271.
$$\int \sin^m x \, \cos x \, dx = \frac{\sin^{m+1} x}{m+1}.$$

272.
$$\int \cos^m x \, \sin^n x \, dx = \frac{\cos^{m-1} x \, \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \cos^{m-2} x \, \sin^n x \, dx.$$

$$\mathbf{274.} \int \frac{\sin^n x \, dx}{\cos^m x} = \frac{1}{n-m} \left(-\frac{\sin^{n-1} x}{\cos^{m-1} x} + (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^m x} \right)$$

$$= \frac{1}{m-1} \left(\frac{\sin^{n+1} x}{\cos^{m-1} x} - (n-m+2) \int \frac{\sin^n x \, dx}{\cos^{m-2} x} \right)$$

$$= \frac{1}{m-1} \left(\frac{\sin^{n-1} x}{\cos^{m-1} x} - (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^{m-2} x} \right).$$

275.
$$\int \frac{\cos^m x \, dx}{\sin^n x} = -\frac{\cos^{m+1} x}{(n-1)\sin^{n-1} x} - \frac{m-n+2}{n-1} \int \frac{\cos^m x \, dx}{\sin^{n-2} x}$$
$$= \frac{\cos^{m-1} x}{(m-n)\sin^{n-1} x} + \frac{m-1}{m-n} \int \frac{\cos^{m-2} x \, dx}{\sin^n x}$$
$$= -\frac{1}{n-1} \frac{\cos^{m-1} x}{\sin^{n-1} x} - \frac{m-1}{n-1} \int \frac{\cos^{m-2} x \, dx}{\sin^{n-2} x}.$$

276.
$$\int \frac{\sin^m x \, dx}{\cos^n x} = -\int \frac{\cos^m \left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right)}{\sin^n \left(\frac{\pi}{2} - x\right)}.$$

$$277. \int \frac{dx}{\sin x \cos x} = \log \tan x.$$

278.
$$\int \frac{dx}{\cos x \sin^2 x} = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) - \csc x.$$

$$279. \int \frac{dx}{\sin^m x \, \cos^n x}$$

$$= \frac{1}{n-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^m x \cdot \cos^{n-2}x}$$

$$= -\frac{1}{m-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2}x \cdot \cos^n x}.$$

280.
$$\int \frac{dx}{\sin^m x} = -\frac{1}{m-1} \cdot \frac{\cos x}{\sin^{m-1} x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2} x} \cdot$$

281
$$\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$$

282.
$$\int \tan x \, dx = -\log \cos x$$
. [See 247.]

$$283. \int \tan^2 x \, dx = \tan x - x.$$

284.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx.$$

285.
$$\int \cot x \, dx = \log \sin x$$
. [See 247.]

$$286. \int \operatorname{ctn}^2 x \, dx = -\operatorname{ctn} x - x.$$

287.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx.$$

288.
$$\int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) = \frac{1}{2} \log \frac{1 + \sin x}{1 - \sin x}$$

$$289. \int \sec^2 x \, dx = \tan x.$$

290.
$$\int \sec^{n} x \, dx = \int \frac{dx}{\cos^{n} x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-1} x}$$
$$= \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$$

$$291. \int \csc x \, dx = \log \, \tan \, \frac{1}{2} \, x.$$

$$292. \int \csc^2 x \, dx = -\, \cot x.$$

293.
$$\int \csc^{n} x \, dx = \int \frac{dx}{\sin^{n} x}$$

$$= -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$$

$$= -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx.$$

294.
$$\int \frac{dx}{1+\sin x} = -\tan\left(\frac{1}{4}\pi - \frac{1}{2}x\right).$$
 [See 241.]

295.
$$\int \frac{dx}{1-\sin x} = \operatorname{ctn}\left(\frac{1}{4}\pi - \frac{1}{2}x\right) = \tan\left(\frac{1}{4}\pi + \frac{1}{2}x\right).$$

296.
$$\int \frac{dx}{1 + \cos x} = \tan \frac{1}{2} x$$
, or $\csc x - \cot x$.

297.
$$\int \frac{dx}{1 - \cos x} = -\cot \frac{1}{2}x, \text{ or } -\cot x - \csc x.$$

298.
$$\int \frac{dx}{a \pm b \sin x} = \frac{2 \sec \theta}{a} \cdot \tan^{-1} (\sec \theta \cdot \tan \frac{1}{2} x \pm \tan \theta),$$

if a > b, and $b = a \sin \theta$.

299.
$$\int \frac{dx}{a \pm b \sin x} = \frac{\pm \sec a}{b} \log \frac{\sin \frac{1}{2} (a \pm x)}{\cos \frac{1}{2} (x \mp a)},$$

if b > a, and $a = b \sin a$. [See 241.]

300.
$$\int \frac{dx}{a+b\cos x} = \frac{-1}{\sqrt{a^2-b^2}} \cdot \sin^{-1} \left[\frac{b+a\cos x}{a+b\cos x} \right],$$

such that the contraction of the contraction of

or
$$\frac{1}{\sqrt{b^2 - a^2}} \log \left[\frac{b + a \cos x + \sqrt{b^2 - a^2} \cdot \sin x}{a + b \cos x} \right],$$
or
$$\frac{1}{\sqrt{b^2 - a^2}} \log \left[\frac{\sqrt{b + a} + \sqrt{b - a} \cdot \tan \frac{1}{2} x}{\sqrt{b + a} - \sqrt{b - a} \cdot \tan \frac{1}{2} x} \right],$$
or
$$\frac{1}{\sqrt{b^2 - a^2}} \tanh^{-1} \left[\frac{\sqrt{b^2 - a^2} \cdot \sin x}{b + a \cos x} \right].$$

301.
$$\int \frac{dx}{a+b \tan x} = \frac{1}{a^2 + b^2} [b \log(a \cos x + b \sin x) + ax].$$

302.
$$\int \frac{dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \log \tan \left(\frac{1}{2} x + \frac{1}{8} \pi \right).$$

303.
$$\int \frac{\sin x \, dx}{a + b \cos x} = -\int \frac{\cos \left(\frac{1}{2}\pi - x\right) d\left(\frac{1}{2}\pi - x\right)}{a + b \sin\left(\frac{1}{2}\pi - x\right)}$$
$$= -\frac{1}{b} \log (a + b \cos x).$$

304.
$$\int \frac{(a'+b'\cos x) dx}{a+b\cos x} = \frac{b'x}{b} + \frac{a'b-ab'}{b} \int \frac{dx}{a+b\cos x}$$

305.
$$\int \frac{(a'+b'\cos x) dx}{(a+b\cos x)^2} = \frac{ab'-a'b}{a^2-b^2} \frac{\sin x}{a+b\cos x}$$
$$+ \frac{aa'-bb'}{a^2-b^2} \int \frac{dx}{a+b\cos x} . \text{ [See 241.]}$$

306.
$$\int \frac{(a'+b'\cos x)\,dx}{(a+b\cos x)^n} = \frac{1}{(n-1)\left(a^2-b^2\right)} \left[\frac{(ab'-a'b)\sin x}{(a+b\cos x)^{n-1}} + \int \frac{\left[\left(aa'-bb'\right)(n-1)+(n-2)\left(ab'-a'b\right)\cos x\right]\,dx}{(a+b\cos x)^{n-1}} \right].$$

307.
$$\int \frac{(a'+b'\cos x)\,dx}{(1+\cos x)^n} = \frac{(a'-b')\tan\frac{1}{2}x}{(2\,n-1)\,(1+\cos x)^{n-1}} + \frac{n\,(a'+b')-a'}{2\,n-1} \int \frac{dx}{(1+\cos x)^{n-1}}.$$

308.
$$\int \frac{dx}{(a+b\cos x)^n} = \frac{1}{(n-1)(a^2-b^2)} \left[\frac{-b\sin x}{(a+b\cos x)^{n-1}} + (2n-3)a \int \frac{dx}{(a+b\cos x)^{n-1}} - (n-2) \int \frac{dx}{(a+b\cos x)^{n-2}} \right]$$

309.
$$\int \frac{dx}{(1+\cos x)^n} = \frac{\tan\frac{1}{2}x}{(2n-1)(1+\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1+\cos x)^{n-1}}.$$
 [See 241.]

310.
$$\int \frac{(a'+b'\cos x) dx}{\sin x (a+b\cos x)} = \frac{a'b-ab'}{a^2-b^2} \log (a+b\cos x)$$
$$+ \frac{a'+b'}{a+b} \log \sin \frac{1}{2} x - \frac{a'-b'}{a-b} \log \cos \frac{1}{2} x.$$

311.
$$\int \frac{(a'+b'\cos x) dx}{\cos x (a+b\cos x)} = \frac{a'}{a} \log \tan \frac{1}{2} (\frac{1}{2}\pi + x) + \frac{(ab'-a'b)}{a} \int \frac{dx}{a+b\cos x}$$

312.
$$\int \frac{(a'+b'\cos x) dx}{\sin x (1\pm\cos x)} = \pm \frac{\frac{1}{2}(a'\mp b')}{1\pm\cos x} + \frac{1}{2}(a'\pm b') \log \tan \frac{1}{2}x$$

313.
$$\int \frac{dx}{(1-\cos x)^n} = \frac{-\cot \frac{1}{2}x}{(2n-1)(1-\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1-\cos x)^{n-1}}.$$
 [See 241.]

314.
$$\int \frac{dx}{a^2 - b^2 \cos^2 x} = \int \frac{dx}{(a^2 - b^2) + b^2 \sin^2 x}$$

$$= \frac{1}{2 a b \sin a} \log \frac{\sin (a - x)}{\sin (a + x)},$$
or
$$\frac{1}{a^2 \sin \beta} \tan^{-1} \left(\frac{\tan x}{\sin \beta} \right), \text{ where } \cos a = \frac{1}{\cos \beta} = \frac{a}{b}.$$

315.
$$\int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \tan^{-1} \left(\frac{b \tan x}{a} \right)$$

316.
$$\int \frac{\sin^2 x \, dx}{a + b \cos^2 x} = \frac{\sqrt{a + b}}{b \sqrt{a}} \tan^{-1} \left(\tan x \cdot \sqrt{\frac{a}{a + b}} \right) - \frac{x}{b}$$

317.
$$\int \frac{\sin x \cos x \, dx}{a \cos^2 x + b \sin^2 x} = \frac{1}{2(b-a)} \log (a \cos^2 x + b \sin^2 x).$$

318.
$$\int \frac{dx}{(a+b\cos x + c\sin x)^n} = \int \frac{d(x-a)}{[a+r\cos(x-a)]^n},$$
where $b=r\cos a$ and $c=r\sin a$.

319.
$$\int \frac{dx}{a + b \cos x + c \sin x}$$
 [See page 61.]
$$= \frac{-1}{\sqrt{a^2 - b^2 - c^2}} \cdot \sin^{-1} \left[\frac{b^2 + c^2 + a (b \cos x + c \sin x)}{\sqrt{(b^2 + c^2)} (a + b \cos x + c \sin x)} \right]$$

$$= \frac{1}{\sqrt{b^2 + c^2 - c^2}} \cdot \log$$

$$\begin{split} & \left[\frac{b^2 + c^2 + a \left(b \cos x + c \sin x \right) + \sqrt{b^2 + c^2 - a^2} \left(b \sin x - c \cos x \right)}{\sqrt{(b^2 + c^2)} \left(a + b \cos x + c \sin x \right)} \right] \\ & = \frac{1}{\sqrt{b^2 + c^2 - a^2}} \cdot \log \frac{\sqrt{b^2 + c^2 - a^2} - c + (b - a) \tan \frac{1}{2} x}{\sqrt{b^2 + c^2 - a^2} + c - (b - a) \tan \frac{1}{2} x} \\ & = \frac{2}{\sqrt{a^2 - b^2 - c^2}} \tan^{-1} \left[\frac{(a - b) \tan \frac{1}{2} x + c}{\sqrt{a^2 - b^2 - c^2}} \right]. \end{split}$$

320.
$$\int \frac{dx}{a(1+\cos x) + c\sin x} = \frac{1}{c}\log(a + c\tan\frac{1}{2}x)$$

321.
$$\int \frac{dx}{(a[1+\cos x]+c\sin x)^2} = \frac{1}{c^3} \left[\frac{c(a\sin x - c\cos x)}{a(1+\cos x)+c\sin x} - a\log(a+c\tan \frac{1}{2}x) \right]$$

322.
$$\int \frac{(x+\sin x) dx}{1+\cos x} = x \tan \frac{1}{2} x.$$

323.
$$\int \cos x \sqrt{1 - k^2 \sin^2 x} \, dx$$
$$= \frac{1}{2} \sin x \sqrt{1 - k^2 \sin^2 x} + \frac{1}{2k} \sin^{-1}(k \sin x).$$

324.
$$\int \sin x \sqrt{1 - k^2 \sin^2 x} \, dx$$

$$= -\frac{1}{2} \cos x \sqrt{1 - k^2 \sin^2 x} - \frac{1 - k^2}{2 k} \log (k \cos x + \sqrt{1 - k^2 \sin^2 x}).$$

325.
$$\int \sin x (1 - k^2 \sin^2 x)^{\frac{3}{2}} dx = -\frac{1}{4} \cos x (1 - k^2 \sin^2 x)^{\frac{3}{2}} + \frac{3}{4} (1 - k^2) \int \sin x \sqrt{1 - k^2 \sin^2 x} dx.$$

326.
$$\int \frac{\cos x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \frac{1}{k} \sin^{-1}(k \sin x),$$
or $\frac{1}{h} \log(b \sin x + \sqrt{1 + b^2 \sin^2 x})$, where $b^2 = -k^2$.

327.
$$\int \frac{\sin x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = -\frac{1}{k} \log \left(k \cos x + \sqrt{1 - k^2 \sin^2 x} \right),$$
or $-\frac{1}{h} \sin^{-1} \frac{b \cos x}{\sqrt{1 + k^2}}, \text{ where } b^2 = -k^2$

328.
$$\int \frac{\tan x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \frac{1}{2\sqrt{1 - k^2}} \log \left(\frac{\sqrt{1 - k^2 \sin^2 x} + \sqrt{1 - k^2}}{\sqrt{1 - k^2 \sin^2 x} - \sqrt{1 - k^2}} \right)$$

329.
$$\int \frac{x \, dx}{1 + \sin x} = -x \tan \frac{1}{2} \left(\frac{1}{2} \pi - x \right) + 2 \log \cos \frac{1}{2} \left(\frac{1}{2} \pi - x \right).$$

330.
$$\int \frac{x \, dx}{1 - \sin x} = x \cot \frac{1}{2} \left(\frac{1}{2} \pi - x \right) + 2 \log \sin \frac{1}{2} \left(\frac{1}{2} \pi - x \right).$$

331.
$$\int \frac{x \, dx}{1 + \cos x} = x \tan \frac{1}{2} x + 2 \log \cos \frac{1}{2} x.$$

332.
$$\int \frac{x \, dx}{1 - \cos x} = -x \cot \frac{1}{2} x + 2 \log \sin \frac{1}{2} x.$$

333.
$$\int \frac{\tan x \, dx}{\sqrt{a+b \tan^2 x}} = \frac{1}{\sqrt{b-a}} \cos^{-1} \left(\frac{\sqrt{b-a}}{\sqrt{b}} \cdot \cos x \right)$$

334.
$$\int \frac{dx}{a+b\tan^2 x} = \frac{1}{a-b} \left[x - \sqrt{\frac{b}{a}} \cdot \tan^{-1} \left(\sqrt{\frac{b}{a}} \cdot \tan x \right) \right].$$

335.
$$\int \frac{\tan x \, dx}{a + b \tan x}$$

$$= \frac{1}{a^2 + b^2} \left\{ bx - a \log(a + b \tan x) + a \log \sec x \right\}$$

$$336. \int x \sin x dx = \sin x - x \cos x.$$

337.
$$\int x^2 \sin x \, dx = 2 \, x \sin x - (x^2 - 2) \cos x.$$

338.
$$\int x^3 \sin x \, dx = (3 \, x^2 - 6) \sin x - (x^3 - 6 \, x) \cos x.$$

339.
$$\int x^m \sin x \, dx = -x^m \cos x + m \int x^{m-1} \cos x \, dx$$
.

$$340. \int x \cos x \, dx = \cos x + x \sin x.$$

341.
$$\int x^2 \cos x \, dx = 2 \, x \, \cos x + (x^2 - 2) \sin x.$$

342.
$$\int x^3 \cos x \, dx = (3 \, x^2 - 6) \cos x + (x^3 - 6 \, x) \sin x.$$

343.
$$\int x^m \cos x \, dx = x^m \sin x - m \int x^{m-1} \sin x \, dx.$$

344.
$$\int \frac{\sin x}{x^m} dx = -\frac{1}{m-1} \cdot \frac{\sin x}{x^{m-1}} + \frac{1}{m-1} \int \frac{\cos x}{x^{m-1}} dx.$$

345.
$$\int \frac{\cos x}{x^m} dx = -\frac{1}{m-1} \cdot \frac{\cos x}{x^{m-1}} - \frac{1}{m-1} \int \frac{\sin x}{x^{m-1}} dx.$$

346.
$$\int \frac{\sin x}{x} dx = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \frac{x^9}{9 \cdot 9!} \cdot \cdots$$

347.
$$\int \frac{\cos x}{x} dx = \log x - \frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \frac{x^8}{8 \cdot 8!} \cdot \cdots$$

348.
$$\int \frac{x \, dx}{\sin x} = x + \frac{x^3}{3 \cdot 3!} + \frac{7 \, x^5}{3 \cdot 5 \cdot 5!} + \frac{31 \, x^7}{3 \cdot 7 \cdot 7!} + \frac{127 \, x^9}{3 \cdot 5 \cdot 9!} + \cdots$$

349.
$$\int \frac{x \, dx}{\cos x} = \frac{x^2}{2} + \frac{x^4}{4 \cdot 2!} + \frac{5 \, x^6}{6 \cdot 4!} + \frac{61 \, x^8}{8 \cdot 6!} + \frac{1385 \, x^{10}}{10 \cdot 8!} + \cdots$$

$$350. \int \frac{x \, dx}{\sin^2 x} = -x \cot x + \log \sin x.$$

351.
$$\int \frac{x \, dx}{\cos^2 x} = x \tan x + \log \cos x.$$

352.
$$n^2 \int x^m \sin^n x \, dx$$

$$= x^{m-1} \sin^{n-1} x \, (m \sin x - nx \cos x)$$

$$+ n \, (n-1) \int x^m \sin^{n-2} x \, dx - m \, (m-1) \int x^{m-2} \sin^n x \, dx.$$

353.
$$n^2 \int x^m \cos^n x \, dx$$

= $x^{m-1} \cos^{n-1} x (m \cos x + nx \sin x)$
+ $n(n-1) \int x^m \cos^{n-2} x \, dx - m(m-1) \int x^{m-2} \cos^n x \, dx$.

354.
$$\int \frac{x^m dx}{\sin^n x}$$

$$= \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m\sin x + (n-2)x\cos x)}{\sin^{n-1} x} + (n-2)^2 \int \frac{x^m dx}{\sin^{n-2} x} + m(m-1) \int \frac{x^{m-2} dx}{\sin^{n-2} x} \right].$$

355.
$$\int \frac{x^m dx}{\cos^n x}$$

$$= \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m\cos x - (n-2)x\sin x)}{\cos^{n-1}x} + (n-2)^2 \int \frac{x^m dx}{\cos^{n-2}x} + m(m-1) \int \frac{x^{m-2} dx}{\cos^{n-2}x} \right].$$

356.
$$\int \frac{\sin^n x \, dx}{x^m}$$

$$= \frac{1}{(m-1)(m-2)} \left[-\frac{\sin^{n-1} x \left((m-2)\sin x + nx\cos x \right)}{x^{m-1}} - n^2 \int \frac{\sin^n x \, dx}{x^{m-2}} + n(n-1) \int \frac{\sin^{n-2} x \, dx}{x^{m-2}} \right].$$

357.
$$\int \frac{\cos^{n} x \, dx}{x^{m}}$$

$$= \frac{1}{(m-1)(m-2)} \left[\frac{\cos^{n-1} x (nx \cos x - (m-2)\cos x)}{x^{m-1}} - n^{2} \int \frac{\cos^{n} x \, dx}{x^{m-2}} + n(n-1) \int \frac{\cos^{n-2} x \, dx}{x^{m-2}} \right].$$

358.
$$\int x^{p} \sin^{m} x \cos^{n} x dx$$

$$= \frac{1}{(m+n)^{2}} \left[x^{p-1} \sin^{m} x \cos^{n-1} x \left(p \cos x + (m+n)x \sin x \right) + (n-1) \left(m+n \right) \int x^{p} \sin^{m} x \cos^{n-2} x dx \right]$$

$$\begin{split} &-mp \int x^{p-1} \sin^{m-1} x \cos^{n-1} x \, dx \\ &-p (p-1) \int x^{p-2} \sin^m x \cos^n x \, dx \, \bigg] \cdot \\ &= \frac{1}{(m+n)^2} \bigg[x^{p-1} \sin^{m-1} x \cos^n x (p \sin x - (m+n)x \cos x) \\ &+ (m-1) (m+n) \int x^p \sin^{m-2} x \cos^n x \, dx \\ &+ np \int x^{p-1} \sin^{m-1} x \cos^{n-1} x \, dx \\ &- p (p-1) \int x^{p-2} \sin^m x \cos^n x \, dx \, \bigg] \cdot \end{split}$$

359.
$$\int \sin mx \sin nx \, dx = \frac{\sin (m-n)x}{2(m-n)} - \frac{\sin (m+n)x}{2(m+n)}.$$

360.
$$\int \sin mx \cos nx \, dx = -\frac{\cos (m-n)x}{2(m-n)} - \frac{\cos (m+n)x}{2(m+n)} \cdot \frac{8}{5}$$

361.
$$\int \cos mx \cos nx \, dx = \frac{\sin (m-n)x}{2(m-n)} + \frac{\sin (m+n)x}{2(m+n)}$$
.

362.
$$\int \sin^2 mx \, dx = \frac{1}{2m} (mx - \sin mx \cos mx).$$

363.
$$\int \cos^2 mx \, dx = \frac{1}{2m} (mx + \sin mx \cos mx).$$

364.
$$\int \sin mx \cos mx dx = -\frac{1}{4m} \cos 2mx$$
.

365.
$$\int \sin nx \sin^m x \, dx = \frac{1}{m+n} \left[-\cos nx \sin^m x + m \int \cos (n-1) x \cdot \sin^{m-1} x \, dx \right].$$

366.
$$\int \sin nx \cos^m x \, dx = \frac{1}{m+n} \left[-\cos nx \cos^m x + m \int \sin (n-1) x \cdot \cos^{m-1} x \, dx \right].$$

367.
$$\int \cos nx \sin^m x \, dx = \frac{1}{m+n} \left[\sin nx \sin^m x - m \int \sin (n-1) x \cdot \sin^{m-1} x \, dx \right].$$

368.
$$\int \cos nx \cos^m x \, dx = \frac{1}{m+n} \left[\sin nx \cos^m x + m \int \cos (n-1) x \cdot \cos^{m-1} x \, dx \right].$$

369.
$$\int \frac{\cos nx \, dx}{\cos^m x} = 2 \int \frac{\cos \left((n-1)x \, dx \right)}{\cos^{m-1} x} - \int \frac{\cos \left((n-2)x \, dx \right)}{\cos^m x}$$

370.
$$\int \frac{\cos nx \, dx}{\sin^m x} = -2 \int \frac{\sin \left(n - 1 \right) x \, dx}{\sin^{m-1} x} + \int \frac{\cos \left(n - 2 \right) x \, dx}{\sin^m x} \cdot$$

371.
$$\int \frac{\sin nx \, dx}{\sin^m x} = 2 \int \frac{\cos \left((n-1)x \, dx \right)}{\sin^{m-1} x} + \int \frac{\sin \left((n-2)x \, dx \right)}{\sin^m x}$$

372.
$$\int \frac{\sin nx \, dx}{\cos^m x} = 2 \int \frac{\sin (n-1) x \, dx}{\cos^{m-1} x} - \int \frac{\sin (n-2) x \, dx}{\cos^m x}.$$

373.
$$\int \frac{(\cos px + i \sin px) dx}{\cos nx} = -2i \int \frac{z^{p+n-1} dz}{1 + z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

374.
$$\int \frac{(\cos px + i\sin px) dx}{\sin nx} = -2 \int \frac{z^{p+n-1} dz}{1 - z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

375.
$$\int \frac{(i\cos x - \sin x) dx}{\sqrt[n]{\cos nx}} = \int \frac{dy}{2 - y^n},$$

where $y = \frac{\cos x + i \sin x}{\sqrt[n]{\cos nx}}$. This yields two real integrals.

376.
$$\int \sin ax \sin bx \sin cx dx = -\frac{1}{4} \left\{ \frac{\cos (a-b+c)x}{a-b+c} + \frac{\cos (b+c-a)x}{b+c-a} + \frac{\cos (a+b-c)x}{a+b-c} - \frac{\cos (a+b+c)x}{a+b+c} \right\}$$

377.
$$\int \cos ax \cos bx \cos cx \, dx = \frac{1}{4} \left\{ \frac{\sin (a+b+c)x}{a+b+c} + \frac{\sin (b+c-a)x}{b+c-a} + \frac{\sin (a-b+c)x}{a-b+c} + \frac{\sin (a+b-c)x}{a+b-c} \right\}.$$

378.
$$\int \sin ax \cos bx \cos cx \, dx = -\frac{1}{4} \left\{ \frac{\cos (a+b+c)x}{a+b+c} - \frac{\cos (b+c-a)x}{b+c-a} + \frac{\cos (a+b-c)x}{a+b-c} + \frac{\cos (a+c-b)x}{a+c-b} \right\}.$$

379.
$$\int \cos ax \sin bx \sin cx \, dx = \frac{1}{4} \left\{ \frac{\sin (a + b - c)x}{a + b - c} + \frac{\sin (a - b + c)x}{a - b + c} - \frac{\sin (a + b + c)x}{a + b + c} - \frac{\sin (b + c - a)x}{b + c - a} \right\}$$

380.
$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2}.$$

381.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2}.$$

382.
$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \log (1 + x^2).$$

383.
$$\int \cot^{-1} x \, dx = x \cot^{-1} x + \frac{1}{2} \log(1 + x^2).$$

384.
$$\int \sec^{-1} x \, dx = x \sec^{-1} x - \log (x + \sqrt{x^2 - 1}).$$

385.
$$\int \csc^{-1} x \, dx = x \csc^{-1} x + \log(x + \sqrt{x^2 - 1}).$$

386.
$$\int \operatorname{versin}^{-1} x \, dx = (x-1) \operatorname{versin}^{-1} x + \sqrt{2x-x^2}.$$

387.
$$\int (\sin^{-1} x)^2 dx = x(\sin^{-1} x)^2 - 2x + 2\sqrt{1 - x^2} \sin^{-1} x.$$

388.
$$\int (\cos^{-1}x)^2 dx = x (\cos^{-1}x)^2 - 2x - 2\sqrt{1-x^2} \cos^{-1}x.$$

389.
$$\int x \sin^{-1} x \, dx = \frac{1}{4} \left[(2x^2 - 1) \sin^{-1} x + x \sqrt{1 - x^2} \right].$$

390.
$$\int x \cos^{-1} x \, dx = \frac{1}{4} \left[(2x^2 - 1) \cos^{-1} x - x \sqrt{1 - x^2} \right].$$

391.
$$\int x \tan^{-1} x \, dx = \frac{1}{2} [(x^2 + 1) \tan^{-1} x - x].$$

392.
$$\int x \, e^{-1} x \, dx = \frac{1}{2} [(x^2 + 1) e^{-1} x + x].$$

393.
$$\int x \sec^{-1} x \, dx = \frac{1}{2} \left[x^2 \sec^{-1} x - \sqrt{x^2 - 1} \right].$$

394.
$$\int x \csc^{-1} x \, dx = \frac{1}{2} \left[x^2 \csc^{-1} x + \sqrt{x^2 - 1} \right].$$

395.
$$\int x^n \sin^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \sin^{-1} x - \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right).$$

396.
$$\int x^n \cos^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \cos^{-1} x + \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right)$$

$$\int_{-1}^{1} e^{xy} dy = e^{x} - e^{x}$$

397.
$$\int x^n \tan^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \tan^{-1} x - \int \frac{x^{n+1} \, dx}{1+x^2} \right).$$

398.
$$\int x^n \operatorname{ctn}^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \operatorname{ctn}^{-1} x + \int \frac{x^{n+1} \, dx}{1+x^2} \right).$$

399.
$$\int \frac{\sin^{-1} x \, dx}{x^2} = \log \left(\frac{1 - \sqrt{1 - x^2}}{x} \right) - \frac{\sin^{-1} x}{x} .$$

400.
$$\int \frac{\tan^{-1}x \, dx}{x^2} = \log x - \frac{1}{2} \log (1 + x^2) - \frac{\tan^{-1}x}{x}.$$

401.
$$\int e^{ax} dx = \frac{e^{ax}}{a} \cdot \int f(e^{ax}) dx = \int \frac{f(y)}{ay} dy, \quad y = e^{ax}.$$

402.
$$\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1).$$

403.
$$\int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx.$$

404.
$$\int \frac{e^{ax}}{x^m} dx = \frac{1}{m-1} \left[-\frac{e^{ax}}{x^{m-1}} + a \int \frac{e^{ax} dx}{x^{m-1}} \right].$$

405.
$$\int a^{bx} dx = \frac{a^{bx}}{b \log a}$$

$$\int f(a^{bx}) dx = \int \frac{f(y) dy}{b \cdot \log a \cdot y}, \ y = a^{bx}.$$

406.
$$\int x^n a^x dx = \frac{a^x x^n}{\log a} - \frac{na^x x^{n-1}}{(\log a)^2} + \frac{n(n-1) a^x x^{n-2}}{(\log a)^8} \cdot \cdot \cdot \\ \pm \frac{n(n-1)(n-2) \cdot \cdot \cdot 2.1 a^x}{(\log a)^{n+1}}.$$

407.
$$\int \frac{a^x dx}{x^n} = \frac{1}{n-1} \left[-\frac{a^x}{x^{n-1}} - \frac{a^x \cdot \log a}{(n-2)x^{n-2}} - \frac{a^x \cdot (\log a)^2}{(n-2)(n-3)x^{n-3}} - \dots + \frac{(\log a)^{n-1}}{(n-2)(n-3)\cdots 2.1} \int \frac{a^x dx}{x} \right].$$

408.
$$\int \frac{a^x dx}{x} = \log x + x \log a + \frac{(x \log a)^2}{2 \cdot 2!} + \frac{(x \log a)^3}{3 \cdot 3!} + \cdots$$

5 dit - 5 dix 12 1-11=11=- 1-14 =2

409.
$$\int \frac{dx}{1+e^x} = \log \frac{e^x}{1+e^x}.$$

410.
$$\int \frac{dx}{a + be^{mx}} = \frac{1}{am} [mx - \log(a + be^{mx})].$$

411.
$$\int \frac{dx}{ae^{mx} + be^{-mx}} = \frac{1}{m\sqrt{ab}} \tan^{-1} \left(e^{mx} \sqrt{\frac{a}{b}} \right)$$

412
$$\int \frac{dx}{\sqrt{a + be^{mx}}} = \frac{1}{m\sqrt{a}} \{ \log \left(\sqrt{a + be^{mx}} - \sqrt{a} \right) \}$$

$$-\log(\sqrt{a+be^{mx}}+\sqrt{a})\}, \text{ or } \frac{2}{m\sqrt{-a}}\tan^{-1}\frac{\sqrt{a+be^{mx}}}{\sqrt{-a}}$$

$$413. \int \frac{xe^{x}dx}{(1+x)^{2}} = \frac{e^{x}}{1+x}, \int x^{n} \cdot e^{ax^{n+1}}dx = \frac{e^{ax^{n+1}}}{a(n+1)}.$$

413.
$$\int \frac{xe^x dx}{(1+x)^2} = \frac{e^x}{1+x}, \quad \int x^n \cdot e^{ax^{n+1}} dx = \frac{e^{ax^{n+1}}}{a(n+1)}.$$

414.
$$\int e^{ax} \sin px \, dx = \frac{e^{ax} \left(a \sin px - p \cos px \right)}{a^2 + p^2}.$$

415.
$$\int e^{ax} \cos px \, dx = \frac{e^{ax} (a \cos px + p \sin px)}{a^2 + p^2}.$$

416.
$$\int e^{ax} \log x \, dx = \frac{e^{ax} \log x}{a} - \frac{1}{a} \int \frac{e^{ax} dx}{x}$$

417.
$$\int e^{ax} \sin^2 x \, dx = \frac{e^{ax}}{4 + a^2} \left(\sin x \left(a \sin x - 2 \cos x \right) + \frac{2}{a} \right)$$

418.
$$\int e^{ax} \cos^2 x \, dx = \frac{e^{ax}}{4 + a^2} \left(\cos x \left(2 \sin x + a \cos x \right) + \frac{2}{a} \right)$$

419.
$$\int e^{ax} \sin^n bx \, dx = \frac{1}{a^2 + n^2 b^2} \left((a \sin bx) + (a \sin bx) +$$

$$-nb\cos bx)e^{ax}\sin^{n-1}bx+n(n-1)b^2\int e^{ax}\sin^{n-2}bx\cdot dx$$

420.
$$\int e^{ax} \cos^n bx \, dx = \frac{1}{a^2 + n^2 b^2} \left((a \cos bx + nb \sin bx) e^{ax} \cos^{n-1} bx + n(n-1) b^2 \int e^{ax} \cos^{n-2} bx \, dx \right).$$

421.
$$\int e^{ax} \tan^n x \, dx$$

$$= \frac{e^{ax} \tan^{n-1} x}{n-1} - \frac{a}{n-1} \int e^{ax} \tan^{n-1} x \, dx - \int e^{ax} \tan^{n-2} x \, dx.$$

422.
$$\int e^{ax} \cot^n x \, dx$$

$$= -\frac{e^{ax} \cot^{n-1} x}{n-1} + \frac{a}{n-1} \int e^{ax} \cot^{n-1} x \, dx - \int e^{ax} \cot^{n-2} x \, dx.$$

423.
$$\int \frac{e^{ax} dx}{\sin^n x} = -e^{ax} \frac{a \sin x + (n-2)\cos x}{(n-1)(n-2)\sin^{n-1} x} + \frac{a^2 + (n-2)^2}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\sin^{n-2} x}.$$

424.
$$\int \frac{e^{ax} dx}{\cos^n x} = -e^{ax} \frac{a \cos x - (n-2)\sin x}{(n-1)(n-2)\cos^{n-1}x} + \frac{a^2 + (n-2)^2}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\cos^{n-2}x}.$$

425.
$$\int e^{ax} \sin^{m} x \cos^{n} x dx$$

$$= \frac{1}{(m+n)^{2} + a^{2}} \left\{ e^{ax} \sin^{mx} x \cos^{n-1} x (a \cos x + (m+n)\sin x) - ma \int e^{ax} \sin^{m-1} x \cos^{m-1} x dx + (n-1)(m+n) \int e^{ax} \sin^{m} x \cos^{n-2} x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ e^{ax} \sin^{m-1} x \cos^n x \left(a \sin x - (m+n) \cos x \right) \right.$$

$$\left. + na \int e^{ax} \sin^{m-1} x \cos^{n-1} x dx$$

$$\left. + (m-1) \left(m+n \right) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \cos^{n-1} x \sin^{m-1} x \left(a \sin x \cos x + n \sin^2 x \right) \right.$$

$$\left. - m \cos^2 x \right] + n (n-1) \int e^{ax} \sin^m x \cos^{n-2} x dx$$

$$\left. + m (m-1) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x \left(a \sin x \cos x + n \sin^2 x \right) \right.$$

$$\left. - m \cos^2 x \right] + n (n-1) \int e^{ax} \sin^{m-2} x \cos^{n-2} x dx$$

$$\left. + (m-n) \left(m+n-1 \right) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x \left(a \sin x \cos x + n \sin^2 x \right) \right.$$

$$\left. - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^{m-2} x \cos^{n-2} x dx$$

$$\left. - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^m x \cos^{n-1} x dx \right\}.$$

$$426. \int \log x \, dx = x \, \log x - x.$$

427.
$$\int x^m \log x \, dx = x^{m+1} \left[\frac{\log x}{m+1} - \frac{1}{(m+1)^2} \right]$$

428.
$$\int (\log x)^n dx = x (\log x)^n - n \int (\log x)^{n-1} dx.$$

429.
$$\int x^m (\log x)^n dx = \frac{x^{m+1} (\log x)^n}{m+1} - \frac{n}{m+1} \int x^m (\log x)^{n-1} dx.$$

430.
$$\int \frac{(\log x)^n dx}{x} = \frac{(\log x)^{n+1}}{n+1}.$$

431.
$$\int \frac{dx}{\log x} = \log(\log x) + \log x + \frac{(\log x)^2}{2 \cdot 2!} + \frac{(\log x)^3}{3 \cdot 3!} + \cdots$$

432.
$$\int \frac{dx}{(\log x)^n} = -\frac{x}{(n-1)(\log x)^{n-1}} + \frac{1}{n-1} \int \frac{dx}{(\log x)^{n-1}}.$$

433.
$$\int \frac{x^m dx}{(\log x)^n} = -\frac{x^{m+1}}{(n-1)(\log x)^{n-1}} + \frac{m+1}{n-1} \int \frac{x^m dx}{(\log x)^{n-1}}.$$

434.
$$\int \frac{x^m dx}{\log x} = \int \frac{e^{-y}}{y} dy$$
, where $y = -(m+1)\log x$.

435.
$$\int \frac{dx}{x \log x} = \log(\log x)$$
, and $\int \frac{(n-1) dx}{x (\log x)^n} = \frac{-1}{(\log x)^{n-1}}$

436.
$$\int \log(a^2 + x^2) dx = x \cdot \log(a^2 + x^2) - 2x + 2a \cdot \tan^{-1}\left(\frac{x}{a}\right)$$

$$437. \int (a+bx)^m \log x \, dx$$

$$= \frac{1}{b(m+1)} \left[(a+bx)^{m+1} \log x - \int \frac{(a+bx)^{m+1} dx}{x} \right]$$

$$438. \int x^m \log (a + bx) \, dx$$

$$= \frac{1}{m+1} \left[x^{m+1} \log (a+bx) - b \int \frac{x^{m+1} dx}{a+bx} \right].$$

439.
$$\int \frac{\log(a+bx) dx}{x} = \log a \cdot \log x + \frac{bx}{a} - \frac{1}{2^2} \left(\frac{bx}{a}\right)^2 + \frac{1}{3^2} \left(\frac{bx}{a}\right)^3 - \cdots$$
$$= \frac{1}{2} (\log bx)^2 - \frac{a}{bx} + \frac{1}{2^2} \left(\frac{a}{bx}\right)^2 - \frac{1}{3^2} \left(\frac{a}{bx}\right)^5 + \cdots$$

440.
$$\int \frac{\log x \, dx}{(a+bx)^m} = \frac{1}{b(m-1)} \left[-\frac{\log x}{(a+bx)^{m-1}} + \int \frac{dx}{x(a+bx)^{m-1}} \right].$$

441.
$$\int \frac{\log x \, dx}{a + bx} = \frac{1}{b} \log x \cdot \log (a + bx) - \frac{1}{b} \int \frac{\log (a + bx) \, dx}{x}$$

442.
$$\int (a+bx)\log x \, dx = \frac{(a+bx)^2}{2b}\log x - \frac{a^2\log x}{2b} - ax - \frac{1}{4}bx^2.$$

443.
$$\int \frac{\log x \, dx}{\sqrt{a + bx}}$$

$$= \frac{2}{b} \left[(\log x - 2)\sqrt{a + bx} + \sqrt{a} \log(\sqrt{a + bx} + \sqrt{a}) - \sqrt{a} \log(\sqrt{a + bx} - \sqrt{a}) \right], \text{ if } a > 0$$

$$= \frac{2}{b} \left[(\log x - 2)\sqrt{a + bx} + 2\sqrt{-a} \tan^{-1} \sqrt{\frac{a + bx}{-a}} \right], \text{ if } a < 0.$$

444.
$$\int \sin \log x \, dx = \frac{1}{2} x [\sin \log x - \cos \log x].$$

445.
$$\int \cos \log x \, dx = \frac{1}{2} x [\sin \log x + \cos \log x].$$

446.
$$\int \sinh x \, dx = \cosh x.$$

447.
$$\int \cosh x \, dx = \sinh x.$$

448.
$$\int \tanh x \, dx = \log \cosh x.$$

449.
$$\int \coth x \, dx = \log \sinh x.$$

450.
$$\int \operatorname{sech} x \, dx = 2 \tan^{-1} e^x$$
.

451.
$$\int \operatorname{csch} x \, dx = \log \tanh \frac{x}{2}.$$

452.
$$\int \sinh^n x \, dx = \frac{1}{n} \sinh^{n-1} x \cdot \cosh x - \frac{n-1}{n} \int \sinh^{n-2} x \, dx$$
$$= \frac{1}{n+1} \sinh^{n+1} x \cosh x - \frac{n+2}{n+1} \int \sinh^{n+2} x \, dx.$$

453.
$$\int \cosh^n x \, dx = \frac{1}{n} \sinh x \cdot \cosh^{n-1} x + \frac{n-1}{n} \int \cosh^{n-2} x \, dx$$
$$= -\frac{1}{n+1} \sinh x \cosh^{n+1} x + \frac{n+2}{n+1} \int \cosh^{n+2} x \, dx.$$

454.
$$\int x \sinh x \, dx = x \cosh x - \sinh x.$$

455.
$$\int x \cosh x \, dx = x \sinh x - \cosh x.$$

456.
$$\int x^2 \sinh x \, dx = (x^2 + 2) \cosh x - 2x \sinh x.$$

457.
$$\int x^n \sinh x \, dx = x^n \cosh x - nx^{n-1} \sinh x$$
$$+ n(n-1) \int x^{n-2} \sinh x \, dx.$$

458.
$$\int \sinh^2 x \, dx = \frac{1}{2} (\sinh x \cosh x - x).$$

459.
$$\int \sinh x \cdot \cosh x \, dx = \frac{1}{4} \cosh (2 x).$$

460.
$$\int \cosh^2 x \, dx = \frac{1}{2} \left(\sinh x \, \cosh x + x \right).$$

461.
$$\int \tanh^2 x \, dx = x - \tanh x.$$

$$462. \int \coth^2 x \, dx = x - \coth x.$$

463.
$$\int \operatorname{sech}^2 x \, dx = \tanh x.$$

$$464. \int \operatorname{csch}^2 x \, dx = - \operatorname{ctnh} x.$$

465.
$$\int \sinh^{-1} x \, dx = x \, \sinh^{-1} x - \sqrt{1 + x^2}.$$

466.
$$\int \cosh^{-1} x \, dx = x \cosh^{-1} x - \sqrt{x^2 - 1}.$$

467.
$$\int \tanh^{-1} x \, dx = x \tanh^{-1} x + \frac{1}{2} \log (1 - x^2).$$

468.
$$\int x \sinh^{-1} x \, dx = \frac{1}{4} \left[(2x^2 + 1) \sinh^{-1} x - x \sqrt{1 + x^2} \right].$$

469.
$$\int x \cosh^{-1} x \, dx = \frac{1}{4} \left[(2x^2 - 1) \cosh^{-1} x - x \sqrt{x^2 - 1} \right].$$

470.
$$\int \frac{dx}{\cosh a + \cosh x}$$

$$= \operatorname{csch} a \left[\log \cosh \frac{1}{2} (x + a) - \log \cosh \frac{1}{2} (x - a) \right],$$

$$= 2 \operatorname{csch} a \cdot \tanh^{-1} (\tanh \frac{1}{2} x \cdot \tanh \frac{1}{2} a).$$

471.
$$\int \frac{dx}{\cos a + \cosh x} = 2 \csc a \cdot \tan^{-1}(\tanh \frac{1}{2}x \cdot \tan \frac{1}{2}a).$$

472.
$$\int \frac{dx}{1 + \cos a \cdot \cosh x} = 2 \csc a \cdot \tanh^{-1}(\tanh \frac{1}{2}x \cdot \tan \frac{1}{2}a).$$

473.
$$\int \sinh x \cdot \cos x \, dx = \frac{1}{2} (\cosh x \cdot \cos x + \sinh x \cdot \sin x).$$

474.
$$\int \cosh x \cdot \cos x \, dx = \frac{1}{2} \left(\sinh x \cdot \cos x + \cosh x \cdot \sin x \right).$$

475.
$$\int \sinh x \cdot \sin x \, dx = \frac{1}{2} \left(\cosh x \cdot \sin x - \sinh x \cdot \cos x \right).$$

476.
$$\int \cosh x \cdot \sin x \, dx = \frac{1}{2} (\sinh x \cdot \sin x - \cosh x \cdot \cos x).$$

477.
$$\int \sinh(mx) \sinh(nx) dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh(nx) \cosh(mx) - n \cosh(nx) \sinh(mx) \right]$$

478.
$$\int \cosh(mx) \sinh(nx) dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh(nx) \sinh(mx) - n \cosh(nx) \cosh(mx) \right]$$

479.
$$\int \cosh(mx) \cosh(nx) dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh(mx) \cosh(nx) - n \sinh(nx) \cosh(mx) \right]$$

$$\int \frac{dx}{a\cos^2 x + c\sin x \cdot \cos x + b\sin^2 x} = \int \frac{d(\tan x)}{a + c\tan x + b\tan^2 x}$$

$$\int \frac{(l + m\cos x + n\sin x) dx}{a + b\cos x + c\sin x} = \int \frac{(m\cos \delta + n\sin \delta) \cos z \cdot dz}{Z}$$

$$+ \int \frac{l \cdot dz}{Z} - \int \frac{(m\sin \delta - n\cos \delta) \sin z \cdot dz}{Z},$$

where $b=q\cdot\cos\delta$, $c=q\cdot\sin\delta$, $z=x-\delta$, $Z=a+q\cdot\cos z$. $\int \sin{(mx+a)}\cdot\sin{(nx+b)}\,dx$ [See 303 and 304.]

$$= \frac{\sin\left[mx - nx + a - b\right]}{2(m-n)} - \frac{\sin\left[mx + nx + a + b\right]}{2(m+n)}.$$

$$\int \cos(mx+a) \cdot \cos(nx+b) dx$$

$$= \frac{\sin[mx+nx+a+b]}{2(m+n)} + \frac{\sin[mx-nx+a-b]}{2(m-n)}.$$

$$\int \sin(mx+a) \cdot \cos(nx+b) dx$$

$$= -\frac{\cos[mx+nx+a+b]}{2(m+n)} - \frac{\cos[mx-nx+a-b]}{2(m-n)}.$$

VI. MISCELLANEOUS DEFINITE INTEGRALS.*

480.
$$\int_0^\infty \frac{a \, dx}{a^2 + x^2} = \frac{\pi}{2}$$
, if $a > 0$; 0, if $a = 0$; $-\frac{\pi}{2}$, if $a < 0$.
481. $\int_0^\infty x^{n-1} e^{-x} \, dx = \int_0^1 \left[\log \frac{1}{x} \right]^{n-1} \, dx \equiv \Gamma(n)$.

$$\Gamma(z+1) = z \cdot \Gamma(z)$$
, if $z > 0$.

$$\Gamma(y) \cdot \Gamma(1 - y) = \frac{\pi}{\sin \pi y}$$
, if $1 > y > 0$. $\Gamma(2) = \Gamma(1) = 1$.

$$\Gamma(n+1) = n!$$
, if n is an integer. $\Gamma(z) = \Pi(z-1)$.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
. $Z(y) = D_y [\log \Gamma(y)]$. $Z(1) = -0.577216$.

482.
$$\int_0^1 x^{m-1} (1-x)^{n-1} dx = \int_0^x \frac{x^{m-1} dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \cdot$$

$$483. \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$$

$$= \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots (n)} \cdot \frac{\pi}{2}, \text{ if } n \text{ is an even integer,}$$

$$= \frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdot 7 \cdots n}, \text{ if } n \text{ is an odd integer,}$$

$$= \frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, \text{ for any value of } n \text{ greater than } -1.$$

484.
$$\int_0^x \frac{\sin mx \, dx}{x} = \frac{\pi}{2}$$
, if $m > 0$; 0, if $m = 0$; $-\frac{\pi}{2}$, if $m < 0$.

^{*} For very complete lists of definite integrals, see Bierens de Haan, Tables d'intégrales définies, Amsterdam, 1858-64, and Nouv. Tables d'intégrales définies, Leyden, 1867.

485.
$$\int_0^x \frac{\sin x \cdot \cos mx \, dx}{x} = 0, \text{ if } m < -1 \text{ or } m > 1;$$
$$\frac{\pi}{4}, \text{ if } m = -1 \text{ or } m = 1; \frac{\pi}{2}, \text{ if } -1 < m < 1.$$

486.
$$\int_0^\infty \frac{\sin^2 x \, dx}{x^2} = \frac{\pi}{2}.$$

487.
$$\int_0^\infty \cos(x^2) \, dx = \int_0^\infty \sin(x^2) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

488. $\int_0^{\pi} \sin kx \cdot \sin mx \, dx = \int_0^{\pi} \cos kx \cdot \cos mx \, dx = 0,$ if k is different from m.

489.
$$\int_0^{\pi} \sin^2 mx \, dx = \int_0^{\pi} \cos^2 mx \, dx = \frac{\pi}{2}$$

490.
$$\int_0^\infty \frac{\cos mx \, dx}{1 + x^2} = \frac{\pi}{2} \cdot e^{-m}.$$
 $m > 0.$

491.
$$\int_0^{\infty} \frac{\cos x \, dx}{\sqrt{x}} = \int_0^{\infty} \frac{\sin x \, dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}.$$

492.
$$\int_0^\infty e^{-a^2x^2} dx = \frac{1}{2a} \sqrt{\pi} \cdot = \frac{1}{2a} \Gamma(\frac{1}{2}).$$

493.
$$\int_0^\infty x^n e^{-ax} dx = \frac{\Gamma(n+1)}{a^{n+1}} = \frac{n!}{a^{n+1}}$$

494.
$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2^{n+1} a^n} \sqrt{\frac{\pi}{a}}.$$

495.
$$\int_{0}^{\infty} e^{-x^{2} - \frac{a^{2}}{x^{2}}} dx = \frac{e^{-2a} \sqrt{\pi}}{2}.$$
 $a > 0.$

496.
$$\int_0^\infty e^{-nx} \sqrt{x} \, dx = \frac{1}{2n} \sqrt{\frac{\pi}{n}}.$$

$$497. \int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{n}} \cdot a > 0.$$

498.
$$\int_0^\infty \frac{dx}{e^{nx} + e^{-nx}} = \frac{\pi}{4 n}.$$

499.
$$\int_0^\infty \frac{x \, dx}{e^{nx} - e^{-nx}} = \frac{\pi^2}{8 \, n^2}.$$

500.
$$\int_0^{\pi i} \sinh(mx) \cdot \sinh(nx) dx = \int_0^{\pi i} \cosh(mx) \cdot \cosh(nx) dx$$
$$= 0, \text{ if } m \text{ is different from } n.$$

501.
$$\int_0^{\pi i} \cosh^2(mx) \, dx = -\int_0^{\pi i} \sinh^2(mx) \, dx = \frac{\pi i}{2}.$$

$$502. \int_{-\pi i}^{+\pi i} \sinh(mx) \, dx = 0.$$

$$503. \int_0^{\pi i} \cosh(mx) \, dx = 0.$$

504.
$$\int_{-\pi i}^{\pi i} \sinh(mx) \cosh(nx) dx = 0.$$

$$505. \int_0^{\pi i} \sinh(mx) \cosh(mx) dx = 0.$$

506.
$$\int_0^\infty e^{-ax} \cos mx \, dx = \frac{a}{a^2 + m^2}, \text{ if } a > 0.$$

507.
$$\int_0^\infty e^{-ax} \sin mx \, dx = \frac{m}{a^2 + m^2}, \text{ if } a > 0.$$

$$508. \int_0^\infty e^{-a^2x^2} \cos bx \, dx = \frac{\sqrt{\pi} \cdot e^{-\frac{b^2}{4a^2}}}{2a}.$$

$$509. \int_0^1 \frac{\log x}{1-x} dx = -\frac{\pi^2}{6}.$$

$$510. \int_0^1 \frac{\log x}{1+x} dx = -\frac{\pi^2}{12}.$$

$$511. \int_0^1 \frac{\log x}{1 - x^2} \, dx = -\frac{\pi^2}{8}.$$

$$512. \int_0^1 \log\left(\frac{1+x}{1-x}\right) \cdot \frac{dx}{x} = \frac{\pi^2}{4}.$$

513.
$$\int_0^1 \frac{\log x \, dx}{\sqrt{1-x^2}} = -\frac{\pi}{2} \log 2.$$

514.
$$\int_0^1 \frac{(x^p - x^q) dx}{\log x} = \log \frac{p+1}{q+1}, \text{ if } p+1 > 0, q+1 > 0.$$

515.
$$\int_0^1 (\log x)^n dx = (-1)^n \cdot n!.$$

516.
$$\int_0^1 \left(\log \frac{1}{x} \right)^{\frac{1}{2}} dx = \frac{\sqrt{\pi}}{2}$$

517.
$$\int_0^1 \left(\log \frac{1}{x} \right)^n dx = n!.$$

$$518. \int_0^1 \frac{dx}{\sqrt{\log\left(\frac{1}{x}\right)}} = \sqrt{\pi}.$$

519.
$$\int_0^1 x^m \log \left(\frac{1}{x}\right)^n dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, \text{ if } m+1 > 0, n+1 > 0.$$

520.
$$\int_0^{\infty} \log \left(\frac{e^x + 1}{e^x - 1} \right) dx = \frac{\pi^2}{4}.$$

521.
$$\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \int_0^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \cdot \log 2.$$

522.
$$\int_0^{\pi} x \cdot \log \sin x \, dx = -\frac{\pi^2}{2} \log 2.$$

523.
$$\int_0^{\pi} \log\left(a \pm b \cos x\right) dx = \pi \log\left(\frac{a + \sqrt{a^2 - b^2}}{2}\right) \cdot \quad a \ge b.$$

VII. ELLIPTIC INTEGRALS.

$$\begin{split} F(\phi,\,k) &\equiv \int_0^{\phi} \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}} \equiv \int_0^{x} \frac{dz}{\sqrt{1-z^2}\sqrt{1-k^2z^2}} \equiv u, \\ \text{where } k^2 &< 1, \ x = \sin\phi. \\ E(\phi,\,k) &\equiv \int_0^{\phi} \sqrt{1-k^2\sin^2\theta} \cdot d\theta. \\ \Pi(\phi,\,n,\,k) &\equiv \int_0^{\phi} \frac{d\theta}{(1+n\,\sin^2\theta)\,\sqrt{1-k^2\sin^2\theta}} \cdot \end{split}$$

$$\begin{split} \phi \equiv & \text{ am } u, \sin \phi \equiv x \equiv \text{ sn } u, \cos \phi \equiv \sqrt{1-x^2} \equiv \text{ cn } u, \tan \phi \equiv \text{ tn } u, \\ \Delta \phi \equiv & \sqrt{1-k^2 \sin^2 \phi} \equiv \sqrt{1-k^2 x^2} \equiv \text{ dn } u, \, k'^2 \equiv 1-k^2. \end{split}$$

$$u \equiv \operatorname{am}^{-1}(\phi, k) \equiv \operatorname{sn}^{-1}(x, k) \equiv \operatorname{cn}^{-1}(\sqrt{1 - x^2}, k)$$
$$\equiv \operatorname{dn}^{-1}(\sqrt{1 - k^2 x^2}, k).$$

$$K \equiv F(\frac{1}{2}\pi, k), K' \equiv F(\frac{1}{2}\pi, k'), E \equiv E(\frac{1}{2}\pi, k), E' \equiv E(\frac{1}{2}\pi, k').$$

If
$$k_0 = \frac{2 k^{\sharp}}{1+k}$$
 and $\tan \phi \equiv \frac{\sin 2 \omega}{k + \cos 2 \omega}$,

$$F(\phi, k) \equiv \frac{2}{1+k} F(\omega, k_0).$$

524.
$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}}$$

$$= \frac{\pi}{2} \left[1 + (\frac{1}{2})^{2}k^{2} + \left(\frac{1\cdot3}{2\cdot4}\right)^{2}k^{4} + \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)^{2}k^{6} + \cdots \right], \text{ if } k^{2} < 1,$$

$$= K.$$

525.
$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^{2} \sin^{2}\theta} \cdot d\theta$$

$$= \frac{\pi}{2} \left[1 - (\frac{1}{2})^{2} k^{2} - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2} \frac{k^{4}}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \frac{k^{6}}{5} - \cdots \right], \text{ if } k^{2} < 1,$$

$$= E.$$

526.
$$\int_{0}^{\phi} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2} \theta}} = \frac{2}{\pi} \phi \cdot K - \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{2} + \frac{1 \cdot 3}{2 \cdot 4} A_{4} k^{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} A_{6} k^{6} + \cdots \right]$$
$$= F(\phi, k),$$

where $A_4 \equiv \frac{1}{4} \sin^2 \phi + \frac{3}{2 \cdot 4}$, $A_6 \equiv \frac{1}{6} \sin^4 \phi + \frac{5}{6 \cdot 4} \sin^2 \phi + \frac{5 \cdot 3}{6 \cdot 4 \cdot 2}$, $A_8 \equiv \frac{1}{8} \sin^6 \phi + \frac{7}{8 \cdot 6} \sin^4 \phi + \frac{7 \cdot 5}{8 \cdot 6 \cdot 4} \sin^2 \phi + \frac{7 \cdot 5 \cdot 3}{8 \cdot 6 \cdot 4 \cdot 2}$, etc.

527.
$$\int_{0}^{\phi} \sqrt{1 - k^{2} \sin^{2} \theta} \cdot d\theta = \frac{2}{\pi} \phi \cdot E + \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{2} + \frac{1}{2 \cdot 4} k^{4} A_{4} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} k^{6} A_{6} + \cdots \right]$$
$$= E(\phi, k).$$

528.*
$$\int_0^x \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} = \operatorname{sn}^{-1}(x, k)$$
$$= F(\sin^{-1}x, k). \quad 0 < x < 1.$$

529.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(k^{2}+k^{2}x^{2})}} = \operatorname{cn}^{-1}(x, k)$$
$$= F(\cos^{-1}x, k) = \operatorname{sn}^{-1}(\sqrt{1-x^{2}}, k). \qquad 0 < x < 1.$$

530.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(x^{2}-k^{2})}} = \operatorname{dn}^{-1}(x, k)$$
$$= F(\Delta^{-1}x, k) = \operatorname{sn}^{-1}\left(\frac{1}{k}\sqrt{1-x^{2}}, k\right) \cdot \quad 0 < x < 1.$$

531.
$$\int_0^x \frac{dx}{\sqrt{(1+x^2)(1+k^{n_2}x^2)}} = \tan^{-1}(x, k)$$
$$= F(\tan^{-1}x, k) = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}, k\right) \quad 0 < x < 1.$$

^{*} The next forty-two integrals are copied in order from a class-room list of Prof. W. E. Byerly.

532.
$$\int_0^x \frac{dx}{\sqrt{x(1-x)(1-k^2x)}} = 2 \operatorname{sn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\sin^{-1}\sqrt{x}, k). \quad 0 < x < 1.$$

533.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(k'^{2}+k^{2}x)}} = 2 \operatorname{cn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\cos^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}(\sqrt{1-x}, k). \quad 0 < x < 1.$$

534.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(x-k^{2})}} = 2 \operatorname{dn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\Delta^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\frac{1}{k}\sqrt{1-x}, k\right) \cdot 0 < x < 1.$$

535.
$$\int_{0}^{x} \frac{dx}{\sqrt{(1+x)(1+k^{2}x)}} = 2 \operatorname{tn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\operatorname{tan}^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\sqrt{\frac{x}{1+x}}, k\right) \cdot 0 < x < 1.$$

536.
$$\int_0^x \frac{dx}{\sqrt{(a^2 - x^2)(b^2 - x^2)}} = \frac{1}{a} \operatorname{sn}^{-1} \left(\frac{x}{b}, \frac{b}{a} \right) \cdot \quad a > b > x > 0.$$

538.
$$\int_{x}^{b} \frac{dx}{\sqrt{(a^{2} + x^{2})(b^{2} - x^{2})}}$$

$$= \frac{1}{\sqrt{a^{2} + b^{2}}} \operatorname{cn}^{-1} \left(\frac{x}{b}, \frac{b}{\sqrt{a^{2} + b^{2}}} \right) \cdot \qquad b > x > 0.$$

539.
$$\int_{b}^{x} \frac{dx}{\sqrt{(a^{2} + x^{2})(x^{2} - b^{2})}}$$

$$= \frac{1}{\sqrt{a^{2} + b^{2}}} \operatorname{cn}^{-1} \left(\frac{b}{x}, \frac{a}{\sqrt{a^{2} + b^{2}}} \right). \qquad x > b > 0.$$

540.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a^{2} - x^{2})(x^{2} - b^{2})}}$$

$$= \frac{1}{a} \operatorname{sn}^{-1} \left(\sqrt{\frac{a^{2} - x^{2}}{a^{2} - b^{2}}}, \sqrt{\frac{a^{2} - b^{2}}{a^{2}}} \right). \qquad a > x > b.$$

541.
$$\int_{0}^{x} \frac{dx}{\sqrt{(x^{2} + a^{2})(x^{2} + b^{2})}}$$
$$= \frac{1}{a} \operatorname{tn}^{-1} \left(\frac{x}{b}, \sqrt{\frac{a^{2} - b^{2}}{a^{2}}} \right). \qquad x > 0.$$

542.
$$\int_{x}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{x-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \qquad x > a.$$

543.
$$\int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-a}{x-\beta}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \qquad x > a.$$

544.
$$\int_{z}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-x}{a-\beta}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right). \quad a > x > \beta.$$

545.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta}} \cdot \frac{x-\beta}{x-\gamma}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot a > x > \beta.$$

546.
$$\int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma}} \frac{\beta-x}{a-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \beta > x > \gamma.$$

547.
$$\int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-\gamma}{\beta-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right). \qquad \beta > x > \gamma.$$

548.
$$\int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\gamma-x}{\beta-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right)^{\frac{1}{2}} \qquad \gamma > x.$$

549.
$$\int_{-x}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right). \qquad \gamma > x.$$

$$\alpha > \beta > \gamma > \delta$$
.

$$550. \int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\delta} \cdot \frac{x-a}{x-\beta}}, \sqrt{\frac{\beta-\gamma}{a-\gamma} \cdot \frac{a-\delta}{\beta-\delta}} \right) \cdot x > a$$

551.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\beta}} \cdot \frac{a-x}{x-\delta}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right)$$

$$a > x > \beta$$

552.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta} \cdot \frac{x-\beta}{x-\gamma}}, \sqrt{\frac{a-\beta}{a-\gamma} \cdot \frac{\gamma-\delta}{\beta-\delta}} \right) \cdot a > x > \beta.$$

$$553. \int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma}} \cdot \frac{\beta-x}{a-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\beta > x > \gamma.$$

$$554. \int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\beta-\gamma}} \cdot \frac{x-\gamma}{x-\delta}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\beta > x > \gamma.$$

$$555. \int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\gamma-\delta}} \cdot \frac{\gamma-x}{\beta-x}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$

$$\gamma > x > \delta.$$

$$556. \int_{\delta}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\gamma-\delta}} \cdot \frac{x-\delta}{a-x}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$

$$\gamma > x > \delta.$$

$$557. \int_{x}^{\delta} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(\delta-x)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\delta}} \cdot \frac{\delta-x}{\gamma-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\delta > x.$$

$$558. \int \operatorname{sn} x \, dx = \frac{1}{k} \operatorname{cosh}^{-1} \left(\frac{\operatorname{dn} x}{k'} \right).$$

559. $\int \operatorname{cn} x \, dx = \frac{1}{h} \cos^{-1}(\operatorname{dn} x).$

560.
$$\int dn \, x \, dx = \sin^{-1}(\operatorname{sn} x) = \operatorname{am} x.$$

$$561. \int \frac{dx}{\operatorname{sn} x} = \log \left[\frac{\operatorname{sn} x}{\operatorname{en} x + \operatorname{dn} x} \right].$$

562.
$$\int \frac{dx}{\operatorname{en} x} = \frac{1}{k'} \log \left[\frac{k' \operatorname{sn} x + \operatorname{dn} x}{\operatorname{en} x} \right].$$

563.
$$\int \frac{dx}{\operatorname{dn} x} = \frac{1}{k'} \tan^{-1} \left[\frac{k' \operatorname{sn} x - \operatorname{en} x}{k' \operatorname{sn} x + \operatorname{en} x} \right].$$

564.
$$\int_0^x \sin^2 x \, dx = \frac{1}{k^2} [x - E(\text{am } x, k)].$$

565.
$$\int_0^x \operatorname{cn}^2 x \, dx = \frac{1}{k^2} [E(\operatorname{am} x, k) - k'^2 x].$$

566.
$$\int_0^x dn^2 x \, dx = E(\text{am } x, \, k).$$

567.
$$(m+1) \int \operatorname{sn}^m x \, dx = (m+2) (1+k^2) \int \operatorname{sn}^{m+2} x \, dx$$

$$-(m+3) k^2 \int \operatorname{sn}^{m+4} x \, dx + \operatorname{sn}^{m+1} x \operatorname{en} x \operatorname{dn} x.$$

568.
$$(m+1)k^{2}\int \operatorname{en}^{m}x \, dx = (m+2)(1-2k^{2})\int \operatorname{en}^{m+2}x \, dx$$

 $+(m+3)k^{2}\int \operatorname{en}^{m+4}x \, dx - \operatorname{en}^{m+1}x \operatorname{sn}x \operatorname{dn}x.$

569.
$$(m+1) k^{n} \int dn^{m} x dx = (m+2) (2-k^{2}) \int dn^{m+2} x dx$$

$$-(m+3) \int dn^{m+4} x dx + k^{2} dn^{m+1} x \operatorname{sn} x \operatorname{cn} x.$$
Since $\sin^{2} \theta \equiv \frac{1}{k^{2}} - \frac{1}{k^{2}} (1 - k^{2} \cdot \sin^{2} \theta),$

$$\int_0^{\frac{\pi}{2}} \frac{\sin^2\theta \cdot d\theta}{\sqrt{1-k^2\sin^2\theta}} = \frac{1}{k^2} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}} - \frac{1}{k^2} \int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2\theta} \cdot d\theta.$$

VIII. AUXILIARY FORMULAS.

A. — Trigonometric Functions.

- 570. $\tan a \cdot \cot a = \sin a \cdot \csc a = \cos a \cdot \sec a = 1$, $\tan a = \sin a \div \cos a$, $\sec^2 a = 1 + \tan^2 a$, $\csc^2 a = 1 + \cot^2 a$, $\sin^2 a + \cos^2 a = 1$.
- 571. $\sin a = \sqrt{1 \cos^2 a} = 2 \sin \frac{1}{2} a \cdot \cos \frac{1}{2} a = \cos a \cdot \tan a$ $= \frac{1}{\sqrt{1 + \cot^2 a}} = \frac{\tan a}{\sqrt{1 + \tan^2 a}} = \sqrt{\frac{1 \cos 2a}{2}} = \frac{2 \tan \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a}$ $= \sqrt{\frac{\sec^2 a 1}{\sec^2 a}} = \cot \frac{1}{2} a \cdot (1 \cos a) = \tan \frac{1}{2} a \cdot (1 + \cos a).$

572.
$$\cos a = \sqrt{1 - \sin^2 a} = \frac{1}{\sqrt{1 + \tan^2 a}} = \frac{\cot a}{\sqrt{1 + \cot^2 a}}$$

$$= \sqrt{\frac{1 + \cos 2a}{2}} = \frac{1 - \tan^2 \frac{1}{2}a}{1 + \tan^2 \frac{1}{2}a} = \cos^2 \frac{1}{2}a - \sin^2 \frac{1}{2}a$$

$$= 1 - 2\sin^2 \frac{1}{2}a = 2\cos^2 \frac{1}{2}a - 1 = \sin a \cdot \cot a$$

$$= \frac{\sin 2a}{2\sin a} = \sqrt{\frac{\csc^2 a - 1}{\csc^2 a}} = \frac{\cot \frac{1}{2}a - \tan \frac{1}{2}a}{\cot \frac{1}{2}a + \tan \frac{1}{2}a}.$$

573.
$$\tan a = \frac{\sin a}{\sqrt{1 - \sin^2 a}} = \frac{\sqrt{1 - \cos^2 a}}{\cos a} = \frac{\sin 2a}{1 + \cos 2a}$$

$$= \frac{1 - \cos 2a}{\sin 2a} = \sqrt{\frac{1 - \cos 2a}{1 + \cos 2a}} = \frac{2 \tan \frac{1}{2}a}{1 - \tan^2 \frac{1}{2}a}$$

$$= \frac{\sec a}{\csc a} = \frac{2}{\cot \frac{1}{2}a - \tan \frac{1}{2}a} = \frac{2 \cot \frac{1}{2}a}{\cot^2 \frac{1}{2}a - 1}.$$

574.

	– α.	90° ± α.	180° ± α.	270° ± α.	360° ± α.	
sin cos tan ctn sec csc	$-\sin \alpha$ $+\cos \alpha$ $-\tan \alpha$ $-\cot \alpha$ $+\sec \alpha$ $-\csc \alpha$	$+\cos\alpha$ $\mp\sin\alpha$ $\mp\cot\alpha$ $\mp\tan\alpha$ $\mp\csc\alpha$ $+\sec\alpha$	$ \mp \sin \alpha $ $ -\cos \alpha $ $ \pm \tan \alpha $ $ \pm \cot \alpha $ $ -\sec \alpha $ $ \mp \csc \alpha $	$ \begin{array}{l} -\cos\alpha \\ \pm\sin\alpha \\ \mp\cot\alpha \\ \mp\tan\alpha \\ \pm\csc\alpha \\ -\sec\alpha \end{array} $	$\pm \sin \alpha$ $+ \cos \alpha$ $\pm \tan \alpha$ $\pm \cot \alpha$ $+ \sec \alpha$ $\pm \csc \alpha$	

575.

	0°.	30°.	45°.	60°.	90°.	120°.	135°.	150°.	180°.
sin	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1/2	0
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1/2	0	-1	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	œ	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
ctn	œ	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$.00
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	œ	-2	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-1
csc	œ	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	œ

576.
$$\sin \frac{1}{2} a = \sqrt{\frac{1}{2}(1 - \cos a)}$$
.

577.
$$\cos \frac{1}{2} a = \sqrt{\frac{1}{2} (1 + \cos a)}$$
.

578.
$$\tan \frac{1}{2} a = \sqrt{\frac{1 - \cos a}{1 + \cos a}} = \frac{1 - \cos a}{\sin a} = \frac{\sin a}{1 + \cos a}$$

579. $\sin 2 a = 2 \sin a \cos a$.

580.
$$\sin 3 a = 3 \sin a - 4 \sin^3 a$$
.

581. $\sin 4 a = 8 \cos^3 a \cdot \sin a - 4 \cos a \sin a$.

582.
$$\sin 5 a = 5 \sin a - 20 \sin^3 a + 16 \sin^5 a$$
.

583.
$$\sin 6 a = 32 \cos^5 a \sin a - 32 \cos^3 a \sin a + 6 \cos a \sin a$$

584.
$$\cos 2 a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a = 2 \cos^2 a - 1$$
.

585.
$$\cos 3 a = 4 \cos^8 a - 3 \cos a$$
.

586.
$$\cos 4 a = 8 \cos^4 a - 8 \cos^2 a + 1$$
.

587.
$$\cos 5 a = 16 \cos^5 a - 20 \cos^3 a + 5 \cos a$$
.

588.
$$\cos 6 \ a = 32 \cos^6 a - 48 \cos^4 a + 18 \cos^2 a - 1.$$

589.
$$\tan 2 a = \frac{2 \tan a}{1 - \tan^2 a}$$

590.
$$\cot 2 a = \frac{\cot^2 a - 1}{2 \cot a}$$
.

591.
$$\sin(a \pm \beta) = \sin a \cdot \cos \beta \pm \cos a \cdot \sin \beta$$
.

592.
$$\cos(a \pm \beta) = \cos a \cdot \cos \beta \mp \sin a \cdot \sin \beta$$
.

593.
$$\tan (a \pm \beta) = \frac{\tan a \pm \tan \beta}{1 \mp \tan a \cdot \tan \beta}$$

594.
$$\operatorname{ctn}(a \pm \beta) = \frac{\operatorname{ctn} a \cdot \operatorname{ctn} \beta \mp 1}{\operatorname{ctn} a \pm \operatorname{ctn} \beta}$$

595.
$$\sin a \pm \sin \beta = 2 \sin \frac{1}{2} (a \pm \beta) \cdot \cos \frac{1}{2} (a \mp \beta)$$
.

596.
$$\cos a + \cos \beta = 2 \cos \frac{1}{2}(a + \beta) \cdot \cos \frac{1}{2}(a - \beta)$$
.

597.
$$\cos a - \cos \beta = -2 \sin \frac{1}{2} (a + \beta) \cdot \sin \frac{1}{2} (a - \beta)$$

598.
$$\tan a \pm \tan \beta = \frac{\sin (a \pm \beta)}{\cos a \cdot \cos \beta}$$

599.
$$\cot a \pm \cot \beta = \pm \frac{\sin (a \pm \beta)}{\sin a \cdot \sin \beta}$$

600.
$$\frac{\sin a \pm \sin \beta}{\cos a + \cos \beta} = \tan \frac{1}{2}(a \pm \beta).$$

601.
$$\frac{\sin a \pm \sin \beta}{\cos a - \cos \beta} = -\cot \frac{1}{2}(a \mp \beta).$$

602.
$$\frac{\sin a + \sin \beta}{\sin a - \sin \beta} = \frac{\tan \frac{1}{2} (a + \beta)}{\tan \frac{1}{2} (a - \beta)}$$

603.
$$\sin^2 a - \sin^2 \beta = \sin (a + \beta) \cdot \sin (a - \beta).$$

604.
$$\cos^2 \alpha - \cos^2 \beta = -\sin(\alpha + \beta) \cdot \sin(\alpha - \beta)$$

605.
$$\cos^2 a - \sin^2 \beta = \cos (a + \beta) \cdot \cos (a - \beta).$$

606.
$$\sin xi = \frac{1}{2}i(e^x - e^{-x}) = i \sinh x.$$

607.
$$\cos xi = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$
.

608.
$$\tan xi = \frac{i(e^x - e^{-x})}{e^x + e^{-x}} = i \tanh x$$
.

609.
$$e^{x+yi} = e^x \cos y + ie^x \sin y$$
.

610.
$$a^{x+yi} = a^x \cos(y \cdot \log a) + ia^x \sin(y \cdot \log a)$$
.

611.
$$(\cos \theta \pm i \cdot \sin \theta)^n = \cos n\theta \pm i \cdot \sin n\theta$$
.

612.
$$\sin x = -\frac{1}{2}i(e^{xi} - e^{-xi}).$$

613.
$$\cos x = \frac{1}{2} (e^{xi} + e^{-xi})$$
.

614.
$$\tan x = -i \frac{e^{2xi} - 1}{e^{2xi} + 1}$$

615.
$$\sin(x \pm yi) = \sin x \cos yi \pm \cos x \sin yi$$

= $\sin x \cosh y \pm i \cos x \sinh y$.

616.
$$\cos(x \pm yi) = \cos x \cos yi \mp \sin x \sin yi$$

= $\cos x \cosh y \mp i \sin x \sinh y$.

In any plane triangle,

617.
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

618.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

619.
$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A-B)}$$

620.
$$\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
, where $2s = a+b+c$.

621.
$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}$$
.

622.
$$\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
.

623. Area =
$$\frac{1}{2}bc \sin A = \sqrt{s(s-a)(s-b)(s-c)}$$
.

In any spherical triangle,

624.
$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

625. $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

626.
$$-\cos A = \cos B \cos C - \sin B \sin C \cos a$$
.

627. $\sin a \cot b = \sin C \cot B + \cos a \cos C$.

628.
$$\cos \frac{1}{2} A = \sqrt{\frac{\sin s \cdot \sin (s - a)}{\sin b \cdot \sin c}}$$

629.
$$\sin \frac{1}{2} A = \sqrt{\frac{\sin (s-b) \cdot \sin (s-c)}{\sin b \cdot \sin c}}.$$

630.
$$\tan \frac{1}{2} A = \sqrt{\frac{\sin(s-b) \cdot \sin(s-c)}{\sin s \cdot \sin(s-a)}}$$

631.
$$\cos \frac{1}{2} a = \sqrt{\frac{\cos (S-B) \cdot \cos (S-C)}{\sin B \cdot \sin C}}.$$

632.
$$\sin \frac{1}{2} a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\sin B \sin C}}.$$

633.
$$\tan \frac{1}{2} a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\cos (S - B) \cdot \cos (S - C)}}$$
.
 $2s = a + b + c$. $2S = A + B + C$.

634.
$$\cos \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}c} \sin \frac{1}{2}C.$$

635.
$$\cos \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}c} \sin \frac{1}{2}C.$$

636.
$$\sin \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}c} \cos \frac{1}{2}C$$
.

637.
$$\sin \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}c}\cos \frac{1}{2}C$$
.

638.
$$\tan \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cot \frac{1}{2}C.$$

639.
$$\tan \frac{1}{2}(A - B) = \frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)} \cot \frac{1}{2}C$$

640.
$$\tan \frac{1}{2}(a+b) = \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \tan \frac{1}{2}c$$
.

641.
$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c$$

642.
$$\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(a-b)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A+B)}.$$

In interpreting equations which involve logarithmic and anti-trigonometric functions, it is necessary to remember that these functions are multiple valued. To save space the formulas on this page and the next are printed in contracted form.

643.
$$\sin^{-1}x = \cos^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{x}{\sqrt{1-x^2}} = \sec^{-1}\frac{1}{\sqrt{1-x^2}}$$

$$= \csc^{-1}\frac{1}{x} = 2\sin^{-1}\left[\frac{1}{2} - \frac{1}{2}\sqrt{1-x^2}\right]^{\frac{1}{2}}$$

$$= \frac{1}{2}\sin^{-1}\left(2x\sqrt{1-x^2}\right) = 2\tan^{-1}\left[\frac{1-\sqrt{1-x^2}}{x}\right]$$

$$= \frac{1}{2}\tan^{-1}\left[\frac{2x\sqrt{1-x^2}}{1-2x^2}\right] = \frac{1}{2}\pi - \cos^{-1}x$$

$$= \frac{1}{2}\pi - \sin^{-1}\sqrt{1-x^2} = -\sin^{-1}(-x)$$

$$= \cot^{-1}\frac{\sqrt{1-x^2}}{x} = (2n+\frac{1}{2})\pi - i\log(x+\sqrt{x^2-1})$$

$$= \frac{1}{4}\pi + \frac{1}{2}\sin^{-1}(2x^2-1) = \frac{1}{2}\cos^{-1}(1-2x^2).$$

644.
$$\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2} = \tan^{-1} \frac{\sqrt{1 - x^2}}{x} = \sec^{-1} \frac{1}{x}$$

$$= \frac{1}{2} \pi - \sin^{-1} x = 2 \cos^{-1} \sqrt{\frac{1 + x}{2}}$$

$$= \frac{1}{2} \cos^{-1} (2x^2 - 1)$$

$$= 2 \tan^{-1} \sqrt{\frac{1 - x}{1 + x}} = \frac{1}{2} \tan^{-1} \left[\frac{2x\sqrt{1 - x^2}}{2x^2 - 1} \right]$$

$$= \csc^{-1} \frac{1}{\sqrt{1 - x^2}} = \pi - \cos^{-1} (-x)$$

$$= \cot^{-1} \frac{x}{\sqrt{1 - x^2}}$$

$$= i \log(x + \sqrt{x^2 - 1}) = \pi - i \log(\sqrt{x^2 - 1} - x).$$

645.
$$\tan^{-1}x = \sin^{-1}\frac{x}{\sqrt{1+x^2}} = \cos^{-1}\frac{1}{\sqrt{1+x^2}} = \frac{1}{2}\sin^{-1}\frac{2x}{1+x^2}$$

$$= \cot^{-1}\frac{1}{x} = \frac{1}{2}\pi - \cot^{-1}x = \sec^{-1}\sqrt{1+x^2}$$

$$= \frac{1}{2}\pi - \tan^{-1}\frac{1}{x}$$

$$= \csc^{-1}\frac{\sqrt{1+x^2}}{x} = \frac{1}{2}\cos^{-1}\left[\frac{1-x^2}{1+x^2}\right]$$

$$= 2\cos^{-1}\left[\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}} = 2\sin^{-1}\left[\frac{\sqrt{1+x^2-1}}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}}$$

$$= \frac{1}{2}\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}\left[\frac{\sqrt{1+x^2-1}}{x}\right]$$

$$= -\tan^{-1}c + \tan^{-1}\left[\frac{x+c}{1-cx}\right] = -\tan^{-1}(-x)$$

$$= \frac{1}{2}i\log\frac{1-xi}{1+xi} = \frac{1}{2}i\log\frac{i+x}{i-x}$$

$$= -\frac{1}{2}i\log\frac{1+xi}{1-xi}.$$

646.
$$\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2} \right].$$

647.
$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left[xy \mp \sqrt{(1-x^2)(1-y^2)} \right].$$

648.
$$\tan^{-1} x \pm \tan^{-1} y = \tan^{-1} \left[\frac{x \pm y}{1 \mp xy} \right]$$

649.
$$\sin^{-1} x \pm \cos^{-1} y = \sin^{-1} \left[xy \pm \sqrt{(1 - x^2)(1 - y^2)} \right]$$

= $\cos^{-1} \left[y \sqrt{1 - x^2} \mp x \sqrt{1 - y^2} \right].$

650.
$$\tan^{-1} x \pm \cot^{-1} y = \tan^{-1} \left[\frac{xy \pm 1}{y \mp x} \right] = \cot^{-1} \left[\frac{y \mp x}{xy \pm 1} \right]$$

651.
$$\log (x + yi) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(y/x)$$
.

B. — Hyperbolic Functions.

652.
$$\sinh x = \frac{1}{2} (e^x - e^{-x}) = -\sinh(-x) = -i \sin(ix)$$

= $(\operatorname{csch} x)^{-1} = 2 \tanh \frac{1}{2} x \div (1 - \tanh^2 \frac{1}{2} x)$.

653.
$$\cosh x = \frac{1}{2} (e^x + e^{-x}) = \cosh(-x) = \cos(ix) = (\operatorname{sech} x)^{-1}$$

= $(1 + \tanh^2 \frac{1}{2} x) \div (1 - \tanh^2 \frac{1}{2} x)$.

654.
$$\tanh x = (e^x - e^{-x}) \div (e^x + e^{-x}) = -\tanh(-x)$$

= $-i \tan(ix) = (\coth x)^{-1} = \sinh x \div \cosh x$.

655.
$$\cosh xi = \cos x$$
.

656.
$$\sinh xi = i \sin x$$
. $= 7 \sin x = i \sinh x$

657.
$$\cosh^2 x - \sinh^2 x = 1$$
.

658.
$$1 - \tanh^2 x = \operatorname{sech}^2 x$$
.

659.
$$1 - \coth^2 x = - \operatorname{csch}^2 x$$
.

660.
$$\sinh(x \pm y) = \sinh x \cdot \cosh y \pm \cosh x \cdot \sinh y$$
.

661.
$$\cosh(x \pm y) = \cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y$$
.

662.
$$\tanh(x \pm y) = (\tanh x \pm \tanh y) \div (1 \pm \tanh x \cdot \tanh y).$$

663.
$$\sinh(2x) = 2 \sinh x \cosh x$$
.

664.
$$\cosh(2x) = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x - 1 = 1 + 2 \sinh^2 x$$
.

665.
$$\tanh(2x) = 2 \tanh x \div (1 + \tanh^2 x)$$
:

666.
$$\sinh\left(\frac{1}{2}x\right) = \sqrt{\frac{1}{2}\left(\cosh x - 1\right)}$$
.

667.
$$\cosh(\frac{1}{2}x) = \sqrt{\frac{1}{2}(\cosh x + 1)}$$
.

668.
$$\tanh(\frac{1}{2}x) = (\cosh x - 1) \div \sinh x = \sinh x \div (\cosh x + 1).$$

669.
$$\sinh x + \sinh y = 2 \sinh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x - y)$$
.

670.
$$\sinh x - \sinh y = 2 \cosh \frac{1}{2} (x + y) \cdot \sinh \frac{1}{2} (x - y).$$

671.
$$\cosh x + \cosh y = 2 \cosh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x - y)$$
.

672.
$$\cosh x - \cosh y = 2 \sinh \frac{1}{2} (x+y) \cdot \sinh \frac{1}{2} (x-y)$$

673.
$$d \sinh x = \cosh x \cdot dx$$
.

674.
$$d \cosh x = \sinh x \cdot dx$$
.

675.
$$d \tanh x = \operatorname{sech}^2 x \cdot dx$$
.

676.
$$d \operatorname{etnh} x = -\operatorname{esch}^2 x \cdot dx$$
.

677.
$$d \operatorname{sech} x = - \operatorname{sech} x \cdot \tanh x \cdot dx$$
.

678.
$$d \operatorname{esch} x = -\operatorname{esch} x \cdot \operatorname{etnh} x \cdot dx$$
.

679.
$$\sinh^{-1} x = \log(x + \sqrt{x^2 + 1}) = \int \frac{dx}{\sqrt{x^2 + 1}}$$

= $\cosh^{-1} \sqrt{x^2 + 1}$.

680.
$$\cosh^{-1} x = \log(x + \sqrt{x^2 - 1}) = \int \frac{dx}{\sqrt{x^2 - 1}}$$

= $\sinh^{-1} \sqrt{x^2 - 1}$.

681.
$$\tanh^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(1-x) = \int \frac{dx}{1-x^2}$$

682.
$$ext{etnh}^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(x-1) = \int \frac{dx}{1-x^2}$$

683.
$$\operatorname{sech}^{-1} x = \log \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right) = -\int \frac{dx}{x\sqrt{1 - x^2}}$$

684.
$$\operatorname{csch}^{-1} x = \log \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right) = -\int \frac{dx}{x\sqrt{x^2 + 1}}$$

685.
$$d \sinh^{-1} x = \frac{dx}{\sqrt{1+x^2}}$$

686.
$$d \cosh^{-1} x = \frac{dx}{\sqrt{x^2 - 1}}$$

687.
$$d \tanh^{-1} x = \frac{dx}{1 - x^2}$$
.

688.
$$d \, \text{ctnh}^{-1} x = -\frac{dx}{x^2 - 1}$$

689.
$$d \operatorname{sech}^{-1} x = -\frac{dx}{x\sqrt{1-x^2}}$$

690.
$$d \operatorname{esch}^{-1} x = -\frac{dx}{x\sqrt{x^2+1}}$$

If m is an integer,

691.
$$\sinh(m\pi i) = 0$$
.

692.
$$\cosh(m\pi i) = \cos m\pi = (-1)^m$$

693.
$$\tanh(m\pi i) = 0$$
.

694.
$$\sinh(x + m\pi i) = (-1)^m \sinh x$$
.

695.
$$\cosh(x + m\pi i) = (-1)^m \cosh(x)$$
.

696.
$$\sinh (2m+1) \frac{1}{2} \pi i = i \sin (2m+1) \frac{1}{2} \pi = \pm i$$

697.
$$\cosh(2m+1)\frac{1}{2}\pi i=0.$$

698.
$$\sinh\left(\frac{\pi i}{2} \pm x\right) = i \cosh x.$$

799.
$$\cosh\left(\frac{\pi i}{2} \pm x\right) = \pm i \sinh x.$$

700.
$$\sinh u = \tan \operatorname{gd} u$$
.

701.
$$\cosh u = \sec \operatorname{gd} u$$
.

702.
$$\tanh u = \sin \operatorname{gd} u$$
.

703.
$$\tanh \frac{1}{2} u = \tan \frac{1}{2} \operatorname{gd} u$$
.

704.
$$u = \log \tan (\frac{1}{4}\pi + \frac{1}{2} \operatorname{gd} u).$$
 $\int \sec x \, dx = g d^{-1}x.$

C .- ELLIPTIC FUNCTIONS.

If
$$u \equiv F(\phi, k) \equiv \int_0^x \frac{dz}{\sqrt{(1 - z^2)(1 - k^2 z^2)}} \equiv \int_0^{\phi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

where k < 1, and $x \equiv \sin \phi$, ϕ is called the *amplitude* of u and is written am $(u, \mod k)$, or, more simply, am u; $x \equiv \sin \phi \equiv \operatorname{sn} u$,

$$\sqrt{1-x^2} \equiv \cos \phi \equiv \operatorname{cn} u, \ \sqrt{1-k^2x^2} \equiv \Delta \phi \equiv \Delta \operatorname{n} u \equiv \operatorname{dn} u,$$

$$K \equiv F(\frac{1}{2}\pi, k), \quad K' \equiv F(\frac{1}{2}\pi, k').$$
 Hence, $\operatorname{am}(0) = 0, \quad \operatorname{sn}(0) = 0, \quad \operatorname{cn}(0) = 1, \quad \operatorname{dn}(0) = 1,$

$$\operatorname{am}(-u) = -\operatorname{am} u, \quad \operatorname{sn}(-u) = -\operatorname{sn} u,$$
 $\operatorname{cn}(-u) = \operatorname{cn} u, \quad \operatorname{dn}(-u) = \operatorname{dn} u.$

705.
$$\operatorname{sn}^2 u + \operatorname{cn}^2 u = 1$$
.

706.
$$dn^2 u + k^2 sn^2 u = 1$$
.

707.
$$dn^2 u - k^2 cn^2 u = 1 - k^2 = k'^2$$
.

708. sn
$$2 u = \frac{2 \text{ sn } u \cdot \text{en } u \cdot \text{dn } u}{1 - k^2 \text{ sn}^4 u}$$
.

709. cn
$$2u = \frac{\operatorname{cn}^2 u - \operatorname{sn}^2 u \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 \operatorname{sn}^2 u \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{2 \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} - 1.$$

710. dn 2
$$u = \frac{\operatorname{dn}^2 u - k^2 \operatorname{sn}^2 u \cdot \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 k^2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 k^2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{2 \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} - 1.$$

711.
$$\operatorname{sn}^2\left(\frac{u}{2}\right) = \frac{1 - \operatorname{en} u}{1 + \operatorname{dn} u} = \frac{1 - \operatorname{dn} u}{k^2 (1 + \operatorname{en} u)} = \frac{\operatorname{dn} u - \operatorname{en} u}{k^{2} + \operatorname{dn} u - k^2 \operatorname{en} u}$$

712.
$$\operatorname{cn}^{2}\left(\frac{u}{2}\right) = \frac{\operatorname{dn} u + \operatorname{cn} u}{1 + \operatorname{dn} u} = \frac{k^{2} \operatorname{cn} u - k^{12} + \operatorname{dn} u}{k^{2}(1 + \operatorname{cn} u)}$$
$$= \frac{k^{12}(1 + \operatorname{cn} u)}{k^{12} + \operatorname{dn} u - k^{2} \operatorname{cn} u}$$

713.
$$dn^2 \left(\frac{u}{2}\right) = \frac{k^2 + dn \ u + k^2 en \ u}{1 + dn \ u} = \frac{k^2 (en \ u + dn \ u)}{k^2 (1 + en \ u)}$$

$$= \frac{k'^2 (1 + dn \ u)}{k'^2 + dn \ u - k^2 en \ u} .$$

If, moreover,
$$v = \int_0^y \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}}$$
,

714.
$$\operatorname{sn}^2 u - \operatorname{sn}^2 v = \operatorname{cn}^2 v - \operatorname{cn}^2 u$$
.

715.
$$\operatorname{sn}(u \pm v) = \frac{\operatorname{sn} u \cdot \operatorname{en} v \cdot \operatorname{dn} v \pm \operatorname{en} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

716.
$$\operatorname{en}(u \pm v) = \frac{\operatorname{en} u \cdot \operatorname{en} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

= $\operatorname{en} u \cdot \operatorname{en} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} (u \pm v)$.

717.
$$\operatorname{dn}(u \pm v) = \frac{\operatorname{dn} u \cdot \operatorname{dn} v \mp k^2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{en} u \cdot \operatorname{en} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$
$$= \operatorname{dn} u \cdot \operatorname{dn} v \mp k^2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{en} (u \pm v).$$

718.
$$\operatorname{tn}(u \pm v) = \frac{\operatorname{tn} u \cdot \operatorname{dn} v \pm \operatorname{tn} v \cdot \operatorname{dn} u}{1 \mp \operatorname{tn} u \cdot \operatorname{tn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}$$

719.
$$\operatorname{sn}(u+v) + \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} u \cdot \operatorname{en} v \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

720.
$$\operatorname{sn}(u+v) - \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} v \cdot \operatorname{cn} u \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$\operatorname{en}(u+v) + \operatorname{en}(u-v) = \frac{2 \operatorname{en} u \cdot \operatorname{en} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

722.
$$\operatorname{cn}(u+v) - \operatorname{cn}(u-v) = -\frac{2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

723.
$$\operatorname{dn}(u+v) + \operatorname{dn}(u-v) = \frac{2 \operatorname{dn} u \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

724.
$$\operatorname{dn}(u+v) - \operatorname{dn}(u-v) = -\frac{2 k^2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{cn} u \cdot \operatorname{cn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

725.
$$\operatorname{sn}(u+v) \cdot \operatorname{sn}(u-v) = \frac{\operatorname{sn}^2 u - \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$= \frac{\operatorname{en}^2 v + \operatorname{sn}^2 u \cdot \operatorname{dn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 = \frac{1}{L^2} \left[\frac{\operatorname{dn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{en}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 \right].$$

726.
$$\operatorname{cn}(u+v) \cdot \operatorname{cn}(u-v) = \frac{\operatorname{cn}^{2} u - \operatorname{sn}^{2} v + k^{2} \operatorname{sn}^{2} u \cdot \operatorname{sn}^{2} v}{1 - k^{2} \operatorname{sn}^{2} u \cdot \operatorname{sn}^{2} v}$$

$$\operatorname{cn}^{2} u + \operatorname{cn}^{2} v + \operatorname{cn}^{2} v \cdot \operatorname{dn}^{2} v + \operatorname{sn}^{2} v \cdot \operatorname{dn}^{2} u$$

$$= \frac{\operatorname{cn}^2 u + \operatorname{cn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 = 1 - \frac{\operatorname{sn}^2 u \cdot \operatorname{dn}^2 v + \operatorname{sn}^2 v \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

727.
$$\operatorname{dn}(u+v) \cdot \operatorname{dn}(u-v)$$

$$= \frac{1 - k^2 \operatorname{sn}^2 u - k^2 \operatorname{sn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$= \frac{\operatorname{dn}^2 u + \operatorname{dn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1.$$

728.
$$\operatorname{sn}(u \pm v)\operatorname{cn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{en} u \cdot \operatorname{dn} v \pm \operatorname{sn} v \cdot \operatorname{en} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

729.
$$\operatorname{sn}(u \pm v) \operatorname{dn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{dn} u \cdot \operatorname{en} v \pm \operatorname{sn} v \cdot \operatorname{dn} v \cdot \operatorname{en} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

730.
$$\operatorname{cn}(u \pm v)\operatorname{dn}(u \mp v) = \frac{\operatorname{cn} u \cdot \operatorname{dn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v \mp k'^2 \operatorname{sn} u \cdot \operatorname{sn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

731.
$$[1 \pm \operatorname{sn}(u+v)][1 \pm \operatorname{sn}(u-v)] = \frac{(\operatorname{cn} v \pm \operatorname{sn} u \cdot \operatorname{dn} v)^2}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

732.
$$\operatorname{sn}(ui, k) = i \operatorname{sn}(u, k') / \operatorname{cn}(u, k')$$
.

733.
$$\operatorname{en}(ui, k) = 1/\operatorname{en}(u, k')$$
.

734.
$$\operatorname{dn}(ui, k) = \operatorname{dn}(u, k')/\operatorname{en}(u, k').$$

D. — Bessel's Functions.

735.
$$J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots$$

736.
$$K_0(x) = J_0(x) \cdot \log x + \frac{x^2}{2^2} - \frac{x^4 \cdot \Omega_2}{2^2 \cdot 4^2} + \frac{x^6 \cdot \Omega_3}{2^2 \cdot 4^2 \cdot 6^2} - \cdots$$

737.
$$J_n(x) = \frac{n!}{\Gamma(n+1)} \sum_{k=1}^{\infty} \frac{(-1)^k x^{n+2k}}{2^{n+2k} \cdot k! (n+k)!}$$
. [When n is an integer 819 may be used.]

738.
$$K_n(x) = J_n(x) \cdot \log x - \frac{x^{-n}}{2^{1-n}} \sum_{0}^{n-1} \frac{(n-k-1)! \, x^{2k}}{2^{2k} \cdot k!} - \frac{x^n}{2^{1+n}} \sum_{0}^{\infty} \frac{(-1)^k}{(n+k)! \, k!} \left[\Omega_k + \Omega_{k+n} \left(\frac{x}{2} \right)^{2k} \right].$$

739. According as n is or is not an integer, $A \cdot J_n(x) + B \cdot K_n(x)$, or $A \cdot J_n(x) + B \cdot J_{-n}(x)$ is a particular solution of Bessel's equation, $d^2z + 1 dz + (1 - n^2)$

$$\frac{d^2z}{dx^2} + \frac{1}{x} \cdot \frac{dz}{dx} + \left(1 - \frac{n^2}{x^2}\right)z = 0.$$

740.
$$dJ_0(x)/dx = -J_1(x)$$
; $d[x^n \cdot J_n(x)]/dx = x^n \cdot J_{n-1}(x)$, if $n > \frac{1}{2}$; $d[x^{-n} \cdot J_n(x)]/dx = -x^{-n} \cdot J_{n+1}(x)$, if $n > -\frac{1}{2}$.

741.
$$J_{n-1}(x) - J_{n+1}(x) = 2 \cdot dJ_n(x)/dx$$
; $2 \cdot n \cdot J_n(x) = x \cdot J_{n-1}(x) + x \cdot J_{n+1}(x)$.

When x is large it is sometimes convenient to compute approximate numerical values of $J_n(x)$ by means of the semi-convergent series,

742.
$$J_{n}(x) = \sqrt{\frac{2}{\pi x}} \left[P_{n} \cdot \cos \left\{ \frac{(2n+1)\pi}{4} - x \right\} + Q_{n} \cdot \sin \left\{ \frac{(2n+1)\pi}{4} - x \right\} \right].$$
743.
$$P_{n} = 1 - \frac{(4n^{2}-1)(4n^{2}-9)}{2!(8n)^{2}} + \frac{(4n^{2}-1)(4n^{2}-9)(4n^{2}-25)(4n^{2}-49)}{4!(8n)^{4}} - \cdots$$

744.
$$Q_n = \frac{4 n^2 - 1}{8 x} - \frac{(4 n^2 - 1)(4 n^2 - 9)(4 n^2 - 25)}{3!(8x)^3} + \cdots$$

E. - Series and Products.

[The expression in brackets attached to an infinite series shows values of the variable which lie within the interval of convergence. If a series is convergent for all finite values of x, the expression $[x^2 < \infty]$ is used.]

745.
$$(a+b)^n = a^n + na^{n-1}b$$

 $+ \frac{n(n-1)}{2!} a^{n-2}b^2 + \dots + \frac{n! \ a^{n-k}b^k}{(n-k)! \ k!} + \dots \ [b^2 < a^2.]$

746.
$$(a-bx)^{-1} = \frac{1}{a} \left[1 + \frac{bx}{a} + \frac{b^2x^2}{a^2} + \frac{b^3x^3}{a^3} + \cdots \right] \cdot [b^2x^2 < a^2]$$

747.
$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)}{2!}x^2$$

 $\pm \frac{n(n-1)(n-2)x^3}{3!} + \dots + \frac{(\pm 1)^k n! x^k}{(n-k)! k!} + \dots$
 $[x^2 < 1.]$

748.
$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!}x^2$$

$$= \frac{n(n+1)(n+2)x^3}{3!} + \dots + (\mp)^k \frac{(n+k-1)!}{(n-1)!} \frac{x^k}{k!} + \dots$$

$$[x^2 < 1.]$$

749.
$$(1 \pm x)^{\frac{1}{3}} = 1 \pm \frac{1}{2} x - \frac{1 \cdot 1}{2 \cdot 4} x^{2} \pm \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}$$

$$- \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4} \pm \cdots \qquad [x^{2} < 1.]$$

750.
$$(1 \pm x)^{-\frac{1}{2}} = 1 \mp \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^5 + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 8}x^4 \mp \cdots$$
 [$x^2 < 1$.]

751.
$$(1 \pm x)^{\frac{1}{3}} = 1 \pm \frac{1}{3}x - \frac{1 \cdot 2}{3 \cdot 6}x^{2} \pm \frac{1 \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9}x^{3}$$

$$- \frac{1 \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}x^{4} \pm \cdots \qquad [x^{2} \le 1.]$$

89

752.
$$(1 \pm x)^{-\frac{1}{3}} = 1 \mp \frac{1}{3} x + \frac{1 \cdot 4}{3 \cdot 6} x^2 \mp \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^3 + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12} x^4 \mp \cdots$$
 $[x^2 < 1.]$

753.
$$(1 \pm x^2)^{\frac{1}{2}} = 1 \pm \frac{1}{2}x^2 - \frac{x^4}{2 \cdot 4} \pm \frac{1 \cdot 3 \cdot x^6}{2 \cdot 4 \cdot 6} - \frac{1 \cdot 3 \cdot 5 \cdot x^8}{2 \cdot 4 \cdot 6 \cdot 8} \pm \cdots$$

$$[x^2 < 1.]$$

754.
$$(1 \pm x^2)^{-\frac{1}{2}} = 1 \mp \frac{1}{2} x^2 + \frac{1 \cdot 3}{2 \cdot 4} x^4 \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \cdots$$
 [$x^2 < 1$.]

755.
$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$
 [$x^2 < 1$.]

756.
$$(1 \pm x)^{\frac{3}{2}} = 1 \pm \frac{3}{2}x + \frac{3 \cdot 1}{2 \cdot 4}x^2 \mp \frac{3 \cdot 1 \cdot 1}{2 \cdot 4 \cdot 6}x^3 + \frac{3 \cdot 1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8}x^4 \mp \frac{3 \cdot 1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 + \cdots$$
 [$x^2 < 1$.]

757.
$$(1 \pm x)^{-\frac{3}{2}} = 1 \mp \frac{3}{2}x + \frac{3 \cdot 5}{2 \cdot 4}x^2 \mp \frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}x^3 + \cdots$$
 [$x^2 < 1$.]

758.
$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \cdots$$

759.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 [$x^2 < \infty$.]

760.
$$a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \cdots [x^2 < \infty.]$$

761.
$$\frac{1}{2}(e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$
 [$x^2 < \infty$.]

762.
$$\frac{1}{2}(e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^6}{5!} + \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

763.
$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots$$
 [$x^2 < \infty$.]

A series of numbers, B_1 , B_2 , $B_3 \cdots$, of odd and even orders, which appear in the developments of many functions, may be computed by means of the equations,

$$B_{2n} - \frac{2n(2n-1)}{2!} B_{2n-2}$$

$$+ \frac{2n(2n-1)(2n-2)(2n-3)}{4!} B_{2n-4} - \dots (-1)^n = 0.$$

$$\frac{2^{2n}(2^{2n}-1)}{2n} B_{2n-1} = (2n-1)B_{2n-2}$$

$$- \frac{(2n-1)(2n-2)(2n-3)}{3!} B_{2n-4} + \dots (-1)^{n-1} = 0.$$

Whence $B_1 = \frac{1}{6}$, $B_2 = 1$, $B_3 = \frac{1}{30}$, $B_4 = 5$, $B_5 = \frac{1}{42}$, $B_6 = 61$, $B_7 = \frac{1}{30}$, $B_8 = 1385$, $B_9 = \frac{6}{66}$, $B_{10} = 50521$, $B_{11} = \frac{6}{9730}$, $B_{12} = 2702765$, $B_{13} = \frac{7}{6}$, etc. The *B*'s of odd orders are called Bernoulli's Numbers; those of even orders, Euler's Numbers. What are here denoted by B_{2n-1} and B_{2n} are sometimes represented by B_n and E_n , respectively,

$$\frac{B_{2n-1}}{(2n)!} = \frac{2}{(2^{2n}-1)\pi^{2n}} \left[1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \frac{1}{7^{2n}} + \cdots \right],$$

$$\frac{B_{2n}}{(2n)!} = \frac{2^{2n+2}}{\pi^{2n+1}} \left[1 - \frac{1}{3^{2n+1}} + \frac{1}{5^{2n+1}} - \frac{1}{7^{2n+1}} + \cdots \right].$$

$$764. \quad \frac{x}{e^x - 1} = 1 - \frac{x}{2} + \frac{B_1 x^2}{2!} - \frac{B_8 x^4}{4!} + \frac{B_5 x^6}{6!} - \frac{B_7 x^8}{8!} + \cdots$$

$$[x < 2\pi]$$

765.
$$\log x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \cdots$$

$$[2 > x > 0.]$$

766.
$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \cdots$$
 $[x > \frac{1}{2}, 1]$

91

767.
$$\log x = 2 \left[\frac{x-1}{x+1} + \frac{1}{8} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{8} \left(\frac{x-1}{x+1} \right)^5 + \cdots \right] \cdot [x > 0.]$$

768.
$$\log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$
 [$x^2 < 1$.]

769.
$$\log\left(\frac{1+x}{1-x}\right) = 2\left[x + \frac{1}{8}x^3 + \frac{1}{5}x^5 + \frac{1}{7}x^7 + \cdots\right]. \quad [x^2 < 1.]$$

770.
$$\log\left(\frac{x+1}{x-1}\right) = 2\left[\frac{1}{x} + \frac{1}{3}\left(\frac{1}{x}\right)^3 + \frac{1}{3}\left(\frac{1}{x}\right)^5 + \cdots\right] \cdot [x^2 > 1.]$$

771.
$$\log(x + \sqrt{1 + x^2}) = x - \frac{1}{6}x^3 + \frac{1 \cdot 3 \cdot 3}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots$$

$$[x^2 < 1.]$$

Series for denary and other logarithms can be obtained from the foregoing developments by aid of the equations,

$$\log_a x = \log_e x \cdot \log_a e, \ \log_e x = \log_a x \cdot \log_e a,$$
$$\log_e (-z) = (2\ n+1)\ \pi i + \log_e z.$$

772.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

773.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = 1 - \operatorname{versin} x. \ [x^2 < \infty.]$$

774.
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots + \frac{2^{2n}(2^{2n} - 1)B_{2n-1}x^{2n-1}}{(2n)!} + \dots \quad [x^2 < \frac{1}{4}\pi^2]$$

775. etn
$$x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2}{945} - \frac{x^7}{4725}$$

$$- \dots - \frac{B_{2n-1}(2x)^{2n}}{x(2n)!} - \dots \qquad [x^2 < \pi^2.]$$

776.
$$\sec x = 1 + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \dots + \frac{B_{2n}x^{2n}}{(2n)!} + \dots \left[x^2 < \frac{\pi^2}{4!} \right]$$

777.
$$\csc x = \frac{1}{x} + \frac{x}{3!} + \frac{7}{3 \cdot 5!} + \frac{31}{3 \cdot 7!} + \dots + \frac{2(2^{2n+1}-1)}{(2n+2)!} B_{2n+1} x^{2n+1} + \dots \quad [x^2 < \pi^2]$$

778.
$$\sin^{-1} x = x + \frac{x^{8}}{6} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^{5}}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^{7}}{7} + \dots = \frac{1}{2} \pi - \cos^{-1} x.$$
 [$x^{2} < 1$.]

779.
$$\tan^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots = \frac{1}{2} \pi - \cot^{-1} x.$$
 $[x^2 < 1.]$

780.
$$\tan^{-1}x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots$$
 [x²>1.]

781.
$$\sec^{-1} x = \frac{\pi}{2} - \frac{1}{x} - \frac{1}{6x^3} - \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7x^7} - \cdots$$

= $\frac{1}{2} \pi - \csc^{-1} x$. $[x^2 > 1]$

782.
$$\log \sin x = \log x - \frac{1}{6} x^2 - \frac{1}{180} x^4 - \frac{1}{2805} x^6$$

$$- \cdots - \frac{2^{2n-1} B_{2n-1} x^{2n}}{n (2n)!} - \cdots \qquad [x^2 < \pi^2.]$$

783.
$$\log \cos x = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 - \frac{17}{25\frac{7}{20}}x^8 - \cdots - \frac{2^{2n-1}(2^{2n}-1)B_{2n-1}x^{2n}}{n(2n)!} - \cdots$$
 [$x^2 < \frac{1}{4}\pi^2$.]

784.
$$\log \tan x = \log x + \frac{1}{8}x^2 + \frac{7}{70}x^4 + \frac{6}{835}x^6 + \dots + \frac{(2^{2n-1}-1)2^{2n}B_{2n-1}x^{2n}}{n(2n)!} + \dots \qquad [x^2 < \frac{1}{4}\pi^2]$$

785.
$$e^{\sin x} = 1 + x + \frac{x^2}{2!} - \frac{3x^4}{4!} - \frac{8x^5}{5!} - \frac{3x^6}{6!} + \frac{56x^7}{7!} + \cdots$$

$$[x^2 < \infty]$$

93

786.
$$e^{\cos x} = e\left(1 - \frac{x^2}{2!} + \frac{4x^4}{4!} - \frac{31x^6}{6!} + \cdots\right)$$
 $[x^2 < \infty.]$

SERIES.

787.
$$e^{\tan x} = 1 + x + \frac{x^2}{2!} + \frac{3}{3!} + \frac{9}{4!} + \frac{37}{5!} + \cdots \cdot [x^2 < \frac{1}{4}\pi^2]$$

788.
$$e^{\sin^{-1}x} = 1 + x + \frac{x^2}{2!} + \frac{2x^3}{3!} + \frac{5x^4}{4!} + \cdots$$
 [$x^2 < 1$.]

789.
$$e^{\tan^{-1}x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{6} - \frac{7x^4}{24} - \cdots$$
 [$x^2 < 1$.]

790.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

791.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots$$
 [$x^2 < \infty$.]

792.
$$\tanh x = (2^2 - 1) 2^2 B_1 \frac{x}{2!} - (2^4 - 1) 2^4 B_3 \frac{x^3}{4!} + \cdots$$

$$= \Sigma [(-1)^{n-1} 2^{2n} (2^{2n} - 1) B_{2n-1} x^{2n-1} / (2n)!].$$

$$[x^2 < \frac{1}{4} \pi^2.]$$

793.
$$\coth x = \frac{1}{x} (1 + \sum [(-1)^{n-1} 2^{2n} B_{2n-1} x^{2n} / (2n)!]).$$

$$\lceil x^2 < \pi^2. \rceil$$

794. sech
$$x = 1 + \Sigma[(-1)^n B_{2n} x^{2n}/(2n)!].$$
 [$x^2 < \frac{1}{4} \pi^2$.]

795. esch
$$x = \frac{1}{x} - (2-1) 2 B_1 \frac{x}{2!} + (2^3 - 1) 2 B_3 \frac{x^3}{4!} - \cdots$$

$$= \frac{1}{x} (1 + 2 \Sigma [(-1)^n (2^{2n-1} - 1) B_{2n-1} x^{2n} / (2 n)!]).$$

$$\lceil x^2 < \pi^2 \cdot \rceil$$

796.
$$\sinh^{-1} x = x - \frac{1}{6} x^3 + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots [x^2 < 1.]$$

94 SERIES,

797.
$$\tanh^{-1}x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots$$
 [$x^2 < 1$.]

798.
$$ext{ctnh}^{-1} x = \frac{1}{x} + \frac{1}{3x^8} + \frac{1}{5x^5} + \cdots$$
 [$x^2 > 1$.]

799.
$$\operatorname{cseh}^{-1} x = \frac{1}{x} - \frac{1}{2 \cdot 3 \cdot x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot x^5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot x^7} + \cdots$$

$$[x^2 > 1.]$$

800.
$$\int_0^x e^{-x^2} dx = x - \frac{1}{3} x^3 + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \qquad [x^2 < \infty]$$

801.
$$\int_0^x \cos(x^2) dx = x - \frac{x^5}{5 \cdot 2!} + \frac{x^9}{9 \cdot 4!} - \frac{x^{15}}{13 \cdot 6!} + \cdots \cdot [x^2 < \infty]$$

802.
$$\int_0^1 \frac{x^{a-1} dx}{1+x^b} = \frac{1}{a} - \frac{1}{a+b} + \frac{1}{a+2b} - \frac{1}{a+3b} + \cdots$$

803.
$$f(x+h) = f(x) + h \cdot f'(x+\theta h)$$
.

804.
$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} \cdot f^n(x+\theta h).$$

805.
$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!}f''(x)$$

$$+\cdots+\frac{h^n}{(n-1)!}\cdot(1-\theta)^{n-1}\cdot f^n(x+\theta h).$$

806.
$$f(x + h, y + k) = f(x, y) + hf'_x(x + \theta h, y + \theta k) + kf'_y(x + \theta h, y + \theta k).$$

807.
$$f(x+h, y+k) = f(x, y) + \left(h\frac{\partial f(x, y)}{\partial x} + k\frac{\partial f(x, y)}{\partial y}\right) + \frac{1}{2!} \left(h^2 \frac{\partial^2 f(x, y)}{\partial x^2} + 2hk\frac{\partial^2 f(x, y)}{\partial x \cdot \partial y} + k^2 \frac{\partial^2 f(x, y)}{\partial y^2}\right)$$

$$+ \frac{1}{3!} \left(h^{3} \frac{\partial^{3} f(x, y)}{\partial x^{3}} + 3 h^{2} h^{2} \frac{\partial^{3} f(x, y)}{\partial y \cdot \partial x^{2}} + 3 h h^{2} \frac{\partial^{3} f(x, y)}{\partial x \cdot \partial y^{2}} \right)$$

$$+ k^{3} \frac{\partial f(x, y)}{\partial y^{2}} + \dots + R_{n}$$

$$= f(x, y) + (hD_{x} + kD_{y}) f(x, y) + \frac{1}{2!} (hD_{x} + kD_{y})^{2} f(x, y)$$

$$+ \dots + \frac{1}{(n-1)!} (hD_{x} + kD_{y})^{n-1} f(x, y)$$

$$+ \frac{1}{n!} (hD_{x} + kD_{y})^{n} f(x + \theta h, y + \theta k).$$

808.
$$1 = \frac{4}{\pi} \left[\sin \frac{\pi x}{c} + \frac{1}{8} \sin \frac{3\pi x}{c} + \frac{1}{8} \sin \frac{5\pi x}{c} + \cdots \right] \cdot \left[0 < x < c. \right]$$

809.
$$x = \frac{2c}{\pi} \left[\sin \frac{\pi x}{c} - \frac{1}{2} \sin \frac{2\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} - \cdots \right] \cdot \left[-c < x < c. \right]$$

810.
$$x = \frac{c}{2} - \frac{4}{\pi^2} \left[\cos \frac{\pi x}{c} + \frac{1}{3^2} \cos \frac{3\pi x}{c} + \frac{1}{5^2} \cos \frac{5\pi x}{c} + \cdots \right] \cdot \left[0 < x < c. \right]$$

811.
$$x^{2} = \frac{2}{\pi^{3}} \left[\left(\frac{\pi^{2}}{1} - \frac{4}{1} \right) \sin \frac{\pi x}{c} - \frac{\pi^{2}}{2} \sin \frac{2\pi x}{c} + \left(\frac{\pi^{2}}{3} - \frac{4}{3^{3}} \right) \sin \frac{3\pi x}{c} - \frac{\pi^{2}}{4} \sin \frac{4\pi x}{c} + \left(\frac{\pi^{2}}{5} - \frac{4}{5^{3}} \right) \sin \frac{5\pi x}{c} + \cdots \right] \cdot \left[0 < x < c. \right]$$

812.
$$x^2 = \frac{c^2}{3} - \frac{4}{\pi^2} \left[\cos \frac{\pi x}{c} - \frac{1}{2^2} \cos \frac{2\pi x}{c} + \frac{1}{3^2} \cos \frac{3\pi x}{c} - \frac{1}{4^2} \cos \frac{4\pi x}{c} + \cdots \right].$$
 [-c < x < c.]

813
$$\log \sin \frac{1}{2} x = -\log 2 - \cos x - \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x - \cdots$$

 $[0 < x < \frac{1}{2} \pi.]$

814.
$$\log \cos \frac{1}{2} x = -\log 2 + \cos x - \frac{1}{2} \cos 2x + \frac{1}{8} \cos 3x - \cdots$$
 $[0 < x < \frac{1}{2} \pi]$

815.
$$f(x) = \frac{1}{2}b_0 + b_1 \cos \frac{\pi x}{c} + b_2 \cos \frac{2\pi x}{c} + \cdots$$

$$+ a_1 \sin \frac{\pi x}{c} + a_2 \sin \frac{2\pi x}{c} + \cdots, [-c < x < c.]$$
where $b_m = \frac{1}{c} \int_{-c}^{+c} f(a) \cos \frac{m\pi a}{c} da$,
$$a_m = \frac{1}{c} \int_{-c}^{+c} f(a) \sin \frac{m\pi a}{c} da$$
.

816.
$$\sin \theta = \theta \left[1 - \left(\frac{\theta}{\pi} \right)^2 \right] \left[1 - \left(\frac{\theta}{2\pi} \right)^2 \right] \left[1 - \left(\frac{\theta}{3\pi} \right)^2 \right] \cdots$$

817.
$$\cos \theta = \left[1 - \left(\frac{2\theta}{\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{3\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{5\pi}\right)^2\right] \cdots$$

$$\left[\theta^2 < \infty.\right]$$

818.
$$\frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \dots \cdot (2 m)^{2} (2 m + 2)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \dots \cdot (2 m + 1)^{2}} > \frac{\pi}{2}$$

$$> \frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \dots \cdot (2 m)^{2} (2 m + 1)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \dots \cdot (2 m + 1)^{2}}.$$

819.
$$J_n(x) = \frac{x^n}{2^n n!} \left\{ 1 - \frac{x^2}{2(2n+2)} + \frac{x^4}{2 \cdot 4(2n+2)(2n+4)} - \frac{x^6}{2 \cdot 4 \cdot 6(2n+2)(2n+4)(2n+6)} + \cdots \right\}.$$

F. — DERIVATIVES.

$$820. \ \frac{d(au)}{dx} = \frac{a\,du}{dx}.$$

821.
$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

822.
$$\frac{l(uv)}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}.$$

823.
$$\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

824.
$$\frac{df(u)}{dx} = \frac{df(u)}{du} \cdot \frac{du}{dx}$$

825.
$$\frac{d^2f(u)}{dx^2} = \frac{df}{du} \cdot \frac{d^2u}{dx^2} + \frac{d^2f}{du^2} \cdot \frac{du^2}{dx^2}$$

826.
$$\frac{dx^n}{dx} = nx^{n-1}.$$

$$827. \ \frac{de^x}{dx} = e^x.$$

828.
$$\frac{da^u}{dx} = a^u \cdot \frac{du}{dx} \cdot \log_e a.$$

829.
$$\frac{dx^x}{dx} = x^x (1 + \log_e x)$$
.

830.
$$\frac{d(\log_a x)}{dx} = \frac{1}{x \cdot \log_e a} = \frac{\log_a e}{x}$$

$$831. \quad \frac{d\sin x}{dx} = \cos x.$$

$$832. \ \frac{d \cos x}{dx} = -\sin x.$$

833.
$$\frac{d \tan x}{dx} = \sec^2 x.$$

834.
$$\frac{d \cot x}{dx} = -\csc^2 x.$$

835.
$$\frac{d \sec x}{dx} = \tan x \cdot \sec x$$
.

836.
$$\frac{d \csc x}{dx} = -\cot x \cdot \csc x.$$

837.
$$\frac{d \sin^{-1} x}{dx} = \frac{1}{\sqrt{1-x^2}}$$

838.
$$\frac{d \cos^{-1} x}{dx} = \frac{-1}{\sqrt{1-x^2}}$$

839.
$$\frac{d \tan^{-1} x}{dx} = \frac{1}{1 + x^2}.$$

840.
$$\frac{d \, e^{-1} x}{dx} = -\frac{1}{1+x^2}.$$

841.
$$\frac{d \sec^{-1} x}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$$

842.
$$\frac{d \csc^{-1} x}{dx} = -\frac{1}{x\sqrt{x^2-1}}$$

843.
$$\frac{d \sinh x}{dx} = \cosh x.$$

844.
$$\frac{d \cosh x}{dx} = \sinh x$$
.

845.
$$\frac{d \tanh x}{dx} = \operatorname{sech}^2 x.$$

846.
$$\frac{d \coth x}{dx} = - \operatorname{cseh}^2 x.$$

847.
$$\frac{d \operatorname{sech} x}{dx} = - \operatorname{sech} x \cdot \tanh x.$$

848.
$$\frac{d \operatorname{esch} x}{dx} = -\operatorname{esch} x \cdot \operatorname{etnh} x.$$

849.
$$\frac{d \sinh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 + 1}}$$
.

850.
$$\frac{d \cosh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 - 1}}$$
.

851.
$$\frac{d \tanh^{-1} x}{dx} = \frac{1}{1 - x^2}$$
.

852.
$$\frac{d \, \operatorname{etnh}^{-1} x}{dx} = \frac{1}{1 - x^2}$$

853.
$$\frac{d \operatorname{sech}^{-1} x}{dx} = \frac{-1}{x \sqrt{1-x^2}}$$

854.
$$\frac{d \operatorname{cseh}^{-1} x}{dx} = \frac{-1}{x \sqrt{x^2 + 1}}$$

855.
$$\frac{d}{db} \int_{a}^{b} f(x) \, dx = f(b).$$

856.
$$\frac{d}{da} \int_{a}^{b} f(x) dx = -f(a).$$

857.
$$\frac{d}{dc} \int_{a}^{b} f(x, c) dx = \int_{a}^{b} D_{c} f(x, c) \cdot dx + f(b, c) \frac{db}{dc} - f(a, c) \frac{da}{dc}$$

858.
$$\frac{d^{n}(u \cdot v)}{dx^{n}} = v \cdot \frac{d^{n}u}{dx^{n}} + n \cdot \frac{dv}{dx} \cdot \frac{d^{n-1}u}{dx^{n-1}} + \frac{n(n-1)}{2!} \cdot \frac{d^{2}v}{dx^{2}} \cdot \frac{d^{n-2}u}{dx^{n-2}} + \dots + u \cdot \frac{d^{n}v}{dx^{n}}$$

859. If $f(x, y, z, \cdots)$ is a homogeneous function of the *n*th order, so that $f(\lambda x, \lambda y, \lambda z, \cdots) \equiv \lambda^n f(x, y, z, \cdots)$, $x \cdot D_x f + y \cdot D_y f + z \cdot D_z f + \cdots \equiv nf$.

860. If
$$x = \phi(y)$$
,

$$\begin{split} \frac{dy}{dx} &= \frac{1}{\phi'(y)}, \quad \frac{d^2y}{dx^2} = -\frac{\phi''(y)}{\left[\phi'(y)\right]^3}, \\ &\frac{d^3y}{dx^3} = \frac{3\left[\phi''(y)\right]^2 - \phi'(y) \cdot \phi'''(y)}{\left[\phi'(y)\right]^5}. \end{split}$$

861. If
$$x = f(t)$$
 and $y = \phi(t)$,

$$\frac{dy}{dx} = \frac{\phi'(t)}{f'(t)}, \quad \frac{d^2y}{dx^2} = \frac{f'(t) \cdot \phi''(t) - f''(t) \cdot \phi'(t)}{[f'(t)]^3}.$$

862. If
$$f(x, y) = 0$$
,

$$\frac{dy}{dx} = -\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \equiv -\frac{D_x f}{D_y f},$$

$$\frac{d^2y}{dx^2} = -\frac{D_x^2f \cdot (D_yf)^2 - 2\ D_xD_yf \cdot D_xf \cdot D_yf + D_y^2f \cdot (D_xf)^2}{(D_yf)^3}$$

863. If
$$y = f(u, v)$$
, $u = \phi(x)$, and $v = \psi(x)$,

$$\frac{df}{dx} = \frac{\partial f}{\partial u} \cdot \frac{du}{dx} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dx} = u' \cdot D_u f + v' \cdot D_v f,$$

$$\frac{d^2f}{dx^2} = \frac{\partial^2f}{\partial u^2} \cdot \left(\frac{du}{dx}\right)^2 + 2 \frac{\partial^2f}{\partial u \cdot \partial v} \cdot \frac{du}{dx} \cdot \frac{dv}{dx} + \frac{\partial^2f}{\partial^2v} \cdot \left(\frac{dv}{dx}\right)^2$$

$$+\frac{\partial f}{\partial u}\cdot\frac{d^2u}{dx^2}+\frac{\partial f}{\partial v}\cdot\frac{d^2v}{dx^2}$$

$$= u^{\cdot 2} \cdot D_u^2 f + 2 u^{\prime} \cdot v^{\prime} \cdot D_u D_v f + v^{\prime 2} \cdot D_v^2 f$$

$$+ u^{\prime \prime} \cdot D_u f + v^{\prime \prime} \cdot D_u f.$$

864. If
$$f(x, y, z) = 0$$
, $D_x z = -D_x f/D_z f$, $D_x^2 z = -\int D_x^2 f \cdot (D_x f)^2$

$$-2 D_z f \cdot D_x f \cdot D_x D_y f + D_z^2 f (D_x f)^2]/(D_z f)^3,$$

$$D_x D_y z = - [D_x D_y f \cdot (D_z f)^2 - D_z f D_x f \cdot D_y D_z f + D_z f \cdot D_z$$

$$+ D_z f \cdot D_y f \cdot D_x D_z f + D_x f \cdot D_y f \cdot D_z^2 f] / (D_z f)^{\varsigma}.$$

865. If
$$V = \phi(u, v)$$
, $u = f_1(x, y)$, and $v = f_2(x, y)$,
$$D_x V = D_u \phi \cdot D_x u + D_v \phi \cdot D_x v,$$

$$D_x^2 V = D_u^2 \phi \cdot (D_x u)^2 + D_v^2 \phi \cdot (D_x v)^2 + 2 D_u D_v \phi \cdot D_x u \cdot D_x v$$

$$+ D_u \phi D_x^2 u + D_v \phi \cdot D_x^2 v,$$

$$D_y D_x V = D_u^2 \phi \cdot D_x u \cdot D_y u + D_v^2 \phi \cdot D_x v \cdot D_y v$$

$$+ D_u D_v \phi (D_x v \cdot D_y u + D_x u \cdot D_y v)$$

$$+ D_u \phi \cdot D_x D_y u + D_v \phi \cdot D_x D_y v,$$

$$D_x^2 V + D_y^2 V = D_u^2 \phi \cdot [(D_x u)^2 + (D_y u)^2]$$

$$+ D_v^2 \phi \cdot [(D_x v)^2 + (D_y v)^2]$$

$$+ 2 D_u D_v \phi \cdot [D_x u \cdot D_x v + D_y u \cdot D_y v]$$

$$+ D_u \phi \cdot [D_x^2 u + D_y^2 u]$$

$$+ D_v \phi \cdot [D_x^2 v + D_y^2 v].$$

In the special case, $u \equiv r \equiv \sqrt{x^2 + y^2}$, $v \equiv \theta \equiv \tan^{-1}(y/x)$, we have $D_r x = \cos \theta = x/\sqrt{x^2 + y^2}$; $D_r y = \sin \theta = y/\sqrt{x^2 + y^2}$; $D_\theta x = -r \sin \theta = -y$; $D_\theta y = r \cos \theta = x$; $D_x r = x/\sqrt{x^2 + y^2} = \cos \theta$; $D_y r = y/\sqrt{x^2 + y^2} = \sin \theta$; $D_x \theta = -y/(x^2 + y^2) = -\sin \theta/r$; $D_y \theta = x/(x^2 + y^2) = \cos \theta/r$; and $D_x^2 V + D_y^2 V = D_r^2 V + \frac{1}{2} \cdot D_\theta V$.

$$\begin{split} &+D_uV\bigg[D_r^2u+\frac{1}{r}\cdot D_ru+\frac{1}{r^2}\cdot D_\theta^2u\bigg]\\ &+D_vV\bigg[D_r^2v+\frac{1}{r}\cdot D_rv+\frac{1}{r^2}\cdot D_\theta^2v\bigg]\cdot \end{split}$$

867. If $V = \phi(u, v, w)$, $u = f_1(x, y, z)$, $v = f_2(x, y, z)$, and $w = f_3(x, y, z)$,

$$\begin{split} D_x V &= D_u V \cdot D_x u + D_v V \cdot D_x v + D_w V \cdot D_x w, \\ D_x^2 V &= D_u^2 V \cdot (D_x u)^2 + D_v^2 V \cdot (D_x v)^2 + D_w^2 V \cdot (D_x w)^2 \\ &+ D_u V \cdot D_x^2 u + D_v V \cdot D_x^2 v + D_w V \cdot D_x^2 w \\ &+ 2 \left(D_u D_v V \cdot D_x u \cdot D_x v + D_u D_w V \cdot D_x u \cdot D_x w \right. \\ &+ D_v D_w V \cdot D_x v \cdot D_x w). \\ D_x^2 V + D_y^2 V + D_z^2 V &= D_u^2 V \cdot \left[(D_x u)^2 + (D_y u)^2 + (D_z u)^2 \right] \\ &+ D_v^2 V \cdot \left[(D_x v)^2 + (D_y v)^2 + (D_z v)^2 \right] \\ &+ D_w^2 V \left[(D_x w)^2 + (D_y w)^2 + (D_z w)^2 \right] \\ &+ 2 \left. D_u D_v V \cdot \left[D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v \right] \\ &+ 2 \left. D_v D_w V \cdot \left[D_x v \cdot D_x w + D_y v \cdot D_y w + D_z v \cdot D_z w \right] \\ &+ 2 \left. D_w D_u V \cdot \left[D_x w \cdot D_x u + D_y w \cdot D_y u + D_z w \cdot D_z u \right] \right. \\ &+ D_w V \cdot \left[D_x^2 u + D_y^2 u + D_z^2 u \right] \\ &+ D_v V \cdot \left[D_x^2 v + D_y^2 v + D_z^2 v \right] \\ &+ D_v V \cdot \left[D_x^2 v + D_y^2 v + D_z^2 v \right]. \end{split}$$

In particular, if

$$x \equiv r \sin \theta \cos \phi, \ y \equiv r \sin \theta \sin \phi, \ z \equiv r \cos \theta,$$
 so that $u \equiv r^2 \equiv x^2 + y^2 + z^2, \ v \equiv \theta \equiv \tan^{-1}(\sqrt{x^2 + y^2}/z),$
$$w \equiv \phi \equiv \tan^{-1}(y/x), \text{ we have}$$

$$D_r z = \cos \theta = z/\sqrt{x^2 + y^2 + z^2};$$

$$D_r x = \sin \theta \cos \phi = x/\sqrt{x^2 + y^2 + z^2};$$

$$D_{r}y = \sin \theta \sin \phi = y / \sqrt{x^{2} + y^{2} + z^{2}};$$

$$D_{\theta}z = -r \sin \theta = -\sqrt{x^{2} + y^{2}};$$

$$D_{\theta}x = r \cos \theta \cos \phi = zx / \sqrt{x^{2} + y^{2}};$$

$$D_{\theta}y = r \cos \theta \sin \phi = zy / \sqrt{x^{2} + y^{2}};$$

$$D_{\phi}y = r \sin \theta \sin \phi = -y;$$

$$D_{\phi}y = r \sin \theta \cos \phi = x;$$

$$D_{z}r = z / r = \cos \theta;$$

$$D_{z}\theta = 0;$$

$$D_{z}\phi = 0;$$

$$D_{x}r = x / r = \sin \theta \cos \phi;$$

$$D_{x}\theta = xz / r^{2} \sqrt{x^{2} + y^{2}} / r^{2} = -\sin \theta / r;$$

$$D_{x}\phi = 0;$$

$$D_{x}r = x / r = \sin \theta \cos \phi;$$

$$D_{x}\theta = xz / r^{2} \sqrt{x^{2} + y^{2}} = \cos \theta \cos \phi / r;$$

$$D_{y}\theta = xz / r^{2} \sqrt{x^{2} + y^{2}} = \cos \theta \cos \phi / r;$$

$$D_{y}\theta = xy / r = \sin \theta \sin \phi;$$

$$D_{y}r = y / r = \sin \theta \sin \phi;$$

$$D_{y}\theta = zy / r^{2} \sqrt{x^{2} + y^{2}} = \cos \theta \sin \phi / r;$$

$$D_{y}\phi = x / (x^{2} + y^{2}) = \cos \phi / r \sin \theta;$$

$$(D_{x}r)^{2} + (D_{y}r)^{2} + (D_{z}r)^{2} = 1;$$

$$(D_{x}\theta)^{2} + (D_{y}\theta)^{2} + (D_{z}\theta)^{2} = 1 / r^{2} \sin^{2}\theta;$$

$$(D_{x}V)^{2} + (D_{y}V)^{2} + (D_{z}\theta)^{2} = 1 / r^{2} \sin^{2}\theta;$$

$$(D_{x}V)^{2} + (D_{y}V)^{2} + (D_{z}V)^{2} = (D_{r}V)^{2} + (D_{z}V)^{2} = (D_{r}V)^{2} + (D_{z}V)^{2} + (D_{z}\theta)^{2};$$

$$D_{x}^{2}V + D_{y}^{2}V + D_{z}^{2}V$$

$$= \frac{1}{r^{2}\sin\theta} \left[D_{r}(r^{2} \cdot D_{r}V) \cdot \sin \theta + \frac{D_{\phi}^{2}V}{\sin \theta} + D_{\theta}(\sin \theta \cdot B_{\theta}V) \right].$$

868. If
$$x = f_1(u, v)$$
, $y = f_2(u, v)$, $z = f_3(u, v)$,
$$D_x z = \frac{D_u f_3 \cdot D_v f_2 - D_v f_3 \cdot D_u f_2}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_2}$$
$$D_y z = \frac{D_v f_3 \cdot D_u f_1 - D_u f_3 \cdot D_v f_1}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_2}$$

869. If
$$x = f(z, u)$$
, and $y = \phi(z, u)$,
$$D_x z = D_u \phi / (D_z f \cdot D_u \phi - D_z \phi \cdot D_u f),$$
$$D_y z = D_u f / (D_z \phi \cdot D_u f - D_z f \cdot D_u \phi).$$

870. If
$$F_1(x, y, z, u, v) = 0$$
,
$$F_2(x, y, z, u, v) = 0, \text{ and } F_3(x, y, z, u, v) = 0,$$

$$D_x z \cdot \begin{vmatrix} D_z F_1 & D_u F_1 & D_v F_1 \\ D_z F_2 & D_u F_2 & D_v F_2 \\ D_z F_3 & D_u F_3 & D_v F_3 \end{vmatrix} = - \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_2 & D_v F_2 \\ D_x F_3 & D_u F_3 & D_v F_3 \end{vmatrix}.$$

871. If
$$F_1(x, y, z) = 0$$
, and $F_2(x, y, z) = 0$,
$$\frac{dy}{D_z F_1 \cdot D_x F_2 - D_z F_2 \cdot D_x F_1} = \frac{dz}{D_x F_1 \cdot D_y F_2 - D_x F_2 \cdot D_y F_1}$$

$$\frac{dx}{D_y F_1 \cdot D_z F_2 - D_y F_2 \cdot D_z F_1}.$$

If each of the quantities $y_1, y_2, y_3, \dots y_n$ is a function of the *n* variables $x_1, x_2, x_3, \dots x_n$, the determinant,

is called the functional determinant or the Jacobian of the y's with respect to the x's and is denoted by the expression,

$$\frac{\partial (y_1, y_2, y_3, \dots, y_n)}{\partial (x_1, x_2, x_3, \dots, x_n)}$$
, or by $J(y_1, y_2, \dots, y_n)$.

872.
$$\frac{\partial (y_1, y_2, y_3, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)} \cdot \frac{\partial (x_1, x_2, x_3, \cdots x_n)}{\partial (y_1, y_2, y_3, \cdots y_n)} \equiv 1.$$

873.
$$\frac{\partial (y_1, y_2, y_3, \dots y_n)}{\partial (z_1, z_2, z_3, \dots z_n)} \cdot \frac{\partial (z_1, z_2, z_3, \dots z_n)}{\partial (x_1, x_2, x_3, \dots x_n)} \\
= \frac{\partial (y_1, y_2, y_3, \dots y_n)}{\partial (x_1, x_2, x_3, \dots x_n)}$$

If the y's are not all independent but are connected by an equation of the form $\phi(y_1, y_2, y_3, \dots, y_n) = 0$, the Jacobian of the y's with respect to the x's vanishes identically; and, conversely, if the Jacobian vanishes identically, the y's are connected by one or more relations of the above-mentioned form.

The directional derivative of any scalar point function, u, at any point, P, in any fixed direction PQ', is the limit, as PQ approaches zero, of the ratio of $u_Q - u_P$ to PQ, where Q is a point on the straight line PQ' between P and Q'. The gradient, h_u , of the function u at P is the directional derivative of u at P taken in the direction in which u increases most rapidly. This direction is normal to the surface of constant u which passes through P.

874.
$$h_u^2 \equiv (D_x u)^2 + (D_y u)^2 + (D_z u)^2$$
.

The directional derivative of any scalar point function at any point in any given direction is evidently equal to the product of the gradient and the cosine of the angle between the given direction and that in which the function increases most rapidly. The normal derivative, at any point, P, of a point function u, taken with respect to another point function v, is the limit as PQ approaches zero of the ratio of $u_Q^- - u_P^-$ to $v_Q^- - v_P^-$, where Q is a point so chosen on the normal at P of the surface of constant v which passes through P, that $v_Q^- - v_P^-$ is positive. If (u, v) denotes the angle between the directions in which u and v increase most rapidly, the normal derivatives of u with respect to v, and of v with respect to v may be written

$$h_u \cos(u, v) \div h_v$$
, and $h_v \cdot \cos(u, v) \div h_u$

respectively. If $h_u = h_v$, these derivatives are equal.

G. - MISCELLANEOUS FORMULAS.

If s is a plane analytic closed curve, n its normal drawn from within outwards, and dA the element of plane area within s, the usual integral transformation formulas for the functions u and v which, with their derivatives of the first order, are continuous everywhere within s, may be written —

875.
$$\int u \cdot \cos(x, n) ds = \iint D_x u \cdot dA.$$

876.
$$\int [u \cdot \cos(x, n) + v \cdot \cos(y, n)] ds = \iint (D_x u + D_y v) dA.$$

877.
$$\int D_n u \cdot ds = \int \int (D_x^2 u + D_y^2 u) dA.$$

$$\begin{split} \mathbf{878.} & \iint \left(D_x u \cdot D_x v + D_y u \cdot D_y v \right) dA \\ & = \int u \cdot D_n v \cdot ds - \iint u \left(D_x^2 v + D_y^2 v \right) dA \\ & = \int v \cdot D_n u \cdot ds - \iint v \left(D_x^2 u + D_y^2 v \right) dA. \end{split}$$

879.
$$\begin{split} \int\!\int \lambda \left(D_x u \cdot D_x v + D_y u \cdot D_y v\right) dA &= \int \lambda \cdot u \cdot D_n v \cdot ds \\ &- \int\!\int u \left[D_x (\lambda \cdot D_x v) + D_y (\lambda \cdot D_y v)\right] dA \end{split}$$

If ξ and η are two analytic functions which define a set of orthogonal curvilinear coördinates, and if (ξ, n) and (η, n) represent the angles between n and the directions in which ξ and η , respectively, increase most rapidly.

880.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\eta} \left(\frac{u}{h_{\xi}} \right) dA = \int u \cdot \cos \left(\eta, \ n \right) ds.$$

881.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\xi} \left(\frac{u}{h_{\eta}} \right) dA = \int u \cdot \cos(\xi, n) ds.$$

882. If r is the distance from a fixed point, Q, in the coördinate plane,

$$\int \frac{\cos\ (r,\,n)\,\,ds}{r} = 0,\;\pi,\;\text{or}\;2\;\pi,\;\text{according as}\;\;Q\;\;\text{is without,}$$
 on, or within $s.$

If S is an analytic closed surface, n its normal drawn from within outwards, and $d\tau$ the element of volume shut in by S, the usual integral transformation formulas may be written—

883.
$$\iint u \cos(x, n) dS = \iiint D_x u \cdot d\tau.$$

884.
$$\iint \left[u \cos(x, n) + v \cos(y, n) + w \cos(z, n) \right] dS$$
$$= \iint \left(D_x u + D_y v + D_z w \right) d\tau.$$

885.
$$\iint D_{u}u \cdot ds = \iiint (D_{x}^{2}u + D_{y}^{2}u + D_{z}^{2}u) d\tau.$$

886.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$

$$= \iint u \cdot D_n v \cdot dS - \iiint u (D_x^2 v + D_y^2 v + D_z^2 v) d\tau$$

$$= \iint v \cdot D_n u \cdot dS - \iiint v (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

$$\begin{aligned} \textbf{887.} & \int \!\! \int \!\! \int \!\! \lambda \left(D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v \right) d\tau \\ &= \int \!\! \int \!\! \lambda \cdot v \cdot D_n u \cdot dS \\ &- \int \!\! \int \!\! \int \!\! v \big[D_x (\lambda D_x u) + D_y \langle \lambda D_y u \rangle + D_z (\lambda D_z u) \big] d\tau. \end{aligned}$$

If ξ , η , ζ are three analytic functions which define a system of orthogonal curvilinear coördinates,

888.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\xi} \left(\frac{u}{h_{\eta} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos(\xi, n) dS.$$

889.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\eta} \left(\frac{u}{h_{\xi} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos(\eta, n) dS.$$

890.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\zeta} \left(\frac{u}{h_{\xi} \cdot h_{\eta}} \right) d\tau = \iint u \cdot \cos(\zeta, n) dS.$$

891. If r is the distance from a fixed point, Q,

$$\int \frac{\cos{(r, n)}}{r^2} dS = 0, 2 \pi, \text{ or } 4 \pi \text{ according as } Q \text{ is without,}$$
on, or within S .

Stokes's Theorem. — The line integral, taken around a closed curve, of the tangential component of a vector point function, is equal to the surface integral, taken over a surface bounded by the curve, of the normal component of the curl of the vector, the direction of integration around the curve forming a right-handed screw rotation about the normals.

If X, Y, Z are the components of the vector,

892.
$$\int (X dx + Y dy + Z dz) = \int \int [(D_y Z - D_z Y) \cos(x, n) + (D_z X - D_x Z) \cos(y, n) + (D_x Y - D_y X) \cos(z, n)] dS.$$

Equations 893 to 897 give Poisson's Equation in orthogonal Cartesian, in cylindrical, in spherical, and in orthogonal curvilinear coördinates.

893.
$$\overline{\nabla}^2 V \equiv D_x^2 V + D_y^2 V + D_z^2 V = -4 \pi \rho.$$

894.
$$\frac{1}{r} \cdot D_r(r \cdot D_r V) + \frac{1}{r^2} \cdot D_{\theta}^2 V + D_z^2 V = -4 \pi \rho.$$

895.
$$\sin \theta \cdot D_r(r^2 \cdot D_r V) + \frac{D_{\phi}^2 V}{\sin \theta} + D_{\theta}(\sin \theta \cdot D_{\theta} V) = -4 \pi \rho r^2 \sin \theta.$$

896.
$$\begin{split} h_{\xi}^2 \cdot D_{\xi}^2 V + h_{\eta}^2 \cdot D_{\eta}^2 V + h_{\zeta}^2 \cdot D_{\zeta}^2 V \\ + D_{\xi} V \cdot \overline{\nabla}^2 \xi + D_{\eta} V \cdot \overline{\nabla}^2 \eta + D_{\zeta} \mathring{V} \cdot \overline{\nabla}^2 \zeta = -4 \ \pi \rho. \end{split}$$

397.
$$h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \left\{ D_{\xi} \left(\frac{h_{\xi}}{h_{\eta} h_{\zeta}} \cdot D_{\xi} V \right) + D_{\eta} \left(\frac{h_{\eta}}{h_{\xi} h_{\zeta}} \cdot D_{\eta} V \right) + D_{\zeta} \left(\frac{h_{\zeta}}{h_{\xi} h_{\eta}} \cdot D_{\zeta} V \right) \right\} = -4 \pi \rho$$

H .- CERTAIN CONSTANTS.

 $\pi = 3.14159 \ 26535 \ 89793$

 $\log_{10} \pi = 0.49714 98726 94134$

 $\frac{1}{\pi} = 0.31830 98861 83791$

 $\pi^2 = 9.86960 \ 44010 \ 89359$

 $\sqrt{\pi} = 1.77245 38509 05516$

 $\log_{10} 2 = 0.30102 99956 63981$

 $e = 2.71828 \ 18284 \ 59045$

 $\log_{10} e = 0.43429 44819 03252$

 $\log_e 10 = 2.30258 50929 94046$

 $\log_e 2 = 0.69314 71805 59945$

 $\log_{10} \log_{10} e = 9.63778 \ 43113 \ 00537$

 $\log_e \pi = 1.14472 98858 49400$

I .- GENERAL FORMULAS OF INTEGRATION.

F and f represent functions of x, and F', f', F'', f'', their first and second derivatives with respect to x.

898.
$$\int F' \cdot f \cdot dx = F \cdot f - \int F \cdot f' \cdot dx.$$
899.
$$\int (F)^n \cdot F' \cdot dx = (F)^{n+1}/(n+1).$$
900.
$$\int (aF+b)^n \cdot F' \cdot dx = (aF+b)^{n+1}/a \ (n+1).$$
901.
$$\int (F+f)^n \cdot dx = \int F(F+f)^{n-1} dx + \int f(F+f)^{n-1} dx.$$
902.
$$\int F'/(F)^n \cdot dx = -1/(n-1)(F)^{n-1}, \int F'/F \cdot dx = \log F.$$
903.
$$\int (F' \cdot f - F \cdot f')/(f)^2 \cdot dx = F/f.$$
904.
$$\int (F' \cdot f - F \cdot f')/F f \cdot dx = \log (F/f).$$
905.
$$\int \frac{dx}{F \cdot (x^2 - a^2)} = \frac{1}{2a} \int \frac{dx}{F \cdot (x - a)} - \frac{1}{2a} \int \frac{dx}{F \cdot (x + a)}.$$
906.
$$\int \frac{dx}{F(F \pm f)} = \pm \int \frac{dx}{F \cdot f} \mp \int \frac{dx}{f(F \pm f)}.$$
907.
$$\int \frac{F' \cdot dx}{\sqrt{aF+b}} = (2\sqrt{aF+b})/a.$$
908.
$$\int \frac{F' \cdot dx}{\sqrt{F^2 + a}} = \log (F + \sqrt{F^2 + a}).$$
909.
$$\int \frac{F \cdot dx}{(F+a)(F+b)} = \frac{a}{a-b} \int \frac{dx}{F+a} - \frac{b}{a-b} \int \frac{dx}{F+b}.$$
910.
$$\int \frac{F \cdot dx}{(F+f)^n} = \int \frac{dx}{(F+f)^{n-1}} - \int \frac{f \, dx}{(F+f)^n}.$$

911. $\int \frac{F' \cdot dx}{x^2 + a^2 F^2} = \frac{1}{na} \cdot \tan^{-1} \frac{qF}{x^2}, \quad \int \frac{F' \cdot dx}{a^2 F^2 - x^2} = \frac{1}{2na} \log \frac{qF - p}{aF + x^2}$

$$\begin{aligned} \mathbf{912.} & \int \frac{F^{2n} \cdot dx}{1 - F^{2n}} = -x + \int \frac{dx}{1 - F^{2n}} \cdot \\ \mathbf{913.} & \int \frac{F' \cdot dx}{F^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{F}{a} \right) \cdot \\ \mathbf{914.} & \int \frac{F' \cdot dx}{a^2 F^2 - b^2} = \frac{1}{2 a b} \log \frac{aF - b}{aF + b} \cdot \\ \mathbf{915.} & \int \frac{F^{2n} \cdot dx}{F^{2n} - b^2} = \int \frac{F^{n} \cdot dx}{2 \left(F^{n} - b \right)} + \int \frac{F^{n} \cdot ax}{2 \left(F^{n} + b \right)} \cdot \\ \mathbf{916.} & \int \frac{F' \cdot dx}{\sqrt{b^2 - F^2}} = \sin^{-1} \left(\frac{F}{b} \right) \cdot \\ \mathbf{917.} & \int \frac{F' \cdot dx}{aF^2 + bF} = \frac{1}{b} \log \frac{F}{aF + b} \cdot \\ \mathbf{918.} & \int \frac{F' \cdot dx}{aF^2 - bF} = \frac{1}{b} \log \frac{aF - b}{F} \cdot \\ \mathbf{919.} & \int \frac{F'}{F \sqrt{F^2 - b^2}} = \frac{1}{b} \sec^{-1} \left(\frac{F}{b} \right) \cdot \\ \mathbf{920.} & \int \frac{(F' \cdot f - F \cdot f') dx}{F^2 + f^2} = \tan^{-1} \left(\frac{F}{f} \right) \cdot \end{aligned}$$

J — Integrals Useful in the Theory of Alternating Currents.

921. $\int \frac{(F' \cdot f - F \cdot f') dx}{F^2 \cdot f^2} = \frac{1}{2} \log \left(\frac{F - f}{F + f} \right).$

922.
$$\int \sin(\omega t + \phi) dt = -\frac{1}{\omega} \cdot \cos(\omega t + \phi).$$
923.
$$\int \cos(\omega t + \phi) dt = \frac{1}{\omega} \cdot \sin(\omega t + \phi).$$
924.
$$\int \sin^2(\omega t + \phi) dt = \frac{1}{2}t - \frac{1}{4\omega}\sin 2(\omega t + \phi).$$

925.
$$\int \sin(\omega t + \phi) \cdot \cos(\omega t + \phi) dt = \frac{1}{2\omega} \cdot \sin^2(\omega t + \phi).$$

926.
$$\int \cos^2(\omega t + \phi) dt = \frac{1}{2}t + \frac{1}{4\omega} \sin 2(\omega t + \phi).$$

927.
$$\int \sin(\omega t + \lambda) \cdot \sin(\omega t + \mu) dt = \frac{\cos(\mu - \lambda)}{2\omega} (\omega t)$$
$$-\frac{\sin(\omega t + \lambda) \cdot \cos(\omega t + \mu)}{2\omega}$$

928.
$$\int \sin(\omega t + \lambda) \cdot \cos(\omega t + \mu) dt = \frac{\sin(\omega t + \lambda) \cdot \sin(\omega t + \mu)}{2\omega} - \frac{\sin(\mu - \lambda)}{2\omega} (\omega t).$$

929.
$$\int \cos(\omega t + \lambda) \cdot \cos(\omega t + \mu) dt = \frac{\cos(\mu - \lambda)}{2\omega} (\omega t) + \frac{\sin(\omega t + \lambda) \cdot \cos(\omega t + \lambda)}{2\omega}$$

930.
$$\int \sin(mt + \lambda) \cdot \sin(nt + \mu) dt = \frac{\sin[mt - nt + \lambda - \mu]}{2(m - n)}$$
$$-\frac{\sin[mt + nt + \lambda + \mu]}{2(m + n)}.$$

931.
$$\int \cos(mt + \lambda) \cdot \cos(nt + \mu) dt = \frac{\sin[mt + nt + \lambda + \mu]}{2(m+n)} + \frac{\sin[mt - nt + \lambda - \mu]}{2(m-n)}.$$

932.
$$\int \sin(mt + \lambda) \cdot \cos(nt + \mu) dt = -\frac{\cos[mt + nt + \lambda + \mu]}{2(m+n)} - \frac{\cos[mt - nt + \lambda - \mu]}{2(m-n)}.$$

933.
$$\int \cos(\omega t + \lambda + mx) \cdot \cos(\omega t + \lambda - mx) dx$$

$$= \cos^{2}(\omega t + \lambda) \left[\frac{mx + \sin mx \cdot \cos mx}{2m} \right]$$

$$- \sin^{2}(\omega t + \lambda) \left[\frac{mx - \sin mx \cdot \cos mx}{2m} \right] \cdot$$

$$\left\{ m \cdot \sin(\omega t + \phi) + n \cdot \cos(\omega t + \phi) = \sqrt{m^{2} + n^{2}} \cdot \sin(\omega t + \phi + \hat{\theta}) \right\}$$
where $\tan \hat{\theta} = n/m$.
$$m \cdot \sin(\omega t + \phi) - n \cdot \cos(\omega t + \phi) = \sqrt{m^{2} + n^{2}} \cdot \sin(\omega t + \phi - \hat{\theta}) \cdot$$
934.
$$\int e^{(-b \pm ci)t} dt = \frac{-b \mp ci}{b^{2} + c^{2}} e^{(-b \pm ci)t}$$

934.
$$\int e^{(-b \pm ci)t} dt = \frac{-b \mp ci}{b^2 + c^2} e^{(-b \pm ci)t}$$

$$= \frac{e^{-bt}}{b^2 + c^2} [(c \cdot \sin ct - b \cdot \cos ct) \mp i (b \cdot \sin ct + c \cdot \cos ct)]$$

$$= \frac{e^{-bt}}{\sqrt{b^2 + c^2}} [\sin (ct - \delta) \mp i \cdot \cos (ct - \delta)],$$
where $\tan \delta = b/c$.

935.
$$\int e^{\alpha t} \cdot \cos(\omega t + \phi) dt$$

$$= \frac{e^{\alpha t}}{\alpha^2 + \omega^2} [\omega \sin(\omega t + \phi) + \alpha \cdot \cos(\omega t + \phi)]$$

$$= \frac{e^{\alpha t}}{\sqrt{\alpha^2 + \omega^2}} \cos[\omega t + \phi - \tan^{-1}(\omega/\alpha)].$$

936.
$$\int e^{\alpha t} \cdot \sin(\omega t + \phi) dt$$

$$= \frac{e^{\alpha t}}{\alpha^2 + \omega^2} [\alpha \cdot \sin(\omega t + \phi) - \omega \cdot \cos(\omega t + \phi)]$$

$$= \frac{e^{\alpha t}}{\sqrt{\alpha^2 + \omega^2}} \sin[\omega t + \phi - \tan^{-1}(\omega/\alpha)].$$

937.
$$\int \left[e^{at} \cdot \sin \left(\omega t + \phi \right) \right]^{2} dt$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} - \frac{\omega \cdot \sin 2 \left(\omega t + \phi \right) + \alpha \cdot \cos 2 \left(\omega t + \phi \right)}{a^{2} + \omega^{2}} \right]$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} - \frac{\cos \left[2 \omega t + 2 \phi - \tan^{-1} \left(\omega / \alpha \right) \right]}{\sqrt{\alpha^{2} + \omega^{2}}} \right].$$

938.
$$\int [e^{at} \cdot \cos(\omega t + \phi)]^2 dt$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} + \frac{\omega \cdot \sin 2(\omega t + \phi) + \alpha \cdot \cos 2(\omega t + \phi)}{a^2 + \omega^2} \right]$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} + \frac{\cos \left[2\omega t + 2\phi - \tan^{-1}(\omega/\alpha) \right]}{\sqrt{a^2 + \omega^2}} \right].$$

In the case of a direct trigonometric function of $(\omega t + \phi)$, $T = 2 \pi/\omega$ is called the *period* or the *cycle*. The mean value for any whole number of periods, reckoned from any epoch, of $\sin(\omega t + \phi)$, $\cos(\omega t + \phi)$, or $\sin(\omega t + \phi) \cdot \cos(\omega t + \phi)$, is zero, whereas the mean value for any whole number of half periods, reckoned from any epoch, of either $\sin^2(\omega t + \phi)$ or $\cos^2(\omega t + \phi)$ is one half. The mean value of $\sin(\omega t)$ from t = 0 to $t = \frac{1}{2}T$, or of $\cos(\omega t)$ from t = 0 to $t = \frac{1}{4}T$, is t = 0 to t = 0.

The mean value, for any number of whole periods, of either $\sin(\omega t + \lambda) \cdot \sin(\omega t + \mu)$ or $\cos(\omega t + \lambda) \cdot \cos(\omega t + \mu)$ is $\frac{1}{2} \cdot \cos(\lambda - \mu)$, while the mean value of $\sin(\omega t + \lambda) \cdot \cos(\omega t + \mu)$ is $\frac{1}{2} \sin(\lambda - \mu)$.

INTERPOLATION.

If values of an analytic function, f(x), are given in a table for a number of values of the argument x, separated from one another consecutively by the constant small interval, δ , the differences between successive tabular values of the function are called *first tabular differences*, the differences of these first differences, second tabular differences, and so on. The tabular differences of the first, second, third, and fourth orders corresponding to x = a are

$$\begin{split} & \Delta_1 \equiv f(a+\delta) - f(a), \\ & \Delta_2 \equiv f(a+2\delta) - 2 \cdot f(a+\delta) + f(a), \\ & \Delta_3 \equiv f(a+3\delta) - 3 \cdot f(a+2\delta) + 3 \cdot f(a+\delta) - f(a), \\ & \Delta_4 \equiv f(a+4\delta) - 4 \cdot f(a+3\delta) + 6 \cdot f(a+2\delta) - 4 \cdot f(a+\delta) + f(a), \end{split}$$

where f(a) is any tabulated value.

The value of the function for x = (a + h), where $h = k\delta$, is

$$f(a+h) = f(a) + k \cdot \Delta_1 + \frac{k(k-1)}{2!} \cdot \Delta_2 + \frac{k(k-1)(k-2)}{3!} \cdot \Delta_3 + \frac{k(k-1)(k-2)(k-3)}{4!} \cdot \Delta_4 + \cdots$$

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

				`						
x	0	1	2	3	4	5	6	7	8	9
0.00	0.00000	00113	00226	00339	00451	00564	00677	00790	00903	01016
0.01	0.01128	01241	01354	01467	01580	01792	01805	01918	02031	02144
0.02	0.02256	02369	02482	02595	02708	02820	02933	03046	03159	03271
0.03	0.03384	03497	03610	03722	03835	03948	04060	04173	04286	04398
0.04	0.04511	04624	04736	04849	04962	05074	05187	05299	05412	05525
0.05	0.05637	05750	05862	05975	06087	06200	06312	06425	06537	06650
0.06	0.06762	06875	06987	07099	07212	07324	07437	07549	07661	07773
0.07	0.07886	07998	08110	08223	08335	08447	08559	08671	08784	08896
0.08	0.09008	09120	09232	09344	09456	09568	09680	09792	09904	10016
0.09	0.10128	10240	10352	10464	10576	10687	10799	10911	11023	11135
0.10	0.11246	11358	11470	11581	11693	11805	11916	12028	12139	12251
0.11	0.12362	12474	12585	12697	12808	12919	13031	13142	13253	13365
0.12	0.13476	13587	13698	13809	13921	14032	14143	14254	14365	14476
0.13	0.14587	14698	14809	14919	15030	15141	15252	15363	15473	15584
0.14	0.15695	15805	15916	16027	16137	16248	16358	16468	16579	16689
0.15	0.16800	16910	17020	17130	17241	17351	17461	17571	17681	17791
0.16	0.17901	18011	18121	18231	18341	18451	18560	18670	18780	18890
0.17	0.18999	19109	19218	19328	19437	19547	19656	19766	19875	19984
0.18	0.20094	20203	20312	20421	20530	20639	20748	20857	20966	21075
0.19	0.21184	21293	21402	21510	21619	21728	21836	21945	22053	22162
0.20	0.22270	22379	22487	22595	22704	22812	22920	23028	23136	23244
0.21	0.23352	23460	23568	23676	23784	23891	23999	24107	24214	24322
0.22	0.24430	24537	24645	24752	24859	24967	25074	25181	25288	25395
0.23	0.25502	25609	25716	25823	25930	26037	26144	26250	26357	26463
0.24	0.26570	26677	26783	26889	26996	27102	27208	27314	27421	27527
0.25	0.27633	27739	27845	27950	28056	28162	28268	28373	28479	28584
0.26	0.28690	28795	28901	29006	29111	29217	29322	29427	29532	29637
0.27	0.29742	29847	29952	30056	30161	30266	30370	30475	30579	30684
0.28	0.30788	30892	30997	31101	31205	31309	31413	31517	31621	31725
0.29	0.31828	31922	32036	32139	32243	32346	32450	32553	32656	32760
0.30	0.32863	32966	33069	33172	33275	33378	33480	33583	33686	33788
0.31	0.33891	33993	34096	34198	34300	34403	34505	34607	34709	34811
0.32	0.34913	35014	35116	35218	35319	35421	35523	35624	35725	35827
0.33	0.35928	36029	36130	36231	36332	36433	36534	36635	36735	36836
0.34	0.36936	37037	37137	37238	37338	37438	37538	37638	37738	37838
0.35	0.37938	38038	38138	38237	38337	38436	38536	38635	38735	38834
0.36	0.38933	39032	39131	39230	39329	39428	39526	39625	39724	39822
0.37	0.39921	40019	40117	40215	40314	40412	40510	40608	40705	40803
0.38	0.40901	40999	41096	41194	41291	41388	41486	41583	41680	41777
0.39	0.41874	41971	42068	42164	42261	42358	42454	42550	42647	42743
0.40	0.42839	42935	43031	43127	43223	43319	43415	43510	43606	43701
0.41	0.43797	43892	43988	44083	44178	44273	44368	44463	44557	44652
0.42	0.44747	44841	44936	45030	45124	45219	45313	45407	45501	45595
0.43	0.45689	45782	45876	45970	46063	46157	46250	46343	46436	46529
0.44	0.46623	46715	46808	46901	46994	47086	47179	47271	47364	47456
0.45	0.47548	47640	47732	47824	47916	48008	48100	48191	48283 49193	48374 49284
0.46	0.48466	48557	48648	48739	48830	48921	49012	49103	50096	50185
0.47 0.48	0.49375 0.50275	49465	49555 50454	49646 50543	49736 50633	49826 50722	49916 50811	50006 50900	50096	51078
0.48	0.50275	50365 51256	51344	51433	51521	51609	51698	51786	51874	51962
U.T9	0.31107	31230	JIJTT	01100	31321	31009	31070	51700	51077	01702

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

x	0	1	2	3	4	5	6	7	8	9
0.50	0.52050	52138	52226	52313	52401	52488	52576	52663	52750	52837
0.51	0.52924	53011	53098	53185	53272	53358	53445	53531	53617	53704
0.52	0.53790	53876	53962	54048	54134	54219	54305	54390	54476	54561
0.53	0.54646	54732	54817	54902	54987	55071	55156	55241	55325	55410
0.54	0.55494	55578	55662	55746	55830	55914	55998	56082	56165	56249
0.55	0.56332	56416	56499	56582	56665	56748	56831	56914	56996	57079
0.56	0.57162	57244	57326	57409	57491	57573	57655	57737	57818	57900
0.57	0.57982	58063	58144	58226	58307	58388	58469	58550	58631	58712
0.58	0.58792	58873	58953	59034	59114	59194	59274	59354	59434	59514
0.59	0.59594	59673	59753	59832	59912	59991	60070	60149	60228	60307
0.60	0.60386	60464	60543	60621	60700	60778	60856	60934	61012	61090
0.61	0.61168	61246	61323	61401	61478	61556	61633	61710	61787	61864
0.62	0.61941	62018	62095	62171	62248	62324	62400	62477	62553	62629
0.63	0.62705	62780	62856	62932	63007	63083 63832	63158 63906	63233 63981	63309	63384 64129
	0.63459	63533	63608	63683	63757				64055	
0.65	0.64203	64277 65011	64351	64424 65156	64498 65229	64572 65301	64645 65374	64718 65446	64791 65519	64865 65591
0.67	0.65663	65735	65083 65807	65878	65950	66022	66093	66165	66236	66307
0.68	0.66378	66449	66520	66591	66662	66732	66803	66873	66944	67014
0.69	0.67084	67154	67224	67294	67364	67433	67503	67572	67642	67711
0.70	0.67780	67849	67918	67987	68056	68125	68193	68262	68330	68398
0.71	0.68467	68535	68603	68671	68738	68806	68874	68941	69009	69076
0.72	0.69143	69210	69278	69344	69411	69478	69545	69611	69678	69744
0.73	0.69810	69877	69943	70009	70075	70140	70206	70272	70337	70403
0.74	0.70468	70533	70598	70663	70728	70793	70858	70922	70987	71051
0.75	0.71116	71180	71244	71308	71372	71436	71500	71563	71627	71690
0.76	0.71754	71817	71880	71943	72006	72069	72132	72195	72257	72320
0.77	0.72382	72444	72507	72569	72631	72693	72755	72816	72878	72940
0.78	0.73001	73062	73124	73185	73246	73307	73368	73429	73489	73550
0.79	0.73610	73671	73731	73791	73851	73911	73971	74031	74091	74151
0.80	0.74210	74270	74329	74388	74447	74506	74565	74624	74683	74742
0.81	0.74800	74859	74917	74976	75034	75092	75150	75208	75266	75323
0.82	0.75381	75439	75496	75553	75611	75668	75725	75782	75839	75896
0.83	0.75952	76009	76066	76122	76178	76234	76291	76347	76403	76459
0.84	0.76514	76570	76626	76681	76736	76792	76847	76902	76957	77012
0.85	0.77067	77122	77176	77231	77285	77340	77394	77448	77502	77556
0.86	0.77610	77664	77718	77771	77825 78355	77878	77932	77985	78038 78565	78091
0.87	0.78144	78197	78250	78302 78824	78876	78408	78460	78512 79031	79082	78617 79133
0.88 0.89	0.78669 0.79184	78721	78773 79286	79337	79388	78928 79439	78979 79489	79540	79590	79641
0.89	0.79184	79235 79741	79791	79841	79891	79941	79990	80040	80090	80139
0.90	0.80188	80238	80287	80336	80385	80434	80482	80531	80580	80628
0.92	0.80677	80725	80773	80822	80870	80918	80966	81013	81061	81109
0.92	0.81156	81204	81251	81299	81346	81393	81440	81487	81534	81580
0.94	0.81627	81674	81720	81767	81813	81859	81905	81951	81997	82043
0.95	0.82089	82135	82180	82226	82271	82317	82362	82407	82452	82497
0.96	0.82542	82587	82632	82677	82721	82766	82810	82855	82899	82943
0.97	0.82987	83031	83075	83119	83162	83206	83250	83293	83337	83380
0.98	0.83423	83466	83509	83552	83595	83638	83681	83723	83766	83808
0.99	0.83851	83893	83935	83977	84020	84061	84103	84145	84187	84229

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

\overline{x}	0	1	2	3	4	5	6	7	8	9
1.00	0.84270	84312	84353	84394	84435	84477	84518	84559	84600	84640
1.01	0.84681	84722	84762	84803	84843	84883	84924	84964	85004	85044
1.02	0.85084	85124	85163	85203	85243	85282	85322	85361	85400	85439
1.03	0.85478	85517	85556	85595	85634	85673	85711	85750	85788	85827
1.04	0.85865	85903	85941	85979	86017	86055	86093	86131	86169	86206
1.05	0.86244	86281	86318	86356	86393	86430	86467	86504	86541	86578
1.06	0.86614	86651	86688	86724	86760	86797	86833	86869	86905	86941
1.07	0.86977	87013	87049	87085	87120	87156	87191	87227	87262	87297
1.08	0.87333	87368	87403	87438	87473	87507	87542	87577	87611	87646
1.09	0.87680	87715	87749	87783	87817	87851	87885	87919	87953	87987
1.10	0.88021	88054	88088	88121	88155	88188	88221	88254	88287	88320
1.11	0.88353	88386	88419	88452	88484	88517	88549	88582	88614	88647
1.12	0.88679	88711	88743	88775	88807	88839	88871	88902	88934	88966
1.13	0.88997	89029	89060	89091	89122	89154	89185	89216	89247	89277
1.13	0.89308	89339	89370	89400	89431	89461	89492	89522	89552	89582
1.15		89642		89702	89732	89762	89792	89821	89851	89880
1.16	0.89612 0.89910	89939	89672 89968	89997	90027	90056	90085	90114	90142	90171
1.17	0.89910	90229	90257	90286	90027	90036	90083	90399	90142	90171
				90286						
1.18	0.90484	90512	90540	90308	90595	90623	90651	90678	90706	90733
1.19 1.20	0.90761	90788	90815	90843 91111	90870	90897	90924	90951 91217	90978	91005 91269
1.20	0.91031	91058	91085		91138	91164	91191		91243	
1.21	0.91296	91322	91348	91374	91399	91425	91451	91477	91502	91528
1.22	0.91553	91579	91604	91630	91655	91680	91705	91730	91755	91780
1.23	0.91805	91830	91855	91879	91904	91929 92171	91953	91978	92002 92243	92026
1.24	0.92051	92075	92099	92123	92147		92195	92219		92266
1.25	0.92290	92314	92337	92361	92384	92408	92431	92454	92477	92500
1.26	0.92524	92547	92570	92593 92819	92615	92638	92661	92684	92706	92729
1.27	0.92751	92774	92796		92841	92863	92885	92907	92929	92951
1.28	0.92973	92995	93017	93039	93061	93082	93104	93126	93147	93168
1.29	0.93190	93211	93232	93254	93275	93296	93317	93338	93359 93566	93380
1.30	0.93401	93422	93442	93463	93484	93504	93525 93727	93545 93747	93767	93586
1.31	0.93606	93627	93647	93667	93687	93707		93747	93767	93787 93982
1.32	0.93807	93826	93846	93866	93885	93905	93924			
1.33	0.94002	94021	94040	94059	94078	94097	94116	94135	94154	94173
1.34	0.94191	94210	94229	94247	94266	94284	94303	94321 94503	94340	94358
1.35	0.94376	94394	94413	94431	94449	94467	94485		94521	94538
1.36	0.94556	94574	94592	94609	94627	94611	94662	94679	94697	94714
1.37	0.94731	94748	94766	94783	94800	94817	94834	94851	94868	94885
1.38	0.94902	94918	94935	94952	94968	94985	95002	95018	95035	95051
1.39	0.95067	95084	95100	95116	95132	95148	95165	95181	95197	95213
1.40	0.95229	95244	95260	95276	95292	95307	95323	95339	95354	95370
1.41	0.95385	95401	95416	95431	95447	95462	95477	95492	95507	95523
1.42	0.95538	95553	95568	95582	95597	95612	95627	95642	95656	95671
1.43	0.95686	95700	95715	95729	95744	95758	95773	95787	95801	95815
1.44	0.95830	95844	95858	95872	95886	95900	95914	95928	95942	95956
1.45	0.95970	95983	95997	96011	96024	96038	96051	96065	96078	96092
1.46	0.96105	96119	96132	96145	96159	96172	96185	96198	96211	96224
1.47	0.96237	96250	96263	96276	96289	96302	96315	96327	96340	96353
1.48	0.96365	96378	96391	96403	96416	96428	96440	96453	96465	96478
1.49	0.96490	96502	96514	96526	96539	96551	96563	96575	96587	96599

119

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}} \int_0^{\bullet x} e^{-x^2} dx.\right)$$

x	0	2	4	6	8	x	0	2	4	6	8
1.50	0.96611	96634	96658	96681	96705	2.00	0.99532	99536	99540	99544	99548
1.51	0.96728	96751	96774	96796	96819	2.01	0.99552	99556	99560	99564	99568
1.52	0.96841	96864	96886	96908	96930	2.02	0.99572	99576	99580	99583	99587
1.53	0.96952	96973	96995	97016	97037	2.03	0.99591	99594	99598	99601	99605
1.54	0.97059					2.04	0.99609				
1.55	0.97162				97243	2.05	0.99626			99636	
1.56	0.97263					2.06	0.99642				
1.57	0.97360					2.07	0.99658				
1.58	0.97455					2.08	0.99673				
1.59	0.97546					2.09	0.99688				
1.60						2.10	0.99702				
1.61	0.97635					2.10					
	0.97721						0.99715			99723	
1.62	0.97804					2.12	0.99728				
1.63	0.97884					2.13	0.99741			99748	
1.64	0.97962					2.14	0.99753			99759	
1.65	0.98038					2.15	0.99764				
1.66	0.98110					2.16	0.99775			99781	
1.67	0.98181					2.17	0.99785				
1.68	0.98249					2.18	0.99795				
1.69	0.98315					2.19	0.99805				
1.70	0.98379	98392	98404	98416	98429	2.20	0.99814	99815	99817	99819	99821
1.71	0.98441					2.21	0.99822				
1.72	0.98500	98512	98524	98535	98546	2.22	0.99831	99832	99834	99836	99837
1.73	0.98558	98569	98580	98591	98602	2.23	0.99839	99840	99842	99843	99845
1.74	0.98613	98624	98635	98646	98657	2.24	0.99846	99848	99849	99851	99852
1.75	0.98667	98678	98688	98699	98709	2.25	0.99854	99855	99857	99858	99859
1.76	0.98719	98729	98739	98749	98759	2.26	0.99861	99862	99863	99865	99866
1.77	0.98769	98779	98789	98798	98808	2.27	0.99867	99869	99870	99871	99873
1.78	0.98817	98827	98836	98846	98855	2.28	0.99874	99875	99876	99877	99879
1.79	0.98864	98873	98882	98891	98900	2.29	0.99880	99881	99882	99883	99885
1.80	0.98909	98918	98927	98935	98944	2.30	0.99886	99887	99888	99889	99890
1.81	0.98952				98986	2.31	0.99891	99892	99893	99894	99896
1.82	0.98994					2.32	0.99897				
1.83	0.99035	99043	99050	99058	99066	2.33	0.99902	99903	99904	99905	99906
1.84	0.99074					2.34	0.99906				
1.85	0.99111				99140	2.35	0.99911				
1.86	0.99147					2.36	0.99915				
1.87	0.99182				99209	2.37	0.99920			99922	
1.88	0.99216				99242	2.38	0.99924			99926	
1.89	0.99248				99273	2.39	0.99928				
1.90	0.99279				99303	2.40	0.99931			99933	
1.91	0.99279				99332	2.41	0.99935	99935		99937	
1.92	0.99338				99360	2.42	0.99938				
1.92							0.99933			99943	
	0.99366				99387	2.43					
1.94	0.99392				99413	2.44	0.99944			99946	
1.95	0.99418				99438	2.45	0.99947			99949	
1.96	0.99443				99462	2.46	0.99950			99951	
1.97	0.99466					2.47	0.99952			99954	
1.98	0.99489					2.48	0.99955	99955		99956	
1.99	0.99511					2.49	0.99957			99958	
2.00	0.99532	99536	99540	99544	99548	2.50	0.99959	99960	99960	99961	99961

120 TABLES.

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

x	0	1	2	3	4	5	6	7	8	9
2.5	0.99959	99961	99963	99965	99967	99969	99971	99972	99974	99975
2.6	0.99976	99978	99979	99980	99981	99982	99983	99984	99985	99986
2.7	0.99987	99987	99988	99989	99989	99990	99991	99991	99992	99992
2.8	0.99992	99993	99993	99994	99994	99994	99995	99995	99995	99996
2.9	0.99996	99996	99996	99997	99997	99997	99997	99997	99997	99998
3.0	0.99998	99998	99998	99998	99998	99998	99998	99998	99999	99999

The value, I, of the Probability Integral may always be found from the convergent series

$$I = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \right),$$

but for large values of x, the semiconvergent series

$$I = 1 - \frac{e^{-x}}{x\sqrt{\pi}} \left(1 - \frac{1}{2x^2} + \frac{1 \cdot 3}{(2x^2)^2} - \frac{1 \cdot 3 \cdot 5}{(2x^2)^3} + \cdots \right)$$

is convenient.

Values of the Complete Elliptic Integrals, K and E, for Different Values of the Modulus, k.

$$K = \int_0^{\frac{\pi}{2}} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}} \, ; \, \, E = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 z} \cdot dz .$$

$\sin^{-1}k$	K	- E	$\sin^{-1}k$	K	E	$\sin^{-1}k$	K	E
00	1.5708	1.5708	30°	1.6858	1.4675	60°	2.1565	1.2111
10	1.5709	1.5707	310	1.6941	1.4608	61°	2.1842	1.2015
2°	1.5713	1.5703	32°	1.7028	1.4539	62°	2.2132	1.1920
30	1.5719	1.5697	330	1.7119	1.4469	63°	2.2435	1.1826
40	1.5727	1.5689	340	1.7214	1.4397	640	2.2754	1.1732
50	1.5738	1.5678	350	1.7312	1.4323	65°	2.3088	1.1638
60	1.5751	1.5665	36°	1.7415	1.4248	66°	2.3439	1.1545
70	1.5767	1.5649	370	1.7522	1.4171	67°	2.3809	1.1453
S°	1.5785	1.5632	380	1.7633	1.4092	68°	2,4198	1.1362
90	1.5805	1.5611	390	1.7748	1.4013	69°	2.4610	1.1272
10°	1.5828	1.5589	400	1.7868	1.3931	70°	2,5046	1.1184
110	1.5854	1.5564	410	1.7992	1.3849	71°	2.5507	1.1096
12°	1.5882	1.5537	420	1.8122	1.3765	72°	2.5998	1.1011
130	1.5913	1.5507	430	1.8256	1.3680	730	2.6521	1.0927
140	1.5946	1.5476	440	1.8396	1.3594	740	2.7081	1.0844
15°	1.5981	1.5442	450	1.8541	1.3506	75°	2.7681	1.0764
16°	1.6020	1.5405	46°	1.8691	1.3418	76°	2.8327	1.0686
17°	1.6061	1.5367	470	1.8848	1.3329	770	2.9026	1.0611
18°	1.6105	1.5326	48°	1.9011	1.3238	78°	2.9786	1.0538
190	1.6151	1.5283	490	1.9180	1.3147	79°	3.0617	1.0468
20°	1.6200	1.5238	50°	1.9356	1.3055	80°	3.1534	1.0401
21°	1.6252	1.5191	51°	1.9539	1.2963	81°	3.2553	1.0338
22°	1.6307	1.5141	52°	1.9729	1.2870	82°	3.3699	1.0278
23°	1.6365	1.5090	53°	1.9927	1.2776	S3°	3.5004	1.0223
24°	1.6426	1.5037	540	2.0133	1.2681	840	3.6519	1.0172
25°	1.6490	1.4981	55°	2.0347	1.2587	850	3.8317	1.0127
26°	1.6557	1.4924	56°	2.0571	1.2492	86°	4.0528	1.0086
27°	1.6627	1.4864	57°	2.080+	1.2397	87°	4.3387	1.0053
28°	1.6701	1.4803	58°	2.1047	1.2301	88°	4.7427	1.0026
290	1.6777	1.4740	59°	2.1300	1.2206	89°	5.4349	1.0008

Values of $F(k, \phi)$ for Certain Values of k and ϕ .

$$F(k, \phi) = \int_0^{\phi} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}}.$$

φ				α	= sin-1	k.			
·	00	10°	15°	30°	45°	60°	75°	80°	90°
1°	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174
20	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349
30	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524
40	0.0698	0.0698	0.0698	0.0698	0.0698	0.0699	0.0699	0.0699	0.0699
50	0.0873	0.0873	0.0873	0.0873	0.0873	0.0874	0.0874	0.0874	0.0874
10°	0.1745	0.1746	0.1746	0.1748	0.1750	0.1752	0.1754	0.1754	0.1754
15°	0.2618	0.2619	0.2620	0.2625	0.2633	0.2641	0.2646	0.2647	0.2648
2 0°	0.3491	0.3493	0.3495	0.3508	0.3526	0.3545	0.3559	0.3562	0.3564
25°	0.4363	0.4367	0.4372	0.4397	0.4433	0.4470	0.4498	0.4504	0.4509
30°	0.5236	0.5243	0.5251	0.5294	0.5356	0.5422	0.5474	0.5484	0.5493
35°	0.6109	0.6119	0.6132	0.6200	0.6300	0.6408	0.6495	0.6513	0.6528
40°	0.6981	0.6997	0.7016	0.7116	0.7267	0.7436	0.7574	0.7604	0.7629
450	0.7854	0.7876	0.7902	0.8044	0.8260	0.8512	0.8727	0.8774	0.8814
50°	0.8727	0.8756	0.8792	0.8982	0.9283	0.9646	0.9971	1.0044	1.0107
55°	0.9599	0.9637	0.9683	0.9933	1.0337	1.0848	1.1331	1.1444	1.1542
60°	1.0472	1.0519	1.0577	1.0896	1.1424	1.2125	1.2837	1.3014	1.3170
65°	1.1345	1.1402	1.1474	1.1869	1.2545	1.3489	1.4532	1.4810	1.5064
70°	1.2217	1.2286	1.2373	1.2853	1.3697	1.4944	1.6468	1.6918	1.7354
75°	1.3090	1.3171	1.3273	1.3846	1.4879	1.6492	1.8714	1.9468	2.0276
80°	1.3963	1.4056	1.4175	1.4846	1.6085	1.8125	2.1339	2.2653	2.4362
85°	1.4835	1.4942	1.5078	1.5850	1.7308	1.9826	2.4366	2.6694	3.1313
86°	1.5010	1.5120	1.5259	1.6052	1.7554	2.0172	2.5013	2.7612	3.3547
87°	1.5184	1.5297	1.5439	1.6253	1.7801	2.0519	2.5670	2.8561	3.6425
88°	1.5359	1.5474	1.5620	1.6454	1.8047	2.0867	2.6336	2.9537	4.0481
89°	1.5533	1.5651	1.5801	1.6656	1.8294	2.1216	2.7007	3.0530	4.7414
90°	1.5708	1.5828	1.5981	1.6858	1.8541	2.1565	2.7681	3.1534	Inf.

Values of $E\left(k,\,\phi\right)$ for Certain Values of k and ϕ . $E\left(k,\,\phi\right)=\int_{0}^{\,\phi}\sqrt{1-k^{2}\sin^{2}z}\cdot dz.$

	$\alpha = \sin^{-1}k$.										
φ	00	10°	15°	30°	45°	60°	75°	80°	900		
10	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174		
20	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349		
30	0.0524	0.0524	0.0524	0.0524	0.0524	0.0523	0.0523	0.0523	0.0523		
40	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698		
50	0.0873	0.0873	0.0873	0.0872	0.0872	0.0872	0.0872	0.0872	0.0872		
10°	0.1745	0.1745	0.1745	0.1743	0.1741	0.1739	0.1737	0.1737	0.1736		
15°	0.2618	0.2617	0.2616	0.2611	0.2603	0.2596	0.2590	0.2589	0.2588		
20°	0.3491	0.3489	0.3486	0.3473	0.3456	0.3438	0.3425	0.3422	0.3420		
25°	0.4363	0.4359	0.4354	0.4330	0.4296	0.4261	0.4236	0.4230	0.4226		
30°	0.5236	0.5229	0.5221	0.5179	0.5120	0.5061	0.5016	0.5007	0.5000		
35°	0.6109	0.6098	0.6085	0.6019	0.5928	0.5833	0.5762	0.5748	0.5736		
40°	0.6981	0.6966	0.6947	0.6851	0.6715	0.6575	0.6468	0.6446	0.6428		
45°	0.7854	0.7832	0.7806	0.7672	0.7482	0.7282	0.7129	0.7097	0.7071		
50°	0.8727	0.8698	0.8663	0.8483	0.8226	0.7954	0.7741	0.7697	0.7660		
55°	0.9599	0.9562	0.9517	0.9284	0.8949	0.8588	0.8302	0.8242	0.8192		
60°	1.0472	1.0426	1.0368	1.0076	0.9650	0.9184	0.8808	0.8728	0.8660		
650	1.1345	1.1288	1.1218	1.0858	1.0329	0.9743	0.9258	0.9152	0.9063		
70°	1.2217	1.2149	1.2065	1.1632	1.0990	1.0266	0.9652	0.9514	0.9397		
75°	1.3090	1.3010	1.2911	1.2399	1.1635	1.0759	0.9992	0.9814	0.9659		
80°	1.3963	1.3870	1.3755	1.3161	1.2266	1.1225	1.0282	1.0054	0.9848		
85°	1.4835	1.4729	1.4598	1.3919	1.2889	1.1673	1.0534	1.0244	0.9962		
86°	1.5010	1.4901	1.4767	1.4070	1.3012	1.1761	1.0581	1.0277	0.9976		
870	1.5184	1.5073	1.4936	1.4221	1.3136	1.1848	1.0628	1.0309	0.9986		
88°	1.5359	1.5245	1.5104	1.4372	1.3260	1.1936	1.0674	1.0340	0.9994		
89°	1.5533	1.5417	1.5273	1.4524	1.3383	1.2023	1.0719	1.0371	0.9998		
90°	1.5708	1.5589	1.5442	1.4675	1.3506	1.2111	1.0764	1.0401	1.0000		

124 TABLES.

Hyperbolic Functions.

Tryperbone ranctions.											
· x	e^x	e-x	$\sinh x$	$\cosh x$	$\operatorname{gd} x$						
0.00	1.0000	1.0000	0.0000	1.0000	0.0000						
.01	1.0100	0.9900	.0100	1.0000	0.5729						
.02	1.0202	.9802	.0200	1.0002	1.1458						
.03	1.0305	.9704	.0300	1.0004	1.7186						
.04	1.0408	.9608	.0400	1.0008	2.2912						
.05	1.0513	.9512	.0500	1.0013	2.8636						
.06	1.0618	.9418	.0600	1.0018	3.4357						
.07	1.0725	.9324	.0701	1.0025	4.0074						
.08	1.0833	.9231	.0801	1.0032	4.5788						
.09	1.0942	.9139	.0901	1.0041	5.1497						
.10	1.1052	.9048	.1002	1.0050	5.720						
.11	1.1163	.8958	.1102	1.0061	6.290						
.12	1.1275	.8869	.1203	1.0072	6.859						
.13	1.1388	.8781	.1304	1.0085	7.428						
.14	1.1503	.8694	.1405	1.0098	7.995						
.15	1.1618	.8607	.1506	1.0113	8.562						
.16	1.1735	.8521	.1607	1.0128	9.128						
.17	1.1853	.8437	.1708	1.0145	9.694						
.18	1.1972	.8353	.1810	1.0162	10.258						
.19	1.2092	.8270	.1911	1.0181	10.821						
.20	1.2214	.8187	.2013	1.0201	11.384						
.21	1.2337	.8106	.2115	1.0221	11.945						
.22	1.2461	.8025	.2218	1.0243	12.505						
.23	1.2586	.7945	.2320	1.0266	13.063						
.24	1.2712	.7866	.2423	1.0289	13.621						
.25	1.2840	.7788	.2526	1.0314	14.177						
.26	1.2969	.7711	.2629	1.0340	14.732						
.27	1.3100	.7634	.2733	1.0367	15.285						
.28	1.3231	.7558	.2837	1.0395	15.837						
.29	1.3364	.7483	.2941	1.0423	16.388						
.30	1.3499	.7408	.3045	1.0453	16.937						
.31	1.3634	.7334	.3150	1.0484	17.484						
.32	1.3771	.7261	.3255	1.0516	18.030						
.33	1.3910	.7189	.3360	1.0549	18.573						
.34	1.4049	.7118	.3466	1.0584	19.116						
.35	1.419I	.7047	.3572	1.0619	19.656						
.36	1.4333	.6977	.3678	1.0655	20.195						
.37	1.4477	.6907	.3785	1.0692	20.732						
.38	1.4623	.6839	.3892	1.0731	21.267						
.39	1.4770	.6771	.4000	1.0770	21.800						
.40	1.4918	.6703	.4108	1.0811	22.331						
.41	1.5068	.6636	.4216	1.0852	22.859						
.42	1.5220	.6570	.4325	1.0895	23.386						
.43	1.5373	.6505	.4434	1.0939	23.911						
.44	1.5527	.6440	.4543	1.0984	24.434						
.45	1.5683	.6376	.4653	1.1030	24.955						
.46	1.5841	.6313	.4764	1.1077	25.473						
.47	1.6000	.6250	.4875	1.1125	25.989						
.48	1.6161	.6188	.4986	1.1174	26.503						
.49	1.6323	.6126	.5098	1.1225	27.015						
0.50	1.6487	0.6065	0.5211	1.1276	27.524						

Note, —This table is taken from Prof. Byerly's Treatise on Fourier's Series, published by Messrs. Ginn & Co.

Hyperbolic Functions.

x e^x e^{-x} $\sinh x$ $\cosh x$	$\operatorname{gd} x$
	gua
0.50 1.6487 0.6065 0.5211 1.1276 .51 1.6653 .6005 .5324 1.1329 .52 1.6820 .5945 .5438 1.1383 .53 1.6989 .5886 .5552 1.1438 .54 1.7160 .5827 .5666 1.1494	27.524 28.031 28.535 29.037 29.537
.55 1.7333 .5770 .5782 1.1551 .56 1.7507 .5712 .5897 1.1609 .57 1.7683 .5655 .6014 1.1669 .58 1.7860 .5599 .6131 1.1730 .59 1.8040 .5543 .6248 1.1792	30.034 30.529 31.021 31.511 31.998
.60 1.8221 .5488 6367 1.1855 .61 1.8404 .5433 .6485 1.1919 .62 1.8589 .5379 .6605 1.1984 .63 1.8776 .5326 .6725 1.2051 .64 1.8965 .5273 .6846 1.2119	32.483 32.965 33.444 33.921 34.395
.65 1.9155 .5220 .6967 1.2188 .66 1.9348 .5169 .7090 1.2258 .67 1.9542 .5117 .7213 1.2330 .68 1.9739 .5066 .7336 1.2402 .69 1.9937 .5016 .7461 1.2476	34.867 35.336 35.802 36.265 36.726
.70 2.0138 .4966 .7586 1.2552 .71 2.0340 .4916 .7712 1.2628 .72 2.0544 .4867 .7838 1.2706 .73 2.0751 .4819 .7966 1.2785 .74 2.0959 .4771 .8094 1.2865	37.183 37.638 38.091 38.540 38.987
.75 2.1170 .4724 .8223 1.2947 .76 2.1383 .4677 .8353 1.3030 .77 2.1598 .4630 .8484 1.3114 .78 2.1815 .4584 .8615 1.3199 .79 2.2034 .4538 .8748 1.3286	39.431 39.872 40.310 40.746 41.179
.80 2.2255 .4493 .8881 1.3374 .81 2.2479 .4449 .9015 1.3464 .82 2.2705 .4404 .9150 1.3555 .83 2.2933 .4360 .9286 1.3647 .84 2.3164 .4317 .9423 1.3740	41.608 42.035 42.460 42.881 43.299
.85 2.3396 .4274 .9561 1.3835 .86 2.3632 .4232 .9700 1.3932 .87 2.3869 .4190 .9840 1.4029 .88 2.4109 .4148 .9981 1.4128 .89 2.4351 .4107 1.0122 1.4229	43.715 44.128 44.537 44.944 45.348
.90 2.4596 .4066 1.0265 1.4331 .91 2.4843 .4025 1.0409 1.4434 .92 2.5093 .3985 1.0554 1.4539 .93 2.5345 .3946 1.0700 1.4645 .94 2.5600 .3906 1.0847 1.4753	45.750 46.148 46.544 46.936 47.326
.95 2.5857 .3867 1.0995 1.4862 .96 2.6117 .3829 1.1144 1.4973 .97 2.6379 .3791 1.1294 1.5085 .98 2.6645 .3753 1.1446 1.5199 .99 2.6912 .3716 1.1598 1.5314	47.713 48.097 48.478 48.857 49.232
1.00 2.7183 0.3679 1.1752 1.5431	49.60 5

 $\sinh x = \tan \operatorname{gd} x$; $\cosh x = \sec \operatorname{gd} x$; $\tanh x = \sin \operatorname{gd} x$.

Hyperbolic Functions.

x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l\cosh x$	x	$l \sinh x$	$l\cosh x$
1.00 1.01 1.02 1.03 1.04	0.0701 .0758 .0815 .0871 .0927	0.1884 .1917 .1950 .1984 .2018	1.50 1.51 1.52 1.53 1.54	0.3282 .3330 .3378 .3426	0.3715 .3754 .3794 .3833 .3873	2.00 2.01 2.02 2.03 2.04	0.5595 .5640 .5685 .5730 .5775	0.5754 .5796 .5838 .5880 .5922
1.05 1.06 1.07 1.08 1.09	.0982 .1038 .1093 .1148 .1203	.2051 .2086 .2120 .2154 .2189	1.55 1.56 1.57 1.58 1.59	.3521 .3569 .3616 .3663	.3913 .3952 .3992 .4032 .4072	2.05 2.06 2.07 2.08 2.09	.5820 .5865 .5910 .5955 .6000	.5964 .6006 .6048 .6090
1.10	.1257	.2223	1.60	.3758	.4112	2.10	.6044	.6175
1.11	.1311	.2258	1.61	.3805	.4152	2.11	.6089	.6217
1.12	.1365	.2293	1.62	.3852	.4192	2.12	.6134	.6259
1.13	.1419	.2328	1.63	.3899	.4232	2.13	.6178	.6301
1.14	.1472	.2364	1.64	.3946	.4273	2.14	.6223	.6343
1.15	.1525	.2399	1.65	.3992	.4313	2.15	.6268	.6386
1.16	.1578	.2435	1.66	.4039	.4353	2.16	.6312	.6428
1.17	.1631	.2470	1.67	.4086	.4394	2.17	.6357	.6470
1.18	.1684	.2506	1.68	.4132	.4434	2.18	.6401	.6512
1.19	.1736	.2542	1.69	.4179	.4475	2.19	.6446	.6555
1.20	.1788	.2578	1.70	.4225	.4515	2.20	.6491	.6597
1.21	.1840	.2615	1.71	.4272	.4556	2.21	.6535	.6640
1.22	.1892	.2651	1.72	.4318	.4597	2.22	.6580	.6682
1.23	.1944	.2688	1.73	.4364	.4637	2.23	.6624	.6724
1.24	.1995	.2724	1.74	.4411	.4678	2.24	.6668	.6767
1.25	.2046	.2761	1.75	.4457	.4719	2.25	.6713	.6809
1.26	.2098	.2798	1.76	.4503	.4760	2.26	.6757	.6852
1.27	.2148	.2835	1.77	.4549	.4801	2.27	.6802	.6894
1.28	.2199	.2872	1.78	.4595	.4842	2.28	.6846	.6937
1.29	.2250	.2909	1.79	.4641	.4883	2.29	.6890	.6979
1.30	.2300	.2947	1.80	.4687	.4924	2.30	.6935	.7022
1.31	.2351	.2984	1.81	.4733	.4965	2.31	.6979	.7064
1.32	.2401	.3022	1.82	.4778	.5006	2.32	.7023	.7107
1.33	.2451	.3059	1.83	.4824	.5048	2.33	.7067	.7150
1.34	.2501	.3097	1.84	.4870	.5089	2.34	.7112	.7192
1.35	.2551	.3135	1.85	.4915	.5130	2.35	.7156	.7235
1.36	.2600	.3173	1.86	.4961	.5172	2.36	.7200	.7278
1.37	.2650	.3211	1.87	.5007	.5213	2.37	.7244	.7320
1.38	.2699	.3249	1.88	.5052	.5254	2.38	.7289	.7363
1.39	.2748	.3288	1.89	.5098	.5296	2.38	.7333	.7406
1.40	.2797	.3326	1.90	.5143	.5337	2.40	.7377	.7448
1.41	.2846	.3365	1.91	.5188	.5379	2.41	.7421	.7491
1.42	.2895	.3403	1.92	.5234	.5421	2.42	.7465	.7534
1.43	.2944	.3442	1.93	.5279	.5462	2.43	.7509	.7577
1.44	.2993	.3481	1.94	.5324	.5504	2.44	.7553	.7619
1.45 1.46 1.47 1.48 1.49	.3041 .3090 .3138 .3186 .3234	.3520 .3559 .3598 .3637 .3676	1.95 1.96 1.97 1.98 1.99	.5370 .5415 .5460 .5505 .5550	.5545 .5687 .5629 .5671 .5713	2.45 2.46 2.47 2.48 2.49	.7597 .7642 .7686 .7730	.7662 .7705 .7748 .7791 .7833
1.50	0.3282	0.3715	2.00	0.5595	0.5754	2.50	0.7818	0.7876

Hyperbolic Functions.

x	$l \sinh x$	$l\cosh x$	x	$l \sinh x$	$l\cosh x$	x	$l \sinh x$	$l\cosh x$
2.50	0.7818	0.7876	2.75	0.8915	0.8951	3.0	1.0008	1.0029
2.51	.7862	.7919	2.76	.8959	.8994	3.1	1.0444	1.0462
2.52	.7906	.7962	2.77	.9003	.9037	3.2	1.0880	1.0894
2.53	.7950	.8005	2.78	.9046	.9080	3.3	1.1316	1.1327
2.54	.7994	.8048	2.79	.9090	.9123	3.4	1.1751	1.1761
2.55	.8038	.8091	2.80	.9134	.9166	3.5	1.2186	1.2194
2.56	.8082	.8134	2.81	.9178	.9209	3.6	1.2621	1.2628
2.57	.8126	.8176	2.82	.9221	.9252	3.7	1.3056	1.3061
2.58	.8169	.8219	2.83	.9265	.9295	3.8	1.3491	1.3495
2.59	.8213	.8262	2.84	.9309	.9338	3.9	1.3925	1.3929
2.60	.8257	.8305	2.85	.9353	.9382	4.0	1.4360	1.4363
2.61	.8301	.8348	2.86	.9396	.9425	4.1	1.4795	1.4797
2.62	.8345	.8391	2.87	.9440	.9468	4.2	1.5229	1.5231
2.63	.8389	.8434	2.88	.9484	.9511	4.3	1.5664	1.5665
2.64	.8433	.8477	2.89	.9527	.9554	4.4	1.6098	1.6099
2.65	.8477	.8520	2 90	.9571	.9597	4.5	1.6532	1.6533
2.66	.8521	.8563	2.91	.9615	.9641	4.6	1.6967	1.6968
2.67	.8564	.8606	2.92	.9658	.9684	4.7	1.7401	1.7402
2.68	.8608	.8649	2.93	.9702	.9727	4.8	1.7836	1.7836
2.69	.8652	.8692	2.94	.9746	.9770	4.9	1.8270	1.8270
2.70	.8696	.8735	2.95	.9789	.9813	5.0	1.8704	1.8705
2.71	.8740	.8778	2.96	.9833	.9856	6.0	2.3047	2.3047
2.72	.8784	.8821	2.97	.9877	.9900	7.0	2.7390	2.7390
2.73	.8827	.8864	2.98	.9920	.9943	8.0	3.1733	3.1733
2.74	.8871	.8907	2.99	.9964	.9986	9.0	3.6076	3.6076
2.75	0.8915	0.8951	3.00	1.0008	1.0029	10.0	4.0419	4.0419

For values of x greater than 7.0, we may write, to five places of decimals at least,

 $\log_{10} \sinh x = \log_{10} \cosh x = \log_{\frac{1}{2}} e^x = x (0.4342945) + \overline{1.6989700}.$

The Values of e^{-x} for Certain Values of x.

\overline{x}	e-x	x	e-x	x	e-x	x	e-x
1/10 1/8 1/6 2/10 1/4 3/10 1/3	0.90484 0.88250 0.84648 0.81873 0.77880 0.74082 0.71653	8/10 9/10 1 11/10 9/8 12/10 5/4	0.44933 0.40657 0.36788 0.33287 0.32465 0.30119 0.28650	18/10 2 9/4 5/2 8/3 3 25/8	0.16530 0.13534 0.10540 0.08209 0.06948 0.04979 0.04394	5 11/2 6 13/2 7 15/2	0.00674 0.00409 0.00248 0.00150 0.00091 0.00055 0.00034
4/10 5/10 6/10 2/3 7/10	0.67032 0.60653 0.54881 0.51342 0.49659	13/10 4/3 14/10 3/2 16/10	0.27253 0.26360 0.24660 0.22313 0.20190	16/5 18/5 4 25/6 9/2	0.04374 0.04076 0.02732 0.01832 0.01550 0.01111	9 10 11 12 13	0.00037 0.00012 0.00004 0.00002 0.000001 0.00000

The Common Logarithms of e^x and e^{-x} .

x	$\log_{10} e^x$	log ₁₀ e-x
0.00001	0.0000043429	1.9999956571
0.00002	0.0000086859	1.9999913141
0.00003	0.0000130288	1.9999869712
0.00004	0.0000173718	1.9999826282
0.00005	0.0000217147	1.9999782853
0.00006	0.0000260577	1.9999739423
0.00007	0.0000304006	1.9999695994
0.00008	0.0000347436	1.9999652564
0.00009	0.0000390865	1.9999609135
0.00010	0.0000434294	1.9999565706
0.00020	0.0000868589	1.9999131411
0.00030	0.0001302883	1.9998697117
0.00040	0.0001737178	1.9998262822
0.00050	0.0002171472	1.9997828528
0.00060	0.0002605767	1.9997394233
0.00070	0.0003040061	1.9996959939
0.00080	0.0003474356	1.9996525644
0.00090	0.0003908650	1.9996091350
0.00100	0.0004342945	1.9995657055
0.00200	0.0008685890	1.9991314110
0.00300	0.0013028834	1.9986971166
0.00400	0.0017371779	1.9982628221
0.00500	0.0021714724	1.9978285276
0.00600	0.0026057669	1.9973942331
0.00700	0.0030400614	1.9969599386
0.00800	0.0034743559	1.9965256441
0.00900	0.0039086503	1.9960913497
0.01000	0.0043429448	1.9956570552
0.02000	0.0086858896	1.9913141104
0.03000	0.0130288345	1.9869711655
0.04000	0.0173717793	1.9826282207
0.05000	0.0217147241	1.9782852759
0.06000	0.0260576689	1.9739423311
0.07000	0.0304006137	1.9695993863

x log10 ex log10 ex 0.08000 0.0347435586 1.9652564414 0.09000 0.0390865034 1.9609134966 0.10000 0.0434294482 1.9565705518 0.20000 0.0868588964 1.9131411036 0.30000 0.1302883446 1.8697116554 0.40000 0.1737177928 1.8262822072 0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.340061373 1.6959938627 0.80000 0.3474355855 1.65256441145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.31			
0.09000 0.0390865034 1.9609134966 0.10000 0.0434294482 1.9565705518 0.20000 0.0868588964 1.9131411036 0.30000 0.1302883446 1.8697116554 0.40000 0.1737177928 1.8262822072 0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.340061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.040613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 17.3717792761	x	log ₁₀ e ^x	log ₁₀ e-x
0.09000 0.0390865034 1.9609134966 0.10000 0.0434294482 1.9565705518 0.20000 0.0868588964 1.9131411036 0.30000 0.1302883446 1.8697116554 0.40000 0.1737177928 1.8262822072 0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.340061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.040613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 17.3717792761	0.08000	0.0347435586	1.9652564414
0.10000			_
0.20000 0.0868588964 1.9131411036 0.30000 0.1302883446 1.8697116554 0.40000 0.1737177928 1.8262822072 0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.3040061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.131410362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.670551810 20.00000 8.685896381 9.3141103619 30.00000 17.3717792761 18.6282207239 50.00000 21.7147240952			-
0.40000 0.1737177928 1.8262822072 0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.3040661373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.040613733 4.9599386267 8.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 7.3141103619 30.00000 17.3717792761 18.6282207239 40.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.40613733	0.20000	0.0868588964	_
0.50000 0.2171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.3040061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.60971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858996381 3.3141103619 30.00000 17.3717792761 18.6282207239 40.00000 17.3717792761 18.6282207239 50.00000 26.0576689142 27.9423310858 70.00000 30.400613	Q.30000	0.1302883446	1.8697116554
0.60000 0.2605766891 1.7394233109 0.70000 0.3040061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 3.00000 4.3429448190 5.6570551810 20.00000 8.685896381 9.3141103619 30.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4066137332 31.5993862668 80.00000 34.743558	0.40000	0.1737177928	1.8262822072
0.70000 0.3040061373 1.6959938627 0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 17.3717792761 18.6282207239 20.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 30.00000 34.7435585523 35.2564414477 90.00000 30.4006137332 31.5993862668 80.00000 37.3717792761 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 30.4006137332 31.5993862668 80.00000 43.4294481903 44.5705518097 200.00000 30.86588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 131.7116554290	0.50000	0.2171472410	1.7828527590
0.80000 0.3474355855 1.6525644145 0.90000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.3134110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 36.8588963807 37.1411036193 100.00000 43.4294481903 44.5705518097 200.00000 <	0.60000	0.2605766891	1.7394233109
0.90000 0.3908550337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 17.3717792761 18.6282207239 40.00000 17.3717792761 18.6282207239 50.00000 24.7147240952 22.2852759048 60.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414447 90.00000 39.0865033713 40.9134966287 40.9134966287 44.5705518097 200.00000 86.8588963807	0.70000	0.3040061373	1.6959938627
1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.141036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	0.80000	0.3474355855	1.6525644145
2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724995 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	0.90000	0.3908650337	1.609134966 3
3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 80.0000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 43.29883445710 19.134966287 100.00000 43.2883445710 313.7116554290 100.00000 130.2883445710 313.7116554290 100.00000 130.2883445710 313.7116554290 174.2822072387	1.00000	0.4342944819	ī.565705518 1
4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414447 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	2.00000	0.8685889638	ī.1314110362
5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.2256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858996381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.25644144477 90.00000 39.0865033713 40.9134966287 40.00000 43.4294481903 44.5705518097 20.000000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	3.00000	1.3028834457	2.6971165543
6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	4.00000	1.7371779276	2.2628220724
7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	5.00000	2.1714724095	3.8285275905
8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 13.0288344571 14.9711655429 40.0000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	6.00000	2.6057668914	3.3942331086
9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858996381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.25644144477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	7.00000	3.0400613733	4.9599386267
10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	8.00000	3.4743558552	4.5256441448
20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 \$7.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	9.00000	3.9086503371	4.0913496629
30.00000 13.02883+4571 14.9711655429 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	10.00000	4.3429448190	5.65705518 10
40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.25644144477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	20.00000	8.6858896381	9.3141103619
50.00000 21.7147240952 \$\overline{22}.2852759048\$ 60.00000 26.0576689142 \$\overline{27}.9423310858\$ 70.00000 30.4006137332 \$\overline{31}.5993862668\$ 80.00000 34.7435585523 \$\overline{32}.5264414477\$ 90.00000 39.0865033713 \$\overline{40}.9134966287\$ 100.00000 43.4294481903 \$\overline{44}.5705518097\$ 200.00000 \$6.8588963807 \$\overline{87}.1411036193\$ 300.00000 130.2883445710 \$\overline{131}.7116554290\$ 400.00000 173.7177927613 \$\overline{174}.2822072387\$	30.00000	13.0288344571	14.9711655429
60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	40.00000	17.3717792761	18.6282207239
70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	50.00000	21.7147240952	22.2852759048
80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	60.00000	26.0576689142	27.9423310858
90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	70.00000	30.4006137332	31.5993862668
100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387	80.00000	34,7435585523	35.2564414477
200,00000 86,8588963807 \$\overline{87},1411036193\$ 300,00000 130,2883445710 \$\overline{131},7116554290\$ 400,00000 173,7177927613 \$\overline{174},2822072387\$	90.00000	39.0865033713	40.9134966287
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00000	43.4294481903	44.5705518097
400.00000 173.7177927613 174.2822072387	200.00000	86.8588963807	87.1411036193
	300.00000	130.2883445710	131.7116554290
500.00000 217.1472409516 218.8527590+84	400.00000	173.7177927613	174.2822072387
	500.00000	217.1472409516	218.8527590+84

Note: $\log e^{x+y} = \log e^x + \log e^y$. Thus, $\log e^{113.1478} = 49.139465180$.

No.	0	1	2	3	4	5	6	7	8	9	D.
1.00 1.01 1.02 1.03 1.04	0.0 0000 0.0 0995 0.0 1980 0.0 2956 0.0 3922 0.0 4879	0100 1094 2078 3053 4018 4974	0200 1193 2176 3150 4114 5069	0300 1292 2274 3247 4210 5164	0399 1390 2372 3343 4306 5259	0499 1489 2469 3440 4402 5354	0598 1587 2567 3537 4497 5449	0698 1686 2664 3633 4593 5543	0797 1784 2762 3730 4688 5638	0896 1882 2859 3826 4784 5733	100-99 99-98 98-97 97-96 96-95 95-94
1.05 1.06 1.07 1.08 1.09	0.0 5827 0.0 6766 0.0 7696 0.0 8618	5921 6859 7789 8709	6015 6953 7881 8801	6110 7046 7973 8893	6204 7139 8066 8984	6297 7232 8158 9075	6391 7325 8250 9167	6485 7418 8342 9258	6579 7511 8434 9349	6672 7603 8526 9430	94 93 93–92 92–91
1.10 1.11 1.12 1.13 1.14	0.0 9531 0.1 0436 0.1 1333 0.1 2222 0.1 3103	9622 0526 1422 2310 3191	9713 0616 1511 2399 3278	9803 0706 1600 2487 3366	9894 0796 1689 2575 3453	0885 1778 2663 3540	0975 1867 2751 3628	0165 1065 1956 2839 3715	0256 1154 2045 2927 3802	0346 1244 2133 3015 3889	91–90 90–89 89 88 88–87
1.15	0.1 3976	4063	4150	4237	4323	4410	4497	4583	4669	4756	87-86
1.16	0.1 4842	4928	5014	5100	5186	5272	5358	5444	5529	5615	86
1.17	0.1 5700	5786	5871	5956	6042	6127	6212	6297	6382	6467	85
1.18	0.1 6551	6636	6721	6805	6890	6974	7059	7143	7227	7311	85-84
1.19	0.1 7395	7479	7563	7647	7731	7815	7898	7982	8065	8149	84-83
1.20 1.21 1.22 1.23 1.24	0.1 8232 0.1 9062 0.1 9885 0.2 0701 0.2 1511	0783 1592	8399 9227 *0049 0864 1672	8482 9310 0131 0945 1753	8565 9392 0212 1026 1833	8648 9474 0294 1107 1914	8731 9557 0376 1188 1994	8814 9639 0457 1269 2074	8897 9721 0539 1350 2154	9979 9803 0620 1430 2234	83 83-82 82-81 81 81-80
1.25	0.2 2314	2394	2474	2554	2634	2714	2793	2873	2952	3032	80-79
1.26	0.2 3111	3191	3270	3349	3428	3507	3586	3665	37+4	3823	79
1.27	0.2 3902	3980	4059	4138	4216	4295	4373	4451	4530	4608	79-78
1.28	0.2 4686	4764	4842	4920	4998	5076	5154	5231	5309	5387	78
1.29	0.2 5464	5542	5619	5697	5774	5811	5928	6005	6082	6159	77
1.30	0.2 6236	6313	6390	6467	6544	6620	6697	6773	6850	6926	77–76
1.31	0.2 7003	7079	7155	7231	7308	7384	7460	7536	7612	7687	76
1.32	0.2 7763	7839	7915	7990	8066	8141	8217	8292	8367	8443	76–75
1.33	0.2 8518	8593	8668	8743	8818	8893	8968	9043	9118	9192	75
1.34	0.2 9267	9342	9416	9491	9565	9639	9714	9788	9862	9936	75–74
1.35	0.3 0010	0085	0158	0232	0306	0380	0454	0528	0601	0675	74
1.36	0.3 0748	0822	0895	0969	1042	1115	1189	1262	1335	1408	74–73
1.37	0.3 1481	1554	1627	1700	1773	1845	1918	1991	2063	2136	73–72
1.38	0.3 2208	2281	2353	2426	2498	2570	2642	2714	2786	2858	72
1.39	0.3 2930	3002	3074	3146	3218	3289	3361	3433	3504	3576	72–71
1.40	0.3 3647	3719	3790	3861	3933	4004	4075	4146	4217	4288	71
1.41	0.3 4359	4430	4501	4572	4642	4713	4784	4854	4925	4995	71–70
1.42	0.3 5066	5136	5206	5277	5347	5417	5487	5557	5677	5697	70
1.43	0.3 5767	5837	5907	5977	6047	6116	6186	6256	6335	6395	70–69
1.44	0.3 6464	6534	6603	6672	6742	6811	6880	6949	7018	7087	69
1.45	0.3 7156	7225	7294	7363	7432	7501	7569	7638	7707	7775	69
1.46	0.3 7844	7912	7981	8049	8117	8186	8254	8322	8390	8458	68
1.47	0.3 8526	8594	8662	8730	8798	8866	8934	9001	9069	9137	68
1.48	0.3 9204	9272	9339	9407	9474	9541	9609	9676	9743	9810	68–67
1.49	0.3 9878	9945	*0012	0079	0146	0213	0279	0346	0413	0480	67
1.50	0.4 0547	0613	0680 2	0746 3	0813	0879 5	6	7	1078	9	67-66

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
1.50 1.51	0.4 0547	0613 1277	0680 1343	0746 1409	0813 1476	0879	0946 1608	1012 1673	1078 1739	1145 1805	67-66 66
1.52	0.4 1871	1937	2003	2068	2134	2199	2265	2331	2396	2461	66-65
1.53	0.4 2527	2592	2657	2723	2788	2853	2918	2983	3048	3113	65
1.54	0.4 3178	3243	3308	3373	3438	3502	3567	3632	3696	3761	65-64
1.55	0.4 3825	3890	3954	4019	4083	4148	4212	4276	4340	4404	64
1.56 1.57	0.4 4469 0.4 5108	4533 5171	4597 5235	4661 5298	4725 5362	4789 5426	4852 5489	4916 5552	4980 5616	5044 5679	64
1.58	0.4 5108	5806	5869	5932	5995	6058	6122	6185	6248	6310	64-63 63
1.59	0.4 6373	6436	6499	6562	6625	6687	6750	6813	6875	6938	63
1.60	0.4 7000	7063	7125	7188	7250	7312	7375	7437	7499	7561	62
1.61	0.4 7623	7686	7748	7810	7872	7933	7995	8057	8119	8181	62
1.62	0.4 8243	8304	8366	8428	8489	8551	8612	8674	8735	8797	62-61
1.63	0.4 8858	8919	8981	9042	9103	9164	9225	9287	9348	9409	61
1.64	0.4 9470	9531	9592	9652	9713	9774	9835	9896	9956	*0017	61
1.65 1.66	0.5 0078	0138 0742	0199 0802	0259 0862	0320 0922	0380 0983	0441 1043	0501 1103	0561 1163	0622 1222	61-60
1.67	0.5 0682	1342	1402	1462	1522	1581	1641	1701	1760	1820	60 60
1.68	0.5 1879	1939	1998	2058	2117	2177	2236	2295	2354	2414	60-59
1.69	0.5 2473	2532	2591	2650	2709	2768	2827	2886	2945	3004	59
1.70	0.5 3063	3122	3180	3239	3298	3357	3415	3474	3532	3591	59-58
1.71	0.5 3649	3708	3766	3825	3883	3941	4000	4058	4116	4174	58
1.72	0.5 4232	4291	4349	4407	4465	4523	4581	4639	4696	4754	58
1.73 1.74	0.5 4812 0.5 5389	4870 5446	4928 5503	4985 5561	5043 5618	5101 5675	5158 5733	5216 5790	5274 5847	5331 5904	58-57 57
1.75	0.5 5962	6019	6076	6133	6190	6247	6304	6361	6418	6475	57
1.76	0.5 6531	6588	6645	6702	6758	6815	6872	6928	6985	7041	57
1.77	0.5 7098	7154	7211	7267	732+	7380	7436	7493	7549	7605	56
1.78	0.5 7661	7718	7774	7830	7886	7942	7998	8054	8110	8166	56
1.79	0.5 8222	8277	8333	8389	8445	8501	8556	8612	8667	8723	56
1.80	0.5 8779	8834	8890	8945	9001	9056	9111	9167	9222	9277	56-55
1.81 1.82	0.5 9333 0.5 9884	9388 9939	9443	9498 *0048	9553 0103	9609 0158	966 1 0213	9719 0268	977 1 0322	9829 0377	55 55
1.83	0.6 0432	0486	0541	0595	0650	0704	0759	0813	0868	0922	55- 54
1.84	0.6 0977	1031	1085	1139	1194	1248	1302	1356	1410	1464	54
1.85	0.6 1519	1573	1627	1681	1735	1788	1842	1896	1950	2004	54
1.86	0.6 2058	2111	2165	2219	2272	2326	2380	2433	2487	2540	54-53
1.87 1.88	0.6 2594 0.6 3127	2647 3180	2701 3234	275 4 3287	2808 3340	2861 3393	2914 3446	2967 3499	3021 3552	3074 3605	53
1.89	0.6 3658	3711	3763	3816	3869	3922	3975	4027	4080	4133	53 53
1.90	0.6 4185	4238	4291	4343	4396	411S	4501	4553	4606	4658	53-52
1.91	0.6 4710	4763	4815	4867	4920	4972	5024	5076	5128	5180	53-52 52
1.92	0.6 5233	5285	5337	5389	5441	5493	5545	5596	5648	5700	52
1.93	0.6 5752	5804	5856	5907	5959	6011	6062	6114	6166	6217	52
1.94	0.6 6269	6320	6372	6423	6475	6526	6578	6629	6680	6732	52-51
1.95	0.6 6783	6834	6885	6937	6988	7039	7090	7141	7192	7243	51
1.96 1.97	0.6 7294 0.6 7803	7345 7854	7396 7905	7447 7956	7498 8006	7549 8057	7600 8107	7651 8158	7702 8209	7753 8259	51 51
1.98	0.6 8310	8360	8411	8461	8512	8562	8612	8663	8713	8763	50
1.99	0.6 8813	8864	8914	8964	9014	9064	9115	9165	9215	9265	50
2.00	0.6 9315	9365	9415	9465	9515	9564	9614	9664	9714	9764	50
	0	1	2	3	4	5	6	7	8	9	

TABLES.

No.	0	1	2	3	4	5	6	7	8	9	D.
2.00 2.01 2.02 2.03 2.04	0.6 9315 0.6 9813 0.7 0310 0.7 0804 0.7 1295	9365 9863 0359 0853 1344	9415 9913 0409 0902 1393	9465 9963 0458 0951 1442	9515 *0012 0508 1000 1491	9564 0062 0557 1050 1540	9614 0112 0606 1099 1589	9664 0161 0656 1148 1638	9714 0211 0705 1197 1686	9764 0260 0754 1246 1735	50 50 49 49 49
2.05 2.06 2.07 2.08 2.09	0.7 1784 0.7 2271 0.7 2755 0.7 3237 0.7 3716	1833 2319 2803 3285 3764	1881 2368 2851 3333 3812	1930 2416 2900 3381 3860	1979 2465 2948 3429 3908	2028 2513 2996 3477 3955	2076 2561 3044 3525 4003	2125 2610 3092 3573 4051	2173 2658 3141 3621 4098	2222 2707 3189 3669 4146	49 49–48 48 48 48
2.10 2.11 2.12 2.13 2.14	0.7 4194 0.7 4669 0.7 5142 0.7 5612 0.7 6081	4241 4716 5189 5659 6127	4289 4764 5236 5706 6174 6640	4336 4811 5283 5753 6221 6686	4384 4858 5330 5800 6267 6733	4432 4905 5377 5847 6314 6779	4479 4953 5424 5893 6361 6825	4527 5000 5471 5940 6407 6872	4574 5047 5518 5987 6454 6918	4621 5094 5565 6034 6500 6965	48-47 47 47 47 47 47
2.15 2.16 2.17 2.18 2.19	0.7 6547 0.7 7011 0.7 7473 0.7 7932 0.7 8390	6593 7057 7519 7978 8436	7103 7565 8024 8481	7150 7611 8070 8527	7196 7657 8116 8573	7242 7703 8162 8618	7288 7749 8207 8664	7334 7795 8253 8709	7381 7841 8299 8755	7427 7887 8344 8800	46 46 46 46 46–45
2.20 2.21 2.22 2.23 2.24 2.25	0.7 8846 0.7 9299 0.7 9751 0.8 0200 0.8 0648 0.8 1093	8891 9344 9796 0245 0692 1137	8937 9390 9841 0290 0737 1182	8982 9435 9886 0335 0781 1226	9027 9480 9931 0379 0826	9525	9570 *0021 0469 0915 1359	9615 0066 0514 0960 1404	9661 0110 0558 1004 1448	9706 0155 0603 1049 1492	45 45 45 45 45–44
2.26 2.27 2.28 2.29	0.8 1536 0.8 1978 0.8 2418 0.8 2855	1581 2022 2461 2899	1625 2066 2505 2942	1669 2110 2549 2986	1713 2154 2593 3030	1757 2198 2637 3073 3508	1802 2242 2680 3117	1846 2286 2724 3160	1890 2330 2768 3204 3638	1934 2374 2812 3247 3681	44 44 44 44–43
2.30 2.31 2.32 2.33 2.34	0.8 3291 0.8 3725 0.8 4157 0.8 4587 0.8 5015	3334 3768 4200 4630 5058	3378 3811 4243 4673 5101 5527	3421 3855 4286 4715 5143 5569	3465 3898 4329 4758 5186 5612	3941 4372 4801 5229 5654	3984 4415 4844 5271 5697	4027 4458 4887 5314 5739	4070 4501 4930 5356 5781	4114 4544 4972 5399 5824	43 43 43 43 43 43-42
2.35 2.36 2.37 2.38 2.39	0.8 5442 0.8 5866 0.8 6289 0.8 6710 0.8 7129	5484 5909 6331 6752 7171	5951 6373 6794 7213	5993 6415 6836 7255	6036 6458 6878 7297	6078 6500 6920 7338	6120 6542 6962 7380	6162 6584 7004 7422	6205 6626 7046 7464	6247 6668 7087 7505	42 42 42 42 42 42
2.40 2.41 2.42 2.43 2.44	0.8 7547 0.8 7963 0.8 8377 0.8 8789 0.8 9200	7589 8004 8418 8830 9241	7630 8046 8459 8871 9282	7672 8087 8501 8913 9323	7713 8129 8542 8954 9364	7755 8170 8583 8995 9405	7797 8211 8624 9036 9445 9853	7838 8253 8666 9077 9486 9894	7880 8294 8707 9118 9527 9935	8335 8748 9159 9568 9975	41 41 41 41 41 41
2.45 2.46 2.47 2.48 2.49	0.8 9609 0.9 0016 0.9 0422 0.9 0826 0.9 1228	9650 0057 0462 0866 1268	9690 0097 0503 0906 1309	9731 0138 0543 0947 1349	9772 0179 0584 0987 1389	9813 0219 0624 1027 1429	0260 0664 1067 1469	0300 0705 1108 1509	0341 0745 1148 1549	0381 0786 1188 1589	41-40 40 40 40
2.50	0.9 1629	1669	1709	1749 3	1789 4	1829	1869 6	1909	1949	1988	40

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
2.50	0.9 1629	1669	1709	1749	1789	1829	1869	1909	1949	1988	40
2.51	0.9 2028	2068	2108	2148	2188	2227	2267	2307	2346	2386	40
2.52	0.9 2426	2466	2505	2545	2584	2624	2664	2703	2743	2782	40
2.53	0.9 2822	2861	2901	2940	2980	3019	3059	3098	3138	3177	40–39
2.54	0.9 3216	3256	3295	3334	3374	3413	3452	3492	3531	3570	39
2.55	0.9 3609	3649	3688	3727	3766	3805	3844	3883	3923	3962	39
2.56	0.9 4001	4040	4079	4118	4157	4196	4235	4274	4313	4352	39
2.57	0.9 4391	4429	4468	4507	4546	4585	4624	4663	4701	4740	39
2.58	0.9 4779	4818	4856	4895	4934	4973	5011	5050	5089	5127	39
2.59	0.9 5166	5204	5243	5282	5320	5359	5397	5436	5474	5513	39—38
2.60	0.9 5551	5590	5628	5666	5705	5743	5782	5820	5858	5897	38
2.61	0.9 5935	5973	6012	6050	6088	6126	6165	6203	6241	6279	38
2.62	0.9 6317	6356	6394	6432	6470	6508	6546	6584	6622	6660	38
2.63	0.9 6698	6736	6774	6812	6850	6888	6926	6964	7002	7040	38
2.64	0.9 7078	7116	7154	7191	7229	7267	7305	7343	7380	7418	38
2.65	0.9 7456	7494	7531	7569	7607	7644	7682	7720	7757	7795	38
2.66	0.9 7833	7870	7908	7945	7983	8020	8058	8095	8133	8170	38-37
2.67	0.9 8208	8245	8283	8320	8358	8395	8432	8470	8507	8544	37
2.68	0.9 8582	8619	8656	8694	8731	8768	8805	8843	8880	8917	37
2.69	0.9 8954	8991	9028	9066	9103	9140	9177	9214	9251	9288	37
2.70 2.71 2.72 2.73 2.74	0.9 9325 0.9 9695 1.0 0063 1.0 0430 1.0 0796	9362 9732 0100 0467 0832	9399 9769 0137 0503 0869	9436 9806 0173 0540 0905	9473 9842 0210 0577 0942	9510 9879 0247 0613 0978	9547 9916 0284 0650 1015	9584 9953 0320 0686 1051	0357 0723 1087	9658 *0026 0394 0759 1124	37 37 37 37 37 36
2.75	1.0 1160	1196	1233	1269	1305	1342	1378	1414	1451	1487	36
2.76	1.0 1523	1559	1596	1632	1668	1704	1740	1776	1813	1849	36
2.77	1.0 1885	1921	1957	1993	2029	2065	2101	2137	2173	2209	36
2.78	1.0 2245	2281	2317	2353	2389	2425	2461	2497	2532	2588	36
2.79	1.0 2604	2640	2676	2712	2747	2783	2819	2855	2890	2926	36
2.80	1.0 2962	2998	3033	3069	3105	3140	3176	3212	3247	3283	36
2.81	1.0 3318	3354	3390	3425	3461	3496	3532	3567	3603	3638	36-35
2.82	1.0 3674	3709	3745	3780	3815	3851	3886	3922	3957	3992	35
2.83	1.0 4028	4063	4098	4134	4169	4204	4239	4275	4310	4345	35
2.84	1.0 4380	4416	4451	4486	4521	4556	4591	4627	4662	4697	35
2.85 2.86 2.87 2.88 2.89	1.0 4732 1.0 5082 1.0 5431 1.0 5779 1.0 6126	4767 5117 5466 5814 6160	4802 5152 5501 5848 6195	4837 5187 5536 5883 6229	4872 5222 5570 5918 6264	4907 5257 5605 5952 6299	4942 5292 5640 5987 6333	4977 5327 5675 6022 6368	5012 5361 5710 6056 6402	5047 5396 5744 6091 6437	35 35 35 35 35 35–34
2.90	1.0 6471	6506	6540	6574	6609	6643	6678	6712	6747	6781	34
2.91	1.0 6815	6850	6884	6918	6953	6987	7021	7056	7090	7124	34
2.92	1.0 7158	7193	7227	7261	7295	7329	7364	7398	7432	7466	34
2.93	1.0 7500	7534	7568	7603	7637	7671	7705	7739	7773	7807	34
2.94	1.0 7841	7875	7909	7943	7977	8011	8045	8079	8113	8147	34
2.95	1.0 8181	8214	8248	8282	8316	8350	8384	8418	8451	8485	34
2.96	1.0 8519	8553	8586	8620	8654	8688	8721	8755	8789	8823	34
2.97	1.0 8856	8890	8924	8957	8991	9024	9058	9092	9125	9159	34
2.98	1.0 9192	9226	9259	9293	9326	9360	9393	9427	9460	9494	34–33
2.99	1.0 9527	9561	9594	9628	9661	9694	9728	9761	9795	9828	33
3.00	1.0 9861	9895	9928	9961	9994	*0028	6	7	0128 8	9	33

TABLES.

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
3.00	1.0 9861	9895	9928	9961	9994	*0028	0061	0094	0128	0161	33
3.01	1.1 0194	0227	0260	0294	0327	0360	0393	0426	0459	0493	33
3.02	1.1 0526	0559	0592	0625	0658	0691	0724	0757	0790	0823	33
3.03	1.1 0856	0889	0922	0955	0988	1021	1054	1087	1120	1153	33
3.04	1.1 1186	1219	1252	1284	1317	1350	1383	1416	1449	1481	33
3.05	1.1 1514	1547	1580	1612	1645	1678	1711	1743	1776	1809	33
3.06	1.1 1841	1874	1907	1939	1972	2005	2037	2070	2103	2135	33
3.07	1.1 2168	2200	2233	2265	2298	2330	2363	2396	2428	2460	33–32
3.08	1.1 2493	2525	2558	2590	2623	2655	2688	2720	2752	2785	32
3.09	1.1 2817	2849	2882	2914	2946	2979	3011	3043	3076	3108	32
3.10	1.1 3140	3172	3205	3237	3269	3301	3334	3366	3398	3430	32
3.11	1.1 3462	3494	3527	3559	3591	3623	3655	3687	3719	3751	32
3.12	1.1 3783	3815	3847	3879	3911	3943	3955	4007	4039	4071	32
3.13	1.1 4103	4135	4167	4199	4231	4263	4295	4327	4359	4390	32
3.14	1.1 4422	4454	4486	4518	4550	4581	4613	4645	4677	4708	32
3.15	1.1 4740	4772	4804	4835	4867	4899	4931	4962	4994	5026	32
3.16	1.1 5057	5089	5120	5152	5184	5215	5247	5278	5310	5342	32
3.17	1.1 5373	5405	5436	5468	5499	5531	5562	5594	5625	5657	32-31
3.18	1.1 5688	5720	5751	5782	5814	5845	5877	5908	5939	5971	31
3.19	1.1 6002	6033	6065	6096	6127	6159	6190	6221	6253	6284	31
3.20	1.1 6315	6346	6378	6409	6440	6471	6502	6534	6565	6596	31
3.21	1.1 6627	6658	6689	6721	6752	6783	6814	6845	6876	6907	31
3.22	1.1 6938	6969	7000	7031	7062	7093	7124	7155	7186	7217	31
3.23	1.1 7248	7279	7310	7341	7372	7403	7434	7465	7496	7526	31
3.24	1.1 7557	7588	7619	7650	7681	7712	7742	7773	7804	7835	31
3.25 3.26 3.27 3.28 3.29	1.1 7865 1.1 8173 1.1 8479 1.1 8784 1.1 9089	7896 8203 8510 8815 9119	7927 8234 8540 8845 9150	7958 8265 8571 8876 9180	7989 8295 8601 8906 9210	8019 8326 8632 8937 9241	8050 8357 8662 8967 9271	8081 8387 8693 8998 9301	8111 8418 8723 9028 9332	8142 8448 8754 9058 9362	31 31-30 30 30
3.30 3.31 3.32 3.33 3.34	1.2 0297 1.2 0597	9423 9725 *0027 0327 0627	9453 9755 0057 0357 0657	9483 9785 0087 0387 0687	9513 9816 0117 0417 0717	9544 9846 0147 0447 0747	9574 9876 0177 0477 0777	9604 9906 0207 0507 0806	9634 9936 0237 0537 0836	9665 9966 0267 0567 0866	30 30 30 30 30
3.35	1.2 0896	0926	0956	0986	1015	1045	1075	1105	1135	1164	30
3.36	1.2 1194	1224	1254	1283	1313	1343	1373	1402	1432	1462	30
3.37	1.2 1491	1521	1551	1580	1610	1640	1669	1699	1728	1758	30
3.38	1.2 1788	1817	1847	1876	1906	1935	1965	1994	2024	2053	30
3.39	1.2 2083	2112	2142	2171	2201	2230	2260	2289	2319	2348	29
3.40 3.41 3.42 3.43 3.44 3.45	1.2 2378 1.2 2671 1.2 2964 1.2 3256 1.2 3547	2407 2701 2993 3285 3576	2436 2730 3023 3314 3605	2466 2759 3052 3343 3634	2495 2788 3081 3373 3663	2524 2818 3110 3402 3692	2554 2847 3139 3431 3721	2583 2876 3169 3460 3750	2613 2906 3198 3489 3779	2642 2935 3227 3518 3808	29 29 29 29 29
3.46 3.47 3.48 3.49	1.2 3837 1.2 4127 1.2 4415 1.2 4703 1.2 4990	3866 4156 4444 4732 5019	3895 4185 4473 4761 5047	3924 4214 4502 4789 5076	3953 4242 4531 4818 5105	3982 4271 4559 4847 5133	4011 4300 4588 4875 5162	4040 4329 4617 4904 5191	4069 4358 4646 4933 5219	4098 4387 4674 4962 5248	29 29 29 29 29
3.50	1.2 5276	5305	5333	5362 3	5391	5419	5448 6	5476 7	5505 8	5533 9	29-28

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
3.50 3.51 3.52 3.53 3.54	1.2 5276 1.2 5562 1.2 5846 1.2 6130 1.2 6413	5305 5590 5875 6158 6441	5333 5619 5903 6186 6469	5362 5647 5931 6215 6497	5391 5675 5960 6243 6526	5419 5704 5988 6271 6554	5448 5732 6016 6300 6582	5476 5761 6045 6328 6610	5505 5789 6073 6356 6638	5533 5818 6101 6384 6667	29-28 28 28 28 28 28
3.55	1.2 6695	6723	6751	6779	6807	6836	6864	6892	6920	6948	28
3.56	1.2 6976	7004	7032	7060	7088	7116	7144	7172	7201	7229	28
3.57	1.2 7257	7285	7313	7341	7369	7397	7424	7452	7480	7508	28
3.58	1.2 7536	7564	7592	7620	7648	7676	7704	7732	7759	7787	28
3.59	1.2 7815	7843	7871	7899	7927	7954	7982	8010	8038	8066	28
3.60	1.2 8093	8121	8149	8177	8204	8232	8260	8288	8315	8343	28
3.61	1.2 8371	8398	8426	8454	8482	8509	8537	8564	8592	8620	28
3.62	1.2 8647	8675	8703	8730	8758	8785	8813	8841	8868	8896	28
3.63	1.2 8923	8951	8978	9006	9033	9061	9088	9116	9143	9171	28–27
3.64	1.2 9198	9226	9253	9281	9308	9336	9363	9390	9418	9445	27
3.65	1.2 9473	9500	9527	9555	9582	9610	9637	9664	9692	9719	27
3.66 3.67 3.68 3.69 3.70	1.2 9746 1.3 0019 1.3 0291 1.3 0563 1.3 0833	9774 0046 0318 0590	9801 0074 0346 0617	9828 0101 0373 0644 0914	9856 0128 0400 0671 0941	9883 0155 0427 0698	9910 0183 0454 0725	9937 0210 0481 0752	9965 0237 0508 0779	9992 0264 0536 0806	27 27 27 27 27
3.71	1.3 1103	1130	1157	1184	1211	1238	1265	1292	1319	1345	27
3.72	1.3 1372	1399	1426	1453	1480	1507	1534	1560	1587	1614	27
3.73	1.3 1641	1668	1694	1721	1748	1775	1802	1828	1855	1882	27
3.74	1.3 1909	1935	1962	1989	2015	2042	2069	2096	2122	2149	27
3.75	1.3 2176	2202	2229	2256	2282	2309	2335	2362	2389	2415	27
3.76	1.3 2442	2468	2495	2522	2548	2575	2601	2628	2654	2681	27
3.77	1.3 2708	2734	2761	2787	2814	2840	2867	2893	2919	2946	27–26
3.78	1.3 2972	2999	3025	3052	3078	3105	3131	3157	3184	3210	26
3.79	1.3 3237	3263	3289	3316	3342	3368	3395	3421	3447	3474	26
3.80	1.3 3500	3526	3553	3579	3605	3632	3658	3684	3710	3737	26
3.81	1.3 3763	3789	3815	3842	3868	3894	3920	3946	3973	3999	26
3.82	1.3 4025	4051	4077	4104	4130	4156	4182	4208	4234	4260	26
3.83	1.3 4286	4313	4339	4365	4391	4417	4443	4469	4495	4521	26
3.84	1.3 4547	4573	4599	4625	4651	4677	4703	4729	4755	4781	26
3.85 3.86 3.87 3.88 3.89	1.3 4807 1.3 5067 1.3 5325 1.3 5584 1.3 5841	4833 5093 5351 5609 5867	4859 5119 5377 5635 5892	4885 5144 5403 5661 5918	4911 5170 5429 5687 5944	4937 5196 5455 5712 5969	4963 5222 5480 5738 5995	4989 5248 5506 5764 6021	5015 5274 5532 5789 6046	5041 5300 5558 5815 6072	26 26 26 26 26 26
3.90	1.3 6098	6123	6149	6175	6200	6226	6251	6277	6303	6328	26
3.91	1.3 6354	6379	6405	6430	6456	6481	6507	6533	6558	6584	26
3.92	1.3 6609	6635	6660	6686	6711	6737	6762	6788	6813	6838	26–2 5
3.93	1.3 6864	6889	6915	6940	6966	6991	7016	7042	7067	7093	25
3.94	1.3 7118	7143	7169	7194	7220	7245	7270	7296	7321	7346	25
3.95 3.96 3.97 3.98 3.99	1.3 7372 1.3 7624 1.3 7877 1.3 8128 1.3 8379	7397 7650 7902 8143 8404	7422 7675 7927 8178 8429	7447 7700 7952 8204 8454	7473 7725 7977 8229 8479	7498 7751 8002 8254 8504	7523 7776 8028 8279 8529	7549 7801 8053 8304 8554	7574 7826 8078 8329 8579	7599 7851 8103 8354 8604	25 25 25 25 25 25
4.00	1.3 8629	8654 1	8679	8704 3	8729 4	8754 5	8779 6	8804	8829	9	25

TABLES.

No.	0	1	2	3	4	5	6	7	8	9	D.
4.00 4.01 4.02 4.03 4.04	1.3 8629 1.3 8879 1.3 9128 1.3 9377 1.3 9624	8654 8904 9153 9401 9649	8679 8929 9178 9426 9674	8704 8954 9203 9451 9699	8729 8979 9228 9476 9723	8754 9004 9252 9501 9748	8779 9029 9277 9525 9773	8804 9054 9302 9550 9798	8829 9078 9327 9575 9822	8854 9103 9352 9600 9847	25 25 25 25 25 25
4.05 4.06 4.07 4.08 4.09	1.3 9872 1.4 0118 1.4 0364 1.4 0610 1.4 0854	9896 0143 0389 0634 0879	9921 0168 0413 0659 0903	9946 0192 0438 0683 0928	9970 0217 0463 0708 0952	0241 0487 0732 0977	*0020 0266 0512 0757 1001	0044 0291 0536 0781 1025	0069 0315 0561 0806 1050	0094 0340 0585 0830 1074	25 25 25 25–24 24
4.10 4.11 4.12 4.13 4.14 4.15	1.4 1099 1.4 1342 1.4 1585 1.4 1828 1.4 2070 1.4 2311	1123 1367 1610 1852 2094 2335	1147 1391 1634 1876 2118 2359	1172 1415 1658 1900 2142 2383	1196 1440 1682 1925 2166 2407	1221 1464 1707 1949 2190 2431	1245 1488 1731 1973 2214 2455	1269 1512 1755 1997 2239 2479	1294 1537 1779 2021 2263 2503	1318 1561 1804 2045 2287 2527	24 24 24 24 24 24 24
4.16 4.17 4.18 4.19	1.4 2552 1.4 2792 1.4 3031 1.4 3270	2576 2816 3055 3294	2600 2840 3079 3318	2624 2864 3103 3342 3580	2648 2887 3127 3365	2672 2911 3151 3389 3627	2696 2935 3175 3413	2720 2959 3198 3437	2744 2983 3222 3461 3699	2768 3007 3246 3485 3723	24 24 24 24 24
4.20 4.21 4.22 4.23 4.24 4.25	1.4 3508 1.4 3746 1.4 3984 1.4 4220 1.4 4456 1.4 4692	3532 3770 4007 4244 4480 4715	3794 4031 4267 4503 4739	3817 4055 4291 4527 4762	3841 4078 4315 4551 4786	3865 4102 4338 4574 4809	3889 4126 4362 4598 4833	3912 4149 4386 4621 4856	3936 4173 4409 4645 4880	3723 3960 4197 4433 4668 4903	24 24 24 24 24 24 24 24–23
4.26 4.27 4.28 4.29	1.4 4927 1.4 5161 1.4 5395 1.4 5629	4950 5185 5419 5652	4974 5208 5442 5675	4997 5232 5465 5699	5021 5255 5489 5722	5044 5278 5512 5745	5068 5302 5535 5768	5091 5325 5559 5792	5115 5349 5582 5815	5138 5372 5605 5838	23 23 23 23
4.30 4.31 4.32 4.33 4.34	1.4 5862 1.4 6094 1.4 6326 1.4 6557 1.4 6787	5885 6117 6349 6580 6810	5908 6140 6372 6603 6834	5931 6163 6395 6626 6857	5954 6187 6418 6649 6880	5978 6210 6441 6672 6903	6001 6233 6464 6695 6926	6024 6256 6487 6718 6949	6047 6279 6511 6741 6972 7201	6071 6302 6534 6764 6995 7224	23 23 23 23 23
4.35 4.36 4.37 4.38 4.39	1.4 7018 1.4 7247 1.4 7476 1.4 7705 1.4 7933	7041 7270 7499 7728 7956	7064 7293 7522 7751 7978	7087 7316 7545 7773 8001	7109 7339 7568 7796 8024	7132 7362 7591 7819 8047	7155 7385 7614 7842 8070	7178 7408 7636 7865 8092	7431 7659 7887 8115	7453 7682 7910 8138	23 23 23 23 23 23
4.40 4.41 4.42 4.43 4.44	1.4 8160 1.4 8387 1.4 8614 1.4 8840 1.4 9065	8183 8410 8637 8863 9088	8206 8433 8659 8885 9110	8229 8455 8682 8908 9133	8251 8478 8704 8930 9155	8274 8501 8727 8953 9178	8297 8523 8750 8975 9200	8319 8546 8772 8998 9223	8342 8569 8795 9020 9245	8365 8591 8817 9043 9268	23 23 23 23 23
4.45 4.46 4.47 4.48 4.49	1.4 9290 1.4 9515 1.4 9739 1.4 9962 1.5 0185	0208	9335 9560 9784 *0007 0230	9358 9582 9806 0029 0252	9380 9605 9828 0052 0274	9403 9627 9851 0074 0297	9425 9649 9873 0096 0319	9448 9672 9895 0118 0341	9470 9694 9918 0141 0363	9492 9716 9940 0163 0386	23-22 22 22 22 22 22
4.50	1.5 0408	0430	0452	3	0497 4	0519	6	7	0585	9	22

Five-Place Natural Logarithms.

_											
No.	0	1	2	3	4	5	6	7	8	9	D.
4.50	1.5 0408	0430	0452	0474	0497	0519	0541	0563	0585	0608	22
4.51	1.5 0630	0652	0674	0696	0718	0741	0763	0785	0807	0829	22
4.52	1.5 0851	0873	0895	0918	0940	0962	0984 1205	1006	1028	1050	22
4.53 4.54	1.5 1072 1.5 1293	1094 1315	1116 1337	1138 1359	1160 1381	1183 1403	1425	1227 1447	1249 1469	1271 1491	22 22
4.55	1.5 1513	1535	1557	1579	1601	1623	1645	1666	1688	1710	22
4.56	1.5 1732	1754	1776	1798	1820	1842	1864	1886	1908	1929	22
4.57	1.5 1951	1973	1995	2017	2039	2061	2083	2104	2126	2148	22
4.58	1.5 2170	2192	2214	2235	2257	2279	2301	2323	2344	2366	22
4.59	1.5 2388	2410	2432	2453	2475	2497	2519	2540	2562	2584	22
4.60	1.5 2606	2627	2649	2671	2693	2714	2736	2758	2779	2801	22
4.61	1.5 2823	2844	2866	2888	2910	2931	2953	2975	2996	3018	22
4.62	1.5 3039	3061	3083	3104	3126	3148	3169	3191	3212	3234	22
4.63	1.5 3256	3277	3299	3320	3342	3364	3385	3407	3428	3450	22
4.64	1.5 3471	3493	3515	3536	3558	3579	3601	3622	3644	3665	22
4.65 4.66	1.5 3687 1.5 3902	3708 3923	3730 3944	3751 3966	3773 3987	3794 4009	3816 4030	3837 4052	3859 4073	3880 4094	22-21 21
4.67	1.5 4116	4137	4159	4180	4202	4223	4244	4266	4287	4308	21
4.68	1.5 4330	4351	4373	4394	4415	4137	4458	4479	4501	4522	21
4.69	1.5 4543	4565	4586	4607	4629	4650	4671	4692	4714	4735	21
4.70	1.5 4756	4778	4799	4820	4841	4863	4884	4905	4926	4948	21
4.71	1.5 4969	4990	5011	5032	5054	5075	5096	5117	5138	5160	21
4.72	1.5 5181	5202	5223	5244	5266	5287	5308	5329	5350	5371	21
4.73	1.5 5393	5414	5435	5456	5477	5498	5519	5540	5562	5583	21
4.74	1.5 5604	5625	5646	5667	5688	5709	5730	5751	5772	5793	21
4.75	1.5 5814	5836	5857	5878	5899	5920	5941	5962	5983	6004	21
4.76 4.77	1.5 6025 1.5 6235	6046 6256	6067 6277	6088 6298	6109 6318	6130	6151 6360	6172 6381	6193 6402	6214 6423	21 21
4.78	1.5 6444	6465	6486	6507	6528	6549	6569	6590	6611	6632	21
4.79	1.5 6653	6674	6695	6716	6737	6757	6778	6799	6820	6841	21
4.80	1.5 6862	6882	6903	6924	6945	6966	6987	7007	7028	7049	21
4.81	1.5 7070	7090	7111	7132	7153	7174	7194	7215	7236	7257	21
4.82	1.5 7277	7298	7319	7340	7360	7381	7402	7423	7443	7464	21
4.83	1.5 7485	7505	7526	7547	7567	7588	7609	7629	7650	7671	21
4.84	1.5 7691	7712	7733	7753	7774	7795	7815	7836	7857	7877	21
4.85	1.5 7898	7918	7939	7960	7980	8001	8022	8042	8063	8083	21
4.86	1.5 8104 1.5 8309	8124 8330	8145	8166	8186 8391	8207 8412	8227 8433	8248 8453	8268 8474	8289 8494	2I 2I-20
4.87 4.88	1.5 8515	8535	8350 8555	8371 8576	8596	8617	8637	8658	8678	8699	20
4.89	1.5 8719	8740	8760	8781	8801	8821	8842	8862	8883	8903	20
4.90	1.5 8924	8944	8964	8985	9005	9026	9046	9066	9087	9107	20
4.91	1.5 9127	9148	9168	9188	9209	9229	9250	9270	9290	9311	20
4.92	1.5 9331	9351	9371	9392	9412	9432	9453	9473	9493	9514	20
4.93	1.5 9534	9551	9574	9595	9615	9635	9656	9676	9696	9716	20
4.94	1.5 9737	9757	9777	9797	9817	9838	9858	9878	9898	9919	20
4.95	1.5 9939	9959	9979		*0020	0040	0060	0080	0100	0120	20
4.96	1.6 0141	0161	0181	0201	0221	0241	0261	0282	0302	0322	20
4.97 4.98	1.6 0342 1.6 0543	0362 0563	0382 0583	0402 0603	0422 0623	0443	0463 0663	0483 0683	0503 0704	0523 072 4	20
4.99	1.6 0543	0764	0383	0804	0824	0844	0864	0884	0904	0924	20
5,00	1.6 0944	0964	0984	1004	1024	1044	1064	1084	1104	1124	20
~	0	1	2	3	4	5	6	7	8	9	

TABLES.

No	0	1	2	3	4	5	6	7	0	9	
No.									8		D.
5.0	1.6 0944	1144	1343	1542	1741	1939	2137	2334	2531	2728	200-196
5.1 5.2	1.6 2924 1.6 4866	3120 5058	3315 5250	3511 5441	3705 5632	3900 5823	4094 6013	4287 6203	4481 6393	4673 6582	196-192 192-189
5.3	1.6 6771	6959	7147	7335	7523	7710	7896	S083	8269	8455	189-185
5.4	1.6 8640	8825	9010	9194	9378	9562	9745	9928	*0111	0293	185-182
5.5	1.7 0475	0656	0838	1019	1199	1380	1560	1740	1919	2098	182-179
5.6	1.7 2277	2455	2633	2811	2988	3166	3342	3519	3695	3871	178-176
5.7	1.7 4047	4222	4397	4572	4746	4920	5094	5267	5440	5613	175-173
5.8 5.9	1.7 5786 1.7 7495	5958 7665	6130 7834	6302 8002	6473 8171	6644 8339	6815 8507	6985 8675	7156 8842	7326 9009	172-170 169-167
6.0	1.7 9176	9342	9509	9675	9840	*0006	0171	0336	0500	0665	
6.1	1.7 9176	0993	1156	1319	1482	1645	1808	1970	2132	2294	167-164 164-161
6.2	1.8 2455	2616	2777	2938	3098	3258	3418	3578	3737	3896	161-159
6.3	1.8 4055	4214	4372	4530	4688	4845	5003	5160	5317	5473	159-156
6.4	1.8 5630	5786	5942	6097	6253	6408	6563	6718	6872	7026	156-154
6.5	1.8 7180	7334	7487	7641	7794	7947	8099	8251	8403	8555	154-152
6.6 6.7	1.8 8707 1.9 0211	8858 0360	9010 0509	9160 0658	9311 0806	9462 0954	9612 1102	9762 1250	9912 1398	*0061 1545	151-149
6.8	1.9 1692	1839	1986	2132	2279	2425	2571	2716	2862	3007	149-147 147-145
6.9	1.9 3152	3297	3442	3586	3730	3874	4018	4162	4305	4448	145-143
7.0	1.9 4591	4734	4876	5019	5161	5303	5445	5586	5727	5869	143-141
7.1	1.9 6009	6150	6291	6431	6571	6711	6851	6991	7130	7269	141-139
7.2	1.9 7408	7547	7685	7824	7962	8100	8238	8376	8513	8650	139-137
7.3	1.98787	8924	9061	9198	9334	9470	9606	9742	9877		137-135
7.4	2.0 0148	0283	0418	0553	0687	0821	0956	1089	1223	1357	135-133
7.5 7.6	2.0 1490 2.0 2815	1624 2946	1757 3078	1890 3209	2022 3340	2155 3471	2287 3601	2419 3732	2551 3862	2683 3992	133-132
7.7	2.0 4122	4252	4381	4511	4640	4769	4898	5027	5156	5284	131-130 130-128
7.8	2.0 5412	5540	5668	5796	5924	6051	6179	6306	6433	6560	128-127
7.9	2.0 6686	6813	6939	7065	7191	7317	7443	7568	7694	7819	127-125
8.0	2.0 7944	8069	8194	8318	8443	8567	8691	8815	8939	9063	125-124
8.1	2.0 9186	9310	9433	9556	9679	9802		*0047	0169	0291	123-122
8.2	2.1 0413	0535	0657	0779	0900	1021	1142	1263	1384	1505	122-121
8.3 8.4	2.1 1626 2.1 2823	1746 2942	1866 3061	1986 3180	2106 3298	2226 3417	2346 3535	2465 3653	2585 3771	2704 3889	120-119 119-118
8.5	2.1 4007	4124	4242	4359	4476	4593	4710	4827	4943	5060	118-116
8.6	2.1 5176	5292	5409	5524	5640	57.56	5871	5987	6102	6217	116-115
8.7	2.1 6332	6447	6562	6677	6791	6905	7020	7134	7248	7361	115-114
8.8	2.1 7475	7589	7702	7816	7929	8042	8155	8267	8380	8493	114-112
8.9	2.1 8605	8717	8830	8942	9054	9165	9277	9389	9500	9611	112-111
9.0	2.1 9722	9834		*0055	0166	0276	0387	0497	0607	0717	111-110
9.1 9.2	2.2 0827 2.2 1920	0937 2029	1047 2138	1157 2246	1266 2354	1375	1485	1594	1703 2786	1812	110-109
9.2	2.2 1920	3109	3216	3324	3431	2462 3538	2570 3645	2678 3751	3858	2894 3965	109-108 107-106
9.4	2.2 4071	4177	4284	4390	4496	4601	4707	4813	4918	5024	106-105
9.5	2.2 5129	5234	5339	5444	5549	5654	5759	5863	5968	6072	105-104
9.6	2.2 6176	6280	6384	6488	6592	6696	6799	6903	7006	7109	104-103
9.7	2.2 7213	7316	7419	7521	7624	7727	7829	7932	8034	8136	103-102
9.8 9.9	2.2 8238 2.2 9253	8340 9354	8442 9455	8544 9556	8646 9657	8747 9757	8849 9858	8950 9958	9051 *0058	9152 0158	102-101 101-100
10.0	2.3 0259	0358	0458	0558	0658	0757	0857	0956	1055	1154	100-99
	0	1	2	3	4	5	6	7	8	9	

The Natural Logarithms (each increased by 10.) of Numbers between 0.00 and 0.99.

No.	0	1	2	3	4	5	6	7	8	9
0.0		5.395	6.088	6.493	6.781	7.004	7.187	7.341	7.474	7.592
0.1	7.697	7.793	7.880	7.960	8.034	8.103	8.167	8.228	8.285	8.339
0.2	8.391	8.439	8.486	8.530	8.573	8.614	8.653	8.691	8.727	8.762
0.3	8.796	8.829	8.861	8.891	8.921	8.950	8.978	9.006	9.032	9.058
0.4	9.084	9.108	9.132	9.156	9.179	9.201	9.223	9.245	9.266	9.287
0.5	9.307	9.327	9.346	9.365	9.384	9.402	9.420	9.438	9.455	9.472
0.6	9.489	9.506	9.522	9.538	9.554	9.569	9.584	9.600	9.614	9.629
0.7	9.643	9.658	9.671	9.685	9.699	9.712	9.726	9.739	9.752	9.764
0.8	9.777	9.789	9.802	9.814	9.826	9.837	9.849	9.861	9.872	9.883
0.9	9.895	9.906	9.917	9.927	9.938	9.949	9.959	9.970	9.980	9.990

Note: $\log_e x = \log_{10} x \cdot \log_e 10 = (2.30259) \log_{10} x$.

The Natural Logarithms of Whole Numbers from 10 to 209.

No.	0	1	2	3	4	5	6	7	8	9
1	2.3026	3979	4849	5649	6391	7080	7726	8332	8904	9444
2	2.9957	*0445	0910	1355	1781	2189	2581	2958	3322	3673
3	3.4012	4340	4657	4965	5264	5553	5835	6109	6376	6636
4	3.6889	7136	7377	7612	7842	8067	8286	8501	8712	8918
5	3.9120	9318	9512	9703	9890	*0073	0254	0431	0604	0775
6	4.0943	1109	1271	1431	1589	1744	1897	2047	2195	2341
7	4.2485	2627	2767	2905	3041	3175	3307	3438	3567	3694
8	4.3820	3944	4067	4188	4308	4427	4543	4659	4773	4886
9	4.4998	5109	5218	5326	5433	5539	5643	5747	5850	5951
10	4.6052	6151	6250	6347	6444	6540	6634	6728	6821	6913
11	4.7005	7095	7185	7274	7362	7449	7536	7622	7707	7791
12	4.7875	7958	8040	8122	8203	8283	8363	8442	8520	8598
13	4.8675	8752	8828	8903	8978	9053	9127	9200	9273	9345
14	4.9416	9488	9558	9628	9698	9767	9836	9904	9972	*0039
15	5.0106	0173	0239	0304	0370	0434	0499	0562	0626	0689
16	5.0752	0814	0876	0938	0999	1059	1120	1180	1240	1299
17	5.1358	1417	1475	1533	1591	1648	1705	1762	1818	1874
18	5.1930	1985	2040	2095	2149	2204	2257	2311	2364	2417
19	5.2470	2523	2575	2627	2679	2730	2781	2832	2883	2933
20	5.2983	3033	3083	3132	3181	3230	3279	3327	3375	3423

Note: $\log_e 10 = 2.30258509$.

 $\log_e 100 = 4.60517019.$

140 TABLES.

The Common Logarithms of $\Gamma(n)$ for Values of n between 1 and 2.

$$\Gamma(n) = \int_0^\infty x^{n-1} \cdot e^{-x} dx = \int_0^1 \left[\log \frac{1}{x} \right]^{n-1} dx.$$

21	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$
1.01	_ 1.9975	1.21	1.9617	1.41	1.9478	1.61	1.9517	1.81	1.9704
1.02	1.9951	1.22	1.9605	1.42	1.9476	1.62	1.9523	1.82	1.9717
1.03	1.9928	1.23	1.9594	1.43	1.9475	1.63	1.9529	1.83	1.9730
1.04	1.9905	1.24	1.9583	1.44	1.9473	1.64	1.9536	1.84	1.9743
1.05	1.9883	1.25	1.9573	1.45	1.9473	1.65	1.9543	1.85	1.9757
1.06	1.9862	1.26	1.9564	1.46	1.9472	1.66	1.9550	1.86	1.9771
1.07	1.9841	1.27	1.9554	1.47	1.9473	1.67	1.9558	1.87	1.9786
1.08	1.9821	1.28	1.9546	1.48	1.9473	1.68	1.9566	1.88	1.9800
1.09	1.9802	1.29	1.9538	1.49	1.9474	1.69	1.9575	1.89	1.9815
1.10	1.9783	1.30	1.9530	1.50	1.9475	1.70	Ī.9584	1.90	1.9831
1.11	1.9765	1.31	1.9523	1.51	1.9477	1.71	1.9593	1.91	1.9846
1.12	1.9748	1.32	1.9516	1.52	1.9479	1.72	1.9603	1.92	1.9862
1.13	1.9731	1.33	1.9510	1.53	1.9482	1.73	1.9613	1.93	1.9878
1.14	1.9715	1.34	1.9505	1.54	1.9485	1.74	1.9623	1.94	1.9895
1.15	1.9699	1.35	1.9500	1.55	1.9488	1.75	1.9633	1.95	1.9912
1.16	1.9684	1.36	1.9495	1.56	1.9492	1.76	1.9644	1.96	1.9929
1.17	1.9669	1.37	1.9491	1.57	1.9496	1.77	1.9656	1.97	1.9946
1.18	1.9655	1.38	1.9487	1.58	1.9501	1.78	1.9667	1.98	1.9964
1.19	1.9642	1.39	1.9483	1.59	1.9506	1.79	1.9679	1.99	1.9982
1.20	1.9629	1.40	1.9481	1.60	1.9511	1.80	1.9691	2.00	0.0000

 $\Gamma(z+1) = z \cdot \Gamma(z), \ z > 1.$

	1 01		rn.	T 01	1 0	-	
Angle.	Sin.	Csc.	Tan.	Ctn.	Sec.	Cos.	
0 °	0.000	00	0.000	00	1.000	1.000	90°
1	0.017	57.30	0.017	57.29	1.000	1.000	89
2	0.035	28.65	0.035	28.64	1.001	0.999	88
3	0.052	19.11	0.052	19.08	1.001	0.999	87
4	0.070	14.34	0.070	14.30	1.002	0.998	86
5°	0.087	11.47	0.087	11.43	1.004	0.996	85°
6	0.105	9.567	0.105	9.514	1.006	0.995	84
7	0.122	8.206	0.123	8.144	1.008	0.993	83
8	0.139	7.185	0.141	7.115	1.010	0.990	82
9	0.156	6.392	0.158	6.314	1.012	0.988	81
10°	0.174	5.759	0.176	5.671	1.015	0.985	80°
11	0.191	5.241	0.194	5.145	1.019	0.982	79
12	0.208	4.810	0.213	4.705	1.022	0.978	78
13	0.225	4.445	0.231	4.331	1.026	0.974	77
14	0.242	4.134	0.249	4.011	1.031	0.970	76
15°	0.259	3.864	0.268	3.732	1.035	0.966	75°
16 17	0.276	3.628	0.287	3.487	1.040	0.961	74
17	0.292	3.420	0.306	3.271	1.046	0.956	73
18	0.309	3.236	0.325	3.078	1.051	0.951	72
19	0.326	3.072	0.344	2.904	1.058	0.946	71
20°	0.342	2.924	0.364	2.747	1.064	0.940	70°
21	0.358	2.790	0.384	2.605	1.071	0.934	69
22	0.375	2.669	0.404	2.475	1.079	0.927	68
23	0.391	2.559	0.424	2.356	1.086	0.921	67
24	0.407	2.459	0.445	2.246	1.095	0.914	66
25°	0.423	2.366	0.466	2.145	1.103	0.906	65°
26	0.438	2.281	0.488	2.050	1.113	0.899	64
27	0.454	2.203	0.510	1.963	1.122	0.891	63
28	0.469	2.130	0.532	1.881	1.133	0.883	62
29	0.485	2.063	0.554	1.804	1.143	0.875	61
30°	0.500	2.000	0.577	1.732	1.155	0.866	60°
31	0.515	1.942	0.601	1.664	1.167	0.857	59
32	0.530	1.887	0.625	1.600	1.179	0.848	58
33	0.545	1.836	0.649	1.540	1.192	0.839	57
34	0.559	1.788	0.675	1.483	1.206	0.829	56
35°	0.574	1.743	0.700	1.428	1.221	0.819	55°
36_	0.588	1.701	0.727	1.376	1.236	0.809	54
(37)	0.602	1.662	0.754	-1.327	1.252	0.799	53
38	0.616	1.624	0.781	1.280	1.269	0.788	52
39	0.629	1.589	0.810	1.235	1.287	0.777	51
40°	0.643	1.556	0.839	1.192	1.305	0.766	50°
41	0.656	1.524	0.869	1.150	1.325	0.755	49
42	0.669	1.494	0.900	1.111	1.346	0.743	48
43	0.682	1.466	0.933	1.072	1.367	0.731	47
44	0.695	1.440	0.966	1.036	1.390	0.719	46
45°	0.707	1.414	1.000	1.000	1.414	0.707	45°
	Cos.	Sec.	Ctn.	Tan.	Csc.	Sin.	Angle.

N	0	1	2	3	4	5	6	7	8	9	P. P. 1. 2. 3. 4. 5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4- 8-12-17-21
11	4	0453	0492	0531	0569	0607	0645	0682	0719	0755	4 8 11 15 19
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3- 7-10-14-17
13	1139	1173 1492	1206	1239	1271	1303	1335	1367	1399	1430	3. 6.10.13.16
14	1461		1523	1553	1584	1614	1644	1673	1703	1732	3- 6- 9-12-15
15	1761	1790	1818	1847	1875	1903		1959	1987	2014	3. 6. 8.11.14
16 17	2041	2068 2330	2095 2355	2122 2380	2148 2405	2175 2430	2201 2455	2227 2480	2253 2504	2279 2529	3. 5. 8.11.13
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2. 5. 7.10.12 2. 5. 7. 9.12
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2. 4. 7. 9.11
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2-4-6-8-11
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2. 4. 6. 8.10
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2-4-6-8-10
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2.4.5.7.9
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2.4.5.7.9
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2 3 5 7 9
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2.3.5.7.8
27		4330		4362		4393	4409	4425	4440	4456	2-3-5-6-8
28	4472	4487 4639	4502 4654	4518 4669	4533 4683	4548	4564 4713	4579 4728	4594 4742	4609 4757	2.3.5.6.8 1.3.4.6.7
	-										
30 31	4771 4914	4786 4928	4800 4942	4814 4955	4829 4969	4843	4857	4871 5011	4886 5024	4900 5038	1.3.4.6.7
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1. 3. 4. 6. 7 1. 3. 4. 5. 7
33	5185	5198	5211	5224	5237		5263	5276	5289	5302	1. 3. 4. 5. 6
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1.3.4.5.6
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1.2.4.5.6
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1. 2. 4. 5. 6
37	5682	5694	5705	5717	5729		5752	5763	5775	5786	1 · 2 · 3 · 5 · 6
38	5798 5911	5809	5821	5832	5843	5855	5866	5877	5888	5899	1.2.3.5.6
39		5922	5933	5944	5955	5966	5977	5988	5999	6010	1. 2. 3. 4. 6
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1.2.3.4.5
41 42	6128 6232	6138 6243	6149 6253	6160 6263	6170 6274	6180 6284	6191 6294	6201 6304	6212 6314	6222 6325	1. 2. 3. 4. 5
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1. 2. 3. 4. 5
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1. 2. 3. 4. 5
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1. 2. 3. 4. 5
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1. 2. 3. 4. 5
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1. 2. 3. 4. 5
48	6812	6821	6830	6839	6848	685 7	6866	6875	6884	6893	1. 2. 3. 4. 4
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1.2.3.4.4
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1.2.3.3.4
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1.2.3.3.4
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1.2.2.3.4
53 64	7243 7324	7251 7332	7259 7340	7267 7348	7275 7356	7284 7364	7292	7300 7380	7308 7388	7316 7396	1. 2. 2. 3. 4
04	1044	1004	1340	1046	1000	1304	1014	1300	1000	1000	1. 2. 2. 3. 4

Note.—This page and the three that follow it are taken from the Mathematical Tables of Prof. J. M. Peirce, published by Messrs. Ginn & Co.

N	0	1	2	3	4	5	6	7	8	9	P. P.
1	ľ	-	4	3	#	3	Ü	'	0	ð	1. 2. 3. 4. 5
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1. 2. 2. 3. 4
56			7497	7505			7528	7536	7543	7551	1. 2. 2. 3. 4
57	1		7574		7589		7604		7619	7627	1. 2. 2. 3. 4
58 59	7709	7642 7716	7649 7723	7657 7731	7664 7738	7672 7745	7679 7752	7686 7760	7694 7767	7701 7774	1. 1. 2. 3. 4 1. 1. 2. 3 4
ll .											
60	7782 7853	7789	779 6 786 8	7803 7875	7810 7882	7818 7889	7825	7832 7903	7839 7910	7846 7917	1. 1. 2. 3. 4
62		7931	7938		7952		7966			7987	1. 1. 2. 3. 4
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1.1.2.3.3
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1.1.2.3.3
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1.1.2.3.3
66	8195			8215			8235			8254	1. 1. 2. 3. 3
67 68	8325	8267 8331	8338	8280 8344		8293	8299 8363			8319 8382	1. 1. 2. 3. 3
69	8388		8401	8407	8414	8420			8439		1. 1. 2. 3. 3 1. 1. 2. 3. 3
70	8451		8463	8470	8476		8488			8506	
71		8519	8525	8531	8537		8549			8567	1. 1. 2. 2. 3
72		8579			8597			8615		8627	1. 1. 2. 2. 3
73	8633		8645		8657	8663	8669	8675		8686	1.1.2.2.3
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1.1.2.2.3
75	8751			8768	8774	8779	8785	8791	8797	8802	1.1.2.2.3
76			8820					8848			1.1.2.2.3
77	8865	8927	8876 8932	8938	8887 8943	8893		8904 8960			1. 1. 2. 2. 3 1. 1. 2. 2. 3
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1. 1. 2. 2. 3
80	9031	9036		9047	9053	9058		9069	9074		1.1.2.2.3
81	9085		9096			9112	9117		9128		1. 1. 2. 2. 3
82	9138			9154				9175			1.1.2.2.3
83	9191			9206	9212	9217		9227	9232		1. 1. 2. 2. 3
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1.1.2.2.3
85		9299			9315	9320	9325	9330		9340	1.1.2.2.3
86					9365	9370		9380		9390	1. 1. 2. 2. 3
87	9395		9405	9410	9415	9420		9430	9435	9440 9489	0. 1. 1. 2. 2 0. 1. 1. 2. 2
89	9494		9504		9513	9518		9528		9538	0. 1. 1. 2. 2
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0. 1. 1. 2. 2
91	9590		9600		9609	9614		9624	9628	9633	0.1.1.2.2
92	9638	9643	9647	9652	9657	9661		9671	9675	9680	0.1.1.2.2
93	9685		9694		9703	9708			9722	9727	0.1.1.2.2
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0-1-1-2-2
95	9777	9782	9786		9795	9800		9809		9818	0.1.1.2.2
96	9823		9832	9836	9841			9854		9863	0. 1. 1. 2. 2
97	9868	9872 9917	9877 9921	9881 9926	9886 9930			9899 9943	9903 9948	9908 9952	0. 1. 1. 2. 2 0. 1. 1. 2. 2
99		9961	9965		9974		9983		9991	9996	0. 1. 1. 2. 2

N	0	1	2	3	4	5	6	7	8	9	10
100 101 102 103 104	0000 0043 0086 0128 0170	0043 0090	0009 0052 0095 0137 0179	0013 0056 0099 0141 0183	0017 0060 0103 0145 0187	0022 0065 0107 0149 0191	0069 0111		0035 0077 0120 0162 0204		0043 0086 0128 0170 0212
105 106 107 108 109	0294	0216 0257 0298 0338 0378	0220 0261 0302 0342 0382	0265	0228 0269 0310 0350 0390	0314 0354	0237 0278 0318 0358 0398	0322	0286	0249 0290 0330 0370 0410	0253 0294 0334 0374 0414
110 111 112 113 114	0414 0453 0492 0531 0569	0418 0457 0496 0535 0573	0422 0461 0500 0538 0577	0426 0465 0504 0542 0580	0430 0469 0508 0546 0584	0473 0512	0438 0477 0515 0554 0592	0519			0453 0492 0531 0569 0607
115 116 117 118 119	0607 0645 0682 0719 0755	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0697	0663 0700 0737	0630 0667 0704 0741 0777	0671		0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899 0934	0867	0835	0803 0839 0874 0910 0945	0806 0842 0878 0913 0948	0810 0846 0881 0917 0952	0813 0849 0885 0920 0955	0853 0888	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125 126 127 128 129	0969 1004 1038 1072 1106	0973 1007 1041 1075 1109	0976 1011 1045 1079 1113	0980 1014 1048 1082 1116		0986 1021 1055 1089 1123	0990 1024 1059 1092 1126		0997 1031 1065 1099 1133	1000 1035 1069 1103 1136	1004 1038 1072 1106 1139
130 131 132 133 134	1139 1173 1206 1239 1271	1143 1176 1209 1242 1274		1149 1183 1216 1248 1281	1153 1186 1219 1252 1284	1156 1189 1222 1255 1287	1193 1225	1163 1196 1229 1261 1294	1166 1199 1232 1265 1297	1169 1202 1235 1268 1300	1173 1206 1239 1271 1303
135 136 137 138 139	1303 1335 1367 1399 1430	1307 1339 1370 1402 1433	1342	1313 1345 1377 1408 1440	1316 1348 1380 1411 1443	1319 1351 1383 1414 1446	1323 1355 1386 1418 1449	1326 1358 1389 1421 1452	1329 1361 1392 1424 1455	1396	1335 1367 1399 1430 1461
140 141 142 143 144	1461 1492 1523 1553 1584		1498 1529 1559	1471 1501 1532 1562 1593	1474 1504 1535 1565 1596	1477 1508 1538 1569 1599	1480 1511 1541 1572 1602	1514	1486 1517 1547 1578 1608	1489 1520 1550 1581 1611	1492 1523 1553 1584 1614
145 146 147 148 149		1617 1647 1676 1706 1735	1679 1708	1623 1652 1682 1711 1741	1626 1655 1685 1714 1744	1717		1635 1664 1694 1723 1752		1641 1670 1700 1729 1758	1644 1673 1703 1732 1761

TABLES.

N	0	1	2	3	4	5	6	7	8	9	10
150 151 152 153 154	1761 1790 1818 1847 1875	1793	1767 1796 1824 1853 1881	1770 1798 1827 1855 1884	1772 1801 1830 1858 1886	1775 1804 1833 1861 1889	1778 1807 1836 1864 1892	1781 1810 1838 1867 1895	1813 1841	1787 1816 1844 1872 1901	1790 1818 1847 1875 1903
155 156 157 158 159	1931	1906 1934 1962 1989 2017		1912 1940 1967 1995 2022	1915 1942 1970 1998 2025	1917 1945 1973 2000 2028	2003			2011	1931 1959 1987 2014 2041
160 161 162 163 164	2041 2068 2095 2122 2148	2071	2101 2127	2076 2103	2106	2055 2082 2109 2135 2162	2111 2138	2087	2090 2117	2092 2119 2146	2068 2095 2122 2148 2175
165 166 167 168 169	2227 2253	2204 2230 2256	2206 2232 2258	2209 2235 2261	2185 2212 2238 2263 2289	2214 2240 2266	2269	$\begin{array}{c} 2245 \\ 2271 \end{array}$	2196 2222 2248 2274 2299	2225 2251 2276	2201 2227 2253 2279 2304
170 171 172 173 174	2330	2358 2383	2310 2335 2360 2385 2410	2363 2388	2315 2340 2365 2390 2415		2320 2345 2370 2395 2420	2348	2325 2350 2375 2400 2425		2330 2355 2380 2405 2430
175 176 177 178 179	2430 2455 2480 2504 2529	2433 2458 2482 2507 2531	2435 2460 2485 2509 2533		2490 2514	2516	2494 2519	2472 2497 2521	2450 2475 2499 2524 2548	2477 2502 2526	2455 2480 2504 2529 2553
180 181 182 183 184	2553 2577 2601 2625 2648	2555 2579 2603 2627 2651	2629	2560 2584 2608 2632 2655	2562 2586 2610 2634 2658	2613	2615 2639	2570 2594 2617 2641 2665		2574 2598 2622 2646 2669	2577 2601 2625 2648 2672
185 186 187 188 189	2672 2695 2718 2742 2765	2674 2697 2721 2744 2767	2676 2700 2723 2746 2769	2679 2702 2725 2749 2772	2681 2704 2728 2751 2774	2683 2707 2730 2753 2776	2686 2709 2732 2755 2778	2688 2711 2735 2758 2781	2690 2714 2737 2760 2783	2693 2716 2739 2762 2785	2695 2718 2742 2765 2788
190 191 192 193 194	2788 2810 2833 2856 2878	2790 2813 2835 2858 2880	2815	2794 2817 2840 2862 2885	2797 2819 2842 2865 2887	2799 2822 2844 2867 2889	2801 2824 2847 2869 2891	2804 2826 2849 2871 2894	2806 2828 2851 2874 2896	2831 2853	2810 2833 2856 2878 2900
195 196 197 198 199	2900 2923 2945 2967 2989		2905 2927 2949 2971 2993	2907 2929 2951 2973 2995	2909 2931 2953 2975 2997	2911 2934 2956 2978 2999	2914 2936 2958 2980 3002	2916 2938 2960 2982 3004		2920 2942 2964 2986 3008	2923 2945 2967 2989 3010

146 TABLES.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
0.0000	0° 00′	Nat. Log0000 ∞	Nat. Log. 1.0000 0.0000	Nat. Log. .0000 ∞	Nat. Log.	90° 00′ 1.	5708
0.0029	10	.0029 7.4637	1.0000 .0000	.0029 7.4637	343.77 2.5363		5679
0.0058	20 30		1.0000 .0000 1.0000 .0000	.0058 .7648 .0087 .9409	171.89 .2352 114.59 .0591		5650 5621
0.0116	40	.0116 8.0658	.9999 .0000	.0116 8.0658	85.940 1.9342	20 1	5592
0.0145	50	.0145 .1627	.9999 .0000	.0145 .1627	68.750 .8373		5563
0.0175	1° 00′ 10	.0175 8.2419 .0204 .3088	.9998 9.9999 .9998 .9999	.0175 8.2419 .0204 .3089	57.290 1.7581 49.104 .6911		5533 5504
0.0233	20	.0233 .3668	.9997 .9999	.0233 .3669	42.964 .6331	40 1	5475
0.0262	30 40	.0262 .4179 .0291 .4637	.9997 .9999 .9996 .9998	.0262 .4181 .0291 .4638	38.188 .5819 34.368 .5362		5446 5417
0.0291	50	.0320 .5050	.9995 .9998	.0320 .5053	31.242 .4947		5388
0.0349	2° 00′	.0349 8.5428	.9994 9.9997	.0349 8.5431	28.636 1.4569		5359
0.0378	10 20	.0378 .5776 .0407 .6097	.9993 .9997 .9992 .9996	.0378 .5779 .0407 .6101	26.432 .4221 24.542 .3899		5330 5301
0.0436	30	.0436 .6397	.9990 .9996	.0437 .6401	22.904 .3599	30 1	5272
0.0465	40 50	.0465 .6677 .0494 .6940	.9989 .9995 .9988 .9995	.0466 .6682 .0495 .6945	21.470 .3318 20.206 .3055		5243 5213
0.0493	3° 00′	.0523 8.7188	.9986 9.9994	.0524 8.7194	19.081 1.2806		5184
0.0553	10	.0552 .7423	.9985 .9993	.0553 .7429	18.075 .2571	50 1	5155
0.0582	20 30	.0581 .7645 .0610 .7857	.9983 .9993 .9981 .9992	.0582 .7652 .0612 .7865	17.169 .2348 16,350 .2135		5126 5097
0.0611	40	.0640 .8059	.9980 .9991	.0641 .8067	15.605 .1933	20 1	5068
0.0669	50	.0669 .8251	.9978 .9990	.0670 .8261	14.924 .1739		5039
0.0698	4° 00′ 10	.0698 8.8436 .0727 .8613	.9976 9.9989 .9974 .9989	.0699 8.8446 .0729 .8624	14.301 1.1554 13.727 .1376		5010 4981
0.0756	20	.0756 .8783	.9971 .9988	.0758 .8795	13.197 .1205	40 1.4	4952
0.0785	30 40	.0785 .8946 .0814 .9104	.9969 .9987 .9967 .9986	.0787 .8960 .0816 .9118			49 23 48 93
0.0814	50	.0843 .9256	.9964 .9985	.0846 .9272	11.826 .0728	10 1.	4864
0.0873	5° 00′	.0872 8.9403	.9962 9.9983	.0875 8.9420		85° 00′ 1.	4835
0.0902	10 20	.0901 .9545 .0929 .9682	.9959 .9982 .9957 .9981	.0904 .9563 .0934 .9701	11.059 .0437 10.712 .0299		48 06 4777
0.0960	30	.0958 .9816	.9954 .9980	.0963 .9836	10.385 .0164	30 1.	4748
0.0989	40 50	.0987 .9945 .1016 9.0070	.9951 .9979 .9948 .9977	.0992 .9966 .1022 9.0093	10.078 .0034 9.7882 0.9907		4719 4690
0.1013	6° 00′	.1045 9.0192	.9945 9.9976	.1051 9.0216			4661
0.1076	10	1074 .0311	.9942 .9975	.1080 .0336			4632
0.1105 0.1134	20 30	.1103 .0426 .1132 .0539	.9939 .9973 .9936 .9972	.1110 .0453 .1139 .0567	9.0098 .9547 8.7769 .9433		4603 4574
0.1164	40	.1161 .0648	.9932 .9971	.1169 .0678	8.5555 .9322		4544
0.1193	50 7° 00′	.1190 .0755 .1219 9.0859	.9929 .9969 .9925 9.9968	.1198 .0786 .1228 9.0891	8.3450 .9214 8.1443 0.9109		4515 4486
0.1222	10	.1219 9.0859	.9923 9.9966	.1257 .0995	7.9530 .9005	50 1.4	4457
0.1280	20	.1276 .1060	.9918 .9964	.1287 .1096			4428
0.1309 0.1338	30 40	.1305 .1157 .1334 .1252	.9914 .9963 .9911 .9961	.1317 .1194 .1346 .1291	7.5958 .8806 7.4287 .8709		4399 4370
0.1367	50	.1363 .1345	.9907 .9959	.1376 .1385	7.2687 .8615	- 1	4341
0.1396	8° 00′	.1392 9.1436	.9903 9.9958	.1405 9.1478 .1435 .1569	7.1154 0.8522 6.9682 .8431		4312 4283
0.1425 0.1454	10 20	.1421 .1525 .1449 .1612	.9899 .9956 .9894 .9954	.1465 .1658	6.8269 .8342	40 1.4	4254
0.1484	30	.1478 .1697	.9890 .9952	.1495 .1745	6.6912 .8255		4224
0.1513 0.1542	40 50	.1507 .1781 .1536 .1863	.9886 .9950 .9881 .9948	.1524 .1831 .1554 .1915	6.5606 .8169 6.4348 .8085		4195 416 6
0.1571	9° 00′	.1564 9.1943	.9877 9.9946	.1584 9.1997	6.3138 0.8003		4137
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
		COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREES. RAI	DIANS.

Trigonometric Functions.

Trigonometric Fullctions.									
RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.				
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9° 00′ 10 20 30 40 50	Nat. Log. .1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	Nat. Log. .9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	Nat. Log. .1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	Nat. Log. 6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	81° 00′ 50 40 30 20 10	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992		
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10° 00′ 10 20 30 40 50	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	80° 00′ 50 40 30 20 10	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817		
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065 0.2094	11° 00′ 10 20 30 40 50 12° 00′	.1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119 .2079 9.3179	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907 .9781 9.9904	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149 .2095 .3212 .2126 9.3275	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788 4.7046 0.6725	79° 00′ 50 40 30 20 10 78° 00′	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643 1.3614		
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240 0.2269	10 20 30 40 50 13° 00'	.2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466 .2250 9.3521	.9761 9.9901 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893 .9750 .9890 .9744 9.9887	.2126 9.3273 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517 .2278 .3576 .2309 9.3634	4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424 4.3315 0.6366	50 40 30 20 10 77° 00′	1.3584 1.3555 1.3526 1.3497 1.3468 1.3439		
0.2298 0.2327 0.2356 0.2385 0.2414 0.2443	10 20 30 40 50 14° 00′	.2278 .3575 .2306 .3629 .2334 .3682 .2363 .3734 .2391 .3786	.9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872 .9703 9.9869	.2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859 .2462 .3914 .2493 9.3968	4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086 4.0108 0.6032	50 40 30 20 10 76° 00′	1.3410 1.3381 1.3352 1.3323 1.3294 1.3265		
0.2473 0.2502 0.2531 0.2560 0.2589	10 20 30 40 50	.2447 .3887 .2476 .3937 .2504 .3986 .2532 .4035 .2560 .4083	.9696 .9866 .9689 .9863 .9681 .9859 .9674 .9856 .9667 .9853	.2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230	3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770	50 40 30 20 10	1.3235 1.3206 1.3177 1.3148 1.3119		
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15° 00′ 10 20 30 40 50	.2588 9.4130 .2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359	.9659 9.9849 .9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832	.2679 9.4281 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527	3.7321 0.5719 3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473	75° 00′ 50 40 30 20 10	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945		
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16° 00′ 10 20 30 40 50	.2756 9.4403 .2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618	.9613 9.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810	.2867 9.4575 .2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808	3.4874 0.5425 3.4495 .5378 3.4124 .5331 3.3759 .5284 3.3402 .5238 3.3052 .5192	74° 00′ 50 40 30 20 10	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770		
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17° 00′ 10 20 30 40 50	.2924 9.4659 .2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861	.9563 9.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786	.3057 9.4853 .3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075	3.2709 0.5147 3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925	73° 00′ 50 40 30 20 10	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595		
0.3142	18° 00′	.3090 9.4900 Nat. Log.	.9511 9.9782 Nat. Log.	.3249 9.5118 Nat. Log.	3.0777 0.4882 Nat. Log.	72° 00′	1.2566		
		COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREES.	RADIANS.		

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.			
0.3142 0.3171 0.3200 0.3229 0.3258	18° 00′ 10 20 30 40	Nat. Log. .3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052	Nat. Log. .9511 9.9782 .9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765	Nat. Log. .3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287	3.0475 .4839 3.0178 .4797 2.9887 .4755	50 40 30	1.2566 1.2537 1.2508 1.2479 1.2450	
0.3287 0.3316 0.3345	50 19° 00′ 10	.3228 .5090 .3256 9.5126 .3283 .5163	.9465 .9761 .9455 9.9757 .9446 .9752	.3411 .5329 .3443 9.5370 .3476 .5411	2.9319 .4671	10	1.2421 1.2392 1.2363	
0.3374 0.3403 0.3432 0.3462	20 30 40 50	.3311 .5199 .3338 .5235 .3365 .5270 .3393 .5306	.9436 .9748 .9426 .9743 .9417 .9739 .9407 .9734	.3508 .5451 .3541 .5491 .3574 .5531 .3607 .5571	2.8502 .4549 2.8239 .4509	40 30 20	1.2334 1.2305 1.2275 1.2246	
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20° 00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9397 9.9730 .9387 .9725 .9377 .9721 .9367 .9716 .9356 .9711 .9346 .9706	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.6985 .4311 2.6746 .4273 2.6511 .4234	50 40 30 20	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072	
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21° 00′ 10 20 30 40 50	.3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.5826 .4121 2.5605 .4083	69° 00′ 50 40 30 20 10	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897	
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22° 00′ 10 20 30 40 50	.3746 9.5736 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 .9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4142 .3828	68° 00′ 50 40 30 20 10	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723	
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23° 00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67° 00′ 50 40 30 20 10	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548	
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24° 00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66° 00′ 50 40 30 20 10	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374	
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25° 00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 .9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65° 00′ 50 40 30 20 10	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199	
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26° 00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8988 9.9537 .8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64° 00′ 50 40 30 20 10	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025	
0.4712	27° 00′	.4540 9.6570 Nat. Log.	.S910 9.9499 Nat. Log.	.5095 9.7072 Nat. Log.	1.9626 0.2928 Nat. Log.	63° 00′	1.0996	
		COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREES.	KADIANS.	

Trigonometric Functions.									
RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.				
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27° 00′ 10 20 30 40 50	Nat. Log. .4540 9.6570 .4566 .6595 .4592 .6620 .4617 .6644 .4643 .6668 .4669 .6692	Nat. Log. .8910 9.9499 .8897 .9492 .8884 .9486 .8870 .9479 .8857 .9473 .8843 .9466	Nat. Log5095 9.7072 .5132 .7103 .5169 .7134 .5206 ,7165 .5243 .7196 .5280 .7226	Nat. Log. 1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	63° 00′ 50 40 30 20 10	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850		
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032 0.5061 0.5091 0.5120	28° 00′ 10 20 30 40 50 29° 00′ 10 20	.4695 9.6716 .4720 .6740 .4746 .6763 .4772 .6787 .4797 .6810 .4823 .6833 .4848 9.6856 .4874 .6878 .4899 .6901	.8829 9.9459 .8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432 .8760 .9425 .8746 9.9418 .8732 .9411 .8718 .9404	.5317 9.7257 .5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408 .5543 9.7438 .5581 .7467 .5619 .7497	1.8807 0.2743 1.8676 .2713 1.8546 .2683 1.8418 .2652 1.8291 .2622 1.8165 .2592 1.8040 0.2562 1.7917 .2533 1.7796 .2503	62° 00′ 50 40 30 20 10 61° 00′ 50 40	1.0821 1.0792 1.0763 1.0734 1.0705 1.0676 1.0647 1.0617 1.0588		
0.5149 0.5178 0.5207 0.5236 0.5265 0.5294 0.5323 0.5352	30 40 50 30° 00′ 10 20 30 40	.4924 .6923 .4950 .6946 .4975 .6968 .5000 9.6990 .5025 .7012 .5050 .7033 .5075 .7055 .5100 .7076	.8704 .9397 .8689 .9390 .8675 .9383 .8660 9.9375 .8646 .9368 .8631 .9361 .8616 .9353 .8601 .9346	.5658 .7526 .5696 .7556 .5735 .7585 .5774 9.7614 .5812 .7644 .5851 .7673 .5890 .7701 .5930 .7730	1.7675 .2474 1.7556 .2444 1.7437 .2415 1.7321 0.2356 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270	30 20 10 60° 00′ 50 40 30 20	1.0559 1.0530 1.0501 1.0472 1.0443 1.0414 1.0385 1.0356		
0.5381 0.5411 0.5440 0.5469 0.5498 0.5527 0.5556 0.5585	50 31° 00′ 10 20 30 40 50 32° 00′	.5125 .7097 .5150 9.7118 .5175 .7139 .5200 .7160 .5225 .7181 .5250 .7201 .5275 .7222 .5299 9.7242	.8587 .9338 .8572 9.9331 .8557 .9323 .8542 .9315 .8526 .9308 .8511 .9300 .8496 .9292 .8480 9.9284	.5969 .7759 .6009 9.7788 .6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902 .6208 .7930 .6249 9.7958	1.6753 .2241 1.6643 0.2212 1.6534 .2184 1.6426 .2155 1.6319 .2157 1.6212 .2098 1.6107 .2070 1.6003 0.2042	10 59° 00′ 50 40 30 20 10 58° 00′	1.0327 1.0297 1.0268 1.0239 1.0210 1.0181 1.0152 1.0123		
0.5333 0.5614 0.5643 0.5672 0.5701 0.5730 0.5760	10 20 30 40 50	.5299 9.7242 .5324 .7262 .5348 .7282 .5373 .7302 .5398 .7322 .5422 .7342 .5446 9.7361	.8465 .9276 .8450 .9268 .8434 .9260 .8418 .9252 .8403 .9244 .8387 9.9236	.6249 9.7936 .6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070 .6453 .8097	1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930 1.5497 .1903 1.5399 0.1875	50	1.0123 1.0094 1.0065 1.0036 1.0007 0.9977 0.9948		
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905 0.5934	10 20 30 40 50 34° 00′	.5446 9.7361 .5471 .7380 .5495 .7400 .5519 .7419 .5544 .7438 .5568 .7457 .5592 9.7476	.8377 9.9238 .8371 9.9228 .8355 9.219 .8339 9.9211 .8323 9.9203 .8307 9.9194 .8290 9.9186	.6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235 .6703 .8263 .6745 9.8290	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737 1.4826 0.1710	50 40 30 20 10 56° 00′	0.9948 0.9919 0.9890 0.9861 0.9832 0.9803		
0.5963 0.5992 0.6021 0.6050 0.6080 0.6109	10 20 30 40 50 35° 00′	.5616 .7494 .5640 .7513 .5664 .7531 .5688 .7550 .5712 .7568 .5736 9.7586	.8274 .9177 .8258 .9169 .8241 .9160 .8225 .9151 .8208 .9142 .8192 .9.9134	.6743 9.8290 .6787 .8317 .6830 .8344 .6873 .8371 .6916 .8398 .6959 .8425 .7002 9.8452	1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575 1.4281 0.1548	50 40 30 20 10	0.9774 0.9745 0.9716 0.9687 0.9657 0.9628 0.9599		
0.6138 0.6167 0.6196 0.6225 0.6254 0.6283	10 20 30 40 50 36° 00′	.5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 7675 .5878 9.7692	.8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 .8107 .9089 .8090 9.9080	.7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 .7221 .8586 .7265 9.8613	1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414 1.3764 0.1387	50 40 30 20 10 54° 00′	0.9570 0.9541 0.9512 0.9483 0.9454 0.9425		
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	DEGREES.	RADIANS.		

TABLES.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
0.6283	36° 00′	Nat. Log. .5878 9.7692	Nat. Log8090 9.9080	Nat. Log. .7265 9.8613	Nat. Log. 1.3764 0.1387		0.9425
0.6312	10	.5901 .7710	.8073 .9070	.7310 .8639	1.3680 .1361	50	0.9396
0.6341	20	.5925 .7727	.8056 .9061	.7355 .8666	1.3597 .1334	40	0.9367
0.6370	30 40	.5948 .7744 .5972 .7761	.8039 .9052 .8021 .9042	.7400 .8692 .7445 .8718	1.3514 .1308 1.3432 .1282	30 20	0.9338
0.6429	50	.5995 .7778	.8004 .9033	.7490 .8745	1.3351 .1255	10	0.9308
0.6458	37° 00′	.6018 9.7795	.7986 9,9023	.7536 9.8771	1.3270 0.1229		0.9250
0.6487	10	.6041 .7811	.7969 .9014	.7581 .8797	1.3190 .1203	50	0.9230
0.6516	20	.6065 .7828	.7951 .9004	.7627 .8824	1.3111 .1176		0.9192
0.6545	30	.6088 .7844	.7934 .8995	.7673 .8850			0.9163
0.6574	40	.6111 .7861	.7916 .8985	.7720 .8876	1.2954 .1124	20	0.9134
0.6603	50	.6134 .7877	.7898 .8975	.7766 .8902	1.2876 .1098		0.9105
0.6632	38° 00′	.6157 9.7893	.7880 9.8965	.7813 9.8928			0.9076
0.6661	10 20	.6180 .7910 .6202 .7926	.7862 .8955 .7844 .8945	.7860 .8954 .7907 .8980	1.2723 .1046 1.2647 .1020	50 40	0.9047
0.6720	30	.6225 .7941	.7826 .8935	.7954 .9006		30	0.8988
0.6749	40	.6248 .7957	.7808 .8925	.8002 .9032	1.2497 .0968		0.8959
0.6778	50	.6271 .7973	.7790 .8915	.8050 .9058			0.8930
0.6807	39° 00′	.6293 9.7989	.7771 9.8905	.8098 9.9084		51° 00′	0.8901
0.6836	10	.6316 .8004	.7753 .8895	.8146 .9110	1.2276 .0890	50	0.8872
0.6865	20	.6338 .8020	.7735 .8884	.8195 .9135	1.2203 .0865	40	0.8843
0.6894	30 40	.6361 .8035 .6383 .8050	.7716 .8874 .7698 .8864	.8243 .9161 .8292 .9187	1.2131 .0839 1.2059 .0813	30 20	0.8814
0.6923	50	.6406 .8066	.7698 .8864 .7679 .8853	.8342 .9212	1.2059 .0813 1.1988 .0788	10	0.8785
0.6981	40° 00′	.6428 9.8081	.7660 9.8843	.8391 9.9238	1.1918 0.0762	1	0.8727
0.7010	10	.6450 .8096	.7642 .8832	.8441 .9264	1.1847 .0736		0.8698
0.7039	20	.6472 .8111	.7623 .8821	.8491 .9289		40	0.8668
0.7069	30	.6494 .8125	.7604 .8810	.8541 .9315	1.1708 .0685	30	0.8639
0.7098	40	.657.7 .8140	.7585 .8800	.8591 .9341	1.1640 .0659	20	0.8610
0.7127	50	.6539 .8155	.7566 .8789	.8642 .9366		10	0.8581
0.7156	41° 00′	.6561 9.8169	.7547 9.8778	.8693 9.9392	1.1504 0.0608		0.8552
0.7185 0.7214	10 20	.6583 .8184 .6604 .8198	.7528 .8767 .7509 .8756	.8744 .9417 .8796 .9443	1.1436 .0583 1.1369 .0557	50 40	0.8523
0.7214	30	.6626 .8213	.7490 .8745	.8847 .9468	1.1303 .0532		0.8465
0.7272	40	.6648 .8227	.7470 .8733	.8899 .9494	1.1237 .0506		0.8436
0.7301	50	.6670 .8241	.7451 .8722	.8952 .9519	1.1171 .0481	10	0.8407
0.7330	42° 00′	.6691 9.8255	.7431 9.8711	.9004 9.9544	1.1106 0.0456	48° 00′	0.8378
0.7359	10	.6713 .8269	.7412 .8699	.9057 .9570	1.1041 .0430		0.8348
0.7389	20	.6734 .8283	.7392 .8688	.9110 .9595	1.0977 .0405	40	0.8319
0.7418 0.7447	30 40	.6756 .8297 .6777 .8311	.7373 .8676 .7353 .8665	.9163 .9621 .9217 .9646	1.0913 .0379 1.0850 .0354	30 20	0.8290 0.8261
0.7476	50	.6799 .8324	.7333 .8653	.9271 .9671	1.0786 .0329	10	0.8232
0.7505	43° 00′	.6820 9.8338	.7314 9.8641	.9325 9.9697	1.0724 0.0303		0.8203
0.7534	10	.6841 .8351	.7294 .8629	.9380 .9722	1.0661 .0278	50	0.8174
0.7563	20	.6862 .8365	.7274 .8618	.9435 .9747	1.0599 .0253	40	0.8145
0.7592	30	.6884 .8378	.7254 .8606	.9490 .9772	1.0538 .0228	30	0.8116
0.7621 0.7650	40 50	.6905 .8391 .6926 .8405	.7234 .8594 .7214 .8582	.9545 .9798 .9601 .9823	1.0477 .0202 1.0416 .0177	20 10	0.8087 0.8058
0.7679	440 00'	.6947 9.8418	.7214 .0302	.9601 .9823			0.8038
0.7679	10	.6947 9.8418	.7193 9.8569	.9657 9.9848	1.0355 0.0152 1.0295 .0126	50	0.8029
0.7738	20	.6988 .8444	.7153 .8545	.9770 .9899	1.0235 .0120	40	0.7970
0.7767	30	.7009 .8457	.7133 .8532	.9827 .9924	1.0176 .0076	30	0.7941
0.7796	40	.7030 .8469	.7112 .8520	.9884 .9949	1.0117 .0051	20	0.7912
0.7825	50	.7050 .8482	.7092 .8507	.9942 .9975	1.0058 .0025	10	0.7883
0.7854	45° 00′	.7071 9.8495 Nat. Log.		1.0000 0.0000	1.0000 0.0000	45° 00′	0.7854
				Nat. Log.	Nat. Log.		
		COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREES.	RADIANS.

Equivalents of Radians in Degrees, Minutes, and Seconds of Arc.

RADIANS.	EQUIVALENTS.	RADIANS.	EQUIVALENTS.
0.0001	0° 0′ 20″.6 or 0°.005730	0.0600	3° 26′ 15″.9 or 3°.437747
0.0002	0° 0′ 41″.3 or 0°.011459	0.0700	4° 0′38″.5 or 4°.010705
0.0003	0° 1′01″.9 or 0°.017189	0.0800	4° 35′ 01″.2 or 4°.583662
0.0004	0° 1′ 22″.5 or 0°.022918	0.0900	5° 9′ 23″.8 or 5°.156620
0.0005	0° 1′43″.1 or 0°.028648	0.1000	5° 43′ 46″.5 or 5°.729578
0.0006	0° 2′ 03″.8 or 0°.034377	0.2000	11° 27′ 33″.0 or 11°.459156
0.0007	0° 2′ 24″.4 or 0°.040107	0.3000	17° 11′ 19″.4 or 17°.188734
0.0008	0° 2′ 45″.0 or 0°.045837	0.4000	22° 55′ 05″.9 or 22°.918312
0.0009	0° 3′ 05″.6 or 0°.051566	0.5000	28° 38′ 52″.4 or 28°.647890
0.0010	0° 3′ 26″.3 or 0°.057296	0.6000	34° 22′ 38″.9 or 34°.377468
0.0020	0° 6′ 52″.5 or 0°.114592	0.7000	40° 6′ 25″.4 or 40°.107046
0.0030	0° 10′ 18″.8 or 0°.171887	0.8000	45° 50′ 11″.8 or 45°.836624
0.0040	0° 13′ 45″.1 or 0°.229183	0.9000	51° 33′ 58″.3 or 51°.566202
0.0050	0° 17′ 11″.3 or 0°.286479	1.0000	57° 17′ 44″.8 or 57°.295780
0.0060	0° 20′ 37″.6 or 0°.343775	2.0000	114° 35′ 29″.6 or 114°.591559
0.0070	0° 24′ 03″.9 or 0°.401070	3.0000	171° 53′ 14″.4 or 171°.887339
0.0080	0° 27′ 30″.1 or 0°.458366	4.0000	229° 10′ 59″.2 or 229°.183118
0.0090	0° 30′ 56″.4 or 0°.515662	5.0000	286° 28′ 44″.0 or 286°.478898
0.0100	0° 34′ 22″.6 or 0°.572958	6.0000	343° 46′ 28″.8 or 343°.774677
0.0200	1° 8′45″.3 or 1°.145916	7.0000	401° 4′13″.6 or 401°.070457
0.0300	1°43′07″.9 or 1°.718873	8.0000	458° 21′ 58″.4 or 458°.366236
0.0400	2°17′30″.6 or 2°.291831	9.0000	515° 39′ 43″.3 or 515°.662016
0.0500	2° 51′ 53″.2 or 2°.864789	10.0000	572° 57′ 28″.1 or 572°.957795

The Values in Circular Measure of Angles which are given in Degrees and Minutes.

_											
1'	0.0003	9'	0.0026	3°	0.0524	20°	0.3491	100°	1.7453		
2'	0.0006	10'	0.0029	40	0.0698	30°	0.5236	110°	1.9199		
3'	0.0009	20′	0.0058	5°	0.0873	40°	0.6981	120°	2.0944		
4'	0.0012	30′	0.0087	60	0.1047	50°	0.8727	130°	2.2689		
5'	0.0015	40′	0.0116	70	0.1222	60°	1.0472	140°	2.4435		
6'	0.0017	50′	0.0145	80	0.1396	70°	1.2217	150°	2.6180		
7'	0.0020	1°	0.0175	90	0.1571	80°	1.3963	160°	2.7925		
8'	0.0023	2°	0.0349	10°	0.1745	900	1.5708	170°	2.9671		
	1 1	1					1 3				

PAGE INDEX.

INTEGRALS.

								PAGES
Fundame	ntal forms							3, 4
Rational a	dgebraic e	xpressions	involvi:	ng (a -	+ bx) a	and (e	t' + b'x	5, 7
44	44	- 66	66		$+bx^n$			8, 9
"		66	44	(a -	+bx+	$-cx^2$		10, 11
Rational f				$(a'\cdot$	+b'x):	and (a	+bx+	cx^2) 11–13
				٠.	•		· ·	13, 14
Irrational	algebraic e	expression	is involv	ing √a	a + bx	or V	i + bx.	16, 17
44	6.6	6.6	66	\sqrt{c}	a + bx	and v	$\sqrt{a'+b}$	\sqrt{x} 18, 19
14	**	44	44				$a^2 - x^2$	
44	44	66			$\frac{1}{2}ax -$			31
44	66	44	44		a + bx		•	
66	44	66						23-27
								$-cx^2$ 27–30
	eous algebr			•		•		32–34
	ranscenden ns involvin							35–37
	ns involvin						ions .	38-51
Exponenti	ial forms	ginverse	urgonor	пенте	runcu	IOHS		51–53 53–56
						•		56-58
Expression	ne forms as involvin	g hynerho	lie fune	tions	•	•		58-61
Miscellane	eous definit	e integral	s .		•			62-65
Elliptic in	tegrals			•				66-72
		•		•	•	•		00 12
		_						
	AUXII	JIARY F	ORMUI	AS A	ND 1	ABL	ES.	
Trigonome	trie functi	One						73-80
Hyperbolic				•	•	•		81-83
Elliptic fu			etions	•	•	•		84-87
Charles	,	• •			•	•		88-96
Derivative	s .			•		:	: :	97-106
Green's Tl	eorem and	l allied fo	rmulas		•			106-109
Table of m					Ĭ		: :	109
General fo	rmulas of	integratio	n .		·	i	: :	110-114
								115
Note on in Table of th	ne probabil	ity integr	al .				: :	116-120
Tables of e	elliptic inte	egrals						121-123
Table of h					Ĭ			124-127
Table of va								127
Table of co	ommon log	arithms o	$f e^x$ and	e^{-x}				128, 129
Five-place	table of na	atural log						130-139
Table of lo	garithms o	of $\Gamma(x)$						140
Three-plac	e table of	naturál tr	igonome	tric fu	nction	ns		141
Four-place	table of co	ommon lo	garithms	of nu	mbers	3		142-145
Four-place								146-150
Tables for	reducing r	adjana to	dogroog					151

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

NOV 8-1966 63	
wee A	
JANJE: 1670	1
UEC 1 7. 66 - 5 PM	
LOAN DEP.	
SEP 9 1984 6	2
AUG 21 1984	
CIRCULATION DEPT.	

LD 21A-60m-7,'66 (G4427s10)476B General Library University of California Berkeley

