TOPOLOGIA GENERALE

DIMOSTRAZIONI E CONTROESEMPI

DEFINIZIONI DELLE PROPRIETÀ

- N1 Ogni punto ha una base di intorni numerabile.
- N2 Lo spazio ha una base di aperti numerabile.
- Sep Se esiste un sottoinsieme denso e numerabile.
- T0 Dati due punti c'è un aperto che li distingue. $(\forall x, y \in X \exists A \text{ aperto t.c. } x \in A, y \notin A \text{ oppure } x \notin A, y \in A)$
- T1 I punti sono chiusi.
- T2 Punti distinti hanno intorni disgiunti.
- Reg Un punto ed un chiuso che non lo contiene hanno intorni disgiunti.
- Norm Ogni coppia di chiusi disgiunti ha intorni disgiunti.
 - T3 Reg + T0.
 - T4 Norm + T1.
 - Cpt Ogni ricoprimento di aperti ha un sottoricoprimento finito.
- Lind Ogni ricoprimento di aperti ha un raffinamento numerabile.
- Conn Non esistono due aperti propri la cui unione è lo spazio intero. (Vale anche con i chiusi)
- PathConn Presi due punti esiste un arco che li connette $(\forall x,y\in X\ \exists \gamma:[0,1]\to X$ continua t.c. $\gamma(0)=x,\gamma(1)=y)$
- LocConn Ogni punto ha una base di intorni connessi.
- LocPathConn Ogni punto ha una base di intorni connessi per archi.
 - LocCpt Ogni punto ha una base di intorni compatti.
 - ParaCpt Ogni ricoprimento aperto ha un raffinamento localmente finito.
 - Metr Metrizzabile, ovvero esiste una distanza che induce la topologia.

Proprietà	Sottospazi	Prodotti	Quozienti	Funzioni \mathcal{C}^0	Implica
N1	\checkmark	Numerabili			
N2	✓	Numerabili	Aperti	Aperte	
Sep	×	Numerabili		✓	
T0	✓	Arbitrari			
T1	✓	Arbitrari			
T2	✓	Arbitrari			
Reg	✓	Arbitrari			
Norm	Chiusi	×			
T3	✓	Arbitrari			
T4	Chiusi	×			
Cpt	Chiusi	Arbitrari		✓	(+T2) Chiuso
Lind	Chiusi	×			
Conn	×	Arbitrari		✓	
PathConn	×	Arbitrari		✓	Conn
LocConn	Aperti				
LocPathConn	Aperti				
Metr	✓	Numerabili			
ParaCpt	Chiusi	×			

LEMMI INSIEMISTICI UTILI

 $f:A \to B$ funzione, $X \subseteq A, Y \subseteq B$. Allora valgono:

- $\bullet \ X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$
- $f(\cup_i X_i) = \cup_i f(X_i)$
- $f(\cap_i X_i) \subseteq \cap_i f(X_i)$
- Se f è iniettiva allora $f(\cap_i X_i) = \cap_i f(X_i)$
- $f^{-1}(\cup_i Y_i) = \cup_i f^{-1}(Y_i)$
- $f^{-1}(\cap_i Y_i) = \cap_i f^{-1}(Y_i)$

N1		
N2		
SEP		
Т0		
T1		
T2		
REG		
Norm		
Т3		
T4		
Срт		
In order on the Contract		

Immagine \mathcal{C}^0 di Compatti è compatta

Enunciato

 $f:X\to Y$ con X Cpt. Allora f(X) è Cpt.

Dimostrazione

Siano $A_{\lambda} \subset Y$ aperti in Y t.c. $f(X) \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Consideriamo $B_{\lambda} := f^{-1}(A_{\lambda})$. Essi sono un ricoprimento aperto (perché $f \in \mathcal{C}^0$) di X. Per compattezza ne esiste un ricoprimento finito B_1, \ldots, B_n . Allora A_1, \ldots, A_n ricoprono f(X).

LIND

CONN

Immagine \mathcal{C}^0 di Connessi è connessa

Enunciato

 $f:X\to Y$ con X Conn. Allora f(X) è Conn.

Dimostrazione

Per assurdo siano A_1, A_2 i due aperti in Y che sconnettono f(X). Allora $B_1 := f^{-1}(A_1), B_2 := f^{-1}(A_2)$ sono aperti (sono ancora disgiunti) che sconnettono X, Assurdo.

PATHCONN

Immagine \mathcal{C}^0 di Connessi per archi è connessa per archi

Enunciato

 $f:X\to Y$ conX Path
Conn. Allora f(X)è Path Conn.

Dimostrazione

Siano $y_1, y_2 \in f(X)$, ovvero $y_1 = f(x_1), y_2 = f(x_2)$. Per ipotesi sia $\gamma : [0,1] \to X \in \mathcal{C}^0$ tale che $\gamma(0) = x_1, \gamma(1) = x_2$, consideriamo allora $g := f \circ \gamma$, anch'essa continua. Abbiamo $g : [0,1] \to Y \in \mathcal{C}^0$ tale che $g(0) = y_1, g(1) = y_2$.

CONNESSO PER ARCHI IMPLICA CONNESSO

Enunciato

 $X \operatorname{PathConn} \implies X \operatorname{Conn}$.

Dimostrazione

Per assurdo siano A_1, A_2 i due aperti in X che lo sconnettono. Siano $x_1 \in A_1, x_2 \in A_2$ e si prenda $\gamma : [0,1] \to X \in \mathcal{C}^0$ tale che $\gamma(0) = x_1, \gamma(1) = x_2$. Allora $B_1 := \gamma^{-1}(A_1), B_2 := \gamma^{-1}(A_2)$ sono ancora aperti e sconnettono [0,1], Assurdo.

LocConn

LOCPATHCONN

METR

SOTTOSPAZI DI METRIZZABILI SONO METRIZZABILI

Ovvio, basta restringere la funzione distanza

PARACPT