变换域隐秘技术

变换域隐秘技术

- DCT域的信息隐秘
- ■小波域的信息隐秘

第一部分

秘密信息的隐写

用下面的公式实现一个矩阵的二维DCT变换:

$$B_{pq} = a_p a_q \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{mn} \cos \frac{\pi (2m+1)p}{2M} \cos \frac{\pi (2n+1)q}{2N}$$

$$0 \le p \le M - 1 \qquad 0 \le q \le N - 1$$

$$a_p = \begin{cases} \frac{1}{\sqrt{M}}, p = 0 \\ \sqrt{\frac{2}{M}}, 1 \le p \le M - 1 \end{cases}$$

$$a_q = \begin{cases} \frac{1}{\sqrt{N}}, q = 0 \\ \sqrt{\frac{2}{N}}, 1 \le q \le N - 1 \end{cases}$$

逆DCT变换定义如下:

$$A_{mn} = \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} a_p a_q B_{pq} \cos \frac{\pi (2m+1)p}{2M} \cos \frac{\pi (2n+1)q}{2N}$$

$$0 \le m \le M - 1$$

$$0 \le n \le N-1$$

信息隐秘的总体思想就是:通过调整图像块中两个DCT系数的相对大小来对秘密信息进行编码。我们用(u1,v1),(u2,v2)来表示这两个系数的索引,算法描述如下:

```
对于第i bit秘密信息
if (要隐藏信息'1')
make (u1,v1)<sub>i</sub> > (u2,v2)<sub>i</sub>;
else
make (u1,v1)<sub>i</sub> <(u2,v2)<sub>i</sub>;
```

我们引用JPEG压缩方案中的亮度量化表:

(u,v)	1	2	3	4	5	6	7	8
1	16	11	10	16	24	40	51	61
2	12	12	<u>14</u>	19	26	58	60	55
3	14	13	16	24	40	57	69	56
4	14	17	<u>22</u>	29	51	87	80	62
5	18	<u>22</u>	37	56	68	109	103	77
6	24	35	55	64	81	104	113	92
7	49	64	78	87	103	121	120	101
8	72	92	95	98	112	100	103	99

为了让一幅图像中隐藏尽可能多的秘密信息,我们需要把图像分块,每一块中编码一个秘密信息,一般选择8×8的图像块。基于量化系数一致和兼顾机密信息隐藏的不可见性与鲁棒性等因素,选择量化表中(5,2)和(4,3)这一对系数或者(2,3)和(4,1)这一对系数来完成信息的隐秘。

同时,我们引入一个控制量 α 对系数差值进行放大。在编码的过程中,无论是 $B_i(u1,v1)>B_i(u2,v2)$ 或是 $B_i(u1,v1)<B_i(u2,v2)$ 我们都要使得 $|B_i(u1,v1)-B_i(u2,v2)|>\alpha$,这样,即使在变换过程中系数的值有轻微的改变,也不会影响编码的正确性。

选择lenna图像作为载体,隐藏的信息是一以.txt文件保存的字符串。我们取密钥为1982,控制阈值α取为1。

下面分别是原始图像和嵌入信息后的图像:

图像被分成8×8的块, k1, k2分别标识各块的首行地址和列地址, 来依次选择编码的块。

k2 = Column	s 1 th	rough :	14										
1	5	7	9	13	17	21	25	29	1	5	7	9	13
Column	s 15 t	hrough	28										
17	21	23	27	31	1	3	7	9	13	17	19	23	25
Column	s 29 t	hrough	42										
29	1	5	7	11	13	15	19	23	25	29	31	3	7
Column	s 43 t	hrough	56										

下面是一些中间结果: 图像第一层的矩阵

Array	Editor:	data				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew We <u>b</u>	<u>W</u> indow <u>H</u>	elp			
X 🛍 🖺	Numeric	format: sho	ortG 💌	Size: 256	by 25	56
	1	2	3	4	5	6
1	0.70196	0.69804	0.69804	0.70196	0.70196	0.69804
2	0.69804	0.69412	0.69412	0.69412	0.69804	0.69412
3	0.69804	0.69412	0.6902	0.6902	0.69412	0.6902
4	0.6902	0.68627	0.68235	0.68235	0.68627	0.68627
5	0.69804	0.6902	0.68235	0.68235	0.6902	0.6902
6	0.70196	0.6902	0.68627	0.68235	0.6902	0.6902

做分块DCT得到的矩阵

Array 1	Editor: DC	Irgb							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew We <u>b W</u> i	.ndow <u>H</u> elp							
X Pa Ca	🐰 📭 📳 Numeric format: shortG 💟 Size: 256 by 256								
	1	2	3	4	5	6			
1	5. 5294	0. 02495	-0. 00090576	0.030216	-0. 00098039	0.0018297			
2	-0.011966	0. 022077	-0.028234	1.9082e-005	-0.00027049	-0.0012524			
3	0.033176	-0.0018085	-0.0021638	-0.0011417	-0. 00053058	0.0021862			
4	0.0031053	2.8559e-005	0.00071165	0.0017299	0.00077029	0.0023427			
5	-0.0019608	-0.0017719	-0.00090576	-0.00073024	0. 00098039	-0.0017682			

隐藏信息前的DCT矩阵

Array Editor: DCIrgb0									
<u>F</u> ile <u>E</u> dit	<u>F</u> ile <u>E</u> dit <u>V</u> iew We <u>b W</u> indow <u>H</u> elp								
% Pa 🕮	Numeric forr	nat: shortG	Size: 25	6 by 256					
	1	2	3	4	5	6			
1	5. 5294	0.02495	-0. 00090576	0.030216	-0.00098039	0.0018297			
2	-0.011966	0.022077	-0. 028234	1.9082e-005	-0.00027049	-0.0012524			
3	0.033176	-0.0018085	-0.0021638	-0.0011417	-0.00053058	0.0021862			
4	0.0031053	2.8559e-005	0.00071165	0.0017299	0.00077029	0.0023427			
5	-0.0019608	-0.0017719	-0.00090576	-0.00073024	0.00098039	-0.0017682			

隐藏信息后的DCT矩阵

Array l	Editor: DC	Irgb				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew We <u>b</u> <u>W</u> i	indow <u>H</u> elp				
X 🛍 🖺	Numeric forr	nat: shortG	Size: 25	6 by 256		
	1	2	3	4	5	6
1	5. 5294	0.02495	-0.00090576	0.030216	-0.00098039	0.0018297
2	-0.011966	0.022077	-0.028234	1.9082e-005	-0.00027049	-0.0012524
3	0.033176	-0.0018085	-0.0021638	-0.0011417	-0.00053058	0.0021862
4	0.0031053	2.8559e-005	-0.011772	0.0017299	0.00077029	0.0023427
5	-0.0019608	0.00071165	-0.00090576	-0.00073024	0.00098039	-0.0017682

请注意比较上面两个表的(4,3)和(5,2)两个位置的数值,就可以看出我们对图像所做的处理。

第二部分

秘密信息的提取

既然是通过比较变换后的两个DCT系数 来完成信息的隐藏,那么在传递秘密信 息前,通信的双方就必须对要比较的两 个位置达成一致,提取信息时接受者只 需要获得载有秘密信息的图像, 也对图 像做DCT变换和分块,按照随机控制的 顺序直接比较 $B_i(u1,v1)$, $B_i(u2,v2)$ 的大小 就能提取秘密信息了。

第三部分

对算法参数的讨论

α是为了避免图像在传输过程中使B_i(u1,v1)和B_i(u2,v2)的相对大小发生错位从而使编码发生错误而引入的控制量,α越大,编码越不容易出错,图像的鲁棒性更强,但是α的取值的增大将带来载体视觉上的降质。

1、α与隐藏鲁棒性的关系

我们以lenna.jpg为载体,秘密信息取为 宋人宋祁的一句词句:"绿杨烟外晓寒 轻,红杏枝头春意闹"。分别取不同α并 对隐藏信息后的图像进行压缩。得到实 验结果下图与下表。表是图的具体数据。

	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
a=0.1	0.5	0.49167	0.42917	0.45	0.36667	0.37083	0.091667	0.1	0.054167	0.0125
a=0.2	0.53333	0.48333	0.39583	0.095833	0.054167	0.05	0.045833	0.025	0.0041667	0
1=0.3	0.49583	0.425	0.05	0.05	0.020833	0.016667	0.016667	0.0125	0	0
1=0.4	0.5	0.079167	0.016667	0.020833	0.0125	0.0083333	0.0083333	0.0041667	0	0
a =0.5	0.4625	0.033333	0.0125	0.0041667	0	0.0041667	0.0083333	0	0	0
1=0.6	0.41667	0.0083333	0.0041667	0.0041667	0	0	0	0	0	0
1=0.7	0.39167	0	0.0083333	0.0041667	0	0	0	0	0	0
a=0.8	0.0625	0	0	0.0041667	0	0	0	0	0	0
1=0.9	0.0125	0	0	0	0	0	0	0	0	0
u=1	0.016667	0	0	0	0	0	0	0	0	0

表中为数值为0,则表示其横向相应的α 在纵向压缩率的条件下有强鲁棒性。数 值不为0则表示相应的误码率,数值越大 表示信息提取的越不真实。分析可见,α 取0.1时, 完全不能保证信息提取的正确。 α在[0.2,0.4]区间内的抗JPEG压缩性能一 般。当α取1时,基本可以认为是不受 JPEG压缩干扰的。

下表是在对应于上一个表中加框(JPEG 压缩率为50%)的列下实际信息提取的内容。可以发现,在α>0.3时,信息开始变得可读了。

原始信息	绿杨烟外晓寒轻,红杏枝头春意闹。
α=0.1	J ?鸐wF髜窩澌 ??频颭碉揈蚿媢
α=0.2	聦盐烟下摸氷珥, 簂杏R锻反阂饽
α=0.3	聰杨烟外晓寒玳,红杏露头春意闹。
α=0.4	绿杨烟外晓寒玑,红杏枝头春意闹。

α=0.5	绿杨烟外晓寒轻,红杏枝头春意闹。
α=0.6	绿杨烟外晓寒轻,红杏枝头春意闹。
α=0.7	绿杨烟外晓寒轻,红杏枝头春意闹。

α=0.8	绿杨烟外晓寒轻,红杏枝头春意闹。
α=0.9	绿杨烟外晓寒轻,红杏枝头春意闹。
α=1	绿杨烟外晓寒轻,红杏枝头春意闹。

2、α与隐藏不可见性的关系

给隐藏函数相同的入口参数(载体相同,信息相同,密钥相同),只取α不同,下面6幅图分别对应α的值为0.01,0.1,1,100,100,1000的情况,可以明显的看到随着α的值的增大,对图像的破坏越大。

α取为0.01

α取为0.1

•

DCT域的信息隐秘

α取为1

α取为10

α取为100

α取为1000

小波域信息隐秘的讨论

小波域信息隐秘的讨论

二维信号小波分解的Mallat算法可用下式描述:

$$A_{j-1}f(x,y) = A_j f(x,y) + D_j^1 f(x,y) + D_j^2 f(x,y) + D_j^3 f(x,y)$$

4

小波域信息隐秘的讨论

二维信号的小波分解

小波域信息隐秘的讨论

关于小波域的信息隐秘,有几点需要说明一下:①二维小波分解的形态上图所示,低频分量居于左上角;②我们一般认为,将要隐藏的信息藏入低频系数会有较高的鲁棒性,但由于低频系数较少,嵌入信息的量有限,这就造成了鲁棒性与隐藏容量的矛盾;

小波域信息隐秘的讨论

③一种改进的设想是将信息藏入高尺度分解下的高频部分。做这种改进的原因是: a.这些部分仍然是一尺度下的低频部分, 秘密信息隐藏在这些区域并不影响鲁棒 性; b.将秘密信息隐藏在这些区域,隐藏 的不可见性会比单纯隐藏在低频部分更 好; c.这样可以扩大了隐藏信息的容量。