# GEOMETRÍA Tomo 7

2do **SECONDARY** 



**RETROALIMENTACIÓN** 





## 1. En el gráfico, calcule el perímetro de la región ACE.



## Resolución

- Piden: 2p<sub>ACE</sub>
- Aplicando teorema:

$$(x)(2x) = (18)(4)$$

$$2x^2 = 72$$

$$x^2 = 36$$

$$x = 6$$

Calculando 2p<sub>ACE</sub>

$$2p_{ACE} = CE + EA + AC$$

$$2p_{ACE} = 12 + 18 + 13$$

#### Teorema de las Cuerdas



 $2p_{ACE} = 43 \text{ u}$ 



# 2. En la figura, halle el valor de x.



## T. de las Secantes



# **RESOLUCIÓN**

Piden: x

$$(12)(5) = (x)(6)$$
  
 $60 = 6x$ 

$$x = 10 u$$



# 3. Si T es punto de tangencia, halle x.



# **RESOLUCIÓN**

Piden: x



#### T. de Cuerdas

$$a.4 = 10.2$$

$$a = 5$$



#### T. de la Tangente

$$x^2 = 12.3$$

$$x^2 = 36$$

$$x = 6 u$$



4. Las longitudes de dos lados de un triángulo son de 8 m y 13 m y forman un ángulo que mide 30°. Halle el área de la región triangular.





Piden: S<sub>ABC</sub>

Se traza la altura  $\overline{BH}$ 

El ⊿ABC: Notable 30° y 60°

$$S_{\triangle ABC} = \frac{(13)(4)}{2}$$

$$S_{\triangle ABC} = 26 \text{ m}^2$$

**0**1

5. Calcule el área de la región triangular equilátera ABC.





# **RESOLUCIÓN**

El ABC: equilátero

El ⊿BPC: Teo. de Pitágoras

$$(BC)^2 = 6^2 + 4^2$$

$$BC = \sqrt{52}$$

$$S_{\triangle ABC} = \frac{(\sqrt{52})^2(\sqrt{3})}{4}$$

$$S_{\triangle ABC} = 13\sqrt{3} u^2$$



6. En el gráfico, calcule el área de la región ABD.





## Teorema:

$$\frac{S_1}{S_2} = \frac{m}{n}$$

# **RESOLUCIÓN**

Piden: S<sub>ABD</sub>

BD es ceviana.

$$\frac{S_X}{8} = \frac{5a}{2a}$$

$$2S_X = 8(5)$$

$$S_X = 20$$

$$S_{ABD} = 20 \text{ m}^2$$



# 7. Calcule el área de la región trapecial ABCD





## Región Trapecial

$$S_{ABCD} = \frac{(b+a)h}{2}$$

## **RESOLUCIÓN**

- Piden: S<sub>ABCD</sub>
- △AHB notable de 37° y 53°
- Calculando S<sub>ABCD</sub>

$$S_{ABCD} = \frac{(15+5)(8)}{2}$$

$$S_{ABCD} = 80 \text{ m}^2$$



8. Calcule el área de la siguiente región rectangular.

## Región Rectangular





# **RESOLUCIÓN**

Piden: S<sub>ABCD</sub>

**△EDC** notable de 37° y 53°

Calculando S<sub>ABCD</sub>

$$S_{ABCD} = (10)(3)$$

$$S_{ABCD} = 30 u^2$$



9. Calcule el área de una región rombal, si las longitudes de las semidiagonales son 7m y 2m.





## **RESOLUCIÓN**

Piden: S<sub>ABCD</sub>

$$S_{ABCD} = \frac{14(4)}{2}$$

$$S_{ABCD} = 28 \text{ m}^2$$



10. Se tiene dos edificios iguales donde cada piso es de 2 m. Se une con un cable recto PQ, P en el séptimo piso y Q del tercer piso. Halle la longitud del cable PQ.



## **RESOLUCIÓN**

- Piden: PQ
- Se traza QR ⊥ PA

$$QR = 15 y PR = 8$$

 ✓ PRQ: Teorema de Pitágoras.

$$(PQ)^2 = 15^2 + 8^2$$

$$(PQ)^2 = 225 + 64$$

$$(PQ)^2 = 289$$

$$PQ = 17 \text{ m}$$