5.6 Circulator

Module:5 Microwave Passive components

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 <u>Microwave Passive components</u> 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

6. Circulators

- Ferromagnetic materials (ferrite: Mg+Mn, Ni+Zn alloys) when placed in dc magntic field, electromagnetic wave propagation becomes non-reciprocal.
- This property is used for construction of circulators and isolators.
- Circulator: Multiport junction wave can travel from one port to the next immediate port in one direction only.
- Commonly used circulators
 Three port or
 Four port

Antenna a

6.1 Four port Circulator

- Four port circulator can be constructed
 - 1) from two magic Ts and a non reciprocal 180° phase shifter or
 - 2) a combination of two 3dB side hole directional couplers with two non-reciprocal phase shifters

Configuration 1:

 Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

Configuration 1:

 Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

They enter in phase at ports a and c of magic tee T2, and are added at port 2.

Configuration 1:
 Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

They enter in phase at ports a and c of magic tee T2, and are added at port 2.

• Input signal at port 2 is split into two in phase and equal amplitude waves in collinear arms a and c of magic tee T2.

Configuration 1:
 Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

They enter in phase at ports a and c of magic tee T2, and are added at port 2.

Input signal at port 2 is split into two in phase and equal amplitude waves in collinear arms a and c of magic tee T2.
 They enter out of phase at ports b and d of magic tee T1, and appear at port 3.

 Configuration 1: Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

 T_2

- Input signal at port 2 is split into two in phase and equal amplitude
 waves in collinear arms a and c of magic tee T2.
 They enter out of phase at ports b and d of magic tee T1, and appear at port 3.
- Input signal at port 3 is split into two out of phase and equal amplitude waves in collinear arms b and d of magic tee T1 and

Non-reciprocal

phase shifter

 π

 T_1

phase

shifted

(180°)

 Configuration 1: **Input signal at port 1** is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

 Input signal at port 2 is split into two in phase and equal amplitude waves in collinear arms a and c of magic tee T2. They enter out of phase at ports b and d of magic tee T1, and appear at port 3.

 Input signal at port 3 is split into two out of phase and equal amplitude waves in collinear arms b and d of magic tee T1 and appear at Port 4 of T2

They enter in phase at ports a and c of magic tee T2, and are added at port 2.

- Input signal at port 2 is split into two in phase and equal amplitude
 waves in collinear arms a and c of magic tee T2.
 They enter out of phase at ports b and d of magic tee T1, and appear at port 3.
- Input signal at port 3 is split into two out of phase and equal amplitude waves in collinear arms b and d of magic tee T1 and appear at Port 4 of T2
- Input signal at port 4 is split into two out of phase and equal amplitude waves in collinear arms a and c of magic tee T2 and

- They enter in phase at ports a and c of magic tee T2, and are added at port 2.

 Input signal at port 2 is split into two in phase and equal amplitude
 - waves in collinear arms a and c of magic tee T2.

 They enter out of phase at ports b and d of magic tee T1, and appear at port 3.
- Input signal at port 3 is split into two out of phase and equal amplitude waves in collinear arms b and d of magic tee T1 and appear at Port 4 of T2
- Input signal at port 4 is split into two out of phase and equal amplitude waves in collinear arms a and c of magic tee T2 and appear at Port 1 of T1

 Configuration 1: Input signal at port 1 is split into two in phase and equal amplitude waves in collinear arms b and d of magic tee T1.

 T_2

- Input signal at port 2 is split into two in phase and equal amplitude
 waves in collinear arms a and c of magic tee T2.
 They enter out of phase at ports b and d of magic tee T1, and appear at port 3.
- Input signal at port 3 is split into two out of phase and equal amplitude waves in collinear arms b and d of magic tee T1 and appear at Port 4 of T2
- Input signal at port 4 is split into two out of phase and equal amplitude waves in collinear arms a and c of magic tee T2 and appear at Port 1 of T1
- Port 1 -> port 2; port 2 -> port 3; port 3-> Port 4; Port 4-> Port 1

Non-reciprocal

phase shifter

 π

 T_1

- Configuration 2:
- Each 3dB coupler introduces 90° phase shift.
- Input signal in port 1, splits into two at coupler 1, one with 90° phase shift. (0°, 90°)

- Configuration 2:
- Each 3dB coupler introduces 90° phase shift.
- Input signal in port 1, splits into two at coupler 1, one with 90° phase shift. (0°, 90°)

 After the phase shifters the signals have the phase (180°, 90°).

- Configuration 2:
- Each 3dB coupler introduces 90° phase shift.
- Input signal in port 1, splits into two at coupler 1, one with 90° phase shift. (0°, 90°)

 After the phase shifters the signals have the phase (180°, 90°).

 These signals split at the coupler 2 again, to give zero output (partly at 90° + partly at 270° = cancellation of signal) at port 4 and

φ Shifter

90°

- Configuration 2:
- Each 3dB coupler introduces 90° phase shift.
- Input signal in port 1, splits into two at coupler 1, one with 90° phase shift. (0°, 90°)

 After the phase shifters the signals have the phase (180°, 90°).

 These signals split at the coupler 2 again, to give zero output (partly at 90° + partly at 270° = cancellation of signal) at port 4 and

Output (partly at 180° and remaining at same 180°) at port 2. Summary: port 1-> port 2

 ϕ Shifter

180°

90°

- Configuration 2:
- Each 3dB coupler introduces 90° phase shift.
- Input signal in port 1, splits into two at coupler 1, one with 90° phase shift. (0°, 90°)

 After the phase shifters the signals have the phase (180°, 90°).

 These signals split at the coupler 2 again, to give zero output (partly at 90° + partly at 270° = cancellation of signal) at port 4 and

 Output (partly at 180° and remaining at same 180°) at port 2.
- Similarly, port 2-> port 3; port 3-> port 4; port 4->port 1

Summary: port 1-> port 2

4

90° ///////

 A perfectly matched, lossless and non-reciprocal four port circulator has the S matrix:

$$[S] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• A three port circulator is formed by a 120° H —plane waveguide or stripline symmetrical Y junction with a ferrite post or disc.

- A three port circulator is formed by a 120° H —plane waveguide or stripline symmetrical Y junction with a ferrite post or disc.
- A steady magnetic field H₀ is applied along the axis of the post/disc.
- Based on the polarization of incident wave and direction of H_0 , microwave signal travels from one port to immediate next one only.

 A perfectly matched, lossless and nonreciprocal three port circulator has the S matrix:

$$[S] = \begin{bmatrix} 0 & 0 & S_{13} \\ S_{21} & 0 & 0 \\ 0 & S_{32} & 0 \end{bmatrix}$$

substrate external

 A perfectly matched, lossless and nonreciprocal three port circulator has the S matrix:

$$[S] = \begin{bmatrix} 0 & 0 & S_{13} \\ S_{21} & 0 & 0 \\ 0 & S_{32} & 0 \end{bmatrix}$$

• By proper choice of terminal planes, phase angles of S_{13} , S_{21} , S_{32} are made zero and

$$S_{13} = S_{21} = S_{32} = 1$$
$$[S] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

substrate external

 A perfectly matched, lossless and nonreciprocal three port circulator has the S matrix:

$$[S] = \begin{bmatrix} 0 & 0 & S_{13} \\ S_{21} & 0 & 0 \\ 0 & S_{32} & 0 \end{bmatrix}$$

• By proper choice of terminal planes, phase angles of S_{13} , S_{21} , S_{32} are made zero and

$$S_{13} = S_{21} = S_{32} = 1$$

$$[S] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Practically, finite isolation Insertion loss <1dB Isolation≈30-40dB VSWR<1.5

substrate external

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

• Insertion loss=1dB= $-20 \log_{10} |S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

• Insertion loss=1dB= $-20 \log_{10} |S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$

Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

• Insertion loss=1dB= $-20 \log_{10} |S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$

Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$

• Isolation between ports is $30dB = -20 \log_{10} |S_{31}|$ $|S_{31}| = 10^{-30/20} =$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

• Insertion loss=1dB= $-20 \log_{10} |S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$

Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$

• Isolation between ports is $30dB = -20 \log_{10} |S_{31}|$ $|S_{31}| = 10^{-30/20} = 10^{-1.5} = 0.032 = |S_{23}| = |S_{12}|$

6.3 Problem: A three port circulator has an insertion loss of 1dB, Isolation 30dB and VSWR 1.5. Find the S matrix. $\begin{bmatrix} S_{11} & S_{12} & S_{13} \end{bmatrix}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

- Insertion loss=1dB=-20 $\log_{10}|S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$
- Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$
- Isolation between ports is $30dB = -20 \log_{10} |S_{31}|$ $|S_{31}| = 10^{-30/20} = 10^{-1.5} = 0.032 = |S_{23}| = |S_{12}|$
- VSWR = 1.5, reflection coefficient $|\Gamma| = \frac{S-1}{S+1} = \frac{1.5-1}{1.5+1} = \frac{1.5-1}{1.5+1}$

6.3 Problem: A three port circulator has an insertion loss of 1dB, Isolation 30dB and VSWR 1.5. Find the S matrix. $\begin{bmatrix} S_{11} & S_{12} & S_{13} \end{bmatrix}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

• Insertion loss=1dB= $-20 \log_{10} |S_{21}|$ $|S_{21}| = 10^{-1/20} = 0.89$

Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$

- Isolation between ports is $30dB = -20 \log_{10} |S_{31}|$ $|S_{31}| = 10^{-30/20} = 10^{-1.5} = 0.032 = |S_{23}| = |S_{12}|$
- VSWR = 1.5, reflection coefficient $|\Gamma| = \frac{S-1}{S+1} = \frac{1.5-1}{1.5+1} = 0.2 = |S_{11}| = |S_{22}| = |S_{33}|$

6.3 Problem: A three port circulator has an insertion loss of 1dB, Isolation 30dB and VSWR 1.5. Find the S matrix. $\begin{bmatrix} S_{11} & S_{12} & S_{13} \end{bmatrix}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
 S matrix of 3 port circulator

Same insertion loss between ports (1,2), and (2,3) and (3,1) $|S_{21}| = |S_{32}| = |S_{13}| = 0.89$

•
$$VSWR = 1.5$$
, reflection coefficient $|\Gamma| = \frac{S-1}{S+1} = \frac{1.5-1}{1.5+1} = 0.2 = |S_{11}| = |S_{22}| = |S_{33}|$

$$[S] = \begin{bmatrix} 0.2 & 0.032 & 0.89 \\ 0.89 & 0.2 & 0.032 \\ 0.032 & 0.89 & 0.2 \end{bmatrix}$$

- Remove top ground plane in stripline
- Basic design criteria:
 Selection of radius R of ferrite disc
 Calculation of radius R of magnet cylinder for the whole ferrite substrate

- Remove top ground plane in stripline
- Basic design criteria:
 Selection of radius R of ferrite disc
 Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

- Remove top ground plane in stripline
- Basic design criteria:
 Selection of radius R of ferrite disc
 Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability

- Remove top ground plane in stripline
- Basic design criteria:
 Selection of radius R of ferrite disc
 Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability

$$\mu_{eff} = \frac{(\mu^2 - K^2)}{\mu}$$
 =scalar effective permeability

- Remove top ground plane in stripline
- Basic design criteria: Selection of radius R of ferrite disc Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability

$$\mu_{eff}=rac{(\mu^2-K^2)}{\mu}=$$
 scalar effective permeability $\mu=1-rac{p\sigma}{1-\sigma^2}$ $K=rac{p}{1-\sigma^2}$

$$\mu = 1 - \frac{p\sigma}{1 - \sigma^2} \qquad K = \frac{p}{1 - \sigma^2}$$

- Remove top ground plane in stripline
- Basic design criteria:
 Selection of radius R of ferrite disc
 Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability

$$\mu_{eff} = \frac{(\mu^2 - K^2)}{\mu}$$
 =scalar effective permeability $\mu = 1 - \frac{p\sigma}{1 - \sigma^2}$ $K = \frac{p}{1 - \sigma^2}$

$$p = |\gamma| M_s/\omega$$
 = normalized saturation magnetization = M_s/H_0

- Remove top ground plane in stripline
- Basic design criteria: Selection of radius R of ferrite disc Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability magnetic field= H_{dc}/H_0 ε_r : Relative permittivity of ferrite $\mu_{eff}=\frac{(\mu^2-K^2)}{\mu}=$ scalar effective permeability $\mu=1-\frac{p\sigma}{1-\sigma^2}$ $K=\frac{p}{1-\sigma^2}$

$$p = |\gamma| M_s/\omega = \text{normalized saturation}$$

magnetization $=M_s/H_0$
 $\sigma = |\gamma| H_0/\omega = \text{normalized biasing}$

- Remove top ground plane in stripline
- Basic design criteria: Selection of radius R of ferrite disc Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability magnetic field= H_{dc}/H_0

 ε_r : Relative permittivity of ferrite

$$\mu_{eff}=rac{(\mu^2-K^2)}{\mu}=$$
 scalar effective permeability resonance in infinite ferrite medium. $\mu=1-rac{p\sigma}{1-\sigma^2}$ $K=rac{p}{1-\sigma^2}$

$$\mu = 1 - \frac{p\sigma}{1 - \sigma^2} \qquad K = \frac{p}{1 - \sigma^2}$$

 $p = |\gamma| M_s/\omega$ = normalized saturation magnetization = M_s/H_0

 $\sigma = |\gamma| H_0/\omega$ =normalized biasing

 $H_0 = \frac{\omega}{|\nu|}$ = field required for gyromagnetic

- Remove top ground plane in stripline
- Basic design criteria: Selection of radius R of ferrite disc Calculation of radius R of magnet cylinder for the whole ferrite substrate

•
$$R = \frac{1.84}{\omega_0 \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_{eff}}}$$

 ω_0 =Center angular frequency

 ε_0 , μ_0 : Free space permittivity and permeability magnetic field= H_{dc}/H_0

 ε_r : Relative permittivity of ferrite

$$\mu_{eff} = \frac{(\mu^2 - K^2)}{\mu}$$
 =scalar effective permeability

$$\mu = 1 - \frac{p\sigma}{1 - \sigma^2} \qquad K = \frac{p}{1 - \sigma^2}$$

 $p = |\gamma| M_s/\omega$ = normalized saturation magnetization = M_s/H_0

 $\sigma = |\gamma| H_0/\omega$ =normalized biasing

 $H_0 = \frac{\omega}{|\nu|}$ = field required for gyromagnetic

resonance in infinite ferrite medium.

Low magnetic loss: ferrite $\frac{\gamma 4\pi M_S}{} = 0.6$

- Insertion loss between coupled ports:
 - 1) Copper loss of strip and ground plane
 - 2) Dielectric loss of input/output strips
 - 3) Magnetic loss of ferrite disc

- Insertion loss between coupled ports:
 - 1) Copper loss of strip and ground plane
 - 2) Dielectric loss of input/output strips
 - 3) Magnetic loss of ferrite disc
- Isolation between ports primarily dependent on mismatching between ports and junction.

- Insertion loss between coupled ports:
 - 1) Copper loss of strip and ground plane
 - 2) Dielectric loss of input/output strips
 - 3) Magnetic loss of ferrite disc
- Isolation between ports primarily dependent on mismatching between ports and junction.
- Tuning screws can be used for matching, this can be the parts of the mask used in photo-etching process. Magnetic disc above or below substrate.

- Insertion loss between coupled ports:
 - 1) Copper loss of strip and ground plane
 - 2) Dielectric loss of input/output strips
 - 3) Magnetic loss of ferrite disc
- Isolation between ports primarily dependent on mismatching between ports and junction.

- Tuning screws can be used for matching, this can be the parts of the mask used in photo-etching process. Magnetic disc above or below substrate.
- **YIG** (Yttrium Iron Garnet) substrate of thickness h=0.055": Isolation>20dB, VSWR<1.2, Insertion loss IL<0.8dB, Power handling of 60W over frequency range of 8.5-9.9GHz

- Power handling capability of such device can be increased by
 - 1) Lowering the impedance or increasing intrinsic line width.
 - 2) Increasing substrate thickness h
 - 3) Decreasing $4\pi M_S$ of the material by substituting Al ions in YIG material.

