P. Maurer ENS Rennes

Leçon 104. Groupes abéliens et non abéliens finis. Exemples et applications

Devs:

- Théorèmes de Sylow
- Structure des groupes abéliens finis

Références:

- 1. Ulmer, Théorie des groupes
- 2. Comez, Elements d'algèbre et d'analyse
- 3. Perrin, Cours d'algèbre
- 4. Gourdon, Algèbre

L'étude des groupes finis et en particulier leur classification, a joué un rôle important dans le développement de nombreux outils mathématiques. Si le théorème de structure des groupes abéliens finis a été démontré depuis 1870, la classification des groupes non abéliens, elle, est beaucoup plus récente et difficile. Elle a conduit a introduire, par exemple, la notion de simplicité, l'étude des p-groupes via les théorèmes de Sylow, et (un peu) plus récemment la théorie des représentations.

Dans tout ce qui suit, G désigne un groupe fini et on note |G| le cardinal de G. On se donne également $n \in \mathbb{N}$ un entier supérieur ou égal à 1.

1 Généralités sur les groupes finis

1.1 Ordre d'un groupe fini, ordre d'un élément

Définition 1.

Le cardinal |G| du groupe fini G est appelé l'ordre de G. Si g est un élément de G, on appelle ordre de g le plus petit entier n > 0 (s'il en existe) qui vérifie $g^n = 1$. C'est aussi l'ordre du sous-groupe engendré par G.

Exemple 2. Pour tout $n \in \mathbb{N}$, le groupe $\mathbb{Z}/n\mathbb{Z}$ est fini d'ordre n. Une transpotion $\tau \in \mathcal{S}_n$ est un élément d'ordre deux dans l'ensemble des permutations d'ordre n.

Proposition 3.

Soit G un groupe abélien fini.

1. $Si \ x \in G$ est d'ordre a et $si \ y \in G$ est d'ordre b, et $si \ a \land b = 1$, alors xy est d'ordre ab.

- 2. Si $a, b \in \mathbb{N}^*$ et si G contient des éléments d'ordre a et b, alors il contient un élément d'ordre $\operatorname{ppcm}(a, b)$.
- 3. Soit N le maximum des ordres des éléments de G. Alors on a $x^N = 1$ pour tout $x \in G$. On dit que N est l'exposant du groupe G.

Proposition 4. La relation \sim_H donnée sur G par $x \sim_H y \iff \exists h \in H$ x = hy est une relation d'équivalence, dont les classes d'équivalence sont notées gH et appelées les classes à gauche modulo G. On a $gH = \{gh : h \in H\}$.

Définition 5. On appelle ensemble quotient de G par la relation d'équivalence \sim_H , et on note G/H, l'ensemble $\{gH: g \in G\}$.

On appelle indice de H dans G le cardinal de G/H, et on le note [G:H].

Théorème 6. (Lagrange)

On a $|G/H| = \frac{|G|}{|H|}$. En particulier, l'ordre (et l'indice) de H dans G divise le cardinal de G.

Exemple 7. Tout groupe d'ordre p premier est isomorphe à $\mathbb{Z}/p\mathbb{Z}$, et ses seuls sous-groupes sont les sous-groupes triviaux G et $\{e\}$.

1.2 Actions de groupe

Définition 8. Soit X un ensemble. On dit que G agit (ou opère) sur X s'il existe une application :

$$\cdot: \left\{ \begin{array}{ll} G \times X & \to & X \\ (g, x) & \mapsto & g.x \end{array} \right.$$

vérifiant les propriétés suivantes :

- $i) \forall q, q' \in G \ \forall x \in X \ q.(q'.x) = q'.(q.x)$
- $ii) \ \forall x \in X \quad 1.x = x$

Dans ce qui suit, on suppose que G agit sur l'ensemble X.

Remarque 9. Se donner une action de G sur X revient à se donner un morphisme T: $G \to \mathcal{S}(X)$ où $\mathcal{S}(X)$ désigne les bijections de X dans lui-même, via q.x = T(q)(x).

Exemple 10. Le groupe S_n agit sur $\{1,\ldots,n\}$, via $\sigma.i = \sigma(i)$.

Le groupe $GL_n(\mathbb{K})$ agit sur \mathbb{K}^n via P.X = PX.

Le groupe diédral D_n agit sur le polynôme régulier à n côtés.

Définition 11. *Soit* $x \in X$.

On définit le stabilisateur de x par $G_x = \{g \in G : g.x = x\}$, aussi noté $\operatorname{Stab}(x)$. On définit l'orbite de x par $O(x) = \{y \in X : \exists g \in G, y = g.x\}$.

Exemple 12.

2 Section 2

Dans l'action de S_n sur $\{1,\ldots,n\}$, le stabilisateur d'un point est isomorphe à S_{n-1} .

Proposition 13. (Cayley)

Si G est fini de cardinal n, alors G est isomorphme à un sous-groupe de S_n .

Proposition 14.

Soit $x \in X$. L'application $f: \begin{cases} G/G_x \to O(x) \\ gG_x \mapsto gx \end{cases}$ est une bijection entre l'ensemble des classes à quuche du stabilisateur G_x dans G et l'orbite O(x) de x dans G.

Corollaire 15. (relation orbite-stabilisateurs)

Soit $x \in X$. Alors on a:

1.
$$|O(x)| = [G: G_x],$$

2.
$$|O(x)| = \frac{|G|}{|G_x|}$$
.

Proposition 16. (formule des classes)

Soit $O(x_1),...,O(x_n)$ les orbites distinctes des éléments de X sous l'action de G. Alors :

$$|X| = \sum_{i=1}^{q} |O(x_i)| = \sum_{i=1}^{q} \frac{|G|}{|G_{x_i}|}.$$

1.3 Groupes symétriques et diédraux

Définition 17. On appelle groupe symétrique d'ordre n le groupe S_n des bijections entre [1, n] et lui-même. Le groupe S_n est d'ordre $|S_n| = n!$.

Définition 18. Soit $\sigma \in S_n$. Les éléments $i \in \{1, ..., n\}$ qui vérifient $\sigma(i) = i$ sont appelés points fixes de σ , et on note $Fix(\sigma)$ l'ensemble de ses points fixes.

On appelle support de σ , et on le note Supp (σ) , l'ensemble $\{1,\ldots,n\}\setminus \text{Fix}(\sigma)$.

Proposition 19. Soit $\sigma, \rho \in S_n$. On a toujours $\operatorname{Supp}(\sigma \rho) \subset \operatorname{Supp}(\sigma) \cup \operatorname{Supp}(\rho)$. Si $\operatorname{Supp}(\sigma) \cap \operatorname{Supp}(\rho) = \emptyset$, on dit que σ et ρ sont des permutations à support disjoint, et dans ce cas, on a $\operatorname{Supp}(\sigma \rho) = \operatorname{Supp}(\sigma) \cup \operatorname{Supp}(\rho)$ et

- $\sigma \rho(i)$ est égal à $\sigma(i)$ si $i \in \text{Supp}(\sigma)$ et à $\rho(i)$ si $i \in \text{Supp}(\rho)$,
- $\sigma \rho = \rho \sigma$,
- $\sigma \rho = \operatorname{Id}_n \Longleftrightarrow \sigma = \rho = \operatorname{Id}_n$.

Définition 20. Soit $\ell \geq 1$ un entier et i_1, \ldots, i_ℓ des éléments distincts de [1, n]. La permutation γ définie par $\gamma(j) = \begin{cases} j & \text{si } j \notin \{i_1, \ldots, i_\ell\} \\ j+1 & \text{si } j \in \{i_1, \ldots, i_{\ell-1}\} \end{cases}$ est notée (i_1, \ldots, i_ℓ) et est appelée cucle de lonaueur ℓ .

Un cycle de longueur deux est appelé une transposition.

Théorème 21.

Toute permutation $\sigma \in S_n$ s'écrit comme produit $\sigma = \gamma_1 \cdots \gamma_m$ de cycles γ_i de longueur $\ell \geq 2$ dont les supports sont deux à deux disjoints. Cette décomposition est unique à l'ordre des facteurs près.

Corollaire 22. Toute permutation $\sigma \in S_n$ se décompose en un produit de transpositions. Il n'y a pas, a priori, unicité dans cette décomposition.

Exemple 23. La permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} \in S_6$ se décompose en $\sigma = (1, 2, 4)(3, 5)$.

Définition 24. Soit $\sigma \in S_n$. On appelle signature de σ , et on note $\varepsilon(\sigma)$, le nombre

$$\varepsilon(\sigma) = \prod_{1 < i < j < n} \frac{\sigma(i) - \sigma(j)}{i - j}.$$

Proposition 25. L'application ε : $S_n \to \{-1,1\}$ est un morphisme de groupes. Son noyau est appelé le groupe alterné, noté A_n . C'est un sous-groupe distingué de S_n .

La parité du nombre de transpositions dans la décomposition en produit de transpositions $\sigma \in S_n$ ne dépend pas de la décomposition, et $\varepsilon(\sigma)$ vaut 1 ou -1 selon que ce nombre est pair ou impair.

Définition 26. On appelle $n^{\text{ème}}$ groupe diédral, et on note D_n , le groupe des isométries affines qui laissent stable le polygône régulier à n côtés.

Proposition 27. Le groupe D_n a pour cardinal 2n. Ses générateurs sont donnés par

$$s = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} et \ r = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} avec \ \theta = \frac{2\pi}{n}.$$

Ils vérifient les relations $s^2 = \mathrm{Id}$, $srs = r^{-1}$, et les éléments de D_n sont donnés par

$$\{ \mathrm{Id}, r, r^2, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s \}.$$

2 Groupes abéliens et leur classification

2.1 Groupes cycliques

Définition 28. On dit qu'un groupe G est cyclique s'il est engendré par un de ses éléments.

Proposition 29. Un groupe cyclique fini G d'ordre $n \in \mathbb{N}$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Groupes non abéliens et simplicité

Théorème 30. On suppose que G est cyclique d'ordre n.

Alors tout sous-groupe de G est cyclique, et pour tout d|n, il existe un unique sous-groupe H_d de G d'ordre d.

Théorème 31. (restes chinois)

Soit $n, m \in \mathbb{N}$ premiers entre eux. Alors $\mathbb{Z}/nm\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

2.2 Caractères des représentations irréductibles et groupe dual

Lemme 32. Soit G un groupe abélien et (V, ρ) une représentation irréductible de G. Alors $\dim(V) = 1$.

Définition 33

On appelle caractère d'une représentation (V, ρ) de G l'application $\chi_V : G \to \mathbb{C}$ définie par $\chi_V(g) := \text{Tr}(\rho(g))$.

Si V est de dimension 1, $\operatorname{GL}(V)$ est isomorphe à \mathbb{C}^* , donc la représentation V s'identifie à un morphisme de groupes $\chi\colon G\to\mathbb{C}^*$. On appelle caractère linéaire de G un tel morphisme, et on note \hat{G} l'ensemble des caractères linéaires de G.

Proposition 34. Si V est une représentation de dimension 1 de G et χ le caractère linéaire associé, on a $\chi_V = \chi$: le caractère du caractère linéaire est le caractère linéaire lui-même.

Muni du produit $(\chi_1 \chi_2)(g) := \chi_1(g) \chi_2(g)$, l'ensemble \hat{G} des caractères linéaires de G est un groupe commutatif. On l'appelle le groupe dual de G.

Remarque 35. Dans le cas où G est abélien, on déduit du lemme 1 que ${\rm Irr}(G)$ coïncide avec $\hat{G}.$

Théorème 36. (Frobenius)

Les caractères irréductibles forment une base des fonctions centrales, i.e des fonctions $\phi: G \to \mathbb{C}$ qui sont constantes sur les classes de conjugaison de G.

Corollaire 37. Le nombre de représentations irréductibles de G est égal au nombre $|\operatorname{Coni}(G)|$ de classes de conjugaison dans G. En particulier, il est fini.

Corollaire 38. Si G est abélien, toute fonction $\phi: G \to \mathbb{C}$ est centrale, et l'ensemble des caractères linéaires \hat{G} forme une base orthonormale des fonctions de G sur \mathbb{C} .

Définition 39. Soit G un groupe qui agit sur lui même à gauche. On définit la représentation régulière V_G de G comme l'espace vectoriel V_G de dimension |G|, de base $(e_h)_{h\in G}$, muni de l'action linéaire de G donnée par $g \cdot e_h = e_{g \cdot h}$.

Remarque 40. Dans la base $(e_h)_{h \in G}$, la matrice de $g \in G$ est une matrice de permutation, dont le terme diagonal vaut 1 si et seulement si gh = h, et zéro sinon.

En particulier, on en déduit que $\chi_{V_G}(1) = |G|$ et $\chi_{V_G}(g) = 0$ si $g \neq 1$.

Proposition 41. (formule de Burnside)

Si W est une représentation irréductible de G, alors W apparaît dans la représentation régulière avec la multiplicité $\dim W$, et on a

$$\sum_{W \in Irr(G)} (\dim W)^2 = |G|.$$

2.3 Théorèmes de structure

Développement 1 :

Lemme 42. Soit G un groupe abélien fini. Alors G est isomorphe à Ĝ.

Lemme 43. Soit G un groupe abélien fini. Alors G et Ĝ ont le même exposant.

Théorème 44. (Théorème de structure des groupes abéliens finis, existence)

Soit G un groupe abélien fini. Alors il existe $r \in \mathbb{N}$ et des entiers N_1, \ldots, N_r , où N_1 est l'exposant de G et qui vérifient $N_{i+1}|N_i$ pour tout $i \le r-1$, et qui sont tels que

$$G \simeq \prod_{i=1}^r \mathbb{Z}/N_i \mathbb{Z}.$$

Remarque 45. Les facteurs $N_1, ..., N_r$ sont en fait uniques, et on les appelle les invariants de G.

3 Groupes non abéliens et simplicité

3.1 Notion de groupes simples

Définition 46. On dit que G est simple si ses seuls sous-groupes distingués sont $\{e\}$ et lui-même.

Proposition 47. Les seuls groupes abéliens simples sont les $\mathbb{Z}/p\mathbb{Z}$ avec p premier.

Théorème 48. A_n est simple pour n > 5.

Corollaire 49. Pour $n \geq 5$, le seul groupe distingué non trivial de S_n est A_n .

Remarque 50. Le résultat est faux pour $n=4:\mathcal{A}_4$ admet un sous-groupe distingué non trivial qui est V_4 .

Section 3

3.2 Etude des p-groupes et théorèmes de Sylow

Définition 51. Soit p un nombre premier. On appelle p-groupe un groupe fini d'ordre une puissance de p.

Définition 52. On appelle ensemble des points fixes d'un ensemble X pour l'action de G l'ensemble :

$$X^G = \{x \in X : \forall q \in G \quad q. x = x\}$$

Proposition 53. On suppose que G est un p-groupe et que X est fini. Alors on a :

$$|X| \equiv |X^G| \pmod{p}$$

Corollaire 54. Le centre d'un p-groupe distinct de $\{1\}$ n'est pas réduit à $\{1\}$.

Corollaire 55. Soit p un nombre premier. Alors tout groupe fini G de cardinal p^2 est abélien, et plus précisément isomorphe à $(\mathbb{Z}/p\mathbb{Z})^2$ ou bien à $\mathbb{Z}/p^2\mathbb{Z}$.

Exemple 56. Le corollaire devient faux pour les groupes d'ordre p^k avec $k \geq 3$. On peut donner en exemple le sous-groupe $T_3(\mathbb{F}_p)$ de $\mathrm{GL}_3(\mathbb{F}_p)$ constitué des matrices triangulaires supérieures avec des 1 sur la diagonale.

Définition 57. Soit G un groupe de cardinal $n = p^{\alpha}m$ avec p premier avec $p \nmid n$. On appelle p-Sylow de G tout sous-groupe de cardinal p^{α} .

Exemple 58. Soit $n = p^{\alpha}m$ avec $p \nmid m$. Alors $\mathbb{Z}/n\mathbb{Z}$ a un unique p-Sylow donné par $\langle m \rangle$. L'ensemble $T_n(\mathbb{F}_p)$ des matrices triangulaires supérieures de taille n avec des 1 sur la diagonale est un p-Sylow de $GL_n(\mathbb{F}_p)$.

Développement 2 :

Théorème 59. (Sylow)

Soit G un groupe d'ordre p^{α} m avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

Exemple 60. Tout groupe d'ordre 15 est isomorphe à $\mathbb{Z}/15\mathbb{Z}$.

Exemple 61. Il n'existe pas de groupe simple d'ordre 63 et 255.