Camera Calibration

参考资料

- 主要资料
 - https://gist.github.com/hshi74/edabc1e9bed6ea988a2abd1308e1cc96
- 其他选项
 - https://github.com/IFL-CAMP/easy_handeye

流程

- 关于相机位置的摆放
 - 。 用多个物体表示出机械臂能到达的边界,检查相机是否能拍全这些物体
 - 。 将三个相机连到一个usb3.2 hub,再将另一个相机直接连到主机的usb3.0接口, 注意不要将它们相邻连接,否则可能会出现usb的带宽问题
- 安装 realsense-ros
 - 必须使用 ROS1-legacy https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy
 - o sudo apt-get install ros-\$ROS_DISTRO-realsense2-camera
- 对于每一个相机,使用 apritag_ros 获得它们相对 tag 的 pose
 - 。 基本直接照着教程做就可以
 - o 对各个相机运行 roslaunch realsense2_camera rs_camera.launch serial_no:=????????? camera:=cam? depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=15 color_fps:=15 align_depth:=true enable_pointcloud:=true
 - o 输出结果: pose/cam1_tag.yml, pose/cam2_tag.yml, pose/cam3_tag.yml, pose/cam4_tag.yml
- 用示教模式把 arm 的 fingertip center 和 tag center 贴在一起,通过 polymetis 获得此时的 robot state
 - 代码文件: write_robot_state.py

Camera Calibration

- 输出结果: pose/robot_state.yml
- 利用 cam2tag 和 robot2tag, 计算 cam2robot poses
 - 。 代码文件: compute_transform.py
 - 输入: pose/cam?_tag.yml *4 和 pose/robot_state.yml
 - 输出结果: pose/camera_pose_robot.yml
- 可视化,把各个视角的 RGBD 通过 cam2robot poses 拼在一起
 - 使用 pyrealsense2 获得相机的 depth frame & color frame
 - 使用的函数 open3d.camera.PinholeCameraIntrinsic,
 open3d.geometry.RGBDImage.create_from_color_and_depth,
 open3d.geometry.PointCloud.create_from_rgbd_image
 - 。 TODO: 研究一下 extrinsic matrix 和 cam2robot pose 的关系
 - 。 代码文件: visualize_pcd.py
 - 输入: pose/camera_pose_???.yml
- 利用桌面作为共同的支撑平面对计算出 poses 做 finetune
 - 。 修改教程中的代码,直接使用 pyrealsense2 来获取点云
 - 。 代码文件: align_plane.py
 - 输入: pose/camera_pose_robot.yml
 - 输出结果: pose/camera_pose_aligned_plane.yml
- 利用 rviz 微调结果

Camera Calibration 2