SRDC Arch August 2021

2021-2021 Co-Op Summary (Sanitized)

Sasha Zurek

Agenda

Projects

- Performance Automation
 - Sweep tests
 - Pressure tests
- Characteristics Automation
- Skills and Knowledge
- Work from Home challenges
- My Takeaways

Performance Automation – performance-analyzer

- Hands-off, set-and-forget autotester
- Repeatable runs with consistent reporting spreadsheets, including second-by-second IOPS and worst-case latency data
 - IOPS sweep workloads jump from write heavy to read heavy until a 50/50 mix
- Integrates second-by-second IOPS, completion latencies by I/O type, IOPS consistency automatically

RR95RW5 sample from Tenant Trim workload

Performance Automation – Time Savings

Previous Routine:

- Setup/Execution: ~15 minutes (usually EOD)
- Performance Run: overnight, ~10.5 hours
- Idle time: data sits until next day
- Processing: fully manual, ~8hr process

Start a run **Monday**, data ready for viewing and analysis **Wednesday**.

Routine with Performance-analyzer:

- Setup/Execution: ~3 minutes (usually EOD)
- Performance Run: overnight, ~10.5 hours
- Processing: automatic following run, ~2 minutes

Start a run **Monday**, data ready for viewing and analysis **Tuesday**

Auto-tester saves ~8 hours of work time and enables next-day reporting

Performance Automation – performance-analyzer

- Aggregate of 8 workers (QD32/8threads)
- Reporting of worst-case completion latencies in time with IOPS
- No "warm-up" all data was recorded and reported
 - Spotting of transient behaviors like background GC

Performance Automation – performance-analyzer

Trim command latencies included – visually demonstrates XD6 advantage in trim commands

Performance Automation – Block Device I/O Capabilities Analyzer Tool (io-cat)

- Experimental workloads.
- Reads and writes on separate queues – no reads blocking writes or vice versa
- Made into separate tool, io-cat

Example of second-by-second plotting with Samsung 9A3

Performance Automation – io-cat and pressure testing

- Exploratory trim benchmark based on rising 64K random trims against a constant random write workload
- A visual, thorough way to compare Kioxia drives to competition

Characteristics Automation

- Part of our CI process is tracking NVMe and PCIe identify info in our database
 - Previously a fully manual, error-prone process (1-2 work day process per drive):
 - Nvme-cat is the automation suite for this process
 - Pulls each identify file, decodes the information, appends it to the spreadsheet automatically
 - 1-2 day, error prone process turned into a ~2 minute automated and accurate task
- Valuable data on competitors and a sanity check for our internal drives available at a glance
- Updates for NVMe 2.0 conformity and latest XD6 FW are underway

A	В	AV	AW	AX	AY	AZ	BA	ВВ
NVMe 1.4 Figure 247								
	Form Factor							
Field Bit		OACS 5	OACS 4	OACS 3	OACS 2	OACS 1	OACS 0	ACL
			Device	Namespace Managemen	Firmware Commit and	Format	Security Send and Security	
Feature		Directives	Self-test	t	Firmware	NVM	Receive	
660p	M.2	0	1	0	1	1	1	3
hynixpe8010	U.3	0	1	1	1	1		
samsung9a3	U.2	0	1	1	1	1	_	
XD6_MSFT FW302	E1.S	0	1	1	1	1		
CM6		0	1	1	1	1	0	====

Snippet of the database highlighting OACS data from the Intel 660p, Hynix PE8010, Samsung 9A3, XD6 MSFT, and CM6

Skills and Knowledge

- Python
 - I didn't know Python well before, now I would consider myself generally competent
 - Experience with Pandas, Excel APIs, and the Python standard library broadly
- Flash storage in general
 - How storage devices are characterized for performance
 - NVMe spec and drivers
- General soft skills
 - Time management
 - Accountability
 - Communication

Work from Home Challenges

- Internship was near 100% remote!
 - Grand total of ~8 days in the office.
- Honestly, not that difficult...
 - Separation of work and home was the major issue
 - Certain tasks, like drive swaps, were more difficult than they really needed to be

My Takeaways

- A yearlong internship offered me the chance to actually learn as opposed to just observing
- Developed confidence that I'm on the right educational path
- I traded a year of rigid classes for a year of work I won out!
- I extend a thanks to:
 - Steven Wells, for being an excellent manager and helping me push my work farther than I thought I could
 - Nicole Ross, for being an amazing mentor and guide, both with technical skills and the more emotional side
 - The company broadly, for allowing me the chance to come on for the time I did
- Next steps
 - Two more semesters of university left...