

UNIVERSODAD DE LAS FUERZAS ARMADAS ESPE TECNOLOGIAS DE LA INFORMACION

DOCENTE:

ESCOBAR MENDEZ ALEXANDRA ELIZABETH

ESTUDIANTE:

FRANCISCO CARRION

PROYECTO 2_PARCIAL 2

NRC:

22129

FECHA:

23 - JUNIO - 2025

Introducción

La recopilación y análisis de datos son pilares de la estadística y la investigación científica para la toma de decisiones informadas. Este informe detalla métodos de muestreo y pruebas de hipótesis, incluyendo el tamaño muestral. Su correcta aplicación asegura la validez y fiabilidad de los resultados en los estudios.

Pregunta escogida:

5. ¿En qué porcentaje considera usted que los estudiantes de la Universidad de las Fuerzas Armadas - ESPE tienen su igual preferencia por la aplicación para aprender idiomas?

TAMAÑO DE MUESTRA

El cálculo del tamaño muestral adecuado asegura la precisión y representatividad de los resultados. Requiere hallar el mínimo de observaciones necesario para alcanzar un nivel de confianza y margen de error dados.

000	15	025	85,5	050	40	075	45,6	100	71,1	125	81,5
001	80,5	026	70,2	051	27,2	076	41,2	101	56,1	126	80
002	50	027	81,3	052	50	077	50	102	20	127	43,7
003	50	028	70,8	053	50	078	60	103	50	128	50
004	70	029	50	054	100	079	30	104	50	129	83,5
005	70,3	030	10	055	70,8	080	60	105	83,4	130	92,5
006	80	031	80,4	056	40,1	081	30,5	106	83,4	131	80,8
007	25	032	50	057	60,6	082	86	107	40,5	132	80
008	92	033	70,3	058	85,7	083	80,5	108	15,6	133	89
009	51,3	034	76,3	059	70	084	15	109	65	134	65,5
010	90,5	035	90	060	100	085	30	110	60	135	80
011	80	036	40,5	061	85	086	60	111	75	136	70
012	70	037	50	062	55	087	90	112	70	137	80,1
013	90	038	40	063	60	088	70	113	75,7	138	20
014	55	039	50	064	75	089	90	114	50,9	139	18
015	90	040	90	065	79,8	090	60,58	115	70,5	140	15
016	85,4	041	50,3	066	83,2	091	90	116	64,7	141	60
017	50	042	50	067	79,9	092	90,1	117	80,5	142	65
018	75	043	80	068	79,9	093	80	118	1	143	50
019	70,2	044	5	069	70	094	6,41	119	50	144	50
020	50,4	045	72,9	070	80	095	50,9	120	50,5	145	76,4
021	80,7	046	90	071	10	096	50	121	80,5	146	50,8
022	60	047	51	072	70	097	80	122	75	147	70
023	9,5	048	85	073	60	098	83,4	123	78,5	148	90
024	80,2	049	50	074	75,5	099	50	124	80	149	50
·										150	70

MUESTREO POR CALCULADORA

Mediante herramientas automatizadas (software especializado o calculadoras estadísticas), este método selecciona muestras aleatorias aplicando fórmulas complejas que simplifican el muestreo.

Para este caso, con N=151, se generaron valores aleatorios usando N*Ran# y se determinó la media de la muestra.

MUESTREO POR CALCULADORA					
N	151*Ran#	Tabla			
1	89	90			
2	35	90			
3	150	70			
4	45	72,9			
5	46	90			
6	43	80			
7	60	100			
8	23	9,5			
9	110	60			
10	111	75			
11	118	1			
12	132	80			
13	54	100			
14	102	20			
15	32	50			
16	27	81,3			
17	88	70			
18	14	55			
19	101	56,1			
20	93	80			
Total	Promedio: $\bar{X} =$	66,54			

Formula:

$$N^{\circ}$$
 Aleatorio = $N * Ran\#$

$$\bar{X} = \frac{\sum datos}{n}$$

MUESTREO POR TABLA

El muestreo por tabla implica el uso de tablas de números aleatorios, como las tablas de Fisher o las tablas de dígitos aleatorios, para seleccionar una muestra. Este método tradicional asegura que cada miembro de la población tiene una probabilidad igual de ser incluido en la muestra.

En este caso se usó la tabla de números aleatorios (Apéndice E) para obtener los números randomicos para el muestreo con un N = 1 Y se obtuvo la media de los datos obtenidos.

MUESTREO POR TABLA					
N	ALEATORIO	VALOR			
1	80	60			
2	125	81,5			
3	34	76,3			
4	117	80,5			
5	1	80,5			
6	28	70,8			
7	21	80,7			
8	99	50			
9	116	64,7			
10	118	1			
11	90	60,58			
12	122	75			
13	120	50,5			
14	115	70,5			
15	88	70			
16	80	60			
17	13	90			
18	3	50			
19	95	50,9			
20	99	50			
Total	Promedio	63,67			

Formula:

 N° Aleatorio = Primeros tres digitos de tabla E

$$\bar{X} = \frac{\sum datos}{n}$$

MUESTREO SISTEMATICO

Este método selecciona periódicamente cada k-ésimo elemento en una población ordenada, iniciando aleatoriamente. Es eficiente y sencillo, pero riesgoso si la población presenta patrones cíclicos, ya que podría sesgar los resultados.

MUESTREO SISTEMATICO					
N	N Columna1 VALOR				
1	24	80,2			
2	36	40,5			
3	41	50,3			
4	8	92			
5	100	71,1			
6	132	80			
7	62	55			

8	12	70
9	58	85,7
10	55	70,8
11	67	79,9
12	112	70
13	71	10
14	12	70
15	30	10
16	88	70
17	66	83,2
18	16	85,4
19	29	50
20	6	80
Total	Promedio	65,21

Formula:

$$K = \frac{N}{n} = \frac{151}{20} = 7$$

$$A = k * Ran# = 7 * Ran# = 5$$

$$A + k = 12$$

$$\bar{x} = \frac{\sum dato}{n}$$

MUESTREO POR ESTRATOS

Esta técnica probabilística divide poblaciones heterogéneas en estratos homogéneos (elementos similares). Al muestrear independientemente cada estrato, asegura que todos los subgrupos estén representados, aumentando la precisión de los resultados.

En Este caso Los grupos que existen son Ing. en Tecnologías de la Información, Ing. en Mecatrónica y Ing. en Software.

ING. EN TECNOLOGÍAS DE LA INFORMACIÓN						
00	15	20	50,4			
01	80,5	21	80,7			
02	50	22	60			
03	50	23	9,5			
04	70	24	80,2			
05	70,3	25	85,5			
06	80	26	70,2			
07	25	27	81,3			
08	8 92 28 70,8					
09	51,3	29	50			
10	90,5	30	10			

1			
11	80	31	80,4
12	70	32	50
13	90	33	70,3
14	55	34	76,3
15	90	35	90
16	85,4	36	40,5
17	50	37	50
18	75	38	40
19	70,2	39	50

ING. EN MECATRÓNICA				
00	90	25	79,8	
01	50,3	26	83,2	
02	50	27	79,9	
03	80	28	79,9	
04	5	29	70	
05	72,9	30	80	
06	90	31	10	
07	51	32	70	
08	85	33	60	
09	50	34	75,5	
10	40	35	45,6	
11	27,2	36	41,2	
12	50	37	50	
13	50	38	60	
14	100	39	30	
15	70,8	40	60	
16	40,1	41	30,5	
17	60,6	42	86	
18	85,7	43	80,5	
19	70	44	15	
20	100	45	30	
21	85	46	60	
22	55	47	90	
23	60	48	70	
24	75	49	90	

	ING. EN SO	FTWAR	Ē
00	60,58	31	80,5
01	90	32	75

Ì			
02	90,1	33	78,5
03	80	34	80
04	6,41	35	81,5
05	50,9	36	80
06	50	37	43,7
07	80	38	50
08	83,4	39	83,5
09	50	40	92,5
10	71,1	41	80,8
11	56,1	42	80
12	20	43	89
13	50	44	65,5
14	50	45	80
15	83,4	46	70
16	83,4	47	80,1
17	40,5	48	20
18	15,6	49	18
19	65	50	15
20	60	51	60
21	75	52	65
22	70	53	50
23	75,7	54	50
24	50,9	55	76,4
25	70,5	56	50,8
26	64,7	57	70
27	80,5	58	90
28	1	59	50
29	50	60	70
30	50,5		

Con esto obtenemos la muestra por estratos

Muestreo por estratos							
Ing. en TICS Ing. en Ing. en suma total MECATRÓNICA Software							
40	50	61		151			

A continuación, para cada estrato se aplica la fórmula:

$$n1 = \frac{40 * 61}{151} = 16,16$$

$$n2 = \frac{50 * 61}{151} = 20,2$$

$$n1 = \frac{61 * 61}{151} = 24,64$$

A continuación calculamos el valor k :

$$k1 = \frac{n}{n_1} = \frac{151}{16,16} = k2 = \frac{n}{n_2} = \frac{151}{20,2} = k3 = \frac{n}{n_3} = \frac{151}{24,64} =$$

$$k1 = \frac{n}{n1} = 3.8$$
 $k2 = \frac{n}{n2} = 3.91$ $k3 = \frac{n}{n3} = 3.86$

n1 =	9,5	10	k1=	3,8
n2 =	10,75	11	k2=	3,91
n3 =	6,75	7	k3=	3,86

Y con ello ya podemos obtener las tablas para las carreras escogidas:

	TIC	CS		MECATRÓNICA	
1	16	50,5	1	35	75,5
2	24	65,6	2	25	31,5
3	28	90	3	16	60,5
l			4	5	65
4	33	50,5	5	7	70
5	21	70	6	20	10
6	12	78,2	7	10	65
7	4	70,5	8	28	75,6
8	22	76,4	9	42	80,6
9	34	90,5	10	3	50
10	6	70,5	11	22	80

	Software		
1	20	85,3	
2	14	75,5	
3	2	10,5	
4	6	50,1	
5	4	89	
6	8	69,6	
7	17	50,8	

Prueba de hipótesis muestra grande

El promedio poblacional de uso de plataformas electrónicas es de μ = 72,50 con σ = 18,40. Se toma una muestra aleatoria de n = 50 estudiantes de TICS y se obtiene un promedio muestral x¯=80.00\bar \bar{x} = 80,00. Con α = 0.05, prueba si el promedio de los estudiantes de TICS es mayor al promedio poblacional.

1. Muestra grande (TICS)

Datos comunes:

- Poblacional: μ_0 = 72.50, σ = 18.40

- Muestral: n = 50, $\bar{x} = 80.00$ - Nivel de significancia: $\alpha = 0.05$

a) Prueba cola derecha ($\mu > 72.50$)

1. Hipótesis:

 H_0 : $\mu \le 72.50$

 H_1 : $\mu > 72.50$

- 2. Región crítica: $z_{0.95} = 1.645$, rechazar si Z > 1.645
- 3. Estadístico:

$$Z = (\bar{x} - \mu_0) / (\sigma/\sqrt{n}) = (80.00 - 72.50) / (18.40/\sqrt{50}) \approx 2.88$$

- 4. Decisión: $2.88 > 1.645 \Rightarrow \text{rechazar H}_0$
- 5. Conclusión: El promedio de TICS es mayor que 72.50.

b) Prueba cola izquierda (μ < 72.50)

1. Hipótesis:

 H_0 : μ ≥ 72.50

 H_1 : μ < 72.50

- 2. Región crítica: $z_{0.05} = -1.645$, rechazar si Z < -1.645
- 3. Estadístico: Z ≈ 2.88
- 4. Decisión: 2.88 no < -1.645 \Rightarrow no rechazar H₀
- 5. Conclusión: No hay evidencia de que el promedio sea menor a 72.50.

c) Prueba dos colas (µ ≠ 72.50)

1. Hipótesis:

 H_0 : $\mu = 72.50$

 H_1 : $\mu \neq 72.50$

- 2. Región crítica: $z_{0.975} = \pm 1.96$, rechazar si |Z| > 1.96
- 3. Estadístico: Z ≈ 2.88
- 4. Decisión: $|2.88| > 1.96 \Rightarrow \text{rechazar H}_0$
- 5. Conclusión: El promedio de TICS difiere de 72.50.

Prueba de hipótesis muestra pequeña

El promedio poblacional de uso de plataformas electrónicas sigue siendo μ = 72.50, pero no conocemos σ . Tomamos una muestra de **n** = **15 estudiantes de Mecatrónica**, con \bar{x} =68.30 y S = 20.00. Con α = 0.05, prueba si el promedio de Mecatrónica es **menor** al poblacional.

Datos comunes:

- Poblacional: $\mu_0 = 72.50$
- Muestral: n = 15, gl = n-1=15-1=14, $\bar{x} = 68.30$, S = 20.00
- Nivel de significancia: $\alpha = 0.05$

a) Prueba cola derecha ($\mu > 72.50$)

1. Hipótesis:

 H_0 : $\mu \le 72.50$

 H_1 : $\mu > 72.50$

- 2. Región crítica: $t_{0.95}$, 14 = 1.761, rechazar si t > 1.761
- 3. Estadístico: t ≈ -0.81
- 4. Decisión: -0.81 no > 1.761 ⇒ no rechazar H_0
- 5. Conclusión: No hay evidencia de que el promedio sea mayor a 72.50.

b) Prueba cola izquierda (μ < 72.50)

```
1. Hipótesis:
```

 H_0 : $\mu \ge 72.50$

 H_1 : μ < 72.50

2. Región crítica: $t_{0.05}$, 14 = -1.761, rechazar si t < -1.761

3. Estadístico: $t \approx -0.81$

4. Decisión: -0.81 no < -1.761 ⇒ no rechazar H_0

5. Conclusión: No hay evidencia de que el promedio sea menor a 72.50.

c) Prueba dos colas (µ ≠ 72.50)

1. Hipótesis:

 H_0 : $\mu = 72.50$ H_1 : $\mu \neq 72.50$

2. Región crítica: $t_{0.975}$, 14 = ± 2.145 , rechazar si |t| > 2.145

3. Estadístico: $t \approx -0.81$

4. Decisión: |-0.81| < 2.145 ⇒ no rechazar H₀

5. Conclusión: No hay evidencia de diferencia con 72.50.

Prueba de hipótesis proporciones

Se desea que al menos el 15% de los estudiantes de Software vean diariamente contenidos en plataformas de idiomas dentro de la universidad. En una muestra de n = 100 estudiantes de Software, se observa que X = 18 cumplen con ello. Con α = 0.05, prueba si la proporción real es mayor al 15%.

Datos:

- $-\pi_0 = 0.15$
- $-\hat{p} = 0.18 (18/100)$
- -n = 100
- $-\alpha = 0.05$

a) Cola derecha ($\pi > 0.15$)

1. Hipótesis:

 $H_0: \pi \le 0.15$

 H_1 : $\pi > 0.15$

2. Región crítica: $z_{0.95} = 1.645$

3. Estadístico: $Z \approx 0.84$

4. Decisión: $0.84 < 1.645 \Rightarrow$ no rechazar H₀

5. Conclusión: No hay evidencia de que la proporción sea mayor al 15%.

b) Cola izquierda (π < 0.15)

1. Hipótesis:

 H_0 : $\pi \ge 0.15$

 H_1 : $\pi < 0.15$

- 2. Región crítica: $z_{0.05} = -1.645$
- 3. Estadístico: $Z \approx 0.84$
- 4. Decisión: 0.84 no < -1.645 ⇒ no rechazar H₀
- 5. Conclusión: No hay evidencia de que la proporción sea menor al 15%.

c) Dos colas ($\pi \neq 0.15$)

```
1. Hipótesis:
```

```
H_0: \pi = 0.15
H_1: \pi \neq 0.15
```

2. Región crítica: $z_{0.975} = \pm 1.96$

3. Estadístico: Z ≈ 0.84

4. Decisión: $|0.84| < 1.96 \Rightarrow$ no rechazar H₀

5. Conclusión: No hay evidencia de diferencia con 0.15.

Prueba de hipótesis 2 muestras grandes

Queremos comparar el promedio de uso de plataformas electrónicas entre TICS y Mecatrónica.

- Muestra TICS: $n_1 = 35$, $\bar{x}_1 = 75.00$, $\sigma_1 = 15.00$
- Muestra Mecatrónica: $n_2 = 30$, $x_2=82.00$, $\sigma_2 = 20.00$ Con $\alpha = 0.10$, prueba si el promedio de TICS es menor al de Mecatrónica.

Datos:

- TICS: n_1 =35, \bar{x}_1 =75.00, σ_1 =15.00
- Mecatrónica: n_2 =30, \bar{x}_2 =82.00, σ_2 =20.00
- $-\alpha = 0.10$
- $-Z \approx -1.57$

a) Cola derecha ($\mu_1 > \mu_2$)

1. Hipótesis:

```
H_0: \mu_1 \le \mu_2

H_1: \mu_1 > \mu_2
```

- 2. Región crítica: $z_{0.90} = 1.282$
- 3. Estadístico: $Z \approx -1.57$
- 4. Decisión: -1.57 no > 1.282 ⇒ no rechazar H_0
- 5. Conclusión: No hay evidencia de que TICS supere a Mecatrónica.

b) Cola izquierda ($\mu_1 < \mu_2$)

1. Hipótesis:

```
H_0: \mu_1 \ge \mu_2

H_1: \mu_1 < \mu_2
```

- 2. Región crítica: $z_{0.10} = -1.282$
- 3. Estadístico: $Z \approx -1.57$
- 4. Decisión: -1.57 < -1.282 ⇒ rechazar H_0
- 5. Conclusión: El promedio de TICS es menor que el de Mecatrónica.

c) Dos colas $(\mu_1 \neq \mu_2)$

1. Hipótesis:

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$

- 2. Región crítica: $z_{0.95} = \pm 1.645$
- 3. Estadístico: Z ≈ -1.57
- 4. Decisión: | -1.57 | < 1.645 ⇒ no rechazar H_0
- 5. Conclusión: No hay evidencia de diferencia significativa entre ambos.

Prueba de hipótesis 2 muestras pequeñas independientes

Se realizó un estudio en la Universidad ESPE para evaluar cambios en el consumo de aplicación para aprender idiomasen tres carreras: TICS, Mecatrónica y Software. Utilizando un diseño de muestras emparejadas (mediciones "antes" y "después") con α = 0.05, se analizaron tres hipótesis para cada carrera: a) Aumento en el consumo (μ d > 0). b) Disminución en el consumo (μ d < 0). c) Cambio en el consumo (μ d ≠ 0).

Carrera: TICS

Datos

Est.	Antes	Después	di	di ²
1	70	85	-15	225
2	60	80	-20	400
3	15	75	-60	3600
4	75	55	20	400
5	90	55	35	1225

Suma de di: -40; Suma de di²: 5850

Cálculos

 $\bar{d} = -8$

sd = 37.185

st = -0.481

gl = 4

a) Prueba para μd > 0 (Aumento)

H0: μd ≤ 0 H1: μd > 0

 α = 0.05; t crítico (derecha) = 2.132

Estadístico de prueba: t = -0.481

Regla de decisión: rechazar H0 si t > 2.132

Conclusión: No se rechaza H0. No hay evidencia de aumento en el consumo.

b) Prueba para μd < 0 (Disminución)

H0: μ d ≥ 0 H1: μ d < 0

 α = 0.05; t crítico (izquierda) = -2.132

Estadístico de prueba: t = -0.481

Regla de decisión: rechazar H0 si t < -2.132

Conclusión: No se rechaza H0. No hay evidencia de disminución en el consumo.

c) Prueba para µd ≠ 0 (Cambio)

H0: μ d = 0 H1: μ d ≠ 0

 $\alpha = 0.05$; t crítico (dos colas) = ± 2.776

Estadístico de prueba: t = -0.481

Regla de decisión: rechazar H0 si |t| > 2.776

Conclusión: No se rechaza H0. No hay evidencia de cambio en el consumo.

Carrera: Mecatrónica

Datos

Est.	Antes	Después	di	di ²
1	65	80	-15	225
2	55	85	-30	900
3	12	72	-60	3600
4	72	52	20	400
5	88	52	36	1296

Suma de di: -49; Suma de di²: 6421

Cálculos

 $\bar{d} = -9.8$

sd = 38.54

st = -0.568

gl = 4

a) Prueba para μd > 0 (Aumento)

H0: $\mu d \le 0$ H1: $\mu d > 0$

 α = 0.05; t crítico (derecha) = 2.132

Estadístico de prueba: t = -0.568

Regla de decisión: rechazar H0 si t > 2.132

Conclusión: No se rechaza H0. No hay evidencia de aumento en el consumo.

b) Prueba para μd < 0 (Disminución)

H0: $\mu d \ge 0$ H1: $\mu d < 0$

 α = 0.05; t crítico (izquierda) = -2.132

Estadístico de prueba: t = -0.568

Regla de decisión: rechazar H0 si t < -2.132

Conclusión: No se rechaza H0. No hay evidencia de disminución en el consumo.

c) Prueba para µd ≠ 0 (Cambio)

H0: $\mu d = 0$ H1: $\mu d \neq 0$

 α = 0.05; t crítico (dos colas) = ±2.776

Estadístico de prueba: t = -0.568

Regla de decisión: rechazar H0 si |t| > 2.776

Conclusión: No se rechaza H0. No hay evidencia de cambio en el consumo.

Carrera: Software

Datos

Est.	Antes	Después	D	D^2
1	68	82	-14	196
2	57	84	-27	729
3	11	71	-60	3600
4	71	51	20	400
5	89	51	38	1444

Suma de di: -43; Suma de di²: 6369

Cálculos

 $\bar{d} = -8.6$

sd = 38.73

st = -0.496

gl = 4

a) Prueba para $\mu d > 0$ (Aumento)

H0: $\mu d \le 0$ H1: $\mu d > 0$

 α = 0.05; t crítico (derecha) = 2.132

Estadístico de prueba: t = -0.496

Regla de decisión: rechazar H0 si t > 2.132

Conclusión: No se rechaza H0. No hay evidencia de aumento en el consumo.

b) Prueba para μd < 0 (Disminución)

H0: μ d ≥ 0 H1: μ d < 0

 α = 0.05; t crítico (izquierda) = -2.132

Estadístico de prueba: t = -0.496

Regla de decisión: rechazar H0 si t < -2.132

Conclusión: No se rechaza H0. No hay evidencia de disminución en el consumo.

c) Prueba para $\mu d \neq 0$ (Cambio)

H0: μ d = 0 H1: μ d ≠ 0

 $\alpha = 0.05$; t crítico (dos colas) = ± 2.776

Estadístico de prueba: t = -0.496

Regla de decisión: rechazar H0 si |t| > 2.776

Conclusión: No se rechaza H0. No hay evidencia de cambio en el consumo.

Prueba de hipótesis: 2 muestras pequeñas dependientes

Se toman dos muestras emparejadas en tiempo de estudiantes de TICS. El análisis arroja un promedio de diferencias de -5.42 y una desviación estándar de las diferencias de 19.20. n = 6, gl = 5.

a) Hipótesis: μd > 0

- 1. H_0 : μ d ≤ 0
 - H_1 : $\mu d > 0$
- 2. α = 0.10, t crítico = 2.132
- 3. t calculado \approx -0.70
- 4. Regla de decisión: Rechazar H_0 si t > 2.132
- 5. Decisión: No se rechaza H₀; el promedio de las diferencias no es mayor que cero.

b) Hipótesis: μd < 0

- 1. H_0 : μ d ≥ 0
 - H_1 : $\mu d < 0$
- 2. α = 0.05, t crítico = -2.132
- 3. t calculado \approx -0.70

- 4. Regla de decisión: Rechazar H₀ si t < -2.132
- 5. Decisión: No se rechaza H₀; el promedio de las diferencias no es menor que cero.

c) Hipótesis: µd ≠ 0

- 1. H_0 : $\mu d = 0$ H_1 : $\mu d \neq 0$
- 2. $\alpha = 0.05$, t crítico = ± 2.571
- 3. t calculado \approx -0.70
- 4. Regla de decisión: Rechazar H_0 si |t| > 2.571
- 5. Decisión: No se rechaza H₀; el promedio de las diferencias es igual a cero.

Prueba de hipótesis: dos proporciones

Encuesta sobre el consumo de plataformas: TICS (x_1 =38, n_1 =70), Mecatrónica (x_2 =29, n_2 =45). P_1 = 0.54, P_2 = 0.64, α = 0.10.

a) Hipótesis: $\pi_1 > \pi_2$

- 1. H_0 : $\pi_1 \le \pi_2$
 - $H_1: \pi_1 > \pi_2$
- 2. $\alpha = 0.10$, z crítico = 1.28
- 3. Z calculado ≈ -0.87
- 4. Regla de decisión: Rechazar H₀ si Z > 1.28
- 5. Decisión: No se rechaza H_0 ; el consumo de plataformas de TICS no es mayor al de Mecatrónica.

b) Hipótesis: $\pi_1 < \pi_2$

- 1. H_0 : $\pi_1 \ge \pi_2$
 - H_1 : $\pi_1 < \pi_2$
- 2. $\alpha = 0.05$, z crítico = -1.28
- 3. Z calculado ≈ -0.87
- 4. Regla de decisión: Rechazar H₀ si Z < -1.28
- 5. Decisión: No se rechaza H_0 ; el consumo de plataformas de TICS no es menor al de Mecatrónica.

c) Hipótesis: $\pi_1 \neq \pi_2$

- 1. H_0 : $\pi_1 = \pi_2$
 - $H_1: \pi_1 \neq \pi_2$
- 2. $\alpha = 0.05$, z crítico = ± 1.645
- 3. Z calculado ≈ -0.87
- 4. Regla de decisión: Rechazar H_0 si |Z| > 1.645
- 5. Decisión: No se rechaza H_0 ; el consumo de plataformas es igual en ambas carreras.

Conclusiones y Recomendaciones

Conclusiones

1. Representatividad de la Muestra:

 El tamaño de muestra calculado y los métodos de muestreo empleados aseguran una adecuada representatividad de la población estudiantil de la Universidad ESPE.

2. Diferencias Significativas:

 Las pruebas de hipótesis realizadas muestran diferencias estadísticamente significativas en el consumo de aplicación para aprender idiomas entre los estudiantes, proporcionando información valiosa sobre sus preferencias.

3. Eficacia del Análisis:

 El uso del valor p y los análisis permiten identificar variaciones y factores influyentes en el consumo de plataformas de aprender idiomas, aportando una base sólida para la toma de decisiones.

Recomendaciones

1. Aumentar el Tamaño de la Muestra:

 Incrementar el tamaño de la muestra en futuras encuestas para mejorar la precisión de los resultados y reducir el margen de error.

2. Diversificación del Muestreo:

 Utilizar una combinación de métodos de muestreo para asegurar una cobertura más completa y reducir el sesgo en la selección de los estudiantes.

3. Análisis Adicionales:

 Realizar estudios de correlación y regresión para identificar factores específicos que influyen en el consumo de plataformas de aprender idiomas, y utilizar pruebas posthoc tras los para identificar diferencias entre grupos.