Komunikační rozhraní PC – USB, Ethernet, WiFi, Bluetooth, IrDA, ovládací zařízení – princip a parametry klávesnice, myš, trackpoint, touchpad, dotykové obrazovky, interaktivní tabule.

<u>Komunikační rozhraní</u> – interface umožňující přenos dat mezi hostitelem a koncovými subjekty, sjednocuje komunikaci v rámci programů, tzv. API

<u>Parametry fyzického rozhraní</u>: Uspořádání vodičů, Šířka pásma, Frekvence, Rychlost, Způsob přenosu, Možnosti připojení

USB (universal serial bus)

První specifikace byla navržena v roce 1995, důležité specifikace jsou:

- USB 1.1 Low-speed 1,5Mb/s / Full-speed 12Mb/s–4 vodiče, max. 500 mA
- USB 2.0 High-Speed 480 Mbit/s zpětná kompatibilita 4 vodiče, max 500 mA
- USB 3.0 Superspeed 5Gb/s 4+4 vodiče (USB 3.1 Gen1, konektor A), max 900 mA
- USB-C Gen1 USB 3.1 Gen1 SuperSpeed 5Gb/s, konektor C, teoreticky max 100 W
- USB-C Gen2 USB-C 3.1 Gen2 SuperSpeed+ 10 Gbit/s, konektor C, teoreticky max 100 W

Informace v deskriptoru zařízení USB:

- Povinné identifikace výrobce a třídy, napájecí proud, informace o zařízení, počet koncových bodů
- Volitelné bližší specifikace zařízení pro třídu, do které patří

Fáze připojení USB zařízení:

- 1. Hub informuje hostitele o tom, že bylo **připojeno** nové zařízení
- 2. Hostitel se dotáže hubu, na který **port** bylo zařízení připojeno
- 3. Hostitel vydá příkaz tento port zapnout a provést vynulování (reset) sběrnice
- 4. Hub generuje signál (reset) o délce 10 ms a uvolní pro zařízení napájecí proud 100 mA
- 5. hostitel povolí dotyčný port a komunikuje s USB zařízením prostřednictvím **řídící roury** na výchozí adrese **0**
- 6. Hostitel si **přečte** první bajty **deskriptoru zařízení** určující délku datových paketů
- 7. Hostitel **přiřadí zařízení USB** jeho **adresu** na sběrnici a zjistí, zda jde o **hub nebo koncové zařízení** a jakou **šířku pásma** bude potřebovat.
- 8. Následně vytvoří řídící **rouru** pro toto USB zařízení a nasměruje ji na přiřazenou **adresu** a **endpoint číslo 0**.
- Hostitel přiřadí zařízení napájecí proud podle deskriptoru zařízení a vyhledá příslušný ovladač v hostitelském software

Přehled typů konektorů

Logické propojení hostitele a koncového zařízení:

- Endpoint je koncové zařízení, které chce mluvit s hostitelem
- Jedno koncové zařízení může mít více Endpointů
- Pro komunikaci mezi hostitelem a endpointem vznikne tzv. Data pipe
- Koncové zařízení může mít až 32 endpointů (16 IN, 16 OUT), každý endpoint má přirazeno unikátní číslo v procesu inicializace (4 bity)
- jsou různé **Data pipes** pro různé účely:
 - Message pipe obousměrná roura pro řídící přenosy (poskytování reset signálů, řízení napájení, setup, config)
 - o Stream pipe jednosměrná roura pro přenos dat
 - Izochronní garantovaná přenosová rychlost ale možná ztráta dat (audio, video)
 - <u>Přerušovaný přenos</u> garantované **rychlé odpovědi** na asynchronní události (klávesnice, myš).
 - Nárazový přenos velké datové přenosy s maximální možnou šířkou přenosu,
 bez garance rychlé odpovědi ale bez ztráty dat (přenosy dat z disků).

USB topologie

- **Pyramidovitá** tiered topologická struktura, hostitel **root** (Tier 1) **řídí přenos** komunikace s koncovými zařízeními se odehrává přes něj, přímá komunikace mezi zařízeními není možná
- Jeden spoj od hostitele se může větvit v rozbočovači hub
- Na jednoho hostitele USB je možno připojit až 127 zařízení (Intel má tvrdý limit, AMD dovolí jít přes limit)
- Lze zapojit max 5 hubů za sebou (nelze přidat další hub na Tier 7, Windows odmítne zobrazit, vytvořit adresu a dát rouru hubu na Tier 7), důvodem jsou časová omezení (každý hub má jen malé časové okno pro komunikaci) a limit elektrického odběru (mnoho zařízení by mohlo poškodit port na Root hubu)

Komunikace USB 2.0

• Zajišťuje překlad formátu dat mezi vysokou (USB 2.0) a plnou (USB 1.1) rychlostí – **překladač transakcí (TT)**

Hub komunikace USB 3.0

- Zařízení pro komunikaci **Super-Speed**(USB 3.0) jsou fyzicky i logicky odděleny od komunikace **High-Speed**(USB 2.0), **Full-Speed** (USB 1.0)
- Samostatné řadiče USB pro USB 2.0 a USB
 3.0

Drát USB 3.0

• USB 3.0, 3.1 má navíc 4 linky pro SuperSpeed, je zpětně kompatibilní s USB 2.0 (pak tyto linky nevyužívá)

Ethernet

- Standart pod názvem IEEE 802.3
- Rozhraní většinou integrované na základní desce
- konektor RJ45
- používají se kroucené dvojlinky nebo optické kabely (dříve koaxiální kabely)
- rychlosti 10/100/1000 Mbps

WiFi

- Standart pod názvem <u>IEEE 802.11</u>
- Bezdrátový LAN připojení využívající rádiových frekvencích
- Využívá se volných pásem 2,4 GHz a 5GHz

Standard	Obchodní značení	Vydání
802.11a	Wi-Fi 1	září 1999
802.11b	Wi-Fi 2	září 1999
802.11g	Wi-Fi 3	červen 2003
802.11n	Wi-Fi 4	říjen 2009
802.11ac	Wi-Fi 5	prosinec 2013
802.11ax	Wi-Fi 6	2019

Bluetooth

- Standart pod názvem <u>IEEE 802.15</u>
- Bezdrátová pro PAN
- Rádiová technologie o nízkém vysílacím výkonu za cílem nahrazení propojení elektronických zařízení (tiskárna, mobil, sluchátka)
- Pracuje v pásmu 2,4 GHz
- <u>FHSS modulace</u> během jedné sekundy je provedeno 1600 skoků (přeladění) mezi 79 frekvencemi s rozestupem 1 MHz (tento mechanismus zvýší odolnost spojení vůči rušení na stejné frekvenci)
- Přímá viditelnost mezi vysílačem a přijímačem není potřeba
- Nízká spotřeba a jednoduchá
- Jednotlivá zařízení lze identifikovat pomocí jejich BD_ADDR (Bluetooth device address), podobně jako MAC
- Bluetooth řeší vyšší až aplikační vrstvy ISO/OSI modelu
- Mnoho verzí:
 - o Bluetooth 4.0 (r. 2010) nízká energetická náročnost, vhodné pro hands-free
 - o ... 4.2 (r. 2014) zahrnuje protokol 6LoWPAN, používají chytré žárovky
 - o 5.0 (r. 2016) tech. BLE (Bluetooth low energy) zvýší rychlost přenosu na úkor dosahu, IoT
 - o 5.1 (r. 2019) podpora mesh sítí
 - o 5.2 (r. 2019) všesměrové vysílání (one-to-many, many-to-one)

IrDA

- IrDA (infrared data association) bezdrátová komunikace pomocí infračerveného světla
- Je vytlačováno kvůli Bluetooth, který eliminuje problém přímé viditelnosti vysílače a přijímače
- Infračervené optické záření o 875 nm
- Sériový a asynchronní přenos
- Rychlost přenosu dat je 2400 115 200 b/s

Klávesnice

- Základní rozhraní pro komunikaci mezi uživatelem a PC
- Rozložení kláves historicky odvozeno od psacího stroje
- Pro různé jazyky je stejné rozložení klávesnice, ale na jednotlivých klávesách jsou různé znaky
- Klávesy se dělí na numerické abecední, funkční (F1-12), a metaklávesy (klávesa nic nedělá, je potřeba další stisk jiné klávesy, např. CTRL, Shift)
- Na klávese F a J je výstupní ryska pro rychlou orientaci
- Jiná elektronická zařízení mají upravenou a zjednodušenou klávesnici speciálně pro jejich účely
- Rozdělení klávesnic:
 - o Podle technologie (mechanická/přepínače, membrána, kapacitní, Hallův jev (magnetismus))
 - Podle standardů a použití (PC/XT, PC/AT multimediální, funkční, kurzorové a numerické klávesy)
 - Pro notebooky podsvícená, nepodsvícená, s nebo bez numerické části
 - o Podle typů připojení (USB, PS/2)
 - o Způsob komunikace (SCAN kód, ASCII kód, BIOS, jiná znaková sada)
- Princip činnosti klávesnice:
 - o Pole spínačů, které jsou zapojeny do matice
 - Řadič klávesnice aktivuje postupně jednotlivé řádky a sloupce a tím zjistí, jaké klávesy jsou stisknuty (umí detekovat stisk více kláves najednou)
 - Podle toho, jaká klávesa je stisknutá tak se pošle tzv. SCAN CODE (každá klávesnice má každý Scan code úplně stejný i bez ohledu na nastavený jazyk)
 - Scan code poté přeloží PC podle toho, jaký je právě nastavený jazyk (QWERTY, QWERTZ)
 - Tyto jazyky lze přepínat

Mechanická klávesnice

- může se lišit velikost, výška, hloubka stisku a hlasitost jednotlivých kláves
- jasná zpětná vazba
- dlouhá životnost, lze vyměnit jednotlivé klávesy
- vykazují zákmity při sepnutí (bouncing)

Klávesnice s membránou

- mezi klávesami a kontakty je vložena silikonová membrána s výstupky ve tvaru "čepičky" a s uhlíkovou vodivou ploškou v každé "čepičce"
- po stlačení uhlík propojí elektrický obvod a sepne, membrána zajistí pružnost a návrat do původní polohy
- Membrána je obvykle z jednoho kusu pro celou klávesnici, zajišťuje těsnost a vodě a prachu odolnost klávesnice (vhodné pro mobilní přístroje)
- Klávesnice je poměrně levná, životnost je vysoká
- Nevýhodou je měkčí stisk a horší zpětná kompatibilita

TrackPoint

- z gumy který lze vyměnit, malý joystick, mezi klávesami
- nakloněním se pohybuje myš, citlivost řeší software
- má jak levé, tak pravé tlačítko

Myš

Elektromechanické

- již zastaralá technologie
- nevýhoda: kulička přenáší prach a pot z podložky či desky stolu na válečky
- Při pohybu kuličky se kolečko otáčí a dochází k přerušování světelného paprsku a vzniku impulzů v optronu
- Celkový počet impulzů odpovídá posunutí v příslušném směru
- směr pohybu rozpoznávají dva fototranzistory a směr pohybu se určí z posloupnosti impulzů z jednotlivých fototranzistorů
- impulsy se přenáší do počítače pomocí rozhraní USB (PS/2, Bluetooth)
- V roce 1996 bylo prostřední tlačítko myši nahrazeno rolovacím kolečkem
- Pohyb rolovacího kolečka se převádí na elektrické impulzy stejně jako u válečků pro převod pohybu myši

Optické

- registruje pohyb odraženého obrazu podložky, na kterou svítí šikmo svítivá dioda
- od podložky se světlo odráží a dopadá na jednoduchou matici několika stovek pixelů struktury CCD (16x16 až 30x30 pixelů)
- dioda bliká s frekvencí 1 kHz až 5 kHz a speciální obvod vyhodnocuje posunutí obrazu během periody sejmutí jednotlivých snímků
- rozlišovací schopnosti od 400 do 3 200 DPI2(posunutí mezi 0,1mm až 0,01mm) (dots per inch)
- podložka musí být nehomogenní (proto nefunguje na skleněné podložce)
- laserové myši mají koherentní záření a paprsky se z podložky nejen odrážejí, ale i interferují. (pracuje i na skle, má vyšší rozlišovací schopnost)

Posunutí obrazu při pohybech optické myši:

- 1. Kulička myši
- 2. Válcový snímač s kruhovou clonou
- 3. LED (prosvěcuje clonu se zářezy)
- 4. Mikrospínač pro tlačítka myši
- 5. Optický senzor (za clonou)

Touchpad

- pohyb kurzorem po obrazovce podle pohybů uživatelova prstu náhrada za počítačovou myš u přenosných zařízení
- princip snímání elektrické kapacity prstu nebo kapacity mezi senzory (podobně jako dotykové obrazovky)
- tlačítka podobně jako na počítačové myši, nebo dvoj klepnutí a posuv

Dotykové obrazovky

- Dotyková obrazovka je displej, který dokáže detekovat místo doteku na zobrazovací ploše
- Rozpoznání jednoho místa stylus s funkčními tlačítky (pasivní, aktivní)
- Více dotykové rozpoznání gesta pomocí pohybu prstů
- <u>Rezistivní technologie</u> (fyzické promáčknutí vrstvy změna odporu, méně používané) viz. Obrázek >

Kapacitní technologie

- Vodivý prst narušuje elektrostatické pole na povrchu displeje a změna kapacity je následně zachycena jako dotyk
- Displej nelze ovládat nevodivým prvkem (nutno použít speciální rukavice)
- Dotyková vrstva je přímo integrována do panelu displeje
- Masově použité u produktů iPhone (od r.2007) dnešní standard

Interaktivní tabule

- Interaktivní tabuli osvětluje obraz z projektoru a vytváří velkou dotykovou obrazovku
- Pomocí interaktivního pera (nebo prstem) se provádí na tabuli podobné úkony, jako by se dělaly myší na počítači (včetně tlačítek myši nebo gesty pomocí prstů)
- Každý výrobce má svůj ovladač a vlastní SW aplikace
- <u>Elektromagnetická technologie</u> soustava drátů za interaktivní plochou vzájemně působí na cívku, pozice souřadnic (X, Y) je určena indukcí elektrického proudu.
- <u>Laserová technologie</u> snímače v obou horních rozích tabule,
 Laserové paprsky jsou za pomoci natáčení zrcátek promítány před celou plochu tabule, není citlivé na dotek.
- Digital Vision Touch (DViT) malé kamerky umístěné v rámu, objekt se zaměří a software vypočte polohu, libovolný povrch

