Sentiment analysis Evaluation

Find the best running settings of the mode

- #layers
- Activation functions
- Probs. assumption

Find the best running settings of the mode

- Checking the performance of model on Train and Test
- For all different possibilities

Blind grid search! Brute-force

Find the best running settings of the mode

- Learn the performance of model on Train and Test
- For all different possibilities

Guided grid search!

Find the best running settings of the mode

- Learn the performance of model on Train and Test
- For all different possibilities

Guided grid search!

Home

Compete

m Data

> Code

Communities

○ Courses

More

https://www.kaggle.com/c/petfinder-adoption-prediction/discussion/125436

PetFinder.my Contest: 1st Place Winner Disqualified

307

Posted in petfinder-adoption-prediction a year ago

Mongrel Jedi

Dear Participants,

We would like to announce that the 1st Place Team, Bestpetting has been disqualified from the contest for cheating. The Kaggle Grandmaster cheater has also been permanently banned on this platform as the evidence points towards him being the key party behind this fraudulent activity.

Here is what the Bestpetting team did in the PetFinder.my contest:

They fraudulently obtained adoption speed answers for the private test data (possibly by scraping our website)

Steal the labels for the test set!

Legally learn the labels for the test set by performance feedback.

Labeled Data = {{Train} U {Valid}} U {Test}

The model intentionally ignores parts of his available knowledge and challenges itself to uncover those parts!

Labeled Data = {Train}

Labeled Data = {{Subtrain} U {Subtest}

Labeled Data = {{Train} U {Valid}

Cross-Validation 1 practice vs. Multiple practice

Cross-Validation

Figure 4.7 10-fold cross-validation

D	_	8	=0.42
Phappy	_	8+11	-0.42

		Truth			
		Нарру	Sad	Neutral	
	Нарру	8	10	1	
Model	Sad	5	60	50	
	Neutral	3	30	200	

		Truth for Sad		
		Sad	Not Sad	
Model	Sad	60	55	
	Not Sad	40	212	

D	_	60	= 0.52
r _{sad}	_	60+55	=0.52

		Truth for Happy		
		Neutral	Not Neutral	
Model	Neutral	200	33	
	Not Neutral	51	83	

$$P_{\text{neutral}} = \frac{200}{200+33} = 0.85$$

		Truth			
		Нарру	Sad	Neutral	
	Нарру	8	10	1	
Model	Sad	5	60	50	
	Neutral	3	30	200	

$$P_{happy} = \frac{8}{8+10+1} = 0.42$$

$$P_{sad} = \frac{60}{5+60+50} = 0.52$$

$$P_{neutral} = \frac{200}{3+30+200} = 0.85$$

$$R_{happy} = \frac{8}{8+5+3} = ?$$

$$R_{sad} = \frac{60}{10+60+30} = 1$$

$$R_{\text{happy}} = \frac{8}{8+5+3} = ?$$
 $R_{\text{sad}} = \frac{60}{10+60+30} = ?$ $R_{\text{neutral}} = \frac{200}{1+50+200} = ?$

Multiclass Evaluation: Macro-Avg

$$Macroavg = \frac{1}{K} \sum_{i=1}^{K} Metric_{K}$$

$$Macroavg = \frac{1}{3}[P_{happy} + P_{sad} + P_{neutral}]$$

Multiclass Evaluation: Micro-Avg

		Truth		
		Нарру	Sad	Neutral
	Нарру	8	10	1
Model	Sad	5	60	50
	Neutral	3	30	200

		True	Not True
Model	True	268	99
	Not True	99	?

$$P_{true} = ?$$

$$R_{true} = ?$$

Macro vs. Micro Averaging

Macro vs. Micro Averaging

- Microavg is dominated by the more frequent class since the counts are pooled.
- Macroavg better reflects the statistics of the smaller classes, and so is more appropriate
 when performance on all the classes is equally important.

Transparent (Interpretable) Model Qualitative Analysis

Qualitative (Descriptive) Analysis

How (why) the model make "this prediction"?

```
"*** ** ****" → Happy
"*** ** ****" → Sad
"*** ** ***** → Neutral
```

Qualitative (Descriptive) Analysis

How (why) the model make "this prediction"?

Manually inspect the test or valid sets.

Very time consuming!

Qualitative (Descriptive) Analysis

How (why) the model make "this prediction"?

Look at the model's parameters.

On what part of the input the model pay attention?

Transparent (Interpretable) Model Qualitative (Descriptive) Analysis

Sigmoid($[x_{i:|V|} 1][w_{1:|V|}]$) > 0.5 \rightarrow Positive

When we look at all $w_i \rightarrow$ we see only $w_{34} = 0.8$ Others are either 0 or negative.

Qualitative (Descriptive) Analysis

Sigmoid($[x_{i:|V|} 1][w_{1:|V|}]$) > 0.5 \rightarrow Positive

Only w_{34} brings an input to the positive class.

Only $x_{34}w_{34}$ brings an input to the positive class. What is x_{34} ?

The model learns to keep $x_{34}w_{34}$ to correctly classify positive instances.

Transparent (Interpretable) Model

Qualitative (Descriptive) Analysis

```
[0, 0, .., 1, 0, 0, ..., 1, 0, 0, 1, ..., 1, 0, 0, ..., 1, 0, 0, ...]
```

$$x_{34} = [happy]$$

Transparent (Interpretable) Model

Qualitative (Descriptive) Analysis

Whenever "happy" is in the input, the model classify the input as positive!

Bagging Model for Product Title Quality with Noise CIKM AnalyticCup 2017

Tam T.Nguyen

Ryerson University nthanhtam@gmail.com Hossein Fani

University of New Brunswick hossein.fani@gmail.com Ebrahim Bagheri

Ryerson University ebrahim.bageri@gmail.com Gilbero Titericz

Airbnb, Inc. giba1978@gmail.com

₽

R

0

B

L

E

M

ís_clear

"hot sexy red clutch rug sack travel backpack unisex cheap with free gift"

Is_concise

"Hot Sexy Tom Clovers Womens Mens Classy Look Cool Simple Style Casual Canvas Crossbody Messenger Bag Handbag Fashion Bag Tote Handbag Gray"

group	features	name
statistics	#char(length)	
	#term	xg_feat
	price	price_feat
information	color	color
	brand	brand
	category entropy	entropy_feat
n-gram term	(1,3)-gram	bow.3grams
n-gram char	(1,6)-gram	boc.6grams
	#upper char	
	#special char	
	html escape	
	#invisible char	
sparse feature	category one-hot-encoding	sp_feat
leave-one-out encode		
embedding	word2vec[2]	
part-of-speech	#adjective	
	#verb	
	#noun	
	#number	
multilingual characters	#non-english char	
	#chinese char	char_set_feat

Table 3: Most important features based on linear SVM.

label	name	coef.	label	name	coef.
clarity	t	0.442989	conciseness	my	1.087967
	sexy	0.398171		ph	0.968527
	exy	0.398026		c	0.957356
	sex	0.384535		ocal	0.931618
	urse	0.368735		local	0.925727
	purse	0.341463		r	0.920576
	purs	0.341463		loca	0.912073
	rse	0.338007		sg	0.909163
	xy	0.334105		cal	0.888805
	purse	0.326108		loc	0.882074

Model Comparison

Which one? A or B? $A-AUC_{test} > B-AUC_{test} \rightarrow A$

Which one? A or B? A-AUC_{test} > B-AUC_{test} → A

I am pessimist! Although, I trust you, but still there is a possibility that A is not a better model. Why? Where?

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6

A is better than B.

A is significantly better than B \rightarrow 0.99 >> 0.6

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	$A-AUC_{test-2}$	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	$A-AUC_{test-4}$	0.5	B-AUC _{test-4}	0.6
AVG		0.6225		0.6

- 1) By average, A is better than B. However, clearly B is better than A.
- 2) By average, A is better than B but only slightly NOT significantly!

What is the problem here?

Test Sets	A-AUC	E.g.,	B-AUC	E.g., /
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	$A-AUC_{test-2}$	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	$A-AUC_{test-4}$	0.5	B-AUC _{test-4}	0.6
Expectation		E[X]		E[Y]

Test Sets	A-AUC	E.g.,	B-AUC	E.g., /
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	$A-AUC_{test-2}$	0.5	$B-AUC_{test-2}$	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	$A-AUC_{test-4}$	0.5	B-AUC _{test-4}	0.6
Expectation		E[X]		E[Y]

$$P(a < X < b) = \int_a^b f(x) dx.$$

Test Sets	A-AUC	E.g.,	B-AUC	E.g., /
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	$A-AUC_{test-2}$	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	$A-AUC_{test-4}$	0.5	B-AUC _{test-4}	0.6
Expectation		E[X]		E[Y]

- 1) Labeled data is already expensive.
- 2) Sometimes testing is slow.

Reporting for a lot of runs on different test sets is very challenging!

Assuming X_1 , X_2 , ... X_n are n random variable $X_i \sim N(\mu, \delta)$, and iid

then the [Student's] t-distribution with v=n-1 degrees of freedom can be defined as the distribution of the location of the sample mean $(AVG=\bar{x})$ relative to the true mean (μ) , divided by the sample standard deviation, after multiplying by the standardizing term \sqrt{n} .

$$ar{x}=rac{x_1+\cdots+x_n}{n}, \ s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2.$$
 $t ext{-value}$ $t=rac{ar{x}-\mu}{s/\sqrt{n}}.$

 $\Pr\left(\overline{X}_n - A \frac{S_n}{\sqrt{n}} < \mu < \overline{X}_n + A \frac{S_n}{\sqrt{n}}\right) = 0.9.$

2-tailed (2-sided)

The true mean μ lies between $\bar{X}_n \pm A \frac{S_n}{\sqrt{n}}$ with 90% probability with 90% confidence 90% of the time

$$p$$
-value = 1 – $Pr(...)$ = 10% = 0.1

The less p-value, the more confidence.

$$\Pr\left(-A < rac{\overline{X}_n - \mu}{rac{S_n}{\sqrt{n}}} < A
ight) = 0.9,$$

$$\Pr\left(\overline{X}_n - A \frac{S_n}{\sqrt{n}} < \mu < \overline{X}_n + A \frac{S_n}{\sqrt{n}} \right) = 0.9.$$

		90%	4/6	97.5%	99%	99.5%	99.95%	1-Tail Confidence Level
		80%	90%	95%	98%	99%	99.9%	2-Tail Confidence Level
		0.100	0.050	0.025	0.010	0.005	0.0005	1-Tail Alpha
	df	0.20	0.10	0.05	0.02	0.01	0.001	2-Tail Alpha
	1	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192	
	2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991	
	3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240	
	4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103	
-	5	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688	
	6	1.4398	1.9432	2,4469	3.1427	3.7074	5.9588	
	7	1.4149	1.8946	2.5.46	2.9980	3.4995	5.4079	
	8	1.3968	1.8595	2.3060	2.8965	3.3554	5.0413	
	9	1.3830	1.8331	2.2622	2.8214	3.2498	4.7809	
	10	1.3722	1.8125	2.2281	2.7638	3.1693	4.5869	
	11	1.3634	1.7959	2.2010	2.7181	3.1058	4.4370	
	12	1.3562	1.7823	2.1788	2.6810	3.0545	4.3178	
	13	1.3502	1.7709	2.1604	2.6503	3.0123	4.2208	
	14	1.3450	1.7613	2.1448	2.6245	2.9768	4.1405	
	15	1.3406	1.7531	2.1314	2.6025	2.9467	4.0728	
	16	1.3368	1.7459	2.1199	2.5835	2.9208	4.0150	
	17	1.3334	1.7396	2.1098	2.5669	2.8982	3.9651	
	18	1.3304	1.7341	2.1009	2.5524	2.8784	3.9216	
	19	1.3277	1.7291	2.0930	2.5395	2.8609	3.8834	
	20	1.3253	1.7247	2.0860	2.5280	2.8453	3.8495	
	21	1.3232	1.7207	2.0796	2.5176	2.8314	3.8193	
	22	1.3212	1.7171	2.0739	2.5083	2.8188	3.7921	
	23	1.3195	1.7139	2.0687	2.4999	2.8073	3.7676	
	24	1.3178	1.7109	2.0639	2.4922	2.7969	3.7454	
	25	1.3163	1.7081	2.0595	2.4851	2.7874	3.7251	
	26	1.3150	1.7056	2.0555	2.4786	2.7787	3.7066	
	27	1.3137	1.7033	2.0518	2.4727	2.7707	3.6896	
	28	1.3125	1.7011	2.0484	2.4671	2.7633	3.6739	
	29	1.3114	1.6991	2.0452	2.4620	2.7564	3.6594	
	30	1.3104	1.6973	2.0423	2.4573	2.7500	3.6460	

2-tailed (2-sided), independent two-sample (paired) *t*-test Given two groups and assuming equal variances:

$$\mathbf{Pr}\left(-A\stackrel{\overline{(X_A}\overline{-\overline{X_B}})-(\mu_A-\mu_B)}{s_p\sqrt{rac{2}{n}}}A
ight)=0.9,$$

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Claim (**Alternative** Hypothesis H1):

A is significantly better than B on average ($\mu_A > \mu_B$).

Subclaim: the difference of their averages ($\mu_A - \mu_B$) is significant.

Subsubclaim: µ_A ≠ µ_B

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Null Hypothesis H0:

A is NOT significantly better than B on average. ($\mu_A \le \mu_B$).

Subnull: The difference of their averages ($\mu_A - \mu_B$) is NOT significant.

Subsubnull: $\mu_A = \mu_B$ is significant.

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

- 1) We try to reject H0 in favor of H1.
- 2) Rejecting H0 does not prove H1. Only more confidence about H1.
- 3) "Not rejecting" H0 does not prove H0.

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	$A-AUC_{test-4}$	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Degree of freedom = 2*(4-1) = 6Confidence about the H0 = 0.9 = 90% = > p-value = 0.1

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

		L					
	90%	9. 6	97.5%	99%	99.5%	99.95%	1-Tail Confidence Level
	80%	90%	95%	98%	99%	99.9%	2-Tail Confidence Level
	0.100	0.050	0.025	0.010	0.005	0.0005	1-Tail Alpha
df	0.20	0.10	0.05	0.02	0.01	0.001	2-Tail Alpha
1	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192	
2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991	
3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240	
4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103	
5	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688	
6	1.4398	1.9432	2.4469	3.1427	3.7074	5.9588	
7	1.4149	1.8946	2.3646	2.9980	3.4995	5.4079	
8	1.3968	1.8595	2,060	2.8965	3.3554	5.0413	
9	1.3830	1.8331	2.2622	2.8214	3.2498	4.7809	
10	1.3722	1.8125	2.2281	2.7638	3.1693	4.5869	
11	1.3634	1.7959	2.2010	2.7181	3.1058	4.4370	
12	1.3562	1.7823	2.1788	2.6810	3.0545	4.3178	
13	1.3502	1.7709	2.1604	2.6503	3.0123	4.2208	
14	1.3450	1.7613	2.1448	2.6245	2.9768	4.1405	
15	1.3406	1.7531	2.1314	2.6025	2.9467	4.0728	
16	1.3368	1.7459	2.1199	2.5835	2.9208	4.0150	
17	1.3334	1.7396	2.1098	2.5669	2.8982	3.9651	
18	1.3304	1.7341	2.1009	2.5524	2.8784	3.9216	
19	1.3277	1.7291	2.0930	2.5395	2.8609	3.8834	
20	1.3253	1.7247	2.0860	2.5280	2.8453	3.8495	
21	1.3232	1.7207	2.0796	2.5176	2.8314	3.8193	
22	1.3212	1.7171	2.0739	2.5083	2.8188	3.7921	
23	1.3195	1.7139	2.0687	2.4999	2.8073	3.7676	
24	1.3178	1.7109	2.0639	2.4922	2.7969	3.7454	
25	1.3163	1.7081	2.0595	2.4851	2.7874	3.7251	
26	1.3150	1.7056	2.0555	2.4786	2.7787	3.7066	
27	1.3137	1.7033	2.0518	2.4727	2.7707	3.6896	
28	1.3125	1.7011	2.0484	2.4671	2.7633	3.6739	
29	1.3114	1.6991	2.0452	2.4620	2.7564	3.6594	
30	1.3104	1.6973	2.0423	2.4573	2.7500	3.6460	

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

We assumed H0 ($\mu_A = \mu_B$), we should see t lies in between [-A, +A] with 0.9 probability.

Otherwise, <mark>what?</mark>

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

$$t = \frac{\overline{X_A} - \overline{X_B}}{S_p \sqrt{\frac{2}{n}}} = \frac{0.6225 - 0.6}{\sqrt{\frac{0.21 + 0}{2} \sqrt{\frac{2}{4}}}} =$$

0.0981980506

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

We could not reject H0.

H0 is probable 90% of times!

H0's probability is 90%!

Does not mean H0 is true! Only H0 could not be rejected. Does not mean H1 is false. Only H1 could not have further support!

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Claim (Alternative Hypothesis H1): A is significantly better than B on average. $(\mu_A > \mu_B)$ should be significant.

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6
Test-2	A-AUC _{test-2}	0.5	B-AUC _{test-2}	0.6
Test-3	A-AUC _{test-3}	0.5	B-AUC _{test-3}	0.6
Test-4	A-AUC _{test-4}	0.5	B-AUC _{test-4}	0.6
AVG		$\overline{X_A}$	$\overline{X_B}$	

Null Hypothesis H0:

A is NOT significantly better than B on average.

 $(\mu_A > \mu_B)$ is NOT significant.

Indeed, $\mu_A \leq \mu_B$ is significant.

Null Hypothesis H0: The data is confirming H0.

0.0001000506 < 1.0422		90%	95%	97.5%	99%	99.5%	99.95%	1-Tail Confidence Level
0.0981980506 < 1.943	0.0981980506 < 1.9432		90%	95%	98%	99%	99.9%	2-Tail Confidence Level
		0.100	0.050	0.025	0.010	0.005	0.0005	1-Tail Alpha
	df	0.20	0.10	0.05	0.02	0.01	0.001	2-Tail Alpha
	1	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192	
	2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991	
	3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240	
	4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103	

3.3649

3.1427

2.9980

2.8965

2.8214

2.7638

2.7181

3.1693

3.1058

6.8688

5.9588

5.4079

5.0413

4.7809

4.5869

4.4370

2.5706

2.4469

2.3646

2.2622

2.2281

2.2010

1.4149

1.3722

1.3634

1.8946

1.8125

1.7959

Notes:

- Don't forget about the assumptions:
 - Normal distribution of random variables
 - i.i.d of the random variables
 - K-fold on test set is not valid.
 - Same standard deviation
 - (t-test has a version for different standard deviation)

In NLP, we don't generally use paired *t*-tests Most metrics are not normally distributed

Non-parametric Tests

Non-parametric Tests: bootstrap test

Test Sets	A-AUC	E.g.,	B-AUC	E.g.,	δ (A, B)
Test-1	A-AUC _{test-1}	0.99	B-AUC _{test-1}	0.6	0.39

- 1) A is better than B by δ
- a) That was by luck
- 2) H1: The chance of luck is very low
- b) H0: The chance of luck is high.
- 3) Assuming A NOT better than B, there should be a good chance for A better than B then!
- $P(\delta_{A,B}(\text{other test sets}) > 0.39 \mid H0) \sim 0.30 \text{ or } 0.40$

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. CRC press.

Non-parametric Tests: bootstrap test

Figure 4.8 The bootstrap: Examples of b pseudo test sets being created from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an individual sample is a single cell, a document with its gold label and the correct or incorrect performance of classifiers A and B.

Berg-Kirkpatrick, T., Burkett, D., and Klein, D. (2012). An empirical investigation of statistical significance in NLP. In EMNLP 2012, 995–1005.

Non-parametric Tests: bootstrap test

```
function BOOTSTRAP(test set x, num of samples b) returns p-value(x)
Calculate \delta(x) # how much better does algorithm A do than B on x
for i = 1 to b do
   for j = 1 to n do # Draw a bootstrap sample x^{*(i)} of size n
      Select a member of x at random and add it to x^{*(i)}
   Calculate \delta(x^{*(i)}) # how much better does algorithm A do than B on x^{*(i)}
for each x^{*(i)}
   s \leftarrow s + 1 \text{ if } \delta(x^{*(i)}) > 2\delta(x)
p-value(x) \approx \frac{s}{h} # on what % of the b samples did algorithm A beat expectations?
return p-value(x)
```

Figure 4.9 A version of the bootstrap algorithm after Berg-Kirkpatrick et al. (2012).

Berg-Kirkpatrick, T., Burkett, D., and Klein, D. (2012). An empirical investigation of statistical significance in NLP. In EMNLP 2012, 995–1005.