

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT
AUF DEM GEBIET DES PATENTWESENS**

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Annehmers oder Anwalts H 4222 PCT	WEITERES VORGEHEN	siehe Mitteilung über die Übermittlung des internationalen Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5
Internationales Aktenzeichen PCT/EP 00/05810	Internationales Anmelddatum (Tag/Monat/Jahr) 23/06/2000	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 02/07/1999
Annehmer PRIMACARE S.A. et al.		

Dieser internationale Recherchenbericht wurde von der Internationalen Recherchenbehörde erstellt und wird dem Annehmer gemäß Artikel 18 übermittelt. Eine Kopie wird dem Internationalen Büro übermittelt.

Dieser internationale Recherchenbericht umfaßt insgesamt 3 Blätter.

Darüber hinaus liegt ihm jeweils eine Kopie der in diesem Bericht genannten Unterlagen zum Stand der Technik bei.

1. Grundlage des Berichts

a. Hinsichtlich der Sprache ist die internationale Recherche auf der Grundlage der internationalen Anmeldung in der Sprach durchgeführt worden, in der sie eingereicht wurde, sofern unter diesem Punkt nichts anderes angegeben ist.

Die internationale Recherche ist auf der Grundlage einer bei der Behörde eingereichten Übersetzung der internationalen Anmeldung (Regel 23.1 b)) durchgeführt worden.

b. Hinsichtlich der in der internationalen Anmeldung offenbarten Nucleotid- und/oder Aminosäuresequenz ist die internationale Recherche auf der Grundlage des Sequenzprotokolls durchgeführt worden, das

- in der internationalen Anmeldung in Schriftlicher Form enthalten ist.
- zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
- bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
- bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
- Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
- Die Erklärung, daß die in computerlesbarer Form erfaßten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

2. Bestimmte Ansprüche haben sich als nicht recherchierbar erwiesen (siehe Feld I).

3. Mangelnde Einheitlichkeit der Erfindung (siehe Feld II).

4. Hinsichtlich der Bezeichnung der Erfindung

wird der vom Annehmer eingereichte Wortlaut genehmigt.

wurde der Wortlaut von der Behörde wie folgt festgesetzt:

5. Hinsichtlich der Zusammenfassung

wird der vom Annehmer eingereichte Wortlaut genehmigt.

wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Annehmer kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses internationalen Recherchenberichts eine Stellungnahme vorlegen.

6. Folgende Abbildung der Zeichnung n ist mit der Zusammenfassung zu veröffentlichen: Abb. Nr. _____

wie vom Annehmer vorgeschlagen

weil der Annehmer selbst keine Abbildung vorgeschlagen hat.

weil diese Abbildung die Erfindung besser kennzeichnet.

keine der Abb.

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Nationales Aktenzeichen
PCT/EP 00/05810

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A61K7/00 A61K9/50 C11D17/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K C08L C11D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 5 753 264 A (MAGDASSI ET AL.) 19. Mai 1998 (1998-05-19) Spalte 3, Zeile 8 – Zeile 64 ---	1-22
Y	FR 2 699 545 A (L'OREAL) 24. Juni 1994 (1994-06-24) Seite 4, Spalte 36 –Seite 5, Spalte 3; Beispiel C ---	1-22 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des internationalen Recherchenberichts
29. September 2000	12/10/2000

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Lensen, H
---	--

~~THIS PAGE BLANK (USPTO)~~

INTERNATIONALES RECHERCHENBERICHT

Nationales Aktenzeichen
PCT/EP 00/05810

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN vol. 13, no. 190 (C-593), 8. Mai 1989 (1989-05-08) & JP 01 018440 A (DAINIPPON PHARMACEUT CO LTD), 23. Januar 1989 (1989-01-23) Zusammenfassung & DATABASE WPI Week 198909 Derwent Publications Ltd., London, GB; AN 65806 Zusammenfassung ---	1-22
Y	EP 0 237 542 A (BIOCOMPATIBLES LTD.) 23. September 1987 (1987-09-23) Seite 3 -Seite 4 ---	1-22
Y	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02, 29. Februar 1996 (1996-02-29) & JP 07 258087 A (TOKO YAKUHIN KOGYO KK), 9. Oktober 1995 (1995-10-09) Zusammenfassung & DATABASE WPI Week 199549 Derwent Publications Ltd., London, GB; AN 379983 Zusammenfassung ---	1-22
A	WO 98 43609 A (HENKEL) 8. Oktober 1998 (1998-10-08) in der Anmeldung erwähnt ---	
A	US 5 089 272 A (SHIOYA ET AL.) 18. Februar 1992 (1992-02-18) ---	
A	US 5 855 904 A (CHUNG ET AL.) 5. Januar 1999 (1999-01-05) ---	
A	EP 0 152 898 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 28. August 1985 (1985-08-28) -----	

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP 00/05810

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5753264 A	19-05-1998	US 5518736 A	AU 2573795 A	EP 0772434 A	WO 9600056 A
					21-05-1996 19-01-1996 14-05-1997 04-01-1996
FR 2699545 A	24-06-1994	NONE			
JP 01018440 A	23-01-1989	NONE			
EP 237542 A	23-09-1987	AT 60507 T	DE 3677369 D	WO 8701587 A	JP 63501290 T
					15-02-1991 07-03-1991 26-03-1987 19-05-1988
JP 07258087 A	09-10-1995	NONE			
WO 9843609 A	08-10-1998	DE 19712978 A	AU 7036598 A	EP 0969807 A	01-10-1998 22-10-1998 12-01-2000
US 5089272 A	18-02-1992	NONE			
US 5855904 A	05-01-1999	CN 1131042 A	EP 0806944 A	JP 11509167 T	WO 9613253 A
					18-09-1996 19-11-1997 17-08-1999 09-05-1996
EP 152898 A	28-08-1985	CA 1254528 A	DE 3575375 D	JP 61189218 A	US 4749620 A
					23-05-1989 22-02-1990 22-08-1986 07-06-1988
					US 4744933 A
					17-05-1988

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/EP 00/05810

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K7/00 A61K9/50 C11D17/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 A61K C08L C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 753 264 A (MAGDASSI ET AL.) 19 May 1998 (1998-05-19) column 3, line 8 - line 64 ----	1-22
Y	FR 2 699 545 A (L'OREAL) 24 June 1994 (1994-06-24) page 4, column 36 -page 5, column 3; example C ----	1-22 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

29 September 2000

12/10/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

Lensen, H

INTERNATIONAL SEARCH REPORT

Intern	Application No
PCT/EP 00/05810	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PATENT ABSTRACTS OF JAPAN vol. 13, no. 190 (C-593), 8 May 1989 (1989-05-08) & JP 01 018440 A (DAINIPPON PHARMACEUT CO LTD), 23 January 1989 (1989-01-23) abstract & DATABASE WPI Week 198909 Derwent Publications Ltd., London, GB; AN 65806 abstract ---	1-22
Y	EP 0 237 542 A (BIOCOMPATIBLES LTD.) 23 September 1987 (1987-09-23) page 3 -page 4 ---	1-22
Y	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02, 29 February 1996 (1996-02-29) & JP 07 258087 A (TOKO YAKUHIN KOGYO KK), 9 October 1995 (1995-10-09) abstract & DATABASE WPI Week 199549 Derwent Publications Ltd., London, GB; AN 379983 abstract ---	1-22
A	WO 98 43609 A (HENKEL) 8 October 1998 (1998-10-08) cited in the application ---	
A	US 5 089 272 A (SHIOYA ET AL.) 18 February 1992 (1992-02-18) ---	
A	US 5 855 904 A (CHUNG ET AL.) 5 January 1999 (1999-01-05) ---	
A	EP 0 152 898 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 28 August 1985 (1985-08-28) ---	

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 00/05810

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5753264	A	19-05-1998	US 5518736 A		21-05-1996
			AU 2573795 A		19-01-1996
			EP 0772434 A		14-05-1997
			WO 9600056 A		04-01-1996
FR 2699545	A	24-06-1994	NONE		
JP 01018440	A	23-01-1989	NONE		
EP 237542	A	23-09-1987	AT 60507 T		15-02-1991
			DE 3677369 D		07-03-1991
			WO 8701587 A		26-03-1987
			JP 63501290 T		19-05-1988
JP 07258087	A	09-10-1995	NONE		
WO 9843609	A	08-10-1998	DE 19712978 A		01-10-1998
			AU 7036598 A		22-10-1998
			EP 0969807 A		12-01-2000
US 5089272	A	18-02-1992	NONE		
US 5855904	A	05-01-1999	CN 1131042 A		18-09-1996
			EP 0806944 A		19-11-1997
			JP 11509167 T		17-08-1999
			WO 9613253 A		09-05-1996
EP 152898	A	28-08-1985	CA 1254528 A		23-05-1989
			DE 3575375 D		22-02-1990
			JP 61189218 A		22-08-1986
			US 4749620 A		07-06-1988
			US 4744933 A		17-05-1988

THIS PAGE BLANK (USPTO)

FENT COOPERATION TREA

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

Date of mailing: 11 January 2001 (11.01.01)	To: Commissioner US Department of Commerce United States Patent and Trademark Office, PCT 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202 ETATS-UNIS D'AMERIQUE in its capacity as elected Office
International application No.: PCT/EP00/05810	Applicant's or agent's file reference: H 4222 PCT
International filing date: 23 June 2000 (23.06.00)	Priority date: 02 July 1999 (02.07.99)
Applicant: GARCES, Jose et al	

1. The designated Office is hereby notified of its election made:

in the demand filed with the International preliminary Examining Authority on:

17 October 2000 (17.10.00)

in a notice effecting later election filed with the International Bureau on:

2. The election was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer: J. Zahra Telephone No.: (41-22) 338.83.38
---	---

This page blank (USPTO)

**(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG**

**(19) Weltorganisation für geistiges Eigentum
Internationales Büro**

**(43) Internationales Veröffentlichungsdatum
11. Januar 2001 (11.01.2001)**

PCT

**(10) Internationale Veröffentlichungsnummer
WO 01/01929 A2**

(51) Internationale Patentklassifikation⁷: A61K 7/00 **(74) Anwalt:** FABRY, Bernd: Cognis Deutschland GmbH, CRT-IP, Postfach 130 164, D-40551 Düsseldorf (DE).

(21) Internationales Aktenzeichen: PCT/EP00/05810 **(81) Bestimmungsstaaten (national):** AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) Internationales Anmeldedatum: 23. Juni 2000 (23.06.2000) **(25) Einreichungssprache:** Deutsch **(70) Veröffentlichungssprache:** Deutsch **(84) Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Angaben zur Priorität: 99112668.1 2. Juli 1999 (02.07.1999) EP

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): PRIMACARE S.A. [ES/ES]; C/Santa Eulalia, 240, E-08902 L'Hospitalet de Llobregat (ES).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): GARCES, Jose [ES/ES]; C. Francesc Macia, 19-3-1a, E-08760 Martorell (ES). VILADOT PETIT, Josep-Luis [ES/ES]; C. Comte d'Urgell, 230-6-2a, E-08036 Barcelona (ES).

Veröffentlicht:

— Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: MICROCAPSULES IV

A2

(54) Bezeichnung: MIKROKAPSELN - IV

WO 01/01929

(57) Abstract: The invention relates to microcapsules which have average diameters ranging from 0.1 to 5 mm, and which are comprised of an enclosing membrane and of a matrix containing at least one active substance. The inventive microcapsules can be obtained by: (a) preparing a matrix consisting of gel formers, anionic polymers and active substances; (b) dispersing the matrix in an oil phase, and (c) treating the dispersed matrix with aqueous chitosan solutions thus removing the oil phase.

(57) Zusammenfassung: Vorgeschlagen werden Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllemembran und einer mindestens einen Wirkstoff enthaltenden Matrix, dadurch erhältlich, dass man (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet, (b) die Matrix in einer Ölphase dispergiert, (c) die dispergierte Matrix mit wässrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.

THIS PAGE BLANK (USPTO)

Mikrokapseln - IV

Gebiet der Erfindung

Die Erfindung befindet sich auf dem Gebiet der Verkapselung von Wirkstoffen und betrifft neue Mikrokapseln, ein Verfahren zu deren Herstellung unter Einsatz von verschiedenen Polymeren und Chitosanen sowie deren Verwendung zur Herstellung beispielsweise oberflächenaktiver Zubereitungen.

Stand der Technik

Unter dem Begriff "Mikrokapsel" werden sphärische Aggregate mit einem Durchmesser im Bereich von etwa 0,1 bis etwa 5 mm verstanden, die mindestens einen festen oder flüssigen Kern enthalten, der von mindestens einer kontinuierlichen Hülle umschlossen ist. Genauer gesagt handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierung und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Nach einem anderen Verfahren werden flüssige Wirkstoffe in einer Matrix aufgenommen („microsponge“), die als Mikropartikel zusätzlich mit filmbildenden Polymeren umhüllt sein können. Die mikroskopisch kleinen Kapseln, auch Nanokapseln genannt, lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkernige Mikrokapseln können zudem von einer zusätzlichen zweiten, dritten etc. Hülle umschlossen sein. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi Arabicum, Agar-Agar, Agarose, Maltodextrine, Alginic acid bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chitosan, Lecithine, Gelatine, Albumin, Schellack, Polysaccharide, wie Stärke oder Dextran, Polypeptide, Proteinglycoside, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte Cellulosen, insbesondere Celluloseester und -ether, z.B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, sowie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie Polyacrylate, Polyamide, Polyvinylalkohol oder Polyvinylpyrrolidon.

Beispiele für Mikrokapseln des Stands der Technik sind folgende Handelsprodukte (in Klammern angegeben ist jeweils das Hüllmaterial) : *Hallcrest Microcapsules* (Gelatine, Gummi Arabicum), *Coletica Thalospheres* (maritimes Collagen), *Lipotec Millicapseln* (Alginsäure, Agar-Agar), *Induchem Unispheres* (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose); *Unicerin C30* (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose), *Kobo Glycospheres* (modifizierte Stärke, Fettsäureester, Phospholipide), *Softspheres* (modifiziertes Agar-Agar) und *Kuhs Probiol Nanospheres* (Phospholipide).

In diesem Zusammenhang sei auch auf die deutsche Patentanmeldung **DE 19712978 A1** (Henkel) hingewiesen, aus der Chitosanmikrosphären bekannt sind, die man erhält, indem man Chitosane oder Chitosanderivate mit Ölkörpern vermischt und diese Mischungen in alkalisch eingestellte Tensidlösungen einbringt. Aus der deutschen Patentanmeldung **DE 19756452 A1** (Henkel) ist ferner auch die Verwendung von Chitosan als Verkapselungsmaterial für Tocopherol bekannt.

Die Freisetzung der Wirkstoffe aus den Mikrokapseln erfolgt üblicherweise während der Anwendung der sie enthaltenden Zubereitungen durch Zerstörung der Hülle infolge mechanischer, thermischer, chemischer oder enzymatischer Einwirkung. Von Nachteil ist dabei, daß die Mikrokapseln die kontrollierte Freisetzung der Wirkstoffe aus ihrem Innern nicht oder nur in unzureichendem Maße zulassen und die Kapseln eine ungenügende Stabilität in Gegenwart von Tensiden, zumal anionischen Tensiden aufweisen. Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, gerade diese Nachteile zu überwinden.

Beschreibung der Erfindung

Gegenstand der Erfindung sind Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, die man erhält, indem man

- (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
- (b) die Matrix in einer Ölphase dispergiert,
- (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.

Überraschenderweise wurde gefunden, daß der Einsatz von thermogelierenden natürlichen Heteropolysacchariden oder Proteinen zusammen mit anionischen Polymeren, die in Gegenwart von

(kationischen) Chitosanen Membranen bilden, die Herstellung von neuen Mikrokapseln erlaubt, die sich durch eine deutlich verbesserte Tensidstabilität auszeichnen.

Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, bei dem man

- (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
- (b) die Matrix in einer Ölphase dispergiert,
- (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.

Gelbildner

Im Sinne der Erfindung werden als Gelbildner vorzugsweise solche Stoffe in Betracht gezogen, welche die Eigenschaft zeigen in wäßriger Lösung bei Temperaturen oberhalb von 40 °C Gele zu bilden. Typische Beispiele hierfür sind Heteropolysaccharide und Proteine. Als thermogelierende Heteropolysaccharide kommen vorzugsweise Agarosen in Frage, welche in Form des aus Rotalgen zu gewinnenden Agar-Agar auch zusammen mit bis zu 30 Gew.-% nicht-gelbildenden Agaropektinen vorliegen können. Hauptbestandteil der Agarosen sind lineare Polysaccharide aus D-Galaktose und 3,6-Anhydro-L-galaktose, die alternierend β -1,3- und β -1,4-glykosidisch verknüpft sind. Die Heteropolysaccharide besitzen vorzugsweise ein Molekulargewicht im Bereich von 110.000 bis 160.000 und sind sowohl farb- als auch geschmacklos. Als Alternativen kommen Pektine, Xanthane (auch Xanthan Gum) sowie deren Mischungen in Frage. Es sind weiterhin solche Typen bevorzugt, die noch in 1-Gew.-%iger wäßriger Lösung Gele bilden, die nicht unterhalb von 80 °C schmelzen und sich bereits oberhalb von 40 °C wieder verfestigen. Aus der Gruppe der thermogelierenden Proteine seien exemplarisch die verschiedenen Gelatine-Typen genannt.

Anionische Polymere

Als anionische Polymere eignen sich vorzugsweise Salze der Alginäure. Bei der Alginäure handelt es sich um ein Gemisch carboxylgruppenhaltiger Polysaccharide mit folgendem idealisierten Monomerbaustein:

Das durchschnittliche Molekulargewicht der Alginäuren bzw. der Alginate liegt im Bereich von 150.000 bis 250.000. Dabei sind als Salze der Alginäure sowohl deren vollständige als auch deren partiellen Neutralisationsprodukte zu verstehen, insbesondere die Alkalosalze und hierunter vorzugsweise das Natriumalginat („Algin“) sowie die Ammonium- und Erdalkalisalze. besonders bevorzugt sind Mischalginate, wie z.B. Natrium/Magnesium- oder Natrium/Calciumalginate. In einer alternativen Ausführungsform der Erfindung kommen für diesen Zweck jedoch auch anionische Chitosanderivate, wie z.B. Carboxylierungs- und vor allem Succinylierungsprodukte in Frage, wie sie beispielsweise in der deutschen Patentschrift DE 3713099 C2 (L'Oréal) sowie der deutschen Patentanmeldung DE 19604180 A1 (Henkel) beschrieben werden.

Wirkstoffe

Die Auswahl der Wirkstoffe, die in den neuen Mikrokapseln eingeschlossen sind, ist an sich unkritisch. Vorzugsweise handelt es sich um Stoffe, die erst durch mechanische Zerstörung der Mikrokapseln freigesetzt werden. In diesen Fällen kommt den Mikrokapseln die Aufgabe zu, den Kontakt zwischen äußerer Umgebung und Wirkstoff und damit eine chemische Reaktion bzw. einen Abbau zu verhindern. Es kann es sein, daß die in der Kapsel eingeschlossenen Stoffe überhaupt nicht freigesetzt werden sollen und ausschließlich dem Zweck dienen, der Zubereitung ein ästhetisches Äußeres zu verleihen; dies trifft beispielsweise vielfach für Farbstoffe zu. Es ist natürlich klar, daß diese Einsatzformen auch nebeneinander bestehen können. Insbesondere ist es möglich, beispielsweise einen Duftstoff für die spätere Freisetzung zusammen mit einem Farbpigment zu verkapseln, welches der Kapsel ein besonderes Aussehen verleiht.

Wirkstoffe für kosmetische und pharmazeutische Anwendungen

Typische Beispiele für Wirkstoffe, wie sie im Bereich der kosmetischen und pharmazeutischen Zubereitungen eingesetzt werden sind Tenside, kosmetische Öle, Perlglanzwachse, Stabilisatoren,

biogene Wirkstoffe, Vitamine, Deodorantien, Antitranspirantien, Antischuppenmittel, UV-Lichtschutzfaktoren, Antioxidantien, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Tyrosinhibitoren (Depigmentierungsmittel), Parfümöl und Farbstoffe.

Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside verkapselt werden. Typische Beispiele für **anionische Tenside** sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α -Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäureresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für **nichtionische Tenside** sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für **kationische Tenside** sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammnoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für **amphotere bzw. zwitterionische Tenside** sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.

Als **kosmetische Öle** kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C₆-C₂₂-Fettsäuren mit linearen C₆-C₂₂-Fettalkoholen, Ester von verzweigten C₆-C₁₃-Carbonsäuren mit linearen C₆-C₂₂-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, My-

ristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearyluerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenyluerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C₆-C₂₂-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C₆-C₂₂-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C₆-C₁₀-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C₆-C₁₈-Fettsäuren, Ester von C₆-C₂₂-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C₂-C₁₂-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C₆-C₂₂-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C₆-C₂₂-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.

Als **Perlglanzwachse** kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fetaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

Als **Stabilisatoren** können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.

Unter **biogenen Wirkstoffen** sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.

Kosmetische **Deodorantien** (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.

Als **keimhemmende Mittel** sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoësäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4-dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.

Als **Enzyminhibitoren** sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw. -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.

Als **Geruchsabsorber** eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitge-

hend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöl, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöl seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrrylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jhone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöl, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromycenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α -Hexylzimtaldehyd, Geraniol, Benzylacetin, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β -Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:

- adstringierende Wirkstoffe,
- Ölkomponenten,
- nichtionische Emulgatoren,
- Coemulgatoren,

- Konsistenzgeber,
- Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
- nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.

Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloritartrat, Aluminium-Zirkonium-Trichlorhydrat, Aluminium-Zirkonium-tetrachlorhydrat, Aluminium-Zirkonium-pentachlorhydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:

- entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
- synthetische hautschützende Wirkstoffe und/oder
- öllösliche Parfümöl.

Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.

Als **Antischuppenmittel** können Climbazol, Octopirox, Ketokonazol und Zinkpyrethion eingesetzt werden.

Unter **UV-Lichtschutzfaktoren** sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:

- 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher wie in der EP 0693471 B1 beschrieben;
- 4-Aminobenzoësäurederivate, vorzugsweise 4-(Dimethylamino)benzoësäure-2-ethylhexylester, 4-(Dimethylamino)benzoësäure-2-octylester und 4-(Dimethylamino)benzoësäureamylester;

- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene);
- Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
- Triazinderivate, wie z.B. 2,4,6-Trianiino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazole (Uvasorb® HEB);
- Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
- Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.

Als wasserlösliche Substanzen kommen in Frage:

- 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
- Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze;
- Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.

Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metallocide bzw. Salze in Frage. Beispiele für geeignete Metallocide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talc), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Form abweichen.

schen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.

Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der **Antioxidantien** eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α -Carotin, β -Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ -Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μ mol/kg), ferner (Metall)-Chelatoren (z.B. α -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α -Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ -Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α -Glycosyrlutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophonen, Hamsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als **Insekten-Repellentien** kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butylacetylaminopropionate in Frage, als **Selbstbräuner** eignet sich Dihydroxyaceton. Als **Tyrosinhinbitoren**, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarsäure und Ascorbinsäure (Vitamin C) in Frage.

Als **Parfümöl** seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α -Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöl, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α -Hexylzimtaldehyd, Geraniol, Benzylacetat, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β -Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

Als **Farbstoffe** können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der **Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106** zusammengestellt sind. Diese Wirkstoffe können auch ausschließlich aus ästhetischen Gründen in den Kapseln enthalten und nicht für eine kontrollierte Freigabe vorgesehen sein.

Wirkstoffe für Detergansanwendungen

Bei Mikrokapselanwendungen im Bereich der Detergentien, insbesondere bei Wasch- und Reinigungsmitteln besteht ebenfalls der Wunsch, den Kontakt der verschiedenen Einsatzstoffe miteinander zu verhindern. So ist es sinnvoll, chemisch empfindliche Stoffe, wie beispielsweise Parfümöl oder optische Aufheller zu verkapseln, um deren Aktivität beispielsweise in Chlor- oder Peroxidbleichlaugen auch bei längerer Lagerung sicherzustellen. Man nutzt jedoch beispielsweise auch den Effekt, daß die Bleiche von Textilien in der Regel nicht zu Beginn des Waschprozesses, sondern erst in dessen Verlauf stattfindet und stellt mit der durch mechanische Einwirkung auf die Mikrokapseln verzögerten Freisetzung sicher, daß die Bleichmittel zum richtigen Zeitpunkt ihre volle Wirkung entfalten. Demzufolge kommen als Wirkstoffe, die es für Detergansanwendungen zu verkapseln gilt, vor allem Bleichmittel, Bleichaktivatoren, Enzyme, Vergrauungsinhibitoren, optische Aufheller sowie (chlor- bzw. peroxid-stabile) Parfüm- und Farbstoffe in Frage.

Unter den als **Bleichmittel** dienenden, in Wasser Wasserstoffperoxid liefernden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie Salze der Persäuren, wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew.-% eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können, trägt es zur Erhöhung der Stabilität des Mittels bei.

Beispiele für geeignete **Bleichaktivatoren** sind mit Wasserstoffperoxid organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacylierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin und 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin.

Als **Enzyme** kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie *Bacillus subtilis*, *Bacillus licheniformis* und *Streptomyces griseus* gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus *Bacillus lento*s gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H_3BO_3), der Metaborsäure (HBO_2) und der Pyroborsäure (Tetraborsäure $H_2B_4O_7$).

Geeignete **Vergrauungsinhibitoren** sind wasserlösliche Kolloide meist organischer Natur, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebauten Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische sowie Polyvinylpyrrolidon, beispielsweise in Mengen von 0,1 bis 99 und vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Mittel.

Als **optische Aufheller** können Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze eingesetzt werden. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalosalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).

Beispiele für **aktivchlorbeständige Duftstoffe** sind Citronellol (3,7-Dimethyl-6-octen-1-ol), Dimethyloc-tanol (3,7-Dimethyloctanol-1), Hydroxycitronellol (3,7-Dimethyloctane-1,7-diol), Mugol (3,7-Dimethyl-4,6-octatrien-3-ol), Mirsenol (2-Methyl-6-methylen-7-octen-2-ol), Terpinolen (p-Menth-1,4(8)-dien), Ethyl-2-methylbutyrat, Phenylpropylalkohol, Galaxolid (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8,-hexamethyl-cyclopental-2-benzopyran, Tonalid (7-Acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalin), Rosenoxid, Linaloloxid, 2,6-Dimethyl-3-octanol, Tetrahydroethyl-linalool, Tetrahydroethylinalylacetat, o-sec-Butyl-cyclohexylacetat und Isolonediphorenepoxid sowie Isoborneal, Dihydroterpenöl, Isobornylacetat, Dihydroterpenylacetat). Weitere geeignete Duftstoffe sind die in der Europäischen Patentanmeldung EP 0622451 A1 (Procter & Gamble) in den Spalten 3 und 4 genannten Stoffe.

Als **Farbpigmente** kommen neben anorganischen Stoffen, wie beispielsweise Eisen- oder Wismutoxiden, vor allem grüne Chlorophthalocyanine (Pigmosol® Grün, Hostaphine® Grün), gelbes Solar Yellow BG 300 (Sandoz), blaues Chlorophthalocyanin (Hostaphine® Blau) oder Cosmenyl® Blau in Frage.

Ölphase

Als Ölphase, in der die Matrix feindispersiert wird, kommen die bereits im Kapitel „Wirkstoffe“ genannten kosmetischen Ölkörper in Frage. Vorzugsweise arbeitet man in Paraffin- oder Pflanzenölen, wobei die Ölphase üblicherweise das 2 bis 5fache des Volumens der Matrix beträgt.

Chitosane

Die negativ geladenen Chitosane haben die Aufgabe mit den anionischen Polymeren Membranen zu bilden. Chitosane stellen Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden – idealisierten – Monomerbaustein enthalten:

Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt (vgl. **Ullmann's Encyclopedia of Industrial Chemistry**, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232). Übersichten zu diesem Thema sind auch beispielsweise von B. Gesslein et al. in **HAPPI** 27, 57 (1990), O. Skaugrud in **Drug Cosm. Ind.** 148, 24 (1991) und E. Onsoyen et al. in **Seifen-Öle-Fette-Wachse** 117, 633 (1991) erschienen. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteinisiert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Verfahren sind beispielsweise aus **Makromol. Chem.** 177, 3589 (1976) oder der französischen Patentanmeldung **FR 2701266 A** bekannt. Vorzugsweise werden solche Typen eingesetzt, wie sie in den deutschen Patentanmeldungen **DE 4442987 A1** und **DE 19537001 A1** (Henkel) offenbart werden und die ein durchschnittliches Molekulargewicht von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen und/oder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% besitzen. Zur Verbesserung der Wasserlöslichkeit werden die Chitosane in der Regel als Salze, vorzugsweise als Glycolate eingesetzt.

Herstellverfahren

Zur Herstellung der neuen Mikrokapseln stellt man üblicherweise eine 1 bis 10, vorzugsweise 2 bis 5 Gew.-%ige wäßrige Lösung des Gelbildners, vorzugsweise des Agar-Agars her und erhitzt diese unter Rückfluß. In der Siedehitze, vorzugsweise bei 80 bis 100°C, wird eine zweite wäßrige Lösung zugegeben, welche die anionischen Polymeren in Mengen von 0,1 bis 2, vorzugsweise 0,25 bis 0,5 Gew.-% und den Wirkstoff in Mengen von 0,1 bis 25 und insbesondere 0,25 bis 10 Gew.-% enthält; diese Mischung wird als Matrix bezeichnet. Die Beladung der Mikrokapseln mit Wirkstoffen kann daher ebenfalls 0,1 bis 25 Gew.-% bezogen auf das Kapselgewicht betragen. Falls gewünscht, können zu diesem Zeitpunkt zur Viskositätseinstellung auch wasserunlösliche Bestandteile, beispielsweise anorganische Pigmente zugegeben werden, wobei man diese in der Regel in Form von wäßrigen oder wäßrig/alkoholischen Dispersionen zusetzt. Zur Emulgierung bzw. Dis-

pergierung der Wirkstoffe kann es ferner von Nutzen sein, der Matrix Emulgatoren und/oder Lösungsmittler hinzuzugeben.

Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:

- Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
- Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
- Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
- Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
- Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
- Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
- Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
- Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
- Wollwachsalkohole;
- Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
- Polyalkylenglycole sowie
- Glycerincarbonat.

Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es

handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C_{12/18}-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.

Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezuglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisationsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homogenverteilung zugrunde liegt.

Typische Beispiele für geeignete **Partialglyceride** sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.

Als **Sorbitanester** kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.

Typische Beispiele für geeignete **Polyglycerinester** sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymul® PGPH), Polyglycerin-3 Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI),

Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polycricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.

Beispiele für weitere geeignete **Polyolester** sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.

Weiterhin können als Emulgatoren **zwitterionische Tenside** verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminooethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung *Cocamidopropyl Betaine* bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind **ampholytische Tenside**. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C_{8/18}-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkytaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminooethylaminopropionat und das C_{12/18}-Acylsarcosin.

Schließlich kommen auch **Kationtenside** als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.

Als Lösungsvermittler oder **Hydrotrope** eignen sich beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Letztere besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind

- Glycerin;
- Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
- technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- Methyolverbindungen, wie insbesondere Trimethylethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
- Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
- Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
- Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
- Aminozucker, wie beispielsweise Glucamin;
- Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.

Die Konzentration der Emulgatoren kann bezogen auf die Wirkstoffe 1 bis 20 und vorzugsweise 5 bis 10 Gew.-% betragen. Die Menge an Lösungsvermittler richtet sich ausschließlich nach der Wasserlöslichkeit bzw. Wasserdispergierbarkeit der Wirkstoffe.

Nach der Herstellung der Matrix aus Gelbildner, anionischem Polymer und Wirkstoff wird die Matrix in einer Ölphase unter starker Scherung sehr fein dispergiert, um bei der nachfolgenden Verkapselung möglichst kleine Teilchen herzustellen. Dabei hat es sich als besonders vorteilhaft erwiesen, die Matrix auf Temperaturen im Bereich von 40 bis 60 °C zu erwärmen, während man die Ölphase auf 10 bis 20 °C kühlt. Im dritten Schritt erfolgt dann die eigentliche Verkapselung, d.h. die Ausbildung der Hüllmembran durch Inkontaktbringen der anionischen Polymeren in der Matrix mit den (kationischen) Chitosanen. Hierzu empfiehlt es sich, die in der Ölphase dispergierte Matrix bei einer Temperatur im Bereich von 40 bis 100, vorzugsweise 50 bis 60 °C mit einer wässrigen, etwa 0,1 bis 3 und vorzugsweise 0,25 bis 0,5 Gew.-%ige wässrigen Lösung des Chitosans, vorzugsweise eines Chitosanglycolats zu waschen und dabei gleichzeitig die Ölphase zu entfernen. Die dabei resultierenden wässrigen Zubereitungen weisen in der Regel einen Mikrokapselgehalt im Bereich von 1 bis 10 Gew.-% auf. In manchen Fällen kann es dabei von Vorteil sein, wenn die Lösung der Polymeren weitere Inhaltsstoffe, beispielsweise Emulgatoren oder Konservierungsmittel enthält. Nach Filtration werden Mikrokapseln erhalten, welche im Mittel einen Durchmesser im Bereich von vorzugsweise 1 bis 3 mm aufweisen. Es empfiehlt sich, die Kapseln zu sieben, um eine möglichst gleichmäßige Größenverteilung sicherzustellen. Die so erhaltenen Mikrokapseln können im herstellungsbedingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherungsweise kugelförmig.

Kosmetische und/oder pharmazeutische Zubereitungen

Die Mikrokapseln der vorliegenden Erfindung dienen zur Herstellung oberflächenaktiver Mittel, in einer ersten Ausführungsform insbesondere zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen, als da sind Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pudern oder Salben. Diese Mittel können neben den Mikrokapseln, die in Mengen von 0,1 bis 99 und vorzugsweise 1 bis 5 Gew.-% - bezogen auf die Zubereitungen – enthalten sein können, als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, UV-Licht-schutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöl, Farbstoffe und dergleichen aufweisen. Eine Reihe dieser Hilfsstoffe sind schon in den vorherigen Kapiteln näher erläutert worden, so daß an dieser Stelle auf eine Wiederholung verzichtet wird.

Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche **Tenside** sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α -Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.

Als **Überfettungsmittel** können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Als **Konsistenzgeber** kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.

Geeignete **Verdickungsmittel** sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxy-

methylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopore® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.

Geeignete **kationische Polymere** sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymeren von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymeren, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymeren der Adipinsäure und Dimethylaminohydroxypropylmethylethylentriamin (Cartaretine®/Sandoz), Copolymeren der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolymere, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisalkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymeren, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.

Als **anionische, zwitterionische, amphotere und nichtionische Polymere** kommen beispielsweise Vinylacetat/Crotonsäure-Copolymeren, Vinylpyrrolidon/Vinylacrylat-Copolymeren, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymeren, Methylvinylether/Maleinsäureanhydrid-Copolymeren und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymeren, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproylmethacrylat-Copolymeren, Polyvinyl-pyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymeren, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymeren sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.

Geeignete **Siliconverbindungen** sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsi-

Ioxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in *Cosm.Toil.* 91, 27 (1976).

Typische Beispiele für **Fette** sind Glyceride, als **Wachse** kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reis-keimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperaturmethode.

Detergenszubereitungen

In einer weiteren Ausführungsform der Erfindung dienen die Mikrokapseln zur Herstellung von Detergentien, speziell Wasch-, Spül-, Reinigungs- und Avivagemitteln, in denen sie ebenfalls in Mengen von 0,1 bis 99 und vorzugsweise 1 bis 5 Gew.-% - bezogen auf die Zubereitungen – enthalten sein können; vorzugsweise handelt es sich dabei um wässrige oder wässrig-alkoholische Mittel. Solche Flüssigwaschmittel können einen nicht wässrigen Anteil im Bereich von 5 bis 50 und vorzugsweise 15 bis 35 Gew.-% aufweisen. Im einfachsten Fall handelt es sich um wässrige Lösungen der genannten Tensidmischungen. Bei den Flüssigwaschmitteln kann es sich aber auch um im wesentlichen wasserfreie Mittel handeln. Dabei bedeutet "im wesentlichen wasserfrei", daß das Mittel vorzugsweise kein freies, nicht als Kristallwasser oder in vergleichbarer Form gebundenes Wasser enthält. In einigen Fällen sind geringe Menge an freiem Wasser tolerierbar, insbesondere in Mengen bis zu 5 Gew.-%. Die Flüssigwaschmittel können neben den genannten Tensiden noch weitere typische Inhaltsstoffe, wie beispielsweise Lösungsmittel, Hydrotrope, Bleichmittel, Builder, Viskositätsregulatoren, Enzyme, Enzymstabilisatoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe aufweisen, unter der Voraussetzung, daß diese im wässrigen Milieu hinreichend lagerstabil sind. Auch hier wurden eine Reihe der genannten Hilfsstoffe bereits in vorhergehenden Kapiteln abgehandelt, so daß sich eine Wiederholung erübrigt.

Als organische **Lösungsmittel** kommen beispielsweise mono- und/oder polyfunktionelle Alkohole mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in Frage. Bevorzugte Alkohole sind Ethanol, 1,2-Propandiol, Glycerin sowie deren Gemische. Die Mittel enthalten vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Ethanol oder ein beliebiges Gemisch aus Ethanol und 1,2-Propandiol oder insbesondere aus Ethanol und Glycerin. Ebenso ist es möglich, daß die Zubereitungen entweder zusätzlich zu den mono- und/oder polyfunktionellen Alkoholen mit 1 bis 6 Kohlenstoffatomen oder allein Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 2000, vorzugsweise bis 600 in Mengen von 2 bis 17 Gew.-% enthalten. Als Hydrotrope können beispielsweise Toluolsulfonat, Xylolsulfonat, Cumolsulfonat oder deren Mischungen eingesetzt werden.

Geeignete **Builder** sind Ethyldiamintetraessigsäure, Nitrilotriessigsäure, Citronensäure sowie anorganische Phosphonsäuren, wie z.B. die neutral reagierenden Natriumsalze von 1-Hydroxyethan-1,1,-diphosphonat, die in Mengen von 0,5 bis 5, vorzugsweise 1 bis 2 Gew.-% zu gegen sein können.

Als **Viskositätsregulatoren** können beispielsweise gehärtetes Rizinusöl, Salze von langketten Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Zu den letzteren gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycarboxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polymethacrylate und insbesondere Copolymeren der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymeren zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1 % eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere mit verdickender Wirkung. Die quervernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen von 0,2 bis 0,7 Gew.-% eingesetzt. Die Mittel können zusätzlich etwa 5 bis 20 Gew.-% eines partiell veresterten Copolymerisats enthalten, wie es in der europäischen Patentanmeldung EP 0367049 A beschrieben ist. Diese partiell veresterten Polymere werden durch Copolymerisation von (a) mindestens einem C₄-C₂₈-Olefin oder Mischungen aus mindestens einem C₄-C₂₈-Olefin mit bis zu 20 Mol-% C₁-C₂₈-Alkylvinylethern und (b) ethylenisch ungesättigten Dicarbon-säureanhydriden mit 4 bis 8 Kohlenstoffatomen im Molverhältnis 1 : 1 zu Copolymerisaten mit K-Werten von 6 bis 100 und anschließende partielle Veresterung der Copolymerisate mit Umset-

zungsprodukten wie C₁-C₁₃-Alkoholen, C₈-C₂₂-Fettsäuren, C₁-C₁₂-Alkylphenolen, sekundären C₂-C₃₀-Aminen oder deren Mischungen mit mindestens einem C₂-C₄-Alkylenoxid oder Tetrahydrofuran sowie Hydrolyse der Anhydridgruppen der Copolymerisate zu Carboxylgruppen erhalten, wobei die partielle Veresterung der Copolymerisate soweit geführt wird, daß 5 bis 50 % der Carboxylgruppen der Copolymerisate verestert sind. Bevorzugte Copolymerisate enthalten als ethylenisch ungesättigtes Dicarbonsäureanhydrid Maleinsäureanhydrid. Die partiell veresterten Copolymerisate können entweder in Form der freien Säure oder vorzugsweise in partiell oder vollständig neutralisierter Form vorliegen. Vorteilhafterweise werden die Copolymerisate in Form einer wäßrigen Lösung, insbesondere in Form einer 40 bis 50 Gew.-%igen Lösung eingesetzt. Die Copolymerisate leisten nicht nur einen Beitrag zur Primär- und Sekundärwaschleistung des flüssigen Wasch- und Reinigungsmittels, sondern bewirken auch eine gewünschte Viskositätserniedrigung der konzentrierten flüssigen Waschmittel. Durch den Einsatz dieser partiell veresterten Copolymerisate werden konzentrierte wäßrige Flüssigwaschmittel erhalten, die unter dem alleinigen Einfluß der Schwerkraft und ohne Einwirkung sonstiger Scherkräfte fließfähig sind. Vorzugsweise beinhalten die konzentrierten wäßrigen Flüssigwaschmittel partiell veresterte Copolymerisate in Mengen von 5 bis 15 Gew.-% und insbesondere in Mengen von 8 bis 12 Gew.-%.

Als schmutzabweisende Polymere („soil repellants“) kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymere zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylenglycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymere, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht der Polymere von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repe-lotex® SRP 3 (Rhône-Poulenc).

Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche **Schauminhibitoren** zuzusetzen. Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C₁₈-C₂₄-Fettsäuren aufweisen. Geeignete nicht-tensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse

und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere silikon- oder paraffinhaltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylen-diamiden bevorzugt.

Der pH-Wert der Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7 bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH-Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Die Flüssigwaschmittel weisen im allgemeinen Viskositäten zwischen 150 und 10000 mPas (Brookfield-Viskosimeter, Spindel 1, 20 Umdrehungen pro Minute, 20°C) auf. Dabei sind bei den im wesentlichen wasserfreien Mitteln Viskositäten zwischen 150 und 5000 mPas bevorzugt. Die Viskosität der wäßrigen Mittel liegt vorzugsweise unter 2000 mPas und liegt insbesondere zwischen 150 und 1000 mPas.

In einer letzten Ausführungsform eignen sich beispielsweise mit Aromen beladene Mikrokapseln zur Herstellung von Lebensmitteln.

Beispiele

Beispiel 1. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Paraffinöl, 0,5 g Phenonip® (Konservierungsmittelmischung enthaltend Phenoxyethanol und Parabene) und 0,5 g Polysorbat-20 (Tween® 20, ICI) in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 2,5fachen Volumen Paraffinöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 2. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Squalan, 0,5 g Phenonip® und 0,5 g Ceteareth-20 in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 2,5fachen Volumen Paraffinöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 3. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Panthenol, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 3fachen Volumen Sojaöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die

Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 4. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g β-Carotin, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Rühren im 2,5fachen Volumen Sojaöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 5. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Tocopherolacetat, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Rühren im 2fachen Volumen Dicaprylylether, der zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 6. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Ascorbinsäure, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Rühren im 2,5fachen Volumen Cocoglycerides, die zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewa-

schen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 7. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Kojisäure, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 4fachen Volumen Oleyoleat, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 8. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Natriumalginat, 10 g Dehyquart F® 75 (Distearoylethyl hydroxyethylmonium Methosulfate and Cetearyl Alcohol, Henkel KGaA), 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 2,5fachen Volumen Octyldodecanol, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Beispiel 9. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Gelatine in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 0,5 g Hydagen® SCD (succinyliertes Chitosan, Henkel KGaA), 10 g Dehyquart F® 75 (Distearoylethyl Hydroxyethylmonium Methosulfate and Cetearyl Alcohol, Henkel KGaA), 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Röhren im 2,5fachen Volumen Paraffinöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosan (Hydagen® DCMF, Henkel KGaA) und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen

Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wässrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

Tabelle 1
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)

Zusammensetzung (INCI)	1	2	3	4	5	6	7	8	9	10
Texapon® NSO Sodium Laureth Sulfate	-	-	-	-	-	-	38,0	38,0	25,0	-
Texapon® SB 3 Disodium Laureth Sulfosuccinate	-	-	-	-	-	-	-	-	10,0	-
Plantacare® 818 Coco Glucosides	-	-	-	-	-	-	7,0	7,0	6,0	-
Plantacare® PS 10 Sodium Laureth Sulfate (and) Coco Glucosides	-	-	-	-	-	-	-	-	-	16,0
Dehyton® PK 45 Cocamidopropyl Betaine	-	-	-	-	-	-	-	-	-	10,0
Dehyquart® A Cetrimonium Chloride	2,0	2,0	2,0	2,0	4,0	4,0	-	-	-	-
Dehyquart L® 80 Dicoctoylmethylethoxymonium Methosulfate (and) Propylene Glycol	1,2	1,2	1,2	1,2	0,6	0,6	-	-	-	-
Eumulgin® B2 Ceteareth-20	0,8	0,8	-	0,8	-	1,0	-	-	-	-
Eumulgin® VL 75 Lauryl Glucoside (and) Polyglyceryl-2 Polyhydroxystearate (and) Glycerin	-	-	0,8	-	0,8	-	-	-	-	-
Lanette® O Cetearyl Alcohol	2,5	2,5	2,5	2,5	3,0	2,5	-	-	-	-
Cutina® GMS Glyceryl Stearate	0,5	0,5	0,5	0,5	0,5	1,0	-	-	-	-
Cetiol® HE PEG-7 Glyceryl Cocoate	1,0	-	-	-	-	-	-	-	-	1,0
Cetiol® PGL Hexyldecanol (and) Hexyldeciyl Laurate	-	1,0	-	-	1,0	-	-	-	-	-
Cetiol® V Decyl Oleate	-	-	-	1,0	-	-	-	-	-	-
Eutanol® G Octyldodecanol	-	-	1,0	-	-	1,0	-	-	-	-
Nutrilan® Keratin W Hydrolyzed Keratin	-	-	-	2,0	-	-	-	-	-	-
Lamesoft® LMG Glyceryl Laurate (and) Potassium Cocoyl Hydrolyzed Collagen	-	-	-	-	-	-	3,0	2,0	4,0	-
Euperlan® PK 3000 AM Glycol Distearate (and) Laureth-4 (and) Cocamidopropyl Betaine	-	-	-	-	-	-	-	3,0	5,0	5,0
Generol® 122 N Soja Sterol	-	-	-	-	1,0	1,0	-	-	-	-
Panthenol-Mikrokapseln gemäß Beispiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Hydagen® CMF Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Copherol® 1250 Tocopherol Acetate	-	-	0,1	0,1	-	-	-	-	-	-
Arlypon® F Laureth-2	-	-	-	-	-	-	3,0	3,0	1,0	-
Sodium Chloride	-	-	-	-	-	-	-	1,5	-	1,5

(1-4) Haarspülung, (5-6) Haarkur, (7-8) Duschbad, (9) Duschgel, (10) Waschlotion

Tabelle 1**Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung**

Zusammensetzung (INCI)	11	12	13	14	15	16	17	18	19	20
Texapon® NSO Sodium Laureth Sulfate	20,0	20,0	12,4	-	25,0	11,0	-	-	-	-
Texapon® K 14 S Sodium Myreth Sulfate	-	-	-	-	-	-	-	-	11,0	23,0
Texapon® SB 3 Disodium Laureth Sulfosuccinate	-	-	-	-	-	7,0	-	-	-	-
Plantacare® 818 Coco Glucosides	5,0	5,0	4,0	-	-	-	-	-	6,0	4,0
Plantacare® 2000 Decyl Glucoside	-	-	-	-	5,0	4,0	-	-	-	-
Plantacare® PS 10 Sodium Laureth Sulfate (and) Coco Glucosides	-	-	-	40,0	-	-	16,0	17,0	-	-
Dehyton® PK 45 Cocamidopropyl Betaine	20,0	20,0	-	-	8,0	-	-	-	-	7,0
Eumulgin® B1 Ceteareth-12	-	-	-	-	1,0	-	-	-	-	-
Eumulgin® B2 Ceteareth-20	-	-	-	1,0	-	-	-	-	-	-
Lameform® TGI Polyglyceryl-3 Isostearate	-	-	-	4,0	-	-	-	-	-	-
Dehymuls® PGPH Polyglyceryl-2 Dipolyhydroxystearate	-	-	1,0	-	-	-	-	-	-	-
Monomuls® 90-L 12 Glyceryl Laurate	-	-	-	-	-	-	-	-	1,0	1,0
Cetiol® HE PEG-7 Glyceryl Cocoate	-	0,2	-	-	-	-	-	-	-	-
Eutanol® G Octyldodecanol	-	-	-	3,0	-	-	-	-	-	-
Nutrilan® Keratin W Hydrolyzed Keratin	-	-	-	-	-	-	-	-	2,0	2,0
Nutrilan® I Hydrolyzed Collagen	1,0	-	-	-	-	2,0	-	2,0	-	-
Lamesoft® LMG Glyceryl Laurate (and) Potassium Cocoyl Hydrolyzed Collagen	-	-	-	-	-	-	-	-	1,0	-
Lamesoft® 156 Hydrogenated Tallow Glyceride (and) Potassium Cocoyl Hydrolyzed Collagen	-	-	-	-	-	-	-	-	-	5,0
Gluadin® WK Sodium Cocoyl Hydrolyzed Wheat Protein	1,0	1,5	4,0	1,0	3,0	1,0	2,0	2,0	2,0	-
Euperlan® PK 3000 AM Glycol Distearate (and) Laureth-4 (and) Cocamidopropyl Betaine	5,0	3,0	4,0	-	-	-	-	3,0	3,0	-
Arlypon® F Laureth-2	2,6	1,6	-	1,0	1,5	-	-	-	-	-
Panthenol-Mikrokapseln gemäß Beispiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Hydagen® CMF Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sodium Chloride	-	-	-	-	-	1,6	2,0	2,2	-	3,0
Glycerin (86 Gew.-%ig)	-	5,0	-	-	-	-	-	1,0	3,0	-

(11-14) Duschbad „Two-in-One), (15-20) Shampoo

Tabelle 1

Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 2

Zusammensetzung (INCI)	21	22	23	24	25	26	27	28	29	30
Texapon® NSO Sodium Laureth Sulfate	-	30,0	30,0	-	25,0	-	-	-	-	-
Plantacare® 818 Coco Glucosides	-	10,0	-	-	20,0	-	-	-	-	-
Plantacare® PS 10 Sodium Laureth Sulfate (and) Coco Glucosides	22,0	-	5,0	22,0	-	-	-	-	-	-
Dehyton® PK 45 Cocamidopropyl Betaine	15,0	10,0	15,0	15,0	20,0	-	-	-	-	-
Emulgade® SE Glyceryl Sterate (and) Ceteareth 12/20 (and) Cetearyl Alcohol (and) Cetyl Palmitate	-	-	-	-	-	5,0	5,0	4,0	-	-
Eumulgin® B1 Ceteareth-12	-	-	-	-	-	-	-	1,0	-	-
Lameform® TGI Polyglyceryl-3 Isostearate	-	-	-	-	-	-	-	-	4,0	-
Dehymuls® PGPH Polyglyceryl-2 Dipolyhydroxystearate	-	-	-	-	-	-	-	-	-	4,0
Monomuls® 90-O 18 Glyceryl Oleate	-	-	-	-	-	-	-	-	2,0	-
Cetiol® HE PEG-7 Glyceryl Cocoate	2,0	-	-	2,0	5,0	-	-	-	-	2,0
Cetiol® OE Dicaprylyl Ether	-	-	-	-	-	-	-	-	5,0	6,0
Cetiol® PGL Hexyldecanol (and) Hexyldecyl Laurate	-	-	-	-	-	-	-	3,0	10,0	9,0
Cetiol® SN Cetearyl Isononanoate	-	-	-	-	-	3,0	3,0	-	-	-
Cetiol® V Decyl Oleate	-	-	-	-	-	3,0	3,0	-	-	-
Myritol® 318 Coco Caprylate Caprate	-	-	-	-	-	-	-	3,0	5,0	5,0
Bees Wax	-	-	-	-	-	-	-	-	7,0	5,0
Nutrilan® Elastin E20 Hydrolyzed Elastin	-	-	-	-	-	2,0	-	-	-	-
Nutrilan® I-50 Hydrolyzed Collagen	-	-	-	-	2,0	-	2,0	-	-	-
Gluadin® AGP Hydrolyzed Wheat Gluten	0,5	0,5	0,5	-	-	-	-	0,5	-	-
Gluadin® WK Sodium Cocoyl Hydrolyzed Wheat Protein	2,0	2,0	2,0	2,0	5,0	-	-	-	0,5	0,5
Euperlan® PK 3000 AM Glycol Distearate (and) Laureth-4 (and) Cocamidopropyl Betaine	5,0	-	-	5,0	-	-	-	-	-	-
Arlypon® F Laureth-2	-	-	-	-	-	-	-	-	-	-
Panthenol-Mikrokapseln gemäß Beispiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Hydagen® CMF Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Magnesium Sulfate Hepta Hydrate	-	-	-	-	-	-	-	-	1,0	1,0
Glycerin (86 Gew.-%ig)	-	-	-	-	-	3,0	3,0	5,0	5,0	3,0

(21-25) Schaumbad, (26) Softcreme, (27, 28) Feuchtigkeitsemulsion, (29, 30) Nachtcreme

Tabelle 1

Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 3

Zusammensetzung (INCI)	31	32	33	34	35	36	37	38	39	40
Dehymulss® PGPH Polyglyceryl-2 Dipolyhydroxystearate	4,0	3,0	-	5,0	-	-	-	-	-	-
Lameform® TGI Polyglyceryl-3 Diisostearate	2,0	1,0	-	-	-	-	-	-	-	-
Emulgade® PL 68/50 Cetearyl Glucoside (and) Cetearyl Alcohol	-	-	-	-	4,0	-	-	-	3,0	-
Eumulgin®B2 Ceteareth-20	-	-	-	-	-	-	-	2,0	-	-
Tegocare® PS Polyglyceryl-3 Methylglucose Distearate	-	-	3,0	-	-	-	4,0	-	-	-
Eumulgin VL 75 Polyglyceryl-2 Dipolyhydroxystearate (and) Lauryl Glucoside (and) Glycerin	-	-	-	-	-	3,5	-	-	2,5	-
Bees Wax	3,0	2,0	5,0	2,0	-	-	-	-	-	-
Cutina® GMS Glyceryl Stearate	-	-	-	-	-	2,0	4,0	-	-	4,0
Lanette® O Cetearyl Alcohol	-	-	2,0	-	2,0	4,0	2,0	4,0	4,0	1,0
Antaron® V 216 PVP / Hexadecene Copolymer	-	-	-	-	-	3,0	-	-	-	2,0
Myritol® 818 Cocoglycerides	5,0	-	10,0	-	8,0	6,0	6,0	-	5,0	5,0
Finsolv® TN C12/15 Alkyl Benzoate	-	6,0	-	2,0	-	-	3,0	-	-	2,0
Cetiol® J 600 Oleyl Erucate	7,0	4,0	3,0	5,0	4,0	3,0	3,0	-	5,0	4,0
Cetiol® OE Dicaprylyl Ether	3,0	-	6,0	8,0	6,0	5,0	4,0	3,0	4,0	6,0
Mineral Oil	-	4,0	-	4,0	-	2,0	-	1,0	-	-
Cetiol® PGL Hexadecanol (and) Hexyldecyll Laurate	-	7,0	3,0	7,0	4,0	-	-	-	1,0	-
Bisabolol	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Panthenol-Mikrokapseln gemäß Beispiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Hydagen® CMF Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Copherol® F 1300 Tocopherol / Tocopheryl Acetate	0,5	1,0	1,0	2,0	1,0	1,0	1,0	2,0	0,5	2,0
Neo Heliopan® Hydro Sodium Phenylbenzimidazole Sulfonate	3,0	-	-	3,0	-	-	2,0	-	2,0	-
Neo Heliopan® 303 Octocrylene	-	5,0	-	-	-	4,0	5,0	-	-	10,0
Neo Heliopan® BB Benzophenone-3	1,5	-	-	2,0	1,5	-	-	-	2,0	-
Neo Heliopan® E 1000 Isoamyl p-Methoxycinnamate	5,0	-	4,0	-	2,0	2,0	4,0	10,0	-	-
Neo Heliopan® AV Octyl Methoxycinnamate	4,0	-	4,0	3,0	2,0	3,0	4,0	-	10,0	2,0
Uvinul® T 150 Octyl Triazone	2,0	4,0	3,0	1,0	1,0	1,0	4,0	3,0	3,0	3,0
Zinc Oxide	-	6,0	6,0	-	4,0	-	-	-	-	5,0
Titanium Dioxide	-	-	-	-	-	-	-	5,0	-	-
Glycerin (86 Gew.-%ig)	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0

(31) W/O-Sonnenschutzcreme, (32-34) W/O-Sonnenschutzlotions, (35, 38, 40) O/W-Sonnenschutzlotions
 (36, 37, 39) O/W-Sonnenschutzcreme

Patentansprüche

1. Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, dadurch erhältlich, daß man
 - (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
 - (b) die Matrix in einer Ölphase dispergiert,
 - (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.
2. Verfahren zur Herstellung von Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, bei dem man
 - (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
 - (b) die Matrix in einer Ölphase dispergiert,
 - (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.
3. Verfahren nach Anspruch 2, **dadurch gekennzeichnet**, daß man als Gelbildner Heteropolysaccharide oder Proteine einsetzt.
4. Verfahren nach Anspruch 3, **dadurch gekennzeichnet**, daß man als Heteropolysaccharide Agarosen, Agar-Agar, Pektine, Xanthane sowie deren Gemische einsetzt.
5. Verfahren nach Anspruch 3, **dadurch gekennzeichnet**, daß man als Proteine Gelatine einsetzt.
6. Verfahren nach mindestens einem der Ansprüche 2 bis 5, **dadurch gekennzeichnet**, daß man als anionische Polymere Salze der Alginäure oder anionische Chitosanderivate einsetzt.
7. Verfahren nach mindestens einem der Ansprüche 2 bis 6, **dadurch gekennzeichnet**, daß man Wirkstoffe einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Tensiden, kosmetischen Ölen, Perlglanzwachsen, Stabilisatoren, biogenen Wirkstoffen, Deodorantien, Antitranspirantien, Antischuppenmitteln, UV-Lichtschutzfaktoren, Antioxidantien, Konservie-

rungsmitteln, Insektenrepellentien, Selbstbräunern, Parfümölen, Aromastoffen, Bleichmitteln, Bleichaktivatoren, Enzymen, Vergrauungsinhibitoren, optischen Aufhellern und Farbstoffen.

8. Verfahren nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß man Chitosane einsetzt, die ein mittleres Molekulargewicht im Bereich von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen.
9. Verfahren nach mindestens einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß man die Mikrokapseln – bezogen auf das Kapselgewicht - mit 0,1 bis 25 Gew.-% Wirkstoff belädt.
10. Verfahren nach mindestens einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß man bei der Herstellung der Matrix Emulgatoren und/oder Viskositätsregulatoren mitverwendet.
11. Verfahren nach mindestens einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß man die Matrix bei Temperaturen im Bereich von 40 bis 100 °C herstellt.
12. Verfahren nach mindestens einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß man die Matrix im 2 bis 5fachen Volumen der Ölphase dispergiert.
13. Verfahren nach mindestens einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß man die auf 40 bis 60 °C erwärmte Matrix in einer auf 10 bis 20 °C gekühlten Ölphase dispergiert.
14. Verfahren nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß man die in der Ölphase dispergierte Matrix mit 0,1 bis 3 Gew.-%igen wäßrigen Chitosanlösungen behandelt.
15. Verfahren nach mindestens einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, daß man die in der Ölphase feindispersierte Matrix bei Temperaturen im Bereich von 40 bis 100 °C mit den wäßrigen Chitosanlösungen behandelt.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man die in der Ölphase dispersierte Matrix mit wäßrigen Chitosanlösungen wäscht und die Ölphase dabei gleichzeitig entfernt.

17. Verfahren nach Anspruch 16, **dadurch gekennzeichnet**, daß man bei der Wäsche wässrige Zubereitungen herstellt, deren Anteil an Mikrokapseln schließlich im Bereich von 1 bis 10 Gew.-% liegt.
18. Verfahren nach mindestens einem der Ansprüche 2 bis 17, **dadurch gekennzeichnet**, daß man die Zubereitungen ständig röhrt.
19. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen.
20. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von Wasch-, Spül-, Reinigungs- und Avivagemitteln.
21. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von Lebensmitteln.
22. Verwendung nach mindestens einem der Ansprüche 19 bis 21 , **dadurch gekennzeichnet**, daß man die Mikrokapseln in Mengen von 0,1 bis 99 Gew.-% - bezogen auf die Zubereitungen – einsetzt.

10/01 8922 Bf

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
11. Januar 2001 (11.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/001929 A3

(51) Internationale Patentklassifikation⁷: **A61K 7/00**, (74) Anwalt: **FABRY, Bernd**; Cognis Deutschland GmbH, 9/50, C11D 17/08 CRT-IP, Postfach 130 164, D-40551 Düsseldorf (DE).

(21) Internationales Aktenzeichen: PCT/EP00/05810

(81) Bestimmungsstaaten (*national*): AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) Internationales Anmeldedatum:
23. Juni 2000 (23.06.2000)

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Einreichungssprache: Deutsch

Veröffentlicht:
— mit internationalem Recherchenbericht

(26) Veröffentlichungssprache: Deutsch

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts: 7. November 2002

(30) Angaben zur Priorität:
99112668.1 2. Juli 1999 (02.07.1999) EP

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): PRIMACARE S.A. [ES/ES]; C./Santa Eulalia, 240, E-08902 L'Hospitalet de Llobregat (ES).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): GARCES, Jose [ES/ES]; C. Francesc Macia, 19-3-1a, E-08760 Martorell (ES). VILADOT PETIT, Josep-Luis [ES/ES]; C. Comte d'Urgell, 230-6-2a, E-08036 Barcelona (ES).

WO 01/001929 A3

(54) Title: MICROCAPSULES IV

(54) Bezeichnung: MIKROKAPSELN - IV

(57) Abstract: The invention relates to microcapsules which have average diameters ranging from 0.1 to 5 mm, and which are comprised of an enclosing membrane and of a matrix containing at least one active substance. The inventive microcapsules can be obtained by: (a) preparing a matrix consisting of gel formers, anionic polymers and active substances; (b) dispersing the matrix in an oil phase, and (c) treating the dispersed matrix with aqueous chitosan solutions thus removing the oil phase.

(57) Zusammenfassung: Vorgeschlagen werden Mikrokapseln mit mittleren Durchmessern im Bereich von 0.1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, dadurch erhältlich, dass man (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet, (b) die Matrix in einer Ölphase dispergiert, (c) die dispergierte Matrix mit wässrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Inte
als Aktenzeichen
PCT/EP 00/05810

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A61K7/00 A61K9/50 C11D17/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K C08L C11D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der In Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 5 753 264 A (MAGDASSI ET AL.) 19. Mai 1998 (1998-05-19) Spalte 3, Zeile 8 - Zeile 64 ---	1-22
Y	FR 2 699 545 A (L'OREAL) 24. Juni 1994 (1994-06-24) Seite 4, Spalte 36 -Seite 5, Spalte 3; Beispiel C ---	1-22 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *Z* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

29. September 2000

12/10/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Lensen, H

INTERNATIONALER RECHERCHENBERICHT

Inte: is Aktenzeichen
PCT/EP 00/05810

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN vol. 13, no. 190 (C-593), 8. Mai 1989 (1989-05-08) & JP 01 018440 A (DAINIPPON PHARMACEUT CO LTD), 23. Januar 1989 (1989-01-23) Zusammenfassung & DATABASE WPI Week 198909 Derwent Publications Ltd., London, GB; AN 65806 Zusammenfassung ----	1-22
Y	EP 0 237 542 A (BIOCOMPATIBLES LTD.) 23. September 1987 (1987-09-23) Seite 3 -Seite 4 ----	1-22
Y	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02, 29. Februar 1996 (1996-02-29) & JP 07 258087 A (TOKO YAKUHIN KOGYO KK), 9. Oktober 1995 (1995-10-09) Zusammenfassung & DATABASE WPI Week 199549 Derwent Publications Ltd., London, GB; AN 379983 Zusammenfassung ----	1-22
A	WO 98 43609 A (HENKEL) 8. Oktober 1998 (1998-10-08) in der Anmeldung erwähnt ----	
A	US 5 089 272 A (SHIOYA ET AL.) 18. Februar 1992 (1992-02-18) ----	
A	US 5 855 904 A (CHUNG ET AL.) 5. Januar 1999 (1999-01-05) ----	
A	EP 0 152 898 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 28. August 1985 (1985-08-28) -----	

INTERNATIONALER RECHERCHENBERICHT

Int'l. Aktenzeichen
PCT/EP 00/05810

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
US 5753264 A	19-05-1998	US 5518736 A	AU 2573795 A	EP 0772434 A	WO 9600056 A
					21-05-1996 19-01-1996 14-05-1997 04-01-1996
FR 2699545 A	24-06-1994	KEINE			
JP 01018440 A	23-01-1989	KEINE			
EP 237542 A	23-09-1987	AT 60507 T	DE 3677369 D	WO 8701587 A	JP 63501290 T
					15-02-1991 07-03-1991 26-03-1987 19-05-1988
JP 07258087 A	09-10-1995	KEINE			
WO 9843609 A	08-10-1998	DE 19712978 A	AU 7036598 A	EP 0969807 A	01-10-1998 22-10-1998 12-01-2000
US 5089272 A	18-02-1992	KEINE			
US 5855904 A	05-01-1999	CN 1131042 A	EP 0806944 A	JP 11509167 T	WO 9613253 A
					18-09-1996 19-11-1997 17-08-1999 09-05-1996
EP 152898 A	28-08-1985	CA 1254528 A	DE 3575375 D	JP 61189218 A	US 4749620 A
					07-06-1988 17-05-1988

RECEIVED

DEC 30 2002

OIPE/JCWS

THIS PAGE BLANK (USPTO)

500
Translation
10/018922

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference H 4222 PCT	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/EP00/05810	International filing date (day/month/year) 23 June 2000 (23.06.00)	Priority date (day/month/year) 02 July 1999 (02.07.99)
International Patent Classification (IPC) or national classification and IPC A61K 7/00		
Applicant	PRIMACARE S.A.	

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 5 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of _____ sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 17 October 2000 (17.10.00)	Date of completion of this report 06 June 2001 (06.06.2001)
Name and mailing address of the IPEA/EP	Authorized officer
Facsimile No.	Telephone No.

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/EP00/05810

I. Basis of the report

1. This report has been drawn on the basis of (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.*):

the international application as originally filed.

the description, pages 1-33, as originally filed,
pages _____, filed with the demand,
pages _____, filed with the letter of _____
pages _____, filed with the letter of _____

the claims, Nos. 1-22, as originally filed,
Nos. _____, as amended under Article 19,
Nos. _____, filed with the demand,
Nos. _____, filed with the letter of _____
Nos. _____, filed with the letter of _____

the drawings, sheets/fig _____, as originally filed,
sheets/fig _____, filed with the demand,
sheets/fig _____, filed with the letter of _____
sheets/fig _____, filed with the letter of _____

2. The amendments have resulted in the cancellation of:

the description, pages _____

the claims, Nos. _____

the drawings, sheets/fig _____

3. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).

4. Additional observations, if necessary:

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/EP 00/05810

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims	1-22	YES
	Claims		NO
Inventive step (IS)	Claims	1-22	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-22	YES
	Claims		NO

2. Citations and explanations

Reference is made to the following documents:

D1: US-A-5 753 264 (MAGDASSI ET AL.) 19 May 1998 (1998-05-19)

D2: FR-A-2 699 545 (L'OREAL) 24 June 1994 (1994-06-24)

D3: PATENT ABSTRACTS OF JAPAN Vol. 13, No. 190 (C-593), 8 May 1989 (1989-05-08) & JP 01 018440 A (DAINIPPON PHARMACEUT CO LTD), 23 January 1989 (1989-01-23) & DATABASE WPI Week 198909 Derwent Publications Ltd., London, GB; AN 65806

D4: EP-A-0 237 542 (BIOCOMPATIBLES LTD.) 23 September 1987 (1987-09-23)

D5: PATENT ABSTRACTS OF JAPAN Vol. 1996, No. 02, 29 February 1996 (1996-02-29) & JP 07 258087 A (TOKO YAKUHIN KOGYO KK), 9 October 1995 (1995-10-09) & DATABASE WPI Week 199549 Derwent Publications Ltd., London, GB; AN 379983

D6: US-A-5 855 904 (CHUNG ET AL.) 5 January 1999 (1999-01-05)

1. D1 describes the production of microcapsules, wherein a chitosan solution is added to an O/W emulsion. The addition of tripophosphate forms an envelope membrane of chitosan around the emulsion drops. D1 does not describe a matrix of an active substance, gelling agent and anionic

THIS PAGE BLANK (USPTO)

polymer.

2. D2 discloses capsules which are produced by adding a hydrophobic polar phase to a gel of chitosan and Na alginate (D2: Example C). D2 does not describe a matrix of an active substance, gelling agent and anionic polymer.

3. D3 describes microcapsules consisting of a core containing a hardly water-soluble substance and an envelope of chitosan and a polyanionic polysaccharide. D3 does not describe a matrix of an active substance, gelling agent and anionic polymer.

4. D4 discloses microcapsules containing liposomes embedded in a matrix of gelatin and alginate. D4 does not describe microcapsules which contain an envelope membrane of chitosan.

5. D5 discloses microspheres which contain a matrix of active substance (allopurinol), polylactic acid, a polyester, starch, albumin and gelatin or collagen and an envelope membrane of chitosan or pectin. D5 does not give an average diameter of 0.1 - 5mm for the microspheres.

6. D6 discloses microcapsules which comprise a core consisting of a matrix of alginate and active substance coated by a chitosan layer. The matrix of the microcapsules according to D6 does not have a second polymer and the particle diameter is also not mentioned.

7. The presently claimed subject matter is therefore novel (PCT Article 33(2)).

8. The subject matter of the present Claims 1-22 also satisfies the requirements of PCT Article 33(3) due to the

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORTInternational application No.
PCT/EP 00/05810

improved surfactant stability of the microcapsules which can be obtained by the presently claimed methods, which is not suggested by any of the available documents.

THIS PAGE BLANK (USPTO)

10/181076 (50130)

Translation

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 20 00 00 02	FOR FURTHER ACTION See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)	
International application No. PCT/EP01/00128	International filing date (day/month/year) 08 January 2001 (08.01.01)	Priority date (day/month/year) 15 January 2000 (15.01.00)
International Patent Classification (IPC) or national classification and IPC B01J 19/18		
Applicant ZIMMER AG		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 4 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of _____ sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 25 May 2001 (25.05.01)	Date of completion of this report 02 January 2002 (02.01.2002)
Name and mailing address of the IPEA/EP	Authorized officer
Facsimile No.	Telephone No.

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/EP01/00128

I. Basis of the report

1. With regard to the elements of the international application:*

the international application as originally filed
 the description:

pages _____ 1-36 _____, as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

the claims:

pages _____ 1-13 _____, as originally filed
 pages _____ , as amended (together with any statement under Article 19)
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

the drawings:

pages _____ 1/1 _____, as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

the sequence listing part of the description:

pages _____ , as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.
 These elements were available or furnished to this Authority in the following language _____ which is:

the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).
 the language of publication of the international application (under Rule 48.3(b)).
 the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

contained in the international application in written form.
 filed together with the international application in computer readable form.
 furnished subsequently to this Authority in written form.
 furnished subsequently to this Authority in computer readable form.
 The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
 The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

the description, pages _____
 the claims, Nos. _____
 the drawings, sheets/fig _____

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/EP 01/00128

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims	1-13	YES
	Claims		NO
Inventive step (IS)	Claims	1-13	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-13	YES
	Claims		NO

2. Citations and explanations

1. The invention concerns a method and a reactor suitable for implementing the same for the batch production of granulates made of polycondensation polymers which are specified in Claim 1. The essential features of the invention are the production of a pre-condensate and the subsequent polycondensation in a special rotating disk reactor.

2. The closest prior art is document US-A-3 617 225, which was already cited in the description and which describes the use of reactors with rotating disks.

The invention addressed the problem of improving such methods and reactors.

For that purpose, according to independent Claims 1 and 5, both reactor geometry and method implementation were modified. Since no hints can be found in the available prior art which could have suggested these modifications to a person skilled in the art, and since the advantages stated in the description (pages 16-18) appear to be credible, an inventive step can also be acknowledged, besides novelty.

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/EP 01/00128

3. It is noted that the application contain a single page of drawings (Figure 1). Figures 2-5, which are mentioned in the description, are missing.

THIS PAGE BLANK (USPTO)

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM
GEBIET DES PATENTWESENS**

REC'D 08 JUN 2001

PCT

WIPO PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT) T 14

Aktenzeichen des Anmelders oder Anwalts H 4222 PCT-UW	WEITERES VORGEHEN	siehe Mitteilung über die Übersendung des internationalen vorläufigen Prüfungsberichts (Formblatt PCT/IPEA/416)
Internationales Aktenzeichen PCT/EP00/05810	Internationales Anmeldedatum (Tag/Monat/Jahr) 23/06/2000	Prioritätsdatum (Tag/Monat/Tag) 02/07/1999
Internationale Patentklassifikation (IPK) oder nationale Klassifikation und IPK A61K7/00		
Anmelder PRIMACARE S.A. et al.		

1. Dieser internationale vorläufige Prüfungsbericht wurde von der mit der internationalen vorläufigen Prüfung beauftragten Behörde erstellt und wird dem Anmelder gemäß Artikel 36 übermittelt.
2. Dieser BERICHT umfaßt insgesamt 5 Blätter einschließlich dieses Deckblatts.

Außerdem liegen dem Bericht ANLAGEN bei; dabei handelt es sich um Blätter mit Beschreibungen, Ansprüchen und/oder Zeichnungen, die geändert wurden und diesem Bericht zugrunde liegen, und/oder Blätter mit vor dieser Behörde vorgenommenen Berichtigungen (siehe Regel 70.16 und Abschnitt 607 der Verwaltungsrichtlinien zum PCT).

Diese Anlagen umfassen insgesamt Blätter.

3. Dieser Bericht enthält Angaben zu folgenden Punkten:

- I Grundlage des Berichts
- II Priorität
- III Keine Erstellung eines Gutachtens über Neuheit, erforderliche Tätigkeit und gewerbliche Anwendbarkeit
- IV Mangelnde Einheitlichkeit der Erfindung
- V Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erforderlichen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung
- VI Bestimmte angeführte Unterlagen
- VII Bestimmte Mängel der internationalen Anmeldung
- VIII Bestimmte Bemerkungen zur internationalen Anmeldung

Datum der Einreichung des Antrags 17/10/2000	Datum der Fertigstellung dieses Berichts 06.06.2001
Name und Postanschrift der mit der internationalen vorläufigen Prüfung beauftragten Behörde: Europäisches Patentamt D-80298 München Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Bevollmächtigter Bediensteter Lindner, A Tel. Nr. +49 89 2399 8640

THIS PAGE BLANK (USPTO)

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen PCT/EP00/05810

I. Grundlage des Berichts

1. Hinsichtlich der **Bestandteile** der internationalen Anmeldung (*Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten (Regeln 70.16 und 70.17)*):
Beschreibung, Seiten:

1-33 ursprüngliche Fassung

Patentansprüche, Nr.:

1-22 ursprüngliche Fassung

2. Hinsichtlich der **Sprache**: Alle vorstehend genannten Bestandteile standen der Behörde in der Sprache, in der die internationale Anmeldung eingereicht worden ist, zur Verfügung oder wurden in dieser eingereicht, sofern unter diesem Punkt nichts anderes angegeben ist.

Die Bestandteile standen der Behörde in der Sprache: zur Verfügung bzw. wurden in dieser Sprache eingereicht; dabei handelt es sich um

- die Sprache der Übersetzung, die für die Zwecke der internationalen Recherche eingereicht worden ist (nach Regel 23.1(b)).
- die Veröffentlichungssprache der internationalen Anmeldung (nach Regel 48.3(b)).
- die Sprache der Übersetzung, die für die Zwecke der internationalen vorläufigen Prüfung eingereicht worden ist (nach Regel 55.2 und/oder 55.3).

3. Hinsichtlich der in der internationalen Anmeldung offenbarten **Nucleotid- und/oder Aminosäuresequenz** ist die internationale vorläufige Prüfung auf der Grundlage des Sequenzprotokolls durchgeführt worden, das:

- in der internationalen Anmeldung in schriftlicher Form enthalten ist.
- zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
- bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
- bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
- Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
- Die Erklärung, daß die in computerlesbarer Form erfassten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

4. Aufgrund der Änderungen sind folgende Unterlagen fortgefallen:

- Beschreibung, Seiten:
- Ansprüche, Nr.:
- Zeichnungen, Blatt:

THIS PAGE BLANK (USPTO)

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/EP00/05810

5. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)).

(Auf Ersatzblätter, die solche Änderungen enthalten, ist unter Punkt 1 hinzuweisen; sie sind diesem Bericht beizufügen).

6. Etwaige zusätzliche Bemerkungen:

V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

1. Feststellung

Neuheit (N)	Ja: Ansprüche	1-22
	Nein: Ansprüche	
Erfinderische Tätigkeit (ET)	Ja: Ansprüche	1-22
	Nein: Ansprüche	
Gewerbliche Anwendbarkeit (GA)	Ja: Ansprüche	1-22
	Nein: Ansprüche	

2. Unterlagen und Erklärungen
siehe Beiblatt

THIS PAGE BLANK (USPTO)

Zu Punkt V

Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

Es wird auf die folgenden Dokumente verwiesen:

D1: US-A-5 753 264 (MAGDASSI ET AL.) 19. Mai 1998 (1998-05-19)
D2: FR-A-2 699 545 (L'OREAL) 24. Juni 1994 (1994-06-24)
D3: PATENT ABSTRACTS OF JAPAN vol. 13, no. 190 (C-593), 8. Mai 1989
(1989-05-08) & JP 01 018440 A (DAINIPPON PHARMACEUT CO LTD), 23.
Januar 1989 (1989-01-23) & DATABASE WPI Week 198909 Derwent
Publications Ltd., London, GB; AN 65806
D4: EP-A-0 237 542 (BIOCOMPATIBLES LTD.) 23. September 1987 (1987-09-
23)
D5: PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02, 29. Februar 1996
(1996-02-29) & JP 07 258087 A (TOKO YAKUHIN KOGYO KK), 9. Oktober
1995 (1995-10-09) & DATABASE WPI Week 199549 Derwent Publications
Ltd., London, GB; AN 379983
D6: US-A-5 855 904 (CHUNG ET AL.) 5. Januar 1999 (1999-01-05)

1. D1 beschreibt die Herstellung von Mikrokapseln, wobei einer O/W-Emulsion eine Chitosanlösung zugesetzt wird. Durch Zugabe von Triphosphat bildet sich eine Hülle aus Chitosan um die Emulsionströpfchen. Ein Matrix aus Wirkstoff, Gelbildner und anionischem Polymer wird in D1 nicht beschrieben.
2. D2 offenbart Kapseln, dadurch erhältlich, dass man einem Gel aus Chitosan und Na-Alginat eine hydrophobe polare Phase zusetzt (D2: Beispiel C). Eine Matrix aus Wirkstoff, Gelbildner und anionischem Polymer wird in D2 nicht beschrieben.
3. D3 beschreibt Mikrokapseln bestehend aus einem Kern, enthaltend eine schwer wasserlösliche Substanz und eine Hülle aus Chitosan und einem polyanionischen Polysaccharid. Eine Matrix aus Wirkstoff, Gelbildner und anionischem Polymer wird in D3 nicht beschrieben.

THIS PAGE BLANK (USPTO)

4. D4 offenbart Mikrokapseln, enthaltend in einer aus Gelatine und Alginat bestehender Matrix eingebettete Liposomen. Mikrokapseln, enthaltend eine Hüllmembran aus Chitosan werden in D4 nicht beschrieben.
5. D5 offenbart Mikrosphären, enthaltend eine Matrix aus Wirkstoff (Allopurinol), Polymilchsäure, einem Polyester, Stärke, Albumin und Gelatine oder Kollagen und eine Hüllmembran aus Chitosan oder Pektin. Ein mittlerer Durchmesser von 0,1 - 5 mm für die Mikrosphären wird in D5 nicht angegeben.
6. D6 offenbart Mikrokapseln, enthaltend einen Kern bestehend aus einer Matrix aus Alginat und Wirkstoff, umhüllt von einer Chitosanschicht. Die Mikrokapseln gemäß D6 enthalten jedoch keinen zweiten Polymer in der Matrix, ebenso wenig ist der Partikeldurchmesser angegeben.
7. Somit ist der vorliegend beanspruchte Gegenstand neu (Artikel 33(2) PCT).
8. Der Gegenstand der vorliegenden Ansprüche 1-22 erfüllt zudem die Erfordernisse von Artikel 33(3) PCT auf Grund der verbesserten Tensidstabilität der nach den vorliegend beanspruchten Verfahren erhältlichen Mikrokapseln, die von keinem der zur Verfügung stehenden Dokumenten nahegelegt wird.

THIS PAGE BLANK (USPTO)