

Seminarausarbeitung On the Power of Color Refinement

Florian Lüdiger

8. November 2017

im Rahmen des Seminars

Algorithm Engineering

von Prof. Dr. Petra Mutzel Wintersemester 2017/18

Betreuer:

Christopher Morris

Basierend auf:

V. Arvind, Johannes Köbler, Gaurav Rattan und Oleg Verbitsky
On the Power of Color Refinement
https://link.springer.com/chapter/10.1007/978-3-319-22177-9_26

Fakultät für Informatik Algorithm Engineering (Ls11) Technische Universität Dortmund 2 Inhaltsverzeichnis

T 1	1 /	• 1	
Inha	${f ltsverz}$	zeic	hnis

1	Einführung	3
2	Graph-Isomorphie und Color Refinement	3
3	Begriffserklärung	3
4	Voraussetzungen für zugängliche Graphen	4
5	Korrektheitsbeweis	4
6	Laufzeitanalyse	4
7	Fazit	4
\mathbf{Li}	Literaturverzeichnis	

1 Einführung

- Allgemeine Informationen zum Paper
- Was ist das Ziel der Forschung und inwiefern wurde dieses erreicht?
- Überblick über die Kapitelstruktur

2 Graph-Isomorphie und Color Refinement

- Basierend auf den Vorlesungsfolien von Prof. Mutzel im Fach Algorithmen und Datenstrukturen
- Was ist Graph-Isomorphie?
- Was erreicht Color Refinement?
- Laufzeitkomplexität von Color-Refinement im Gegensatz zum vollständigen Isomorphie Test [7,4] im Paper
- Wofür kann Color-Refinement noch eingesetzt werden? [9,12,17] im Paper

3 Begriffserklärung

Einführung, Wiederholung und Erklärung folgender Begriffe und Notationen:

- zugänglicher Graph
- Unigraph
- Bipartites Komplement
- Biregulärer Graph
- Knotenfärbung
- Partition
- gerechte Partition
- Matching Graph
- Zellgraph
- Eigenschaften von Zellgraphen

Gegebenenfalls wird dieses Kapitel nicht explizit umgesetzt, sondern die Begriffe an der entsprechenden Stelle im Text eingeführt, an der sie gebraucht werden. 4 Literatur

4 Voraussetzungen für zugängliche Graphen

- Erklärung der lokalen Struktur zugänglicher Graphen (A,B)
- Erklärung der globalen Struktur zugänglicher Graphen (C,D,E,F,G,H)
- jeweils gegebenenfalls mit ausführlicher Erklärung der Bedeutung und Beispielen

5 Korrektheitsbeweis

- Fokussierung auf die Beweisidee für die jeweiligen Lemmata
- Ausführlichere und leichter verständliche Aufbereitung der Beweise aus dem Paper

6 Laufzeitanalyse

• Beweis der Laufzeit von $O((n+m)\log n)$

7 Fazit

- Zusammenfassung der Ergebnisse
- Bezugnehmen auf die Einleitung und ob die Ziele erreicht wurden
- Abschluss der Arbeit

Literatur