Алгоритмы и структуры данных Поиск подстрок

д.т.н., проф. Трифонов Петр Владимирович

Содержание лекции

- Постановка задачи
- Алгоритм Рабина-Карпа
- Поиск подстрок с помощью конечных автоматов

Постановка задачи поиска подстрок

- Пусть даны текст, представленный в виде массива T длины n, и образец, представленный в виде массива длины $m \le n$
- Элементами массивов являются символы некоторого конечного алфавита Σ
- Будем считать, что образец P входит в строку T со сдвигом $s,0 \le s \le n-m$ (эквивалентно, входит с позиции s+1), если $T[s+j]=P[j], 1 \le j \le m$. В этом случае также говорят, что s является допустимым сдвигом
- Задача поиска подстрок состоит в нахождении всех допустимых сдвигов для данных текста T и подстроки P

Обозначения

- $\Sigma^* = \bigcup_{i=0}^\infty \Sigma^i$ множество всех строк над алфавитом Σ , включая пустую строку
- |x| длина строки x
- ху конкатенация строк х и у
- Строка w префикс, или начало, строки x, если $\exists y \in \Sigma^* : x = wy$. Это свойство будем обозначать как $w \sqsubseteq x$
- Строка w суффикс, или конец, строки x, если $\exists y \in \Sigma^* : x = yw$, что будем обозначать как $w \sqsupset x$
- Пример: $ab \sqsubset abcd$ и bcd ⊃ abcd
- Из $x \sqsubset y$ не следует, что $y \sqsupset x$, и наоборот
- ullet Пустая строка ϵ является префиксом и суффиксом любой строки.
- $\forall a \in \Sigma : x \supset y \Leftrightarrow xa \supset ya \text{ u } x \sqsubset y \Leftrightarrow ax \sqsubset ay$
- Префикс длины k строки $S: S_k = S[1..k], k \le |S|$.

Лемма о двух суффиксах

Лемма

Пусть x,y,z — строки, для которых $x \sqsupset z$ и $y \sqsupset z$. Тогда $x \sqsupset y$, если $|x| \le |y|$; $y \sqsupset x$, если $|x| \ge |y|$, и x = y, если |x| = |y|.

Доказательство.

Совпадающие части строк заштрихованы

$$|x| \ge |y|$$

Простейший алгоритм поиска

- ullet Поиск подстроки P в строке T сводится к поиску всех $s:0\leq |T|-|P|:P\sqsupset T_{s+m}$
- Будем считать, что операция сравнения подстрок выполняется путем посимвольного их сравнения, которое прекращается, как только обнаруживается расхождение.
- Сложность сравнения подстрок составляет $\Theta(t+1)$, где t длина наибольшего общего префикса строк x и y.

```
FINDSUBSTRING(T, P)
```

- 1 $n \leftarrow |T|$
- 2 $m \leftarrow |P|$
- 3 for $s \leftarrow 0$ to n m
- 4 do if P[1..m] = T[s+1..s+m]
- then print("Подстрока входит со сдвигом s")

Алгоритм Рабина-Карпа

- ullet Пусть d мощность рассматриваемого алфавита Σ
- ullet Все строки можно рассматривать как числа в системе счисления по основанию d
- ullet Пусть p число, соответствующее образцу P[1..m]
- ullet Для всех $s:0\leq s\leq n-m$ определим t_s как число, соответствующее подстроке T[s+1..s+m].
- ullet Ссли s допустимый сдвиг, то $t_s = p$
- ullet Вычисление p: $p=P[m]+d(P[m-1]+d(P[m-2]+\ldots+dP[1])\ldots)$ Аналогичным образом можно вычислить и t_0
- ullet Прочие значения t_i можно вычислить как $t_{s+1} = d(t_s d^{m-1}T[s+1]) + T[s+m+1].$
- При непосредственной реализации этого метода возникают слишком большие числа
- ullet Будем производить вычисления по модулю q, т.ч. dq помещается в разрядной сетке
- Если s $t_s \not\equiv p \mod q$, то это s заведомо не является допустимым сдвигом. Но при $t_s \equiv p \mod q$ нельзя исключать, что $t_s \not\equiv p$. Требуется произвести непосредственное сравнение T[s+1..s+m] и P.

Алгоритм Рабина-Карпа

```
RABINKARPMATCHER (T, P, d, q)
  1 n \leftarrow |T|; m \leftarrow |P|; h \leftarrow d^{m-1} \mod a
  2 p \leftarrow 0: t_0 \leftarrow 0
  3 for i \leftarrow 1 to m
  4 do p \leftarrow (dp + P[i]) \mod a
       t_0 \leftarrow (dt_0 + T[i]) \mod a
    for s \leftarrow 0 to n-m
      do if p = t_s
             then if P[1..m] = T[s + 1..s + m]
                      then print( "Образец входит со сдвигом s" )
         if s < n - m
10
11
             then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```


Сложность алгоритма Рабина-Карпа

- ullet В худшем случае (как, например, при $T=a^n, P=a^m)$ этот алгоритм требует O((n-m+1)m) операций
- Много вспомогательных операций, которые отсутствовали тривиальном алгоритме
- В большинстве практических случаев, когда допустимых сдвигов немного, сложность составляет O(n+m) операций
 - Операция приведения по модулю q может рассматриваться как случайное отображение $\Sigma^* \to \mathbb{Z}_q.$
 - Вероятность того, что $t_s \neq p \land t_s \equiv p \mod q$ равна примерно 1/q, т.е. число операций составляет примерно O(m+n-m)+O(m(v+(n-m)/q)), где v количество истинных вхождений подстроки P. Первое слагаемое соответствует вычислению t_i , второе собственно сравнению подстрок
 - ullet При $q \geq m$ и v = O(1) средняя сложность алгоритма оказывается равной O(n+m).
- Поиск несколько образцов: каждому из них может быть сопоставлено свое число p_i , а величины t_i достаточно вычислить однократно.

Конечный автомат

Конечным автоматом называется $M=(Q,q_0,A,\Sigma,\delta)$, где:

- Q конечное множество состояний;
- $q_0 \in Q$ начальное состояние;
- $A \subset Q$ конечное множество допускающих состояний;
- Σ конечный входной алфавит;
- ullet $\delta: Q imes \Sigma o Q$ функция переходов.

Поиск подстрок с помощью КА

- ullet Пусть первоначально автомат находится в состоянии q_0
- Находясь в состоянии q и читая очередной символ $a \in \Sigma$, автомат переходит в состояние $\delta(q,a)$
- ullet Если автомат находится в состоянии $q \in A$, то говорят, что он допускает прочитанную часть строки
- В противном случае говорят, что он ее отвергает, что не исключает того, что после обработки оставшейся ее части она будет принята.

Суффикс-функция

• функция конечного состояния $\phi: \Sigma^* \to Q$. $\phi(w)$ есть состояние, в которое перейдет автомат, прочитав строку w. Автомат допускает строку w тогда и только тогда, когда $\phi(w) \in A$

$$\phi(\epsilon) = q_0$$

 $\phi(wa) = \delta(\phi(w), a), \forall w \in \Sigma^*, a \in \Sigma.$

• Для построения автомата, распознающего заданную строку P, введем понятие суффикс-функции $\sigma(x)$, которая сопоставляет строке x длину максимального ее суффикса, являющегося префиксом P, т.е.

$$\sigma(x) = \max\{k : P_k \supset x\}.$$

Т.к. $P_0 = \epsilon$ — суффикс любой строки, $\sigma(x)$ определена на всем множестве Σ^* .

Пример

Пусть
$$P = ab$$
. Тогда $\sigma(\epsilon) = 0, \sigma(ccaca) = 1, \sigma(ccab) = 2$.

Построение автомата, распознающего строку

конечный автомат, соответствующий образцу P[1..m]:

- ullet Множество состояний $Q=\{0,1,\ldots,m\}$
- Начальное состояние $q_0 = 0$, единственное допускающее состояние m
- ullet Функция переходов $\delta(q,a) = \sigma(P_q a)$.

Функция переходов обеспечивает $\phi(T_i) = \sigma(T_i)$, т.е. после обработки префикса длины i произвольной строки T автомат оказался в состоянии с таким номером $k = \phi(T_i)$, что $k = \sigma(T_i)$ равно длине наибольшего префикса P_k образца P, являющегося суффиксом T_i $\phi(T_i) = m$ означает, что последовательность $P = P_m$ входит в строку T со сдвигом i-m.

Пример: автомат, допускающий строки, оканчивающиеся на *ababaca*

	Пер			
Состояние	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6	7	0	0	а
7	1	2	0	

Результат применения к строке T=abababacaba

 $\delta(0,a)=\sigma(\epsilon a)=1$, но $\delta(0,b)=\sigma(\epsilon b)=0$. $\delta(5,a)=\sigma(P_5a)=\sigma(ababaa)=1$, т.к. $P_1=a$ \Box ababaa, но $P_2=ab$ $\not \Box$ ababaa. $\delta(5,b)=\sigma(P_5b)=\sigma(ababab)=4$, т.к. abab \Box ababab, но ababa $\not \Box$ ababab.

Поиск с помощью конечного автомата

```
FINITEAUTOMATONMATCHER (T, \delta, m)

1 n \leftarrow |T|

2 q \leftarrow 0

3 for i \leftarrow 1 to m

4 do q \leftarrow \delta(q, T[i])

5 if q = m

6 then s \leftarrow i - m

7 print( "Образец входит со сдвигом s" )
```

- Предполагается, что таблица (функция) переходов конечного автомата, соответствующего искомой строке, уже построена
- Сложность O(n)

Корректность

Лемма

Для любой строки x и символа а выполняется $\sigma(xa) \leq \sigma(x) + 1$.

Доказательство.

Предположим, что $\sigma(xa) > \sigma(x) + 1$. Отбросим последний символ a от наибольшего суффикса xa, являющегося префиксом P. Это даст суффикс строки x, имеющий длину больше $\sigma(x)$ и являющийся префиксом P, что противоречит определению $\sigma(x)$.

Лемма

Пусть для некоторой строки x $\sigma(x)=q$. Тогда для любого символа а $\sigma(xa)=\sigma(P_qa)$.

Доказательство.

В силу предыдущей леммы $\sigma(xa) \leq q+1$. Поэтому значение $\sigma(xa)$ не изменится, если оставить от xa только последние q+1 символов. Но последние q символов строки x совпадают с P_q , т.к. $\sigma(x)=a$.

Корректность

Теорема

Пусть ϕ — функция конечного состояния автомата, построенного для поиска подстроки P. Тогда для произвольного текста T

$$\phi(T_i) = \sigma(T_i), i = 0, 1, \ldots, n.$$

Доказательство.

Для i=0 утверждение очевидно. Предположим, что она верна для некоторого i и $q=\phi(T_i)=\sigma(T_i)$. Тогда $\phi(T_{i+1})=\phi(T_iT_i[i+1])=\delta(\phi(T_i),T[i+1])=\delta(\sigma(T_i),T[i+1])=\sigma(T_iT_i[i+1])=\sigma(T_iT_i[i+1])=\sigma(T_iT_i)$.

Таким образом, автомат после прочтения i символов текста оказывается в состоянии q тогда и только тогда, когда P_q является самым длинным суффиксом строки T_i , являющимся одновременно префиксом строки P.

Построение функции переходов

```
COMPUTE TRANSITION FUNCTION (P, \Sigma)

1 m \leftarrow |P|

2 for q \leftarrow 0 to m

3 do for \forall a \in \Sigma

4 do k \leftarrow \min(m+1, q+2)

5 repeat

6 k \leftarrow k-1

7 until P_k \supseteq P_q a

8 \delta(q, a) \leftarrow k

9 return \delta
```

- перебор всех пары (q, a) аргументов функции и для каждого из них находит максимальное значение $k : P_k \supset P_a a$.
- Два внешних цикла производят $m|\Sigma|$ итераций, внутренний цикл может выполняться не более m+1 раз, и сравнение строк требует O(m) операций. Сложность $O(m^3|\Sigma|)$

Алгоритм Кнута-Морриса-Пратта: идея

- Попытаемся избавиться от дорогостоящей процедуры построения функции переходов.
- Предположим, что для некоторого сдвига s оказалось, что первые q символов образца P совпадают со строкой T, но в следующем имеется расхождение. Эту позволяет чтобы исключить некоторые последующие заведомо недопустимые сдвиги

Пример

- поиск подстроки *ababaca* в строке *bacb*ababa*abcbab*
- При s=4 наблюдается совпадение первых 5 символов образца с соответствующими символами строки
- Нет смысла рассматривать s=5, т.к. в этом случае a, первый символ образца, будет сопоставляться с 6 символом строки, который, как уже известно, совпадает со 2 символом образца, равным b. Этого нельзя сказать про случай s=6.

Алгоритм Кнута-Морриса-Пратта

• При обнаружении P[1..q] = T[s+1..s+q] необходимо найти наименьшее значение сдвига s'>s, для которого

$$P[1..k] = T[s' + 1..s' + k], s' + k = s + q.$$
(1)

- s'+k=s+q отражает тот факт, что решение о пропуске сдвигов с s+1 до s' принимается исключительно на основе уже проанализированных символов
- ullet В лучшем случае s'=s+q можно будет отбросить сдвиги $s+1,\ldots,s+q-1$
- При сравнении образца со строкой можно игнорировать первые k его символов, т.к. заведомо выполняется P[1..k] = T[s+1..s+k] = T[s'+1..s'+k].
- В силу (1) получаем, что T[s'+1..s'+k] суффикс строки P_q . Поэтому число k в (1) является наибольшим числом k < q, таким что P_k является суффиксом P_q
- Префиксной функцией, для строки P[1..m], называется функция $\pi:\{1,2,\ldots,m\} o\{0,1,\ldots,m-1\}$, определенная как

$$\pi[q] = \max\{k | k < q \land P_k \sqsupset P_q\}.$$

Префиксная функция

$$\pi[q] = \max\{k|k < q \land P_k \sqsupset P_q\}.$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	а	b	а	b	а	b	а	b	С	а
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

Алгоритм Кнута-Морриса-Пратта: построение префиксной функции

ComputePrefixFunction(P)

```
1 m \leftarrow |P|

2 \pi[1] \leftarrow 0

3 k \leftarrow 0

4 for q \leftarrow 2 to m

5 do while k > 0 \land P[k+1] \neq P[q]

6 do k \leftarrow \pi[k]

7 if P[k+1] = P[q]

then k \leftarrow k+1

9 \pi[q] \leftarrow k
```

- k на каждой итерации FOR увеличивается не более чем на 1. Это происходит O(m) раз
- ullet на каждой итерации WHILE уменьшается не менее чем на 1
- k никогда не становится отрицательным
- ullet \Rightarrow Общее число итераций в цикле WHILE = O(m)
- Сложность O(m)

return π

10

Корректность алгоритма ComputePrefixFunction I

Пусть $\pi^*[q] = \{q, \pi[q], \pi^2[q], \dots, \pi^t[q]\}$, где $\pi^i[q] = \pi[\pi^{i-1}[q]], \pi^0[q] = q$ и $\pi^t[q] = 0$. Такое число t всегда существует, т.к. $\forall j: \pi[j] < j$.

Лемма (Об итерациях префикс-функции)

Пусть P- строка длины m с префикс-функцией π . Тогда $\pi^*[q] = \{k | k < q, P_k \sqsupset P_q\}.$

Доказательство.

Покажем, что $i \in \pi^*[q] \Rightarrow P_i \sqsupset P_q$. Действительно, $P_{\pi[i]} \sqsupset P_i$, т.е. . . . $P_{\pi[\pi[i]]} \sqsupset P_{\pi[i]} \sqsupset P_i$. Покажем и обратное, т.е. $\{k|P_k \sqsupset P_q\} \subset \pi^*[q]$. Предположим, что это не так. Пусть j — наибольшее число из $\{k|k < q, P_k \sqsupset P_q\} \setminus \pi^*[q]$. Ясно, что j < q. Т.к. $j \notin \pi^*[q]$, существует $j' \in \pi^*[q] :: j' > j > \pi[j']$. Строки P_j и $P_{j'}$ являются суффиксами P_q . Тогда $P_j \sqsupset P_{j'}$, причем P_j является префиксом строки P, являющимся суффиксом строки $P_{j'}$. Он имеет длину больше $\pi[j']$, что противоречит определению функции π .

Корректность алгоритма ComputePrefixFunction II

Лемма

Пусть P- строка длины m, имеющая префикс-функцию π . Тогда $\pi[q]-1\in\pi^*[q-1]$ для всех $q=1,2,\ldots,m$, для которых $\pi[q]>0$.

Доказательство.

Если $k=\pi[q]>0$, то $P_k \sqsupset P_q$, откуда следует, что $P_{k-1} \sqsupset P_{q-1}$. В силу предыдущей леммы $k-1 \in \pi^*[q-1]$.

Для $q=2,3,\ldots,m$ определим множества $E_{q-1}=\{k|k\in\pi^*[q-1]\land P[k+1]=P[q]\}$, т.е. множества таких величин k, что P_k — суффикс P_{q-1} и за этими префиксами идут одни и те же символы P[k+1], так что $P_{k+1}\sqsupset P_q$.

Корректность алгоритма ComputePrefixFunction III

Лемма

Пусть P — строка длины m с префикс-функцией π . Тогда для всех $q=2,3,\ldots,m$ имеем

$$\pi[q]=egin{cases} 0, & extit{ec. пи } E_{q-1}=\emptyset \ 1+\max\{k\in E_{q-1}\}, & extit{ec. пи } E_{q-1}
et\in \emptyset \end{cases}$$

Доказательство.

Если $r=\pi[q]\geq 1$, то P[r]=P[q]; кроме того, в силу предыдущей леммы $r-1\in\pi^*[q-1]$, откуда $r-1\in E_{q-1}$. Следовательно, если $E_{q-1}=\emptyset$, то $\pi[q]=0$. В противном случае $\pi[q]\leq 1+\max\{k\in E_{q-1}\}$. С другой стороны, если $k\in E_{q-1}$, то $P_{k+1}\supset P_q$, откуда $\pi[q]\geq k+1$.

Корректность алгоритма ComputePrefixFunction IV

```
ComputePrefixFunction(P)
  1 m \leftarrow |P|
  2 \quad \pi[1] \leftarrow 0
  3 \quad k \leftarrow 0
      for a \leftarrow 2 to m
      do while k > 0 \land P[k+1] \neq P[q]
  6
       do k \leftarrow \pi[k]
           if P[k+1] = P[q]
           then k \leftarrow k+1
           \pi[q] \leftarrow k
 10
       return \pi
```


Корректность алгоритма ComputePrefixFunction V

Теорема

При входе в цикл FOR функции ComputePrefixFunction выполнено равенство $k=\pi[q-1].$

Доказательство.

При q=2 это равенство обеспечивается на этапе инициализации. Предположим, что утверждение теоремы верно для некоторого q. Рассмотрим результат выполнения очередной итерации этого цикла. В строках 5 и 6 ищется наибольший элемент множества E_{q-1} . Если это множество непусто (т.е. P[k+1]=P[q] после выхода из цикла), то присваивание на строке 9 приведет в силу предыдущей леммы к $k=\pi[q]$. В противном случае окажется, что $\pi[q]=k=0$, что также верно.

Алгоритм Кнута-Морриса-Пратта: поиск

```
KMPMATCH(T, P)
  1 n \leftarrow |T|
  2 m \leftarrow |P|
  3 \pi \leftarrow \text{ComputePrefixFunction}(P)
  4 q \leftarrow 0
      for i \leftarrow 1 to n
       do while q > 0 \land P[q+1] \neq T[i]
           do q \leftarrow \pi[q]
  8
         if P[q+1] = T[i]
  9
              then q \leftarrow q + 1
               q=m then print( "вхождение со сдвигом i-m" ) q=egin{cases} \sigma(T_{i-1}), & 	ext{если } \sigma(T_{i-1}) < m \ \pi[m], & 	ext{если } \sigma(T_{i-1}) = m \end{cases}
 10
         if a = m
 11
                       q \leftarrow \pi[q]
 Сложность O(n)
```

Для обоснования корректности надо доказать, что для всех i

- В момент исполнения строк 10–12 справедливо $q = \sigma(T_i)$.
- Перед каждым исполнением тела цикла выполнено

$$g = egin{cases} \sigma(\mathcal{T}_{i-1}), & ext{ec.nu } \sigma(\mathcal{T}_{i-1}) < m \ \pi[m], & ext{ec.nu } \sigma(\mathcal{T}_{i-1}) = m \end{cases}$$

Алгоритм Кнута-Морриса-Пратта: корректность KMPMatch I

- Суффикс-функция $\sigma(x)$ равна наибольшему числу k, такому что $P_k \sqsupset x$.
- При i=1 второе утверждение выполняется
- Покажем, что для всех i из второго утверждения вытекает первое. Предположим, что это так при некотором i. Из леммы об итерациях ПФ вытекает, что в строках 6–7 алгоритма перебираются в убывающем порядке элементы множества $S=\{k< m|P_k\sqsupset P_q\}$. Перебор обрывается при нахождении наибольшего $k\in S$, для которого P[k+1]=T[i], или при k=0 и $P[1]\neq T[i]$
 - Согласно инд. предположению, в первом случае начальное значение q равно либо $\sigma(T_{i-1})$, либо $\pi[m]$, т.е. наибольшему $k:P_k \sqsupset P \sqsupset T_{i-1}$, т.е. после окончания цикла q равно наибольшему k, для которого $P_k \sqsupset T_{i-1}$. Отсюда вытекает, что $P_{k+1} \sqsupset T_i$, т.е. $\sigma(T_i) = k+1$, и это значение присваивается переменной q после исполнения строки q
 - Во втором случае после выхода из цикла на строках 6–7 имеем $\sigma(T_i) = 0$ и q = 0. Таким образом, первое утверждение выполнено.

Алгоритм Кнута-Морриса-Пратта: корректность KMPMatch II

- ullet Если же утв. 1 справедливо для некоторого i < n, то второе утверждение верно для i+1.
- На каждой итерации цикла проверка на строке 10 происходит при тех же условиях, что и на строке 5 в алгоритме *FiniteAutomatonMatcher*, что и гарантирует правильность алгоритма Кнута-Морриса-Пратта
- Алгоритм KMPMatcher выполняется за O(n) операций
- Алгоритм ComputePrefixFunction требует O(m) операций
- ullet Общая сложность алгоритма КМП равна O(m+n)

Выводы

- Алгоритм Рабина-Карпа
- Поиск подстрок может быть выполнен с помощью конечного автомата
- Алгоримт Кнута-Морриса-Пратта позволяет выполнить поиск подстрок со сложностью O(m+n)