Machin	Semester	5					
Course Code	BCIL504	CIE Marks	50				
Teaching Hours/Week(L: T:P)	0:0:2	SEE Marks	50				
Credits	01	Exam Hours	2				
Examination type(SEE)	Practical						

Course outcomes:

At the end of the course the student will be able to:

- 1. Demonstrate proficiency in using Python libraries to carry out an end-to-end machine learning project.
- 2. Implement and evaluate various machine learning algorithms.
- 3. Apply dimensionality reduction techniques and understand their impact on machine learning models.
- 4. Implement unsupervised learning techniques for clustering.

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	-	3	-	-	-	-	-	-	2	2	2
CO2	2	2	2	2	3	-	-	-	-	-	-	-	2	2
CO3	2	2	2	3	2	-	-	-	-	-	-	-	3	3
CO4	2	2	2	2	3	1	1	1	-	1	ı	-	2	2

Mapping Strength: Strong-3 Medium -2 Low -1

Sl. No	CO's	Experiments
1	CO1	Introduction to Python for Machine Learning
		Objective : Install necessary libraries and set up the environment for machine learning in Python.
		Tasks : Install Anaconda (or another Python distribution suitable for data science).
		Create a new Python environment specifically for machine learning projects.
		Write a Python script to install numpy, pandas, matplotlib, scikit-learn, and tensor flow. Import these libraries and print their versions.
2	CO1	End-to-End Machine Learning Project
		Objective: Work through a complete machine learning project.
		Tasks : Use a real-world dataset, perform data cleaning, feature engineering, model training, and evaluation.
3	CO2	Implementing Bayesian Decision Theory
		Objective: Implement Bayesian Decision Theory for classification.
		Tasks : Write a Python program to classify a given dataset using Bayesian Decision Theory.
4	CO2	Classification Using MNIST Dataset
		Objective: Implement a classifier for the MNIST dataset.
		Tasks : Train a binary classifier on the MNIST dataset and evaluate its
5	CO2	performance using various metrics. Training and Evaluating Linear Regression Models
	202	Objective: Implement linear regression and evaluate its performance.
		Tasks : Use a suitable dataset to train a linear regression model and evaluate its performance using metrics such as RMSE and R ² score.
6	CO2	Regularized Linear Models
		Objective: Implement Ridge and Lasso regression.
		Tasks : Compare the performance of Ridge and Lasso regression on a dataset and analyze the effect of regularization.

7	CO3	Dimensionality Reduction Techniques
		Objective: Apply PCA and LDA for dimensionality reduction.
		Tasks : Implement PCA and LDA on a high-dimensional dataset and visualize the
		results.
8	CO2	Support Vector Machines
		Objective: Train and evaluate SVM classifiers.
		Tasks : Implement linear and kernelized SVMs on a given dataset and compare
		their performance.
9	CO2	Decision Trees and Random Forests
		Objective : Implement and evaluate decision trees and random forests.
		Tasks: Train a decision tree and a random forest classifier on a dataset, visualize
		the trees, and evaluate their performance.
10	CO4	Clustering Algorithms
		Objective: Implement various clustering algorithms.
		Tasks : Apply K-means, Spectral, and Hierarchical clustering on a dataset and compare the clustering results.

Textbook:

- 1. Introduction to Machine Learning by EthemAlpaydin
- 2. Hands-on Machine Learning with Scikit-Learn and TensorFlow by AurélienGéron

Virtual Labs(CSE):

1. https://cse01-iiith.vlabs.ac.in/ https://cse01-iiith.vlabs.ac.in/ https://cse01-iiith.vlabs.ac.in/ https://cse01-iith.vlabs.ac.in/ https://cse01-iith.vlabs.a