Week of May 31, 2017

- 1. A firm can employ two inputs with the production function $y=2z_1+5z_2$, where one could think of z_1 as low-skilled workers and z_2 as high skilled workers. Let $w_1=4$ and $w_2=8$. The firm is in a long-run situation.
 - How can one tell that one of these workers is low skilled and one is high skilled?
 - How much of each input will the firm use? What will be the long run total cost function, C(y)?
 - Draw an isocost-isoquant diagram showing the firm's choice when y=10.
 - Re-calculate the firm's choice when w_2 rises to \$12. Show on a diagram. Show that the cost of producing y=10 is higher now.
- 2. A firm produces widgets, y with the production function $y=(z_1 z_2)^{1/2}$, where z_1 is workers and z_2 is robots. Let $w_1=18$ and $w_2=8$.
 - Accurately draw the isoquant for y=6.
 - Assume the firm is in a short run where z₂=9. Find the short-run cost curves: TC, VC, F, AVC, AFC, AC. Accurately draw these along with MC=40y (you will need 2 diagrams). At what y is AC=MC?
 - When y=12, how much z₁ will the firm use? What will its total cost be?
 - Assume the firm is in different short run where z₂=16. When y=12, how much z₁ will the firm use? What will its total cost be? Is this higher or lower than before?
- 3. Suppose a firm has the production function y=(z₁z₂)^a, where "a" is a constant that is bigger than 0 but no bigger than 1. Let w₁=w₂=1. The firm is in a long-run situation. Given: TRS=z₂/z₁, regardless of a.
 - For the cases of a=1/4, 1/2 and 1, explain what are the returns to scale.
 - For the cases of a=1/4, 1/2 and 1, find the input demands for each input, and the C(y).
 - For each case, draw the C(y) and LAC(y) functions. What do you notice about the shapes of these functions and the returns to scale?