```
import numpy as np
In [25]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
In [2]: mData = pd.read csv('Data Sets/Sloan Digital Sky Survey DR14/Skyserver SQL2 27 2018 6 51 39 PM.csv')
         #printing the shape of the dataset
         print('The Shape of The Data ',mData.shape)
         The Shape of The Data (10000, 18)
In [4]: mData.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 18 columns):
         objid
                      10000 non-null float64
                      10000 non-null float64
         ra
                      10000 non-null float64
         dec
                      10000 non-null float64
         11
                      10000 non-null float64
         g
                      10000 non-null float64
         r
         i
                      10000 non-null float64
                      10000 non-null float64
                      10000 non-null int64
         run
                      10000 non-null int64
         rerun
                      10000 non-null int64
         camcol
         field
                      10000 non-null int64
         specobjid
                      10000 non-null float64
         class
                      10000 non-null object
         redshift
                      10000 non-null float64
                      10000 non-null int64
         plate
                      10000 non-null int64
         mjd
         fiberid
                      10000 non-null int64
         dtypes: float64(10), int64(7), object(1)
         memory usage: 1.4+ MB
```

```
In [23]: Y=mData['class']
X=mData.drop(columns=['class','objid','rerun'])
X.shape
Out[23]: (10000, 15)
```

Data Visualization

Name: class, dtype: int64

```
In [16]: #Target Distribution
    print(Y.value_counts())
    sns.countplot(Y)

GALAXY     4998
    STAR     4152
    QSO     850
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x110449320>


```
In [26]: #histogram for all features
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.ra)
         plt.title("ra")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.distplot(X.dec)
         plt.title("dec")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.distplot(X.u)
         plt.title("u")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.g)
         plt.title("g")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.distplot(X.r)
         plt.title("r")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.distplot(X.i)
         plt.title("i")
         plt.figure(3,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.z)
         plt.title("z")
         plt.figure(3,figsize=[15,5])
```

```
plt.subplot(1,3,2)
sns.distplot(X.run)
plt.title("run")
plt.figure(3,figsize=[15,5])
plt.subplot(1,3,3)
sns.distplot(X.camcol)
plt.title("camcol")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,1)
sns.distplot(X.field)
plt.title("field")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,2)
sns.distplot(X["specobjid"])
plt.title("specobjid")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,3)
sns.distplot(X.redshift)
plt.title("redshift")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,1)
sns.distplot(X.plate)
plt.title("plate")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,2)
sns.distplot(X.mjd)
plt.title("mjd")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,3)
sns.distplot(X.fiberid)
plt.title("fiberid")
```

Out[26]: Text(0.5,1,'fiberid')

In [38]: print(X.describe())

	ra	dec	u	g	r	\
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
mean	175.529987	14.836148	18.619355	17.371931	16.840963	
std	47.783439	25.212207	0.828656	0.945457	1.067764	
min	8.235100	-5.382632	12.988970	12.799550	12.431600	
25%	157.370946	-0.539035	18.178035	16.815100	16.173333	
50%	180.394514	0.404166	18.853095	17.495135	16.858770	
75%	201.547279	35.649397	19.259232	18.010145	17.512675	
max	260.884382	68.542265	19.599900	19.918970	24.802040	
	i	z	run	camcol	field	\
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
mean	16.583579	16.422833	981.034800	3.648700	302.380100	
std	1.141805	1.203188	273.305024	1.666183	162.577763	
min	11.947210	11.610410	308.000000	1.000000	11.000000	
25%	15.853705	15.618285	752.000000	2.000000	184.000000	
50%	16.554985	16.389945	756.000000	4.000000	299.000000	
75%	17.258550	17.141447	1331.000000	5.000000	414.000000	
max	28.179630	22.833060	1412.000000	6.000000	768.000000	
	specobjid	redshift	plate	mjd	fiberid	
count	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	
mean	1.645022e+18	0.143726	1460.986400	52943.533300	353.069400	
std	2.013998e+18	0.388774	1788.778371	1511.150651	206.298149	
min	2.995780e+17	-0.004136	266.000000	51578.000000	1.000000	
25%	3.389248e+17	0.000081	301.000000	51900.000000	186.750000	
50%	4.966580e+17	0.042591	441.000000	51997.000000	351.000000	
75%	2.881300e+18	0.092579	2559.000000	54468.000000	510.000000	
max	9.468830e+18	5.353854	8410.000000	57481.000000	1000.000000	

In [27]: #Heat map for to understand the correlation between the features
 plt.figure(figsize=[30,30])
 sns.heatmap(X.corr(), annot = True)

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d8fc4a8>

Drawing the reation between the highly corelated features

- 0.00

- -0.25

```
In [28]: sns.pairplot(mData[["u", "g", "r","i","z","class"]],hue='class')
```

Out[28]: <seaborn.axisgrid.PairGrid at 0x1a1e079fd0>

In [33]: sns.pairplot(mData[["mjd", "specobjid",'plate',"class"]],hue='class')

Out[33]: <seaborn.axisgrid.PairGrid at 0x1a20d1fe10>

In [40]: n=sns.pairplot(mData[["run", "dec", "class"]], hue='class')


```
In [36]: sns.pairplot(mData[["ra", "camcol", "class"]], hue='class')
```

Out[36]: <seaborn.axisgrid.PairGrid at 0x1a20af34e0>


```
In [32]: #histogram for numeric attributes
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['ra'])
         plt.title("ra")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.boxplot(x = Y, y = X['dec'])
         plt.title("dec")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.boxplot(x = Y, y = X['u'])
         plt.title("u")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['g'])
         plt.title("g")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.boxplot(x = Y, y = X['r'])
         plt.title("r")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.boxplot(x = Y, y = X['i'])
         plt.title("i")
         plt.figure(3,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['z'])
         plt.title("z")
         plt.figure(3,figsize=[15,5])
```

```
plt.subplot(1,3,2)
sns.boxplot(x = Y, y = X['run'])
plt.title("run")
plt.figure(3,figsize=[15,5])
plt.subplot(1,3,3)
sns.boxplot(x = Y, y = X['camcol'])
plt.title("camcol")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,1)
sns.boxplot(x = Y, y = X['field'])
plt.title("field")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,2)
sns.boxplot(x = Y, y = X['specobjid'])
plt.title("specobjid")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,3)
sns.boxplot(x = Y, y = X['redshift'])
plt.title("redshift")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,1)
sns.boxplot(x = Y, y = X['plate'])
plt.title("plate")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,2)
sns.boxplot(x = Y, y = X['mjd'])
plt.title("mjd")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,3)
sns.boxplot(x = Y, y = X['fiberid'])
plt.title("fiberid")
```

Out[32]: Text(0.5,1,'fiberid')

In []: