Rappels sur les systèmes complets d'événements

▶ Système complet d'événements : (principe de la disjonction des cas) famille d'événements $(A_1, \ldots A_n)$ qui sont :

- \star) collectivement exhaustifs: $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$
- ▶ Exemple pour une variable discrète $p.ex.\ X(\Omega) = \{0,...,n\}$ un système complet est formé des év^{ts} : $\forall k = 0...n,\ A_k = [X = k]$ (Conditionnement selon la valeur de X)
- ightharpoonup Formule des probabilités totales qui décompose E dans le système complet :

$$\mathbb{P}(E) = \mathbb{P}(A_1 \cap E) + \mathbb{P}(A_2 \cap E) + \ldots + \mathbb{P}(A_n \cap E)
= \mathbb{P}(A_1) \mathbb{P}_{A_1}(E) + \mathbb{P}(A_2) \mathbb{P}_{A_2}(E) + \ldots + \mathbb{P}(A_n) \mathbb{P}_{A_n}(E)$$

Notion de chaîne de Markov

On considère

- une succession d'épreuves aléatoires $\forall n \in \mathbb{N}$: qui conduit à
- une évolution probabiliste sur un **ensemble fini d'états** (souvent 2 ou 3) : (p.ex.) A, B, C
- décrite par une suite de systèmes complets d'événements

 A_n, B_n, C_n

- l'état probabiliste au temps n est donné par les probabilités de chaque état p_n, q_n, r_n , on pose le vecteur de probabilités $\pi_n = (p_n, q_n, r_n) = (\mathbb{P}(A_n), \mathbb{P}(B_n), \mathbb{P}(C_n))$
- les proba. de transition $(p.ex \mathbb{P}_{A_n}(B_{n+1}))$ forment la matrice de transition P
- ▶ la formule des probabilités totales s'écrit : $\pi_{n+1} = P\pi_n$: il vient donc $\pi_n = P^n\pi_0$.

Matrice de transition

$$P = \begin{bmatrix} p_{A \to A} & p_{B \to A} & p_{C \to A} \\ p_{A \to B} & p_{B \to B} & p_{C \to B} \\ p_{A \to C} & p_{B \to C} & p_{C \to C} \end{bmatrix}$$

Si la chaîne de Markov est décrite par une suite de variables aléatoires discrètes (X_n) , la **matrice** de transition est la matrice de la loi conditionnelle de X_{n+1} sachant X_n .

Rappel sur les suites arithmético-géométriques

Pour étudier une suite arithmético-géométrique de relation $\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$:

- Résolution de l'équation du point fixe $\ell = a\ell + b$
- ► Centrage sur ℓ de (u_n) La suite $(u_n - \ell)$ est géométrique de raison a, car : $u_{n+1} = au_n + b$ $\ell = a\ell + b$ $u_{n+1} - \ell = a(u_n - \ell)$
- Expression du terme général On a donc $u_n \ell = (u_0 \ell)a^n$ d'où u_n .