Getting Started with NXP MIMXRT1050-EVK and MIMXRT1060-EVK Boards

If you do not have any MIMXRT1050-EVKB or MIMXRT1060-EVK boards, visit the AWS Partner Device Catalog to purchase them from our partner, following links above. Use a USB cable to connect your MIMXRT1050-EVK or MIMXRT1060-EVK boards to your computer.

Before you begin, configure the AWS IoT and your Amazon FreeRTOS download to connect your device to the AWS Cloud. See <u>prerequisites</u> for instructions. In this tutorial, the path to the Amazon FreeRTOS download directory is called BASE_FOLDER.

Hardware requirements

- 1. MIMXRT1050-EVKB or MIMXRT1060-EVK board
- 2. Embedded Artists Type 1DX M.2 EVB Wi-Fi module
- 3. Murata uSD-M.2 Adapter Kit

Setting Up Your Environment

Two toolchains are supported on the MIMXRT1050-EVK/MIMXRT1060-EVK boards: IAR Embedded Workbench and GNU Arm Embedded Toolchain.

Before you begin, install one of these IDEs.

To install IAR Embedded Workbench for ARM:

4. Browse to Software for NXP Kits and select Download Software.

Note

IAR Embedded Workbench for ARM requires Microsoft Windows.

- 5. Unzip and run the installer. Follow the prompts.
- 6. In License Wizard, select Register with IAR Systems to get an evaluation license.

To install the GNU Arm Embedded Toolchain:

- 1. GNU Arm Embedded toolchain is supported for Windows and Linux OS.
- Download and run the GNU Arm Embedded toolchain installer from https://launchpad.net/gcc-arm-embedded on Windows OS.
 Extract gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2 archive on Linux OS.
- 3. Download and install cmake from https://cmake.org/.
- 4. Create the "ARMGCC_DIR" environment variable which contains the GCC location on Windows OS.

For example:

On Linux OS execute command "export ATMGCC_DIR=~/Downloads/ gcc-arm-none-eabi-8-2018-q4-major-linux" and append the command into ~/.bashrc file.

 Builder scripts are located in "armgcc" project subdirectory. Run the "build_flexspi_nor_debug.bat" on Windows OS and "source build flexspi nor debug.sh" on Linux OS.

Connecting Wi-Fi module

Plug the muRata Wi-Fi uSDAdapter to the micro-SD card slot on the MIMXRT1050-EVK or MIMXRT1060-EVK boards.

Connecting JTAG Debugger

On MIMXRT1060-EVK set dip switch SW7 in position: OFF, OFF, ON, OFF to enable boot from QSPI Flash (U33).

On MIMXRT1050-EVK set dip switch SW7 in position: OFF, ON, ON, OFF to enable boot from HyperFlash (U19).

Plug a micro-USB cable to the debug USB port (J28 for MIMXRT1050-EVK, J41 for MIMXRT1060-EVK). Your PC OS should recognize and set up a new COM Port device that is used as a default UART for the development board. The debugger uses the preset CMSIS-DAP firmware. However, it is possible also to use J-Link OpenSDA - Board-Specific Firmware, available at https://www.segger.com/downloads/jlink/.

Building and Running Amazon FreeRTOS Demo Project

Import the Amazon FreeRTOS Demo into Your IDE

To import the Amazon FreeRTOS sample code into the IAR Embedded Workbench IDE:

- 1. Open IAR Embedded Workbench, and select **Open Workspace** from the **File** menu.
- 2. Enter <BASE_FOLDER>\demos\nxp\<BOARD>\iar into the search-directory text box and select aws_demos.eww.
- 3. From the **Project** menu, select **Rebuild All**.

Build the Amazon FreeRTOS sample code using CMake and the GNU Arm Embedded Toolchain.

1. Enter the <BASE_FOLDER>\demos\nxp\<BOARD>\armgcc project subdirectory and run
the "build_flexspi_nor_debug.bat" on Windows OS or "source
build_flexspi_nor_debug.sh" on Linux OS.

Running Amazon FreeRTOS Demo Project

- Configure the Amazon FreeRTOS Demo Project by following the prerequisite steps found here:
 - a. https://docs.aws.amazon.com/freertos/latest/userguide/freertos-account-and-permissions.html
 - b. https://docs.aws.amazon.com/freertos/latest/userguide/get-started-freertos-thing.html
 - c. https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html
- 2. Connect the USB port on the NXP board to your host computer, open a terminal program, and connect to the port identified as the USB Serial Device.
- 3. In your IDE, select **Build** from the **Project** menu.
- 4. If you are using IAR Embedded Workbench:
 - a. From the **Project** menu, select **Download and Debug**.
 - b. From the **Debug** menu, select **Start Debugging**.
 - c. When the debugger stops at the breakpoint in main, select **Go** from the **Debug** menu.

Note

If a **J-Link Device Selection** dialog box opens, select **OK** to continue.

5. If you are using the GNU Arm Embedded Toolchain with JLink:

- a. Download and install Ozone The J-Link Debugger from https://www.segger.com/downloads/jlink/#Ozone.
- - <BASE_FOLDER>\demos\nxp\<BOARD>\armgcc\<TARGET>\aws_demos
 and click "Finish".
- c. Run "Debug > Start Debugging > Download and Reset Program".
- 6. When the debugger stops at the breakpoint in main(), select **Continue** from the **Debug** menu.

Use the MQTT client in the AWS IoT console to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client:

- 1. Sign in to the AWS IoT console.
- 2. In the navigation pane, select **Test** to open the MQTT client.
- 3. In **Subscription topic**, enter freertos/demos/echo, and select **Subscribe to** topic.