Assignment 2: Data Visualization

Due beginning of class: Monday September 25

6. **Graduate students** (bonus undergraduates): Suppose we have *n*-dimensional real and linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$ and \mathbf{y} . The vector \mathbf{y} is the sum of two *n*-dimensional real vectors μ and \mathbf{r}

$$\mathbf{y} = \mu + \mathbf{r}$$

where μ is restricted to be a linear combination of the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$. That is

$$\mu = \theta_1 \times \mathbf{x}_1 + \theta_2 \times \mathbf{x}_2 + \dots + \theta_p \times \mathbf{x}_p$$

for some unknown real constants $\theta_1, \theta_2, \dots, \theta_p$, or equivalently

$$\mu = \mathbf{X}\theta$$

where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_p]$ is an $n \times p$ matrix and $\theta = (\theta_1, \theta_2, \dots, \theta_p)^T$ is a $p \times 1$ vector.

(a) (5 marks) For any \mathbf{y} , neither μ nor \mathbf{r} are uniquely defined. Suppose we choose particular vectors $\hat{\mu}$, and $\hat{\mathbf{r}}$ (with $\mathbf{y} = \hat{\mu} + \hat{\mathbf{r}}$) to be such that they are orthogonal to one another (whatever values any θ_i take). That is, $\hat{\mu}^T \hat{\mathbf{r}} = 0$.

Prove that this additional constraint implies that

$$\widehat{\mu} = \mathbf{P}\mathbf{y}$$

where $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ and hence show that $\hat{\mathbf{r}} = (\mathbf{I}_n - \mathbf{P})\mathbf{y}$.

 $\widehat{\mu}^T \widehat{\mathbf{r}} = 0$ (whatever values any θ_i take) $\implies \widehat{\mathbf{r}}$ is orthogonal to $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$. Hence:

$$\mathbf{X}^T \widehat{\mathbf{r}} = \begin{bmatrix} \mathbf{x}_1^T \widehat{\mathbf{r}} \\ \cdots \\ \mathbf{x}_p^T \widehat{\mathbf{r}} \end{bmatrix}$$

$$= \mathbf{0}$$

$$\mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widehat{\mathbf{r}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{0}$$

$$\mathbf{P} \widehat{\mathbf{r}} = \mathbf{0}$$

$$\mathbf{P} \mathbf{y} - \mathbf{P} \widehat{\mathbf{r}} = \mathbf{P} \mathbf{y}$$

$$\mathbf{P} \widehat{\mu} = \mathbf{P} \mathbf{y}$$

But we can simplify \mathbf{Pu} to:

$$\mathbf{P}\mu = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mu$$

$$= \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\theta$$

$$= \mathbf{X}\mathbf{I}_p\theta$$

$$= \mathbf{X}\theta$$

$$= \widehat{\mu}$$

 $\hat{\mu} = \mathbf{P}\mathbf{y}$. For the second proof:

$$\begin{array}{rcl} \mathbf{P}\mathbf{y} & = & \widehat{\mu} \\ & = & \mathbf{y} - \widehat{\mathbf{r}} \\ \widehat{\mathbf{r}} & = & \mathbf{y} - \mathbf{P}\mathbf{y} \\ & = & (\mathbf{I}_n - \mathbf{P})\mathbf{y} \end{array}$$

(b) (2 marks) Show that **P** is an idempotent matrix, that is that $\mathbf{P}^2 = \mathbf{P}$.

$$\begin{array}{rcl} \mathbf{P}^2 & = & \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \\ & = & \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{I}_p\mathbf{X}^T \\ & = & \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \\ & - & \mathbf{P} \end{array}$$

 \therefore **P** is an idempotent matrix.

(c) (2 marks) Show that if **P** is an idempotent matrix, then so must be \$ ({**I**}_n -{**P**})\$. Assume that **P** is an idempotent matrix.

$$(\mathbf{I}_n - \mathbf{P})^2 = (\mathbf{I}_n - \mathbf{P})(\mathbf{I}_n - \mathbf{P})$$

= $\mathbf{I}_n^2 - \mathbf{I}_n \mathbf{P} - \mathbf{P} \mathbf{I}_n + \mathbf{P}^2$
= $\mathbf{I}_n - \mathbf{P} - \mathbf{P} + \mathbf{P}$ since \mathbf{P} is idempotent
= $\mathbf{I}_n - \mathbf{P}$

- $(\mathbf{I}_n \mathbf{P})$ is an idempotent matrix.
 - (d) (2 marks) Show that $\hat{\mathbf{r}}$ is in fact orthogonal to $\hat{\mu}$.

We first show that P is symmetric:

$$\mathbf{P}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}(\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1})^{T}$$

$$= \mathbf{X}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}\mathbf{X}^{T}$$

$$= \mathbf{X}((\mathbf{X}^{T}\mathbf{X})^{T})^{-1}\mathbf{X}^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

$$= \mathbf{P}$$

 \therefore **P** is symmetric.

$$\widehat{\mu}^T \widehat{\mathbf{r}} = \widehat{\mu} \cdot \widehat{\mathbf{r}}$$

$$= \mathbf{P} \mathbf{y} \cdot (\mathbf{I}_n - \mathbf{P}) \mathbf{y}$$

$$= \mathbf{y} \cdot \mathbf{P} (\mathbf{I}_n - \mathbf{P}) \mathbf{y}$$

$$= \mathbf{y}^T (\mathbf{P} - \mathbf{P}^2) \mathbf{y}$$

$$= \mathbf{y}^T \mathbf{0} \mathbf{y}$$

$$= \mathbf{0}$$

- $\hat{\mathbf{r}}$ is orthogonal to $\hat{\mathbf{r}}$.
 - (e) (5 marks) Show that $\hat{\mu} = \mathbf{P}\mathbf{y}$ is the choice of μ which minimizes the squared length of \mathbf{r} . That is it minimizes $\mathbf{r}^T\mathbf{r} = (\mathbf{y} \mu)^T(\mathbf{y} \mu)$.