DEVOIR SURVEILLÉ N°07

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

Soient m et n des entiers naturels non nuls. On pose $G = \{z_1 z_2, (z_1, z_2) \in \mathbb{U}_m \times \mathbb{U}_n\}$.

- **1.** Dans cette question uniquement, on pose m=4 et n=6. Déterminer les éléments et le cardinal de \mathbb{U}_m , \mathbb{U}_m , $\mathbb{U}_m \cap \mathbb{U}_n$ et G.
- **2.** Montrer que $\mathbb{U}_{m \wedge n} \subset \mathbb{U}_m \cap \mathbb{U}_n$.
- 3. A l'aide d'une relation de Bézout entre m et n, montrer que $\mathbb{U}_m \cap \mathbb{U}_n \subset \mathbb{U}_{m \wedge n}$.
- **4.** Montrer que $G \subset \mathbb{U}_{m \vee n}$.
- **5.** A l'aide d'une relation de Bézout entre m et n, montrer que $\mathbb{U}_{m \vee n} \subset G$.

EXERCICE 2.

- 1. Soient a un entier strictement supérieur à 1 et n un entier naturel non nul. On suppose que $a^n + 1$ est un nombre premier.
 - **a.** Montrer que *a* est pair.
 - **b.** Soit m un diviseur impair positif de n. Il existe alors $k \in \mathbb{N}^*$ tel que n = km. Montrer que $a^k + 1$ divise $a^n + 1$ puis que m = 1.
 - **c.** Que peut-on en déduire sur n?
- **2.** On pose pour $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, $F_{n+1} = (F_n 1)^2 + 1$.
 - **b.** Montrer que pour tout $n \in \mathbb{N}^*$, $F_n 2 = \prod_{k=0}^{n-1} F_k$.
 - **c.** Soit $(m, n) \in \mathbb{N}^2$ tel que m < n. Montrer que $F_m \wedge F_n = 1$.
- 3. Soient $n \in \mathbb{N}$ et p un nombre premier divisant F_n . On considère l'ensemble

$$A = \{k \in \mathbb{N}^*, 2^k \equiv 1[p]\}$$

- **a.** Montrer que $2^{n+1} \in A$.
- **b.** Justifier que A admet un minimum que l'on notera m.
- **c.** En écrivant la division euclidienne de 2^{n+1} par m, montrer que m divise 2^{n+1} .
- **d.** Montrer que $m = 2^{n+1}$.
- **e.** Justifier que $p-1 \in A$.
- **f.** En déduire que $p \equiv 1[2^{n+1}]$.

EXERCICE 3.

On note $E = \mathbb{R}^3$ et on définit les ensembles

$$F = \{(x, y, z) \in \mathbb{R}^3, x - y + z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3, x + y - z = x - y - z = 0\}$$

- **1.** Montrer que F et G sont des sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.
- 3. Déterminer les projetés du vecteur (1,2,3) sur F parallélement à G et sur G parallélement à F.

EXERCICE 4.

On considère les équations différentielles

(
$$\mathscr{E}$$
): $y^{(4)} - y = 0$ (\mathscr{F}): $y'' - y = 0$ (\mathscr{G}): $y'' + y = 0$

On note E, F et G les ensembles respectifs des solutions à valeurs réelles de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) .

- **1.** Résoudre (\mathcal{F}) et (\mathcal{G}) .
- 2. Montrer que toute solution de (\mathcal{E}) est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- **3.** Montrer que $F \subset E$ et $G \subset E$.
- **4.** Montrer que E, F et G sont des sous-espaces vectoriels de l'espace vectoriel $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ des fonctions de classe \mathscr{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} .
- **5.** On se donne $f \in E$. Montrer que $f'' + f \in F$ et $f'' f \in G$.
- **6.** En déduire que $E = F \oplus G$.
- 7. En déduire la forme générale des solutions de (\mathcal{E}) .

EXERCICE 5.

On note

$$E = \{ u \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+4} + u_{n+2} + u_n = 0 \}$$

$$F = \{ u \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} + u_{n+1} + u_n = 0 \}$$

$$G = \{ u \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} - u_{n+1} + u_n = 0 \}$$

- **1.** Montrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- **2.** Montrer que $F \subset E$ et que $G \subset E$.
- 3. Montrer que F et G sont des sous-espaces vectoriels de E et en déterminer des familles génératrices.
- **4.** Soit $u \in E$. On définit les suites v et w par $v_n = u_{n+2} u_{n+1} + u_n$ et $w_n = u_{n+2} + u_{n+1} + u_n$ pour tout $n \in \mathbb{N}$. Montrer que $v \in F$ et que $w \in G$.
- **5.** Montrer que $E = F \oplus G$.
- 6. En déduire la forme générale des éléments de E.