Course "Automated Planning: Theory and Practice" Chapter 12: Delete Relaxation

Teacher: Marco Roveri - marco.roveri@unitn.it

M.S. Course: Artificial Intelligence Systems (LM)

A.A.: 2023-2024

Where: DISI, University of Trento

URL: https://bit.ly/3z0kGk8

1/23

Last updated: Monday 6th November, 2023

TERMS OF USE AND COPYRIGHT

USE

This material (including video recording) is intended solely for students of the University of Trento registered to the relevant course for the Academic Year 2023-2024.

SELF-STORAGE

Self-storage is permitted only for the students involved in the relevant courses of the University of Trento and only as long as they are registered students. Upon the completion of the studies or their abandonment, the material has to be deleted from all storage systems of the student.

COPYRIGHT

The copyright of all the material is held by the authors. Copying, editing, translation, storage, processing or forwarding of content in databases or other electronic media and systems without written consent of the copyright holders is forbidden. The selling of (parts) of this material is forbidden. Presentation of the material to students not involved in the course is forbidden. The unauthorised reproduction or distribution of individual content or the entire material is not permitted and is punishable by law.

The material (text, figures) in these slides is authored by Jonas Kvarnström and Marco Roveri.

Re-Achieving Conditions

• To make actions applicable and achieve goals:

(refuel)

• We often have to re-achieve what was already achieved

```
Example: Driving
     • Initial state: { (at A) (have-fuel) }
     • Goal: {(at D) (have-fuel)}
     • Actions: (drive ?x ?y) - must be in ?x, must follow road from ?x to ?y, must
                                  (have-fuel), consume fuel, is no longer in ?x, it is
                                  in ?y!
                                - must have no fuel, it make (have-fuel) true!
                (refuel)
     Solution:
                (drive A B)
                 (refuel)
                 (drive B C)
                 (refuel)
                 (drive C D)
```

Re-Achieving Conditions (cont.)

- Suppose conditions always remained achieved
 - If (have-fuel) is true, it always remains true

```
• New Solution: (drive A B)
(drive B C)
(drive C D)
```

Can we exploit this observation to construct a relaxation?

Positive and Negative Effects

• Let's consider the classical representation used in Ghallab et al. [2]:

```
    Precondition = set of literals that must be true
    Goal = set of literals that must be true
    Effects = set of literals (making atoms true or false)
```

• Suppose we have a solution <A1,A2>:

```
Initially (have-fuel)
Action drive ⇒ requires (have-fuel), makes (have-fuel) false
Action refuel ⇒ requires (not (have-fuel)), makes (have-fuel) true
```

- Symmetry
 - Positive effects can achieve positive conditions, un-achieve negative conditions
 - Negative effects can achieve negative conditions, un-achieve positive conditions

Positive and Negative Effects (cont.)

- Let's consider the PDDL's plain : strips level
 - Forbids negative preconditions/goals
 - Precondition = set of atoms (no negations!)
 - Goal = set of atoms (no negations!)
 - Effects = set of <u>literals</u> (making atoms true or false)
 - In this setting:
 - Positive effects are never "problematic":
 Adding more facts to the state can only make *more* preconds/goals satisfied
 - Only negative effects can "un-achieve" goals or preconditions
 - And negative effects can only "un-achieve" goals or preconditions:
 We never need them

DELETE RELAXATION

- Assuming positive conditions, let's remove all negative effects
 - Example: (unstack ?x ?y)
 - Before transformation:

• After transformation:

• A fact that is true stays true

Is this a relaxation?

- Positive conditions \Longrightarrow
 - No solution can *depend on a fact being false* in a visited state
 - No solution can *disappear* because we avoid making facts false

Delete Relaxation: Example

DELETE RELAXATION: EXAMPLE (CONT.)

DELETE RELAXATION: EXAMPLE (CONT.)

DELETE RELAXATION: EXAMPLE (CONT.)

DELETE RELAXATION

- Negative effects are also called "delete effects"
 - They delete facts from the state
- So this is called delete relaxation
 - "Relaxing the problem by getting rid of the delete effects"
- "Relaxed plan for P" = plan for the delete-relaxed version of P

Delete relaxation does not mean that we "delete the relaxation" (anti-relax)!

Delete relaxation is only a relaxation if preconditions and goals are positive!

© Marco Roveri et al. Chap. 12: Delete Relaxation Monday 6th November, 2023 12/23

DELETE RELAXATION (CONT.)

• Since solutions are preserved when action are added:

A state where additional facts are true can never be "worse"!

(Given positive preconds/goals)

Given two states (sets of true atoms) s_1 , s_2 :

$$s_2 \subset s_1 \rightarrow h^*(s_2) \geq h^*(s_1)$$

REACHABLE STATE SPACE: BW SIZE 2

REACHABLE STATE SPACE: BW SIZE 2 - DETAILED VIEW

Delete Relaxed: "Loops" Removed

OPTIMAL DELETE RELAXATION HEURISTIC

- If only delete relaxation is applied:
 - We can calculate the optimal delete relaxation heuristic, $h^+(n)$
 - $h^+(n)$ = the cost of an optimal solution to a delete-relaxed problem starting in node n

Accuracy of h^+ in Selected Domains

- How close is $h^+(n)$ to the true goal distance $h^*(n)$?
 - Worst case asymptotic accuracy as problem size approaches infinity:
 - Blocks world: $\frac{1}{4} \Longrightarrow h^+(n) \ge \frac{1}{4}h^*(n)$

Optimal plans in delete-relaxed Blocks World can be down to 25% of the length of optimal plans in "real" Blocks World and goals are positive!

Standard:

unstack(A,B) pickup(G) stack(G,H) putdown(A) unstack(B,C) pickup(F) putdown(B) stack(F.G) unstack(C.D) pickup(E) putdown(C) stack(E,F) pickup(D) unstack(H,I) stack(D,E)

Relaxed:

unstack(A,B) unstack(B,C) unstack(C,D) unstack(D,E) unstack(E,F) unstack(F.G) unstack(G,H) unstack(H,I) stack(H,J) DONE!

stack(H.J)

Accuracy of h^+ in Selected Domains

- How close is $h^+(n)$ to the true goal distance $h^*(n)$?
 - Worst case asymptotic accuracy as problem size approaches infinity:

```
• Blocks world: \frac{1}{4} \implies h^+(n) \ge \frac{1}{4}h^*(n)

• Gripper domain: \frac{2}{3} (single robot moving balls)

• Logistics domain: \frac{3}{4} (move packages using trucks, airplanes)

• Miconic STRIPS: \frac{6}{7} (elevators)

• Miconic-Simple-ADL: \frac{3}{4} (elevators)

• Schedule: \frac{1}{4} (job shop scheduling)

• Satellite: \frac{1}{5} (satellite observations)
```

- Details:
 - Malte Helmert and Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains [4]

Example of Accuracy

- How close is $h^+(n)$ to the true goal distance $h^*(n)$?
 - In practice: Also depends on the problem instance!

- Performance also depends on the search strategy
 - How sensitive it is to specific types of inaccuracy

Computing h^+

- Is h^+ easier to compute than h^* ?
 - h^* = length of optimal plan for arbitrary planning problem
 - Supports negative effects
 - If we can execute either a1; a2 or a2; a1:
 a1 removes p, a2 adds p ⇒ net result: add p
 a2 adds p, a1 removes p ⇒ net result: remove p
 Both orders must be considered
 - h^+ = length of optimal plan after removing negative effects
 - If we can execute either a1; a2 or a2; a1:
 Must lead to the same state (add a1 before a2, or a2 before a1)
 Sufficient to consider one order simpler?
 - Incomplete analysis
 - But the worst case for h^+ is easier than the worst case for h^*

Computing h^* (cont.)

- Still difficult to calculate in general!
 - NP-equivalent (reduced from PSPACE-equivalent)
 - Since you must find optimal solutions to the relaxed problem
 - Even a constant-factor approximation is NP-equivalent to compute!

• Finding h(n) so that $\forall n.h(n) \geq c \cdot h^+(n)$

- Therefore, rarely used "as is"
 - But forms the basis of many other heuristics

References I

- [1] Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2013. ISBN 9781608459698. doi: 10.2200/S00513ED1V01Y201306AIM022. URL https://doi.org/10.2200/S00513ED1V01Y201306AIM022.
- [2] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning theory and practice. Elsevier, 2004. ISBN 978-1-55860-856-6.
- [3] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning and Acting. Cambridge University Press, 2016. ISBN 978-1-107-03727-4. URL http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting? format=HB.
- [4] Malte Helmert and Robert Mattmüller. Accuracy of admissible heuristic functions in selected planning domains. In Dieter Fox and Carla P. Gomes, editors, *Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008*, pages 938–943. AAAI Press, 2008. URL http://www.aaai.org/Library/AAAI/2008/aaai08-149.php. 19