1	2	3	4	5	6	7	CALIF.

APELLIDO Y NOMBRE:

Condición:

Libre

Regular

CARRERA:

Algebra II - Final 21 de diciembre de 2022

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos.

Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 35 pts. en la parte práctica para los regulares. Los alumnos libres deberán obtener al menos 40 puntos en la parte práctica.

Parte Teórica (30 pts.)

- 1. Sea \mathbbm{k} un cuerpo, V un \mathbbm{k} -espacio vectorial de dimensión finita, y sean $S, T \subset V$ subespacios.
 - (4 pts) Definir S + T, y probar que es un subespacio.
 - (8 pts) Dar una fórmula para $\dim(S+T)$ y demostrarla.
- 2. Sea \mathbbm{k} un cuerpo y V, W dos \mathbbm{k} -espacios vectoriales de dimensión finita. Sean B_1 y B_2 bases de V y W respectivamente, y $f: V \to W$ una transformación lineal.
 - (3 pts) Definir la matriz de f en las bases B_1 , B_2 (denotada $[f]_{B_1,B_2}$).
 - (9 pts) Probar que para todo $v \in V$ vale que $[f(v)]_{B_2} = [f]_{B_1,B_2}[v]_{B_1}$.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Sea $V=\{\phi\in(\mathbb{C}^4)^*\,|\,\phi(i,-i,0,1)=0\}.$ Existe un monomorfismo $T:\mathbb{C}^{2\times 2}\to V.$
 - (b) (3 pts) Sea $T: \mathbb{Q}^6 \to \mathbb{Q}^6$ una transformación lineal tal que $T^4 = 25$ Id. Entonces T no posee autovalores.

Parte Práctica (70 pts.)

- 4. (15 pts) Sean $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ y $T : \mathbb{R}^{3 \times 2} \to \mathbb{R}^{3 \times 2}$ la transformación lineal tal que T(B) = AB.
 - (a) Probar que $T^2 = \text{Id.}$ Deducir que, si λ es un autovalor, entonces $\lambda = \pm 1$.
 - (b) Hallar los autoespacios asociados a 1 y -1, decidir si T es diagonalizable.
- 5. (15 pts) Sea $a \in \mathbb{R}$. Probar que la matriz $\begin{pmatrix} a & 0 & 0 & 0 & 0 & 1 \\ 0 & a & 0 & 0 & 1 & 0 \\ 0 & 0 & a & 1 & 0 & 0 \\ 0 & 0 & 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 & a & 0 \\ 1 & 0 & 0 & 0 & 0 & a \end{pmatrix}$ es inversible si y sólo si $a \neq 1, -1$.
- 6. Sean $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ el producto interno canónico y $T : \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal tal que $\langle T(v), T(w) \rangle = \langle v, w \rangle$ para todo par de vectores $v, w \in \mathbb{R}^n$.
 - (a) (2 pts) Probar que ||T(v)|| = ||v|| para todo $v \in \mathbb{R}^n$.
 - (b) (8 pts) Probar que T es un isomorfirmo.
 - (c) (10 pts) Sea A la matriz de T con respecto a la base canónica. Probar que $A \cdot A^t = \mathrm{Id}_n$.
- 7. Sea V un espacio vectorial de dimensión finita y $S, T: V \to V$ dos transformaciones lineales.
 - (a) (8 pts) Probar que $\operatorname{Im} T \subset \operatorname{Nu} S$ si y sólo si $S \circ T = 0$.
 - (b) (4 pts) Asumimos que $S \circ T = 0$. Probar que (S + T) (NuS) $\subseteq \text{Im } T$.
 - (c) (8 pts) Asumimos ahora que $S \circ T = 0$ y que S + T es un monomorfismo. Probar que $\operatorname{Im} T = \operatorname{Nu} S$.

Justificar debidamente todas las respuestas