

Design and development of a multifunctional robotic walker

Group 40 | Project Proposal Presentation

Team members

190655U - Vithanage TVRH

190582R - Senaratne N A A N R

190678R - Welangalle P D

Supervisors

Prof. Y W R Amarasinghe Department of Mechanical Engineering University of Moratuwa

Dr. Dumith Jayathilaka Department of Mechanical Engineering University of Moratuwa

0

Design and development of a multifunctional robotic walker

Group 40 | Project proposal presentation

Outline

O1 Introduction & Research Gap

Aim, objectives & scope of project

Functionalities of the Robotic Walker

Methodology

O5 Budget & timeline of project

O Tolerand States of the Control of

Introduction

Walkers

- Mobility assistance device with 4 points of contact
- Current market trend: **Rollators** Replacing the points of contact with **wheels**

Demography

General mobility issues	Weakness and Balance Disorders 2 billion elderly in 2050 - 24% to use mobility aid			
Neurological Conditions	Parkinson's Disease, Multiple Sclerosis, etc.			
Chronic Pain Conditions	Arthritis or joint disorders, etc.			
Orthopedic Conditions	Fractures, Joint Replacements Injury and Surgery Recovery			

Research Gap

Shared Environment

- Hospitals, nursing homes, rehab centres, etc.
- Auto-adjustment to user operating height
- Personalised assistance for each user

Summoning Capability

- Call the walker to the user's location
- Improved independence and ease of use

Standing Assistance

- Transition between sitting and standing positions
- Helps perform essential daily activities.

02

Aim, objectives & scope of project

Aim

To improve the daily lives of individuals with mobility challenges, using assistive robotic technology.

- 1. Study the existing problems associated with mobility and identify key focus areas and research gaps.
- 2. Design and development of an **appropriate mechanical structure** for the platform of the walker.
- 3. Development of the autonomous navigation system, walking guidance system, and standing assistance system of the walker.
- **4. Testing and validation** of the developed robotic walker.

Scope of Project

Target Audience

- Risk of Falls: Increased likelihood of falling when walking or maintaining an upright posture without external aid.
- Navigation Impairments: Struggle to navigate within indoor environments
- Cognitive Load Management: Multitasking can be challenging for some individuals, especially in activities like avoiding obstacles while walking.

Functionalities

- Summoning Capability
- User Operating Height Adaptation
- Active Walking Guidance
- Standing Assistance

03

Functionalities of the Robotic Walker

Functionalities

1. Summoning Capability

Autonomously navigate to user's location

2. User Operating Height Adaptation

- Adjust operating height suiting to the user
- Ensures optimal ergonomic positioning

3. Active Walking Guidance

- Real-time guidance and support
- Adapts movement to user's pace

4. Standing Assistance

 Gently and safely elevates the user from sitting to standing position

Objective 01 - Study existing technologies

Literature Review

Research on the existing technology used in walkers and identify research gaps

Survey and Data Collection

Surveys or interviews with mobility device users, healthcare professionals.

Gather data on user requirements and preferences, and limitations of current devices.

Comparative Analysis

Comparative matrix to assess the strengths and weaknesses of existing devices.

Objective 02 - Design and Development of mechanical structure

Conceptualisation

Brainstorm and generate multiple design concepts considering factors like stability, weight distribution, adjustability, and integration of support features.

Detailed design

Select the most optimum design and create detailed drawings and specifications.

Prototyping

Build a physical prototype using appropriate materials and manufacturing techniques.

Objective 03 - Development of the autonomous navigation system, walking guidance system, and standing assistance system of the walker

Requirement Identification

Define the functional requirements of each system.

Component Selection

Choose appropriate sensors, actuators, and electronics for each system.

System Development

Develop the control software to integrate sensor inputs, process data, and control the actuators for each system.

Objective 04 - Testing and Validation of the developed robotic walker

System testing

Testing of Mechanical Structure, Autonomous navigation system, Walking guidance system, and Standing assistance system

Controlled Environment Testing

Assess the walker's functionalities in controlled environments Conducting tests to validate

Iterative improvement

Continuously iterate and optimize the system based on testing outcomes,

05

Budget & timeline of project

System	Component	Description	Price
	Aluminum Box Bars, Extrusion Bars & Fasteners	(Rough estimate. Depends on final design)	Rs. 25,000.00
Mechanical Structure	Wheels	6 inch Wheels	Rs. 1,400.00
	Caster Wheels	4 inch Caster Wheels	Rs. 850.00
	2D LIDAR - Slamtec RPLIDAR A1	Slamtec RPLIDAR A1	Rs. 31,462.00
Autonomous Navigation System	Web Camera	Logitech C270 Webcam	Rs. 8,500.00
	Microphone Array	ReSpeaker Mic Array - Far-field w/ 7 PDM Microphones	Rs. 26,000.00
Guidance System	Force Sensing Resistors (6 Nos.)	Pololu Force Sensing Resistor, 1.5 Inch Square	Rs. 27,150.00
Standing Asst. System	Linear Actuator	YNT-09 Linear Actuator with stroke 400mm, 45W / 24VDC / 2000N	Rs. 12,000.00
	Controller Board	Raspberry Pi 4 Model B 4 GB RAM	Rs. 21,083.00
Common to Systems	Encoder Motors (2 Nos.)	ChiHai Motor CHP-42GP-775ABHL	Rs. 22,500.00
	Motor Controller	BTS 7960 DC Motor driver	Rs. 1,450.00
	Power Supply	24V 2A SMPS Power Supply	Rs. 1,400.00
	Rs. 178,795.00		

Tasks / Milestones	Jul 2023	Aug 2023	Sep 2023	Oct 2023	Nov 2023	Dec 2023	Jan 2024	Feb 2024	Mar 2024	Apr 2024	May 2024
Topic Selection											
Information Gathering											
Project Synopsis											
Project Proposal											
Literature Review											
Progress Review 1											
Mechanical Design											
Structure Fabrication											
Navigation System											
Guidance System											
Standing Assistance System											
Progress Review 2									'		
Subsystem Integration											
Testing and Validation											
Final Presentation											

Thank you!

Appendix 01

Comparison of Mobility Aids

Mobility Aid	Description	Pros	Cons
Walker	Frame with four legs for support	Offers stability while walkingFoldable and portableSimple design	Limited support for severe mobility issuesRequires upper body strengthMay not aid in balance
Rollator	Wheeled walker with a seat and hand brakes	Stability with four wheelsBuilt-in seat for restingHand brakes for control	Bulkier and less portable than canesLimited maneuverabilityNot suitable for tight spaces
Cane	Single-point support for balance	Lightweight and portableEasy to useSuitable for mild balance issues	- Less stability compared to walkers and rollators - Not suitable for weight-bearing support
Quad-Stick	Cane with four- point base for increased stability	- Improved stability over regular canes - Suitable for moderate balance issues	Bulkier and less portable than single-point canesLimited terrain adaptabilityMay be more visually obtrusive

Walk with the right help

There are many walking aids available, so here is a guide on which one to get.

1 ROLLATOR

- For those who need support on both sides of their body, but do not have the strength to keep lifting their walking aid.
- May also be prescribed to those who want to practise normal walking patterns or who have cardiovascular endurance or other issues.

WALKING FRAME

- Prescribed to those who need support on both sides of their body, with limited standing balance and weaker lower-limb strength.
- Compared with the wheeled version, users of this frame must be able to lift it as they move.

3 BROAD-BASE QUAD STICK/NARROW-BASE QUAD STICK

- Meant for patients who have better balance and lower-limb strength and who go out more often.
- May be prescribed to patients who can use only one of their hands, such as those who have had a stroke.
- Broad-base quad sticks have a broader base, making them more stable than the narrow-base ones.

WALKING STICK

- Meant for patients who need only a little support from their walking aid.
- Least stable of the five walking aids, but is easiest to manoeuvre around obstacles.

NOTE: You should consult a professional before getting a walking aid.

Source: SENGKANG COMMUNITY HOSPITAL ST PHOTO: DESMOND WEE STRAITS TIMES GRAPHICS