PRÁCTICA 2: Soluciones

Pablo Verdes

Dante Zanarini

Pamela Viale

Alejandro Hernandez

Mauro Lucci

1.

- a) Definimos a \mathbb{N}_3 como el mínimo conjunto tal que:
 - \bullet $0 \in \mathbb{N}_3$.
 - $x \in \mathbb{N}_3 \Rightarrow x + 3 \in \mathbb{N}_3.$
- b) Definimos a \mathbb{Z}_3 el mínimo conjunto tal que:
 - \bullet $0 \in \mathbb{N}_3$.
 - $x \in \mathbb{N}_3 \Rightarrow x + 3 \in \mathbb{N}_3$.
 - $x \in \mathbb{N}_3 \Rightarrow x 3 \in \mathbb{N}_3.$

2.

- a) Definimos Σ^* como el mínimo conjunto tal que:
 - $\lambda, a, b, c \in \Sigma^*$.
 - $x, y \in \Sigma^* \Rightarrow xy \in \Sigma^*.$

Sea P(x) una propiedad definida sobre $x \in \Sigma^*$, luego:

- Si $P(\lambda)$, P(a), P(b), P(c) son ciertas y;
- \bullet De ser ciertas $P\left(x\right)$ y $P\left(y\right)$ también es cierta $P\left(xy\right)$;

entonces P es cierta para cualquier elemento de Σ^* .

- b) Definimos B como el mínimo conjunto tal que:
 - $b \in B$.
 - $x \in B \Rightarrow axcc \in B.$

Sea P(x) una propiedad definida sobre $x \in B$, luego:

- Si P(b) es cierta y;
- De ser cierta P(x) también es cierta P(axcc);

entonces P es cierta para cualquier elemento de B.

3.

- a) Definimos A como el mínimo conjunto tal que:
 - $\lambda \in A$.
 - $x \in A \Rightarrow xa \in A.$
- b) Definimos B como el mínimo conjunto tal que:
 - $\lambda, a, b, c \in B.$
 - $x \in B \Rightarrow axa \in B.$
 - $x \in B \Rightarrow bxb \in B.$
 - $x \in B \Rightarrow cxc \in B.$
- c) Definimos C como el mínimo conjunto tal que:
 - $a, b \in C$.
 - $x, y \in C \land |x| = |y| = 1 \land x \neq y \Rightarrow xy \in C$.

4.

- a) Definimos M como el mínimo conjunto tal que:
 - $\blacksquare \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right] \in M.$
 - $x, y \in M \Rightarrow x + y \in M.$
 - $\bullet x \in M \Rightarrow x + \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in M.$
- b) Sea P(x) una propiedad definida sobre $x \in M$, luego:
 - Si $P\left(\begin{bmatrix}0&0\\0&0\end{bmatrix}\right), \left(\begin{bmatrix}2&0\\0&0\end{bmatrix}\right), \left(\begin{bmatrix}0&0\\2&0\end{bmatrix}\right), \left(\begin{bmatrix}0&0\\0&2\end{bmatrix}\right)$ son ciertas y;
 - lacktriangle De ser ciertas $P\left(x\right),P\left(y\right)$ también es cierta $P\left(x+y\right)$ y;
 - De ser cierta P(x) también es cierta $P\left(x + \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\right)$;

entonces P es cierta para cualquier elemento de M.

- 5. Sea P(x) una propiedad definida sobre $x \in \mathbb{P}$, luego:
 - Si P(0) es cierta y;
 - \bullet De ser cierta $P\left(n\right)$ también es cierta $P\left(n+2\right);$

entonces P es cierta para cualquier elemento de \mathbb{P} .

Demostración

- Caso base: Para $n = 0 \in \mathbb{P}$, considerando $m = 0 \in \mathbb{N}_0$ resulta n = m + m.
- Caso inductivo: Sea $n \in \mathbb{P}$, supongamos que n = m + m para algún $m \in \mathbb{N}$ (H.I.). Luego $n + 2 = m + m + 2 = (m + 1) + (m + 1) \in \mathbb{N}_0$.

6.

- a) Sea P(x) una propiedad definida sobre $x \in \Delta$, luego:
 - Si P(a) es cierta y;
 - De ser cierta $P(\alpha)$ también es cierta $P(b\alpha b)$;

entonces P es cierta para cualquier elemento de Δ .

b)

- Caso base: a tiene $0 \in \mathbb{P}$ símbolos b.
- Caso inductivo: Sea $\alpha \in \Delta$, supongamos que α tiene $2k \in \mathbb{P}$ numero de caracteres b (H.I.). Luego $b\alpha b$ tiene $2 + \underbrace{2k}_{H.I.} = 2(1+k) \in \mathbb{P}$ numero de caracteres b.

7.

- a) Sea P(x) una propiedad definida sobre $x \in \Gamma$, luego:
 - Si $P(\lambda)$ es cierta y;
 - De ser cierta $P(\alpha)$ también es cierta $P(b\alpha)$;
 - De ser cierta $P(\alpha)$ también es cierta $P(a\alpha)$;

entonces P es cierta para cualquier elemento de Δ .

b)

- $b \in \Gamma$ como demuestra la siguiente secuencia de formación: $\lambda \to b\lambda = b$.
- $a \in \Gamma$ como demuestra la siguiente secuencia de formación: $\lambda \to a\lambda = a$.

- Veamos primero que todos los elementos de Γ tienen 0 símbolos c:
 - Caso base: λ tiene 0 símbolos.
 - Caso inductivo: Sea $\alpha \in \Gamma$, supongamos que α tiene 0 símbolos c (H.I.). Luego:
 - $\circ \ b\alpha \ {\rm tiene} \ 0 + \underbrace{0}_{HI} = 0 \ {\rm símbolos} \ c.$
 - $\circ \ a\alpha \ \text{tiene} \ 0 + \underbrace{0}_{H.I.}^{\mathring{H.I.}} = 0 \ \text{símbolos} \ c.$

Como babacbaca tiene 1 símbolo c, podemos afirmar que babacbaca $\notin \Gamma$.

• $aba \in \Gamma$ como demuestra la siguiente secuencia de formación: $\lambda \to a\lambda = a \to ba \to aba$.

c)

- Probaremos por inducción en $\alpha \in \Delta$ que $b\alpha \in \Delta$:
 - Caso base: Para $\alpha = \lambda$ resulta: $\lambda \to \lambda b = b\lambda$.
 - Caso inductivo: Supongamos que para $\alpha \in \Delta$ resulta $b\alpha \in \Delta$. Veamos si para αb y αa resulta $b\alpha b \in \Delta$ y $b\alpha a \in \Delta$:
 - o Si el ultimo constructor aplicado en la cadena de formación de $b\alpha$ fue el primero, quiere decir que $\alpha = \beta b$. Su derivación será: $\lambda \to \ldots \to b\beta \to b\beta b$, luego $\lambda \to \ldots \to b\beta \to b\beta bb = b\alpha b$. Análogamente para $b\alpha a$.
 - o Si el ultimo constructor aplicado en la cadena de formación de $b\alpha$ fue el segundo, quiere decir que $\alpha = \beta a$. Su derivación será: $\lambda \to \ldots \to b\beta \to b\beta a$, luego $\lambda \to \ldots \to b\beta \to b\beta a \to b\beta ab = b\alpha b$. Análogamente para $b\alpha a$.
- Análogo.
- Probaremos por inducción en Γ que todas las palabras están en Δ :
 - Caso base: Para $\alpha = \lambda$ vale trivialmente.
 - Caso inductivo: Supongamos que para una palabra $\alpha \in \Gamma$ resulta $\alpha \in \Delta$. Queremos ver si $a\alpha \in \Delta$ y $b\alpha \in \Delta$. Ambas valen por el apartado anterior.
- Análogo.
- Por los resultados anteriores, $\Delta = \Gamma$.

8.

a)

- $\bullet 0 \in \mathbb{N}_0 \Rightarrow (0,0) \in S.$
 - Supongamos $0 \in S$, luego como $S \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ resultara $0 \in \mathbb{N}_0 \times \mathbb{N}_0$. Absurdo.
 - $(2,3) \in S$ como demuestra la siguiente secuencia de formación: $(2,2) \to (2,3)$.
 - $(3,4) \in S$ como demuestra la siguiente secuencia de formación: $(3,3) \to (3,4)$.

- b) Sea P(n,m) una propiedad definida sobre $(n,m) \in S$, luego:
 - Si P(n,n) es cierta para todo $n \in \mathbb{N}_0$ y;
 - De ser cierta P(n,m) también es cierta P(n,m+1);

entonces P es cierta para cualquier elemento de S.

Demostración

- Caso base: Sea $(n,n) \in S/n \in \mathbb{N}_0$ luego $n \leq n$.
- Caso inductivo: Sea $(n,m) \in S$ y supongamos que $n \leq m$ (H.I.). Luego para $(n,m+1) \in S$ resulta $n \leq m \leq m+1$.
- c) COMPLETAR.

9.

• Caso base:
$$\sum_{k=0}^{0} {0 \choose k} = {0 \choose 0} = \frac{0!}{0!(0-0)!} = \frac{1}{1} = 1 = 2^{0}.$$

■ Caso inductivo: Supongamos que $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ (H.I.). Luego:

$$\sum_{k=0}^{n+1} \binom{n+1}{k} = \binom{n+1}{0} + \sum_{k=1}^{n} \binom{n+1}{k} + \binom{n+1}{n+1} =$$

$$= 2 + \sum_{k=1}^{n} \left[\binom{n}{k} + \binom{n}{k-1} \right] = 2 + \sum_{k=1}^{n} \binom{n}{k} + \sum_{k=1}^{n} \binom{n}{k-1} =$$

$$\stackrel{=}{\underset{H.I.}{=}} 2 + (2^n - 1) + \sum_{k=0}^{n-1} \binom{n}{k} = 2 + (2^n - 1) + (2^n - 1) =$$

$$2^n + 2^n = 22^n = 2^{n+1}$$

10.

- a) $append(Nil, l_2) = l_2$
- b)
- Caso base: append(Nil, Nil) = Nil.
- Caso inductivo: Supongamos que para xs resulta append(xs, Nil) = xs. Luego: append(Cons(x, xs), Nil) = Cons(x, append(xs, Nil)) = Cons(x, xs)

c)

- Caso base: $append(append(Nil, l_2), l_3) = append(l_2, l_3) = append(Nil, append(l_2, l_3))$
- Caso inductivo: Supongamos que para xs resulta:

$$append (append (xs, l_2), l_3) = append (xs, append (l_2, l_3))$$

Luego:

$$append \left(append \left(Cons \left(x, xs\right), l_2\right), l_3\right) = append \left(Cons \left(x, append \left(xs, l_2\right)\right), l_3\right)$$

$$= append \left(Cons \left(x, append \left(xs, l_2\right)\right), l_3\right) = Cons \left(x, append \left(append \left(xs, l_2\right), l_3\right)\right)$$

$$= Cons \left(x, append \left(xs, append \left(l_2, l_3\right)\right)\right) = append \left(Cons \left(x, xs\right), append \left(l_2, l_3\right)\right)$$

$$= Append \left(Cons \left(x, append \left(xs, append \left(l_2, l_3\right)\right)\right) = append \left(Cons \left(x, xs\right), append \left(l_2, l_3\right)\right)$$

11.

- Casos base:
 - $nleafs(Null) = 0 \le 1 = 0 + 1 = nnodes(Null) + 1.$
 - $nleafs(Leaf) = 1 \le 1 = 0 + 1 = nnodes(Leaf) + 1.$
- Caso inductivo: Supongamos que la propiedad vale para l y r. Luego:

$$nleafs\left(Node\left(l,r\right)\right) = nleafs\left(l\right) + nleafs\left(r\right)$$

$$\leq nnodes\left(l\right) + 1 + nnodes\left(r\right) + 1 = nnodes\left(Node\left(l,r\right)\right) + 1$$

$$H.I.$$

12.

- a) Para poder concluir que los caballos de C_1 y C_2 son todos del mismo color es necesario que dichos conjuntos no sean disjuntos; y esto debe hacerse independientemente de k. Sin embargo esto no es posible para k=1 puesto que al ser $C_1=\{c_1\}$ y $C_2=\{c_2\}$ disjuntos, c_1 puede no ser del mismo color de c_2 .
- b) Si k+1=1 entonces a=1 o b=1 y en cuyo caso no vale la hipótesis inductiva: $1=a \not< k+1=1$ o $1=b \not< k+1=1$.