

Q · 1)	Apply 1 with 1	the K-r	neans State	clustering for following date difference between K-means archical clustering.
		1 2	2/2	J
	A	2	3	
	В	6	1	
		1	2	
	D	3	0	

Here, we have given K=2 Therefore we use the A and D are two initial centroids. $L_1(2,3)$ & $L_2(3,0)$.

Proximity matrix using

Euclidean distance is $d(P_{19}P_2) = \sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2}$

- 4	1		1				1
	1 00	ta	Points	CI	C2	Closest	
1		2		2 3	3 0	Cluster	
+	Δ	2	3	. 0	3,16	Cı	
+	В	<u> </u>)	01:47	3-16	- 62	
1	6	1	2	1.41	2.82	C,	
1	0	3	0	3,16	0	C2	
_				1			

New centroids will be,

DI 0	0010	1 2 1	5		_
new	CEN	troids	will	_be	5
		3+2 >			

$$C_1(\frac{2+1}{2},\frac{3+2}{2})$$
, $C_2(\frac{6+3}{2},\frac{1+0}{2})$
 $i-c$, $C_1(\frac{3}{2},\frac{5}{2})$, $C_2(\frac{9}{2},\frac{1}{2})$.

				<u> </u>
4	Data Points.	. ()	· C2	Closest
		3/2 5/2	Q. IV.	Closest
+		3/2 / 3/2	9/2/1/2	clusters
-	A 2 3	0.71	3.54	C_1
	B 6	0 74	1.58	C2
	C 1 2	0,71	3,80	9
	D 3 0	2.92	1,58	CZ

This cluster is similar to previous cluster it can not be further divided. Therefore New cluster

$$\frac{C_1(2+1,3+2)}{2},\frac{C_2(6+3,1+10)}{2}$$

k means clustering	Hierarchical clustering.
1) K-means using a pre- specified number of clusters. The method assigns	1) Hierarchical methods can be either divisive or agglomerative.
secords to each cluster to find the mutually exclusions of spherical	
spape based on distance.	
2) K means clustering nee- ded advance knowledge of k. i.e. no. of clusters	2) In hierarchical clustering one can stop at any number of clusters, one find
 one want to divide your data.	appropriate by interpreting the dendrogram
	sequentially combine similar clusters until only one
4) In k means clustering, since one start with ran- dom choice of clusters. The results produced by	cluster is obtained. 4) In hierarchical clustering, results are reproducible in hierarchical clustering.
running the algorithm many times may differ.	5) (
5) Better performance when dealing with convex clusters.	when dealing with non convex clusters.

			-
	1	1	7
ليا	لب		

		T T				`	O D M M A	YYY		
0.2)	Draw	a dend	20 d sa w	for 1	the fol	lowing	mixora	ilty		
	Draw a dendrogram for the following proximity matrix and find the number of clusters that we get.									
			2	3						
		. 0	2		4	5				
		.0	0							
	2	9								
	3	3	5	0		_				
	4	6		9	0					
	5	11	10	2	8	0				
		•) (.						
		1	2 3	3 4	5					
	1	0	100000000000000000000000000000000000000		· 5.		W. 1			
	2	9	0	_						
	3	3)						
	4	6	5							
	5	1)	10 (2) 8	0					
				1						
		$5) \rightarrow$		1	2	(3,5	i) 4			
	(2)			1)					
				2 (3 0	,				
			(3	,5) (3	3) 7					
				4	5 5		2 0			
								4		
	(3,5)	72	= mi	n[(3,2),(5,	2)]		<u> </u>		
			= m	in E7	,10]	= 7				
			- 7 1812							
	Paix ((3,5)	and (1)		((3,5) &(1)) 2	4		
	(3)	-)	((3)	s) &(1))		0				
	(3)			2		7	0			
				4		6	(4	5) 0		
				7		(

