发电工程设计项目经理(设总)培训课题 第三部分:综合设计技术

第四章:项目规划容量与机组选型

华北电力设计院工程有限公司 2012 年 8 月 北京 编写: 陆潘根

审核: 陈赢展

目 录

前言1
1 项目规划容量
1.1 规划容量的作用
1. 2 规划容量的确定
1.3 规划容量和最终容量
1.4 在确定规划容量和机组选型时应考虑的因素2
2 机组选型
2.1 关于机组选型的国家政策
2.2 机组容量
2.3 参数
2.4 冷却方式和耗水量13
2.5 锅炉燃烧方式
2.6炉型
2.7 汽机结构型式
2.8 发电机型式
3 供热机组选型
4 国产主机设备一览表(300MW 及以上机组)21
4.1 锅炉
4. 2 汽轮机
4.3 发电机
参考文献

前言

项目规划容量和机组选型是电力工程建设项目前期工作中的重要部分,与现行国家政策密切相关,还与诸多的建厂条件和国内生产技术水平有关。本文拟为电力工程项目设计经理提供与此相关的概念性知识。

1 项目规划容量

发电厂规划容量是前期咨询的重要参数,也是选址工作依据之一。一般选址 阶段不具备确定规划容量的条件。因此咨询机构和委托方应事先商定一个规划容 量并在选厂实践中核实。规划容量通常在初步可行性研究文件评审时确定,在可 行性研究文件评审时核定,最终以国家核准意见为法律依据。当前由于某些原因, 国家核准文件中一般不提规划容量,但规划容量仍是一个重要的工程概念。

1.1 规划容量的作用

发电厂规划容量也称建设规模,是确定发电厂公用系统设计能力的定量依据,同时也是核定建厂资源量的定量依据、采用建设标准的定量依据。

分期建设发电厂会面对确定公用系统设计能力的问题。公用系统是指用于全厂包括扩建工程在内的工艺系统及其土建结构。如取、排水系统和相关构筑物,厂内燃料运输系统和贮存场地,灰场设施,升压配电装置等。公用系统能力应根据规划容量,通过技术经济比较确定预留还是一次建成。

选厂时对建厂资源应进行量化。例如用地需求、用水需求、燃料需求等。建厂资源需求量应根据规划容量统一考虑扩建的需求。

《大中型火力发电厂设计规范》(GB50660-2011)在总体规划篇中有若干处涉及规划容量。如用地、取排水、出线走廊等,对防排洪设施宜在初期工程中按规划容量一次建成。因此规划容量是采用建设标准的定量依据。

1.2 规划容量的确定

规划容量应从必要性和可能性两个方面确定。必要性论证应以电源规划为依据。在电源规划中常会对每个电源点给出本期建设规模和远景建设规模。可能性论证是指根据厂址所能提供的资源总量确定的再装机容量。汇总两个方面论证的结果即可确定发电厂的规划容量。

1.3 规划容量和最终容量

规划容量的确定应留有余地。因为电力系统中远期规划会不断调整,建厂条

件也会随着时间和环境变化;公用系统根据规划容量建设时需要提前投入资金; 过大的规划容量会提高设计标准,增加工程造价;不断进步的电力设备制造和电 力设计技术、不断扩大的电力系统规模,将导致机组单机容量的日益增大。

为此,规划容量仅是一定时间范畴的数据。如果电厂超长时间扩建,规划容量应重新确定,对于超过审定规划容量的扩建也应重新确定。

发电厂最终容量是指建厂资源允许建设的最大规模。发电厂在完成规划容量建设以后,在电力系统允许时可按最终容量完成终期建设。

在初步可行性研究阶段,根据电力系统中、长期发展规划的要求,在一个或多个地区内,对建厂外部条件进行调查研究,选择多个可能建厂的厂址,通过技术经济论证,择优推荐建厂地区和厂址顺序,并提出建厂规模和装机方案的建议,作为电力系统规划设计或可研阶段工作的依据。

1.4 在确定规划容量和机组选型时应考虑的因素

1.4.1 接入系统

发电厂接入系统研究发电厂和电网间的关系,是发电厂可行性研究阶段的内容之一。

发电厂接入系统方案应根据发电厂的送电对象、送电容量和送电距离,发电厂本期投运容量、规划容量和单机容量,并综合考虑包括电源容量、电压系列、电网结构及短路电流水平等被接入电力系统的基础及发展,结合线路走廊、变电站站址及相关设备供货等因素,经技术经济比较后确定。

发电厂接入系统设计要解决的主要问题是:

- (1) 阐述发电厂建设的必要性,明确发电厂在电力系统中的地位和作用。
- (2) 研究接入系统方案,其中主要包括发电厂出线电压、出线回路数和接入点。
 - (3) 对发电厂电气主接线及有关设备参数提出要求。

1.4.2 与机组选型有关的自然条件

气温、气压、相对湿度、降水量、蒸发量、风速、风向等是火力发电厂设计所需的气象资料。

其中气温、气压、相对湿度、风速、风向与空冷机组的选型有关。

1.4.3 燃料供应

供煤量—与电厂的规划容量有关。 煤质—与燃烧方式、单机容量的确定有关。

凝汽机组燃煤量

		标 准	计算	104	67.5	125	61	146	54.5	167	48	1884	1.5	209	35
机组		煤发	煤耗	kJ	/kg	kJ/	kg	kJ	/kg	kJ/	kg	kJ/	kg	kJ/	kg
容量	机组型号	电 煤	年 利												
MW		耗	用小	t/h	Kt/年	t/h	Kt/年								
		g/kwh	时数										·		
			h												
6	N6-3. 43	550	4000	9. 23	37	7.7	30.8	6.6	27.4	5.77	23.1	5.13	20.5	4.62	18.5
12	N12-3.43	480	4500	16.1	72.5	13. 4	60.5	11.5	51.7	10.1	45	8.95	40.5	8.05	36. 2
25	N25-3.43	450	5000	31.6	158	26. 2	131	22.6	113	19.7	98.5	17.5	87.5	15.8	79
50	N50-8.82	380	5500	53. 1	292	44. 3	244	38	209	33. 2	183	29.6	163	26.6	146
100	N100-8.82	360	5500	100.8	554	84	462	72	396	63	346	56	308	50.4	277
125	N12. 5-13. 23	330	5500	115.5	635	96. 3	530	82.5	454	72.2	397	64.1	353	57.7	317
200	N200-13.23	332	5500	186	1023	155	853	132.8	730	116.1	408	103.2	567	92.9	317
300	N300-16.7	325	5500	273	1502	227.5	1251	195	1072	170.5	938	151.6	831	136. 2	749
600	N600-16.7	322	5500	540	2970	451	2480	386	2123	337.5	1856	300	1650	270	1485
	亚临界														
600	N600-25.4-	279	5500	468	2574	391	2150	334	1837	293	1612	256	1408	234	1287
	566 超临界														
600	N600-25.4-	274.5	5500	460	2530	385	2118	329	1809	288	1584	252	1386	230	1265
	600														
	超超临界														
1000	N1000-25.4-	269.1	5500	751	4130	629	3460	537	2954	470	2585	412	2266	376	2068
	600														
	超超临界														
ナ キ	上比 司 七 西 进 4				4	ー田せん									

注 表内所列为原煤的应用基低位发热量,标准煤的应用基低位发热量为 29309kJ/kg (7000kca1/kg)。

1.4.4 交通运输条件

根据交通运输条件,核定与单机容量有关的设备大件运输能力以及与规划容量有关的燃料运输能力。

1.4.5 水源

水量、水质、水温是影响机组容量、冷却方式和材料选择的重要因素。

1.4.6 灰场

根据可能的灰场容量、灰渣综合利用程度、现行政策核定规划容量。

1.4.7 环保

国家环保部规定: 热电站、煤矸石电厂、垃圾焚烧发电厂建设项目的总量指标必须明确总量指标来源,其他新建、扩建、改建常规火电项目的 S02 排放总量指标必须从电力工业取得;属于 6 大电力集团(含华润集团)的新建、扩建、改造项目, S02 排放总量指标必须从 6 大集团的总量控制指标中获得,并由所在电力集团公司和所在地省级环保部门出具确认意见;不属于 6 大电力集团的新建、扩建、改造项目, S02 排放总量必须从各省非 6 大电力集团电力工业总量控制指标中获得,并由省级环保部门出具确认意见。

建设项目从环境保护角度考虑是否可行,关键是能否满足国家对建设项目环境保护的要求。具体讲,是否满足环境审批的"6+2"原则要求,"6+2"原则要求如下。

- a)符合国家产业政策(对各类项目的要求)。
- b)符合城市规划(对厂址及灰场厂址位置)。
- c)符合环境保护规划(环境质量现状浓度监测结果和工程项目投产后的区域 预测浓度结果满足功能区标准要求)。
- d)符合清洁生产的要求(供电耗煤,耗水、热电比,全厂热效率,污染物绩效排放,水的循环利用、排水等的定量指标及产业政策的定性要求)。
 - e)满足达标排放要求(各项污染物排放均满足相应的排放标准要求)。
- f)满足总量控制要求(建设项目年污染物排放量的排放指标要有来源,取得 地方环境保护部门和电力集团公司确认的指标文件,项目年排放量必须满足总量 控制指标要求)。
- g)公众参与(调查方法:发放公众参与调查表调查,召开公众参与调查会议; 网上公示:报纸公示;张贴公示等)。发放对象要有代表性,开会项目周边群众普

遍对项目建设持支持态度,个别持不同意见的人,通过沟通后的意见。

h)环境风险,环境风险可以接受。

根据区域环境空气容量、环境空气现状,核定拟建电厂的规划容量和允许的污染物排放量。

新建项目还应取得 NOx 排放总量指标。

1.4.8 建设用地政策

我国人多地少,耕地资源稀缺,当前又正处于工业化、城镇化快速发展时期,建设用地供需矛盾十分突出。切实保护耕地,大力促进节约、集约用地,走出一条建设占地少、利用效率高的符合我国国情的土地利用新路子,是关系民族生存根基和国家长远利益的大计,是全面贯彻落实科学发展观的具体要求,是我国必须长期坚持的一条根本方针。

国土资源部 2004 年以第 29 号令颁布了《建设项目用地预审管理办法》,明确预审应当遵循下列原则:符合土地利用总体规划;保护耕地,特别是基本农田;合理和集约利用土地;符合国家供地政策。

2008年1月31日国土资源部下发了关于发布和实施《工业项目建设用地控制指标》的通知(国土资发[2008]24号),要求编制工业项目供地文件和签订用地合同时必须明确约定投资强度、容积率、建筑系数、行政办公及生活服务设施用地所占比重,绿地率等土地利用控制性指标要求及相关违约责任。

显而易见,电源建设项目用地越来越规范,只有符合土地利用总体规划和符合国家供地政策,才能取得土地方面的支持性文件。

不同容量燃煤机组占地指标

-	1.1分元 毛/冰/水加工 口 5.6.14 4/1										
	机	100MV	V机组	200MW 7	机组	300MW	机组	600MW	机组	1000M	W机组
占	组	110kV	1出线	110/220k	V出线	220kV	出线	220/50	0kV 出线	500k	V出线
		两台	四台	两台	四台	两台	四台	两台	四台	两台	四台
工	世										
直流供水、燃煤	水运,皮带进厂	11.59	15. 35	15. 26	20.85	18.98	28.30	27. 33	39.44	33. 03	53. 52
直流供水、铁路	,翻车机接卸	15.07	18.83	18.74	24. 33	22. 45	35. 18	34. 22	50.38	39.92	67.58
循环供水、铁路	,翻车机接卸	17.20	23.40	21.40	29.99	25.60	41.80	39.13	60.57	46.87	81.90
循环供水、公路	,汽车运煤	14.74	21.07	19.02	28. 28	23. 36	37.16	34.44	54.10	42.77	73.42
循环供水、燃煤	皮带进厂	13.72	19.92	17.92	26.51	22.12	34.92	32. 25	49.62	39.98	67.83
直接空冷、铁路	,翻车机接卸	15. 36	19.41	19.08	25.08	22.90	36. 01	35.48	52.75	42.01	72.44
直接空冷、公路	,自卸汽车运煤	12.90	17.08	16.71	23.37	20.66	31. 36	30.78	46. 29	37.91	63.95
直接空冷、燃煤	皮带进厂	11.88	15.93	15.14	21.60	19.42	29.12	28.59	41.81	35. 12	58.37
间接空冷、铁路	,翻车机接卸	18.99	26.71	24. 15	35. 30	29. 02	48. 29	43.62	69.50	53.70	96.14
间接空冷、公路	,自卸汽车运煤	16.53	24. 38	21. 78	33. 59	26. 78	43.64	38.93	63. 03	49.60	87.66
间接空冷、燃煤	皮带进厂	15.51	23. 23	20.67	31.82	25.54	41.40	36. 34	58.55	46.81	82.08
	1 1 104 2 (1) 17 1										

注 表中占地单位为 10⁴ m² (公顷)

1.4.9 建设计划

了解设备市场动态,拟定可行的建设计划。

2 机组选型

2.1 关于机组选型的国家政策

2.1.1 主要政策

- (1) 《国家发改委关于燃煤电站项目规划和建设有关要求的通知》(发改能源【2004】864号)
 - (2) 《产业结构调整方向暂行规定》(征求意见稿)

2.1.2 政策要点

- 2.1.2.1 燃煤电站要高度重视规划布局合理性。我国能源资源和电力负荷在地域上分布不均,电站规划布局需要符合我国一次能源总体流向,综合平衡能源、水源、电力负荷、接入系统、交通运输、环境保护等电站建设必要条件,统筹考虑输煤与输电问题。现阶段,在电站布局上优先考虑靠近电力负荷中心,有利于减轻电网建设和输电压力的项目;利用本地煤炭资源建设燃用洗中煤、泥煤及其它劣质煤的大、中型电厂。建设坑口或矿区电站以及港口、铁道路口等运输条件较好的电站项目,鼓励发展煤电一体化项目;有利于电网安全运行的项目。
- 2.1.2.2 电力建设必须要提高效率,保护环境。除西藏、新疆、海南等地区外,其它地区应规划建设高参数、大容量、高效率、节水环保型燃煤电站项目,所选机组单机容量原则上应为 600MW 以上,机组发电煤耗要控制在 286g/kw.h 以下。需要远距离运输煤炭的电厂,原则上建设超临界、超超临界机组。在缺乏煤炭资源的东部沿海地区,优先规划建设发电煤耗不高于 275g/kw.h 的燃煤电站。
- 2.1.2.3 在煤炭资源丰富的地区,规划建设煤矿坑口或矿区电站项目,机组发电煤耗要控制在 295g/kw.h 以下(空冷机组发电煤耗要控制在 305g/kw.h 以下)。在生产外运煤炭的坑口和煤矿矿区,结合当地电力需求和资源条件,可采用先进适用发电技术,建设燃用洗中煤、泥煤及其它劣质煤的大中型电厂。
- 2.1.2.4 2007年"鼓励类"发电项目有:水力发电;单机 600MW 及以上超临界、超超临界机组电站建设;采用 300MW 及以上集中供热机组的热电联产以及热、电、冷多联产;缺水地区单机 600MW 及以上大型空冷机组电站建设;风力发电及太阳能、地热能、海洋能、生物质能等可再生能源开发及利用;整体煤气化联合循环发电;300MW 及以上循环流化床、增压流化床等洁净煤发电;单机 300MW 及以上

采用流化床锅炉并利用煤矸石或劣质煤发电。

2.1.2.5 2007 年"限制类"发电项目有:除西藏、新疆、海南等小电网外,单机容量在 300MW 及以下的常规燃煤火电机组;除西藏、新疆、海南等小电网外,发电煤耗高于 286g/kw. h 的发电机组,空冷机组发电煤耗高于 305g/kw. h 的发电机组。

2.2 机组容量

机组容量根据基建程序,经过电力系统规划、接入系统设计、工程初可、可研、核准报告等阶段以及设备来源等条件确定。

2.3 参数

- 2.3.1 提高蒸汽初参数的可行性
- (1)提高蒸汽初温可以提高热经济性:提高循环效率;提高排汽干度,减少低压缸排汽湿汽损失,提高了汽轮机的绝对内效率。
- (2)提高主蒸汽初压:在工程实际应用的一定范围内可提高热效率。但当初温和背压一定时,随着初压的提高,排汽湿度加大,不仅侵蚀末级叶片,降低汽轮机低压缸内效率,而且影响安全运行。所以提高初压并不一定都能提高热效率。

提高初温、初压将使电厂的金属消耗量和投资增加,只有在增加的投资能在允许的期限内得以补偿,在经济上才是合理的。

采用二次再热,在同等参数下,热效率可提高 1.3 个百分点,投资增加 10-15%。

蒸汽参数在提高过程中,总是先提高再热温度,再提高主蒸汽温度和压力。

对于 1000MW 等级的超临界和超超临界汽轮机,国外多数采用双轴布置,但随着参数的提高、更长叶片的开发、叶片和转子材料的改进,单轴布置已成为新的发展趋势。目前国内均采用单轴布置。

2.3.2 主蒸汽压力变化对热效率的影响

(580/600℃)

压力	主蒸汽温度	再热蒸汽温	汽机热耗差	汽机热耗降	汽机循环热
		度		低相对值	效率相对提
					高值
MPa	$^{\circ}$	$^{\circ}$	Kj/kw.h	%	%
25	580	600	0	0	0
28	580	600	-41.2	-0.56	0.56
31	580	600	-77.7	-1.05	1.05

(600/600℃)

压力	主蒸汽温度	再热蒸汽温	汽机热耗差	汽机热耗降	汽机循环热
		度		低相对值	效率相对提
					高值
MPa	$^{\circ}$	${\mathbb C}$	Kj/kw.h	%	%
25	600	600	0	0	0
28	600	600	-42	-0.571	0.57
31	600	600	-80	-1.08	1.10

2.3.3 主蒸汽温度变化对热效率的影响

压力	主蒸汽温度	再热蒸汽温	汽机热耗差	汽机热耗降	汽机循环热
		度		低相对值	效率相对提
					高值
MPa	\mathbb{C}	${\mathbb C}$	Kj/kw.h	%	%
25	580	600	0	0	0
25	600	600	-40.2	-0.54	0.54
28	580	600	0	0	0
28	600	600	-41	-0.56	0.56
31	580	600	0	0	0
31	600	600	-42.5	-0.58	0.58

2.3.4蒸汽初参数与热经济性的关系

项目参数	亚临界	超临界	超超临界
	16.67MPa	24.2 MPa	25MPa 600/600℃
	537/537℃	566/566℃	
发电热效率%	40. 0	42.5	45. 7
发电煤耗率	307. 5	289. 41	269. 15
g/kw.h			
计及管道效率修	313. 78	292. 33	271.87
正后的发电煤耗			
率 g/kw.h			
厂用电率%	5	5	5
供电煤耗率	330. 29	307.72	286. 18
g/kw.h			
节煤效益 g/kw.h	0 (基准)	- 22. 57	/
		0(基准)	- 22. 54

2.3.5 以汽轮机组设计热耗为基础的热经济指标

项目参数	亚临界	超临界	超超临界	
			平均水平	高水平
汽轮机热耗 Kj/kw.h	7800	7600	732	0
锅炉效率%	93	93	93	94
管道效率%	98	99	99	99
发电煤耗率 g/kw.h	292. 4	282. 0	271.64	268. 75
厂用电率%	5	5	5	4.5
供电煤耗率 g/kw.h	307.8	296. 84	285. 94	281. 41
节煤效益 g/kw. h	0(基准)	- 10. 96	/	/
	/	0(基准)	- 10. 9	- 15. 43
计算负荷率修正后的供 电煤耗率 g/kw.h	320. 1	305. 75	291.61	287. 04
节煤效益 g/kw.h	0(基准)	- 14. 35	/	/
	/	0(基准)	- 14. 14	- 18. 71

2.3.6 各类机组发电设计标煤耗水平

项目	标煤耗 g/kw.h	参数
超超临界 1000MW	272	25/600/600
超超临界空冷 1000MW	284	25/600/600
超临界 900MW	281	24. 2/538/566
超超临界 600MW	274	25/600/600
超临界 600MW	281	24. 2/566/566
超临界空冷 600MW	294	24. 2/566/566
亚临界 600MW	288	16. 67/538/538
亚临界空冷 600MW	301	16. 67/538/538
亚临界 300MW	291	16. 67/538/538
亚临界空冷 300MW	304	16. 67/538/538
超高压 200MW	315	12. 7/535/535
超高压 135MW	319	12. 7/535/535
高压 100MW	366	8.83/535
高压 50MW	383	8.83/535
高压 25MW	416	8.83/535
中压 12MW	500	3. 43/435
中压 6MW	525	3. 43/435

2.3.7 我国火电厂蒸汽参数系列

设备参数等	锅炉	出口	汽轮材	汽轮机入口	
级					率
	压力 MPa	温度℃	压力 MPa	温度℃	MW
次中参数	2.55	400	2. 35	390	0.75、1.5、3
中参数	3. 92	450	3. 43	435	6, 12, 25
高参数	9.9	540	8.83	535	50, 100
超高参数	13.83	540/540	12.75	535/535	200
		540/540	13. 24	535/535	125
亚临界参数	16.77	540/540	16.18	535/535	300
	18. 27	540/540	16.67	537/537	300, 600
超临界参数	25. 4	571/569	24. 2	566/566	600
超超临界参	26. 15	605/603	25	600/600	660
数	26. 25	605/603	25	600/600	1000

2.4 冷却方式和耗水量

电厂用水可取自海、天然河道、湖、水库等地表水体,在符合用水政策的区域也可取用地下水。

2.4.1 在选厂阶段建议采用的设计耗水指标如下:

供水系统	单机容量≥300MW	单机容量<300MW
	M ³ /S. GW	M ³ /S. GW
淡水冷却塔循环供水系统	0. 6-0. 7	0. 7-0. 9
淡水直流供水系统	0. 08-0. 12	0. 12-0. 18
海水直流供水系统	0. 06-0. 12	0.10-0.18
空冷系统	0.10-0.15	0. 12-0. 20

2.4.2 不同容量燃煤机组用水量

项目			单机容量	(MW)								
			6	12	25	50	100	125	200	300	600	1000
单机凝汽	量 (THA)	t/h	26	46	86	134	257	262	405	583	1055	1662
单机辅机	冷却水量	M³/h	110	200	430	600	800	1000	1600	2000	4100	5500
单机凝	M=50	M³/h	1300	2300	4300	6700	12850	13100	20250	29150	52750	83100
汽器冷	M=55	M³/h	1430	2530	4730	7370	14135	14410	22275	32065	58025	91410
却水量	M=60	M ³ /h	1560	2760	5160	8040	15420	15720	24300	34980	63300	99720
	M=65	M³/h	1690	2990	5590	8710	16705	17030	26325	37895	68575	108030
	M=70	M³/h	1820	3220	6020	9380	17990	18340	28350	40810	73850	116340
	M=75	M³/h	1950	3450	6450	10050	19275	19650	30375	43725	79125	124650
淡水直流	冷却系统	M³/h	2880-	5100-	9650-	14900-	27850-	28760-	44580-	62550-	115980-	180750-
用水量			4200	7450	14050	21750	40950	42150	65230	93280	169780	265500
		M ³ /s.GW	0.80-	1.42-	2.68-	4.14-	7.74-	7.99-	12.38-	17.65-	32.22-	50.20-
			1.17	2.07	3.90	6.04	11. 37	11.70	18.12	25.91	47.16	73.75
淡水直流	系统耗水	M³/h	7-9	14-18	29-36	50-65	101-130	108-162	173-260	173-260	346-518	576-864
量		M ³ /s.GW	0.16-	0.16-	0.16-	0.14-	0.14-	0.12-	0.12-	0.08-	0.08-	0.08-
			0.20	0.20	0.20	0.18	0.18	0.18	0.18	0.12	0.12	0.12
海水直流	冷却系统	M^3/h	6-8	12-16	25-32	43-58	87-115	90-144	144-230	130-216	260-432	432-720
淡水耗水	量	M ³ /s.GW	0.14-	0.14-	0.14-	0.12-	0.12-	0.10-	0.10-	0.06-	0.06-	0.06-
			0.18	0.18	0.18	0.16	0.16	0.16	0.16	0.10	0.10	0.10
淡水循环	冷却塔系	M³/h	37-41	74-82	153-171	288-324	576-648	630-720	1008-	1296-	2592-	4320-
统耗水量									1152	1512	3024	5040
		$M^3/s.GW$	0.85-	0.85-	0.85-	0.80-	0.80-	0.70-	0.70-	0.60-	0.60-	0.60-
			0.95	0.95	0.95	0.90	0.90	0.80	0.80	0.70	0.70	0.70
空冷系统	电厂	M ³ /h					101-130	108-162	173-260	216-324	432-650	720-
												1080
		$M^3/s.GW$					0.14-	0.12-	0.12-	0.10-	0.10-	0.10-
							0.18	0.18	0.18	0. 15	0. 15	0. 15

- 注 1 各种冷却系统的用水、耗水量均指两台机组用量。
 - 2 淡水直流冷却系统用水量中包括凝汽器冷却水、辅机冷却器冷却水和电厂的其它用水,既包括消耗水,也包括排回水源的直流冷却水。
 - 3 各种供水系统耗水量中不包括湿法脱硫系统耗水,也不包括热电联产对外供汽不可回收部分的耗水。

2.4.3 国产凝汽式汽轮机的设计背压、凝汽量、冷却水量等相关数据

额定功率	机组型号	进汽参数	凝汽量((t/h)	设计冷	设计	凝汽器	凝汽器	辅机	参考电厂
(MW)		主蒸汽压力/主蒸汽温度	THA	TRL	却水温	背压	冷却面积	冷却水量	冷却水量	
		/再热汽温度	工况	工况	(\mathbb{C})	(kPa)	(m^2)	(m^3/h)	(m^3/h)	
		(MPa) (\mathcal{C}) (\mathcal{C})								
6	N6-35	中压 3.43/435	26	27.5	27	6.86	560	1750	110	山东寿光
12	N12-35	中压 3.43/435	46	48.1	20	5.75	1000	2600	200	广西玉林
25	N25-35	中压 3.43/435	86	90	20	4.90	2000	5180	430	秦皇岛北山
50	N50-90	高压 8.83/535	134	140	20	4.90	3500	9300	600	宁夏石嘴山
100	N100-90	高压 8.83/535	257	267	20	4.90	6815	15420	800	河北滦河
125	N125-135	超高压 13.26/550/550	262	272	20	4.90	7100	17800	1000	浙江长兴
200	N200-130	超高压 12.75/550/550	405	422	20	4.90	11220	25000	1600	内蒙通辽
300	N300-16.7	亚临界 16.7/537/537	582.6	614.3	20	5.40	15770	30560	2000	吉林双辽
330	C330	亚临界 17.75/540/540	635.3	676.9	20	4.90	19600	38000	2000	吉林辽源
600	N600-16.7	亚临界 16.7/537/537	1146.6	1227.8	20	4.90	36000	68000	3000	山东聊城
600	N600-24.2	超临界 24. 2/566/566	1055	1146	18	4.90	32000	60120	4100	辽宁庄河
600	N600-25	超超临界 25.0/600/600	1014	1074	20	4.90	36000	56000	3000	辽宁营口
660	N660-24.2	超临界 24. 2/566/566	1182	1281	20	4.90	38000	62000	3000	吉林九台
1000	N1000-26	超超临界 26.0/600/600	1662	1701	17	4.52	45700	94400	5500	辽宁绥中

- 注: 1 表中额定功率 300MW 及以上容量的机组凝汽量中已包括汽动给水泵驱动汽轮机的排气量。
 - 2 随电厂建设地点、供水方式、年平均冷却水温及年平均背压的不同,机组的凝汽量、凝汽器面积和凝汽器冷却水量也会有变化, 本表仅供参考。

3 C330 机组系国产 330MW 供热机组,表中的凝汽量为凝汽工况下的凝汽量。

2.5 锅炉燃烧方式

- 2.5.1 层燃
- 2.5.2 室燃

火炬燃烧,是电站锅炉的主要燃烧方式。

旋风燃烧

2.5.3 流化床燃烧

2.6 炉型

2.6.1 煤种对锅炉设计的影响

燃料的特性是锅炉设计的主要依据。煤的挥发分、灰熔性、结渣性是影响锅炉设计的主要因素。煤种的特性会影响炉膛尺寸、燃烧设备、受热面大小和布置等。只有充分掌握燃料特性,采取相应的设计、运行措施,才能保证锅炉的安全经济运行。

与煤的特性和燃烧方式有关的炉膛特征参数:

- Qv— 炉膛容积热负荷 kw/m3
- Qf— 炉膛断面热负荷 MW/m2
- Qb- 燃烧区壁面热负荷 MW/m2
- H1-上层一次风中心距屏下缘高度 m

对强结渣性煤种,除了炉膛尺寸的合理选择外,还应选取合理的煤粉喷嘴间 距及单只喷嘴热功率,以降低燃烧区域的热负荷。

2.6.2 锅炉布置型式

大型超临界煤粉锅炉的整体布置型式主要采用口型和塔式布置两种型式。

Ⅱ型炉的主要优点:锅炉钢架较低,安装起吊方便;受热面易于布置成逆流 形式;尾部烟气向下流动,有利于吹灰,并有自身吹灰作用。其缺点是:锅炉占 地面积较大;特别是有二次 90 ° 转弯而使炉膛出口烟温偏差较大并加剧局部受 热面磨损;炉顶穿墙管较多,密封复杂,易造成炉顶漏烟。

塔式炉的主要优点是:受热面布置在炉膛上部,易于疏水,可减轻停炉后蒸 汽凝结在管内导致管子内壁腐蚀问题,并在锅炉启动过程中不会造成水塞;烟气 向上流动过程中,灰粒流速较低,对减轻受热面磨损较为有利;尾部受热面烟气 温度偏差较小;锅炉占地面积较小。其缺点是:锅炉较高,安装及检修费用将提 高;对灰分较高的煤,若上部过热器、再热器大量积灰塌落入炉膛,会引起燃烧 不稳甚至灭火。

我国采用塔式炉的工程有:外高桥二、三期工程;

2.6.3 煤粉炉燃烧方式

直流燃烧器四角切圆燃烧和旋流燃烧器前后墙对冲燃烧是目前国内外应用最广的煤粉燃烧方式。两种燃烧方式都有大量应用。在着火及低负荷燃烧稳定性、燃烧经济性、对炉膛水冷壁结渣的影响等方面没有明显差异。在国外由于锅炉厂一般只生产一种型式的燃烧器,所以只要锅炉制造厂一经确定,其燃烧器的型式也就确定,如美国 CE、日本三菱采用直流燃烧器四角切圆燃烧器;美国 B&W、日立、IHI 采用旋流燃烧器前后墙对冲燃烧。国内锅炉厂则按引进技术生产和供应设备。一般上锅、哈锅供应直流四角切圆燃烧器;东锅、北锅供应旋流前后墙对冲燃烧器。

2.6.4 水冷壁管圈型式

传统的观念认为只有螺旋管圈水冷壁才能满足变压运行的要求,目前除日本 三菱公司之外的超超临界机组锅炉都采用下炉膛螺旋管圈,上炉膛垂直管屏的传 统设计。这种水冷壁系统对于光管水冷壁为了获得足够的冷却能力是十分必要 的。其优点是:可以采用较大口径的光管水冷壁;可以有效地补偿沿炉膛周界上 的热偏差;不需要根据热负荷分布进行平行管系中复杂的流量分配;在低负荷下 仍能保持平行管系流动的稳定性,有良好的负荷适应性。

螺旋管圈水冷壁的缺点是:结构复杂、流动阻力大和现场安装工作量大。

三菱公司在亚临界控制循环锅炉设计制造经验基础上,开发出了一次上升垂直管圈水冷壁变压运行超超临界锅炉。其特点是:采用内螺纹管来防止变压运行至亚临界区域时,下炉膛高热负荷区域发生膜态沸腾和在水冷壁管入口处设置节流圈使其管内流量与它的吸热相适应。

垂直管圈的优点是:结构简单,便于吊挂,厂内组装率高,工地焊接工作量小,系统水阻力小,给水泵的功耗降低。其缺点是:水冷壁管径小,热敏感性强,对运行控制的要求高,对煤种变化的适应性较差。

2.6.5 直流锅炉的调温方式

直流锅炉没有汽包,蒸发与过热受热面之间无固定的分界线,因此汽温的调节与蒸发量、汽压具有相关性。直流锅炉的蓄热能力小,运行工况变化时,蒸汽参数变化快,敏感性强,因此增加了汽温控制的难度。超超临界锅炉过热部分吸

热量份额增大,对汽温控制提出了更高的要求。

2.6.5.1 过热汽温的控制

直流锅炉的给水量等于蒸发量,只要保持燃料量与给水量的比值一定,则过 热蒸汽的焓值不变,所以直流锅炉过热汽温的调整主要通过调节煤水比来实现, 同时还用喷水作精确调整。在运行工况变化时首先调整煤水比,再加喷水微调, 将过热汽温控制在允许变动范围内。

2.6.5.2 再热汽温的控制

由于再热蒸汽压力低,蒸汽比热小,在同样的热偏差下,再热汽温的偏差要比过热汽温的偏差大,以及再热器的运行工况不仅受锅炉运行工况的影响,还与汽机工况有关,所以再热汽温控制比过热汽温控制难度较大。

再热汽温的控制的手段主要有:摆动燃烧器、烟道挡板、烟气再循环、再热器喷水等。同一台锅炉可同时采用多种调温手段。

再热器喷水会影响机组的经济性, 因此通常只作为事故喷水使用。

2.6.6 直流锅炉的启动系统

锅炉启动系统为直流锅炉所特有,其主要功能是:在锅炉启动、停炉和最低 直流负荷以下运行期间避免过热器进水,为水冷壁的安全运行提供足够高的工质 质量流速和尽可能回收工质及其所含的热量。

直流锅炉启动系统由汽水分离系统和热量回收系统两部分组成。按分离器在 正常运行时是参与系统工作还是解列于系统之外,一般可分为内置式分离器启动 系统和外置式分离器启动系统。

目前国外已投运的超超临界直流锅炉一般均采用内置式分离器启动系统。锅炉自点火至正常运行期间,分离器始终接入汽水系统。在最低直流负荷以下,分离器呈湿态运行,在最低直流负荷以上时转为干态运行,此时分离器仅作为蒸汽通道使用。

内置式分离器启动系统的疏水能量回收方式有:大气扩容式、启动疏水热交换器和再循环泵三种。

大气扩容式系统简单,投资少,但热量回收及频繁起停特性较差;启动疏水 热交换器和再循环泵方式系统较复杂,投资大,但热量回收及频繁起动特性较好。

机组调峰运行,且对经济性要求较高的锅炉不宜采用大气扩容式启动系统。 国内引进的超超临界锅炉,其启动系统主要有二种:带泵的再循环启动系统 和大气扩容式启动系统。可根据负荷特性和对经济性的要求,经技术、经济比较后选用。

2.6.7 超超临界锅炉的环保技术

为了降低 NOX 的排放,各锅炉制造厂都开发了低 NOX 燃烧技术,其基本原理为:

- 通过降低过量空气系数,采用分级燃烧、烟气再循环等措施造成燃烧器出口处的低温缺氧环境来抑制 NO_x 的生成。
- ●通过改进燃烧器结构,形成浓、淡两股煤粉气流,改善燃料和空气的扩散 混合,缩短燃烧气体在高温区域的滞留时间,以抑制 NO_x 的生成。

低 NOX 燃烧技术可将锅炉出口烟气中的 NOX 含量降低到 200-400mg/nm3,但不一定能满足国家的法规要求,因此有时还需设置或预留设置脱硝装置的条件。采用最多的方法是选择性催化还原法 (SCR),其原理是在触媒上使 NOX 有选择的进行反应,使其还原为 N2 和 H20。

2.7 汽机结构型式

随着机组容量的增大,进入汽机的蒸汽量增加,排气量也随之增加,对汽机结构型式:汽缸数、排汽口数、末级叶片长度、轴系布置、材料选择等产生影响。

目前 1000MW 机组的主要结构型式是单轴、四缸四排汽、末级叶片长度最高达 1430mm(钛)。

2.8 发电机型式

电压等级

功率因数

3 供热机组选型

热电联产项目的机组选型应满足《关于发展热电联产的规定》的通知,

由国家计划委员会,国家经济贸易委员会、建设部、国家环保总局以急计基础「2000]1268号文联合颁发。

- 3.1 热电联产项目的机组选型应统筹考虑规划范围内热负荷、热源布局、燃料供应和环保等因素,应根据不同的热源布局,对每个热电联产项目进行机组选型的优化比选;
- 3.2 优先安排背压型热电联产机组,其发电容量不计入当地电力建设控制规模;
- 3.3 背压型机组不能满足供热需要的,鼓励建设 200MW 及以上(或供电煤耗

- 310g/kw. h 以下)的大型高效供热机组(打孔抽汽机组除外);
- 3.4 当工业负荷较大时,可以采用以上两种机组的组合;
- 3.5 当以气体燃料为主时,采用分布式热电联产机组。
- 4 国产主机设备一览表(300MW 及以上机组)
- 4.1 锅炉

暂缺

4. 2 汽轮机

4.2.1 电站用凝汽式汽轮机技术参数

型号	形式	额定功率	额定转速	进注	气参数	给水温度	排汽压力	本体质量
		MW	rpm	压力 MPa	温度 ℃	\mathbb{C}	MPa	t
N3-2.35		3	3000	2. 35	390	105	0. 0103	13.5
N6-3.43	单层快装	6	3000	3. 43	435	164	0.008	17
N12-3.43		12	3000	3. 43	435	164	0. 00686	45.3
N25-3.43		25	3000	3. 43	435	170	0. 0058	73.6
N25-8.83		25	3000	8.83	535	223	0.0041	130
N50-5.88		50	3000	5.88	480	189.46	0. 00735	69
N50-8.83		50	3000	8.83	535	221.5	0.008	140
N100-8.83		100	3000	8.83	535	227	0. 0049	256
N100-8.83	单缸	100	3000	8.83	535	226	0. 0049	200
N125-13. 24		125	3000	13. 24	550	238.77	0. 0049	320
N200-12.75	三排汽	200	3000	12.75	535	240	0. 0049	420
N200-12.75	双排汽	200	3000	12.75	535	243.3	0. 00539	430
N300-16.7	双缸双排	300	3000	16. 7	537	272.4	0. 0054	545
N600-16.7		600	3000	16.7	537	273	0. 00539	1500

4.2.2 电站用抽汽冷凝式汽轮机技术参数

型号	额定功率	额定转速	进汽:	参数		抽汽参数	Į.	排汽压力	给水温度	本体质量
	MW	rpm	压力 MPa	温度℃	压力 MPa	温度℃	抽汽量 t/h	MPa	${\mathbb C}$	t
C3-3. 43/0. 49	3	3000	3.43	435	0.49	270	15	0.0072	150	24
C3-3. 43/0. 78	3	3000	3. 43	435	0.78	301	15	0.0072	150	24
C3-3. 43/1. 77	3	3000	3. 43	435	1.77	378	15	0.0072	150	28
C6-3. 43/0. 49	6	3000	3.43	435	0.49	249	45	0.0078	145. 2	40.76
C6-3. 43/0. 98	6	3000	3.43	435	0.98	309	45	0.0072	150	24
C6-3. 43/1. 47	6	3000	3. 43	435	1.47	350	45	0.0072	150	26.8
C6-4. 9/0. 49	6	3000	4. 9	470	0.49	230	30	0.006	144	27.9
C6-4. 9/0. 98	6	3000	4.9	470	0.98	302	30	0.006	144.4	27.9
C12-3. 43/0. 2	12	3000	3.43	435	0. 196	150.8	60	0.0054	148.8	62
C12-3. 43/0. 49	12	3000	3. 43	435	0.49	257	50	0.0049	170	61
C12-4. 9/0. 12	12	3000	4. 9	435	0. 12		45	0.0049	172	62.7
C12-4. 9/0. 29	12	3000	4.9	435	0. 29	182	50	0.0049	172	62.7
C12-4. 9/0. 49	12	3000	4.9	470	0.49	230	70	0.00466	173. 3	58
C12-4. 9/0. 98	12	3000	4. 9	470	0.98	302	50	0. 0051	172	58
C12-5. 89/0. 98	12	3000	5.89	435	0.98	255	50	0.0035	104	74.6
C25-3. 43/0. 29	25	3000	3.43	435	0. 29	182	75	0.0048	154	75
C25-3. 43/0. 98	25	3000	3.43	435	0.98	315	85	0.005	172	75
C25-8.83/0.12	25	3000	8.83	535	0. 12		85	0.00343	212	122
C25-8.83/0.98	25	3000	8.83	535	0.98		110	0. 0049	215	105
C25-8.83/1.57	25	3000	8.83	535	1.57	326	130	0.003	215	108
C25-8.83/4.02	25	3000	8.83	535	4. 02	436	130	0. 0049	150	105
C50-8.83/0.12	50	3000	8.83	535	0. 12		190	0.005	215	160

型号	额定功率	额定转速	进汽	参数		抽汽参数	ķ	排汽压力	给水温度	本体质量
C50-8.83/0.98	50	3000	8.83	535	0.98	269	160	0.00392	214	142
C50-8.83/1.28	50	3000	8.83	535	1.28	306	200	0.0054	223	140
C100-8.83/0.98	100	3000	8.83	535	0.98		100	0.0045	224	
C100-8.83/1.27	100	3000	8.83	535	1.27	292	220	0.0042	220.3	340
NC200/140-12.7	200/140	3000	12.7	535	0.59	354	203	0.0049	240	654
NC200/150-12.7	200/150	3000	12.7	535	0. 294	272	342	0. 0108	243	400
NC200/160-12.7	200/160	3000	12.7	535	0.59	354	203	0. 0054	244	530
NC300/220-16.7	300/220	3000	16.7	537	0.49	285	520	0. 0054	270.6	780

4.2.3 电站用双抽汽凝汽式汽轮机技术参数

型号	额定功	额定转	进汽参	於数		抽汽参数		排汽压	给水温	本体质
	率	速	压力 MPa	温	压力 MPa	温度℃	抽汽量 t/h	力	度	量
	MW	rpm		度℃				MPa	$^{\circ}$	t
CC6-3. 43/0. 98/0. 49	6	3000	3. 43	435	0.98/0.49	275/230	18/15	0.005	150	35
CC12-3. 43/0. 98/0. 12	12	3000	3.43	435	0.98/0.12	300/133	50/40	0.00273	169	56
CC12-3. 43/0. 98/0. 49	12	3000	3.43	435	0.98/0.49	300/251	40/50	0.00333	169	59
CC12-4. 9/0. 98/0. 12	12	3000	4.9	435	0.98/0.12		30/30	0.0049	150	59.5
CC12-4. 9/0. 98/0. 49	12	3000	4.9	435	0.98/0.49	268/230	40/30	0.0049	170	59.9
CC12-4. 9/1. 28/0. 12	12	3000	4.9	435	1.28/0.12		35/30	0.0049	170	59.9
CC12-4. 9/1. 28/0. 49	12	3000	4.9	435	1.28/0.49		30/40	0.0049	170	59.9
CC25-8.83/0.98/0.12	25	3000	8.83	535	0.98/0.12		60/90	0. 00275	213	120
CC25-8.83/3.63/0.12	25	3000	8.83	535	3.63/0.12		75/40	0.0045	215	
CC25-8.83/3.63/0.98	25	3000	8.83	535	3.63/0.98		90/60	0.0045	215	
CC50-8.83/0.98/0.12	50	3000	8.83	535	0.98/0.12		130/50	0.003	215	173
CC50-8.83/1.28/0.12	50	3000	8.83	535	1.28/0.12		140/100	0.00494	223	195
CC50-8.83/4.12/1.47	50	3000	8.83	535	4. 12/1. 47	435/324	75/120	0.00431	218	128.7
CC75-8. 83/1. 27/0. 12	75	3000	8.83	535	1.27/0.12	281/104	140/50	0.0054	221	250
CC100-8.83/1.28/0.25	100	3000	8.83	535	1. 28/0. 25	300/120	200/150	0.0034	228	262

4.2.4 电站用背压式汽轮机技术参数

型号	额定功率	额定转速	进剂	气参数	背压	给水温度	本体质量
	MW	rpm	压力 MPa	温度℃	MPa	${\mathbb C}$	t
B3-3. 43/0. 29	3	3000	3. 43	435	0. 29		18.6
B3-3.43/0.49	3	3000	3. 43	435	0.49	170	20
B3-4. 9/0. 69	3	3000	4.9	470	0.69	170	6.67
B3-4.9/0.98	3	3000	4.9	470	0.98	170	16.4
B6-3. 43/0. 29	6	3000	3. 43	435	0. 29		17.8
B6-4. 9/0. 49	6	3000	4.9	435	0.49	150	46.5
B6-4. 9/0. 69	6	3000	4.9	470	0.69		30. 3
B6-4. 9/0. 98	6	3000	4.9	470	0.98	170	31
B6-4. 9/1. 28	6	3000	4.9	435	1.28	150	41
B6-4. 9/1. 96	6	3000	4.9	435	1.96		18
B6-8.83/3.63	6	3000	8.83	535	3.63		21
B7. 5-3. 43/0. 98	7.5	3000	3. 43	435	0.98	170	33
B10-3.43/0.69	10	3000	3. 43	435	0.69	170	59
B12-3. 43/0. 49	12	3000	3. 43	435	0.49	170	37
B12-4.9/0.12	12	3000	4.9	435	0.12	150	47
B12-4.9/0.29	12	3000	4.9	435	0. 29	150	46.87
B12-4.9/0.98	12	3000	4.9	470	0.98	170	33. 5
B12-4.9/1.28	12	3000	4.9	435	1.28	150	44
B12-5.88/0.69	12	3000	5.88	470	0.69		32. 7
B12-8.83/3.04	12	3000	8.83	535	3. 04		22
B12-8.83/3.83	12	3000	8.83	535	3.83		47. 3
B12-8.83/4.22 前置式	12	3000	8.83	535	4.22		25

型号	额定功率	额定转速	进汽	参数	背压	给水温度	本体质量
B25-8.83/0.12	25	3000	8.83	535	0.12	223	65
B25-8.83/0.98	25	3000	8.83	535	0.98	213	63
B25-8.83/1,28	25	3000	8.83	535	1.28	225	60
B25-8.83/1.47	25	3000	8.83	535	1.47	213.4	50
B50-8.83/0.12	50	3000	8.83	535	0.12	216	80
B50-8.83/0.29	50	3000	8.83	535	0. 29		105
B50-8.83/0.98	50	3000	8.83	535	0.98	225	70
B50-8.83/1.28	50	3000	8.83	535	1.28	224	70

4.2.5 抽汽背压式汽轮机技术参数

型号	额定功率	额定转速	进汽	参数	-	抽汽参数		背压	给水	本体质量
	MW	r pm	压力 MPa	温度℃	压力 MPa	温度℃	抽汽量 t/h	MPa	温度	t
									$^{\circ}$ C	
CB3-3. 43/0. 98/0. 12	3	3000	3. 43	435	0.98	330	20	0.12		24
CB3-3. 43/0. 98/0. 49	3	3000	3. 43	435	0.98	303	5	0.49	164	19.02
CB3-3. 43/1. 08/0. 49	3	3000	3. 43	435	1.08	315	5	0.49		17
CB3-3. 43/1. 47/0. 69	3	3000	3. 43	435	1.47	353	20	0.69		17
CB3-3. 43/1. 57/0. 49	3	3000	3. 43	435	1.57	360	20	0.49		24
CB3-4.8/1.67/0.39	3	3000	4.8	470	1.67	364	12	0. 39	170	20.5
CB3-4. 8/1. 67/0. 59	3	3000	4.8	470	1.67	364	8	0. 59	170	20.5
CB6-3. 43/0. 98/0. 29	6	3000	3. 43	435	0.98	309	40	0. 29		24
CB6-3. 43/0. 98/0. 49	6	3000	3. 43	435	0.98	310	30	0.49		24
CB6-3. 43/1. 57/0. 69	6	3000	3. 43	435	1.57	354	45	0.69		24
CB10-4.9/0.98/0.69	10	3000	4.9	435	0.98		70	0.69	150	
CB10-4.9/1.28/0.69	10	3000	4.9	435	1. 28		90	0.69	150	
CB10-4. 9/1. 57/0. 98	10	3000	4.9	435	1.57		100	0.98	150	
CB12-3. 43/0. 49/0. 29	12	3000	3. 43	435	0.49	270	50	0. 29		47
CB12-4. 9/0. 98/0. 12	12	3000	4.9	435	0.98		30	0.12	150	
CB12-4. 9/0. 98/0. 29	12	3000	4.9	435	0.98	273	50	0. 29	150	35
CB12-4. 9/0. 98/0. 49	12	3000	4.9	435	0.98	270	65	0.49		47
CB12-4. 9/1. 18/0. 69	12	3000	4.9	470	1.18		30	0.69		37.4
CB12-4. 9/1. 28/0. 29	12	3000	4.9	435	1.28		97	0. 29	150	
CB12-4. 9/1. 28/0. 49	12	3000	4.9	435	1.28		100	0.49	150	
CB12-4. 9/1. 57/0. 12	12	3000	4. 9	435	1.57		82	0. 12	150	

型号	额定功率	额定转速	进汽	参数		抽汽参数		背压	给水	本体质量
CB12-4. 9/1. 57/0. 29	12	3000	4.9	435	1.57		80	0. 29	150	
CB12-4. 9/1. 57/0. 49	12	3000	4.9	435	1.57		81	0.49	150	
CB12-4. 9/1. 57/0. 69	12	3000	4.9	435	1.57		100	0.69	150	
CB12-8.83/3.63/0.98	12	3000	8.83	535	3.63		75	0.98	215	
CB20-8.83/4.02/1.37	20	3000	8.83	535	4.02	442	100	1. 37	215	86
CB25-8.83/0.98/0.12	25	3000	8.83	535	0.98	275	100	0.12	215	88
CB25-8.83/1.28/0.12	25	3000	8.83	535	1.28		80	0.12	218	70
CB25-8.83/3.63/0.12	25	3000	8.83	535	3.63		100	0.12	215	
CB25-8.83/3.63/0.98	25	3000	8.83	535	3.63		45	0.98	215	
CB25-8.83/4.02/0.98	25	3000	8.83	535	4.02		45	0.98	215	65
CB25-8.83/4.02/1.27	25	3000	8.83	535	4.02	433	100	1. 27	216	96

4.2.6 大型再热式汽轮机技术参数

型号	额定	额定转速	主蒸	汽进汽参	数	再热	蒸汽进汽参	数	背压	给水温度	本体质量
	功率	r pm	压力 MPa	温度℃	流量 t/h	压力 MPa	温度℃	流量 t/h	MPa	\mathbb{C}	t
	MW										
	125	3000									
	150	3000									
	200	3000									
	300	3000									
	350	3000									
	600	3000									
	660	3000									
	1000	3000									

4.3 发电机

表中应表示设备主要参数、结构特点、技术经济指标 暂缺

参考文献

1 热力发电厂(第二版) 中国电力出版社 郑体宽 主编

3 火力发电厂厂址选择手册(第二版) 东北电力设计院 编著

4 工程热力学 第三版 高等教育出版社 曾丹苓 敖 越 等编

5 审查节能专 题的几点体会 电力勘测设计 2007 年 08 月第四期 杨旭中 著

6 大容量煤粉燃烧锅炉炉膛选型导则