

基于知识的推理

(Knowledge-based Inference)

毛文吉 中国科学院自动化研究所 2016年11月

关于推理

- 推理: 依据一定的原则从前提推出结论的过程, 从逻辑上分为
 - 演绎推理: 由一组前提必然地推导出某个结论的过程

核心:三段论;保真性;没有增加新知识

- 归纳推理: 以某个命题为前提,推出与其有归纳关系的其它

命题的过程

简单枚举法、类比法等;增加了新知识;不保真

• 经典逻辑推理

标准逻辑下的演绎推理是人工智能最早采用的经典推理方法,归结推理方法是其最重要的形式化方法

关于推理

• 非经典逻辑与非经典推理

单调→非单调: 非单调逻辑、非单调推理(Nonmonotonic Reasoning)

• 基于知识的推理

确定→不确定: 不确定推理 (Approximate Reasoning)

基于模型的推理(定性推理, Qualitative Reasoning)

不确定推理方法的分类和发展

不确定推理模型

1. 证据的不确定性描述

表示:证据 A,用 C(A) 表示它的不确定性度量

含义: 用某种度量表示证据为真的程度

 A真, C(A) = ?

 A假, C(A) = ?

 对A一无所知, C(A) = ?

2. 知识的不确定性描述

表示: 规则 $A \rightarrow B$,用 f(B,A) 表示它的不确定性度量

含义: 用某种度量表示前提为真对结论为真的影响程度

 A真则B真, f(B, A) = ?

 A真则B假, f(B, A) = ?

 A对B没有影响, f(B, A) = ?

不确定推理模型

3. 推理计算

①传播

已知 C(A), 规则 $A \rightarrow B$, f(B, A), 如何计算 C(B)

② 逻辑组合

已知 $C(A_1)$ 和 $C(A_2)$,如何计算 $C(A_1 \land A_2)$ 、 $C(A_1 \lor A_2)$ 已知 C(A) ,如何计算 $C(\sim A)$

③ 合成

已知 $C_1(B)$,又得知 $C_2(B)$,如何计算 C(B)

④ 更新

已知 C(B),规则 $A \rightarrow B$, f(B, A), C(A), 如何计算 C(B|A)

确定性理论

以确定性因子(或称可信度)CF作为不确定性度量。

• 规则的不确定性度量

规则 $A \rightarrow B$, 可信度 CF(B, A) 定义为:

$$\mathbf{CF(B, A)} = \begin{cases} \frac{P(B|A) - P(B)}{1 - P(B)} & \stackrel{\text{def}}{=} P(B|A) \ge P(B) \\ \frac{P(B|A) - P(B)}{P(B)} & \stackrel{\text{def}}{=} P(B|A) < P(B) \end{cases}$$

含义: 相对于 $P(\sim B)$,A真对B真的支持程度(当 $CF(B, A) \geq 0$) 相对于P(B), A真对B真的不支持程度(当CF(B, A) < 0)

[1: A真则B必真,-1: A真则B必假 [0: A对B无影响 **取值:** $-1 \le CF(B, A) \le 1$

CF(B, A) 的引入

$$MB(B, A) = \begin{cases} 1 & P(B) = 1 \\ \frac{\max\{P(B|A), P(B)\} - P(B)}{1 - P(B)} & \sharp \dot{\Xi} \end{cases}$$

确定性理论

• 证据的不确定性度量

证据 A,可信度 CF(A)

含义: CF(A)>0, A以CF(A)程度为真

CF(A)<0, A以CF(A)程度为假

取值: $-1 \le CF(A) \le 1$

$$CF(A) = \begin{cases} 1 & A \overset{}{\square} \\ -1 & A \overset{}{\square} \\ 0 & \forall A - \text{无所知} \end{cases}$$

• 推理计算

① 传播

$$CF(B) = CF(B, A) \times max\{0, CF(A)\}$$

推理计算(1)

② 逻辑组合

$$CF(A_1 \land A_2) = \min\{CF(A_1), CF(A_2)\}$$

$$CF(A_1 \lor A_2) = \max\{CF(A_1), CF(A_2)\}$$

$$CF(\sim A) = -CF(A)$$

③ 合成

已知
$$CF(A_1)$$
, 规则 $A_1 \rightarrow B$, $CF(B, A_1)$ $CF(A_2)$, 规则 $A_2 \rightarrow B$, $CF(B, A_2)$ 计算合成的 $CF(B)$

$$CF(B) = \begin{cases} CF_1(B) + CF_2(B) - CF_1(B) \times CF_2(B) & 同为非负 \\ CF_1(B) + CF_2(B) + CF_1(B) \times CF_2(B) & 同为负 \\ CF_1(B) + CF_2(B) & 其它情形 \end{cases}$$

推理计算(2)

③ 合成

$$CF(B) = \begin{cases} CF_1(B) + CF_2(B) \times (1 - CF_1(B)) & 同为非负 \\ CF_1(B) + CF_2(B) \times (1 + CF_1(B)) & 同为负 \\ CF_1(B) + CF_2(B) & 其它情形 \end{cases}$$

④ 更新

已知 CF(B), $CF(A) \ge 0$, 规则 $A \rightarrow B$, CF(B, A) 计算更新值 CF(B|A)

$$CF(B|A) = \begin{cases} CF(B) + CF(B,A) \times CF(A) \times (1-CF(B)) & 同为非负 \\ CF(B) + CF(B,A) \times CF(A) \times (1+CF(B)) & 同为负 \\ CF(B) + CF(B,A) \times CF(A) & 其它情形 \end{cases}$$

确定性理论的改进模型

· 对合成计算的修正(EMYCIN系统):

$$CF(B) = \frac{CF_1(B) + CF_2(B)}{1 - \min\{|CF_1(B)|, |CF_2(B)|\}}$$

CF₁(B)、CF₂(B) 符号不同时

已知 CF(B), $CF(A) \ge 0$, 规则 $A \rightarrow B$, CF(B, A) 计算更新值 CF(B|A)

$$CF(B|A) = \frac{CF(B) + CF(B, A) \times CF(A)}{1 - \min\{|CF(B)|, |CF(B, A) \times CF(A)|\}}$$

$$CF(B|A) = \frac{CF(B) + CF(B, A) \times CF(A)}{1 - \min\{|CF(B)|, |CF(B, A) \times CF(A)|\}}$$

CF(B)、CF(B, A) 符号不同时

推理过程示例

已知: R1: 规则 $A_1 \rightarrow B_1$, $CF(B_1, A_1) = 0.8$

R2: 规则 $A_2 \rightarrow B_1$, $CF(B_1, A_2) = -0.5$

R3: 规则 $B_1 \land A_3 \rightarrow B_2$, $CF(B_2, B_1 \land A_3) = 0.9$

 $CF(A_1) = CF(A_2) = CF(A_3) = 1$, $CF(B_1) = CF(B_2) = 0$

计算: $CF(B_1)$ 、 $CF(B_2)$ 的更新值

解: 由规则形成的推理网络如图, 推理过程如下:

推理过程示例

已知: R1: 规则 $A_1 \rightarrow B_1$, $CF(B_1, A_1) = 0.8$

R2: 规则 $A_2 \rightarrow B_1$, $CF(B_1, A_2) = -0.5$

R3: 规则 $B_1 \land A_3 \rightarrow B_2$, $CF(B_2, B_1 \land A_3) = 0.9$

$$CF(A_1) = CF(A_2) = CF(A_3) = 1$$
, $CF(B_1) = CF(B_2) = 0$

计算: CF(B₁)、CF(B₂) 的更新值

- (1) 根据 R_1 , 计算 B_1 的可信度更新值 $CF(B_1|A_1) = 0 + 0.8 \times 1 \times (1-0) = 0.8$
- (2) 根据 R_2 ,计算 B_1 的可信度更新值 $CF(B_1|A_2) = (0.8+(-0.5)\times 1) / (1-0.5) = 0.6$
- (3) 计算 B_1 、 A_3 逻辑组合的可信度 $CF(B_1 \land A_3) = \min\{CF(B_1), CF(A_3)\} = \min\{0.6, 1\} = 0.6$
- (4) 根据 R_3 , 计算 B_2 的可信度更新值 $CF(B_2|B_1 \land A_3) = 0 + 0.9 \times 0.6 \times (1-0) = 0.54$

主观概率论(主观Bayes方法)

引入两个数值(LS, LN)作为规则的不确定性度量。

• 规则的不确定性度量

规则 $A \rightarrow B$, 度量 (LS, LN) 定义为:

$$LS = \frac{P(A|B)}{P(A|\sim B)} \qquad LN = \frac{P(\sim A|B)}{P(\sim A|\sim B)}$$

含义: 1) 几率函数: $O(x) = \frac{P(x)}{1 - P(x)}$

2) 可以得到: O(B|A)=LS • O(B) O(B|~A)=LN • O(B)

LS: 表示A真时,对B真的影响程度(**充分性因子**)

LN:表示A假时,对B真的影响程度(必要性因子)

LS, LN 的引入及公式证明

证明: 由于
$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

$$P(\sim B|A) = \frac{P(A|\sim B) P(\sim B)}{P(A)}$$

两式相比得:

$$O(X) = \frac{P(X)}{1 - P(X)} = \frac{P(X)}{P(\sim X)}$$

$$\begin{bmatrix}
\frac{P(B|A)}{P(\sim B|A)} \\
O(B|A)
\end{bmatrix} = \begin{bmatrix}
\frac{P(A|B)}{P(A|\sim B)}
\end{bmatrix} \bullet \begin{bmatrix}
\frac{P(B)}{P(\sim B)}
\end{bmatrix}$$

$$O(B|A) \qquad LS \qquad O(B)$$

即:
$$O(B|A) = LS \cdot O(B)$$

类似可得:
$$O(B|\sim A)=LN \cdot O(B)$$

主观Bayes方法

• 规则的不确定性度量

取值: $LS \ge 0$, $LN \ge 0$, 且

- ① LS>1, LN<1
- ② LS<1, LN>1

$$LS = \frac{P(A|B)}{P(A|\sim B)}$$

$$LN = \frac{P(\sim A|B)}{P(\sim A|\sim B)} = \frac{1 - P(A|B)}{1 - P(A|\sim B)}$$

主观Bayes方法

证据的不确定性度量

证据 A,以 O(A) 或 P(A) 作为不确定性度量

转换:

$$O(X) = \frac{P(X)}{1 - P(X)}$$
 $P(X) = \frac{O(X)}{1 + O(X)}$

$$P(X) = \frac{O(X)}{1 + O(X)}$$

$$O(A) = \begin{cases} \infty & A \bar{A} \\ 0 & A \mathcal{B} \end{cases}$$

- 推理计算
 - ① A确定时

$$O(B|A) = LS \cdot O(B)$$

$$O(B|\sim A)=LN \cdot O(B)$$

推理计算(1)

② **A不确定**

已知 P(A),规则 $A \rightarrow B$,(LS, LN),P(B)计算使用规则后 B 的不确定性更新值 P(B|A)

引入 A': 代表与证据 A 有关的所有观察,则 A' 必发生且 出现在 A 之前

推理计算(1)

② A不确定

已知 P(A),规则 $A \rightarrow B$,(LS, LN),P(B),P(A|A')计算使用规则后 B 的不确定性更新值 P(B|A')

关于 A'(Duda, 1976)给出公式:

$$P(B|A') = P(B|A) \cdot P(A|A') + P(B|A) \cdot P(A|A')$$

分别计算以下情形:

- i) P(A|A')=1 时,P(B|A')=P(B|A)
- ii) P(A|A')=0 时, $P(B|A')=P(B|\sim A)$
- iii) P(A|A') = P(A) 时, $P(B|A') = P(B|A) \cdot P(A) + P(B|A) \cdot P(A) = P(B)$
- iv) P(A|A') 取其它值,通过线性插值求得 P(B|A')

计算 P(B|A)、P(B|~A)

$$\frac{1}{1-P(B|A)} - 1 = \frac{LS \cdot P(B)}{1-P(B)}$$

$$O(X) = \frac{P(X)}{1 - P(X)} = \frac{1}{1 - P(X)} - 1$$

整理得:

$$P(B|A) = \frac{LS \cdot P(B)}{(LS-1) \cdot P(B) + 1}$$

······· 情形 i)

由 O(B|A)=LS • O(B) 同样推导可得:

$$P(B|\sim A) = \frac{LN \cdot P(B)}{(LN-1) \cdot P(B) + 1}$$

······ 情形 ii)

推理计算(2)

③逻辑组合

$$P(A_{1} \land A_{2} | A') = \min\{P(A_{1} | A'), P(A_{2} | A')\}$$

$$P(A_{1} \lor A_{2} | A') = \max\{P(A_{1} | A'), P(A_{2} | A')\}$$

$$P(\sim A | A') = 1 - P(A | A')$$

$$O(\sim A | A') = \frac{1}{O(A | A')}$$

④ 合成

已知 $P(A_1)$, $A_1 \rightarrow B$, (LS_1, LN_1) , 对 A_1 的有关观察 A_1' , $P(A_1|A_1')$ $P(A_2)$, $A_2 \rightarrow B$, (LS_2, LN_2) , 对 A_2 的有关观察 A_2' , $P(A_2|A_2')$ A_1' 、 A_2' 相互独立, P(B)

$$O(B|A_1' \cap A_2') = \frac{O(B|A_1')}{O(B)} \cdot \frac{O(B|A_2')}{O(B)} \cdot O(B)$$

证明:

$$O(B|A_1' \cap A_2') = \frac{P(A_1' \cap A_2'|B)}{P(A_1' \cap A_2'|\sim B)} \cdot O(B)$$

$$= \frac{P(A_1'|B) \cdot P(A_2'|B)}{P(A_1'|\sim B) \cdot P(A_2'|\sim B)} \cdot O(B)$$

$$= \frac{O(B|A_1')}{O(B)} \cdot \frac{O(B|A_2')}{O(B)} \cdot O(B)$$

推理过程示例

已知:证据 A 必发生, B₁ 的先验概率为 0.03, 而规则

R1: $A \rightarrow B_1$, $LS_1 = 20$, $LN_1 = 1$

R2: $B_1 \rightarrow B_2$, $LS_1 = 300$, $LN_1 = 0.01$

 B_2 的先验概率 $P(B_2) = 0.01$

计算: 使用规则 R_1 、 R_2 后, R_2 的概率更新值 $P(B_2|A)$

解:

推理过程示例

已知:证据 A 必发生, B_1 的先验概率为 0.03,而规则

R1:
$$A \rightarrow B_1$$
, $LS_1 = 20$, $LN_1 = 1$

R2:
$$B_1 \rightarrow B_2$$
, $LS_2 = 300$, $LN_2 = 0.01$

$$B_2$$
 的先验概率 $P(B_2) = 0.01$

计算: 使用规则 R_1 、 R_2 后, B_2 的概率更新值 $P(B_2|A)$

(1) 根据 R₁,由于 A 确定

$$O(B_1|A) = LS_1 \cdot O(B_1) = 20 \times \frac{0.03}{1 - 0.03} = 0.619$$

$$P(B_1|A) = \frac{0.619}{1 + 0.619} = 0.382$$

(2) 根据 R_2 , 由于 B_1 不确定, 计算几种情形:

i)
$$P(B_1|A)=1$$
 For $P(B_2|A)=\frac{LS_2 \cdot P(B_2)}{(LS_2-1) \cdot P(B_2)+1}=0.752$

ii)
$$P(B_1|A)=P(B_1)=0.03$$
 Ft, $P(B_2|A)=P(B_2)=0.01$

插值:
$$P(B_2|A) = 0.01 + \frac{0.752 - 0.01}{1 - 0.03} \times (0.382 - 0.03) = 0.279$$

证据理论(D-S理论)

将证据 A 表示成集合形式,引入函数:

基本概率分配函数 \mathbf{m} : $2^{U} \rightarrow [0, 1]$, 满足

$$m(\phi) = 0$$
, $\sum_{A \subseteq U} m(A) = 1$

信任函数 Bel: $2^{U} \rightarrow [0, 1]$

$$Bel(A) = \sum_{B \subset A} m(B)$$

似然函数 Pl: $2^{U} \rightarrow [0, 1]$

$$Pl(A) = 1 - Bel(\sim A) = \sum_{B \subseteq U} m(B) - \sum_{B \subseteq \sim A} m(B) = \sum_{B \cap A \neq \emptyset} m(B)$$

例:
$$U=\{a,b,c\}$$
, $Bel(\{a,b\})=m(\{a\})+m(\{b\})+m(\{a,b\})$
 $Pl(\{a\})=m(\{a\})+m(\{a,b\})+m(\{a,c\})+m(\{a,b,c\})$

证据理论

• 证据的不确定性度量

区间 [Bel(A), Pl(A)] 作为证据 A 的不确定性度量

含义: Bel(A) 表示对 A 的总信任程度

Pl(A) 表示对不否定 A 的信任程度

Pl(A)—Bel(A) 表示对 A 不知道的一种度量

取值: $0 \le Bel(A) \le Pl(A) \le 1$

证据理论

还常采用函数形式度量 A 的不确定性:

• 规则的不确定性度量

规则 $\mathbf{A} \rightarrow \mathbf{B}$, $\mathbf{A} \times \mathbf{B}$ 是 \mathbf{U} 的子集, $|\mathbf{B}| = \mathbf{k}$, $(\mathbf{c_1}, ..., \mathbf{c_k})$ 作为度量,且 $\mathbf{c_i} \ge 0$, $1 \le \mathbf{i} \le \mathbf{k}$, $\sum\limits_{j=1}^k \mathbf{c_j} \le 1$.

• 推理计算

①逻辑组合

$$f(A_1 \land A_2) = \min\{f(A_1), f(A_2)\}\$$

 $f(A_1 \lor A_2) = \max\{f(A_1), f(A_2)\}\$

推理计算

2 传播

已知 f(A),规则 $A \rightarrow B = \{b_1, ..., b_k\}$, $(c_1, ..., c_k)$,|U|,计算 f(B)规定: $m(\{b_1\}, ..., \{b_k\}) = (f(A) \cdot c_1, ..., f(A) \cdot c_k)$ $m(U) = 1 - \sum_{i=1}^{k} f(A) \cdot c_i$

进而计算 Bel(B)、Pl(B), 得到 f(B)

③ 合成

已知
$$f(A_1)$$
, 规则 $A_1 \rightarrow B$, $(c_1, ..., c_k)$ $f(A_2)$, 规则 $A_2 \rightarrow B$, $(c_1', ..., c_k')$

计算合成的 f(B)

引入算子中:
$$m=m_1\oplus m_2$$
, 规定: $m(\phi)=0$,
$$m(A)=K \cdot \sum_{X \cap Y=A} m_1(X) \cdot m_2(Y), \quad K^{-1}=1-\sum_{X \cap Y\neq \emptyset} m_1(X) \cdot m_2(Y)$$

推理过程示例

已知:
$$f(A_1) = 0.8$$
,规则 $A_1 \rightarrow B$, $(c_1, c_2) = (0.25, 0.75)$ $f(A_1) = 0.5$,规则 $A_2 \rightarrow B$, $(c_1', c_2') = (0.6, 0.2)$, $|U| = 20$ 计算: $f(B)$

$$m_1(\{b_1\}, \{b_2\}) = (0.8 \times 0.25, 0.8 \times 0.75) = (0.2, 0.6)$$

 $m_1(U) = 1 - (0.2 + 0.6) = 0.2$

$$m_2(\{b_1\}, \{b_2\}) = (0.5 \times 0.6, 0.5 \times 0.2) = (0.3, 0.1)$$

$$m_2(U) = 1 - (0.3 + 0.1) = 0.6$$

m2 m1	$\left\{ b_1 \right\}_{0.2}$	$\left\{ \mathrm{b_2} \right\}_{0.6}$	$U_{0.2}$
$\{b_1\}_{0.3}$	$\{b_1\}_{0.06}$	ф	$\{b_1\}_{0.06}$
$\left\{\mathrm{b_2}\right\}_{0.1}$	ф	$\{b_2^{}\}_{0.06}$	$\{b_2^{}\}_{0.02}$
$U_{0.6}$	$\{b_1\}_{0.12}$	$\{b_2^{}\}_{0.36}$	$U_{0.12}$

$$m({b_1})=K \cdot (0.06+0.06+0.12)=K \cdot 0.24$$

$$m({b_2})=K \cdot (0.06+0.02+0.36) = K \cdot 0.44$$

$$m(U)=K \cdot 0.12$$

推理过程示例

已知:
$$f(A_1) = 0.8$$
,规则 $A_1 \rightarrow B$, $(c_1, c_2) = (0.25, 0.75)$
$$f(A_1) = 0.5$$
,规则 $A_2 \rightarrow B$, $(c_1', c_2') = (0.6, 0.2)$, $|U| = 20$

计算: f(B)

$$\begin{split} &K^{\text{-}1} = 0.24 + 0.44 + 0.12 = 0.8 \\ &m(\{b_1\}) = &K \cdot (0.06 + 0.06 + 0.12) = &K \cdot 0.24 = 0.3 \\ &m(\{b_2\}) = &K \cdot (0.06 + 0.02 + 0.36) = &K \cdot 0.44 = 0.55 \\ &m(U) = &K \cdot 0.12 = 0.15 \\ &Bel(B) = &m(\{b_1\}) + &m(\{b_2\}) + &m(\{b_1, b_2\}) = &0.3 + 0.55 + 0 = 0.85 \\ &Pl(B) = &1 - Bel(\sim B) = &1 \\ &f(B) = &Bel(B) + \frac{|B|}{|U|} (Pl(B) - Bel(B)) = &0.85 + \frac{2}{20} \times (1 - 0.85) = &0.865 \end{split}$$

知识推理小结

• 比较:不确定推理方法

	确定性理论	主观Bayes方法	证据理论	可能性理论
理论基础	较弱	较强	较强	中等
适于处理的 不确定类型	概率	概率	概率、模糊	模糊
不确定性的 给定方法	主观	主观、客观	主观	主观
能否区分不 确定/不知道	难以	难以	可以	可以
易于使用	容易	容易	困难	一般

- 1. Kanal & Lemmer (Eds.). Uncertainty in Artificial Intelligence. Elsevier, 1986.
- 2. Genesereth & Nilsson. Logical Foundations of Artificial Intelligence. Elsevier, 1987.

知识推理小结

• 最弱约束条件

- (1) 当证据和规则都是确定的情况下,不确定推理得出的结论 应与确定性推理的结论相一致(以确定性推理为特例)
- (2) 不确定值的计算在其值域上应具有封闭性
- (3) 当对规则前提的不确定值一无所知时,前提应对结论的不确定值没有任何影响(命题单位元)
- (4) 当规则的前提与结论无无关时,前提应对结论的不确定值 没有任何影响(规则单位元)
- (5) $C(A_1 \land A_2 \land ... \land A_n) \le min\{C(A_1), C(A_2), ..., C(A_n)\}$
- (6) $C(A_1 \lor A_2 \lor ... \lor A_n) \ge \max\{C(A_1), C(A_2), ..., C(A_n)\}$

谢谢大家!

