

Binomial Proportions

Mathematical Biostatistics Boot Camp

Brian Caffo, PhD Johns Hopkins Bloomberg School of Public Health

Table of contents

- 1. Intervals for binomial proportions
- 2. Agresti- Coull interval
- 3. Bayesian analysis
 - Prior specification
 - Posterior
 - · Credible intervals
- 4. Summary

Intervals for binomial parameters

• When $X \sim \text{Binomial}(n, p)$ we know that

a. $\hat{p} = X/n$ is the MLE for p b. $E[\hat{p}] = p$ c. $Var(\hat{p}) = p(1-p)/n$ d.

$$\frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})/n}}$$

follows a normal distribution for large n

• The latter fact leads to the Wald interval for *p*

$$\hat{p} \pm Z_{1-\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

Some discussion

- The Wald interval performs terribly
- Coverage probability varies wildly, sometimes being quite low for certain values of n even when p
 is not near the boundaries
 - Example, when p=.5 and n=40 the actual coverage of a 95% interval is only 92%
- When p is small or large, coverage can be quite poor even for extremely large values of n
 - Example, when p=.005 and n=1,876 the actual coverage rate of a 95% interval is only 90%

Simple fix

- · A simple fix for the problem is to add two successes and two failures
- That is let $\tilde{p} = (X+2)/(n+4)$
- · The (Agresti- Coull) interval is

$$\tilde{p} \pm Z_{1-\alpha/2} \sqrt{\tilde{p}(1-\tilde{p})/\tilde{n}}$$

- Motivation: when p is large or small, the distribution of \hat{p} is skewed and it does not make sense to center the interval at the MLE; adding the pseudo observations pulls the center of the interval toward .5
- · Later we will show that this interval is the inversion of a hypothesis testing technique

Example

Suppose that in a random sample of an at-risk population 13 of 20 subjects had hypertension. Estimate the prevalence of hypertension in this population.

- $\hat{p} = .65, n = 20$
- $\tilde{p} = .63, \, \tilde{n} = 24$
- $\cdot Z_{.975} = 1.96$
- Wald interval [.44, .86]
- · Agresti-Coull interval [.44, .82]
- 1/8 likelihood interval [.42, .84]

Bayesian analysis

- · Bayesian statistics posits a **prior** on the parameter of interest
- All inferences are then performed on the distribution of the parameter given the data, called the posterior
- · In general,

Posterior ∝ Likelihood × Prior

 Therefore (as we saw in diagnostic testing) the likelihood is the factor by which our prior beliefs are updated to produce conclusions in the light of the data

Beta priors

• The beta distribution is the default prior for parameters between 0 and 1. Vitem The beta density depends on two parameters α and β

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1} \quad \text{for } 0 \le p \le 1$$

- The mean of the beta density is $\alpha/(\alpha + \beta)$
- The variance of the beta density is \

$$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

• The uniform density is the special case where $\alpha = \beta = 1$

Posterior

• Suppose that we chose values of α and β so that the beta prior is indicative of our degree of belief regarding p in the absence of data \item Then using the rule that

Posterior ∝ Likelihood × Prior

and throwing out anything that doesn't depend on p, we have that

Posterior
$$\propto p^{x} (1-p)^{n-x} \times p^{\alpha-1} (1-p)^{\beta-1}$$

= $p^{x+\alpha-1} (1-p)^{n-x+\beta-1}$

• This density is just another beta density with parameters $\tilde{\alpha} = x + \alpha$ and $\tilde{\beta} = n - x + \beta$

Posterior mean

$$E[p \mid X] = \frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{\beta}}$$

$$= \frac{x + \alpha}{x + \alpha + n - x + \beta}$$

$$= \frac{x + \alpha}{n + \alpha + \beta}$$

$$= \frac{x}{n} \times \frac{n}{n + \alpha + \beta} + \frac{\alpha}{\alpha + \beta} \times \frac{\alpha + \beta}{n + \alpha + \beta}$$

$$= MLE \times \pi + Prior Mean \times (1 - \pi)$$

- The posterior mean is a mixture of the MLE (\hat{p}) and the prior mean
- π goes to 1 as n gets large; for large n the data swamps the prior
- For small n, the prior mean dominates
- Generalizes how science should ideally work; as data becomes increasingly available, prior beliefs should matter less and less
- · With a prior that is degenerate at a value, no amount of data can overcome the prior

Posterior variance

The posterior variance is

$$Var(p \mid x) = \frac{\tilde{\alpha}\tilde{\beta}}{m} (\tilde{\alpha} + \tilde{\beta})^{2} (\tilde{\alpha} + \tilde{\beta} + 1)$$

$$= \frac{(x+\alpha)(n-x+\beta)}{m} (n+\alpha+\beta)^{2} (n+\alpha+\beta+1)$$

• Let $\tilde{p} = (x + \alpha)/(n + \alpha + \beta)$ and $\tilde{n} = n + \alpha + \beta$ then we have

$$Var(p \mid x) = \frac{\tilde{p}(1 - \tilde{p})}{\tilde{n} + 1}$$

Discussion

• If $\alpha = \beta = 2$ then the posterior mean is

$$\tilde{p} = (x+2)/(n+4)$$

and the posterior variance is

$$\tilde{p}(1-\tilde{p})/(\tilde{n}+1)$$

· This is almost exactly the mean and variance we used for the Agresti-Coull interval

Example

- Consider the previous example where x = 13 and n = 20
- Consider a uniform prior, $\alpha = \beta = 1$
- The posterior is proportional to (see formula above)

$$p^{x+\alpha-1} (1-p)^{n-x+\beta-1} = p^x (1-p)^{n-x}$$

that is, for the uniform prior, the posterior is the likelihood

· Consider the instance where $\alpha = \beta = 2$ (recall this prior is humped around the point .5) the posterior is

$$p^{x+\alpha-1}(1-p)^{n-x+\beta-1} = p^{x+1}(1-p)^{n-x+1}$$

• The ``Jeffrey's prior" which has some theoretical benefits puts $\alpha = \beta = .5$

Bayesian credible intervals

- · A Bayesian credible interval is the Bayesian analog of a confidence interval
- A 95% credible interval, [a, b] would satisfy

$$P(p \in [a, b] \mid x) = .95$$

- The best credible intervals chop off the posterior with a horizontal line in the same way we did for likelihoods
- These are called highest posterior density (HPD) intervals

R code

Install the binom package, then the command

```
library(binom)
binom.bayes(13, 20, type = "highest")
```

gives the HPD interval. The default credible level is 95% and the default prior is the Jeffrey's prior.

Interpretation of confidence intervals

- Confidence interval: (Wald) [.44, .86]
- Fuzzy interpretation:

We are 95% confident that p lies between .44 to .86

· Actual interpretation:

The interval .44 to .86 was constructed such that in repeated independent experiments, 95% of the intervals obtained would contain p.

· Yikes!

Likelihood intervals

- Recall the 1/8 likelihood interval was [.42, .84]
- Fuzzy interpretation:

The interval [.42, .84] represents plausible values for p.

· Actual interpretation

The interval [.42, .84] represents plausible values for p in the sense that for each point in this interval, there is no other point that is more than 8 times better supported given the data.

· Yikes!

Credible intervals

- Recall that Jeffrey's prior 95% credible interval was [.44, .84]
- Actual interpretation

The probability that p is between .44 and .84 is 95%.