本章总结: 晶体结构

- 半导体材料和相关化学
- 晶体学
 - "正"体系和"倒"体系
- 实验技术

本章总结:元素

The Periodic Table of Elements

本章总结: 电负性

Group (vertical)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period (horizontal)																		
1	H 2 20														Q - 7			He
2	Li 0.98	Be 1.57											B 2.04	C 2.55	N 3.04	© 3.44	# 3.98	Ne
3	Na 0.93	Mg 1.31											Al 1.61	Si 1.90	P 2.19	S 2.58	CI 3.16	Ar
4	K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
5	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	1 2.66	Xe 2.60
6	Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
7	Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
Lanthanides	*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27		
Actinides	**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.291		

Periodic table of electronegativity using the Pauling scale

本章总结: 键和极性

离子键和极性共价键还依靠库仑力降低能量,使得原子相互结合 离子键没有电子共有化运动,只有库仑力

本章总结: 半导体的主要结构

IV族单质: C(金刚石)、 IV、III-V、II-VI族化合物: IV、III-V、II-VI族化合物: Si、Ge SiC、GaAs、InSb、ZnS等 SiC、GaN、ZnO、ZnS等

图 23 金刚石型晶体结构。图中显 示了四面体键合的排列方式。

图 24 立方硫化锌的晶体结构。

图 1-3 纤锌矿型结构

金刚石结构 非极性共价键 立方闪锌矿结构 弱极性共价键

六方纤锌矿结构 强极性共价键

本章总结: 晶体学

- 晶体结构的根本特征: 平移不变性
- 晶格
- 平移矢量(正格矢)a_i (i=1,2,3)
- 晶胞、晶格、晶格常数
- 晶体/物质在实空间 ^{晶胞}

平移矢量(正格矢)

本章总结: 晶体学

- 原胞
- 立方晶体
- 六方晶体

面心立方晶格/点阵

六方密堆积晶格/点阵

提示: 六方密堆积不是标准 的晶格(布拉伐晶格), 但 是是传统晶格

标准晶格的种类

单斜 正交 三斜 $\alpha \neq 90^{\circ}$ $\alpha \neq 90^{\circ}$ a≠b≠c $a \neq b \neq c$ a≠b≠c $a \neq b \neq c$ $\alpha, \beta, \gamma \neq 90^{\circ}$ $\beta, \nu = 90^{\circ}$ $\beta, \gamma = 90^{\circ}$ C C C Base Face Body Simple Simple Centered Centered Centered Centered Triclinic Orthorhombic Monoclinic $\alpha, \beta, \gamma \neq 90^{\circ}$ $a \neq c$ a≠c a≠c C a Simple Body Body Face Simple Centered Centered Centered Rhombohedral Hexagonal Tetragonal Cubic (or isometric) 六方 立方 菱方(三方) 四方 https://www.geocaching.com/geocache/GC1F

G1Z_speaking-of-crystals-dp-ec22

标准晶格下的纤锌矿原胞

标准晶格: 六方; 对应原胞: 平行四边形原胞 (2Ga+2N)

具体选择哪种晶格, 需要看上下文

本章总结: 倒空间

- 对晶格进行傅里叶变换成为倒晶格
- 平移矢量: 倒格矢 \mathbf{b}_i (i=1,2,3) ,和对应脚标不同的正格矢构成的平面垂直
- 倒格矢、波矢量在倒空间
- 倒晶格的原胞: 布里渊区

本章总结: 晶面和晶向

- 晶面(hkl)和晶向[hkl]
- •晶面(hkl)为截距倒数,垂直于h**b₁+kb₂+lb₃**
- •晶向[hkl]平行于ha₁+ka₂+la₃

本章总结: 概念之间的关系

- 晶格
- 晶格常数
- 原胞

- **→ 倒晶格**
 - 倒晶格常数
 - 布里渊区

• 晶面
$$\stackrel{\underline{\text{#i}}}{\longleftarrow}$$
 • $hb_1+kb_2+lb_3$ • 晶向 $\stackrel{\underline{\text{Pf}}}{\longleftarrow}$ • $ha_1+ka_2+la_3$

本章总结:实验技术

- 电子显微技术
 - 用短波长的电子波替代光波观察原子排布
 - 透射电子显微镜(TEM)和扫描透射电子显微镜 (STEM)
- X射线衍射(XRD)技术
 - 利用周期排布的原子作为光栅衍射X射线,精确测量 晶面间距/晶格常数