ENGR 305 - Lab #5

Prof. D. Fixel

NMOS at DC

OBJECTIVES:

To study DC biasing of an NMOS transistor by:

- Completing the DC analysis of two circuits: (1) an NMOS biased in the saturation region, and (2) a diode-connected NMOS.
- Implementing the circuits in an experimental setting, taking measurements, and comparing their performance to theoretical results.

MATERIALS:

- · Laboratory setup, including breadboard
- 1 enhancement-type NMOS transistor (2N7000)
- Several wires and resistors of varying sizes

PART 1: NMOS IN SATURATION MODE

Hand calculations

Design the circuit; that is, determine the values of R_D and R_S so that the transistor operates at $I_D = 1.0$ mA and $V_D = 5.0$ V. The NMOS transistor has $V_T = 2.0$ V, $\mu_n C_{ox} = 100$ $\mu A/V^2$, L = 1 μm , and W = 32 μm . Use supplies of $V_+ = -V_- = 15$ V.

- Sketch the circuit, clearly labeling the transistor's three terminals.
- What value of R_D do you need to use?
- Based on the specifications, calculate V_{OV} ($V_{OV} = V_{GS} V_{TN}$).
- From the datasheet, find the threshold voltage V_{TN} of the transistor or alternately use your value from Lab #4. What is V_{GS} ? What is V_{S} ?
- What values of Rs do you need to use?

Prototyping and Measurement

- Assemble the circuit onto a breadboard.
- Using a digital multimeter, measure V_G, V_S, and V_D.
- Using a digital multimeter, measure all resistors to three significant digits.

Post-Measurement Exercise

- What are the measured values of V_{GS} and V_{DS}? How do they compare to your pre-lab calculations? Explain any discrepancies.
- Based on the measured values of V_D and V_S and your measured resistor values, what is the measured value of I_D based on your lab measurements?

PART II: DIODE-CONNECTED NMOS

Consider the diode-connected transistor, shown in the figure below. In this configuration, the gate is connected to the drain, so that they are at the same potential. Design the circuit such that $I_D = 1$ mA and $R_S = 15$ k Ω . Use supplies of $V_+ = -V_- = 15$ V.

Hand calculations

- Sketch the circuit in your lab book, clearly labeling the transistor's three terminals.
- What is the operating region of the transistor? Based on the specifications, calculate V_{OV} . What are V_S and V_D ?
- You now have enough information to calculate R_D. Is the calculated value available? Can you combine resistors or use a decade hox?

Prototyping and Measurement

- Assemble the circuit onto a breadboard.
- Using a digital multimeter, measure V_s and V_D. Report the values in your lab report.
- Using a digital multimeter, measure all resistors to three significant digits.

Post-Measurement Exercise

- How do the measured values compare to your pre-lab calculations? Explain any discrepancies.
- \bullet Based on the measured values of V_D and V_S and your measured resistor values, what is the measured value of I_D based on your lab measurements?

V=15V $R_{0}=15V$ V=-15V

Diode-connected transistor

JA All