Assignment 2 Statistical Analysis using SPSS

HSA Tutorial 21st November 2017 20.30-22.00

Overview

- Tests and Research Questions
- Comparing means: Independent subjects t-test
- Comparing means: Paired samples t-test
- Categorical data: Crosstabs and chi-square tests
- Comparing multiple means: ANOVA

Inferential statistics

- Use the data from the sample to make inferences (assumptions) about the population
- Is this pattern a real difference?
- Is it just due to chance?
- What conclusions can we draw from our findings?

Inferential statistics

Differences

- T-test
 - Difference between 2 groups (mean scores on continuous variable)
 - RM or IS
- 1-way Analysis of Variance
 - Difference between 2 or more groups
 - Impact of 1 IV on 1 DV across groups
- 2-way Analysis of Variance
 - Impact of 2 IV's on one DV
 - Interaction Effect

Relationships

- Pearson Correlation
 - Test the strength of a relationship between 2 continuous variables
- Multiple Regression
 - Multiple independent variables
 - 1 continuous dependent variable
- Factor Analysis
 - Multiple variables (e.g. Scale items)

Parametric vs. non-parametric

Parametric

- Conventional Statistical Tests (e.g. ttest; ANOVA)
- Assumptions
 - Normal Distribution
 - Low Variance
 - Mean is adequate representation
 - Representative of sample
- Each test has specific assumptions to be met

Non-parametric

- Make no assumptions about the distribution of the data
 - Median as most accurate measure of central tendency
- More 'robust' than parametric tests
- BUT less <u>power</u>
- e.g. Mann and Whitney; Kruskal-Wallis

Power

- Power (1-β): Likelihood of rejecting H_o when it is false
 - Alpha (α) : Lower levels of alpha makes it harder to reject the null hypothesis
 - Effect Size (relationship between variables)
 - Sample Size (power increases with larger samples)

Tests of difference

Independent subjects t-test				
Independent variable:	1 categorical (binary)			
Dependent variable:	1 continuous			
Non-parametric equivalent:	Mann-Whitney U Test			

Tests of difference

Repeated measures t-test			
Independent variable:	1 categorical (binary)		
Dependent variable:	1 continuous		
Non-parametric equivalent:	Wilcoxon		

Tests of difference

1-way between groups ANOVA				
Independent variable:	1 categorical (3+ levels)			
Dependent variable:	1 continuous			
Non-parametric equivalent:	Kruskal-Wallis			

Tests of difference

1-way repeated measures ANOVA			
Independent variable:	1 categorical (3+ levels)		
Dependent variable:	1 continuous		
Non-parametric equivalent:	Freidman Test		

Tests of difference

2-way between groups ANOVA				
Independent variable:	2 categorical (2+ levels)			
Dependent variable:	1 continuous			
Non-parametric equivalent:				

Testing relationships

Chi-square			
Independent variable:	I categorical		
Dependent variable:	I categorical		
Non-parametric equivalent:			

Testing relationships

Pearson's correlation				
Independent variable:	2 continuous			
Dependent variable:	-			
Non-parametric equivalent:	Spearman (RHO)			

Exercise 5: Choosing the right statistic

- Is there a difference between the typing speed of an iPad and a laptop computer, using the same participants?
- T-test (repeated measures)
- Do males or females have more positive attitudes to the Internet?
- T-test (independent subjects)
- Is there a relationship between age and frequency of use of the Internet?
- Pearson's correlation
- Is there a difference between those under 30, 30-50, and 50+ in terms of their use of the Internet?
- 1-way ANOVA
- Do those over 65 years and under 65 years differ in terms of owning a smartphone (yes/no)?
- Chi-square test

The t-test

- Compares the average (mean) scores between 2 groups on some continuous variable
- ➤ Independent Variable: Categorical
- ➤ Dependent Variable: Continuous

Do users perform better on a typing test using a laptop or a tablet?

Types of t-tests

- 1. Independent-samples T-test
 - Compare mean scores of 2 different groups or conditions
- 2. Repeated Measures T-Test
 - Compare the same group on different tests (matched pairs)

Rationale

- Compares the sample means of collected data to sample means that would emerge if there was no effect
- ➤ The standard error is used to gauge the variability between the group means
 - > Small SE = small difference
 - ➤ If difference in sample group is bigger than that of estimated we can assume that groups come from different populations
 - ➤ As the difference between the groups increase, the more confidently we can assume that it is due to the experimental manipulation

Data for Independent Subjects T-Test

Participant	Group	Self-Esteem Score
1	1	30
2	1	35
3	1	35
4	1	30
5	2	50
6	2	55
7	2	65

Data for Paired Samples T-Test					
Participant	Time 1	Time 2			
1	30	40			
2	35	35			
3	45	50			
4	50	55			
5	65	55			
6	40	50			

Output: Independent Samples T-Test

Step 1: Check Descriptives

Step 2: Check Levene's Test

Step 3: Read t-test significance level

Step 4: Calculate Effect Size

Output: Paired Samples T-Test

Step 1: Check Significance

Step 2: Compare Means

Step 3: Calculate Effect Size

Effect Size

- > Relates to the **magnitude** of difference between scores
 - ➤ Are they really different? Or is it by chance?
- ➤ Eta Squared is a common statistic (0 to 1)
 - Represents the proportion of variance the DV that can be explained by the IV
- ➤ Use calculation in Pallant (2013) for t-tests

.01 = Small Effect Size .06 = Moderate Effect Size .14 = Large Effect Size

Non-Parametric Equivalents

- What if the data is non-normal?
- 1. Mann-Whitney U-Test
 - Analyses data based on ranks
- 2. Wilcoxon Signed Ranks Test
 - Similar to Mann-Whitney

ANOVAs: Rationale

- The fewer tests conducted, the better
- Is there a difference in Anxiety Scores across 3 age groups (16-25; 26-39; 40+)?
 - Compare 1 + 2; 2 + 3;1 + 3 using t-tests?
 - · Greatly increase probability of committing a Type 1 Error
- Is there a difference in anxiety scores for males and females across 3 age groups?
 - Doing separate ANOVAs does not allow us to test for an interaction between IV's (i.e. gender and age)

ANOVAs

- Comparing several means
- 1-way Analysis of Variance
 - · Between-groups

Is there a difference in statistics results across undergraduate classes?

Planned Comparisons/Post-Hoc Analyses

- ANOVA tells you if there is a difference but not where it is
- 1. Planned Comparison (a priori)
 - Testing specific hypotheses
 - 1-tailed hypothesis (e.g. Difference between Group 1 and 2)
 - · Need to be included beforehand
- Post-Hoc (a posteriori)
 - Conduct a whole set of comparisons, exploring the differences between each of the groups/conditions in a study
 - Designed to guard against the possibility of a increased Type I error due to the large number of different comparisons being made

F-Statistic

- Testing difference between 3 or more means
 - H₀ = all means are equal
- F-Statistic: Compares amount of systematic variance in the data to the amount of unsystematic variance (Model : Error)
- Omnibus tells us if there is an overall difference, but not where the difference lies

ANOVA Data (1-way between)

Total Optimism Scores	Age
30	1
45	2
55	3
31	1
78	1
23	2

Chi-Square Test

- > Tests the strength of association between two variables
 - > Independent Variable: Categorical
 - Dependent Variable: Categorical

What is the gender distribution of undergraduate students in relation to their choice of subjects?

Crosstabs

[DataSet1] H:\Personal\Oscail\HSA 2013-2014\Tutorials\HSA Workshop 9.11.13\Statistics\survey5ED.sav

Case Processing Summary

	Cases					
	Va	lid	Missing		Total	
	N	Percent	N	Percent	N	Percent
sex * child	438	99.8%	1	0.2%	439	100.0%

sex * child Crosstabulation

			child		
			YES	20	Total
sex	MALES	Count	80	104	184
		% within sex	43.5%	56 .5%	100.0%
		% within child	43.2%	41.1%) 42.0%
		% of Total	18.3%	23.7%	42.0%
	FEMALES	Count	105	149	254
		% within sex	41.3%	58.7%	100.0%
		% within child	56.8%	58.9%	58.0%
		% of Total	24.0%	34.0%	58.0%
Total		Count	185	253	438
		% within sex	42.2%	57.8%	100.0%
		% within child	100.0%	100.0%	100.0%
		% of Total	42.2%	57.8%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.200ª	1	.655)	
Continuity Correction ^b	.122	1	./2/		
Likelihood Ratio	.200	1	.655		
Fisher's Exact Test				.695	.363
Linear-by-Linear Association	.200	1	.655		
N of Valid Cases	438				

Assignment

- 3 exercises
 - 1: Describing and Summarising Data (20%)
 - 2: Tests of Difference (30%)
 - 3: Analysing categorical data and Multivariate Analysis (50%)

Deadline: Monday 4th December 2017

Background to dataset

Questionnaire Survey

The data used for these exercises were collected as part of a recent survey of student **attitudes to research** in three institutions. The students were informed that some of the data they provided would be used by other students to carry out statistical exercises.

The questionnaire comprised five sections:

Section 1: Collects information on experience of research; respondents were asked to indicate, yes, no. or don't know.

Section 2: Contains 25 statements about research. Respondents were asked to indicate their level of agreement or disagreement with the statements.

Section 3: Contains 10 statements about mathematics. Respondents were asked to indicate their level of agreement or disagreement with the statements.

Section 4: Asks for personal details including gender, age, Leaving Certificate results, institution and intentions with regard to postgraduate study.

Section 5: Open ended questions (these have been removed from the dataset)

Questions?