Introdução à Otimização Numérica com SciPy: Métodos univariados, multivariados e com restrições EMC410235 - Programação Científica para Engenharia e Ciência Térmicas

Prof. Rafael F. L. de Cerqueira

2025.2

Objetivos da Aula

- Apresentar os fundamentos da otimização numérica.
- Discutir a classificação dos métodos:
 - Univariados vs. multivariados
 - Com e sem restrições
 - Baseados em gradiente vs. "gradient-free"
- Deduzir os métodos de Steepest Descent e Newton para problemas sem restrições.
- Comentar brevemente métodos modernos como CG, BFGS, Newton-CG.
- Mostrar exemplos práticos e aplicações em engenharia.

O que é Otimização?

Definição

Otimização consiste em encontrar o ponto $x^* \in \mathbb{R}^n$ que minimiza (ou maximiza) uma função f(x), possivelmente sujeita a restrições.

- $\min f(x)$ ou $\max f(x)$
- Sujeito a:
 - Restrições de igualdade: $h_i(x) = 0$
 - Restrições de desigualdade: $g_j(x) \leq 0$
- Aplicações em engenharia, economia, ciência de dados, etc.

Exemplo Visual: Mínimo de uma Função Quadrática

- Objetivo: encontrar o ponto de menor valor de f(x, y)
- Sem restrições \rightarrow busca livre no plano
- Solução analítica: x = 2, y = 1

Classificação Geral dos Métodos de Otimização

- Quanto ao tipo de problema:
 - Sem restrições (unconstrained)
 - Com restrições (constrained)
- Quanto ao número de variáveis:
 - Univariados: $x \in \mathbb{R}$
 - Multivariados: $x \in \mathbb{R}^n$
- Quanto ao uso de derivadas:
 - **Gradient-based** (usam ∇f)
 - Gradient-free (não usam derivadas)

Numerical Methods for Engineers. Steven C. Chapra & Raymond P. Canale. 7ed

Otimização Univariada Gradient-Free

Problema

Minimizar f(x) com $x \in \mathbb{R}$, sem utilizar derivadas.

- Utilizam apenas avaliações de f(x)
- Buscam o mínimo em um intervalo [a, b]
- Assumem que f(x) é contínua e unimodal no intervalo

Exemplos clássicos:

- Busca Exaustiva (Grid Search)
- Seção Áurea

Busca Exaustiva (Grid Search)

Ideia

Avaliar a função f(x) em pontos igualmente espaçados no intervalo [a, b] e escolher o que apresentar o menor valor.

- Método direto e simples, porém ineficiente
- Útil para ter uma ideia inicial do comportamento de f(x)
- Requer definir um número de subdivisões n

Pseudocódigo:

- ① Dividir o intervalo [a, b] em n pontos
- 2 Avaliar $f(x_i)$ para cada ponto
- 3 Retornar $x^* = \arg \min f(x_i)$

Motivação: Otimização de Função Univariada

Função Unimodal

Uma função f(x) é unimodal em um intervalo [a,b] se possui apenas um mínimo (ou máximo) local nesse intervalo.

- Avaliar f(x) em dois pontos simétricos ao redor do centro
- Estratégia lembra a bisseção, mas para localizar extremos
- Essa ideia fundamenta o método da Seção Áurea

Método da Seção Áurea: Dedução da Razão

- ullet Seja um intervalo dividido em duas partes: ℓ_1 e ℓ_2
- Queremos que:

$$\ell = \ell_1 + \ell_2$$

$$\frac{\ell_1}{\ell} = \frac{\ell_2}{\ell_1}$$

Substituindo:

$$\frac{\ell_1}{\ell_1 + \ell_2} = \frac{\ell_2}{\ell_1}$$

• Seja
$$R = \frac{\ell_2}{\ell_1} \Rightarrow 1 + R = \frac{1}{R}$$

$$\Rightarrow R^2 + R - 1 = 0$$

Solução positiva:

$$R=rac{\sqrt{5}-1}{2}pprox 0.618$$
 (Razão Áurea ou $\emph{Golden Ratio}$)

• Fibonacci: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Método da Seção Áurea: Algoritmo

- Objetivo: minimizar f(x) no intervalo $[x_l, x_u]$
- Razão áurea: $R=rac{\sqrt{5}-1}{2}pprox 0.61803$
- Cálculo da distância:

$$d=R\cdot(x_u-x_l)$$

Pontos internos:

$$x_1 = x_l + d, \quad x_2 = x_u - d$$

- Avalie $f(x_1)$ e $f(x_2)$:
 - Se $f(x_1) > f(x_2)$: elimine $[x_1, x_2]$, novo $x_1 = x_2$
 - Senão: elimine $[x_1, x_u]$, novo $x_u = x_1$
- Novo ponto interno reutiliza valor anterior, evitando reavaliação

Interpolação Parabólica: Ideia Geral

- Uma parábola (polinômio de $2^{\underline{a}}$ ordem) costuma aproximar bem a forma de f(x) próximo de um ótimo
- Três pontos que cercam um extremo permitem ajustar uma parábola única
- O novo ponto x₃ é estimado como o vértice da parábola:

$$x_3 = \frac{f(x_0)(x_1^2 - x_2^2) + f(x_1)(x_2^2 - x_0^2) + f(x_2)(x_0^2 - x_1^2)}{2[f(x_0)(x_1 - x_2) + f(x_1)(x_2 - x_0) + f(x_2)(x_0 - x_1)]}$$

- Estratégias de atualização:
 - Atualização sequencial $(x_0 \leftarrow x_1, x_1 \leftarrow x_2, x_2 \leftarrow x_3)$
 - Atualização com bracketing (semelhante à seção áurea)
- Pode convergir lentamente se "prender" em uma extremidade (como no método da posição falsa)

Método de Brent (Univariado)

Ideia geral

Método híbrido desenvolvido por Brent para minimização unidimensional. Combina:

- Seção Áurea → confiável, porém lenta
- Interpolação parabólica → rápida, porém pode falhar
- Primeiro tenta interpolação parabólica
- Se o resultado for aceitável, continua com ela
- Se falhar (instável ou fora do intervalo), recorre à seção áurea
- Estratégia adaptativa: alterna entre precisão e velocidade
- Muito utilizado em bibliotecas numéricas (ex: 'scipy.optimize.minimize_scalar')

Métodos Univariados Gradient-Based: Visão Geral

- Utilizam informações da derivada de f(x) (ou aproximações) para guiar a busca
- Em geral, convergem mais rapidamente que métodos gradient-free
- Requerem que f(x) seja diferenciável (pelo menos localmente)

Métodos Clássicos:

• Método de Newton: usa f'(x) e f''(x), converge rapidamente perto do mínimo

Método de Newton (Univariado)

Objetivo

Encontrar o ponto x^* tal que $f'(x^*) = 0$, assumindo que $f''(x) \neq 0$

• Baseado na expansão de Taylor de f'(x):

$$f'(x) \approx f'(x_k) + f''(x_k)(x - x_k)$$

• Impondo $f'(x_{k+1}) = 0$, obtemos:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

- Interpretação geométrica: interseção do eixo x com a tangente à curva f'(x)
- Convergência quadrática (se bem condicionado e próximo do mínimo)

Otimização Multivariada Gradient-Free

Características

- Não utilizam gradientes (derivadas) de $f(\vec{x})$
- Buscam soluções apenas com base em avaliações de $f(\vec{x})$
- Úteis quando:
 - $f(\vec{x})$ não é diferenciável ou é ruidosa
 - Avaliações de $f(\vec{x})$ vêm de simulações ou experimentos
 - Há múltiplos mínimos locais ou a forma da função é desconhecida

Métodos determinísticos:

- Nelder-Mead (simplex adaptativo)
- Powell
- COBYLA (com restrições)

Meta-heurísticas estocásticas (Busca Global):

- Algoritmos Genéticos (GA)
- Differential Evolution (DE)
- Particle Swarm Optimization (PSO)
- Simulated Annealing

Busca Univariada em Problemas Multivariados

Motivação

Estratégia simples e eficiente de otimização sem derivadas: variar uma variável de cada vez, mantendo as outras constantes.

- Reduz problema multivariado a sequência de buscas unidimensionais
- Cada etapa usa métodos como seção áurea ou Brent
- Permite progressão por etapas alternadas entre as variáveis

Método de Nelder-Mead (Simplex Adaptativo)

Ideia

O método usa um **simplex** (um polígono com n+1 vértices em \mathbb{R}^n) que se adapta à paisagem da função a cada iteração.

- Avalia a função nos vértices do simplex
- A cada passo, modifica o simplex com operações:
 - Reflexão
 - Expansão
 - Contração
 - Redução
- Não requer gradientes
- Funciona bem para problemas de baixa dimensão $(n \le 5)$
- Pode falhar em problemas mal-condicionados ou com muitos mínimos locais
- Exemplo do processo de busca em https://www.youtube.com/watch?v=j2gcuRVbwR0

Método de Powell

Ideia

Executa minimizações unidimensionais sucessivas ao longo de direções atualizadas a cada ciclo. Não utiliza derivadas.

- Inicia com direções coordenadas (eixos)
- Minimiza $f(\vec{x})$ ao longo de cada direção
- Atualiza as direções com base no progresso global
- Razoavelmente eficiente para problemas suaves
- Pode falhar se a função for mal-condicionada ou com múltiplos mínimos

Método de Powell: Intuição Geométrica

Resumo da ideia

Powell propôs um método que busca o ótimo sem derivadas, movendo-se iterativamente ao longo de direções otimizadas e combinadas geometricamente.

- ullet Início em ponto 0, com duas direções iniciais $ec{h}_1$ e $ec{h}_2$
- Movimentos:
 - **1** Ao longo de \vec{h}_1 : ponto 1
 - 2 Ao longo de \vec{h}_2 : ponto 2
 - 3 Nova direção $\vec{h}_3 = \vec{x}_2 \vec{x}_0$, leva ao ponto 3
 - lacktriangledown De 3, move em $ec{h}_2
 ightarrow$ ponto 4, depois em $ec{h}_3
 ightarrow$ ponto 5
 - **5** De 3 a 5 define nova direção \vec{h}_4 , conjugada com \vec{h}_3
- Om direções conjugadas, o método converge ao ótimo
- Convergência quadrática, sem derivadas

O Gradiente em Otimização Multivariada

O que é o gradiente?

É o vetor das derivadas parciais da função objetivo:

$$\vec{\nabla}f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

- Representa a direção de maior crescimento local da função
- Direção de **descida mais inclinada** é $-\vec{\nabla} f$
- O módulo do gradiente indica a intensidade da variação local
- Em um ponto \vec{x}^* , se $\vec{\nabla} f(\vec{x}^*) = \vec{0}$, pode haver um ótimo
- O vetor gradiente é ortogonal às curvas de nível de $f(\vec{x})$

Interpretação Geométrica do Gradiente

- Para f(x, y), o gradiente $\vec{\nabla} f(x, y)$ aponta a direção de maior subida
- O gradiente em um ponto também é a direção de maior variação da função
- O gradiente é perpendicular às curvas de nível
- Exemplo:

$$f(x,y) = xy^2$$
, $\vec{\nabla} f(2,2) = \langle 4,8 \rangle$

Método da Descida Mais Inclinada (Steepest Descent)

Ideia

Mover-se, a cada iteração, na direção oposta ao gradiente:

$$\vec{p}_k = -\vec{\nabla} f(\vec{x}_k)$$

- O gradiente aponta a direção de maior crescimento de f
- ullet A descida mais rápida ocorre na direção $-ec{
 abla} f$
- A nova posição é dada por:

$$\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$$

• α_k é o passo ideal — obtido por minimização univariada:

$$\alpha_k = \arg\min_{\alpha} f(\vec{x}_k + \alpha \vec{p}_k)$$

• Repetir até convergência: $\|\vec{\nabla} f(\vec{x}_k)\| < \varepsilon$

Motivação: Por que seguir o gradiente negativo?

- Dada uma função $f(\vec{x})$ continuamente diferenciável, queremos minimizar f
- Em \mathbb{R}^n , o gradiente $\vec{\nabla} f(\vec{x})$ aponta a direção de maior crescimento local
- Logo, a direção de descida mais acentuada é:

$$ec{p} = -ec{
abla} f(ec{x})$$

- ullet Essa é a direção de maior decréscimo da função no ponto $ec{x}$
- O método de Steepest Descent itera seguindo essa direção, com um passo α_k escolhido para minimizar f ao longo da reta

Steepest Descent: Atualização com Busca Linear

• Definida a direção $\vec{p}_k = -\vec{\nabla} f(\vec{x}_k)$, procuramos o passo α_k que minimiza f ao longo da reta:

$$\alpha_k = \arg\min_{\alpha > 0} f(\vec{x}_k + \alpha \vec{p}_k)$$

- Isso pode ser feito por métodos univariados (ex: Brent)
- A nova iteração é:

$$\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$$

• Iteramos até que:

$$\|\vec{\nabla}f(\vec{x}_{k+1})\|<\varepsilon$$

Steepest Descent: Interpretação Geométrica

- O gradiente é ortogonal às curvas de nível
- A trajetória segue a direção de descida, mas pode oscilar se os contornos forem elípticos
- O método pode apresentar "zigue-zague" e convergência lenta em funções mal condicionadas

Método do Gradiente Conjugado (Conjugate Gradient - CG)

Motivação

O método da descida mais inclinada (Steepest Descent) pode ser ineficiente para funções com contornos alongados — ele "ziguezagueia".

- O método do Gradiente Conjugado (CG) melhora isso:
 - Em vez de sempre usar $-\vec{\nabla}f$, ele usa direções **conjugadas**
 - Cada nova direção "corrige"a anterior, evitando repetir movimentos
- Para funções quadráticas com Hessiana simétrica definida positiva:
 - Converge em no máximo n passos (n = número de variáveis)
 - Dispensa cálculo explícito da Hessiana
- Muito usado para resolver grandes sistemas lineares $A\vec{x} = \vec{b}$

Disponível em scipy.optimize.minimize(method='CG')

Método de Newton Multivariado: Dedução

Expansão de Taylor de $2^{\underline{a}}$ ordem em \mathbb{R}^n

$$f(\vec{x}_k + \vec{p}) \approx f(\vec{x}_k) + \vec{\nabla} f(\vec{x}_k)^T \vec{p} + \frac{1}{2} \vec{p}^T H_k \vec{p}$$

- $H_k = \nabla^2 f(\vec{x}_k)$: matriz Hessiana (simétrica)
- ullet Objetivo: encontrar $ec{p}$ que minimiza a aproximação quadrática
- Derivando em relação a \vec{p} e igualando a zero:

$$\vec{\nabla} f(\vec{x}_k) + H_k \vec{p} = 0 \Rightarrow \vec{p} = -H_k^{-1} \vec{\nabla} f(\vec{x}_k)$$

Atualização e Interpretação

Atualização do ponto

$$\vec{x}_{k+1} = \vec{x}_k - H_k^{-1} \vec{\nabla} f(\vec{x}_k)$$

- Leva em conta a curvatura da função por meio da Hessiana
- Convergência quadrática (rápida) perto do ótimo
- Exige o cálculo (ou aproximação) de H_k
- Pode ser adaptado para evitar inversão direta:

Nota: Quando Hk não está disponível, usa-se BFGS ou Newton-CG

Vantagens e Limitações do Método de Newton

Vantagens

- Convergência quadrática (mais rápida que Steepest Descent)
- Direção de descida com curvatura (uso da Hessiana)

Limitações

- Requer cálculo da Hessiana (pode ser caro ou inviável)
- Pode falhar se H_k não for definida positiva
- Necessita resolver sistema linear em cada iteração

Newton-CG e BFGS: Métodos Avançados Gradient-Based

Newton-CG (ou Truncated Newton)

- Variante do método de Newton que não inverte explicitamente a Hessiana
- ullet Usa método **Conjugate Gradient** internamente para resolver $Hec{p}=-ec{
 abla}f$
- Permite aproveitar $H\vec{v}$ via produto vetorial (sem formar H completo)
- Bom para problemas de grande porte com Hessiana esparsa

BFGS (quasi-Newton)

- Método de otimização que aproxima a Hessiana iterativamente
- Atualiza uma matriz B_k que imita H^{-1} , com base em gradientes
- Mais estável que Newton quando H não é facilmente disponível
- Versão limitada para grandes problemas: L-BFGS-B

Panorama dos Métodos em scipy.optimize.minimize

Método	Gradiente	Hessiana	Bounds	Restrições
Nelder-Mead	×	×	✓	×
Powell	×	×	✓	×
COBYLA	×	×	✓	√ (ineq.)
BFGS	✓	×	×	×
L-BFGS-B	✓	×	✓	×
CG	✓	×	×	×
Newton-CG	✓	opcional	×	×
trust-constr	✓	√ ou approx.	✓	✓ (eq./ineq.)
TNC	✓	×	✓	×
SLSQP	✓	×	✓	✓ (eq./ineq.)
dogleg	✓	✓	×	×
trust-ncg	✓	✓ ou Hess-prod.	×	×

Legenda:
Fonte: SciPy Documentation (v1.11+)

Otimização com Restrições

Problemas com restrições

Queremos minimizar $f(\vec{x})$, sujeito a:

- Restrições de desigualdade: $g_i(\vec{x}) \leq 0$
- Restrições de igualdade: $h_i(\vec{x}) = 0$
- Possivelmente, limites simples (bounds) em cada variável

Exemplo:

minimize
$$f(x,y) = (x-2)^2 + (y-3)^2$$

subject to $x + y \le 4$
 $x \ge 0, y \ge 0$

Tipos de Restrições

1. Desigualdade

$$g(\vec{x}) \leq 0$$

Exemplo: $x^2 + y^2 - 1 \le 0$ (interior de um círculo)

2. Igualdade

$$h(\vec{x}) = 0$$

Exemplo: x + y - 1 = 0 (linha reta)

Importante: problemas com restrições são mais difíceis numericamente. Métodos diferentes tratam as restrições de formas distintas (e.g., penalização, multiplicadores de Lagrange, projeção).

Métodos com Suporte a Restrições

Método	Desigualdade (ineq)	Igualdade (eq)
SLSQP	Sim	Sim
trust-constr	Sim	Sim
COBYLA	Sim	Não
Powell, Nelder-Mead, L-BFGS-B	Não	Não

Recomendações

- SLSQP: rápido e confiável para problemas suaves
- trust-constr: mais robusto, permite Jacobiano/Hessiana
- COBYLA: útil quando não há derivadas disponíveis

Projeto de Superfície Aletada para Placa de Circuito

Uma placa de circuito impresso de $15\,\mathrm{cm} \times 20\,\mathrm{cm}$ deve ser refrigerada com aletas de alumínio ($k=237\,\mathrm{W/m\cdot K}$), cada uma com comprimento de 4 cm e seção quadrada de $2\,\mathrm{mm} \times 2\,\mathrm{mm}$, fixadas em um dos lados da placa.

A temperatura ambiente é de $25\,^{\circ}$ C e o coeficiente de transferência de calor por convecção é $h=20\,\mathrm{W/m^2\cdot K}$. Para evitar superaquecimento da placa, sua superfície superior deve permanecer a no máximo $85\,^{\circ}$ C.

Deseja-se projetar uma superfície com aletas com efetividade global igual a 3, determinando o número apropriado de aletas que mantenha a placa dentro da faixa térmica desejada.

Projeto de Superfície Aletada para Placa de Circuito

Agora, para o mesmo problema anterior, deseja-se manter a mesma temperatura da base e a mesma efetividade global $(\varepsilon=3)$.

Entretanto, um estudo de otimização será conduzido para minimizar o número de aletas e a quantidade de material utilizado.

As variáveis de projeto são:

- Espessura da aleta $t \in [2,5 \,\mathrm{mm}, \,10 \,\mathrm{mm}]$
- Comprimento da aleta $L \in [5 \text{ mm}, 50 \text{ mm}]$
- Número máximo de aletas: N ≤ 200

O objetivo é encontrar os valores de t e L que resultem no menor número possível de aletas e menor massa total de alumínio, respeitando as restrições acima.

