Übungsblatt 08 Stochastik 2

Abgabe von: Linus Mußmächer

21. Juni 2023

8.1 Zentralübung

(i) Es ist (X_i) gleichgradig integrierbar, d.h. es ist

$$\lim_{n\to\infty} \sup_{i\in I} \int_{\{|X_i|>n\}} |X_i| d\mathbb{P} = 0.$$

Insbesondere existiert ein $N \in \mathbb{N}$ mit $\int_{\{|X_i| > n\}} |X_i| d\mathbb{P} < 1$ für alle $i \in I$ und damit ist

$$\mathbb{E}[|X_i|] = \int |X_i| d\mathbb{P} = \int_{\{|X_i| \geq n\}} |X_i| d\mathbb{P} + \int_{\{|X_i| < n\}} |X_i| d\mathbb{P} < 1 + n$$

für alle $i \in I$. Sei nun $\varepsilon > 0$ beliebig. Dann existiert folglich ein r > 0 mit $\frac{1}{r}\mathbb{E}[|X_i|] < \varepsilon$ für alle $i \in I$ und damit

$$\mathbb{P}(X_i \notin \overline{K_r(0)}) = \mathbb{P}(|X_i| > r) \le \frac{1}{r} \mathbb{E}[|X_i|] \le \frac{1}{r} \mathbb{E}[|X_i|] < \varepsilon$$

und damit $\mathbb{P}(X_i \in \overline{K_r(0)}) \ge 1 - \varepsilon$. Da $\overline{K_r(0)}$ kompakt ist, zeigt dies die Straffheit.

(ii) Betrachte die Familie $(X_n)_{n\in\mathbb{N}}$ mit $X_n=n\cdot\mathbbm{1}_{[0,1/n]}$ (wobei $\mathbb P$ der uniformen Verteilung auf [0,1] entspreche). Dann ist X_n straff, denn für die kompakte Menge [0,1] gilt $\mathbb P(X_n\in[0,1])=1\geq 1-\varepsilon$ für alle $\varepsilon>0$. Allerdings ist (X_n) nicht uniform integrierbar, denn für beliebiges $N\in\mathbb N$ ist $\int_{|X_N|\geq N}|X_N|d\mathbb P=N\cdot\frac1N=1$, also $\sup_{n\in\mathbb N}\int_{|X_n|\geq N}|X_n|d\mathbb P\geq 1$. Somit kann der Limes $n\to\infty$ auch nur größer oder gleich 1 sein und es (X_n) ist nicht uniform integrierbar.

8.2

(b) wichtig

8.3

(d) ist äquivalent, aber muss nicht gezeigt werden

8.4

(b) Was haben wir für Aussagen erstmal über schwache Konvergenz. Wie jetzt stochastische Konvergenz? Deterministisches e hoch lambda ausschlaggebend! 3.20