

Towards Efficient NLP A Standard Evaluation and A Strong Baseline

Tianxiang Sun

txsun19@fudan.edu.cn

31 Oct 2021

The Era of Big Models

From SOTA to "Pareto SOTA"

The Shifted Goal

• Instead of pursuing the reachless SOTA accuracy, most works are pursuing improvement on other dimensions (like efficiency), leading to Pareto SOTA.

The Lagging Benchmarks

• Most of these works are evaluated on accuracy-centric benchmarks (e.g., GLUE, SuperGLUE, CLUE...

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Method	Speed -up	CoLA (8.5k)	MRPC (3.7K)	QQP (364k)	RTE (2.5K)	SST-2 (67K)	Macro Avg.
			Dev Set				
ALBERT-base [3]	1.0×	58.9	89.5	89.6	78.6	92.8	81.9
ALBERT-6L	2.0×	53.4	85.8	86.8	73.6	89.8	77.9
ALBERT-9L	1.3×	55.2	87.1	88.3	75.9	91.3	79.6
LayerDrop [31]	2.0×	53.6	85.9	87.3	74.3	90.7	78.4
HeadPrune [32]	1.2×	54.1	86.2	88.0	75.1	90.5	78.8
DeeALBERT † [5]	1.5×	57.6	89.8	89.1	79.1	92.9	81.7
FastALBERT † [6]	1.5×	58.0	89.8	89.3	79.5	92.9	81.9
PABEE [8]	1.5×	61.2	90.0	89.6	80.1	93.0	82.8
Ours w/ Patience w/ Voting	1.5×	61.4	92.4	89.6	80.9	93.2	83.5
	1.5×	61.6	92.7	89.8	80.9	93.5	83.7
			Test Set				
ALBERT-base † [3]	1.0×	54.1	86.9	71.1	76.4	94.0	76.5
PABEE [8]	1.5×	55.7	87.4	71.2	77.3	94.1	77.1
Ours w/ Patience w/ Voting	1.5×	56.2	87.7	71.4	77.9	94.1	77.5
	1.5×	56.2	88.0	71.5	78.2	94.4	77.7

Sun et al. Early Exiting With Ensemble Internal Classifiers.

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

• The data points in line-to-line comparison are not publicly accessible.

We also compare LTE with the concurrent patience-based baseline PABEE (Zhou et al., 2020) in Table 3, showing their speedups and average exit layers at the same relative scores. PABEE does not provide exact speedup numbers; therefore we estimate the values from their figures. We can see that *Alternating* fine-tuning plus LTE is marginally better than PABEE on regression tasks.

Zhou et al. BERT Loses Patience: Fast and Robust Inference with Early Exit. NeurIPS 2020 Xin et al. BERxiT: Early Exiting for BERT with Better Fine-Tuning and Extension to Regression. EACL 2021.

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

The data points in line-to-line comparison are not publicly accessible.

Non-standard Measurements

• Different works may adopt different metrics (FLOPs, physical time, number of layers, number of parameters…)

• Even the same metric is adopted, the evaluation can be different (due to hardware infrastructure, software libraries, etc.)

Mod	Parameters	
	base	108M
BERT	large	334M
	base	12M
ALBERT	large	18M
ALDEKI	xlarge	60M
	xxlarge	235M

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Dataset/ Model	ChnS Acc.	SentiCorp FLOPs (speedup)
FastBERT (speed=0.1) FastBERT (speed=0.5) FastBERT (speed=0.8)	95.25 92.00 89.75	10741M (2.02x) 3191M (6.82x) 2315M (9.40x)

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

The data points in line-to-line comparison are not publicly accessible.

Non-standard Measurements

- Different works may adopt different metrics (FLOPs, physical time, number of layers, number of parameters…)
- Even the same metric is adopted, the evaluation can be different (due to hardware infrastructure, software libraries, etc.)

Inconvenience

 It is hard to plot an accuracy-speed curve on GLUE test set due to the submission limitation.

A New Benchmark Should...

• Overall, it should tell you *whether* and *how much* a model achieves Pareto improvement.

A New Benchmark Should...

- Multi-dimensional Evaluation (Incomprehensive Comparison)
 - Comprehensive line-to-line comparison
- Public Accessible (Unaccessible Results)
 - Open source all the results to facilitate future research
- Standard Evaluation (Non-standard Measurements)
 - Unified metrics (FLOPs and #params), and standardized evaluation toolkit
- Easy-to-Use (Inconvenience)
 - Submission should be easy

Efficient Language Understanding Evaluation

http://eluebenchmark.fastnlp.top

ELUE Tasks & Datasets

Sentiment Analysis

- SST-2
- IMDb

Natural Language Inference

- SNLI
- SciTail

Similarity and Paraphrase

- MRPC
- STS-B

Tasks	Datasets	Train	Dev	Test
Sentiment	SST-2	8,544	1,101	2,208
Analysis	IMDb	20,000	5,000	25,000
Natural Language	SNLI	549,367	9,842	9,824
Inference	SciTail	23,596	1,304	2,126
Similarity and	MRPC	3,668	408	1,725
Paraphrase	STS-B	5,749	1,500	1,379

ELUE Submission

- Submit a model, or submit a test file?
 - Submit a model (SQuAD-like)
 - Easy to measure model efficiency
 - © Costly for submitting and serving
 - Engineering and implementation matters too much
 - Submit a test file (GLUE-like)
 - **S** Easy to submitting and evaluating
 - P But how to measure model efficiency

ELUE Submission

Submit test files, and model.py

Test files

index	pred	modules
0	1	(10),emb; (10,768),layer_1; (768),exit_1
1	0	(15),emb; (15,768),layer_1; (768),exit_1; (15,768),layer_2; (768),exit_2
2	1	(12),emb; (12,768),layer_1; (768),exit_1

- Combining the two kinds of files, we can calculate the FLOPs for each sample!
- Token-level early exit and MoE models are also supported in this way

Submit from a paper

• Similar to paper-with-code

Model.py

```
# import packages
import torch.nn as nn
from transformers import BertConfig
# module definitions
class ElasticBERTEmbeddings(nn.Module):
    def ___init___():
    def forward(x):
class ElasticBERTLayer(nn.Module):
    def ___init___():
    def forward(x)
class ElasticBERT(nn.Module):
    def ___init___():
    def forward(x)
# module dict
config = BertConfig(num_labels=2)
module_list = {
    'emb': ElasticBertEmbeddings(config),
    'layer_1': ElasticBertLayer(config),
    'exit_1': nn.Linear(config.hidden_size, num_labels),
    'layer_2': ElasticBertLayer(config),
    'exit_2': nn.Linear(config.hidden_size, num_labels),
entire_model = ElasticBERT(config)
```

ELUE Leaderboard

- How can we rank these efficient models?
 - We need to score the (performance, FLOPs) pairs

ELUE Leaderboard

ELUE Score ELUE (40M params) ELUE (55M params) ELUE (70M params) ELUE (110M params)

Model	Sentiment Analysis		Natural Langu	uage Inference	Similarity an	d Paraphrase	Params (MParams)	Score \$
Wodel	SST-2	IMDb	SNLI	SciTail	MRPC	STS-B	•	Score V
ElasticBERT-BA SE	0.0	0.0	0.0	0.0	0.0	0.0	109.0	0
ElasticBERT-pati ence	0.37	0.2	0.02	0.38	-1.04	-0.45	116.0	-0.09
ALBERT-PABEE	-1.34	-0.22	-0.85	-0.4	-2.97	-2.1	18.0	-1.31
ALBERT-BASE	-2.3	-1.07	-1.66	-1.49	-0.31	-2.7	12.0	-1.59
RoBERTa-BASE	-0.9	-0.12	-0.69	-3.31	-2.86	-5.15	125.0	-2.17
BERT-BASE	-4.55	-2.15	-1.5	-3.35	-5.88	-4.75	109.0	-3.7

ELUE Task Page

Sentiment Analysis

Sentiment analysis is classifying one or more sentences by their positive/negative sentiment.

Choose Dataset | SST-2 V Download Dataset ± Submit Testfile **±** Submission Guide \$ Model Performance VS. FLOPs ~ -O- ElasticBERT-BASE -O- ALBERT-BASE -O- DeeBERT-BASE -O-ElasticBERT-entropy accuracy: 88.2 FLOPs(M): 2254.97

https://github.com/fastnlp/ElasticBERT

ElasticBERT Pre-Training

Pre-trained Multi-Exit Transformer Encoder

$$\mathcal{L} = \sum_{l=1}^{L} (\mathcal{L}_l^{ ext{MLM}} + \mathcal{L}_l^{ ext{SOP}})$$

- Pre-trained on ~160GB English corpora
 - Wikipedia, BookCorpus, OpenWebText, C4
- Pre-trained for 125k steps on 64 32G V100
- Using Gradient Equilibrium and Grouped Training to stabilize and speedup pre-training

A Strong Baseline for Static Models

Models	#Params CoLA MNLI-(m/mm)		MRPC	QNLI	QQP	RTE	SST-2	STS-B	Average	
BASE Models										
BERT _{BASE}	109M	56.5	84.6/84.9	87.6	91.2	89.6	69.0	92.9	89.4	82.9
$ALBERT_{BASE}$	12M	56.8	84.9/85.6	90.5	91.4	89.2	78.3	92.8	90.7	84.5
RoBERTa _{BASE}	125M	63.6	87.5/87.2	90.8	92.7	90.3	77.5	94.8	90.9	86.1
$\textbf{ElasticBERT}_{BASE}$	109M	64.3	85.3/85.9	91.0	92.0	90.2	76.5	94.3	90.7	85.6
BERT _{BASE} -6L	67M	44.6	81.4/81.4	84.9	87.4	88.7	65.7	90.9	88.1	79.2
ALBERT _{BASE} -6L	12M	52.4	82.6/82.2	89.0	89.8	88.7	70.4	90.8	89.6	81.7
RoBERTa _{BASE} -6L	82M	44.4	84.2/ 84.6	87.9	90.5	89.8	60.6	92.1	89.0	80.3
MobileBERT	25M	52.1	83.9/83.5	89.3	91.3	88.9	63.5	91.3	87.2	81.2
TinyBERT-6L	67M	46.3	83.6/83.8	88.7	90.6	89.1	73.6	92.0	89.4	81.9
ElasticBERT _{BASE} -6L	67M	53.7	84.3 /84.2	89.7	90.8	89.7	74.0	92.7	90.2	83.3
Test Set Results										
TinyBERT-6L	67M	42.5	83.2/82.4	86.2	89.6	79.6	73.0	91.8	85.7	79.3
ElasticBERT _{BASE} -6L	67M	49.1	83.7/83.4	87.3	90.4	79.7	68.7	92.9	86.9	80.3

A Strong Baseline for Static Models

Models	#Params	CoLA	MNLI-(m/mm)	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Average
LARGE Models										
BERT _{LARGE}	335M	61.6	86.2/86	90.1	92.2	90.1	72.9	93.5	90.4	84.8
$ALBERT_{LARGE}$	18M	60.1	86/86.1	90.4	91.6	89.6	83.0	95.2	91.4	85.9
RoBERTa _{LARGE}	355M	66.4	89/89.6	91.6	94.2	90.7	86.6	95.4	92.3	88.4
$\textbf{ElasticBERT}_{LARGE}$	335M	66.3	88/88.5	92.0	93.6	90.9	83.1	95.3	91.7	87.7
BERT _{LARGE} -12L	184M	42.6	81/81.1	81.6	87.2	89.3	65.7	89.3	88.7	78.5
ALBERT _{LARGE} -12L	18M	59.0	85.3/85.8	90.1	91.4	89.6	76.7	93.3	91.3	84.7
RoBERTa _{LARGE} -12L	204M	62.3	86.3/86.2	89.4	92.3	90.4	71.8	93.5	91.1	84.8
ElasticBERT _{LARGE} -12L	184M	62.1	86.2/86.4	89.5	92.5	90.6	79.1	93.0	91.6	85.7
Test Set Results										
RoBERTa _{LARGE} -12L	204M	59.4	86.4/85.2	87.6	91.6	80.4	67.3	94.6	89.5	82.4
$\textbf{ElasticBERT}_{LARGE}\text{-}12L$	184M	57.0	85.4/84.9	87. 7	92.3	81.2	71.8	92.9	89.7	82.6

A Strong Baseline for Static Models

- A Strong Baseline for Static Models
- A Strong Backbone for Dynamic Models

ElasticBERT on ELUE

	SST-2	IMDb	MRPC	STS-B	SNLI	SciTail	Average			
ElasticBERT _{BASE}	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Static Models										
BERT _{BASE}	-4.55	-2.15	-5.88	-4.75	-1.50	-3.35	-3.70			
ALBERT BASE	-2.30	-1.07	-0.31	-2.70	-1.66	-1.49	-1.59			
RoBERTa BASE	-0.90	-0.12	-2.86	-5.15	-0.69	-3.31	-2.17			
TinyBERT-6L	-1.70	-3.70	-2.60	-1.90	-0.80	-2.50	-2.20			
		Dyna	amic Mode	ls						
PABEE	-1.34	-0.22	-2.97	-2.10	-0.85	-0.40	-1.31			
DeeBERT (BERT)	-12.10	-14.00	-4.92	-	-8.36	-6.17	-			
DeeBERT (RoBERTa)	-1.98	-4.40	-2.72	-	-23.39	-9.82	-			
ElasticBERT _{patience}	0.37	0.20	-1.04	-0.46	0.02	0.38	-0.09			
ElasticBERT _{entropy}	0.96	1.03	-0.22	-	0.01	0.69	-			

ElasticBERT Usage

An example using Huggingface Transformers

```
>>> from transformers import BertTokenizer as ElasticBertTokenizer
>>> from models.configuration_elasticbert import ElasticBertConfig
>>> from models.modeling_elasticbert import ElasticBertForSequenceClassification
>>> num_output_layers = 1
>>> config = ElasticBertConfig.from_pretrained('fnlp/elasticbert-base', num_output_layers=num_output_layers)
>>> tokenizer = ElasticBertTokenizer.from_pretrained('fnlp/elasticbert-base')
>>> model = ElasticBertForSequenceClassification.from_pretrained('fnlp/elasticbert-base', config=config)
>>> input_ids = tokenizer.encode('The actors are fantastic .', return_tensors='pt')
>>> outputs = model(input_ids)
```

- Github: https://github.com/fastnlp/ElasticBERT
- Huggingface: https://huggingface.co/fnlp/elasticbert-base

Thanks!

https://arxiv.org/abs/2110.07038

http://eluebenchmark.fastnlp.top

https://github.com/fastnlp/ElasticBERT

https://huggingface.co/fnlp/elasticbert-base