Fondamenti di TELECOMUNICAZIONI

Prof. P. Boffi

	Appello	
Cognome		
Nome		
Matricola		

Per lo svolgimento del compito usare esclusivamente i fogli messi a disposizione (usati da tutti e 2 i lati)

Es1 (8pt)	Es2 (6pt)	Es3 (5pt)	Es4 (5pt)	Do5 (4pt)	Que6 (2pt)	Que7 (2pt)

1 - Esercizio

Un router è caratterizzato dalla seguente configurazione delle interfacce locali e della seguente tabella di *routing*.

- a) Dire per le 3 netmask relative alle interfacce locali quanti bit non sono assegnati al NetID.
- b) Per ciascuno dei pacchetti indicati di seguito (caratterizzati da interfaccia di provenienza e da indirizzo di destinazione) dire come si comporta il router specificando se procede con inoltro diretto o indiretto. Indicare chiaramente (con tanto di calcoli dettagliati) l'interfaccia di inoltro nel caso di inoltro diretto o la riga della tabella di *routing* scelta per l'inoltro indiretto (specificando l'interfaccia attraverso cui si fa l'inoltro indiretto).

Eth0: 131.175.192.1, 255.255.192.0 Eth1: 131.175.128.1, 255.255.192.0 WiFi0: 128.10.10.1, 255.255.255.0

Destinazione	Netmask	Next Hop
131.175.64.0	255.255.192.0	131.175.220.14
131.0.0.0	255.0.0.0	128.10.10.123
0.0.0.0	0.0.0.0	131.175.145.13

Pacchetto 1: 175.123.12.123 da WiFi0 Pacchetto 2: 131.175.191.255 da Eth0

2 - Esercizio

Si assuma che un client http B voglia scaricare una pagina web contenuta del server A. La capacità del collegamento tra B ed A è R = 4 Mb/s e il ritardo di propagazione è 1.7 ms. La lunghezza dei segmenti di apertura della connessione è trascurabile. La pagina web è composta da un documento base di tipo html di 100 byte e da 8 immagini di 1 kbyte. Si calcoli:

- a) il tempo di scaricamento della pagina web completa nel caso di connessione http persistente per il documento base e le immagini (si consideri anche il tempo di setup della connessione).
- b) il tempo di scaricamento della pagina web completa nel caso di connessione non persistente con connessione in parallelo per le 8 immagini (si consideri anche il tempo di setup della connessione).

3 - Esercizio

Un sistema di multiplazione TDM è usato per multiplare 8 canali, ciascuno dei quali prima della multiplazione trasmette slot da 200 bit ad una velocità di 100 kb/s. Si dica quale è la velocità di multiplex W necessaria per multiplexare gli 8 canali, la durata T_T della trama di multiplazione e quella T_S di ciascun slot dopo la multiplazione.

4 - Esercizio

Un segnale analogico, dopo essere stato campionato, quantizzato e modulato, è trasmesso in banda base sfruttando il formato di modulazione 16PAM ad un rate di simbolo di 70 Msimboli/s (70 Mbaud). Il segnale è quantizzato con 128 livelli. Considerando il segnale campionato rispetto al teorema di Nyquist, si calcoli la frequenza di campionamento del segnale e la banda del segnale analogico di partenza.

5 - Domanda

Quale è la funzione di un server DNS? Come è organizzata la struttura dei server DNS nella rete?

6 - Quesito

Nell'intorno di qu	iale lunghezza d	l'onda la t	rasmissione	in fibra	ottica	presenta	un minimo	assoluto
di attenuazione?	(barrare la risp	osta corre	etta)					

O 1550 nm

 $O \quad 1310 \ \mu m$

O 8,50 nm

O 1 THz

O nessuna delle risposte è corretta

7 - Quesito

_	uali sono il contenuto e la struttura della seconda riga dell'header del protocollo TPC? urrare la risposta corretta)
Ο	l'indirizzo della porta di destinazione, scritta tramite 16 bit
Ο	la checksum, scritta in 2 byte
Ο	il numero di sequenza del primo byte del payload trasmesso, scritto tramite 4 byte
Ο	il maximum segment size (MSS), scritto tramite un numero variabile di bit
О	nessuna delle risposte è corretta