1 Convolution

Let h be the discrete signal $h[n] = \frac{1}{2}\delta[n] + \frac{1}{3}\delta[n-1]$, with δ being the Kronecker delta function.

- 1. A function f which satisfies f[n] = 0 for all n < 0 is called a causal function. We want to find a **causal** solution g[n] of the equation $(h*g)[n] = \delta[n]$.
 - (a) Write explicitly the equation $(h * g)[n] = \delta[n]$.
 - (b) What is the value of g[0]?
 - (c) Give the relationship between g[n] and g[n-1] for all n > 0.
 - (d) Deduce from the previous results the expression of g[n].
- 2. Does the solution belong to the space of absolutely convergent sequences $\ell_1(\mathbb{Z})$?

2 Solution

- 1. (a) Using the expression of h[n], we obtain $\frac{1}{2}g[n] + \frac{1}{3}g[n-1] = \delta[n]$.
 - (b) At n=0, we have $\frac{1}{2}g[0]+\frac{1}{3}g[-1]=1\Leftrightarrow g[0]=2$. Since g[n] must be causal, we must have g[-1]=0.
 - (c) For n > 0, we have $\frac{1}{2}g[n] + \frac{1}{3}g[n-1] = 0 \Leftrightarrow g[n] = -\frac{2}{3}g[n-1]$.
 - (d) From the previous questions, we have for g a geometric sequence with common ratio $-\frac{2}{3}$, which gives $g[n]=(-\frac{2}{3})^ng[0]=2(-\frac{2}{3})^n$ for $n\geq 0$. Since g[n] must be causal, we hence have $g[n]=2(-\frac{2}{3})^n$ for all $n\geq 0$, which verify the equation $(h*g)[n]=\delta[n]$ for all $n\in\mathbb{Z}$.
- 2. We have $||g||_{\ell_1} = 2\sum_{n=0}^{+\infty} \left| (-\frac{2}{3})^n \right| = \frac{2}{1-\frac{2}{3}} = 3 < +\infty$, therefore $g \in \ell_1(\mathbb{Z})$.