Attend and Predict: Understanding Gene Regulation

Tymor Hamamsy, Tristan McRae, Mamie Wang, Timothy Wu

by Selective Attention on Chromatin

Attend and predict: understanding gene regulation by selective attention on chromatin

Biological significance

Current state of the problem

Solution and model architecture

Results and evaluation

The nucleosome is a fundamental component of chromatin

Histones tails are regulated by diverse modifications

The 'histone code' hypothesis: the transcription of genetic information encoded in DNA is in part regulated by chemical modifications to histone proteins.

Histone modifications are dynamic and change in gene activation

Inactive gene

Open chromatin

Active gene

Statement of the classification problem

Given: **Histone Modification**(**HM**) marks

Predict: gene expression (mRNA level)

Data

Roadmap Epigenomics Project

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature, 518(7539), 317–330

Data preprocessing

Features: 10,000 bp regions around TSS with gene expression data for 56 different cell types; broken into 100 bins; 5 histone modification (HM) marks profiled for each bin position

Train/validation/test split: Three separate, equal-sized folds for training (6601 genes), validation (6601 genes), and testing (6600 genes)

Output: binary variable of gene expression being high or low; defined by the median gene expression

Key challenges for learning gene expression from chromatin

Genome-wide chromatin signals are spatially structured, high-dimensional and highly modular

Difficult to show how chromatin marks work together in controlling gene expression

AttentionChrome: an attention-based deep learning approach that can model and interpret dependencies among chromatin factors for controlling gene regulation

Pitfalls of previous methods

Computational Study	Unified	Non-linear	Bin-Info	Representation Learning		Prediction	Feature Interact	Interpretable
				Neighbor Bins	Whole Re- gion			
Linear Regression ([14])	×	×	×	×	✓	✓	×	✓
Support Vector Machine ([7])	×	✓	Bin-specific	×	✓	V	✓	×
Random Forest ([10])	×	1	Best-bin	×	√	✓	×	×
Rule Learning ([12])	×	✓	×	×	✓	×	✓	✓
DeepChrome-CNN [30]	1	✓	Automatic	√	✓	V	✓	×
AttentiveChrome	1	✓	Automatic	1	√	✓	√	✓

Deep neural net architecture

Data enters in matrix

Data Passes through several Bidirectional LSTMs and attention layers

Softmax classifier predicts probability of gene being expressed

Bidirectional LSTM

Patterns exist in both forward and backward direction

BiLSTM captures both

Outputs are concatenated

Image Credit: A Unified Tagging Solution: Bidirectional LSTM Recurrent Neural Network with Word Embedding. Wang et al.

Attention mechanism - concept

Find areas of interest in data

Success in natural language processing and computer vision

Visualization and Interpretability

A dog is standing on a hardwood floor.

Attention mechanism - implementation

Relevance score for each input position
Relevance learned during training
Normalized and turned into weights
Inputs are multiplied by weights
Emphasizes important areas

Softmax Classifier **HM Level Attention** HM Level BiLSTM (!) **Bin Level Attention** Bin Level BiLSTM

Input

	Baseline	es		Attent			
Model	CNN[30]	LSTM	CNN-Attn	CNN-lpha,eta	LSTM-Attn	LSTM- α	LSTM- α, β
Mean	0.8008	0.8052	0.7622	0.7936	0.8100	0.8133	0.8115
Median	0.8009	0.8036	0.7617	0.7914	0.8118	0.8143	0.8123
Max	0.9225	0.9185	0.8707	0.9059	0.9155	0.9218	0.9177
Min	0.6854	0.7073	0.6469	0.7001	0.7237	0.7250	0.7215
	ment over CNN 56 cell types)	36	0	16	49	50	49

	Baseline	es	Standard Baselines:				
Model	CNN[30]	LSTM	LSTM: LSTM without adding any attention				
Mean Median Max Min	0.8008 0.8009 0.9225 0.6854	0.8052 0.8036 0.9185 0.7073	0.7622 0.7622 CNN: Temporal (1-D) CNN	0.8133 0.8143 0.9218 0.7250			
	nent over CNN 56 cell types)	36	No consideration of the mod each HM mark	uiai prope	erty or		

CNN-Attn: Baseline	ies-	AttentiveChrome Variations						
with one attention I max-pooling layer	ayer; –	CNN-Attn	$CNN-\alpha, \beta$	LSTM-Attn	LSTM- α	LSTM- α, β		
removed	0.8052	0.7622	0.7936	0.8100				
Terrioved	0.8036	0.7617		0.8118				
		0.8707		0.9155				
LSTM-Attn: Baselin	ne 0.7073 (0.6469		0.7237				
LSTM with one atte	ention	0	16	49				

CNN-α, β: 1 CNN/n	nark; 1	_					
α-attention/mark; β-attention to			AttentiveChrome Variations				
combine HM		CNN-Attn	$CNN ext{-}lpha,eta$	LSTM-Attn	LSTM- α	LSTM- α, β	
LSTM-α: 1 LSTM/m α-attention/mark	nark; 1	0.7622 0.7617 0.8707 0.6469	0.7936 0.7914 0.9059 0.7001	0.8100 0.8118 0.9155 0.7237	0.8133 0.8143 0.9218 0.7250	0.8115 0.8123 0.9177 0.7215	
	LSTM-α, β: 1 LSTM/mark; 1 α-attention/mark; β-attention to				50	49	

	Baseline	es	AttentiveChrome Variations						
Model	CNN[30]	LSTM	CNN-Attn	$\text{CNN-}\alpha, \beta$	LSTM-Attn	LSTM- α	LSTM- α, β		
Mean	0.8008	0.8052	0.7622	0.7936	0.8100	0.8133	0.8115		
Median	0.8009	0.8036	0.7617	0.7914	0.8118	0.8143	0.8123		
Max	0.9225	0.9185	0.8707	0.9059	0.9155	0.9218	0.9177		
Min	0.6854	0.7073	0.6469	0.7001	0.7237	0.7250	0.7215		
	nent over CNN 56 cell types)	36	0	16	49	50	49		

Results: Using attention scores for interpretation

H3K27ac (Hactive) is a good indicator of active gene region

Genome-wide reads of H3K27ac available for three cell types and used to validate interpretation

Viz. Methods	H1-hESC	GM12878	K562
α Map (LSTM- α)	0.8523	0.8827	0.9147
α Map (LSTM- α , β)	0.8995	0.8456	0.9027
Class-based Optimization (CNN)	0.0562	0.1741	0.1116
Saliency Map (CNN)	0.1822	-0.1421	0.2238

Pearson correlation of importance weight assigned for H_{prom} by different visualization techniques and H_{active} for predicted "ON" genes across three cell types

Results: Using attention scores for interpretation

(a) Average attention weights when predicting gene=ON and gene=OFF (b) top: cumulative Hactive signal across active genes, bottom: bin-level α-weights heatmap (c) HM-level β-weights heatmap

Commentary

Summary:

 Attention-based deep learning approach provides more accurate predictions and attention weights provide a good interpretation for prediction

Critiques:

- Use of LSTM might not be necessary to model HM level relationships
- Conclusions not generalizable across cell-type (averaged AUC obscures type-wise performance)
- No evaluation metric other than AUC (might overlook class imbalance)
- The validation of interpretation utility of the attention weights by comparison of the averaged profiles is dubious