& Grammars & Languages In English, rules to produce generate correct langue Is production rules that generate words in a large Lang generaled by > L(G) = {ab} stically, any grammas is can be represented tuples - (V, T, P. S) Mathematically V: Finite Non-empty set of variables (non-terminals or Finite set of terminals.

P: Finite non-empty set of production rules.

S: start symbol (Symbol from where we start minute or strungs)





## \* Backus - Naus Form (BNF):

A says it A say, then we can

A say, write it A sa, [a, ] a,

A say, as

1) 5> as 5> b =) 5> as|b 2) A>a A>b 3) A>a|6|E

3) S-> AaB

A> aA J => A > aA | b

B-> d f => B-> dle

B-> e J

## - Recursive production.

A > a A ( Right)

A > A a ( Left)

A > a A b ( General)

A > A a A ( L&R)

A > a B 1 > A > a b A ( Andrewt)

B > b A

Grammar consisting of recursive production rules => secusive greenman



\* Recursive & Non-recursive Grammas

Recursive production rules No recursive production sules

Recursive grammar always generales &-lang. Non-recursive grammar always generale a finite

1) A> aA | b = ) A > aA > aaA > aaA > aab dab --. => a\*b

2) A -> Aalb => A -> Aa -> Aaa a -> -- => ba\*

=) a\* 3) A -> aAl E => A -> aA -> aal A -> aa

4) A > Aal (=) a\* =) a'a =) at

6) A -> Aala => aa\*=> a+

OA -Ax A) A = aA | bA | E = ) A = aA = aaA =) (a+b)

8) AraAlbAlalba(a+b)+



A > alb U(6)= { a(, bc}

2) S > AaB 3 AaB > baB 3 bad =) Late bac, bad B > cld

S > AB

A > alb

B > cld

A b eA b eB > cld

B-> Cld

S-> AB|BA

S-> AB|BA

S-> AB|BA

S-> CABCA

Ca, cb, da, db)

B-> Cld

S -> AaBb

A -> a|b|E

A a B b => L(G) = {aabb, aacb, babb, acb}

B -> b1C

A b E b C

 $A \rightarrow bB | b$   $A \rightarrow bB | b$   $B \rightarrow c | d | \epsilon$   $C \mid d \mid \epsilon$   $S \rightarrow Ab$   $S \rightarrow Ab$ 



3 > aSb (E S) asb aabb aaabbb --.

ab aabb aaabbb --.

(b) = { a b | n \ge 0 } ahre is no RE

corresponds to this

lang.

8)  $S \rightarrow aasb \mid \epsilon$   $S \rightarrow aasb \mid \epsilon$   $S \rightarrow aasb \rightarrow aaaaabb \rightarrow aaaaaabb$   $(a^2b') (a^2)^2b^2 (a^2)^3b^3$   $(a^2)^5 \mid n \ge 0$   $(a^2)^5 \mid n \ge 0$ 

S> asa | bsb | E

{ E, aa, bb, abba, baab, abaaba, --- }

L={ wwk | we(a+b)\*}



dond, pado, pd, dp WS -> asb aBb S- asb ab b B → bB E asb S -> asb ab+ ausbb aaa3666 We can replace 5 or Sbn, n >0 -. anab+bn an11 6.66 ana1 6 + 6 m+1 # a's < # b's 5-3 a.Sb a Ab =) S+aSbactb a5 6 aasbh 1 = { a c b m > 1; n > 1} aaas 666 we can't write A -> C+ Askeg. E. we can replace = ansbr but for our understanding anactbb" an+1 ct 6 n+1 S-> asalbsblc sc s asa >) &c, aca, bcb, abcba, aacaa, bacab, baa(aab....} L= (WCWR | WC(a+5)) = WCWR S -> AB A > a A b | E => (a b 2 n > 0] => 5 - a b c\* B - 3 CB (E =) C\* Car arbay may

L= farbom n >0, m >0 }





15) S - Sasbs | SbSas | E - S & E, ab, ba, abba, baab baabba 1. Sasbsosb = Sbsas congrage generated sasb sasb = Sbsas congrage generated by this will contain that settles equal w. of ac ski

L= { W ∈ (a+b)\* | (wa) = | wb | }

16) S -> aSb | aAb -> j=> S -> aSb | ac"d"b

A -> cAd | cd -> c"d", n>1

L={amcndnbm| = amsb aasbb aasbb amsb mel amsb me

\* Construct a grammar that generals a) all strings using  $\Sigma = \{a, b\}$  including  $E = \{a, b\}$  including

b) excluding E 5- as|bs|a|b



STOBABAB ASALE BSELBBE



$$7 \rightarrow 6 \mid 6 \mid 6 \mid 6$$

$$X \rightarrow 6 \mid AX \quad (6 \rightarrow ab \rightarrow ab \rightarrow b)$$

d) 
$$|w| \ge 0 \pmod{2}$$
 $((a+b)^2)^n$ 

e) 
$$|\omega| \equiv 1 \pmod{2}$$

$$(a+b)((a+b)^2)^*$$

$$8\rangle$$
 a)  $|w|=2$ 

$$f$$
  $|\omega| = 2 \pmod{3}$   
2,5,8,11,14,---

$$(a+b)^{2}((a+b)^{3})^{*}$$

ADADA +2

$$S \rightarrow AAX$$
 $A \rightarrow a \mid b$ 

$$\chi \rightarrow \epsilon \mid \beta \chi$$



| g) a) {ambn (m,n > 0}                       | b) {ambn   m, n ≥ 1 }        |
|---------------------------------------------|------------------------------|
| C A A R                                     |                              |
| A -> FlaA                                   | $S \rightarrow AB$           |
| B-> E   bB                                  | A-> alaA                     |
| 1010                                        | B > 5 (6B                    |
| c> {ambn   m>1, n>2}                        | MANI DEA                     |
|                                             | d) famb (man is even }       |
| SAB                                         | m: even   m: odd             |
| $A \rightarrow \alpha A   \alpha$           | n: even   n: odd             |
| $B \rightarrow bablbs$                      | (ag)*(bb)* a (ag)*b(bb)*     |
| 2) ( ", ", ", ", ", ", ", ", ", ", ", ", ", | A B A B                      |
| e) samp I man is odd                        | · S - XY/aXby                |
| m: even   m: cold                           | $X \rightarrow \in AX (A^n)$ |
| n; cdd n: even                              | 1 7 00                       |
| (aa) * b(bb) * a(aq) * (bb) *               | B > Bb                       |
| S-> Xby axy                                 | Y -> E   BY (B*)             |
| Araq                                        | (B)                          |
| B->66                                       | IN a C min 1                 |
| X-> E AX                                    | 10) a) { amb m=n}            |
| Y > E   AY                                  |                              |
| 1 CIAY                                      | S-) asb BSME                 |
| IN C Min 1                                  |                              |
| $b) \{a^mb^n \mid m=2n\}$                   | c) {ambren   m, n>13         |
| 5-99a53b/E                                  |                              |
|                                             | S-> AB                       |
| d) { an bm cn   m, n > 1]                   | 1 h - 1 - n                  |
| S-) aSclaBc                                 |                              |
|                                             | B -> bc   bBc                |
| B-> 6] 6B                                   |                              |
|                                             | 7 27 3000                    |



e) { a m b n c l | n = m + p ; n, m, p > 0 } E = abbc, ab, bc, ab, bc, ab = abbc, ab = abbbc, ab = abbbc, ab = abbbcA-) E | aAb (= 2 2 ) ]

B-> E | bBC equal equal of the contraction of b) {amb | m<n; m,n≥1} S-asblaAb A-> 6/63 (2) of wew [w, e e fa, 64"] S-> asa| bsb/ E e is word 5 - a Aa 16 Ab A -> ElaAbA (3) a) & WEZ\* | | Wa | = | Wb | 14) forbor 1 n > 1 abc, aabbcc, 5-abclaSA@ CA -> AC 6A -> 6b

aabcAc

aabAcc

aabbcc

5-asblaAb AsalaA c) { a m b | m t n; m, n > 1? S-> 9 Sp) MB aBb min Aralah Sas, Is, B> 6/6/3 S, > aS, b/a/b Sz->aSzb/aBbA->alaA B-> 6/6B 6) [ WeWR | WE Cats)\* Sambol S-) a Sa | bSb ] C C) & ww WE (a+5) " Sasabsble b) fwe z\* | | Wal = 2 | Wb | } S-> Sasasbs - a \_ b \_ a \_ Sassas/E - 6-a-a-a-