Topology

Alessio Esposito

April 12, 2023

Definition 1. let X be a not empty set and \mathcal{T} a collection of its subsets. \mathcal{T} is said topology on X if it has the following properties:

- $\varnothing, X \in \mathcal{T}$
- the union of a whatever family of elements of \mathcal{T} is in \mathcal{T} . In simbols: $\forall \{A_i\}_{i\in I}, A_i \in \mathcal{T}, \bigcup_{i\in I} A_i \in \mathcal{T}$
- the intersection of elements of \mathcal{T} is in \mathcal{T} : $\forall A_1, A_2 \in \mathcal{T}$, $A_1 \cap A_2 \in \mathcal{T}$

Then (X, \mathcal{T}) its said to be topological space and X is called support.

Example 1. Let $X = \mathbb{R}^2$ with the euclidean distance and $\forall c \in \mathbb{R}^2$ and $\forall r > 0$ the set $B_r(c) = \{x \in \mathbb{R}^2 : d(x,c) < r\}$ its said open spherical neighbourhood of center c and radius r. Let \mathcal{T} be the totality of all the possible unions of open spherical neighbourhoods. \mathcal{T} is a topology.

Definition 2. $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ topological spaces with $X_1 \cap X_2 = \emptyset$. let $X = X_1 \cup X_2, \mathcal{T} = \{A_1 \cup A_2 \mid A_i \in \mathcal{T}_i\}$.

Lemma 1. (X, \mathcal{T}) is a topological space.

Proof. Lets verify the axioms.

- 1. $\emptyset \in \mathcal{T}_1, \ \emptyset \in \mathcal{T}_2 \Rightarrow \emptyset = \emptyset \cup \emptyset$ $X_i \in \mathcal{T}_i \Rightarrow X = X_1 \cup X_2 \in \mathcal{T}$
- 2. $\{A\}_{i \in I} \in \mathcal{T} \Rightarrow A_i = A_{1,i} \cup A_{2,i}$ $\bigcup_{i \in I} A_i = \bigcup_{i \in I} (A_{1,i} \cup A_{2,i}) = \bigcup_{i \in I} (A_{1,i}) \cup \bigcup_{i \in I} (A_{2,i}) \in \mathcal{T}_1 \cup \mathcal{T}_2$
- 3. $A, A' \in \mathcal{T} \Rightarrow A = A_1 \cup A_2, A' = A'_1 \cup A'_2$ $A \cap A' = (A_1 \cup A_2) \cap (A'_1 \cup A'_2) = (A_1 \cap A'_1) \cup (A_2 \cap A'_2) \in \mathcal{T}$

Definition 3. \mathcal{T} is defined as a sum of Topologies \mathcal{T}_1 and \mathcal{T}_2 . We notice that $\forall A_i \in \mathcal{T}_i$, $A_i \cup \emptyset \in \mathcal{T}$ so \mathcal{T} contains \mathcal{T}_1 and \mathcal{T}_2 .

Definition 4. (X, \mathcal{T}) topological space $Y \subseteq X$, $Y \neq \emptyset$ $\mathcal{T}_{/Y} = \{A \cap Y \mid A \in \mathcal{T}\}$ prove that $\mathcal{T}_{/Y}$ is a topology defined as Inducted topology on Y

Definition 5. (X, \mathcal{T}) topological space. $\mathcal{B} = \{B_j\}_{j \in J}$ with $B_j \in \mathcal{T}$. \mathcal{B} is said basis for the topology $\mathcal T$ if all open sets are union of elements of $\mathcal B$

Lemma 2. Let $X \neq \emptyset$ and $\mathcal{B} \in \mathcal{P}(X)$. Let $A \subseteq X$ then the following affirmations are equivalent:

- (a) A is union of elements of \mathcal{B}
- (b) $\forall x \in A \ \exists B \in \mathcal{B} : x \in B \subseteq A$

Proof. (a)
$$\Rightarrow$$
 (b)

Let $x \in A = \bigcup_{i \in I} B_i$ with $B_i \in \mathcal{B}$. Therefore $\exists B_i : x \in B_i \subseteq A$

- $(b) \Rightarrow (a)$
- $\begin{array}{ll} (\subseteq) & A = \bigcup_{i \in I} B_i \Rightarrow \forall x \in A \exists B_x : x \in B_x \Rightarrow A \subseteq \bigcup_{i \in I} B_i. \\ (\supseteq) & \forall x \in A \ \exists B_i \in \mathcal{B} : x \in B_i \subseteq A \Rightarrow A \subseteq \bigcup_{i_x \in I} B_{i_x} \subseteq A \Rightarrow A = \bigcup_{x \in A} B_x \end{array}$

Theorem 1. Let X be a not empty set and $\mathcal{B} \in \mathcal{P}(X)$. \mathcal{B} is a basis if:

- 1. $X = \bigcup_{B \in \mathcal{B}} B$
- 2. $\forall B_1, B_2 \in \mathcal{B}$ and $\forall x \in B_1 \cap B_2$ there exists $B_3 \in \mathcal{B} : x \in B_3 \subset B_1 \cap B_2$.

Proof. (\Rightarrow)

Let \mathcal{B} a basis such that every open set A is union of elements of \mathcal{B} , in particular $X = \bigcup_{B \in \mathcal{B}} B$ moreover because $\mathcal{B} \subseteq \mathcal{T}$ we can say that $B_1, B_2 \in \mathcal{T}$ so is union of elements of \mathcal{B} . The last Lemma implies $\forall x \in B_1 \cap B_2 \exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

(⇔)

Let $\mathcal{B} \subseteq \mathcal{P}(X)$ that satisfies 1. and 2. and let \mathcal{T} the totality of the unions of \mathcal{B} . It has to be proven that \mathcal{T} is a topology on X.

- i $\emptyset \in \mathcal{T}$ because \emptyset is the empty union and $X \in \mathcal{T}$ for the 1.
- ii \mathcal{T} is closed with respect to the union by definition.

iii
$$A_1, A_2 \in \mathcal{T}$$
 one has $A_1 = \bigcup_{i \in I_1} B_i^{(1)}$ and $A_2 = \bigcup_{j \in I_2} B_i^{(2)} \Rightarrow A_1 \cap A_2 = (\bigcup_{i \in I_1} B_i^{(1)}) \cap (\bigcup_{j \in I_2} B_j^{(2)}) = \bigcup_{i \in I_1, j \in I_2} (B_i^{(1)} \cap B_j^{(2)}).$

By the 2. and the last lemma $B_i^{(1)} \cap B_i^{(2)} \in \mathcal{T}$ this implies that $A_1 \cap A_2 \in \mathcal{T}$. \square

Definition 6. (X, \mathcal{T}) topological space, X verifies the second axiom of numerability if posseses a finite base or numerable, in that case (X, \mathcal{T}) is said \mathcal{N}_2

Proposition 1. Let \mathbb{R} be gifted by the topology with a base of the following type:

$$[a, b], \ a < b$$

Then $(\mathbb{R}, \mathcal{T})$ is not \mathcal{N}_2

Proof. Let \mathcal{B} a base for \mathcal{T} . Let $a > 0 \in \mathbb{R}$ then $\forall x \in \mathbb{R}$, there exists $B_x \in \mathcal{B}$ with $x \in B_x \subseteq [x, x+a]$. If $y \in \mathbb{R}$ with y > x then $x \notin [y, y+a]$ so $x \notin B_y$. The application $x \in \mathbb{R} \longmapsto B_x \in \mathcal{B}$ is injective so \mathcal{B} has the continuum order. \square

Proposition 2. Let (X, \mathcal{T}) be a topological space and S a subset of X.

- a) A point $x \in X$ is adherent to S if and only if $N \cap S \neq \emptyset$ for all $N \in \mathcal{N}(x)$
- b) A point $x \in X$ is adherent to S if there exists a successor function $\{x_n\}$ of elements in S that converges to x. If X satisfies the second axiom of numerability then also the other implication is true.

Proof. (a)

Let's suppose that $x \in \bar{S}$. If $x \in S$ then the condition is satisfied because every $N \in \mathcal{N}(x)$ contains x. If $x \in D(S)$ again, the condition is satisfied because $N \setminus \{x\} \cap S \neq \emptyset$ for all $N \in \mathcal{N}(x)$. So we suppose that the condition of the statement is true, that implies that $x \notin Est(S)$ because $Est(S) \cap S = \emptyset$ and Est(S), since is open, is a neighbourhood of every its point. Therefore $x \in \bar{S}$.

(b)

Let's suppose that $\{x_n\}$ is a successor function of elements of S such that $\lim_{x\to\infty} x_n = x$. By definition of limits fo all $N \in \mathcal{N}(x)$ there exist $x_n \in N$ and so the condition of the part (a) is satisfied. So $x \ x \in \overline{S}$. Let's suppose instead that $x \in \overline{S}$ and let $\{N_n : n = 1, 2, \ldots\}$ be a fundamental system of neighbourhoods of x that satisfies the condition $N_n + 1 \subset N_n$ for all n. By the (a) for all $n \ge 1$ we can find a point $x_n \in N_n \cap S$. The successor function $\{x_n\}$ converges to x.

Continous functions and homeomorphisms

Definition 7. Let (X, \mathcal{T}_x) , (Y, \mathcal{T}_y) be topological spaces, $\Omega : X \to Y$ is continous in $a \in X$ if $\forall I$ neighbourhood of $\Omega(a)$, $\exists K$ neighbourhood of a s.t. $\Omega(K) \subseteq I$.

We'll say that a function is continous if it is continous in every point.

Proposition 3. Let $\Omega:(X,\mathcal{T}_x)\to (Y,\mathcal{T}_y)$ so then the following affirmations are equivalent:

- i. Ω is continous.
- ii. $\forall A \in \mathcal{T}_y, \ \Omega^{-1}(A) \in \mathcal{T}_x.$
- iii. $\forall c \in \mathcal{C}(Y), \ \Omega^{-1}(c) \in \mathcal{C}(X).$
- iv. The counterimages of opens under a selected base of Y are opens of X.
- v. $\forall b = \Omega(a) \in Im\Omega = \Omega(X)$ the counterimage of every neighbourhood K' of b is a neighbourhood of a

Proof. $i. \Rightarrow ii.$ Let $A \in \mathcal{T}_y$ we have to prove that $\forall a \in \Omega^{-1}(A)$ exists a neighbourhood of a contained in $\Omega^{-1}(A)$. For $a \in \Omega^{-1}(A)$ one has $\Omega(a) \in \Omega(\Omega^{-1}(A)) = A$. A is open and is a neighbourhood of $\Omega(a)$ so if Ω is continous there exists a neighbourhood K of a s.t. $\Omega(K) \subseteq A$ hence $K \subseteq \Omega^{-1}(A)$ and $a \in K$

 $ii. \Rightarrow i$. Let $a \in X$, I neighbourhood of $\Omega(a)$ let $A \in \mathcal{T}_y$ s.t. $\Omega(a) \in A \subseteq K$ for the $ii. \Omega^{-1}(A)$ is open and is a neighbourhood of a s.t. its image contains $\Omega(a)$ and A is contained in I.