Homework 5, due Monday April 27

COMS 4771 Spring 2015

Problem 1 (Expectation-Maximization). Consider the following variant of the MTurk model for m items and n workers.

- Nature picks correct label for item i to be 1 with probability π_i (and 0 otherwise).
- Ask each worker to label each item as 0 or 1.
- If the correct label for item i is 0, then worker j responds with correct label on item i with probability p_j .

If the correct label for item i is 1, then worker j responds with correct label on item i with probability r_j .

• All choices of Nature are independent, and all the responses of the workers are conditionally independent given the choices of Nature.

The parameters of the model are $\boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{p}, \boldsymbol{r}) = (\pi_1, \pi_2, \dots, \pi_m, p_1, p_2, \dots, p_n, r_1, r_2, \dots, r_n) \in (0, 1)^{m+2n}$, and the random variables involved in the model are distributed as follows.

• (Hidden) Y_i is the correct label for item i;

$$\Pr_{\boldsymbol{\theta}}(Y_i = 0) = 1 - \pi_i, \quad \Pr_{\boldsymbol{\theta}}(Y_i = 1) = \pi_i.$$

• (Observed) $X_{i,j}$ is the response given by worker j for item i;

$$\Pr_{\boldsymbol{\theta}}(X_{i,j} = 0 \mid Y_i = 0) = p_j,$$
 $\Pr_{\boldsymbol{\theta}}(X_{i,j} = 1 \mid Y_i = 0) = 1 - p_j,$ $\Pr_{\boldsymbol{\theta}}(X_{i,j} = 0 \mid Y_i = 1) = 1 - r_j,$ $\Pr_{\boldsymbol{\theta}}(X_{i,j} = 1 \mid Y_i = 1) = r_j.$

Derive an E-M algorithm for estimating the parameters given the observed responses. Explain your derivation, and then clearly describe the E and M steps.

Problem 2 (Maximum entropy). You are given a six-sided die and initially believe that it is a fair die (i.e., when rolled, the numbers $\{1, 2, ..., 6\}$ are all equally likely to come up).

- (a) Upon several independent rolls of the die, you observe the following.
 - i. The fraction of times that the die comes up with 4 is 0.2.
 - ii. The fraction of times that the die comes up with a number ≤ 3 is 0.2.

What is the maximum entropy distribution $(p_1, p_2, ..., p_6)$ over $\{1, 2, ..., 6\}$ that agrees with both of these observations? (Give actual real values for each p_i .) Explain all the steps you take to arrive at your solution.

- (b) Repeat (a), but instead using the following observations.
 - i. The fraction of times that the die comes up with either 1 or 2 is 0.5.
 - ii. The fraction of times that the die comes up with an even number is 0.5.

Problem 3 (Practice problems). The following problems will not be graded.

- 1. Consider the experiment where you independently toss m balls into two possible bins. The bins have varying widths $w_1, w_2 > 0$, and the probability that a ball lands into a particular bin is proportional to the width of that bin. Without loss of generality, assume that $w_1 + w_2 = 1$. The outcome of this process can be described by a random pair of ball counts for each bin: $\mathbf{X} = (X_1, X_2) \in \{0, 1, 2, \dots, m\}^2$ where $X_1 + X_2 = m$. Let $P_{\mathbf{w}}$ be the distribution of \mathbf{X} , where $\mathbf{w} = (w_1, w_2)$. Show that $\mathcal{P} := \{P_{\mathbf{w}} : \mathbf{w} \in (0, 1)^2\}$ is an exponential family. To do this, specify the domain, the base measure, and the feature functions. Also specify the log partition function and the natural parameter space.
- 2. Suppose you train a classifer using AdaBoost,

$$x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot f_t(x)\right).$$

You would like to predict the probability that a new test point x has label 1. How should you compute this prediction? (Assume you have access to the α_t s and the f_t s.)

3. Consider the fixed-design setting for linear regression:

$$oldsymbol{y} = oldsymbol{X} oldsymbol{w}_\star + oldsymbol{arepsilon}$$

where $X \in \mathbb{R}^{n \times p}$ is a (non-random) matrix, $\boldsymbol{w}_{\star} \in \mathbb{R}^{p}$, and $\boldsymbol{\varepsilon}$ is a zero-mean random vector in \mathbb{R}^{n} with independent entries and $cov(\boldsymbol{\varepsilon}) = \sigma^{2}\boldsymbol{I}$ for some $\sigma^{2} > 0$.

Recall that for $\lambda > 0$, the ridge regression estimator $\hat{\boldsymbol{w}}_{\lambda}$ satisfies

$$\operatorname{risk}(\hat{\boldsymbol{w}}_{\lambda}) := \mathbb{E}\bigg[\frac{1}{n}\|\boldsymbol{X}\boldsymbol{w}_{\star} - \boldsymbol{X}\hat{\boldsymbol{w}}_{\lambda}\|_{2}^{2}\bigg] = \sum_{j=1}^{p} \frac{\lambda_{j}\lambda^{2}}{(\lambda_{j} + \lambda)^{2}} \langle \boldsymbol{v}_{j}, \boldsymbol{w}_{\star} \rangle^{2} + \frac{\sigma^{2}}{n} \sum_{j=1}^{p} \bigg(\frac{\lambda_{j}}{\lambda_{j} + \lambda}\bigg)^{2},$$

and the principal components regression estimator $\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda}$ satisfies

$$\operatorname{risk}(\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda}) := \mathbb{E}\bigg[\frac{1}{n}\|\boldsymbol{X}\boldsymbol{w}_{\star} - \boldsymbol{X}\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda}\|_{2}^{2}\bigg] = \sum_{j=1}^{p} \mathbb{1}\{\lambda_{j} < \lambda\}\lambda_{j}\langle\boldsymbol{v}_{j},\boldsymbol{w}_{\star}\rangle^{2} + \frac{\sigma^{2}}{n}\sum_{j=1}^{p} \mathbb{1}\{\lambda_{j} \geq \lambda\}.$$

Assume $\lambda_1 > \lambda_2 > \cdots > \lambda_p > 0$. Suppose you are told the least value $k \in \mathbb{N}$ such that $\langle \boldsymbol{v}_j, \boldsymbol{w}_{\star} \rangle = 0$ for all j > k. What value (or range of values) of $\lambda > 0$ should be used with principal components regression? And for such a setting of λ , how large can the ratio risk $(\hat{\boldsymbol{w}}_{\lambda})/\operatorname{risk}(\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda})$ be? Give an answer in terms of k and p, and specify conditions on the λ_j so that the ratio is as large as possible.

4. In a time-homogeneous HMM, are the marginal distributions of the first observation X_1 and the second observation X_2 the same? Explain why or why not.