Conservative

idea: The existence of Derivative to be integrated in Fundamental Theorem of Calculus

A <u>Vector field</u> \vec{F} is conservative if there exists a <u>Scalar function</u> f such that $\nabla f = \vec{F}$ (see: <u>Gradient</u>)

$ec{F}$ is conservative \leftrightarrow $ec{F}$ is Path-independent

$ec{F}$ is conservative $ightarrow ec{F}$ is Path-independent

 $\int_C \vec{F} \cdot \mathrm{d}\vec{r} = \int_C
abla f \cdot \mathrm{d}\vec{r} = f[\vec{r}(t=b)] - f[\vec{r}(t=b)]$ by Fundamental Theorem of Calculus > Vector Line Integral in Higher Dimensions

\vec{F} is conservative $\leftarrow \vec{F}$ is Path-independent

Letting $\vec{F}(x,y) = (P(x,y),Q(x,y))$

Define $f(x,y) = \int_{(a,b)}^{(x,y)} \vec{F} \cdot \mathrm{d}\vec{r}$ Then $f(x,y) = \int_{(a,b)}^{(a,y)} \vec{F} \cdot \mathrm{d}\vec{r} + \int_{(a,y)}^{(x,y)} \vec{F} \cdot \mathrm{d}\vec{r}$, because of path-independent

Then $f(x,y)=\int_b^y Q(a,y)\mathrm{d}y+\int_a^x P(x,y)\mathrm{d}x$, because $\mathrm{d}\vec{r}=(0,\mathrm{d}y)$ for the first part, and $\mathrm{d}\vec{r}=(\mathrm{d}x,0)$ for the second part (see: Vector line integral > Calculate in pieces)

So $f_x=P$, $f_y=Q$ by Fundamental Theorem of Calculus > 1D

$ec{F}$ is conservative $\leftrightarrow P_y = Q_x$

Letting $\vec{F}(x,y) = (P(x,y),Q(x,y))$

$ec{F}$ is conservative $ightarrow P_{y} = Q_{x}$

Because if \vec{F} is conservative, then there exists f(x,y) such that $\nabla f = (f_x,f_y) = \vec{F} = (P,Q)$

So, $P_y=f_{xy}$ and $Q_x=f_{yx}$, and they are the same by <code>Clairaut's Theorem</code>

$$ec{F}$$
 is conservative $\leftarrow P_{y} = Q_{x}$

if that region is simply connected (no holes) ...