## §2.1 Понятие диференциана.

Пусть функция y = f(x) определена в некоторой окретности точки  $X_0$ . Полда если существует такое A, что приращение Ay этой функции в точке  $X_0$ , соответственно приращению AX аргучента, представлено в виде:  $Ay = A \cdot A \cdot X + L(AX) \cdot AX$ , где L:m L(AX) = 0, то функция f(X) научевается дифференцирациой в точке  $X_0$ .  $A \cdot AX -$  дифференциан функции в точке  $X_0$  и обогнатается dy, d  $f(X_0)$ 

Typicifus f(x) guarapenentupyend b morke  $x_0$  morga  $y_0$  mouse morga, konga b smout morke cyutembyem novereas houghoguas  $f'(x_0)$ , nou smou  $A = f'(x_0) = \lambda f(x_0) = f'(x_0) dx$  ecu f(x) cyutembyem  $y_0$  unmerbare  $(a;b) = \lambda dy = f'(x) dx$ ,  $x \in (a,b)$ 

Из преведеного ране f(x) = dn m.e. произодная функции y = f(x) в тогке х равия отношению дифференциана этой функции, в данной тогке к дифференциану независичной переченной.

Ecu prupayenue ax aprimenta X Lunko K kyllo (m.l. gormamorno rialo), mo prupayenue  $\Delta y$  prynkizu pruduncenso pabno el guarapephnyuay, m.e.  $\Delta y \approx dy$ , omkiga  $f(x_0+\Delta n) \approx (x_0) + f'(x_0) \Delta n$  3ma apopuya yapatra qua pruduncenso burucuna znarenua apyrkuju f(x) b morke  $x_0+\Delta x$  no uzbermkory znarenuo 3mori apyrkuju u el prouzbagnoù b morke  $x_0$ 

Геонетрический сими и свойства

Геометрически приращение л у функции f(X) в тогке n - есть приращение ординать точки на кривай (л у = AC), а диарареренциа ву функции в этой точке - приращение эрдинаты соответствующей точки на касательной (ду = AB)

Morga u(n) u V(n)-некоторые функции, дифференцируемые в

Morga:

