Curious Computation Models

CONNECTIONS workshop by fuzzy binaires Kreativquartier Munich, 2019

Gidon Ernst

an algorithm is a sequence of instructions to be executed by a computer

Ada Lovelace

(Dec. Wester Visitalia														Result Variables.							
Number of Operation.	.00		Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data																
	Nature of Operation	Variables acted upon.				5000-	1V, 00002	150004 M	5.0000	F.00000	\$*0000 [\$7,0000 [\$0000 [£*0000 [₹ ³ 0000 □	*F.13	•V _B ○ 0 0 0 0	Ψ _B	E lo a decimal of fraction.	F decimalOg for the foreign.	B in a O decimal O d fraction.	Fr. 00000
1 2 3 4 5 6 7	- + + + -	${}^{i}V_{4} - {}^{i}V_{1}$ ${}^{i}V_{4} + {}^{i}V_{1}$ ${}^{i}V_{4} + {}^{i}V_{1}$ ${}^{i}V_{4} + {}^{i}V_{4}$ ${}^{i}V_{11} + {}^{i}V_{2}$ ${}^{i}V_{13} - {}^{i}V_{13}$	1V ₄ , 1V ₄ , 1V ₄ 2V ₄	$\begin{cases} v_1^{V_1} = v_1^{V_2} \\ v_1^{V_1} = v_2^{V_2} \\ v_2^{V_2} = v_1^{V_2} \\ v_3^{V_2} = v_1^{V_2} \\ v_4^{V_3} = v_2^{V_3} \\ v_{1}^{V_2} = v_2^{V_3} \\ v_{2}^{V_3} = v_3^{V_3} \\ v_{3}^{V_3} = v_{33}^{V_3} \end{cases}$	$= 2 n$ $= 2 n + 1$ $= 2 n + 1$ $= 2 n + 1$ $= \frac{2 n - 1}{2 n + 1}$ $= \frac{1}{2} \cdot \frac{2 n - 1}{2 n + 1} = \lambda_0$ $= n - 1 (= 3)$		2		2 n 2 n - 1	2 n 2 n + 1 0	2a					$ \begin{array}{r} 2n - 1 \\ 2n + 1 \\ \hline 1 & 2n - 1 \\ \hline 2 & 2n + 1 \\ \hline 0 \end{array} $		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\Lambda_0$				
8 9 10 11 12	+ + × +	'V ₂ +*V ₂ 'V ₄ +*V ₇ 'V ₄ +*V ₇ 'V ₁₁ ×*V ₁₁ 'V ₁₂ +*V ₁₁	1V; 2V ₁₁ 2V ₁₂	$\begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{2}V_{2} = {}^{1}V_{2} \\ {}^{2}V_{4} = {}^{1}V_{6} \\ {}^{2}V_{6} = {}^{2}V_{6} \\ {}^{2}V_{10} = {}^{2}V_{11} \\ {}^{2}V_{10} = {}^{2}V_{11} \\ {}^{2}V_{10} = {}^{2}V_{12} \\ {}^{2}V_{10} = {}^{2}V_{13} \\ {}^{2}V_{10} = {}^{2}V_{13} \\ {}^{2}V_{10} = {}^{2}V_{10} \\ {}^{2}V_{11} = {}^{2}V_{11} \\ {}^{2}V_{11} = {}^{2}V_{12} \\ {}^{2}V_{11} = {}^{2}V_{12} \\ {}^{2}V_{11} = {}^{2}V_{12} \\ {}^{2}V_{12} = {}^{2}V_{13} \\ {}^{2}V_{13} = {}^{2}V_{13} \\ {}^{2}V_{14} = {}^{2}V_{14} \\ {}^{2}V_{15} = {}^{2}V_{15} \\ {}^{2}V_{1$			2				2n	2 2			 n - 2	$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$	$B_1, \frac{2 s}{2} = B_1 A_1$ 0	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + B_1, \frac{2n}{2}\right\}$	В			
13 (14 15 16 17 18 19 20 21 22 23 [+ + + + + + + + -	2V ₁ + 2V ₂ 2V ₆ + 2V ₂ 2V ₆ + 2V ₂ 2V ₆ - 2V ₁₁ 2V ₁ + 2V ₂ 2V ₂ + 2V ₂ 2V ₂ × 2V ₁₁ 2V ₁₂ + 2V ₁₂ 2V ₁₃ - 2V ₁	1V ₆	IV, = IV, IV, IV, = IV, IV, = IV,	$= B_3 \cdot \frac{2\pi}{2} \cdot \frac{2\pi - 1}{3} \cdot \frac{2\pi - 2}{3} = B_3 \Lambda_1$ $= \Lambda_0 + B_1 \Lambda_1 + B_2 \Lambda_2 \dots \dots \dots$ $= \pi - 3 (= 1) \dots$	1			lere Sell		2 n - 1 2 n - 1 2 n - 2 2 n - 2 petition	4 4	2n - 1 3 0	2m - 2 4 0 	 n – 3	$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \frac{2n}{2}, \frac{2n-1}{3}, \frac{2n-2}{3} \\ 0 \\ \dots \\ \text{ty-three.} \end{cases}$	B ₃ A ₃	$\left\{A_3+B_1A_1+B_2A_3^{\prime}\right\}$		8,		
24 25	+	"V ₁₃ +"V ₂	V ₅₄	$\begin{cases} {}^{4}V_{13} = {}^{6}V_{12} \\ {}^{6}V_{23} = {}^{1}V_{23} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{4}V_{4} = {}^{6}V_{4} \\ {}^{4}V_{7} = {}^{6}V_{7} \end{cases}$	= B ₇	100		1	-		0	0	-									В,

an algorithm is a sequence of instructions to be executed by a computer

which *problems* can be solved by algorithms?

A simple game

Goal: at least one green symbol in each box

Rules

- two colors: red, green
- if a hollow symbol is red, then the same solid symbol must be green and vice versa example: means

A simple game: possible solution

Goal: at least one green symbol in each box

Rules

- two colors: red, green
- if a hollow symbol is red, then the same solid symbol must be green and vice versa example: means

This game solves logical formulas!

Goal: at least one green symbol in each box

Corresponds to:

(P or ~Q or S) and (~P or Q or R) and (~S)

Credit: Martina Seidl (Uni Linz)

Solving the game

Goal: at least one green symbol in each box

- An example algorithm:
 - 1) guess the correct answer if one exists
 - 2) check that the answer solves the game

Solving the game

Goal: at least one green symbol in each box

- Another algorithm:
 - 1) pick arbitrary colors for the hollow symbols, then set the colors for solid symbols by the rules
 - 2) check if each box contains a green symbol
 - 3) repeat if necessary

an algorithm is a sequence of instructions to be executed by a computer

which *problems* can be solved by algorithms? answer depends on *model of computation*!

Alan Turing

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

Alonzo Church

Computation

Computational model of Processing

Church's Lambda Calculus

$$(\lambda x. A[x]) \rightleftharpoons (\lambda y. A[y])$$

 $(\lambda x. A[x]) B \longrightarrow A[B]$

Examples:

$$(\lambda x. x + 1) 7 \longrightarrow 7 + 1 \quad (= 8)$$
$$(\lambda x. x x) (\lambda y. y y) \longrightarrow ???$$

Chemical Abstract Machine

There are only two basic rules:

parallel:

$$p \mid q \rightleftharpoons p, q$$

reaction:

$$a.p, \overline{a}.q \rightarrow p, q$$

Note: for general computation add $|p \rightleftharpoons p| |p$

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

http://www.rendell-attic.org/gol/tm.htm

