САМОСТОЯТЕЛЬНАЯ РАБОТА №3 (5+5+5 БАЛЛОВ)

Вариант	Задача 1	Задача 2	Задача 3
1	1	CalcTree10	Graf1
2	2	CalcTree9	Graf2
3	3	CalcTree8	Graf3
4	1	CalcTree7	Graf4
5	2	CalcTree6	Graf5
6	3	CalcTree5	Graf6
7	1	CalcTree4	Graf7
8	2	CalcTree3	Graf8
9	3	CalcTree2	Graf9
10	1	CalcTree1	Graf10

ЗАДАЧА 1

- 1. Напишите генератор паролей. Составьте три уровня сложности генерации паролей (вместе с их длиной) и спрашивайте у пользователя, какой уровень сложности ему нужен. Проявите свою изобретательность: надёжные пароли должны состоять из сочетания строчных букв, прописных букв, цифр и символов. Пароли должны генерироваться случайным образом каждый раз, когда пользователь запрашивает новый пароль.
- 2. Ввести с клавиатуры любое слово. Используя **генерацию случайных чисел**, переставить буквы этого слова в случайном порядке. Делать это до тех пор, пока полученное слово не совпадёт с начальным словом. Выводить слово после каждой перестановки и посчитать общее количество выведенных слов (не считая исходного). Пример выполнения программы:

Введите слово: корова

воакро

вокроа

ароовк

краоов

крваоо

оокавр

ооквра

вкраоо

корова

9 попыток

3. Напишите программу-телеграф, которая принимает от пользователя сообщение и выводит его на экран в виде последовательности точек и тире. Азбука Морзе для букв русского алфавита приведена ниже.

Буква	Код	Буква	Код	Буква	Код	Буква	Код
A	·	Б		В	·	Γ	
Д		Е		Ж		3	
И		Й	·	К		Л	
M		Н		О		П	••
P		С		Т	_	У	••-

Φ	•••	X	 Ц		Ч	•
Ш		Щ	 Ъ	•	Ы	_•
Ь		Э	 Ю		R	•

ЗАДАЧА 2

CalcTree1. В текстовом файле с именем filename дано арифметическое выражение **в обратной польской записи**. Операндами являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-) и умножение (*). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3). Преобразуйте дерево так, чтобы в нем не было операции вычитания (замените поддеревья, в которых есть вычитание значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree2. В текстовом файле с именем filename дано арифметическое выражение **в обратной польской записи**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*) и деление нацело (/). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление нацело (-4). Преобразуйте дерево так, чтобы в нем не было операции сложения (замените поддеревья, в которых есть сложение значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree3. В текстовом файле с именем filename дано арифметическое выражение **в обратной польской записи**. Операндами в выражении являются целые числа из промежутка. от 0 до 9. Используемые операции: сложение(+), вычитание(-), умножение(*), деление нацело (/) и целочисленный остаток от деления (%). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление нацело (-4) и целочисленный остаток от деления (-5). Преобразуйте дерево так, чтобы в нем не было операции умножения (замените поддеревья, в которых есть умножение значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree4. В текстовом файле с именем filename дано арифметическое выражение **в обратной польской записи**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/) и целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление нацело (-4), целочисленный остаток от деления (-5), возведение в степень (-6). Преобразуйте дерево так, чтобы в нем не было операции деления Иными словами, замените поддеревья, в которых есть операции / или %, значением данного поддерева. Выведите указатель на корень полученного дерева.

CalcTree5. В текстовом файле с именем filename дано арифметическое выражение **в префиксной** форме. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*) и деление нацело(/). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4). Преобразуйте дерево так, чтобы в нем не было операций сложения и вычитания. Иными словами, замените поддеревья, в которых есть сложение или вычитание значением данного поддерева. Выведите указатель на корень полученного дерева.

CalcTree6. В текстовом файле с именем filename дано арифметическое выражение **в префиксной** форме. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/), целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному

выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4), остаток от деления(-5), возведение в степень (-6). Преобразуйте дерево так, чтобы в нем не было операций возведения в степень (замените поддеревья, в которых есть возведение в степень, значением данного поддерева). Выведите указатель на корень полученного дерева. CalcTree7. В текстовом файле с именем filename дано арифметическое выражение в префиксной форме. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение(+), вычитание(-), умножение(*), деление нацело(/), целочисленный остаток от деления(%) и возведение в степень(^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4), остаток от деления(-5), возведение в степень (-6). Преобразуйте дерево, вычислив значения всех поддеревьев, для которых результат вычислений является числом из промежутка от 0 до 9 (замените такие поддеревья их значениями). Выведите указатель на корень полученного дерева. CalcTree8. В текстовом файле с именем filename дано арифметическое выражение в префиксной форме. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/), целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление (-4), остаток от деления (-5), возведение в степень (-6). Преобразуйте дерево, вычислив значения всех поддеревьев, для которых результат вычислений левого или правого поддерева равен нулю (замените такие поддеревья их значениями). Выведите указатель на корень полученного дерева. CalcTree9. В текстовом файле с именем FN1 дано арифметическое выражение в инфиксной форме. В выражении могут использоваться операции: сложение(+), вычитание(-), умножение(*), деление нацело(/), остаток от деления(%), возведение в степень($^{\land}$), а так же целые числа из промежутка [1; 30] и переменная х. Для операции возведения в степень показатель степени неотрицательное целое число. Постройте дерево выражения. После этого вычислите значение выражения при заданном значении переменной х и выведите результат в текстовый файл с именем FN2. Преобразуйте дерево, заменив все поддеревья вида A+x на x+A, где A- некоторое поддерево, а x-- переменная. Распечатайте дерево после преобразования в файл FN2 в префиксной и постфиксной форме, а так же в инфиксной форме с избыточными скобками. При наличии нескольких подряд идущих одинаковых операций дерево должно строиться по правилу: операции одинакового приоритета вычисляются по порядку слева направо. Иными словами, выражение 2+3+4+5, например, должно трактоваться как ((2+3)+4)+5, и не может трактоваться как (2+3)+(4+5) или 2+(3+(4+5)). Результаты всех вычислений, включая промежуточные, принадлежат типу int. CalcTree10. В текстовом файле с именем FN1 дано арифметическое выражение в инфиксной форме. В выражении могут использоваться операции: сложение(+), вычитание(-), умножение(*), деление нацело(/), остаток от деления(%), возведение в степень($^{\land}$), а так же целые числа из промежутка [1; 30] и переменная х. Для операции возведения в степень показатель степени неотрицательное целое число. Постройте дерево выражения. После этого вычислите значение выражения при заданном значении переменной х и выведите результат в текстовый файл с именем FN2. Преобразуйте дерево, заменив все поддеревья вида $\mathbf{x}^*\mathbf{A}$ на $\mathbf{A}^*\mathbf{x}$, где A - некоторое поддерево, а \mathbf{x} - переменная. Распечатайте дерево после преобразования в файл FN2 используя многострочный формат, в котором дерево положено на бок. Каждый уровень дерева выводите в 4-х позициях и используйте выравнивание по правому краю. При наличии нескольких подряд идущих одинаковых операций дерево должно строиться по правилу: операции одинакового приоритета вычисляются по порядку слева направо. Иными словами, выражение 2+3+4+5, например, должно трактоваться как ((2+3)+4)+5, и не может трактоваться как (2+3)+(4+5) или 2+(3+(4+5)). Результаты всех

ЗАДАЧА З

вычислений, включая промежуточные, принадлежат типу int.

Graf1. Дано описание неориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие n строк содержат матрицу смежности (m), m[i][j]=0, если ребра между вершинами i и j не существует. Определить степень для каждой вершины графа. Вывести степени вершин, перечисляя их

в порядке возрастания номеров вершин. Если в графе имеются петли, то каждая петля в степени вершины учитывается дважды.

Graf2. Дано описание неориентированного графа в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (a), а[i][j]=0, если ребра между вершинами і и ј не существует. Построить матрицу инцидентности данного графа и вывести ее в файл с именем FileName2. Для справки: матрица инцидентности (b) имеет размер n x m, m - число ребер графа, b[i][j]=1, если ребро ј инцидентно вершине i, в противном случае b[i][j]=0. Нумерацию ребер осуществлять в следующем порядке: сначала ребра, инцидентные вершине номер 1, потом ребра инцидентные вершине номер 2 и т.д. до вершины номер n. Ребра, инцидентные вершине с номером i перечислять в порядке возрастания номера второй вершины, инцидентной данному ребру. При выводе в первой строке указать размер матрицы инцидентности: числа n и m, а в следующих n строках разместить матрицу инцидентности.

Graf3. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины і в вершину ј не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить топологическую сортировку графа. В качестве результата вывести номера вершин графа, полученные в результате сортировки. Если на очередном шаге сортировки имелось несколько равноправных вершин перечислять их в порядке убывания номеров вершин. Если топологическую сортировку выполнить невозможно, то вывести "No solution". Сортировку выполнять используя обход в глубину

Graf4. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины i в вершину j не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить поиск в ширину от вершины с номером k. В результате вывести номера вершин графа, достижимые для данной вершины, в порядке их обхода при поиске в ширину. Если на очередном шаге сортировки имелось несколько равноправных вершин, перечислять их в порядке возрастания номеров вершин.

Graf5. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие n строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города i в город j, иначе m[i][j]=1. Определить номера городов, в которые из города K можно долететь менее чем с L пересадками. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf6. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города K можно долететь ровно с L пересадками для самого короткого пути. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf7. Две корпорации хотят разделить сферы влияния, выбрав два разных города для размещения своих штаб-квартир так, чтобы все города, в некоторой округе от штаб-квартиры не были доступны для конкурентов. Схема автомобильного сообщения между городами задана в текстовом файле с именем *FileName* в виде матрицы смежности. Первая строка файла содержит количество городов (n, n<=25), связанных дорогами, а следующие n строк хранят матрицу (m), m[i][j]=0, если нет дороги из города i в город j, иначе m[i][j]=1. Даны два города-кандидата с номерами K1 и K2 для этих двух штаб-квартир. Определить есть ли города, в которые можно попасть из обоих штаб-квартир, если двигаться от каждой штаб-квартиры не более чем через L промежуточных городов. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf8. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города K можно долететь не менее чем с L пересадками и более коротких путей к таким городам не существует. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf9. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить сколько есть маршрутов из города К1 в город К2 с L пересадками. В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в лексикографическом порядке. Маршрут задается перечислением номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).

Graf10. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие n строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города i в город j, иначе m[i][j]=1. Определить все маршруты перелета из города K1 в город K2 В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в порядке от самых коротких к более длинным, маршруты одинаковой длины перечисляйте в лексикографическом порядке. Маршрут задается перечислением номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).