Trees and Binary Trees

Tree Terminology

- Root: node without parent (A)
- Siblings: nodes share the same parent
- Internal node: node with at least one child (A, B, C, F)
- External node (leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- Degree of a node: the number of its children
- Degree of a tree: the maximum degree of its node.

• **Subtree**: tree consisting of a node and its descendants

5

Tree Properties Property Value Number of nodes Height Root Node Leaves Interior nodes Ancestors of H Descendants of B Siblings of E Right subtree of A Degree of this tree

Intuitive Representation of Tree Node

- List Representation
 - **■** (A(B(E(K,L),F),C(G),D(H(M),I,J)))
 - **■** The root comes first, followed by a list of links to sub-trees

TREE ADT: Operations

- Operations
 - Traversal
 - Insertion
 - Deletion
 - Search
 - Сору
 - **—**

Tree Traversal

- Two main methods:
 - Preorder
 - Postorder
- Recursive definition
- Preorder:
 - visit the root
 - traverse in preorder the children (subtrees)
- Postorder
 - traverse in postorder the children (subtrees)
 - visit the root

13

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- · Application: print a structured document

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Binary Trees

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (degree of two)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, OR
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Examples of the Binary Tree

A
A
B
B
C
B
F
G
A
H
I
B
18

Difference Between A Tree and A Binary Tree

• The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

19

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a-1) + (3 \times b))$

Decision Tree

- · Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- · Example: dining decision

21

Binary Tree Traversal

- Traversal
 - Each node in a tree is processed exactly once in a systematic manner
- Three main ways of tree traversal
 - Preorder
 - Inorder
 - Postorder

Binary Tree Traversal...

- The easiest way to define each order is by using recursion
- Preorder traversal (RIr)
 - Process the root node
 - Traverse the left subtree in preorder
 - Traverse the right subtree in preorder
- Preorder traversal:

ABCDEFG

23

Assignment: Preorder Traversal

Preorder: FBADCEGIH

Assignment: Preorder Traversal

Preorder: PFBHGSRYTWZ

25

Binary Tree Traversal...

- Inorder traversal (IRr)
 - Traverse the left subtree in Inorder
 - Process the root node
 - Traverse the right subtree in Inorder
- Inorder traversal: CBAEFDG

Assignment: Inorder Traversal

Inorder: ABCDEFGHI

2

Assignment: Inorder Traversal

Inorder: BFGHPRSTWYZ

Binary Tree Traversal...

- Postorder traversal (IrR)
 - Traverse the left subtree in postorder
 - Traverse the right subtree in postorder
 - Process the root node
- Postorder traversal:

CBFEGDA

29

Assignment: Postorder Traversal

Postorder: ACEDBHIGF

Assignment: Postorder Traversal

Postorder: BGHFRWTZYSP

31

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

 $((2 \times (a - 1)) + (3 \times b))$

Tutorial: Algorithm to Print Arithmetic Expression using Binary Tree	