

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

Probabilidade e Estatística (EAD)

MAT02219 - Probabilidade e Estatística - 2020/2

Plano Aula 07 e 08

Introdução à Probabilidade (capítulo 5, Livro Bussab e Morettin)

- Estatística Descritiva ⇒ Teoria da Probabilidade ⇒ Inferência Estatística.
- Modelos Determinísticos versus Modelos Probabilíticos

Exemplo 1: Qual a distância percorrida de um objeto sabendo sua velocidade e o tempo de deslocamento?

Exemplo 2: Como calcular a quantidade de chuva que cairá em uma certa região num determinado período?

Exemplo 3: Qual a face que ficará para cima após o lançamento de um dado honesto?

Experimento aleatório (E)

- Modelo Probabilístico, definir:
 - os possíveis resultados de exeprimento;
 - todas as combinações de possíveis resultados;
 - como atribuir probabilidades aos resultados e combinações.

(... cont.) Exemplo 3: E: observar a face que ficará para cima após o lançamento de um dado.

Espaço Amostral (S ou Ω)

Conjunto de possíveis resultados do experimento.

- Eventos (A, B, ...)- Ponto Amostral (ω)
- (... cont.) Exemplo 3: $\Omega = \{1, 2, 3, 4, 5, 6\}$. Exemplo de evento, A: observar face par. Então $A = \{2, 4, 6\}$

Álgebra de Eventos $(\cup, \cap, A^c \text{ ou } \overline{A}, \dots)$ (slides 1-6, página 13)

- Operações entre conjuntos (RELEMBRAR!!!): eventos = conjuntos;
 - Contagens: permutação, arranjo e combinatória;
- Eventos especiais: \emptyset ; $\Omega \in \Omega, \ldots$;
- Eventos mutuamente exclusivos (excludentes): $A \cap B = \emptyset$.

(Medida de) Probabilidade (slides 1-6, página 23)

• Definições/conceitos de Probabilidade: clássico (a priori), frequentista (a posteriori) e subjetiva.

Axiomas de Kolmogorov: seja A um evento definido no espaço amostral Ω associado ao experimento E, então a medida (número real) P(A) é denominada a probabilidade de ocorrência do evento A se

- 1. $0 \le P(A) \le 1$,
- 2. $P(\Omega) = 1$,
- 3. Se $A \cap B = \emptyset$, então $P(A \cup B) = P(A) + P(B)$.
- Teoremas/Propriedades (seção 5.2, Livro Bussab e Morettin)

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02219 - Probabilidade e Estatística - 2020/2

Probabilidade Condicional e Independência (seção 5.3, Livro Bussab e Morettin)

• Eventos condicionados: probabilidade de ocorrer A dado que B ocorreu, $P(A|B) = \frac{P(a \cap B)}{B}$; - eventos independentes $P(A|B) = P(A) \times P(B)$.

Teorema da Probailidade Total e Teorema de Bayes (seção 5.4, Livro Bussab e Morettin)

- Partição do espaço amostral: seja $B_1, B_2, B_3, \ldots, B_k$ (para $k \in \mathbb{N}$) uma partição do espaço amostral Ω ,
 - $-B_i \cap B_j = \emptyset$, para todo $i \neq j$; $-\Omega = B_1 \cup B_2 \cup \ldots \cup B_k$.

Teorema da Probabilidade Total (soma das probabilidades):

"Sabendo a probabilidade de ocorrência de cada partição B_i e a probabilidade de ocorrência de um evento Aem cada partição, então podemos calcular a probabilidade de ocorrência de A."

Teorema: Seja A um evento definido no espaço amostral Ω associado ao experimento E e B_1, B_2, \ldots, B_k uma partição de Ω , então

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_k) = P(B_1) \times P(A \mid B_1) + P(B_2) \times P(A \mid B_2) + \ldots + P(B_k) \times P(A \mid B_k).$$

Ou

$$P(A) = \sum_{i=1}^{k} P(A \cap B_i) = \sum_{i=1}^{k} P(B_i) \times P(A|B_i).$$

Teorema de Bayes

"Também é possível calcular a probabilidade de ocorrência de uma partição B_i dado que um evento A ocorreu."

Teorema: Seja A um evento definido no espaço amostral Ω associado ao experimento E e $B_1, B_2, B_3, \ldots, B_k$ uma partição de Ω , então

$$P(B_i|A) = \frac{P(B_i \; capA)}{P(A)} = \frac{P(B_i) \times P(A|B_i)}{\sum_{i=1}^{k} P(B_i) \times P(A|B_i)}.$$

- Probabilidade subjetiva (seção 5.5, Livro Bussab e Morettin)
- Thomas Bayes ⇒ Inferência Bayesiana (diferente da visão clássica de inferência, não cobrimos no curso);
- Conhecimento a priori versus a posteriori.

Ler slides e ver vídeos da semana 4.

Fazer lista de exercícios 1-6 e 1-7.

Fazer o Quiz da semana 4 - VALE NOTA!!!