Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same

Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

FIGURE 1

cDNA sequence of wild type amFP486

ATGGCTCTTTCAAACAAGTTTATCGGAGATGACATGAAAATGACCTACCATATGGATG
GCTGTGTCAATGGGCATTACTTTACCGTCAAAGGTGAAGGCAACGGGAAGCCATACGA
AGGGACGCAGACCTCGACTTTTAAAGTCACCATGGCCAACGGTGGGCCCCTTGCATTC
TCCTTTGACATACTATCTACAGTGTTCAAGTATGGAAATCGATGCTTTACTGCGTATC
CTACCAGTATGCCCGACTATTTCAAACAAGCATTTCCTGACGGAATGTCATATGAAAG
GACTTTTACCTATGAAGATGGAGGAGTTGCTACAGCCAGTTGGGAAATAAGCCTTAAA
GGCAACTGCTTTGAGCACAAATCCACGTTTCATGGAGTGAACTTTCCTGCTGATGGAC
CTGTGATGGCGAAGATGACAACTGGTTGGGACCCATCTTTTGAGAAAATGACTGTCTG
CGATGGAATATTGAAGGGTGATGTCACCGCGTTCCTCATGCTGCAAGGAGGTGGCAAT
TACAGATGCCAATTCCACACTTCTTACAAGACAAAAAAACCGGTGACGATGCCACCAA
ACCATGCGGTGGAACATCGCATTGCGAGGACCGACCTTGACAAAGGTGGCAACAGTGT
TCAGCTGACGGAGCACGCTGTTGCACATATAACCTCTGTTGTCCCTTTC (SEQ ID
NO:01)

amino acid sequence of wild type amFP486

MALSNKFIGD DMKMTYHMDG CVNGHYFTVK GEGNGKPYEG TQTSTFKVTM ANGGPLAFSF DILSTVFKYG NRCFTAYPTS MPDYFKQAFP DGMSYERTFT YEDGGVATAS WEISLKGNCF EHKSTFHGVN FPADGPVMAK MTTGWDPSFE KMTVCDGILK GDVTAFLMLQ GGGNYRCQFH TSYKTKKPVT MPPNHAVEHR IARTDLDKGG NSVQLTEHAV AHITSVVPF (SEQ ID NO:02)

Title: Non Aggregating Fluorescent Proteins and

Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 2

cDNA sequence of zFP506

ATGGCTCAGTCAAAGCACGGTCTAACAAAAGAAATGACAATGAAATACCGTATGGAAGGGTGC
GTCGATGGACATAAATTTGTGATCACGGGAGAGGGCATTGGATATCCGTTCAAAGGGAAACAG
GCTATTAATCTGTGTGTGTGGTCGAAGGTGGACCATTGCCATTTGCCGAAGACATATTGTCAGCT
GCCTTTATGTACGGAAACAGGGTTTTCACTGAATATCCTCAAGACATAGCTGACTATTTCAAG
AACTCGTGTCCTGCTGGTTATACATGGGACAGGTCTTTTCTCTTTTGAGGATGGAGCAGTTTGC
ATATGTAATGCAGATATAACAGTGAGTGTTGAAGAAAACTGCATGTATCATGAGTCCAAATTT
TATGGAGTGAATTTTCCTGCTGATGGACCTGTGATGAAAAAGATGACAGATAACTGGGAGCCA
TCCTGCGAGAAGATCATACCAGTACCTAAGCAGGGGATATTGAAAGGGGATGTCTCCATGTAC
CTCCTTCTGAAGGATGGTGGGCGTTTACGGTGCCAATTCGACACAGTTTACAAAGCAAAGTCT
GTGCCAAGAAAGATGCCGGACTGGCACTTCATCCAGCATAAGCTCACCCGTGAAGACCGCAGC
GATGCTAAGAATCAGAAATGGCATCTGACAGAACATGCTATTGCATCCGGATCTGCATTGCCC
(SEQ ID NO:03)

amino acid sequence of zFP506

MAQSKHGLTK EMTMKYRMEG CVDGHKFVIT GEGIGYPFKG KQAINLCVVE GGPLPFAEDI LSAAFNYGNR VFTEYPQDIA DYFKNSCPAG YTWDRSFLFE DGAVCICNAD ITVSVEENCM YHESKFYGVN FPADGPVMKK MTDNWEPSCE KIIPVPKQGI LKGDVSMYLL LKDGGRLRCQ FDTVYKAKSV PRKMPDWHFI QHKLTREDRS DAKNQKWHLT EHAIASGSAL P (SEQ ID NO:04)

and party group, group, and group after the state of the state weeks weeks group, grou

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned

Docket No.: CLON-067

Figure 3

cDNA sequence of zFP538

```
gagttgagtt tetegaette agttgtatea attttgggge atcaagegat etatttteaa
catggctcat tcaaagcacg gtctaaaaga agaaatgaca atgaaatacc acatggaagg
gtgcgtcaac ggacataaat ttgtgatcac gggcgaaggc attggatatc cgttcaaagg
gaaacagact attaatctgt gtgtgatcga agggggacca ttgccatttt ccgaagacat
attgtcagct ggctttaagt acggagacag gattttcact gaatatcctc aagacatagt
agactatttc aagaactcgt gtcctgctgg atatacatgg ggcaggtctt ttctctttga
ggatggagca gtctgcatat gcaatgtaga tataacagtg agtgtcaaag aaaactgcat
ttatcataag agcatattta atggaatgaa ttttcctgct gatggacctg tgatgaaaaa
gatgacaact aactgggaag catcctgcga gaagatcatg ccagtaccta agcaggggat
actgaaaggg gatgtctcca tgtacctcct tctgaaggat ggtgggcgtt accggtgcca
gttcgacaca gtttacaaag caaagtctgt gccaagtaag atgccggagt ggcacttcat
ccagcataag ctcctccgtg aagaccgcag cgatgctaag aatcagaagt ggcagctgac
agagcatgct attgcattcc cttctgcctt ggcctgataa gaatgtagtt ccaacatttt
aatgcatgtg cttgtcaatt attctgataa aaatgtagtt gagttgaaaa cagacaagta
                                 (SEQ ID NO:05)
caaataaagc acatgtaaat cgtct
```

amino acid sequence of zFP538

```
Met Ala His Ser Lys His Gly Leu Lys Glu Glu Met Thr Met Lys
Tyr His Met Glu Gly Cys Val Asn Gly His Lys Phe Val Ile Thr
Gly Glu Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Thr Ile Asn
Leu Cys Val Ile Glu Gly Gly Pro Leu Pro Phe Ser Glu Asp Ile
Leu Ser Ala Gly Phe Lys Tyr Gly Asp Arg Ile Phe Thr Glu Tyr
Pro Gln Asp Ile Val Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly
Tyr Thr Trp Gly Ser Phe Leu Phe Glu Asp Gly Ala Val Cys Ile
Cys Asn Val Asp Ile Thr Val Ser Val Lys Glu Asn Cys Ile Tyr
His Lys Ser Ile Phe Asn Gly Met Asn Phe Pro Ala Asp Gly Pro
Val Met Lys Lys Met Thr Thr Asn Trp Glu Ala Ser Cys Glu Lys
Ile Met Pro Val Pro Lys Gln Gly Ile Leu Lys Gly Asp Val Ser
Met Tyr Leu Leu Lys Asp Gly Gly Arg Tyr Arg Cys Gln Phe
Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Ser Lys Met Pro Glu
Trp His Phe Ile Gln His Lys Leu Leu Arg Glu Asp Arg Ser Asp
Ala Lys Asn Gln Lys Trp Gln Leu Thr Glu His Ala Ile Ala Phe
Pro Ser Ala Leu Ala (SEQ ID NO:06)
```

IJ

Title: Non Aggregating Fluorescent Proteins and

Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

FIGURE 4

All mutants are derived from drFP583 (called "pink" or FP6.) by random mutagenesis

The mutants E57 and AG4 are derivative from E5

Mutant: E5 = V105A, S197T Phenotype: in E.coli seen as Green overnight, matures

to Red over 24h at 37°C (final peaks ratio Red vs. Green is 75:25); folding is faster then FP6.

Mutant: E8 = N42H Phenotype: always has two peaks Green & Red in approx. 60:40; folding is faster than E5 (about 8h at 37°C)

Mutant: E83 = N42H, V71A, I180V Phenotype: always has two almost equal peaks Green & Red; folding is the same as for E8

Mutant: E5up = V105A Phenotype: seen as Red from the beginning; folding is faster than E5 (about 12-16h) Almost no Green peak at final point of maturation

Mutant: E57 = V105A, 1161T, S197A Phenotype: at common is like E5up but folding is more faster (no more that 8-10h) Very small Green peak at final point of maturation (less that 5%)

Mutant: E5down = S197T Phenotype and folding rate are exactly the same as for E5

Mutant: AG4 = V71M, V105A, S197T Phenotype: Very bright Green, no Red at all (even at the beginning); folding is faster than E5 (no more that 16h)

Mutant: AG4 = V71M, V105A, Y120H, S197T Phenotype: at common is like AG4, but more brighter (appox. twice) one

1	_																16
1	ATG CGC	TCC	TCC	AAG	AAC	GTC	ATC	AAG	GAG	TTC	ATG	CGC	TTC	AAG	GTG		48
17	Arg Met	Glu	Gly	Th∽	t/all	7 cn	Glv	Uic	Cl.	Dhe	Cl.	Tlo	C1.,	Clv	C1.,		32
49	_		_				_							-			32 96
	000 1110	0210	000	7100	010	1210	000	C. 1.C							OAO		70
	-1 -1		_	_	_			•				r_E8					
33	4																48
97	GGC GAG	GGC	CGC	CCC	TAC	GAG	GGC	CAC	AAC	ACC	GTG	AAG	CTG	AAG	GTG		144
49	Thr Lys	Glv	Glv	Pro	Leu	Pro	Phe	Ala	Trp	Asp	Tle	Leu	Ser	Pro	Gln		64
145	-	_	-						-	_							192
						Wat	/ አጥረነ) fo	~ A.C	1 22	- 7 A CT	15/3	1 - / 0/	701	£	E02	
65	Phe Gln	Tur	Glv	Ser	Lve							45/A: Ala				603	80
193																	240
								0-0		4	000	-	00		-		2.0
81	Asp Tyr	Lys	Lys	Leu	Ser	Phe	Pro	Glu	Gly	Phe	Lys	Trp	Glu	Arg	Val		96
241	GAC TAC	AAG	AAG	CTG	TCC	TTC	CCC	GAG	GGC	TTC	AAG	TGG	GAG	CGC	GTG		288
		Ala(GCG)-for E5, E57, AG4 and AG45												G45			
97	Met Asn	Phe	Glu	Asp	Gly	Gly	Val										112
289																	336
							Wie	(CAC	- fo	r AG	15						
113	Leu Gln	Asp	Glv	Cvs	Phe	Tle						Tle	Glv	Val	Asn		128
337																	384
129	Phe Pro	Ser	Asp	Gly	Pro	Val	Met	Gln	Lys	Lys	Thr	Met	Gly	Trp	Glu		144
385	TTC CCC	TCC	GAC	GGC	CCC	GTG	ATG	CAG	AAG	AAG	ACC	ATG	GGC	TGG	GAG		432
		1	~ 1	_	_	_	_	_	_	~ 3	1	_		~-	~ 1		
145 433																	160
433	GCC TCC	ACC	GAG	CGC	CIG	IAC	CCC	CGC	GAC	GGC	GIG	CIG	AAG	GGC	GAG		480
	Thr (ACC																
161																	176
481	ATC CAC	AAG	GCC	CTG	AAG	CTG	AAG	GAC	GGC	GGC	CAC	TAC	CTG	GTG	GAG		528
			Val	(GTC)	for	r E83	3										
177	4																192
529	TTC AAG	TCC	ATC	TAC	ATG	GCC	AAG	AAG	CCC	GTG	CAG	CTG	CCC	GGC	TAC		576
				Thr	(ACC)	for	r E5,	AG	and	d AG	15/A	La (GC	CC) 1	for E	E57		
193	Tyr Tyr	Val	Asp	Ser	Lys	Leu	Asp	Ile	Thr	Ser	His	Asn	Glu	Asp	Tyr		208
577	TAC TAC	GTG	GAC	<u>TCC</u>	AAG	CTG	GAC	ATC	ACC	TCC	CAC	AAC	GAG	GAC	TAC		624
				_		_				_							
	r Ile Val																
	C ATC GTG			TAC	GAG	CGC	ACC	GAG	GGC	CGC	CAC	CAC	CTG	TTC	CTG	TAA	678
(SEQ)	D NO:07	∝ 8)															

Title: Non Aggregating Fluorescent Proteins and

Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

FIGURE 5

Amino Acid and Nucleotide Sequence for asFP600

Amino acid

MASFLKKTMP FKTTIEGTVN GHYFKCTGKG EGNPFEGTQE MKIEVIEGGP LPFAFHILST SCMYGSKTFI KYVSGIPDYF KQSFPEGFTW ERTTTYEDGG FLTAHQDTSL DGDCLVYKVK ILGNNFPADG PVMQNKAGRW EPATEIVYEV DGVLRGQSLM ALKCPGGRHL TCHLHTTYRS KKPAAALKMP GFHFEDHRIE IMEEVEKGKC YKQYEAAVGR YCDAAPSKLG HN (SEQ ID NO:10)

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned

Docket No.: CLON-067

Figure 6

Sequence of humanized 6/9 hybrid gene and 6/9-Q3 mutant for 6/9-2G and 6/9-Q3CAG(O) ATG AGC TGC AGC AAG AAC GTG ATC AAG GAG TTC ATG CGG TTC AAG GTG 1 48 1 М S C S K N v Ι K Ε F R K 16 CGG ATG GAG GGC ACC GTG AAC GGC CAC GAG TTC GAG ATC AAG GGC GAG 49 96 17 G т v N G Н Е F Е I ĸ G 32 GGC GAG GGC CGG CCC TAC GAG GGC CAC TGC AGC GTG AAG CTC ATG GTG 97 144 33 G R Ρ Y Ε G Н С v K М 48 145 ACC AAG GGC GGC CCC CTC CCC TTC GCC TTC GAC ATC CTC AGC CCC CAG 192 49 G G Р L Р F Α F D Ι L S 64 193 TTC CAG TAC GGC AGC AAG GTG TAC GTG AAG CAC CCC GCC GAC ATC CCC 240 65 Y G s K V Y v K Η P Α D Τ 80 ATG(M) for 6/9-Q3GAC TAC AAG AAG CTC AGC TTC CCC GAG GGC TTC AAG TGG GAG CGG GTG 241 288 81 Y K K L S F Ρ Ε G F K W R V 96 289 ATG AAC TTC GAG GAC GGC GGC GTG GTG ACC GTG AGC CAG GAC AGC 336 97 N D G G V v Т V S Q 112 CTC AAG GAC GGC TGC TTC ATC TAC GAG GTG AAG TTC ATC GGC GTG AAC 337 384 113 D G С F I Y Ε v K F Ι G V 128 385 TTC CCC AGC GAC GGC CCC GTG ATG CAG CGG CGG ACC CGG GGC TGG GAG 432 129 Р S D G Ρ V Q R R Т R G Ε 144 433 GCC AGC AGC GAG CGG CTC TAC CCC CGG GAC GGC GTG CTC AAG GGC GAC 480 145 S s Ε R L Y Ρ R D G L D 160 481 ATC CAC ATG GCC CTC CGG CTC GAG GGC GGC GGC CAC TAC CTC GTG GAG 528 161 Ι Н М Α L R L Ε G G Н Y L. E 176 TTC AAG AGC ATC TAC ATG GCC AAG AAG CCC GTG CAG CTC CCC GGC TAC 529 576 177 Т Y М Α K K Ρ v L Y 192 577 TAC TAC GTG GAC AGC AAG CTC GAC ATC ACC AGC CAC AAC GAG GAC TAC 624 193 Y D S ĸ L D Ι Т S Н Ν 208 Υ TCC(S) for 6/9-2G and 6/9-03ACC ATC GTG GAG CAG TAC GAG CGG ACC GAG GGC CGG CAC CAC CTC TTC 625 672 209 Е Q Y Е R T Ε G R Η Η 224 673 CTC TGA 678 225 L 226

(SEQ ID NO:11 & 12)

Title: Non Aggregating Fluorescent Proteins and

Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 7

Nucleic acid sequence FP6 (E57)-NA

Figure 8

DNA sequence (ORF) of E5-NA

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 9

Non-aggregating mutant FP3-NA was generated from zFP506-N65M (non-humanized version). In comparison with zFP506-N65M, FP3-NA contains two additional amino acid substitutions - K5E and K10E. Also, one accidental nucleotide substitution was introduced due to PCR mistake (double underline).

Cloning into pQE30 was done using BamHI and HindIII sites:

	TCC	GCT	CAG	TCA	GAG	CAC	GGT	CTA	ACA	GAA	GAA	ATG	ACA	ATG	AAA
	nHI	A	Q	S	E	H	G	L	T	E	E	M	T	M	K
TAC	CGT	ATG	GAA	GGG	TGC	GTC	GAT	GGA	CAT	AAA	TTT	GTG	ATC	ACG	GGA
Y	R	M	E	G	C	V	D	G	H	K	F	V	I	T	G
GAG	GGC	ATT	GGA	TAT	CCG	TTC	AAA	GGG	AAA	CAG	GCT	ATT	AAT	CTG	TGT
E	G	I	G	Y	P	F	K	G	K	Q	A	I	N	L	C
GTG	GTC	GAA	GGT	GGA	CCA	TTG	CCA	TTT	GCC	GAA	GAC	ATA	TTG	TCA	GCT
V	V	E	G	G	P	L	P	F	A	E	D	I	L	S	A
GCC	TTT	ATG	TAC	GGA	AAC	AGG	GTT	TTC	ACT	GAA	TAT	CCT	CAA	GAC	ATA
A	F	M	Y	G	N	R	V	F	T	E	Y	P	Q	D	I
GTT	GAC	TAT	TTC	AAG	AAC	TCG	TGT	CCT	GCT	GGA	TAT	ACA	TGG	GAC	AGG
V	D	Y	F	K	N	S	C	P	A	G	Y	T	W	D	R
TCT	TTT	CTC	TTT	GAG	GAT	GGA	GCA	GTT	TGC	ATA	TGT	AAT	GCA	GAT	ATA
S	F	L	F	E	D	G	A	V	C	I	C	N	A	D	I
ACA	GTG	AGT	GTT	GAA	GAA	AAC	TGC	ATG	TAT	CAT	GAG	TCC	AAA	TT <u>C</u>	TAT
T	V	S	V	E	E	N	C	M	Y	H	E	S	K	F	Y
GGA	GTG	AAT	TTT	CCT	GCT	GAT	GGA	CCT	GTG	ATG	AAA	AAG	ATG	ACA	GAT
G	V	N	F	P	A	D	G	P	V	M	K	K	M	T	D
AAC	TGG	GAG	CCA	TCC	TGC	GAG	AAG	ATC	ATA	CCA	GTA	CCT	AAG	CAG	GGG
N	W	E	P	S	C	E	K	I	I	P	V	P	K	Q	G
ATA	TTG	AAA	GGG	GAT	GTC	TCC	ATG	TAC	CTC	CTT	CTG	AAG	GAT	GGT	GGG
I	L	K	G	D	V	S	M	Y	L	L	L	K	D	G	G
CGT	TTA	CGG	TGC	CAA	TTC	GAC	ACA	GTT	TAC	AAA	GCA	AAG	TCT	GTG	CCA
R	L	R	C	Q	F	D	T	V	Y	K	A	K	S	V	P
AGA	AAG	ATG	CCG	GAC	TGG	CAC	TTC	ATC	CAG	CAT	AAG	CTC	ACC	CGT	GAA
R	K	M	P	D	W	H	F	I	Q	H	K	L	T	R	E
GAC	CGC	AGC	GAT	GCT	AAG	AAT	CAG	AAA	TGG	CAT	CTG	ACA	GAA	CAT	GCT
D	R	S	D	A	K	N	Q	K	W	H	L	T	E	H	A
ATT	GCA A	TCC S	GGA G	TCT S	GCA A	TTG L	CCC P		AAGC Hind		(5	EQ I	D NC	:15	& 16)

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 10

Non-aggregating mutant FP4-NA was generated from zFP538-M128V (humanized version). In comparison with zFP538-M128V, FP4-NA contains two additional amino acid substitutions - K5E and K9T. Also, two accidental nucleotide substitutions were introduced due to PCR mistakes (double underline).

Cloning into pQE30 was done using BamHI and HindIII sites:

GGA TCC GCC CAC AGC GAG CAC GGC CTG ACC GAG GAG ATG ACC ATG AAG BamHI Α н s E н G Т Ε Ε K TAC CAC ATG GAG GGC TGC GTG AAC GGC CAC AAG TTC GTG ATC ACC GGC М E G C N G Н K GAG GGC ATC GGC TAC CCC TTC AAG GGC AAG CAG ACC ATC AAC CTG TGC G Y Р K G ĸ Т C GTG ATC GAG GGC GGC CCC CTG CCC TTC AGC GAG GAC ATC CTG AGC GCC Е G G Р P Ε Α GGC TTC AAG TAC GGC GAC CGG ATC TTC ACC GAG TAC CCC CAG GAC ATC K Y G D R Ι F Т Ε Ι GTG GAC TAC TTC AAG AAC AGC TGC CCC GCC GGC TAC ACC TGG GGC CGG D Y F K N S C P G R AGC TTC CTG TTC GAG GAC GGC GCC GTG TGC ATC TGT AAC GTG GAC ATC F Ε D G Α С v Ι C N ACC GTG AGC GTG AAG GAG AAC TGC ATC TAC CAC AAG AGC ATC TTC AAC Т ν s V K Ε N C Ι Y Н N GGC GTG AAC TTC CCC GCC GAC GGC CCC GTG ATG AAG AAG ATG ACC ACC G V N F Р Α D G P ν М K Т AAC TGG GAG GCC AGC TGC GAG AAG ATC ATG CCC GTG CC $\underline{\underline{\mathtt{T}}}$ AAG CAG GGC N W Ε Α s C E K Ι Μ Р G ATC CTG AAG GGC GAC GTG AGC ATG TAC CTG CTG AAG GAC GGC GGC I L K G D v S М Y L L K G CGG TAC CGG TGC CAG TTC GAC ACC GTG TAC AAG GCC AAG AGC GTG CCC Y R С Q F D Т Y K Α K S AGC AAG ATG CCC GAG TGG CAC TTC ATC CAG CAC AAG CTG CTG CGG GAG S ĸ Μ P E W Н F Ι O Н K GAC CGG AGC GAC GCC AAG AAC CAG AAG TGG CAG CTG ACC GAG CAC GCC R S D Α K N Q K W 0 Τ. т Н Α ATC GCC TTC CCC AGC GCC CTG GCC TGA AAGCTT Ι Α F Р s Α L Α HindIII (SEQ ID NOS: 17 & 18)

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 11

		М	A	L	s	N	E	F	I	G	D	D	M	K	M
676		ATG	GCC	CTG	TCC	AAC	GAG	TTC	ATC	GGC	GAC	GAC	ATG	AAG	ATG
		TAC	CGG	GAC	AGG	TTG	TTC	AAG	TAG	CCG	CTG	CTG	TAC	TTC	TAC
	T	Y	H	M	D	G	С	V	N	G	H	Y	F	T	v
721	ACC	TAC	CAC	ATG	GAC	GGC	TGC	GTG	AAC	GGC	CAC	TAC	TTC	ACC	GTG
	TGG	ATG	GTG	TAC	CTG	CCG	ACG	CAC	TTG	CCG	GTG	ATG	AAG	TGG	CAC
	K	G	E	G	s	G	K	P	Y	E	G	T	Q	T	s
766	AAG	GGC	GAG	GGC	AGC	GGC	AAG	CCC	TAC	GAG	GGC	ACC	CAG	ACC	TCC
	TTC	CCG	CTC	CCG	TCG	CCG	TTC	GGG	ATG	CTC	CCG	TGG	GTC	TGG	AGG
	T	F	K	v	T	M	Α	N	G	G	P	L	Α	F	S
811	ACC	TTC	AAG	GTG	ACC	ATG	GCC	AAC	GGC	GGC	CCC	CTG	GCC	TTC	TCC
	TGG	AAG	TTC	CAC	TGG	TAC	CGG	TTG	CCG	CCG	GGG	GAC	CGG	AAG	AGG
	F	D	I	L	s	T	v	F	M	Y	G	N	R	C	F
856	TTC	GAC	ATC	CTG	TCC	ACC	GTG	TTC	ATG	TAC	GGC	AAC	CGC	TGC	TTC
	AAG	CTG	TAG	GAC	AGG	TGG	CAC	AAG	TAC	ATG	CCG	TTG	GCG	ACG	AAG
	T	Α	Y	P	T	s	M	P	D	Y	F	K	Q	A	F
901	ACC	GCC	TAC	CCC	ACC	AGC	ATG	CCC	GAC	TAC	TTC	AAG	CAG	GCC	TTC
	TGG	CGG	ATG	GGG	TGG	TCG	TAC	GGG	CTG	ATG	AAG	TTC	GTC	CGG	AAG
	P	D	G	M	s	Y	E	R	T	F	T	Y	E	D	G
946	CCC	GAC	GGC	ATG	TCC	TAC	GAG	AGA	ACC	TTC	ACC	TAC	GAG	GAC	GGC
	GGG	CTG	CCG	TAC	AGG	ATG	CTC	TCT	TGG	AAG	TGG	ATG	CTC	CTG	CCG
	G	V	A	T	Α	s	W	E	I	s	L	K	G	N	C
991	GGC	GTG	GCC	ACC	GCC	AGC	TGG	GAG	ATC	AGC	CTG	AAG	GGC	AAC	TGC
	CCG	CAC	CGG	TGG	CGG	TCG	ACC	CTC	TAG	TCG	GAC	TTC	CCG	TTG	ACG
	F	\mathbf{E}	H	K	s	T	F	H	G	v	N	F	P	A	D
1036	TTC	GAG	CAC	AAG	TCC	ACC	TTC	CAC	GGC	GTG	AAC	TTC	CCC	GCC	GAC
	AAG	CTC	GTG	TTC	AGG	TGG	AAG	GTG	CCG	CAC	TTG	AAG	GGG	CGG	CTG
	G	P	V	M	A	K	K	T	\mathbf{T}	G	W	D	P	s	F
1081	GGC	CCC	GTG	ATG	GCC	AAG	AAG	ACC	ACC	GGC	TGG	GAC	CCC	TCC	TTC
	CCG	GGG	CAC	TAC	CGG	TTC	TTC	TGG	TGG	CCG	ACC	CTG	GGG	AGG	AAG
	E	K	M	T	V	C	D	G	I	L	K	G	D	V	T
1126	GAG	AAG	ATG	ACC	GTG	TGC	GAC	GGC	ATC	TTG	AAG	GGC	GAC	GTG	ACC
	CTC	TTC	TAC	TGG	CAC	ACG	CTG	CCG	TAG	AAC	TTC	CCG	CTG	CAC	TGG
	A	F	L	M	L	Q	G	G	G	N	Y	R	C	Q	F
1171	GCC	TTC	CTG	ATG	CTG	CAG	GGC	GGC	GGC	AAC	TAC	AGA	TGC	CAG	TTC
	CGG	AAG	GAC	TAC	GAC	GTC	CCG	CCG	CCG	TTG	ATG	TCT	ACG	GTC	AAG
	H	T	s	Y	K	${f T}$	K	K	P	V	T	M	P	P	N
1216	CAC	ACC	TCC	TAC	AAG	ACC	AAG	AAG	CCC	GTG	ACC	ATG	CCC	CCC	AAC
	GTG	TGG	AGG	ATG	TTC	TGG	TTC	TTC	GGG	CAC	TGG	TAC	GGG	GGG	TTG
	H	V	V	\mathbf{E}	H	R	I	A	R	T	D	L	D	K	G
1261	CAC	GTG	GTG	GAG	CAC	CGC	ATC	GCC	AGA	ACC	GAC	CTG	GAC	AAG	GGC
	GTG	CAC	CAC	CTC	GTG	GCG	TAG	CGG	TCT	TGG	CTG	GAC	CTG	TTC	CCG
	G	N	s	V	Q	L	T	E	H	Α	V	A	Н	I	T
1306	GGC	AAC	AGC	GTG	CAG	CTG	ACC	GAG	CAC	GCC	GTG	GCC	CAC	ATC	ACC
	CCG	TTG	TCG	CAC	GTC	GAC	TGG	CTC	GTG	CGG	CAC	CGG	GTG	TAG	TGG
	s	V	V	P	F	*									
1351	TCC	GTG	GTG	CCC	TTC	TGA									
	AGG	CAC	CAC	GGG	AAG	ACT		(SEÇ	OI (NO: 1	.9 &	20)			

N

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 12

Non-aggregating mutant FP7-NA was generated from M35-5 (FP7a). In comparison with M35-5, FP7-NA contains two additional substitutions - K6T and K7E. Nucleotide substitutions in the codon for Leu-4 were introduced to optimize codon usage (double underline).

Cloning into pQE30 was done using BamHI and HindIII sites:

GGA TCC GCC TCC CTG CTG ACC GAG ACC ATG CCC TTC AGG ACC ACC ATC BamHI E Т М P F R Ι GAG GGC ACC GTG AAC GGC CAC TAC TTC AAG TGC ACC GGC AAG GGC GAG G Н Y F K C GGC AAC CCC CTC GAG GGC ACC CAG GAG ATG AAG ATC GAG GTG ATC GAG Е G Т Q E М ĸ Ι E GGC GGC CCC CTG CCC TTC GCC TTC CAC ATC CTG TCC ACC TCC TGC ATG Α Η Т L S TAC GGC TCC AAG GCC TTC ATC AAG TAC GTG TCC GGC ATC CCC GAC TAC K Y Ι v S G Y TTC AAG CAG TCC CTC CCC GAG GGC TTC ACC TGG GAG CGC ACC ACC G F Т W E R Т TAC GAG GAC GGC GGC TTC CTG ACC GCC CAC GAC ACC TCC CTG GAC \mathbf{T} Α Н Q D Т D GGC GAC TGC CTG GTG TAC AAG GTG AAG ATC CTG GGC AAC AAC TTC CCC K G P GCC GAC GGC CCC GTG ATG CAG AAC AAG GCC GGC CGC TGG GAG CCC TCC М N s ACC GAG ATC GTG TAC GAG GTG GAC GGC GTG CTG CGC GGC CAG TCC CTG Y Ε D G Q \mathbf{L} ATG GCC CTG GAG TGC CCC GGC GGT CGC CAC CTG ACC TGC CAC CTG CAC C P G G R Н ACC ACC TAC CGC TCC AAG AAG CCC GCC TCC GCC CTG AAG ATG CCC GGC R K K Ρ Α s TTC CAC TTC GAG GAC CAC CGC ATC GAG ATC CTG GAG GAG GTG GAG AAG Н R Ι Е I K GGC AAG TGC TAC AAG CAG TAC GAG GCC GCC GTG GGC CGC TAC TGC GAC K C Y K Q Y Е Α Α G D GCC GCC CCC TCC AAG CTG GGC CAC AAC TGAAGCTT K L G Н N * HindIII (SEQ ID NO:21 & 22) Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 13

Dimeric mutant AsRed M35-5D (in comparison to M355NA it carries one amino acid substitution L166S according to GFP numbering; L159S according to self-numbering)

ATG GCC TCC CTG CTG ACC GAG ACC ATG CCC TTC AGG ACC ACC ATC Α s L L Т Е Μ P F R \mathbf{T} GAG GGC ACC GTG AAC GGC CAC TAC TTC AAG TGC ACC GGC AAG GGC GAG G Т V N G Н Y F K C GGC AAC CCC CTC GAG GGC ACC CAG GAG ATG AAG ATC GAG GTG ATC GAG Р Е Т 0 Ε М K I GGC GGC CCC CTG CCC TTC GCC TTC CAC ATC CTG TCC ACC TCC TGC ATG G ₽ L Р F Α F Н Ι TAC GGC TCC AAG GCC TTC ATC AAG TAC GTG TCC GGC ATC CCC GAC TAC G s K Α F I K Y ν S TTC AAG CAG TCC CTC CCC GAG GGC TTC ACC TGG GAG CGC ACC ACC K Q s L Р Ε G Т R TAC GAG GAC GGC GGC TTC CTG ACC GCC CAC CAG GAC ACC TCC CTG GAC Y Е D G G F L т Α Н Q D Т GGC GAC TGC CTG GTG TAC AAG GTG AAG ATC CTG GGC AAC AAC TTC CCC D C L V Y K v K Ι G GCC GAC GGC CCC GTG ATG CAG AAC AAG GCC GGC CGC TGG GAG CCC TCC D G Р V М Q N K Α R ACC GAG ATC GTG TAC GAG GTG GAC GGC GTG CTG CGC GGC CAG TCC AGC Т Ι Y E v D G V L ATG GCC CTG GAG TGC CCC GGC GGT CGC CAC CTG ACC TGC CAC CTG CAC Α \mathbf{L} Ε C P G G R Н L Т ACC ACC TAC CGC TCC AAG AAG CCC GCC TCC GCC CTG AAG ATG CCC GGC Т Y R s Κ Κ Ρ Α s Α L K TTC CAC TTC GAG GAC CAC CGC ATC GAG ATC CTG GAG GAG GTG GAG AAG Η F E D Н R Ι Ε I L E Е GGC AAG TGC TAC AAG CAG TAC GAG GCC GCC GTG GGC CGC TAC TGC GAC C Y K Q Y Ε Α Α V G R GCC GCC CCC TCC AAG CTG GGC CAC AAC TGA s K L G Н N (SEQ ID NO:23 & 24)

the first control of the control of

ļek

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same

Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 14

MRSSKNVIKEFMRFKVRMEGTVNGHE drFP583
MSCSKNVIKEFMRFQVRMEGTVNGHE ds/drFP616
MAQSKHGLTKEMTMKYRMEGCVDGHK zFP506
MAHSKHGLKEEMTMKYHMEGCVNGHK zFP538
MALSNKFIGDDMKMTYHMDGCVNGHY amFP486
MASFLKKTMPFKTTIEGTVNGHY asFP595

(SEQ ID NOS:25-30)

and the first trade after the first trade and the first trade and the first trade after the first trade after

Title: Non Aggregating Fluorescent Proteins and Methods for Using the Same Inventor: Sergey Lukyanov Application No.: Unassigned Docket No.: CLON-067

Figure 15

Figure 16

all gray stort spirt, all spirts spire it is in the store it is in the perg, and, root, pull, pert, erry, if if cent work it is it is insist. If the black there