1.1.4 単体的圏

1.1.2 節と 1.1.3 節では、高次圏論への基礎として位相的圏と単体的集合という 2 つの方法を見た. これらが等価であることを示すために、3 つ目の基礎づけとして単体的圏を考える.

定義 1.1.4.1 (単体的圏). Set_{Δ} で豊穣された圏を単体的圏 $(simplicial\ category)$ という. 単体的圏と単体的関手のなす圏を Cat_{Δ} と表す.

注意 1.1.4.2. 単体的圏 $\mathfrak C$ に対して、構成 $[n]\mapsto \mathfrak C_n$ は関手 $\Delta^{\mathrm{op}}\to \mathfrak C$ at を定める。構成 $\mathfrak C\mapsto ([n]\mapsto \mathfrak C_n)$ は関手 $\mathfrak C$ at $_\Delta\to \mathrm{Fun}(\Delta^{\mathrm{op}},\mathfrak C$ at $_\Delta$ を定める。このとき、次のプルバックの図式を得る。

$$\begin{array}{ccc} \operatorname{Cat}_{\Delta} & \xrightarrow{\operatorname{C} \mapsto (n \mapsto \operatorname{C}_n)} & \operatorname{Fun}(\Delta^{\operatorname{op}}, \operatorname{Cat}) \\ \downarrow & & \downarrow \operatorname{Ob} \\ \operatorname{Set} & \longrightarrow & \operatorname{Fun}(\Delta^{\operatorname{op}}, \operatorname{Set}) \end{array}$$

ここで、下の水平線は集合 S に対して S に値をとる定値関手 $\Delta^{\mathrm{op}} \to \mathrm{Set}$ を与える対応である。 つまり、任意の単体的圏は対象 $[n] \mapsto \mathrm{Ob}(\mathcal{C}_n)$ のなす台単体的集合が定値であるような \mathcal{C} at における単体的対象とみなすことができる。 特に、関手 $\mathrm{Cat}_{\Lambda} \to \mathrm{Fun}(\Delta^{\mathrm{op}},\mathcal{C}\mathrm{at})$ は忠実充満である。

位相的圏と同様に、単体的圏も高次圏のモデルとみることができる.

注意 ${\bf 1.1.4.3.}$ ${\mathfrak C}$ を単体的圏とする. 単体的圏の任意の対象 X,Y に対して、単体的集合 ${\rm Map}_{\mathfrak C}(X,Y)$ が ∞ 圏のとき、 ${\mathfrak C}$ は $(\infty,2)$ 圏とみなすことができる. この本では、ファイブラント単体的圏、つまり 単体的集合 ${\rm Map}_{\mathfrak C}(X,Y)$ が ${\rm Kan}$ 複体であるような単体的圏のみを考える.

 Set_{Δ} と CG の間には幾何学的実現 $|-|: Set_{\Delta} \to CG$ と特異単体関手 $Sing: CG \to Set_{\Delta}$ が存在し、これらはともに有限直積と交換する。これらを用いて、単体的圏から位相的圏、位相的圏から単体的圏をそれぞれ構成することができる。単体的圏 C に対して、位相的圏 |C| を次のように定義する。

- (€) の対象は (€) の対象と同じ.
- $|\mathcal{C}|$ の任意の対象 X,Y に対して, $\mathrm{Map}_{|\mathcal{C}|}(X,Y) := |\mathrm{Map}_{\mathcal{C}}(X,Y)|$.
- \bullet $|\mathcal{C}|$ における射の合成は \mathcal{C} における射の合成に幾何学的実現を適応させて得られる対応.

同様に、位相的圏の射空間に特異単体を作用させることで単体的圏を得る。 位相的圏 $\mathfrak D$ に対して、単体的圏 $\operatorname{Sing} \mathfrak D$ を次のように定義する.

- SingD の対象は D と同じ.
- Sing $\mathbb D$ の任意の対象 X,Y に対して $\operatorname{Map}_{\operatorname{Sing} \mathbb D}(X,Y) := \operatorname{Sing}(\operatorname{Map}_{\mathbb D}(X,Y)).$
- \bullet $\operatorname{Sing} \mathfrak{D}$ における射の合成は \mathfrak{D} における射の合成に特異単体関手を適応させて得られる対応.

構成 $\mathcal{C}\mapsto |\mathcal{C}|$ と $\mathcal{D}\mapsto \mathrm{Sing}\mathcal{D}$ はそれぞれ関手 $|-|:\mathcal{C}\mathrm{at}_\Delta\to\mathcal{C}\mathrm{at}_{\mathsf{Top}}$ と $\mathrm{Sing}:\mathcal{C}\mathrm{at}_{\mathsf{Top}}\to\mathcal{C}\mathrm{at}_\Delta$ を

定める. これらの関手は $\operatorname{Cat}_{\Delta}$ と $\operatorname{Cat}_{\operatorname{Top}}$ の間の随伴を定める.

$$|-|: \operatorname{Cat}_{\Delta} \rightleftarrows \operatorname{Cat}_{\mathfrak{Iop}} : \operatorname{Sing}$$

1.1.3 節で見たように、 \mathfrak{R} は $\mathfrak{C}9$ にすべての弱ホモトピー同値を添加した圏とみなせた。 $\mathfrak{S}et_{\Delta}$ と $\mathfrak{C}9$ との等価性 *1 から、 \mathfrak{R} は $\mathfrak{S}et_{\Delta}$ にすべての単体的集合の弱ホモトピー同値を添加した圏ともみなせる。よって、 \mathfrak{R} は単体的圏のホモトピー圏ともみなせる。

 $\mathfrak{C}\mathfrak{G}$ と $\mathfrak{S}\mathrm{et}_\Delta$ のホモトピー圏はともに \mathfrak{H} とみなせるので、任意の単体的圏 \mathfrak{C} と位相的圏 \mathfrak{D} に対して、次の自然な同型が存在する.

$$h\mathcal{C} \cong h|\mathcal{C}|, \quad h\mathcal{D} \cong hSing\mathcal{D}$$

よって、位相的圏のホモトピー圏と単体的圏のホモトピー圏は同一視できる.

定義 1.1.4.4 (単体的圏の同値). $F: \mathcal{C} \to \mathcal{D}$ を単体的関手とする. 誘導される関手 $hF: h\mathcal{C} \to h\mathcal{D}$ が \mathfrak{H} 豊穣圏として圏同値のとき, F を同値 (equivalence) という.

単体的圏の関手 $\mathfrak{C} \to \mathfrak{C}'$ が同値であることと、位相的圏の関手 $|\mathfrak{C}| \to |\mathfrak{C}'|$ が同値であることは同値である。 幾何学的実現と特異単体関手による $\mathfrak{C}\mathrm{at}_{\Delta}$ と $\mathfrak{C}\mathrm{at}_{\mathrm{Top}}$ の随伴の (\mathfrak{K}) 単位を考えると、

$$\mathcal{C} \to \operatorname{Sing}|\mathcal{C}|, \quad |\operatorname{Sing}\mathcal{D}| \to \mathcal{D}$$

はそれぞれのホモトピー圏において同型を定める。つまり、単体的圏 $\mathfrak C$ を位相的圏 $|\mathfrak C|$ で置き換えても、位相的圏 $\mathfrak D$ を単体的圏 $\mathfrak Sing\mathfrak D$ で置き換えてもよい。この意味で、位相的圏の理論と単体的圏の理論は (高次圏として) 等価である。 $\mathfrak C$ 2

 $^{^{*1}}$ Set $_{\Delta}$ 上の Kan-Quillen モデル構造と ${\tt CS}$ 上の Quillen モデル構造が Quillen 同値であるという意味である.

 $^{^{*2}}$ Cat_{Δ} 上の Bergner モデル構造と $\mathrm{Cat}_{\mathrm{Top}}$ 上の Bergner モデル構造が $\mathrm{Quillen}$ 同値であるという意味である.