Nome: ______ R.A.:: _____

Trabalhe com 4 dígitos na mantissa em todas as questões e use o arredondamento. Justifique todas as suas respostas. Calculadora em radianos!

1. Considere a tabela de pontos: $\begin{vmatrix} x & 1 \\ f(x) & 1.68 \end{vmatrix}$

X	1	1.5	2	2.5	3
f(x)	1.68	1.99	1.82	1.19	0.28

- (a) (valor:1.5) Calcule uma aproximação para x tal que f(x)=1.7 usando interpolação quadrática.
- (b)(valor:1.0) Estime o erro cometido em (a).

2. Considere os dados:

	X	1	2	3	4
•	f(x)	0.88	1.32	1.4	1.34

- (a)(valor:2.0) Ajuste os dados abaixo a uma função do tipo $\varphi(x) = \frac{ax}{x^2+b}$ usando o método dos quadrados mínimos.
- (b)(valor:0.5) Calcule o erro do seu ajuste.
- 3. (a)(valor:1.5) Calcule uma aproximação para o valor de $I = \int_0^1 [sen(x) + \frac{x^4}{4}] dx$ usando a regra de Simpson com h < 0.3.
 - (b)(valor:1.0) Apresente um limitante superior para o valor do erro da integral calculada em (a).
- 4. (valor:2.5) Considere o circuito elétrico visualizado na Figura 1. Suponha que o interruptor do circuito se encontre fechado no instante t=0. Então $I_1(0)=0$ e $I_2(0)=0$. As correntes $I_1(t)$ e $I_2(t)$ nos ciclos esquerdo e direito, respectivamente, do circuito mostrado na Figura 1 são soluções do sistema de equações

$$I'_1 = -3I_1 + 2I_2 + 2, 5, I_1(0) = 0,$$

 $I'_2 = 0, 8I'_1 - 0, 1I_2 = -2, 4I_1 + 1, 5I_2 + 2, I_2(0) = 0.$

Aplique o método de Euler Aperfeiçoado com h = 0, 1 para determinar aproximações para $I_1(0,2)$ e para $I_2(0,2)$.

Figura 1: