29.3-5 Solve the following linear program using SIMPLEX:

maximize $18x_1 + 12.5x_2$ subject to $x_1 + x_2 \leq 20$ ≤ 12 x_1 $x_2 \leq 16$ \geq 0. X_1, X_2

$$73 = 8 + 74 - 72$$
 Set $71 = 12$ $74 = 0$
 $73 = 8 + 74 - 72$ Set $71 = 12$ $74 = 0$
 $71 = 8$ $73 = 0$
 $71 = 8$ $73 = 0$
 $71 = 8$ $73 = 0$

9) Z=216+12.5xz-18/4

29.3-6

Solve the following linear program using SIMPLEX:

maximize
$$5x_1 - 3x_2$$

subject to

$$x_1 - x_2 \le 1$$

 $2x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$.

2=5

$$C = 5 \frac{1}{3} \frac{3}{2}$$

$$C = 5 \frac{1}{3} \frac{3}{2}$$

$$C = \frac{5}{1} \frac{1}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2}$$

$$C = \frac{5}{1} \frac{1}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2}$$

$$C = \frac{5}{1} \frac{1}{3} \frac{3}{2} \frac{3}{2}$$

6 7=5-847-5+3

$$Z = 5 - 842 - 543$$
 $N = 1 - 72 - 73 + 0$
 $A = 1 + 2 + 243$
 $A = 1 + 2 + 243$
 $A = 1 + 2 + 2 + 2 + 3$
 $A = 1 + 2 + 2 + 3$
 $A = 1 + 2 + 2 + 3$
 $A = 1 + 2 + 3 + 4 = 0$

Professor Williams comes up with a scheme that allows the closest-pair algorithm to check only 5 points following each point in array Y'. The idea is always to place points on line l into set P_L . Then, there cannot be pairs of coincident points on line l with one point in P_L and one in P_R . Thus, at most 6 points can reside in

the $\delta \times 2\delta$ rectangle. What is the flaw in the professor's scheme?

the shortest S-Min (SL, SR)

In this case mast & points can reside in

the Jx 2S. For each P. Min 7 Points

need to freeze for shortest distance.

Williams drange to & points need to check. The Max
if 6 points in 8x28.

set one print on the line for both region. Then total pumps is 6.

Inthis buse there are & points in that rectongle and refund earlier on the Un I, but now the Une I makes count 6 in case of Comparison because min distance formula gives the least in horizontal vary, not in the vertical way. So one point has to be compared with 5 othe Points.

Loes exactly who closest pair finding approach with 1 points & suppose