

Grundlagen der dynamischen Wirtschaftlichkeitsrechnungen

von

Matthias Reichenbach

Matrikelnummer: 298299

E-Mail: ma392rei@htwg-konstanz.de

und

Önder Tütünci

Matrikelnummer: 298632

E-Mail: oe391tue@htwg-konstanz.de

Der Bericht ist auch online verfügbar unter https://github.com/MatthReich/bwl-report/.

Inhaltsverzeichnis

1	Einf	ührung	1
2	Kap2.12.22.32.4	Definition Formel Interpretation Beispiel	3 4
3	3.1	Definition Unterschied zwischen statisch und dynamisch Interpretation Beispiel	5 6
4	4.1 4.2	Definition Formel Berechnung vom internen Zinsfuß 4.3.1 Fall 1 4.3.2 Fall 2 Interpretation	7 8 8 9
5	5.1 5.2 5.3	nögensendwertmethode 1 Definition 1 Berechnung 1 Beispielrechnung 1 5.3.1 Rechnung 1 5.3.2 Interpretation 1 Bewertung 1	1 1 2 2
6	6.1	Chäftswertbeitrag 1 Definition 1 Berechnung 1 6.2.1 Subtraktiver Ansatz 1 6.2.2 Multiplikativer Ansatz 1	5 5 6

iv	Inhaltsverzeichnis

6.3	Beispielrechnung	17
	6.3.1 Rechnung	17
	6.3.2 Interpretation	18
6.4	Bewertung	18
7 A n	nuitätenmethode	19
7.1	Definition	19
7.2	Berechnung	19
7.3	Beispielrechnung	19
7.4	Bewertung	19
Literat	tur	21

1

Einführung

Folgende Themen wurden von Önder Tütünci behandelt:

- Kapitalwertmethode
- Annuitätenmethode
- Dynamische Amortisationsrechnung

Folgende Themen wurden von Matthias Reichenbach behandelt:

- Vermögensendwertmethode
- Geschäftswertbeitrag
- Interne Zinsfussmethode

2

Kapitalwertmethode

2.1. Definition

Die Kapitalwertmethode ist ein Verfahren der dynamischen Investitionsrechnung. Mit dieser Methode wird der Kapitalwert ausgerechnet, der die Summe aller Einzahlungen und Auszahlungen, auf den heutigen Stand abzinst und darstellt. Dieser Kapitalwert bildet sehr oft die Grundlage für Investitionsendscheidungen.

2.2. Formel

Die Kapitalwertmethode wird mit folgender Formel ausgerechnet:

$$KW = -Z_0 + \sum_{t=1}^{T} \frac{Z_t}{(1+r)^t}$$

 Z_0 = Die Anfangszahlung

T = Die Betrachtungsdauer

 Z_t = Der Zahlungsstrom der Periode t. Besteht aus Einzahlungen - Auszahlungen.

r = Kalkulationszinssatz

t = Periode

KW = Kapitalwert

2.3. Interpretation

Um mit der Kapitalwertmethoden eine Investitionsendscheidung zu treffen, sollte man ihn wie folgend interpretieren:

- Wenn der Kapitalwert gleich 0 ist, bedeutet das für die Investition, dass wir unser eingesetztes Kapital auch wieder zurückbekommen. Es kommt bei so welchen Investitionen zu keinem Vorteil und Nachteil bzw. zu keinem Gewinn oder Verlust.
- Wenn der Kapitalwert größer als 0 ist, bedeutet das für die Investition, dass sie einen Gewinn einbringen wird und es empfehlenswert ist diese Investition durchzuführen.
- Wenn der Kapitalwert kleiner als 0 ist, bedeutet das für die Investition, dass sie Verluste einbringen wird. Solche Investitionen sollte man vermeiden.

2.4. Beispiel

Herr Mustermann möchte mit den steigenden Immobilienpreisen profitieren. Dafür überlegt er sich eine Immobilie für 300.000 Euro zu erwerben. Nach 2 Jahren würde er diese Immobilie wieder mit Gewinn für 320.000 Euro verkaufen. Als Alternative kann Herr Mustermann allerdings bei der Bank für den gleichen Zeitraum risikoarm seine Investition als Festgeld anlegen mit einem Zinssatz von 3 Prozent.

Um seine Investitionsendscheidung zu treffen, rechnet Herr Mustermann den Kapitalwert wie folgt aus:

$$320000 \div 1.03^2 \approx 301630$$

 $KW = 301630 - 300000 = 1630$

Aus der Rechnung heraus zeigt sich, dass der Kapitalwert positiv ist und sich die Investition in die Immobilie empfehlenswert ist. Jedoch sollte man trotzdem beachten, dass bei der Immobilie ein größeres Risiko besteht, als wie bei der Bank. ²

1

¹[Stu21c] ²[BWL21]

Dynamische Amortisationsrechnung

3.1. Definition

Die dynamische Amortisationsrechnung ist ein Verfahren, das Ergebnisse liefert, um eine Entscheidungsvorlage für Investitionen zu schaffen. Es wird die sogenannte Amortisationszeit einer Investition berechnet, die angibt, wann der Kapitaleinsatz einer Investition wieder zurückgeflossen ist. Zusätzlich wird die dynamische Amortisationsrechnung auch verwendet, um das Risiko einer Investition zu bewerten.

3.2. Unterschied zwischen statisch und dynamisch

Der große Unterschied bei der statischen und dynamischen Amortisationsrechnung ist, dass bei der statischen Variante die Verzinsung des eingesetzten Kapitals unberücksichtigt bleibt. Dies hat zur Folge, dass bei der statischen Variante häufig eine günstigere Amortisationszeit berechnet wird. Diese statische Amortisationsdauer kann zu Entscheidungen führen, die auf ungenauen und falschen Ergebnissen beruhen. In der Praxis wird vor allem die dynamische Variante bevorzugt, weil sie Einzahlungen, Auszahlungen und Nutzungsperioden berücksichtigt. Zusätzlich werden in der dynamischen Amortisationsrechnung finanzmathematische Methoden verwendet, wie die Kapitalwertmethode.

3.3. Interpretation

Die Interpretation der dynamischen Amortisationsrechnung ist ähnlich wie bei der statischen Variante. Es wird der Amortisationzeitpunkt berechnet, der den Rückfluss des investierten Kapitals einschließlich der Abzinsung auf die Mittel darstellt. Daraus folgt, dass die Amortisationszeit die Mindestnutzungsdauer eines Investitionsobjektes abbildet. Eine kürzere Amortisationszeit entspricht einem kleineren Investitionsrisiko. Genau wie bei den anderen Investitionsrechnungsverfahren, dient die Amortisationszeit als eine weitere Entscheidungshilfe bei der Bewertung von Investitionen. 1

3.4. Beispiel

Herr Mustermann will seine Produktion von Schuhen erhöhen. Dafür überlegt er sich in eine weitere Produktionsmaschine zu investieren. Die Maschine kostet 120 000 Euro und ist 4 Jahre nutzbar. Der kalkulierte Zinssatz beträgt außerdem 12 %.

Tabelle 3.1: Beispiel einer dynamischen Amortisationsrechnung auf 4 Jahre mit einem kalkulierten Zinssatz von 12%

Jahr	Einzahlung	Auszahlung	Abzinsfaktor	Barwert	Kapitalwert
0	0	120.000	$1,12^0$	-120.000	-120.000
1	69.000	30.000	$1,12^1$	34821,43	-85178,57
2	72.000	29.000	$1,12^2$	35076,54	-50102,04
3	68.000	31.000	$1,12^{3}$	26335,87	-23766,17
4	77.000	25.000	$1,12^{4}$	33046,94	9280,77
4	20.000	0	$1,12^{4}$	12710,36	21991,13

Die Amortisationszeit wird im 4. Jahr erreicht. Der Kapitalwert erreicht auch im vierten Jahr einen Wert über null. Daraus Schlussfolgert Herr Mustermann, dass die Investition in eine weitere Produktionsmaschine sinnvoll wäre. ²

²[DAA21]

¹[Bär21]

Interne Zinsfußmethode

4.1. Definition

Die interne Zinsfußmethode gehört, wie die Kapitalwertmethode, zu einem der dynamischen Verfahren der Wirtschaftlichkeitsrechnung. Sie wird auch oft als interne Rendite oder als interner Zinssatz bezeichnet. Dieses Verfahren stellt die Effektivverzinsung einer Investition dar, bei dem der Kapitalwert oder auch manchmal als Nettobarwert bezeichnet gleich null ist.

4.2. Formel

Der interne Zinsfuß wird mit folgender Formel ausgerechnet:

$$KW = -Z_0 + \sum_{t=1}^{T} \frac{Z_t}{(1+r)^t} = 0$$

 Z_0 = Die Anfangszahlung

T = Die Betrachtungsdauer

 Z_t = Der Zahlungsstrom der Periode t. Besteht aus Einzahlungen - Auszahlungen.

r = Kalkulationszinssatz

t = Periode

KW = Kapitalwert

4.3. Berechnung vom internen Zinsfuß

Wie man an der Formel schon sieht, ist es schwer so einen Term nach r aufzulösen. Deshalb wird der interne Zinsfuß meistens mit Interpolation, also Ausprobieren, berechnet. Es gibt jedoch zwei spezielle Fälle, wo man den internen Zinsfuß auch ohne Interpolation berechnen kann.

4.3.1. Fall 1

Der erste Spezialfall ist, wenn die Investition nur bis zu 2 Perioden umfasst. Dadurch wird die Formel zu einer quadratischen Gleichung die man auf gewohnter Weise lösen kann. Dazu ein kleines Beispiel:

$$T=2$$

$$Z_0=-1000 \text{ Euro}$$

$$Z_1=600 \text{ Euro}$$

$$Z_2=600 \text{ Euro}$$

$$-1000+\frac{600}{(1+r)^1}+\frac{600}{(1+r)^2}=0 \quad |: (-1000)$$

$$1-\frac{0,6}{1+r}-\frac{0,6}{(1+r)^2}=0 \quad |\cdot (1+r^2)$$

$$(1+r)^2-0,6\cdot (1+r)-0,6=0 \quad |(1+r)=x$$

$$x^2-0,6x-0,6=0 \quad |\text{PQ oder Mitternachts}$$

$$x_1=1,131 \quad x_2=-0,531 \quad |(1+r)=x$$

$$r=1,131-1$$

$$r=13,1 \%$$

Der interne Zinsfuß beträgt 13,1 %.

4.4. Interpretation 9

4.3.2. Fall 2

Der zweite Spezialfall ist einfacher als der erste. Man kann nähmlich genau sehen was der interne Zinsfuß beträgt. Ein kleines Beispiel dazu:

$$KW=0$$
 $Z_0=-3000$ Euro $Z_1=150$ Euro $Z_2=150$ Euro $Z_3=150$ Euro $Z_4=150$ Euro $Z_5=3150$ Euro

interne Zinsfuß beträgt 5 %.

Man kann an den verschiedenen Cashflows sehen, dass wir in jeder Periode fünf Prozent unserer Anfangsauszahlung bekommen, Zusätzlich erhalten wir in der letzten Periode unsere Anfangsauszahlung plus die fünf Prozent zurück, daraus schlussfolgern wir, dass der interne Zinsfuß 5 Prozent betragen muss.

4.4. Interpretation

Grundlegend sollten Investitionen, die einen höheren internen Zinssatz als der Marktzinssatz haben, durchgeführt werden. Das bedeutet nämlich, dass wir eine höhere Verzinsung als durchschnittlich bekommen. Zusätzlich sollte man beachten, dass ein höherer interner Zinsfuß nicht gleich bedeutet, dass die Investition besser ist. Der interne Zinsfuß ist leider nicht so einfach zu bewerten, wie der Kapitalwert der Kapitalwertmethode, daher wird in der Praxis auch die Kapitalwertmethode bevorzugt. ¹

¹[Stu21b]

Vermögensendwertmethode

5.1. Definition

Unter der Vermögensendwertmethode versteht man ein dynamisches Investitionsverfahren, bei dem eine durch eine Investition ausgelöste Zahlungsreihe auf einen späteren Zeitpunkt aufgezinst wird.¹ Diese Methode ist ähnlich wie die Kapitalwertmethode, bezieht sich aber auf den Endwert als Entscheidungsgrundlage.

Die Methode wird auf verschiedene Investitionen angewandt. Danach können die jeweiligen Endwerte miteinander verglichen werden, um das Provitabelste auszuwählen. Ein negativer Wert deutet auf eine eher schlechte Investition hin.²

5.2. Berechnung

Um den Vermögensendwert zu errechnen, wird folgende Formel (5.1)³ verwendet:

$$V_T = \sum_{t=0}^{T} (E_t - A_t)(1+r)^{T-t}$$
(5.1)

Hierbei steht E zum Zeitpunkt t für die Einzahlung und A zum Zeitpunkt t für die Auszahlung. Die Differenz wird mit dem Zinssatz r multipliziert. Der Zinssatz ist zudem abhängig von dem Zeitpunkt, da sich dieser über jede Periode mitzieht. Der Vermögensendwert berechent sich demzufolge aus der Summe der Differenz der Ein- und Ausgaben, auf

¹[Sch15]

²[Bet20]

³[Stu21a]

welche der vom Jahr abhängige Zinssatz multipliziert wurde.4

Anzumerken ist, dass hier nicht mit gänzlich realen Werten gerechnet wird. Der Zinssatz wird vorher kalkuliert und auf geschätze zukünfitige Zahlungen angewandt.⁵

5.3. Beispielrechnung

5.3.1. Rechnung

In der Tabelle 5.1 wird exemplarisch eine Berechnung mit der Endwertmethode dargestellt. Die Werte sind als Betrag in Euro anzusehen.

Tabelle 5.1: Beispiel einer Vermögensrechnung auf 5 Jahre mit einem Zinssatz von 10%

Jahre	1	2	3	4	5
Anschaffung	-5000				
Einzahlung		1000	3000	5000	15000
Auszahlung		-2000	-1500	-3000	-5000
	-5000 * 1,1 ⁴	-1000 * 1,1 ³	1500 * 1,1 ²	2000 * 1,1	10000
Vermögensendwert					5363,5

Im ersten Jahr wurde nur eine Anschaffung von einem Betrag von 5000 € getätigt. Da noch vier Jahre bis zu dem gewünschten Vermögensendwert sind, wird der Zinsatz mit vier exponiert. Als erstes Zwischenergebnis hat man im ersten Jahr einen Wert von -7320,5 €. In den folgenden drei Jahren wurden jeweils Ein- sowie Auszahlungen getätigt, wobei deren Differenz mit dem Zinssatz, auch abhängig von der Dauer zu dem gewünschten Jahr, multipliziert wurde. Dementsprechend erhält man die Werte, von Jahr zwei ausgehend, -1331 €, 1815 € und 2200 €. Im dem letzen zu berechnenden Jahr, also dem, von welchem der Vermögensendwert berechnet wird, wird der Zinssatz vernachlässigt, da dieser keine Rolle mehr spielt. Dementsprechend wird nur die Differenz, 10000 €, berechnet. Die Summe der jeweiligen Zwischenergebnisse ergbit dann den Vermögensendwert von 5363,5 €.

^{4[}Stu21a]

⁵[Sch15]

5.4. Bewertung

5.3.2. Interpretation

Ohne Betrachtung anderer Vermögensendwerten ist das Ergebnis von 5363,5 € ein Wert, bei dem man durchaus in betracht ziehen könnte, diese Investition zu tätigen, da kein Verlust entseht. Ein Verlust wär an einem negativen Ergebnis erkennbar.

5.4. Bewertung

Wie bereits weiter oben geschrieben, basiert diese Berechnung sehr darauf, dass Werte kalkulierten werden, die möglichst Nah an den Realen liegen. Im Gesamten ist diese Methode vielleicht eher unpräzise, aber da es um den Vergleich der unter den gleichen Umständen entstandenen Vermögensendwert geht, ist sie trotzdem eine gute Einschätzung für die zu tätitgende Investition.

Geschäftswertbeitrag

6.1. Definition

Der Geschäftswertbeitrag (GWB), im Englischen Economic Value Added (EVA), definiert einen Residualgewinn, welcher eine absolute Nettogröße eines Gewinns nach Abzug der Kapitalkosten für das eingesetze Gesamtkapital ergibt. Diese Kennzahl wurde in den 1990er Jahren in der Unternehmensberatung Stern Stewart entwickelt.¹

6.2. Berechnung

Der Geschäftswertbeitrag setzt sich aus drei Elementen zusammen: Dem operativen Gewinn nach Steuern (NOPAT - Net Operating Profit After Taxes), das betriebsnotwenige Vermögen (NOA - Net Operating Assets) und die gewichteten durchschnittlichen Kapitalkosten (WACC - Weighted Average Cost of Capital).

Der NOPAT ist der Teil, der Operativ entschieden wird. Hierbei geht es darum, dass man das Richtige machen möchte, beziehungsweise etwas besser machen. Die NOA bezieht sich auf eine Entscheidung basierend auf der Investition. Hierbei wird die Verbindlichkeit aus dem laufenden Geschäft nicht berücksichtig, ebenfalls das Ergebnis der Finanzierungstätigkeit. Zuletzt gibt es noch die Finanzierungsentscheidung, welches durch das WACC repräsentiert wird. Zudem kann das WAAC eine gesicherte Aussage über das Unternehmensrisiko geben.³

¹[Wik21]

²[Con21]

³[Bwl21]

⁴[Wik21]

In folgender Abbildung 6.1⁵ sind die drei Bestandteile des Geschäftswertbeitrag im Zusammenhang grafisch dargestellt:

Abbildung 6.1: Zusammensetzung Geschäftswertbeitrag

Es gibt zwei Methoden, um den GWB zu berechnen. Den subtraktiven Ansatz und den multiplikativen Ansatz. Beide Ansätze führen zum gleichen Berechnungsergebnis. Sie unterscheiden sich letztlich nur in der Fokussierung auf das absolute oder relative Erfolgsziel.

6.2.1. Subtraktiver Ansatz

Bei dem substraktiven Ansatz werden von dem operativen Jahresergebnis die durchschnittlichen Kapitalkosten mal dem betriebsnotwenigem Vermögen abgezogen. Folgende Formel (6.1)⁶ repräsentiert diese Rechnung:

$$GWB = NOPAT - WACC \cdot NOA \tag{6.1}$$

⁵Quelle: https://www.bwl-lexikon.de/app/uploads/economic-value-added.png ⁶[Wik21]

6.2.2. Multiplikativer Ansatz

Bei dem multiplikativen Ansatz werden von der (Ist-)Gesamtkapitalrendite (IRR - Internal Rate of Return) die durchschnittlichen Kapitalkosten abgezogen und auf dieses Ergebnis wird dann das betriebsnotwenige Vermögen multipliziert. Dies wird in folgender Formel (6.2)⁷ dargestellt. In der Formel (6.3)⁸ wird die berechnung der IRR für die Vollständigkeit dargestellt. Die IRR berechnet sich aus dem Quotuenten aus dem operativen Gewinn nach Steuern und dem betriebsnotwenigem Vermögen multipliziert mit 100.

$$GWB = (IRR - WACC) \cdot NOA \tag{6.2}$$

$$IRR = \frac{NOPAT}{NOA} \cdot 100 \tag{6.3}$$

Vorraussetzung für diese Methode ist, dass das NOPAD immer größer als die Kapitalkosten, welche bei der Investition anfallen, ist.⁹

6.3. Beispielrechnung

6.3.1. Rechnung

Da der Fokus auf der Berechnung des Geschäftswertbeitrags liegt, werdn für die Beispielrechnungen die Werte bereits angenommen. Demzufolge beträgt der WACC 8%, der NOPAT beträgt 10000 € und die NOA belaufen sich auf 90000 €.

Subtraktiver Ansatz

Mit der Anwendung des substraktiven Ansatzes (6.1) ergibt sich folgende Rechnung:

Multiplikativer Ansatz

Da beide Ansätze das selbe Ergebnis haben sollten, sollte auch der multiplikative Ansatz (6.2) einen GWB von 2800 ergeben:

GWB =
$$((\frac{10000}{90000})$$
 - 0,08) · 90000 € = 2800 €

⁷[Wik21]

⁸[Rei21]

⁹[Bwl21]

6.3.2. Interpretation

Der Geschäftswertbeitrag von 2800 € zeigt, dass die Rendite über den Kosten für das eingesetze Kapital liegt, weshalb diese Investition durchaus durchführbar ist. Wäre der Wert negtaiv, würde die Investition verluste aufweisen und es wäre davon abzuraten, diese zu tätigen.

6.4. Bewertung

Der Geschäftswertbeitrag ist eine einfache Methode, um einen Betrag zu erhalten, wie sich eine Investition auswirkt. Jedoch ist die Berechnung an mehrere Faktoren gebunden, welche das Ergebnis sehr leicht verfälschen können. Auch die Entwicklung in der Zukunft ist durch den GWB nicht ersichtlich. Zuletzt lässt der Freiheitsgrad eines Unternehmens, anpassungen vorzunehmen, die Vergleichbarkeit unterschiedlicher Jahre verringert.¹⁰

¹⁰[Con21]

7

Annuitätenmethode

- **7.1.** Definition
- 7.2. Berechnung
- 7.3. Beispielrechnung
- 7.4. Bewertung

Literatur

- [Sch15] Ottmar Schneck. Lexikon der Betriebswirtschaft, München Dt Taschenbuch-Verl. 2015. URL: www.finanzen.net/wirtschaftslexikon/vermoegensendwertmethode/ 9 (besucht am 27.12.2021).
- [Bet20] Betriebswirtschaft-lernen. *Endwertmethode*. 2020. URL: https://www.betriebswirtschaft-lernen.net/erklaerung/endwertmethode/ (besucht am 27. 12. 2021).
- [Bär21] Thomas Detlef Bär. *Dynamische Amortisationsrechnung Einsatz finanzmathematischer Methoden*. 2021. URL: https://www.gevestor.de/finanzwissen/oekonomie/betriebswirtschaft/dynamische-amortisationsrechnung-einsatzfinanzmathematischer-methoden-648851.html (besucht am 28.12.2021).
- [BWL21] Welt der BWL. *Kapitalwertmethode*. 2021. URL: https://welt-der-bwl.de/ Kapitalwertmethode (besucht am 27.12.2021).
- [Bwl21] Bwl-Lexikon. *Geschäftswertbeitrag/Economic Value Added*. 2021. URL: https://www.bwl-lexikon.de/wiki/geschaeftswertbeitrag-economic-value-added/#was-solltest-du-ueber-den-geschaeftswertbeitrag-wissen.
- [Con21] Controlling. Economic Value Added (EVA): Definition, Formel und Beispiele. 2021. URL: https://controlling.net/economic-value-added.
- [DAA21] DAA-Wirtschaftslexikon. *Pay-off-Methode*. 2021. URL: https://media.daa-pm.de/ufv_wirtschaftslexikon/Html/P/Pay-off-Methode.htm (besucht am 28.12.2021).
- [Rei21] Jürgen Reim. Der EVA (Economic Value Added) als wertorientierte operative Controlling-Kennzahl. 2021. URL: https://www.controllingportal.de/Fachinfo/Kennzahlen/EVA-Konzept.html#:~:text=Beispiel%3A%20EVA%20%3D%20200.000%20-%2010%25%2A%201.000.000%20EVA,EVA-Ansatz%20ergibt%20er%20sich%20aus%20der%20Summe%20.
- [Stu21a] Studyflix. Endwertmethode. 2021. URL: https://studyflix.de/wirtschaft/endwertmethode-1033 (besucht am 27.12.2021).
- [Stu21b] Studyflix. *Interner Zinsfuß*. 2021. URL: https://studyflix.de/wirtschaft/interner-zinsfuss-72 (besucht am 29. 12. 2021).
- [Stu21c] Studyflix. *Kapitalwertmethode*. 2021. URL: https://studyflix.de/wirtschaft/kapitalwertmethode-71 (besucht am 27. 12. 2021).
- [Wik21] Wikipedia. Economic Value Added. 2021. URL: https://de.wikipedia.org/w/index.php?title=Economic_Value_Added&oldid=218536882.