Introducción al curso Análisis Numérico para Ingeniería Lección 01

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

L Semestre 2018

Contenido

- Análisis numérico
 - Modelos
 - Ejemplo

Perramientas de software

Análisis numérico

Modelos matemáticos

Modelos matemáticos:

- Descripción de comportamiento de un fenómeno físico
- Comportamiento simplificado
- Resume experiencia pasada
- Funciones matemáticas:
 Obtenidas por
 - Análisis teórico
 - Experimentación

Modelo matemático

$$\underline{\mathbf{s}} = f(\underline{\mathbf{e}}; \mathbf{p}; \underline{\mathbf{r}})$$

- s: Vector de salidas
- e: Vector de entradas (tiempo, espacio)
- p: Vector de parámetros
- r: Factores externos, ruido

Tipos de análisis

Solución de problemas matemáticos por:

- Métodos analíticos
- Métodos numéricos

Métodos numéricos

Reformulan problema matemático para resolverlo mediante operaciones aritméticas.

Modelo matemático: segunda ley de Newton

La ley de Newton establece:

$$F = ma$$

Modelo matemático: segunda ley de Newton

La ley de Newton establece:

F = ma

- Descripción matemática de proceso
- Idealización
 (simplificación de realidad)
- Resultados reproducibles ⇒ predicción

Ejemplo

Un paracaidista de masa m salta de un globo con posición estática respecto a la superficie.

Calcule la velocidad de caída del paracaidista en función del tiempo, considerando la fricción del aire.

Solución:

La Segunda Ley de Newton establece:

$$F = ma$$

donde

- F: Fuerza
- m: masa
- a: aceleración

$$a = \frac{dv}{dt}$$

La fuerza total sobre el paracaidista tiene dos componentes:

- $F_D = mg$: debida a la gravitación terrestre $(g \approx 9, 8m/s^2)$
- $P_U = -cv$: debida a la fricción del aire (c coef. de arrastre)

Signo de F_U indica oposición a F_D .

$$a = \frac{dv}{dt} = \frac{F}{m} = \frac{mg - cv}{m}$$

Ecuación diferencial

$$\frac{dv(t)}{dt} = g - \frac{c}{m}v(t)$$

Solución analítica (exacta):

$$v(t) = \frac{mg}{c} \left[1 - e^{-\frac{c}{m}t} \right] u(t) + v(0^-) e^{-\frac{c}{m}t} u(t)$$

con $v(0^-)$ la velocidad inicial en $t=0^-$, y u(t) el escalón unitario.

Solución numérica parte de aproximación en *diferencias finitas* divididas:

$$rac{dv}{dt}pprox rac{\Delta v}{\Delta t} = rac{v(t_{i+1})-v(t_i)}{t_{i+1}-t_i} \qquad \qquad rac{dv}{dt} = \lim_{\Delta t o 0} rac{\Delta v}{\Delta t}$$

Sustituyendo en el modelo original

$$\frac{dv(t)}{dt} = g - \frac{c}{m}v(t)$$

$$\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} = g - \frac{c}{m}v(t_i)$$

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c}{m}v(t_i)\right](t_{i+1} - t_i)$$

Herramientas de Software

Herramientas de software

- Prototipado rápido
 - GNU/Octave
 - MatLab
 - R
 - (Maple, Mathematica)
- Lenguajes de mediano y alto nivel
 - C/C++
 - Fortran
 - Python
 - Bibliotecas:
 - Lapack/Blas/Atlas
 - Intel Performance Libraries (IPL)
 - Eigen, Armadillo, SciPy, NumPy
- Hojas de cálculo + lenguajes script
 - Excel + VBA
 - LibreOffice.org/Calc + LibreOffice Basic

Resumen

- Análisis numérico
 - Modelos
 - Ejemplo

2 Herramientas de software

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2018 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica