Problem Statement:

You work in XYZ Company as a Python Developer. The company officials want you to write code for an Agglomerative Clustering Problem.

Tasks To Be Performed:

- 1. Load iris data from load_iris function from sklearn.datasets package
- 2. From the dataset extract the data property
- 3. Train an Agglomerative Clustering model based on the data
- 4. Plot dendrogram to visualize the clustering linkage
- import numpy as np
 import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline
 from scipy.cluster.hierarchy import dendrogram, linkage
 from sklearn.datasets import load_iris
 from sklearn.cluster import AgglomerativeClustering
- in [2]: iris_data = load_iris()
 df = pd.DataFrame(data=iris_data.data, columns=iris_data.feature_names)

Out[2]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8

150 rows × 4 columns

- In [3]: X = iris_data.data
- In [4]: clustering = AgglomerativeClustering()
 clustering.fit(X)
- Out[4]: ▼ AgglomerativeClustering

AgglomerativeClustering()

- In [5]: clustering.labels_
- In [6]: linkage_matrix = linkage(X, method='ward')
- In [7]: plt.figure(figsize=(20, 10))
 dendrogram(linkage_matrix, labels=clustering.labels_)
 plt.title('Dendrogram of Clustering')
 plt.xlabel('Sample Index')
 plt.ylabel('Distance')
 plt.show()

