## Exercise Sheet 04 Operator Algebras

Contributors: Linus Mußmächer, Minona Schäfer

June 29, 2023



## 4.1

The first statement follows immediately from the fact that the canonical inclusion  $\mathscr{B} \hookrightarrow \mathscr{A}$  is an injective \*-homomorphism, so it is isometric as proven in the lecture.

If now  $\mathcal{B}$  is a dense proper \*-subalgebra of  $\mathcal{A}$ , assuming it could be turned into a  $C^*$ -algebra, the norm on that  $C^*$ -algebra would already have to be the norm on  $\mathcal{A}$ . But then the canonical inclusion is isometric and injective, so it has closed range and  $\mathcal{B} \subseteq \mathcal{A}$  is closed and dense in  $\mathcal{A}$ . Now, however, we have  $\mathcal{B} = \mathcal{A}$ , a contradiction.

## 4.2

As hinted, the disk algebra  $\mathcal{A}(\mathbb{D})$  is such an algebra. As we have  $\overline{\overline{z}} = z$  for all  $z \in \mathbb{D}$ , the identity map is self-adjoint, but because of  $i \in \mathrm{id}(\mathbb{D})$ , id  $-i \cdot 1$  is not invertible. Thus,  $i \in \sigma(\mathrm{id}) \subseteq \mathbb{R}$ .

Analogously, we can also consider the character  $\varphi: \mathcal{A}(\mathbb{D}) \to \mathbb{C}: f \mapsto f(i)$ . Here, we have  $\varphi(\mathrm{id}^*) = \varphi(\mathrm{id}) = i \neq -i = \overline{\varphi(\mathrm{id})}$ .

(i)  $\Rightarrow$  (ii): Take  $a \in \mathcal{A}$  be any self-adjoint element and (a) the \*-subalgebra generated by a in  $\mathcal{A}$ . Then  $\Omega((a)) \subseteq \Omega(\mathcal{A})$  (as any character of (a) can be extended to  $\mathcal{A}$ ), so any character in  $\Omega((a))$  is also symmetric. As a is self-adjoint, we have  $\chi(a) = \overline{\chi(a^*)} = \overline{\chi(a)}$  and therefore  $\chi(a) \in \mathbb{R}$  for any  $\chi \in \Omega((a))$ . As (a) is a commutative \*-Banach-algebra, we have

$$\sigma_{(a)}(a) \subseteq \{\chi(a) \mid \chi \in \Omega((a))\} \cup \{0\} \subseteq \mathbb{R}.$$

Furthermore, if  $a - \lambda \in (a)$  is invertible, it must also be invertible in  $\mathcal{A} \supseteq (a)$ , so  $\rho(a)_{(a)} \subseteq \rho_{\mathcal{A}}(a)$  and therefore  $\sigma_{\mathcal{A}}(a) \subseteq \sigma_{(a)}(a) \subseteq \mathbb{R}$ .

(ii)  $\Rightarrow$  (iii): Let  $\Gamma: \mathcal{A} \to C(\Omega(\mathcal{A})), a \mapsto (\chi \mapsto \chi(a))$  be the Gelfand-transform of  $\mathcal{A}$ . We want to prove  $\Gamma(\underline{a}) = \Gamma(a^*)^*$ . By the Definition of the involution on  $C(\Omega(\mathcal{A}))$ , this is equivalent to  $\chi(a) = \chi(a^*)$  for any  $\chi$  the spectrum and  $a \in \mathcal{A}$ .

First, let  $a \in \mathcal{A}$  self-adjoint. Then  $\overline{\chi(a^*)} = \overline{\chi(a)} = \chi(a)$  as  $\chi(a) \in \sigma(a) \subseteq \mathbb{R}$ .

If  $a \in \mathcal{A}$  is not self-adjoint, we can write a = b + ic for self-adjoint elements  $b = \frac{a + a^*}{2}$  and  $c = \frac{a - a^*}{2i}$  and it follows that

$$\chi(a) = \chi(b+ic) = \chi(b) + i\chi(c) = \overline{\chi(b^*)} + i\overline{\chi(c^*)} = \overline{\chi(b^*)} - i\chi(c^*) = \overline{b^* - ic^*} = \overline{\chi(a^*)}$$

and this shows (iii).

(iii)  $\Rightarrow$  (i): If  $\Gamma$  is a \*-homomorphism, then  $\Gamma(a^*) = \underline{\Gamma(a)}^*$  and by the definition of the involution as discussed above this already shows  $\chi(a^*) = \overline{\chi(a)}$  for every character  $\chi$ .

## 4.3

Since the spectrum  $\sigma(a)$  of a in the non-unital algebra  $\mathcal{A}$  is defined as its spectrum in the unitization  $\tilde{\mathcal{A}}$ , the spectra in  $C(\sigma(a))$  and  $C_0(\sigma(a))$  have the same meaning and are not merely notationally equivalent.

Let  $\Phi: C^*(a,1) \to C(\sigma(a))$  be the isometric \*-isomorphism in the fundamental theorem of functional calculus applied to  $\tilde{\mathcal{A}}$  given by Gelfand. If  $0 \notin \sigma(a)$ , a is invertible so  $1 \in C^*(a)$ , and we therefore have both  $C^*(a,1) = C^*(a)$  and  $C_0(\sigma(a)) = C(\sigma(a))$ . Therefore,  $\Phi^{-1}: C_0(\sigma(a)) \to C^*(a) \subseteq \mathcal{A}$  is already the unique isometric \*-homomorphism we require, and its image is  $C^*(a)$  as desired.

Now consider  $0 \in \sigma(a)$  and the restriction  $\Psi = \Phi|_{C^*(a)}$ . This restriction retains the properties of a \*-homomorphism, as well as the isometry and  $a \mapsto \mathrm{id} \in C_0(\sigma(a))$ . It remains to show that  $\Psi$  is still unique and f(0) = 0 for every element in the image of  $\Psi$ . To see the last property, notice that  $\Psi(a) = \mathrm{id}$  and  $\mathrm{id}(0) = 0$  as well as  $\Psi(C^*(a)) = C^*(\Psi(a)) = C^*(\mathrm{id})$ , so any element in the image of  $\Psi$  is composed of sums and products of id and  $\mathrm{id}$  and therefore fulfills f(0) = 0. So  $\Psi^{-1}: C_0(\sigma(a)) \to C^*(a) \subseteq \mathcal{A}$  is our \*-homomorphism.

To see the uniqueness, note that as  $0 \in \sigma(a)$  we can write  $\mathscr{A} \simeq \mathscr{A} \oplus \mathbb{C}$  and  $C(\sigma(a)) \simeq C_0(\sigma(a)) \oplus \mathbb{C}$  (with a multiplication analogous to that of the unitization) and can therefore decompose  $\Phi^{-1}$  into  $\Phi = \Psi^{-1} \oplus \Phi^{-1}|_{\mathbb{C}}$ . If there existed a second \*-homomorphism  $\Psi_2 : C_0(\sigma(a)) \to \mathscr{A}$  (with id  $\mapsto a$ ), then  $\Phi_2 = \Psi_2 \oplus \Phi^{-1}|_{\mathbb{C}}$  were a second \*-homomorphism  $C_0(\sigma(a)) \oplus \mathbb{C} = C(\sigma(a)) \to \mathscr{A} \oplus \mathbb{C} = \tilde{\mathscr{A}}$  with id  $\mapsto a$ , a contradiction.