Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра_			Инф	орм	ати	ІКИ		5 6 7 8 9 10 11 1						
		100	$\begin{vmatrix} 1 \end{vmatrix}$	2	3	4	5	6	7	8	9	10	11	12
		90												
		80)											
		70)											
		60)											
		50)											
		40)											
		30)	1										
		20												
		10												
		()]	ļ									
		OT	HE	Γ										
		по лаборатор	ной	раб	оте	№]	l							
	«Нап	ряжения и дефор	эмаг	ции	при	гра	стя	жен	иии					
		и сжатии	стер	жн	ей»									
	<u>*</u>						_							
,		е Основь	1 100	иот	ns/I/	•		бт л	ICTO	ъ С	\T <i>(</i>	7		
Ţ	по дисциплино	ОСНОВЕ	oi Ku	нсі	рук	щи	и ос	ве	KIU	ВС	/1(
		1306.558	108	3.0	00	П	3							
		(обозначен												

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

OT	4ET	7
Вве	дение	9
1	Краткие теоретические сведения	10
2	Выполнение индивидуального задания	11
2.1	Исходные данные	11
2.2	Решение задачи	12
30141	попанна	15

Изм.	Лист	№ докум	Подп	Дата

Введение

Данная лабораторная работа №1 предназначена для закрепления знаний и получения практических навыков расчетов напряжений и деформаций при растяжении и сжатии стержней.

Задачи выполнения лабораторной работы:

- 1. Разбить брус на характерные участки в зависимости от схемы приложения нагрузок и изменения размеров поперечного сечения.
- 2. Составить аналитические выражения для определения внутренних усилий по каждому участку, рассчитать их величину в характерных точках и построить эпюру продольных сил.
- 3. Записать условие прочности для каждого участка бруса. Назначить размеры прямоугольного поперечного сечения из условий прочности. Принять для всех нечетных вариантов расчетных схем соотношение сторон b:h=1:2. Построить эпюру нормальных напряжений.
- 4. Для каждого участка бруса составить уравнения для определения продольных деформаций; записать условие жёсткости для каждого участка и из этого условия назначить размеры поперечного сечения. Построить эпюру перемещений.
- 5. Сравнить размеры сечений, полученных из условий прочности и жесткости; окончательно назначить размеры, удовлетворяющие обоим условиям.

Изм.	Лист	№ докум	Подп	Дата

1 Краткие теоретические сведения

Гипотеза Бернулли: поперечные сечения стержня, плоские и перпендикулярные его продольной оси до приложения нагрузки, остаются плоскими и перпендикулярными оси и после приложения нагрузки.

Используя зависимость между продольной силой в рассматриваемом сечении и нормальным напряжением $N = \int \sigma \ dA$, получим $N = \sigma \ A$; следовательно, нормальные напряжения в произвольном сечении стержня:

$$\sigma_i = N_i/A_i$$
.

Знаки нормальных напряжений определяются по знаку продольной силы в рассматриваемом сечении: растягивающие напряжения положительны, сжимающие — отрицательны.

Методы расчета конструкций:

1. Все элементы строительных конструкций рассчитываются по **методу предельных состояний**, критерием прочности материала служит его расчетное сопротивление при растяжении или сжатии - R_p или $R_{cж}$. Условие прочности в этом случае:

$$|\sigma_{max}| \leq R_i$$
.

2. Детали машиностроительных конструкций рассчитываются по **методу** допускаемых напряжений критерием прочности материала при этом служит допускаемое напряжение при растяжении $[\sigma_p]$ или сжатии $[\sigma_{cж}]$. Условие прочности элемента при таком подходе:

$$|\sigma_{max}| \leq [\sigma_i].$$

В том случае, если в поперечных сечениях стержня действуют напряжения разных знаков, площадь поперечного сечения назначается с учётом выполнения обоих условий $|\sigma_{max}| \leq R_{\rm p}$; $|\sigma_{min}| \leq R_{\rm cx}$.

Величина продольной деформации рассматриваемого участка стержня, т.е. его абсолютного удлинения или укорочения определяется по формуле:

$$\Delta L_i = N_i \cdot L_i / E \cdot A_i.$$

Условие жесткости стержня:

$$|\Delta L_{max}| \leq [\Delta L].$$

Изм	Лист	№ докум	Подп	Дата

2 Выполнение индивидуального задания

2.1 Исходные данные

Для стержня, расчётная схема которого соответствует варианту №8 (Рисунок 2.1) и исходных данных (Таблица 2.1), требуется назначить размеры прямоугольного поперечного сечения с отношением сторон b:h=1:1,5 из условий прочности и жёсткости.

Таблица 2.1 – Исходные данные

№, вар.	а, м	F, кH	Е, ГПа	$R_{\rm p}$, МПа	$R_{cж}$, МПа	Δa
8	0,55	130	140	130	100	a/700

Рисунок 2.1 – Расчетная схема варианта №8

Изм.	Лист	№ докум	Подп	Дата

2.2 Решение задачи

Рисунок 2.2 – Эпюры внутренних усилий, напряжений и перемещений

Расчет на прочность произвести по первому предельному состоянию.

Изм.	Лист	№ докум	Подп	Дата

Для определения положения опасных сечений стержня, т.е. сечений, в которых от действий внешней нагрузки возникают экстремальные нормальные напряжения, необходимо построить эпюры продольных сил и нормальных напряжений.

Для построения этих эпюр стержень разбивается на характерные участки, границами участков служат сечения, в которых приложены сосредоточенные силы или меняются размеры поперечного сечения.

<u>Сечение</u> **I** $(0 \le x_1 \le a)$ из уравнения равновесия отсеченной части стержня:

$$\Sigma x = 0 => N_1 - F = 0 => N_1 = F = 130 \,\kappa H.$$

Нормальные напряжения в сечениях первого участка:
$$\sigma_1 = \frac{N_1}{A_1} = \frac{F}{1.5A} = \frac{130}{1.5A} = \frac{86,6}{A} \kappa \Pi a.$$

<u>Сечение II</u> $(0 \le x_2 \le a)$ из уравнения равновесия отсеченной части стержня:

$$\Sigma x = 0 = N_2 - F + 4F = 0 = N_2 = -3F = -390 \text{ }\kappa H.$$

Нормальные напряжения в сечениях второго участка:

$$\sigma_2 = \frac{N_2}{A_2} = \frac{-3F}{A} = \frac{-390}{A} \kappa \Pi a.$$

<u>Сечение III</u> $(0 \le x_3 \le 3a)$ из уравнения равновесия отсеченной части стержня:

$$\Sigma x = 0 => N_3 - F + 4F = 0 => N_3 = -3F = -390 \,\kappa H.$$

Нормальные напряжения в сечениях третьего участка:
$$\sigma_3 = \frac{N_3}{A_3} = \frac{-3F}{A} = \frac{-390}{A} \kappa \Pi a.$$

Условие прочности по растягивающим напряжениям:

$$|\sigma_{max}| = |\sigma_3| = \frac{3F}{A} \le R_p = A_{mp} \ge \frac{3F}{R_p} = A_{mp} = \frac{390 \cdot 10^3}{130 \cdot 10^6} = 30 \text{ cm}^2.$$

Условие прочности по сжимающим напряжениям:

$$|\sigma_{min}| = |\sigma_1| = \frac{F}{A} \le R_{c > c} => A_{mp} \ge \frac{F}{R_{c > c}} => A_{mp} = \frac{130 \cdot 10^3}{100 \cdot 10^6} = 13 \text{ cm}^2.$$

Из условий прочности требуемая площадь поперечного сечения стержня должна быть не менее 30 см^2 .

Для назначения размеров поперечного сечения из условия жесткости необходимо построить эпюру продольных деформаций стержня.

Анализ расчетной схемы стержня показывает, что поперечного сечение, примыкающее к жесткой заделке, не может перемещаться, следовательно, при построении эпюры перемещений за начало отсчета нужно принять жесткую заделку.

Укорочение третьего участка составляет:

$$\Delta a_{3(x)} = \frac{N_3 \cdot x}{E \cdot A_3} (0 \le x \le 3a).$$

Изм.	Лист	№ докум	Подп	Дата

Тогда удлинение третьего участка составляет:

$$\Delta a_3 = \frac{-3F \cdot 3a}{E \cdot A} = \frac{-4.6 \cdot 10^{-6}}{A} M.$$

Продольные деформации второго участка:

$$\Delta a_{2(x)} = \frac{N_2 \cdot x}{E \cdot A_2} (0 \le x \le a).$$

Тогда укорочение второго участка составляет:

$$\Delta a_2 = \frac{-3F \cdot a}{E \cdot A} = \frac{-1,536 \cdot 10^{-6}}{A} M.$$

Продольные деформации первого участка:

$$\Delta a_{1(x)} = \frac{N_1 \cdot x}{E \cdot A_1} (0 \le x \le a).$$

Тогда укорочение первого участка составляет:

$$\Delta a_1 = \frac{F \cdot a}{E \cdot 1,5A} = \frac{0,34 \cdot 10^{-6}}{A} M.$$

Продольная деформация стержня, определяемая как алгебраическая сумма деформаций каждого из участков, равна:

$$\lambda = \Sigma \Delta a = \frac{-9F \cdot a}{E \cdot A} - \frac{2F \cdot a}{E \cdot A} + \frac{F \cdot a}{E \cdot A} = \frac{-10F \cdot a}{E \cdot A} = \frac{-5,11 \cdot 10^{-6}}{A}_{M}.$$

Построение эпюры продольных деформаций и эпюр внутренних усилий и напряжений показано на Рисунок 2.2. Назначение размеров поперечного сечения стержня производится по величине максимальной деформации участка. Условие жёсткости:

$$|\Delta a_{max}| = \frac{9F \cdot a}{E \cdot A} \le \frac{a}{700} = A_{mp} \ge \frac{9F \cdot 700}{E} = 58.5 \cdot 10^{-4} \,\text{M}^2 = 58.5 c\text{M}^2.$$

Так как площадь поперечного сечения, вычисленная из условий прочности, превышает величину площади, полученной из условия жесткости, окончательно назначено $A = 58,5 \text{ cm}^2$.

Тогда размеры сечения вычислим, исходя из условия b:h=1:1,5:

$$b = \frac{10}{15}h; b*h = A => \frac{10}{15}h^2 = A => h = \sqrt{\frac{15A}{10}} = 9,4 \text{ cm}; b = 6,24 \text{ cm}.$$

Изм	Лист	№ докум	Подп	Дата

Заключение В данной лабораторной работе №1 для стержня, расчетная схема которого соответствует варианту №8, были назначены размеры прямоугольного поперечного сечения с отношением сторон b:h=1:1,5 из условий прочности и жесткости (b=6,24 см и h=9,4 см).

Подп

Изм Лист № докум

Дата

Пист

1306.558108.000 ПЗ