Random Forest On Iris Data

Girdhar Gehlot

2023-04-13

R Markdown

```
# Loading Libraries :-
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
library(caTools)
#view first six rows of airquality dataset
head(iris)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                   0.2 setosa
              4.9
## 2
                          3.0
                                       1.4
                                                   0.2 setosa
              4.7
## 3
                          3.2
                                       1.3
                                                   0.2 setosa
                          3.1
                                                   0.2 setosa
## 4
              4.6
                                       1.5
## 5
              5.0
                          3.6
                                                   0.2 setosa
                                       1.4
                          3.9
## 6
              5.4
                                       1.7
                                                   0.4 setosa
str(iris)
## 'data.frame':
                    150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species
                 : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1
1 1 1 1 ...
# data exploring :-
summary(iris)
##
     Sepal.Length
                                     Petal.Length
                                                     Petal.Width
                     Sepal.Width
## Min.
          :4.300
                           :2.000
                                           :1.000
                                                           :0.100
                    Min.
                                    Min.
                                                    Min.
                                    1st Qu.:1.600
## 1st Qu.:5.100
                    1st Qu.:2.800
                                                    1st Ou.:0.300
## Median :5.800
                    Median :3.000
                                    Median :4.350
                                                    Median :1.300
## Mean
           :5.843
                    Mean
                           :3.057
                                    Mean
                                           :3.758
                                                    Mean
                                                           :1.199
## 3rd Qu.:6.400
                    3rd Ou.:3.300
                                    3rd Ou.:5.100
                                                    3rd Ou.:1.800
                                                    Max.
## Max.
           :7.900
                    Max.
                           :4.400
                                    Max.
                                           :6.900
                                                           :2.500
##
          Species
```

```
##
    setosa
              :50
    versicolor:50
##
    virginica:50
##
##
##
##
# we can quickly see that sepals are both longer and wider than petals.
#find number of rows with missing values :-
colSums(is.na(iris))
Sepal.Length
                  Sepal.Width
                                 Petal.Length
                                                 Petal.Width
                                                                  Species
                                                     0
                                                                      0
# To visualize and compare the distributions of the variables :-
par(mfrow=c(2,2))
for(i in 1:4){hist(iris[,i],xlab=colnames(iris[i]), cex.lab=1.2,
main="")}
```


The histograms show that the petal variables are skewed and the sepal variables are more symmetrical.

put a legend in that area. The legend indicates that black represents setos a, gray represents versicolor, and white represents virginica.

The main diagonal cells, of course, have the names of the variables. Each n onmain-diagonal cell represents the relationship between the variable in the cell's row and the variable in the cell's column. So the cell in row 1, column 2 plots the relationship between sepal.length and sepal.width. The cells in column 5 show the relationships between each of the four measured variables a nd species. In effect, they show the distributions of the measurements within each species.

```
set.seed(700)
# data partitioning :-
split=sample.split(iris, SplitRatio=0.8)
split
## [1] TRUE TRUE TRUE FALSE TRUE
train_data<-subset(iris, split=="TRUE")
head(train_data)</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                           3.5
                                        1.4
                                                    0.2 setosa
## 2
              4.9
                           3.0
                                                     0.2 setosa
                                        1.4
## 3
              4.7
                           3.2
                                                    0.2 setosa
                                        1.3
## 5
              5.0
                           3.6
                                        1.4
                                                    0.2 setosa
                           3.9
## 6
              5.4
                                        1.7
                                                    0.4 setosa
## 7
              4.6
                           3.4
                                                     0.3 setosa
                                        1.4
test_data<-subset(iris,split=="FALSE")</pre>
head(test_data)
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 4
               4.6
                            3.1
                                         1.5
                                                      0.2 setosa
## 9
               4.4
                            2.9
                                         1.4
                                                      0.2 setosa
## 14
               4.3
                            3.0
                                         1.1
                                                      0.1 setosa
## 19
               5.7
                            3.8
                                         1.7
                                                      0.3 setosa
## 24
               5.1
                            3.3
                                         1.7
                                                      0.5 setosa
## 29
               5.2
                            3.4
                                         1.4
                                                      0.2 setosa
#fit random forest model :-
model <- randomForest(formula = Species ~ Petal.Length + Petal.Width + Sepal.</pre>
Length + Sepal.Width,data = train_data,importance = TRUE)
#display fitted model :-
model
##
## Call:
## randomForest(formula = Species ~ Petal.Length + Petal.Width +
                                                                         Sepal.
Length + Sepal.Width, data = train data, importance = TRUE)
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 2
##
##
           OOB estimate of error rate: 4.17%
## Confusion matrix:
##
              setosa versicolor virginica class.error
## setosa
                  40
                               0
                                         0
                                                 0.000
                                         2
## versicolor
                   0
                              38
                                                 0.050
## virginica
                   0
                               3
                                        37
                                                 0.075
# accuracy of train_data iss :-
accuracy=sum(diag(model$confusion))/nrow(train_data)
accuracy
## [1] 0.9583333
# Plotting error :-
attach(iris)
```

```
plot(model, col = "black")

legend("topright", legend=c(levels(Species),"00B"),
    lty = c("dashed","dotted","dotdash","solid"),
    cex=.8,bty = "n")

#produce variable importance plot
varImpPlot(model)
```

model

model

#use fitted random forest model to predict Ozone value of new observation
Species_pred=predict(model, newdata=test_data)
test_data\$Species_pred=Species_pred

```
confusion_matrix=table(test_data$Species,test_data$Species_pred)
confusion_matrix
##
##
               setosa versicolor virginica
##
    setosa
                   10
                               0
                               9
                                       1
## versicolor
                    0
                               0
##
   virginica
                    0
                                       10
# checking accuracy of model on test data :-
accuracy=sum(diag(confusion_matrix))/nrow(test_data)
accuracy
## [1] 0.9666667
```