VALUES AND STATISTICS INDICATED IN MSTATSPOP:

Effective length for each population:

Eff_length1_pop_outg[0]: Effective length1 for population 0. That is, considering the outgroup, how many positions have at least one sequence per population 0 and the outgroup exist.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating divergence vs outgroup or versus populations.

Eff_length2_pop_outg[0]: Effective length2 for population 0. That is, considering the outgroup, how many positions have at least two sequences per population 0 and the outgroup exist.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating levels of variability.

Eff_length3_pop_outg[0]: Effective length3 for population 0. That is, considering the outgroup, how many positions have at least three sequences per population 0 and the outgroup exist.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating tests of neutrality (variances).

Eff_length1_pop[0]: Effective length1 for population 0. That is, how many positions have at least one sequence per population 0.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating divergence versus populations.

Eff_length2_pop[0]: Effective length2 for population 0. That is, how many positions have at least two sequences per population 0.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating levels of variability.

Eff_length3_pop[0]: Effective length3 for population 0. That is, how many positions have at least three sequences per population 0.

Useful in case considering missing positions (-u 1). In case -u 0 all lengths are equal. Useful for calculating tests of neutrality (variances).

In principle, if the analysis contains an outgroup, all analysis are conditioned to the presence of the outgroup variant.

STATISTICS:

Estimates of variability for each population:

S[0]: Number of segregating sites at population 0

Theta(Wat)[0]: Watterson (1975) estimation of variability.

Theta(Taj)[0]: Tajima (1983) estimation of variability.

Theta(Fu&Li)[0]: Fu and Li's (1991) estimation of variability.

Theta(Fay&Wu)[0]: Fay and Wu's (2000) estimation of variability.

Theta(Zeng)[0]: Zeng's (2006) estimation of variability.

Theta(Achaz,Wat)[0]: Watterson estimator without considering singletons (Achaz 2008) **Theta(Achaz,Taj)[0]**: Tajima estimator without considering singletons (Achaz 2008)

Divergence[0]: Divergence between population 0 and the outgroup.

an_x[0]: (Σ (i=1 to n-1)1/i), that is, sumatory of (1/i) from i=1 to n-1, being n the number of samples. In case missing data (-u 1), sum of an for each position and divided by the eff_length2_pop. Used for Watterson estimator and neutrality tests.

bn_x[0]: (Σ (i=1 to n-1)1/i²), that is, sumatory of (1/i²) from i=1 to n-1, being n the number of samples. In case missing data (-u 1), sum of an for each position and divided by the eff_length2_pop. Used for neutrality tests.

an_xo[0]: Same but considering only those positions were the outgroup is present.bn_xo[0]: Same but considering only those positions were the outgroup is present.

Haplotype diversity and number of haplotypes for each population:

HapW[0]: Haplotype diversity at population 0. **nHap[0]**: number of haplotypes at population 0.

Neutrality tests for each population:

Tajima D[0]: Test of Tajima (1989) **Fu&Li D[0]**: Test of Fu and Li D (1993) **Fu&Li F[0]**: Test of Fu and Li D (1993)

Fay&Wu norm H[0]: Test of Fay and Wu (2000) normalized (Achaz 2009, Zeng 2006)

Fay&WuH[0]: Test of Fay and Wu (2000)

Ferretti L[0]: Test of Ferretti similar to Fay and Wu but using theta Watt instead Theta Taj (Ferretti et al.)

Zeng E[0]: Test of Zeng (2006) Achaz Y[0]: Test of Achaz (2008)

Fs[0]: Test Fs (Fu 1997) R2[0]: Test of R2 (2002)

Variants assigned to exclusive, fixed, polymorphic but fixed in rest of pops, and shared:

Ss[rest] are shared variants between populations but fixed within:

Sx[0]: Exclusive variants at population 0

Sf[0]: Fixed variants at population 0

Ss: Shared variants among populations

Sxf[0]: Exclusive variants at population 0 that are fixed at other populations.

Mismatch distribution statistics:

SDev[0]: Standard deviation of Tajima's estimator.

 $\textbf{Skewness[0]}: Third \ standardised \ moment \ of \ Tajima's \ estimator.$

Kurtosis[0]: Fourth standardised moment of Tajima's estimator.

Differentiation statistics:

Differentiation with nucleotide sequences (even with missing data):

Fstall: 1 - mean(pi_within/nt)/mean(pi_among/nt)

Fst1all[pop1]: 1- mean(pi_within/nt[rest],pi_within_rest/nt[pop1])/mean(pi_among/nt)

 $\textbf{Fst[pop1][pop2]}: 1 - mean(pi_within/nt[pop1], pi_within/nt[pop2])/pi_among/nt[pop1][pop2] (Hudson \ et \ al. \ al.$

1992)

Differentiation with haplotype data (phase is necessary):

Fsthall: 1 - mean(pih_within)/mean(pih_among)

Fsth1all[pop1]: 1- mean(pih_within[pop1]-pih_within[rest])/mean(pih_among)

Fsth[pop1][pop2]: 1 - mean(pih_within[pop1],pih_within[pop2])/pih_among[pop1][pop2]

Frequency of variants for each population:

fr[0,1]: Site frequency Spectrum per population

Frequency of each haplotype in the populations:

frH[0,hap00]: frequency of each haplotype per population

Joint frequency distribution for each variant and population (No included variants that are missing or polymorphic in the outgroup):

SNP[xx]: frequency of each SNP at each population.

Relative Site Frequency Spectrum

rSFS[pop,freq]: number of variants at frequency freq in the population pop, relative to the whole sample (excluding outgroup, only used for polarizing)