ROAR II

Ricerca Operativa Applicazioni Reali

Alessandro Gobbi Alice Raffaele Gabriella Colajanni Eugenia Taranto IIS Antonietti, Iseo (BS) 12 marzo 2022

Introduzione

Chi siamo e i nostri contatti

Alessandro Gobbi (UniBS) alessandro.gobbi@unibs.it

Alice Raffaele (UniVR) alice.raffaele@univr.it

Gabriella Colajanni (UniCT) colajanni@dmi.unict.it

Eugenia Taranto (UniCT) eugenia.taranto@unict.it

www.kahoot.it

Parte 1:

Correzione esercizi

Esercizio 1 – Al concerto!

Data la scheda di compito:

- disegnare il grafo orientato associato al problema e attribuire a ciascun lato il corretto costo.
- sfruttare l'algoritmo di Dijkstra per trovare la soluzione al problema.

Esercizio 2 – Modello matematico del problema del cammino minimo

- Implementare e risolvere con Excel Solver il modello matematico del problema del cammino minimo formulato nel primo lavoro di gruppo di venerdì 11 febbraio.
- Analizzare la soluzione che fornisce Excel Solver, verificando che coincida proprio con quella trovata nella Lezione 3 con l'algoritmo di Dijkstra.

Lavoro di gruppo

(45 minuti)

Consegna

Per ogni esercizio (GRAFOPOLI e ANDIAMO A MANGIARE):

- 1. Eseguire l'algoritmo STAR che trovate nella vostra cartella Drive per provare a risolvere l'istanza considerata, riportando tutti i passi fatti come indicato dalle istruzioni.
- 2. Commentare qualitativamente l'algoritmo STAR che vi è stato assegnato:
 - Siete riusciti a trovare una soluzione per l'istanza? Evidenziare eventuali criticità nel comprendere o eseguire le istruzioni.
 - Fare un confronto tra l'algoritmo STAR e l'algoritmo che avete consegnato voi per compito: quali sono i passi simili e quelli diversi? Quale procedura secondo voi è più efficiente?
 - · Aggiungere altre eventuali osservazioni.
- 3. Esprimere una valutazione da 1 a 10 per i seguenti aspetti dell'algoritmo STAR:
 - · chiarezza dei passi
 - · velocità
 - correttezza
 - efficacia

Esercizio 3 – Visitare la città

Si supponga che Remo, scoraggiato dal ritardo, decida di trascorrere ancora qualche ora a visitare la città di Grafopoli. In particolare, ogni nodo del grafo rappresenta un punto di interesse da visitare (un museo, una piazza, un monumento, etc.). In tabella sono riportati i tempi stimati di visita per ogni attrazione e gli eventuali orari di chiusura, oltre il quale non è più possibile accedervi (se c'è il '-', allora l'attrazione è sempre aperta):

	А	В	C	D	Е	F
Tempo di visita						
Orari di chiusura	12:00	-	13:00	13:30	-	-

Supponendo che Remo parta dall'hotel alle ore 11:00, quale cammino può fare per visitare quante più attrazioni possibili e non arrivare in stazione dopo le 14:00?

Visitare la città - Grafopoli

- Formulare e descrivere passo per passo un algoritmo che risolva il problema proposto, rispettando gli orari di apertura e le altre tempistiche indicate nel testo..
- Trovare una possibile soluzione per il problema, sfruttando l'algoritmo formulato.

Esercizio 4 – Dove andiamo a mangiare?

Nella mappa, rappresentante la zona di Brescia dove ci troviamo, sono indicati i principali punti di ristoro frequentati dagli studenti universitari durante la pausa pranzo, riportati in tabella con la legenda.

Punto Mappa	Locale		
А	SideUp Pokè		
В	Ristorante Birra & Brace		
С	Bar Atlantic		
D	Bar Gusto e Sapore		
Е	La Piadineria		
F	Italmark		
G	Mensa universitaria		

Dove andiamo a mangiare?

Il Dipartimento di Ingegneria dove ci troviamo noi ora è in corrispondenza del quadratino blu pieno. I valori indicati sulle strade evidenziate in blu indicano i tempi (in minuti) stimati di percorrenza per spostarsi da un punto all'altro nella mappa. Tra poco dovremo andare a mangiare e avremo un'ora di tempo per spostarci, rifocillarci, e ritornare qui.

Domande:

- Applicando l'algoritmo di Dijkstra e mostrando ogni passaggio, sapete dire quali sono i locali più vicini dal nostro punto di partenza? E quelli più lontani?
- 2. In quali locali non conviene andare perché rischieremmo di non tornare in tempo per le 13:30?
- 3. Se, nella mappa, evidenziate tutti i cammini minimi per raggiungere tutti i locali, cosa notate?

Variante con preferenze (a gruppi)

Oltre alle vostre preferenze, indicate nella slide precedente, consideriamo anche il fatto che i punti di ristoro hanno un numero di posti limitati, data l'ora di punta delle 12:30.

Punto Mappa	Locale	Numero di posti disponibili
A	SideUp Pokè	6
В	Ristorante Birra & Brace	10
С	Bar Atlantic	5
D	Bar Gusto e Sapore	5
Е	La Piadineria	7
F	Italmark	20
G	Mensa universitaria	10

Dati tutti i cammini minimi per i punti di ristoro (che dovreste avere calcolato nella versione base del problema), dovete decidere dove andrà ognuno di voi a pranzo, cercando di accontentare tutti il più possibile e restando il più vicino possibile a Ingegneria. **Descrivete un algoritmo euristico** che risolva questo problema di allocazione dei posti.

Cognome	Posto #1	Posto #2	Posto #3
Algisi	E	В	A
Banfi	E	В	D
Beccalossi	A	E	D
Beccati	E	C	A
Betti	А	E	В
Bettoni	A	E	В
Bianchi	A	E	D
Bignotti	E	А	В
Chiari	E	A	В
Facchetti	E	В	A
Giliani	E	А	D
Grazioli	G	D	В
Inverardi	В	D	E
Magnani	А	E	В
Maria	A	E	D
Mueller	E	D	C
Parzani	В	A	E
Pezzotti	E	A	В
Porcaro	E	А	В
Tonelli	A	E	D
Trebeschi	E	F	A
Valloncini	А	Е	D

Il problema del postino rurale

Presentazione da parte di **Matteo Gardoncini** (laureato triennale in Ingegneria Informatica)

Conclusione

Compiti per sabato 19 marzo

Descrivere un'applicazione reale, non menzionata durante la lezione di oggi, del problema del postino rurale.

Sondaggio finale

www.menti.com - Codice: 9184 4127