Q.1] (a) Calculate gain and bandwidth of a 2-stage amplifier with

$$A_{V1} = \frac{500}{\left(1 + \frac{S}{2000}\right)} \qquad A_{V2} = \frac{250}{\left(1 + \frac{S}{4000}\right)}$$

- (b) Draw the frequency response for the overall gain.
- Q.2] Three identical stages have an overall upper 3dB frequency of 20 KHZ and a lower 3dB frequency of 20 HZ. What are f_L and f_H of each stage? Assume non-interacting stages.
- **Q. 3**] For the amplifier shown in Fig. 1, the transistor has the parameters: $g_m = 5$ mu, $r_\pi =$ 200Ω , $r_0 = \infty$, $C_{\pi} = 100 pF$, $C_{\mu} = 10 pF$, and $C_C = 0.1 \mu F$. If three non-interacting stages from this amplifier are connected in cascade, determine the mid-band gain and lower & higher 3dB frequencies.

Q. 4] For the single stage CE amplifier shown in the Fig. 2, let $I_{CO} = 1$ mA. If three capacitively coupled stages of this amplifier are cascaded and the first stage is driven by a 10-μV-rms signal source having resistance 1KΩ, what is the voltage across a 50KΩ load connected at the output of the third stage? (β =100, V_A = 100V)

Fig. 2

 \checkmark **Q. 5**] Draw the AC equivalent circuit and calculate V_o/V_i , R_i and R_o .

Q. 6] A two-stage amplifier shown in Fig.4 is in CE-CC configuration. The transistor parameters are given as β =100 and r_{π} = 0.5 K Ω . Determine the overall voltage gain and current gain. Assume r_o = ∞ .

Fig. 4

Fig. 3

Q. 7] Calculate the voltage gain (V_o/V_i) , input impedance and output impedance for the two-stage amplifier shown in Fig.5. Assume β = 100.

Fig. 5

Q. 8] Determine the Q-point for Q_1 and Q_2 , voltage gain v_o/v_s , current gain, input resistance R_i , and output resistance R_o for the darlington configuration shown in Fig.6. Assuming $\beta_1 = \beta_2 = 100$, $V_{A1} = V_{A2} = \infty$, and $V_{BE1(ON)} = V_{BE2(ON)} = 0.7 \text{ V}$.

 \checkmark Q. 9] Calculate the overall voltage gain (v_o/v_s) for the circuit shown in Fig. 7. Assuming $β_1$ = 170, $β_2$ = 150 and $V_{BE(ON)}$ = 0.7 V.

Q. 10] A two-stage FET capacitively coupled amplifier has the following parameters: $g_m = 10 \text{ mA/V}$, $r_0 = 6 \text{ K}\Omega$, $R_D = 10 \text{ K}\Omega$, $R_G = 1 \text{ M}\Omega$ for each stage. Find the overall mid-band gain.

Best wishes