1.\(\) (Thrice Amended) A 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I

Ø

Sub Fi A CH3
B
N—R1
I

wherein

A represents a hydrogen atom,

B means a hydrogen atom,

 R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen

atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case R1 represents a group of the formula

-CO-(CH $_2$) $_p$ -R 6 , wherein

- R^6 stands for a halo atom, a phenoxy group, a $C_{1\text{-}4}$ alkoxy group or a group of the formula $-NR^7R^8$, wherein
- R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally

2

50h

substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

and R8 form together with the adjacent nitrogen R^7 atom, an oxopyrrollidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s)\ or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted identica 1 by 1 or different substituent(s) selected fŗom the consisting of a hydroxy group, \a phenyl group, a phenoxy group, a phenyl(C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, where i n in case of the substituents listed the phenyl \or phenoxy group is optionally substituted by $\backslash 1$ to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy

21

50 K F1 group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

p has a \forall alue of 0, 1 or 2,

 R^2 stands for a nitro group, an amino group or a $(C_{1-4}$ alkanoyl)amino group, with the proviso that

- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group, and
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom

ZI

Sub FI Sub

or a $C_{1\text{--}14}$ alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a $C_{1\text{--}4}$ alkyl group,

- 5) R is other than a chlorine atom; and with the further proviso that
- 6) R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

and pharmaceutically suitable acid addition salts thereof.

9. (Twice Amended) A pharmaceutical composition comprising a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I

5 Jb F3

wherein

- A represents a hydrogen atom,
- B means a hydrogen atom,
- R¹ stands for a group of the formula

 $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, \a phenyl group optionally substituted by one or $t \stackrel{\searrow}{\text{wo}}$ C_{1-4} alkyl group(s), a C_{1-4} alkyl group which is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom \setminus and an oxygen atom as the and said heterocyclic group heteroatom, optionally substituted\by a phenyl group which is optionally substituted by 1 to 3 substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or $\ensuremath{R^3}$ and $\ensuremath{R^4}$ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6\ members, being optionally substituted by a phenyl\group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

2 July 2

forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case represents a group of the formula

 $-CO - (CH_2)_p - R^6$, wherein

 R^1

 R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

and R⁸ mean, independently, a hydrogen atom, a guanyl group, a C₃₋₆ cycloalkyl group or a C₁₋₄ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C₁₋₄ alkoxy group, or

R⁷ and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group which is optionally substituted, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as 50 by

the heteroatom, and said heterocyclic group is optionally substituted by 1 to 3 identical or different substituent(s) selected from the group consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl $(C_{1-4} \text{ alkyl})$ group or a phenoxy $(C_{1-4} \text{ alkyl})$ group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a halo atom or a $(C_{1-4} \text{ alkoxy group})$, and, in case of the phenoxy $(C_{1-4} \text{ alkyl})$ group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-4} \text{ alkanoyl})$ amino group, with the proviso that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p

2/2

Sub F3 has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,

- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group,
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-14} alkyl group, and
- 5) R³ and R⁴ cannot form with the adjacent nitrogen atom a pyrrolidine group, or a pharmaceutically suitable acid addition salt thereof as the active ingredient and one or more conventional carrier(s).

16. (Thrice Amended) A method of treatment in which a patient suffering from epilepsy or being in a state after stroke is treated

with a non-toxic dose of a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I,

2 of Fy

wherein

A represents a hydrogen atom,

B means a hydrogen atom,

 R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen

50h4

atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or $2 \setminus or$

A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case

 R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein

 R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

 R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally

45

50h

substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

and ${\ensuremath{\mbox{R}}^8}$ form together with the adjacent nitrogen R^7 atom, an oxopyrrolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members\and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by to identical ordifferent substituent(s) selected from the consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl(C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl of phenoxy group is optionally substituted by $\frac{1}{4}$ to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy

group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- has a value of 0, 1 or 2, p
- R^2 stands for a nitro group, an amino group or a (C₁₋₄ alkanoyl)amino group, with the proviso that
- if A forms together with B a valence bond, R^2 1) stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C₁₋₄ alkoxy group,
- if A forms together with B a valence bond, R^2 2) stands for a nitro group\or an amino group, phas a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and $\ensuremath{\text{R}^8}$ is different from a hydrogen atom or a $C_{1\text{--}4}$ alkyl group,
- if each of A and B stands for a hydrogen atom, 3) n and m have a value of 0, then one \backslash of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group,
- if each of A and B stands for a hydrogen 4) atom, n has a value of 0, m has a value of 1

Sop

or 2, and one of \mathbb{R}^3 and \mathbb{R}^4 stands for a hydrogen atom or a $C_{1\text{-}14}$ alkyl group, then the other of ${\ensuremath{R}}^3$ and ${\ensuremath{R}}^4$ is different from a hydrogen atom or a C_{1-4} alkyl group,

- ${\ensuremath{\mbox{R}}}^3$ and ${\ensuremath{\mbox{R}}}^4$ cannot form with the adjacent nitrogen atom a pyrrolidine group, and
- R is other than a chlorine atom; or a pharmaceutically suitable acid addition salt thereof.

17. (Thrice Amended) A process for preparing a pharmaceutical composition suitable for the treatment of epilepsy or a state after stroke, characterized that 1,3-dioxolo-[4,5a h][2,3]benzodiazepine compound \setminus of the formula I,

wherein

- represents a hydrogen atom, A
- means a hydrogen atom, В

5)

6)

 \mathbb{R}^1 stands for a group of the formula $(CH_2)_n$ -CO- $(CH_2)_m$ -R, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

and R^4 mean, independently, a hydrogen atom, a R^3 C_{3-6} qycloalkyl group, a C_{1-4} alkoxy group, an amino \group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl \group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to $3\$ nitrogen atom(s) or a nitrogen atom and an oxygen\atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent is a C_{1-4} alkoxy\group, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C₁₋₄ alkoxy group,

EF

Sub F4 \setminus n has a value of 0, 1 or 2,

m\has a value of 0, 1 or 2, or

A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case

R¹ represents a group of the formula

-CO-(CH₂)_p $\sqrt{R^6}$, wherein

 R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

 R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more mitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

R⁷ and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or

E/\$

Sub F4 23 50h F4

more nitrogen atom(s) or a nitrogen and an pxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by to 3 identical or different substiktuent(s) selected from the group consisting of a hydroxy group, a phenyl group, a phenoxy \group , a phenyl(C_{1-4} alkyl) group or a phenoxy($C_{1\!\!\!/\!\!-4}^1$ alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is $\ a$ halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-4} \ alkanoyl) \, amino group, with the proviso that$
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,

836 Sub F4

- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group,
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 5) R is other than a chlorine atom; and with the further proviso that
- 6) R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

or a pharmaceutically suitable acid addition salt thereof, together with one or more conventional carrier(s), is converted to a pharmaceutical composition.