Lecture 15

Inverse Normal Problems

The Inverse Problem

As we've seen in the previous, we often need to take Z-scores and find probabilities from them. Sometimes this is in a normal problem, sometimes an approximation, and so on.

What if you wanted to go backward? What would this look like?

Inverse Problem Statement

What if I told you "the probability of this event happening is 0.5". What would the Z-score of such a setup be?

What's the unknown here $z_0!$

How do we solve for z_0 ?

- · trial and error?
- · use tables?
- · use R!

Using R to Find
$$z_0$$

Does this make sense? This is saying that $z_0 = 0$ has probability to its left of 0.5.

$$pnorm(q = 0, mean = 0, sd = 1, lower.tail = TRUE)$$

Checking Again

```
x <- seq(from = -3, to = 3, by = 0.01)

plot(x, dnorm(x), type = "l", xlab = "Z")

abline(h = 0)

abline(v = 0, col = "red")
```


Practice

lover.tail = TRUE

lower-tail=FALSE

Practice

What value of z_0 has $P(-z_0 \le Z \le z_0) = 0.3$?

So what do we actually need to run?

Practice

$$qnorm(p = 0.35, mean = 0, sd = 1, lower.tail = TRUE)$$

This is -z0, because we used 0.15 area to the left, and lower.tail = TRUE.

$$qnorm(p = 0.45, mean = 0, sd = 1, lower.tail = FALSE)$$

And this is z_0 , because **lower.tail = FALSE**.

More Practice

We're now going to solve a series of problems in all the variations of this that we can do.

Problem Type 1: Simple Left

)

0.72275

What value of z_0 has $P(-2 \le Z \le z_0) = 0.7$?

Problem Type 2: Simple Right

What value of z_0 has $P(-z_0 \le Z \le 1.0) = 0.4$?

 $Z_0 = 0.1476$ $Z_0 = 0.1476$

Problem Type 3: Symmetric, known

What value of z_0 has $P(-z_0 \le Z \le z_0) = 0.4$?

Problem Type 4: Symmetric, Indirect information

If the region from $-z_0$ to z_0 is 90% of the area under a standard normal curve, find z_0 .

Problem Type 5: Not Symmetric, known

What value of z_0 has $P(-2 \cdot z_0 \le Z \le z_0) = 0.6$?

One more piece: P[Z = -270] = 0.1 gnorm (0.3, lower-tail = FALSE)

Problem Type 6: Not Symmetric, Indirect information

If the 90th percentile of your distribution is equal to 11, and the 5th percentile is equal to 4, find μ and σ .

$$-1.645 = 4-1$$
 $1.282 = 11-1$

$$(1) -1.645 \sigma = 4 - \mu$$

$$(2) 1.282 \sigma = 11 - \mu$$