2-Body System Simulation and Prediction using Regression

Edwin Tomy George

Three Body Problem

- 1600s 1700s
- Chaotic nature
- Cannot be solved with equations in most cases
- Currently solved with computer simulations

Solving the three-body problem faster using a deep neural network

(Green et at. 2019) https://arxiv.org/abs/1910.07291

- Simulate 2 particle system where particles are affected by each other's gravity
- Closed one dimensional space of length 5m
- Particle masses between 10 billion and 50 billion kg
- Initial velocities between -1 and 1 m/s
- Initial positions between 0 and 5m

Initial Modelling

Pseudopotential

$$F = \frac{Gm_1m_2}{r^2}$$

$$F_{pseudo1} = \frac{Gm_1m_2}{r^2} * soften$$

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

$$F_{pseudo1} = \frac{Gm_1m_2}{r^2} * soften$$

$$F_{pseudo1} = \frac{Gm_1m_2}{r^2} * soften$$

$$F_{pseudo1} = \frac{Gm_1m_2}{r^2} * soften$$

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

lambda = 0.5

lambda = 0.1

lambda = 0.01

$$F_{pseudo2} = \frac{Gm_1m_2}{r^2 + soften}$$

Time step	Time to simulate 100 seconds of trajectory
1 millisecond = 10 ⁻³ seconds	2.48 seconds
100 microsecond = 10 ⁻⁴ seconds	17.55 seconds
10 microsecond = 10 ⁻⁵ seconds	205.56 seconds
1 microsecond = 10 ⁻⁶ seconds	+30 minutes

Graph Trajectories: Phantom Particles

Graph Trajectories: Elastic Collision

Objectives of the Regression

- Final position of particle in phantom and elastic collisions
- Time of collision
- If they collide or not

Initial Linear Regression

Phantom Collision

Root Mean Squared Error: 1.36

Elastic Collision

Root Mean Squared Error: 1.16

Root Mean Squared Error: 12595

Blue dots = predicted final positions of first particle Black dots = actual final positions of first particle Blue dots = predicted collision time Black dots = actual collision time

Initial Logistic Regression

Elastic Collision: If particles collide

Graph Trajectories: Phantom Particles w/o bounds

Graph Trajectories: Elastic Collision w/o bounds

Linear Regression of simulations w/o bounds

Phantom Collision

Elastic Collision

50000

Root Mean Squared Error: 1.90

Root Mean Squared Error: 1.64

Root Mean Squared Error: 15936

Blue dots = predicted final positions of first particle Black dots = actual final positions of first particle Blue dots = predicted collision time Black dots = actual collision time

Logistic Regression w/o bounds

Elastic Collision: If particles collide

Confusion matrix

Logistic Regression less parameters

Elastic Collision: If particles collide

Thank you for your attention!