Digital Image Processing (CSE/ECE 478)

Lecture 5: Using Histogram Statistics for Image Enhancement, Introduction to Spatial Filters

Histogram

$$h_r(i) = n_i$$

i → intensity value, range [0 L-1]
 n_i → number of pixels with intensity i

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$s_k = T(r_k) = \operatorname{round}\left((L-1)\sum_{j=0}^{j=k} p_r(r_j)\right)$$

$$b[i] = \text{constant}, \qquad 0 \leq i \leq L-1$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$S_k = T(r_k) = \text{round} \left((L-1) \sum_{j=0}^{j=k} p_r(r_j) \right)$$

$$\text{Ver. 2} \qquad s_k = T(r_k) = \text{round} \left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}} \right)$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$s_k = T(r_k) = \text{round} \left((L-1) \sum_{j=0}^{j=k} p_r(r_j) \right)$$

$$\text{Ver. 2} \quad s_k = T(r_k) = \text{round} \left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}} \right)$$

$$cdf_{min} = p_r(r_a) \text{ where } r_a = \min\{r_t | p_r(r_t) > 0\}; 0 \leqslant r_t \leqslant (L-1)$$

$$s_k = T(r_k) = \operatorname{round}\left((L-1)\sum_{j=0}^{j=k} p_r(r_j)\right)$$

Ver. 2
$$s_k = T(r_k) = \text{round}\left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}}\right)$$

 $cdf_{min} = p_r(r_a) \text{ where } r_a = \min\{r_t | p_r(r_t) > 0\}; 0 \le r_t \le (L-1)$

Equalized histogram

Histogram Processing

- Histogram Equalization
- Histogram Specification
- Local Histogram Equalization

Histogram Specification / Matching

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Neighborhood

Local Histogram Processing

Using Histogram Statistics for Image Enhancement

- we use some statistical parameters
 - o global:
 - $p(r_i) = \frac{n_i}{n}$
 - $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
 - $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i m)^2 p(r_i)$
 - o local:
 - $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s,t) using a mask centered at (x,y)
 - $m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} p(r_{s,t}) \, r_{s,t}$
 - $\sigma^2(S_{xy}) = \sum_{(s,t) \in S_{xy}} [r_{s,t} m_{S_{xy}}]^2 p(r_{s,t})$

Using Histogram Statistics for Image Enhancement

- we use some statistical parameters
 - o global:
 - $p(r_i) = \frac{n_i}{n}$
 - $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
 - $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i m)^2 p(r_i)$
 - o local:
 - $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s,t) using a mask centered at (x,y)
 - $m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} p(r_{s,t}) r_{s,t}$
 - $\sigma^2(S_{xy}) = \sum_{(s,t) \in S_{xy}} [r_{s,t} m_{S_{xy}}]^2 p(r_{s,t})$
- Objective: Enhance dark areas while leaving light areas unchanged
- Can we use local statistic to obtain it?

Using Histogram Statistics for Image Enhancement

a b c

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

$$g(x,y) = \begin{cases} E \square f(x,y), & \text{if } m_{s_m} \le k_0 m_G \text{ and } k_1 \sigma_G \le \sigma_{s_m} \le k_2 \sigma_G \\ f(x,y), & \text{otherwise} \end{cases}$$

 $m_{\rm G}$: global mean; $\sigma_{\rm G}$: global standard deviation $k_0=0.4$; $k_1=0.02$; $k_2=0.4$; E=4

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Spatial Domain Filtering

What is a filter?

What is filtering operation?

Spatial Domain Filtering - Approaches

▶ Linear

▶ Non-linear

Neighborhood Operation

Smoothing Operation

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

$$\begin{array}{c} I'(u,v) \, \leftarrow \frac{1}{9} \cdot [\, I(u-1,v-1) \, \ + I(u,v-1) \, + I(u+1,v-1) \, + \\ I(u-1,v) \, \ \ + I(u,v) \, \ \ + I(u+1,v) \, \ + \\ I(u-1,v+1) \, + I(u,v+1) \, + I(u+1,v+1) \,] \end{array}$$

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

Smoothing as Averaging

 $H \longrightarrow Weight Mask$ 1/9 1/9 I/9 Kernel

Filter

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

1/9

1/9

1/9

1/9

$$I'(u,v) \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

1/9

1/9

Effect of Mask Size

Original Image

[3x3]

[5x5]

[7x7]

Square averaging filter

Square averaging filter

FIGURE 3.33 (a) Original image, of size 500×500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes m=3,5,9,15, and 35, respectively. The black squares at the top are of sizes 3,5,9,15,25,35,45, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.

a b

c d

e f

Smoothing – a histogram perspective

Effect of Repeated Smoothing

Before After

NOTE: Can get the effect of larger filters by
smoothing repeatedly with smaller filters

After repeated averaging

Weighted Averaging

$$\sum_{i=-a}^{a} \sum_{i=-b}^{b} I(u+i,v+j) \cdot H(i,j)$$

$$I'(u,v) = \frac{(j=-a)(i=-b)}{a}$$

 $\sum I \int H(i,j)$

		(<i>j</i> =-	-a) $(i=-b)$
I	2	ļ	
2	4	2	
ı	2	I	

Standard average

Weighted average

Gaussian Function

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \text{Mean}$$

$$\sigma =$$
 Standard Deviation

$$\pi \approx 3.14159\cdots$$

$$e \approx 2.71828 \cdots$$

Gaussian Smoothing

Mask weights are samples of a Gaussian Function

I	4	6	4	1
4	16	26	16	4
6	26	43	26	6
4	16	26	16	4
I	4	6	4	I

 5×5 Gaussian filter, $\sigma=1$

Gaussian Smoothing – RGB images

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\{-(x^2 + y^2)/2\sigma^2\}$$

Gaussian Smoothing – animation

Gaussian Smoothing

Mask weights are samples of a Gaussian Function

I	4	6	4	I
4	16	26	16	4
6	26	43	26	6
4	16	26	16	4
I	4	6	4	I

 5×5 Gaussian filter, $\sigma=1$

 \triangleright Relation between σ and smoothing?

Gaussian Smoothing - Effect of sigma

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\{-(x^2 + y^2)/2\sigma^2\}$$

Detour: Generating the coefficients

1 265	I	4	6	4	I
	4	16	26	16	4
	6	26	43	26	6
	4	16	26	16	4
	I	4	6	4	I

Meru Prastaara, derived from Pingala's formulae (2 BCE), Manuscript from Raghunath Temple Library, Jammu

Out of focus blur

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

☐ Second derivative

1-D Derivatives

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- Zero in flat segments
- Nonzero at the onset of a step or ramp
- Nonzero along ramps

Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x).$$

- Zero in flat areas;
- Nonzero at the onset and end of a gray-level step or ramp;
- Zero along ramps of constant slope

Image Derivatives

$$f(x-1,y) \qquad f(x,y) \qquad f(x+1,y) \qquad \frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$f(x,y-1) \qquad \frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

О	1	0
1	- 4	1
О	1	0

O response in 'flat' areas

Laplacian Filter

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

Sharpening Filter

Objective of sharpening: Highlight fine detail / Enhance detail that has been blurred.

▶ Smoothing → Averaging → Summation

▶ Sharpening → Difference

Implementation

$$I'(u,v) = \begin{cases} I(u,v) - \nabla^2 I(u,v) \\ I(u,v) + \nabla^2 I(u,v) \end{cases}$$

Where I(u,v) is the original image

 $\nabla^2 I(u,v)$ is Laplacian filtered image

I'(u,v) is the sharpened image

If the center coefficient is negative
If the center coefficient is positive

0	1	0
1	- 4	1
О	1	О

sharpened = range_normalize(input + filtered)

Sharpening with Laplacian Filters

I(u, v)

 $\nabla^2 I(u,v)$

 $\nabla^2 I(u,v) + 128$

(ForVisualization)

Laplacian Filters $\nabla^2 I(u,v)$

I(u, v)

 $abla^2 I(u,v) + 128$ (For Visualization)

I'(u, v)

Sharpening with Laplacian Filters

$$g_{mask}(x,y) = f(x,y) - \bar{f}(x,y), \quad g(x,y) = f(x,y) + k * g_{mask}(x,y).$$

High boost filter: amplify input image, then subtract a lowpass image

$$Highboost = A \ Original - Lowpass$$

= $(A-1) \ Original + Original - Lowpass$
= $(A-1) \ Original + Highpass$

$$W = 17$$
 -1
 -1
 -1
 -1
 -1
 -1

A=2

- If **A=I**, we get unsharp masking.
- If A>I, part of the original image is added back to the high pass filtered image (highboost filtering).

DIP-XE

DIP-XE

DIP-XE

a b

Ċ

FIGURE 3.40

- (a) Original image.
- (b) Result of blurring with a Gaussian filter.
- (c) Unsharp mask. (d) Result of using unsharp masking.
- (e) Result of using highboost filtering.

Sobel Edge Masks

Original

$\lceil -1 \rceil$	0	+1
-2	0	+2
 _1	Ω	

Laplacian

Sobel Y
$$\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

0	-1	0
-1	4	-1
0	-1	0

0	-1	0
-1	4	-1
0	-1	0

Edge Magnitude and Gradient

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge Magnitude and Gradient

- Calculus...
 - Rate of change in two directions
 - Vector variable:
 - Gradient Magnitude
 - Orientation (0° is East)

$$\nabla f(i,j) = \sqrt{\left(\frac{\delta f(i,j)}{\delta i}\right)^2 + \left(\frac{\delta f(i,j)}{\delta j}\right)^2}$$
$$\phi(i,j) = \arctan\left(\frac{\delta f(i,j)}{\delta j}, \frac{\delta f(i,j)}{\delta i}\right)$$

$$\phi(i,j) = \arctan\left(\frac{\delta f(i,j)}{\delta j}, \frac{\delta f(i,j)}{\delta i}\right)$$

References

▶ GW Chapter – 3.4.1,3.5.1,3.6