Notes for Introduction to Mathematical Thinking

Pranav Prakash Rohit Sriram

February 26, 2015

Contents

1	Week 1	3
2	Week 2	4
	2.1 Lecture 3: Implication	4

1 Week 1

Introduction to symbols:

 $\land \mbox{ means a logical conjunction} \\ \lor \mbox{ means a logical disjunction} \\ \neg \mbox{ is negation}$

Truth Tables for these operators

Conjunction

ϕ	ψ	$\phi \wedge \psi$
Т	Т	Т
${\rm T}$	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	F	\mathbf{F}

Disjunction

ϕ	ψ	$\phi \lor \psi$
\overline{T}	Т	Т
${ m T}$	\mathbf{F}	Т
\mathbf{F}	\mathbf{T}	Т
\mathbf{F}	\mathbf{F}	F
		'

Negation

$$\begin{array}{c|c} \phi & \neg \phi \\ \hline T & F \\ F & T \end{array}$$

2 Week 2

2.1 Lecture 3: Implication

Implication has two parts, a truth part, and a causation part. For the purpose of this course we are ignoring the causation part.

The truth part is called the conditional or sometimes the material conditional. \Rightarrow means implication.

In a conditional statement you have a statement $\phi \Rightarrow \psi$. In this statement ϕ is the antecedent, and ψ is the consequent.

The truth or falsity of the statement $\phi \Rightarrow \psi$ depends upon the truth values of ϕ and ψ .

This means that you can use truth tables to find the truth or falsity of an implication statement.

For any implication statement, if ϕ is true and ψ is false, then the implication statement is false. For any other case, the implication statement is true.