

动态规划算法

学习要点

MASSEY

- 理解动态规划算法的概念。
- 掌握动态规划算法的适用条件及其证明
 - (1) 最优子结构性质
 - (2) 重叠子问题性质
- 掌握设计动态规划算法的步骤。
 - (1)找出最优解的性质,并刻划其结构特征。
 - (2) 递归地定义最优值。
 - (3)以自底向上的方式计算出最优值。
 - (4)根据最优值的信息构造最优解

2

学习要点

- 通过应用范例学习动态规划算法设计策略。
 - (1) 矩阵连乘问题;
 - (2) 最长公共子序列;
 - (3) 凸多边形最优三角剖分;
 - (4) 0/1背包问题:
 - (5) 最优二叉搜索树。

背景

- □解决优化问题
 - 给定一组约束条件和一个代价函数,在解空间中 搜索具有最小或最大代价的优化解
- □ Why动态规划?
 - ○对于一些优化问题,可以将其(递归)分解为若干 子问题,但是经分解得到的子问题**不是互相独立的**。 若用分治法来解决这些问题,分解得到的子问题数 目太多,有些子问题被<mark>重复计算</mark>了多次
 - ○如果我们能用一个表来记录所有已解决的子问题的答案,在需要时找出已求得的答案,就可以避免大量重复计算

基本步骤

- □找出最优解的性质,刻画其结构特征
- □递归地定义最优值
- □以自底向上的方式计算出最优值
- □根据最优值构造最优解(可选)

矩阵连乘问题

- □问题定义
 - \circ 输入: n个矩阵 $A_1,A_2,...,A_n$, 其中 A_i 的维数为 $p_{i-1} \times p_i$
 - A_i和A_{i+1}是可乘的
 - A_i 的列p_i等于A_{i+1}的行p_i
 - ○输出: 连乘积A₁A₂...A_n
 - 优化目标: 最小的计算代价(最优的计算次序)
 - 矩阵乘法的代价: 乘法次数
 - 例如,若A是p×q矩阵,B是q×r矩阵,则A×B的代价是pqr。
 - 由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加 括号的方式来确定。

矩阵连乘问题

□问题定义

- 若一个矩阵的计算次序确定,即该连乘积已完全加 括号,反复调用2个矩阵乘法法则来计算
- ○比如A₁ A₂ A₃ A₄有以下五种完全加括号方式:

 $((A_1 A_2) (A_3 A_4))$

 $(A_1 ((A_2 A_3) A_4))$

 $((A_1 (A_2 A_3)) A_4)$

 $(A_1 (A_2 (A_3 A_4)))$

 $(((A_1\,A_2\,)A_3\,)A_4\,)$

○每一种完全加括号的方式,对应一种计算次序

矩阵连乘问题

- □例子
 - ○三个矩阵A₁: 10×100, A₂: 100×5, A₃: 5×50
 - \circ $(A_1A_2)A_3$
 - 代价: 10×100×5+10×5×50=7500
 - \circ A₁(A₂A₃)
 - 代价: 100×5×50+10×100×50=75000

计算量和计算次序有很密切的联系 如何找到最优的计算次序??

矩阵连乘问题

□穷举法

- ○对于n个矩阵的连乘,假设有P(n)个不同的计算次序
- 在第k和k+1个矩阵之间将n个矩阵一分为二, k=1.2...n-1
- 对两个矩阵子序列完全加括号

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n > 1 \end{cases} \qquad n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$n! = \sqrt{2\pi \ n} \left(\frac{n}{e} \right)^n \left(1 + \Theta\left(\frac{1}{n}\right) \right)$$

$$\frac{1}{2} + \frac{1}{2} \times (Catalan Number): \\ P(n) = \frac{1}{n+1} C_{2n}^{n} = \frac{1}{n+1} * \frac{2^{n}!}{n! (2n-n)!}$$

$$P(n) = \frac{(2n)!}{(n+1)! n!} = \Omega(4^{n}/n^{3/2})$$

$$P(n) = \frac{(2n)!}{(n+1)!n!} = \Omega(4^n/n^{3/2})$$

矩阵连乘问题

- □分析最优解结构(1)
 - 将矩阵连乘积A_iA_{i+1}...A_i,简记为A[i:j]
 - ○设A_iA_{i+1}...A_i的最优计算次序在矩阵A_k和A_{k+1}之间将 矩阵链断开: $(A_i...A_k)(A_{k+1}...A_j)$
 - 总计算量=A[i:k]的计算量+A[k+1: j]的计算量 +A[i:k]和A[k+1:j]相乘的计算量
 - 最优子结构
 - 假设A[i: j]的最优计算次序是从Ak处断开,那么该问题包 含的子矩阵链A[i:k]和A[k+1:j]的计算次序也是最优的
 - 愿问题最优解包含子问题的最优解, 称为最优子结构性质
 - ○最优解:最优的计算次序(完全加括号的方式)
 - ○最优值:最优解下的计算代价(计算量)

矩阵连乘问题

□建立递归关系(2)

○ 计算A[i:j]所需的最少乘法次数为m(i,j)

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \leq k < j} \left\{ m(i,k) + m(k+1,j) + p_{i-1} p_k p_j \right\} & i < j \end{cases}$$

- ○其中A_i是p_{i-1}×p_i矩阵
- A[i:k] 是 p_{i-1}×p_k矩阵, A[k+1:j] 是 p_k×p_i矩阵,

矩阵连乘问题

int matrixmultiply(i, j){ if(i==j) return 0; int **u**=infinity; $for(k=i;\ k< j;\ k++)\{$ int t=matrixmultiply (i, k) + matrixmultiply (k+1, j) + p[i-1]p[k]p[j]; if(t<u) u=t; return u; } 仅仅考虑最优子结 构性质的递归求解 □时间复杂性 并没有很好的效果

矩阵连乘问题

 $m(i,j) = \begin{cases} 0 & i = j \\ \min_{i < j < j} \{m(i,k) + m(k+1,j) + p_{i-1}p_k p_j\} & i < j \end{cases}$

对于1≤i≤j≤n,不同的有序对儿(i,j)对应不同的子问题,所以计算 m(1, n)不同子问题的个数只有0(n²)个(n个元素任意选两个不同或相同) 事实上,许多重复的子问题被计算多次(对比2n)。

矩阵连乘问题(动态规划)

- □动态规划方法计算最优值(3)
 - 自底向上计算(从最简单的算起)
 - ○用一个二维表保存已解决问题的答案
 - 每个子问题只计算一次,后面需要的时候直接查找结果

矩阵连乘问题(动态规划)

m[1,2]m[1,4]m[1,1]m[1,3]m[1,5]

> m[2,2]m[2,3]m[2,4]m[2,5]

> > m[3,3]m[3,4]m[3,5]

计算m(1.5)

m[4,4]m[4,5]

m[5,5]

矩阵连乘问题(动态规划)

计算m(1, 5)

m[4,4]m[4,5] m[5,5]

矩阵连乘问题(动态规划)

矩阵连乘问题(动态规划)4

Λ 1	4.2	Λ2	Δ.4	A5	۸.6
AI					A0
30×35	35×15	15×5	5×10	10×20	20×25
				(20.25	15.510

 $p = \{p_0, p_1, p_2, p_3, p_4, p_5, p_6\} = \{30, 35, 15, 5, 10, 20, 25\}$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min \{m(i,k) + m(k+1,j) + p_{i-1}p_kp_j\} & i < j \end{cases}$$

矩阵连乘问题(动态规划)

 $p = \{p_0, p_1, p_3, p_4, p_5, p_6\} = \{30, 35, 15, 5, 10, 20, 25\}$

 $m[2][5] = \min \begin{cases} m[2][2] + m[3][5] + p_1 p_2 p_5 = 0 + 2500 + 35 \times 15 \times 20 = 13000 \\ m[2][3] + m[4][5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \times 5 \times 20 = 7125 \\ m[2][4] + m[5][5] + p_1 p_4 p_5 = 4375 + 0 + 35 \times 10 \times 20 = 11375 \end{cases}$

动态规划方法

- ❖ 基本思想
 - 把原始问题划分成一系列子问题
 - 求解每个子问题仅一次,并将其结果保存在一个 表中,以后用到时直接存取,

0

- ❖ 自底向上地计算
- ❖ 适用范围
 - 一类优化问题:可分为多个相关子问题,子问题 的解被重复使用

动态规划方法

□适用条件

- 1. 优化子结构
 - ✓ 当一个问题的优化解包含了子问题的优化解时,我们说 这个问题具有优化子结构。
 - ✓ 优化子结构使得我们能自下而上地完成求解过程
 - 证明: 首先假设由问题的最优解导出的子问题的解不是 最优的,然后再设法说明在这个假设下可构造出比原问 题最优解更好的解,从而导致矛盾。

动态规划方法

- □适用条件
 - 2. 重叠子问题
 - ✓ 在问题的求解过程中,很多子问题的解将被多次使用
 - ✓对每一个子问题只解一次,而后将其解保存在一个表格中, 当再次需要解此子问题时,只是简单地用常数时间查看一 下结果。

最长公共子序列问题

□子序列

- ○序列: X=<A, B, C, B, D, A, B>
- Z=<B, C, D, B>是X的子序列
- W=<C, A, B, D>不是X的子序列
- \circ 若给定序列 $X=\{x_1,x_2,...,x_m\}$,则另一序列 $Z=\{z_1,z_2,...,z_k\}$ 是X的子序列,是指存在一个严格递增下标序列 $\{i_1,i_2,...,i_k\}$,使得对于所有j=1,2,...,k有: $z_j=x_{i_j}$ 。

最长公共子序列问题

- □公共子序列
 - X=<A, B, C, B, D, A, B>
 - Y=<B, C, D, B, E>
 - Z={B, C, D, B}是X和Y的公共子序列

□最长公共子序列问题

- \circ 输入: X= $\langle x_1, x_2, ..., x_m \rangle$, Y= $\langle y_1, y_2, ..., y_n \rangle$
- ○输出: X和Y的最长公共子序列Z

□穷举法

- ○找到X的所有子序列,检查是否是Y的子序列,在检查过程中记录最长的公共子序列
- 很明显, 共2^m个不同子序列, 需要指数时间。

最长公共子序列问题

□优化子结构 1

- \circ 设序列 $X=<x_1,...,x_m>$ 和 $Y=<y_1,...,y_n>$ 的最长公共子序 列是 $Z=\langle z_1,...,z_k\rangle$
- o如果x_m=y_n
 - $\cdot z_k = x_m = y_n$
 - $<\mathbf{z1},...,\mathbf{z_{k-1}}>$ 是 $<\mathbf{x_1},...,\mathbf{x_{m-1}}>$ 和 $<\mathbf{y_1},...,\mathbf{y_{n-1}}>$ 的最长公 共子序列
- o如果**x_m≠y_n且z_k≠x**_m
 - $\langle z_1,...,z_k \rangle$ 是 $\langle x_1,...,x_{m-1} \rangle$ 和 $\langle y_1,...,y_n \rangle$ 的最长公共 子序列
- 如果 $\mathbf{x}_{\mathbf{m}}\neq\mathbf{y}_{\mathbf{n}}$ 且 $\mathbf{z}_{\mathbf{k}}\neq\mathbf{y}_{\mathbf{n}}$
 - $\langle z_1,...,z_k \rangle$ 是 $\langle x_1,...,x_m \rangle$ 和 $\langle y_1,...,y_{n-1} \rangle$ 的最长公共 子序列

最长公共子序列问题

- \Box 找<x₁,...,x_m>和<y₁,...,y_n>的最长公共子序列
 - o如果x_m=y_n
 - 找<x₁,...,x_{m-1}>和<y₁,...,y_{n-1}>的最长公共子序列, 在其尾部加上xm
 - o 如果x_m≠y_n
 - 找<x₁,...,x_{m-1}>和<y₁,...,y_n>的最长公共子序列
 - 找<x₁,...,x_m>和<y₁,...,y_{n-1}>的最长公共子序列
 - 取这两个公共序列的较长者

最长公共子序列问题

□递归表达式 2

 \circ 用c(i, j)表示 $< x_1, ..., x_i > 和 < y_1, ..., y_i > 的最长公共子序$ 列的长度

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ } \exists \vec{y} j = 0 \\ c(i-1,j-1) + 1 & i,j > 0; x_i = y_j \\ \max\{c(i-1,j),c(i,j-1)\} & i,j > 0; x_i \neq y_j \end{cases}$$

最长公共子序列问题

□重叠子问题 $i=0 \, \vec{ \mathop{ \rm gl} } j=0$ $i, j > 0; x_i = y_j$ c(i, j) =c(i-1, j-1)+1 $\max\{c(i-1, j), c(i, j-1)\}$ $i, j > 0; x_i \neq y_i$

X长度m, Y长度n, 那么总共有 $\theta(mn)$ 个不同的子问题

最长公共子序列问题

- □动态规划方法3

 - 自底向上求解子问题 c(i,j)= 子问题的解保存到表中

c(i-1, i-1)+1 $\max\{c(i-1, j), c(i, j-1)\}$

c[1,4]

求c[3,4]

i = 0 或j = 0 $i, j > 0; x_i = y_i$ $i, j > 0; x_i \neq y_j$

c[3,0]c[3,1] c[3,2]c[3,3]c[3,4]c[2,0]c[2,1]c[2,2]c[2,3]c[2,4]

c[1,0] c[1,1] c[1,2]c[1,3]

c[0,0]c[0,1]c[0,2]c[0,4]c[0,3]

最长公共子序列问题

□动态规划方法

最长公共子序列(计算最优值)

最长公共子序列(构造最优解4)

if (i ==0 || j==0) return; $LCS = \{B, C, B, A\}$ if $(b[i][j] == \checkmark)$ LCS(i-1, j-1, x, b); 2 0 2 3 3 4-4 print x[i]; } 1 2 2 3← **-** 3 ['] 3 4 В 0 else if $(b[i][j] == \downarrow)$ 0 1 2 2 3 3 1 LCS(i-1, j, x, b); 2 2 C 0 0 1 2 2 D 0 0 1 1 1 1 2 2 2 LCS(i, j-1, x, b); 0 0 1 1 1 1 1 R

> 0 0 0 0

每次递归i、j减1,O(m+n)

0 A B C B D A

0 0 0

最长公共子序列(构造最优解)

void LCS(int i, int j, char *x, int **b) X={B, D, C, A, B, A} $Y=\{A, B, C, B, D, A, B\}$ if (i ==0 \parallel j==0) return; $LCS=\{B, C, B, A\}$ if $(b[i][j]== \checkmark){$ LCS(i-1, j-1, x, b); 2 2 3 0 3 print x[i]; } 0 2 2 3 4 3 3 В else if $(b[i][j] == \downarrow)$ 0 2 2 3 LCS(i-1, j, x, b); 2 0 0 2 2 else 0 2 2 0 1 D LCS(i, j-1, x, b); 0 0 + 11 1 1 0 0 0 0 0 0 0 0 每次递归i、j减1,O(m+n) \mathbf{C}

最长公共子序列(算法的改进)

1. 将数组b省去, c(i, j)只和三个数组元素值有关,借助c本身在常数时间内确定到底是由哪个而确定。

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ } \exists \hat{y} j = 0 \\ c(i-1,j-1)+1 & i,j > 0; x_i = y_j \\ \max\{c(i-1,j),c(i,j-1)\} & i,j > 0; x_i \neq y_j \end{cases}$$

- 2. 修改LCS,不使用数组b可以在0(m+n)时间构造最长公共子序列。从而节省 Θ (mn) 的空间。
- 3. 数组c仍然需要 Θ (mm) 的空间,实际只对常数因子优化。
- 4. 如果只求子序列长度,事实上c(i, j)只需要数组c的i和i-1行。空间可进一步减小到0(min{m, n})

凸多边形最优三角剖分

□多边形

- \circ n个顶点的多边形P可表示为其 顶点序列P= $\{v_0, v_1, ..., v_{n-1}\}$
- ○内部、边界、外部

□凸多边形

○ 边界上或内部任意两点连成的 线段都在其内部或边界上

凸多边形最优三角剖分

□弦

○连接多边形上不相邻顶点v_i和v_j 的线段

□三角剖分

○ 将多边形划分为不相交的三角 *ν* 形的弦的集合

凸多边形最优三角剖分

□凸多边形的最优三角剖分问题

- ○输入: 凸多边形P和代价函数w
 - w指定了每个三角形的代价
 - \not $w(v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_k v_i|$
- \circ 输出: P的三角剖分T,使得 $\sum_{s \in S_T} w(s)$ 最小 \bullet S_T是T所对应的三角形集合

凸多边形最优三角剖分

- □优化子结构1
 - P=(v_(i)v₁,...,v_n)是n+1个顶点的凸多边形
 - OT_p 是P的依他三角剖兮,包含三角形 $v_0v_kv_n$

 $T_p = T(v_0, ..., v_k) \cup T(v_k, ..., v_n) \cup \{v_0 v_k v_n\}$

凸多边形最优三角剖分

□定理(优化子结构)

设 $P=(v_o,v_p,...v_n)$ 是n+I个顶点的凸多边形. 如果 T_p 是P的最优三角剖分且包含三角形 $v_ov_kv_n$,即

 $T_p = T(v_0, ..., v_k) \cup T(v_k, ..., v_n) \cup \{v_0 v_k v_n\}$

则

- \odot (1). $T(v_0, ..., v_k)$ 是 $P_i = (v_0, v_1, ..., v_k)$ 的优化三角剖分,
- \circ (2). $T(v_k, ..., v_n)$ 是 $P_2 = (v_k, v_{k+1}, ..., v_n)$ 的优化三角剖分

凸多边形最优三角剖分

- □最优三角剖分的递归结构2
 - \circ 设t(i,j)为凸多边形 $\{v_{i-1},v_i...,v_j\}$ 最优三角剖分的代价
 - \circ 为方便,设退化的多边形 $\{v_{i-1},v_i\}$ 具有权值0(i=jt)

$$t(i,j) = \begin{cases} 0 & i = j\\ \min_{i \le k \le i} \{t(i,k) + t(k+1,j) + w(v_{i-1}v_kv_j)\} & i < j \end{cases}$$

凸多边形最优三角剖分 $t(i,j) \rightarrow \{v_{i,j}, v_i, \dots, v_i\}$

 $\min_{i \in k, i} \{ t(i, k) + t(k+1, j) + w(v_{i-1}v_k v_j) \}$ □重叠子问题

i = 1, k = 3, j = 6 $t(1,6) = t(1,3) + t(4,6) + w\{v_0v_3v_6\}$

$$v_1$$
 v_2
 v_3
 v_4

$$i = 1, k = 4, j = 6$$

 $t(1,6) = t(1,4) + t(5,6) + w\{v_0v_4v_6\}$

$$i = 1, k' = 3, j = 4$$

 $t(1,4) = t(1,3) + t(4,5) + w\{v_0v_4v_5\}$

凸多边形最优三角剖分

□动态规划方法

○ 与矩阵连乘方法一致 34

$$t(i,j) = \begin{cases} 0\\ \min\{t(i,k) + t(k+1,j) + w(v_{i-1}v_kv_j)\} \end{cases}$$

$$i = j$$

t[4,5]

凸多边形最优三角剖分

□动态规划方法

凸多边形最优三角剖分

□关系

○一个表达式的完全加括号方式对应一颗完全二叉树, 称为语法树(从哪里加括号,哪里就有一个结点), 完全二叉树的n个叶结点表示表达式的n个原子。

 $(A_1(A_2A_3))((A_4A_5)A_6)$

以某个结点 为根的子树,表 示为其左子树和 右子树的乘积。

凸多边形最优三角剖分

□关系

○ 凸多边形(v₀,v₁,...,vո,-) 三角剖分问题也可以用语法树表示

- 1. 根节点 $\mathbf{v_0v_6}$, 三角剖分的弦组成其余内节点。
- 多边形除 $\mathbf{v_0v_6}$ 的边都是语法树的一个叶结点,树根 $\mathbf{v_0v_6}$ 是三角形 $\mathbf{v_0v_3v_6}$ 的一条边,该三角形把原三角形分
- m_{2} m_{2} m_{2} m_{3} m_{4} m_{5} $m_$ 多边形 $\{ \mathbf{v_0 v_1 \cdots v_3} \}$ 和凸多边形 $\{ \mathbf{v_3 v_1 \cdots v_6} \}$ 的三角剖分。

凸多边形最优三角剖分

□关系

○ 凸多边形(v₀,v₁,...,v_{n-l}) 三角剖分问题也可以用语法树表示

- 4. 对于凸n多边形的三角剖分与n-1个 叶结点的语法树一一对应。 N个矩阵的完全加括号连乘积与n个
- 叶结点的语法树一一对应。 N个矩阵的连乘积与凸n-1多边形一
- 一对应。
- 矩阵连乘的最优计算次序问题是凸 多边形最优三角剖分问题的特殊情况。对于最优三角剖分问题,代价 函数是任意的。

0-1背包问题

□0-1背包问题

- 输入: n 种物品和一个背包
 - 物品 i 的重量是 w_i , 价值为 v_i
 - 背包的容量是 C
- ○输出:装入背包的物品
- 优化目标: 装入背包的物品总价值最大

0-1背包问题

□形式化描述

- 输入: $\{\langle w_1, v_1 \rangle, \langle w_2, v_2 \rangle, ..., \langle w_n, v_n \rangle\}$ 和*C*
- 输出: $(x_1, x_2, ..., x_n)$, $x_i \in \{0, 1\}$ 满足
- \circ 优化目标: $\max \sum v_i x_i$

□等价于整数规划问题

$$\max \sum_{i=1}^{n} v_i x_i$$

规划中的变量(全部或部分,
$$x_i$$
)限制为整数。

$$\sum_{i=1}^{n} w_i x_i \le C$$

$$x_i \in \{0,1\}, \ 1 \le i \le n$$

0-1背包问题

□最优子结构1

○ 设 (x₁, x₂, ..., x_n) 是0-1背包问题的一个最优解

如果 x_1 =0:则 $(x_2, ..., x_n)$ 是以下子问题的最优解

$$\max \sum_{i=2}^{n} v_i x_i$$

$$\begin{cases} \sum_{i=2}^{n} w_i x_i \le C \\ x_i \in \{0,1\}, \ 2 \le i \le n \end{cases}$$

 $x_i = 0$ or 1,将问题完整的分成两个子问题,原问题的最优解包含子问题的最优解。

0-1背包问题

□递归关系2

- \circ 设m(i,j)为背包容量为j,可选物品为i,i+1,...,n是01背 包问题的最优值,
- 有如下递归关系(分析第i个物品是否能装进去,到底装 还是不装0 or 1)
 - *i*<*n*时 (可选有i: n)

$$m(i,j) = \begin{cases} \max\{m(i+1,j), \ m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

• *i=n*时 (可选只有n)

$$m(n,j) = \begin{cases} v_n & j \ge w_n \\ 0 & 0 \le j < w_n \end{cases}$$

0-1背包问题

□递归关系

○ *i*<*n*时

$$m(i, j) = \begin{cases} \max\{m(i+1, j), \ m(i+1, j-w_i) + v_i\} & j \ge w_i \\ m(i+1, j) & 0 \le j < w_i \end{cases}$$

0-1背包问题

□重叠子问题 ○ 假设w₁=w₂=w

0-1背包问题

□动态规划方法

○ 令w;为整数, n=4

0-1背包问题(动态规划方法)

- □ 令w_i为整数, n=4
- □ 自底向上计算最优解(i--, j++)

			<i>m(1,€)</i> →
$m(\hat{z},\hat{v})$	m(2,1)	***************************************	m(2,C-1) m(2,C)
m(3,0)	m(3,1)	•••••	m(3,C-2) $m(3,C)$
m(4,0)	m(4,1)	••••••	<i>m</i> (4, €-2) <i>m</i> (4, €)

0-1背包问题(动态规划方法)

算法:

m(n,j) =

0

 $m[i, j] = \max\{m[i+1, j], m[i+1, j-w_i] + v_i\};$

Then
$$m[1, C] = m[2, C];$$
Else $m[1, C] = \max\{m[2, C], m[2, C-w_I] + v_I\};$

$$m(i, j) = \begin{cases} \max\{m(i+1, j), m(i+1, j-w_i) + v_i\} & j \ge w_i \\ m(i+1, j) & 0 \le j < w_i \end{cases}$$

0-1背包问题(动态规划方法)

□构造最优解

1. m(1, C)是最优解代价值,相应解计算如下:

If m(1, C) = m(2, C)

Then $x_I = \theta$;

Else $x_1 = 1$;

- 2. 如果 $x_I=0$, 由m(2, C)继续构造最优解;
- 3. 如果 $x_1=1$, 由 $m(2, C-w_1)$ 继续构造最优解.

0-1背包问题(动态规划方法)

- · 时间复杂性
 - 计算代价的时间
 - O(Cn)
 - 构造最优解的时间: O(n)
 - 总时间复杂性为: O(Cn)
- 空间复杂性
 - -O(Cn)

最优二叉搜索树

- □搜索问题
 - 给定<mark>有序</mark>数组,例如a[]=3, 12, 15, 23, 29, 37, 45
 - 判断元素x是否在数组中,及其在数组中(待插入)的位置

最优二叉搜索树

□二叉搜索树

- 内节点: *x*₁, *x*₂, ..., *x*_n
- **○** 叶节点: $(-\infty, x_1), (x_1, x_2), ..., (x_n, +\infty)$
- o 对于任意内节点x
 - 左子树中的元素都 小于x
 - · 右子树中的元素都大于x

最优二叉搜索树

 $\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$

- □最优二叉搜索问题
 - 输入
 - 有序数集合 $\{x_1, x_2, ..., x_n\}$

Node	(-∞, x ₁)	<i>x</i> ₁	(x_1, x_2)	x_2	 X_n	$(x_n, +\infty)$
Probability	q_0	p_1	q_1	p_2	 p_n	q_n

- ○输出:最优二叉搜索树
 - 在二叉树中查找的平均路长(比较次数)最小

$$E(T) = \sum_{i=1}^{n} p_i (1+c_i) + \sum_{j=0}^{n} q_j d_j$$
, ci和di分别为内结点和叶结点的深度

最优二叉搜索树

0.1 0.15

1.2

最优二叉搜索树

 $E(T) = \sum_{i=1}^n p_i (1+c_i) + \sum_{j=0}^n q_j d_j$, ci和di分别为内结点和叶结点的深度

Node	Probability	Depth	Contribution	·თ,
<i>x</i> 1	0.05	3	0.2	
<i>x</i> 2	0.05	2	0.15	
<i>x</i> 3	0.1	1	0.2	
<i>x</i> 4	0.3	0	0.3	
$(-\infty, x1)$	0.05	4	0.2	
(x1, x2)	0.05	4	0.2	
(x2, x3)	0.05	3	0.15	
(x3, x4)	0.05	2	0.1	
$(x4, +\infty)$	0.3	1	0.3	

X4

(x4, +∞)

Node	$(-\infty, x_1)$	x_1	(x_1,x_2)	x_2	 X _n	$(x_n, +\infty)$	
Probability	q_0	p_1	q_1	p_2	 p_n	q_n	电线电影大学

□搜索树的代价

0.05

0.3

(x2, x3)

(x3, x4)

 $(x4, +\infty)$

- 设搜索树T中
 - 树中 x_i 节点的深度为 c_i
 - 叶节点 (x_i, x_{i+1}) 的深度为 d_i
- T的代价

$$E(T) = \sum_{i=1}^{n} p_i (1 + c_i) + \sum_{i=0}^{n} q_i d_i$$

最优二叉搜索树

- □最优二叉搜索问题
 - 输入
 - 有序数集合 $\{x_1, x_2, ..., x_n\}$

Node	$(-\infty, x_1)$	x_1	(x_1,x_2)	<i>x</i> ₂	X_n	$(x_n, +\infty)$
Weight	q_0	p_1	q_1	p_2	 p_n	q_n

- ○输出:二叉搜索树T
 - 树中 x_i 节点的深度为 c_i
 - 叶节点 (x_i, x_i+1) 的深度为 d_i
- 优化目标: 最小化代价函数

$$E(T) = \sum_{i=1}^{n} p_i (1 + c_i) + \sum_{i=0}^{n} q_i d_i$$

最优二叉搜索树

 \Box 设T是针对输入 $E(T) = \sum_{i=1}^{n} p_i (1+c_i) + \sum_{i=0}^{n} q_i d_j$, ci和di分别为内结点和叶结点的深度

Node	(x_{i-1}, x_i)	x_i	 x_j	(x_j, x_{j+1})
Weight	q_{i-1}	D_i	 p_i	q_i

的最优二叉搜索树,且T以 x_r 为根

- □ 则, 由于T1和T2为子树,单独考虑时,结点深度减1(补)

 $E(T) = p_r + [E(T_1) + w(i, r-1)] + [E(T_2) + w(r+1, j)]$

最优二叉搜索树

□优化子结构

○如果T是针对以下输入的最优二叉搜索树

Node	(x_{i-1}, x_i)	x_i	 x_j	(x_j, x_{j+1})
Weight	q_{i-1}	p_i	 p_j	q_{j}

- 那么
 - T₁是针对以下输入的最优二叉搜索树

Node	(x_{i-1}, x_i)	x_i	 $X_{r=1}$	(x_{r-1}, x_r)
Weight	q_{i-1}	p_i	 p_{r-1}	q_{r-1}

• T₂是针对以下输入的最优二叉搜索树

Node	(x_r, x_{r+1})	x_{r+1}	 x_j	(x_j, x_{j+1})
Weight	q_r	p_{r+1}	 p_i	q_i

最优二叉搜索树

□ 设*E(i, j)*是针对以下输入构造的最优二叉搜索树的代价

Node	(x_{i-1}, x_i)	x_i	 x_j	(x_j, x_{j+1})
Weight	q_{i-1}	p_i	 p_j	q_{j}

○ 假设这棵树以 x_r ($i \le r \le j$)为根,则

$$E(i,j) = p_r + [E(i,r-1) + w(i,r-1)] + [E(r+1,j) + w(r+1,j)]$$

$$E(i, j) = w(i, j) + E(i, r-1) + E(r+1, j)$$

最优二叉搜索树

□ 设E(i, j)是针对以下输入构造的最优二叉搜索树的代价

Node	(x_{i-1}, x_i)	x_i	 x_j	(x_j, x_{j+1})	
Weight	q_{i-1}	p_i	 p_{j}	q_{j}	

○ 如果不知道根节点,则

$$E(i,j) = \begin{cases} 0 & j = i - 1 \\ \min_{1 \le i \le j} \{ E(i,r-1) + E(r+1,j) + w(i,j) \} & i \le j \end{cases}$$

· 其中, E(i, i-1)是针对以下输入的最优二叉搜索树

Node	(x_{i-1}, x_i)
Weight	q_{i-1}

最优二叉搜索树

□重叠子问题

$$E(i,j) = \begin{cases} 0 & j = i-1\\ \min_{j \leq r \leq j} \{E(i,r-1) + E(r+1,j) + w(i,j)\} & i \leq j \end{cases}$$

最优二叉搜索树

□动态规划方法

$$E(i,j) = \begin{cases} 0 \\ \min_{i \le r \le j} \{ E(i,r-1) + E(r+1,j) + w(i,j) \} \end{cases}$$

E(1,0) E(1,1) E(1,2) E(1,3) E(1,3) E(1,4) E(2,1) E(2,2) E(2,3) E(2,4) E(3,2) E(3,3) E(3,4) E(4,4)

最优二叉搜索树

・算法

- · 数据结构
 - E[1:n+1; 0:n]: 存储优化解搜索代价
 - W[1: n+1; 0:n]: 存储代价增量
 - *Root[1:n; 1:n]: Root(i, j)*记录子问题 {*x*_{*i*}, ..., *x*_{*i*}}优化解的根

最优二叉搜索树

E(5,4)

Optimal-BST(p, q, n)
For i=1 To n+1 Do E(i, i-1) = 0; $W(i, i-1) = q_{i-1};$ For i=1 To n Do
For i=1 To n-1+1 Do j=i+1-1; $E(i, j)=\infty;$ $W(i, j)=W(i, j-1)+p_j+q_j;$ For r=i To j Do t=E(i, r-1)+E(r+1, j)+W(i, j);If t < E(i, j)Then E(i, j)=t; Root(i, j)=r;Return E and Root

最优二叉搜索树

- ・时间复杂性
 - (l, i, r)三层循环,每层循环至多n步
 - 时间复杂性为**O(n³)**
- ・空间复杂性
 - 二个(n+1)×(n+1)数组,一个n×n数组
 - $-O(n^2)$