

Simulation-based resilience prediction of microservice architectures

Proposal Fachstudie 6/1/2017

Samuel Beck Johannes Günthör Christoph Zorn

Microservice Architecture

http://microservices.io/i/Microservice_Architecture.png

Failures in Microservice Architectures

http://microservices.io/i/Microservice_Architecture.png

Complexity of Microserivce Architectures

https://cdn-images-1.medium.com/max/600/1*OhONoCsb1KvesLy-n5ZsSw.png

http://www.embarc.de/wp-content/uploads/2015/07/Abbildung-1-copy.png

Stability/Resilience Patterns

Common architecture patterns are used (Circuit Breaker)

- The use of patterns is not visible to the outside
- Effectiveness of patterns only shown to gathered metrics

Release It!

Design and Deploy Production-Ready Software

Michael T. Nygard

Do my resilience mechanisms work as expected?

Conclusion

Does a microservice shutdown propagate through the overall system?

State of the Art

Resilience Testing in Microservices

Simian Army (Netflix)

- Search Chaos Monkeys (Azure)
 - Only working in a real time environment

State of the Art

University of Stuttgart

Architecture Simulation for QoS Evaluation

https://github.com/adrianco/spigo

Further alternatives are objective of research

8

State of the Art

Limitations

Resilience testing in production environment is dangerous and expensive

Most current simulators can't simulate occurrence of failures

Or are not mature enough (Spigo)

Goals

10

Offline simulation of microservices


```
{"serviceName":"Frontend","dependency":"Server","count":"1"} {"serviceName":"Server","dependency":"Logic","count":"1"} {"serviceName":"Logic","dependency":"DataBase","count":"3"} {"serviceName":"DataBase","dependency":"","count":"1"} {"serviceName":"ChaosMonkey","Killing":"","count":""}
```

Goals


```
{"serviceName":"Frontend","dependency":"Server","count":"1"}
{"serviceName":"Server","dependency":"Logic","count":"1"}
{"serviceName":"Logic","dependency":"DataBase","count":"3"}
{"serviceName":"DataBase","dependency":"","count":"1"}
{"serviceName":"ChaosMonkey","Killing":"Server","count":"1"}
```

Goals

Output:

Status:

System crashed

Trace:

Server dependency is not running anymore

University of Stuttgart 6/1/2017

12

Solution Approaches

Research and evaluation for existing solutions

- Development of a simulation tool:
 - Create a new tool
 - Expand an existing tool

Agenda

Research

 What is the state of the art and what tools could be used for our purposes?

Specification

- What kind of metrics should we use?
- · Input, Output, Error modes, Events, Description language

Simulation Tool

· What should our Simulator for microservice architectures with resilience prediction achieve?

Evaluation

What are the results of our work?

Agenda

