When a Knowledge Base Is Not Enough-Question Answering over Knowledge Bases with External Text Data

Date: 2016/11/08

Author: Denis Savenkov, Eugene Agichtein

Source: ACM SIGIR' 16

Advisor: Jia-ling Koh

Speaker: Yi-hui Lee

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Introduction

- Question Answering:
 - Text-centric, or Text-QA: use text document collections to retrieve passages relevant to a question and extract candidate answers
 - Knowledge base-centric, or KBQA
 - -RDF triples [subject, predicate, object]

Aqqu KBQA system

Query Template

Basic system extensions

Question

"what team did david beckham play for in 2011?"

Extension

```
SELECT DISTINCT ?a_entity {
 ?cvt_node cvt_node dicate_2> <q_entity_2> .
```

mediator node

question entity

answer entity

Query Template

Template

SELECT DISTINCT ?a_entity {

SELECT DISTINCT ?a_entity {

Example Candidate

inventor

Question

who invented scrabble?

what company did henry ford work for?

what character does ellen play in finding nemo?

Query Template

pairwise leaning to rank using Random Forest Model

Text2KB Question Answering system's architecture

Text2KB Question Answering system's architecture

Text2KB Question Answering system's architecture

Text2KB Question Answering system's architecture

step 1

Text2KB Question Answering system's architecture

step 1

step 2

Text2KB Question Answering system's architecture

Text2KB Question Answering system's architecture

step 1

step 2

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Approach

Text2KB Question Answering system's architecture

step 1

step 2

Web search results for KBQA:

output Answe

Question entity identification:

 $1 - dist(e_t, q_t) \ge 0.8$ $e_t \in M \setminus Stop, q_t \in Q \setminus Stop$

The Jaro distance d_i of two given strings s_1 and s_2 is

$$d_j = egin{cases} 0 & ext{if } m = 0 \ rac{1}{3} \left(rac{m}{|s_1|} + rac{m}{|s_2|} + rac{m-t}{m}
ight) & ext{otherwise} \end{cases}$$

Where:

- *m* is the number of *matching characters* (see below);
- t is half the number of transpositions (see below).

$$d_w = d_j + (\ell p(1-d_j))$$

Given the strings s_1 MARTHA and s_2 MARHTA we find:

- m = 6
- $|s_1| = 6$
- $|s_2| = 6$
- ullet There are mismatched characters T/H and H/T leading to $t=rac{z}{a}=1$

We find a Jaro score of:

$$d_j = rac{1}{3} \left(rac{6}{6} + rac{6}{6} + rac{6-1}{6}
ight) = 0.944$$

$$\ell=3$$

Thus:

$$d_w = 0.944 + (3 * 0.1(1 - 0.944)) = 0.961$$

- Web search results for KBQA:
 - Answer candidate features:

output Answe

Step 1. Precompute term and entity IDF scores

- Step 2. Snippet and Document represent by TF-IDF vectors
- Step 3. Combined token and entity vectors
- Step 4. Answer candidate represent by TF-IDF vectors as well
- Step 5. Cosine similarities between answer and each of 10 snippet and document. Using average score and maximum score as features
- Step 6. Compute Answer similarities as well

- Web search results for KBQA:
 - Answer candidate features:

Step 1. John Edwards: 0.7, affair: 0.3, Rielle Hunter: 0.7, .

Step 2. (6*0.7, 5*0.3, 1*0.7)=(4.2, 1.5, 0.7), ...

Step 3. Combined token and entity vectors

Step 4. [Politician](0, 0, 0), [Elizabeth Edwards](0, 0, 0), [Rielle Hunter](0, 0, 0.7), ...

Step 5. Cosine similarities between answer and snippet, (4.2, 1.5, 0.7)x(0, 0, 0.7)=0.49, ...

Step 6. Features: 0.49, ...

- Candidate answers
- [Politician]
- IElizabeth Edwardsl
- [Rielle Hunter]
- [Marriage]
- [Cate Edwards, Wade Edwards, Emma Claire Edwards, Jack Edwards, Frances Quinn Hunter]

.

- CQA data for Matching Questions to Predicates:
 - Dataset: Yahoo! WebScope L6 dataset, question and answer texts were run through an entity linker.
 - Label question-answer pair with predicates between entities mentioned in the question and in the answer.

$$ext{ } ext{ }$$

output Answe

CQA data for Matching Questions to Predicates:

Term	Predicate	PMI
		score
born	people.person.date_of_birth	3.67
	$people.person.date_of_death$	2.73
	location.location.people_born_here	1.60
kill	people.deceased_person.cause_of_death	1.70
	book.book.characters	1.55
currency	$location.country.currency_formerly_used$	5.55
	$location.country.currency_used$	3.54
school	$education.school_district$	4.14
	people.education.institution	1.70
	$sports.school_sports_team.school$	1.69
win	$sports.sports_team.championships$	4.11
	$sports_league.championship$	3.79

- Estimating Entity Associations: question and answer entities are likely to be mentioned together
 - Ranking candidate answers through textual data(<u>ClueWeb12 corpus</u>)
 - Language Model score: $p(Q|e_1,e_2) = \prod_{t \in Q} p(t|e_1,e_2)$

question entity

term

answer entities

Entity 1	Entity 2	Term counts
John	Rielle	campaign, affair, mistress,
Edwards	Hunter	child, former
John	Cate	daughter, former, senator,
Edwards	Edwards	courthouse, greensboro, eldest
John	Elizabeth	wife, hunter, campaign, affair,
Edwards	Edwards	cancer, rielle, husband
John	Frances	daughter, john, rielle, father,
Edwards	Quinn	child, former, paternity

use the minimum, average, maximum score over all answer entities as features

Pairwise learning to rank model:

```
Politician]

[Politician]

[Elizabeth Edwards]

[Rielle Hunter]

[Marriage]

[Cate Edwards, Wade Edwards, Emma Claire Edwards, Jack Edwards, Frances Quinn Hunter]

""
```

(Politician, Elizabeth Edwards)-> +1(Politician is better than Elizabeth Edwards) (Politician, Rielle Hunter)-> -1(Rielle Hunter is better than Politician) (Politician, Marriage)-> +1(Politician is better than Marriage)

.

Classifier: Random Forest Model

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Experiment

- Methods Compare:
 - Aqqu
 - Text2KB(Web search): Bing search
 - Text2KB(Wikipedia search)
 - STAGG: The current highest performing KBQA system as measured on the WebQuestion dataset.

- Datasets: standard evaluation procedure for the WebQuestions dataset
 - The original 70-30% train- test split (3,778 training and 2,032 test instances).
 - Within the training split, 10% was set aside for validation.

- Evaluation Metrics
 - WebQuestions dataset have primarily used the average F1-score as the main evaluation metric

$$avg \ F1 = \frac{1}{|Q|} \sum_{q \in Q} f1(a_q^*, a_q)$$

$$f1(a_q^*, a_q) = 2 \frac{precision(a_q^*, a_q) recall(a_q^*, a_q)}{precision(a_q^*, a_q) + recall(a_q^*, a_q)}$$

$$precision(a_q^*, a_q) = \frac{|a_q^* \cap a_q|}{|a_q|} \text{ and } recall(a_q^*, a_q) = \frac{|a_q^* \cap a_q|}{|a_q^*|}$$

- a_q^* : correct answers
- a_q : given answers

Methods Compare:

System	avg Recall	avg Precision	F1 of avg P and R	avg F1
OpenQA [16]	-	-	-	0.35
YodaQA [4]	-	-	-	0.343
Jacana [30]	0.458	0.517	0.486	0.330
SemPre [6]	0.413	0.480	0.444	0.357
Subgraph Embeddings [10]	-	-	0.432	0.392
ParaSemPre [7]	0.466	0.405	0.433	0.399
Kitt AI [28]	0.545	0.526	0.535	0.443
AgendaIL [8]	0.557	0.505	0.530	0.497
STAGG [31]	0.607	$\boldsymbol{0.528}$	0.565	$\boldsymbol{0.525}$
Aqqu (baseline) [3]	0.604	0.498	0.546	0.494
Text2KB (Wikipedia search)	$0.632^* \ (+4.6\%)$	0.498	$0.557^* \ (+2.0\%)$	0.514* (+4.0%)
Text2KB (Web search)	$0.635^* \ (+5.1\%)$	0.506* (+1.6%)	0.563 * (+3.1%)	$0.522^* \ (+5.7\%)$

- Datasource and Features Contribution:
 - T: notable type score model as a ranking feature
 - DF: date range filter-based query template
 - WebEnt: using web search result snippets for question entity identification
 - WikiEnt: using wikipedia search result snippets for question entity identification
 - Web: using web search results for feature generation
 - Wiki: using wikipedia search results for feature generation
 - CQA: using CQA-based [question term, KB predicate] PMI scores for feature generation
 - CW: features, computed from entity pairs language model, estimated on ClueWeb

System	R	P	F1
Aqqu	0.604	0.498	0.494
Text2KB (base) = Aqqu+DF+T	0.617	0.481	0.499
+Wiki+CQA+CL	0.623	0.487	0.506
+WikiEnt +Wiki+CQA+CL	0.632	0.498	0.514
+WebEnt	0.627	0.492	0.508
+Web+CQA+CL	0.634	0.497	$\mid 0.514 \stackrel{\blacktriangleleft}{\uparrow}$
+WebEnt +Web+CQA+CL	0.635	0.506	J.52Z

Average Recall (R), Precision (P), and F1 of Aqqu and Text2KB system with and without different components.

System	R	P	F1
Text2KB (Web search)	0.635	0.506	0.522
Text2KB -Web	0.633	0.496	0.513
Text2KB -CQA	0.642	0.499	0.519
Text2KB -CL	0.644	0.505	0.523
Text2KB -CQA-CL	0.642	0.503	0.522
Text2KB -Web-CQA	0.631	0.498	0.514
Text2KB -Web-CL	0.622	0.493	0.508

Average Recall (R), Precision (P), and F1 of Text2KB with and without features based on web search results, CQA data and ClueWeb collection.

Feature Importance for Ranking:

A plot of Gini importances of different features of our answer ranking random forest model (features marked * are not text-based and are provided for comparison)

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Conclusion

- Unstructured text resources can be effectively utilized for knowledge base question answering.
- Three particular techniques as follows:
 - Web search results for query understanding and candidate ranking.
 - Community question answering data for candidate generation
 - Text fragments around entity pair mentions for ranking

Conclusion(cont.)

Future work:

- Extend our work to the more open setup, similar to the benchmark QALD(Question Answering over Linked Data) hybrid task
- Questions no longer have to be answered exclusively from the KB. This would require extending the described techniques, and creating new QA benchmarks.