Αναφορά Εργασίας ΔυνοΜηχανές Α.Ε.

Για την επίλυση του προβλήματος που μας δόθηκε χρησιμοποίησα το εργαλείο Pyomo με τον GLPK solver και την ακόλουθη μοντελοποίηση:

- Τα διανύσματα **consA** και **consB** αντιπροσωπεύουν τον αριθμό μηχανών A και B αντίστοιχα που έγιναν <u>παραγγελία</u> για την i-οστή εβδομάδα.
- Οι μη-αρνητικές ακέραιες μεταβλητές διανύσματα mdl.prodA και mdl.prodB αντιπροσωπεύουν τον αριθμό μηχανών Α και Β αντίστοιχα που θα παραχθούν κατά τη διάρκεια της i-οστής εβδομάδας.
- Η δυαδική μεταβλητή διάνυσμα **mdl.deci** αντιπροσωπεύει την κατάσταση της γραμμής παραγωγής την i-οστή εβδομάδα (αν δηλαδή παράγονται A ή B μηχανές, με την τιμή 0 να αντιστοιχίζεται στην παραγωγή A μηχανών και την τιμή 1 στην παραγωγή B μηχανών).
- Η δυαδική μεταβλητή διάνυσμα mdl.chan αντιπροσωπεύει αλλαγή στην κατάσταση της γραμμής παραγωγής την i-οστή εβδομάδα παίρνοντας τιμή 0 εάν το είδος μηχανών που παράγονται την i-οστή εβδομάδα είναι το ίδιο με της i-1 εβδομάδας, ή 1 στην αντίθετη περίπτωση.
- Οι μη-αρνητικές ακέραιες μεταβλητές διανύσματα mdl.storA και mdl.storB αντιπροσωπεύουν τον αριθμό μηχανών A και B αντίστοιχα που μένουν στην <u>αποθήκη</u> της εταιρείας στο τέλος της iοστής εβδομάδας, δηλαδή αφού κλείσει η παραγωγή και αποστολή μηχανών για την εβδομάδα αυτή.

Συμβάσεις που ακολουθήθηκαν κατά τη μοντελοποίηση:

- Η εβδομάδα 0 αποτελεί την αρχική μας κατάσταση κατά την οποία οι μεταβλητές mdl.storA, mdl.storB και mdl.deci λαμβάνουν τις αρχικές τους τιμές 125, 143 και 0 αντίστοιχα.
- Την 9^η εβδομάδα δε μπορεί να γίνει παραγωγή καμίας μηχανής.

Κόστος παραγωγής το οποίο θέλουμε να ελαχιστοποιήσουμε:

$$\sum_{i=1}^{9} (225 * mdl. prodA[i] + 310 * mdl. prodB[i])$$

$$+ \sum_{i=1}^{9} \left(225 * \frac{0.195}{52} * storA[i] + 310 * \frac{0.195}{25} * mdl. storB[i]\right)$$

$$+500 * \sum_{i=1}^{9} mdl. chan[i]$$

Στο παραπάνω κόστος το πρώτο άθροισμα αντιπροσωπεύει το κόστος για κάθε μηχανή Α ή Β που παράγεται και είναι 225 ανά μηχανή Α και 310 ανά μηχανή Β. Το δεύτερο άθροισμα αντιπροσωπεύει το εβδομαδιαίο επιτόκιο που επιβαρύνει τις μηχανές Α και Β που βρίσκονται στην αποθήκη. Το εβδομαδιαίο επιτόκιο υπολογίστηκε από το ετήσιο που ήταν 19.5% αφού το διαιρέσαμε με τις 52 βδομάδες που έχει ένας χρόνος. Τέλος, το τρίτο άθροισμα αντιπροσωπεύει μια αλλαγή στην γραμμή παραγωγής από παραγωγή μηχανών Α σε Β ή το ανάποδο που κοστολογείται ως 500 μονάδες κόστους. Εάν συμβεί αλλαγή παίρνει τιμή 1 για την εβδομάδα αυτή και φυσικά η γραμμή παραγωγής μπορεί να αλλάξει μόνο στην αρχή μιας εβδομάδας.

Οι περιορισμοί που χρησιμοποιήθηκαν σύμφωνα με την εκφώνηση είναι οι εξής:

- 1. $mdl.prodA[i] \le 100$ για $i \in [1,9]$ Περιορίζει την παραγωγή Α μηχανών μέχρι 100 την εβδομάδα.
- 2. $mdl.prodB[i] \le 80$ για $i \in [1,9]$ Περιορίζει την παραγωγή Β μηχανών μέχρι 80 τη βδομάδα.
- 3. $mdl. stor A[i-1] \ge 0.8 * cons A[i]$ για $i \in [1,9]$ Εξασφαλίζει ότι στην αποθήκη θα υπάρχει τουλάχιστον το 80% των μηχανών Α που απαιτούνται για την παραγγελία της επόμενης εβδομάδας.
- 4. $mdl. stor B[i-1] \ge 0.8 * cons B[i]$ για $i \in [1,9]$ Εξασφαλίζει ότι στην αποθήκη θα υπάρχει τουλάχιστον το 80% των μηχανών Β που απαιτούνται για την παραγγελία της επόμενης εβδομάδας.
- 5. mdl.storA[i] = mdl.storA[i-1] + mdl.prodA[i] consA[i] για $i \in [1,9]$ Προσδιορίζει τον αριθμό των μηχανών Α που βρίσκονται στην αποθήκη στο τέλος της i-οστής εβδομάδας ως το άθροισμα των μηχανών Α που βρίσκονταν στην αποθήκη την i-1 εβδομάδα και της παραγωγής μηχανών Α την i-οστή εβδομάδα μείον τις μηχανές Α που έγιναν παραγγελία για την i-οστή εβδομάδα.
- 6. mdl.storB[i] = mdl.storB[i-1] + mdl.prodB[i] consB[i] για $i \in [1,9]$ Προσδιορίζει τον αριθμό των μηχανών B που βρίσκονται στην αποθήκη στο τέλος της i-οστής εβδομάδας ως το άθροισμα των μηχανών B που βρίσκονταν στην αποθήκη την i-1 εβδομάδα και της παραγωγής μηχανών B την i-οστή εβδομάδα μείον τις μηχανές A που έγιναν παραγγελία για την i-οστή εβδομάδα.
- 7. $mdl.prodA[i] \le 1000 * (1 mdl.deci[i]) \gamma \alpha i \in [1,9]$
- 8. $mdl.prodB[i] \le 1000 * mdl.deci[i]$ για $i \in [1,9]$ Οι περιορισμοί 7-8 έγιναν με τη μέθοδο του big-M όπου M το 1000. Φροντίζουν ώστε κατά τη διάρκεια μιας εβδομάδας να παράγονται μόνο μηχανές A ή B.
- 9. $mdl.deci[i] mdl.deci[i-1] \le mdl.chan[i] \gamma \alpha i \in [1,9]$
- 10. $mdl. deci[i-1] mdl. deci[i] \le mdl. chan[i]$ για $i \in [1,9]$ Οι περιορισμοί 9-10 εξασφαλίζουν ότι η μεταβλητή mdl.chan θα πάρει την τιμή 1 σε περίπτωση αλλαγής από 0->1 ή 1->0 της mdl.deci από την προηγούμενη βδομάδα στην τωρινή. Σε αντίθετη περίπτωση, η mdl.chan θα πάρει την τιμή 0 επειδή συμμετέχει γραμμικά στο κόστος το οποίο θέλουμε να ελαχιστοποιήσουμε.

Αποτελέσματα μετά την επίλυση του προβλήματος:

Week#	0	1	2	3	4	5	6	7	8	9
consA	1	55	55	44	0	45	45	36	35	35
consB	-	38	38	30	0	48	48	58	57	58
prodA	1	25	100	100	0	0	0	0	0	0
prodB	1	0	0	0	2	48	56	57	69	0
storA	125	95	140	196	196	151	106	70	35	0
storB	143	105	67	37	39	39	47	46	58	0
deci	0	0	0	0	1	1	1	1	1	1
chan	1	0	0	0	1	0	0	0	0	0

Τελικό κόστος: 124388.64 μονάδες κόστους

Μπορούμε εύκολα να επιβεβαιώσουμε το μάτι και κάποιες γρήγορες πράξεις ότι το μοντέλο τήρησε τους περιορισμούς που επιβλήθηκαν.

Ο διευθυντής μπορεί να κανονίσει την παραγωγή του σύμφωνα με τις prodA και prodB για παραγωγή A και B μηχανών αντίστοιχα ώστε να έχει το ελάχιστο κόστος για τη διεκπεραίωση των παραγγελιών του.