Coupling the electricity and heat sectors - the key to the transformation of the energy system

Workshop on Renewables and Energy Systems Integration Golden, CO September 2014

Dr. Kurt Rohrig, Fraunhofer IWES
Dr. Dietrich Schmidt, Fraunhofer IBP

Fraunhofer IWES Kassel

Core Competences for Energy Systems Engineering

Introduction

Introduction

Two main reasons for the coupling of power and heat

- Reduce import of primary energy (oil and gas)
- Enlarge flexibility of the electric supply system

Needed actions to foster the coupling of the sectors

- Massive isolation of buildings
- Implementation of heat pumps and power-to-heat applications
- Development of new heating and cooling storage devices
- Improvement of (predictive) control strategies
- Business-models, business-models, business-models

Primary Energy Demand in Germany – 3600 TWh – 85

Electricity: high share for primary energy

→ but import- and production-cost relative low

Oil and Gas: expensive and hardly to substitute

→ used in heat- and mobility-sector

Transformation of Germany's Energy Supply System

2050 Today 1000 TWh by RES 3570 TWh **Electricity Electricity** 1440 TWh 1000 TWh 330 TWh **Heating** Heat-**Heating** pumps, 850 TWh 1360 TWh Power2Heat 120 TWh **Transport** E-mobility **Transport** 235 TWh **330 TWh** 770 TWh Power2Gas

Core Competence: Energy Economy and System Design Modelling and Simulation of all Components

We are trendsetters in dynamic simulations and future scenarios for cross-sector aspects of energy supplies

Flexibility by load management / demand side

- Existing electric consumption (electric heating of water, refrigerator washing machine, dishwasher)
- ■New consumers (e-mobile, heat pump, air conditioner)
- Industrial load management

Need of Flexibility: Example Schleswig-Holstein /

- Hamin bextoeme Case 2023 no Expansion of Transmission Grid
- RES-Curtailment for Schleswig-Holstein and Hamburg
 - → Total: 2,7 TWh
 - → Economic for P2H: 2,3 TWh and 1,3 GW P2H-Capacity
 - → 1. Grid, 2. P2H, 3. RES-Curtailment

Flexibility option: coupling of electricity and heat -

PV and cooling: demand site management

Cooling load shifting of 3 hours

Pre-cooling to 22°C instead of 24°C

- Increased use of locally generated electricity
- Positive gridinteraction
- Reduced costs

Buildings as energy storages

1.09 TWh/K 1,090,000,000 kWh/K

Future role of buildings Energy producer

+

Energy storage =

Stakeholder in a flexible electricity market

Key: Precise prediction of wind and solar power – local,

Conclusion

- The transformation of the energy supply system requires a co-ordinated interaction of the sectors electricity, heat and mobility
- The coupling of the sectors increases the flexibility of the system and decreases the cost for fossil primary energy
- The coupling of electricity and heat requires a massive implementation of heat pumps, power-to-heat applications, CHP and a large effort for isolation of buildings
- The interaction is supported by smart solutions in system technology for demand side management and grid management
- The feed-in of wind and solar energy into the supply system will be increased by precise prediction systems on local and regional level and adapted to energy management systems

Fraunhofer Institut for Wind Energy and Energy System Technology

Research Spectrum:

- Wind Energy from Materials to Grid Integration
- Energy System Technology for all Renewables
- Fraunhofer IWES | Kassel

Direktor: Prof. Dr. Clemens Hoffmann

Fraunhofer IWES | Nordwest

Direktor: Prof. Dr. Andreas Reuter

Anual Budget: ca. 32 Mio. Euro

Staff: ca. 500

www.iwes.fraunhofer.de

kurt.rohrig@iwes.fraunhoder.de

Systemic approach for innovative urban development

With 10 Fraunhofer-Institutes and value-partners

Information & ICT Fraunhofer FOKUS

Security and protection Fraunhofer IFF

Resource cycles

Fraunhofer UMSICHT, Fraunhofer ISC

Economic development & business innovation Fraunhofer IAO, ETG, LSE Cities **Governance & planning** Fraunhofer IAO

Energy and Resources

Fraunhofer IWES

Mobility & traffic

Fraunhofer IAO

Water infrastructure

Fraunhofer IGB, Fraunhofer ISI

Production & Logistics

Fraunhofer IML, Fraunhofer IPA

Buildings

Fraunhofer IBP

At the Threshold to the Age of Electricity Transport and Storage

Surplus and Deficits Characterize Energy Supply

Concluding remarks

- Energy efficiency is our biggest energy source
- Think renewable energies and energy efficiency always together

 Integration of all subsystems is our future task!

