

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2018/2019 - UC 47166 (1º Ano/2º Sem)

Exercícios de MD F. 1 - Lógica Proposicional e Conjuntos

- 1. Diga, justificando, se as seguintes frases são ou não proposições. Em caso afirmativo, indique o seu valor lógico.
 - (a) 100 é maior do que 10 ou 11 é um número primo;
 - (b) Para todo o número x, se x > 2, então $x^2 + 5 > 3x$;
 - (c) Hoje está um belo dia para ir à praia;
 - (d) Para algum $n \in \mathbb{N}$, $2^n = n^2$;
 - (e) $2^n = n^2$.
- 2. Diga, justificando, quais das seguintes fórmulas são tautologias:
 - (a) $[(p \Rightarrow q) \land p] \Rightarrow q$;
 - (b) $[p \land (\neg p)] \Rightarrow q$;
 - (c) $[(p \lor q) \land (\neg p \lor r)] \Rightarrow (q \lor r)$.
- 3. Encontre uma proposição composta envolvendo as proposições p, q e r que é verdadeira se p e q são verdadeiras e r é falsa e é falsa em qualquer outro caso.
- 4. Usando tautologias apropriadas simplifique as proposições:
 - (a) $p \vee [q \wedge (\neg p)];$
 - (b) $\neg [(\neg p) \land (\neg q)];$
 - (c) $[p \wedge q] \vee [p \wedge (\neg q)]$.
- 5. Sendo p, q e r três proposições dadas, verifique se as seguintes fórmulas são válidas:
 - (a) $[(\neg p \lor q) \land p] \Rightarrow q$
 - (b) $[(p \Rightarrow q) \land (r \Rightarrow \neg q)] \Rightarrow [p \Rightarrow \neg r]$
 - (c) $[(q \vee \neg p) \wedge \neg q] \Rightarrow p$
 - (d) $[p \Rightarrow \neg p] \Rightarrow \neg p$
- 6. Mostre que $(p \Rightarrow q) \lor (p \Rightarrow r)$ e $p \Rightarrow (q \lor r)$ são logicamente equivalentes.
- 7. Mostre que $\neg (p \Rightarrow (q \lor r))$ implica logicamente $\neg (p \Rightarrow q)$.
- 8. Sejam as a proposições
 - p: Sou responsável;
 - q: Passo a Matemática Discreta;
 - r: Vou de férias para as Bermudas.

Traduza as frases seguintes por meio de fórmulas proposicionais.

- (a) Se passar a Matemática Discreta, vou de férias para as Bermudas.
- (b) Para ir de férias para as Bermudas é suficiente que eu seja responsável.
- (c) Passo a Matemática Discreta só se for responsável.
- (d) Para passar a Matemática Discreta é necessário que eu seja responsável.

1/3

MD 2018-2019 Folha 1

- (e) Se passar a Matemática Discreta então vou de férias para as Bermudas caso seja responsável.
- 9. Mostre que as fórmulas $p \Rightarrow (q \Rightarrow r)$ e $(p \Rightarrow q) \Rightarrow r$ não são equivalentes apresentando uma interpretação para a qual elas tenham valores lógicos diferentes.
- 10. Verifique a correcção de cada uma das seguintes deduções:
 - (a) Chove se levo guarda-chuva. Hoje não levo guarda-chuva. Logo, hoje não chove.
 - (b) Chove se e só se levo guarda-chuva. Hoje não levo guarda-chuva. Logo, hoje não chove.
 - (c) Se o mordomo cometeu o crime, então ele vai estar nervoso quando interrogado. O mordomo estava nervoso quando interrogado. Logo, o mordomo cometeu o crime.
 - (d) r é uma condição suficiente para q. Além disso, verifica-se r ou a negação de p. Logo, se q não for verdadeiro, não se verifica p.
 - (e) De $\neg (p \lor q)$ deduz-se $\neg p$.
 - (f) A simplificação da expressão $(\neg p \Rightarrow q) \land (q \lor r) \land \neg q$ foi feita de acordo com os seguintes passos:

$$(\neg p \Rightarrow q) \land (q \lor r) \land \neg q \quad \Leftrightarrow \quad (p \lor q) \land (q \lor r) \land \neg q$$

$$\Leftrightarrow \quad (p \land \neg q) \land (q \lor r)$$

$$\Leftrightarrow \quad p \land \neg q \land r.$$

- 11. Cinco amigos têm acessso a uma sala de chat. Admitindo que é conhecida a seguinte informação:
 - O António ou a Berta ou ambos estão na sala de chat
 - O Carlos ou a Dalila mas não ambos estão na sala de chat
 - Se a Ema está na sala de chat também está o Carlos
 - A Dalila e o António estão ambos na sala de chat ou nenhum está
 - Se a Berta está na sala de chat então também estão a Ema e o António,

é possível determinar quem está a conversar?

- 12. Tendo em conta que, $\overline{X} \equiv X^c$ denota o conjunto complementar de X, mostre que, quaisquer que sejam os conjuntos $A, B \in C$:
 - (a) $(A \cap B) \cup (A \cap \overline{B}) = A;$
 - (b) $\overline{(A \cup B) \backslash C} = \overline{A \backslash C} \cap \overline{B \backslash C}$.
- 13. A diferença simétrica de dois conjuntos A e B, que notamos por $A\Delta B$, é o conjunto dos elementos que pertencem exatamente a um dos conjuntos (isto é, pertencem a um dos conjuntos mas não a ambos).
 - (a) Mostre que $A\Delta B = (A\backslash B) \cup (B\backslash A) = (A\cup B)\backslash (A\cap B)$.
 - (b) Represente num diagrama de Venn a diferença simétrica de dois conjuntos A e B quaisquer.
 - (c) Dados dois conjuntos A, B e $C = A\Delta B$, calcule $A\Delta C$.
 - (d) Calcule a diferença simétrica dos conjuntos \mathbb{Z}_0^+ , o conjunto dos números inteiros não negativos, e o conjunto E dos números inteiros pares, $E = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$
- 14. Determine o conjunto das partes de cada um dos seguintes conjuntos:
 - (a) $A = \emptyset$;
 - (b) $B = \{\emptyset\};$
 - (c) $C = \{1\};$

- (d) $D = \{1, 2\};$
- (e) $E = \{1, 2, 3\}.$
- 15. Denote o conjunto das partes de um conjunto X por $\mathcal{P}(X)$, considere os conjuntos A e B e demonstre cada uma das seguintes proposições:
 - (a) $A \subseteq B \Leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$;
 - (b) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- 16. Sendo $A, B \in C$ conjuntos finitos arbitrários de um dado universo \mathcal{U} , demonstre que:
 - (a) $\overline{A} \cup \overline{B} \cup (A \cap B \cap \overline{C}) = \overline{(A \cap B \cap C)};$
 - (b) $(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$.

Soluções:

- 1. (a) 1; (b) 1; (c) Não é proposição; (d) 1; (e) Não é proposição.
- 2. São todas.
- 4. (a) $p \vee q$; (b) $p \vee q$; (c) p.
- 5. (a), (b) e (d) são válidas.
- 8. (a) $q \Rightarrow r$; (b) $p \Rightarrow r$; (c) $q \Rightarrow p$; (d) $q \Rightarrow p$; (e) $q \Rightarrow (p \Rightarrow r)$.
- 10. (a) Não é correta; (b) É correta; (c) Não é correta; (d) É correta; (e) É correta.
- 11. Pode-se concluir que o António e a Dalila estão a conversar.
- 13. (c) B; (d) $\{\ldots, -4, -2, 1, 3, \ldots\}$.
- 14. (a) $\{\emptyset\}$;
 - (b) $\{\emptyset, \{\emptyset\}\};$
 - (c) $\{\emptyset, \{1\}\};$
 - (d) $\{\emptyset, \{1\}, \{2\}, \{1, 2\}\};$
 - (e) $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.