Probabilidade e Estatística

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

ADNP 2020

Figura: Esquema geral da Inferência.

Figura: Esquema geral da Inferência.

Estudaremos como se distribuem por amostragem o estimador \bar{x} da média μ , ou seja é uma estimativa para o parâmetro da população.

Distribuição Amostral da Média

Estimador da média μ populacional: De uma população X retiramos uma amostra de tamanho n constituída pelos elementos x_1, x_2, \dots, x_n .

Distribuição Amostral da Média

Estimador da média μ **populacional:** De uma população X retiramos uma amostra de tamanho n constituída pelos elementos x_1, x_2, \ldots, x_n . O estimador da média μ populacional da amostra é:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Considere uma população finita X, onde:

X:1,2,3,4,5

Considere uma população finita X, onde:

Logo, N = 5.

Considere uma população finita X, onde:

Logo, N = 5.

Considere uma população finita X, onde:

Logo, N = 5.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i).$$

Considere uma população finita X, onde:

Logo, N = 5.

$$E(x) = \mu_X = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que:

$$E(x) = \mu_x =$$

Considere uma população finita X, onde:

Logo, N = 5.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que:

$$E(x) = \mu_x = \frac{1+2+3+4+5}{5} =$$

Considere uma população finita X, onde:

Logo, N = 5.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que:

$$E(x) = \mu_x = \frac{1+2+3+4+5}{5} = \frac{15}{5} =$$

Considere uma população finita X, onde:

Logo, N = 5.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que:

$$E(x) = \mu_x = \frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$

Considere uma população finita X, onde:

Logo, N = 5.

Queremos mostrar que a esperança amostral $E(\bar{x})$ é igual a média μ populacional.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que:
$$E(x) = \mu_x = \frac{1 + 2 + 3 + 4 + 5}{5} = \frac{15}{5} = 3$$

Para a Variância usaremos:

Considere uma população finita X, onde:

Logo, N = 5.

Queremos mostrar que a esperança amostral $E(\bar{x})$ é igual a média μ populacional.

$$E(x) = \mu_x = \sum_{i=1}^{N} x_i . p(x_i)$$
. Dessa maneira, temos que: $E(x) = \mu_x = \frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$

Para a Variância usaremos: $VAR(x) = \sigma_x^2 = \sum_{i=1}^{N} (x_i - \mu_x)^2 . p(x_i)$

Criando uma Tabela:

	$x \mid P(x) \mid x - \mu_x \mid (x - \mu_x)^2 \mid (x - \mu_x)^2.P(x)$							
X	P(x)	$x - \mu_x$	$(x-\mu_x)^2$	$(x-\mu_x)^2.P(x)$				
1	$\frac{1}{5}$	-2	4	4 - 5				
2	$\frac{1}{5}$	-1	1	$\frac{1}{5}$				
3	$\frac{1}{5}$	0	0	0				
4	$\frac{1}{5}$	1	1	$\frac{1}{5}$				
5	$\frac{1}{5}$	2	4	4 - 5				
\sum	1			2				

Criando uma Tabela:

X	P(x)	$x - \mu_x$	$(x-\mu_x)^2$	$(x-\mu_x)^2.P(x)$
1	$\frac{1}{5}$	-2	4	$\frac{4}{5}$
2	$\frac{1}{5}$	-1	1	$\frac{1}{5}$
3	$\frac{1}{5}$	0	0	0
4	$\frac{1}{5}$	1	1	$\frac{1}{5}$
5	$\frac{1}{5}$	2	4	4 - 5
\sum	1			2

Dessa maneira:

$$\sigma_x^2 = VAR(x) = 2$$

Agora, seguindo nosso esquema inicial iremos retirar todas as amostras com reposição desta população finita. As amostras terão tamanho n=2. Assim, o número de amostras será: $N^n=5^2=25$. Calcularemos a média amostral de todas as amostras.

Agora, seguindo nosso esquema inicial iremos retirar todas as amostras com reposição desta população finita. As amostras terão tamanho n=2. Assim, o número de amostras será: $N^n=5^2=25$. Calcularemos a média amostral de todas as amostras.

Am	\bar{x}_i	
1	(1,1)	1,0
2	(1,2)	1,5
3	(1,3)	2,0
4	(1,4)	2,5
5	(1,5)	3,0
6	(2,1)	1,5
7	(2,2)	2,0
8	(2,3)	2,5
9	(2,4)	3,0
10	(2,5)	2,5

Agora, seguindo nosso esquema inicial iremos retirar todas as amostras com reposição desta população finita. As amostras terão tamanho n=2. Assim, o número de amostras será: $N^n=5^2=25$. Calcularemos a média amostral de todas as amostras.

Amostras		\bar{x}_i	Am	Amostras	
1	(1,1)	1,0	11	(3,1)	2,0
2	(1,2)	1,5	12	(3,2)	2,5
3	(1,3)	2,0	13	(3,3)	3,0
4	(1,4)	2,5	14	(3,4)	3,5
5	(1,5)	3,0	15	(3,5)	4,0
6	(2,1)	1,5	16	(4,1)	2,5
7	(2,2)	2,0	17	(4,2)	3,0
8	(2,3)	2,5	18	(4,3)	3,5
9	(2,4)	3,0	19	(4,4)	4,0
10	(2,5)	2,5	20	(4,5)	4,5

Agora, seguindo nosso esquema inicial iremos retirar todas as amostras com reposição desta população finita. As amostras terão tamanho n=2. Assim, o número de amostras será: $N^n = 5^2 = 25$. Calcularemos a média amostral de todas as amostras.

Am	ostras	\bar{x}_i	Amostras \bar{x}_i		Amostras \bar{x}_i Amostras		ostras	\bar{x}_i
1	(1,1)	1,0	11	(3,1)	2,0	21	(5,1)	3,0
2	(1,2)	1,5	12	(3,2)	2,5	22	(5,2)	3,5
3	(1,3)	2,0	13	(3,3)	3,0	23	(5,3)	4,0
4	(1,4)	2,5	14	(3,4)	3,5	24	(5,4)	4,5
5	(1,5)	3,0	15	(3,5)	4,0	25	(5,5)	5,0
6	(2,1)	1,5	16	(4,1)	2,5			
7	(2,2)	2,0	17	(4,2)	3,0			
8	(2,3)	2,5	18	(4,3)	3,5			
9	(2,4)	3,0	19	(4,4)	4,0			
10	(2,5)	2,5	20	(4,5)	4,5			

Verificamos que \bar{x}_i varia em cada uma das 25 amostras, logo podemos analisar \bar{x}_i como uma variável aleatória, neste caso, uma variável aleatória discreta.

Verificamos que \bar{x}_i varia em cada uma das 25 amostras, logo podemos analisar \bar{x}_i como uma variável aleatória, neste caso, uma variável aleatória discreta.

x	$P(\bar{x})$	$\bar{x}.P(\bar{x})$	$\bar{x}^2.P(\bar{x})$
1,0	$\frac{1}{25}$	$\frac{1,0}{25}$	1
1,5	$\frac{2}{25}$	$ \begin{array}{r} 25 \\ \hline 3,0 \\ \hline 25 \\ \hline 6,0 \end{array} $	$ \begin{array}{r} 25 \\ \hline 4,5 \\ \hline 25 \\ \hline 12 \end{array} $
2,0	3 	$\frac{6,0}{25}$	12
2,5	4 25 5	10, 0 25 15, 0	25 — 25 45
3,0	5 25 4		_
3,5	4 25 3	25 14 	25 49
4,0	3 	12 25 9	_
4,5	$\frac{\frac{2}{25}}{1}$	9 25 5,0	25 40, 5 25 25
5,0	$\frac{1}{25}$	$\frac{5,0}{25}$	25 — 25
\sum	1	3	10

Dessa forma, utilizando a fórmula da Esperança, temos:

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

O que resulta em:

$$\mu_{\bar{x}} = E(\bar{x}) = 3$$

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

O que resulta em:

$$\mu_{\bar{x}} = E(\bar{x}) = 3$$

Como
$$E(\bar{x}^2) = \sum_{i=1}^{n} \bar{x}_i^2 . p(\bar{x}_i)$$
, resulta em: $E(\bar{x}^2) = 10$

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

O que resulta em:

$$\mu_{\bar{x}} = E(\bar{x}) = 3$$

Como
$$E(\bar{x}^2) = \sum_{i=1}^{n} \bar{x}_i^2 . p(\bar{x}_i)$$
, resulta em: $E(\bar{x}^2) = 10$

Vimos que uma outra forma de obter a variância é:

$$VAR(\bar{x}) = E(\bar{x}^2) - \{E(\bar{x})\}^2$$

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

O que resulta em:

$$\mu_{\bar{x}} = E(\bar{x}) = 3$$

Como
$$E(\bar{x}^2) = \sum_{i=1}^{n} \bar{x}_i^2 . p(\bar{x}_i)$$
, resulta em: $E(\bar{x}^2) = 10$

Vimos que uma outra forma de obter a variância é:

$$VAR(\bar{x}) = E(\bar{x}^2) - \{E(\bar{x})\}^2$$

Substituindo, segue:

$$VAR(\bar{x}) = 10 - 3^2 = 1$$

Dessa forma, utilizando a fórmula da Esperança, temos:

$$E(\bar{x}) = \mu_{\bar{x}} = \sum_{i=1}^{n} \bar{x}_{i}.P(\bar{x}_{i}) = 3$$

O que resulta em:

$$\mu_{\bar{x}} = E(\bar{x}) = 3$$

Como
$$E(\bar{x}^2) = \sum_{i=1}^n \bar{x}_i^2 . p(\bar{x}_i)$$
, resulta em: $E(\bar{x}^2) = 10$

Vimos que uma outra forma de obter a variância é:

$$VAR(\bar{x}) = E(\bar{x}^2) - \{E(\bar{x})\}^2$$

Substituindo, segue:

$$VAR(\bar{x}) = 10 - 3^2 = 1$$

Dessa forma:

$$\sigma_{\bar{x}}^2 = VAR(\bar{x}) = 1$$

Proposição 01: A média das médias amostras, ou $E(\bar{x})$, é igual à média μ populacional, ou $E(\bar{x}) = \mu_x$.

Proposição 01: A média das médias amostras, ou $E(\bar{x})$, é igual à média μ populacional, ou $E(\bar{x}) = \mu_x$.

Quando temos $E(\hat{\theta}) = \theta$, o estimador $\hat{\theta}$ é não viciado, não viesado ou não tendencioso. Assim \bar{x} é um estimador não tendencioso de μ .

Proposição 02: A variância da média amostral é igual à variância populacional dividida pelo tamanho da amostra, ou seja,

$$VAR(\bar{x}) = \sigma_x^2 = \frac{\sigma^2}{n}$$

Proposição 02: A variância da média amostral é igual à variância populacional dividida pelo tamanho da amostra, ou seja,

$$VAR(\bar{x}) = \sigma_x^2 = \frac{\sigma^2}{n}$$

Ou seja, se $X: N(\mu, \sigma^2)$ e se dessa população retiramos amostras de tamanho n, então:

$$\bar{x}: N\left(\mu, \frac{\sigma^2}{n}\right)$$

A distribuição da variável \bar{x} por amostragem simples será sempre normal com a mesma média da população X e a variância n vezes menor. Ou seja, quanto maior a amostra menor a variância da média, ou seja, quanto maior a amostra maior a precisão do estimador \bar{x} .

Distribuição Amostral dos Estimadores

A distribuição da variável \bar{x} por amostragem simples será sempre normal com a mesma média da população X e a variância n vezes menor. Ou seja, quanto maior a amostra menor a variância da média, ou seja, quanto maior a amostra maior a precisão do estimador \bar{x} .

O Fator de Correção para populações finitas e de tamanho N conhecido , e se a amostra de tamanho n dela retirada for sem reposição, então:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

Exemplo 01

Exemplo 01: Em uma população de 5000 alunos de uma faculdade sabemos que a altura média dos alunos é 175cm e o desvio padrão, 5cm. Retiramos uma amostra sem reposição, de tamanho n=100. Determine o desvio padrão dessa amostra.

Solução:

Temos que
$$X: N(175, 25)$$

$$\begin{cases} u = 175 \\ \sigma = 5 \end{cases}$$

Solução:

Temos que
$$X: N(175, 25)$$
 $\begin{cases} u = 175 \\ \sigma = 5 \end{cases}$ Então, $\sigma_{\bar{x}} = E(\bar{x}) = 175$

Solução:

Temos que
$$X: N(175, 25)$$
 $\begin{cases} u = 175 \\ \sigma = 5 \end{cases}$ Então, $\sigma_{\bar{x}} = E(\bar{x}) = 175$

е

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} = \frac{5}{10} \sqrt{\frac{5000-100}{5000-1}} = 0,495024$$

Solução:

Temos que
$$X: N(175, 25)$$
 $\begin{cases} u = 175 \\ \sigma = 5 \end{cases}$ Então, $\sigma_{\bar{x}} = E(\bar{x}) = 175$

e

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} = \frac{5}{10} \sqrt{\frac{5000-100}{5000-1}} = 0,495024$$

Assim, a média das médias amostrais é 175cm e o desvio padrão da média amostral é 0,5cm.

Se não utilizássemos o fator de correção, teríamos:

Se não utilizássemos o fator de correção, teríamos:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{5}{10} = 0,5$$

Se não utilizássemos o fator de correção, teríamos:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{5}{10} = 0,5$$

Isto é, quando tiramos uma amostra grande de uma população muito maior que o da amostra (pelo menos o dobro), é indiferente usar o fator de correção para populações finitas, pois o erro é muito pequeno.

Para determinarmos qual o tamanho da amostra que deveremos retirar para obter um erro de amostragem dentro de um risco determinado utilizamos o seguinte exemplo:

Para determinarmos qual o tamanho da amostra que deveremos retirar para obter um erro de amostragem dentro de um risco determinado utilizamos o seguinte exemplo:

Exemplo 01: Seja X: N(1200, 840). Qual deverá ser o tamanho da amostra de tal forma que $P(1.196 < \bar{x} < 1204) = 0,9$?

Para determinarmos qual o tamanho da amostra que deveremos retirar para obter um erro de amostragem dentro de um risco determinado utilizamos o seguinte exemplo:

Exemplo 01: Seja X: N(1200, 840). Qual deverá ser o tamanho da amostra de tal forma que $P(1.196 < \bar{x} < 1204) = 0, 9?$ Solução:

Se
$$X: N(1200, 840)$$
 $\begin{cases} \mu = 1200 \\ \sigma^2 = 840 \end{cases}$ $\therefore \sigma_{\bar{x}} = 1200$

Para determinarmos qual o tamanho da amostra que deveremos retirar para obter um erro de amostragem dentro de um risco determinado utilizamos o seguinte exemplo:

Exemplo 01: Seja X: N(1200, 840). Qual deverá ser o tamanho da amostra de tal forma que $P(1.196 < \bar{x} < 1204) = 0,9?$ Solução:

Se
$$X: N(1200, 840) \begin{cases} \mu = 1200 \\ \sigma^2 = 840 \end{cases}$$
 $\therefore \sigma_{\bar{x}} = 1200 \text{ e}$

Para determinarmos qual o tamanho da amostra que deveremos retirar para obter um erro de amostragem dentro de um risco determinado utilizamos o seguinte exemplo:

Exemplo 01: Seja X: N(1200,840). Qual deverá ser o tamanho da amostra de tal forma que $P(1.196 < \bar{x} < 1204) = 0,9?$ Solução:

Se
$$X: N(1200, 840)$$
 $\begin{cases} \mu = 1200 \\ \sigma^2 = 840 \end{cases}$ $\therefore \sigma_{\bar{x}} = 1200 \text{ e}$
 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{28, 98}{\sqrt{n}} \therefore Z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}}$
ou $Z_{\alpha} = Z_{0,45} = 1,64$

Assim,

Assim,
$$1,64 = \frac{1204 - 1200}{\frac{28,98}{\sqrt{n}}}$$

Assim, $1,64 = \frac{1204 - 1200}{\frac{28,98}{\sqrt{5}}}$

É indiferente escolher o extremo inferior ou superior, sendo assim:

$$\sqrt{n} = \frac{1,64 \cdot 28,98}{4}$$

$$\sqrt{n} = 11,88 \implies n = 141,13 \implies n \approx 141$$

Assim, $1,64 = \frac{1204 - 1200}{\frac{28,98}{\sqrt{n}}}$

É indiferente escolher o extremo inferior ou superior, sendo assim:

$$\sqrt{n} = \frac{1,04 \cdot 28,98}{4}$$

$$\sqrt{n} = 11,88 \implies n = 141,13 \implies n \approx 141$$

Com isso, concluímos que, se retirarmos uma amostra de 141 elementos da população X, teremos 95% de confiança que \bar{x} estará no intervalo (1.196, 1.216), o que significa que o risco que corremos de que o valor da média caia fora do intervalo anterior é de 5%.