智慧农业项目开发手册_(IIC)V1

2019年7月11日 19:53

功能需求

- 1. 视频监控
- 2. 电磁阀控制
- 3. 温湿度监控
- 4. 4G联网

硬件设备

- 1. 树莓派
- 2. 温湿度传感器
 - a. DHT11传感器
 - b. DHT22传感器
 - c. 注意传感器包含了电阻,单个DHT不包含电阻
- 3. 树莓派摄像头
 - a. Pi Camera
 - b. USB Camera (Linux适用的,免驱类型)
- 4. 继电器
 - a. 单路继电器
 - b. 多路继电器(相对单路只是统一使用一对供电接口)
- 5. 4G模块
 - a. 4G网卡托+4G上网卡
 - b. 华为4G模块(?还未使用)+4G上网卡
- 6. USB式GPS
- 7. 面包板即杜邦线
 - a. 公对公
 - b. 公对母 (需要较多)
 - c. 母对母 (几乎不用)

电脑端软件

SDFormatter	格式化TF卡
Win32DiskImager	向TF卡中写入树莓派系统
WinSCP	用于和树莓派之间传输文件,需提前打开树莓派的SSH配置
Xshell	用于SSH连接树莓派,需提前打开树莓派的SSH配置

树莓派硬件

- 1. 树莓的三种引脚编码方式:BCM,BOARD,writingPi
 - a. BCM:面包板上显示的是BCM模式的接口编号,BCM编号侧重CPU寄存器
 - b. BOARD: BOARD为物理编号,从左上角开始为1,右下角为40,从左到右,从上到下:左边奇数,右边偶数:1-40
 - c. writingPI:侧重实现逻辑,把扩展GPIO端口从0开始编号,这种编号方便编程。
 - d. 在树莓派的terminal中输入gpio readall即可查看对应引脚示意图

	BCM 適码方式	wpi 编码方式	功能名			物理接口	_		功能	wpi 编码方式	BCM 编码方式
Ī	BCM	wPi	Name	Mode	v	B Plus Physica		Mode	Name	wPi	BCM
	2 3 4	8 9 7	3.3v SDA.1 SCL.1 GPIO. 7	ALTO ALTO IN	1 1 1 1 1	1 2 3 4 5 6 7 8	0	 ALTO	5v 5V 0v TxD	15	14
١	17	0	Ov GPIO. 0	IN	1 0	9 1	0 1	ALTO IN	RxD GPIO. 1	16	15
	27 22	2 3	GPIO. 2 GPIO. 3 3.3v	IN IN	PO/	13 1 1 125 splp. 10 17 1	6/10/09	I SIN OUT	Ov GPIO. 4 GPIO. 5	4 5	23
	10 9 11	12 13 14	MOSI MISO SCLK	ALTO ALTO ALTO	0 1 1	19 2	2 1	OUT ALTO	OV GPIO. 6	6	25
	0 5	30 21	Ov SDA.0 GPIO.21	ALTO IN	1 1	25 2 27 2 29 3	3 1	ALTO	CE1 SCL.0	11 31	7
	6 13 19	22 23 24	GPIO.22 GPIO.23 GPIO.24	IN IN IN	0	31 3 33 3 35 3	2 0	I IN	GPIO.26 0v GPIO.27	26 27	12
	26	25	GPIO.24 GPIO.25 0v	IN	0	37 3 37 3 39 4	3 0	I IN	GPIO.28 GPIO.29	28 29	20
İ	BCM	wPi	Name	Mode	lvt	Physica	ılbg.	Mode	n name ch∈	NwPi(2 всм0

- 2. 使用树莓派连接面包板时,注意连接正反
 - a. 使用万能表测试面包板的两端线头的连通情况(测试最边角),确定排线连接方向
 - b. 测试面板版上的孔的连通性
 - c. 使用万能表电压测试,测接好的面包板上年的电压
 - d. 使用万能表连通测试(信号图标),测是否连通
- 3. 面包板连接传感器时,要看好所需电压和接口线
 - a. 传感器VCC端接5v或3v
 - b. 传感器负极接地
 - c. 传感器数据端接GPIO口
- 4. 继电器需要供电,另一个口接GPIO用于控制继电器
 - a. 继电器com口接电源正极
 - b. 继电器NC (normal close) 口用于断电时保持连接状态的情况
 - c. 继电器NO (normal open)用于断电时保持断开状态的情况

树莓派软件

Linux的一些基本使用命令

一、安装前的配置

- 1. 第一次开启树莓派先连入显示器,待配置完成后再使用7寸屏和SSH
- 2. 使用指定烧录软件安装好树莓派后,注意地区设置为中国,否则无法使用wifi
- 3. 更新树莓派,安装必要软件

sudo apt-get update	升级
sudo apt-get upgrarde	
sudo apt-get install vim	安装vim
sudo apt-get install git	安装git
sudo apt-get install cmake	
sudo apt-get install python-dev	
sudo apt-get install build-essential	

4. 启动SSH服务

sudo raspi-config 选择Interface Options中开始SSH

或者直接开始菜单中,配置树莓派,开启SSH

5. 检查USB设备是否被识别

Is /dev	若有USB摄像头,则结果中有video0
Isusb	所有usb设备名称

二、使用摄像头

基本功能

sudo raspi-config	选择Interface Options中开启Camera
sudo reboot	重启生效

测试

• • • • • • • • • • • • • • • • • • • •			
raspistill -t 1000 -o image.jpg	1秒钟(时间单位为毫秒)延迟后拍摄一张照片,并命名为image.jpg		
raspistill -t 1000 -o image.jpg -w 640 -h 480 -q 5	拍摄一张自定义大小和帧率的照片		
raspivid -o myvideo.h264	拍摄一段视频:默认是视频长度为5s,分辨率为1920*1080,帧率:17		
raspivid -o myvideo.h264 -t 10000 -w 640 -h 480	拍摄一段视频:分辨率为640*480 时间为10s		

使用网页查看摄像头视频

工具1: mjpg-streamer

<mark>安装必要库:</mark>

sudo apt-get install subversion sudo apt-get install libjpeg8-dev sudo apt-get install imagemagick sudo apt-get install libv4l-dev

<mark>安装工具:</mark>

sudo git clone https://github.com/jacksonliam/mjpg-streamer.git

cd mjpg-streamer/mjpg-streamer-experimental

make all

sudo make install

使用:

./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so	o-w./www" 1.使用USB摄像头
./mjpg_streamer -o "output_http.so -w ./www" -i "input	t_raspicam.so" 2.使用Pi Camera
浏览器中:http://raspberry-ip-address:8080/?action=str	ream 只能在同一局域网中使用

参考: http://shumeipai.nxez.com/2017/05/14/raspberry-pi-mjpg-streamer-installation.html
也可以在公网中使用https://blog.csdn.net/Meteor s/article/details/81124086

工具2: pistreaming

sudo apt-get install ffmpeg python3-picamera python3-ws4py	安装依赖包
git clone https://github.com/waveform80/pistreaming.git	
cd pistreaming	
python3 server.py	开启服务
浏览器中: http://raspberry-ip-address:8082/?action=stream	智能使用Pi Camera,除非修改server.py中的内容可以在广域网中使用(树莓派使用的是广域网)

使用此工具,若树莓派使用的是局域网的ip,需要在此局域网的路由器设置端口转发,保证任意网段浏览器使用路由器的ip+指定转发端口能够访问树莓派

关于http和https: https://blog.csdn.net/hjxzb/article/details/78107811

三、安装7存屏幕驱动

sudo rm -rf LCD-show	移除原有文件夹
git clone https://github.com/goodtft/LCD-show	
chomod -R 755 LCD-show	
cd LCD-show	
sudo ./LCD7B-show	1.使用7寸720p驱动
sudo ./LCD-hdmi	2.使用hdmi驱动

四、控制GPIO

GPIO (General Purpose Input/Output) 的意思就是 通用型输入输出

参考: https://blog.csdn.net/chentuo2000/article/details/81051645

电源和地不用多说,3.3v 就是 3.3v输出,5v 就是 5v输出,地就是地。我们没办法通过软件编程的方法对它们进行设置,这也是为什么它们没有编号。能软件编程的就是亮黄色的 GPIO 引脚了。

对于GPIO引脚的两种使用方式

- 1.设置为输出,输出高电平(3.3v)或输出低电平(0v)
- 2.设置为输入,这时可以接收信号,这一信号不光可以来自机械开关,还可以是各式各样的传感器或另一台电脑或其他设备。

安装wiringPi, GPIO控制库函数(基于c语言)

sudo apt-get install wiringpi 编译和安装wiringPi

writingPi: https://wenku.baidu.com/view/74b7c14b14791711cd791707.html

	•		
ania w			
gpio -v			
3.			

gpio readall	查看所有引脚电平
gpio mode 1 out	设置[以writePi编号为1]的GPIO(即GPIO1口) 口为输出模式
gpio mode -g 18 out	设置[以BCM编号为18]的GPIO(即GPIO1口)口为输出模式
gpio read 1	获取当前GPIO1口的电平(0或1)
gpio write 1 0	设置当前GPIO1口的电平为0(低电平)

★ 调试各个GPIO口的时候可以调出gpio readall查看对应口的输入输出模式

首先我们把LED和树莓派连接。LED的正极串联一个1K Ω 电阻接树莓派的GPIO18(pin12),负极接地

使用shell命令控制GPIO

sudo echo 18 >/sys/class/gpio/export	> 是IO重定向符号,IO重定向是指改变linux标准输入和输出的默认设备,指向一个用户定义的设备。echo 18 > export就是把18写入到export文件中。
cd /sys/class/gpio/gpio18	查看GPIO18引脚(在Liunx中设备都以文件的形式,引脚也是设备)
sudo echo out > direction	设置GPIO18为输出模式
sudo echo 1 > value	向value文件中输入1,GPIO输出高电平,LED点亮
sudo echo 0 > value	向value文件中输入0,GPIO输出低电平,LED熄灭

使用Shell脚本控制GPIO

sudo nano led_on_off.sh	新建名为led_on_off.sh的脚本
echo \$1 > /sys/class/gpio/export	脚本中写入 说明:shell脚本可传入参数,例如\$1代表第1个参数,\$2代表第2个参数
echo out > /sys/class/gpio/gpio\$1/direction	
echo 1 > /sys/class/gpio/gpio\$1/value	
sleep 5 #延时5秒	
echo 0 > /sys/class/gpio/gpio\$1/value	
echo \$1 > /sys/class/gpio/unexport	
sudo chmod +xledonoff.sh	执行权限
sudo ./ledonoff.sh 18	运行,控制引脚18 LED点亮,持续5秒钟关闭

使用python控制GPIO

树莓派系统本身集成的RPi.GPIO类库

python	进入python
import RPi.GPIO as GPIO	导入python类库RPi.GPIO,命名为别名为GPIO
GPIO.setmode(GPIO.BCM)	编码方式,基于BCM
GPIO.setup(18,GPIO.OUT)	18为输出模式
GPIO.output(18,GPIO.LOW)	GPIO18输出低电平,LED熄灭
GPIO.output(18,GPIO.HIGH)	GPIO18輸出高电平,LED点亮
GPIO.cleanup()	进行清理
Ctrl+D	推出python

六、传感器数据收集与阿里云IOT

读取DHT11温湿度传感器数据

参考:

http://shumeipai.nxez.com/2014/10/10/raspberry-dht11-get-temperature-data.html http://shumeipai.nxez.com/2018/05/16/dht11-temperature-and-humidity-sensor-raspberry-pi.html

DHT11有三个Pin脚,需要在电源和数据脚之间串联一个上拉电阻(4.7K-10K),通常情况下,购买DHT11模块的话都自带了这个电阻

湿度检测范围: 20-80% (5% 精度) 温度检测范围: 0-50°C (±2°C 精度)

DHT Pin	Signal	Pi Pin
1	3.3V	1
2	Data/Out	11 (GPIO17)
4	Ground	6 or 9

两种方式读取DHT11数据

- a. 通过高低电平收集40bit数据,特定的信号协议,比较烦不使用
- b. 使用Adafruit DHT 库

★ 安装Adafruit DHT库

sudo git clone https://github.com/adafruit/Adafruit_Python_DHT.git	
cd Adafruit_Python_DHT	
sudo python setup.py install	给 Python 2 和 Python 3 安装该库
sudo python3 setup.py install	

Adafruit例子

cd Adafruit_Python_DHT	Adafruit 提供了示例程序
cd examples	
python AdafruitDHT.py 11 17	这两个参数分别表示 DHT11 和数据引脚所接的树莓派 GPIO 编号。成功的话会输出

```
import Adafruit_DHT

# Set sensor type : Options are DHT11,DHT22 or AM2302
sensor=Adafruit_DHT.DHT11

# Set GPIO sensor is connected to
gpio=17

# Use read_retry method. This will retry up to 15 times to
get a sensor reading (waiting 2 seconds between each retry).
humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio)

# Reading the DHT11 is very sensitive to timings and occasionally
# the Pi might fail to get a valid reading. So check if readings are valid.
if humidity is not None and temperature is not None:
    print('Temp={0:0.1f}*C Humidity={1:0.1f}%'.format(temperature, humidity))
else:
    print('Failed to get reading. Try again!')
```

控制继电器

注意继电器就接3.3v

八路继电器: http://shumeipai.nxez.com/2019/06/10/a-raspberry-pi-powered-junk-drum-machine.html

12v Circuit Diagram

继电器有八个通道,可以独立的开、关八个电磁阀。每个通道包含四个连接器,其中三个在高压电路中使用,稍后会看到。剩下一个连接到低压电路的 IN 引脚上。当树莓派的 GPIO 引脚发送 5V 到给定通道 IN 引脚上时,继电器将连接到相应的 12v 电路。

安装阿里云IOT客户端SDK

参考:

https://www.cnblogs.com/yefanqiu/p/10063554.html https://www.yuque.com/cloud-dev/iot-tech/rz6fpl

首先设备接入IOT,需要申请设备码

阿里云物联网平台: https://iot.console.aliyun.com/product

产品	功能定义	增加需要的属性
	在线调试	

设备	运行状态	查看数据
	在线调试	

设备端开发

pip install aliyun-python-sdk-iot-client	阿里云Python SDK
pip install paho-mqtt	