Lösningsförslag övningsuppgifter 2025-02-21

1. Bevisa De Morgans teorem, dvs. (A + B)' = A'B' genom att undersöka för vilka värden på en OR-grind som X är lika med 0. Vi vet ju att X = A + B. Ta via sanningstabellen fram en ekvation för X'.

Lösning

Sanningstabellen för OR-grinden visas nedan:

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

Tabell 1: OR-grindens sanningstabell.

Sanningstabellen indikerar att utsignal X är lika med 1 när någon av insignaler A eller B är lika med 1, vilket i enlighet med reglerna för boolesk algebra kan utryckas enligt nedan:

$$X = A + B$$

Sanningstabellen indikerar också att utsignal X är lika med 0 när båda insignaler A eller B är lika med 0, vilket i enlighet med reglerna för boolesk algebra kan utryckas enligt nedan:

$$X' = A'B'$$

Vi tittar på den första formeln igen:

$$X = A + B$$

Genom att invertera både i vänster- och högerled erhålls följande formel:

$$X' = (A + B)'$$

Genom att sammansätta våra uttryck för X' kan följande formel härledas:

$$X' = (A+B)' = A'B'$$

Vi har därmed bevisat De Morgans teorem:

$$(A+B)'=A'B'$$

Digital konstruktion

- 2. Beräkna resultatet av följande aritmetiska operationer på 8-bitars binär form:
 - a) 130 + 132
 - b) 40-50

Lösning

a) Vi omvandlar 262 till binär form:

$$262_{10} = 1\,0000\,0110_2$$

Talet innehåller alltså nio bitar. På 8-bitars form kommer alltså den mest signifikant biten förloras, då den inte ryms på åtta bitar. Därmed kommer talet trunkeras till 0000 0110₂, vilket är ekvivalent med 6.

b) Via det 8-bitars 2-komplementet 28 = 256 kan vi beräkna att motsvarande osignerade 8-bitars tal till -10 är 246, då

$$-10 + 2^8 = -10 + 256 = 246$$

Vi omvandlar 246₁₀ till binär form:

$$246 = 128 + 64 + 32 + 16 + 4 + 2$$

vilket innebär att

$$246_{10} = 1111\ 0110_2$$

OBS! Vänd blad!

3. Härled en minimerad logisk ekvation för utsignal X ur nedanstående sanningstabell via ett Karnaugh-diagram och realisera motsvarande grindnät. Simulera konstruktionen i CircuitVerse.

ABC	X
000	1
001	1
010	0
011	0
100	1
101	1
110	0
111	0

Sanningstabell 2: Sanningstabell för uppgift 3.

Lösning

Vi ritar om sanningstabellen ovan till nedanstående Karnaugh-diagram:

Figur 1: Karnaugh-diagram för uppgift 3.

Vi placerar insignaler AB i y-led samt insignal C i x-led. Vi placerar AB i 2-bitars Grey-kod, alltså i ordningsföljden 00, 01, 11, 10, så att samtliga celler har en bit gemensam med samtliga intilliggande celler. Detta gäller även ytterkanterna, där AB = 00 samt AB = 10 har B = 0 gemensamt. Vi ser då enklare mönster och kan enkelt ringa in dessa för att erhålla en minimerad ekvation för utsignal X.

Vi lägger till ettor i de celler där X = 1. I sanningstabellen ser vi att X = 1 för kombinationer ABC = 000, 001, 100 samt 101. I övriga rutor kan vi lägga till nollor, men för att göra det enkelt kan vi strunta i detta, då vi endast är intresserad av ettorna.

Vi noterar i Karnaugh-diagrammet ovan att vi får fyra ettor "jämte varandra" i ytterkanterna, alltså då AB = 00 samt AB = 11. Vi ringer in dessa ettor och noterar att dessa ettor enbart har B = 0 gemensamt. Därmed gäller att X = 1 då B = 0, vilket på boolesk algebra skrivs enligt nedan:

$$X = B'$$

Eftersom inga ettor kvarstår är ekvationen slutförd. Grindnätet kan därmed realiseras med enbart en NOT-grind, såsom visas nedan:

Figur 2: Realisering av grindnät för uppgift 3.

4. Härled en minimerad logisk ekvation för utsignal X ur nedanstående sanningstabell via ett Karnaugh-diagram, realisera motsvarande grindnät. Simulera konstruktionen i CircuitVerse.

ABCD	Х
0000	0
0001	1
0010	0
0011	1
0100	0
0101	0
0110	0
0111	0
1000	0
1001	1
1010	0
1011	1
1100	1
1101	0
1110	1
1111	0

Sanningstabell 2: Sanningstabell för uppgift 4.

Lösning

Vi ritar om sanningstabellen ovan till nedanstående Karnaugh-diagram:

Figur 3: Karnaugh-diagram för uppgift 4.

Vi placerar insignaler AB i y-led samt insignaler CD i x-led. Vi placerar AB samt CD i 2-bitars Grey-kod, alltså i ordningsföljden 00, 01, 11, 10, så att samtliga celler har en bit gemensam med samtliga intilliggande celler, inklusive ytterkanterna.

Vi lägger till ettor i de celler där X = 1. I sanningstabellen ser vi att X = 1 för kombinationer ABCD = 0001, 0011, 1001, 1011, 1100 samt 1110. Återigen struntar vi att skriva ut nollor i övriga rutor, då vi enbart är intresserade av ettorna.

Vi noterar i Karnaugh-diagrammet ovan att vi får fyra ettor "jämte varandra" i ytterkanterna, alltså då AB = 00 samt AB = 11, samtidigt som CD = 01 eller 11. Dessa ettor är inringade i rött ovan. Vi ringer in dessa ettor och noterar att dessa ettor enbart har B = 0 samt D = 1 gemensamt. För dessa fyra ettor gäller att X = 1 då BD = 01, vilket på boolesk algebra skrivs enligt nedan:

$$X = B'D$$

Digital konstruktion

Vi är dock inte klara, då det återstår två ettor, som är inringade i grönt ovan. Dessa ligger i ytterkanterna på en gemensam rad och har därmed något gemensamt. Vi noterar att de har gemensamt att A = 1, B = 1 samt D = 0. För dessa ettor gäller att X = 1 då A = 1, B = 1 och D = 0, vilket på boolesk algebra skrivs enligt nedan:

$$X = ABD'$$

Sammanfattat gäller att utsignal X = 1 då BD = 01 eller ABD = 110, vilket på boolesk algebra skrivs enligt nedan:

$$X = B'D + ABD'$$

Vi kan därefter realisera grindnätet med två NOT-grindar, två AND-grindar samt en OR-grind, såsom visas nedan:

Figur 4: Realisering av grindnät för uppgift 4.

OBS! Vänd blad!

5. Härled en minimerad logisk ekvation för utsignal X ur nedanstående sanningstabell via ett Karnaugh-diagram och realisera grindnätet. Simulera konstruktionen i CircuitVerse.

ABCD	XY
0000	01
0001	00
0010	00
0011	01
0100	11
0101	10
0110	10
0111	11
1000	11
1001	10
1010	10
1011	11
1100	01
1101	00
1110	00
1111	01

Sanningstabell 3: Sanningstabell för uppgift 5.

Lösning

Vi ritar om sanningstabellen ovan till Karnaugh-diagram. Eftersom två utsignaler förekommer i detta fall behövs två Karnaugh-diagram. Vi börjar med att rita ett Karnaugh-diagram för utsignal X:

Figur 5: Karnaugh-diagram för utsignal X i uppgift 5.

Vi placerar insignaler AB i y-led samt insignaler CD i x-led. Vi placerar AB samt CD i 2-bitars Grey-kod, alltså i ordningsföljden 00, 01, 11, 10, så att samtliga celler har en bit gemensam med samtliga intilliggande celler, inklusive ytterkanterna.

Vi lägger till ettor i de celler där X = 1. I sanningstabellen ser vi att X = 1 för kombinationer ABCD = 0100, 0101, 0110, 0111, 1000, 1001, 1010 samt 1011. Återigen struntar vi att skriva ut nollor i övriga celler, då vi enbart är intresserade av ettorna.

Vi noterar i Karnaugh-diagrammet ovan att vi får två rader med fyra ettor fyra "jämte varandra". Vi ringar in dessa med röd respektive grön färg. De fyra ettor som är inringade i rött har gemensamt att A = 0 samt B = 1. De fyra ettor som är inringade i grönt har gemensamt att A = 1 samt B = 0.

Därmed gället att X = 1 om AB = 01 eller AB = 10, vilket på boolesk algebra skrivs enligt nedan:

$$X = A'B + AB'$$

Notera att detta är ett XOR-mönster; insignaler A och B måste ha motsatt värde (den ena 0 och den andre 1) för att utsignal X ska bli lika med 1. Därmed gäller att

$$X = A^B$$

Grindnätet för utsignal X kan därmed realiseras via en XOR-grind med A och B som insignaler.

Vi ritar sedan ett Karnaugh-diagram för utsignal Y:

Figur 6: Karnaugh-diagram för utsignal Y i uppgift 5.

Vi placerar insignaler AB i y-led samt insignaler CD i x-led. Vi placerar AB samt CD i 2-bitars Grey-kod, alltså i ordningsföljden 00, 01, 11, 10, så att samtliga celler har en bit gemensam med samtliga intilliggande celler, inklusive ytterkanterna.

Vi lägger till ettor i de celler där Y = 1. I sanningstabellen ser vi att Y = 1 för kombinationer ABCD = 0000, 0100, 1000, 1100, 0011, 0111, 1011 samt 1111. Även denna gång struntar vi att skriva ut nollor i övriga rutor, då vi enbart är intresserade av ettorna.

Vi noterar i Karnaugh-diagrammet ovan att vi får två rader med fyra ettor fyra "jämte varandra". Vi ringar in dessa med röd respektive grön färg. De fyra ettor som är inringade i rött har gemensamt att C = 0 samt D = 0. De fyra ettor som är inringade i grönt har gemensamt att C = 1 samt D = 1. Därmed gället att Y = 1 om CD = 00 eller CD = 11, vilket på boolesk algebra skrivs enligt nedan:

$$Y = C'D' + CD$$

Notera att detta är ett XNOR-mönster; C och D måste ha samma värde (antingen 0 eller 1) för att utsignal Y ska bli 1. Därmed gäller att

$$Y = (C^D)'$$

Grindnätet för utsignal Y kan därmed realiseras via en XNOR-grind med C och D som insignaler.

Digital konstruktion

Vi har därmed härlett följande ekvationer:

$$\begin{cases} X = A^B \\ Y = (C^D)' \end{cases}$$

Grindnätet kan därmed realiseras såsom visas nedan:

Figur 7: Realisering av grindnät för uppgift 5.