Câu hỏi:	2 đ
Bắn 3 quả tên lửa vào một chiếc tàu thủy với xác suất trúng đích của quả thứ 1, thứ 2	
và thứ 3 lần lượt là 0.4 , 0.5 và 0.7 . Nếu trúng i quả thì khả năng tàu chìm là	
$0.4i - 0.2 \ (i = 1, 2, 3).$	
a) Tìm xác suất tàu chìm.	
b) Sau loạt bắn thấy tàu bị chìm. Tìm xác suất để cả 3 quả trúng đích.	
a) A_i = "Quả thứ i trúng", $i = 1, 2, 3$,	1đ
H_j = "Có j quả trúng", $j = 1, 2, 3$,	
B = "Tàu bị chìm".	
Ta có	
$P(H_1) = P(A_1 \bar{A_2} \bar{A_3}) + P(A_2 \bar{A_1} \bar{A_3}) + P(A_3 \bar{A_2} \bar{A_1}) = 0.36,$	
$P(H_2) = P(A_1 A_2 \bar{A_3}) + P(A_1 \bar{A_2} A_3) + P(A_3 A_2 \bar{A_1}) = 0.41,$	
$P(H_3) = P(A_1 A_2 A_3) = 0.14.$	
$P(B/H_1) = 0.2$; $P(B/H_2) = 0.6$; $P(B/H_3) = 1$;	
Áp dụng công thức xác suất đầy đủ ta có:	
$P(B) = P(H_1)P(B/H_1) + P(H_2)P(B/H_2) + P(H_3)P(B/H_3) = 0.458.$	
b) Áp dụng công thức Bayes ta có: $P(H_3/B) = 0.306$.	1 đ

Câu 1.2

Câu hỏi:	2 đ
Một hộp có 10 quả bóng bàn, trong đó có 7 quả mới (nghĩa là chưa sử dụng lần nào).	
Hôm qua, đội bóng lấy ngẫu nhiên 3 quả để tập, sau đó trả lại vào hộp. Hôm nay, đội	
bóng lại lấy ngẫu nhiên ra 3 quả để tập.	
a) Tìm xác suất để 3 quả bóng lấy ra hôm nay đều mới.	
b) Biết rằng hôm nay lấy được 3 quả mới. Tính xác suất để hôm qua lấy ra ít	
nhất 2 quả mới.	
a) H_i = "Hôm qua, đội bóng lấy được i bóng mới", $i = \overline{0,3}$,	1 đ
A = "Hôm qua, đội bóng lấy được ít nhất 2 bóng mới",	
B = "Hôm nay, đội bóng lấy được 3 bóng mới".	
Áp dụng công thức xác suất đầy đủ ta có:	
$P(B) = P(H_0)P(B/H_0) + P(H_1)P(B/H_1) + P(H_2)P(B/H_2) + P(H_3)P(B/H_3)$	
$=\frac{C_3^3}{C_{10}^3} \times \frac{C_7^3}{C_{10}^3} + \frac{C_7^1 C_3^2}{C_{10}^3} \times \frac{C_6^3}{C_{10}^3} + \frac{C_7^2 C_3^1}{C_{10}^3} \times \frac{C_5^3}{C_{10}^3} + \frac{C_7^3}{C_{10}^3} \times \frac{C_4^3}{C_{10}^3} = 0.0851.$	
b) Áp dụng công thức Bayes ta có: $P(A/B) = P(H_2 \cup H_3/B) = 0,6287$.	1 đ

Câu hỏi:	2 đ
Người ta truyền đi 2 tín hiệu A, B theo tỷ lệ 2/3. Do có tạp âm nên xác suất nhận	
đúng tín hiệu A khi truyền tín hiệu A là $\frac{4}{5}$ và nhận đúng tín hiệu B khi truyền tín hiệu	
B là $\frac{2}{3}$.	

 a) Tính xác suất nhận được tín hiệu A. b) Biết rằng đã nhận được tín hiệu A. Tính xác suất tín hiệu truyền đi là tín hiệu 	
A.	
a) $A = \text{``Truyền đi tín hiệu A''},$	1 đ
B = "Truyền đi tín hiệu B", $H =$ "Nhận được tín hiệu A".	
Áp dụng công thức xác suất đầy đủ ta có:	
$P(H) = P(A)P(H/A) + P(B)(H/B) = \frac{13}{25}.$	
b) Áp dụng công thức Bayes ta có: $P(A/H) = \frac{8}{13}$.	1 đ

Câu hỏi:	2 đ
Có ba hộp bi. Hộp thứ nhất gồm 3 bi vàng, 5 bi đỏ; hộp thứ hai gồm 2 bi vàng, 6 bi	
đỏ; hộp thứ ba gồm 4 bi vàng, 2 bi đỏ. Lấy ngẫu nhiên ra một hộp, và từ hộp đó lấy ra	
một viên bi.	
a) Tính xác suất để viên bi đó là bi vàng.	
b) Khi lấy viên bi ra thấy đó là bi vàng. Tính xác suất để viên bi đó là của hộp thứ	
hai.	
a) Gọi H_i : biến cố lấy hộp bi thứ i, i=1,2,3. Khi đó $P(H_1) = P(H_2) = P(H_3) = \frac{1}{3}$.	1 đ
Gọi H: biến cố lấy được bi vàng, theo công thức xác suất đầy đủ	
$P(H) = P(H_1)P(H/H_1) + P(H_2)P(H/H_2) + P(H_3)P(H/H_3) = \frac{1}{3}(\frac{3}{8} + \frac{2}{8} + \frac{4}{6}) = \frac{31}{72}$	
2	1 đ
b) Theo công thức Bayes ta có $P(H_2/H) = \frac{P(H_2)P(H/H_2)}{P(H)} = \frac{\frac{2}{24}}{\frac{31}{31}} = \frac{6}{31}$	
$P(H) = \frac{31}{31} = 31$	
72	

Câu hỏi:	2 đ			
Có hai hộp linh kiện. Hộp (I) có 10 linh kiện tốt, 4 linh kiện hỏng. Hộp (II) có 2 linh				
kiện tốt và 8 linh kiện hỏng. Lấy ngẫu nhiên từ hộp (II) một linh kiện chuyển vào hộp				
(I) và sau đó lấy ngẫu nhiên một linh kiện từ hộp (I).				
a) Tìm xác suất để linh kiện lấy ra lần sau là loại tốt.				
b) Giả sử linh kiện lấy ra lần sau là loại tốt. Tính xác suất để linh kiện này là				
của hộp (I) cũ.				
a) A : "linh kiện từ hộp (II) sang hộp (I) là tốt", \overline{A} : "linh kiện từ hộp (II) sang hộp	1 đ			
(I) là hỏng" $P(A) = \frac{2}{10}; P(\overline{A}) = \frac{8}{10}$				
B: "linh kiện lấy từ hộp (I) là tốt". Khi đó $P(B/A) = \frac{11}{15}$; $P(B/\overline{A}) = \frac{10}{15}$				
Theo công thức xác suất đầy đủ, ta có				
$P(B) = P(A)P(B/A) + P(\overline{A})P(B/\overline{A}) = \frac{2}{10} \cdot \frac{11}{15} + \frac{8}{10} \cdot \frac{10}{15} = \frac{102}{150}$				
b) Gọi H:"Linh kiện lấy từ hộp (I) là của hộp (I) cũ"	1 đ			

$$P(H/B) = \frac{P(HB)}{P(B)} = \frac{P(A)P(HB/A) + P(\overline{A})P(HB/\overline{A})}{P(B)} = \frac{\frac{2}{10} \cdot \frac{10}{15} + \frac{8}{10} \cdot \frac{10}{15}}{\frac{102}{150}} = \frac{100}{102}$$

Cuu 110	
Câu hỏi:	2 đ
Có 2 lô gạch. Lô I có 10 hộp gạch loại A và 2 hộp gạch loại B. Lô II có 16 hộp gạch	
loại A và 4 hộp gạch loại B. Từ mỗi lô ta lấy ngẫu nhiên ra 1 hộp gạch. Sau đó trong	
2 hộp gạch lấy được, ta lại lấy ngẫu nhiên ra 1 hộp. Tìm xác suất để hộp gạch lấy ra	
sau cùng là hộp gạch loại A.	
Đặt $Ci =$: "Hộp gạch lấy ra từ lô i là gạch loại A", $i = 1,2$.	2 đ
Khi đó $B_1 = C_1C_2$; $B_2 = C_1\overline{C_2}$; $B_3 = \overline{C_1}C_2$; $B_4 = \overline{C_1}\overline{C_2}$ là hệ đầy đủ các biến cố.	
Ta có: $P(B_1) = P(C_1C_2) = P(C_1)P(C_2) = \frac{10}{12} \frac{16}{20} = \frac{160}{240}$	
Turong ty: $P(B_2) = \frac{10}{12} \frac{4}{20} = \frac{40}{240}$; $P(B_3) = \frac{2}{12} \frac{16}{20} = \frac{32}{240}$; $P(B_4) = \frac{2}{12} \frac{4}{20} = \frac{8}{240}$	
Đặt A = "Hộp gạch lấy ra sau cùng là gạch loại A".	
Ta có $P(A B_1) = 1; P(A B_2) = \frac{1}{2}; P(A B_3) = \frac{1}{2}; P(A B_4) = 0$	
Vậy ta có: $P(A) = \frac{1}{240}(160.1 + 40.\frac{1}{2} + 32.\frac{1}{2} + 8.0) = \frac{196}{240} = 0,8167$	

Câu 1.7

Cau 1.7								
Câu hỏi:							2 đ	
Có hai lô hàng, lô thứ nhất có 8 sản phẩm trong đó có 3 phế phẩm, lô thứ hai có 6 sản								
phẩm trong đó có 2 phế pl	hẩm. L	∠ấy n	gẫu nl	hiên từ	lô thứ	nhất 1 sản phẩm, từ lô thứ		
hai 2 sản phẩm. Gọi X là s	ố phế _l	phẩm	trong	3 sản p	hẩm lấ	y ra. Lập bảng phân bố xác		
suất của X.								
$P(X=0) = \frac{5}{8} \cdot \frac{C_4^2}{C_6^2} = \frac{1}{4}$;		PC	X = 1) =	$\frac{3}{2} \frac{C_4^2}{C_4^2}$	$\frac{5}{2}$ $\frac{C_2^1}{C_2^2}$	$\frac{C_4^1}{C_4^2} = \frac{29}{60}$	2 đ	
U				- 6	~ ()		
$P(X=2) = \frac{3}{8} \cdot \frac{C_2^1 \cdot C_4^1}{C_6^2} + \frac{5}{8} \cdot \frac{C_2^2}{C_6^2} = \frac{29}{120}; \qquad P(X=3) = \frac{3}{8} \cdot \frac{C_2^2}{C_6^2} = \frac{1}{40}$								
Bảng phân bố xác suất của	X là :							
	.	0		1.0		•		
	X	0	1	2	3			
	Px	1_	<u>29</u>	29	$\frac{1}{40}$			
	1 Λ	4	60	120	40			

Cau 1.0	
Câu hỏi:	2 đ
Một hộp bi có 5 bi đỏ, 6 bi xanh và 4 bi vàng. Lấy ngẫu nhiên ra 4 viên bi. Gọi X là	
tổng số bi xanh và bi đỏ trong số 4 viên lấy ra. Lập bảng phân bố xác suất của X.	

								2 đ
$X(\Omega) = \{0,1,2,3,4\}$	$\left. \right\}, \left \Omega \right $	$ = C_{15}^4 = 1$	1365,					
$P(X=0) = \frac{C_4^4}{C_{15}^4} = \frac{1}{1}$			13			$C_4 = \frac{C_4^2 C_1^2}{C_{15}^4}$	$\frac{2}{1} = \frac{330}{1365}$	
$P(X=3) = \frac{C_4^1 C_{11}^3}{C_{15}^4} = \frac{660}{1365}, P(X=4) = \frac{C_{11}^4}{C_{15}^4} = \frac{330}{1365}.$								
Bảng phân bố xác	suất (của X là						
	X	0	1	2	3	4		
	P	1	44	330	660	330		
		1365	1365	1365	1365	1365		

<u> </u>									
Câu hỏi:								2 đ	
Hai xạ thủ, mỗi người bắn hai viên đạn vào bia. Xác suất bắn trúng đích trong mỗi lần									
bắn của các xạ	thủ tu	rơng ứng l	là 0.3 và 0	.4. Gọi <i>X</i>	là tổng số	viên đạn	trúng đích của		
hai xạ thủ. Lập	bảng	phân bố x	ác suất của	$\mathfrak{a} X$.					
$X(\Omega) = \{0,1,2,$	3,4},							2 đ	
$P(X = 0) = (0.7)^{2} \times (0.6)^{2}, P(X = 1) = C_{2}^{1} \left[0.3 \times 0.7 \times (0.6)^{2} + 0.4 \times 0.6 \times (0.7)^{2} \right]$									
$P(X = 2) = (0.7)^{2}(0.4)^{2} + (0.6)^{2}(0.3)^{2} + C_{2}^{1}.C_{2}^{1}(0.3 \times 0.7 \times 0.4 \times 0.6)$									
$P(X = 3) = C_2^1 \left[(0.3)^2 \times 0.4 \times 0.6 + (0.4)^2 \times 0.3 \times 0.7 \right], P(X = 4) = (0.3)^2 \times (0.4)^2.$									
Bảng phân bố xác suất của X là									
	X	0	1	2	3	4			
	P_{X}	0.1764	0.3864	0.3124	0.1104	0.0144			

Câu 1.10

Câu hỏi:	2 đ
Một bệnh nhân bị nghi mắc một trong hai bệnh A và B. Xác suất mắc bệnh A là 0.6	
và xác suất mắc bệnh B là 0.4. Người ta thực hiện xét nghiệm T để có cơ sở chẩn	
đoán tốt hơn. Nếu người đó mắc bệnh A thì xác suất xét nghiệm T cho kết quả dương	
tính là 0.8 còn nếu người đó mắc bệnh B thì xác suất xét nghiệm T cho kết quả dương	
tính là 0.1. Khi tiến hành xét nghiệm T, người ta thấy nó cho kết quả dương tính. Hỏi	
khi đó xác suất bệnh nhân mắc bệnh A là bao nhiêu?	
Gọi A và B tương ứng là các biến cố "Người đó mắc bệnh A" và "Người đó mắc bệnh	1 đ
B", T là biến cố "Xét nghiệm T cho kết quả dương tính". Ta cần tính P(A T). Ta có	
$P(A T) = \frac{P(T A).P(A)}{P(T A).P(A) + P(T B).P(B)}.$	
$P(T A) = \frac{P(T A).P(A) + P(T B).P(B)}{P(T A).P(A) + P(T B).P(B)}$	
Theo đầu bài ta có $P(A) = 0.6, P(B) = 0.4, P(T A) = 0.8, P(T B) = 0.1$. Thay số ta được	1 đ
P(A T) = 0.923.	

Câu hỏi:	2 đ
Hai người bắn bia một cách độc lập, kết quả bắn ở các lần là độc lập. Người thứ nhất	
bắn 3 phát với xác suất trúng đích của mỗi phát là 0,6. Người thứ hai bắn 4 phát với	
xác suất trúng đích của mỗi phát là 0,7. Tính xác suất:	
a) Người thứ nhất bắn trúng đích	
b) Có ít nhất 1 người bắn trúng đích.	
Đặt A={Người thứ nhất trúng ít nhất 1 phát}	2 đ
B={Người thứ hai trúng ít nhất 1 phát}	
$P(A) = 1 - 0,4^3 = 0,936$	
$P(B) = 1 - 0.3^4 = 0.9919$	
$P_c = P(A \cup B) = P(A) + P(B) - P(AB)$	
= P(A) + P(B) - P(A)P(B) = 0.9995	

Câu hỏi:	2 đ
Sau mỗi chu kỳ một virus có thể sinh ra 0, 1, 2 virus cho thế hệ sau với xác suất tương	
ứng là $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$. Các virus sẽ chết ngay sau khi sinh. Ký hiệu X_i là số vi rút ở chu kỳ	
thứ i . Giả sử $X_0 = 1$	
a) Tính $P(X_2=0)$	
b) Tính $P(X_2=4)$	
$P(X_2 = 0) = P(X_1 = 0)P(X_2 = 0/X_1 = 0) + P(X_1 = 1)P(X_2 = 0/X_1 = 1)$	1đ
a) $+P(X_1=2)P(X_2=0/X_1=2)$	
$= \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{16} = \frac{25}{64}$	
$P(X_2 = 4) = P(X_1 = 0)P(X_2 = 4/X_1 = 0) + P(X_1 = 1)P(X_2 = 4/X_1 = 1)$	1 đ
b) $+P(X_1=2)P(X_2=4/X_1=2)$	
$= \frac{1}{4}.0 + \frac{1}{2}.0 + \frac{1}{4}.\frac{1}{16} = \frac{1}{64}$	

Câu hỏi: Một cửa hàng có 15 bóng đèn nê-ông, trong đó có 5 bóng loại I, 5 bóng loại II và 5	2 đ
bóng loại III. Một khách hàng mua ngẫu nhiên 1 bóng, sau đó một khách hàng thứ hai	
mua ngẫu nhiên 2 bóng.	
a) Tìm xác suất để khách hàng thứ hai mua được 1 bóng loại I và 1 bóng loại II	
b) Tìm xác suất để khách hàng thứ hai mua được 2 bóng loại II	
a) Dùng công thức xác suất đầy đủ sẽ tính được xác suất phải tìm là $65/273 = 5/21$.	1 đ
b) Dùng công thức xác suất đầy đủ sẽ tính được xác suất phải tìm là 65/273 = 2/21.	1 đ

Câu hỏi:	2 đ
Một xạ thủ bắn bia. Xác suất để: đạt điểm 10 là 0.2, đạt điểm 8 là 0.15 và dưới 8 là	
0.4. Giả sử xạ thủ bắn 3 viên độc lập. Tính xác suất để tổng số điểm của xạ thủ đạt ít	
nhất 28 điểm.	
Xác suất xạ thủ bắn được điểm 9 là $1-0, 2-0, 15-0, 4=0, 25$	2 đ
Gọi A là biến cố: 'xạ thủ bắn 3 phát đạt ít nhất 28 điểm ''	
X là số điểm : $\rightarrow P(A) = P(X \ge 28) = P(X = 28) + P(X = 29) + P(X = 30)$	
X = 28: 10,10,8 hoặc :9,9,10 và các hoán vị	
P(X = 28) = 3.0, 2.0, 2.0, 15 + 3.0, 25.0, 25.0, 2 = 0,0555	
X = 29: 10,10,9 và các hoán vị	
P(X = 29) = 3.0, 2.0, 2.0, 2.5 = 0,03.	
X = 30	
P(X = 30) = 0, 2.0, 2.0, 2 = 0,008	
$\rightarrow P(A) = 0,0935.$	

Câu 1.17

Câu hỏi:	2 đ
Một nhà máy có ba phân xưởng tương ứng làm ra 25%, 35% và 40% số sản phẩm của	
nhà máy. Tỷ lệ sản phẩm bị lỗi của các phân xưởng tương ứng là 2%, 3% và 4%. Lấy	
ngẫu nhiên một sản phẩm của nhà máy.	
a) Tính xác suất sản phẩm đó là sản phẩm tốt. Nếu sản phẩm lấy ra là sản phẩm	
tốt thì xác suất sản phẩm đó do phân xưởng thứ ba sản xuất bằng bao nhiều?	
b) Người ta lấy ngẫu nhiên từng sản phẩm của nhà máy. Tính xác suất phải lấy	
đến lần thứ ba mới được sản phẩm bị lỗi.	
a) $P(T) = 0.25 \times 0.98 + 0.35 \times 0.97 + 0.4 \times 0.96 = 0.9685$.	1 đ
$P(C \mid T) = \frac{P(T \mid C)P(C)}{P(T)} = \frac{0.96 \times 0.4}{0.9685} \approx 0.3965$	
b) $p = (0.9685)^2 \times 0.0315 \approx 0.0295$	1 đ

Câu hỏi:	2 đ
Có hai chuồng thỏ, chuồng thứ nhất chứa 3 con đen và 7 con trắng, chuồng thứ hai	
chứa 5 con trắng và 9 con đen. Từ chuồng thứ nhất, ta bắt một con thả vào chuồng	
thứ hai, sau đó lại bắt một con từ chuồng thứ hai ra. Biết rằng ở lần bắt sau ta được	
con thỏ trắng. Tính xác suất con thỏ trắng này là của chuồng thứ hai. Cách II	
Gọi M là biến cố "Thỏ bắt ra ở lần sau là của chuồng một"	1 đ

H là biến cố " Thỏ bắt ra ở lần sau là của chuồng hai" T là biến cố " Thỏ bắt ra ở lần sau là con thỏ trắng". Ta cần tính $P(H T)$ Theo công thức xác suất đầy đủ ta có $P(T) = P(T M).P(M) + P(T H).P(H)$ $P(M) = 1/15$ $P(H) = 14/15$ $P(T M) = 7/10$ $P(T H) = 1/15$)
Do đó	
P(T)=7/10.1/15 + 5/14.14/15 = 19/50.	
	1 đ
Theo công thức Bayes ta có $P(H T) = \frac{P(T H).P(H)}{P(T)} = \frac{5/14.14/15}{19/50} = \frac{50}{57}$.	

Câu hỏi:	2 đ
Một nhà máy sản xuất giày da có tỷ lệ sản phẩm đạt tiêu chuẩn là 90%. Trước khi	
xuất xưởng, mỗi sản phẩm đều được trải qua khâu kiểm tra chất lượng. Trong quá	
trình kiểm tra, một sản phẩm đạt tiêu chuẩn có xác suất 0.95 được công nhận là đạt	
tiêu chuẩn còn một sản phẩm không đạt tiêu chuẩn có xác suất 0.9 bị loại bỏ. Hãy tính	
tỷ lệ sản phẩm đạt tiêu chuẩn sau khi qua khâu kiểm tra chất lượng.	
Lấy ngẫu nhiên một sản phẩm của nhà máy. Gọi A là biến cố "sản phẩm đó là sản	2 đ
phẩm đạt tiêu chuẩn", T là biến cố "sản phẩm đó qua khâu kiểm tra được công nhận	
là đạt tiêu chuẩn". Tỉ lệ sản phẩm đạt tiêu chuẩn sau khi đã qua kiểm tra chất lượng là	
$P(T \mid A).P(A) = 0.95 \times 0.9$	
$P(A T)$. Ta có $P(A T) = \frac{P(T A).P(A)}{P(T A).P(A) + P(T \overline{A}).P(\overline{A})} = \frac{0.95 \times 0.9}{0.95 \times 0.9 + 0.1 \times 0.1} \approx 0.988$.	

Câu 1.20

Câu hỏi:	2 đ
Một bệnh nhân bị nghi mắc một trong hai bệnh A và B. Thông thường, xác suất mắc	
bệnh A là 0.6 và xác suất mắc bệnh B là 0.4. Người ta thực hiện xét nghiệm T để có	
cơ sở chẩn đoán tốt hơn. Nếu người đó mắc bệnh A thì xác suất xét nghiệm T cho kết	
quả dương tính là 0.8 còn nếu người đó mắc bệnh B thì xác suất xét nghiệm T cho kết	
quả dương tính là 0.1. Khi tiến hành xét nghiệm T, người ta thấy nó cho kết quả	
dương tính. Hỏi khi đó xác suất bệnh nhân mắc bệnh A là bao nhiều?	
Gọi A là biến cố "bệnh nhân mắc bệnh A", B là biến cố "bệnh nhân mắc bệnh B" và	2 đ
T là biến cố "xét nghiệm T cho kết quả dương tính". Xác suất bệnh nhân mắc bệnh A	
sau khi xét nghiệm T cho kết quả dương tính là $P(A T)$. Ta có	
$P(T \mid A).P(A)$ 0.8×0.6	
$P(A \mid T) = \frac{P(T \mid A).P(A)}{P(T \mid A).P(A) + P(T \mid B).P(B)} = \frac{0.8 \times 0.6}{0.8 \times 0.6 + 0.1 \times 0.4} \approx 0.923.$	

Cau 1,21	
Câu hỏi:	2 đ
Trong một kỳ thi lấy bằng lái xe, mỗi người tham dự phải trả lời 15 câu hỏi trắc	
nghiệm. Mỗi câu hỏi có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Thí	
sinh đạt yêu cầu nếu trả lời đúng ít nhất 12 câu hỏi. Một người tham dự kỳ thi, trong	
mỗi câu hỏi người đó chọn ngẫu nhiên một phương án trả lời. Tính xác suất người đó	
đạt yêu cầu.	

Xác suất người đạt yêu cầu là	2 đ
$C_{15}^{12}(0.25)^{12}(0.75)^{3} + C_{15}^{13}(0.25)^{13}(0.75)^{2} + C_{15}^{14}(0.25)^{14}(0.75) + C_{15}^{15} \times (0.25)^{15} \approx \frac{12.4}{10^{6}}$	

Câu hỏi:	2 đ
Một xét nghiệm HIV cho kết quả dương tính với xác suất 98% nếu bệnh nhân đúng là	
nhiễm HIV, và cho kết quả âm tính với xác suất 99% nếu bệnh nhân thực sự không	
nhiễm HIV. Biết rằng, có 1% dân số bị nhiễm HIV. Chọn ngẫu nhiên một người làm	
xét nghiệm HIV.	
a) Tính xác suất để người được chọn đó có kết quả xét nghiệm dương tính.	
b) Biết rằng người được chọn có kết quả dương tính. Tính xác suất để người đó thực	
sự không bị nhiễm HIV.	
a) Gọi H: "người được chọn đó có kết quả xét nghiệm dương tính"	1 đ
A: "Người đó bị nhiễm HIV"	
\overline{A} : "Người đó không bị nhiễm HIV"	
Theo CT xác suất đầy đủ	
$P(H) = P(A).P(H \mid A) + P(\overline{A}).P(H \mid \overline{A}) = 1\%.98\% + 99\%.1\% = 0.0197$	
b) Theo công thức Bayes	1 đ
$P(\overline{A} \mid H) = \frac{P(\overline{A}).P(H \mid \overline{A})}{P(H)} = 0.503$	
P(H) = 0.303	

Câu 1.23

Câu hỏi:	2 đ	
Một công ty có hai dây chuyền sản xuất lốp xe máy. Trong đó số lượng lốp xe		
do dây chuyền mới sản xuất gấp 3 lần số lượng lốp xe do dây chuyền cũ sản		
xuất. Biết rằng, 23% sản phẩm do dây chuyền cũ sản xuất không đạt tiêu chuẩn		
và chỉ 8% sản phẩm do dây chuyền mới sản xuất không đạt tiêu chuẩn. Chọn		
ngẫu nhiên 1 lốp xe để kiểm tra.		
a) Tính xác suất để lốp xe được kiểm tra đó đạt tiêu chuẩn.		
b) Biết rằng lốp xe được kiểm tra không đạt tiêu chuẩn. Tính xác suất để lốp		
xe đó là do dây chuyền mới sản xuất.		
a) H: "lốp xe được kiểm tra đó đạt tiêu chuẩn"	1 đ	
A: "Lốp do dây chuyền mới sản suất"		
B: "Lốp do dây chuyền cũ sản xuất"		
Theo CT xác suất đầy đủ		
$P(H) = P(A).P(H \mid A) + P(B).P(H \mid B) = 0,75.0,92 + 0,25.0,77 = 0.8825$		
b) \overline{H} : "lốp xe được kiểm tra đó đạt tiêu chuẩn"	1 đ	
$P(A \mid \overline{H}) = \frac{P(A).P(\overline{H} \mid A)}{P(\overline{H})} = \frac{0,75.0,08}{1-0.8825} = 0,533$		
$P(\bar{H}) = \frac{P(\bar{H})}{P(\bar{H})} = \frac{1-0.8825}{1-0.8825} = 0.555$		

Câu hỏi:	2 đ
Một trường THPT, khi làm hồ sơ dự thi đại học cao đẳng, có 65% học sinh lớp 12	

đăng kí dự thi đại học, 44% đăng kí dự thi cao đẳng, 30% đăng kí dự thi cả đại học và	
cao đăng. a) Tính tỉ lệ học sinh lớp 12 đăng kí dự thi đại học hoặc cao đẳng.	
b) Tính tỉ lệ học sinh lớp 12 đăng kí dự thi đại học mà không thi cao đẳng	
a) A: "học sinh đăng kí thi đại học", B: "Học sinh đăng kí thi cao đẳng"	1 đ
$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 65\% + 44\% - 30\% = 79\%$	
b) $P(A \cap \overline{B}) = P(A) - P(A \cap B) = 65\% - 30\% = 35\%$	1 đ

Câu hỏi:	2 đ
Có ba cửa hàng I, II và III cùng kinh doanh sản phẩm X. Tỉ lệ sản phẩm loại A trong	
ba cửa hàng I, II và III lần lượt là 70%, 75% và 50%. Một khách hàng chọn nhẫu	
nhiên một cửa hàng và từ đó mua một sản phẩm.	
a) Tính xác suất để khách hàng mua được sản phẩm loại A.	
b) Chọn mua ngẫu nhiên 10 sản phẩm X ở thị trường. Tính xác suất để có 8 sản phẩm	
loại A. Trung bình có bao nhiều sản phẩm loại A trong số 10 sản phẩm đã mua?	
a) A: "khách hàng mua được sản phẩm loại A"	1 đ
E _i : "Khách hàng chọn mua ở cửa hàng i", i= 1, 2, 3.	
$P(A) = P(E_1).P(A \mid E_1) + P(E_2).P(A \mid E_2) + P(E_3).P(A \mid E_3)$	
$= \frac{1}{3}.70\% + \frac{1}{3}.75\% + \frac{1}{3}.50\% = 0.65$	
b) Gọi X là số sản phẩm loại A trong 10 sản phẩm $\rightarrow X \sim B(10, 0.65)$	1 đ
$P(X=8) = C_{10}^8 \cdot (0.65)^8 \cdot (1-0.65)^2 = 0.176$	
EX = 10.0, 65 = 6, 5	

Câu 1.26

Câu hỏi:	2 đ
Sản phẩm X bán ra ở thị trường do một nhà máy gồm ba phân xưởng I, II và III sản	
xuất, trong đó phân xưởng I chiếm 30%; phân xưởng II chiếm 45% và phân xưởng III	
chiếm 25%. Tỉ lệ sản phẩm loại A do ba phân xưởng I, II và III sản xuất lần lượt là	
70%, 90% và 50%.	
a) Tính tỉ lệ sản phẩm lọai A nói chung do nhà máy sản xuất.	
b) Chọn mua ngẫu nhiên 121 sản phẩm X (trong rất nhiều sản phẩm X) ở thị trường.	
Tính xác suất để có 80 sản phẩm loại A. Trung bình có bao nhiều sản phẩm loại A	
trong số 121 sản phẩm đã mua.	
a) A: "sản phẩm loại A"	1 đ
E _i : "Sản phẩm do phân xưởng i sản xuất", i= 1, 2, 3.	
$P(A) = P(E_1).P(A \mid E_1) + P(E_2).P(A \mid E_2) + P(E_3).P(A \mid E_3)$	
=30%.70% + 45%.90% + 25%.50% = 0.74	
b) Gọi X là số sản phẩm loại A trong 121 sản phẩm $\rightarrow X \sim B(121, 0.74)$	1 đ
$P(X = 80) = C_{121}^{80}.(0,74)^{80}.(1-0,74)^{121-80} = 0.012$	
EX = 121.0, 74 = 89, 54	

Câu hỏi:	2	đ
Một nhà máy có 3 phân xưởng I, II, III cùng sản xuất một loại pít-tông. Phân		-
xưởng I, II, III sản xuất tương ứng 36%, 34%, 30% sản lượng của nhà máy,		
với tỷ lệ phế phẩm tương ứng là 0,12; 0,1; 0,08.		
a) Tìm tỷ lệ phế phẩm chung của nhà máy.		
b) Lấy ngẫu nhiên một sản phẩm kiểm tra và được sản phẩm là phế phẩm.		
Tính xác suất để sản phẩm đó do phân xưởng II sản xuất.		
a) a) A : "Sản phẩm kiểm tra là phế phẩm", B_i : "Sản phẩm lấy ra kiểm tra	1đ	
thuộc phân xưởng thứ i" , i = 1,2,3 . Hệ $\left\{B_1,B_2,B_3\right\}$ là hệ đầy đủ		
$P(B_1) = 0.36; P(B_2) = 0.34, P(B_3) = 0.3$		
$P(A/B_1) = 0.12; P(A/B_2) = 0.10; P(A/B_3) = 0.08$		
Theo công thức xác suất đầy đủ, ta có		
$P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3) = 0.1012$		
b) Áp dụng công thức Bayes ta có:	1 đ	
$P(B_2/A) = \frac{P(B_2)P(A/B_2)}{P(A)} = \frac{0.34 \times 0.10}{0.1012} = 0.336.$		

Câu hỏi:	2 đ
Có 4 nhóm xạ thủ tập bắn. Nhóm thứ nhất có 5 người, nhóm thứ hai có 7 người,	
nhóm thứ ba có 4 người và nhóm thứ tư có 2 người. Xác suất bắn trúng đích của mỗi	
người trong nhóm thứ nhất, nhóm thứ hai, nhóm thứ ba, nhóm thứ tư theo thứ tự là	
0,8; 0,7; 0,6 và 0,5. Chọn ngẫu nhiên một xạ thủ và biết rằng xạ thủ này bắn trượt.	
Tính xác suất xạ thủ này ở nhóm thứ nhất.	
B_i = "Xạ thủ được xét thuộc nhóm thứ i", $i = \overline{1,4}$,	1 đ
A = ``Xa thủ bắn trượt'',	
Theo đề bài ta có: $P(B_1) = \frac{5}{18}, P(B_2) = \frac{7}{18}, P(B_3) = \frac{4}{18}, P(B_4) = \frac{2}{18}$	
$P(A B_1) = 0, 2; P(A B_2) = 0, 3; P(A B_3) = 0, 4; P(A B_4) = 0, 5$	
Áp dụng công thức xác suất đầy đủ ta có:	
$P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3) + P(B_4)P(A/B_4)$	
$=\frac{57}{180} = \frac{19}{60}$	
Áp dụng công thức Bayes ta có: $P(B_1 A) = \frac{P(B_1)P(A B_1)}{P(A)} = \frac{10}{57}$	1 đ

Câu hỏi:	2 đ
Bắn hai lần độc lập với nhau mỗi lần một viên đạn vào cùng một bia. Xác suất trúng	
đích của viên đạn thứ nhất là 0,7 và của viên đạn thứ hai là 0,4.	
 a) Tính xác suất để chỉ có một viên đạn trúng bia. 	
b) Sau khi bắn, người báo bia cho biết có một viên đạn trúng bia. Tính xác suất	
viên đạn đó là viên thứ nhất.	

1 đ
1 đ
_

	2 ±
Câu hỏi:	2 đ
Có 3 khẩu súng I, II và III bắn độc lập vào một mục tiêu. Mỗi khẩu bắn 1 viên. Xác	
suất bắn trúng mục tiêu của 3 khẩu I, II và III lần lượt là 0,7; 0,8 và 0,5. Tính xác suất	
để:	
a) Có 2 khẩu bắn trúng.	
b) Khẩu thứ 2 bắn trúng biết rằng có hai khẩu bắn trúng.	
Gọi A_j là biến cố khẩu thứ j bắn trúng (j = 1, 2, 3). Khi đó A_1 , A_2 , A_3 độc lập	1 đ
Gọi A là biến cố có 2 khẩu bắn trúng. Ta có:	
$A = A_1 A_2 \overline{A}_3 + A_1 \overline{A}_2 A_3 + \overline{A}_1 A_2 A_3$	
$P(A) = P(A_1A_2\overline{A}_3) + P(A_1\overline{A}_2A_3) + P(\overline{A}_1A_2A_3)$	
$= P(A_1)P(A_2)P(\overline{A}_3) + P(A_1)P(\overline{A}_2)P(A_3) + P(\overline{A}_1)P(A_2)P(A_3)$	
= 0,7.0,8.0,5+0,7.0,2.0,5+0,3.0,8.0,5=0,47.	
$P(A_2 A) = \frac{P(A_2A)}{P(A)} = \frac{P(A_1A_2\overline{A}_3 + \overline{A}_1A_2A_3)}{P(A)}$	1 đ
$\left \begin{array}{c} P(A) \end{array}\right = \left \begin{array}{c} P(A) \end{array}\right $	
$= \frac{0.7.0.8.0.5 + 0.3.0.8.0.5}{0.47} = 0.851$	
0,47	

Một nhà máy sản xuất các chi tiết của điện thoại di động có tỷ lệ sản phẩm đạt tiêu	
chuẩn chất lượng là 85%. Trước khi xuất xưởng người ta dùng một thiết bị kiểm tra để	
xem sản phẩm có đạt yêu cầu hay không. Thiết bị đó có khả năng phát hiện đúng sản	
phẩm đạt tiêu chuẩn với xác suất 0,9 và phát hiện đúng sản phẩm không đạt tiêu chuẩn	
với xác suất là 0,95. Tìm xác suất để một sản phẩm được chọn ngẫu nhiên khi kiểm tra:	
a) Được kết luận là đạt tiêu chuẩn.	
b) Được kết luận là đạt tiêu chuẩn nhưng thực tế đó không phải là sản phẩm đạt	
tiêu chuẩn.	
a) Gọi B_1 = "Sản phẩm đạt tiêu chuẩn chất lượng", B_2 = "Sản phẩm không đạt tiêu	1 đ
chuẩn chất lượng",	
A = "Sản phẩm kiểm tra có kết luận đạt tiêu chuẩn chất lượng",	
$P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) = 0.85x0.9 + 0.15x0.05 = 0.7725$	

b) Theo công thức Bayes ta có $P(B_2/A) = \frac{1}{2}$	$P(B_2)P(A/B_2)$	$=\frac{0.15\times0.05}{0.0097}$	1 đ
b) Theo cong that Bayes ta co $I(B_2/A) =$	P(A)	0,7725	

Câu hỏi: Từ một hộp chứa 11 viên bi đỏ và 5 viên bi trắng người ta lấy ngẫu nhiên hai lần,	2đ
mỗi lần một viên bị, không hoàn lại.	
a) Tính xác suất để viên bị thứ hai là bị trắng.	
b) Giả sử biết viên bi <mark>lấy lần hai</mark> là bi trắng, tính xác suất bi lấy lần một cũng	
là bi trắng.	
a) A: "bi lấy lần 1 là bi đỏ", Ā: "bi lấy lần 1 là bi trắng"	1đ
$P(A) = \frac{11}{16}, P(\overline{A}) = \frac{5}{16}$	
B : "bi lấy lần 2 là bi trắng"	
$P(B) = P(A)P(B/A) + P(\overline{A})P(B/\overline{A}) = \frac{11}{16} \cdot \frac{5}{15} + \frac{5}{16} \cdot \frac{4}{15} = \frac{5}{16} = 0,3125$	
b) $P(\overline{A} B) = \frac{P(\overline{A}B)}{P(B)} = \frac{P(\overline{A})P(B \overline{A})}{P(B)} = \frac{\frac{5}{16} \frac{4}{15}}{0.3125} = \frac{4}{15} \approx 0.267$	1đ

Câu hỏi: Tính ngẫu nhiên? Để lập đội tuyển quốc gia tham dự kỳ thi olympic một môn học, người ta tổ chức cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy 80% số thí sinh, vòng thứ hai lấy 70% số thí sinh đã qua vòng 1, vòng thứ ba lấy 45% số thí sinh đã qua vòng 2. Để được vào đội tuyển, thí sinh phải vượt qua 3 vòng thi. Tính xác suất một thí sinh bất kỳ: a) Bị loại ở vòng thứ nhất, biết rằng thí sinh này bị loại. b) Bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại. a) A_i : "thí sinh được chọn ở vòng thứ i", $i \in \{1,2,3\}$ $P(A_1) = 0.8; P(A_2 \mid A_1) = 0.7; P(A_3 \mid A_1 A_2) = 0.45$ H: "thí sinh bị loại" $P(H) = 1 - P(\overline{H}) = 1 - 0.252 = 0.748$	2đ
Xác suất để thí sinh bị loại ở vòng thứ nhất biết thí sinh đó bị loại là	
$P(\overline{A_1} H) = \frac{P(A_1 H)}{P(H)} = \frac{P(A_1)}{P(H)} = \frac{0.2}{0.748} = \frac{50}{187} \approx 0.267$	
b) Xác suất để thí sinh bị loại ở vòng hai biết thí sinh đó bị loại là	1đ

$$P(\overline{A_2} | H) = \frac{P(\overline{A_2}H)}{P(H)} = \frac{P(A_1\overline{A_2})}{P(H)} = \frac{P(A_1)P(\overline{A_2} | A_1)}{P(H)} = \frac{0.8(1-0.7)}{0.748} = \frac{60}{187} \approx 0.321$$

Cau 1.34	
Câu hỏi:	2đ
Có ba hộp A, B và C đựng các lọ thuốc. Hộp A có 11 lọ thuốc tốt và 5 lọ hỏng, hộp	
B có 8 lọ tốt và 4 lọ hỏng, hộp C có 5 lọ tốt và 5 lọ hỏng.	
a) Lấy ngẫu nhiên từ mỗi hộp ra một lọ thuốc, tính xác suất để được ba lọ cùng	
loại.	
b) Lấy ngẫu nhiên một hộp rồi từ đó lấy 3 lọ thuốc thì được 1 lọ tốt và 2 lọ hỏng.	
Tính xác suất hộp A được chọn.	
a) H_i : "lọ lấy ra từ hộp i là lọ tốt", $i \in \{A, B, C\}$	1đ
H: "ba lo thuốc cùng loại"	
$P(H) = P(H_A H_B H_C) + P(\overline{H_A} \overline{H_B} \overline{H_C}) = \frac{11}{16} \frac{8}{12} \frac{5}{10} + \frac{5}{16} \frac{4}{12} \frac{5}{10} = \frac{9}{32} = 0,28125$	
b) K_i : "lọ lấy ra từ hộp i", $i \in \{A, B, C\}$	1đ
X: "lấy được 2 lọ hỏng và một lọ tốt"	
$P(X) = P(K_A)P(X K_A) + P(K_B)P(X K_B) + P(K_C)P(X K_C)$	
$= \frac{1}{3} \frac{C_5^2 C_{11}^1}{C_{16}^3} + \frac{1}{3} \frac{C_4^2 C_8^1}{C_{12}^3} + \frac{1}{3} \frac{C_5^2 C_5^1}{C_{10}^3} = \frac{7681}{27720} \approx 0,277$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Xác suất hộp A được chọn	
$\frac{1}{2} C_5^2 C_{11}^1$	
$P(K_A \mid X) = \frac{P(XK_A)}{P(X)} = \frac{P(K_A)P(X \mid K_A)}{P(X)} = \frac{\frac{1}{3} \frac{C_5 C_{11}}{C_{16}^3}}{\frac{7681}{7681}} = \frac{1815}{7681} \approx 0,236$	
$P(K_A X) = \frac{1}{P(X)} = \frac{1}{P(X)} = \frac{1}{7681} = \frac{1}{7681} \approx 0,236$	
$\frac{1}{27720}$	

Câu 1.35

Câu hỏi:	2đ
Trong năm học vừa qua, ở trường X, tỉ lệ sinh viên thi trượt môn Toán là 34%,	
thi trượt môn Tâm lý là 20,5%. Trong số các sinh viên trượt môn toán, có 50%	
sinh viên trượt môn Tâm lý.	
a) Tính xác suất để một sinh viên của trường đỗ cả hai môn Toán và Tâm lý.	
b) Cần chọn bao nhiều sinh viên của trường X sao cho với xác suất không bé	
hơn 99%, trong đó có ít nhất một sinh viên đỗ cả hai môn Toán và Tâm lý.	
a) T: "sinh viên trượt môn Toán", L: "sinh viên trượt môn Tâm lý"	1đ

Khi đó $P(L T) = 0.5$	
Xác suất để sinh viên đỗ cả hai môn Toán và Tâm lý	
$P(\overline{TL}) = 1 - P(T \cup L) = 1 - P(T) - P(L) + P(TL) = 0,625$	
 b) Gọi n là số sinh viên cần chọn, xác suất để một sinh viên đỗ cả hai môn Toán và Tâm lý là p=0,625 không đổi A: "ít nhất một sinh viên đỗ cả hai môn Toán và Tâm lý" 	1đ
$P(\overline{A}) = (1 - 0,625)^n$	
$P(A) = 1 - (1 - 0.625)^n \ge 0.99$ dẫn đến $n \ge 4.69$	
Do đó cần chọn ít nhất 5 sinh viên.	

Câu hỏi:	2đ
Có hai hộp bi, hộp I chứa 9 bi đỏ, 1 bi trắng và hộp II chứa chứa 6 bi đỏ và 4 bi	
trắng. Lấy ngẫu nhiên 3 viên bi trong đó 1 viên bi từ hộp I, 2 viên bi từ hộp II	
a) Tính xác suất để trong 3 viên bi đã lấy có 2 viên vi đỏ, 1 viên bi trắng.	
b) Giả sử trong 3 viên bi đã lấy có 2 viên bi đỏ và 1 viên bi trắng. Tìm xác suất	
để <mark>bi trắng đó</mark> là của hộp I. <mark>Không rõ</mark> đề	
a) Gọi H_i là biến cố trong 3 viên bi đã lấy, có i viên bi trắng i=0,1,2,3	1đ
Xác suất lấy được 2 viên bi đỏ, 1 viên bi trắng là	
$P(H_1) = \frac{1}{10} \frac{C_6^2}{C_{10}^2} + \frac{9}{10} \frac{C_6^1 C_4^1}{C_{10}^2} = \frac{77}{150}$	
b) Gọi K là biến cố trong 3 viên bi đã lấy có 2 viên bi đỏ và 1 viên bi trắng, và	1đ
bi trắng là của hộp I.	
$P(K/H_1) = \frac{P(KH_1)}{P(H_1)} = \frac{\frac{1}{10} \frac{C_6^2}{C_{10}^2}}{\frac{77}{150}} = \frac{5}{77}$	
	1