

数学(下)

主讲教师: 汪任 (目前由张神星代课)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第二章 极限和连续

- 1 数列的极限
- 2 函数的极限
- 3 极限的性质
- 4 无穷小和无穷大
- 5 极限的存在准则
- 6 函数的连续性

第一节 数列的极限

- ■极限的引入
- ■极限的朴素定义
- ■数列极限的定义
- 收敛数列的性质

在数学中, 很多时候我们需要描述一个无限过程的变化行为.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy = 1 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题, 我们需要明确"渐近线"的含义.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题,我们需要明确"渐近线"的含义。朴素地讲,渐近线是指:若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时,它到一条直线 l 的距离无限接近零,则称直线 l 为曲线 C 的渐近线.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题,我们需要明确"渐近线"的含义. 朴素地讲,渐近线是指: 若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时,它到一条直线 l 的距离无限接近零,则称直线 l 为曲线 C 的渐近线. 而想要严格地描述"越来越无限接近"的含义,就需要引入极限的概念.

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数.

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' <mark>越来越无限接近 t 时, 平均速度会无限接近它在时刻 t 的瞬时速度.</mark>

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' <mark>越来越无限接近 t 时,平均速度会无限接近</mark>它在时刻 t 的瞬时速度. 同样,我们需要利用极限来准确地描述它.

例

我国古代数学家刘徽为了计算圆周率 π ,采用无限逼近的思想建立了割圆法.

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

那么必定有 $A_n < \pi < B_n$.

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

n	A_n	B_n

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3.00000000	3 .21539031

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

A_n	B_n
3.00000000	3 .21539031
3.10582854	3.15965994
	3.00000000

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

n	A_n	B_n
12	3.00000000	3 .21539031
24	3.10582854	3.15965994
48	3.1 3262861	3.14 608622

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

		D
$\frac{n}{10}$	A_n	B_n
12	3.00000000	3.21539031
24	3.1 0582854	3.1 5965994
48	3.1 3262861	3.14 608622
12288	3.14159251	3.14159272

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3.00000000	3 .21539031
24	3.10582854	3.1 5965994
48	3.1 3262861	3.14 608622
12288	3.14159251	3.14159272
24576	3.14159262	3.14159267

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $n=6,12,24,48,\ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

那么必定有 $A_n < \pi < B_n$. 这个数列的递推关系可以由半角公式推得:

$\frac{}{n}$	A_n	B_n
12	3.00000000	3.21539031
24	3.10582854	3.15965994
48	3.1 3262861	3.14 608622
12288	3.14159251	3.14159272
24576	3.14159262	3.14159267

由于 $A_n/B_n = \cos^2 \theta$ 越来越趋近于 1, 所以 A_n, B_n 的 "极限" 就是 π .

极限可以按如下方式理解:

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \mbox{$\downarrow$} < \m$

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

一个函数 y = f(x).

x 越来越无限接近于某个状态时 y 无限接近某个值 A, 则 A 就是 y = f(x) $\lim_{x \to \mbox{$\downarrow$} \m$ 关于这个极限过程的极限. 记为

▶ 第二章 极限和连续 ▶ 1 数列的极限 ▶ B 极限的朴素定义 #no:::onone::onone::onon

数列极限的定义

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

一个函数 y = f(x).

A, 则 A 就是 y = f(x)x 越来越无限接近于某个状态 $\lim_{x \to \mbox{\ensuremath{\downarrow}} + \mbox{\e$

关于这个极限过程的极限. 记为

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to a} f(x) = A$ 或 $y \to A(x \to x)$.

我们来将该表述严格化.

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时|y| 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to a} f(x) = A$ 或 $y \to A(x \to x)$.

我们来将该表述严格化. 先考虑数列的情形.

数列极限的定义

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \mbox{$\mathbb{R}$}} f(x) = A$ 或 $y \to A(x \to \mbox{$\mathbb{R}$}$ 大大态).

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z}$} \to A(x \to \mbox{$\mathbb{Z}$} \cap \mbox{$\mathbb{Z$

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

其中 a_n 被称为它的第 n 项,用于描述所有项的式子 $a_n = f(n)$ 被称为它的通项.

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

<u>当</u> x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \mbox{$\mathbb{I}$} \to \mbox{$\mathbb{I}$} \to \mbox{$\mathbb{I}$} \to A$ 或 $y \to A(x \to \mbox{$\mathbb{I}$} \to \mbox{$\mathbb{I}$} \to \mbox{$\mathbb{I}$} \to A$.

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

其中 a_n 被称为它的第 n 项,用于描述所有项的式子 $a_n = f(n)$ 被称为它的通项. 不难看出,一个数列和一个定义域是全体正整数的函数

$$f: \mathbb{N}_+ = \{1, 2, 3, \dots\} \to \mathbb{R}$$

是一回事.

所谓"越来越无限接近",是指"比任何正实数"都要接近.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon > 0$, $|a_n - a|$ 最终是要小于 ε 的.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon>0$, $|a_n-a|$ 最终是要小于 ε 的. 即存在 $N=N_\varepsilon$ 使得当 n>N 时, $|a_n-a|<\varepsilon$.

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

$$\forall \varepsilon > 0, \exists N$$
 使得当 $n > N$ 时, 有 $|a_n - a| < \varepsilon$,

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$,

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a_n \to a(n\to\infty).$$

如果不存在这样的常数 a, 则称该数列发散(没有极限, 不收敛).

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < arepsilon$, 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

如果不存在这样的常数 a, 则称该数列发散(没有极限, 不收敛).

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $ert \, orall arepsilon > 0, \exists N$ 使得当 n > N 时, 有 $ert a_n - a ert < arepsilon$, arepsilon 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < arepsilon$, 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$.

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<arepsilon$, 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形.

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<arepsilon$, 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a a_n \to a(n\to\infty).$$

如果不存在这样的常数 a, 则称该数列发散(没有极限, 不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时,我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中,可以只考虑例如 $\varepsilon < 1$ 的情形. 同理,我们可以只考虑例如 $n \ge 100$ 的情形.

例

单选题: "极限 $\lim_{n\to\infty} a_n = a$ 存在"的充要条件是 " $\forall \varepsilon > 0$,()".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

例

单选题: "极限 $\lim_{n\to\infty} a_n = a$ 存在"的充要条件是 " $\forall \varepsilon > 0$,()".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是 "orall arepsilon>0,(${f C}$)".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 这等价于至多只有有限项 a_1, \ldots, a_N 满足 $|a_n - a| \geqslant \varepsilon$. 故选 C, 而 BD 均不正确.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是 " $\forall \varepsilon>0$,(C)".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 这等价于至多只有有限项 a_1, \ldots, a_N 满足 $|a_n - a| \ge \varepsilon$. 故选 C, 而 BD 均不正确. 对于 A , 反例 $a_n = (-1)^n, a = 1$.

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

• 估计 $|a_n - a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0, \ \diamondsuit \ N = \log_{|q|} \varepsilon.$

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0$, $\diamondsuit N = \log_{|q|} \varepsilon$. $\exists n > N \text{ th}$, $f(q^n - 0) = |q|^n < \varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0$, 令 $N = \log_{|q|} \varepsilon$. 当 n > N 时,有 $|q^n - 0| = |q|^n < \varepsilon$. 所以 $\lim_{n \to \infty} q^n = 0$.

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
.

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}. \ \forall \varepsilon > 0, \ \diamondsuit \ N = \frac{1}{\varepsilon}.$$

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
. $\forall \varepsilon > 0$, $\diamondsuit N = \frac{1}{\varepsilon}$. $\exists n > N$ 时, 有 $\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n} < \varepsilon$.

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

$$\left|\frac{\sin n}{n} - 0\right| \leqslant \frac{1}{n} < \varepsilon.$$

所以
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}.$$

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$.

例题: 极限的定义证明

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

证明

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \geqslant 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \leqslant \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, $\diamondsuit N = \max \left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$.

例

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

证明

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max\left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$. 当 $n > N$ 时,有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| \le \frac{3}{n - 1} < \varepsilon.$$

例题: 极限的定义证明

例

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

证明

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \geqslant 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \leqslant \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max\left\{1 + \frac{3}{\varepsilon}, 12\right\}$. 当 $n > N$ 时,有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| \leqslant \frac{3}{n - 1} < \varepsilon.$$

所以 $\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 0.$

数列极限的唯一性

定理 (唯一性)

收敛数列的极限是唯一的.

收敛数列的极限是唯一的.

证明

设a和b都是 $\{a_n\}$ 的极限.

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \leqslant |a-a_n| + |a_n-b| < 2\varepsilon.$$

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \le |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾!

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \le |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾! 因此 $a = b$.

数列极限的有界性

定理 (有界性)

收敛数列是有界数列

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \dots, |a_N|, |a|+1\}, \ f |a_n| \leq M.$

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \dots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \dots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列一定有界, 但反之未必.

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \dots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列一定有界,但反之未必.

例

对于数列 $\{a_n\} = (-1)^n$, 该数列是有界的但是不收敛.

定理 (保号性)

定理 (保号性)

(1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.

定理 (保号性)

- (1) 若 $\overline{\lim_{n\to\infty} a_n = a} > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

 $(1) \ \forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2},$$

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

 $(1)\ orall arepsilon>0$, $\exists N$ 使得当 n>N 时, 有 $|a_n-a|<arepsilon$. 取 $arepsilon=rac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里 > 0 不能换成 ≥ 0 , < 0 也不能换成 ≤ 0 .

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里 > 0 不能换成 ≥ 0 , < 0 也不能换成 ≤ 0 . 例如 $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$

推论 (逆否命题)

推论 (逆否命题)

(1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 , 则它的极限 ≥ 0 .

推论 (逆否命题)

- $\overline{(1)}$ 如果收敛数列 $\overline{\{a_n\}}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geqslant 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geqslant 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论

如果收敛数列 $\{a_n\},\{b_n\}$ 满足从某项起 $a_n\geqslant b_n$, 则 $\lim_{n\to\infty}a_n\geqslant\lim_{n\to\infty}b_n$.

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \ldots, a_{k_n}, \ldots$$

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \ldots, a_{k_n}, \ldots$$

特别地, 当 S 为全体正奇数时, 称 $\{a_{2n-1}\}_{n\geqslant 1}$ 为奇子数列; 当 S 为全体正偶数时, 称 $\{a_{2n}\}_{n\geqslant 1}$ 为偶子数列.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow): 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \mathbb{R}$ 以

 ε . 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (\Leftarrow): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow): 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (\Leftarrow): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

所以当 $n > \max\{2N-1, 2M\}$ 时,有 $|a_n-a| < \varepsilon$. 故数列 $\{a_n\}$ 收敛到 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a. 这是因为 $\forall \varepsilon > 0, \exists N_i$ 使得当 $n > N_i$ 时, $|a_n - a| < \varepsilon$,

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a. 这是因为 $\forall \varepsilon > 0, \exists N_i$ 使得当 $n > N_i$ 时, $|a_n - a| < \varepsilon$, 从而当

$$n > \max\{N_1, N_2, \dots, N_m\}$$

时, $|a_n - a| < \varepsilon$.

然而对于无穷多个 S_i , 这是不对的.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$,

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

在数学中, 常常有这种在有限情形成立, 无限情形不成立的结论. 因此遇到涉及无限的情形要小心.

第二节 函数的极限

- ■函数极限的定义
- ■函数极限的证明

-1945-

我们仿造数列的极限来定义 $x \to +\infty$ 时 f(x) 的极限.

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设x > M时函数f(x)有定义.

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设 x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x > X 时, 有 $|f(x) - A| < \varepsilon$,

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设 x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

$$\forall \varepsilon > 0, \exists X$$
 使得当 $x > X$ 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x\to +\infty$ 时的极限, 记为 $\lim_{x\to +\infty} f(x)=A$ 或 $f(x)\to A(x\to +\infty)$.

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设 x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

$$\forall \varepsilon > 0, \exists X$$
 使得当 $x > X$ 时, 有 $|f(x) - A| < \varepsilon$, ε -X 语言

则称 A 为 f(x) 当 $x\to +\infty$ 时的极限, 记为 $\lim_{x\to +\infty} f(x)=A$ 或 $f(x)\to A(x\to +\infty)$.

仿造上述定义, 我们有:

仿造上述定义, 我们有:

定义

设x < -M 时函数 f(x) 有定义.

仿造上述定义, 我们有:

定义

设 x < -M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x < -X 时, 有 $|f(x) - A| < \varepsilon$,

仿造上述定义, 我们有:

定义

设 x < -M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x < -X 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to -\infty$ 时的极限, 记为 $\lim_{x \to -\infty} f(x) = A$.

函数在 ∞ 的极限

设 |x| > M 时函数 f(x) 有定义.

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时, 有 $|f(x) - A| < \varepsilon$,

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x \to \infty$, $x \to +\infty$, $x \to -\infty$, 而数列情形只有 $n \to \infty$, 因为 n 是正整数.

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x\to\infty, x\to+\infty, x\to-\infty$, 而数列情形只有 $n\to\infty$, 因为 n 是正整数.

类似于数列极限与子数列极限的关系, 我们有

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x\to\infty, x\to+\infty, x\to-\infty$, 而数列情形只有 $n\to\infty$, 因为 n 是正整数.

类似于数列极限与子数列极限的关系, 我们有

定理

$$\lim_{x \to \infty} \overline{f(x)} = A \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A.$$

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时,

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

为了陈述方便, 我们引入去心邻域的概念.

为了陈述方便, 我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\mathring{U}(x_0, \delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

为了陈述方便,我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0, \delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义.

为了陈述方便,我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$\forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in \overset{\circ}{U}(x_0, \delta)$ 时, 有 $|f(x) - A| < \varepsilon$,

为了陈述方便, 我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$\forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in \overset{\circ}{U}(x_0, \delta)$ 时, 有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to x_0$ 时的极限, 记为 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A(x \to x_0)$.

为了陈述方便, 我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0, \delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$\forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in \overset{\circ}{U}(x_0, \delta)$ 时, 有 $|f(x) - A| < \varepsilon$, ε - δ 语言

则称 A 为 f(x) 当 $x \to x_0$ 时的极限, 记为 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A(x \to x_0)$.

函数在一点的单侧极限

类似地可以定义单侧极限:

$$\lim_{x\to x_0^+}f(x)=A\iff \forall \varepsilon>0, \exists \delta>0$$
 使得当 $x\in (x_0,x_0+\delta)$ 时, 有 $|f(x)-A|<\varepsilon.$

$$\lim_{x \to x_0^-} f(x) = A \iff \forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in (x_0 - \delta, x_0)$ 时, 有 $|f(x) - A| < \varepsilon$.

$$\lim_{x\to x_0^+}f(x)=A\iff \forall \varepsilon>0, \exists \delta>0$$
 使得当 $x\in (x_0,x_0+\delta)$ 时,有 $|f(x)-A|<\varepsilon.$

$$\lim_{x \to x_0^-} f(x) = A \iff \forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in (x_0 - \delta, x_0)$ 时, 有 $|f(x) - A| < \varepsilon$.

同样地, 我们有:

定理

$$\overline{\lim_{x \to x_0} f(x)} = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

$$\lim_{x\to x_0^+}f(x)=A\iff \forall \varepsilon>0, \exists \delta>0$$
 使得当 $x\in (x_0,x_0+\delta)$ 时, 有 $|f(x)-A|<\varepsilon.$

$$\lim_{x\to x_0^-}f(x)=A\iff \forall \varepsilon>0, \exists \delta>0$$
 使得当 $x\in (x_0-\delta,x_0)$ 时, 有 $|f(x)-A|<\varepsilon$.

同样地, 我们有:

定理

$$\overline{\lim_{x \to x_0} f(x)} = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

为了简便,我们记
$$f(x_0^+) = \lim_{x \to x_0^+} f(x)$$
, $f(x_0^-) = \lim_{x \to x_0^-} f(x)$.

$$\lim_{x\to x_0^+}f(x)=A\iff \forall \varepsilon>0, \exists \delta>0$$
 使得当 $x\in (x_0,x_0+\delta)$ 时,有 $|f(x)-A|<\varepsilon.$

$$\lim_{x \to x_0^-} f(x) = A \iff \forall \varepsilon > 0, \exists \delta > 0$$
 使得当 $x \in (x_0 - \delta, x_0)$ 时, 有 $|f(x) - A| < \varepsilon$.

同样地, 我们有:

定理

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

为了简便,我们记 $f(x_0^+) = \lim_{x \to x_0^+} f(x)$, $f(x_0^-) = \lim_{x \to x_0^-} f(x)$. 注意它们和 $f(x_0)$

并无关系, f 甚至可以在 x_0 处无定义.

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

• 估计 |f(x) - A|, 得到它和 $|x - x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求 得 δ 或 X. 这个过程中可以进行适当的放缩.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求 得 δ 或 X. 这个过程中可以进行适当的放缩.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x)-A|, 得到它和 $|x-x_0|<\delta$ 或 |x|>X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- $\beta \delta X$ 代入极限的定义中.

对于本题, 从
$$\left|\frac{1}{x}-0\right|<\varepsilon$$
 解得 $|x|>\frac{1}{\varepsilon}$.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x)-A|, 得到它和 $|x-x_0|<\delta$ 或 |x|>X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- $\beta \delta X$ 代入极限的定义中.

对于本题, 从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon}.$$

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- $\beta \delta \propto X$ 代入极限的定义中.

对于本题, 从
$$\left|\frac{1}{x}-0\right|<\varepsilon$$
 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon}. \ \ \exists \ |x| > X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left|\frac{1}{x} - 0\right| = \frac{1}{|x|} < \varepsilon.$$

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- $\beta \delta \propto X$ 代入极限的定义中.

对于本题, 从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0$$
, 令 $X = \frac{1}{\varepsilon}$. 当 $|x| > X$ 时,有 $\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \varepsilon$. 所以 $\lim_{x \to \infty} \frac{1}{x} = 0$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a > 1 时, $\log_a x$ 是单调递增的.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

证明

 $\forall \varepsilon > 0, \ \diamondsuit \ X = -\log_a \varepsilon.$

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

证明

 $\forall \varepsilon > 0$, $\Leftrightarrow X = -\log_a \varepsilon$. $\exists x < -X \text{ ft}$, $f(a^x - 0) = a^x < \varepsilon$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

$$\forall \varepsilon > 0$$
, 令 $X = -\log_a \varepsilon$. 当 $x < -X$ 时, 有 $|a^x - 0| = a^x < \varepsilon$. 所以 $\lim_{x \to -\infty} a^x = 0$.

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot |x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$.

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<arepsilon$, 因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 a=0 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot |x-x_0|$.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<arepsilon$, 因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 a=0 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$. 如果 a=0, $\forall \varepsilon>0$, 令 $\delta=1$.

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|,因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.$$

我们有
$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$$
. 如果 $a=0, \forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时, 有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$.

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|, 因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.$$

我们有
$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$$
. 如果 $a=0$, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$. 如果 $a\neq 0$, $\forall \varepsilon>0$, 令 $\delta=\frac{\varepsilon}{a}$.

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|, 因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.$$

我们有
$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$$
. 如果 $a=0$, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$. 如果 $a\neq 0$, $\forall \varepsilon>0$, 令 $\delta=\frac{\varepsilon}{a}$. 当 $0<|x-x_0|<\delta$ 时,有

$$|(ax+b) - (ax_0 + b)| = a \cdot |x - x_0| < a\delta = \varepsilon.$$

例

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|, 因此我们可以取 $\delta=arepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.$$

我们有
$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$$
. 如果 $a=0$, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$. 如果 $a\neq 0$, $\forall \varepsilon>0$, 令 $\delta=\frac{\varepsilon}{a}$. 当 $0<|x-x_0|<\delta$ 时,有

$$|(ax+b) - (ax_0+b)| = a \cdot |x - x_0| < a\delta = \varepsilon.$$

所以
$$\lim_{x\to x_0} (ax+b) = ax_0 + b.$$

例

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

例

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

与三角函数有关的放缩往往要用到和差化积公式

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}, \quad \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2},$$

然后将不含 $x-x_0$ 的项放缩到 1;

例题: 线性函数在一点的极限

例

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

与三角函数有关的放缩往往要用到和差化积公式

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}, \quad \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2},$$

然后将不含 $x - x_0$ 的项放缩到 1; 以及三角函数基本不等式

$$|\sin x| \le |x|, \forall x;$$
 $|x| \le |\tan x|, \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \leqslant 2 \left| \sin \frac{x - x_0}{2} \right| \leqslant 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \leqslant 2 \left| \sin \frac{x - x_0}{2} \right| \leqslant 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0$$
, $\diamondsuit \delta = \varepsilon$.

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \leqslant 2 \left| \sin \frac{x - x_0}{2} \right| \leqslant 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0$$
, 令 $\delta = \varepsilon$. 当 $0 < |x - x_0| < \delta$ 时, 有

$$|\sin x - \sin x_0| \le |x - x_0| < \delta = \varepsilon.$$

例题: 三角函数在一点的极限

证明

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0$$
, 令 $\delta = \varepsilon$. 当 $0 < |x - x_0| < \delta$ 时, 有

$$|\sin x - \sin x_0| \le |x - x_0| < \delta = \varepsilon.$$

所以
$$\lim_{x\to x_0} \sin x = \sin x_0$$
.

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令

$$t = \frac{\pi}{2} - \arctan x$$
, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 $|t|$ 的关系.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令

$$t = \frac{\pi}{2} - \arctan x$$
, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 $|t|$ 的关系. 而

我们有 $|t| \leq |\tan t|$.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令

$$t = \frac{\pi}{2} - \arctan x$$
, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 $|t|$ 的关系. 而

我们有 $|t| \leq |\tan t|$.

我们还需要估计 t 的范围.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令

$$t = \frac{\pi}{2} - \arctan x$$
, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 $|t|$ 的关系. 而

我们有 $|t| \leq |\tan t|$.

我们还需要估计 t 的范围. 由于我们考虑的是 $x \to +\infty$, 不妨设 x > 0,

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令

$$t = \frac{\pi}{2} - \arctan x$$
, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 $|t|$ 的关系. 而

我们有 $|t| \leq |\tan t|$.

我们还需要估计 t 的范围. 由于我们考虑的是 $x \to +\infty$, 不妨设 x > 0, 那么

$$\arctan x \in \left(0, \frac{\pi}{2}\right), \qquad t = \frac{\pi}{2} - \arctan x \in \left(0, \frac{\pi}{2}\right).$$

我们来证明 $\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$. 当 x>0 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$.

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan(\arctan x)\right|} = \frac{1}{|x|}.$$

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan(\arctan x)\right|} = \frac{1}{|x|}.$$

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon} > 0.$$

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan(\arctan x)\right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left| \frac{\pi}{2} - \arctan x \right| \le \left| \tan \left(\frac{\pi}{2} - \arctan x \right) \right| = \frac{1}{\left| \tan(\arctan x) \right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

我们来证明
$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left| \frac{\pi}{2} - \arctan x \right| \le \left| \tan \left(\frac{\pi}{2} - \arctan x \right) \right| = \frac{1}{\left| \tan(\arctan x) \right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

类似可证,
$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$
.

证明

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left| \frac{\pi}{2} - \arctan x \right| \le \left| \tan \left(\frac{\pi}{2} - \arctan x \right) \right| = \frac{1}{\left| \tan(\arctan x) \right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

类似可证, $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$. 因此 $\lim_{x\to \infty} \arctan x$ 不存在.

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f \rightarrow 0, g \rightarrow 0$.

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f \rightarrow 0, g \rightarrow 0$. 我们称之为 $\frac{0}{0}$ 型不定式.

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在.

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在,可能不存在. 这种一般要去掉公因式, 将其变为定式.

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在,可能不存在. 这种一般要去掉公因式, 将其变为定式.

$$\left| \frac{\overline{x^2 - 4}}{x - 2} - 4 \right| = |x + 2 - 4| = |x - 2|.$$

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在,可能不存在. 这种一般要去掉公因式, 将其变为定式.

$$\left| \frac{\overline{x^2 - 4}}{x - 2} - 4 \right| = |x + 2 - 4| = |x - 2|. \ \forall \varepsilon > 0, \ \diamondsuit \ \delta = \varepsilon.$$

例

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f \to 0$, $g \to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

1列

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

所以
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4.$$

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到.

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

解

由于
$$f\left[\left(\frac{\pi}{2}\right)^+\right] = \frac{\pi}{2} + b$$
, $f\left[\left(\frac{\pi}{2}\right)^-\right] = a\sin\frac{\pi}{2} = a$,

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

解

由于
$$f\left[\left(\frac{\pi}{2}\right)^+\right] = \frac{\pi}{2} + b$$
, $f\left[\left(\frac{\pi}{2}\right)^-\right] = a\sin\frac{\pi}{2} = a$, 因此 $a = 1, b = 1 - \frac{\pi}{2}$.

例题: 取整函数的极限

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \le x < x + 1 \le x - 1 < [x] \le x.$$

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \stackrel{\bullet}{\to} x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \stackrel{\bullet}{\to} x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta = 1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \le x < x + 1 \le x - 1 < [x] \le x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 x_0 \notin \mathbb{Z} 时, 我们同样希望取一个小邻域使得 [x] 是常值函数.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \le x < x + 1 \le x - 1 < [x] \le x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 $x_0 \notin \mathbb{Z}$ 时, 我们同样希望取一个小邻域使得 [x] 是常值函数. 这需要 δ 不超过 x_0 和两边的最近的整数的距离.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与[x]有关的问题往往需要用到两个不等式

$$[x] \le x < x + 1 \le x - 1 < [x] \le x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 $x_0 \notin \mathbb{Z}$ 时, 我们同样希望取一个小邻域使得 [x] 是常值函数. 这需要 δ 不超过 x_0 和两边的最近的整数的距离. 所以

$$\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\}.$$

如果 $x_0 \in \mathbb{Z}$, 则

解

如果 $x_0 \in \mathbb{Z}$, 则

• 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果
$$x_0 \notin \mathbb{Z}$$
, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当
$$0 < |x - x_0| < \delta$$
 时, 有 $x_0 - \delta < x < x_0 + \delta$,

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x\to x_0}[x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$. 因此 $\lim_{x \to x_0} [x] = x_0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_-^-} [x] = x_0 1$.

因此 $\lim_{x\to r_0}[x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当
$$0 < |x - x_0| < \delta$$
 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$.

因此 $\lim_{x \to x_0} [x] = x_0$.

故当且仅当 $x_0 \notin \mathbb{Z}$ 时, $\lim_{x\to x_0} [x]$ 存在.

第三节 极限的性质

第四节 无穷小和无穷大

945-

第五节 极限的存在准则

第六节 函数的连续性