Correttezza

Correttezza Parziale: Legato ad una procedura, ovvero l'algoritmo termina solo con determinati ingressi

Correttezza Totale: Legato ad un algoritmo, ovvero l'algoritmo termina con ogni possibile ingresso

Specifiche di un algoritmo

Pre-condizioni: ipotesi sull'ingresso(come deve essere fatto l'*input*) **Post-condizioni:**proprietà dell'uscita(criterio che stablisce come deve essere fatto l'output).

Esempio divisione intera:

Div(a,b)

Pre: $a \ge 0, b > 0$ numeri interi

Post: q e r tali che $a = b \cdot q + r$ e $0 \le r < b$

Induzione Completa/Semplice

Semplice: Si induce incrementando/diminuendo un parametro di 1 in 1 P(m) => P(m+1)

Esempio: per la **Torre di Hanoi**, se ho n dischi richiamo l'algoritmo con n- dischi.

dunque il parametro n viene diminuito di 1 ad ogni iterazione

Completa: Si induce incrementando/diminuendo un parametro di un valore diverso da 1.

Esempio: per la **Divisione Ricorsiva**, la soluzione con input (a,b) si trova richiamando l'algoritmo con input (a-b,b), dunque il parametro a viene diminuito di b ad ogni iterazione

Induzione Completa

Caso Base: $\exists k \geq 0. P(0) \land P(1) \land ... \land P(K)$ Ovvero, dato un $k \geq 0$, P(n) vale fino a n = k **Passo induttivo:** $\forall m \geq k. \ P(0) \land P(1) \land ... \land P(m) => P(m+1)$

Ovvero, per ogni $m \geq k$, vale P(m)

Conclusione: caso base e passo induttivo implicano $\forall n \geq 0.P(n)$

Invariante di ciclo

Invariante: Proposizione che esprime una proprietà delle variabili che persiste in ogni punto dell'algoritmo.

- inizializzazione: la proposizione vale subito prima del ciclo
- mantenimento: se la proposizione vale prima di entrare nel ciclo, vale anche dopo che il corpo del ciclo è stato eseguito.

L'invariante deve essere utile a verificare la correttezza dell'algoritmo.

Nel caso della divisione iterativa:

DIV-IT
$$(a,b)$$
 $ightharpoonup \operatorname{Pre:}\ a \geq 0, b > 0$
 $ightharpoonup \operatorname{Post:}\ \operatorname{ritorna}\ q, r \ \operatorname{tali}\ \operatorname{che}\ a = b\,q + r \wedge 0 \leq r < b$
 $r \leftarrow a$
 $q \leftarrow 0$

while $r \geq b \ \operatorname{do}$
 $r \leftarrow r - b$
 $q \leftarrow q + 1$
end while
return q, r

una invariante di ciclo potrebbe essere a=bq+r con $0\leq r$

Questa proposizione vale prima del ciclo(**inizializzazione**): q=0 dunque bq vale 0 mentre r=a dunque bq+r=>0+a

Vale anche durante e dopo il ciclo(mantenimento):

$$a = bq + r = b(q + 1) + (r - b) = bq' + r' \land 0 \le r' = r - b$$

Alla fine del ciclo sappiamo che:

$$a = bq + r \wedge 0 \leq r$$

ma visto che siamo usciti dal ciclo sappiamo anche che $0 \le r < b$, dal momento che quella è la condizione di terminazione del ciclo.

Possiamo dunque constatare che l'algoritmo è **corretto** dal momento che soddisfa le post condizioni(**criterio dell'output**)

 \triangleright Post: ritorna q, r tali che $a = b \, q + r \wedge 0 \leq r < b$