Gauss-Jordan Elimination Method with a Real-Life Example

Gauss-Jordan Elimination

- Gauss-Jordan Elimination is a step-by-step method used to solve a system of linear equations
 - by transforming the **augmented matrix** into **Reduced Row Echelon Form** (**RREF**) using row operations.

Steps of the Method:

- Form the augmented matrix of the system.
- Make the leading entry (pivot) in each row a 1.
- Make all other entries in the pivot's column 0.
- Continue until the matrix is in **RREF**, then read off the solution.

Real-Life Example:

★ Scenario:

A small business sells 3 products: A, B, and C. Their total profits from 3 different sales zones are given as:

- Zone 1: A + 2B + C = 100
- Zone 2: 2A + 3B + 3C = 200
- Zone 3: A + B + 2C = 150

Let's solve to find the individual profits per product (A, B, and C).

Step 1: Form the Augmented Matrix

$$\begin{bmatrix} 1 & 2 & 1 & | & 100 \\ 2 & 3 & 3 & | & 200 \\ 1 & 1 & 2 & | & 150 \end{bmatrix}$$

Step 2: Apply Gauss-Jordan Elimination

Perform row operations:

- 1. R1 stays the same
- **2.** $R2 = R2 2 \times R1 \rightarrow [0, -1, 1, | 0]$
- 3. $R3 = R3 R1 \rightarrow [0, -1, 1, | 50]$
- **4.** R3 = R3 R2 \rightarrow [0, 0, 0, | 50] \rightarrow **X** contradiction!

★ Interpretation:

The last row implies 0 = 50, which is not possible.

This is an **inconsistent system** — no solution exists. This suggests there is a mistake or inconsistency in the profit data.

Another Real-Life Consistent Example:

Let's solve the following:

$$x + y + z = 6$$

 $2x + 3y + 7z = 20$
 $x + 3y + 4z = 13$

Augmented matrix:

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 2 & 3 & 7 & | & 20 \\ 1 & 3 & 4 & | & 13 \end{bmatrix}$$

After Gauss-Jordan elimination:

$$egin{bmatrix} 1 & 0 & 0 & | & 1 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

Solution:

- x = 1
- y = 2
- z = 3

Real-World Applications:

- Business: Profit analysis per product
- Engineering: Solving circuit systems or forces in structures
- Chemistry: Determining chemical mixtures
- Economics: Resource allocation models

Gauss-Jordan Elimination method vs Elimination

Feature	Gauss Elimination	Gauss-Jordan Elimination
Final Form	Upper Triangular Matrix	Reduced Row Echelon Form (RREF)
Requires Back Substitution?	≪ Yes	× No
Simpler for Programming?	≪ Yes	× More complex
Faster for Large Systems?	Ø Often	X Slower
Direct Solution?	× No	Yes (you don't need back-substitution)
Ideal for Inverse Finding?	× No	extstyle extstyle extstyle Yes (Yes — Gauss–Jordan Elimination is the ideal method for finding the inverse of a matrix.)