ML Algorithms NEURAL NETWORKS

ClassA Detailed Look At Neural Networks

TopicA Single Neuron

Neurons essentially act as transmission lines

Inputs are received through the dendritic tree and computed

Inputs are received through the dendritic tree and computed

- Inputs are received through the dendritic tree and computed
- An output is sent along the axon

For neurons, the output is an electrical pulse

• A neuron is activated based on inputs

- A neuron is activated based on inputs
- If not, it remains in an idle state

Neuronal output is binary: active and inactive

In other words, the output of a single neuron can be modeled as **0** or **1**

If activated it produces an output of 1

If **inactive** it produces an output of **0**

How is a neuron activated?

Based on inputs **x1** and **x2**, the neuron computes and produces a score

If the score is larger than a **threshold value**, the neuron sends out an electrical pulse or an output of **1**

This exercise was a demonstration of the mathematical formulation for **perceptrons** and **logistic** classifiers

Function h controls whether the neuron will be activated or not based on the inputs and the weights

 $m{h}(\)$: Activation Function

Output =
$$\begin{cases} 0, & if h(x) < Threshold \\ 1. & if h(x) \ge Threshold \end{cases}$$

This function is therefore also known as a neuron's **activation function**

 $m{h}(\)$: Activation Function

Output =
$$\begin{cases} 0, & if h(x) < Threshold \\ 1. & if h(x) \ge Threshold \end{cases}$$

Activation Function: Heaviside vs. Sigmoid

- Popular activation functions: Heaviside Function and Sigmoid Function
- Popular choice of **threshold** for Logistic Activation Function is **0.5**
- The threshold can be increased or decreased as desired

Heaviside vs. Sigmoid: Key Differences

Step function makes an abrupt jump when the value of x increases even by a small number

- At -0.1, the neuron with the step function won't be activated
- When **x** becomes 0.1, the neuron is activated

Х	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

- Smooth logistic curve:
 - ☐ Goes from negative x values to positive x values
 - No sudden jumps or changes as values increase
- Produces a continuous real valued score for the value of x

X	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

Advantage #1: Logistic activation function thresholds and logistic classifier thresholds, are malleable

- Popular choice: 0.5
- Severe class imbalance: With rare class (1%), a threshold of 0.5 does not work

X	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

- With binary classification of 1000 observations:
 - ☐ Class 1 occurs only 10 times, the rest are all 0's
 - ☐ Class 1 occurs for only 1% of data

- A 0.5 threshold does not work for logistic classifiers
- In such cases neither the choice of error measure nor the misclassification rate) work

X	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

- From a mathematical perspective:
 - ☐ The logistic curve is a continuous function
 - ☐ The step function is a discontinuous one

X	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

Advantage #2: The logistic function output score has a direct probabilistic interpretation

X	Heaviside	Logistic
-0.1	0	0.48
0.1	1	0.52

- The Logistic function is one of many functions in the family of Sigmoid curves
- There are other functions as well
- Later in the course, we will take a brief look at the different options available to us

Review

- Single neurons can make yes/no decisions based on computations
- Features are assigned weights, which are determined from the data at hand
- Single neurons have an Activation Function

Review

- **Activation Function**: Triggers neurons to release an electrical pulse through the axon
- Single neurons compute linearly or almost linearly separable data
- Binary problems are linearly separable when a straight line separates two classes

Recap

- A Single Neuron
- Activation Function: Heaviside vs. Sigmoid
- Heaviside vs. Sigmoid: Key Differences
- The Logistic Activation Function
- Review

JIGSAW ACADEMY

THE ONLINE SCHOOL OF ANALYTICS