Natural Language Processing

Lectures 2: Language Classification. Probability Review. Machine Learning Background. Naive Bayes' Classifier.

10/29/2020

COMS W4705 Yassine Benajiba

Text Classification

• Given a representation of some document d, identify which class $c \in C$ the document belongs to.

computers politics "How long does it take a smoker's lungs to religion clear of the tar after quitting? medicine Does your chances of getting lung cancer science decrease quickly or does it take for-sale a considerable amount of time for that to autos happen?" sports

From the 20-Newsgroups data set: http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html

Text Classification

- Applications:
 - Spam detection.
 - Mood / Sentiment detection.
 - Author identification.
 - Identifying political affiliation.
 - Word Sense Disambiguation.

• ...

Text Classification

- This is a machine learning problem.
 - How do we represent each document? (feature representation).
 - Can use different ML techniques.
 - Supervised ML: Fixed set of classes C.
 Train a classifier from a set of labeled <document, class > pairs.
 - Discriminative vs. Generative models.
 - Unsupervised ML: Unknown set of classes C.
 Topic modeling.

Types of Feedback

- Supervised learning: Given a set of input-output pairs, learn a function that maps inputs to outputs.
- Unsupervised learning: Learn patterns in the input without any explicit feedback.
 - One typical approach: clustering, identify clusters of input examples.
- Semi-supervised learning: Start with a few labeled input/output pairs, then use a lot of unlabeled data to improve.
- Reinforcement learning: Start with a policy determining the agent's actions. Feedback in the form of reward or punishment.

Supervised Learning

• Given: Training data consisting of training examples $(x_1, y_1), ..., (x_n, y_n)$, where x_i is an input example (a d-dimensional vector of attribute values) and y_i is the label.

example					label
1	X11	X12	•••	X1d	y 1
	•••	•••	•••	•••	•••
i	Xi1	Xi2	•••	Xid	y i
	•••	•••	•••	•••	•••
n	X _n 1	X _n 2	•••	Xnd	Уn

- Goal: learn a hypothesis function h(x) that approximates the true relationship between x and y. This function should: 1) ideally be consistent with the training data. 2) generalize to unseen examples.
- In NLP y_i typically form a finite, discrete set.

Running Machine Learning Experiments

 When running machine learning experiments we typically split the labeled data in three sections:

- For example: 80% Training, 10% Validation (development), 10% Test or 90/5/5
- Validation set is used to tune model parameters (for example smoothing parameters), but cannot be used for training. This can help with overfitting.
- Test set is used to assess the performance of the final model and provide an estimation of the test error.

Note: Never train or tune parameters on the test set!

Representing Documents

to be, or not to be

- Set-of-words representation.
- Bag-of-words representation (Multi-set).

be to or not be to

- Vector-space model: Each word corresponds to one dimension in vector space. Entries are either:
 - Binary (Word appears / does not appear)
 - Raw or normalized frequency counts.
 - Weighted frequency counts
 - Probabilities.

What is a Word?

- e.g., are "Cat", "cat" and "cats" the same word?
- "September" and "Sept"?
- "zero" and "oh"?
- Is "_ "a word? "."? "*"? "("?
- How many words are there in "don't"? "Gonna"? "I.B.M."?
- In Japanese and Chinese text -- how do we identify a word?
- •

Text Normalization

- Every NLP task needs to do some text normalization.
 - Segmenting / tokenizing words in running text.
 - Normalizing word forms (lemmatization or stemming, possibly replacing named-entities).
 - Sentence splitting.

Linguistic Terminology

- Sentence: Unit of written language.
- Utterance: Unit of spoken language.
- Word Form: the inflected form as it actually appears in the corpus. "produced"
- Word Stem: The part of the word that never changes between morphological variations. "produc"
- Lemma: an abstract base form, shared by word forms, having the same stem, part of speech, and word sense stands for the class of words with stem.
 "produce"
- Type: number of distinct words in a corpus (vocabulary size).
- Token: Total number of word occurrences.

Tokenization

 Tokenization: The process of segmenting text (a sequence of characters) into a sequence of tokens (words).

"Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing."

- Simple (but weak) approach: Separate off punctuation. Then split on whitespaces.
- Typical implementations use regular expressions (finite state automata).

Tokenization Issues

- Dealing with punctuation (some may be part of a word)
 "Ph.D.", "O'Reilly", "pick-me-up"
- Which tokens to include (punctuation might be useful for parsing, but not for text classification)?
- Language dependent: Some languages don't separate words with whitespaces.

de: "Lebensversicherungsgesellschaftsangestellter"

zh: 日文章鱼怎么说? - Japanese Octopus how say? 日文章鱼怎么说? - Sun article fish how say?

Lemmatization

Converting Lemmas into their base form.

"Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing."


```
PER PER think that the boy story about LOC 's capital are n't
```

Probabilities in NLP

- Ambiguity is everywhere in NLP. There is often uncertainty about the "correct" interpretation. Which is more likely:
 - Speech recognition: "recognize speech" vs. "wreck a nice beach"
 - Machine translation: "l'avocat general": "the attorney general" vs. "the general avocado"
 - Text classification: is a document that contains the word "rice" more likely to be about politics or about agriculture?
 What if it also includes several occurrences of the word "stir"?
- Probabilities make it possible to combine evidence from multiple sources systematically to (using Bayesian statistics)

Bayesian Statistics

- Typically, we observe some evidence (for example, words in a document) and the goal is to infer the "correct" interpretation (for example, the topic of a text).
- Probabilities express the degree of belief we have in the possible interpretations.
 - Prior probabilities: Probability of an interpretation prior to seeing any evidence.
 - Conditional (Posterior) probability: Probability of an interpretation after taking evidence into account.

Probability Basics

- Begin with a sample space Ω
 - Each $\omega \in \Omega$ is a possible basic outcome / "possible world" (e.g. the 6 possible rolls of a die).
- A probability distribution assigns a probability to each basic outcome.

$$P(\omega) \leq 1.0 \text{ for every } \omega \in \Omega$$

$$\sum_{\omega \in \Omega} P(\omega) = 1.0$$

• E.g: six-sided die

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1.0$$

Events

• An event A is any subset of Ω .

$$P(A) = \sum_{\omega \in A} P(\omega)$$

• Example:

$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

Random Variables

 A random variable is a function from basic outcomes to some range, e.g. real numbers or booleans.

$$Odd(1) = true$$

 A distribution P induces a probability distribution for any random variable.

$$P(X=x_i) = \sum_{\{\omega: X(\omega)=x_i\}} P(\omega)$$

• E.g P(Odd=true) = P(1) + P(3) + P(5) = 1/2

Joint and Conditional Probability

Joint probability: $P(A \cap B)$ also written as P(A,B)

Conditional probability: $P(A|B) = \frac{P(A,B)}{P(B)}$

Rules for Conditional Probability

- Product rule: $P(A,B) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$
- Chain rule (generalization of product rule):

$$P(A_n,\ldots,A_1) = P(A_n|A_{n-1},\ldots,A_1) \cdot P(A_{n-1},\ldots,A_1)$$

Bayes' Rule:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Independence

ullet Two events are independent if P(A) = P(A|B)

or equivalently
$$P(A,B) = P(A) \cdot P(B)$$
 (if $P(B) > 0$)

• Two events are conditionally independent if:

$$P(B,C|A) = P(B|A)P(C|A)$$

or equivalently

$$P(B|A,C) = P(B|A)$$
 and $P(C|A,B) = P(C|A)$

Probabilities and Supervised Learning

- Given: Training data consisting of training examples data = (x₁, y₁), ..., (x_n, y_n),
 Goal: Learn a mapping h from x to y.
- We would like to learn this mapping using P(y|x).
- Two approaches:
 - Discriminative algorithms learn P(y|x) directly.
 - Generative algorithms use Bayes rule

$$P(y|x) = rac{P(x|y) \cdot P(y)}{P(x)}$$

Discriminative Algorithms

- Model conditional distribution of the label given the data P(y|x)
- Learns decision boundaries that separate instances of the different classes.
- To predict a new example, check on which side of the decision boundary it falls.
- Examples: support vector machine (SVM), decision trees, random forests, neural networks, log-linear models.

Generative Algorithms

- Assume the observed data is being "generated" by a "hidden" class label.
- Build a different model for each class.
- To predict a new example, check it under each of the models and see which one matches best.
- Estimate P(x|y) and P(y). Then use bases rule

$$P(y|x) = rac{P(x|y) \cdot P(y)}{P(x)}$$

Examples:
 Naive Bayes, Hidden Markov Models, Gaussian Mixture Models, PC

Naive Bayes

$$\mathbf{P}(Label, X_1, \dots X_d) = \mathbf{P}(Label) \prod_i P(X_i | Label)$$

$$\mathbf{P}(Label|X_1,\ldots X_d) = rac{\mathbf{P}(Label)\prod_i P(X_i|Label)}{\prod_i P(X_i)}$$

$$= lpha[\mathbf{P}(Label)\prod_i P(X_i|Label)]$$

Naive Bayes Classifier

$$\mathbf{P}(Label|X_1,\ldots X_d) = lpha[\mathbf{P}(Label)\prod_i P(X_i|Label)]$$

$$y* = rg \max_{y} P(y) \prod_{i} P(x_i|y)$$

Note that the normalizer α does no longer matter for the argmax because α is independent of the class label.

Training the Naive Bayes' Classifier

- Goal: Use the training data to estimate P(Label) and $P(X_i|Label)$ from training data.
- Estimate the prior and posterior probabilities using Maximum Likelihood Estimates (MLE):

$$P(y) = rac{Count(y)}{\sum_{y' \in Y} Count(y')}$$

$$P(x_i|y) = rac{Count(x_i,y)}{\sum_{x'} Count(x',y)} = rac{Count(x_i,y)}{Count(y)}$$

 I.e. we just count how often each token in the document appears together with each class label.

Why the Independence Assumption Matters

- Without the independence assumption we would have to estimate $\mathbf{P}(X_1, \dots X_d | Label)$
- There would be many combinations of $x_1, ..., x_d$ that are never seen (sparse data).
- The independence assumption allows us to estimate each $\mathbf{P}(X_1|label)$ independently.

Is this a safe assumption for documents? Are the words really independent of each other?

Training the Naive Bayes' Classifier

- Ways to improve this model?
- Some issues to consider...
 - What if there are words that do not appear in the training set? What if it appears only once?
 - What if the plural of a word never appears in the training set?
 - How are extremely common words (e.g., "the", "a") handled?

Acknowledgments

- Some slides and examples from:
 - Kathy McKeown, Dragomir Radev