Kalorian Game Jam Progression

An Algorithm to distribute Upgrade Cards across Matches

Vincent Kreuziger (Zeel)

7. Mai 2020

Inhaltsverzeichnis

1	Overview	1
2	The Algorithm	1
3	Pseudocode	3
4	Notes	3

1 Overview

Both players receive cards throughout a match and upon ending it. Amount and type of those cards are based on their performance throughout the match.

2 The Algorithm

T: Set of different towers

 u_1^t,\ldots,u_n^t : Set of Standard upgrade cards for tower $t\in T$ v_1^t,\ldots,v_n^t : Set of Special upgrade cards for tower $t\in T$

Function evaluate(x) for $x \in \mathbb{R}$ assigning each x a unique u_i or v_i so all $u, v \in U \cup V$ get assigned to one x^1 . The function will give out poor cards if the return value is close to 0 and progressively better cards the greater the absolute return value is.

¹Not the other way round: Each potential x is mapped to a specific card.

Examples:

$$evaluate(x) = 1 \ for \ 0 < x \le 0.5$$

$$= 2 \ for \ 0.5 < x \le 1$$

$$= 3 \ for \ 1 < x \le 1.5$$

$$= 4 \ for \ 1.5 < x \le 2$$

$$= \vdots$$

$$= n \ for \ 3 < x$$

$$= -1 \ for \ 0 \ge x < -0.5$$

$$= -2 \ for \ 0.5 \ge x < -1$$

$$= -3 \ for \ -1 \ge x < -1.5$$

$$= -4 \ for \ -1.5 \ge x < -2$$

$$= \vdots$$

$$= -m \ for x < -3$$

Changing those intervals changes the return values from the Gaussian distribution, meaning a card becomes more likely if its interval's absolute moves closer towards zero and vice versa. Function assign(i,t) assigning every integer within the range of evaluate(x)²

Number of cards received upon end of match:

$$n = (int(c_1/a_1) + max(int(a_2/e^{c_1}), a_3) + a_4$$

For each card received its variance is driven by the following function:

$$s = (c_1 + b_1) \cdot b_2$$

Var	Meaning
a_{1-4}	constants
$b_{1,2}$	constants
c_1	waves survived by the players
c_2	Cards left in the inventory
a_1	every a_1 waves the players receive a card for reward
a_2	weighting of remaining cards, high means more fresh cards while the player is running low
a_3	covers the maximum so wasting all your cards doesn't yield 500 new draws
a_4	minimum of cards the player draws
e	Euler's number, taken to the power of tower types for higher weighting
s	Variance of quality, higher values mean for better upgrade cards
b_1	Baseline applied to b_2 without considering the wave reached
	Guarantees a minimum of card variance even if the first wave isn't survived
b_2	Weight of each wave, higher values make the waves more significant

We now roll a weighted die with T sides³ n times. As a result we get the set $\{t_1, \ldots, t_n\}$ of towers that we receive cards for, a subset of all the towers available in game. Next we draw from a Gaussian Distribution $N(0,s)^4$, which provides a sample $\{x_1, \ldots, x_n\}$. As a result we get a set of n towers $\{n_1, \ldots, t_n\}$ and a set of n gaussian distributed numbers $\{x_1, \ldots, x_n\}$. Our upgrades are now $assign(evaluate(x_i), t_i)$ for all i.

²Meaning: $-m-1, n \rightarrow \sec 2$.

³Each side represents one type of tower.

⁴Mean 0, standard deviation s.

- 3 Pseudocode
- 4 Notes