Buscas em Grafos

Notas de aula da disciplina IME 04-11312 (Otimização em Grafos)

Paulo Eustáquio Duarte Pinto (pauloedp at ime.uerj.br)

março/2021

Buscas em Grafos

Grafos - Buscas em Grafos

Idéia: Visitar, a cada passo, algum vizinho não visitado, de vértices já visitados

Busca em Profundidade (DFS - Depth First Search)

Busca em Largura (BFS - Breadth First Search)

Busca Irrestrita em Profundidade

Idéia: Visitar, a cada passo, algum vizinho não visitado, do vértice mais recentemente visitado

Ex: A sequência 2 - 1 - 3 - 5 - 6 - 4 é uma DFS.

Ex: A sequência 2 - 1 - 3 - 4 - 5 -6 NÃO é uma DFS.

Idéia: Visitar, a cada passo, algum vizinho não visitado, do vértice mais recentemente visitado

```
BP(u,v):

marcar v

para vizinhos w de v:

se w não marcado:
BP(v,w)
```

```
desmarcar vértices()
para i ← 1..n incl.:
se i não marcado:
BP(i,i)
```

Cada vértice visitado é marcado. Normalmente usa-se um vetor para isso.

Podem ser usadas várias convenções para marcação:

- a) 0/1 (desmarcado/marcado).
- b) O/número do componente (desmarcado/marcado).
- c) O/ordem da visita (desmarcado/marcado).
- d) outras opções.

Apenas o parâmetro v de BP(u, v) foi usado nesta versão da busca. Muitas vezes é necessário usar os dois.

Árvores (Floresta) de Profundidade: são as árvores da recursão da busca.

Após BP(2,2):

Árvore de Profundidade:

2

Após BP(2,1):

Após BP(1,3):

Após BP(3,5):

Após BP(5,4):

Após o retorno de BP(5,6):

Após BP(5,6):

Árvores (Floresta) de Profundidade: são as árvores da recursão da busca.

Grafos - Busca em Profundidade (DFS) - MA

Complexidade: O(n2)

A marcação feita é guardando a ordem de visita no vetor pre.

```
para i ← 1..n incl.:
    pre[i] ← 0
cpre ← 0
para i ← 1..n incl:
    se pre[i] = 0:
    BP(i,i)
```

Grafos - Busca em Profundidade (DFS) - LA

```
BP(p,v):
     cpre \leftarrow cpre+1
     pre[v] \leftarrow cpre
     \mathbf{w} \leftarrow A[\mathbf{v}]
     enquanto w ≠ nulo:
          se pre[w.v] = 0:
               BP(v, w.v)
          w \leftarrow w.prox
para i \leftarrow 1..n incl.:
     pre[i] \leftarrow 0
cpre ← 0
para i \leftarrow 1..n incl.:
     se pre[i] = 0:
          BP(i,i)
```

Complexidade: O(n+m)

A marcação feita é guardando a ordem de visita no vetor pre.

Buscas em Grafos

Grafos - Busca em Profundidade (DFS) - LA Usando vector C++

```
BP(p,v);
    cpre \leftarrow cpre+1
    pre[v] \leftarrow cpre
    para j \leftarrow 0..A[v].size():
         se pre[A[v][j]] = 0:
              BP(v, A[v][i])
para i \leftarrow 1..n incl.:
    pre[i] \leftarrow 0
cpre \leftarrow 0
para i \leftarrow 1..n incl.:
    se pre[i] = 0:
         BP(i,i)
Delcaração do grafo em C++
     vector<int> A[NMAX];
```

Complexidade: O(n+m)

A marcação feita é guardando a ordem de visita no vetor pre.

Árvores (Floresta) de Profundidade:

Mostram a sequência das visitas. Pode haver mais de uma árvore de profundidade.

Buscas em Grafos

Grafos - Busca em Profundidade (DFS)

Propriedade I da BP:

Todos os vértices e todas as arestas são visitados na busca.

Propriedade II da BP:

A complexidade da busca é $O(n^2)$ se for usada a representação por matriz de adjacências.

Propriedade III da BP:

A complexidade da busca é O(n+m) se for usada a representação por listas de adjacências.

Propriedade IV da BP:

Dado qualquer caminho C em G, existe um vértice v desse caminho tal que todos os demais vértices do caminho estão em nós descendentes de v, na árvore de profundidade de G. Buscas em Grafos

Grafos - Busca em Profundidade

Possibilidades da DFS:

Pequenas modificações no algoritmo permitem descobrir propriedades do grafo

- Visita a todas as arestas
- Obtenção dos graus dos vértices
- Determinação se o grafo é conexo
- Determinação dos componentes conexos
- Determinação de existência de ciclos
- Descoberta de elementos estruturais (pontes, blocos etc)
- Descoberta se o grafo é bipartido, ciclo, árvore, completo, regular

Possibilidades da DFS:

Determinar se o grafo é conexo

1 6

```
desmarcar vértices()
c ← 0
para i ← 1..n incl.:
    se i não marcado:
        c ← c+1
        BP(i,i)
se c > 1:
    escrever ('Desconexo')
senão:
    escrever ('Conexo')
```

Possibilidades da DFS:

Determinação dos componentes conexos

```
co[*] \leftarrow 0; c \leftarrow 0
para i \leftarrow 1..n incl.:
     se co[i] = 0:
         c \leftarrow c+1
          BP(i,i)
para i \leftarrow 1..c incl.:
     escrever('Componente',i)
     para j \leftarrow 1..n incl.:
         se co[j] = i:
               escrever (j)
```

```
2 4 6
```

```
BP(p,v):
co[v] ← c;
para vizinhos w de v:
se co[w] = 0:
BP(v,w)
```


Determinação de existência de ciclos

```
pre[*] \leftarrow 0
tc ← F
para i \leftarrow 1..n incl.:
    se pre[i] = 0:
         tc \leftarrow tc ou BP(i,i)
se tc:
    escrever ('Cíclico')
senão:
    escrever ('Acíclico')
```

```
lógico BP(p,v):
   pre[v] \leftarrow 1
   para vizinhos w de v:
       se pre[w] = 0:
           se BP(v,w):
               retornar V
       senão se w ≠ p:
           retornar V
   retornar F
```

Problema ORIENTAÇÃO ACÍCLICA:

Dado um grafo simples, orientar cada aresta do grafo (transformá-lo em um digrafo), tal que não hajam ciclos no digrafo criado.

Problema ORIENTAÇÃO PARA DAG:

Dado um grafo simples, orientar cada aresta do grafo (transformá-lo em um digrafo), tal que não hajam ciclos no digrafo criado.

Solução ORIENTAÇÃO PARA DAG

Criar a árvore de profundidade. Arestas de árvore tornam-se arestas diretas num digrafo. Arestas de retorno tornam-se arestas inversas.

Grafos - Busca em Profundidade II (DFS) - MA

```
BP(u,v);
    cpre \leftarrow cpre+1
    pre[v] \leftarrow cpre
    para w \leftarrow 1 até n incl.:
         se E[v,w] = 1 e pre[w] = 0:
              BP(v,w)
    cpos \leftarrow cpos+1
    pos[v] \leftarrow cpos
para i \leftarrow 1 até n incl:
    pre[i], pos[i] \leftarrow 0, 0
cpre, cpos \leftarrow 0, 0
para i \leftarrow 1 até n incl.:
    se pre[i] = 0:
         BP(i,i)
                                                    Complexidade: O(n2)
```


Em preto, a ordem de entrada na busca.

Em verde, a ordem de saída da busca.

Buscas em Grafos

Grafos - Pontes

Ponte: Aresta que, se removida, desconecta o grafo: Ex (5,6)

Idéia de um algoritmo:

Dada uma árvore de profundidade, a aresta (v,w) será ponte quando w é filho de v e não há descendentes de w (incluindo w) com arestas de retorno para ancestrais de w.

Buscas em Grafos

Ponte: Aresta que, se removida, desconecta o grafo: Ex (5,6)

Idéia de um algoritmo:

Funções p/ os vértices:

pre(v) = ordem de
entrada de v na BP.

low(v) = menor ordem de entrada de um vértice alcançado diretamente por v ou por descendente de v na árvore de profund.

Buscas em *G*rafos

Grafos - Pontes

se pre[i]=0:

Pontes(i,i)

```
Pontes (p, v):
    cpre \leftarrow cpre+1
    pre[v], low[v] \leftarrow cpre, cpre
    para vizinhos w de v:
        se pre[w] = 0:
            Pontes(v, w)
            se low[w] = pre[w]:
                 escrever( v , w, ' é Ponte')
             low[v] ← min (low[v], low[w]) #w é descendente de v
        senão se w ≠ p:
             low[v] ← min (low[v], pre[w]) #v descende de w e w não é pai de v
pre[*] \leftarrow 0;
cpre \leftarrow 0;
para i \leftarrow 1..n:
```

Exemplo com a Busca começando no vértice 1.

Exemplo com a Busca começando no vértice 1.

V	1		2		3		4		5		6		7		8	
	P	L	Р	L	Р	L	Р	L	Р	L	Р	L	P	L	Р	L
1	1	1														
2	1	1	2	2												
4	1	1	2	2			3	3								
5	1	1	2	2			3	3	4	4						
3	1	1	2	2	5	1	3	3	4	1						
6	1	1	2	2	5	1	3	3	4	1	6	6				
7	1	1	2	2	5	1	3	3	4	1	6	6	7	7		
8	1	1	2	1	5	1	3	1	4	1	6	6	7	6	8	6

Problema MÃO ÚNICA (I):

Dado o mapa de uma cidade, representado como um grafo simples, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Problema MÃO ÚNICA (I):

Dado o mapa de uma cidade, representado como um grafo simples, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Solução MÃO ÚNICA (I):

Basta verificar se existe ou não ponte no grafo dado.

Problema MÃO ÚNICA (II):

Dado o mapa de uma cidade, representado como um hipergrafo (grafo com multi-arestas e loops), onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Problema MÃO ÚNICA (II):

Dado o mapa de uma cidade, representado como um hipergrafo (grafo com multi-arestas e loops), onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Solução MÃO ÚNICA (II):

Basta transformar o hipergrafo em grafo simples e verificar se existe ou não ponte no grafo transformado e se essa ponte é a única aresta entre os dois vértices, no hipergrafo.

Problema MÃO ÚNICA (III):

Dado o mapa de uma cidade, representado como um grafo simples, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra. Quando for possível, apresentar uma atribuição válida.

Grafos - Pontes

Solução MÃO ÚNICA (III):

Quando não existir ponte, usar a árvore de profundidade, atribuindo o sentido de cima para baixo para arestas da árvore e o sentido de baixo para cima para arestas de retorno.

Grafos - Pontes

Problema MÃO ÚNICA (IV):

Dado o mapa de uma cidade, representado como um hiper-grafo, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra. Quando for possível, apresentar uma atribuição válida.

Ponto de Articulação:

Vértice que, se removido, desconecta o grafo: Ex 5

Idéia de um algoritmo:

Dada uma árvore de profund., o vértice v é ponto de articulação, se:

- a) v é raiz da árv.prof. e tem mais de um filho.
- b) v não é raiz, tem um filho w e não há descendentes de w (incluindo o próprio) com arestas de retorno para ancestrais de v.

Buscas em Gratos

Ponto de articulação:

Vértice que, se removido, desconecta o grafo: Ex 5

Idéia de um algoritmo:

Funções p/ vértices:

pre(v) e low(v), como para pontes.

pa(v) = número de filhos de v que não alcançam ancestrais de v na árv. prof.

V	Pre	Low	Pa
1	1	1	1
2	2	1	0
4	3	1	0
5	4	1	1
3	5	1	0
6	6	6	1
7	7	6	0
8	8	6	0


```
Externamente:

pre[*] ← 0; cpre ← 0;

low[*] ← 0; pa[*] ← 0;

para i ← 1 até n incl.:

se pre[i]=0:

Pontos (i, i)

para i ← 1 até n incl.:

se i=1 e pa[1] > 1:

escrever ('vertice 1 é ponto de articulação')

senão se i ≠ 1 e pa[i] > 0:

escrever ('vertice'+ i + ' é ponto de articulação')
```

Exemplo com a Busca começando no vértice 1.

	P	L	Pa															
V	1			2			3			4			5			6		
1	1	1	0															
2	1	1	0	2	2	0												
3	1	1	0	2	2	0	3	1	0									
6	1	1	0	2	2	0	3	1	0							4	4	0
4	1	1	0	2	2	0	3	1	0	5	5	0				4	4	0
5	1	1	1	2	1	0	3	1	1	5	4	0	6	4	0	4	4	1

Problema MÃO ÚNICA (I):

Dado o mapa de uma cidade, representado como um grafo simples, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Problema MÃO ÚNICA (I):

Dado o mapa de uma cidade, representado como um grafo simples, onde os vértices são as esquinas e as arestas são os trechos de rua entre esquinas, dizer se é possível atribuir mão única a todos os trechos de ruas, tal que toda esquina seja atingível a partir de qualquer outra.

Solução MÃO ÚNICA (I):

Pontos de articulação interferem nas soluções???.

Grafos - Componentes biconexas

Componente biconexa:

subgrafo maximal tal que ou seja uma aresta ou haja, pelo menos, dois caminhos distintos entre cada par de vértices do subgrafo.

È equivalente a dizer que cada par de vértices da componente biconexa (quando há mais de 2 vértices na componente) faz parte de um ciclo.

Componentes biconexas do exemplo:

*{*1,2,3,4,5*} {*5,6*} {*6,7,8*}*

Grafos - Componentes biconexas

Marcador: Vértice w que, tem low(w) ≥ pre(pai(w))

Idéia de um algoritmo:

o marcador w mais "em baixo" da árvore de profundidade determina um componente = {elementos da subárvore com raiz em w} + pai(w). Removido esse componente, aplica-se recursão no grafo restante.

- a) Fazer BP identificando marcadores e empilhando as arestas visitadas:
- b) Quando um marcador w é encontrado, desempilham-se as arestas, até a aresta (w, pai(w)), inclusive.

Grafos - Componentes biconexos

Externamente:

Desmarcar vértices/arestas Esvaziar pilha cpre ← 0 Blocos (1, 1)

```
1 3 5 8 7
```

```
Blocos (p, v):
    cpre \leftarrow cpre+1; pre[v] \leftarrow cpre; low[v] \leftarrow cpre;
    para vizinhos w de v:
        se aresta (w, v) não marcada:
            Empilhar(w, v)
            Marcar (w, v)
        se pre[w] = 0:
            Blocos(v, w)
            se pre[v] ≤ low[w]:
                Desempilhar até (w, v)
            low[v] \leftarrow min (low[v], low[w])
        senão se w ≠ p:
            low[v] \leftarrow min (low[v], pre[w])
```

Grafos - Determinação de Blocos

Exemplo com a Busca começando no vértice 1.

	P	L	Р	L	P	L	P	L	P	L	P	L
V	1		2		3		4		5		6	
1	1	1										
2	1	1	2	2								
3	1	1	2	2	3	1						
6	1	1	2	2	3	1					4	4
4	1	1	2	2	3	1	5	5			4	4
5	1	1	2	1	თ	1	5	4	6	4	4	4

5/6
4/5
4/6
3/6
1/3
2/3
1/2

Grafos - Determinação de Blocos

Exemplo com a Busca começando no vértice 1.

	P	L	Р	L	P	L	P	L	P	L	P	L
V	1		2		3		4		5		6	
1	1	1										
2	1	1	2	2								
3	1	1	2	2	3	1						
6	1	1	2	2	3	1					4	4
4	1	1	2	2	3	1	5	5			4	4
5	1	1	2	1	3	1	5	4	6	4	4	4

6: 5/6 4/5 4/6

3: 3/6

1: 1/3 2/3 1/2

Grafos - Busca em Profundidade II (DFS) - MA

```
BP(u,v);
    cpre \leftarrow cpre+1; pre[v] \leftarrow cpre;
    para w ← 1 até n incl.:
         se E[v,w] = 1 e pre[w] = 0:
              BP(v,w)
    cpos \leftarrow cpos+1; pos[v] \leftarrow cpos;
para i \leftarrow 1 até n incl:
    pre[i] \leftarrow 0; pos[i] \leftarrow 0;
cpre \leftarrow 0; cpos \leftarrow 0;
para i \leftarrow 1 até n incl.:
    se pre[i] = 0:
         BP(i,i)
```

Complexidade: O(n²)

Grafos - Busca em Profundidade II (DFS) - MA

Árvore (Floresta) de Profundidade:

Buscas em Gratos

Grafos - Busca em Largura (BFS)

Idéia: Visitar, a cada passo, algum vizinho não visitado, do vértice mais antigamente visitado

Grafos - Busca em Largura (BFS)

Idéia: Visitar, a cada passo, algum vizinho não visitado, do vértice mais antigamente visitado

```
BL(p,v):
   Esvaziar fila Q; Enfilar (p,v); Marcar v;
   enquanto Q não vazia:
       (p,t) \leftarrow elemento inicial de Q
       para vizinhos w de t:
           se w não marcado:
               Enfilar (t,w)
               Marcar w
       Desenfilar (p,t)
Desmarcar vértices
para i \leftarrow 1 até n incl.:
   se i não marcado:
       BL(i,i)
```

Árvores de Largura:

Mostram a sequência das visitas. Pode haver mais de uma árvore de largura.

Grafos - Busca em Largura (BFS) - MA

```
BL(p,v):
    Esvaziar fila Q; Enfilar (p,v); pre[v] \leftarrow ++cpre;
    enquanto Q não vazia:
        (p,t) \leftarrow elemento inicial de Q
        para w \leftarrow 1 até n incl.:
             se E[t,w]=1 e pre[w] = 0:
                 Enfilar (v,w)
                 pre[w] \leftarrow ++cpre
         Desenfilar (p,t)
pre[*] \leftarrow 0
cpre \leftarrow 0
para i \leftarrow 1 até n incl.:
    se pre[i] = 0:
        BL(i,i)
```

Complexidade: O(n2)

Árvores de Largura:

Mostram a sequência das visitas. Pode haver mais de uma árvore de largura.

Grafos - Busca em Largura (BFS) - LA

```
BL(p,v):
    Esvaziar fila Q; Enfilar (p,v); pre[v] \leftarrow ++cpre;
    enquanto Q não vazia:
         (p,v) \leftarrow \text{elemento inicial de Q}; w \leftarrow A[v];
         enquanto w ≠ nulo:
             se pre[w.v] = 0:
                  Enfilar (w, w.v)
                  pre[w.v] \leftarrow ++cpre
             w \leftarrow w.prox
         Desenfilar (p, t);
para i \leftarrow 1 até n incl.:
    pre[i] \leftarrow 0
cpre \leftarrow 0
para i \leftarrow 1 até n incl.:
    se pre[i] = 0:
         BL(A[i],i)
                                                Complexidade: O(n+m)
```

Grafos - Busca em Largura (BFS) - LA (com vector)

```
BL(p,v):
    Esvaziar fila Q; Enfilar (p,v); pre[v] \leftarrow ++cpre;
    enquanto Q não vazia:
         (p,t) \leftarrow elemento inicial de Q
         para j \leftarrow 0 até A[t].size():
             \mathbf{w} \leftarrow A[t][j]
             se pre[w] = 0:
                  Enfilar (t,w)
                  pre[w] \leftarrow ++cpre
         Desenfilar (p,t)
para i \leftarrow 1 até n incl.:
    pre[i] \leftarrow 0
cpre \leftarrow 0
para i \leftarrow 1 até n incl.:
    se pre[i] = 0:
         BL(i,i)
                                                  Complexidade: O(n+m)
```


2 4

Propriedades importantes da BL:

- a) Durante a BL, os vértices são enfilados por ordem de distância ao vértice da raiz da busca.
- b) Para qualquer nó da árvore de largura, o caminho da raiz até esse nó é um caminho mínimo entre os dois nós.

Distâncias para o vértice 2: 1, 4 e 5 estão à distância 1, 3 e 6, à distância 2.

Menor caminho de 2 a 6: 2 5 6

Determinação do caminho mínimo entre a raiz e outro vértice:

a) Pode ser feito a partir da fila da BL, desde que se guarde, junto com cada vértice, a posição na fila do vértice pai na busca e a distância mínima.

b) Pode tb ser feito empilhando-se os caminhos mínimos durante a BL.

1	2	3	4	5	6
2/0/0	1/1 /1	4/1/1	5/1/1	3/2/2	6/4/2

Determinação do caminho mínimo entre a raiz e outro vértice:

1	2		4		6
2/0	1/1	4/1	5/1	3/2	6/4

```
Caminho(p): \#p = a \text{ posição do vértice na Fila:}
j \leftarrow p
enquanto j \neq 0:
guardar Fil[j].v no vetor C
j \leftarrow Fil[j].pospai
escrever C invertido
```

Outras possibilidades da BL: Pequenas modificações no

algoritmo permitem descobrir propriedades do grafo

- Visita a todas as arestas
- Obtenção dos graus dos vértices
- Determinação se o grafo é conexo
- Determinação dos componentes conexos
- Determinação de existência de ciclos
- Descoberta de elementos estruturais (pontes, blocos etc)
- Descoberta se o grafo é bipartido, ciclo, árvore, completo, regular

Grafos - Comparação Profundidade x Largura

Grafos - Busca Irrestrita em Profundidade

Idéia:

Visitar, a cada passo, algum vizinho do vértice mais recentemente visitado

```
2 4
```

```
BPI(v):
   Marcar v
   para vizinhos w de v:
       se w não marcado:
          BPI(w)
   Desmarcar v
Desmarcar vértices
para i \leftarrow 1 até n incl.:
   se i não marcado:
       BPI(i)
```

Grafos - Busca Irrestrita em Profundidade

Árvores de Busca Irrestrita:

Mostram a sequência das visitas. Pode haver mais de uma árvore.

Grafos - Busca Irrestrita em Profundidade

Exercício recomendado: Mostrar uma árvore de profundidade irrestrita iniciando no vértice de letra mais próxima de um dos nomes do grupo.

Buscas em Grafos

FIM