Системы типизации лямбда-исчисления

Лекция 11. Чистые системы типов

Денис Москвин

22.05.2011

CS Club при ПОМИ РАН

Чистые системы типов (PTS): введение (1)

Чистые системы типов (Pure Type Systems) задают абстрактную инфраструктуру, позволяющую унифицированно описывать конкретные системы типов:

- интерпретация «высказывания-как-типы» приобретает простую форму
- легко сравнивать свойства разных систем
- многие свойства доказываются для целых групп систем

Берарди [1989] и Терлов [1989]

Чистые системы типов (PTS): введение (2)

Обобщения систем λ-куба, формирующие системы PTS:

• количество сортов становится произвольным (на кубе их два * и \square);

 набор аксиом тоже может быть расширен (на кубе аксиома одна *:□);

• сорт П-типа может отличаться от сорта возвращаемого значения

Определение PTS (1)

Множество *(пред)выражений*

$$\Lambda := V \mid C \mid \Lambda \Lambda \mid \lambda V : \Lambda . \Lambda \mid \Pi V : \Lambda . \Lambda$$

где V — множество переменных, а C — констант.

Высказывания M:A, объявления x:A, (пред)контексты Γ — как на λ -кубе.

Определение PTS (2)

Спецификация конкретной PTS задаётся тройкой $S = (S, A, \mathcal{R})$

- 8 подмножество С, его элементы называют сортами
- ullet \mathcal{A} множество **аксиом** вида c:s, причём $c\in \mathbb{C}$ и $s\in \mathbb{S}$
- \Re множество *правил* вида (s_1, s_2, s_3) , причём $s_1, s_2, s_3 \in \$$

V — объединение *непересекающихся* подмножеств

$$V = \bigcup_{s \in \mathcal{S}} V_s$$
, $V_{s_1} \cap V_{s_2} = \emptyset$, $V_s = \{s_x, s_y, s_z, \ldots\}$

«Греко-латинская» система: *x, *y, *z, $\Box \alpha$, $\Box \beta$, $\Box \gamma$.

Аксиомы и правила для $\Gamma \vdash_{\lambda S} M : A$ **(1)**

Нотация присваивания типов $\Gamma \vdash_{\lambda S} M : A$ задаётся так

Аксиомы $\frac{}{\vdash c:s}$, если $(c:s) \in \mathcal{A}$

Начальное правило $\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A}$, если $x \equiv {}^s x \not\in \Gamma$

Правило ослабления $\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma, \ x : B \vdash M : A}$, если $x \equiv {}^s x \not\in \Gamma$

Здесь $s \in S$, $c \in C$, $x \in V$ и A, B, $M \in \Lambda$.

(продолжение далее...)

Аксиомы и правила для $\Gamma \vdash_{\lambda S} M : A$ (2)

Правило произведения $\frac{\Gamma \vdash A\colon s_1 \quad \Gamma, x\colon A \vdash B\colon s_2}{\Gamma \vdash (\Pi x\colon A\colon B)\colon s_3}$, $(s_1, s_2, s_3) \in \mathcal{R}$

Правило применения $\frac{\Gamma \vdash M : (\Pi x : A. \ B) \quad \Gamma \vdash N : A}{\Gamma \vdash M \ N : B[x := N]}$

Правило абстракции $\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash (\Pi x : A . B) : s}{\Gamma \vdash (\lambda x : A . M) : (\Pi x : A . B)}$

Здесь $s, s_1, s_2, s_3 \in S, \ x \in V$ и $A, B, M, N \in \Lambda$.

(продолжение далее...)

Аксиомы и правила для $\Gamma \vdash_{\lambda S} M : A$ (3)

Правило преобразования
$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s \quad B =_{\beta} B'}{\Gamma \vdash A : B'}$$

Здесь $s \in S$ и A, B, $B' \in \Lambda$.

Посылка $B =_{\beta} B'$ может быть неразрешима; её можно заменить на

$$B \rightarrow_{\beta} B' \lor B' \rightarrow_{\beta} B$$

Примеры PTS (1)

Принято обозначение $(s_1, s_2) \equiv (s_1, s_2, s_2)$.

$$\lambda \omega \begin{vmatrix} S & *, \square \\ A & *: \square \\ \mathcal{R} & (*, *), (\square, *), (\square, \square) \end{vmatrix} \begin{vmatrix} S & *, \square \\ \lambda P \begin{vmatrix} A & *: \square \\ \mathcal{R} & (*, *), (*, \square) \end{vmatrix}$$

$$\lambda P \begin{vmatrix} S & *, \square \\ A & *: \square \\ \mathcal{R} & (*, *), (*, \square) \end{vmatrix}$$

Примеры PTS (2)

$$\lambda C = \lambda P \omega \begin{bmatrix} S & *, \square \\ A & *: \square \\ \mathcal{R} & (*, *), (*, \square), (\square, *), (\square, \square) \end{bmatrix} \qquad \lambda C' \begin{bmatrix} S & *^t, *^p, \square \\ A & *^t: \square, *^p: \square \\ \mathcal{R} & S^2 \end{bmatrix}$$

$$\lambda C^{\infty} \begin{vmatrix} S & *, \{\Box_{i}\}_{i \in \mathbb{N}} \\ \mathcal{A} & *: \Box_{0}, \ \Box_{i}: \Box_{i+1} \\ \mathcal{R} & (*, *), \ (*, \Box), \ (\Box_{i}, *), \ (\Box_{i}, \Box_{j}, \Box_{\max(i, j)}) \end{vmatrix}$$

Примеры PTS (3)

$$\lambda*$$

$$\begin{bmatrix} S & * & & & \\ \mathcal{A} & *:* & & & \\ \mathcal{R} & (*,*) & & & & \\ \end{bmatrix}$$

$$\lambda U$$

$$\begin{bmatrix} S & *, \Box, \Delta & & \\ \mathcal{A} & *:\Box, \Box:\Delta & & \\ \mathcal{R} & (*,*), (\Box,*), (\Box,\Box), (\Delta,*), (\Delta,\Box) & \\ \end{bmatrix}$$

Две последние системы «неконсистентны» в том смысле, что в них все типы являются обитаемыми (парадокс Жирара).

Свойства РТS (1)

Пусть Γ — предконтекст, а A — предвыражение.

- ▶ Г называется *(допустимым) контекстом*, если $\exists A, B \in \Lambda \ \Gamma \vdash A : B$.
- ▶ $A \in \Lambda$ называется *(допустимым) выражением*, если $\exists \Gamma, B \in \Lambda \ \Big[\Gamma \vdash A : B \ \lor \ \Gamma \vdash B : A \Big].$

Свойства PTS (2)

Пусть Г — предконтекст, а А — предвыражение.

- ► A называется Γ -**термом**, если $\exists B \in \Lambda \ \Big[\Gamma \vdash A : B \ \lor \ \Gamma \vdash B : A \Big].$
- ▶ A называется Г-**типом** (сорта s), если $\exists s \in S \; \Gamma \vdash A : s$.
- ▶ A называется Г-*элементом* (типа B сорта s), если $\exists B \in \Lambda \ \exists s \in S \ \Gamma \vdash A : B : s$.

Свойства PTS (3)

Лемма подстановки для PTS

Пусть

$$\Gamma$$
, χ : A, $\Delta \vdash M$: B

И

$$\Gamma \vdash N : A$$

тогда

$$\Gamma, \Delta[x := N] \vdash M[x := N] : B[x := N]$$

Лемма thinning для PTS

Пусть Γ и Δ — допустимые контексты, причём $\Gamma\subseteq \Delta$, тогда

$$\Gamma \vdash M : A \Rightarrow \Delta \vdash M : A$$

Свойства PTS: Лемма генерации (1)

Для Г ⊢ Р : Q по известной структуре выражения Р

$$\Lambda := C \mid V \mid \Lambda \Lambda \mid \lambda V : \Lambda . \Lambda \mid \Pi V : \Lambda . \Lambda$$

представляет свойства Г и Q.

Лемма генерации для PTS

$$\Gamma \vdash c : Q \Rightarrow \exists s \in S \\ \left[Q =_{\beta} s \land (c : s) \in \mathcal{A}\right]$$

$$\Gamma \vdash x : Q \Rightarrow \exists s \in S \exists B =_{\beta} Q$$

$$\left[\Gamma \vdash B : s \land (x : B) \in \Gamma \land x \equiv {}^{s}x\right]$$

(продолжение далее...)

Свойства PTS: Лемма генерации (2)

Лемма генерации для РТS (продолжение)

$$\Gamma \vdash (\Pi x : A. B) : Q \Rightarrow \exists (s_1, s_2, s_3) \in \mathcal{R}$$
$$\left[\Gamma \vdash A : s_1 \land \Gamma, x : A \vdash B : s_2 \land Q =_{\beta} s_3\right]$$

$$\Gamma \vdash (\lambda x : A. M) : Q \Rightarrow \exists s \in S \exists B$$

$$\left[\Gamma \vdash (\Pi x : A. B) : s \land \Gamma, x : A \vdash M : B \land Q =_{\beta} \Pi x : A. B\right]$$

$$\Gamma \vdash (M \ N) : Q \Rightarrow \exists A, B$$

$$\left[\Gamma \vdash M : (\Pi x : A. B) : s \land \Gamma \vdash N : A \land Q =_{\beta} B[x := N]\right]$$

Следствия леммы генерации (1)

$$\Gamma \vdash M : A \Rightarrow \exists s \in S \\
\left[A \equiv s \lor \Gamma \vdash A : s\right]$$

$$\Gamma \vdash M : (\Pi x : B_1 . B_2) \Rightarrow \exists s_1, s_2 \in S$$

$$\left[\Gamma \vdash B_1 : s_1 \land \Gamma, x : B_1 \vdash B_2 : s_2\right]$$

- ▶ Если A является Γ -термом, то A это сорт, или Γ -тип или Γ -элемент.
- ► Если A допустим и В его подтерм, то В допустим.

Следствия леммы генерации (2)

Классы сортов, Г-типов и Г-элементов могут пересекаться.

Например,

$$\alpha: * \vdash (\lambda x : \alpha. x) : (\alpha \rightarrow \alpha) : *$$

 $\alpha: * \vdash (\alpha \rightarrow \alpha) : * : \square$

Выражение $\alpha \! \to \! \alpha$ выступает в роли и Г-типа или Г-элемента.

Есть здесь ещё смешение ролей?

Свойства PTS: редукция субъекта

Теорема о редукции субъекта для PTS

$$\Gamma \vdash M : A \land M \twoheadrightarrow_{\beta} M' \Rightarrow \Delta \vdash M' : A$$

Следствия

$$\left[\Gamma \vdash M : B \land B \twoheadrightarrow_{\beta} B'\right] \Rightarrow \Gamma \vdash M : B'$$

(в правиле преобразования ещё требуется B':s!)

▶ Если A является Γ -термом и $A \to_{\beta} A'$, то A' тоже является Γ -термом.

Свойства PTS: Лемма конденсации

Лемма конденсации для РТS (Condensing, Strengthening)

 Γ , $\chi:A$, $\Delta \vdash M:B \land \chi \notin FV(\Delta) \cup FV(M) \cup FV(B) \Rightarrow \Gamma$, $\Delta \vdash M:B$

Свойства PTS: Теорема единственности типа

Определение. PTS называется **функциональной** или **еди- носортной** (singly sorted), если

1.
$$(c:s_1), (c:s_2) \in A \Rightarrow s_1 \equiv s_2;$$

2.
$$(s_1, s_2, s_3), (s_1, s_2, s_4) \in \mathbb{R} \Rightarrow s_3 \equiv s_4$$
.

Все рассматриваемые нами ранее системы функциональны.

Теорема Для функциональной PTS

$$\Gamma \vdash M : A \land \Gamma \vdash M : A' \Rightarrow A \equiv_{\beta} A'$$

Степень терма на λ -кубе

Имеется полезная классификация предтермов, полезная для анализа допустимых термов в системах λ -куба. Задаётся отображение $\sharp: \Lambda \to \{0, 1, 2, 3\}$:

$$\sharp(\Box) = 3$$

$$\sharp(*) = 2$$

$$\sharp(\Box x) = 1$$

$$\sharp(*x) = 0$$

$$\sharp(\lambda x : A . B) = \sharp(\Pi x : A . B) = \sharp B$$

$$\sharp(M N) = \sharp M$$

Для $M \in \Lambda$ значение $\sharp(M)$ называют *степенью* M.

Утверждение. Для всех систем λ-куба

$$\Gamma \vdash M : A \Rightarrow \sharp(M) + 1 = \sharp(A)$$

Свойства PTS: нормализуемость.

Определение. PTS называется **сильно нормализуемой**, если все её допустимые термы сильно нормализуемы, то есть

$$\Gamma \vdash M : A \Rightarrow SN(M) \land SN(A)$$

Утверждение. Все системы λ-куба сильно нормализуемы.

Теорема. Разрешимость ТСР и ТЅР для нормализуе- **мой РТЅ**. Если PTЅ с конечным числом сортов сильно или слабо нормализуема, то TСР и TЅР разрешимы.

Населённость \bot

Утверждение. Пусть λS — это PTS, расширяющая $\lambda 2$. Тогда $\vdash_{\lambda S} M: \bot \ \Rightarrow \ M$ не имеет NF

То есть $\bot = \Pi\alpha: *. \alpha$ может быть населён только термами, не имеющими нормальной формы. Отсюда следует, что если система нормализуема, то \bot не населён.

Проверка типов для λP

Одновременно задаются два алгоритма:

OK : PreContext → Bool

 $\mathtt{TY} : \mathtt{PreContext} \rightarrow \mathtt{PreTerm} \rightarrow \mathtt{Term}$

ОК Γ проверяет допустимость контекста Γ ТҮ Γ M возвращает тип M в контексте Γ (и \bot , если M — нетипизируемое предвыражение)

Теорема. Алгоритм ТҮ корректен и полон:

$$\forall \Gamma, M$$
 TY $\Gamma M = A \Rightarrow \Gamma \vdash M : A$
 $\forall \Gamma, M, A$ $\Gamma \vdash M : A \Rightarrow$ TY $\Gamma M =_{\beta\eta} A$

(полнота осмысленна, если имеется единственность типа) (из полноты следует, что алгоритм завершается на допустимых термах; хотим большего)

Проверка типов для λP : алгоритм

```
\mathsf{OK}\ \langle\rangle
                         = TRUE
OK (\Gamma, x:A) = if TY \Gamma A \in \{*, \square\} then OK \Gamma else FALSE
TY \Gamma \chi = if OK \Gamma \wedge \chi:A \in \Gamma then A else \bot
TY \Gamma * = if OK \Gamma then \square else \bot
 \texttt{TY} \; \Gamma \; (M \; N) \qquad = \; \texttt{if} \; \texttt{TY} \; \Gamma \; M = C \neq \bot \; \land \; \texttt{TY} \; \Gamma \; N = D \neq \bot 
                              then if C \rightarrow_{\beta} \Pi x : A : B \land A =_{\beta} D
                                      then B[x := N] else \bot
                              else |
TY \Gamma (\lambda x:A.M) = if TY (\Gamma, x:A) M = B \neq \bot
                              then if TY \Gamma (\Pi x:A.B) \in \{*, \square\}
                                       then \Pi x: A.B else
                              else L
TY \Gamma (\Pi x:A.B) = if TY \Gamma A = * \land TY (\Gamma, x:A) B = s
                              then s else \perp
```

Проверка типов для λP : завершимость (1)

Рекурсивный вызов без уменьшения меры:

TY
$$\Gamma$$
 ($\lambda x : A : M$) = if TY (Γ , $x : A$) $M = B \neq \bot$ then if TY Γ ($\Pi x : A : B$) $\in \{*, \Box\}$ then $\Pi x : A : B$ else \bot else \bot

Но в λP можно заменить

TY
$$\Gamma$$
 ($\Pi x:A.B$) $\in \{*, \square\}$

на

TY
$$\Gamma$$
 $A = *$

(проверьте это!)

Проверка типов для λP : завершимость (2)

β-редукция и β-эквивалентность неразрешимы для *пред*термов!

```
TY \Gamma (M \, N) = if TY \Gamma M = C \neq \bot \wedge TY \Gamma N = D \neq \bot then if C \twoheadrightarrow_{\beta} \Pi x : A . B <math>\wedge A =_{\beta} D then B[x := N] else \bot else \bot
```

К счастью, они вызываются над гарантированно допустимыми термами, и известно, что λP является SN и CR.

Теорема. Алгоритмы ТҮ Γ M и 0К Γ завершаются для любого предтерма M и предконтекста Γ .

Экстенсиональность и интенсиональность

Правило преобразования интенсионально и разрешимо:

$$\frac{\Gamma \vdash A:B \quad \Gamma \vdash B':s \quad B =_{\beta} B'}{\Gamma \vdash A:B'}$$

Можно ввести в теорию экстенсиональность, добавив правила

$$\frac{\Gamma \vdash M, N : A \rightarrow B \quad \Gamma \vdash p : (\Pi x : A. M x = N x)}{\Gamma \vdash (M = N) : A \rightarrow B}$$

$$\frac{\Gamma \vdash P:A \quad \Gamma \vdash (A = B):s}{\Gamma \vdash P:B}$$

TCP станет неразрешимым, поскольку сведётся к TIP.

Литература (1)

ITT2007

Herman Geuvers, Introduction to Type Theory Types Summer School, August 2007, Bertinoro, Italy

http://typessummerschool07.cs.unibo.it/courses/geuvers-4.pdf

LCWT гл. 5.2, 5.3, 5.5

Henk Barendregt, Lambda calculi with types, Handbook of logic in computer science (vol. 2), Oxford University Press, 1993

Литература (2)

ATTAPL гл. 2

Benjamin C. Pierce, editor.

Advanced Topics in Types and Programming Languages, MIT, 2005

ITT гл. 6

Herman Geuvers, Introduction to Type Theory Alfa Lernet Summer school 2008, Uruguay

http://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html