1 Operators

$$a|b:\Leftrightarrow \exists c\ b=ac \text{ for } a\neq 0$$

 $a\equiv_m b:\Leftrightarrow m|(a-b)$

2 Propositions

$$A \to B \Leftrightarrow \neg A \vee B$$

$$(A \wedge B) \vee C \Leftrightarrow (A \vee C) \wedge (B \vee C)$$

$$(A \vee B) \wedge (C \vee D) \Leftrightarrow (A \wedge C) \vee (A \wedge D) \vee (B \wedge C) \vee (B \wedge D)$$

$$\forall x \ P(x) \wedge \forall x \ Q(x) \Leftrightarrow \forall x \ (P(x) \wedge Q(x))$$

$$\exists x \ (P(x) \wedge Q(x)) \Rightarrow \exists x \ P(x) \wedge \exists x \ Q(x) \quad \text{but not vice versa}$$

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$

$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

$$\exists y \ \forall x \ P(x,y) \Rightarrow \forall x \ \exists y \ P(x,y) \quad \text{but not vice versa}$$

3 Proofs

To prove a sentence (either true or false) means to show that it's a tautology. The following **proof patterns** may be used.

3.0.1 Direct Proof of an Implication

Example: $F \to G$

A direct proof of an implication works by assuming F and then deriving G from F.

$$F \Rightarrow \dots \Rightarrow \dots \Rightarrow G$$

3.0.2 Indirect Proof of an Implication

Example: $F \rightarrow G$

An indirect proof of an implication proceeds by assuming $\neg G$ and deriving $\neg F$ under this assumption.

$$\neg G \Rightarrow \dots \Rightarrow \dots \Rightarrow \neg F$$

1

3.0.3 Composition of Implications

Example: $F \to G$ and $G \to H$

- 1. Prove the statement F
- 2. Prove the implications $F \Rightarrow G$ and $G \Rightarrow H$

3.0.4 Case Distinction

- 1. Define a complete list of cases
- 2. Prove the statement for each case separately

3.0.5 Proof by Contradiction

Assume that the sentence F is false and derive a false statement from it.

$$\neg F \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \bot$$

3.0.6 Existence Proof

Example: $\exists x \ P(x)$

Either find a variable which satisfies the sentence (**constructive**) or proof the existence of such a variable without exhibiting it (**non-constructive**).

3.0.7 Proof by Counterexample

Example: $\neg \forall x \ P(x)$

Find a variable such that the sentence is wrong.

3.0.8 Proof by Induction

Example: $\forall n \ P(n)$

- 1. Basis step: Prove P(0)
- 2. Assume P(n)
- 3. Induction step: Prove P(n+1)

4 Predicate Logic

4.1 Rules

- 1. $\forall x \ P(x) \land \forall x \ Q(x) \Leftrightarrow \forall x \ (P(x) \land Q(x))$
- 2. $\exists x \ (P(x) \land Q(x)) \Rightarrow \exists x \ P(x) \land \exists x \ Q(x)$
- 3. $\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$
- 4. $\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$
- 5. $\exists y \forall x \ P(x,y) \Rightarrow \forall x \exists y \ P(x,y)$

5 Sets

$$A \subseteq B :\Leftrightarrow \forall x \ (x \in A \to x \in B)$$

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

$$P(A) := \{S \mid S \subseteq A\}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

2

6 Relations

6.1 Reflexive

Formula: $a \rho a$ Formula: $a \rho b \Leftrightarrow b \rho a$

Set: $id \subseteq \rho$ Set: $\rho = \hat{\rho}$

Matrix: Diagonal is all 1 Matrix: Matrix is symmetric

Graph: Every vertex has a loop Graph: Undirected graph, possibly with loops

6.4

6.3

Symmetric

Antisymmetric

Examples: $\leq, \geq, |, \equiv_m \text{ on } \mathbb{Z}$ **Examples:** $\equiv_m \text{ on } \mathbb{Z}$

6.2 Transitive

Formula: $a \rho b \wedge b \rho c \Rightarrow a \rho c$ **Formula:** $a \rho b \wedge b \rho a \Rightarrow a = b$

Set: $\rho^2 \subseteq \rho$ Set: $\rho \cap \hat{\rho} \subseteq id$

Examples: $\leq, \geq, |, <, >, \equiv_m \text{ on } \mathbb{Z}$ **Graph:** No cycle of length 2 **Examples:** $\leq, \geq \text{ on } \mathbb{Z}$ and $| \text{ on } \mathbb{N}$

6.4.1 Relations as Sets

 $a \rho \sigma b$: $\exists b \in B : (a \rho b \land b \sigma c)$ $a (\rho \cup \sigma) b$:Either $a \rho b$ or $a \sigma b$ $a (\rho \cap \sigma) b$: $a \rho b$ and $a \sigma b$

The empty set \emptyset : symmetric and transitive

6.4.2 Equivalence Relation

Example: \equiv_m on \mathbb{Z}

A relation that is reflexive, symmetric, and transitive.

6.5 Partial Order

Example: \leq and \geq on $\mathbb{Z}, \mathbb{Q}, or \mathbb{R}$

A relation that is reflexive, antisymmetric, and transitive.

Special elements in a poset (A, \preceq) with a subset S of $A \subseteq A$:

minimal (maximal) element: $a \in S$ if there exists no $b \in S$ with $b \prec a$ ($b \succ a$)

least (greatest) element: $a \in S \text{ if } a \leq b \text{ (} a \succeq b \text{) for all } b \in S$ lower (upper) bound: $a \in A \text{ if } a \leq b \text{ (} a \succeq b \text{) for all } b \in S$

greatest lower (least upper) bound: $a \in A$ if a is the greatest (least) element of the

set of all lower (upper) bounds of S

6.6 Function

injective: no collisions

surjective: every value in the codomain is taken on for some argument

bijective: one-to-one mapping (injective and surjective)

7 Combinatorics

	with repetition	without repetition
ordered	n^k	$\frac{n!}{(n-k)!}$
	A passcode of length n with k dif-	How many ways can k places be
	ferent digits	awarded to n people
unordered	$\binom{n+k-1}{k}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
	Choose k scoops of ice cream from	
	n different flavours	

7.0.1 Countability

same cardinality $A \sim B$: There exists a bijection $A \to B$ B has at least the cardinality of A $A \preceq B$: $A \sim C$ for some subset $C \subseteq B$ B dominates A $A \prec B$: $A \preceq B \land A \not\sim B$

countable: $A \leq \mathbb{N}$

Hint:

The set $\{0,1\}^* := \{0,1,00,01,...\}$ of finite binary sequences is countable.

The set $\{0,1\}^{\infty}$ is uncountable (Cantor's diagonalization argument)

8 Graph Theory

walk: sequence of vertices such that consecutive vertices are connected

tour: a walk with distinct edges

circuit: a tour that ends where it started Hamiltonian cycle: a circuit that visits all vertices

A tree is an *undirected*, connected graph with no cycles and n-1 edges.

For *connected*, *planar* graphs, the following equations hold:

number of regions
$$r=|E|-|V|+2$$
 sum of the degrees of the regions $=2|E|$ if $|V|\geq 3\Rightarrow |E|\leq 3|V|-6$ if $|V|\geq 3$ and bipartite $\Rightarrow |E|\leq 2|V|-4$

9 Number Theory

9.1 Division

Hint: Every non-zero integer is a divisor of 0. 1 and -1 are divisors of every integer.

9.2 Greatest Common Divisor

For integers a and b (not both 0), an integer d is called a gcd(a, b) if d divides both a and b and if every common divisor of a and b divides d.

$$d|a$$
 and $d|b$ and $c|a \wedge c|b \Rightarrow c|d$
 $gcd(a,b) :\Leftrightarrow \exists u, v \ ua + vb$

9.3 Ideal

$$(a,b) := \{ua + vb | u, v \in \mathbb{Z}\}$$
$$(a) := \{ua | u \in \mathbb{Z}\}$$

For $a, b \in \mathbb{Z}$ there exists $d \in \mathbb{Z}$ such that (a, b) = (d). This is implies that d is the **gcd** of a and b.

9.4 Least Common Multiple

l = lcm(a, b) is the common multiple of a and b which divides every common multiple of a and b.

$$a|l'$$
 and $b|l' \Rightarrow l|l'$

It follows:

$$gcd(a,b) \cdot lcm(a,b) = ab$$

9.5 Modular Arithmetic

$$R_m(a+b) = R_m(R_m(a) + R_m(b))$$

$$R_m(ab) = R_m(R_m(a) \cdot R_m(b))$$

9.6 Multiplicative Inverses

The **congruence equation** has a solution $x \in \mathbb{Z}_m$ if and only if gcd(a, m) = 1. The solution is unique.

$$ax \equiv_m 1$$

The x satisfying the equation is called the **multiplicative inverse of a modulo m** $(x \equiv_m a^{-1})$ or $x \equiv_m \frac{1}{a}$.

9.7 Diffie-Hellmann Key-Agreement Protocol

The Diffie-Hellmann protocol is based on the **discrete logarithm problem**. Basically, while $y = R_p(g^x)$ can be computed efficiently, it can't be solved for x.

$$k_{AB} \equiv_p y_B^{x_A} \equiv_p (g^{x_B})^{x_A} \equiv_p g^{x_A x_B} \equiv_p k_{BA}$$

10 Algebra

10.1 Special Properties

Some special properties of an algebra $\langle S; *, e \rangle$ are

neutral element: $e \in S$ such that e * a = a * e = a

associativity: * is associative if a*(b*c) = (a*b)*c for all $a,b,c \in S$

inverse element: b is the inverse of a if b*a=a*b=e

commutative/abelian: a * b = b * a for all $a, b \in S$

The **neutral** and **inverse element** can have a left and right version. E.g. e * a = a is the left neutral element. However, there is always only one neutral/inverse element.

10.2 Special Algebras

	Notation	Axioms	Examples
Semigroup	$\langle S; * \rangle$	* is associative	
Monoid	$\langle M; *, e \rangle$	* is associative	
		e is the neutral element	
Group	$\langle G; *, , e \rangle$	* is associative	$\langle \mathbb{Z}; +, -, 0 \rangle$,
			$ \langle \mathbb{Q} - \{0\}; \cdot, ^{-1}, 1 \rangle,$
			$\langle \mathbb{R}; +, -, 0 \rangle$
		e is the neutral element	
		every $a \in G$ has an inverse element	
Ring	$\langle R; +, -, 0, \cdot, 1 \rangle$	$\langle R; +, -, 0 \rangle$ is a commutative group	$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (commuta-
			tive)
		$\langle R; \cdot, 1 \rangle$ is a monoid	
		a(b+c) = ab + ac and $(b+c)a =$	
		$ba + ca$ for all $a, b, c \in R$	
Integral		cummutative	$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
Domain			
		no zerodividers	
		$ab = 0 \Rightarrow a = 0 \lor b = 0$	
Field	$\langle F - \{0\}; \cdot, ^{-1}, 1 \rangle,$	commutative	$\mathbb{Q}, \mathbb{R}, \mathbb{C}$
	GF(p)		
		every nonzero element is a unit (has	
		an inverse)	

10.3 Groups

10.3.1 Direct Product

The direct product of n groups $\langle G_1; *_1 \rangle, ..., \langle G_n; *_n \rangle$ is the group

$$\langle G_1 \times ... \times G_n, \star \rangle$$

where the operation \star is component-wise:

$$(a_1,...,a_n) \star (b_1,...,b_n) = (a_1 *_1 b_1,...,a_n *_n b_n)$$

10.3.2 Homomorphism

A function ψ from a group $\langle G; *, \hat{,} e \rangle$ to a group $\langle H; \star, \hat{,} e' \rangle$ is a group homomorphism if, for all a and b

$$\psi(a * b) = \psi(a) \star \psi(b)$$

Furthermore, ψ is an **isomorphism** if it's a bijection.

A group homomorphism satisfies:

$$\psi(e) = e'$$

$$\psi(\hat{a}) = \widehat{\psi(a)}$$

10.4 Subgroup

A subset $H \subseteq G$ of a group $\langle G; *, \hat{,} e \rangle$ is called a subgroup if $\langle H; *, \hat{,} e \rangle$ is *closed* with respect to all operations.

$$a * b \in H$$
 for all $a, b \in H$
 $e \in H$
 $\hat{a} \in H$ for all $a \in H$

The smallest subgroup of a group G containing the element $g \in G$ is the **group generated** by g:

$$\langle g \rangle := \{ g^n | n \in \mathbb{Z} \}$$

where the resulting group is called **cyclic**.

Hint: The order of a subgroup of a finite group divides its enclosing group's order |H| divides |G|.

10.4.1 Cyclic Group

A **cyclic group** of order n is isomorphic with $\langle \mathbb{Z}_n; \oplus \rangle$.

Hint: Every group of prime order is cyclic, and in such a group every element except the neutral element is a generator.

Hint: \mathbb{Z}_p^* is cyclic if and only if $m=2,\ m=4,\ m=p^e$ or $m=2p^e$, where p is a prime and $e\geq 1$

10.4.2 Order

of a finite group: |G| is the order of G

of an element of G: The order of $a \in G$ is the least $m \ge 1$ such that $a^m = e$ if such an m exists, and $ord(a) = \infty$ otherwise.

Hint: ord(e) = 1. If ord(a) = 2, then $a^{-1} = a$.

10.5 Group \mathbb{Z}_m^* and Euler's Function

 $\langle \mathbb{Z}_m^*; \odot, ^{-1}, 1 \rangle$ is a group with the set

$$\mathbb{Z}_m^* := \{ a \in \mathbb{Z}_m \mid gcd(a, m) = 1 \}$$

The **Euler function** is defined as follows:

$$\varphi(m) = |\mathbb{Z}_m^*|$$

 $\mathit{Hint:} \ \mathrm{If} \ p \ \mathrm{is} \ \mathrm{a} \ \mathrm{prime}, \ \mathrm{then} \ \mathbb{Z}_p^* = \{1,...,p-1\} = \mathbb{Z}_p - \{0\}$

10.6 Error-Correcting Codes

A (k,n)-error-correcting code C over the alphabet A with |A| = q is a subset of cardinality q^k of A^n .

Hint: Usually, $A = \{0, 1\}$ with q = 2 is being considered

The **Hamming distance** between two codewords is the number of positions at which the two codewords differ.

The **minimum distance** of an error-correcting code C is the minimal Hamming distance between any two codewords.

A code C with minimum distance d can correct t errors if and only if $d \ge 2t + 1$.

11 Logic

11.1 Proof System

A **proof system** is a quadruple $\Pi = (\mathcal{S}, \mathcal{P}, \tau, \phi)$ with the following components:

set of statements S: every $s \in S$ is either true or false set of proofs P: e.g. strings over some alphabet

truth function τ : defines the meaning (semantics) of objects in S

verification function ϕ : $\phi(s,p) = 1$ means that p is a valid proof for the statement s

The proof system $\Pi = (\mathcal{S}, \mathcal{P}, \tau, \phi)$ is

sound if no false statement has a proof

 $\phi(s,p) = 1 \Rightarrow \tau(s) = 1$

complete if every true statement has a proof

 $\tau(s) = 1 \Rightarrow \exists p \in (P) \ \phi(s, p) = 1$

11.2 Syntax and Semantics

	Description	Notation
Syntax	alphabet of allowed symbols and	
	which strings are valid	
Interpretation	an assignment to all variable sym-	$\mathcal{A}(A) = \{0, 1\}$
	bols	
Semantics	a function σ assigning to each fo-	$\sigma(F, \mathcal{A}) = \{0, 1\},\$
	rumla F and each suitable interpre-	A(F)
	tation \mathcal{A} a truth value	
Model	an interpretation \mathcal{A} for which F is	$A \models F$
	true	

11.2.1 Structure

A **structure** is a tuple $\mathcal{A} = (U, \phi, \psi, \xi)$ with the following components:

universe U: nonempty set

function ϕ : assigns to each function symbol a function $U^k \mapsto U$

function ψ : assigns to each predicate symbol a function $U^k \mapsto \{0,1\}$

function ξ : assigns to each variable symbol a value in U

11.3 Calculi

A **derivation rule** is a rule for deriving a formula from a set of formulas. G can be derived from the set $\{F_1, ..., F_k\}$ by rule R:

$$\{F_1,...,F_k\} \vdash_R G$$

A calculus K is a finite set of derivation rules $K = \{R_1, ..., R_m\}$. It is

sound/correct if and only if every derivation rule is correct

complete if M is a logical consequence of F, then F can be derived from M using

K

11.4 Normal Forms

11.4.1 Conjunctive Normal Form (CNF)

$$F = (L_{11} \vee ... \vee L_{1m_1}) \wedge ... \wedge (L_{n1} \vee ... \vee L_{nm_n})$$

11.4.2 Disjunctive Normal Form (DNF)

$$F = (L_{11} \wedge \ldots \wedge L_{1m_1}) \vee \ldots \vee (L_{n1} \wedge \ldots \wedge L_{nm_n})$$

Hint: Every formula is equivalent to a formula in CNF and DNF.

11.5 Resolution Calculus

Given a Formula F in CNF, one can transform it into a set of clauses:

$$\mathcal{K}(F) = \{\{L_{11}, ..., L_{1m_1}\}, ..., \{L_{n1}, ..., L_{nm_1}\}\}$$

A clause K is then a **resolvent** of clauses K_1 and K_2 if there is a literal L such that $L \in K_1$ and $\neg L \in K_2$

$$K = (K_1 - \{L\}) \cup (K_2 - \{\neg L\})$$

This derivation is denoted as follows:

$$\{K_1, K_2\} \vdash_{res} K$$

Hint: A set M of formulas is unsatisfiable if and only if $\mathcal{K}(M) \vdash_{res} \emptyset$