Lecture 4:

Random variables & their distributions

Random variables

Random variables

Definition 3.1.1 (Random variable). Given an experiment with sample space S, a **random variable** (r.v.) is a function from the sample space S to the real numbers \mathbb{R} . It is common to denote random variables by capital letters, like X.

Random variables

Example 3.1.2 (Coin tosses). We toss a fair coin twice. The sample space is $S = \{HH, HT, TH, TT\}$. Here are some r.v.-s on this space:

- X = # of Heads: X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0
- Y = # of Tails: Y = 2 X
- . $I = \begin{cases} 1, & \text{if 1st toss} = \text{Heads} \\ 0, & \text{otherwise} \end{cases}$ indicator random variable

Distributions and probability mass functions (PMFs)

There are two main types of r.v.-s: **discrete** and **continuous**. In this lecture, we'll focus on discrete r.v.-s

Definition 3.2.1 (Discrete random variable). A random variable X is said to be **discrete** if there is a finite list of values a_1, a_2, \ldots, a_n or an infinite list a_1, a_2, \ldots such that $P(X = a_j \text{ for some } j) = 1$. If X is a discrete r.v., then this finite or countably infinite set of values it takes and such that P(X = x) > 0 is called the **support** of X.

Continuous r.v.-s can take any real value in an interval, we'll discuss these in more detail in the next lecture.

The **distribution** of an r.v. specifies the probabilities of all events associated with the r.v. For a discrete r.v., the most natural way to do this is:

Definition 3.2.2 (Probability mass function). The **probability mass** function (PMF) of a discrete r.v. X is the function p_X given by $p_X(x) = P(X = x)$. It's > 0 if $x \in \text{(support of } X\text{)}$, and 0 otherwise.

In writing P(X = x), X = x denotes an **event**. (Sometimes also written as $\{X = x\}$ – formally, $\{s \in S : X(s) = x\}$

Example 3.2.4 (Two coin tosses again). X = # of Heads,

$$Y=\#$$
 of Tails, $I=\begin{cases} 1, & \text{if 1st toss} = \text{Heads} \\ 0, & \text{otherwise} \end{cases}$ – indicator variable

$$p_X(0) = P(X = 0) = 1/4$$
, $p_X(1) = 1/2$, $p_X(2) = 1/4$
 $Y = 2 - X$, so same PMF. $p_I(0) = 1/2$, $p_I(1) = 1/2$

Example 3.2.5 (Sum of die rolls). Roll two fair 6-sided dice. Let T = X + Y, where X, Y are individual rolls. The sample space is $S = \{(1,1), (1,2), ..., (6,5), (6,6)\}.$

$$p_T(2) = p_T(12) = \frac{1}{36}, \ p_T(3) = p_T(11) = \frac{2}{36}, \ \dots, p_T(7) = \frac{6}{36}$$

Theorem 3.2.7 (Valid PMFs). Let X be a discrete r.v. with support x_1, x_2, \ldots The PMF p_X of X must satisfy:

• Nonnegative: $p_X(x) > 0$ if $x = x_j$ for some j, $p_X(x) = 0$ otherwise

• Sums to 1:
$$\sum_{j=1}^{\infty} p_X(x_j) = 1$$

SO

Proof: First is true since probability is nonnegative. Second is true since X must take some value, and the events $\{X=x_j\}$ are disjoint,

$$\sum_{j=1}^{\infty} P(X = x_j) = P\left(\bigcup_{j=1}^{\infty} \{X = x_j\}\right) = P(X = x_1 \text{ or } X = x_2 \dots) = 1$$

Definition 3.3.1 (Bernoulli distribution). An r.v. X is said to have **Bernoulli distribution** with parameter p if P(X=1)=p and P(X=0)=1-p, where $0 . We write <math>X \sim \text{Bern}(p)$ (X is Bernoulli-distributed). It's a **family** of distributions indexed by p.

Definition 3.3.2 (Indicator random variable). **Indicator r.v.** of an event A = r.v. that equals 1 if A occurs and 0 otherwise. We'll denote it I_A or I(A). Note that $I_A \sim \text{Bern}(p)$ with p = P(A).

Story 3.3.3 (Bernoulli trial). An experiment that can result in a "success" or "failure" (but not both!) is called a **Bernoulli trial**. A Bernoulli r.v. thus = indicator r.v. of success in Bernoulli trial.

Story 3.3.4 (Binomial distribution). Suppose n independent Bernoulli trials are run, each with P(success) = p. Let X = the number of successes. $X \sim \text{Bin}(n,p)$ – the **Binomial distribution** with parameters $n = 0,1,2,\ldots$ and 0 .

Note that Bern(p) is the same as Bin(1,p).

Theorem 3.3.5 (Binomial PMF). If $X \sim \text{Bin}(n, p)$, then the PMF of X

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, ..., n$.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} - \text{for } p \neq 1/2 \text{ it's skewed:}$$

Theorem 3.3.7 Let $X \sim \text{Bin}(n, p)$ and q = 1 - p (we often use q = 1 failure probability in Bernoulli trial). Then $n - X \sim \text{Bin}(n, q)$.

Proof: Based on the property that
$$\binom{n}{n-k} = \binom{n}{k}$$

Corollary 3.3.8 Let $X \sim \text{Bin}(n,p)$ with p=1/2 and n – even. Then the distribution of X is symmetric about n/2 – that is,

$$P(X = n/2 + j) = P(X = n/2 - j)$$

Hypergeometric

Hypergeometric

Story 3.4.1 Urn with w white & b black balls, drawing n balls with replacement yields Bin(n, w/(w+b)) for X – number of white balls in n trials. If we instead sample without replacement, then X – # of white balls in n trials – follows a **Hypergeometric distribution**: $X \sim HGeom(w, b, n)$. In Bernoulli, trials are independent, in Hypergeometric trials are **dependent** (because without replacement)

Theorem 3.4.2 (Hypergeometric PMF). If $X \sim \mathsf{HGeom}(w, b, n)$, then

$$P(X = k) = \frac{\binom{w}{k} \binom{b}{n-k}}{\binom{w+b}{n}}$$
 (think of a proof!)

Hypergeometric

Example 3.4.4 (Aces in a poker hand). In a 5-card hand from a well-shuffled deck, the # of aces \sim HGeom(4,48,5). Then,

$$P(3 \text{ aces}) = \frac{\binom{4}{3} \binom{48}{2}}{\binom{52}{5}} \approx 0.0017$$

Theorem 3.4.5 HGeom(w, b, n) and HGeom(n, w + b - n, w) are identical.

Idea: $X \sim \mathsf{HGeom}(w, b, n) - X = \#$ of white in a sample of size n.

 $Y \sim \mathsf{HGeom}(n, w + b - n, w) - Y = \#$ of sampled balls among the white balls. (white/black -> sampled/not sampled).

(Proof follows from properties of binomial coefficients).

Discrete Uniform

Discrete Uniform

Story 3.5.1 (Discrete Uniform distribution). Let C be a finite, nonempty set of numbers. Choose one of these uniformly at random (i.e., all values are equally likely). Call the chosen number X. Then X is said to have the **Discrete Uniform distribution** with parameter C, we denote this $X \sim \mathsf{DUnif}(C)$.

The PMF is
$$P(X = x) = \frac{1}{|C|}$$
 for $x \in C$ (and 0 otherwise).

For any
$$A \subset C$$
, $P(X \in A) = \frac{|A|}{|C|}$