Molecular evolution of the process of chromosome segregation: Lessons from fungal pathogens

Kaustuv Sanyal JNCASR, Bangalore

Indian Academy of Sciences 83rd Annual Meeting NEHU, Shillong 03 – 05 November 2017

The process of chromosome segregation

The centromere-kinetochore complex

CENTROMERE

Cis-acting DNA locus

Site of protein recruitment, microtubule attachment and sister chromatid cohesion

thus it controls faithful chromosome segregation during mitosis and meiosis

KINETOCHORE

Proteinaceous structure made up of *trans*-acting factors that interface between the centromere and the spindle microtubules.

The centromere-kinetochore complex

The tree of life

The tree of life

The process of chromosome segregation

No metaphase plate

Mitotic spindle

Chromosomes

Evolution of centromeres in fungi

Candidiasis

Cryptococcus neoformans

Candida albicans

> 600 MYA

Saccharomyces cerevisiae

human-fruit fly (~990 MYA)

> 800 MYA

human-zebrafish (~450 MYA)

A centromeric plasmid is stably propagated in yeast

CEN

Saccharomyces

Origin

Mitotically unstable plasmid

Conundrum of centromere biology

DNA sequence cues are insufficient for CEN identity

Candida albicans centromeres

No common sequence motifs or repeats

Candida albicans

3-5 kb long centromeric chromatin No common sequence motifs

How do kinetochores form on different DNA sequences?

Saccharomyces cerevisiae

Kobayashi et al., 2015, Current Biology

Centromere identity crisis

Each CEN in Candida albicans is unique and different

Genomic context but not the DNA sequence confers CEN function

How does CENP-A know where to go?

Non-DNA sequence determinants?

DNA sequence cues are insufficient for CEN identity

Neocentromeres

Inactivation of CEN in a dicentric chromosome

DNA sequence cues are insufficient for CEN identity

Fate of a chromosome when the native CEN is deleted

No centromere > unstable chromosome > chromosome loss (2n-1)

Neocentromere > stable chromosome > no chromosome loss (2n)

Dynamics of neocentromere formation in *C. albicans*

- 1. Delete CENP-A rich region :4.5 kb
- 2. Delete ORF-free region :6.5 kb
- 3. Delete a long region : 30 kb

Replace by 1.4 kb URA3

ChIP-sequencing confirms neocentromere locations are within 15 kb from the CEN

Epigenetic determinant

Chromosome conformation and CENP-A cloud

Thakur & Sanyal (2013) Genome Research

Neocentromeres in various organisms

Evolution of centromeres in fungi

Cryptococcosis

Candidiasis

Cryptococcus neoformans

Candida albicans

DNA sequence independent

3000 bp

> 600 MYA

> 800 MYA

Saccharomyces cerevisiae

DNA sequence

125 bp

human-fruit fly (~990 MYA)

human-zebrafish (~450 MYA)

Centromeres in closely related *Cryptococcus* species?

*Sheng/Yadav et al., (2017) PLOS Biology

Cryptococcus

In collaboration with Joe Heitman, Sheng Sun & Blake Billmyre (Duke University)

Centromeres are retrotransposon-rich in the Cryptococcus species complex

Identified by CENP-A/CENP-C ChIPseq

Argonaute Dicer RNA-dep RNA Pol

RNA interference

RNAi

Silences genes

R265 centromeres harbour only truncated retrotransposons

R265 (RNAi -) centromeres are smaller in size

RNA interference and centromeric heterchromatin maintenance

Transcription and amplification

RNAi and heterochromatin repress centromeric meiotic recombination

Chad Ellermeier^{a,1}, Emily C. Higuchi^a, Naina Phadnis^a, Laerke Holm^{a,b}, Jennifer L. Geelhood^a, Genevieve Thon^b, and Gerald R. Smith^{a,2}

Janbon et al., 2010, Fungal Genet Biol.; Ellermeier et al., 2010, PNAS; Mirouze et al., 2012, PNAS; Devos et al., 2002, Genome Res; http://www.hammiverse.com/lectures/19/2.html.

RNAi-mediated centromere evolution - a proposed model

Retrotransposons at the CEN

Loss of RNAi

Increased transcription

Lack of RNAi

CEN region expansion

Increased recombination

Lack of DNAme

Transposon attrition followed by genome stablization

Experimental evolution - Centromere length variation

Plan: RNAi proficient strain > inactivate RNAi > grow 1000 generations

analysis

PacBio sequencing followed by de novo assembly of the genome

RNAi preserves the integrity of long centromeres

Vikas Yadav et al., PNAS (under revision)

The Molecular Mycology Laboratory

From Left to right: Krishnendu, Sundar, Kaustuv, Neha, Lakshmi, Radha, Priya, Vikas, Shreyas, Rima, Jigyasa, Bhavana and Laxmi Shanker

CSIR, DBT, SERB,
CEFIPRA (Indo-French), IJSPS (Indo-Japan)
JNCASR (intramural)
TATA innovation Fellowship

Rahul Siddharthan DD Dubey German Larriba Joseph Heitman