Recitation 13: Random forests and artificial neural networks

Seung-hun Lee

Columbia University
Introduction to Econometrics II Recitation

May 2nd, 2022

Random forest

Classical random forests: Classification and regression trees

- We have an IID data (y_i, x_i) for $i \in \{1, ..., n\}$
- Decision trees represent classification and regression problems using nonlinear basis functions (indicators of categories or cutoff)
 - ▶ Branch: Path from one node to other
 - ► Split: Process of dividing a sample based on a criterion specified at a node; creates two branches per non-terminal nodes
 - ▶ Depth: Number of stages with splits
 - ► Leaves: Output; or nodes on the last stage
 - Pruning: Reducing the size of the tree (steps or fewer splits)
- The goal is to find an algorithm that best predicts out-sample properties

CART uses recursive greedy algorithm

- Recursive in that there are repeated nodes with partitioning of two-way splits
 - Select a variable x_k and threshold/class that allows each split outcome to be as different as possible (between variance and information gain)
 - ightharpoonup Between variance: Variation between each group mean to overall mean, R^2 of

$$y = \beta \mathbb{I}(x_k > t) + u$$

▶ Information gain: For a potential split $S = S_1 \cup S_2$

$$IG = L(S) - \left[\frac{|S_1|}{|S|} L(S_1) + \frac{|S_2|}{|S|} L(S_2) \right], \ \ L(C) = -\sum_{i=1}^J f_i \log f_i$$

i.e. splits S_1 and S_2 that has lower combined entropies (leading to high IG)

- Greedy in that at each non-terminal node, the best test selected is only locally optimal
 - No look-forward
 - ▶ Due to NP-hardness of the optimal tree problem, this is cheaper

Finding the best CART is not easy

- Selection of hyperparameters (parameters whose value is used to control the learning process such as split criterion, stopping criteria)
 - Can lead to overfitting and bad out-sample predictions if improperly selected
- Pruning: Making the trees more compact by eliminating some splits
 - Cross-validation is used
- Greedy algorithm: Decision tree may not be stable and the most optimal possible, especially when the top node is incorrectly selected

Bootstrap AGGregatING, or Bagging

- Like ensemble method, it averages from multiple decision trees to enhance stability and accuracy of prediction, classification, and regression
- By averaging, bagging protects from overfitting the data and prevents instability
- The procedure is very similar to that of bootstrapping. They are as follows
 - 1. Bootstrap: Let's have a sufficiently large *B* resamples with replacement. In each resampling step, we fit a tree.
 - 2. Aggregation: We average the predictions of the B trees to predict y given x.
- Predictive capability: Are the predictions less dispersed? Then this is good prediction

Random Forest

- Averaging multiple deep decision trees, trained on different parts of the same training data set
- Unlike bagging, random forests choose splits from a smaller number of randomly selected covariates at each step of the tree construction (feature bagging)
 - ▶ With k available features, \sqrt{k} is used in classification and $\max\{k/3,5\}$ in regression
- Less correlation among trees compared to earlier methods (variety of top splits)
- Less overfitting and more stability
 - Variable with huge decline in split-criterion (out-of-bag-error from permutation over B trees) can be considered important
- Key problem is loss of interpretability (black-box procedure in selection of covariates)

Causal forest (Wagner, Athey 2018)

- Random forest to estimate treatment effect (under CIA)
- We first estimate the propensity score \hat{p}_i and transform y_i into

$$\hat{y}_i = \frac{D_i - \hat{p}_i}{\hat{p}_i(1 - \hat{p}_i)} y_i$$

which is an IPW formula

• By taking the expected value of \hat{y}_i we get

$$\widehat{TE}(x) = E[\hat{y}_i|x]$$

- We then do 'honest' inference (defined in the paper) by estimating on a subsample that is different from the training and test subsamples (double-sample trees)
- We can also do normal inference

Local linear forest (Friedberg, Tibshirani, Athey, Wagner 2020)

- Random forests are used to generate weights that can serve as a kernel for a local linear regression and estimates for the conditional mean function
- Think of random forests as adaptive weight generators

$$\hat{m}(x_0) = \frac{1}{B} \sum_{i=1}^{n} \sum_{b=1}^{B} y_i \frac{\mathbb{I}[X_i \in L_b(x_0)]}{|L_b(x_0)|} = \sum_{i=1}^{n} y_i \underbrace{\frac{1}{B} \sum_{b=1}^{B} \frac{\mathbb{I}[X_i \in L_b(x_0)]}{|L_b(x_0)|}}_{\alpha_i(x_0)}$$

- $L_b(x_0)$ represents the leaf at b'th tree, $|\cdot|$ indicates the size of the leaves.
- $\alpha_i(x_0)$ is the fraction of trees in which an observation appears in the same leaf as the target value of the covariate vector

Local linear forest (Friedberg, Tibshirani, Athey, Wagner 2020)

 Local linear forests solve the weighted least problem below with penalty term using the weights defined above

$$\begin{pmatrix} \hat{m}(x_0) \\ \hat{\theta}(x_0) \end{pmatrix} = \arg\min_{m,\theta} \left[\sum_{i=1}^n \alpha_i(x_0) (y_i - m(x_0) - (x - x_0)\theta(x_0))^2 + \lambda ||\theta(x_0)||^2 \right]$$

- Performs better when smooth, strong signals are present (random forests don't do so well in this case)
- Also overcomes curse of dimensionality

Gradient-boosted trees

- Improve the performance of weak learners by boosting the weight of observations they misspecify
- Start with a loss function min $\sum_{i=1}^{n} L(y_i, \hat{y}_i)$, say, $(y_i \hat{y}_i)^2$
- v(x, S): Average value of y in the leaf that contains x in a shallow tree with splits S
- Then we proceed in these steps
 - **1.** Begin with an initial prediction: $\hat{y}_i^{(0)} = E[y_i]$
 - 2. For each iteration $b \in \{1, ..., B\}$, we choose split S_b in the tree of depth d to minimize

$$\sum_{i=1}^{n} L(y_i, \hat{y}_i^{(b-1)} + v(x_i, S))$$

and update our prediction $\hat{y}_i^{(b)} = \hat{y}_i^{(b-1)} + \epsilon v(x_i, S_b)$. Note that ϵ is the learning rate and is not $\epsilon = 1$, which would mean updating the prediction by the exact value and risk overshooting

Other ways to do gradient-boosted trees

 We can also tune the model by including a complexity penalty in the loss function. So we minimize

$$\sum_{i=1}^{n} L(y_i, \hat{y}_i^{(b-1)} + v(x_i, S)) + C(S)$$

 XGBoost: Extreme gradient-boosting, increases the speed of the procedure using quadratic loss and complexity penalty functions

$$\sum_{i=1}^{n} (G_{i}v(x_{i},S) + \frac{1}{2}H_{i}v(x_{i},S)^{2}) + \gamma K + \frac{\lambda}{2}\sum_{k=1}^{K} v_{k}^{2}$$

where G_i and H_i are each the first and second derivatives of the $L(y_i, \hat{y}_i)$ w.r.t \hat{y}_i at $(y_i, \hat{y}_i^{(b-1)})$, K is the number of leaves, and v_k is the predictor on leaf k

• Tuning and some hyperparameters still need to be determined

Artificial neural networks

Architecture of artificial neural networks

Architecture of artificial neural networks

- Input layers have covariates x_m
- Lines between layers have weights w
- Each direction represents signal $\sigma(\cdot)$, known as activation function
 - ► A sigmoid (logit)
 - Multinomial logit (softmax)
 - ▶ Rectified linear unit (ReLU, $\sigma(t) = \max\{0, t\}$)

Single layer perceptions: Setup and forward pass

- *M* neurons in input, *L* nodes in hidden layer
- Input neurons are denoted $x_1, ..., x_M$ have weights $w_{1lm}, m \in \{1, ..., M\}, l \in \{1, ..., L\}$, and emit $\sigma(\sum_m w_{1lm}x_m)$ to a hidden layer l
- Hidden layer has weight for each node, w_{2l} , used to combine inputs from previous nodes to generate a prediction for the output node $\hat{y} = g\left(\sum_{l} w_{2l}\sigma(\sum_{m} w_{1lm}x_{m})\right)$
- Epoch: One forward pass + backward pass
- Forward pass: Given loss function $L(y, \hat{y}(\theta))$ and an initial value $\theta = (w_1, w_2)$, compute

$$z_{il} = \sigma(w'_{1l}x_i)$$

and then the output can be produed as

$$\hat{y}_i(\theta) = w_2' z_i = \sum_l w_{2l} \sigma \left(\sum_m w_{1lm} x_{im} \right)$$

Single layer perceptions: Backward pass

• Compute the components of the loss functions, then take gradients with respect to elements in θ , and do approximate Newton iteration (e.g. Minibatch gradient descent)

$$\theta^{(s+1)} = \theta^{(s)} - \epsilon_s \frac{\partial L}{\partial \theta}(\theta^{(s)})$$

- ϵ_s is the learning rate which ideally should goes to 0
- Backpropagation: An automated differentiation and application of chain rule to identify gradients used to update the values of the weights

Deep learning: Multiple hidden layers

- Many (hyper)parameters, activation functions to choose
- We have p covariates, K outputs, D hidden layers, and M nodes per layer (p, K given)
- In total, we have $pM + (D-1)M^2 + kM$ parameters (or weights) to work with
- Optimal D and M? It is known that deep artificial neural networks are preferable to wider ones
 - ► Small *D* does not fit well, large *D* induces less overfitting problem especially if there are many small weights (also, we gain on expressiveness)
 - ▶ Incorporating penalty term $\lambda ||\theta||_q^q$ helps too
- Dropout: Randomly eliminates some links and thins the neural networks, which is then retrained and tested/compared with all the eliminated units brought back in
 - Realistic alternative to cross-validation

Double machine learning debiasing techniques

ATE under CIA

$$y_i = \mu(X_i, D_i) + \epsilon_i(D_i), \ D_i = \mathbb{I}(u_i < p(X_i)), \ (\epsilon(0), \epsilon(1)) \perp \perp u | X_i = 0$$

- Use ML to estimate the $p(X_i)$ and $\mu(X_i, D_i)$ and obtain IPW ATE
- Debiasing? $p(X_i)$ and μ are nuisance parameters whose errors affect TE estimates
- Decouple the TE from the $p(X_i)$ and μ using Neyman orthogonalization (block-diagonalize the (Fisher) information matrix) ML method involved
 - Split data to K folds, and leave one out
 - ▶ Estimate $\hat{p}_k = \Pr(D = 1|X)$ using LASSO or other ML methods
 - ▶ Take the Neyman-orthogonalized combination of the estimates of $p(X_i)$ and μ
 - ► If functions are smooth, estimates have standard asymptotics and we can do standard tests afterwards