Facultad de Ciencias Puras - UMSA

MESA DE EXAMEN. ESTADISTICA - I (c). Lic. Chirino 2020-08-10

Datos person	ales			Númer	o de mat	rícula	
Apellidos:							
		0			\neg		 │
Nombre:		4					∪ ∪ ₁ □ ₁
Firmo		1			$\dashv \vdash$		' L
Firma:		2					
		3					3
	Controlado	4					4
		5					5
Este campo no se debe modifi	car.	6					<u> </u>
Tipo Identificación del exa	men(EST-133)	7					7
125 20081000		8					8
		9					9
Marque de una forma clara. Ejem	plo: 🔀 No marcado: [О [
Este examen será corregido por u			que no se	ha de	arrugar, o	doblar ni e	ensuciar
la hoja. Para marquear, por favor Solo las marcas legibles y bien			S.				
Respuestas 1 - 15	Respuestas	16 - 25					
	a b c	d (e ¬				
	16		」 ¬				
	17		_ _				
3	18						
	19						
5	20						
	21 🔲 🦳		7				
$\overline{}$	22		_ 				
	23 🗍 🗍 🗍		_ -				
	24 🗍 🥅 🦳		 				
10	25		 				
	a b c	d (⊒ e				
11 🔲 🔲 🔲 🔲							
12 🔲 🔲 🔲							
13 🔲 🔲 🔲 🔲							
14 🔲 🔲 🔲 🔲							
15							

- (4 puntos) Que tipo de estudio estadístico se basa en la recolecion de información de toda la población de estudio
 - a) Grupo focal
 - b) Censo
 - c) Sondeo de opinión
 - d) Estudio de observación
 - e) Encuesta por muestreo
- 2. (4 puntos) Para los números 9, 7, 13, 9, 10, 11, 14, 10. Marque en caso de que la afirmación sea verdadera
 - a) La mediana es 10
 - b) La media es 10.375
 - c) La media es 83
 - d) La moda es 7
 - e) La media cuadratica es 10.589
- 3. (4 puntos) En una empresa donde los salarios tienen un promedio de 4500 Bs. al mes y una desviación estandar σ = 500, el sindicato solicita que cada salario x_i se transforme en y_i , mediante la siguiente relación:

$$y_i = 1.5 * x_i + 300$$

El director acepta parcialmente la peticion rebajando en un 20 % la propuesta del sindicato. A partir del nuevo salario, la media y desviacion estandar es:

a)
$$\bar{y} = 4500$$
, $\sigma_{v} = 500$

b)
$$\bar{y} = 5640$$
, $\sigma_v = 500$

c)
$$\bar{y} = 7050$$
, $\sigma_v = 750$

d)
$$\bar{y} = 4500$$
, $\sigma_v = 500$

e)
$$\bar{y} = 5640$$
, $\sigma_V = 600$

4. (4 puntos) De la siguiente serie de números:

A 9 8 8 11 4 13

Determine para la asimetria (Fisher) y kurtosis:

- a) Es simetrica positiva
- b) Es simetrica negativa
- c) Es platicurtica
- d) Es leptocurtica
- e) Es simetrica

5. (4 puntos) Para la siguiente tabla de frecuencia determine el quantil 70 (Q_{70}):

LI – LS	f _i	F_i	
150 – 160	10	10	
160 - 170	30	40	
170 — 180	20	60	
Total	60		

- a) $Q_{70} = 167$
- b) $Q_{70} = 171$
- c) $Q_{70} = 70$
- d) $Q_{70} = 10$
- e) $Q_{70} = 30$
- (4 puntos) Un número es seleccionado al azar entre los numeros 2 al 20. Sean los eventos:
 - A: El número es par
 - B: El número es primo
 - C: El número elegido es múltiplo de 5

Marque en caso de que sean verdaderas las siguientes afirmaciones:

- a) $A \cap B = 2$
- b) $(A \cup B) \cap C^c = 5, 10$
- c) $A^c \cap B^c = \emptyset$
- d) $A^c \cap B = 3, 5, 7, 11, 13, 17, 19$
- e) $A \cup B = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20$
- (4 puntos) Se lanzan un par de dados correctos simultaneamente. Determinar si las siguientes probabilidades son correctas (Marcar en caso de ser correctas):
 - a) P(suma sea 7)=6/36
 - b) P(suma sea 12)=1/36
 - c) P(suma sea 2)=1/36
 - d) P(suma sea 9)=1/8
 - e) P(suma sea 4)=1/12
- 8. (4 puntos) La probabilidad de 3 jugadores de que conviertan un penal son respectivamente 2/3, 4/5 y 8/10. Si cada uno cobra una unica vez, ¿Cuál es la probabilidad que solo uno de ellos convierta?
 - a) Ninguna
 - b) 1/50
 - c) 2/15
 - d) 28/75
 - *e*) 1/6

- 9. (4 puntos) Al responder una pregunta de alternativas múltiples, un estudiante o bien conoce la respuesta o la adivina. La probabilidad de que el estudiante sepa la respuesta correcta es 0,7 y 0,3 de que termine adivinando. Supongamos que el estudiante que responde adivinando la pregunta tiene una probabilidad de 1/5 de responder la pregunta de forma correcta. ¿Cuál es la probabilidad de que el estudiante conozca la respuesta de la pregunta, dado que el responde correctamente?
 - a) 0,921
 - b) 0,567
 - c) 0,458
 - d) 0,855
 - e) 0,879
- 10. (4 puntos) Supongamos que la poblacion de La Paz esta formada por 50 % de hombres y 50 % de mujeres. Supongamos tambien que el 50 % de los hombres y 30 % de las mujeres fuman. ¿Cuál es la probabilidad de que las personas en La Paz fumen?:
 - a) 0,50
 - b) 0,40
 - c) 0,10
 - d) 0,42
 - e) 0,80
- 11. *(4 puntos)* La función de probabilidad de una variable aleatoria continua *X* es dado por

$$f(x) = Cx^3(1-x)$$

 $0 \le x \le 1$ Encontrar el valor de C:

- a) C = 20
- b) C = 0
- c) C = e
- d) C = 15
- e) $C = e^3$

- 12. (4 puntos) Se lanza una moneda 3 veces. Si se obtiene al menos dos caras se permitira lanzar un dado y se recibirá en bolivianos el doble de lo que salga en el dado. ¿Qué cantidad de dinera se espera ganar en este juego?
 - a) 1.75
 - b) 0
 - c) 3.5
 - d) 4.5
 - e) 5.25
- (4 puntos) Sea X una v.a. con función de distribución acumulada:

$$F(x) = \frac{x}{x+1} \quad ; x \ge 0$$

La función de densidad es:

- a) $\frac{1}{(x+1)} + \frac{1}{(x+1)^2}$
- b) $\frac{1}{(x-1)^2}$
- c) $\frac{x}{(x-1)^2}$
- d) $\frac{x}{(x+1)^2}$
- e) $\frac{1}{(x+1)^2}$
- 14. *(4 puntos)* Sea *X* una v.a. con función generatriz de momentos:

$$M_x(t) = \frac{1}{4} \left(3e^t + e^{-t} \right)$$

la varianza de X esta definida como:

- a) 1/4
- b) 2/4
- c) 3/4
- d) 1/2
- e) 6/7
- 15. (4 puntos) El profesor de cálculo sabe que las notas del primer parcial es una variable aleatoria con media 75 y desviación estandar 4. La probabilidad de que el puntaje de un estudiante tenga puntaje entre 65 y 85 es:
 - a) 3/4
 - b) 1/4
 - c) 4/25
 - d) 19/20
 - e) 21/25

3

- (4 puntos) En 300 matrimonios con 3 hijos cada uno (Sexo de los hijos/as independientes entre nacimientos). Identifique las sentencias correctas
 - a) El problema se modela con una Binomial
 - b) El problema se modela con una Multinomial
 - c) En 70 se espera que todos los hijos sean varones
 - d) En 40 de los 300 se espera que no existan niñas
 - e) En 30 de los 300 se espera que no existan niñas
- 17. (4 puntos) Supongamos que una moneda legal es lanzada repetidamente hasta obtener cara por primera vez, y sea X la variable aleatoria que denota el número de lanzamientos que son necesarios para obtener cara por primera vez. La función de distribución acumulada de X es:

a)
$$F(x) = 0.5 * 0.5^{x-1}$$

b)
$$F(x) = 1 - (0.5)^{x+1}$$

c)
$$F(x) = 1 - (0.5)^x$$

d)
$$F(x) = 0.5 * 0.5^x$$

e)
$$F(x) = 0.7 - (0.3)^{x+1}$$

- 18. (4 puntos) El promedio de llamadas telefónicas a la secretaria de la carrera de informática en una hora es 6. ¿Cuál es la probabilidad de recibir 5 o más llamadas en 90 minutos?.
 - a) 0.1606
 - b) 0.7981
 - c) 6
 - d) 0.7149
 - e) 0.945

- 19. (4 puntos) Supongamos que 6 personas son seleccionadas al azar sin reemplazamiento de un curso de 18 personas, 10 Mujeres y 8 Hombres. Si X denota la cantidad de hombres en la muestra. Determine las opciones correctas:
 - a) $Pr(\text{Ninguna mujer esta en la muestra}) = \frac{\binom{10}{15}\binom{8}{5}}{\binom{18}{5}}$
 - b) La cantidad esperada de hombres es la muestra es 2,67

c)
$$V[X] = 18 * \frac{12}{18} * \frac{8}{18}$$

- d) La cantidad esperada de mujeres en la muestra es 4,33
- e) $Pr(\text{Ningún hombre esta en la muestra}) = \frac{\binom{10}{6}\binom{10}{6}}{\binom{10}{6}}$
- 20. (4 puntos) Una moneda correcta es lanzada sucesivamente hasta que aparezca cara por decima vez. Sea X la v.a. que denota el numero de sellos que ocurre. La función de probabilidad de X es:
 - a) $X \sim bernoulli(p = 0.5)$
 - b) $X \sim hipergeometrica(N = 10, r = 5, n = 5)$
 - c) $X \sim BinomialNegativa(r = 10, p = 0,5)$
 - d) $X \sim geometrica(p = 0.5)$
 - *e*) $X \sim binomial(n = 10, p = 0.5)$
- 21. (4 puntos) Sea $X \sim Uniforme(a = 10, b = 3)$, identifique a la función generatriz de momentos

a)
$$M_X(t) = \frac{e^{3t} - e^{10t}}{7t}$$

- b) $M_X(t) = \frac{e^{10t} e^{3t}}{7t}$
- c) Ninguna
- d) $M_x(t) = \frac{169t}{12}$
- e) $M_X(t) = \frac{e^{10t} e^{3t}}{13t}$
- 22. (4 puntos) El número de minutos requeridos por un estudiante para terminar un examen se distribuye como una exponencial, con un promedio de 70 minutos. Suponga que el examen inicia a las 8:00am. ¿Cuál es la probabilidad que termine antes de las 8:45am?
 - a) 0,4742
 - b) 1,0000
 - c) 0,0200
 - d) 0,5368
 - e) 0,0153

- 23. $(4 \ puntos)$ La duración de vida (en horas) de dos equipos de distintas marcas X e Y tienen distribución Normal de la forma $X \sim N(\mu = 35, \sigma^2 = 16), \ Y \sim N(\mu = 35, \sigma^2 = 25)$. Si los equipos tuvieran que ser usados por un periodo de 42 horas. ¿Cuál debe ser preferido?
 - a) Ninguno
 - b) Y
 - c) X
 - d) No existe suficiente información
 - e) Ambos
- 24. *(4 puntos)* La duración de vida (en horas) de dos equipos de distintas marcas X e Y tienen distribución Normal de la forma $X \sim N(\mu = 35, \sigma^2 = 16), Y \sim N(\mu = 35, \sigma^2 = 25)$. Si los equipos tuvieran que ser usados por un periodo de 42 horas. ¿Cuál debe ser preferido?
 - a) No existe suficiente información
 - b) Y
 - c) X
 - d) Ninguno
 - e) Ambos
- 25. (4 puntos) Sea $X \sim gamma(\alpha = 2, \beta = 6)$, encontrar el valor de $E[X^2]$
 - a) 0,1667
 - b) 0,3333
 - c) 10,5
 - d) 0,0555
 - e) 0,3889