Hvilken maskine?

- Forskellige instruktioner.
- Forskellige hastigheder.
- Der kommer en ny model i morgen.

- Abstrakt matematisk model af en computer.
- Simplere end alle virkelige computere.
- Skal aldrig opdateres.
- Alligevel realistisk.

- Abstrakt matematisk model af en computer.
- Simplere end alle virkelige computere.
- Skal aldrig opdateres.

Alligevel realistisk.

.

Hukommelse

Plads 0

- Abstrakt matematisk model af en computer.
- Simplere end alle virkelige computere.
- Skal aldrig opdateres.
- Alligevel realistisk.

Program: Sekvens af basale instruktioner

Hukommelse

Plads 0	
Plads 1	
Plads 2	
Plads 3	
:	

Basale instruktioner:

Læse fra/skrive til hukommelsen

 $+, -, \cdot, /$ (aritmetiske op.)

and, or, xor, not (logiske op.)

Sammenligninger: $==,<,\leq,\neq$

Program flow: if-else, for, while, funktionskald

- Abstrakt matematisk model af en computer.
- Simplere end alle virkelige computere.
- Skal aldrig opdateres.
- Alligevel realistisk.

Program: Sekvens af basale instruktioner

Hukommelse

Plads 0
Plads 1
Plads 2
Plads 3

Basale instruktioner:

Læse fra/skrive til hukommelsen

 $+, -, \cdot, /$ (aritmetiske op.)

and, or, xor, not (logiske op.)

Sammenligninger: $==,<,\leq,\neq$

Program flow: if-else, for, while, funktionskald

Hver instruktion tager konstant tid.

Køretid= #instruktioner

Hver plads kan indeholde et ord/word, fx:

- \bullet w bits, konstant w.
- ullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Plads 0
Plads 1
Plads 2
Plads 3
:

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- \bullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode:

RAM-model-kode:

Plads 0
Plads 1
Plads 2
Plads 3

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- ullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode:

$$a = 4$$

$$b=1$$

$$b = b + 8$$

$$a = a + b$$

RAM-model-kode:

	Plads 0
	Plads 1
	Plads 2
	Plads 3
	•
b	
a	

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- ullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode:

$$a = 4$$

$$b=1$$

$$b = b + 8$$

$$a = a + b$$

RAM-model-kode:

$$H[7] = A$$

$$H[5] = 1$$

$$H[5] = H[5] + 8$$

$$H[7] = H[7] + H[5]$$

Hukommelse H

	Plads 0
	Plads 1
	Plads 2
	Plads 3
b	
a	

.

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- ullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode:

$$a = 4$$

$$b=1$$

$$b = b + 8$$

$$a = a + b$$

RAM-model-kode:

$$lacktriangleright | H[7] = 4$$

$$H[5] = 1$$

$$H[5] = H[5] + 8$$

$$H[7] = H[7] + H[5]$$

Hukommelse H

	Plads 0
	Plads 1
	Plads 2
	Plads 3
	•
b	
a	4

•

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- \bullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode: a = 4

$$h = 1$$

$$b = b + 8$$

$$a = a + b$$

RAM-model-kode:

$$H[7] = 4$$

$$H[5] = 1$$

$$H[5] = H[5] + 8$$

$$H[7] = H[7] + H[5]$$

Hukommelse H

Plads 0
Plads 1
Plads 2
Plads 3
• •
1

b

.

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- \bullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode: a = 4 b = 1 b = b + 8a = a + b

RAM-model-kode:

	Plads 0
	Plads 1
	Plads 2
	Plads 3
b	1/9
a	4
,	•

Hver plads kan indeholde et ord/word, fx:

- w bits, konstant w.
- \bullet Et heltal mindre end en konstant N.
- Et tegn (bogstav/symbol).

Ikke lange tekster, mange tal eller vilkårligt store tal! Disse må gemmes som flere ord.

Variable er læsevenlige navne for pladser i hukommelsen:

Pseudokode:

$$a=4$$

$$b = 1$$

$$b = b + 8$$

$$a = a + b$$

RAM-model-kode:

$$H[7] = 4$$

$$H[5] = 1$$

$$H[5] = H[5] + 8$$

$$H[7] = H[7] + H[5$$

Hukommelse H

	Plads 0
	Plads 1
	Plads 2
	Plads 3
b	1/9
a	A 13

.

Array: Sammenhængende del af hukommelsen.

Pseudokode: A[0] = 5

$$A[4] = 6$$

$$i = 2$$

$$A[i] = 8$$

Array: Sammenhængende del af hukommelsen.

Pseudokode:

$$A[0] = 5$$
 $A[4] = 6$
 $i = 2$
 $A[i] = 8$

RAM-model-kode:

$$H[3+0] = 5$$

 $H[3+4] = 6$
 $H[1] = 2$
 $H[3+H[1]] = 8$

Array: Sammenhængende del af hukommelsen.

$$H[3+0] = 5$$

 $H[3+4] = 6$
 $H[1] = 2$
 $H[3+H[1]] = 8$

Array: Sammenhængende del af hukommelsen.

$$H[3+0] = 5$$

 $H[3+4] = 6$
 $H[1] = 2$
 $H[3+H[1]] = 8$

Array: Sammenhængende del af hukommelsen.

RAM-model-kode:

$$H[3+0] = 5$$

 $H[3+4] = 6$
 $H[1] = 2$
 $H[3+H[1]] = 8$

Array: Sammenhængende del af hukommelsen.

Pseudokode:

$$A[0] = 5$$

$$A[4] = 6$$

$$i = 2$$

$$A[i] = 8$$

RAM-model-kode:

$$H[3+0] = 5$$

 $H[3+4] = 6$
 $H[1] = 2$
 $H[3+H[1]] = 8$

Input: Array A af størrelse n, dvs. $A[0 \dots n-1]$.

Output: Et index i, $0 \le i < n$, så $A[i] = \max\{A[0], ..., A[n-1]\}$.

Input: Array A af størrelse n, dvs. $A[0 \dots n-1]$.

Output: Et index i, $0 \le i < n$, så $A[i] = \max\{A[0], ..., A[n-1]\}$.

Algoritme:

Gennemløb A og vedligehold index af hidtil største indgang. Returnér index.

Input: Array A af størrelse n, dvs. $A[0 \dots n-1]$.

Output: Et index i, $0 \le i < n$, så $A[i] = \max\{A[0], ..., A[n-1]\}$.

Algoritme:

Gennemløb A og vedligehold index af hidtil største indgang. Returnér index.

```
public static int findMax(int[] A, int n) {
  int max = 0;
  for (int i = 0; i < n; i++)
    if (A[i] > A[max])
      max = i;
  return max;
}
```

Input: Array A af størrelse n, dvs. $A[0 \dots n-1]$.

Output: Et index i, $0 \le i < n$, så $A[i] = \max\{A[0], ..., A[n-1]\}$.

Algoritme:

Gennemløb A og vedligehold index af hidtil største indgang. Returnér index.

```
public static int findMax(int[] A, int n) {
  int max = 0;
  for (int i = 0; i < n; i++)
    if (A[i] > A[max])
      max = i;
  return max;
}
```

```
\begin{aligned} & \operatorname{findMax}(A, \, n) \\ & max = 0 \\ & \operatorname{for} \, i = 0 \, \operatorname{to} \, n - 1 \\ & \operatorname{if} \, A[i] > A[max] \\ & max = i \\ & \operatorname{return} \, max \end{aligned}
```

Input: Array A af størrelse n, dvs. $A[0 \dots n-1]$.

Output: Et index i, $0 \le i < n$, så $A[i] = \max\{A[0], ..., A[n-1]\}$.

Algoritme:

Gennemløb A og vedligehold index af hidtil største indgang. Returnér index.

```
public static int findMax(int[] A, int n) {
  int max = 0;
  for (int i = 0; i < n; i++)
    if (A[i] > A[max])
      max = i;
  return max;
}
```

```
\begin{aligned} & \mathsf{findMax}(A,\,n) \\ & max = 0 \\ & \mathsf{for}\,\,i = 0\,\,\mathsf{to}\,\,n - 1 \\ & \mathsf{if}\,\,A[i] > A[max] \\ & max = i \\ & \mathsf{return}\,\,max \end{aligned}
```

Ligesom rigtig kode, men uden besværet. Skrevet til at blive læst af *mennesker*, ikke en computer.

Meget mere præcis end rent sproglig beskrivelse.

Køretid/tidskompleksitet

 $T(n)=\# \mbox{ skridt/instruktioner/operationer som algoritmen}$ laver på et input af størrelse n

Køretid/tidskompleksitet

 $T(n)=\# \ {\rm skridt/instruktioner/operationer} \ {\rm som \ algoritmen}$ laver på et input af størrelse n

Skridt:

- Læse fra/skrive til hukommelse (x = y, A[i], i = i + 1,...)
- Aritmetiske/logiske operationer $(+, -, \cdot, /, \%, \text{ and, or})$
- Sammenligninger $(<,>,\leq,\geq,==,\neq)$
- Programflow (if-else, while, for, funktionskald)

Køretid/tidskompleksitet

 $T(n)=\# \mbox{ skridt/instruktioner/operationer som algoritmen}$ laver på et input af størrelse n

Skridt:

- Læse fra/skrive til hukommelse (x = y, A[i], i = i + 1,...)
- Aritmetiske/logiske operationer $(+, -, \cdot, /, \%, \text{ and, or})$
- Sammenligninger $(<,>,\leq,\geq,==,\neq)$
- Programflow (if-else, while, for, funktionskald)

Tidskompleksitet i værste fald (worst-case complexity): Maximal køretid for alle input af størrelse n.

```
\begin{aligned} & \operatorname{findMax}(A, \, n) \\ & max = 0 \\ & \text{for } i = 0 \text{ to } n-1 \\ & \text{if } A[i] > A[max] \\ & max = i \\ & \text{return } max \end{aligned}
```

```
\begin{aligned} & \mathsf{findMax}(A,\,n) \\ & max = 0 \\ & \mathsf{for}\,\,i = 0 \;\mathsf{to}\,\,n - 1 \\ & \mathsf{if}\,\,A[i] > A[max] \\ & max = i \\ & \mathsf{return}\,\,max \end{aligned}
```

```
skridt i linje
1
7
6
2
2
```

```
skridt hver gang: for læse i udregnet i+1 gemme i+1 som i læse n udregne n-1 sammenligne ny i med n-1
```

```
\begin{aligned} & \mathsf{findMax}(A,\,n) \\ & max = 0 \\ & \mathsf{for}\,\, i = 0 \; \mathsf{to}\,\, n-1 \\ & \mathsf{if}\,\, A[i] > A[max] \\ & max = i \\ & \mathsf{return}\,\, max \end{aligned}
```

```
\begin{aligned} & \mathsf{findMax}(A,\,n) \\ & max = 0 \\ & \mathsf{for}\,\, i = 0 \; \mathsf{to}\,\, n-1 \\ & \mathsf{if}\,\, A[i] > A[max] \\ & max = i \\ & \mathsf{return}\,\, max \end{aligned}
```

skridt i linje
$$1$$
 1 $n+1$ 6 n 2 n 1

$$T(n) = \mathsf{k} \mathsf{g} \mathsf{r} \mathsf{e} \mathsf{t} \mathsf{i} \mathsf{d} = \mathsf{s} \mathsf{k} \mathsf{r} \mathsf{i} \mathsf{d} \mathsf{t} \; \mathsf{i} \; \mathsf{a} \mathsf{l} \mathsf{t} = 1 + 7(n+1) + 6n + n + 2 = 14n + 10 = \Theta(n)$$

$$\begin{aligned} & \operatorname{findMax}(A,\,n) \\ & max = 0 \\ & \text{for } i = 0 \text{ to } n-1 \\ & \text{if } A[i] > A[max] \\ & max = i \\ & \text{return } max \end{aligned}$$

$$T(n) = \text{koretid} = \text{skridt i alt} = 1 + 7(n+1) + 6n + n + 2 = 14n + 10 = \Theta(n)$$

Asymptotisk notation: Køretiden er lineær. Langsomt voksende led og konstanter ignoreres.

```
egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}
```

```
egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}
```

```
# skridt i linje
1
7
3
7
3
2
```

```
egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}
```

$$\begin{aligned} & \operatorname{doubleLoop}(n) \\ & x = 0 \\ & \operatorname{for}\ i = 0\ \operatorname{to}\ n - 1 \\ & x = x + 1 \\ & \operatorname{for}\ j = 0\ \operatorname{to}\ n - 1 \\ & x = x + 1 \\ & \operatorname{return}\ x \end{aligned}$$

$$T(n) = 1 + 7(n+1) + 3n + 7n(n+1) + 3n^2 + 2 = 10n^2 + 17n + 10 = \Theta(n^2)$$

$$egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}$$

```
\# skridt i linje \left|\begin{array}{ccc} \max & \# \text{ udførsler af linje} \\ 1 & 1 \\ 7 & n+1 \\ 3 & n \\ 7 & n(n+1) \\ 3 & n^2 \\ 2 & 1 \end{array}\right|
```

$$T(n) = 1 + 7(n+1) + 3n + 7n(n+1) + 3n^2 + 2 = 10n^2 + 17n + 10 = \Theta(n^2)$$

Asymptotisk notation: Køretiden er kvadratisk. Langsomt voksende led og konstanter ignoreres.

$$egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}$$

$$\#$$
 skridt i linje $\left|\begin{array}{ccc} \max. \ \# \ \text{udførsler af linje} \\ 1 & 1 \\ 7 & n+1 \\ 3 & n \\ 7 & n(n+1) \\ 3 & n^2 \\ 2 & 1 \end{array}\right|$

$$T(n)=1+7(n+1)+3n+7n(n+1)+3n^2+2=10n^2+17n+10=\boxed{\Theta(n^2)}$$
 Asymptotisk notation: Køretiden er kvadratisk. Langsomt voksende led og konstanter ignoreres.

twoLoops(n)
x = 0
for $i=0$ to $n-1$
x = x + 1
for $j=0$ to $n-1$
x = x + 1
return x

```
# skridt i linje
1
7
3
7
3
2
```

$$egin{aligned} \mathsf{doubleLoop}(n) \ x &= 0 \ \mathsf{for} \ i &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{for} \ j &= 0 \ \mathsf{to} \ n-1 \ x &= x+1 \ \mathsf{return} \ x \end{aligned}$$

$$T(n) = 1 + 7(n+1) + 3n + 7n(n+1) + 3n^2 + 2 = 10n^2 + 17n + 10 = \Theta(n^2)$$
 Asymptotisk notation: Køretiden er kvadratisk. Langsomt voksende led og konstanter ignoreres.

twoLoops(n)
x = 0
for $i=0$ to $n-1$
x = x + 1
for $j=0$ to $n-1$
x = x + 1
return x

$$T(n) = 1 + 7(n+1) + 3n + 7(n+1) + 3n + 2 = 20n + 20 = \Theta(n)$$

Quiz

```
\mathsf{Q}(A,n)\setminus \mathsf{antag}\ \log_2 n er et heltal s=0 for i from 1 to n for j from 1 to \log_2 n s=s+A[i]+A[j] return s
```

Quiz

```
\begin{array}{c} \mathsf{Q}(A,n) \ \backslash \mathsf{antag} \ \log_2 n \ \mathsf{er} \ \mathsf{et} \ \mathsf{heltal} \\ s=0 \\ \mathsf{for} \ i \ \mathsf{from} \ 1 \ \mathsf{to} \ n \\ \mathsf{for} \ j \ \mathsf{from} \ 1 \ \mathsf{to} \ \log_2 n \\ s=s+A[i]+A[j] \\ \mathsf{return} \ s \end{array}
```

Hvad er køretiden af Q(A, n)? socrative.com \rightarrow Student login. Room name: ABRAHAMSEN3464

- (a) $\Theta(n)$ (b) $\Theta(n^2)$
- (c) $\Theta(n + \log_2 n)$
- (d) $\Theta(n \cdot \log_2 n)$
- (e) $\Theta(n\sqrt{n})$

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A,n) og S2(A,n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A, n) og S2(A, n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

$$n=100$$
: $T_1(100)=10000$ og $T_2(100)pprox 66400$, så $rac{T_1(100)}{T_2(100)}pprox 0.15.$

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A,n) og S2(A,n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

n=100: $T_1(100)=10000$ og $T_2(100)\approx 66400$, så

$$\frac{T_1(100)}{T_2(100)} \approx 0.15.$$

$$n=5.8\cdot 10^6$$
: $T_1(5.8\cdot 10^6)pprox 3.4\cdot 10^{13}$ og $T_2(5.8\cdot 10^6)pprox 1.3\cdot 10^{10}$, så $rac{T_1(5.8\cdot 10^6)}{T_2(5.8\cdot 10^6)}pprox 2600.$

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.
- "Will this scale?"
- Derfor ignorerer vi også langsomt voksende led.

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.
- "Will this scale?"
- Derfor ignorerer vi også langsomt voksende led.

P.S:

- I praksis kan vi ikke ignorere astronomiske konstanter.
- En asymptotisk langsommere algoritme kan foretrækkes hvis
 - -n aldrig bliver meget stor, eller
 - den langsommere algoritme er meget simplere og hurtig nok.

$$\Theta$$
, Ω og O

Vi skriver:

• $T(n) = \Omega(n^2)$ hvis

$$c_1 \cdot n^2 \le T(n)$$

for en konstant $c_1 > 0$.

• $T(n) = O(n^2)$ hvis

$$T(n) \le c_2 \cdot n^2$$

for en konstant $c_2 > 0$.

• $T(n) = \Theta(n^2)$ hvis

$$c_1 \cdot n^2 \le T(n) \le c_2 \cdot n^2$$

for konstanter $c_1, c_2 > 0$, dvs. $T(n) = \Omega(n^2)$ og $T(n) = O(n^2)$.

Disse definitioner er ikke helt præcise. Vi vender tilbage til dem senere.