МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5
по дисциплине «Качество и метрология программного обеспечения»
Тема: Оценка параметров надёжности программ по временным

моделям обнаружения ошибок

Студент гр. 8304	 Ивченко А.А.
Преподаватель	 Кирьянчиков В.А

Санкт-Петербург 2022

Цель работы.

Исследовать показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.

Ход выполнения.

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 100% входных данных.

i	Xi	i	Xi	i	Xi
1	0,107	11	8,250	21	14,228
2	1,145	12	8,285	22	14,432
3	1,792	13	8,410	23	14,449
4	2,233	14	8,575	24	14,513
5	2,742	15	10,293	25	14,929
6	3,383	16	10,864	26	15,887
7	4,192	17	10,910	27	16,149
8	4,566	18	13,037	28	16,927
9	6,156	19	13,377	29	17,512
10	6,836	20	13,451	30	18,353

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_{i}}{\sum_{i=1}^{n} X_{i}} = 21,214$$

$$A > \frac{n+1}{2}$$

21,214 > 15,5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m - i}$$
$$g(m, A) = \frac{n}{m - A}$$

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
31	3,995	2,781446	1,213554
32	3,027	2,545445	0,481555
33	2,558	2,346361	0,211639
34	2,255	2,176159	0,078841
35	2,035	2,02898	0,00602
36	1,863	1,900447	0,037447

Минимум разности двух функций по модулю при $m=35 \Longrightarrow B^{\hat{}}=m-1=34$

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i}^{\hat{}} - \sum_{i=1}^{n} i \cdot X_{i}^{\hat{}}} = 0,00686$$

$$X^{\hat{}} = \frac{1}{\check{K} \cdot (B^{\hat{}} - n)}$$

i	31	32	33	34
X^{\wedge}_{i}	36,469	48,626	72,939	145,878

Время до завершения тестирования = $\sum_{i=31}^{34} X_i^{^{^{^{^{^{^{^{^{^{^{^{^{}}}}}}}}}}} = 303,912$ дней Полное время тестирования = $\sum_{i=1}^{30} X_i + \sum_{i=31}^{34} X_i^{^{^{^{^{^{^{^{^{^{}}}}}}}}} = 599,895$ дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 80% входных данных.

i	Xi	i	Xi	i	Xi
1	1,795	9	7,979	17	12,970
2	2,556	10	8,436	18	13,701
3	3,111	11	9,303	19	15,171
4	4,333	12	10,191	20	15,171
5	5,742	13	10,975	21	16,953
6	5,761	14	12,167	22	17,451
7	6,153	15	12,276	23	17,667
8	7,499	16	12,667	24	19,356

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 15,840$$

15,840 > 12,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
25	3,776	2,619957	1,156043
26	2,816	2,362099	0,453901
27	2,354	2,15045	0,20355
28	2,058	1,97361	0,08439
29	1,844	1,823645	0,020355
30	1,678	1,694861	0,016861
31	1,545	1,583066	0,038066

Минимум разности двух функций по модулю при $m=30 \Longrightarrow B^{\hat{}}=m$ - 1=29

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0,00680$$

	i	25	26	27	28	29
2	X_i	29,428	36,785	49,047	73,571	147,141

Время до завершения тестирования = 335,973 дней

Полное время тестирования = 585,357 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 60% входных данных.

i	Xi	i	Xi	i	Xi
1	1,020	7	5,501	13	15,013
2	2,294	8	5,681	14	16,888
3	3,031	9	7,280	15	18,216
4	4,685	10	10,941	16	18,583
5	5,417	11	13,868	17	19,316
6	5,452	12	14,341	18	19,680

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 12,615$$

12,615 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	2,818937	0,676063
20	2,548	2,437246	0,110754
21	2,098	2,146592	0,048592
22	1,812	1,917875	0,105875

Минимум разности двух функций по модулю при $m=21 \Longrightarrow B^{\hat{\ }}=m$ - 1=20

Время до завершения тестирования = 130,817 дней

Полное время тестирования = 318,024 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 100% входных данных.

i	Xi	i	Xi	i	Xi
1	0,237	11	2,971	21	15,763
2	0,657	12	4,471	22	18,666
3	0,696	13	5,711	23	19,938
4	0,701	14	6,559	24	21,194
5	0,77	15	10,737	25	31,761
6	0,921	16	11,304	26	32,926
7	1,238	17	11,937	27	33,665
8	2,018	18	12,978	28	38,231
9	2,392	19	13,186	29	48,06
10	2,465	20	14,257	30	61,13

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 23,903$$

22,903 > 15,5 => существует конечное решение

m	f(m	g(m, A)	/f(m) - $g(m,$
)		A)/
31	3,995	4,22702	0,23202
32	3,027	3,704985	0,677985
33	2,558	3,297719	0,739719
34	2,255	2,971121	0,716121
35	2,035	2,703385	0,668385
36	1,863	2,479913	0,616913
37	1,725	2,290566	0,565566
38	1,609	2,128082	0,519082

Минимум разности двух функций по модулю при $m=31 \Longrightarrow B^{\hat{}}=m-1=30$ $B=n\Longrightarrow$ найдены все ошибки — тестирование завершено.

Полное время тестирования = 427,540 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 80% входных данных.

i	X_i	i	X_i	i	X_i
1	0,149	9	3,596	17	14,133
2	1,153	10	4,862	18	14,907
3	2,205	11	6,22	19	15,584
4	2,453	12	8,013	20	15,693
5	2,507	13	8,448	21	17,84
6	2,749	14	11,799	22	19,734
7	2,942	15	12,612	23	27,799
8	3,237	16	13,127	24	46,76

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{1} = 18,192$$

m	f(m	g(m, A)	/f(m) - g(m,
25	3,776	3,525462	0,250538
26	2,816	3,073921	0,257921
27	2,354	2,724914	0,370914
28	2,058	2,447077	0,389077

Минимум разности двух функций по модулю при $m = 25 \Longrightarrow B^{\hat{}} = m - 1 = 24$ $B = n \Longrightarrow$ найдены все ошибки — тестирование завершено.

Полное время тестирования = 258,522 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 60% входных данных.

i	X_i	i	X_i	i	X_i
1	0,289	7	3,336	13	7,960
2	1,349	8	3,704	14	8,233
3	1,372	9	3,909	15	13,008
4	1,374	10	5,619	16	13,441
5	1,608	11	6,766	17	18,245
6	2,889	12	7,129	18	31,155

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 14,021$$

14,021 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	3,61525	0,12025
20	2,548	3,010582	0,462582

Минимум разности двух функций по модулю при $m=19 \Longrightarrow B^{\hat{}}=m$ - 1=18

В = n => найдены все ошибки – тестирование завершено.

Полное время тестирования = 131,386 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 100% входных данных.

i	X_i	i	X_i	i	X_i
1	0,395	11	7,792	21	9,965
2	0,870	12	7,876	22	11,872
3	3,375	13	8,381	23	12,056
4	3,831	14	8,622	24	12,147
5	5,305	15	8,690	25	12,498
6	6,235	16	8,743	26	13,666
7	6,913	17	8,756	27	14,069
8	6,940	18	9,139	28	17,770
9	7,061	19	9,265	29	19,038
10	7,089	20	9,939	30	21,019

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 19,567$$

19,567 > 15,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
31	3,995	2,623894	1,371106
32	3,027	2,412858	0,614142
33	2,558	2,233241	0,324759
34	2,255	2,078514	0,176486
35	2,035	1,943837	0,091163
36	1,863	1,825552	0,037448
37	1,725	1,720836	0,004164

Минимум разности двух функций по модулю при $m=36 \Longrightarrow B^{\hat{}}=m$ - 1=35

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0,00653$$

i	31	32	33	34	35
$X^{}_{i}$	30,601	38,251	51,001	76,502	153,004

Время до завершения тестирования = 349,360 дней Полное время тестирования = 628,677 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 80% входных данных.

i	X_i	i	X_i	i	X_i
1	1,710	9	8,467	17	11,644
2	3,436	10	9,357	18	12,163
3	3,441	11	10,343	19	13,819
4	5,990	12	10,359	20	13,845
5	6,398	13	10,445	21	15,630
6	7,143	14	11,118	22	17,086
7	7,522	15	11,118	23	17,631
8	8,438	16	11,200	24	19,410

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 15,400$$

15,400 > 12,5 => существует конечное решение

m	f(m	g(m, A)	/f(m) - $g(m,$
)		A)/
25	3,776	2,500179	1,275821
26	2,816	2,264297	0,551703
27	2,354	2,069088	0,284912
28	2,058	1,904866	0,153134
29	1,844	1,764795	0,079205
30	1,678	1,643913	0,034087
31	1,545	1,538529	0,006471

Минимум разности двух функций по модулю при $m=31 \Longrightarrow B^{\hat{}}=m$ - 1=30

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i}^{} - \sum_{i=1}^{n} i \cdot X_{i}^{}} = 0,00621$$

i	25	26	27	28	29	30
Y^{\wedge}_{i}	26,834	32,201	40,252	53,669	80,503	161,006

Время до завершения тестирования = 59,036 дней

Полное время тестирования = 306,749 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 60% входных данных.

i	X_i	i	X_i	i	X_i
1	1,384	7	7,688	13	14,674
2	3,193	8	8,001	14	15,175
3	3,525	9	8,235	15	16,288
4	4,724	10	10,521	16	17,123
5	5,061	11	11,426	17	18,097
6	7,216	12	14,274	18	19,423

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 12,249$$

12,249 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	2,666422	0,828578
20	2,548	2,322395	0,225605
21	2,098	2,056998	0,041002
22	1,812	1,846037	0,034037
23	1,607	1,674322	0,067322

Минимум разности двух функций по модулю при $m = 2\overline{2} => B^{\hat{}} = m - 1 = 21$

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0.00992$$

$$i \quad 19 \quad 10 \quad 20 \quad 21$$

X^{\wedge}_{i}	33,591	50,386	100,772

Время до завершения тестирования = 83,976 дней Полное время тестирования = 270,004 дней

Полученные в результате работы результаты представлены в итоговых таблицах 1 и 2.

Закон	100% данных	80 % данных	60 % данных
распределения	(n = 30)	(n = 24)	(n = 18)
Равномерный	34	29	20
Экспоненциальный	30	24	18
Релеевский	35	30	21

Таблица 1 – Оценка первоначального числа ошибок

Закон	100% данных	80 % данных	60 % данных
распределения	(n = 30)	(n = 24)	(n = 18)
Равномерный	599,895 дней	585,357 дней	318,024 дней
Экспоненциальный	427,540 дней	258,522 дней	131,386 дней
Релеевский	628,677 дней	306,749 дней	270,004 дней

Таблица 2 – Оценка полного времени проведения тестирования

Выводы.

В ходе выполнения лабораторной работы были исследованы показатели программ, характеризуемые моделью обнаружения надёжности ошибок Джелинского-Моранды ДЛЯ различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных. В было результате получено, ЧТО всем показателям ПО лидирует экспоненциальный закон распределения, подтверждая предположение, что «время до следующего отказа программы распределено экспоненциально».