# Chapter 7: Computations lifted to a functor context II. Monads and semimonads

Part 1: Practical work with monads and semimonads

Sergei Winitzki

Academy by the Bay

2018-03-11

## Computations within a functor context: Semimonads

Intuitions behind adding more "generator arrows"

#### Example:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f(i, j, k)$$

Using Scala's for/yield syntax ("functor block")

- map replaces the last left arrow, flatMap replaces other left arrows
  - ▶ When the functor is *also* filterable, we can use "if" as well
- Standard library defines flatMap() as replacement of map() o flatten

```
▶ (1 to n).map(j \Rightarrow ...).flatten is (1 to n).flatMap(j \Rightarrow ...)
```

- Functors having flatMap/flatten are "flattenable" or semimonads
  - ► Most of them also have method pure: A ⇒ F[A] and so are monads
    - ★ The method pure is not relevant in the functor block
    - $\star$  We will not need pure in this part of the tutorial; focus on semimonads

## What is flatMap doing with the data in a collection?

Consider this schematic code using Seq as the container type:

Computations are repeated for all i, for all j, etc., from each collection

- All "generator lines" must use the same container type
  - ► Each generator line finally computes a container of *the same* type
  - ▶ The total number of resulting data items is  $\leq m * n * p$
  - ▶ All the resulting data items must fit within *the same* container type!
  - ▶ The set of *container capacity counts* must be closed under multiplication
- What container types have this property?
  - ► Seq, NonEmptyList can hold any number of elements ≥ min. count
  - ▶ Option, Either, Try, Future can hold 0 or 1 elements ("pass/fail")
  - ▶ "Tree-like" containers, e.g. can hold only 3, 6, 9, 12, ... elements
  - "Non-standard" containers:  $F^A \equiv \text{String} \Rightarrow A$ ;  $F^A \equiv (A \Rightarrow \text{Int}) \Rightarrow \text{Int}$

## Worked examples I: List-like monads

Seq, NonEmptyList, Iterator, Stream

## Typical tasks for "list-like" monads:

- Create a list of all combinations or all permutations of a sequence
- Traverse a "solution tree" with DFS and filter out incorrect solutions
  - ► Can use eager (Seq) or lazy (Iterator, Stream) evaluation strategies
  - Usually, list-like containers have many additional methods
    - ★ append, prepend, concat, fill, fold, scan, etc.

### Worked examples: see code

- 4 All permutations of Seq("a", "b", "c")
- 2 All subsets of Set("a", "b", "c")
- All subsequences of length 3 out of a given sequence
- Generalize examples 1-3 to support arbitrary length n instead of 3
- 4 All solutions of the "8 queens" problem
- Generalize example 5 to solve n-queens problem
- Transform Boolean formulas between CNF and DNF.

# Intuitions for pass/fail monads

Option, Either, Try, Future

- Container  $F^A$  can hold n = 1 or n = 0 values of type A
- Such containers will have methods to create "pass" and "fail" values

# Schematic example of a functor block program using the $\mathtt{Try}$ functor:

```
val result: Try[A] = for { // computations in the Try functor
  x ← Try(...) // first computation; may fail
  y = f(x) // no possibility of failure in this line
  if p(y) // the entire expression will fail if this is false
  z ← Try(g(x, y)) // may fail here
  r ← Try(...) // may fail here as well
} yield r // r is of type A, so result is of type Try[A]
```

- Computations may yield a result (n = 1), or may fail (n = 0)
- The functor block chains several such computations sequentially
  - Computations are sequential even if using the Future functor!
  - ▶ Once any computation fails, the entire functor block fails (0 \* n = 0)
  - Only if all computations succeed, the functor block returns one value
  - Filtering can also make the entire expression fail
- "Flat" functor block replaces a chain of nested if/else or match/case

# Worked examples II: Pass/fail monads

## Type constructors:

- Option[A]  $\equiv 1 + A$
- Either[Z, A]  $\equiv Z + A$
- Try[A] 

  Either[Throwable, A]

#### Typical tasks for pass/fail monads:

- Perform a linear sequence of computations that may fail
- Avoid crashing on failure, instead return an error value

#### Worked examples: see code

- Read values of Java properties, checking that they all exist
- Obtain values from Future computations in sequence
- Make arithmetic safe by returning error messages in Either
- Fail less: chain computations that may throw an exception

## Worked examples III: Tree-like monads

Examples of tree-like recursive type constructors:

- $F^A \equiv A + F^A \times F^A$  (binary tree)
- $F^A \equiv A + S^{F^A}$  (S-shaped tree, where S is a functor)
- $F^A \equiv A \times A + F^A \times F^A$  (binary tree with binary leaves)
- $F^A \equiv S^A + S^{F^A}$  (S-shaped tree with S-shaped leaves)

Typical tasks for tree-like monads:

- Traverse a tree, graft subtrees at leaves
- Substitute subexpressions in a syntax tree

Worked examples: see code

- Implement a tree of String properties with arbitrary branching
- 2 Implement variable substitution for a simple arithmetic language

Example of a *non-tree-like* type constructor:

• 
$$F^A \equiv A + A \times A + A \times A \times A \times A + ...$$
 (powers of 2, non-recursive)

## Worked examples IV: Single-value monads

- Container holds exactly 1 value, together with a "context"
- Usually, methods exist to insert a value and to work with the "context"

## Typical tasks for single-value monads:

- Collecting extra information about computations along the way
- Chaining computations with a nonstandard evaluation strategy

#### Examples: see code

- Writer: Perform computations and log information about each step
  - Writer<sup>A</sup>  $\equiv A \times W$  where W is a monoid or a semigroup
  - 2 Reader: Read-only context, or dependency injection
    - ▶ Reader<sup>A</sup>  $\equiv E \Rightarrow A$  where E represents the "environment"
  - Eval: Perform a sequence of lazy or memoized computations
    - ightharpoonup Eval<sup>A</sup>  $\equiv A + (1 \Rightarrow A)$
- Ont: A chain of asynchronous operations
  - ► Cont<sup>A</sup>  $\equiv$  (A  $\Rightarrow$  R)  $\Rightarrow$  R where R is the fixed "result" type
- State: A sequence of steps that update state while returning results
  - ▶ State<sup>A</sup>  $\equiv$   $S \Rightarrow A \times S$  where S is the fixed "state" value type

# Where do single-value monads come from?

Motivation for the choice of the type constructors Writer<sup>A</sup>, Reader<sup>A</sup>, State<sup>A</sup>, Cont<sup>A</sup>

We want previous values to be transformed via flatMap to next values

- Writer: a computation  $(A \Rightarrow B)$  and log info (W) about it
  - $\blacktriangleright x^A \Rightarrow f(x) : B \text{ and } x^A \Rightarrow g(x) : W; \text{ the type is } (A \Rightarrow B) \times (A \Rightarrow W)$
  - ▶ this function should have type  $A \Rightarrow Writer^B$ , hence  $Writer^B \equiv B \times W$ \* use the "arithmetic" Curry-Howard to transform types:  $b^a w^a = (bw)^a$
- Reader: Read-only context, or "environment" of type E
  - $\rightarrow$   $x^A \Rightarrow f(r,x): B$  where  $r^E$  is fixed; the type is  $A \times E \Rightarrow B$
  - ▶ this function should have type  $A \Rightarrow \text{Reader}^B$ , hence  $\text{Reader}^B \equiv E \Rightarrow B$ 
    - \* we used the "arithmetic" Curry-Howard:  $b^{ae} = (b^e)^a$
- Cont: A computation that registers an asynchronous callback
  - $ightharpoonup x^A \Rightarrow f(cb): 1$  where  $cb: B \Rightarrow 1$  (usually, callbacks return Unit)
  - ▶ the type is  $A \Rightarrow (B \Rightarrow 1) \Rightarrow 1$ ; this function should have type  $A \Rightarrow \mathsf{Cont}^B$ , hence  $\mathsf{Cont}^B \equiv (B \Rightarrow 1) \Rightarrow 1$
  - generalize to  $Cont^A \equiv (A \Rightarrow R) \Rightarrow R$  where R is the fixed "result" type
- State: A computation can update state (S) while producing a result
  - $\blacktriangleright x^A \Rightarrow f(x,s)$  and  $s^S \Rightarrow g(x,s)$ ; the type is  $(A \times S \Rightarrow B) \times (A \times S \Rightarrow S)$
  - ▶ this will be  $A \Rightarrow \mathsf{State}^B$  if  $\mathsf{State}^B \equiv (S \Rightarrow B) \times (S \Rightarrow S) \equiv S \Rightarrow B \times S$ 
    - \* we used the "arithmetic" Curry-Howard:  $b^{as}s^{as}=(b^{s}s^{s})^{a}=((bs)^{s})^{a}$

## Exercises I

- Compute all subsequences of length 3 out of the sequence (1 to m)
- ② Implement a semimonad instance for  $F^A \equiv E \Rightarrow A \times W$  where W is a semigroup