Hyperplanes Half Space Separating Hyperplane Supporting Hyperplane Bibliography

Supporting Hyperplane Theorem

Coman Florin-Alexandru

March 31, 2015

Table of contents

- Hyperplanes
 - Introduction
 - Definition
 - Properties
- 2 Half Space
 - Definition
- Separating Hyperplane
 - Theorem
 - Proof
- Supporting Hyperplane
 - Thorem
 - Proof
 - Definition
- Bibliography

Introduction

Hyperplanes dominate the entire theory of optimization; appearing in Lagrange multipliers, duality theory, gradient calculations, etc. The most natural definition for a hyperplane is the generalization of a plane in \mathbb{R}^3 .

Linear variety

A set V in \mathbb{R}^n is said to be **linear variety**, if, given any $x_1, x_2 \in V$, we have $\alpha x_1 + (1 - \alpha)x_2 \in V$, $\forall \alpha \in \mathbb{R}$.

The only difference between a linear variety and a convex set is that a linear variety is the entire line passing through any two points, rather than a simple line segment.

Definition - Hyperplane

A **hyperplane** in \mathbb{R}^n is an (n-1)-dimensional linear variety. It can be regarded as the largest linear variety in a space other than the entire space itself.

Proposition 1.1

Let $a \in \mathbb{R}^n$, $a \neq \Theta$ and $b \in \mathbb{R}$. The set $H = \{x \in \mathbb{R}^n : a^T x = b\}$

is a *hyperplane* in \mathbb{R}^n .

Proof

Let $x_1 \in H$. Translate H by $-x_1$, we obtain the set

$$M = H - x_1 = \{ y \in \mathbb{R}^n : \exists x \in H \ni y = x - x_1 \},$$

which is a linear subspace of \mathbb{R}^n . $M = \{y \in \mathbb{R}^n : a^T y = 0\}$ is also the set of all orthogonal vectors to $a \in \mathbb{R}^n$, which is clearly (n-1) dimensional.

Proposition 1.2

Let $x_1 \in H$ be an hyperplane in \mathbb{R}^n . Then, $\exists a \in \mathbb{R}^n \ni H = \{x \in \mathbb{R} : a^T x = b\}.$

Proof

Let $x_1 \in H$, and translate $-x_1$ obtaining $M = H - x_1$. Since H is a hyperplane, M is an (n-1) dimensional space. Let a be any orthogonal to M, i.e. $a \in M^{\perp}$. Thus, $M = \{y \in \mathbb{R}^n : a^Ty = 0\}$. Let $b = a^Tx_1$; we see that if $x_2 \in H, x_2 - x_1 \in M$ and therefore $a^Tx_2 - a^Tx_1 = 0 \Rightarrow a^Tx_2 = b$. Hence, $H \subset x \in \mathbb{R} : a^Tx = b$. Since H is, by definition, of (n-1) dimension, and $\{x \in \mathbb{R} : a^Tx = b\}$ is of dimension (n-1) by the above proposition, these two sets must be equal.

Half Space

Definition

Let $a \in \mathbb{R}^n$, $b \in \mathbb{R}$. Corresponding to the hyperplane $H = \{x : a^T x = b\}$, there are **positive** and **negative closed half spaces**:

$$H_{+} = \{x : a^{T}x \ge b\}, H_{-} = \{x : a^{T}x \le b\}$$

and

$$\dot{H}_{+} = \{x : a^{T}x > b\}, \dot{H}_{-} = \{x : a^{T}x < b\}.$$

Half spaces are convex sets and $H_+ \bigcup H_- = \mathbb{R}^n$.

Separating Hyperplane Theorem

Separating Hyperplane Theorem

Let X be a convex set and y be a point exterior to the closure of X. Then, there exists a vector $a \in \mathbb{R}^n \ni a^T y < inf_{x \in X} a^T x$. (Geometrically, a given point y outside X, a **separating** hyperplane can be passed through the point y that does not touch X).

Separating Hyperplane Theorem

Proof (I) [1]

Let $\delta = \inf_{x \in X} |x - y| > 0$.

Then, there is an x_0 on the boundary of X such that $|x_0 - y| = \delta$.

Let $z \in X$. Then, $\forall \alpha, 0 \le \alpha \le 1, x_0 + \alpha(z - x_0)$ is the line segment between x_0 and z.

Thus, by definition of
$$x_0$$
, $|x_0 + \alpha(z - x_0) - y|^2 \ge |x_0 - y|^2 \Leftrightarrow (x_0 - y)^T (x_0 - y) + 2\alpha(x_0 - y)^T (z - x_0) + \alpha^2 (z - x_0)^T (z - x_0) \ge (x_0 - y)^T (x_0 - y) \Leftrightarrow 2\alpha(x_0 - y)^T (z - x_0) + \alpha^2 |z - x_0|^2 \ge 0$

Let $\alpha \to 0^+$, then α^2 tends to 0 more rapidly than 2α .

Separating Hyperplane Theorem

Proof (II)

Thus,
$$(x_0 - y)^T (z - x_0) \ge 0 \Leftrightarrow (x_0 - y)^T z - (x_0 - y)^T x_0 \ge 0 \Leftrightarrow (x_0 - y)^T z \ge (x_0 - y)^T x_0 = (x_0 - y)^T y + (x_0 + y)^T (x_0 - y) = (x_0 - y)^T y + \delta^2 \Leftrightarrow (x_0 - y)^T y < (x_0 - y)^T x_0 \ge (x_0 - y)^T z, \forall z \in X \text{ (Since } \delta > 0).$$
 Let $a = (x_0 - y)$, then $a^T y < a^T x_0 = \inf_{z \in X} a^T z$.

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

Let X be a convex set, and let y be a boundary point of X. Then, there is a hyperplane containing y and containing X in one of its closed half spaces.

Supporting Hyperplane Theorem

Proof [1]

Let $\{y_k\}$ be sequence of vectors, exterior to the closure of X, converging to y.

Let $\{a_k\}$ be a sequence of corresponding vectors constructed according to the previous theorem, normalized so that $|a_k| = 1$, such that $a_k^T y_k < inf_{x \in X}$.

Since $\{a_k\}$ is a boundary sequence, it converges to a.

For this vector, we have $a^T y = \lim_k^T y_k \le ax$.

Supporting Hyperplane Theorem

Definition

A hyperplane containing a convex set X in one of its closed half spaces and containing a boundary point of X is said to be **supporting hyperplane** of X.

Bibliography I

- [1] Levent Kandiller, *Principles of Mathematics in Operations Research*, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007.
- [2] Geoffrey J. Gordon, Lecture 3. Convex sets, Optimization Course, CMU, Fall 2012.
- [3] Stephen Boyd, Lieven Vandenberghe Convex Optimization, Cambridge University Press 2009.