WHAT IS CLAIMED IS:

1	1. A filter circuit apparatus for suppression of spurious signals in a
2	superheterodyne circuit for receiving communication in channels comprising:
3	a first active twin-T filter in a first signal path defining a first sharp notch at
4	the center a second adjacent channel; and
5	a first passive twin-T filter section coupled to receive output of the first active
6	twin-T filter, defining a second sharp notch at the center of a next adjacent channel, to
7	suppress spurious signals at frequencies of modulation product.
1	2. The apparatus of claim 1 wherein said superheterodyne circuit employs
1-2	an in-phase and a quadrature phase signal path, said first signal path corresponding to said
	first signal path, the apparatus further including:
5	a second active twin-T filter in a second signal path defining said first sharp
	notch at the center the second adjacent channel, said second signal path corresponding to a
ΠĄ	quadrature phase signal path; and
-7 	a second passive twin-T filter section coupled to receive output of the second
[8	active twin-T filter, defining said second sharp notch at the center of a next adjacent channel,
	to suppress spurious signals at frequencies of modulation product.
H	3. The circuit according to claim 2 wherein said superheterodyne circuit
2	employs differentials feed in each one of said first signal path and said second signal path, the
3	apparatus further including:
4	a third active twin-T filter in a third signal path defining said first sharp notch
5	at the center the second adjacent channel, said third signal path comprising a differential of
6	said in-phase signal path;
7	a third passive twin-T filter section coupled to receive output of the third
8	active twin-T filter, defining said second sharp notch at the center of a next adjacent channel,
9	to suppress spurious signals at frequencies of modulation product, said third passive twin-T
10	section being cross coupled with said first passive twin-T section;
11	a fourth active twin-T filter in a fourth signal path defining said first sharp
12	notch at the center the second adjacent channel, said fourth signal path comprising a
13	differential of said quadrature-phase signal path; and
14	a fourth passive twin-T filter section coupled to receive output of the fourth
15	active twin-T filter, defining said second sharp notch at the center of a next adjacent channel,

3

1

2

1

2

- to suppress spurious signals at frequencies of modulation product, said fourth passive twin-T
 section being cross coupled with said second passive twin-T section.
 - 4. The apparatus according to claim 3 wherein each active twin T section is in active bootstrap configuration.
 - 5. The apparatus according to claim 1 wherein the active twin T section is in active bootstrap configuration.
 - 6. A method for processing multiple signal modes according to different radio standards of a received RF signal, comprising:

performing downconversion of the received RF signal to produce analog I and Q signals; and for each of the analog I signal and the analog Q signal, filtering out unwanted signals by:

for a first standard, processing the analog signal using a first passive notch filter to produce a first filtered signal; and

for a second standard, processing the analog signal using an active notch filter to produce a second filtered signal;

wherein the active notch filter exhibits smaller group delay than the passive notch filter.

7. The method according to claim 6 further includes, for the second standard, processing the second filtered signal using a second passive notch filter to produce a third filtered signal.