Coursera-Stanford-ML-Notes

Quentin Truong

20 June 2017 - ? July 2017

Contents

1		ek 1: Introduction Overview
${f 2}$	Wee	ek 2: Linear Regression with Multiple Variables
	2.1	Overview
	2.2	Symbols
	2.3	Gradient Descent
	2.4	Normal Equation
3	Wee	ek 3: Logistic Regression
	3.1	Overview
	3.2	Logistic Regression Hypothesis Function
	3.3	Logistic Regression Cost Function
		Proof of Logistic Regression Cost Function Derivative
		Regularization

1 Week 1: Introduction

1.1 Overview

- Machine Learning: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Supervised Learning: know what our correct output looks like
 - Regression: want continuous output
 - Classification: want discrete output
- Unsupervised Learning: little or no idea what our results should look like
 - Clustering: find groups according to similarity in various variables
 - Nonclustering: find structure in chaos

2 Week 2: Linear Regression with Multiple Variables

2.1 Overview

- Use linear regression for continuous output
- Choose gradient descent if many features (million+) because the inverse matrix required for the normal equation can become expensive to compute
- Normal equation will directly compute theta
- Normalize features if using gradient descent

2.2 Symbols

$$m = number \ of \ samples$$

 $n = number \ of \ feature$
 $x = (n \times 1)$
 $X = (m \times n)$
 $X_j = (m \times 1)$
 $\theta = (n \times 1)$
 $\theta_j = (1 \times 1)$

2.3 Gradient Descent

Hypothesis Function $h_{\theta}(x) = \theta^{\intercal} \times x$ Vectorized Hypothesis Function $h_{\theta}(X) = X \cdot \theta$ Linear Regression Cost Function $J(\theta) = \frac{1}{2m} \sum (h_{\theta}(X) - y)^2$ Derivative of Linear Regression CF wrt θ_j $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Change in θ_j $\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j}$ $= \theta_j - \alpha \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Vectorized Change in θ $\theta = \theta - \alpha \frac{1}{m} X^{\intercal}(X \cdot \theta - y)$

2.4 Normal Equation

$$\theta = (X^{\mathsf{T}} \cdot X)^{\mathsf{-}1} \cdot X^{\mathsf{T}} \cdot y$$

3 Week 3: Logistic Regression

3.1 Overview

- Use logistic regression for discrete output (classification)
 - $h_{\theta}(x) = (y = 1|x; \theta)$; gives probability that the output is 1
 - For multi-class classification, use one-vs-all
 - Sigmoid/Logistic function maps any real number to (0, 1)
 - Pick class i that maximizes $h_{\theta}^{i}(x)$
- Overfitting is when learned hypothesis fits training data well but fails to generalize
 - Underfitting is when doesn't fit training data
- Address overfitting by reducing number of features, model selection, and regularization
 - Regularization results in simpler hypothesis and less overfitting
 - Extremely large λ will result in underfitting and gradient descent will fail to converge
- Use other prewritten optimization algorithms (conjugate gradient, BFGS, L-BFGS) because they are faster

3.2 Logistic Regression Hypothesis Function

Sigmoid/Logistic Function
$$g(z) = \frac{1}{1+e^{-z}}$$
 Hypothesis Function
$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$

$$= \frac{1}{1+e^{-\theta^{\mathsf{T}}x}}$$

3.3 Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
$$= -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{i}), y^{i})$$
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \log(h_{\theta}(x^{i})) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right]$$

3.4 Proof of Logistic Regression Cost Function Derivative

$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(h_{\theta}(x^i)) + (1 - y^i) \log(1 - h_{\theta}(x^i))]$$

$$\log(h_{\theta}(x^i)) = \log(\frac{1}{1 + e^{-\theta x^i}}) = -\log(1 + e^{-\theta x^i})$$

$$\log(1 - h_{\theta}(x^i)) = \log(1 - \frac{1}{1 + e^{-\theta x^i}}) = \log(e^{-\theta x^i}) - \log(1 + e^{-\theta x^i}) = -\theta x^i - \log(1 + e^{-\theta x^i})$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[-y^i (\log(1 + e^{-\theta x^i})) + (1 - y^i)(-\theta x^i - \log(1 + e^{-\theta x^i})) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \theta x^i - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(e^{\theta x^i}) - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$\frac{\partial}{\partial \theta_j} y^i \theta x^i = y^i x^j_j$$

$$\frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x^i_j e^{\theta x^i}}{1 + e^{\theta x^i}}$$

$$= \frac{x^j_j}{1 + e^{-\theta x^i}}$$

$$= x^j_j h_{\theta}(x^i)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i x^i_j - x^i_j h_{\theta}(x^i) \right]$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[h_{\theta}(x^i) - y^i \right] x^i_j$$

3.5 Regularization

$$\text{Regularizing Term} \qquad \lambda \sum_{j=1}^n \theta_j^2$$

$$\text{Regularized Linear Regression CF} \qquad J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^i) - y^i)^2 + \lambda \sum_{j=1}^n \theta_j^2$$

$$\text{Regularized Logistic Regression CF} \qquad J(\theta) = \frac{-1}{m} \sum_{i=1}^m \left[y^i \log(h_\theta(x^i)) + (1 - y^i) \log(1 - h_\theta(x^i)) \right] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$$

$$\left\{ \theta_0 = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_0^i \right] \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] (j=1,2,\dots,n) \right.$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] \right\}$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] \right\}$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] \right\}$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \right] \right\}$$

$$\left\{ \theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta$$