Funzioni - Sommario

Tutto sulle funzioni.

Funzioni

Funzioni - Definizione base, esempi, definizione di immagine, funzione suriettiva, iniettiva; funzione composta; l'immagine di un pezzo di dominio; funzione inversa, teorema sulle funzioni inverse.

DEF 1. Funzione

Siano,

- A, B due insiemi
- f una "legge", ovvero una specie di predicato, oppure una relazione speciale che ad ogni valore di A associa uno e uno solo valore di B;
 Cioè se x ∈ A, allora ∃!y ∈ B (si legge esiste solo un valore di y in B) è associato a x (f(x) = y)

DEF 1. La terna (A, B, f) viene definita come **funzione**.

SUBDEF 1.1. L'insieme A si dice il **dominio** della *funzione*,

SUBDEF 1.2. L'insieme B si dice il codominio della funzione,

SUBDEF 1.3. La "legge" f è una **regola** che ad ogni elemento x del dominio A associa uno e uno solo elemento y del codominio B.

Con la scrittura compatta la terna può essere definita anche mediante la seguente notazione.

$$f:A\mapsto B$$

ESEMPIO 1.1.

Siano $A = \{ \text{Persone in quest'aula} \}$, $B = \{ \text{Comuni italiani} \}$ e $f: x \mapsto \text{comuni di residenza}$; allora si rappresenta il grafico della funzione (A, B, f) nel seguente modo:

ESEMPIO 1.2.

In questo corso si studieranno le cosiddette funzioni di reale variabile, ovvero le funzioni $f:A\mapsto B$, con $A,B\subseteq\mathbb{R}$.

OSS 1.1 Secondo questa definizione di *funzione*, le sue proprietà non cambiano solamente per la legge f, ma anche per gli *insiemi* A, B.

OSS 1.2. Si osserva il seguente grafico:

Si nota che la parte rossa è funzione, invece la parte verde non lo è, in quanto ci sono più elementi di B associati ad un elemento di A; quindi si parte da un valore a_n e tutti devono avere un solo corrispondente b_n .

DEF 2. Valore immagine

Sia $f: A \mapsto B$ una funzione.

Se $x \in A$, il valore $f(x) \in B$ viene definita come il **valore immagine di** x,

una specie di proiezione.

DEF 2.1. L'insieme immagine

Riprendendo i presupposti di prima, si definisce l'insieme di tutti i *valori immagine* come **l'insieme immagine** e lo si indica con

ESEMPIO 2.1.1. Siano $A=\mathbb{N}, B=\mathbb{N}, \ f(n)=2n.$ $f(\mathbb{N})=\{0,2,4,\ldots\}=\mathbb{P}$ (l'insieme dei numeri pari);

OSS 2.1.1.1. Si nota che $f(A) \subseteq B$.

Ecco il grafico della funzione f;

DEF 3. Funziona suriettiva e iniettiva

DEF 3.1. Funzione suriettiva (o surgettiva)

Se

$$f(A) = B$$

Allora la funzione f si dice **suriettiva** (oppure come lo chiamano i pisani, **surgettiva**).

ESEMPIO 3.1. La funzione f(n) = 2n (tratto dall'**ESEMPIO 2.1.1.**) *non* è *surgettiva* se si definisce $A = \mathbb{N}$; invece lo è se si definisce $A = \mathbb{P}$.

DEF 3.2. Funzione iniettiva (o ingettiva)

Siano

$$f:A\mapsto B;x_1,x_2\in A$$

Supponendo che

$$x_1
eq x_2 \implies f(x_1)
eq x_2$$

Allora si dice che la funzione f è **iniettiva** (oppure in pisano **ingettiva**).

ESEMPIO 4.1. Siano

$$A = [0, \infty)$$

 $B = [0, \infty)$
 $f: x \mapsto x^2$

(dove la notazione $[0,\infty)$ indica tutti i numeri $\forall x \in \mathbb{R} : x \geq 0$). La funzione f(x) è *suriettiva*, in quanto $\forall y \geq 0, \exists x \geq 0 : x^2 = y$. Inoltre è anche *iniettiva*. **DIM.** Si dimostra che f è iniettiva; se $0 \leq x_1 < x_2$, (quindi $x_1 \neq x_2$) allora moltiplicando da ambo le parti per x_1 e per x_2 , si ottengono:

I. $0 < x_1 < x_2$

$$x_1^2 < x_1x_2 \ ext{II. } 0 \leq x_1 < x_2 \ x_1x_2 < x_2^2 \ ext{Pertanto} \ x_1^2 < x_2^2 \iff f(x_1) < f(x_2) \implies f(x_1)
eq f(x_2)$$

ESEMPIO 4.2. Riprendendo la medesima funzione $f: x \mapsto x^2$ dall'**ESEMPIO 4.1.**, però cambiando gli insiemi $A, B = \mathbb{R}$, la funzione f non è più $n\acute{e}$ suriettiva né iniettiva;

DIM. Si dimostra che non è suriettiva prendendo un valore y=f(x)=-1; si dimostra che $\not\exists x: x^2=-1$ (guardando il grafico), pertanto $-1\not\in f(\mathbb{R})$. Dopodiché si dimostra che non è neanche iniettiva tramite un controesempio; prendiamo $x_1=-1, x_2=1$ (quindi $x_1\neq x_2$) e i valori immagini di x_1, x_2 sono $f(-1)=-1^2=1$, $f(1)=1^2=1$, pertanto f(-1)=f(1).

DEF 3.3. Funzione biiettiva

Se una funzione $f:A\mapsto B$ è sia *iniettiva* e sia *suriettiva*, allora si dice che f è **biiettiva**

DEF 4. Funzione composta

Siano

$$f:A\mapsto B$$

 $q:B\mapsto C$

Si definisce $g \circ f$ la funzione composita "g dopo f".

$$g \circ f : A \mapsto C$$

 $x \mapsto g(f(x))$

Si illustra la **funzione composita** tramite il seguente diagramma:

ESEMPIO 5.1. Siano

$$f: \mathbb{R} \mapsto \mathbb{R}, \, g: \mathbb{R} \mapsto \mathbb{R} \ f: x \mapsto x^2, \, g: y \mapsto y+2$$

Allora

$$(g\circ f)(x)=g(f(x))=g(x^2)=x^2+2 \ (f\circ g)(x)=f(g(x))=f(x+2)=(x+2)^2$$

OSS 5.1.1. Ovviamente da questo esempio si nota che *non* è *sempre vero* che $f \circ g = g \circ f$.

DEF 5. L'immagine di un pezzo del dominio

Sia $f: A \mapsto B$, $A' \subseteq A$; allora si definisce

$$f(A') = \{f(x): x \in A'\}$$

come l'immagine di un pezzo del dominio A.

ESEMPIO 6.1. Si rappresenta il grafico della funzione $f: \mathbb{R} \to \mathbb{R}$, $f: x \mapsto x^2 + 3$. Si vuole trovare (e rappresentare) f([1,2]).

Dal grafico si evince chiaramente che f([1,2]) = [4,7].

DEF 6. La funzione inversa

Sia

$$f:A\mapsto B$$

Supponiamo che esista una funzione $g:B\mapsto A$, tale che

$$g\circ f=\mathrm{id}_A:A\mapsto A$$
 $f\circ g=\mathrm{id}_B:B\mapsto B$

, ove la funzione d'identità su un insieme A viene rappresentata da $\mathrm{id}_A:x\mapsto x$, si dice che la funzione g è la **funzione inversa di** f. Si illustra la funzione inversa di f con un diagramma.

TEOREMA 1. L'esistenza della funzione inversa $f^{-}1$

Una funzione $f:A\mapsto B$ ha la sua inversa

$$f^-1:B\mapsto A$$

se e solo se è biettiva, ovvero se è entrambi iniettiva e suriettiva.