

Developing a Methodology for the Evaluation of Hybrid Vehicle Thermal Management Systems

Stanley T. Jones, Ph.D. SAIC John Mendoza, Ph.D. SAIC George Frazier, SAIC Ghassan Khalil, TARDEC

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send commen juarters Services, Directorate for In	ts regarding this burden estimation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	vis Highway, Suite 1204, Arlington			
1. REPORT DATE 17 JUL 2009		2. REPORT TYPE N/A		3. DATES COVERED -				
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER			
	nodology for the Eva	aluation of Hybrid	Vehicle	5b. GRANT NUMBER				
Thermal Manager	nent Systems			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)				5d. PROJECT NU	JMBER			
Stanley T. Jones;	John Mendoza; Geo	orge Frazier; Ghass	an Khalil	5e. TASK NUMBER				
			5f. WORK UNIT NUMBER					
	IZATION NAME(S) AND A M-TARDEC 6501	8. PERFORMING ORGANIZATION REPORT NUMBER 20074						
9. SPONSORING/MONITO	DRING AGENCY NAME(S)		10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20074					
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release, distribut	tion unlimited						
	OTES As Ground Vehicle S , Michigan, USA, T	•			m (GVSETS), 17 22			
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 15				

Report Documentation Page

Form Approved OMB No. 0704-0188

Thermal Management System Evaluation

- How can we define a vehicle thermal management system (TMS) evaluation metric?
 - Performance
 - Does it meet the demand of maximum load at worst case boundary conditions?
 - Is the TMS operational power demand (hotel load) disproportionally large?
 - Size is TMS disproportionally oversized in terms of:
 - Volume
 - Weight
- An evaluation metric structure could be developed that would -
 - Provide a means for comparison for and/or across classes of vehicles
 - Evaluate design maturity and point toward potential issues
 - Identify significant technological advancements

Vehicle TMS Definition?

- Vehicle Thermal Management System design requires intimate knowledge of vehicle:
 - Architecture components and layout
 - Demand component loading and boundary conditions
- Component-level cooling equipment needs to be included in estimates of component power density
 - Engine components: oil coolers and pumps, charge air coolers, water and fuel pumps, fuel coolers
 - Auxiliary components: closed loop specialized cooling equipment
 - Total volume must include ancillary non-system components like electrical wiring and connectors, plumbing fittings, etc. (i.e. not just shrink-wrapped volume)
- Vehicle packaging considerations may sometime make evaluation difficult
 - Component-level versus System-level thermal equipment
 - Plumbing considerations valves, fittings, lines, etc.
- Specialized payloads and architectural outliers would need to be handled separately

August 2009

Procedural Example...

- Assumed baseline case demonstrates calculation of proposed metrics
 - Chosen climatic conditions: Category A1 Hot Dry: 49°C ambient
 - Other climatic/operational conditions will yield metric values that can be tabulated
- Proposed metrics allow comparison/evaluation of competing vehicle TMS
- Other evaluation factors need to be considered for final judgment
 - Total cost: includes component and installation costs
 - Robustness: ease of/improvement in installation/operation
 - Readiness: maturity of component as well as availability

Baseline Case - Assumptions

- Assume a generic layout of a 30-ton full hybrid electric vehicle
- Assume engine components are packaged to the engine block (oil pump, oil cooler, water pump, fuel cooler, etc)
- Assume engine operates on air-to-air charge air cooler and is considered "component-level" equipment
- Assume a sub-ambient cooling system is not required
- Consider mobility loads only mission electronics, ambient solar,
 - and human occupancy are considered negligible
- Packaging optimization is currently neglected
- Loading Condition (31 ton, 7 m² frontal area, $C_D = 0.8$, 35 lb/ton rolling resistance)
 - 40 mph continuous up a 5% grade (0.074 TE)
 - 55 mph continuous flat (0.026 TE)
 - Select vehicle tractive power ratio as 15 kW/ton
- Vehicle weight of 30 ton leads to tractive power of 450 kW (225 kW per side)

Baseline Case - Energy Balance

- Assume a generic hybrid system
 - DC Bus distribution
 - Prime power generation: 500 hp
 - Energy storage system linked through DC/DC Converter
 - Tractive power (mechanical demand) of 225 kW per side
 - Auxiliary Cooling Pump (5 hp assumed)
 - Cooling Fan
 - 95% efficiency assumed for every component
- Solution Methodology
 - Fan power calculated 34 kW [determination will be discussed in upcoming slide]
 - Energy balance performed on DC Bus
 - Electronic component and motor thermal loads calculated

Baseline Case – Thermal Audit

- Energy Balance gives loads for electronic components & motors
 - Cooling pump/inverter assumed air-cooled
 - Batteries assumed air-cooled
 - Electronics and motors assumed water-cooled (EGW/PGW)
- Representative engine loading to TMS
 - Engine block (86.2 kW)
 - Oil cooler (53.6 kW)
 - CAC assumed packaged with engine (air-to-air)
- Two cooling circuits
 - Low temperature circuit addresses electronics and motors (102.9 kW total)
 - High temperature circuit addresses engine needs (139.8 kW total)

August 2009

Baseline Case - TMS Layout

- Two cooling circuits
 - Low temperature circuit addresses electronics and motors (102.9 kW total)
 - High temperature circuit addresses engine needs (139.8 kW total)
- All components on low temperature circuit plumbed in parallel with 70°C maximum allowable supply coolant temperature
- Low temperature coolant flow rate assumed to be 40 gpm
- High temperature coolant supplied by engine cooling pump (component-level thermal equipment)
- High temperature coolant flow rate assumed 80 gpm with 110°C maximum allowable supply temperature
- · Heat exchangers assumed in series with respect to cooling air
- Climatic Conditions: Category A1 Hot Dry: 49°C ambient

GVSETS

Baseline Case - TMS Sizing

- Determine heat exchanger stack size through knowledge of load and HX core performance
 - Stanton number correlation establishes heat transfer for a specific core geometry
 - Establishes core size (frontal area, depth and flow requirements)
- Establish expected air pathway pressure head loss
 - Friction factor correlation for HX core
 - Ducting pathway
 - Inlet/exhaust ballistic grill contributions
- Check pressure demand against fan performance curves
- Re-estimate fan power demand and check against energy balance calculations
- Iterate Steps 1-4 as necessary to generate convergence

Common Staggered Flattened Tube Extended Fin Core Arrangement

Constant s	f	StPr ^{2/3}			
a ₀	0.0096	0.0048			
a ₁	8.2596	1.0171			
a ₂	0.8230	0.3837			
a ₃	-0.0338	-0.0301			

<Compact Heat Exchangers - Kays & London, 1984>

Friction Factor & Stanton Number **Correlation Coefficients**

Surface Designation	Tube Arrangem	Fin Type		Length I to flow)	Tube Width (normal) to flow)		Fins/i	Hydraulic Diameter		Fin Thickness		Free Flow/Frontal	Heat Transfer Area/Total Volume		Fin Area/ Total Area
	ent		in	10 ⁻³ m	in	10 ⁻³ m	n	ft	10 ⁻³ m	ft	10 ⁻³ m	Area	ft²/ft³	m²/m³	Total Alea
9.1-0.737	S Staggered	Plain	0.737	18.7	0.100	2.5	9.1	0.0138 0	4.21	0.004	0.102	0.788	224	735	0.813

Baseline Heat Exchanger Geometrical Properties < Compact Heat Exchangers - Kays & London, 1984>

Baseline Case – Heat Exchanger Performance Evaluation

POWER AND ENERGY

- Heat exchanger performance evaluation based upon assumed packaging restrictions
 - Two heat exchangers in series with respect to air flow (i.e. heat exchangers share common air flow)
 - Plumbing considerations impose a four-pass heat exchanger layout
- Assumed vehicle packaging considerations impose width restriction (mounted on vehicle sponson or similar)
- Analysis based upon core performance correlations (Stanton #) for baseline heat exchanger aspect ratio dictates:
 - Approximately 10,000 CFM airflow requirement to meet heat rejection needs
 - 49°C ambient dry air (no humidity corrections included)
 - Low temperature core heat rejection of 102.9 kW
 - High temperature core heat rejection of 139.8 kW
 - Air flow assumed uniform and well-mixed between heat exchanger core sections
 - Heat exchanger cores assumed clean (no internal/external fouling) and tube wall conduction resistance is negligible

Baseline Case – TMS Design **Point Operations**

- Heat exchanger core performance correlation (friction factor) establishes estimated pressure drop as a function of air flow
 - For 10,000 CFM each core loses approximately 6.5 inH₂O
- Airflow pathway may include ballistic grills, heat exchanger cores and flow routing ductwork
 - Actual performance would require detailed CFM analysis – for this case we've assumed a heat exchanger stack performance curve (shown on figure at right)
- Stack performance curve (pressure as a function of flow rate) is mapped against fan curve(s) to establish operational design point
 - 10,000 CFM flow rate
 - 6000 RPM fan speed
 - 34 kW fan power consumption

Determining TMS Packaging Metric

- Identify component-level TMS equipment versus system-level equipment
- Evaluate packaging envelope as it impacts the vehicle
 - Includes overall vehicle size impact rather than just the volume of the component (not a shrink-wrapped solution)
 - 'Round component in a vehicle's square hole' effect
 - May become extremely significant when considering plumbing runs, fittings, valves etc.
- Components to be included in weight & volume estimates
 - TMS components to include heat exchangers, pumps, fans, controllers, reservoirs, plumbing, ductwork, grills, and coolant inventory
- Baseline system estimates:
 - TMS Volume 30 ft³
 - TMS Weight 1100 lbs

Vehicle Packaging

Envelope

Baseline Case with Proposed TMS Metrics

- Packaging Metric Audit of TMS component size and weight
 - Compare cumulative TMS component size/weight to:
 - Vehicle mobility component size/weight audit
 - Overall vehicle size/weight

TMS Weight Metric =
$$\frac{TMS \ Weight}{Vehicle \ Weight} = \frac{(1100/2000)}{30 \ ton} \times 100 = 1.8\%$$

- Hotel Load Metric Audit of vehicle TMS comparing hotel load to deliverable vehicle tractive power
 - Baseline case 3.7 kW pumping power, 34 kW fan power, 450 kW deliverable tractive

Hotel Load Metric =
$$\frac{Thermal\ Hotel\ Load}{Tractive\ Power} = \frac{(3.7+34)}{450} \times 100 = 8.4\%$$

- Thermal Load Metric Audit of vehicle thermal load to deliverable tractive power
 - Baseline case: LT=102.9 kW, HT = 139.8 kW, 450 kW deliverable tractive

Thermal Load Metric =
$$\frac{Vehicle\ Thermal\ Load}{Tractive\ Power} = \frac{(102.9 + 139.8)}{450} \times 100 = 53.9\%$$

- Operational Thermal Margin Comparison of maximum heat rejection capability to design point
 - Baseline Case design point heat rejection 242.7 kW
 - Maximum Capability estimated at 253 kW

Operational Thermal Margin =
$$\frac{Maximum - Design\ Point\ Load}{TMS\ Maximum\ Capability} = \frac{(253 - 242.7)}{253} \times 100 = 4.1\%$$

August 2009

Proposed Vehicle TMS Metrics in Action...

- Proposed metrics result in quantitative descriptors for vehicle TMS
 - Other climatic conditions/operational points will yield different metric values
 - Comparison of metrics from other TMS designs generates quantitative comparison of systems
 - Component-level changes can be evaluated by comparing resulting system metrics (i.e. trade-offs)
- Operational margin allows fine-tuning
 - Large margin can be used to justify component-level changes to save cost/weight/volume at expense of TMS performance
 - Small margin signals requirement for improved component and system-level performance

Application of Vehicle TMS Performance Metrics

Conceptual Vehicles

- Packaging Metric
- Hotel Load Metric
- Thermal Load Metric
- Operational Thermal Margin

Existing Vehicles

- Evaluate Packaging Metric
- Hotel Load Metric
- Thermal Load Metric
- Establish performance limitations through operational data to evaluate operational thermal margin (if any) and/or performance deficits

Evaluating Component Alterations

- Easily identify packaging implications
- Operational setpoint evaluations (e.g. impact of higher operating temperature)
 - Needs model (as was developed for baseline case) to evaluate
 - May impose system layout changes (e.g. series vs parallel)

