

We claim

1. An organometallic transition metal compound of the formula (I)

5

10

15

20

25

30

35

40

where

M¹ is a metal of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides,

X are identical or different and are each an organic or inorganic radical, where two radicals X can also be joined to one another,

n is a natural number from 1 to 4,

T¹, T² are identical or different and are each a divalent group selected from the group consisting of -O-, -S-, -Se-, -Te-, -N(R¹³)-, -P(R¹³)-, -As(R¹³)-, -Sb(R¹³)-, -Si(R¹³)₂-, -C(R¹³R¹⁴)-C(R¹³R¹⁵)- and -C(R¹⁴)=C(R¹⁵)-, where R¹³, R¹⁴ and R¹⁵ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

R¹, R⁷ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

R², R⁸ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

- R³, R⁹ are identical or different and are each halogen or an organic radical having from 1 to 40 carbon atoms, where R³ is not methyl when T¹ is -C(H)=C(H)-,
- 5 R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² are identical or different and are each hydrogen, halogen or an organic radical having from 1 to 40 carbon atoms, or two adjacent radicals R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² together with the atoms connecting them form a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,
- 10 or,
if T¹ or T² is -O-, -S-, -Se- or -Te-, the radical R³ together with R⁴ and/or the radical R⁹ together with R¹⁰ forms a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,
- 20 and
- A is a bridge consisting of a divalent atom or a divalent group.
2. An organometallic transition metal compound of the formula (I) as claimed in claim 1,
- 25 wherein
- M¹ is an element of group 4 of the Periodic Table of the Elements,
- 30 n is 2,
- T¹, T² are identical and are each -O-, -S-, -Se- or -Te-,
- 35 R¹, R⁷ are identical and are each a C₁-C₁₀-alkyl radical,
- R², R⁸ are identical and are each hydrogen,
- 40 R³, R⁹ are identical or different and are each a substituted or unsubstituted C₆-C₄₀-aryl radical or C₂-C₄₀-heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P,

R^4, R^5 , R^{10} and R^{11} are identical and are each hydrogen,

R^6, R^{12} are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

5

A is a substituted silylene group or a substituted or unsubstituted ethylene group,

and

10 the other variables are as defined in claim 1.

3. A biscyclopentadienyl ligand system of the formula (II)

15

(II)

20

25

or one of its double bond isomers,

30

where the variables $R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{10}, R^{11}, R^{12}, T^1, T^2$ and A are as defined in formula (I).

4. A biscyclopentadienyl ligand system of the formula (II) as claimed in claim 3,

35

wherein

T^1, T^2 are identical and are each -O-, -S-, -Se- or -Te-,

40

R^1, R^7 are identical and are each a C_1-C_{10} -alkyl radical,

R², R⁸ are identical and are each hydrogen,

5 R³, R⁹ are identical or different and are each a substituted or unsubstituted C₆-C₄₀-aryl radical or C₂-C₄₀-heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P,

R⁴, R⁵, R¹⁰ and R¹¹ are identical and are each hydrogen,

10 R⁶, R¹² are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

and

A is a substituted silylene group or a substituted or unsubstituted ethylene group.

15 5. A catalyst system for the polymerization of olefins comprising at least one organometallic transition metal compound as claimed in claim 1 or 2 and at least one cocatalyst which is able to convert the organometallic transition metal compound into a species which displays polymerization activity toward at least one olefin.

20 6. A catalyst system as claimed in claim 5 which further comprises a support.

7. A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 5 or 6.

25 8. The use of a biscyclopentadienyl ligand system as claimed in claim 3 or 4 for preparing an organometallic transition metal compound.

30 9. A process for preparing an organometallic transition metal compound, which comprises reacting a biscyclopentadienyl ligand system as claimed in claim 3 or 4 or a bisanion prepared therefrom with a transition metal compound.

10. A polyolefin obtainable by the process as claimed in claim 7.