(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平11-504739

(43)公表日 平成11年(1999)4月27日

 (51) Int.Cl.⁶
 酸別記号
 F I

 G 0 6 F
 19/00
 G 0 6 F
 15/42
 D

 15/18
 5 6 0
 15/18
 5 6 0 A

審查請求 有 予備審查請求 有 (全126頁)

(21)出願番号 特願平9-507712 (86) (22)出顧日 平成8年(1996)7月25日 (85)翻訳文提出日 平成10年(1998) 1月26日 (86)国際出願番号 PCT/US96/12177 (87)国際公開番号 WO97/05553 (87)国際公開日 平成9年(1997)2月13日 (31)優先権主張番号 60/001, 425 (32)優先日 1995年7月25日 (33)優先権主張国 米国(US) (31)優先権主張番号 08/642,848 (32)優先日 1996年5月3日 (33)優先権主張国 米国(US)

(71)出願人 ホルス ゼラピーティクス, インコーボレイテッド アメリカ合衆国, 29928 サウスカロライナ, ヒルトンヘッドアイランド, ヴィレッジ アット ウェックスフォード ジェイー16

(72)発明者 パーンヒル,スッティープン,ディー. アメリカ合衆国,31411 ジョージア,サ パンナ,マッド ターキィ クロッシング 19番地

(74)代理人 弁理士 遠山 勉 (外3名)

最終頁に続く

(54) 【発明の名称】 コンピュータ援用疾病診断方法

(57)【要約】

本発明の同時的多重アクセス推論技術システムは、現存する知識およびトレーニングデータから数値的に抽出できる潜在的情報を使用して、疾病を診断しかつ患者を治療する方法および装置を提供するものである。この技術は更には、患者データを別の場所から受信し、前配データを訓練済みニューラルネットワーク内で解析し、診断数値を生成し、そして任意に前記診断数値を別の場所に送信するためのシステムを含む。

【特許請求の範囲】

1. 患者における疾病を診断または予後判断するための方法であって、 前配疾病に関連している患者バイオマーカーの濃度をデジタル値に変換し、 前配デジタル値を前処理して前処理値を作成し、

前記前処理値を訓練済みのニューラルネットワークを包含するコンピュータへ 入力し、

前記疾病を診断または予後判断をするように特に訓練されており、前記疾病の 有無または重篤度に相当する出力値を生成する訓練済みニューラルネットワーク に、前記前処理値を導入し、

前記訓練済みのニューラルネットワークからの出力値を、表示手段に接続した 出力値受信装置へ送信することを含む前記方法。

2. 息者の人口統計学的データをデジタル値に変換し、

前記デジタル値を前処理して前処理値を作成し、

前記前処理値を前記コンピュータに入力し、

前記前処理値を前記訓練済みのニューラルネットワークに導入することをさら に含む、請求の範囲第1項に記載の方法。

3. 前記訓練済みのニューラルネットワークから得た前記出力値及び患者のバイオマーカーから得た第二のセットの前処理数値または任意に患者の人口統計学的データから得た第二のセットの前処理値を、前記疾病を診断または予後判断するように訓練されており、前記疾病の有無または重篤度に相当する第二の出力値を生成する、コンピュータ中の第二の訓練済みのニューラルネットワークに導入し、

前配第二の訓練済みニューラルネットワークから得た前配第二の出力値を、表示手段に接続した出力値受信装置に送信することをさらに含む、請求の範囲第1項に配載の方法。

4. 恵者バイオマーカーデータおよび任意に恵者の人口統計学的データを患者 レコード内に挿入し、

データフォーマットエラーについて解析される、患者レコードの中のデータを

前記ニューラルネットワークの第二の出力値を現実の診断と比較し、前記ニューラルネットワーク診断が現実の診断に相当しない場合は、前記コネクションウエイトを調節し、

前記患者群の中の別の患者から得た前処理値をニューラルネットワークに導入 し、新規の出力値を得、前記新規の出力値を現実の診断と比較し、かつ任意にコ ネクションウエイトを調節する以前の工程を繰り返し、

任意に分類エラーに関する決定限界を確立することを含む前記方法。

- 7. 疾病を診断または予後判断するよう訓練されている訓練済みのニューラルネットワークを含むコンピューターを含む装置。
- 8. 前記疾病に関連している患者バイオマーカーの濃度をデジタル値に変換する手段

前記デジタル値を前処理して前処理値を作成する手段、

前記疾病の有無または重篤度に相当する出力値を生成する訓練済みのニューラルネットワークへ、前記前処理値を入力する手段、および

前記出力値を通信する手段をさらに含む、請求の範囲第7項に記載の装置。

9. 患者の人口統計学的データをデジタル値に変換する手段、

前記デジタル値を前処理して前処理値を作成する手段。

前記疾病の有無または疾病の重篤度に相当する出力値を生成する訓練済みのニューラルネットワークに、前記前処理値を入力する手段、および

前記出力値を通信する手段をさらに含む、請求の範囲第7項に記載の装置。

- 10. 二つ以上の訓練済みのニューラルネットワークを含み、前記訓練済みニューラルネットワークは、疾病を診断または予後判断をするように特に訓練されており、かつそれぞれが、前記疾病の有無または重篤度に相当する出力値を生成する、請求の範囲第8項の装置。
- · 11. 前記疾病が、骨粗鬆症、骨減少症、乳癌、卵巣癌、大腸癌、前立腺癌および精巣癌からなる群から選択される、請求の範囲第7項に記載の装置。

コンピュータに進入し、

フォーマットエラーのない前記患者データをデジタル値に変換し、

前記デジタル値を前処理して前処理値を作成し、

前配疾病を診断または予後判断をするように特に訓練されており、前配疾病の 有無または重篤度を示す出力値を生成する訓練済みニューラルネットワークに、 前配前処理値を強入し、

前記出力値と恵者データを患者レコード内に挿入することをさらに含む、請求 の範囲第1項に記載の方法。

- 5. 前記疾病が、骨粗鬆症、骨減少症、乳癌、卵巣癌、大腸癌、前立腺癌および精巣癌からなる群から選択される、請求の範囲第1項に記載の方法。
- 6. 患者における疾病を診断または予後判断するのに用いられるコンピュータ を用いたニューラルネットワークを訓練するための方法であって、

コンピュータを用いたニューラルネットワークにおいてコネクションウェイトをランダム化し、

前配疾病に罹患した患者群から、前配疾病に関連した患者バイオマーカーの濃度を得、

前記パイオマーカーの濃度をデジタル値に変換し、

前記デジタル値を前処理して前処理値を作成し、

入力変数として各惠者から得た前記前処理値を入力によりニューラルネットワークに逐次導入することによって前記ネットワークを訓練し、

前記ニューラルネットワークから、ニューラルネットワーク診断を示しかつ前 記疾病の有無または重無度に相当する出力値を得、

前記ニューラルネットワークの出力値を現実の診断と比較し、

前記ニューラルネットワーク診断が現実の診断に相当しない場合は、前記コネクションウエイトを顕新し、

入力変数として患者群の中の一人の患者から得た前処理値を入力によりニュー ラルネットワークに導入し、

前記ニューラルネットワークから第二の出力値を得、

【発明の詳細な説明】

コンピュータ援用疾病診断方法

技術分野

本発明は、疾病を診断し、検診しまたは予後判断するための方法に関する。さらに詳しくは、本発明は、ヒトまたは動物において疾病を診断し、検診しまたは 予後判断するための方法、および当該疾病の重篤度と原因を決定するための方法 に関する。

本発明は更には、ある診断指標を得るため一つまたは複数のニューラルネットワークを利用して、疾病を診断し、検診しまたは予後判断するためのコンピュータを援用した方法に係る。本発明の好ましい実施態様においては、該方法は、例えば骨粗鬆症や卵巣癌、乳癌、精巣癌、大腸癌や前立腺癌を含むがこれらに限定されない種々の癌などの疾病の診断および予後判断を行うために使用される。また別の好ましい実施態様においては、本発明は、データ送信ステーションから送信された患者のデータを受信し、これらのデータを診断数値または予後判断値を生成するよう訓練したニューラルネットワークによって処理し、次いでこれらの数値を遠隔データ受信手段に送信するためのシステムを包含する。

発明の背景

本明細書において、「疾病」なる用語は、身体のあらゆる部位、器官またはシステムの健常な構造または機能(またはこれらの組合せ)からの偏位・逸脱として定義される。具体的疾病は、化学的変化および物理的変化の双方を含む特徴的な症状や徴候によって喪される。疾病は、しばしば人口統計学的要因、環境的要因、雇用因子、遺伝的要因や病歴因子を含むがこれらに限定されない種々様々なその他の要因に関連している場合が多い。いくつかの特徴的な徴候、症状およびこれらに関連した要因は、種々の方法によって定量化することが可能であり、重要な診断情報を生成させる。このような適用の目的のために、ある特定の疾病の

生物学的液体の特徴において、定量化可能である徴候、症状および/または分析物が、かかる疾病の「バイオマーカー(biomarkers)」と定義されている。現行の診断法および予後判断法は、かかるバイオマーカーを同定し、かつ評価・判断す

ることに依拠しているが、いずれも個別にまた相互に関連した状態で依存している。ある特定の疾病の診断は往々にして、上記した要因を測定するとともに、例えば雇用履歴等の伝統的に定量性に劣る要因のうちの多くについて考慮した結果を組合せて得られるデータを医師、獣医またはその他のヘルスケアー提供奢等の臨床家が客観的に分析することからなる場合が多い。不幸にして、ある疾病を診断し、または予後判断するためのかかる客観的プロセスは、必ずしも潜在的に関連する要因を全て包含することはできず、従ってこれらの要因が正しい診断または予後判断に寄与する程度を正確に加重することができないのである。

一般的に、かかる病理学的過程は、明白な変化が生起した場合にのみ識別可能になる漸進的変化を包含してなるものである。多くの場合において、病理学的変化には、複数のパイオマーカーにおいて生起する微妙な変化が含まれており、単一パイオマーカーが疾病の有無を明示することは稀である。ある一つの疾病の存在を示すのは、前記パイオマーカーの相互関および正常な標準参照範囲に対するパターンである。人口学的要因、環境的要因、雇用因子、遺伝的要因や病歴因子を含むがこれらに限定されない他の追加要因も、特にパイオマーカーのパターンと組合せて考慮検討した場合には疾病の診断または予後判断に有意に容与する可能性がある。残念ながら、ある疾病の存在またはその原因に関連する複数の要因を考慮し、検討するという主観的な診断プロセスは、多少とも正確を欠くものとなり、また有意に容与する可能性がある多くの要因には、充分なウエイトが付与されることがないか、または全く考慮が払われ、検討されることはないのである

個別のバイオマーカーが予見可能な変化を示さず、またかかるバイオマーカー 相互のパターンや相関関係が全体として見た場合明らかでないときは、医師の診 断の正確さは、有意に低下する。またある特定の疾病の診断について関連するバ イオマーカーと人口学的変数との数が増加するにつれて、かかる変数相互の間に 成り立つ関連診断パターンの数もそれだけ増加する。このように複雑さが増大す

るに応じて、パターンを識別認識し、正確に診断し、または疾病を予測する医師 の能力は低下することになる。

ーカー値が正常な参照範囲内に納まる可能性もある。このようなデータに直面した場合、臨床医は、患者がすでにある程度の骨損失を受けている疑いをもつ可能性があるが、骨粗鬆症の存在に関して決定的でかつ意義のある診断を行うことはできないであろう。

いくつかの疾病に関連したバイオマーカーの特徴的な変化については、文献に 記載されている。しかしながら、ある疾病を診断し、かつその予後を決定するに 際して具体的なそれぞれのバイオマーカーを定量的に解釈することは、充分には 確立されていない。一群の臨床検査データの解析からある診断を下すに際して遭 遇する固有の困難は、具体的な疾病に係る従来の診断方法を詳細に検討すること によって最もよく例証される。骨粗鬆症なる疾病についての検討は、以下のよう である。

本発明において「骨減少症(osteopenia)」なる用語は、正常より低い骨量へ の減少を意味する。本発明において「骨粗鬆症(osteoporosis)」という用語は、 骨密度の低下、骨量の減少、および骨組織の微細構築劣化を特徴とする全身化骨 減少症のある特異的な形態を意味する。

骨減少症は、単位容積当りの骨量が充分な機械的支持に必要な量以下にまで低下することを特徴とする、種々の病因を持つ一群の疾病を包含する。骨粗製症は、骨格のうちの無機的部分が漸進的に欠失した結果であり、多くの要因によって引き起こされ得る。原発性骨粗鬆症は、特に女性に共適して頻発し、かつ他に認められ得る原因がなく骨量が減少することを特徴とする年齢に関連した疾患である。しかしながら、骨粗鬆症は男性および女性の双方に生起する疾病である。女性においては、通常は閉程期後の、50才ないし60才代において認められる。男性においては、ほぼ60才ないし70才代においてしばしば認められる。

いくつかの人口統計学的パラメータは、骨粗製症を発症する危険性が高くなっていることに関連する。人口統計および行動によって骨粗製症を発症する危険性 に曝される個人の部分的なリストは、下記の通りである。

閉経期後の女性

紙巻きタバコ喫煙者

前立腺癌は、毎年多くの人が罹患するが、その内多数の人がその疾病によって 死亡している。前立腺癌の早期でかつ正確な診断は、これまでは信頼性と正確さ をもって行うことが極めて困難であった。しかしながら、前立腺癌の早期診断こ そ、この疾病を成功機に治療する可能性を最大限にするため必須である。現行の 検診方法としては、デジタル直腸検査(DRE)、経尿道前立腺生検および血液 中の前立腺特異的抗原の測定(PSA)などが挙げられる。前立腺癌の唯一の診 断上の尺度として血清PSA値に依存すること、特に低PSA値に依存すること は、許容できない不正確な診断水準を招く場合が多い。これらの検診方法は、早 期前立腺癌に罹患した多くの症例を見速すため、その結果前立腺内だけでなく前 立腺嚢外で癌が成長することになる。この疾病は、転移が生起する遥か前に早期 に診断することが必須である。

更には、診断方法としては、良性の前立腺肥大(BPH、benign prostatic hyperplasia)および前立腺癌との識別を行い、また癌症例と非癌症例との区別を行うことが可能であるべきである。またそのほかに必要とされるのは、前立
腺癌を早期の段階で診断しまたはその予役判断を行い、またT1b,T2,T3およびTNxM1として特徴づけすることができる前立腺癌の種々の段階を識別し、区別することが可能である、有効で、信頼性のある、感度の高い、正確な技法である。

骨粗軽症および骨減少症(osteopenia)とは、バイオマーカーが複数である疾病のまた別の例である。下記のバイオマーカーが集合して、骨粗軽症の存在時における特徴的な変化を示すものである。すなわち、カルシウム、リン酸塩、エストラジオール(卵胞期、月経中間期、黄体期または閉経期後)、プロゲステロン(卵胞期、月経中間期、黄体期、黄体中間期、経口避妊薬または60才以上)、アルカリホスファターゼ、肝ALPパーセント、および全膳内ALP)である。これらのバイオマーカーを測定した後、診断を行う臨床医は次に、これらの測定値を正常な参照範囲と比較することになろう。これらのバイオマーカーのうちの

機つかが正常な参照範囲外に外れる一方で、それ以外のものは正常な参照範囲に 明らかに納まる可能性があり得る。いくつかの状況において、すべてのバイオマ

アルコール多量飲酒者

ステロイドなどの種々の薬物使用者

女性ランナーおよびバレーダンサー

カロリー消費量の少な過ぎる男性のマラソンランナー

過食症患者および食欲不振者

食事の貧弱な人

乳製品にアレルギーを示す人

癌罹患者

色白で、スリムな女性

65才以上の全ての男性および女性

女性であることに加えて、三つの最も重要なリスク要因は、貧弱な食事、運動 不足および閉経後であることである。骨粗鬆症に関連するその他のリスク要因と しては、例えば家系が白色人種系または東洋人種系などの人種的要因、色白およ び骨粗鬆症の家系が挙げられる。

骨粗鬆症の発症は、外傷に引き続いて潜行性であるかまたは突発性である可能性が高い。骨粗鬆症に関連した最も一般的に多い愁訴は、背痛(back pain)である。最終的には、この傷みは、骨盤、胸郭および両層にまで広がる可能性がある。脊柱においては、椎骨が圧縮され、その結果背中が「曲がった」形状を呈することがあり得る。脊柱後弯(丸背)または脊柱側溶症などの症状が生起する可能性がある。脊柱が変形した場合、他の身体部分も影響を受ける可能性が高くなる。例えば、肋骨は骨盤に対して押圧され得るし、または胃が骨盤内に圧入されることもあり得る。脊柱に係る種々の問題の他に、骨粗鬆症はまた、股関節、手首や肋骨の骨折の原因になることもある。このような骨折は、ほんの軽度の外傷のみで、ときには外傷を全く伴うことなく生起し得る。Mazess B., et al., "Bone Density of the Radius, Spine, and Proximal Femur in Osteoporosis", J. of Bone and Mineral Research, Vol. 3, pgs. 13–18(1988); Riggs B. L. et al., "Involutional

Osteoporosis", New Engl. J. Med., Vol. 314. pgs. 1676-1686(1986)。骨粗鬆

症に関連したこのような変化は、漸進的であるため、骨粗鬆症はしばしば、その 初期の段階で検知されることがない場合が多い。

カルシウムやリン酸塩は、骨格の無機質部分の主要な構成成分である。血液の 化学的分析を行うと、カルシウム、リン酸およびアルカリ性ホスファターゼが正 常な範囲に納まっていることが明らかになる可能性がある。しかしながら、アル カリ性ホスファターゼのイソエンザイムが有意に増加している可能性がある。骨 吸収の増加が、骨粗鬆症患者において認められるが、これは、破骨細胞の作用の 結果として生起するものであり、ミネラル分と有機質マトリックスの双方の溶解 を伴い、最終的には尿中ヒドロキシブロリンの排泄量が増加するに到る。血清エ ストラジオールは、殆ど専ら卵巣によってのみ分泌されるのであるが、これらの 患者においては著しく低下する。

骨量の初期の低下は、当業者には公知である汎く用いられている四つの方法、シングルホトン吸光光度法(absorptometry)、デュアルホトン吸光光度法(DPA)、デュアルエネルギーX線吸光光度法(DXA)および計算機断層撮影法(CATスキャン)によって骨格を非侵襲的に評価して測定することができる。これらの方法のうち茂つかは、骨中のミネラル含有量を測定するために用いられ、また茂つかの方法は、ある種の骨、または小柱骨対皮質骨について選択的である。これらの方法はまた、放射線暴露のレベルが異なる。

磁気共鳴画像法(MRI)や陽電子放出断層撮影(PET)法もまた、骨密度 や骨活力(bone vitality)に関する情報を提供することによって骨減少症や骨粗 鬆症を含む種々の疾病を診断を行う上で有用な情報を示してくれる可能性がある

X線撮影吸光光度法(RA)は、手の骨ミネラルをX線により非侵襲的に測定するための方法である。標準的なX線装置によって撮影したX線写真は、中央検査室に送られて、コンピュータ制御解析に供される。

現行の標準的な診断手法は、骨粗鬆症の早期検出には有効ではない。骨粗鬆症 において見られる種々の変化は、極めて漸進的であり、しばしば当該疾病の初期 の段階においては見速されることが多い。骨粗鬆症はしばしば、骨量がほぼ30

れた診断システムに対する必要性が生じている。これまでにも、診断におけるパターン認識を実行するために計算モデルを使用しようとする幾つかの試みはあったのである。多変量の検査室データから診断を行うための最も普及した計算方法の一つは、判別関数解析であった。しかしながら、もっぱら古典的なパターン認識技術(幾何学的、構文的、テンプレート、統計学的)にのみ依拠する診断システムは、多くの疾病状態についてその特徴的なパイオマーカーパターンを評価するのには効果的ではない。その理由は、部分的には、当該問題に固有の非線形性質でありまた観察データにおいて既知の数学的構造が欠落しているためである。一組のパイオマーカーをいかに解析して、ある診断に到途するかについて正確な記述を行う法則の明確なセットが存在しないのである。

近年、人工のニューラルネットワークが、多変量検査室データにおける精妙な 診断パターンを認識し、かつ解析する手段として普及しつつある。ニューラルネットワークは、人間や従来の計算方法が同定するには余りにも微妙であり過ぎるか、または余りにも複雑過ぎるいくつかのパターンや傾向を識別することができる能力を有している。人間は同時に二つまたは三つ以上の変数を容易に理解することはできないが、ニューラルネットワークは、数百もの変数の間に成立する相関関係を認知することができるのである。ニューラルネットワークが臨床上の診断および/または予後判断においてその価値を発揮するために開発されてきた分野としては、以下のものが挙げられる。

- ・精神病学 (Mulsant, B.H., "A Neural Networks as an Approach to Clinical Diagnosis", MD Computing, Vol. 7, pp.25-36(1990)を参照)
- ・自閉症(Cohen, let al., "Diagnosing Autism: A Neural Net-Based Tool" , PCAI, pp.22-25(May/June 1994)を参照)
- ・小児放射線医学 (Boone, J.M. et al., "Neural Networks in Radiologic Dia gnosis. I. Introduction and Illustration", Invest. Radiol., Vol. 25, pp. 1012-1016(1990)およびGross, G.W. et al., "Neural Networks in Radiologic Diagnosis. II. Interpretations of Neonatal Chest Radiographs", Invest. Radiol., Vol. 25, pp. 1017-1023(1990)を参照)
- ・乳癌(Astion、M.L., et al. "Application of Neural Networks to the Inte

%または40%も低下して初めて標準的のX線診断技法を用いて明白となるため 、その初期の段階で検知されることがない。初期の骨損失を検知することによっ て骨粗鬆症を防止することは、相対的に進行した段階において当該疾病を同定し 、その後に疾病の進行を防ぐことよりも遥かに侵れている。主要な変質が一日生 起し、その結果骨折した小柱の両端間においてすき間が生じると、現行の治療法 では逸失した骨を復元することは全く期待することはできない。すなわち、治療 努力は、進行性疾病を防止しかつ早期発見することに対して向けられ、その結果 本質的に不可逆的な構造的損傷が生起する前に治療を行うことができるようにし なければならない。Cummings S.R., et al., "Should Perimenopausal Women Be Screened for Osteoporosis?", Ann. Int. Med., Vol. 104, pgs. 817-823(198 6); Courpron P., "Bone Tissue Mechanisms Underlying Osteoporosis" Orthop. Clin. North Am., Vol. 12, pgs. 513-545(1981); Frost H.M., "Mechanical Det erminants of Bone Modeling", Metabol. Bone. Dis. Rel. Res. Vol. 4, pgs. 217-229(1982)。必要とされることは、本疾病に関連した複数のバイオマーカー と人口統計学的変数とを考慮した、骨粗鬆症を早期に検知し、がつ予知するため の方法である。

骨粗鬆症を診断するための現行の方法について生じる問題の一つは、当該手法によっても、骨粗鬆症の根底となる原因に関して一切情報が得られないため、患者に対して適当な治療方針を示すことが困難になるということである。例えば、閉経後の骨粗鬆症の一般的な原因はエストロゲン欠乏であるが、X線技法ではこれを測定することができないのである。骨粗鬆症に係る現行の診断方法に固有のもう一つの問題は、現行の技法はいずれも、骨密度測定を実行するために高価で、高度で複雑な医療装置を必要とする、ということである。更には、患者はX線に暴露される必要がある。そのため、必要とされる装置の価格と平均的な診療所には入手不可能となることとの故にハイリスクの被験者集団についての一般的な検診が不可能となる。

前兆となる一組のバイオマーカーに関する検査室データから、またかかるバイ オマーカーデータと任意に組合せた人口統計学的データからある診断を抽出する ことに関連して生じる困難に鑑みて、複雑なパターン認識が実行可能な自動化さ

rpretation of

Laboratory Data in Cancer Diagnosis", Clin. Chem., Vol. 38, No.1, pp.34-38(1992);Yuzheng, W., et al., "Artificial Neural Networks in Mammography: Application to Decision Making in the Diagnosis of Breast Cancer", Rad iology, Vol. 82, pp.81-87(1993); Kappen, H.J., et al., "Neural Network A nalysis to Predict Treatment Outcome", Annals of Oncology, Vol. 4, Supp. 4, pp.S31-S34(1993); 及URavdin, P.M., et al., "A practical application of neural network analysis for predicting outcome of individual breast cancer patients", Breast Cancer Research and Treatment, Vol. 22, pp.285-293(1992) を参照)

- ・卵巣癌 (Wilding, P., et al., "Application of backpropogation neural ne tworks to diagnosis of breast and ovarian cancer", Cancer Letters, Vol. 77, pp.145–153(1994)を参照)
- ・甲状腺疾患(Sharpe, P.K, et.al., "Artifical Neural Networks in Diagnos is of Thyroid Function from in Vitro Laboratory Tests,"Clin, Chem., Vol. 39, No.11, pps.2248-2253(1993)を参照)
- ·前立腺癌(Snow, P.S., et. al., "Artificial Neural Networks in the Diag nosis and Prognosis of Prostate Cancer: A Pilot Study"J. Urology, Vol. 1 52: 1922—1926(1994) 李 绘图)
- ・子宮頸部癌(Rutenvergの米国特許第4,965,725号を参照)
- ・心臓病学 (Leongらの米国特許第5,280,792号及びFurlong, J.W., "Neural Net work of Serial Cardiac Enzyme Data: A Clinical Application of Artifical Machine Intelligence", Clin, Chem., Vol.96, No.1, pp.134-141(July 1991) を参照)

ニューラルネットワークは、特に種々の診断を行うのに適したパターン認識を 実行する能力がある。論理的な一組の規則からある診断に到達する現行の方法と 異なって、ニューラルネットワークは、一組の規則においてプロセス知識の明白 な符号化を必要としないのである。ニューラルネットワークは、実例から学習す るのである。ニューラルネットワークは、当該ニューラルネットワーク内に入力 するべきデータを前処理した場合、さらに一層効率的に学習する。

コンピュータを利用した臨床パターンの種別分類技法には、二つの基本的な問

題解決のためのアプローチが存在している。第一のアプローチは、ある特定の疾病のプロセスに係る既知の知識と事実(生理学的、解剖学的、分子生物学的、その他)を適用して、観察したまたは測定したデータといくつかの可能な種別分類のクラスの一つとの間のリンクを確立しようと試みることである。このような現存している知識と事実とが、往々にして規則として(例えば、臨床エクスパートシステムなど)、ある型式の数値関数として(例えば、媒介変数による(parametric)統計的推論における統計的分布など)または数式のシステムによってのみ記載可能である複雑なモデルとして(例えば、薬物動力学的モデル)示されることが多い。

第二のアプローチは、本質的には既知の分類結果と対にされた入力値の集合である入手可能なトレーニングデータに基づいて数値分類システムを運応可能に構築しかつ修正する数値手法を用いるものである。このアプローチにおいては、人間の専門的な知識は、明確な型式では表示されることはなく、また表示されることはできない。その代わりに、当該知識は、確認された分類によってトレーニングデータの中において暗示的に供与されている。このような知識の教師あり学習(実例からの学習)による抽出、および当該分類システムの適応可能な構築とは、完全に学習のアルゴリズムに委ねられているのである。この第二のアプローチを備えた分類システムは、例えば多層フィードフォワードパーセプトロン(Multilayer Feedforward Perceptrons)などの種々の型式のニューラルネットワーク分類装置を包含してなる。

いずれのアプローチも、それぞれの欠点を有している。第一アプローチは、当該主題分野における明白な知識を使用して観察した未知データを既知の類(クラス)に関連づける。しかしながら、多くの実際的な状況にあっては、このような知識は不完全であるか、または、その一部分は、分類システムに直接コード化できるほどに明白でかつ正確な用語で表示することができない。一方、純粋数値パ

などの別の場所または直接臨床医のオフィスに送信できるようなシステムである。 かかるシステムは、臨床家の診断および予後判断能力の正確さを高める高性能でかつ高度に調練された予後判断および診断ニューラルネットワークへのアクセス

を提供するものとなろう。このシステムは大容量の患者データを受信し、そして 当該ニューラルネットワークを介してかかるデータを処理して、疾病の診断と予 後判断とを行わしめる性能を有するべきである。

かかるシステムは、ニューラルネットワークが特に訓練された疾病または症状 のいずれについても診断と予後判断を行うために使用できるものであろう。 登明の概算

本発明は、疾病を診断し、検診しまたは予後判断するための装置およびシステ ムに関する。さらに詳しくは、本発明は、訓練されたニューラルネットワークを 使用するコンピュータを用いた方法、並びに、例えばヒトまたは動物等の患者に おける疾病を診断し、検診しまたは予後判断するためおよび当該疾病の重篤度と 原因とを決定するための方法に関する。かかる目的は、下記の工程を実行するこ とによって達成される。すなわち、任意に生物学的、物理的、人口統計学的、人 種的、環境的および病歴データを含む患者に関するデータを収集し、疾病の診断 に関連するデータを選別し、データをデジタル化し、これらのデジタル値をスケ ーリング(scaling) し、テストを実施してデータの持つ判別力を解析し、個別デ ータ値をグループ分けし、これらのデータを前処理して前処理値を作成し、選別 データをコンピュータを用いたニューラルネットワークに入力して、当該ニュー ラルネットワークを訓練し、個別のデータ入力値のニューラルネットワークに対 する寄与度を解析し、診断指数を生成させるように訓練されている最適訓練ニュ ーラルネットワークを性能、精度およびコストに基づいて選別し、他の患者デー タをかかる訓練済みニューラルネットワークに入力して、当該患者が当該疾病に 罹患しているかまたは罹患し得る可能性があるか否かを指示する出力値を生成す ることを含む。

本発明はまた、当該患者データを遠隔地から中央施設に送信する、多数の患者

ターン分類アプローチは、分類システムを構築するという負担を適応可能学習プロセスに課している。得られたシステムの性能は、当該主題分野について大量の事前知識が存在するという事実にも拘らず、トレーニングデータに含まれる情報

の量と範囲およびかかる情報を抽出する際の学習アルゴリズムの実効効率によって限定される。患者データの事前選択または基準化など前処理が一切行われないいくつかの場合においては、ニューラルネットワークのトレーニングは、不可能ではないにしろ、極めて困難である。その理由は、入力変数の数が余りにも大き過ぎる可能性がありまたこのような変数と具体的な疾病との関係が弱過ぎて所望とする予知精度を遠成することができないからである。

従って、必要なことは、例えばバイオマーカーや人口統計学的要因など大量の要因を収容できる装置とシステムで具体化される疾病の診断と予複判断のためのアプローチである。このようなシステムは、多数の患者と例えばバイオマーカーや人口統計学的要因などの患者変数とを処理する性能を有するべきである。疾病の診断と予復判断のためのアプローチは、当該ニューラルネットワークを訓練して疾病を予見しかつ診断するために、高い予知数値を有する要因を選択し、これらの要因を前処理し、そしてデータをコンピュータを用いるニューラルネットワークまたは複数ニューラルネットワーク内に入力するべきものである。これらのニューラルネットワークは、疾病の存在(診断)または将来の発生(予後判断)を示す一つまたはいくつかの出力値からなる診断指数を生成するべきものである。かかるシステムは、患者データを訓練済みニューラルネットワーク内に入力でき、かつ当該患者が疾病を現に有しているべきである。

要には、臨床家はこのようなコンピュータベースのニューラルネットワークが持つ能力を意のままに使いこなすことは滅多にないはずなので、さらに必要なことは、患者データを上記のようなコンピュータを用いるニューラルネットワークに送信することができるシステムであって、該データを受信し、訓練済みのニューラルネットワークに入力し、診断または予後判断を示す出力値を生成し、次いでかかる診断または予後判断に関する情報を例えば発生データ送信ステーション

における疾病を迅速に診断し、検診しまたは予後判断する装置および方法を包含 する。かかる中央施設においては、患者データは、受信後、下記の機能を実行す るコンピュータシステムに導入される。すなわち、該患者のデータを解析して、

データフォーマットの正確さを評価し、当該データをスケーリングして、類似範囲の異種型式の数値を提供し、スケーリングした患者データを訓練したニューラルネットワーク内に導入して、出力値の計算を行い、当該出力値を該訓練済みニューラルネットワークにより生成された診断指数と比較し、かかる比較に基づいて診断または予後判断を作成し、かかる診断または予後判断を逮隔地、任意に初期患者データを送信した場所またはヘルスケアー提供プロバイダーオフィスに送信することを実行する。

本発明の実施態様は、バイオマーカーデータや人口統計学的データを含む患者 データからなる大量のデータセットを迅速に評価し、一つの特定の疾病またはい くつかの疾病について診断または予後判断の作成を行い、その結果を当該患者を 担当するヘルスケアー提供プロバイダーまたは施設に迅速に送信することを可能 にさせる。このシステムは、診断能力を改善して、その結果患者に対して健康を 増大させるだけでなく、時間浪費や治療の遅延や不正確な診断に起因する費用を 低減させる。かかるシステムは、大量の患者標本を検査して、疾病の診断および その予後判断を行う能力を提供し、またヘルスケアー提供プロバイダーが、高度 の正確さと精度で疾病を診断するように特に訓練された高度なコンピュータを用 いたニューラルネットワークにアクセスすることを可能にさせる。

一つの実施態様においては、本発明は前立腺癌を、その極めて初期の段階においてさえも迅速にかつ正確に診断しかつ予後判断するために使用できる。かかる実施態様においては、バイオマーカーや任意に人口統計学的データからなる大量の患者データ群を迅速かつ経済的に検索して、高度の精度と正確さで前立腺癌の診断および予後判断を行うことができる。更には本発明は、前立腺癌の段階を決定することを容易にし、そして良性の前立腺肥大と前立腺癌との区別を行う。

また別の実施態様においては、本発明は、極早期であっても骨粗軽症および骨 減少症を迅速かつ正確に診断しかつその予後判断を行うために使用できる。この 実施態様においては、バイオマーカーおよび任意に人口統計学的データとからなる多数の患者データ群を迅速かつ経済的に検索して、高度の精度と正確さで骨粗 軽症および骨減少症を診断し、かつその予後判断を行うことができる。更には、

本発明は、骨粗鬆症および骨減少症の程度を決定するのを容易にし、かつその原 因変数に関する情報を提供する。

高度の予見有用性をもって診断指数を生成させるようにニューラルネットワークを特に訓練し、かつ新規の患者データ群において正確にかつ迅速に当該疾病を診断するに十分な、バイオマーカーや人口統計学的データなどのデータが患者母集団において存在する患者に対して如何なる疾病をも診断しかつ予後判断することが、本発明の一つの目的である。多数の多変量患者データ群を検索して、疾病の存在を確認し、またはこのシステムを使用してある疾病の予後判断を行うことができる。

従って、ある疾病を診断し、検診し、その予後判断を行い、そして重篤度を決 定するための方法を提供することが、本発明の一つの目的である。

本発明のまたもう一つの目的は、患者のデータを別の場所からデータ受信手段を介して受信し、このデータをコンピュータを用いた訓練済みニューラルネットワークを含むコンピュータ内に送信するかまたは複数のコンピュータに送信し、
該患者データを訓練済みニューラルネットワークまたは任意に複数の訓練済みニューラルネットワークを介して処理し、診断指数となる出力値を生成させ、かかる診断値を、コンピュータまたは他のデータ受信手段を任意に含む別の場所、任意に遠隔場所への送信を行うための別のコンピュータへ送信することによって、疾病を診断し、検診し、または予後判断し、及び重篤度を決定するコンピュータを用いた訓練済みニューラルネットワークシステムを包含してなる方法と装置とからなるシステムを提供することである。このシステムは、一つまたはいくつかのコンピュータおよび一つまたはいくつかの訓練済みニューラルネットワークを含んでいてもよい。

疾病を診断、検診し、または予後判断し、および重篤度を決定する装置を提供 することが、本発明の別の目的である。

図面の簡単な影明

図1は、多重出力を有するフィードフォワードニューラルネットワークを図示するものである。

図2は、単一出力を有するフィードフォワードニューラルネットワークを図示するものである。

図3は、典型的なニューロンの入力と出力との間の数学的関係を示す式である

図4は、本発明の好ましい実施態様に係る模式図である。

図5は、前立腺癌ニューラルネットワーク予後判断システムを構築するために 使用するトレーニングデータを示す。

図6は、前立腺癌を検知するためのニューラルネットワークProstAsu re^{Tu}システムを構築するために使用するトレーニングデータを示す。

図7は、前立腺癌を検知するためのニューラルネットワークProstAsu re™システムを構築するために使用する試験データを示す。

図8は、QuiOs™骨粗鬆症ニューラルネットワーク診断システムを構築するために使用するトレーニングデータを示す。

図9は、QuiOs™骨粗軽症ニューラルネットワーク診断システムを試験するために使用する試験データを示す。

図10は、骨減少症を診断するに際してQuiOs™システムが有する感度および特異性を示す。

図11は、QuiOs™値がL2-L4およびウォード三角(Ward's triangle)におけるT-スコアでの骨ミネラル密度(BMD) 測定値と相関していることを示す726個の試験標本についての動布図である。

図12は、同時多重アクセス推論技術の模式図である。

図13は、コンピュータを用いたニューラルネットワークを用いた、疾病の診断および予後判断を行うための分類装置の構築とトレーニングに係るアプローチの模式図を示す。

図14は、ニューラルネットワークを用いた診断システムの構成を示す。

本発明の一つの特徴は、本発明が前立腺癌を検診し、予後判断し、かつ診断するための方法を提供することである。

本発明のまた別の特徴は、本発明が骨粗鬆症および骨減少症を検診し、予後判

断し、かつ診断するための方法を提供することである。

本発明のさらに別の特徴は、本発明が乳癌を検診し、予後判断し、かつ診断するための方法を提供することである。

本発明のさらにもう一つの特徴は、本発明が卵巣癌を検診し、かつ診断するための方法を提供することである。

本発明のまた別の特徴は、本発明が大腸癌を検診し、予後判断し、かつ診断するための方法を提供することである。

本発明の更なる特徴は、本発明が精巣癌を検索・検診し、予後判断し、かつ診 断するための方法を提供することである。

本発明の一つの利点は、疾病のあり得る原因について一層良好な理解を提供する、疾病を診断するための方法を提供することである。

本発明の別の利点は、癌のあり得る原因について一層良好な理解を提供する、 癌を診断するための方法を提供することである。

本発明のまた別の利点は、多数の患者からのデータ群を迅速かつ経済的に検査 するために使用することができる癌の診断試験法を提供することである。

本発明の更に別の利点は、骨減少症の症状の根底の原因についても情報を付与 する、骨粗緊症のための試験法を提供することである。

本発明のまた別の利点は、多数の人を検診するために使用することができる骨 粗鬆症の診断試験法を提供することである。

本発明のまた別の利点は、患者を放射線に暴露させることなく骨粗鬆症を診断 し、かつ骨減少症の根底となる原因を決定するための方法を提供することである

本発明のこのような、またその他の目的、特徴および利点は、開示する実施態 様および添付するクレームに関して以下において詳述する記載を読めば、明らか となるであろう。

図15は、患者データを受信し、該患者データを訓練済みのニューラルネット ワークで解析し次いで結果を発信するためのProstAsure™コンピュー タベースニューラルネットワークシステムアーキテクチャーの模式機観図である

図16は、患者データ入力を解析し、ProstAsure™診断値を計算す

るシステムアーキテクチャーである。

図17は、異なる年齢群における健常人、BPHおよび前立腺癌に対するProstAsure™による参照基準範囲を示す。

図18は、ProstAsure™試験データ群における標本に対する診断基準を示す。

図19は、健常人、BPHおよび癌患者の診断における統計的に有意なProstAsureTMによる結果を示す。

図20は、193人の試験癌症例におけるProstAsure™による結果を示す。

図21は、416人の試験症例におけるProstAsureTM値対PSA値とをプロットした散布図である。複数パイオマーカーを非線形的に結合することによって、ProstAsureTMは、単一パイオマーカーを用いた場合よりも良好に健常人、BPHおよび癌患者を効率的に分離している。

図22は、ProstAsureTMとPSA単独の診断能力を比較する受信器 (receiver)作動特性 (ROC) 曲線を示す。曲線下部の面積は、試験の有用性の一つの尺度である。Rel. ProstAsureTMは、年齢に特異的な参照標準範囲での正規化を意味する。ProstAsureTMは、癌を健常人とBPHとから分離する場合に統計的に有意で大幅にPSAを性能面で上回っている。

図23は、トレーニングおよび試験データを用いて算出したProstAsure[™]の感度と特異性を示す。

図24は、前立腺癌を検知しかつ判別しまた饋常人とBPH患者を同定する場合におけるProstAsureTMの感度および特異性を示す。

図25は、ProstAsure™のアルゴリズムの数学的記述である。

図26は、QuiOs™のアルゴリズムの数学的記述である。 詳細な説明

以下の特許出願をその全体として本明細書に参照により含める。米国暫定特許 出願第60/001、425号、1995年7月25日出願;米国特許出願第0

8/472,632号、1995年6月7日出願;PCT出願第PCT/US95/01379号、1995年2月2日出願;米国特許出願第08/323,446号、1994年10月13日出願;米国特許出願第08/315,851号、1994年9月30日出願;米国特許出願第07/990,772号、1992年12月14日出願;PCT出服第PCT/US92/10879号、1992年12月14日出願;米国特許出願第07/964,486号、1992年10月21日出願;米国特許出願第07/806,980号、1991年12月12日出屬。

本明細書において「疾病(disease)」なる用語は、身体のあらゆる部位、器官またはシステムの健常な構造または機能(またはこれらの組合せ)からの逸脱として定義される。具体的な疾病は、生物学的、化学的および物理的変化を含む特徴的な症状や微候によって扱され、しばしば人口統計学的要因、環境的要因、雇用要因、遺伝的要因や病歴要因を含むがこれらに限定されない種々様々なその他の要因に関連している場合が多い。いくつかの特徴的な微候、症状およびこれらに関連した要因は、種々の方法によって定量化することが可能であり、重要な診断情報を生成させることができる。

「患者」なる用語は、ヒトまたは動物のいかなるものをも指す。

このような適用の目的のために、ある特定の疾病について特徴的であって、生物学的液体または組織において定量化可能である徴候、症状および/または分析物が、かかる疾病の「バイオマーカー」と定義される。現行の診断法および予後判断法は、かかるバイオマーカーを同定しかつ評価することに依拠しているのであるが、いずれも個別にまた相互に関連した状態で依存している。「バイオマーカー」なる用語は、息者から得られる全ての種類の生物学的データを含む。

かかる患者データは、当該疾病に何らかの関連性を有する種々の種類のデータ

状態(青春期前、青春期、青春期後、閉経期前、閉経期、閉経期後、妊娠可能、 不妊)、体脂肪率、および体脂肪分布に関するデータを含む。生物学的データは また、身体検査の結果を含むが、これには、手による触診、デジタル直腸検査、 前立腺触診、こう丸触診、体重、体脂肪の量や分布、聴診、反射性検査、血圧測

定、心臓とそれに関連した心血管音、膣検査、および頸管、子宮や卵巣触診、子宮管の評価、乳房検査およびX線や赤外線による乳房検査を含むその他の婦人科 検査を含むがただしこれらには限定されない。

さらに別の生物学的データは、患者の病歴の形態として得ることができる。かかるデータは、以下のものを含むが、ただしこれらに限定されない。すなわち、祖父母や父母を含む祖先、兄弟や子孫の病歴、これらの医学上の問題、遺伝的履歴、心理学的プロファイル、精神病、死亡時年齢と死亡原因、以前の疾病と症状、以前の外科手術、以前の血管形成術、ワクチン接種、運動計画、アルコール摂取量、紙巻タバコ喫煙量やドラッグ消費量等の習慣、血圧、脈拍、心電図、心エコー図、冠状動脈造影図、トレッドミルストレス試験、タリウムストレス試験やその他の心血管造影技法などの心臓の情報である。前述した種類の生物学的データの全ては、本特許出願の目的のための「バイオマーカー」と考えられる。

「生物学的液体」なる用語は、血液、血清や脳脊髄、腹腔、腫液腺、涙腺、腹腔、生殖器管、眼内、消化器、呼吸器、胸腔、心膜腔、リンパ腺、尿、細胞内および細胞外の液体ならびに神経液を含むが、これらに限定されない。

「人口統計学的データ」なる用語には、患者の人種、種族、性別、民族性、環境、環境毒素や放射線への暴露度、ストレスレベル、行動パターン、以前の職業と現在の職業とを含む。人口統計学的データは、また疾病の診断と予後判断に有用な患者情報を提供するために使用してもよい。

本発明は、患者における疾病を診断し、検診しまたは予後判断するための方法であって、当該疾病に関連していることが知られている予め定めた群のバイオマーカーの濃度を瀕定する工程、これらの濃度をデジタル値に変換する工程、かかるデジタル値を前処理して前処理値を作成する工程、および、かかる前処理値をコンピュータを用いたニューラルネットワークへ送信し、かくして当該ニューラ

を包含してもよい。当該情報は生物学的であってもよい。かかるデータは、全て の生物学的パラメータの測定値から誘導されてもよい。かかる物質は、例えばホ ルモン等の内分泌性物質、例えば酵素等の外分泌性物質、また神経伝達物質、電 解質、タンパク質、炭水化物、成長因子、サイトカイン、モノカイン、脂肪酸、

トリグリセライドおよびコレステロールを含むが、これらに限定されない。

その他の種類の生物学的データは、恵者から単離された器官、組織または細胞についての組織学的分析から誘導されてもよいが、これには、構造的解析、組織化学、免疫細胞学、インーシツ(in situ)ハイブリダイゼーションやオートラジオグラフィーによる技法などの、しかしこれらに限定されない、全ての数の技法を使用することによって光学顕微鏡的レベルおよび電子顕微鏡的レベルで実施される組織学的解析・分析が含まれる。

生物学的データは、患者から単離し、培養した細胞の分析から誘導されてもよい。これらの細胞の種々の特性は、組織学的および生化学的に検査されてもよい。例えば、患者から除去され、培養された細胞を検査して、ある疾病の存在に関連した特定のマーカーが存在するか否かを調べてもよい。細胞を検査して、細胞の代謝活性を調べるかまたは培地において生成されかつ放出された生産物を調べてもよい。

患者に関する生物学的データは、転写や翻訳に関連した核や細胞質分子、例えばリボ核酸、デオキシリボ核酸やその他の転写因子およびかかるリボ核酸分子の 翻訳から生じた最終生成物分子などを生物学的に分析することから生じた結果を 含む。

また生物学的データなる範疇に含まれるものは、患者について使用される種々の構造的および解剖学的分析法であって、例えば、放射線写真、乳房放射線写真、蛍光間接撮影写真や断層写真であって、X線や磁気共鳴造影法、コンピュータ処理援用断層撮影法、身体内部に導入された放射線不透過性物質の可視化、ボジトロン放射断層撮影法、内視鏡検査法、音波検査法、心エコー検査法やこれらの改良法を含むが、これらには限定されない。

生物学的データはまた、年齢、身長、成長速度、歯の健康、心血管状態、生殖

ルネットワークを訓練して当該疾病を診断しまたは予後判断する工程からなり、 当該ニューラルネットワークから得られる診断指数が、当該患者がいつ当該疾病 を発症するかまたは将来当該疾病を発症する可能性があるかを示すものである前 記方法を提供する。

. .

本発明はまた、患者における疾病を診断し、検診し、または予後判断するための装置であって、当該疾病に関連していることが知られている、患者から由来する予め定めた群のバイオマーカーの濃度をデジタル化する手段、これらのデジタル値を前処理する手段、および、ネットワーク出力値を生成するためのデジタル化しかつスケーリングする手段に接続したコンピュータを用いた訓練済みニューラルネットワーク、該ニューラルネットワークの自得られた出力値を診断指数と比較して、かくして当該患者が当該疾病を発症するかまたは将来当該疾病を発症する可能性があるかを示す診断数値を生成する手段とを含む前記装置をも包含するものである。

本発明の第一の実施整様に従えば、訓練済みのニューラルネットワークを使用して、当該疾病についての一群の予め定められたパイオマーカーまたは人口統計学的データを解析することによって疾患の存在とその重篇度とに相当する診断指数を求めるのである。本発明に従えば、特定の疾病の発症に関連づけられたいくつかのパイオマーカーの測度または人口統計学的データが、ある患者に対して求められるのである。これらのデータは、デジタル値に変換される。そして、かかるデジタル値は、前処理され(スケーリング、打ち切り(truncation)、線形/非線形組合せ(combination)など)、次いでかかる前処理された数値は、選択的には初期数値から算出された一つまたはいくつかの二次的数値と共に、訓練済みのニューラルネットワークに送信し、診断指数を生成させるのである。これらのデータの前処理は、この段階で行われ、ニューラルネットワークに掛かる負担を低減しかつ疾病の診断と予後判断を行う該ニューラルネットワークの正確さと感度を増大させるのに役立つ。ニューラルネットワークは、疾病状態が既知である息者の母集団を、かかる患者のパイオマーカー数値または人口統計学的データと共に導入し、該ニューラルネットワークに該パイオマーカーのパターンを認識する

ように「教える」ことによって訓練されるのである。該ニューラルネットワーク を訓練した後で、疾病状態が未知である患者から得られたバイオマーカー数値を 訓練済みニューラルネットワークに導入する。次に、該ニューラルネットワーク は該情報を処理して出力値を生成するが、この際ニューラルネットワークからの

該出力値は、当該患者がいつ当該疾病を発祥するかまたは将来当該疾病を発祥する可能性があるかを示すものである。

この記載によって束縛されるものではないが、本発明者らは、人工ニューラルネットワーク、特に多重レイヤーフィードフォワードネットワークが、それらのウエイトコネクションを介して疾病を分類する上で重要であるデータパターンに相応するものであることを提案する。更には、かかるニューラルネットワークは、種々の疾患に関連するデータに独自的なパターンを同定することができるのであり、これによって悪性または良性のパターンのいずれにも適合しないように思われるボーダーラインの症例を分類するのに役立つ可能性がある。

名雪ニューラルネットワーク

また、本発明は、患者における疾病を診断し、検診しまたは予後判断するための方法であって、当該疾病に関連していることが知られている、患者に由来する予め定めた群のパイオマーカーの濃度を測定する工程、これらの濃度をデジタル化する工程、かかるデジタル値を前処理して前処理値を作成する工程、分析物のデジタル値をスケーリングする工程、がかる前処理値を第一の訓練済みニューラルネットワークへ導入する工程、および該第一のニューラルネットワークから得られる出力値と第一群の予め定めたパイオマーカーの中の一つまたはそれ以上のパイオマーカーを含んでいてもよい第二群の予め定めたパイオマーカーを第二の訓練済みニューラルネットワークに送信する工程からなり、かくして該第二のニューラルネットワークから得られる出力値を診断指数と比較して、当該患者が当該疾病を発症する可能性があるかを示す診断指数を編るものである前配方法を含んでかるのである。

本発明の第二の実施態様は、ニューラルネットワークによるバイオマーカーの 二段階解析法を包含する。これによって、ネットワークを訓練する場合に支配的

本発明のもう一つの具体的な実施態様は、コンピュータを用いた訓練済みのニューラルネットワークを使用することによって患者の骨減少症と骨粗鬆症の重篤 度および根底にある原因を診断しかつ見極め定めるための方法と装置とからなる システムを包含する。一つの好ましい実施態様においては、この方法は、下記の

バイオマーカーの血清中濃度を測定することを含む。すなわち、カルシウム、リン酸塩、全アルカリホスファターゼ、アルカリ性ホスファターズアイソエンザイム、エラストラジオール、およびプロゲステロンである。アルカリホスファターゼアイソエンザイムは、好ましくは t ーリンパ球由来アルカリホスファターゼまたは血液、肝臓または陽内アルカリホスファターゼアイソエンザイムである。任意に、患者の年齢または人口統計学的データは、訓練済みニューラルネットワークに含まれてもよい。このアルゴリズムによって算出される骨密度係数は、例えば放射腺吸光光度法、定量的コンピュータ連動断層撮影法、二重ホトン吸光光度法や骨密度直接測定法などの標準的な方法で測定された骨密度に高度に相関している。測定されたかかる骨密度係数を次いで減少症重篤度のスケールと比較する

本発明のまた別の実施態様は、決定的な診断を行うためにニューラルネットワークを用いて疾病を検診し、予後判断しかつ診断するためのコンピュータ支援方法に係るものである。本発明は、採取手段、生物学的液体中における分析物の量を検出することができる試料検知手段および試験結果を印刷するかまたはビデオ表示手段上に表示する手段を有する現行の診断装置に対しても適合させることができる。

本発明者らは、バイオマーカーが全体として疾病の過程に対応して変化し、また全体として個別のバイオマーカーよりも優れた疾病予見可能性を持った新規な診断バイオマーカーとなることを発見したのである。これらのバイオマーカーをコンピュータを使用した訓練済みのニューラルネットワーク内で群として処理し、次に分析して単一診断指数を生成させた場合、かかる診断の感度と特異性は増大し、かくして医師が、個別のバイオマーカーを分析した場合よりもより早期にかつより大きな精度で疾病の存在を検知しまたはより大きな精度で予後判断を推

な予知性変数によって創出される偏りが回避される。このような支配的なバイオマーカーすなわち予知性変数は、ニューラルネットワークによって第一の解析からは除外され、その代わりニューラルネットワークによる第二の解析に含められるのである。例えば、年齢が骨粗鬆症の診断において支配的な予知性変数である

場合は、かかる変数は第一のニューラルネットワークのトレーニングには含められることはなく、またかかるトレーニングデータ群は、他の選択されたバイオマーカーに限定される。第一群のバイオマーカーを用いて診断指数を得た後で、第二のニューラルネットワークは、かかる診断指数をよび年齢を含む全ての群の入力データを用いて訓練して、別の診断指数を得るのである。この最後の診断指数は、一つの人工のニューラルネットワークで生成した指数と他の患者の非数値情報を用いた発見的(heuristic)解析から得られた結果とを組合せたものである。

また別の実施態様においては、本発明は、患者の前立腺癌を診断し、検索し、 または予後判断するための装置および方法を備える、ProstAsure™な どのシステムを提供する。この実施態様においては、バイオマーカーの解析と任 意に人口統計学的データから得られたデータを前処理し(例えばスケーリングし)、訓練されたニューラルネットワークに入力するのである。前立腺に特異的な 抗原(PSA)、プロスタティックアシッド(prostatic acid)ホスファターゼ(PAP) および三種の形態のクレアニンカイネース (BB、MBおよびMM) を 、本発明においてはバイオマーカーとして使用する。その他のバイオマーカーや 人口統計学的データも本発明において使用され得ることも理解されるべきである 。例えば、前立腺を触診するデジタル直腸検査の結果を、選択的には他のバイオ マーカーまたは人口統計学的データと組合せてもよい。かかる訓練されたニュー ラルネットワークは、患者が前立腺癌に罹患しているか否かを示す出力値を提供 する。かかる訓練されたニューラルネットワークは、前立腺癌の進行において早 期の段階で高度に正確な診断と予後判断とを提供して、かくして高度の感度と特 異性とを発揮することができる。前立腺癌の段階は、疾病の初期段階においてさ えも決定される。更には、本発明は、良性の前立腺肥大を前立腺癌とから区別す るとともにまた前立腺癌を非癌性の症状とからも臓別するものである。

定することができるようになるのである。

本発明の一つの実施態様に従えば、一つの生物学的液体、またはいくつかの生物学的液体を先ず患者から採取する。ある特異的な疾病に関連したバイオマーカーを標準的な研究室手法を用いて当該生物学的液体中において測定して、その濃度を求めるか、またはいくつかの場合はその存在または不存在を決定する。この

プロセスは従来公知の診断装置で自動的に実施することができる旨理解されるべきである。説明の目的のために、骨減少症および前立腺癌のためのバイオマーカーに係る数値を決定する方法について、いくつかの記載が、本明細書の別のところでなされている。

本発明の方法が疾病を診断するために依拠するバイオマーカーは、疑いのある 疾病を予見させるものであり、かつまたニューラルネットワークによる分析にと って統計的に有意のものでなくてはならない。疾病を診断するうえで統計的に有 意な判別力を有するバイオマーカーの選択は、いくつかのステップからなる。先 ず第一に、対象とする疾病を診断する上である程度の関連性を示しているバイオ マーカーの目録作成(inventory)を行う必要がある。一般的には、疾病の過程の 異なるいくつかの局面またはその他の診断情報を反映するバイオマーカーだけが 含まれていなければならない。第二に、選別したバイオマーカーは、感度、特異 性およびプラスやマイナスの予見性能の点で妥当な診断的価値を有する必要があ る。バイオマーカーが開発されかつ評価される際の規準となる実験プロトコール の設計と実施も、同様に検討されるべきである。三番目に、候補となるバイオマ ーカーの数が多い場合は、形式的な判別能力分析を行ってもよい。しかしながら 、標準的な統計的解析方法の多くは、非線形性の程度が高い分類問題に対しては 充分ではない可能性がある。典型的には、バイオマーカー数値および人口統計学 的データ数値はスケーリングして、異なるバイオマーカー間でまたは異なる人口 統計学的データ変数との間において相対的に類似した数値範囲を得る。このよう にして、異なる変数を測定するに際して固有である数値範囲が異なるために起因 する分散が小さくなるのである。バイオマーカーと他の人口統計学的データを含 む入力変数の前処理は、ニューラルネットワークのトレーニングにおいては重要

な工程である。候相の数が余り多くない場合は、かかるバイオマーカーは全て、ニューラルネットワークトレーニングの最初の試行に組み入れてもよい。このネットワークへの入力バイオマーカーのうちの一つまたは機つかが分類の意志決定 過程に対して無関係である場合は、訓練済みのニューラルネットワークのネット ワークコネクションウエイトにおいて、このことが反映されることになろう。次に、

これらの数値をある特定の疾病に係るバイオマーカー群から排除してもよい。ニューラルネットワークによる解析のために選別された一つのバイオマーカーが持つ統計的有意性を評価しかつニューラルネットワークを訓練するのに使用するバイオマーカーを選別するための方法としては、他に幾つかあるが、これらは当該技術分野においてよく知られている。

上記にて説明した規準に適合する、すなわちある特定の疾病を予見させるものであり、かつニューラルネットワークによる解析に対して統計的に有意であるパイオマーカーは、前立腺癌、骨粗鬆症、卵巣癌、大腸癌、乳癌や精巣癌を含むいくつかの疾病例に対して以下において明らかにされる。以下に記載する具体的な疾病に係るパイオマーカーは、本発明の実施例であり、本発明の範囲に何等の制限を加えるものと解釈されるべきでないことが、理解されるべきである。

卵巣癌 [前立腺癌I	大腸癌
LASA-P (*)	LASA-P (N)	LASA-P (*)
CAI25	PAP	CA19-9
DM/70K	PSA	CEA

立腺癌!」
AP
SA
K-MB
K-MM
к-вв

めて、ただしこれらに限定されない、バイオマーカーおよび人口統計学的データ を同定確認することができる疾病なら全ての疾病の診断に同様に違合している。

ある一つの疾病に係るバイオマーカーを決定して、かかるバイオマーカー数値をデジタル化して前処理し、次にコンピュータを使用した訓練済みのニューラルネットワークで解析して、単一診断値を得る。パターン分類問題のための最も一般的なニューラルネットワークアーキテクチャーは、フィードフォワードネットワークであって、これは、典型的には入力レイヤー、一つまたはそれ以上の隠れレイヤーおよび出力レイヤーから構成される。図1および2は、二つの異なるフィードフォワードネットワークにおけるニューロンの配列を示す。

ニューラルネットワークの各レイヤーを構成する要素は、ニューロンまたはノードと称される。入力は、入力レイヤーから隠れレイヤーに向けて、次いで出力レイヤーに向けて前方にフィードされる。各レイヤーにおけるニューロンの数は、当該ネットワークを訓練する前に決定する。典型的には、それぞれ一つの入力変数に対して一つの入力ニューロンまたはノードが存在し、またそれぞれ一つの出力変数に対して一つの出力ノードが存在する。ニューラルネットワークへのこれらの入力は、予測因子の変数である。これらの予測因子の変数は、定量的であるかまたは定性的であり得る。ニューラルネットワークは、データ分布の仮説を一切作成することはなく、同時に定量的と定性的入力の双方を同時に使用することができるのである。本発明においては、バイオマーカー数値および任意に生成した数値を前処理過程において0.0と1.0との間または一1.0と1.0との間の数値に再スケーリングし、かくして入力変数を構成することになる。

ネットワークの出力は、出力範疇を表す。例えば、悪性度は、悪性出力ニューロンの最大出力とまた良性ニューロンの沈黙とによって要されるのであるが、他方では良性過程は、良性ニューロンの出力と悪性ニューロンの沈黙とによって要される。単純算術関数は、かかる二つのニューロンを組合せて単一診断指数を与える。またはその代わりに、単一出力ニューロンを使用することができる。0.

5以上の出力は、悪性度を表示し、また0.5以下の出力は、良性の症状を示す ことになろう。このようにして、診断指数は直接的に得られる。あるいは、逆に

乳癌	精巣癌	骨粗黏症
LASA-P'	LASA-P "	カルシウム
CEA	AFP	リン酸塩
血漿中HER2/neu		ニストラジオール
	CA 15-3 (1)	プロゲストロン
		ALP
		ALP-アイソエンザイム1
		ALPーアイソエンザイム 2

上記にて使用した略語の表を以下に示す。

AFP	アルファーフェトプロテイン
CA-125	癌抗原125
CA 15-3 (R) ***	乳抗原115D8/DF3
CA 19-9	炭化水築抗原19−9
CEA	癌胎児性抗原
CM-MM	クレアチンカイネース、MM サプフラクション
СМ-МВ	クレアチンカイネース、MB サプフラクション
СК-ВВ	クレアチンカイネース、BB サブフラクション
DM/70K	卵巣マーカーNB/70K
HCG-Beta	ヒト絨毛性ゴナドトロピン、ベータサプユニット
血漿中HER 2/neu	c-erb B-2 (HER2/neu)
	血漿中の腫瘍プロテイン
LASA-P(*) *	血漿中脂質関連シアル酸
M-CSF	マクロファージュコロニー刺激因子
PAP	プロスティックアシッドホスファターゼ
PSA	前立腺特異的抗原
L	

*: LASA-Pは、DIANON Systems、Inc. の登録商標である。 **: CA15-3は、Centocor、Inc. の登録商標である。

多数の疾病が、本発明の方法に従って診断され得る。本発明による診断に対し て適合するためには、当該疾病に係るバイオマーカーおよび人口統計学的データ が定量化可能なものでなくてはならない。かかるバイオマーカーおよび人口統計

学的データはまた、当該疾病を予見させるものでなくてはならず、また相互に統 計的に有意でなくてはならない。本発明の方法は、感染性疾病や遺伝子異常を含

した記号表示を使用し得るであろう。

隠れレイヤーの数と隠れレイヤーの中でのノードの数は、当該ネットワークの 性能に対して重大な影響を及ぼす構成可能なパラメータである。実際、隠された ニューロンの最適数は、経験的に決定される。隠されたニューロンの最適数を決 定するための手段は、当業者には充分公知であり、解決する問題の複雑さに依存 して異なる。

本発明においては、当該ニューラルネットワークの一つの実施態様は、逆伝搬トレーニングアルゴリズムを用いた多重レイヤーフィードフォワードパーセプトロンである。隠れレイヤーの数とそれぞれの隠れレイヤーの中でのニューロンの数は過去においては、当該診断問題の複雑さの水準に充分に適合するように決定されていた。トレーニングセットにおける標本は、現実の実際的適用において遭遇する可能性のある全ての事態を代表して、しかも重大な矛盾は一切伴わないことおよび汎化・相互妥当性検証試験における標本の数と層別化とは統計的に充分であることを前提として、下記する規準を使用して、週別したネットワーク構成が適当であるか否かを決定する。

トレーニングアルゴリズムパラメータを何度も関製した後でも、ネットワーク がトレーニングセットにおける標本の大半を正しく分類することが継続してでき ない場合は、そのネットワークの複雑さを増大するべきである。

他方では、ネットワークが高い率で正確にトレーニングセットを分類し而も当 該試験セットにおいて多数の標本を正確に分類することができない場合は、ネットワーク構造が恐らくは、解決する問題にとって余りにも複雑過ぎるのであろう 。すなわち、トレーニングデータセットに適合するだけの十分な固有の柔軟さを 有しているものの、試験データセットを分類するに十分な予測能力は有していない、ということである。このことが該当する場合は、隠れレイヤーにおけるニューロンの数を、漸進的に低下させるべきである。あるいは、多重隠れレイヤーが 存在する場合は、かかる隠れレイヤーは漸進的に低減させるべきである。

若干だけ多過ぎる隠れニューロンのニューラルネットワークによって汎化を遠 成することも可能である。このようなことは、トレーニングの過程において相互 妥当性検証試験データを用いて一部訓練済みニューラルネットワークを定期的に 試験し、かつ当該相互妥当性検証誤差が最小値に達しかつ増加し始めた瞬間に停 止することによって行われる。

トレーニング標本セットを大きくすることは、通常は必ずしも必要ではない。トレーニングセットにおける標本が十分な統計的有意差でもってあらゆる可能性のある症例を既に表示し、代表しているものである場合は、新規の標本の追加は一般的には、トレーニング標本における情報の量を増加させるものではない。そうではないならば、標本中におけるノイズ比率に対して有用な情報を減少させる可能性がある。正反対の場合は、トレーニングセットが余りにも少な過ぎると、一般的には母集団におけるあらゆる可能性のある変化をカバーすることができないことになろう。その結果得られるネットワークは往々にして、かかるトレーニングセットにおける全ての症例をただ単に記憶するに過ぎず全く一般化しない場合が多い。

入力および出力のレイヤーは、直接的に関連づけられない。あらゆる入力ニューロンは次の隠れレイヤーにおけるあらゆるニューロンに関連づけられ、またある隠れレイヤーにおけるニューロンは、隠れレイヤーの数によって次の隣接した隠れレイヤーまたは出力レイヤーにおけるあらゆるニューロンに関連づけられている。一つの特定のニューロンに対するこのような多重コネクションのそれぞれは、加重される。隠れレイヤーおよび出力レイヤーにおいては、各ノードは、それぞれのコネクションウエイトとバイアス項とを乗じて入力活性化を合計する。かかる加重合計は次いで、非線形出力関数を通過するが、この関数は典型的には、ネットワークに複雑な非線形関係を表示する能力を付与するエス字型関数である。一つのニューロンは、それへの加重入力の総和が関値よりも大きくなった場合発火する。図3において示すように、ニューロンが一旦関値を越えると、その出力の大きさは、正味入力のエス字型関数となる。ニューラルネットワークにおける活動度の最終結果は、正味の出力、すなわち入力の複雑な非線形関数である

要するに本発明によれば、先ずは、ある特定の疾病に対するバイオマーカーま

に使用される入力変数となる。それぞれの患者に対して、かかるネットワークは、診断を推定するためにかかる患者の前処理された数値を使用するが、得られた診断は次に、現実の診断と比較される。ネットワークの診断が正しい場合は、ネットワーク内におけるコネクション強度と関値は、変化することはなく、次の患者がネットワークに提示される。当該診断の推定が正しくない場合は、隠れレイヤーおよび出力レイヤーにおけるコネクションウエイトと関値は分類誤差の大きさを低減するように関節される。いくつかの調節を行った後で、次の患者を提示する。トレーニングは、トレーニング群の全ての患者が正しく分類されるか、またはいくつかの事前に定めた停止の規準が満たされる(例えば、繰り返しの最大数)まで続行する。

ニューラルネットワークを訓練する場合、トレーナーは、分類誤差、すなわち正しくない診断、の定義に関して判定限界を定めてもよい。該当するパラメータは、誤差許容度であって、推定した出力が実際の正確な出力に対してどの程度まで近接しなくてはならないかを特定するものである。例えば、二つの出力ニューロンを使用しかつトレーニング許容差が5%に定められている場合は、悪性度の推定は、悪性出力ニューロンが最大値の95%で発火しかつ良性ニューロンが最大値の5%で発火したときは正しいものと考えられる。同様に、良性診断の正しい推定とは、良性出力ニューロンが最大値の95%で発火し、また悪性ニューロンが最大値の5%において発火することを意味する。分類誤差を決定するための方法は、当業者には公知である。

本発明の一つの好ましい実施態様においては、単一出力ニューロンを使用した場合は、良性の正常な診断は、0.1の出力にセットされ、また悪性または異常な診断は、0.9なる出力にセットされる。または、これとは逆の表示を使用することもできる。誤差許容度は、調節可能なパラメータであり、ネットワークが正確な診断を行う際の成功度を決定するうえで重要である。

ニューラルネットワークを所望疾病に対して訓練した後、疾病が未知である患者と恐らくは疾病を持たない患者とから得たバイオマーカー値および任意に人口

統計学値をデジタル化し、前処理し、次いで訓練済みのニューラルネットワーク

たは人口統計学的変数の値が決定されかつスケーリングされる。かかるバイオマーカーは入力レイヤーから隠れレイヤー(複数のレイヤー)へ、次いで該ニューラルネットワークの出力レイヤーへと前方に向けてフィードされる。入力レイヤー中のニューロンの数は、ネットワークが訓練される前に決定されるもので、ある特定の疾病を予測するバイオマーカーの数に相当する。かかるバイオマーカーは事前に選別され、バイオマーカー数値は前処理される。それぞれの診断変数すなわちバイオマーカーに対しては一つの入力ニューロンが存在し、またそれぞれの所望の出力に対しては一つの出力ニューロンが存在する。特定されたバイオマーカー以外に診断変数は、人口統計学的情報を含んでもよい。出力レイヤーにおけるニューロンの数は、所望される出力の型式に依存して異なる。隠れレイヤーにおけるニューロンの数は、トレーニングの過程において経験的に決定される。

特定の疾病を診断するため使用されるニューラルネットワークは、かかる診断を行うように訓練されるのである。ある一つの実施態様における本発明によれば、かかるニューラルネットワークは、逆伝漿によって訓練される。逆伝漿とは、数値間における最善のコネクションウエイトを決定することによって一群の入力標本と出力標本とと正確にモデルとして形成するようにニューラルネットワークを訓練する技法を言うのであり、当該技術分野においては公知である。本発明の目的のためにニューラルネットワークを訓練するために用いられ得るその他の技法としては、その他の非線形大域的最適化技法のいかなるものであってもよく、例えば遺伝子検索アルゴリズムがある。しかしながら、フィードフォワード、逆伝播ネットワークが最も一般的に知られている。

かかるニューラルネットワークを訓練する初期の段階においては、ネットワーク内におけるコネクションウエイトは、無作為化されている。かかるトレーニングデータは、次に一度に一データずつネットワークに提示される。本発明に従えば、かかるトレーニングデータは、一グループの患者に対するが折されてオマーカー値または人口統計学値およびこれらの患者のそれぞれに対する診断とから構成される。かかるバイオマーカー値および選択的には、人口統計学値をデジタル化し、

次いで前処理すると、かかる前処理された数値は、ネットワークを訓練するため

に導入する。その後、このニューラルネットワークは特定の疾病の有無の診断に相当するある数値を生じる情報を処理する。本発明によれば、このことは、一つの単一出力ニューロンまたは複数の出力ニューロンを使用することによって違成される。一つ以上の出力ニューロンを使用した場合は、かかるニューロンからの出力を合わせて、単一の診断指数を生成させる。

図4に示したように、本発明の第二の実施整様においては、訓練されたニューラルネットワークによるバイオマーカーの解析によって得られる診断値は、さらに一群の発見的(heuristic)規則を別の追加的患者情報と組合せて解析する。かかる別の追加的患者情報には、例えば家族の病歴や人口統計学的情報などが含まれる。次にこのデータを処理して、第二の単一診断値を得る。

もう一つの実施態様においては、本発明の同時、多重アクセス推論技術システムは、現存する知識とトレーニングデータから数値としてのみ抽出することができる潜在的な情報との双方を利用するものである。現存する知識の利用は、診断を受ける患者に特異的なパイオマーカーの正常な参照標準範囲をセットするという形式であってもよい。かかるシステムは、図20において記載したように以下の四つの主要機能ブロックを有する。

1. 入力データ前処理

このブロックにおいては、個々の被験者について観察したデータ値は、変換と結合わせとのシークエンスを通過する。この手順の目的は、関連しない「ノイズ」データを削除しつつ、最も明白な型式で有用な情報を保持する型式に生の入力データを変換することである。さらには、初期の入力を用いて、二次的入力変数を生成させてもよい。かかる変換は、往々にして本質的に非線形であることが多いが、適応可能な学習および分類ブロックにかかる負担を軽減するのに役立つ可能性がある。

2. 機械輪的(mechanistic) (現実的(realistic)) モデル形成とシミュレーション

このブロックにおいては、ある特定の疾病過程について入手可能な知識と情報

を使用して、例えば下記のようなしかしこれらに限定されない分類と変数とを含

む測定した患者データの生成源に関連する通常プロセス(生理学的、解剖学的、 薬理学的、病理学的、分子生物学的、遺伝学的などの)の茂つかについて機械輸 的(現実的)モデルを確立する。

電気的診断方法

EEG

EKG

EMG

断層×線提影

神経伝導法

造影診断方法

X線

NMR

CTスキャン

PETスキャン

蛍光摄影法

乳房摄影法

音波摄影法

赤外線

心エコー図

種々の生物学的液体中のバイオマーカーを測定するための臨床検査診断法

血液

尿

睡液

胃腸液

生殖器液 脳脊椎液

PCR

遺伝子マーカー

3. 相違と異常の検知

この同時多重アクセス推論技術システムにおける重要な概念の一つは、健常状態と疾病のプロセスに係る現存の知識(すなわち、CADRSおよび上記診断方法)と事実を利用することにより、数値優先型適応可能パターン分類サブシステムを、患者の状態の相違に起因する観察データの通常の変動で多重定義することを回避することである。このブロックにおいては、機械論的モデルの出力結果は、観察した患者データと比較される。その相違(必ずしも数値の単純な数字上の相違ではない)を次に、入力として適応可能パターンサブシステムに送り込むことによって、所望とする臨床指標を得る。

4. 適応可能パターン分類サブシステム

このブロックにおける分類機能/アルゴリズムは、臨床上の問題が持つ複雑な 性質が原因で、その本質においてしばしば非線形であることが多いが、特別なケ ースとして線形または段階的線形システムを包含している。このような分類機能 の構築とそのパラメータの決定は、分類問題が有する既知の性質および最も重要 なことであるが、利用可能なトレーニングデータに包含される明白な情報とに基 づいている。このような遍応可能分類システムの例としては、情報を分類する種 々の形式の人工ニューラルネットワークが挙げられる。

本発明を下記の実施例によってさらに詳細に説明するが、かかる実施例は如何なる点でも、本発明の範囲に種々の制限を課するものとして解釈されるべきではない。反対に、明白に理解されるべきことは、本明細書を謎了後に本発明の精神および/または添付するクレームの範囲から逸脱することなく当業者にとって自明な、かかる実施例についての様々な他の実施態様、変更および均等物に依拠することが可能であるということである。

データの解析においてニューラルネットワークを用いる下記の実施例の機つかにおいて、Neural Shell 2、Release 1.5(Ward Systems Group, Inc.)なるニューラルネットワーク開発プログラムを、Pentium 6.0 mhzコンピュータ(Magitronic, Inc.)において当該ニューラ

ルネットワークのトレーニングのために使用した。他の実施例においては、別の

ラジオイムノアッセイ、ELISA

クロマトグラフィー

受容体测定法

組織学的診断法

組織分析

細胞学

租織型分類

免疫細胞化学

組織病理学的分析

電子顕微鏡

インシツハイブリダイゼーション

采理動力学的診断法

治療薬物のモニタリング

受容体の特性評価と測定

その他の要因

身体検査

病歴

精神病歴と心理学的履歴

行動パターン

行動試験

人口統計学的データ

ドラッグ、アルコール、タバコおよび食品摂取のパターン

環境的影響(雇用、化学薬品、放射線、トキシン等への暴露)

肉眼病理学

このようなモデルは、検討対象となっている個別の患者に係る入力データ、または個別の患者が属する患者クラスの情報に基づくものである。これらのモデルのシミュレーション出力が、観察した患者のデータとの比較を行いかつ次の機能

ブロックにおける相違や異常を検知するための基礎となる。

コンピュータハードウエアを使用する。

実施例 1

下記の実施例は、前立腺癌の予後判断を行うためのニューラルネットワークのトレーニングについて記載している。

合計 5 2 の症例を、トレーニング群と一般化試験群との二つのグループに分けた。トレーニング群は、4 0 の症例を含み(2 8 例は安定状態、また 1 2 例は進行状態)、また、一般化試験群は 1 2 の症例を含むものであった(9 例は安定状態で、また 3 例は進行状態)。

初期ネットワークアーキテクチャーは、分類タスクの複雑度に基づいて選択した。多重レイヤーフィードフォワードネットワークを使用した。初期アーキテクチャーの選択は、隠れレイヤーの数、および各隠れレイヤー中のニューロンの数の選択からなるものであった。試行繰り返しを何度か行って、トレーニング症例群と一般化試験症例群の双方において、良好な結果を示す満足すべき構成を決定した。本ネットワークは、9つのニューロンを有する一つの隠れレイヤーと2つの出力ニューロンを含むものであった。

初めに、かかるニューロン間のコネクションウエイトを無作為にセットした。ニューラルネットワークは、5つの入力ニューロンを有するものであったが、これらは前立腺癌にとって有意である5つの入力変数、すなわちTPS、PSA、PAP、CEAおよびテストステロンに相当するものであった。トレーニングデータは図5に示す。トレーニング過程において、各患者に係るこれら5つの入力変数を先ず線形的に0.0と1.0との間の連続範囲にスケーリングした。得られた五個の数を次に、入力ベクトルとして人工ニューラルネットワークの入力ニューロンに提示した。

入力ベクトルのそれぞれに対して、このネットワークは、ネットワークニューロン間におけるコネクションウエイトに基づいた出力を生成した。この出力は使用した出力ニューロンの数に依存して、単一値であるかまたは数のベクトルであ

り得る。使用したネットワークは、二つの出力ニューロンを有するものであった 。この二つのニューロンの出力は、下記の数学式によって処理され、単一診断指 数が得られた。

指数= (ANN2-ANN1) /2+0.5

ネットワーク中における各々のニューロンは、全ての入力の和を非線形 s 字型 関数 (しばしばロジスティック関数) を経由してニューロンに写し、次いでその 結果を次に隣接するレイヤー中におけるニューロンのそれぞれと全てに送ること によって出力計算に関与した。生成した出力またはそれぞれの出力ニューロンを 所望とする [目標] 出力と比較した。0. 1 なる数値は、定常状態の診断に相当し、また0. 9 なる出力は、進行状態の診断に相当するものであった。この楚は 誤差を計算するために使用したが、トレーニング症例群全体に亙ってネットワーク出力と目標値との差を低減させようという試みにおいてネットワークコネクションウェイトを調節する際にトレーニングアルゴリズム、すなわち逆伝搬アルゴリズムをガイドした。

トレーニングの後で、このニューラルネットワークは症例の100%を正しく 分類した。

一般化試験結果を提示した場合は、この訓練済みのニューラルネットワークは 、定常状態の症例の100%、および疾病が進行している症例の66%を正しく 同定し確認した。

実施例2

ProstAsureTMPルゴリズムについての数学的記述は、本明細書に添付した図25に示してある。ProstAsureTMのトレーニングデータと試験データは、図6および図7にそれぞれ示してある。このトレーニングデータセットは、年齢、PSA、PAP、CK-BB、CK-MB、CK-MM、全CK、デジタル値開検査および民族に係る息者データを示す。

ProstAsure[™]システムは、試験データおよびトレーニングデータに おける癌検知の感度と特性(百分率で表示)を下記のように示した。

のヒトおよび動物における疾病の重篤度を標準方法の一つまたは幾つかによって 測定する。測定値は次に、重篤度スケールに相応した数値が付与され、割り当て られる。このスケールは、疾病に罹患していないヒトまたは動物から重篤な疾病 に罹患したヒトまたは動物までの範囲に渉るのであり、好ましくは数字のスケー ルである。例えば、健常であるかまたは軽度の疾病に相応するある数字を割り当 て、また中程度の疾病に相当する別の数字を割り当て、また重篤な疾病に相当す る第三の数値を割り当てても良いであろう。

重篤度が異なる疾病に罹患したヒトまたは動物の群において予め決めたセット の血液成分の濃度を次に測定し、求める。本発明に従えば、疾病の重篤度を従来 公知の一つまたはいくつかの方法ですでに測定済みである同一群のヒトまたは動 物において血液成分を測定することが好ましい。

骨減少症

本発明の一つの実施態様を実施する一つの例は、ある患者において骨減少症を診断するための方法である。この方法は好ましくは、六つの血液構成成分を使用し、かかる構成成分は、カルシウム、リン酸塩、全アルカリホスファターゼ、アルカリホスファターゼアイソエンザイム、エストラジオールおよびプロゲステロンである。本発明を実施する上で好ましいアルカリホスファターゼアイソエンザイムとしては、リンパ球由来アルカリホスファターゼアイソエンザイムおよび骨、肝臓または腸管由来アルカリホスファターゼアイソエンザイムが挙げられる。本発明は、前記した六つの血液組成を用いて、これらの試験のための数値を本明細管に図26として添付したQuiOsTMアルゴリズムに入力することによって骨密度比を計算することからなる。年齢、体重および身長もQuiOsTMアルゴリズムに含める。

患者の骨減少症状態を診断する他に、骨減少症の根底にある原因の指標も、本 発明を用いて決定することができる。例えば、本明細書に記載した本発明を実施 することによって、患者の骨減少症がエステロゲンの閉経期後欠乏によって引き 起こされたものかまたは例えば癌等の他の何らかの症状によって引き起こされた ものかを決めることができる。このことによって、主治医は骨減少症に対する適 検知感度試験トレーニング前立腺整(PC)80.3%84.4%ステージ2のPC85.385.1ステージT 2、T 3 およびTN x M 1 (PC)87.987.9BPHをBPHとして検知66.168.9

同定の特異性	パーセン				
非癌を非癌として	92. 8%	91.8			
推定健常人を健常として	67. 6	69. 2			

注記: BPH=良性前立腺肥大

これらProstAsureTIIシステムの結果はPersonのカイ二乗検定で分析すると、統計学上極めて有意なものであった。カイ二乗値は128.8で、自由度4、p値<0.0001であった。これらの結果は、ProstAsureTIIシステムの感度および特異性が前立腺癌を診断し、疾病の段階を判別し、良性前立腺癌肥大および健常者をそのとおりに認識することを示している。

実施例3

この実施例においては、骨粗鬆症を診断するためのニューラルネットワークに 関する構築とトレーニングを説明する。トレーニングと試験のデータは、図8と 図9にそれぞれ示してある。QuiOs™アルゴリズムの数学的配述は、図26 として添付してある。この実施例においては、骨粗鬆症を診断するためのニュー ラルネットワークについてその構築とトレーニングを説明する。

図8には、骨粗鬆症を診断するためのニューラルネットワークを訓練するため に使用したデータを示す。選択したバイオマーカーには、年齢、カルシウム、リン酸塩、エストラジオール(ETWO)、プロゲステロン、全アルカリホスファターゼ、全腸管アルカリホスファターゼ、および肝臓アルカリホスファターゼ%

とを含むものであった。図8には、さらにはこのニューラルネットワークによって得られた診断指数を含めてある。

図9は、図9におけるデータを用いて訓練したネットワークを試験するために 使用したデータおよび得られたニューラルネットワークでの診断指数を示す。

本発明の一つの態様を実施するに際して、異なる重篤度の疾病に罹患した一群

切な治療法をよりよく処方することができることになる。

本発明において使用される血清試験のうち五つは、臨床検査において普通に実施されている試験である。 t ーリンパ球由来アルカリホスファターゼの試験は、実験的なものにすぎない。しかしながら、血液、肝臓や腸管のアルカリホスファターゼアイソエンザイムの試験も知られている。これら六つの血清成分を測定するために用いられる試験の種類は、当該試験が測定する成分の血中濃度を正確に与える限りにおいて、本発明にとっては重要ではない。これらの結果を図10および図11に示すが、骨減少症の診断において卓越した感度と特性を示している

実施例4

この実施例では、疾病のコンピュータ援用診断および予後判断を目的とするコンピュータベースのニューラルネットワークを用いた分類装置の構築とトレーニングに対するアプローチについて説明を行う。下記の文字を付した文節は、図13において示した文字つきラベルをいう。

a. ニューロンの初期選択

疾病の進行過程に関連するバイオマーカーおよびその他の尺度(解剖学的、生理学的、病理学的など)を、当該疾病の診断および当該疾病の進行の段階の診断を行う上で有用な情報が抽出されるように選択する。かかる選択は、医学の専門知識、基礎生物医学化学における現行の知識や臨床研究の進歩に依存する度合いが大きい。

b. 判別力の試験

選択した入力が、個別にまた線形的や非線形的な組合せで有する判別力の統計 的解析を、トレーニングセットから得た試験データを使用して行う。使用するソ

フトウエアの種類には、市販の統計パッケージ(例えばMath Works, Inc.のMatLabTM, StatSoft, Inc.のStatistira for Windows release 4.5など))や入力数 値の非線形組合せおよび変換による層別化解析のためHorusスタッフが開発 したプログラムが含まれる。科学的データの可視表示技法を使用して、非線形的 組合せや変換をガイドする。トレーニングデータにおいて異なる診断群の患者デ ータポイントを分離するに際して全く判別力を有さない入力は、選択した入力の プールから除外する。

c. 個別入力の群分け

. : . :

初期に同定した入力のうちの機つかは、疾病過程の同一局面に関して密接に関連した尺度であるかまたは単に異なる尺度のいずれかであり得るのであって、これらは一緒に入力のサブセットに群分けされ、分類される。ニューラルネットワークを用いた分類装置(これは、ニューラルネットワークで実行される分類システムを提供する)の開発過程において、各サブセットからの入力は、一度に一つずつ使用し(先ず最初により高い判別力を有するもの)、当該分類装置への現実の入力のリストを作成する。生物医学の専門的知識は、この群分け作業において使用する。例えば、CA125やCA12511等の同一の生物学的現象を測定する、2つの若干異なる試験は、一緒に群分けされる可能性がある。入力間の相互作用、関連や一致に関する統計的解析は、このような群を間定するのに役立つ(例えば、カイ二乗や二点 t 一検定など)

d. 前処理

この前処理工程は、入力値、すなわちニューラルネットワークを用いた分類装置に現実の入力として使用する「前処理値」の作成を含んでなる。この工程は、デジタル値であってもよい初期入力バイオマーカーまたは人口統計学数値の線形的または非線形的変換(例えば再スケーリング)および/または式入力値の線形的または非線形的組合せを用いた二次入力の生成を含む。この工程で使用されるソフトウエアおよび操作法は、上記した工程も「判別力の試験」のそれらと類似している。工程りにおいては、その目的は、特定のバイオマーカーまたはその他の測定値が何らかの有益な情報を提供するか否かを決定することである。しかし

ながら、この工程 d においては、その目的は、十分な判別情報を有する以外に、ニューラルネットワークの負担を軽減するような情報を提供するはずである、ニューラルネットワークを用いた分類装置への一群の入力を見出すことである。この工程においては、統計的、数学的および計算的手段を使用して、当該情報を「前消化(pre-digest)」する。例えば、非線形式で組合せた二つの入力は、分類の

f. 個別の入力の寄与度についての試験/評価および解析

この工程においては、訓練済みのニューラルネットワークを用いた分類装置の性能は、分類意思決定成分としてニューラルネットワークを使用した分類システムであるニューラルネットワークを用いた分類装置の構築とトレーニングにそれまで関与したことがない試験データセットから得られたデータによって評価される。ニューラルネットワークを用いた計算においては非線形的性質があるために、ニューラルネットワーク分類装置の最終的出力を生成させる上で個別の入力の寄与度を直接的に解析することは、往々にして不可能であることが多い。以下の工程を使用する。1)それぞれの入力から生じたネットワークコネクション強度の検索、2)ニューラルネットワークの出力の相対的な変化を単一入力値の変化と比較する感度解析、および3)多重入力の同時的変化に関して感度のある表層を構築するためにモンテカルロ標本採取法を用いるなどさらに完全な解析方法。

g. 最善に訓練されたニューラルネットワーク分類装置の選択

入力値の追加/削除およびニューラルネットワーク分類装置の構築/評価からなる繰り返しプロセスによって、ニューラルネットワークを用いた診断システムの多重構成が得られる。「最善」の選択は、以下の二つの主要な判断に基づく。
1) 絶対的な及び現存する方法と比較したシステムの効率、および2) 入力の数とそれに開連した費用。

実施例5

コンピュータ援用診断装置のためのニューラルネットワークを用いた分類装置 の構築とトレーニングのための方法

下記のリストが、図14において示した構築とトレーニングに使用した工程を

記述するものである:

1. 診断群の合計数が2に等しい場合は、次の工程に進む。そうでない場合は、疾病過程に関して既知となっている事実に基づいて、群の二進分類決定木(binary classification decision troe)への分離を構成する。二進分類を必要とする(yes/no, positive/negativeなど)群の対のそれぞれに対して、工程2ー6を繰り返す。

ためのさらに明白な情報を提供する。この式を用いて計算値である入力を付加すると、トレーニングが一層容易になる。生物医学および健床科学分野における専門的知識は(例えば、いくつかの種類の変換または組合せは、生物学的に「もっともらしい」か否か)やパターン分類における経験を使用する。例えば、標本を入力変数空間で見ることによって、標本分布における複雑さを推定し、またこのような情報を使用してニューラルネットワーク構造を調節することができる可能性がある。非線形的演算の本質や組合せに使用した入力の数が往々にして大きいために、新たに生成した二次入力の効率を直接数値的に評価することは、極めて困難である可能性がある。化学的データの可視化表示は、二次的入力の構築および評価をする上でのガイダンスを得るために広く使用されている。例えば、カラーコーディングおよび強調システム変換によって、三次元以上でのデータのビューイングが可能となる。このことは、入力変数空間における標本の分布や前処理工程の構築を理解するのに役立つ。

このような前処理工程は、極めて重要である。この分野における以前の研究者は、ニューラルネットワークの持つ非線形的性質が初期の入力値としてトレーニングデータにおいて情報を完全に利用することができるようになるであろうと想定していた。(Astion, M.L. and Wilding, P., "Application of Neural Networks to the Interpretation of Laoratory Data in Cancer Diagnosis", Clinical Chemistry 38:34–38(1992)を参照のこと:なおこの文献においては前処理について言及はない)しかしながら、ニューラルネットワークのトレーニングを容易にするためにマルチスレッドや相互関連の情報を「解く」工程は、ニューラルネットワークを用いた診断システムの開発に成功する上で重要な役割を演じる。

e. 判別力が最高である入力の選択

この工程は、恐らくは変換されている場合が多い初期入力値からおよび新たに 生成した二次入力から入力値を選択して、ニューラルネットワークを用いた分類 装置への現実的入力のリストを作成することを含む。このリストにおける選択された入力の初期の数は、工程 b および d における判別力推定から得られた結果および当該問題の持つ複雑さに関して入手可能な知識に基づく。

- 2. 第一レベルのニューラルネットワークを開発する。(ANN1、1ない しANN1、M)
- a. トレーニングおよび試験のために適当なデータを選択する。
- b. 記録済みのニューラルネットワークの全数が予め設定した数を超えた場合、工程3に進む。
- c. 新しいニューラルネットワークを構築し、全入力リストからサブセット を選択する(ニューラルネットワーク入力セレクターを設定することによって行 う)。
- d. 構成が同一である複数のニューラルネットワークを初期条件を変え、かつトレーニングパラメータを変えて訓練する。訓練済みのニューラルネットワークのそれぞれについて、結果が異なるネットワーク構成のネットワークを含め以前に訓練したニューラルネットワークと有意に置なる場合は(正しくまたは不正に分類された各群における患者という意味で)、性能の劣ったものを廃棄する。新たに訓練したニューラルネットワークにおいて有意の性能改善が一切認められるなくなるまで、または初期条件やパラメータの妥当なあらゆる変化が無くなってしまうまで繰り返す。
- e. 全ての妥当なネットワーク構成やその変形物が無くなってしまった場合は、次の工程に進む。そうない場合は工程3に進む。
- 3.全ての記録済みのニューラルネットワークの性能を比較し、次いで性能が 劣ったり、重複しているものを廃棄する。2つのニューラルネットワークが類似 した結果をもたらす場合は、ネットワーク構造がより複雑なものを削除する。
 - 4. 残余のニューラルネットワークの全てを記録する。
- 5. 第二レベルのニューラルネットワークを開発する(ニューラルネットワーク(ANN)2、1ないしANN 2、N)。入力の初期リストを第一レベルの残余のニューラルネットワークからの入力値で増加させ、かつ工程2-4を繰り返す。
- 6. 一つまたはいくつかの記録済みニューラルネットワークからの出力を、 線形的または非線形的方法を用いて単一分類指数に組み合わせる。ネットワーク

トレーニングに関与しなかった試験データを用いて二つの診断群を分離する上で の性能を評価する。対の診断群に対して最善の二進分類機能を選択する。

7. 二進分類決定木に従って得られた二進分類機能を組合せて、異なる治療 群のそれぞれに対してHorus任意単位(arbitrary unit)と参照範囲でもって 「超関数(super function)」を形成する。

実施例6

前立腺癌診断のための患者データをニューラルネットワーク解析するPros tAsure™コンピュータを使用したシステム

これは、患者データを受信し、訓練済みのニューラルネットワークで眩データを解析し、前立腺癌の有無を示す出力値を生成し、該値を別のコンピュータに送信し、次いで該値を別の場所に送信する能力を有するコンピュータを用いたシステムである。このシステムを、模式的に図15に示す。図15における個々のボックスは、番号付けし、以下の記載において触れる。このシステムは、大量の患者データを受信して、解析し、迅速に前立腺癌を診断するための出力値を生成し、かつ選択的にこれらの結果を逮願場所に送信する高い能力を提供する。このシステムは、多数の患者データセットを迅速に解析することを可能にし、臨床検査室やヘルスケア提供者に診断値を提供する。図15は、本発明の一つの好ましい実施態様を表わすものであること、および例えば単一または複数のコンピュータを包含する異なるハードウエア構成等のようにその他のシステム構成も前立腺癌を含むあらゆる疾病の診断のために本発明を実施するのに使用してもよいことが、理解されるべきである。

かかるデータファイルは、前立腺癌のための診断指数を計算するために必要とされる患者試験から得られたデータを有しており、標準ASCIIファイルである。各患者記録は、ファイル中における一つのラインから構成される。ファイル中のラインは、復帰:改行(CR/LF)ペアーで区切られている。一つのレコードにおけるフィールドは、ASCII文字"、"で区切られており、各レコードは、下記の七つのフィールドを含む。すなわち、1)臓別(ID)一英数字、2)年齢一数字、3)前立除特異的抗原(PSA)一数字、4)PAP一数字、

エラーコード120一残余のデータフィールドの一つが有効な数値フォーマットではない(空のフィールドを含む)またはかかるデータフィールドの一つは、マイナスの数値を有する。

エラーコード130一検査室試験値の一つが、健常な患者の参照標準範囲の上限の5倍を超える、または3(3)以上の検査試験結果はゼロ値である、または、年齢=0または年齢>150である。

ProstAsure™システムは、二つのコンピュータワークステーション および関連した通信デバイスとリンクとから構成される(図15)。以下のパラ グラフにおいて本システムの概要を述べる。

ProstAsureTMステーションI (14) は主として通信制御ステーションであり、モデム (2) と電話線とを経由して遠隔コンピュータシステム (LabCorp) (1) からの試験データをダウンロードし、またProstAsureTM結果を当該遠隔ステーションにアップロードして戻す。ステーションI (14) は、ステーションII (15) にそれぞれの相当するシリアルポートでダイレクトヌルモデムケール (7) によって接続される。ステーションI (14) は、うまくダウンロードされたデータファイルをステーションII (15) に送信し、ステーションII からProstAsureTM結果ファイルを受信して、アップロードする。ステーションIは、ダウンロードインターバルのタイミングを制御し、エラー条件 (6) に依存して再試行させ、および/またはオペレータ (13) に警告することによってエラー条件を処理する。ステーションIは、アップロードする (4) および (3) 前に送出結果ファイルと到遠データファイ

ル (5) とのデータ部分を比較して、当該結果ファイルの完全性を確保するのである。

ProstAsureTMステーション II (15) は、ProstAsure
TMアルゴリズム計算(11) のためのメインの計算ステーションであり、訓練済みのニューラルネットワーク(11) を収納している。ステーション II (15) は、ステーション I (14) からデータファイルを受信し、結果ファイルをステーション I (14) に送信する(8 および 9)。ステーション I (15) は

5) CKBB-数字、6) CKMB-数字、7) CKMN-数字である。各英数字のフィールドは、文字"a"ないし"z"、"A"ないし"Z"の文字、"0"ないし"9"の数字、および" "、"-"、"。"、"\$"の文字からなる文字の列を包含する。数字フィールドは、10進法の数字の列表示を包含し、単一の小数点"。"を包含していてもよい。スペース文字" "およびコンマ文字"、"は、数字の中には入らない。

各患者レコードは、入力データファイルの中で単一行をしめる。レコードの中のデータフィールドは、コンマによって分離されている。LabCorpに返却される結果ファイルにおいては、入力値が繰り返され、次いでやはりコンマで分離された次の二つの追加データフィールドがその後に続く。すなわち、計算されたProstAsure™ (HORUS Therapeutics, Rochester, NY)値と整数値のエラーコードである。

ProstAsure™値の実計算に先だって、患者レコードは、図16に示したようにリストした順番で下記するエラー検知規準に従ってエラーについてチェックされる。コード130以外のエラーが発生した場合は何時でも、誤差チェックは停止するので、ProstAsure™値は、当該患者に対しては一切計算されない。出力フィールドレコードにおけるProstAsure™フィールドは、"xxxx"で満たされて、最初の非一130エラーコードが、最後のフィールドとして付加されることになる。全ての規準がチェックされており、またエラーが一切検知されなかった場合、すなわちコード130のみが検知された場合は、ProstAsure™値が計算され、結果ファイルレコードの中に報告

される。従ってエラーコード0または $1\,3\,0\,$ が、ラストフィールドとして付加される。

エラーコードは以下のように定義される。

エラーコード110一このレコードは7以下のコンマで分離されたフィールドを包含する。コンマに続く空のフィールドは、なおフィールドと考えられ、この 試験動作を引き起こさない。

エラーコード100一最初のフィールド(IDフィールド)は空である。

、ステーション I から受信したデータを読み取り、検証する。有効でないデータが検出された場合は(12 および10)、P r o s t A s u r e T M 結果フィールドは、"x"文字でマークされることになりまた特別なエラーコードもかかる条件を反映することになる。データ値が異常であるが有効である旨検知された場合は、P r o s t A s u r e T M 結果が提供されることになる。しかしながら、エラーコードは、この条件を指示するであろう。ステーション11は、有力なニューラルネットワーソフトウエアである市販のソフトウエアパッケージであるNSHELL 2 release 2.0(Ward Systems Group, Inc., Frederick, MD)から動的リンクライブラリ(D L L)を呼び出し、起動して、ニューラルネットワーク構造の計算を実行する。ステーション11は、種々のエラー条件を処理するためエラー処理手順(10)を有しており、重大なエラー条件下ではオペレータ(13)に警告を発する(9 および10)。ステーション11は、また初期データファイルと結果ファイルを所定期間保存する役割を有する。

ProstAsure™システムは、二つのステーション I と I I の間またステーション I と遠隔コンピュータシステムとの間の通信のためにKermitソフトウエア(Columbia University)を使用する。Kermitは、信頼性が高い、十分に試験された通信プロトコールである。ProstAsure™システムソフトウエアは、整合性のよい、ユーザーフレンドリーなインターフェースであるMicrosoft Windows環境下で走行する。ProstAsure™ソフトウエアは、操作を単純化するために全画面モードで実行するよう設計されている。

システム説明

システムの要求仕様

本システムの模式的概要を図15に示す。

ステーション | 14:ステーション | の要求仕様は、以下を含む。

ペンティアムコンピュータ $7.5\,\text{Mhz}$ またはそれ以上、最低 $8\,\text{Mb}$ RAM、最低 $1.0\,$ G b ハードドライブ、スピードが $9.6\,0\,0\,b$ p s またはそれ以上の内部モデム、S V G A モニターおよびマイクロソフト W in dows fo

r Work group (WFW) 3.11.

ステーション!! 15:ステーション!」の要求仕様は、以下を含む。

ペンティアムコンピュータ $7.5\,\text{Mhz}$ またはそれ以上、最低 $8\,\text{Mb}$ RAM、最低 $1.0\,$ G $5\,\text{Mhz}$ の $6\,\text{Mhz}$ の $6\,\text$

本システムは、Microsoft Windowsをサポートしたプリンタードライバーを有するレーザープリンターを必要とする。また必要なものは、シリアルポートを経由してステーション Iと IIとの間の接続を行うためのヌルモデム7とRS-232ケーブルである。

実際にインストールされたシステム

実際にインストールされたシステムの一例は、下記の通りである。 ステーション I は、以下から構成される。

NEC Ready Pentium SystemTM (Pentium 1 00 Mhz CPU、16 Mb RAM、1.0Gbハードドライブ) NEC MultiSync XV17TM モニター

MS Windows for Workgroup 3.11 をロード済み。

ステーションIIは、以下から構成される。

NEC Ready Pentium System™ (Pentium 1 00 MHz CPU、16 Mb RAM、1.0Gbハードドライブ)

インターナル850 Mb テープユニット:

NEC MultiSync XV17TM モニター、MS Windows for Workgroup 3.11 をロード済み。

プリンター: HP LaserJet !!!

参考書類:操作手順書

Ready Pentium Systems User's Guide; NEC Ready Pentium Systems Hardware

繰り返される。10回このような試みが失敗するという連続した反復があった後で、システム i は、エラーコード#200を発し、「緊急警告手順」を始動する

1-3:データファイルのダウンロードを完了すると直ちに、システム | は、ステーション | 1へのコネクションを開始し、新たに受信したデータファイルをステーション | 1 10回の試みに失敗した場合、エラーコード#230を発し「緊急警告手順」を始動する。

ステーション I I は、受信したデータを処理し、ProstAsure™指数をそれぞれの患者について計算し、その結果を初期入力データと共にステーション I に送信する。

1-4:完成した結果データファイルをうまく受信したら直ちに、ステーション I は、データファイルの中の各患者の入力値を初期に受信したデータファイルの中の入力値と比較して、完全な照合を確実に行う。エラーが発生した場合は、「緊急警告手順」が起動され、エラーコード#300、もしくは#310 (レコードの数は合致しない)または#320 (少なくとも一つのレコードが、合致しない入力値を有している)が表示される。300シリーズのエラーが発生した場合は、結果は一切LabCorpのホストコンピュータには送信されず、運用部のディレクターは直ちに報告を受ける。

I-5: LabCorpへのコネクションとデータのLabCorpホストコンピュータへの送り返し(ファイルダウンロードでなくファイルロードを行うことを除いて、I-1と類似)。

I-6:コネクションの試みが失敗した場合はI-2に類似。ステーションI

は、10秒間隔でコネクションの試みを繰り返す。10回試みが失敗する連続反復した後では、ステーション1は、エラーコード#290を表示し、「緊急警告 手順」を始動する。

ステーション!!は、ステーション!からデータを受信し、かつそこへデータ を送信する。ステーション!!は、ProstAsuro™アルゴリズムを用い てデータを処理する。下記する機能が、ステーション!!によって提供される。 Ref/Operations Guide:

NEC MultiSyncXV17^{T®} User's Guide システムの機能

操作手順に関する以下の記載において、「緊急警告手順」なる用語は、コンピュータソフトウエアまたはハードウエアシステムにおいて、またはデータファイル転送機構において、人間のオペレータおよび/またはオペレーション13のディレクターの即座の注意または介入を必要とする異常事態を報告するたの自動化手順を定義するものである。この「緊急警告手順」において、1)故障したコンピュータは、施設全体で聞くことができる大きなサイレンを鳴らす、2)故障したコンピュータスクリーンが光り、エラーメッセージと相当するエラーコードを表示する、また3)コンピュータシステムは、自動的に当番の役職者の呼び出し機にダイアルする。

ステーション I 14は、リサーチトライアングルパーク、ノースカロライナ 州にあるLaboratory Corporation of America(LabCorp)の施設に設置された ホストコンピュータ (1) (HP3000 UNIXベースのワークステーション) から思者の試験データをダウンロードし、またホストコンピュータ (1) へ計算結果をアップロードする。ステーション I は、外部データソース(LabCorpのホストコンピュータ)とProstAsure™処理ワークステーション(ステーション II) 15との間におけるバッファーおよびファイアウォール として機能する。下記は、ステーション I によって提供される機能についての詳細な説明であるが、これらはまたシステムの有効性確認の過程で試験される機能

でもある。

I-1:モデムを介してホストコンピュータへの遠隔コネクションを開始する。 MS DOS Kermitソフトウエアを用いて自動化されたログイン手順、およびダウンロード手順とを起動して、新規患者データを取得して処理する。これは、Kermit ASCIIファイル移転プロトコールを使用する。

!ー2:コネクションとファイルダウンロードとは、自動的に 6 0分毎に行われる。コネクションが失敗した場合は、リコネクションが自動的に 1 0秒間隔で

これらの機能は、システム有効性検証の過程で試験され、検定される。

Ⅰ Ⅰ Ⅰ − 1:ステーション Ⅰ によって開始したコネクションが確立したら直ちに、ステーション Ⅰ Ⅰ は送信された患者ファイルを受信する。

IIIー2:ステーションIIは、ProstAsure™アルゴリズムを用いて連続的にデータファイルの中の患者レコードを処理する(図25を参照)。

III-3:工程II-2を完了すると適ちに、ステーションIIは、ステーションIへのコネクションを開始し、MS DOS Kermit ASCIIファイル転送プロトコールを用いて結果データファイルをステーションIへ送信する。ファイル送付が10回繰り返し失敗した後でもうまくいかない場合は、ステーションIIはエラーコード#260を発し、かつ「緊急警告手順」を始動する。結果データファイル中のレコード(ライン)は、計算に使用した入力データ値プラス二つの追加フィールド、患者について計算したProstAsure™値、および計算が正常かまたは異常であるかを示す3桁のコードとから構成される。異常な場合は、このコードはエラーコードであり、このコードは、生起した異常の種類に関する情報を含有している。

II-4: 結果ステーション I へのデータファイル送信が完了した後では、データファイルおよびデータファイルプラス以下の二つの追加フィールドコラム、すなわち I) 計算した数値および 2) エラーコードとからなる結果ファイルは、ステーション IIの中の二つの指定ディレクトリ、"c:\pacompu\padata\" においてmmddhnn.yyなる型式のコード化した日付けと時間タグを用いて保存する。なお、上記タグにおいてmm:月、dd:日付、hh:時間、nn:分お

よび y y : 年である。

実施例7

本発明は、コンピュータ援用ニューラルネットワークを使用して、卵巣癌を診断することを包含する。この新規のパージョンは、「卵巣癌」!」なる見出しの項において上記にて掲げたパイオマーカーを使用するが、CA125、M一CSF、OVX1、LASA、CAA7-24およびCA19-9を含む。186人

の被験者の独立データ群について試験した場合、この試験は、89%の感度およ び89%の特異性を実現する。

勿論のことながら、前記は本発明の好ましい実施態様にのみ係るものであるこ と、および数多くの修正または変更が、添付したクレームに記載した本発明の精 神および範囲から逸脱することなく行い得ることが理解されるべきである。

【図1】

【図4】

[図2]

[図3]

数链的: 定量的 - 連続. - 離赦的 記述的 配号的 ルールベース 発見的第2ステップ解析 最終複合 診断スコアおよび説明

患者情報

[図5]

	指数	6 6	0.10	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.11	0.10	0.00	0.90	06'0	0.10	0,10	0.10	0.83	0.89	0.89	0.12	0.00	0.90	0.10	0.10	0.90	0.10	0.10
	支数值	63	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	6.0	6:0	6.0	0.1	0.1	0.1	6.0	0.9	6:0	0.1	6.0	6.0	0.1	0.1	6.0	 0	0.1
	ANNH72	0.00	0.10	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.11	0.10	060	060	060	0.10	0.10	0.10	0.83	0.89	0.89	0.12	06.0	060	0.10	0.10	06:0	0.10	0.10
前立腺癌予後判断トレーニングデータ	ANNEDI	0.10	0.00	060	0.89	0.90	060	0.30	0.90	060	68:0	060	0.10	0.10	0.10	0.90	060	06'0	0.17	0.11	0.11	0.88	0.10	0.10	060	060	0.10	0.00	060
アトフー	獅	6.0	0.1	0.1	0.1	0.1	1.0	1.0	1.0	170	0.1	1.0	6:0	0.9	0.9	0.1	170	1.0	6.0	6'0	6.0	0.1	60	6.0	0.1	0.1	6:0	0.1	0.1
予後和	安定	0.1	60	60	60	60	6.0	6.0	60	60	60	6.0	0.1	0.1	0.1	60	6'0	6.0	0.1	0.1	0.1	6.0	6.9	0.1	60	6.0	1.0	6:0	6.0
前立腺粉	チストスチロン	5.6	1.9	0.3	1.6	12	0.5	8.0	1.1	-	6.0	6.0	0.1	69	2.9	0.7	2	4.3	4.1	0.4	0.5	1.4	5.1	4	6.0	9.0	5.1	0.2	0.2
	3	1.3	9.0	-	1.2	121	8.0	9.0	60	60	9.6	1.2	7 :0	0.2	6.0	-	0.7	2	1.2	8.4	5.4	1.2	0.2	1,2	0	23	-	9.0	9.4
	PAP	7.8	0.7	970	13	1.2	1.5	0.7	9.0	0.5	1.6	=	23	5.5	3	1.4	0.5	0.5	2.6	5.6	1.9	2.6	29.7	77	8.1	2,2	3.3	1.7	6:0
	PSA PSA	690	33	3	700	•	0.02	800	٥	193	0.26	0.42	# 6	98	270	0.02	0.01	700	# 0	70.0	100	# 5	0.93	1.76	-	980	0.37	20.0	0.02
	STE	0.53	25	83	8	0,02	63	7970	=	38	8	0.82	0.81	890	890	0.55	9.5	3	990	9	66:1	990	0.75	8	950	8	047	0.49	0.59

[図5]

[図5]

| 175 | 175A | 7AP | CKA | 7x1x7c2 | 24円 | 1NN出力 | 1NN出力 | 24円 | 18円 |

| 11/15 | 17

[図6]

ID	年齡	PSA	PAP	CKBB	CKMB	CKMM	合計CK	DRE	人核	E
2	72	12.24	1.59	0.9	6	54.5	61.4	3	1	3
3	61	6.17	0.57	0	4.4	239.7	244.1	3	i	3
7	73	7.8	0.88	0.5	0	131.8	132.3	3	<u>i</u>	3
8	67	54.84	1.26	25	2.3	344.3	349.1	3	1	3
11	62	0.4	0.7	0.6	1.2	116.3	118.1	2	3	1
27	70	0.52	0.29	1.7	٥	285.9	287.6	2	2	5
36	72	117.25	8.31	2.2	2.6	100.9	105.7	3	2	3
41	80	7.22	0.98	1.5	2	76.7	80.2	3	1	3
45	60	2.17	0.55	0.5	1.5	87.1	89.1	2	3	Ť
50	86	54.04	0.75	0	0	46.2	46,2	3	1	3
55	77	5.1	3.14	0	0	84	84	2	1	i i
63	37	1.5	0.24	0.8	1.8	107.2	109.8	2	3	- j-
71	76	21.42	1.6	0	2.8	229.3	232.1	3	1	3
73	74	0.93	0.63	0.8	1.4	57.2	59.4	1	3	i
77	67	2.31	1.08	0	2	47.8	49.8		- i	1
80	66	1.04	0.88	1	2.6	95.2	98.8	2	1	1
81	67	0.86	1.25	0	1.1	65.1	66.2	2	3	-i
82	78	3.81	1.01	0	2.3	63	65.3	1	1	- ;-
91	57	1.93	0.94	0.9	2.3	75.9	79.1	1	-	
98	43	0.96	1.23	1	0	93.1	94.1	2	ī	1
115	70	1.46	1	0.6	6.9	200.2	207.7	2	1	1
132	60	3.23	1.3	0.4	1.9	82.2	84.5	2	1	1
135	50	0.56	0.99	0	5.7	408.4	414.1	1	1	1
137	61	6.78	1.49	0.9	2.6	65.2	68.7	2	1	<u>i</u> -
1.38	68	26.62	4.14	1.1	3.1	246.2	250.4	2	3	1
139	54	8.7	1.32	0	2.4	80	82.4	1	1	3
140	73	4.85	1.03	0.8	2	55.8	58.6	3	1	3
160	56	1.31	1.21	0	2.7	151.5	154.2	2	ì	1
168	72	1.59	1.15	1.6	3	89.6	94.2	2	1	1
179	68	5.84	3.72	0.8	2.8	126.9	130.5	2	5	1
187	84	3.45	1.42	0.5	3.6	97.5	101.6	2	1	1
196	63	1.88	1.08	0	2.3	91.7	94	1	1	1
200	70	2.85	1.04	0.7	3.6	78.4	82.7	2	1	1
205	71	0.4	0.59	0.7	2.6	140.3	143.6	2	1	1
208	69	3.32	1.04	0.5	3.2	90.6	94.3	2	1	1
213	81	0.4	1.56	0.9	2.4	62.1	65.4	2	1	1
214	69	1.08	1.6	1.1	0	53.6	54.7	2	1	3
220	72	1.92	1.77	0.7	2.1	88.2	91	2	1	1
245	55	50.91	4.5	٥	1.4	177.6	179.2	3	2	3
247	83	24.41	3.79	0	2.3	50.7	53	3	1	3
263	64	20.44	1.57	0.9	1.4	77.7	80	3	1	3
264	68	4.73	2.96	0.5	1.4	52.8	54.7	2	3	1
265	60	2.14	1.04	0.9	1.5	44.5	46.9	3	3	3
272	78	4.59	0.92	. 0	3.8	93.9	97.7	1		
278	65	5.63	2.7	0.9	4.6	154.7	160.2	2	1	1
296	46	0.74	0.94	1	1.5	1452.1	1454.6	1		5
312	23	0.54	0.97	0	0.8	228.3	229.1	4	2	5

Fig. 6A

[図6]

ID	年龄	PSA	PAP	CKBB	CKMB	CKMM	合計CK	DRE	人推	群
314	37	0.67	0.95	0	1.6	190.7	192.3	4	2	5
315	36	0.4	1.31	0	6.3	460.8	467.1	4	2	5
321	37	0.56	1	0	1.9	288.3	290.2	4	4	5
327	41	1.08	1.1	0	3.3	463	466.3	4	2	5
328	46	1.13	1.05	0	1	479	480	4	2	5
330	47	0.86	0.97	1	2.8	368.1	371.9	4	2	5
331	52	8.03	1.36	0.9	0	145.6	146.5	4	2	5
334	47	0.71	0.84	0	1.9	230.1	232	4	2	. 5
337	47	0.4	0.84	0	0	104.8	104.8	4	2	5
340	58	4.1	1.57	0	2.2	558.6	561	4	4	5
347	73	1.19	1.28	1.1	3.2	420.5	424.8	4	1	5
350	83	1.82	0.48	0	5.6	235.4	241	4	1	5
351	70	1.92	0.87	0.9	4.8	201	206.7	4	1	5
355	81	2.48	2.09	1.1	3.5	153.1	157.7	4	1	5
358	68	3.29	1.46	0	2.3	141.9	144.2	4	ì	5
361	62	0.9	1.54	1.1	2.2	137.6	140.9	4	1	5
363	72	0.4	1.09	1.3	3.1	130.2	134.6	4	1	5
368	66	4.12	1.67	1.1	3.4	137.2	141.7	4	1	5
370	66	2.77	1.12	1.1	3.1	91.8	96	4	1	5
373	68	1.86	1.27	1.3	1.6	126.7	129.6	4	1	. 5
380	68	1.62	1.26	0.8	3.8	119.3	123.9	4		5
386	81	3.04	3 .	0	6.3	184.3	190.6	4	1	5
387	70	0.6	1.24	0.8	2.8	90	93.6	4	1	5
389	31	0.4	0.93	0	2.1	402.9	405	. 4	2	5
391	39	1.16	0.73	0	0.6	116.6	117.2	4	2	5
392	30	1.1	0.74	0	0.8	160	160.8	4	1	5
396	49	1.06	1.01	0.9	3.4	252	256.3	- 4	2	5
397	45	0.4	1.33	0.8	1.6	196.9	199.3	4	2	5
399	51	1.6	0.86	1	4.5	191	196.5	4	2	5
401	33	0.4	0.87	0	0.6	206.7	207.3	4	2	5
402	31	0.4	0.92	0.5	2.8	307.9	311.2	4	2	5
403	33	0.71	1.08	0.4	1.8	860.5	862.7	4	2	5
	37	1.39	0.85	0.5	2.5	309.3	312.3	4	2	5
408	37 29	0.58	1.41	0	4.4	226.5	231.9	4	2	5
412		0.4	0.74		0.7	120.4	121.1	4	2	5
413	38 27	0.4	1.34	0	2.2	142.9	145.1	4	2	5
414	28	0.4	1.36	0	1.2	145.6	146.8	4	2	5
420	43	0.4		0	1.7	129.8	131.5	4	2	3
425			0.47		2.2	114	116.2	4	2	5
426	28 58	0.4 1.3	0.77 1.65	0	2.7 8.3	111.1	113.8	4	2	5
426			1.65	0		412.8	421.1	4	2	5
	59 57	0.65	1.78	05	4.3	200.9	205.2	4	2	5
432					3.2	279.8	283.5	4	2	5
434	46	3.01	0.92 2.23	0	0.8	137	137.8	4	2	. 5
438	56	0.62		0.4	2.9	297.1	300.4	4	2	5
440	56	0.6	1.23	0.6	0	365.2	365.8	4	2	5
442	59	.4	1.53	0		251.1	251.1	4	2	_ 5
					_					

Fig. 6B

【図6】

Œ	年齡	PSA	PAP	CKBB	CKMB	CKMM	合計CK	DRE	人種・	S¥
454	Z	0.65	0.48	0	2.8	157.1	159.9	3	1	3
455	70	6.65	0.86	0.7	1.9	125.2	127.8	3	3	3
456	63	13.93	2.17	1.4	4	126.2	131.6	3	1	3
458	79	1.61	0.58	8.0	1.9	130.2	132.9	1	1	3
466	68	9.08	7.17	0.7	0	62.4	63.1	2	i	3
468	70	86.59	21.21	1.5	5.1	380.3	386.9	3	2	3
470	44	5.19	0.91	0.5	0	58.6	59.1	2		3
471	59	7.16	1.03	0.3	0	97.7	98	3		3
477	82	62.6	1.03	0.8	2.6	77.3	80.7	3	- i -	3
479	52	6.2	0.99	1.1	1.6	106.8	109.5	ī	-;-	3
495	77	6.85	1.39	0	3.2	110.8	114	1	1	3
501	40	0.67	0.82	1.3	3.3	283.6	288.2	1		5
502	65	3.18	1.28	0.7	4.2	177.2	182.6	1		5
507	47	2.61	1.19	0.7	3.1	116.9	120.7	1		5
508	52	0.55	0.56	1.9	3.9	227.7	233.5	Ť		5
509	50	0.73	1.39	1.6	2.6	217.9	222.1	1		5
511	53	0.53	0.94	1.1	3	137.3	141.4	1	_	5
515	47	1.23	1.12	1.4	1.9	57.2	60.5	1		5
516	46	1.35	1.13	1.5	7A	334.2	343.1	1		5
518	43	0.71	0.98	1.4	3.2	249.8	254.4	1		- 5
519	48	0.86	0.9	0.8	5.4	374.5	380.7	1		- 5
520	47	0.91	0.88	0	2.1	130.6	132.7	1		5
526	41	1.16	1.1	1.1	4	301.4	306.5	1		5
530	67	1.31	0.91	0	9.1	277.9	287	1		5
533	40	0.82	1.06	8.0	2.8	181.6	185.2	1		5
540	66	0.77	1.02	0.7	4.8	212.6	218.1	1		5
542	70	1.06	1.16	0.8	10.2	203	214	2		1
543	73	12.45	1.47	1.2	5.9	139.3	146.4	2		1
548	64	10.42	1.5	1.4	2.7	138.2	142.3	2		1
549	64	1.5	0.61	1.1	3.7	193.2	198	2		1
557	62	0	0.56	0.9	2.2	202.9	206	2		1
559	76	3.84	1.26	1.7	7.2	136.7	145.6	2		1
560	64	0.89	0.85	0.9	17	117	119.6	2		1
570	49	0.55	0.66	1	5.1	182.9	189	2		1
572	56	0.58	0.92	0.9	2.1	115.4	118.4	2		1
575	59	4.01	0.88	0.9	2.4	159	162.3	2		1
578	62	1.12	0.97	0.5	5.4	203	208.9	2		1
586	39	0.95	1.31	1.3	1.6	165.2	168.1	2		1
595	54	1.59	1.18	0.7	2.7	101.3	104.7	2		1
599	78	5.65	1.28	2	3.3	225.9	231.2	2		1
609	52	1.98	0.77	1	3.4	152	156.4	2		1
654	73	1.2	0.55	0	2.2	209.3	211.5	3		3
655	76	2.73	5.98	0	3.2	470.2	473.4	3		3
667	69	5.45	1.05	0	1.7	169.7	171.4	3		3
670	61	8.59	2.26	0.6	3	93.3	96.9	3		3
676	73	7.55	1.04	0	5	356.6	361.6	3		3
681	72	0.4918	0.72	1.3	2.1	107.8	111.2	3		3

Fig. 6C

【図6】

ID.	年齡	PSA	PAP	CKBB	CKMB	CKMM	合計CK	DRE	人程	#
682	85	20.54	1.26	0.7	2.6	60.6	63.9	3		3
686	81	7.39	1.14	1.1	2.5	88.3	91.9	3		3
687	83	7.6	1.33	0	3.9	178.6	182.5	3		3
690	92	65.87	16.43	2.4	7.2	153.7	163.3	3		3
694	73	16.38	1.74	0	1.9	85.7	87.6	3		3
700	71	8.6	0.82	0.9	2.5	54.5	57.9	3		3
701	77	29.76	3.13	0.7	1.9	51.7	54.3	3		3
703	77	11.57	1.17	0.4	5.4	150.1	155.9	3		3
707	BO	10.58	1.9	0	2	62.6	64.6	3		3
711	64	7.93	1.53	8.0	1.8	69.4	72	3		3
735	67	201.09	68.79	2.5	2.3	44.5	49.3	3		3
736	77	28.37	2.14	0.6	2.7	36.6	39.9	3		3
763	76	298.23	76.54	2.2	2.4	138.8	143.4	3		3
766	63	70.84	0.8	0.6	1.6	123.6	125.8	3		3
768	56	18.73	4.01	0	0.9	101.2	102.1	3		3

Fig. 6D

【図7】

HTID	年齡	PSA	PAP	CKBB	CKMB	CKMM	DRE	野	段階	ProstAsure
541	42	1.91	0.92	0	1.5	295.3	enlarged	1		10.4
544	76	4.67	2.18	1.4	2.7	109.4	enlarged	1		30.1
545	58	1.71	1.28	0.6	2.1	76.8	enlarged	1		24.2
547	48	0.9	0.9	٥	3.9	156.4	enlarged	1		12.6
550	52	1.28	0.69	0	2.3	107.1	enlarged	1		21.8
551	7	1.23	0.72	1.6	2.8	114.5	enlarged	1		27.6
552	58	14.76	1.79	1	7.3	280	enlarged	1		41.3
555	75	5.74	1	0.7	1.7	132	enlarged	1		41.8
556	84	4.46	1.06	1.1	3.3	108.3	enlarged	1		39.8
558	41	1.28	0.77	1.3	5.2	269.2	enlarged	1		9.9
561	62	4.23	0.63	1.4	4.5	216.5	enlarged	1		29.9
562	47	0.55	0.74	0.4	2.1	176.3	enlarged	1		10.9
563	70	0.74	1.08	0.7	4.3	164	enlarged	1		17.1
564	79	1.6	0.84	0.9	4.7	176.3	enlarged	1		25.2
567	59	1.52	1.33	1.1	4.1	308.8	erriarged	1		10.3
568	61	1.64	0.87	0.7	3.3	84.1	enlarged	1		28.1
569	86	0	0.73	0.5	10.1	557.6	enlarged	1		11.1
571	53	0.77	0.79	0	1.5	178	enlarged	1		12.9
573	66	0.7	1	1.1	2.1	96.2	enlarged	1		22.2
574	67	2.22	1.37	0.7	1.8	39.6	crularged	1	<u> </u>	33.2
576	38	0.52	0.64	0	2.1	70.9	enlarged	1		15.3
577 580	62	0	0.57	0.3	9.1	529	enlarged	1		8.3
	67	1.05 2.88	0.94	0	12.5	382.7	enlarged	1		10.7
581 582	70 65	1.53	0.92	0	3.4	118.2	enlarged	1	<u> </u>	32.8
583	65	3.03	1.33	0.6	3.4	104.9 117	enlarged	1		27.0
584	65	0.78	0.72	1.1	3.4	209.4	erdarged	1		27.3
565	67	3	1.26	0	2.8	120.9	enlarged enlarged	1		14.8
587	61	1.18	1.05	1.6	0	104.1	enlarged	1		28.9
588	75	6.5	1.87	120	1.2	61.7	enlarged	1		44.5
589	70	1.57	1.05	1.1	3.4	194.8	enlarged	i		18.5
590	77	11.33	1.11		6	237.5	enlarged	1		49.4
591	64	2.31	1.5	0	2.6	231.2	enlarged	1	-	15.1
592	74	5.96	1.46	0.6	5.5	147.3	enlarged	1	 	36.4
593	62	3.16	0.92	1.3	1.6	93.3	enlarged	1		33.4
594	70	9.49	0.71	1	2.6	114.9	enlarged	1	 	57.9
596	67	4.09	0.93	0.6	1.8	116.3	enlarged	i		36.7
597	45	1.76	0.72	1.2	12.2	98.5	enlarged	1		21.4
598	61	0	0.44	0	1	139.5	enlarged	1		18.7
600	57	1.56	0.78	Ö	2	99.6	enlarged	1	1	25.4
601	64	4.75	1.47	0.7	5.9	304	enlarged	1	·	19.9
602	64	1.18	1.29	1.2	4.5	121.7	enlarged	1		18.7
603	59	1.79	1.01	0.4	3.6	176.7	enlarged	1	1	17.7
604	69	1.65	1.93	0.8	1.9	41.6	enlarged	1		26.0
605	67	2.13	1.19	1	1.3	102.2	enlarged	1	1	27.4
606	83	2.38	1.59	0.4	3.2	41.3	enlarged	1		36.5
607	68	2.41	1	1.1	4.3	161.6	enlarged	1	1	24.6
608	59	1.46	0.64	0.6	1.6	82.4	entarged	1		29.5
610	59	1.62	0.94	0.7	4.1	242	enlarged	1	T	13.6
										-

Fig. 7A enlarged=肥大

【図7】

HIIID	年齡	PSA	PAP	CKBB	CKMB	CKMM	DRE	22	段階	ProstAsure
611	59	1.12	0.79	0.7	3.4	226.1	enlarged	1		13.3
612	68	1.55	0.79	0.6	5	206.9	enlarged	1		19.0
613	70	4.3	1.47	0.8	3.8	401	enlarged	1		19.6
614	58	5.02	4.19	0.6	4.1	199.4	enlarged	1		19.4
615	66	1.29	1,17	0.8	1.6	89.3	enlarged	1		25.0
616	58	1.52	0.97	1.4	5.8	154.2	enlarged	1		18.1
617	65	6.52	2.01	0.9	4.6	268.2	enlarged	1.		23.9
618	62	5.47	0.92	0.9	4.1	208.7	enlarged	1		31.8
619	61	4.48	1.09	0.9	2.1	104.9	enlarged	1		35.4
620	62	0.83	0.92	1.5	7.1	403,9	enlarged	1		9.8
621	70	1.53	0.86	. 0	4.1	218.3	enlarged	1		18.0
622	63	3.31	1.21	0	3.2	3516.9	eniarged	1		16.3
623	60	3.29	1.04	0.6	3.5	169.9	enlarged.	1		24.7
624	69	2.53	1.82	0.4	9.1	353	enlarged	1		13.0
625	76	3.43	1.09	0.9	3.1	96.8	enlarged	1		36.7
626	70	2.35	1.15	0.8	4.1	240.7	enlarged	1		17.8
627	49	0.68	0.9	0.7	4.1	400.5	enlarged	1		7.9
628	62	2.02	0.94	0.8	1.7	108.5	enlarged	1		27.1
629	76	1.85	1.23	0.8	3.9	9.5	enlarged	1		38.4
630	49	0.81	0.84	0.9	2.3	137	enlarged	1		14.5
631	51	1.01	1.14	0.3	2	83.6	enlarged	1		18.4
632	59	1.65	0.69	1.8	2	129.6	enlarged	1		24.2
633	61	0.76	0.78	0.6	2.6	129.4	enlarged	1		19.8
634	83	1.54	1.01	0.8	3.1	165.2	enlarged	1		25.0
635	46 78	0.72 13.2	0.59 2.86	8.0	1.7	168.6	enlarged	1		13.0
637	78	137	1.35	1.4	9.2 2.5	291.5	enlarged	1		34.8
639	78	4.74	1.37	0	2.9	85.3	enlarged	1		39.9
640	54	1.06	1.2	0.8	2.1	65.8 126.9	enlarged		-	39.7
641	63	454	157	1.6	6.5	198.4	enlarged	1		15.5 23.0
642	55	44	2.21	0.6	3.3	171.1	enlarged enlarged	1		20.3
643	84	1.76	0.82	0.8	2.1	181.7	enlarged	+		26.4
644	71	1.68	1.22	1.1	2.6	72.5	enlarged	1		29.5
645	62	1.92	0.72	0	3.7	300.3	enlarged	1		13.8
646	68	3.27	171	0.9	2.5	120.8	enlarged	1	$\vdash \vdash$	26.2
647	45	1.39	0.68	1.3	2.6	122.6	enlarged	1		18.7
648	61	2	0.97	1.3	2.5	140.5	enlarged	1	 	22.7
649	74	0.82	0.85	0.8	3.9	184	enlarged	1		19.0
650	67	3.04	1.51	0.9	8.9	426.3	enlarged	1		15.1
651	76	0.83	0.93	0	9.5	248.7	enlarged	1	-	13.8
866	52	1.02	1	0.8	1.7	157.4	enlarged	1		14.0
867	73	2.93	1.02	1.9	2.7	120	enlarged	1		31.3
868	59	0.63	0.64	0.8	0.9	69.7	enlarged	1		26.2
869	68	4.42	1.27	0.9	2	84.4	eniarged	1	_	37.5
870	67	2.55	0.74	0.9	2.5	106.3	enlarged	1		33.7
871	67	0.76	0.75	1	2	81.5	enlarged	 		27,5
872	43	0.86	1.03	0.6	10.3	232				8.6
873	64	1.72	1.5	1.5	2.2	113	enlarged	1		20.1
							enlerged	i _ 000 ada		

Fig. 7B enlarged=肥大

[図7]

HILIDI	年數	PSA	PAP	CKBB	СКМВ	CKMM	DRE	23	段階	ProstAsure
874	55	121	1.35	0.9	6.7	218.6	enlarged	1		10.8
875	61	2.3	0.93	0.3	2.7	408.8	enlarged	1		13.9
876	78	12.61	0.84	0	1.5	96	enlarged	1		67.2
877	61	1.2	0.83	0.8	2.1	165.5	enlarged	1		18.3
878	70	1.94	1.03	0.7	2.4	108.5	enlarged	1		28.8
879	75	0.74	0.66	0	2.7	149.2	enlarged	-i		24.5
880	65	1.94	0.91	0.3	1.8	102.7	enlarged	1		28.9
881	66	331	0.87	1	1.6	64.4	enlarged	- 1		39.9
582	69	5.46	1.57	0.7	2.5	105.4	enlarged	i		36.8
683	63	12.21	2.88	1.9	2.9	191.8	enlarged	1		36.3
884	62	4.27	1.53	0.8	3.8	142.8	enlarged	1		27.3
885	59	2.38	0.76	0.8	1.7	87.7	enlarged	1		31.9
686	61	3.56	1.08	1.6	1.5	87.9	enlarged	1	-	32,6
887	66	0.72	0.85	1.1	2.9	192.1	enlarged	1		15.2
888	65	0.86	0.91	1	3.2	129.1	enlarged	<u>i</u>		20.4
889	78	0.69	1.13	1.5	4.3	132.7	enlarged	1	-	20.8
99999	70	5.25	1.44	0.8	4.8	226	enlarged	1		26.9
638*	65	1.54	0.95	1.1	3.6	74.5	enlarged	<u> </u>		29.0
661	83	1.48	2.7	1.8	1.7	60.1	normal	3	A	22.5
663	73	41.76	5.08	0.8	2.5	148.8	normal	3	A	56.3
664	71	1.83	0.99	0	2.2	103.9	normal	3	A	29.9
673	72	4.68	0.8	0.4	2.1	168.5	normal	3		37.5
675	65	0	1.22	0	1.5	120.7	normal	3	A	15.5
680	70	0	0.72	2.4	21	262.6	normal	3	A	10.2
772	76	2.28	3.14	0.9	1.9	86	normal	3	A	33.4
773	77	7.41	0.87	1.1	4	139.8	normal	3	Α.	47.3
774	58	1	0.91	0.7	2.8	119.5	normal	3	A	19.6
775	85	1.03	1.59	0.6	2.5	120.2	normal	3	Α	22.9
897	77	1.14	0.75	0	1.8	185.6	normal	3	A	20.6
898	71	1.1	0.45	0	18.3	857.6	normai	3	Α	14.3
899	74	12.3	2.69	1	2.3	192.4	normai	3	A	40.3
900	88	0	0.86	0.6	3.3	131.8		3	Α.	14.6
901	73	22.96	1.75	0.9	2.9	131	normai	3	A	61.9
902	67	0.87	1.15	0.5	2.9	113.7	normai	3	Α.	21.1
903	71	3.06	1.02	0.6	- 2	181.7	normal	3	^	26.6
904	72	2.98	1.79	1.9	1.6	74	normal	3		28.6
906	76 80	1.24	0.9	1.6	3.2	124.1	normal	3	A	26.2
906	71	8.65 20.29	1.5	1.2	12	53	normal	3	A	51,4
908	67	0.59	2.34 0.8	0.4	2.3	114.6	normal	3	A	57.5
909	75	2.47	1.38	0	3.1	120.8 99.2	nonnal	3	A	22.2
910	74	45.34	3.43	1.2	24		normal	3	A	29.9
911	70	45.54	0.75	1.1	27	90	notmal	3	A	64.6
912	72	1.05	0.71	0.6		168.8	normal	3	A	16.1
912	81	3.13	0.71	0.61	2.3	147.9	normal	3	. A	24.8
914	66	16.73	2.49	0.4	2.4	106.8	normal	3	Α.	37.1
683	79					138.8	normal	3		50.8
		289.7 9	30.44	1	10	414.4	В	3	В	49.0
684	82	75.19	6.07	1.2	4.4	49.5	В	3	В	66.1

Fig. 7C enlarged=肥大 normal=正常

【図7】

HTI ID	年齢	PSA	PAP	CKBB	CKMB	CKMM	DRE	112	段键	ProstAsure
685	84	5.52	1.81	í	4.5	100.1	В	3	В	37.4
688	79	35.32	11.91	1.4	2.7	189.5	В	3	В	43.3
689	79	11.79	0.94	0	3.1	227.6	В	3	В	54.2
691	79	10.7	1.11	0.8	2.6	102	B	3	B	
692	81	6.57	1.24	1.1	2	61.5	B			56.8
693	77	7.25	1.29	1	- 4	154.7	В	3	В	48.1
695	79	4.85	1.24	1.9	6.8	159.8		3	В	41.2
696	60	4.09	0.87	1.9	2.9		В	3	B	33.1
697	68	7.76	1.17	1.9	1.7	260.4 87.7	В	3	В	22.8
698	68	14.22	1.1	1.9	3.1	160.1	В	. 3	В	46.3
699	72	20.32	3.35	- 1			В	3	В	57.7
702	73	24.75	2.36	1	2.4	203	В	3	B	47.3
704	70	23.2	2.91		1.9	143.6	В	3	В	56.8
705		143.5		0.8	2.1	137.6	В	3	В	53.7
700	72	143.5 B	7.26	1.1	3.1	138.1	В	3	В	67.8
706	66	2.76	1.2							
708	67	7.95	1.47	0.6	2.8	149.4	В	3	В	24.6
709	68	4.92	0.98	0.6	2.7	73.9	В	3	В	47.9
	65				1.8	121.5	В		В	39.3
710 789	69	2.03	0.78	0.7	2.7	111.8	В	3	В	37.5
				0.7	1.8	73.7	В	- 3	В	35.2
790	57	3.73	1.33	0.7	3.8	124	В	3	В	27.0
791	76	6.73	1.12	0.9	2	48.2	В	3	Ð	50.8
792	76	28.64	2.5	0.5	1.8	87.4	В	3	В	64.3
793	78	6.22	2	1.3	3.5	117.5	В	3	В	35.6
794	64	3.71	1.31	2.9	4.7	132.5	В	3	B	27.0
795	72	11.63	1.71	1.1	2.2	178.7	В	3	Э	46.1
796	65	17.96	1.37	1.3	2.4	52.7	В	3	B	64.9
797	75	10.43	2.84	0.7	4.8	113.6	В	3	9	43.3
798	74	41.23	38.48	0.5	3.8	94.9	В	3	8	51.0
799	63	6.8	0.82	0.6	6.7	247.3	В	3	Ð	35.6
800	73	22.16	1.24	0.6	2.5	73.3	В	3	B	71.9
801	67	3.32	1.78	0.7	1.8	71.7	В	3	В	30.8
802	73	7.32	1.23	0.8	3	104	В	3	В	46.1
803	64	11.02	1.17	0.5	1	49.6	В	3	В	61.4
804	53	6.53	0.88	0	0.9	66.3	В	3	В	49.4
605	74	32.48	2.06	0.5	0.6	88.4	∄	3	В	70.5
806	72	1.6	1.4	0.6	2	55.4	В	3	В	30.6
B07	74	25.37	0.72	0.3	0	46.4	В	3	В	73.6
808	59	12.09	1.37	0.6	2.2	96.1	В	3	В	56.7
809	81	33.18	0.99	0.4	2.4	57.7	В	3	В	72.9
810	57	6.82	3.52	1.1	0	82.9	В	3	В	31.9
811	67	5.96	1.47	1.7	1.4	27.9	В	3	В	44.1
812	62	34.72	2.04	0.9	2.4	140.5	В	3	В	67.4
813	69	17.22	1.27	1	1.9	62.2	В	3	В	66.0
814	65	12.68	1.12	0.7	1.8	65	. 8	3	В	63.4
815	74	9.15	0.95	0.3	1	120.8	В	3	В	54.6
816	74	33.25	2.46	.04	2.7	161.8	В	3	В	63.6
817	69	4.2	0.95	0.5	3.6	108.8	В	3	В	38.0
818	77	9.85	3.13	1.6	3.3	62.7	В	3	В	43.7

Fig. 7D

【図7】

		PSA	PAP	CKBB	CKMB	CKMM	DRE	群	段階	ProstAsure
819	61	2	0.86	1	2.6	105.5	В	3	В	27.6
820	54	9.46	0.38	0.5	0.3	85.6	В	3	В	65.9
821	71	5.9	0.97	0.9	2.6	125.3	В	3	В	42.2
622	60	8.85	13.03	0.7	2.1	81.9	В	3	В	36.5
823	72	7.49	1.9	0.6	3.6	149.9	В	3	В	37.2
824	61	34.12	16.12	1.2	2.3	99.7	В	3	В	
825	75	8.92	1.13	0.7	2.4	88.4	В	3	В	53.4
826	61	5.13	1.94	0.8	2.5	151.4	В	3	В	26.6
527	70	11.01	1.75	0.4	3.5	146.6	В	3	В	48.0
828	61	53.63	1.69	0.8	2.7	113	В	3	В	70.5
829	55	4.94	1.6	0.5	1.1	182	В	3	В	24.5
830	65	64.16	0.59	0.2	2.4	142.8	В	3	В	71.4
831	80	3.58	0.52	0	0.9	89.8	В	3.	В	46.0
832	59	17.4	0.99	0.6	3	140.4	В	3	В	66.3
833	68	790.46	41.76	1.2	2.1	60.4	В	3	В	71.4
834	63	25.86	1.42	0.7	1.9	162.9	В	3	В	67.0
835	66	50.54	3.02	0.8	2	38.1	В	3	В	73.1
836	64	52.21	2.47	1.1	3.8	173	В	3	В	65.5
837	72	12.63	2.42	1.3	1.9	71.7	В	3	В	49.8
838	60	19.02	1.47	1.2	1.3	68.4	В	3	В	64.0
839	72	50.75	22.69	0	2.9	87.5	В	3	В	54.3
840	63	18.86	1.82	0.9	1.1	76.2	В	3	В	61.0
841	65	9.77	1.76	0.6	2.6	B0.9	В	3	В	49.3
842	76	10.63	2.06	1.2	2	55.5	В	3	В	50.8
843	73	11.25	1.43	0.6	2.3	60.7	В	3	В	58.3
844	71	146.44	2.9	0.3	0.7	156.7	В	3	В	70.4
B45	65	10.28	1.58	0.9	2.8	114.5	В	3	В	48.4
846	68	46.72	3.12	1.1	2.8	105.8	В	3	В	66.1
847	70	22.1	3.5	1	4	211.8	В	3	В	45.2
845	76	22.23	2.63	0.8	3.5	103.8	В	3	В	56.5
849	81	20.94	2.21	0.9	3.1	152.3	В	3	В	54.5
850	67	55.47	6.6	2.1	2.1	88.6	В	3	В	54.1
851	60	12.63	3.16	1	2.3	92.1	В	3	В	45.5
852	50	10.33	1.77	1.6	0.9	112	В	3	В	42.3
853	55	19.38	1.17	1.4	3.3	193.9	B	3	В	58.8
854	66	25.14	17.38	1.5	2.5	85.9	B	3	В	45.4
855	64	5.42	1.41	3.4	3.3	161	В	3	В	29.6
856	69	7.97	1.61	0.8	2.8	58.1	В	3	В	48.0
857	67	14.04	3.1	1.6	3.5	141.2	В	3	В	42.2
858	62	2.87	1.34	0.5	2.8	84.7	В	3	• В	29.5
860	63	6.38	1.04	0.6	2	90.8	В	3	В	45.2
861	72	53.16	4.07	0.9	3.5	86.8	В	3	В	66.0
862	64	12.15	1.19	0.6	4.1	180	В	3	B	52.8
859-	65	44.32	28.31	46.2	2.7	108.7	В	3	В	40.6
714	68	30.72	3.83	0.3	6.1	318.2	C	3	C	46.1
718	77	18.58	1.75	1.2	3	112.4	С	3	C	57.8
720	80	40.38	3.27	1.3	3.5	34.1	C	3	c	
723	59	332.64	21.75	0.7	2.9	176	C	3	c	63.5

【図7】

HTID	年齡	PSA	PAP	CKBB	CKMB	CKMM	DRE	群	段階	ProstAsure
724	67	42.76	3.11	0.7	3.8	84	C	3	C	67.7
727	71	49.33	5.67	1.1	4.3	99.9	C	3	Ċ	58.4
729	79	7.65	0.49	0.5	3.1	195	C	3	C	52.9
734	79	2722.4	566.92	6.4	3.6	111.6	C	3	Ĉ	49.2
738	77	78.03	4.21	0.9	6.2	201.9	C	3	Ċ	65.2
741	71	6.98	0.86	1.3	2.5	119	Č	3	- č	46.9
776	67	275.16	132.2	0.7	2.3	198,5	c	3	<u>č</u>	43.3
777	60	7,32	1.77	1.5	6.1	172.5	C	3	č	31.4
778	74	15.29	0.6	0.7	1.4	102.5	č	3	- č	68.7
863	51	2.25	0.67	0.7	0.8	82.5	č	3	č	29.9
864	71	34.66	7.36	0.6	1.5	34.7	- č	3	c	59.7
865	65	1.5	1.4	0.8	4.9	191.4	č	3	Č	14.9
915	81	71.36	1.48	0.7	12	275	- č	3		61.5
916	89	23.43	2.21	0.9	2.8	121.6	č	3	Ť	57.6
917	77	69.19	12.95	1.6	2	82.4	čl	3	č	53.6
918	63	176.84	6.88	0.6	2.1	99.5	č	3	<u> </u>	71.8
919	69	92.76	4.6	1	2.5	89.5	- č	3	<u>c</u>	70.9
920	73	60.67	5.85	0.7	2.7	79.2	č	3		64.1
921	77	89.95	371	Ō	4.5	56.1	c	3		75.2
922	85	85.69	2.58	1.5	4.5	75.8	c	3		69.1
923	74	12.37	2.59	0.8	4.5	200.1	c	3	c	41.0
924	85	. 0	0.57	1.2	2.9	104.9	C	3	C	28.5
925	71	8.68	0.6	0.5	2.7	52.3	c	3	Č	65.4
926	83	62.44	2.79	0.5	1.5	204.5	c	3	Ċ	67.2
927	78	26.73	2.45	8.0	4.9	155.6	С	3	С	57.5
928	53	6.25	6.55	1	1.5	69.7	c	3	Č	29,5
929	90	35.29	3.26	0	2.5	74	C	3	č	65.0
930	81	45.46	21.05	0	2.1	94.3	c	3	ć	54.1
931	75	31.66	6.53	0	4.4	191.4	C	3	C	48.9
932	69	39.93	1.58	1	2.2	89	c	3	С	71.4
743	86	450.13	427.6	9.5	1.2	65.6		3	D	48.4
747	74	345.62	70.55	2.2	3.8	219.8		3	D	42.5
748	67	2000	26.31	1.3	2.4	167.6		3	D	65.0
749	78	0	0.63	0.9	3.4	94.4		3	D	28.3
750		155.97	7.36	1.3	1.7	97.4		3	D	69.2
751	84	85.38	2.68	0.6	1.5	85.2		3	D	72.8
756	76	29.84	20.62	1	6.2	195.1		3	Ď	40.8
757	72	44.55	11.14	1.4	1.4	105.1		3	D	50.6
760	64	16.95	2.05	0.9	1.1	77.7		3	D	57.1
764	77	149.7	5.61	1.7	4.5	114		3	D	65.7
765	65	2343.6	159.5	1.2	1.4	75.2		3	D	66.9
770	76	10.36	1.1	1.1	3.5	122.9		3	Ď	53.4
779	77	33.38	2.27	1.3	2.3	59		3	D	67.0
780	85	22.2	2.42	1.2	2.7	148.7		3	<u> </u>	52.6
781	84	123.26	2.83	0.9	1.6	54.3		3	D	72.6
782	67	23.7	1.75	0.8	1.4	93.1		3	<u>_</u>	65.5
783	81	30.96	1.3	0.9	2.2	52.5		- 3	Q Q	71.4
784	62	118.9	47.38	0.8	1.1	104.6		3		51.9

Fig. 7E

Fig. 7F

【図7】

【図7】

785	年龄	PSA	PAP	CKBB	CKMB	CKMM.	DRE	群	段階	ProstAsure
	80	251.26	2.65	1.1	2.7	58.1		3	P.Z.Nii	
786	88	48.35	2.84	3.6	2.3	43.1		3		71.7
787	71	236.5	35.43	1.4	1.3	44.3			D	66.4
788	75	61.71	1.21	1	0.9	84		. 3	D	58.3
933	72	191.66	85.79	1	4.5	101		3	D	71.2
934	91	13.67	1.28	0.8				3	D	49.9
935	80	236.01	116.27		2.8	130.4		3	D	56.8
936	_			0.9	3.5	136.6		3	D	48.5
936	74	197.49	11.19	1.5	2.3	236.5		3	D	59.6
	78	231.32	75.89	1	4.1	160.3		3	Q	47.7
938	74	530.07	15.46	1.7	1.7	99.7		3	ם	66.7
939	57	742.27	83.76	0.7	1	56.5		3	D	62.5
940	80	162.79	6.79	0.3	4	94.8		3	D	73.5
941	74	3475.3	72.76	18.3	0	41.2		3	D	67.4
942	65	2093.3	53.84	8.8	1.8	126.4		3	D	62.7
943	88	39.37	1.62	0.5	2.9	59.1		3	D	72.8
944	75	223.71	10.98	0.8	2.7	63.3		3	D	73.1
945	53	13.43	1.91	1.5	1.4	132.8		3	D	46.5
946	62	475.53	4.31	1.2	1.7	148.9		3	D	66.4
947	84	26.59	2.83	1.2	3.5	62.2		3	D	59.2
503	68	1.08	1.14	2.9	1.7	51.3	normal	5		26.6
504	39	0.73	0.69	1.1	2.2	105.5	normal	5		14.3
505	61	0.94	1.29	0.7	3.1	97.8	normal	. 5		19.3
506	57	2.54	1.39	0.9	3.6	163.4	normal	5		18.6
510	49	2.07	1.38	1.1	5	166.9	normal	5		14.6
512	47	0.65	0.73	0.7	1.6	82.9	nonnal	5		18.3
513	60	0.7	0.96	1.4	4.1	205.4	nonnal	5		12.0
514	- 46	1.41	0.88	0	2	233.5	normal	5		11.0
517	52	1.47	1.13	0.7	2.5	92.5	normal	5		20.2
521	57	0.74	0.74	0	2.4	282	normal	5		9.4
522	65	0.58	1.21	0	1.7	113.8	normal	5		18.5
523	70	3.58	1.52	1.4	2.8	176.6	normal	5	$\overline{}$	23.9
524	41	0.65	0.97	0.7	1.4	169.7	normal	5		9.7
525	53	0.92	1.15	0.8	2.8	219.4	normal	5		10.2
527	37	0.78	1.04	0	1.1	110.6	normai	5		11.4
528	62	0.55	0.92	1.4	5.8	126.3	normal	5		17.0
529	42	0.56	0.95	0.7	0	110.4	normal	5		12.3
531	64	0.71	0.56	D.9	3	92.1	normal	5.		27.2
532	25	0	0.88	1	1.3	201.6	normal	5		7.0
534	41	0.63	0.83	0.7	3.9	153	normal	5		10.7
535	40	0.69	0.95	1.4	3.6	207.5	normal	5		9.0
536	64	0.98	0.99	0.8	3.9	114.9	nonnal	5		21.4
537	41	0.68	0.91	0.9	2.7	166.2	normal	5		10.2
538	68	2.13	1.1	1	3.5	47.7	normal	- 5		34.2
539	69	1.73	0.96	1.1	2.9	40.8	normal	5		34.8
553	48	1.39	1.18	1.1	25	329.4	normai	5		9.3
354	46	2.11	0.95	1.2	2.3	86.7	normal	5	+	
565	46	1.14	1.47	- 0	3.4	267.3	normal	5		23.0
566	48	1.52	0.9	1	3.4	105	normal	5		19.6
		1					normal =			19.6

Fig. 7G normal = 正常

HTID	年龄	PSA	PAP	CKBB	CKMB	CKMM	DRE	製	段階	ProstAsure
948	43	1.03	1.05	0.2	1.2	99.5	normal	5	***	14.8
949	44	0	0.74	0.6	2.2	121.1	normal	- 5		11.3
950	52	1.1	0.69	0.5	3.5	136.8	normal	5		18.1
951	54	0.69	1.13	0.3	2.6	176.2	normal	- 5		11.3
952	42	0.6	0.9	0.4	3.3	158.9	normal	- 5		10.9
953	51	0.85	0.52	0.8	2	98.5	normal	5		22.2
954	43	0.87	0.9	0.7	2.2	110.9	normal	- 5		14.2
955	42	0.53	0.72	0.6	5.5	390.4	normal	5		7.3
956	46	1.18	0.63	1.8	3.4	215.2	normal	5		12.9
957	42	0.81	0.89	0.7	1.9	134	normal	5		12.9
958	47	1.39	0.58	1.7	3.2	247.9	normal	- 5		12.9
959	48	0	0.34	0.4	25	257	normal	5		8.3
960	54	0.65	0.77	0.4	1.3	96.2	norma!	5		19.7
961	56	3.6	1.01	0.2		201.5	normal	5		22.7
962	63	2.63	0.56	0.5	3.1	107.9	normal	. 5		35.0
963	50	1.4	1.03	0.8	1.6	157.5	normal	- 5		14.8
964	53	1.48	1.02	0.0	1.4	613	normal	5		25.2
965	56	0	0.67	0.7	5.4	147.8	normal	5		13.6
966	43	<u></u>	0.72	0.6	2.3	167.1	normal	5		9.1
967	43	0.92	0.43	0.9	2.1	119.7	normal	- 5		18.3
968	50	1.18	0.55	0.8	2.1	124.8	normal	- 5		20.7
969	51	0.86	0.72	0.9	2.8	131.4	normal	5		16.8
970	62	1.5	0.9	1	4.2	116.3	normal	- 5		23.9
971	44	1.84	0.92	0.8	1.2	109	normal	5		19.3
972	42	2	1.41	0.3	3.2	332	normal	5		97
973	43	0	0.96	1.3	3.1	192.2	normal	5		8.0
974	63	1.64	0.86	1	2.9	44.5	normai	5		33.1
975	48	1.05	0.77	1	1.7	92.8	normal	5		19.7
976	_ 48	1.53	1.16	0.7	1.6	113.1	normal	5		17.0
977	40	0.72	0.98	0.4	0.5	52	normal	5		16.5
978	35	0.91	0.97	0.6	0.8	185.8	normal	S		9.2
979	46	0.93	0.89	0.6	2.4	180.1	normai	5		114
980	42	1.25	1.06	0.6	2.6	175.14	normal	5		11.3
981	43	0.79	0.92	0.6	3.8	285.7	normal	5		7.9
982	46	1.13	1.05	1.2	1	171.6	normal	5		12.1
983	61	0.88	0.69	1	1.6	85	normal	5		26.1
984	42	1.15	1.74	0.9	25	241.7	normal	5		8.3
985	61	0	1.39	0.7	1.5	64.4	normal	5		17.5
986	41	0.64	1.03	0.6	2.8	136.3	normal	5		10.6
987	56	0.88	0.7	0.9	1.6	77.9	normal	5		24.6
988	45	1.52	1.36	0.6	2.9	152.4	normal	5		12.7
989	52	0.77	0.53	0.7	0.9	127.7	normal	5		19.2
990	53	2.45	1.14	2.4	2.2	148	normal	5		19.5
991	39	0.7	0.98	. 0.7	3.2	191.1	normai	5		8.9
992	51	1.1	1.06	1.2	3.5	240.9	normal	5		10.3
993	60	1.96	0.81	0.3	1	53.3	normal	5		33.8
994	50	0.62	1.08	0.4	2.8	146.3	normal	5		11.8
995	51	1.11	0.56	0.4	3.6	2 69 .1	normal	5		10.9

Fig. 7H normal -正常

【図7】

HILID	年齢	PSA	PAP	CKBB	CKMB	CKMM	DRE	群	段階	ProstAsure
996	68	0.65	1.05	0.5	3.9	196.8	normal	5		13.8
997	11	3.22	0.86	0.8	2.5	95.9	normal	5		17.7
998	60	0.78	0.67	0.6	0.9	81.5	normai	5		26.0
999	53	0.7	0.68	0	1.6	74.9	nonnal	5		22.6
1000	56	1.19	0.83	0	1.6	157	nonnal	5		17.0
1001	47	0.73	0.92	1	2.7	120.5	normal	5		14.0
1002	48	1.03	0.92	0.5	18	212.6	nonnal	5		10.7
1003	39	0.86	0.91	0.4	0.9	161.5	normal	5		9.8
1004	61	8.0	0.36	0.5	1.9	104.5	normal	5	-	28.1
1005	50	0.52	0.49	0.7	1.1	106.2	normal	5		19.2
1006	39	0.97	1.27	0.6	0.6	279	normal	5		7.7
1007	49	0.51	0.74	1	1.7	106.3	normal	5		16.1
1008	62	0.72	0.69	1.1	2	113.2	normal	5		22.4
1009	41	.0	0.93	0.6	0.9	75.6	ronnal	5		12.2
1010	49	0.61	1.17	0.4	1.9	128.6	normal	- 5		12.2
1011	41	0.58	1.24	0.5	1.8	118.9	ponna!	5		10.4
1012	55	0.84	0.44	1	1.8	103.8	normal	- 5		24.6
1013	. 50	1.69	1.23	0.9	1.4	132.2	normal	- 5		16.5
1014	51	2.35	0.87	0.9	1.3	111.2	normal	5		24.7
1015	49	0.53	1.19	0.8	2.3	104.6	normal	5		13.1
1016	72	1.03	0.94	1.2	2	87.8	normal	5		27.8
1017	53	1.06	1.22	0.8	1.7	87.5	normal	5		18.3
1018	63	3.25	0.97	0.8	2.6	173.8	normal	5		25.9
1019	45	0	0.62	0.6	0.6	97.6	normal	5		14.1
1020	60	0.74	0.76	0.8	2.8	184.9	normal	5		14.8
1021	41	1.41	0.86	0.4	0.8	111.1	normal	5		16.4
1022	51	0.83	0.74	0.5	0.6	82.6	normal	5		21.2
1023	41	1.47	0.78	0.6	1.8	120	normal	5		16.6
1024	46	2.22	0.95	0.5	1	73.8	normal	5		25.1
1025	47	1.03	0.95	0.6	15	104.7	normal	5		16.5
	48	1.6	0.81	0	1.2	150.6	normal	5		16.9

Fig. 71 normal = 正常

[図8]

FIGURE 8A

急者	年齢		PHOS		PROG	TALP	TINTES	PLIVER	スゴア
1	61	9.7	3.6	15	0.2	82	0	67.317	0.645
2	55	9.2	3.9	83	7.9	31	3.7	49.032	0.747
3	33	9.4	3.6	12	0.1	39	2.8	62.821	0.819
4	43	8.5	4	4	0.3	39	2.6	50.513	0.841
5	58	9.5	3.5	40	0.1	75	0	78.267	0.660
6	48	9.6	3.8	145	7.5	49	0	59.388	0.679
7	56	8.6	3.8	43	0.1	48	Ö	60.833	0.698
8	36	9.4	9.4	4.1	106	77	0	54.156	0.819
9	32	8.5	3.6	18	0.7	52	0	51.538	0.810
10	33	9.4	3.6	65	2.4	63	4.6	70.794	0.815
11	74	9.2	4.2	13	0.2	70	0	62.571	0.619
12	41	8.8	4.1	43	0.7	70	13.1	48.000	0.890
13	28	9.1	3	84	0.3	76	7	52.763	0.802
14	44	9.1	3.3	176	0.6	82	10.3	62.805	1.011
15	62	9.1	3.4	90	0.2	32	0	40.625	0.693
16	36	9.6	3.8	59	0.1	39	0	66.154	0.822
17	60	8.9	3.4	129	0.1	64	0	78.125	0.668
18	42	9.3	3.8	35	0.8	43	0	39.070	0.814
19	35	9.4	3.7	58	0.2	39	Ö	55,128	0.828
20	47	9.1	5.2	42	1.4	50	7.6	60.200	0.762
21	46	9	4.5	95	7	52	10.4	60.192	0.886
22	37	9.3	3.4	231	0.2	60	0	84.667	0.779
23	30	9.1	4.2	5	0.2	61	11.3	52,459	0.837
24	45	9.2	3.6	63	2.3	44	5.4	64,318	0.766
25	42	9.2	3.5	139	0.4	44	0	72.045	0.773
26	61	9.8	4	22	0.3	70	0	49.571	0.669
27	64	8.8	4.1	17	0.2	73	5.7	65.068	0.646
28	79	10.2	3.9	13	0.1	67	0	53.731	0.602
29	33	8.5	2.9	20	0.4	39	5.2	47.949	0.791
30	41	9	2.5	120	0.8	56	0	55.893	0.700
31	50	9	3	79	0.7	49	0	48.367	0.721
32	46	9.5	4.1	22	0.3	58	4	46.034	0.729
33	51	9.2	3.2	162	0.3	58	ö	50.172	0.716
34	45	9	3.1	44	2	42	0	65.714	0.733
35	45	9.3	3.8	123	12.8	66	18.3	54.848	0.965
36	32	9.3	3.8	40	0.6	40	4.3	39.000	0.849
37	51	8.9	3.6	71	2.8	70	7.1	55.429	0.713
38	29	9.2	4	117	16.5	30	- '.'	57	0.713
39	31	9.3	4	93	0.3	41	- 0	25.610	0.894
40	69	10	4.2	15	0.3	110	36.4	45.364	0.615
41	29	9.2	3.9	12	0.1	147	18.1	54.694	0.770
									0.,70

[図8]

[図8]

患者;	年的	CAL	PHOS	ETWO	PROG	TALP	TINTES	PLIVER	スコア
42	67	9.3	4.7	3	0.2	65	2.9	48.000	0.66
43	42	8.8	3	57	2.5	55	3.9		0.82
44	52	9.6	3.8	118	0.6	53	3.8		0.73
45	51	10	4.4	52	0.3	62	8.6	39.516	0.74
46	46	8.8	3.6	73	3	45	0.0	26,444	0.78
47	46	8.9	4.4	14	0.4	64		62.031	0.78
48	45	9.1	4.5	206	0.2	84	19.6	45.357	
49	81	9.3	4.2	4	0.3	66	7.4		0.84
50	32	9	2.5	25	1.4			64.B4B	0.59
						5.6		68.929	0.76
51	52	9.5	3.8	- 11	0.1	49	0	66.735	0.71
52	47	B.9	4.7	15	0.2	64	7	66.563	0.74
53	60	9.2	3	18	0.2	101	23.8	39.604	0.622
54	47	9.5	4.5	8	0.1	72	8.2	66.389	0.70
55	46	9.5	3.5	34	10.6	67	9.8	54.925	0.767
5.6	57	10.1	3.9	36	0.4	120	9.6	73.083	0.649
57	69	9.5	3.7	10	0.1	91	0	68.132	0.612
5.8	62	8.7	3.5	13	0.2	65		52.615	0.650
58	73	8.9	4	15	0.2	102	11.1	60.294	0.594
60	51	8.9	3.5	74	4.4	51	0	69.608	0.726
61	51	9	3.7	12	0.4	109	. 0	56.330	0.66
6.2	63	9.5	4.7		0.3	51	0	51.961	0.692
63	_77	9.3	3.2	17	0.2	106	10.7	51.226	0.567
64	63	9.2	4.1	17	0.2	51	7.9	31.569	0.676
6.5	73	9.6	1.1	19	0.2	69	0	75.217	0.576
66	83	9	3.6	2	0.1	57	0	81.404	0,581
67	59	8.B	3.7	24	0.1	8.5	6.9	59.294	0.648
68	60	8.9	4	110	0.3	40	0	66.500	0.706
69	76	9.4	3.5	21	0.1	54	5.8	62.593	0.604
70	59	9.2	4.6	15	0.1	60	0	51.500	0.699
71	63	9.2	3.4	121	0.1	48	0	140.833	0.667
72	63	9.4	3.2	6.5	0.1	64	8.3	62.188	0.648
73	76	8.9	3.8	8		91	11.B	58,132	0.587
74	46	8.6	3.5	54	7.4	73	10.1	46.301	0.993
75	57	9.1	3.7	195	0.1	61	11.4	55.410	0.698
76	41	9.1	3.4	67	3	57	0	68.772	0.733
77	B1	9.9	4.3	20	0.1	61	8.6	57.213	0.679
78	25	9.1	3.3	122	0.6	82	0	66.935	0.821
79	51	9.2	3.1	124	7.7	79	11.1	26.835	0.704
60	57	8.9	3.9	15	0.3	84	0	72.500	0.662
81	76	8.8	3.1	12	0.2	8.8	0	86.023	0.574
82	64	9.3	3.4	31	0.1	57	4.5	55.965	0.662
83	61	9.4	3.5	22	0.5	86	9.4	60.581	0.637
84	42	9.3	3.4	150	14.9	78	Ö	54.744	0.699

				FIGURE				_	
思書	年齡	CAL	PHOS			TALP	TINTES	PLIVER	スコア.
85	28	8.9	3.5	177	9.6	46	0	34.348	0.867
86	26	9.4	4.1	39	0.2	52	6.9	52.500	0.878
87	73	9.3	3.5	0	0.2	72	11.5	52.361	0.604
8.8	37	9.3	3.1	55	2.2	77	6.4	56.623	0.756
89	72	9.2	4.3	4	0.2	111	6.3	50.811	0.603
90	69	9.2	2.8	14	0.1	125	0	75.360	0.580
91	88	9.1	3.3	19	0.2	74	0	52.027	0.554
92	76		3.1	13	0.1	65	6.2	66.308	0.587
93	77	8.5	3.1	10	0.1	31	3.2	31,290	0.609
94	80	9.2	2.7	15	0.1	67	0	72.836	0.568
95	70	8.8	4	19	0.1	102	7.1	67.353	0.603
96	52	9.7	3.3	21	0.1	94	20.6	43.298	0.666
97	76	9.3	2.4	86	0.1	130	. 0	62,789	0.563
9.8	74	9.4	3.2	19	0.1	85	0	73.529	0.587
99	70	9.4	4	11	0.1	56	0	60.714	0.639
100	80	9.5	3.9	7	0.1	. 77	_ 0	72.338	0.587
101	72	9.4	3.7	5	0.1	93	٥	79.677	0.598
102	74	9.6	2	24	0.1	88	4.9	61.364	0.563
103	55	10.1	3.5	15	0.1	6.8	6	35.294	0.684
104	52	9.1	4.2	11	0.2	71	2.8	58.732	0.706
105	80	9.1	3.1	29	0.3	88	10.7	46,023	0.631
106	77	9.1	4	15	0.4	66	5.8	68,636	0.603
107	46	8.8	4	14	0.2	44	O	72.500	0.784
108	52	8.5	3.2	14	0.2	88	6.1	43.409	0.663
109	52	8.6	3.7	10	0.1	62	3.8	41.452	0.700
110	79	9.1	3.8	13	0.2	78	0	71.795	0.687
111	66	9.5	4.4	9	0.1	74	0	64,189	0.652
112	40	9.2	3.1	38	0.7	51	6.8	41.961	0.758
113	82	9.7	3.7	5	0.1	70	5.8	72.714	0.579
114	66	10	4.5	9	0.1	66	0	67.879	0.662
115	62	9.3	3	4	0.1	63	0	71.587	0.639
116	60	8.7	3.9	1.4	0.1	56	11.7	59.464	0.669
117	81	8.8	3.6	17	0.2	96	7.3	64.792	0.564
118	75	9.2	3.3	1 1	0.2	72	. 0	61.528	0.595
119	6.6	8.9	4.5	9	0.2	81	0	45.062	0.651
120	78	8.4	3.9	7	0.1	71	8.5	62.676	0.591
121	74	8.8	2.8	0	0.1	62	0	62.742	0.592
122	81	8.8	3.2	10	0.1	61	6.8	28.033	0.581
123	74	10.4	3.4	11	0.2	69	0	48.551	0.609
124	82	8.8	3.4	17	0.2	79	0	61.772	0.569
125	44	8.6	3.2	208	0.3	120	0	70.417	0.728

【図8】

FIGURE 8D

患者		年齢	CAL	PHOS	ETWO	PROG	TALP	TINTES		
- 5-73	-100	4-87							PLIVER	スコア
├	126		8.5	4.5	18	0.1	78	5.9	57.179	0.634
⊢	127	75	8.7	3.8	9	0.2	69	0	66.957	0.605
	129	74	9	3.8	. 8	0.1	80	4	72.375	0.599
<u> </u>	130	89	8.7	2.9	32	0.2	130	0	68,615	0.525
	131	77	9.5	4.2	41	0.1	74	6.8	69.054	0.606
	132	72	8.9	3.5	24	0.3	58	0	43.621	0.620
	133	69	9.2	3.1	9	0.2	94	8.4	49.468	0.597
<u> </u>	134	71	9	6.3	5	0.1	70	4.6	61.571	0.646
<u> </u>	135	68	9.2	3.6	11	0.1	84	. 0	72.857	0.616
	136	85	9	3.9	7	0.1	71	12.6	64.386	0.571
<u> </u>	137	43	9.2	3.8	140	0.2	46	. 0	68.261	0.777
Ь—	138	49	9.2	2.9	73	3.3	42	. 0	57.619	0.696
<u> </u>	139	41	8.6	4.1	117	15.7	93	0	63.656	0.716
	140	67	9	3.4	93	0.1	59	0	73.051	0.646
	141	50	9.8	2.1	132	0.2	4.5	3.5	42.000	0.702
	142	70	9.2	2.7	13	0.1	67	0	72.985	0.600
<u> </u>	143	66	9.4	3.3	14	0.1	71	0	71.690	0.625
Ь—	144	52		3.5	53	0.3	64	3.8	35.156	0.706
	145	82	8.5	3.1	15	0.1	64	0	49.063	0.572
	146	64	9.6	3.6	149	0.5	47	8.7	58.936	0.675
<u> </u>	147	65	9.1	4.6	9	0.3	78	0	41,154	0.661
ļ	148	54	9.4	4.5	16	0.2	96	5.7	69.583	0.683
	149	48	9.2	4.1	33	0.3	143	8.7	34.895	0.708
<u></u>	150	75	10	3.9	10	0.2	88	0	39.545	0.605
	151	57	9.4	3.9	10	0.2	54	3.4	51.111	0.692
L	152	47	9.4	4.	42	0.3	65	8.6	51.846	0.739
	153	70	8.8	3.5	6	0.1	6.5	5	37.231	0.621
	154	59	9.2	4	9	0.2	49	4.4	47.143	0.690
	155	60	9.2	4.1	12	0.1	56	2.8	60.357	0.680
	156	49	9.1	3.6	59	0.2	35	0	54.571	0.762
	157	59	9.5	4.1	7	0.1	92	6.5	45.978	0.660
	158	66	9.2	3.8	1	0.2	46	ō	40.000	0.660
	159	57	9.2	4.3	16	0.2	81	5.4	53.704	0,679
	160	41	10	4.6	306	1.2	46	0	75.217	0.763
	161	38	9.5	3.6	4	0.2	68	5.1	69.265	0.758
	162	35	9.5	3,4	36	0.4	57	3.3	84.561	0.785

【図9】

FIGURE 9A

息者	年齢	CAL	PHOS	ETWO	PROG	TALE	*****		
123		9.4	4.2			TALP		PLIVER	スコア
128		9.8		-1	0.3	61	0	46	0.722
131		9.0	4.4	-1	0.4	58	0	43	0.862
173		9.1	3.9	156	11.5	44	٥	59	0.820
201		9.5		41	0.2	98	0	60	0.790
206			3.5	123	3.3	90	٥	53	0.814
213		9.2	2.6	50	1.5	74	89	.42	0.729
220		8.8	3.4	37	0.2	90	0	36	0.708
223		9.7	3.4	118 72	4.3	90	9	63	0.996
234		9.7			0.4	78	8.6	38	0.717
243		9.3	3.2	186	12.6	50	0	46	0.803
244			4.4	65	0.3	58	0	40	0.857
244	30	9.6 9.5	3.7	96	0.3	58	0	49	0.725
245	28	9.5	3.2	-1	0.1	64	. 0	53	0.800
249		9.3	3.5	-1 42	0.3	58	0	50	0.B21
253		9.2	3.4		0.2	98	11.1	38	0.782
254	30	9.6	3.4	-1 143	0.3	68	0	63	0.797
256	19	9.1	3.8	219	10.1	45	- 0	31	0.894
258	30	9.1	3.4			53	6.1	32	0.871
259		9.2		60	0.6	68	0	33	0.829
260		9.1	3.8	44	0.2	108	0	54	0.805
261	23	9.4	3.4	-1	0.3	62	. 0	61	0.818
265	24	9.4	3.2	191		65	0	32	0.795
266	26	9.4	3.9		0.2	71	0	30	0.829
268	20	9.3	4.3	91	0.3	51	5.5	47	0.869
269	19	8.9	3.9	62	0.2	61	0	60	0.857
271	20			53	0.8	68	0	42	0.837
		8.9	4.1	277	18.9	65	0	40	0.869
272	24	9	3.3	58	0.4	66	0	49	0.815
274	19	9.7	3.8	44	0.3	120	0	70	0.776
276	25	9.2	3.9	-1	0.9	65	5	27	0.837
279	21	10	4.6	115	0.5	106	0	70	0.834
280	21	9.5	4.1	202	0.9	6.8	0	57	0.856
281	20	9.1	3.6	-1	0.3	47	. 0	53	0.831
284	27	9	3.3	376	0.6	43	0	37	0.855
285	31	9.6	3.7	208	1.2	60	0	62	0.842
286	27	9	3.2	350	1.5	65	0	60	0.819
287	22	9	3.1	45	0.2	66	0	39	0.805
290	23	9.3	4.3	57	0.3	104		47	0.817
292	24	9.4	3.7	35	0.3	62	0	43	0.829
296	21	9.2	3.2	65	0.3	111	0	55	0.767
298	26	9.4	3.2	248	0.8	57	0	35	0.842

FIGURE 98

[図9]

FIGURE 9C

潜	年齢	CAL	PHOS		PROG	TALP	TINTES	PLNER	スコア
321	39	6.8	3.6	84	0.2	66	0	42	0.78
326	22	9.4	3.6	45	0.4	50	0	37	0.84
331	48	9.7	3.1	47	0.3	84	O.	58	0.67
332	51	9.8	3.5	-1	0.3	64	0	40	0.70
333	53	9.2	3.3	166	1.2	63	0	56	0.70
340	42	9.1	2.8	52	0.2	67	0	64	0.72
342	50	9.6	3.8	76	0.3	62	0	71	0.73
346	44	9.2	3.4	111	4.9	72	12.4	50	0.97
347	41	9.5	3.7	-1	0.2	77	0	69	0.73
359	54	9.3	3.6	95	0.2	77	0	69	0.69
360	34	9.4	3.6	62	0.4	76	0	63	0.79
364	40	10	4.2	104	0.3	62	9	57	0.B1
365	46	9	3,5	97	6.7	54	0	64	0.69
375	53	9.3	3.9	75	0.2	62	ol	66	0.71
382	48	8.7	4.8	36	0.2	63	ő	66	0.79
386	24	9.3	3.8	-1	0.3	68	0	65	0.B1
389	22	9.1	4.3	-1	0.3	66	0	65	0.83
391	32	9.7	3.3	-1	0.4	57	0	64	0.79
393	29	9.6	3.5	30	0.5	47	0	61	0.82
394	27	8.9	4.1	-1	0.4	4.5	0	56	0.84
402	38	8.7	3.5	33	0.6	43	0	46	0.78
403	32	9.2	3.4	-1	0.3	21	0	24	0.84
404	49	9.2	4.5	-1	0.1	100	0	53	0.73
407	52	9.4	3.3	152	0.4	71	0	52	0.70
408	24	. 9	3.7	132	0.6	87	0	49	0.81
409	46	9.2	4.1	69	7.1	52	- 0	58	0.69
412	52	9.7	3.6		0.2	6.8	0	29	0.70
416	44	9.7	3.4	142	0.7	80	0	79	0.69
417	49	9.5	3.4	-1	0.2	7.5	0	47	0.70
418	49	10	4.2	403	1.3	88	0	75	0.67
419	26	9.3	3	1	0.4	82	0	65	0.76
422	38 46	9.2	3.3	198	0.2	7.6	0	24	0.78
539		9.3	4.5	793	0.7	46	- 0	33	0.81
545	26 26	9.7	3	96	0.3	65	. 0	42	0.82
549 560	33	9.5	3.9	118	0.4	46	7.2	49	0.86
562	23				0.3	78	7.4	61	0.79
579	20	9.4	3.2	-1	0.4	58	0	36	0.81
			3.4	48	0.5	80	0	53	0.79
588	36 28	9.3	3.5	-1 36	0.1	48	- 0	51	0.79
591	35	9.7			0.5	52	0	54	0.83
593 597	35	9.3	3.7	108	0.3	69	9.6	41	0.81
597 602	49	9.3	3.5	180	4.3	53 69		71	0.80
2520	29	9.2	4.4	52	0.2	49	- 0	46	0.69
Z3ZU	23	9.2	4.4	32	0.2	49	01	4 1	0,87

息者 3000 3020	年齢 28	CAL 9.4		ETWO	PROG	TALP	TINTES		
3020		9.4	3.7	49	0.4	66	0	PLIVER 53	スコア 0.828
	25	9.6	4	164	16.8	56		41	0.828
100	52	8.7	3.1	371	0.3	59	0	54	0.703
113	53	9.8	3.5	3	0.2	63	0	67	0.690
126	42	9	4	99	16.4	83	14.4	36	0.984
130	50	9.3	3.5	336	0.6	40	0	25.	0.754
139	74	8.9	3.7	209	0.4	35	5.9	36	0.648
160	60	9.5	3.9	81	0.3	47	5.2	53	0.704
176	56	9	2.9	115	0.2	64	0	58	0.677
177	39	9.4	3.1	71	0.2	82	ō	45	0.751
208	42	9.1	2.4	177	15.6	54	ő	70	0.757
211	50	9.5	3.1	69	0.2	77	o	60	0.696
214	25	9.2	3.7	-1	0.9	43	0	29	0.852
251	24	9.5	3.9	-1	.0.1	61	0	25	0.844
273	30	9.4	3	99	0.2	156	8.3	26	0.776
299	27	9.2	3.2	41	0.2	77	0	58	0.768
309	3.5	- 9	3.9	55	0.3	90	8.7	62	0.773
316	41	9.4	3.5	75	7.3	44	0	27	0.733
320	. 52	9.3	3.4	57	0.2	58	0	55	0.707
355	54	9.1	3.6	93	0.4	55	0	40	0.718
358 361	49	9.5	3.6	38	0.3	71	0	54	0.686
361		9.5	3.8	31	0.3	74	9.5	50	0.744
377	52	9.6	3.8	120	0.2	72	10.3	42	0.698
385	55	9.0	3.3	120	0.2	68	0	53	0.717
398	53	9.3	4.6	30	0.2	97	- 0	73	0.646
406	26	9.6	3.4	35	0.3	97 62	10.3	28	0.697
414	52	9.3	0.9	56	0.4	66	- 0	70	0.806
421	31	9	3.5	72	0.3	69	- 0	72	0.710
536	48	9.4	3.4	54	3.2	56	- 6	63	0.818
544	38	9.3	2.4	126	0.2	64	0	59	0.688
586	36	9.3	4	-1	0.5	41	- 6	44	0.747
603	27	8.9	4.4	42	0.3	48	- 0	38	0.822
109	54	9.4	3.3	64	0.3	121	9.6	65	0.652
110	58	9.4	3.9	20	0.1	85	0	58	0.663
129	45	8.8	3.7	197	10.8	56	0	53	0.733
141	46	9.7	3.6	141	2.1	68	0	44	0.709
158	45	8.9	3.3	243	0.8	63	0	43	0.763
164	51	9.3	3.5	139	0.5	59	0	43	0.727
170	51	9.4	3.3	120	4.2	50	- 6	30	0.737
178	36	9.7	3.3	139	0.4	40	0	46	0.824
180	38	B.7	3.4	48	0.4	52	0	39	0.783
181	34	8.7	3.4	78	11.1	67	6.8	33	0.817
183	44	9	3.6	131	0.2	35	0	54	0.807
191	4.5	9.3	3.5	-1	0.4	4 5	0	58	0.760

[図9]

FIGURE 9E

					FIGURE	9D				
患者		年齡	CAL	PHOS	ETWO	PROG	TALP	TINTES	PLIVER	スコア
	194	29	9.2	0.7	89	0.1	82	0	52	0.824
	200	45	9.2	3.7	226	1.6	46	0	27	0.786
	204	25	9.5	3.5	_ 170	0.3	43	0	46	0.863
	209	42	9.6	2.9	539	0.4	50	0	64	0.738
	216	46	9.2	3.6	156	0.5	43	0	39	0.780
	218	43	9.5	4.4	133	0.7	59	0	41	0.791
_	225	37	9	2.7	159	1.4	64	6.7	48	0.766
	226	72	9.9	4.9	46	0.3	77	8.9	61	0.543
	227	46	9.6	4.4	-1	0.2	94	0	38	0.757
	230	43	9.3	3.4	94	0	71	0	77	0.721
	231	35	8.9	3.2	-1	0.3	51	0	61	0.777
	233	50	9,1	3.5	43	0.3	73	0	23	0.709
	238	46	8.3	0.4	234	0.2	5.5	5.9	46	1.094
	239	40	9.5	3.6	43	1.6	71	0	63	0.758
	246	34	9.B	3.3	-1	0.3	42	D	58	0.804
	24B	51	8.9	3.8	76	0.2	61	0	62	0.724
	255	19	9.6	4.3	49	0.3	86	0	34	0.841
	257	3	8.9	2.9	118	2.7	75	. 0	21	0.816
	262	26	9.1	3.6	-1	0.2	47	0	24	0.844
	267	23	9	3.6	70	0.4	84	0	50	0.825
	270	21	9.1	3.9	47	0.9	40	0	70	0.850
	277	27	9.4	4.6	58	0.2	138	0	69	0.811
	278	_ 29	9.4	3.9	404	1.2	62	7.9	46	0.864
	282	28	9.4	3.9	60	0.2	57	0	36	0.859
	283	25	10	3.6	7	0.3	48	0	32	0.847
	288	24	9.7	4.1	65	0.3	107	7.2	35	0.816
	289	27	9.4	3.4	68	0.6	87	0	37	0.812
	291	26	9.6	3.3	-1	0.3	58	0	28	0.823
	293	26	9.6	4	32	0.2	68	0	35	0.838
	295	26	9.1	3.3	57	0.5	51	0	63	0.324
	310	47	9.5	3.6	306	1.5	53	_ 0	46	0.730
	314	48	9.1	2.7	-1	0.2	64	0	53	0.704
	328	37	9.4	3.2	54	0.4	74	0	55	0.762
	335	47	9.2	4.2	4.9	0.4	74	0	56	0.745
	341	37	9.3	3.3	-1	0.1	68	C	56	0.758
	349	50	8.8	3.1	151	0.1	67	8	30	0.710
	353	50	9	4.1	374	0.2	53	ō	30	0.759
	354	58	9.7	4.3	74	0.3	48	6.8	45	0.726
	363	50	9.1	3.3	76	0.6	93	13.8	31	0.694
	366	24	9.4	2.7	-1	0.5	50	0	31	0.806
	372	21	10	2.9	56	0.7	79	ō	61	0.789
	378	42	9.2	3.5	169	0.1	72	ő	56	0.754
	381	62	9.5	3.6	56	0.1	63	ő	30	0.672
	384	62	9.4	4	34	0.2	98	25.3	3	0.644

息者	年齡	CAL	PHOS	ETWO	PROG	TALP	TINTES	PLVER	スコア
387	52	9.6	3.7	38	0.2	133	0	55	0.669
388	64	9.1	3.1	87	0.3	80	0	75	0.636
396	57	8.8	3.1	76	0.2	83	7.7	51	0.659
397	58	9.6	3.3	73	0.3	85	0	52	0.665
400	50	9.1	3.5	-1	0.2	99	9.7	50	0.671
410	37	9.5	2.8	-1	0.3	44	0	48	0.769
411		9.4	3.1	138	-7.5	69	0	27	0.674
415		9.6	4.6	•	0.4	42	0	72	0.861
424	54	9.4	3.1	59	0.4	101	Ö	35	0.662
507		9	3.4	46	0.3	55	0	65	0.745
513		9.4	3.5	52	0.2	72	0	52	0.815
533		9.6	3.9	-1	0.1	80	٥	61	0.655
535		9	3.5	-1	0.3	68	0	55	0.795
537		9.9	3.2	32	0.3	81	0	58	0.679
540		9.5	2.9	391	0.7	49	7	35	0.955
541		9.3	4.4	-1	0.2	68	0	37	0.714
542		9.2	3.4	80	0.6	51	0	60	0.829
546		9.3	4.5	100	0.1	45	0	59	0.711
548		9.2	4.1	-1	0.4	55	0	59	0.719
550		9.9	3.7	92	0.3	127	0	78	0.668
554		9.1	3.5	42	0.4	44	0	37	0.808
561		8.9	3	54	0.2	55	. 0	54	0.809
568		9.6	3.2	-1	0.3	49	Ö	40	0.699
569		9.2	4.5	274	0.5	80	9	30	0.B70
571	45	9.1	3.3	402	1	72	0	54	0.731
572		9.5	3.9	52	0.2	57	7.3	23	0.700
576		9.5	3.3	43	0.2	78	0	56	0.632
580 582		9.3	3.2	60	0.2	76	8	43	0.696
		8.9	3	119	0.2	80	7.1	24	0.967
583		8.9	3.2	353	0.2	66	. 0	64	0.744
586 589		9.3	3.7	223	0.7	73	12.4	22	1.206
592			3.5	-1	0.3	88	. 0	45	0.678
595		9.2	3.7	95 128	0.3	50	. 0	57	0.717
		9.1	3.6		4.5	90	8.2	35	1.000
596 604		9.3	4.3	-1 -1	0.2	53	. 0	47	0.757
605		8.9	3.4	-1	0.2	84	0	53	0.684
608		9.7	3.4		1.4	64	. 0	40	0.740
2500		9.7	3.6	-1 70	0.1	69	D	48	0.742
3010		9.2	3.8	178	0.2	62	10.1	42	0.842
		9.4		1/8	15.9	33	0	34	0.894
106		9.5	3.4	-1	0.2	86	9	55	0.674
117	46	9.5	2.9	48	0.1	85	0	60	0.634
133	47	9.5	4.2	203	15	80	- 0	54	0.690
133			4.2	203	131	57	7	52	0.939

right

FIGURE 9F

[図9]

FIGURE 9G

息包	年韵	CAL		ETWO	PROG	TALP	TINTES	PLIVER	スコア
151	36	9.1	3.8	-1	0.3	80	0	57	0.766
156	34	9.8	3.9	114	17.9	4.1	0	97	0.866
166	51	9.2	3.8	60	0.1	60	0	42	0.727
167	49	6.5	3.8	76	0.5	97	10	48	0.810
179	32	9.5	3.6	59	0.2	61	0	47	0.826
182	51	8.4	3.7	99	0.2	84	0	91	0.708
189	53	9.2	4.2	-1	0.1	68	. 8	47	0.705
212	37	0,4	3.7	162	18.6	5.5	0	57	0.816
217	67	9.4	3.2	-1	0.2	64	6.3	33	0.628
219	50	9.6	3.7	-1	0.3	8 1	0	1.8	0.707
222	56	9.1	3.9	30	0.2	102	. 0	61	0.657
228	51	9.4	3.5	141	0.4	61	0	28	0.730
235	41	9	4.3	9.6	0.3	45	0	38	0.868
252	52	9.5	3.3	34	0.2	79	0	48	0.681
264	28	9.1	3.4	-1	0.2	50	0	60	0.816
275	25	9.1	2.5	1	0.4	38	0	34	0.806
297	23	9.4	4.4	177	12.2	72	0	5.5	0.873
317	47	9.6	2.4	-1	0.2	60	0	27	0.709
324	4.6	9.4	4	117	0.4	7.5	0	54	0.732
327	4 8	9	3.4	322	1	46	0	52	0.765
329 337	48	9.5	3.7	72	2.4	78	- 0	4.5	0.692
352	56	9.3	3.5	122	10.3	48	0	42	0.700
357	35	9.4	2.9	73 89	0.2	53	- 0	35	0.707
367	42	9.1	3.2		2.3	71	7.6	23	0.791
369	62	9.6	3.6	58 31	0.5	90	9.8	84	0.846
379	42	8.6	3.4	156	6.3	86	0	39	0.645
380	49	9.6	4.2	- 136	0.2	71	0	61	0.742
383	62	9.0	3.5	B1	0.1	66	11	52	0.690
392	63	9.5	3.4	-1	0.3	98		52	0.665
517	25	10	4	31	0.1	50	- 8	76	0.620
526	47	9.1	3.8	94	0.2	62		50	0.853
543	5.9	9.4	4.2	- 1	0.2	104	- 8	20	0.750
553	48	8.8	4.1	35	0.5	57	0	66	0.662
556	89	9.6	4	77	0.1	44	6.8	53	0.759
567	29	9.4	4.2	-1	0.3	67	9.7	33	0.841
575	45	9.1	3.1	406	0.6	104	9.7	54	0.704
584	57	9.2	3.2	141	0.2	79		40	0.704
599	49	8.9	4	42	0.2	79	9	51	0.748
2510	6	9.5	3.9	157	16.2	56	0	25	0.748
105	75	9.4	4.1	42	0.4	88	8	52	0.605
116	67	8.9	4	-1	0.3	56	ő	70	0.647
118	5.5	8.8	4.3	38	0.2	78	6	37	0.699
119	56	9.3	4.3	75	0.3	41	- 0	43	0.740

色者		年的	CAL	PHOS	ETWO	PROG	TALP	TINTES	PLNER	スコア
	127	73	9	4.1	30	0.4	54	6.5	35	0.632
	134	50	9.4	3.7	486	0.4	54	0	63	0.737
	136	36	9.1	3.6	167	5.7	154	- 0	74	0.756
	140	56	9	0.9	-1	0.2	94	0	58	0.663
	143	55	9.1	4	-1	0.2	65	0	38	0.698
	145	49	9.3	3.3	67	8.9	63	0	54	0.656
	147	53	9.1	3.6	75	0.2	103	4.9	78	0.670
	157	52	9.2	3.5	65	0.2	70	- 0	62	0.701
	159	57	9.4	3	-1	0.2	129	30.2	27	0.631
	161	74	9.3	3.9	-1	0.1	62	0	34	0.623
	162	62	9	4.1	81	0.1	54	7.2	21	0.698
	163	46	9.2	2.9	128	5.7	62	- 6	5	0.704
	165	57	9.2	2.9	-1	0.2	8	0	39	0.629
	169	59	9.5	3.9	61	0.1	64	0	34	0.693
	174	40	9.5	3.2	261	4.6	85	0	22	0.764
	175	39	9.1	2.3	126	3.5	90	- 0	36	0.726
	185	78	8.7	2.9	-1	0.1	99	8.5	35	0.563
	186	73	9.2	2.9	62	0.2	55	0	42	0.616
	187	59		3.8	55	1.8	70	0	37	0.682
	190	41	8.7	3	110	11.6	60	0	26	0.772
	192	42	9.5	4.1	46	0.4	58	0	66	0.767
	195	58	9	3.4	236	0.1	61	o	40	0.688
	202	67	9.4	3.2	66	0.3	59	ō	61	0.641
	210	60	9.6	3.2	82	0.1	49	4.7	56	0.681
	215	4.5	9.2	3.8	135	1.8	70	0	56	0.729
	221	52	9.5	4	83	0.8	60	0	57	0.735
	224	53	8.7	3.6	110	0.2	52	0	27	0.726
	229	51	9.5	4.1	33	0.3	97	0	51	0.693
	237	5.9	9.4	4	-1	0.2	90	9.9	34	0.660
	241	48	9.6	3.9	44	0.5	68	0	 ;}	0.747
	263	23	9.6	4.2	39	0.5	6.9	0	28	0.853
	294	25	9.3	3.8	91	2.9	64	0	54	0.853
	308	54	8.8	0.1	-1	0.2	40	ő	48	0.692
	313	53	9.8	4.3	-1	0.4	90	ŏ	40	0.700
	319	31	9	3.5	296	2.8	49	0	27	0.859
	322	42	9.4	3.3	-1	0.3	63	6.6	41	0.757
	323	66	8.8	3.6	38	0.1	54	6.5	54	0.685
	334	68	8.8	4.1	83	0.4	44	0.0	39	0.676
	338	42	9.9	3.2	35	11	92	9.4	41	0.719
	339	52	9.9	3.7	84	0.2	78	0	62	0.719
	343	44	9.1.	3.4	5.5	1.3	7.5	В	55	0.834
	344	61	9.2	4.3	82	0.3	116	8.3	65	0.655
	351	46	9.2	3.9	140	0.3	5.8	- 8	51	0.905

(図9)

FIGURE 9H

患者		年齡	CAL	PHOS	ETWO	PROG	TALP	TINTES	PLIVER	スコア
	362	53	9.6	3.9	94	0.1	83	0	72	0.703
	373	62	9.9	3.4	172	0.2	83	0	66	0.654
	376	70	9.8	4.7	-1	0.1	109	o	38	0.627
	390	72	9	3.8	-1	0.2	108	14.5	8	0.597
	395	54	9.2	4.1	-1	0.3	96	0	67	0.674
	399	49	9.4	3	-1	0.4	64	0	50	0.70
	401	83	8.7	3.8	31	0.2	111	0	55	0.55
	413	46	9.4	3.6	90	0.1	98	25.1	54	0.74
	423	44	9.2	3.6	62	0.2	47	0	45	0.78
	527	38	9.3	3.3	40	0.4	62	4.1	56	0.760
	552	54	9.4	3.7	-1	0.2	80	0	57	0.679
	655	50	9.5	3	108	0.2	126	7.4	50	0.670
	557	59	9.4	3.5	192	0.2	42	0	66	0.697
	563	44	9.5	3.8	37	0.5	46	ő	39	0.790
	565	70	9	3.2	-1:	0.2	54	0	45	0.623
	570	24	9.2	3.5	50	0.5	53	7	32	0.842
	573	65	9.9	4.2	-1	0.3	59	- 6	56	0.66
	574	65	9.2	3.2	122	0.3	64	ō	58	0.649
	577	46	9.5	4.1	397	0.04	56	0	70	0.73
	585	62	9	3.5	56	0.2	77	Ö	21	0.65
	590	65	9.2	3.7	-1	0.2	72	- 6	57	0.840
	594	55	9.9	3.6	-1	0.2	43	0	52	0.70
	601	45	8.9	3.1	81	3.4	75	6.6	54	0.856
	607	81	9.7	3.5	-1	0.1	66	0	31	0.590
	111	69	9	3.3	34	0.4	68	9.3	55	0.615
	124	51	9.2	3.7	35	0.2	69	0	46	0.704
	149	52	9.2	3.9	-1	0.3	82	0	72	0.686
	152	56	9	2.5	79	0.2	77	0	43	0.659
	168	56	9	4.1	-11	0.1	76	0	45	0.686
	196	61	9.3	3.3	69	0.1	97	8.8	36	0.642
	330	63	8.9	3.8		0.1	68	9.6	54	0.648
	345	65	8.9	4.2	40	0.1	50	5.3	9	0.676
	356	53	9.7	3.5	54	0.2	99	0	60	0.673
	534	66	8.9	3.5	78	0.1	61	0	53	0.654
	551	67	9.3	3.5	47	0.2	68	10	47	0.635
	558	36	9.3	3.3	137	7.9	85	6	66	
	578	51	8.8	3.9	34	0.3	50	0		0.76
	581	53	9.3	3.4	62	0.2	56	- 0	54	0.722
	104	63	9.3	4.3	77	0.2		7.6		0.707
	120	66	9.3	3.8	35	0.3	88		41	0.669
	125	63	9.3	3.8			81	- 0	61	0.633
	138	_	9.3	2.8	-1 58	0.4	92	0	55	0.642
	144	68	9.5	4.6	-1	0,3	118	0	30	0.63

【図9】

FIGURE 91

風者	年数	CAL	DUAC	ET40	5566				
	-		PHOS		PROG	TALP	TINTES	PLIVER	スコア
150	44	9.6	3.8	65	0.2	122	0	44	0.716
193	50	10	3.2	-1	0.3	67	0	24	0.705
198	36	9.4	3.2	262	0.6	101	14.1	18.3	0.761
207	57	9.7	3.5	33	0.3	74	0	57	0.668
232	65	9.4	4	80	0.2	69	0	53	0.668
_236	48	9	3.6	73	8.9	43	0	33	0.704
240	53	9.1	4.1	41	0.2	56	56	39	0.721
242	57	9.4	3.8	-1	0.1	71	9.8	34	0.677
315	64	9.7	3.5	46	0.2	83	11.4	37	0.639
318	49	9.8	3.2	168	3	46	0	34	0.701
325	57	9.2	4.3	-1	0.1	124	0	43	0.662
336	55	9.2	3.6	-1	0.3	76	10	28	0.676
348	58	8.7	3.5	-1	0.2	55	0	55	0.672
366	62	9.4	3.9	1	0.2	68	0.	45	0.663
370	77	9.5	4.1	-1	0.4	98	10.2	21	0.596
374	76	9.9	3.7	-1	0.3	78	0	54	0.600
528	80	9	3.9	6	0.2	103	0	71	0.571
529	66	9.1	3.5	-1	0.1	67	0	54	0.634
538	79	9.4	3.9	-1	0.3	96	9.4	39	0.582
547	73	9.3	3.6	126	0.1	64	0	22	0.636
559	68	9.7	3.6	91	0.1	37	0	57	0.669
564	80	9.5	3.6	33	0.2	113	10.7	52	0.565
598	69	9.6	4.4	128	0.7	72	2.5	57	0.660
600	64	9.2	4.5	1	0.4	66	0	47	0.671
606	78	9.5	3.9	-1	0.1	77	0	58	0.596

【図10】

	Cuto	E ^{TTO}	
骨盤及び脊椎における DEXAスキャンに 基づく放射級医学的 診断	臨床に有意な骨減少症 につき生化学的指標を有する	臨床に有意な骨減少症 につき生化学的指標を 有しない	微の合計 ;
	(QuiOs™ ≤ 0.730)	(QuiOs™ > 0.730)	i
高度に進行	131	15	14B
中程度	161	97	258
任度:	68	180	248
体常	7	67	74
縦の合計:	367	359	725

・放射線医学により診断された高度に進行した骨減少症を臨床的に有意な骨減少症の 生化学的指標を有するものとして検知する感度。 態度-90% 放射線医学により診断された高度に進行したまたは経度の骨減少症を健康 的に 有意な骨減少症の生化学的指標を有するものとして検知する器度 感度=72%・ 健常な患者を臨床的に有意な骨減少症の生化学的指揮を全く有さないもの 特異性 = 91%. 使常者または軽度の骨減少症を臨床的に有意な骨減少症の生化学的指標を 全く有さないものとして同定する特異性 特異性=77%

被験者のDEXAによる診断の定義:.

* 南茂に通行・検脊権(Lateral Spine)L2 - 4 およびウォード三角における
DE X A スキャンの双方がT - スコア< - 2. 0 である。
* 中程度 - 検脊権L2 - 4 およびウォード三角におけるDE X A スキャンの一つが
T - スコア< 2. 0 であう。。

軽度 - 横脊椎L2 - 4 およびウォード三角におけるDE X A スキャンの一つが
T - スコア> - 1. 0 であう。。

を使、横脊椎L2 - 4 およびウォード三角におけるDE X A スキャンの一つが
T - スコア> - 1. 0 であり。また他がT - スコア> - 2. 0 である。
ただし、関サイトがT - スコア> 0. 0 である症例は含まない。

本書 - 横脊椎L2 - 4 およびウォード三角におけるDE X A スキャンの双方が
1 - スコア> 0. 0 である。
* 塩味的に有変な骨板少症は、骨量が低いという知見によって確認してもよい

(たとえば、閉経期前の母集団の平均ピークを少なくとも様準偏差 (SD) の2 倍下酉る)

FIGURE 10

【図11】

TCスーTの動気版UMBを付おコレユーSJ型語音

[図12]

Fig. 12

[図13]

FIG. 13B

● BPH: DREによる前立販肥大(スタンフォード泌尿器料職員のみによる検査)

● 癌: 生後と組織学報告によって確認

推定正常: PSA<4.0、かつDREはマイナス

	ProstAs	ProstAsure™の年令特異的参照標準範囲	超祖
年合群	. 製工	*Hd8	變
40 - 59	≥ 20.0	(20.0, 32.0)	> 32.0
60 - 69	≤ 10.0	(10.0, 35.0)	> 35.0
> 70	≤ 10.0	(10.0, 37.0)	> 37.0

◆ ProstAsure™が年令特異的BPH参照標準範囲の中央点以上であるBPH患者は 繋収BPHと称し、確定診断のため生検を強く勧告される

FIG. 17

FIG. 19

Fig. 18

【図19】

	機の合計	193	115	108	416	
ProstAsure™	托	2	23	73	98	0.0000 = 0
ProstA	ВРН	38	76	35	147	56 df = 4 p
	欀	155	16	0	171	ピアンンX二乗 = 314/5556 df=4 p=0.0000
ゴールドスタンダード	多 .	遊	врн	推定正常:	縦の合計	ETYZK

【図20】

確認済み組ステージ		ProstA	ProstAsure™	
	梅	ВРН	正常。	横の合計
ステージ・T1b	10	16	2	28
λ 5 Ξ9 T2	80	14	0	94
ステージ T3	53	5	0	34
ステージ TNXM ₁	36	1	0	37
権の合計	155	36	. 2	193
		i		

FIG. 20

ASG

100 Fig. 23 81.8% 68.1% 68.1% 68.1% 68.2% 67.6% 68.1% 68.1% 68.1% 68.2% 67.6% 68.1% 68.2% 67.6% 68.1% 68.2% 67.6% 68.1% 68.2% 67.6% 68.1% 68.2% 68.2% 67.6% 68.1% 68.2% 68.2% 67.6% 68.1% 68.2

80.3%	85.3%	87.9%	66.1%	92.8%	67.6%
前立原稿を後知する感度	前立腺癌ステージT2を検加する感度	, 前立線筋ステージT 2, T 3及びT N×M,を検知する態度	BPHをBPHとして物知する磁度(非癌を非癌として同定する特異性	推定正常を正常として同定する枠単性

Fig. 24

[図24]

入力変数:年令(age), PSA, PAP, CK-BB, CK-MB,及びCK-MM.

ProstAsuret*アルゴリズムの数学的記述

 $x_7 = 1.856 - 0.023 \cdot age - 0.573 \cdot ln(PSA + 1) + 0.0001 \cdot age^2 + 0.004 \cdot ln(PSA + 1) \cdot age - 0.005 \cdot ln(PSA + 1)^2$

打切りしきい値ベクトル

 $T_{lower} = \begin{bmatrix} 20.0 & 0.0 & 0.336 & 0.0 & 0.2 & 0.0 & -0.4 \end{bmatrix}^T$ $T_{lower} = \begin{bmatrix} 80.0 & 18.0 & 2.565 & 1.253 & 2.0 & 300.0 & 1.2 \end{bmatrix}^T$

然いで

FIG. 25A

X = [sgc, PSA/PAP., ln(PSA + 1), ln(PAP + 1), CK-BB, CK-BB + CK-MB + CK-MM, xs]T.

打切り前の内部入力ペクトル

入力レイヤー

i=1,2...,7 について下記の通りとする

[図25] [図25] -0.35074 ☐ 0 -0.23193 -0.23948 -0.02604 0.45174 -0.13803 -0.16674 7 0.12143 0.23556 0.00191 -0.20974 -0.01933 0.11067 0.24953 -0.17246 0.13564 5 0.18619 0.31008 0.14143 0.09219 0.28190 -0.026994 0.14387 0.14387 0.17154 0.29588 0.36407 0.17490 $WCO = \begin{bmatrix} -0.12130 & -0.17390 & 0.36017 & -0.31029 & 0.02372 & 0.04508 & -0.02368 & -0.36532 \end{bmatrix}^T$. $WJO = \begin{bmatrix} -0.18985 & -0.59914 & -0.21779 & -0.39691 & 0.50123 & 0.09711 & 0.75722 & 0.59222 \end{bmatrix}^T$ 二つのウエイトマトリックス (一つはスラブに至りまた一つはスラブから離れる) 0.50834 0.09825 0.13761 -0.15848 0.18685 -0.45861 0.05846 二つのウェイトマトリックス(一つはスラブに至りまた一つはスラブから離れる) -0.03539 -0.11231 0.19318 -0.13088 0.00137 -0.24651 0.10233 0.11606 0.21939 0.01684 -0.09873 -0.27160 0.23105 -0.15937 0.24071 0.14175 -0.11845 0.11620 $u = \sum_{j=0}^{r} W J O_{j y_j}.$ 入力レイヤーからの飛び越しコネクションの出力 0.02998 -0.05485 -0.09213 0.13686 0.09032 FIG. 25C $S_i = \exp \left[-\left(\sum_{j=0}^{2} WGI_{i-1,j} y_j \right)^2 \right]$ 即しレイヤーのガウス補数スラブの出力 -0.16843 -0.24602 0.25369 -0.14086 この飛び越しコネクションからの入力 コネクションウエイトマトリックス -0.07592 -0.23780 -0.22189 -0.27022 -0.19699 0.06121 $t = \sum_{j=0}^{r} WGO_{j8j}.$ ガウススラブから出力レイヤーへの入力 0.14089 男しレイヤーのガウススラブの出力 -0.12895 -0.24423 -0.26480 -0.09058 -0.31651 -0.25465 0.35798 0.03996 -0.19282 0.11162 -0.01729 i=1....7について下記の通りとする 0.26265 0.12797 0.12797 0.02778 0.07160 0.15684 14C1 = 0.02559 -0.16049 0.19431 0.03817 -0.11272 _ ₩œ WGH B.C.

Y = lws.yn.....yn. は隠しレイヤー及び飛び越しコネクションへの入力としてANN No. 1及び ANN No. 2の双方によって使用されるであろう。 ANN No. 1の出力の計算 二つの隠しレイヤースラブと一つの飛び越しコネクションがある

第一のフィヤーの拡張出力、

また下配を定義

FIG. 25B

FIG. 25D

ProstAsure™ 指数の計算

[図25] $Pro1tAsure^{TM} = 13.24n\{(1.9 + \exp{(-5.0(ANN J_{bulget} - 0.5))}\} \cdot (1.0 + \exp{(-5.1(ANN JI_{bulget} - 0.73))}\}$

 $p_i = 1.0 - \exp \left[-\left(\sum_{j,k,k}^* WC_{k-1,jW_j} \right)^2 \right]$ i=1,...,7 について下配の通りとする

BG

ガウス植数スラブから出力レイヤーへの入力

ANN No. 1の出力レイヤーの出力

 $q = \sum_{j=0}^{2} WCO_{jP_j}$.

ANN_It = $[1/(1.0 + \exp\{-(1 + u + q)\}) - 0.1]/0.8$

ANN Jeerpar =

ANN Jeerpar =

ANN Jeerpar =

ANN Jt, 0.0 S ANN Jt S 1.0;
0.0, ANN Jt < 0.0.

ANN No. 2の出力の計算

ANN No. 2内での計算はウエイトマトリックスが異なるエントリを有する ことを除いてANN No. 1における計算と類似している

FIG. 25E

QuiOs™、ソフトウェアシステムは、情報を内部で処理するため4つの独立した人エニューラルネットワーク(ANN)分類技匠を使用する。 4つのANNの出力は組み合わされQuiOs™の商出力として単一値を形成する。 入力変数:年齡(age), CAL, PHOS, ETWO, PROG, TALP, PLIVER, BONE, 及び体策と身長。 なおここでは体重はポンドでまたは身長はインチで表す

スカレイヤー

打切り前の内部入力ペクトル

X = [ege, CAL, PHOS. ETWO, PROC, TALP, PLIVER, BONE, 体重/身長;]

打切りしきい値ペクトル

Tupper = | 80 11 5 120 9 110 76 56 3.2 | $i(x_i \le T_{harris})$ $i(x_i \ge T_{upperis})$ i=1,2...,9について、下記の通りとする

がぶ

また下配の通り定義する

第一レイヤーの拡張出力

No = 1.0.

【図26】

0.19462 0.19462 0.24637 0.34791 0.35697 0.08375 -0.18645 -0.25071 -0.14523 0.23146 0.01545 -0.10635 0.05455 -0.23839 0.11309 0.07152 -0.02611 -0.26102 -0.35511 -0.34358 -0.10120 0.01659 -0.04266 -0.28497 -0.14134 -0.26887 -0.23501 0.16655 0.25152 -0.22531 -0.122840.08815 0.21253 = 19M

【図25】

 $WCO = \begin{bmatrix} 0.08647 & 0.06597 & 0.29840 & 0.24123 & -0.03399 & -0.24138 & 0.35469 & -0.25157 \end{bmatrix}^T$. XC

 $WJO = \left(-0.24938 \ 0.13448 \ -0.32493 \ -0.41677 \ 0.02293 \ 0.09125 \ 0.26847 \ 0.32690 \right)^T$

-0.05661 0.178758 0.03812 0.10914 0.15072 0.13191 -0.01896 -0.18542 0.19562 -0.01479 0.18674 0.13730 0.27.156 -0.20837 -0.25468 0.19068 0.2224.3 0.27017 0.24318 0.11843 -0.11641 -0.04242 -0.21358-0.09187 0.18879 -0.00455 -0.25874 0.09749 ~0.205.12 0.15819 -0.03741 0.18175 0.00873 -0.01639 -0.23639 -0.17253 0.07024 0.13635 -0.06663 -0.001853 0.14126 (0.04568 -0.07862 0.06989 --0.01747 0.15020 0.27522 = /JM

 $\mathcal{RCO}=\Big[0.00056-0.05491\ 0.14461-0.26470-0.02535\ 0.02504-0.07503-0.24079\Big]^T.$

25F

QuiOs™ のアルゴリズムの数学的記述

FIG. 25G

 $P_{i} = 1.0 - \exp \left[-\left(\sum_{j=0}^{9} WCl_{b-1,j} H \right)^{2} \right]$ i=1,...,8.について下記の通りとする

ВG

ガウス補数スラブから出力レイヤーへの入力

 $q = \sum_{j=0}^{n} WCO_{j} r_j$

ANN No. 1の出力レイヤーの出力 (Def.A1)

FIG. 26D

【図26】

ANN.It = $[1/(1.0 + \exp{\{-(t + u + q)\}}) - 0.1] \cdot 0.6/0.8 + 0.7$. ANN. Jauput = { 1.3, ANN.11 > 1.3; ANN.12 < 1.3; ANN.11, 0.7 ≤ ANN.12 < 1.3; ANN.12 < 0.7.

ANN No. 2における計算は三つの間しレイヤースラブがあるが飛び越しコ ネクションはないことを除いてANN No. 1における計算と類似している。

(Def:P6)

ANN No. 2の出力の計算

応しレイヤーのがウススップの出力

二つのウェイトマトリックス(一つはスラブに至りまた一つはスラブから離れる)

0.208349 0.019771 -0 093499 -0.023027 -0.068565 -0.263199 0.027795 | -0.304511 0.185860 0.194130 0.109730 -0.214814 0.131590 -0.306538 0.020778 0.03566 -0.061520 0.1959178 0.003566 -0.061520 0.1959178 0.003566 -0.061520 0.131692 0.131692 0.131692 -0.131692 0. wGI =

ВU

 $WGO = \begin{bmatrix} -0.143458 & -0.114805 & -0.140507 & -0.073176 & -0.098738 \end{bmatrix}^T$

 $J_{i} = \exp \left[- \left(\sum_{j=0}^{g} WG(i-1,jy_{j})^{\frac{g}{2}} \right) \right]$ i=1.....4について下記の通りとする

B.C.

 $t = \sum_{j=0}^4 WGO_{j,ij}.$ ガウススラブからの出力レイヤーへの入力

励しレイヤーのがウス補数スップの出力

こつのウェイトマトリックス(一つはスラブに至りまた一つはスラブから離れる)

WC/=

:= 1.....4について下記の通りとする

 $WCO = \left[-0.168240 - 0.269478 - 0.054825 - 0.1816776 - 0.263971 \right]^T$

BU

FIG. 26E

₽0 = 1.0.

BG

はANN No. 1~No. 4によって、それらの隠れレイヤーと飛び越しコネクションへの入力として使用される。

ANN No. 1の出力の計算 (Def:A1)

二つの隠しレイヤースラブと一つの飛び越しロネクションがある

限しレイヤーのガウススラブの出力

二つのウエイトマトリックス(一つはスラブへ至りまた一つはスラブから離れる)

-0.018804 0.287513 0.143057 -0.226328 0.101629 0.218254 -0.143262 -0.118657 0.203580 -0.285391 -0.075372 0.107194 0.207400 0.288059 0.284816 0.080888 0.227745 0.159832 0.064453 0.251277 0.159887 0.035729 0.158028 -0.232591 -0.051817 -0.155416 -0.068623 0.014653 0.044623 0.051242 0.046788 -0.198856 0.292250 -0.087058 -0.242210 -0.112765 -0.021639 0.238712 0.214520 0.129192 -0.061566 0.058636 0.008743 = 1911

WGO = { 0.044272 -0.131565 0.101315 0.101313 0.025073 -0.063053 -0.206456 -0.190877 -0.104936 }

B C

 $s_{L} = \exp \left[- \left(\sum_{j=0}^{D} WG_{L-1,j,y_{j}} \right)^{\frac{1}{p}} \right]$ (=1.....8について下記の通りとする

æu

FIG. 26B

Jo = 1.0.

用力レイヤーへのがウススラブからの入力

 $t = \sum_{j=0}^{8} WGO_{j,S_j}.$

【図26】

人力レイヤーからの飛び越しコネクションの人力!

コネクションウエイトマトリックス

 $WJO = \begin{bmatrix} 0.166572 & -0.464945 & 0.272867 & 0.127549 & 0.079196 & -0.121782 & 0.011149 & 0.004464 & -0.726211 & 0.333510 \end{bmatrix}^T$

飛び越しコネクションからの入力

 $u = \sum_{j=0}^{n} WJO_{j}y_{j}.$

限しレイヤーのガウス補数スラブの出力

二つのウエイトマトリックス (…つはスラブに至りまた一つはスラブから離れる)

-0.1185Ng -0.1650690.211670 0.127107 0.075936 -0.145118 0.157569 -0.145056 0.177208 -0.232979-0.268727 0.155706 -0.111901 0.234963 -0.287206 0.291491 -0.057308 -0.265039 -0.196747 0.203441 0.026983 -0.288713 -0.067025 -0.132869 0.035117 -0.060979 0.149022 0.045618 -0.100126 0.068358 0.179474 -0.054298 -0.005831 0.239972 -0.198745 -0.091285 0.155249 -0.091285 -0.019682 -0.130268 0.346534 0.183104 0.132861 -0.013370 0.162412 -0.207570 0.117841 -0.015392 0.133303 -0.232763 -0.053613 -0.006056 0.193433 -0.161618 -0.130380 -0.253573 0.221690 0.109032 WC! =

WCO = { 0.133173 -0.128342 -0.178770 -0.34473 -0.302709 0.119805 0.247879 -0.193383 -0.304841 | T BC

FIG. 26C

ガウススラブから出力レイヤーへの入力

 $t = \sum_{j=0}^{n} WCO_{j,s_j}$.

[图26]

隔しレイヤーのガラス植数スラブの出力

二つのウエイトマトリックス(一つはスラブに至りまた一つはスラブから離れる)

0 0.11740 0.129049 0.076636 0.158880 0.115886
0.2973614 0.297389 -0.141724 -0.175583 0.020285 0.105171 0.046323
0.214315 0.175038 0.069945 0.137789 0.060214 -0.062690 -0.150861
0.0001572 0.147505 0.091588 0.071248 0.031750 0.065611 0.086200
-0.048020 0.258555 -0.258712 0.275712 -0.142208 0.142676
-0.172336 -0.113620 -0.205363 0.225630 0.050170 -0.237874 0.054250
0.03519R 0.074748 0.074748 -0.118906 0.013472 0.258346
0.249530 -0.249530 -0.036449 -0.120204 -0.130094 -0.049205
-0.24681 0.055856 -0.292738 -0.357640 -0.014222 0.060385 0.121191
0.067068 0.167845 -0.156261 -0.158500 -0.243064 0.169814 0.235109
15 W

WCO = 0.083002 0.311966 0.332433 0.077694 0.166723 -0.430216 0.069231 0.267888 -0.151407 7

i=1....*について下記の過りとする

 $p_i = 1.0 - \exp \left[-\left(\sum_{j=0}^{6} WC l_{j-1,j} j_j\right)^2 \right]$

BU

ガウス補数スラブから出力レイヤーへの入力

FIG. 26H

q = \sum_j WCO_IEJ.

[図26]

-0.282981 0.101512 0.310749 -0.255691 0.025718 0.265290 -0.275724 -0.199601 0.014949 -0.226321 -0.106213 0.133946 0.UNRUEN -0.203203 0.181852 - 0.220642 - 0.120407 0.044137 - 0.081303 - 0.084194 0.26025
0.0812146 - 0.027158 - 0.04171 - 0.125582 - 0.094531 0.200133 0.006714
0.081817 0.081219 0.261471 - 0.261827 0.01140 - 0.277224 0.011414
0.0417947 0.262214 0.199180 0.10432 0.01144 - 0.027024
-0.071240 0.20819 - 0.208497 0.01167 0.01070 - 0.007019
0.017147 0.03819 0.208497 0.01084 0.007014 0.02104
0.003873 0.008718 0.137465 0.13746 0.210456 0.127369 - 0.02908 二つのウエイトマトリックス(一つはスラブに至りまた一つはスラブから離れる)

WTO = [0.183252 -0.052317 0.229279 -0.120603 0.105757 -0.452093 0.353077 0.050979 -0.0038570 | T ž

i=1,....8について下配の通りとする

 $p_i = \tanh \left(\sum_{j=0}^{b} WCl_{i-1,jBj} \right)$

Řζ

Pg = 1.0.

双曲正様スラブから出力レイヤーへの入力

 $p = \sum_{j \ge 0} WCO_j p_j$ (def:N5) **ANN No. 3の出力レイヤーの出力**

FIG. 261

 $ANN.3t = [1/(1.0 + \exp\{-(t + \mu + \eta)\}] - 0.1]/0.8 + 0.2.$

ANN. 3 butput =

ANN. 31, 0.2 \ ANN. 31 \ \ 0.2 \ ANN. 31 \ \ 0.2, \

ガウス補数スラブからの出力レイヤーへの入力

 $q = \sum_{j=0}^4 WCO_j p_j.$

図しレイヤーの双曲正接スラブの出力

二つのウエイトマトリックス (一つはスラブに至りまた一つはスラブから魅れる)

-0.190940 -0.220063 -0.163374 -0.103554
0.286641 0.174703 -0.206334 0.036760
-0.230415 -0.023419 -0.089909 -0.035342
0.106956 0.143019 0.122698 -0.035409
0.246886 -0.050450 -0.096666 0.153561
-0.195091 0.277480 -0.148834 -0.191001
-0.152424 0.003208 -0.360955 -0.132545
0.293693 0.023314 -0.078117 -0.131347
0.016635 0.832558 0.545488 0.451628
-0.173508 0.104152 -0.101116 0.177989
WT! =

 $WTO = \begin{cases} -0.452268 & -0.177084 & -0.942018 & -0.547621 & -0.360809 \end{cases}^T$

BG

 $F_i = \tanh\left(\sum_{j=0}^3 WC f_{i-1,j} F_j\right)$

双曲正様スラブからの出力レイヤーへの入力

ЖG

 $p = \sum_{j=0}^{4} WCO_{j} p_{j}$.

ANN No. 2の出力レイヤーの出力 (Def:P6)

ANN 2t = [1/11.0 + exp (-(t + x + 9)) - 0.1 | .0.1/0.8 + 0.7.

FIG. 26F

 $ANN.2_{warput} = \begin{cases} 1.4, & ANN.2L > 1.4; \\ ANN.2t, & 0.7 \le ANN.2t \le 1.4; \\ 0.7, & ANN.2t < 0.7. \end{cases}$

ANN No. 3の出力の計算 (Def:N5)

ANN No. 3内での計算は、三つの間しレイヤースラブがそれぞれもつではなく8つのニューロンを省していることを除いてANN No. 2における計算と類似している。

限しレイヤーのガウススラブの出力:

二つのウエイトマトリックス(一つはスラブに至りまた一つはスラブから離れる)

-0.094531 -0.177731 0.158941 -0.01708X -0.024906 0.143412 -0.220718
-0.290475 0.267778 -0.162243 -0.120797 0.046968 0.081106 0.221156
0.137408 -0.121494 0.203839 -0.284303 -0.193461 0.122095 -0.265594
0.228276 -0.153177 0.130587 0.226444 0.293456 0.273489 0.085274 -0.065739
0.27230 0.072183 0.298793 0.236141 0.027382 -0.258089 -0.0508338
-0.046388 -0.091790 -0.220839 0.062109 0.169677 -0.030668
-0.307765 -0.053571 0.013215 0.047468 0.059886 0.072129 -0.197265
-0.243936 -0.084642 -0.212699 -0.293445 0.293139 -0.047854 -0.236940
0.252345 0.150768 -0.211585 0.206985 0.127987 -0.027381 -0.125573
-0.311499 0.078810 -0.185859 0.200236 0.047184 0.027520 -0.071331 0.242075
п /9м

WCO :: [0.006800 -0.184366 0.165541 0.13342 0.07654 0.01772 -0.14377 -0.150079 -0.093378]]*,

 $\delta_i = \exp \left[-\left(\sum_{j=0}^9 WC t_{i-1, j \neq j}\right)^2 \right]$ ·i=1,....8について下配の通りとする

BG

FIG. 26G

隔しレイヤーの次曲正様スラブの出力

FIG. 26K

ANN No. 4の出力の計算 (Def.W5)

ANNNo4(bef: #5)内での計算は、ウエイトマトリックスが現なることを除いてANN No. 3における計算と類似している。

0.026430	•	0.147912	02026	5	Š	5	33
			•				•
-0.285985	0.263188	-0.15460R	-0.129549	87.076.0	0.080805	0.221609	0.138066
-0.141339	-0.128922	0.205021	-0.285744	-0.066090	-0,208170	0.117392	-0.258460
0.226828	-0.162497	0.143333	0.213795	0.284708	0.274213	0.087271	-0.062647
P60002.0	0.081330	0.296875	0.244261	85K7.1:U:U	-0.252673	-0.069777	-0.153153
-0.048061	-0.105918	-0.229647	0.062354	0.164282	0.142592	-0.043574	-0.105907
- 0 303867	-0.063621	0.015062	0.043847	0.056541	0.069085	-0.192264	0.09898.1
-0.244844	-0.087954	-0.210237	-0.202320	0.292721	-0.047488	-0.235887	-0.295168
0.297632	0.150609	-0.220458	0.210590	0.134480	-0.040319	-0.129254	-0.159633
-0.317581	0.078924	-0.194667	0.195683	0.039839	0.014776	-0.063509	0.250506
			- 13/8	1			

λV

 $Q_{ui}O_{x}^{TM} = \frac{1.0 + \exp\left\{-1.1 \left[\ln\left\{1.0 + 10.0 \times \sum_{i=1}^{5} f_{i}\right\} + 0.446843 \right] \right\}}{1.0 + \exp\left\{-1.1 \left[\ln\left\{1.0 + 10.0 \times \sum_{i=1}^{5} f_{i}\right\} + 0.446843 \right] \right\}}$

0.807413

 $f_{5\,m}\left\{ \begin{array}{ll} 1.0, & T < 1.0; \\ (1.24 - T)/0.24, & 1.0 \le T < 1.24; \\ 0.0, & T \ge 1.24. \end{array} \right.$

 $WGO = \begin{bmatrix} 0.058284 & -0.243129 & 0.150180 & 0.116091 & 0.020351 & -0.026612 & -0.171417 & -0.190026 & -0.175634 \end{bmatrix}^T$.

0.015807	-0.212626	0.057195	0.122110	0.111758	0.229180	-0.224271
0.071950	0.283471	-0.177978	0.017639	0.108263	0.049247	-0.079524
0.216657	0.186887	0.133413	0.073446	-0.073119	-0.167480	0.148260
-0.005558	-0.152979 0.088367	0 068936	· 0.042232	-0.034069	0.077819	0.091557
-0.294179	-0.079907	-0.342067	0.244020	-0 137515	-0.128281	0.141706
-0.164530	-0.095066	0.280066	0.047677	0.290128	-0.237538	0.054606
0.051869	0.025449	-0.194276	0.009711	0.279919	0.119774	0.26.17.76
0.021459	-0.248818	-0.185023	0.132635	-0.13152	-0.038091	~0.167119
-0.319349	0.067380	-0.297571	-0.424962	-0.006974	0.046483	0.125237
0.089654	0.19005/ -0.154878	-0.159035	-0.378611	0.250513	0.146231	0.235577
		# / J M	:	_		_

ВU

FIG. 26L

 $WCO = \begin{bmatrix} 0.044478 & 0.343728 & 0.382640 & 0.092186 & 0.156469 & -0.48848R & 0.067684 & 0.2454931 & -0.151527 \end{bmatrix}^T$

FIG. 26J

WTO = { 0.144731 0.010671 0.232360 -0.167825 0.140772 -0.511001 0.386374 0.066320 0.002589 | T.

Qui0s⁷⁴ 指数の計算

$$f_1 = \begin{cases} (ANN . I_{anigna} - 0.58)/0.09, & 0.58 . ANN . I_{anigna} \ge 1.04, \\ 0.0, & ANN . I_{anigna} < 1.04, \\ 0.0, & ANN . I_{anigna} < 0.95, \\ ANN . I_{anigna} > 0.94, \\ 0.0, & ANN . I_{anigna} > 0.94, \\ 0.0, & ANN . I_{anigna} > 0.94, \\ 0.0, & ANN . I_{anigna} > 0.85, \\ 0.0, & ANN . I_{anigna} > 0.85, \\ 0.0, & ANN . I_{anigna} > 0.85, \\ 0.0, & ANN . I_{anigna} < 0.75, \\ 0.0, & 0.75,$$

[図26] もう一つの通加の変数 T = ANN Jaupa/ANN Asurgas, を定義すると下記が得られる。

-32-

フロントページの続き

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), AU, CA, CN, JP, NZ

(72)発明者 チョウ、シン アメリカ合衆国、29464 サウスカロライ ナ、マウントプリーザント、ミドルバーグ レーン 2055番地

特表平11-504739

【国際調査報告】

	INTERNATIONAL SEARCH R	PCT/US 96/12177				
A. CLASSI	FICATION OF SUBJECT MATTER G96F17/00					
190 0 400917700						
According to International Patent Classification (IPC) or to both national dissification and IPC						
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)						
IPC 6 G06F						
Documentat	on searched other than minimum documentation to the extent that buck	documents are the	numed in the neigs sourced			
Electronic d	sta base consulted during the international search (name of data base as	nd, where practical,	starch terms used)			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relev	ant passages	Rejevant to claim No.			
x	NEURAL NETWORKS.		1,2,4,			
^	vol. 8, no. 2, 1995, TARRYTOWN, NY, N	JS.	6-10			
	pages 313 -319, XP000497809 BASSOE: "AUTOMATED DIAGNOSES FROM		·			
	CLINICAL NARRATIVES: A MEDICAL SYS' BASED ON COMPUTERIZED MEDICAL RECO	TEM				
	NATURAL LANGUAGE PROCESSING, AND N	EURAL				
:	NETWORK TECHNOLOGY" see the whole document					
x	IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, 1-3,6-10					
^	MAN, AND CYBERNETICS,					
	18 - 21 October 1992, NEW YORK NY pages 123-128, XP000366477	US,	l l			
	NONETA E.A.: "AUTOMATED DIAGNOSIS AND					
	DISEASE CHARACTERIZATION USING NEURAL NETWORK ANALYSIS"					
	see the whole document					
☐ Fee	ther documents are tisted in the continuation of box C.	Patent family	members are listed in annex.			
* Special ca	negories of cited documents :		thirshed after the international filing date			
A document defining the general state of the art which is not cited to anderstand the principle or theory underlying the considered to be of particular relevance invention						
E' earlier chocument but published on or after the international (iling date) "X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to						
which	which is establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the					
other	*O* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such document is combined with one or more other such document is combined on the oral oral disclosure, use, exhibition or ment, such combination being obvious to a person skilled in the oral oral disclosure.					
document punished prior to the international ning date out. *&* document member of the same patent family						
Date of the	actual completion of the mecnational search	New or manning of	2 2. 11. 96			
3	30 October 1996		2 2. 11. 30			
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized office	•			
	NL - 2220 FFV Rajawik Tel. (- 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Burgau	d, C			
Form PCT.IS.	A. 218 (second sheet) (Jely 1992)		•			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

HIS PAGE BLANK (USPTO)