Machine Learning with MALLET

http://mallet.cs.umass.edu

David Mimno
Information Extraction and Synthesis
Laboratory, Department of CS
UMass, Amherst

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

Who?

- Andrew McCallum (most of the work)
- Charles Sutton, Aron Culotta, Greg Druck, Kedar Bellare, Gaurav Chandalia...
- Fernando Pereira, others at Penn...

Who am I?

- Chief maintainer of MALLET
- Primary author of MALLET topic modeling package

Why?

- Motivation: text classification and information extraction
- Commercial machine learning (Just Research, WhizBang)
- Analysis and indexing of academic publications: Cora, Rexa

What?

 Text focus: data is discrete rather than continuous, even when values could be continuous:

double value = 3.0

How?

- Command line scripts:
 - bin/mallet [command] --[option] [value] ...
 - Text User Interface ("tui") classes
- Direct Java API
 - http://mallet.cs.umass.edu/api

Most of this talk

History

- Version 0.4: c2004
 - Classes in edu.umass.cs.mallet.base.*
- Version 2.0: c2008
 - Classes in cc.mallet.*
 - Major changes to finite state transducer package
 - bin/mallet vs. specialized scripts
 - Java 1.5 generics

Learning More

- http://mallet.cs.umass.edu
 - "Quick Start" guides, focused on command line processing
 - Developers' guides, with Java examples
- mallet-dev@cs.umass.edu mailing list
 - Low volume, but can be bursty

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

Models for Text Data

- Generative models (Multinomials)
 - Naïve Bayes
 - Hidden Markov Models (HMMs)
 - Latent Dirichlet Topic Models
- Discriminative Regression Models
 - MaxEnt/Logistic regression
 - Conditional Random Fields (CRFs)

Representations

- Transform text documents to vectors x₁, x₂,...
- Retain meaning of vector indices
- Ideally sparsely

Call me Ishmael.

Document

Representations

- Transform text documents to vectors x₁, x₂,...
- Retain meaning of vector indices
- Ideally sparsely

Representations

- Elements of vector are called **feature** values
- Example: Feature
 at row 345 is
 number of times
 "dog" appears in
 document

1.0 0.0 **X** ... 0.0 6.0 0.0 ... 3.0

Call me Ishmael.

Document

Call me Ishmael.

Call

|me|

Ishmael

Document Tokens

Call me Ishmael —— call me ishmael

Tokens

call me ishmael —

473, 3591, 17

Tokens

Features

ishmael

• • •

473 call

• • •

3591 me

473, 3591, 17

—

17 1.0

473 1.0

3591 1.0

Features (sequence)

Features (bag)

ishmael

• • •

473 call

• •

3591 me

ishmael

. . .

473 call

• •

3591 me

Instances

Email message, web page, sentence, journal abstract...

- Name What is it called?
- Target/Label
- Source What is the output?

What did it originally look like?

Instances

- Name String
- Data TokenSequence
- Target ArrayList<Token>
- Source FeatureSequence

int[]

FeatureVector

int -> double map

Alphabets

17 ishmael
...
473 call
...
3591 me

TObjectIntHashMap map ArrayList entries

int lookupIndex(Object o, boolean shouldAdd)
Object lookupObject(int index)

cc.mallet.types, gnu.trove

Alphabets

17 ishmael
...
473 call
...
3591 me

TObjectIntHashMap map ArrayList entries

for A

int lookupIndex(Object o, boolean shouldAdd)
Object lookupObject(int index)

cc.mallet.types, gnu.trove

Alphabets

ishmael

• • •

473 call

• • •

3591 me

TObjectIntHashMap map ArrayList entries

void stopGrowth()

void startGrowth()

Do not add entries for new Objects -- default is to allow growth.

cc.mallet.types, gnu.trove

Creating Instances

Instance constructor method

Iterators

```
Iterator<Instance>
    FileIterator(File[], ...)
    CsvIterator(FileReader, Pattern...)
    ArrayIterator(Object[])
```

•••

Creating Instances

FileIterator

cc.mallet.pipe.iterator

Creating Instances

Csvlterator

Each instance on its own line

1001 Melville

Call me Ishmael. Some years ago...

1002 Dickens

It was the best of times, it was...

$$([^{t}]+) t([^{t}]+) t(.*)$$

Name, label, data from regular expression groups. "CSV" is a lousy name. LineRegexIterator?

cc.mallet.pipe.iterator

Instance Pipelines

- Sequential transformations of instance fields (usually Data)
- Pass an ArrayList<Pipe> to SerialPipes

```
// "data" is a String
CharSequence2TokenSequence
// tokenize with regexp
TokenSequenceLowercase
// modify each token's text
TokenSequenceRemoveStopwords
// drop some tokens
TokenSequence2FeatureSequence
// convert token Strings to ints
FeatureSequence2FeatureVector
// lose order, count duplicates
```

Instance Pipelines

- A small number of pipes modify the "target" field
- Target2Label
 // convert String to int
 // "target" is now a Label

// "target" is a String

 There are now two alphabets: data and label

Alphabet > LabelAlphabet

Label objects

- Weights on a fixed set of classes
- For training data, weight for correct label is 1.0, all others 0.0

implements Labeling

int getBestIndex()
Label getBestLabel()

You cannot create a Label, they are only produced by LabelAlphabet

InstanceLists

A List of
 Instance objects, along with a Pipe, data
 Alphabet, and LabelAlphabet

```
InstanceList instances =
   new InstanceList(pipe);
instances.addThruPipe(iterator);
```

Putting it all together

```
ArrayList<Pipe> pipeList = new ArrayList<Pipe>();
pipeList.add(new Target2Label());
pipeList.add(new CharSequence2TokenSequence());
pipeList.add(new TokenSequence2FeatureSequence());
pipeList.add(new FeatureSequence2FeatureVector());
InstanceList instances =
    new InstanceList(new SerialPipes(pipeList));
instances.addThruPipe(new FileIterator(. . .));
```

Persistent Storage

 Most MALLET classes use Java serialization to store models and data

```
ObjectOutputStream oos =
    new ObjectOutputStream(...);
oos.writeObject(instances);
oos.close();
```

Pipes, data objects, labelings, etc all need to implement Serializable.

Be sure to include custom classes in classpath, or you get a StreamCorruptedException

Review

 What are the four main fields in an Instance?

Review

- What are the four main fields in an Instance?
- What are two ways to generate Instances?

- What are the four main fields in an Instance?
- What are two ways to generate Instances?
- How do we modify the value of Instance fields?

- What are the four main fields in an Instance?
- What are two ways to generate Instances?
- How do we modify the value of Instance fields?
- Name some classes that appear in the "data" field.

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

Classifier objects

- Classifiers map from instances to distributions over a fixed set of classes
- MaxEnt, Naïve Bayes, Decision Trees...

cc.mallet.classify

Classifier objects

- Classifiers map from instances to distributions over a fixed set of classes
- MaxEnt, Naïve
 Bayes, Decision

 Trees...

```
Labeling labeling =
    classifier.classify(instance);

Label l = labeling.getBestLabel();

System.out.print(instance + "\t");
System.out.println(l);
```

Training Classifier objects

 Each type of classifier has one or more ClassifierTrainer classes

```
ClassifierTrainer trainer =
    new MaxEntTrainer();
Classifier classifier =
    trainer.train(instances);
```

Training Classifier objects

 Some classifiers require numerical optimization of an objective function.

```
\log P(\text{Labels} | \text{Data}) = \log f(\text{label}_1, \text{data}_1, \mathbf{w}) + \log f(\text{label}_2, \text{data}_2, \mathbf{w}) + \log f(\text{label}_3, \text{data}_3, \mathbf{w}) + \cdots

Maximize w.r.t. w!
```

Parameters w

- Association between feature, class label
- How many parameters for K classes and N features?

action	NN	0.13
action	VB	-0.1
action	IJ	-0.21
SUFF-tion	NN	1.3
SUFF-tion	VB	-2.1
SUFF-tion	JJ	-1.7
SUFF-on	NN	0.01
SUFF-on	VB	-0.02

Training Classifier objects

interface Optimizer
boolean optimize()

Limited-memory BFGS, Conjugate gradient...

interface Optimizable
 interface ByValue
 interface ByValueGradient

Specific objective functions

Training Classifier objects

```
MaxEntOptimizableByLabelLikelihood
double[] getParameters()
void setParameters(double[] parameters)

Optimizable
interface

double getValue()
void getValueGradient(double[] buffer)

Log likelihood and its first derivative
```

cc.mallet.classify

Evaluation of Classifiers

Create random test/train splits

0% validation

Evaluation of Classifiers

The Trial
 class stores
 the results of
 classifications
 on an
 InstanceList
 (testing or
 training)

```
Trial(Classifier c, InstanceList list)
  double getAccuracy()
  double getAverageRank()
  double getF1(int/Label/Object)
  double getPrecision(...)
  double getRecall(...)
```

cc.mallet.classify

- I have invented a new classifier: David regression.
 - What class should I implement to classify instances?

- I have invented a new classifier: David regression.
 - What class should I implement to train a David regression classifier?

- I have invented a new classifier: David regression.
 - I want to train using ByValueGradient. What mathematical functions do I need to code up, and what class should I put them in?

- I have invented a new classifier: David regression.
 - How would I check whether my new classifier works better than Naïve Bayes?

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

Sequence Tagging

- Data occurs in sequences
- Categorical labels for each position
- Labels are correlated

```
DET NN VBS VBG
the dog likes running
```

Sequence Tagging

- Data occurs in sequences
- Categorical labels for each position
- Labels are correlated

```
?? ?? ??
the dog likes running
```

Sequence Tagging

- Classification: n-way
 Sequence Tagging: n^T-way
 VB
 CC

 NN
 NN</p
 - PRP PRP PRP PRP PRP PRP VB VB VB VB VB CC CC CC CC CC CC CC CC CC

- Markov property
- Dynamic programming

Andrei Markov

- Markov property
- Dynamic programming

This one
Given this one
Is independent of these

Andrei Markov

- Markov property
- Dynamic programming

Andrei Markov

- Markov property
- Dynamic programming

Andrei Markov

- Markov property
- Dynamic programming

NN NN NN NN NN JJ JJ JJ PRP PRP PRP PRP VB VB VB CC CC CC CC CC dogs on blue trees

Andrei Markov

Hidden Markov Models and Conditional Random Fields

Hidden Markov

Model: fully

generative

```
P(Labels | Data) =
P(Data, Labels) / P(Data)
```

Conditional

Random Field:

conditional

P(Labels | Data)

Hidden Markov Models and Conditional Random Fields

 Hidden Markov Model: simple (independent) output space

"NSF-funded"

 Conditional Random Field: arbitrarily complicated outputs

"NSF-funded"
CAPITALIZED
HYPHENATED
ENDS-WITH-ed
ENDS-WITH-d

. . .

Hidden Markov Models and Conditional Random Fields

 Hidden Markov Model: simple (independent) output space

FeatureSequence

int[]

 Conditional Random Field: arbitrarily complicated outputs

FeatureVectorSequence

Feature Vector [7]

 SimpleTagger format: one word per line, with instances delimited by a blank line Call VB me PPN Ishmael NNP

. .

Some JJ years NNS

. . .

 SimpleTagger format: one word per line, with instances delimited by a blank line Call SUFF-II VB
me TWO_LETTERS PPN
Ishmael BIBLICAL_NAME NNP
. PUNCTUATION .

Some CAPITALIZED JJ years TIME SUFF-s NNS

. . .

LineGroupIterator

SimpleTaggerSentence2TokenSequence()
//String to Tokens, handles labels

TokenSequence2FeatureVectorSequence()
//Token objects to FeatureVectors

LineGroupIterator

SimpleTaggerSentence2TokenSequence()
//String to Tokens, handles labels

[Pipes that modify tokens]

TokenSequence2FeatureVectorSequence()
//Token objects to FeatureVectors

cc.mallet.pipe, cc.mallet.pipe.iterator

```
must match
   //Tshmael
                                          entire string
TokenTextCharSuffix("C2=", 2)
   //Ishmael C2=el
RegexMatches("CAP", Pattern.compile("\\p{Lu}.*"))
   //Ishmael C2=el CAP
LexiconMembership("NAME", new File('names'), false)
   //Ishmael C2=el CAP NAME
                              one name per line
                                         ignore case?
```

cc.mallet.pipe.tsf

Sliding window features

a red dog on a blue tree

Sliding window features

Sliding window features

Sliding window features

Sliding window features

```
a red \boxed{\text{dog}} on a blue tree \boxed{\text{red@-1}} \boxed{\text{a@-2}} \boxed{\text{on@1}}
```

Sliding window features

Importing Data

Importing Data

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

DET

P(DET)

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

DET the

P(the | DET)

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

DET NN the

 $P(NN \mid DET)$

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

DET NN the dog

 $P(dog \mid NN)$

Finite state
 machine over
 two alphabets
 (observed,
 hidden)

```
DET NN VBS
the dog
P(VBS \mid NN)
```

How many parameters?

- Determines efficiency of training
- Too many leads to overfitting

Trick: Don't allow certain transitions

$$P(VBS \mid DET) = 0$$

How many parameters?

- Determines efficiency of training
- Too many leads to overfitting


```
abstract class Transducer
CRF
HMM
```

abstract class TransducerTrainer CRFTrainerByLabelLikelihood HMMTrainerByLikelihood

First order: one weight for every pair of labels and observations.

```
CRF crf = new CRF(pipe, null);
crf.addFullyConnectedStates();
    // or
crf.addStatesForLabelsConnectedAsIn(instances);
```

cc.mallet.fst

"three-quarter" order: one weight for every pair of labels and observations.

crf.addStatesForThreeQuarterLabelsConnectedAsIn(instances);

Second order: one weight for every triplet of labels and observations.

crf.addStatesForBiLabelsConnectedAsIn(instances);

"Half" order: equivalent to independent classifiers, except some transitions may be illegal.

crf.addStatesForHalfLabelsConnectedAsIn(instances);

Training a transducer

```
CRF crf = new CRF(pipe, null);
crf.addStatesForLabelsConnectedAsIn(trainingInstances);
CRFTrainerByLabelLikelihood trainer =
    new CRFTrainerByLabelLikelihood(crf);
trainer.train();
```

Evaluating a transducer

```
CRFTrainerByLabelLikelihood trainer =
    new CRFTrainerByLabelLikelihood(transducer);

TransducerEvaluator evaluator =
    new TokenAccuracyEvaluator(testing, "testing"));

trainer.addEvaluator(evaluator);

trainer.train();
```

Applying a transducer

```
Sequence output = transducer.transduce (input);
for (int index=0; index < input.size(); input++) {
        System.out.print(input.get(index) + "/");
        System.out.print(output.get(index) + " ");
}</pre>
```

Review

 How do you add new features to TokenSequences?

Review

- How do you add new features to TokenSequences?
- What are three factors that affect the number of parameters in a model?

Outline

- About MALLET
- Representing Data
- Classification
- Sequence Tagging
- Topic Modeling

News Article

"Sports"

"Negotiation"

News Article


```
team strike
player deadline
game union
```

News Article

Series Yankees Sox Red World League game Boston team games baseball Mets Game series won Clemens Braves Yankee teams

players League owners league baseball union commissioner Baseball Association labor Commissioner Football major teams Selig agreement strike team bargaining

Training a Topic Model

```
ParallelTopicModel lda = new ParallelTopicModel(numTopics);
lda.addInstances(trainingInstances);
lda.estimate();
```

Evaluating a Topic Model

```
ParallelTopicModel lda = new ParallelTopicModel(numTopics);
lda.addInstances(trainingInstances);
lda.estimate();

MarginalProbEstimator evaluator =
   lda.getProbEstimator();

double logLikelihood =
   evaluator.evaluateLeftToRight(testing, 10, false, null);
```

Inferring topics for new documents

More than words...

 Text collections mix free text and structured data

David Mimno Andrew McCallum UAI 2008

. . .

More than words...

 Text collections mix free text and structured data

David Mimno Andrew McCallum UAI 2008

"Topic models conditioned on arbitrary features using Dirichlet-multinomial regression. ..."

Dirichlet-multinomial Regression (DMR)

The corpus specifies a vector of real-valued features (x) for each document, of length F.

Each topic has an F-length vector of parameters.

Topic parameters for feature "published in JMLR"

2.27	kernel, kernels, rational kernels, string kernels, fisher kernel
1.74	bounds, vc dimension, bound, upper bound, lower bounds
1.41	reinforcement learning, learning, reinforcement
1.40	blind source separation, source separation, separation, channel
1.37	nearest neighbor, boosting, nearest neighbors, adaboost
-1.12	agent, agents, multi agent, autonomous agents
-1.21	strategies, strategy, adaptation, adaptive, driven
-1.23	retrieval, information retrieval, query, query expansion
-1.36	web, web pages, web page, world wide web, web sites
-1.44	user, users, user interface, interactive, interface

Feature parameters for RL topic

2.99	Sridhar Mahadevan
2.88	ICML
2.56	Kenji Doya
2.45	ECML
2.19	Machine Learning Journal
-1.38	ACL
-1.47	CVPR
-1.54	IEEE Trans. PAMI
-1.64	COLING
-3.76	<default></default>

Topic parameters for feature "published in UAI"

2.88	bayesian networks, bayesian network, belief networks
2.26	qualitative, reasoning, qualitative reasoning, qualitative simulation
2.25	probability, probabilities, probability distributions,
2.25	uncertainty, symbolic, sketch, primal sketch, uncertain, connectionist
2.11	reasoning, logic, default reasoning, nonmonotonic reasoning
-1.29	shape, deformable, shapes, contour, active contour
-1.36	digital libraries, digital library, digital, library
-1.37	workshop report, invited talk, international conference, report
-1.50	descriptions, description, top, bottom, top bottom
-1.50	nearest neighbor, boosting, nearest neighbors, adaboost

Feature parameters for Bayes nets topic

2.88	UAI
2.41	Mary-Anne Williams
2.23	Ashraf M. Abdelbar
2.15	Philippe Smets
2.04	Loopy Belief Propagation for Approximate Inference (Murphy, Weiss, and Jordan, UAI, 1999)
-1.16	Probabilistic Semantics for Nonmonotonic Reasoning (Pearl, KR, 1989)
-1.38	COLING
-1.50	Neural Networks
-2.24	ICRA
-3.36	<default></default>

Dirichlet-multinomial Regression

- Arbitrary observed features of documents
- Target contains FeatureVector

```
DMRTopicModel dmr =
    new DMRTopicModel (numTopics);

dmr.addInstances(training);
dmr.estimate();

dmr.writeParameters(new File("dmr.parameters"));
```

Polylingual Topic Modeling

- Topics exist in more languages than you could possibly learn
- Topically comparable documents are much easier to get than translation sets
- Translation dictionaries
 - cover pairs, not sets of languages
 - miss technical vocabulary
 - aren't available for low-resource languages

Topics from European **Parliament** Proceedings

DA	centralbank europæiske ecb s lån centralbanks
DE	zentralbank ezb bank europäischen investitionsbank darleher
EL	τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες
EΝ	bank central ecb banks european monetary
ES	banco central europeo bce bancos centrales
FI	keskuspankin ekp n euroopan keskuspankki eip
FR	banque centrale bce européenne banques monétaire
ΙT	banca centrale bce europea banche prestiti
NL	bank centrale ecb europese banken leningen
PT	banco central europeu bce bancos empréstimos
S۷	centralbanken europeiska ecb centralbankens s lån
	•
DA	børn familie udnyttelse børns børnene seksuel

- kinder kindern familie ausbeutung familien eltern
- παιδιά παιδιών οικογένεια οικογένειας γονείς παιδικής
- children family child sexual families exploitation
- niños familia hijos sexual infantil menores
- FΙ lasten lapsia lapset perheen lapsen lapsiin
- enfants famille enfant parents exploitation familles
- bambini famiglia figli minori sessuale sfruttamento
- kinderen kind gezin seksuele ouders familie
- crianças família filhos sexual criança infantil
- barn barnen familjen sexuellt familj utnyttjande

Topics from European Parliament Proceedings

DA	mål nå målsætninger målet målsætning opnå
DE	ziel ziele erreichen zielen erreicht zielsetzungen
EL	στόχους στόχο στόχος στόχων στόχοι επίτευξη
EΝ	objective objectives achieve aim ambitious set
ES	objetivo objetivos alcanzar conseguir lograr estos
FI	tavoite tavoitteet tavoitteena tavoitteiden tavoitteita tavoitteen
FR	objectif objectifs atteindre but cet ambitieux
ΙT	obiettivo obiettivi raggiungere degli scopo quello
NL	doelstellingen doel doelstelling bereiken bereikt doelen
PT	objectivo objectivos alcançar atingir ambicioso conseguir
SV	mål målet uppnå målen målsättningar målsättning
DA	andre anden side ene andet øvrige
DE	anderen andere einen wie andererseits anderer
EL	άλλες άλλα άλλη άλλων άλλους όπως
EΝ	other one hand others another there
ES	otros otras otro otra parte demás
FI	muiden toisaalta muita muut muihin muun
FR	autres autre part côté ailleurs même
IT	altri altre altro altra dall parte

NL andere anderzijds anderen ander als kant PT outros outras outro lado outra noutros

SV andra sidan å annat ena annan

Topics from Wikipedia

- CY sadwrn blaned gallair at lloeren mytholeg
- DE space nasa sojus flug mission
- EL διαστημικό sts nasa αγγλ small
- EN space mission launch satellite nasa spacecraft
- فضایی ماموریت ناسا مدار فضانورد ماهواره FA
- FI sojuz nasa apollo ensimmäinen space lento
- FR spatiale mission orbite mars satellite spatial
- החלל הארץ חלל כדור א תוכנית HE
- IT spaziale missione programma space sojuz stazione
- PL misja kosmicznej stacji misji space nasa
- RU космический союз космического спутник станции
- TR uzay soyuz ay uzaya salyut sovyetler
- CY sbaen madrid el la josé sbaeneg
- DE de spanischer spanischen spanien madrid la
- EL ισπανίας ισπανία de ισπανός ντε μαδρίτη
- EN de spanish spain la madrid y
- ترین de اسیانیا اسیانیایی کوبا مادرید
- FI espanja de espanjan madrid la real
- FR espagnol espagne madrid espagnole juan y
- ספרד ספרדית דה מדריד הספרדית קובה HE
- IT de spagna spagnolo spagnola madrid el
- PL de hiszpański hiszpanii la juan y
- RU де мадрид испании испания испанский de
- TR ispanya ispanyol madrid la küba real
- CY bardd gerddi iaith beirdd fardd gymraeg
- DE dichter schriftsteller literatur gedichte gedicht werk
- ΕL ποιητής ποίηση ποιητή έργο ποιητές ποιήματα
- EN poet poetry literature literary poems poem
- شاعر شعر ادبیات فارسی ادبی آثار FA
- FI runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi
- FR poète écrivain littérature poésie littéraire ses

Aligned instance lists

dog... chien... hund...

cat... chat...

pig... schwein...

Polylingual Topics

MALLET hands-on tutorial

http://mallet.cs.umass.edu/mallet-handson.tar.gz