線形代数1,第2回演習問題

2024/4/18 担当:那須

- $\boxed{1}$ 2つの空間ベクトル \mathbf{a} と \mathbf{b} を $\mathbf{a} = (1,1,2)$ と $\mathbf{b} = (-1,2,1)$ と定める.
 - (1) **a**と**b**のなす角 θ (0 < θ < π) を求めよ.
 - (2) $\mathbf{a} \mathbf{b} \mathbf{b}$ で張られる平行四辺形の面積 S を求めよ.
 - (3) ベクトル $\mathbf{x} = \mathbf{a} + t\mathbf{b}$ がベクトル(-1,0,1) と直交するとき, 実数 t の値を求めよ.
- ② (1) xyz-空間内において, 点 (-2,1,0) を通り, 方向ベクトル $\mathbf{a}=(1,2,-1)$ をもつ直線 ℓ の方程式を求めよ.
 - (2) xyz-空間内において, 点 (2,-1,1) を通り, 法線ベクトル $\mathbf{n}=(-1,2,2)$ をもつ平面 H の方程式を求めよ.
 - (3) ℓと H の交点の座標を求めよ.
- ③ 二つのベクトル $\mathbf{a}=(1,-1,x)$ と $\mathbf{b}=(1,2,1)$ のなす角が $\frac{2}{3}\pi$ に等しいとき, x の値を求めよ.
- 4 2つの空間ベクトル a と b を a = (-1,4,3) と b = (1,2,2) とする.
 - (1) 外積 **a** × **b** を求めよ.
 - (2) \mathbf{a} と \mathbf{b} で張られる平行四辺形の面積 S を求めよ.
 - (3) xyz-空間内において, 点 (2,1,-1) を通り, \mathbf{a} と \mathbf{b} に平行な平面 H の方程式を求めよ.
- ⑤ 平面 x + 2y + z = 0 と直線 $-x + 1 = y + 5 = \frac{z+3}{2}$ のなす角 θ $(0 \le \theta \le \pi/2)$ を求めよ.
- 6 xyz-空間内の 3 点 A(1,-2,3), B(2,-3,5), C(3,-5,7) をとる.
 - (1) 空間ベクトル \mathbf{x} と \mathbf{y} を, $\mathbf{x} = \overrightarrow{AB}$ と $\mathbf{y} = \overrightarrow{AC}$ とおく. 外積 $\mathbf{x} \times \mathbf{y}$ を求めよ.
 - (2) A, B, C を通る平面 H の法線ベクトルを一つ与えよ.
 - (3) H の方程式を求めよ.

0解答:

- 1 (1) $\theta = \pi/3$ (2) $S = 3\sqrt{3}$ (3) t = -1/2
- $\boxed{2} (1) \quad x+2=\frac{y-1}{2}=-z \qquad (2) \quad -x+2y+2z=-2 \qquad (3) \quad (x,y,z)=(-8,-11,6)$
- $3 \ x = -2$
- 4 (1) $\mathbf{a} \times \mathbf{b} = (2, 5, -6)$ (2) $S(= |\mathbf{a} \times \mathbf{b}|) = \sqrt{65}$ (3) 2x + 5y 6z 15 = 0
- $\boxed{5} \ \theta = \frac{\pi}{2} \frac{\pi}{3} = \frac{\pi}{6}$
- [6] (1) $\mathbf{x} \times \mathbf{y} = (2, 0, -1)$ (2) (2, 0, -1) (3) 2x z + 1 = 0