RS Chapter 6 Simple Linear Regression

Nooreen Dabbish

January 24, 2015

Contents

1	Example 6.2			2
	1.1	Data 7	Table, $ex6_2$	2
			sis in R	
		1.2.1	Estimation of $B_0, B_1 \ldots \ldots \ldots \ldots$	2
		1.2.2	(Example 6.3) t-test	2
		1.2.3	95% confidence interval for $\beta_1 \dots \ldots \dots$	2
		1.2.4	Coefficient of determination r^2 (Example 6.4)	3

1 Example 6.2

1.1 Data Table, $ex6_2$

1.2 Analysis in R

1.2.1 Estimation of B_0 , B_1

The prediction equation is:

$$\hat{y} = 10.73 + 0.87x$$

1.2.2 (Example 6.3) t-test

We want to test the hypothesis H_0 : $\beta_1 = 0$. Our t-value is 8.8. It is 0.999999921465578

1.2.3 95% confidence interval for β_1

$$\hat{\beta}_1 \pm t_{.025,16} \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

 0.87 ± 0.21

This gives a range of β_1 from 0.66 to 1.08.

1.2.4 Coefficient of determination r^2 (Example 6.4)

The cofficient of determination, r^2 is defined as

$$r^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

 r^2 gives the proportion of variation in y that is explained by the model (accounted for by regression on x).

r is the sample correlation coefficient between x and y, here 0.91