

Embeddings

Lak Lakshmanan

Machine Learning on Google Cloud Platform

The Art of ML

Hyperparameter Tuning

A Pinch of Science

The Science of Neural Networks

Embeddings

Custom Estimator

Use embeddings to:

Manage sparse data

Use embeddings to:

Manage sparse data Reduce dimensionality

Use embeddings to:

Manage sparse data Reduce dimensionality Increase model generalization

Use embeddings to:

Manage sparse data Reduce dimensionality Increase model generalization Cluster observations

Use embeddings to:

Manage sparse data Reduce dimensionality Increase model generalization Cluster observations

Create reusable embeddings

Use embeddings to:

Manage sparse data Reduce dimensionality Increase model generalization Cluster observations

Create reusable embeddings

Explore embeddings in TensorBoard

Creating an embedding column from a feature cross

The weights in the embedding column are learned from data

The model learns how to embed the feature cross in lower-dimensional space

similar

different

Embedding a feature cross in TensorFlow

```
import tf.feature_column as fc

day_hr = fc.crossed_column(
    [dayofweek, hourofday],
    24x7 )

day_hr_em = fc.embedding_column(
    day_hr,
    2 )
```


Transfer Learning of embeddings from similar ML models

```
import tf.feature_column as fc

day_hr = fc.crossed_column(
    [dayofweek, hourofday],
    24x7 )

day_hr_em = fc.embedding_column(
    day_hr,
    2,
    ckpt_to_load_from='london/*ckpt-1000*',
    tensor_name_in_ckpt='dayhr_embed',
    trainable=False
)
```


Transfer Learning of embeddings from similar ML models

First layer: the feature cross

Second layer: a mystery box labeled latent factor

Third layer: the embedding

Fourth layer: one side: image of traffic

Second side: image of people watching TV

Representing feature columns as sparse vectors

These are all different ways to create a categorical column

If you know the keys beforehand:

```
tf.feature_column.categorical_column_with_vocabulary_list('employeeId',
    vocabulary_list = ['8345', '72345', '87654', '98723', '23451']),
```

If your data is already indexed; i.e., has integers in [O-N):

```
tf.feature_column.categorical_column_with_identity('employeeId',
    num_buckets = 5)
```

If you don't have a vocabulary of all possible values:

How do you recommend movies to customers?

©	2							4	
				5			2		
						3			1 million
			4						customers
					4		5		
		5							
			TRIPLETTES DE BELLEVILLE				THE DARK KNIGHT RISES		_

500,000 movies

One approach is to organize movies by similarity (1D)

Average age of viewers

Shrek

Incredibles

The Triplets of Belleville

Harry Potter

Star Wars

Bleu

The Dark Knight Rises

Memento

Using a second dimension gives us more freedom in organizing movies by similarity

Incredibles

Harry Potter

Star Wars

The Dark Knight Rises

Gross ticket sales

Bleu

Memento

A d-dimensional embedding assumes that user interest in movies can be approximated by d aspects

Each input is reduced to a d-dimensional point

We could give the axes names, but it is not essential ...

Harry Potter

Blockbuster

The Dark Knight Rises

Crouching Tiger, Hidden Dragon

Adult

Children

The Triplets of Belleville

Wallace and Gromit

Waking Llfe

Bleu

Memento

Arthouse

The coordinates are called the 2D embedding for the movie

Blockbuster

The Dark Knight Rises

Hero

Crouching Tiger, Hidden Dragon

Adult

Children

The Triplets of Belleville

Wallace and Gromit

Waking Llfe

Memento

Arthouse

It's easier to train a model with d inputs than a model with N inputs

Embeddings can be learned from data

Dense representations are inefficient in space and compute

(0, 1, 0, 1, 0, ..., 0, 1)

So, use a sparse representation to hold the example

Build a dictionary mapping each feature to an integer from 0, ..., # movies - 1

Efficiently represent the sparse vector as just the movies the user watched:

Represented as: (1, 3, 999999)

Code to create an embedded feature column in TensorFlow

Example	movield	#	Shrek	Incredible	Triplets	Harry Potter	Star Wars	
0		0	1	0	0	0	0	
1		1	0	1	0	0	0	
2	TRIPLETTES DE BELLEVILLE	2	0	0	1	0	0	
3		3	0	0	0	1	0	
4		4	1	0	0	0	0	

Embeddings are feature columns that function like layers

The weights in the embedding layer are learned through backprop just as with other weights

Embeddings can be thought of as latent features

Embeddings provide dimensionality reduction

Embeddings provide dimensionality reduction

The result of embedding is such that similar items are close to each other

You can take advantage of this similarity property of embeddings

A good starting point for number of embedding dimensions

cloud.google.com

