

Clusterização de commits e análise de sentimento para a exploração de repositórios de software

Disciplina: Mineração de Dados Aluna: Bianca Puerta Rocha Vieira Professora: Verônica Oliveira de Carvalho

Roteiro

- Introdução
- Trabalhos Relacionados
- Referencial Teórico
 - Mineração de Repositório de Software (MRS)
 - Coleta de dados
 - Pré-processamento
 - Mineração de texto
 - o Pós-processamento
 - Análise de sentimento
- Metodologia
 - Aquisição de dados
 - Pré-processamento realizado
 - Construção do modelo de clustering
 - o Pós-processamento
 - Análise de sentimento
- Análise dos Resultados
- Conclusão

Introdução

- Cada vez mais têm sido estudados métodos para analisar os dados presentes nos repositórios de software [1];
- A mineração de dados é uma alternativa para realizar estudos e criar modelos baseados em dados extraídos dos repositórios;
- GitHub é a melhor plataforma para conseguir dados sobre os repositórios [2];
- Commits armazenam metadados sobre modificações no código junto a um comentário;
- Mensagens de commit possuem dados importantes sobre o desenvolvimento e sentimento [3].

```
"sha": "d0dd1f61b33d64e29d8bc1372a94ef6a2fee76a9".
  "node id": "MDY6029tbWl0MTMwMDE5MjpkMGRkMWY2MWIzM202NGUy0W04YmMxMzcyYTk0ZWY2YTJmZWU3NmE5",
▼ "commit": {
   ▼ "author": {
         "name": "The Octocat",
         "email": "octocat@nowhere.com",
         "date": "2014-02-12T23:20:44Z"
     },
   ▼ "committer": {
         "name": "The Octocat",
         "email": "octocat@nowhere.com",
         "date": "2014-02-12T23:20:44Z"
     },
      "message": "Pointing to the guide for forking",
    ▼ "tree": {
         "sha": "d7cee29eaada459ba458a63ad983a89915c6a10a",
         "url": "https://api.github.com/repos/octocat/Spoon-Knife/git/trees/d7cee29eaada459ba458a63ad983a89915c6a10a"
      },
     "url": "https://api.github.com/repos/octocat/Spoon-Knife/git/commits/d0dd1f61b33d64e29d8bc1372a94ef6a2fee76a9",
     "comment count": 204,
   ▼ "verification": {
         "verified": false,
         "reason": "unsigned",
         "signature": null,
         "payload": null
  "url": "https://api.github.com/repos/octocat/Spoon-Knife/commits/d0dd1f61b33d64e29d8bc1372a94ef6a2fee76a9",
  "html url": "https://github.com/octocat/Spoon-Knife/commit/d0dd1f61b33d64e29d8bc1372a94ef6a2fee76a9",
  "comments_url": "https://api.github.com/repos/octocat/Spoon-Knife/commits/d0dd1f61b33d64e29d8bc1372a94ef6a2fee76a9/comments",
"author": { ... }, // 18 items
▶ "committer": { ... }, // 18 items
▶ "parents": [ ... ] // 1 item
```

Introdução

- Este trabalho tem como objetivo geral realizar o agrupamento dos commits e a comparar sentimentos obtidos a partir de metadados dos commits dentro dos grupos obtidos (que são tidos como as atividades) e também com outros dados sobre commits e repositórios;
- RQ1: as linguagens têm uma influência na distribuição das proporções dos grupos?
- RQ2: o tipo de atividade de desenvolvimento influencia os sentimentos expressos nos comentários?
- RQ3: Os sentimentos expressos em comentários de commits refletem na popularidade do projeto entre desenvolvedores?
- RQ4: As linguagens de programação mais utilizadas têm influência nos sentimentos expressos nos comentários?
- RQ5: as atividades mais recorrentes dentro do projeto tem alguma relação com a popularidade dos repositórios?

Trabalhos Relacionados

- O trabalho de Zafar et. al (2019) tem como objetivo um estudo para aumentar a acurácia da rotulação de commits baseados nas mensagens/comentários dos commits.
 O foco da classificação é dizer se o commit é de bug-fix ou não [1];
- Ji et. al (2018) usam as mensagens de commits para detectar os commits de correção (fix) por meio de palavras chaves que geralmente estão presentes nesse tipo de mensagem de modificação;
- Meng et. al (2021) usam as convolutional neural networks (CNN) para classificar commits considerando as modificações registradas nos commits e suas relações. O método é aplicado no estudo em 5 repositórios Java de código aberto. Basicamente a classificação é feita entre as classes: commits de ajuste (bug-fix), inserção de funcionalidade e outros (que não se encaixam nas duas classes anteriores).

Mineração de Repositório de Software

- A Mineração de Repositório de Software (MRS) é uma área pesquisa que dá suporte a melhoria do processo de desenvolvimento de software [5];
- A MRS é a aplicação dos conceitos de mineração, descobrimento de padrões e/ou regras associativas em um repositório de software;
- Importante realizar análise de dados e de atividade dos projetos, além as informações coletadas sobre projetos relacionados (mesmo *framework*, público alvo ou nicho de mercado) [6].

Coleta de dados

- O BigQuery é o data warehouse gerenciado pela Google e sem servidores. É um PaaS (Platform as a Service) que permite análises escalonáveis de imensas quantidades de dados por meio de consultas SQL;
- GitHub disponibiliza base de dados pública no BigQuery;
- A coleta também pode ser feita pela própria API disponibilizada pelo GitHub.

Pré-processamento

Pode ser a fase mais demorada e meticulosa da mineração de dados - **pré-processamento de dados textuais.** Alguns passos de acordo com [7][8]:

- Remoção de Ruído
 - Remoção de Caracteres Especiais: Remova caracteres especiais, como pontuação, símbolos e números, que podem não ser relevantes para a análise de texto:
 - o Remoção de Espaços em Branco Extra: Limpe espaços em branco extras, como espaços, guias e quebras de linha.
- **Tokenização**: Divida o texto em palavras ou tokens individuais. Para contagem de palavras ou modelagem de tópicos;
- Conversão para Minúsculas: Padronize todas as palavras para letras minúsculas para garantir que as palavras em maiúsculas e minúsculas sejam tratadas da mesma forma;
- Remoção de Stop Words;
- Stemming e Lematização: Reduza as palavras às suas formas básicas, removendo sufixos e prefixos. Isso ajuda a reduzir as palavras a um formato padrão (por exemplo, "correndo" -> "corre") para evitar a duplicação de palavras semelhantes;
- Normalização: palavras erradas ou que não são na língua original;
- Remoção de Duplicatas;
- Feature Engineering: criar características adicionais, como contagem de palavras, Utilizar TF-IDF (Term Frequency-Inverse Document Frequency)

Pré-processamento

- No TF-IDF, cada palavra recebe um peso de acordo com sua importância na frase/documento;
- TF e a frequência de uma palavra p em um documento d;
- log para reduzir a frequência bruta;
- O IDF é a inversa da frequência da palavra no documento, assim balanceando pesos de palavras que aparecem muitas vezes.

a)
$$TF_IDF = TF * IDF$$

b)
$$TF(p, d) = log_{10}(count(p, d) + 1)$$

c)
$$IDF(t) = log_{10}(\frac{count(D)}{df(t)})$$

Fonte: Moser et al. (2022)[9]

Mineração de texto

Abordagens utilizadas

- Aprendizado não supervisionado Unsupervised Learning: métodos para tentar encontrar estruturas ocultas nos dados. Não precisa de treinamento anterior. Um exemplo e a clusterização, que divide os registros em grupos;
- Mineração de opinião e análise de sentimento Opinion Mining and Sentiment Analysis: encontrar opinião dentro dos dados e sentimentos negativos ou positivos os quais o texto expressa.

Mineração de texto

De acordo com [7]:

- Clusterização é um meio de agrupar os documentos que não possuem labels;
- Quando se usa documentos, a intenção é agrupar documento que tem mesmo assunto;
- Ao utilizar parágrafos ou sentenças, se analisa as sentenças de diferentes documentos da mesma fonte;
- Ao analisar palavras ou termos, são agrupadas palavras associadas ao mesmo tema

Mineração de texto

Tipos de Algoritmos:

- **Hierárquico**: Esse tipo de algoritmo desempenha melhor quando existe uma hierarquia dentro do grupo de dados que é analisado [10];
- Particionamento: Definição de hiperparâmetro K (número de clusters). Calculando a proximidade dos pontos ao redor do centroid (definido aleatoriamente). Essa abordagem diminui o custo de processamento pois possibilita menos iterações [11];
- Baseado em densidade: Nesta abordagem são consideradas as regiões com maior densidade para a criação de clusters. Definição de hiperparâmetros de mínimo de pontos para formar um cluster e distância máxima dos pontos [11];

Pós-processamento

- Validação do modelo
 - o **Índice de silhueta** mede a qualidade do agrupamento com base na distância média entre os objetos intra-cluster (varia de -1 a 1) [12];
 - Índice de Davies-Bouldin tem como objetivo medir o quão bem os clusters estão separados uns dos outros - um valor mais baixo indica uma melhor qualidade de agrupamento [13];
 - o **Índice Calinski-Harabasz** avalia a qualidade de agrupamentos de dados com base na relação entre a variância entre clusters e a variância dentro de clusters quanto maior o valor do índice, melhor a qualidade do agrupamento [14].
- Visualização da estrutura a visualizar e interpretar os padrões encontrados após a mineração de dados;
 - visualização dos clusters por meio do PCA;
 - análise das palavras-chave dos clusters

Análise de sentimento

De acordo com [15]:

- Classificação de sentimento: negativo, positivo e neutro;
- Classificação de subjetividade: detectar se a sentença e subjetiva ou não;
- Resumo de opinião: extração das features principais que uma entidade compartilha com as outras;
- Recuperação de opinião: retornar um grupo de registros que expressam opinião a respeito de um tópico específico;
- Sarcasmo e ironia: foco em captação de registros que expressam ironia ou sarcasmo;

Fonte: Adaptado de Serrano et al. 2015 [16]

Aquisição de dados

```
SELECT
   lang, COUNT(*) repos,
   ARRAY AGG (STRUCT (name, stars) ORDER BY stars DESC LIMIT 20) repo
FROM (SELECT
       repo.name,
      MAX (CAST (JSON EXTRACT SCALAR (payload, '$.pull request.base.repo.stargazers count') AS INT64)) stars,
       JSON EXTRACT SCALAR (payload, '$.pull request.base.repo.language') lang
     FROM `githubarchive.month.201912`
     GROUP by repo.name, lang)
where lang is not null and lang not in ('HTML', 'CSS', 'TypeScript')
GROUP BY lang
                            SELECT message,
ORDER BY repos DESC
limit 5
                             repo name[0],
                             author.name,
 Fonte: Autores
                             committer.name,
                             subject
                            FROM `bigguery-public-data.github repos.commits` WHERE repo name[0] in
                            ('freeCodeCamp/freeCodeCamp','vuejs/vue','facebook/react','twbs/bootstrap',
                            'airbnb/javascript','facebook/react-native','facebook/create-react-app',
                            'axios/axios','nodejs/node','FortAwesome/Font-Awesome',
                            trekhleb/javascript-algorithms','mrdoob/three.js','puppeteer/puppeteer',
                            '30-seconds/30-seconds-of-code', 'mui-org/material-ui', 'jquery/jquery',
                            'webpack/webpack', 'atom/atom', 'hakimel/reveal.js', 'socketio/socket.io',
                            'rails/rails',...)
```

Metodologia **Aquisição de dados**

subject	author	name	project	message	stars	repo_name	repos	lang	
release: v2.7.14	Evan You	Evan You	vuejs/vue	release: v2.7.14\n	154667	vuejs/vue	387469	JavaScript	1
fix(provide/inject): do not mutate original pr	Evan You	Evan You	vuejs/vue	fix(provide/inject): do not mutate original pr	154667	vuejs/vue	387469	JavaScript	2
fix(reactivity): avoid using WeakMap for IE co	Evan You	Evan You	vuejs/vue	$\label{eq:fix} \mbox{fix(reactivity): avoid using WeakMap for IE} \\ \mbox{co}$	154667	vuejs/vue	387469	JavaScript	3
test: add test case for #12778	Evan You	Evan You	vuejs/vue	test: add test case for #12778\n	154667	vuejs/vue	387469	JavaScript	4
fix(types): fix spreading VNodeData in tsx (#1	GitHub	k- furusho	vuejs/vue	fix(types): fix spreading VNodeData in tsx (#1	154667	vuejs/vue	387469	JavaScript	5

Pré-processamento realizado

- Usando NLTK (Natural Language Toolkit) do Python;
 Normalização de commits por linguagem (partindo da que tem menos);
- Remoção de valores vazios (não são grande quantidade);
- Remoção de caracteres não alfabéticos;
- Remoção de stopwords;
- Transformação de todas as palavras para letra minúscula (diminuir o dicionário);
- Remoção de palavras que não estão em inglês;
- Stemização (Stemming);

Pré-processamento realizado

- Frases com tamanhos considerados outliers - registros removidos;
 - utilizando quartiles acima de 75% e abaixo de 25%
- Features desnecessárias removidas:
- Aplicado o TF-IDF: atribui pesos a palavras em documentos com base em sua frequência no documento e raridade na coleção, destacando palavras importantes ao reduzir o impacto de termos comuns;
- Utilizado o PCA para redução de dimensionalidade.

Pré-processamento realizado

 Exemplos de mensagens antes e após o pré-processamento

messag	message_old
see lo	see 11/05 log\n
add builde	Add builder to MockServerWebExchange\n\nlssue:
fix incorrect exampl refe	fixed incorrect example and JSF reference\n
type	Typo\n
map resolut multipl plain map interfac decla	Map resolution for multiple beans applies to p
support prior request could argument array not.	Support Part/MultiPartFile arrays in ArgumentR
field level field interact underli therefor	@Nullable all the way: null-safety at field le
add type also choos handl also	Add WebSocketMessage and WebSocketHandler sub
mark support class favor apach decla	Mark log4j support classes as deprecated in fa
merg pull request support singl doub	Merge pull request #835 from ndebeiss/master\n

Pré-processamento realizado

Dados realmente utilizados

lang	stars	message
Python	64967	add topolog sort add topolog sort fix topolog
Python	46118	remov invalid document
Java	34507	execut per event
Java	34507	implement interfac directli
JavaScript	57571	remov unnecessari anim loop
Java	34507	fix issu commit lazi issu
Java	34507	allow commit interfac use flag commit properti
Ruby	27765	ensur simul version snapshot choos last simul \dots
Python	46118	improv new add new
Python	46118	bump nightli version

Construção do modelo de clustering

Tentativa com algoritmo de particionamento

Silhouette Score: 0.7689744495397207 Davies-Bouldin Score: 0.42321097000774394 Calinski-Harabasz Score: 56214.71651701608

Construção do modelo de clustering

Tentativa com algoritmo hierárquico

complete

Silhouette Score: 0.5877327971353952 Davies-Bouldin Score: 0.9291933873012368 Calinski-Harabasz Score: 10939.239701288416

average

Silhouette Score: 0.7287283432916225 Davies-Bouldin Score: 0.5533805396330911 Calinski-Harabasz Score: 15460.019139940609

single

Silhouette Score: 0.6793851666020668

Davies-Bouldin Score: 0.1888395531441093

Calinski-Harabasz Score: 20.747345009215632

ward

Silhouette Score: 0.5737347705138809 Davies-Bouldin Score: 0.6996531126939034 Calinski-Harabasz Score: 64994.38475599128

Fonte: Autores

Construção do modelo de clustering

Algoritmo baseado em densidade

- Identificação automática dos clusters;
- Clusters de diferentes formas e tamanhos;
- Não é sensível a outliers;
- Independência em relação a primeira posição dos centróides;

Silhouette Score: 0.7291168010334109 Davies-Bouldin Score: 0.6903176087951147 Calinski-Harabasz Score: 29037.557569842287

Construção do modelo de clustering

Algoritmo baseado em densidade

- Hiperparâmetros definidos e explorados manualmente e visualmente até um resultado satisfatório;
- Foi utilizado índice de silhueta para refinar os hiperparâmetros;

Pós-processamento

- Cálculo dos índices e comparação com execuções anteriores e de outros modelos;
- Análise visual do agrupamento de clusters (e comparação);
- Análises essenciais para refinar o processo de clustering;
- Exploração visual dos agrupamentos encontrados para encontrar a lógica do agrupamento;

Pós-processamento

Cluster 0: atividade de adição, updates e fixes

Cluster 1: atividade de merge e pull requests relacionados a adições, remoções e updates

Cluster 2: atividades de merge e pull request relacionada a ajustes (fixes) testes e links

Análise de sentimento

- biblioteca TextBlob em Python, uma ferramenta poderosa projetada para avaliar a polaridade;
- Pode ser classificada como positiva, negativa ou neutra;
- Relações de sentimento com as linguagens e em cada grupo definido nos clusters;

Sentiment in messages

Análise dos resultados

Análise dos Resultados

- Clusters definidos
- Remoção dos outliers

Análise dos Resultados

- Nuvem de palavras de cada cluster para entender os agrupamentos
- Clusters 1 e 2 ainda com diferença muito pequena, mas encontrada por meio das palavras frequentes em cada um.

Fonte: Autores

- RQ1: as linguagens têm uma influência na distribuição das proporções dos grupos?
- Linguagem de programação e grupos gerados;
- Java possui menos merge/pull;
- No geral quantidades balanceadas;

- RQ2: o tipo de atividade de desenvolvimento influencia os sentimentos expressos nos comentários?
- Majoritariamente sentimentos neutros;
- Atividades de adição, updates, adds e fixes independentes (cluster 0) - mais sentimentos positivos;
- Atividades de merge e pull, sendo as de fixes e testes (cluster 1) com maior proporção de sentimentos positivos, considerando a área de sentimentos expressos.

cluster 0 - fix, add, remove

cluster 1 - merge e pull request de add

cluster 2 - merge e pull request de fix

Percentage in group - merge/pull add

Percentage in group - merge/pull fix

- Majoritariamente sentimentos neutros;
- Atividades de adição, updates, adds e fixes independentes (cluster 0) - mais sentimentos positivos;
- Atividades de merge e pull, sendo as de fixes e testes (cluster 1) com maior proporção de sentimentos positivos, considerando a área de sentimentos expressos.

- RQ3: Os sentimentos expressos em comentários de commits refletem na popularidade do projeto entre desenvolvedores?
- Em relação aos sentimentos, os negativos são predominantes nos mais populares e maior porcentagem em relação aos demais.
- Menos populares possuem mais commits com mensagens positivas;

- RQ4: As linguagens de programação mais utilizadas têm influência nos sentimentos expressos nos comentários?
- Apesar de ser uma linguagem popular, JavaScript tem muito mais commits com mensagens negativas do que os demais;
- Ruby muito mais mensagens positivas;
- Demais estão balanceadas entre si.

Análise dos Resultados

- RQ5: as atividades mais recorrentes dentro do projeto tem alguma relação com a popularidade dos repositórios?
- Popularidade em relação aos clusters definidos. Os mais populares possuem menos merge e pull requests;
- No geral, porcentagem balanceada.

cluster 0 - fix, add, removecluster 1 - merge e pull request de addcluster 2 - merge e pull request de fix

Conclusão e trabalhos futuros

Conclusão e Trabalhos Futuros

- A partir deste estudo, é possível entender quais as tarefas que os usuários têm mais sentimentos negativos atrelados e até mesmo quais linguagens possuem mais dificuldades;
- Os sentimentos a respeito de atividades de desenvolvimento de features são mais expressos (não neutros) e mais positivos do que ao realizar um merge ou pull request;
- Futuramente deve ser feito um estudo aprofundado sobre as melhores features para a clusterização de commits;
- Ainda é um desafio a aquisição destes dados por conta da limitação de requisições na API disponibilizada pelo GitHub e falta de dados na base de dados BigQuery;
- Também podem ser analisados repositórios que utilizam a conversão de tipos de mensagens nos commits.

Bibliografia

- [1] V. Costa and L. Ponciano, "Minerando padrões de interação de programadores com repositórios na plataforma github." 2018.
- [2] V. Cosentino, J.-L. C. Izquierdo, and J. Cabot, "A systematic mapping study of software development with github" IEEE access, vol. 5, pp. 7173–7192, 2017.
- [3] S. F. Huq, A. Z. Sadiq, and K. Sakib, "Is developer sentiment related to software bugs: An exploratory study on github commits" in 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp. 527–531.
- [4] T. Ji, J. Pan, L. Chen, and X. Mao, "Identifying supplementary bug-fix commits" in 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 2018, pp. 184–193.
- [5] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis, and J. Rilling, "A linked data platform for mining software repositories" in 2012 9th IEEE Working Conference on Mining Software Repositories (MSR). Zurich, Switzerland: IEEE, 2012, pp. 32–35.
- [6] P. Anbalagan and M. Vouk, "On mining data across software repositories" in 2009 6th IEEE International Working Conference on Mining Software Repositories.
- [7] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, "Text preprocessing for text mining in organizational research: Review and recommendations," Organizational Research Methods, vol. 25, no. 1, pp. 114–146, 2022
- [8] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and K. Kochut, "A brief survey of text mining: Classification, clustering and extraction techniques," arXiv preprint arXiv:1707.02919, 2017.

Bibliografia

- [9] G. V. B. Moser et al., "Análise de similaridade entre tf-idf e modelos contextualizados de linguagem baseados em tokens." 2022.
- [10] D. Sisodia, L. Singh, S. Sisodia, and K. Saxena, "Clustering techniques: a brief survey of different clustering algorithms," International Journal of Latest Trends in Engineering and Technology (IJLTET), vol. 1, no. 3, pp. 82–87, 2012.
- [11] G. Ahalya and H. M. Pandey, "Data clustering approaches survey and analysis," in 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). IEEE, 2015, pp. 532–537.
- [12]] I. L. da Silva, R. F. Mello, P. B. Miranda, A. C. Nascimento, I. W. Maldonado, and J. L. Coelho Filho, "Assessment of text clustering approaches for legal documents," in Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional ^ . SBC, 2021, pp. 37–48.
- [13] V. Vargas, E. Amorim, J. A. d. M. Brito, and G. S. Semaan, "Um estudo de variantes do índice de validação silhueta," in Anais da IV Escola Regional de Informática do Rio de Janeiro. SBC, 2021, pp. 123–126.
- [14]X. Wang and Y. Xu, "An improved index for clustering validation based on silhouette index and calinski-harabasz index," in IOP Conference Series: Materials Science and Engineering, vol. 569, no. 5. IOP Publishing, 2019, p. 052024
- [15] M. Wankhade, A. C. S. Rao, and C. Kulkarni, "A survey on sentiment analysis methods, applications, and challenges," Artificial Intelligence Review, vol. 55, no. 7, pp. 5731–5780, 2022
- [16] J. Šerrano-Guerrero, J. Å. Olivas, F. P. Romero, and E. Herrera-Viedma, "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, vol. 311, pp. 18–38, 2015.