

Memory-efficient Large-scale Linear SVM

Abdullah Alrajeh, Akiko Takeda and Mahesan Niranjan

The 7th International Conference on Machine Vision November 19-21, 2014 Milan, Italy

Outline

- Support Vector Machines
- Stochastic Gradient Method
- Shrinking Heuristic
- 4 Experiments
- Conclusion

Support Vector Machines

SVMs were invented by Boser, Guyon and Vapnik (1992) [figure taken from Wikipedia]

Support Vector Machines

Given a training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}$ where $\mathbf{x}_i \in R^n$ and $y_i \in \{-1, +1\}$, the maximum margin hyperplane (\mathbf{w}, b) requires solving the following optimization problem:

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$
, subject to $\mathbf{w}^T\mathbf{x}_i + b \ge +1$, for \mathbf{x}_i of the positive class $\mathbf{w}^T\mathbf{x}_i + b \le -1$, for \mathbf{x}_i of the negative class OR subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$, $\forall i$

Soft Margin Version

Given a training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}$ where $\mathbf{x}_i \in R^n$ and $y_i \in \{-1, +1\}$, the maximum margin hyperplane (\mathbf{w}, b) requires solving the following optimisation problem:

minimize
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i=1}^{I} \xi_{i},$$
subject to
$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \forall i,$$
$$\xi_{i} \geq 0, \forall i,$$

where the slack variable ξ_i measures the margin violation by each data point \mathbf{x}_i and $C \geq 0$ is a penalty parameter for this violation. They were introduced by Cortes and Vapnik (1995).

Dual Form

Introducing Lagrange multipliers α to the primal form, the hyperplane can be found in the dual form as follows:

$$\begin{aligned} & \underset{\alpha}{\text{maximize}} & & \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j, \\ & \text{subject to} & & \sum_{i=1}^{l} y_i \alpha_i = 0, \\ & & & C \geq \alpha_i \geq 0 \,, \forall i, \end{aligned}$$

where the norm of \mathbf{w} is realised by the second term:

$$\mathbf{w}^T \mathbf{w} = \sum_{i=1}^l \sum_{j=1}^l \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j.$$

Discriminative Function

$$f(\mathbf{x}) = \operatorname{sgn}\left(\mathbf{w}^{T}\mathbf{x} + b\right)$$
$$= \operatorname{sgn}\left(\sum_{i \in SV} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b\right)$$

where the bias parameter b is obtained by any support vector \mathbf{x}_m lies on the margin (i.e. $C > \alpha_m > 0$) as follows:

$$b = y_m - \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_m$$

Kernel Trick

The **kernel trick** is mapping input space into an inner product space without having to compute the mapping explicitly.

A kernel is defined as follows:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Examples:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$
 Linear Kernel $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + c)^d$ Polynomial Kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}\right)$ Gaussian Kernel

Solving SVM - Quadratic Programming

SVM as QP problem:

$$\mathbf{x} = \boldsymbol{\alpha}$$
 , $H = \mathbf{y}\mathbf{y}^T \circ K(\mathbf{x}_i, \mathbf{x}_j)$, $\mathbf{f} = -\mathbf{1}$
 $A_{eq} = \mathbf{y}^T$, $\mathbf{b}_{eq} = 0$, $\mathbf{I}_b = \mathbf{0}$, $\mathbf{u}_b = C\mathbf{1}$

QP problem in MATLAB:

 $O(n^3)$ time and $O(n^2)$ space complexities (Tsang et al., 2005, JMLR)

Stochastic Gradient Method

maximize
$$W(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} k(\mathbf{x}_{i}^{T} \mathbf{x}_{j}),$$
 subject to $\sum_{i} y_{i} \alpha_{i} = 0,$ $C \geq \alpha_{i} \geq 0, \forall i,$

The partial derivative is (Friess et al., 1998):

$$\frac{\partial W(\alpha)}{\partial \alpha_i} = 1 - y_i \sum_{j=1}^{l} \alpha_j y_j k(\mathbf{x}_i, \mathbf{x}_j),$$

and the update rule is:

$$\alpha_i \leftarrow \min(C, \max(0, \alpha_i + \eta_i \frac{\partial W(\alpha)}{\partial \alpha_i}))$$

Stochastic Gradient Method

In the case of linear kernel, we can rearrange the gradient as follows:

$$\frac{\partial W(\alpha)}{\partial \alpha_i} = 1 - y_i \sum_{j=1}^{l} \alpha_j y_j \mathbf{x}_i^T \mathbf{x}_j$$
$$= 1 - y_i \mathbf{x}_i^T \sum_{j=1}^{l} \alpha_j y_j \mathbf{x}_j$$

Storing the summation in a vector \mathbf{w} accelerates linear SVM and can be updated as follows (Hsieh et al., 2008):

$$\begin{aligned} \mathbf{w}_{\text{new}} &= \alpha_1 y_1 \mathbf{x}_1 + \dots + \alpha_{\text{new}} y_i \mathbf{x}_i + \dots + \alpha_l y_l \mathbf{x}_l \\ &= \alpha_1 y_1 \mathbf{x}_1 + \dots + \alpha_{\text{old}} y_i \mathbf{x}_i + \dots + \alpha_l y_l \mathbf{x}_l + \alpha_{\text{new}} y_i \mathbf{x}_i - \alpha_{\text{old}} y_i \mathbf{x}_i \\ &= \mathbf{w}_{\text{old}} + (\alpha_{\text{new}} - \alpha_{\text{old}}) y_i \mathbf{x}_i. \end{aligned}$$

Shrinking Heuristic

Assumption: Dual variables are unlikely to change when become 0 or *C*.

- **①** Compute the new α_i for each data point and update α .
- ② Store in a binary file only data points with $0 < \alpha_i < C$.
- Read data points from the file until memory is full.
- O Do step 1 and 2.
- Repeat step 3 and 4 until we reach end of the file.
- **1** Repeat steps 3-5 until α converge.

Experiments

Table: Fields with brackets () is based on 25% of the data.

Data Set	LLSVM (our method)		LIBLINEAR		Pegasos		SVM ^{pref}	
	Time	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
URL	2m19s	99.54%	6m21s	99.59%	1m56s	97.51%	15m4s	99.18%
RCV1	0m22s	97.67%	0m25s	97.78%	0m46s	96.03%	1m9s	97.72%
WEBSPAM	10m44s	99.00%	(2m43s)	(98.30%)	N/A	N/A	N/A	N/A
EPSILON	5m29s	89.75%	(1m48s)	(89.30%)	(4m10s)	(82.91%)	(3m5s)	(89.29%)
MNIST	0m33s	92.07%	0m41s	92.18%	N/A	N/A	N/A	N/A
MNIST8M	174m25s	90.86%	(50m28s)	(88.95%)	N/A	N/A	N/A	N/A
KDD 1999	0m30s	92.29%	0m37s	92.05%	0m41s	86.80%	1m31s	92.07%

Table: Block minimization method (Yu et al., 2012).

Data Set	WEBSPAM	EPSILON		
Split	19m12s	14m10s		
Train	4m48	3m26		
Total Time	24m0s	17m36s		
Accuracy	99.04 %	89.75 %		

Experiments

Figure: The active set in our solver and in LIBLINEAR.

Experiments

Figure: The objective function in our solver and in LIBLINEAR.

Conclusion

- Our method is comparable to the state-of-the-art solvers in terms of accuracy but faster.
- The shrinking heuristic could reduce up to 99% of some data sets from first iteration.
- The shrinking is very beneficial when data cannot fit in memory.
 Otherwise, the solver will take long time due to severe disk-swapping