# Generative Adversarial Networks (GANs)

Ian Goodfellow, OpenAI Research Scientist Re-Work Deep Learning Summit San Francisco, 2017-01-26



## Generative Modeling

• Density estimation



• Sample generation



Training examples

Model samples

#### Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)

## iGAN



youtube

(Zhu et al 2016)

## IAN



youtube

(Brock et al 2016)

## Image to Image Translation



(Isola et al 2016)

## Fully Visible Belief Nets

• Explicit formula based on chain (Frey et al, 1996) rule:

$$p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod_{i=2} p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$$

- Disadvantages:
  - O(n) sample generation cost
  - Generation not controlled by a latent code



PixelCNN elephants (van den Ord et al 2016)

## WaveNet



Amazing quality
Sample generation slow

Two minutes to synthesize one second of audio

#### Adversarial Nets Framework



(Goodfellow 2016)

## Vector Space Arithmetic



Woman with Glasses

(Radford et al, 2015)

## 3D GAN



Figure 7: Qualitative results of single image 3D reconstruction on the IKEA dataset

(Wu et al, 2016)

## OpenAI GAN-created images

















(Goodfellow 2016)

## Problems with Counting













(Goodfellow 2016)

## Problems with Perspective















#### Problems with Global

#### Structure













## This one is real



### Semi-Supervised Classification

#### CIFAR-10

| Model                        | Test error rate for               |                  |                    |                  |  |
|------------------------------|-----------------------------------|------------------|--------------------|------------------|--|
|                              | a given number of labeled samples |                  |                    |                  |  |
|                              | 1000                              | 2000             | 4000               | 8000             |  |
| Ladder network [24]          |                                   |                  | $20.40 \pm 0.47$   |                  |  |
| CatGAN [14]                  |                                   |                  | $19.58 {\pm} 0.46$ |                  |  |
| Our model                    | $21.83 \pm 2.01$                  | $19.61 \pm 2.09$ | $18.63 \pm 2.32$   | $17.72 \pm 1.82$ |  |
| Ensemble of 10 of our models | $19.22 \pm 0.54$                  | $17.25 \pm 0.66$ | $15.59 \pm 0.47$   | $14.87 \pm 0.89$ |  |

#### SVHN

| Model                                | Percentage of incorrectly predicted test examples |                    |                 |  |
|--------------------------------------|---------------------------------------------------|--------------------|-----------------|--|
|                                      | for a given number of labeled samples             |                    |                 |  |
|                                      | 500                                               | 1000               | 2000            |  |
| DGN [21]                             |                                                   | $36.02 \pm 0.10$   |                 |  |
| Virtual Adversarial [22]             |                                                   | 24.63              |                 |  |
| Auxiliary Deep Generative Model [23] |                                                   | 22.86              |                 |  |
| Skip Deep Generative Model [23]      |                                                   | $16.61 {\pm} 0.24$ |                 |  |
| Our model                            | $18.44 \pm 4.8$                                   | $8.11 \pm 1.3$     | $6.16 \pm 0.58$ |  |
| Ensemble of 10 of our models         |                                                   | $5.88 \pm 1.0$     |                 |  |

(Salimans et al 2016)

# Learning interpretable latent codes controlling the generation process



InfoGAN (Chen et al 2016)

### Plug and Play Generative

#### Networks



(Nguyen et al 2016)

## PPGN for caption to image



oranges on a table next to a liquor bottle

(Nguyen et al 2016)

## GAN loss is a key ingredient



Raw data



Reconstruction by PPGN



Reconstruction
by PPGN
without GAN

Images from Nguyen et al 2016 First observed by Dosovitskiy et al 2016

## StackGANs

This small blue bird has a short pointy beak and brown on its wings

This bird is completely red with black wings and pointy beak

A small sized bird that has a cream belly and a short pointed bill

A small bird with a black head and wings and features grey wings



(Zhang et al 2016)

#### Conclusion

- GANs produce rich, realistic imagery
- GANs learn to draw samples from a probability distribution
- Applications include learning from very few labeled examples, interactive artwork generation, and differential privacy