Sorting

Insertion Sort: $\Theta(n^2)$ worst case

average case

Mergesort: $\Theta(n \lg n)$ worst case

average case

Heapsort: $\Theta(n \lg n)$ worst case

average case

Quicksort: $\Theta(n^2)$ worst case

 $\Theta(n \lg n)$ average case

Is any sorting algorithm faster?

(i.e. $o(n \lg n)$)?

in worst case?

in average case?

Lower Bounds/Sorting Overview

Decision tree model

(used to establish lower bounds for comparison problems)

Lower bound for sorting:

 $\Omega(n \lg n)$ for comparison-based sort.

Integers in fixed range $\{1,\ldots,k\}$:

Improvement possible!

Real Numbers in a bounded interval:

Improvement possible!

Lower Bounds

Function lower bound

"g(n) is a lower bound for f(n)": $f(n) \in \Omega(g(n))$

Algorithm lower bound

"g(n)" is a lower bound on the w.c. time required by algorithm A":

If f(n) is the worst case time required by algorithm A on an input of size n, then $f(n) \in \Omega(g(n)).$

Problem lower bound

"g(n) is a lower bound on the number of comparisons required to solve problem $m{P}$ in the worst case":

No matter what algorithm A one may devise to solve problem P, g(n) is a lower bound on the w.c. number of comparisons required by algorithm A.

Binary Decision Tree

binary tree

internal node: comparison (x:y)

left branch: $x \leq y$; right branch: x > y

leaf: a possible final outcome (e.g. sorted order)

Ex. Decision tree for Insertion Sort on [a,b,c].

Any **comparison sort** can be modeled by a **decision tree**.

The **worst case** number of compares for a sorting algorithm is the **height** of its corresponding decision tree.

A decision tree must have at least one **leaf** for every possible **outcome**.

"Sort n elements" has n! possible outcomes.

Decision tree for any algorithm which sorts n elements must have at least n! leaves.

$$2^{\mathsf{height}} \ge \# \mathsf{leaves} \ge n!$$

Decision tree **height** must be $\geq \lg(n!)$

Worst case number of compares must be $\geq \lg(n!)$

Any **comparison sort** can be modeled by a **decision tree**.

- A decision tree must have at least one leaf for every possible outcome.
- \bullet There are n! possible outcomes.
- \rightarrow A decision tree for any algorithm which sorts n elements must have at least n! leaves.
 - The worst case number of compares for a sorting algorithm is the **height** of the decision tree.
 - A decision tree has less than 2^{height} leaves.

Altogether we get

$$2^{\mathsf{height}} \geq \# \mathsf{leaves} \geq n!$$

 $\mathsf{height} \geq \lg(n!)$

Conclusion: The worst case number of compares must be larger than $\lg(n!)$

Worst case number of compares $\geq \lg(n!)$

(Recall Stirling:
$$n! \geq (\frac{n}{e})^n$$
)

So, worst case number of compares is at least:

$$\lg(n!) \ge \lg[(\frac{n}{e})^n]$$

$$= n[\lg n - \lg e]$$

$$\in \Omega(n \lg n)$$

"Doing Better Than $n \lg n$ "

Array A[1..n] of elements in $\{0,\ldots,k\}$

Counting Sort

Phase I ▷ count

$$hd$$
 use $C[0..k]$

for
$$i \leftarrow 0$$
 to k do

$$C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n do

$$C[A[j]] \leftarrow C[A[j]] + 1$$

time?

Phase II

$$hd C[0..k], \ C[i] = \# ext{ of elts.} = i$$
 for $i \leftarrow 1$ to k do $C[i] \leftarrow C[i-1] + C[i]$ $hd Now \ C[i] = \# ext{ of elts.} \le i$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Phase I:

Phase II:

Total?

A sorting algorithm is

stable

if elements of equal key value remain in the same relative order.

Which are stable?

Counting sort?

Insertion sort?

Mergesort?

Heapsort?

Quicksort?