

MATH437/537 Fall, 2022

## Homework 3. Due October 17

1. Recall that the Hotelling  $T^2$ -statistic based on  $X_1, \ldots, X_n$  (which are assumed iid  $N_p(\mu, \Sigma)$  with  $\Sigma$  invertible) is defined as

$$T^{2}(\boldsymbol{X}, \boldsymbol{\mu}) = n(\overline{\boldsymbol{X}} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1}(\boldsymbol{X})(\overline{\boldsymbol{X}} - \boldsymbol{\mu}),$$

where S(X) is the (unbiased) sample covariance matrix based on  $X_1, \ldots, X_n$ .

- (i) What is  $T^2(\mathbf{X}, \boldsymbol{\mu})$  in the case p = 1 and what is its distribution?
- (ii) Write the formula for  $T^2(X, \mu)$  in terms of the maximum likelihood estimate  $\widehat{\Sigma}$  of  $\Sigma$  instead of S and specify its distribution.
- (iii) Suppose the data are transformed to  $\mathbf{Y}_k = \mathbf{A}\mathbf{X}_k + \mathbf{a}$ , where  $\mathbf{A}$  is a fixed invertible matrix and  $\mathbf{a}$  is a fixed vector.
  - (a) What is the mean  $\mu_Y$  and covariance matrix  $\Sigma_Y$  of  $Y_1$ ?
  - (b) Determine the sample covariance matrix S(Y) in terms of S(X) and write  $T^2(Y, \mu_Y)$  in terms of  $T^2(X, \mu)$ .
- 2. (Warm-up for question #3 from STATS 101) Suppose  $X_1, \ldots, X_n$  are iid  $N(\mu, \sigma^2)$ . Find the coverage of the confidence interval  $\overline{X} \pm k S/\sqrt{n}$  for  $\mu$  as a function of k. (The answer involves the CDF of the standard Guassian that we denote as  $\phi$ . So, If  $Z \sim N(0,1)$ , then  $\phi(z) = \mathbb{P}(Z \leq z)$ .)
- 3. Suppose  $X_1, \ldots, X_n$  are iid  $N_p(\mu, \Sigma)$  with  $\Sigma$  invertible and let  $\boldsymbol{a}$  be a fixed vector in  $\mathbb{R}^p$ . We have seen two types of confidence intervals for  $\boldsymbol{a}^{\top}\boldsymbol{\mu}$ : a t-interval and a  $T^2$ -interval. The  $T^2$ -intervals are conservative because they have simultaneous coverage over all linear functionals of  $\boldsymbol{\mu}$ . To see this we can compute the actual coverage of the 95%  $T^2$ -interval for  $\boldsymbol{a}^{\top}\boldsymbol{\mu}$  for a fixed  $\boldsymbol{a} \neq \boldsymbol{0}$ . That is, the probability that  $\boldsymbol{a}^{\top}\boldsymbol{\mu}$  belongs to the 95%  $T^2$ -interval for the fixed vector  $\boldsymbol{a} \neq \boldsymbol{0}$ . Compute this coverage for the cases n = 25, p = 3 and n = 25, p = 2. (Note that you do not need to know what  $\boldsymbol{a}$  is.)
- 4. Return to the Lizard data from Homework 1, where we have samples of three-dimensional vectors  $\boldsymbol{X}_i = (X_i, Y_i, Z_i)$  with mean  $\boldsymbol{\mu} = (\mu_X, \mu_Y, \mu_Z)$  for each of 25 lizards. Assume that the assumption  $\boldsymbol{X}_1, \ldots, \boldsymbol{X}_{25}$  iid  $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  is reasonable.

- (a) Determine the sample mean  $\overline{X}$  and sample covariance matrix S based on the full data set.
- (b) What is the distribution of  $T^2(\boldsymbol{X}, \mu)$ ?
- (c) Determine the value of  $T^2(\boldsymbol{X}, \boldsymbol{\mu}_0)$  for  $\boldsymbol{\mu}_0 = (10, 70, 140)$ .
- (d) What is the p-value of the test  $H_0: \mu = (10, 70, 140)$ . What can you conclude?
- (e) Determine the sample covariance matrix  $S_{2,3}$  for the variables Y (SVL) and Z (HLS).
- (f) Draw a scatterplot of the data and add 95% and 99% confidence ellipsoids for  $(\mu_Y, \mu_Z)$ . Is the point (70, 140) in any of these ellipsoids? To draw the ellipsoids you may use the following R code:

```
source("bivCI.R")
biv = data with last two columns of lizard data
plot(biv, col = "red", pch = 16, cex.lab = 1.5)
lines(bivCI(s = var(biv), xbar = colMeans(biv), n = dim(biv)[1],alpha = .01,
    m = 1000),type = "l", col = "blue")
lines(bivCI(s = var(biv), xbar = colMeans(biv), n = dim(biv)[1],alpha = .05,
    m = 1000),type = "l", col = "red", lwd = 1)
# Add ''+', sign
lines(colMeans(biv)[1], colMeans(biv)[2], pch = 3, cex = .8,type = "p", lwd = 1)
```

(g) Determine a 95% confidence t-interval for  $\mu_Z - \mu_Y$  and compare it to the 95%  $T^2$ confidence interval of  $\mu_Z - \mu_Y$ . What is the actual coverage of the latter?