Lecture 2: Introduction to the Big Data

Big Data System Design

Table of Contents

- ❖ Part 1
 - Introduction to Big Data
- ❖ Part 2
 - What is Big Data Life Cycle?
- ❖ Part 3
 - What is Big Data Analytics?

Part 1

INTRODUCTION TO BIG DATA

- ❖ What is data?
 - Since birth, we are surrounded with data
 - From the advent of written language, human observations have been recorded
 - The advent of computer technologies in 1950s, data most commonly refers to information that is transmitted or stored electronically
 - The electronic sensors has additionally contributed to the volume and richness of recorded data

- Types of data
 - Structured data vs. unstructured data

- Types of data
 - Structured data vs. unstructured data

- Types of data
 - Structured data vs. unstructured data

- Reason for growth
 - Rapid advance in computer hardware

- Reason for growth
 - Rapid advance in social networking

- What is Big Data?
 - According to Seagate, the volume of data generated worldwide will increase from 33 in 2018 to about 175 zettabytes in 2025

What is Big Data?

Hospital Big Data Example

1. Volume

- Hospitals around the world generate a massive amount of data in the form of patient records and test results
- According to IBM, 2.314
 Exabytes of medical data collected annually around the world

3. Velocity

 According to IBM, medical data is experiencing a 48 percent annual growth rate

2. Variety

- Hospital can collect medical records in variety form, such as structured and unstructured data
- It can be textual information, excel or images (e.g., X-Ray images)

4. Veracity

- Since its healthcare field, the accuracy and trustworthiness of the data must be very high
- High accuracy in medical examination, prediction of disease

- Big Data in South Korea
 - Promotion of Opening Up Data and Reuse
 - Expanding the construction of AI learning data and securing of AI development infrastructure through the 'AI Hub' platform supply

- Big Data in South Korea
 - Strengthening Linkage between Public/Private Data Map

Part 2

WHAT IS BIG DATA LIFE CYCLE?

Importance and Usage of Big data

- Speed for analyzing large volumes of data
- Flexibility for various types of data such as unstructured data
 - Used in various fields such as trend analysis, marketing, and decision making by deriving meaningful information in real time.
 - Used to detect various changes such as consumer taste and behavior
 - Used to support quick decision-making without going through people

Role of Big data in the future

Characteristics of the future society	Role of Big Data in the future								
Uncertainty	Insight	-Pattern analysis and future outlook based on social phenomena and physical world data -Response strategy in consideration of various situations with big data							
Risk	Responsiveness	-Discover danger signs through big data analysis -Recognize and analyze issues in advance, and support quick decision-making and real-time response							
Smart	Competitiveness	-Create context awareness and artificial intelligence service through big data analysis -Reinforce product competitiveness through trend change analysis based on big data							
Convergence	Creativity	-Create a new convergence market such as smart city such as smart manufacturing through the use of big data							

Big data life cycle

- Consider 5V characteristics(volume, velocity and variety, veracity, value) of the data being processes.
- Organize the activities and tasks involved with acquiring, saving processing, analyzing and repurposing data

A specific data analytics lifecycle that organizes and manages the tasks and activities associated with the analysis of Big Data

Tasks:

- -Adoption and planning perspective
- -Training, education, tooling and staffing

7 Steps of big data life cycle

Business case(BC) evaluation

- A well-defined business case that presents a clear understanding of the justification, motivation and goals of carrying out the analysis.
- Samsung stock price prediction

Data Visualization

- provide insight to graphically communicate the analysis results for effective interpretation by business users
- see the data as a whole

Data collection

- Identify a wider variety of data sources
- Collect internal and external datasets from the sources
- Newspaper, SNS such as twitter

Data Analysis

- discover patterns and anomalies or to generate a statistical or mathematical model to depict relationships between variables.
- Make a model to evaluate BC

Data storage

- Store batch-, or real-time data
- Support fast access to the data
- Special data storage system for big data
- KAFKA producer/consumer
- Hadoop, NoSQL, MongoDB, SPARK

Data Processing

- Depending on the purpose of data analysis and data type
- Perform outlier purification, missing value processing/purification, and standardization processing

Utilization of analysis results: application the results to actual industrial sites

Flow of Big Data

Source: Enlighten IT Consulting, a MacAulay-Brown company

Big data platform technology

Source: Enlighten IT Consulting, a MacAulay-Brown company

Big data platform architecture

Source: Enlighten IT Consulting, a MacAulay-Brown company

Big Data Sources

- Find out the sources to collect data which is used to achieve the purpose of business plan
- Kinds of big data

Kinds	Description
Structured data	Data stored in fixed fields -Relational database, spreadsheet
Semi- structured data	Data that is not stored in a fixed field, but contains metadata or schema -XML, HTML Text
Unstructured data	Data that is not stored in a fixed field -Text document, image, video, audio

Big Data Collection

- Internal data collection: internal file system, database owned by itself collecting structured data from management systems, sensors
- External data collection: unstructured data from outside connected to the Internet

Kinds	Description
Log collector	Web logging, transaction logging, click logging
Crawling	Visiting web data, Internet data
Sensing	Data collection from any kinds of sensors
RSS Reader/Open API	Data collection from shared data center
ETL(Extraction, Transformation, Loading)	Extraction after collecting data from any kinds of sensors

- Big Data Storage

 Efficiently store and manage data to extract meaningful information
 - A storage method that can accommodate large capacity, unstructured, and real-time

Kinds	Products
Distributed file system	Google File System(GFS) HDFS(Hadoop Distributed File System) Amazon S3 file system
NoSQL	Clouddata, Hbase, Cassandra
Parallel DBMS	VoltDB, SAP HANA, Vertica, Greenplum, Netezza
Network Storage System	SAN(Storage Area Network), NAS(Network Attached Storage)

Processing of Big Data

- Process of processing data suitable for analysis
 - > Data set verification, missing value processing
 - Outlier handling, feature engineering

Characteristics of the data

- Check null data
- Check data quality

Data analysis time

- Ratio of data processing time: 80%~90%
- Ratio of time to perform the data analysis itself: 10% to 20%

Data processing: Any task that fixes data to make it easier to analyze

Processing of Big Data

Any task that fixes data to make it easier to analyze

Kinds	Description
Handling null data	Remove null data, replace null data
Detecting outlier	Detect outlier in the data Remove and replace the detected outlier
Converting data	Convert category data to numerical data
Normalizing data	Normalization of data(Min-Max, Standards, etc)

Big Data Analysis

- -Discover patterns and anomalies of data
- -Generate a statistical or mathematical model to depict relationships between variables of data
- Exploratory data analysis (EDA)
- Statistical data analysis
- Machine learning
 - Supervised Running: Regression, Classification
 - Unsupervised running: clustering
- Deep learning
 - > Artificial neural network (ANN): Perceptron, Multilayer perceptron
 - Convolution neural network (CNN)
 - Recurrent neural network (RNN)
 - Long short time memory (LSTM)

Titanic Data

- X values: survived, pclass, sex, sibsp, parch, fare, embarked, deck class, adult, alone
- Y value: alive (yes or no)

Data Processing

- Process null data such as deck
- Convert "who" and "adult male" data to numerical data

Exploratory Data Analysis

Explore pclass vs alive

	0.00	pclass	ල male	female sex	
ho	adult_male	deck	embark_town	alive	alone
an	True	NaN	Southampton	no	False
an	False	С	Cherbourg	yes	False

	survivea	pciass	sex	age	sibsp	parcn	rare	embarked	ciass	wno	aduit_maie	аеск	embark_town	alive	aione
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False

Statistical Data Analysis

- Apply mathematical equation
- Mean, variance, standard deviation
- F-test

Machine learning

- Supervised learning: regression, classification
- Unsupervised learning: clustering

Deep learning

Convolutional neural network

Big Data Visualization

- Understand what makes a visualization effective through the study of core principles
- Tools to graphically communicate the analysis results for effective interpretation by business users

Scientific visualization

Structural Data

- Seismic, Medical,

Information visualization

No inherent structure

 News, stock market, top grossing movies, facebook connections

Source: Alark Joshi, Yale Univ.

Visual analytics

Use visualization to understand and synthesize large amounts of multimodal data

 audio, video, text, images, networks of people

Integration of interactive visualization with analysis techniques to answer a growing range of questions in science, business, and analysis.

Examples of data visualization

Visualization of Napoleon's Army

This map drawn by Charles Joseph Minard portrays the losses suffered by Napoleon's army in the Russian campaign of 1812. Beginning at the left on the Polish-Russian border near the Niemen, the thick band shows the size of the army (422,000 men) as it invaded Russia. The width of the band indicates the size of the army at each position. In September, the army reached Moscow with 100,000 men. The path of Napoleon's retraet from Moscow in the bitterly cold winter is depicted by the dark lower band, which is tied to temperature and time scales. The remains of the Grande Armée struggled out of Russia with 10,000 men. Minard's graphic tells a rich, coherent story with its multivariate data, far more enlightening than just a single number bouncing along over time. Six variables are plotted: the size of the army, its location on a two-dimensional surface, direction of the army's movement, and temperature on various dates during the retreat from Moscow. It may well be the best statistical graphic ever drawn. Napoleon's March poster \$14 postpaid. English/French version \$18 postpaid.

Sanfrancisco crime map

Examples of data visualization

- Titanic Data Visualization

Alive vs plcass survived AII pclass 216 1 80 136 2 97 184 372 119 491 549 342 891

Alive-sex-plcass

Pclass vs age

Alive vs family size

Part 3

WHAT IS BIG DATA ANALYTICS

- ❖ Big Data analytics is a process used to extract meaningful insights
 - hidden patterns
 - unknown correlations
 - market trends
 - customer preferences
- Big Data analytics provides various advantages
 - It can be used for better decision making, preventing fraudulent activities, reduce cost among other things.

- ❖ Example of Big Data Analytics (The OWL Service)
 - Taxi at night is expensive and difficult to catch
 - Through a partnership with Korea Telecom, Seoul Government gained access to anonymized mobile communication data
 - 3 billion mobile call logs, 5 million taxy ride data

Example of Big Data Analytics (The OWL Service)

Big Data Analytics for Bus Route Optimization

3. Hexagon mapping

6. Dispatch timetable adjusted accordingly

Impact

After three months of operating two routes

- Covers 42% of Seoul residents
- 7,900 passengers per day
- 2.3 million less car trips per year
- \$13 million fare savings
- 500 metric tons reduction in greenhouse gas emission per year
- A service satisfaction score of 82 points (74.3 points for standard buses)

- Example of Big Data Analytics (POSCO)
 - POSCO is one of the largest hot rolling plant in the world
 - POSCO reduced energy input by 2% and save 1 billion won annually
 - Collecting and analyzing manufacturing environment data through sensors in factory
 - Maintaining the optimal working conditions through AI

- Example of Big Data Analytics (Netflix)
 - With 115 million subscribers, Netflix collect a huge amount of data
 - Ratings, watch history, searchers and others
 - Recommend the next movie you should watch or smart advertising

- Example of Big Data Analytics (Predpol)
 - Projection of areas where criminal activity is most likely
 - Reduced crime rates in Los Angeles, US

- Example of Big Data Analytics
 - Drug data reveal sneaky side effects

- ❖ Example of Big Data Analytics
 - Shoplifting detection using artificial intelligence (AI)

Questions?

SEE YOU NEXT TIME!