## ЛАБОРАТОРНАЯ РАБОТА 6.9.1

# ЗАКОН КЮРИ-ВЕЙССА И ОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ

**Цель работы:** Исследование температурной зависимости магнитной восприимчивости ферромангетика в парамагнитной области; оценка энергии обменного взаимодействия.

#### ТЕОРИЯ

Намагниченность связана с внешним магнитным полем

$$I = \varkappa H$$
.

Число электронов с двумя уровнями энергий согласно распределению Больцмана

$$\frac{N_{+}}{N_{-}} = \exp\left(-\frac{2\mu B}{k_{\rm B}T}\right) \simeq 1 - \frac{2\mu B}{k_{\rm B}T}.$$

Тогда, магнитный момент и восприимчивость

$$I = \mu \Delta N = N \frac{\mu^2}{k_{\rm B} T} H.$$

$$\varkappa = \frac{I}{H} = N \frac{\mu^2}{k_{\rm B}T} = N \frac{\mu_{\rm B}^2}{k_{\rm B}T}.$$

В более общем виде

$$\varkappa = \frac{Ng^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}T}.$$

Далее, для ферромагнетиков, можнно ввести некоторое эффективное магнитное поле.

$$H_{9\Phi\Phi} = \lambda I$$
,

Тогда,

$$I = N \frac{\mu^2 H}{k_{\rm B}(T-\Theta)}, \qquad \qquad \Theta = \frac{N \mu^2 \lambda}{k_{\rm B}} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}} \lambda$$

Таким образом

$$\varkappa = \frac{I}{H} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}(T-\Theta)} \propto \frac{1}{T-\Theta}$$

### ХОД РАБОТЫ

#### **УСТАНОВКА**



Рис. 1. Схема экспериментальной установки: 1 — капсула с образцом; 2 — катушка самоиндукции; 3 — медный цилиндр; 4 — пенопластовый корпус; 5 — шток; 6 — цанговый зажим; 7 — измерительный спай термопары; 8 — электронагреватель

Для образца, окруженного катушкой

$$L = \mu \frac{4\pi n^2 S}{l}, \quad L_0 = \frac{4\pi n^2 S}{l}, \qquad \qquad \frac{L - L_0}{L_0} = \mu - 1 = 4\pi \varkappa.$$

Учитывая выражение для частоты колебательного контура через емкость и индуктивность

$$\frac{f_0^2 - f^2}{f^2} = 4\pi\varkappa. \qquad \qquad \frac{1}{\varkappa} \propto \frac{f^2}{f_0^2 - f^2}.$$

| Nº | Thermocouple Voltage, mV | f, kHz | f0, kHz | T, °C | T Error, °C | Susceptibility | Susceptibility |
|----|--------------------------|--------|---------|-------|-------------|----------------|----------------|
|    | ± 0.01                   | ± 0.5  | ± 0.5   |       |             |                | Error          |
| 1  | 0.58                     | 807.9  | 868     | 9.8   | 0.7         | 6.5            | 0.1            |
| 2  | 0.50                     | 807.3  | 867     | 11.8  | 0.7         | 6.5            | 0.1            |
| 3  | 0.42                     | 807.5  | 868     | 13.8  | 0.8         | 6.4            | 0.1            |
| 4  | 0.36                     | 808.2  | 868     | 15.3  | 0.9         | 6.5            | 0.1            |
| 5  | 0.33                     | 808.4  | 868     | 16.0  | 1.0         | 6.5            | 0.1            |
| 6  | 0.29                     | 809.4  | 868     | 17.0  | 1.1         | 6.7            | 0.1            |
| 7  | 0.24                     | 811.3  | 868     | 18.3  | 1.3         | 6.9            | 0.1            |
| 8  | 0.20                     | 813.9  | 867     | 19.3  | 1.5         | 7.4            | 0.1            |
| 9  | 0.13                     | 828.4  | 868     | 21.0  | 2.1         | 10.2           | 0.3            |
| 10 | 0.06                     | 842.0  | 868     | 22.8  | 4.3         | 15.9           | 0.6            |
| 11 | -0.05                    | 853.0  | 869     | 25.5  | 5.6         | 26.4           | 1.7            |
| 12 | -0.08                    | 855.0  | 869     | 26.3  | 3.8         | 30.3           | 2.2            |
| 13 | -0.14                    | 859.0  | 869     | 27.8  | 2.5         | 42.7           | 4.3            |
| 14 | -0.18                    | 861.0  | 869     | 28.8  | 2.1         | 53.6           | 6.8            |
| 15 | -0.27                    | 863.3  | 869     | 31.0  | 1.6         | 75.5           | 13.3           |
| 16 | -0.35                    | 864.4  | 869     | 33.0  | 1.4         | 93.7           | 20.5           |
| 17 | -0.43                    | 865.2  | 869     | 35.0  | 1.3         | 113.6          | 30.0           |
| 18 | -0.50                    | 865.7  | 869     | 36.8  | 1.2         | 130.9          | 39.8           |
| 19 | -0.58                    | 866.3  | 869     | 38.8  | 1.2         | 160.2          | 59.5           |
| 20 | -0.66                    | 866.5  | 869     | 40.8  | 1.1         | 173.1          | 69.4           |
| 21 | -0.74                    | 866.9  | 869     | 42.8  | 1.1         | 206.2          | 98.4           |
| 22 | -0.83                    | 867.1  | 869     | 45.0  | 1.0         | 227.9          | 120.2          |
| 23 | -0.91                    | 867.4  | 869     | 47.0  | 1.0         | 270.8          | 169.6          |
| 24 | -0.98                    | 867.8  | 869     | 48.8  | 1.0         | 361.3          | 301.5          |

