

# اندازه گیری و کنترل کامپیوتری

تمرین چهارم دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف نیم سال دوم ۹۹-۰۰

استاد: **جناب آقای دکتر همتیار** نام و نام خانوادگی: **امیرمهدی نامجو - ۹۷۱۰۷۲۱۲** 



$$150^{\circ}C = (150 + 273.15)K = 423.15K$$

$$150^{\circ}C = (\frac{9}{5}150 + 32)^{\circ}F = 302^{\circ}F$$

#### سوال ٦

$$\frac{9}{5}350 + 32 = 550^{\circ}F$$
$$\frac{9}{5}550 + 32 = 1022^{\circ}F$$

## سوال ۹

برای تخمین خطی

$$\alpha_0 = \frac{1}{R(T_0)} \frac{R_2 - R_1}{T_2 - T_1} \alpha_0$$

در این جا

$$T_0 = 115^{\circ}C, T_1 = 100^{\circ}C, T_2 = 130^{\circ}C$$

$$R_0 = 589.48\Omega, R_1 = 573.40\Omega, R_2 = 605.52\Omega$$

$$\alpha_0 = \frac{1}{589.48} \frac{(605.52 - 573.40)}{130 - 100} = 0.0018 \frac{1}{^{\circ}C}$$

$$R(T) = 589.48[1 + 0.0018(T - 115)]$$

برای تخمین :Quadratic

$$R(T) = R(T_0)[1 + \alpha_1 \Delta T + \alpha_2 (\Delta T)^2]$$

مقادیر را برای  $C^{\circ}C$  و  $C^{\circ}C$  در نظر می گیریم و براساس آنها دو معادله دو مجهول تشکیل دهیم:

$$573.40 = 589.48[1 - 15\alpha_1 + 225\alpha_2]$$

$$605.52 = 589.48[1 + 15\alpha_1 + 225\alpha_2]$$



$$-15\alpha_1 + 225\alpha_2 = -0.027278$$
$$15\alpha_1 + 225\alpha_2 = 0.027278$$

$$\alpha_1 = 1.82 \times 10^3 \frac{1}{{}^{\circ}C}, \alpha_2 = -1.51 \times 10^{-7} (\frac{1}{{}^{\circ}C})^2$$

$$R(T) = 589.48[1 + 0.00182\Delta T + 1.51 \times 10^{-7}(\Delta T)^{2}]$$

:در مورد خطا برای نقطه  $05^{\circ}C$  بررسی می کنیم که مقدار مقاومت در آن  $578.77\Omega$  است

$$R_{Linear} = 589.48[1 + 0.0018(105 - 115)] = 578.87$$

که خطای 0.17 درصدی نسبت به مقدار واقعی دارد و از آن بیش تر است.

$$R_{Quadratic} = 589.48[1 + 0.00182(105 - 115) - 1.51 \times 10^{-7} \times (105 - 115)^2 = 578.74\Omega]$$

که خطای 0.005 درصدی دارد و به این میزان از عدد واقعی کمتر است.



برای این که اثر خودگرمایی را به  $0.1^{\circ}C$  برسانیم داریم:

$$P = P_D \delta T = (5mW/^{\circ}C)(0.1^{\circ}C) = 500\mu W$$

همچنین داریم:

$$I = \sqrt{P/R} = \sqrt{\frac{5 \times 10^{-4}}{3.5 \times 10^{3}}} = 378\mu A$$

$$I = V/R + R_{TH} \rightarrow 378 \times 10^{-6} = 10/(R + 3500) \rightarrow R = 22955\Omega \approx 23k\Omega$$

 $3.5-0.35=3.15k\Omega$  با توجه به این که گفته شده شیب خط -10%  $^{\circ}C$  است یعنی در 21 درجه گفته شده شیب خط -10% است. و در 19 درجه مقاومت  $3.85k\Omega$  =  $3.85k\Omega$  است. برای بدست آوردن ولتاژ تقسیم کننده داریم:

$$V_D = 10 \frac{R_{TH}}{23k\Omega + R_{TH}}$$

$$T = 20^{\circ}C \rightarrow V_D = 1.32V$$

$$T = 21^{\circ}C \rightarrow V_D = 1.20V$$

$$T = 19^{\circ}C \rightarrow V_D = 1.43V$$



جدول Type-S در شکل زیر آمده است (تصویر قابل زوم کردن است):



|       | able for       |                |                |                |                |                |        |                |                | tp://reoten    |       |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|-------|
| **    | 0              | - 1            | 2              | 3              | 4              | 5              | 6      | 7              | 8              | 9              | - 1   |
|       |                |                |                |                | ermoelec       |                |        |                |                |                |       |
| 800   |                | 7.356          | 7.357          | 7.376          | 7.386          | T.399          | 7.410  | 7.421          | 7.432          | 7.443          | 7.4   |
| 810   | 7.454          | 7.465          | 7.476          | 7.497          | 7.497          | 7.508          | 7.519  | 7.500          | 7.541          | 7.552          | 7.5   |
| 830   | 7.673          | 7.504          | 7.595          | 7.706          | 7.717          | 7.728          | 7.729  | 7.640          | 7.851          | 7.772          | 7.70  |
| 840   | 7.783          | 7.294          | 7.805          | 7.816          | 7.827          | 7.038          | 7.049  | 7.860          | 7.871          | 7.892          | 7.00  |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 850   | 7.093          | 7.904          | 7.915          | 7.926          | 7.907          | 7.948          | 7,959  | 7.970          | 7.991          | 7.992          | 8.0   |
| 860   | 8.003<br>6.114 | 8.014<br>8.125 | 8.026<br>8.137 | 8.037          | 8.048          | 8.059          | 8.070  | 8.081<br>8.192 | 8.092<br>A 203 | 8.103          | 8.1   |
| 880   | 8.114<br>8.226 | 6.125<br>6.997 | 8.337<br>8.360 | 8.140<br>8.250 | 8.109<br>8.278 | 6.170          | 6.161  | 6.192          | 8.205<br>8.305 | 8.214          | 8.2   |
| 890   | 8.337          | 8.348          | 8.360          | 8.371          | 8.382          | 8.393          | 8.404  | 8.416          | 8.427          | 8.438          | 8.4   |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 900   | 8.449          | 8.460<br>8.523 | 8.472<br>8.504 | 8.493          | 8.494          | 0.505<br>0.515 | 8.517  | 8.520<br>8.540 | 8.539<br>8.652 | 8.550<br>8.663 | 8.5   |
| 910   | 8.562          | 8.573          | 8.584          | 8.595          | 8.607          | 0.618          | 6.629  | 8.640          | 8.652<br>8.765 | 8.663<br>8.776 | 8.6   |
| 930   | 8.797          | 8.798          | 8.810          | 8.821          | 8.832          | 8.844          | 8.855  | 8.866          | 8.878          | 8.800          | 8.9   |
| 940   | 8.900          | 8.912          | 8.923          | 8.935          | 8.946          | 8.967          | 8.969  | 8.560          | 5.991          | 2.003          | 9.0   |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 950   | 9.014          | 9.025          | 9:037          | 9.048          | 9.060          | 9.071          | 9.082  | 9.094          | 9.105          | 9.117          | 9.10  |
| 970   | 9.120          | 9.133          | 9.101          | 9.777          | 9.114          | 9.100          | 9.137  | 9.323          | 9.334          | 9.201          | 9.2   |
| 980   | 9.357          | 9.365          | 2.350          | 2.221          | 2.403          | 9.414          | 9.425  | 9.437          | 2.440          | 2.450          | 2.4   |
| 990   | 9.472          | 9.483          | 9.495          | 9,500          | 9.510          | 9.529          | 9.541  | 9.552          | 9.564          | 2.576          | 9.5   |
|       | 9.587          |                |                |                |                |                |        |                |                | 9.691          |       |
| 1000  | 9.587          | 9.599          | 9.610          | 9.622          | 9,633          | 9.645          | 9.656  | 9.668          | 9,680          | 9.691          | 9.71  |
| 1020  | 9.703          | 9.830          | 9.842          | 9.853          | 9.749          | 9.877          | 9.888  | 9.500          | 9.911          | 9.923          | 9.0   |
| 1030  | 9.935          | 9.545          | 9.950          | 9.970          | 9.901          | 9.993          | 10.005 | 10.016         | 10.020         | 12.040         | 10.00 |
| 1040  | 10.051         | 10.063         | 10.075         | 12.056         | 10.056         | 10.110         | 10.121 | 10.133         | 12.145         | 10.156         | 10.16 |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 1050  | 10.168         | 10.180         | 10.191         | 10.203         | 10.215         | 10.227         | 10.238 | 10.250         | 10.262         | 10.273         | 10.2  |
| 1070  | 10.285         | 10.297         | 10.309         | 12.436         | 10.332         | 10.344         | 10.356 | 10.567         | 10.379         | 10.391         | 10.4  |
| 1080  |                | 10.532         | 10.544         | 12,556         | 10.567         | 10.579         | 10.591 | 10.603         | 10.615         | 12.509         | 10.6  |
| 1090  |                | 10.650         | 10.662         | 12.574         | 10.686         | 10.697         | 10,709 | 10.721         | 10.733         | 10.746         | 10.7  |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 1100  |                | 10.755         | 10.750         | 10.792         | 10.804         | 10.816         | 10.835 | 10.839         | 10.851         | 12.863         | 10.8  |
| 1110  |                | 10.887         | 10.899         | 11.029         | 10.922         | 10.934         | 10.945 | 10.955         | 10.970         | 11.101         | 10.9  |
| 1120  |                | 11.125         | 11.136         | 11.029         | 11.160         | 11.172         | 11,154 | 11.196         | 11,009         | 11,101         | 11,1  |
| 1140  |                | 11.244         | 11.256         | 11.268         | 11,280         | 11.291         | 11.303 | 11.315         | 11.327         | 11.339         | 11.3  |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 1150  | 11.351         | 11.363         | 11.375         | 11.307         | 11.009         | 11.411         | 11.423 | 11.435         | 11.447         | 11.459         | 11.4  |
| 1160  | 11,471         | 11.483         | 11.495         | 11.507         | 11.619         | 11.650         | 11.642 | 11.554         | 11.566         | 11.578         | 11.5  |
| 1180  | 11,790         | 11.722         | 11,734         | 11.746         | 11,756         | 11,770         | 11,782 | 11.794         | 11.896         | 11.010         | 11.0  |
| 1190  |                | 11.842         | 11.854         | 11.866         | 11.878         | 11,890         | 11.902 | 11.934         | 11.926         | 11.939         | 11.90 |
|       |                |                |                |                |                |                |        |                |                |                |       |
| 1200  |                | 11.963         | 11.975         | 11.987         | 11.999         | 12.011         | 12.023 | 12.035         | 12.047         | 12.059         | 12.0  |
| 1210  |                | 12.083         | 12.095         | 12.107         | 12.119         | 12.131         | 12.143 | 12.155         | 12.167         | 12.179         | 12.11 |
| 1220  | 12.191         | 12.203         | 12.216         | 12.226         | 12.240         | 12.252         | 12.264 | 12.276         | 12.255         | 12.300         | 12.5  |
| 1240  | 12.812         | 12.324         | 12.336         | 12.348         | 12.960         | 12.372         | 12.384 | 12.397         | 12,409         | 12.421         | 12.4  |
| 12.00 |                | 12.443         | 2              | 3              | 4              | 5              | 6      | 7              | 8              | 9              | 14.5  |

با توجه به رفرنس داده شده، باید تصحیح مربوط به آن را اعمال کنیم. برای 21 درجه رفرنس 0.119mV است. البته از طریق درون یابی روی نمودار هم میتوان به این عدد رسید. پس در اصل ولتاژ را باید

$$V_c = 12.120 + 0.119 = 12.239 mV$$

در نظر بگیریم. این عدد بین 1223 و 1224 در نمودار است. برای تعیین مقدار دقیق آن داریم:

$$T(12.239mV) = 1223 + \frac{1224 - 1223}{12.240 - 12.228}(12.239 - 12.228) = 1223.917 \approx 1223.92^{\circ}C$$



جدول ترموکوپل نوع K در شکل زیر آمده است (تصویر قابل زوم کردن است):

|            | UMENT                                                          | 3              |        |        |         |                |                |        |        |        |        |
|------------|----------------------------------------------------------------|----------------|--------|--------|---------|----------------|----------------|--------|--------|--------|--------|
| ITS-90 Tab | 0 Table for Type K Thermocouple (Ref Junction 0°C) http://www. |                |        |        |         |                |                |        |        |        | emp.co |
| °C         | 6                                                              | - 1            | 2      | 3      | 4       | 5              | 6              | 7      |        |        | 10     |
|            |                                                                |                |        | The    | rmoulec | tric Velt      | ege in m       | W      |        |        |        |
|            |                                                                |                |        |        |         |                |                |        |        |        |        |
| 10         | 0.000                                                          | 0.000          | 0.679  | 0.119  | 0.158   | 0.198          | 0.350          | 9,577  | 0.317  | 0.357  | 0.29   |
| 70         | 0.208                                                          | 0.635          | 0.673  | 0.117  | 0.960   | 1.000          | 1.541          | 1.000  | 1.122  | 1.153  | 1.20   |
| 30         | 1.300                                                          | 1,344          | 1,395  | 1.329  | 1.266   | 1.400          | 1.449          | 1.409  | 1.590  | 1.571  | 1.61   |
| 40         | 1.612                                                          | 1.653          | 1.004  | 1.735  | 1.735   | 5,817          | 1.858          | 1.899  | 1,541  | 1.562  | 2.62   |
| 50         | 2.523                                                          | 2.066          | 2.106  | 2.167  | 2.105   | 2 230          | 2211           | 2.312  | 2.356  | 2.399  | 2.43   |
| 60         | 2.436                                                          | 2.475          | 2.519  | 2.961  | 2,602   | 2.644          | 2.685          | 2.727  | 2.768  | 2.813  | 2.85   |
| 70         | 2,800                                                          | 2,890          | 2.854  | 2.875  | 3,817   | 3,500          | 3,100          | 3.142  | 3,184  | 3.229  | 3.26   |
| 80         | 0.267                                                          | 0.306          | 0.350  | 3.391  | 0.430   | 0.434          | 3.595          | 0.567  | 5.599  | 0.640  | 0.66   |
| 90         | 3.602                                                          | 3.723          | 3.765  | 3.806  | 3.848   | 3.809          | 3,951          | 3.512  | 4.813  | 4.855  | 4.09   |
| 100        | 4.096                                                          | 4.150          | 4.09   | 4,229  | 4,362   | 4.300          | 4,344          | 4.305  | 4.427  | 4.458  | 4.50   |
| 110        | 4.109                                                          | 4.800          | 4,000  | 4,633  | 4.676   | 4.713          | 4,736          | 4.797  | 4.838  | 4.879  | 4.52   |
| 120        | 4.529                                                          | 4.961          | 5.002  | 5.643  | 5.864   | 5.124          | 5.955          | 5.206  | 5.347  | 5.366  | 5.82   |
| 130        | 5.329                                                          | 5.309          | 5.410  | 5.450  | 5.691   | 5.532<br>5.532 | 5.572<br>5.577 | 5.613  | 5.650  | 5.894  | 5.73   |
| 140        | 9,709                                                          | 0.775          | 3.413  | 5.800  | 3.000   | 5.50           | 5.517          | 5.417  | 5.000  | 5.496  | 5.15   |
| 150        | 6.138                                                          | 6.179          | 6.219  | 6.209  | 6.299   | 6.339          | 6.380          | 5.420  | 5.450  | 6.500  | 5.54   |
| 150        | 5.540                                                          | 5.500          | 5.629  | 5.660  | 6.706   | 6.741          | 6.786          | 6.821  | 6.861  | 6.901  | 5.54   |
| 170        | 6.541<br>7.543                                                 | 6.561<br>7.500 | 7.691  | 7.000  | 7.100   | 7.163          | 7.190          | 7 519  | 7 500  | 7.500  | 7.56   |
| 190        | 7.739                                                          | 7.779          | 7.819  | 7.850  | 7.899   | 7.540          | 7.579          | 2.513  | 8.000  | 8,099  | 8.13   |
|            |                                                                |                |        |        |         |                |                |        |        |        |        |
| 200        | 0.150                                                          | 0.179          | 0.219  | 8,358  | 0.250   | 0.330          | 0.379          | 0.410  | 0.458  | 0.499  | 8.50   |
| 210        | 8.529                                                          | 8,579          | 0.619  | 8.659  | 8.699   | 8.739          | 8,779          | 0.819  | 8.860  | 8.500  | 8.50   |
| 220<br>230 | 9.343                                                          | 9.500          | 9.629  | 9.861  | 9.101   | 9.545          | 9.101          | 9.322  | 9.869  | 9.302  | 9.34   |
| 240        | 9.247                                                          | 9.755          | 9.825  | 3.853  | 9.509   | 2.500          | 9.900          | 13.550 | 13.617 | 19.113 | 13.15  |
|            |                                                                |                |        |        |         |                |                |        |        |        |        |
| 250        | 19,153                                                         | 13,194         | 19,255 | 10.215 | 10.315  | 19,357         | 10.396         | 13,433 | 19,450 | 13,129 | 13,66  |
| 250<br>270 | 10.566                                                         | 10.602         | 13.643 | 10.664 | 10.725  | 10.766         | 10.807         | 10.540 | 10.800 | 10.500 | 10.57  |
| 280        | 11.362                                                         | 11.612         | 11,655 | 11.006 | 11.135  | 11.500         | 11.630         | 11.000 | 11.300 | 11.341 | 11.30  |
| 290        | 11,796                                                         | 11.836         | 11,877 | 11,513 | 11.960  | 12,800         | 12.643         | 12.066 | 12.126 | 12.167 | 12.30  |
| 300        |                                                                |                |        |        |         |                |                |        |        |        |        |
| 300<br>310 | 12,309                                                         | 12,350         | 12,391 | 12.555 | 12.374  | 12.415         | 12.457         | 12.499 | 12.540 | 12.502 | 12.62  |
| 320        | 13.543                                                         | 13.000         | 13 123 | 13 155 | 13.206  | 13.245         | 13.290         | 13.376 | 13.333 | 13.415 | 13.45  |
| 330        | 13.417                                                         | 13.498         | 13.542 | 13.582 | 13.626  | 13.665         | 13.707         | 13.749 | 13,790 | 13.833 | 13.88  |
| 340        | 13,874                                                         | 13,515         | 13.958 | 14,000 | 14,642  | 14,854         | 14,125         | 14,957 | 14,209 | 14,255 | 14.29  |
| 160        | 16.290                                                         | 16.330         | 14 777 | 14.419 | 14.401  | 14 500         | 16.040         | 14 107 | 10.000 | wen    | 14.71  |
| 350        | 14.713                                                         | 14.755         | 14.792 | 14.629 | 14,801  | 14.500         | 14.965         | 15.007 | 15.649 | 15.891 | 15.13  |
| 370        | 15.133                                                         | 13,173         | 19.217 | 15.209 | 15.301  | 15.343         | 15.385         | 13.427 | 13,409 | 19,211 | 13.35  |
| 380        | 15.554                                                         | 15.996         | 15,638 | 15.680 | 15,722  | 15.764         | 15.806         | 15,849 | 15,891 | 15.550 | 15.57  |
| 390        | 15.515                                                         | 16.617         | 16.000 | 16.102 | 15.144  | 15.106         | 16.229         | 16.272 | 16.313 | 16.355 | 16.29  |
| 400        | 15.207                                                         | 15.429         | 15.402 | 15.524 | 15.565  | 15.600         | 16.651         | 15.690 | 16,735 | 16,779 | 15.00  |
| 410        | 16.820                                                         | 15.852         | 15.900 | 15.567 | 15,569  | 17.630         | TEATE          | 17.116 | 17,118 | 17.200 | 17.24  |
| 420        | 17.343                                                         | 17.265         | 17,829 | 17.879 | 17.413  | 17.455         | 17,497         | 17.540 | 17.562 | 17.624 | 17.66  |
| 430        | 17.667                                                         | 17.709         | 17.752 | 17.794 | 17.607  | 17.679         | 17.521         | 17.964 | 19.006 | 19.549 | 18.09  |
| 440        | 13,001                                                         | 15.154         | 18,175 | 15.215 | 19.261  | 15.300         | 15.345         | 19.309 | 19,431 | 15,473 | 15.50  |
|            |                                                                |                |        |        |         |                |                |        |        |        |        |
| 10         | 0                                                              | - 1            | 2      | 3      | 4       | - 6            | - 6            | 7      |        |        | 11     |

|            | UMENT                                                                       | 8      |                  |        |         |                  |          |        |        |        |        |
|------------|-----------------------------------------------------------------------------|--------|------------------|--------|---------|------------------|----------|--------|--------|--------|--------|
| TS-90 Tab  | 8-90 Table for Type K Thermocouple (Ref Junction 0°C) http://www.mccomp.com |        |                  |        |         |                  |          |        |        |        |        |
| °C         | 6                                                                           | - 1    | 2                | 3      | 4       | 5                | 6        | 7      |        |        | 10     |
|            |                                                                             |        |                  | The    | rmoviec | tric Velt        | ege in m | W      |        |        |        |
| 450        | 19,516                                                                      | 19.559 | 18.601           | 13.643 | 19.606  | 19.729           | 19.771   | 19.512 | 19.856 | 18,650 | 18.541 |
| 450        | 18.541                                                                      | 18.500 | 19,000           | 19.043 | 19.111  | 19.154           | 19.771   | 19.239 | 19.201 | 19.324 | 19.541 |
| 470        | 13.365                                                                      | 13,400 | 13.455           | 13.436 | 13.527  | 13.573           | 13.622   | 13.954 | 19.207 | 19.750 | 19.700 |
| 400        | 19,792                                                                      | 13.835 | 19,677           | 19.500 | 19.962  | 29,805           | 22,543   | 22,090 | 22 122 | 29.175 | 29 110 |
| 400        | 29.715                                                                      | 99.368 | 29 300           | 29.345 | 29.309  | 22.435           | 22.414   | 20.000 | 29 509 | 20,112 | 20.54  |
|            |                                                                             |        |                  |        |         |                  |          |        |        |        |        |
| 500        | 29.644                                                                      | 29.687 | 29,730           | 29,772 | 29,815  | 29.807           | 29,900   | 29.543 | 29,965 | 21,529 | 21,611 |
| 610        | 21.671                                                                      | 21.113 | 21.155           | 21.199 | 21.341  | 21.254           | 21.325   | 21.303 | 21.412 | 21.454 | 21.49  |
| \$20       | 21,497                                                                      | 21,840 | 21,882           | 21,625 | 21,668  | 21,713           | 21,753   | 21,796 |        | 21,881 | 21,529 |
| 540        | 21.504                                                                      | 21.966 | 22.009           | 22.052 | 22.094  | 22.557           | 22.179   | 22.222 | 22.365 | 22.807 | 22.850 |
| 540        | 22.550                                                                      | 22.390 | 22.435           | 22.471 | 22.521  | 22.563           | 22.606   | 22.649 | 22.691 | 22,734 | 22.779 |
| 650        | 22.775                                                                      | 22.819 | 22,662           | 22,904 | 22.547  | 22,990           | 29.852   | 29.875 | 29.117 | 29,190 | 29,300 |
| 560        | 29.200                                                                      | 29.245 | 29,268           | 29.881 | 29.373  | 23,415           | 23,458   | 23,801 | 23.844 | 23,886 | 23,625 |
| 870        | 23.629                                                                      | 29.671 | 29.714           | 29,757 | 29.799  | 29.842           | 23,864   | 29.507 | 29.579 | 24.812 | 24,055 |
| 500        | 24.855                                                                      | 24.897 | 21.112           | 21.192 | 21.225  | 21207            | 21.313   | 21.353 | 21.395 | 21.438 | 21.490 |
| \$90       | 24,410                                                                      | 24,629 | 24,665           | 24,608 | 24,600  | 24,690           | 24,735   | 24,719 | 24,820 | 24,863 | 24,900 |
| 600        | 24.905                                                                      | 24.648 | 24,990           | 20.502 | 25.653  | 25 115           | 25 952   | 29.209 | 25.245 | 25.255 | 20.13  |
| 610        | 25,330                                                                      | 25.173 | 25,415           | 25.458 | 25.500  | 25.543           | 25.585   | 25.627 | 25,670 | 25.712 | 25,755 |
| 620        | 25.755                                                                      | 25.797 | 25.642           | 25.892 | 25.524  | 25.967           | 29.009   | 29.002 | 29.096 | 26.136 | 26.175 |
| 630        | 25.179                                                                      | 25.221 | 25.263           | 25,306 | 25,548  | 25.390           | 25.433   | 25.475 | 25.517 | 25,560 | 25.60  |
| 640        | 29.602                                                                      | 25.666 | 25.607           | 29.729 | 29.771  | 25.814           | 29.856   | 25.898 | 29.540 | 29.992 | 27.625 |
|            |                                                                             |        |                  |        |         |                  |          |        |        |        |        |
| 650        | 27.895                                                                      | 27.867 | 27,109           | 27.152 | 27.194  | 27.256           | 27.279   | 27.320 | 27.503 | 27.405 | 27.44  |
| 660        | 27.447                                                                      | 27,489 | 27,531           | 27.574 | 27.616  | 27.658           | 27,700   | 27.742 | 27.784 | 27.826 | 27,800 |
| 670        | 27.800                                                                      | 27.511 | 27.953           | 27.995 | 29.007  | 29.879           | 29.121   | 29.903 | 29.205 | 29.347 | 29.300 |
| 600        | 29.209                                                                      | 29.332 | 29.774           | 29.416 | 29.458  |                  | 29.542   | 29.566 | 29.626 | 29.668 | 28,710 |
| 690        | 29.710                                                                      | 29.742 | 29.794           | 29,636 | 29.877  | 25,519           | 28,961   | 29,000 | 29.845 | 29,062 | 29,125 |
| 700        | 29.129                                                                      | 29.171 | 29.213           | 29.355 | 29.297  | 29.338           | 29.383   | 29.422 | 29.454 | 29.506 | 29,548 |
| 710        | 29.548                                                                      | 29,509 | 29.605           | 29.673 | 29.715  | 29.757           | 29.798   | 29.840 | 29.802 | 29.524 | 29.965 |
| 720        | 29.965                                                                      | 30.007 | 30.049           | 30.090 | 30.132  | 30.176           | 30.216   | 30.207 | 30.299 | 30.341 | 39.380 |
| 730        | 39.362                                                                      | 30.424 | 33,455           | 30.507 | 30.549  | 30,190           | 30,632   | 33.CT4 | 30.715 | 30.757 | 39,796 |
| 740        | 30,798                                                                      | 30.840 | 30.861           | 30.123 | 30.964  | 31,806           | 31.847   | 31,009 | 31.130 | 35.172 | 31,313 |
| 250        | 51,213                                                                      | 51,355 | 01,296           | 01,300 | 51,379  | 51.421           | 51.402   | 51,504 | 51.545 | 21,506 | 21.625 |
| 760        | 21.628                                                                      | 21.603 | 21,712           | 31.732 | 21.790  | 21.836           | 21.875   | 20.917 | 21,908 | 32,000 | 32.661 |
| 770        | 32.641                                                                      | 32,862 | 82,124           | 32,955 | 82,306  | 32.347           | 32,389   | 82,889 | 52.871 | 32,412 | 82,450 |
| 780        | 32,410                                                                      | 32,496 | 32,536           | 32.577 | 32.618  | 32,659           | 32,700   | 32,742 | 32,783 | 32,824 | 32,860 |
| 790        | 32,865                                                                      | 32,906 | 32,547           | 32,568 | 33.629  | 33,019           | 33.111   | 33.952 | 33.199 | 33.254 | 33.27  |
| 800        | 33.213                                                                      | 33.216 | 33.307           | 33.316 | 33.439  | 33.410           | 33.321   | 33.962 | 33.600 | 33.666 | 33.600 |
| 810        | 23,665                                                                      | 59.726 | 20.767           | 22,808 | 22,543  | 22,809           | 20,520   | 20.571 | 54.612 | 54.850 | 24.890 |
| 820        | 34.090                                                                      | 36.136 | 36 113           | 36.216 | 36.207  | 26.700           | 36.338   | 36.279 | 36.420 | 36.693 | 74 500 |
| 830        | 34.901                                                                      | 74 542 | 34 592           | 34.623 | 74.054  | 34 204           | 34.745   | 34.205 | 24 825 | 74.867 | 24 900 |
| 840        | 54.900                                                                      | 54.548 | 54.509           | 55.629 | 35.672  | 55.113           | 35.151   | 55.192 | 55,232 | 25,272 | 25.31  |
|            |                                                                             |        |                  |        |         |                  |          |        |        |        |        |
| 850        | 55.313                                                                      | 55.354 | 55.294           | 35.435 | 35.475  | 35.516           | 35.556   | 35.396 | 55.607 | 35.677 | 55.710 |
| 860<br>870 | 35,718                                                                      | 35,758 | 35,798           | 35.839 | 35.879  | 35.820<br>56.829 | 35.960   | 35.000 | 36.641 | 36.881 | 36 121 |
| 870        | 36.121<br>36.524                                                            | 36.964 | 36.502<br>36.604 | 36,544 | 36.865  | 36,725           | 36.363   | 36,805 | 36,845 | 36,895 | 26.525 |
| 890        | 36,525                                                                      | 36,965 | 37,006           | 37.645 | 37.006  | 37.125           | 37,166   | 37,306 | 37.345 | 37.396 | 07.825 |
|            |                                                                             |        |                  |        |         |                  |          |        |        |        |        |
| 70         | 0                                                                           | - 1    | 2                | - 2    | 4       | 5                | 6        | 7      |        | 9      | - 1    |

$$70^{\circ}F = \frac{5}{9}(70 - 32) = 21.1^{\circ}C$$

70 درجه فارنهایت برابر حدودا 21 درجه سلسیوس است. برای 21 درجه رفرنس 0.838 میلیولت است. مقدار مربوط به 700 درجه هم 29.129 میلیولت است. در نتیجه ولتاژی که در این جا داریم:

$$29.129 - 0.838 = 28.291 mV$$

است. برای تولید ولتاژ 1.5V داریم:

1.5V/28.291mV = 53.0204

یعنی حدودا 53 یا 54 ترموکوپل به صورت سری نیاز داریم.



داريم:

$$70^{\circ}F = \frac{5}{9}(70 - 32) = 21.1^{\circ}C$$

$$200^{\circ}F = \frac{5}{9}(200 - 32) = 93.3^{\circ}C$$



FIGURE 15 Vapor-pressure curve for methyl chloride.

با توجه به شکل 15 کتاب در صفحه 222 مقدار نظیر برای 70 درجه فارنهایت حدود 60psi و برای 200 درجه فارنهایت حدودا مقداری بیش تر از 410psi یعنی 410psi است. باید توجه کرد که در شکل مقدار مربوط به 200 در نمودار قرار نگرفته است و در نتیجه با توجه به نزدیکی نقطه آخر نمودار به 400 میتوان متوجه این شد که احتمالا باید در حدود 410psi برای 200 فارنهایت معادل 93.3 درجه سلسیوس داشته باشیم.



برای ترموکوپل نوع k داریم:

$$200^{\circ}C \rightarrow 8.13mV$$

$$350^{\circ}C \rightarrow 14.29mV$$

همچنین رفرنس ADC که داریم 2.5 ولت است. ولتاژ گذار از FF به ADC به صورت

$$V_{ADC} = \frac{255}{256}V_{ref} = 2.5 - 2.5/256 = 2.49V$$

است. در نتیجه باید 8.13mv نظیر به 0 و 14.29mV نظیر به 8.13mv بشود.

$$0 = 0.00813m + V_0$$

$$2.49 = 0.01429m + V_0$$

در نتیجه

$$m = 404.2, V_0 = -3.286V = (404.2)(-0.00813)$$

شکل نهایی مدار مورد نظر بدین صورت است:



خروجی این مدار وارد ADC می شود.



با توجه به صورت سوال و اعداد گفته شده برای ADC یعنی هر بیت باید معادل با  $^{\circ}F$  باشد. باید محدوده خودگرمایی را حدود  $0.1^{\circ}F$  این مقدار نگه داریم.  $^{\circ}F$  برابر  $0.056^{\circ}C$  است. پس باید

$$P < P_D \delta T = (0.056)(0.005) = 0.28 mW$$

باشد. داریم:

$$I = sqrtP/R = \sqrt{0.000028/5000} = 240\mu A$$

یعین جریان نباید از این مقدار بیش تر بشود. از سوی دیگر برای ADC داریم:

$$90^{\circ}F: V_L = 5\frac{90}{256} = 1.758V$$

$$110^{\circ}F: V_H = 5\frac{110}{256} = 2.148V$$

همچنین باید مقاومت را در  $110^{\circ}F$  تعیین کنیم که داریم:

$$R_{110^{\circ}F} = 5000 - (8\Omega/^{\circ}C)(110^{\circ}F - 90^{\circ}F)(5/9) = 4911\Omega$$

از آن جایی که جریان باید کمتر از 240 میکرو آمپر باشد، ترمیستور را در شاخه فیدبک منفی یک آپامپ قرار داده و به کمک مرجع -15V ای جریان 100 میکرو آمپری ایجاد میکنیم که مقدار جریان از عدد گفته شده بالاتر نرود.

ر با توجه به این شرایط باید ولتاژ جلوی آپ آمپ که در شکل با  $V_a$  نمایش داده شده را بدست آوریم:

$$90^{\circ}F: V_a = -(5000\Omega) \times (-100\mu A) = 0.500V$$

$$110^{\circ}F: V_a = -(4911\Omega) \times (-100\mu A) = 0.4911$$

در نتیجه با توجه به ولتاژ هایی که برای ADC بدست آوردیم داریم:

$$1.758 = m(0.5000) + V_0$$

$$2.148 = m(0.4911) + V_0$$

با حل دستگاه داریم:

$$m = -43.82, V_0 = 23.67$$

یعنی معادله نهایی:

$$43.82(0.5401 - V_s)$$

است. در نتیجه مدار زیر را تشکیل می دهیم:







ADC بازه بین 50 تا 100 درجه با وضوح 0.1 معادل 500 واحد است. در نتیجه نیاز به حداقل 9 بیت در داريم و از آن جايي كه 9 بيت عدد رايجي براي ADC ها نيست، از ADC تك قطبي 10 بيتي استفاده می کنیم. ولتاژ رفرنس را هم 5V می گیریم. باید ابتدا مقاومتهای مربوطه را بدست آوریم:

$$R_{50^{\circ}C} = 306.5[1 + 0.0041(50 - 20)] = 344.2\Omega$$

$$R_{100^{\circ}C} = 306.5[1 + 0.0041(100 - 20)] = 407.0\Omega$$

برای این سوال از یک Bridge استفاده می کنیم. مدار های دیگر هم قابل استفاده هستند. باید اثر خودگرمایی را کمتر از  $0.01^{\circ}C$  نگه داریم که از وضوح  $0.1^{\circ}C$  مطمئن باشیم.

$$P_M ax = (0.030)(0.01) = 0.3mW$$

$$P = V^2/R \rightarrow V = \sqrt{PR} = \sqrt{0.3 \times 344.2} = 0.3V$$

RTD بنابراین باید در دمای 50 درجه ولتاژ دو سر RTD برابر 0.3 ولت باشد و در این حالت پل را کنیم. RTD را به عنوان  $R_3$  قرار می دهیم و  $R_4=1$  می گیریم. در این صورت:

$$R_1 = \frac{5 - 0.3}{(0.3 - 0)/344.2} = 5393\Omega$$

$$R_2 = \frac{5 - 0.3}{(0.3 - 0)/1000} = 15.7k\Omega$$

0.3 با توجه به این موارد بایید توجه کنیم که در  $100^{\circ}C$  ولتاژ سر سمت راست پل در شکل همان خواهد بود ولی ولتاژ سر سمت چپ  $5\frac{407}{407+5393}=0.3509$  خواهد بود ولی ولتاژ سر سمت چپ

$$\Delta V = 0.3509 - 0.3 - 0.0509V$$

تقویت کننده با بهره 98.13 98.19 استفاده کنیم. در نهایت معادله کلی به صورت =

$$V_{out} = 98.13(5\frac{R}{R + 5393} - 0.3)$$

خواهد بود که  $V_{out}$  خروجی مدار شکل زیر و ورودی  $V_{out}$  خواهد بود.



