Research project meeting summary: Trajectory Module for Launcher MDAO

Jorge L. Valderrama ¹
Dr. Annafederica Urbano ² Dr. Mathieu Balesdent ³ Dr. Loïc Brevault ⁴

¹ISAE-SUPAERO, MSc. in Aerospace Engineering ²ISAE-SUPAERO, DCAS ³ONERA, DTIS ⁴ONERA, DTIS

May 11, 2020

Plan:

Review of previous work

- 2 Key points discussed
- Future actions

Review of previous work

Implementation of thrust model as a function of atmospheric pressure. Successful convergence to feasible solution.

Review of previous work

First steps in Dymos

- Started to code in Dymos based on the example available of the SSTO. I am using the 2D EoM for a rotating planet.
- Problems with installation of PyOptSparse. Thus, I am trying to run on ScipyOptimize as in the code shared by Dr. Brevault.

Key points discussed

- It is fine to run on use SciPy Optimize as optimization package.
- Events that define the termination of a phase can be triggered with option "fix-final = True" instead of constraints.
- It is better to start using the 2D EoM for a non Rotating planet as the first steps in Dymos are difficult.
- The atmospheric model can be the simple exponential one for now and gravity constant to simplify the process at the beginning.
- Bounds for state variables are defined in the initial guess.
- Try to run and test the code after every implementation of a new phase to check everything is going right.

Future actions

Continue to work in Dymos based on the code shared by Dr.
 Brevault and the examples available in Dymos. Keep in mind that model should be refined gradually starting from a simple one.