Lois de l'induction et induction de Neumann

Son	nmaire		
I Le phénomène d'induction			
-	3		
, <u> </u>	4		
,	4		
I/D Loi de modération de Lenz			
II Phénomène d'autoinduction			
II/A Champs propre et extérieur			
II/B Auto-inductance			
II/C Circuits électriques équivalents			
III Induction mutuelle			
III/A Principe de l'inductance mutuelle			
III/B Bobines imbriquées			
$\label{eq:inductance} {\rm III/C\ Circuits\ \'electriques\ coupl\'es\ par\ inductance\ mutuelle} \qquad \qquad 11$			
IV Applications			
IV/A Quelques exemples			
IV/B Transformateur			
% Capacités exigibles			
	_		
Évaluer le flux d'un champ magnétique uni- forme à travers une surface s'appuyant sur un contour fermé orienté plan.	Réaliser un bilan de puissance et d'énergie dans un système siège d'un phénomène d'auto-induction en s'appuyant sur un schéma électrique équivalent.		
 Utiliser la loi de Lenz pour prédire ou interpréter les phénomènes physiques observés. Utiliser la loi de Faraday en précisant les 	Déterminer l'inductance mutuelle entre deux bobines de même axe de grande longueur en « influence totale »		
conventions d'algébrisation Différencier le flux propre des flux extérieurs. Utiliser la loi de modération de Lenz. Évaluer et citer l'ordre de grandeur de l'inductance propre d'une bobine de grande longueur.	Citer des applications dans le domaine de l'industrie ou de la vie courante.		
	 Établir le système d'équations en régime sinusoïdal forcé en s'appuyant sur des schémas électriques équivalents. □ Réaliser un bilan de puissance et d'énergie. 		
	1 Steember an Shan de Panssance et a chergie.		

	✓ L'essentiel	
☐ Loi de FARADAY	4 7 Calculs sin 9 LENZ et F 14 Inductance	Applications mples de flux 4 CARADAY circuit carré 6 e propre d'une bobine 7 etromotrices induites 9
☐ Loi des tensions	Loi de mo Relation co bine Méthode c	Points importants dération de Lenz 5 burant-tension d'une bo- e
☐ Loi de modération de LENZ		ateur

I | Le phénomène d'induction

I/A

Observations expérimentales

Soit un solénoï de (bobine longue) non alimenté, relié à un ampèremètre mesurant le courant qui le traverse. On étudie sa réaction à un champ magnétique dans deux situations 1 :

Expérience 3.1 : Bobine dans des champs magnétiques

Champ magnétique constant

Les lignes de champ d'un aimant vont de sont Nord vers son Sud. Un champ magnétique règne donc dans le solénoïde. On n'observe cependant aucun courant dans le solénoïde.

Champ magnétique variable

On déplace l'aimant à proximité de la bobine. On constate qu'**un courant apparaît** dans la bobine, malgré l'absence de générateur.

Observation 3.1 : Bobine et champs magnétiques

En étudiant le sens du courant induit, on observe que le sens de déplacement de l'aimant et du courant sont liés :

- ♦ Sans mouvement relatif, pas de courant
- \diamond Si on approche l'aimant ou le circuit, i > 0
- \diamond Si on éloigne l'aimant ou le circuit, i < 0
- ♦ Si on retourne l'aimant, le courant est opposé
- ♦ Plus le mouvement est rapide, plus le courant généré est grand

♥ Définition 3.1 : Induction électromagnétique

Le phénomène d'induction électromagnétique est l'apparition d'une **tension** électrique (et donc à un **courant** si le circuit est fermé) dans un circuit soumis à un champ magnétique dans deux cas de figure :

- 1) Lorsque le circuit est plongé dans un champ magnétique variable : induction de NEUMANN;
- 2) Lorsque le circuit est **déformé** dans un champ magnétique constant : induction de LORENTZ (voir chapitre suivant).

Lycée Pothier 3/15 MPSI3 – 2023/2024

^{1.} Voir l'animation: https://phet.colorado.edu/sims/html/faradays-law/latest/faradays-law_fr.html

Flux magnétique

Définition 3.2 : Flux magnétique

On définit le flux du champ magnétique \acute{B} à travers un circuit comme l'intégrale de \vec{B} sur la surface orientée entourée par le circuit :

$$\phi_S(\vec{B}) = \iint_{M \in S} d\phi(M) = \iint_{M \in S} \vec{B}(M) \cdot d\vec{S}(M)$$

et si le champ \vec{B} est **uniforme** et que le circuit est une spire, alors on a

$$\phi_S(\vec{B}) = \vec{B} \cdot \vec{S} \quad \Rightarrow \quad \phi_{N \text{ spires}}(\vec{B}) = N\phi_S(\vec{B}) = N\vec{B} \cdot \vec{S}$$

Application 3.1 : Calculs simples de flux

Déterminer le flux au travers de la spire circulaire de rayon R plongée dans \vec{B} uniforme dans les 4 situations suivantes:

$$\vec{S} \cdot \vec{B} > 0 \Rightarrow$$

 $\phi_S(\vec{B}) = BS$

$$\overrightarrow{S} \cdot \overrightarrow{B} < 0 \Rightarrow \phi_S(\overrightarrow{B}) = -BS$$

$$\vec{S} \cdot \vec{B} = 0 \Rightarrow \phi_S(\vec{B}) = 0$$

$$\vec{S} \cdot \vec{B} = -BS \cos \theta = \phi_S(\vec{B})$$

Définition 3.3 : Flux propre et flux extérieur

Puisqu'un circuit électrique est capable de créer un champ **propre** \vec{B}_p mais peut également être plongé dans un champ **extérieur** $\vec{B}_{\rm ext}$, on distingue les deux flux :

$$\phi_p = \iint_S \vec{B}_p \cdot \vec{S}$$

Flux extérieur

$$\phi_{\rm ext} = \iint_{S} \vec{B}_{\rm ext} \cdot \vec{S}$$

Loi de Faraday

Propriété 3.1 : Loi de FARADAY

Soit un circuit électrique fermé et orienté par une intensité soumis à l'action d'un champ magnétique \vec{B} . Toute variation du flux $\phi_S(\vec{B})$ dans ce circuit y fait apparaître une force électromotrice (tension à vide) induite e, orientée dans le même sens que i, telle que

$$e_{\text{ind}}(t) = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} \vec{B} \cdot \mathrm{d}S$$

Le système se comporte comme si on y avait mis un **générateur électrique** idéal de f.é.m. e.

Circuit physique. \overrightarrow{S} orientée avec i.

reste du circuit $e_{\text{induite}} = -\frac{d\phi}{dt}$ i

Modèle électrique.

 i_{ind} et e_{ind} dans le même sens.

Remarque 3.1 : Loi de FARADAY

- 1) Il y a deux manières de faire varier le flux ϕ :
 - \diamond **Neumann**: on fait varier le champ \vec{B}
 - ♦ LORENTZ : on déforme le circuit
- 2) La f.é.m. e est orientée dans le même sens que le courant i, donc en convention **générateur**;
- 3) Le signe « » donne la loi de Lenz, et découle en fait de la conservation de l'énergie.

I/D Loi de modération de Lenz

Le sens du courant obtenu est donné par la loi de Lenz :

Important 3.1 : Loi de modération de LENZ

Lorsque le flux extérieur $\phi_{\rm ext}$ à travers un circuit **fermé** varie, ceci a pour conséquence de faire apparaître une **intensité dans le circuit**, qui a son tour est à l'origine d'un **champ magnétique propre**, dont le flux ϕ_p **s'oppose à la variation introduite**. On dit souvent :

L'induction modère, par ses conséquences, les causes qui lui ont donné naissance.

♥ Exemple 3.1 : Loi de modération de Lenz

Prenons un exemple très simple d'une spire plongée initialement sans courant dans un champ magnétique $B_{\rm ext}$. Supposons que ce champ augmente en intensité :

Dès que $\vec{B}_{\rm ext}$ arrête d'augmenter, le champ propre précédemment créé disparaît.

 \diamond **Neumann** : courant induit créé un nouveau champ $\overrightarrow{B_0}$ qui contrecarre les **variations** de $\overrightarrow{B_{\rm ext}}$ initial;

 \diamond **Lorentz** : courant induit créé un nouveau champ $\overrightarrow{B_0}$ qui impose une force s'opposant à la **déformation**.

♥ Application 3.2 : LENZ et FARADAY circuit carré

On considère un circuit carré de côté a et de résistance totale R, situé dans un plan orthogonal à un champ magnétique uniforme mais **variable** $\overrightarrow{B}(t) = B_0 \mathrm{e}^{-t/\tau} \overrightarrow{u_z}$ avec B_0 et τ strictement positifs. Un phénomène d'induction se produit-il dans le circuit? Si oui, exprimer l'intensité i du courant induit représenté sur le schéma, et vérifier que son signe soit en accord avec la loi de LENZ.

Le flux à travers le circuit de surface $S=a^2$ est variable puisque le champ magnétique l'est. Il y a donc un phénomène d'induction. On a alors :

$$\phi_S(\vec{B}) = -Ba^2$$

$$= -B_0 a^2 e^{-t/\tau}$$
soit
$$e_{\text{ind}} = -\frac{d\phi}{dt}$$

$$\Leftrightarrow e_{\text{ind}} = -\frac{B_0 a^2}{\tau} e^{-t/\tau} < 0$$

Or, comme le circuit est fermé,

$$e_{\text{ind}} = Ri_{\text{ind}}$$

$$\Leftrightarrow i_{\text{ind}} = -\frac{B_0 a^2}{R\tau} e^{-t/\tau} < 0$$

donc l'intensité est **négative**. En effet, le champ magnétique induit réel doit s'opposer à la diminution du champ extérieur \overrightarrow{B} , en créant un champ magnétique positif selon $\overrightarrow{u_z}$: le sens réel du courant donné par la main droite est l'opposé de celui représenté.

II Phénomène d'autoinduction

II/A Champs propre et extérieur

Lorsqu'un courant circule dans une bobine, il créé un champ magnétique. Or, ce champ créé contribue au flux magnétique total à travers le circuit, et génère une force électromotrice d'induction :

Définition 3.4: Champ magnétique total

Lors de l'étude de l'induction dans un circuit, on différencie le champ créé par le circuit, dit champ propre, des autres champs issus d'autres sources :

$$\overrightarrow{B_{\rm tot}} = \overrightarrow{B_{\rm propre}} + \overrightarrow{B_{\rm ext}}$$

Rappel 3.1: Champ d'une bobine

Pour une bobine, le champ magnétique propre est celui créé par le courant que nous avons déjà vu :

$$\overrightarrow{B}_{p}(t) = \mu_0 \frac{N}{\ell} i(t) \ \overrightarrow{u}_z$$

Le champ magnétique extérieur est lié à la présence d'autres sources au voisinage (champs de fils électriques par exemple.)

II/B Auto-inductance

Propriété 3.2 : Auto-inductance d'un circuit

On admet que le flux propre dans un circuit est **proportionnel à l'intensité** du courant dans le circuit, tel que

$$\phi_p(t) = Li(t)$$

avec L l'**inductance propre** (ou auto-inductance) du circuit.

- \diamondsuit L > 0 car i et $\overrightarrow{B_p}$ sont orientés par la main droite.
- \diamond L ne dépend que de la **taille** et **forme** du circuit.
- $\diamond L$ s'exprime en henry (H).

♥ Application 3.3 : Inductance propre d'une bobine.

Calcul de l'inductance propre d'une bobine. On donne le champ propre $\overrightarrow{B_p}$ créé dans un solénoïde :

$$\overrightarrow{B_p}(t) = \mu_0 \frac{N}{\ell} i(t) \ \overrightarrow{u_z}$$

1) Le sens du courant étant donné, indiquer le sens du champ magnétique.

i et $\overrightarrow{B_p}$ respectent la règle de la main droite.

2) Exprimer le flux du champ magnétique.

Pour N spires :

$$\phi_n = N \times \overrightarrow{B_n} \cdot \overrightarrow{S}$$

Or, $\overrightarrow{B_p}$ et \overrightarrow{S} sont tous deux orientés à partir de i selon la règle de la main droite, donc

$$\overrightarrow{S} = S \overrightarrow{u_z}$$
 et $\overrightarrow{B_p} = \mu_0 \frac{N}{\ell} i(t) \overrightarrow{u_z}$ $\Leftrightarrow \phi_p = \mu_0 \frac{N^2}{\ell} Si(t)$

3) En déduire l'expression de l'inductance propre. On a démontré que le flux magnétique propre et l'intensité étaient proportionnels, et que la constante de proportionnalité était positive. On identifie simplement :

$$L = \mu_0 \frac{N^2}{\ell} S$$

4) Application numérique pour une bobine de TP avec $N=1000\,\mathrm{spires}$ de rayon $a=3\,\mathrm{cm}$ et de longueur $\ell=10\,\mathrm{cm}$:

$$L \approx 35 \, \mathrm{mH}$$

Circuits électriques équivalents

Implication 3.1: Tension auto-induite

Si le courant i(t) dans un circuit varie avec le temps, alors le champ magnétique et donc le flux propre $\phi_p(t)$ varie aussi. D'après la loi de FARADAY, il va donc y avoir apparition d'un générateur fictif de f.é.m.

$$e_{\text{auto.ind.}} = -\frac{\mathrm{d}\phi_p}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t}$$

car pour un circuit fixe et indéformable, L = cte. Ainsi, la loi de FARADAY permet de dessiner un circuit équivalent à la bobine :

Important 3.2 : Relation courant-tension d'une bobine

En l'absence d'autres champs que le champ propre, on peut donc remplacer la bobine par une f.é.m. e_{auto} en convention générateur ou $u = -e_{\text{auto}}$ en convention récepteur, c'est-à-dire

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

qui est la caractéristique courant-tension d'une bobine vue en début d'année!

Figure 3.1 – Schémas équivalents générateur/récepteur

Remarque 3.2: Tension induite par deux sources

S'il y a un champ extérieur, on applique la superposition des champs magnétiques :

$$\phi_{\rm tot} = \phi_p + \phi_{\rm ext}$$
 \Rightarrow $e_{\rm tot} = -L \frac{\mathrm{d}i}{\mathrm{d}t} - \frac{\mathrm{d}\phi_{\rm ext}}{\mathrm{d}t} = e_{\rm auto} + e_{\rm ext}$

III Induction mutuelle

Principe de l'inductance mutuelle

Soit deux circuits fixes indépendants électriquement, sans champ magnétique extérieur :

III. Induction mutuelle

 \diamond Le circuit (1) est parcouru par un courant i_1 qui génère un champ magnétique $\overrightarrow{B_1}$;

$$\vec{B}_{\text{tot}} = \vec{B_1} + \vec{B_2} + \vec{B_{\text{ext}}}$$

En supposant les champs uniformes, le flux magnétique total traversant le circuit (1) est donc :

$$\phi_1 = \overrightarrow{B}_{\text{tot}} \cdot \overrightarrow{S}_1 = \left(\overrightarrow{B}_1 + \overrightarrow{B}_2\right) \cdot \overrightarrow{S}_1 = \overrightarrow{B}_1 \cdot \overrightarrow{S}_1 + \overrightarrow{B}_2 \cdot \overrightarrow{S}_2$$

$$\Leftrightarrow \phi_1 = \phi_{p,1} + \phi_{2 \to 1}$$

Avec ϕ_p le flux propre de chaque circuit, et $\phi_{2\to 1}$ le flux de $\overrightarrow{B_2}$ à travers le circuit (1). De même, en inversant les rôles de (1) et (2) :

$$\phi_2 = \phi_{p,2} + \phi_{1\to 2}$$

Propriété 3.3 : Inductance mutuelle

Les flux croisés sont proportionnels au courant les générant, même dans un cas non-uniforme, et le coefficient de proportionnalité est le même pour les deux flux, et s'appelle coefficient d'inductance mutuelle M, mesuré en henry :

$$\boxed{\phi_{2\to 1} = Mi_2} \qquad \text{et} \qquad \boxed{\phi_{1\to 2} = Mi_1}$$

Remarque 3.3: Signe de M

Au contraire de L toujours positive, M peut être positif ou négatif selon l'orientation relative des deux circuits.

Application 3.4 : Forces électromotrices induites

Soit deux circuits non connectés mais en inductance mutuelle. Exprimer les tensions induites en fonction des intensités et des inductances.

FIGURE 3.2 – Circuits en inductance mutuelle.

Chaque circuit vérifie la loi de FARADAY:

$$e_{1} = -\frac{\mathrm{d}\phi_{1}}{\mathrm{d}t} = -\frac{\mathrm{d}\phi_{p,1}}{\mathrm{d}t} - \frac{\mathrm{d}\phi_{2\to 1}}{\mathrm{d}t} \qquad \text{et} \qquad e_{2} = -\frac{\mathrm{d}\phi_{2}}{\mathrm{d}t} = -\frac{\mathrm{d}\phi_{p,2}}{\mathrm{d}t} - \frac{\mathrm{d}\phi_{1\to 2}}{\mathrm{d}t}$$

$$\Rightarrow \begin{cases} \phi_{p,1} = L_{1}i_{1} \\ \phi_{2\to 1} = Mi_{2} \end{cases} \qquad \text{et} \qquad \begin{cases} \phi_{p,2} = L_{2}i_{2} \\ \phi_{1\to 2} = Mi_{1} \end{cases}$$

$$\Rightarrow e_{1} = -L_{1}\frac{\mathrm{d}i_{1}}{\mathrm{d}t} - M\frac{\mathrm{d}i_{2}}{\mathrm{d}t} \qquad \text{et} \qquad e_{2} = -\frac{\mathrm{d}\phi_{2}}{\mathrm{d}t} - \frac{\mathrm{d}\phi_{p,2}}{\mathrm{d}t} - \frac{\mathrm{d}\phi_{1\to 2}}{\mathrm{d}t}$$

Lycée Pothier 9/15 MPSI3 – 2023/2024

III/B Bobines imbriquées

On souhaite déterminer l'inductance mutuelle de 2 bobines de même axe, de longueurs ℓ_i et de rayons R_i , parcourues par des intensités i_i dirigées dans le même sens. On s'intéresse d'abord à $\phi_{2\to 1}$, le flux créé par la seconde bobine dans la première.

Expression du champ magnétique $\overrightarrow{B_2}$

Le champ magnétique d'une bobine est uniforme en son sein, et négligeable en dehors, soit

$$\overrightarrow{B_2} = \begin{cases} \mu_0 \frac{N_2}{\ell_2} i_2 \ \overrightarrow{u_z} & \text{à l'intérieur} \\ \overrightarrow{0} & \text{à l'extérieur} \end{cases}$$

Flux de $\overrightarrow{B_2}$ à travers de $\overrightarrow{S_1}$, $\phi_{2\rightarrow 1}$

On oriente $\overrightarrow{S_1}$ à partir de i_1 par la règle de la main droite :

$$\overrightarrow{S_1} = S_1 \overrightarrow{u_z}$$

Or, le champ $\overrightarrow{B_2}$ est nul entre S_2 et S_1 , d'où :

$$\begin{split} \phi_{2\rightarrow1} &= \mu_0 \frac{N_2}{\ell_2} i_2 \times S_2 \times N_1 + 0 \times (S_2 - S_1) \times N_1 \\ \Leftrightarrow \phi_{2\rightarrow1} &= \mu_0 \frac{N_1 N_2 S_2}{\ell_2} i_2 \\ \Rightarrow \boxed{M = \mu_0 \frac{N_1 N_2 S_2}{\ell_2}} \end{split}$$

Calcul de $\phi_{1\rightarrow 2}$

Le calcul direct et réel est plus compliqué, puisque les lignes de champs sortent en réalité de la première bobine et ne sont plus parallèles. On pourrait se contenter d'utiliser l'inductance mutuelle pour exprimer directement

$$\phi_{1\rightarrow 2}=Mi_1$$

Cependant, avec l'hypothèse de \overrightarrow{B} nul en-dehors des bobines, soit

$$\overrightarrow{B_1} = \begin{cases} \mu_0 \frac{N_1}{\ell_1} i_1 \ \overrightarrow{u_z} & \text{à l'intérieur} \\ \overrightarrow{0} & \text{à l'extérieur} \end{cases}$$

et toujours avec

$$\overrightarrow{S_2} = S_2 \overrightarrow{u_z}$$

on voit que la seconde bobine est traversée par $\overrightarrow{B_1}$ sur une **fraction de sa longueur**, en l'occurrence $N_2 \times \frac{\ell_1}{\ell_2}$. Ainsi,

$$\phi_{1\to 2} = \mu_0 \frac{N_1}{\ell_1} i_1 \times S_2 \times N_2 \frac{\ell_1}{\ell_2} \Leftrightarrow \phi_{1\to 2} = \mu_0 \frac{N_1 N_2 S_2}{\ell_2} i_1$$

III. Induction mutuelle 11

Et on retrouve bien M.

♥ Remarque 3.4 : Inductance mutuelle en influence totale

Si les deux bobines sont de même longueur et même section, alors

$$M = \mu_0 \frac{N_1 N_2}{\ell} S$$
 avec $L_1 = \mu_0 \frac{N_1^2}{\ell} S$ et $L_2 = \mu_0 \frac{N_2^2}{\ell} S$ $\Rightarrow M = \sqrt{L_1 L_2}$

On parle alors d'« influence to tale ».

III/C Circuits électriques couplés par inductance mutuelle

♥ Important 3.3 : Méthode de résolution

- 1) Remplacer les inductances par leur f.é.m. en convention générateur;
- 2) Appliquer la loi des mailles pour obtenir les équations électriques;
- 3) Utiliser la loi de FARADAY et exprimer les flux magnétiques en fonction des courants;
- 4) Résoudre les équations obtenues.

III/C) 1 Étude du circuit

On étudie le circuit ci-dessous présentant un couplage par induction de deux circuits. Le sens de i_1 est imposé par le générateur, et le sens de i_2 est conventionnel (selon sa direction, M sera positif ou négatif).

FIGURE 3.3 – Circuits couplés.

Circuit équivalent On remplace les bobines par des générateurs, fléchés en convention générateur (à partir du sens de i_1 et i_2), de forces électromotrices $e = -d\phi/dt$:

FIGURE 3.4 – Circuit équivalent.

Équations électriques

$$u + e_1 = R_1 i_1$$

Lycée Pothier 11/15 MPSI3 – 2023/2024

Flux magnétiques et forces électromotrices

Équations couplées

Circuit 1
$$R_1 i_1 + L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} = u$$

$$R_2 i_2 + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t} = 0$$

Ainsi, en l'absence de couplage (M = 0), on retrouve les équations d'un circuit RL classique. Avec le couplage, on peut résoudre ces équations en passant en RSF :

$$(R_1 + jL_1\omega)I_1 + jM\omega I_2 = \underline{U}$$
 et $(R_2 + jL_2\omega)I_2 + jM\omega I_1 = 0$

On peut alors déterminer le comportement fréquentiel du circuit.

Pour faire l'étude énergétique du circuit, on procède comme d'habitude en faisant un bilan de puissance en **multipliant par** i les équations obtenues par la loi des mailles, ici i_1 et i_2 . À partir des équations couplées,

Circuit 1
$$R_1 i_1^2 + L_1 i_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M i_1 \frac{\mathrm{d}i_2}{\mathrm{d}t} = u i_1$$

$$R_2 i_2^2 + L_2 i_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M i_2 \frac{\mathrm{d}i_1}{\mathrm{d}t} = 0$$

Ainsi, par somme on trouve

$$R_1 i_1^2 + R_2 i_2^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_1 i_1^2 \right) + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_2 i_2^2 \right) + M i_1 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M i_2 \frac{\mathrm{d}i_1}{\mathrm{d}t} = u i_1$$

$$\Leftrightarrow R_1 i_1^2 + R_2 i_2^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_1 i_1^2 + \frac{1}{2} L_2 i_2^2 + M i_1 i_2 \right) = u i_1$$

Ainsi, on met en évidence :

- $\Diamond \mathcal{P}_J = R_1 i_1^2(t) + R_2 i_2^2(t)$ la puissance reçue par les résistances (dissipée par effet Joule);
- $\diamondsuit \ \mathcal{P}_{\text{mag}} = \tfrac{\mathrm{d}}{\mathrm{d}t} \left(\tfrac{1}{2} L_1 i_1^2 + \tfrac{1}{2} L_2 i_2^2 + M i_1(t) i_2(t) \right) \ \text{la puissance magnétique stockée dans les deux circuits} \, ;$
- $\Leftrightarrow \mathcal{P}_q = u(t)i_1(t)$ la puissance fournie par le générateur.

\bigcirc

♥ Important 3.4 : Bilan énergétique

L'énergie du champ magnétique créé par deux circuits couplés par induction mutuelle est

$$\mathcal{E}_{\text{mag}} = \frac{1}{2}L_1 i_1^2 + \frac{1}{2}L_2 i_2^2 + M i_1 i_2$$

IV. Applications 13

- $\Diamond L_1 i_1^2/2$ est l'énergie magnétique emmagasinée dans le premier circuit ;
- $\Diamond L_2 i_2^2/2$ est l'énergie magnétique emmagasinée dans le second circuit;
- $\Diamond Mi_1i_2$ représente l'énergie de couplage magnétique entre les deux circuits.

IV Applications

IV/A Quelques exemples

- ♦ Radio-identification : placée dans des étiquettes adhésives comme dans les antivols par exemple, un courant sera induit dans le circuit s'il passe à côté d'un système actif fournissant un champ magnétique. Ce courant alimente alors une petite antenne envoyant l'information de la puce (dite RFID pour radio frequency identification).
- ♦ Détecteur de métaux, boucles magnétiques (péages, parking) : une bobine créé un champ magnétique et, si un morceau de métal se trouve à proximité, il se créé un courant en son sein. Ce courant créé lui-même un champ magnétique qui perturbe le circuit primaire.
- ♦ Rechargement par induction (brosses à dent, portables) : le chargeur est muni d'une bobine qui créé un champ qui va induire un champ dans un second circuit.
- ♦ Chauffage par induction : le courant généré dans le second circuit se réparti dans tout le volume ; on les appelle courants de Foucault. Ils permettent le chauffage par effet Joule.

IV/B Transformateur

En enroulant deux bobines différentes autour d'un noyau de métal canalisant le flux, on peut diminuer ou augmenter la tension d'un circuit à l'autre.

IV/B) 1 Constitution

Définition 3.5 : Transformateur

Un transformateur monophasé est constitué d'un matériau ferromagnétique sur lequel sont bobinés deux enroulements électriques, indépendants électriquement (masses séparées) :

- \diamond Enroulement primaire : relié à la source d'alimentation (on notera les grandeurs u_1, i_1 etc.)
- \diamond Enroulement secondaire : relié à la charge (noté u_2 , i_2 etc.)

Figure 3.6 – Schématisation électrique

Le rôle du circuit magnétique est d'assurer une canalisation optimale des lignes de champ magnétique afin d'obtenir un couplage maximal entre les deux enroulements. Cela veut dire que le flux magnétique traversant une spire du circuit 1 est égal à celui traversant une spire du circuit 2.

♥ Définition 3.6 : Transformateur parfait

Dans le modèle du transformateur parfait :

- ♦ la résistance des enroulements est négligée ;
- \diamondsuit il n'y a pas de perte de flux magnétique entre les enroulements

[IV/B) 2

Loi des tensions

♥ Propriété 3.4 : Loi des tensions

Dans un transformateur parfait, les tensions au primaire et au secondaire sont telles que :

$$\frac{u_2(t)}{u_1(t)} = \frac{N_2}{N_1} = m$$

où m est le rapport de transformation.

♥ Démonstration 3.1 : Loi des tensions

Le flux à travers une spire au primaire est égal à celui dans une spire du secondaire. Ainsi, le flux total à travers les enroulements sont :

$$\phi_{1,\text{tot}} = N_1 \phi$$
 et $\phi_{2,\text{tot}} = N_2 \phi$ avec $\phi = BS$

Ainsi, les forces électromotrices sont :

$$e_{1} = -\frac{\mathrm{d}\phi_{1,\mathrm{tot}}}{\mathrm{d}t} = -N_{1}\frac{\mathrm{d}\phi}{\mathrm{d}t}$$
$$\Leftrightarrow u_{1} = N_{1}\frac{\mathrm{d}\phi}{\mathrm{d}t}$$

Circuit 2

$$e_{2} = -\frac{\mathrm{d}\phi_{2,\mathrm{tot}}}{\mathrm{d}t} = -N_{2}\frac{\mathrm{d}\phi}{\mathrm{d}t}$$
$$\Leftrightarrow u_{2} = N_{2}\frac{\mathrm{d}\phi}{\mathrm{d}t}$$

D'où le résultat en divisant.

Remarque 3.5 : Différents transformateurs

- ♦ Lorsque la tension au secondaire est plus élevée qu'au primaire, on parle d'élévateur de tension (à la sortie d'une centrale par exemple).
- ♦ Dans le cas contraire, on parle d'abaisseur de tension (transformateur de quartier par exemple).
- ♦ Il existe aussi des transformateurs où la tension est identique au primaire et au secondaire : un tel transformateur est appelé **transformateur d'isolement** et permet d'isoler la masse de la terre ; on évite ainsi des électrocutions en milieu humide (salle de bain par exemple).

igoplus Attention 3.1 : Transformateur

Tout ceci n'est valable que pour un champ variable, par pour des tensions constantes!

IV. Applications 15

IV/B) 3 Loi des courants

♥ Propriété 3.5 : Loi des courants

Dans un transformateur parfait, les courants au primaire et au secondaire sont tels que :

$$\frac{i_2(t)}{i_1(t)} = -\frac{N_1}{N_2} = -\frac{1}{m}$$

♥ Démonstration 3.2 : Loi des courants

Si le transformateur est idéal, il transfert la totalité de la puissance électrique. Or, on a

$$\mathcal{P}_r = \mathcal{P}_f \Rightarrow$$

$$\mathcal{P}_r = u_1 i_1$$
 et $\mathcal{P}_f = -u_2 i_1$

$$u_1 i_1 = -u_2 i_2 \Leftrightarrow \boxed{\frac{i_2}{i_1} = -\frac{u_1}{u_2}}$$

Remarque 3.6 : Signe du rapport

Le signe a peu d'importance car un transformateur fonctionne avec des tensions alternatives. Il dépend du sens de l'enroulement choisi sur le schéma (arbitrairement). Seule la valeur efficace nous intéresse.