Глава 1

Дебильник

1.1 Многомерное нормальное распределение

<u>def.</u> Стандартный гауссовский вектор — случайный n-мерный вектор $Z = (Z_1, Z_2, \dots Z_n)$, координаты которого независимы и имеют распределение $\mathcal{N}(0,1)$.

<u>def</u>. Гауссовский вектор (Нормальный вектор) — вектор, для которого существует матрица $\mathbf{A} \in \mathbb{R}^{n \times m}$, стандартный гауссовский вектор $Z \in \mathbb{R}^m$, и вектор $b \in \mathbb{R}^n$ такие, что $X = \mathbf{A}Z + b$.

 $\underline{\mathbf{def}}$. Распределение нормального вектора $X \in \mathbb{R}^n - \mathcal{N}(\mu, \mathbf{\Sigma})$ или $\mathcal{N}_n(\mu, \mathbf{\Sigma})$, где $\mu = \mathbb{E} X$ и $\mathbf{\Sigma} = \mathrm{cov}(X)$.

<u>def.</u> Распределение хи-квадрат с n степенями свободы — распределение $\chi^2(n)$ величины $\chi^2=Z_1^2+Z_2^2+\ldots+Z_n^2$, где $Z_1,Z_2,\ldots Z_n$ — независимы $\mathcal{N}(0,1)$ величины.

<u>def.</u> Распределение Стьюдента с n степенями свободы — распределение T(n) величины $\frac{\sqrt{n}X}{\sqrt{N}}$, где $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(n)$ и независимы.

<u>def</u>. Распределение Фишера со степенями свободы n и m — распределение F(n,m) величины $\frac{X/n}{Y/m}$, где $X\sim \chi^2(n),\, Y\sim \chi^2(m)$ и независимы.

1.2 Условное матожидание

<u>def</u>. Условное матожидание $\mathbb{E}(Y \mid X)$ случайной величины Y при условии случайной величины X — такая измеримая функция g_0 величины X, при которой $\mathbb{E}(Y - g(X))^2$ минимально для всех измеримых функций g.

Условное матожидание — ортогональная проекция Y на линейное пространство всех измеримых функций X. То есть УМО — единственная измеримая функция, которая удовлетворяет условию ортогональности:

$$\forall g \colon \mathbb{E}(Y - \mathbb{E}(Y \mid X))g(X) = 0.$$

1.3 Статистическая модель, выборка

<u>def</u>. Статистическая модель — множество распределений \mathfrak{P} , которое, по нашему мнению, адекватно приближает \mathcal{P}_D .

 $\underline{\mathbf{def}}$. Данные d — реализация случайного элемента D, имеющего распределение \mathcal{P}_D .

Статистические модели делят на:

- параметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \}.$ Пример: $\mathfrak{P} = \{ \mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 \geqslant 0 \}.$
- непараметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset V \}$, где V не обязательно конечномерное.

Пример:
$$\mathfrak{P} = \{ \mathcal{P}^{\otimes n} \mid \int_{\mathfrak{T}} x \mathcal{P}(dx) = 0 \}$$

• семипараметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \times V \}.$ Пример: линейная регрессия $Y = X\beta + \varepsilon, \ \beta \in \mathbb{R}^k, \ \mathbb{E}\varepsilon = 0, \ \mathbb{D}\varepsilon = \sigma^2.$

Если $D = [X_1, \dots X_n]$ и X_i независимы и имеют одинаковое распределение \mathcal{P}_X , D называется выборкой объема n и обозначается $X_{[n]}$, \mathcal{P}_X — генеральная совокупность. В этом случае модель приобретает вид $\mathfrak{P} = \{\mathcal{P}^{\otimes n} \mid \mathcal{P} \in \mathfrak{P}_X\}$, где \mathfrak{P}_X — модель для \mathcal{P}_X .

1.4 Формула Байеса, априорное, апостериорное распределение

- Априорное распределение наше ощущение относительно значения параметра до проведения эксперимента.
- Апостериорное распределение ощущение после получения данных эксперимента.

 $\underline{\mathbf{def}}$ (Формула Байеса). Здесь p — вероятность, d — данные, θ — параметры.

$$p(\theta \mid d) = \frac{p(d \mid \theta) \cdot p(\theta)}{p(d)}.$$

- $p(\theta \mid d)$ апостериорное распределение,
- $p(d \mid \theta)$ правдоподобие,
- $p(\theta)$ априорное распределение,
- p(d) вероятность данных.

1.5 Расстояние Кульбака-Лейблера, энтропия

Пусть мы принимаем случайные символы $x_1, \ldots x_k$, вероятность появления x_i равна p_i , записываем с помощью битовой строки длины l_i . Тогда средняя длина символа равна

$$l = \sum_{i=1}^{k} p_i \cdot l_i.$$

Чтобы минимизировать l, необходимо подобрать следующие $l_i = -\log_2 p_i$. И тогда средняя длина будет равна $H(x) := -\sum_{i=1}^k p_i \cdot \log_2 p_i$, эта величина называется **двоичной энтропией сообщения**. Аналогично можно брать любой другой логарифм, мы будем использовать натуральный.

Для непрерывной величины можно завести дифференциальную энтропию:

$$H(X) = -\int p(x)\log p(x)dx.$$

Пусть случайная величина X имеет функцию вероятности p, но мы кодируем символы, как-будто она имеет функцию вероятности q. Тогда средняя длина сообщения будет равна $-\sum_{i=1}^k p_i \cdot \log q_i$, эта величина называется кросс-энтропией $H(p \mid q)$ распределений p и q.

 $H(p \mid q)$ всегда будет больше H(p), так как H(p) минимально.

<u>def</u>. Величина потери информации из-за использования q вместо p называется расстоянием Кульбака-Лейблера между p и q:

$$D_{KL}(p,q) = H(p \mid q) - H(p) = -\sum_{i=1}^{k} p_i \cdot \log \frac{q_i}{p_i}.$$

Для непрерывных величин все обобщается следующим образом

$$D_{KL} = -\int p_i \cdot \log \frac{q_i}{p_i}.$$

1.6 Статистика...

1.6.1 Статистика

Параметр или характеристика распределения — функционал от этого распределения.

 $\underline{\mathbf{def}}$. Статистика — функция θ^* от данных d.

Пусть модель $\mathfrak{P}_{[n]}=\{\mathcal{P}^{\otimes n}\mid \mathcal{P}\in\mathfrak{P}\}$, искомая характеристика $\theta\colon\mathfrak{P}\to\mathbb{R}^k$.

1.6.2 Несмещенность

Чему равна оценка как случайная величина в среднем, если она равна характеристике?

def. Оценка Θ^* называется

• несмещенной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E} \theta^*(X_{[n]}) = \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,

ullet асимптотически несмещенной, если $orall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E} heta^*(X_{[n]}) o heta(\mathcal{P}).$

Смещение — величина $b(\theta^*) = \mathbb{E}(\theta^*(X_{[n]})) - \theta(\mathcal{P}).$

Среднеквадратичная ошибка — величина $\mathrm{MSE}(\theta^*) = \mathbb{E}\left(\theta^*(X_{[n]}) - \theta(\mathcal{P})\right)^2$.

В общем случае

$$MSE(\theta^*) = \mathbb{D}\theta^*(X_{[n]} + b^2(\theta^*).$$

- Выборочное среднее как оценка матожидания несмещенная оценка,
- Выборочная дисперсия как оценка дисперсии асимптотически несмещенная,
- Исправленная выборочная дисперсия как оценка дисперсии несмещенная оценка.

1.6.3 Состоятельность

 $\underline{\mathbf{def}}$. Оценка θ^* называется

- состоятельной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \theta^*(X_{[n]}) \xrightarrow{\mathbb{P}} \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,
- ullet сильно состоятельной, если $\theta^*(X_{[n]}) \xrightarrow{\text{п. н.}} \theta(\mathcal{P}).$

1.6.4 Асимптотическая нормальность

<u>def</u>. Оценка θ^* называется асимптотически нормальной с коэффициентом рассеивания (или просто дисперсией) $\sigma^2(\theta(\mathcal{P}))$ 0, если

$$\sqrt{n} \left(\theta^*(X_{[n]}) - \theta(\mathcal{P}) \right) \xrightarrow{d} \eta \sim \mathcal{N}(0, \sigma^2(\theta^*(\mathcal{P}))).$$

В многомерном случае рассматривается ковариационная матрица вместо дисперсии.

- Выборочная дисперсия и второй момент асимптотически нормальная оценка.
- Из асимптотической нормальности следует состоятельность.

1.6.5 Эффективность

Рассмотрим класс оценок $K = \{\hat{\theta}\}$ параметра θ .

<u>def</u>. Оценка $\theta^* \in K$ называется эффективной в классе K, если для любой другой оценки $\hat{\theta} \in K$ и для любого исследуемого параметра $\theta \in \Theta$ выполняется

$$MSE_{\theta}(\theta^*) \leqslant MSE_{\theta}(\hat{\theta}).$$

Класс несмещенных оценок

$$K_0 = \{\hat{\theta} \mid \mathbb{E}\hat{\theta} = \theta, \forall \theta \in \Theta\}.$$

<u>def</u>. Эффективная оценка θ^* , если эффективна в классе K_0 .

 $\underline{\operatorname{def}}$. Асимптотически эффективной в классе K, если для любой оценки $\hat{\theta} \in K$ и для любого $\theta \in \Theta$ выполняется

$$\overline{\lim_{n\to\infty}} \frac{\mathrm{MSE}(\theta^*)}{\mathrm{MSE}(\hat{\theta})}.$$

1.6.6 Робастность

 $\underline{\mathbf{def}}$. Робастность — свойство оценки быть устойчивой к хвостам распределения.

Пусть F — распределение, $\{G_n\}$ — последовательность распределений, что

$$|F - G_n| := \sup_{x} |F(x) - G_n(x)| \to 0.$$

 $\underline{\mathbf{def}}.$ Характеристика θ обладает качественной робастностью, если $\theta(G_n)\to \theta(F)$

Пусть также δ_x — вырожденное распределение в точке x.

<u>def.</u> Загрязненное распределение — смесь $F_{x,\varepsilon} = (1-\varepsilon)F + \varepsilon \delta_x$.

 $\operatorname{\mathbf{def.}}$ Функция влияния характеристики θ — величина

$$IF(x) = \lim_{\varepsilon \to 0+} \frac{\theta(F_{x,\varepsilon}) - \theta(F)}{\varepsilon}.$$

<u>def</u>. Характеристика θ называется B-робастной или инфинитезимально робастной, если IF(x) ограничена.

 $\underline{\mathbf{def}}$. Асимптотическая толерантность характеристики θ —

$$\tau = \inf \{ \varepsilon \mid \sup_{x} |\theta(F_{x,\varepsilon} - \theta(F))| = \infty \}.$$

1.6.7 Достаточность

 $\underline{\mathbf{def}}$. Статистика $T(x)=\{T_1(x),\ldots,T_m(x))\}$ называется достаточной, если для всех

- $\theta \in \Theta$.
- $B \in \mathfrak{P}(\mathbb{R}^n)$ и
- $t = (t_1, \ldots, t_m)$

условная вероятность $\mathbb{P}(X_{[n]} \in B \mid T(X_{[n]}) = t)$ не зависит от θ .

То есть информация о θ в выборке полностью содержится в значении $T(x_{[n]})$.

 $\underline{\mathbf{thm}}$ (факторизации). T(x) достаточна, согда существуют функции g u h, что

$$p(X_{[n]} = x_{[n]} \mid \theta) = g(T(x_{[n]}), \theta) h(x_{[n]}),$$

 $\it rde\ p\ -\ вероятность\ или\ плотность.$

1.6.8 Полнота

 $\underline{\mathbf{def}}$. Статистика T называется полной, если для любой измеримой g верно следствие

$$\forall \theta \in \Theta \colon \mathbb{E}g(T(X_{[n]})) \equiv 0 \implies g(T(X_{[n]})) \stackrel{n.n.}{=} 0.$$

1.7 Теоремы Колмогорова-Блэкуэлла-Рао и Лемана-Шеффе

<u>thm</u> (Колмогорова-Блэкуэлла-Рао). Пусть θ^* — оценка параметра θ , T — достаточная статистика. Тогда

$$MSE(\theta^*) \geqslant MSE(\mathbb{E}(\theta^* \mid T)).$$

<u>thm</u> (Лемана-Шеффе). Пусть θ^* — оценка параметра θ , T — достаточная и полная статистика. Тогда $\mathbb{E}(\theta^* \mid T)$ — единственная эффективная оценка в классе оценок со смещением $b(\theta^*)$.

1.8 Доверительный интервал

Пусть есть модель $\mathfrak{P}_{[n]} = \{ \mathcal{P}^{\otimes n} \mid \mathcal{P} \in \mathfrak{P} \}$ и $\theta \colon \mathfrak{P} \to \mathbb{R}^k$ — искомая характеристика.

 $\underline{\mathbf{def}}$. Доверительный интервал (точный доверительный интервал) с уровнем доверия γ — пара статистик (θ_L^*, θ_R^*) , такая что для любого $\mathcal{P} \in \mathfrak{P}$ и $X_{[n]} \sim \mathcal{P}^{\otimes n}$

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) = \gamma.$$

Интервал называется

• асимптотическим, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) \xrightarrow{n \to \infty} \gamma.$$

• центральным, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = \mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right).$$

• левым, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = 0.$$

• правым, если

$$\mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right) = 0.$$

1.9. БУТСТРЕП 9

1.9 Бутстреп

1.9.1 Параметрический бутстреп

Если работаем с параметрической моделью, можем заменить $X = X(\theta)$ не на X^* , а на $X(\theta^*)$ и сэмплировать из этого распределения.

1.9.2 Непараметрический бутстреп

Рецепт

- 1. изготовим N выборок $x_{[n],1}^*,\ldots,x_{[n],N}^*$ из эмпирического распределения (рандом с возвращением)
- 2. вычисляем $\theta_i^b = \theta^*(x_{[n],i}^*$, получаем бутстреповскую выборку $\theta_{[N]}^b$,
- 3. по бутстреповской выборке оцениваем, что нужно.

Ограничения

- θ^* plug-in оценка
- θ^* достаточно гладкая (обычно дифференцируема)
- у X достаточно много моментов (обычно конечная дисперсия)
- нужно генерировать большие выборки
- на очень больших данных трудозатратен
- на маленьких данных велика неустранимая ошибка

1.10 Гипотеза, альтернатива...

Пусть \mathfrak{P} — модель.

1.10.1 Гипотеза и альтернатива

 $\underline{\mathbf{def}}$. Гипотеза — утверждение вида $H \colon \mathcal{P}_X \in \mathfrak{P}_0 \subset \mathfrak{P}$.

Если $|\mathfrak{P}_0| = 1$, гипотеза называется простой, иначе сложной.

Нулевая гипотеза — гипотеза H_0 , которую мы хотим проверить. Проверка гипотезы — процесс принятия решения о том, противоречит ли она наблюдаемой выборке данных.

Альтернатива — гипотеза H_1 , которая отражает, какие отклонения от нулевой гипотезы нам интересны.

1.10.2 Критерий

<u>def</u>. Нерандомизированный критерий (критерий) — отображение $\varphi \colon d \to \{$ принимаем, отвергаем $\} = \{H_0, H_1\} = \{0, 1\}.$

Часто критерий устроен так: имеется

- ullet статистика критерия T и
- ullet критическое множество C, и

$$\varphi(d) = [T(d) \in C] = [d \in T^{-1}(C)].$$

<u>def</u>. Рандомизированный критерий — отображение $\varphi \colon d \to [0,1]$. Значение на данных d определяется как реализация случайной величины $D(\varphi(d))$.

Пусть мы согласны отвергать нулевую гипотезу пр условии, что она верна, но хотим делать это не очень часто. Пусть зафиксирован уровень значимости

$$\alpha := \mathbb{P}(\varphi(D) = 1 \mid H_0),$$

который обычно является параметром критерия, то есть, задавая его, мы определяем критическое множество C_{α} такое, что

$$\mathbb{P}(T(D) \in C_{\alpha} \mid H_0) = \alpha.$$

Таким образом, для одного критерия определено семейство критических областей $\{C_{\alpha} \mid \alpha \in [0,1]\}$, где обычно $C_{\alpha} \subset C_{\alpha'}$, если $\alpha < \alpha'$.

<u>def</u>. Уровень значимости — параметр критерия, который регулирует, насколько часто мы будем отвергать нулевую гипотезу при условии, что она верна.

1.10.3 p-value

Хотим оценить, насколько гипотеза противоречит наблюдаемым данным.

 $\underline{\mathbf{def}}$. p-value — характеристика противоречия гипотезы наблюдаемым данным:

p-value :=
$$\arg \min \{ \alpha \in [0, 1] \mid T(d) \in C_{\alpha} \}.$$

Другими словами, p-value — минимальное значение уровня значимости для данного значения статистики критерия, при котором H_0 может быть отвергнута.

Чем меньше p-value, тем больше гипотеза противоречит данным.

1.10.4 Ошибки разных родов

<u>def</u>. Ошибка первого рода — событие $\varphi(D) = 1 \mid H_0$. Если уровень значимости совпадает с вероятностью ошибки первого роба, То критерий называется точным.

Уровень значимости — вероятность ошибки первого рода.

<u>def</u>. Ошибка второго рода β — событие $\varphi(D)=0\mid H_1$, не отклонили нулевую гипотезу при условии, что была верна альтернатива.

Мощность критерия — вероятность $1-\beta$ отклонить H_0 при условии, что верна $H_1.$

Для заданного уровня значимости мы хотим иметь как можно более мощный критерий.

1.10.5 Свойства критериев

<u>def</u>. Несмещенность — мощность всегда не меньше ошибки первого рода, критерий не отдает предпочтение альтернативе. $1-\beta\geqslant\alpha$ для всех простых гипотез из \mathfrak{P}_0 и простых альтернатив из \mathfrak{P}_1 .

 $\underline{\mathbf{def}}$. Состоятельность — $\beta \xrightarrow{n \to \infty} 0$ для всех простых альтернатив из \mathfrak{P}_1 .

def. Асимптотичность — $\alpha \xrightarrow{n \to \infty}$ для всех простых гипотез из \mathfrak{P}_0 .

<u>def</u>. Наиболее мощный критерий для данного уровня значимости α_0 и простой альтернативы — такой критерий φ_1 , что для любого критерия φ_2 такого, что $\alpha(\varphi_2) \leqslant \alpha_0$:

$$\beta(\varphi_1) \leqslant \beta(\varphi_2).$$

1.10.6 Размер эффекта

Во многих случаях важна не только информация о p-value, но и величина наблюдаемого эффекта. Размеры эффекта бывают разные, использование того или иного размера эффекта зависит от контекста.

Вместо сравнения p-value с уровнем значимости для принятия статистического решения можно считать размер эффекта, сравнивать с минимальным практически интересным.

1.11 Постановка гипотезы согласия. Критерии Колмогорова и Андерсона-Дарлинга

1.11.1 Постановка гипотезы согласия

<u>def</u>. Гипотеза согласия — гипотеза о соответствии эмпирического распределения теоретическому распределению вероятностей.

Критерии для гипотез согласия бывают

- \bullet общие применимые к любому предполагаемому распределению выборки,
- специальные применимые к гипотезам, формулирующие согласие с определенным свойством распределений;
- для простых гипотез,
- для сложных гипотез.

1.11.2 Критерий Колмогорова

Сравнивает эмпирическое и истинное распределение. Для простой гипотезы.

Пусть F_0 непрерывна на \mathbb{R} . Определим статистику Колмогорова:

$$D_n(x_{[n]}) = \sup_{x \in \mathbb{R}} |F_n^* - F_0(x)|.$$

- Если H_0 верна, то $D_n\left(X_{\lceil}n\right]\right) \xrightarrow{\text{п.н.}} 0$;
- Если H_0 неверна, то $D_n\left(X_{[n]}\right) \xrightarrow{\text{п.н.}} \sup_{x \in \mathbb{R}} |F_X(x) F_0(x)| > 0.$

1.11.3 Критерий Андерсона-Дарлинга

Для простой гипотезы.

Определим статистику критерия Андерсона-Дарлинга:

$$A^{2} = n \int_{\mathbb{R}} \frac{\left(F_{n}^{*}(x) - F_{0}(x)\right)^{2}}{F_{0}(x)\left(1 - F_{0}(x)\right)} dF_{0}(x) =$$

$$= -n - \sum_{i=1}^{n} \frac{2i - 1}{n} \left[\ln F_{0}(X_{(i)} \mid \theta) + \ln\left(1 - F_{0}(X_{(n+1-i)} \mid \theta)\right) \right]$$

Статистика A^2 при выполнении H_0 и непрерывности F_0 подчиняется табличному распределению. $C_{\alpha}=(a_{1-\alpha}^2,\infty)$.

1.12 Постановка гипотезы о параметрах, проверка через доверительные интервалы, z-test, ttest, бутстреп из нулевой гипотезы

1.12.1 Постановка гипотезы о параметрах

Пусть θ — параметр $(X \sim F(x,\theta))$ или характеристика $(\theta = \varphi(F_x))$ распределения.

Нулевая гипотеза: H_0 : $\theta = \theta_0$. Типичные альтернативы:

- H_1 : $\theta = \theta_1 \neq \theta_0$,
- $H_>$: $\theta > \theta_0$,
- $H_{<}: \theta < \theta_0$,
- H_{\neq} : $\theta \neq \theta_0$.

Усредненный рецепт:

- 1. Выбираем оценку θ^* параметра θ , распределение которой приближенно известно при данном θ .
- 2. В зависимости от альтернативы строим критическое множество:
 - H_1 : $\theta = \theta_1 > \theta_0$ или $H_>$, то $C_\alpha = (\theta_{1-\alpha}^*, \infty)^{-1}$ правое критическое множество;
 - H_1 : $\theta=\theta_1<\theta_0$ или $H_<$, то $C_{\alpha}=(-\infty,\theta_{\alpha}^*)$ левое критическое множество;
 - H_{\neq} , то $C_{\alpha}=(-\infty,\theta_{\frac{\alpha}{2}}^*\cup(\theta_{1-\frac{\alpha}{2}}^*,\infty)$ двустороннее критическое множество.
- 3. Если $\theta^* \in C_{\alpha}$, то гипотезу можно отклонить, иначе нельзя.

1.12.2 Проверка через доверительные интервалы

Усредненный рецепт:

- 1. В зависимости от альтернативы строим доверительный интервал с уровнем доверия $\gamma = 1 \alpha$:
 - H_1 : $\theta=\theta_1>\theta_0$ или $H_>$, то (θ_L^*,∞) правый доверительный интервал;
 - H_1 : $\theta = \theta_1 < \theta_0$ или $H_<$, то $(-\infty, \theta_R^*)$ левый доверительный интервал;
 - H_{\neq} , то (θ_L^*, θ_R^*) центральный доверительный интервал.

 $[\]overline{}^1$ Здесь θ_x^* — квантиль уровня x распределения $\theta^* \mid H_0$

1.12.3 z-test

Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, μ неизвестно, σ^2 известно.

Если
$$H_0$$
 верна, то $Z=rac{\sqrt{n}(\overline{X}-\mu_0)}{\sigma}\sim \mathcal{N}(0,1)$ и $\overline{X}\sim N(\mu_0,rac{\sigma^2}{n}).$

В зависимости от альтернативы подбираем критическую область:

$$\frac{\theta_{1} > \theta_{0}, H_{>}}{C_{\alpha} \quad (\mu_{0} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty) \quad (-\infty, \mu_{0} + z_{\alpha} \frac{\sigma}{\sqrt{n}}) \quad \mathbb{R} \setminus (\mu_{0} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})}{\text{p-value} \quad 1 - \Phi^{-1}(z) \qquad \Phi^{-1}(z) \qquad 2(1 - \Phi^{-1}(|z|))}$$

Таблица 1.1: Критическая область для альтернативы

1.12.4 t-test

Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, μ неизвестно, σ^2 неизвестно.

Если
$$H_0$$
 верна, то $T = \frac{\sqrt{n}(\overline{X} - \mu_0)}{s} \sim T(n-1)$.

В зависимости от альтернативы подбираем критическую область:

$$\frac{\theta_{1} > \theta_{0}, H_{>}}{C_{\alpha} \quad (\mu_{0} + t_{1-\alpha} \frac{s}{\sqrt{n}}, \infty) \quad (-\infty, \mu_{0} + t_{\alpha} \frac{s}{\sqrt{n}}) \quad \mathbb{R} \setminus (\mu_{0} \pm t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}})}{\text{p-value} \quad 1 - T^{-1}(t) \quad T^{-1}(t) \quad 2(1 - T^{-1}(|t|))}$$

Таблица 1.2: Критическая область для альтернативы

1.12.5 Бутстреп из нулевой гипотезы

Пусть мы хотим проверить гипотезу H_0 : $\mathbb{E}X = \theta_0$.

Рецепт:

- 1. Назначим каждому наблюдению x_i в выборке вероятность p_i .
- 2. Из пар (x_i, p_i) изготовим дискретное распределение F_p^* .

- 3. Подберем p_i так, чтобы с одной стороны $\overline{x} = \theta_0$, а с другой p_i максимизировали правдоподобие выборки $\mathcal{L}(p \mid x_{[n]}) = p_1 p_2 \dots p_n$.
- 4. Бутстрепим кучу выборок из получившегося F_p^* , считаем по ним выборочное среднее.
- 5. Построим критическое множество в зависимости от альтернативы и проверим, лежит ли в нем выборочное среднее исходной выборки.