Spinors in Four-Dimensions

Chris Elliott

This is a quick note on spinors to establish notation and try to clear some things up.

1 Spaces of Spinors

Definition 1.1. In **Lorentzian signature**, one has the following spinorial representations. The *Dirac spinors* S are the four-complex-dimensional spin representation of $\mathrm{Spin}(1,3) \cong \mathrm{SL}(2;\mathbb{C})$. They split into two two-complex-dimensional irreducible subrepresentations $S_+ \oplus S_-$, the *Weyl spinors*, which are isomorphic to the fundamental representation of $\mathrm{SL}(2;\mathbb{C})$ and its dual respectively. The *Majorana spinors* $S_{\mathbb{R}}$ are the four-real-dimensional spin representation of $\mathrm{Spin}(1,3)$, which is isomorphic to the fundamental real representation of $\mathrm{SO}(1,3)$.

Definition 1.2. In Riemannian signature, one has the following spinorial representations. The *Dirac spinors S* are the four-complex-dimensional spin representation of $\mathrm{Spin}(4) \cong \mathrm{SU}(2) \times \mathrm{SU}(2)$. They split into two two-complex-dimensional irreducible subrepresentations $S_+ \oplus S_-$, the *Weyl spinors*, which are isomorphic to the fundamental representations of the two $\mathrm{SU}(2)$ factors. The *Majorana spinors* $S_{\mathbb{R}}$ are the four-real-dimensional spin representation of $\mathrm{Spin}(4)$, which is isomorphic to the fundamental real representation of $\mathrm{SO}(4)$.

Definition 1.3. (For completeness) in **Anti de Sitter signature**, one has the following spinorial representations. The *Dirac spinors* S are the four-complex-dimensional spin representation of $\mathrm{Spin}(2,2) \cong \mathrm{SL}(2;\mathbb{R}) \times \mathrm{SL}(2;\mathbb{R})$. They split into two two-complex-dimensional irreducible subrepresentations $S_+ \oplus S_-$, the *Weyl spinors*, which are isomorphic to the complexified fundamental representations of the two $\mathrm{SL}(2;\mathbb{R})$ factors. The *Majorana spinors* $S_\mathbb{R}$ are the four-real-dimensional spin representation of $\mathrm{Spin}(2,2)$. They split into two two-real-dimensional irreducible subrepresentations $S_{\mathbb{R}_+} \oplus S_{\mathbb{R}_-}$, which are isomorphic to the fundamental representations of the two $\mathrm{SL}(2;\mathbb{R})$ factors.

The complex spinorial representations S admit actions of the *complexified* spin group $SL(2; \mathbb{C}) \times SL(2; \mathbb{C})$, from complexifying the representation S_{\pm} in either signature, or the representation $S_{\mathbb{R}}$ when it's defined. The result is the representation $S = S_{+} \oplus S_{-}$ where S_{\pm} are the fundamental representations of the two $SL(2; \mathbb{C})$ factors.

2 Scalar and Vector Pairings

We'll write $\mathbb{R}^{i,j}$ for the i+j-dimensional vector space with metric and natural action of SO(i,j), and \mathbb{C}^{i+j} for its complexification, with natural action of the complexification of the group. In this section I'm referring to chapter 4 of [Del99].

• In Lorentzian signature there is a natural evaluation pairing between the fundamental representation of $SL(2;\mathbb{C})$ and its dual. This yields a Spin(1,3)-invariant bilinear pairing on the Dirac spinors

$$(,)': S \otimes S \to \mathbb{C}$$

which is zero on the subspaces $S_{\pm} \otimes S_{\pm}$.

2 Section References

• In Riemannian signature this pairing fails to be Spin(4)-invariant. Instead, we define a pairing by $(s,t)'' = s^{\dagger}t$ on each Weyl spinor factor, which is manifestly SU(2)-invariant. This yields a nondegenerate equivariant bilinear pairing

$$(,)'': S \otimes S \to \mathbb{C}$$

which is zero on the subspaces $S_{\pm} \otimes S_{\mp}$. This is not invariant for the action of $\mathrm{Spin}(1,3) \cong \mathrm{SL}(2;\mathbb{C})$, or for the action of the complexified group $\mathrm{SL}(2;\mathbb{C}) \times \mathrm{SL}(2;\mathbb{C})$ (take any $A \in \mathrm{SL}(2;\mathbb{C})$ such that $A \neq A^{\dagger}$, and let s and t vary over a basis for S_{+}).

• However, there is a pairing which is equivariant even for the complexified group. We can see this from the Clebsch-Gordan decomposition $S_+ \otimes S_+ \cong \wedge^2 S_+ \oplus \mathbb{C}$, by projection onto the second factor. Concretely, this is given by the trace pairing $(s,t) = \text{Tr}(s \otimes t)$ by identifying the tensor product with the endomorphism algebra. This extends to a nondegenerate $\text{SL}(2;\mathbb{C}) \times \text{SL}(2;\mathbb{C})$ -equivariant bilinear pairing

$$(,): S \otimes S \to \mathbb{C}$$

which is zero on the subspaces $S_{\pm} \otimes S_{\mp}$, and which is a fortiori also equivariant for Spin(i,j) where i+j=4.

The fact that our representations are spinorial means that they extend to the Clifford algebra, and so define a Clifford multiplication map $\rho: S \otimes \mathbb{C}^4 \to S$, which is Spin-equivariant. The vector representation is self-dual as a representation, and we can use a non-degenerate invariant pairing to identify S with its dual, yielding an equivariant map

$$\Gamma: S \otimes S \to \mathbb{C}^4$$
.

The three pairings (,), (,)' and (,)'' yield three Γ pairings of the opposite parity, since Clifford multiplication always reverses parity, and the Γ pairing satisfies the identity

$$\langle \Gamma(s \otimes t), v \rangle = (\rho(v \otimes s), t)^{(')}.$$

Thus (,)' yields a pairing which is Spin(1,3)-equivariant and odd, and the others yields pairings which are even.

References

[Del99] Pierre Deligne. Quantum Fields and Strings; A Course for Mathematicians: Notes on Spinors, volume 1. AMS, 1999.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY 2033 SHERIDAN ROAD, EVANSTON, IL 60208, USA celliott@math.northwestern.edu