FORMPTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER				
TRANSMITTAL LETTER TO THE UNITED STATES	Mo-6110/LeA 33,159			
DESIGNATED/ELECTED OFFICE (DO/EO/US)	U.S. APPLICATION NO. (if known/seco37 CFR i.5)			
CONCERNING A FILING UNDER 35 U.S.C. 371	To Be Assigned			
INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED				
PCT/EP99/04929 July 13, 1999 TITLE OF INVENTION Substituted Benzoylcyclohexandiones	July 24, 1990			
APPLICANT(S) FOR DO/EO/US Hans-Georg Schwarz et al				
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following	owing items and other information:			
1. X This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.				
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.				
3. X This express request to begin national examination procedures (35 U.S.C. 371(f)) at a examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) at A proper Demand for International Preliminary Examination was made by the 19th m	ind PC1 Articles 22 and 39(1).			
5. X A copy of the International Application as filed (35 U.S.C. 371(c)(2))				
a. X is transmitted herewith (required only if not transmitted by the Inter	national Bureau).			
b. has been transmitted by the International Bureau.	eiving Office (RO/US)			
c. is not required, as the application was filed in the United States Rec 6. X A translation of the International Application into English (35 U.S.C. 371(c)	(2))			
 6. X A translation of the International Application into English (35 U.S.C. 371(c)) 7. Amendments to the claims of the International Application under PCT Articles. 	le 19 (35 U.S.C. 371(c)(3))			
The second the second that the	ernational Bureau).			
b. have been transmitted by the International Bureau.	·			
c. have not been made; however, the time limit for making such amend	dments has NOT expired.			
d. have not been made and will not be made.				
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.	.C. 371(c)(3)).			
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).				
	enort under PCT Article 36			
10. A translation of the annexes to the International Preliminary Examination R6 (35 U.S.C. 371(c)(5)).	eport under 1 01 1 maore 00			
Items 11. to 16. below concern document(s) or information included:				
11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.				
12. An assignment document for recording. A separate cover sheet in compliance	ce with 37 CFR 3.28 and 3.31 is included.			
13. X A FIRST preliminary amendment.				
A SECOND or SUBSEQUENT preliminary amendment.				
14. A substitute specification.				
15. A change of power of attorney and/or address letter.	Fig. 1			
The interior of the state of th				
16. Other items or information:				

,				
	A CONTRACTOR OF THE CONTRACTOR			
	April 1			
· · · · · · · · · · · · · · · · · · ·				

528 Recid PCT/PTO 17 JAN 2001 U.S. APPLICATION NO. (IEL norm, see 37 CFR 1.5) 7 8 To Be Assigned 9 INTERNATIONAL APPLICATION NO Mo-6110/LeA 33,159 PCT/EP99/04929 CALCULATIONS PTO USE ONLY 17. X The following fees are submitted: BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$970.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$840.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$670.00 International preliminary examination fee paid to USPTO (37 CFR 1.482) ENTER APPROPRIATE BASIC FEE AMOUNT = 860.00 Surcharge of \$130.00 for furnishing the oath or declaration later than \$ 0.00 months from the earliest claimed priority date (37 CFR 1.492(e)). NUMBER FILED **NUMBER EXTRA RATE** X \$18.00 0.00 20 0 -20 =0.00 X \$78.00 \$ 0 - 3 = 0.00 + \$260.00 \$ MULTIPLE DEPENDENT CLAIM(S) (if applicable) 860.00 TOTAL OF ABOVE CALCULATIONS \$ Reduction of 1/2 for filing by small entity, if applicable. A Small Entity Statement \$ 0.00 must also by filed (Note 37 CFR 1.9, 1.27, 1.28). \$ 860.00 Processing fee of \$130.00 for furnishing the English translation later than 20 \$ 0.00 months from the earliest claimed priority date (37 CFR 1.492(f)). 860.00 \$ TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be \$ accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property 0.00 860.00 \$ TOTAL FEES ENCLOSED Amount to be refunded: \$ charged: A check in the amount of \$_____ to cover the above fees is enclosed. Please charge my Deposit Account No. 13-3848 in the amount of \$860.00 to cover the above fees. A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO: SIGNATURE: Jackie Ann Zurcher Bayer Corporation Jackie Ann Zurcher

42,251

REGISTRATION NUMBER

Form PTO-1390 (REV 12-29-99) page 2 of 2

Pittsburgh, PA 15205-9741

Patent Department 100 Bayer Road

CLAIMS

Independent claims

Total claims

c. [X]

TRANSMITTAL LETTER TO THE UNITED STATES RECEIVING OFFICE

 522 Rec'd POT/2TO 7 JAN 2001

 Date
 January 17, 2001

 International Application No.
 PCT/EP99/04929

 Attorney Docket No.
 Mo-6110/LeA 33,159

I.	Certification under 37 CFR 1.10 (if	f applicable)	.1	09/743876
}	EL062671160US	EL062671160US January 17, 2001		17, 2001
	Express Mail mailing number		Date of	
	I hereby certify that the application/correspondence attach Addressee" service under 37 CFR 1.10 on the date indicate the control of the cont	ated above and is addressed to As	the United States Postal Servicesistant Commissioner for Paten	ce "Express Mail Post Office to ts, Washington, D.C. 20231.
	Do S Veoter		Donna J	. Veatch
	Signature of person mailing corresponden	nce	Typed or printed name of pe	erson mailing correspondence
	N. I. d. Lander			
II.	X New International Application			Earliest priority date
ĺ	TITLE Substituted Benzoylcyclohexandiones (Day/Mon/Year)			
ŀ		(24/07/98)		
,	SCREENING DISCLOSURE INFORM	ATION: In order to assist in	screening the accompanyin	g international
	application for purposes of determining whe	ether a license for foreign tran	smittal should and could be	
]	other purposes, the following information i A. X The invention disclosed was not made	• • •	any boxes as apply):	
ļ	B. X There is no prior U.S. application relati			ł
ŀ		e e	h is related to the invention	disclosed in the
	C. The following prior U.S. application(s) attached international application. (No PCT/RO/101 (Request) and this listing	OTE: priority to these applied	cations may or may not be	claimed on form
	application no.	file	ed on	
	application no.		ed on	
		7		
Ì	D. L. The present international application L.	-		or U.S. application(s) identified
Ì	in paragraph C. above. The additional	subject matter is found on pa		acture of the invention in a
'	and DOES NOT ALTER manner which would require the U.S. a			
į	defense agencies under 35 U.S.C. 181	and 37 CFR 5.1. See 37 CFR	5.15	
III.	A Response to an Invitation from the	e RO/US. The following do	ocument(s) is(are) enclos	ed:
	A. A Request for An Extension of Tir	me to File a Response		
	B. A Power of Attorney (General or I	Regular)		
!	C. Replacement pages:			
	pages of	the request (PCT/RO/101)	pages	of the figures
	pages of	the description	pages	of the abstract
	pages of	the claims		
	D. Submission of Priority Documents		_	
İ	Priority document	Priori	ty document	·
İ	E. Fees as specified on attached Fee Ca	alculation sheet form PCT/RO	/101 annex	
IV.	A Request for Rectification under PC	CT 91 A Petition	A Sequence L	isting Diskette
V.	X Other (please specify): Preliminary A	Amendment		
L				
	Applicant			
The pe	person Ja	ckie Ann Zurcher	Town I was C :	
	inigning this orm is the: X Attorney/Agent (Reg. No.) 42.251 Typed name of signer			
TOTAL IS	42,231	tackii Chan	Junely	
	Common Representative		Signature	
PTO-	-1382 (Rev. 12-1996	U.	S. Department of Commercial	ce: Patent and Trademark Office

PATENT APPLICATION Mo6110 LeA 33,159

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF

)

	1
HANS-GEORG SCHWARZ ET AL) PCT/EP99/04929
SERIAL NUMBER: TO BE ASSIGNED))
FILED: HEREWITH))
TITLE: SUBSTITUTED BENZOYLCYCLO- HEXANDIONES))
PRELIMINARY AME	ENDMENT
Assistant Commissioner for Patents	
Washington, D.C. 20231	
Sir:	
Prior to calculation of the filing fee and ex	xamination of the present application,
please amend the application as follows:	
IN THE SPECIFICATION:	•
Please amend the specification as follow	s:
On page 1, after the title, please insert:	
FIELD OF THE INV	'ENTION
On page 1, after line 5, please insert:	
BACKGROUND OF THE	E INVENTION

"Express Mail" mailing	label number	E	,06267	1160us	l
Date of Deposit	January	<u>17,</u>	2001		
I hereby certify that the Postal Service "Expring 1.10 on the date indicated of Patents and Trader	ess Mail Post Office ated above and is	ce to Ac address	ddressee" ed to the A	service und	ier 37 CFR
Don	na J. Veat	ch nailing/na	per or fee)		
Q	(rearrie of person in	7/1	20th	<u> </u>	
	Signature of person	mailing p	aper or fee)		

On page 1, after line 9, please insert:

--SUMMARY OF THE INVENTION

Novel substituted benzoylcyclohexanediones of the general formula (I),

$$(R^{2})_{m} \xrightarrow{Q} Q \qquad (I)$$

in which

m and n each independently represent the numbers 0, 1, 2 or 3,

- A represents the single bond or represents alkanediyl (alkylene),
- R¹ represents hydrogen or represents in each case optionally substituted alkyl or alkoxycarbonyl,
- represents optionally substituted alkyl, or together with R¹ represents alkanediyl (alkylene) where in this case m represents 1 and R¹ and R² are located at the same carbon atom or at two adjacent carbon atoms,
- R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl,
- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl, and
- z represents an optionally substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains 1 to 4 heteroatoms and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as components of the heterocycle,

Mo6110

- including all possible tautomeric forms of the compounds of the general formula (I) and the possible salts of the compounds of the general formula (I).

DETAILED DESCRIPTION OF THE INVENTION --

IN THE CLAIMS:

Please amend Claims 1-11 as follows:

1. Substituted benzoylcyclohexanediones of the [general] formula (I),

$$(R^2)_{m} \xrightarrow{O} O \qquad (R^4)_{n}$$

$$R^3 \qquad (I)$$

in which

m represents the numbers 0, 1, 2 or 3,

n represents the numbers 0, 1, 2 or 3,

A represents the single bond or represents alkanediyl (alkylene),

- represents hydrogen or represents [in each case optionally]

 <u>unsubstituted or substituted alkyl or alkoxycarbonyl,</u>
- represents [optionally] <u>unsubstituted or</u> substituted alkyl, or together with R¹ represents alkanediyl (alkylene) where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),
- represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents [in each case optionally] <u>unsubstituted or</u> substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl,
- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents [in each case optionally] <u>unsubstituted or</u> substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl, and

Mo6110 - 3 -

z represents an [optionally] <u>unsubstituted or</u> substituted 4- to 12membered, saturated or unsaturated, monocyclic or bicyclic,
heterocyclic grouping which contains 1 to 4 heteroatoms [(up to 4
nitrogen atoms and, if appropriate, - alternatively or additionally - one
oxygen atom or one sulphur atom, or one SO grouping or one SO₂
grouping)], and which additionally contains one to three <u>groups</u>
selected from oxo groups (C=O), thioxo groups (C=S) <u>and mixtures</u>
thereof as components of the heterocycle,

including all possible tautomeric forms of the compounds of the [general] formula (I) and the possible salts of the compounds of the [general] formula (I).

- 2. Substituted benzoylcyclohexanediones according to Claim 1, [characterized in that] wherein:
 - m represents the numbers 0, 1 or 2,
 - n represents the numbers 0, 1 or 2,
 - A represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms,
 - R¹ represents hydrogen, <u>or</u> represents [optionally] <u>unsubstituted or</u> halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl having 1 to 6 carbon atoms or represents alkoxycarbonyl having up to 6 carbon atoms,
 - R² represents [optionally] <u>unsubstituted or</u> halogen-substituted alkyl having 1 to 6 carbon atoms, or together with R¹ represents alkanediyl (alkylene) having 2 to 5 carbon atoms, where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),
 - R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents [in each case optionally] <u>unsubstituted or</u>

Mo6110

halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having [in each case] up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylamino-sulphonyl having [in each case] up to 4 carbon atoms in the alkyl groups,

- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents [in each case optionally] <u>unsubstituted or</u> halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having [in each case] up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having [in each case] up to 4 carbon atoms in the alkyl groups, and represents one of the heterocyclic groupings below

in which the bond drawn broken in each case denotes a single bond or a double bond,

Q represents oxygen or sulphur,

R5 represents hydrogen, hydroxyl, mercapto, cyano, halogen, or represents [in each case optionally] unsubstituted or halogen-. C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 6 carbon atoms in the alkyl groups, or represents [in each case optionally] unsubstituted or halogensubstituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, or represents [in each case optionally] unsubstituted or halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, or represents [in each case optionally] unsubstituted or halogen-substituted cycloalkyl, cycloalkylalkyl, cycloalkyloxy, cycloalkylthio or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, or represents [in each case optionally] unsubstituted or halogen-, C1-C4-alkyl- or C1-C4-alkoxysubstituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, and

represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up

to 6 carbon atoms in the alkenyl or alkinyl groups, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> halogen-substituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents [in each case optionally] <u>unsubstituted or</u> halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted phenyl or benzyl, or together with an adjacent radical R^5 or R^6 represents [optionally] <u>unsubstituted or</u> halogen- or C_1 - C_4 -alkyl-substituted alkanediyl having 3 to 5 carbon atoms, or - in the case that two adjacent radicals R^5 and R^5 are located at a double bond - together with the adjacent radical R^5 also represents a benzo grouping.

- 3. Substituted benzoylcyclohexanediones according to Claim 1, [characterized in that] wherein:
 - m represents the numbers 0, 1 or 2,
 - n represents the numbers 0, 1 or 2,
 - A represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl),
 - R1 represents hydrogen, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-pro-poxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, or represents methoxycarbonyl, ethoxy-carbonyl, n- or i-propoxycarbonyl,
 - represents methyl, ethyl, n- or i-propyl, or together with R¹ represents methylene, ethane-1,1-diyl (ethylidene, -CH(CH₃)-), ethane-1,2-diyl (dimethylene, -CH₂CH₂-), propane-1,3-diyl (trimethylene, -CH₂CH₂CH₂-) or -CH₂CH₂CH₂-), butane-1,4-diyl (tetramethylene, -CH₂CH₂CH₂CH₂-) or

pentane-1,5-diyl (pentamethylene, -CH₂CH₂CH₂CH₂CH₂-), where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"), R^3 represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, or represents [in each case optionally] unsubstituted or fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or ipropoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, or represents [in each case optionally] unsubstituted or fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, or represents [in each case optionally] unsubstituted or fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulphonyl or diethylaminosulphonyl,

represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, or represents [in each case optionally] unsubstituted or fluorine-, [and/or] chlorine-, fluorine and chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, or represents [in each case optionally] unsubstituted or fluorine-, [and/or] chlorine-, fluorine and chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino,

Mo6110

R⁴

diethylamino, dimethylaminosulphonyl or diethylaminosulphonyl, and

Z represents one of the heterocyclic groupings below

$$Q = \begin{pmatrix} Q & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$Q = \begin{pmatrix} P_5 & P_5$$

$$Q = \begin{pmatrix} Q & Q & Q \\ Q & Q & Q \end{pmatrix}$$

$$Q = \begin{pmatrix} Q & Q & Q \\ Q & Q & Q \end{pmatrix}$$

$$Q = \begin{pmatrix} Q & Q & Q \\ Q & Q & Q \\ Q & Q & Q \end{pmatrix}$$

$$Q = \begin{pmatrix} R^5 \\ N \\ N \\ R^6 \end{pmatrix}$$

$$Q = \begin{pmatrix} R^5 \\ R^5 \\ R^5 \end{pmatrix}$$

in which the bond drawn broken in each case denotes a single bond or a double bond,

- Q represents oxygen or sulphur,
- represents hydrogen, hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, iodine, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or t-butoxy-, methylthio-, ethylthio-, n- or i-propylthio-, n-, i-, s- or t-butylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-,

Mo6110

ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl. n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or ipropoxy, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or ipropylthio, n-, i-, s- or t-butylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or ipropylsulphonyl, represents methylamino, ethylamino, n- or ipropylamino, n-, i-, s- or t-butylamino, dimethylamino, diethylamino, di-n-propylamino or di-i-propylamino, or represents [in each case optionally] unsubstituted or fluorine-, [and/or] chlorine-, or fluorine and chlorine-substituted ethenyl, propenyl, butenenyl, ethinyl, propinyl, butinyl, propenyloxy, butenyloxy, propenylthio, butenylthio, propenylamino or butenylamino, or represents [in each case optionally] unsubstituted or fluorine-, [and/or] chlorine-, or fluorine and chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, cyclopropylamino, cyclobutylamino, cyclopentylamino or cyclohexylamino, or represents [in each case optionally] unsubstituted or fluorine-, chlorine-, methyl-, ethyl-, nor i-propyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or ipropoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, and represents hydrogen, hydroxyl, amino, or represents [in each case optionally] unsubstituted or fluorine-, [and/or] chlorine-, or fluorine and chlorine-, methoxy-, or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, methoxy, ethoxy, n- or ipropoxy, methylamino, ethylamino or dimethylamino, or represents [in each case optionally] unsubstituted or fluorine-,

 R^6

[and/or] chlorine-, or fluorine and chlorine-substituted ethenyl,

propenyl, ethinyl, propinyl or propenyloxy, <u>or</u> represents [in each case optionally] <u>unsubstituted or</u> fluorine-, [and/or] chlorine-, <u>or</u> fluorine and chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, or represents [in each case optionally] <u>unsubstituted or</u> fluorine-, chlorine-, methyl-, ethyl-, nor i-propyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents [in each case optionally] <u>unsubstituted or</u> methyl- and/or ethyl-substituted propane-1,3-diyl (trimethylene) or butane-1,4-diyl (tetramethylene), or - in the case that two adjacent radicals R⁵ and R⁵ are located at a double bond - together with the adjacent radical R⁵ also represents a benzo grouping.

4. Substituted benzoylcyclohexanediones according to Claim 1, [characterized by the general] <u>having the</u> formula (IA),

$$(R^2)_m$$
 R^1
 $(R^4)_n$
 $(R^4)_n$
 R^5
 (IA)

in which

m represents the numbers 0, 1 or 2,

n represents the numbers 0, 1 or 2,

A represents a single bond or represents methylene,

Q represents oxygen or sulphur,

R¹ represents hydrogen, methyl, ethyl, n- or i-propyl,

Mo6110

R² represents methyl,

represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

R4 represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinyl-methyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

R5 represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents cyclopropyl, and

R6 represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.

5. Substituted benzoylcyclohexanediones according to Claim 1, [characterized by the general] having the formula (IB),

$$(R^{2})_{m} \xrightarrow{Q} (R^{4})_{n} \qquad (IB)$$

[in which]

in which

m represents the numbers 0, 1 or 2,

n represents the numbers 0, 1 or 2,

Mo6110 - 14 -

A represents a single bond or represents methylene,

Q represents oxygen or sulphur,

R¹ represents hydrogen, methyl, ethyl, n- or i-propyl,

R² represents methyl,

represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

R⁴ represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, ethylsulphonyl, ethylsulphonyl,

represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, or represents cyclopropyl, and

R6 represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.

6. Substituted benzoylcyclohexanediones according to Claim 1, [characterized by the general] <u>having the</u> formula (IC),

$$(R^{2})_{m}$$

$$R^{1}$$

$$R^{3}$$

$$R^{5}$$

$$(IC)$$

in which

- m represents the numbers 0, 1 or 2,
- n represents the numbers 0, 1 or 2,
- A represents a single bond or represents methylene,
- Q represents oxygen or sulphur,
- R1 represents hydrogen, methyl, ethyl, n- or i-propyl,
- R² represents methyl,
- represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methyl-sulphinylmethyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,
- represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinyl-methyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphonyl, ethylsulphonyl, or dimethylaminosulphonyl,
- represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, or represents cyclopropyl, and
- R6 represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.
- 7. Substituted benzoylcyclohexanediones according to [any of Claims 1 to 6, characterized in that] <u>Claim 1, wherein</u> the salts are the sodium, potassium, magnesium, calcium, ammonium, C₁-C₄-alkyl-ammonium, di-(C₁-C₄-alkyl)-ammonium, tri-(C₁-C₄-alkyl)-ammonium, tri-(C₁-C₄-alkyl)-ammonium, tri-(C₁-C₄-alkyl)-benzyl-alkyl)-sulphonium, C₅- or C₆-cycloalkyl-ammonium and di-(C₁-C₂-alkyl)-benzyl-ammonium salts.

8. [Process] A process for preparing substituted benzoylcyclohexanediones according to [any of Claims 1 to 6, characterized in that] Claim 1, comprising the step of reacting 1,3-cyclohexanedione or its derivatives of the [general] formula (II),

$$(R^2)_{m} = \begin{pmatrix} 0 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

in which

m, R^1 and R^2 are each as defined in [any of Claims 1 to 6] <u>Claim 1</u> [are reacted] with substituted benzoic acids of the [general] formula [Formel] (III),

HO
$$(R^4)_n$$
 (III)

in which

n, A, R^3 , R^4 and Z are each as defined in [any of Claims 1 to 6] <u>Claim 1</u>, in the presence of a dehydrating agent <u>to obtain a product [, if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,</u>

and, if appropriate, the compounds of the formula (I) obtained in this manner are subsequently subjected in a customary manner, within the scope of the definition of the substituents, to electrophilic or nucleophilic or oxidation or reduction reactions, or the compounds of the formula (I) are converted in a customary manner into salts].

Mo6110

9. Substituted benzoic acids of the [general] formula (III),

HO
$$(R^4)_n$$
 (III)

in which

- n, A, R³, R⁴ and Z are each as defined in [any of Claims 1 to 6] <u>Claim 1</u>, except for the compounds 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and 2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one.
- 10. A method of controlling undesirable plants, comprising the step of applying [Use of at least] one <u>or more</u> substituted benzoylcyclohexanedione according to [any of Claims 1 to 6] <u>Claim 1</u> [for controlling] <u>to</u> undesirable plants<u>or</u> their habitats.
- 11. Herbicidal compositions, characterized in that they contain [at least] one <u>or more</u> substituted benzoylcyclohexanedione according to [any of Claims 1 to 6] <u>Claim 1</u> and [customary] <u>an extender[s]</u>.

Please add the following claims:

- --12. Substituted benzoylcyclohexanediones according to Claim 1, wherein:
- Z represents an unsubstituted or substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen or sulphur, SO, SO₂ or mixtures thereof.
- 13. Substituted benzoylcyclohexanediones according to Claim 1, wherein:
- Z represents an unsubstituted or substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains which contains 1 to 4 nitrogen.
- 14. Substituted benzoylcyclohexanediones according to Claim 1, wherein:
- z represents an unsubstituted or substituted 4- to 12-membered,
 saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping

Mo6110 - 18 -

- which contains one heteroatom selected from the group consisting of oxygen, sulphur atom, SO and SO_2 .
- 15. Substituted benzoylcyclohexanediones according to Claim 1, wherein:
- A represents a single bond or represents alkylene having 1 to 4 carbon atoms,
- represents hydrogen, or represents unsubstituted or halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl having 1 to 6 carbon atoms or represents alkoxycarbonyl having up to 6 carbon atoms,
- represents unsubstituted or halogen-substituted alkyl having 1 to 6 carbon atoms, or together with R¹ represents alkylene having 2 to 5 carbon atoms, where in this case m represents 1 and R¹ and R² are located at the same carbon atom or at two adjacent carbon atoms,
- represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents unsubstituted or halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having up to 4 carbon atoms in the alkyl groups, and
- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents unsubstituted or halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having up to 4 carbon atoms in the alkyl groups.
- 16. A process according to Claim 8, wherein the step of reacting the 1,3-cyclohexanedione or its derivatives with the substituted benzoic acids occurs in the

presence of an ingredient selected from the group consisting of reaction auxiliaries, diluents and mixtures thereof.

- 17. A process according to Claim 8, further comprising the step of subjecting the product to a reaction selected from to group consisting of electrophilic reactions, nucleophilic reactions, oxidation reactions, reduction reactions, and conversions to salts.
- 18. A process for preparing substituted benzoylcyclohexanediones according to Claim 1, comprising the step of reacting 1,3-cyclohexanedione or its derivatives of the formula (II),

$$(R^2)_{m}$$
 (II)

in which

m, R¹ and R² are each as defined in Claim 1, with a derivative of a substituted benzoic acid of the formula (III),

HO
$$A Z$$
 (III)

in which

n, A, R³, R⁴ and Z are each as defined Claim 1, in the presence of a dehydrating agent to obtain a product; wherein the derivative of the substituted benzoic acid is selected from the group consisting of carbonyl chlorides, carboxylic anhydrides, carboxylic acid cyanides, methyl carboxylates and ethyl carboxylates.

- 19. A process according to Claim 8, further comprising the step of preparing the substituted benzoic acids of the formula (III) by:
- (a) reacting water and a compound of the formula (IV),

Mo6110 - 20 -

in which

n, A, \mathbb{R}^3 and \mathbb{R}^4 and Z are as defined in Claim 1, and

Y represents cyano, carbamoyl, halogenocarbamoyl or alkoxycarbonyl, or

(b) reacting a halogeno(alkyl)benzoic acid of the formula (V),

HO
$$\begin{array}{c}
(R^4)_n \\
R^3
\end{array}$$
(V)

in which

n, A, \mathbb{R}^3 and \mathbb{R}^4 are as defined in Claim 1 and

X represents halogen

with a compound of the formula (VI)

$$H_{\sim_7}$$
 (VI)

in which

Z is as defined in Claim 1.

20. Substituted benzoic acids of the formula (III),

HO
$$(R^4)_n$$

$$A Z$$

$$R^3$$
(III)

in which

n represents the numbers 0, 1, 2 or 3,

A represents the single bond or represents alkylene,

Mo6110

- represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents unsubstituted or substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl,
- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents unsubstituted or substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl, and
- z represents an unsubstituted or substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains 1 to 4 heteroatoms, and which additionally contains one to three groups selected from oxo groups (C=O), thioxo groups (C=S) and mixtures thereof as components of the heterocycle;

with the proviso that 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and 2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one are excluded.--

REMARKS

By present amendment the claims have been amended to present the claims in accordance with customary U.S. practice, care having been exercised to avoid any introduction of new matter.

Claims 1-11 have been amended as to form and to remove multiple dependencies. Claims 12-20 have been added. Support for Claims 12-14 can be found in original Claim 1, while support for Claim 15 can be found in original Claim 2 and support for Claims 16-17 can be found in original Claim 8. Support for Claim 18 can be found in the specification on page 48, lines 21-25. While support for Claim 19 can be found on page 51, line 6-page 52, line 19 and support for Claim 20 can be found on page 50, line 21-page 51, line 4.

The specification has been amended to include section headings in accordance with customary U.S. practice, and to include a Summary of the

Mo6110 - 22 -

09/743876 528 Rec'd PCT/PTO 17 JAN 2001

Invention. Support for the amendment to the specification can be found in original Claim 1 and on page 1, line 11-page 2, line 22.

The amendments to the claims and the specification do not involve any introduction of new matter, whereby entry is believed to be in order and is respectively requested.

Respectfully submitted,

HANS-GEORG SCHWARZ
KLAUS-HELMUT MÜLLER
STEFAN LEHR
OTTO SCHALLNER
MARK WILHELM DREWES
DIETER FEUCHT
ROLF PONTZEN
INGO WETCHOLOWSKY
HEINZ-JÜRGEN WROBLOWSKY

Ву _____

Jackie A. Zurcher Attorney for Applicants Reg. No. 42,251

K

Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-5682 FACSIMILE PHONE NUMBER: (412) 777-5449

/jme/JAZ0009

Le A 33 159-Foreign Countries Kri/ngb/NT

			a apply more greek all
- "Express Mail" mailing	label number 17	L0626 7 11	160US -
Date of Deposit	January 17,	2001	

I hereby certify that this paper or fee is being deposited with the United States
Postal Service "Express Mail Post Office to Addressee" service under 37 CFR
1-1.10 on the date indicated above and is addressed to the Assistant Commissioner
of Patents and Trademarks, Washington, D.C. 20231

	, , ,
	Donna J. Veatch
	(Name of person mailing paper or fee)
	Down Vloter
	Signature of person mailing paper or fee)
-	00/7/128/6

Substituted benzoylcyclohexanediones

528 Rec'd PCT/PTO 17 JAN

The invention relates to novel substituted benzoylcyclohexanediones, to processes for their preparation and to their use as herbicides.

It is already known that certain substituted benzoylcyclohexanediones have herbicidal properties (cf. EP-A-090262, EP-A-135191, EP-A-186118, EP-A-186119, EP-A-186120, EP-A-319075, WO-A-96/26200, WO-A-97/46530, WO-A-99/07688). However, the activity of these compounds is not in all respects satisfactory.

This invention, accordingly, provides the novel substituted benzoylcyclohexanediones of the general formula (I),

$$(R^{2})_{m} \xrightarrow{Q} Q \qquad (R^{4})_{n}$$

$$R^{1} \qquad Q \qquad R^{3} \qquad (I)$$

in which

20

25

5

10

- m represents the numbers 0, 1, 2 or 3,
- n represents the numbers 0, 1, 2 or 3,
- A represents the single bond or represents alkanediyl (alkylene),
- R¹ represents hydrogen or represents in each case optionally substituted alkyl or alkoxycarbonyl,
- R^2 represents optionally substituted alkyl, or together with R^1 represents alkanediyl (alkylene) where in this case m represents 1 and R^1 and R^2 are

5

10

20

25

30

located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),

- R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl,
- R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl, and
- z represents an optionally substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and, if appropriate, alternatively or additionally one oxygen atom or one sulphur atom, or one SO grouping or one SO₂ grouping), and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as components of the heterocycle,

- including all possible tautomeric forms of the compounds of the general formula (I) and the possible salts of the compounds of the general formula (I).

In the definitions, the hydrocarbon chains, such as alkyl or alkanediyl, are in each case straight-chain or branched - including in combination with heteroatoms, such as in alkoxy.

In addition to the compounds of the general formula (I) - above - it is in each case also possible for the corresponding tautomeric forms - shown in exemplary manner below - to be present.

5

15

20

25

Preferred substituents of the radicals listed in the formula shown above are illustrated below:

m preferably represents the numbers 0, 1 or 2.

n preferably represents the numbers 0, 1 or 2.

10 A preferably represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms.

R¹ preferably represents hydrogen, represents optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonylsubstituted alkyl having 1 to 6 carbon atoms or represents alkoxycarbonyl having up to 6 carbon atoms.

preferably represents optionally halogen-substituted alkyl having 1 to 6 carbon atoms, or together with R¹ represents alkanediyl (alkylene) having 2 to 5 carbon atoms, where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal").

R³ preferably represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thio-carbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having

in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having in each case up to 4 carbon atoms in the alkyl groups.

- preferably represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having in each case up to 4 carbon atoms in the alkyl groups.
 - Z preferably represents one of the heterocyclic groupings below

in which the bond drawn broken in each case denotes a single bond or a double bond,

Q represents oxygen or sulphur,

5

 $m R^5$ represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally cyano-, halogen-, $\rm C_1\text{-}C_4\text{-}alkoxy$ -, $\rm C_1\text{-}C_4\text{-}$

C₁-C₄-alkylsulphonyl-C₁-C₄-alkylsulphinylor alkylthio-, substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 6 carbon atoms in the alkyl groups, represents propadienylthio, represents in each case optionally halogen-substituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkoxy, cycloalkylalkylthio or cycloalkylalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino, piperidino or morpholino, or - in the case that two adjacent radicals R5 and R5 are located at a double bond - together with the adjacent radical R⁵ also represents a benzo grouping, and

20

25

30

R6

5

10

15

represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents in each case

optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted phenyl or benzyl, or together with an adjacent radical R^5 or R^6 represents optionally halogen- or C_1 - C_4 -alkyl-substituted alkanediyl having 3 to 5 carbon atoms,

5

where the individual radicals R⁵ and R⁶ - if two or more of them are attached to the same heterocyclic groupings, may have identical or different meanings in the context of the above definition.

10

A particularly preferably represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl).

15

particularly preferably represents hydrogen, represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, or represents methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl.

20

 R^2

particularly preferably represents methyl, ethyl, n- or i-propyl, or together with R¹ represents methylene, ethane-1,1-diyl (ethylidene, -CH(CH₃)-), ethane-1,2-diyl (dimethylene, -CH₂CH₂-), propane-1,3-diyl (trimethylene, -CH₂CH₂CH₂-), butane-1,4-diyl (tetramethylene, -CH₂CH₂CH₂CH₂-) or pentane-1,5-diyl (pentamethylene, -CH₂CH₂CH₂CH₂CH₂-), where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal").

25

R³ particularly preferably represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-,

30

ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine-and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylamino, dimethylamino, sulphonyl or diethylaminosulphonyl.

10

15

 R^4

5

particularly preferably represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, dimethylamino, dimethylaminosulphonyl or diethylaminosulphonyl.

20

25

Z particularly preferably represents the heterocyclic grouping below

 R^5

5

10

15

20

particularly preferably represents hydrogen, hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or tbutoxy-, methylthio-, ethylthio-, n- or i-propylthio-, n-, i-, s- or t-butylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl, n- or ipropyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or tbutoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or t-butylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, represents methylamino, ethylamino, n- or i-propylamino, n-, i-, s- or t-butylamino, dimethylamino, diethylamino, di-n-propylamino or di-i-propylamino, represents in each case optionally fluorine- and/or chlorine-substituted ethenyl, propenyl, butenenyl, ethinyl, propinyl, butinyl, propenyloxy, butenyloxy, propenylthio, butenylthio, propenylamino or butenylamino, represents in each case optionally fluorineand/or chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, cyclopropylmethylthio, cyclobutylmethylthio, cyclopentylmethylthio, cyclohexylmethylthio, cyclopropylmethylamino, cyclobutylmethylamino, cyclopentylmethylamino or cyclohexylmethylamino, or represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, or in the case that two adjacent radicals ${\bf R}^5$ and ${\bf R}^5$ are located at a double bond -

together with the adjacent radical R⁵ also represents a benzo grouping,

30

25

R6 particularly preferably represents hydrogen, hydroxyl, amino, represents in each case optionally fluorine- and/or chlorine-, methoxy- or ethoxysubstituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, methoxy, ethoxy, nor i-propoxy, methylamino, ethylamino or dimethylamino, represents in each case optionally fluorine- and/or chlorine-substituted ethenyl, propenyl, ethinyl, propinyl or propenyloxy, represents in each case optionally fluorineand/or chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl, or represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or ipropoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents in each case optionally methyl- and/or ethyl-substituted propane-1,3-diyl (trimethylene), butane-1,4-divl (tetramethylene) pentane-1,5-diyl (pentamethylene),

15

10

5

where the individual radicals R⁵ and R⁶ - if two or more of them are attached to the same heterocyclic groupings, may have identical or different meanings in the context of the above definition.

20

- A very particularly preferably represents a single bond or represents methylene.
- R¹ very particularly preferably represents hydrogen, methyl, ethyl, n- or i-propyl.
- R² very particularly preferably represents methyl.

25

30

R³ very particularly preferably represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl.

5

10

15

20

25

 R^5

R4 very particularly preferably represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphonyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl.

very particularly preferably represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluorodichloromethyl, fluoro-i-propyl, chloro-i-propyl, dichloroethyl, fluoro-n-propyl, fluoro-i-propyl, chloro-i-propyl, methoxymethyl, ethoxymethyl, methoxyethyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or i-propylthio, fluoroethylthio, chloroethylthio, difluoroethylthio, dichloroethylthio, chloroefluoroethylthio, fluorodichloroethylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or phenoxy.

very particularly preferably represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cycloproypyl or cyclopropylmethyl, or together with R⁵ represents propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene).

30 A most preferably represents methylene.

5

10

20

The invention preferably provides the sodium, potassium, magnesium, calcium, ammonium, C_1 - C_4 -alkyl-ammonium-, di- $(C_1$ - C_4 -alkyl)-ammonium-, tri- $(C_1$ - C_4 -alkyl)-ammonium, tri- $(C_1$ - C_4 -alkyl)-sulphonium, C_5 - or C_6 -cycloalkyl-ammonium and di- $(C_1$ - C_2 -alkyl)-benzyl-ammonium salts of the compounds of the formula (I), in which m, n, A, R^1 , R^2 , R^3 , R^4 and Z are each as defined above.

Preference according to the invention is given to compounds of the formula (I) which contain a combination of the meanings mentioned above as being preferred.

Particular preference according to the invention is given to compounds of the formula (I) which contain a combination of the meanings listed above as being particularly preferred.

Very particular preference according to the invention is given to the compounds of the formula (I) which contain a combination of the meanings listed above as being very particularly preferred.

Compounds of the general formulae (IA), (IB) and (IC) below are particularly emphasized as being according to the invention:

$$(R^{2})_{m} \xrightarrow{Q} (IB)$$

$$R^{1} \xrightarrow{Q} (R^{4})_{n} \qquad R^{3} \qquad R^{5}$$

in which

5

15

20

m represents the numbers 0, 1 or 2,

n represents the numbers 0, 1 or 2,

A particularly preferably represents a single bond or represents methylene,

10 Q represents oxygen or sulphur,

R1 represents hydrogen, methyl, ethyl, n- or i-propyl,

R² represents methyl,

R³ represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methyl-sulphin-ylmethyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

R⁴ represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluorodichloromethyl, fluoro-i-propyl, chloro-i-propyl, difluoro-i-propyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or i-propylthio, fluoroethylthio, chlorodifluoroethylthio, difluoroethylthio, dichloroethylthio, chlorofluoroethylthio, chlorofluoroethylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or phenoxy, and

R6 represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cyclopropyl or cyclopropylmethyl, or together with R⁵ represents propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene).

Here, very particular emphasis is given to the compounds of the formula (IA) in which A represents methylene.

5

10

15

20

25

The abovementioned general or preferred radical definitions apply both to the end products of the formula (I) and also, correspondingly, to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another at will, i.e. including combinations between the given preferred ranges.

Examples of compounds of the general formula (I) according to the invention are listed in the groups below.

10 <u>Group 1</u>

5

$$(IA-1)$$

$$(R^4)_n$$

$$R^3$$

$$(IA-1)$$

Here, R³, (R⁴)_n, R⁵ and R⁶ each have, for example, the meanings given in the table below:

	^
Ŀ	•

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Н	-	CF ₃	CH ₃
F	-	CF ₃	CH ₃
Cl	-	CF ₃	CH ₃
Br	-	CF ₃	CH ₃
I	-	CF ₃	CH ₃
NO ₂	-	CF ₃	CH ₃
CN	-	CF ₃	CH ₃
CH ₃	-	CF ₃	CH ₃
OCH ₃	-	CF ₃	CH ₃

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
CF ₃	-	CF ₃	CH ₃
OCHF ₂	-	CF ₃	CH ₃
OCF ₃	-	CF ₃	CH ₃
SO ₂ CH ₃	-	CF ₃	CH ₃
Н	-	OCH ₃	CH ₃
F	-	OCH ₃	CH ₃
Cl	-	OCH ₃	CH ₃
Br	-	OCH ₃	CH ₃
I	-	OCH ₃	CH ₃
NO ₂	-	OCH ₃	CH ₃
CN	-	OCH ₃	CH ₃
CH ₃	-	OCH ₃	CH ₃
OCH ₃	-	OCH ₃	CH ₃
CF ₃	-	OCH ₃	CH ₃
OCHF ₂	•	OCH ₃	CH ₃
OCF ₃	-	OCH ₃	CH ₃
SO ₂ CH ₃	· -	OCH ₃	CH ₃
Н	-	SCH ₃	CH ₃
F	-	SCH_3	CH ₃
Cl	-	SCH ₃	CH ₃
Br	-	SCH ₃	CH ₃
I	-	SCH ₃	CH ₃
NO ₂		SCH ₃	CH ₃
CN	-	SCH ₃	CH ₃
CH ₃	-	SCH ₃	CH ₃
OCH ₃	-	SCH ₃	CH ₃
CF ₃	-	SCH ₃	CH ₃
OCHF ₂	-	SCH ₃	CH ₃
OCF ₃	-	SCH ₃	CH ₃

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	-	SCH ₃	CH ₃
Н	-	OC_2H_5	CH ₃
F	-	OC ₂ H ₅	CH ₃
Cl	-	OC ₂ H ₅	CH ₃
Br	-	OC ₂ H ₅	CH ₃
I	-	OC ₂ H ₅	CH ₃
NO ₂	-	OC ₂ H ₅	CH ₃
CN	-	OC ₂ H ₅	CH ₃
CH ₃	-	OC ₂ H ₅	CH ₃
OCH ₃	-	OC ₂ H ₅	CH ₃
CF ₃	-	OC ₂ H ₅	CH ₃
OCHF ₂	-	OC ₂ H ₅	CH ₃
OCF ₃	-	OC ₂ H ₅	CH ₃
SO ₂ CH ₃	-	OC ₂ H ₅	CH ₃
Н	-	N(CH ₃) ₂	CH ₃
F	-	N(CH ₃) ₂	CH ₃
Cl	-	N(CH ₃) ₂	CH ₃
Br	-	N(CH ₃) ₂	CH ₃
I	-	N(CH ₃) ₂	CH ₃
NO ₂	-	N(CH ₃) ₂	CH ₃
CN	-	N(CH ₃) ₂	CH ₃
CH ₃	-	N(CH ₃) ₂	CH ₃
OCH ₃	-	N(CH ₃) ₂	CH ₃
CF ₃	-	N(CH ₃) ₂	CH ₃
OCHF ₂	-	N(CH ₃) ₂	CH ₃
OCF ₃	-	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	-	N(CH ₃) ₂	CH ₃
H	-	OCH ₃	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
F	-	OCH ₃	\triangle
Cl	-	OCH ₃	\triangle
Br	-	OCH ₃	
I	-	OCH ₃	
NO ₂	-	OCH ₃	
CN	-	OCH ₃	
CH ₃	-	OCH ₃	
OCH ₃	-	OCH₃	\triangle
CF ₃	-	OCH ₃	\triangle
OCHF ₂	-	OCH ₃	\triangle
OCF ₃	-	OCH ₃	\triangle
SO ₂ CH ₃	-	OCH ₃	\triangle
H	(3-) Cl	CF ₃	CH ₃
F	(3-) Cl	CH ₃	CH ₃
Cl	(3-) Cl	OCH ₃	CH ₃
Br	(3-) Cl	Br	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(3-) Cl	CF ₃	CH ₃
NO ₂	(3-) Cl	CH ₃	CH ₃
Cl	(3-) Cl	SCH ₃	CH ₃
CH ₃	(3-) Cl	Cl	CH ₃
OCH ₃	(3-) Cl	OCH ₃	CH ₃
CF ₃	(3-) Cl	CF ₃	CH ₃
OCHF ₂	(3-) Cl	CH ₃	CH ₃
OCF ₃	(3-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(3-) Cl	OCH ₃	CH ₃

Group 2

5

Here R³, (R⁴)_n, R⁵ and R⁶ each have, for example, the meanings given in the table below:

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	\mathbb{R}^6
Cl	(2-) Cl	CF ₃	CH ₃
Cl	(2-) Cl	SCH ₃	CH ₃
Cl	(2-) Cl	SC_2H_5	CH ₃
Cl	(2-) Cl	SC ₃ H ₇	CH ₃
Cl	(2-) Cl	SC ₃ H ₇ -i	CH ₃

R ³	(position-)(R ⁴) _n	\mathbb{R}^5	R ⁶
Cl	(2-) Cl	s	CH₃
Cl	(2-) Cl	. 's	$\mathrm{CH_3}$
Cl	(2-) Cl	S CH3	CH₃
Cl	(2-) Cl	8	CH ₃
Cl	(2-) Cl	\$	$\mathrm{CH_3}$
Cl	(2-) Cl	SCH=C=CH ₂	CH ₃
Cl	(2-) Cl	SCH ₂ CN	CH ₃
Cl	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
Cl	(2-) Cl	OCH ₃	CH ₃
Cl	(2-) Cl	OC ₂ H ₅	CH ₃
Cl	(2-) Cl	OC ₃ H ₇	CH ₃
Cl	(2-) Cl	OC ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	OC ₄ H ₉	CH ₃
Cl	(2-) Cl	OCH ₂ CF ₃	CH ₃
Cl	(2-) Cl		СН3
Cl	(2-) Cl	OC ₆ H ₅	CH ₃
Cl	(2-) Cl	Н	CH ₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	CH ₃	CH ₃
Cl	(2-) Cl	C ₂ H ₅	CH ₃
Cl	(2-) Cl	C_3H_7	CH ₃
Cl	(2-) CI	C ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	C ₄ H ₉	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -i	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -s	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -t	CH ₃
Cl	(2-) Cl	\triangle	CH ₃
Cl	(2-) Cl	\triangle	CH ₃
Cl	(2-) Cl	CH=CHCH ₃	CH ₃
Cl	(2-) Cl		CH ₃
Cl	(2-) CI	CI	CH ₃
Cl	(2-) Cl		CH ₃
Cl	(2-) Cl	N(CH ₃) ₂	CH ₃
Cl	(2-) CI	N	CH₃
Cl	(2-) Cl	Cl	CH ₃
Cl	(2-) Cl	Br	CH ₃
SO ₂ CH ₃	(2-) Cl	CF ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₃	CH ₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) Cl	s	СН3
SO₂CH₃	(2-) Cl	S CH3	CH ₃
SO₂CH₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) Cl	S	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH₂CN	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₄ H ₉	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	CH ₃

R³	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	7	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	Н	CH ₃
SO ₂ CH ₃	(2-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	CH ₃
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -t	CH ₃
SO ₂ CH ₃	(2-) Cl	\triangle	CH ₃
SO ₂ CH ₃	(2-) Cl	\bigcirc	CH ₃
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl		CH ₃
SO ₂ CH ₃	(2-) Cl	CI	CH ₃
SO ₂ CH ₃	(2-) Cl		CH ₃
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	N	CH₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	Cl	CH ₃
SO ₂ CH ₃	(2-) Cl	Br	CH ₃
Cl	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	S CH3	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH₂CN	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	CH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	OC₃H₁-i	CH ₃

R³	(position-)(R ⁴) _n	R ⁵	R ⁶
CI	(2-) SO ₂ CH ₃	OC ₄ H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	Н	CH ₃
Cl	(2-) SO ₂ CH ₃	CH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	C₄H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	C₄H9-i	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -t	CH ₃
Cl	(2-) SO ₂ CH ₃	\triangle	CH ₃
Cl	(2-) SO ₂ CH ₃	\triangle	CH ₃
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	CI	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	N	CH ₃
Cl	(2-) SO ₂ CH ₃	. Cl	CH ₃
Cl	(2-) SO ₂ CH ₃	Br	CH ₃
Cl	(2-) Cl	CF ₃	\triangle
Cl	(2-) Cl	SCH ₃	\triangle
Cl	(2-) Cl	SC ₂ H ₅	\triangle
Cl	(2-) Cl	SC₃H₁	\triangle
Cl	(2-) Cl	SC₃H₁-i	\triangle
Cl	(2-) Cl	s	\triangle
Cl	(2-) Cl	s	\triangle
CI	(2-) CI	S CH3	\triangle
Cl	(2-) CI	s	\triangle

R^3	(position-)(R ⁴) _n	R ⁵	\mathbb{R}^6
Cl			
CI	(2-) CI	s	
Cl	(2-) Cl	SCH=C=CH ₂	\triangle
Cl	(2-) Cl	SCH₂CN	\triangle
Cl	(2-) Cl	SCH ₂ CH ₂ CN	\triangle
Cl	(2-) Cl	OCH ₃	\triangle
Cl	(2-) Cl	OC ₂ H ₅	\triangle
Cl	(2-) Cl	OC ₃ H ₇	\triangle
Cl	(2-) Cl	OC₃H ₇ -i	\triangle
Cl	(2-) Cl	OC₄H ₉	\triangle
Cl	(2-) Cl	OCH ₂ CF ₃	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	OC ₆ H₅	\triangle

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	Н	\triangle
Cl	(2-) Cl	CH ₃	\triangle
Cl	(2-) Cl	C ₂ H ₅	\triangle
Cl	(2-) Cl	C ₃ H ₇	\triangle
Cl	(2-) Cl	C ₃ H ₇ -i	\triangle
Cl	(2-) Cl	C ₄ H ₉	\triangle
Cl	(2-) Cl	C ₄ H ₉ -i	\triangle
Cl	(2-) Cl	C ₄ H ₉ -s	\triangle
Cl	(2-) Cl	C₄H ₉ -t	\triangle
Cl	(2-) Cl	\triangle	\triangle
Cl	(2-) Cl	\bigcirc	\triangle
Cl	(2-) Cl	CH=CHCH ₃	\triangle
Cl	(2-) CI		\triangle

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶ .
Cl	(2-) CI	CI	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	N(CH ₃) ₂	\triangle
Cl	(2-) CI	N	\triangle
Cl	(2-) Cl	Cl	\triangle
Cl	(2-) Cl	Br	\triangle
SO ₂ CH ₃	(2-) Cl	CF ₃	\triangle
SO ₂ CH ₃	(2-) Cl	SCH₃	\triangle
SO ₂ CH ₃	(2-) CI	SC₂H₅	\triangle
SO ₂ CH ₃	(2-) Cl	SC₃H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) Cl	s	\triangle

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	s	
SO ₂ CH ₃	(2-) Cl	S CH3	\triangle
SO ₂ CH ₃	(2-) Cl	s	\triangle
SO₂CH₃	(2-) Cl	s	\triangle
SO ₂ CH ₃	(2-) CI	SCH=C=CH ₂	\triangle
SO ₂ CH ₃	(2-) Cl	SCH₂CN	\triangle
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	\triangle
SO ₂ CH ₃	(2-) Cl	OCH ₃	\triangle
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	\triangle
SO ₂ CH ₃	(2-) Cl	OC₃H₁	\triangle
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) Cl	OC₄H ₉	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) CI	OCH ₂ CF ₃	\triangle
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	\triangle
SO ₂ CH ₃	(2-) Cl	Н	\triangle
SO ₂ CH ₃	(2-) Cl	CH ₃	\triangle
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	\triangle
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	\triangle
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -i	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -t	\triangle
SO ₂ CH ₃	(2-) Cl	\triangle	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	\triangle
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	CI	\triangle
SO ₂ CH ₃	(2-) CI		\triangle
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	\triangle
SO ₂ CH ₃	(2-) CI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\triangle
SO ₂ CH ₃	(2-) Cl	Cl	\triangle
SO ₂ CH ₃	(2-) Cl	Br	\triangle
Cl	(2-) SO ₂ CH ₃	CF ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	\triangle

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	\triangle
Cl	(2-) SO ₂ CH ₃	s	\triangle
Cl	(2-) SO ₂ CH ₃	S	\triangle
Cl	(2-) SO ₂ CH ₃	S Luch3	\triangle
Cl	(2-) SO ₂ CH ₃	s	\triangle
Cl	(2-) SO ₂ CH ₃	s	\triangle
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	\triangle
Cl	(2-) SO ₂ CH ₃	SCH₂CN	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₃	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	OC₃H₁-i	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₄ H ₉	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	\triangle
CI	(2-) SO ₂ CH ₃		\triangle
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	\triangle
Cl	(2-) SO ₂ CH ₃	Н	\triangle
Cl	(2-) SO ₂ CH ₃	CH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	
Cl	(2-) SO ₂ CH ₃	C_3H_7	
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	\triangle
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -t	\triangle
Cl	(2-) SO ₂ CH ₃	\triangle	\triangle
Cl	(2-) SO ₂ CH ₃	\searrow	\triangle
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃		\triangle
Cl	(2-) SO ₂ CH ₃	CI	\triangle
Cl	(2-) SO ₂ CH ₃		\triangle
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	\triangle
Cl	(2-) SO ₂ CH ₃	N	\triangle
Cl	(2-) SO ₂ CH ₃	Cl	\triangle

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	Br	\triangle
Cl	(2-) Cl	CF ₃	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₃	N(CH ₃) ₂
Cl	(2-) Cl	SC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	SC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	SC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	s	N(CH ₃) ₂
Cl	(2-) CI	s	N(CH ₃) ₂
Cl	(2-) Cl	S CH3	N(CH ₃) ₂
Cl	(2-) Cl	s	N(CH ₃) ₂
Cl	(2-) Cl	S	N(CH ₃) ₂
Cl	(2-) Cl	SCH=C=CH ₂	$N(CH_3)_2$
Cl	(2-) Cl	SCH₂CN	$N(CH_3)_2$
Cl	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
Cl	(2-) Cl	OCH ₃	$N(CH_3)_2$
Cl	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) CI	OC ₃ H ₇	$N(CH_3)_2$
Cl	(2-) Cl	OC ₃ H ₇ -i	N(CH ₃) ₂

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	OC₄H ₉	N(CH ₃) ₂
Cl	(2-) CI	OCH ₂ CF ₃	N(CH ₃) ₂
Cl	(2-) Cl	∇	N(CH ₃) ₂
		0	
Cl	(2-) Cl	OC ₆ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	Н	N(CH ₃) ₂
Cl	(2-) Cl	CH ₃	N(CH ₃) ₂
Cl	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	C ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	C ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -s	N(CH ₃) ₂
Cl	(2-) Cl	C₄H ₉ -t	N(CH ₃) ₂
Cl	(2-) Cl	Δ	N(CH ₃) ₂
Cl	(2-) Cl	\triangle	N(CH ₃) ₂
Cl	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	CI	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	N(CH ₃) ₂	N(CH ₃) ₂

R³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	N	N(CH ₃) ₂
Cl	(2-) Cl	Cl	N(CH ₃) ₂
Cl	(2-) Cl	Br	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	CF ₃	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	SCH ₃	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	$N(CH_3)_2$
SO ₂ CH ₃	(2-) CI	SC ₃ H ₇	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	S CH3	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH₃)₂
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	OC ₄ H ₉	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		$N(CH_3)_2$
		0	
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	Н	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	CH ₃	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	$N(CH_3)_2$
SO ₂ CH ₃	(2-) CI	C ₃ H ₇ -i	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -t	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	\triangle	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	\bigcirc	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CI	N(CH ₃) ₂

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R^6
SO ₂ CH ₃	(2-) Cl		
5020113	(2-) C1		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	\bigcirc 0	N(CH ₃) ₂
		N	
SO ₂ CH ₃	(2-) CI	Cl	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Br	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CF ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
		s	
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
			3/2
		S	
Cl	(2-) SO ₂ CH ₃	.c ^N CH₃	N(CH ₃) ₂
- CI	(2) (2)	S	
Cl	(2-) SO ₂ CH ₃].	$N(CH_3)_2$
7		`s´	
Cl	(2-) SO ₂ CH ₃	∇	$N(CH_3)_2$
		`S´	
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	$N(CH_3)_2$

R ³	(position-)(R ⁴) _n	R ⁵	\mathbb{R}^6
Cl	(2-) SO ₂ CH ₃	SCH ₂ CN	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC₄H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	∇	N(CH ₃) ₂
	(2) (2) (3)	0	NY/CIT \
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Н	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	CH ₃	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -t	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	\triangle	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	\mathbb{R}^6
Cl	(2-) SO ₂ CH ₃	CI	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	N	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Cl	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	Br	$N(CH_3)_2$
Cl	(2-) Cl	CH ₃	OCH ₃
Cl	(2-) Cl	C_2H_5	OCH ₃
Cl	(2-) Cl	C_3H_7	OCH ₃
Cl	(2-) Cl	SCH ₃	OCH ₃
Cl	(2-) Cl	SC ₂ H ₅	OCH ₃
Cl	(2-) Cl	OCH ₃	OCH ₃
Cl	(2-) Cl	OC ₂ H ₅	OCH ₃
Cl	(2-) Cl	CH ₃	OC ₂ H ₅
Cl	(2-) Cl	C ₂ H ₅	OC ₂ H ₅
Cl	(2-) Cl	C_3H_7	OC ₂ H ₅
Cl	(2-) Cl	SCH ₃	OC ₂ H ₅
Cl	(2-) Cl	SC ₂ H ₅	OC_2H_5
Cl	(2-) Cl	OCH ₃	OC ₂ H ₅
Cl	(2-) Cl	OC ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	CH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OCH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₃	OCH ₃

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	CH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	SCH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	OCH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	Cl	OCH ₃
SO ₂ CH ₃	(2-) Cl	Br	OCH ₃
SO ₂ CH ₃	(2-) CI	CH ₃	OCH ₃
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OCH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OCH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₃	OCH ₃
SO ₂ CH ₃	(2-) CI	SC ₂ H ₅	OCH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	CH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	SCH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	OCH ₃	OC ₂ H ₅
CF ₃	(2-) Cl	Br	CH ₃
CF ₃	(2-) Cl	SCH ₃	CH ₃
CF ₃	(2-) Cl	OCH ₃	CH ₃
CF ₃	(2-) Cl	N(CH ₃) ₂	CH ₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
CF ₃	(2-) Cl	CF ₃	CH ₃
CF ₃	(2-) NO ₂	Br	CH ₃
CF ₃	(2-) NO ₂	SCH ₃	CH ₃
CF ₃	(2-) NO ₂	OCH ₃	CH ₃
CF ₃	(2-) NO ₂	N(CH ₃) ₂	CH ₃
CF ₃	(2-) NO ₂	CF ₃	CH ₃
CF ₃	(2-) CH ₃	Br	CH ₃
CF ₃	(2-) CH ₃	SCH ₃	CH ₃
CF ₃	(2-) CH ₃	OCH ₃	CH ₃
CF ₃	(2-) CH ₃	N(CH ₃) ₂	CH ₃
CF ₃	(2-) CH ₃	CF ₃	CH ₃
CF ₃	(2-) OCH ₃	Br	CH ₃
CF ₃	(2-) OCH ₃	SCH ₃	CH ₃
CF ₃	(2-) OCH ₃	OCH ₃	CH ₃
CF ₃	(2-) OCH ₃	N(CH ₃) ₂	CH ₃
CF ₃	(2-) OCH ₃	CF ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	Br	CH ₃
SO ₂ CH ₃	(2-) NO ₂	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) NO ₂	CF ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	Br	CH ₃
SO ₂ CH ₃	(2-) CF ₃	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) CF ₃	CF ₃	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	Br	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	OCH ₃	CH ₃

\mathbb{R}^3	(position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	CF ₃	CH ₃
CN	(2-) Cl	Br	CH ₃
CN	(2-) Cl	SCH ₃	CH ₃
CN	(2-) Cl	OCH ₃	CH ₃
CN	(2-) CI	N(CH ₃) ₂	CH ₃
CN	(2-) Cl	CF ₃	CH ₃
CN	(2-) NO ₂	Br	CH ₃
CN	(2-) NO ₂	SCH ₃	CH ₃
CN	(2-) NO ₂	OCH ₃	CH ₃
CN	(2-) NO ₂	N(CH ₃) ₂	CH ₃
CN	(2-) NO ₂	CF ₃	CH ₃
CN	(2-) CF ₃	Br	CH ₃
CN	(2-) CF ₃	SCH ₃	CH ₃
CN	(2-) CF ₃	OCH ₃	CH ₃
CN	(2-) CF ₃	N(CH ₃) ₂	CH ₃
CN	(2-) CF ₃	CF ₃	CH ₃
CN	(2-) SO ₂ CH ₃	Br	CH ₃
CN	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
CN	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
CN	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
CN	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Br	(2-) NO ₂	Br	CH ₃
Br	(2-) NO ₂	SCH ₃	CH ₃
Br	(2-) NO ₂	OCH ₃	CH ₃
Br	(2-) NO ₂	N(CH ₃) ₂	CH ₃
Br	(2-) NO ₂	CF ₃	CH ₃
Br	(2-) CF ₃	Br	CH ₃
Br	(2-) CF ₃	SCH ₃	CH ₃

R ³	(position-)(R ⁴) _n	R ⁵	R ⁶
Br	(2-) CF ₃	OCH ₃	CH ₃
Br	(2-) CF ₃	$N(CH_3)_2$	CH ₃
Br	(2-) CF ₃	CF ₃	CH ₃
Br	(2-) SO ₂ CH ₃	Br	CH ₃
Br	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
Br	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
Br	(2-) SO ₂ CH ₃	$N(CH_3)_2$	CH ₃
Br	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Br	(2-) CH ₃	Br	CH ₃
Br	(2-) CH ₃	SCH ₃	CH ₃
Br	(2-) CH ₃	OCH ₃	CH ₃
Br	(2-) CH ₃	$N(CH_3)_2$	CH ₃
Br	(2-) CH ₃	CF ₃	CH ₃

Group 3

5

$$(R^4)_n$$
 R^5
 $(IA-2)$

Here, R^3 , $(R^4)_n$, R^5 and R^6 each have, for example, the meanings given above in Group 1.

Group 4

Here, R³, (R⁴)_n, R⁵ und R⁶ each have, for example, the meanings given above in Group 2.

The novel substituted benzoylcyclohexanediones of the general formula (I) have strong and selective herbicidal activity.

The novel substituted benzoylcyclohexanediones of the general formula (I) are obtained when 1,3-cyclohexanedione or its derivatives of the general formula (II),

$$(R^2)_{m} = \begin{pmatrix} O & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

in which,

10

20

m, R¹ and R² are each as defined above,

are reacted with substituted benzoic acids of the general formula (III),

$$HO \longrightarrow A_Z$$
 (III)

in which

10

15

20

25

n, A, R³, R⁴ and Z are each as defined above,

5 in the presence of a dehydrating agent, if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

and, if appropriate, the compounds of the formula (I) obtained in this manner are subsequently subjected in a customary manner, within the scope of the definition of the substituents, to electrophilic or nucleophilic or oxidation or reduction reactions, or the compounds of the formula (I) are converted in a customary manner into salts.

The compounds of the formula (I) can be converted into other compounds of the formula (I) in accordance with the definition above using customary methods, for example by nucleophilic substitution (for example R^5 : $Cl \rightarrow OC_2H_5$, SCH_3) or by oxidation (for example R^5 : $CH_2SCH_3 \rightarrow CH_2S(O)CH_3$).

In principle, the compounds of the general formula (I) can also be synthesized as shown schematically below:

Reaction of 1,3-cyclohexanedione or its derivatives of the general formula (II) - above - with reactive derivatives of the substituted benzoic acids of the general formula (III) - above - in particular with the corresponding carbonyl chlorides, carboxylic anhydrides, carboxylic acid cyanides, methyl carboxylates or ethyl carboxylates - if appropriate in the presence of reaction auxiliaries, such as, for example, triethylamine (and, if appropriate, additionally zinc chloride), and, if appropriate, in the presence of a diluent, such as, for example, methylene chloride:

$$(R^{2})_{m} \xrightarrow{P} O \qquad (R^{4})_{n}$$

$$R^{3} \qquad (I)$$

(Y for example CN, Cl)

In the reactions outlined above for preparing the compounds of the general formula (I), there is, in addition to the desired C-benzoylation at the cyclohexanedione, also an O-benzoylation - cf. equation below (cf. Synthesis 1978, 925-927; Tetrahedron Lett. 37 (1996), 1007-1009, WO-A-91/05469). However, the O-benzoyl compounds formed in this process are, under the reaction conditions of the process according to the invention, isomerized to the corresponding C-benzoyl compounds of the formula (I).

$$(R^{2})_{m} + (R^{4})_{n}$$

$$R^{3}$$

$$(R^{2})_{m} + (R^{4})_{n}$$

$$R^{3}$$

$$(R^{2})_{m} + (R^{4})_{n}$$

$$R^{3}$$

$$(I)$$

Using, for example, 1,3-cyclohexanedione and 2-(3-carboxy-5-fluorobenzyl)-5-ethyl-4-methoxy-2,4-dihydro-3H-1,2,4-triazol-3-one as starting materials, the course of the reaction in the process according to the invention can be outlined by the following equation:

The formula (II) provides a general definition of the cyclohexanediones to be used as starting materials in the process according to the invention for preparing compounds of the formula (I). In the formula (II), m, R¹ and R² each preferably have those meanings which have already been given above, in connection with the description of the compounds of the formula (I) according to the invention, as being preferred, as being particularly preferred for m, R¹ and R².

The starting materials of the general formula (II) are known and/or can be prepared by processes known per se.

The formula (III) provides a general definition of the substituted benzoic acids further to be used as starting materials in the process according to the invention for preparing compounds of the formula (I). In the formula (III), n, A, R³, R⁴ and Z each preferably have those meanings which have already been given above, in connection with the description of the compounds of the formula (I) according to the invention, as being preferred, as being particularly preferred, as being wery particularly preferred or as being most preferred for n, A, R³, R⁴ and Z.

20

25

15

5

10

Except for 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one - alias 2,4-dichloro-5-(4-difluoromethyl-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoic acid (CAS-Reg.-No. 90208-77-8) and 2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one alias 2,4-dichloro-5-(4,5-dihydro-3,4-dimethyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoic acid (CAS-Reg.-No. 90208-76-7) - the starting materials of the general formula (III) have hitherto not been disclosed in the literature. Except for 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and

2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one (cf. JP-A-58225070 - quoted in Chem. Abstracts 100:209881, JP-A-02015069 - quoted in Chem. Abstracts 113:23929), they also form, as novel compounds, part of the subject matter of the present application.

5

The novel substituted benzoic acids of the general formula (III), are obtained when benzoic acid derivatives of the general formula (IV),

in which

n, A, R^3 and R^4 and Z are each as defined above, and

15

Y represents cyano, carbamoyl, halogenocarbamoyl or alkoxycarbonyl,

are reacted with water, if appropriate in the presence of a hydrolysis auxiliary, such as, for example, sulphuric acid, at temperatures between 50°C and 120°C (cf. the Preparation Examples).

- 20
- The benzoic acid derivatives of the general formula (IV) required as precursors are known and/or can be prepared by processes known per se (cf. DE-A-3839480, DE-A-4239296, EP-A-597360, EP-A-609734, DE-A-4303676, EP-A-617026, DE-A-4405614, US-A-5378681).

The novel substituted benzoic acids of the general formula (III) are also obtained

when halogeno(alkyl)benzoic acids of the general formula (V),

HO
$$(R^4)_n$$

$$(V)$$

in which

n, A, R³ and R⁴ are each as defined above and

5

X represents halogen (in particular fluorine, chlorine or bromine)

are reacted with compounds of the general formula (VI)

 H_{Z} (VI)

10

in which

Z is as defined above,

15

if appropriate in the presence of a reaction auxiliary, such as, for example, triethylamine or potassium carbonate, and if appropriate in the presence of a diluent, such as, for example, acetone, acetonitrile, N,N-dimethyl-formamide or N,N-dimethyl-acetamide, at temperatures between 50°C and 200°C (cf. the Preparation Examples).

20

25

Instead of the halogeno(alkyl)benzoic acids of the general formula (V), it is also possible, similarly to the methods described above, to react appropriate nitriles, amides and esters - in particular the methyl esters or the ethyl esters - with compounds of the general formula (VI). By subsequent hydrolysis according to customary methods, for example by reaction with aqueous-ethanolic potassium hydroxide solution, it is then possible to obtain the corresponding substituted benzoic acids.

The halogeno(alkyl)benzoic acids of the formula (V) - or corresponding nitriles or esters - required as precursors are known and/or can be prepared by processes known per se (cf. EP-A-90369, EP-A-93488, EP-A-399732, EP-A-480641, EP-A-609798, EP-A-763524, DE-A-2126720, WO-A-93/03722, WO-A-97/38977, US-A-3978127, US-A-4837333).

The compounds of the general formula (VI) further required as precursors are known and/or can be prepared by processes known per se.

10

5

The process according to the invention for preparing the novel substituted benzoylcyclohexanediones of the general formula (I) is carried out using a dehydrating agent. Here, suitable dehydrating agents are the customary chemicals which are suitable for binding water.

15

Examples of these are dicyclohexylcarbodiimide and carbonyl-bis-imidazole.

A particularly suitable dehydrating agent is dicyclohexylcarbodiimide.

20

The process according to the invention for preparing novel substituted benzoylcyclohexanediones of the general formula (I) is, if appropriate, carried out using a reaction auxiliary.

25

Examples of these are sodium cyanide, potassium cyanide, acetone cyanohydrin, 2-cyano-2-(trimethylsilyloxy)-propane and trimethylsilyl cyanide.

The particularly suitable further reaction auxiliary is trimethylsilyl cyanide.

30

The process according to the invention for preparing the novel substituted benzoylcyclohexanediones of the general formula (I) is, if appropriate, carried out using a further reaction auxiliary. Suitable further reaction auxiliaries for the process

according to the invention are, in general, basic organic nitrogen compounds, such as, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, ethyldiisopropylamine, N,N-dimethyl-cyclohexylamine, dicyclohexylamine, ethyldicyclohexylamine, N,N-dimethyl-aniline, N,N-dimethyl-benzylamine, pyridine, 2-methyl-, 3-methyl-, 4-methyl-, 2,4-dimethyl-, 2,6-dimethyl-, 3,4-dimethyl- and 3,5-dimethyl-pyridine, 5-ethyl-2-methyl-pyridine, 4-dimethylamino-pyridine, N-methyl-piperidine, 1,4-diazabicyclo[2.2.2]-octane (DABCO), 1,5-diazabicyclo[4.3.0]-non-5-ene (DBN), or 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU).

Suitable diluents for carrying out the process according to the invention are, in particular, inert organic solvents. These include, in particular, aliphatic, alicyclic or aromatic, optionally halogenated hydrocarbons, such as, for example, benzine, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, chloroform, tetrachloromethane or 1,2-dichloroethane; ethers, such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether or ethylene glycol diethyl ether; ketones, such as acetone, butanone or methyl isobutyl ketone; nitriles, such as acetonitrile, propionitrile or butyronitrile; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-formanilide, N-methyl-pyrrolidone or hexamethyl-phosphoric triamide; esters such as methyl acetate or ethyl acetate, sulphoxides, such as dimethylsulphoxide.

When carrying out the process according to the invention, the reaction temperatures can be varied within a relatively wide range. In general, the process is carried out at temperatures between 0°C and 150°C, preferably between 10°C and 120°C.

The process according to the invention is generally carried out under atmospheric pressure. However, it is also possible to carry out the process according to the invention under elevated or reduced pressure - in general between 0.1 bar and 10 bar.

5

10

15

20

5

10

15

20

25

30

For carrying out the process according to the invention, the starting materials are generally employed in approximately equimolar amounts. However, it is also possible to use a relatively large excess of one of the components. The reaction is generally carried out in a suitable diluent in the presence of a dehydrating agent, and the reaction mixture is generally stirred at the required temperature for several hours. Work-up is carried out by customary methods (cf. the Preparation Examples).

The active compounds according to the invention can be used as defoliants, desiccants, haulm killers and, especially, as weedkillers. By weeds in the broadest sense, there are to be understood all plants which grow in locations where they are not wanted. Whether the substances according to the invention act as total or selective herbicides depends essentially on the amount used.

The active compounds according to the invention can be used, for example, in connection with the following plants:

<u>Dicotyledonous weeds of the genera:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

<u>Dicotyledonous crops of the genera:</u> Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monocotyledonous weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis,

5

10

20

25

30

Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monocotyledonous crops of the genera: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

However, the use of the active compounds according to the invention is in no way restricted to these genera, but also extends in the same manner to other plants.

The compounds are suitable, depending on the concentration, for the total control of weeds, for example on industrial terrain and railway tracks, and on paths and open spaces with or without tree plantings. Equally, the compounds can be employed for the control of weeds in perennial crops for example forests, decorative tree plantings, orchards, vineyards, citrus groves, nut orchards, banana plantations, coffee plantations, tea plantations, rubber plantations, oil palm plantations, cocoa 15 plantations, soft fruit plantings and hopfields, in lawns, turf and pasture land, and for the selective control of weeds in annual crops.

The compounds of the formula (I) according to the invention are particularly suitable for the selective control of monocotyledonous and dicotyledonous weeds in monocotyledonous crops, both pre-emergence and postemergence.

The active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusting agents, pastes, soluble powders, granules, suspo-emulsion concentrates, natural and synthetic materials impregnated with active compound, and very fine capsules in polymeric substances.

These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is liquid solvents and/or solid carriers, 5

10

15

20

25

30

optionally with the use of surfactants, that is emulsifying agents and/or dispersing agents and/or foam-forming agents.

If the extender used is water, it is also possible to employ for example organic solvents as auxiliary solvents. Suitable liquid solvents are essentially the following: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol and also their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

Suitable solid carriers are: for example ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates; suitable solid carriers for granules are: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, and also synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks; suitable emulsifying and/or foam-forming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates as well as protein hydrolysates; suitable dispersing agents are: for example lignin-sulphite waste liquors and methylcellulose.

Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latexes, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, as well as natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids, can be used in the formulations. Other possible additives are mineral and vegetable oils.

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

The formulations in general contain between 0.1 and 95 per cent by weight of active compound, preferably between 0.5 and 90%.

For the control of weeds, the active compounds according to the invention, as such or in the form of their formulations, can also be used as mixtures with known herbicides, finished formulations or tank mixes being possible.

Possible components for the mixtures are known herbicides, for example

15

20

25

30

10

5

acetochlor, acifluorfen(-sodium), aclonifen, alachlor, alloxydim(-sodium), ametryne, amidochlor, amidosulfuron, anilofos, asulam, atrazine, azafenidin, azimsulfuron, benazolin(-ethyl), benfuresate, bensulfuron(-methyl), bentazon, benzofenap, benzovlprop(-ethyl), bialaphos, bifenox, bispyribac(-sodium), bromobutide, bromofenoxim, bromoxynil, butachlor, butroxydim, butylate, cafenstrole, caloxydim, carbetamide, carfentrazone(-ethyl), chlomethoxyfen, chloramben, chloridazon, chlorimuron(-ethyl), chlornitrofen, chlorsulfuron, chlortoluron, cinidon(-ethyl), cinmethylin, cinosulfuron, clethodim, clodinafop(-propargyl), clomazone, clomeprop, clopyralid, clopyrasulfuron(-methyl), cloransulam(-methyl), cumyluron, cyanazine, cybutryne, cycloate, cyclosulfamuron, cycloxydim, cyhalofop(-butyl), 2.4-D, 2.4-DB, 2.4-DP, desmedipham, diallate, dicamba, diclofop(-methyl), diclosulam, diethatyl(-ethyl), difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimexyflam, dinitramine, diphenamid, diquat, dithiopyr, diuron, dymron, epoprodan, EPTC, esprocarb, ethalfluralin, ethametsulfuron(-methyl), ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop(-P-ethyl), flamprop(-isopropyl), flamprop(-isopropyl-L),

flamprop(-methyl), flazasulfuron, fluazifop(-P-butyl), fluazolate, flucarbazone, flufenacet, flumetsulam, flumiclorac(-pentyl), flumioxazin, flumipropyn, flumetsulam, fluometuron, fluorochloridone, fluoroglycofen(-ethyl), flupoxam, flupropacil, flurpyrsulfuron(-methyl, -sodium), flurenol(-butyl), fluridone, fluroxypyr(-meptyl), flurprimidol, flurtamone, fluthiacet(-methyl), fluthiamide, fomesafen, glufosinate-(-ammonium), glyphosate(-isopropylammonium), halosafen, haloxyfop(-ethoxyethyl), haloxyfop(-P-methyl), hexazinone, imazamethabenz(-methyl), imazamethapyr, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, lactofen, lenacil, linuron, MCPA, MCPP, mefenacet, mesotrione, metamitron, metazachlor, methabenzthiazuron, metobenzuron, metobromuron, (alpha-)metolachlor, metosulam, metoxuron, metribuzin, metsulfuron(methyl), molinate, monolinuron, naproanilide, napropamide, neburon, nicosulfuron, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pelargonic acid, pendimethalin, pentoxazone, phenmedipham, piperophos, pretilachlor, primisulfuron(-methyl), procarbazone, prometryn, propachlor, propanil, propaquizafop, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyraflufen(-ethyl), pyrazolate, pyrazosulfuron(-ethyl), pyriminobac(-methyl), pyributicarb, pyridate, pyrazoxyfen, pyribenzoxim, pyrithiobac(-sodium), quinchlorac, quinmerac, quinoclamine, quizalofop(-P-ethyl), quizalofop(-P-tefuryl), rimsulfuron, sethoxydim, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron(-methyl), sulfosate, sulfosulfuron, tebutam, tebuthiuron, tepraloxydim, terbuthylazine, terbutryn, thenylchlor, thiafluamide, thiazopyr, thidiazimin, thifensulfuron(-methyl), thiobencarb, tiocarbazil, tralkoxydim, triallate, triasulfuron, tribenuron(-methyl), triclopyr, tridiphane, trifluralin and triflusulfuron.

Mixtures with other known active compounds, such as fungicides, insecticides, acaricides, nematicides, bird repellents, plant nutrients and agents which improve soil structure, are also possible.

5

10

15

20

The active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspensions, emulsions, powders, pastes and granules. They are used in the customary manner, for example by watering, spraying, atomizing, scattering.

5

The active compounds according to the invention can be applied either before or after emergence of the plants. They can also be incorporated into the soil before sowing.

10

The amount of active compound used can vary within a relatively wide range. It depends essentially on the nature of the desired effect. In general, the amounts used are between 1 g and 10 kg of active compound per hectare of soil surface, preferably between 5 g and 5 kg per ha.

15

The preparation and use of the active compounds according to the invention can be seen from the following examples.

Preparation Examples:

Example 1

$$\bigcap_{O} \bigcap_{N=O-C_2H_5} \bigcap_{O-C_2H_5}$$

5

10

15

1.2 g (3.48 mmol) of 5-ethoxy-4-methyl-2-(2-carboxy-5-trifluoromethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one are suspended in 30 ml of acetonitrile and, at room temperature (approximately 20°C), admixed with 0.39 g (3.48 mmol) of 1,3-cyclohexanedione and 0.76 g (3.7 mmol) of dicyclohexylcarbodiimide (DCC). The reaction mixture is stirred at room temperature overnight (approximately 15 hours) and then admixed with 1.0 ml (7.0 mmol) of triethylamine and 0.10 ml (1.39 mmol) of trimethylsilyl cyanide. After 3 hours at room temperature, the mixture is stirred with 100 ml of 5% strength aqueous sodium carbonate solution, the dicyclohexylurea that separates out is filtered off with suction and the alkaline aqueous phase is repeatedly extracted with ethyl acetate. The aqueous phase is then adjusted to pH 2 using 35% strength hydrochloric acid and extracted repeatedly with methylene chloride. The methylene chloride phases are dried over sodium sulphate and concentrated.

20

This gives 0.8 g (52% of theory) of 5-ethoxy-4-methyl-2-[2-(2,6-dioxo-cyclohexyl-carbonyl)-5-trifluoromethyl-benzyl]-2,4-dihydro-3H-1,2,4-triazol-3-one as an amorphous residue.

25

logP (determined at pH=2): 2.70.

Example 2

5

10

15

A solution of 1.5 g (7.2 mmol) of dicyclohexylcarbodiimide in 40 ml of acetonitrile is added to a suspension of 2.15 g (6.5 mmol) of 2-(4-carboxy-3-chloro-phenyl)-4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one, 0.83 g (7.2 mmol) of 1,3-cyclohexanedione and 40 ml of acetonitrile, and the reaction mixture is stirred at 20°C for 16 hours. 1.3 g (13 mmol) of triethylamine and 0.26 g (2.6 mmol) of trimethylsilyl cyanide are then added, and the reaction mixture is stirred at 20°C for a further 4 hours. The mixture is then stirred with 180 ml of 2% strength aqueous sodium carbonate solution and filtered off with suction. The mother liquor is extracted with ethyl acetate. The aqueous phase is then acidified using 2N hydrochloric acid and extracted with methylene chloride. The organic phase is dried, concentrated under water pump vacuum and digested with diethyl ether/petroleum ether. The resulting crystalline product is isolated by filtration with suction.

20

This gives 1.6 g (59% of theory) of 2-[4-(2,6-dioxocyclohexylcarbonyl)-3-chlorophenyl]-4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 182°C.

logP (determined at pH=2): 3.13.

25

By the methods of Preparation Examples 1 and 2, and in accordance with the general description of the preparation processes according to the invention, it is also possible

to prepare, for example, the compounds of the formula (I) - or of the formulae (IA-3), (IB-2), (IC-2) or (ID) - listed in Tables 1 and 2 below.

Table 1: Examples of compounds of the formulae (IA-3), (IB-2), (IC-2)

Ex. No.	A	R ³	(position) (R ⁴) _n	R5	R ⁶	(formula) physical data
3	-	Н	Н	CF ₃	CH ₃	(IC-2)
						$\log P = 2.41a$
4	CH ₂	CF3	Н	\triangle		(IA-3)
						$\log P = 2.41a$
5	CH ₂	SO ₂ CH ₃	H	\triangle	\triangle	(IB-2)
						m.p.: 153°C
6	CH ₂	SO ₂ CH ₃	Н	CH ₃	CH ₃	(IA-3)
						m.p.: 162°C
7	CH ₂	Cl	Н	CH ₃	CH ₃	(IB-2)
:						$\log P = 1.50^{a}$
8	CH ₂	Cl	Н	CF ₃	CH ₃	(IB-2)
					:	$\log P = 2.44a$
9	CH ₂	Cl	Н	\triangle	Δ	(IB-2)
						$\log P = 2.23b$
10	CH ₂	Br	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3)
						$\log P = 2.68a$
11	CH ₂	F	Н	OC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 1.73a$
12	СН2	F	Н	SCH ₃	СН3	(IA-3)
						$\log P = 1.99a)$
13	CH ₂	F	Н	SO ₂ CH ₃	CH ₃	(IA-3)
						$\log P = 1.83a$
14	СН2	Br	Н	CH ₃	СН3	(IB-2)
						$\log P = 1.57a$
15	CH ₂	Br	H	OC ₂ H ₅	CH ₃	(IB-2)
						m.p.: 132°C

Ex. No.	A	R ³	(position) (R ⁴) _n	R5	R6	(formula) physical data
16	СН2	Br	Н	\triangle	\triangle	(IB-2) $logP = 2.31a$
17	CH ₂	Cl	Н	OC ₂ H ₅	\triangle	(IA-3) $logP = 3.03a$
18	СН2	Cl	Н	CF ₃	СН3	(IA-3) $logP = 2.75a)$
19	СН2	Cl	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2.60a$
20	СН2	NO ₂	Н	SCH ₃	СН3	(IA-3) $logP = 2.04a$
21	СН2	CF ₃	Н	OC ₂ H ₅	\triangle	(IA-3) $logP = 3.02a$
22	СН2	CF ₃	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2.91a)$
23	СН2	CF ₃	Н	SCH ₃	СН3	(IA-3) $logP = 2.59a)$
24	CH ₂	ОСН3	Н	OC ₂ H ₅	CH ₃	(IA-3) $logP = 1.99a)$
25	СН2	OCH ₃	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2.18a$
26	CH ₂	Br	Н	OC ₂ H ₅	СН3	(IA-3) $logP = 2.46a$
27	СН2	Br	Н	CF ₃	СН3	(IA-3) $logP = 2.85a)$
28	СН2	Н	Н	CF ₃	СН3	(IA-3) $logP = 2.33a$
29	CH ₂	CF ₃	Н	OCH ₃	СН3	(IA-3) $logP = 2.35a)$

£

Ex. No.	A	R ³	(position) (R ⁴) _n	R ⁵	R6	(formula) physical data
30	CH ₂	F	H	CF ₃	CH ₃	(IA-3) $logP = 2.47a)$
31	СН2	F	Н	С2Н5	OC ₂ H ₅	(IA-3) $logP = 2.28a$
32	СН2	F	Н	OCH ₃	СН3	(IA-3) $logP = 1.76a)$
33	СН2	H	Н	OC ₂ H ₅	СН3	(IA-3) $logP = 1.93a)$
34	СН2	Н	Н	OCH ₃	СН3	(IA-3) $logP = 1.61a$
35	-	Н	(2) CF ₃	CF ₃	CH ₃	(IC-2) m.p.: 190°C
36	-	Н	Н	CF ₃	CH ₃	(IA-3) logP = 2.48 a
37	-	Cl	Н	CF ₃	CH ₃	(IA-3) $logP = 2.83^{a}$
38	-	Н	(2) Cl	CH ₃	CH ₃	(IC-2) m.p.: 196°C
39	СН2	Cl	(2) Cl	CF ₃	CH ₃	(IB-2) $\log P = 2.79^{a}$
40	-	Br	Н	CF ₃	CH ₃	(IA-3) $\log P = 2.90^{a}$
41	СН2	Cl	(2) Cl	SCH ₃	CH ₃	(IB-2) $\log P = 2.38^{a}$
42	СН2	CI	(2) Cl	OC ₂ H ₅	CH ₃	(IB-2) $\log P = 2.48^{a}$
43	CH ₂	Cl	(2) Cl	\triangle	\triangle	(IB-2) $\log P = 2.62^{a}$

_ _		1	T		_	
Ex. No.	A	R ³	(position) (R ⁴) _n	R ⁵	R6	(formula)
110.	A	, Ro	(K.)n	RS	Ro	physical data
44	CH ₂	Cl	(2) CI	OCH ₃	CH ₃	(IB-2)
					,	, ,
						$logP = 2.14^{a}$
45	CH ₂	Cl	(2) Cl	OC ₃ H ₇ -i	CH ₃	(IB-2)
						$\log P = 2.79^{a}$
46	CH ₂	CI	(2) Cl	OCH ₂ CF ₃	CH ₃	(IB-2)
						$\log P = 2.84^{a}$
47	CH ₂	Cl	(2) Cl	Br	CH ₃	(IB-2)
						$logP = 2.26^{a}$
48	CH ₂	Cl	(2) Cl	Н	CH ₃	(IB-2)
						$\log P = 1.69^{a}$
49	CH ₂	Cl	(2) Cl	\wedge	CH ₃	(IB-2)
						$\log P = 2.25^{a}$
50	CH ₂	Cl	(2) Cl	$N(CH_3)_2$	CH ₃	(IB-2)
						$\log P = 2.18^{a}$
51	CH ₂	Cl	(2) Cl	CH ₃	CH ₃	(IB-2)
						$\log P = 1.79^{a}$
52	CH ₂	Cl	(2) Cl	$R^5 + R^6$:	(CH ₂) ₄	(IB-2)
						$\log P = 1.98^{a}$
53	CH ₂	Cl	(2) Cl	OCH ₃		(IB-2)
						$\log P = 2.45^{a}$
54	CH ₂	Cl	(2) Cl	OC ₂ H ₅		(IB-2)
						$\log P = 2.79^{a}$
55	СН2	Cl	(2) Cl	OC ₃ H ₇ -i	\wedge	(IB-2)
						$\log P = 3.14^{a}$
56	CH ₂	Cl	(2) CI	OCH ₂ CF ₃	\wedge	(IB-2)
						$\log P = 3.18^{a}$
57	СН2	Cl	(2) Cl	SCH ₃	\wedge	(IB-2)
						$\log P = 2.77^{a}$
L						L

Ex. No.	A	R ³	(position) (R ⁴) _n	R5	R6	(formula) physical data
58	CH ₂	Cl	(2) Cl	N(CH ₃) ₂	\triangle	(IB-2) $\log P = 2.49^{a}$
59	СН2	CI	(2) Cl	CH ₃	\triangle	(IB-2) $\log P = 2.09^{a}$
60	CH ₂	Cl	(2) Cl	C ₂ H ₅	OC ₂ H ₅	(IB-2) $\log P = 2.65^{a}$
61	CH ₂	CF ₃	Н	CF ₃	CH ₃	$(IA-3)$ $logP = 3.06^{a}$
62	CH ₂	Н	Н	C_2H_5	OC ₂ H ₅	$(IA-3)$ $logP = 2.10^{a}$
63	CH ₂	Н	Н	SCH ₃	CH ₃	$(IA-3)$ $logP = 1.85^{a}$
64	CH ₂	Н	Н	\triangle	\triangle	(IA-3) $logP = 2.09 a)$
65	СН2	Cl	(5) Cl	CF ₃	CH ₃	(IA-3) $logP = 3.24 a)$
66	СН2	Н	Н	SO ₂ CH ₃	CH ₃	(IA-3) $logP = 1.71^{a}$
67	CH ₂	SO ₂ CH ₃	Н	OC ₂ H ₅	CH ₃	$(IA-3)$ $logP = 1.64^{a}$
68	CH ₂	Br	Н	$R^5 + R^6$:	(CH ₂) ₄	$(IA-3)$ $logP = 1.64^{a}$
69	CH ₂	Br	Н	OC ₃ H ₇ -n	CH ₃	$(IA-3)$ $logP = 2.82^{a}$
70	CH ₂	Br	Н	OC₃H₁-i	CH ₃	$(IA-3)$ $logP = 2.84^{a}$
71	CH ₂	CF ₃	Н	OC₃H₁-i	CH ₃	$(IA-3)$ $logP = 3.05^{a}$

Ex. No.	A	R ³	(position) (R ⁴) _n	R5	R ⁶	(formula) physical
72	CH ₂	CF ₃	H	OC ₃ H ₇ -n	CH ₃	data (IA-3)
''-			11	003117-11		$\log P = 3.06^{a}$
73	CH ₂	Br	H	Br	CH ₃	(IA-3)
						$\log P = 2.33^{a}$
74	CH ₂	CF ₃	Н	OC ₃ H ₇ -i		(IA-3)
						$\log P = 3.38^{a}$
75	CH ₂	CF ₃	Н	CH₂OCH₃	\wedge	(IA-3)
						$\log P = 2.53^{a}$
76	CH ₂	CF ₃	Н	CH ₂ OCH ₃	CH ₃	(IA-3)
						$\log P = 2.26^{a}$
77	CH ₂	I	Н	CF ₃	CH ₃	(IA-3)
						$\log P = 2.98^{a}$
78	CH ₂	Br	Н	SCH ₃	CH ₃	(IA-3)
						$\log P = 2.36^{a}$
79	CH ₂	C1	Н	SCH ₃	CH ₃	(IA-3)
						$\log P = 2.30^{a}$
80	CH ₂	CF ₃	Н	CH ₃	CH ₃	(IA-3)
						$\log P = 2.06^{a}$
81	CH ₂	CF ₃	Н	OC_2H_5	C_2H_5	(IA-3)
						$\log P = 3.01^{a}$
82	CH ₂	CF ₃	Н	$N(CH_3)_2$	CH ₃	(IA-3)
						$\log P = 2.40^{a}$
83	CH ₂	CF ₃	Н	Br	CH ₃	(IA-3)
						$\log P = 2.54^{a}$
84	СН2	Н	(3) CH ₃	OC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 2.21^{a}$
85	CH ₂	Br	Н	\triangle	Δ	(IA-3)
						$\log P = 2.62^{a}$

Ex. No.	A	R ³	(position) (R ⁴) _n	R ⁵	R6	(formula) physical data
86	CH ₂	Br	Н		CH ₃	(IA-3)
				s		$\log P = 2.99^{a}$
87	CH ₂	CF ₃	Н	SC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 2.94^{a}$
88	CH ₂	CF ₃	Н	SC ₃ H ₇ -i	CH ₃	(IA-3)
		İ				$\log P = 2.63^{a}$
89	CH ₂	CF ₃	Н	$R^5 + R^6$:	(CH ₂) ₄	(IA-3)
j						$\log P = 2.25^{a}$
90	СН2	CF ₃	Н	OCH ₃		(IA-3)
ļ						$\log P = 2.65^{a}$
91	СН2	CF ₃	Н	OCH ₂ CF ₃	CH ₃	(IA-3)
					<u> </u>	$\log P = 3.06^{\text{ a}}$
92	CH ₂	CN	Н	CF ₃	CH ₃	(IA-3)
						$\log P = 2.29^{a}$
93	CH ₂	F	Н	$N(CH_3)_2$	CH ₃	(IA-3)
						$\log P = 1.81^{a}$
94	CH ₂	F	Н	OC ₃ H ₇ -n	CH ₃	(IA-3)
	:					$\log P = 2.44^{a}$
95	СН2	F	Н	CH ₂ OCH ₃	CH ₃	(IA-3)
						$\log P = 1.69^{a}$
96	CH ₂	F	Н	OCH ₃	\triangle	(IA-3)
		:				$\log P = 2.05^{a}$
97	СН2	F	Н	OC ₂ H ₅	Δ	(IA-3)
					/	$\log P = 2.39^{a}$
98	CH ₂	I	Н	OC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 2.59^{a}$

Ex. No.	A	R ³	(position) (R ⁴) _n	R5	R ⁶	(formula) physical data
99	СН2	OCH ₃	(2) NO ₂	OC ₂ H ₅	CH ₃	(IC-2) $logP = 2.24 a)$
100	CH ₂	OCH₃	(2) NO ₂	SCH ₃	CH ₃	$(IC-2)$ $logP = 2.18^{a}$

<u>Table 2</u>: Examples of compounds of the formula (ID)

Ex. No.	A	(position) R ¹	(position) (R ²) _m	(position) R ³	(position)	(position) Z	physical data
ID-1	CH ₂	Н	H	(2) Cl	(R ⁴) _n (4) Cl	O N CH ₃	$\log P = 4.26^{a}$
ID-2	СН ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	Н	$ \begin{array}{c} $	logP = 2.61 a)
ID-3	CH ₂	Н	Н	(4) CF ₃	Н	N CH ₃	logP = 2.24 a)
ID-4	СН ₂	Н	Н	(4) CF ₃	Н	$ \begin{array}{c} O \\ CH_3 \\ CH_3 \end{array} $ $ CH_3$	logP = 2.63 a)
ID-5	CH ₂	Н	Н	Н	Н	(2) N N N	logP = 2.35 ^{a)}

Ex. No.	A	(position) R ¹	(position) (R ²) _m	(position) R ³	(position) (R ⁴) _n H	(position) Z	physical data
ID-6	CH ₂	н	Н	(4) CF ₃	Н	O N= CF ₃	logP = 3.77 a)
ID-7	CH ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	Н	$ \begin{array}{c} O \\ N \\ N \\ OC_2H_5 \end{array} $	logP = 3.27 a)
ID-8	CH ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	Н	$ \begin{array}{c} $	logP = 3.18 a)
ID-9	CH ₂	Н	Н	(4) Br	Н	(2) N N	logP = 2.92 a)
ID-10	CH ₂	Н	н	(4) Br	Н		logP = 3.04 a)
ID-11	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	$(3) \qquad \bigvee_{N = CH_3} CH_3$	m.p.: 140°C logP = 2.72 a)
ID-12	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	$ \begin{array}{c} O \\ N \\ N \\ OC_2H_5 \end{array} $	m.p.: 103°C logP = 3.08 a)

Ex. No.	A	(position) R ¹	(position) (R ²) _m	(position) R ³	(position) (R ⁴) _n	(position) Z	physical data
ID-13	CH ₂	(5) CH ₃	(5) CH ₃	(2) CI	(4) CI	N—CH ₃	m.p.: 118°C
						SCH ₃	$\log P = 2.98^{a}$
ID-14	СН2	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	N—CH ₃	m.p.: 132°C
						(3) CH ₃	$logP = 2.32^{a}$
ID-15	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	N—CH ₃	m.p.: 170°C
						(3) Br	$logP = 2.86^{a}$
ID-16	CH ₂	(4) CH ₃	(4) CH ₃	(2) CI	(4) Cl	$O \\ N = CH_3$ OCH_3	$\log P = 2.78^{a}$
ID-17	CH ₂	(4) CH ₃	(4) CH ₃	(2) CI	(4) CI	$O \\ N = OC_2H_5$	logP = 3.15 a)
ID-18	CH ₂	(4) CH ₃	(4) CH ₃	(2) CI	(4) CI	$ \begin{array}{c} O\\ N \end{array} $ $ \begin{array}{c} CH_3\\ SCH_3 \end{array} $	logP = 3.06 a)
ID-19	CH ₂	(4) CH ₃	(4) CH ₃	(2) Cl	(4) Cl	$ \begin{array}{c} $	logP = 2.38 a)

Ex. No.	A	(position) R ¹	(position) (R ²) _m	(position) R ³	(position) (R ⁴) _n	(position) Z	physical data
ID-20	CH ₂	(4) CH ₃	(4) CH ₃	(2) Cl	(4) Cl	O	logP =
						N CH ₃	2.94 a)
						N=((3) Br	
ID-21	CH ₂	(5) C ₃ H ₇ -i	Н	(2) CI	(4) CI	, o	logP =
						N—CH ₃	3.12 a)
						(3) OCH ₃	
ID-22	CH ₂	(5) C ₃ H ₇ -i	Н	(2) Cl	(4) CI	O	logP =
						N—CH ₃	3.49 a)
						OC ₂ H ₅	
ID-23	CH ₂	$(5) C_3H_7-i$	Н	(2) Cl	(4) Cl	O	logP =
						N CH ₃	3.39 a)
						SCH ₃	
ID-24	CH ₂	(5) C ₃ H ₇ -i	Н	(2) Cl	(4) Cl	Ů	logP = 2.70 a)
						N=CH ₃	2.70
XX 0.5	222					(3) CH ₃	
ID-25	CH ₂	(5) C ₃ H ₇ -i	Н	(2) Cl	(4) Cl) CH	logP = 3.28 a
						N—CH ₃	
ID 06						(3) Br	
ID-26	СН2	(5) CH ₃	Н	(2) CI	(4) Cl	N CH ₃	
						N=(
ID 27	CVV	(5) (3)			1	(3) OCH ₃	
ID-27	СН2	(5) CH ₃	Н	(2) Cl	(4) Cl	N_CH ₃	
						N=(
			į			OC_2H_5	

Ex. No.	A	(position) R ¹	(position) (R ²) _m	(position) R ³	(position) (R ⁴) _n	(position) Z	physical data
ID-28	CH ₂	(5) CH ₃	Н	(2) Cl	(4) Cl	N N N CH_3 SCH_3	
ID-29	CH ₂	(5) CH ₃	Н	(2) Cl	(4) CI	O N=CH ₃ CH ₃	
ID-30	CH ₂	(5) CH ₃	Н	(2) CI	(4) CI	$(3) \qquad \begin{matrix} O \\ N \end{matrix} - CH_3 \\ Br \end{matrix}$	

Starting materials of formula (III):

Example (III-1)

5

4.5 g (15 mmol) of 2-(3-chloro-4-cyano-phenyl)-4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one are taken up in 80 ml of 60% strength sulphuric acid, and the mixture is heated under reflux for 6 hours. After cooling to room temperature, the resulting crystalline produce is isolated by filtration with suction.

10

This gives 4.5 g (91% of theory) of 2-(3-carboxy-4-chloro-phenyl)-4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 223°C.

Example (III-2)

15

20

2 g (4.9 mmol) of 5-bromo-4-methyl-2-(2-ethoxycarbonyl-5-trifluoromethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (compare Example IV-1) are dissolved in 30 ml of 10% strength ethanolic potassium hydroxide solution and heated under reflux for 2 hours. The reaction mixture is concentrated under water pump vacuum, taken up in 20 ml of water and acidified with dilute hydrochloric acid. The solid that precipitates out is filtered and dried.

This gives 1.2 g (71% of theory) of 5-ethoxy-4-methyl-2-(2-carboxy-5-trifluoro-methyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one as a solid product. logP: 2.18a)

5

10

15

Example (III-3)

13.4 g (35 mmol) 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one are initially charged in 60 ml of 1,4-dioxane, and a solution of 1.54 g (38,5 mmol) of sodium hydroxide in 20 ml of water is slowly metered in at room temperature. The reaction mixture is stirred at 60°C for 150 minutes and subsequently concentrated under water pump vacuum. The residue is dissolved in 100 ml of water, and the pH of the solution is adjusted to 1 by addition of conc. hydrochloric acid. The resulting crystalline product is isolated by filtration with suction.

This gives 11.7 g (90% of theory) of 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-carboxy-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 207°C.

20

By the methods of Examples (III-1) and (III-3), it is also possible to prepare, for example, the compounds of the general formula (III) listed in Table 2 below.

HO
$$\begin{array}{c}
(R^4)_n \\
A Z
\end{array}$$

$$\begin{array}{c}
(III) \\
3 R^3
\end{array}$$

<u>Table 2:</u> Examples of compounds of the formula (III)

Ex.	(position-)	(position-)	(position-)	physical data
No.	R^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	physical data
III-4	(4-) Cl	Н	N CH ₃	$logP = 1.39^{a}$
			(2-) CH ₃	
III-5	(4-) SO ₂ CH ₃	Н	(3-)	logP = 1.47 ^{a)}
III-6	(4-) F	Н	$\begin{array}{c} O \\ N - CH_3 \\ OC_2H_5 \end{array}$	$logP = 1.73^{a}$
III-7	(4-) CF ₃	Н	O N= N= Br	$logP = 1.65^{a}$
III-8	(4-) Br		O N—CH ₃ N=CH ₃	logP = 1.74 ^{a)}
III-9	(4-) CF ₃	Н	$ \begin{array}{c c} & O \\ & N \\ & O \\$	logP = 2.43 ^{a)}

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	
III-10	(4-) CF ₃	H	$ \begin{array}{c c} & O \\ & N \\ & N \\ & O \\$	$logP = 2.12^{a}$
III-11	(4-) CF ₃	Н	O N—N—CH ₃ CH ₃	$logP = 1.61^{a}$
III-12	(4-) CF ₃	Н	(2-) N CH ₃ N(CH ₃) ₂	$logP = 1.93^{a}$
III-13	(4-) CF ₃	Н	O N— N— Br	$logP = 2.01^{a}$
III-14	(4-) CF ₃	Н	(2-) O	logP = 1.77 ^{a)}
III-15	(3-) CH ₃	Н	$ \begin{array}{c c} & O \\ & N - CH_3 \\ & OC_2H_5 \end{array} $	$logP = 1.70^{a}$

Ex.	(position-)	(position-)	(position-)	physical data
No.	R^3	$(\mathbb{R}^4)_n$	-A-Z	1 3
III-16	(4-) SO ₂ CH ₃	(R ⁴) _n H	N CH3	$logP = 1.07^{a}$
			N=(2-) SCH ₃	
III-17	(4-) CF ₃	Н	N—CH ₃	$logP = 2.35^{a}$
			(2-) SC ₂ H ₅	
III-18	(4-) CF ₃	Н	N CH ₃	$logP = 2.63^{a}$
			(2-) SC ₃ H ₇ -i	2 12 3
III-19	(4-) CF₃	Н	(2-) N N OCH ₃	$\log P = 2.13^{a}$
III-20	(4-) CF ₃	Н	(2-) N=N	$logP = 1.82^{a}$
III-21	(4-) CF ₃	Н	$(2-)$ $ \begin{array}{c} O\\ N \end{array} $ $ \begin{array}{c} O\\ O\\ O\\ CH_2\\ CF_3 \end{array} $	$logP = 2.48^{a}$

Ex.	(position-)	(position-)	(position-)	physical data
No.	R ³	$(R^4)_n$	-A-Z	physical data
III-22	(4-) CF ₃	Н	N CH ₃ (2-) H ₃ C O	$\log P = 1.73^{\text{ a}}$
III-23	(4-) CF ₃	Н	N S CF ₃	$logP = 3.11^{a}$
III-24	(4-) F	Н	(2-) N—CH ₃ N(CH ₃) ₂	$\log P = 1.43^{a}$
III-25	(4-) F	Н	$(2-)$ $ \begin{array}{c} O\\ N \end{array} $ $ \begin{array}{c} OC_3H_7-n \end{array} $	$\log P = 1.97^{a}$
III-26	(4-) F	Н	O N N CH ₂ OCH ₃	$logP = 1.30^{a}$
III-27	(4-) F	Н	(2-) OCH ₃	$logP = 1.63^{a}$

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	(R ⁴) _n	-A-Z	
III-28	(4-) F	Н		$logP = 1.93^{a}$
			(2-) OC ₂ H ₅	
III-29	(4-) CF ₃	Н	O CH ₃	$logP = 1.78^{a}$
			(2-) CH ₃	
III-30	(2-) Cl	(4-) Cl	O _{II}	m.p.: 230°C
			N—CH ₃	$logP = 1.63^{a}$
			(3-) SCH ₃	
III-31	(2-) Cl	(4-) Cl	O	m.p.: 190°C
			N—CH ₃	$logP = 1.73^{a}$
			OC_2H_5	
III-32	(2-) Cl	(4-) Cl	0 1	m.p.: 210°C
			N N	$logP = 1.87^{a}$
			(3-)	
III-33	(2-) Cl	(4-) Cl	0	m.p.: 210°C
			N—CH ₃	$logP = 1.43^{a}$
			(3-) OCH ₃	

Ex.	(position-)	(position-)	(position-)	physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-34	(2-) Cl	(4-) Cl		m.p.: 164°C
			N CH3	$logP = 2.01^{a}$
			N=	
	,		OC_3H_7 -i	
III-35	(2-) Cl	(4-) Cl	(3-)	m.p.: 168°C
				$logP = 2.04^{a}$
			N CH ₃	
			OCH ₂ CF ₃	
III-36	(2-) Cl	(4-) Cl	0	m.p.: 218°C
			N CH ₃	$logP = 1.53^{a}$
			N=\ Br	
			(3-) Br	
III-37	(2-) Cl	(4-) Cl	0	m.p.: 259°C
			N CH ₃	$logP = 0.98^{a}$
			N=(3-)	
III-38	(2-) Cl	(4-) Cl	(3-)	m.p.: 210°C
111-36	(2-) CI	(4-) 61	N_CH ₃	$logP = 1.56^{a}$
				1051 1.50
			(3-)	
III-39	(2-) Cl	(4-) Cl	(3-)	m.p.: 197°C
			O U	$logP = 1.51^{a}$
			N N CH ₃	
			N≔(N(CH₃)₂	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-40	(2-) Cl	(4-) Cl	O II	m.p.: 262°C
			N CH ₃	$logP = 1.11^{a}$
		1		
			N=CH ₃	
			(3-)	
III-41	(2-) Cl	(4-) Cl	0	m.p.: 249°C
			$\backslash N \backslash N $	$logP = 1.30^{a}$
			(3-)	
	(2)	(4) (7)	(3)	20000
III-42	(2-) Cl	(4-) Cl		m.p.: 200°C
			N N N	$logP = 1.71^{a}$
			N=(
			(3-) OCH ₃	
			(3-)	10000
III-43	(2-) Cl	(4-) Cl		m.p.: 189°C
			N	$logP = 2.01^{a}$
			\ \ \ - \	
			OC_2H_5	
			(3-)	
III-44	(2-) Cl	(4-) CI		m.p.: 178°C
			N N N	$logP = 2.28^{a}$
			N=(
			OC ₃ H ₇ -i	
			(3-)	
III-45	(2-) Cl	(4-) Cl	(3-)	m.p.: 161°C
			Q	$logP = 2.31^{a}$
	-			
			N N	
			OCH ₂ CF ₃	

Ex.	(position-)	(position-)	(position-)	physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-46	(2-) Cl	(4-) Cl	N N N	m.p.: 200° C $logP = 1.98^{a}$
			$N = \langle SCH_3 \rangle$	
III-47	(2-) Cl	(4-) Cl		m.p.: 201° C $log P = 1.39^{a}$
			(3-) CH ₃	
III-48	(2-) Cl	(4-) Cl	(3-)	m.p.: 207°C
			N N	$logP = 1.77^{a}$
			N=\ N(CH ₃) ₂	
III-49	(2-) Cl	(4-) Cl	(3-)	m.p.: 140°C
			$ \begin{array}{c} O \\ N \\ O \\ O \\ C_2 \\ H_5 \end{array} $	$logP = 1.88^{a}$
III-50	(4-)	Н	Ö	m.p.: 154°C
	OCH ₂ CHF ₂	:	N—CH ₃	$logP = 2.14^{a}$
			(2-) CF ₃	
III-51	Н	Н	(2-) O N N N	m.p.: 214°C logP = 1.87 a)
		l		

Ex.	(position-)	(position-)	(position-)	physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-52	Н	Н		m.p.: 194°C
			(2-) O	$logP = 2.07^{a}$
III-53	H	Н	Q	m.p.: 181°C
			CI	$\log P = 1.97^{a}$
			(2-) ĊI	
III-54	Н	Н	S	m.p.: 251°C
			(2-) NH	$logP = 1.14^{a}$
III-55	(2-) Cl	(4-) Cl	0	$logP = 1.38^{a}$
			(3-) N CH ₃	
III-56	(2-) Cl	(4-) CI	(3-) O CH ₃	$logP = 1.48^{a}$
III-57	(2-) Cl	(4-) Cl	(3-) SO ₂	
III-58	(4-) Cl	Н	0	¹H NMR
			N CH ₃	(DMSO-D6, δ): 5.42 ppm.
			(2-) CF ₃	5.42 ppm.

Ex. No.	(position-) R ³	(position-) (R ⁴) _n	(position-) -A-Z	physical data
III-59	(4-) CF ₃	H	Q Q	¹H NMR
			N_CH ₃	(DMSO-D6, δ):
			N=(5.48 ppm.
			(2-) CH ₃	
III-60	(4-) CF ₃	Н	O _I	¹H NMR
			N CH3	(DMSO-D6, δ):
			N=(5.60 ppm.
			(2-) CF ₃	$LogP = 2.47^{a}$
III-61	(4-) CF ₃	H	0 1	$logP = 2.33^{a}$
			N N	
			N	
			(2-)	
III-62	(4-) SO ₂ CH ₃	Н	0	¹H NMR
			N CH3	(DMSO-D6, δ):
			N=<	5.14 ppm.
		!	(3-) CF ₃	
III-63	(4-) SO ₂ CH ₃	Н	O	¹H NMR
			N CH ₃	(DMSO-D6, δ):
			` N=<	5.27 ppm.
			(2-) CH ₃	
III-64	(4-) Cl	Н	0	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.12 ppm.
			N— CH ₃	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-65	(4-) Cl	Н	O II	¹H NMR
			N CH ₃	(DMSO-D6, δ):
			N=(5.20 ppm.
			(3-) CF ₃	
III-66	(4-) Cl	Н	- O	¹H NMR
			N	(DMSO-D6, δ):
			N=(5.03 ppm.
			(2-)	
III-67	(4-) Br	Н	(2-)	'H NMR
			Q.	(DMSO-D6, δ):
			$N - OC_2H_5$	5.24 ppm.
			N=(
			C ₂ H ₅	
III-68	(4-) Br	Н	0	¹H NMR
			N N CH ₃	(DMSO-D6, δ):
			` N=⟨	5.39 ppm.
			(2-) CF ₃	
III-69	(4-) F	Н	Q	¹H NMR
			N CH ₃	(DMSO-D6, δ):
			N=(5.19 ppm.
			(2-) OC ₂ H ₅	
III-70	(4-) F	H	O _{II}	¹ H NMR
			N N CH3	(DMSO-D6, δ):
			N=(5.30 ppm.
			(2-) SCH ₃	
L	l	L	l	L

Ex. No.	(position-) R ³	(position-)	(position-) -A-Z	physical data
III-71	(4-) F	(R ⁴) _n	(2-)	¹H NMR
			Q	(DMSO-D6, δ):
i			N—CH ₃ SO ₂ CH ₃	5.43 ppm.
			30 ₂ 011 ₃	
III-72	(4-) Br	H.	0	¹ H NMR, (CDCl ₃
			N CH ₃	δ):
			N=-<	5.10 ppm.
			(3-) CH ₃	
III-73	(4-) Br	Н	Q	¹H NMR
			N N CH3	(DMSO-D6, δ):
			N=(5.03 ppm.
			$(3-) \qquad \qquad OC_2H_5$	
III-74	(4-) Br	Н	O _{II}	¹H NMR
			N N CH³	(DMSO-D6, δ):
			N=(5.19 ppm.
			(3-) CF ₃	
III-75	(4-) Br	Н	Q II	¹H NMR
			\sim_{N}	(DMSO-D6, δ):
			N=(5.01 ppm.
			(2-)	
III-76	(4-) Cl	Н	.0	¹H NMR
			N N N	(DMSO-D6, δ):
,			` N=⟨	5.14 ppm.
			(2-) OC ₂ H ₅	

Ex.	(position-)	(position-)	(position-)	physical data
No.	R^3	$(R^4)_n$	-A-Z	r-J
III-77	(4-) Cl	H	(2-)	^I H NMR
:			O II	(DMSO-D6, δ):
		,	$N \longrightarrow N \longrightarrow OC_2H_5$	5.25 ppm.
			C₂H₅	
III-78	(4-) NO ₂	H	0	¹H NMR
			N N N	(DMSO-D6, δ):
			N=	5.23 ppm.
			(2-) OC ₂ H ₅	
III-79	(4-) NO ₂	Н	0	¹H NMR
		,	N CH3	(DMSO-D6, δ):
			N=	5.37 ppm.
			(2-) SCH ₃	
III-80	(4-) CF ₃	Н		$logP = 2.46^{a}$
			N=(
			OC_2H_5	
III-81	(4-) CF ₃	Н	(2-)	¹H NMR
			O II	(DMSO-D6, δ):
			N OC ₂ H ₅	5.31 ppm.
			$N = C_2H_5$	
III-82	(4-) CF ₃	Н	O	$logP = 2.08^{a}$
			N CH ₃	
			(2-) SCH ₃	
1			` ′	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	
III-83	(4-) OCH ₃	Н	Q	¹ H NMR (CDCl ₃ ,
			N CH3	δ): 5.38 ppm.
			N N 13	0). 5.56 ppm.
			Ì₩	
			$(2-)$ OC_2H_5	
III-84	(4-) OCH ₃	Н	(2-)	¹ H NMR (CDCl ₃ ,
			Ö	δ): 5.43 ppm.
				,
			N OC ₂ H ₅	
			N=(
			C ₂ H ₅	
III-85	(4-) CF ₃	Н	(2-)	¹H NMR (CDCl ₃ ,
	(1)013			
				δ): 5.47 ppm.
			N CH ₃	
	•		CH ₂ OCH ₃	
			3.1200.13	
III-86	(4-) Br	Н	Q	$LogP = 1.44^{a}$
			人	
			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			N=\	
			(2-)	
III-87	(4-) Br	Н	Q	$LogP = 1.63^{a}$
			N, N	
			N=√ ∫	
			(2-)	
III-88	(4-) Br	H	Ö	$LogP = 2.27^{a}$
	()=-			
			N CH3	
			N=(
			$(2-)$ OC_3H_7 -i	
			(-)	

Ex.	(position-)	(position-)	(position-)	physical data
No.	R^3	$(\mathbf{R}^4)_n$	-A-Z	
III-89	(4-) Br	Н	(2-)	$LogP = 2.31^{a}$
			0	
			Ĭ	
		:	N CH3	
			N=(
			OC ₃ H ₇ -n	
***		TT		ID - 1 00 a)
III-90	Н	Н		$LogP = 1.82^{a}$
			N CH₃	·
			N=(
			CF	
			(2-)	
III-91	(4-) Br	Н	Ö	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.32 ppm.
			N N 13	0). 3.32 ppin.
		-	N=	
			(2-) OC ₂ H ₅	
777.00	(4) D	H		¹ H NMR (CDCl ₃ ,
III-92	(4-) Br	Π	Ĭ	
			N CH ₃	δ): 5.53 ppm.
			CF ₃	
			(2-)	
III-93	(4-) F	Н	Ŷ	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.39 ppm.
			N N 3	11
			N=	
			$(2-)$ OC_2H_5	
III-94	(4-) F	Н	0	¹H NMR (CDCl ₃ ,
111-24	(4-) 1	11	Ĭ	
			N CH ₃	δ): 5.57 ppm.
			N=(
			CF ₃	
			(2-)	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbf{R}^{3}	$(R^4)_n$	-A-Z	
III-95	(4-) F	Н	(2-)	¹ H NMR (CDCl ₃ ,
:			O II	δ): 5.44 ppm.
			N-OC ₂ H ₅	
			C ₂ H ₅	
III-96	(4-) F	Н	Ŷ	¹ H NMR (CDCl ₃ ,
			N CH3	δ): 5.41 ppm.
			N=(OCH ₃	
			(2-)	
III-97	Н	H	Ŷ	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.34 ppm.
			N=	
			(2-) OC ₂ H ₅	
III-98	Н	Н	O	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.38 ppm.
			N—OCH ₃	
			(2-)	
III-99	Н	Н	0	¹ H NMR (CDCl ₃ ,
			N N	δ): 5.26 ppm.
			N=	
			(2-)	
III-100	Н	Н	O	¹ H NMR (CDCl ₃ ,
			N CH ₃	δ): 5.43 ppm.
			N=(SCH ₃	
			(2-)	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	r-J
III-101	Н	Н	(2-)	$LogP = 1.23^{a}$
			O II	
			N CH ₃	
			N= SO₂CH₃	
III-102	(4-) SO ₂ CH ₃	Н	0	$logP = 1.14^{a}$
			N CH ₃	
			(2-) OC ₂ H ₅	
III-103	(4-) CF ₃	Н	0	$\log P = 2.45^{a}$
			N CH ₃	
			OC_3H_7 -i	
III-104	(4-) CF ₃	Н	(2-)	$logP = 2.48^{a}$
			O L	
			N CH ₃	
			OC ₃ H ₇ -n	
III-105	(4-) Br	Н	0	$logP = 1.85^{a}$
			N CH ₃	
			(2-) Br	
III-106	(4-) CF ₃	Н	0 1	$logP = 2.74^{a}$
			N N	
			$ \begin{array}{c} N = \langle \\ OC_3H_7 - i \\ \end{array} $	
			(-)	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(\mathbb{R}^4)_n$	-A-Z	
III-107	(4-) CF ₃	Н	(2-)	$logP = 2.01^{a}$
			N N	
			CH₂OCH₃	
III-108	(4-) CF ₃	Н	(2-)	$logP = 1.79^{a}$
			N CH ₃	
			CH ₂ OCH ₃	
III-109	(4-) CF ₃	Н		$logP = 1.65^{a}$
			N CH ₃	
			(2-) Br	
III-110	(4-) Br	Н	O II	$logP = 1.90^{a}$
			N N CH ₃	
			SCH ₃	
III-111	(4-) Cl	Н	O O	$\log P = 1.83^{\text{ a}}$
			N CH3	
			N=(SCH ₃	
	71.	**	(2-)	logP = 2.06 a)
III-112	(4-) I	H	N CH3	$logP = 2.06^{a}$
			N=\ N=\ N = N = N = N = N = N = N = N =	
			(2-) OC ₂ H ₅	

No. R³ (R⁴) _n (2-) III-113 (4-) I H (2-) III-114 (4-) Br H (2-) III-115 (4-) Br H (2-) III-116 H H	TC	(-osition)	(position-)	(position-)	physical data
III-113 (4-) I H (2-) H ₃ C N CH ₃ C ₂ H ₅ III-114 (4-) Br H O m.p.: 191°C III-115 (4-) Br H O m.p.: 213°C III-116 H H O m.p.: 213°C III-117 H H O m.p.: 112°C III-118 (4-) CF ₃ H O m.p.: 158°C	Ex.	(position-)			physical data
H ₃ C			(K) _n		
H ₃ C	111-113	(4-)1	П	(2-)	
H ₃ C				유	
H ₃ C				人 人 CH	
III-114				H ₂ C N N N O N 3	
III-114 (4-) Br H				N=(
III-114 (4-) Br H				C ₂ H ₅	
III-115					10100
(2-) m.p.: 213°C III-115	III-114	(4-) Br	H		m.p.: 191°C
(2-) m.p.: 213°C III-115					
III-115 (4-) Br					
III-115 (4-) Br H					
III-116 H H (2-) III-117 H H O m.p.: 112°C III-118 (4-) CF ₃ H O m.p.: 158°C				(2-)	
III-116 H H	III-115	(4-) Br	H	Ŷ	m.p.: 213°C
III-116 H H				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
III-116				1 1 1 1	
III-116 H H (2-) III-117 H H O				$ _{(2)}$	
III-117 H H O m.p.: 112°C (2-) CF ₃ m.p.: 158°C				(2-)	
III-117 H H O	III-116	Н	Н	Q,	
III-117 H H O					
III-117 H H O					
III-117 H H O					
III-117 H H O				(2-)	
(2-) CF ₃ CF ₃ m.p.: 158°C	III 117	TT	TT		m n · 112°C
$N=CF_3$ III-118 (4-) CF_3 H O m.p.: 158°C	111-11/	п	п	l II	III.p 112 C
$N=$ CF_3 III-118 (4-) CF_3 H O m.p.: 158°C				N CH ₃	
III-118 (4-) CF ₃ H O m.p.: 158°C				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
III-118 (4-) CF ₃ H O m.p.: 158°C				N—	
III-118 (4-) CF ₃ H O m.p.: 158°C				(2-)	
	III 110	(4.) CE	U		m n · 158°C
N N CH ₃	111-118	(4-) Cr ₃	П	1	т.р 136 С
				N CH₃	
				\ \\	
CF ₃				CF	
				(2-)	
III-119 (4-) CF ₃ H Q m.p.: 162°C	III 110	(4-) CF	Н	0	m.p.: 162°C
III-117 (T-) C13 II	111-117	(-) Cr3	'1		
N N N				N	
N=(\ \\ <u>\</u>	
				/	
(2-)				(2-)	

Ex.	(position-)	(position-)	(position-)	physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_n$	-A-Z	
III-120	(4-) Cl	(5-) Ĉl	N CH ₃	m.p.: 167°C
			(2-) CF ₃	
III-121	Н	Н	OH OH	m.p.: 188°C
III-122	Н	Н	O N=N	
III-123	Н	Н	O N—CH ₃ CH ₃	m.p.: 131°C
III-124	(4-) Cl	H	O N CH ₃ CF ₃	m.p.: 109°C
III-125	(4-) I	н	O N → CH ₃ CF ₃	m.p.: 104°C
III-126	(4-) Br	Н	$ \begin{array}{c} O \\ N \\ N \\ CF_{3} \end{array} $	m.p.: 99°C

Ex.	(position-)	(position-)	(position-)	physical data
No.	R^3	$(R^4)_n$	-A-Z	FJ
III-127	(4-) Br	H	(2-)	m.p.: 174°C
III-128	Н	Н	N N N CH_3 SCH_3	m.p.: 122°C
III-129	(4-) Br	Н	O N— N— SCH ₃	m.p.: 164°C
III-130	Н	Н	$ \begin{array}{c} O \\ N \longrightarrow CH_3 \\ N \longrightarrow OC_3H_7-i \end{array} $	m.p.: 154°C
III-131	(4-) Br	Н	$O \longrightarrow N \longrightarrow CH_3$ OC_3H_7-i	m.p.: 161°C
III-132	(4-) CN	Н	O N—CH ₃ CF ₃	m.p.: 196°C
III-133	H	н	(2-) O	m.p.: 192°C

Ex.	(position-)	(position-)	(position-)	physical data
No.	R ³	(R ⁴) _n	-A-Z	
III-134	Н	Н	O=N (2-) H	
III-135	(4-) Br	Н		m.p.: 252°C
III-136	(2-) NO ₂	(3-) OCH ₃	$ \begin{array}{c c} O \\ N \\ \longrightarrow CH_3 \\ OC_2H_5 \end{array} $	$logP = 1.65^{a}$
III-137	(2-) NO ₂	(3-) OCH ₃	O N CH ₃ SCH ₃	$logP = 1.58^{a}$

Starting materials of the formula (IV):

Example (IV-1)

$$O \longrightarrow OC_2H_5 O \longrightarrow N \longrightarrow CH_3$$

$$O \longrightarrow N \longrightarrow N \longrightarrow CH_3$$

$$O \longrightarrow N \longrightarrow N \longrightarrow CH_3$$

Step 1

5

$$\begin{array}{c|c} OC_2H_5 \\ \hline \\ CH_3 \\ \hline \\ CF_3 \end{array}$$

10 g (49 mmol) of 2-methyl-4-trifluoromethyl-benzoic acid are dissolved in 150 ml of ethanol and admixed with 1 ml of conc. sulphuric acid. The solution is heated under reflux for 24 hours and then concentrated, and the residue is taken up in methylene chloride and extracted with saturated aqueous sodium bicarbonate solution. The methylene chloride phase is dried over sodium sulphate and concentrated under water pump vacuum.

15

10

This gives 9 g (80% of theory) of ethyl 2-methyl-4-trifluoromethyl-benzoate as an amorphous residue.

Step 2

9 g (39 mmol) of ethyl 2-methyl-4-trifluoromethyl-benzoate are dissolved in 200 ml of tetrachloromethane and admixed with 7 g (39 mmol) of *N*-bromo-succinimide and 0.1 g of dibenzoyl peroxide. The mixture is heated under reflux for 6 hours, and the precipitated succinimide is then filtered off and the filtrate is concentrated under water pump vacuum.

This gives 12 g of an amorphous residue which, in addition to ethyl 2-bromomethyl-4-trifluoromethyl-benzoate, contains 17% of ethyl 2,2-dibromomethyl-4-trifluoromethyl-benzoate and 12% of ethyl 2-methyl-4-trifluoromethyl-benzoate.

Step 3

$$O C_2H_5 O CH_3$$

$$N CH_3$$

$$CF_3$$

15

20

5

10

4 g of ethyl 2-bromomethyl-4-trifluoromethyl-benzoate (approximately 70% pure) and 2.28 g (12.8 mmol) of 5-bromo-4-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one are dissolved in 150 ml of acetonitrile, admixed with 5.3 g (38.4 mmol) of potasssium carbonate and heated under reflux with vigoruous stirring for 2 hours. The reaction mixture is taken up in water and extracted repeatedly with methylene chloride. The combined methylene chloride phases are dried over sodium sulphate, concentrated under water pump vacuum and chromatographed.

This gives 2 g (38 % of theory) of 5-bromo-4-methyl-2-(2-ethoxycarbonyl-5-trifluoromethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one as an amorphous product.

¹H-NMR (CDCl₃, δ): 5.46 ppm.

Example (IV-2)

5

10

15

20

6.7 g (40 mmol) of 4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one are initially charged in 150 ml of acetonitrile and admixed with 11 g (80 mmol) of potassium carbonate. The mixture is heated to 50°C, and a solution of 13.1 g (44 mmol) of methyl 3-bromomethyl-2,4-dichloro-benzoate in 20 ml of acetonitrile is then added dropwise with stirring, and the reaction mixture is heated under reflux with stirring for another 15 hours. The mixture is subsequently concentrated under water pump vacuum, and the residue is taken up in methylene chloride, washed with 1N hydrochloric acid, dried with sodium sulphate and filtered. The filtrate is concentrated under reduced pressure, the residue is digested with petroleum ether and the crystalline product is isolated by filtration with suction.

This gives 14.9 g (97% of theory) of 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 109°C.

By the methods of Examples (IV-1) and (IV-2), it is also possible to prepare, for example, the compounds of the general formula (IVa) listed in Table 3 below.

<u>Table 3:</u> Examples of compounds of the formula (IV)

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-3	(2-) Cl	(4-) Cl	Q	OCH ₃	m.p.: 229°C
			N—CH ₃		$logP = 2.27^{a}$
			(3-) SCH ₃		
IV-4	(2-) Cl	(4-) Cl	Q	OCH₃	m.p.: 120°C
			N CH ₃		$\log P = 2.38^{a}$
			(3-) OC ₂ H ₅		
IV-5	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 127°C
					$logP = 2.55^{a}$
IV-6	(2-) Cl	(4-) Cl	OCH ₃	OCH ₃	m.p.: 121°C logP = 2.04 a)

No. R³ (R¹) _n (-A-Z X M m.p.: 68°C IV-7 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 129°C IV-8 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 129°C IV-9 (2-) Cl (4-) Cl OCH ₃ m.p.: 164°C IV-10 (2-) Cl (4-) Cl OCH ₃ m.p.: 158°C IV-11 (2-) Cl (4-) Cl OCH ₃ m.p.: 158°C IV-12 (2-) Cl (4-) Cl OCH ₃ m.p.: 106°C IV-12 (2-) Cl (4-) Cl OCH ₃ m.p.: 106°C IV-12 (2-) Cl (4-) Cl OCH ₃ m.p.: 106°C IV-12 (2-) Cl (4-) Cl OCH ₃ m.p.: 126°C		(:4:)	(:4:)	(-asition)		physical data
IV-7 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 68°C logP = 2.73 IV-8 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 129°C logP = 2.72 IV-9 (2-) Cl (4-) Cl OCH ₃ m.p.: 126°C logP = 2.18 IV-10 (2-) Cl (4-) Cl OCH ₃ m.p.: 158°C logP = 1.55 IV-11 (2-) Cl (4-) Cl OCH ₃ m.p.: 106°C logP = 2.16 IV-12 (2-) Cl (4-) Cl OCH ₃ m.p.: 126°C logP = 2.16	Ex.	(position-)	(position-)	(position-)	v	pnysical data
IV-8 (2-) Cl (4-) Cl (3-) IV-9 (2-) Cl (4-) Cl (4-) Cl (3-) IV-10 (2-) Cl (4-) Cl (4-) Cl (3-) IV-11 (2-) Cl (4-) Cl (3-) IV-12 (2-) Cl (4-) Cl (3-) IV-12 (2-) Cl (4-) Cl (3-) IV-12 (2-) Cl (4-) Cl (3-) IV-13 OCH ₃ m.p.: 126°C logP = 2.16 IV-14 Cl (3-) IV-15 OCH ₃ m.p.: 106°C logP = 2.16 IV-16 OCH ₃ m.p.: 126°C logP = 2.11	1		$(\mathbf{K})_{\mathbf{n}}$			m.n.: 68°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-/	(2-) CI	(4-) C1	(3-)	00113	İ
IV-8 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 129°C logP = 2.72 IV-9 (2-) Cl (4-) Cl OCH ₃ OCH ₃ m.p.: 164°C logP = 2.18 IV-10 (2-) Cl (4-) Cl OCH ₃ OCH ₃ m.p.: 158°C logP = 1.55 IV-11 (2-) Cl (4-) Cl OCH ₃ OCH ₃ m.p.: 106°C logP = 2.16 IV-12 (2-) Cl (4-) Cl OCH ₃ OCH ₃ m.p.: 126°C logP = 2.11				N=($\log P = 2.73^{a}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137.0	(2.) Cl	(4) C1		OCH	m n · 120°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-8	(2-) CI	(4-) C1	(3-)	OCH_3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				N=($\log P = 2.72^{a}$
IV-10	IV-9	(2-) Cl	(4-) Cl	Q	OCH ₃	m.p.: 164°C
IV-10 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 158°C logP = 1.55 IV-11 (2-) Cl (4-) Cl OCH ₃ m.p.: 106°C logP = 2.16 IV-12 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 126°C logP = 2.11	·			N=($\log P = 2.18^{a}$
$ V-11 (2-) Cl (4-) Cl (3-) OCH_3 $				(3-) Br		
$ V-11 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 V-12 (2-) \text{ Cl} \qquad (4-) \text{ Cl} \qquad (3-) \qquad V-12 $	IV-10	(2-) Cl	(4-) Cl	Q	OCH ₃	m.p.: 158°C
IV-12 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 126°C logP = 2.11				N=($\log P = 1.55^{a}$
IV-12 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 126°C logP = 2.11	IV-11	(2-) Cl	(4-) C1	0	OCH ₂	m.p.: 106°C
IV-12 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 126°C logP = 2.11			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		$\log P = 2.16^{a}$
IV-12 (2-) Cl (4-) Cl (3-) OCH ₃ m.p.: 126°C logP = 2.11				(3-)		
$\log P = 2.11$	IV-12	(2-) Cl	(4-) Cl		OCH ₃	m.p.: 126°C
$N = \langle N(CH_3)_2 \rangle$, ,		N—CH ₃		$\log P = 2.11^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-13	(2-) Cl	(4-) Cl	O N CH ₃	OCH ₃	m.p.: 146° C $\log P = 1.65^{a}$
			N=(
			(3-)		1,500.0
IV-14	(2-) Cl	(4-) Cl		OCH ₃	m.p.: 178°C
			N=N		$\log P = 1.86^{\text{ a}}$
			(3-)		
IV-15	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 97°C
					$\log P = 2.36^{a}$
			N N OCH ₃		}
IV-16	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 99°C
			$ \begin{array}{c c} O \\ N = \\ OC_2H_5 \end{array} $		$logP = 2.73^{a}$
IV-17	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 56°C
-				V	$\log P = 3.08^{a}$
			OC ₃ H ₇ -i		
IV-18	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 102°C
					$logP = 3.05^{a}$
			OCH ₂ CF ₃		

Ex.	(position-) R ³	(position-)	(position-)	X	physical data
No. IV-19	(2-) Cl	(R ⁴) _n (4-) Cl	-A-Z	OCH ₃	m.p.: 131°C
14-19	(2-) C1	(1-) C1	0	00113	$\log P = 2.70^{a}$
			N N SCH ₃		
IV-20	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 135°C
			O N CH ₃		$logP = 1.97^{a}$
IV-21	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 143°C
	` ,			·	$\log P = 2.42^{a}$
			$N = \langle N(CH_3)_2 \rangle$		
IV-22	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 85°C
			$ \begin{array}{c} O \\ N \\ O \\ C_2 H_5 \end{array} $		$logP = 2.58^{a}$
IV-23	(2-) Cl	(4-) Cl	0	OCH ₃	$logP = 1.98^{a}$
			(3-) N CH ₃		
IV-24	(2-) Cl	(4-) Cl	(3-)	OCH ₃	$logP = 2.07^{a}$
			N CH ₃		

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	1.5500
IV-25	(2-) Cl	(4-) Cl	0	OCH ₃	m.p.: 157°C
					$\log P = 2.94^{a}$
			SO ₂		
			(3-)		
IV-26	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	¹H NMR
			ဂူ		(CDCl ₃ , δ):
			N CH ₃		5.53 ppm.
!					
:			SO ₂ CH ₃		
			2 - 3		
IV-27	(4-) NO ₂	Н		OC ₂ H ₅	'H NMR
			N CH ₃		(CDCl ₃ , δ):
					5.48 ppm.
			(3-) CF ₃		
				00.11	III NIV (D
IV-28	(4-) NO ₂	H	(3-)	OC ₂ H ₅	¹H NMR
					(CDCl ₃ , δ):
					5.30 ppm.
			,,		
IV-29	(4-)	Н —	0	OC ₂ H ₅	¹H NMR
17-29		11	Ĭ ou	0 0 2 3	(CDCl ₃ , δ):
	SO ₂ CH ₃		N CH ₃	:	
			N=		5.61 ppm.
			(3-) CF ₃		
IV-30	(4-) Cl	H	Q	OC ₂ H ₅	¹H NMR
			N CH ₃		(CDCl ₃ , δ):
			N N N 3 3		5.08 ppm.
			CH ₃		5.00 ppiii.
1			(3-)		!

Ex.	(position-)	(position-)	(position-)	-	physical data
No.	R^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-31	(4-) CI	Н	O N CH ₃	OC ₂ H ₅	¹ H NMR (CDCl ₃ , δ):
	*		N=(5.17 ppm.
			(3-) CF ₃		
IV-32	(4-) Cl	Н	(3-)	OC ₂ H ₅	'H NMR
			Q Q		(CDCl ₃ , δ):
			N N		5.00 ppm
IV-33	(4-)	Н	O II	OC ₂ H ₅	$logP = 1.53^{a}$
	SO ₂ CH ₃		N		
			(2-) O'		
IV-34	(4-) Br	Н	(2-)	OC ₂ H ₅	$\log P = 3.24^{\text{ a}}$
			$ \begin{array}{c} N \longrightarrow OC_2H_5 \\ N \longrightarrow C_2H_5 \end{array} $		
IV-35	(4-) Br	Н	Q	OC ₂ H ₅	$logP = 3.40^{a}$
			N CH ₃		
			(2-) CF ₃		
IV-36	(4-) F	Н	N—CH ₃	OC ₂ H ₅	$logP = 2.41^{a}$
			(3-) Br		

Ex.	(position-)	(position-)	(position-)	1	physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-37	(4-) F	(R ⁴) _n	O N—CH ₃ SCH ₃	OC ₂ H ₅	$logP = 2.45^{a}$
IV-38	(4-) Br	Н	O N—CH ₃ CH ₃	OC₂H₅	$logP = 2.06^{a}$
IV-39	(4-) Br	Н	O N— N— Br		$logP = 2.64^{a}$
IV-40	(4-) Br	Н	$(3-) \qquad \begin{matrix} O \\ N \end{matrix} CH_3 \\ CF_3 \end{matrix}$	OC ₂ H ₅	$logP = 3.23^{a}$
IV-41	(4-) Br	Н	(3-) N		logP = 3.02 a)
IV-42	(4-) Cl	Н	$\begin{array}{c} O \\ O \\ N \end{array}$ $\begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \\ O \\ D \end{array}$	OC ₂ H ₅	$logP = 3.23^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-43	(4-) Cl	Н	O N—CH ₃ CF ₃	OC ₂ H ₅	$logP = 3.31^{a}$
IV-44	(4-) C1	Н	$\begin{array}{c c} (2-) & & \\ & & $	OC ₂ H ₅	$logP = 3.14^{a}$
IV-45	(4-) NO ₂	Н	(2-) N N OC ₂ H ₅	OC ₂ H ₅	$logP = 2.42^{a}$
IV-46	(4-) NO ₂	Н	O N—CH ₃ SCH ₃	OC ₂ H ₅	$logP = 2.82^{a}$
IV-47	(4-) CF ₃	Н	$\begin{array}{c c} (2-) & & \\ & & $	OC ₂ H ₅	logP = 3.48 a)
IV-48	(4-) CF ₃	Н	$\begin{array}{c c} (2-) & & \\ & & $	OC ₂ H ₅	$logP = 3.38^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	physical data
IV-49	(4-) CF ₃	H	N CH ₃	OC ₂ H ₅	$logP = 3.02^{a}$
			$N=\langle SCH_3 \rangle$		
IV-50	(4-) CF ₃	Н	(2-)	OC ₃ H ₇	$\log P = 3.91^{a}$
			O N N O O O O O O O O O O		
IV-51	(4-) OCH ₃	Н	O II	OC ₂ H ₅	
			$N \longrightarrow N$ $N \longrightarrow CH_3$ $N \longrightarrow CH_3$ $N \longrightarrow CH_3$ $N \longrightarrow CH_3$		
	(1) 0 077	**		00.11	
IV-52	(4-) OCH ₃	Н	$(2-)$ 0 $N = 0$ $N = 0$ $N = 0$ $N_2 = 0$ $N_3 = 0$	OC ₂ H ₅	
			C ₂ H ₅		
IV-53	(4-) CF ₃	Н	0	OC_2H_5	¹H NMR
1, 22	(1)013		N CH ₃	5 - 23	(CDCl ₃ , δ):
					5.37 ppm.
			(2-) OC ₂ H ₅		J.J, ppm.
IV-54	(4-) CF ₃	Н	0	OC ₂ H ₅	¹H NMR
			N CH ₃		(CDCl ₃ , δ):
			N=(5.37 ppm.
			(2-) OCH ₃		

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(\mathbb{R}^4)_n$	-A-Z	X	
IV-55	Н	н	O N N CH_3 OC_2H_5	OC₂H₅	
IV-56	Н	Н	OCH ₃	OC ₂ H ₅	¹ H NMR (CDCl ₃ , δ): 5.37 ppm.
IV-57	Н	Н	$\begin{array}{c} O \\ N \\ N \end{array} \begin{array}{c} O \\ N \\ O \\ C_2 \\ H_5 \end{array}$	OC ₂ H ₅	¹ H NMR (CDCl ₃ , δ): 5.40 ppm.
IV-58	(4-) Br	Н	O N CH_3 OC_2H_5	OC ₂ H ₅	$logP = 2.95^{a}$
IV-59	(4-) Br	н	OCH ₃	OC ₂ H ₅	'H NMR (CDCl ₃ , δ): 5.31 ppm.
IV-60	(4-) Br	Н	(2-) O	OC₂H₅	$logP = 2.44^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-61	(4-) F	Н		OC ₂ H ₅	¹H NMR
			N N CH ₃		(CDCl ₃ , δ):
					5.35 ppm.
•			(2-) OC ₂ H ₅		
IV-62	(4-) F	Н	Q	OC_2H_5	'H NMR
			N CH ₃		(CDCl ₃ , δ):
			N=(5.53 ppm.
			(2-) CF ₃		:
IV-63	(4-) F	Н	(2-)	OC ₂ H ₅	¹H NMR
) I		(CDCl ₃ , δ):
			N OC ₂ H ₅		5.40 ppm.
			$N = \langle C_2H_5 \rangle$		
IV-64	(4-) F	Н	0	OC ₂ H ₅	¹H NMR
	,		N CH ₃		$(CDCl_3, \delta)$:
					5.36 ppm.
			(2-) OCH ₃		
IV-65	(4-) Br	Н	(2-)	OC ₂ H ₅	$\log P = 3.34^{a}$
1, 05	(1)21		0		
			L L		
			N CH ₃		
			OC ₃ H ₇ -i		
177.66	(4) D			OCII	$\log D = 2.29^{\text{ a}}$
IV-66	(4-) Br	Н	(2-)	$ UC_2\Pi_5 $	$logP = 3.38^{a}$
			J		
			N N CH ₃		Į
			N=(OC₃H ₇ -n		
			31 17-11		

Ex.	(position-)	(position-)	(position-)	***	physical data
No.	R ³	(R ⁴) _n	-A-Z	X	
IV-67	(4-) Br	Н	(2-)	OC ₂ H ₅	$logP = 3.31^{a}$
			O		
			N CH ₃		
			N=(
			OCH ₂ CF ₃		
IV-68	(4-) Br	Н	0	OC ₂ H ₅	$logP = 2.16^{a}$
			N N N N N N N N N N N N N N N N N N N		
			$N=\langle \rangle$		
			(2-)		
IV-69	(4-) Br	Н	0	OC ₂ H ₅	$logP = 2.41^{a}$
			\n\n_		
			$N=\langle \rangle$		
			(2-)		
IV-70	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	$logP = 3.51^{a}$
			O II		
			N CH ₃		
			N=(
			`OC₃H ₇ -i		
IV-71	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	$logP = 3.54^{a}$
			Q		
			N CH ₃		
			$N=\langle$		
			OC ₃ H ₇ -n		
IV-72	(4-) Br	Н	O	OC ₂ H ₅	$\log P = 2.36^{a}$
			N_O		
			(2-)		

Ex.	(position-)		(position-)		physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-73	(4-) Br	Н	N O CH ₃	OC ₂ H ₅	$\log P = 2.88^{a}$
IV-74	(4-) CF ₃	Н	O N CH ₃	OC ₂ H ₅	$\log P = 2.68^{a}$
IV-75	(4-) Br	H	O N—CH ₃ Br		$logP = 2.80^{a}$
IV-76	(4-) CF ₃	Н	OCH ₃	OC ₂ H ₅	$logP = 3.87^{a}$
IV-77	(4-) CF ₃	Н	O N N CH ₂ OCH ₃	OC ₂ H ₅	logP = 2.88 a)
IV-78	(4-) CF ₃	Н	O N CH ₃ CH ₂ OCH ₃	OC ₂ H ₅	logP = 2.60 a)

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-79	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	$logP = 3.35^{a}$
			N Br		
IV-80	(4-) Br	Н	N—CH ₃	OC₂H₅	$logP = 2.86^{a}$
			(2-)		2 2 2 3
IV-81	(4-) Cl	Н	N CH ₃	OC ₂ H ₅	$logP = 2.83^{a}$
			(2-) SCH ₃		
IV-82	(4-) Br	Н	(2-)	OC ₂ H ₅	$logP = 2.60^{a}$
			N CH ₃		
IV-83	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	¹H NMR
			Q	1	$(CDCl_3, \delta)$:
			$N \longrightarrow C_2H_5$		5.36 ppm.
			OC ₂ H ₅		
IV-84	(4-) CF ₃	H	(2-)	OC ₂ H ₅	¹H NMR
			Q.		(CDCl ₃ , δ):
			N C ₂ H ₅		5.37 ppm.
			OCH ₃		

Ex.	(position-)	(position-)	(position-)		physical data
No.	R^3	$(R^4)_n$	-A-Z	X	
IV-85	(4-) CF ₃	H	(2-)	OC ₂ H ₅	$logP = 2.79^{a}$
			$ \begin{array}{c} O \\ N \\ \longrightarrow \\ N \\ \longrightarrow \\ N(CH_3)_2 \end{array} $		
IV-86	(4-) CF ₃	Н	(2-) SO ₂		$logP = 3.67^{a}$
IV-87	(4-) CF ₃	н	(2-)	OC ₂ H ₅	$logP = 3.80^{a}$
IV-88	(3-) CH ₃	Н	O N N CH_3 OC_2H_5		logP = 2.54 a)
IV-89	(4-)	Н	O O	OC ₂ H ₅	$logP = 1.82^{a}$
	SO ₂ CH ₃		$N \longrightarrow N \longrightarrow CH_3$ $N \longrightarrow CH_3$ SCH_3		
IV-90	(4-) CF ₃	Н	(2-) O CF ₃	OC ₂ H ₅	$logP = 2.93^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	physical data
IV-91	(4-) CF ₃	H	(2-)	OC ₂ H ₅	$logP = 3.08^{a}$
	(,) 3		OCH ₃		
IV-92	(4-) CF ₃	Н	N O CH ₃	OC ₂ H ₅	$logP = 3.04^{a}$
IV-93	(4-) CF ₃	Н	OCH ₂ CF ₃	OC ₂ H ₅	$\log P = 3.45^{a}$
IV-94	(4-) F	Н	$(2-)$ $ \begin{array}{c} O \\ N \\ \end{array} $ $ \begin{array}{c} CH_3 \\ N(CH_3)_2 \end{array} $	OC ₂ H ₅	$logP = 2.21^{a}$
IV-95	(4-) F	H	OC ₃ H ₇ -n	OC ₂ H ₅	$logP = 2.96^{a}$
IV-96	(4-) F	Н	ON CH ₃ CH ₂ OCH ₃	OC ₂ H ₅	$logP = 2.05^{a}$

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-97	(4-) F	Н	(2-)	OC ₂ H ₅	$logP = 2.50^{a}$
			N N OCH3		
IV-98	(4-) F	Н	(2-)	OC ₂ H ₅	$\log P = 2.89^{a}$
			O N O O O O O O O O O O		
IV-99	(4-) CF ₃	Н	0	OC ₂ H ₅	$logP = 2.91^{a}$
			CH_3 CH_3 CH_3 CH_3		
			(2-)	00.77	
IV-	(4-) Cl	Н	Q 	OC ₂ H ₅	¹H NMR
100			N N CH3		(CDCl ₃ , δ):
			N=(5.39 ppm.
			(2-) CH ₃		
IV-	(4-) Cl	Н	Q	OC ₂ H ₅	¹H NMR
101			N CH3		(CDCl ₃ , δ):
					5.50 ppm.
			(2-) CF ₃		
IV-	(4-) Cl	Н	(2-)	OC ₂ H ₅	¹H NMR
102			l o		(CDCl ₃ , δ):
			N—CH ₃		5.49 ppm.
			SO ₂ CH ₃		

Ex.	(position-)	(position-)	(position-)		physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	Izza Iz CD
IV-	(4-) CF ₃	H		OC ₂ H ₅	¹H NMR
103			N CH3		(CDCl ₃ , δ):
			N=		5.29 ppm.
			(2-) CH ₃		
IV-	(4-) CF ₃	Н	O II	OC ₂ H ₅	¹H NMR
104			N CH ₃		(CDCl ₃ , δ):
			N=(5.53 ppm.
	:		(2-) CF ₃		
IV-	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	¹H NMR
105			O .		(CDCl ₃ , δ):
			N		5.34 ppm.
			N=(
IV-	(4-)	Н	(2-)	OC ₂ H ₅	¹H NMR
106	SO ₂ CH ₃		O .		(CDCl ₃ , δ):
					5.39 ppm.
			N=(
IV-	(4-)	Н	0	OC ₂ H ₅	¹H NMR
107	SO ₂ CH ₃		N CH3		(CDCl ₃ , δ):
			N=<		5.43 ppm.
			(2-) CH ₃		
IV-	(4-)	Н	(2-)	OC ₂ H ₅	¹H NMR
108	SO ₂ CH ₃		<u>o</u>		$(CDCl_3, \delta)$:
			N CH ₃		5.40 ppm.
			N=(
			N(CH ₃) ₂		
1	1			l	<u></u>

Ex.	(position-)	(position-)	(position-)		physical data
No.	R ³	$(\mathbf{R}^4)_{\mathbf{n}}$	-A-Z	X	
IV-	(4-)	Н) 	OC ₂ H ₅	¹H NMR
109	SO ₂ CH ₃		N CH3		(CDCl ₃ , δ):
			N=(5.38 ppm.
			OC_2H_5		
IV-	(4-) Br	Н	ρ	OC ₂ H ₅	¹H NMR
110			N CH ₃		(CDCl ₃ , δ):
					5.49 ppm.
			(2-) CF ₃		
IV-	H	Н	(2-)	OC ₂ H ₅	¹H NMR
111			ဝူ		(CDCl ₃ , δ):
					5.3 ppm.
			N=(
IV-	Н	Н	O _{II}	OC_2H_5	¹H NMR
112			N CH ₃		(CDCl ₃ , δ):
	•				5.44 ppm.
			(2-) SCH ₃	:	
IV-	(4-) CF ₃	H	O _{II}	OC ₂ H ₅	$logP = 2.58^{a}$
113			N CH ₃		
		•	N-K		
			(2-) H ₃ C′ °O		
IV-	(4-)	Н	0	OCH ₃	$logP = 1.53^{a}$
114	SO ₂ CH ₃		N CH3		
			\		
			(2-) SCH ₃		
l	1	L	L		<u> </u>

Ex.	(position-)	(position-)	(position-)		physical data
No.	\mathbb{R}^3	$(\mathbf{R}^4)_n$	-A-Z	X	
IV-	(4-)	Н	0=	OCH ₃	$logP = 1.59^{a}$
115	SO ₂ CH ₃		N CH ₃		
			OC ₂ H ₅		
IV-	(4-) I	Н		OCH ₃	$\log P = 2.68^{a}$
116			N—CH ₃		
			$(2-)$ OC_2H_5		
IV-	(4-) CF ₃	H	0	OCH ₃	$\log P = 2.74^{a}$
	(1) 023		L CH	,	
117			N CH ₃		
			(2-) OC ₂ H ₅		
IV-	(4-) CF ₃	Н	Q	OCH ₃	$logP = 2.65^{a}$
118			N CH ₃		
			(2-) SCH ₃		
IV-	(4-) CF ₃	Н	Q	OC ₂ H ₅	$logP = 2.96^{a}$
119			N CH ₃		
			(2-) Br		
IV-	Н	Н	o O	OCH ₃	m.p.: 106°C
120			N CH ₃		
			(2-) H ₃ C N O		
IV-	(2-) NO ₂	(3-) OCH ₃	O	OCH ₃	$logP = 2.27^{a}$
121			N CH ₃		
			(4-) OC ₂ H ₅		

10

20

Ex. No.	(position-) R ³	(position-) (R ⁴) _n	(position-) -A-Z	X	physical data
IV-	(2-) NO ₂	(3-) OCH ₃		OCH_3	$\log P = 2.19^{a}$
122			N— SCH ₃		

The logP values given in the Tables were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) using a reversed-phase column (C 18). Temperature: 43°C.

- (a) Mobile phases for the determination in the acidic range: 0.1% aqueous phosphoric acid, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile the corresponding data in the Tables are labelled a).
- (b) Mobile phases for the determination in the neutral range: 0.01-molar aqueous phosphate buffer solution, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile the corresponding data in the Tables are labelled b).
- 15 Calibration was carried out using unbranched alkan-2-ones (having 3 to 16 carbon atoms) whose logP values are known (determination of the logP values using the retention times by linear interpolation between two successive alkanones).
 - The lambda-max values were determined using the UV spectra from 200 nm to 400 nm in the maxima of the chromatographic signals.

- 124 -

Use examples:

Example A

5 Pre-emergence test

Solvent:

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

Seeds of the test plants are sown in normal soil. After approximately 24 hours, the soil is sprayed with the preparation of active compound such that the particular amount of active compound desired is applied per unit area. The concentration of the spray liquor is chosen so that the particular amount of active compound desired is applied in 1000 litres of water per hectare.

20

After three weeks, the degree of damage to the plants is assesssed in % damage in comparison to the development of the untreated control.

The figures denote:

25

30

0% = no effect (like untreated control)

100% = total destruction

In this test, for example the compounds of Preparation Example 1 and 10 exhibit strong activity against weeds, and some of them are tolerated well by crop plants, such as, for example, maize.

Pre emergence test/greenhouse
ble 1
- 65

ctive compound of	Amount used	Maize	Maize Cyperus Abutilon	Abutilon	
eparation Example No.	(g aı./na)				
0=					
EO CH3					
O-C ₂ H ₅					
(1)	1000	ı	100	100	
0					
C ₂ H ₅					
-0 Z					
Br C ₂ H ₅					
(10)	200	0	100	06	

- 126 -

Example B

Post-emergence test

5 Solvent:

10

15

20

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

Test plants which have a height of 5 - 15 cm are sprayed with the preparation of active compound in such a way that the particular amounts of active compound desired are applied per unit area. The concentration of the spray liquor is chosen so that the particular amounts of active compound desired are applied in 1000 l of water/ha.

After three weeks, the degree of damage to the plants is assesssed in % damage in comparison to the development of the untreated control.

The figures denote:

0% = no effect (like untreated control)

100% = total destruction

25

In this test, for example the compounds of Preparation Example 10 and 15 exhibit strong activity against weeds, and some of them are tolerated well by crop plants, such as, for example, maize.

Sinanis	ordanio		08	80
Amaranthus			95	06
Maize			50	0
Amount used	(g ai./ha)		200	1000
ctive compound of	reparation Example No.	B C C C C C C C C C C C C C C C C C C C	(10) O C ₂ H ₅	(15)

Patent Claims

1. Substituted benzoylcyclohexanediones of the general formula (I),

$$(R^2)_{m} \xrightarrow{O} O \qquad (R^4)_{n}$$

$$R^3 \qquad (I)$$

in which

5

10

15

20

25

m represents the numbers 0, 1, 2 or 3,

n represents the numbers 0, 1, 2 or 3,

A represents the single bond or represents alkanediyl (alkylene),

R1 represents hydrogen or represents in each case optionally substituted alkyl or alkoxycarbonyl,

represents optionally substituted alkyl, or together with R¹ represents alkanediyl (alkylene) where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl,

 R^4 represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulphinyl, alkylsulphonyl, alkylamino, dialkylamino or dialkylaminosulphonyl, and

5

Z represents an optionally substituted 4- to 12-membered, saturated or unsaturated, monocyclic or bicyclic, heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and, if appropriate, - alternatively or additionally - one oxygen atom or one sulphur atom, or one SO grouping or one SO₂ grouping), and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as components of the heterocycle,

10

including all possible tautomeric forms of the compounds of the general formula (I) and the possible salts of the compounds of the general formula (I).

15

Substituted benzoylcyclohexanediones according to Claim 1, characterized in 2. that

20

represents the numbers 0, 1 or 2, m

n

represents the numbers 0, 1 or 2,

represents a single bond or represents alkanediyl (alkylene) having 1 Α to 4 carbon atoms,

25

 R^1 represents hydrogen, represents optionally halogen-, C1-C4-alkoxy-, C_1 - C_4 -alkylthio-, C_1 - C_4 -alkylsulphinyl- or C_1 - C_4 -alkylsulphonylsubstituted alkyl having 1 to 6 carbon atoms or represents alkoxycarbonyl having up to 6 carbon atoms,

 R^2 represents optionally halogen-substituted alkyl having 1 to 6 carbon atoms, or together with R^1 represents alkanediyl (alkylene) having 2 to 5 carbon atoms, where in this case m represents 1 and R^1 and R^2 are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having in each case up to 4 carbon atoms in the alkyl groups,

R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulphonyl having in each case up to 4 carbon atoms in the alkyl groups, and

Z represents one of the heterocyclic groupings below

10

5

15

 R^5

in which the bond drawn broken in each case denotes a single bond or a double bond,

Q represents oxygen or sulphur,

represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally halogen-, C1-C4-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogensubstituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogensubstituted cycloalkyl, cycloalkylalkyl, cycloalkyloxy, cycloalkylthio or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, and

5

10

15

10

15

R6 represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C1-C4-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogensubstituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C1-C4-alkyl- or C₁-C₄-alkoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents optionally halogen- or C₁-C₄-alkyl-substituted alkanediyl having 3 to 5 carbon atoms, or - in the case that two adjacent radicals $\ensuremath{R^5}$ and $\ensuremath{R^5}$ are located at a double bond - together with the adjacent radical $\,R^{5}\,$ also represents a benzo grouping.

- 3. Substituted benzoylcyclohexanediones according to Claim 1, characterized in that
 - m represents the numbers 0, 1 or 2,
- n represents the numbers 0, 1 or 2,
 - A represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl),
- 30 R¹ represents hydrogen, represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-,

 R^2

n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propyl-sulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propyl-sulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, or represents methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl,

5

represents methyl, ethyl, n- or i-propyl, or together with R¹ represents methylene, ethane-1,1-diyl (ethylidene, -CH(CH₃)-), ethane-1,2-diyl (dimethylene, -CH₂CH₂-), propane-1,3-diyl (trimethylene, -CH₂CH₂CH₂-), butane-1,4-diyl (tetramethylene, -CH₂CH₂CH₂CH₂-) or pentane-1,5-diyl (pentamethylene, -CH₂CH₂CH₂CH₂CH₂-), where in this case m represents 1 and R¹ and R² are located at the same carbon atom ("geminal") or at two adjacent carbon atoms ("vicinal"),

10

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or ipropovy- methylthio- ethylthio- n- or i-propylthio-, methyl-

20

15

optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulphonyl or diethylaminosulphonyl,

25

R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-,

10

n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, methylsulphonyl- or ethylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine-and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents methylamino, ethylamino, n- or i-propylsulphonyl, or diethylamino, dimethylamino, dimethylamino, diethylaminosulphonyl, and

Z represents one of the heterocyclic groupings below

in which the bond drawn broken in each case denotes a single bond or a double bond,

- Q represents oxygen or sulphur,
- R⁵ represents hydrogen, hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, iodine, represents in each case optionally

fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or t-butoxy-, methylthio-, ethylthio-, n- or i-propylthio-, n-, i-, s- or t-butylthio-, methylsulphinyl-, ethylsulphinyl-, n- or ipropylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or ipropylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or tbutoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or tbutylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, represents methylamino, ethylamino, n- or ipropylamino, n-, i-, s- or t-butylamino, dimethylamino, di-n-propylamino di-i-propylamino, diethylamino, or represents in each case optionally fluorine- and/or chlorinesubstituted ethenyl, propenyl, butenenyl, ethinyl, propinyl, butinyl, propenyloxy, butenyloxy, propenylthio, butenylthio, propenylamino or butenylamino, represents in each case optionally fluorine- and/or chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclobutylmethyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, cyclopropylamino, cyclobutylamino, cyclopentylamino or cyclohexylamino, or represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxysubstituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, and

R6 represents hydrogen, hydroxyl, amino, represents in each case optionally fluorine- and/or chlorine-, methoxy-, or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl,

5

10

15

20

25

methoxy, ethoxy, n- or i-propoxy, methylamino, ethylamino or dimethylamino, represents in each case optionally fluorineand/or chlorine-substituted ethenyl, propenyl, ethinyl, propinyl or propenyloxy, represents in each case optionally fluorineand/or chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, or represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or ipropyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or ipropoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents in each case optionally methyl- and/or ethyl-substituted propane-1,3-diyl (trimethylene) or butane-1,4-diyl (tetramethylene), or - in the case that two adjacent radicals R^5 and R^5 are located at a double bond together with the adjacent radical R⁵ also represents a benzo grouping.

4. Substituted benzoylcyclohexanediones according to Claim 1, characterized by the general formula (IA),

$$(R^2)_m$$
 R^1
 $(R^4)_n$
 R^5
 (IA)

in which

m represents the numbers 0, 1 or 2,

10

15

- n represents the numbers 0, 1 or 2,
- A represents a single bond or represents methylene,
- 5 Q represents oxygen or sulphur,
 - R¹ represents hydrogen, methyl, ethyl, n- or i-propyl,
 - R² represents methyl,

15

20

25

30

R³ represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl, or dimethylaminosulphonyl,

R⁴ represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl, or dimethylaminosulphonyl,

R⁵ represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents cyclopropyl, and

R6 represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.

5. Substituted benzoylcyclohexanediones according to Claim 1, characterized by the general formula (IB),

$$(R^{2})_{m} \xrightarrow{Q} N \xrightarrow{Q} N \xrightarrow{R^{5}} (IB)$$

in which

5

15

20

25

in which

m represents the numbers 0, 1 or 2,

n represents the numbers 0, 1 or 2,

A represents a single bond or represents methylene,

Q represents oxygen or sulphur,

R1 represents hydrogen, methyl, ethyl, n- or i-propyl,

R² represents methyl,

R³ represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,

10

15

20

- R⁴ represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl, or dimethylaminosulphonyl,
- R⁵ represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents cyclopropyl, and
- represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.
- 6. Substituted benzoylcyclohexanediones according to Claim 1, characterized by the general formula (IC),

$$(R^{2})_{m} \xrightarrow{Q} A \xrightarrow{N} R^{6}$$

$$(IC)$$

in which

- m represents the numbers 0, 1 or 2,
- n represents the numbers 0, 1 or 2,
 - A represents a single bond or represents methylene,

- Q represents oxygen or sulphur,
- R¹ represents hydrogen, methyl, ethyl, n- or i-propyl,
- R² represents methyl,

10

15

20

- R³ represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,
- R4 represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulphinylmethyl, methylsulphonylmethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl or dimethylaminosulphonyl,
 - R⁵ represents methyl, ethyl, n- or i-propyl, trifluoromethyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents cyclopropyl, and
 - R6 represents methyl, ethyl, methoxy, ethoxy or cyclopropyl.
- 30 7. Substituted benzoylcyclohexanediones according to any of Claims 1 to 6, characterized in that the salts are the sodium, potassium, magnesium, calcium,

ammonium, C_1 - C_4 -alkyl-ammonium, di- $(C_1$ - C_4 -alkyl)-ammonium, tri- $(C_1$ - C_4 -alkyl)-ammonium, tri- $(C_1$ - C_4 -alkyl)-sulphonium, C_5 - or C_6 -cycloalkyl-ammonium and di- $(C_1$ - C_2 -alkyl)-benzyl-ammonium salts.

5

8. Process for preparing substituted benzoylcyclohexanediones according to any of Claims 1 to 6, characterized in that 1,3-cyclohexanedione or its derivatives of the general formula (II),

$$(\mathbb{R}^2)_{\mathfrak{m}} \qquad \qquad (II)$$

10

in which

 m, R^1 and R^2 are each as defined in any of Claims 1 to 6,

15

are reacted with substituted benzoic acids of the general formula Formel (III),

HO
$$(R^4)_n$$

$$A Z$$
(III)

in which

20

n, A, R³, R⁴ and Z are each as defined in any of Claims 1 to 6,

in the presence of a dehydrating agent, if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

and, if appropriate, the compounds of the formula (I) obtained in this manner are subsequently subjected in a customary manner, within the scope of the definition of the substituents, to electrophilic or nucleophilic or oxidation or reduction reactions, or the compounds of the formula (I) are converted in a customary manner into salts.

9. Substituted benzoic acids of the general formula (III),

HO
$$(R^4)_n$$
 $A Z$ (III)

in which

5

15

20

n, A, R³, R⁴ and Z are each as defined in any of Claims 1 to 6,

except for the compounds 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoro-methyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and 2-(5-carboxy-2,4-di-chloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

- 10. Use of at least one substituted benzoylcyclohexanedione according to any of Claims 1 to 6 for controlling undesirable plants.
- 11. Herbicidal compositions, characterized in that they contain at least one substituted benzoylcyclohexanedione according to any of Claims 1 to 6 and customary extenders.

Substituted benzoylcyclohexanediones

Abstract

The invention relates to novel substituted benzoylcyclohexanediones of the general formula (I),

$$(R^{2})_{m} \xrightarrow{Q} Q \qquad (R^{4})_{n} \qquad (I)$$

in which

m, n, A, R¹, R², R³, R⁴ and Z are each as defined in the description,

and also to processes for their preparation and to their use as herbicides.

CGMBINED DECLARATION AND POWER OF ATTORNEY

ATTORNEY DOCKET NO

FEB 0 5 2007

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is

on the invention entitled

SUBSTITUTED BENZOYLCYCLOHEXANDIONES

the specification of which is attached hereto,

or was filed on July 13, 1999

as a PCT Application Serial No. PCT/EP99/04929

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, \$1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

198 33 360.9	Germany	July 24, 1998
(Number)	(Country)	(Month/Day/Year Filed)
199 21 732.7	Germany	May 11, 1999
(Number)	(Country)	(Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, \$120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, \$1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status)
(PP	` 3	(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

, JOSEPH C. GIL, Patent Office Registration Number 26,602 ARON PREIS, Patent Office Registration Number 29,426 LYNDANNE M. WHALEN, Patent Office Registration Number 29,457 THOMAS W. ROY, Patent Office Registration Number 29,582 RICHARD E. L. HENDERSON, Patent Office Registration Number 31,619 GODFRIED R. AKORLI, Patent Office Registration Number 28,779 N. DENISE BROWN, Patent Office Registration Number 36,097 NOLAND J. CHEUNG, Patent Office Registration Number 39,138 DIDERICO VAN EYL, Patent Office Registration Number 38,641 CAROLYN M. SLOANE, Patent Office Registration Number 44,339 JAMES R. FRANKS, Patent Office Registration Number 42,552

JACKIE ANN ZURCHER, Patent Office Registration Number 42,251 all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741

	Send Correspondence To: Patent Department Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741		Direct Telephone C (412) 777-2349	alls To:
-00 l	FULL NAME OF SOLE OR FIRST INVENTOR	INVENTOR'S SIGNATUR	11 11 1 2 2	DATE 2000-12-11
۱ .	Hans-Georg Schwarz	1 Homes day	CITIZENSHIP	- 12000 1/2 (1
	PRESIDENCE D 40764 Langenfeld, Germany	4	German	DEX
1			- J GCE Mail	2-1
	POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D_51368 La	averkusen Germany	.7	
	FULL NAME OF SECOND INVENTOR	INVENTOR'S SAGNATUR		BATE
2-00	Klaus-Helmut Müller	1 - Held		ZOOO -12-12
2		100 0	CITIZENSHIP	
	PRESIDENCE D 40593 Düsseldorf, Germany		Austrian	DEX
	POST OFFICE ADDRESS			
	c/o Bayer Aktiengesellschaft, D 51368 Le	everkusen. Germany	V	:
	FULL NAME OF THIRD INVENTOR	INVENTOR'S SIGNATUR		DATE
3-10	Stefan Lehr	Helan H	ILA.	7001-01-17
J -	RESIDENCE	119	CITIZENSHIP	
	D 40764 <u>Langenfeld</u> , Germany		German	DEX
	POST OFFICE ADDRESS			
	c/o Bayer Aktiengesellschaft, D 51368 L	everkusen. Germany	V	
	FULL NAME OF FOURTH INVENTOR	THURNET S P S TONATUR	E.	DATE
4 1	Otto Schallner	1064 (dro)	the	2000-12-1
1-00	RESIDENCE	1 0 -1 30000	CITIZENSHIP	
	D 40789 Monheim, Germany		German	DEX
	POST OFFICE ADDRESS			
	c/o Bayer Aktiengesellschaft, D 51368 L	everkusen. German	v	
	FULL NAME OF FIFTH INVENTOR	INVENTOR'S SIGNATUR	RE 🔿	DATE
5-10			- / 1	
	l Mark Wilhelm Drewes	I Man Willer	· frewer.	· ·
) "		inventor's signatur	CITIZENSHIP	18-12-2000
) "	RESIDENCE	Mer Wall		· ·
, "	RESIDENCE D 40764 Langenfeld, Germany	Ment Willel	CITIZENSHIP	18-12-2000
	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS		CITIZENSHIP German	18-12-2000
	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L	everkusen, German	German	18-12-2000
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR	everkusen, German	German y	DEX DATE
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht	everkusen, German	German y	18-12-2000 DEX
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE	everkusen, German	CITIZENSHIP German y	DEX DATE
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany	everkusen, German	CITIZENSHIP German y RE CITIZENSHIP	DEX DATE 2000-12-19
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS	everkusen, German Inventor s signatur	CITIZENSHIP German Y RE CITIZENSHIP German	DEX DATE 2000-12-19
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L	everkusen, German INWENTOR'S GIGNATUR UNDER GUULLI everkusen, German	CITIZENSHIP German y RE CITIZENSHIP German	DEX DATE 2000-12-19
√o-01	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR	everkusen, German Inventor s signatur	CITIZENSHIP German y RE CITIZENSHIP German	DEX DATE DATE DATE
•	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR ROLF PONTZEN	everkusen, German INWENTOR'S GIGNATUR UNDER GUULLI everkusen, German	CITIZENSHIP German y RE CITIZENSHIP German	DEX DATE 2000-17-19 DEY
√o-01	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR ROLF PONTZEN RESIDENCE	everkusen, German INWENTOR'S GIGNATUR UNDER GUULLI everkusen, German	CITIZENSHIP German Y RE CITIZENSHIP German Y	DEX DATE DATE DATE
√o-01	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR ROLF PONTZEN RESIDENCE D 42799 Leichlingen, Germany	everkusen, German INWENTOR'S GIGNATUR UNDER GUULLI everkusen, German	CITIZENSHIP German CITIZENSHIP German Y CITIZENSHIP CONTRACTOR OF THE PARTY OF T	DEX DATE 2000-12-19 DATE 2000-12-19
7-10	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR ROLF PONTZEN RESIDENCE D 42799 Leichlingen, Germany POST OFFICE ADDRESS	everkusen, German INVENTOR'S GIGNATUR PROPERTY OF THE PROPERTY CITIZENSHIP German CITIZENSHIP German CITIZENSHIP German CITIZENSHIP German	DEX DATE 2000-12-19 DATE 2000-12-19	
√o-01	RESIDENCE D 40764 Langenfeld, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SIXTH INVENTOR Dieter Feucht RESIDENCE D 40789 Monheim, Germany POST OFFICE ADDRESS c/o Bayer Aktiengesellschaft, D 51368 L FULL NAME OF SEVENTH INVENTOR ROLF PONTZEN RESIDENCE D 42799 Leichlingen, Germany	everkusen, German INVENTOR'S GIGNATUR PROPERTY OF THE PROPERTY CITIZENSHIP German CITIZENSHIP German CITIZENSHIP German CITIZENSHIP German	DEX DATE 2000-12-0 DATE 2000-12-0	

(01:5)		lere e . de	
FULL NAME OF EIGHTH INVENTOR FEB 0 5 2001	Inventor's SIGNATURE	2001-	PATE 1- 7
Vinhedo, S.P., CEP 13280000, Braze WRADEMAN	<i>y</i> () • • • • • • • • • • • • • • • • • •	CITIZENSHIP	
POST OFFICE ADDRESS		German	DRV
Vinhedo, s.P., CEP 13280000, Cond. Estancia	Marambaia, Rua Avare	590, Brazil	BRX
Heinz-Jürgen Wroblowsky	Gen 7- Might	Serdlist	DATE 42-00
RESIDENCE D 40764 Langenfeld, Germany		German -	DEX
POST OFFICE ADDRESS			
c/o Bayer Aktiengesellschaft, D 51368 Leverkusen, Germany FULL NAME OF TENTH INVENTOR INVENTOR'S SIGNATURE DATE			
FORE NAME OF TENTH INVENTOR	INVENTOR 5 SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF ELEVENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE	<u> </u>	CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF TWELFTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF THIRTEENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			gg a marine of the contract
FULL NAME OF FOURTHEENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF FIFTEENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF SIXTEENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF SEVENTEENTH INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			