

SUN2000 V200R002

MODBUS 接口定义描述

文档版本 05

发布日期 2017-04-27

版权所有 © 华为技术有限公司 2017。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWEI和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.huawei.com
客户服务邮箱: support@huawei.com

客户服务电话: 4008302118

修订记录

修订记录

文档版本	发布日期	修改说明
05	2017-04-27	增加逆变器机型
04	2017-02-15	增加逆变器机型
03	2016-09-02	文档测试基线
02	2016-04-11	更新告警列表
01	2015-12-31	第一次正式发布。

目录

修订记录	i
1 介绍	1
1.1 术语、简写定义	
1.2 系统要求	2
1.3 逆变器额定容量定义	3
2 寄存器定义	4
2.1 信号定义表	
2.2 调度曲线的定义	11
2.3 告警信息	
3 功率调节接口使用	16
3.1 有功功率调节	
3.1.1 禁止有功功率限制	
3.1.2 通讯限制百分比	18
3.1.3 参数设置绝对值	
3.1.4 参数设置百分比	
3.1.5 通讯限制固定值	
3.2 无功功率调节	
3.2.1 禁止无功输出	20
3.2.2 通讯调节功率因数	20
3.2.3 参数设置 Q/S	20
3.2.4 参数设置功率因数	
3.2.5 通讯调节 Q/S	21
4 通信协议概述	22
4.1 物理层	
4.2 数据链路层	
4.2.1 寻址方式	
4.2.2 帧结构	
4.2.3 数据编码	
4.2.4 交互过程	22
4.2.5 CRC 校验	24
4.3 应用层	26
4.3.1 功能码列表	26

4.3.2 异常码列表	26
4.3.3 读寄存器(0X03)	28
4.3.3.1 主节点请求帧格式	28
4.3.3.2 从节点正常响应帧格式	28
4.3.3.3 从节点异常响应帧格式	28
4.3.3.4 举例	29
4.3.4 写单个寄存器(0X06)	29
4.3.4.1 主节点请求帧格式	29
4.3.4.2 从节点正常响应帧格式	29
4.3.4.3 从节点异常响应帧格式	30
4.3.4.4 举例	30
4.3.5 写多个寄存器(0X10)	30
4.3.5.1 主节点请求帧格式	30
4.3.5.2 从节点正常响应帧格式	31
4.3.5.3 从节点异常响应帧格式	31
4.3.5.4 举例	31
4.3.6 读设备识别码(0X2B)	31
4.3.6.1 查询设备识别信息命令	32
4.3.6.2 查询设备列表命令	33
4.2.6.2 没久描述完义	25

1 介绍

ModBus-RTU协议是工业领域广泛使用的通讯协议,是应用于电气通信终端上的一种通用语言。通过此协议,逆变器相互之间、逆变器经由网络(例如RS485总线)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的逆变器设备可以连成工业网络,进行集中监控。协议中描述了主从节点定义方式,主节点使用各种请求方式访问其它设备的过程,从节点如何响应来自其它设备的请求,以及双方如何侦测错误并记录。它制定了消息域格局和数据内容的详细定义。

随着华为逆变器业务的不断拓展,越来越多的通用或定制逆变器采用ModBus协议进行通讯,本文对华为逆变器的ModBus协议进行了描述和说明,用于规范和约束后续的第三方集成开发和定制。

- 1.1 术语、简写定义
- 1.2 系统要求
- 1.3 逆变器额定容量定义

1.1 术语、简写定义

表 1-1 术语、简写定义

名称	描述
主节点	在主从通讯中,主动发起通讯的一方称 之为主节点
从节点	在主从通讯中,被动响应命令的一方称 之为从节点
广播地址	固定为0
寄存器地址	寄存器地址对应一个2字节的信息
U16	无符号16位整形
U32	无符号32位整形
I16	有符号16位整形
I32	有符号32位整形
STR	字符串
MLD	多字节
N/A	不涉及
S	秒

1.2 系统要求

适用机型:

SUN2000-50KTL-C1

SUN2000-50KTL

SUN2000-42KTL

SUN2000-36KTL

SUN2000-33KTL-JP

SUN2000-40KTL-JP

SUN2000-43KTL-IN-C1

SUN2000-24.7KTL-JP

SUN2000-40KTL-US

SUN2000-33KTL-US

SUN2000-36KTL-US

SUN2000-33KTL-A

固件版本: V200R002C00/C01 或更高

1.3 逆变器额定容量定义

表 1-2 逆变器额定容量定义

枚举序号	机型	Pmax(kW)	Qmax(kVar)	额定功率(kW)
24	SUN2000-50KTL-C1	52.5	31.5	47.5
26	SUN2000-42KTL	47	28.2	42
27	SUN2000-36KTL	40	24	36
28	SUN2000-33KTL-JP	33.3	22.8	33.3
29	SUN2000-40KTL-JP	40	27.6	40
30	SUN2000-50KTL	50.5	30.3	46
31	SUN2000-43KTL-IN-C1	52.5	31.5	43
32	SUN2000-24.7KTL-JP	24.7	18	24.7
35	SUN2000-40KTL-US	44	26.4	40
36	SUN2000-33KTL-US	36.6	21.96	33.3
37	SUN2000-36KTL-US	40	24	36
43	SUN2000-33KTL-A	33	19.8	30

2 寄存器定义

- 2.1 信号定义表
- 2.2 调度曲线的定义
- 2.3 告警信息

2.1 信号定义表

表 2-1 华为逆变器支持 0X03、0X06、0X10 的命令

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
1	逆变器额定容量	RO	U16	N/A	1	32001	1	参考 1.3 逆变器额定容量定 义
2	输出方式	RO	U16	N/A	1	32002	1	0: 三相四线制 1: 三相三线制
3	设备序列号ESN	RO	STR	N/A	1	32003	10	
4	系统时间	RO	U32	N/A	1	32200	2	
5	PV1电压	RO	I16	V	10	32262	1	
6	PV1电流	RO	I16	A	10	32263	1	
7	PV2电压	RO	I16	V	10	32264	1	
8	PV2电流	RO	I16	A	10	32265	1	
9	PV3电压	RO	I16	V	10	32266	1	
10	PV3电流	RO	I16	A	10	32267	1	
11	PV4电压	RO	I16	V	10	32268	1	
12	PV4电流	RO	I16	A	10	32269	1	
13	PV5电压	RO	I16	V	10	32270	1	
14	PV5电流	RO	I16	A	10	32271	1	
15	PV6电压	RO	I16	V	10	32272	1	
16	PV6电流	RO	I16	A	10	32273	1	
17	电网AB线电压	RO	U16	V	10	32274	1	
18	电网BC线电压	RO	U16	V	10	32275	1	
19	电网CA线电压	RO	U16	V	10	32276	1	
20	电网A相电压	RO	U16	V	10	32277	1	
21	电网B相电压	RO	U16	V	10	32278	1	
22	电网C相电压	RO	U16	V	10	32279	1	
23	电网A相电流	RO	U16	A	10	32280	1	
24	电网B相电流	RO	U16	A	10	32281	1	
25	电网C相电流	RO	U16	A	10	32282	1	

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
26	电网频率	RO	U16	Hz	100	32283	1	
27	功率因数	RO	I16	N/A	1000	32284	1	
28	逆变器效率	RO	U16	%	100	32285	1	
29	机内温度	RO	I16	$^{\circ}$	10	32286	1	
30	逆变器状态	RO	U16	N/A	1	32287	1	0x0000:待机:初始化 0x0001:待机:绝缘阻抗检测 0x00002:待机:光照检测 0x00003:待机:电网检测 0x0100:启动 0x0200:并网 0x0200:并网:限功率 0x0202:并网:自降额 0x0300:关机:异常关机 0x0301:关机:指令关机 0x0301:关机:随信断链 0x0304:关机:限功率 0x0305:关机:濡手动开机 0x0401:电网调度: cosψ-P曲线 0x0402:电网调度: Q-U曲线 0xA000:待机:无光照 0x0501:点检中 0x0600:巡检中 0X0700:AFCI自检 0X0800:IV扫描中
31	当天峰值有功功 率	RO	I32	kW	1000	32288	2	
32	有功功率	RO	132	kW	1000	32290	2	
33	无功功率	RO	I32	kVar	1000	32292	2	
34	输入总功率	RO	U32	kW	1000	32294	2	
35	当前发电量统计 时间	RO	U32	N/A	1	32296	2	
36	当前小时发电量	RO	U32	kWh	100	32298	2	

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
37	当日发电量	RO	U32	kWh	100	32300	2	
38	当月发电量	RO	U32	kWh	100	32302	2	
39	当年发电量	RO	U32	kWh	100	32304	2	
40	总发电量	RO	U32	kWh	100	32306	2	
41	PV7电压	RO	I16	V	10	32314	1	
42	PV7电流	RO	I16	A	10	32315	1	
43	PV8电压	RO	I16	V	10	32316	1	
44	PV8电流	RO	I16	A	10	32317	1	
45	闭锁状态	RO	U16	N/A	1	32320	1	0:闭锁 1:非闭锁
46	零电压穿越保护	RO	U16	N/A	1	32321	1	BitOffset:0 0: 无; 1: 产生;
47	LVRT保护	RO	U16	N/A	1	32321	1	BitOffset:1 0: 无; 1: 产生;
48	孤岛效应保护	RO	U16	N/A	1	32321	1	BitOffset:2 0: 无; 1: 产生;
49	逆变并网状态	RO	U16	N/A	1	32322	1	00: 离网01: 并网
50	绝缘阻抗值	RO	U16	ΜΩ	1000	32323	1	
51	开机时间	RO	U32	s	1	32325	2	
52	关机时间	RO	U32	S	1	32327	2	
53	前一小时发电量 统计时间	RO	U32	N/A	1	32343	2	
54	前一小时发电量	RO	U32	kWh	100	32345	2	
55	前一日发电量统 计时间	RO	U32	N/A	1	32347	2	
56	前一日发电量	RO	U32	kWh	100	32349	2	
57	前一月发电量统 计时间	RO	U32	N/A	1	32351	2	
58	前一月发电量	RO	U32	kWh	100	32353	2	

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
59	前一年发电量统 计时间	RO	U32	N/A	1	32355	2	
60	前一年发电量	RO	U32	kWh	100	32357	2	
61	MPPT1输入总功率	RO	U32	kW	1000	33022	2	
62	MPPT2输入总功率	RO	U32	kW	1000	33024	2	
63	MPPT3输入总功率	RO	U32	kW	1000	33026	2	
64	MPPT4输入总功率	RO	U32	kW	1000	33070	2	
65	系统时间	RW	U32	N/A	1	40000	2	[946684800, 3155759999]
66	无功功率补偿方 式	RW	U16	N/A	1	40117	1	[0,6]
67	有功功率控制方 式	RW	U16	N/A	1	40118	1	[0,4]
68	有功功率百分比 降额(1%)	RW	U16	%	1	40119	1	[0,100]
69	有功功率固定值 降额	RW	U16	kW	10	40120	1	[0,Pmax]
70	有功功率变化梯 度	RW	U16	%/S	10	40121	1	[0.1,1000]
71	无功功率补偿 (PF)	RW	I16	N/A	1000	40122	1	(-1,-0.8]U[0.8,1]
72	无功功率补偿 (Q/S)	RW	I16	N/A	1000	40123	1	(-1,1]
73	无功功率调整时 间	RW	U16	s	1	40124	1	[5,120]
74	有功功率百分比 降额(0.1%)	RW	U16	%	10	40125	1	[0,100]
75	cosψ-P/Pn特征曲 线	RW	MLD	N/A	1	40133	21	
76	Q-U特征曲线	RW	MLD	N/A	1	40154	21	
77	开机	WO	U16	N/A	1	40200	1	0
78	关机	WO	U16	N/A	1	40201	1	0
79	有功功率百分比 降额指令(0.1%)	WO	U16	%	1	40232	1	[0,100]

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
80	有功功率百分比 降额指令(1%)	WO	U16	%	1	40234	1	[0,100]
81	有功功率固定值 降额指令	WO	U16	kW	10	40235	1	[0,Pmax]
82	无功功率补偿指 令(Q/S)	WO	I16	N/A	1000	40236	1	(-1,1]
83	无功功率补偿指 令(PF)	WO	I16	N/A	1000	40237	1	(-1,-0.8]U[0.8,1]
84	一级过压保护时 间	RW	U32	ms	1	42045	2	[50,7200000]
85	二级过压保护时间	RW	U32	ms	1	42047	2	[50,7200000]
86	一级欠压保护时 间	RW	U32	ms	1	42049	2	[50,7200000]
87	二级欠压保护时 间	RW	U32	ms	1	42051	2	[50,7200000]
88	一级过频保护时 间	RW	U32	ms	1	42053	2	[50,7200000]
89	二级过频保护时间	RW	U32	ms	1	42055	2	[50,7200000]
90	一级欠频保护时 间	RW	U32	ms	1	42057	2	[50,7200000]
91	二级欠频保护时间	RW	U32	ms	1	42059	2	[50,7200000]
92	十分钟过压保护 时间	RW	U32	ms	1	42061	2	[50,7200000]
93	一级过压保护点	RW	U16	V	10	42063	1	[1*Vn,1.36*Vn]
94	二级过压保护点	RW	U16	V	10	42064	1	[1*Vn,1.36*Vn]
95	一级欠压保护点	RW	U16	V	10	42065	1	[0.15*Vn,1*Vn]
96	二级欠压保护点	RW	U16	V	10	42066	1	[0.15*Vn,1*Vn]
97	一级过频保护点	RW	U16	Hz	100	42067	1	[1*Fn,1.15*Fn]
98	二级过频保护点	RW	U16	Hz	100	42068	1	[1*Fn,1.15*Fn]
99	一级欠频保护点	RW	U16	Hz	100	42069	1	[0.85*Fn,1*Fn]
100	二级欠频保护点	RW	U16	Hz	100	42070	1	[0.85*Fn,1*Fn]
101	十分钟过压保护 点	RW	U16	V	10	42071	1	[1*Vn,1.36*Vn]

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
102	电网标准码	RW	U16	N/A	1	42072	1	
103	绝缘阻抗保护点	RW	U16	ΜΩ	1000	42074	1	[0.033,1.5]
104	电网电压不平衡 度保护点	RW	U16	%	10	42075	1	[0,50]
105	电网故障开机软 启时间	RW	U16	S	1	42083	1	[20,800]
106	LVRT	RW	U16	N/A	1	42084	1	[0,1]
107	开机软启动时间	RW	U16	s	1	42085	1	[20,1800]
108	电网故障恢复并 网时间	RW	U16	s	1	42086	1	[0,900]
109	孤岛保护	RW	U16	N/A	1	42087	1	0:禁能 1:使能
110	LVRT无功补偿因 子	RW	U16	N/A	10	42089	1	[0,3]
111	无功补偿(cosψ- P)触发电压	RW	U16	%	1	42090	1	[100,110]
112	无功补偿(cosψ- P)退出电压	RW	U16	%	1	42091	1	[90,100]
113	过频降额触发频 率	RW	U16	Hz	100	42092	1	50Hz:[45,55] 60Hz:[55,65]
114	过频降额退出频 率	RW	U16	Hz	100	42093	1	50Hz:[45,55] 60Hz:[55,65]
115	过频降额恢复梯 度	RW	U16	%/mi n	1	42094	1	[5,20]
116	Q-U特征曲线模 式	RW	U16	N/A	1	42095	1	[0,1]
117	Q-U调度触发功 率百分比	RW	U16	%	1	42096	1	[10,100]
118	MPPT多峰扫描	RW	U16	N/A	1	42097	1	0:禁能 1:使能
119	MPPT多峰扫描 间隔时间	RW	U16	min	1	42101	1	[5,30]
120	三级过压保护点	RW	U16	V	10	42151	1	[1*Vn,1.36*Vn]
121	三级过压保护时 间	RW	U32	ms	1	42152	2	[50,7200000]

序号	信号名称	读写	类型	单位	増益	地址	个数	范围
122	四级过压保护点	RW	U16	V	10	42154	1	[1*Vn,1.36*Vn]
123	四级过压保护时间	RW	U32	ms	1	42155	2	[50,7200000]
124	三级欠压保护点	RW	U16	V	10	42157	1	[0.15*Vn,1*Vn]
125	三级欠压保护时间	RW	U32	ms	1	42158	2	[50,7200000]
126	四级欠压保护点	RW	U16	V	10	42160	1	[0.15*Vn,1*Vn]
127	四级欠压保护时 间	RW	U32	ms	1	42161	2	[50,7200000]
128	限功率0%关机	RW	U16	N/A	1	42174	1	0:禁能 1:使能
129	系统时间: 年	RW	U16	N/A	1	42300	1	[2000,2069]
130	系统时间: 月	RW	U16	N/A	1	42301	1	[1,12]
131	系统时间: 日	RW	U16	N/A	1	42302	1	[1,31]
132	系统时间:时	RW	U16	N/A	1	42303	1	[0,23]
133	系统时间:分	RW	U16	N/A	1	42304	1	[0,59]
134	系统时间: 秒	RW	U16	N/A	1	42305	1	[0,59]
135	有功功率百分比 降额	RW	U16	%	1	42320	1	[0,100]
136	功率因数	RW	I16	N/A	1000	42321	1	(-1,-0.8]U[0.8,1]
137	远程功率调度	RW	U16	N/A	1	42333	1	0:禁能 1:使能

2.2 调度曲线的定义

表 2-2 调度曲线的定义

曲线名称	曲线内容	类型	増益	单位	范围
cosψ-P/Pn特	cosψ-P/Pn特征曲线点数	U16	1	N/A	2~10
征曲线设置	cosψ-P/Pn曲线第一点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第一点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第二点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第二点cosψ值	I16	1000	N/A	-0.8~0.8

曲线名称	曲线内容	类型	増益	单位	范围
	cosψ-P/Pn曲线第三点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第三点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第四点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第四点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第五点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第五点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第六点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第六点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第七点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第七点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第八点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第八点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第九点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第九点cosψ值	I16	1000	N/A	-0.8~0.8
	cosψ-P/Pn曲线第十点P/Pn值	U16	10	%	0~100
	cosψ-P/Pn曲线第十点cosψ值	I16	1000	N/A	-0.8~0.8
Q-U特征曲	Q-U特征曲线点数	U16	1	N/A	2~10
线设置	Q-U曲线第一点U/Un值	U16	10	%	80~115
	Q-U曲线第一点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第二点U/Un值	U16	10	%	80~115
	Q-U曲线第二点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第三点U/Un值	U16	10	%	80~115
	Q-U曲线第三点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第四点U/Un值	U16	10	%	80~115
	Q-U曲线第四点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第五点U/Un值	U16	10	%	80~115
	Q-U曲线第五点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第六点U/Un值	U16	10	%	80~115
	Q-U曲线第六点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第七点U/Un值	U16	10	%	80~115

曲线名称	曲线内容	类型	増益	单位	范围
	Q-U曲线第七点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第八点U/Un值	U16	10	%	80~115
	Q-U曲线第八点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第九点U/Un值	U16	10	%	80~115
	Q-U曲线第九点Q/S值	I16	1000	N/A	-0.6~0.6
	Q-U曲线第十点U/Un值	U16	10	%	80~115
	Q-U曲线第十点Q/S值	I16	1000	N/A	-0.6~0.6

2.3 告警信息

表 2-3 告警信息

序号	地址	Bit	父告警名称	告警ID	原因ID	级别
1	50000	0X0A	软件版本不匹配	504	1	次要
2	50000	0X0C	升级失败	505	1	重要
3	50000	0X0D	Flash故障	61440	1	次要
4	50001	0X01	软件版本不匹配	504	2	次要
5	50001	0X02	软件版本不匹配	504	3	次要
6	50001	0X03	系统故障	400	1	重要
7	50001	0X04	系统故障	400	27	重要
8	50001	0X06	逆变电路异常	202	20	重要
9	50001	0X07	残余电流异常	318	1	重要
10	50001	0X08	温度过高	321	1	重要
11	50001	0X0A	系统故障	400	28	重要
12	50001	0X0B	风扇故障	320	1	次要
13	50001	0X0C	SPI通讯异常	322	1	重要
14	50001	0X0E	系统故障	400	29	重要
15	50002	0X00	绝缘阻抗低	313	1	重要
16	50002	0X01	AFCI自检失败	411	1	重要
17	50002	0X02	直流电弧故障	412	1	重要
18	50002	0X03	AFCI自检失败	411	2	重要

序号	地址	Bit	父告警名称	告警ID	原因ID	级别
19	50002	0X04	AFCI自检失败	411	3	重要
20	50002	0X07	系统故障	400	30	重要
21	50002	0X08	系统故障	400	31	重要
22	50002	0X09	组串3反向	122	1	重要
23	50002	0X0C	直流电弧故障	412	2	重要
24	50002	0X0D	直流电弧故障	412	3	重要
25	50002	0X0E	直流电弧故障	412	4	重要
26	50002	0X0F	系统故障	400	23	重要
27	50003	0X01	组串1反向	120	1	重要
28	50003	0X02	组串2反向	121	1	重要
29	50003	0X03	直流电路异常	200	12	重要
30	50003	0X06	组串4反向	123	1	重要
31	50003	0X07	组串5反向	124	1	重要
32	50003	0X08	组串6反向	125	1	重要
33	50003	0X09	DC输入电压高	103	1	重要
34	50003	0X0A	DC输入电压高	103	2	重要
35	50003	0X0B	DC输入电压高	103	3	重要
36	50003	0X0C	DC输入电压高	103	4	重要
37	50003	0X0F	直流电路异常	200	15	重要
38	50004	0X02	组串1反向	120	2	提示
39	50004	0X03	组串2反向	121	2	提示
40	50004	0X04	组串7反向	126	1	重要
41	50004	0X05	组串7反向	126	2	提示
42	50004	0X06	组串8反向	127	1	重要
43	50004	0X07	组串8反向	127	2	提示
44	50004	0X0C	组串3反向	122	2	提示
45	50004	0X0D	组串4反向	123	2	提示
46	50004	0X0E	组串5反向	124	2	提示
47	50004	0X0F	组串6反向	125	2	提示
48	50005	0X01	直流电路异常	200	3	重要

序号	地址	Bit	父告警名称	告警ID	原因ID	级别
49	50005	0X02	辅助电源异常	410	4	重要
50	50005	0X04	直流电路异常	200	10	重要
51	50005	0X05	直流电路异常	200	11	重要
52	50005	0X06	直流电路异常	200	30	重要
53	50006	0X06	系统故障	400	3	重要
54	50006	0X0A	逆变电路异常	202	13	重要
55	50006	0X0C	逆变电路异常	202	14	重要
56	50007	0X01	逆变电路异常	202	16	重要
57	50007	0X05	系统故障	400	21	重要
58	50008	0X00	电网电压异常	301	4	重要
59	50008	0X03	电网电压异常	301	16	重要
60	50008	0X06	电网频率异常	305	2	重要
61	50008	0X07	电网频率异常	305	4	重要
62	50008	0X08	电网电压异常	301	28	重要
63	50008	0X09	电网电压异常	301	29	重要
64	50008	0X0A	接地异常	326	1	重要
65	50008	0X0B	电网电压异常	301	26	重要
66	50008	0X0C	电网频率异常	305	5	重要
67	50009	0X00	电网电压异常	301	31	重要
68	50009	0X01	电网电压异常	301	32	重要
69	50009	0X02	电网电压异常	301	33	重要
70	50009	0X08	电网电压异常	301	19	重要
71	50016	0X00	组串1异常	106	1	提示
72	50016	0X01	组串2异常	107	1	提示
73	50016	0X02	组串3异常	108	1	提示
74	50016	0X03	组串4异常	109	1	提示
75	50016	0X04	组串5异常	110	1	提示
76	50016	0X05	组串6异常	111	1	提示
77	50016	0X06	组串7异常	112	1	提示
78	50016	0X07	组串8异常	113	1	提示

3 功率调节接口使用

- 3.1 有功功率调节
- 3.2 无功功率调节

3.1 有功功率调节

逆变器提供5种有功调节方式,同时可以通过"有功功率降额梯度"(寄存器40121)调节有功降额响应时间的快慢。

表 3-1 有功功率调节信息点表

序号	信号名称	读写	类型	单位	増益	地址	个数	约束
1	有功功率控制方式	RW	U16	N/A	1	40118	1	存储,不支持高频写操作
2	有功功率百分比降 额(1%)	RW	U16	%	1	40119	1	
3	有功功率固定值降 额	RW	U16	kW	10	40120	1	
4	有功功率变化梯度	RW	U16	%/S	10	40121	1	
5	有功功率百分比降 额(0.1%)	RW	U16	%	10	40125	1	
6	有功功率百分比降 额指令(0.1%)	WO	U16	%	10	40232	1	不存储,支持高频写操作
7	有功功率百分比降 额指令(1%)	WO	U16	%	1	40234	1	
8	有功功率固定值降 额指令	WO	U16	kW	10	40235	1	

∭说明

- 如果应用场景中必须使用存储接口且需要高频写该接口,请确认逆变器版本为 V100R001C81SPC107、V200R001C00SPC106版本或更高版本。
- 如果需要使用"有功功率固定值降额指令"接口,确保逆变器版本为V100R001C81SPC107、 V200R001C00SPC106版本或更高版本。

3.1.1 禁止有功功率限制

逆变器不接收任何降额指令,按照当前运行状况,最高可以过载运行到额定功率的110%;不需要配套其它寄存器接口。

操作:将"有功功率控制方式"(寄存器40118)的值修改为0;

∭说明

"有功功率控制方式"(寄存器40118)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.1.2 通讯限制百分比

逆变器切换为远程控制模式,通过百分比的形式接收有功降额指令。百分比的基准值为逆变器上报的最大有功功率(Pmax),不同机型对应的最大有功功率,参考2.1章节。

操作

- 1. 降额精度1%场景: 首先将"有功功率控制方式"(寄存器40118)的值修改为1, 然后将"有功功率百分比降额指令(1%)"(寄存器40234)修改为降额的目标 值(%);
- 2. 降额精度0.1%场景: 首先将"有功功率控制方式"(寄存器40118)的值修改为 1,然后将"有功功率百分比降额指令(0.1%)"(寄存器40232)修改为降额的目标 值(%);

□ 说明

- "有功功率控制方式"(寄存器40118)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "有功功率百分比降额指令(1%)"(寄存器40234)和"有功功率百分比降额指令(0.1%)"(寄存器40232)需要主机周期性发送指令,周期间隔时间需小于10分钟,否则逆变器将自动将有功输出恢复100%Pmax。该方式中设置的降额指令逆变器不保存,逆变器重新上电后也将恢复为100%Pmax。

3.1.3 参数设置绝对值

主机直接下发有功调度的目标值,指令为绝对值形式,单位kW,调节精度0.1 kW。固定值指令的上限为逆变器上报的Pmax,最小值为0。

操作: 首先将"有功功率控制方式"(寄存器40118)的值修改为2,然后将"有功功率固定值降额"(寄存器40120)修改为降额的目标值(kW)。

□说明

- "有功功率控制方式"(寄存器40118)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "有功功率固定值降额"(寄存器40120)设置完毕后,逆变器将保持并存储设置的内容, 不需要周期性发送。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.1.4 参数设置百分比

主机通过百分比的形式发送有功降额指令。百分比的基准值为逆变器上报的最大有功功率Pmax,不同机型对应的最大有功功率Pmax,参考2.1。

操作:

- 1. 降额精度1%场景: 首先将"有功功率控制方式"(寄存器40118)的值修改为3, 然后将"有功功率百分比降额(1%)"(寄存器40119)修改为降额的目标值 (%);
- 降额精度0.1%场景:首先将"有功功率控制方式"(寄存器40118)的值修改为 3,然后将"有功功率百分比降额(0.1%)"(寄存器40125)修改为降额的目标值 (%);

□说明

- "有功功率控制方式"(寄存器40118)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "有功功率百分比降额(1%)" (寄存器40119)或"有功功率百分比降额(0.1%)" (寄存器40125)设置完毕后,逆变器将保持并存储设置的内容,不需要周期性发送。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.1.5 通讯限制固定值

逆变器切换为远程控制模式,通过固定值的形式接收有功降额指令,单位kW,调节精度0.1 kW。固定值指令的上限为逆变器的Pmax,最小值为0。

操作: 首先将"有功功率控制方式"(寄存器40118)的值修改为4,然后将"有功功率降额指令(固定值)"(寄存器40235)修改为降额的目标值(kW);

∭说明

"有功功率控制方式"(寄存器40118)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

"有功功率固定值降额指令"(寄存器40235)需要主机周期性发送指令,周期间隔时间需小于10mins,否则逆变器将自动将有功输出恢复100%Pmax。 该方式中设置的降额指令逆变器不保存,逆变器重新上电后也将恢复为100%Pmax。

3.2 无功功率调节

逆变器提供了5种无功调节方式,同时可以通过"无功功率调整时间"(寄存器 40124)调节无功调节响应时间的快慢。

表 3-2 无功功率调节信息点表

序号	信号名称	读写	类型	单位	増益	地址	个数	约束
1	无功功率补偿方 式	RW	U16	N/A	1	40117	1	存储,不支持高频写操 作
2	无功功率补偿 (PF)	RW	I16	N/A	1000	40122	1	
3	无功功率补偿 (Q/S)	RW	I16	N/A	1000	40123	1	
4	无功功率调整时 间	RW	U16	S	1	40124	1	
5	无功功率补偿指 令(Q/S)	WO	I16	N/A	1000	40236	1	不存储,支持高频写操 作
6	无功功率补偿指 令(PF)	WO	I16	N/A	1000	40237	1	

□说明

- 如果应用场景中必须使用存储接口且需要高频写接口,请确认逆变器版本为 V100R001C81SPC107、V200R001C00SPC106版本或更高版本。
- 如果需要使用"无功功率补偿指令(Q/S)"接口,确保逆变器版本为V100R001C81SPC107、 V200R001C00SPC106版本或更高版本。

3.2.1 禁止无功输出

逆变器不输出无功功率,并网功率因数为1。不需要配套其它寄存器接口。

操作:将"无功功率控制方式"(寄存器40117)的值修改为0;

□ 说明

"无功功率控制方式"(寄存器40117)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.2.2 通讯调节功率因数

逆变器切换为远程控制模式,通过功率因数的形式接收无功调节指令。

操作: 首先将"无功功率控制方式"(寄存器40117)的值修改为1,然后将"无功功率补偿指令(PF)"(寄存器40237)修改为调节的目标值;

□说明

- "无功功率控制方式"(寄存器40117)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "无功功率补偿指令(PF)"(寄存器40237)需要主机周期性发送指令,周期间隔时间不得大于10mins,否则逆变器将自动禁止无功输出。

3.2.3 参数设置 Q/S

主机通过Q/S的形式发送无功调节指令。该指令为无功固定值调节方式,其中Q为调节的无功目标值(kVar),S为逆变器的最大视在功率(kVA)。不同机型对应的最大视在功率,参考信号定义表。

操作: 首先将"无功功率控制方式"(寄存器40117)的值修改为2,然后将"无功功率补偿(Q/S)"(寄存器40123)修改为调节的目标值。

□ 说明

- "无功功率控制方式" (寄存器40117)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "无功功率补偿(Q/S)"(寄存器40123)设置完毕后,逆变器将保持并存储设置的内容,不需要周期性发送。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.2.4 参数设置功率因数

主机通过功率因数的形式发送无功调节指令。该指令为功率因数调节方式,逆变器输出的无功大小与当前输出的有功功率相关。

操作: 首先将"无功功率控制方式"(寄存器40117)的值修改为3,然后将"无功功率补偿(PF)"(寄存器40122)修改为调节的目标值。

∭说明

- "无功功率控制方式"(寄存器40117)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "无功功率补偿(PF)"(寄存器40122)设置完毕后,逆变器将保持并存储设置的内容,不需要周期性发送。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。

3.2.5 通讯调节 Q/S

逆变器切换为远程控制模式,通过Q/S的形式接收无功调节指令。

操作: 首先将"无功功率控制方式"(寄存器40117)的值修改为6,然后将"无功功率补偿指令(Q/S)"(寄存器40236)修改为调节的目标值;

∭说明

- "无功功率控制方式"(寄存器40117)模式切换后,逆变器将自动保持指令值,无需反复写值。指令值应变化时下发,如果需要周期性发送,平均操作周期需大于12分钟。
- "无功功率补偿指令(Q/S)" (寄存器40236) 需要主机周期性发送指令,周期间隔时间不得大于10分钟,否则逆变器将自动禁止无功输出。

4 通信协议概述

ModBus通信协议分为如下几层,分层进行描述:

应**用**层 数据链路层 物理层

- 4.1 物理层
- 4.2 数据链路层
- 4.3 应用层

4.1 物理层

- 通过串口以二线RS-485通讯。
- 波特率可以为4800、9600、19200。
- 采用RTU方式传输,异步方式。
- 1个起始位。
- 8个数据位。
- 无校验。
- 1个停止位。

4.2 数据链路层

4.2.1 寻址方式

协议支持单播和广播方式,地址分配规则如下表所示:

表 4-1 地址分配规则

广播地址	从节点地址	保留
0	1~247	248~255

4.2.2 帧结构

表 4-2 帧结构

地址	功能码	数据	CRC校验码
1 byte	1 byte	2×N byte	2 byte

□说明

- 最大帧长不大于256个字节。
- CRC校验码低字节在前,高字节在后。
- 本文中所有帧结构的定义,仅包含功能码和数据部分。

4.2.3 数据编码

MODBUS使用一个'big-Endian'表示地址和数据项。这意味着当发送多个字节时,首先发送最高有效位。

例如:

表 4-3 数据编码格式举例

寄存器大小	值
16比特	0x1234

发送的第一字节为0x12 然后0x34

4.2.4 交互过程

在任何方式下,通讯过程均由主节点发起,从节点不主动发起通信。

在单播方式下,采用一问一答的方式,从节点响应主节点的命令。主节点在5s内没有收到从节点的应答则认为通讯超时。

在广播方式下,从节点只接收主节点下发的命令,不响应主节点下发的命令帧。

4.2.5 CRC 校验

CRC校验范围为CRC字段前所有字节的校验,采用16位CRC校验。实现的参考代码如下:

static unsigned char auchCRCHi[] = {

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00,0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0xC0, 0xC1, 0xC1, 0xC0, 0xC1, 0xC10xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40

```
};
/* 低位字节的CRC值*/
static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5,
0xC4
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB,0x0B, 0xC9,
0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE,0xDF, 0x1F,
0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2,0x12, 0x13,
0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA,
0x3A
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B,0x2A, 0xEA,
0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6,
0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,0x63, 0xA3,
0xA2
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF,
0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79,
0xBB.
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4,0x74, 0x75,
0xB5.
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,0x50, 0x90,
0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59,0x58, 0x98,
0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D,0x4D, 0x4C,
0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81,
0x80.0x40
};
```

unsigned short CRC16 (puchMsg, usDataLen) $/\ast$ The function returns the CRC as a unsigned short type $\ast/$

```
unsigned char *puchMsg; /* message to calculate CRC upon */
unsigned short usDataLen; /* quantity of bytes in message */
{
unsigned char uchCRCHi = 0xFF; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
unsigned uIndex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
{
uIndex = uchCRCLo ^ *puchMsg++; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex];
uchCRCHi = auchCRCLo[uIndex];
}
return (uchCRCHi << 8 | uchCRCLo);
}
代码来源: 《MODBUS over Serial Line Specification and Implementation Guide V1.02》
```

4.3 应用层

4.3.1 功能码列表

表 4-4 功能码列表

功能码	含义	备注
0x03	读寄存器	支持单个和多个寄存器连 续读取
0x06	写单个寄存器	支持单寄存器写动作
0x10	写多个寄存器	支持多寄存器连续写动作
0x2B	读设备识别码	获取设备类型和版本号

4.3.2 异常码列表

各网元类型需要确保自己产品的异常码唯一,名称和描述统一提供(需要在网元接口文档中提供中英文描述信息)。同一网元类型多版本必须向前兼容,已经使用的编码不可再用于其它。

表 4-5 网元返回异常码总表(0x00-0x8F 是公用异常码段)

代码	名称	含义
0x01	非法功能	对于服务器(或从站)来说,询问中接收到的功能码是不可允许的操作。这也许是因为功能码仅仅适用于新设备而在被选单元中是不可实现的。同时,还指出服务器(或从站)在错误状态中处理这种请求,例如:因为它是未配置的,并且要求返回寄存器值。
0x02	非法数据地址	服务器接收到的查询请求中包含不允许的寄存器地址。更具体地说,寄存器起始地址和寄存器个数的组合是无效的。一个控制器的100个寄存器,PDU地址第一个地址为0,和最后一个为99。如果一个请求中的起始寄存器地址为96和数量的寄存器的4,则此请求可以获取寄存器96,97,98,99的返回值。如果一个请求提交起始寄存器地址为96,寄存器个数为5,那么这个请求将会失败,返回的异常代码0x02"非法数据地址",因为它试图读寄存器96,97,98,99,100,但是100是没有实际定义的地址。
0x03	非法数据值	对于服务器(或从站)来说,询问中包括的值是不可允许的值。这个值指示了组合请求剩余结构中的故障,例如:隐含长度是不正确的。并不意味着,因为MODBUS协议不知道任何特殊寄存器的任何特殊值的重要意义,寄存器中被提交存储的数据项有一个应用程序期望之外的值。
0x04	从节点设备故障	在执行过程中,服务器故障。
0x05	确认	与编程命令结合使用。 服务器已经接受了请求并且正在处理它,但是这样 做需要很长的时间。返回此响应以防止超时错误发 生在客户端。客户端可以下一个轮询程序完成消 息,以确定是否完成处理。
0x06	从设备忙	服务器不能接受MODBUS请求PDU。客户应用由责任决定是否和何时重发请求。
0x08	存储奇偶性差错	与功能码20和21 以及参考类型6一起使用,指示扩展文件区不能通过一致性校验。服务器(或从站)设法读取记录文件,但是在存储器中发现一个奇偶校验错误。客户机(或主方)可以重新发送请求,但可以在服务器(或从站)设备上要求服务。
0x0A	不可用网关路径	用于TCP/IP
0x0B	网关目标设备响应 失败	用于TCP/IP
0x80	无权限	鉴权失败或权限超时失效,禁止操作

4.3.3 读寄存器(0X03)

4.3.3.1 主节点请求帧格式

表 4-6 主节点请求帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0x03
寄存器起始地址	2 byte	0x0000~0xFFFF
寄存器数目	2 byte	1~125
CRC	2 byte	N/A

4.3.3.2 从节点正常响应帧格式

表 4-7 从节点正常响应帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0x03
字节数	1 byte	2×N
寄存器值	2×N byte	N/A
CRC	2 byte	N/A

□ 说明

N为寄存器数目

4.3.3.3 从节点异常响应帧格式

表 4-8 从节点异常响应帧格式

数据域	长度	
从节点地址	1 byte	1~247
功能码	1 byte	0x83
异常码	1 byte	参见异常码列表
CRC	2 byte	N/A

4.3.3.4 举例

主节点向从节点(地址: 01)发送查询"有功功率固定值降额"(寄存器地址: 40120)的请求:

01 03 9C B8 00 01 2A 7F

从节点正常响应:

01 03 02 00 00 b8 44

从节点异常响应:

01 83 04 40 F3

4.3.4 写单个寄存器(0X06)

4.3.4.1 主节点请求帧格式

表 4-9 主节点请求帧格式

数据域	长度	描述
从节点地址	1 byte	0~247
功能码	1 byte	0x06
寄存器地址	2 byte	0x0000~0xFFFF
寄存器值	2 byte	0x0000~0xFFFF
CRC	2 byte	N/A

4.3.4.2 从节点正常响应帧格式

表 4-10 从节点正常响应帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0x06
寄存器地址	2 byte	0x0000~0xFFFF
寄存器值	2 byte	0x0000~0xFFFF
CRC	2 byte	N/A

4.3.4.3 从节点异常响应帧格式

表 4-11 从节点异常响应帧格式

数据域 长度		描述
从节点地址	1 byte	1~247
功能码	1 byte	0x86
异常码	1 byte	参见异常码列表
CRC	2 byte	N/A

4.3.4.4 举例

主节点向从节点(地址: 01)发送设置"有功功率固定值降额"(寄存器地址: 40120)的请求:

01 06 9C B8 00 01 E6 7F

从节点正常响应:

01 06 9C B8 00 01 E6 7F

从节点异常响应:

01 83 04 40 F3

4.3.5 写多个寄存器(0X10)

4.3.5.1 主节点请求帧格式

表 4-12 主节点请求帧格式

数据域	长度	描述
从节点地址	1 byte	0~247
功能码	1 byte	0x10
寄存器起始地址	2 byte	0x0000~0xFFFF
寄存器个数	2 byte	0x0000~0x007b
字节数	1 byte	2×N
寄存器值	2×N byte	Value
CRC	2 byte	N/A

注: N为寄存器数目

4.3.5.2 从节点正常响应帧格式

表 4-13 从节点正常响应帧格式

数据域	长度 描述	
从节点地址	1 byte	1~247
功能码	1 byte	0x10
寄存器地址	2 byte	0x0000~0xFFFF
寄存器个数	2 byte	0x0000~0x007b
CRC	2 byte	N/A

4.3.5.3 从节点异常响应帧格式

表 4-14 从节点异常响应帧格式

数据域 长度		描述
从节点地址	1 byte	1~247
功能码	1 byte	0x90
异常码	1 byte	参见异常码列表
CRC	2 byte	NA

4.3.5.4 举例

主节点向从节点(地址: 01)发送设置"有功功率固定值降额"(寄存器地址: 40120, 值: 0)、"无功功率补偿(PF)"(寄存器地址: 40122, 值: 1)的请求:

01 10 9C B8 00 03 06 00 00 00 00 03 E8 A2 91

从节点正常响应:

01 10 9C B8 00 03 2E 7D

从节点异常响应:

01 90 04 4D C3

4.3.6 读设备识别码(0X2B)

这个功能码允许读取与远程设备的物理描述和功能描述相关的识别码和附加报文。

将读设备识别码接口模拟为一个地址空间,这个地址空间由一组可寻址数据元素组成。数据元素是被读对象,并且对象Id确定这个数据元素。

数据元素由3种对象组成:

- 1. 基本设备识别码。所有此种对象都是必备的:厂商名称、产品代码和修订本号。
- 2. 正常设备识别码。除基本数据对象以外,设备提供了附加的和可选择的识别码以 及数据对象描述。按标准定义所有种类的对象,但是这种对象的执行是可选的。
- 3. 扩展设备识别码。除正常数据对象以外,设备提供了附加的和可选的识别码以及 专用数据描述。所有这些数据都是与设备有关的。

表 4-15 读设备识别码

对象Id	对象名称/描述	类型	M/O	种类
0x00	厂商名称	ASCII字符串	强制的	基本
0x01	产品代码	ASCII字符串	强制的	
0x02	主要修订本	ASCII字符串	强制的	
0x03-0x7F				正常
0x80-0xFF				扩展

4.3.6.1 查询设备识别信息命令

表 4-16 请求帧格式

7 10 MANNIHA			
数据域	长度	描述	
从节点地址	1 byte	1~247	
功能码	1 byte	0x2B	
MEI类型	1 byte	0x0E	
ReadDevId码	1 byte	01	
对象id	1 byte	0x00	
CRC	2 byte	N/A	

表 4-17 正常响应帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0x2B
MEI类型	1 byte	0x0E
ReadDevId码	1 byte	01
一致性等级	1 byte	01

数据域			长度	描述
更多			1 byte	
下一个对象	id		1 byte	
对象数	对象数		1 byte	
对象列表	第一个	对象id	1 byte	0x00
	对象	对象长度	1 byte	N
		对象值	N byte	
		•••		
CRC			2 byte	

表 4-18 对象列表

对象Id	对象名称/描述	描述	种类
0x00	厂商名称	"HUAWEI"	基本
0x01	产品代码	"SUN2000"	
0x02	主要修订本	ASCII字符串,软件 版本号	

表 4-19 异常响应帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0xAB
异常码	1 byte	参见异常码列表
CRC	2 byte	N/A

4.3.6.2 查询设备列表命令

表 4-20 请求帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0x2B

数据域	长度	描述
MEI类型	1 byte	0x0E
ReadDevId码	1 byte	03
对象id	1 byte	0x87
CRC	2 byte	

表 4-21 正常响应帧格式

数据域		长度	描述	
从节点地址		1 byte	1~247	
功能码			1 byte	0x2B
MEI类型			1 byte	0x0E
ReadDevId码			1 byte	03
一致性等级			1 byte	03
更多			1 byte	
下一个对象id			1 byte	
对象数			1 byte	
对象列表	第一个对象	对象id	1 byte	0x87
	对象长度		1 byte	N
	对象值		N byte	
CRC			2 byte	

表 4-22 对象列表

对象Id	对象名称	类型	描述
0x80-0x86	保留		返回对象长度为0 的空对象
0x87	设备个数	int	本485地址下挂接 的设备台数

对象Id	对象名称	类型	描述
0x88	第1台设备的描述 信息	ASCII字符串 参见下面设备描述 信息定义	对于一个485地址 下只支持一台设备 的网元类型,只返 回第一台设备的描 述信息
0x8A	第2台设备的描述 信息		
0xFF	第120台设备的描 述信息		

4.3.6.3 设备描述定义

每台设备的描述信息用所有"属性=值"拼成一串字符串来表示:

"属性标识=%s;属性标识=%s;... 属性标识=%s"

例如: "1=SUN2000;2=V100R001C01SPC120;3=P1.0-D1.0;4=123232323;5=2;6=1"

表 4-23 属性定义

属性标识	属性名称	类型	描述	
1	设备型号	ASCII字符串	SUN2000	
2	设备软件版本号	ASCII字符串		
3	接口协议版本号	ASCII字符串	参见下面接口协议版本号定义	
4	ESN	ASCII字符串	-	
5	设备编号	int	0,1,2,3,(由网元分配,0表示插 MODBUS卡的这台主设备)	
6	并机组号	int	0,1,2,3, 由网元分配 0xFF-无效值,表示不属于任何并机 系统。 (如果不存在则不返回此属性)	

表 4-24 异常响应帧格式

数据域	长度	描述
从节点地址	1 byte	1~247
功能码	1 byte	0xAB

数据域	长度	描述
异常码	1 byte	参见异常码列表
CRC	2 byte	N/A