VOLUME IV TEST MANAGEMENT PHASE

CHAPTER 11 QUALITATIVE FLIGHT TESTING

19970117 182

SEPTEMBER 1990

USAF TEST PILOT SCHOOL EDWARDS AFB CA

PURPOSE

Qualitative flight testing determines the maximum amount of information in the minimum amount of flying time in order to evaluate an aircraft with respect to its entire mission or some specific area of interest.

Qualitative flight testing has essentially the same purpose as quantitative flight testing, i.e., to determine how well the aircraft flies and how well it will perform its designed mission. To accurately evaluate an aircraft from quantitative data requires analysis of large amounts of precisely measured data. The best a pilot can hope to do on a qualitative evaluation is to measure a limited amount of quantitative data. Thus, the test pilot's opinion on the acceptability of the aircraft is the important result and measured quantitative data (when available) is used primarily to support this opinion. Quantitative values of stick forces measured with a hand gage, for example, should be included in the report to support the pilot's opinion of acceptability. Estimates of stick forces can be made if no reliable measurements are available or qualifying terms such as "heavy", "medium", or "light" can be used to describe the forces. The point is that the difference in evaluating an aircraft qualitatively and quantitatively is a matter of degree. "Use what you've got." Pilot opinion supported by measured data is primary in qualitative testing, while the reverse is true in quantitative testing. general rule is to first decide how well the aircraft does its job and then use the quantitative data you can get to support your opinion.

PILOT OPINION

Naturally, all pilots will not have exactly the same opinion regarding the acceptability of a particular aircraft characteristic. No two people think exactly alike. However, the opinions of pilots with similar experience and background will usually not differ greatly, particularly with respect to the capability of an aircraft to perform a specific mission. In other respects, such as cockpit arrangements, the opinions may vary more markedly.

For this reason, it is important for the qualitative test pilot to be as objective as possible in his evaluation. Guides which specify military requirements, such as MIL-STD-203F , should be used wherever possible to establish acceptability. However, mere compliance with a set of requirements does not necessarily yield a satisfactory aircraft. The primary question is "will it do the job?", not "does it meet the specifications?"

MISSION PREPARATION

A very limited amount of flight time is normally available for a qualitative evaluation. To acquire the information necessary to write an accurate and comprehensive report on an aircraft in this limited time requires a great deal of preflight study and planning.

The preflight preparation for a qualitative test is extremely important. It is almost impossible to put in too much time in planning for the flights. The amount of information acquired in the air will be directly proportional to the amount of preparation put in on the ground. A pilot who doesn't know what he is looking for is not likely to find it, and to know exactly what to look for in the evaluation requires considerable knowledge of the aircraft and its mission.

The precise mission of the aircraft is important in determining what specific investigations should be made in the evaluation. All fighters, for instance, do not have the same mission, and the characteristics of particular importance may not be the same. The roll characteristics of an air superiority fighter would be more important than for a long range strategic fighter, and the specific test plan should take this fact into account. Expected outstanding characteristics or weaknesses should also receive particular emphasis. Of course, the evaluation must be conducted within the cleared flight envelope of the aircraft, and the amount of flight time available may limit the number of altitudes, airspeeds, and tests that can be investigated. However, concentration on the extremes of altitudes, airspeeds, etc., and the

areas dictated by the primary mission will provide the best approach to the test planning.

An outline of the test to be conducted and the various altitudes, airspeeds, and configurations to be used will aid in organizing the flights and planning the flight data cards. The points included in the outline should be compatible with the time available for the evaluation but it is always wise to overplan the flight and include more than seems possible to accomplish in the allotted time. Leave yourself the option of skipping the less important parts of your plan if time or fuel runs short. The sequence of tests should be such that as little time as possible is wasted. With proper planning a continuous flow from one investigation to the next is possible.

FLIGHT DATA CARDS

Before planning the flight data cards, as much as possible should be learned about the aircraft. Study the pilot's handbook if one is available, discuss the aircraft with the engineers, or with other pilots who have flown it, and get adequate cockpit time. The more the pilot knows about the aircraft and the more comfortable he is in it, the more thorough the evaluation will be. A pilot who doesn't know the aircraft procedures, both normal and emergency, or who has to spend most of his time in the air looking for controls or switches will not be able to do much evaluating.

The flight data cards should be self explanatory and should include all the points to be investigated during the flight. They should be designed so that a minimum of writing is required in the air because time will not be available to write down more than a word or two about each point. Remember, however, to provide places in the flight plan to write down these necessary comments. Numerous forms for the data cards are possible but completeness and legibility are essential.

Figures 1 through 4 present some possible formats and ideas for flight evaluation cards.

GENERAL TECHNIQUES

The cockpit evaluation can normally be made while getting cockpit time prior to the first flight. MIL-STD-203F specifies the standard cockpit arrangement for the various types of aircraft in considerable detail and should be used as a guide in making the cockpit evaluation. However, a summary of some of the points to note may prove helpful. These include ease of entry, comfort, adjustment of seat and controls, location of basic flight instruments, size and legibility of instruments, accessibility of switches and controls, ease of identification of switches and controls, location and identification of emergency switches and controls, methods of escape (both on the ground and airborne), and general impression of cockpit layout.

Several points should be observed and recorded during the start and while preparing the aircraft for flight. These should be weighed against the aircraft's mission requirements. An all-weather interceptor, for example, should be capable of fast, uncomplicated starts to meet its alert and scramble requirements. Starts for other types may not be so critical; however, no starting procedure should be unnecessarily complex or confusing. Evaluation of the start should include: complexity of start, time to prepare for start, time to start, external power and ground support equipment required, ground personnel required, and time from start to taxi. The system checks and normal procedure requirements from start to taxi should also be evaluated.

An evaluation of the ground handling characteristics can be made while taxiing. How much power is required to start moving and to taxi at the desired speed? Is braking action required to prevent taxiing too fast? Is the visibility adequate? Is the directional control satisfactory? Is the braking action satisfactory? What is the turning radius of the aircraft? Does the aircraft require any auxiliary equipment such as removable wheels, escape ladders, etc? Is there any problem with clearing obstacles with any part of the aircraft?

The takeoff distance may be difficult to determine without assistance from outside personnel, but an estimate should be made using whatever aid is available such as runway distance markers. Use the recommended takeoff procedure; don't try to make a maximum performance takeoff. The normal ground roll will be of more interest than the minimum possible. Some of the other

points to note in the takeoff include: ability of brakes to hold in military power, directional control during ground roll, rudder effective speed, nose lift-off speed, visibility after nose up and during initial acceleration and climb, force required to raise nose, any over-controlling tendencies, airborne speed, adequacy of recommended takeoff trim settings, time to retract gear and flaps, trim changes with retraction of gear and flaps, any tendency to exceed gear or flap speed limitations, effectiveness of trimming action during acceleration, and any distracting noises or vibrations.

The in-flight techniques differ very little from the techniques used in flying quantitative tests. However, it generally is not necessary to be as precise in holding airspeeds and altitudes. To do so would only waste time because differences caused by variations of a few hundred feet in altitude or a few knots in airspeed will not be qualitatively discernible. This is not an endorsement for being lax in flying the aircraft. Just don't waste time with precision that will not contribute to the evaluation of the aircraft. If speeds are critical, such as in the climb or in the pattern, then maintain them as closely as possible. Otherwise, use good judgment in determining how close to an aim condition it is necessary to be and fly accordingly.

If the climb rate of the aircraft is relatively slow, it may be possible to get some stability information in the climb, i.e., stick pulses, sideslips, etc. Most present day fighter aircraft climb so rapidly that this may not be If so, just record climb performance data (time, fuel, and indicated speed) at intervals of approximately 5,000 feet. Start the time at brake release. Intercept the climb schedule at a comfortable altitude and attempt to fly the recommended schedule precisely. Continue the climb only as far as necessary to meet the objective of the flight. Unless climb performance is of primary importance, this will probably be to the altitude selected for the first series of investigations. General aircraft characteristics should be observed during the climb. How difficult is it to maintain the recommended climb schedule? Are the control responses smooth, too fast, too Is visibility adequate? Is there any buffet, vibration or excessive noise? Are the ventilation and pressurization systems satisfactory? Are the normal procedures complicated or excessively distracting? If dampers or other artificial stability devices are provided, check the applicable characteristics with them ON and OFF.

The altitude selected for the first series of stability investigations may be at the tropopause since this is where the aircraft will probably have its best performance. However, if the designed operating altitude is considerably higher it may be advisable to select an altitude at or near the aircraft's operating altitude. The stability maneuvers performed will be essentially the same at all the altitudes and airspeeds selected. These should be sufficiently spaced to assure discernible qualitative differences in the aircraft's characteristics.

The stability characteristics investigated should include longitudinal and directional static stability, longitudinal and directional dynamic stability, aileron rolls, and maneuvering flight at several different airspeeds and altitudes. An investigation of the transonic trim changes also should be made. All the dynamic characteristics should be checked with the stability augmentation devices, if any, both ON and OFF. With proper planning these investigations can be made in a minimum amount of time. The longitudinal static stability can be checked while accelerating to $V_{\rm max}$, for instance. Once at $V_{\rm max}$, the aircraft can be trimmed for approximately hands-off flight and the static directional stability checked by entering a steady sideslip out to maximum rudder deflection (if the aircraft is cleared to that limit). The periods of the dynamic modes can be timed using a stop watch or counting the seconds. Estimate the number of the cycles to damp completely or to one-half amplitude, as the case may be, for all the modes.

Approach the aileron rolls cautiously. Make several partial deflection rolls before making any full deflection rolls. The time to reach 90° of roll and the time to roll 360° can be estimated using a stopwatch or again by counting the seconds. It is advisable to make rapid reversals of ailerons and other rolling maneuvers if these can be expected in operational use of the aircraft. The rolling characteristics should also be checked in accelerated flight as well as 10° graphs.

After completion of investigations at V_{max} , a windup turn to limit load factor can be made to check the maneuvering stability of the aircraft. Then zoom back to the original altitude and repeat these investigations at the second airspeed. The other altitudes and airspeeds can be checked in the same

manner. Any differences resulting from altitude or speed changes should be noted.

If the aircraft is cleared for stalls, they should be investigated cautiously in all configurations and types of entry. Determine the approximate stall warning margin, what defines the warning and the stall, and the aircraft characteristics in the stall and the recovery. If possible, determine the best method of breaking the stall and altitude loss in recovery from several points in the stall.

If possible, check the tactical mission capability of the aircraft. Simulated dive bombing runs or LABS maneuvers could be made for a tactical fighter for example. All the information obtainable will be helpful in writing an accurate and comprehensive report.

Fly the traffic pattern as recommended and, if fuel permits, make a go-around on the first pass. Note the power response, power required in the pattern, airspeed control and sink rate, trim changes with gear and flap extension, trimming action, buffet with gear extension, and general aircraft feel in the pattern. On the go-around, recheck the trim changes with gear and flap retraction and with drag device reaction. Don't forget to look at engine out characteristics if time and fuel permit. On the first landing in the aircraft it is probably not advisable to attempt to get the minimum landing roll. Make a normal touchdown and use normal braking action (use the drag chute if provided). Note the touchdown speed, the effects of any crosswind, directional control, nose lowering speed, etc. As with the takeoff, the normal landing roll is of more importance than the minimum possible.

Review the flight while taxiing back to the parking area. Re-evaluate the cockpit, and attempt to determine whether the aircraft will perform its design mission and is safe and comfortable to fly. Your opinion with everything fresh in mind is probably the most accurate. Put everything you remember about the flight and your impressions of the aircraft down on paper immediately after leaving the aircraft. Do this immediately and before talking to anyone about the airplane or the flight. Waiting or discussing points with other people may alter first hand impressions or cause important aspects of the flight to be forgotten.

INITIAL FLIGHT REPORT

The test pilot's ability to qualitatively evaluate an aircraft in limited flying time is only part of the evaluation. His ability to communicate his finding is an extremely important step that must not be neglected. An "Initial Flight Report" should be written as soon as possible after the flight. At the Flight Test Center this is accomplished on the AFSC FORM 5314.

The report should express everything learned about the aircraft. A narrative form is normally used for qualitative reports. Comparisons with other aircraft can be used to assist in describing the aircraft. Take care to ensure that only aircraft familiar to most readers are used for comparison. Otherwise the comparison will mean nothing to them.

Keep in mind the purpose of the qualitative evaluation while writing the report. Mere figures are normally not enough to describe the stability of the aircraft, particularly on a qualitative evaluation since the data obtained are very limited. Analyze the aircraft's characteristics in light of its ability to perform its design mission, give opinions of the aircraft's ability to do the job and support these opinions with the facts obtained on the evaluation flights. Comment on anything personally disliked but be objective in condemning any shortcomings. Recommendations for specific changes in the aircraft are to be included in the report. The exact manner in which the aircraft should be fixed should not be specified or recommended. The test pilot's job is to evaluate the existing hardware and state what should be changed. It is then the manufacturer's responsibility to determine how to make the necessary changes.

QUALITATIVE EVALUATION PREPARATION CHECKLIST

	1. tas	Identify the mission in detail. (Is this newly proposed king, or related tasking but by a new user?)
	2. of	Determine a typical and complete mission profile. (A full list all mission tasks)
		Generic tasks Primary mission tasks Mission flight conditions Ancillary mission tasks
	3.	Accomplish a Detailed Task Analysis. (Don't slight this)
	4.	Research the aircraft thoroughly.
	5.	Build an evaluation profile.
		Sortie length Weather Open loop "feel" of the aircraft Start at the heart of the envelope Mission tasks Mission simulation tasks Comparison tasks
		Similar mission aircraft Aircraft you are familiar with Edges of the envelope Problem exploration - open loop
	6.	Assemble / construct the data cards
		Leave room to write Sliding scales work greatly Familiar cards are easier to use
	7.	Fly the evaluation.
	8.	Immediately complete an initial flight report (AFSC form 5314?)
		Do this before talking to anyone Don't get distracted or have your mind cluttered Write it to yourself
	9.	Write / present a detailed Qual Eval report
		Can it do the proposed mission?

COPTER	DESCRIPTION
HELL	AIRCRAFT

HELICOPTER		T/O TIME	FUEL	G.W.
AIRCRAFI DESCRIPTION		LAND TIME	FUEL	G.W.
MISSIONS		WEATHER	OAT	P. HT
AIRFRAME/MISC			WIND	TURB
EMPTY WEIGHT MAX G.W.		PREFLIGHT (EASE/TIME TAKEN)	TIME TAKEN)	
ROTOR SYSTEM				
FLIGHT CONT, DESC.		COCKPIT LAYOUT (INITIAL IMPRESSIONS, LOGICAL VIEW, WARNING/EMERG. SYSTEMS)	INITIAL IMPRES	SSIONS, LOGI
STAB AUG SYSTEMS				
	٠	START UP (CHECK SEQUENCE, COMPLICATIONS,	EQUENCE, COMP	PLICATIONS, ETC
ENCINES	÷• •			
'AX SHP		MECHANICAL CHARACTERISTICS	1 .	
SOVERNING SYSTEMS		FREEPLAY	CYC (LONG) CYC	CYC (LAT) COLL
YSTEMS		FRICTION F/GRADIENT		
		DYNAMICS		

., COMFORT, CONTROLS,

MISSION RELATED TASKS

ROTOR ENGAGEMENT (EASE, VIBRATION, ETC.)

(Carry out on way to operating area, as possible, to determine potential $F.Q.\ problem$ areas).

PRE TAKE-OFF DRILLS			
GROUND HANDLING			
TAXI (EASE)			
BRAKES (EFFECTIVENESS)			
TURNING RADIUS			
VERTICAL LIFT OFF			
			нов
IGE HOVER (QUAL. EVAL)	W/V	Ht	
INTO WIND	Tq	HQR	
X WIND		HOR	
DOWN WIND		HOR	
OGE HOVER T	N r	FUEL	
TRANSITION (QUAL EVAL)			
CLIMB (VFR) IAS RANGE			
		HQR	
MAX POWER - LIMIT	IAS	Δ	13114
	,		110

REMARKS TRIMMED FLIGHT CONDITIONS (All controls & attitudes/8. General impression of linearity of control movements and adequacy of control margins. Trimmability) - ۸۷ RUDD **4∆V** LONGITUDINAL FLYING QUALITIES (Veruise or mission relevant airspeed) COLL TRIM LAT LONG CONTROL FORCE LONG CYCL.IC POS LONG TERM RESPONSE LONG STATIC STABILITY IAS IAS

REMARKS			
CONTROL RESPONSE			
INPUT	rol	EFFECT	TIME (S/STATE)
REMARKS			
LAT/DIR			
STATIC STAB (CARRY)UT TOIC & SHSS)	Y OUT TOIC	SHSS)	
Dihedral Effect _			
Directional Stabil Ly	1 ty		
Sideforces -			
DYNAMICS			
SPIRAL STAB	CHARACTER		TIME CONST
DUTCH ROLL			
Period	1		
Roll/Yaw			
Damping	!		
LAT CYC CONT RESPO 4SE	OVSE		

6 LONG FORCE

& LONG

의

MAN. STAB BANK ANGLE

DAMP ING

O'SHOOTS

TIME

CHARACTER

SHORT TERM RESPONSE

MAX 1AS (OUAL EVAL)			VERTICAL CLIMB (Max Power)
			CONTROL MOVEMENTS
MAX			ν _ν
VNE		*	FUEL WIND
			REMARKS
			CRITICAL AZIMUTH
AUTO F.O. V.	ν.		REL. WIND
<u>}</u>	WIN SINK		TURN ON SPOT (Qual Eval)
DEGRADED MODES (STAB AUG/HYD. OFF)	B AUG/HYD. OFF)		CONTROL RESPONSE (LONG/LAT/YAW)
			INPUT SENS EFFECT TIME (S/STATE)
STAB AUG ASST			
MODE	OPERATION		
			REMARKS
			DYNAMICS (LONG/LAT Pure Motions)
LOW A/S F.Q.			
TRIMMED FLIGHT CONDITIONS	ITIONS		
SIDEWARD (L)	LIMIT PARAMETER		
SIDEWARD (R)	LIMIT		
REARWARD	LIMIT		
REMARKS			
			œ

10

SHUT DOWN

MISCELLANEOUS

LOW A/S MISSION RELATED TASKS (NOE, Slopes, Quick Stops, etc.)

SYSTEMS EVAL. (IF RELEVANT)

B.5

THIS PAGE INTENTIONALLY BLANK

QUAL EVALUATION	AIRCR	AFT	
DATELOCATION			
CONFIGURATION			
CALL SIGN OPS	#T	AIL #	
CALL SIGN OPS : G.W	FUEL LOAD		GAL/LBS
IMPORTANT MISSION LIMITATIONS	MAXIMUM AIRSPEED_		
	MAXIMUM MACH #		
BATTERY POWER TIME	MAX G (S)		
CICS TIME	. ,		
IGNITION TIME	MAX G (S)		
TEMP°TIME		wi _	· · · · · · · · · · · · · · · · · · ·
/ 		wi _	
TEMP°TIME		**' -	· ·
FLAP SETTING OR %	ENGINE LIMITS		
IDLE LIMITS			
RPM±	MIL		MAX
EGT±			%
FF±			/0
OIL P±	FF		
HYD±	OIL P		
PNEU±	TORQUE		
TORQUE	TOP/TIT		
NOZ/TOP/TIT±	RPM OVERSPEED		
MAX CANOPY SPEED			
MAX NGS SPEED		AOA _	
	LOAD/VOLT MTRS	±_	
MAX TAXI SPEED	_ CG LIMITS %	то	
LINE UP CHECK	STORE LIMITS		
RPM	AIRSPEED _ G LIMIT		
EGT±	_ G LIMIT	s	A
FF+	JETTISON		
OIL P	_ ZERU G. LIMITS		
OIL QTY			
TORQUE	_ NEGATIVE G. LIMIT		
NOZZLE			
TOP/TIT	_ 1		
GEAR LIMIT SPEED11111	_ 2		
FLAP SCHED11	_ 3		
2	_ 4		
FLAP LIMIT SPEED			
EJECTION ENVELOPE/BANK	MAIN GEAR T/O		
AS/ALT BK	_		
AS/ALT BK			
AS/ALT BK			

FIGURE 1. TYPICAL AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARD COVER PAGE

c · 2

M > 0

	IMPORTANT LIMITATIONS GND ANR ENGINE: START IDLE RUN UP MIL MAX RPM EGT/FIIT FF OIL P	TORQUE STARTING NOTES: GENERAL NOTES:	SPEEDS LOAD FACTOR AOA CANOPY 9 WT XWINDS FLAPS - - VMAX ASYM STORES MACH 2ERO G - NEG. G - - PROHIBITED MANEUVERS - -
CARDS	Aunice avaluation Aireceptic Control Control	CALL SIGN OPS # TAIL# 6.W. CG FUEL: HRS FOB NIN EMER	WIND ALDFT (DIR/VEL/TEMP) 5 10 25 10 26 15 20 VALIB TIME

- A. Support Equipment
 - 1. Power Unit Type Capacity
 - 2. Other
- **B.** Cargo Compartment
 - 1. Entrance
 - 2. Egress
 - 3. Systems Accessibility
 - 4. Other
- C. Flight Deck
 - 1. Crew Stations
 - a. Pilot
 Seat Adjustment
 Clearance
 Vision
 Rudder
 Pedal Adjustment
 Restrictions
 Other
 - b. Copilot
 - c. Flight Mechanic
 - d. Navigator
 - 2. Instrument Panel
 - a. Flight Instruments Grouping Readability Adequacy
 - b. Engine Instruments Grouping Readability Adequacy
 - c. Warning Lights
 Placards
 Switches
 Controls
 - 3. Pedestal
 - a. Engine Controls
 System Controls
 Switches
 Guards
 Placards
 Lights
 Feel Identification
 Accessibility
 Confusion Factor
 Arrangement
 - b. Remarks

- 4. Overhead Panel
 - a. Engine Controls
 System Controls
 Switches
 Guards
 Lights
 Placards
 Accessibility
 Feel Identification
 Confusion Factor
 Arrangement
 - b. Remarks
- 5. Side Panels a. Switches CBs Lights
 - b. Remarks
- 6. Flight Controls
 - a. Rudder
 Break-out Force
 Travel
 Adjustment
 Clearance
 Slop
 Friction
 - b. Elevator
 Break-out Force
 Travel
 Slop
 Friction
 Clearance
 - c. Control Wheel
 Aileron Break-out Force
 Travel
 Slop
 Friction
 Clearance
 Grip
 Switches
- 7. General Comments

5.	Vibration					
	a. Noise					
	b. Air vent deflector	rs				
	c. Ventilation/heati	ng				
6.	Control Required To	Maintain Pro	per Taxi Speed			
7.	Remarks:					
) Pre	-Take-Off (line up at e	even 1.000 fe	et and check W/V	n		
1.	Flight Control Chec	k With Boost	Operating	•		
• • •	a. b/o force					
	b. rate					
	c. deflection					
	d. slop					
	e, friction					
2	Flaps Set		Trim Set			
	Engine Power Chec		111111 001			
3.	a. Acceleration	n.				
	a. Acceleration	**		(MRP)	Sec	
	Acumments of			_ (141111 /		
	Overshoot					
	b. Stabilized condi					
	B. Stabilized colldi	M DDM	Torque	TIT	Throttle Pos	
	<u>Eng</u> :	70 H-III	TOIQUE			
						-
	4					
A		PWR				
5	. Brakes Hold At MIL . Fuel reading	1	lbs. W/V		kts.	
·	. , <u></u>					
E. Ta	ke-Off. (Use flight dat	a on knee bo	ard)			
1	. Start Time Form BF	RAKE RELEAS	E TO START CLII	МВ		
2	. Brake Release Action	on				
3	. Directional Control	. Rudder Effe	ctive	kts.		
4	. Elevator Effective (nose wheel of	ff)	kts.		
5	. Alleron Control		kts.			
6	. T.O. Distance	f	t. Lift-Off Speed_		kts. Time	sec.
7	. Control Force		_ Pitch	Trim		
	. Trim-Out – Raise Ge	ear				
	Time	sec.				
	Yaw					
	Trim					
9). Trim-Out – Raise Fl					
	Time	sec.				
	Trim					
10	. Acceleration to MI	NIMUM CONT	ROL SPEED			
11	. Acceleration to Cli	mb Speed (1,	000 ft)			
	2. Visibility and Pitch					
13	3. Remarks:					

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (CONTINUED)

1. Visibility	F. Clin	nb (M N	•	, 90° to W	// V).				
2. Record: FUEL at START CLIMB TIME	1.								
TIME	2	_			14 D				
## ## ## ## ## ## ## ## ## ## ## ## ##	٤.	Necolu. I	OLLats	IANI CLI	MD				
6M	TIME		Hi Vi	R/C	Ti	% RPM	TORQUE	TPT	Wf
8 M									
8 M			6M						
12M			8M						
14M		1	OM						
16M									
18M		1	4M						
20M		1	6M						
20M		1	8M						
24M									
24M		2	2M						
30M									
FUEL at LEVEL-OFF 3. Check Cabin Pressurization: 10M									
FUEL at LEVEL-OFF 3. Check Cabin Pressurization: 10M 15M 20M 25M 30M Note any fluctuations or surges. 4. Cabin Heat Adequacy a. Nesi glass 5. Remarks G. Cruise 1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT b. Wf f. Torque g. TIT h. Wf									
25M	J.	10M 15M			•				
4. Cabin Heat Adequacy a. Nesi glass 5. Remarks G. Cruise 1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TiT h. Wf h. Wf		25M							
a. Nesi glass 5. Remarks G. Cruise 1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf h. Wf		30M		Not	e any fluo	ctuations or surges.	•		
G. Cruise 1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf	4.			асу					
1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf	5.	Remarks							
1. Vmax a. Hi b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf	G. Cru	ise							
b. Vi c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf		•							
c. OAT d. Fit. Controls e. RPM f. Torque g. TIT h. Wf									
d. Fit. Controls e. RPM f. Torque g. TIT h. Wf		b. Vi							
e. RPM f. Torque g. TIT h. Wf			ntrolo						
f. Torque g. TIT h. Wf		e. RPM	uus						
g. TIT h. Wf									
h. Wf i. FUEL		g. TIT							
I. FUEL		h. Wf							
		I. FUEL_		-					

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (CONTINUED)

2. C	Dynamics (Hi	_ Vi) Note Co	ntrol Position	
٤	a. Phugoid				
	1. Trim° 2. Sec/cyc° 5. Porpoise Mode. input	Vi _{in}	V _{max}	V _{min}	
	2. Sec/cyc°		Damping]	
ŀ	o. Porpoise Mode. input		_ cycls	ampl	
(c. Spiral stability				
	1 RT 0/10°	°/	sec.		
	2. LFT""	~/	sec.		
	3. Remarks:				
	•				
	d. Dutch Roll				
•	1 RT eideelin e/c	Roll	Yaw		
	1. RT sideslip s/c Damping	(1)	(2)	(3)	
	2 LET sideslip s/c	Poli		(0)	
	2. LFT sideslip s/c Damping	(1)		(3)	
	3. (1) Norm (2) Damper Off	(1)	(2)	(3/	
	• • • • • • • • • • • • • • • • • • • •	(3) Rudder Po	wer Oil.		
•	e. Short Period				
	1. Fixed (1.0g) Damping				
	2. Fixed (-1.0g) Damping				
	3. Free (1.0g) Damping				
	4. Free (-1.0g) Damping_				
	5. Remarks:				
3. I	Maximum Range Data			euei	
	a. HiVi b. RPM Tor		_ OAT	FUEL	
	b. RPM Tor	que	ТРТ	wr _	
	c. Remarks:				
4. 9	Systems Check: Hi	Vi			
	e Engine shut-down, No.				
	1. Time to feather	Co	ntrol force		
	2. Procedure, etc:				
	h Engine restart				
	1. Time to Normal power_		Surge	Trim	
	2. Procedure, etc:				
	c. Anti-icing/de-icing system				
	1. Full operation effect on	angines			
	2. Nesi glass	411911163			
	Other				
	3. Remarks:				
	3. Remarks:				
	d. GTU/ATM operation				
	e. Pressurization/heating				
			•		
	f. Other:				
5	Emergency Descent, Hi	v	i	(Initial)	
J.	a. Time from cruise to start de	ecent			
	b Procedure: Gand E	ام ام		Pressurization	
	b. Procedure: G and F c. Time	from CP to	ui	ridosurization	
	d. Visibility	HOHI CH TO		Control	
		Fitcii		001101	
	e. Remarks:				

C.8

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS

(CONTINUED)

6. Static Longitudinal Stat	pility and Performand	e Hi			
a. Acceleration check	irim at Max Range Vi				
i. Decei to vi	Control Fo	orce *(Trim se	ttina)		
2. Speed/Pwr Vi	RPM	Ta	TIT		AT
Speed/Pwr VI	RPM	Ta	TIT		
3. Acceleration, (R	ESET TRIM), Time/1	O kts (MRP) Ir	nitial Vi		
10	•	, ,			
20					
30					
40					
50					
60					
70					
80					
V/S	ft/min. Control force	n/mnod!ot			
4. Remarks:	traini. Control lorce:	s/gradient			
T. Nemarks.			FL	JEL	
h Trim Changes !!!	* **				
b. Trim Changes: Hi	Vi _				
1. Control boost of	fon				
2. Runaway Trim:	Elev	Ail		Rud	
5 36C delay (buil	นานมา				
c. Turning Performance	e and Aileron Rolls. C	ruise. (Build-	up). FULL D	EFLECT	
1. 60° Ø, Time 360°	·	<i>1</i>	н	i	
2. 45 LIL-45 RU	TIA) TIME for 90°				
3.43 N(-43 LT()	"IXI IIMA TOP 961"				
4. 60° Ø, Time 360°	FIX) Time for 90°	/i	Hi		
5. 45° Lft - 45° Rt (F	IX) Time for 90°				
6. 45° Rt - 45° Lft (F	FIX) Time for 90°				
7. 60° Ø, Time 360°	FIX) Time for 90°\	/i	Hi		
8. 45° Lft - 45° Rt _		(FIX	Time for 90	0	
9. 45° Rt - 45° Lft (F	FIX) Time for 90°	(* ***			······································
POWER APPROA	ксн				
10. 45° Lft - 45° Rt (F	FIX) Time for 90°				
11. 45° Rt - 45° Lft (F	IX) Time for 90°				
d. Spiral Stability PA Hi		'i	Dur		
11. 45° Rt - 45° Lft (F d. Spiral Stability PA Hi 1. Rt Ø 10° 2. Lft 10° e. Physoid (Hi C.)	°/		C (1/2 - 2)		
2. Lft 10°			(16 - 2)		
e. Phugoid (Hi C.)		560.	(72 - 2).		
f. Sideslips, TRIM (L) Hi		/i			
e. Phugoid (Hi C _L) f. Sideslips, TRIM (L) Hi 1. Rt, Fr	Ea	/' <u></u>			
2 1# ° 5	Fa	_ rs	_ ar	da	de
	га	rs	Gr	na .	ďΔ
2 P+ ° E-	Vi Fa			_	
3. nt, Fr	ra	<u>s</u>	_ dr	da	de
5 D E with middle	Fa	F\$	dr	da	
S. D.E. With rudger	(Pick up wing)				
o. Remarks:			FU	IEL	
7 01-11- 0					
7. Stalls, Gross Weight		Hi Trim _			
a. CR 1.0g TRIM Vi	Vw		Vs	Hi _	
b. CR 2.0g TRIM VI	Vw		Vs	Hi_	
c. Remarks:					
d. PA 1.0g TRIM Vi	Vw		Vs	Hi _	
b. PA 1.5 g TRIM Vi	Vw		Vs	Hi	

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (CONTINUED)

NTC Feather_	No. 1 Eng. Rudder Free, 2 sec.	
Decel to 1.4 Vsl		
(Cond. permitting check 2 out on	n one side)	
b. T.O. Configuration at V _{max} Gear a	and I.O. Flaps (168 kts.)	
Fail 1 and 2 and decelerate holdi	ing Ø = ZERO.	
Vi _{min} Check Ø	Ø == 5° and SIDESLIP = ZERO.	
c. AT Min control speed fail 3 and 4	l, Fr Fa	
	HANDS OFF AT 1, 2 Vsl	
d. Remarks:		
Boost OFF Operation Hi	Vi Pwr	_
a Asymmetric Control 1 and 2 idla	2 and 4 MDD	
b. Response Fr_	FaFsFs	
c. Remarks:		
Descent		
a. CR Configuration Vi	V/\$	
1. Visibility	Attitude	
)	
4. Remarks:		
b. L Configuration Vi	V/S	
1. Visibility	Attitude	
2. Engine operation at idle		
3. Remarks:	•	
Trim Changes Trim at Blacerd Specia	ai DIE	
Trim Changes Trim at Placard Speed a. Flaps to 50% Vi	u, rer ui DIE/Trim	
a. riaps to 50% VI	[] FLF/ [] [] [] [] [] [] [] [] [] [] [] [] []	
b. Gear DOWN VI	NI PLF/ I IIM	
c. riaps to 100% VI	Hi PLF/Trim	
d. Power to IDLS VI e. Idle to HRP VI	II I IIM	
e. Igle to HKP VI	_ Att rim	
f. Gear UP ViV/	/SIrim	
g. Flaps UP ViV	//S Trim	
. Asymmetric Power Go-around		
a Out, Pa Vi	Hi Pwr	
b. Fr Fa	Fe Response and Co	ntrol
c. Remarks:		

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (CCNTINUED)

	App	proach and Landing			
	1.	Pre-landing check:	Operating Weight		
•		Alt Setting	Fuel Weight		
		W/V	Landing GR WT		
		Runway	Best Flare Speed		
		(Pilot Pwr and Steer) Touchdown speed		
		(Copilot Ailersons) \	/S _L	 	
	2.	Traffic pattern:			
		a. Visibility	Control		
		b. Power response			
		c. Remarks:			
	3.	Landing:			
		a. Flare	Response	Control	
		b. Float	Characteristics in ground	effect	
		c. Touchdown	Nose-wheel off		Grd idle
		Reverse	Brakes	Steering	
		d. Directional contr	ol with ailerons		
		e. Stopping distance	6		
	4.	Remarks:			
١.	Post	flight and Shut-dow	n		
	1.	Normal procedures.	Ease and time to accomplish		
	2.	Coordination			•
	_	Fuel			
	3.				
	3. 4.	Flight Time			

FIGURE 2. TYPICAL LARGE AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (CONTINUED)

EXTERNAL INSPECTION	TOD STARTTOD FINISH
Remarks:	
COCKPIT EVALUATION	
1. Ease of Entry	Ladder
	Steps
2. Location of Instruments and Controls	•
3. Adjustment of Seat and Controls	
4. Comfort	
5. Ease of Identification of:	
Switches	
Controls	
Emergency Devices	
Warning Lights	
6. Egress – ground and Airborne	
BEFORE STARTING CHECKS	TOD
Remarks	
Complexity:	

Complexity: Ground Support: Equipment	STARTING ENGINES		Fuel	_TOD	
Equipment	Complexity:				
BEFORE TAXI CHECKS	Ground Support:				
BEFORE TAXI CHECKS	Equipment				
BEFORE TAXI CHECKS					
Longitudinal +## Lateral +## Directional +## Trim rate (Longitudinal) AftSec ForeSec Flap Extensionsec Retractionsec TAXIING					
Lateral+## Directional+## Trim rate (Longitudinal) AftSec ForeSec Flap Extensionsec Retractionsec TAXIINGTOD RPM req to move Visibility SteeringN.W.S. Brakes	Estimated Break-out Force				
Directional+	Longitudinal +#	:	_#		
Trim rate (Longitudinal) Aft Sec Fore Sec Flap Extension sec Retraction sec TAXIING Fuel TOD RPM req to move Visibility Steering N.W.S. Brakes Visibility	Lateral+#	#			
Fore Sec Flap Extension sec Retraction sec TAXIING Fuel TOD RPM req to move Visibility Steering N.W.S. Brakes Visibility	Directional+# -	·#			
Flap Extensionsec Retractionsec TAXIING FuelTOD RPM req to move Visibility Steering N.W.S. Brakes Visibility	Trim rate (Longitudinal) Aft		. Sec		
TAXIING FuelTOD RPM req to move Visibility Steering N.W.S. Brakes Visibility	Fore		Sec		
TAXIING FuelTOD RPM req to move Visibility Steering N.W.S. Brakes Visibility					
Visibility Steering N.W.S. Brakes Visibility					
Steering N.W.S. Brakes Visibility					
Brakes Visibility	Visibility				
Visibility	Steering		N.W.S.		
•			Brakes		
Power requiredRPM, fuel/flowpph	Visibility				
	Power required	_RPM, fuel/flow		pph	
Runway temp°F. P.Aft.	Runway temp	°F. P.A			_ft.

TAKEOFF			Fuel		#TOD	
Do brakes hold	in MIL PWR	Yes	No			
Symmetry of bra	ake release					
Directional conf	trol					
Rudder effective	e speed			knots		
Ease of rotation	1					
Lift-off speed			knots			
Estimated T/O of				feet		
Gear up time		sec Flaps	up time			sec
Trim changes						
_	Flaps +					
Are placards hard t	•		No.			
Visibility during						
Adequacy of T/0	-					
Speed stability	_					
CLIMB			Fuel		#TOD	
Control during	climb					
Longitudina						
Directional						
Lateral						
Climb Sched	dule	5000 ft.	.891MN	550		
		10000 ft.	.891MN	510		
		15000 ft.	.90IMN	470		
		20000 ft.	.9051MN	430		
		25000 ft.		390		
		30000 ft.		360		
		35000 ft. 39000 ft.	.921MN .921MN	320		
		Secou II.	.9ZIMN			

LEVEL OFF				Fuel		#TOD		
EASE								
Attitude Change)				•			
******	******	*****	*****	******	******	******	*****	******
CRUISE	•	90% RPM	ļ		.8	61MN (reco	mmend	ed cruise)
Start	Fuel		#	‡		TOD		-
								Linear?
Sideslip:	$c_{\ell_{\boldsymbol{\beta}}}$	Hvy	Med	Lt		Yes	No	
	$c_{n_{\pmb{\beta}}}^{p}$	Hvy	Med	Lt		Yes	No	
Dutch Roll	Period				_ sec			
	Damping	Hvy	Med	Lt				
Cycles to Damp								
CRUISE cont.	39,000 ft.	.86IMN	J					
PIO Tendency	•							
Short Period	Cycles to D	amp						
	Period	-						
Do controls h	ave dynamic							
		_	Yes	No				
Aileron Rolls:			t9	0				
				R L	Adv.	Yaw		1
½ deflection		_ sec		sec				
Full deflect.		sec		sec				
******	*****	******	DAMPE	RS OFF *	******	*****	*****	*****
								Linear?
Sideslip:	$c_{\ell_{\boldsymbol{\beta}}}$	Hvy	Med	Lt		Yes	No	
	$c_{n_{\beta}}^{\rho}$	Hvy	Med	Lt		Yes	No	
Dutch Roll:	Period				_ sec			
	Damping	Hvy	Med	Lt				
	Cycles to	Damp			_			
PIO Tendency	Yes No	•						
Short Period:	Cycles to D	Damp				No		
	Pariod					sec		

FIGURE 3. TYPICAL FIGHTER AIRCRAFT QUALITATIVE EVALUATION FLIGHT CARDS (2 hour flight) (CONTINUED)

*****	******	******	DAMP	ERS O	N ***	******			
Finish:	Fu	el		#			TOD		
Speed brake t	trim change	Н	ivy	Med	Lt				
1	Extend	Push	1	Pull					
1	Retract	Pusi	า	Pull					
MANEUVERING FLI	GHT			.9 11	MN			39	35,000 ft.
Fuel	#								,
Initial buffet			_ g						
Heavy buffet			_	n _{max} _				а	
	Hvy Med			illax —				— 3	
Linear Y	-								
********	******	*****	*****	*****	*****	******	******	*****	******
ACCELERATION TO	1.2 IMN at 3	5.000 ft.	(trim .	.9 IMN	١				
Start:		,		•	,		TOD		
NB Light L					202		105		
NB Trim Chang									
Stick force gradi									
Transonic trim cl									
Finish fuel							TOD		
********			*****	******	****	******	100	******	
CRUISE 1.15 IMN									05 000 4
Start	Fuel			4			TOD		35,000 ft.
O.u	i dei.			.#*			TOD		
Sideslip:	C .	Ll.n.	N4						Linear?
oluesiip.	- 15	Hvy					Yes	No	
Dutch Roll:	p	Hvy		L			Yes	No	
Duten Roll:	Period					sec			
	Damping	•							
DIO T	Cycles to	Damp							
PIO Tendency	Yes No								

CRUISE cont 1.15	SIMN 35,00	Юft.		•				
Short Period:	Cycles to D	amp						
						880		
******	*****	******	DAMPE	RS OFF	******	*****	*****	******
								Linear?
Sideslip:	$c_{\ell_{\boldsymbol{\beta}}}$	Hvy	Med	Lt		Yes	No	
	$c_{n_{\pmb{\beta}}}^{p}$	Hvy	Med	Lt		Yes	No	
Dutch Roll:	Period				sec			
	Damping	Hvy	Med	Lt				
	Cycles to	Damp_						
PIO Tendency	Yes No	•						
Short Period:	Cycles to [amp						
	Period					880		
*****	*****	*****	DAMPE	RS ON *	****	*******	*****	******
Aileron Rolls:			t:	90			Ad	verse Yaw
			R	L				
1/2 deflection		8	ес	8	ес			
Full deflect.	-	80	эс	80	e C			
Finish: Fuel						TOD		
****	*******	*****	******	******	******	*****	******	*****
SPEED BRAKE TRIM	A CHANGE	1.15-1.1	IMN					
Hvy Med L	t							
Extend Push	Pull							
Retract Push	Pull							
MANEUVERING FL	GHT 1.1	IMN 3	35-35,0	00 ft.				
Fuel	#							
Initial buffet		g He	avy buf	fet	·	g		
n _{max}	g							
Stick force		d Lt						
Linear? Yes	No							

Stick Force gr	TO 210 knots 3 adient		_	•				
*******							******	******
CRUISE	210 knots	30,0	000 ft.					
Start:	Fue	1		ŧ		TOD		
								Linear?
Sideslips:	$c_{\ell_{\beta}}$	Hvy	Med	Lt		Yes	No	
	$C_{n_{\mathcal{B}}}^{r}$	Hvy	Med	Lt		Yes	No	
Dutch Rolls:					sec			
	Dampin	ig Hvy	Med	Lt				
	Cycles	to Damp			_			
PIO Tendency	Yes No	o						
Short Periods:	Cycles to	Damp_						
						se	С	
******	******	*****	DAMPER	RS OFF *	*****	*****	*****	******
								Linear?
Sideslips:	$c_{\ell_{\mathcal{R}}}$	Hvy	Med	Lt		Yes	No	
	$c_{n_{\boldsymbol{\beta}}}^{}}}$	Hvy	Med	Lt		Yes	No	
CRUISE 2	10 knots at 30,0	000 ft.						
Dutch Roll:	Period_				_ sec			
	Damping	Hvy	Med	Lt				
	Cycles to	Damp_			_			
PIO Tendency	Yes No	0						
Short Periods:	Cycles to	Damp_						
	Period					se	С	
Finish: Fuel_	#					TOD		

**************	**** DAMPERS ON ******	**********
AILERON ROLLS	t90	Adverse Yaw
1/2 deflection R	sec L se	
	sec L sec	
**********	***********	*********
MANEUVERING FLIGHT at 210 knots		
Fuel#		
Initial Buffet g	Heavy Buffet	g
"max"	. g	-
Stick force gradient: Hvy Med	Lt	
**************	*******	**********
STALLS Cruise Configuration 25,	000 ft.	
Fuel#		
Cr Vw	knots	Vsknots
GLIDE Vw	knots	Vsknots
Remarks		
POWER APPROACH CONFIGURATION	l	
Gear extension	sec	
Flap extension	sec	
Asymmetric power at 155 knots		
MIL RWR Rudder Force Hvy	Med Lt	
MAX TWR Rudder Force Hvy	Med Lt	
Trimability MIL	MAX	
STALLS: Fuel		
Vwknots	/s kno	ts ·
Remarks:		

Trim at 160 knots

							Lin	ear?
Sideslip:	$\mathtt{c}_{\ell_{\boldsymbol{\beta}}}$	Hvy	Med	Lt		Yes	No	
	$c_{n_{oldsymbol{eta}}}^{\;$	Hvy	Med	Lt		Yes	No	
Dutch Roll:	Period.				sec			
	Dampir	ng Hvy	Med	Lt				
	Cycles	to Damp_						
PIO Tendency	Yes N	No						
Short Period:	Cycles to	Damp						
	Period					sec		
*******	******	*****	DAMPE	RS OFF	******	******	*****	****
Dutch Roll:	Period.				sec	•		
	Dampir	ng Dam	ping	Hvy N	Med Lt			
	Cycles	to Damp_						
PIO Tendency	Yes !	No						
Short Period:	Cycles to	Damp						
	Period		·			sec		
*******	*******	*****	DAMPE	RS ON *	*****	******	******	****
AILERON ROLLS				t90			Adverse	Yaw
1/2 deflection	R_		sec L		sec			
Full deflect	R_		sec L	· · · · · · · · · · · · · · · · · · ·	sec			
******	******	******	******	*****	*****	******	******	****
ACROBATICS								
Loop								
Immelman								
Barrel Roll								

INSTRUMENTS			
Holding at 20,000 ft.	250 knots	90-92%	
Penetration S/B	270 knots	90%	
Initial Clean	220 knots	94%	
Low Cone gear, 86%, flaps, 155 knots			
LANDING			
Normal traffic pattern 60% flaps			
Single engine go-around closed pattern			
Full stop Full flaps			
Touchdown speedknot	ts' marker	· · · · · · · · · · · · · · · · · · ·	
***********	*******	*******	******
TAXIING		**************************************	
	Fuel		
TAXIING	Fuel		
TAXIING Engine acceleration Idle to mil	Fuel		
TAXIING Engine acceleration Idle to milfeet	Fuel		
TAXIING Engine acceleration Idle to mil Turning radius feet Re-evaluate cockpits	Fuel		
TAXIING Engine acceleration Idle to mil Turning radius feet Re-evaluate cockpits ENGINE SHUTDOWN	Fuel		
TAXIING Engine acceleration Idle to mil Turning radius feet Re-evaluate cockpits ENGINE SHUTDOWN Check servicing for turn-around	Fuel		
TAXIING Engine acceleration Idle to mil Turning radius feet Re-evaluate cockpits ENGINE SHUTDOWN Check servicing for turn-around Time	Fuel		

TOD					beside A/C
START		Procedure			
F Flow	_ RPM		_ F Flov	v	
Before Taxi Check					
TOD		_			
TAXI					
Power to Roll		Brakes	s	NS	
Nosewheel steering T					
Canopy Operation					
Visibility					
TOD		_			
LINE UP		-			
Brakes Mil Pwr		-			
Pump one brake					
Engine Acc Time					•
RPM			FF_		
	NS				
FUEL L	R				
TOD		_			

TAKEOFF							
Brake release							
A/B light							
NWS rel at Rudder Ef	f A/S						
CONTROL FORCES	L M	н		_ lbs			
NW LIFT OFF							
T.O. ROLL		ft	A/S				
GEAR UP	sec.	FLAPS	UP		_ sec		
Trim Changes							
Noises							
Press. Sys							
Acceleration	Rotation						
CLIMB							
Schedule	.9 to 35M						
Control							
Trim							
Visibility							
Dampers							
35M Time_			Fuel L_			R	
	Th	rottle Mi	l Leve	l Off			 /
TOD							

SUPERSONIC				
A/B Light	time			
TRIM CHANGES				
STABILITY				
•	DAMPERS	PULSE	CYCLE	TIME
	ON	Elev		
		Rud		
	OFF	Elev		
		Rud		
45° Roll				
ONE ENGINE IDLE				
Wind Up Turn to g Max.				
A/S	"g"	•		
Stick force gradient				
Buffet				
FUEL L	R			
TOD				

TURNING PERFO	RMANCE	300 Kts	300 Kts		
Zoom to Slow	A/C				
PWR STALL	WARN		STALL		
230 Kts. Flight STABILITY	Roll				
	DAMPERS	PULSE	CYCLE	TIME	
	ON	Elev			
		Rud			
	OFF	Elev			
		Rud			
	Sideslip	6° Approx.			
CUT ONE ENGIN	E				
EMERGENCY	GEAR EXTENSION		sec		
AIRSTART					
170 knots	Flaps Down				
Aileron Pov	ver				
Cycle gear		Flaps up		TRIM	
FUEL	L		R	, <u></u>	
TOD					

DIVE 45	O Kts 1	2 M		
CLOVERLEA	\F			
BARREL RO	LL			
IMMELMAN				
Level at 2	OM inbound to VO	OR		
200 Kts	F FLOW	and the designation of the second second	·	
250 Kts	F FLOW			
300 Kts	F FLOW			
HIGH CONE				
240 Kts.		Gear Flaps		Dive Brakes
1 g stall				
200 Kts.				
		STABILITY CI	heck	
STALL RIGH	TTURN 190 Kts			
Clean up A/	C 275 Kts.	turn to ILS		
350 Kts.		Speed Brakes		Decelerate
ISL Gear, Fl	aps, D/C 170 Kt	s		
TOD				

SINGLE ENGINE GO-AROUND

SINGLE ENGINE TOUCH AND GO

RE-ENTER

PITCH OUT

NO FLAP LANDING

TRIM CHANGES

TAXI

AFTER LANDING CHECK

SHUTDOWN