PC1. FOUNDATIONS OF MACHINE LEARNING. (MDC 51006 EP - 2025-2026)

EXERCISE 1 (BAYES CLASSIFIER) Prove that the optimal binary Bayes Classifier for the 0-1 loss is given by

$$f^{\star}(X) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1|X) \ge \mathbb{P}(Y = -1|X) \\ -1 & \text{otherwise} \end{cases}$$

EXERCISE 2 (TRAINING ERROR OPTIMISM) Assume that $((x_i, y_i))_i$ is a sequence of i.i.d. random vectors. Consider a parametric model f_β fit by least squares to a set of training data $(x_1, y_1), \ldots, (x_N, y_N)$ drawn at random from a population. Let $\hat{\beta} \in \mathbf{R}^d$ be the least squares estimate, i.e.

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\beta}(x_i))^2$$

Suppose we have some test data $(\widetilde{x}_1,\widetilde{y}_1),\ldots,(\widetilde{x}_M,\widetilde{y}_M)$ drawn at random from the same population $((x_i,y_i))_i$ as the training data.

1. If we define

$$R_{train}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\beta}(x_i))^2$$

and

$$R_{test}(\beta) = \frac{1}{M} \sum_{i=1}^{M} (\widetilde{y}_i - f_{\beta}(\widetilde{x}_i))^2$$

Prove that

$$\mathbb{E}[R_{train}(\hat{\beta})] \leq \mathbb{E}[R_{test}(\hat{\beta})]$$

where the expectations are over all that is random in each expression.

- 2. Can we replace $R_{test}(\beta)$ by the risk $R(\beta) = \mathbb{E}\left[(\widetilde{y} f_{\beta}(\widetilde{x}))^2\right]$ where $(\widetilde{x}, \widetilde{y})$ follows the population law?
- 3. Let β^* be the minimizer of the risk $R(\beta)$, prove that

$$\mathbb{E}\left[R_{train}(\hat{\beta})\right] \le R(\beta^*) \le \mathbb{E}\left[R(\hat{\beta})\right]$$

EXERCISE 3 (TESTING ERROR) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Assume that (X, Y) is a couple of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in $\mathcal{X} \times \{-1, 1\}$ where \mathcal{X} is a given state space. One aim of supervised classification is to define a function $h: \mathcal{X} \to \{-1, 1\}$, called *classifier*, such that h(X) is the best prediction of Y in a given context. For instance, the probability of misclassification of h is

$$L_{\text{miss}}(h) = \mathbb{P}(Y \neq h(X))$$
.

Note that $\mathbb{E}[Y|X]$ is a random variable measurable with respect to the σ -algebra $\sigma(X)$. Therefore, there exists a function $\eta: \mathcal{X} \to [-1,1]$ so that $\mathbb{E}[Y|X] = \eta(X)$ almost surely.

In Exercise 1, we have shown that h_{\star} , defined for all $x \in \mathcal{X}$, by

$$h_{\star}(x) = \begin{cases} 1 & \text{if } \eta(x) > 0, \\ -1 & \text{otherwise}, \end{cases}$$

is such that

$$h_{\star} = \underset{h:\mathcal{X} \to \{-1,1\}}{\operatorname{argmin}} L_{\operatorname{miss}}(h) .$$

1. In practice, the minimization of $L_{\rm miss}$ holds on a specific set ${\cal H}$ of classifiers (often called the *dictionary*), which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification risk $L_{\rm miss}$ cannot be computed nor minimized, it is instead estimated by the empirical classification risk defined as

$$\widehat{L}_{\text{miss}}^{n}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Y_i \neq h(X_i)} ,$$

where $(X_i, Y_i)_{1 \le i \le n}$ are independent observations with the same distribution as (X, Y). The classification problem then boils down to solving

$$\widehat{h}_{\mathcal{H}}^n \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \widehat{L}_{\operatorname{miss}}^n(h)$$
.

Prove that for all set \mathcal{H} of classifiers and all $n \geqslant 1$,

$$L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^n) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leqslant 2\sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^n(h) - L_{\text{miss}}(h) \right|.$$

2. Using Hoeffding's inequality, stating that if $X_i \in [a_i, b_i]$ then for all t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mathbb{E}[X_i]\right| > t\right) \leqslant 2\exp\left(\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right) , \tag{1}$$

prove that when $\mathcal{H}=\{h_1,\ldots,h_M\}$ for a given $M\geqslant 1$, then, for all $\delta>0$,

$$\mathbb{P}\left(L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) \leqslant \min_{1 \leqslant j \leqslant M} L_{\text{miss}}(h_{j}) + \sqrt{\frac{2}{n} \log\left(\frac{2M}{\delta}\right)}\right) \geqslant 1 - \delta.$$