

iLoco: Real-Time Visual SLAM using an iPhone

Group 1: Adeep Das, Nikhil Sridhar, Velu Manohar, Muhammad Khan (adeepdas, niksrid, velu, mamankh)

Agenda

- 1. Overview
- 2. Our Approach
- 3. Data Collection
- 4. IMU Odometry
- 5. Visual Odometry
- 6. Loop Closure
- 7. GTSAM
- 8. Results
- 9. Conclusion

Overview

iLoco: Real-Time SLAM on iPhone

- Traditional SLAM systems often require specialized hardware and complex calibration
- New Smartphones, especially iPhones, offer powerful sensors
- Leverages iPhone's built-in RGB-D camera and IMU for accurate, real-time localization
- Uses ORB feature matching, Bag-of-Words, GTSAM for our pipeline
- "Slap on" design: minimal setup, no external calibration required
- Ideal for:
 - Rapid prototyping
 - Educational demos
 - Accessible SLAM research

Our Approach

Data Capture

Swift App on iPhone

- Captures RGB + Depth via AVCapture APIs
- Depth and RGB tightly synchronized using AVCaptureDataOutputSynchronizer

Inertial Data via CoreMotion

- Accelerometer + Gyroscope at 100 Hz
- Timestamped and aligned with visual stream

Dual TCP Streaming Architecture

- IMU streamed at 100 Hz
- RGB-D streamed at 30 FPS (H.264 encoded)
- Separate channels reduce packet delay and jitter

Latency-Optimized Design

- H.264 video compression done on iPhone
- Python server decodes stream in real time
- Supports efficient, live SLAM processing

IMU Odometry

Timestamped IMU Data

- Collected accelerometer & gyroscope readings at 100 Hz
- Data aligned with RGB-D stream for fusion

Rotation Updates via Angular Velocity

- Skew-symmetric matrix + Rodrigues' formula
- Small-angle approximation with Taylor expansion
- Exponential map applied to angular velocity for rotation matrix

State Propagation

- Discrete-time integration with Zero-Order Hold assumption
- Constant acceleration & angular velocity assumed between frames
- Velocity and position updated from integrated accelerations

Bias-Corrected Integration

- Gyro and accelerometer biases compensated
- Results in smooth, real-time pose estimation

Visual Odometry

Feature Detection

- RGB frames + depth maps captured via iPhone's camera + LiDAR
- ORB keypoints + binary descriptors computed per frame

Feature Matching

- Matched with FLANN (LSH indexing)
- Lowe's ratio test filters unreliable matches

3D Projection from Depth

- Depth + camera intrinsics → 3D point cloud
- Only valid depth pixels retained

Pose Estimation

- RANSAC filters outliers
- Rigid transform computed via SVD

Trajectory Accumulation

- Transformations chained over time
- Produces full 6-DoF trajectory in global frame

Pointcloud of Matched Features

Loop Closure

Bag-of-Words with ORB

- Visual vocabulary trained from ORB descriptors
- New frames converted into compact BoW vectors

Efficient Candidate Search

- BoW vectors stored in a KD-Tree
- Compared using cosine similarity
- Thresholded to find loop candidates

Verification via ORB Matching

- Feature-level validation of candidates
- Loop accepted if enough reliable matches found

Challenges

- Noisy VO/IMU data
- Short runtime limited loop closure effectiveness

Feature Matches

Loop Closure between Frame 150 (left) and frame 12 (right)

GTSAM

- Performs batch SLAM by combining IMU preintegration with visual odometry
- Builds a factor graph:
 - IMU provides high-frequency motion constraints between keyframes
 - Visual odometry supplies relative pose constraints
- Uses ISAM2 for efficient incremental optimization
- Fuses multi-rate, multi-modal data into a globally consistent trajectory
- Incorporates motion priors and sensor noise models for robustness
- Produces smooth, drift-reduced pose estimates
- Backbone for evaluating downstream video alignment and trajectory prediction

Results

More Results

Measure error as MSE in Lie Group over time

Time (s)	IMU Odometry (Avg ± SD) [m²]	Visual Odometry (Avg ± SD) [m²]	Our Method (Avg ± SD) [m²]
10	0.405 ± 0.075	0.281 ± 0.018	0.292 ± 0.732
20	1.632 ± 0.075	0.541 ± 0.243	0.56 ± 0.332
30	4.542 ± 0.195	1.27 ± 2.549	1.168 ± 1.352
40	8.988 ± 0.465	3.485 ± 1.162	2.14 ± 1.192
50	13.824 ± 1.485	6.13 ± 13.503	3.296 ± 2.088
60	18.6 ± 2.985	7.854 ± 6.778	4.024 ± 2.136

Conclusion

- **Visual Odometry:** Performs poorly during turns, especially in low-texture environments like plain walls.
- **GTSAM Optimization:** Mini-batch updates improve stability and convergence without full batch costs.
- **iLoco vs Baselines:** Our fused method outperforms standalone IMU/VO but lags behind ARKit in rotation accuracy.
- Future Work: Add mapping for loop closure and integrate visual and depth data (e.g., LiDAR) separately for better robustness.

Thank You!