## **Equations Differnetielles Lineaires**

Lycée de Dindéfelo Mr BA

18 mai 2025

## I. Définitions

Soient  $a_0, a_1, ..., a_n$  des constantes réelles, y = y(x) une fonction de x. On appelle équation différentielle linéaire d'ordre n à coefficients constants, une équation liant une fonction y et ses dérivées successives  $y', y'', \cdots, y^n$ . On a  $a_n y^n(x) + a_{n-1} y^{n-1}(x) + \cdots + a_2 y''(x) + a_1 y'(x) + a_0 y(x) = g(x)$  où g(x) est une fonction et  $a_n \neq 0$ 

## Exemple

 $2y'' - 3y' + 4y = \sin 2x$  est une équation différentielle linéaire du  $2^{nd}$  ordre, à coefficients constants.

- pour  $a_n \neq 0$ , (E):  $a_n y^n(x) + a_{n-1} y^{n-1}(x) + \cdots + a_2 y''(x) + a_1 y'(x) + a_0 y(x) = g(x)$  est une équation différentielle Linéaire d'ordre n, à coefficients constants, non homogène ou avec second membre.
- pour  $a_n \neq 0$ , (E'):  $a_n y^n + a_{n-1} y^{n-1} + \cdots + a_2 y'' + a_1 y' + a_0 y = 0$  est une équation différentielle linéaire d'ordre n, à coefficients constants, non homogène ou sans second membre ou homogène.
- (E') est associée à (E)
- Les solutions d'une équation différentielle sont des fonctions.
- f est une solution d'une équation différentielle d'ordre n, à coefficients constants sur  $\mathbf{I}$ , si f est n fois dérivables sur  $\mathbf{I}$  et f vérifie l'équation.
- L'ensemble des solutions d'une équation différentielle est appelé solution générale de l'équation différentielle.
- Toute fonction vérifiant l'équation différentielle est appelée solution particulière.
- Une solution qui vérifie des conditions initiales est appelée solution singulière.

## II. Théorèmes

Soit l'équation différentielle linéaire d'ordre n à coefficients constants avec  $2^{nd}$  membre.

(E):  $a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \cdots + a_2 y''(x) + a_1 y'(x) + a_0 y(x) = g(x)$  et l'équation différentielle linéaire d'ordre n à coefficients constants sans  $2^{nd}$  membre.

(E'):  $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0.$ 

Si  $f_1$  est une solution particulière de (**E**) et  $f_2$  une solution générale de (**E**') alors,  $f(x) = f_1(x) + f_2(x)$  est une solution générale de (**E**).

#### Preuve

Soit  $f_1$  une solution particulière de l'équation (**E**) avec second membre, et  $f_2$  une solution générale de l'équation homogène associée (**E**'). Nous devons montrer que  $f(x) = f_1(x) + f_2(x)$  est une solution générale de l'équation (**E**).

Puisque  $f_1$  est une solution particulière de  $(\mathbf{E})$ , cela signifie que lorsque nous remplaçons y par  $f_1$  dans (E), nous obtenors une équation vraie.

C'est-à-dire:

$$a_n f_1^{(n)}(x) + a_{n-1} f_1^{(n-1)}(x) + \dots + a_2 f_1''(x) + a_1 f_1'(x) + a_0 f_1(x) = 0$$

De même, puisque  $f_2$  est une solution générale de  $(\mathbf{E}')$ , lorsque nous remplaçons y par  $f_2$  dans (E'), nous obtenors une équation vraie.

C'est-à-dire:

$$a_n f_2^{(n)}(x) + a_{n-1} f_2^{(n-1)}(x) + \dots + a_2 f_2^{(n)}(x) + a_1 f_2^{(n)}(x) + a_0 f_2(x) = g(x)$$

En ajoutant les deux équations, nous obtenons l'équation : 
$$a_n f_1^{(n)}(x) + a_{n-1} f_1^{(n-1)}(x) + \dots + a_2 f_1''(x) + a_1 f_1'(x) + a_0 f_1(x) + a_n f_2^{(n)}(x) + a_{n-1} f_2^{(n-1)}(x) + \dots + a_2 f_2''(x) + a_1 f_2'(x) + a_0 f_2(x)$$

$$= 0 + g(x)$$

$$a_n(f_1+f_2)^{(n)}(x) + a_{n-1}(f_1+f_2)^{(n-1)}(x) + \dots + a_2(f_1+f_2)^{"}(x) + a_1(f_1+f_2)^{(')}(x) + a_0(f_1+f_2)(x) = g(x)$$

Puisque  $f_1$  est une solution de l'équation avec second membre (E) et  $f_2$  est une solution de l'équation homogène (E'), la partie gauche de l'équation ci-dessus est égale à g(x) + 0, ce qui est simplement g(x). Ainsi,

 $f(x) = f_1(x) + f_2(x)$  satisfait l'équation différentielle (E), ce qui prouve que c'est une solution générale de (E).

## III. Équations différentielles linéaires d'ordre 1, à coefficients constants

Une équation différentielle linéaire d'ordre 1, à coefficients constants est une équation de la forme

(E): 
$$ay' + by = g(x)$$
 (avec second membre)

(E'): ay' + by = 0(sans second membre ou équation homogène)

#### 1. Recherche de la solution générale de l'équation homogène

Soit (E'): ay' + by = 0 alors,

$$ay' = -by \Longrightarrow \frac{y'}{y} = -\frac{b}{a}$$

$$\implies \ln|y| = -\frac{b}{a}x + c$$

$$\implies |y| = e^{-\frac{b}{a}x + c} = e^{c} \cdot e^{-\frac{b}{a}x}$$

$$\implies y = \pm e^{c} \cdot e^{-\frac{b}{a}x}$$

Soit (E') :ay' + by = 0 alors ay' = -by

Donc,  $f_2$  est de la forme  $f_2(x) = y_2(x) = ke^{-\frac{b}{a}x}$  où K est une constante.

# 2. Recherche d'une solution particulière de l'équation différentielle linéaire d'ordre 1 avec 2<sup>nd</sup> membre

— Une fonction  $f_1$  est solution de **(E)** si elle est dérivable et si elle vérifie **(E)** 

$$af_1'(x) + bf_1(x) = g(x)$$

- Si g(x) est un polynôme de degré n, alors  $f_1$  est aussi un polynôme de degré n.
- Si g(x) est de la forme  $a \cos \beta x$ ,  $a \sin \beta x$ ,  $a \cos \beta x + b \sin \beta x$ , alors  $f_1$  sera de la forme  $A \cos \beta x + B \sin \beta x$ .

## 3. Solution générale de (E)

Une solution générale y(x) de **(E)** est donnée par

$$y(x) = f_2(x) + f_1(x)$$

où  $f_2$  est une solution générale de  $(\mathbf{E}')$  et  $f_1(x)$  une solution particulière de  $(\mathbf{E})$ .

## Exercice d'application

Soit  $\phi$  la fonction dérivable sur  $\mathbb{R}$  solution de l'équation différentielle (E)  $:2y'-3y=x^2+5$  dont la dérivée s'annule en 0.

- 1. Montrer qu'il existe un polynôme de degré 2, notée  $f_1$ , solution de  $(\mathbf{E})$ .
- 2. Résoudre l'équation différentielle (E) :2y' = 3y et en déduire l'ensemble des solutions de (E).
- 3. Déterminer  $\phi$  puis construire  $C_{\phi}$  sa courbe représentative.

#### Résolution

1. Cherchons une solution particulière  $y_p$  de l'équation **(E)** sous la forme d'un polynôme de degré  $2:y_p=ax^2+bx+c$ . Calculons  $y_p'$ :

$$y_p' = 2ax + b$$

Substituons  $y_p$  et  $y_p'$  dans l'équation (E) :

$$2(2ax + b) - 3(ax^2 + bx + c) = x^2 + 5$$

$$4ax + 2b - 3ax^2 - 3bx - 3c = x^2 + 5$$

Regroupons les termes semblables :

$$-3ax^{2} + (4a - 3b)x + (2b - 3c) = x^{2} + 5$$

Égalons les coefficients :

$$\begin{cases}
-3a = 1 \\
4a - 3b = 0 \\
2b - 3c = 5
\end{cases}$$

Résolvons ce système :

$$a = -\frac{1}{3}$$

$$4\left(-\frac{1}{3}\right) - 3b = 0 \implies -\frac{4}{3} - 3b = 0 \implies b = -\frac{4}{9}$$

$$2\left(-\frac{4}{9}\right) - 3c = 5 \implies -\frac{8}{9} - 3c = 5 \implies -3c = 5 + \frac{8}{9} \implies -3c = \frac{45 + 8}{9} \implies -3c = \frac{53}{9} \implies c = -\frac{53}{27}$$

La solution particulière est donc :

$$y_p = -\frac{1}{3}x^2 - \frac{4}{9}x - \frac{53}{27}$$

2. Résolvons maintenant l'équation homogène associée (E') : 2y' - 3y = 0.

$$2y' = 3y \implies \frac{y'}{y} = \frac{3}{2} \implies \int \frac{dy}{y} = \int \frac{3}{2} dx \implies \ln|y| = \frac{3}{2}x + C$$
$$y = Ce^{\frac{3}{2}x}$$

L'ensemble des solutions de (E) est donc :

$$y = Ce^{\frac{3}{2}x} + y_p$$

3. Puisque la dérivée de  $\phi$  s'annule en 0, nous devons avoir  $\phi'(0) = 0$ .

$$\phi(x) = Ce^{\frac{3}{2}x} - \frac{1}{3}x^2 - \frac{4}{9}x - \frac{53}{27}$$

Calculons  $\phi'(x)$ :

$$\phi'(x) = \frac{3}{2}Ce^{\frac{3}{2}x} - \frac{2}{3}x - \frac{4}{9}$$

$$\phi'(0) = \frac{3}{2}C - \frac{4}{9} = 0 \implies \frac{3}{2}C = \frac{4}{9} \implies C = \frac{8}{27}$$

La solution est donc :

$$\phi(x) = \frac{8}{27}e^{\frac{3}{2}x} - \frac{1}{3}x^2 - \frac{4}{9}x - \frac{53}{27}$$

4. Pour construire la courbe représentative  $C_{\phi}$ , nous traçons la fonction  $\phi$  sur un graphique.



FIGURE 1 – Courbe représentative de  $\phi(x)$ .

## IV. Équations différentielles du 2nd ordre, à coefficients constants

C'est une équation de la forme

(E) : ay'' + by' + cy = g(x);  $\neq 0$  (équation avec  $2^{nd}$  membre)

(E'): ay'' + by' + cy = 0;  $\neq 0$  (équation homogène)

f est une solution de  $(\mathbf{E})$  :(respectivement de  $(\mathbf{E'})$ ) sur  $\mathbf{I}$  si f est deux fois dérivables sur  $\mathbf{I}$  et f vérifie  $(\mathbf{E})$ (respectivement f vérifie  $(\mathbf{E'})$ )

## 1. Recherche de la solution générale de (E')

Soit (**E**':)ay'' + by' + cy = 0 avec  $a \neq 0$ , nous appelons équation caractéristique associée à (**E**') l'équation  $ar^2 + br + c = 0$ 

#### Théorème

Soit (E') :ay'' + by' + cy = 0 et  $ar^2 + br + c = 0$  équation caractéristique associée de discriminant  $\Delta = b^2 - 4ac$ , alors :

• Si  $\Delta > 0$  alors, l'équation  $ar^2 + br + c = 0$  admet deux solutions réelles distinctes

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}, r_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Dans ce cas, (E') :ay'' + by' + cy = 0 admet comme solution générale  $y_2$  de la forme

 $y_2(x) = Ae^{r_1x} + Be^{r_2x}$  Avec A et B des Constants déterminées par les conditions initales

• Si  $\Delta = 0$  alors, l'équation  $ar^2 + br + c = 0$  admet une solutions double réelle

$$r_0 = \frac{-b}{2a}$$

Et l'équation (E') admet une solution générale de la forme

$$y_2(x) = (Ax + B)e^{r_0x}$$

• Si  $\Delta < 0$  alors, l'équation  $ar^2 + br + c = 0$  admet deux solutions complexes conjuguées

$$\alpha + i\beta, \alpha - i\beta$$

Ainsi, (E') :ay'' + by' + cy = 0 admet une solution générale de la forme

$$y_2(x) = Ae^{\alpha x}(A\cos\beta x + B\sin\beta x)$$

## Remarques

Dans tous les cas, les constantes A et B sont dépendantes des conditions initiales.

## 2. Recherche d'une solution particulière

- Si g est un polynôme de degré n,alors  $f_1$  est aussi un polynôme de degré
- -n + 1 si c = 0.
- $-n \operatorname{si} c \neq 0$
- Si g(x) est de la forme  $a \cos \beta x/a \sin \beta x, a \cos \beta x + b \sin \beta x$  alors,  $f_1(x)$  sera de la forme  $A \cos \beta x + B \sin \beta x$ .

## 3. Solution générale de (E)

Soit  $f_2(x)$  solution générale de **(E')**, si  $f_1(x)$  donnée, est solution particulière de **(E)**, alors la solution générale de **(E)**; y(x),sera de la forme

$$y(x) = f_2(x) + f_1(x)$$

## Exemple

Résoudre l'équation différentielle (**E**:)y'' - 4y' + 3y = 0 puis, déterminer et représenter graphiquement la solution qui passe par l'origine O(0,0) du repère et dont la dérivée vaut 1 en 0.

#### **Solution**

## 1. Résolution de l'équation différentielle homogène

L'équation différentielle donnée est une équation linéaire homogène d'ordre 2 à coefficients constants :

$$y'' - 4y' + 3y = 0$$

Pour résoudre cette équation, nous cherchons les racines de l'équation caractéristique associée :

$$r^2 - 4r + 3 = 0$$

Cette équation se factorise facilement :

$$(r-3)(r-1) = 0$$

Les racines sont :

$$r_1 = 3$$
 et  $r_2 = 1$ 

Ainsi, la solution générale de l'équation différentielle est :

$$y(x) = C_1 e^{3x} + C_2 e^x$$

## 2. Détermination de la solution particulière

Nous devons maintenant déterminer les constantes  $C_1$  et  $C_2$  en utilisant les conditions initiales données :

$$y(0) = 0$$
 et  $y'(0) = 1$ 

Calculons y'(x) à partir de la solution générale :

$$y'(x) = 3C_1e^{3x} + C_2e^x$$

En utilisant les conditions initiales :

$$y(0) = C_1 e^0 + C_2 e^0 = C_1 + C_2 = 0 \implies C_2 = -C_1$$
  
 $y'(0) = 3C_1 e^0 + C_2 e^0 = 3C_1 + C_2 = 1$ 

Substituons  $C_2 = -C_1$  dans la deuxième équation :

$$3C_1 - C_1 = 1$$
  $\Rightarrow$   $2C_1 = 1$   $\Rightarrow$   $C_1 = \frac{1}{2}$  
$$C_2 = -\frac{1}{2}$$

La solution particulière est donc :

$$y(x) = \frac{1}{2}e^{3x} - \frac{1}{2}e^x$$

## 3. Représentation graphique

Pour représenter graphiquement la solution  $y(x)=\frac{1}{2}e^{3x}-\frac{1}{2}e^x$ , nous traçons la courbe dans un repère.



FIGURE 2 – Courbe représentative de  $y(x) = \frac{1}{2}e^{3x} - \frac{1}{2}e^x$ .