Ripetizioni Matteo

Marini Mattia

2024

Ripetizioni Matteo is licensed under CC BY 4.0 \odot ().

© 2023 Mattia Marini

Indice

1	Equ	azioni di secondo grado									
	1.1	Terminologia									
	1.2	Risoluzione equazioni di secondo grado									
		1.2.1 Equazioni complete									
		1.2.2 Equazioni pure									
		1.2.3 Equazioni spurie									
		1.2.4 Monomie									
	1.3	Esercizi									
		1.3.1 Pure									
		1.3.2 Spurie									
		1.3.3 Complete									
	1.4	Grafico di una parabola									
2	La 1 2.1	La retta nel piano cartesiano 2.1 Equazione retta e grafico									
3	Significato di una funzione										
4	Sist	emi lineari									
	4.1	Soluzioni di un sistema lineare									
5	Fisi	ca 13									
	5.1	Unità di misura e conversioni									
	5.2	Moto rettilineo uniformement accelerato									
D	efir	nizioni									
1		na normale									
2	Equa	azione di secondo grado									
3	-	azioni complete, pure, spurie, monomie									
4		ema lineare									
5	Velo	cità media									

6	Velocità media	14
7	Accelerazione e velocità media	14
8	Legge oraria MRUA	14
9	Rapporto tra velocità e accelerazione	15

Equazioni di secondo grado

Terminologia

Definizione 1: Forma normale

Un'equazione si dice in forma normale se è scritta come un'equazione tra un polinomio e zero e non si può semplificare nulla

• Equazioni in forma normale:

$$15x^4 + x^2 - 2x + 2 = 0$$

$$12x = 0$$

$$12x = 0 x^2 + 1 = 0$$

• Equazioni che NON sono in forma normale:

$$12x = 1$$

$$x^2 - x^2 + x = 0$$

non lo sono.

Definizione 2: Equazione di secondo grado

Un'equazione si dice di secondo grado se, una volta ridotta in forma normale l'esponente di grado massimo è uguale a 2

• Equazioni di secondo grado:

$$5x^2 - 2x + 1 = 0$$

$$5x^2 - 2x + 1 = 2x^2 - 2$$

$$x^2 = -1$$

$$x^2 - 2x = 0$$

• Equazioni che NON sono di secondo grado:

$$2x + 1 = 0$$

$$5x^2 - 5x^2 + 1 = -2$$

$$x^2 = x^2 + x$$

$$3x + 2 = -2x$$

Un' equazione di secondo grado può essere classificata in base a quali suoi coefficienti valgono. Una generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

3

viene detta:

- o Completa se ne a ne b ne c valgono 0: $15x^2 + 2x 10 = 0$
- \circ Pura se solo b = 0: $15x^2 10 = 0$
- \circ Spuria se solo c = 0: $15x^2 + 2x = 0$
- o Monomia se sia b che c valgono 0: $15x^2 = 0$

1.2 Risoluzione equazioni di secondo grado

Ci occupiamo intanto della risoluzione delle equazioni $\underline{\rm NON}$ fratte. Lo schema risolutivo è il seguente:

- 1. Tramite le proprietà delle equazioni, riduco al l'equazione nella sua forma normale
- 2. Trovare i risultati come indicato qui sotto, in base al tipo della equazione ottenuta vedi definizione 1.1

1.2.1 Equazioni complete

Per questo tipo di equazione esiste una formula nella quale possiamo inserire i parametri per ricavare le soluzioni. Data un'equazione di secondo grado nella seguente forma:

$$ax^2 + bx + c = 0$$

allora le soluzioni sono date da

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

nota che

- o Questa formula può produrre 0,1 o 2 soluzioni a seconda del valore di Δ :
 - $\Delta < 0$: 0 soluzioni
 - $-\Delta = 0$: 1 soluzione
 - $-\Delta > 0$: 2 soluzioni

1.2.1 Esempio

Supponendo di avere:

$$2x^2 - 4x - 6$$

le soluzioni sono date da

$$x_{1/2} = \frac{4 \pm \sqrt{(-4)^2 - 4(2) \cdot (-6)}}{2 \cdot 2} = \frac{4 \pm \sqrt{64}}{4} = \frac{4 \pm 8}{4}$$

$$x_1 = \frac{12}{4} = 3$$

$$x_2 = \frac{-4}{4} = -1$$

1.2.2 Equazioni pure

Per questo tipo di equazioni è sufficiente portare a destra a e c ed eseguire la radice da entrambe le parti. Occhio al " \pm "!

$$ax^{2} + c = 0 \to ax^{2} = -c \to x^{2} = \frac{-c}{a} \to x = \pm \sqrt{\frac{-c}{a}}$$

Nota che

- o Nell'ultimo passaggio va messo sempre il \pm . Basti pensare a $x^2 = 4$. Chiaramente $2 \cdot 2 = 4$ ma anche $-2 \cdot -2 = 4$. Questo è vero per qualsiasi numbero!
- o Le equazioni pure hanno sempre 2 o 0 soluzioni, nel caso alla destra io ottenga rispettivamente un numero positivo o negativo

1.2.2 Esempio

Supponendo di avere:

$$4x^2 - 9 = 0$$

allora procedo così:

$$4x^2 = 9 \rightarrow \sqrt{4x^2} = \sqrt{9} \rightarrow 2x = 3 \rightarrow x = \frac{3}{2}$$

1.2.3 Equazioni spurie

Per questo tipo di equazioni si può sempre effettuare un raccoglimento della x, applicando poi la legge dell'annullamento del prodotto:

$$ax^{2} + bx = 0 \rightarrow x (ax + b) = 0$$

$$x_{1} = 0$$

$$x_{2} = \frac{-b}{a}$$

Nota che:

- Ho sempre esattamente 2 soluzioni
- \circ Una soluzione è sempre 0. Questo perché la x compare in ogni fattore. Quando questa si annulla, l'equazione sarà sempre soddisfatta

1.2.3 Esempio

Supponiamo di avere:

$$5x^2 - 2x = 0$$

allora risolvo così

$$5x^{2} - 2x = 0 \to x (5x - 2) = 0$$

$$(5x - 2) = 0 \to x_{2} = \frac{5}{2}$$

1.2.4 Monomie

Il caso delle equazioni monomie è particolarmente semplice. La soluzione è una, ossia 0

$$ax^2 = 0 \rightarrow x = 0$$

1.3 Esercizi

1.3.1 Pure

$$5x^{2} - 20 = 0$$
 $3x^{2} - 27 = 0$ $4x^{2} - 36 = 0$ $2x^{2} - 8 = 0$ $x^{2} - 16 = 0$ $6x^{2} - 18 = 0$

Soluzione 1

$$5x^2 - 20 = 0 \rightarrow 5x^2 = 20 \rightarrow x^2 = 4 \rightarrow x = \pm 2$$

Soluzione 2

$$3x^2 - 27 = 0 \rightarrow 3x^2 = 27 \rightarrow x^2 = 9 \rightarrow x = \pm 3$$

Soluzione 3

$$4x^2 - 36 = 0 \rightarrow 4x^2 = 36 \rightarrow x^2 = 9 \rightarrow x = \pm 3$$

Soluzione 4

$$2x^2 - 8 = 0 \rightarrow 2x^2 = 8 \rightarrow x^2 = 4 \rightarrow x = \pm 2$$

Soluzione 5

$$x^2 - 16 = 0 \rightarrow x^2 = 16 \rightarrow x = \pm 4$$

Soluzione 6

$$6x^2 - 18 = 0 \rightarrow 6x^2 = 18 \rightarrow x^2 = 3 \rightarrow x = \pm\sqrt{3}$$

1.3.2 Spurie

$$4x^{2} - 8x = 0$$
 $6x^{2} - 18x = 0$ $5x^{2} - 10x = 0$ $3x^{2} - 9x = 0$ $2x^{2} - 4x = 0$ $7x^{2} - 21x = 0$

Soluzione 1

$$4x^{2} - 8x = 0 \rightarrow x (4x - 8) = 0$$
 $x_{1} = 0$
 $x_{2} = 2$

Soluzione 2

$$6x^{2} - 18x = 0 \rightarrow x (6x - 18) = 0$$

$$x_{1} = 0$$

$$x_{2} = 3$$

Soluzione 3

$$5x^2 - 10x = 0 \rightarrow x (5x - 10) = 0$$

$$x_1 = 0$$

$$x_2 = 2$$

Soluzione 4

$$3x^{2} - 9x = 0 \rightarrow x (3x - 9) = 0$$

$$x_{1} = 0$$

$$x_{2} = 3$$

Soluzione 5

$$2x^{2} - 4x = 0 \rightarrow x (2x - 4) = 0$$

$$x_{1} = 0$$

$$x_{2} = 2$$

Soluzione 6

$$7x^{2} - 21x = 0 \rightarrow x (7x - 21) = 0$$
 $x_{1} = 0$
 $x_{2} = 3$

Complete

$$3x^{2} - 4x - 7 = 0$$
 $5x^{2} + 8x - 3 = 0$ $2x^{2} - 6x + 4 = 0$ $x^{2} - 2x - 8 = 0$ $4x^{2} + 12x + 5 = 0$ $6x^{2} - 11x + 2 = 0$

Soluzione 1:

 $3x^2 - 4x - 7 = 0$

$$3x^{2} - 4x - 7 = 0$$

$$\underbrace{(3)}_{a} x^{2} + \underbrace{(-4)}_{b} x + \underbrace{(-7)}_{c} = 0$$

$$x_{1/2} = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 3 \cdot (-7)}}{2 \cdot 3} = \frac{4 \pm \sqrt{100}}{6}$$

$$x_{2} = \frac{4 - 10}{3}$$

Soluzione 1:

$$3x^{2} - 4x - 7 = 0$$

$$\underbrace{(3)}_{a} x^{2} + \underbrace{(-4)}_{b} x + \underbrace{(-7)}_{c} = 0$$

$$x_{1/2} = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 3 \cdot (-7)}}{2 \cdot 3} = \frac{4 \pm \sqrt{100}}{6}$$

$$x_{2} = \frac{2 + \sqrt{10}}{3}$$

Soluzione 2:

$$5x^{2} + 8x - 3 = 0$$

$$\underbrace{(5)}_{a}x^{2} + \underbrace{(8)}_{b}x + \underbrace{(-3)}_{c} = 0$$

$$x_{1/2} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 5 \cdot (-3)}}{2 \cdot 5} = \frac{-8 \pm \sqrt{124}}{10}$$

$$x_{2} = \frac{-4 - \sqrt{31}}{5}$$

Soluzione 3:

$$2x^{2} - 6x + 4 = 0$$

$$\underbrace{(2)}_{a} x^{2} + \underbrace{(-6)}_{b} x + \underbrace{(4)}_{c} = 0$$

$$x_{1/2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 2 \cdot 4}}{2 \cdot 2} = \frac{6 \pm \sqrt{4}}{4}$$

$$x_{2} = \frac{2}{4} = \frac{1}{2}$$

Soluzione 4:

$$x^{2} - 2x - 8 = 0$$

$$\underbrace{(1)}_{a} x^{2} + \underbrace{(-2)}_{b} x + \underbrace{(-8)}_{c} = 0$$

$$x_{1} = \frac{2+6}{2} = 4$$

$$x_{1/2} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} = \frac{2 \pm \sqrt{36}}{2}$$

$$x_{2} = \frac{2-6}{2} = -2$$

Soluzione 5:

$$4x^{2} + 12x + 5 = 0$$
 (4) $x^{2} + (12)x + (5) = 0$

$$x_{1/2} = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{-12 \pm \sqrt{64}}{8}$$

$$x_1 = \frac{-8}{8} = -1$$

$$x_2 = \frac{-2}{8} = -\frac{1}{4}$$

Soluzione 6:

$$6x^{2} - 11x + 2 = 0$$

$$\underbrace{(6)}_{a} x^{2} + \underbrace{(-11)}_{b} x + \underbrace{(2)}_{c} = 0$$

$$x_{1/2} = \frac{-(-11) \pm \sqrt{(-11)^{2} - 4 \cdot 6 \cdot 2}}{2 \cdot 6} = \frac{11 \pm \sqrt{73}}{12}$$

$$x_{2} = \frac{11 - \sqrt{73}}{12}$$

1.4 Grafico di una parabola

Per disegnare una parabola sul piano cartesiano possono esserci utilile seguenti nozioni. Consideriamo

$$y = ax^2 + bx + c$$

 \circ Sea < 0 allora la parabola ha concavità verso il basso, altrimenti verso l'alto

• Il vertice ha coordinate

$$\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$$

- \circ La parabola incontra l'asse x nelle x che risolvono l'equazione associata (ossia quella ottenuta ponendo la funzione = 0)
- \circ Il valore c è detto quota, e indica il punto in cui la parabola incrocia l'asse y

 $\circ\,$ Il coefficiente a,indica quanto "ripida è la parabola"

2 La retta nel piano cartesiano

Come rappresentiamo una parabola nel piano cartesiano, possiamo rappresentare anche una retta. Se le seguenti sono tutte rette nel piano cartesiano:

Vediamo ora la forma della equazione e cosa considerare per disegnarne una sul piano cartesiano.

2.1 Equazione retta e grafico

Una retta ha equazione di tipo:

$$y = mx + c$$

dove m è detto coefficiente angolare e c è detto, come nelle parabole, quota.

 \circ c, come nelle parabole, indica l'altezza alla quale la retta interseca l'asse y

o m, ossia il coefficiente angolare, indica quanto la retta è inclinata sull'asse orizzontale. Per valori di m molto grandi, la retta sarà quasi verticale, mentre per valori molto bassi sarà quasi orizzontale. Per valori positivi sarà in "salita" e per valori negativi sarà in "discesa"

2.1.0 Disegno

0

-4

Data una retta con equazione y = mx + c, per ottenere il disegno è sufficiente calcolare due punti e tracciare l'unica retta passante per entrambi. Cinsideriamo

$$y = \frac{1}{2}x + 2$$

Calcolo f(-2) e f(2) e segno punti:

 $\begin{array}{c}
 & p_1 \\
 & p_2
\end{array}$

Traccio unica retta passante per entrambi

2.1.0 Ricavare equzione da disegno

0

x

-2

Dato un disegno di una retta, possiamo sfruttare le seguenti proprietà per ricavarne l'equazione come segue:

4

- \circ c è l'altezza a cui la retta interseca l'asse y
- o m, dati due punti qualsiasi appartenenti alla retta è uguale a

2

$$m = \frac{y_2 - y_1}{y_2 - y_1} = \frac{\Delta y}{\Delta x}$$

Quindi operativamente, dato un grafico di una retta, per ottenere la sua equazinoe bisogna:

- \circ Ricavare il coefficiente angolare, prendendo due punti e dividendo la differenza delle loro y per la differenza delle loro x
- $\circ~$ Trovare c inserendo uno dei due punti della retta e risolvendo un'equazione di primo grado in c

2.1.0 Esempio

1. Trovare m, ossia il coefficiente angolare:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{4 - 2} = \frac{1}{2}$$

2. Trovare c, inserendo un punto qualsiasi della retta nella sua equazione:

$$y = mx + c \to y = \frac{1}{2}x + c$$

Inserendo p_2 :

$$3 = \frac{1}{2} \cdot 4 + c \to c = 3 - 2 = 1$$

oppure inserendo p_1 :

$$2 = \frac{1}{2} \cdot 2 + c \to c = 2 - 1 = 1$$

3. Quindi, sapendo che $m=\frac{1}{2}$ e c=1,l'equazione della retta sarà:

$$y = \frac{1}{2}x + 1$$

i

3 Significato di una funzione

Consideriamo ora una funzione che costituisce una parabola

$$x^2 - 4$$

Sistemi lineari

Definizione 4: Sistema lineare

Un sistema lineare è un sistema di equazioni in più incognire dove ogni incognita compare con esponente massimo pari ad 1

Ad esempio

$$\begin{cases} x + 3y - z = 15 \\ 2x - y - z = 0 \end{cases}$$

é un sistema lineare, mentre

$$\begin{cases} x^2 - 2y + 3\sqrt{z} = 12\\ 2x - xy - z = 0 \end{cases}$$

non lo è

4.1 Soluzioni di un sistema lineare

Un sistema lineare può avere 0, 1 o infinite soluzioni. Particolare

- o 1 soluzione se vi sono tante incognite quante equazioni
- 5 Fisica

5.0.0 Notazione scientifica

La notazione scientifica è un modo comodo per riscrivere un numero molto grande o molto piccolo. Ad esempio:

$$300.000 = 3 \cdot 10^5$$

5.0.0 Conversione a notazione scientifica

Per convertire un numero in notazione scientifica occorre seguire questi passaggi:

1. Sposta la virgola in maniera tale che resti alla sinistra solo 1 cifra diversa da 0, tenendo contro di quanto la abbiamo spostata

198, 274 diventa 1, 98 spostando la virgola di 2 passi

- 2. Moltiplicare il numero ottenuto per 10^x , dove x è quanto abbiamo spostato la virgola e ha segno:
 - o Positivo se la abbiamo spostata verso sinistra
 - o Negativo se la abbiamo spostata verso destra

$$1.98 \cdot 10^2$$

5.1 Unità di misura e conversioni

 $ \begin{array}{c} 10^2 \\ \text{o etto} \end{array} $		 	_ ~
 10 ⁹ mega	-0	 -0	10 ⁻¹² pico

$$\frac{1}{2} + \int_a^b f(x) \ dx$$

5.2 Moto rettilineo uniformement accelerato

Nel momento in cui la velocità di un oggetto cambia, si parla di moto rettilineo uniformemente accelerato Ricordiamo innanzitutto le formule di accelerazione e velocità media:

Definizione 5: Velocità media

La velocità media fra due istanti f e i di un corpo è data per definizione dalle seguenti formule:

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Definizione 6: Velocità media

L'accelerazione fra due istanti f e i di un corpo è data per definizione dalle seguenti formule:

$$v_m = \frac{\Delta s}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

Definizione 7: Accelerazione e velocità media

La velocità media e accelerazione fra due istanti f e i di un corpo è data per definizione dalle seguenti formule:

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

$$v_m = \frac{\Delta s}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

Inoltre, la formula più importante di tutte da tenere a mente è la legge oraria:

Definizione 8: Legge oraria MRUA

Dato un corpo che si muove di moto rettilineo uniformemente accelerato, la sua posizione in funzione del tempo è data da

$$x = \frac{1}{2}at^2 + vt + x_0$$

15

L'ultima formula che serve sapere è quella che collega la velocità all'accelerazione:

Definizione 9: Rapporto tra velocità e accelerazione

Dato un corpo con accelerazione costante a e velocità iniziale v_0 , la sua velocità dopo t secondi è data da:

$$v = +at + v_0$$