CS&IT ENGINERING

Theory of Computation

DFA/NFA

Discussion Notes

#Q. Design a deterministic finite automata of set of all binary strings over $\Sigma = \{0,1\}$, where every binary string starting with 00100. How many minimum numbers of states required for above FA?

[NAT]

#Q. How many states are required to design a minimal DFA for set of all binary strings over $\Sigma = \{0, 1\}$ where every binary string containing (0110) as a substring?

#Q. Which of the following is correct design of a minimal DFA for set of all strings over $\Sigma = \{a, b\}$ where every string does not start with bb?

[MSQ]

#Q. Which of the following statement is/are correct?

- DFA is possible for every regular language $\longrightarrow TRUE$
- DFA is also possible for some non-regular languages. _> { anbo} -> false
- DFA is possible for both finite language and regular infinite language. + xue
- There exist only 1 unique DFA for every regular language.

[NAT]

#Q. How many states required to design a minimal DFA for $L = \{X \text{ ba } | X \in \{a, b\}^*\}$?

(a+b)*ba -> (3)

ending with is longth ->(2+1) States.

[NAT]

#Q. Number of final states required to design a minimal DFA for $L = \{(\in +b+a)^2 \mid \Sigma = \{a,b\} \}$ is / are ____.

$$(a+b+\epsilon)$$
 $(a+b+\epsilon) = \{\epsilon_1a, b, aa, ab, ba, bb\}$

#Q. Let L be the set of all binary strings whose last three symbols are the same. The number of states in the minimum state DFA accepting L is ___.

#Q. Consider a language L over $\Sigma = \{a\}$, L= $\{w \mid n_a(w) \text{ multiple of 2 but not multiple of 4}\}$.

How many states are required to design a minimum state DFA for above language L?

#Q. The following finite state machine accept all those strings in which the number of a's and b's are respectively

A Divisible by 2 and even.

В

Equal to 2 and odd.

Equal to 3 and even.

D

Equal to 2 and even.

#Q. Identify the language accepted by the following deterministic finite automata over the input alphabet $\Sigma = \{a, b\}$.

- $\stackrel{\triangle}{\nearrow}$ All strings of a's and b's. $\stackrel{\times}{\nearrow}$
- All strings which are ending with a.
- All strings which do not end with b.
- All strings which contain 'a' as the substring.

#Q. Consider the following DFA's.

Which of the following DFA's are equivalent?

None of these

#Q. Consider following two statements:

 S_1 : If every state is final state in DFA, then L(DFA) = Σ^* \longrightarrow Complete Language.

 χS_2 : If every state is non-final state in DFA, then L(DFA) = $\{\epsilon\}$ \rightarrow $\{\epsilon\}$

A S_1 only.

- В
- S₂ only.

Both S_1 and S_2 are correct.

D

Both are incorrect.

#Q. For $L = \{(a + b)^2\}$, how many states are required in minimal DFA?

(a+b)(a+b) ->4.

A

B 3

C 4

D some.

THANK - YOU