Genome project tables in the genomes package

Chris Stubben

September 4, 2014

The genomes package collects genome project metadata from NCBI using E-utility scripts (esearch, esummary, efetch and elink) or the NCBI genomes FTP. The packages also includes tools to summarize, compare and plot the data in the R programming environment. Genome tables are a defined class (genomes) and each table is a data frame where rows are genome projects and columns are the fields describing the associated metadata. A number of methods are available that operate on genome tables including print, summary, plot and update.

Genome tables from the Genomes FTP at NCBI include prokaryotic (proks), eukaryotic (euks) and virus genomes (virus). The print methods displays the first few rows and columns of the table (either select less than seven rows or convert the object to a data.frame to print all columns). The summary function displays the download date, a count of projects by status, and a list of recent submissions. The plot method displays a cumulative plot of genomes by release date.

R> data(proks)
R> proks

A genomes data.frame with 27570 rows and 25 columns

	pid	name	status
1	33011	Abiotrophia defectiva ATCC 49176	Scaffold
2	174970	Acaricomes phytoseiuli DSM 14247	Contig
3	12997	Acaryochloris marina MBIC11017	Gapless Chromosome
4	16707	Acaryochloris sp. CCMEE 5410	Contig
5	45843	Acetivibrio cellulolyticus CD2	Scaffold
27570	182445	${\tt Zymophilus\ raffinosivorans\ DSM\ 20765}$	Scaffold
	relea	ased	
1	2009-03	3-17	
2	2013-04	1-20	
3	2007-10)-16	
4	2011-06	5-03	
5	2010-08	3-11	

```
27570 2013-04-23 ...
```

R> summary(proks)

\$`Total genomes`

[1] 27570 genome projects on Sep 04, 2014

\$`By status`

	Total
Contig	13074
Scaffold	10718
Gapless Chromosome	3053
Chromosome	373
Chromosome with gaps	343
Complete	9

\$`Recent submissions`

	released	name	status
1	2014-09-02	Altuibacter lentus	Scaffold
2	2014-09-02	Bacillus cereus ATCC 4342	Scaffold
3	2014-09-02	Bacillus licheniformis	Scaffold
4	2014-09-02	Bacillus megaterium	Scaffold
5	2014-09-02	Paenibacillus macerans	Scaffold

```
R> plot(proks, log='y', las=1)
R>
```

Most importantly, the update method downloads the latest version of the table from NCBI and displays a message listing the number of project IDs added and removed (not run).

R> update(proks)

A number of additional functions assist in selecting, sorting and grouping genomes. The species and genus functions can be used to extract the species or genus from a scientific name. The month and year functions can be used to extract the month or year from the release date. The table2 function formats and sorts a contingency table by counts.

```
R> spp<-species(proks$name)
R> table2(spp)
```

	Total
Staphylococcus aureus	4178
Escherichia coli	2292
Mycobacterium tuberculosis	1765
Salmonella enterica	907
Acinetobacter baumannii	816
Helicobacter pylori	432
Klebsiella pneumoniae	386
Enterococcus faecalis	352
Streptococcus agalactiae	308
Streptococcus pneumoniae	297

Because subsets of tables are often needed, the binary operator like allows pattern matching using wildcards. The plotby function can then be used to plot the release dates by status using labeled points, in this case to identify complete and draft sequences of Yersinia pestis released before 2012 (Figure 1).

```
R> ## Yersinia pestis
R> yp<-subset(proks, name %like% 'Yersinia pestis*' & year(released)<2012 )
R> plotby(yp, labels=TRUE, cex=.5, lbty='n', curdate=FALSE)
R>
```


Figure 1: Cumulative plot of Yersinia pestis genomes released before 2012.