1 Уравнения от първи ред, нерешени относно производната. Уравнения на Клеро.

В предишните лекции разглеждахме уравнения от първи ред, които са решени относно производната. Не винаги, обаче е възможно диференциалното уравнение

$$F(x, y(x), y'(x)) = 0 (1)$$

да бъде решено относно производната y'. Ето защо уравненията нерешени относно производната ще бъдат обект на специално разглеждане в тази лекция.

Нека F(x,y,z) е функция дефинирана в цилиндричната област $Q:=D\times(c,d)\subseteq\mathbb{R}^3$, а D е двумерна област. Ще предполагаме, че $F,\,F'_y,\,F'_z$ съществуват и са непрекъснати в Q.

Дефиниция 1. Казваме, че точката $(x_0, y_0) \in D$ е обикновена точка за уравнението (1), ако уравнението $F(x_0, y_0, z) = 0$ има краен брой различни реални решения $z_1 < z_2 < \ldots < z_m$ и $F'_z(x_0, y_0, z_j) \neq 0$ за $j = 1, 2, \ldots m$.

Дефиниция 2. Казваме, че точката $(x_0, y_0) \in D$ е особена точка за уравнението (1), ако уравнението $F(x_0, y_0, z) = 0$ има поне едно реално решение z = b, за което $F'_z(x_0, y_0, b) = 0$.

Тази класификация не е пълна. Може да има точки в D, които не са особени и не са обикновени. Примерно точките $(x_0, y_0) \in D$, за които уравнението $F(x_0, y_0, z) = 0$ няма реални решения.

С помощта на теоримата за неявните функции може да бъде доказана следната

Теорема 1.1 Нека точката $(x_0, y_0) \in D$ е обикновена точка за уравнението (1). Тогава съществува околност U на (x_0, y_0) , в която са дефинирани такива функции $f_j(x, y), \frac{\partial f_j}{\partial y} \in C(U), j = 1, 2, \dots m$, че всяко решение на задачата на Коши

$$3K: F(x, y, y') = 0, y(x_0) = y_0$$

е решение на някоя от задачите на Коши

$$3K_i: y' = f_i(x, y), y(x_0) = y_0, j = 1, 2, \dots m.$$

Обратно: Всяко едно от решенията на задачита на Коши $3K_j$, j = 1, 2, ... m е решение на задачата на Коши 3K.

Забележка 1.2 За решението $y_j(x)$ на $3K_j$ имаме $y_j(x_0) = f_j(x_0, y_0) = z_j$, $j = 1, 2, \ldots, m$. Следователно през обикновена точка за уравнението (1) минават т на брой интегрални криви на уравнението (1), които са различни, защото имат различни ъглови коефициенти.

Особените точки удовлетворяват системата

$$F(x, y, z) = 0,$$

 $F'_z(x, y, z) = 0.$

Геометричното място на точки, удовлетворяващи тази система се нарича дискриминатнта крива. Особените точки лежат върху дискриминатнтната крива. Решения, които се състоят от особени точки се наричат особени решения.

Дефиниция 3. Казваме, че гладката неизродена крива L е обвивка на фамилията L_c , ако във всяка точка на L до нея се допира точно една крива от фамилията L_c .

Нека разгледаме уравнението (1) и знаем, че то притежава еднопарметрична фамилия от решения $\Phi(x,y,c)=0$. Нека освен това тази фамилия притежава обвивка L. Може да се докаже, че тогава тази обвивка L е графика на особено решение.

Пример 1.3 Да разгледаме уравнението

$$y^2(y')^2 + y^2 - 1 = 0.$$

 $To\ e\ om\ вида\ (1)\ c\ функция$

$$F(x, y, z) = y^2 z^2 + y^2 - 1.$$

Да фиксираме точка $(x_0,y_0) \in \mathbb{R}^2$ и да разгледаме уравнението

$$F(x_0, y_0, z) = y_0^2 z^2 + y_0^2 - 1 = 0.$$
(2)

- **1.)** Ако $y_0 = 0$, то уравнението (2) няма решения, което означава, че точките $(x_0, 0)$ са нито обикновени, нито особени.
- 2.) $A\kappa o \ y_0 \neq 0$, то уравнението (2) може да бъде записано във вида

$$z^2 = \frac{1 - y_0^2}{y_0^2}.$$

- **2.1.)** Ако $|y_0| = 1$, то уравнението (2) има двоен корен $z_1 = z_2 = 0$. Виждаме, че при z = 0 се анулира и $F'_z(x_0, y_0, z) = 2y_0^2z$. Следователно особените точки имат вида $(x_0, \pm 1)$. Лесно се проверява, че y = -1 и y = 1 са решения на даденото уравнение, т.е. те са особени решения.
- **2.2.)** Ако $|y_0| < 1, y_0 \neq 0,$ уравнението (2) има два различни реални корена $z_{1,2} = \pm \sqrt{\frac{1-y_0^2}{y_0^2}}.$ Тогава имаме

$$F'_z(x_0, y_0, z_{1,2}) = \mp 2y_0^2 \sqrt{\frac{1 - y_0^2}{y_0^2}} \neq 0.$$

Следователно тези точки са обикновени.

3.) Останалите точки в равнината са нито особени, нито обикновени.

B околност на обикновено точка $y \neq 0$ и решенията, които минават през такава точка са решения на уравненията

$$y' = \pm \frac{\sqrt{1 - y^2}}{y}.$$

Това са уравнения с разделящи се променливи, които се интегрират лесно

$$\int \frac{y \, dy}{\sqrt{1 - y^2}} = \pm \int \, dx$$

$$-\sqrt{1-y^2} = \pm x + c.$$

Следователно интегралните криви през обикновена точка са

$$(x+c_1)^2 + y^2 = 1.$$

Това \overleftarrow{c} ф окръжности с центрове точките $(-c_1,0)$ и радиус r=1.

Уравнение на Клеро

Уравнението

$$y = xy' + f(y'), \tag{3}$$

където $f \in C^2(a,b)$ и f'' < 0, се нарича уравнение на Клеро.

Нека да намерим особените точки на това уравнение. И така

$$F(x, y, z) = y - xz - f(z)$$

Търсим дискриминантната крива

$$\begin{cases} F(x, y, z) = 0\\ \frac{\partial F}{\partial z}(x, y, z) = 0 \end{cases}$$

или имаме системата

$$\begin{vmatrix} y - xz - f(z) = 0 \\ -x - f'(z) = 0 \end{vmatrix}$$

Искаме да елиминираме z.

От второто уравнение получаваме x+f'(z)=0 или x=-f'(z).

След като диференцираме по z имаме $\frac{dx}{dz} = -f''(z) > 0$, което означава, че функцията x(z) е строго монотонно растяща и следователно съществува обратната й функция z(x). Съществува също и производната на z(x), за която имаме

$$\frac{dz}{dx} = \frac{1}{\frac{dz}{dx}} = -\frac{1}{f''} > 0,$$

т.е. $z(x) \in C^1$. Следователно елиминацията на z е възможна. Тогава като изразим z от второто уравнение и заместим в първото ще получим дискриминантната крива $y = y(x) \in C^1$.

Или имаме:

$$L: \begin{vmatrix} y + zf'(z) - f(z) = 0 \\ -x - f'(z) = 0 \end{vmatrix}$$

От тук получаваме

$$L: \begin{vmatrix} y = -zf'(z) + f(z) \\ x = -f'(z) \end{vmatrix}$$

Това е всъщност уравнението на дискриминантната крива L, записано в параметричен вид, с параметър z.

След тези разглеждания можем да кажем, че дискриминантната крива за уравнението на Клеро съществува, гладка е и е неизродена.

Ше установим, че гладката неизродена крива L е интегрална крива на уравнението на Клеро. Наистина

$$dy = -f'(z)dz - zf''(z)dz + f'(z)dz = -zf''(z)dz$$

$$dx = -f''(z)dz$$

Тогава $y' = \frac{dy}{dx} = \frac{-zf''(z)dz}{-f''(z)dz} = z$.

След като заместим y'=z в уравнението на L

получаваме, че дискриминантната крива L е интегрална крива на уравнението на Клеро. Понеже точките на дискриминантната крива са особени по дефиниция, то следва, че L е особено решение на уравнението на Клеро.

Аналогично се разсъждава в случая, когато в уравнението на Клеро (3) f''>0.

Нека сега (x_0,y_0) е обикновена точка. Може да се докаже, че уравнението $y_0=x_0z+f(z)$ има най-много две решения $b_1< b_2$. От $F'_z(x_0,y_0,b_{1,2})\neq 0$ имаме, че $-x_0-f'(b_{1,2})\neq 0$.

Може да се покаже, че зя всяко решение y(x) на уравнението на Клеро съществува y''.

Нека сега да вземем уравнението y = xy' + f(y') с условието $y(x_0) = y_0$. Тъй като y'' съществува, можем да го диференцираме след което получаваме:

$$y' = y' + xy'' + f'(y')y''$$

или

$$y''(x + f'(y')) = 0$$

$$x + f'(y')|_{x=x_0} = x_0 + f'(y'(x_0)) = x_0 + f'(b_k)$$

$$(f_k(x_0, y_0) = b_k), \ k = 1, 2.$$

Тъй като (x_0, y_0) е обикновена точка, трябва $x_0 + f'(b_k) \neq 0$. Ако е изпълнено това условие остава възможността $y'' \equiv 0$ в $\Delta \ni x_0$.

Така имаме $y = Cx + C_1$.

Заместваме в уравнението y = xy' + f(y') и получаваме

$$Cx + C_1 = xC + f(C)$$

или

$$C_1 = f(C)$$

Следователно решенията през обикновените точки се дават от формулата y = Cx + f(C).

Търсим обвивката на тази фамилия от прави:

$$G(x,y,C) \equiv y - Cx - f(C) = 0$$

$$\frac{\partial G}{\partial C}(x,y,C) = -x - f'(C) = 0$$

Следователно обвивката се задава параметрично с уравненията

$$\begin{vmatrix} y = Cx + f(C) \\ x = -f'(C) \end{vmatrix}$$

и C е параметър.

Вижда се, че обвивката и дискриминантната крива L съвпадат.

На фиг. 7 е дадено как се разпределя броя на решенията на уравнението на Клеро.

Вижда се, че броят на решенията през една точка в различните области се определя от това колко тангенти могат да се прекарат от тази точка към обвивката L.