Hak Cipta
Dilindungi Undang-undang

SOAL OLIMPIADE SAINS NASIONAL

Ronde : Analisis Data

Waktu: 240 menit

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

DIREKTORAT JENDERAL PENDIDIKAN MENENGAH
DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS
TAHUN 2014

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH

DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Nama	Provinsi	Tanggal Lahir
Kelas & Sekolah	Kabupaten/Kota	Tanda Tangan

1. Untuk soal berikut, gunakan busur derajat dan penggaris! Tabel di bawah ini menunjukkan parameter orbit 8 buah planet beserta planet kerdil Pluto yang mengitari Matahari dalam sistem Tatasurya kita pada epoch 23 Mei 2014. Dalam tabel tersebut, jarak dinyatakan dalam sa (satuan astronomi). Anggaplah inklinasi bidang orbit semua benda tersebut terhadap bidang ekliptika=0°.

Objek langit	Setengah sumbu panjang, a [sa]	Setengah sumbu pendek, b [sa]	Eksentrisitas (e)	Jarak perihelion, q [sa]	Jarak aphelion, Q [sa]	Argumen perihelion, ω [°]
Merkurius	0,39				0,47	29,20
Venus	0,73		0,01			54,60
Bumi			0,02	0,98		287,60
Mars	1,52			1,38		286,60
Jupiter	5,21		0,05			273,80
Saturnus	9,60	9,58				339,30
Uranus		19,24	0,05			95,70
Neptunus	30,10		0,01			289,10
Pluto		38,21			49,33	113,20

Maka:

- a. Lengkapi bagian kosong data di atas!
- b. Buatlah plot orbit planet Neptunus dan Pluto di kertas yang sudah disediakan! Posisi Matahari di pusat koordinat, garis horisontal ke arah kanan menunjukkan arah titik Aries.
- c. Planet mana yang orbitnya paling mendekati lingkaran?
- d. Planet mana yang orbitnya paling lonjong?
- e. Dari hasil plot orbit Pluto dan Neptunus, menurutmu, bagaimanakah orbit kedua planet tersebut?

Hak Cipta
Dilindungi Undang-undang

2. Gambar berikut ini adalah plot jejak evolusi bintang di deret utama dan pasca-deret utama untuk komposisi kimia X=0.68 (fraksi gas Hidrogen), Y=0.30 (fraksi gas Helium) dan Z=0.02 (fraksi gas yang lebih berat dari Hidrogen dan Helium), dengan sumbu datar adalah temperatur efektif ($T_{\rm e}$, dalam Kelvin) dan sumbu tegak adalah luminositas dalam satuan luminositas matahari (L_{\odot}). Garis diagonal yang menghubungkan titik-titik berlabel 1, adalah garis deret utama umur nol (zero age main sequence) . Pada garis ini terdapat 14 titik yang mewakili massa bintang dari massa $0.8~M_{\odot}$ hingga $25~M_{\odot}$. Tahapan pada jejak evolusi bintang untuk tiap massa diberi angka 1 hingga 10. Agar dalam plot dapat dibaca dengan lebih baik, maka hanya untuk bintang bermassa 0.8; 1.0; 1.5; 2.5; 5.0; dan $12.0~M_{\odot}$ yang diberi label .

Pada tabel berikut ini, diberikan data massa bintang (yang sama dengan data pada gambar) dan rentang waktu yang diperlukan bintang untuk berevolusi sejak mencapai deret utama umur nol (label 1) hingga beberapa tahapan evolusi (label 2 hingga 10) dalam satuan juta tahun.

Initial Mass (M _☉)	1	2	3	4	5	6	7	8	9	10
25	0	6,33044	6,40774	6,41337	6,43767	6,51783	7,04971	7,0591		
15	0	11,4099	11,5842	11,5986	11,6118	11,6135	11,6991	12,7554		
12	0	15,7149	16,0176	16,0337	16,0555	16,1150	16,4230	16,7120	17,5847	17,6749
9	0	25,9376	26,3886	26,4198	26,4580	26,5019	27,6446	28,1330	28,9618	29,2294
7	0	42,4607	43,1880	43,2291	43,3388	43,4304	45,3175	46,1810	47,9727	48,3916
5	0	92,9357	94,4591	94,5735	94,9218	95,2108	99,3835	100,888	107,208	108,454
4	0	162,043	164,734	164,916	165,701	166,362	172,38	185,435	192,198	194,284
3	0	346,240	352,503	352,792	355,018	357,310	366,880	420,502	440,536	
2,5	0	574,337	584,916	586,165	589,786	595,476	607,356	710,235	757,056	
2	0	1094,08	1115,94	1117,74	1129,12	1148,10	1160,96	1379,94	1411,25	
1,5	0	2632,52	2690,39	2699,52	2756,73	2910,76				
1,25	0	4703,20	4910,11	4933,83	5114,83	5588,92				
1	0	7048,40	9844,57	11386,0	11635,8	12269,8				
0,8	0	18828,9	25027,9							

Dengan menggunakan informasi pada gambar dan tabel, jawablah beberapa pertanyaan berikut:

- a. Untuk bintang bermassa 3, 6 dan 10 M_{\odot} , buatlah sebuah tabel yang menjelaskan waktu tahapan evolusi bintang pada label 2 3, label 3 4, dan seterusnya, dalam persentase umur bintang di deret utama antara label 1 2.
- b. Hertzsprung gap adalah sebuah daerah atau celah di diagram HR antara deret utama dan cabang raksasa, yang karena cepat sekali proses pada tahap evolusi tersebut, sehingga sedikit sekali bintang yang diamati pada daerah itu. Untuk ketiga massa bintang di soal (a), hitunglah rentang waktu bintang berada pada Hertzsprung gap $(\Delta t_{\text{Hertzsprung_gap}})$ dibandingkan dengan umur bintang pada deret utama dan bagaimana kaitan $\Delta t_{\text{Hertzsprung_gap}}$ terhadap massa bintang?
- c. Skala waktu dinamik (*dynamical time scale*) didefinisikan sebagai waktu yang diperlukan oleh sebuah tes partikel yang berada dipermukaan bintang, jatuh menuju pusat bintang akibat oleh gaya potensial gravitasi bintang tanpa adanya gaya tekanan dari dalam bintang. Definisi lain dari skala waktu dinamik adalah waktuyang diperlukan sebuah bintang untuk runtuh akibat gravitasi tanpa adanya tekanan dari dalam bintang yang menahan.
 - i. Dari definisi skala waktu dinamika, buktikan bahwa

$$t_{dinamik} \sim \frac{1}{\sqrt{G\rho}}$$

dimana G adalah konstanta gravitasi dan ρ adalah rapat massa bintang. Petunjuk: asumsikan bintang berbentuk bola dengan kerapatan seragam di seluruh bagiannya.

- ii. Untuk bintang dengan massa 3, 6, dan 10 M_{\odot} di deret utama, hitung skala waktu dinamik bintang dalam skala jutaan tahun. Bandingkan dengan waktu bintang berada di deret utama!
- d. Skala waktu Kelvin-Helmholz adalah kala hidup bintang jika bintang tersebut meradiasikan seluruh energi kinetik bintang dalam pancaran luminositasnya.
 - i. Buktikan

$$t_{Kelvin-Helmholz} = \frac{GM^2}{2RL},$$

dimana ${\it G}$ adalah konstanta gravitasi, ${\it M}$ adalah massa bintang, ${\it R}$ adalah radius bintang, dan ${\it L}$ adalah luminositas bintang.

ii. Untuk bintang dengan massa 3, 6, dan 10 M_{\odot} di deret utama, hitung skala waktu Kelvin-Helmholz bintang tersebut dalam skala jutaan tahun. Bandingkan dengan waktu bintang berada di deret utama!

Daftar Konstanta dan Data Astronomi

Nama konstanta	Simbol	Harga
Kecepatan cahaya	С	2,997925 x 10 ⁸ m s ⁻¹
Konstanta gravitasi	G	6,67 x 10 ⁻¹¹ N m ² kg ⁻²
Konstanta Planck	Н	6,6256 x 10 ⁻³⁴ J s
Konstanta Boltzmann	К	1,3805 x 10 ⁻²³ J K ⁻¹
Konstanta kerapatan radiasi	Α	7,5643 x 10 ⁻¹⁶ J m ⁻³ K ⁻⁴
Konstanta Stefan-Boltzmann	σ	5,6693 x 10 ⁻⁸ J s ⁻¹ m ⁻² K ⁻⁴
Muatan elektron	Ε	1,6021 x 10 ⁻¹⁹ C
Massa elektron	m _e	9,1091 x 10 ⁻³¹ kg
Massa proton	$m_{ m p}$	1,6725 x 10 ⁻²⁷ kg
Massa neutron	m_{n}	1,6748 x 10 ⁻²⁷ kg
Massa atom ₁ H ¹	m _H	1,6734 x 10 ⁻²⁷ kg
Massa atom ₂ He ⁴	m_{He}	6,6459 x 10 ⁻²⁷ kg
Konstanta gas	R	8,3143 J K ⁻¹ mol ⁻¹

Nama besaran	Notasi	Harga
Satuan astronomi (sa)	sa, au	1,49597870 x 10 ¹¹ m
Parsek	рс	3,0857 x 10 ¹⁶ m
Tahun cahaya	ly	0,9461 x 10 ¹⁶ m
Joule		10 ⁷ erg
Tahun sideris		365,2564 hari
Tahun tropik		365,2422 hari
Tahun Gregorian		365,2425 hari
Tahun Julian		365,2500 hari
Bulan sinodis (synodic month)		29,5306 hari
Bulan sideris (sidereal month)		27,3217 hari
Hari Matahari rerata (mean solar day)		24 ^j 3 ^m 56 ^d ,56
Hari sideris rerata (mean sidereal day)		23 ^j 56 ^m 4 ^d ,09
Massa Matahari	M⊙	1,989 x 10 ³⁰ kg
Jejari Matahari	R⊙	6,96 x 10 ⁸ m
Temperatur efektif Matahari	$T_{ m eff,\odot}$	5.785 K
Luminositas Matahari	L⊙	3,9 x 10 ²⁶ J s ⁻¹
Magnitudo semu visual Matahari	V	-26,78
Indeks warna Matahari	B - V	0,62
	U - B	0,10
Magnitudo mutlak visual Matahari	M∨	4,79

Hak Cipta
Dilindungi Undang-undang

Nama besaran	Notasi	Harga
Magnitudo mutlak bolometrik Matahari	M_{bol}	4,72
Massa Bulan	$M_{\mathfrak{D}}$	7,35 x 10 ²² kg
Jejari Bulan	$R_{_{\mathfrak{D}}}$	1738 km
Jarak rerata Bumi–Bulan		384399 km
Konstanta Hubble	H_0	69,3 km/s/Mpc

Objek	Massa (kg)	Jejari (km)	Periode Rotasi	Periode Sideris (hari)	Periode Sinodis (hari)
Merkurius	3,30 x 10 ²³	2439	58,6 hari	87,97	115,9
Venus	4,87 x 10 ²⁴	6052	243,0 hari	244,70	583,9
Bumi	5,98 x 10 ²⁴	6378	23 ^j 56 ^m 4 ^d ,1	365,25	_
Mars	6,42 x 10 ²³	3397	24 ^j 37 ^m 22 ^d ,7	687,02	779,9
Jupiter	1,90 x 10 ²⁷	71398	9 ^j 55 ^m 30 ^d	4333	398,9
Saturnus	5,69 x 10 ²⁶	60000	10 ^j 30 ^m	10743	378,1
Uranus	8,70 x 10 ²⁵	26320	17 ^j 14 ^m	30700	369,7
Neptunus	1,03 x 10 ²⁶	24300	18 ^j	60280	367,5