THE REGISTRATION CODE - NOTES

1. The overall code

We refer to the fine Main.m

1.1. Parameters to be chosen.

- startmode: is set to 'zero'. If set to 'multiscale' the initial guess for the computation is loaded from a file saved from a previous run of the code on a lower resolution version of the same image. NOT RELEVANT
- j: Image level
- nrefine
- cost_function: decides which cost function to use. Admissible values are 'LS' (least squares) and 'WNRMSE'
- Kmi, Nsample: parameters only relevant to the MI cost functional. NOT RELEVANT
- maxit: maximum number of iteration for the optimization algorithm
- noise_type: type of noise added to the template. NOT AVAILABLE IN OCTAVE
- nome_immagine: drives the name of image to be loaded. It will not be relevant when we load a different image
- D: selection of the average interpolating basis for the image model. DO NOT MODIFY
- nw, j0, jwi: selection of the interpolating basis for the transformation.

2. The image model

The image "lives" on a grid griglia (which is basically the grid of the centers of the pixels), and h is the size of the pixel. There are 3 different ways of interpolating and differentiating the image.

- 'cubic': the image is interpolated with a centered bi-cubic interpolation
- 'AI': the image is described by average interpolating basis functions
- 'BSpline', 'Spline': NOT AVAILABLE IN OCTAVE

Observe that for practical reasons, the image is reordered as a vector by the function matrix2vector. The function vector2matrix performs the inverse operation.

3. The transformation

The transformation is based on Donoho's interpolating wavelets. The transformation space is selected by choosing the following parameters:

- nw: this parameter identifies the order of the interpolating function. For nw= 1 the space coincides with the space of piecewise bilinear functions on a structured tensor type mesh.
- j0, jwi: the mesh size for the function space describing the transformation is 2^{-jwi} . The transformation space allows for a hierarchical structure with coarse level j0 and fine level jwi

Date: July 20, 2018.

4. The cost functional

5. Optimization