Weiche Kurven in der Computergrafik

Alexander Heinrich

29.08.17

Zeichnen in Konsole

Darstellung eines Dreiecks

```
Float[] triangle =
[
-0.5, 0.5, 0.0,
0.8, 0.0, 0.0,
0.0, -0.7, 0.0,
]
```


Generierung eines Zylinders

Moderne Rendering Pipeline

Perspektive

Projektion nach homogene Clip-Koordinaten

Projektionsmatrix

$$\begin{pmatrix} \frac{Z n ear}{w i d t h / 2} & 0 & 0 & 0 \\ 0 & \frac{Z n ear}{h e i g h t / 2} & 0 & 0 \\ 0 & 0 & -\frac{Z f ar + Z n ear}{Z f ar - Z n ear} & \frac{2 Z f ar Z n ear}{Z f ar - Z n ear} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Effekt der View-Matrix

Umgekehrte Rendering Pipeline

Kollision von Lichtstrahl mit Kugel

Verschiebung der Kugel

Beleuchtung

Multiplikation von Farben

Beispiel für grünes Objekt mit weißem Licht:

$$[0.5, 0.75, 0.0]$$
 \times $[1.0, 1.0, 1.0]$ $=$ $[0.5, 0.75, 0.0]$

Beispiel für grünes Objekt mit rötlichem Licht:

$$[0.5, 0.75, 0.0] \times [1.0, 0.7, 0.7] = [0.5, 0.525, 0.0]$$

Phong Shading

Diffuses Licht

Spekularität

x^3 visualisiert

x^3 visualisiert

Rotation um Mittelpunkt

Kurven mit Beleuchtung durch Normalen

Bézier-Kurve

Kubische Spline

Spline Kurven

