

EFFICIENT PARSING WITH LINEAR CONTEXT-FREE REWRITING SYSTEMS

Andreas.van.Cranenburgh@huygens.knaw.nl

PROBLEM

- Linear Context-Free Rewriting Systems (LCFRs) subsume a variety of mildly context-sensitive grammar formalisms.
- String rewriting LCFRss can be used as a discontinuous treebank grammar.
- However, parsing LCFRs is too complex when |w|>30 (Kallmeyer and Maier, 2010; van Cranenburgh et al., 2011).

DISCONTINUITY

A discontinously annotated tree from the German Negra corpus:

 $\begin{array}{l} \mathsf{ROOT}(ab) \to \mathsf{S}(a) \; \$.(b) \\ \mathsf{S}(abcd) \to \mathsf{VAFIN}(b) \; \mathsf{NN}(c) \; \mathsf{VP}_2(a,d) \\ \mathsf{VP}_2(a,bc) \to \mathsf{PROAV}(a) \; \mathsf{NN}(b) \; \mathsf{VVPP}(c) \\ \mathsf{PROAV}(\mathsf{Danach}) \to \epsilon \\ \mathsf{VAFIN}(\mathsf{habe}) \to \epsilon \end{array}$

fanout (φ): number of components that a non-terminal rewrites (i.e., amount of discontinuity)

NN(Kohlenstaub) $\rightarrow \epsilon$ $\$.(.) \rightarrow \epsilon$

parsing complexity (p): sum of fanouts in LHs and RHs of a rule (i.e., number of comparisons needed to apply a rule)

Contributions

- Optimal binarizations (Gildea, 2010)
 do not eliminate the problem.
- Instead we solve the problem with a PCFG-approximation in a coarse-to-fine approach.
- Punctatuation re-attachement without spurious discontinuities. Proper evaluation ignores punctuation & ROOT node.

BINARIZATION

Four binarization strategies. C is the head node. Underneath each tree is the maximum parsing complexity and fan-out among its productions.

Method

PCFG-approximation of LCFRs grammar (after Barthélemy et al., 2001):

1. Original (discontinuous) tree

2. Binarize discontinuous tree, optionally with Markovization

4. A binary normal form is applied; all productions are either unary, binary, or lexical.

B*0 SC*0 B*1

RESULTS

	Markovization	φ , p	binarization	parsing
right branching	$V=1$, $h=\infty$	4,8	2 s	246 s
optimal	$v=1, h=\infty$	4,8	46 s	194 s
head-driven	v=1, h=2	4,9	3 s	2860 s
optimal head-driven	v=1 h=2	48	29 s	717 s

Table: The effect of binarization strategies on parsing efficiency, with sentences from the development section of NEGRA-25. Longer sentences infeasible.

	words	F_1	EX	45	
PLCFRs, dev set	≤ 25	72.37	36.58	40 –	PLCFRS ————————————————————————————————————
Split-PCFG, dev set	≤ 25	70.74	33.80	35 –	
Split-pcfg, dev set	≤ 40	66.81	27.59	30 - 30 -	
CFG-CTF, PLCFRS, dev set	≤ 40	67.26	27.90	9 25 - 1 20 -	
CFG-CTF, Disco-dop, dev set	≤ 40	74.27	34.26	20 – O 15 –	
CFG-CTF, Disco-dop, test set	≤ 40	72.33	33.16	10 -	
CFG-CTF, Disco-dop, dev set	∞	73.32	33.40	5 –	
CFG-CTF, Disco-dop, test set	∞	71.08	32.10	0 7 7 7	5 10 15 20 25
					Sentence length

Table: Results on NEGRA-25 and NEGRA-40 with the CFG-CTF method.

Disco-DOP: A discontinuous tree-substitution grammar (van Cranenburgh et al., 2011).

REFERENCES

François Barthélemy, Pierre Boullier, Philippe Deschamp, and Éric de la Clergerie. 2001. Guided parsing of range concatenation languages. In *Proc. of ACL*, pages 42–

Daniel Gildea. 2010. Optimal parsing strategies for linear context-free rewriting systems. In *Proceedings of NAACL HLT 2010.*, pages 769–776.

Laura Kallmeyer and Wolfgang Maier. 2010. Data-driven parsing with probabilistic linear context-free rewriting systems. In *Proceedings of the 23rd International Conference on Computational Linguistics*, pages 537–545.

Andreas van Cranenburgh, Remko Scha, and Federico Sangati. 2011. Discontinuous data-oriented parsing: A mildly context-sensitive all-fragments grammar. In *Proceedings of SPMRL*, pages 34–44.

Painting: Christine Bittremieux (2007), Untitled. 70×100 cm.

Detail. Oil on canvas. www.bittremieux.nl