
USED-PHONE PRICE PREDICTION

What you need to know about the price of the used phones!

PROBLEM STATEMENT

In the competitive mobile phone market companies want to understand sales data of mobile phones and the factors which drive the prices.

Analyze the data for used phones and build various regression models to predict the price of used phones and identify factors that significantly influence them

Points to discuss

Data description and summary

Exploratory data analysis

Machine learning algorithms

Conclusion

Data description

Battery_power

Bluetooth

Clock_speed

Dual_sim

Fc - Front Camera

Pc - Primary Camera mega pixels

Four_g - Has 4G or not

Int_memory - Internal Memory

M_dep - Mobile Depth

Mobile_wt - Weight of mobile

N_cores - Number of cores of processor

Px_height - Pixel Resolution Height

Data description

Px_height - Pixel Resolution Height

Ram - Random Access Memory

Sc_h - Screen Height of mobile

Sc_w - Screen Width of mobile

Talk_time

Touch_screen - Has touch screen or not

Wifi - Has wifi or not

Price_range

Three_g - Has 3G or not

M_dep - Mobile Depth

ML ALGORITHMS

Logistic Regression

stimate a probability of falling into a certain level of the categorical response given a set of predictors

Decision Tree

typically starts with a single node, which branches into possible outcomes

Random Forest classification

ensemble learning method for classification, regression and other tasks

Logistic Regression

Train_accuracy: 92%

Test_accuracy: 90%

```
from sklearn.metrics import classification_report
print('Classification report for Logistic Regression (Test set)= ')
print(classification_report(y_pred_test, y_test))
Classification report for Logistic Regression (Test set)=
                          recall f1-score
              precision
                                              support
                   0.97
                             0.95
                                       0.96
                                                  107
                   0.86
                             0.87
                                       0.86
                                                   92
                   0.82
                             0.82
                                       0.82
                   0.92
                                       0.92
                             0.93
                                                  111
                                       0.90
                                                  400
    accuracy
                                       0.89
                                                  400
                   0.89
                             0.89
   macro avg
weighted avg
                   0.90
                             0.90
                                       0.90
                                                  400
```


Decision Tree

Test_accuracy: 84%

```
# Evaluation metrics for test
print('Classification report for Decision Tree (Test set)= ')
print(classification_report(y_pred_test, y_test))
Classification report for Decision Tree (Test set)=
           precision recall f1-score support
                0.87 0.98
                                 0.92
                                           93
               0.81 0.73 0.77
                                          101
               0.78 0.67 0.72
                                          108
               0.81 0.93 0.87
                                         98
   accuracy
                                 0.82
                                          400
                0.82
                        0.83
                                 0.82
                                          400
  macro avg
weighted avg
                0.82
                        0.82
                                 0.82
                                          400
```

Decision Tree with Hyper parameter Tuning

Test_accuracy: 82%

```
# Prediction
y pred test = grid.predict(x test)
y_pres_train = grid.predict(X_train)
# Evaluation metrics for test
print('Classification Report for Decision Tree (Test set)= ')
print(classification_report(y_test, y_pred_test))
Classification Report for Decision Tree (Test set)=
                           recall f1-score
              precision
                                               support
           0
                   0.96
                             0.90
                                        0.93
                                                   105
                             0.85
                                        0.79
                   0.75
                                                    91
           2
                             0.70
                   0.75
                                        0.72
                                                    92
                   0.89
                             0.90
                                        0.89
                                                   112
                                        0.84
                                                   400
    accuracy
                                                   400
                   0.84
                             0.83
                                        0.83
weighted avg
                   0.84
                             0.84
                                        0.84
                                                   400
```


Random Forest Classifier with Hyper parameter Tuning

Test_accuracy: 86.5%

Conclusion

 From EDA we can see that there are used mobile phones in 3 price ranges. The number of elements is almost similar.
 Half the devices have Bluetooth, and half don't, there is a gradual increase in battery as the price range increases
 Ram has continuous increase with price range while moving from Low cost to Very high cos
 costly phones are lighter
RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
 Form all the above experiments we can conclude that logistic regression with using hyperparameters we got the best results
 The accuracy and performance of the model is evaluated by using confusion matrix

Thank You

SKANDHAN M
SREE ANUDEEP K
SULONI PRAVEEN
SURYA MANOJ REDDY P
SWATHI MEGHANA K R

- 4VV19CS157
- 4VV19CS160
- 4VV19CS161
- 4VV19CS163
- 4VV19CS165