MED5018: Introduction to biomedical Python programming

Final Project

Final project

Requirements:

- Choose a topic (from suggested topics or think of your own), analyze the data, visualize your results and describe your findings. **Use packages learned** from this course in your analysis
- Include >= 3 different types of plots
- Upload your code (.py or .ipyn), results and other related files onto **Github**. Describe your project in the README file
- Report:
 - Due Week 18 (2025.6.20)
 - Includes Introduction, Methods (includes link to your github page), Figures, Results and Discussion
 - 3-4 pages in Chinese/English

Final project

Evaluation:

Report	60
Formatting	10
Analysis & visualization	30
Results & discussion	20
Code	40
github page	10
code modularization	20
code readibility	10

Grading

• Attendance: 20%

Assignments: 40%

• Final report: 40%

Topic 1: epidemiology

- Datasets:
- https://www.kaggle.com/datasets/belayethossainds/cancer-and-deaths-dataset-19902019-globally/data
- https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023/data
- https://www.kaggle.com/datasets/alphiree/cardiovascular-diseases-risk-prediction-dataset
- https://www.kaggle.com/datasets/iamsouravbanerjee/cause-of-deaths-around-the-world
- https://www.kaggle.com/datasets/georgesaavedra/covid19-dataset

• Dataset: Depmap

https://depmap.org/portal/

Explore the Cancer Dependency Map

Welcome to the DepMap Portal!

The goal of the Dependency Map (DepMap) portal is to empower the research community to make discoveries related to cancer vulnerabilities by providing open access to key cancer dependencies analytical and visualization tools.

Genetic screens

Genome-wide loss-of-function screens (Achilles)

Cellular models

Molecular characterization of exisiting and new cell lines (CCLE/CCLF)

Drug sensitivity

Single and pooled cell line compound screens (PRISM, CTRP)

Predictive modeling

Computational models of vulnerabilities (CDS)

CANCER DEPENDENCY MAP

Therapeutic leads

Patient stratification

https://depmap.org/portal/download/all/

Dataset: Depmap

sample_info.csv

Metadata for all of DepMap's cancer models/cell lines.

- •DepMap_ID: Static primary key assigned by DepMap to each cell line
- •cell_line_name: Original cell line name, including punctuation
- •sample_collection_site: Tissue collection site
- •primary_or_metastasis: Indicates whether tissue sample is
- from primary or metastatic site
- •primary_disease: General cancer lineage category

DepMap_ID cell_line_na	stripped_cel	CCLE_Name alias	COSMICID	sex	source	RRID	WTSI_Maste	sample_col
ACH-00001(SLR 21	SLR21	SLR21_KIDNEY			Academic la	CVCL_V607		kidney
ACH-000032 MHH-CALL	MHHCALL3	MHHCALL3_HAEMATOP	OIETIC_AND.	Female	DSMZ	CVCL_0089		bone_marre
ACH-00003; NCI-H1819	NCIH1819	NCIH1819_LUNG		Female	Academic la	CVCL_1497		lymph_nod
ACH-00004; Hs 895.T	HS895T	HS895T_FIBROBLAST		Female	ATCC	CVCL_0993		fibroblast
ACH-000049 HEK TE	HEKTE	HEKTE_KIDNEY			Academic la	CVCL_WS59		kidney
ACH-00005: TE 617.T	TE617T	TE617T_SOFT_TISSUE		Female	ATCC	CVCL_1755		soft_tissue
ACH-000064 SALE	SALE	SALE_LUNG		Male	Academic la	CVCL_WS60		lung
ACH-000068 REC-1	REC1	REC1_HAEMATOPOIETIC	_AND_LYMP	Male	DSMZ	CVCL_1884		lymph_nod
ACH-000071	HS706T	HS706T_BONE		Female	ATCC	CVCL_0863		fibroblast
ACH-00007€ NCO2	NCO2	NCO2_HAEMATOPOIETIO	C_AND_LYM	Female	HSRRB	CVCL_3043		haematopo
ACH-000077 MJ	MJ	MJ_HAEMATOPOIETIC_A	ND_LYMPHO	Male	ATCC	CVCL_1414		haematopo
ACH-000079 TE 125.T	TE125T	TE125T_FIBROBLAST		Female	ATCC	CVCL_1740		fibroblast
ACH-000084	MUTZ3	MUTZ3_HAE MUTZ3		Male	DSMZ	CVCL_1433		haematopo
ACH-00008! NCI-H684	NCIH684	NCIH684_LARGE_INTEST	INE	Male	KCLB	CVCL_9980		liver
ACH-000093 Panc 05.04	PANC0504	PANC0504_PANCREAS		Female	ATCC	CVCL_1637		pancreas
ACH-00011(NCC-StC-K	NCCSTCK14	NCCSTCK140_STOMACH		Female	RIKEN	CVCL_3055		stomach
ACH-000119 Hs 863.T	HS863T	HS863T_FIBROBLAST		Female	ATCC	CVCL_0959		fibroblast

•..

Dataset: Depmap

CCLE_expression.csv

Gene expression TPM values of the protein coding genes for DepMap cell lines. Values are inferred from RNA-seq data using the RSEM tool and are reported after log2 transformation, using a pseudocount of 1; log2(TPM+1).

Genes

Cell lines

TSPAN6 (71 TNMD (6410 DPM1 (8813 SCYL3 (5714 C1orf112 (55 FGR (2268) ACH-001113 4.33199178 ACH-001289 4.56681515 0.5849625 7.10653677 2.54349588 3.50462039 ACH-001538 5.08533967 ACH-000708 4.27202319 0.18903382 7.02292259 2.55581616 3.84197312 ACH-000327 3.33771109 0 5.92718536 1.94485845 2.67807191 0.01435529 3.08915913 ACH-000233 0.05658353 ACH-000461 4.0161397 0 6.53387478 2.22650853 3.02147973 0.02856915 0.08406426 ACH-000705 4.41142625 ACH-002023 5.26491169 ACH-000528 4.51222689 ACH-001655 3.592158 ACH-000167 0.04264434 0 6.71011763 2.35332329 3.98550043 5.85972113 ACH-000792 3.2794713 0 6.39025496 1.74846123 3.43562859 0.08406426 ACH-001098 5.90929309 ACH-00057(5.26491169 ACH-000351 3.97269265 ACH-000769 4.7131459 0 6.19377174 2.4409522 4.17632277 0 0.11103131 5

• Dataset: Depmap

CRISPR_gene_effect.csv

Gene Effect scores derived from CRISPR knockout screens published by Broad's Achilles and Sanger's SCORE projects.

Negative scores imply cell growth inhibition and/or death following gene knockout. Scores are normalized such that nonessential genes have a median score of 0 and independently identified common essentials have a median score of -1.

Gene KO

Cell lines

DepMap_ID	A1BG (1)	A1CF (29974	A2M (2)	A2ML1 (144	A3GALT2 (1	A4GALT (53	A4GNT (511
ACH-000001	-0.1348083	0.05976414	-0.0086653	-0.0035722	-0.1062113	-0.0082569	0.01871112
ACH-000004	0.08185267	-0.0564005	-0.1067377	-0.0144985	0.07820912	-0.1375616	0.16865681
ACH-000005	-0.094196	-0.0145984	0.10042603	0.16910279	0.03236276	-0.1480495	0.16893121
ACH-000007	-0.011544	-0.1231889	0.08069221	0.06104554	-0.0134537	-0.0169221	-0.0294744
ACH-000009	-0.0507823	-0.0374662	0.06888547	0.090375	0.01263396	-0.079339	-0.0178085
ACH-000011	0.09176169	-0.0246847	0.03825127	0.20230519	-0.0895683	-0.2382661	-0.0422404
ACH-000012	-0.1467414	0.02739757	0.17800132	0.23979694	0.08683216	-0.2281534	0.18666851
ACH-000013	-0.0592493	-0.0900571	0.03989619	0.1120302	-0.1006963	-0.0871284	-0.0291913
ACH-000014	-0.0347549	-0.0984152	0.05022526	0.04611864	-0.0390687	-0.1265427	-0.3360773
ACH-000015	-0.2037093	-0.0047761	-0.0662448	0.01511034	-0.0078323	-0.0217672	0.09482096
ACH-000017	0.02261886	-0.0446184	0.02289812	0.0156794	-0.2951142	-0.1182438	0.06740902
ACH-000018	-0.1408936	-0.0565507	-0.1755851	0.07845473	0.04436803	0.04486578	0.06807933
ACH-000019	0.01936719	-0.0090009	0.12312889	0.07834327	-0.0485334	0.06822092	-0.0300908
ACH-000021	-0.1282732	-0.0617642	-0.0235949	-0.030921	0.01273444	-0.1392151	-0.0311323
ACH-000022	-0.0616031	0.03907231	0.11447683	-0.0772903	-0.1159471	-0.035359	-0.0070858
ACH-000023	-0.0840977	-0.1266262	-0.0234172	-0.0602367	-0.071407	0.01246419	0.0518981
ACH-000024	-0.0416814	0.01019081	0.01113129	-0.0016377	0.08894099	-0.1256668	-0.0146221
ACH-000025	-0.1369808	-0.1449458	-0.0124462	0.11648105	0.01680668	-0.068883	-0.1323596
ACH-000028	-0.1892002	-0.0789077	0.10356003	0.12831619	-0.0773874	-0.0108697	-0.0928028
ACH-000029	-0.0290174	0.00135555	0.06048758	0.10720116	-0.1944451	-0.067306	-0.0322075

Dataset: Depmap

Drug_sensitivity.csv

Drug sensitivity; logfold change values relative to DMSO. The more negative the value, the more sensitive.

Drug

		RS-0481 (BF	oleuropein (isoleucine (E	gepefrine (B	cloranolol (E
Cell lines	ACH-00132	-0.442835	-0.143624	-0.075496	0.1906309	-0.011447
CCII III IC3	ACH-00131	-0.039683	0.2882696	-0.208114	0.045799	0.5106338
	ACH-00130	0.2723067	0.2741152	-0.209725	-0.149599	-0.126682
	ACH-00130	-0.163176	-0.174646	-0.307695	-0.117653	0.1360773
	ACH-001239	-0.433834	-0.134896	0.0503954	0.0247503	-0.000615
	ACH-001212	0.0817448	-0.486275	-0.118985	0.8314202	-0.51631
	ACH-00121:	0.3527695	0.4903075	-0.107439	-0.075238	0.3715598
	ACH-001210	0.3791271	-0.744636	0.6659031	-0.181121	0.3089592
	ACH-00120!	0.423955	-0.012615	-0.0538	-0.354739	-0.187207
	ACH-001200	0.5354427	0.0293117	0.181144	-0.186969	0.2006027
	ACH-001193	3	-0.159399			0.0335186
	ACH-001192	0.3582464	0.3445328	0.0361066	0.1978186	0.159737
	ACH-001190	-0.416401	0.6704201	-0.580173	0.2308938	-0.125217

Topic 3: Codon usage bias

Background:

 synonymous codons: Different codons that encode the same amino acid

U UUU Phe UCU UCC UUA UUCG Ser UAU Tyr UGU UGC Cys UAA Stop UGA Stop A Trp G

C CUU CCC CCA CCG Pro CAA GGC CAA GGC AAA AUG Met ACG AAA AUG Met ACG AGA GGC GAA GGG GGA GGG GG

Topic 3: Codon usage bias

Background:

- synonymous codons: Different codons that encode the same amino acid
- Codon usage bias: preferential or non-random use of synonymous codons
 - Different species have consistent and characteristic codon biases.
 - A critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding.

Topic 3: Codon usage bias

• Goal:

To determine codon usage bias of different species (human, mouse, yeast, Drosophila, C. elegans, Arabidopsis, ...); identify patterns (similarities vs. differences, ...)

Escherichia coli: (Genetic code: Standard)

Triplet	Amino acid	Fraction	Frequency/ Thousand	Number	Triplet	Amino acid	Fraction	Frequency/ Thousand	Number
TTT	F	0.58	22.1	80995	TCT	S	0.17	10.4	38027
TTC	F	0.42	16.0	58774	TCC	S	0.15	9.1	33430
TTA	L	0.14	14.3	52382	TCA	S	0.14	8.9	32715
TTG	L	0.13	13.0	47500	TCG	S	0.14	8.5	31146

Human: (Genetic code: Standard)

Triplet	Amino acid	Fraction	Frequency/ Thousand	Number	Triplet	Amino acid	Fraction	Frequency/ Thousand	Number
TTT	F	0.45	16.9	336562	TCT	S	0.18	14.6	291040
TTC	F	0.55	20.4	406571	TCC	S	0.22	17.4	346943
TTA	L	0.07	7.2	143715	TCA	S	0.15	11.7	233110
TTG	L	0.13	12.6	249879	TCG	S	0.06	4.5	89429

Topic 4: Ramachandran plot

• https://zmjo02e9v0.feishu.cn/wiki/VtXIw9oI3iaQAikjBuncMojsnig2from=from-copylink

Topic 5: Deep mutational scanning

• https://zmjo02e9v0.feishu.cn/wiki/VGQYwA80NiNcItkYVSUc11 WSnac?from=from_copylink