Baigtiniai kūnai

Priminimas: daugianarių veiksmai. Daugianarių dalyba Daugianarių dalikliai Neskaidūs daugianariai. Daugianarių dalikliai Daugianarių dalikliai Daugianarių dalikliai Daugianarių dalikliai Daugianarių šaknys.	3 4 5 6 7 8
Daugianarių šaknys	10
Kūnų plėtiniai Daugianarių žiedai Nauji kūnai Izomorfiški kūnai Izomorfiški kūnai Izomorfiški kūnai Izomorfiški kūnai Plėtiniai Kūnų plėtiniai	13 14 15 16
Generuojantys elementai1Elementų eilė2Generuojantis elementas2Generuojantis elementas2Generuojantis elementas2Sudėtingesnis pavyzdys2Primityvieji daugianariai2	21 22 23 24
Minimalieji daugianariai	26

Daugianarių šaknys	7
Daugianarių šaknys	8
Minimalieji daugianariai	9
Minimalieji daugianariai	0
Pavyzdys	1
(itas požiūris	2
Minimalieji daugianariai	3
<i>I</i> linimalusis daugianaris	4
Pavyzdys	5

Priminimas: daugianarių veiksmai

Čia ir toliau p – pirminis skaičius.

Teorema. Daugianarių aibės $\mathbb{F}_{p,n}[x], \mathbb{F}_p[x]$ yra tiesinės erdvės virš kūno \mathbb{F}_p .

Daugianarius galime ir dauginti: tiesiog naudokimės įprastinėmis sudėties, daugybos asociatyvumo, komutatyvumo ir distributyvumo savybėmis ir laipsnių daugybos taisyklėmis $x^n \cdot x^m = x^{n+m}$. Teisinga tokia laipsnių kitimo taisyklė:

$$deg(f \cdot g) = deg(f) + deg(g), \quad f, g \in \mathbb{F}_p[x].$$

2/35

Daugianarių dalyba

Teorema. Tegu $f,g \in \mathbb{F}_p[x]$ yra du daugianariai, $\deg(g) < \deg(f)$. Tada egzistuoja vienintelė daugianarių pora $q,r \in \mathbb{F}_p[x]$, kad

$$f(x) = q(x)g(x) + r(x), \quad 0 \le \deg(r) < \deg(g).$$

Kaip ir sveikųjų skaičių atveju, daugianarį q(x) vadinsime f dalybos iš g dalmeniu, o r – liekana.

Daugianarių dalikliai

Jeigu dalydami daugianarį f(x) iš g(x), gauname nulinę liekaną, t. y. r(x) = 0, tai sakome, kad f dalijasi iš g, arba -g yra f daliklis. Tada

$$f(x) = q(x)g(x).$$

Kiekvienas daugianaris dalijasi iš pats savęs ir iš nenulinių \mathbb{F}_p elementų – nulinio laipsnio daugianarių:

$$f(x) = \alpha q(x), \quad q(x) = \alpha^{-1} f(x), \quad \alpha \neq 0.$$

Tokius f(x) daliklius vadinsime trivialiaisiais.

4/35

Neskaidūs daugianariai

Teorema. Kiekvienam $n \ge 1$ yra n-ojo laipsnio daugianarių, neturinčių netrivialiųjų daliklių.

Tokie daugianariai daugeliu savybių (bet ne visomis) panašūs į pirminius skaičius.

Apibrėžimas. Daugianarį $f \in \mathbb{F}_p[x]$, neturintį netrivialiųjų daliklių vadinsime neskaidžiu.

Pavyzdžiui, visi pirmojo laipsnio daugianariai yra neskaidūs. Yra bet kokio laipsnio neskaidžių daugianarių.

Daugianarių dalikliai

Jeigu du daugianariai f_1, f_2 dalijasi iš to paties daugianario

$$d(x) = a_k x^k + \ldots + a_1 x + a_0, \ (a_k \neq 0)$$

t. y. $f_1(x) = g_1(x)d(x)$, $f_2(x) = g_2(x)d(x)$, tai jie dalijasi ir iš daugianario su vyriausiuoju koeficientu, lygiu 1.

$$f_1(x) = (a_k g_1(x))(a_k^{-1} d(x)),$$

$$f_2(x) = (a_k g_2(x))(a_k^{-1} d(x)),$$

daugianario $a_k^{-1}d(x)$ laipsnis lygus k, o vyriausiasis koeficientas lygus 1.

6/35

Daugianarių dalikliai

Apibrėžimas. Tegu $f_1, f_2 \in \mathbb{F}_p[x]$ yra du daugianariai. Jų didžiausiuoju bendruoju dalikliu vadiname didžiausiojo laipsnio daugianarį su vienetiniu vyriausiuoju koeficientu, iš kurio dalijasi ir f_1 , ir f_2 .

Bendrąjį didžiausiąjį daliklį žymėsime (f_1, f_2) . Bendrąjį didžiausią daliklį galima rasti Euklido algoritmu.

7/35

Daugianariai – funkcijos

Kiekvieną daugianarį

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n$$

galime interpretuoti kaip funkciją $f:\mathbb{F}_p\to\mathbb{F}_p,$ priskiriančią argumentams reikšmes taip:

$$\alpha \mapsto a_0 + a_1 \alpha + \ldots + a_n \alpha^n$$
.

Argumentui α priskiriamą reikšmę žymėsime $f(\alpha)$. Kad išvengtume dviprasmybių, daugianarius visada žymėdami f(x), o reikšmes $f(\alpha), f(\beta), \ldots$

Daugianarių šaknys

Jei $\alpha \in \mathbb{F}_p$, $f(x) \in \mathbb{F}_p[x]$ ir $f(\alpha) = 0$, tai elementą α vadinsime daugianario f(x) šaknimi. Nesudėtinga įsitikinti, kad tada f(x) dalijasi iš $x - \alpha$, t. y.

$$f(x) = (x - \alpha)g(x), \quad g(x) \in \mathbb{F}_p[x].$$

Jeigu

$$f(x) = (x - \alpha)^k h(x), \quad k \ge 1, \quad h(\alpha) \ne 0,$$

tai sakysime, kad šaknies α kartotinumas yra lygus k. Dar galima sakyti, kad toks daugianaris turi k vienodų (lygių α) šaknų.

9/35

Daugianarių šaknys

Svarbus teiginys apie daugianario šaknų skaičių.

Teorema. Daugianario $f \in \mathbb{F}_p[x]$ šaknų skaičius yra nedidesnis už jo laipsnį.

10/35

Kūnų plėtiniai

11/35

Daugianarių žiedai

Dalybos iš pirminio skaičiaus liekanų kūnai yra baigtiniai kūnai. Yra ir kitokių kūnų.

Pasirinkime kokį nors n-ojo laipsnio daugianarį

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n, \quad a_i \in \mathbb{F}_n.$$

Daugianarių aibėje $\mathbb{F}_{p,n}[x]$ apibrėžkime daugybos veiksmą:

jei
$$g,h\in\mathbb{F}_{p,n}[x], \text{ tai } g\times_f h = g\cdot h \text{ dalybos iš } f \text{ liekana.}$$

Teorema. Tegu f yra n-ojo laipsnio daugianaris. Daugianarių aibė $\mathbb{F}_{p,n}[x]$ su sudėties ir daugybos veiksmais $+, \times_f$ sudaro žiedą.

Nauji kūnai

Teorema. Jeigu $f \in \mathbb{F}_p[x]$ yra neskaidus n-ojo laipsnio daugianaris, tai $\mathbb{F}_{p,n}[x]$ su sudėties ir daugybos veiksmais $+, \times_f$ sudaro kūną.

Naujo kūno elementus užrašome daugianariais. Galima nagrinėti ir daugianarius su koeficientais iš to kūno.

Sukonstruoto kūno elementams žymėti naudosime reiškinius, gautus iš daugianarių, pakeitus simbolį x j α : jei $g \in \mathbb{F}_{n,n}$, tai

$$g(x) = a_0 + \ldots + a_k x^k \mapsto a_0 + \ldots + a_k \alpha^k \mapsto (a_0, a_1, \ldots, a_{n-1});$$

čia $a_l = 0$, kai l > k.

13 / 35

Izomorfiški kūnai

Sukonstruotame naudojant neskaidų n-osios eilės daugianarį su koeficientais iš \mathbb{F}_p kūne yra p^n elementų. Kūnas \mathbb{F}_p yra naujojo kūno dalis.

Yra ne vienas neskaidus n-ojo laipsnio daugianaris. Koks ryšys tarp kūnų, gaunamų naudojant skirtingus to paties laipsnio daugianarius?

14 / 35

Izomorfiški kūnai

Apibrėžimas. Tegu K_1 ir K_2 yra du kūnai, kurių sudėties ir daugybos operacijas žymėsime $+_1, \times_1$ ir $+_2, \times_2$. Kūnus vadinsime izomorfiškais, jeigu egzistuoja abipus vienareikšmė atitiktis $\lambda: K_1 \to K_2$, su visais $a,b \in K_1$ tenkinanti sąlygas

$$\lambda(a +_1 b) = \lambda(a) +_2 \lambda(b); \quad \lambda(a \times_1 b) = \lambda(a) \times_2 \lambda(b).$$

Izomorfiški kūnai

Teorema. Jeigu \mathbb{F} yra baigtinis kūnas, tai jo elementų skaičius yra pirminio skaičiaus laipsnis, t. y.

$$|\mathbb{F}| = p^n$$
, p yra pirminis skaičius, $n \ge 1$.

Visi tiek pat elementų turintys kūnai yra izomorfiški.

Nesvarbu, kokį neskaidų n-ojo laipsnio daugianarį pasirinksime, sukonstruotas kūnas iš esmės bus tas pats. Todėl jį žymėsime tiesiog \mathbb{F}_{p^n} , arba \mathbb{F}_q , pabrėždami, kad q yra pirminio skaičiaus laipsnis.

16/35

Plėtiniai

Visi kūnai \mathbb{F}_{p^n} yra pagrindinio kūno \mathbb{F}_p plėtiniai, o koks jų tarpusavio ryšys?

Teorema. Jeigu natūrinis skaičius d dalija n, tai egzistuoja kūno \mathbb{F}_{p^n} pokūnis (poaibis, sudarantis kūną), izomorfiškas \mathbb{F}_{p^d} .

Taigi, pavyzdžiui, būtų teisinga rašyti

$$\mathbb{F}_3 \subset \mathbb{F}_{3^2} \subset \mathbb{F}_{3^4} \subset \mathbb{F}_{3^{12}},$$

tačiau $\mathbb{F}_{3^4} \subset \mathbb{F}_{3^6}$ – neteisinga.

Kūnų plėtiniai

Kūne \mathbb{F}_p sudėję p vienetų, gauname nulį: $1+1+\ldots+1=0$; kadangi $\mathbb{F}_p\subset\mathbb{F}_{p^m}$ kiekvienam m, tai ši lygybė teisinga visuose \mathbb{F}_p plėtiniuose. Jeigu sudėtume p kitų elementų, taip pat gautume nulį:

$$a + a + \ldots + a = (1 + 1 + \ldots + 1) \cdot a = 0 \cdot a = 0, \quad a \in \mathbb{F}_{p^m}.$$

Teorema. Su bet kokiais elementais $\alpha, \beta \in \mathbb{F}_{p^m}$ teisinga lygybė

$$(\alpha + \beta)^p = \alpha^p + \beta^p.$$

18 / 35

Generuojantys elementai

19/35

Elementų eilė

Pažymėkime visų nenulinių kūno \mathbb{F}_q $(q=p^m)$ elementų aibę \mathbb{F}_q^* . Šios aibės elementai daugybos veiksmo atžvilgiu sudaro grupę, šios grupės eilė lygi $|\mathbb{F}_q^*|=q-1=p^m-1$.

Jeigu pasirinktume elementą $lpha\in\mathbb{F}_q^*$ ir sudarytume jo laipsnius

$$\alpha, \alpha^2, \alpha^3, \dots$$

gautume periodinę elementų seką. Periodas – mažiausias skaičius m, kad $\alpha^m = 1$.

Apibrėžimas. Elemento $\alpha \in \mathbb{F}_q^*$ eile vadinamas mažiausias natūralusis skaičius m, su kuriuo $\alpha^m=1$. Elemento eilę žymėsime $o(\alpha)$.

Generuojantis elementas

Algebroje įrodoma, kad bet kokio baigtinės grupės elemento eilė dalija grupės eilę. Taigi bet kokiam nenuliniam elementui α skaičius q-1 dalijasi iš $o(\alpha)$.

Teorema. Aibėje \mathbb{F}_q^* yra elementų, kurių eilės lygios q-1.

Apibrėžimas. Aibės \mathbb{F}_q^* elementą γ , kurio eilė lygi q-1, vadinsime generuojančiu (arba primityviuoju) kūno \mathbb{F}_q elementu.

21 / 35

Generuojantis elementas

Jeigu $\alpha=\gamma$ yra generuojantis elementas, tai

$$\alpha, \alpha^2, \alpha^3, \dots$$

seka prasideda visų \mathbb{F}_q^* elementų eile, kuri toliau kartojasi. Bet kuris nenulinis kūno elementas α gali būti užrašytas kaip generuojančio elemento laipsnis:

$$\alpha = \gamma^j, \quad 0 \le j < q - 1.$$

22 / 35

Generuojantis elementas

Kaip rasti generuojančius elementus?

Teorema. Jeigu kiekvienam q-1 dalikliui d (d < q-1) elementas $\gamma \in \mathbb{F}_q^*$ tenkina sąlygą

$$\gamma^d \neq 1$$
,

tai γ – primityvusis elementas.

Pavyzdžiui, patikrinkime, ar $\gamma=2$ yra generuojantis elementas kūne \mathbb{F}_{23} . Kadangi $23-1=2\cdot 11$, tai pakaks apskaičiuoti tik du laipsnius:

$$2^2 = 4$$
, $2^{11} = 2(2^5)^2 = 2 \cdot 9^2 = 8$,

taigi $\gamma = 2$ yra generuojantis elementas.

Sudėtingesnis pavyzdys

Pasirinkę neskaidų virš \mathbb{F}_2 daugianarį $f(x) = x^4 + x + 1$, sukonstruokime kūno \mathbb{F}_{2^4} kopiją

0000	0	1000	α^3
0001	1	1001	$\alpha^3 + 1$
0010	α	1010	$\alpha^3 + \alpha$
0011	$\alpha + 1$	1011	$\alpha^3 + \alpha + 1$
0100	α^2	1100	$\alpha^3 + \alpha^2$
0101	$\alpha^2 + 1$	1101	$\alpha^3 + \alpha^2 + 1$
0110	$\alpha^2 + \alpha$	1110	$\alpha^3 + \alpha^2 + \alpha$
0111	$\alpha^2 + \alpha + 1$	1111	$\alpha^3 + \alpha^2 + \alpha + 1$

Galima skaičiuojant naudotis lygybe $\alpha^4 + \alpha + 1 = 0$.

Galbūt α yra generuojantis elementas? Kadangi $q-1=15=3\cdot 5$, tai pakanka įsitikinti, kad laipsniai α^3 ir α^5 nelygūs 1:

$$\alpha^5 = \alpha^4 \cdot \alpha = (\alpha + 1) \cdot \alpha = \alpha^2 + \alpha \neq 1.$$

Elementas α yra generuojantis elementas. Taip būna ne visada.

24 / 35

Primityvieji daugianariai

Apibrėžimas. Jeigu f(x) yra neskaidus virš kūno \mathbb{F}_p daugianaris, o naudojantis juo sukonstruotame kūne \mathbb{F}_{p^r} $(r = \deg(f) > 1)$ elementas α yra primityvusis, tai daugianaris f(x) pats vadinamas primityviuoju.

Teorema. Daugianarių erdvėje $\mathbb{F}_p[x]$ egzistuoja bet kokio laipsnio r>1 primityvieji daugianariai.

r-ojo laipsnio daugianaris f(x) yra primityvus tada ir tik tada, kai jis nėra jokio daugianario x^m-1 su $m< p^r-1$ daliklis.

Todėl visada galime sukonstruoti baigtinio kūno \mathbb{F}_q kopiją, kad jo nenuliniai elementai būtų reiškiami laipsniais $\alpha^j,\ j=0,1,\ldots,q-2.$

Daugianarių šaknys

Jeigu sukonstravome kūno \mathbb{F}_p plėtinį \mathbb{F}_q $(q=p^m)$, tai galime nagrinėti daugianarius su koeficientais iš šio kūno. Pažymėkime jų aibę $\mathbb{F}_q[x]$. Akivaizdu, kad $\mathbb{F}_p[x] \subset \mathbb{F}_q[x]$.

Kiekvieną šios aibės daugianarį $f=a_0+a_1x+\ldots+a_rx^r$ galime suvokti kaip funkciją $f:\mathbb{F}_q\to\mathbb{F}_q$:

$$\beta \mapsto a_0 + a_1\beta + \ldots + a_r\beta^r = f(\beta), \quad \beta \in \mathbb{F}_q.$$

Jei $f(\beta)=0$, elementą β vadiname daugianario šaknimi. Tada daugianaris f(x) dalijasi iš $x-\beta$. Jeigu jis dalijasi iš $(x-\beta)^m$, bet nesidalija iš $(x-\beta)^{m+1}$, sakome, kad daugianaris turi m vienodų (lygių β) šaknų, arba – šaknies β kartotinumas lygus m.

27 / 35

Daugianarių šaknys

Visiems baigtiniams kūnams teisingas teiginys, kurį suformulavome kūnui \mathbb{F}_p .

Teorema. Daugianario $f \in \mathbb{F}_q[x]$ šaknų skaičius nedidesnis už daugianario laipsnį.

Kadangi bet kurio nenulinio $f\in\mathbb{F}_q$ elemento β eilė dalija q-1, tai šis elementas yra daugianario $x^{q-1}-1$ šaknis. O apskritai visi, neišskiriant nei nulio, kūno elementai yra daugianario

$$g(x) = x^q - x$$

šaknys.

Minimalieji daugianariai

Apibrėžimas. Minimaliuoju elemento $\beta \in \mathbb{F}_q$ daugianariu vadinsime mažiausiojo laipsnio daugianarį $m_{\beta}(x)$ iš $\mathbb{F}_p[x]$ su vienetiniu vyriausiuoju koeficientu, kad $m_{\beta}(\beta) = 0$.

Kadangi β yra daugianario $m_{\beta}(x)$ šaknis, tai šis daugianaris turi dalytis iš $x-\beta$, dalmuo bus daugianaris iš $\mathbb{F}_q[x]$:

$$m_{\beta}(x) = (x - \beta)g(x), \quad g(x) \in \mathbb{F}_q[x].$$

Jeigu $\beta \in \mathbb{F}_p$, tai $m_{\beta}(x) = x - \beta$; jeigu β yra primityvusis kūno \mathbb{F}_q elementas, tai $m_{\beta}(x) = x^{q-1} - 1$.

29 / 35

Minimalieji daugianariai

Kaip surasti elemento $\beta \in \mathbb{F}_q$ minimalųjį daugianarį?

 \mathbb{F}_{p^r} galime sutapatinti su tiesine erdve $\mathbb{F}_{p,r}[x]$ (ją sudaro ne didesnio kaip r-ojo laipsnio daugianariai). Ši aibė yra r-matė tiesinė erdvė virš \mathbb{F}_p , vadinasi, bet kuris r+1-o elemento rinkinys yra tiesiškai priklausomas. Elementus $1,\beta,\beta^2,\ldots,\beta^r$ galime interpretuoti kaip šios erdvės elementus.

Turėtų būti \mathbb{F}_p elementai a_0, a_1, \ldots, a_r , kad

$$a_0 + a_1 \beta + a_2 \beta^2 + \ldots + a_r \beta^r = 0.$$

Suradę tokių elementų rinkinį, kad paskutiniojo nenulinio koeficiento a_j numeris j būtų kuo mažiausias, gautume minimalųjį daugianarį

$$m_{\beta}(x) = a_0 + a_1 x + a_2 x + \dots + a_j x^j.$$

Pavyzdys

lšbandykime šį skaičiavimų būdą su kūnu \mathbb{F}_{2^4} ir $\beta=\alpha^2+1$. Tarkime, kūnas buvo sudarytas su primityviuoju daugianariu $f(x)=x^4+x+1$, taigi α yra primityvusis elementas, galime naudotis lygybe $\alpha^4=\alpha+1$.

$$\begin{array}{l} 1 = 1 \\ \beta = \alpha^2 + \alpha \\ \beta^2 = \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1 \\ \beta^3 = (\alpha^2 + \alpha + 1)(\alpha^2 + \alpha) = 1 \\ \beta^4 = \beta \end{array} \quad \begin{array}{l} 1 = 0001 \\ \beta = 0110 \\ \beta^2 = 0111 \\ \beta^3 = 0001 \\ \beta^4 = 0110 \\ \end{array}$$

Dydžių β^3, β^4 , neprireiks. Ieškokime koeficientų $a_0, a_1, a_2 \in \mathbb{F}_p$, kad būtų

$$a_0 \cdot 0001 + a_1 \cdot 0110 + a_2 \cdot 0111 = 0000.$$

Tikrai netruksime juos surasti: $a_0=a_1=a_2=1$. Taigi minimalus daugianaris yra $m_\beta(x)=1+x+x^2$.

31 / 35

Kitas požiūris

Tegu elemento β minimalus daugianaris yra

$$m_{\beta}(x) = a_0 + a_1 x + \ldots + a_j x^j$$
, t. y. $m_{\beta}(\beta) = a_0 + a_1 \beta + \ldots + a_j \beta^j = 0$.

Pakėlę pastarąją lygybę laipsniu p ir pasinaudoję tuo, kad $(u+v)^p=u^p+v^p$ ir $w^p=w$, kai $w\in\mathbb{F}_p$, gausime

$$m_{\beta}(\beta^p) = a_0 + a_1 \beta^p + a_2 (\beta^p)^2 + \ldots + a_i (\beta^p)^j = 0.$$

Taigi elemento β minimalaus daugianario $m_{\beta}(x)$ šaknis yra ir β^p , ir visi sekos

$$\beta$$
, β^p , $(\beta^p)^p = \beta^{p^2}$, β^{p^3} , β^{p^4} , ...

skaičiai. Tačiau ne visi jie skirtingi. Kiek gi jų yra?

Minimalieji daugianariai

Pažymėkime $b = o(\beta)$, taigi m yra mažiausias natūrinis skaičius, su kuriuo $\beta^b = 1$. Tada

$$\beta$$
, β^p , $(\beta^p)^p = \beta^{p^2}$, β^{p^3} , β^{p^4} , ...

bus tiek skirtingų narių, kiek skirtingų dalybos iš b liekanų duoda skaičiai $1,p,p^2,\ldots$ Šis skirtingų liekanų skaičius savo ruožtu lygus mažiausiam natūraliajam skaičiui m, su kuriuo

$$p^m \equiv 1 \pmod{b}$$
.

Tada visi skaičiai $\beta, \beta^p, \beta^{p^2}, \dots, \beta^{p^{m-1}}$ bus skirtingi, o daugianaris $m_\beta(x)$ dalysis iš sandaugos

$$(x-\beta)(x-\beta^p)\cdots(x-\beta^{p^{m-1}}).$$

33 / 35

Minimalusis daugianaris

Teorema. Tegu $\beta \in \mathbb{F}_{p^r}, b$ yra šio elemento eilė, o m yra mažiausias natūralusis skaičius, su kuriuo $p^m \equiv 1 \pmod{b}$. Tada minimalus elemento β daugianaris yra

$$m_{\beta}(x) = (x - \beta)(x - \beta^p) \cdots (x - \beta^{p^{m-1}}).$$

34 / 35

Pavyzdys

lšbandykime naująjį minimalaus elemento skaičiavimo būdą, vėl imdami kūną \mathbb{F}_{2^4} ir $\beta=\alpha^2+1$. Skaičiuodami jau įsitikinome, kad b=3. Dabar iš $2^1\equiv 2\ (\text{mod }3)$ ir $2^2\equiv 1\ (\text{mod }3)$ gauname, kad m=2. Taigi

$$m_{\beta}(x) = (x - \beta)(x - \beta^2)$$

= $(x - (\alpha^2 + \alpha))(x - (\alpha^2 + \alpha + 1))$
= $x^2 + x + 1$.

Skaičiuoti reikia pasinaudojant lygybe $\alpha^4 = \alpha + 1$.