Painel / Meus cursos / SC26EL / 15-Observadores de Estado / Questionário sobre Observadores de Estados

Iniciado em	sexta, 14 mai 2021, 08:50
Estado	Finalizada
Concluída em	sexta, 14 mai 2021, 10:01
Tempo	1 hora 11 minutos
empregado	
Notas	1,9/2,0
Avaliar	9,3 de um máximo de 10,0(93 %)

Questão **1**

Parcialmente correto

Atingiu 0,9 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -50 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $\emph{s}_1 =$

-5

× e **s**₂ =

X .

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix}$. Assim, os elementos da matriz N são:

*n*₁₁ =

 $n_{12} = \frac{1}{1}$

~ ,

*n*₂₁ = −50

✓ , **n**₂₂ =

~

O posto da matriz de observabilidade é:

2

✓ .

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é:

1

✓ s^2+

✓ *s*+ 2500

•

Logo, os elementos da matriz $\phi(A)=egin{bmatrix} arphi_{11} & arphi_{12} \ arphi_{21} & arphi_{22} \end{bmatrix}$ são:

 $\varphi_{11} = 2450$

 \checkmark , $\varphi_{12}=$

~ ,

$$\varphi_{21} =$$

-4250

ullet , $arphi_{22}=$

1175

Assim, o vetor de ganhos associado ao observador é $\textit{K}_{e} = \left[\right.$

-95

~

275

 \checkmark]^{τ}.

A representação do observador em espaço de estados é dada por:

$$\dot{\tilde{x}} = A_{obs}\tilde{x} + B_{obs} \begin{bmatrix} u \\ y \end{bmatrix}$$

$$ilde{y} = C_{obs} ilde{x}$$

A matriz $A_{obs}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$ e seus elementos são:

 $a_{11} =$

190

~

a₂₁ = -600

✓ , **a**₂₂ =

~

A matriz $B_{obs}=egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$ e seus elementos são:

 $b_{11} =$

✓ , **b**₁₂ =

.

 $b_{21} = \frac{1}{1}$

✓ , **b**₂₂ =

~

A matriz $C_{obs} = egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix}$ e seus elementos são:

1

 $c_{11} =$

1

 \checkmark , $c_{12} =$

0

✓ , $c_{21} =$

0

✓ , c₂₂ =

1

Questão **2**

Parcialmente correto

Atingiu 1,0 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2,3}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -150 \\ 1 & 0 & -95 \\ 0 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 150 \\ 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $s_1 =$

- -3
- **×** , **s**₂ = −5
- **✓** e **s**₃ =
- ×

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{bmatrix}$. Assim, os elementos da matriz N são:

- $n_{11} = 0$
- $\checkmark , n_{12} = 0$
- **✓** , **n**₁₃ =
- $n_{21} = 0$
- **✓** , **n**₂₂ =
- **✓** , $n_{23} =$
- **~**
- $n_{31} = 1$
- **✓** , $n_{32} =$
- **✓** , **n**₃₃ =
- ~

O posto da matriz de observabilidade é:

3

Portanto, o sistema é: Observável O polinômio característico desejado para o observador é: $\checkmark s^3 +$ 150 $\checkmark s^2 +$ 7500 **✓** s+ 125000 φ_{11} φ_{12} φ_{13} Logo, os elementos da matriz $\phi(A)=$ φ_{21} φ_{22} φ_{23} $\varphi_{11} =$ 124850 ullet , $arphi_{12}=$ -19800 \checkmark , $arphi_{13}=$ -754350 **~** , $\varphi_{21} =$ 7405 \checkmark , $\varphi_{22}=$ 112310 \checkmark , $\varphi_{23}=$ -497555 **~** , $\varphi_{31} =$ 132 ullet , $arphi_{32}=$ 5029 ullet , $arphi_{33}=$ 21788 Assim, o vetor de ganhos associado ao observador é $\textit{K}_{\textit{e}} = \left[\right.$ 124850 7405 132 $\boldsymbol{\vee}$ $]^T$.

A representação do observador em espaço de estados é dada por:

$$\dot{\tilde{x}} = A_{obs}\tilde{x} + B_{obs} \begin{bmatrix} u \\ y \end{bmatrix}$$

$$\tilde{y} = C_{obs} \tilde{x}$$

A matriz
$$A_{obs} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 e seus elementos são:

$$a_{11} =$$

$$\checkmark$$
 , $a_{12} = 0$

$$a_{21} =$$

$$a_{31} =$$

A matriz
$$B_{obs}=egin{bmatrix} b_{11}&b_{12}\b_{21}&b_{22}\b_{31}&b_{32} \end{bmatrix}$$
 e seus elementos são:

$$b_{11} =$$

$$b_{21} =$$

$$b_{31} =$$

A matriz
$$C_{obs} = egin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ c_{31} & c_{32} & c_{33} \end{bmatrix}$$
 e seus elementos são:

 $c_{11} = 1$

 \checkmark , $c_{12}=$

 \checkmark , $c_{13} = 0$

~ ,

 $c_{21} = 0$

✓ , c₂₂ =1

 \checkmark , $c_{23} = 0$

~ ,

 $c_{31} = 0$

✓ , c₃₂ =0

✓ , **c**₃₃ =

~

→ Diagrama de Blocos Scilab/Xcos - Simulação

Seguir para...

Aula 16 - Projeto de Controlador com Observador de Estados - Parte 1 ►