

기계학습론

기계학습을 활용한 반도체 불량 검출 모델링

2017010055 박현일 2017012415 이정인 2018098977 최영훈 2019054193 최현지

 CONTENTS
 01 서론
 02 데이터 분석
 03 모델
 04 분석 결과
 05 결론

_ 서론

데이터 분석

모델

분석 결과

결론

문제 정의

반도체 공정 내에서 측정된 여러 값을 분석하여 어떤 표본이 불량인지 아닌지 식별하는 모델을 만들어 불량 반도체를 식별한다. 반도체 제조사가 불량 제품을 직접 확인하지 않고도 어떤 제품이 불량인지 알 수 있게 하여 쉽게 불량 제품과 정상 제품을 분류하도록 한다.

데이터 분석

모델

분석 결과

결론

데이터 설명

Feature	속성		
Feature_1	수치형		
Feature_2	수치형		
Feature_3	수치형		
Feature_4	이진 범주형		
••••			
Feature_1558	이진 범주형		
Class	이진 범주형		

	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	Class
0	100	160	1.6000	0	0	0	0
1	20	83	4.1500	1	0	0	0
2	99	150	1.5151	1	0	0	0
3	40	40	1.0000	0	0	0	0
4	12	234	19.5000	1	0	0	0
5	90	90	1.0000	0	0	0	0
6	1	1	2.0000	1	0	0	0
7	15	80	5.3333	0	0	0	0

시각화 - Feature 간 상관관계

서론

데이터 분석

모델

분석 결과

결론

시각화 – 수치형 데이터 Boxplot

서론

데이터 분석

모델

분석 결과

결론

시각화 - 클래스 분포

서론

데이터 분석

모델

분석 결과

결론

양품 - 91.89% 불량 - 8.11%

전처리 - Train set, Test set 분리

서론

데이터 분석

모델

분석 결과

결론

Train set, Test set 분리

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=777, stratify=Y)
X_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
Y_train.reset_index(drop=True, inplace=True)
Y_test.reset_index(drop=True, inplace=True)
```

```
# 분리 확인
print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
(1186, 1522) (297, 1522) (1186,) (297,)
```


전처리 - 중복 레코드 처리

서론

데이터 분석

모델

분석 결과

결론

중복 레코드 제거

```
temp = pd.concat([X_train, Y_train], axis=1)
```

```
temp.drop_duplicates(keep='first', inplace=True)
```

```
Y_train = temp['Class']
X_train = temp.drop(['Class'], axis=1)
```


전처리 - 단일 값을 갖는 feature 제거

서론

데이터 분석

모델

분석 결과

결론

단일 클래스를 가진 피쳐 제거

```
for i in X_train.columns:
   if len(X_train[i].unique()) == 1:
        X_train.drop(i, axis=1, inplace=True)
        X_test.drop(i, axis=1, inplace=True)
```

```
# 감소한 피쳐 수 확인
print(X_train.shape, X_test.shape)

(1378, 1515) (353, 1515)
```


전처리 – 이상치 제거

서론

데이터 분석

모델

분석 결과

결론

Outlier 처리 #1 iqr 기준 삭제

```
toScale = ["feature_1", "feature_2" , "feature_3"]
```

```
trimmer = OutlierTrimmer(capping_method='iqr', tail='both', fold=3, variables=toScale)
X_train = trimmer.fit_transform(X_train)
```


데이터 분석

모델

분석 결과

결론

전처리 - Feature selection

Feature간 상관계수 계산 후 제거 (코드 일부)

```
X_train.shape
```

i0]: (1360, 412)

전처리 - Scaling

서론

데이터 분석

모델

분석 결과

결론

데이터 분석

모델

분석 결과

결론

전처리 - Scaling

Feature Scaling #1 StandardScaler

```
scaler = StandardScaler()
for feature in toScale:
    X_train.loc[:, feature] = scaler.fit_transform(X_train[feature].to_numpy().reshape(-1, 1))
    X_test.loc[:, feature] = scaler.transform(X_test[feature].to_numpy().reshape(-1, 1))
```

Feature Scaling #2 MinMaxScaler

```
mmScaler = MinMaxScaler()
for feature in toScale:
    X_train.loc[:, feature] = mmScaler.fit_transform(X_train[feature].to_numpy().reshape(-1, 1))
    X_test.loc[:, feature] = mmScaler.transform(X_test[feature].to_numpy().reshape(-1, 1))
```


데이터 분석

모델

분석 결과

결론

전처리 - 클래스 불균형

임의의 소수 클래스 데이터로부터 인근 소수 클래스 사이에 새로운 데이터를 생성하여 클래스 불균형을 해소하는 기법

Synthetic Minority Oversampling Technique

Generating Samples

Resampled Dataset

데이터 분석

모델

분석 결과

결론

전처리 - Oversampling

오버샘플링 #1 SMOTE

```
smote = SMOTE(random_state=2, k_neighbors=3)
X_train, Y_train = smote.fit_resample(X_train, Y_train)
```

오버샘플링 #2 RamdomOverSampling

```
randomOver = RandomOverSampler(random_state=0)
X_train, Y_train = randomOver.fit_resample(X_train, Y_train)
```

```
# Y 밸런스 확인
Y_train.value_counts()
```

: 0 1127
1 1114
Name: Class, dtype: int64

전처리 - Class weight

모델을 학습할 때 소수 클래스에 가중치를 주어 학습함으로써 클래스 불균형을 해소

서론

데이터 분석

모델

분석 결과

결론

```
weight_0 = (1 / Y_train.value_counts()[0]) * (Y_train.value_counts().sum() / 2.0)
weight_1 = (1 / Y_train.value_counts()[1]) * (Y_train.value_counts().sum() / 2.0)
class_weight = {0 : weight_0, 1 : weight_1}
print(class_weight)
```

{0: 0.545308740978348, 1: 6.017699115044247}

데이터 분석

모델

분석 결과

결론

모델 소개 - Keras Logistic regression

회귀를 사용하여 데이터가 어떤 클래스에 속할 확률을 0 과 1 사이의 값으로 예측하고 그 확률에 따라 분류하는 모델

데이터 분석

모델

분석 결과

결론

과적합 방지

$$L(x,y) \equiv \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2 + \lambda \sum_{i=1}^{n} \theta_i^2$$

데이터 분석

모델

분석 결과

결론

성능 지표

			NCCUII	F1-score	ROC-AUC
Keras logistic regression	0.917847	0.500000	0.655172	0.567164	0.932024
Keras MLP	0.900850	0.384615	0.344828	0.363636	0.863144
Keras DNN	0.906516	0.400000	0.275862	0.326531	0.824021
Sklearn logistic regression	0.909348	0.463415	0.655172	0.542857	0.793636
Sklearn logistic regression - GridSearchCV	0.909348	0.463415	0.655172	0.542857	0.793636
LightGBM - GridSearchCV	0.917847	0.500000	0.551724	0.524590	0.751171
LightGBM	0.917847	0.500000	0.551724	0.524590	0.751171
Sklearn Decision Tree	0.889518	0.375000	0.517241	0.434783	0.722201
Sklearn Decision Tree - GridSearchCV	0.892351	0.384615	0.517241	0.441176	0.721584
Sklearn RandomForest	0.929178	0.600000	0.413793	0.489796	0.648334
Sklearn RandomForest - GridSearchCV	0.917847	0.500000	0.275862	0.355556	0.625585
XGBoost	0.917847	0.000000	0.000000	0.000000	0.500000
XGBoost - GridSearchCV	0.917847	0.000000	0.000000	0.000000	0.500000

결론

서론

데이터 분석

모델

분석 결과

결론

IQR 3

Weight

0.93202427

MaxAbs

Logistic

감사합니다