

Universität Ulm

Abgabe: Freitag, den 12.06. um 12 Uhr

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

Übungen Analysis 1: Blatt 7

- Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen. Man beweise oder widerlege die folgenden (2)Aussagen:
 - (a) Gilt $a_n \geq 0$ für alle $n \in \mathbb{N}$ und $a_n \to a$ für $n \to \infty$, dann gilt auch $\sqrt{a_n} \to \sqrt{a}$ für $n \to \infty$.
 - (b) Gilt $a_n \to a$ und $b_n \to b$, dann folgt $\max\{a_n, b_n\} \to \max\{a, b\}$ für $n \to \infty$.
 - (c) Gilt $a_n \to a$ für $n \to \infty$ und ist $(b_n)_{n \to \mathbb{N}}$ beschränkt, dann konvergiert $(a_n b_n)_{n \in \mathbb{N}}$.
 - (d) Für alle $z \in \mathbb{C}$ existiert eine Folge $(q_n)_{n \in \mathbb{N}}$ aus $\mathbb{Q} + i\mathbb{Q}$, die gegen z konvergiert.
- Es sei q > 0. Definiere $x_0 = q$ und

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{q}{x_n} \right) \tag{2}$$

für alle $n \in \mathbb{N}_0$. Zeige, dass die Folge $(x_n)_{n \in \mathbb{N}_0}$ konvergiert und bestimme ihren Grenzwert. Hinweis: Zeige zunächst, dass $x_{n+1}^2 - q \ge 0$ für alle $n \in \mathbb{N}_0$ und betrachte anschließend $x_{n+1} - x_n$.

Man untersuche folgende Zahlenfolgen $(x_n)_{n\in\mathbb{N}}$ aus \mathbb{C} auf Konvergenz. Dabei sind alle Aussagen zu (4)beweisen.

(a)
$$x_n := \frac{3n^2 - 2n^3 + 4}{4n + n^3 - 8}$$

(d)
$$x_n := \frac{2^n + (-2)^n}{5 \cdot 2^n}$$

(g)
$$x_n := \left(\frac{3n+1}{n+1} - \frac{n+1}{n}\right)$$

(b)
$$x_n := \left(\frac{n^4 + n^2 + 2}{n^4 + n}\right)^n$$

(e)
$$x_n := \sqrt{n-1} - \sqrt{n}$$

(a)
$$x_n := \frac{3n^2 - 2n^3 + 4}{4n + n^3 - 8}$$
 (d) $x_n := \frac{2^n + (-2)^n}{5 \cdot 2^n}$ (g) $x_n := \left(\frac{3n + 1}{n + 1} - \frac{n + 1}{n}\right)$ (b) $x_n := \left(\frac{n^4 + n^2 + 2}{n^4 + n}\right)^n$ (e) $x_n := \sqrt{n - 1} - \sqrt{n}$ (h) $x_n := \frac{1}{n + 2} \left(\sum_{k=0^n} k\right) - \frac{n}{2}$ (c) $x_n := n^{30} \left(\frac{2 - 2i}{3}\right)^n$ (f) $x_n := \sum_{k=0}^n \left(\frac{1}{3}\right)^k$

(c)
$$x_n := n^{30} \left(\frac{2-2i}{3} \right)^{\frac{1}{3}}$$

(f)
$$x_n := \sum_{k=0}^n \left(\frac{1}{3}\right)^k$$

- Man finde für jedes angegebene Szenario reelle Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ mit den vorgegeben (2)Eigenschaften:
 - $\lim_{n\to\infty} a_n = 0 \text{ und } (b_n)_{n\in\mathbb{N}} \text{ ist unbeschränkt mit}$

$$\bullet \quad \lim_{n \to \infty} a_n b_n = 0$$

$$\bullet \quad \lim_{n \to \infty} a_n b_n = 1$$

• $(a_n b_n)_{n \in \mathbb{N}}$ unbeschränkt.

(b) $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ sind unbeschränkt mit

$$\bullet \quad \lim_{n \to \infty} (a_n - b_n) = 0$$

•
$$\lim_{n \to \infty} (a_n - b_n) = 0$$
 • $\lim_{n \to \infty} (a_n - b_n) = 1$

• $(a_n - b_n)_{n \in \mathbb{N}}$ ist unbeschränkt.