NOM: Prénom: Note:

1. Soit $M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer M^n pour tout $n \in \mathbb{N}$.

2. Soit $a \in \mathbb{R}$ et $M = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$. Déterminer le rang de M en fonction de la valeur de a.

3. Montrer que l'ensemble des matrices de trace nulle de $\mathcal{M}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et préciser sa dimension.

4. Écrire la matrice A de l'endomorphisme u :	$\mathbb{R}_2[X]$	$\stackrel{\longrightarrow}{\longmapsto}$	$\mathbb{R}_2[X] \\ XP' - X^2P(1)$	dans la base canonique de $\mathbb{R}_2[X]$. Donner des bases
du noyau et de l'image de A et en déduire des	s bases o	lu noy	au et de l'image	e de u .

5. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Montrer que $M + M^T = tr(M)M \iff (M \in \mathcal{A}_n(\mathbb{K}) \text{ ou } (M \in \mathcal{S}_n(\mathbb{K}) \text{ et } tr(M) = 2))$.