LUCY-II-yocto-odyssey - Custom Seeed STM32MP157C SOM Yocto Project

Directory Structure

- .vscode/
 - Settings for the IDE
 - Action buttons are used to better control the project
- build-mp1/
 - o conf/
 - bitbake included layers and local user configurations for build environment
 - bblayers.conf & local.conf
 - ∘ tmp/
 - build system's output
 - o tmp/deploy/images/stm32mp1/
 - end result output binaries used for flashing
 - o tmp/work-shared/stm32mp1/
 - contains shared device tree recipes
 - o tmp/work/stm32mp1-poky-linux-gnueabi/custom-image/1.0-r0/rootfs/
 - structure of working linux directory on the custom Seeed stm32mp157c SOM
- meta-custom/
 - Custom Linux application layer
 - ∘ conf/
 - Contains the core set of configuration files that start from bitbake.conf
 - o recipes-bsp/
 - tfa and u-boot device tree patches
 - o recipes-kernal/
 - Linux kernal version 5.10.10 device tree patches
- meta-st-odyssey/
 - Custom Seeed SOM stm32mp157c BSP layer
 - conf/
 - o Contains the core set of configuration files that start from bitbake.conf
 - o recipes-apps/
 - · Application binaries built into our linux distribution
- meta-st-stm32mp/
 - Default stm32mp1 BSP layer
- meta-openembedded/
 - o Open embedded core layer
- meta-python2/
 - The dunfell branch from meta-st needs the legacy python 2 layer
- poky/
 - Reference distribution that includes the metadata and useful tools for building the yocto project
- SDK/
 - Software environment framework for developing Embedded Linux applications for the Dual Core Cortex-A7 on the stm32mp157c

- notes/
 - Testing booting notes

Building Yocto Project

```
## 1. Enter the Yocto directory
-- Open a new terminal
>> cd ~/Desktop/Embedded_Systems/Software/apps/LUCY-II-yocto-odyssey/
## 2. Source Bitbake Environment
-- (menuconfig) >> bitbake -c menuconfig virtual/kernel
>> source poky/oe-init-build-env build-mp1
## 3. Build Custom Image
>> bitbake custom-image
```

Flashing Custom Yocto Project to eMMC

```
## 1. Connect Micro USB Cable to USB PROG and USB SERIAL
-- Open a new terminal (UART4)
>> minicom -D /dev/ttyACM0 115200
## 2. Enter the deploy binary directory
-- Open a new terminal (USB1)
>> cd ~/Desktop/Embedded_Systems/Software/apps/LUCY-II-yocto-odyssey/build-mp1/tmp/deploy/images/stm32mp1/
## 3. Export the STM32CubeProgrammer variable
>> export PATH=~/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin/:$PATH
## 4. Flash eMMC partitions
-- Press the reset button if fails
-- Connect BOOT MODE Header Jumper & Press the RST BTN (the Red (DL7) Led should be off)
-- DL7 shouldn't be Flashing or ON if the USB PROG cable is connected (push RST BTN when cable connected)
>> STM32_Programmer_CLI -c port=usb1 -w flashlayout_custom-image/trusted/FlashLayout_emmc_stm32mp157c-odyssey-trusted.tsv
## 5.1 In the UART4 terminal, enter u-boot and select the stm32mp1 cli programmer to connect with the stm32mp157c
-- Open the UART4 terminal
-- Enter u-boot by hitting any key until you enter (i.e., STM32MP>)
STM32MP> stm32prog usb 0
### 5.2 Option two mounting (copy partitions using 'dd') - opens eMMC as a storage device like writing to a SD card
-- Open the UART4 terminal
-- Enter u-boot by hitting any key until you enter (i.e., STM32MP>)
STM32MP> ums 0 mmc 1
## 6. Run STM32MP157C from eMMC
-- When "Flashing service completed successfully" is displayed in the USB1 terminal, flashing has been successful
-- Remove BOOT MODE Header Jumper & Press the RST BTN
--- This will then boot into linux (u-boot is passed) - "root" is the login
--- The blue user application led will start beating
root@stm32mp1:~#
```

Building and SDK usage

```
## 1. Build Yocto Project
cd ~/Desktop/Embedded_Systems/Software/apps/LUCY-II-yocto-odyssey/
source poky/oe-init-build-env build-mp1
bitbake custom-image

## 2. Populate SDK
bitbake custom-image -c populate_sdk
cd tmp/deploy/sdk/
sh poky-glibc-x86_64-custom-image-cortexa7t2hf-neon-vfpv4-stm32mp1-toolchain-3.1.19.sh
/home/jonathan/Desktop/Embedded_Systems/Software/apps/LUCY-II-yocto-odyssey/SDK/
Y
```

Notes & Requirements

- · Require Host build machine to have the linux environment
 - o tested on linuxmint-20.1
- Require at least 50-100GB of free HDD/SDD space
- Depending on the computer this can take a while (i.e., 2-6hrs)
 - Change PARALLEL_MAKE & BB_NUMBER_THREADS for efficiency and performance configuration
 - modify build-mp1/confb/local.conf
- Change the BBLAYERS_PATH variable to LUCY-II-yocto-odyssey directory change in build-mp1/conf/bblayers.conf
 i.e.,

BBLAYERS_PATH = "/home/jonathan/Desktop/Embedded_Systems/Software/apps/Stm32mp157/LUCY-II-yocto-odyssey"

- · Yocto manual
 - https://docs.yoctoproject.org/ref-manual/index.html
- A practical guide to BitBake
 - https://a4z.gitlab.io/docs/BitBake/guide.html
- Install STM32 Programmer CLI
 - https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer
 - Manual https://www.st.com/resource/en/user_manual/um2237-stm32cubeprogrammer-software-descriptionstmicroelectronics.pdf
- · Intro to Embedded Linux tutorials
 - Can be found here Embedded_Systems/Software/test-apps/Embedded Linux tutorials/
- Device Tree Patches
 - o git diff --no-index <.orig> > <.patch>
 - Then update the file location i.e., --- a/stm32mp157c-odyssey.dts to --- a/arch/arm/boot/dts/stm32mp157c-odyssey.dts
- · Install yocto build dependencies

```
sudo apt update
sudo apt upgrade
sudo apt install -y bc build-essential chrpath cpio diffstat gawk git texinfo wget gdisk python3 python3-pip
sudo apt install -y libssl-dev
```

• Install gcc-arm dependencies for Cortex-M4 development

```
sudo apt install gcc-arm-none-eabi
```

Install Linux USB driver dependencies for STM32CubeProgrammer

```
sudo apt-get install libusb-1.0.0-dev
cd ~/STMicroelectronics/STM32Cube/STM32CubeProgrammer/Drivers/rules
sudo cp *.* /etc/udev/rules.d/
```