Theorem 1. Recursively-enumerable languages are closed under the Kleene star.

Proof. Let $\mathbf{L} \subseteq \mathbf{T}^*$ be a language generated by grammar $\mathbf{G} = (\mathbf{T}, \mathbf{N}, S, \mathbf{P})$. We construct a grammar $\mathbf{G}^* = (\mathbf{T}, \mathbf{N}^*, Z, \mathbf{P}^*)$ to generate the language \mathbf{L}^* .

$$\mathbf{N}^* = \mathbf{N} \cup \{Z, \#, R\}$$

We expanded the set of nonterminals with a new starting symbol, a delimiter, and a symbol that denotes final rewriting.

$$\mathbf{P}^* = \mathbf{P} \cup \{Z \to ZS\#, Z \to R\#, R\# \to R, R\# \to \epsilon\} \cup \{Rt \to tR \mid t \in \mathbf{T}\}$$

To be continued!

Lemma 2. If $\alpha \in (\mathbf{T} \cup \mathbf{N})^*$ can be derived by \mathbf{G}^* , then one of the following holds.

- $(\exists x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $(((\forall i \in [m])(S \rightarrow^* x_i)) \land (\alpha = Zx_1 \# x_2 \# \dots x_m \#))$
- $(\exists x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $(((\forall i \in [m])(S \to^* x_i)) \land (\alpha = R \# x_1 \# x_2 \# \dots x_m \#))$
- $(\exists w_1, w_2, \dots, w_n \in \mathbf{L})(\exists \beta \in \mathbf{T}^*)(\exists \gamma, x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $((S \to^* \beta \gamma) \land ((\forall i \in [m])(S \to^* x_i)) \land$ $(\alpha = w_1 w_2 \dots w_n \beta R \gamma \# x_1 \# x_2 \# \dots x_m \#))$
- $\alpha \in \mathbf{L}^*$
- $(\exists \sigma \in (\mathbf{T} \cup \mathbf{N})^*)(\alpha = \sigma R)$ (This case happens if the rule $R\# \to R$ is used in the final position (where $R\# \to \epsilon$ should be used instead). R in the final position prevents the derivation from terminating.)
- (∃ω ∈ (T ∪ N ∪ {#})*)(α = ω#)
 (This case happens if the rule R# → ε is used too early (that is, anywhere but the final # position). The derivation will never terminate in this case.)

Proof. Induction on \mathbf{G}^* derivation steps. Base case $\alpha = Z$ holds by m = 0. Now assume $Z \to^* \alpha \to \alpha'$ and proceed by case analysis.

- $(\exists x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $(((\forall i \in [m])(S \to^* x_i)) \land (\alpha = Zx_1 \# x_2 \# \dots x_m \#))$
 - ☐ If $\alpha \to \alpha'$ used a rule from **P**, it could be applied only in some x_i . Hence $S \to^* x_i \to x_i'$ so the same condition holds after replacing x_i by x_i' .
 - □ If $\alpha \to \alpha'$ used the rule $Z \to ZS\#$, it was applied at the beginning of α . Therefore, we put $m' := m+1, \ x_1' := S$, and increase all indices by one, that is, $x_2' := x_1, \ x_3' := x_2, \ \ldots, \ x_{m'}' := x_m$. The same condition holds.
 - \square If $\alpha \to \alpha'$ used the rule $Z \to R\#$, we keep all variables the same and the second condition holds.
 - □ The rules $R# \to R$, $R# \to \epsilon$, and $Rt \to tR$ are not applicable (α does not contain R).
- $(\exists x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $(((\forall i \in [m])(S \to^* x_i)) \land (\alpha = R \# x_1 \# x_2 \# \dots x_m \#))$
 - ☐ If $\alpha \to \alpha'$ used a rule from **P**, it could be applied only in some x_i . Hence $S \to^* x_i \to x_i'$ so the same condition holds after replacing x_i by x_i' .
 - \square The rules $Z \to ZS\#$ and $Z \to R\#$ are not applicable (α does not contain Z).
 - If $\alpha \to \alpha'$ used the rule $R\# \to R$, it was applied at the beginning of α . If m=0, the fifth condition holds (dead end). Otherwise, we put $m':=m-1\geq 0, \ \gamma:=x_1$, and decrease all indices by one, that is, $x_1':=x_2, \ x_2':=x_3, \ \ldots, \ x_{m'}':=x_m$. As there is nothing before the nonterminal R, we put n:=0 and $\beta:=\epsilon$. Now, the third condition holds.
 - ☐ If $\alpha \to \alpha'$ used the rule $R\# \to \epsilon$ then; if m=0, we obtain the empty word (which belongs to \mathbf{L}^* , satisfying the fourth condition); if m>0, the last condition holds (because # stayed at the end of α' , at the same time R disappeared, and Z did not appear).
 - \Box The rule $Rt \to tR$ is not applicable (the only R in α is immediately followed by #).

- $(\exists w_1, w_2, \dots, w_n \in \mathbf{L})(\exists \beta \in \mathbf{T}^*)(\exists \gamma, x_1, x_2, \dots, x_m \in (\mathbf{T} \cup \mathbf{N})^*)$ $((S \to^* \beta \gamma) \land ((\forall i \in [m])(S \to^* x_i)) \land$ $(\alpha = w_1 w_2 \dots w_n \beta R \gamma \# x_1 \# x_2 \# \dots x_m \#))$
 - If $\alpha \to \alpha'$ used a rule from **P**, it could be applied in γ or in some x_i . In the first case, $\gamma \to \gamma'$ implies $\beta \gamma \to \beta \gamma'$, hence $S \to^* \beta \gamma \to \beta' \gamma'$. In the remaining cases, we observe $S \to^* x_i \to x_i'$ as we did at the beginning of our case analysis. As a result, the same condition still holds.
 - \square The rules $Z \to ZS\#$ and $Z \to R\#$ are not applicable (α does not contain Z).
 - □ If $\alpha \to \alpha'$ used the rule $R\# \to R$, γ must have been empty. If m=0, the fifth condition holds (dead end). Otherwise, we put n':=n+1, $w_{n'}:=\beta$, $\beta':=\epsilon$, $\gamma':=x_1$, m':=m-1, and decrease indices of x_i by one, that is, $x_1':=x_2$, $x_2':=x_3$, ..., $x_{m'}':=x_m$. Since $w_{n'}=\beta=\beta\gamma\in \mathbf{T}^*$ and $S\to^*\beta\gamma$, we have $w_{n'}\in \mathbf{L}$. The same condition holds.
 - If $\alpha \to \alpha'$ used the rule $R \# \to \epsilon$, γ must have been empty. If m = 0, we get $\alpha = w_1 w_2 \dots w_n \beta$ and $\beta \in \mathbf{L}$, hence the fourth condition $\alpha' \in \mathbf{L}^*$ gets satisfied. If m > 0, the last condition now holds (because # stayed at the end of α' , at the same time R disappeared, and Z did not appear).
 - □ If $\alpha \to \alpha'$ used a rule of the form $Rt \to tR$ $(t \in \mathbf{T})$, we have $\delta \in (\mathbf{T} \cup \mathbf{N})^*$ such that $\gamma = t\delta$. We put $\beta' := \beta t$ and $\gamma' := \delta$. As $\beta \gamma = \beta t \delta = \beta' \gamma'$, the same condition holds.

• $\alpha \in \mathbf{L}^*$

- \square No rule is applicable (α contains only terminals). The step $\alpha \to \alpha'$ did not happen.
- $(\exists \sigma \in (\mathbf{T} \cup \mathbf{N})^*)(\alpha = \sigma R)$
 - \square No matter which rule was applied, it happened within σ . No rule could match the final R. The same condition holds for $\alpha' = \sigma' R$.

- $(\exists \omega \in (\mathbf{T} \cup \mathbf{N} \cup \{\#\})^*)(\alpha = \omega \#)$
 - ☐ If $\alpha \to \alpha'$ used a rule from **P**, the same condition still holds because the nonterminal # is not on the left side of any rule from **P** and neither Z nor R is on the right side of any rule from **P**.
 - □ The rules $Z \to ZS\#$, $Z \to R\#$, $R\# \to R$, $R\# \to \epsilon$, and $Rt \to tR$ are not applicable (α contains neither Z nor R).

Lemma 3. Let $w_1, w_2, \ldots, w_n \in \mathbf{L}$. Then \mathbf{G}^* can derive $Zw_1 \# w_2 \# \ldots w_n \#$.

Proof. Induction on n. The base case holds because $Z \to^* Z$ in zero steps. Now assume $Z \to^* Zw_1 \# w_2 \# \dots w_n \#$ and $S \to^* w_{n+1}$. We start with the rule $Z \to ZS\#$. We observe $ZS\# \to^* Zw_1 \# w_2 \# \dots w_n \# S\#$ and $Zw_1 \# w_2 \# \dots w_n \# S\# \to^* Zw_1 \# w_2 \# \dots w_n \# w_{n+1} \#$. From transitivity, we obtain $Z \to^* Zw_1 \# w_2 \# \dots w_n \# w_{n+1} \#$.

Proof of Theorem 1. We need to show that the language of \mathbf{G}^* equals \mathbf{L}^* . For " $\subseteq \mathbf{L}^*$ ", use Lemma 2 and observe that, if \mathbf{G}^* generates $\alpha \in \mathbf{T}^*$, then $\alpha \in \mathbf{L}^*$ because all the remaining options require α to contain a nonterminal. For " $\supseteq \mathbf{L}^*$ ", use Lemma 3. If $w \in \mathbf{L}^*$, there are $w_1, w_2, \ldots, w_n \in \mathbf{L}$ such that $w_1w_2 \ldots w_n = w$. We see $Zw_1\#w_2\#\ldots w_n\# \to R\#w_1\#w_2\#\ldots w_n\#$. Since all w_i are made of terminals only, by repeated application of $R\# \to R$ and $Rt \to tR$ (for all $t \in \mathbf{T}$) we get $R\#w_1\#w_2\#\ldots w_n\# \to *w_1w_2\ldots w_nR\#$. Finally, we get $w_1w_2\ldots w_nR\# \to *w_1w_2\ldots w_n=w$ by a single application of $R\# \to \epsilon$. We conclude that \mathbf{G}^* generates w.