6.2. ЗАДАНИЕ 4 УМНОЖЕНИЯ ЧИСЕЛ С ФИКСИРОВАННОЙ ЗАПЯТОЙ

- 1. В разрядной сетке длиной в байт (один разряд знаковый и семь цифровых) выполнить операцию умножения заданных чисел *А* и *В* со всеми комбинациями знаков, используя метод умножения в дополнительных кодах с применением коррекции. При выполнении операции использовать способ умножения с поразрядным анализом множителя, начиная от его младших разрядов со сдвигом СЧП вправо. Результаты представить в десятичной системе и проверить их правильность.
- 2. В разрядной сетке длиной в байт (один разряд знаковый и семь цифровых) выполнить операцию умножения заданных чисел *А* и *В* со всеми комбинациями знаков, используя метод умножения в дополнительных кодах без применения коррекции. При выполнении операции использовать способ умножения с поразрядным анализом множителя, начиная от его младших разрядов со сдвигом СЧП вправо. Результаты представить в десятичной системе и проверить их правильность.

Варианты заданий приведены в табл. 4 Приложения 1.

6.2.1. Основные положения

Использование метода умножения в дополнительных кодах базируется на представлении отрицательных операндов и участии их в операции в дополнительном коде. В отличие от метода умножения в прямых кодах не требуется выполнять преобразование отрицательных операндов из дополнительного кода в прямой, а отрицательного результата — из прямого кода в дополнительный. Результат операции получается в коде, зависящем от знака, т.е. положительный — в прямом, а отрицательный — в дополнительном. Знаковые разряды операндов участвуют в операции умножения точно так же, как и цифровые. Это означает, что в сложении с СЧП вступают все разряды множимого, включая знаковый, и в анализе разрядов множителя с целью определения последующих действий над СЧП участвует знаковый разряд, т.е. на него производится умножение, как и на любой цифровой.

1. Умножения в дополнительных кодах с применением коррекции.

При использовании традиционного метода умножения в дополнительных кодах только в случае положительных операндов результат получается в явном виде, в остальных же случаях он требует коррекции.

$$C = [A_{\pi p.}] [B_{\pi p.}].$$

При A<0, B>0 получаем псевдо-произведение:

$$C^* = [A_{\text{доп.}}] \cdot [B_{\text{пр.}}] = [2^n - |A|] \cdot [B_{\text{пр.}}] = 2^n \cdot B_{\text{пр.}} - |A| B_{\text{пр.}}$$

Должно быть: $C = 2^{2n} - |A| B_{\text{пр.}}$

При A>0, B<0:

$$C^* = A_{\pi p} \cdot [2^n - |B|] = 2^n \cdot A_{\pi p} - A_{\pi p} \cdot |B|.$$

Должно быть: $C = 2^{2n} - A_{np} \cdot |B|$.

При A < 0, B < 0:

$$C^* = (2^n - |A|) \cdot (2^n - |B|) = 2^{2n} - 2^n \cdot |B| - 2^n \cdot |A| + |A| \cdot |B|.$$

Должно быть: C = |A| |B|.

Сравнение псевдо-произведения с правильным результатом показывает, что при отрицательном множителе необходимо из старших разрядов СЧП вычесть множимое, а при отрицательном множителе из старших разрядов СЧП вычесть множимое. При отрицательных сомножителях, необходимы обе коррекции. Но из-за того, что для множителя используется сдвигающий регистр, к концу операции в регистре В хранятся старшие разряды СЧП. Поэтому применяются два вида коррекции: а) коррекция в ходе перемножения операндов; б) коррекция окончательного результата. Коррекция первого вида имеет место при отрицательном множимом и состоит в модифицированном сдвиге СЧП вправо, при котором в освобождающийся старший разряд СЧП вносится единица. Коррекция второго вида производится при отрицательном множителе и состоит в вычитании множимого из старших разрядов СЧП, которое может сводиться к сложению с дополнением множимого.

При умножении на младшие нули множителя в случае отрицательного множимого сдвиг нулевой СЧП производится обычным образом (не модифицированный), т.е. в освобождающийся старший разряд вносится нуль.

Пример.
$$A = 15$$
, $B = 13$.

Для иллюстрации метода используется укороченная по сравнению с заданием разрядная сетка для операндов (один разряд знаковый и 4 — цифровых) и результата (один разряд знаковый и 9 — цифровых). При выполнении примеров выделен анализируемый на каждом шаге разряд множителя, а также показано последовательное вытеснение множителя при его сдвиге вправо и заполнение его освобождающихся старших разрядов младшими разрядами СЧП. Таким образом, в начале операции СЧП занимает пять двоичных разрядов, а в конце — результат представлен десятью разрядами.

Представление операндов в разрядной сетке:

$$[+A]_{\text{пр}} = 0.1111;$$
 $[-A]_{\text{доп}} = 1.0001;$ $[+B]_{\text{пр}} = 0.1101;$ $[-B]_{\text{доп}} = 1.0011.$

а) Множимое отрицательное (A < 0), множитель положительный (B > 0):

№ шага	Операнды и действия	СЧП (старшие разряды)	Множитель и СЧП (младшие разряды)	Пояснения
1	2	3	4	5
0	СЧП	00000	01101	Обнуление старших разрядов
			_	СЧП
1	$[A]_{ m доп}$	<u>10001</u>		Сложение СЧП с множимым
	СЧП	10001	01101	Модифицированный сдвиг
	$C\Psi\Pi\rightarrow$	1 1 0 0 0	1 0 1 1 0	СЧП и множителя вправо
2	$C\Psi\Pi\rightarrow$	11100	01 01 1	Модифицированный сдвиг
			1	СЧП и множителя вправо
3	$[A]_{ m доп}$	10001		Сложение СЧП с множимым
	СЧП	01101	01 011	Модифицированный сдвиг
	$C\Psi\Pi \rightarrow$	10110	10101	СЧП и множителя вправо
4	$[A]_{ extsf{don}}$	10001	·	Сложение СЧП с множимым
	СЧП	00111	101 01	Модифицированный сдвиг
	$C\Psi\Pi\rightarrow$	10011	11010	СЧП и множителя вправо
5	СЧП→	1 1 0 0 1	11101	Модифицированный сдвиг
				СЧП и множителя вправо

Полученный результат отрицателен и представлен в дополнительном коде:

$$[C]_{\partial on} = [A]_{\partial on} \times [B]_{np} = 1.100111101.$$

Для проверки правильности результата необходимо предварительно перевести его в прямой код:

$$[C]_{np} = (1.011000011)_2 = (-195)_{10}.$$

6)
$$A > 0, B < 0$$
:

1	2	3	4	5
0	СЧП	00000	10011	Обнуление старших разрядов СЧП
1	$[A]_{\pi p}$	01111		Сложение СЧП с множимым
	СЧП	01111	10011	
	СЧП→	00111	1 1 0 0 1	Сдвиг СЧП и множителя вправо
2	$[A]_{\pi p}$	01111		Сложение СЧП с множимым
	СЧП	10110	1 1 0 0 1	
	СЧП→	01011	0 1 1 0 0	Сдвиг СЧП и множителя вправо
3	СЧП→	00101	101 10	Сдвиг СЧП и множителя вправо
4	СЧП→	00010	1 1 0 1 1	Сдвиг СЧП и множителя вправо
5	$[A]_{\pi p}$	01111		Сложение СЧП с множимым
	СЧП	10001	11011	
	СЧП→	01000	11101	Сдвиг СЧП и множителя вправо
6	[–А]доп	10001		Коррекция результата сложение
	СЧП	1 1 0 0 1	11101	старших разрядов СЧП с дополне-
				нием множимого

Полученный результат отрицателен и представлен в дополнительном коде:

$$[C]_{\partial on} = [A]_{np} \times [B]_{\partial on} = (1.100111101)_2,$$

 $[C]_{np} = (1.011000011)_2 = (-195)_{10}.$

в) Оба операнда отрицательные (A < 0, B < 0):

		1		. ,
1	2	3	4	5
0	СЧП	$0\ 0\ 0\ 0\ 0$	10011	Обнуление старших разрядов СЧП
1	$[A]_{ extsf{don}}$	10001		Сложение СЧП с множимым
	СЧП	10001	10011	Модифицированный сдвиг СЧП и
	$C\Psi\Pi\rightarrow$	11000	1 1 0 0 1	множителя вправо
2	$[A]_{ m доп}$	<u>10001</u>		Сложение СЧП с множимым
	СЧП	01001	1 1 0 0 1	Модифицированный сдвиг СЧП и
	$C\Psi\Pi\rightarrow$	10100	11 10 0	множителя вправо
3	СЧП→	11010	0 1 1 1 0	Модифицированный сдвиг СЧП и
			_	множителя вправо
4	$C\Psi\Pi\rightarrow$	11101	0 0 1 1 1	Модифицированный сдвиг СЧП и
				множителя вправо
5	$[A]_{ m доп}$	<u>10001</u>		Сложение СЧП с множимым
	СЧП	01110	0 0 1 1 1	Модифицированный сдвиг СЧП и
	$C\Psi\Pi\rightarrow$	10111	00011	множителя вправо
6	$[\!-\!\!A]_{\Pi\mathfrak{p}}$	<u>0 1 1 1 1</u>		Коррекция результата сложение
	СЧП	00110	00011	старших разрядов СЧП с дополне-
				нием множимого

Полученный результат положителен и представлен в прямом коде:

$$[C]_{np} = [A]_{\partial on} \times [B]_{\partial on} = (0.011000011)_2 = (195)_{10}.$$

2. Умножение в дополнительных кодах без коррекции.

Наряду с традиционным методом умножения в дополнительных кодах, используемом в ЭВМ общего назначения и требующим коррекции результата, достаточно широкое применение в микроЭВМ находит метод Бута, при котором не требуется выполнять коррекцию. Особенность метода состоит в выполнении сложения или вычитания СЧП и множимого на каждом шаге умножения в зависимости от того, как после сдвига вправо изменяется младший разряд множителя. При его изменении с единицы на ноль производится сложение СЧП с множимым, а при изменении с нуля на единицу — вычитание множимого из СЧП, которое может быть реализовано как сложение с дополнением множимого. Если младший разряд множителя при сдвиге не изменяется, то на данном шаге не производится сложения (вычитания), а выполняется только сдвиг СЧП и множителя вправо.

При реализации этого метода происходит чередование сложений и вычитаний множимого и СЧП, вследствие чего старший разряд СЧП в явном виде представляет его знак. При сдвиге СЧП вправо значение знакового разряда сохраняется (арифметический сдвиг).

Необходимо отметить, что:

- а) При умножении на младшую единицу множителя производится вычитание множимого из СЧП, поскольку считается, что происходит изменение младшего разряда множителя с нуля на единицу.
- б) При умножении на младшие нули множителя осуществляется сдвиг нулевой СЧП и множителя вправо до появления единицы в младшем разряде множителя, после чего производится вычитание множимого из СЧП.

Пример.
$$A = 11, B = 15.$$

Представление операндов в разрядной сетке:

$$[+A]_{\text{пр}} = 0.1011; \quad [-A]_{\text{доп}} = 1.0101; \\ [+B]_{\text{п}} \ _{\text{p}} = 0.1111; \quad [-B]_{\text{доп}} = 1.0001.$$

а) Оба операнда положительные (A > 0, B > 0):

0	СЧП	00000	0 1 1 1 1	Обнуление старших разрядов СЧП
1	[–А]доп	10101		Младший разряд множителя равен 1: вы-
	СЧП	10101	01111	читание множимого из СЧП
	СЧП→	11010	1 0 1 1 1	Сдвиг СЧП и множителя вправо
2				При сдвиге младший разряд не изменился
	$C\Psi\Pi\rightarrow$	11101	01 01 1	Сдвиг СЧП и множителя вправо
3				При сдвиге младший разряд не изменился
	$C\Psi\Pi \rightarrow$	11110	10101	Сдвиг СЧП и множителя вправо
4				При сдвиге младший разряд не изменился
	$CY\Pi \rightarrow$	11111	0 1 0 1 0	Сдвиг СЧП и множителя вправо
5	$[A]_{\pi p}$	01011		При сдвиге младший разряд множителя
	СЧП	01010	01010	изменился с 1 на 0: сложение СЧП с
			•	множимым
	$CY\Pi \rightarrow$	00101	00101	Сдвиг СЧП и множителя вправо

Полученный результат представлен в прямом коде и равен:

$$[C]_{np} = 2^0 + 2^2 + 2^5 + 2^7 = 1 + 4 + 32 + 128 = 165.$$

Проверка: $C = 11 \times 15 = 165$.

б) Оба операнда отрицательные (A < 0, B < 0):

1	2	3	4	5
0	СЧП	00000	10001	Обнуление старших разрядов СЧП
1	$[\!-\!\!A]_{\pi p}$	01011		Вычитание множимого из СЧП
	СЧП	01011	10001	
	$C\Psi\Pi\rightarrow$	00101	1 1 0 0 0	Сдвиг СЧП и множителя вправо
2	$[A]_{ m доп}$	10101		Сложение СЧП с множимым
	СЧП	11010	1 1 0 0 0	
	$C\Psi\Pi\rightarrow$	11101	01 100	Сдвиг СЧП и множителя вправо
3	СЧП→	11110	101 10	Сдвиг СЧП и множителя вправо
4	СЧП→	11111	01011	Сдвиг СЧП и множителя вправо
5	$[-A]_{\pi p}$	01011	_	Сложение СЧП с множимым
	СЧП	01010	0 1 0 1 1	
	$C\Psi\Pi\rightarrow$	00101	00101	Сдвиг СЧП и множителя вправо

Полученный результат положителен и представлен в прямом коде: $[C]_{np} = [A]_{\partial on} \times [B]_{\partial on} = (0.010100101)_2 = (165)_{10}.$