

2.7 Problems	
2.1	$SE = \frac{S.d.}{\sqrt{N}} = \frac{3.12}{3} = 1.04$
	$Variance = (s.d.)^2 = 9.7344$
2.2	$M_{\text{ean}} = \frac{S_{\text{LM}}}{N} = \frac{399.851}{16} = 24.99$
	Std. Dev. = \(\overline{n} \) (SE Mean) = 4 (0.159) = 0.636
2.3	
Chapter 3	
3,55	a) $F_0 = 5.535 \Rightarrow P(F > F_0) = 0.0036$
	Ho: Mi = Aj for all
	Ha: $\mathcal{H}_i \neq \mathcal{H}_j$ for at least one
	$C = 0.05 < P(F > F_0) = 0.0036$, so we can reject the null hypothesis
	b) $E(MS_E) = \sigma^2$
	$MS_{\varepsilon} = \frac{SS_{\varepsilon}}{N-a} = \frac{0.0876}{20} = 0.00438$
	E(MS _{trt}) = r2 + n Tr2
	= 0.024244
	$\sigma_{\tau}^2 = \frac{MS_{++} - MS_{\epsilon}}{n}$
	= 0,0139728
	$C) L = \frac{1}{N} \left(\frac{MS_{+r+}}{MS_{\varepsilon}} \cdot \frac{1}{F_{\alpha z_1,\alpha^{-1},N-\alpha}} - 1 \right)$
	$= \frac{1}{5} \left(\frac{5.535}{3.51} - 1 \right)$
	= 0.1154
	$U = \frac{1}{n} \left(\frac{MS_{fr+}}{MS_{\varepsilon}} \cdot \frac{1}{F_{1-NQ_{\varepsilon}}a_{-1}, N-a} - 1 \right)$
	$= \frac{1}{5} \left(\frac{5.535}{5.8} - 1 \right)$
	= -0.009
	95% confidence interval for $\frac{\overline{V_1^2}}{\overline{V_1^2} + \overline{V_2^2}}$: $\frac{L}{1+L} \leq \frac{\overline{V_1^2}}{\overline{V_1^2} + \overline{V_2^2}} \leq \frac{U}{1+U}$
	0.1566 ±

3.54	A)
	This is a random effects experiment because we are randomly pooling looms, which is assumed to
	be the source of variation.
	$SS_{frt} = 0.0576$, $df_{frt} = 4$
	$\Rightarrow MS_{trt} = \frac{0.0576}{4} = 0.0144$
	$SS_E = 0.58$, $df_E = 20$
	$\Rightarrow Ms_{E} = \frac{0.58}{20} = 0.029$
	$F_0 = \frac{MS_{n+}}{MS_E} = 0.497$
	$P(F>F_o)=0.738$
	in no rejection
	$b) \qquad \nabla_{\tau^2} = \frac{MS_{t+1} - MS_{\varepsilon}}{n}$
	Method of moment procedure ginc a regative T_1^2 , so the estimated T_1^2 is 0
	$C)$ $MS_{E} = \nabla^{\lambda} = 0.029$
3. l	$F_{0.025,3.5} = 7.76$
	$\overline{F}_{0.975, 3.5} = \frac{1}{F_{0.025, 5.3}} = \frac{1}{14.88} = 0.0672$
	Fo = 3.26 is within the 95% CI, so me cannot reject the null hypothesis
3.2	Δ = 6
	N = 3
3.3	$MS_{t+1} = \frac{SS_{t+1}}{df_{t+1}} = \frac{36.15}{3} = 12.05$
	SS = SS - SS trt = 159,89
	df = 19-3 = 16
	$MS_{e} = \frac{159.89}{16} = 9.993/25$
	$\mathcal{F}_0 = \frac{12.05}{9.99} = 1.21$