Agenda for today

- Final project arrangements
- Machine learning for IR
 - Informal discussion of learning: classification, ranking
 - Considerations for use in standard IR tasks
- D. Sculley. 2010. Combined Regression and Ranking.
 In KDD 2010: Proceedings of the 16th ACM SIGKDD International Conference on Data Mining and Knowledge Discovery
 - Paper overview by Alireza

Final project arrangements

• Final reports

- Write it up like a conference paper
- Probably 4-8 pages in length
- Due by midnight (some timezone) Monday, Dec. 3, 2012

• Final presentations

- Tuesday, Dec. 4: Andrew, Tomer, Hamid
- Thursday, Dec. 6: Golnar, Khoa, Masoud
- 20 minute presentation + 5 minutes for questions
- Send us your slides prior to your talk

Machine learning for IR

- Not a big ML culture in information retrieval
 - In fact, some lack of interest in supervised learning ("hill climbing")
- Far more of a history of clustering, similarity and centroids
 - Derive measures for any given pair or set of documents
 - Does not require reference labels; hence generalizes straightforwardly to novel ad hoc queries
- Yet we have seen some machine learning approaches
 - e.g., for query suggestion, reformulation
- Becoming more a part of the standard IR toolbox

Binary classification

- Learn models to assign one of two labels (+1/-1)
- Map each example into multi-dimensional feature space
- Parameterize model to project from point in feature space to score
 - e.g., dot project of feature vector and weight vector
- Assign class based on score
- Many methods for learning models (Xubo's class)
 - Neural nets, multi-layer perceptron
 - Naive Bayes
 - Support Vector Machines
- Beyond classification, learning ranking and regression

Standard SVM figure

Standard considerations

- Most methods expect some supervision
 - Labeled examples in training data, for learning model
- Most methods involve some kind of regularization
 - To avoid overtraining and deal with outliers
- Generalize to multi-class learning
 - Brute force: combine k one-vs-many classifiers
- Feature representation is the critical consideration
 - Also important for scalability to large data sets
- Often general numerical optimization methods used

Learning for ad-hoc retrieval

- Can we treat this task as binary classification?
 - Yes: query-relevant documents versus the rest
- Where does the supervision come from?
 - We've discussed this quite a bit in this class
 - Derive from user behavior, e.g., click-through from logs
- Features must generalize to unseen or seldom seen queries
 - Vector-space model well suited for ML of weights
 - Also look at distances (between query and documents, documents and other documents in set)
 - TF-IDF, log-likelihood, etc. (alternative to hand-tuning)

Feature engineering for text classification

- Words, word-classes, substrings of words
- Document regions (or zones), e.g., title, header, etc.
- Raw factors that would typically be used to calculate similarity
 - Cosine distance from query
 - Cosine distance from query expansion set
 - Proximity between terms
- May also use kernel function to achieve non-linear dependencies
- Rather than hand tuning some formula, let it be learned

Scalability

- Many of the most interesting IR problems are web scale
- IR field focused on large scale problems for awhile
 - ML researchers, less so
- Lots of data often trumps better learning from the data
 - e.g., generative language models
- Good approximations and efficient algorithms important
 - Major improvements in recent years to deal with data
 - e.g., distributed learning, sampling methods, etc.

Next

- Paper overview by Alireza
 - D. Sculley. 2010. Combined Regression and Ranking.
 In KDD 2010: Proceedings of the 16th ACM SIGKDD
 International Conference on Data Mining and Knowledge
 Discovery

Combined Regression and Ranking

Thanks to D.Sculley for sharing his slides

Alireza Bayestehtashk

November 24, 2012

Motivation

Some applications require both ranking and regression together

Predicting Star Ratings

Motivation

Some applications require both ranking and regression together

- Predicting Star Ratings
- Sponsored Search Advertising
 - Overture : bid
 - ► Google : bid × **pCTR**

Regression

$$eta_{opt} = \underset{eta}{\operatorname{argmin}} \{ \underbrace{L(eta, D)}_{AverageLoss} + \lambda \times \underbrace{r(eta)}_{Regularization} \}$$

where

$$L(\beta, D) = \frac{1}{|D|} \sum_{(a, y_a, q_a) \in D} \underbrace{\ell(y_a, f(\beta, a))}_{Loss}$$

- Loss: L2-norm, Huber, Logistic and Hinge
- ► Regularization : L1-norm, L2-norm

Ranking

$$eta_{opt} = \underset{eta}{\operatorname{argmin}} \underbrace{L(eta, P)}_{AverageLoss} + \underbrace{\lambda r(eta)}_{Regularization}$$

where

$$L(\beta, P) = \frac{1}{|P|} \sum_{((a, y_a, q), (b, y_b, q)) \in P} \ell(t(y_a - y_b), f(\beta, a - b))$$

Transform function:

- ► Logistic : $t(y) = \frac{1+y}{2}$
- ▶ Squared : t(y) = y
- $\blacktriangleright \mathsf{Hinge}(\mathsf{SVM}) : t(y) = \mathit{sign}(y)$

Combined Regression and Ranking(CRR)

$$\beta_{opt} = \underset{\beta}{\operatorname{argmin}} \{ \alpha L(\beta, D) + (1 - \alpha)L(\beta, P) + \lambda r(\beta) \}$$

Solving CRR

Sampling Methods

- Samping Without an Index(rejection sampling)
 - D does not fit in main memory
 - ▶ The expected number of rejected pairs per call is $O(\frac{|D|^2}{|P|})$
- Indexed Sampling
 - Fast
 - ightharpoonup O(log|D| + log|Y|) computations

Samping Without an Index

- 1. Read two points $((a, y_a, q_a), (b, y_b, q_b))$ from stream
- 2. Accept if $y_a \neq y_b$ and $q_a = q_b$, otherwise Goto (1)

Indexed Sampling

- Q is the set of unique values q in D
- Y[q] is the set of unique y values for q in D
- ▶ P[q][y] is the set of examples $(x, \acute{y}, \acute{q}) \in D$ with $\acute{q} = q$ and $\acute{y} = y$
 - 1. select q uniformly at random from Q
 - 2. select y_a uniformly at random from Y[q]
 - 3. select y_b uniformly at random from $Y[q] y_a$
 - 4. select (a, y_a, q) uniformly at random from $P[q][y_a]$
 - 5. select (b, y_b, q) uniformly at random from $P[q][y_b]$
 - 6. return $((a, y_a, q), (b, y_b, q))$

Stochastic gradient descent method

- Update step
 - Squared loss:

$$\beta_i \leftarrow (1 - \eta_i \lambda)\beta_{i-1} + \eta_i x(y - \langle \beta_{i-1}, x \rangle)$$

Logistic loss:

$$\beta_i \leftarrow (1 - \eta_i \lambda) \beta_{i-1} + \eta_i x \left(y - \frac{1}{1 + e^{\beta_{i-1}, x}} \right)$$

- Learning rate:
 - ho $\eta_i = c$

Experimental Results

- ► Data sets:
 - RCV1 text classification
 - ► LETOR learning to rank benchmark data
 - Click prediction data for sponsored search (private)
- Comparison methods:
 - Regression-only, Ranking-only
 - Parameters tuned with cross validation on training data or on separate validation data
- Evaluation metrics:
 - Mean Squared Error (MSE)
 - ► AUC Loss (1 Area Under ROC Curve)
 - Normalized Discounted

RCV1

- Tested 40 per-topic tasks(from the 103 topics)
- ▶ 780k training examples
- 23k test examples
- ► 50k sparse features
- Some topics contain extreme minority class distributions
- ▶ Used logistic loss on {0,1} targets

RCV1 Regression Results

RCV1 Ranking Results

LETOR

- ► Tasks with multiple relevance levels: 1,2 or 3 stars
- Squared loss

LETOR Ranking Results

LETOR Regression Results

Click Prediction Data set

- ► Test data set of several million ads
- Labels of "clicked" and "not clicked"
- Very high dimensional feature space
- Logistic loss

Click Prediction Results

Method	Mean Sq. Error	AUC Loss
Ranking-only	0.0935	0.1325
Regression-only	0.0840	0.1334
CRR	0.0840	0.1325

Tradeoff Parameter

