

General information

Designation

Swietenia macrophylla (L)

Typical uses

Furniture; cabinetwork; interior trim; pattern making; boat construction; fancy veneers; musical instruments; paneling; turnery; carving.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O					
Material family	Natural				
Base material	Wood (tro	Wood (tropical)			
Renewable content	100	· · · · · ·			
Composition detail (polymers and natura	al materials)				
Wood	100			%	
Price					
Price	* 3.04	-	4.88	USD/lb	
Price per unit volume	* 87.2	-	174	USD/ft^3	
Physical properties					
Density	0.0166	-	0.0206	lb/in^3	
Mechanical properties					
Young's modulus	* 1.48	-	1.81	10^6 psi	
Yield strength (elastic limit)	* 5.77	-	7.05	ksi	
Tensile strength	* 9.62	-	11.8	ksi	
Elongation	* 1.75	-	2.14	% strain	
Compressive strength	6.11	-	7.45	ksi	
Flexural modulus	1.35	-	1.65	10^6 psi	
Flexural strength (modulus of rupture)	10.4	-	12.6	ksi	
Shear modulus	* 0.109	-	0.135	10^6 psi	
Shear strength	1.1	-	1.35	ksi	
Bulk modulus	* 0.0609	-	0.0682	10^6 psi	
Poisson's ratio	* 0.35	-	0.4		
Shape factor	5.3				
Hardness - Vickers	* 3.34	-	4.08	HV	
Hardness - Brinell	* 43	-	52.6	НВ	
Hardness - Janka	* 751	-	917	lbf	

Mahogany (swietenia macrophylla) (I)

TEDUPIACK					
Fatigue strength at 10^7 cycles	* 3.1 - 3.8 ksi				
Mechanical loss coefficient (tan delta)	* 0.0074 - 0.0091				
Differential shrinkage (radial)	0.11 - 0.15 %				
Differential shrinkage (tangential)	0.17 - 0.22 %				
Radial shrinkage (green to oven-dry)	2.7 - 3.3 %				
Tangential shrinkage (green to oven-dry)	3.7 - 4.5 %				
Volumetric shrinkage (green to oven-dry)	* 11 - 18 %				
Work to maximum strength	0.562 - 0.688 ft.lbf/in^3				
Impact & fracture properties					
Fracture toughness	* 3.28 - 4 ksi.in^0.5				
Thermal properties					
Glass temperature	171 - 216 F				
Maximum service temperature	248 - 284 F				
Minimum service temperature	* -99.49.4 F				
Thermal conductivity	* 0.133 - 0.162 BTU.ft/hr.ft^2.F				
Specific heat capacity	0.396 - 0.408 BTU/lb.F				
Thermal expansion coefficient	* 1.11 - 6.11 µstrain/F				
Electrical properties	* 0.00a40 7.07a40ahm in				
Electrical resistivity	* 2.36e13 - 7.87e13 μohm.in				
Dielectric constant (relative permittivity)	* 5.24 - 6.4				
Dissipation factor (dielectric loss tangent)	* 0.059 - 0.072 * 10.2 - 15.2 V/mil				
Dielectric strength (dielectric breakdown)	* 10.2 - 15.2 V/mil				
Magnetic properties					
Magnetic type	Non-magnetic				
Optical properties					
Transparency	Opaque				
Critical materials risk					
Contains >5wt% critical elements?	No				
Durability					
Water (fresh)	Limited use				
Water (resit)	Limited use				
Weak acids	Limited use				
Strong acids	Unacceptable				
Weak alkalis	Acceptable				
Strong alkalis	Unacceptable				
Strong airans	Unacceptable				

Mahogany (swietenia macrophylla) (I)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 575	-	636	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.1	-	0.111	lb/lb
Fine machining energy (per unit wt removed)	* 3.91e3	-	4.33e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.683	-	0.755	lb/lb
Grinding energy (per unit wt removed)	* 7.62e3	-	8.43e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.33	-	1.47	lb/lb

Recycling and end of life

yy	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse		
Reference		
Shape		