Exercices (2 septembre 2024)

Exercice 1.1 Représenter les points M_k d'affixes z_k pour $k=1,\ldots,5$ avec

$$z_1 = -2$$
, $z_2 = 2i$, $z_3 = 2 + 2i$, $z_4 = 2 - 2i$, $z_5 := -2 - 2i$.

Exercice 1.2 Montrer que les diagonales d'un parallélogramme se coupent en leur milieu.

Exercice 1.3 Déterminer les formes algébriques de :

1.
$$z = \frac{1}{1+i}$$
, 2. $z = \frac{1+i}{1-i}$,

1.
$$z = \frac{1}{1+i}$$
,
2. $z = \frac{1+i}{1-i}$,
3. $z = (1+i)^4$,
4. $z = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$.

Exercice 1.4 Résoudre les équations suivantes :

$$1. z + 2i = iz - 1, 2. (3 + 2i)(z - 1) = i,$$

1.
$$z + 2i = iz - 1$$
,
2. $(3 + 2i)(z - 1) = i$,
3. $(2 - i)z + 1 = (3 + 2i)z - i$,
4. $(4 - 2i)z^2 = (1 + 5i)z$.

Exercice 1.5 Déterminer l'ensemble des points M d'affixe z tels que les points d'affixes z, z^2, z^4 sont alignés?

Exercice 1.6 On considère le nombre complexe $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

- 1. Calculer z^2 puis z^3 .
- En déduire z⁴, z⁵ et z⁶.
 En déduire l'inverse z⁻¹ de z.
- 4. En déduire aussi la valeur de $(1+i\sqrt{3})^5$.
- 5. En déduire finalement les valeurs de

$$(1+i\sqrt{3})^5 + (1-i\sqrt{3})^5$$
 et $(1+i\sqrt{3})^5 - (1-i\sqrt{3})^5$.

Exercice 1.7 Montrer que si $z \in \mathbb{C}$ satisfait |1+iz| = |1-iz|, alors $z \in \mathbb{R}$.

Exercice 1.8 1. Montrer que

$$\forall z, w \in \mathcal{C}, \quad |z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).$$

- 2. En déduire que, dans un parallélogramme, la somme des carrés des cotés est égale à la somme des carrés des diagonales a.
- a. Si z_1, z_2, z_3, z_4 désignent les affixes des sommets, on pourra poser $z = z_2 z_1$ et $w = z_4 z_1$.

Exercice 1.9 Calculer $\sum_{k=0}^{7} (1+i)^k$.

31

Exercice 1.10 Soit $z \in \mathbb{C}$. Calculer $S_n := \sum_{k=0}^n kz^k$ en développant $(1-z)S_n$.

Exercice 1.11 On pose $z = 2e^{i\pi/4}$. Déterminer les formes exponentielles de \overline{z} , z^{-1} , -z et iz. et les représenter tous ces nombres dans le plan complexe.

Exercice 1.12 Donner la forme exponentielle des nombres complexes suivants :

$$1. z = 1.$$

$$2. z = -1.$$

$$3. z = i.$$

$$4. z = -i$$

$$5. z = 1 + i$$

6.
$$z = 1 - i$$
,

1.
$$z = 1$$
,
2. $z = -1$,
4. $z = -i$,
5. $z = 1 + i$,
7. $z = -1 + i\sqrt{3}$,
8. $z = 1 + i\sqrt{3}$.

8.
$$z = 1 + i\sqrt{3}$$

Exercice 1.13 Utiliser les formules d'Euler pour linéariser les expressions suivantes :

$$1.\cos^{5}(x)$$

$$2.\sin^5(x),$$

$$3.\cos^2(3x)\sin^2(5x),$$

$$4.\cos^2(x)\sin^4(x).$$

Exercice 1.14 Montrer que $e^{i\frac{\pi}{12}} = \frac{e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{4}}}$. En déduire les valeurs de $\cos(\pi/12)$ et

Exercice 1.15 Déterminer la forme exponentielle des nombres suivants :

1.
$$z = (1+i)^9$$

$$2. z = (1 - i)^7,$$

1.
$$z = (1+i)^9$$
, 2. $z = (1-i)^7$, 3. $z = \frac{(1+i)^9}{(1-i)^7}$.

Exercice 1.16 Déterminer la forme exponentielle de

1.
$$z = 1 + e^{ia} \text{ avec } |a| \le \pi$$
,

2.
$$z = e^{ia} + e^{ib}$$
 avec $|b - a| \le \pi$.

Exercice 1.17 1. Montrer que si $x \not\equiv 0 \mod 2\pi$, alors

$$\sum_{k=0}^{n} e^{ikx} = \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} e^{i\frac{nx}{2}}.$$

2. En déduire $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.

Exercice 1.18 Représenter dans le plan complexe l'ensemble des points M dont l'affixe \boldsymbol{z} vérifie la condition suivante : 1. |z - 1| = |z - 3 - 2i|, 2. |z - 3| = |z - 1 - i|, 3. $|z - 2 + i| = \sqrt{5}$, 4. |(1 + i)z - 2 - i| = 2, 5. $|z + 3 - i| \le 2$, 6. $|z + 3 - i| \ge |z|$,

1.
$$|z-1| = |z-3-2i|$$

$$|z-3| = |z-1-i|,$$

3.
$$|z-2+i|=\sqrt{5}$$
.

4.
$$|(1+i)z-2-i|=2$$
.

5.
$$|z+3-i| < 2$$

6.
$$|z+3-i| > |z|$$

7.
$$|z| < |z+3-i| < 2$$
.

Exercice 1.19 1. Montrer que si $a, b \in \mathbb{R}$ avec a > 0, alors

$$arg(a+ib) \equiv arctan(b/a) \mod 2\pi$$
.

- 2. Calculer z := (1+i)(1+2i)(1+3i).
- 3. En déduire que $\arctan(1) + \arctan(2) + \arctan(3) = \pi$.

Exercice 1.20 Déterminer les racines carrées des nombres complexes suivants :

$$1. z = i.$$

$$2. z = 5 + 12i$$

3.
$$z = 1 + 4\sqrt{5}i$$
,

$$4. z = 1 + i\sqrt{3}.$$

Exercice 1.21 Résoudre dans C les équations suivantes

$$1.2z^2 - 6z + 5 = 0.$$

$$2.5z^2 + (9-7i)z + 2 - 6i = 0$$

1.
$$2z^2 - 6z + 5 = 0$$
,
3. $z^2 + (2+i)z - 1 + 7i = 0$.

Exercice 1.22 Montrer que si $s, p, z_1, z_2 \in \mathbb{C}$, alors z_1 et z_2 sont les solutions de l'équation $z^2 - sz + p = 0$ si et seulement si $z_1 + z_2 = s$ et $z_1 z_2 = p$.

Exercice 1.23 Déterminer les racines n-èmes de z dans les cas suivants :

1.
$$n = 3$$
 et $z = 1 + i$,

2.
$$n = 4$$
 et $z = 4i$,

3.
$$n = 6$$
 et $z = \frac{1 - i\sqrt{3}}{1 + i}$.

Exercice 1.24 On désigne par $\mathbb{Z}[i]$ l'ensemble des *entiers de Gauss*, c'est-à-dire les nombres qui s'écrivent m + in avec $m, n \in \mathbb{Z}$.

- 1. Montrer que si $\alpha, \beta \in \mathbb{Z}[i]$, alors $\alpha + \beta \in \mathbb{Z}[i]$ et $\alpha\beta \in \mathbb{Z}[i]$.
- 2. Montrer que si $\alpha \in \mathbb{Z}[i]$, alors $|\alpha| = 0$ ou $|\alpha| \ge 1$.
- 3. Déterminer tous les couples d'entiers (m, n) tels que $m^2 + n^2 = 1$.
- 4. Déterminer tous les éléments inversibles de $\mathbb{Z}[i]$, c'est-à-dire les nombres complexes non nuls α tels que $\alpha, \alpha^{-1} \in \mathbb{Z}[i]$.

1. Montrer que si $u, v \in \mathbb{C}$ et x = u + v, alors $x^3 = 51x + 104$ si Exercice 1.25 et seulement si $u^3 + v^3 + 3uv(u+v) = 51(u+v) + 104$.

- 2. En déduire que si uv = 17, alors $x^3 = 51x + 104$ si et seulement si u^3 et v^3 sont les solutions de $X^2 - 104X + 4913 = 0$.
- 3. Résoudre cette équation du second degré et montrer que ses solutions sont des cubes d'entiers de Gauss.
- 4. En déduire que l'équation originale $x^3 = 51x + 104$ a une solution entière que l'on déterminera.

Exercice 1.26 Déterminer les invariants géométriques de la similitude donnée

1.
$$z' = z + 3 - i$$

$$2. z' = 2z + 3,$$

$$3. z' = iz + 1.$$

4.
$$z' = (1 - i)z + 2 + i$$
.

Exercice 1.27 1. Déterminer les invariants géométriques de la similitude donnée par

$$z' = \frac{3 + i\sqrt{3}}{4}z + \frac{1 - i\sqrt{3}}{2}.$$

2. Montrer que si Ω désigne son centre et que M est transformé en M', alors le triangle $\{\Omega, M, M'\}$ est rectangle en M'.

Exercice 1.28 Déterminer la forme complexe de la similitude directe de centre Ω , d'angle θ et de rapport k:

- 1. $\Omega(1,1), \theta = \pi/2 \text{ et } k = 2,$ 2. $\Omega(0,0), \theta = \pi/3 \text{ et } k = \sqrt{3},$
- 3. $\Omega(1, -2)$, $\theta = \pi/4$ et $k = 2\sqrt{2}$.

Exercice 1.29 Déterminer les invariants géométriques de la similitude directe

- 1. qui transforme M(1,0) en M'(1,1) et N(0,2) en N'(-3,-1),
- 2. qui transforme M(5, -4) en M'(-1, -4) et M' en M''(-4, -1),
- 3. de centre O(0,0) qui transforme $M(-\sqrt{2},\sqrt{2})$ en $M'(-2\sqrt{3},-2)$.

1. Montrer que la composée d'une homothétie et d'une translation est une homothétie ou une translation.

- 2. Montrer que la composée d'une rotation et d'une translation est une rotation ou une translation.
- 3. Montrer que la composée de deux homothéties est une homothétie ou une translation.
- 4. Montrer que la composée de deux rotations est une rotation ou une transla-

Exercice 1.31 Déterminer les formes complexes des transformations planes suivantes:

- 1. La translation de vecteur (1, -1).
- 2. L'homothétie de centre (1, -1) et de rapport 2.
- 3. La symétrie de centre (0,0).
- 4. La symétrie de centre (1, -1).
- 5. La rotation de centre (0,0) et d'angle $\pi/2$.
- 6. La rotation de centre (1, -1) et d'angle $\pi/2$.
- 7. La reflexion verticale par rapport à la droite y=0.
- 8. La reflexion verticale par rapport à la droite y = -1.
- 9. La reflexion horizontale par rapport à la droite x = 0.
- 10. La reflexion horizontale par rapport à la droite x=1.