Day 1, exercise 4: Vigilance

Richel Bilderbeek

December 15, 2014

Abstract

This article is created within the CAS program Maxima and shows how to do algebraic manipuations and graphical plotting. The output is in LaTeX format.

1 Exercise

First, we write down all equations (for definitions see table 1 on page 1).

symbol	description
v	fraction of foraging time invested in being watchful
S(v)	survival probability
F(v)	foraging efficiency
W(v)	fitness

Table 1: Definitions

$$S(v) = v$$
$$F(v) = 1.0 - v^{2}$$
$$W(v) = -v^{2} + v + 1.0$$

The fitness function plotted is plotted in figure 1 on page 2.

To calculate the maximum or minimum, set the derivate to zero and solve it:

$$\frac{d}{dv}W(v) = 1 - 2v = 0$$
$$v = \frac{1}{2}$$

Thus, the optimal vigilance level v equals:

 $\frac{1}{2}$

Figure 1: Fitness function

This optimal vigilance level results in a fitness of:

$$W\left(\frac{1}{2}\right) = 1.25$$

To find out if it is a fitness minimum or maximum, calculate the second derivative and find out its value at the minimum or maximum:

$$\frac{d^2}{dv^2}W(v) = -2$$

Thus, it is a maximum.

A Script file

```
#!/bin/bash
maxima_input_file="Day1_4_vigilance.txt"
tex_output_file="Day1_4_vigilance_output.tex"
```

```
if [ -e $tex_output_file ]
then
  rm $tex_output_file
fi

maxima -b $maxima_input_file
pdflatex $tex_output_file
#Do this twice, so pdflatex can fill in the references
pdflatex $tex_output_file
```

B Maxima file

```
/* Maxima batch file */
/* Load libraries */
load("stringproc")$
/* Input filename */
bash_filename: "Day1_4_vigilance.sh"$
maxima_filename: "Day1_4_vigilance.txt" $ /* this file */
/* Output filenames */
tex_filename: "Day1_4_vigilance_output.tex"$
pdf_filename: "/home/richel/GitHubs/Maxima/
    Day1_4_vigilance_output.pdf"$
/* Write results to TeX file */
stream: openw(tex_filename)$
 \begin{array}{l} printf(stream\ ," \setminus document class \{ \ article \} \ ""\ ) \$ \\ printf(stream\ ," \ "") \$ \\ \end{array} 
printf(stream, "\\usepackage{listings}~\%")$
printf(stream,"\\usepackage{graphicx}~%")$
printf(stream, "~%")$
printf(stream,"\\title{Day 1, exercise 4: Vigilance}~%")$
printf(stream,"\\author{Richel Bilderbeek}~%")$
printf(stream,"\\date{\\today}~\%")$
printf(stream, "~%")$
printf(stream,"\\begin{document}^\%")$
\mathtt{printf}\,(\,\mathtt{stream}\,\,,\text{```}\%\text{''}\,)\,\$
printf(stream, "\\maketitle~\%")$
printf(stream, "~\%")$
printf(stream,"\\begin{abstract}~\%")$
printf(stream,"This article is created within the CAS
    program Maxima~%")$
```

```
printf(stream," and shows how to do algebraic manipuations
    and graphical plotting. "%")$
printf(stream, "The output is in \\LaTeX~~ format.~%")$
printf(stream,"\\end{abstract}~%")$
printf(stream,"\\section{Exercise}~\%")$
printf(stream, "First, we write down all equations~%")$
printf(stream, "(for definitions see table \\ref{table:
   table_definition on page \pageref{table:
   table_definition \ \).~\%")\$
printf(stream\ ," \setminus begin\{table\}[here] \ ^{\sim}\%") \$
printf(stream,"
                 \\centering~\%")\$
                 \\begin{tabular}{ | r | l | }~\%")$
printf(stream,"
printf(stream,"
                    \\hline~%")$
printf(stream,"
                    symbol & description \\\~%")$
printf(stream,"
                    \\ hline~%")$
printf(stream,"
                    $v$ & fraction of foraging time
   invested in being watchful \\\~%")$
                   S(v) & survival probability \\\~\")
printf(stream,"
                    F(v) & foraging efficiency \\\~\")$
printf(stream,"
printf(stream,"
                   W(v) & fitness \\\\\\\\\
printf(stream,"
                   \\hline~%")$
printf(stream,"
                 \\end{tabular}~\%")\$
printf(stream,"
                 \\caption{Definitions}~\%")$
printf(stream," \\label{table:table_definition}~\%")$
printf(stream,"\\end{table}~\%")$
Survival(v) := S(v) = v;
printf(stream, tex(Survival(v), false))$
Foraging (v) := F(v) = 1.0 - (v^2);
printf(stream, tex(Foraging(v), false))$
Fitness(v) := W(v) = ', (rhs(Survival(v)) + rhs(Foraging(v)))
   )));
printf(stream, tex(Fitness(v), false))$
printf(stream,"The fitness function plotted is plotted in
    figure ~%")$
```

```
printf(stream,"\\ref{figure:figure_fitness} on page \\
   pageref{figure:figure_fitness}.\\\~%")$
plot2d (
  rhs(Fitness(v)), [v, 0.0, 1.0],
  [title, "Fitness"],
  [xlabel,"v: fraction of foraging time being vigilant"],
   ylabel, "W(v): fitness"],
   color, black],
  [pdf_file,pdf_filename]
);
printf(stream, "\\begin{figure}[here]~%")$
printf(stream, "\\includegraphics[width=1\\textwidth]{")$
printf(stream, pdf_filename)$
printf(stream,"}\\\\\~%")$
printf(stream," \\caption{Fitness function}~%")$
printf(stream," \\label{figure:figure_fitness}~%")$
printf(stream,"\\end{figure}~\%")$
printf(stream,"To calculate the maximum or minimum, set
    the derivate to zero and solve it:~%")$
FitnessDeriv(v) := diff(W(v), v) = ', (diff(rhs(Fitness(v)))
    , v));
maximum: solve (rhs (Fitness Deriv (v))=0)[1];
printf(stream, tex(FitnessDeriv(v)=0, false))$
printf(stream, tex(maximum, false))$
printf(stream, "Thus, the optimal vigilance level $v$
    equals:")$
printf(stream, tex(rhs(maximum), false))$
printf(stream, "~%")$
printf(stream," This optimal vigilance level results in a
    fitness of:")$
printf(stream, tex(Fitness(rhs(maximum)), false))$
printf(stream, "~%")$
printf(stream, "To find out if it is a fitness minimum or
   maximum, ~%")$
printf(stream, "calculate the second derivative")$
```

```
printf(stream," and find out its value at the minimum or
          maximum: ~%")$
FitnessDerivDeriv(v) := diff(W(v), v, 2) = ', (diff(rhs(v), v, 2)) =
           FitnessDeriv(v)),v));
printf(stream, tex(FitnessDerivDeriv(v), false))$
if rhs(FitnessDerivDeriv(v))<0
then
      printf(stream, "Thus, it is a maximum.~%")
else
      printf(stream, "Thus, it is a minimum. "%")
;
printf(stream, "~%")$
printf(stream," \ \ \ \ )\$
printf(stream, "~%")$
 \begin{array}{l} \operatorname{printf}(\operatorname{stream}, " \setminus \operatorname{section}\{\operatorname{Script} \ \operatorname{file}\}^{-}\%") \$ \\ \operatorname{printf}(\operatorname{stream}, "^{-}\%") \$ \\ \end{array} 
printf(stream,"\\lstinputlisting[language=C++,
           showstringspaces=false, breaklines=true, frame=single]{"
           ) $
printf(stream, bash_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream,"\\section{Maxima file}~%")$
printf(stream, "~%")$
printf(stream,"\\lstinputlisting[language=C++,
           showstringspaces=false, breaklines=true, frame=single]{"
           ) $
printf(stream, maxima_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream,"\\section{\\LaTeX~~file}~%")$
\texttt{printf}\,(\,\texttt{stream}\,\,,\text{```}\%\text{''}\,)\,\$
printf(stream,"\\lstinputlisting[language=tex,
           showstringspaces=false, breaklines=true, frame=single]{"
          ) $
printf(stream, tex_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream, "\\end{document}~\%")$
close (stream)$
```

C LATEX file

```
\documentclass { article }
\usepackage{listings}
\usepackage{graphicx}
\title {Day 1, exercise 4: Vigilance}
\author{Richel Bilderbeek}
\date{\today}
\begin { document }
\ maketitle
\begin{abstract}
This article is created within the CAS program Maxima
and shows how to do algebraic manipulations and graphical
    plotting.
The output is in \LaTeX format.
\end{abstract}
\section { Exercise }
First, we write down all equations
(for definitions see table \ref{table:table_definition}
   on page \pageref{table:table_definition}).
\begin{table}[here]
  \centering
  \ hline
    symbol & description \setminus
    \hline
    $v$ & fraction of foraging time invested in being
        watchful \\
    S(v) & survival probability \\
    F(v) & foraging efficiency \\
    W(v) & fitness \\
    \ hline
  \ensuremath{\mbox{end}} { tabular }
  \caption { Definitions }
  \label{table:table_definition}
\ensuremath{\mbox{end}} \{ \ensuremath{\mbox{table}} \}
SS \setminus left(v \setminus right) = v
\$F \setminus left(v \setminus right) = 1.0 - v^2 \$
\$W \cdot left (v \cdot right) = -v^2 + v + 1.0\$
The fitness function plotted is plotted in figure
```

```
\ref{figure:figure_fitness} on page \pageref{figure:
    figure_fitness \.\\
\begin { figure } [ here ]
\includegraphics [width=1\textwidth] { / home/richel/GitHubs/
    Maxima/Day1_4\_vigilance\_output.pdf}\\\
  \caption{Fitness function}
  \label { figure : figure _ fitness }
\end{ figure }
To calculate the maximum or minimum, set the derivate to
    zero and solve it:
\$\{\{d\}\setminus\mathbf{over}\{d\setminus,v\}\}\setminus W\setminus\mathbf{left}(v\setminus\mathbf{right})=1-2\setminus v=0\$
\$v = \{\{1\} \setminus \mathbf{over}\{2\}\} \$\$
Thus, the optimal vigilance level v equals: \{1\} over
    {2}}$$
This optimal vigilance level results in a fitness of:$$W\
    left(\{\{1\} \setminus over\{2\}\} \setminus right) = 1.25$
To find out if it is a fitness minimum or maximum,
calculate the second derivative
and find out its value at the minimum or maximum:
\$\{\{d^2\}\setminus\mathbf{over}\{d\setminus v^2\}\}\setminus W\setminus\mathbf{left}(v\setminus\mathbf{right})=-2\$
Thus, it is a maximum.
\appendix
\section { Script file }
\lstinputlisting[language=C++,showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_ vigilance.sh }
\section {Maxima file }
\lstinputlisting[language=C++,showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_ vigilance.txt }
\section {\LaTeX~file }
\lstinputlisting [language=tex, showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_ vigilance_output.
    tex}
\end{document}
```