# 0429 Update

### Paper Selection

### Audio-Gaze Driven Avatar (&Codec Avatar)

• Richard, A., Lea, C., Ma, S., Gall, J., De la Torre, F., & Sheikh, Y. (2021). Audio-and gaze-driven facial animation of codec avatars. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision* (pp. 41-50).

#### Visemenet = JaLi

• Zhou, Y., Xu, Z., Landreth, C., Kalogerakis, E., Maji, S., & Singh, K. (2018). Visemenet: Audio-driven animator-centric speech animation. *ACM Transactions on Graphics (TOG)*, *37*(4), 1-10.

#### D3DExpression

Potamias, R. A., Zheng, J., Ploumpis, S., Bouritsas, G., Ververas, E., & Zafeiriou, S. (2020, August). Learning to generate customized dynamic 3d facial expressions. In European Conference on Computer Vision (pp. 278-294). Springer, Cham.

#### Meshtalk

• Zhou, Y., Xu, Z., Landreth, C., Kalogerakis, E., Maji, S., & Singh, K. (2018). Visemenet: Audio-driven animator-centric speech animation. *ACM Transactions on Graphics (TOG)*, 37(4), 1-10.

## Writing

https://cvpr2022.thecvf.com/author-guidelines

This is the LATEX template for IEEE/CVF CVPR 2022 submissions, rebuttals, and final versions.

#### 1. Introduction

Modern movie and game renders very realistic 3D face that delivers human emotion and lip motion accurately. But in multiplayer Virtual Reality(VR) environment, capturing human face and delivering such information real-time is a hard task. This comes



- Brief explanation of each method
- Side-by side comparison
- Discussion
  - Limitation and Future direction

**TABLE 4.** Analysis of MLL, LDL and label enhancement models.

| Author              | Method                                                   | Data                                                                            | Performance Evaluation                                                                                                                                                              | Contribution                                                                                                                                                                                                                                              | Limitation                                                                                                                                   |
|---------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Zhao et al. [74]    | GLMM                                                     | ML-JAFFE                                                                        | Average Precision: 0.9143,<br>Coverage error:2.9381,<br>hamming loss:0.2035,<br>One error:0.1071, ranking<br>loss:0.1466                                                            | Model the relationship among FER labels                                                                                                                                                                                                                   | Model not capture the intensity estimation of the available emotions in FER data.                                                            |
| Ying et al. [71]    |                                                          | (sJAFFE, sBU-3DFE):                                                             | (Kullback<br>leibler:0.0346,0.0402), (Eu-<br>clidean:0.0957,0.1005), (in-<br>tersection:0.8998,0.8939),<br>(fidelity:0.9914,0.9898)                                                 | present information about emotion intensity in an expression instance                                                                                                                                                                                     | limited to label distribution data.                                                                                                          |
| Xing et al. [76]    | _                                                        | s-BU-3DFE                                                                       | Kullback Leibler:0.0491,<br>Euclidean:0.1263,<br>Fidelity:0.9886,<br>intersection:0.8800                                                                                            | more general entropy model for mod-<br>eling information distribution in fa-<br>cial images                                                                                                                                                               | Not generalised to in-the wild and logical label data, the performance may degrade with large volume data                                    |
| Xing et al. [76]    | LDLogitBoost                                             | s-BU3DFE                                                                        | Kullback Leibler:0.0515,<br>Euclidean:0.1297,<br>Fidelity:0.9874,<br>inersection:0.8764                                                                                             | more general entropy model for modeling information distribution in facial images                                                                                                                                                                         | Not generalised to in-the-wild and<br>logical label data, the performance<br>may degrade with large volume data                              |
| Li and Deng [34]    | DBM-CNN                                                  | RAF-ML                                                                          | CLM-Hamming: 0.217,<br>RAKEL-Hamming:0.177,<br>ML-KNN-Hamming:0.168,<br>ML-LOC:0.173, LIFT-<br>Hamming:0.167                                                                        | ifold structure of emotion label. Intro-<br>duction of Adaptation mechanism for<br>data generalisation                                                                                                                                                    | computational complexity and resource consumption                                                                                            |
| Xu et al. [81]      | Label<br>enhancement with<br>GLLE (manifold<br>learning) | Bu-3DFE                                                                         | cheb:1.00, clark:1.13,<br>canb:1.13, cosine:1.00,<br>Interception: 1.07                                                                                                             | Label enhancement with considera-<br>tion given to correlation among la-<br>bels. Could be applied to data with no<br>distribution label                                                                                                                  | Not advisable to use on large data size<br>or in-the-wild data. It is Computation-<br>ally expensive due to implementation<br>of KNN search. |
| Jia et al. [82]     | EDL-LRL +<br>ADMM optimiser                              | (s-JAFFE, S-BU-3DFE                                                             | (cheb: 0.0806,0.0951),<br>(clark:0.3008,0.3556),<br>(cand: 0.6134,<br>0.7463), (Kullback<br>Leibler:0.0361,0.0694),<br>(cosine: 0.9660,0.9626),<br>(intersection:<br>0.8970:0.8686) | Preserve correlation among data label locally.                                                                                                                                                                                                            | Not generalised to in-the-wild data<br>and data with logical label                                                                           |
| Abeere et al. [84]  | EDL-LBCNN<br>(CNN + LBC<br>features) KL loss             | s-JAFFE                                                                         | Kullback Leibler:0.0168,<br>CS:0.9842                                                                                                                                               | system performance increases via hybrid convolutional features.                                                                                                                                                                                           | Not generalised to in-the-wild data<br>and data with logical label                                                                           |
| Zhang et al. [83]   | + Deep CNN                                               | Oulu-CASIA NIR FER                                                              | (Accuracy 81.97% in weak light), (Accuracy: 82.67% in the Dark), (Accuracy in strong light: 84.40%)                                                                                 | the model is immune to illumination variations                                                                                                                                                                                                            | not applicable to data with logical label and not generalises to in-the-wild data.                                                           |
| Chen et al. [75] 16 | Auxiliary label<br>(manifold<br>learning) + Deep<br>CNN  | posed data(CK+, Oulu-<br>CASIA, CFEE, MMI),<br>wild data (AFFNET,<br>RAF, SFEW) |                                                                                                                                                                                     | resolve label inconsistency using label enhancement with correlation among labels. Applicable to data without distribution label, not affected by data volume, minimises searching with approximate kNN. Generalises to in-the-wild data and logical data | sumption due to auxiYaly Mabel space                                                                                                         |

 Ekundayo, O., & Viriri, S. (2021). Facial Expression Recognition: A Review of Trends and Techniques. IEEE Access.