Abstract Complexity Theory

speedup and gap theorem

• Manuel Blum 1967: speedup theorem

born 1938 in Caracas, Venezuela

• Manuel Blum 1967: speedup theorem

born 1938 in Caracas, Venezuela

• Allan Borodin 1972: gap theorem

born 1941 in Canada

change of notation:

- M_u with $u \in \mathbb{N}$: TM with Goedel number u
- $\varphi_u : \mathbb{N}_0 \to \mathbb{N}_0$ the function computed by machine M_u . Machine M_u started with bin(n) computes $bin(\varphi_u(n))$ if it halts.
- $\beta_u(n)$: space used M_u started with input bin(n)
- $\tau_u(n)$: run time of M_u started with input bin(n)
- A(n) holds faa n: predicate A(n) for almost all n

$$\exists n_0. \ \forall n \geq n_0. \ A(n)$$

• A(n) hold io: predicate a holds infinitely often

$$\forall n_0. \exists n > n_0. A(n)$$

Ω: undefined

change of notation:

- M_u with $u \in \mathbb{N}$: TM with Goedel number u
- $\varphi_u : \mathbb{N}_0 \to \mathbb{N}_0$ the function computed by machine M_u . Machine M_u started with bin(n) computes $bin(\varphi_u(n))$ if it halts.
- $\beta_u(n)$: space used M_u started with input bin(n)
- $\tau_u(n)$: run time of M_u started with input bin(n)
- A(n) holds faa n: predicate A(n) for almost all n

$$\exists n_0. \ \forall n \geq n_0. \ A(n)$$

• A(n) hold io: predicate a holds infinitely often

$$\forall n_0. \exists n > n_0. A(n)$$

Ω: undefined

1 Functions which are hard to compute almost everywhere

Lemma 1. Let $T : \mathbb{N} \to \mathbb{N}$ be total and computable. Then

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$	
2	$\beta_2(1)$	$\beta_2(2)$	 $\beta_2(n)$	
				• • •
n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$	

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

$$\exists f. \ \forall i. \ (\varphi_i = f \to \beta_i(n) \ge T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		
 2	$B_2(1)$	$B_2(2)$		$B_2(n)$		
_	P2(1)	P2(2)	•••	P2(11)	• • • •	
			• • •		• • •	
			• • • •			
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

$$\exists f. \ \forall i. \ (\varphi_i = f \to \beta_i(n) \ge T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

 $f: \mathbb{N}_0 \to \mathbb{B}$

Consider table 1 and define simultaneously by induction on *n*

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

				•	
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$	
 2	$B_2(1)$	$B_2(2)$		$\beta_2(n)$	
	P2(1)	P2(2)		P2(")	
				•	
			• • • •		
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$	

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nother that $\beta_n(x)$ can be Ω /undefined.

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \leq n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \neq \Omega \} \end{cases} \text{ look for too easy computation if this exists otherwise}$$

$$f(n) = \begin{cases} 0 & s(n) \neq \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases} \text{ diagonalize}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \neq \Omega \\ L(n-1) & \text{otherwise} \end{cases} \text{ and forget index s}$$

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

				•	
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$	
2	$B_2(1)$	$B_2(2)$		$\beta_2(n)$:	
	P2(1)	P2(2)		P2(")	
				•	
			• • • •		
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$	
				•	

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nother that $\beta_n(x)$ can be Ω /undefined.

• f is computable and total because machine M_s with alphabet Σ and set of states Z can make on space T(n) at most

$$|\Sigma|^{T(n)} \cdot |Z| \cdot T(n)$$

steps without repeating a configuration.

• If line s is ever cancelled, then $f \neq \varphi_s$

$$s \in L(n) \to f \neq \varphi_s$$

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

 $f: \mathbb{N}_0 \to \mathbb{B}$

Consider table 1 and define simultaneously by induction on *n*

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

				•		
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		
 2	$B_2(1)$	$B_2(2)$		$B_2(n)$		
	P2(1)	P2(-)	• • • •	P2(")	• • • •	
				•		
			• • • •			
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
				•		

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

Lemma 2. if i is an index, such that $\beta_i(n) < T(n)$ infinitely often, then $f \neq \varphi_i$

• sufficient: i = s(n) for some n

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

			•	_
1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$	
2	$B_2(1)$	$B_2(2)$	$B_2(n)$:	
	P2(1)	P2(-)	 P2(")	
			•	
n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$	
			 •	

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

Lemma 2. if i is an index, such that $\beta_i(n) < T(n)$ infinitely often, then $f \neq \varphi_i$

- sufficient: i = s(n) for some n
- Let

$$i \leq n_1 < n_2 < \dots$$

be infinite sequence of arguments with

$$\beta_i(n_j) < T(n_j)$$
 for all j

• for all $n \ge i$: index i is candidate for s(n). cases

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \leq n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \neq \Omega \} \end{cases}$$
 if this exists otherwise
$$f(n) = \begin{cases} 0 & s(n) \neq \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \neq \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

					•		
	1	$\beta_1(1)$	$\beta_{1}(2)$		$\beta_1(n)$		
·	2	$B_2(1)$	$B_2(2)$		$B_2(n)$		
	ן	P2(1)	P2(2)	• • •	P2(")	• • •	
					•		
				• • •			
	n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nothe that $\beta_n(x)$ can be Ω /undefined.

Lemma 2. if i is an index, such that $\beta_i(n) < T(n)$ infinitely often, then $f \neq \varphi_i$

- sufficient: i = s(n) for some n
- Let

$$i \leq n_1 < n_2 < \dots$$

be infinite sequence of arguments with

$$\beta_i(n_j) < T(n_j)$$
 for all j

- for all $n \ge i$: index i is candidate for s(n). cases
- 1. *i* is smallest such candidate:

$$i \in L(n)$$
, $f \neq \varphi_i$

done

$$\exists f. \ \forall i. \ (\varphi_i = f \rightarrow \beta_i(n) \geq T(n) \ faa \ n$$

Every machine M_i computing f uses at least space T(n) for almost all inputs n.

$$f: \mathbb{N}_0 \to \mathbb{B}$$

Consider table 1 and define simultaneously by induction on n

- lists $L(n) \subset \mathbb{N}$ of *cancelled* lines. Machines with indices in L(n) will not compute f
- initially $L(1) = \emptyset$.
- for n > 1: columns

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < T(n), \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

				•		
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		
2	$B_2(1)$	$B_2(2)$		$B_2(n)$		
_	P2(1)	P2(2)	• • • •	P2(")		
				•		
				•	• • •	
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
				•		

Table 1: Table of space used by machines M_n . Row n stores in column x the space $\beta_n(x)$ used by machine M_n on input x. Nother that $\beta_n(x)$ can be Ω /undefined.

Lemma 2. if i is an index, such that $\beta_i(n) < T(n)$ infinitely often, then $f \neq \varphi_i$

- sufficient: i = s(n) for some n
- Let

$$i \leq n_1 < n_2 < \dots$$

be infinite sequence of arguments with

$$\beta_i(n_j) < T(n_j)$$
 for all j

- for all $n \ge i$: index i is candidate for s(n). cases
- 2. otherwise a smaller index i' < i is included in L(n)

$$L(n) = L(n-1) \cup \{i\}$$

This can happen at most i-1 times.

$$i \in L(n_i)$$

2 Speedup theorem for space

2.1 statement

- for long time the most famous theorem in computer science
- today almost forgotten. Lecturers tend to say, it's too difficult for students.
 But maybe its too difficult for the lecturers??
- until today my favourite theorem in computer science
- stating that some functions have no fastest or most space efficient program
- proof is of course completely understandable...

Lemma 3. Let $r : \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\beta_j(n)) \leq \beta_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

2 Speedup theorem for space

2.1 statement

- for long time the most famous theorem in computer science
- today almost forgotten. Lecturers tend to say, it's too difficult for students. But maybe its too difficult for the lecturers??
- until today my favourite theorem in computer science
- stating that some functions have no fastest or most space efficient program
- proof is of course completely understandable...

Lemma 3. Let $r : \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\beta_j(n)) \leq \beta_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

example:

$$r(n) = 2^n$$
 , $2^{\beta_j(n)} \le \beta_i(n)$

now repeat for j...

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

example:

$$r(n) = 2^n$$
 , $2^{\beta_j(n)} \le \beta_i(n)$

now repeat for j...

2.2 constructing f and lower bound

ideas:

• space consumption of M_i computing f, i.e. with $f = \varphi_i$ must be large enough such that

$$r^{-1}(r^{-1}(\dots r^{-1}(\beta_i(n))\dots))$$

is defined

- with larger programs computing f becomes easier.
- w.l.o.g *r* strictly monotonically increasing and

$$r(n) \ge 2n$$
 for all n

define numbers

$$r_0 = 1$$

$$r_i = r(r_{i-1})$$

$$= r(r(\dots r(1)))$$

$$\geq 2^i$$

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

r(n	$) \geq$	2n for all n
r_0	=	1
r_i	=	$r(r_{i-1})$
	=	$r(r(\ldots r(1)))$
	\geq	2^i

1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		
2	$R_2(1)$	$B_{\alpha}(2)$		$R_{2}(n)$		
	P2(1)	$P^{2}(2)$	• • • •	$P_2(n)$	• • • •	
			•		• • •	
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

$r(n) \ge 2n$ for all n	1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$	
	2	$\beta_2(1)$	$\beta_2(2)$	• • • •	$\beta_2(n)$	•••
$r_0 = 1$						
$r_i = r(r_{i-1})$						• • • •
$= r(r(\ldots r(1)))$	n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$	
$\geq 2^i$						

defining f: Initially $L(1) = \emptyset$ and for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega \} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_i = f \land r(\beta_i(n)) \leq \beta_i(n) \ faa \ n)$$

$r(n) \ge 2n$ for all n	1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$		
r _o — 1	2	$\beta_2(1)$	$\beta_2(2)$	 $\beta_2(n)$	• • • •	
$r_0 = 1$						
$r_i = r(r_{i-1}) $					• • •	
$= r(r(\ldots r(1)))$	n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$		
$\geq 2^i$					• • •	

defining f: Initially $L(1) = \emptyset$ and for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

as above show:

Lemma 4. f is total and computable and

$$\varphi_i = f \rightarrow \beta_i(n) \ge r_{n-i} faa n$$

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

•	replace in the above proof $T(n)$ by $r_{n-s}(1)$ for candidates s of canelled rows
	For large s this bound becomes smaller.

$r(n) \ge 2n$ for all n	1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$	
1	2	$\beta_2(1)$	$\beta_2(2)$	 $\beta_2(n)$	• • • •
$r_0 = 1$					
$r_i = r(r_{i-1})$					• • • •
$= r(r(\ldots r(1)))$	n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$	
$\geq 2^i$					

defining f: Initially $L(1) = \emptyset$ and for n > 1:

$$s(n) = \begin{cases} \min\{s \leq n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \neq \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \neq \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \neq \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

as above show:

Lemma 4. f is total and computable and

$$\varphi_i = f \rightarrow \beta_i(n) \ge r_{n-i} faa n$$

2.3 stating upper bound

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad faa \ n)$$

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\beta_j(n)) \leq \beta_i(n) \ faa \ n)$$

•	replace in the above proof $T(n)$ by $r_{n-s}(1)$ for candidates s of canelled rows.
	For large s this bound becomes smaller.

$r(n) \ge 2n$ for all n	1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$	
1	2	$\beta_2(1)$	$\beta_2(2)$	•••	$\beta_2(n)$	•••
$r_0 = 1$						
$r_i = r(r_{i-1}) $						
$= r(r(\ldots r(1)))$	n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$	
$\geq 2^i$						

defining f: Initially $L(1) = \emptyset$ and for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

as above show:

Lemma 4. f is total and computable and

$$\varphi_i = f \rightarrow \beta_i(n) \ge r_{n-i} faa n$$

2.3 stating upper bound

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad faa \ n)$$

implies speedup theorem (lemma 3): Let $\varphi_i = f$ and $k \ge i + 1$ with $\varphi_k = f$. Then $\varphi_{j(k)} = f$ and

$$r(\beta_{j(k)}(n)) \leq r(r_{n-k})$$
 (lemma 5
 $\leq r(r_{n-(i+1)})$
 $= r_{n-i}$
 $\leq \beta_i(n)$ (lemma 4)

$$r(n) \ge 2n$$
 for all n
 $r_0 = 1$
 $r_i = r(r_{i-1})$
 $= r(r(\dots r(1)))$
 $> 2^i$

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad \text{faa } n)$$

2.4 proving the upper bound

$$r(n) \ge 2n$$
 for all n
 $r_0 = 1$
 $r_i = r(r_{i-1})$
 $= r(r(\dots r(1)))$
 $> 2^i$

defining f: Initially $L(1) = \emptyset$ and for n > 1:

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad \text{faa } n)$$

- by showing (non constructively) the existence of an efficient program
- avoiding simulation of machines M_s for s < 2k
- **crucial observation:** For all k there is $v \in \mathbb{N}$ (non constructive) such that every index

$$s \in [1:2k]$$

which will ever be included in a list L(n) is already in L(v)

• machine $M_{j(k)}$ stores in finite memory

$$f(1)\ldots,f(v),L(v)$$

• in table 2 it does not need to simulate the lines with the large space bounds above line 2k

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$		
			• • • •		• • • •	
\boldsymbol{n}	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
						– mild
			• • • •		• • • •	IIIIu

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v) Machine $M_{j(k)}$ does not need to simulate machine M_s above line 2k.

$$r(n) \ge 2n$$
 for all n
 $r_0 = 1$
 $r_i = r(r_{i-1})$
 $= r(r(...r(1)))$
 $> 2^i$

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad faa \ n)$$

• machine $M_{i(k)}$ stores in finite memory

$$f(1)\ldots,f(v),L(v)$$

• in table 2 it does not need to simulate the lines with the large space bounds above line 2k

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$		
			• • • •		• • • •	
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
						- mild
			• • •		• • •	IIIIu

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{j(k)}$ does not need to simulate machine M_s above line 2k.

$$r(n) \ge 2n$$
 for all n
 $r_0 = 1$
 $r_i = r(r_{i-1})$
 $= r(r(\dots r(1)))$
 $> 2^i$

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad \text{faa } n)$$

• machine $M_{i(k)}$ stores in finite memory

$$f(1)\ldots,f(v),L(v)$$

• in table 2 it does not need to simulate the lines with the large space bounds above line 2k

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$		
			• • • •		• • •	
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
					• • •	mild

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{j(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m = 2k + 1, \dots, n$$

where stage *m* computes L(m) and bin(f(n)) if m = n.

$$r(n) \ge 2n$$
 for all n
 $r_0 = 1$
 $r_i = r(r_{i-1})$
 $= r(r(...r(1)))$
 $\ge 2^i$

$$s(n) = \begin{cases} \min\{s \le n : s \notin L(n-1), \beta_s(n) < r_{n-s}, \\ \varphi_s(n) \ne \Omega\} & \text{if this exists} \\ \Omega & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} 0 & s(n) \ne \Omega \land \varphi_s(n) = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$L(n) = \begin{cases} L(n-1) \cup \{s(n)\} & s(n) \ne \Omega \\ L(n-1) & \text{otherwise} \end{cases}$$

Lemma 5. For all $k \in \mathbb{N}$: if machine M_k computes f, then there is a machine $M_{j(k)}$ computing f with space consumption $\beta_{j(k)}(n) \leq r_{n-k}$ for almost all n

$$\varphi_k = f \to \exists j(k). \ (\varphi_{j(k)} = f \land \beta_{j(k)}(n) \le r_{n-k} \quad \text{faa } n)$$

• machine $M_{i(k)}$ stores in finite memory

$$f(1)\ldots,f(v),L(v)$$

• in table 2 it does not need to simulate the lines with the large space bounds above line 2k

S					bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$		hard
*					
*					
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$	 $\beta_{2k}(n)$		
				• • • •	
n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$		
					– mild

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{j(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m = 2k + 1, \dots, n$$

where stage *m* computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup \{s(m)\}$

S					bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$		hard
*					
*					
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$	 $\beta_{2k}(n)$	• • •	
n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$		
					– mild

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{j(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$		
					• • •	
n	$\beta_n(1)$	$\beta_n(2)$		$\beta_n(n)$		
			•			– mild
			••••		• • • •	mina

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{i(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

space used for searching column m: for $m \ge v$

- universal TM U has to simulate M_s with input bin(m) on space r_{m-s} .
- bin(s) = code(u) for $u \in \{0, 1, \#\}^*$ with

$$|u| = O(|bin(s)|) = O(\log s)$$

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$	• • •	
12	R (1)	B (2)	•	B(n)		
n	$p_{n(1)}$	$p_n(2)$	•••	$\beta_n(n)$	• • •	
						– mild

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{i(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

space used for searching column m: for $m \ge v$

- universal TM U has to simulate M_s with input bin(m) on space r_{m-s} .
- bin(s) = code(u) for $u \in \{0, 1, \#\}^*$ with

$$|u| = O(|bin(s)|) = O(\log s)$$

• *U* needs space

$$O(|u|) \cdot r_{m-s} \le C \cdot (\log s) \cdot r_{m-s}$$
 for some C almost all n

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$	• • •	
			• • • •		• • • •	
n	$\beta_n(1)$	$\beta_n(2)$.•	$\beta_n(n)$		
			•			- mild
			•••			IIIII

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{i(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

space used for searching column m: for $m \ge v$

- universal TM U has to simulate M_s with input bin(m) on space r_{m-s} .
- bin(s) = code(u) for $u \in \{0, 1, \#\}^*$ with

$$|u| = O(|bin(s)|) = O(\log s)$$

• *U* needs space

$$O(|u|) \cdot r_{m-s} \le C \cdot (\log s) \cdot r_{m-s}$$
 for some C almost all n

• w.l.o.g. choose k large enough such that

$$s \ge 2k \to C \cdot \log s \le s$$

	S					bound r_{n-s}
Ī	1	$\beta_1(1)$	$\beta_1(2)$	 $\beta_1(n)$		hard
Ī	*					
Ī	*					
	2k	$\beta_{2k}(1)$	$\beta_{2k}(2)$	 $\beta_{2k}(n)$		
_						
-					• • • •	
	n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$		
ļ						– mild
	n	$\beta_n(1)$	$\beta_n(2)$	 $\beta_n(n)$		mild

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{i(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

space used for searching column m: for $m \ge v$

- universal TM U has to simulate M_s with input bin(m) on space r_{m-s} .
- bin(s) = code(u) for $u \in \{0, 1, \#\}^*$ with

$$|u| = O(|bin(s)|) = O(\log s)$$

• *U* needs space

$$O(|u|) \cdot r_{m-s} \le C \cdot (\log s) \cdot r_{m-s}$$
 for some C almost all n

• w.l.o.g. choose k large enough such that

$$s \ge 2k \to C \cdot \log s \le s$$

space for simulation

$$C \cdot (\log s) \cdot r_{m-s} \leq s \cdot r_{m-s}$$

$$= 2^{\log s} r_{m-s}$$

$$\leq r_{m-s+\log s} \quad (r(n) \geq 2n)$$

$$\leq r_{m-s/2} \quad (s/2 \geq \log s)$$

$$\leq r_{m-k}$$

S						bound r_{n-s}
1	$\beta_1(1)$	$\beta_1(2)$		$\beta_1(n)$		hard
*						
*						
2 <i>k</i>	$\beta_{2k}(1)$	$\beta_{2k}(2)$		$\beta_{2k}(n)$	• • •	
			• • • •		• • • •	
n	$\beta_n(1)$	$\beta_n(2)$.•	$\beta_n(n)$		
			•			- mild
			•••			IIIII

Table 2: all lines * above line 2k that will ever be cancelled are in list L(v). Machine $M_{i(k)}$ does not need to simulate machine M_s above line 2k.

Turing machine $M_{j(k)}$: with input bin(n)

- for $n \le v$: print bin(f(v)). Done.
- for n > v print L(v); then proceed in stages

$$m=2k+1,\ldots,n$$

where stage m computes L(m) and bin(f(n)) if m = n.

• stage *m*: for

$$s \in [2k+1:m] \setminus L(m-1)$$

- 1. simulate M_s with input bin(m)
- 2. space used $> r_{m-s}$ or $\le r_{m-s}$ and $\varphi_s = \Omega$: abort, next s
- 3. space used $\leq r_{m-s}$ and $\varphi_s(m) \neq \Omega$: set s(m) = s, $L(m) = L(m-1) \cup$ $\{s(m)\}$

space used for searching column m: for $m \ge v$

- universal TM U has to simulate M_s with input bin(m) on space r_{m-s} .
- bin(s) = code(u) for $u \in \{0, 1, \#\}^*$ with

$$|u| = O(|bin(s)|) = O(\log s)$$

• *U* needs space

$$O(|u|) \cdot r_{m-s} \le C \cdot (\log s) \cdot r_{m-s}$$
 for some C almost all n

• w.l.o.g. choose k large enough such that

$$s \ge 2k \to C \cdot \log s \le s$$

space for simulation

$$C \cdot (\log s) \cdot r_{m-s} \leq s \cdot r_{m-s}$$

$$= 2^{\log s} r_{m-s}$$

$$\leq r_{m-s+\log s} \quad (r(n) \geq 2n)$$

$$\leq r_{m-s/2} \quad (s/2 \geq \log s)$$

$$\leq r_{m-k}$$

space for storing lists L(n): for $m \le n$; on extra track. Space

$$O(n\log n) \le 2^{n-k}$$
 ffa $n \le r_{n-k}$

Lemma 6. Let $r: \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\beta_j(n)) \leq \beta_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\tau_j(n)) \leq \tau_i(n) \ faa \ n)$$

Lemma 6. Let $r: \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\tau_j(n)) \le \tau_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\tau_j(n)) \leq \tau_i(n) \ faa \ n)$$

• with input length log *n*:

$$\beta_i(n)/2 \leq \beta_i(n) - \log n$$

$$\leq \tau_i(n)$$

$$\leq 2^{O(\beta_i(n))} \text{ if } \varphi_i(n) \neq \Omega$$

$$\leq 2^{\beta_i^2(n)} \text{ faa } n \text{ (extremely coarse)}$$

Lemma 6. Let $r : \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\tau_j(n)) \le \tau_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_j = f \land r(\tau_j(n)) \leq \tau_i(n) \ faa \ n)$$

• with input length log *n*:

$$\beta_i(n)/2 \leq \beta_i(n) - \log n$$

$$\leq \tau_i(n)$$

$$\leq 2^{O(\beta_i(n))} \text{ if } \varphi_i(n) \neq \Omega$$

$$\leq 2^{\beta_i^2(n)} \text{ faa } n \text{ (extremely coarse)}$$

set

$$r'(x) = 2r(2^{x^2})$$

by speedup theorem for space (lemma 3) there is f such that for all i with $\varphi_i = f$ there is j with $\varphi_j = f$ such that

$$r'(\beta_j(n)) \leq \beta_i(n)$$

Lemma 6. Let $r: \mathbb{N} \to \mathbb{N}$ be total and computable. Then there is a total computable function f such that for every machine M_i computing f, there is a machine M_j computing f such that $r(\tau_j(n)) \le \tau_i(n)$ for almost all n

$$\forall i. \ \varphi_i = f \rightarrow \exists j. \ (\varphi_i = f \land r(\tau_i(n)) \leq \tau_i(n) \ faa \ n)$$

• with input length log *n*:

$$\beta_i(n)/2 \leq \beta_i(n) - \log n$$

$$\leq \tau_i(n)$$

$$\leq 2^{O(\beta_i(n))} \text{ if } \varphi_i(n) \neq \Omega$$

$$\leq 2^{\beta_i^2(n)} \text{ faa } n \text{ (extremely coarse)}$$

set

$$r'(x) = 2r(2^{x^2})$$

by speedup theorem for space (lemma 3) there is f such that for all i with $\varphi_i = f$ there is j with $\varphi_j = f$ such that

$$r'(\beta_j(n)) \leq \beta_i(n)$$

Then

$$2r(\tau_{j}(n)) \leq 2r(2^{\beta_{j}^{2}})(n)$$

$$= r'(\beta_{j}(n))$$

$$\leq \beta_{i}(n)$$

$$\leq 2\tau_{i}(n)$$

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

p tneorem			
ive			
to			

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

• aiming at bound t(n) such that for all i

$$\beta_i(n) \le r(t(n)) \to \beta_i(n) \le t(n)$$

• resp.

$$\beta_i(n) \notin [t(n) + 1 : r(t(n))]$$

define

$$t(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [m+1 : r(m)]\}$$

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

• aiming at bound t(n) such that for all i

$$\beta_i(n) \le r(t(n)) \to \beta_i(n) \le t(n)$$

• resp.

$$\beta_i(n) \notin [t(n) + 1 : r(t(n))]$$

define

$$t(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [m+1 : r(m)]\}$$

• t(n) computable but possibly partial

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

• aiming at bound t(n) such that for all i

$$\beta_i(n) \le r(t(n)) \to \beta_i(n) \le t(n)$$

• resp.

$$\beta_i(n) \notin [t(n)+1:r(t(n))]$$

define

$$t(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [m+1 : r(m)]\}$$

• t(n) computable but possibly partial

• define in a non constructive way

$$m_n = \max\{\beta_i(n) : i \le n, \beta_i(n) \ne \Omega\}$$

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

• aiming at bound t(n) such that for all i

$$\beta_i(n) \le r(t(n)) \to \beta_i(n) \le t(n)$$

• resp.

$$\beta_i(n) \notin [t(n) + 1 : r(t(n))]$$

define

$$t(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [m+1 : r(m)]\}$$

- t(n) computable but possibly partial
- define in a non constructive way

$$m_n = \max\{\beta_i(n) : i \le n, \beta_i(n) \ne \Omega\}$$

Then

$$\forall i \leq n. \ \beta_i(n) \notin [m_n + 1 : r(m_n)]$$

- in hierarchy: resource bounds are time or space constructible.
- is this hypothesis necessary?
- answer of gap theorem: yes.
- here shown for space.

def: space complexity classes: here

$$C_{t(n)} = \{ \varphi_i : \beta_i(n) \le t(n) \text{ faa } n \}$$

4.1 Gap theorem for space

Lemma 7. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

this means: increasing resource bound from t(n) to r(t(n)) does not allow to compute more functions.

• aiming at bound t(n) such that for all i

$$\beta_i(n) \le r(t(n)) \to \beta_i(n) \le t(n)$$

• resp.

$$\beta_i(n) \notin [t(n)+1:r(t(n))]$$

define

$$t(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [m+1 : r(m)]\}$$

- t(n) computable but possibly partial
- define in a non constructive way

$$m_n = \max\{\beta_i(n) : i \le n, \beta_i(n) \ne \Omega\}$$

Then

$$\forall i \leq n. \ \beta_i(n) \notin [m_n + 1 : r(m_n)]$$

- $t(n) \leq m_n$ is total.
- Let $\varphi_i \in C_{r(t(n))}$, i.e.

$$\beta_i(n) \le r(t(n))$$
 faa n

and let $n \geq i$. Then

$$\beta_i(n) \notin [t(n) + 1 : r(t(n))]$$

hence

$$\beta_i(n) \leq t(n)$$

4.2 Making the resource bound t(n) monotonic.

Lemma 8. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a monotonic total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

4.2 Making the resource bound t(n) monotonic.

Lemma 8. For every total recursive function $r : \mathbb{N} \to \mathbb{N}$ there is a monotonic total recursive function $t : \mathbb{N} \to \mathbb{N}$ such that

$$C_{r(t(n))} = C_{t(n)}$$

define

$$t(1) = 1$$

 $m(n) = \min\{m : \forall i \le n. \ \beta_i(n) \notin [t(n) + m + 1 : r(t(n) + m)]\}$
 $t(n+1) = t(n) + m(n)$

• completing the proof: exercise

