CENG 223

Discrete Computational Structures

Fall '2020-2021

Homework 3

Student Name and Surname: Ersel Hengirmen Student Number: 2468015

Question 1

```
\begin{array}{l} (2^{22}+4^{44}+6^{66}+8^{80}+10^{110}) \bmod{11} \equiv ? \\ \text{Since 11 is prime and does not divide 2,4,6,8 and 10, by fermat's little theorem:} \\ (2^{11-1}) \bmod{11} \equiv 1 \\ (4^{11-1}) \bmod{11} \equiv 1 \\ (6^{11-1}) \bmod{11} \equiv 1 \\ (8^{11-1}) \bmod{11} \equiv 1 \\ (10^{11-1}) \bmod{11} \equiv 1 \\ (10^{11-1}) \bmod{11} \equiv 1 \\ (2^{22}+4^{44}+6^{66}+8^{80}+10^{110}) \bmod{11} \\ \equiv (2^{10*2+2}+4^{10*4+4}+6^{10*6+6}+8^{10*8}+10^{10*11}) \bmod{11} \\ \equiv (1^2*2^2+1^4*4^4+1^6*6^6+1^8+1^{11}) \bmod{11} \\ \equiv (4+256+46656+1+1) \bmod{11} \equiv (4+3+5+1+1) \bmod{11} \equiv (14) \bmod{11} \\ \equiv 3 \end{array}
```

Question 2

	$\gcd(5n+3,7n+4)$	
Higher	Lower	Combination
7n+4	5n+3	7n+4=1*(5n+3)+(2n+1)
5n+3	2n+1	5n+3=2*(2n+1)+(n+1)
2n+1	n+1	2n+1=1*(n+1)+n
n+1	n	n+1=1*(n)+1
\mathbf{n}	1	$n=n^*(1)$
1	0	

By Euclid's algorithm gcd(5n + 3, 7n + 4)=1

Question 3

$$m^2 = n^2 + kx$$

For this problem we know that m,n and k are integer numbers and x is a prime number. $m^2 = n^2 + kx$

Now we will extract n^2 from both sides $m^2 - n^2 = kx$

by the definition of divisibility $x|m^2 - n^2$ is clear but to make it more clear since $m^2 - n^2 = (m+n)*(m-n)$ we can change the above equation to: (m+n)*(m-n) = kx

Now we will divide every side by x:

$$\frac{(m+n)*(m-n)}{x} = k$$

We know that m and n are integers which means m+n and m-n must also be integers. we can easily see that $x|m^2-n^2$ since k is also an integer since x is prime it can not be written as multiplication of 2 prime or composite numbers because of that either m+n or m-n must be divisible to x. Otherwise k wouldnt be and integer.

Question 4

I will show that for all n such that $n \ge 1$ the following is true:

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}$$

Note: I will use P(k) as the validity of above equality for an arbitrary integer $k \ge 1$

Base Step:

for
$$n = 1$$

$$1=1*(3-1)/2=1$$

so it is valid for our base case n=1

Inductive Step: Assume that P(k) is valid for an arbitrary integer $k \le 1$ now we will prove $1+4+7...+(3k-2)+(3(k+1)-2)=\frac{(k+1)(3(k+1)-1)}{2}$ is valid (P(k+1))i:

$$1+4+7...+(3k-2)+(3(k+1)-2)$$

=(1+4+7+....(3k-2))+(3(k+1)-2)

Since we assumed that P(k) is valid $(1+4+7+....(3k-2))=\frac{k(3k-1)}{2}$ so using that

$$= \frac{k(3k-1)}{2} + 3k + 1$$

$$= \frac{k(3k-1) + 6k + 2}{2}$$

$$= \frac{k(3k-1) + (3k-1) + 3*(k+1)}{2}$$

$$= \frac{(k+1)(3k-1) + 3*(k+1)}{2}$$

$$= \frac{(k+1)(3k+2)}{2}$$
$$= \frac{(k+1)(3(k+1)-1)}{2}$$

 $=\frac{(k+1)(3k+2)}{2}$ $=\frac{(k+1)(3(k+1)-1)}{2}$ From these we saw that if P(k) is valid P(k+1) must also be valid This completes the inductive step

By mathematical induction $1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}$ is true for all integers $n\ge 1$