Double Binary Search

Given a sorted matrix where each row and each column is in ascending order, your task is to locate the position of a target element within the matrix. If the element exists, return its zero-based indices (row, column). If the element does not exist, print (-1, -1).

Input:

- The number of rows m followed by the number of columns n
- The sorted matrix values $(m \times n)$
- The target value

Please note that all the inputs are numbers, and it may be separated either by space or by newline. The code should be able to handle both.

Output:

• The indices of the result if it is found, (-1, -1) otherwise.

Sample:

No.	Sample Input	Sample Output
1	3 3 1 2 3 4 5 6 7 8 9 6	1 2
2	3 3 1 4 7 9 12 15 100 500 1000 50	-1 -1

Challenge: Find the result in $O(\log m + \log n)$ time! Use recursion!

Additional Notes:

- It is guaranteed that there will be no duplicates values.
- It is guaranteed that the array is in increasing order.
- It is guaranteed that the first element of a row is greater than the last element of the previous row.