Grammaires et Analyse Syntaxique - Cours 5 Analyse LL(1) dans le cas général

Ralf Treinen

treinen@irif.fr

18 février 2022

© Ralf Treinen 2020-2022

Construction d'un arbre de dérivation

Choisir règle (1): c'est la seule qui peut produire à partir de S un mot qui commence par i.

Grammaires LL(1)

- ▶ Intuition derrière les grammaires LL(1) : dans la construction d'une dérivation gauche, le symbole suivant de l'entrée nous indique quelle règle de la grammaire appliquer au non-terminal le plus à gauche de l'arbre de dérivation.
- Conséquence : toute grammaire LL(1) (ou même LL(k)) est non-ambiguë.
- ▶ Le premier critère pour être LL(1) s'applique seulement aux grammaires G où tous les côtés droits des règles commencent par un terminal :
 - G est LL(1) ssi tous les côtés droits des règles pour le même non-terminal commencent par des terminaux différents.

Rappel First₁

• Étant donnée une grammaire $G = (\Sigma, N, S, P)$ et un mot $\alpha \in (N \cup \Sigma)^*$

$$First_1(\alpha) = \{ c \in \Sigma \mid \exists w \in \Sigma^*, \alpha \to^* cw \}$$

First₁(α) est l'ensemble des symboles par lesquels un mot terminal dérivé à partir de α peut commencer.

Un meilleur critère pour être LL(1)

- Vu au dernier cours : calcul de First₁ dans le cas où aucun non-terminal est annulant.
- Deuxième critère pour être LL(1), s'applique seulement aux grammaires G où tous les côtés droits des règles sont non vides.
 - G est LL(1) ssi tous les côtés droits des règles pour le $m\^{e}me$ non-terminal ont des ensembles $First_1$ disjoints.

Exemple vu au dernier cours

• Grammaire $G = (\{F, S\}, \{a, (,), +\}, S, P)$ où P est

$$\begin{array}{ccc} \mathsf{F} & \to & \mathsf{a} \\ \mathsf{S} & \to & (\mathsf{F+S}) \\ \mathsf{S} & \to & \mathsf{F} \end{array}$$

- Le première critère simple ne s'applique pas.
- On obtient pour les côtés droits des règles :

$$\begin{aligned} \operatorname{First}_1(\mathtt{a}) &= \{\mathtt{a}\} \\ \operatorname{First}_1((\mathsf{F+S})) &= \{(\} \\ \operatorname{First}_1(\mathsf{F}) &= \{\mathtt{a}\} \end{aligned}$$

Première grammaire pour des expressions arithmétiques

▶ La grammaire $G_1 = (\{i, +, *, (,), EOF\}, \{S, E\}, S, P)$, où P est

$$\mathsf{S} \to \mathsf{E} \; \mathsf{EOF} \qquad \qquad \mathsf{E} \to \mathsf{i} \; | \; \mathsf{E+E} \; | \; \mathsf{E*E} \; | \; (\mathsf{E})$$

► Cette grammaire décrit les expressions arithmétiques partiellement parenthésées. Elle est ambiguë :

Deuxième grammaire pour les expressions parenthésées

La grammaire $G_2 = (\{i, +, *, (,), EOF\}, \{E, T, F\}, S, P)$, où P est

Cette grammaire décrit les expressions arithmétiques partiellement parenthésées.

L'exemple des expressions partiellement parenthésées

- ► Cette grammaire est non-ambiguë ©
- Intuition: Les "+" peuvent être produits seulement à partir du E. Tout mot engendré par E "au-dessous" d'un * est protégé par des parenthèses (et).
- (Il y a aussi une preuve formelle mais je vous en fais grâce.)
- Exercice : construire les arbres de dérivation pour

```
i+i*i EOF
i+i+i EOF
```

- Cette grammaire est-elle aussi LL(1)? Ou au moins LL(k) pour un certain $k \in \mathbb{N}$?
- ► Elle n'est pas LL(k), pour aucun $k! \odot$

Un critère pour ne pas être LL(k)

Définition

Une grammaire $G = (\Sigma, N, S, P)$ est récursive à gauche s'il y a un non-terminal $K \in N$ tel que $K \to^+ K \alpha$ pour un $\alpha \in (\Sigma \cup N)^*$.

- ightharpoonup : dérivation en *au moins une* étape.
- ightharpoonup Exemple : notre grammaire pour les expressions partiellement parenthésées, car E
 ightharpoonup E+T

Définition

- ▶ Un non-terminal K est *accessible* s'il existent $\alpha, \beta \in (\Sigma \cup N)^*$ tel que $S \to^* \alpha K \beta$.
- ▶ Un non-terminal K est *productif* s'il existe $w \in \Sigma^*$ tel que $K \to^* w$.
- Une grammaire est réduite quand tous ses non-terminaux sont accessibles et productifs.

Exemples

• Grammaire $(\{a, b, c\}, \{A, B, C, D, E, F\}, F, P)$ avec P:

Accessibles : F, E, A, B. Non-accessibles : C, D.

• Grammaire $(\{a, b, c\}, \{A, B, C, D, E, F\}, F, P)$ avec P:

Productif A, C, D, F. Non-productif: B, E.

Récursivité à gauche et LL(1)

Lemme

Si la grammaire G est réduite et récursive à gauche, alors G n'est pas LL(k), pour aucun $k \in \mathbb{N}$.

- La raison est :
- On peut faire des dérivations

$$\mathsf{K}\gamma \to^+ \mathsf{K}\alpha\gamma \to^+ \mathsf{K}\alpha\alpha\gamma \to^+ \cdots \to^+ \mathsf{K}\alpha^n\gamma \to \beta\alpha^n\gamma$$

Le lookahead ne peut pas nous aider à décider combien de fois appliquer la règle $K \to K\alpha$ car dans cette dérivation il est toujours le même!

Que faire?

- On peut transformer la grammaire en une grammaire équivalente (qui définit le même langage), et qui est LL(1).
- Ce n'est pas toujours possible, et il y a deux inconvénients :
 - la grammaire résultante peut être plus grande;
 - la structure de l'arbre de dérivation peut changer.
- Il y a un troisième inconvénient : la transformation peut introduire des règles $K \to \epsilon$, il faut donc adapter la technique à ce cas.

La grammaire transformée

- Une grammaire pour les expressions arithmétiques partiellement parenthésées.
- ► Terminaux : {i,+,*,(,),EOF}
- $\begin{array}{|c|c|c|c|c|} \hline & grammaire \ originale & grammaire \ transform\acute{e}e \\ \hline & S \rightarrow E \ EOF \\ & S \rightarrow E \ EOF \\ & E \rightarrow T \ E' \\ & E \rightarrow E+T \ | T \\ & T \rightarrow T*F \ | F \\ & F \rightarrow (E) \ | i \\ \hline & F \rightarrow (E) \ | i \\ \hline \end{array}$
- Axiome : S

Explication de la transformation

Les deux règles originales pour le non-terminal E :

$$E \rightarrow T$$
 $E \rightarrow E+T$

- ▶ Dans la grammaire d'origine, le non-terminal E engendre une séquence non-vide de non-terminaux T, séparés par des +.
- Dans la grammaire transformée, le non-terminal E' engendre la suite de cette séquence après un T :

$$\begin{array}{ccc} \mathsf{E} & \to & \mathsf{T} \; \mathsf{E}' \\ \mathsf{E}' & \to & \epsilon \; | \; \mathsf{+} \mathsf{E} \end{array}$$

Pareil pour le non-terminal T.

Non-terminaux annulables

Définition

Soit $G = (\Sigma, N, S, P)$ une grammaire. $K \in N$ est annulable si $K \to^* \epsilon$.

On note souvent EPS l'ensemble des non-terminaux annulables d'une grammaire.

Calcul des non-terminaux annulables

- ▶ Si K $\rightarrow \epsilon \in P$ alors K est annulable.
- ▶ Si $K \to K_1 \cdots K_n \in P$, et K_i est annulable pour tout i, alors K est aussi annulable.

Exemple

• Grammaire $(\{a, b, c\}, \{A, B, C, D, E, F\}, F, P)$ avec P:

- Sont annulables :
 - \triangleright A, B car il y a ϵ côté droit
 - C car A, B annulables
 - E car A, B, C annulables
- D et F ne sont pas annulables.

Comment calculer $First_1$ dans le cas général?

- ightharpoonup Imaginez une règle A ightarrow B C d E
- Soit EPS l'ensemble des non-terminaux annulant.
- Si B ∉ EPS : dans cette règle, seulement First₁(B) peut contribuer à First₁(A).
- ▶ Si B ∈ *EPS* : First₁(C) peut aussi contribuer à First₁(A).
- ▶ Si B ∈ EPS et C ∈ EPS : d doit être dans $First_1(A)$.
- Dans aucun des cas, First₁(E) ne peut contribuer car il se trouve derrière le terminal d.

Calcul de $First_1$ avec non-terminaux annulables

- On fait un graphe, où les nœuds sont les non-terminaux.
- On fait une arête de A vers B quand il y a une règle $B \to K_1 \cdots K_n A \alpha$ où $n \ge 0$, et tous les K_i sont annulables.
- Initialement on met sur un nœud K tous les terminaux a tel qu'il existe une règle $K \to K_1 \cdots K_n a \alpha$ où tous les K_i sont annulables.
- Puis on propage les valeurs dans le sens des flèches.

Calcul de First₁ sur l'exemple

- ▶ Non-terminaux annulables : E', T'
- Initialisation :

{i,(} {} {}

$$F \longrightarrow T \longrightarrow F \longrightarrow S$$

{*}

{+}

Propagation :

$$\{i,()\}$$
 $\{i,()\}$ $\{i,()\}$ $\{i,()\}$

 $F \longrightarrow T \longrightarrow F \longrightarrow S$

Calcul de $\mathrm{First}_{\leq 1}$ dans le cas général

- On calcule maintenant pour les côtés droits de la grammaire $\mathrm{First}_{<1}(\alpha) := \{ w : 1 \mid \alpha \to^* w, w \in \Sigma^* \}$
- La différence avec $\mathrm{First}_1(\alpha)$ est que $\mathrm{First}_{\leq 1}(\alpha)$ peut aussi contenir ϵ .
- $\blacktriangleright \operatorname{First}_{\leq 1}(\epsilon) = \{\epsilon\}$
- ▶ pour tout $a \in \Sigma$: First_{≤1} $(a\alpha) = \{a\}$
- ightharpoonup pour tout $A \in N$:

$$\operatorname{First}_{\leq 1}(A\alpha) = \begin{cases} \operatorname{First}_{1}(A) & \text{si } A \notin EPS \\ \operatorname{First}_{1}(A) \cup \operatorname{First}_{\leq 1}(\alpha) & \text{si } A \in EPS \end{cases}$$

Calcul de $\mathrm{First}_{\leq 1}$ des côtés droits dans l'exemple

Α	$\operatorname{First}_1(A)$
S	{i,(}
E	{i,(}
E'	{+}
Т	{i,(}
T'	{*}
F	{i,(}

$$EPS = \{E', T'\}$$

α	$\operatorname{First}_{\leq 1}(\alpha)$		
T E'	{i,(}		
ϵ	$\{\epsilon\}$		
+ E	{+}		
FT'	{i,(}		
* T	{*}		
(E)	{(}		
i	{i}		
E EOF	{i,(}		

Nous avons besoin de plus d'information!

- ▶ Le calcul de First≤1 n'est plus suffisant pour savoir quelle production appliquer!
- ightharpoonup Exemple : $E'
 ightharpoonup \epsilon \mid +E$

α	$\operatorname{First}_{\leq 1}(\alpha)$
ϵ	$\{\epsilon\}$
+ E	{+ }

Si nous voyons + alors il faut utiliser la deuxième alternative pour réécrire E'. Mais quand faut-il appliquer la première?

Il nous manque une information : quels sont les symboles terminaux qui peuvent suivre un mot produit par un non-terminal?

First₁ et Follow₁

La fonction Follow₁

Définition

Soit $G = (\Sigma, N, S, P)$ une grammaire. La fonction $\operatorname{Follow}_1 \colon N \to 2^{\Sigma}$ est définie par

$$\operatorname{Follow}_1(A) = \{c \mid S \to^* \beta A \gamma, \beta, \gamma \in (N \cup \Sigma)^*, c \in \operatorname{First}_1(\gamma)\}$$

Explication

 $\operatorname{Follow}_1(A)$ est l'ensemble de tous les symboles terminaux qui peuvent, dans des mots de $\mathcal{L}(G)$, suivre un mot dérivé de A.

Calcul de $Follow_1$ pour les non-terminaux

- Grammaire $G = (\Sigma, N, S, P)$.
- ightharpoonup On fait un graphe, avec N comme ensemble de nœuds.
- On fait une arête de A vers B quand il y une règle de la forme $A \to \alpha BB_1 \dots B_n$ où $B_1, \dots B_n \in EPS$.
- On ajoute des symboles de Σ comme valeurs aux nœuds. Initialement, on ajoute à un nœud A, pour toutes les règles $\ldots \to \ldots A\alpha$, l'ensemble $\mathrm{First}_1(\alpha)$.
- Puis on propage les valeurs dans le sens des flèches, jusqu'à ne plus pouvoir propager.

Follow_1 : propagation de gauche à droite

Cas d'une règle $B o \dots AA_1 \dots A_j$ avec $A_1, \dots, A_j \in EPS$

 $\operatorname{Follow}_1(B) \subseteq \operatorname{Follow}_1(A)$

Calcul de Follow₁ sur l'exemple

Propagation: ajouter les symboles rouges

Le critère général pour être LL(1)

Théorème

La grammaire $G = (\Sigma, N, S, P)$ est LL(1) ssi pour toutes les alternatives $A \to \alpha_1 \mid \ldots \mid \alpha_n$:

- 1. $\mathrm{First}_{\leq 1}(\alpha_1), \ldots, \mathrm{First}_{\leq 1}(\alpha_n)$ sont disjoints entre eux;
- 2. Si $\epsilon \in \mathrm{First}_{\leq 1}(\alpha_i)$, alors pour tous $j \neq i$:

$$\operatorname{First}_{\leq 1}(\alpha_j) \cap \operatorname{Follow}_1(A) = \emptyset$$

Remarque

Condition (1) implique qu'au plus un des ensembles $\mathrm{First}_{\leq 1}(\alpha_i)$ contient ϵ .

Le critère sur l'exemple

Non-terminal	Cas 1	$\mathrm{First}_{\leq 1}$	Cas 2	$ \operatorname{First}_{\leq 1} $
E	T E'	{i,(}		
E'	ϵ	$\{\epsilon\}$	+ E	{+}
Т	F T'	{i,(}		
T'	ϵ	$\{\epsilon\}$	* T	{* }
F	(E)	()	i	$\{i\}$
S	E EOF	$\{i,\overline{()}\}$		

- ► Follow₁(E') = {), EOF} disjoint avec $\{+\}$ ©
- ▶ $Follow_1(T') = \{EOF, \}, +\}$ disjoint avec $\{*\}$ ©
- ightharpoonup {(} disjoint avec {i} \odot
- Conclusion: la grammaire est LL(1)!

Comment choisir la règle dans l'analyse syntaxique

Soit $A \to \alpha_1 \mid \ldots \mid \alpha_n$ une alternative. If y a deux cas :

- 1. Soit aucun des $\operatorname{First}_{\leq 1}(\alpha_i)$ ne contient ϵ : comme avant :
 - On choisit la règle $A \to \alpha_i$ quand le symbole suivant est dans $\operatorname{First}_{<1}(\alpha_i)$ (ils sont tous disjoints).
 - Erreur si aucun tel i existe
- 2. Soit il existe un (seul) α_i avec $\epsilon \in \mathrm{First}_{\leq 1}(\alpha_i)$:
 - si le symbole suivant est dans $\mathrm{First}_{\leq 1}(\alpha_j)$: choisir $A \to \alpha_j$, pour $1 \leq j \leq n$.
 - **>** si le symbole suivant est dans $\operatorname{Follow}_1(A)$: choisir $A \to \alpha_i$.
 - sinon Erreur.

```
Grammaires et Analyse Syntaxique - Cours 5 Analyse LL(1) dans le cas général

LL(1) avec non-terminaux annulables
```

Fichier parser.ml |

```
open Tree
open Reader
exception Error of string
let rec parse S() =
  match lookahead () with
  | Ch 'i' | Ch '('\rightarrow begin (* S \rightarrow E *)
      let x = parse E () in
      Node ("S",[x])
    end
 —> raise (Error "parsing<sub>□</sub>S")
and parse E() =
  match lookahead () with
  | Ch'i' | Ch'(' -> begin (* E -> T E' *)
      let x1 = parse T () in
      let x2 = parse Eprime () in
      Node ("E", [x1; x2])
    end
```

Fichier parser.ml ||

```
—> raise (Error "parsing⊔E")
and parse Eprime () =
  match lookahead () with
  |Ch'\rangle |EOF-\rangle (*E'-\rangle epsilon *)
     Node ("E'", [Epsilon])
  | Ch '+' -> begin (*E' -> +E*)
      eat (Ch '+'):
      let x = parse E () in
      Node("E'" .[Leaf '+':x])
   end
  —> raise (Error "parsing⊔E'")
and parse T() =
  match lookahead () with
  | Ch'i' | Ch'(' -> begin (* T -> F T' *)
      let x1 = parse F () in
      let x2 = parse Tprime () in
      Node ("T" .[x1:x2])
    end
```

```
Grammaires et Analyse Syntaxique - Cours 5 Analyse LL(1) dans le cas général

LL(1) avec non-terminaux annulables
```

Fichier parser.ml |||

eat (Ch '('):

eat (Ch ')'):

let x = parse E () in

Node("F", [Leaf '('; x; Leaf ')'])

```
—> raise (Error "parsing<sub>□</sub>T")
and parse Tprime() =
  match lookahead () with
  |Ch'\rangle |Ch'+\rangle |EOF-\rangle (*T'-\rangle epsilon *)
     Node ("T'", [Epsilon])
  | Ch '*' \rightarrow begin (* T' \rightarrow * T *)
       eat (Ch '*'):
      let x = parse T () in
      Node("T'" .[Leaf '*':x])
    end
   —> raise (Error "parsing⊔E'")
and parse F() =
  match lookahead () with
  | Ch '(' \rightarrow begin (* F \rightarrow (E) *)
```

Fichier parser.ml IV

```
end
| Ch 'i' -> begin (* F -> i *)
    eat (Ch 'i');
    Node("F",[Leaf 'i'])
end
| _ -> raise (Error "parsing LF")

let parse () = parse_S ()
```