Actividad de puntos evaluables - Escenario 6

Fecha de entrega 29 de nov en 23:55

Puntos 100

Preguntas 9

Disponible 26 de nov en 0:00 - 29 de nov en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- **10.** Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Historial de intentos

	Intento	Hora	Puntaje	
MANTENER	Intento 2	74 minutos	100 de 100	
MÁS RECIENTE	Intento 2	74 minutos	100 de 100	
	Intento 1	88 minutos	55 de 100	

Las respuestas correctas estarán disponibles del 29 de nov en 23:55 al 30 de nov en 23:55.

Puntaje para este intento: 100 de 100

Entregado el 27 de nov en 22:58

Este intento tuvo una duración de 74 minutos.

Pregunta 2 11 / 11 pts

Determinar la aceleración de los bloques. El coeficiente de rozamiento entre las superficies en contacto es μ =0.2. La polea tiene masa despreciable.

Tómese g=9.8 m/s²

- 2.10m/s2
- 2.40m/s2
- 3.2m/s2
- 1.20m/s2

Pregunta 3 11 / 11 pts

Se hace girar un yoyo de 70 gramos en un círculo horizontal con Movimiento Circular Uniforme a 180 r.p.m. en un radio de 90 cm. La magnitud de la fuerza centrípeta en newtons que experimenta el yoyo es de:

- 80.6
- 20.0
- 25.2
- 140

22.4

Pregunta 4 11 / 11 pts

Suponga que F es la fuerza resultante sobre el carrito de la figura y se desprecia la fuerza de fricción.

Digamos que el carrito y su carga tienen una masa combinada *m* de 10kg y que tiene una *velocidad inicial vi 4.86m/s y final vf 10.96m/s*, respectivamente.

De acuerdo con la segunda ley de Newton del movimiento, habrá una aceleración resultado de la razón $a=\frac{F}{m}$ y ésta es: $a=\frac{vf^2-vi^2}{2x}$. Determine F cuando el carrito se encuentre a 29m. *Incluya 2 decimales*

16.64

Pregunta 5 11 / 11 pts

Si el trabajo realizado por un conjunto de fuerzas sobre un cuerpo es igual al cambio en la energía mecánica del cuerpo, esto indica que:

Que todas las fuerzas son conservativas.

Que no se cumple el teorema del trabajo ya la energía.	
Sobre el cuerpo no actúa fuerza de rozamiento.	
Alguna de las fuerzas no es conservativa	

Pregunta 6 12 / 12 pts

Una masa de 2.9 kg comprime 22.4 cm un resorte de constante elástica 1,925.5, como muestra la figura.

Tanto la masa como el resorte se encuentran inicialmente a una altura y0 = 3.1 m. La masa se libera desde el reposo y baja por la pista que es sin fricción excepto en la parte horizontal que tiene una longitud de x = 4.4 m y el coeficiente de fricción cinética entre la pista y la masa es $\mu = 0.2$. Calcule en metros, la altura máxima (ymax) que alcanza la masa. Respuesta con precisión de dos decimales.

3.92

Pregunta 7 11 / 11 pts

Un bloque de 13.5kg de masa se comprime una distancia x=0.24m contra un resorte de constante elástica 4,044N/m, sobre una superficie horizontal rugosa, el bloque recorre una distancia d=2.2m antes de detenerse. Determine el coeficiente de rozamiento cinético entre el boque y la superficie.

Nota: Indicar su respuesta con dos decimales.

0.44

Pregunta 8 11 / 11 pts

La masa de la tierra es de 5.98×10^{24} kg, y la masa de la luna es de 7.36×10^{22} kg. La distancia de separación entre sus centros es de 3.84×10^8 m. La localización del centro de masa del sistema Tierra-Luna, medida desde el centro de la Tierra en millones de metros es:

- 192
- 1.92
- **4.67**
- 467

379

Pregunta 9 11 / 11 pts
Dos vehículos A y B se dirigen al oeste y al sur respectivamente, rumbo a la misma intersección donde chocan y quedan trabados. Antes de la colisión, A cuyo peso es de 12103.0 N avanza con una rapidez de 17.0 m/s y B cuyo peso es de 16170.0 N avanza con una rapidez de 26.0 m/s. La magnitud de la velocidad en m/s de los vehículos luego de la colisión es:
0 10.2
O 20.5
O 23.9
O 21.2
16.6

Puntaje del examen: **100** de 100

×