Math-71 Sections 9, 11, 12

Exam #2 Cheat Sheet

1

Derivatives

1.
$$\frac{d}{dx}[c] = 0$$

2.
$$\frac{d}{dx}[x^c] = cx^{c-1}$$

3.
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{dx}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

5.
$$\frac{df}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$$

1.
$$\frac{d}{dx}[c] = 0$$

2. $\frac{d}{dx}[x^c] = cx^{c-1}$
3. $\frac{d}{dx}[cf(x)] = cf'(x)$
4. $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
5. $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$
6. $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - g'(x)f(x)}{[g(x)]^2}$
7. $\frac{d}{dx}[f(u(x))] = f'(u)u'(x)$
8. $\frac{d}{dx}[e^x] = e^x$

7.
$$\frac{d}{dx}[f(u(x))] = f'(u)u'(x)$$

$$8. \ \frac{d}{dx}[e^x] = e^x$$

	< 0	> 0
f'(x)	decreasing	increasing
f''(x)	concave down	concave up

Transformations

TRANSFORMATION	PATTERN
basic graph	e^x
horizontal translation	$e^{x\pm h}$
horizontal scale	$e^{b(x\pm h)}$
horizontal reflection	$e^{-b(x\pm h)}$
vertical scale	$ae^{-b(x\pm h)}$
vertical reflection	$-ae^{-b(x\pm h)}$
vertical translation	$-ae^{-b(x\pm h)}\pm k$

Interest

1.
$$A = P(1 + rt)$$

2.
$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

3.
$$A = Pe^{rt}$$

Probability

1.
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$