课程 > Unit 6: Further topi... > Lec. 11: Derived di... > 5. Exercise: Linear f...

5. Exercise: Linear functions of continuous r.v.'s

Exercise: Linear functions of continuous r.v.'s

1/2 points (graded)

- (a) Let X be an exponential random variable and let Y = aX + b. The random variable Y is exponential if and only if (choose one of the following statements):
 - always.
 - $a \neq 0$.
 - lacksquare a
 eq 0 and b=0
 - a > 0
 - a>0 and b=0
 - a=1
- (b) Let X be a continuous random variable, uniformly distributed on some interval, and let Y=aX+b. The random variable Y will be a continuous random variable with a uniform distribution if and only if (choose one of the following statements):
 - always.
 - a > 0.
 - \bullet $a \neq 0 \checkmark$
 - igcup a
 eq 0 and b=0

(a) For Y to be exponential, its range must be $[0,\infty)$. This will be the case only if a>0 and b=0. And if indeed a>0 and b=0, and X has parameter λ , then, for $y\geq 0$, $f_Y(y)=(1/a)f_X(y/a)=(\lambda/a)e^{-\lambda y/a}$, which is exponential (with parameter λ/a).

(b) A scaled and shifted uniform is uniform, except that if a=0, then ${\it Y}$ is a constant random variable, and therefore no longer continuous.

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Topic: Unit 6 / Lec. 11 / 5. Exercise: Linear functions of continuous r.v.'s

© All Rights Reserved