

## **Database Users**

- Two groups of users
  - Actors on the Scene
  - Workers behind the Scene

## Database Users - Actors behind the Scene

### Tool Developers

- Design and implement software systems
  - Modeling and designing databases
  - Prototyping
  - Test data generation
  - User interface creation
  - Simulation
  - Performance monitoring
- Facilitate building of applications and allow using database effectively

## Database Users - Actors behind the Scene

- System Designers and Implementors
  - Design and implement DBMS packages in the form of modules and interfaces, test and debug them.
  - The DBMS must interface with applications, programming language compilers, operating system components, etc.
- Operators and Maintenance Personnel
  - They manage the actual running and maintenance of the database system hardware and software environment.

## When not to use a DBMS

- Main inhibitors (costs) of using a DBMS:
  - High initial investment and possible need for additional hardware
  - Overhead for providing generality, security, concurrency control, recovery, and integrity functions

## When not to use a DBMS

- When a DBMS may be unnecessary:
  - If the database and applications are simple, well defined, and not expected to change
  - If access to data by multiple users is not required

- When a DBMS may be infeasible:
  - In embedded systems where a general purpose DBMS may not fit in available storage

## When not to use a DBMS

- When no DBMS may suffice:
  - If there are stringent real-time requirements that may not be met because of DBMS overhead (e.g., telephone switching systems)
  - If the database system is not able to handle the complexity of data because of modeling limitations (e.g., complex genome and protein databases)
  - If the database users need special operations not supported by the DBMS (e.g., GIS and location based services).



## **Data Models**

### Data Model

- A set of concepts to describe
  - the *structure* of a database
  - the operations for manipulating these structures
  - certain constraints that the database should obey

### Data Model Structure and Constraints

- Constructs are used to define the database structure
- Constructs typically include elements (and their data types) as well as groups of elements (e.g. entity, record, table), and relationships among such groups
- Constraints specify some restrictions on valid data
  - These constraints must be enforced at all times

## **Data Models**

- Data Model Operations
  - Operations used for specifying database retrievals and updates by referring to the constructs of the data model.
  - Operations on the data model
    - Basic model operations
      - generic insert, delete, update
    - User-defined operations
      - compute\_student\_gpa
      - update\_inventory
      - notify\_manager

## **Categories of Data Models**

- Conceptual (high-level, semantic) data models
  - Provide concepts that are close to the way many users perceive data
    - Entity-based or object-based data models
- Physical (low-level, internal) data models
  - Provide concepts that describe details of how data is stored in the computer
  - Usually specified in an ad-hoc manner through DBMS design and administration manuals

## **Categories of Data Models**

- Implementation (representational) data models
  - Provide concepts that fall between conceptual and physical models
  - Used by many commercial DBMS implementations
  - Example: relational data models used in many commercial systems
- Self-describing data models
  - Combine the description of data with the data values
  - Examples include XML, key-value stores and NOSQL systems

## Schema

- Database Schema
  - **Description** of a database •
  - Includes descriptions of the database structure, data types, and the constraints on the database
- Schema Diagram
  - An illustrative display of (most aspects of) a database schema
- Schema Construct
  - A *component* of the schema or an object within the schema, e.g., STUDENT, COURSE

# **Example of a Database Schema**

#### **STUDENT**

Name Student\_number Class Major

#### COURSE

Course\_name Course\_number Credit\_hours Department

#### **PREREQUISITE**

Course\_number | Prerequisite\_number

#### **SECTION**

Section\_identifier | Course\_number | Semester | Year | Instructor

### **GRADE\_REPORT**

Student\_number | Section\_identifier | Grade

### **Instances**

- Database State
  - The actual data stored in a database at a particular moment in time
  - Includes the collection of all the data in the database
  - Also called database instance (or occurrence or snapshot)
    - The term *instance* is also applied to individual database components, e.g. record instance, table instance, entity instance

## **Database State**

- Database State
  - Refers to the content of a database at a moment in time
- Initial Database State
  - Refers to the database state when it is initially loaded into the system
- Valid State
  - A state that satisfies the structure and constraints of the database

#### COURSE

| Course_name               | Course_number | Credit_hours | Department |
|---------------------------|---------------|--------------|------------|
| Intro to Computer Science | CS1310        | 4            | CS         |
| Data Structures           | CS3320        | 4            | CS         |
| Discrete Mathematics      | MATH2410      | 3            | MATH       |
| Database                  | CS3380        | 3            | CS         |

#### SECTION

| Section_identifier | Course_number | Semester | Year | Instructor |
|--------------------|---------------|----------|------|------------|
| 85                 | MATH2410      | Fall     | 04   | King       |
| 92                 | CS1310        | Fall     | 04   | Anderson   |
| 102                | CS3320        | Spring   | 05   | Knuth      |
| 112                | MATH2410      | Fall     | 05   | Chang      |
| 119                | CS1310        | Fall     | 05   | Anderson   |
| 135                | CS3380        | Fall     | 05   | Stone      |

#### ${\sf GRADE\_REPORT}$

| Student_number | Section_identifier | Grade |
|----------------|--------------------|-------|
| 17             | 112                | В     |
| 17             | 119                | С     |
| 8              | 85                 | Α     |
| 8              | 92                 | Α     |
| 8              | 102                | В     |
| 8              | 135                | Α     |

#### PREREQUISITE

| Course_number | Prerequisite_number |
|---------------|---------------------|
| CS3380        | CS3320              |
| CS3380        | MATH2410            |
| CS3320        | CS1310              |

## Database Schema vs. Database State

- Distinction
  - The database schema changes very infrequently
  - The database state changes every time the data in the database are updated

- Schema → intension
- State → extension