

Emergence of Helicity in Double-stranded Semiflexible Chains with Interstrand Interactions

Farisan Dary, Ee Hou Yong

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Abstract

In literatures, there are models with varying levels of complexity and coarsegraining schemes that accurately describe the mechanical and structural properties of dsDNA. However, the interplay between base-stacking interactions in dsDNA and its intrinsic handedness is rarely discussed despite their importance in preserving the double-helix structure of dsDNA. Here we investigate the delicate balance required for the strength of base-stacking interactions D and the twist stiffness P to preserve the double-helix structure in a model made up of two semiflexible chains. We found that our model supports several distinct morphological phases in the parameter space (P,D): flat, random coil, and the double-helix phase. Transitions between these phases are of different order, and there is also a morphological transition within the double-helix phase signified by the unwinding of the double-helix.

Methods

Model and Parameters

Bending energy:

$$E_{\text{bend}}^{(k)} = \sum_{i=0}^{N-2} \frac{\ell_p^0}{\Delta} \left(1 - \mathbf{t}_i^{(k)} \cdot \mathbf{t}_{i-1}^{(k)} \right)$$

Base-pairing:

$$E_{\text{bond}} = \sum_{i=0}^{N-1} \frac{k}{r_H^2} \left(r_{\text{bond},i} - r_{\text{bond}}^0 \right)^2$$

where
$$r_{\mathrm{bond},i} = |\mathbf{r}_i^{(1)} - \mathbf{r}_i^{(2)}|$$

Fixed parameters:

- = 2 nm (bare persistence length)
- = 0.64 nm (distance between monomers)
- r_{bond}^{0} = 2 nm (pair distance)
 - = $12 k_B T_0$ (strength of base-pairing)
 - = 0.3 nm (hydrogen bond length)
- $r_{
 m inter}^0$ = 1.8 nm (diagonal distance)
- $\chi_0 = 0.2 \,\pi \,\text{rad} \,\text{(twist angle)}$

$$E_{\text{inter}} = D \sum_{i=0}^{N-2} \left[(r_i^{1,2} - r_{\text{inter}}^0)^2 + (r_i^{2,1} - r_{\text{inter}}^0)^2 \right]$$
 where $r_i^{m,n} = |\mathbf{r}_i^{(m)} - \mathbf{r}_{i+1}^{(n)}|$
$$\mathbf{r}_{i+1}^{(2)}$$

$$\mathbf{r}_{i+1}^{(1)}$$

$$\mathbf{r}_{\text{mid},i+1}$$

$$\mathbf{r}_{\text{mid},i}$$

$$\mathbf{r}_{\text{mid},i}$$

$$\mathbf{r}_{\text{mid},i}$$

$$\mathbf{r}_{\text{mid},i}$$

$$\mathbf{r}_{\text{mid},i}$$
 where
$$\mathbf{r}_{i}$$

$$\mathbf{r}_{\text{mid},i}$$

$$\mathbf{r}_{\text{mid},i}$$

Simulation

Both chains are initially free. The total energy of the system,

 $2\pi - \operatorname{acos}(\hat{\mathbf{t}}_{\operatorname{mid},i} \cdot (\hat{\mathbf{n}}_i \times \hat{\mathbf{m}}_{i+1})) \text{ if } \operatorname{sign}(\hat{\mathbf{t}}_{\operatorname{mid},i} \cdot (\hat{\mathbf{n}}_i \times \hat{\mathbf{m}}_{i+1})) = -1$

$$E = E_{\text{bend}}^{(1)} + E_{\text{bend}}^{(2)} + E_{\text{bond}} + E_{\text{inter}} + E_{\text{twist}}$$

is driven to minimum using Monte Carlo (MC) simulation with 4×10^6 sweeps whereby samplings for each sweep are taken in parallel using 64 CPU-cores. We devote the first half of the MC steps to equilibration, and the configuration of both chains are accepted or rejected via Metropolis algorithm.

ACKNOWLEDGEMENT

E.H.Y. and F.D. acknowledge support from the Singapore Ministry of Education through the Academic Research Fund Tier 1 (RG140/22).

REFERENCES

J. D. Watson and F. H. C. Crick, Nature 171, 737 (1953) J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994)

https://personal.ntu.edu.sg/eehou For more information, email Ee Hou at eehou@ntu.edu.sg

Results

Flat → Double-helix

In the case D = 0, the chains rarely twist and bend. When D is not zero, the chains start to wind around each other. In the absence of *P*, the twist direction is not regulated. If P is not zero, only righthanded twist is allowed. For nonzero P and D, the chains gradually form righthanded double-helix as D increases with fixed P. Increasing D further would give rise to the instability in the structure

Double-helix (unwound)

double helix.

which causes the unwinding of the

The variation of Gauss linking number

$$Lk(n) = \frac{1}{4\pi} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \frac{\mathbf{r}_i^{(1)} - \mathbf{r}_j^{(2)}}{|\mathbf{r}_i^{(1)} - \mathbf{r}_i^{(2)}|^3} \cdot \left[\left(\mathbf{r}_i^{(1)} - \mathbf{r}_{i-1}^{(1)} \right) \times \left(\mathbf{r}_j^{(2)} - \mathbf{r}_{j-1}^{(2)} \right) \right]$$

In the double-helix phase, the link increases linearly along the chains. Likewise for the doublehelix (unwound) phase and flat → double-helix, though the total link will be smaller. The link is small in the **flat** phase since bending and twisting are rare. The link can go below zero in the random coil phase because there is no preferred twisting direction.

Phase diagram

Morphological phase diagram of our model subject to different base-stacking strength D and twist stiffness P at normalized temperature Λ = 1.

The phase transitions flat \rightarrow double-helix and double-helix → double-helix (unwound) are continuous, while the phase transitions from random coil phase to the other phases are abrupt due to the handednesssymmetry breaking.

Correlation functions and persistence length

The correlation function $\langle \mathbf{t}_n \cdot \mathbf{t}_0 \rangle$ at temperature $\Lambda = T/T_0$ exhibits oscillatory behavior with amplitudes that decay exponentially: $\langle \mathbf{t}_n \cdot \mathbf{t}_0 \rangle = e^{-s/\ell_p} \cos(\lambda_p s)$, where $s = n\Delta$. The bending persistence length ℓ_p increases as the temperature Λ is lowered.