Convergence of random variables

Warm-up

Suppose that $X_1, X_2, \ldots \stackrel{iid}{\sim} Uniform(0,1).$ Let $X_{(n)} = \max\{X_1, \ldots, X_n\}.$

Working with a neighbor, argue that $X_{(n)} \stackrel{p}{ o} 1.$

Warm-up

Suppose that
$$X_1, X_2, \ldots \stackrel{iid}{\sim} Uniform(0,1)$$
. Let $X_{(n)} = \max\{X_1, \ldots, X_n\}$.

Show that $n(1-X_{(n)})\stackrel{d}{
ightarrow} Y$, where $Y\sim Exp(1)$.

Relationships between types of convergence

Continuous mapping theorem

Slutsky's theorem