MATEMATYKA Zestaw 3

MACIERZE cz.I

I. Działania na macierzach.

1. Dane są macierze
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 5 & 0 & 3 \end{bmatrix}$$
 , $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 3 & 1 \end{bmatrix}$.

Obliczyć:

a)
$$A-3B$$

b)
$$A + 2B - C$$

c)
$$2B^T - C^T$$

g) $B \cdot D - C$

d)
$$4D^T - 5I$$

e)
$$A \cdot B^T$$

f)
$$B^T \cdot A$$

g)
$$B \cdot D - C$$

h)
$$D \cdot C^T + 3A^T$$

i)
$$2B \cdot B^T - 3I$$

j)
$$A^T \cdot A + I$$

k)
$$(2A-B)\cdot D$$

I)
$$D \cdot (C^T - A^T)$$

- 2. Dla macierzy A i D z zadania 1, sprawdzić wzór $(A \cdot D)^T = D^T \cdot A^T$ (jedna z własności mnożenia macierzy).
- 3. Sprawdzić łączność mnożenia macierzy na przykładzie iloczynu $C \cdot D \cdot E$. Macierze C, D i E wziąć z zadania 1, przyjmując $E = B^T$.
- 4. Wykazać na przykładzie, że mnożenie macierzy nie jest przemienne.
- 5. Obliczyć:

a)
$$\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}^3$$

a)
$$\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}^3$$
 b) $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{bmatrix}^2$

6. Dane są macierze: $A_{4\times2}$, $B_{3\times2}$ i $C_{2\times4}$. Czy określone są następujące iloczyny macierzy:

a)
$$C \cdot A \cdot B^T$$

b)
$$A \cdot B \cdot C$$

c)
$$B \cdot A^T \cdot C^T$$

W przypadku pozytywnej odpowiedzi podać wymiar wyniku.