Groupoids of Configurations of Lines

Jake Kettinger

20 September 2024

Background: Geproci

Definition

A finite set Z in \mathbb{P}_k^n is **geproci** if the projection \overline{Z} of Z from a general point P to a hyperplane $H = \mathbb{P}_k^{n-1}$ is a complete intersection in H.

Geproci stands for **ge**neral **pro**jection is a **c**omplete **i**ntersection. The only nontrivial examples known are for n=3. In this case a hyperplane is a plane. A reduced set of points in a plane is a complete intersection if it is the transverse intersection of two algebraic curves, like this.

For #Z = ab ($a \le b$), Z is (a, b)-geproci if \overline{Z} is the intersection of a degree a curve and a degree b curve.

Background: Spreads in \mathbb{P}_k^{2t-1}

Definition

Given a $t \ge 1$ and field k, a **spread** of \mathbb{P}_k^{2t-1} is a set of mutually-skew t-planes that partition \mathbb{P}_k^{2t-1} .

Spreads are known to exist for any $t \geq 1$ for $k = \mathbb{R}$ and k =any finite field.

Spreads are instrumental for the proof that $\mathbb{P}^3_{\mathbb{F}_q}$ is geproci under $\mathbb{P}^3_{\overline{\mathbb{F}}_q}$. In this case, a spread is a partition of $\mathbb{P}^3_{\mathbb{F}_q}$ into lines.

The Hopf Fibration over \mathbb{R}

The Hopf fibration $H:S^3 o S^2$ can yield a spread over $\mathbb{P}^3_\mathbb{R}.$

$$\begin{array}{ccc} S^3 & \stackrel{H}{\longrightarrow} & S^2 \\ \downarrow^A & & \downarrow^\cong \\ \mathbb{P}^3_{\mathbb{R}} & \stackrel{F}{\longrightarrow} & \mathbb{P}^1_{\mathbb{C}} \end{array}$$

Let $L_{a,b}$ denote the line joining the points (1,0,a,b) and (0,1,-b,a), and let L_{∞} denote the line joining (0,0,1,0) and (0,0,0,1). Then $\mathcal{S}=\{L_{a,b}:a,b\in\mathbb{R}\}\cup\{L_{\infty}\}$ the the spread yielded by the Hopf fibration.

The Hopf Fibration over \mathbb{R} , continued

Note that $L_{a,b}$ and $L_{c,d}$ are indeed skew for $(a,b) \neq (c,d)$. We can see this because

$$\begin{vmatrix} 1 & 0 & a & b \\ 0 & 1 & -b & a \\ 1 & 0 & c & d \\ 0 & 1 & -d & c \end{vmatrix} = (a-c)^2 + (b-d)^2,$$

which can only be 0 if $(a, b) = (c, d) \in \mathbb{R}^2$.

Furthermore, the point $(a,b,c,d) \in \mathbb{P}^3_{\mathbb{R}}$ is on the line $L_{\frac{ac+bd}{a^2+b^2},\frac{ad-bc}{a^2+b^2}}$ if $(a,b) \neq (0,0)$, and on L_{∞} otherwise.

So this is indeed a spread over $\mathbb{P}^3_{\mathbb{R}}!$

Spreads over \mathbb{F}_q

Since \mathbb{F}_q is not algebraically closed, we can mimic the construction of the Hopf spread!

- First let q be odd. Then there is some $\theta \in \mathbb{F}_q$ such that $x^2 \theta \in \mathbb{F}_q[x]$ is irreducible. Defining $L_{a,b} = \overline{(1,0,a,b),(0,1,\theta b,a)}$ for $(a,b) \in \mathbb{F}_q$ and $L_{\infty} = \overline{(0,0,1,0),(0,0,0,1)}$ yields a spread over $\mathbb{P}^3_{\mathbb{F}_q}$.
- Now let q be even. Then there is some $\psi \in \mathbb{F}_q$ such that $x^2 + x + \psi \in \mathbb{F}_q[x]$ is irreducible. Defining $L_{a,b} = \overline{(1,0,a,b),(0,1,\psi b,a+b)}$ and $L_{\infty} = \overline{(0,0,1,0),(0,0,0,1)}$ yields a spread over $\mathbb{P}^3_{\mathbb{F}_q}$.

Spreads constructed using this method will be known as "Hopf spreads."

Non-Hopf Spreads

Definition

A **regulus** is a set of mutually-skew lines \mathcal{R} such that there is a quadric surface Q where $\bigcup_{R \in \mathcal{R}} R = Q$, like this.

Every regulus \mathcal{R} admits an **opposite regulus** \mathcal{R}^* .

The Hopf spread contains reguli: for example $\mathcal{R} = \{L_{a,0}\} \cup \{L_{\infty}\}$ is a regulus.

Given a spread S containing a regulus R, the set of lines $(S \setminus R) \cup R^*$ is also a spread.

It was once conjectured that every spread could be constructed by starting with the Hopf spread and replacing a succession of reguli with their opposites. This is now known to be false. In fact, there are spreads that contain no reguli whatsoever!

Maximal Partial Spreads

Note that a spread over $\mathbb{P}^3_{\mathbb{F}_q}$ comprises q^2+1 mutually-skew lines.

Definition

A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A **maximal partial spread** is a partial spread of positive deficiency that is not contained in any larger partial spread.

Maximal partial spreads are also instrumental to the study of geproci sets; in fact, given a maximal partial spread \mathcal{M} , the set $\mathbb{P}^3_{\mathbb{F}_q}\setminus \left(\bigcup_{L\in\mathcal{M}}L\right)$ is geproci.

Projecting a Line to a Line via... a Line

Definition

Given three lines $L_1, L_2, L_3 \subseteq \mathbb{P}^3_k$ where $L_1 \cap L_2 = L_2 \cap L_3 = \emptyset$, we can define the function $\pi(L_1, L_2, L_3) : L_1 \to L_3$ as follows: take $p \in L_1$. Then there is a unique line T such that $p \in T$, $T \cap L_2 \neq \emptyset$, and $T \cap L_3 \neq \emptyset$. Then define $\pi(L_1, L_2, L_3)(p) = T \cap L_3$. This is the **projection** of L_1 to L_3 via L_2 .

Here is a demonstration.

Groupoids

Definition

A **groupoid** is a category \mathcal{G} where every morphism is invertible.

• For any object $G \in \mathcal{G}$, $\text{Hom}_{\mathcal{G}}(G, G) = \text{Aut}_{\mathcal{G}}(G)$ is a group.

 $Aut_{\mathcal{G}}(G)$ is a "group of the groupoid."

• Whenever $\mathsf{Hom}_\mathcal{G}(G_1,G_2) \neq \varnothing$, then $\mathsf{Aut}_\mathcal{G}(G_1) \cong \mathsf{Aut}_\mathcal{G}(G_2)$.

So when $\text{Hom}_{\mathcal{G}}(G_1,G_2)\neq\varnothing$ for all $G_1,G_2\in\mathcal{G},\,\mathcal{G}$ induces only one group of the groupoid, up to isomorphism. Then it makes sense to say "the" group of the groupoid, $\text{Aut}_{\mathcal{G}}$.

Groupoids of Lines

Theorem

Let \mathcal{L} be a set of lines in \mathbb{P}^3_k . Define Π to be the composition-closure of the set of functions $\{\pi(L_1,L_2,L_3): L_1,L_2,L_3\in\mathcal{L}, L_1\cap L_2=L_2\cap L_3=\varnothing\}$. Then (\mathcal{L},Π) is a groupoid.

In this case, any group of the groupoid is a subgroup of $\operatorname{Aut}(\mathbb{P}^1_k) \cong \operatorname{PGL}(2,k)$.

What can we say about this groupoid and its corresponding group(s)? In characteristic 0, when is it finite versus infinite? When does $\operatorname{Aut}_{(\mathcal{L},\Pi)}(L)$ have finite orbits, or finitely many orbits?

NOTE: If \mathcal{L} contains lines L_1, L_2, L_3 where $L_1 \cap L_2 \neq \emptyset$, then neither $\pi(L_1, L_2, L_3)$ nor $\pi(L_3, L_2, L_1)$ are defined. So when can we characterize whether $\mathsf{Hom}_{(\mathcal{L},\Pi)}(L_1, L_3) = \emptyset$? If $\mathcal{L} = \mathcal{R} \cup \mathcal{R}^*$, then $\mathsf{Hom}(R,R') = \emptyset$ for all $R \in \mathcal{R}$ and $R' \in \mathcal{R}^*$.

Ganger's Results

In her 2024 thesis, Ganger used the technique of **transversals** to prove the following theorem:

Theorem (Ganger Corollary 2.5)

The group of the groupoid for the Hopf spread induced by the degree-2 field extension $\mathbb{F}_{q^2}/\mathbb{F}_q$ over a finite field is isomorphic to the quotient $\mathbb{F}_{q^2}^*/\mathbb{F}_q^*\cong C_{q+1}$.

Definition

Given a set of lines \mathcal{L} in \mathbb{P}^3_k , a **transversal** is a line T in $\mathbb{P}^3_{\overline{k}}$ such that $T \cap \overline{L} \neq \emptyset$ for all $L \in \mathcal{L}$.

The Hopf spread has exactly two transversals T_1 , T_2 for any finite field. The intersection of transversal with a line $L \in \mathcal{S}$ is a fixed point of $\operatorname{Aut}_{(\mathcal{S},\Pi)}(L)$!

Representing $Aut_{\mathcal{G}} \leq PGL(2, k)$

Let $U=\overline{u_0u_1}, V=\overline{v_0v_1}, W=\overline{w_0w_1}$ be lines in \mathbb{P}^3 . Then any point on U can be written as au_0+bu_1 for $(a,b)\in\mathbb{P}^1$ and any point on W can be written as cw_0+dw_1 for $(c,d)\in\mathbb{P}^1$. Then if

$$cw_0 + dw_1 = \pi(U, V, W)(au_0 + bu_1),$$

we must have $\overline{(au_0 + bu_1)(cw_0 + dw_1)} \cap V \neq \emptyset$. Therefore the wedge product

$$(au_0+bu_1)\wedge v_0\wedge v_1\wedge (cw_0+dw_1)=0.$$

We can write this as a matrix formula

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_0 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_1 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = 0,$$

or rewrite this equivalently:

$$\begin{pmatrix} -\mathit{u}_0 \wedge \mathit{v}_0 \wedge \mathit{v}_1 \wedge \mathit{w}_1 & -\mathit{u}_1 \wedge \mathit{v}_0 \wedge \mathit{v}_1 \wedge \mathit{w}_1 \\ \mathit{u}_0 \wedge \mathit{v}_0 \wedge \mathit{v}_1 \wedge \mathit{w}_0 & \mathit{u}_1 \wedge \mathit{v}_0 \wedge \mathit{v}_1 \wedge \mathit{w}_0 \end{pmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \begin{pmatrix} \mathsf{c} \\ \mathsf{d} \end{pmatrix}.$$

Representing $Aut_{\mathcal{G}} \leq PGL(2, k)$

The 2×2 matrix

$$\begin{pmatrix} -u_0 \wedge v_0 \wedge v_1 \wedge w_1 & -u_1 \wedge v_0 \wedge v_1 \wedge w_1 \\ u_0 \wedge v_0 \wedge v_1 \wedge w_0 & u_1 \wedge v_0 \wedge v_1 \wedge w_0 \end{pmatrix}$$

represents $\pi(U, V, W)$, given parametrizations

$$U = \overline{u_0 u_1}, V = \overline{v_0 v_1}, W = \overline{w_0 w_1}.$$

Note
$$r \wedge s \wedge t \wedge u = \det \begin{pmatrix} r & s & t & u \end{pmatrix}$$
.

This allows us to use computational methods to experiment on the group of the groupoid!

Example: The D_4 configuration

The D_4 configuration is a (3,4)-geproci half-grid. It is a $(12_4, 16_3)$ -configuration. What is the group of the groupoid of the 16 lines?

Example: The D_4 configuration

Theorem

Let $\mathcal L$ be the 16 lines of the D_4 configuration and let Π be the composition-closure of the projection functions. Then the group of the groupoid $\mathcal G=(\mathcal L,\Pi)$ is $\operatorname{Aut}_{\mathcal G}\cong\mathbb Z/3\mathbb Z$.

Argument boils down to:

- $\mathsf{Hom}_{\mathcal{G}}(L,L') \neq \emptyset$ for $L,L' \in \mathcal{L}$, so $\mathsf{Aut}_{\mathcal{G}}$ is well-defined.
- Let $q \in L$ be a quadruple point and $\pi \in \text{Hom}_{\mathcal{G}}(L, L')$. Then $\pi(q)$ is a quadruple point. So $\text{Aut}_{\mathcal{G}} \leq S_3$.
- Let $\phi \in \operatorname{Aut}_{\mathcal{G}}(L)$ fix the quadruple point q. Then ϕ fixes the other two quadruple points of L, so $\phi = \operatorname{Id}_L$ and $\operatorname{Aut}_{\mathcal{G}} \leq \mathbb{Z}/3\mathbb{Z}$.
- Aut_G is nontrivial, so Aut_G $\cong \mathbb{Z}/3\mathbb{Z}$.

A Helpful Labeling

Let $\{A,B,C\}$ be a set of three letters, and consider the group $(\mathbb{Z}/2\mathbb{Z})^2 = \langle z_1,z_2 \rangle$. Then one can label the vertices of the D_4 configuration with the elements of $\{A,B,C\} \oplus (\mathbb{Z}/2\mathbb{Z})^2$ in such a way that there is a bijective correspondence between the lines of the D_4 and triples of the form

$${A+g,B+g',C+g'':g+g'+g''=0}\subseteq {A,B,C}\oplus (\mathbb{Z}/2\mathbb{Z})^2.$$

This makes the theorem on the previous slide easier to prove because you can divide the vertices into "types" A, B, and C.

A Helpful Labeling

- {*A*, *B*, *C*}
- $\{A + z_1, B + z_2, C + z_1 + z_2\}$
- $\{A + z_2, B + z_1 + z_2, C + z_1\}$
- $\{A + z_1 + z_2, B + z_1, C + z_2\}$

