

Курсов проект

ПО

Разпределени софтуерни архитектури

летен семестър, учебна година 2019/2020

Тема 17

Изобразяване на фрактал по формулата $F(\pmb{Z}) = e^{cos(\pmb{C}\pmb{Z})}$

Ръководители: проф. васил цунижев, ас. христо христов
Изготвил: Иван Чучулски
Факултетен номер: 62167
Специалност: Софтуерно инженерство

Проверил :....

Дата:

1. Анализ

1.1. същност на проблема

Фракталите са математически обекти, които представляват множество от точки върху комплексната равнина. Те са детайлно изследвани за пръв път в средата на 20-ти век от математика Беноа Манделброт. Фракталите намират приложение в моделирането на структурата на природни обекти и взаимодействията между тях, фрактална графика за компютърни изображения, анализ и компресия на сигнали, метод за създаване на картини и архитектурен дизайн и други.

Целта на проекта е да се създаде програма, която да визуализира фрактал, който е зададен чрез рекурентна формула $F(Z) = e^{cos(CZ)}$.

Реализирана е програма на Java, която използва асинхронна паралелна обработка на escape-time алгоритъм за пресмятане и визуализиране на множеството на Манделброт по зададената рекурентна формула. Направена е декомпозиция на данните SPMD, като е използвана средна грануларност при формиране на заданията – броят на заданията е равен на броя на редовете на изображението. Имплементирани са два начина за балансиране на изпълнението : статично и динамично с централен процес.

1.2. преглед на функционалността на приложения, които пресмятат множеството на Манделброт (функционален анализ)

Източник [1] представя математическа дефиниция на множеството на Манделброт и escape-time алгоритьма за пресмятането и оцветяването на множеството. За да определим дали точка C = a + ib от комплексната равнина принадлежи на множеството на Манделброт, трябва да пресметнем границата на редицата, чиито членове се получават при прилагане на зададената рекурентна формула започвайки от точката (0,0). Ако границата на редицата от комплексни числа не клони към безкрайност при пресмятане на безбройно много членове на тази редица, то точката принадлежи на множеството. Разбира се, безкрайността не може да бъде точно моделирана в компютърните изчисления, затова идеята на escape-time алгоритъмът е да използваме големината на модула на комплексното число за определяне дали точката принадлежи на множеството. Задаваме число, което обозначава максималния брой итерации, които правим на всяка точка и пресмятаме броя на итерациите, за които модулът на числото остава по-малък от дадена стойност. Отношението на максималния брой итерации и броя итерации за дадена точка можем да използваме за задаване на цвят на точката при генериране на изображението. В [1] е представена реализация на последователна програма, която използва escape-time алгоритъма на езика С#.

Източник [2] и източник [3] представят два начина за имплементиране на паралелна реализация на escape-time алгоритъма на езика С. Първо е направена декомпозиция по данни SPMD и статично балансиране на изпълнението. Създаването и управлението на паралелните процеси става по модела Master-

Slaves. Master частта разделя изображението на блокове, които се състоят от $\frac{\text{височина на изображението}}{\text{брой нишки}}$ реда и ширина на изображението колони. След това създава изпълняващите процеси и ги пуска. Първата нишка обработва първия такъв блок, втората работи върху втория и така нататък, докато всички не приключат.

След това източник [2] дава идеята за прилагане на различни схеми за статично балансиране на изпълнението. За статичното е на принципа "round robin", т.е. нишките се редуват в разпределянето на задачите. Представени са и два начина за правене на динамично балансиране — централизирано и децентрализирано. Първия е Master-slaves модел: заданията се разпределят по време на изпълнение от един процес, наречен Master на множеството обработващите процеси наречени slaves. Между slave процесите няма комуникация и обмен на данни. При втория начин всички задания първоначално се разпределят между обработващите процеси и в хода на изпълнение те могат да дават задания помежду си, с цел да се уеднакви натоварването.

В източник [3] е представено решение, като грануларността е средна и е използвано динамично балансиране с централен процес, т.е. топология звезда. Изображението е разделено на задания, като заданията представляват хоризонталните редове на изображението. Master частта създава масив, която да представлява заданията, след това създава обработващите процеси и ги пуска да работят. Те трябва да достъпват масива със заданията, за да вземат задание, след това го да го обработят и отново да потърсят задание, докато няма повече задания. Мaster частта изчаква всички Slaves да приключат и след това програма приключва. Обозначено е, че достъпването на масива със заданията трябва да не наруши структурата от данни и следователно обработващите процеси трябва да осигурят синхронизация помежду си, когато взимат задание.

Източник [4] представлява имплементация на първата идея от източник [2] и [3] на езика Java,т.е. Master-Slaves програма, при която е направена SPMD декомпозиция по данните на блокове с големина $\frac{\text{височина на изображението}}{\text{брой нишки}}$ реда и ширина на изображението колони, и е използвано статично балансиране на изпълнението.

Фигура 1. Декомпозиция на данните на блокове и статично балансиране на изпълнението, източник [3]

Също така е представена втора имплементация на Master-Slaves програма, при която е направена SPMD декомпозиция по данните и използвана по-фина грануларност, като са задавани различен брой редове, които да се съдържат в даден блок. Балансирането на изпълнението отново е статично.

Фигура 2. Декомпозиция на данните по редове и статично балансиране на изпълнението, източник [3]

Следната сравнителна таблица показва характеристиките на паралелните решения, разгледани в източниците. Всички те представят асинхронна паралелна имплементация на escape-time алгоритъма по модела Master-Slaves.

Образец	Деко	Грануларност	Балансиране	Коментар
	мпоз			
	иция			
Пример 1	По	Едра, блокове, които	Статично, всяка нишка	При използването на едра
от [2] и [3],	данн	се състоят от по	обработва блок, който	грануларност и статичното
Пример 1	и,	(височина на	съответства на номера	балансиране е възможно да
от [4]	SPMD	изображението)/(бр	ѝ. Нагледно показано	се получи сериозен
		ой нишки) реда и	на Фигура 1.	дисбаланс в товара на

		(ширина на		различните нишки. Тези,
		изображението)		които получат области със
		колони		много точки от фрактала ще
				се забавят и от там цялата
				паралелна част.
Пример 2	По	Средна, редовете на	Динамично с	Средната грануларност и
от [2]	данн	изображението са	централен процес,	динамичното разпределение
	и,	оформени като	звездовидна	на заданията гарантира
	SPMD	индивидуални	топология. Заданията	равномерно разпределяне
		задания.	са в масив, който се	на товара между нишките.
			съдържа в	Остава въпрос за
			централният процес.	оптимизиране на структурата
				от данни със заданията и
				начина по който се прави
				синхронизацията между
				обработващите процеси.
Пример 2	По	Различна	Статично	По-добър вариант от Пример
от [4]	данн	грануларност, от	разпределение.	1 от [4], тъй като по-фината
	и,	едра към средно-	Нишка с индекс t,	грануларност и "цикличното"
	SPMD	едра. Коефициентът	обработва блок с	разпределение би "разбило"
		на грануларност е	индекс b, ако	секторите, в които има
		вариран между 8, 16	b % (брой нишки) == t.	повече точки от множеството
		и 32. Изображението	Нагледно показано на	на няколко по-малки
		се разделя на	Фигура 2.	парчета, които да се
		блокове, която имат		обработят от няколко нишки.
		по (коефициент на		
		грануларност * брой		
		нишки) реда и		
		(ширина на		
		изображението)		
		колони. Броят на		
		блоковете е		
		(коефициент на		
		грануларност * брой		
		нишки).		

1.3. нефункционален анализ

1.3.1. технологии, използвани в решението

За реализирането на двете решения е използван езика **Java** версия 8. Стандартната библиотека на езика предлага удобна и проста абстракция на нишка, класа **Thread**, която използваме за имплементиране на изчислителните процеси. От пакета за паралелно програмиране използваме и класа **ConcurrentLinkedQueue**, който служи за опашката от задания. За генерирането на изображението на фрактала е използван класа **BufferedImage**. За оцветяването е използван метод, който превръща модела HSB(Hue, Saturation, Brightness) в RGB(Red, Green, Blue).

За обработването на аргументите от командния ред е използвана библиотеката **Apache commons-cli-1.4**. С нейна помощ се прави разделянето на опциите и взимането на техните стойности, които се подават при стартиране на програмата. За извършване на изчисленията с комплексни числа е използвана библиотеката **Apache commons-math3-3.5**. От нея са използвани класа, който представя комплексно число **Complex**. В този клас статичните методи за косинус **cos()** и експоненциална функция **exp()** служат за пресмятането на математическите функции, които участват във рекурентната формула на фрактала.

Изборът на Java за език на реализацията дава на програмата доста широка преносимост, тъй като има множество имплементации на JVM(Java Virtual Machine) на повечето съвременни хардуерни и софтуерни платформи. Също така това гарантира безпроблемното използване на паралелна обработка на всяка от тези платформи, като ние можем да използваме API-то предложено от Java, а не специфичното за съответната платформа. Разбира се, това означава допълнително ниво на абстракция, предоставено от Java, което ще доведе до по-ниско ускорение в сравнение с използването на механизмите за паралелна обработка, които например са директно предоставени от ядрото на дадена операционна система.

1.3.2. инфраструктурни изисквания

За решението е използват софтуерния модел Master-Slaves. Изборът на Java за език за реализиране на решението и използване на предоставените от него абстракции за паралелна обработка може да гарантира сравнително еднаква производителност на различните платформи, които поддържат JVM.

1.3.3. обосновка на избраното решение

Първоначално беше обмислена реализация на програмата като Пример 1 от източник [2] и Пример 1 от [3], т.е. едра грануларност и статично балансиране. При този метод обаче има няколко проблема като на първо място поради едрата грануларност е възможно някои нишки да получат блок, който се състои главно от точки в множеството, като това означава по-тежки сметки и така тяхното изпълнение ще се забави. Тъй като балансирането е статично, други нишки, които са получили по-лек блок и приключили работата си по-бързо няма как да помогнат на тези, които се бавят.

За решението на тези проблеми първо е използването на по-фина грануларност: средна грануларност, при която заданията няма да бъдат блокове от по няколко реда, а всеки хоризонтален ред от изображението представлява отделно задание.

Също така може да се направи различно статично балансиране, при което нишките няма да обработват последователни редове, а вместо това нишка обработва първо реда, който съответства на нейния индекс, после "прескача" "брой на нишките" редове напред, пак обработва един ред и пак "прескача", докато не се изчерпат редовете.

След това е имплементирана опция на програмата, при която се извършва динамично балансиране при разпределяне на заданията между обработващите процеси. По този начин нишки, на които се паднат по-лесни задания и те успяват да ги обработят бързо, могат да помогнат с обработването на по-интензивни задания, които при статично балансиране биха могли да се паднат на изцяло на една нишка.

2. Проектиране

2.1. описание на реализирания алгоритъм

Имплементиран е асинхронен паралелен алгоритъм, софтуерният модел е **Master-Slaves** направена е декомпозиция по данни SPMD. Всеки ред от изображението е отделно задание, например при размер 1920 на 1440 пиксела се обособяват 1440 на брой задания от по 1 пиксел на височина и 1920 пиксела широчина. При бройка на обработващите процеси между 1 и 24, отношението е задания » обработващи процеси, което означава средна грануларност. Имплементирани са два начина за балансиране на изпълнението: статично и динамично с централен процес и опашка, от която обработващите процеси взимат заданията.

Main класът е в ролята на **Master**. Първоначално се обработват аргументите от командния ред. С тях се задават големината на изображението, крайните точки на комплексната равнина, името на изходния файл, максимален брой итерации на точка, начина на балансиране на изпълнението и дали програмата да работи в "тих режим", т.е. дали да изписва съобщения за започване и завършване на обработващите процеси или просто времето, за което се е изпълнила програмата. След това се създава обекта от класа **BufferedImage**, който представлява изображението и се запълва с бял цвят. Следва проверка за вида на балансирането, което да бъде използвано.

Общото при двата начина на балансиране е алгоритъмът за изчисляване на точките от множеството на Манделброт и той е базиран на escape-time алгоритъма. При него първо за всеки пиксел от заданието се намира съответстващата му точка в комплексната равнина. За тази комплексна точка в метода calculateNumberOfSteps() се изчисляват членовете на редицата, определени от рекурентната формула $F(Z) = e^{\cos(CZ)}$. Ако членовете на тази редица не нарастват към безкрайност, означава че точката принадлежи на фрактала. Когато това е изпълнено, то се извършват максималният брой итерации пъти пресмятания(по подразбиране 500) по формулата и заради това, задания с много точки от множеството изискват най-много изчислителен ресурс. В противен случай, изчисленията завършват при по-малък брой итерации. На база на тази бройка обработващите процеси определят цвета на точката чрез метода getHSBToRGBColor() и след това изпълняват метода drawPixel(), който записва резултата в изображението. Тъй като обектът на изображението е споделен ресурс във всички нишки, то този метод е synchronized. Това означава, че кодът в него е критична секция и само една нишка може да го изпълнява в даден момент от време.

Ако е избрано статично балансиране, то **Main** класът създава обработващите процеси, които са от обекти от класа **StaticSlaveThread**. Те наследяват класа **Thread**, който е от

стандартната библиотека на Java и представлява абстракция на нишка. При създаването на всяка нишка StaticSlaveThread ѝ се задава индекс и референция към обекта за изображението BufferedImage. Master-ът ги стартира като извиква метода start(), който извиква метода run() в StaticSlaveThread. В него всяка нишка започва да обработва реда с номер равен на индекса си, след това отива на реда с номер (сегашен номер на ред + брой на нишки) и така отново, докато не надхвърли броя на редовете. Илюстративно това е показано на Фигура 2, но разликата е, че там нишка обработва по няколко реда един след друг, а в нашата програма заданията са по 1 ред. Master-ът изчаква всички нишки да приключат работата си, като извиква метода на Thread, join().

При избрано динамично балансиране **Main** класът първо създава опашката от задания. Заданията са обекти от класа **RowTask**. Този клас е създаден единствено с цел по-ясно дефиниране на абстракцията задание. Той има една член-данна и тя е номерът на реда, който представлява това задание. Самата опашка е обект от класа ConcurrentLinkedQueue. След това Main класът създава DynamicSlaveThread обектите, които са Slave процесите и наследяват класа Thread. При инициализирането им се задава индекс, референция към обекта за изображението Bufferedimage и референция към обекта за опашката от задания. Master-ът стартира нишките като извиква start() метода, който извиква run() метода на DynamicSlaveThread. В този метод всяка нишка взима поредното задание от опашката със задания, обработва го и записва резултата в изображението и проверява за ново задание в опашката. Ако няма такова, то нишката приключва изпълнението си. Master-ът изчаква всички нишки да приключат работата си, като извиква метода им join().

Първоначално интерфейсът Queue и класът LinkedList бяха избрани като структура от данни за опашката от задания. За да се осигури правилното паралелно достъпване на опашката беше използван synchronized метод в DynamicSlaveThread класа за вземане на задание от опашката. Метод, който е synchronized позволява само на една нишка да изпълнява кода му. При увеличаване на броя на нишките, честата синхронизация при вземане на задание забавяше цялата паралелна част на програмата. Затова имплементацията на опашката със задания беше сменена на ConcurrentLinkedQueue. Този клас е от пакета java.util.concurrent, в който има имплементации на основните структури от данни, подходящи за използване в паралелен алгоритъм, като целостта на данните и правилният резултат от операциите са гарантирани[6].

След тази промяна динамичното балансиране показа равни по ускорение резултати на статичното, а при тестване на по-небалансирани участъци от фрактала полученото ускорение беше по-високо. Това се дължи на факта, че при използването на synchronized метод в класа DynamicSlaveThread за достъпване на опашката синхронизацията е "по-груба", тъй като целият код на метода poll() на опашката е маркиран като критична секция. При използване на ConcurrentLinkedQueue класа само отделни части на метода са критични секции, по-точно само промените върху референциите към възлите на опашката, тъй като те са от тип AtomicReference. Така синхронизацията е върху по-малък брой инструкции и по-късата критична секция

означава по-голяма пропускливост и това води до по-бързо изпълнение дори и при голям брой нишки[5], [6].

Main класът след изчакване на обработващите записва **BufferedImage** изображението във файл с формат .png.

2.2. диаграма на класовете

Фигура 3. Клас диаграма

2.3. интерфейсни екрани

Екраните са от Run прозореца при изпълнение на програмата в интегрираната среда за разработка Intellij 2020.

```
"C:\Program Files\Java\jdk-13.0.2\bin\java.exe" "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2019.2.3\lib\idea_rt.jar=2704:C:\Program Files\JetBrains\Int&
      dynamic load balancing used
      Thread-0 started.
      Thread-3 started.
      Thread-2 started.
     Thread-1 started.
     Thread-3 stopped
      Thread-3 execution time was (millis): 20921
      Thread-0 stopped
      Thread-2 stopped
      Thread-2 execution time was (millis): 20956
      Thread-1 stopped
      Threads used in current run: 4
      Process finished with exit code 0
▶ 4: Run 🗗 9: Git 🔼 Terminal 🗏 6: TODO
                                                                                                                                            140:1 CRLF UTF-8 🧣 💆 🗜 master
```

Фигура 4. Изпълнение на програмата с опцията за показване на помощ

```
| Main x | C:\Program Files\Java\jdk-13.0.2\bin\java.exe" "-javasgent:C:\Program Files\JetBrains\Intellij IDEA 2019.2.3\lib\idea_rt.jar=2704:C:\Program Files\JetBrains\Intellij IDEA 2019.2.3\lib\idea_
```

Фигура 5. Изпълнение на програмата с опцията за показване на помощ

2.4. фрактални изображения

Фигура 6. фрактал, област -2.0:2.0:-2.0:2.0, размер 1920х1440

Фигура 7. област -2.0:2.0:-2.0:2.0, размер 1920х1440

Фигура 8. област -1.5:2.0:-0.25:0.25, размер 1920х1440

Фигура 9. област -0.75:0.75:0.0:1.25, размер 1920х1440

2.5. изисквания към платформата

Програмата може да се изпълнява на операционни платформи, които имат инсталирана JDK(Java Development Kit) от версия 8 нагоре и поддръжка на паралелна обработка. За визуализиране на изображенията, които са резултата от програмата е нужен екран с минимална резолюция 1280х960.

3. Тестов план и тестови резултати

3.1. характеристика на тестовата платформа

Решението беше тествано на машина, която е достъпна по SSH на адреса t5600.rmi.yaht.net. Нейните характеристики са

- 2 процесора Intel Xeon E5 2660, 8 ядра, 16 нишки, 2.2 GHz, 32 kB L1 кеш
- 62,7 GB RAM
- Операционна система: Cent OS 7

• версия на JDK : OpenJDK 1.8.0 252

3.2. Параметри на тестовия план

Програмата беше изпълнена с паралелизъм, р = 1, 2, 4 ..., 20, 24 нишки

Варирани бяха следните параметри на програмата:

- големина на изображението(сложност на заданието) : тествани бяха размерите 640х480, 1280х960, 1920х1440, 2560х1920. Регионът в комплескната равнина беше от -2.0 до 2.0 по х и у.
- регион в комплекната равнина, върху който да се визуализира фрактала (различна балансираност на заданията) : бяха тествани 3 различни области. Размерът на изображението при тези тестове беше 1920х1440.
- максимален брой итерации на точка (сложност на заданието): стойностите на броя итерации са 350, 550, 850, 1150. Размерът на изображението при тези тестове беше 1920х1440 и областта в комплескната равнина беше от -2.0 до 2.0 по х и у.

Всички горни параметри бяха варирани при статичното и при динамичното балансиране на изпълнението. Програмата беше пускана с –q опцията, която само изписва общото време на програмата, без други подробности. Също така беше премахнат кода, който записва във файл резултата. Записването във файл отнемаше между 0,2 и 2 секунди в зависимост от натоварването на машината и това внасяше големи разлики в резултатите.

В тестовия план резултатите за време са измерени в милисекунди. Направени са по 5 изпълнения за всеки параметър и е използвано най-бързото време. С него са пресметнати

- ускорението **Sp**
- ефективността **Ep** : процента от общото време за паралелна обработка, през което ресурсите на процесора се използват ефективно
- цената **Cp** : оценка за горната граница на броя операции, които биха могли да се извършат за дадено **Tp** време на паралелния алгоритъм

3.3. Тестване на програмата със статично балансиране на изпълнението

3.3.1. параметър големина на изображение

3.3.1.1. размер 640х480

	imageSize : 640x480													
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp					
1	32029	29935	30328	29604	30809	29604	1	1	29604					
2	15671	15476	15674	15274	15565	15274	1,938195627	0,96909781	30548					
4	8202	8174	8147	8297	7985	7985	3,707451472	0,92686287	31940					
6	5815	5810	5700	5670	5721	5670	5,221164021	0,870194	34020					
8	4515	4517	4718	4528	4395	4395	6,735836177	0,84197952	35160					
10	3649	3705	3724	3704	3695	3649	8,112907646	0,81129076	36490					
12	3202	3302	3159	3296	3170	3159	9,371320038	0,78094334	37908					

14	2797	2867	2848	2904	2943	2797	10,58419735	0,7560141	39158
16	2721	2796	2797	2686	2716	2686	11,02159345	0,68884959	42976
18	2633	2574	2649	2726	2652	2574	11,5011655	0,63895364	46332
20	2560	2553	2475	2535	2610	2475	11,96121212	0,59806061	49500
22	2388	2364	2414	2340	2447	2340	12,65128205	0,57505828	51480
24	2334	2264	2363	2358	2248	2248	13,16903915	0,54870996	53952

3.3.1.2. размер 1280х960

					imageSize	e : 1280x960			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	118394	119423	118042	117476	118270	117476	1	1	117476
2	60327	61114	62219	60267	60418	60267	1,94925913	0,97462957	120534
4	30992	30994	30933	31332	30929	30929	3,798247599	0,9495619	123716
6	21201	21254	20928	21194	21075	20928	5,613340979	0,93555683	125568
8	16379	16426	16279	16374	16241	16241	7,233298442	0,90416231	129928
10	13490	13259	13330	13420	13222	13222	8,884888822	0,88848888	132220
12	11249	11297	11379	11241	11278	11241	10,45067165	0,8708893	134892
14	9944	9815	9964	9823	9838	9815	11,969027	0,8549305	137410
16	9484	9386	9527	9188	9231	9188	12,78580758	0,79911297	147008
18	9327	9080	9026	9027	9493	9026	13,01528916	0,72307162	162468
20	8975	8636	8875	8928	8776	8636	13,60305697	0,68015285	172720
22	8420	8527	8468	8649	8403	8403	13,98024515	0,63546569	184866
24	8093	8175	8099	8088	8143	8088	14,52472799	0,605197	194112

3.3.1.3. размер 1920х1440

					imageSize	: 1920x1440			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	270503	267837	266953	272230	266672	266672	1	1	266672
2	136167	135468	136895	136299	137804	135468	1,968523932	0,98426197	270936
4	68958	68925	68836	68977	68872	68836	3,874019408	0,96850485	275344
6	46524	46640	46722	46892	46938	46524	5,731923308	0,95532055	279144
8	35856	36056	35675	36099	36122	35675	7,475038542	0,93437982	285400
10	29512	29046	29228	29419	29310	29046	9,181023205	0,91810232	290460
12	24637	24727	24723	24852	24654	24637	10,82404514	0,90200376	295644
14	21451	21690	21357	21605	21400	21357	12,4863979	0,89188556	298998
16	20340	20338	20134	20374	21226	20134	13,24485944	0,82780372	322144
18	19547	19372	19289	19234	19707	19234	13,86461474	0,77025637	346212
20	18675	18562	18951	18800	18671	18562	14,36655533	0,71832777	371240
22	17990	18222	18042	18049	18074	17990	14,8233463	0,67378847	395780
24	17378	17353	17632	17595	17679	17353	15,36748689	0,64031195	416472

3.3.1.4. размер 2560х1920

					imageSize	: 2560x1920			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	480502	476758	478973	480365	477306	476758	1	1	476758
2	241646	242215	243966	243332	244710	241646	1,972960446	0,98648022	483292
4	124424	124146	124311	123556	123869	123556	3,858638998	0,96465975	494224
6	83792	83800	83748	83745	83784	83745	5,692972715	0,94882879	502470
8	68479	64162	63910	64012	64447	63910	7,459834142	0,93247927	511280
10	52089	52013	55860	53644	52147	52013	9,166131544	0,91661315	520130
12	47385	49961	47261	44210	43970	43970	10,84280191	0,90356683	527640
14	38164	38092	38064	44189	47930	38064	12,52516814	0,89465487	532896
16	38612	36437	36853	35493	36157	35493	13,43245147	0,83952822	567888
18	35277	34896	34543	35363	34272	34272	13,91100607	0,77283367	616896
20	33077	33378	33188	33516	32752	32752	14,55660723	0,72783036	655040
22	31980	31937	32118	31836	31727	31727	15,02688562	0,68304026	697994
24	30963	30770	30739	30677	30903	30677	15,54121981	0,64755083	736248

3.3.1.5. диаграма на ускорението Sp

3.3.1.6. диаграма на ефективността Ер

3.3.1.7. диаграма на цената Ср

3.3.2.1. регион 1 : -2.0:0.0:-2.0:0.0

				rectan	gle 1 : -2.0:0	0.0:-2.0:0.0			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	270142	269523	272484	273674	268663	268663	1	1	268663
2	137037	139043	137456	138048	137043	137037	1,960514314	0,980257157	274074
4	70812	70794	71019	69726	70374	69726	3,85312509	0,963281272	278904
6	47749	48149	47991	47708	47802	47708	5,631403538	0,938567256	286248
8	36665	36808	36494	36535	36571	36494	7,361840303	0,920230038	291952
10	30090	29816	29734	30653	29633	29633	9,066344953	0,906634495	296330
12	25359	25955	26018	25062	25310	25062	10,71993456	0,89332788	300744
14	21743	22170	22946	22422	22551	21743	12,35629858	0,882592756	304402
16	20979	22285	21754	22017	23164	20979	12,80628247	0,800392655	335664
18	22944	20990	20275	20920	21898	20275	13,25094945	0,736163858	364950
20	20015	22303	21640	21467	21665	20015	13,42308269	0,671154134	400300
22	20479	22058	21486	19490	21271	19490	13,7846588	0,6265754	428780
24	21184	19521	17777	20936	21516	17777	15,11295494	0,629706456	426648

3.3.2.2. регион 2 : 1.5:2.0:-0.25:0.25

				rectang	gle 2 : 1.5:2.	0:-0.25:0.25			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	291528	293005	289279	290816	294826	289279	1	1	289279
2	149318	148756	148331	148927	148030	148030	1,954191718	0,977095859	296060
4	76202	74996	75257	75864	75441	74996	3,857259054	0,964314763	299984
6	51460	50973	51152	51060	51336	50973	5,675141742	0,945856957	305838
8	39604	39655	39085	39251	38908	38908	7,434949111	0,929368639	311264
10	31902	31963	32503	32463	32118	31902	9,0677387	0,90677387	319020
12	27243	27131	27130	27566	27130	27130	10,66269812	0,888558177	325560
14	23754	23581	23528	23664	24384	23528	12,29509521	0,878221086	329392
16	22883	21968	22710	21968	22779	21968	13,1681992	0,82301245	351488
18	21350	21544	21333	21191	21227	21191	13,6510311	0,758390617	381438
20	21068	20473	20499	20613	20665	20473	14,12978069	0,706489034	409460
22	19643	19609	19615	19899	19713	19609	14,75235861	0,670561755	431398
24	18951	19008	18993	19076	19048	18951	15,26457707	0,636024044	454824

3.3.2.3. регион 3:-0.75:0.75:0.0:1.25

				rectang	le 3 : -0.75:0).75:0.0:1.25			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	250456	252913	253562	252998	253434	250456	1	1	250456
2	129493	130076	129139	126982	129299	126982	1,972374037	0,986187019	253964
4	66198	66203	66848	65994	67381	65994	3,795132891	0,948783223	263976
6	45027	44640	45177	45460	45519	44640	5,610573477	0,935095579	267840
8	34417	34390	34855	34125	34687	34125	7,339369963	0,917421245	273000
10	28234	28425	27951	28197	28292	27951	8,960538085	0,896053808	279510
12	23844	23830	23905	24015	24252	23830	10,5101133	0,875842775	285960
14	20859	20887	21192	20891	20808	20808	12,03652441	0,859751744	291312
16	19225	19239	19681	19282	20133	19225	13,02762029	0,814226268	307600
18	19090	18541	18905	18928	19038	18541	13,50822501	0,750456945	333738
20	18150	17981	17803	18343	18071	17803	14,06819075	0,703409538	356060
22	17529	17634	17393	17730	17409	17393	14,39981602	0,654537092	382646
24	16589	18967	18694	16759	17862	16589	15,09771535	0,629071473	398136

3.3.2.4. диаграма на ускорението Sp

3.3.2.5. диаграма на ефективността Ер

3.3.2.6. диаграма на цената Ср

3.3.3. параметър максимален брой итерации в точка 3.3.3.1. итерации 350

					iterations	: 350			
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp
1	186998	198551	185342	186588	186027	185342	1	1	185342
2	94673	95952	94616	94711	95020	94616	1,958886446	0,979443223	189232
4	48375	48747	48601	48978	48443	48375	3,831359173	0,957839793	193500
6	32913	32981	32809	32844	32822	32809	5,649120668	0,941520111	196854
8	25319	25247	25382	25200	25175	25175	7,362144985	0,920268123	201400
10	20530	20804	20547	20548	20498	20498	9,041955313	0,904195531	204980
12	17474	17450	17498	17580	17451	17450	10,62131805	0,885109838	209400
14	15235	15178	15306	15243	15466	15178	12,21122678	0,872230484	212492
16	14206	14184	14377	14259	14229	14184	13,06697688	0,816686055	226944
18	13984	14309	13995	13705	14055	13705	13,52367749	0,751315416	246690
20	13607	13535	13307	13767	13315	13307	13,92815811	0,696407906	266140
22	12939	12811	12688	12912	12813	12688	14,60766078	0,663984581	279136
24	12319	12534	16225	15473	12357	12319	15,04521471	0,626883946	295656

3.3.3.2. итерации 550

iterations : 550											
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp		
1	292263	292943	294102	310037	296266	292263	1	1	292263		
2	152349	150565	151983	148862	148979	148862	1,963315017	0,981657508	297724		
4	75853	76315	77385	75996	75392	75392	3,876578417	0,969144604	301568		
6	51325	51656	51363	51911	51515	51325	5,694359474	0,949059912	307950		
8	39212	39248	39987	39274	39257	39212	7,45340712	0,93167589	313696		
10	31841	31866	31952	32025	32014	31841	9,178826042	0,917882604	318410		
12	27089	27097	27134	27005	27145	27005	10,82255138	0,901879282	324060		
14	23492	23573	23755	23589	23474	23474	12,45049842	0,889321316	328636		
16	22112	22268	22691	22265	22658	22112	13,21739327	0,826087079	353792		
18	21773	21181	21629	21535	21247	21181	13,79835702	0,76657539	381258		
20	20350	20602	20654	21331	21146	20350	14,36181818	0,718090909	407000		
22	19759	19917	19828	19884	19887	19759	14,7913862	0,672335737	434698		
24	19119	19215	19193	19181	18793	18793	15,55169478	0,647987282	451032		

3.3.3.3. итерации 850

	iterations: 850											
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp			
1	452568	460258	464503	455185	461355	452568	1	1	452568			
2	230574	229857	239497	239423	235621	229857	1,968911106	0,984455553	459714			
4	125203	117862	119168	129826	119036	117862	3,839812662	0,959953166	471448			
6	82389	81266	84232	89798	80019	80019	5,655756758	0,942626126	480114			
8	61269	62968	62472	65953	75693	61269	7,386573961	0,923321745	490152			
10	50298	49450	49750	50330	50636	49450	9,152032356	0,915203236	494500			
12	47884	49905	53656	58158	41920	41920	10,79599237	0,899666031	503040			
14	37236	36733	38561	38488	40553	36733	12,32047478	0,880033913	514262			
16	35480	36360	35872	36055	36623	35480	12,75558061	0,797223788	567680			
18	44726	39151	35199	33929	33597	33597	13,47048844	0,748360469	604746			
20	32152	34047	32287	32328	32340	32152	14,07588952	0,703794476	643040			
22	30684	32553	30881	31779	30890	30684	14,7493156	0,670423437	675048			
24	28824	30503	29731	29492	30358	28824	15,70108243	0,654211768	691776			

3.3.3.4. итерации 1150

	iterations: 1150												
p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	637922	688684	655121	668565	645231	637922	1	1	637922				
2	328146	329253	322819	343612	332127	322819	1,976098061	0,988049031	645638				
4	166848	167218	168379	173552	161464	161464	3,950862112	0,987715528	645856				
6	108971	110446	110237	111535	110119	108971	5,854052913	0,975675486	653826				
8	81127	81353	81311	81552	81317	81127	7,863251445	0,982906431	649016				
10	66608	65972	66134	66363	66669	65972	9,669587098	0,96695871	659720				
12	56141	56238	56956	56291	59779	56141	11,36285424	0,94690452	673692				
14	48590	48871	49824	48961	48662	48590	13,12866845	0,937762032	680260				
16	45627	45218	46658	45690	45620	45218	14,10770047	0,88173128	723488				
18	44462	44285	43646	44928	44086	43646	14,61581817	0,811989899	785628				
20	42078	42711	42394	42018	42827	42018	15,18211243	0,759105621	840360				
22	40687	41588	40725	40779	41146	40687	15,67876717	0,712671235	895114				
24	39239	39310	39474	38921	39147	38921	16,39017497	0,682923957	934104				

3.3.3.5. диаграма на ускорението Sp

3.3.3.6. диаграма на ефективността Ер

3.3.3.7. диаграма на цената Ср

3.4. Тестване на програмата с динамично балансиране на изпълнението 3.4.1. параметър големина на изображението

3.4.1.1. размер 640х480

	imageSize : 640x480													
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	1	32302	31760	30196	29664	29569	29569	1	1	29569				
2	2	15578	15911	15481	15764	15545	15481	1,910018733	0,95500937	30962				
3	4	8137	8299	8042	8184	8251	8042	3,676821686	0,91920542	32168				
4	6	5719	5703	5854	5637	5641	5637	5,245520667	0,87425344	33822				
5	8	4485	4468	4476	4515	4427	4427	6,679241021	0,83490513	35416				
6	10	3744	3667	3720	3701	3715	3667	8,063539678	0,80635397	36670				
7	12	3201	3211	3115	3237	3172	3115	9,492455859	0,79103799	37380				
8	14	2865	2847	2810	2832	2822	2810	10,5227758	0,75162684	39340				
9	16	2660	2654	2676	2715	2663	2654	11,14129616	0,69633101	42464				
10	18	2563	2578	2577	2508	2568	2508	11,78987241	0,65499291	45144				
11	20	2456	2420	2434	2395	2413	2395	12,34613779	0,61730689	47900				
12	22	2306	2321	2300	2356	2327	2300	12,85608696	0,58436759	50600				
13	24	2323	2299	2287	2296	2225	2225	13,2894382	0,55372659	53400				

3.4.1.2. размер 1280х960

	imageSize : 1280x960													
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	1	119495	120895	121182	119109	118987	118987	1	1	118987				
2	2	60491	61222	59312	61066	60926	59312	2,006120178	1,00306009	118624				
3	4	30921	30709	30637	30619	30685	30619	3,886051145	0,97151279	122476				
4	6	21017	21102	20939	21006	21072	20939	5,682554086	0,94709235	125634				
5	8	16196	16355	16011	16303	16252	16011	7,43157829	0,92894729	128088				
6	10	13212	13139	13382	13268	13228	13139	9,05601644	0,90560164	131390				
7	12	11307	11218	11211	11272	11319	11211	10,6134154	0,88445128	134532				
8	14	9866	9816	9839	9896	9894	9816	12,12174002	0,86583857	137424				
9	16	8963	9066	8912	8812	8874	8812	13,50283704	0,84392732	140992				
10	18	8681	8621	8608	8739	8643	8608	13,82283922	0,76793551	154944				
11	20	8473	8354	8330	8300	8405	8300	14,33578313	0,71678916	166000				
12	22	8128	8074	8123	8173	8097	8074	14,73705722	0,66986624	177628				
13	24	7829	7816	7932	7734	7823	7734	15,38492371	0,64103849	185616				

3.4.1.3. размер 1920х1440

	imageSize : 1920x1440													
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	1	271522	268995	270432	272053	273960	268995	1	1	268995				
2	2	138942	138919	138670	135316	137046	135316	1,987902391	0,9939512	270632				
3	4	68893	68693	69103	69631	68624	68624	3,91983854	0,97995964	274496				
4	6	46638	47105	47067	47498	47397	46638	5,7677216	0,96128693	279828				
5	8	36131	36158	35914	36254	36370	35914	7,489976054	0,93624701	287312				
6	10	29262	29056	29022	29023	29017	29017	9,270255368	0,92702554	290170				
7	12	24583	24732	24608	24652	24857	24583	10,94231786	0,91185982	294996				
8	14	21321	21282	21393	21338	21375	21282	12,63955455	0,90282533	297948				
9	16	19382	19044	19086	19191	19254	19044	14,12492124	0,88280758	304704				
10	18	18987	19005	18921	18824	18991	18824	14,29000212	0,79388901	338832				
11	20	18293	18223	18375	18295	18336	18223	14,76129068	0,73806453	364460				
12	22	17570	17647	17726	17804	17696	17570	15,30990324	0,69590469	386540				
13	24	17137	17256	17014	17177	16967	16967	15,85401073	0,66058378	407208				

3.4.1.4. размер 2560х1920

	imageSize : 2560x1920												
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp			
1	1	480287	479894	476918	477579	476960	476918	1	1	476918			
2	2	242684	240366	240982	242092	240832	240366	1,984132531	0,99206627	480732			
3	4	121531	120625	121664	120984	121737	120625	3,953724352	0,98843109	482500			
4	6	82702	82490	83962	82986	82661	82490	5,781525033	0,96358751	494940			
5	8	63152	63144	63154	63146	63116	63116	7,556213955	0,94452674	504928			
6	10	51413	51487	51406	51251	51306	51251	9,305535502	0,93055355	512510			
7	12	43555	43351	43475	43162	43371	43162	11,04948798	0,92079066	517944			
8	14	37949	38191	37793	37725	37989	37725	12,64196156	0,90299725	528150			
9	16	33704	33864	33730	33767	33975	33704	14,15018989	0,88438687	539264			
10	18	32821	33146	33037	32985	33026	32821	14,53087962	0,80727109	590778			
11	20	32080	31935	31993	32020	31943	31935	14,93402223	0,74670111	638700			
12	22	30919	30879	30828	30896	30868	30828	15,47028675	0,70319485	678216			
13	24	29849	30121	29882	29707	29858	29707	16,05406133	0,66891922	712968			

3.4.1.5. диаграма на ускорението Sp

3.4.1.6. диаграма на ефективността Ер

3.4.1.7. диаграма на цената Ср

3.4.2.1. регион 1 : -2.0:0.0:-2.0:0.0

	rectangle 1 : -2.0:0.0:-2.0:0.0												
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp			
1	1	306317	354035	297704	293062	294099	293062	1	1	293062			
2	2	150418	152541	150540	150156	151739	150156	1,951716881	0,975858441	300312			
3	4	75646	75948	76203	74576	75065	74576	3,92970929	0,982427322	298304			
4	6	49334	50356	49756	49611	50612	49334	5,940365671	0,990060945	296004			
5	8	37241	38462	37504	37362	37291	37241	7,869337558	0,983667195	297928			
6	10	29551	29540	29542	29585	29601	29540	9,920853081	0,992085308	295400			
7	12	25082	25096	25274	34209	24796	24796	11,81892241	0,984910201	297552			
8	14	21793	21615	21920	22024	21809	21615	13,55826972	0,968447837	302610			
9	16	20136	20216	20474	20210	20400	20136	14,5541319	0,909633244	322176			
10	18	19757	19762	19797	19375	19939	19375	15,12578065	0,840321147	348750			
11	20	20068	19965	19298	18606	19341	18606	15,75094056	0,787547028	372120			
12	22	18683	18590	17904	18472	18515	17904	16,368521	0,744023682	393888			
13	24	18191	18190	18024	19125	18163	18024	16,25954283	0,677480951	432576			

3.4.2.2. регион 2 : 1.5:2.0:-0.25:0.25

	rectangle 2 : 1.5:2.0:-0.25:0.25												
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp			
1	1	291632	291742	291296	290918	293693	290918	1	1	290918			
2	2	152282	150555	153452	168369	151519	150555	1,932303809	0,966151905	301110			
3	4	75234	75124	75464	75608	75208	75124	3,872504127	0,968126032	300496			
4	6	51241	51413	51033	51271	51333	51033	5,700585895	0,950097649	306198			
5	8	38998	39122	39074	39058	39129	38998	7,459818452	0,932477307	311984			
6	10	31901	31995	32153	31695	31919	31695	9,178671715	0,917867171	316950			
7	12	27580	27208	27205	27291	27115	27115	10,72904297	0,894086914	325380			
8	14	23564	23606	23470	23530	23679	23470	12,39531317	0,885379512	328580			
9	16	21444	21798	21529	21589	21726	21444	13,56640552	0,847900345	343104			
10	18	20818	20878	21399	20990	20924	20818	13,97434912	0,776352729	374724			
11	20	20488	20069	20036	22387	28948	20036	14,51976442	0,725988221	400720			
12	22	26607	30449	30739	25246	19279	19279	15,08989055	0,685904116	424138			
13	24	18586	18633	18620	18728	18578	18578	15,65927441	0,652469767	445872			

3.4.2.3. регион 3:-0.75:0.75:0.0:1.25

	rectangle 3 : -0.75:0.75:0.0:1.25													
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	1	253079	252735	256815	253625	254947	252735	1	1	252735				
2	2	128865	128376	128817	127408	127002	127002	1,990008031	0,995004016	254004				
3	4	65611	64794	64875	65130	65480	64794	3,900592647	0,975148162	259176				
4	6	44044	44697	44516	44582	44313	44044	5,738239034	0,956373172	264264				
5	8	34293	33455	34160	33864	34209	33455	7,554476162	0,94430952	267640				
6	10	27806	28000	27822	27794	28200	27794	9,093149601	0,90931496	277940				
7	12	23795	23797	23618	23518	23542	23518	10,74644953	0,895537461	282216				
8	14	20685	20556	20794	20854	20486	20486	12,33696183	0,881211559	286804				
9	16	19059	18818	18810	18998	19182	18810	13,43620415	0,839762759	300960				
10	18	18211	18207	18391	18388	18350	18207	13,88119954	0,771177752	327726				
11	20	17642	17746	17622	17666	17633	17622	14,34201566	0,717100783	352440				
12	22	16950	17157	17088	16973	17018	16950	14,91061947	0,67775543	372900				
13	24	16506	16326	16450	16493	16547	16326	15,48052187	0,645021744	391824				

3.4.2.4. диаграма на ускорението Sp

3.4.2.5. диаграма на ефективността Ер

3.4.2.6. диаграма на цената Ср

3.4.3. параметър максимален брой итерации в точка 3.4.3.1. итерации 350

	iterations : 350												
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp			
1	1	214913	241368	209733	188510	192277	188510	1	1	188510			
2	2	95843	95177	95754	95781	96154	95177	1,98062557	0,990312786	190354			
3	4	48400	48040	47914	48166	48362	47914	3,93434069	0,983585173	191656			
4	6	32672	32748	32780	32802	32695	32672	5,76977228	0,961628714	196032			
5	8	25183	25139	25251	25431	25534	25139	7,49870719	0,937338399	201112			
6	10	20489	20520	20644	20600	20729	20489	9,20054663	0,920054663	204890			
7	12	17429	17574	17722	17796	17784	17429	10,8158816	0,901323465	209148			
8	14	15354	15161	15224	15135	15318	15135	12,4552362	0,889659729	211890			
9	16	14051	14324	14287	14359	13819	13819	13,6413633	0,852585209	221104			
10	18	13793	13749	13747	13839	13807	13747	13,7128101	0,761822782	247446			
11	20	13330	13423	13513	13292	13181	13181	14,3016463	0,715082315	263620			
12	22	12811	12772	12784	12908	13031	12772	14,7596304	0,670892293	280984			
13	24	12519	12749	12998	13652	14439	12519	15,057912	0,627412999	300456			

3.4.3.2. итерации 550

	iterations : 550													
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp				
1	1	294165	293828	293235	293792	293577	293235	1	1	293235				
2	2	148329	148960	148464	150827	148220	148220	1,97837674	0,989188369	296440				
3	4	75613	75121	75123	75223	75532	75121	3,90350235	0,975875587	300484				
4	6	51224	51378	51314	51660	51261	51224	5,7245627	0,954093784	307344				
5	8	39114	39118	39103	39062	39088	39062	7,50691209	0,938364011	312496				
6	10	31990	31790	31861	31808	31858	31790	9,22412708	0,922412708	317900				
7	12	26944	27657	26983	26921	27010	26921	10,892426	0,907702166	323052				
8	14	23429	23461	23462	23497	23416	23416	12,5228476	0,894489116	327824				
9	16	21367	21429	21429	21687	22171	21367	13,7237329	0,857733304	341872				
10	18	20889	20903	20854	20916	21011	20854	14,0613312	0,781185064	375372				
11	20	20284	20584	20410	20340	20292	20284	14,4564682	0,722823408	405680				
12	22	19422	19561	19503	19577	19702	19422	15,0980846	0,686276575	427284				
13	24	18994	18984	18783	18731	18784	18731	15,6550638	0,652294325	449544				

3.4.3.3. итерации 850

iterations: 850											
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp	
1	1	449598	451398	451440	453221	450485	449598	1	1	449598	
2	2	228828	228726	228762	228279	228756	228279	1,96951099	0,984755497	456558	
3	4	116063	116361	116263	116891	116479	116063	3,87374099	0,968435246	464252	
4	6	78708	80563	78972	78890	78943	78708	5,71222747	0,952037912	472248	
5	8	60213	60589	60277	60352	60134	60134	7,47660225	0,934575282	481072	
6	10	49484	49003	49049	48845	48785	48785	9,21590653	0,921590653	487850	
7	12	41494	41463	41397	41524	41373	41373	10,8669422	0,905578517	496476	
8	14	35965	36120	36153	36149	36166	35965	12,5009871	0,892927648	503510	
9	16	32922	33411	33222	33238	33101	32922	13,6564607	0,853528795	526752	
10	18	32010	32743	32080	32157	32729	32010	14,0455483	0,780308237	576180	
11	20	32203	31493	30965	31105	30957	30957	14,5233065	0,726165326	619140	
12	22	29722	30303	29887	30108	29942	29722	15,1267748	0,687580672	653884	
13	24	28827	28769	29150	28847	28850	28769	15,6278633	0,651160972	690456	

3.4.3.4. итерации 1150

iterations : 1150											
#	p	$T_p^{(1)}$	$T_p^{(2)}$	$T_p^{(3)}$	$T_p^{(4)}$	$T_p^{(5)}$	$T_p = \min()$	$S_p = T_1/T_p$	$E_p = S_p/p$	Cp = p*Tp	
1	1	609015	608432	610006	610611	609518	608432	1	1	608432	
2	2	308485	309761	308567	319427	309230	308485	1,9723228	0,986161402	616970	
3	4	158997	156728	156658	156889	156548	156548	3,88655237	0,971638092	626192	
4	6	106745	106451	108319	106474	106657	106451	5,71560624	0,95260104	638706	
5	8	81303	81429	81084	81321	81122	81084	7,50372453	0,937965567	648672	
6	10	66216	66233	67193	66216	66098	66098	9,20499864	0,920499864	660980	
7	12	56017	55720	56041	56126	57959	55720	10,9194544	0,909954535	668640	
8	14	48723	48712	49227	48489	48559	48489	12,5478356	0,896273971	678846	
9	16	44918	45323	45171	44783	44723	44723	13,6044541	0,85027838	715568	
10	18	43353	43473	43763	43216	43305	43216	14,0788597	0,782158871	777888	
11	20	42117	42086	42028	41962	41782	41782	14,5620602	0,728103011	835640	
12	22	40179	40320	40252	40336	40256	40179	15,1430349	0,688319769	883938	
13	24	38992	38593	38759	38555	38628	38555	15,7808845	0,657536852	925320	

3.4.3.5. диаграма на ускорението Sp

3.4.3.6. диаграма на ефективността Ер

Cost (iterations) 1000000 900000 800000 700000 600000 Cp(iterations: 350) 500000 Cp(iterations: 550) 400000 Cp(iterations: 850) 300000 Cp(iterations: 1150) 200000 100000 8 10 12 14 16 18 20 22 24 Number of threads

3.4.3.7. диаграма на цената Ср

4. Анализ на получените резултати

4.1. при статично балансиране

При програмата със статичното балансиране тестовете, в при параметъра големина на изображението колкото по-голямо става размера, толкова по-добро ускорение се получаваше. При най-малкия размер 640х480 ускорението е най-малко като след 12-14 нишки, то нараства значително по-бавно. От това следва и че при този размер ефективността намалява най-бързо.

При тестовете на различните области постигнатите ускорения са сравнително близки, максималното ускорение е около 15 при 24 нишки. Кривите на ефективността са идентични. При област 2 цената **Ср** е най-висока, което се дължи на това, че времената за изпълнение са най-бавните от трите области.

Тестовете с различен брой итерации показват подобни криви като тестовете с различния размер на изображението, колкото повече итерациите растат, толкова подобро ускорение е постигнато.

При резултатите за ускорението не е наблюдавана нито суперлинейна аномалия, нито немонотонна аномалия.

4.2. при динамично балансиране

При тестването с различен размер на изображението видът на кривите на ускорението, ефективността и цената са аналогични с тези при статичното балансиране. При най-

големи тестван размер е постигнато ускорение от 16,05, което е с 0,5 по-добро от това при статичното балансиране.

При тестването с различни области ускорението е по-добро средно с 0,6 от това при статичното балансиране.

Тестовете с различен брой итерации са идентични с тези при статичното.

4.3. заключение

Трябва да се отбележи факта, че при динамичното балансиране времената за изпълнение са с около 0,5 - 1 секунда по-бавни, но тъй като е постигнато малко повисоко ускорение, цената Ср и при двата начина на балансиране е еднаква.

Въпреки това динамичното балансиране е за предпочитане пред статичното, когато разглеждаме небалансирани области, в които постоянно се редуват точки вътре и извън множеството на фрактала.

5. Източници

[1]Bastian Fredriksson, "An introduction to the Mandelbrot set", публикуван: 01.2015г, (https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf)

[2]Martin Johnson, "Massey University, Parallel Computing, lecture 3 Parallel techniques, lecture 7 Asynchronous computations", 2009r, (https://www.massey.ac.nz/~mjjohnso/notes/59735/)

[3] Douglas Thain, "University of Notre Dame, Operating System Principles, Project 3", 2020r, (https://www3.nd.edu/~dthain/courses/cse30341/spring2020/)

[4]Thomas Uhrig, "Calculating Mandelbrot Set with Java Tasks", публикуван: 05.11.2012г, (https://tuhrig.de/calculating-mandelbrot-set-with-java-tasks/)

(https://bitbucket.org/wordless/mandelbrot/src/master/Mandelbrot/)

[5]Brian Goetz, "Java Concurrency In Practice" 2006, издател: "Addison-Wesley"

[6]Eugen Paraschiv, "LinkedBlockingQueue vs ConcurrentLinkedQueue", последна модификация:03.06.2020г,

(https://www.baeldung.com/java-queue-linkedblocking-concurrentlinked)

6. Списък с фигури

Фигура 1. Декомпозиция на данните на блокове и статично балансиране на изпълнението, източник [3] (https://tuhrig.de/calculating-mandelbrot-set-with-java-tasks/)

Фигура 2. Декомпозиция на данните по редове и статично балансиране на изпълнението, източник [3] (https://tuhrig.de/calculating-mandelbrot-set-with-java-tasks/)

Фигура 3. Клас диаграма

Фигура 4. Изпълнение на програмата с опцията за показване на помощ

Фигура 5. Изпълнение на програмата с опцията за показване на помощ

Фигура 6. фрактал, област -2.0:2.0:-2.0:2.0, оригинален размер 1920х1440

Фигура 7. област -2.0:2.0:-2.0:2.0, оригинален размер 1920х1440

Фигура 8. област -1.5:2.0:-0.25:0.25, оригинален размер 1920х1440

Фигура 9. област -0.75:0.75:0.0:1.25, оригинален размер 1920х1440