CSC 4792 Week 3 Summary & Core Concepts: Tools, Technologies & Dimensionality Reduction

- **1. Fundamental Tools & Environments Jupyter Notebook:** Interactive environment combining Markdown, executable code, equations, and visualizations. **Google Colaboratory (Colab):** Cloud-based Jupyter environment with free GPU/TPU access, pre-installed libraries, and easy sharing.
- **2. Datasets Used** Predicting Student Learning Outcomes dataset UNZA Institutional Repository Research Output dataset
- **3. Core Python Libraries Pandas:** Data manipulation with DataFrames and Series. **Matplotlib:** Visualizations (bar, line, histogram, scatter). **Scikit-learn:** Machine learning and preprocessing tools, including PCA and LDA.
- **4. Data Exploration & Visualization** Pandas for loading, inspecting (head(), info(), describe()), filtering, and transforming data. Matplotlib for visual summaries of datasets.

Dimensionality Reduction Fundamentals

What is Dimensionality Reduction? The process of reducing the number of features in a dataset while retaining important information. It helps to: - Solve the *curse of dimensionality* - Improve model efficiency and generalization - Reduce storage needs - Enable easier visualization

Feature Selection: - Selects a subset of original features without changing them. - **Techniques:** - *Filter Methods:* Statistical tests (correlation, Chi-square) - *Wrapper Methods:* Model-based evaluation (Recursive Feature Elimination) - *Embedded Methods:* Selection during training (Lasso regression)

Feature Extraction: - Transforms original features into new features (components). - **PCA:** Unsupervised method finding components that explain most variance. - **LDA:** Supervised method maximizing class separability.

PCA Process: 1. Standardize data 2. Compute covariance matrix 3. Calculate eigenvectors & eigenvalues 4. Select top-k components

LDA Difference: - Considers class labels when finding new axes, unlike PCA.

5. Key Code Concepts - Pandas for filtering and transformations. - Matplotlib for visualizations. - Scikit-learn for implementing PCA and LDA.

Takeaway: Week 3 strengthens both practical tool usage (Jupyter, Colab, Pandas, Matplotlib) and theoretical understanding of dimensionality reduction, equipping you to process high-dimensional data efficiently and effectively.