図005/013

JUL 17 2008

Application No. 10/550,564
After Final Office Action of April 17, 2008

2

Docket No.: 63907(71526)

AMENDMENTS TO THE CLAIMS

This is the present listing of claims. No claim amendments are presented at this time.

1. (original): A method for producing an optically active carboxylic acid represented by the formula [2]:

$$R^2$$
 R^3
 $COOH$
[2]

wherein R^1 , R^2 and R^3 independently represent a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, the groups may have a substituent, R^1 , R^2 and R^3 is not a hydrogen atom simultaneously, R^3 is a group other than a hydrogen atom when one of R^1 and R^2 is a hydrogen atom, R^3 is a group other than a hydrogen atom and a methyl group when both of R^1 and R^2 are hydrogen atoms, and R^1 and R^2 are different groups other than a hydrogen atom when R^3 is a hydrogen atom, and at least one of the two carbon atoms marked with * represents an asymmetric carbon atom, comprising the step of subjecting an α , β -unsaturated carboxylic acid represented by the formula [1]:

wherein R¹ to R³ have the same meanings as those in the formula [2], in the presence of a sulfonated BINAP-Ru complex represented by the formula [3]:

[RuX(arene){(SO₃M)₂-BINAP}]X [3]

wherein (SO₃M)₂-BINAP represents a tertiary phosphine represented by the formula [4]:

3

Application No. 10/550,564
After Final Office Action of April 17, 2008

Docket No.: 63907(71526)

M represents an alkaline metal atom, X represents a chlorine atom, a bromine atom or an iodine atom, and arene represents a benzene or an alkyl-substituted benzene, in an aqueous solvent, to an asymmetric hydrogenation.

- 2. (original): The method according to claim 1, wherein the aqueous solvent is water or a mixed solvent of water and a water-insoluble organic solvent.
- 3. (original): The method according to claim 1, wherein the sulfonated BINAP-Ru complex is recovered.
- 4. (original): The method according to claim 1, wherein the sulfonated BINAP-Ru complex is recycled.
- 5. (original): A method for producing an optically active carboxylic acid represented by the formula [2]:

$$R^2$$
 \star
 R^3
COOH

wherein R¹, R² and R³ independently represent a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, the groups may have a substituent, R¹, R² and R³ is not a hydrogen atom simultaneously, R³ is a group other than a hydrogen atom when one of R¹ and R² is a hydrogen atom, R³ is a group other than a hydrogen atom and a methyl group when both of R¹ and R² are hydrogen atoms, and R¹ and R² are different groups other than a hydrogen atom when R³ is a hydrogen atom, and at least one of

Application No. 10/550,564
After Final Office Action of April 17, 2008

Docket No.: 63907(71526)

the two carbon atoms marked with * represents an asymmetric carbon atom, comprising the step of subjecting an α , β -unsaturated carboxylic acid represented by the formula [1]:

$$R^2$$
 R^3
 $COOH$
[1]

wherein R¹ to R³ have the same meanings as those described above, in the presence of a recovered sulfonated BINAP-Ru complex used in the method according to claim1 in water or a mixed solvent of water and a water-insoluble organic solvent to an asymmetric hydrogenation.

- 6. (original): The method according to claim 5, wherein the α , β -unsaturated carboxylic acid is hydrogenated in the presence of an aqueous solution containing the sulfonated BINAP-Ru complex, and the aqueous solution is obtained by separating a water phase from the reaction mixture after the asymmetric hydrogenation in the method according to claim 1.
- 7. (new): A method for producing an optically active carboxylic acid represented by the formula [2]:

$$R^2$$
 R^3
 $COOH$
[2]

wherein R^I , R^2 and R^3 independently represent a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, the groups may have a substituent, R^2 and R^3 is not a hydrogen atom simultaneously, R^3 is a group other than a hydrogen atom when one of R^I and R^2 is a hydrogen atom, R^3 is a group other than a hydrogen atom and a methyl group when both of R^I and R^2 are hydrogen atoms,

Application No. 10/550,564 After Final Office Action of April 17, 2008 5

Docket No.: 63907(71526)

and R¹ and R² are different groups other than a hydrogen atom when R³ is a hydrogen atom, and at least one of the two carbon atoms marked with * represents an asymmetric carbon atom,

comprising the step of:

(a) subjecting an a_rp-unsaturated carboxylic acid represented by the formula [1]:

$$R^2$$
 R^3
COOH

wherein R¹ to R³ have the same meanings as those in the formula [2], in the presence of a sulfonated BINAP-Ru complex represented by the formula [3]:

 $[RuX(arene){(SO₃M)₂-BlNAP}]X$ [3]

wherein (SO₃M)₂-BINAP represents a tertiary phosphine represented by the formula [4]:

wherein M represents an alkaline metal atom, X represents a chlorine atom, a bromine atom or an iodine atom, and arene represents a benzene or an alkyl-substituted benzene, in an aqueous solvent, to an asymmetric hydrogenation;

(b) recovering an aqueous solution containing the sulfonated BINAP-Ru complex

Application No. 10/550,564
After Final Office Action of April 17, 2008

6

Docket No.: 63907(71526)

represented by the formula [3] by separating a water phase from the reaction mixture after the asymmetric hydrogenation;

(c)subjecting_an α , β -unsaturated carboxylic acid represented by the formula [1] in the presence of the sulfonated BINAP-Ru complex represented by the formula [3] in the aqueous solution which is recovered, in an aqueous solvent, to an asymmetric hydrogenation;

wherein the sulfonated BINAP-Ru complex is recycled bx repeating the above (b) to (c).