

IR2133/IR2135(J&S)&(PbF) IR2233/IR2235(J&S)&(PbF)

3-PHASE BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V or+1200V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10V/12V to 20V DC and up to 25V for transient
- Undervoltage lockout for all channels
- Over-current shut down turns off all six drivers
- Independent 3 half-bridge drivers
- · Matched propagation delay for all channels
- 2.5V logic compatible
- · Outputs out of phase with inputs
- All parts are also available LEAD-FREE

Description

The IR2133IR2135/IR2233IR2355 (J&S) are high voltage, high speed power MOSFET and IGBT driver with three independent high side and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. An independent operational amplifier provides an analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs can also be de-

Product Summary

 VOFFSET
 600V or 1200V max.

 IO+/ 200 mA / 420 mA

 VOUT
 10 - 20V or 12 - 20V

 ton/off (typ.)
 750/700 ns

 Deadtime (typ.)
 250 ns

Packages

rived from this resistor. A shutdown function is available to terminate all six outputs. An open drain FAULT signal is provided to indicate that an over-current or undervoltage shutdown has occurred. Fault conditions are cleared with the FLT-CLR lead. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts or 1200 volts.

International

TOR Rectifier

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units			
V _{B1,2,3}	High side floating supply voltage (IR2	2133/IR2135)	-0.3	625				
	(IR2	2233/IR2235)	-0.3	1225				
V _{S1,2,3}	High side floating supply offset voltage		V _{B1,2,3} - 25	$V_{B1,2,3} + 0.3$				
$V_{\text{HO1,2,3}}$	High side floating output voltage	V _{S1,2,3} - 0.3	$V_{B1,2,3} + 0.3$					
Vcc	Fixed supply voltage	-0.3	25					
Vss	Logic ground		V _{CC} - 25	V _{CC} + 0.3				
$\overline{V_{LO1,2,3}}$	Low side output voltage		-0.3	V _{CC} + 0.3	V			
V _{IN}	Logic input voltage (HIN, LIN, ITRIP, SD	V _{SS} - 0.3	(V _{SS} + 15) or					
				(V _{CC} + 0.3) whichever is lower				
$V_{IN,AMP}$	Op amp input voltage (CA+ & CA-)		V _{SS} - 0.3	V _{CC} + 0.3				
V _{OUT,AMP}	Op amp output voltage (CAO)	V _{SS} - 0.3	V _{CC} + 0.3					
V_{FLT}	FAULT output voltage	V _{SS} - 0.3	V _{CC} + 0.3					
dV _S /dt	Allowable offset supply voltage transien	_	50	V/ns				
P_D	Package power dissipation @ T _A ≤ 25°C	(28 Lead PDIP)	_	1.5				
		(28 Lead SOIC)	_	1.6	W			
		(44 lead PLCC)	_	2.0				
Rth_{JA}	Thermal resistance, junction to ambient	(28 Lead PDIP)	_	- 83				
		(28 Lead SOIC)	_	78	°C/W			
		_	63					
TJ	Junction temperature			125				
Ts	Storage temperature		-55	150	°C			
TL	Lead temperature (soldering, 10 second	_	300					

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential.

Symbol	Parameter Definition	Min.	Max.	Units
V _{B1,2,3}	High side floating supply voltage	V _{S1,2,3} + 10/12	V _{S1,2,3} + 20	
V _{S1,2,3}	High side floating supply offset voltage (IR2133/IR2135)	Note 1	600	
	(IR2233/IR2235)	Note 1	1200	
V _{HO1,2,3}	High side floating output voltage	V _{S1,2,3}	V _{B1,2,3}	
Vcc	Fixed supply voltage	10 or 12	20	
Vss	Low side driver return	-5	5	· v [
V _{LO1,2,3}	Low side output voltage	0	Vcc	•
V _{IN}	Logic input voltage (HIN, LIN, ITRIP, SD & FLT-CLR)	V _{SS}	V _{SS} + 5	
V _{IN,AMP}	Op amp input voltage (CA+ & CA-)	V _{SS}	V _{SS} + 5	
V _{OUT,AMP}	Op amp output voltage (CAO)	V _{SS}	V _{SS} + 5	
V _{FLT}	FAULT output voltage	V _{SS}	Vcc	

Note 1: Logic operational for VS of COM - 5V to COM + 600V/1200V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details).

Note 2: All input pins, op amp input and output pins are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} , T_A = 25 o C and C_L = 1000 pF unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	500	750	1000		V _{IN} = 0 & 5V
toff	Turn-off propagation delay	450	700	950		***
tr	Turn-on rise time	_	90	150	V _{S1,2,3} = 0 to 600V or 1200V	
tf	Turn-off fall time	_	40	70		
t _{sd}	SD to output shutdown propagation delay	500	750	1000		$V_{IN},V_{SD} = 0 \& 5V$
titrip	ITRIP to output shutdown propagation delay	600	850	1100	ns	$V_{IN}, V_{ITRIP} = 0 & 5V$
tbl	ITRIP blanking time	_	400	_		ITRIP = 1V
t _{flt}	ITRIP to FAULT propagation delay	400	650	900		V _{IN} ,V _{ITRIP} = 0 & 5V
t _{fil,in}	Input filter time (HIN, LIN and SD)	_	310	_		V _{IN} = 0 & 5V
tfltclr	FLT-CLR to FAULT clear time	600	850	1100		V _{IN} ,V _{ITRIP} = 0 & 5V
DT	Deadtime, LS turn-off to HS turn-on &	100	250	400		V _{IN} = 0 & 5V
	HS turn-off to LS turn-on					
SR+	Amplifier slew rate (positive)	5	10		V/µs	
SR-	Amplifier slew rate (negative)	2	2.5	_	V/μS	

NOTE: For high side PWM, HIN pulse width must be $\ge 1\mu$ sec

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V unless otherwise specified and T_A = 25°C. All static parameters other than IO and VO are referenced to V_{SS} and are applicable to all six channels ($H_{S1,2,3}$ & $L_{S1,2,3}$). The VO and IO parameters are referenced to COM and $V_{S1,2,3}$ and are applicable to the respective output leads: $H_{O1,2,3}$ or $L_{O1,2,3}$.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "0" Input Voltage (OUT = LO)	2.2	_	_		
V _{IL}	Logic "1" Input Voltage (OUT = HI)	_	_	0.8		
V _{FCLR,IH}	Logic "0" Fault Clear Input Voltage	2.2	_	_	V	
V _{FCLR,IL}	Logic "1" Fault Clear Input Voltage	_	_	0.8	, v	
V _{SD,TH} +	SD Input Positive Going Threshold	1.6	1.9	2.2		
V _{SD,TH} -	SD Input Negative Going Threshold	1.4	1.7	2.0		
V _{IT,TH} +	I _{ITRIP} Input Positive Going Threshold	470	570	670		
V _{IT,TH} -	I _{ITRIP} Input Negative Going Threshold	360	460	560		
VoH	High Level Output Voltage, VBIAS - VO	_	_	100	mV	V _{IN} = 0V, I _O = 0A
VoL	Low Level Output Voltage, VO	_	_	100		V _{IN} = 5V, I _O = 0A
I _{LK}	Offset Supply Leakage Current (IR2133/IR2135)	_	_	50		V _{B1,2,3} =V _{S1,2,3} = 600V
	(IR2233/IR2235)	_	—	50	μΑ	V _{B1,2,3} =V _{S1,2,3} = 1200V
I _{QBS}	Quiescent VBS Supply Current	_	50	100		V _{IN} = 0V or 5V
IQCC	Quiescent VCC Supply Current	_	4	8	mA	V _{IN} = 0V or 5V
I _{IN} +	Logic "1" Input Bias Current (OUT = HI)	_	200	350		V _{IN} = 0V
I _{IN} -	Logic "0" Input Bias Current (OUT = LO)	_	100	250	μA	V _{IN} = 5V
I _{SD} +	"High" Shutdown Bias Current	_	30	100		SD = 5V
I _{SD} -	"Low" Shutdown Bias Current	_	_	100	nA	SD = 0V
I _{ITRIP} +	"High" I _{ITRIP} Bias Current	_	30	100	μA	I _{ITRIP} = 5V
I _{ITRIP} -	"Low" I _{ITRIP} Bias Current	_	_	100	nA	I _{ITRIP} = 0V

International

Rectifier

Static Electrical Characteristics — Continued

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V unless otherwise specified and T_A = 25°C. All static parameters other than IO and VO are referenced to V_{SS} and are applicable to all six channels ($H_{S1,2,3}$ & $L_{S1,2,3}$). The VO and IO parameters are referenced to COM and $V_{S1,2,3}$ and are applicable to the respective output leads: $H_{O1,2,3}$ or $L_{O1,2,3}$.

Symbol	Parameter Definition		Min.	Typ.	Max.	Units	Test Conditions
I _{FLTCLR} +	"High" Fault Clear Input Bi	as Current		200	350		FLT-CLR = 0V
I _{FLTCLR} -	"Low" Fault Clear Input Bia		_	100	250	μA	FLT-CLR = 5V
V _{BSUV} +	V _{BS} Supply Undervoltage Positive Going Threshold						
2001	1 20 4 4 7 7 4 4 4 4 5 4 5	(for IR2133/IR2233)	7.6	8.6	9.6		
		(for IR2135/IR2235)	9.2	10.4	11.6		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold						
	117	(for IR2133/IR2233)	7.2	8.2	9.2		
		(for IR2135/IR2235)	8.3	9.4	10.5	•	
V _{BSUVH}	V _{BS} Supply Undervoltage	Lockout Hysteresis					
		(for IR2133/IR2233)	_	0.4	_		
		(for IR2135/IR2235)	_	1	_		
V _{CCUV} +	I V _{CC} Supply Undervoltage F	Positive Going Threshold				V	
		(for IR2133/IR2233)	7.6	8.6	9.6		
		(for IR2135/IR2235)	9.2	10.4	11.6		
V _{CCUV} -	V _{CC} Supply Undervoltage N	legative Going Threshold					
		(for IR2133/IR2233)	7.2	8.2	9.2		
		(for IR2135/IR2235)	8.3	9.4	10.5		
V _{ССUVН}	V _{CC} Supply Undervoltage	Lockout Hysteresis					
		(for IR2133/IR2233)	—	0.4	—		
		(for IR2135/IR2235)	_	1	_		
R _{on,FLT}	FAULT- Low On Resistance		_	70	100	Ω	
I _O +	Output High Short Circuit Pulsed Current		200	250	_		$V_{OUT} = 0V$, $V_{IN} = 0V$
							PW ≤ 10 µs
l ₀ -	Output Low Short Circuit Pulsed Current		420	500	_	mA	V_{OUT} = 15V, V_{IN} = 5V PW \leq 10 μ s
Vos	Amplifier Input Offset Volta	age	_	0	30	mV	CA+=0.2V, CA-=CAO
I _{IN,AMP}	Amplifier Input Bias Curre	nt	_	_	4	nA	CA+ = CA- = 2.5V
CMRR	Amplifier Common Mode F	Rejection Ratio	50	70	_		CA+ = 0.1V & 5V, CA- = CAO
PSRR	Amplifier Power Supply Re	Amplifier Power Supply Rejection Ratio		70	_	dB	CA+=0.2V, CA-=CAO V _{CC} = 10V & 20V
$V_{OH,Amp}$	Amplifier High Level Output Voltage		5	5.2	5.4	V	CA+ = 1V, CA- = 0V
$V_{OL,Amp}$	Amplifier Low Level Output Voltage		_	_	20	mV	CA+ = 0V, CA- = 1V
I _{SRC,Amp}	Amplifier Output Source Current		4	7	_		CA+ = 1V, CA- = 0V, CAO = 4V
I _{SNK,Amp}	Amplifier Output Sink Current		0.5	1	 	1.	CA+ = 0V, CA- = 1V, CAO = 2V
I _{O+,Amp}	Amplifier Output High Short Circuit Current			10	_	mA	CA+ = 5V, CA- = 0V, CAO = 0V
I _{O-,Amp}	Amplifier Output Low Short Circuit Current			4	 	1	CA+ = 0V, CA- = 5V, CAO = 5V

Functional Block Diagram

Lead Definitions

Symbol	Lead Description
HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase.
LIN1,2,3	Logic inputs for low side gate driver outputs (LO1,2,3), out of phase.
FAULT	Indicates over-current or undervoltage lockout (low side) has occurred, negative logic.
Vcc	Logic and low side fixed supply.
ITRIP	Input for over-current shut down.
FLT-CLR	Logic input for fault clear, negative logic.
SD	Logic input for shut down.
CAO	Output of current amplifier.
CA-	Negative input of current amplifier.
CA+	Positive input of current amplifier.
V _{SS}	Logic ground.
COM	Low side return.
V _{B1,2,3}	High side floating supplies.
HO1,2,3	High side gate drive outputs.
V _{S1,2,3}	High side floating supply returns.
LO1,2,3	Low side gate drive outputs

International

TOR Rectifier

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

Figure 4. Overcurrent Shutdown Waveform

Figure 4.5. Input Filter Function

Figure 5. Shutdown Waveform Definitions

International TOR Rectifier

Figure 6A. Turn-On Time vs. Temperature

Figure 6B. Turn-On Time vs. Voltage

Figure 6C. Turn-On Time vs. Input Voltage

Figure 7A. Turn-Off Time vs. Temperature

Figure 7B. Turn-Off Time vs. Voltage

8

Figure 7C. Turn-Off Time vs. Input Voltage

250 8 200 Max. Typ. 100 10 12.5 15 17.5 20 Supply Voltage (V)

Fiure 8A. Turn-On Rise Time vs.Temperature

Fiure 8B. Turn-On Rise Time vs. Voltage

Figure 9A. Turn-Off Fall Time vs. Temperature

Figure 9B. Turn-Off Fall Time vs. Voltage

Figure 10A. SD to Output shutdown Time vs. Temperature

Figure 10B. SD to Output shutdown Time vs. Voltage

International

TOR Rectifier

1500 Max.
900 Typ.
300
10 12.5 15 17.5 20
Supply Voltage (V)

Figure 11A. ITRIP to FAULT Time vs. Temperature

Figure 11B. ITRIP to FAULT Time vs. Voltage

Figure 12A. ITRIP to output shutdown Time vs. Temperature

Figure 12B. ITRIP to output shutdown Time vs. Voltage

Figure 13A. FLT-CLR to FAULT clear Time vs. Temperature

Figure 13B. FLT-CLR to FAULT clear Time vs. Voltage

Figure 14A. Deadtime vs. Temperature

Figure 15A. Amplifier slew rate (+) vs. Temperature

Figure 15B. Amplifier slew rate (+) vs. Voltage

Figure 16A. Amplifier slew rate (-) vs. Temperature

Figure 16B. Amplifier slew rate (-) vs. Voltage

International

TOR Rectifier

Figure 17A. Logic "0" Input Voltage (OUT=LO), Fault Clear Voltage vs. Temperature

Figure 17B. Logic "0" Input Voltage (OUT=LO), Fault Clear Voltage vs. Voltage

Figure 18A. Logic "1" Input (OUT=HI), Fault Clear Input Voltage vs. Temperature

Figure 18B. Logic "1" Input (OUT=H), Fault Clear Input Voltage vs. Voltage

Figure 21A. SD Input TH(+) vs. Temperature

Figure 21B. SD Input TH(+) vs. Voltage

Figure 22A. SD Input TH(-) vs. Temperature

Figure 22B. SD Input TH(-) vs. Voltage

Figure 23A. I_{ITRIP} Input TH(+) vs. Temperature

Figure 23B. I_{ITRIP} Input TH(+) vs. Voltage

Figure 24A. I_{ITRIP} Input TH(-) vs.Temperature

Figure 24B. I_{ITRIP} Input TH(-) vs. Voltage

International

TOR Rectifier

Figure 25A. High Level Output vs. Temperature

Figure 25B. High Level Output vs. Voltage

Figure 26A. Low Level Output vs. Temperature

Figure 26B. Low Level Output vs. Voltage

Figure 27A. Offset Supply Leakage Current vs. Temperature

Figure 27B. Offset Supply Leakage Current vs. Voltage

Figure 28A. V_{BS} Supply Current vs. Temperature

Figure 28B. $V_{\rm BS}$ Supply Current vs. Voltage

Figure 29A. $V_{\rm cc}$ Supply Current vs. Temperature

Figure 29B. V_{cc} Supply Current vs. Voltage

Figure 30A. Logic "1" Input Bais Current vs. Temperature

Figure 30B. Logic "1" Input Bais Current vs. Voltage

International

TOR Rectifier

Figure 31A. Logic "0" Input Bais Current vs. Temperature

Figure 31B. Logic "0" Input Bais Current vs. Supply Voltage

Figure 32A. "High" Shutdown Bais Current vs. Temperature

Figure 32B. "High" Shutdown Bais Current vs. Supply Voltage

Figure 33A. "Low" Shutdown Bais Current vs. Temperature

Figure 33B. "Low" Shutdown Bais Current vs. Supply Voltage

www.irf.com 17

International

TOR Rectifier

Figure 37A. "Low" Fault Clear Input Bais Current vs. Temperature

Figure 37B. "Low" Fault Clear Input Bais Current vs. Supply Voltage

Figure 38A. IR2135/IR2235 $\rm V_{BS}$ Undervoltage Threshold (+) vs. Temperature

Figure 38B. IR2133/IR2233 V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 39A. IR2135/IR2235 $V_{\rm BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 39B. IR2133/IR2233 V_{BS} Undervoltage Threshold (-) vs. Temperature

Figure 40A. IR2135/IR2235 $\rm V_{cc}$ Undervoltage Threshold (+) vs. Temperature

Figure 40B. IR2133/IR2233 $\rm V_{cc}$ Undervoltage Threshold (+) vs. Temperature

Figure 41A. IR2135/IR2235 $V_{\rm cc}$ Undervoltage Threshold (-) vs. Temperature

Figure 41B. IR2133/IR2233 $V_{\rm cc}$ Undervoltage Threshold (-) vs. Temperature

Figure 42A. FAULT- Low On Resistance vs. Temperature

Figure 42B. FAULT- Low On Resistance vs. Supply Voltage

International

TOR Rectifier

500 We then the transfer of t

Figure 43A. Output Source Current vs. Temperature

Figure 43B. Output Source Current vs. Supply Voltage

Figure 44A. Ourput Sink Current vs. Temperature

Figure 44B. Ourput Sink Current vs. Supply Voltage

Figure 45A. Amplifier Input Offest Voltage vs. Temperature

Figure 45B. Amplifier Input Offest Voltage vs. Supply Voltage

Figure 46A. Amplifier Common Mode Rejection Ratio vs. Temperature

Figure 46B. Amplifier Common Mode Rejection Ratio vs. Supply Voltage

Figure 47A. Amplifier Power Supply Rejection Ratio vs. Temperature

Figure 47B. Amplifier Power Supply Rejection Ratio vs. Supply Voltage

Figure 48. Amplifier High Level Output Voltage vs. Supply Voltage

Figure 49. Amplifier Low Level Output Voltage vs. Supply Voltage

International

TOR Rectifier

Figure 50. Amplifier Output Source Current vs. Supply Voltage

vs. Supply Voltage

Figure 51. Amplifier Output Sink Current

Figure 52. Amplifier Output High Short Circuit Current vs. Supply Voltage

Figure 53. Amplifier Output Low Short Circuit Current vs. Supply Voltage

Figure 7. IR2133J Junction Temperature vs Frequency Driving (IRGPC20KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 8. IR2133J Junction Temperature vs Frequency Driving (IRGPC30KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 9. IR2133J Junction Temperature vs Frequency Driving (IRGPC40KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 10. IR2133J Junction Temperature vs Frequency Driving (IRGPC50KD2) Rgate = 5.1Ω @ Vcc = 15V

International

TOR Rectifier

Figure 11. IR2233J Junction Temperature vs Frequency Driving (IRG4PH30KD) Rgate = 20Ω @ Vcc = 15V

Figure 12. IR2233J Junction Temperature vs Frequency Driving (IRG4PH40KD) Rgate = 15Ω @ Vcc = 15V

Figure 13. IR2233J Junction Temperature vs Frequency Driving (IRG4PH50KD) Rgate = 10Ω @ Vcc = 15V

Figure 14. IR2233J Junction Temperature vs Frequency Driving (IRG4ZH71KD) Rgate = 5Ω @ Vcc = 15V

Package Dimensions

International TOR Rectifier

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)	Leadfree Part
28-Lead PDIP IR2133 order IR21332	28-Lead PDIP IR2133 order IR2133PbF
8-Lead SOIC IR2133S order IR2133S	28-Lead SOIC IR2133S order IR2133SPbF
28-Lead PDIP IR2135 order IR2135	28-Lead PDIP IR2135 order IR2135PbF
28-Lead SOIC IR2135S order IR2135S	28-Lead SOIC IR2135S order IR2135SPbF
28-Lead PDIP IR2233 not available	28-Lead PDIP IR2233 order IR2233PbF
28-Lead SOIC IR2233S order IR2233S	28-Lead SOIC IR2233S order IR2233SPbF
28-Lead PDIP IR2235 not available	28-Lead PDIP IR2235 order IR2235PbF
28-Lead SOIC IR2235S order IR2235S	28-Lead SOIC IR2235S order IR2235SPbF
44-Lead PLCC IR2133J order IR2133J	44-Lead PLCC IR2133J order IR2133JPbF
44-Lead PLCC IR2135J order IR2135J	44-Lead PLCC IR2135J order IR2135JPbF
44-Lead PLCC IR2233J order IR2233J	44-Lead PLCC IR2233J order IR2233JPbF
44-Lead PLCC IR2235J order IR2235J	44-Lead PLCC IR2235J order IR2235JPbF

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 9/22/2005