ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

(2021 - 2022)

1η Εργαστηριακή Άσκηση

Διδάσκων Μαθήματος:

Δ. Ασκούνης

Συνεργάτες:

- Α. Μιχαλίτση-Ψαρρού
- Σ. Πελέκης

Ονοματεπώνυμο:

Χρήστος Τσούφης

Αριθμός Μητρώου:

• 031 17 176

Στοιχεία Επικοινωνίας:

- el17176@mail.ntua.gr
- chris99ts@gmail.com

Εκφώνηση:

Μία κατασκευαστική επιχείρηση θέλει να καταστρώσει συγκεντρωτικό πρόγραμμα παραγωγής για όλο τον επόμενο χρόνο.

Δίνεται η εκτιμώμενη ζήτηση για κάθε μήνα, όπως αποτυπώνεται στον παρακάτω πίνακα:

Μήνας	1	2	3	4	5	6	7	8	9	10	11	12
Ζήτηση	1600	1200	1550	1700	2200	3200	2900	2000	2400	1500	1500	1800
D												

Η επιχείρηση επιθυμεί να ελαχιστοποιήσει το συνολικό της κόστος, ενώ γνωρίζει ότι το κόστος παραγωγής ενός τεμαχίου προϊόντος της είναι 70ϵ και το κόστος που προκύπτει από τη διατήρηση μιας μονάδας αποθέματος είναι 1.5ϵ ανά μήνα.

Επιπλέον, η επιχείρηση έχει υπολογίσει ότι από τη μεταβολή του ρυθμού παραγωγής της προκύπτουν κάποια κόστη, τα όποια στην περίπτωση της αύξησης του ρυθμού παραγωγής είναι 2.5ϵ ανά τεμάχιο, ενώ στην περίπτωση της μείωσης του ρυθμού παραγωγής είναι 3ϵ ανά τεμάχιο.

Η παραγωγική δυναμικότητα της επιχείρησης κάθε μήνα είναι 2100 τεμάχια. Κάθε απόκλιση από αυτή την ποσότητα αντιπροσωπεύει είτε υπερωριακή απασχόληση είτε υποαπασχόληση. Το κόστος των υπερωριών είναι $5.5 \in \mathcal{C}$ για κάθε τεμάχιο που παράγεται από υπερωριακή απασχόληση, ενώ το κόστος υποαπασχόλησης είναι $4 \in \mathcal{C}$ ανά τεμάχιο.

Σημειώνεται ότι θεωρούμε ότι οι πωλήσεις της επιχείρησης κάθε μήνα είναι σύμφωνες με τη ζήτηση τον υπό εξέταση μήνα.

Τέλος, δίνεται ότι η παραγωγή κατά τον τρέχοντα μήνα ήταν ίση με 1400 τεμάχια. Το διαθέσιμο απόθεμα στο τέλος του τρέχοντα μήνα είναι 900 τεμάχια.

Ερώτημα: Καταστρώστε και επιλύστε το πρόγραμμα παραγωγής που ελαχιστοποιεί το συνολικό κόστος. Θα πρέπει να χρησιμοποιήσετε υπολογιστικό εργαλείο γραμμικού προγραμματισμού.

Επίλυση:

Αρχικά, από την εκφώνηση προκύπτουν τα εξής στοιχεία.

Δεδομένα:

D_i: ζήτηση τον μήνα i, για i = 1, ..., 12

 C_X : κόστος παραγωγής 1 τεμαχίου: 70 € / τμχ

 C_I : κόστος μηνιαίας διατήρησης αποθέματος 1 τεμαχίου: 1.5 € / τμχ

 C_{INC} : κόστος αύξησης ρυθμού παραγωγής $i \rightarrow i+1$: 2.5 € / τμχ

(δηλαδή για INC₁ = x₁ - x₀)

 $C_{\textit{DEC}}$: κόστος μείωσης ρυθμού παραγωγής $i \rightarrow i+1$: 3 € / τμχ

(δηλαδή για DEC₁ = x₀ - x₁)

 C_0 : κόστος υπερωριών (overemployment): 5.5 € / τμχ

 C_U : κόστος υποαπασχόλησης (underemployment): 4 € / τμχ

Παραγωγική Δυναμικότητα: 2100 τμχ

Η επιδίωξη είναι: $S_i = D_i$

Μεταβλητές Απόφασης:

Χ_i: πλήθος τεμαχίων που παράγονται τον μήνα i

 I_i : διαθέσιμο απόθεμα στο τέλος του μήνα i

 $\mathbf{R_i}$: αύξηση ρυθμού παραγωγής τον μήνα i, δηλαδή $x_t - x_{t-1}$

 M_i : μείωση ρυθμού παραγωγής τον μήνα i, δηλαδή $x_{t-1} - x_t$

0_i: ποσότητα παραγωγής από υπερωρίες τον μήνα i

R_i: ποσότητα παραγωγής από υποαπασχόληση τον μήνα i

Αρχικές Συνθήκες:

 X_0 : παραγωγή τον τρέχοντα μήνα: 1400 τμχ

 I_0 : απόθεμα τον τρέχοντα μήνα: 900 τμχ

Αντικειμενική συνάρτηση:

$$\begin{aligned} \min Z &= 70X_1 + 70X_2 + 70X_3 + 70X_4 + 70X_5 + 70X_6 + 70X_7 + 70X_8 + 70X_9 + 70X_{10} + 70X_{11} + 70X_{12} \\ &+ 1.5I_1 + 1.5I_2 + 1.5I_3 + 1.5I_4 + 1.5I_5 + 1.5I_6 + 1.5I_7 + 1.5I_8 + 1.5I_9 + 1.5I_{10} + 1.5I_{11} + 1.5I_{12} \\ &+ 2.5R_1 + 2.5R_2 + 2.5R_3 + 2.5R_4 + 2.5R_5 + 2.5R_6 + 2.5R_7 + 2.5R_8 + 2.5R_9 + 2.5R_{10} + 2.5R_{11} + 2.5R_{12} \\ &+ 3M_1 + 3M_2 + 3M_3 + 3M_4 + 3M_5 + 3M_6 + 3M_7 + 3M_8 + 3M_9 + 3M_{10} + 3M_{11} + 3M_{12} \\ &+ 5.5O_1 + 5.5O_2 + 5.5O_3 + 5.5O_4 + 5.5O_5 + 5.5O_6 + 5.5O_7 + 5.5O_8 + 5.5O_9 + 5.5O_{10} + 5.5O_{11} + 5.5O_{12} \\ &+ 4U_1 + 4U_2 + 4U_3 + 4U_4 + 4U_5 + 4U_6 + 4U_7 + 4U_8 + 4U_9 + 4U_{10} + 4U_{11} + 4U_{12} \Rightarrow \\ \Rightarrow \min Z &= 70 \sum_{i=1}^{12} X_i + 1.5 \sum_{i=1}^{12} I_i + 2.5 \sum_{i=1}^{12} R_i + 3 \sum_{i=1}^{12} M_i + 5.5 \sum_{i=1}^{12} O_i + 4 \sum_{i=1}^{12} U_i \end{aligned}$$

Περιορισμοί:

Οι περιορισμοί διακρίνονται σε τρεις κατηγορίες:

- \succ Περιορισμός X_i & I_i : Η παραγωγή και τα αποθέματα μαζί θα πρέπει να καλύπτουν την ζήτηση: $X_i + I_{i-1} I_i \geq D_i, i = 1, ..., 12$
- ightharpoonup Περιορισμός O_i & U_i : Η μηνιαία παραγωγή αφαιρώντας τα τεμάχια από υπερωρίες και προσθέτοντας τα τεμάχια από υποαπασχόληση θα πρέπει να είναι πάντα 2100 τεμάχια:

$$X_i - O_i + U_i = 2100, i = 1, ..., 12$$

Έτσι, προκύπτει ότι,

$$\gamma \iota \alpha X_i > 2100, O_i > 0 \& U_i = 0$$

 $\gamma \iota \alpha X_i < 2100, O_i = 0 \& U_i > 0$

Επιπλέον σημειώνεται ότι όλες οι μεταβλητές απόφασης θα πρέπει να είναι μη αρνητικές.

Επίλυση Προβλήματος Γραμμικού Προγραμματισμού:

Το πρόβλημα γραμμικού προγραμματισμού που περιγράφηκε παραπάνω επιλύθηκε χρησιμοποιώντας το package **lp solve** σε terminal Unix.

Το αρχείο που χρησιμοποιήθηκε είναι το ακόλουθο και βρίσκεται στο zipped αρχείο.

```
/* Objective function */
min:70X1 + 70X2 + 70X3 + 70X4 + 70X5 + 70X6 + 70X7 + 70X8 + 70X9 + 70X10 +
70X11 + 70X12
+ 1.511 + 1.512 + 1.513 + 1.514 + 1.515 + 1.516 + 1.517 + 1.518 + 1.519 +
1.5I10 + 1.5I11 + 1.5I12
+ 2.5R1 + 2.5R2 + 2.5R3 + 2.5R4 + 2.5R5 + 2.5R6 + 2.5R7 + 2.5R8 + 2.5R9 +
2.5R10 + 2.5R11 + 2.5R12
+ 3M1 + 3M2 + 3M3 + 3M4 + 3M5 + 3M6 + 3M7 + 3M8 + 3M9 + 3M10 + 3M11 + 3M12
+ 5.501 + 5.502 + 5.503 + 5.504 + 5.505 + 5.506 + 5.507 + 5.508 + 5.509 +
5.5010 + 5.5011 + 5.5012
+ 4U1 + 4U2 + 4U3 + 4U4 + 4U5 + 4U6 + 4U7 + 4U8 + 4U9 + 4U10 + 4U11 + 4U12;
/* Constraints */
    X1 + 900 - I1 = 1600;
    X2 + I1 - I2 = 1200;
    X3 + I2 - I3 = 1550;
    X4 + I3 - I4 = 1700;
    X5 + I4 - I5 = 2200;
    X6 + I5 - I6 = 3200;
    X7 + I6 - I7 = 2900;
    X8 + I7 - I8 = 2000;
    X9 + I8 - I9 = 2400;
    X10 + I9 - I10 = 1500;
    X11 + I10 - I11 = 1500;
    X12 + I11 - I12 = 1800;
```

$$X1 - O1 + U1 = 2100;$$

$$X2 - O2 + U2 = 2100;$$

$$X3 - O3 + U3 = 2100;$$

$$X4 - O4 + U4 = 2100;$$

$$X5 - O5 + U5 = 2100;$$

$$X6 - 06 + U6 = 2100;$$

$$X7 - O7 + U7 = 2100;$$

$$X8 - 08 + U8 = 2100;$$

$$X9 - O9 + U9 = 2100;$$

$$X10 - O10 + U10 = 2100;$$

$$X11 - O11 + U11 = 2100;$$

$$X12 - O12 + U12 = 2100;$$

$$X1 - 1400 = R1 - M1;$$

$$X2 - X1 = R2 - M2;$$

$$X3 - X2 = R3 - M3;$$

$$X4 - X3 = R4 - M4;$$

$$X5 - X4 = R5 - M5;$$

$$X6 - X5 = R6 - M6;$$

$$X7 - X6 = R7 - M7;$$

$$X8 - X7 = R8 - M8;$$

$$X9 - X8 = R9 - M9;$$

$$X10 - X9 = R10 - M10;$$

$$X11 - X10 = R11 - M11;$$

$$X12 - X11 = R12 - M12;$$

^{/*} Variable bounds */

Αναλυτικότερα, τα αποτελέσματα που προέκυψαν για τον υπολογισμό της ελάχιστης τιμής της αντικειμενικής συνάρτησης είναι τα ακόλουθα:

```
~$ vi linear.lp
```

~\$ lp_solve linear.lp

Value of objective function: 1613725.00000000

Actual values of the variables:

Actual	values	οÍ	the	variables:
X1				1400
X2				1750
Х3				2100
X4				2100
X5				2100
X6				2100
X7				2100
X8				2100
Х9				2100
X10				1600
X11				1600
X12				1600
I1				700
I2				1250
I3				1800
I4				2200
I5				2100
I6				1000
I7				200
18				300
I9				0
I10				100
I11				200
I12				0

R1	0
R2	350
R3	350
R4	0
R5	0
R6	0
R7	0
R8	0
R9	0
R10	0
R11	0
R12	0
M1	0
M1 M2	0
M2	0
M2 M3	0
M2 M3 M4	0 0 0
M2 M3 M4 M5	0 0 0
M2 M3 M4 M5 M6	0 0 0 0
M2 M3 M4 M5 M6	0 0 0 0 0
M2 M3 M4 M5 M6 M7 M8	0 0 0 0 0
M2 M3 M4 M5 M6 M7 M8 M9	
M2 M3 M4 M5 M6 M7 M8 M9	0 0 0 0 0 0 0

01	0
02	0
03	0
04	0
05	0
06	0
07	0
08	0
09	0
010	0
011	0
012	0
U1	700
U1 U2	700 350
U2	350
U2 U3	350
U2 U3 U4	350 0 0
U2 U3 U4 U5	350 0 0
U2 U3 U4 U5 U6	350 0 0 0
U2 U3 U4 U5 U6 U7	350 0 0 0 0
U2 U3 U4 U5 U6 U7 U8	350 0 0 0 0 0
U2 U3 U4 U5 U6 U7 U8 U9	350 0 0 0 0 0

Resources:

- [1] Διδακτικό υλικό μαθήματος
- [2] Online Unix Terminal
- [3] Application for LP Solver in Windows
- [4] Εναλλακτικά, θα μπορούσε να χρησιμοποιηθεί και: Solver in Excel