Notatka służbowa nr 4	
Temat:	Regulator PID na sterowniku VersaMax
Wykonanie:	Zuzanna Mejer, 259382
Termin zajęć:	poniedziałek TP, 10:55
Data:	16.12.2022

1 Cel ćwiczenia

Celem ćwiczenia było utworzenie projektu regulacji PID oraz analiza wykresów regulacji. Ćwiczenie wykonano na sterowniku PLC VersaMax z wykorzystaniem programu Proficy Machine Edition 8.0.

2 Uruchomienie oprogramowania i konfiguracja sterownika

Przed rozpoczęciem pracy na sterowniku, należało uruchomić oprogramowanie Proficy Machine Edition i skonfigurować sterownik. W tym celu wykonano poniższe czynności:

1. Utworzono nowy projekt wybierając z głównego menu $File \to New\ Project$. Wpisano tytuł projektu oraz wybrano szablon $GE\ Intelligent\ Platform\ VersaMax\ PLC\ (rys.\ 1)$. Poprawnie utworzony projekt widoczny w zakładce Navigator przedstawiono na rys. 2.

Rysunek 1: Utworzenie nowego projektu w programie Proficy Machine Edition

Rysunek 2: Poprawnie utworzony projekt

2. Rozwijając $Hardware\ Configuration \to Main\ Rack$ pokazały się moduły sterownika. Najpierw, klikając na moduł PWR prawym klawiszem i wybierając $Replace\ Module$, uzupełniono nazwę modułu jako IC200PWR002/012 (rys. 3). O poprawności wybrania modułu PWR świadczy pojawienie się zielonego elementu przy ikonie, co przedstawia rys. 4.

Rys. 3: Zamiana modułu PWR

Rys. 4: Poprawnie wybrana jednostka PWR - zielony element przy ikonie

3. Rzeczywisty sterownik posiadał 3 "kasety". W programie domyślnie pojawia się klasyczna jednostka centralna jako Slot 0, którą trzeba było zamienić za pomocą opcji Replace Module

z IC200CPU001 na IC200CPUE05. Pozostałe 2 "kasety" należało dodać najpierw wybierając podstawkę (opcja $Add\ Carrier/Base$) - rys. 5, a następnie wybierając właściwy moduł opcją $Add\ Module$ - rys. 6. W ten sposób zostały zdefiniowane poszczególne "kasety":

Slot $1 \rightarrow IC200MDD845$

Slot $2 \rightarrow IC200ALG430$.

Rysunek 5: Przykład wybranej podstawki

Rysunek 6: Przykład wybranego modułu

4. Następnie wykonano konfigurację jednostki centralnej, to znaczy: zdezaktywowano hasło (rys. 7), uzupełniono adres IP (rys. 8) oraz maskę (rys. 9), oraz przeniesiono obszar pamięci statusu od adresu początkowego %I100 (rys. 10).

Rysunek 7: Zdezaktywowanie hasła

Rysunek 8: Zmiana adresu IP

Rysunek 9: Uzupełnienie maski

Rysunek 10: Przeniesienie obszaru pamięci statusu

5. Zmieniono adres referencyjny dla wejść binarnych od %I001 (rys.11).

Rys. 11: Zmiana adresów obszaru pamięci dla wejść binarnych

6. Po zakończeniu konfiguracji sprzetowej przeprowadzono walidację projektu (rys. 12).

Rys. 12: Walidacja projektu

3 Program do regulacji PID

3.1 Program w języku drabinkowym

W celu przeprowadzenia badania odpowiedzi skokowych regulatora PID wprowadzony został następujący program w sekcji $Logic \rightarrow Program \ Blocks \rightarrow MAIN$:

Rys. 13: Program regulatora PID w języku drabinkowym

3.2 Uruchomienie i działanie programu

Po powtórzeniu walidacji całego programu, przesłano go do sterownika. Przed poleceniem połączenia wybrano port fizyczny komputera Ethernet i wpisano adres IP sterownika (rys.14).

Rysunek 14: Port fizyczny Ethernet i adres IP

Przesyłanie rozpoczyna się od otwarcia okna *Download to Controller* (rys.15), następnie pojawia sie okno *Start Controller* (rys.16).

Rysunek 15: Download to Controller

Rysunek 16: Start Controller

4 Analiza przebiegów

4.1 Regulator PI

Poprawność działania regulacji całkującej sprawdzono dla następujących danych: współczynnik wzmocnienia $K_p=1$, czas zdwojenia $T_i=100s$ oraz $T_i=10s$. Na wejście podano skok jednostkowy i uzyskano następujące przebiegi:

Rys. 17: Odpowiedź regulatora PI przy $T_i = 100s$

Po 100 sekundach wartość odpowiedzi układu powinna być dwukrotną wartością początkową, zatem powinna wynieść

Rys. 18: Odpowiedź regulatora PI przy $T_i=10s$

4.2 Regulator PD

Poprawność działania regulacji różniczkującej sprawdzono dla następujących danych: współczynnik wzmocnienia $K_p=1$, czas wyprzedzenia $T_d=15s$ oraz $T_d=10s$. Na wejście podano sygnał narastający liniowo i uzyskano następujące przebiegi:

Rys. 19: Odpowiedź regulatora PD przy $T_d=15s$

Rys. 20: Odpowiedź regulatora PD przy $T_d=10s$

5 Podsumowanie