Table 1: Table of z-Transforms (we consider all functions (signals) as defined only on $t \geq 0$)

No	f[n]	F[z]
1	$\delta[n-j]$	z^{-j}
2	$\mathbb{1}[n]$	$\frac{z}{z-1}$
3	n1[n]	$\frac{z}{(z-1)^2}$
4	$n^2\mathbb{1}[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3\mathbb{1}[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^{k-1}\mathbb{1}[n-1]$	$\frac{1}{z-\gamma}$
7	$\gamma^n \mathbb{1}[n]$	$\frac{z}{z-\gamma}$
8	$k\gamma^n\mathbb{1}[n]$	$\frac{\gamma z}{(z-\gamma)^2}$
9	$n^2\gamma^n\mathbb{1}[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n \mathbb{1}[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$ \gamma ^n \cos \beta n \mathbb{1}[n]$	$\frac{z(z - \gamma \cos\beta)}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
11b	$ \gamma ^n\sin eta n \mathbb{1}[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12a	$r \gamma ^n\cos(\beta n+\theta)\mathbb{1}[n]$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12b	$r \gamma ^n\cos(\beta n + \theta)\mathbb{1}[n]$ $\gamma = \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-\gamma} + \frac{(0.5re^{-j\theta})z}{z-\gamma^*}$
12c	$r \gamma ^n\cos(\beta n+\theta)\mathbb{1}[n]$	$\frac{z(As+B)}{z^2 + 2az + \gamma ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$	
	$\beta = \cos^{-1} \frac{-a}{ \gamma }, \ \theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$	

Table 2: Table of z-Transforms Properties

Operation	f[n]	F[z]
Addition	$f_1[n] + f_2[n]$	$F_1[z] + F_2[z]$
Scalar multiplication	af[n]	aF[z]
Right-shift	f[n-m]u[n-m]	$\frac{1}{z^m}F[z]$
	$f[n-m]\mathbb{1}[n]$	$\frac{1}{z^m} F[z] + \frac{1}{z^m} \sum_{k=1}^m f[-k] z^n$
Left-shift	$f[n+m]\mathbb{1}[n]$	$z^m F[z] - z^m \sum_{k=0}^{m-1} f[n] z^{-k}$
Multiplication by γ^n	$\gamma^n f[n] \mathbb{1}[n]$	$F\left[rac{z}{\gamma} ight]$
Multiplication by k	$kf[n]1\!\!1[n]$	$-z\frac{d}{dz}F[z]$
Time Convolution	$f_1[n] * f_2[n]$	$F_1[z]F_2[z]$
Frequency Convolution	$f_1[n]f_2[n]$	$\frac{1}{2\pi j} \oint F_1[u] F_2\left[\frac{z}{u}\right] u^{-1} du$