•	
16.2 LINE INTEGRALS	
LINE INTEGRALS OF FUNCTIONS	
2-11 5 122 18 6 1	1 .
KECHTLI TROM 15.5 : 17 (15 a partire 1773)	<u> </u>
RECALL FROM 13.3: If C is a parametrization (S(y,z) = v (t)
acteb Tren	
f-h	
LEW ETH (C) = 5 / + 4 / dt.	
LEWETH (C) = J [r to lat.	,
t =a	
DEF If in addition we have a function	,
DEF If in addition we have a function $V = f(x, y, z)$ defined on C	\sim
W= T (A, y, 2) defined on	
The we defined	
0 t=b	
S fds - S f(+€) +€€1	1+
t = a	α(
t = a	
ARCLENETH ELEMENT: ds = [+ 10] dt	
LENETH = SPEED X TIN	
SOME MEANINES	
O If Cos a wire and	
@ If W= f(x,y,z) - Density of Vire a	*
point (xy, 2) on C	
point (xy, 2) on C in UNITS of MARS	
They are	۲
Jefds = TOTAL MASS of L	ine
LEWETH X LEWETH = MASS	
LENETH	

DISTLACEMENT ELEMENT	: dr = = = 1 H at	
<u> </u>	DISPLACEMENT = VELOCOTT	
<u> </u>	0-0	
FORMULA RUATINE	Filt to I fold	
	F(FH) = F'(H) dt	
JF. Li	all	
	一声说。产性了冷也。	lt.
	,	
	Ja (₹° 7) de	
	Ja	
where ds = tr	E ky ldt	
	- 141	, ,,,,
and TH=	THE UNIT TANKE	NT VT
	FLUI ALONG	·
		,
	TH	
	/ TH	
SUMMAN F.L.	= (47) ds	
30777777 C		·
		-

Let O be angle between F and T Suppose - T/2 < 0 5 Th legistere on C Ten F. 7 = FIT 50 > 0. ie composit of F in dem T is positive So J. F. Li 70. Wark 15 tre [] F (x,y,z) = yz + xz + xz + xy k $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(4)\vec{k}$ = $t\vec{i} + t^2\vec{j} + t^3\vec{k}$ 05+52 7'(t) = 11 +2tj +3t2 1 $\vec{F}(\vec{r}(t)) = t^2 \cdot t^3 \vec{i} + t^3 \vec{j} + t^3 \vec{k}$ $= t^5 \vec{i} + t^4 \vec{j} + t^3 \vec{k}$

 $\int_{C} \hat{F}(t) = \int_{C} \hat{F}(t) dt$ $= \int_{C} \frac{1}{(t^{5}t^{2} + t^{4})} dt + \int_{C} \frac{1}{(t^{2}t^{2} + 3t^{2})} dt$ $= \int_{0}^{2} (t^{5} + 2t^{5} + 3t^{5}) dt = 64$ ALTERNATE FORMULA F = 72+07 产出 = * 文世 元 + 少世 子 = 1 [P(64, 14) 2+Q(64, 54)]. [dr i + dy i] dt = SP(x(+1,4+)) dx + Q (4+,4(+)) der Tolt =: Pdx+Qdy JF. dr = P dret Q de UPSHOT where $\vec{F} = P\vec{\tau} + Q\vec{\tau}$

∫ xy dx + x²dy, Cxs x=2t, y=t² 0≤ t≤1

 $\int_{0}^{\infty} P dn + Q dy$ $\int_{0}^{\infty} \int_{0}^{\infty} (2t) (t^{2}) 2 + (2t)^{2} (2t) \int_{0}^{\infty} dt$ $\int_{0}^{\infty} 12t^{3} dt = 3$