Divide And Conquer

Mohammed Rizin Unemployed

March 23, 2025

Abstract

Suppose we got a bigger problem, call it P of size n. Sometimes bigger problem are really daunting and we end up doing nothing. Instead, why don't we split the problem into multiple pieces. and solve them and combine the result. Its like we split the work into several pieces and assign to workers independently. So, each worker doesn't feel so hard about solving the problem. So we employ DivideAndConquer strategy.

1 Introduction

As discussed earlier, we are dividing a task into several pieces and solve them individually and independently.

1.1 Conditions for Divide and Conquer

- $1. \ \, \text{All the sub-problems}$ should be the same task as the main problem.
- 2. There should be an known method to combine the solutions at least

Since all the sub-problems are the same task as the parent problem, This is a recursive algorithm.

1.2 Applications of Divide and Conquer

- 1. Binary search
- 2. Finding Minimum and Maximum
- 3. Merge Sort
- 4. Quick Sort
- 5. Stressen's Matrix Multiplication

2 Recurrence Relation

To analyze the time complexity of divide and conquer algorithms, we often use recurrence relations. For example:

```
void Test(int n){
    if (n > 0){
        printf("%d", n);
        Test(n-1);
    }
}
```

Test(3)

Since the only statement in the function is printf, which take O(1) time, at each recursive step O(1) is done. If Test(n) is executed, the number of recursive calls are n+1, the number of printf calls are n. So the time complexity of this algorithm is On(n)

This won't be possible in every algorithm to open the function and count them and make assumption about n cases. Mathematically, That is not sufficient. Thus, Recurrence Relation Come into play.

Lets take the same code we used before:

Algorithm 1 Simple Printing with recursion

```
\begin{array}{ll} \textbf{procedure Test(int } n) & > \textbf{ Assume it takes } T(n) \\ \textbf{if } n > 0 \textbf{ then} & > O(1) \\ print(n) & > O(1) \\ Test(n-1) & > T(n-1) \\ \textbf{end if} & \\ \textbf{end procedure} & \\ \end{array}
```

So,

$$T(n) = \begin{cases} T(n-1) + 1 & n > 0, \\ 1 & n = 0 \end{cases}$$

$$T(n) = T(n-1) + 1,$$

$$T(n-1) = T(n-2) + 1,$$
Substituting(3) in (1),
$$T(n) = [T(n-2) + 1] + 1 = T(n-2) + 2,$$

$$T(n) = [T(n-3) + 1] + 2 = T(n-3) + 3,$$

$$T(n) = \vdots + \vdots,$$

$$T(n) = T(n-k) + k,$$

$$T(n) = T(n-k) + k,$$

$$T(n) = T(n-k) + k,$$

$$T(n) = T(n) + n,$$

$$T(n) = T(n) + n.$$

This algorithm is O(n)

Lets look Another example

Algorithm 2 Simple Printing with recursion

```
\begin{array}{lll} \textbf{procedure TEST(int } n) & & & & & & \\ \textbf{if } n > 0 \textbf{ then} & & & & & \\ \textbf{for } i \leftarrow 0 \textbf{ to } n-1 \textbf{ do} & & & & & \\ print(n) & & & & & \\ \textbf{end for} & & & & \\ Test(n-1) & & & & \\ \textbf{end if} & & & & \\ \textbf{end procedure} & & & & \\ \end{array}
```

So,

$$T(n) = T(n-1) + 2n + 2$$
 We need to take Asymptotic Notation
$$T(n) \simeq T(n-1) + n$$

$$T(n) = \begin{cases} T(n-1) + n & n > 0, \\ 1 & n = 0 \end{cases}$$

$$T(n) = T(n-1) + n,$$

$$T(n-1) = T(n-2) + n - 1,$$
 Substituting(3) in (1),
$$T(n) = [T(n-2) + n - 1] + n = T(n-2) + (n-1) + n,$$

$$T(n) = [T(n-3) + n - 2] + (n-1) + n = T(n-3) + (n-2) + (n-1) + n,$$

$$T(n) = \vdots + \vdots,$$

$$T(n) = T(n-k) + (n-(k-1)) + \dots + (n-1) + n,$$

$$T(n) = T(n-k) + (n-(k-1)) + \dots + (n-1) + n,$$
 if $(k = n)$,
$$T(n) = T(0) + \frac{n(n+1)}{2} = 1 + \frac{n(n+1)}{2},$$

$$T(n) \approx \frac{n(n+1)}{2} \approx \frac{n^2 + n}{2}$$

This algorithm is $O(n^2)$