Logic

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic** (命题逻辑) is the foundation and fine for some AI problems
- First order Predicate logic (一) 所谓词逻辑) is much more expressive and more commonly used in AI
- Many variations: higher order predicate logic, three-valued logic, probabilistic logics, etc.

PL

- Logical constants: true, false
- Propositional **symbols**: P, Q,... (atomic sentences)
- Wrapping parentheses: (...)
- Sentences are combined by **connectives**:

```
∧ and [conjunction]
∨ or [disjunction]
⇒ implies (蕴含) [implication / conditional]
⇔ is equivalent (等价) [equivalence]
¬ not [negation]
```

• $P \wedge Q$, $\neg P \wedge Q$, $\neg P \vee Q$, ((P) \vee Q), etc.

PL

- Simple language for showing key ideas and definitions
- User defines **semantics** of each propositional symbol:
 - P means "It is hot", Q means "It is humid", etc.
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then $(S \vee T)$, $(S \wedge T)$, $(S \Rightarrow T)$, and $(S \Leftrightarrow T)$ are sentences
 - If expressions are parenthesized, the term in the parentheses is evaluated first. Otherwise, the priorities are: \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow

Examples of PL Sentences

- Q
 "It is humid."
- Q ⇒ P
 "If it is humid, then it is hot"
- (P ∧ Q) ⇒ R
 "If it is hot and humid, then it is raining"
- We're free to choose better symbols, e.g.,
 Ho = "It is hot"
 Hu = "It is humid"
 - Ra = "It is raining"

- Truth tables are used to define logical connectives and to determine when a complex sentence is true given the values of the symbols in it
- Note that \Rightarrow is a logical connective, so $P \Rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false

Truth tables for the five logical connectives

P	Q	¬P	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	P⇔Q
False	False					
False	True					
True	False					
True	True					

- Truth tables are used to define logical connectives and to determine when a complex sentence is true given the values of the symbols in it
- Note that \Rightarrow is a logical connective, so $P \Rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false

Truth tables for the five logical connectives

P	Q	¬P	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	P⇔Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Example of a truth table used for a complex sentence

P	Q	$(\mathbf{P}\vee\mathbf{Q})\wedge(\neg\mathbf{Q})$	$((\mathbf{P}\vee\mathbf{Q})\wedge(\neg\mathbf{Q}))\Rightarrow\mathbf{P}$
False	False		
False	True		
True	False		
True	True		

Example of a truth table used for a complex sentence

P	Q	$(\mathbf{P}\vee\mathbf{Q})\wedge(\neg\mathbf{Q})$	$((\mathbf{P}\vee\mathbf{Q})\wedge(\neg\mathbf{Q}))\Rightarrow\mathbf{P}$
False	False	False	True
False	True	False	True
True	False	True	True
True	True	False	True

Knowledge Base (KB)

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its truth value (True or False)
- A **model** for a knowledge base (**KB**) is a *possible world* an assignment of truth values to propositional symbols that makes each sentence in the KB True

Model for a KB

- Let the KB be $[P \land Q \Rightarrow R, Q \Rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables
 - FFF:
 - FFT:
 - FTF:
 - FTT:
 - TFF:
 - TFT:
 - TTF:
 - TTT:

P: it's hot

Q: it's humid

R: it's raining

Model for a KB

- Let the KB be $[P \land Q \Rightarrow R, Q \Rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables
 - FFF: OK
 - FFT: OK
 - FTF: NO
 - FTT: NO
 - TFF: OK
 - TFT: OK
 - TTF: NO
 - TTT: OK
- If KB is $[P \land Q \Rightarrow R, Q \Rightarrow P, Q]$, then the answer is ?

P: it's hot

Q: it's humid

R: it's raining

Model for a KB

- Let the KB be $[P \land Q \Rightarrow R, Q \Rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables
 - FFF: OK
 - FFT: OK
 - FTF: NO
 - FTT: NO
 - TFF: OK
 - TFT: OK
 - TTF: NO
 - TTT: OK
- If KB is $[P \land Q \Rightarrow R, Q \Rightarrow P, Q]$, then the answer is **TTT**

P: it's hot

Q: it's humid

R: it's raining

Pros and Cons of PL

- + Meaning of propositional logic is context independent: (unlike natural language, where the meaning depends on the context)
- Propositional logic has limited expressive power: (unlike natural language)
 - "Robot A is to the right of robot B"
 - Robot_3_is_to_the_right_of_robot_9 ⇔
 Robot_3_is_situated_at_xy_postition_(35, 79)
 ∧ Robot_9_is_situated_at_xy_postition_(10, 93)
 ∨ ...

- Objects (个体词): represent a specific object by a, b, ...
- **Predicate** (谓词): represent the attribute of objects by A(...), B(...), ...Z(...)
 - 。 **Relations** (关系), e.g., bigger than, inside, part of, ...
 - 。 Functions (性质), e.g., red, round, ...
- Quantifier (量词)
 - universal quantifier: ∀
 - ∘ existential quantifier: ∃
 - $\forall x \text{ Frog } (x) \Rightarrow \text{Green } (x)$:
 - $\neg \forall x \text{ Likes } (x, \text{ cat})$:
 - $\neg \exists x \text{ Likes } (x, \text{ cat})$:

- Objects (个体词): represent a specific object by a, b, ...
- **Predicate** (谓词): represent the attribute of objects by A(...), B(...), ...Z(...)
 - 。 **Relations** (关系), e.g., bigger than, inside, part of, ...
 - 。 Functions (性质), e.g., red, round, ...
- Quantifier (量词)
 - universal quantifier: ∀
 - ∘ existential quantifier: ∃
 - $\forall x \operatorname{Frog}(x) \Rightarrow \operatorname{Green}(x)$: All frogs are green
 - $\neg \forall x \text{ Likes } (x, \text{ cat}) : \text{Not everyone likes cat}$
 - $\neg \exists x \text{ Likes } (x, \text{ cat})$: No one likes cat

- ✓" Robot A is to the right of robot B"
- ✓ $\forall u \ \forall v \ \text{is_further_right}(u, v) \Leftrightarrow$ $\exists x_u \ \exists y_u \ \exists x_v \ \exists y_v \ \text{Position}(u, x_u, y_u) \land \text{Position}(v, x_v, y_v)$ $\land \text{Larger}(x_u, x_v)$
- Typically, ⇒ is the main connective with ∀;
 ∧ is the main connective with ∃
 - $\forall x \operatorname{At}(x, \operatorname{SMIE}) \Rightarrow \operatorname{Smart}(x)$
 - $\exists x \, \text{At}(x, \, \text{SMIE}) \land \text{Smart}(x)$
- Morgan's law
 - $\forall x \perp \equiv \neg \exists x \neg \bot$
 - $\circ \neg (\forall x L) \equiv \exists x \neg L$

- ✓" Robot A is to the right of robot B"
- ✓ $\forall u \ \forall v \ \text{is_further_right}(u, v) \Leftrightarrow$ $\exists x_u \ \exists y_u \ \exists x_v \ \exists y_v \ \text{Position}(u, x_u, y_u) \land \text{Position}(v, x_v, y_v)$ $\land \text{Larger}(x_u, x_v)$
- Typically, ⇒ is the main connective with ∀;
 ∧ is the main connective with ∃
 - $\forall x \, \text{At}(x, \, \text{SMIE}) \Rightarrow \text{Smart}(x)$
 - $\exists x \, \text{At}(x, \, \text{SMIE}) \land \text{Smart}(x)$
- Morgan's law
 - $\circ \ \forall x \ L \equiv \neg \ \exists x \neg L$
 - $\circ \neg (\forall x L) \equiv \exists x \neg L$

"Not everyone likes cat" $\neg(\forall x, \text{ Likes}(x, \text{ cat}))$ $\exists x, \neg \text{Likes}(x, \text{ cat})$

- If a quantifier *Q* is followed by (, then the scope of *Q* is to the matched)
 - $\circ \forall x (F(x) \Leftrightarrow F(h))$

- If a quantifier *Q* is followed by (, then the scope of *Q* is to the matched)
 - $\circ \forall x (F(x) \Leftrightarrow F(h))$
- If a quantifier *Q* is not followed by (or another quantifier, then the scope of *Q* is to the first connective
 - $\circ \forall x F(x) \Leftrightarrow F(h)$

- If a quantifier *Q* is followed by (, then the scope of *Q* is to the matched)
 - $\circ \forall x (F(x) \Leftrightarrow F(h))$
- If a quantifier *Q* is not followed by (or another quantifier, then the scope of *Q* is to the first connective
 - $\circ \forall x F(x) \Leftrightarrow F(h)$
- If a quantifier *Q*1 is followed by another quantifier *Q*2, then the scope of *Q*1 is to the scope of *Q*2
 - $\circ \ \forall x \ \exists y \ R(x, y)$

- If a quantifier *Q* is followed by (, then the scope of *Q* is to the matched)
 - $\circ \forall x (F(x) \Leftrightarrow F(h))$
- If a quantifier *Q* is not followed by (or another quantifier, then the scope of *Q* is to the first connective
 - $\circ \forall x F(x) \Leftrightarrow F(h)$
- If a quantifier *Q*1 is followed by another quantifier *Q*2, then the scope of *Q*1 is to the scope of *Q*2
 - $\circ \ \forall x \ \exists y \ R(x, y)$
- F: ... can fly $\forall x (F(x) \Leftrightarrow F(h))$ $\stackrel{?}{\Leftrightarrow}$ $\forall x F(x) \Leftrightarrow F(h)$
- h: human being

- If a quantifier *Q* is followed by (, then the scope of *Q* is to the matched)
 - $\circ \forall x (F(x) \Leftrightarrow F(h))$
- If a quantifier *Q* is not followed by (or another quantifier, then the scope of *Q* is to the first connective
 - $\circ \forall x F(x) \Leftrightarrow F(h)$
- If a quantifier *Q*1 is followed by another quantifier *Q*2, then the scope of *Q*1 is to the scope of *Q*2
 - $\circ \ \forall x \ \exists y \ R(x, y)$
- F: ... can fly False True $\forall x (F(x) \Leftrightarrow F(h)) \Leftrightarrow \forall x F(x) \Leftrightarrow F(h)$
- h: human being

- Tell the system assertions
 - Facts:
 - Tell (KB, Bird(eagle))
 - Tell (KB, Penguin企鹅(Tweety))

- Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \text{Bird}(x)))$
- Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \neg \text{ Fly}(x)))$
- Tell (KB, $\forall x (Bird(x) \Rightarrow Fly(x))$)
- Ask questions
 - Ask (KB, Bird(eagle))
 - Ask (KB, Fly(eagle))
 - Ask (KB, Fly(Tweety))

- Tell the system assertions
 - Facts:
 - Tell (KB, Bird(eagle))
 - Tell (KB, Penguin(Tweety))
 - Rules:
 - Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \text{Bird}(x)))$
 - Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \neg \text{ Fly}(x)))$
 - Tell (KB, $\forall x \; (Bird(x) \land \neg Penguin(x) \Rightarrow Fly(x)))$
- Ask questions
 - Ask (KB, Bird(eagle))
 - Ask (KB, Fly(eagle))
 - Ask (KB, Fly(Tweety))

- Tell the system assertions
 - Facts:
 - Tell (KB, Bird(eagle))
 - Tell (KB, Penguin(Tweety))
 - Tell (KB, Raven乌鸦(abraxas)
 - Rules:
 - Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \text{Bird}(x))$)
 - Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \neg \text{ Fly}(x)))$
 - Tell (KB, $\forall x \text{ (Bird}(x) \land \neg \text{Penguin}(x) \Rightarrow \text{Fly}(x)))$
 - Tell (KB, $\forall x (Raven(x) \Rightarrow Bird(x)))$
- Ask questions
 - Ask (KB, Bird(eagle))
 - Ask (KB, Fly(eagle))
 - Ask (KB, Fly(Tweety))
 - Ask (KB, Fly(abraxas)?

- Tell the system assertions
 - Facts:
 - Tell (KB, Bird(eagle))
 - Tell (KB, Penguin(Tweety))
 - Tell (KB, Raven(abraxas)

- Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \text{Bird}(x)))$
- Tell (KB, $\forall x \text{ (Penguin}(x) \Rightarrow \neg \text{ Fly}(x)))$
- Tell (KB, $\forall x \text{ (Bird}(x) \land \neg \text{Penguin}(x) \Rightarrow \text{Fly}(x)))$
- Tell (KB, $\forall x (Raven(x) \Rightarrow Bird(x))$)

Ask questions

- Ask (KB, Bird(eagle))
- Ask (KB, Fly(eagle))
- Ask (KB, Fly(Tweety))
- Ask (KB, Fly(abraxas)?

Tell (KB, $\forall x (Raven(x) \Rightarrow \neg Penguin(x)))$

For the construction of a knowledge base with all 9,800 or so types of birds worldwide, it must therefore be specified for every type of bird (except for penguins) that it is not a member of penguins!

