# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-057913

(43)Date of publication of application: 03.03.1995

(51)Int.CI.

H01F 1/08

B22F 1/00

C22C 33/02

(21)Application number : 05-198056

(71)Applicant: HITACHI METALS LTD

(22)Date of filing:

10.08.1993

(72)Inventor: TANIGUCHI FUMITAKE

NOGUCHI MASAKO KOJO KATSUHIKO

## (54) PRODUCTION OF RARE EARTH PERMANENT MAGNET

## (57)Abstract:

PURPOSE: To obtain an R-T-B based permanent magnet having high coersive force by mixing an R-T-B based alloy powder principally composed of R2T14B and an' R-T based alloy powder having low R eutectic ratio and low melting point. CONSTITUTION: In the method for producing an R-T-B based rare earth permanent magnet having main compositional phase, i.e. a main phase principally comprising an R2T14B based intermetallic compound (R represents one or more than one kind of rare earth element including Y, T represents one or more than one kind of transition metal) and an R rich phase, the R-T-B based alloy powder containing 95% or above of R2T14B based intermetallic compound in surface ratio admixed with 8-15wt.% of R-T-B based alloy powder containing 10% or less of R eutectic in surface ratio and then the mixture is molded and sintered to produce a rare earth permanent magnet. This method produces an R-T-B based permanent magnet having high coersive force iHc.

## **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平7-57913

(43)公開日 平成7年(1995)3月3日

| (51) Int.Cl.*<br>H 0 1 F 1/08 | 識別記号 庁内整理番号     | FΙ            | 技術表示箇所                |  |  |  |
|-------------------------------|-----------------|---------------|-----------------------|--|--|--|
| B 2 2 F 1/00                  | W               |               |                       |  |  |  |
| C 2 2 C 33/02                 | J               |               |                       |  |  |  |
|                               |                 | H01F          | 1/ 08 B               |  |  |  |
|                               |                 | 審査請求          | 未請求 請求項の数5 OL (全 5 頁) |  |  |  |
| (21)出願番号                      | 特顧平5-198056     | (71)出顧人       | 000005083             |  |  |  |
|                               |                 |               | 日立金属株式会社              |  |  |  |
| (22)出顧日                       | 平成5年(1993)8月10日 |               | 東京都千代田区丸の内2丁目1番2号     |  |  |  |
|                               |                 | (72)発明者       | 谷口 文丈                 |  |  |  |
|                               |                 |               | 埼玉県熊谷市三ケ尻5200番地日立金属株式 |  |  |  |
|                               | ·               |               | 会社磁性材料研究所内            |  |  |  |
|                               |                 | (72)発明者       | 野口 雅子                 |  |  |  |
|                               |                 |               | 埼玉県熊谷市三ケ尻5200番地日立金属株式 |  |  |  |
|                               |                 | (20) (2)      | 会社磁性材料研究所内            |  |  |  |
|                               | •               | (72)発明者       |                       |  |  |  |
|                               |                 |               | 埼玉県熊谷市三ケ尻5200番地日立金属株式 |  |  |  |
|                               | •               | (7.4) (D.m. I | 会社磁性材料研究所内            |  |  |  |
|                               |                 | (14)代理人       | 弁理士 大場 充              |  |  |  |
|                               |                 |               |                       |  |  |  |

## (54)【発明の名称】 希土類永久磁石およびその製造方法

## (57)【要約】

【目的】 本発明は、保磁力 i H c が高い希土類永久磁石を提供することを目的とする。

【構成】 R2T14B系金属間化合物(RはYを含む希土類元素の1種または2種以上、Tは遷移金属の1種または2種以上)を主体とする主相とRリッチ相とを主構成相とするR-T-B系希土類永久磁石の製造方法において、R2T14B系金属間化合物の面積率が95%以上であるR-T-B系合金粉末に、R共晶の面積率が10%以下であるR-T系合金粉末8~15wt%の範囲で添加・混合後、成形、焼結する希土類永久磁石の製造方法である。

### 【特許請求の範囲】

【請求項1】 R2T14B系金属間化合物(RはYを含む希土類元素の1種または2種以上、Tは遷移金属の1種または2種以上)を主体とする主相とRリッチ相とを主構成相とするR-T-B系希土類永久磁石の製造方法において、

R2T14B系金属間化合物の面積率が95%以上である R-T-B系合金粉末に、R共晶の面積率が10%以下 であるR-T系合金粉末8~15wt%の範囲で添加・ 混合後、成形、焼結する希土類永久磁石の製造方法。

【請求項2】 R-T-B系合金粉末が27wt%≦R ≦30wt%、1.0wt%≦B≦1.2wt%、T: balであることを特徴とする請求項1に記載の希土類 永久磁石の製造方法。

【請求項3】 RとしてDyを含むR-T系合金粉末を用いることを特徴とする請求項2に記載の希土類永久磁石の製造方法。

【請求項4】 R2T14B系金属間化合物(RはYを含む希土類元素の1種または2種以上、Tは遷移金属の1種または2種以上)を主体とする主相とRリッチ相を主構成相とするR-T-B系希土類永久磁石であって、30.0wt% $\le$ R $\le$ 33.0wt%、0.93wt%  $\le$ B $\le$ 1.02wt%、T:balなる組成を有し、最大エネルギー積(BH) $max \ge$ 30(MGOe)、かつ保磁力iHc $\ge$ 30(kOe)であることを特徴とする希土類永久磁石。

【請求項5】 RとしてNd、Dy含有し、21.0w t%≦Nd≦23.0wt%、7.5t%≦Dy≦1 2.0wt%である請求項4に記載の希土類永久磁石。 【発明の詳細な説明】

### [0001]

【産業上の利用分野】本発明は希土類元素R、遷移金属 T、ホウ素Bを主成分とするR-T-B系希土類永久磁 石およびその製造方法に関するものである。

#### [0002]

【従来の技術】希土類磁石の中でもNdーFe-B系永久磁石は、Sm-Co系磁石と比べて、主成分であるNdが資源的に豊富であること、磁気特性に優れていること等の理由で急速に需要が増大している。しかし、NdーFe-B系永久磁石はキュリー点Tcが低い(Nd2Fe14B1で312℃)ため、磁気特性の温度による影響が大きい。特に保磁力iHcは温度上昇に伴い低下しやすく、高温での使用は制限される。そのため、高温において保磁力iHcが低下しても使用に支障をきたさない程度に保磁力iHcを高めることは重要な課題であり、種々の試みがなされている。

【0003】例えば、特開平4-155902号には、 結晶粒の中心部より粒界近傍でDy、Tbの濃度が高く なるよう組織を制御し、残留磁束密度を低下させずに得 られる高保磁力なNd-Fe-B系永久磁石が提案され ている。

#### [0004]

【発明が解決しようとする課題】しかし上記特開平4-155902号に提案される永久磁石であっても保磁力iHcは最大20kOe程度であり、実用として十分な信頼性を得るためには更に高保磁力なNdーFe-B系永久磁石であることが望ましい。したがって、本発明は保磁力iHcが高いR-T-B系永久磁石を提供することを目的とする。

#### [0005]

【課題を解決するための手段】本発明は、R2T14B系金属間化合物(RはYを含む希土類元素の1種または2種以上、Tは遷移金属の1種または2種以上)を主体とする主相とRリッチ相を主構成相とするR-T-B系希土類永久磁石の製造方法において、R2T14B系金属間化合物の面積率が95%以上であるR-T-B系合金粉末に、面積率でR共晶が10%以下であるR-T系合金粉末8~15wt%の範囲で添加・混合後、成形、焼結する希土類永久磁石の製造方法である。

【作用】本発明において、R-T-B系合金粉末のR2 T14B系金属間化合物相の面積率は95%以上とする。R-T-B系合金粉末は磁性を担うR2T14B系金属間化合物相単相に近い方が望ましく、R2T14B系金属間化合物相が95%未満であると、組織の残部を占める軟磁性な $\alpha$ -Feを主体とする不純物相が、磁気特性を低下させる要因となる。R2T14B系金属間化合物相の面積率が95%以上であるR-T-B系合金粉末は、例えば27wt% $\leq$ R $\leq$ 30wt%、1.0wt% $\leq$ B $\leq$ 1.2wt%、T:balとすれば得ることができる。

【0008】R量が27wt%未満であると $\alpha$ ーFeの晶出量が増加し、30wt%を越えると微細なRリッチ相の残留が多く、その後の粉砕過程などで酸化が激望ましい。B量が1.0wt%未満であると均質化処理に長時間かけないと $\alpha$ ーFeの拡散が行われず、また軟磁性相であるR2T17相等が析出し、磁気特性を低下させる要因となる。1.2wt%を越えるとBリッチ相(RT4B4)を生成し、この生成にRが消費されるためにRが不足気味になり、 $\alpha$ ーFeを生成し易くなる。つまりB量が1.2wt%を越えるとRを低下した場合と同様に $\alpha$ ーFe相が析出しやすくなり、熱処理による均質化処理を行っても拡散しきれず、磁気特性が低下する要因となる。したがって、1.0wt%≦B≦1.2wt%の範囲であるのが望ましい。

【0009】R-T-B系合金粉末を上記のような組成範囲に設定するためには、Ndリッチ相を形成するR-T系合金粉末にはBを添加しないことが必要である。R-T系合金粉末にBを添加すると、R-T-B系合金粉末とR-T系合金粉末との混合後の組成全体としてBが過剰となるためBリッチ相(RT4B4相)が生成し、粗大化する。そのBリッチ相生成にRが消費されるためにRが不足気味になり、液相として実効的な働きをするRリッチ相が減少するので、磁気特性は改善されない。

【0010】また、低融点なR-T系合金粉末を別に作製して使用することにより、液相焼結に必要なR-T相を有効に活用でき、焼結温度の低下が可能となり、また、焼結後の結晶粒径など組織の制御、均一化が容易になり、残留磁束密度Brをそれ程低下させること無く保磁力iHcを向上させることができる。

【0011】本発明において、R-T系合金粉末のR共 晶の面積率は10%以下とする。R共晶は活性なRから なるので酸化されやすく、酸化されると非磁性なNd2 O3相が生成し、液相として実効的な働きをするRリッ チ相を減少させるため保磁力が低下し、さらに焼結性も 低下するので、できるだけ少ない方が望ましい。図1に R-T系合金インゴットのR共晶の面積率とそのインゴ ットを水素処理後、500μm以下となるよう粗粉砕し た場合のRIT系合金粉末の粗粉の酸素量を示す。図1 より、R共晶の増加にともない粗粉の酸素量は直線的に 増加し、R共晶の面積率が10%以下の時、粗粉の酸素 量が2000ppm以下と少ないことがわかる。また、 R共晶は融点が低く、そのような低融点相は焼結時に粘 度の小さな液相となり、配向を乱すので、できるだけ少 ない方が望ましい。したがって、R-T系合金粉末のR 共晶は面積率で10%以下とする。

【0012】以上のようにR2T14B相の面積率を設定した主相形成合金であるR-T-B系合金粉末に対する、Rリッチ相形成合金である粉末R-T系合金粉末の混合量は8~15wt%とする。R-T系合金粉末の混合量を、混合後の総R量を一定になるように混合量を低下させていくと、焼結性、保磁力iHcが低下していき、8wt%未満では低下が著しい。よって混合量は8wt%以上とする。また、15wt%を越えるとiHcの改善効果が低下し、Brが著しく低下する。よってR-T系合金粉末の混合量は8~15wt%の範囲とする。

【0013】R-T系合金粉末のR共晶の面積率を10%以下に低減するには、例えば、R70wt%以下、T:balとすればよい。またさらにR共晶の面積率を10%以下にしても、Rが55wt%未満では、R-T-B系合金粉末、R-T系合金粉末混合後の総R量が不足するため磁気特性、特に保磁力が低下しやすくなる。したがって、55≦R≦70とするのが望ましい。R-T系合金粉末において、Rは希土類元素から選択すれば

良いが、特に望ましいのはDyである。Dyは異方性磁界HAが大きいので保磁力iHcを向上させることができ、さらにDyを添加することにより共晶量を容易に低下できる。

【0014】 Dyを添加することにより共晶量を低下で きる理由を例を上げて説明する。例えば、全体組成がN d1Fe2であるNdーFe2元系の合金溶湯を冷却固化 する場合、生成温度の関係(Nd2Fe17相、Nd1Fe 2相の生成温度は1185℃、1130℃)でNd1Fe 2相ではなくNd2Fe17相が生成する。Nd2Fe17相 が生成するとFeが大幅に消費されるので余ったNdが Nd共晶になり、Nd1Fe2相は生成しない。したがっ て、Nd共晶が晶出するのはNd2Fe17相が生成する 為であると認められるので、Nd共晶を低減するにはN d1Fe2相を先に晶出させればよい。そこで、Dyを添 加するとNd-Dy-Fe3元系では生成温度が高いD y1Fe2相(生成温度:1270°C)を生成する。Dy 1Fe2相が生成することにより本来、Nd2Fe17相 (生成温度:1185℃)よりも生成温度の低いNd1 Fe2相(生成温度:1130°C)が優先的に晶出し、 R共晶を低減することが可能となる。

【0015】RーTーB系合金粉末、RーT系合金粉末の成分の遷移金属Tとしては従来から用いられているFe、Co、Ni等を用いることができるが、Niは焼結性を悪化し、磁気特性を低下させる傾向にあるのでFe、Coとするのが望ましい。

【0016】なお、本発明においてR2T14B系金属間化合物相、R共晶の面積率は、走査型電子顕微鏡を用いて求めた。具体的には、400倍の組織写真を得、組織写真から5mm間隔で点を抽出し、その点に占めるR2T14B系金属間化合物相、R共晶の割合を面積率とした。

## [0017]

【実施例】(実施例1)純度95%以上のNd、Dy、 B、電解鉄を使用し高周波溶解によって重量比で25. ONd-3. ODy-70. 9Fe-1. 1Bからなる 合金1と重量比で60.0Dy-40.0Feからなる R共晶の面積率が0%である合金2を準備した。主相形 成合金である合金1について1100℃×20Hの均質 化処理をし、(Nd, Dy)2Fe14B相の面積率を9 7%とした後粗粉砕し、平均粒径15~25 µmのR-T-B系合金粉末とした。Rリッチ相形成合金である合 金2については溶解冷却後、これを粗粉砕し平均粒径1 5~25μmのR-T系合金粉末とした。R-T-B系 合金粉末に、R-T系合金粉末を表1に示す7通りの配 合比で混合し、これをN2を粉砕媒体としジェットミル によって平均粒径2~5μmになるように微粉砕した。 得られた微粉砕粉を10KOeの磁場中で成形圧力2 t on/cm<sup>2</sup>で横磁場成形した。成形体は真空中で11 00℃×2Hで焼結を行った。焼結体はAr雰囲気中で

900℃×2Hの1次熱処理をした後600℃×1Hの 2次熱処理を行った。以上の手順で得られた永久磁石の 磁気特性の測定結果を表1に示す。

【0018】 【表1】

|      | だけ合い      |       | क्षेत्र क्षेत्र |        |       |  |
|------|-----------|-------|-----------------|--------|-------|--|
|      | 配合比       | Br    | iHc             | (BH)m  | 密度    |  |
|      | 合金1:合金2   | (kG)  | (k0e)           | (MGOe) | g/cm² |  |
| 本発明例 | 92.0: 8.0 | 11.78 | 26.01           | 30.08  | 7.69  |  |
|      | 89.0:11.0 | 11.67 | 31.80           | 30.50  | 7.67  |  |
|      | 87.5:12.5 | 11.46 | 33.98           | 31.23  | 7.66  |  |
|      | 86.0:14.0 | 11.21 | 31.47           | 30.10  | 7.66  |  |
|      | 85.0:15.0 | 10.94 | 29.80           | 28.17  | 7.66  |  |
| 比較例  | 94.0:6.0  | 8.42  | 0.17            | 0.55   | 7.08  |  |
|      | 82.0:18.0 | 9.93  | 24.86           | 23.51  | 7.66  |  |

【0019】表1よりR-T-B系合金粉末:R-T系 合金粉末の配合比が92.0:8.0~85.0:1 5. Oの範囲であれば、Brが低下せずに高い保磁力i Hcを有する永久磁石が得られ、特に合金2を11.0 ~14.0の範囲で添加した場合、保磁力 i H c 、 最大 エネルギー積 (BH) maxがともに30を越える高い 磁気特性を有する永久磁石が得られることがわかる。一 方、配合比が94.0:6.0の時は、焼結体が収縮せ ず磁気特性が著しく低下した。また、配合比が82. 0:18.0の時は、主相の体積占有率が少なくなるた め、十分な磁気特性は得られなかった。なお、合金2の 添加量が11.0の時に得られた永久磁石の組成は重量 比で22.5Nd-9.27Dy-0.98B-残Fe であり、添加量が14.0の時に得られた永久磁石の組 成は21.5Nd-10.98Dy-0.95B-残F eであった。

【0020】(実施例2) 実施例1と同様な組成の合金1、2を準備し、R-T-B系合金中のR2T14B系金属間化合物相の面積率と磁気特性との依存性を評価した。合金1を均質化処理することにより、R2T14B系金属間化合物相の面積率が85%、90%、95%、9

8%、100%と異なる合金を得、実施例1と同様に粗粉砕し、平均粒径15~25 $\mu$ mのR-T-B系合金粉末とした。Rリッチ相形成合金である合金2についても実施例1と同様に溶解冷却後、これを粗粉砕し平均粒径15~25 $\mu$ mのR-T系合金粉末とした。R2T14B系金属間化合物相の面積率が異なるR-T-B系合金粉末に、R-T系合金粉末をそれぞれ10 $\psi$ t%混合し、これをN2を粉砕媒体としジェットミルによって平均粒径2~5 $\mu$ mになるように微粉砕した。得られた微粉砕粉を10K0eの磁場中で成形圧力2ton/cm²で横磁場成形した。焼結体はAr雰囲気中で900 $^{\circ}$ C×2Hで焼結を行った。焼結体はAr雰囲気中で900 $^{\circ}$ C×2Hで焼結を行った。焼結体はAr雰囲気中で900 $^{\circ}$ C×2Hの1次熱処理をした後560 $^{\circ}$ C×1Hの2次熱処理を行った。以上の手順で得られた永久磁石の磁気特性の測定結果を表2に示す。

【0021】表2よりR-T-B系合金粉末に占めるR2T14B系金属間化合物相の面積比が95%以上であれば、(BH) maxが低下せずに高い保磁力iHcを有する永久磁石が得られることがわかる。

【0022】 【表2】

|      | D.T.D.#H                                                      |            | रहेर संब     |                 |             |
|------|---------------------------------------------------------------|------------|--------------|-----------------|-------------|
|      | R <sub>2</sub> T <sub>14</sub> B <sub>1</sub> 相<br>面積率<br>(%) | Br<br>(kG) | iHc<br>(k0e) | (BH)m<br>(MGOe) | 密度<br>g/cm² |
| 本発明例 | 100                                                           | 11.25      | 31.02        | 29.98           | 7.67        |
|      | 98                                                            | 10.83      | 31.03        | 27.56           | 7.67        |
|      | 95                                                            | 10.67      | 31.07        | 27.29           | 7.68        |
| 比較例  | 90                                                            | 10.31      | 31.08        | 24.54           | 7.69        |
|      | 85                                                            | 10.03      | 31.09        | 23.20           | 7.69        |

【 0 0 2 3 】 (実施例 3) 純度 9 5 %以上の N d、 D y、 B、電解鉄を使用し高周波溶解によって重量比で 2 6. O N d - 3. 5 D y - 6 9. 4 5 F e - 1. 0 5 B からなる R<sub>2</sub> T <sub>14</sub> B 系金属間化合物相の面積比が 9 8 %の合金 3 と重量比で 6 0. O D y - 4 O. O F e、 7

O. ODy-30. OFe、34. 5Nd-35. 5Dy-30. OFeからなるR共晶の面積率が0、9、15%である合金4、5、6を準備した。R-T-B系合金中のR<sub>2</sub>T<sub>1</sub>4B系金属間化合物相は合金3を粗粉砕し、平均粒径15~25μmのR-T-B系合金粉末と

した。Rリッチ相形成合金である合金4、5、6については溶解冷却後、これを粗粉砕し平均粒径  $15\sim25\mu$  mのR-T系合金粉末とした。R-T-B系合金粉末に、R共晶の面積比の異なるR-T系合金粉末をそれぞれ 10wt%混合し、これをN2を粉砕媒体としジェットミルによって平均粒径  $2\sim5\mu$  mになるように微粉砕した。得られた微粉砕粉を 10 KO e の磁場中で成形圧

カ2 t o n / c  $m^2$ で横磁場成形した。成形体は真空中で 1 0 6 0  $\mathbb{C}$   $\times$  2 H で焼結を行った。焼結体は A r 雰囲気中で 9 0  $\mathbb{C}$   $\times$  2 H の 1 次熱処理をした後 5 8 0  $\mathbb{C}$   $\times$  1 H の 2 次熱処理を行った。以上の手順で得られた永久 磁石の磁気特性の測定結果を表 3 に示す。

【0024】 【表3】

|          |            | R共晶    | 磁気特性           |                |                 | . स्टेर <b>वर्ष</b> |
|----------|------------|--------|----------------|----------------|-----------------|---------------------|
|          |            | 面積率(%) | Br<br>(kG)     | i H c<br>(k0e) | (BH)m<br>(MGOe) | 密度<br>g/cm²         |
| 本発明<br>例 | 合金4<br>合金5 | 9      | 11.40<br>10.83 | 33.90<br>31.58 | 31.10<br>27.51  | 7.66<br>7.66        |
| 比較例      | 合金6        | 15     | 11.39          | 23.17          | 31.97           | 7.60                |

【0025】表3よりR-T系合金粉末に占めるR共晶の面積比が少ない方が、磁気特性が低下せずに高い保磁力iHcを有する永久磁石が得られることがわかる。

[0026]

【発明の効果】本発明によると、R2T14Bを主体とするR-T-B系合金粉末と、R共晶率が低く低融点であ

るRーT系合金粉末を混合することにより、保磁力;Hcが高いRーTーB系永久磁石を得ることができる。 【図面の簡単な説明】

【図1】RーT系合金粉末のR共晶の面積率に対する粗 粉の酸素量を示した図である。

【図1】

