

012884381 **Image available**
WPI Acc No: 2000-056214/*200005*
XRAM Acc No: C00-014946

3-hydroxy and 5-(difluoro phenoxy) polyester - useful for making
biodegradable plastic

Patent Assignee: NAGOYA-SHI (NAGO-N); NAGOYA SHI (NAGO-N)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 2989175	B1	19991213	JP 98262447	A	19980831	200005 B
JP 2000072865	A	20000307	JP 98262447	A	19980831	200023

Priority Applications (No Type Date): JP 98262447 A 19980831

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 2989175	B1	7	C08G-063/682	
JP 2000072865	A	7	C08G-063/682	

Abstract (Basic): JP 2989175 B

NOVELTY - The structure of polyester has the 3-hydroxy and 5-(mono fluoro phenoxy)-group as the repeating unit which is given by the formula (1). DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for the manufacturing method of polyester by fermentation synthesis using a microorganism.

USE - The polyester is useful for making biodegradable plastic.

ADVANTAGE - Since fluorine group is introduced in the phenoxy group, 100% of the copolymer is synthesized. The melting point of the obtained polymer is more than 100 deg. C. Improved water repellent optical resolution property and characteristic stereo regularity are expectable.

Dwg.0/0

Title Terms: HYDROXY; PHENOXY; POLYESTER; USEFUL; BIODEGRADABLE; PLASTIC

Derwent Class: A23; D16

International Patent Class (Main): C08G-063/682

International Patent Class (Additional): C12N-001/20; C12P-007/62;
C12R-001-40

File Segment: CPI

Manual Codes (CPI/A-N): A05-E02; A10-D05; D05-A04; D05-C

Polymer Indexing (PS):

<01>

001 018; D11 D10 D19 D18 D31 D76 D50 D90 F- 7A D69 F34 D63; P0839-R F41
D01 D63; H0293; L9999 L2528 L2506; L9999 L2404; L9999 L2573 L2506

002 018; B9999 B3021 B3010; B9999 B5607 B5572; B9999 B3509 B3485 B3372;
B9999 B4240-R; B9999 B4944-R B4922 B4740; ND03

(19)日本国特許庁 (JP)

(12) 特許公報 (B1)

(11)特許番号

第2989175号

(45)発行日 平成11年(1999)12月13日

(24)登録日 平成11年(1999)10月8日

(51)Int.Cl.

C08G 63/682

C12N 1/20

C12P 7/62

// (C12N 1/20

C12R 1:40)

識別記号

F I

C08G 63/682

C12N 1/20

C12P 7/62

A

請求項の数11(全 7 頁) 最終頁に続く

(21)出願番号 特願平10-262447

(22)出願日 平成10年(1998)8月31日

審査請求日 平成11年(1999)1月27日

微生物の受託番号 FERM P-16953

(73)特許権者 591270556

名古屋市

愛知県名古屋市中区三の丸3丁目1番1号

(72)発明者 高木 康雄

愛知県名古屋市北区上飯田北町1丁目65番

(72)発明者 安田 良

愛知県名古屋市千種区星ヶ丘1丁目23番地の4

(74)代理人 加藤 順政

審査官 大熊 幸治

最終頁に続く

(54)【発明の名称】 ポリエステル及びその製造方法

1

(57)【特許請求の範囲】

【請求項1】3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットのみからなるポリエステル。

【化1】

【請求項2】3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニット

2

のみからなるポリエステル。

【化2】

【請求項3】3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを70モル%から99モル%、3-ヒドロキシ、7-(モノフルオロフェノキシ)ヘプタノエート(3H7(MFP)H P)ユニットを30モル%から1モル%含

これを発酵合成する微生物およびその製造方法に関する、詳しくは自然環境（土中、河川、海中）の下で微生物の作用を受けて分解するプラスチック様高分子およびその製造方法に関するものである。

【0002】

【従来の技術・発明が解決しようとする課題】今まで数多くの微生物において、エネルギー貯蔵物質としてポリエステルを菌体内に蓄積することが知られている。その代表例がポリ-3-ヒドロキシブチレート（以下、P (3HB) と略す）であり、下記の式で示されるモノマー-ユニット (3HB) がらなるホモポリマーである。

【0003】

【化10】

3HB

【0004】P (3HB) は確かに自然環境中で分解されるポリマーであるが、高分子材料としてみた場合、結晶性が高く、硬く、かつ脆い性質を持っており、実用的には不十分であった。これを解決するために特開昭57-150393号公報、特開昭58-69225号公報、特開昭63-269989号公報、特開昭64-48821号公報、特開平1-156320号公報、特開平5-93049号公報によればポリエステルを合成するモノマー-ユニットとして3HB以外の構造的に異なる炭素数が3から6のモノマー-ユニットを組み込むことでこのような欠点を克服することが提案されている。

【0005】また、特開昭63-229291号公報によれば、炭化水素資化性菌であるシュードモナス・オレオボランスATCC29347に炭素数6~12までの3-ヒドロキシアルカノエート (3HAと略す) をモノマー-ユニットとする共重合体P (3HA) を発酵合成できることが報告されている。このタイプの共重合体は側鎖のメチレン数が多く、性状は粘着性高分子である。

【0006】

【化11】

3HA

【0007】このように現在のところ、側鎖の鎖長を変えたタイプの共重合体が提示されている。即ち、側鎖のメチレン基数の多少による物性のコントロールである。しかしながら、微生物を使用した発酵合成では化学的な大量合成に比べると効率が悪く、一般的な汎用プラスチックのコストに对抗するのは困難であるといわれていた。このため、機能性を併せ持つ付加価値の高いポリマーを合成できる菌株の探索が課題となっていた。

【0006】

【課題を解決するための手段】本発明者らは化学合成した自然界に存在しない脂肪酸を資化して菌体内にポリエステルを合成し、蓄積する微生物を探していったところ、資化効率の高い微生物を発見し、さらに研究を重ねて本発明を完成するに至った。

【0007】即ち、本発明者らの見い出した微生物はフェノキシ基上にフッ素原子が1個あるいは2個置換したフェノキシアルカン酸を唯一の炭素源として生育しポリエステルを合成させる27N01株である。この微生物が発酵合成するポリマーのモノマー-ユニットを分析したところ、フッ素原子が置換した構造である3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) Pと略す)、3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート (3H5 (DFP) Pと略す)、3-ヒドロキシ、7-(モノフルオロフェノキシ)ヘプタノエート (3H7 (MFP) Hpと略す)、3-ヒドロキシ、7-(ジフルオロフェノキシ)ヘプタノエート (3H7 (DFP) Hpと略す) が完全にポリマーとなっていることがNMR分析により確認された。この微生物を同定したところ、27N01株はシュードモナス・アチダであることが判明した。

【0008】

【化12】 3H5 (MFP) P

【化13】 3H5 (DFP) P

【化14】 3H7 (MFP) Hp

【化15】 3H7 (DFP) Hp

【0009】本発明はこの微生物を見い出したことに基づくものである。即ち、本発明の要旨は、(1) 3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) P) ユニットのみからなるポリエステル、(2) 3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート (3H5 (DFP) P) ユニットのみからなるポリエステル、(3) 3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) P) ユニットを70モル%から99モル%、3-ヒドロキシ、7-(モノフルオロフェノキシ)ヘプタノエート (3H7 (MFP) Hp) ユニットを30モル%から1モル%含む共重合体ポリエステル、(4) 3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート (3H5 (DFP) P) ユニットを70モル%から99モル%、3-ヒドロキシ、7-(ジフル

試験項目	試験結果
形態	桿菌
グラム染色性	-
芽胞	-
運動性	+
オキシダーゼ	+
カタラーゼ	+
OR	-
硝酸塩の還元	+
インドールの生成	-
グルコースからの脱の生成	-
アルギニンジヒドロラーゼ	+
ウレアーゼ	+
βガラクトシダーゼ	-
シトクロムオキシダーゼ	+
37°Cでの生育	+
45°Cでの生育	-
チロシン	+
ゲラチン	-
資化性	
グルコース	+
アラビノース	-
マンノース	-
マンニトール	-
Nアセチルグルコサミン	-
マルトース	-
グルコン酸	+
カブロン酸	+
アジピン酸	-
マロン酸	+
クエン酸	+
フェニル酢酸	+

【0013】このような本発明のシードモナス・ブチダ27N01株は、公知の代表的なP(3HA)産生菌であるシードモナス・オレオボランスとポリエステル生合成能力において差が見られる。即ち、ポリメラーゼの3-ヒドロキシアルカニルCoAに対する特異性であって、この27N01株は作用する基質の範囲がより広い。

【0014】本発明は前記のような性質を有するシードモナスの微生物、及びこの微生物が発酵合成する微生物産生ポリエステル及びその製造方法を開示するものであり、フッ素基が導入されたポリエステルを作るための技術的手段を提供するものである。

【0015】即ち、具体的にはシードモナス属の微生物に炭素源として炭素数5以上メチレン基の末端にフルオロフェノキシ基が置換した脂肪酸を炭素源として与え、炭素源以外の栄養源の制限下、通常窒素制限下で好気的に培養するだけで目的のポリエステルを得ることができる。メチレン基のみのユニットの組成を高めたい場合は、炭素源として培養の終期に炭素数6以上の脂肪酸*50

*を与えればよい。

【0016】このように本発明においては、シードモナス属の微生物の特徴を利用してフェノキシ基にフッ素が置換した種々のポリエステルを発酵合成することができる。現在のところ官能基を持つポリエステルを合成できる微生物としてはシードモナス・オレオボランスが報告されている、即ち、Macromolecule s、1996、4572-4581ページによるとメチル基上に水素がフッ素に置換したカルボン酸を炭素源としてポリエステルを発酵合成した結果を報告しているが、これによれば、ポリエステルは共重合体であって、この微生物のようにホモポリマーを合成できる能力を有してはいない。

【0017】本発明の微生物を用いてポリエステルを発酵合成するには、炭素源以外の栄養源の制限下、通常、従来から知られている窒素制限条件下で培養することによって容易に得られるが、炭素源以外の必須栄養源、例えば、リン、ミネラル、ビタミン等を制限してもポリエステルは誘導される。この場合、菌体の生育が制限され

る3成分系の共重合体が得られた。

【0027】実施例7

フェノキシ基にフッ素基が導入されていないポリマーと2個フッ素基が導入されている同じ構造をもつポリマーの融点を調べたところ約40°Cの差があり、2個のフッ素基をもつポリマーは100°C以上の融点を有していた。

【0028】

【発明の効果】微生物の発酵合成するプラスチックは生分解性プラスチックとして、よく研究されてきた。側鎖中にフッ素基を導入したものは従来より存在したが、ホモポリマーとしてではなく共重合体ユニットとして50%以下しか含有することができなかった。本発明では幅広い資化性をもつシュードモナス・ブチダを用いることとフェノキシ基の芳香環上にフッ素基を導入することによりフッ素基をもつユニットを100%含むホモポリマーを合成できた。このポリマーは従来の置換基を含むポリマーが達成できていない融点を100°C以上にすることができ、物性の改良が期待できる。さらに、このポリ

マー中に含まれるこれらユニットの量をコントロールすることにより、望ましい物性を得ることができる。また、親水性、生体内合成に特有の立体規則性に由来する光学分割性も期待することができる。

【要約】

【構成】3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットあるいは3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットからなるホモポリマー、少なくとも3H5(MFP)Pユニットあるいは3H5(DFP)Pユニットを含有するコポリマー；これらのポリマーを合成するシュードモナス・ブチダ；シュードモナス属を用いた前記のポリマーの製造法に関する。

【効果】置換基をもつ長鎖脂肪酸を資化して、側鎖末端が1から2個のフッ素原子が置換したフェノキシ基をもつポリマーを合成することができ、融点が高く良い加工性を保持しながら、立体規則性、親水性を与えることができる。

フロントページの続き

(51) Int.Cl.⁶

(C12P 7/62
C12R 1:40)

識別記号

F I

(58) 調査した分野(Int.Cl.⁶, DB名)

C08G 63/00 - 63/91
C12N 1/20 - 1/21
C12P 7/62
CA (STN)
REGISTRY (STN)