Aula 7-10 O Método Simplex

Prof. Herysson R. Figueiredo

Simplex

Imaginem que o **Simplex** é como uma receita de bolo muito precisa. Para que a receita funcione perfeitamente, você não pode jogar os ingredientes de qualquer jeito. Você precisa prepará-los antes: a farinha tem que estar peneirada, os ovos batidos, a manteiga em temperatura ambiente.

Simplex

A **Forma Padrão** em Pesquisa Operacional é exatamente isso: é a nossa '*mise en place*', a preparação dos ingredientes. É a maneira de organizar nosso problema para que o método (a nossa receita) possa resolvê-lo sem erros.

Simplex

O que é um **Problema de Programação Linear (PPL)**?

- É um problema onde queremos maximizar (ex: lucro) ou minimizar (ex: custo) uma função.
- Essa função é chamada de Função Objetivo.
- Estamos sujeitos a algumas limitações ou regras, chamadas de Restrições.

Exemplo de PPL

- Maximizar Lucro: $Z = 40x_1 + 30x_2$
- Sujeito a:

 - $2x_1 + x_2 \le 16$ (Limite de mão de obra)
 - \circ $x_1, x_2 \ge 0$ (Não podemos produzir uma quantidade negativa)

Nosso objetivo hoje é pegar esse problema 'cru' e deixá-lo no formato padrão, pronto para a receita Simplex

1. Todas as restrições devem ser EQUAÇÕES (=)

Nossos problemas quase sempre vêm com desigualdades (≤ ou ≥). Precisamos transformá-las em igualdades.

- 1. Todas as restrições devem ser EQUAÇÕES (=)
- Caso ≤ (menor ou igual): Adicionamos uma variável de folga (f).
 - Pense na variável de folga como "o que sobrou". Se a restrição é $x_1 \le 10$, e usamos $x_1 = 8$, então a nossa "folga" é 2.
 - A equação fica: $x_1 + f = 10$.

- 1. Todas as restrições devem ser EQUAÇÕES (=)
- Caso ≥ (maior ou igual): Subtraímos uma variável de excesso (e). (Observação: mencione que isso pode complicar um pouco mais o início do método, mas é importante conhecer o conceito).
 - Pense nela como "o quanto passamos do mínimo". Se a restrição é $x_1 \ge 50$ e produzimos $x_1 = 60$, nosso "excesso" é 10.
 - A equação fica: x_1 e = 50.

- 1. Todas as restrições devem ser EQUAÇÕES (=)
- Caso ≥ (maior ou igual): Subtraímos uma variável de excesso (e). (Observação: mencione que isso pode complicar um pouco mais o início do método, mas é importante conhecer o conceito).
 - Pense nela como "o quanto passamos do mínimo". Se a restrição é $x_1 \ge 50$ e produzimos $x_1 = 60$, nosso "excesso" é 10.
 - A equação fica: x_1 e = 50.

Importante: As variáveis de folga e excesso são sempre ≥ 0 e devem ser adicionadas à função objetivo com custo zero (afinal, sobra de recurso não gera lucro nem custo por si só).

- 2. O lado direito das restrições (termo b) não pode ser negativo.
 - Se você encontrar uma restrição como $x_1 x_2 \le -5$, simplesmente multiplique toda a inequação por -1.
 - Lembre-se: ao multiplicar por -1, o sinal da desigualdade inverte!
 - $x_1 x_2 \le -5$ se torna $-x_1 + x_2 \ge 5$.
 - Agora sim você pode aplicar a Regra 1 (neste caso, subtraindo uma variável de excesso).

3. A Função Objetivo deve ser de MAXIMIZAÇÃO.

- Esta é a convenção mais comum para iniciar o Simplex.
- E se o problema for de minimizar? Sem problemas!
 - Minimizar Z é exatamente a mesma coisa que Maximizar (-Z).
 - Então, se o problema é Minimizar $Z = 10x_1 + 15x_2$, nós vamos trabalhar com Maximizar $W = -10x_1 15x_2$. No final, o valor ótimo de Z será -W.

- Maximizar Lucro: $Z = 40x_1 + 30x_2$
- Sujeito a:
 - $0 x_1 + x_2 \le 12$
 - $0 2x_1 + x_2 \le 16$
 - \circ $X_1, X_2 \geq 0$

Forma Padrão

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

- Sujeito a:
 - \circ $x_1 + x_2 + f_1 = 12$
 - $0 2x_1 + x_2 + f_2 = 16$
 - \circ $x_1, x_2, f_1, f_2 \ge 0$

Exercício 1: Uma fábrica de móveis produz mesas e cadeiras. O lucro é de R\$ 5 por mesa e R\$ 4 por cadeira.

- Maximizar Lucro: $Z = 5x_1 + 4x_2$
- Sujeito a:
 - $6x_1 + 4x_2 \le 24$ (Horas de montagem)

 - \circ $X_1, X_2 \geq 0$

Exercício 2: Uma empresa de tecnologia produz três tipos de gadgets: A, B e C.

- Maximizar Receita: $P = 3x_1 + 2x_2 + 5x_3$
- Sujeito a:
 - $x_1 + 2x_2 + x_3 \le 10$ (Recurso 1)
 - $3x_1 + 2x_3 \le 15$ (Recurso 2)
 - \circ $X_1, X_2, X_3 \ge 0$

Exercício 3: Uma empresa precisa comprar dois tipos de ingredientes, A e B, para uma ração animal, minimizando o custo.

- Minimizar Custo: $C = 2x_1 + 3x_2$
- Sujeito a:

 - \circ 2x₁ + x₂ ≥ 4 (Requisito de fibra)
 - $\circ \quad x_1, x_2 \geq 0$

Exercício 4: Uma indústria química quer minimizar o custo de produção de uma mistura com três componentes.

- Minimizar Custo: $Z = 80x_1 + 60x_2 + 70x_3$
- Sujeito a:
 - $0 2x_1 + 3x_2 + 4x_3 \ge 10$
 - $0 5x_1 + x_2 \le 20$
 - $\circ \quad x_1, x_2, x_3 \geq 0$

Exercício 5: Um problema de alocação de recursos com diferentes tipos de restrições.

- Maximizar Valor: $V = 10x_1 + 12x_2 + 8x_3$
- Sujeito a:
 - $0 x_1 + x_2 \le 150$
 - $0 x_2 + x_3 \ge 50$
 - \circ 2x₁ + x₃ = 100 (Dica: uma restrição de igualdade já é uma equação!)
 - $\circ \quad x_1, x_2, x_3 \geq 0$

Exercício 6: Minimização

- Maximizar Valor: $Z = 2x_1 3x_2$
- Sujeito a:
 - $\circ \quad -\chi_1+\chi_2\leq 1$
 - $0 \chi_1 + \chi_2 \le 2$
 - $-2x_2 + x_2 \ge -2$
 - $\circ \quad x_1, x_2 \ge 0$

Montando e Resolvendo o Quadro Simplex

Forma Padrão

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

- Sujeito a:
 - \circ $x_1 + x_2 + f_1 = 12$
 - $0 2x_1 + x_2 + f_2 = 16$
 - \circ $x_1, x_2, f_1, f_2 \ge 0$

Ponto de Partida: Nosso problema já está na Forma Padrão (FP), que definimos na aula anterior.

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1					
f2					
Z					

.

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1					
f2					
Z					

Linhas: Cada linha representa uma restrição, exceto a última, que é a nossa Função Objetivo (chamamos de linha Z).

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1					
f2					
Z					

Colunas: Temos uma coluna para cada variável do problema (de decisão e de folga) e uma coluna final "b" para os resultados das equações.

Maximizar:
$$Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$$

Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1					
f2					
Z					

Coluna "Base": Esta coluna é muito importante. Ela nos diz quais variáveis formam nossa "solução" atual. No início, são sempre as variáveis de folga, pois elas nos dão uma primeira solução viável (produzir nada, $x_1=0$, $x_2=0$, e ter todas as sobras).

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$		Base	x1	x2	f1	f2	b
•	Sujeito a: $x_1 + x_2 + f_1 = 12$	f1					
	$2x_1 + x_2 + f_1 - 12$ $2x_1 + x_2 + f_2 = 16$	f2					
	\circ $X_1, X_2, f_1, f_2 \geq 0$	Z					

Preencher as linhas das restrições: Apenas copie os coeficientes de cada variável de cada equação.

$$x_1 + x_2 + f_1 = 12 \rightarrow 1 \ 1 \ 1 \ 0 \ | \ 12$$

 $2x_1 + x_2 + f_2 = 16 \rightarrow 2 \ 1 \ 0 \ 1 \ | \ 16$

.

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x 1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z					

•

Maximizar:
$$Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$$

• Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z					

Preencher a linha Z: Para a linha Z, pegamos a função objetivo $Z = 40x_1 + 30x_2$ e a reescrevemos como $Z - 40x_1 - 30x_2 = 0$. Os valores que entram no quadro são os coeficientes desta nova equação.

Maximizar:
$$Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$$

• Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Preencher a linha Z: Para a linha Z, pegamos a função objetivo Z = $40x_1 + 30x_2$ e a reescrevemos como Z - $40x_1$ - $30x_2$ = 0. Os valores que entram no quadro são os coeficientes desta nova equação.

Maximizar: $Z = 40x_1 + 30x_2 + 0f_1 + 0f_2$

• Sujeito a:

$$\circ$$
 $x_1 + x_2 + f_1 = 12$

$$\circ$$
 2x₁ + x₂ + f₂ = 16

$$\circ$$
 $x_1, x_2, f_1, f_2 \ge 0$

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

•

O que este quadro nos diz? Que a solução atual é: $f_1 = 12$, $f_2 = 16$ (leia na coluna b). As variáveis que não estão na base (x_1 e x_2) são iguais a zero. Isso nos dá um Lucro Z = 0. É uma solução viável, mas com certeza não é a melhor! Agora, vamos melhorá-la.

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

O Simplex funciona em 'iterações'. Em cada iteração, ele faz uma troca inteligente: coloca uma variável que ajuda a aumentar o lucro na base e tira uma que está limitando o processo.

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Passo 1: Encontrar a Coluna Pivô (Quem Entra na Base?)

- Regra: Olhe para a linha Z e escolha a coluna com o valor mais negativo.
- **Por quê?** O valor negativo na linha Z indica o potencial de aumento do lucro. -40 nos diz que para cada unidade de x₁ que produzirmos, nosso lucro Z aumentará em 40. É a variável mais promissora.

Base	x 1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

No nosso quadro, o valor mais negativo é -40. Portanto, a coluna x₁ é a Coluna Pivô.

Passo 2: Encontrar a Linha Pivô (Quem Sai da Base?)

- Regra: Faça o Teste da Razão. Divida os valores da coluna b pelos valores correspondentes positivos da Coluna Pivô. A linha que tiver o menor resultado positivo é a Linha Pivô.
- **Por quê?** Este teste verifica qual restrição será atingida primeiro. Ele nos impede de produzir tanto de x₁ a ponto de violar alguma limitação (ou seja, tornar uma variável de folga negativa).

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Passo 2: Encontrar a Linha Pivô (Quem Sai da Base?)

Fazendo o teste:

• Linha f_1 : 12 / 1 = 12

• Linha f_2 : 16 / 2 = 8

O menor resultado é 8. Portanto, a linha f_2 é a Linha Pivô. Isso significa que f_2 vai sair da base para dar lugar a x_1 .

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Passo 3: Identificar o Elemento Pivô

O Elemento Pivô é o número que está no cruzamento da Linha Pivô e da Coluna Pivô. No nosso caso, é o **2**.

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Passo 4: Pivotar - Construir o Novo Quadro

O objetivo aqui é transformar a coluna pivô em uma coluna "identidade", ou seja, o elemento pivô deve virar **1** e todos os outros elementos da coluna devem virar **0**. Usamos operações de álgebra linear para isso.

Base	x1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Base	x 1	x2	f1	f2	b
f1	1	1	1	0	12
f2	2	1	0	1	16
Z	-40	-30	0	0	0

Base	x1	x2	f1	f2	b
f1	0	1/2	1	-1/2	4
x1	1	1/2	0	1/2	8
Z	0	-10	0	20	320

Nf2 = f2/2

f1= f1-Nf2

Z = Z + 40*Nf2

Analisando este novo quadro: nossa solução agora é $x_1 = 8$, $f_1 = 4$ e $x_2 = 0$ (não está na base). O lucro Z já aumentou para 320! Mas será que podemos melhorar mais?

Base	x1	x2	f1	f2	b
f1	0	1/2	1	-1/2	4
x 1	1	1/2	0	1/2	8
Z	0	-10	0	20	320

Repetir o Processo até a Solução Ótima

Condição de Parada: O processo termina quando não há mais números negativos na Linha Z.

 No nosso segundo quadro, ainda temos um -10 na linha Z. Isso significa que ainda podemos aumentar o lucro se colocarmos x₂ na base. Então, repetimos o processo!

Base	x1	x2	f1	f2	b
f1	0	1/2	1	-1/2	4
x1	1	1/2	0	1/2	8
Z	0	-10	0	20	320

Linha Pivô (Teste da Razão):

- Linha f_1 : 4 / (1/2) = 8
- Linha x_1 : 8 / (1/2) = 16

O menor resultado é 8. A linha f_1 é a Linha Pivô. f_1 vai sair da base.

Base	x1	x2	f1	f2	b
f1	0	1/2	1	-1/2	4
x1	1	1/2	0	1/2	8
Z	0	-10	0	20	320

Elemento Pivô: é o 1/2.

Nf1 = f1*2

x1 = x1 - (Nf1/2)

Z = Z + 10Nf1

Base	x1	x2	f1	f2	b
f1	0	1/2	1	-1/2	4
x1	1	1/2	0	1/2	8
Z	0	-10	0	20	320

Base	x1	x2	f1	f2	b
x2	0	1	2	-1	8
x1	1	0	-1	1	4
Z	0	0	20	10	400

Olhem para a Linha Z! Não temos mais valores negativos. Isso significa que chegamos ao topo da montanha, não há mais como aumentar o lucro. Encontramos a solução ótima

Z	0	0	20	10	400
x1	1	0	-1	1	4
x2	0	1	2	-1	8
Base	x1	x2	f1	f2	b

Lendo a Resposta Final:
Agora, como traduzimos este quadro final em uma resposta
para o problema?
Valores das Variáveis: Olhe para a coluna "Base" e a coluna
"b".

- x₂ está na base, seu valor é 8.
- x₁ está na base, seu valor é 4.

Base	x1	x2	f1	f2	b
x2	0	1	2	-1	8
x1	1	0	-1	1	4
Z	0	0	20	10	400

Valor do Lucro Máximo: Olhe para o canto inferior direito do quadro.

O valor de Z é 400.

Variáveis de Folga: f₁ e f₂ não estão na base, então seus valores são 0. Isso significa que usamos todos os recursos disponíveis de matéria-prima e mão de obra, não houve sobras.

Base	x1	x2	f1	f2	b
x2	0	1	2	-1	8
x1	1	0	-1	1	4
Z	0	0	20	10	400

Conclusão do Problema:

Para maximizar o lucro, a empresa deve produzir 4 unidades do produto 1 e 8 unidades do produto 2, resultando em um lucro máximo de R\$ 400.

Base	x1	x2	f1	f2	b
x2	0	1	2	-1	8
x1	1	0	-1	1	4
Z	0	0	20	10	400

Exercício 1:

Maximizar Lucro: $Z = 3x_1 + 5x_2$

Sujeito a:

- \bullet $x_1 \le 4$
- $2x_2 \le 12$
- $3x_1 + 2x_2 \le 18$
- $x_1, x_2 \ge 0$

Exercício 2:

Maximizar $Z = 20x_1 + 10x_2 + 15x_3$

Sujeito a:

- $3x_1 + 2x_2 + 5x_3 \le 55$
- $2x_1 + x_2 + x_3 \le 26$
- $X_1, X_2, X_3 \ge 0$

Exercício 3:

Você foi chamado para terminar o trabalho de um colega. Ao lado está o quadro Simplex no meio de uma resolução.

- a) Este quadro representa uma solução ótima? Por quê?
- b) Se não for ótima, realize a próxima iteração completa, mostrando o novo quadro.
- c) A solução encontrada após a sua iteração é a ótima?

Base	x1	x2	х3	f1	f2	b
x2	1	2	0	1/2	0	10
f2	0	-1	2	-1/4	1	15
Z	0	-5	-10	4	0	250

Exercício

Após várias iterações, um analista chegou ao seguinte quadro Simplex final. Sua tarefa é extrair e apresentar a solução completa.. a) Qual é o valor ótimo (máximo) de Z?

b) Quais são os valores de x1, x2 e x3 que levam a essa solução ótima?

c) Algum dos recursos representados pelas variáveis de folga (f_1 e f_2) teve sobra? Justifique.

4:							
ao	Base	x1	x2	х3	f1	f2	b
air ta	x2	0	1	3/2	1	-1/2	30
La	x1	1	0	-1/2	-1	3/2	15
ı a	Z	0	0	5	10	20	1250

Exercício 5:

A "E-Tech", uma fábrica de eletrônicos, decidiu expandir sua linha de produção para três novos produtos de alta demanda: Smartphones, Laptops e Tablets. O departamento de marketing estima que o lucro por unidade vendida é de R\$ 300 por Smartphone, R\$ 500 por Laptop e R\$ 400 por Tablet.

A produção é limitada por três processos principais, que têm capacidades semanais fixas:

- Montagem: A fábrica dispõe de 240 horas de montagem por semana.
- Microchips: O fornecedor só pode entregar 180 unidades de microchips especiais por semana.
- Teste de Qualidade (QA): O departamento de QA tem uma capacidade de 100 horas semanais para testes.

Exercício 5:

Recurso	Smartphone (por unidade)	Laptop (por unidade)	Tablet (por unidade)	Total Disponível
Montagem	2 horas	4 horas	3 horas	240 horas
Microchips	1 unidade	3 unidades	2 unidades	180 unidades
Teste (QA)	1 hora	2 horas	1 hora	100 horas

Quantas unidades de cada produto (Smartphones, Laptops e Tablets) a E-Tech deve produzir por semana para **maximizar seu lucro total**, respeitando as limitações de recursos?

Referências

GOLDBARG, Marco Cesar; LUNA, Henrique Pacca L. Otimização combinatória e programação linear: modelos e algoritmos. 2. ed. rev. atual. Rio de Janeiro, RJ: Elsevier, 2005. 518 p.

ANDRADE, Eduardo Leopoldino de. Introdução à pesquisa operacional: métodos e modelos para a análise de decisão. 4. ed. Rio de Janeiro, RJ: LTC, 2009. xvi, 204 p. Taha, Hamdy A.. Pesquisa Operacional - 8ª edição, 2007.

ACKOFF, Russell Lincoln; SASIENI, Maurice W. Pesquisa operacional. Rio de Janeiro, RJ: Livros Técnicos e Científicos, 1971. 523 p.

BANZHAF, Wolfgang. Genetic Programming: an introduction. San Francisco: Morgan Kaufmann Publishers, c1998. 470 p.

LACHTERMACHER, Gerson. Pesquisa operacional: na tomada de decisões [RECURSO ELETRÔNICO]. São Paulo, SP: Pearson, 2009. 1 CD.

KORTE, Bernhard; VYGEN, Jens. Combinatorial optimization: theory and algorithms. Berlim: Springer, 2000. 530 p. (Algorithms and combinatorics; 21).