

Systemarchitektur SS 2021

Präsenzblatt 2 (Lösungsvorschläge)

Hinweis: Dieses Aufgabenblatt wurde von Tutoren erstellt. Die Aufgaben sind für die Klausur weder relevant noch irrelevant, die Lösungsvorschlage weder korrekt noch inkorrekt.

Aufgabe 2.1: Normalformen

Die Boolesche Funktion f sei durch folgende Wertetabelle gegeben:

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 1. Geben Sie eine vollständiger disjunktiver Normalform für f an.
- 2. Die *konjunktive* Normalform (KNF) eines Booleschen Ausdrucks besteht aus Konjunktionen von *Klauseln*. Klauseln sind Disjunktionen von Literalen. Überlegen Sie, wie Sie aus einer Wertetabelle eine KNF konstruieren können und geben Sie eine vollständige konjunktive Normalform für *f* an.

Lösungsvorschlag:

1.
$$(\overline{x} \cdot \overline{y} \cdot z) + (\overline{x} \cdot y \cdot \overline{z}) + (\overline{x} \cdot y \cdot z) + (x \cdot y \cdot z)$$

2. Für die Konstruktion der KNF betrachten wir alle Zeilen der Wertetabelle, die zu 0 auswerten, und erstellen für jede dieser Zeilen eine Klausel aus den invertierten Belegungen der Variablen. Diese Klauseln werden schließlich konjunktiv verknüpft.

Damit erhalten wir
$$(x+y+z)\cdot(\overline{x}+y+z)\cdot(\overline{x}+y+\overline{z})\cdot(\overline{x}+\overline{y}+z)$$
.

Aufgabe 2.2: PLAs

Tragen Sie nun die disjunktive Normalform aus Aufgabenteil 2.1 in ein PLA ein.

- 1. Wie viele Transistoren mussten Sie dafür verwenden? Ist diese Vorgehensweise kosteneffizient? Geben Sie die Kosten an.
- 2. Gibt es eine Möglichkeit die Anzahl der Transistoren zu minimieren? Falls ja, wenden Sie diese an und tragen Sie Ihr Ergebnis in ein weiteres PLA ein. Geben Sie auch hier die Kosten an.

Lösungsvorschlag:

1. Es sind 16 Transistoren. Dies ist nicht kosteneffizient. Die primären Kosten entsprechen der Anzahl der Monome, sind also 4. Die sekundären Kosten sind gleich der Anzahl der verbauten Transistoren, also 16.

2. Man kann durch Quine/McCluskey diesen Term auf seine Primimplikanten reduzieren, man hat hier nur noch 9 Transistoren, das Minimalpolynom ist $(\overline{x} \cdot z) + (\overline{x} \cdot y) + (y \cdot z)$. Die primären Kosten sind 3, die sekundären Kosten sind gleich der Anzahl der verbauten Transistoren, also 9.

Aufgabe 2.3: Primimplikanten

Die Boolesche Funktion g sei durch folgende Wertetabelle definiert:

w	\boldsymbol{x}	y	z	g
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0 1 1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	
1	0	0	0	1 1 1 1 0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0 1
1	1	1	0	1
1	1	1	1	1

Verwenden Sie den Quine/McCluskey-Algorithmus zur Bestimmung der Primimplikanten. Geben Sie Ihre Zwischenschritte ausführlich an.

Lösungsvorschlag: Wir konstruieren die Mengen L_0 bis L_2 . Ein \checkmark hinter einem Monom der Menge L_i bedeutet, dass dieses für die Konstruktion der Menge L_{i+1} herangezogen wurde.

	w	x	y	z				$\mid w$	x	y	z			w	x	y	$z \mid$
$L_0^{\{w,x,y,z\}}$	0	0	0	0	✓	_	$L_1^{\{w,x,y\}}$	} 0	0	0	_	1	$L_2^{\{w,x\}}$	0	1	_	-
		0	0	1	1			0	1	0	_	✓	$L_2^{\{w,y\}}$	0	_	0	_
	0	1	0	0	/			1	0	0	_	1	$L_2^{\{x,y\}}$	_	0	0	_
_		0	0	0	1			0	1	1	_	1	-	_	1	1	_
	0	1	0 1	1	1	-	$\tau \{w,x,z\}$	1		1	_	/	$L_2^{\{x,z\}}$	_	1	_	1
	-	0	0	1	√		$L_1^{\{w,x,z}$	1 1	1	_	0	1	$L_2^{\overline{\{y,z\}}}$	_	_	0	1
		0	1	0	/			$\frac{1}{0}$	0	_	$\frac{0}{1}$	1	2				ı
	0	1	1	1	1			1	1	_	1	1					
	1	1	0	1	1	-	$L_1^{\{w,y,z}$	} 0		0	0						
	1	1	1	0	1		L_1	0		0	$\frac{0}{1}$	1					
	1	1	1	1	1			1		0	1	1					
								1	_	1	0						
						-	$L_1^{\{x,y,z\}}$	} _	0	0	0	1					
							1	_	0	0	1	1					
								_	1	0	1	1					
								_	1	1	0	1					
								-	1	1	1	✓					

Alle nicht abgehakten Monome sind Primimplikanten der Funktion g. Damit erhalten wir das Minimalpolynom

$$w\bar{x}\bar{z} \lor wy\bar{z} \lor \bar{w}x \lor \bar{w}\bar{y} \lor \bar{x}\bar{y} \lor xy \lor xz \lor \bar{y}z$$

Aufgabe 2.4: Minimalpolynome

1. Betrachten Sie die folgende Primimplikantentafel einer Booleschen Funktion f(w, x, y, z):

	0010	0011	0100	0101	0111	1010	1011	1110	1111
$\bar{w}x\bar{y}$			×	×					
$\bar{w}xz$									
wy									
$\bar{x}y$									
yz									·

Die Tabelle ist bzgl. der Implikanten und der Minterme vollständig, sodass f eindeutig bestimmt ist. Finden Sie ein Minimalpolynom, indem Sie die Tabelle ergänzen und die Reduktionsregeln anwenden. Ist Ihre Lösung auch eindeutig? Begründen Sie Ihre Antwort.

2. Bei der Suche nach Minimalpolynomen kann es auch zu Fällen kommen, in denen keine der drei Reduktionsregeln mehr angewendet werden kann. Betrachten Sie hierzu die folgende Primimplikantentafel, in der

die Primimplikanten vereinfachend als Buchstaben und die Minterme als Zahlen gegeben sind.

Verwenden Sie die Methode von *Petrick* um *alle* Minimalpolynome zu bestimmen. Bilden Sie hierzu einen passenden Ausdruck in KNF und multiplizieren Sie diesen geschickt aus. Gehen Sie davon aus, dass alle Primimplikanten die gleichen Kosten haben.

Lösungsvorschlag:

1.

	0010	0011	0100	0101	0111	1010	1011	1110	1111
$\bar{w}x\bar{y}$			×	×					
$\bar{w}xz$				×	×				
\overline{wy}						×	×	×	×
$\bar{x}y$	×	×				×	×		
\overline{yz}		×			×		×		×

Wir wenden nun die erste Reduktionsregel an. Die Primimplikanten $\bar{w}x\bar{y}$, wy und $\bar{x}y$ sind essentiell für die Minterme 0100, 1110 bzw. 0010.

	0111
$\bar{w}xz$	×
yz	×

Nach der dritten Reduktionsregel wählen wir nun den (eindeutig) billigeren Primimplikanten und erhalten das Minimalpolynom

$$\bar{w}x\bar{y}\vee wy\vee \bar{x}y\vee yz$$

Da alle anderen gewählten Primimplikanten essentiell waren, ist diese Lösung auch eindeutig.

2. Wir erhalten folgenden Ausdruck:

$$\begin{split} &(b+d+e)(a+e+f)(a+c+d)(b+c+f)\\ =&((a+c+d)(a+e+f))((b+c+f)(b+d+e))\\ =&(\mathbf{a}+ac+ad+ae+\mathbf{ce}+de+af+cf+\mathbf{df})(\mathbf{b}+bc+bd+bf+be+cd+\mathbf{ce}+\mathbf{df}+ef)\\ =&ab+ce+df+\ldots \end{split}$$

Es gibt daher drei mögliche Lösungen für das Minimalpolynom. Sie lauten: a + b, c + e und d + f.

System Architecture SS 2021

Tutorial Sheet 2 (Suggested Solutions)

Note: This task sheet was created by tutors. The tasks are neither relevant nor irrelevant for the exam, the suggested solutions are neither correct nor incorrect.

Problem 2.1: Normal Forms

Let the Boolean function f be given by the following truth table:

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 1. Give a complete disjunctive normal form for f.
- 2. The *conjunctive* Normal Form (CNF) of a Boolean expression consists of conjunctions of *clauses*. Clauses are disjunctions of literals. Consider how to construct a CNF from a truth table and give a complete conjunctive normal for f.

Suggested solution:

1.
$$(\overline{x} \cdot \overline{y} \cdot z) + (\overline{x} \cdot y \cdot \overline{z}) + (\overline{x} \cdot y \cdot z) + (x \cdot y \cdot z)$$

2. To construct a CNF, we consider all rows of the truth table evaluating to zero, create a clause for each of them using the negation of the variables, and conjoin these clauses.

Thus, we get
$$(x+y+z)\cdot (\overline{x}+y+z)\cdot (\overline{x}+y+\overline{z})\cdot (\overline{x}+\overline{y}+z)$$
.

Problem 2.2: PLAs

Draw a programmable logic array (PLA) for the DNF constructed in task 2.1 and answer the following questions:

- 1. How many transistors did you need to use? Is this approach cost effective? Indicate the cost.
- 2. Is there a way to minimize the number of transistors? If yes, apply it and draw another PLA. Indicate the cost here as well.

Suggested solution:

1. We used 16 transistors, which is not cost efficient. The primary cost is equal to the number of monomials, which is 4. The secondary cost is equal to the number of transistors, which is 16.

2. The term can be reduced to its prime implicants using Quine/McCluskey. Here you have only 9 transistors. The minimal polynomial is $(\overline{x} \cdot z) + (\overline{x} \cdot y) + (y \cdot z)$. The primary cost is 3 and the secondary cost is 9.

Problem 2.3: Prime Implicants

Let the Boolean function g be defined by the following truth table:

w	\boldsymbol{x}	y	z	g
0	0	0	0	1
0	0	0	1	1 1
0 0 0 0	0	1	0	0
0	0	1	1	0
	1	0	0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$
0 0 0	1	0	1 0	1
0	1	1	0	1 1 1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1 0	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Use the Quine/McCluskey algorithm to determine the prime implicants. Provide all intermediate steps.

Suggested solution: We construct the sets L_0 to L_2 . A \checkmark after a monomial of the set L_i means that it was used for the construction of the set L_{i+1} .

$\left egin{array}{cccccccccccccccccccccccccccccccccccc$	$\left egin{array}{cccc} w & x & y & z \end{array} ight $	$\left egin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$L_1^{\{w,x,y\}} 0 0 0 - \checkmark$	$L_2^{\{w,x\}} \mid 0 1 - - $
	0 1 0 -	$L_2^{\{w,y\}} \mid 0 - 0 - $
0 1 0 0	1 0 0 -	$L_2^{\{x,y\}} - 0 0 -$
1 0 0 0	0 1 1 -	- 1 1 -
	1 1 1 - 🗸	$L_2^{\{x,z\}} - 1 - 1$
$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$	$L_1^{\{w,x,z\}} 0 1 - 0 \checkmark$	$L_2^{\{y,z\}} - 0 1$
$\left \begin{array}{ccc ccc} 1 & 0 & 0 & 1 & \checkmark \\ 1 & 0 & 1 & 0 & \checkmark \end{array} \right $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L_2 0 1
$\begin{bmatrix} 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$	
	$\frac{1}{\tau^{\{w,y,z\}}} = \frac{1}{2} $	
	$L_1^{\{w,y,z\}} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 1 1 1	$\begin{bmatrix} 0 & - & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$	
I I	$\left \begin{array}{cccc} 1 & - & 0 & 1 \\ 1 & - & 1 & 0 \end{array} \right \checkmark$	
	$\frac{1}{x\{x,y,z\}}$	
	$L_1^{\{x,y,z\}} - 0 0 0 0 \checkmark$	
	$\begin{bmatrix} - & 0 & 0 & 1 \\ - & 1 & 0 & 1 \end{bmatrix}$	
	- 1 0 1 v - 1 1 0 v	
	- 1 1 1 /	

All unchecked monomials are prime implicants of the function g. Thus we obtain the minimal polynomial

$$w\bar{x}\bar{z}\vee wy\bar{z}\vee \bar{w}x\vee \bar{w}\bar{y}\vee \bar{x}\bar{y}\vee xy\vee xz\vee \bar{y}z$$

Problem 2.4: Minimal Polynomials

1. Consider the following prime implicant table of a Boolean function f(w, x, y, z):

	0010	0011	0100	0101	0111	1010	1011	1110	1111
$\bar{w}x\bar{y}$			×	×					
$\bar{w}xz$									
wy									
$\bar{x}y$									
yz									

The table is complete with respect to implicants and minterms, so that f is uniquely determined. Find a minimal polynomial by completing the table and applying the reduction rules. Is your solution unique? Justify your answer.

2. When searching for minimal polynomials, there may be cases in which none of the three reduction rules can be applied. Consider the following prime implicant table, in which the prime implicants are simplified as letters and the minterms as numbers.

Use Petrick's method to determine all minimal polynomials. To do so, form a suitable expression in KNF and multiply it out cleverly. Assume that all prime implicants have the same cost.

Suggested solution:

1.

	0010	0011	0100	0101	0111	1010	1011	1110	1111
$\bar{w}x\bar{y}$			×	×					
$\bar{w}xz$				×	×				
\overline{wy}						×	×	×	×
$\bar{x}y$	×	×				×	×		
\overline{yz}		×			×		×		×

We now apply the first reduction rule. The prime implicants $\bar{w}x\bar{y}$, wy and $\bar{x}y$ are essential for the minterms 0100, 1110 and 0010, respectively.

	0111
$\bar{w}xz$	×
yz	×

According to the third reduction rule we now choose the (clearly) cheaper prime implicant and get the minimal polynomial

$$\bar{w}x\bar{y}\vee wy\vee \bar{x}y\vee yz$$

Since all other chosen prime implicants were essential, this solution is also unique.

2. We get the following expression:

$$\begin{split} &(b+d+e)(a+e+f)(a+c+d)(b+c+f)\\ =&((a+c+d)(a+e+f))((b+c+f)(b+d+e))\\ =&(\mathbf{a}+ac+ad+ae+\mathbf{ce}+de+af+cf+\mathbf{df})(\mathbf{b}+bc+bd+bf+be+cd+\mathbf{ce}+\mathbf{df}+ef)\\ =&ab+ce+df+\ldots \end{split}$$

Therefore, there are three possible solutions for the minimal polynomial. They are: a + b, c + e and d + f.