4616 – Métodos Numéricos Computacionais

Larissa Oliveira oliveira.t.larissa@gmail.com

Na última aula...

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

✓ Etapas usuais para a determinação de raízes a partir de Métodos Numéricos

MÉTODO DA BISSECÇÃO

MÉTODO DA BISSECÇÃO

As sequências a_i , b_i e x_i são construídas da seguinte maneira:

1- Determinar um intervalo inicial $[a_0, b_0]$ tal que $f(a_0)f(b_0) < 0$;

2- Calcular
$$x_k = \frac{a_k + b_k}{2}$$
 (ponto médio do intervalo);

3- Se
$$\frac{|x_k - x_{k-1}|}{|x_k|} < \varepsilon$$
 ou $|f(x_k)| < \varepsilon$ PARE, x_k é uma raiz de $f(x)$;

4- Se
$$f(a_k)f(x_k) < 0$$
, então $a_{k+1} = a_k$ e $b_{k+1} = x_k$;

5- Se
$$f(a_k)f(x_k) > 0$$
, então $a_{k+1} = x_k$ e $b_{k+1} = b_k$.

Hoje...

Seja f(x) uma função contínua no intervalo [a,b] e tal que f(a)f(b) < 0.

Calcula a média ponderada entre a e b com pesos |f(b)| e |f(a)|, respectivamente:

$$X = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|}$$

$$X = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

(já que f(a) e f(b) tem sinais opostos)

ANÁLISE GRÁFICA

Graficamente, o valor de x é o ponto de intersecção entre o eixo e a reta r(x) que passa por (a,f(a)) e (b,f(b))

Repete-se o processo até que o valor de *x* atenda às *condições de parada*.

Graficamente, o valor de x é o ponto de intersecção entre o eixo e a reta r(x) que passa por (a,f(a)) e (b,f(b))

$$m_s = \frac{f(b_k) - f(a_k)}{b_k - a_k}$$
 e $y - f(a_k) = \frac{f(b_k) - f(a_k)}{b_k - a_k} \cdot (x - a_k)$

$$(x,y) = (x_k,0)$$

$$0 - f(a_k) = \frac{f(b_k) - f(a_k)}{b_k - a_k} (x_k - a_k)$$

$$f(b_k)a_k - f(a_k)b_k = (f(b_k) - f(a_k))x_k$$

E portanto,
$$x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$$
, $k = 0, 1, 2, ...$

Definição do Intervalo Inicial

Atribui-se [a,b] como intervalo inicial

- $\checkmark a_0 = a$
- $\checkmark b_0 = b$

Condições de Aplicação

- $\checkmark f(a)f(b) < 0$
- ✓ Sinal da derivada *constante no intervalo [a,b]*

Definição dos Subintervalos

- ✓ Subdivide-se o intervalo [a,b] pelo *ponto de intersecção* da reta secante, que passa pelos pontos (a,f(a)) e (b, f(b)) e o eixo das abscissas.
- ✓ Verifica-se se, através do teste de parada, se x_0 é uma aproximação da raiz ξ da equação.
 - > Se *verdadeiro* \Rightarrow x_0 é a *raiz* procurada
 - > Caso *contrário* ⇒ define-se um *novo* intervalo

Definição do Novo Intervalo

Determina-se qual subintervalo $[a_0, x_0]$ ou $[x_0, b_0]$ contém a raiz ξ

- \checkmark Calcula-se o produto $f(a)f(x_0)$
- ✓ Verifica-se se $f(a_0)f(x_0) < 0$
 - Se verdadeiro $\Rightarrow \xi \in (a_0, x_0)$ $a_1 = a_0 e b_1 = x_0$
 - > Caso contrario $\Rightarrow \xi \in (x_0, b_0)$ $a_1 = x_0 e b_1 = b_0$
- Repete-se o processo até que o valor de *x* atenda às *condições de parada*.

As sequências a_i , b_i e x_i são construídas da seguinte maneira:

1- Determinar um intervalo inicial $[a_0, b_0]$ tal que $f(a_0)f(b_0) < 0$;

2- Calcular
$$x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$$

3- Se $\frac{|x_k - x_{k-1}|}{|x_k|} < \varepsilon$ ou $|f(x_k)| < \varepsilon$ PARE, x_k é uma raiz de f(x);

4- Se
$$f(a_k)f(x_k) < 0$$
, então $a_{k+1} = a_k$ e $b_{k+1} = x_k$;

5- Se
$$f(a_k)f(x_k) > 0$$
, então $a_{k+1} = x_k$ e $b_{k+1} = b_k$.

Casos especiais: Se uma função é côncava ou convexa em [a, b], isto é, f''(x)<0 ou f''(x)>0, então no Método da Posição Falsa uma das extremidades permanece fixa.

Um cuidado...

Geralmente, o Método da Posição Falsa obtém como raiz aproximada um ponto \bar{x} , no qual $|f(\bar{x})| < \varepsilon$, sem que o intervalo [a,b] seja "pequeno" o suficiente. Portanto, se for exigido que os dois critérios de parada (isto é, $|f(\bar{x})| < \varepsilon$ e $|b-a| < \varepsilon$) sejam satisfeitos simultaneamente, o método pode não convergir.

Vantagens:

- Estabilidade e convergência para a solução procurada;
- Desempenho regular e previsível;
- Cálculos simples.

Desvantagens:

- \checkmark Lentidão do processo de convergência (requer o cálculo de f(x) em um elevado número de iterações);
- ✓ Necessidade de conhecimento prévio da região na qual se encontra a raiz de interesse (o que nem sempre é possível).

Exemplo:

Utilizando o Método da Posição Falsa, determine a primeira raiz positiva da função $f(x) = x^3 - 9x + 3$ com $\varepsilon = 5x10^{-4}$

$$f(x) = x^3 - 9x + 3$$

Determinar a primeira raiz positiva de
$$f(x) = x^3 - 9x + 3$$

com $E = 5 \times 10^{-4}$ $E = 0,0005$ (vou usau) $1000 = |x \times 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-4}$
 1° Determinar o intervals (slider) $[a,b] = [0,1]$
 $a_0 = 0$ $x_0 - a_0 f(b_0) - b_0 f(a_0) - 0(-5) - 1(3) = -3 = 0,395$
 $x_0 = 0,375$ $f(b_0) - f(a_0)$ $-5 - 3$ -8
 $b_0 = 1$
 $f(a_0) = 3$ $f(a_0) f(x_0) = 0$ $a_1 = a_0 = 0$

$$a_1 = 0$$
 $x_1 = a_1 f(b_1) - b_1 f(a_1) = 0,33862$
 $x_1 = 0,33862$
 $f(b_1) - f(a_1)$
 $b_1 = 0,33862$
 $f(a_1) = 3$
 $f(a_1) = 6$
 $f(a_1$

$$0.3 = 0$$
 $0.3 = 0.33761$
 $0.3 = 0.33761$
 0.33763
 0.33763
 0.33763
 $0.33761 = 0.33763$
 $0.33761 = 0.33763$
 0.33761
 0.33761
 0.33761
 0.33761

mo = 0,0000.6 LE

MÉTODO DA BISSECÇÃO

Exercício para presença:

Usando o método da posição falsa, resolva a equação $x^3 - \frac{1}{2} = 0$, com $\varepsilon = 0.01$. Considere o critério de parada: $\frac{|x_{k+1} - x_k|}{|x_{k+1}|}$. Apresente os valores com 4 casas decimais.

Exercício:

Utilizando o Método da Posição Falsa, resolva a equação x^3 – sen(x) = 0, com ε = 0.001.

Sol.: $\bar{x} \cong 0.9287$