Programação Linear - algoritmo simplex: vértice inicial

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

18 de outubro de 2023

Prog. Linear - algoritmo simplex: situações especiais

antes

 O método Simplex foi aplicado para resolver um problema de programação linear.

Guião

- Há situações especiais que é necessário analisar com detalhe, para definir completamente as decisões e acções do algoritmo simplex:
 - vértice admissível inicial não disponível;

depois

• Vemos a implementação do algoritmo simplex usando matrizes.

Conteúdo

- Exemplo em que não um vértice inicial admissível
- Método das 2 fases
- Referência ao Método do Grande M

Vértice admissível inicial

- E se n\u00e3o estiver imediatamente dispon\u00edvel um v\u00e9rtice admiss\u00edvel (quadro simplex) inicial?
- É necessário obter um, o que se consegue resolvendo o problema em 2 Fases:
 - Fase I: obter um vértice admissível inicial
 - Fase II: aplicar algoritmo simplex

 Para ilustrar essa situação, vamos usar um exemplo em que, por haver restrições do tipo ≥, não é possível identificar imediatamente um vértice admissível inicial.

Um problema com restrições de ≥ e de minimização

Transformação na forma standard

sendo $u \in \mathbb{R}_+^{m \times 1}$ um vector de variáveis de folga da mesma dimensão que $b \in \mathbb{R}^{m \times 1}$.

Este problema está relacionado com um problema que vimos antes. Mais tarde, vamos explorar a relação entre os dois problemás. 🤉 🦠

Transformação de uma Inequação numa Equação

- Qualquer inequação do tipo ≥ pode ser transformada numa equação (equivalente), introduzindo uma variável adicional, designada por variável de folga, com valor não-negativo.
- Exemplo:

$$\begin{cases} 3x_1 + 2x_2 & \ge 120 \\ x_1, x_2 & \ge 0 \end{cases} \Rightarrow \begin{cases} 3x_1 + 2x_2 - 1u_1 & = 120 \\ x_1, x_2, u_1 & \ge 0 \end{cases}$$

- O número de unidades necessárias é 120.
- O número de unidades produzidas numa solução $(x_1, x_2)^{\top}$ é igual ao valor da função linear: $3x_1 + 2x_2$.
- O valor de u_1 (variável de folga) é o número de unidades produzidas em excesso.
- Há autores que designam estas variáveis por variáveis de excesso.

Exemplo: transformação na forma standard

Modelo original

• Variáveis de decisão: *y*₃, *y*₄, *y*₅.

Modelo na forma standard (equivalente ao modelo original)

- Variáveis de decisão: y₃, y₄, y₅.
- Variáveis de excesso: *y*₁, *y*₂.

$$\min z = 120y_3 + 80y_4 + 30y_5$$

$$-1y_1 + 3y_3 + 1y_4 + 1y_5 = 12$$

$$-1y_2 + 2y_3 + 2y_4 = 10$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

Não há um vértice admissível inicial, porque ...

o lado direito é positivo e não há uma matriz identidade no quadro:

				<i>y</i> 4	<i>y</i> 5	
0	-1	0 -1	3	1	1	12
0	0	-1	2	2	0	10

Lembrete: antes havia um vértice admissível inicial, porque:

- as restrições eram todas de \leq (havia uma matriz identidade $I_{m \times m}$), e
- os coeficientes do lado direito eram todos ≥ 0 .

Não há um vértice admissível inicial, porque ...

o lado direito é positivo e não há uma matriz identidade no quadro:

		y_1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	<i>a</i> ₂	
<i>a</i> ₁	0	-1	0 -1	3	1	1	1	0	12
<i>a</i> ₂	0	0	-1	2	2	0	0	1	10

Lembrete: antes havia um vértice admissível inicial, porque:

- as restrições eram todas de \leq (havia uma matriz identidade $I_{m \times m}$), e
- os coeficientes do lado direito eram todos ≥ 0 .
- Adicionar ao modelo variáveis artificiais gera uma matriz identidade,
- mas o vértice resultante não é admissível para o problema original,
- porque os valores das variáveis artificiais (básicas) são positivos,
- e portanto as restrições do problema original não são respeitadas.

Método das 2 fases: estratégia

Fase I

- após adicionar ao modelo as variáveis artificiais,
- resolver um problema auxiliar com uma função objectivo que visa tornar os valores dessas variáveis nulos, e assim obter um vértice admissível inicial para o problema original.
- se se conseguir, prossegue-se para a Fase II
- caso contrário, o problema é impossível.

Fase II

• aplicar o algoritmo simplex com a função objectivo original.

Método das 2 fases

Fase I: adicionar variáveis artificiais, $\overline{a_1, a_2, ..., a_m}$, e minimizar a sua soma

• resolver problema auxiliar (1a é a soma das variáveis artificiais):

$$min z_a = 1a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $\mathbf{a} \in \mathbb{R}_{+}^{m \times 1}, \mathbf{1} = (1, 1, ..., 1)$ um vector linha com m elementos.

- Se $(z_a^* = 0) \Rightarrow a = 0$ (todas as variáveis artificiais = 0) \Rightarrow \Rightarrow há um solução que obedece às restrições originais $\mathbf{A}\mathbf{x} \mathbf{u} = \mathbf{b}$, e essa solução é um vértice admissível inicial;
- caso contrário (z_a* > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

Fase II: optimizar problema original

• usar o vértice admissível inicial no algoritmo simplex (optimizando a função objectivo original z = cx).

Fase I: adicionar vars artificiais a_1 e a_2 , e min z_a

- Função objectivo da Fase I: $\min z_a = 1a_1 + 1a_2$.
- Equação da linha da função objectivo: $z_a 1a_1 1a_2 = 0$

	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	0 1	10
Za	1	0	0	0	0	0	- 1	- 1	0

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- ullet O quadro seguinte é válido; vamos ullet minimizar a função auxiliar z_a :

	Za	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	1 0	0	1	10
Za	1	-1	-1	5	3	1	0	0	22

• Qual o elemento pivô?

Fase I: iterações

	Za	<i>y</i> ₁	У2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
Za	1	-1	-1	5	3	1	0	0	22
	Za	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> ₃	0	-1/3	0	1	1/3	1/3	1/3	0	4
a_2	0	2/3	-1	0	4/3	-2/3	-2/3	1	2
Za	1	2/3	-1	0	4/3	-2/3	-5/3	0	2
	z _a	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> ₃	0	-1/2	1/4	1	0	1/2	1/2	-1/4	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	-1/2	3/4	3/2
Za	1	0	0	0	0	0	-1	-1	0

- Fim da primeira fase: o valor da solução óptima: $z_a^* = \min z_a = 0$.
- Foi encontrado um vértice admissível.

Conclusão da Fase I e preparação da Fase II

- O vértice admissível é $(y_1, y_2, y_3, y_4, y_5)^{\top} = (0, 0, 7/2, 3/2, 0)^{\top}$.
- Variáveis artificiais (a_1, a_2) e função objectivo auxiliar (z_a) não são necessárias na Fase II, e podem ser eliminadas.

	y_1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	1/2	-3/4	0	1	-1/2	7/2 3/2

• Na Fase II, iremos optimizar a função objectivo original (z), partindo do vértice admissível encontrado na Fase I.

Fase II: função objectivo original

- Função objectivo da Fase II: min $z = 120y_3 + 80y_4 + 30y_5$.
- Equação da linha da função objectivo: $z 120y_3 80y_4 30y_5 = 0$

	Z	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
<i>У</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	1/2	1/4 -3/4	0	1	-1/2	3/2
			0				

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- O quadro seguinte é válido; vamos optimizar a função original z:

	Z		<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	-1/2 1/2		0	1	1/2 -1/2	3/2
Z	1	-20	-30	0	0	-10	540

 O primeiro vértice admissível encontrado é a solução óptima (problema de minimização e nenhum coeficiente na linha da função objectivo é positivo).

Método das 2 Fases: notas

- A situação que ocorreu no exemplo é excepcional.
- Geralmente, o primeiro vértice admissível encontrado não é a solução óptima, e é necessário fazer iterações para a atingir.

Outras abordagens:

- O Método do Grande M.
- O Método Simplex Dual é uma alternativa nalguns casos (veremos depois).
- A estratégia do Método do Grande M é usar um vértice admissível inicial de um problema com variáveis artificiais e a função objectivo modificada.

Método do Grande M: estratégia

adicionar ao modelo variáveis artificiais com custo muito elevado para

• garantir que tenham um valor nulo na solução óptima do problema:

$$min z_M = cx + ma$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $\mathbf{a} \in \mathbb{R}_{+}^{m \times 1}, \mathbf{m} = (M, ..., M)$ um vector linha com m elementos.

- Na solução óptima deste problema, dada por (x^*, u^*, a^*) :
- se $(a^* = 0)$ (todas as variáveis artificiais = 0) $\Rightarrow \min z_M = cx^*$ e (x^*, u^*) é a solução óptima que obedece às restrições originais;
- caso contrário (∃a_i > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.
- O valor da penalidade M deve ser suficientemente grande para, quando existe uma solução admissível (com a = 0), o seu valor ser melhor do que o de qualquer solução com uma var. artificial positiva.

Método do Grande M: exemplo

- Função objectivo: min $z_M = 120y_3 + 80y_4 + 30y_5 + Ma_1 + Ma_2$.
- Eq. da linha da f. obj.: $z_M 120y_3 80y_4 30y_5 Ma_1 Ma_2 = 0$.
- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.

	z _M	<i>У</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>a</i> ₁	0	-1	0	3	1	1	1	0	12
<i>a</i> ₂	0	0	-1	3 2	2	0	0	1	10
ZM	1	0	0	-120	-80	-30	-M	-M	0

• O quadro seguinte é válido; vamos optimizar a função z_M :

	z _M	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	<i>a</i> ₂	
<i>a</i> ₁	0	-1	0	2	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
z_M	1	-M	-M	-120 +5M	-80	-30	0	0	22 M
	'	'		+5M	+3M	+M			

• Apenas se faz esta referência. Não iremos utilizar este método.

Método do Grande M: escolha do valor de M

Se o valor de M for muito grande,

- pode haver perda de informação, resultante da representação dos números em computador.
- Os coeficientes de custo s\u00e3o representados por reais de dupla precis\u00e3o com um n\u00e1mero finito de casas decimais.
- Exemplo:

```
c_1 = 3,1415926535897932e + 00

M = 1,0000000000000000e + 40

M + c_1 = 1,000000000000000e + 40
```

Se o valor de *M* for muito pequeno,

• pode ocorrer que nem todas as variáveis artificiais sejam nulas na solução óptima.

Conclusão

- Quando não existe um vértice adicional, é necessário resolver um problema auxiliar cujo resultado indica se existe, pelo menos, um vértice admissível ou se o modelo não tem solução.
- Isso completa a prova de:

Theorem (Fundamental de Programação Linear)

Dado um problema de programação linear, se não existir uma solução óptima com valor finito, então ou o problema é impossível ou a solução óptima é ilimitada.

Apêndices

Algoritmo simplex de minimização

Lembrete: no algoritmo simplex de minimização:

- a coluna pivô é a coluna com o coeficiente mais positivo na linha da função objectivo,
- a solução é óptima se não existir nenhum coeficiente positivo na linha da função objectivo.

NOTA: Em alternativa a usar um algoritmo de minimização, podemos usar um algoritmo simplex de maximização para maximizar a função simétrica da função objectivo.

(cont.)

nota: min yb = -max - yb

• Qualquer problema de minimização, em que se pretende $\min f(x)$, pode ser transformado num problema de maximização, em que se optimiza a função objectivo simétrica da original, $\max -f(x)$:

• Solução óptima \mathbf{x}^* é a mesma, mas o valor da função objectivo da solução óptima é o simétrico $f(\mathbf{x}^*) = \min f(\mathbf{x}) = -\max - f(\mathbf{x})$

I - Obter quadro válido: folha de rascunho

	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	0	10
Za	1	0	0	0	0	0	- 1	- 1	0

• Exprimir a função objectivo z_a em função das variáveis não-básicas y_1, y_2, y_3, y_4 e y_5 usando eliminação de Gauss: somar à linha de z_a as linhas de a_1 e a_2 .

	z_a	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
$(+1)$ *linha de z_a	1	0	0	0	0	0	-1	-1	0
$(+1)$ *linha de a_1	0	-1	0	3	1	1	1	0	12
$(+1)$ *linha de a_2									
Za	1	-1	-1	5	3	1	0	0	22

• O quadro seguinte é válido:

√ Voltar

	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
<i>a</i> ₂	0	0	-1	2	2	0	0	0 1	10
Za	1	-1	-1	5	3	1	0	0	22

II - Obter quadro válido: folha de rascunho

	Z	У1	<i>y</i> ₂	<i>y</i> 3		<i>y</i> 5	
<i>у</i> з	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	1/2 -1/2	3/2
Z	1	0	0	-120	-80	-30	0

Exprimir a função objectivo z em função das variáveis não-básicas
 y₁, y₂ e y₅ usando eliminação de Gauss: somar à linha de z as linhas de y₃ e y₄ multiplicadas por constantes adequadas.

	Z	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
(+1)*linha de z	1	0	0	-120	-80	-30	0
$(+120)$ *linha de y_3	0	-60	30	120	0	60	420
$(+80)$ *linha de y_4	0	40	-60	0	80	-40	120
Z	1	-20	-30	0	0	-10	540

• O quadro seguinte é válido:

√ Voltar

	Z	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	1/2 -1/2	3/2
						-10	

Fim