Relazione di Laboratorio 2 Esperienza A2 A.A. 2023/2024

Luciano Leotta Matricola 556372

21/11/2023

1 Cenni teorici

Lo scopo di questo esperimento è la verifica delle relazioni che sussistono tra la resistenza di un materiale e la sua temperatura attraverso l'utilizzo di un ponte di Wheatstone. Un ponte di Wheatstone è un particolare circuito, cosiffatto:

Figure 1: Ponte di Wheatstone

Si nota che tale circuito possiede n=4 nodi e r=6 rami, ergo m=3 maglie, ricordando che m=r-n+1. Utilizzando il metodo delle maglie di kirchhoff e svolgendo i calcoli (vedasi B), si ha per un ponte bilanciato:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \tag{1.1}$$

Dalla 1.1 si nota che conoscendo 3 resistenze del ponte di Wheatstone, la quarta risulta univocamente determinata.

Si consideri la seconda legge di Ohm

$$R = \rho \, \frac{l}{S} \tag{1.2}$$

in cui ρ è la resistività del materiale di cui è composta la resistenza R, l è la lunghezza ed S l'area della sezione della resistenza. Risulta evidente che R è direttamente proporzionale alla sua resistività ρ : essa è una grandezza che dipende dalle caratteristiche del materiale, ed in particolare, dipende dalla temperatura a cui si trova. Per i metalli la legge di dipendenza R(T) ha forma:

$$R(T) = R(T_0) \cdot [1 + \alpha (T - T_0)] \tag{1.3}$$

Mentre per gli NTC vale:

$$R(T) = R(T_0) \cdot exp\left[\beta\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$
 (1.4)

2 Strumenti e metodo di misura

2.1 Strumenti utilizzati

Strumenti utilizzati per eseguire l'esperimento:

- Multimetro digitale Rigol DM3058SE
- Termometro a bulbo con sensibilità di $\pm 1\,^{\circ}C$
- Galvanometro a zero centrale
- \bullet Batteria Duracell da 4,5V
- Breadbord
- Fornello con agitatore
- Beker in vetro con acqua
- Supporti metallici
- Cavi a banana e a coccodrillo
- Pulsante
- Resistenze nominali da 470Ω e 560Ω
- Reostato a cassetta con valori selezionabili tra 0Ω e 9999, 9Ω
- Resistenza incognita metallica
- Termistore incognito NTC (Negative Temperature Coefficient)

2.2 Realizzazione esperimento

Al fine di misurare la resistenza incognita è stato costruito un ponte di Wheatstone come nel seguente schema:

Figure 2: Schema ponte di Wheatstone realizzato

Per ottenere una misura ad un preciso istante di temperatura, non è necessario una continua alimentazione del circuito, dunque è possibile risparmiare consumo di batteria tramite un pulsante che chiuda il circuito solo per il tempo necessario ad effettuare la misura. La resistenza R_x ed un termometro sono stati immersi, tramite dei supporti metallici, in un beker contenente acqua corrente. Chiudendo il circuito, tramite il pulsante, e utilizzando il galvanometro si osserva se l'intensità di corrente da esso misurata risulti nulla o no. Chiameremo il ponte "bilanciato" quando il galvanometro segna corrente nulla, "sbilanciato" altrimenti. Definiamo il "bilanciamento del ponte" come la procedura di variazione della resistenza R_2 , tramite il reostato a cassetta, allo scopo di riportare il ponte alla condizione bilanciata. Per evitare di danneggiare il galvanometro, si effettua un primo bilanciamento grezzo, collegando il galvanometro con una resistenza di protezione. In seguito si scollega la resistenza di protezione e si esegue un bilanciamento del ponte più preciso. Successivamente viene riscaldata la resistenza incognita tramite un fornello con agitatore magnetico. Variando la temperatura, varierà il valore della resistenza incognita R_x e il ponte si sbilancerà, di conseguenza, al fine di ribilanciarlo è necessario variare la resistenza R_2 . Una volta bilanciato, è possibile ricavare il valore R_x tramite la seguente relazione, derivata dalla 1.1:

$$R_x = \frac{R_3}{R_1} R_2 (2.1)$$

Dunque misurando contemporaneamente il valore R_2 che bilancia il ponte e il valore della temperatura a cui si trova R_x , si può evincere la variazione R_x in funzione della temperatura e studiare la relazione funzionale $R_x(T)$. Tale procedura è stata ripetuta anche per la seconda resistenza incognita.

3 Analisi dati

3.1 Misura resistenza metallica

Le incertezze statistiche delle misure sono state ritenute molto più piccole rispetto alle sensibilità di tutti gli strumenti utilizzati, dunque per ogni misura presa è stata considerata come

incertezza la sensibilità dello strumento usato per effettuare tale misura. I valori di R_1 e R_3 sono stati determinati con un multimetro Rigol e valgono:

 $R_1 = (462.9 \pm 0.1)\Omega$ e $R_3 = (553.3 \pm 0.1)\Omega$.

I valori di R_2 misurati sono:

R_2	ΔR_2	Unità di misura	T	ΔT	Unità di misura
310	0.5	Ω	22	1	$^{\circ}C$
315	0.5	Ω	25	1	$^{\circ}C$
321	0.5	Ω	30	1	$^{\circ}C$
328	0.5	Ω	35	1	$^{\circ}C$
337	0.5	Ω	42	1	$^{\circ}C$
341	0.5	Ω	45	1	$^{\circ}C$
347	0.5	Ω	50	1	$^{\circ}C$
352.5	0.5	Ω	55	1	$^{\circ}C$
359.5	0.5	Ω	60	1	$^{\circ}C$
365	0.5	Ω	65	1	$^{\circ}C$
374	0.5	Ω	71	1	$^{\circ}C$
380	0.5	Ω	77	1	$^{\circ}C$
384	0.5	Ω	80	1	$^{\circ}C$
390	0.5	Ω	85	1	$^{\circ}C$
396	0.5	Ω	89	1	$^{\circ}C$

Table 1: Valori di R_2 a determinate temperature (°C)

Le incertezze associate ad R_2 sono state determinate considerando 0.5Ω come il minimo valore di variazione dell'ago del galvanometro.

Dunque i valori di R_m risultano da 2.1 (con $R_m = R_x$):

R_m	ΔR_m	Unità di misura	T	ΔT	Unità di misura
370.4	0.6	Ω	295	1	K
376.4	0.6	Ω	298	1	K
383.7	0.6	Ω	303	1	K
391.9	0.6	Ω	308	1	K
402.7	0.6	Ω	315	1	K
407.6	0.6	Ω	318	1	K
414.7	0.6	Ω	323	1	K
421.3	0.6	Ω	328	1	K
429.7	0.6	Ω	333	1	K
436.3	0.6	Ω	338	1	K
447.0	0.6	Ω	344	1	K
454.2	0.6	Ω	350	1	K
459.0	0.6	Ω	353	1	K
466.1	0.6	Ω	358	1	K
473.3	0.6	Ω	362	1	K

Table 2: Valori della resistenza metallica \mathbb{R}_m a determinate temperature (K)

Per valutare l'errore su ${\cal R}_m$ si è propagato l'errore da 2.1 usando:

$$\Delta R_x = \sqrt{\left(\frac{\partial R_x}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial R_x}{\partial R_3} \Delta R_3\right)^2 + \left(\frac{\partial R_x}{\partial R_1} \Delta R_1\right)^2}$$
(3.1)

Figure 3: Plot Table 1: Valori di R_2 a determinate temperature $({}^{\circ}C)$

Figure 4: Plot Table 2: Valori della resistenza metallica \mathbb{R}_m a determinate temperature (K)

3.2 Misura resistenza NTC

I valori di R_1 e R_3 sono stati determinati con un multimetro Rigol e valgono: $R_1 = (462.9 \pm 0.1)\Omega$ e $R_3 = (553.3 \pm 0.1)\Omega$. I valori di R_2 misurati sono:

R_2	ΔR_2	Unità di misura	T	ΔT	Unità di misura
315.0	0.5	Ω	31	1	$^{\circ}C$
271.0	0.5	Ω	36	1	$^{\circ}C$
234.0	0.5	Ω	40	1	$^{\circ}C$
191.0	0.5	Ω	46	1	$^{\circ}C$
164.0	0.5	Ω	51	1	$^{\circ}C$
140.0	0.5	Ω	55	1	$^{\circ}C$
120.0	0.5	Ω	60	1	$^{\circ}C$
100.0	0.5	Ω	66	1	$^{\circ}C$
88.5	0.5	Ω	70	1	$^{\circ}C$
77.0	0.5	Ω	75	1	$^{\circ}C$
63.0	0.5	Ω	82	1	$^{\circ}C$
56.0	0.5	Ω	86	1	$^{\circ}C$
49.0	0.5	Ω	91	1	$^{\circ}C$

Table 3: Resistenza R_2 durante misura NTC

Le incertezze associate ad R_2 sono state determinate considerando 0.5Ω come il minimo valore di variazione dell'ago del galvanometro.

Dunque i valori di R_n risultano da 2.1 (con $R_n = R_x$):

R_n	ΔR_n	Unità di misura	T	ΔT	Unità di misura
376.5	0.6	Ω	304	1	K
323.9	0.6	Ω	309	1	K
279.7	0.6	Ω	313	1	K
228.3	0.6	Ω	319	1	K
196.0	0.6	Ω	324	1	K
167.3	0.6	Ω	328	1	K
143.4	0.6	Ω	333	1	K
119.6	0.6	Ω	339	1	K
105.8	0.6	Ω	343	1	K
92.0	0.6	Ω	348	1	K
75.3	0.6	Ω	355	1	K
66.9	0.6	Ω	359	1	K
58.6	0.6	Ω	364	1	K

Table 4: Resistenza NTC R_n in funzione della temperatura

Per valutare l'errore su R_n è stata usata la 3.1.

Figure 5: Plot Table 3: Resistenza \mathbb{R}_2 durante misura NTC

Figure 6: Plot Table 4: Resistenza NTC ${\cal R}_n$ in funzione della temperatura

3.3 Best fit

Per verificare le leggi funzionali 1.3, 1.4 si è effettuata una procedura di best fit. Per 1.3 si è usato il modello

$$Y = MX (3.2)$$

con $Y = R_m(T) - R_m(T_0), X = T - T_0 \text{ ed } M = R(T_0)\alpha.$

I valori usati per la verifica del modello, considerando T_0 pari al primo valore di temperatura misurata, sono:

Y	ΔY	Unità di misura	X	ΔX	Unità di misura
0.0	0.8	Ω	0	1.4	K
6.0	0.8	Ω	3	1.4	K
13.3	0.8	Ω	8	1.4	K
21.5	0.8	Ω	13	1.4	K
32.3	0.8	Ω	20	1.4	K
37.2	0.8	Ω	23	1.4	K
44.3	0.8	Ω	28	1.4	K
50.9	0.8	Ω	33	1.4	K
59.3	0.8	Ω	38	1.4	K
65.9	0.8	Ω	43	1.4	K
76.6	0.8	Ω	49	1.4	K
83.8	0.8	Ω	55	1.4	K
88.6	0.8	Ω	58	1.4	K
95.7	0.8	Ω	63	1.4	K
102.9	0.8	Ω	67	1.4	K

Table 5: Fit1

Per determinare le incertezze ΔX e ΔY sono state usate

$$\Delta Y = \sqrt{2}\Delta R_m \tag{3.3}$$

$$\Delta X = \sqrt{2}\Delta T \tag{3.4}$$

Dalla procedura di best fit si è ottenuto $M=(1.541\pm0.015)\frac{\Omega}{K}$. Dunque si ha $\alpha=\frac{M}{R_m(T_0)}=(4.16\pm0.04)10^{-3}K^{-1}$. Per determinare $\Delta\alpha$ è stata usata

$$\Delta \alpha = \sqrt{\left(\frac{\partial \alpha}{\partial M} \Delta M\right)^2 + \left(\frac{\partial \alpha}{R_m(T_0)} \Delta R_m\right)^2}$$
 (3.5)

Figure 7: Plot dati fit 1

Figure 8: Best fit 1

Per 1.4 si è usato il modello:

$$Y = e^{MX} (3.6)$$

con $Y = \frac{R_n}{R_n(T_0)}$, $X = \frac{1}{T_0} - \frac{1}{T}$ ed $M = -\beta$. I valori usati per la verifica del modello, considerando T_0 pari al primo valore di temperatura misurata, sono:

Y	ΔY	X	ΔX	Unità di misura
1.0000	0.0023	0.00000	1.52876-05	K^{-1}
0.8603	0.0021	5.31757E-05	1.5044E-05	K^{-1}
0.7429	0.0020	9.44936E-05	1.4860E-05	K^{-1}
0.6063	0.0019	15.4529E-05	1.4602E-05	K^{-1}
0.5206	0.0018	20.286E-05	1.4402E-05	K^{-1}
0.4444	0.0017	24.0465E-05	1.4251E-05	K^{-1}
0.3810	0.0017	28.6200E-05	1.4072E-05	K^{-1}
0.3178	0.0017	33.9304E-05	1.3872E-05	K^{-1}
0.2810	0.0016	37.3674E-05	1.3746E-05	K^{-1}
0.2444	0.0016	41.5526E-05	1.3598E-05	K^{-1}
0.2000	0.0016	47.2140E-05	1.34057E-05	K^{-1}
0.1778	0.0016	50.3499E-05	1.3302E-05	K^{-1}
0.1556	0.0016	54.1730E-05	1.3180E-05	K^{-1}

Table 6: Fit 2 (La Y è adimensionale)

Per determinare le incertezze ΔX e ΔY sono state usate:

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial R_n} \Delta R_n\right)^2 + \left(\frac{\partial Y}{R_n(T_0)} \Delta R_n(T_0)\right)^2}$$
(3.7)

$$\Delta X = \sqrt{\left(\frac{\partial X}{\partial T}\Delta T\right)^2 + \left(\frac{\partial X}{T_0}\Delta T_0\right)^2} \tag{3.8}$$

Dalla procedura di best fit si è ottenuto $M=(-3399\pm 40)K$. Dunque si ha $\beta=-M=$ $(3399 \pm 40)K$; con $\Delta \beta = \Delta M$.

Figure 9: Plot dati fit 2

Figure 10: Best fit 2

4 Conclusioni

I valori calcolati tramite le procedure di best fit sono:

- $\alpha = (4.16 \pm 0.04)10^{-3} K^{-1}$ per il modello 1.3.
- $\beta = (3399 \pm 40)K$ per il modello 1.4.

Entrambe le procedure di best fit hanno mostrato un risultato concorde ai modelli previsti, rispettivamente 1.3 per la resistenza metallica e 1.4 per il termistore NTC. Considerato ciò, è possibile verificare, confrontando il valore ottenuto con valori tabellati nella letteratura scientifica, se il materiale utilizzato per costruire la resistenza sia davvero quello indicato dal costruttore. Per il termistore è possibile verificare se il valore della costante β rientri nei parametri indicati dal costruttore.

Appendix A Multimetro

Un multimetro digitale è uno strumento in grado di misurare diverse grandezze, tra cui intensità di corrente (amperometro), differenza di potenziale (voltmetro) e valori di resistenza (ohmetro).

Di seguito si fornisce una breve descrizione sul funzionamento di questi strumenti.

A.1 Amperometro

Figure 11: Circuito

Figure 12: Circuito Amperometro

Un amperometro è uno strumento in grado di misurare l'intensità di corrente presente in un circuito. Lo strumento va collegato in serie al circuito di cui si vuole conoscere la corrente circolante. É necessario considerare che lo strumento introduce una resistenza interna che altera la misura. Applicando la prima legge di Ohm

$$V = RI \tag{A.1}$$

Si ricava, utilizzando il principio di Thevenin

$$I' = \frac{V}{R+r} = \frac{V}{R} \left(\frac{1}{1+\frac{r}{R}}\right) \tag{A.2}$$

Dunque per avere una misura quanto più precisa possibile il rapporto $\frac{r}{R} \to 0$; cioè r << R .

A.2 Voltmetro

Figure 13: Circuito Voltmetro

Figure 14: Circuito risultante Thevenin

Un voltmetro è uno strumento in grado di misurare la differenza di pontenziale tra due punti di un circuito, esso non è altro che un amperometro utilizzato in un particolare circuito. Lo strumento va collegato in parallelo ai punti di cui si vuole conoscere la differenza di potenziale. É necessario considerare che lo strumento introduce una resistenza interna che altera la misurazione. Utilizzando A.1 si ricava, utilizzando il principio di Thevenin

$$V_v = I_v r_v = \frac{r_V}{R_{eq} + r_v} V_0 \tag{A.3}$$

$$V_0 = \left(1 + \frac{R_{eq}}{r_V}\right) V_V \tag{A.4}$$

Dunque per avere una misura quanto più precisa possibile il rapporto $\frac{R_{eq}}{r_v} \to 0$; cioè $r >> R_{eq}$

A.3 Ohmetro

Figure 15: Circuito Ohmetro

Un ohmetro è uno strumento in grado di misurare un resistore. É possibile realizzarlo misurando contemporaneamente un caduta di tensione ai capi del resistore e l'intensità di corrente che lo attraversa, ergo utilizzando contemporaneamente un amperometro e un voltmetro. Naturalmente collegando gli strumenti altereremo la misurazione. Dalla A.1

$$R_x = \frac{\Delta V}{I_R} \tag{A.5}$$

Dalle leggi di Kirchoff

$$I_A = I_R + I_v \rightarrow I_v = \frac{I_r R_x}{r_v} \tag{A.6}$$

$$I_R R_x = I_v r_v \rightarrow I_R = I_A \frac{r_v}{r_v + R_x} \tag{A.7}$$

Combinando A.5, A.6 e A.7 si ottiene

$$R_x = \frac{\Delta V}{I_R} = \frac{\Delta V}{I_A} \left(1 + \frac{R_x}{r_v} \right) \tag{A.8}$$

Risolvendo per R_x

$$R_x = \frac{\Delta V}{I_A} \left(\frac{1}{1 - \frac{\Delta V}{r_v I_A}} \right) \tag{A.9}$$

Dalla A.8 si nota che per avere una misura quanto più precisa possibile il rapporto $\frac{R_x}{r_V} \to 0$; cioè $R_x << r_v$

Appendix B Risoluzione del Ponte di Wheatstone

Figure 16: Ponte di Wheatstone

Utilizzando la seconda legge di Kirchoff si ha

$$\begin{cases}
R_1(I_a - I_b) + R_3(I_a - I_c) - V = 0 \\
R_2I_B + R_5(I_b - I_c) + R_1(I_b - I_a) = 0 \\
R_3(I_c - I_a) + R_5(I_c - I_b) + R_4I_c = 0
\end{cases}$$
(B.1)

$$\begin{cases}
(R_1 + R_3)I_a - R_1I_b - R_3I_c = V \\
-R_1I_a + (R_1 + R_2 + R_5)I_b - R_5I_c = 0 \\
-R_3I_a - R_5I_b + (R_3 + R_4 + R_5)I_c = 0
\end{cases}$$
(B.2)

Scrivendo il sistema lineare in forma matriciale si ottiene

$$\begin{pmatrix}
I_a & I_b & I_c
\end{pmatrix} \begin{pmatrix}
R_1 + R_3 & -R_1 & -R_3 \\
-R_1 & R_1 + R_2 + R_5 & -R_5 \\
-R_3 & -R_5 & R_3 + R_4 + R_5
\end{pmatrix} = \begin{pmatrix}
V \\
0 \\
0
\end{pmatrix}$$
(B.3)

Si calcola il determinante della matrice delle resistenze

$$\Delta = \begin{vmatrix} R_1 + R_3 & -R_1 & -R_3 \\ -R_1 & R_1 + R_2 + R_5 & -R_5 \\ -R_3 & -R_5 & R_3 + R_4 + R_5 \end{vmatrix} =$$
(B.4)

$$= R_3[R_4R_5 + R_2(R_4 + R_5)] + R_1[R_4(R_3 + R_5) + R_2(R_3 + R_4 + R_5)]$$
 (B.5)

Ed utilizzando l'algoritmo di Cramer ricaviamo I_b e I_c

$$I_b = \frac{1}{\Delta} \begin{vmatrix} R_1 + R_3 & V1 & -R_3 \\ -R_1 & 0 & -R_5 \\ -R_3 & 0 & R_3 + R_4 + R_5 \end{vmatrix} = \frac{V}{\Delta} [R_5 R_3 + R_1 (R_3 + R_4 + R_5)]$$
(B.6)

$$I_{c} = \frac{1}{\Delta} \begin{vmatrix} R_{1} + R_{3} & -R_{1} & V \\ -R_{1} & R_{1} + R_{2} + R_{5} & 0 \\ -R_{3} & -R_{5} & 0 \end{vmatrix} = \frac{V}{\Delta} [R_{1}R_{5} + R_{3}(R_{1} + R_{2} + R_{5})]$$
(B.7)

Si ricava I_5

$$I_5 = I_b - I_c = \frac{V}{\Delta} (R_3 R_5 + R_1 R_3 + R_1 R_4 + R_1 R_5 - R_1 R_5 - R_1 R_3 - R_2 R_3 - R_3 R_5)$$
 (B.8)

$$I_5 = \frac{V}{\Delta} (R_1 R_4 - R_2 R_3) \tag{B.9}$$

Per un ponte bilanciato si ha $I_5=0$, cioè

$$R_1 R_4 - R_2 R_3 = 0 (B.10)$$

Dalla B.10 si ricava 1.1.

5 Bibliografia

- Slide A.A. 2023/2024, Professore F. Neri, Università degli Studi di Messina
- Documentazione root: https://root.cern/doc/v628/