What is truth table?

- A diagram in rows and columns showing how the truth or falsity of a proposition varies with that of its components
- List all possibilities, one row for each possible assignment of True/False to variables
- By convention, usually use 1 represents TRUE and 0 represents FALSE

Examples 1:

Draw a truth table for statement "¬P"

- result of ¬P depends on "P"
- "P" has two possible result (True or False)
- Then we can draw a full truth table which list all possibilities

Р	¬P
O(False)	1(True)
1(True)	O(False)

Truth Table Semantics

Why we need truth table?

- Propositional logic is not about the meaning of a sentence
- We use an example like "Socrates is bald" and replace it with the proposition letter, S
- That's ok, but we don't know if S is true or false, because it is just a proposition
- What we want to do is to define operations on these propositions by truth table

Truth Table Semantics

Why we need truth table (Continued)?

- So now, if we know S is true but G is false, then we can work out if S & G is true. But S can also be false or another combination
- S and G are just variables that can be assigned any truth value (i.e. true or false)
- They have no intrinsic truth value. They are just variables that can be assigned a value
- Therefore, if we want to look at all combinations of assignments of true or false to each letter, we will create a truth table showing all the consequence

Examples 2:

Draw a truth table for statement "P ∧ Q"

- result of P ∧ Q depends on "P" and "Q"
- "P" has two possible result (True or False)
- "Q" has two possible result (True or False)
- Then we can draw a full truth table which list all possibilities

Р	Q	P∧Q
0	0	0
0	1	0
1	0	0
1	1	1

Examples 3:

Draw a truth table for statement "P V Q"

- result of P V Q depends on "P" and "Q"
- "P" has two possible result (True or False)
- "Q" has two possible result (True or False)
- Then we can draw a full truth table which list all possibilities

Р	Q	PVQ
0	0	0
0	1	1
1	0	1
1	1	1

Examples 4:

Draw a truth table for statement " $P \rightarrow Q$ "

- result of P → Q depends on "P" and "Q"
- "P" has two possible result (True or False)
- "Q" has two possible result (True or False)
- Recall: $P \rightarrow Q$ will be false iif Q is false but P is true
- Then we can draw a full truth table which list all possibilities

Р	Q	$P \rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

Examples 5:

Draw a truth table for statement " $P \leftrightarrow Q$ "

- result of P ↔ Q depends on "P" and "Q"
- Then we can draw a full truth table which list all possibilities

Р	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Examples 6:

Draw a truth table for statement " $(R \land S) \rightarrow (\neg R \lor S)$ "

- result depends on "(R ∧ S)" and "(¬R ∨ S)"
- result of "(R ∧ S)" depends on "R" and "S"
- result of "(¬R V S)" depends on "R" and "S"
- Recall: "(R \land S) \rightarrow (¬R \lor S)" is False iff (R \land S) is True but (¬R \lor S) is False
- Then we can draw a full truth table which list all possibilities

R	S	¬R	(R ∧ S)	(¬R ∨ S)	$(R \land S) \rightarrow (\neg R \lor S)$
0	0	1	0	1	1
0	1	1	0	1	1
1	0	0	0	0	1
1	1	0	1	1	1

Quiz Time!