Earth's architecture: Structural geology

- Tectonic activity often deforms the rocks in the crust.
- That is how we get complex structures of mountains.

Deformation: Stress and strain

Some important terms:

Deformation: Any change in size, shape, orientation or position of a rock mass.

Stress: The amount of force applied to a given area.

Types of deformation

- Elastic deformation up to elastic limit
 - Springs back to original shape
- Brittle failure (it breaks)
 - Causes: 1. subjected to great stress that exceeds the yield point AKA elastic limit, OR
 - Subjected to sudden stress AKA "impact"
- Plastic deformation
 - Does not spring back ... keeps deformed shape
 - Demo Chewing gum
 - Cause can be high temperature near melting or high pressure … squeezed like a ball of clay

Factors affecting rock deformation

- Intensity of applied stress
- Heat –Temperature of the Rock
- Amount of Time the Stress is applied
- Rock Composition

How does the rocks deform?

As stress is applied, the rocks could

- -Break
- -Flow / bend

Whether a rock is going to break or flow depends on several factors, such as,

- Temperature: Rocks near the surface vs. deep down
- Rock type: Crystalline rocks vs. non-crystalline rocks

-Time: Wooden racks loaded with books

Mapping a structure:

Strike: Compass direction of the structure

Dip: Angle of the structure with the horizontal plane

Strike and Dip

Terminology of Structure

Strike

Line representing the intersection of a planar feature with a horizontal plane

Dip

Angle of a tilted bed relative to a horizontal plane

Folds

Rocks bent into a series of wavelike undulations.

Important types of folds:

-Anticline: Old rock in the center

-Syncline: Youngest rock in the center

Fold Geometry

Hinge line: The locus of all points with maximum curvature (smallest radius of curvature)

Various Folds

Various Folds (cont'd)

Faults

Fractures in the crust along which displacement has taken place.

Types of faults

Normal fault:

- Hanging wall moves down relative to the footwall.
- Generated by extension.

Reverse fault:

- Hanging wall moves up relative to the foot wall.
- Generated by compression.

Strike-slip fault:

- Horizontal displacement.

 In a normal fault, the hanging wall <u>slips down</u> relative to the footwall

 In a reverse fault, the hanging wall <u>moves up</u> relative to the footwall

 San Andreas fault is a strike-slip fault with little up or down motion

Example

A. Compression: Fold, Reverse fault

B. Extension: Normal fault

C. Shearing: Transform fault