### K-Means++

### **Drawbacks of K-Means**

- 1. K-means is initialization dependent.
  - a. The same data, with different initialization, will get different results (different clusters).



Link: visualization tool to see this problem

**2.** The k-means algorithm may not give the best results for data where the clusters are of varying size or density.

### Limitations of K-means: Differing Sizes



- How to solve this problem? increase the value of K.
- Once clusters are formed, similar clusters can be grouped to form a mega cluster.



 The problem with this approach is the grouping of similar clusters is not easy 3. The number of clusters (k) needs to be defined prior to clustering.

## Limitations of K-means: Differing Density



4. It does not work well with non-globular clusters.

# Limitations of K-means: Non-globular Shapes



#### K-Means++

- It uses a smarter way to initialize the centroids to improve the clustering algorithm.
- Consider data where we want to initialize 3 centroids.
  - We pick the first centroid at random
  - Now, to pick the second centroid, we want to pick a point that is as far away as possible
- We would want to pick a point that is far away because if two centroids are closer to each other, two clusters for that region of data points will be formed
- We compute the distance from the centroid C1 of all the data points present in our dataset D such as D - {C<sub>1</sub>}
- **Risk**: If we select a datapoint as a second centroid with the farthest distance, then an outlier might be picked as a centroid, and we might have a cluster with the centroid C<sub>2</sub> only.
- **Solution**: Pick a centroid **probabilistically**, instead of picking it deterministically.
  - I.e. The probability of picking a centroid is proportional to the distance from the first centroid C<sub>1</sub>.
- The steps involved in the initialization of centroids are:
  - → Select the first centroid randomly from the data points.
  - → Choose the next center as the farthest point (probabilistically) from the first center.
  - → The next center would be a data point farthest from both the first and second centers.
- Repeat steps 2 and 3 until k centroids have been sampled.
- If there are outliers in our data, then instead of choosing them as centroid, we
  can choose the farthest point as the centroid with a probability proportional to
  the distance. ( Default implementation of Sklearn)