

Department of Electronics and Communication Engineering

Date: 29.04.2025	Test - 1	Max. Marks:50+10
Semester:VI	UG	Duration: $1\frac{1}{2}$ Hrs+20mins
Course Title: Digital Signal Processing with ML		Course Code:EC364TA

SCHEME AND SOLUTIONS

1	Calculate discrimination and selectivity factor for the given low pass Butterworth filter to meet following specification. Fp=5 kHz, Fs= 9 kHz, δ p= δ s=0.1.	02
	Ans:Discrimination=0.0487 selectivity=0.55	
2		
3	Obtain the passband ripple factor for a Chebyshev filter type I that has -3dB pass band attenuation at a frequency of 100 rad/sec and 25dbdB stop band attenuation at frequency of 250 rad/sec Ans:0.292	01
4	What is Frequency Warping effect in Bilinear Transformation? How to overcome this effect?	01
5	If $s=\sigma+j\Omega$ and $z=re^{j\omega}$, then what is the condition on σ if $r<1$? Ans: $\sigma<0$	01
6	What is the number of minima's present in the pass band of magnitude frequency response of a low pass filter having ripples in pass band of order 4? Ans: 2	
7	The impulse response sequence of a linear phase filter are $h(n) = (5, -8, 3,)$, complete the sequence $h(n)$ assuming $N = 7$ for Type 3 Ans: $(5,-8,3,0,-3,8,-5)$	01
8	The phase of linear phase FIR filter of length N=13 is Ans: -6ω	01
9		
1	Determine the transfer function H(z) of the filter having ripples in pass band that will meet the following specifications:	10
	$\frac{1}{\sqrt{2}} \le H(j\omega) \le 1, 0 \le w \le 0.3\pi$ $ H(j\omega) \le 0.1, 0.6\pi \le w \le \pi$ Use the Bilinear Transformation. Assume T=1.	

Go, change the world

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post. Bengaluru - 560059, Karnataka India

Prewarping the band-edge frequencies ω_P and ω_S using T=1 sec, we get

$$\Omega'_{P} = \frac{2}{T} \tan \left(\frac{\omega_{P}}{2}\right)$$

$$= \frac{2}{1} \tan \left(\frac{0.3\pi}{2}\right)$$

$$= 1.019, \quad K_{P} = -3 \text{ dB}$$

$$\Omega'_{S} = \frac{2}{T} \tan \left(\frac{\omega_{S}}{2}\right)$$

$$= \frac{2}{1} \tan \left(\frac{0.6\pi}{2}\right)$$

$$= 2.75, \quad K_{S} = -20 \text{ dB}$$
-----[2M]

$$d = \sqrt{\frac{(1 - \delta_P)^{-2} - 1}{\delta_S^{-2} - 1}} = 0.1$$

$$K = \frac{\Omega_P'}{\Omega_S'} = 0.3705$$

Minimum filter order, $N = \frac{\cosh^{-1}(\frac{1}{d})}{\cosh^{-1}(\frac{1}{K})} = 1.8$

Rounding off to the next larger integer, we get N = 2. [2M]

 $b_0 = 0.7079478$ $b_1 = 0.6448996$

Mysore Road, RV Vidyaniketan Post Bengaluru - 560059, Karnataka, India

$$H_2(s) = \frac{K_N}{s^2 + b_1 s + b_0}$$
$$= \frac{\frac{b_0}{\sqrt{1 + \epsilon^2}}}{s^2 + b_1 s + b_0}$$

Since,
$$K_P = 20 \log \left(\frac{1}{\sqrt{1+\epsilon^2}} \right) = -3$$
, we get $\epsilon^2 = 0.9952623$.

Hence,

$$H_2(s) = \frac{\frac{0.7079478}{\sqrt{1+0.995263}}}{s^2 + 0.6448996s + 0.7079478}$$
$$= \frac{0.50119}{s^2 + 0.6448996s + 0.7079478}$$

----[1M]

Since, we want the cutoff at Ω'_P , the required prewarped lowpass Chebyshev I filter $H_a(s)$ is obtained by applying lowpass-to-lowpass transformation to $H_2(s)$.

That is,
$$H_a(s) = H_2(s)|_{s \to \frac{s}{\Omega_P^2}}$$

$$= \frac{0.50119}{s^2 + 0.6448996s + 0.7079478}|_{s \to \frac{s}{1.019}}$$

$$= \frac{0.52}{s^2 + 0.6571526924s + 0.7351053856}$$

That is,
$$H(z) = H_a(s)|_{s \to \frac{2}{1} \left[\frac{1-z^{-1}}{1+z^{-1}}\right]} = \frac{0.52}{4\left[\frac{1-z^{-1}}{1+z^{-1}}\right]^2 + 0.6571526924 \times 2\left[\frac{1-z^{-1}}{1+z^{-1}}\right] + 0.7351053856}$$

$$= \frac{0.52\left(1+z^{-1}\right)^2}{6.0494 - 6.53z^{-1} + 3.420805z^{-2}}$$
-----[1M]

- Design an analog high pass filter having monotonic pass band and stop band that will meet the following specifications:
 - i. Maximum pass band attenuation =2dB
 - ii. Pass band edge frequency= 200rad/sec
 - iii. Minimum stop band attenuation= 20dB
 - iv. Stop band edge frequency= 100rad/sec

Go, change the world

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post. Bengaluru - \$60059, Kamataka, India

$$\Omega_P = 1,$$
 $K_P = -2 \text{ dB}$
 $\Omega_S = 2,$ $K_S = -20 \text{ dB}$

----[2M]

we get, N = 4.

$$H_4(s) = \frac{1}{(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)}$$

$$\Omega_C = \frac{\Omega_P}{\left(10^{\frac{\kappa_P}{10}} - 1\right)^{\frac{1}{2W}}}$$

$$= \frac{1}{\left(10^{0.2} - 1\right)^{\frac{1}{8}}}$$

$$= 1.0693$$

----[1M]

RV College of Engineering® sayuure Road, RV Vidyaniketan Post, Bengalurur 560059, Karnataka, India

	$H_a(s) = H_P(s) _{s \longrightarrow \frac{\Omega_s}{s}}$		
	$= H_{\mathcal{P}}(s) _{s \longrightarrow \frac{200}{s}}$		
	$= H_4(s)\big _{s \longrightarrow \frac{200}{1000}}$		
	$= H_4(s) _{s \longrightarrow \frac{187,031}{s}}$		
	s ⁴		
	$= \frac{(s^2 + 143.1464s + 34980.7521)(s^2 + 345.5892s + 34980.7521)}{(s^2 + 345.5892s + 34980.7521)}$		
	[2M]		
2b	Compare and Contrast FIR and IIR Filters.	3	
20	FIR filter IIR filter		
	These filters can be easily designed These filters do not have linear phase.		
	to have perfectly linear phase. FIR filters can be realized IIR filters can be realized recursively.		
	recursively and non-recursively. Greater flexibility to control the Less flexibility,usually limited to		
	shape of their magnitude response. kind of filters.		
	Littlis due to roundor. House		
	less severe in FIR filters, mainly because feedback is not used.		
3a	A digital low pass filter is required to meet the following specifications: 06		
Sa	i. Pass band ripple $\leq 1dB$		
	ii. Passband edge frequency: 4 KHz		
	iii. Stopband attenuation: ≥40dB		
	iv. Stopband edge frequency: 6KHz		
	v. Sample rate: 24KHz Apply bilinear transformation on an analog system function. Determine the order of		
	Apply bilinear transformation on an analog system function. Betermine the order Butterworth and Chebyshev 1 that must be used to meet the specification in the digital		
	: 1		
	$\Omega_R = 2\pi \times 4 \times 10^{\circ} \text{ rad/sec}$		
	$K_P = -1 \text{ dB},$ $\Omega_S = 2\pi \times 6 \times 10^3 \text{ rad/sec}$		
	$K_S = -40 \text{GB}, \qquad -3$		
	$T = \frac{1}{f_s} = \frac{1}{24 \times 10^3} \sec$		
	$J_{S} = 24 \times 10^{-3}$		
	$\omega_P = \Omega_P T = 2\pi \times 4 \times 10^3 \times \frac{1}{24 \times 10^3} = \frac{\pi}{3} \text{ rad,}$		
	$\omega_S = \Omega_S T = 2\pi \times 6 \times 10^3 \times \frac{24 \times 10^3}{24 \times 10^3} = \frac{\pi}{2} \text{ rad,}$		
	$25 - 22SI = 2\pi \times 6 \times 10^3 \times \frac{1}{24 \times 10^3} = \frac{\pi}{1}$ rad		
	24×10^3 2 \cdots [2M]		

$$\Omega_P' = \frac{2}{1} \tan\left(\frac{\omega_P}{2}\right) = 1.155, \quad K_P = -1 \text{ dB}$$

$$\Omega_S' = \frac{2}{1} \tan\left(\frac{\omega_S}{2}\right) = 2, \quad K_S = -40 \text{ dB}$$

Butterworth filter:

$$N = \frac{\log \left[\left(10^{\frac{-K_P}{10}} - 1 \right) / \left(10^{\frac{-K_S}{10}} - 1 \right) \right]}{2 \log \left(\frac{\Omega'_P}{\Omega'_S} \right)}$$
$$= 9.618$$

Rounding off to next larger integer, we get N = 10.

----[2M]

Chebyshev I filter:

$$K_P = 20 \log(1 - \delta_P) = -1$$

$$\delta_P = 0.11$$

$$K_S = 20 \log \delta_S = -40$$

$$\delta_S = 0.01$$

$$d = \sqrt{\frac{(1 - \delta_P)^{-2} - 1}{\delta_S^{-2} - 1}} = 5.1234 \times 10^{-3}$$

$$K = \frac{\Omega_P'}{\Omega_S'} = 0.5775$$

$$N \geqslant \frac{\cosh^{-1}(\frac{1}{d})}{\cosh^{-1}(\frac{1}{K})}$$

$$N \geqslant 5.21$$

Hence, minimum filter order N = 6.

----[1M]

3b Compare Elliptic and Bessel filters in terms of frequency response and phase characteristics.

03

	Aspect	Elliptic Filter		
		subuc titlet	Bessel Filter	
	Passband ripple	Ripple is allowed in the passband	Maximally flat no ripple	
	Stopband attenuation	Very sharp roll off-best selectivity per order	Gradual roll off poor selectivity	
	Transition bandwidth	Very narrow sharpest among classic filter	S Very wide-slow transition	
	Order efficiency	Requires lower order for a given spec	Needs much higher order to match attenuation	
	Aspect Ellipt	ic Filter Bes	ssel Filter	
	Phase Poor linearity	non linear phase response Exc	tellent nearly linear phase in passband	
4a	Consider a fift passband ripp f=2KHz.	th-order lowpass Chebyshev le of 1dB. What is the attenu	v-1 filter with the passband of 1 KHz and uation of this filter in dB at f=1KHz and	
Ans	1-21(112.	$ H(j\Omega) = \frac{1}{\left[1 + \epsilon^2 T_N^2 \left(\frac{\Omega}{\Omega \epsilon}\right)\right]^{\frac{1}{2}}}$		
	With $N = 5$, we get	[(37)3		
	With $N=5$, we get $ H(j\Omega) = \frac{1}{\left[1 + \epsilon^2 T_5^2 \left(\frac{\Omega}{2\pi e^{-j\Omega}}\right)\right]^{\frac{1}{2}}}$			
	Given $K_P = -1$. Since, $K_P = 20 \log \left(\frac{1}{\sqrt{1+\epsilon^2}}\right)$, we get			
	$20\log\left[\frac{1}{\sqrt{1+\epsilon^2}}\right] = -1$			
	$\Rightarrow \qquad \epsilon = 0.50885$			
	that, $T_5(x) = 16x^5 - 20x^3 + 5x$			
	$\left(\frac{\Omega}{2\pi \times 10^3}\right) = 16\left(\frac{\Omega}{2\pi \times 10^3}\right)^5 - 20\left(\frac{\Omega}{2\pi \times 10^3}\right)^3 + 5\left(\frac{\Omega}{2\pi \times 10^3}\right)$			
	$ H(j\Omega) = \frac{1}{\left[1 + (0.50885)^2 \left(16\left(\frac{\Omega}{2\pi \times 10^3}\right)^5 - 20\left(\frac{\Omega}{2\pi \times 10^3}\right)^3 + 5\left(\frac{\Omega}{2\pi \times 10^3}\right)\right]^2\right]}$			
	$A_{\perp} = -20 \log H(j\Omega) _{\Omega = 2\pi \times 10^3} = 1 \text{ dB}$			
	A	$= -20 \log H(j\Omega) _{\Omega=0}$	$_{2\pi \times 2 \times 10^3} = 45.31 \text{ dB}$	0:
4b	Derive the m	athematical relationship for	r the bilinear transformation which used to map the	
	analog s-don	nain to the digital z-domain	ini digital filor designi	0
5a	Transform the analog filter $H_a(s) = \frac{s+1}{s^2 + 5s + 6}$			
		$H_a(s)$	$s^2 = \frac{1}{s^2 + 5s + 6}$	
	Into H(z) usi	no Impulse Invariant transf	formation. Take T=0.1 sec.	

		$\frac{C_1}{s+2} + \frac{C_2}{s+3}$
C_1	=	$\frac{s+1}{s+3}\Big _{s=-2} = -1$
C_2	Western Street	$\left. \frac{s+1}{s+2} \right _{s=-3} = 2$
$s_1 = -2$ and $s_2 = -3$.		

$$H_a(s)$$
 are $s_1 = -2$ and $s_2 = -3$.

$$H(z) = \sum_{i=1}^{N} \frac{C_i}{1 - e^{s_i T} z^{-1}}$$

$$\Rightarrow H(z) = \sum_{i=1}^{2} \frac{C_i}{1 - e^{s_i T} z^{-1}}$$

$$= \sum_{i=1}^{2} \frac{C_i z}{z - e^{s_i T}}$$

$$H(z) = \frac{C_1 z}{z - e^{s_1 T}} + \frac{C_2 z}{z - e^{s_2 T}}$$

$$= \frac{-z}{z - e^{-0.2}} + \frac{2z}{z - e^{-0.3}}$$

$$= \frac{-z}{z - 0.8186} + \frac{2z}{z - 0.7408}$$

$$= \frac{z^2 - 0.8964z}{z^2 - 1.559z + 0.6065}$$

$$= \frac{1 - 0.8964 z^{-1}}{1 - 1.559 z^{-1} + 0.6065 z^{-2}}$$

_		•		Ĺ
	5b	The impulse response of linear phase FIR filter starts at the values	04	1
		h(0)=1, $h(1)=3$, $h(2)=-2$.		
		For N being odd and even find the conditions of the smallest order FIR filter that satisfies		
	- 1	the linear above and the		

	the linear phase condition.	
Ans	Case (i): N odd and $h(n) = h(N-1-n)$.	. 0
	With $N = 5$, we have	1001 = 59 = 5 = 9 = 5 24
	h(n) = (1, 3, -2, 3, 1)	$\mathcal{M}(0) = \{3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$

(if):
$$N$$
 even and $h(n) = h(N - 1 - n)$.
With $N = 6$, we have

$$h(n) = \{1, 3, -2, -2, 3, 1\}$$
 $h(n) = \{2, -5, -2, -2, -5, 2\}$

(iii): N odd and
$$h(n) = -h(N-1-n)$$
.
With $N = 7$, we have

$$h(n) = (1, 3, -2, 0, 2, -3, -1)$$
 $h(n) = \begin{cases} 2, -5, -2, 0, 2, 5, 2 \end{cases}$

(iv): N even and
$$h(n) = -h(N-1-n)$$
.
With $N = 6$, we have

$$h(n) = (1, 3, -2, 2, -3, -1) \quad h(n) > \begin{cases} 2, -5, -2, 2, 5, -2 \end{cases}$$