Escuela Técnica Superior de Ingeniería Informática

Estructuras Algebraicas para la Computación

16 de junio de 2015

Apellidos y Nombre: Grupo:
DNI: Firma: Grupo:
 Se deben justificar adecuadamente las respuestas. Para que un ejercicio se considere resuelto correctamente se debe indicar claramente el modelo matemático usado en la resolución y la justificación de su adecuación. No se valorará la mera coincidencia del resultado propuesto. No usar lápiz, se debe escribir con bolígrafo azul o negro. No se puede utilizar ningún dispositivo electrónico.
1. (3 pt.) En el espacio vectorial \mathbb{R}^4 se consideran los subespacios
$\mathcal{U} = \{ \vec{x} \in \mathbb{R}^4 \mid x_1 - x_3 = 0, \ x_2 - x_4 = 0 \} $ $\mathcal{W} = \mathcal{L}\Big((2, 1, -2, -1), (1, 1, -1, -1), (1, 2, -1, -2) \Big)$
$a)$ Estudiar si \mathcal{U} es subespacio ortogonal a \mathcal{W} .
b) Hallar (si es posible) una base \mathcal{B}_1 de \mathcal{U} y otra base \mathcal{B}_2 de \mathcal{W} tales que $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ sea una base ortonormal de \mathbb{R}^4 .
c) Dado $\vec{v} = (2, -1, 2, 2)$, encontrar vectores $\vec{u} \in \mathcal{U}$ y $\vec{w} \in \mathcal{W}$ tales que $\vec{v} = \vec{u} + \vec{w}$.
d) Determinar una matriz A cuyos valores propios sean 1 y -1 y estén asociados a los subespacios $\mathcal U$ y $\mathcal W$ respectívamente.
e) Justificar si dicha matriz A es diagonalizable.
f) Usar el teorema de Cayley-Hamilton para expresar A^{-1} en función de potencias de A .
2. (1 pt.) Dada la aplicación lineal $f: \mathbb{R}_3(t) \to \mathbb{R}_3(t)$ definida $f(p(t)) = p'(t)$, se pide:
a) Obtener $Ker(f)$ e $Im(f)$.
b) Deducir si f es inyectiva y/o sobreyectiva.
c) Demostrar que $\mathcal{B} = \{1 - t + t^2, t^3, t - t^3, t^2\}$ es una base de $\mathbb{R}_3(t)$.
d) Hallar la matriz asociada a f respecto de la base \mathcal{B} .
3. (1 pt.) En el espacio vectorial \mathbb{R}^4 se consideran los subespacios
$\mathcal{U} = \{ \vec{x} \in \mathbb{R}^4 \mid x_1 - x_3 = 0, \ x_2 - x_4 = 0 \} $ $\mathcal{V} = \{ \vec{x} \in \mathbb{R}^4 \mid x_1 - x_4 = 0, \ x_2 + \alpha x_4 = 0 \}$
■ Hallar los posibles valores del parámetro α tales que I) $dim(\mathcal{U} \cap \mathcal{V}) = 0$ II) $dim(\mathcal{U} \cap \mathcal{V}) = 1$ III) $dim(\mathcal{U} \cap \mathcal{V}) = 2$
lacktriangle Hallar los posibles valores del parámetro $ lpha $ tales que

IV) $dim(\mathcal{U} + \mathcal{V}) = 2$ V) $dim(\mathcal{U} + \mathcal{V}) = 3$ VI) $dim(\mathcal{U} + \mathcal{V}) = 4$

4. (1 p.) En el conjunto \mathbb{R} de los números reales se consideran los subconjuntos:

$$A = \{x \in \mathbb{R} \mid 2 \le x \le 4\} \qquad B = \left\{b_n = \frac{4n}{n+4} \mid n \in \mathbb{N}\right\}$$

Determinar los cardinales de cada uno de los conjuntos:

- (i) A (ii) B (iii) $A \cap B$
- (iv) B-A

5. (1 p.) Se sabe que la matriz generadora de un cierto código es

$$\mathcal{G} = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

a) Determinar el mensaje que se enviará para comunicar $\ C\ D$ usando la equivalencia:

$$111\ A\quad 110\ D\quad 101\ R\quad 100\ S\quad 011\ Q\quad 010\ C\quad 001\ O\quad 000\ T$$

- palabras pertenecen o no al código calculando su síndrome.
- c) Decodificar y traducir el mensaje recibido usando la equivalencia anterior.
- 6. (1 p.) Sean las expresiones booleanas

$$E_1(x,y,z) = \overline{x+\overline{z}} + \overline{y} \cdot z + \overline{y+z}$$
 y $E_2(x,y,z) = \overline{x\cdot z + y\cdot \overline{z}} + \overline{y}$

- a) Determinar si $E_1(x, y, z)$ y $E_2(x, y, z)$ son equivalentes.
- b) Estudiar si mediante la expresión booleana E_2 se puede especificar la función booleana $F(x, y, z) = \overline{x}z + \overline{y}$
- c) Hallar la forma normal disyuntiva y la forma normal conjuntiva de la función booleana que se puede especificar mediante la expresión booleana $E_1(x,y,z)$.
- 7. (1 p.) Sea el conjunto parcialmente ordenado $(D_{300}, |)$.
 - a) Dibujar su diagrama de Hasse.
 - b) Determinar los elementos destacables del subconjunto $B = \{10, 15, 20, 50, 100\}$
 - c) Justificar que es un retículo acotado.
 - d) Estudiar si es complementado.
 - e) Dar una lista de átomos y otra lista de elementos ⊔− irreducibles.
 - f) Expresar 50 y 150 mediante elementos \sqcup irreducibles.
- 8. (1 p.) Dar ejemplos (si existen) de:
 - a) Un conjunto parcialmente ordenado que no sea retículo ordenado.
 - b) Un retículo distributivo que no sea complementado.
 - c) Un retículo complementado que no sea distributivo.
 - d) Un retículo con 16 elementos que sea álgebra de Boole.
 - e) Un retículo con 16 elementos que no sea álgebra de Boole.