Experiment No: 1

AIM: Introduction to Data science and Data preparation using Pandas steps.

THEORY:

Data Science:

Data Science is an interdisciplinary field that uses statistics, machine learning, and programming to extract insights from data. It involves collecting, cleaning, analyzing, and visualizing data to make informed decisions. Data scientists use tools like Python, SQL, and AI models to solve real-world problems in industries such as healthcare, finance, and marketing. With the increasing availability of big data, Data Science plays a crucial role in driving business strategies, automation, and innovation.

Pandas:

Pandas is a powerful Python library used for data manipulation and analysis. It provides data structures like Series (1D) and DataFrame (2D) that make handling structured data easy. With Pandas, you can load datasets, clean missing values, filter data, perform aggregations, and visualize trends efficiently. It is widely used in data science, machine learning, and finance for working with large datasets

STEPS:

Step 1: Load data in Pandas.

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

[] df = pd.read_csv('/content/Traffic_Collision_Data_from_2010_to_Present (2).csv')
```

The code imports essential libraries like Pandas for data manipulation, NumPy for numerical operations, Matplotlib and Seaborn for visualization. It then loads the "Traffic_Collision_Data_from_2010_to_Present (2).csv" file into a Pandas DataFrame (df) using pd.read_csv(), allowing further analysis and processing

Step 2: Description of the dataset.

Code 1: print(df.head())

Output:

			DR Number	Date I	Repor	rted	Date (Occur	red	Time	Occurre	d Are	a ID	Ar	ea Name	\
_		0	190319651	. 08	/24/2	2019	08)	/24/2	019		450	0	3	So	uthwest	
\rightarrow	Ż	1	190319680	08,	/30/2	2019	08)	/30/2	019		232	0	3	So	uthwest	
		2	190413769	08,	/25/2	2019	08,	/25/2	019		54	5	4	Hol	lenbeck	
		3	190127578	11,	/20/2	2019	11,	/20/2	019		350	0	1		Central	
		4	190319695	08,	/30/2	2019	08)	/30/2	019		210	0	3	So	uthwest	
			Reporting	Distr	ict	Crim	e Code	e Cri	me C	ode De	escription	on \				
		0			356		997	7	TR	AFFIC	COLLISI	ON				
		1		3	355		997	7	TR	AFFIC	COLLISIO	ON				
		2		4	422		997	7	TR	AFFIC	COLLISIO	ON				
		3		1	128		997	7	TR	AFFIC	COLLISI	ON				
		4		3	374		997	7	TR	AFFIC	COLLISI	ON				
							MO (Codes	Vi	ctim /	Age Vict	im Sex	vict	im D	escent	\
		0		3036	3004	3026	3101	4003		22	2.0	ľ	1		Н	
		1	3037 3006	3028	3030	3039	3101	4003		36	0.0	F			Н	
		2		3101	3401	3701	3006	3030		1	NaN	ľ	1		Х	
		3	0605	3101	3401	3701	3011	3034		21	1.0	ľ	1		Н	
		4	0605	4025	3037	3004	3025	3101		49	9.0	ľ	1		В	
			Premise (ode Pre	emise	e Des	cripti	ion					Addr	ess	\	
		0	10	1.0			STRE	EET	JEFF	ERSON				BL		
		1	10	1.0			STRE	EET	JEFF	ERSON				BL		
		2	10	1.0			STRE	EET				N	BROAD	YAW		
		3	10	1.0			STRE	EET						1ST		
		4	10	1.0			STRE	EET			MARTIN	LUTHER	KING	jR		

The output of df.head() displays the first five rows of the dataset, showing various columns such as DR Number, Date Reported, Date Occurred, Time Occurred, Area ID, Area Name, Reporting District, Crime Code, Crime Code Description, MO Codes, Victim Age, Victim Sex, Victim Descent, Premise Code, Premise Description, and Address. This provides an overview of traffic collision incidents, including location details, victim demographics, and crime codes.

Code 2: print(df.info())

Output:

_	lass 'pandas.core.frame.D ngeIndex: 619595 entries,							
	ata columns (total 18 columns):							
#		Non-Null Count	Dtype					
0	DR Number	619595 non-null	int64					
1	Date Reported	619595 non-null	object					
2	Date Occurred	619595 non-null	object					
3	Time Occurred	619595 non-null	int64					
4	Area ID	619595 non-null	int64					
5	Area Name	619595 non-null	object					
6	Reporting District	619595 non-null	int64					
7		619595 non-null	int64					
8	Crime Code Description	619595 non-null	object					
9	MO Codes	532293 non-null	object					
1	0 Victim Age	531691 non-null	float64					
1	1 Victim Sex	608958 non-null	object					
1	2 Victim Descent	608007 non-null	object					
1	3 Premise Code	618636 non-null	float64					
1	4 Premise Description	618635 non-null	object					
1	5 Address	619595 non-null	object					
1	6 Cross Street	590242 non-null	object					
1	17 Location 619595 non-null object							
	dtypes: float64(2), int64(5), object(11)							
me	mory usage: 85.1+ MB							
No	None							

The output of df.info() provides a summary of the dataset, showing that it has 619,595 rows and 18 columns. It displays the column names, the number of non-null values in each column, and their data types (int64, float64, and object). Some columns, like MO Codes, Victim Age, Victim Sex, and Cross Street, contain missing values. The memory usage of the dataset is 85.1+ MB, indicating a relatively large dataset.

Code 3: print(df.describe())

Output:

₹	count mean std min 25% 50% 75% max count mean std min 25% 50%	997.0 0.0 997.0 997.0 997.0	619595.000000 61352.441509 605.329745 1.000000 930.0000000 1430.0000000 1824.0000000 Victim Age 531691.0000000 41.386678 16.718899 10.0000000 28.0000000 38.0000000	11.074290 11.074290 5.883848 1.000000 6.000000 11.000000 11.000000 21.000000 Premise Code 618636.000000 102.431370 23.535171 101.000000 101.000000	Reporting District 619595.000000 1153.331095 589.513393 100.000000 666.000000 1162.000000 1653.000000 2199.0000000	\
	75% max	997.0 997.0	51.000000 99.000000	101.000000 970.000000		
	шах	997.0	33.000000	370.000000		

The dataset mainly records traffic collisions (Crime Code 997), with victim ages ranging from 10 to 99 (avg. 41.38). Incidents occur mostly in the afternoon (avg. Time: 1352). Area IDs range from 1 to 21, and Premise Codes mostly around 101.

Code 4: print(df.isnull().sum())

Output:

\rightarrow	DR Number	0
	Date Reported	0
	Date Occurred	0
	Time Occurred	0
	Area ID	0
	Area Name	0
	Reporting District	0
	Crime Code	0
	Crime Code Description	0
	MO Codes	87302
	Victim Age	87904
	Victim Sex	10637
	Victim Descent	11588
	Premise Code	959
	Premise Description	960
	Address	0
	Cross Street	29353
	Location	0
	dtype: int64	

The output shows missing values in various columns of the DataFrame. Columns like MO Codes (87,302), Victim Age (87,904), Victim Sex (10,637), Victim Descent (11,588), Premise Code (959), Premise Description (960), and Cross Street (29,353) have null values, while others like DR Number, Date Reported, Crime Code, and Location have none. This indicates the need for data cleaning and imputation before further analysis.

Div: D15C

Step 3: Drop columns that aren't useful.

Code:

```
columns_to_drop = ['Crime Code Description', 'MO Codes', 'Address', 'Cross
Street']
df.drop(columns=columns_to_drop, inplace=True)
print(df.head())
```

Output:

₹	1	ð 1 2	190319651 190319680 190413769	08/24/2 08/30/2 08/25/2	2019 2019 2019	08/2 08/3 08/2	4/2019 0/2019 5/2019	Tim∈	2 Occurred 450 2320 545	3 3 4	South South Holler	west west beck	\
		3 4	190127578 190319695	08/30/2		11/2 08/3			350 2100	1		tral	
	-	*	190319093	00/30/	2013	00/3	0/2019		2100		30uci	WEST	
			Reporting	District	Crim	ie Code	Victim	Age	Victim Sex	Victim	Descent	\	
	6	9		356		997		22.0	М		Н		
	1	1		355		997		30.0	F		Н		
	2	2		422		997		NaN	М		Х		
	3	3		128		997		21.0	М		Н		
	4	4		374		997		49.0	M		В		
	1	0 1 2 3	10: 10: 10: 10:	ode Premise 1.0 1.0 1.0 1.0	e Des	STREE STREE STREE STREE STREE	T (34. T (34. T (34. T (34.	0256, 0738, 0492,	Location -118.3002 -118.3089 -118.2078 -118.2391 -118.3182)))			

The dataset has been cleaned by dropping Crime Code Description, MO Codes, Address, and Cross Street columns. The updated head() output confirms the presence of essential fields like DR Number, Date Reported, Date Occurred, Time, Area, Reporting District, Crime Code, Victim Details, and Location

Step 4: Drop rows with maximum missing values.

Code:

```
threshold = df.shape[1] * 0.7
df.dropna(thresh=threshold, inplace=True)
```

This command removes rows with more than 30% missing values based on the total number of columns. Now, the dataset contains only rows where at least 70% of the columns have valid (non-null) data.

Step 5: Take care of missing data.

Code:

```
df.fillna({'Victim Age': df['Victim Age'].median()}, inplace=True)
categorical_columns = ['Victim Sex', 'Victim Descent', 'Premise Description',
'Premise Code']
for col in categorical_columns:
    df[col].fillna(df[col].mode()[0], inplace=True)
print(df.isnull().sum())
```

Output:

```
df[col].fillna(df[col].mode()[0], inplace=True)
DR Number
Date Reported
                       0
Date Occurred
                       0
Time Occurred
                       0
Area ID
                       0
Area Name
                       0
Reporting District
                       0
Crime Code
                       0
Victim Age
                       0
Victim Sex
                       0
Victim Descent
                       0
Premise Code
                       0
Premise Description
                       0
Location
                       0
dtype: int64
```

The provided code fills missing values in the DataFrame. The Victim Age column is filled with its median value, while categorical columns (Victim Sex,

Victim Descent, Premise Description, and Premise Code) are filled with their mode (most frequent value). Finally, print(df.isnull().sum()) confirms that all missing values have been handled.

Step 6: Create dummy variables.

Code:

```
df = pd.get_dummies(df, columns=['Area Name', 'Victim Sex', 'Premise
Description'],
drop first=True)
```

This **code applies one-hot encoding to the categorical columns** 'Area Name', 'Victim Sex', and 'Premise Description' using **pd.get_dummies()**, converting them into numerical format for machine learning models. The drop_first=True argument removes the first category from each column to avoid a dummy variable trap, reducing multicollinearity.

Step 7: Find out outliers (manually)

Code 1:

```
plt.figure(figsize=(12,6))
sns.boxplot(x=df['Victim Age'])
plt.title('Boxplot of Victim Age')
plt.show()
```

Output:

This boxplot visualizes the distribution of 'Victim Age', highlighting the median, interquartile range (IQR), and outliers. The box represents the middle 50% of the data (Q1 to Q3), while the whiskers extend to the non-outlier minimum and maximum values. The circles beyond the whiskers indicate outliers, which are significantly high ages in this case.

Div: D15C

Code 2:

```
Q1 = df['Victim Age'].quantile(0.25)
Q3 = df['Victim Age'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = df[(df['Victim Age'] < lower_bound) | (df['Victim Age'] > upper_bound)]
print("Number of Outliers in Victim Age:", len(outliers))
```

Output:

```
Number of Outliers in Victim Age: 16813
```

There are **16,813 outliers** in the 'Victim Age' column based on the IQR method, indicating a significant number of extreme values.

Code 3:

```
Q1 = df['Victim Age'].quantile(0.25)
Q3 = df['Victim Age'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = df[(df['Victim Age'] < lower_bound) | (df['Victim Age'] > upper_bound)]
print(outliers[['Victim Age']])
```

Output:

→		Victi	n Age
	100		84.0
	101		99.0
	141		99.0
	146		88.0
	152		90.0
	619509		99.0
	619543		78.0
	619566		83.0
	619573		99.0
	619591		99.0
	[16813	rows x	1 columns]

Step 8: Standardization

Code:

from sklearn.preprocessing import StandardScaler

```
scaler = StandardScaler()
df['Victim Age Standardized'] = scaler.fit_transform(df[['Victim Age']])
print(df[['Victim Age', 'Victim Age Standardized']].head())
```

Output:

→		Victim Age	Victim Age Standardized
	0	22.0	-1.217182
	1	30.0	-0.702145
	2	38.0	-0.187107
	3	21.0	-1.281562
	4	49.0	0.521069

The output shows the 'Victim Age' column standardized using StandardScaler, where values are transformed into z-scores (mean = 0, standard deviation = 1). Negative values indicate ages below the mean, while positive values indicate ages above it.

Step 9: Normalization

Code:

from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df['Victim Age Normalized'] = scaler.fit_transform(df[['Victim Age']]) print(df[['Victim Age', 'Victim Age Normalized']].head())

Output:

		Victim Age	Victim Age Normalized
	0	22.0	0.134831
	1	30.0	0.224719
	2	38.0	0.314607
	3	21.0	0.123596
	4	49.0	0.438202

The output shows the 'Victim Age' column normalized using MinMaxScaler, which scales values between 0 and 1. This ensures that the smallest age is mapped to 0 and the largest to 1, with all other values proportionally adjusted in between.

CONCLUSION:

We analyzed the 'Victim Age' data to understand its distribution and identify unusual values (outliers). First, we used a **boxplot** to visualize the spread of ages and detect outliers. Then, we calculated the **Interquartile Range (IQR)** to find and count the extreme values. Next, we **standardized** the ages using StandardScaler, which transforms the data to have a mean of 0 and a standard deviation of 1. Finally, we applied **MinMaxScaler to normalize the data**, scaling values between 0 and 1. These steps help in preparing the data for further analysis by making it more consistent and removing biases caused by extreme values.