问题一:

1.1ER 图描述:

实体集:

Student (学生): 属性包括 Student id 作为主码。

Course (课程): 属性包括 Course id 作为主码。

Section (课程段):属性包括 Section_id 作为主码,Course_id 作为外键,关联到课程。

Exam (考试): 属性包括 Exam_id 作为主码, Section_id 作为外键, 关联到 Section。

二元联系方式:

EnrollsIn (学生注册课程段): 连接 Student 和 Section,表示一个学生可以注册多个课程段,一个课程段可以有多个学生。 无附加属性。

HasExam (课程段有考试):连接 Section 和 Exam,表示一个课程段可以有多次考试。无附加属性。

TakesExam(学生参加考试):连接 Student 和 Exam,使用多值属性 Grade 表示学生在该考试中的成绩。属性为 Grade 多值属性,表示不同考试的成绩)。

Sec_course(课程段属于课程):连接 Section 和 Course 表示一个课程可以有多各课程段。无附加属性。

Grade 是多值属性,附加在 TakesExam 联系上,允许一个学生在同一个考试中可能有多个成绩记录,例如不同评分标准下的成绩,并满足要求表示学生在不同考试中的成绩。

ER 图文字描述:

Student(Student id)---EnrollsIn---Section(Section id,course id)

Section(Section id)---HasExam---Exam(Exam id, Section id)

Section(Section id, course id)---Sec course---Course(course id)

Student(Student id)---TakesExam (Grade: 多值) ---Exam (Exam id)

1.2 关系模式:

根据上述 ER 图,转换为关系模式如下:

Student(id, tot_cred):主码: idStudent 实体表示学生, id 是每个学生的主码 唯一标识, tot cred 表示总学分。

Course(id、name):主码: id,课程实体表示课程,id是每个课程的主码唯一标识,name是课程名称。

Section(sec_id, cou_id):主码: sec_id, Section 实体表示课程段, sec_id 是主码 唯一标识课程段, cou id 是外键, 关联到 Course (id)。

Exam(id、stu_id、sec_id):主码: id, Exam 实体表示考试, id 是主码唯一标识考试, stu_id 和 sec_id 分别为外键, 分别关联到 Student (id)和 Section (sec_id)。

EnrollsIn(id, sec_id): 主码: (id, sec_id), EnrollsIn 是 Student 和 Section 之间的多对多联系,表示学生注册课程段。id 和 sec_id 分别是外键,分别关联到 Student (id)和 Section (sec_id),联合主码(id, sec_id)每个注册记录的唯一标识。

Sec_course(sec_id, id):主码: (sec_id, id), Sec_course 是 Section 和 Course 之间的多对多联系,表示课程段课程。sec_id 和 id 分别是外键,分别关联到 Section (sec_id)和 Course (id),联合主码(sec_id, id)唯一标识属于每个课程段-课程。

TakesExam(stu_id, exam_id, Grade)主码: (stu_id, exam_id), TakesExam 是 Student 和 Exam 之间的多对多联系,表示学生参加考试并获得成绩。id 和 id_2 分别是外键,分别关联到 Student (id)和 Exam (id),联合主码(stu_id, exam_id)唯一标识每个学生对考试。Grade 是多值属性,表示学生在该考试中的成绩。

问题二:

证明:

设关系模式为R(A,B),只有两个属性。要判断是否属于 BCNF,我们需要检查:每一个非平凡的函数依赖 $X \to Y$,是否满足 X 是超码,即 X 能决定所有属性。

所有可能的函数依赖: 在R(A,B)中,非平凡的函数依赖最多只有两种: $A \rightarrow B$, $B \rightarrow A$ 。

如果存在任何一个函数依赖,比如 $A \to B$,那么由于 A 能决定 B,也就能决定整个关系 $A \to AB$,所以 A 是候选码(即超码)。同理,若 $B \to A$,则 B 是候选码。

综上:在仅有两个属性的关系中,如果存在非平凡的函数依赖,那决定另一属性的一方一定是候选码。因此所有非平凡依赖都满足 BCNF 的定义。若没有任何非平凡依赖,那更是自动满足所有范式,包括 BCNF。

问题三:

我们将原关系r(A,B,C,D,E)分解为:

- 1. $R_1(A,B,C)$, 保留依赖 $A \to BC$, 因 $A^+ = \{A,B,C\}$,满足 BCNF;
- 2. $R_3(B,C,E)$,保留依赖 $BC \to E$,因 $BC^+ = \{B,C,E\}$,满足 BCNF:
- 3. $R_5(A,B,C,D)$,保留依赖 $CD \to AB$,因 $CD^+ = \{A,B,C,D,E\}$,满足BCNF。

所有子关系都满足左边是超码,每个依赖都在其所在的子关系中被保留,

且可以重构原始关系。