(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年2月10日(10.02.2005)

PCT

(10) 国際公開番号 WO 2005/012520 A1

(51) 国際特許分類7:

C12N 15/09,

A01H 1/00, 5/00, C12N 5/04

(21) 国際出願番号: PCT/JP2004/011307

(22) 国際出願日: 2004年7月30日(30.07.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

60/491,837 2003 年7 月31 日 (31.07.2003)

- (71) 出願人(米国を除く全ての指定国について): 本田技研 工業株式会社 (HONDA MOTOR CO., LTD.) [JP/JP]; 〒1078556 東京都港区南青山二丁目 1 番 1 号 Tokyo (JP).
- (72) 発明者; および
- 発明者/出願人 (米国についてのみ): 西村 明日香 (NISHIMURA, Asuka) [JP/JP]; 〒3510114 埼玉県和 光市本町8丁目1番株式会社ホンダリサーチイ ンスティチュートジャパン内 Saitama (JP). 松岡 信 (MATSUOKA, Makoto) [JP/JP]; 〒4580015 愛知県名 古屋市緑区篠の風3-252滝の水住宅9-203 Aichi (JP). 芦苅 基行 (ASHIKARI, Motoyuki) [JP/JP]; 〒4650072 愛知県名古屋市名東区牧の原1-1401 ニューパビリオン加藤407 Aichi (JP).
- (74) 代理人: 清水 初志, 外(SHIMIZU, Hatsushi et al.); 〒 3000847 茨城県土浦市卸町1-1-1 関鉄つくばビ ル6階 Ibaraki (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,

ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

規則4.17に規定する申立て:

AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)の指定のための先の出願に基づく優先権を 主張する出願人の資格に関する申立て(規則4.17(iii))

添付公開書類:

- 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受 領の際には再公開される。

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: GENE IMPARTING REDIFFERENTIATION ABILITY OF PLANT AND UTILIZATION OF THE SAME
- (54) 発明の名称:植物の再分化能を付与する遺伝子、並びにその利用
- /012520(57) Abstract: By using chain analysis, a gene participating in the redifferentiation ability of a plant is successfully isolated and identified. Further, a method of breeding a high-redifferentiation variety, a method of transforming a variety which can be hardly cultivated and a method of selecting a transformed cell, each with the use of the above gene, are found out. These findings are useful in the fields of plant breeding, gene analysis with the use of the transformation method and so on.
 - (57) 要約: 連鎖解析により、植物の再分化能に関与する遺伝子の単離・同定に成功した。また、該遺伝子を利用し た高再分化品種の育種手法、培養困難品種の形質転換法および形質転換細胞の選抜法をも見出した。本発明は、植 物の品種改良等の分野において、また形質転換法を用いた遺伝子解析等の分野において有用である。

- 1 -

明細書

植物の再分化能を付与する遺伝子、並びにその利用

5 技術分野

本発明は、植物の再分化能を付与する遺伝子の単離・同定、並びに該遺伝子を 利用した再分化能の増加、形質転換細胞の選抜法に関する。本発明によれば、植 物の培養特性の改良、および安全性に配慮した形質転換法の開発が可能となる。

10 背景技術

20

25

植物の分化した組織は、適当な条件下に置くと脱分化し細胞分裂を経てカルス (脱分化細胞群)を形成する。カルスはさらに条件により再分化を引き起こし完 全な植物体を再生することができる。このような分化した細胞もしくは脱分化し た細胞が個体を再生しうる能力は分化全能性と言い、1930~1950 年代のタバコ もトマトなどの培養研究により最初に実証された。組織培養技術は、この分化全 能性をもとにした技術であり、細胞融合や胚珠培養による新品種の作出や育種年 数の短縮、遺伝形質の固定など特に植物育種の分野で広く利用されてきた。近年 では遺伝子機能解析を目的とした人為的な遺伝子導入(形質転換法)における基 幹技術として、分子育種や植物の基礎研究にも欠かせない技術となっている。

一般に分化全能性は全ての植物が保持する能力とされているが、実際は植物種や品種、器官によってその能力を発揮しやすいものと、しにくいものがあることが知られている。双子葉植物に比べて主要作物のイネ、ムギ、トウモロコシなどの単子葉植物は組織培養、再分化が困難であるため形質転換法を始めとした培養を用いる解析には多くの試行錯誤が必要である。イネでは特定の品種の完熟種子を用いることにより比較的容易な培養系が確立されているものの、十分な再分化能を持つ品種は限られている。特に良食味品種のコシヒカリ、ササニシキ、熱帯

- 2 -

地方で多く栽培されている IR 系統の品種は再分化能が低く、組織培養による植物体の再生が困難である。これら品種の再分化能が向上できれば、品種改良や遺伝子の特性研究に役立つだけでなく、再分化過程のメカニズムの解明にもつながり、さらには他の培養困難植物種や品種の再分化能の改善も期待される。

5 また近年、多くの遺伝子組換え農作物 (GMO)が開発され年々作付け面積が増加 している一方で、その安全性に不安を持つ消費者が多い。GMO の安全性議論にお いて最も問題視されているのは GMO に抗生物質耐性遺伝子が組み込まれていると いう点である。従って抗生物質耐性遺伝子を用いない形質転換法の開発はこれま での GMO に対する消費者の不安感を和らげると同時に、高価な抗生物質が不要で 10 かつ簡易な形質転換法として研究開発者にもメリットがあると期待される。

発明の開示

15

20

25

-再分化能は複数の遺伝子の相互作用による量的形質(QTL)として支配されており、未だその遺伝子座に存在する再分化能遺伝子の単離に成功した報告はない。本発明の目的は、植物の再分化能に関与する遺伝子の単離・同定、並びに該遺伝子を利用した植物の改良方法、さらには該遺伝子を選抜マーカーとして利用する形質転換法を提供することにある。

本発明者らは再分化能 QTL の検出に用いる雑種集団の育成に先駆け、雑種集団の親となる品種の選定を試み、再分化能に明瞭な差が見られた日本型イネの「コシヒカリ」とインド型イネ「カサラス」 2 つの品種を選抜した(図 1 写真)。これら二つの品種を交雑した F1 個体に、コシヒカリを反復親とした戻し交雑と自殖を行い、99 系統の BC1F1 集団を作成後、BC1F2 種子を採種した。各系統のBC1F2 種子 20 粒ずつ用いてカルスを誘導培地で 30 日間培養した後、増殖したカルスを再分化培地に移植しさらに 30 日間培養した。30 日後、1 粒あたりのカルス重とシュート数を計測し、各系統について 20 粒の平均値をとりそれを再分化能とした(図 1 グラフ)。各系統の遺伝子型は 262 個の PCR マーカーを用いて決定

- 3 -

した。これらのデータをもとに再分化能に関する QTL 解析を行った結果、再分化 能を増加させる効果を持つ4箇所のQTLを検出した(図2)。この内、第1番染色 体短腕 TGS2451 マーカー近傍にカサラスのゲノムがコシヒカリに対して再分化能 を増加させる効果の大きい QTL (PSR1; Promoter of Shoot Regeneration 1) を 見いだすことに成功した(図2)。次に PSR1 遺伝子の大まかな座乗領域を特定す るために BC2F1 集団の中から PSR1 領域がカサラスに置換された 30 個体を選抜し、 それらの種子(BC2F2種子)各10粒ずつを用いてカルスを誘導した。増殖カル スから DNA を抽出し分子マーカーにより遺伝子型を明らかにするとともに再分化 能を調査し、連鎖解析を行った。さらに、詳細な座乗領域の特定のために PSR1 が分離する BC3F2 種子約 3,800 粒を用いて分子マーカーによる遺伝子型を調査し、 高精度連鎖解析を行った。その結果、*PSR1* は分子マーカー3132 と P182 に挟まれ る約 50.8kb 領域内に座乗することが明らかになった(図 3)。この領域に存在す る遺伝子を予想した結果、Hypothetical Proteinも含め4つの遺伝子の存在が 示唆された。この内、どの遺伝子が再分化能遺伝子であるか同定するために、カ サラス BAC ライブラリー (平均長 120kb) を作成し、PSRI 領域を含む BAC クロー ン(BHAL15)を PCR スクリーニングにより単離した。BHAL15 クローン内の適当 な制限酵素部位を用いて各候補遺伝子領域を含むカサラスゲノム断片を調整しコ シヒカリに導入したところ、フェレドキシン亜硝酸還元酵素をコードすると予想 された遺伝子(*NiR*)を含むカサラスゲノム断片(図3の 3F)を導入した場合に のみコシヒカリの再分化能が増加することがわかった (図4)。 フェレドキシン 亜硝酸還元酵素はフェレドキシンを電子供与体として機能する亜硝酸還元酵素で あり、亜硝酸イオンをアンモニアに変換する作用を持つ。このフェレドキシン亜 硝酸還元酵素と予想された遺伝子領域およびその上流約 2kb についてカサラスと コシヒカリの塩基配列を決定し比較したところ、多数の塩基配列の変異が見出さ れた (図5)。また semi-quantitative RT-PCR およびリアルタイム定量 PCR によ りカルス中の本遺伝子 mRNA の発現量を調べたところ、カサラスではコシヒカリ

10

15

20

の約2.5 倍量の mRNA が存在することが分かった(図6左写真上段、中段、および右のグラフ)。また、NiR タンパク質に特異的な抗体を用いたウェスタンブロット解析においても、コシヒカリよりカサラスで NiR タンパク質が多く蓄積されていることが分かった(図6左写真下段)。さらに大腸菌で発現誘導した NiR 組換えタンパクを用いてナフチルエチレンジアミン法によりタンパク質量当たりのNiR 酵素活性を比較した結果、カサラスの NiR はコシヒカリの約1.6 倍高い酵素活性を示すことが分かった(図7)。以上の結果から、コシヒカリとカサラスの再分化能の違いは、第一に NiR 遺伝子の転写調節レベルの違いによるものであり、第二に合成されたタンパク質1分子当たりの活性の違いが要因であることが明らかになった。

10

15

20

カサラス PSRI 遺伝子のゲノム領域をコシヒカリに導入すると、再分化しない コシヒカリに再分化能を付与することができる。このことは、コシヒカリの形質 転換を行う際に、カサラス PSR1 遺伝子を選抜マーカーとして利用することが可 能であることを示唆している。すなわち、カサラス PSR1 遺伝子と目的遺伝子を 並列に組み込んだベクターをコシヒカリに導入すると、PSR1 遺伝子が導入され た細胞のみが再分化能を獲得するため、再分化した植物体には同時に目的遺伝子 も導入されていると予想される。そこでこの考えを実証するために、バイナリー ベクターpBI101の T-DNA 領域内にカサラス NiR genome + 35S promoter GUS、カ サラス NiR promoter :: NiR cDNA :: NiR terminator + 35S promoter GUS、イ ネ Actin1 promoter :: NiR cDNA :: NiR terminator + 35S promoter GUSを含 むベクター、および NiR遺伝子を含まないベクターを構築し、コシヒカリに導入 した。その結果、NiR遺伝子を含む3種類のベクターの導入ではいずれの場合で も多数の再分化個体が得られ、かつそれらが由来するカルスでは GUS 遺伝子によ る染色が認められた(図8)。さらに、毒性を示す亜硝酸を代謝する性質を有する NiR遺伝子の特徴を利用すると、高再分化能品種への形質転換においても NiR遺 伝子をマーカーとして用いることができた。具体的にはイネの高発現プロモータ

一の1つであるアクチンプロモーター制御下でNiR遺伝子を過剰発現させるベクターを高再分化品種カサラスに導入し、通常の野生型では増殖抑制される濃度の亜硝酸を添加した培地上において培養した。過剰に発現させたNiR遺伝子の効果により形質転換細胞のみが増殖し、増殖した細胞にのみGUS染色が認められた

- 5 (図9)。この選抜方法を用いることにより、従来の遺伝子組換え農作物の問題点とされている微生物由来の抗生物質耐性遺伝子(形質転換細胞の選抜マーカー)を用いることなくより安全性に考慮した組換え植物の作成が可能になった。また高価な抗生物質が不要であるため形質転換体の開発コストを削減することができた。
- 10 即ち、本発明は、植物の再分化能を増加させる遺伝子の単離および同定、ならびに該遺伝子を利用した植物の培養特性の改良、さらには該遺伝子を選抜マーカーとして利用する形質転換法に関し、以下の[1]~[22]を提供するものである。
 [1-] 植物の再分化能に関与する、下記(a)から(d)のいずれかに記載のD
- 15 (a) 配列番号:3に記載のアミノ酸配列からなるタンパク質をコードするDNA。

NA_o

20

- (b) 配列番号:1もしくは2に記載の塩基配列のコード領域を含む DNA。
- (c)配列番号:3に記載のアミノ酸配列において1または複数のアミノ酸が 置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタ ンパク質をコードする DNA。
- (d) 配列番号:1もしくは2に記載の塩基配列からなる DNA とストリンジェントな条件下でハイブリダイズする DNA。
- [2] 配列番号:3に記載のアミノ酸配列からなるタンパク質の部分ペプチドを コードする DNA。
- 25 [3] 配列番号: 1 もしくは2に記載の塩基配列のプロモーター領域を含む DNA。 [4] [1]または[2]に記載の DNA を含むベクター。

- 6 -

- [5] [3]に記載の DNA を含むベクター。
- [6] [4]に記載のベクターが導入された宿主細胞。
- [7] [4]に記載のベクターが導入された植物細胞。
- [8] [7]に記載の植物細胞を含む形質転換植物体。
- 5 [9] [8]に記載の形質転換植物体の子孫またはクローンである、形質転換植物 体。
 - [10] [8]または[9]に記載の形質転換植物体の繁殖材料。
 - [11] [1]または[2]に記載の DNA を植物細胞に導入し、該植物細胞から植物体を再生させる工程を含む、形質転換植物体の製造方法。
- 10 [12] [1]または[2]に記載の DNA によりコードされるタンパク質。
- [13] [6]に記載の宿主細胞を培養し、該細胞またはその培養上清から組換え タンパク質を回収する工程を含む、[12]に記載のタンパク質の製造方法。
 - [14] [12]に記載のタンパク質に結合する抗体。
- [15] 配列番号:1もしくは2に記載の塩基配列またはその相補配列に相補的 な少なくとも15の連続する塩基を含むポリヌクレオチド。
 - [16] [1]または[2]に記載の DNA を植物体の細胞内で発現させる工程を含む、 植物の再分化能を増加させる方法。
 - [17] [1]もしくは[2]に記載の DNA、または[4]に記載のベクターを有効成分とする、植物の再分化能を改変する薬剤。
- 20 [18] 植物細胞における再分化能を判定する方法であって、植物細胞における [1]に記載の DNA または[12]に記載のタンパク質の発現を検出する工程 を含む方法。
 - [19] 植物細胞における再分化能を判定する方法であって、植物細胞における[12]に記載のタンパク質の活性を検出する工程を含む方法。
- 25 [20] 植物における内因性の[12]に記載のタンパク質の活性を制御することを特徴とする、植物の再分化能を改良する方法。

- 7 -

- [21] 形質転換植物細胞の選抜方法であって、
 - (a) [1]または[2]に記載の DNA を選抜マーカーとして該 DNA を含む ベクターを植物細胞に導入する工程、および
 - (b) 該植物細胞を培養し、再分化能を獲得した植物細胞を選抜する工程、

を含む方法。

5

- [22] 植物における内因性の[1]または[2]に記載の DNA を交配により置換することを特徴とする、植物の再分化能を改変する方法。
- 10 本発明は、イネ由来のNiR タンパク質をコードするDNA を提供する。「カサラス」のゲノムDNA の塩基配列を配列番号:1に、「カサラス」のcDNA の塩基配列を配列番号:1に、「カサラス」のcDNA の塩基配列を配列番号:2に、該DNA がコードするタンパク質のアミノ酸配列を配列番号:3-に示す。また、「コシヒカリ」のゲノムDNA の塩基配列を配列番号:4に、「コシヒカリ」のcDNA の塩基配列を配列番号:5に、該DNA がコードするタンパク15 質のアミノ酸配列を配列番号:6に示す。

本発明によって、植物の PSRI 遺伝子の発現制御あるいは活性制御により植物の再分化能が向上できることが明らかになった。これによりコシヒカリのような培養困難品種の培養を可能にし、かつ安定的に高い再分化能を有する高再分化能品種の作出が可能となった。

20 本発明における「再分化能の向上」とは培養条件における植物の再分化能を高めるだけで、再分化個体の形態には変化をもたらさないことを意味する。この再分化能の向上により所望の品種を様々な培養実験に供することが可能となり、その結果、効率的に新品種の開発や遺伝子の機能解析を行うことができる。

本発明において、「植物の *PSRI* 遺伝子」とは、植物のフェレドキシン亜硝酸還 25 元酵素をコードする *NiR* 遺伝子を意味する。「植物の *PSRI* 遺伝子」には、イネの *PSRI* 遺伝子 (図 5)、および他の植物由来の *PSRI* 遺伝子が含まれる。また PSR1

タンパク質をコードする DNA には、ゲノム DNA、cDNA、および化学合成 DNA が含 まれる。ゲノム DNA および cDNA の調製は、当業者にとって常套手段を利用して 行うことが可能である。ゲノム DNA は、例えば、該 *PSR1* 遺伝子を有するイネ品 種(例えば、「コシヒカリ」)からゲノム DNA を抽出し、ゲノミックライブラリー (ベクターとしては、プラスミド、ファージ、コスミド、BAC、PACなどが 利用できる)を作成し、これを展開して、本発明タンパク質をコードする DNA (例えば、配列番号:1もしくは2)を基に調製したプローブを用いてコロニー ハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことに より調製することが可能である。また、本発明タンパク質をコードする DNA(例 10 えば、配列番号:1もしくは2)に特異的なプライマーを作成し、これを利用し たPCRをおこなうことによって調製することも可能である。また、cDNAは、 例えば、PSRI 遺伝子を有するイネ品種(例えば、「コシヒカリ」)から抽出した mRNA を基に cDNA を合成し、これを λ ZAP 等のベクターに挿入して cDNA ライブラ リーを作成し、これを展開して、上記と同様にコロニーハイブリダイゼーション あるいはプラークハイブリダイゼーションを行うことにより、また、PCR を行う 15 ことにより調製することが可能である。

本発明は、配列番号: 3に記載の PSR1 タンパク質 (「カサラス」) と機能的に 同等なタンパク質をコードする DNA を包含する。ここで「PSR1 タンパク質と同等の機能を有する」とは、対象となるタンパク質の発現量または活性を改変させることにより、再分化能を増加させる機能を有することを指す。

20

このような DNA には、例えば、配列番号: 3 に記載のアミノ酸配列において 1 若しくは複数のアミノ酸が置換、欠失、付加および/または挿入されたアミノ酸 配列からなるタンパク質をコードする変異体、誘導体、アレル、バリアントおよびホモログが含まれる。

25 アミノ酸配列が改変されたタンパク質をコードする DNA を調製するための当業者によく知られた方法としては、例えば、site-directed mutagenesis 法

(Kramer, W. & Fritz, H. -J. (1987) Oligonucleotide-directed construction of mutagenesis via gapped duplex DNA. Methods in Enzymology, 154: 350-367) が挙げられる。また、塩基配列の変異によりコードするタンパク質のアミノ酸配列が変異することは、自然界においても生じ得る。このように天然型のPSR1 タンパク質をコードするアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失もしくは付加したアミノ酸配列を有するタンパク質をコードするDNAであっても、天然型のPSR1 タンパク質(配列番号: 3)と同等の機能を有するタンパク質をコードする限り、本発明のDNAに含まれる。また、たとえ、塩基配列が変異した場合でも、それがタンパク質中のアミノ酸の変異を伴わない場合(縮重変異)もあり、このような縮重変異体も本発明のDNAに含まれる。

10

15

20

配列番号:3に記載のPSR1タンパク質と機能的に同等なタンパク質をコードするDNAを調製するために、当業者によく知られた他の方法としては、ハイブリダイゼーション技術(Southern, E.M. (1975) Journal of Molecular Biology, 98, 503) やポリメラーゼ連鎖反応 (PCR) 技術 (Saiki, R. K. et al. (1985) Science, 230, 1350-1354、Saiki, R. K. et al. (1988) Science, 239, 487-491)を利用する方法が挙げられる。即ち、当業者にとっては、PSR1遺伝子の塩基配列(配列番号:2)もしくはその一部をプローブとして、また PSR1遺伝子(配列番号:2)に特異的にハイブリダイズするオリゴヌクレオチドをプライマーとして、イネや他の植物から PSR1遺伝子と高い相同性を有する DNA を単離することは通常行いうることである。このようにハイブリダイズ技術や PCR 技術により単離しうる PSR1 タンパク質と同等の機能を有するタンパク質をコードする DNA もまた本発明の DNA に含まれる。

このような DNA を単離するためには、好ましくはストリンジェントな条件下で ハイブリダイゼーション反応を行う。本発明においてストリンジェントなハイブ 25 リダイゼーション条件とは、6M 尿素、0.4%SDS、0.5xSSC の条件またはこれと同 等のストリンジェンシーのハイブリダイゼーション条件を指す。よりストリンジ

ェンシーの高い条件、例えば、6M 尿素、0.4%SDS、0.1xSSC の条件を用いること により、より相同性の高い DNA の単離を期待することができる。これにより単離 された DNA は、アミノ酸レベルにおいて、PSR1 タンパク質のアミノ酸配列(配 列番号:3または6)と高い相同性を有すると考えられる。高い相同性とは、ア ミノ酸配列全体で、少なくとも50%以上、さらに好ましくは70%以上、さらに 5 好ましくは 90%以上(例えば、95%, 96%, 97%, 98%, 99%以上)の配列の同一性を指 す。アミノ酸配列や塩基配列の同一性は、カーリンおよびアルチュールによるア ルゴリズム BLAST (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990、Proc Natl Acad Sci USA 90: 5873, 1993) を用いて決定できる。BLAST のアルゴリズ 10 ムに基づいた BLASTN や BLASTX と呼ばれるプログラムが開発されている (Altschul SF, et al: J Mol Biol 215: 403, 1990)。BLASTNを用いて塩基配 列を解析する場合は、パラメーターは、例えば score=100、wordlength=12 と する。また、BLASTX を用いてアミノ酸配列を解析する場合は、パラメーターは、 例えば score=50、wordlength=3とする。BLAST と Gapped BLAST プログラムを 用いる場合は、各プログラムのデフォルトパラメーターを用いる。これらの解析 15 方法の具体的な手法は公知である。

ある DNA が再分化能に関与するタンパク質をコードするか否かは以下のようにして評価することができる。最も一般的な方法としては、該 DNA の機能を欠失させた上で栽培を行い、再分化能を調べる手法である。すなわち該 DNA の機能を保った条件と該 DNA の機能を欠失させた条件で培養し、再分化能を比較する方法である。再分化能が変わらないかほとんど同じ場合は、該 DNA は再分化能に関与しないと判断する。該 DNA が再分化能に関る場合は、再分化率はより増加し、その差を再分化能の程度とみなすことができる。

.20

本発明の DNA は、例えば、組み換えタンパク質の調製や再分化能が改変された 25 形質転換植物体の作出などに利用することが可能である。組み換えタンパク質を 調製する場合には、通常、本発明のタンパク質をコードする DNA を適当な発現べ

クターに挿入し、該ベクターを適当な細胞に導入し、形質転換細胞を培養して発 現させたタンパク質を精製する。組み換えタンパク質は、精製を容易にするなど の目的で、他のタンパク質との融合タンパク質として発現させることも可能であ る。例えば、大腸菌を宿主としてマルトース結合タンパク質との融合タンパク質 として調製する方法(米国 New England BioLabs 社発売のベクターpMAL シリー 5 ズ)、グルタチオン-S-トランスフェラーゼ(GST)との融合タンパク質として調製 する方法(Amersham Pharmacia Biotech 社発売のベクターpGEX シリーズ)、ヒス チジンタグを付加して調製する方法 (Novagen 社の pET シリーズ) などを利用す ることが可能である。宿主細胞としては、組み換えタンパク質の発現に適した細 胞であれば特に制限はなく、上記の大腸菌の他、例えば、酵母、種々の動植物細 10 胞、昆虫細胞などを用いることが可能である。宿主細胞へのベクターの導入には、 当業者に公知の種々の方法を用いることが可能である。例えば、大腸菌への導入 には、カルシウムイオンを利用した導入方法 (Mandel, M. & Higa, A. (1970) Journal of Molecular Biology, 53, 158-162, Hanahan, D. (1983) Journal of Molecular Biology, 166, 557-580) を用いることができる。宿主細胞内で発現 15 させた組み換えタンパク質は、該宿主細胞またはその培養上清から、当業者に公 知の方法により精製し、回収することが可能である。組み換えタンパク質を上記 のマルトース結合タンパク質などとの融合タンパク質として発現させた場合には、 容易にアフィニティー精製を行うことが可能である。また、後述する手法で、本 20 発明の DNA が導入された形質転換植物体を作成し、該植物体から本発明のタンパ ク質を調製することも可能である。従って、本発明の形質転換植物体には、後述 する、再分化能を改変するために本発明の DNA が導入された植物体のみならず、 本発明のタンパク質の調製のために本発明の DNA が導入された植物体も含まれる。 得られた組換えタンパク質を用いれば、これに結合する抗体を調製することが できる。例えば、ポリクローナル抗体は、精製した本発明のタンパク質若しくは 25 その一部のペプチドをウサギなどの免疫動物に免疫し、一定期間の後に血液を採

取し、血ペいを除去することにより調製することが可能である。また、モノクローナル抗体は、上記タンパク質若しくはペプチドで免疫した動物の抗体産生細胞と骨腫瘍細胞とを融合させ、目的とする抗体を産生する単一クローンの細胞(ハイブリドーマ)を単離し、該細胞から抗体を得ることにより調製することができる。これにより得られた抗体は、本発明のタンパク質の精製や検出などに利用することが可能である。本発明には、本発明のタンパク質に結合する抗体が含まれる。これらの抗体を用いることにより、植物体における再分化能に関与するタンパク質の発現部位の判別、もしくは植物種が再分化能に関与するタンパク質を発現するか否かの判別を行うことが出来る。

10 本発明の DNA を利用して再分化能が増加した形質転換植物体を作製する場合には、本発明のタンパク質をコードする DNA を適当なベクターに挿入して、これを植物細胞に導入し、これにより得られた形質転換植物細胞を再生させる。ベクターを導入する植物細胞としては、本発明の DNA の発現が低い植物細胞であることが好ましい。ここでいう「植物細胞」には、種々の形態の植物細胞、例えば、懸15 濁培養細胞、プロトプラスト、葉の切片、カルスなどが含まれる。

植物細胞の形質転換に用いられるベクターとしては、該細胞内で挿入遺伝子を発現させることが可能なものであれば特に制限はない。例えば、プラスミド「pBI121」、「pBI221」、「pBI101」(いずれも Clontech 社製)などが挙げられる。本発明のベクターは、本発明のタンパク質を恒常的または誘導的に発現させる20 ためのプロモーターを含有しうる。恒常的に発現させるためのプロモーターとしては、例えば、カリフラワーモザイクウイルスの35S プロモーター(Odell et al. 1985 Nature 313:810)、イネのアクチンプロモーター(Zhang et al. 1991 Plant Cell 3:1155)、トウモロコシのユビキチンプロモーター(Cornejo et al. 1993 Plant Mol. Biol. 23:567)などが挙げられる。

25 また、誘導的に発現させるためのプロモーターとしては、例えば糸状菌・細菌・ウイルスの感染や侵入、低温、高温、乾燥、紫外線の照射、特定の化合物の

散布などの外因によって発現することが知られているプロモーターなどが挙げられる。このようなプロモーターとしては、例えば、糸状菌・細菌・ウイルスの感染や侵入によって発現するイネキチナーゼ遺伝子のプロモーター (Xu et al.

1996 Plant Mol. Biol. 30:387) やタバコの PR タンパク質遺伝子のプロモーター (Ohshima et al. 1990 Plant Cell 2:95)、低温によって誘導されるイネの「1ip19」遺伝子のプロモーター (Aguan et al. 1993 Mol. GenGenet. 240:1)、高温によって誘導されるイネの「hsp80」遺伝子と「hsp72」遺伝子のプロモーター (Van Breusegem et al. 1994 Planta 193:57)、乾燥によって誘導されるシロイヌナズナの「rab16」遺伝子のプロモーター (Nundy et al. 1990

10 Proc. Natl. Acad. Sci. USA 87:1406)、紫外線の照射によって誘導されるパセリのカルコン合成酵素遺伝子のプロモーター (Schulze-Lefert et al. 1989 EMBO J. 8:651)、嫌気的条件で誘導されるトウモロコシのアルコールデヒドロゲナーゼ遺伝子のプロモーター (Walker et al. 1987 Proc. Natl. Acad. Sci. USA 84:6624) などが挙げられる。また、イネキチナーゼ遺伝子のプロモーターとタバコの PR タンパク質遺伝子のプロモーターはサリチル酸などの特定の化合物によって、「rab16」は植物ホルモンのアブシジン酸の散布によっても誘導される。

さらに、ベクターは、本発明のタンパク質をコードする DNA のプロモーターを有していてもよい。本発明のタンパク質をコードする DNA のプロモーター領域は、例えば、配列番号:1または2に記載の塩基配列からなる DNA またはその一部をプローブとしたゲノム DNA ライブラリーのスクリーニングにより取得することが可能である。

20

25

また、本発明は、本発明のベクターが導入された形質転換細胞を提供する。本 発明のベクターが導入される細胞には、組み換えタンパク質の生産に用いる上記 した細胞の他に、形質転換植物体作製のための植物細胞が含まれる。植物細胞と しては特に制限はなく、例えば、シロイヌナズナ、イネ、トウモロコシ、ジャガ イモ、タバコなどの細胞が挙げられる。本発明の植物細胞には、培養細胞の他、

植物体中の細胞も含まれる。また、プロトプラスト、苗条原基、多芽体、毛状根 も含まれる。植物細胞へのベクターの導入は、ポリエチレングリコール法、電気 穿孔法 (エレクトロポーレーション)、アグロバクテリウムを介する方法、パー ティクルガン法など当業者に公知の種々の方法を用いることができる。形質転換 植物細胞からの植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で 行うことが可能である(Toki et al. (1995) Plant Physiol. 100:1503-1507参 照)。例えば、イネにおいては、形質転換植物体を作出する手法については、ポ リエチレングリコールによりプロトプラストへ遺伝子導入し、植物体(インド型 イネ品種が適している)を再生させる方法 (Datta, S. K. (1995) In Gene

10 Transfer To Plants (Potrykus I and Spangenberg Eds.) pp66-74)、電気パルス によりプロトプラストへ遺伝子導入し、植物体(日本型イネ品種が適している) を再生させる方法(Toki et al. (1992) Plant Physiol. 100, 1503-1507)、パ ーティクルガン法により細胞へ遺伝子を直接導入し、植物体を再生させる方法 (Christou et al. (1991) Bio/technology, 9: 957-962.) およびアグロバクテ リウムを介して遺伝子を導入し、植物体を再生させる方法 (Hiei et al. (1994) 15 Plant J. 6: 271-282.) など、いくつかの技術が既に確立し、本願発明の技術分 野において広く用いられている。本発明においては、これらの方法を好適に用い ることができる。

一旦、ゲノム内に本発明の DNA あるいは本発明の DNA が導入された形質転換植 物体が得られれば、該植物体から有性生殖または無性生殖により子孫を得ること が可能である。また、該植物体やその子孫あるいはクローンから繁殖材料(例え ば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラスト等)を得て、 それらを基に該植物体を量産することも可能である。本発明には、本発明の DNA が導入された植物細胞、該細胞を含む植物体、該植物体の子孫およびクローン、 25 並びに該植物体、その子孫、およびクローンの繁殖材料が含まれる。

20

このようにして作出された再分化能が改変された植物体は、野生型植物体と比

較して、その再分化能が変化している。例えば、イネアクチンプロモーターの制御下において PSR1 タンパク質をコードする DNA を導入した植物体では、その再分化能の増加が期待される。本発明の手法を用いれば、有用農作物であるイネにおいては、その再分化能を増加することができ、高再分化能イネ品種の育成の上で非常に有益である。

また、本発明は、配列番号:1もしくは2に記載の塩基配列またはその相補配列に相補的な少なくとも15の連続する塩基を含むポリヌクレオチドを提供する。ここで「相補配列」とは、A:T、G:Cの塩基対からなる2本鎖DNAの一方の鎖の配列に対する他方の鎖の配列を指す。また、「相補的」とは、少なくとも15個の連続したヌクレオチド領域で完全に相補配列である場合に限られず、少なくとも70%、好ましくは少なくとも80%、より好ましくは90%、さらに好ましくは95%以上(例えば、96%以上、97%以上、98%以上、99%以上)の塩基配列の同一性を有すればよい。このようなDNAは、本発明のDNAの検出や単離を行なうためのプローブとして、また、増幅を行なうためのプライマーとして有用である。

15 さらに、本発明は、植物の再分化能の有無を判定する遺伝子診断方法を提供する。本発明において「植物の再分化能の有無を判定」とは、これまでに栽培されていた品種における再分化能の有無の判定に有効のみならず、交配や遺伝子組換え技術による新しい品種における再分化能の有無の判定も含まれる。この方法は特に日本型イネ品種の再分化能の有無の判定に有効である。

20 本発明の植物の再分化能の有無を評価する方法は、植物の PSR1 タンパク質を コードする DNA および PSR1 タンパク質の発現量を検出することを特徴とする。 例えば、PSR1 をコードする DNA または PSR1 タンパク質の発現がコシヒカリの当 該遺伝子およびタンパク質より高ければ、この被検植物は再分化能を持つ品種で あると診断される。

25 本発明は植物の形質転換における選抜マーカーとしての PSR1 遺伝子の利用法 についても提供する。これまでに用いられている、形質転換した植物細胞の選抜

マーカー遺伝子としては、例えば抗生物質ハイグロマイシンに耐性であるハイグ ロマイシンホスホトランスフェラーゼ遺伝子、カナマイシンまたはゲンタマイシ ンに耐性であるネオマイシンホスホトランスフェラーゼ、除草剤ホスフィノスリ シンに耐性であるアセチルトランスフェラーゼ遺伝子、およびビアラフォスに耐 性であるビアラフォス耐性遺伝子等が挙げられる。これらの遺伝子を用いる場合 は、選抜マーカー遺伝子の種類に従って適当な選抜用薬剤を含む公知の選抜用培 地上で培養することにより形質転換された植物培養細胞を得る。これら薬剤耐性 遺伝子に対して PSRI 遺伝子を選抜マーカーとして利用する場合、形質転換する 植物細胞がコシヒカリのような再分化能がないものであれば、選抜のための特別 10 な薬剤等を用いることなく再分化能の獲得をマーカー形質として形質転換体を選 抜できる。つまり非形質転換体は再分化できないため PSRI 遺伝子の効果により 再分化した個体が形質転換体とみなされる。また、再分化能を持つ植物細胞に PSRI 遺伝子を選抜マーカーとして利用する場合は、選抜用培地に非形質転換体 の生育が阻害される濃度の亜硝酸を加えることにより形質転換細胞を選抜するこ とができる。従来の形質転換体の選抜に用いる上記の薬剤耐性遺伝子は微生物由 15 来の遺伝子であるため、それら遺伝子が残存する組換え農作物(GMO)は生態系へ の影響や人体への不安が問題視されている。しかしながら本発明の PSR1 遺伝子 による形質転換体の選抜方法によれば、それらの不安が軽減されるとともに安価 な遺伝子組換え作物の開発が可能になるという利点を有する。

20 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。

図面の簡単な説明

図1は、コシヒカリおよびカサラスの表現型を示すグラフおよび写真である。 25 写真は、左側がコシヒカリ、右側がカサラスを示す。グラフは、コシヒカリ、カ サラスの再分化能を1gカルネあたりの再分化個体数で表した。

図2は、再分化能QTLの染色体における位置を示す図である。

図3は、再分化能QTLの高精度連鎖MAPを示す図である。

10

15

20

25

図4は、相補性検定の結果を示す写真である。左側がベクターのみをコシヒカリに導入したもの、右側がカサラスの3F断片をコシヒカリに導入した場合の再分化の様子を示す。

図 5 は、コシヒカリ NiRゲノム配列に対するカサラス NiRゲノムの変異部位を示す図である。模式図中のアラビア数字は挿入または欠失の塩基数を示す。黒四角はコード領域を示す。垂直線は置換部位を示す。枠内の配列は、コシヒカリ(上側)とカサラス(下側)における NiR遺伝子配列を比較した図である。四角で囲った部位はコシヒカリとカサラスで異なっていたアミノ酸を示す。斜体太字で示した領域は葉緑体移行ペプチドドメインを、点線下線で示した領域はフェレドキシン結合領域を、下線で示した部位は 4Fe-4S クラスターを示す。

-図6は、コシヒカリとカサラスのカルスにおける NiR遺伝子および NiR タンパク質の発現量を比較した写真および図である。左写真上段は NiR遺伝子を semiquantitative RT-PCR で検出したもの、左写真中段は発現コントロールとしてイネユビキチン1遺伝子 (Rubq1)を semi-quantitative RT-PCR で検出したもの、左写真下段は NiR タンパク質の抗体を用いてウェスタンブロットハイブリダイゼーションにより NiR タンパク質を検出したもの、右のグラフは Rubq1遺伝子の発現量を内部標準としてリアルタイム定量 RT-PCR で NiR遺伝子の発現量を測定した結果を示す。 RT-PCR のプライマー部位は図 5 に示す。

図7は、コシヒカリおよびカサラスのNiR組換えタンパク質の酵素活性を比較したグラフである。

図8は、NiR遺伝子の選抜マーカーとしての有効性を確認する実験結果を示す 図および写真である。模式図は形質転換に用いたバイナリーベクターの T-DNA 領 域の図である。写真はそれぞれのベクターをコシヒカリに導入した場合の再分化 の様子を示す。表は再分化個体における GUS 染色個体の割合を示す。

- 18 -

図9は、アクチンプロモーターにより NiR遺伝子を過剰発現させるベクターを カサラスへ導入した場合のカルスの選抜結果を示す写真である。上段写真はカル スの選抜結果を示す。培地中には亜硝酸が添加されており形質転換体の a は NiR 遺伝子の過剰発現の効果により増殖しているのに対して b の非形質転換体ではカ ルスの増殖が抑制されている。下段の写真は a, b カルスの GUS 染色結果を示す。

発明を実施するための最良の形態

15

20

25

以下、本発明を実施例によりさらに具体的に説明するが本発明はこれら実施例に制限されるものではない。

10 〔実施例1〕 試験材料の選定および準同質遺伝子系統の作製

QTL 解析を行う雑種集団の育成に先駆け、雑種集団の親となる品種の選定を試みた。まず、日本型イネー数品種、インド型イネー数品種の平均再分化能を調査し、両品種間で再分化能に明瞭な差が見られた日本型イネの「コシヒカリ」とインド型イネ「カサラス」2つの品種を選抜した(図1写真)。日本型品種「コシヒカリ」にインド型品種「カサラス」を交雑したF1個体に、コシヒカリを反復親とした戻し交雑と自殖を行い、BC1F1集団を作成後、BC1F2種子を採種した。各系統のBC1F2種子20粒ずつ用いてカルスを誘導培地で30日間培養した後、増殖したカルスを再分化培地に移植し、移植後30日経た時点で1粒あたりのカルス重とシュート数を計測し、各系統について20粒の平均値をとりそれを再分化能とした(図1グラフ)。各系統の遺伝子型は262個のPCRマーカーを用いて決定した。

これらのデータをもとに再分化能に関する QTL 解析を行った結果、再分化能を増加させる効果を持つ 4 箇所の QTL を検出した (図 2)。この内、第 1 番染色体短腕 TGS2451 マーカー近傍にカサラスのゲノムがコシヒカリに対して再分化能を増加させる効果の大きい QTL (PSR1; $Promoter\ of\ Shoot\ Regeneration\ 1$) を見いだすことに成功した。返し戻じ交雑と MAS を用いて、PSR1準同質遺伝子系統

(Ni1-PSR1:コシヒカリの染色体にカサラスの第1染色体 TGS2451 マーカー近傍が置換した系統)を作製した。Ni1-PSR1及びコシヒカリ (コントロール)の再分化能を調査し、QTL(PSR1)の存在を確認した。第1染色体短腕、TGS2451 近傍がカサラスに置換した系統は平均で14.7倍再分化能を増加させた。

5 〔実施例2〕 PSRIの分離集団を用いた高精度連鎖解析

BC2F1 集団の中から PSR1 領域がカサラスに置換された 30 個体を選抜し、それ らの種子(BC2F2 種子) 各 10 粒ずつを用いてカルスから DNA を抽出して分子マ ーカーにより遺伝子型を明らかにするとともに再分化能を調査し、連鎖解析を行 った。その後さらに詳細な座乗領域の特定のために PSR1 が分離する BC3F2 種子 約3,800粒を用いて分子マーカーによる遺伝子型を調査し、高精度連鎖解析を行 10 った。その結果、PSR1 は分子マーカー3132 と P182 に挟まれる約 50.8kb 領域内 に座乗することが明らかになった(図3)。この領域に存在する遺伝子を予想した 結果、Hypothetical Protein も含め4つの遺伝子の存在が示唆された。この内、 どの遺伝子が再分化能遺伝子であるか同定するために、カサラス BAC ライブラリ ー(平均長 120kb)を作成し、PSR1 領域を含む BAC クローン (BHAL15) を PCR スク リーニングにより単離した。BHAL15クローン内の適当な制限酵素部位を用いて 各候補遺伝子領域を含むカサラスゲノム断片を調整しコシヒカリに導入したとこ ろ、フェレドキシン亜硝酸還元酵素をコードすると予想された遺伝子 (MiR) を 含むカサラスゲノム断片(図3の3F)を導入した場合にのみコシヒカリの再分 化能がすることがわかった(図4)。このフェレドキシン亜硝酸還元酵素と予想 20 された遺伝子領域およびその上流約 2kb についてカサラスとコシヒカリの塩基配 列を決定し比較したところ、多数の塩基配列の変異が見出された(図5)。

〔実施例3〕 培養困難品種の培養特性の改良

コシヒカリに再分化能を付与する目的でカサラスの PSRI 遺伝子領域 (ゲノム 25 配列でも cDNA 配列でも可。)をコシヒカリに導入すると高再分化能なコシヒカリ が得られた (図 4、図 8、図 9)。この時 PSRI 遺伝子の発現に用いるプロモータ

ーは PSR プロモーターでもアクチンプロモーターのような恒常的プロモーターでも効果が見られた。

〔実施例4〕 PSRI 遺伝子および PSR1 タンパク質の発現解析

semi-quantitative RT-PCR およびリアルタイム定量 PCR によりカルス中の NiR mRNA の発現量を調べたところ、カサラスではコシヒカリの約 2.5 倍量の mRNA が存在することが分かった(図 6 左写真上段、中段、および右のグラフ)。また、NiR タンパク質に特異的な抗体を用いたウェスタンブロット解析においても、コシヒカリよりカサラスで NiR タンパク質が多く蓄積されていることが分かった(図 6 左写真下段)。さらに大腸菌で発現誘導した NiR 組換えタンパクを用いて ナフチルエチレンジアミン法によりタンパク質量あたりの NiR 酵素活性を比較した結果、カサラスの NiR タンパク質はコシヒカリの約 1.6 倍高い酵素活性を示すことが分かった(図 7)。以上の結果から、コシヒカリとカサラスの再分化能の違いは、第一に NiR 遺伝子の転写調節レベルの違いによるものであり、第二に合成されたタンパク質 1 分子あたりの活性の違いも要因となっていることが明らかになった。

[実施例5] 再分化能を選抜形質とする形質転換

20

カサラス PSRI 遺伝子をコシヒカリに導入すると再分化しないコシヒカリに再分化能を付与することができる。このことは、コシヒカリの形質転換を行う際に、カサラス PSRI 遺伝子を選抜マーカーとして利用することが可能であることを示している。すなわち、カサラス PSRI 遺伝子と目的遺伝子を並列に組み込んだべクターをコシヒカリに導入すると、PSRI 遺伝子が導入された細胞のみが再分化能を獲得するため、再分化した植物体には同時に目的遺伝子も導入されていると予想される。そこでこの考えを実証するために、バイナリーベクターpBI101 のT-DNA 領域内にカサラス NiR genome + 35S promoter GUS、カサラス NiR

25 promoter :: NiR cDNA :: NiR terminator + 35S promoter GUS, イネ Actin1 promoter :: NiR cDNA :: NiR terminator + 35S promoter GUS を含むベクター、

および NiR 遺伝子を含まないベクターを構築し、コシヒカリに導入した。その結果、NiR 遺伝子を含む 3 種類のベクターの導入では多数の再分化個体が得られ、かつそれらが由来するカルスでは GUS 遺伝子による染色が認められた(図 8)。

さらに、毒性を示す亜硝酸を代謝する性質を有する NiR遺伝子の特徴を利用すると、高再分化能品種への形質転換においても NiR遺伝子をマーカーとして利用できた。具体的には、イネの高発現プロモーターの1つであるアクチンプロモーター制御下で NiR遺伝子を過剰発現させるベクターを高再分化品種カサラスに導入し、通常の野生型では増殖抑制される濃度の亜硝酸を添加した培地上において培養した。過剰に発現させた NiR遺伝子の効果により形質転換細胞のみが増殖し、増殖した細胞にのみ GUS 染色が認められた (図9)。この選抜方法を用いることにより、従来の微生物由来の抗生物質耐性遺伝子を選抜マーカーとする場合に比べて抗生物質のコストが削減できる上に、再分化した植物体には微生物の遺伝子が含まれないため、より環境に考慮した組換え植物の作成も可能になる。

15 産業上の利用の可能性

25

近年、有用植物の開発や遺伝子の機能解析などにおいて形質転換法を用いた研究が加速している。形質転換法は交配と選抜を主体とする従来育種では不可能な生物種を超えた遺伝子利用が可能なため、これまでにない新たな植物を作出できる可能性がある。また次々と解明されるゲノム配列解読を受け、個々の遺伝子機能の解明を目的とした遺伝子破壊や発現制御解析なども形質転換法を利用して行われている。一般に形質転換植物を作製する場合、導入したい遺伝子と抗生物質などの薬剤耐性マーカー遺伝子とを共に含むプラスミドベクターをアグロバクテリウム法や電気穿孔法(エレクトロポレーション法)などで植物細胞に導入し、薬剤処理により形質転換細胞を選抜する。選抜した形質転換細胞は細胞増殖を経て植物体へと再分化される。つまりこのような形質転換法を利用するためには組織培養技術の確立が不可欠である。また組織培養技術は、形質転換法だけでなく、

- 22 -

培養変異による変異体の作出、細胞融合や胚珠培養による品種育成、遺伝形質の 固定や育種年数の短縮などにも非常に有効である。

イネは主要穀物の中ではもっとも培養技術の利用が進んでいる植物ではあるが、 その培養特性が品種により大きく異なることが問題とされている。特にコシヒカ リやあきたこまちなどの日本における主要品種や熱帯地方で栽培されている多く のインド型品種は培養が困難であり、これらの品種は組織培養の材料にすること ができない。このような培養特性の品種間差はイネに限らず多くの植物に共通し て見られる現象であるが、その原因の解明は進んでいない状況にある。

5

発明者らによる再分化能に関与する遺伝子の単離により、高再分化能形質を分 10 子マーカーを用いて、効率的に選抜したり(マーカー選抜育種)、分子生物学的 手法を用いた再分化能の改良が可能になった(分子育種)。また *PSR1* 遺伝子を選 抜マーカーとして利用することにより、より安価で環境影響に配慮した形質転換 植物の作成法が可能となった。

イネ、トウモロコシ、コムギ、オオムギなどの穀類は、人類の主要エネルギー源となっており、人類にとって最も重要な植物である。これら穀類はすべてイネ科に属し、同一祖先から進化したと考えられており、お互いに高い遺伝子の相同性(ゲノムシンテニー)を有する。この中で最もゲノムサイズが小さい穀物がイネであり、イネが穀類のモデル植物として利用されている所以でもある。イネの遺伝子はその類縁のムギやトウモロコシゲノム中にも存在し、イネで単離された遺伝子はムギやトウモロコシから容易に単離する事が出来るばかりか、ムギやトウモロコシなどの穀物育種へ直接応用することも可能となるので、本遺伝子は、イネのみならず、広く植物に応用可能と思われる。

- 23 -

請求の範囲

- 植物の再分化能に関与する、下記(a)から(d)のいずれかに記載のD
 NA。
- 5 (a)配列番号:3に記載のアミノ酸配列からなるタンパク質をコードするD NA。
 - (b) 配列番号:1もしくは2に記載の塩基配列のコード領域を含む DNA。
 - (c)配列番号:3に記載のアミノ酸配列において1または複数のアミノ酸が 置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタ ンパク質をコードするDNA。
 - (d)配列番号:1もしくは2に記載の塩基配列からなる DNA とストリンジェントな条件下でハイブリダイズする DNA。
 - 2: 配列番号: 3に記載のアミノ酸配列からなるタンパク質の部分ペプチドを コードする DNA。
- 15 3. 配列番号: 1 もしくは2に記載の塩基配列のプロモーター領域を含む DNA。
 - 4. 請求項1または請求項2に記載の DNA を含むベクター。
 - 5. 請求項3に記載の DNA を含むべクター。

10

- 6. 請求項4に記載のベクターが導入された宿主細胞。
- 7. 請求項4に記載のベクターが導入された植物細胞。
- 20 8. 請求項7に記載の植物細胞を含む形質転換植物体。
 - 9. 請求項8に記載の形質転換植物体の子孫またはクローンである、形質転換植物体。
 - 10. 請求項8または請求項9に記載の形質転換植物体の繁殖材料。
- 11. 請求項1または請求項2に記載のDNA を植物細胞に導入し、該植物細胞 25 から植物体を再生させる工程を含む、形質転換植物体の製造方法。
 - 12. 請求項1または請求項2に記載の DNA によりコードされるタンパク質。

- 13. 請求項6に記載の宿主細胞を培養し、該細胞またはその培養上清から組換 えタンパク質を回収する工程を含む、請求項12に記載のタンパク質の製 造方法。
- 14. 請求項12に記載のタンパク質に結合する抗体。
- 5 15. 配列番号:1もしくは2に記載の塩基配列またはその相補配列に相補的な 少なくとも15の連続する塩基を含むポリヌクレオチド。
 - 16. 請求項1または請求項2に記載の DNA を植物体の細胞内で発現させる工程を含む、植物の再分化能を増加させる方法。
- 17. 請求項1もしくは請求項2に記載のDNA、または請求項4に記載のベクタ 一を有効成分とする、植物の再分化能を改変する薬剤。
 - 18. 植物細胞における再分化能を判定する方法であって、植物細胞における請求項1に記載の DNA または請求項12に記載のタンパク質の発現を検出する工程を含む方法。
- 19. 植物細胞における再分化能を判定する方法であって、植物細胞における請求項12に記載のタンパク質の活性を検出する工程を含む方法。
 - 20. 植物における内因性の請求項12に記載のタンパク質の活性を制御することを特徴とする、植物の再分化能を改良する方法。
 - 21. 形質転換植物細胞の選抜方法であって、
 - (a)請求項1または請求項2に記載のDNAを選抜マーカーとして該DNA を含むベクターを植物細胞に導入する工程、および
 - (b) 該植物細胞を培養し、再分化能を獲得した植物細胞を選抜する工程、

を含む方法。

20

22. 植物における内因性の請求項1または請求項2に記載の DNA を交配により 25 置換することを特徴とする、植物の再分化能を改変する方法。

1/8

図1

シュート数/カルス重(g)

2/8

4/8

6/8

8/8

図9

GUS染色

1/68

SEQUENCE LISTING

<110> HONDA MOTOR CO., LTD.

<120> GENES THAT INCREASE REGENERATION ABILITY OF PLANTS AND USES THEREOF

<130> H3-A0301P

<150> US 60/491837

<151> 2003-07-31

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 12161

<212> DNA

<213> Oryza sativa

<220>

<221> exon

<222> (6010).. (6418)

<223>

2/68

<220>

<221> exon

<222> (10247).. (10601)

<223>

<220>

<221> exon

<222> (10703).. (10991)

<223>

<220>

<221> exon

<222> (11076).. (11813)

<223>

<220>

<221> misc_feature

<222> (4429).. (4429)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (4479)..(4479)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

WO 2005/012520

PCT/JP2004/011307

3/68

<221> misc_feature

<222> (4520)..(4520)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (4555).. (4555)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (4561).. (4561)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (4563).. (4563)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (4577).. (4578)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

4/68

<222> (4823).. (4823)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (7186).. (7186)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<220>

<221> misc_feature

<222> (11994).. (11994)

 $\langle 223 \rangle$ "n"=a, t, g or c.

<400> 1

ctcgagcttt tttgactgcc ctaatcaggc gggttccttg tgggacccac ataatgcttt 60

ttttaatcgc cttcacgggc tgcatgcaaa ctatacggca tgggacttcc actactagaa 120

aaaacgggcg gtcgaaacac gttttcgcag gcaggcaaac cttccacatg tatcttaacg 180

accgtaaaaa tctccaattt tcacaggtgg accacagcac cgttttcgca ggctacattt 240

cgaatcttcc tgggtgctac agtaaaccac ctgcaaaaat actcacggcg ccaaaaaaaa 300

tttccgccag ccccgccccc tccctattca aatcacaaat cacaaattct cacaaatctc

360

5/68

atccaaaaac aaaatccaat ccaaaaaatcc atacatcaac acaaagcatt ggattcaaat 420 ccacaacatc aatttacaag ttaacatcaa tcaacatgta agctttaaaa cgaaacgtcg 480 tcgtcgccgg caaactcctt tgcatgcggt gccgctgccg ccccctccc cctctgtccg 540 gatttgggag ggagggaggg aggtgtttgc cgccaccacc gccctcccct ctcctcgtag 600 ggccggatct cgggagggag gagaggggag ccgcctccgc acagccatca acgtccgtgc 660 cgccgtcgcc tcgttcgcac caccgccgtt gcttcccctc ctccggccag atctaggagc 720 ggggaggaag agagggggag ccaccgccac cgtcgccccc tcgcgtccgc gccgtcgtca 780 ccgtccacgc cgccgcgtcc gtgccgccgc tgtcgctccc cctcctctgg cgaggaggga 840 gagagagga gccgtcgcgc cgccgtcgct cccctccttc ggcgaggagg gagagagggg 900 gagggaagag ggatggaggg gaggagagtg gcgctgagag agagagagag agacgctgag 960 gagaggaaat gagtggtggg gaggggtgga ggagaagata aggaggactt agatttttt 1020 ttgggtaggt atgatttttg caggcggacc acataaggtt ccgcctgcga aaatcaattt 1080 tttcacgcag accacttaag aggtccgcat gcgaaaataa aggtattttt ttaggcagac 1140

6/68

ctcttaagtg gtccgcctgg aaaaattgat tttcacaagc agatgacgaa aattcacccc 1200 ggtttatatt ttcgaagatg cttcatcgac gacatcgacc gcgtcctcta tgacggcaac 1260 gaccgcgtca ccgacaacgg catcgatcac gtcatctacg atgacaacga ctgcatcaac 1320 tccgcatcac tattgtgatg actgttacat ggcgtagaag aaccaaccaa agtggtggcc 1380 teategecaa egaegteete tgacatatge aagaegteee caatggeate eteagaeate 1440tacaaggtgc aagatgctaa caattacagt ttttgtcttc acactgtggc ataaatattt 1500 ttttcgcct tcggctatat tcggctacac ctacaaccac ggttactaca tgatcggctc 1560 catcaacgaa catctataac aacaatcatt gacggaaact ccagtcaaga gcgtctgtgt 1620 catcgctatc ttccatgaca ctcccgctat gactacgtga gggaatagag gagagtcaag 1680 ggacgacacg gaaggagacg taggcaccag gtggaggacc gtccatcaaa gatgcaattg 1740 atgatggtga gttgaagaag atgaagaaat aaaagatttc aaatccagtc gcaatcgttc 1800 gcttcgctcc cgttacgact gagggggaat gttagaagca tagatatatt aattggagat 1860 aagagtcata caaatataga gataagatat catcctagag atagaattct atagataaaa 1920

7/68

tagagtccta gagataaatc tactcttact tgtaccccta tatatacccc atgagaggat 1980 caatgcaata caccgagaat acaacaatta gattttttta cagttgtaac tatgatacgt 2040 tgtaatatgc tggatcgggg aagagcgccc gtaatcagtg ccccagagat gtaggtctcg 2100 gctgaactcc attatcaaat accgtacctc ggtgttgtca tcatgtttga atcttctatg 2160 acgtttcttt tgcattcggt tttcgatgtg acttcagggc tggttttata ataatgatta 2220 tagtgctgtg acggcaatcg gttgtgagaa ttagctattc gggtccctcc atgtgatttt 2280 cttgtgattg ggatgtatgg taatgctagg gttttaaggt gtaggattgg tgcatgagag 2340 atcatcactt cacttgtatg accttctctc cttttatatt tttttatcat tctctccttt 2400 tttttataat gctactgaac tagtggaata caggggacta atgcaaaata aaagaaaagt 2460 atcactggtc acggcataca atttagaaag tgtgtgattt aggcatagag ctgaccacga 2520 ccctttacga cttggtcgct cggtttgtta gacgatagat caaccaacaa aagctacgat 2580 acatgatgta cgtgtcagga tacaaatcct tacaaataac aacagttatt gttcgataac 2640 ttttatcagt tgtctaggct taccaatgta taatagaaga tgaaaattcc atattactgg 2700

8/68

tatcgatcaa tgctagtaac tctttgagct ttgtctaggt taaaaaaaaat tatggatcca 2760 ccatcacaaa aatgaaaaac accggggaaa acaaaaaacc atttaataac agcacaagac 2820 aaaatgatgt taccgtctac ccgagctcct actccgtacc agcacaacca aacgaacagt 2880 accegceggg teaggggeae gttcgtaaat tteecteecg tggctggetg getgeeatet 2940 ctctcagcca gggttggtaa tttcggccgt ttcggtgggt cccgatagta aatgagctcc 3000 agtcaaaacg ccctctgcct cccctcattg cgccacacgc acaccgcatc tagatccaga 3060 togaaaaaat cgccatctcg ccgagtcgcc agtcgccgcc tcaacgccgg tcgccgtacc 3120 gccggcgctg cacgccccc tccaagccgt cgccccatcg ccccagccg cccggtggtg 3180 gggcagcgga tgccgagctt ggcgaggttg ccgaggacga accaggcgag gaggacgagg 3240 3300 atcttgtcga cgagccagag cgggagccac gccatgagca acacggcgag ctcgaacgtg 3360 gacttgccga gcacctcgcc agggaggacg tggacggcgt cgcgcaccac catcgccggg agggcgctgt ggtcgcagag gtcgagcgac accaccatgc cggagttgcc gcacccgacg 3420 3480 acgageacet tettgeegeg gtacgeeteg eeggaettgt agaeegegae atgeateace

9/68

tcgctgctat atttgttctt ggactgtgga gacttgctgt cagtgggtgt gttcagaatt 3540 gctgctgcag cttgcagcga atttgtgatg cagcagctac agcttgtatg gctgccgagt 3600 agagcgagtg ttgctatctg ttttttgttc tctttttcag aaatttcgcc cgcaaatttt 3660 3720 aaatttgaat tcaaattttt aaaagaacta gcaaatatgc ccgtgcgttg caccgggtga 3780 atatcaaaca aatattgatg ggtaagattg cttgtgtact tataacacat atgcacaaaa 3840 atattgaata tgtacatacc tcgcaaatat ctccaaattt tatacatatg agttgtgtaa ategtgtgag ttecatattg teatgttgat atggagtatt actgatgage ceatetatgg 3900 3960 tgataatttt ggaggttgta gctcaacgaa tttgtatttg ctatgtatct caacgttgat aagtcactac cacaaccatc ggcgaccttt ctcgggatcc aagcatgttg accccgccaa 4020 4080 cgtggcgtcg gtgcagggca ccgagatgaa caccacgggg ctatgtgcct gtccagggtc atcctagget taaggccacg acactcaagg acgtggtggg cggcgtcgcg gaggtgctcc 4140 4200 aagcgaacaa gctggccacc aaggaggacg ccgacaaggt ggcggccacc gctatgcaga 4260 acgatgggag gcacgccggt gacgacaagg agctaacacg atccatttag tcccgatccg

10/68

agttgatcag gaattcaatc ctgcaccttg cggttacgtt tttcttctcc gcgggaaaag 4320 4380 gagaacggag gctaggccat cgctggattg gatttacgaa tgaaatatng atgtgacgaa 4440 cagaaaatta tcagtttgat ttaattttca taatcgganc tctttaatag gaaaaaaaat 4500 4560 tacatgtacg ttccttcatn gtgcccatgt ccatccggga gtccaggttt attcncaaag ncncaatcaa cagctannaa tocatgtoot toccogcogt tocctactot gottttttt 4620 ctttcatttg aaaccttccg ctatgaattt ctagtcgttc ctagcatcca cgcacacaaa 4680 4740 atagatttcc ctcgcaaggc aaaacataca aatatgagtg catgcaagat attacaaacc caatccatta aaaatagaac ataattaact ttagcctacc tatctcaata ttggtatatg 4800 4860 cccaaactca aaaggagaaa aancaaacta aaacttttaa taaagtgacc ccaagagata 4920 aaaaggtgat agtaacaaca aaatctcact tgacaatgtc gttgatcagc actattttta 4980 aatattactt aaaaatcttt atatttacct attaaaacaa tgaaaaacag aagatgtttc 5040 ttttttattt acaacagcgt tgtatttagt catgtcctat ctaagagaga aaaatgaatt

11/68

taacgaaaag aagctcagaa aaaaaaaaga gaacagggcc accacaccag taatccctat 5100 gttatcaatg aaaaaaaatt tcaatgctag gttttttata agaaaaggtg ataaagtgtt 5160 gaaaaataca gcaggaaatt atatatcttg ctggtttaac attaattcaa gcatatagat 5220 ataaaaatat atcaggctag gaaaggaaaa ggataaaatt ggagagaaaa aggaaaagaa 5280 cagtagagga taaccagcaa aaagatgaaa ggattcgaac ccatgaccta gcgttacaat 5340 tgtttcacag gctaaccaat cgagaatcat cgacgtagtg taatcttgtg tagctacatt 5400 tgaaaaaata tgttttgagc tgaacgttgg tgtgtccgcc cctgcatccg atacatgttg 5460 gagogtggag cgcggtaata teteettete tetegteget ttetgegtet eccegtetet 5520 cettegecaa cageegagaa gaggeagaga gagegeegee eecegteeet eteteteet 5580 ctcgtcctcg cccccatccc tctcgtcttt cccttgccgg cagcagagga ggcggcagcg 5640 acggettcag etgeteccae gggeeggate gggeagtgge ggtggegteg geggetteeg 5700 ctggcgaatc cggcgggtga atcgggtgaa atttgggtga cccccgatac aaatcagtgt 5760 tccgataggt aataccctgc tctcagcatc tgcccttttg aattcgccaa gagccagcat 5820

ctgccct	ttt g	aattc	gcca a	gggco	eagca	a tci	tgcc	catt	tga	ttttį	gaa	ttcg	ccaaga	5880
gccagca	aca g	cgccc	ccgc g	cccc	etece	tco	etccg	gcaa	taaa	acago	cca (cacgo	egeege	5940
ccccatg	tcc a	ccctc	atcg c	cacag	gegea	ı cca	accad	ccac	caco	cacca	acc a	acca	caccg	6000
tctccag			tcc to							ne Le			_	6051
ccc cac Pro His 15-													_	6099
ccc gtg Pro Val			er Thr											6147
gcg gac Ala Asp	Glu .													6195
cgg gag Arg Glu														6243

aac	ccg	cag	gag	aag	gtg	aag	ctg	ggg	aag	gag	ccc	atg	tca	ttg	ttc′	6291
Asn	Pro	G1n	Glu	Lys	Val	Lys	Leu	Gly	Lys	Glu	Pro	Met	Ser	Leu	Phe	
	80					85					90					
atg	gag	ggc	ggc	atc	aag	gag	ctc	gcc	aag	atg	ссс	atg	gag	gag	atc	6339
Met	G1u	G1y	G1y	Ile	Lys	G1u	Leu	Ala	Lys	Met	Pro	Met	G1u	Glu	Ile	
95					100					105				٧	110	
gag	gcc	gac	aag	ctc	tcc	aag	gag	gac	atc	gac	gtg	cgg	ctc	aag	tgg	6387
G1u	Ala	Asp	Lys	Leu	Ser	Lys	G1u	Asp	Ile	Asp	Val	Arg	Leu	Lys	Trp	
				115					120					125	•,	
cŧc	ggc	ctc	ttc	cac	cgc.	cgc	aag	cat	cag	t gt	tatgo	ctct	cti	tctct	ttgc	6438
Leu	G1y	Leu	Phe	His	Arg	Arg	Lys	His	G1n							
			130					135								
tcct	ctga	itc a	aacao	catti	t ct	tgct	ttcg	g ttc	ggtt	att	tgtc	gcgc	cg a	aggaa	ngttaa	6498
ttcg	ccaa	ıga t	atto	etgea	ng tt	tttt	ttct	cga	itgca	cat	tcag	caac	ct a	aatta	agact	6558
gatt	aagt	tg c	ctgtg	gatti	t ta	tago	ttaa	ı tta	eggt	ctc	gtgg	gtaa	atg a	actat	ttata	6618
				-		_										
ttga	gtaa	iac a	atggt	taco	et tt	gato	caat	cac	ttca	ıcct	ccat	gtgo	ca t	tatat	agcca	6678
- 64	5		- 36 \			J						5-6-	'			23.0
cago	retet	ac c	:aagt	taaca	ic ts	gtaa	tate	r ccc	gt.gc	tac	gaca	cggt	gg r	ratas	ıtaaat	6738
- ~06	, , , , , ,							, 500	0.00		0-04	~00'	.00	- 4 5 4 6		0.00

14/68

cattaaattt tattataatc aaattaagga tootaaaatt ggtocaattg ggtgttaatt 6798 cgatgcaggt catataaaaa tatattttag gcaaggtgca attcaagagc atcaaccatt 6858 atatccaatc actttaatat atatttgaag ataacatatg tcggaaaaaa aatgatggag 6918 agctatttca ttaacttgtg agcataaaca gatcaccaga tgatgccacc ataagtcccg 6978 ccacagtaag tgatgcagct catcttgccc taggcgttcg gtctaaccag tagatagaaa 7038 7098 gagtacaaca tagatcgaat gaaaaaaaaa atctccagaa gaaagctcaa ccacattgag taaattagag caacaatcaa atcgagtcag catatcgtta tgttagcaga accaatcacc 7158 acaatttgtt tctcctcttt atctaagngt tttggccagg ttaaaagcat atatcactat 7218 gttccaagca aacatcggca atggacacgt caaaaataaa tgatcaattg tttctttgag 7278 tacaaaattg acaatggaca ctatgttcct ttgttagaat tctatttgtc agggtaggat 7338 gtagaaaaac ttaactttta gaggaagctt aaatatccgg cataaacttg ctttttcagc 7398 gctctataaa ataattcaac agtgaattgt ccatcttttc taagtgctcc aaaagacact 7458 aagttgaaaa accaggtgaa ccaacagatt gatccacaaa atcttattat tagattattc 7518

15/68

acttaaaagc ctgtctttat ttcaaacata taaaaacaga agttattaat cagggaagcg 7578 cttatggcag cctgagcgaa ccagtgatag caagtggtga aaacagtaaa taggatacat 7638 aaaaaattata caaggtttct actgtttatc gaaaaaaaat atttgaaaac agtaaatagg 7698 atacataatc gacttccaac ttgtccttat cataacatcc agaatcacaa caagaattgc 7758 aacgaataca tagtcgactt gagctaagaa gtcacaagac ctgtcaaagt aagctgccct 7818 tgatcttgaa gtgaaaggca tattttattg tcttccttgg caaacagata tcactgtctt 7878 cagcagttca gttagataat ccaagatttc tcacggagaa gagcatatca ctcacatcag 7938 tgttgtgccc tccaaatact gagataaact gaattttgtt ctctttgaag catctgcagg 7998 cattaacaat aataatactt tacaaagttt cattgggtct aaactattgt ttgcacatca 8058 tatatatgcc cagaactttt tagcatgata caagggtcct gttcataact catgcctaaa 8118 tctgacaaat ttgtcaaacg acaatataag tcgaattata atgcgtttta gaattgacgc 8178 caaaactttt gctagcgtaa gtaactcttc cacctcccag catgcataca accaacaagc 8238 taaacttttg ttcaaaaaaa tgtacattta tttccttgaa cacagccttt gtagaatatg 8298

16/68

attaaaaact catggatgaa tgaaataatg taaaagaatg gtcaaaatga tgaatagtac 8358 aagaagcaac tgtgaacatt tcacctttac ctgactgttc gcaagaaggc cacgtggcag 8418 aaaagccaga aatgcaagaa gcttccctaa ttgatacacc atcaagaaat caatggactc 8478 aacaccagcg tccgcccaga caaaatgaat gcaggcacct aaaatataga accattgact 8538 tttcaacact gaattatata acctgaatat cttgttttgt taacacatct gacaaaatca 8598 gtgcattctg ttccatatag atgtatgcat agctcccata tgttagttga tcgatgagca 8658 tgcaaactat acacacctta cgttactccc tctgtcaaaa aaaatataag cttgtctaga 8718 tacatagcta caaatgctta tatttttgga ttctcttaaa gctgtagaaa cttttatcgc 8778 cccgccatgg caagtcgagc tgccatcccc aatgaaagcc cccacacagg tttcatgccc 8838 tgctgcacaa tattgagcaa ccaaaaatat aataatattt gtgtcagaat ttgaatcaac 8898 cttacagata ctgggtggcc agaaaatcta gtccaagtaa tatcctgaaa aatagcaact 8958 ggcaaatact aaaggcagtg aagagtttcc tttagatcag atgataaaaa aaaatcatat 9018 gttcaatagc aataatcact cacatttttt ttgctgttta gaatttagat aaatagtagt 9078

17/68

taaacttcta tagcttgcgt agctaagatc aatggtgatt attagttgaa aaaataatca 9138 aatcatcaaa ctgaggagac ttatacctgc cataagttct gaaatttcaa tgatcctagt 9198 caatatttac tgtatatata gaattaggtc caaaagatga tacttacaat taaggatgtt 9258 gtattgatcg gttcataact caagcttcta tttatcatta atcaaaagct ggatcattca 9318 9378 tgcatatacc tttgccgcac tcaacatagc agctcggagt cttctttgtt cagaagcgag gaaggagtca acaaataagt actgcaatgt taaacaaacc gacatatcaa atcccaaatt 9438 aagaatgcat gatttattaa tacaggaaat atatgatcaa gtcccaaaaa gtgagtcatg 9498 9558 ttatgtacac tcagtcatca atttcaataa gaatattaac ttgctcattg gtatatggat ttgattatga cataatttga caatacattt acagaataaa cttgcagtgc tgtgagcata 9618 tgttactaac atgtaaggac cttgttttgc tctgttcaat actcatgttg atcttgatct 9678 9738 gtgtccacat atacctaaat gaaatgaaat caaagaatga ggtttgtagg agtggagttg 9798 gtgaattata gggtagataa tgtcggcaca accgtttgat aagtagtacg agtactttat ttggcgccac cgcgccagca tcagatgtgt ggcctttgca ctgattgaac ccaaaagaaa 9858

	•	
aaaaaaagtc	gttttggtcc cacacaattc tacttcatct gcaggatgta cagaaggtta	9918
catatctatt	ctgttctatg ctctgtttac atttataagg gctcacttgg tggctgtcat	9978
tggttggctg	g gtgcggtata ttactaatag gttttttaat ggcatatatg ttcttaaaat 1	.0038
aaaccagaaa	agcaaaagat caactatctt agccacacca atgaaatgga atatactgaa 1	.0098
ctgtcacggc	taaaattete tteagteace tggeecaget ggageegtgg getegtegte 1	0158
ttttctaaac	atgtactagt attttggggg cccacagtga atttggccca aaatgctgac 1	0218
ageegeteta		0269
	Tyr Gly Arg Phe Met Met Arg Leu 140	
aag ctg cca	a aac ggt gtg acg acg agc gag cag acg agg tac ctg gcg 1	0317
Lys Leu Pro	o Asn Gly Val Thr Thr Ser Glu Gln Thr Arg Tyr Leu Ala	
145	150 155 160	
agc gtg ato	c gag gcg tac ggc aag gag ggc tgc gcc gac gtg aca acc 1	0365
	e Glu Ala Tyr Gly Lys Glu Gly Cys Ala Asp Val Thr Thr	
	165 170 175	
cgc cag aac	c tgg cag atc cgc ggc gtc acg ctc ccc gac gtg ccg gcc 10	0413
	n Trp Gln Ile Arg Gly Val Thr Leu Pro Asp Val Pro Ala	

19/68

180 185 190

atc ctc gac ggg ctc aac gcc gtc ggc ctc acc agc ctc cag agc ggc 10461

Ile Leu Asp Gly Leu Asn Ala Val Gly Leu Thr Ser Leu Gln Ser Gly

195 200 205

atg gac aac gtc cgc aac ccc gtc ggc aac ccg ctc gcc ggc atc gac 10509

Met Asp Asn Val Arg Asn Pro Val Gly Asn Pro Leu Ala Gly Ile Asp

210 215 220

ccc gac gag atc gtc gac acg cga tcc tac acc aac ctc ctc tcc tcc10557Pro Asp Glu Ile Val Asp Thr Arg Ser Tyr Thr Asn Leu Leu Ser Ser230235240

tac atc acc agc aac ttc cag ggc aac ccc acc atc acc aac ct

Tyr Ile Thr Ser Asn Phe Gln Gly Asn Pro Thr Ile Thr Asn Leu

245

250

Pro Arg Lys Trp

aac gtg tgc gtg atc ggg tcg cac gat ctg tac gag cac ccg cac atc 10763
Asn Val Cys Val Ile Gly Ser His Asp Leu Tyr Glu His Pro His Ile

20/68

 $275 \cdot$ aac gac ctc gcg tac atg ccg gcg gtg aag ggc ggc aag ttc ggg ttc Asn Asp Leu Ala Tyr Met Pro Ala Val Lys Gly Gly Lys Phe Gly Phe aac ctc ctt gtc ggc ggg ttc atc agc ccc aag agg tgg gag gag gcg Asn Leu Leu Val Gly Gly Phe Ile Ser Pro Lys Arg Trp Glu Glu Ala ctg ccg ctg gac gcc tgg gtc ccc ggc gac gac atc atc ccg gtg tgc Leu Pro Leu Asp Ala Trp Val Pro Gly Asp Asp Ile Ile Pro Val Cys aag gcc gtt ctc gag gcg tac cgc gac ctc ggc acc agg ggc aac cgc Lys Ala Val Leu Glu Ala Tyr Arg Asp Leu Gly Thr Arg Gly Asn Arg cag aag acc cgc atg atg tgg ctc atc gac gaa ctt gtgagcctcc Gln Lys Thr Arg Met Met Trp Leu Ile Asp Glu Leu attcatccac gccattgact gaattacgta tgtcccaatg ttcttatcag ttaattgcgg tgttggcatt gcag gga atg gag gct ttt cgg tcg gag gtg gag aag agg Gly Met Glu Ala Phe Arg Ser Glu Val Glu Lys Arg

21/68

355 360

atg	ccg	aac	ggc	gtg	ctg	gag	cgc	gct	gcg	ccg	gac	gac	ctc	atc	gac	11159
	Pro															
MCb	365	71011	01)	, 41	200	370	6				375				.	
	300					010					0.0			,		
		4					4									11907
	aaa															11207
Lys	Lys	Trp	Gln	Arg	Arg	Asp	Tyr	Leu	Gly	Val	Hıs	Pro	Gln	Lys	Ģln	
380					385					390					395	
			٠.											,	 .)	
gaa	ggg	atg	tcc	tac	gtc	ggc	ctg	cac	gtg	ccc	gtc	ggc	cgg	gtg	cag	11255
Glu	Gly	Met	Ser	Tyr	Val	G1y	Leu	His	Val	Pro	Val	G1y	Arg	Val	Gln	
•				400					405					410		
								•								
aca	aca	gac	atg	ttc	gag	ctc	gcc	cgc	ctt	gcc	gac	gag	tat	ggc	tcc	11303
	gcg Ala															11303
	gcg Ala		Met					Arg					Tyr			11303
																11303
Ala	Ala	Asp	Met 415	Phe	Glu	Leu	Ala	Arg 420	Leu	Ala	Asp	Glu	Tyr 425	Gly	Ser	
Ala		Asp	Met 415	Phe	Glu	Leu	Ala	Arg 420	Leu	Ala	Asp	Glu	Tyr 425	Gly	Ser	11303 11351
Ala	Ala	Asp	Met 415 cgc	Phe	Glu acc	Leu	Ala	Arg 420 cag	Leu aac	Ala	Asp gtg	Glu	Tyr 425 ccg	Gly	Ser gtc	
Ala	Ala	Asp	Met 415 cgc	Phe	Glu acc	Leu	Ala	Arg 420 cag	Leu aac	Ala	Asp gtg	Glu	Tyr 425 ccg	Gly	Ser gtc	
Ala	Ala	Asp ctc Leu	Met 415 cgc	Phe	Glu acc	Leu	Ala gag Glu	Arg 420 cag	Leu aac	Ala	Asp gtg	Glu atc Ile	Tyr 425 ccg	Gly	Ser gtc	
Ala ggc Gly	Ala	Asp ctc Leu 430	Met 415 cgc Arg	Phe ctc Leu	Glu acc Thr	Leu gtg Val	Ala gag Glu 435	Arg 420 cag Gln	Leu aac Asn	Ala atc Ile	Asp gtg Val	Glu atc Ile 440	Tyr 425 ccg Pro	Gly aac Asn	Ser gtc Val	
Ala ggc Gly	Ala gag Glu aac	ctc Leu 430	Met 415 cgc Arg	Phe ctc Leu	Glu acc Thr	gtg Val	gag Glu 435	Arg 420 cag Gln	Leu aac Asn	Ala atc Ile	gtg Val	Glu atc Ile 440	Tyr 425 ccg Pro	Gly aac Asn	Ser gtc Val	11351
Ala ggc Gly	Ala gag Glu	ctc Leu 430	Met 415 cgc Arg	Phe ctc Leu	Glu acc Thr	gtg Val	gag Glu 435	Arg 420 cag Gln	Leu aac Asn	Ala atc Ile	gtg Val	Glu atc Ile 440	Tyr 425 ccg Pro	Gly aac Asn	Ser gtc Val	11351

ttc	tcc	ccg	cag	ccg	tcg	ctg	ctg	ctc	aag	ggc	ctg	gtc	gcg	tgc	acc '	11447
Phe	Ser	Pro	G1n	Pro	Ser	Leu	Leu	Leu	Lys	Gly	Leu	Val	Ala	Cys	Th r	
460					465					470					475	
ggc	aac	cag	ttc	tgc	ggc	cag	gcc	atc	atc	gag	acg	aag	cag	cgg	gcg	11495
Gly	Asn	Gln	Phe	Cys	Gly	G1n	Ala	Ile	Ile	Glu	Thr	Lys	Gln	Arg	Ala	
				480					485					490		-
															-	
ctg	ctg	gtg	acg	tcg	cag	gtg	gag	aag	ctc	gtg	tcg	gtg	ссс	cgg	gcg	11543
Leu	Leu	Va1	Tḥr	Ser	G1n	Val	Glu	Lys	Leu	Va1	Ser	Val	Pro	Arg	Ala	
			495					500					505	٠.	,	
gt-g	cgg	atg	cac	tgg	acc	ggc	tgc	ссс	aac	agc	tgc	ggc	cag	gtg	cag	11591
Val	Arg	Met	His	Trp	Thr	Gly	Cys	Pro	Asn	Ser	Cys	G1y	Gln	Val	Gln	
		510					515					520				
gtc	gcc	gac	atc	ggc	ttc	atg	ggc	tgc	ctc	acc	aag	gat	agc	gcc	ggc	11639
Val	Ala	Asp	Ile	G1y	Phe	Met	Gly	Cys	Leu	Thr	Lys	Asp	Ser	Ala	Gly	
	525					530					535					
aag	atc	gtc	gag	gcg	gcc	gac	atc	ttc	gtc	ggc	ggc	cgc	gtc	ggc	agc	11687
Lys	Ile	Va1	Glu	Ala	Ala	Asp	Ile	Phe	Va1	Gly	Gly	Arg	Val	G1y	Ser	
540					545					550					555	
gac	tcg	cac	ctc	gcc	ggc	gcg	tac	aag	aag	tcc	gtg	ccg	tgc	gac	gag	11735
Asp	Ser	His	Leu	Ala	Gly	Alā	Tyr	Lys	Lys	Ser	Val	Pro	Cys	Asp	Glu	

23/68

560 565 570

ctg gcg ccg atc gtc gcc gac atc ctg gtc gag cgg ttc ggg gcc gtg 11783

Leu Ala Pro Ile Val Ala Asp Ile Leu Val Glu Arg Phe Gly Ala Val

575 580 585

cgg agg gag gag gag gag gag gag tag gagcacagac tggggtggtt 11833
Arg Arg Glu Arg Glu Glu Asp Glu Glu
590 595

tgcacgett gtactgtac gttttggttt gatettgtag eccaaaagtt gtgtteatte 11953
tegttacagt ettacagagg atgattgatt gataaataaa naagaaacag attetgeaac 12013
tgtteatege tgtteetaaa tetgattteg egatagtate ttgtetgace tgteeaate 12073
geagtgetaa aaceatataa tettgeaage aaatgaaatt gaaagagtte aatgeaaca 12133
ettaaeggtet aacaacatga taaggeet 12161

<210> 2

⟨211⟩ 2519

<212> DNA

24/68

<213> Oryza sativa

<220>

<221> CDS

<222> (532).. (2322)

<223>

<400> 2

tatctccttc tctctcgtcg ctttctgcgt ctccccgtct ctccttcgcc aacagccgag 60 aagaggcaga gagagcgccg cccccgtcc ctctctccc ctctcgtcct cgcccccatc 120 cctctcgtct ttcccttgcc ggcagcagag gaggcggcag cgacggcttc agctgctccc 180 240 acgggccgga tcgggcagtg gcggtggcgt cggcggcttc cgctggcgaa tccggcgggt gaatcgggtg aaatttgggt gacccccgat acaaatcagt gttccgatag gtaataccct 300 gctctcagca tctgcccttt tgaattcgcc aagagccagc atctgccctt ttgaattcgc 360 420 caagggccag catctgccca tttgattttg aattcgccaa gagccagcaa cagcgccccc 480 gegececete ectecteege aataaacage cacaegegee geececatgt ceacecteat 537 cgccacagcg caccaccacc accaccacca ccaccaccac cgtctccagc c atg gcc Met Ala

25/68

1

tcc	tcc	gcc	tcc	ctg	cag	cgc	ttc	ctc	ccc	ccg	tac	ccc	cac	gcg	gca	585
Ser	Ser	Ala	Ser	Leu	Gln	Arg	Phe	Leu	Pro	Pro	Tyr	Pro	His	Ala	Ala	
		5					10					15				
gca	tcc	cgc	tgc	cgc	cct	ccc	ggc	gtc	cgc	gcc	cgc	ccc	gtg	caģ	tcg	633
Ala	Ser	Arg	Cys	Arg	Pro	Pro	Gly	Val	Arg	Ala	Arg	Pro	Val	G1n	Ser	i
	20					25					30					
tcg	acg	gtg	tcc	gca	ccg	tcc	tcc	tcg	act	ccg	gcg	gcg	gac	gag	gcc	681
Ser	Thr	Val	Ser	Ala	Pro	Ser	Ser	Ser	Thr	Pro	Ala	Ala	Asp	G1u	Ala	
35					40					45		•			50	
gtg	tcg	gcg	gag	cgg	ctg	gag	ccg	cgg	gtg	gag	cag	cgg	gag	ggc	cgg	729
Val	Ser	Ala	Glu	Arg	Leu	Glu	Pro	Arg	Val	G1u	Gln	Arg	Glu	Gly	Arg	
				55			,		60					65	•	
				,												
tac	tgg	gtg	ctc	aag	gag	aag	tac	cgg	acg	ggg	ctg	aac	ccg	cag	gag	777
								Arg								
- J			70			•	·	75		_			80			
ลลฮ	ot.o	ลลฐ	ctg	aaa	ลลฐ	gag	ccc	atg	tca	ttg	ttc	atg	gag	ggc	ggc	825
								Met								
പുര	141	85	деu	GIY	ப்த	oru	90	111.00	551	Dou	1 110	95	oru	~ ± j	- 4. ,	
		00					50					00				

atc	aag	gag	ctc	gcc	aag	atg	ccc	atg	gag	gag	atc	gag	gcc	gac	aag '	873
Ile	Lys	G1u	Leu	Ala	Lys	Met	Pro	Met	Glu	Glu	I1e	Glu	Ala	Asp	Lys	
	100					105					110					
ctc	tcc	aag	gag	gac	atc	gac	gtg	cgg	ctc	aag	tgg	ctc	ggc	ctc	ttc	921
Leu	Ser	Lys	Glu	Asp	I1e	Asp	Val	Arg	Leu	Lys	Trp	Leu	G1y	Leu	Phe	
115					120					125				•	130	-
cac	cgc	cgc	aag	cat	cag	tat	ggg	cgg	ttc	atg	atg	cgg	ctg	aag	ctg	969
His	Arg	Arg	Lys	His	Gln	Tyr	Gly	Arg	Phe	Met	Met	Arg	Leu	Lys	Leu	
				135					140					145		
cca	aac	ggt	gtg	acg	acg	agc	gag	cag	acg	agg	tac	ctg	gcg	agc	gtg	1017
Pro	Asn	Gly	Val	Thr	Thr	Ser	Glu	G1n	Thr	Arg	Tyr	Leu	Ala	Ser	Val	
			150					155					160			
atc	gag	gcg	tac	ggc	aag	gag	ggc	tgc	gcc	gac	gtg	aca	acc	cgc	cag	1065
Ile	Glu	Ala	Tyr	G1y	Lys	G1u	Gly	Cys	Ala	Asp	Val	Thr	Thr	Arg	G1n	i.
		165					170					175				
aac	tgg	cag	atc	cgc	ggc	gtc	acg	ctc	ccc	gac	gtg	ccg	gcc	atc	ctc	1113
Asn	Trp	G1n	Ile	Arg	Gly	Val	Thr	Leu	Pro	Asp	Val	Pro	Ala	Ile	Leu	
	180					185					190					
gac	ggg	ctc	aac	gcc	gtc	ggc	ctc	acc	agc	ctc	cag	agc	ggc	atg	gac	1161
Asp	Gly	Leu	Asn	Ala	Val	G1ÿ	Leu	Thr	Ser	Leu	Gln	Ser	Gly	Met	Asp	

195					200					205					210	
aac	gtc	cgc	aac	ccc	gtc	ggc	aac	ccg	ctc	gcc	ggc	atc	gac	ccc	gac	1209
Asn	Val	Arg	Asn	Pro	Val	Gly	Asn	Pro	Leu	Ala	Gly	Ile	Asp	Pro	Asp	
				215					220					225		
gag	atc	gtc	gac	acg	cga	tcc	tac	acc	aac	ctc	ctc	tcc	tcc	taċ	atc	1257
Glu	Ile	Val	Asp	Thr	Arg	Ser	Tyr	Thr	Asn	Leu	Leu	Ser	Ser	Tyr	Ile	
			230					235					240			
acc	agc	aac	ttc	cag	ggc	aac	ccc	acc	atc	acc	aac	ctg	ccg	agg	aag	1305
Thr	Ser	Asn	Phe	G1n	G1y	Asn	Pro	Thr	Ile	Thr	Asn	Leu	Pro	Arg	Lys	
		245					250					255				
tgg	aac	gtg	tgc	gtg	atc	ggg	tcg	cac	gat	ctg	tac	gag	cac	ccg	cac	1353
				Val												
*	260		-			265	•		_		270					
atc	аас	gac	ctc	gcg	tac	atg	ccg	aca	gtg	aag	ggc	ggc	aag	ttc	ggg	1401
				Ala												
275	11511	пор	Боц	1120	280	11200	110		, 42	285	02,	,	-,-		290	
210					200					200						
++0	220	cto	c++	gtc	aac	ggg	tte	atc	age	ccc	ลลช	ឧឧ	t.oo	gag	gag	1449
				Val												1 140
гие	usii	reu	Leu		оту	OTÀ	I IIG	TIG		110	гу	ur g	тър	305	OIU	
				295		-			300					200		

gcg	ctg	ccg	ctg	gac	gcc	tgg	gtc	ccc	ggc	gac	gac	atc	atc	ccg	gtg ·	1497
Ala	Leu	Pro	Leu	Asp	Ala	Trp	Val	Pro	G1y	Asp	Asp	Ile	I1e	Pro	Val	
			310					315					320			
tgc	aag	gcc	gtt	ctc	gag	gcg	tac	cgc	gac	ctc	ggc	acc	agg	ggc	aac	1545
Cys	Lys	Ala	Val	Leu	G1u	Ala	Tyr	Arg	Asp	Leu	Gly	Thr	Arg	Gly	Asn	
		325					330					335		•		
cgc	cag	aag	acc	cgc	atg	atg	tgg	ctc	atc	gac	gaa	ctt	gga	atg	gag	1593
Arg	G1n	Lys	Tḥr	Arg	Met	Met	Trp	Leu	Ile	Asp	G1u	Leu	G1y	Met	G1u	
	340					345					350				·	
gc-t	ttt	cgg	tcg	gag	gtg	gag	aag	agg	atg	ccg	aac	ggc	gtg	ctg	gag	1641
Ala	Phe	Arg	Ser	Glu	Val	Glu	Lys	Arg	Met	Pro	Asn	Gly	Val	Leu	Glu	
355					360					365					370	
												*				
cgc	gct	gcg	ccg	gac	gac	ctc	atc	gac	aag	aaa	tgg	cag	agg	agg	gac	1689
Arg	Ala	Ala	Pro	Asp	Asp	Leu	Ile	Asp	Lys	Lys	Trp	G1n	Arg	Arg	Asp	
				375					380					385		
tac	ctc	ggc	gtg	cac	ccg	cag	aag	cag	gaa	ggg	atg	tcc	tac	gtc	ggc	1737
Tyr	Leu	G1y	Va1	His	Pro	G1n	Lys	Gln	Glu	G1y	Met	Ser	Tyr	Val	G1y	
			390					395					400			
ctg	cac	gtg	ccc	gtc	ggc	cgg	gtg	cag	gcg	gcg	gac	atg	ttc	gag	ctc	1785
					Gly											

29/68

gcc cgc ctt gcc gag gag tat ggc tcc ggc gag ctc cgc ctc acc gtg Ala Arg Leu Ala Asp Glu Tyr Gly Ser Gly Glu Leu Arg Leu Thr Val gag cag aac atc gtg atc ccg aac gtc aag aac gag aag gtg gag gcg Glu Gln Asn Ile Val Ile Pro Asn Val Lys Asn Glu Lys Val Glu Ala ctg ctc gcc gag ccg ctg ctt cag aag ttc tcc ccg cag ccg tcg ctg Leu Leu Ala Glu Pro Leu Leu Gln Lys Phe Ser Pro Gln Pro Ser Leu ctg ctc aag ggc ctg gtc gcg tgc acc ggc aac cag ttc tgc ggc cag Leu Leu Lys Gly Leu Val Ala Cys Thr Gly Asn Gln Phe Cys Gly Gln gcc atc atc gag acg aag cag cgg gcg ctg ctg gtg acg tcg cag gtg Ala Ile Ile Glu Thr Lys Gln Arg Ala Leu Leu Val Thr Ser Gln Val gag aag ctc gtg tcg gtg ccc cgg gcg gtg cgg atg cac tgg acc ggc Glu Lys Leu Val Ser Val Pro Arg Ala Val Arg Met His Trp Thr Gly

tgc	ccc	aac	agc	tgc	ggc	cag	gtg	cag	gtc	gcc	gac	atc	ggc	ttc	atg'	2121
Cys	Pro	Asn	Ser	Cys	G1y	Gln	Val	G1n	Va1	Ala	Asp	Ile	Gly	Phe	Met	
515					520					525					530	
ggc	tgc	ctc	acc	aag	gac	agc	gcc	ggc	aag	atc	gtc	gag	gcg	gcc	gac	2169
Gly	Cys	Leu	Thr	Lys	Asp	Ser	Ala	Gly	Lys	Ile	Val	G1u	Ala	Ala	Asp	
				535					540					545		•
atc	ttc	gtc	ggc	ggc	cgc	gtc	ggc	agc	gac	tcg	cac	ctc	gcc	ggc	gcg	2217
Ile	Phe	Va1	Gly	G1y	Arg	Val	Gly	Ser	Asp	Ser	His	Leu	Ala	Gly	Ala	
			550					555					560	٠.		
tac	aag	aag	tcc	gtg	ccg	tgc	gac	gag	ctg	gcg	ccg	atc	gtc	gcc	gac	2265
Tyr	Lys	Lys	Ser	Val	Pro	Cys	Asp	Glu	Leu	Ala	Pro	Ile	Val	Ala	Asp	
		565					570					575				
atc	ctg	gtc	gag	cgg	ttc	ggg	gcc	gtg	cgg	agg	gag	agg	gag	gag	gac	2313
Ile	Leu	Val	Glu	Arg	Phe	Gly	Ala	Va1	Arg	Arg	Glu	Arg	Glu	Glu	Asp	
	580					585					590					
gag	gag	tag	gage	caca	gac 1	tgggg	gtgg	tt tį	gctt	gctc	c gg	tgat	ctct			2362
Glu	Glu															
595																
cgc	cgtc	ctt ;	gtaa	agta	ga c	gacaa	atatį	g cc	ttcg	ccca	tgg	cacg	ctt į	gtac [.]	tgtcac	2422

31/68

gttttggttt gatcttgtag cccaaaagtt gtgttcattc tcgttacagt cttacagagg 2482

atgattgatt gataaataaa gaagaaacag attctgc 2519

<210> 3

〈211〉 596

<212> PRT

<213> Oryza sativa

<400> 3

Met Ala Ser Ser Ala Ser Leu Gln Arg Phe Leu Pro Pro Tyr Pro His

1 - 5 10 15

Ala Ala Ala Ser Arg Cys Arg Pro Pro Gly Val Arg Ala Arg Pro Val
20 25 30

Gln Ser Ser Thr Val Ser Ala Pro Ser Ser Ser Thr Pro Ala Ala Asp 35 40 45

Glu Ala Val Ser Ala Glu Arg Leu Glu Pro Arg Val Glu Gln Arg Glu
50 55 60

Gly Arg Tyr Trp Val Leu Lys Glu Lys Tyr Arg Thr Gly Leu Asn Pro
65 70 75 80

32/68

Gln Glu Lys Val Lys Leu Gly Lys Glu Pro Met Ser Leu Phe Met Glu² 85 90 95.

Gly Gly Ile Lys Glu Leu Ala Lys Met Pro Met Glu Glu Ile Glu Ala 100 105 110

Asp Lys Leu Ser Lys Glu Asp Ile Asp Val Arg Leu Lys Trp Leu Gly
115 120 125

Leu Phe His Arg Arg Lys His Gln Tyr Gly Arg Phe Met Met Arg Leu 130 135 140

Lys Leu Pro Asn Gly Val Thr Thr Ser Glu Gln Thr Arg Tyr Leu Ala 145 150 155 160

Ser Val Ile Glu Ala Tyr Gly Lys Glu Gly Cys Ala Asp Val Thr Thr

165 170 175

Arg Gln Asn Trp Gln Ile Arg Gly Val Thr Leu Pro Asp Val Pro Ala 180 185 190

Ile Leu Asp Gly Leu Asn Ala Val Gly Leu Thr Ser Leu Gln Ser Gly
195 200 205

Met Asp Asn Val Arg Asn Pro Val Gly Asn Pro Leu Ala Gly Ile Asp 210 215 220

33/68

Pro Asp Glu Ile Val Asp Thr Arg Ser Tyr Thr Asn Leu Leu Ser Ser 225 230 235 240

Tyr Ile Thr Ser Asn Phe Gln Gly Asn Pro Thr Ile Thr Asn Leu Pro
245 250 255

Arg Lys Trp Asn Val Cys Val Ile Gly Ser His Asp Leu Tyr Glu His
260 265 270

Pro His Ile Asn Asp Leu Ala Tyr Met Pro Ala Val Lys Gly Gly Lys
275 280 285

Phe Gly Phe Asn Leu Leu Val Gly Gly Phe Ile Ser Pro Lys Arg Trp
290 295 300

Glu Glu Ala Leu Pro Leu Asp Ala Trp Val Pro Gly Asp Asp IIe IIe 305 310 315 320

Pro Val Cys Lys Ala Val Leu Glu Ala Tyr Arg Asp Leu Gly Thr Arg
325 330 335

Gly Asn Arg Gln Lys Thr Arg Met Met Trp Leu Ile Asp Glu Leu Gly 340 345 350

Met Glu Ala Phe Arg Ser Glū Val Glu Lys Arg Met Pro Asn Gly Val

34/68

355 360 365

Leu Glu Arg Ala Ala Pro Asp Asp Leu Ile Asp Lys Lys Trp Gln Arg 370 375 380

Arg Asp Tyr Leu Gly Val His Pro Gln Lys Gln Glu Gly Met Ser Tyr 385 390 395 400

Val Gly Leu His Val Pro Val Gly Arg Val Gln Ala Ala Asp Met Phe
405 410 415

Glu Leu Ala Arg Leu Ala Asp Glu Tyr Gly Ser Gly Glu Leu Arg Leu
- 420 425 430

Thr Val Glu Gln Asn Ile Val Ile Pro Asn Val Lys Asn Glu Lys Val
435
440
445

Glu Ala Leu Leu Ala Glu Pro Leu Leu Gln Lys Phe Ser Pro Gln Pro 450 455 460

Ser Leu Leu Lys Gly Leu Val Ala Cys Thr Gly Asn Gln Phe Cys
465 470 475 480

Gly Gln Ala Ile Ile Glu Thr Lys Gln Arg Ala Leu Leu Val Thr Ser 485 490 495

35/68

Gln Val Glu Lys Leu Val Ser Val Pro Arg Ala Val Arg Met His Trp 500 505 510

Thr Gly Cys Pro Asn Ser Cys Gly Gln Val Gln Val Ala Asp IIe Gly
515 520 525

Phe Met Gly Cys Leu Thr Lys Asp Ser Ala Gly Lys Ile Val Glù Ala
530 535 540

Ala Asp Ile Phe Val Gly Gly Arg Val Gly Ser Asp Ser His Leu Ala
545 550 555 560

Gly Ala Tyr Lys Lys Ser Val Pro Cys Asp Glu Leu Ala Pro Ile Val 565 570 575

Ala Asp Ile Leu Val Glu Arg Phe Gly Ala Val Arg Arg Glu Arg Glu
580 585 590

Glu Asp Glu Glu 595

<210> 4

〈211〉 12179

<212> DNA

<213> Oryza sativa

36/68

<220>

<221> exon

<222> (6001).. (6409)

<223>

<220>

<221> exon

<222> (10255).. (10609)

<223>

<220>

<221> exon

<222> (10712).. (11000)

<223>

<220>

<221> exon

<222> (11094)..(11831)

<223>

<400> 4

ctcgagcttt tttgactgcc ctaatcaggc gggttccttg tgggacccac ataatgcttt

60

ttttaatcgc cttcacgggc tgcatgcaaa ctatacggcg tggtacttcc actactagaa 120

37/68

aaaacgggct tttcgcaggc gggcaaacct tccgcatgta tattaacgac cgtaaaaatc 180 tecaatttte acaggtggae eecageaceg eetgegaaaa taattttege aggetgeatt 240 300 tegaatette etgggtgeta eagtaaacea eetgegaaaa taeteaegge geeaaaaaaa aaatttccgc cagccccgcc ccctccctat tcaaatcaca aattctcaca aatctcatcc 360 aaaaacaaaa ttcaatccaa aaatccatac atcaacacaa agcattggat tcaaatccac 420 aacatcaatt tacaagttaa catcaatcaa catgtaagct ttaaaacgaa acgtcgtcgt 480 cgccggcaaa ctccttttgc atgcggtgcc gccgccgccc ccctccccc tctgtccgga 540 600 tttgggaggg agggaggtgt ttgccgccac caccgccctc ccctctcctc gtagggccgg 660 atctcgggag ggaggagag ggagccgcct ccgcacagcc atcaacgtcc gtgccgccgt cgcctcgttc gcaccaccgc cgttgcttcc cctcctccgg ccagatctag gagcggggag 720 gaagagaggg ggagccaccg ccaccgtcgc cccctcgcgt ccgcgccgtc gtcaccgtcc 780 840 acgccgccgc gtccgtgccg ccgctgtcgc tcccctcct ctggcgagga gggagagaga 900 gggagccgtc gcgccgccgt cgctcccctc cttcggcgag gagggagaga gggggaggga

38/68

960 agagggatgg aggggaggag agtggcgctg agagagagag agagagacgc tgaggagagg 1020 aaatgagtgg tgggggggg tggaggagaa gataaggagg acttagattt tttttttggg 1080 taagtatgat ttttgcaggc ggaccacata aggttccgcc tgcgaaaatc aattttttcg cgcagaccac ttaagaggtc cgcatgcgaa aataaaggta ttttttagg cggacctctt 11401200 aagtggtccg cctggaaaaa ttgattttcg caagcggatg acgaaaattc accccggttt atattttcga agatgcttca tcgacgacat cgactgcgtc ctctatgaca gcaacgaccg 1260 cgtcaccgac gacggcatcg atcacgtcat ctacgatgac aatgactgca tcaactccgc 1320 1380 atcactattg tgatgactgt tacacggcgt agaagaacca accaaagtgg tggcttcatc gccaacgacg tcctctaaca tatgcaagac gtccccaatg gcatcctctg acatctacaa 1440 1500 ggtgcaagat gctaacaatt acagtttttg tcttcacact gtggcataaa tattttttt caccttcggc tatatgcggc tacacctaca accacggtta ctacatgatc ggctccatca 1560 acgaacatct ataacaacaa tcattgatgg aaactctagt caaagcgtct gtgtcatcgc 1620 1680 tatcatccat gacactcccg ctatgactac gtgagggaat agataagagt caagggacga

39/68

cacggaagga gacgtaggca ccaggtggag gaccatccat caaagatgca attgatgatg 1740 gtgagttgaa gaagatgaag aaataaaata tttcaaatcc agtcgcaatc attcgcttcg 1800 ctcccgttac gactgagggg gaatgttaga agcatagata tattaattgg agataagagt 1860 catacaaata tagagataag atatcatcct agagatagaa tcctagagat aaaatatagt 1920 1980 cctagagata aatctactct tacttgtacc cctatatata ccccatgaga ggatcaatgc 2040 aatacaccga gaatacaaca attagatttt tctacggttg taactataat acgctgtaat 2100 atgctggatc ggggaagagc geccgtaatc agtgccccag agatgtaggt ctcggttgaa 2160 ctccattatc aaataccgta cctcggtgtc gtcatcatgt ttgaatcttc tatgacgttt cttttgcatt cggttttcga tgtgacttcg gggctggttt tataacaatg attatagtgc 2220 tgttgacggc aatcggttgt gagaattagc tattcgggtc cctccatgtg attttcttgt 2280 gattgggatg tatggtaatg ctagggtttt aaggtgtagg attggtgcat gagagatcat 2340 cactteactt gtatgacett eteteetttt atatttttt ateattetet eettttttt 2400 ataatgctac tgaactagtg gaatacaggg gactaatgca aaataaaaga aaagtatcac 2460

40/68

tggtcacggc atataattta gaaagtgtgt gatttaggca tagggctgac catgaccctt 2520 tacgacttgg tcgctcggtt tgttagacga tagatcaacc aacaaaagct acgatacatg 2580 atgtacgtgt caggatacaa atccttacaa ataacaacag ttattgttcg ataactatca 2640 gttgtctagg cttaccaatg tataatagaa gatgaaaatt ccatattact ggtatcgttc 2700 aatgctagta actctttgag ctttgtctag gttaaaaaaa aaattatgga tccaccatca 2760 caaaaatgaa aaacaccggg gaaaacaaaa aaccatttga tagcagcaca agacaaaatg 2820 atgttaccgt ctacccgage tectactccg taccagcaca accaaacgaa cagtacccgc 2880 cggaccaggg gcacgttcgt aaatttccct cccgtggctg gctggctgcc atctctctca 2940 accagggttg gtaatttcgg ccgtttcggt gggtcccgat agtaaatgag ctccggtcaa 3000 aacgccctcc gcctcccctc attgcgccgc acgcacaccg catctagatc cagatcgaaa 3060 aaatcgctat ctcgccgagt cgccagtcac cgcctcgacg ccggtcgccg taccgccggc 3120 gctgcacgcc ccctccaag ccgtcgcccc atcgccccca gccgcccagt ggtggggcgg 3180 cggatgccga gcttggcgag gttgccgagg acgaaccagg cgaggaggac gaggatcttg 3240

41/68

tcgacgagcc agagcgggag ccacgccatg agcaacacgg cgagctcgaa cgtggacttg 3300 3360 ccgagcacct cgccagggag gacgtggacg gcgtcgcgca ccaccatcgc cgggagggcg ctgtggtcgc acaggtcgag cgacaccacc atgccggagt tgccgcaccc gacgacgagc 3420 3480 accttcttgc cgcggtacgc ctcgccggac ttgtagaccg cgacatgcat cacctcgctg 3540 ctatatttgt tcttggactg tggagacttg ctgtcagtgg gtgtgttcag aattgctgct 3600 gcagcttgca gcgaatttgt gatgcagcag ctgcagcttg tatggctgcc gagtagagcg agtgttgcta tctgtttttg ttctcttttt cagaaatttc gcccgcaaat tttaaatttg 3660 3720 aattcaaatt tttaaaagaa ctagaaaata tgcccgtgcg ttgcaccggg tgaatatcaa acaaatattg atgggtaaga ttgcttgtgt acttataaca catatgcaca aaaatattga 3780 atatgtacat acctcgcaaa tatctccaaa ttttatacat atgagttgtg taaatcatgt 3840 3900 gagttccata ttgtcatgtt aatatggagt attactgatg agcccatcta tggtgataat 3960 tttggaggtt gtagctcaac gaatttgtat ttgctatgta tctcaacgtt gataagtcac 4020 tactacaacc atcggcgacc tttctcggga tccaagcatg tcgaccccgc caacgtggcg

42/68

teggtgeagg geacegagat gaacaceaeg gggetatttg cetgteeagg gteatectag 4080 gcttaaggcc acgacactca aggacgtggt aggcggcgtc acagaggtgc tcccagcgaa 4140 caagctggcc accaaggagg acgccgacaa ggtggcggcc accgctatgc agaaacgatg 4200 ggaggcatgc cggtgacgac aaggagctaa cacgatccat ttagtcccga tccgagttta 4260 tcaggaattc aatcctgcac cgtgcggtta cgtttttctt ttccgcggga aaagcaatca 4320 ccgatggtag ggacaaagtg cgtgtgagaa cagaggccag gccaaagtgc gtgcgagaac 4380 ggaggctagg ccatcgctgg attggattta cgaatgaaat atcgatgtga cgaacagaaa 4440 attatcagtt tgatttaatt ttcataatca gaactcttta ataggaaaaa aattacatgt 4500 acgttccttc atcgtgccca tgtccatctg ggagtccagg tttattcaca aagacccaat 4560 caacagccag gaatccatgt ccttccccgc cgttccctac tctgcttttt tttctttcat 4620 ttgaaacctt ccgctatgaa tttctagtcg ttcctagcat ccacgcacac aaaatagatt 4680 tecetegeaa ggeaaaacat acaaatatga gtgeatgeaa gatattacaa acceaateea 4740 ttaaaaatag aaaataatta actttagcct acctatctca atattggtat atgcccaaac 4800

43/68

tcaaaaggag aaaaaccaaa ctaaaacttt taataaagtg aacccaagag ataaaaaggt 4860 gatagtaaca acaaaatctc acttgacaat gtcgttaatc aacactgttt ttaaatatta 4920 cttaaaaatc tttatattta cctattaaaa caatgaaaaa cagaagatgt ttcttttta 4980 5040 tttacaacag cgttgtattt agtcatgtcc tatctaagag agaaaaatga atttaacgaa aagaagctca gaaaaaaaaa gagaacaggg ccaccacacc agtaatccct atgttatcaa 5100 5160 tgaaaaaaaa tttcaatgct aggtttttta taagaaaagg tgataaagtg ttgaaaaaat 5220 acagcaggaa attatatatc ttgctggttt aacatgaatt caagcatata gatataaaaa tatatcaggc taggaaagga aaaggataaa attggagaga aaaaggaaaa gaacagtaga 5280 ggataaccag caaaaagatg aaaggattcg aacccatgac ctagcggtac aattgtttca 5340 5400 caggetaace aattgagaat categacgtt gtgtcatett gtgtagetac atttgaaaaa 5460 atatgttttg agetgaacgt tggtgtgtcc gcccctgcat ccgatacatg ttggagcgtg 5520 gagogoggta aagaaaaaat cotatogaac ettatotoot totototogt ogotttotgo 5580 gtctccccgt ctctccttcg ccaacagccg agaagaggca gagagagcgc cgcccccgt

ccc ⁻	tctc	tct	ccct	ctcg	tc c	tcgc	ccc	a tc	cctc	tcgt	ctt	tccc	ttg	ccgg	cagcág	g	5640
agga	aggc	ggc	agcg	acgg	ct t	cagc	tgct	с сс	acgg	gccg	gat	cggg	cag	tggc	ggtggd	c	5700
gtc	ggcg;	gct	tccg	ctgg	cg a	atcc.	ggcg	g gt	ggat	acaa	atc	agtg	ttc	cgat	aggtaa	ì.	5760
aaco	cctg	ctc	tcag	catc	tg c	cctt [.]	ttgaa	a tt	cgcc	aaga	gcc	agca	tct	gccc	ttttga	1	5820
atto	egeca	aag	ggcc	agca [.]	tc t	gccc	atttį	g at	tttg	aatt	cgc	caag	agc	cagc	aacago	÷	5880
gcco	ccg	cgc (cccc [.]	tece [.]	tc c	tccg	caata	a aa	cage	caca	cgc	gccg	ccc	ccat.	, gtccac	;	5940
ceto	eatc	gcc a	acago	cgca	cc a	ccac	cacca	а сса	acca	ccac	cac	cacca	acc	gtct	ccagco	;	6000
atg	gcc	tcc	tcc	gcc	tcc	ctg	cag	cgc	ttc	ctc	ccc	ccg	tac	ccc	cac		6048
Met	Ala	Ser	Ser	Ala	Ser	Leu	Gln	Arg	Phe	Leu	Pro	Pro	Tyr	Pro	His		
1				5					10					15	-		
gcg	gca	gca	tcc	cgc	tgc	cgc	cct	ccc	ggc	gtc	cgc	gcc	cgc	ccc	gtg		6096
						Arg											
			20	0	- ,	0		25	٠.,	, 41	*** 6	111.0		110	, 41		
			20					20					30				
cag	tcg	tcg	acg	gtg	tcc	gca	ccg	tcc	tcc	tcg	act	ccg	aca	aca	gac		6144
						Ala											1
		35					40					45			F		
		50					10					-10					

45/68

gag	gcc	gtg	tcg	gcg	gag	cgg	ctg	gag	ccg	cgg	gtg	gag	cag	cgg	gagʻ	6192
Glu	Ala	Val	Ser	Ala	G1u	Arg	Leu	Glu	Pro	Arg	Val	Glu	G1n	Arg	Glu	
	50					55					60					
ggc	cgg	tac	tgg	gtg	ctc	aag	gag	aag	tac	cgg	acg	ggg	ctg	aac	ccg	6240
G1y	Arg	Tyr	Trp	Val	Leu	Lys	Glu	Lys	Tyr	Arg	Thr	G1y	Leu	Asn	Pro	
65					70					75				•	80	-
cag	gag	aag	gtg	aag	ctg	ggg	aag	gag	ссс	atg	tca	ttg	ttc	atg	gag	6288
G1n	Glu	Lys	Val	Lys	Leu	G1y	Lys	Glu	Pro	Met	Ser	Leu	Phe	Met	G1u	
				85					90					95		
ggc	ggc	atc	aag	gag	ctc.	gcc	aag	atg	ccc	atg	gag	gag	atc	gag	gcc	6336
Gly	G1y	Ile	Lys	Glu	Leu	A1a	Lys	Met	Pro	Met	Glu	G1u	Ile	Glu	Ala	
			100					105					110			
gac	aag	ctc	tcc	aag	gag	gac	atc	gac	gtg	cgg	ctc	aag	tgg	ctc	ggc	6384
Asp	Lys	Leu	Ser	Lys	G1u	Asp	Ile	Asp	Val	Arg	Leu	Lys	Trp	Leu	Gly	
		115					120					125				
ctc	ttc	cac	cgc	cgc	aag	cat	cag	t gt	atgo	ctct	ctt	ctct	tgc			6429
Leu	Phe	His	Arg	Arg	Lys	His	G1n									
	130					135										

tcctctgatc aacacatttt cttgctttcg ttcggttatt tgtcgcgccg aggaagttaa 6489

46/68

ttcgccaaga tattctgcag ttttttttct cgatgcacat tcagcaacct aattaagact 6549 gattaagttg ctgtgatttt tatagcttaa ttacggtctc gtgggtaatg actatttata 6609 ttgagtaaac atggttacct ttgatccaat cacttcacct ccatgtgcca tatatagcca 6669 caggetetae caagtaacae tagtaatatg cetgtgatae geeaeggtgg cataataaat 6729 cattaaattt tattataatc aaattaagga tcctaaaatt ggtccaattg ggtgttaatt 6789 cgatgcaggt catataaaaa tatattttag gcaaggtgca attcaagagc atcaaccatt 6849 atatccaatc actttaatat atatttgaag ataacatatg tcggaaaaaa aatgatggag 6909 agctatttca ttaacttgtg agcataaaca gatcaccaga tgatgccacc ataagtcccg 6969 ccacagtaag tgatgcagct catcttgccc taggcgttcg gtctaaccag tagatagaaa 7029 gagtacaaca tagatcgaat gaaaaaaaaa atctccagaa gaaagctcaa ccacattgag 7089 taaattagag caacaatcaa atcgagtcag catatcgtta tgttagcaga accaatcacc 7149 acaatttgtt tctcctcttt atctaagtgt tttgccaggt taaaagcata tatcactatg 7209 ttccaagcaa acatcggcaa tggacatgtc aaaaataaat gatcaattgt ttctttgagt 7269

47/68

acaaaattga caatggacac tatgttcctt tgttagaatt ctatttgtca gggtaggatg 7329 tagaaaaact taacttttag aggaagctta aatatccggc ataaacttgc tttttcagcg 7389 ctctataaaa taattcaaca gtgaattgtc catcttttct aagtgctcca aaagacacta 7449 7509 agttgaaaaa ccaggtgaac caacagattg atccacaaaa tcttattatt agattattca 7569 cttaaaagcc tgtctttatt tcaaacatat aaaaacagaa gttattaatc agggaagcgc ttatggcagc ctgagcgaac cagtgatagc aagtggtgaa aacagtaaat aggatacata 7629 aaaattatac aaggtttcta ctgtttatca aaaaaaaata tttgaaaaca gtaaatagga 7689 tacataatcg acttccaact tgtccttatc ataacatcca gaatcacaac aagaattgca 7749 acgaatacat agtcgacttg agctaagaag tcacaagacc tgtcaaagta agctgccctt 7809 gatcttgaag tgaaaggcat attttattgt cttccttggc aaacagatat cactgtcttc 7869 7929 agcagttcag ttagataatc caagatttct cacggagaag agcatatcac tcgcatcagt 7989 gttgtgccct ccaaatactg agataaactg aattttgttc tctttgaagc atctgcaggc attaacaatt ataatacttt acaaagtttc attgggtcta aactattgtt tgcacatcat 8049

48/68

atatatgccc agaacttttt agcatgatac aagggtcctg ttcataactc atgcctaaat 8109 ctgacaaatt tgtcaaacga caatataagt cgaattataa tgcgttttag aattgacgcc 8169 aaaacttttg ctagcgtaag taactcttcc acctcccagc atgcatacaa ccaacaagct 8229 aaacttttgt tcaaaaaaat gtacatttat ttccttgaac acagcctttg tagaatatga 8289 8349 ttaaaaactc atggatgaat gaaataatgt aaaagaatgg tcaaaatgat gaatagtaca agaagcaact gtgaacattt cacctttacc tgactgttcg caagaaggcc acgtggcaga 8409 8469 aaagccagaa atgcaagaag cttccctaat tgatacacca tcaagaaatc aatggactca acaccagcgt ctgcccagac aaaatgaatg caggcaccta aaatatagaa ccattgactt 8529 ttcaacactg aattatataa cctgaatatc ttgttttttt aacacatctg acaaaatcag 8589 8649 tgcattctgt tccatataga tgtatgcata gctcccatat gttagttgat cgatgagcat 8709 gcaaactata cacaccttac gttactccct ctgtcaaaaa aaatataagc ttgtctagat acatagctac aaatgcttat atttttggat tctcttaaag ctgtagaaac ttttatcgcc 8769 ccgccatggc aagtcgagat gccatcccca atgaaagccc ccacacaggt ttcatgccct 8829

49/68

gctgcacaat attgagcaac caaaaatata ataatatttg tgtcagaatt tgaatcaacc 8889 ttacagatac tgggtggcca gaaaatctag tccaagtaat atcctgaaaa atagcaactg 8949 gcaaatacta aaggcagtga agagtttcct ttagatcaga tgataaaaaa aaatcatatg 9009 ttcaatagca ataatcactc acatttttt tgctgtttag aatttagata attagtagtt 9069 aaacttctat agcttgcgta gctaagatca atggtgatta ttagttgaaa aaataatcaa 9129 atcatcaaac tgaggagact tatacctgcc ataagttctg aaatttcaat gatcctagtc 9189 aatatttact gtatatatag aattaggtcc aaaagatgat acttacaatt aaggatgttg 9249 tattgatcgg ttcataactc aagcttctat ttatcattaa tcaaaagctg gatcattcat 9309 gcatatacct ttgccgcact caacgtagca gctcggagtc ttctttgttc agaagcgagg 9369 aaggagtcaa caaataagta ctgcaatgtt aaacaaaccg acatatcaaa tcccaaatta 9429 agaatgcatg atttattaat acaggaaata tatgatcaag tcccaaaaag tgagtcatgt 9489 tatgtacact cagtcatcaa tttcaataag aatattaact tgctcattgg tatatggatt 9549 tgattatgac ataatttgac aatacattta cagaataaac ttgcagtgct gtgagcatat 9609

50/68

gttactaaca	tgtaaggacc	ttgttttgct	ctgttcaata	ctcatgttga	tcttgatctg	9669
tgtccacata	tacctaaatg	aaatgaaatc	aaagaatgag	gtttgtagga	gtggagttgg	9729
tgaattatag	ggtagataat	gtcggcacaa	ccgtttgata	agtagtacga	gtactttatt	9789
tggcgccacc	gcgccagcat	cagatgtgtg	gcctttgcac	tgattgaatc	caaaagaaaa	9849
aaaaagtcgt	tttggtccca	cacaattcta	cttcatctgc	aggatgtaca	gaaggttaca	9909
tatctattct	gttctatgct	ctgtttacat	ttatatttat	agtactaggt	tgaaagggct	9969
cacttggtgg	ctgtcattgg	ttggctggtg	cggtatatta	ctaataggtt	ttttaatggc	10029
atatatgttc	ttaaaataaa	ccagaaaaagc	aaaagatcaa	ctatcttagc	cacaccaatg	10089
aaatggaata	tactgaactg	tcacggctaa	aattctcttc	agtcacctgg	cccaactgga	10149
gccgtgggct	cgtcgtcttt	tctaaacatg	tactagtatt	ttgggggccc	acagtgaatt	10209
tggcccaaaa	tgctgacagc	cgctctacgg	ctctacgctg		ggg cgg ttc Gly Arg Phe	10265
				ıyı '	140	

atg atg cgg ctg aag ctg cca aac ggt gtg acg acg agc gag cag acg 10313

Met Met Arg Leu Lys Leu Pro Asn Gly Val Thr Thr Ser Glu Gln Thr

51/68

agg tac ctg gcg agc gtg atc gag gcg tac ggc aag gag ggc tgc gcc Arg Tyr Leu Ala Ser Val Ile Glu Ala Tyr Gly Lys Glu Gly Cys Ala gac gtg aca acc cgc cag aac tgg cag atc cgc ggc gtc acg ctc ccc Asp Val Thr Thr Arg Gln Asn Trp Gln Ile Arg Gly Val Thr Leu Pro gac gtg ccg gcc atc ctc gac ggg ctc aac gcc gtc ggc ctc acc agc Asp Val Pro Ala Ile Leu Asp Gly Leu Asn Ala Val Gly Leu Thr Ser - 190 ctc cag agc ggc atg gac aac gtc cgc aac ccc gtc ggc aac ccg ctc Leu Gln Ser Gly Met Asp Asn Val Arg Asn Pro Val Gly Asn Pro Leu gcc ggc atc gac ccc gac gag atc gtc gac acg cga tcc tac acc aac Ala Gly Ile Asp Pro Asp Glu Ile Val Asp Thr Arg Ser Tyr Thr Asn ctc ctc tcc tcc tac atc acc agc aac ttc cag ggc aac ccc acc atc Leu Leu Ser Ser Tyr Ile Thr Ser Asn Phe Gln Gly Asn Pro Thr Ile

52/68

10649 Thr Asn Leu tgtttcgtgt cgtctctgac gacatgtttg ttgaatttgt tgttgctgcg tgctgttggc ag g ccg agg aag tgg aac gtg tgc gtg atc ggg tcg cac gat ctg tac 107.57 Pro Arg Lys Trp Asn Val Cys Val Ile Gly Ser His Asp Leu Tyr 270 265 260 gag cac cca cac atc aac gac ctc gcg tac atg ccg gcg gtg aag ggc 10805 Glu His Pro His Ile Asn Asp Leu Ala Tyr Met Pro Ala Val Lys Gly 285 275 280 ggc aag ttc ggg ttc aac ctc ctc gtc ggc ggg ttc ata agc ccc aag 10853 Gly Lys Phe Gly Phe Asn Leu Leu Val Gly Gly Phe Ile Ser Pro Lys 295 300 290 agg tgg gag gag gcg ctg ccg ctc gac gcc tgg gtc ccc ggc gac gac 10901 Arg Trp Glu Glu Ala Leu Pro Leu Asp Ala Trp Val Pro Gly Asp Asp 310 315 305 atc atc ccg gtg tgc aag gcc gtt ctc gag gcg tac cgc gac ctc ggc 10949 Ile Ile Pro Val Cys Lys Ala Val Leu Glu Ala Tyr Arg Asp Leu Gly 330 325 320

acc	agg	ggc	aac	cgc	cag	aag	acc	cgc	atg	atg	tgg	ctc	atc	gac	gaaʻ	10997
Thr	Arg	Gly	Asn	Arg	Gln	Lys	Thr	Arg	Met	Met	Trp	Leu	Ile	Asp	G1u	
335					340					345					350	
ctt	gtga	aacca	att 1	ttttt	ctc	a tt	cato	cace	g cca	attga	actg	aati	tacgi	tat		11050
Leu																
														•		-
gtco	caat	tgt t	cctta	atcag	gt ta	atte	gcggt	t gtt	tggca	attg	cag	gga	atg	gag	gct	11105
												Gly	Met	Glu	Å1a	
														,	355	
ttt	cgg	tcg	gag	gtg	gag	aag	agg	atg	ccg	aac	ggc	gtg	ctg	gag	cgc	11153
Phe	Arg	Ser	G1u	Val	G1u	Lys	Arg	Met	Pro	Asn	Gly	Val	Leu	Glu	Arg	
				360					365					370		
gcg	gcg	ccg	gag	gac	ctc	atc	gac	aag	aaa	tgg	cag	agg	agg	gac	tac	11201
Ala	Ala	Pro	G1u	Asp	Leu	Ile	Asp	Lys	Lys	Trp	Gln	Arg	Arg	Asp	Tyr	
			375					380					385			
ctc	ggc	gtg	cac	ccg	cag	aag	cag	gaa	ggg	atg	tcc	tac	gtc	ggc	ctg	11249
Leu	Gly	Val	His	Pro	Gln	Lys	G1n	Glu	G1y	Met	Ser	Tyr	Val	Gly	Leu	
		390					395					400				
cac	gtg	ccc	gtc	ggc	cgg	gtg	cag	gcg	gcg	gac	atg	ttc	gag	ctc	gca	11297
His	Val	Pro	Val	G1y	Arg	Val	Gln	Ala	Ala	Asp	Met	Phe	Glu	Leu	Ala	

54/68

cgc ctc gcc gac gag tac ggc tcc ggc gag ctc cgc ctc acc gtg gag Arg Leu Ala Asp Glu Tyr Gly Ser Gly Glu Leu Arg Leu Thr Val Glu cag aac atc gtg atc ccg aac gtc aag aac gag aag gtg gag gcg ctg Gln Asn Ile Val Ile Pro Asn Val Lys Asn Glu Lys Val Glu Ala Leu ctc tcc gag ccg ctg ctt cag aag ttc tcc ccg cag ccg tcg ctg Leu Ser Glu Pro Leu Leu Gln Lys Phe Ser Pro Gln Pro Ser Leu Leu ctc aag ggc ctc gtc gcg tgc acc ggc aac cag ttc tgc ggc cag gcc Leu Lys Gly Leu Val Ala Cys Thr Gly Asn Gln Phe Cys Gly Gln Ala atc atc gag acg aag cag cgg gcg ctg ctg gtg acg tcg cag gtg gag Ile Ile Glu Thr Lys Gln Arg Ala Leu Leu Val Thr Ser Gln Val Glu aag etc gtg tcg gtg ecc egg gtg egg atg eac tgg acc gge tge Lys Leu Val Ser Val Pro Arg Ala Val Arg Met His Trp Thr Gly Cys

55/68

ccc	aac	agc	tgc	ggc	cag	gtg	cag	gtc	gcc	gac	atc	ggc	ttc	atg	ggc '	11633
Pro	Asn	Ser	Cys	Gly	Gln	Val	Gln	Val	Ala	Asp	Ile	Gly	Phe	Met	Gly	
				520					525					530		
+ 00	oto	200	aan	asc	agc	acc	aac	ຂອດ	atc	σt.t.	gag	gcg	gcc	gac	atc	11681
Cys	Leu	ınr		Asp	Ser	Ala	ату		тте	Val	Giu	Ата		nsp.	116	
			535					540					545			•
ttc	gtc	ggc	ggc	cgc	gtc	ggc	agc	gac	tcg	cac	ctc	gcc	ggc	gcg	tac	11729
Phe	Val	Gly	Gly	Arg	Val	G1y	Ser	Asp	Ser	His	Leu	Ala	G1y	Ala	Tyr	
		550					555					560		1		
					+	~~~	~o.~	a t a	a a a	000	oto	at c	acc	ma o	ato	11777
					tgc											11111
Lys	Lys	Ser	Val	Pro	Cys	Asp	Glu	Leu	Ala	Pro	He	Val	Ala	Asp	lle	
	565					570					575					
ctg	gtc	gag	cgg	ttc	ggg	gcc	gtg	cgg	agg	gag	agg	gag	gag	gac	gag	11825
Leu	Val	Glu	Arg	Phe	Gly	Ala	Val	Arg	Arg	Glu	Arg	G1u	G1u	Asp	Glu	
580					585					590					595	
									,					1_	. 1.1	11001
gag	tag	gaa	caca	gac	tggg.	gtgt	tt t	gctt	gctc	c gg	tgat	ctct	cgc	cgtc	CTT	11881
Glu																

gtaaagtaga cgacaatatg ccttcgccca tggcacgctt gtactgtcac gttttggttt 11941

56/68

gataaataaa gaagaaacag attctgcaac tgttcatcgc tgttcctaaa tctgatttag 12061 cgaaagtatc ttgcctgacc tgtcccaatc gcagtgctaa aaccatataa tcttgcaagc 12121 aaatgaaatt gaaagagttc aatgcaacca ctaacagtct aacaacatga taaggcct 12179

<210> 5

〈211〉 2508

<212> DNA

<213> Oryza sativa

<220>

<221> CDS

<222> (519).. (2309)

<223>

<400> 5

tategaacet tateteette tetetegteg etttetgegt eteceegtet eteettegee 60
aacageegag aagaggeaga gagagegeeg eeeeegtee eteettetee 120
egeeeeeate eetetegtet tteeettgee ggeageagag gaggeggeag egaeggette 180

agct	gctc	cc a	acggg	ccgg	a tc	gggc	agtg	gcg	gtgg	cgt	cggc	ggct	tc c	gctg	gcgáa	240
tccg	gcgg	gt į	ggata	caaa	t ca	gtgt	tccg	ata	ggta	aaa	ccct	gctc	tc a	ıgcat	ctgcc	300
cttt	tgaa	tt (cgcca	agag	c ca	gcat	ctgc	cct	tttg	aat	tcgc	caag	gg c	cage	atctg	360
ccca	tttg	at ·	tttga	attc.	g cc	aaga	gcca	gca	ıacag	cgc	cccc	gege	cc c	ctčc	ctcct	420
ccgc	aata	aa (cagec	acac	g cg	ccgc	cccc	atg	gtcca	iccc	tcat	egee	ac a		accac	480
cacc	acca	.cc	accac	cacc	a co	acca	iccgt	cto	cago						c tcc	536
										Mε	et Al	a Se	er Se	er Al	a Ser	
-						`				1				5		
a+ =	222	0.00	ttc	oto	000	cca	tac	ccc	cac	aca	gca	gca	tee	cgc	tgc	584
Leu	Gln	Arg	Phe	Leu	Pro	Pro	Tyr	Pro	His	Ala	Ala	Ala	Ser	Arg	cys ·	
			10					15					20			
cgc	cct	ccc	ggc	gtc	cgc	gcc	cgc	ccc	gtg	cag	tcg	tcg	acg	gtg	tcc	632
Arg	Pro	Pro	G1y	Val	Arg	Ala	Arg	Pro	Val	G1n	Ser	Ser	Thr	Val	Ser	
J		25					30					35				
		20										-				
gca	CCa	tcc	tcc	tcg	act	ccg	gcg	gcg	gac	gag	gcc	gtg	tcg	gcg	gag	680
			Ser													
ATA		ser	ser	กลา	1111		ma	111a	пор	oru		141	551	11.1 U	-,. 4	
	40					45					50					

728	ctc	gtg	tgg	tac	cgg	ggc	gag	cgg	cag	gag	gtg	cgg	ccg	gag	ctg	cgg
	Leu	Val	Trp	Tyr	Arg	G1y	G1u	Arg	G1n	Glu	Val	Arg	Pro	Glu	Leu	Arg
	70					65					60					55
776	ctg	aag	gtg	aag	gag	cag	ccg	aac	ctg	ggg	acg	cgg	tac	aag	gag	aag
	Leu	Lys	Val	Lys	G1u	G1n	Pro	Asn	Leu	Gly	Thr	Arg	Tyr	Lys	G1u	Lys
		85 `					80					75				
824	ctc	gag	aag	atc	ggc	ggc	gag	atg	ttc	ttg	tca	atg	ccc	gag	aag	ggg
	Leu	Glu	Lys	Ile	G1y	G1y	G1u	Met	Phe	Leu	Ser	Met	Pro	Glu	Lys	G1y
	,	•	100					95					90			
872	gag	aag	tcc	ctc	aag	gac	gcc	gag	atc	gag	gag	atg	ccc	atg	aag	gce
	Glu	Lys	Ser	Leu	Lys	Asp	Ala	Glu	Ile	Glu	Glu	Met	Pro	Met	Lys	Ala
				115					110					105		
920	aag	cgc	cgc	cac	ttc	ctc	ggc	ctc	tgg	aag	ctc	cgg	gtg	gac	atc	gac
	Lys	Arg	Arg	His	Phe	Leu	G1y	Leu	Trp	Lys	Leu	Arg	Val	Asp	Ile	Asp
					130					125					120	
968	gtg	ggt	aac	cca	ctg	aag	ctg	cgg	atg	atg	ttc	cgg	ggg	tat	cag	cat
	Val	Gly.	Asn	Pro	Leu	Lys	Leu	Arg	Met	Met	Phe	Arg	G1y	Tyr	Gln	His
	150					145					140					135
1016	tac	gcg	gag	atc	gtg	agc	gcg	ctg	tac	agg	acg	cag	gag	agc	acg	acg
						Ser										

59/68

ggc aag gag ggc tgc gcc gac gtg aca acc cgc cag aac tgg cag atc Gly Lys Glu Gly Cys Ala Asp Val Thr Thr Arg Gln Asn Trp Gln Ile cgc ggc gtc acg ctc ccc gac gtg ccg gcc atc ctc gac ggg ctc aac Arg Gly Val Thr Leu Pro Asp Val Pro Ala Ile Leu Asp Gly Leu Asn gcc gtc ggc ctc acc agc ctc cag agc ggc atg gac aac gtc cgc aac Ala Val Gly Leu Thr Ser Leu Gln Ser Gly Met Asp Asn Val Arg Asn - 200 ccc gtc ggc aac ccg ctc gcc ggc atc gac ccc gac gag atc gtc gac Pro Val Gly Asn Pro Leu Ala Gly Ile Asp Pro Asp Glu Ile Val Asp acg cga tcc tac acc aac ctc ctc tcc tcc tac atc acc agc aac ttc Thr Arg Ser Tyr Thr Asn Leu Leu Ser Ser Tyr Ile Thr Ser Asn Phe cag ggc aac ccc acc atc acc aac ctg ccg agg aag tgg aac gtg tgc Gln Gly Asn Pro Thr Ile Thr Asn Leu Pro Arg Lys Trp Asn Val Cys

gtg	atc	ggg	tcg	cac	gat	ctg	tac	gag	cac	cca	cac	atc	aac	gac	ctc '	1352
			Ser													
101	110	265	DOI	111.0	mp	204	270			,		275		,		
		200					210					2.0				
										**		++-			2+2	1400
			ccg													1400
Ala		Met	Pro	Ala	Val		Gly	Gly	Lys	Pne		Pne	Asn	Leu	Leu	
	280					285					290					•
															ř	
gtc	ggc	ggg	ttc	ata	agc	ccc	aag	agg	tgg	gag	gag	gcg	ctg	ccg	ctc	1448
Val	Gly	G1y	Phe	Ile	Ser	Pro	Lys	Arg	Trp	G1u	G1u	Ala	Leu	Pro	Ļeu	
295					300					305					310	
gac	gcc	tgg	gtc	ccc	ggc	gac	gac	atc	atc	ccg	gtg	tgc	aag	gcc	gtt	1496
Asp	Ala	Trp	Val	Pro	G1y	Asp	Asp	Ile	Ile	Pro	Val	Cys	Lys	Ala	Val	
				315					320					325		
ctc	gag	gcg	tac	cgc	gac	ctc	ggc	acc	agg	ggc	aac	cgc	cag	aag	acc	1544
			Tyr													
			330		-		_	335					340			
0.00	o t a	ata	tgg	ctc	atc	gac	สลล	ctt	ิฮฮล	ato	៤១៤	get	ttt	Cgg	tog	1592
			Trp													
Arg	мет			Leu	TTE	Asp			GLY	Mer	oru		THE	nr 8	Der	
		345					350					355				
																10.10
			aag													1640
G1u	Val	Glu	Lys	Arg	Met	Pro	Asn	Gly	Val	Leu	Glu	Arg	Ala	Ala	Pro	

61/68

gag gac ctc atc gac aag aaa tgg cag agg gac tac ctc ggc gtg Glu Asp Leu Ile Asp Lys Lys Trp Gln Arg Arg Asp Tyr Leu Gly Val cac ccg cag aag cag gaa ggg atg tcc tac gtc ggc ctg cac gtg ccc His Pro Gln Lys Gln Glu Gly Met Ser Tyr Val Gly Leu His Val Pro gtc ggc cgg gtg cag gcg gcg gac atg ttc gag ctc gca cgc ctc gcc Val Gly Arg Val Gln Ala Ala Asp Met Phe Glu Leu Ala Arg Leu Ala gac gag tac ggc tcc ggc gag ctc cgc ctc acc gtg gag cag aac atc Asp Glu Tyr Gly Ser Gly Glu Leu Arg Leu Thr Val Glu Gln Asn Ile gtg atc ccg aac gtc aag aac gag aag gtg gag gcg ctg ctc tcc gag Val Ile Pro Asn Val Lys Asn Glu Lys Val Glu Ala Leu Leu Ser Glu ccg ctg ctt cag aag ttc tcc ccg cag ccg tcg ctg ctc caag ggc Pro Leu Leu Gln Lys Phe Ser Pro Gln Pro Ser Leu Leu Lys Gly

ctc	gtc	gcg	tgc	acc	ggc	aac	cag	ttc	tgc	ggc	cag	gcc	atc	atc	gagʻ	1976
Leu	Val	Ala	Cys	Thr	Gly	Asn	G1n	Phe	Cys	G1y	G1n	Ala	Ile	Ile	G1u	
				475					480	•		-		485		
acg	aag	cag	cgg	gcg	ctg	ctg	gtg	acg	tcg	cag	gtg	gag	aag	ctc	gtg	2024
Thr	Lys	G1n	Arg	Ala	Leu	Leu	Val	Thr	Ser	G1n	Val	Glu	Lys	Leu	Val	
			490					495					500			
tcg	gtg	ccc	cgg	gcg	gtg	cgg	atg	cac	tgg	acc	ggc	tgc	ссс	aac	agc	2072
					Val											
		505				Ü	510		•		-	515		1	•	
							9.20					010				
+ ~~	~~~	000	at a	000	at a	~~	~~	oto	aaa	++0	a t a	aao	† aa	oto	0.00	2120
					gtc.											2120
Cys		GIU	vai	GIU	Val		ASP	116	GIY	rne		Gly	Cys	Leu	1111	
	520					525					530					
aag	gac	agc	gcc	ggc	aag	atc	gtt	gag	gcg	gcc	gac	atc	ttc	gtc	ggc	2168
Lys	Asp	Ser	Ala	Gly	Lys	Ile	Val	Glu	Ala	Ala	Asp	Ile	Phe	Val	Gly	
535					540					545					550	
ggc	cgc	gtc	ggc	agc	gac	tcg	cac	ctc	gcc	ggc	gcg	tac	aag	aag	tcc	2216
G1y	Arg	Val	G1y	Ser	Asp	Ser	His	Leu	Ala	G1y	Ala	Tyr	Lys	Lys	Ser	
				555					560					565		
gtg	ccg	tgc	gac	gag	ctg	gcg	ccg	atc	gtc	gcc	gac	atc	ctg	gtc	gag	2264
Val	Pro	Cys	Asp	Glu	Leu	Alā	Pro	Ile	Val	Ala	Asp	Ile	Leu	Val	Glu	

63/68

570 575 580

cgg ttc ggg gcc gtg cgg agg gag agg gag gag gac gag gag tag

Arg Phe Gly Ala Val Arg Arg Glu Arg Glu Glu Asp Glu Glu

585

590

595

gaacacagac tggggtgttt tgcttgctcc ggtgatctct cgccgtcctt gtaaagtaga

2369

cgacaatatg ccttcgccca tggcacgctt gtactgtcac gttttggttt gatcttgtag

2429

cccaaaagtt gtgttcattc tcgttacagt cttacagagg atgattgatt gataaataaa

2489

2508

<210> 6

<211> 596

<212> PRT

<213> Oryza sativa

gaagaaacag attctgcaa

<400> 6

Met Ala Ser Ser Ala Ser Leu Gln Arg Phe Leu Pro Pro Tyr Pro His

1 10 15

Ala Ala Ala Ser Arg Cys Arg Pro Pro Gly Val Arg Ala Arg Pro Val
20 25 30

- Gln Ser Ser Thr Val Ser Ala Pro Ser Ser Ser Thr Pro Ala Ala Asp 35 40 45
- Glu Ala Val Ser Ala Glu Arg Leu Glu Pro Arg Val Glu Gln Arg Glu
 50 55 60
- Gly Arg Tyr Trp Val Leu Lys Glu Lys Tyr Arg Thr Gly Leu Asn Pro
 65 70 75 80
- Gln Glu Lys Val Lys Leu Gly Lys Glu Pro Met Ser Leu Phe Met Glu 85 90 95
- Gly Gly Ile Lys Glu Leu Ala Lys Met Pro Met Glu Glu Ile Glu Ala 100 105 110
- Asp Lys Leu Ser Lys Glu Asp Ile Asp Val Arg Leu Lys Trp Leu Gly
 115 120 125
- Leu Phe His Arg Arg Lys His Gln Tyr Gly Arg Phe Met Met Arg Leu
 130 135 140
- Lys Leu Pro Asn Gly Val Thr Thr Ser Glu Gln Thr Arg Tyr Leu Ala 145 150 155 160
- Ser Val Ile Glu Ala Tyr Gly Lys Glu Gly Cys Ala Asp Val Thr Thr

65/68

165 170 175

Arg Gln Asn Trp Gln Ile Arg Gly Val Thr Leu Pro Asp Val Pro Ala 180 185 190

Ile Leu Asp Gly Leu Asn Ala Val Gly Leu Thr Ser Leu Gln Ser Gly
195 200 205

Met Asp Asn Val Arg Asn Pro Val Gly Asn Pro Leu Ala Gly Ile Asp
210 215 220

Pro Asp Glu Ile Val Asp Thr Arg Ser Tyr Thr Asn Leu Leu Ser Ser 225 230 235 240

Tyr Ile Thr Ser Asn Phe Gln Gly Asn Pro Thr Ile Thr Asn Leu Pro
245 250 255

Arg Lys Trp Asn Val Cys Val Ile Gly Ser His Asp Leu Tyr Glu His
260 265 270

Pro His Ile Asn Asp Leu Ala Tyr Met Pro Ala Val Lys Gly Gly Lys
275 280 285

Phe Gly Phe Asn Leu Leu Val Gly Gly Phe Ile Ser Pro Lys Arg Trp
290 295 300

66/68

Glu Glu Ala Leu Pro Leu Asp Ala Trp Val Pro Gly Asp Asp Ile Ile 305 310 315 320

Pro Val Cys Lys Ala Val Leu Glu Ala Tyr Arg Asp Leu Gly Thr Arg

Gly Asn Arg Gln Lys Thr Arg Met Met Trp Leu Ile Asp Glu Leu Gly
340 345 350

Met Glu Ala Phe Arg Ser Glu Val Glu Lys Arg Met Pro Asn Gly Val 355 360 365

Leu Glu Arg Ala Ala Pro Glu Asp Leu Ile Asp Lys Lys Trp Gln Arg 370 375 380

Arg Asp Tyr Leu Gly Val His Pro Gln Lys Gln Glu Gly Met Ser Tyr 385 390 395 400

Val Gly Leu His Val Pro Val Gly Arg Val Gln Ala Ala Asp Met Phe 405 410 415

Glu Leu Ala Arg Leu Ala Asp Glu Tyr Gly Ser Gly Glu Leu Arg Leu
420 425 430

Thr Val Glu Gln Asn Ile Val Ile Pro Asn Val Lys Asn Glu Lys Val
435 440 445

- Glu Ala Leu Leu Ser Glu Pro Leu Leu Gln Lys Phe Ser Pro Gln Pro
 450 455 460
- Ser Leu Leu Lys Gly Leu Val Ala Cys Thr Gly Asn Gln Phe Cys
 465 470 475 480
- Gly Gln Ala Ile Ile Glu Thr Lys Gln Arg Ala Leu Leu Val Thr Ser 485 490 495
- Gln Val Glu Lys Leu Val Ser Val Pro Arg Ala Val Arg Met His Trp
 500 505 510
- Thr Gly Cys Pro Asn Ser Cys Gly Gln Val Gln Val Ala Asp Ile Gly
 515 520 525
- Phe Met Gly Cys Leu Thr Lys Asp Ser Ala Gly Lys Ile Val Glu Ala 530 535 540
- Ala Asp Ile Phe Val Gly Gly Arg Val Gly Ser Asp Ser His Leu Ala 545 550 555 560
- Gly Ala Tyr Lys Lys Ser Val Pro Cys Asp Glu Leu Ala Pro Ile Val
 565 570 575
- Ala Asp Ile Leu Val Glu Arg Phe Gly Ala Val Arg Arg Glu Arg Glu

68/68

580 585 590

Glu Asp Glu Glu

595

.

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/UP2	2004/011307
	CATION OF SUBJECT MATTER 7 C12N15/09, A01H1/00, A01H5/0	0, C12N5/04	
According to Int	ternational Patent Classification (IPC) or to both nation	nal classification and IPC	
B. FIELDS SE			
Int.Cl	nentation searched (classification system followed by cl ⁷ C12N15/09, A01H1/00, A01H5/0	0, C12N5/04	
	searched other than minimum documentation to the extension		
MEDLINI	pase consulted during the international search (name of E (STN), WPI (DIALOG), BIOSIS (DIADDE)/GeneSeq. SwissProt/PIR/Gene	ALOG), JSTPlus(JOIS), Ge	rms used) enBank/
	NTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.
х .	TERADA, Y. et al., Cloning ar sequence of a leaf ferredoxing reductase cDNA of rice., Bios Biochem., (1995), Vol.59, page	n-nitrite sci.Biotechnol.	1–15
A	TAGUCHI-SHIOBARA, F., Genetic Regeneration Ability of Rice Nogyo Seibutsu Shigen Kenkyus Bulletin of the National Inst Agrobiological Resources (199 pages 97 to 134	Seed Callus., sho Kenkyu Hokoku, titute of	1-22
A	Fumio SHIOBARA, "Koshihikari Keiseino Oyobi Saibunkano o E QTL Kaiseki", Seibutsu Shigen (1998), Vol.7, pages 45 to 46	Tuyo suru Tameno n Kenkyu Seika Joho	1-22
× Further do	cuments are listed in the continuation of Box C.	See patent family annex.	
"A" document de	gories of cited documents: efining the general state of the art which is not considered icular relevance	"T" later document published after the inter date and not in conflict with the applicat the principle or theory underlying the in	tion but cited to understand
"E" earlier applied filing date	cation or patent but published on or after the international hich may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the cl considered novel or cannot be conside step when the document is taken alone	aimed invention cannot be
cited to esta special reaso	ablish the publication date of another citation or other on (as specified) ferring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the cliconsidered to involve an inventive s combined with one or more other such d	tep when the document is locuments, such combination
"P" document pu the priority d	iblished prior to the international filing date but later than late claimed	being obvious to a person skilled in the "&" document member of the same patent fa	art
08 Nove	completion of the international search ember, 2004 (08.11.04)	Date of mailing of the international searce 30 November, 2004 (2	h report 22.11.04)
	g address of the ISA/ se Patent Office	Authorized officer	·
Facsimile No.		Telephone No.	

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/011307

		101/012	004/011307
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
A	Fumio TAGUCHI et al., "Ine Shushi Callus Saibunkano ni Kanyo suru QTL no Mapping", Breeding Science, (1996), Vol.46, Bessats page 77		1-22
A	TAGUCHI-SHIOBARA, F. et al., Mapping quantitative trait lociassociated with regeneration of ability of seed callus in rice, Oryza sativa L., Theoritical and Ap Genetics (1997), Vol.95, No.5 to 6, pages 828 to 833		1-22
А	Kenjiro OZAWA et al., "Ine Saibunkano no Kaiseki Oyobi Kosaibunkano Ikushu Sozai n Kaihatsu"	Iden o	1-22
A	Toshinori ABE, "Ine no Datsubunka Saibunk no Identeki Shihai", Heisei 5, 6 Nendo ka Kenkyuhi Hojokin (Sogokenkyu A), Kenkyu S Hokokusho, (1995), pages 32 to 38	gaku	1-22
·			

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/011307

Box No	Nucleotide and/or amino acid sequence(s) (Continuation of item1.b of the first sheet)
inve	th regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed ention, the international search was carried out on the basis of:
-	a sequence listing table(s) related to the sequence listing
b.	format of material in written format in computer readable form
c.	in computer readable form time of filing/furnishing contained in the international application as filed filed together with the international application in computer readable form furnished subsequently to this Authority for the purposes of search
2. 🔀	In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Addi	itional comments:

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. C1 ⁷ C12N 15/09, A01H 1/00, A01H 5/00, C12N 5/04								
B. 調査を行った分野								
調査を行った最	是小限資料(国際特許分類(IPC))							
Int. C1' C12	N 15/09, A01H 1/00, A01H 5/00, C12N 5/04							
E .I. VEZZOWINIA	J の次ができませた。た / Mマリェ 今より フェ の							
取小似資科以 外	トの資料で調査を行った分野に含まれるもの							
	•							
,			,					
			·					
	月した電子データベース(データベースの名称、 , WPI (DIALOG) , BIOSIS (DIALOG) , JSTPlus (JOIS) ,		t/PIR/GeneSeg					
			•					
,								
	ると認められる文献							
引用文献の カテゴリー *	7 日本神久 ひが一切の答所が関連する	*** この眼連子を禁止の事子	関連する 請求の範囲の番号					
	引用文献名 及び一部の箇所が関連すると							
X	TERADA, Y. et al., Cloning and nu ferredoxin-nitrite reductase cDNA	-	1 - 15					
	Biosci. Biotechnol. Biochem. (199		•					
	,							
Α .	TAGUCHI-SHIOBARA, F., Genetic Anal	ysis of Regeneration Abilit	$1 - 2 \ 2$					
	y of Rice Seed Callus.							
	農業生物資源研究所研究報告(1999)第13巻							
	第97-134頁							
区欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。					
* 引用文献の	ウカテゴリー	の日の後に公表された文献						
	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表る						
もの	面口並の出願すたけ <u>性</u> 動でなるが、国際出願口	出願と矛盾するものではなく、矛 の理解のために引用するもの	送明の原理又は理論					
「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明								
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの								
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに								
「O」口頭に。	「O」「耳頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの							
「P」「国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献								
国際調査を完了した日 国際調査報告の発送日 つの 4.4 000 4								
	08. 11. 2004							
国際調査機関の	の名称及びあて先	特許庁審査官(権限のある職員)	4N 3038					
	国特許庁 (ISA/JP) 耶便番号100-8915	左海 匡子						
東京者	電話番号 03-3581-1101	内線 3488						

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	塩原文緒,コシヒカリに高いカルス形成能及び再分化能を付与する ためのQTL解析 生物資源研究成果情報(1998)第7巻第45-46頁	1-22
A	田口文緒ほか,イネ種子カルスの再分化能に関与するQTLのマッピング 育種学雑誌(1996)第46巻別冊1第77頁	1-22
A	TAGUCHI-SHIOBARA, F. et al., Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theoritical and Applied Genetics (1997) Vol. 95, No. 5-6, p. 828-833	1-22
A	小沢憲次郎ほか,イネ再分化能の遺伝解析及び高再分化能育種素材 の開発	$1 - 2 \ 2$
A	阿部利徳,イネの脱分化・再分化の遺伝的支配 平成5,6年度科学研究費補助金(総合研究A)研究成果報告書 (1995)第32-38頁	1-22
,		

第I欄 ヌクレオチド又	【はアミノ	酸配列(第	1ページの1.	b の続き)	,		-			
1. この国際出願で開示されかつ請求の範囲に係る発明に必要なヌクレオチド又はアミノ酸配列に関して、 以下に基づき国際調査を行った。										
a. タイプ	区 配	列表	i				•			
•	配	表に関連す	るテーブル							
b. フォーマット	□ 書面	ī					•			
	× =>	′ピュータ読	み取り可能な	形式		. '				
c. 提出時期	出願	質時の国際出	願に含まれる				•			
	\times $z\sigma$	国際出願と	共にコンピュ	ータ読み取	り可能な形式	式により提出	された	,		
	出廊	賃後に、調査	そのために、こ	の国際調査	機関に提出	された				
2. × さらに、配列表 した配列が出願 出があった。	を で で で で で で で で で で で で で り で り で り で	表に関連する した配列と「	るテーブルを 打 のを打 司一である旨、	是出した場合 又は、出願	なに、出願後 質時の開示を	に提出した 超える事項を	記列若しくは追 を含まない旨の	加して提出 陳述書の提		
			t ,			•				
3. 補足意見:			-					:		
					<i>2</i> =	-				
•							•			
-								-		
								:		
- ,										
•								٠		
								:		
, e e e										