Counterfactual evaluation of machine learning models

Michael Manapat @mlmanapat Stripe

Stripe

APIs and tools for commerce and payments

```
import stripe
stripe.api_key = "sk_test_BQokiaJOvBdiI2HdlWgHa4ds429x"
stripe.Charge.create(
  amount=40000,
 currency="usd",
  source={
    "number": '42424242424242',
    "exp month": 12,
    "exp year": 2016,
    "cvc": "123"
  },
 description="PyData registration for mlm@stripe.com"
```

Machine Learning at Stripe

- Ten engineers/data scientists as of July 2015 (no distinction between roles)
- Focus has been on fraud detection
 - Continuous scoring of businesses for fraud risk
 - Synchronous classification of charges as fraud or not

Making a Charge

Charge Outcomes

- Nothing (best case)
- Refunded
- Charged back ("disputed")
 - Fraudulent disputes result from "card testing" and "card cashing"
 - Can take > 60 days to get raised

Model Building

- December 31st, 2013
 - Train a binary classifier for disputes on data from Jan 1st to Sep 30th
 - Validate on data from Oct 1st to Oct 31st (need to wait ~60 days for labels)
- Based on validation data, pick a policy for actioning scores: block if score > 50

Questions

- Validation data is > 2 months old. How is the model doing?
- What are the production precision and recall?
- Business complains about high false positive rate: what would happen if we changed the policy to "block if score > 70"?

Next Iteration

- December 31st, 2014. We repeat the exercise from a year earlier
 - Train a model on data from Jan 1st to Sep 30th
 - Validate on data from Oct 1st to Oct 31st (need to wait ~60 days for labels)
 - Validation results look ~ok (but not great)

Next Iteration

- We put the model into production, and the results are terrible
 - From spot-checking and complaints from customers, the performance is worse than even the validation data suggested
- What happened?

Next Iteration

- We already had a model running that was blocking a lot of fraud
- Training and validating only on data for which we had labels: charges that the existing model didn't catch
- Far fewer examples of fraud in number. Essentially building a model to catch the "hardest" fraud
- Possible solution: we could run both models in parallel...

Evaluation and Retraining Require the Same Data

- For evaluation, policy changes, and retraining, we want the same thing:
 - An approximation of the distribution of charges and outcomes that would exist in the absence of our intervention (blocking)

First attempt

 Let through some fraction of charges that we would ordinarily block

```
if score > 50:
   if random.random() < 0.05:
     allow()
   else:
     block()</pre>
```

Straightforward to compute precision

Recall

1,000,000 charges	Score < 50	Score > 50		
Total	900,000	100,000		
Not Fraud	890,000	1,000		
Fraud	10,000	4,000		
Unknown	O	95,000		

- Total "caught" fraud = (4,000 * 1/0.05)
- Total fraud = (4,000 * 1/0.05) + 10,000
- Recall = 80,000 / 90,000 = 89%

Training

- Train only on charges that were not blocked
- Include weights of 1/0.05 = 20 for charges that would have been blocked if not for the random reversal

```
from sklearn.ensemble import \
RandomForestRegressor
...
r = RandomForestRegressor(n_estimators=10)
r.fit(X, Y, sample_weight=weights)
```

Training

 Use weights in validation (on hold-out set) as well

```
from sklearn import cross_validation
X_train, X_test, y_train, y_test = \
   cross_validation.train_test_split(
     data, target, test_size=0.2)
r = RandomForestRegressor(...)
...
r.score(
   X_test, y_test, sample_weight=weights)
```

Better Approach

 We're letting through 5% of all charges we think are fraudulent. Policy:

Could go either way

Very likely to be fraud

Better Approach

- Propensity function: maps classifier scores to P(Allow)
- The higher the score, the lower probability we let the charge through
- Get information on the area we want to improve on
- Letting through less "obvious" fraud ("budget" for evaluation)

Better Approach

```
def propensity(score):
  # Piecewise linear/sigmoidal
ps = propensity(score)
original block = score > 50
selected block = random.random() < ps</pre>
if selected block:
  block()
else:
  allow()
log record(
  id, score, ps, original block,
  selected block)
```

ID	Score	p(Allow)	Original Action	Selected Action	Outcome
1	10	1.0	Allow	Allow	OK
2	45	1.0	Allow	Allow	Fraud
3	55	0.30	Block	Block	_
4	65	0.20	Block	Allow	Fraud
5	100	0.0005	Block	Block	_
6	60	0.25	Block	Allow	OK

Analysis

- In any analysis, we only consider samples that were allowed (since we don't have labels otherwise)
- We weight each sample by 1 / P(Allow)
 - cf. weighting by 1/0.05 = 20 in the uniform probability case

ID	Score	P(Allow)	Weight	Original Action	Selected Action	Outcome
1	10	1.0	1	Allow	Allow	OK
2	45	1.0	1	Allow	Allow	Fraud
4	65	0.20	5	Block	Allow	Fraud
6	60	0.25	4	Block	Allow	OK

Evaluating the "block if score > 50" policy

Precision = 5 / 9 = 0.56

Recall = 5 / 6 = 0.83

ID	Score	P(Allow)	Weight	Original Action	Selected Action	Outcome
1	10	1.0	1	Allow	Allow	OK
2	45	1.0	1	Allow	Allow	Fraud
4	65	0.20	5	Block	Allow	Fraud
6	60	0.25	4	Block	Allow	OK

Evaluating the "block if **score > 40**" policy

Precision = 6 / 10 = 0.60

Recall = 6 / 6 = 1.00

ID	Score	P(Allow)	Weight	Original Action	Selected Action	Outcome
1	10	1.0	1	Allow	Allow	OK
2	45	1.0	1	Allow	Allow	Fraud
4	65	0.20	5	Block	Allow	Fraud
6	60	0.25	4	Block	Allow	OK

Evaluating the "block if score > 62" policy

Precision = 5 / 5 = 1.00

Recall = 5 / 6 = 0.83

Analysis

- The propensity function controls the "exploration/exploitation" payoff
- Precision, recall, etc. are estimators
 - Variance of the estimators <u>decreases</u> the <u>more</u> we allow through
- Bootstrap to get error bars (pick rows from the table uniformly at random with replacement)

New models

- Train on weighted data
 - Weights => approximate distribution without any blocking
- Can test arbitrarily many models and policies offline
- Li, Chen, Kleban, Gupta: "Counterfactual Estimation and Optimization of Click Metrics for Search Engines"

Technicalities

- Independence and random seeds
- Application-specific issues

Conclusion

- If some policy is actioning model scores, you can inject randomness in production to understand the counterfactual
- Instead of a "champion/challenger" A/B test, you can evaluate arbitrarily many models and policies in this framework

Thanks!

 Work by Ryan Wang (@ryw90), Roban Kramer (@robanhk), and Alyssa Frazee (@acfrazee)

- We're hiring engineers/data scientists!
- mlm@stripe.com (@mlmanapat)