697B Example Sheet 4

Paul Hacking

4 October 2010

(1) Consider the map $F: \mathbb{P}^1_{(X_0:X_1)} \to \mathbb{P}^n_{(Y_0:\dots:Y_n)}$ given by

$$(X_0:X_1)\mapsto (X_0^n:X_0^{n-1}X_1:X_0^{n-2}X_1:\cdots:X_1^n).$$

The image X of F is called the rational normal curve of degree n.

- (a) Show that F is well defined and holomorphic.
- (b) Show that F is an isomorphism onto its image X. [Hint: Show first that F is injective. Then describe charts for X, and check that the inverse of $F \colon \mathbb{P}^1 \to X$ is holomorphic.]
- (c) Let P_0, \ldots, P_n be n+1 distinct points on \mathbb{P}^1 . Show that their images $F(P_0), \ldots, F(P_n) \in \mathbb{P}^n$ are not contained in a hyperplane. [Hint: Use the Vandermonde determinant.]
- (d) Let $H \subset \mathbb{P}^n$ be a general hyperplane. What is the size of $H \cap X$?
- (e) Show that X is contained in the quadric hypersurfaces $Q_{ij} = (Y_{i-1}Y_j Y_iY_{j-1} = 0) \subset \mathbb{P}^n$, $1 \leq i < j \leq n$, and that $X = \bigcap_{i,j} Q_{ij}$.
- (f) Now suppose n=3. Because X has dimension 1 and \mathbb{P}^3 has dimension 3, we might expect that $X \subset \mathbb{P}^3$ can be defined by 2=3-1 homogeneous equations. We know from part (d) that $X=Q_{12}\cap Q_{23}\cap Q_{13}$. What is $Q_{12}\cap Q_{23}$? Can X be defined by 2 equations (this is harder and may be omitted)?
- (2) Consider the map $F: \mathbb{P}^1_{(X_0:X_1)} \times \mathbb{P}^1_{(Y_0:Y_1)} \to \mathbb{P}^3_{(Z_0:Z_1:Z_2:Z_3)}$ given by

$$((X_0:X_1),(Y_0:Y_1))\mapsto (X_0Y_0:X_0Y_1:X_1Y_0:X_1Y_1).$$

(a) Show that F is well defined and holomorphic, and is an isomorphism onto its image $X \subset \mathbb{P}^3$.

- (b) Find the homogeneous equation of the hypersurface $X \subset \mathbb{P}^3$.
- (c) Recall that a line $L \subset \mathbb{P}^3$ is the locus $L \simeq \mathbb{P}^1$ corresponding to a 2-dimensional subspace $V \subset \mathbb{C}^4$ under the quotient map $(\mathbb{C}^4 \setminus \{0\}) \to \mathbb{P}^3$. Equivalently, L is the closure of an affine line $\mathbb{C} \to \mathbb{C}^3$, $t \mapsto \mathbf{a} + t\mathbf{b}$ in some chart $\mathbb{C}^3 \subset \mathbb{P}^3$. Find all the lines $L \subset \mathbb{P}^3$ which are contained in X. Explain the origin of these lines in terms of the map F. [Hint: Use the equation of X from part (b).]
- (3) Consider the map $F: \mathbb{P}^2_{(X_0:X_1:X_2)} \to \mathbb{P}^5_{(Y_0:\dots:Y_5)}$ given by

$$(X_0: X_1: X_2) \mapsto (X_0^2: X_1^2: X_2^2: X_0X_1: X_1X_2: X_0X_2).$$

The image X of F is called the *Veronese surface*.

- (a) Show that F is well defined and holomorphic, and is an isomorphism onto its image.
- (b) Show that $X\subset \mathbb{P}^5$ is defined by the 2×2 minors of the symmetric matrix

$$\begin{pmatrix} Y_0 & Y_3 & Y_5 \\ Y_3 & Y_1 & Y_4 \\ Y_5 & Y_4 & Y_2 \end{pmatrix}$$

- (c) Let $H \subset \mathbb{P}^5$ be a hyperplane and consider the locus $H \cap X$. What does $H \cap X$ correspond to under the isomorphism $F \colon \mathbb{P}^2 \xrightarrow{\sim} X$?
- (4) Let $X = (F = G = 0) \subset \mathbb{P}^3$ where

$$F = X^2 + Y^2 + Z^2 + T^2$$
, $G = aX^2 + bY^2 + cZ^2 + dT^2$,

and G is not a multiple of F. Find necessary and sufficient conditions on a, b, c, d for X to be smooth.