Seminár 18

Téma

Algebraické výrazy a rovnice – zložitejšie rovnice a ich systémy

Ciele

Zoznámiť študentov s ďalšími typmi rovníc a ich sústav (iracionálne koeficienty, dolná celá časť), tieto úlohy, spolu so slovnými úlohami precvičiť.

Úlohy a riešenia

Úloha 18.1. [59-S-1] Ak zväčšíme čitateľ aj menovateľ istého zlomku o 1, dostaneme zlomok o hodnotu 1/20 väčší. Ak urobíme s väčším zlomkom rovnakú operáciu, dostaneme zlomok o hodnotu 1/12 väčší, ako bola hodnota zlomku na začiatku. Určte všetky tri zlomky.

Riešenie*. Označme a/b pôvodný zlomok. Podľa zadania platia rovnosti

$$\frac{a+1}{b+1} - \frac{a}{b} = \frac{1}{20}$$
 a $\frac{a+2}{b+2} - \frac{a}{b} = \frac{1}{12}$ $(a, b \in \mathbb{N}),$

ktoré sú ekvivalentné so vzťahmi

$$20b(a+1) - 20a(b+1) = b(b+1)$$
 a $12b(a+2) - 12a(b+2) = b(b+2)$.

Tie upravíme na tvar $19b - 20a = b^2$ a $22b - 24a = b^2$. Po odčítaní oboch vzť ahov zistíme, že 4a = 3b, čo po dosadení do druhej rovnosti dá $22b - 18b = b^2$, čiže $b^2 = 4b$. Vzhľ adom na podmienku $b \neq 0$ odtiaľ vyplýva b = 4 a a = 3.

Hľadané zlomky sú teda $\frac{3}{4}, \frac{4}{5}$ a $\frac{5}{6}$.

Iné riešenie. Označme a/b pôvodný zlomok. Zo vzť ahov

$$\frac{1}{20} = \frac{1}{4 \cdot 5}$$
 a $\frac{1}{12} = \frac{1}{4 \cdot 3} = \frac{2}{4 \cdot 6}$

možno odhadnúť, že riešením by mohlo byť b = 4. Potom

$$\frac{4(a+1)-5a}{4\cdot 5} = \frac{1}{20} \quad a \quad \frac{4(a+2)-6a}{4\cdot 6} = \frac{1}{12},$$

čiže a=3. Musíme sa však ešte presvedčiť, že úloha iné riešenie nemá. Podmienky úlohy vedú ku vzťahom

$$\frac{b-a}{b(b+1)} = \frac{1}{4\cdot 5}$$
 a $\frac{2(b-a)}{b(b+2)} = \frac{2}{4\cdot 6}$.

Z podielu ich l'avých a pravých strán potom vyplýva

$$\frac{b+2}{b+1} = \frac{6}{5}$$

čomu vyhovuje jedine b = 4.

Poznámka. V úplnom riešení nesmie chýbať vylúčenie možnosti $b \neq 4$. Napríklad z podobných rovností $1/20 = 30/24 \cdot 25$ a $1/12 = 52/24 \cdot 26$ by sme mohli hádať, že b = 24, čo riešením nie je.

Komentár. V prípade tejto úlohy je dôležité na začiatku správne zostaviť rovnosti. Ďalej je potrebné rovnosti vhodne upraviť. Úloha sa dá vyriešiť aj dosadzovacou metódou, tá však vedie k riešeniu kvadratickej rovnice, ktoré mnohí študenti na klasických hodinách ešte nepreberali. Preto je vhodné študentov upozorniť na trik s odčítaním rovníc.

1

Komentár. V nasledujúcej pasáži sa študenti zoznámia s funkciou dolná celá časť. Najprv vyriešia niekoľko pomocných úloh a na záver sa pustia do boja s úlohou domáceho kola.

Úloha 18.2. [59-I-3-N1] Určte $\lfloor 0 \rfloor$, $\lfloor 3,5 \rfloor$, $\lfloor 2,1 \rfloor$, $\lfloor -4 \rfloor$, $\lfloor -3,9 \rfloor$, $\lfloor -0,2 \rfloor$. Symbol $\lfloor x \rfloor$ označuje najväčšie celé číslo, ktoré nie je väčšie ako číslo x, tzv. dolnú celú časť reálneho čísla x.

Riešenie.
$$[0] = 0, [3,5] = 3, [2,1] = 2, [-4] = -4, [-3,9] = -4, [-0,2] = -1.$$

Úloha 18.3. [59-I-3-N2] Nech
$$a$$
 je celé číslo a $t \in \langle 0; 1 \rangle$. Určte $\lfloor a \rfloor, \lfloor a+t \rfloor, \lfloor a+\frac{1}{2}t \rfloor, \lfloor a-t \rfloor, \lfloor a+2t \rfloor, \lfloor a-2t \rfloor$.

Riešenie. $\lfloor a \rfloor = a, \lfloor a + t \rfloor = a, \lfloor a + \frac{1}{2}t \rfloor = a, \lfloor a - t \rfloor = a, \text{ ak } t = 0, \text{ resp. } \lfloor a - t \rfloor = a - 1, \text{ ak } t \neq 0, \lfloor a + 2t \rfloor = a, \text{ ak } t < 0, 5, \text{ resp. } \lfloor a + 2t \rfloor = a + 1, \text{ ak } t \geq 0, 5, \lfloor a - 2t \rfloor = a, \text{ ak } t = 0, \text{ resp. } \lfloor a - 2t \rfloor = a - 1 \text{ ak } t \leq 0, 5 \text{ a} \\ |a - 2t| = a - 2 \text{ ak } t > 0, 5.$

Úloha 18.4. [59-I-3] Určte všetky reálne čísla x, ktoré vyhovujú rovnici $4x - 2\lfloor x \rfloor = 5$.

Riešenie*. Položme $\lfloor x \rfloor = a$, potom x = a + t, pričom $t \in \langle 0, 1 \rangle$, a rovnicu 4(a + t) - 2a = 5 ekvivalentne upravme na tvar $a = \frac{5}{2} - 2t$. Aby bolo číslo a celé, musí byť $2t = k \cdot \frac{1}{2}$, pričom k je nepárne číslo. Navyše $2t \in \langle 0, 2 \rangle$. Teda buď $2t = \frac{1}{2}$ a a = 2, alebo $2t = \frac{3}{2}$ a a = 1. Pôvodná rovnica má preto dve riešenia: $x_1 = 2,25$ a $x_2 = 1,75$.

Iné riešenie. Rovnicu upravíme na tvar $2x-\frac{5}{2}=\lfloor x\rfloor$. Taká rovnica bude splnená práve vtedy, keď číslo $2x-\frac{5}{2}$ bude celé a bude spĺňať nerovnosti $x-1<2x-\frac{5}{2}\leq x$, ktoré sú ekvivalentné s podmienkou $\frac{3}{2}< x\leq \frac{5}{2}$. Pre takéto x zrejme hodnoty výrazu $2x-\frac{5}{2}$ vyplnia interval $(\frac{1}{2},\frac{5}{2})$. V ňom ležia práve dve celé čísla 1 a 2, teda hľ adané x nájdeme z rovníc $2x-\frac{5}{2}=1$ a $2x-\frac{5}{2}=2$.

Komentár. Aj napriek tomu, že funkcia dolná celá časť nie je bežným učivom preberaným v školách, nemala by analýza úlohy robiť žiakom veľké problémy.

Úloha 18.5. [57-I-3-N1] Určte všetky celé čísla n, pre ktoré nadobúda zlomok (4n+27)/(n+3) celočíselné hodnoty.

Riešenie. Zlomok (4n+27)/(n+3) upravíme na tvar n+15/(n+3), teda číslo n+3 musí deliť 15. Z toho dostávame $n \in \{-18, -8, -6, -4, -2, 0, 2, 12\}$.

Úloha 18.6. [57-I-3] Máme určitý počet krabičiek a určitý počet gul'ôčok. Ak dáme do každej krabičky práve jednu gul'ôčku, ostane nám n gul'ôčok. Keď však necháme práve n krabičiek bokom, môžeme všetky gul'ôčky rozmiestniť tak, aby ich v každej zostávajúcej krabičke bolo práve n. Koľko máme krabičiek a koľko gul'ôčok?

Riešenie. Keď označíme x počet krabičiek a y počet guľôčok, dostaneme zo zadania sústavu rovníc

$$x + n = y$$
 a $(x - n) \cdot n = y$ (1)

s neznámymi x, y a n z oboru prirodzených čísel. Vylúčením neznámej y dostaneme rovnicu $x + n = (x - n) \cdot n$, ktorá pre n = 1 nemá riešenie. Pre $n \ge 2$ dostaneme

$$x = \frac{n^2 + n}{n - 1} = n + 2 + \frac{2}{n - 1},$$
 (2)

odkiaľ vidíme, že (prirodzené) číslo n-1 musí byť deliteľ om čísla 2. Teda $n \in \{2,3\}$. Prípustné hodnoty n dosadíme do (1) a sústavu vyriešime (možno tiež využiť vzťah (2)). Pre n=2 dostaneme x=6,y=8 a pre n=3 určíme x=6 a y=9.

Skúška. Majme šesť krabičiek a osem guľ ôčok. Keď do každej krabičky dáme práve jednu guľ ôčku, ostane n=2 guľ ôčok. Keď však odoberieme dve krabičky, môžeme do zostávajúcich štyroch rozdeliť guľ ôčky práve po dvoch. Podmienky úlohy sú teda splnené. Pre šesť krabičiek a deväť guľ ôčok urobíme skúšku rovnako ľ ahko.

Záver. Buď máme šesť krabičiek a osem guľ ôčok, alebo šesť krabičiek a deväť guľ ôčok.

Komentár. Úloha, spolu s úlohou predchádzajúcou, je bežnou slovnou úlohou vedúcou na sústavu rovníc. Jej úspešné vyriešenie však vyžaduje umnú manipuláciu s výrazmi.

Úloha 18.7. [57-II-4] Nájdite všetky trojice celých čísel x, y, z, pre ktoré platí

$$x + y\sqrt{3} + z\sqrt{7} = y + z\sqrt{3} + x\sqrt{7}$$
.

Riešenie*. Rovnicu prepíšeme na tvar

$$x - y = (z - y)\sqrt{3} + (x - z)\sqrt{7}$$

a umocníme. Po jednoduchej úprave dostaneme

$$(x-y)^2 - 3(z-y)^2 - 7(x-z)^2 = 2(x-z)(z-y)\sqrt{21}.$$
 (1)

Pre $x \neq z$ a $y \neq z$ nemôže rovnosť (1) platiť, pretože jej pravá strana je v takom prípade číslo iracionálne, zatiaľ čo ľ avá strana je číslo celé. Rovnosť teda môže nastať, len keď x = z alebo y = z.

V prvom prípade po dosadení x = z do pôvodnej rovnice dostaneme $z - y = \sqrt{3}(z - y)$. Odtial z = y = x.

V druhom prípade, keď y = z, dôjdeme analogicky k rovnakému výsledku.

Záver. Riešením danej rovnice sú všetky trojice (x, y, z) = (k, k, k), kde k je l'ubovoľ né celé číslo.

Komentár. Aj napriek tomu, že vzorové riešenie úlohy vyzerá zrozumiteľ ne, úloha riešiteľ ov krajských kôl potrápila (bola najhoršie hodnotenou úlohou daného krajského kola). Záludnosti sa ukrývajú vo vytyčovaní iracionálnych čísel a nie neznámych, vhodnej úprave rovnice a diskusii o (i)racionalite oboch strán rovnice.

Úloha 18.8. [64-I-1] Určte všetky dvojice (x, y) reálnych čísel, ktoré vyhovujú sústave rovníc

$$\sqrt{(x+4)^2} = 4 - y,$$
$$\sqrt{(y-4)^2} = x + 8.$$

Riešenie. Vzhľ adom na to, že pre každé reálne číslo a platí $\sqrt{a^2} = |a|$, je daná sústava rovníc ekvivalentná so sústavou rovníc

$$|x+4| = 4 - y,$$

 $|y-4| = x + 8.$

Z prvej rovnice vidíme, že musí byť $4-y \ge 0$, teda $y \le 4$. V druhej rovnici môžeme teda odstrániť absolútnu hodnotu. Dostaneme tak

$$|y-4| = 4 - y = x + 8$$
, t.j. $-y = x + 4$.

Po dosadení za x + 4 do prvej rovnice dostaneme

$$|-y| = |y| = 4 - y$$
.

Keď že $y \le 4$, budeme ď alej uvažovať dva prípady.

Pre $0 \le y \le 4$ riešime rovnicu y = 4 - y, a teda y = 2. Nájdenej hodnote y = 2 zodpovedá po dosadení do druhej rovnice x = -6.

Pre y < 0 dostaneme rovnicu -y = 4 - y, ktorá však nemá riešenie.

Záver. Daná sústava rovníc má práve jedno riešenie, a to (x,y) = (-6,2).

Iné riešenie. Odstránením absolútnych hodnôt v oboch rovniciach, t. j. rozborom štyroch možných prípadov, keď

- a) $(x+4 \ge 0) \land (y-4 \ge 0)$, t.j. $(x \ge -4) \land (y \ge 4)$,
- b) $(x+4 \ge 0) \land (y-4 < 0)$, t.j. $(x \ge -4) \land (y < 4)$,
- c) $(x+4<0) \land (y-4 \ge 0)$, t.j. $(x<-4) \land (y \ge 4)$,
- d) $(x+4<0) \land (y-4<0)$, t.j. $(x<-4) \land (y<4)$,

zistíme, že prípady a), b), c) nedávajú (vzhľadom na uvedené obmedzenia v jednotlivých prípadoch) žiadne reálne riešenie. V prípade d) potom dostaneme jediné riešenie (x,y) = (-6,2) danej sústavy.

Komentár. V úvode riešenia pripomenieme vzť ah $\sqrt{a^2} = |a|$, ktorý nám pomôže transformovať sústavu zo zadania na sústavu rovníc s absolútnou hodnotou, ktorú by študenti mali byť schopní bez väčších komplikácií vyriešiť.

Domáca práca

Úloha 18.9. [59-II-4] Určte všetky dvojice reálnych čísel x, y, ktoré vyhovujú sústave rovníc

$$|x+y| = 2010,$$

$$|x| - y = p,$$

ak a) p = 2, b) p = 3. Symbol $\lfloor x \rfloor$ označuje najväčšie celé číslo, ktoré nie je väčšie ako dané reálne číslo x (tzv. dolná celá časť reálneho čísla x).

Riešenie*. Keď že číslo p je celé, je aj $y = \lfloor x \rfloor - p$ celé číslo a $\lfloor x + y \rfloor = \lfloor x \rfloor + y$. Pôvodná sústava rovníc je teda ekvivalentná so sústavou

$$\lfloor x \rfloor + y = 2010,$$
$$|x| - y = p,$$

ktorú l'ahko vyriešime napríklad sčítacou metódou. Dostaneme $\lfloor x \rfloor = \frac{1}{2}(2010 + p)$ (čo môže platiť len pre párne p) a y = |x| - p.

- a) Pre p = 2 je riešením sústavy ľubovoľné $x \in (1006, 1007)$ a y = 1004.
- b) Pre p = 3 nemá sústava žiadne riešenie.

Iné riešenie. Položme |x| = a, potom x = a + t, pričom $t \in (0, 1)$.

- a) Pre p=2 sústavu prepíšeme na tvar y=a-2 a $\lfloor 2a-2+t \rfloor = 2010$. Z poslednej rovnice vyplýva 2a-2=2010, odtiaľ a=1006. Keď že $t\in (0,1)$, vyhovuje pôvodnej sústave každé $x\in (1006,1007)$, pričom y=1004.
- b) Pre p=3 dostávame y=a-3 a $\lfloor 2a-3+t \rfloor = 2010$. Posledná rovnica je ekvivalentná so vzťahom 2a-3=2010, ktorému nevyhovuje žiadne celé číslo a. Pre p=3 nemá daná sústava rovníc riešenie.

Úloha 18.10. [64-S-1] V obore reálnych čísel vyriešte sústavu rovníc

$$|1-x| = y+1,$$

 $|1+y| = z-2,$
 $|2-z| = x-x^2.$

Riešenie*. Pravá strana prvej rovnice je nezáporné číslo, čo sa premietne do druhej rovnice, pričom môžeme odstrániť absolútnu hodnotu. Aj pravá strana druhej rovnice je nezáporné číslo, čo sa s využitím rovnosti |z-2|=|2-z| premietne do tretej rovnice, pričom môžeme odstrániť absolútnu hodnotu. Daná sústava má potom tvar

$$|1-x| = y+1,$$

$$1+y=z-2,$$

$$z-2=x-x^2$$

a odtial' jednoduchým porovnaním dostávame rovnicu

$$|1-x| = x - x^2.$$

Pre x < 1 dostaneme rovnicu $1 - x = x - x^2$ čiže $(1 - x)^2 = 0$, ktorej riešenie x = 1 ale predpokladu x < 1 nevyhovuje.

Pre $x \ge 1$ vyjde rovnica $x^2 = 1$; z jej dvoch riešení x = -1 a x = 1 predpokladu $x \ge 1$ vyhovuje iba x = 1. Z danej sústavy potom jednoducho dopočítame hodnoty y = -1 a z = 2. Sústava má teda jediné riešenie (x, y, z) = (1, -1, 2).