DM 13 : Un corrigé

Partie I: Groupes quotients

1°)

- Soit $a \in G$. $a a = 0 \in H$ car H est un sous-groupe, donc $a R_H$ a. Ainsi, R_H est réflexive.
- Soit $x, y \in G$ tels que $x R_H y$. Ainsi $y x \in H$, mais H étant un sous-groupe il est stable par passage à l'opposé, donc $x y \in H$ et $y R_H x$. Ainsi R_H est symétrique.
- Soit $x, y, z \in G$ tels que $x R_H y$ et $y R_H z$. Ainsi, $y x \in H$ et $z y \in H$, or H est stable pour l'addition, donc $z x = (y x) + (z y) \in H$ puis $x R_H z$. Ainsi R_H est transitive.

En conclusion, R_H est bien une relation d'équivalence.

Soit $a \in G$. Pour tout $x \in G$, $x \in \overline{a} \iff a \ R_H \ x \iff \exists h \in H, \ x - a = h$, donc $x \in \overline{a} \iff \exists h \in H, \ x = a + h$. Ainsi, $\overline{a} = \{a + h \ / \ h \in H\} = a + H$.

2°)

- Commençons par montrer que la relation $\overline{a} + \overline{b} = \overline{a+b}$ définit convenablement une addition sur G/H, c'est-à-dire que $\overline{a+b}$ ne dépend que de \overline{a} et \overline{b} et non de (a,b).
 - En effet, si $a, b, a', b' \in G$ vérifient $\overline{a} = \overline{a'}$ et $\overline{b} = \overline{b'}$, alors $\underline{a' a}, \underline{b' b} \in H$ donc $(a + b) (a' + b') = (a a') + (b b') \in H$ puis $\overline{a + b} = \overline{a' + b'}$.
- Montrons ensuite que cette addition confère à G/H une structure de groupe.
 - Pour tout $\overline{a}, \overline{b} \in G/H$, $\overline{a} + \overline{b} \in G/H$, donc il s'agit bien d'une loi interne.
 - Pour tout $\overline{a}, \overline{b}, \overline{c} \in G/H$, $(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b} + \overline{c} = \overline{(a + b) + c}$, or l'addition dans G est associative, donc $(\overline{a} + \overline{b}) + \overline{c} = \overline{a + (b + c)} = \overline{a} + (\overline{b} + \overline{c})$. Ceci prouve l'associativité.
 - Pour tout $\overline{a}, \overline{b} \in G/H$, $\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a}$, ce qui prouve la commutativité.
 - Pour tout $a\in G,\,\overline{a}+\overline{0}=\overline{a}+\overline{0}=\overline{a},\,\mathrm{donc}\ \overline{0}$ est l'élément neutre.
 - Pour tout $a \in G$, $\overline{a} + \overline{-a} = \overline{a + (-a)} = \overline{0}$, donc \overline{a} possède un symétrique, et $-\overline{a} = \overline{-a}$.

En conclusion, G/H est bien un groupe abélien.

— Notons φ l'application de G dans G/H définie par : pour tout $a \in G$, $\varphi(a) = \overline{a}$. La définition de l'addition sur G/H dit que φ est un morphisme de groupes,

- donc d'après le cours, pour tout $n \in \mathbb{Z}$ et $a \in G$, $\varphi(na) = n\varphi(a)$, c'est-à-dire que $\overline{na} = n\overline{a}$.
- D'après le cours, les sous-groupes de \mathbb{Z} sont exactement les $n\mathbb{Z}$, où $n \in \mathbb{N}$, donc les groupes de la forme \mathbb{Z}/H sont les groupes (connus) $\mathbb{Z}/n\mathbb{Z}$, avec $n \in \mathbb{N}$.
- 3°) D'après le cours, les classes d'équivalence de R_H constituent une partition de G, donc $G = \bigsqcup_{x \in G/H} x$ puis en passant au cardinal, $|G| = \sum_{x \in G/H} |x|$.

Soit $x \in G/H$: il existe $a \in G$ tel que $x = \overline{a} = a + H$, or l'application $f: x \longmapsto a + x$ est une bijection sur G (de bijection réciproque $x \longmapsto x - a$), donc $|H| = |f(H)| = |\overline{a}| = |x|$. On en déduit que $|G| = \sum_{x \in G/H} |H| = |H| \times |G/H|$.

Partie II: Quelques définitions

4°)

— Par hypothèse, il existe $A \subset G$ et $B \subset H$ tels que A et B sont finis, G = Gr(A) et H = Gr(B). Alors d'après le cours, $G = Gr(A) = \left\{ \sum_{a \in A} n_a a / (n_a)_{a \in A} \in \mathbb{Z}^A \right\}$

et
$$H = \operatorname{Gr}(B) = \left\{ \sum_{b \in B} n_b b / (n_b)_{b \in B} \in \mathbb{Z}^B \right\}.$$

Soit $(g,h) \in G \times H$.

Il existe $(n_a)_{a \in A} \in \mathbb{Z}^A$ et $(n_b)_{b \in B} \in \mathbb{Z}^B$ telles que $g = \sum_{a \in A} n_a a$ et $h = \sum_{b \in B} n_b b$.

Alors
$$(g,h) = (g,0) + (0,h) = \sum_{a \in A} n_a(a,0) + \sum_{b \in B} n_b(0,b),$$

donc $(g,h) \in Gr[(A \times \{0\}) \cup (\{0\} \times B)].$

Ainsi, $G \times H \subset \operatorname{Gr}[(A \times \{0\}) \cup (\{0\} \times B)]$ et l'inclusion réciproque est évidente car $[(A \times \{0\}) \cup (\{0\} \times B)] \subset G \times H$.

Ceci prouve que $G \times H$ est engendré par $(A \times \{0\}) \cup (\{0\} \times B)$. C'est une partie finie, donc $G \times H$ est bien de type fini.

— Par récurrence, on en déduit que si G_1, \ldots, G_p sont p groupes abéliens de types finis, alors $G_1 \times \cdots \times G_p$ est encore de type fini. Or $\mathbb{Z} = \operatorname{Gr}(\{1\})$ et $\mathbb{Z}/n\mathbb{Z} = \operatorname{Gr}(\{\overline{1}\})$ sont monogènes donc de types finis, donc pour tout $k, \ell \in \mathbb{N}^*$, pour tout $(d_i)_{1 \leq i \leq \ell} \in \mathbb{N}^{*\ell}$, $\mathbb{Z}^k \times (\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$ est un groupe abélien de type fini.

 5°)

- $\mathbb{Z}/n\mathbb{Z}$ est fini, donc pour tout $x \in \mathbb{Z}/n\mathbb{Z}$, Gr(x) est fini : $\mathbb{Z}/n\mathbb{Z}$ est de torsion.
- Pour tout $n \in \mathbb{Z}^*$, pour tout $m \in \mathbb{N}^*$, $nm \neq 0$, donc n est d'ordre infini : \mathbb{Z} est sans torsion.
- $n(0,\overline{1}) = (0,\overline{n}) = 0$, donc $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$ n'est pas sans torsion. Pour tout $p \in \mathbb{N}^*$, $p(1,0) = (p,0) \neq 0$, donc $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$ n'est pas de torsion.

- Dans le groupe (\mathbb{C}^*, \times), $i^2 = 1$, donc ce groupe n'est pas sans torsion. Cependant, pour tout $p \in \mathbb{N}^*$, $2^p \neq 1$, donc il n'est pas de torsion.
- Soit $x \in \mathbb{Q}/\mathbb{Z}$. Il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $x = \overline{(\frac{p}{q})}$. Alors $qx = \overline{p} = 0$ car $p \in \mathbb{Z}$, donc \mathbb{Q}/\mathbb{Z} est de torsion.
- Si G est de cardinal fini, alors G = Gr(G), donc G est de type fini. De plus pour tout $x \in G$, Gr(x) est fini, donc G est de torsion.

Réciproquement, supposons que G est de type fini et de torsion.

Il existe donc une partie finie A de G telle que G = Gr(A). Alors, pour tout $g \in G$, il existe $(n_a)_{a\in A}\in\mathbb{Z}^A$ telle que $g=\sum_{a\in A}n_aa$, mais pour tout $a\in A, a$ est d'ordre fini,

donc en notant o(a) son ordre, pour tout $n \in \mathbb{Z}$, na = ra, où r est le reste de la division euclidienne de n par o(a). Ainsi, $G \subset \left\{ \sum_{a \in A} n_a a \mid \forall a \in A, \ n_a \in \{0, \dots, o(a) - 1\} \right\}$.

A étant fini, ce dernier ensemble est fini (son cardinal est inférieur à $\prod_i o(a)$), donc Gest fini.

Partie III : Groupes abéliens finis

o(x)o(y)(x + y) = o(y)(o(x)x) + o(x)(o(y)y) = 0 + 0 = 0,donc o(x + y) divise o(x)o(y).

Soit $n \in \mathbb{N}^*$ tel que n(x+y) = 0. Alors nx = -ny, donc no(y)x = -no(y)y = 0, puis $o(x) \mid no(y)$, mais $o(x) \land o(y) = 1$, donc d'après le théorème de Gauss, $o(x) \mid n$. De même, $o(y) \mid n$, or o(x) et o(y) sont premiers entre eux, donc $o(x)o(y) \mid n$. En particulier, lorsque n = o(x + y), on a montré que o(x)o(y) divise o(x + y) et que o(x+y) divise o(x)o(y), donc ils sont égaux.

Écrivons les décompositions de o(x) et o(y) en produit de nombres premiers : 8°) Ecrivons les decompositions de o(x) = $\prod_{p \in \mathbb{P}} p^{v_{o(x)}(p)}$ et $o(y) = \prod_{p \in \mathbb{P}} p^{v_{o(y)}(p)}$.

Posons $h = \prod_{\substack{p \in \mathbb{P} \\ v_p(o(x)) > v_p(o(y))}} p^{v_{o(x)}(p)}$ et $k = \prod_{\substack{p \in \mathbb{P} \\ v_p(o(x)) \leq v_p(o(y))}} p^{v_{o(y)}(p)}$.

Ainsi, h et k sont premiers entre eux et $hk = \prod_{\substack{p \in \mathbb{P} \\ p \in \mathbb{P}}} p^{\max(v_{o(x)}(p), v_{o(y)}(p))} = o(x) \vee o(y)$.

Posons
$$h = \prod_{\substack{p \in \mathbb{P} \\ v_p(o(x)) > v_p(o(y))}} p^{v_{o(x)}(p)} \text{ et } k = \prod_{\substack{p \in \mathbb{P} \\ v_p(o(x)) \le v_p(o(y))}} p^{v_{o(y)}(p)}.$$

Il existe $a, b \in \mathbb{N}^*$ tels que o(x) = ah et o(y) = bk.

Pour tout $n \in \mathbb{Z}$, $n(ax) = 0 \iff (na)x = 0 \iff o(x) \mid na \iff h \mid n$, donc h = o(ax). De même, k = o(by), donc d'après la question précédente, $o(ax+by) = hk = o(x) \lor o(y)$, ce qu'il fallait démontrer.

En utilisant l'associativité du PPCM, on montre par récurrence sur n, que pour tout $n \in \mathbb{N}^*$, pour tout $x_1, \ldots, x_n \in G$, il existe $z \in G$ tel que l'ordre de z est égal au PPCM des ordres de x_1, \ldots, x_n .

Or G est fini, donc il existe $x_0 \in G$ tel que l'ordre de x_0 est égal au PPCM des ordres des éléments de G.

Soit $x \in G$: alors $o(x_0), o(x) \in \mathbb{N}^*$ et $o(x) \mid o(x_0),$ donc $o(x_0) \geq o(x)$. Ainsi, x_0 est d'ordre maximal et, pour tout $x \in G$, l'ordre de x divise l'ordre de x_0 .

10°) On démontre cette propriété par récurrence forte sur |G| : soit $n \in \mathbb{N}^*$. Notons R(n) la propriété suivante : pour tout groupe abélien G de cardinal n, il existe $\ell \in \mathbb{N}^*$ et $d_1, \ldots, d_\ell \in \mathbb{N}^*$ tels que, pour tout $i \in \{1, \ldots, \ell-1\}$, d_{i+1} divise d_i , et tels que G est isomorphe à $(\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

Lorsque n = 1, si G est de cardinal 1, alors $G = \{0\}$, donc il est isomorphe à \mathbb{Z}/\mathbb{Z} , ce qui prouve R(1), avec $\ell = d_1 = 1$.

Supposons que $n \geq 2$ et que R(k) est vraie pour tout $k \in \{1, ..., n-1\}$. Montrons R(n). Soit G un groupe abélien de cardinal n. D'après la question précédente, il existe $x \in G$ d'ordre maximal. Notons d_1 l'ordre de x et H = Gr(x). D'après le cours, il existe un isomorphisme f de H dans $\mathbb{Z}/d_1\mathbb{Z}$.

D'après la question 3, $|G/H| = \frac{|G|}{|H|} < |G|$ car $d_1 \ge 2$: sinon, $d_1 = 1$, donc tous les éléments de G sont d'ordre 1, c'est-à-dire sont nuls et $G = \{0\}$, ce qui est faux car $n \ge 2$.

On peut donc appliquer l'hypothèse de récurrence au groupe abélien G/H: il existe $\ell \geq 2$ et $d_2, \ldots, d_l \in \mathbb{N}^*$ tels que, pour tout $i \in \{2, \ldots, \ell - 1\}$, d_{i+1} divise d_i , et tels qu'il existe un isomorphisme g de G/H dans $(\mathbb{Z}/d_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

D'après l'énoncé, il existe un isomorphisme h de G dans $H \times (G/H)$.

Pour tout $(y, z) \in H \times (G/H)$, notons $\varphi(y, z) = (f(y), g(z))$.

On a bien $\varphi((y,z)+(y',z'))=\varphi(y,z)+\varphi(y',z')$ pour tout $(y,z)\in H\times (G/H)$ et $(y',z')\in H\times (G/H)$, donc φ est un morphisme de $H\times (G/H)$ dans $(\mathbb{Z}/d_1\mathbb{Z})\times (\mathbb{Z}/d_2\mathbb{Z})\times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

Si $\varphi(y,z)=0$, alors f(y)=0 et g(z)=0, mais f et g sont injectifs, donc (y,z)=0. Ainsi, φ est injectif.

Pour tout $y' \in \mathbb{Z}/d_1\mathbb{Z}$ et $z' \in (\mathbb{Z}/d_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$, f et g étant surjectifs, il existe $(y,z) \in H \times (G/H)$ tel que y' = f(y) et z' = g(z), donc $(y',z') = \varphi(y,z)$. Ainsi, φ est un isomorphisme de $H \times (G/H)$ dans $(\mathbb{Z}/d_1\mathbb{Z}) \times (\mathbb{Z}/d_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$. Par composition, $\Psi = \varphi \circ h$ est un isomorphisme de G dans $(\mathbb{Z}/d_1\mathbb{Z}) \times (\mathbb{Z}/d_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

Il reste à montrer que d_2 divise d_1 : Notons d l'ordre de $y = \Psi^{-1}(0, \overline{1}, 0, \dots, 0)$ dans G. D'après la question précédente, d divise d_1 .

De plus, dy = 0, donc $0 = \Psi(dy) = d(0, \overline{1}, 0, \dots, 0) = (0, \overline{d}, 0, \dots, 0)$. Ainsi, dans $\mathbb{Z}/d_2\mathbb{Z}$, $\overline{d} = 0$, donc d_2 divise d. Ceci prouve que d_2 divise d_1 , d'où R(n).

La question est démontrée d'après le principe de récurrence forte.

11°

- Soit $(K, f) \in A$. Alors $K \subset K$ et $f|_K = f$, donc $(K, f) \preceq (K, f)$, ce qui montre que \preceq est réflexive.
- Soit $(K, f), (K', f') \in A$ tels que $(K, f) \preceq (K', f')$ et $(K', f') \preceq (K, f)$. Ainsi, $K \subset K'$ et $K' \subset K$, donc K = K'. De plus, pour tout $x \in K$, $f(x) = f|_K(x) = f'(x)$, donc f = f'. Ainsi, \preceq est antisymétrique.
- Soit $(K, f), (K', f'), (K'', f'') \in A$ tels que $(K, f) \preceq (K', f')$ et $(K', f') \preceq (K'', f'')$. $K \subset K'$ et $K' \subset K''$, donc $K \subset K''$. De plus, pour tout $x \in K$, $f''(x) = f'|_{K'}(x) = f'(x) = f'|_{K}(x) = f(x)$, donc $f''|_{K} = f$. Ainsi, $(K, f) \preceq (K'', f'')$. Ainsi, \preceq est transitive.
 - En conclusion, \leq est bien une relation d'ordre.
- Notons $B = \{(K, f) \in A \mid H \subset K \text{ et } f|_H = Id_H\}$. G étant fini, il ne possède qu'un nombre fini de sous-groupes et, pour chacun des sous-groupes K de G, lui-même fini, il n'existe qu'un nombre fini d'applications de K dans H, donc B est fini. À ce titre, il possède nécessairement un élément maximal. En effet, dans le cas contraire, pour tout $(K, f) \in A$, il existerait $(K', f') \in A$ tel que $(K, f) \prec (K', f')$, ainsi partant d'un élément (K_0, f_0) de A (A est non vide car $(H, Id_H) \in A$), on pourrait construire une suite $((K_n, f_n))_{n \in \mathbb{N}}$ strictement croissante d'éléments de A: c'est en contradiction avec la finitude de A.

12°)

 \diamond Notons d l'ordre de x_0 et $\omega = e^{2i\frac{\pi}{d}}$.

Pour tout $kx_0 \in H = Gr(x_0)$, où $k \in \mathbb{Z}$, posons $g(kx_0) = \omega^k$.

g est correctement défini car si $kx_0 = hx_0$ avec $k, h \in \mathbb{Z}$, alors k - h est un multiple de d, donc $\omega^k = \omega^h$.

On a clairement $g(kx_0 + hx_0) = g(kx_0)g(hx_0)$, donc g est un morphisme de groupes. Si $g(kx_0) = 1$, alors $\omega^k = 1$, donc k est un multiple de d et $kx_0 = 0$. Ainsi $Ker(g) = \{0\}$, ce qui prouve que g est injectif.

 $\diamond g \circ f$ est un morphisme de K dans \mathbb{U}

et $K' = \operatorname{Gr}(K \cup \{y_0\}) = \{x + ny_0/x \in K \text{ et } n \in \mathbb{Z}\}$ (en effet, on peut vérifier que ce dernier ensemble est non vide et stable par différence, donc c'est un sous-groupe qui contient $K \cup \{y_0\}$ et tout sous-groupe contenant $K \cup \{y_0\}$ contient $\{x + ny_0/n \in \mathbb{Z}\}$). Ainsi, pour prolonger $g \circ f$ en un morphisme Ψ défini sur K', il faut choisir correctement $\Psi(y_0)$ dans \mathbb{U} . Posons a priori $\Psi(y_0) = e^{i\alpha}$ où $\alpha \in \mathbb{R}$.

On souhaite poser, pour tout $x \in K$ et $n \in \mathbb{Z}$, $\Psi(x + ny_0) = g \circ f(x)e^{in\alpha}$, mais il faut s'assurer que cette dernière égalité définit correctement une fonction, c'est-à-dire que la quantité $g \circ f(x)e^{in\alpha}$ ne dépend que de $x + ny_0$, ou encore que

$$(C): \forall x, x' \in K, \forall n, n' \in \mathbb{Z}, [x + ny_0 = x' + n'y_0 \Longrightarrow g \circ f(x)e^{in\alpha} = g \circ f(x')e^{in'\alpha}].$$

$$(C) \iff \forall x, x' \in K, \forall n, n' \in \mathbb{Z}, [(n - n')y_0 = x' - x \Longrightarrow g \circ f(x - x') = e^{i(n' - n)\alpha}]$$

$$\iff \forall x \in K, \forall n \in \mathbb{Z}, [ny_0 = x \Longrightarrow g \circ f(x) = e^{in\alpha}]$$

Notons *b* l'ordre de $\overline{y_0}$ dans K'/K:

pour tout $n \in \mathbb{Z}$, $ny_0 \in K \iff n\overline{y_0} = 0 \iff b \mid n$.

Soit $x \in K$ et $n \in \mathbb{Z}$ tels que $ny_0 = x$. Ainsi $b \mid n$, donc il existe $c \in \mathbb{Z}$ tel que n = bc. Ainsi, $x = c(by_0)$. $by_0 \in K$, donc $f(by_0)$ est défini et appartient à H. Ainsi, il existe $\beta \in \{0, \ldots, d-1\}$ tel que $f(by_0) = \beta x_0$. Alors $g \circ f(by_0) = \omega^{\beta}$ puis $g \circ f(x) = \omega^{\beta c}$. Ainsi,

 $g \circ f(x) = e^{in\alpha} \iff e^{2i\pi\frac{\beta c}{d}} = e^{in\alpha} = e^{ibc\alpha} \iff 2\pi\frac{\beta}{d} = b\alpha.$

On pose donc $\alpha = 2\pi \frac{\beta}{db}$ (ainsi α ne dépend que de x_0 , y_0 et f).

Pour tout $(x, n) \in K \times \mathbb{Z}$, on pose $\Psi(x + ny_0) = g \circ f(x)e^{in\alpha}$.

La condition (C) est alors vérifiée, donc Ψ est une application correctement définie de K' dans H.

On a clairement, pour tout $x, x' \in K$ et $n, n' \in \mathbb{Z}$,

 $\Psi((x+ny_0)+(x'+n'y_0))=g\circ f(x).g\circ f(x')e^{in\alpha}e^{in'\alpha}=\Psi(x+ny_0)\Psi(x'+n'y_0),$ donc Ψ est un morphisme de K' dans \mathbb{U} , qui prolonge $g\circ f$ sur K'.

 \diamond Soit $x \in K'$: par construction de x_0 , l'ordre de x_0 est un multiple de l'ordre de x. Ainsi, dx = 0, puis $1 = \Psi(dx) = \Psi(x)^d$, donc $\Psi(x) \in \mathbb{U}_d = g(H)$. Ceci démontre que Ψ est à valeurs dans $U_d = g(H)$, or $g|^{g(H)}$ est une bijection, donc $(g|^{g(H)})^{-1} \circ \Psi$ réalise un morphisme de K' dans H. De plus, si $x \in H$, $\Psi(x) = g \circ f(x) = g(x)$, donc $(g|^{g(H)})^{-1} \circ \Psi(x) = x$. On en déduit que le couple $(K', (g|^{g(H)})^{-1} \circ \Psi)$ est un élément de B, strictement supérieur au couple (K, f). Ceci contredit la maximalité de (K, f) dans B. C'est absurde.

13°) Il existe donc un morphisme f de G dans H tel que $f|_{H} = Id_{H}$.

Pour tout $x \in G$, posons $\varphi(x) = (f(x), \overline{x}) \in H \times G/H$.

 φ est un morphisme de G dans $H \times G/H$ car, pour tout $x, y \in G$,

 $\varphi(x+y) = (f(x) + f(y), \overline{x} + \overline{y}) = \varphi(x) + \varphi(y).$

Soit $x \in \text{Ker}(\varphi): (f(x), \overline{x}) = 0$, donc $\overline{x} = 0$ et f(x) = 0, ainsi $x \in H$ puis

 $0 = f(x) = f|_{H}(x) = x$. Ceci démontre que $Ker(\varphi) = \{0\}$, donc φ est injective.

De plus, $|G| = |H| \times |G/H|$, donc f est une bijection. Il s'agit bien d'un isomorphisme entre G et $H \times G/H$.

Partie IV : Sommes directes

14°) a) Soit $x \in H_1 + H_2$. Supposons qu'il existe $h_1, h'_1 \in H_1$ et $h_2, h'_2 \in H_2$ tels que $x = h_1 + h_2 = h'_1 + h'_2$.

Il existe $n_1, n'_1, n_2, n'_2 \in \mathbb{Z}$ tels que $h_1 = n_1(2,1), h'_1 = n'_1(2,1), h_2 = n_2(0,2)$ et $h'_2 = n'_2(0,2).$

Ainsi $x = (2n_1, n_1 + 2n_2) = (2n'_1, n'_1 + 2n'_2)$, donc $n_1 = n'_1$ puis $n_2 = n'_2$. On en déduit que $h_1 = h'_1$ et $h_2 = h'_2$, donc la somme $H_1 + H_2$ est directe.

b) Supposons d'abord que $a \neq 0$ et $b \neq 0$.

On peut écrire 0 = 0.a + 0.b = b.a - a.b, donc la décomposition de 0 dans la somme $a\mathbb{Z} + b\mathbb{Z}$ n'est pas unique. Ceci prouve que cette somme n'est pas directe.

Supposons maintenant que a = 0: Soit $x \in a\mathbb{Z} + b\mathbb{Z} = b\mathbb{Z}$. Si $x = h_1 + h_2 = h'_1 + h'_2$ avec $h_1, h'_1 \in a\mathbb{Z} = \{0\}$ et $h_2, h'_2 \in b\mathbb{Z}$, alors $h_1 = h'_1 = 0$ puis $h_2 = h'_2$, donc dans ce cas, la somme est directe. C'est encore vrai lorsque b = 0.

15°) a) $H_1 + H_2$ est un groupe, car il contient 0, donc il est non vide, et si $h_1 + h_2, h'_1 + h'_2 \in H_1 + H_2$, alors $(h_1 + h_2) - (h'_1 + h'_2) = (h_1 - h'_1) + (h_2 - h'_2) \in H_1 + H_2$. De plus $H_1 + H_2$ contient $H_1 \cup H_2$ (car $0 \in H_1 \cap H_2$).

Enfin, si H est un sous-groupe de G qui contient $H_1 \cup H_2$, alors, H étant stable pour l'addition, il contient $H_1 + H_2$.

En conclusion, $H_1 + H_2$ est le plus petit sous-groupe de G contenant $H_1 \cup H_2$, ce qu'il fallait démontrer.

b) Pour tout $(h_1, h_2) \in H_1 \times H_2$, notons $\varphi(h_1, h_2) = h_1 + h_2$. Ainsi, φ est une application de $H_1 \times H_2$ dans $H_1 + H_2$. Cette dernière somme étant directe, tout élément de $H_1 + H_2$ possède un unique antécédent par φ , donc φ est une bijection. De plus, φ est un morphisme car on vérifie que $\varphi((h_1, h_2) + (h'_1, h'_2)) = \varphi((h_1, h_2)) + \varphi((h'_1, h'_2))$.

16°)

 \diamond Soit $x \in (H_1 + H_2) + H_3$: il existe $h \in H_1 + H_2$ et $h_3 \in H_3$ tel que $x = h + h_3$. De plus il existe $h_1 \in H_1$ et $h_2 \in H_2$ tels que $h = h_1 + h_2$.

Ainsi, l'addition dans G étant associative,

$$x = (h_1 + h_2) + h_3 = h_1 + (h_2 + h_3) \in H_1 + (H_2 + H_3).$$

Ceci démontre que $(H_1+H_2)+H_3\subset H_1+(H_2+H_3)$. L'inclusion réciproque se démontre de la même façon.

- \diamond On suppose que $H_1 \oplus H_2$ est directe, ainsi que $(H_1 \oplus H_2) \oplus H_3$.
 - Soit $h_2 + h_3 = h'_2 + h'_3 \in H_2 + H_3$. Alors $(0 + h_2) + h_3 = (0 + h'_2) + h'_3$ avec $(0 + h_2), (0 + h'_2) \in H_1 + H_2$ et $h_3, h'_3 \in H_3$, or la somme entre $H_1 + H_2$ et H_3 est directe, donc $0 + h_2 = 0 + h'_2$ et $h_3 = h'_3$. Ceci démontre que la somme $H_2 + H_3$ est directe.
 - Soit $h_1 + h = h'_1 + h' \in H_1 + (H_2 \oplus H_3)$. Il existe $h_2, h'_2 \in H_2$ et $h_3, h'_3 \in H_3$ tels que $h = h_2 + h_3$ et $h' = h'_2 + h'_3$.

 On peut écrire $(h_1 + h_2) + h_3 = (h'_1 + h'_2) + h'_3$, or la somme entre $H_1 + H_2$ et H_3 est directe, donc $h_1 + h_2 = h'_1 + h'_2$ et $h_3 = h'_3$. De plus la somme entre H_1 et H_2 est directe, donc $h_1 = h'_1$ et $h_2 = h'_2$. Ainsi $h_1 = h'_1$ et h = h', ce qui montre que la somme entre H_1 et $H_2 \oplus H_3$ est directe.

Partie V: Groupes abéliens de rangs finis

Supposons que $B = (x_i)_{i \in I}$ est une base de G. Soit $x \in G \setminus \{0\}$. Soit $n \in \mathbb{N}^*$. Il existe $(n_i)_{i \in I} \in \mathbb{Z}^{(I)}$ telle que $x = \sum_{i \in I} n_i x_i$. Or $x \neq 0$, donc il existe $i_0 \in I$ tel que $n_{i_0} \neq 0$.

donc il existe $i_0 \in I$ tel que $n_{i_0} \neq 0$. Alors $nx = \sum_{i \in I} nn_i x_i$ et $nn_{i_0} \neq 0$, donc $nx \neq 0$: sinon $\sum_{i \in I} nn_i x_i$ et $\sum_{i \in I} 0.x_i$ serait deux décompositions différentes de 0 selon la base B. On a ainsi montré que pour tout $x \in G \setminus \{0\}$ et $n \in \mathbb{N}^*$, $nx \neq 0$, donc G est sans torsion. **18°)** a) Pour tout $j \in \{1, ..., n\}$, il existe une partie finie $I_j \subset I$ et une famille $(n_{i,j})_{i \in I_j} \in \mathbb{Z}^{I_j}$ telle que $x_j = \sum_{i \in I_i} n_{i,j} e_i$.

Posons $K = \bigcup_{1 \le j \le n} I_j$. Soit $i \in I$. Il existe $k_1, \dots, k_n \in \mathbb{Z}$ tels que $e_i = \sum_{j=1}^n k_j x_j$, donc

$$e_i = \sum_{j=1}^n k_j \sum_{i \in I_i} n_{i,j} e_i$$
. Ainsi, il existe $(m_k)_{k \in K} \in \mathbb{Z}^K$ tel que $e_i = \sum_{k \in K} m_k e_k$. Or $(e_i)_{i \in I}$

est une base, donc $i \in K$: sinon l'égalité précédente fournirait deux décompositions différentes de e_i dans la base $(e_j)_{j \in I}$. On a montré que $I \subset K$, or K est fini, donc I est fini.

b)

 \diamond 0 \in H, donc H est non vide, et si $2x, 2y \in H$, alors $2x - 2y = 2(x - y) \in H$, donc H est bien un sous-groupe de G.

$$\diamond$$
 Soit $x, y \in G$. Il existe $k_1, \dots, k_n, h_1, \dots, h_n \in \mathbb{Z}$ tels que $x = \sum_{i=1}^n k_i x_i$ et $y = \sum_{i=1}^n h_i x_i$.

Alors, $x R_H y \iff \sum_{i \in I} (h_i - k_i) x_i \in H \iff \forall i \in I, h_i - k_i \in 2\mathbb{Z}$. En effet, "\infty" est

évidente et si
$$\sum_{i \in I} (h_i - k_i) x_i \in H$$
, il existe $y = \sum_{i \in I} m_i x_i$ tel que

$$\sum_{i \in I} (h_i - k_i) x_i = 2 \sum_{i \in I} m_i x_i, \text{ or } (x_i)_{1 \le i \le n} \text{ est une base, donc pour tout } i \in I,$$

$$h_i - k_i = 2m_i \in 2\mathbb{Z}.$$

On en déduit que
$$G/H=\left\{\sum_{i=1}^n \varepsilon_i x_i \ / \ \forall i\in I,\ \varepsilon_i\in\{0,1\}\right\}$$
 et que lorsque

$$(\varepsilon_i)_{1 \le i \le n}, (\varepsilon_i')_{1 \le i \le n} \in \{0, 1\}^n \text{ avec } (\varepsilon_i)_{1 \le i \le n} \neq (\varepsilon_i')_{1 \le i \le n}, \text{ alors } \overline{\sum_{i=1}^n \varepsilon_i x_i} \neq \overline{\sum_{i=1}^n \varepsilon_i' x_i}.$$

Ceci démontre que $|G/H| = 2^n$.

 \diamond Si (y_1, \ldots, y_p) est une autre base de G (nécessairement finie), alors G/H est aussi de cardinal 2^p , donc p = n.

19°) a) Soit X une partie génératrice finie de G.

Posons
$$N = \left\{ \sum_{x \in X} |n_x| / (n_x)_{x \in X} \in \mathbb{Z}^X \setminus \{0\} \text{ et } \sum_{x \in X} n_x x = 0 \right\}.$$

Par hypothèse, X n'est pas une base de G, donc il existe $g \in G$ tel que g possède deux décompositions différentes selon la famille $X: g = \sum_{x \in X} k_x x = \sum_{x \in X} h_x x$

avec $(k_x)_{x\in X} \neq (h_x)_{x\in X}$. Ainsi, en posant pour tout $x\in X$, $n_x=k_x-h_x$, on a $(n_x)_{x\in X}\in \mathbb{Z}^X\setminus\{0\}$ et $\sum_{x\in X}n_xx=0$. Ceci montre que N est non vide, or c'est une partie

de \mathbb{N} , donc d'après le cours, N possède bien un minimum.

b) Notons M l'ensemble des cardinaux des parties finies génératrices de G. G étant

de type fini, M est non vide. Or M est une partie de \mathbb{N} , donc M possède bien un minimum, que l'on note n.

On note ensuite $K = \{m_X/|X| = n \land (X \text{ est génératrice de } G)\}$. K est encore une partie non vide de \mathbb{N} , donc elle possède un minimum, noté m_0 . Alors il existe une partie génératrice X_0 de G de cardinal n tel que $m_{X_0} = m_0$.

c) Supposons qu'il existe $x_0 \in X_0$ tel que $|n_{x_0}| = 1$. Alors $x_0 = \varepsilon \sum_{x \in X_0 \setminus \{x_0\}} n_x x$ où

 $\varepsilon \in \{-1,1\}$, donc $X \setminus \{x_0\}$ est génératrice de G, ce qui est absurde car $|X \setminus \{x_0\}| = n - 1$, ce qui contredit la minimalité de n.

d) $\{|n_x| / x \in X_0\} \cap \mathbb{N}^*$ est une partie non vide, car $(n_x)_{x \in X_0}$ est non nulle, donc elle possède un minimum : il existe $x_0 \in X_0$ tel que $n_{x_0} \neq 0$ et tel que, pour tout $x \in X_0$, $n_x = 0$ ou bien $|n_x| \ge |n_{x_0}|$.

$$n_{x_0}\left(x_0 + \sum_{x \in X_0 \setminus \{x_0\}} \frac{n_x}{n_{x_0}}x\right) = 0$$
, car $\frac{n_x}{n_{x_0}} \in \mathbb{Z}$, or G est sans torsion.

Supposons que pour tout $y \in X_0$, $|n_{x_0}|$ | $|n_y|$. Alors on peut écrire $n_{x_0}\left(x_0 + \sum_{x \in X_0 \setminus \{x_0\}} \frac{n_x}{n_{x_0}}x\right) = 0$, car $\frac{n_x}{n_{x_0}} \in \mathbb{Z}$, or G est sans torsion, donc $x_0 + \sum_{x \in X_0 \setminus \{x_0\}} \frac{n_x}{n_{x_0}}x = 0$, ce qui prouve à nouveau que $X \setminus \{x_0\}$ est génératrice de

G, ce qui est absurde. On en déduit qu'il existe $y \in X_0$ tel que $|n_{x_0}|$ ne divise pas $|n_y|$. En particulier, $n_y \neq 0$ et $|n_y| \neq |n_{x_0}|$, donc $0 < |n_{x_0}| < |n_y|$.

e) La division euclidienne de $|n_y|$ par $|n_{x_0}|$ s'écrit $|n_y|=q|n_{x_0}|+r$ avec $0\leq r<|n_{x_0}|$. De plus $r \neq 0$ car $|n_{x_0}|$ ne divise pas $|n_y|$.

Il existe
$$\varepsilon, \varepsilon' \in \{-1, 1\}$$
 tels que $n_y = \varepsilon q n_{x_0} + \varepsilon' r$, donc
$$0 = \sum_{z \in X_0} n_z z = n_{x_0} x_0 + (\varepsilon q n_{x_0} + \varepsilon' r) y + \sum_{z \in X_0 \setminus \{x_0, y\}} n_z z$$

$$= n_{x_0} (x_0 + \varepsilon q y) + \varepsilon' r y + \sum_{z \in X_0 \setminus \{x_0, y\}} n_z z : (1).$$

Notons $Y = (X_0 \setminus \{x_0\}) \cup \{x_0 + \varepsilon qy\}$. Pour tout $g \in G$, il existe $(m_z)_{z \in X_0} \in \mathbb{Z}^{X_0}$ tel que $g = \sum_{z \in X_0} m_z z$, donc $g = \sum_{z \in X_0 \setminus \{x_0, y\}} m_z z + n_{x_0} (x_0 + \varepsilon q y) + (n_y - \varepsilon q n_{x_0}) y$. Ainsi, Y est une

famille génératrice de G de cardinal n. Donc $m_Y \ge m_{X_0}$, mais d'après la relation (1) et le fait que $r \ne 0$, $m_Y \le |n_{x_0}| + |r| + \sum_{z \in X_0 \setminus \{x_0,y\}} |n_z| < |n_{x_0}| + |n_y| + \sum_{z \in X_0 \setminus \{x_0,y\}} |n_z| = m_{X_0}$.

C'est impossible.

20°)

Supposons que G est un groupe sans torsion de type fini. D'après la question précédente, il est de rang fini, donc il existe une base de G de la forme (e_1, \ldots, e_n) .

Pour tout $(k_1, \ldots, k_n) \in \mathbb{Z}^n$, notons $\varphi(k_1, \ldots, k_n) = \sum_{i=1}^n k_i e_i$. On vérifie que φ est un

morphisme du groupe $(\mathbb{Z}^n, +)$ dans G. Il est bijectif car (e_1, \ldots, e_n) est une base de G. Ainsi, il existe $n \in \mathbb{N}$ tel que G est isomorphe à \mathbb{Z}^n .

 \diamond Réciproquement, supposons qu'il existe un isomorphisme φ de \mathbb{Z}^n dans G.

Pour tout $i \in \{1, ..., n\}$, posons $e_i = \varphi((\delta_{i,j})_{1 \le j \le n})$.

Soit $g \in G$ et $(k_1, \ldots, k_n) \in \mathbb{Z}^n$. Alors $g = \sum_{i=1}^n k_i e_i$ si et seulement si

$$\varphi^{-1}(g) = \sum_{i=1}^{n} k_i \varphi^{-1}(e_i) = \sum_{i=1}^{n} k_i (\delta_{i,j})_{1 \le j \le n} = (k_1, \dots, k_n), \text{ donc } (e_1, \dots, e_n) \text{ est une base}$$

de G. Ainsi G est de rang fini, donc il est sans torsion et de type fini.

 \diamond On a montré que si G est isomorphe à \mathbb{Z}^n , alors G est de rang fini égal à n, donc d'après la question 18.b, n est unique.

Partie VI: Théorème de structure des groupes de types finis

21°) 1.0 = 0, donc $0 \in T(G)$.

Soit $x, y \in T(G)$. Notons o(x) et o(y) les ordres de x et y.

Alors o(x)o(y)(x-y) = o(y)(o(x)x) - o(x)(o(y)y) = 0, donc $x-y \in T(G)$.

Ainsi, T(G) est un sous-groupe de G.

22°)

 \diamond Soit $\overline{x} \in G/T(G)$. Supposons que \overline{x} est d'ordre fini. Ainsi, il existe $n \in \mathbb{N}^*$ tel que $0 = n\overline{x} = \overline{nx}$, donc $nx \in T(G)$: c'est un élément de G d'ordre fini, donc il existe $m \in \mathbb{N}^*$ tel que m(nx) = 0. Ainsi x est aussi d'ordre fini, donc $x \in T(G)$ puis $\overline{x} = 0$. Ceci prouve que G/T(G) est sans torsion.

 \diamond G est de type fini, donc il existe (x_1,\ldots,x_n) tel que $G=\mathrm{Gr}(\{x_1,\ldots,x_n\})$.

Soit $\overline{x} \in G/T(G)$. $x \in G$, donc il existe $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ tel que $x = \sum_{i=1}^n k_i x_i$. Alors

 $\overline{x} = \sum_{i=1}^{n} k_i \overline{x_i}$. Ceci prouve que $\{\overline{x_1}, \dots, \overline{x_n}\}$ est une partie génératrice de G/T(G), donc G/T(G) est de type fini.

23°)

 \diamond D'après la question 19, G/T(G) est de rang fini, donc il existe $k \in \mathbb{N}$ et une base $(\overline{x_1}, \dots, \overline{x_k})$ de G/T(G).

Posons $H = Gr(\{x_1, \dots, x_k\}) : H$ est un sous-groupe de G.

- \diamond Montrons que $G = H \oplus T(G)$:
 - Soit $g \in G$. $\overline{g} \in G/T(G)$, donc il existe $(h_1, \ldots, h_k) \in \mathbb{Z}^k$ tel que $\overline{g} = \sum_{i=1}^k h_i \overline{x_i}$.

Ainsi, si l'on pose
$$t = g - \sum_{i=1}^{k} h_i x_i$$
, $\bar{t} = 0$, donc $t \in T(G)$.

Alors
$$g = t + \sum_{i=1}^{k} h_i x_i \in T(G) + H$$
. Ceci démontre que $G = H + T(G)$.

— Supposons que t + h = t' + h', avec $t, t' \in T(G)$ et $h, h' \in H$.

Alors $t - t' \in H \cap T(G)$. Ainsi, il existe $n \in \mathbb{N}^*$ tel que n(h - h') = 0. On en déduit que n(h - h') = 0, mais G/T(G) est sans torsion, donc h - h' = 0. Si

I'on pose
$$h = \sum_{i=1}^k h_i x_i$$
 et $h' = \sum_{i=1}^k h'_i x_i$, alors $\sum_{i=1}^k h_i \overline{x_i} = \sum_{i=1}^k h'_i \overline{x_i}$, or $(\overline{x_1}, \dots, \overline{x_k})$

est une base de G/T(G), donc $h_i = h'_i$ pour tout $i \in \{1, \ldots, k\}$. On en déduit que h = h', puis que t = t'. Ceci prouve que H + T(G) est une somme directe.

- \diamond D'après la question 15.b, il existe un isomorphisme φ de G dans $H \times T(G)$.
- \diamond Pour tout $(h_1, \dots, h_k) \in \mathbb{Z}^k$, notons $\Psi(h_1, \dots, h_k) = \sum_{i=1}^k h_i x_i$. Ainsi Ψ est un

morphisme de \mathbb{Z}^k dans H, clairement surjectif. De plus, si $(h_1, \ldots, h_k) \in \operatorname{Ker}(\Psi)$,

$$0 = \sum_{i=1}^{\kappa} h_i \overline{x_i}$$
, donc à nouveau, $h_i = 0$ pour tout $i \in \{1, \dots, k\}$. Ainsi $\text{Ker}(\Psi) = \{0\}$ et

 Ψ est un isomorphisme de \mathbb{Z}^k dans H.

 \diamond Notons F l'application de G dans T(G) définie par : F(h+t)=t, pour tout $h\in H$ et $t\in T(G)$: F est bien définie car $G=H\oplus T(G)$.

On vérifie que F est un morphisme de groupes.

G est de type fini, donc il existe $(y_1,\ldots,y_p)\in G^p$ tel que $\{y_1,\ldots,y_p\}$ est génératrice de G.

Soit
$$t \in T(G)$$
. Alors $t \in G$, donc il existe $(h_1, \ldots, h_p) \in \mathbb{Z}^p$ tel que $t = \sum_{i=1}^p h_i y_i$. On en

déduit que
$$t = F(t) = \sum_{i=1}^{p} h_i F(y_i)$$
, donc $\{F(y_1), \dots, F(y_p)\}$ est génératrice de $T(G)$.

Ainsi, T(G) est un groupe de torsion et de type fini. D'après la question 6, T(G) est un groupe fini et d'après la question 10, il existe $\ell \in \mathbb{N}^*$ et $d_1, \ldots, d_\ell \in \mathbb{N}^*$ tels que, pour tout $i \in \{1, \ldots, \ell-1\}$, d_{i+1} divise d_i et T(G) est isomorphe à $(\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$. \Leftrightarrow En conclusion, il existe un isomorphisme F_1 de H dans \mathbb{Z}^k et un isomorphisme F_2 de T(G) dans $(\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

Alors, en posant pour tout $g \in G$, $\varphi(g) = (\varphi_1(g), \varphi_2(g)) \in H \times T(G)$, l'application $g \longmapsto (F_1(\varphi_1(g)), F_2(\varphi_2(g)))$ est un isomorphisme de G dans $\mathbb{Z}^k \times [(\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})]$, dont l'isomorphisme réciproque est $(x_1, x_2) \longmapsto \varphi^{-1}(F_1^{-1}(x_1), F_2^{-1}(x_2))$.