Utilizando o gerador de grafos densos (dgg) conseguimos saber exactamente quantas arestas E existem em função do número de vértices V. E = V(V-1)/2

for i in \$(seq 1000 500 10000); do echo \$i; ./dgg \$i > teste_\$i.txt; done

Correndo o programa em todos os ficheiros de teste gerados

for file in teste_*.txt; do echo "-----"; echo \$file; time ./p2 < \$file; done

V	E = V(V-1) / 2	E log E	tempo (s)						_								
1000	499500	2846418.479	0.115			E log E vs time											
1500	1124250	6802682.611	0.214		25												
2000	1999000	12595324.78	0.388														
2500	3123750	20287745	0.57		20												
3000	4498500	29928825.16	0.875	time (s)										/			
3500	6123250	41558387.48	1.145		15												
4000	7998000	55210045.24	1.519		10												
4500	10122750	70912885.51	1.919		10					/							
5000	12497500	88692547.26	2.374		5												
5500	15122250	108571954.3	2.877		Э		/										
6000	17997000	130571836.5	3.487		O	_											
6500	21121750	154711113.7	4.067		Ü		200	0000000	0	4000	00000	60	0000000	0	8000	00000	
7000	24496500	181007187.1	4.73								Elog	F					
7500	28121250	209476164.8	5.39														
8000	31996000	240133041.6	6.091						E va time								
8500	36120750	272991842.5	7.017	time (s)					E vs time								
9000	40495500	308065740.7	7.85		25												
9500	45120250	345367155.6	8.72														
10000	49995000	384907834	9.637		20												
10500	55119750	426698919.7	10.62											/			
11000	60494500	470751012	11.622		15												
11500	66119250	517074216.7	12.726		10												
12000	71994000	565678190.1	14.198		10												
12500	78118750	616572177	15.42		5				/								
13000	84493500	669765044.5	16.621		,												
13500	91118250	725265312	18.156		0	_											
14000	97993000	783081176.9	19.247		-		2.0E	+7	4	.0E+7	6.0	E+7	8.0E	E+7	1.0)E+8	
14500	105117750	843220538.3	20.699								Е						
15000	112492500	905691018	22.071														
		Ambos os plots "pa	recem" lineares. Ta	lvez co	m ma	is pont	os conse	guisser	mos	ver melh	or as te	ndência	s, com				
		o E log E vs time a	tender ligeiramen	te para	baixo	, e o E v	vs time a	tende	r lige	eirament	e para c	ima.					
		O melhor caso do K	ruskal é o sort ape	nas per	rcorre	r os arc	os, Ω(E).	No 1º	gráf	ico, não	o disting	guimos c	do melh	or case).		
		O pior caso do Krusl	kal é o sort ter os a	rcos da	pior	forma p	ossível	O(E log	E). I	No 2º grá	ifico, nã	o o disti	nguimo	s do pi	or case	o.	
		Dado que não contr	olamos os nasos d	os arco	15 0 2	ordem	בנות בום	Loctor	2500	c cão pro	coccado	oc polo c	ort				

a complexidade do nosso algoritmo estará algures entre estas duas rectas.