$2^{\rm a}$ Prova - Matemática Combinatória - 12/7/2013

- 1. (1.5) Ache uma relação de recorrência, e condições iniciais, para a_n , onde a_n representa o número de sequências ternárias (sequências que contêm 0,1,2) de n dígitos que têm um número ímpar de 1's. Explique sua solução.
- 2. (1.5) Resolva a seguinte relação de recorrência: $a_n + 6a_{n-1} + 9a_{n-2} = 4$.

$$a_0 = \frac{1}{4}$$

$$a_1 = -\frac{3}{4}$$
.

- 3. (2.0) Seja G um grafo que tem exatamente três componentes conexos G_1 , G_2 e G_3 . Sabendo que G_1 é um grafo planar com 15 vértices e 7 faces, G_2 é uma árvore com 11 vértices, e G_3 tem sequência de graus de vértices (2, 2, 2, 2, 3, 4, 5), calcule o número de arestas de G. Justifique.
- 4. (1.0) Seja G um grafo conexo. Mostre que se toda aresta de G é ponte então G é uma árvore.
- 5. (4.0) Responda as seguintes perguntas considerando os grafos G_1 e G_2 dados abaixo: Respostas sem justificativas não serão consideradas.
 - (a) Os grafos G_1 e G_2 são isomorfos?
 - (b) O grafo G_1 é bipartido? Caso seja, determine sua bipartição.
 - (c) Dê um conjunto independente maximal de G_1 que não seja máximo.
 - (d) G_1 é hamiltoniano? G_2 é euleriano?
 - (e) Qual a conectividade de vértices de G_1 ? Qual a conectividade de arestas de G_1 ?

