Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations

School of industrial and Management Engineering, Korea University

Young Jae Lee

Contents

- * Research Purpose
- Supervised Noise Contrastive Estimation (SuNCEt)
- Experiments
- Conclusion

Research Purpose

- Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations (NeurlPS, 2022)
 - McGill/Montreal 대학, Facebook AI Research에서 연구하였고 2022년 10월 28일 기준 약 9회 인용

Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations

Mahmoud Assran^{1,2,3}, Nicolas Ballas³, Lluis Castrejon^{1,3,4}, and Michael Rabbat^{1,3}

Abstract

We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation and neighbourhood component analysis, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches while using less than half the amount of pre-training and compute. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations. Our code is available online at github.com/facebookresearch/suncet.

¹Mila – Quebec AI Institute

²Department of Electrical and Computer Engineering, McGill University

³Facebook AI Research

⁴Department of Computer Science and Operations Research, University of Montreal {massran, ballasn, lcastrejon, mikerabbat}@fb.com

Research Purpose

- Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations (NeurlPS, 2022)
 - Visual Representations에 대한 대조 학습 효율성을 향상시키기 위해 사전 학습 동안 소량의 데이터를 활용할 수 있는 Semi-Supervised Loss인 Supervised Noise Contrastive Estimation (SuNCEt) 제안
 - SuNCEt는 Noise-Contrastive Estimation과 Neighborhood Component Analysis 기반으로 함

Supervised Noise Contrastive Estimation (SuNCEt)

- Supervised Noise Contrastive Estimation (SuNCEt)
 - Background
 - ✓ Minimize the Normalized Temperature-Scaled Cross Entropy Loss for Instance-Wise Discrimination

$$\ell_{\text{inst}}(\boldsymbol{z}_{i,1}) = -\log \frac{\exp(\sin(\boldsymbol{z}_{i,1}, \boldsymbol{z}_{i,2})/\tau)}{\sum_{\boldsymbol{z} \in \mathcal{Z} \setminus \{\boldsymbol{z}_{i,1}\}} \exp(\sin(\boldsymbol{z}_{i,1}, \boldsymbol{z})/\tau)},\tag{1}$$

where $sim(a,b) = \frac{a^T b}{\|a\| \|b\|}$ denotes the cosine similarity and $\tau > 0$ is a temperature parameter.

Supervised Noise Contrastive Estimation (SuNCEt)

- Supervised Noise Contrastive Estimation (SuNCEt)
 - SuNCEt
 - ✓ 대조 학습의 Computational Efficiency를 향상시키기 위한 제안 손실 함수
 - ✓ S: Labeled Samples Set
 - \checkmark $Z_S(\theta) = (f_\theta(\hat{x}))_{\hat{x} \in S}$: Associated Set of Parameterized Embeddings
 - \checkmark $\hat{x} \in S$: Anchor Image
 - \checkmark $z = f_{\theta}(\hat{x})$: Representation Vector/y: Class Label

$$\ell(z) = -\log \frac{\sum_{\boldsymbol{z}_j \in \mathcal{Z}_y(\theta)} \exp(\sin(z, z_j) / \tau)}{\sum_{\boldsymbol{z}_k \in \mathcal{Z}_S(\theta) \setminus \{\boldsymbol{z}\}} \exp(\sin(z, z_k) / \tau)},$$
(2)

which is then averaged over all anchors $\frac{1}{|S|} \sum_{z \in \mathcal{Z}_{S}(\theta)} \ell(z)$.

Supervised Noise Contrastive Estimation (SuNCEt)

- Supervised Noise Contrastive Estimation (SuNCEt)
 - SuNCEt
 - ✓ Motivation: Relationship Between Contrastive Representation Learning and Distance-Metric Learning
 - ✓ Neighborhood Component Analysis Form
 - \checkmark $d(z,z_i)$: Temperature-Scaled Cosine Similarity Metric with Query Embedding z와 다른 labeled images z_i
 - \checkmark $z_i \in Z_S(\theta)\{z\}$: Selects Point as its neighbor
 - \checkmark Predicts Class Label $\hat{y} = c$, Given a Query Embedding z

$$d(\boldsymbol{z}, \boldsymbol{z}_j) = \boldsymbol{z}^T \boldsymbol{z}_j / (\|\boldsymbol{z}\| \|\boldsymbol{z}_j\| \tau).$$

$$p(z_j|z) = \frac{\exp(d(z, z_j))}{\sum_{z_k \in \mathcal{Z}_{\mathcal{S}(\theta)} \setminus \{z\}} \exp(d(z, z_k))}.$$

$$p(\hat{\boldsymbol{y}} = \boldsymbol{c}|\boldsymbol{z}) = \sum_{\boldsymbol{z}_j \in \mathcal{Z}_c(\theta)} p(\boldsymbol{z}_j|\boldsymbol{z}) = \frac{\sum_{\boldsymbol{z}_j \in \mathcal{Z}_c(\theta)} \exp(d(\boldsymbol{z}, \boldsymbol{z}_j))}{\sum_{\boldsymbol{z}_k \in \mathcal{Z}_S(\theta) \setminus \{\boldsymbol{z}\}} \exp(d(\boldsymbol{z}, \boldsymbol{z}_k))},$$
(3)

- Experiments Sample & Computational Efficiency
 - Top-5 Validation Accuary 기준으로 SuNCEt를 추가로 적용했을 때 빠르게 수렴

Figure 1: Top-5 validation accuracy of a ResNet50 pre-trained on ImageNet with access to 10% of the labels. Orange markers depict SimCLR self-supervised pre-training followed by fine-tuning. Blue markers depict the combination of SimCLR + SuNCEt. Using SuNCEt to leverage available labels during pre-training (not only fine-tuning), (i) accelerates convergence and produces better models (left sub-figure); and (ii) can match the semi-supervised learning accuracy of SimCLR whith much less pre-training (right sub-figure). Orange shading in the right sub-figure depicts compute saved. We train all methods using 64 V100 GPUs. One SimCLR epoch corresponds to 312 updates per GPU.

- 8 -

- Experiments Sample & Computational Efficiency
 - ImageNet에서 Top-1 Accuracy 기준 비교 결과
 - SuNCEt를 추가로 적용했을 때 더 빠르게 수렴

Figure 2: Top-1 accuracy of a ResNet50 pre-trained on ImageNet with access to 10% of the labels. Orange markers depict Sim-CLR self-supervised pre-training followed by fine-tuning. Blue markers depict the combination of SimCLR + SuNCEt. Using SuNCEt to leverage available labels during pre-training (not only fine-tuning) accelerates convergence and produces better models.

- Experiments Sample & Computational Efficiency
 - CIFAR 10에서 SimCLR / SimCLR + SuNCEt 비교 결과

(a) SimCLR test-set convergence with fine-tuning on various percentages of labeled data.

(b) SimCLR + SuNCEt test-set convergence with fine-tuning on various percentages of labeled data.

fine-tuning on various percentages of labeled data.

(c) SuNCEt improvement in test-set convergence with (d) Computation saved by SuNCEt in reaching the best SimCLR test accuracy with fine-tuning on various percentages of labeled data.

- Experiments Sample & Computational Efficiency
 - SimCLR 외 SwAV에 SuNCEt 추가 적용했을 때 비교 결과

Table 3: Validation accuracy of a ResNet50 pre-trained on ImageNet with access to 10% of labels. Contrastive methods like SimCLR [7] and SwAV [5] can leverage SuNCEt during pre-training to surpass their baseline semi-supervised accuracy in half the number of pre-training epochs. SuNCEt+SwAV is also competitive with other semi-supervised approaches and outperforms FixMatch+RandAugment in terms of top-5 accuracy.

Method	Epochs	Top-1	Top-5
Supervised [55]	200	56.4	80.4
NPID++ [52, 35] PIRL [35] UDA + RandAugment [53] FixMatch + RandAugment [45] SimCLRv2 [8]	800 800 - 300 1200	68.8 71.5 68.4	81.5 83.8 88.5 89.1 89.2
SimCLR [7] SimCLR+SuNCEt (ours) SwAV [5]	1000 500 800	65.6 66.7 70.2	87.8 88.2 89.9
SwAV+SuNCEt (ours)	400	70.8	89.9

Conclusion

- ❖ 대조 학습의 샘플 및 계산 효율성을 향상시키기 위해 Supervised Noise Contrastive Estimation (SuNCEt) 제안
- ❖ 사전 학습 동안 소량의 데이터를 활용할 수 있는 Semi-Supervised Loss Function
- ❖ SuNCEt는 Noise-Contrastive Estimation과 Neighborhood Component Analysis 기반으로 함

Reference

• Assran, M., Ballas, N., Castrejon, L., & Rabbat, M. (2020). Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations. arXiv preprint arXiv:2006.10803.

Thank