Deep Learning

Episodio 6: Redes Neuronales Recurrentes

Fernando Gama

Escuela de Graduados en Ingeniería Informática y Sistemas, Facultad de Ingeniería, UBA

11 de Agosto de $2022\,$

- ► Redes Neuronales Convolucionales ⇒ Reemplazar la transformación lineal por una convolución
 - ⇒ Se pierde el control sobre la capacidad de representación
 - ⇒ Banco de Filtros + Suma
- ightharpoonup Pooling \Rightarrow Construir resúmenes regionales y luego quedarse sólo con un representante
 - \Rightarrow Controlar el tamaño de las señales \Rightarrow Invarianza local a traslaciones
- ightharpoonup Arquitecturas típicas \Rightarrow Incluir MLPs al final, conexiones residuales, etc.

Sistemas Dinámicos

Redes Neuronales Recurrente

Extensiones

- ightharpoonup Consideremos una secuencia de datos $\{\mathbf{x}_0,\mathbf{x}_1,\ldots\}$ con $\mathbf{x}_t\in\mathbb{R}^F$ \Rightarrow Queremos procesarlos
- La suposición de estructura es que estos datos están relacionados secuencialmente
 - \Rightarrow $\mathbf{x}_t, \mathbf{x}_{t'}$ están relacionados, de alguna forma, para todo t, t' (puede ser débil si $|t t'| \gg 1$)
 - \Rightarrow No sabemos cuál es esa relación, pero suponemos que existe $\,\Rightarrow$ Queremos aprenderla (o algo así)
- ightharpoonup Para aprender las relaciones de la secuencia, asumimos que existe una variable $\mathbf{h}_t \in \mathbb{R}^H$
 - \Rightarrow La secuencia de variables $\{\mathbf{h}_0,\mathbf{h}_1,\ldots\}$ captura la información relevante de $\{\mathbf{x}_t\}$

ightharpoonup La secuencia de variables $\{\mathbf{h}_t\}$ depende de la secuencia de datos $\{\mathbf{x}_t\}$ mediante un sistema dinámico

$$\mathbf{h}_t = \mathsf{f}\big(\mathbf{h}_{t-1}, \mathbf{x}_t\big)$$

- ightharpoonup La función f es capaz de producir el nuevo valor de \mathbf{h}_t
 - \Rightarrow Conociendo únicamente el valor anterior del estado \mathbf{h}_{t-1}
 - \Rightarrow Y el valor actual del dato \mathbf{x}_t
- ► Ciertamente, queremos aprender la función f ⇒ Vamos a parametrizarla

$$\mathbf{h}_t = \mathsf{f}(\mathbf{h}_{t-1}, \mathbf{x}_t; \boldsymbol{\Theta})$$

- \triangleright El valor aprendido de \mathbf{h}_t se conoce como estado oculto (hidden state)
- ightharpoonup El objetivo es aprender f de tal manera que \mathbf{h}_t capture información relevante para alguna tarea

La relación de recurrencia no parece encajar con la idea de una computación hacia adelante

$$\mathbf{h}_t = \mathsf{f}(\mathbf{h}_{t-1}, \mathbf{x}_t) = \mathsf{g}(\{\mathbf{h}_\tau\}_{\tau=0}^{t-1}, \{\mathbf{x}_\tau\}_{\tau=0}^t)$$

► Se desdobla el grafo de la computación recurrente ⇒ Grafo acíclico ⇒ Computación en cada capa

Si bien la función g tiene una cantidad variable de entradas

$$\mathbf{h}_t = \mathsf{f}(\mathbf{h}_{t-1}, \mathbf{x}_t) = \mathsf{g}(\{\mathbf{h}_{\tau}\}_{\tau=0}^{t-1}, \{\mathbf{x}_{\tau}\}_{\tau=0}^{t})$$

- ⇒ Al ser un grafo desdoblado, la función g se construye mediante sucesivas aplicaciones de f
- \Rightarrow La función f que se aprende es una sola, y tiene siempre las mismas entradas: $\mathbf{h}_{t-1}, \mathbf{x}_t$
- Es posible aprender una función, independientemente de la longitud de la secuencia
- ightharpoonup Comparten parámetros para todos los valores de t \Rightarrow Generalización

Sistemas Dinámico

Redes Neuronales Recurrentes

Extensione

- ▶ Una red neuronal recurrente (RNN) es una arquitectura especializada en procesar secuencias de datos
 ⇒ Generalizan mejor para secuencias de datos, se pueden aplicar a secuencias de longitud variable
- La clave está en el desdoble de grafos para compartir parámetros
- ▶ En algún punto se puede pensar cualquier función recurrente como una RNN

▶ Vamos a parametrizar con una red neuronal a la función f (una sola capa)

$$h_t = \sigma(\mathbf{W}h_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{o}_t = \rho(\mathbf{V}h_t + \mathbf{c})$$

- ightharpoonup La salida de la RNN no es el estado oculto \mathbf{h}_t pero otro vector \mathbf{o}_t
- \Rightarrow Se separa el aprendizaje del estado \mathbf{h}_t del aprendizaje de la salida \mathbf{o}_t
- ightharpoonup En general, se toma $\sigma(x)=\tanh(x),$ y $\rho(x)=x$ (ninguna no-linealidad a la salida)
- \blacktriangleright Los parámetros $\boldsymbol{\varTheta} = \{\mathbf{W}, \mathbf{U}, \mathbf{b}, \mathbf{V}, \mathbf{c}\}$ son los mismos para todo instante de tiempo t
 - ⇒ Compartir los parámetros permite generalizar mejor cuando procesamos datos secuenciales

$$\mathbf{h}_t = \tanh \left(\mathbf{W} \mathbf{h}_{t-1} + \mathbf{U} \mathbf{x}_t + \mathbf{b} \right)$$

 $\mathbf{o}_t = \mathbf{V} \mathbf{h}_t + \mathbf{c}$

- ightharpoonup Mapea una secuencia de entrada $\{\mathbf{x}_t\}$
 - \Rightarrow En una de salida $\{\mathbf{o}_t\}$
- La función de pérdida viene dada por

$$J_t = \mathsf{J}(\mathbf{y}_t, \mathbf{o}_t) = \mathsf{J}(\mathbf{y}_t, \{\mathbf{x}_\tau\}_{\tau=0}^t)$$

$$\mathbf{h}_t = \tanh \left(\mathbf{W} \mathbf{o}_{t-1} + \mathbf{U} \mathbf{x}_t + \mathbf{b} \right)$$

$$\mathbf{o}_t = \mathbf{V} \mathbf{h}_t + \mathbf{c}$$

- Menor capacidad de representación
 - \Rightarrow \mathbf{o}_t doble función de ser salida
 - ⇒ Y conservar información
- Más fácil de entrenar (paralelización)

$$\mathbf{h}_t = \tanh \left(\mathbf{W} \mathbf{h}_{t-1} + \mathbf{U} \mathbf{x}_t + \mathbf{b} \right)$$

 $\mathbf{o}_T = \mathbf{V} \mathbf{h}_T + \mathbf{c}$

- Igual que la primera
 - \Rightarrow Pero con una única salida
 - \Rightarrow A tiempo T
- ► Funciona para resumir secuencias

► La RNN estándar es la primera que vimos ⇒ Es la que vamos a usar de ahora en más

$$\mathbf{h}_t = \sigma (\mathbf{W} \mathbf{h}_{t-1} + \mathbf{U} \mathbf{x}_t + \mathbf{b})$$

$$\mathbf{o}_t = \rho (\mathbf{V} \mathbf{h}_t + \mathbf{c})$$

- El vector de estado oculto h_t debe capturar información relevante para el problema a resolver
- ► Calcular el gradiente es costoso ⇒ Hay que moverse a través del tiempo
 - ⇒ Y luego hay que volver para atrás
 - \Rightarrow El costo es O(T) (longitud de la secuencia)
- ▶ No se puede reducir mediante paralelización ⇒ La pasada hacia adelante es secuencial
 - ⇒ Cada instante de tiempo necesita el anterior (como las capas)
- ightharpoonup El costo en memoria también es $O(T) \Rightarrow$ Hay que guardar los estados anteriores

- Para calcular el gradiente, simplemente hacemos backpropagation de manera usual
 - ⇒ Pensar cada instante de tiempo como una capa diferente
- ► En el contexto de RNNs esto se conoce como BPTT (backpropagation through time)
- ightharpoonup Sin embargo, los valores de los parámetros $\Theta = (\mathbf{W}, \mathbf{U}, \mathbf{b}, \mathbf{V}, \mathbf{c})$ se comparten a través de t
 - \Rightarrow Suponemos, entonces, que $\pmb{\Theta}$ depende del tiempo $\pmb{\Theta}_t$ y forzamos $\pmb{\Theta}_t = \pmb{\Theta}$ para todo t
 - \Rightarrow Luego, cada vez que aparece $\boldsymbol{\varTheta}_t$ en el gradiente, reemplazamos por $\boldsymbol{\varTheta}$
- Queda una suma para todos los instantes de tiempo (como solía ser para todas las capas)
- ightharpoonup Tenemos sólo 5 gradientes que calcular \Rightarrow Ver ecuaciones (10.22) a (10.28) para un ejemplo

Extensiones

Sistemas Dinámico

Redes Neuronales Recurrentes

Extensiones

- ▶ Si el contexto importa, tenemos que saber qué hay alrededor del valor
- Crear una RNN que vaya para adelante, en valores de t crecientes
- Y otra que vaya para atrás, en valores de t decrecientes

$$\mathbf{h}_t = \sigma_f (\mathbf{W}_f \mathbf{h}_{t-1} + \mathbf{U}_f \mathbf{x}_t + \mathbf{b}_f)$$
 $\mathbf{g}_t = \sigma_b (\mathbf{W}_b \mathbf{g}_{t+1} + \mathbf{U}_b \mathbf{x}_t + \mathbf{b}_b)$
 $\mathbf{o}_t = \rho (\mathbf{V}_f \mathbf{h}_t + \mathbf{V}_b \mathbf{g}_t + \mathbf{c})$

- Podemos pensar a las RNNs como una función de la entrada al estado oculto
 - ⇒ Otra función del viejo estado oculto al nuevo estado oculto
 - ⇒ Y otra función del estado oculto a la salida

$$\mathbf{h}_{t} = \mathsf{f}_{h \to h} (\mathbf{h}_{t-1}) + \mathsf{f}_{x \to h} (\mathbf{x}_{t})$$

$$\mathbf{o}_{t} = \mathsf{f}_{h \to a} (\mathbf{h}_{t})$$

- Cada una de estas se puede reemplazar por una MLP arbitraria
 - \Rightarrow En la formulación original usamos una MLP de una única capa
 - \Rightarrow Usar muchas capas \Rightarrow Ganar en profundidad \Rightarrow Mayor capacidad de representación
- Se ha observado en la práctica que RNNs más profundas mejoran el desempeño
- ▶ Tener en cuenta que el problema de optimización se vuelve más difícil

- ▶ Cuando tenemos secuencias muy largas, la información del principio se disipa
- Los gradientes se desvanecen (la mayoría de las veces) o explotan (raramente)
- ▶ Incluso si se pudieran controlar los pesos, la información del pasado decrece exponencialmente
 - \Rightarrow Esto depende de los autovalores de las matrices \Rightarrow Ej., \mathbf{W}^t depende de λ_i^t
 - \Rightarrow Los autovalores menores que uno, desaparecen, los mayores que uno, explotan
- ▶ La información contenida en el pasado es tan pequeña que queda enmascarada por el ruido
- ▶ El desafío está en lograr aprender utilizando información del pasado
 - ⇒ ¿Cómo se incorporan las dependencias de largo alcance?

- ▶ Se incorporan tres compuertas que controlan el flujo
 - ⇒ Input gate: si el dato pasa o no
 - ⇒ Forget gate: la importancia del estado oculto
 - \Rightarrow Output gate: cuánto del estado usar en la salida

$$\begin{aligned} \mathbf{f}_t &= \sigma_f \big(\mathbf{W}_f \mathbf{h}_{t-1} + \mathbf{U}_f \mathbf{x}_t + \mathbf{b}_f \big) & \text{forget gate} \\ \mathbf{g}_t &= \sigma_g \big(\mathbf{W}_g \mathbf{h}_{t-1} + \mathbf{U}_g \mathbf{x}_t + \mathbf{b}_g \big) & \text{input gate} \\ \mathbf{q}_t &= \sigma_o \big(\mathbf{W}_o \mathbf{h}_{t-1} + \mathbf{U}_o \mathbf{x}_t + \mathbf{b}_o \big) & \text{output gate} \\ \mathbf{s}_t &= \mathbf{f}_t \odot \mathbf{s}_{t-1} + \mathbf{g}_t \odot \sigma \big(\mathbf{W} \mathbf{h}_{t-1} + \mathbf{U} \mathbf{x}_t + \mathbf{b} \big) & \text{estado interno} \\ \mathbf{h}_t &= \mathbf{q}_t \odot \tanh(\mathbf{s}_t) & \text{estado oculto} \end{aligned}$$

- ► Simplificar las LSTM usando menos gates
 - ⇒ Update gate: cuánto actualizar el estado
 - ⇒ Reset gate: qué partes del estado utilizar

$$\begin{aligned} \mathbf{u}_t &= \sigma_u \big(\mathbf{W}_u \mathbf{h}_{t-1} + \mathbf{U}_u \mathbf{x}_t + \mathbf{b}_u \big) & \text{update gate} \\ \mathbf{r}_t &= \sigma_r \big(\mathbf{W}_r \mathbf{h}_{t-1} + \mathbf{U}_r \mathbf{x}_t + \mathbf{b}_r \big) & \text{reset gate} \\ \mathbf{s}_t &= \mathbf{u}_t \odot \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \odot \sigma \big(\mathbf{W} (\mathbf{r}_t \odot \mathbf{h}_{t-1}) + \mathbf{U} \mathbf{x}_t + \mathbf{b} \big) & \text{estado} \end{aligned}$$

lacktriangle Menos parámetros para aprender \Rightarrow Más fáciles de optimizar

- ► Si los gradientes son muy grandes
 - ⇒ Si dan Inf o Nan se puede tomar un paso en cualquier dirección para salir de ahí
 - ⇒ Si son muy, muy grandes, se puede hacer gradient clipping
 - ⇒ Donde se mantiene la dirección del gradiente original, pero se achica su norma
- ▶ En el caso de gradientes pequeños se puede entrenar con una regularización

$$\sum_{t} \left(\frac{\left\| \frac{\partial L}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \right\|}{\left\| \frac{\partial L}{\partial \mathbf{h}_{t}} \right\|} - 1 \right)^{2}$$

- \Rightarrow Se fuerza a que la información de \mathbf{h}_{t-1} a \mathbf{h}_t sea grande
- ▶ Si se tienen muchos datos, usar LSTM puede resultar en mejor desempeño

- Procesar secuencias de datos sin usar RNNs
- Calcular la attention de todos los elementos
 - ⇒ Aprender qué parte de la secuencia es más importante

$$\begin{aligned} \mathbf{q}_t &= \mathbf{W}_q \mathbf{x}_t & query \\ \mathbf{k}_t &= \mathbf{W}_k \mathbf{x}_t & key \\ \mathbf{v}_t &= \mathbf{W}_v \mathbf{x}_t & value \\ \mathbf{Q}, \mathbf{K}, \mathbf{V} & \text{matrices} \\ \mathbf{Y} &= \text{softmax} \big(d_k^{-1/2} \mathbf{Q}^\mathsf{T} \mathbf{K} \big) \mathbf{V} & attention \end{aligned}$$

Figure 1: The Transformer - model architecture

- Queremos procesar secuencias de datos
 - ⇒ Adaptamos la red neuronal para generalizar en datos secuenciales
 - \Rightarrow Compartir parámetros \Rightarrow Mismos valores durante toda la secuencia
- ▶ Redes neuronales recurrentes ⇒ Aprenden un estado oculto
 - \Rightarrow Este estado es capaz de capturar la información temporal relevante
- ▶ Área activa de investigación ⇒ Muchas extensiones
 - \Rightarrow Redes neuronales bidireccionales $\,\Rightarrow$ El contexto importa
 - \Rightarrow LSTMs, GRUs $\,\Rightarrow$ Poder aprender dependencias de largo alcance

- La importancia de los datos con estructuras descriptas por grafos
 - ⇒ Requieren tener en cuenta el grafo para procesar de manera adecuada
- ▶ Señales en grafos, operador de desplazamiento en el grafo
 - ⇒ Convolución en grafos ⇒ Combinación lineal de señales en el vecindario
- ightharpoonup Redes neuronales en grafos \Rightarrow Reemplazar la operación lineal por una convolución en el grafo
 - \Rightarrow Explota la estructura de los datos descripta por el grafo

