Technical Report 1716January 1996

Environmental Analysis of U.S. Navy Shipboard Solid Waste Discharges

Appendices A-L

D. Bart Chadwick Charles N. Katz Stacey L. Curtis Dr. James Rohr Marissa Caballero Aldis Valkirs Andrew Patterson

19960301 067

Approved for public release; distribution is unlimited.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

Technical Report 1716 January 1996

Environmental Analysis of U.S. Navy Shipboard Solid Waste Discharges

Appendices A-L

D. Bart Chadwick Charles N. Katz Stacey L. Curtis Dr. James Rohr Marissa Caballero Aldis Valkirs Andrew Patterson

LIST OF APPENDICES

Appendix A Chemical Analysis Report

Appendix B Pulped Material Particle Sizing Report

Appendix C Liquid Phase Organism Toxicity Testing Report

Appendix D Solid Phase Benthic Organism Toxicity Screening Report

Appendix E Zooplankton Interaction Report

Appendix F Fish Interaction Report

Appendix G Shipboard Metal Waste Discharge Corrosion Report

Appendix H Wake Dispersion Modeling Results

Appendix I Ambient Dispersion Modeling Results

Appendix J Field Studies Plan/Acquisition Report

Appendix K Sewage Emissions Data

Appendix L Bibliography

APPENDIX A

CHEMICAL ANALYSIS REPORT

Source:

Chemical Analysis.

San Diego, California

Analytical Testing Inc., 1994 - 1995

ATI I.D.: 408242

August 29, 1994

NCCOSC RDT&E DIVISION 53475 STROTHE ROAD RM 267A SAN DIEGO, CA 92152

Project Name: (NONE) Project # : (NONE)

Attention: STACY CURTIS

Analytical Technologies, Inc. has received the following sample(s):

Date Received	Quantity	Matrix
August 17, 1994	20	SLUDGE
August 17, 1994	20	WATER

The sample(s) were analyzed with EPA methodology or equivalent methods as specified in the enclosed analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. If any flags appear next to the analytical data in this report, please see the attached list of flag definitions.

The results of these analyses and the quality control data are enclosed. Please note that the Sample Condition Upon Receipt Checklist is included at the end of this report.

PROJECT MANAGER

LABORATORY MANAGER

SAMPLE CROSS REFERENCE

Page 1

: NCCOSC RDT&E DIVISION

Report Date: August 29, 1994 ATI I.D. : 408242

Project # : (NONE)
Project Name: (NONE)

ATI #	# Client	Description	Matrix	Date Collected
S	P1-1		WATER	16-AUG-94
2	P1-1 P1-2		WATER	16-AUG-94
3	P1-2 P1-3		WATER	16-AUG-94
	P1-3 P1-4		WATER	16-AUG-94
<u>4</u> 5			WATER	16-AUG-94
_	P2-1	ę.	WATER	16-AUG-94
6	P2-2		WATER	16-AUG-94
*	P2-3		WATER	16-AUG-94
8 9	P2-4		WATER	16-AUG-94
	P5-1		WATER	16-AUG-94
10	P5-2		WATER	16-AUG-94
11	P5-3		WATER	16-AUG-94
12	P5-4 P6-1		WATER	16-AUG-94
13	P6-1 P6-2		WATER	16-AUG-94
14	P6-2 P6-3		WATER	16-AUG-94
15			WATER	16-AUG-94
16	P6-4		WATER	16-AUG-94
17	P8-1		WATER	16-AUG-94
18	P8-2		WATER	16-AUG-94
19	P8-3		WATER	16-AUG-94
20	P8-4		SLUDGE	16-AUG-94
21	P1-1 P1-2		SLUDGE	16-AUG-94
22			SLUDGE	16-AUG-94
23	P1-3		SLUDGE	16-AUG-94
24	P1-4		SLUDGE	16-AUG-94
25	P2-1 P2-2		SLUDGE	16-AUG-94
26	P2-2 P2-3		SLUDGE	16-AUG-94
27			SLUDGE	16-AUG-94
28 29	P2-4 P5-1		SLUDGE	16-AUG-94
	P5-1		SLUDGE	16-AUG-94
30	P5-2 P5-3		SLUDGE	16-AUG-94
31	P5-3 P5-4		SLUDGE	16-AUG-94
32	P6-1		SLUDGE	16-AUG-94
33 34	P6-1		SLUDGE	16-AUG-94
	P6-2 P6-3		SLUDGE	16-AUG-94
35 36	P6-3 P6-4		SLUDGE	16-AUG-94
	P6-4 P8-1		SLUDGE	16-AUG-94
37			SLUDGE	16-AUG-94
38	P8-2		SLUDGE	16-AUG-94
39	P8-3		SLUDGE	16-AUG-94
40	P8-4			

---TOTALS---

Matrix

Samples

SLUDGE

20

SAMPLE CROSS REFERENCE

Page 2

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE)

Report Date: August 29, 1994

ATI I.D. : 408242

---TOTALS---

<u>Matrix</u>

Samples

WATER

20

ATI STANDARD DISPOSAL PRACTICE

The sample(s) from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

Page 3

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE)

Analysis	Technique/Description
EPA 160.3 (TOTAL ORGANIC CARBON) EPA 160.3 (TOTAL SOLIDS) EPA 351.2 (TOTAL KJELDAHL NITROGEN) EPA 365.2 (TOTAL PHOSPHATE AS PHOSPHORUS) EPA 405.1 (BIOCHEMICAL OXYGEN DEMAND)	WALKLEY-BLACK GRAVIMETRIC COLORIMETRIC COLORIMETRIC ELECTRODE TITRATION

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE) ATI I.D.: 4082

Sample #	Client ID			Matrix			Date Sampled	Date Receive
1 P1-1 2 P1-2 3 P1-3				WATER WATER WATER			16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-9 17-AUG- 17-AUG-
4 5	P1-4 P2-1			WATER WATER		16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-	
Parame	ter	1	Units	1	2	3	4	5
CHEMIC TOTAL TOTAL	MICAL OXYGEN AL OXYGEN DEI PHOSPHATE AS KJELDAHL NIT	MAND PHOSPHORUS	MG/L	<5.0 344 0.11 1.1 7210	<5.0 383 <0.10 1.1 7360	<5.0 295 <0.10 1.3 7250	<5.0 310 <0.10 1.3 7020	365 196 0.16 2.5 9510

Page 5

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE)

Flojecc Rame: (Nonz)					
Sample Client ID #	Matrix			Date Sampled	Date Received
6 P2-2 7 P2-3 8 P2-4 9 P5-1 10 P5-2	WATER WATER WATER WATER WATER			16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94
Parameter	Units 6	7	8 :	9	10
BIOCHEMICAL OXYGEN DEMAND CHEMICAL OXYGEN DEMAND TOTAL PHOSPHATE AS PHOSPHORUS TOTAL KJELDAHL NITROGEN TOTAL SOLIDS	MG/L 340 MG/L 595 MG/L 0.31 MG/L 2.2 MG/L 9980	343 501 0.32 1.3 10100	273 3500 <0.10 1.4 10400	187 569 <0.10 1.9 9650	193 1550 0.11 2.3 10400

Page 6

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE)

Sample	e Client ID		Matrix			Date Sampled	Date Receive
11 12 13 14 15	12 P5-4 13 P6-1 14 P6-2		WATER WATER WATER WATER WATER WATER			16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-4 17-AUG-4 17-AUG-94 17-AUG-4
Parame			11	12	13	14	15
BIOCHEMICAL OXYGEN DEMAND CHEMICAL OXYGEN DEMAND TOTAL PHOSPHATE AS PHOSPHORUS TOTAL KJELDAHL NITROGEN TOTAL SOLIDS		MG/L MG/L MG/L MG/L MG/L	125 221 <0.10 2.6 9160	167 753 <0.10 2.6 8970	63.0 1300 0.39 2.8 10400	222 344 <0.10 2.5 9900	153 993 0.22 2.9 10500

Page 7

: NCCOSC RDT&E DIVISION Client

Project # : (NONON
Project Name: (NONE)

TOTAL KJELDAHL NITROGEN

TOTAL SOLIDS

ATI I.D.: 408242

11500

2.6

11700

3.1

12100

Project	t Name:	(NONE)						
Sample #	Client	ID	Matrix				Date Sampled	Date Received
16 17 18 19	P6-4 P8-1 P8-2 P8-3 P8-4			WATER WATER WATER WATER WATER			16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94
Parame	 ter	· · · · · · · · · · · · · · · · · · ·	Units	16	17	18	19	20
CHEMIC	AL OXYG	XYGEN DEMAND EN DEMAND TE AS PHOSPHORUS	MG/L MG/L MG/L	88.2 151 <0.10	135 245 0.37	280 202 <0.10	311 212 0.52 2.6	186 151 0.29 3.9

MG/L 2.2

MG/L 9920

2.3

11700

Page 8

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)

Project Name: (NONE)

Sampl #	le Client ID			Matrix			Date Sampled	Date Receiv	7	
21	P1-1			SLUDGE			16-AUG-94	17-AUG	3 <u>-9</u> 4	
22				SLUDGE		16-AUG-94	17-AUG	3· 4		
23 P1-3				SLUDGE			16-AUG-94	17-AUG	3 4	
24	P1-4			SLUDGE			16-AUG-94	17-AUG	17-AUG-94	
25	P2-1			SLUDGE		16-AUG-94 17-AUG				
Para	neter	· · · · · · · · · · · · · · · · · · ·	Units	21	22	23	24	25	-	
TOTAL	L ORGANIC CA	RBON (WB)	*	0.020	<0.010	0.019	<0.010	0.15		

Page 9

:lient : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: (NONE)

Project	c Hame. (1	OND)						
ample #	Client ID)		Matrix		Date Sampled	Date Received	
26 27 28 29	P2-2 P2-3 P2-4 P5-1 P5-2			SLUDGE SLUDGE SLUDGE SLUDGE SLUDGE			16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94
Parameter :		Unit		s 26	27	28	29	30
COTAL	ORGANIC CA	ARBON (WB)	*	0.12	0.22	0.16	0.20	0.11

Page 10

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: (NONE)

Sampl #	le Client ID		Matrix			Date Sampled	Date Recei	LVe
31	P5-3		SLUDGE			16-AUG-94	17-AU	JG <u>-9</u> 4
32	P5-4		SLUDGE			16-AUG-94	17-AU	JG∙¶4
33 P6-1			SLUDGE			16-AUG-94	17-AU	JG 4
34	P6-2		SLUDGE			16-AUG-94	17-AU	17-AUG-94
35	P6-3		SLUDGE			16-AUG-94	17-AU	JG-94
Parameter		Unit	s 31	32	33	34	35	-
TOTAL	ORGANIC CARBON (WB)	}	0.11	0.16	0.096	0.25	0.24	

Page 11

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: (NONE)

110)0		(/								
Sample	Sample Client ID #				Matrix			Date Sampled	Date Received	
36 37 38 39	P6-4 P8-1 P8-2 P8-3 P8-4				SLUDGE SLUDGE SLUDGE SLUDGE SLUDGE			16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94 16-AUG-94	17-AUG-94 17-AUG-94 17-AUG-94 17-AUG-94	
Param	 eter	·		Units	36	37	38	39	40	
TOTAL	ORGANIC	CARBON	(WB)	*	0.25	0.30	0.27	0.58	0.27	

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

client : NCCOSC RDT&E DIVISION

Project # : (NONE) ATI I.D.: 408242

Project Name: (NONE)

Parameters	REF I.D.	Units	Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	ફ Rec
BIOCHEMICAL OXYGEN DEMAND	408242-04	MG/L	<5.0	<5.0	0	N/A	N/A	N/
BIOCHEMICAL OXYGEN DEMAND	408242-13	-	63.0	62.3	1	N/A	N/A	N/A
CHEMICAL OXYGEN DEMAND	408239-01	MG/L	13	11	17	N/A	N/A	N/
CHEMICAL OXYGEN DEMAND	408240-01	MG/L	<5	<5	0	N/A	N/A	N/
CHEMICAL OXYGEN DEMAND	408219-03	MG/L	22	20	10	N/A	N/A	N/A
TOTAL KJELDAHL NITROGEN	408282-01	MG/L	0.65	0.70	7	1.8	1.0	115
TOTAL KJELDAHL NITROGEN	408266-06	MG/L	0.84	0.88	5	1.8	1.0	96
TOTAL ORGANIC CARBON (WB)	408242-25	8	0.15	0.15	0	0.68	0.50	10
TOTAL ORGANIC CARBON (WB)	408222-06	8	1.5	1.5	0	1.9	0.50	80
TOTAL ORGANIC CARBON (WB)	408242-40	B	0.27	0.25	8	0.76	0.48	102
TOTAL PHOSPHATE AS PHOSPHORU	S408156-01	MG/L	<0.10	<0.10	0	0.42	0.40	10
TOTAL PHOSPHATE AS PHOSPHORU	S408156-04	MG/L	<0.10	<0.10	0	0.45	0.40	11
TOTAL PHOSPHATE AS PHOSPHORU	S408244-02	MG/L	<0.10	<0.10	0	0.47	0.40	118
TOTAL SOLIDS	408242-20	MG/L	11500	11700	2	N/A	N/A	N/A
TOTAL SOLIDS	408242-08	MG/L	10400	9760	6	N/A	N/A	N/
TOTAL SOLIDS	408242-18	MG/L	12100	11000	10	N/A	N/A	N/K

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

GENERAL CHEMISTRY - QUALITY CONTROL

BLANK SPIKE

Page 13

: NCCOSC RDT&E DIVISION Client

ATI I.D.: 408242

Project # : (NONE) Project Name: (NONE)

						
Parameters	Blank Spike ID#	Units	Blank Result	Spiked Sample	Spike Conc.	ዩ Rec
TOTAL KJELDAHL NITROGEN TOTAL ORGANIC CARBON (WB) TOTAL PHOSPHATE AS PHOSPHORUS	49565 49476 49482	MG/L % MG/L	<0.10 <0.010 <0.10	1.1 0.051 0.45	1.0 0.053 0.40	110 96 113

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

ATI I.D.: 501244

February 13, 1995

NCCOSC RDT&E DIVISION 53475 STROTHE ROAD RM 267A SAN DIEGO, CA 92152

Project Name: SSWD Project # : (NONE)

Attention: STACEY CURTIS

Analytical Technologies, Inc. has received the following sample(s):

Date Received	Quantity	Matri
January 27, 1995	30	WATER

The sample(s) were analyzed with EPA methodology or equivalent methods as specified in the enclosed analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. If any flags appear next to the analytical data in this report, please see the attached list of flag definitions.

The results of these analyses and the quality control data are enclosed. Please note that the Sample Condition Upon Receipt Checklist is included at the end of this report.

JULIO PAREDES PROJECT MANAGER ALAN J. KLEINSCHMIDT LABORATORY MANAGER

SAMPLE CROSS REFERENCE

Page 1

Client : NCCOSC RDT&E DIVISION

Report Date: February 13, 1995

Project # : (NONE)

ATI I.D. : 501244

Project Name: SSWD

TI#	Client	Description	Matrix	Date Collected
	1		WATER	27-JAN-95
	2		WATER	27-JAN-95
}	3		WATER	27-JAN-95
	4		WATER	27-JAN-95
•	5	₹	WATER	27-JAN-95
	6		WATER	27-JAN-95
	7		WATER	27-JAN-95
;	8		WATER	27-JAN-95
,	9		WATER	27-JAN-95
0	10		WATER	27-JAN-95
11	11		WATER	27-JAN-95
.2	12		WATER	27-JAN-95
.3	13		WATER	27-JAN-95
4	14	·	WATER	27-JAN-95
5	15		WATER	27-JAN-95
16	16		WATER	27-JAN-95
17	17		WATER	27-JAN-95
18	18		WATER	27-JAN-95
19	19		WATER	27-JAN-95
20	20		WATER	27-JAN-95
21	21		WATER	27-JAN-95
22	22		WATER	27-JAN-95
23	23		WATER	27-JAN-95
24	24	•	WATER	27-JAN-95
25	25		WATER	27-JAN-95
26	26		WATER	27-JAN-95
27	27		WATER	27-JAN-95
28	28		WATER	27-JAN-95
29	29	•	WATER	27-JAN-95
30	30		WATER	27-JAN-95

---TOTALS---

Matrix	# Samples
WATER	30

ATI STANDARD DISPOSAL PRACTICE

The sample(s) from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

Page

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: SSWD

Analysis	Technique/Description
EPA 160.2 (TOTAL SUSPENDED SOLIDS) EPA 350.1 (AMMONIA AS NITROGEN) EPA 353.2 (NITRATE-NITRITE AS NITROGEN) EPA 365.2 (TOTAL PHOSPHATE AS PHOSPHORUS) EPA 405.1 (BIOCHEMICAL OXYGEN DEMAND) EPA 415.2 (TOTAL ORGANIC CARBON)	GRAVIMETRIC COLORIMETRIC COLORIMETRIC COLORIMETRIC ELECTRODE TOTAL ORGANIC CARBON ANALYZER

CHI CHILITERIA IIII

client : NCCOSC RDT&E DIVISION

Project # : (NONE)

ATI I.D.: 501244

Page 3

Project Name: SSWD						
Sample Client ID #		Matrix			Date Sampled	Date Received
1 1 2 2 3 3 4 4 5 5 5		WATER WATER WATER WATER WATER			27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95	27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95
Parameter	Units	1	2	3	4	5
BIOCHEMICAL OXYGEN DEMAND AMMONIA AS NITROGEN NITRATE-NITRITE AS NITROGEN TOTAL PHOSPHATE AS PHOSPHORUS TOTAL ORGANIC CARBON TOTAL SUSPENDED SOLIDS	MG/L MG/L MG/L MG/L MG/L MG/L	<u>-</u> -	<5.0 <0.20 0.05 <0.10 2.3 <20	<5.0 - - - 1.5	<5.0 - - 1.4	8.5 - - 1.2

.

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: SSWD

ATI T.D.: 501244

110)	SCC Name: DONE						
Sampl	le Client ID		Matrix			Date Sampled	Date Received
6	6 7		WATER WATER			27-JAN-95 27-JAN-95	27-JAN-95 27-JAN-95
8 9	8 9		WATER WATER			27-JAN-95 27-JAN-95	27-JAN-95 27-JAN- 2 5
10	10		WATER		·	27-JAN-95	27-JAN-
Para	neter	Units	6	7	8	9	10
	HEMICAL OXYGEN DEMAND		<5.0	<5.0	<5.0	<5.0	<5.0
TOTAL	L ORGANIC CARBON	MG/L	1.4	1.1	1.6	1.3	1.6

Page 5

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)

Project Name: SSWD			~		
Sample Client ID #	Matrix			Date Sampled	Date Received
11 11 12 12 13 13 14 14 15 15	WATER WATER WATER WATER WATER			27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95	27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95
Parameter	Units 11	12	13	14	15
BIOCHEMICAL OXYGEN DEMAND AMMONIA AS NITROGEN NITRATE-NITRITE AS NITROGEN TOTAL PHOSPHATE AS PHOSPHORUS TOTAL ORGANIC CARBON TOTAL SUSPENDED SOLIDS	MG/L 8.7 MG/L - MG/L - MG/L - MG/L 1.8 MG/L -	<5.0 - - - 1.9	<5.0 - - - 1.9	<5.0 <0.20 0.05 <0.10 3.7 <20	<5.0 - - - 1.5

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: SSWD

ATI I.D.: 501244

Sampl #	le Client ID			Matrix			Date Sampled	Date Receive		
16 17	16 17			WATER WATER			27-JAN-95 27-JAN-95 27-JAN-95	27-JAN- 27-JAN- 27-JAN-		
18 19 20	18 19 20	WATER WATER WATER							27-JAN-95 27-JAN-95	27-JAN- 27-JAN-
 Paran	neter		Units	16	17	18	19	20		
BIOCE	HEMICAL OXYGE	N DEMAND	MG/L	<5.0	<5.0	<5.0	<5.0	<5.0		
IOMMA	NIA AS NITROG	EN	MG/L	_	-	-	<0.20	-		
NITRA	ATE-NITRITE A	S NITROGEN	MG/L	-	-	-	0.05	-		
TOTAL	PHOSPHATE A	S PHOSPHORUS	MG/L	••	-	-	<0.10	-		
TOTAL	L ORGANIC CAR	BON	MG/L	2.5	2.0	2.6	2.9	2.1		
тотат	SUSPENDED S	OLIDS	MG/L	_	-	-	46	_		

Page 7

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)

Project Name: SSWD						
Sample Client ID #		Matrix		,	Date Sampled	Date Received
21 21 22 22 23 23 24 24 25 25		WATER WATER WATER WATER WATER		:	27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95	27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95 27-JAN-95
Parameter	Units	21	22	23	24	25
BIOCHEMICAL OXYGEN DEMAND AMMONIA AS NITROGEN NITRATE-NITRITE AS NITROGEN TOTAL PHOSPHATE AS PHOSPHORUS TOTAL ORGANIC CARBON TOTAL SUSPENDED SOLIDS	MG/L MG/L	<5.0 - - - 2.2	<5.0 - - - 2.2	<5.0 - - - 1.6 -	<5.0 - - - 1.8 -	<5.0 <0.20 <0.05 <0.10 2.0 <20

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: SSWD

Sampi #	le Client ID	Mati	ix		Date Sampled	Date Recei	ived	
26	26	WATE	 CR		27-JAN-95	27-J	AN-	
27	27	WATE	ER		27-JAN-95	27-J2	AN-95	
28	28	WATER WATER			27-JAN-95	27-32	27-JAN-95 27-JAN-	
29	29				27-JAN-95	27-J2		
30	30	WATE	ER	:	27-JAN-95	27-JAN-		
Para	meter	Units 26	27	28	29	30		
BIOC	HEMICAL OXYGEN DEMAND	MG/L <5.0	<5.0	<5.0	<5.0	<5.0		
TOTAL	L ORGANIC CARBON	MG/L 1.9	2.5	2.3	3.1	1.9		
TOTA	L SUSPENDED SOLIDS	MG/L -	<20	-	_	_	A	

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Page 9

: NCCOSC RDT&E DIVISION Client

Project # : (NONE)

Parameters	REF I.D.	Units	Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	Rec
AMMONIA AS NITROGEN	501256-01	MG/L	<0.20	<0.20	0	1.9	2.0	95
BIOCHEMICAL OXYGEN DEMAND	501244-01			<5.0	0	N/A	N/A	N/A
BIOCHEMICAL OXYGEN DEMAND	501244-12	-		<5.0	0.	N/A	N/A	N/A
BIOCHEMICAL OXYGEN DEMAND	501244-21	•		<5.0	0	N/A	N/A	N/A
NITRATE-NITRITE AS NITROGEN	501244-25	• •		<0.05	0	1.9	2.0	95
TOTAL ORGANIC CARBON	501244-02	•		2.3	0	22.5	20.0	101
TOTAL ORGANIC CARBON	501244-12	•		1.6	17	21.1	20.0	96
TOTAL ORGANIC CARBON	501244-22			2.2	0	23.3	20.0	106
TOTAL ORGANIC CARBON	501266-01	-		8.7	1	29.8	20.0	105
TOTAL PHOSPHATE AS PHOSPHORU		•	<0.10	<0.10	0	0.45	0.40	113
TOTAL SUSPENDED SOLIDS	501244-27		<20	<20	0	N/A	N/A	N/A

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

GENERAL CHEMISTRY - QUALITY CONTROL

BLANK SPIKE

: NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: SSWD

Client

Page 10

Parameters	Blank Spike ID#	Units	Blank Result	Spiked Sample	Spike Conc.	Rec	
AMMONIA AS NITROGEN	54123	MG/L	<0.20	1.9	2.0	95	
NITRATE-NITRITE AS NITROGEN	54047	MG/L	<0.05	2.0	2.0	100	
TOTAL ORGANIC CARBON	54176	MG/L	<0.5	20.9	20.0	105	
TOTAL ORGANIC CARBON	54358	MG/L	<0.5	20.8	20	104	
TOTAL ORGANIC CARBON	54359	MG/L	<0.5	20.7	20	104	
TOTAL PHOSPHATE AS PHOSPHORUS	54167	MG/L	<0.10	0.44	0.40	116	

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

ACCESSION	#•	501244
VCCESSION	## =	

INITIALS:

	SAMPLE CONDITION UPON RECEIPT CHECKLIST (FOR RE-ACCESSIONS, COMPLETE #7 THRU #9)		
	(FOR RE-ACCESSIONS, College according to NEESA	YES	
1	Does this project require special handling according to NEESA Levels C, D, AFOEHL or CLP protocols?	*	NO
Ì	Levels C, D, Aromni of the property of the complete a) thru c)		.
	a) Cooler temperature b) pH sample aliquoted: yes / no / n/a	1	
1		1	
•	c) LOT #'s:		
		YES	МО
2	Are custody seals present on cooler?	YES	NO
1	To one seals intact?	YES	NO
	Are custody seals present on sample containers?		
3		YES	ИО
	If yes, are seals intact?	YES	NO
4	Is there a Chain-Of-Custody (COC)*?	YES	мо
5			
		YES	NO
6	Relinquished: Yes/no with the samples received? Is the COC in agreement with the samples received? # Samples: Yes/no Sample ID's Yes/no Date sampled: Yes/no # containers: Yes/no		
	# Samples: Ves/no Sample Liners: Yes/no Matrix, Yes/no # containers: Yes/no	(YES)	NO
	matrix, preserved correctly?		NO
7	for all the requested analyses.	(YES)	
8		YES	ио
9	Cooler temperature: No loster - Softs with to tach, straight foron field.		
10	Cooler temperature: No lake. Some intact (ie. not broken,	YES	NO
11	Were all sample containers received and the sample		
	leaking, etc.)? Are samples requiring no headspace, headspace free? N/A	YES	(NO.)
12	1	YES	(NO)
13.	Are VOA 1st stickers required? Are there special comments on the Chain of Custody which require	YES	N/A
14	client contact?	YES	NO
15	If yes, was ATI Project Manager notified? If yes, was ATI Project Manager notified? 1. ** ** ** ** ** ** ** ** ** ** ** ** **	e fu	Rid
	A DI 13 MUL MOROY MONEY	/	2
Desc	#19 his approximately 2" headspice of	sov B	DD
	io, in how you write.	s es	0
	# 19 hus approximately of heads pace of	V DOL	
	•		
Was	client contacted? .yes / no		
If.	yes, Date: Name of Person contacted:		
Des	cribe actions taken or client instructions:		
1			
-	lotters and/or shipping memos		
+0=	other representative documents, letters, and/or shipping memos		902 (11/9
		ATTERM	マロム レムムノブ

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

ATI I.D.: 502027

February 13, 1995

NCCOSC RDT&E DIVISION 53475 STROTHE ROAD RM 267A SAN DIEGO, CA 92152

Project Name: (NONE)
Project # : (NONE)

Attention: STACY CURTIS

Analytical Technologies, Inc. has received the following sample(s):

Date Received

Quantity

<u>Matrix</u>

February 02, 1995

5

WATER

The sample(s) were analyzed with EPA methodology or equivalent methods as specified in the enclosed analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. If any flags appear next to the analytical data in this report, please see the attached list of flag definitions.

The results of these analyses and the quality control data are enclosed. Please note that the Sample Condition Upon Receipt Checklist is included at the end of this report.

JULIO PAREDES
PROJECT MANAGER

ALAN J. KLEINSCHMIDT LABORATORY MANAGER

SAMPLE CROSS REFERENCE

Page 1

Client : NCCOSC RDT&E DIVISION

Report Date: February 13, 1995

Project # : (NONE)

ATI I.D. : 502027

Project Name: (NONE)

ATI # Client Description	Matrix	Date Collected
1 P2	WATER	02-FEB-95
2 P5	WATER	02-FEB-95
3 P6	WATER	02-FEB-95
4 P8	WATER	02-FEB-95
5 PULPER 1-8	WATER	02-FEB-95

---TOTALS---

Matrix

Samples

WATER

5

ATI STANDARD DISPOSAL PRACTICE

The sample(s) from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

: NCCOSC RDT&E DIVISION Client

Project Name: (NONE)

Project # : (NONE)

ATI I.D.: 502027

Technique/Description

EPA 350.1 (AMMONIA AS NITROGEN) EPA 353.2 (NITRATE-NITRITE AS NITROGEN) EPA 365.2 (TOTAL PHOSPHATE AS PHOSPHORUS)

COLORIMETRIC COLORIMETRIC COLORIMETRIC

Page 3

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: (NONE)

Sample #	Client	ID		Matrix			Date Sampled	Date Received
 1 2 3 4 5	P2 P5 P6 P8 PULPER	1-8		WATER WATER WATER WATER WATER			02-FEB-95 02-FEB-95 02-FEB-95 02-FEB-95 02-FEB-95	02-FEB-95 02-FEB-95 02-FEB-95 02-FEB-95 02-FEB-95
 Parame	ter		Units	1	2	3	4	5
AMMONIA AS NITROGEN NITRATE-NITRITE AS NITROGEN TOTAL PHOSPHATE AS PHOSPHORUS		MG/L MG/L MG/L	<0.20 0.43 0.19	<0.20 0.15 0.18	<0.20 0.16 0.21	<0.20 <0.05 0.43	<0.20 0.14 <0.10	

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)
Project Name: (NONE)

ATI I.D. : 5020

Page 4

Parameters	REF I.D. Uni	ts Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	% Rec
AMMONIA AS NITROGEN	502028-03 MG/	L 7.4	7.3	1	18.0	10.0	106
NITRATE-NITRITE AS NITROGEN	502049-02 MG/	L <0.05	<0.05	0	2.0	2.0	100
TOTAL PHOSPHATE AS PHOSPHORU	S502027-05 MG/	L <0.10	<0.10	0	0.45	0.40	113

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

Corporate Offices: 555O Morehouse Drive San Diego, CA 92121 (619) 458-9141

ATI I.D.: 506082

June 29, 1995

NCCOSC RDT&E DIVISION 53475 STROTHE ROAD RM 267A SAN DIEGO, CA 92152

Project Name: PRIORITY POLLUTANTS

Project # : (NONE)

Attention: STACY CURTIS

Analytical Technologies, Inc. has received the following sample(s):

Date Received Quantity Matrix

June 08, 1995 2 SOLID

The sample(s) were analyzed with EPA methodology or equivalent methods as specified in the enclosed analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. If any flags appear next to the analytical data in this report, please see the attached list of flag definitions.

The results of these analyses and the quality control data are enclosed. Please note that the Sample Condition Upon Receipt Checklist is included at the end of this report.

JULIO PAREDES PROJECT MANAGER ALAN J. KLEINSCHMIDT

SAMPLE CROSS REFERENCE

Page 1

Client

: NCCOSC RDT&E DIVISION

Report Date: June 29, 1995

Project # : (NONE)

ATI I.D. : 506082

Project Name: PRIORITY POLLUTANTS

ATI # Client Description	Matrix	Date Collected
1 PULPER PAPER 01	SOLID	08-JUN-95
2 PULPER PAPER 01/DUPLICATE	SOLID	08-JUN-95

---TOTALS---

Matrix

Samples

SOLID

ATI STANDARD DISPOSAL PRACTICE

The sample(s) from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

Page_2

ATI I.D.: 5060

Analysis	Technique/Description				
Analysis EPA 6010 (ANTIMONY) EPA 6010 (BERYLLIUM) EPA 6010 (CHROMIUM) EPA 6010 (COPPER) EPA 6010 (LEAD) EPA 6010 (NICKEL) EPA 6010 (SILVER) EPA 6010 (ZINC) EPA 7060 (ARSENIC) EPA 7060 (ARSENIC) EPA 7471 (NON AQUEOUS MERCURY) EPA 7740 (SELENIUM) EPA 7841 (THALLIUM) EPA 8080 (ORGANOCHLORINE PESTICIDES & PCB'S) EPA 8240 (GC/MS FOR VOLATILE ORGANICS) EPA 9012 (TOTAL CYANIDE) EPA 9066 (PHENOLS, TOTAL)	Technique/Description INDUCTIVELY COUPLED ARGON PLASMA ATOMIC ABSORPTION/GRAPHITE FURNACE GC/ELECTRON CAPTURE DETECTOR GC/MASS SPECTROMETER GC/MASS SPECTROMETER COLORIMETRIC				
METHOD 7-2.2, METHODS OF SOIL ANALYSIS(% MOISTURE)	GRAVIMETRIC				

GENERAL CHEMISTRY RESULTS

Page 3

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

ATI I.D.: 506082

Projec	t Name:	PRIOR.	ITY POLLUTANIS				
Sample	Client	ID		Matrix		Date Sampled	Date Received
1 2	PULPER PULPER		01 01/DUPLICATE	SOLID SOLID		08-JUN-95 08-JUN-95	08-JUN-95 08-JUN-95
Parame	ter		Uni	ts 1	2		
% MOIS	CYANIDE STURE S, TOTA	5	· %	KG <0.10 84.4 KG <0.20	<0.10 83.9 <0.20		

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Page

Client

: NCCOSC RDT&E DIVISION

Project # : (NONE)

Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Parameters	REF I.D.	Units	Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	% Rec
% MOISTURE PHENOLS, TOTAL TOTAL CYANIDE TOTAL CYANIDE	506082-01 506082-02 506082-01 506082-02	MG/KG MG/KG	<0.10	2.7 <0.20 <0.10 <0.10	4 0 0 0	N/A 14.2 3.0 2.8	N/A 15.5 4.0 4.0	N/1 92 75 70

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

GENERAL CHEMISTRY - QUALITY CONTROL

BLANK SPIKE

Page 5

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)

Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Parameters	Blank Unit Spike ID#	s Blank Result	Spiked Sample	Spike Conc.	% Rec
PHENOLS, TOTAL TOTAL CYANIDE	56990 MG/K	G <0.20 G <0.10 G <0.10	2.6 3.8 3.4	2.5 4.0 4.1	104 95 83

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

METALS RESULTS

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

Page 6

ATI I.D.: 50608

Sample #	Client	ID		Matrix		Date Sampled	Date Receive
1 2	PULPER PULPER		01 01/DUPLICATE	SOLID SOLID		08-JUN-95 08-JUN-95	
Paramet	 ter		Units	1	2		
SILVER			MG/KG	<1.0	<1.0		j
ARSENI		•	MG/KG	<1.0	<1.0		
BERYLL		•	MG/KG		<0.5		
CADMIU			MG/KG	<0.5	<0.5		
CHROMI			MG/KG		<0.5		
COPPER				1.7	<1.0		
MERCUR'			MG/KG	<0.25	<0.25		
NICKEL			MG/KG		<1.0		4
LEAD				<1.5	<1.5		
ANTIMO	NY		MG/KG	<3.0	<3.0		1
SELENI			MG/KG	<1.0	<1.0		
THALLI			MG/KG	<1.0	<1.0		1
ZINC			MG/KG	5.5	5.8		

METALS - QUALITY CONTROL

DUP/MS

Page 7

Client : NCCOSC RDT&E DIVISION

Project # : (NONE)

Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Parameters	REF I.D.	Units	Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	% Rec
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	505309-32 505309-32 505309-32 505309-32 505309-32 505309-32 505309-32 505309-32 505309-32 505309-32	MG/KG	1.4 <0.5 <0.5 3.5 11.2 5.7 0.54 <1.0 <1.0 5<1.0	<3.0 1.5 <0.5 <0.5 3.4 12.4 6.3 0.47 <1.0 <1.0 <1.0 14.4	0 7 0 0 3 10 10 14 N/A@S 0 0 0	48.0 45.8 44.5 45.6 46.0 70.7 49.9 1.25 43.8 26.5 46.5 48.1 57.9	49.8 49.9 49.7 49.7 49.7 49.7 1.00 49.7 29.9 49.7 49.7	96@V 89 90 91 86 120 89 71 88 87 94 96

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

METALS - QUALITY CONTROL

BLANK SPIKE

: NCCOSC RDT&E DIVISION Client

Project # : (NONE)

Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Parameters	Blank Uni Spike ID#	ts Blank Result	Spiked Sample	Spike Conc.	و Red
ANTIMONY	57011 MG/I	KG <3.0	46.7	50.0	93
ARSENIC	57029 MG/	KG <1.0	45.9	50.0	92
BERYLLIUM	57011 MG/	KG <0.5	45.9	50.0	92
CADMIUM :	57033 MG/	KG <0.5	47.0	50.0	94
CHROMIUM	57011 MG/	KG <0.5	47.3	50.0	95
COPPER	57011 MG/	KG <1.0	47.6	50.0	95
LEAD	57011 MG/	KG <1.5	47.8	50.0	96
MERCURY	57034 MG/		1.06	1.00	106
NICKEL	57011 MG/		47.5	50.0	95
SELENIUM	57027 MG/		26.5	30.0	88
SILVER	57011 MG/		46.0	50.0	92
THALLIUM	57032 MG/		48.0	50.0	96
ZINC	57011 MG/		47.8	50.0	96

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration .
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

GAS CHROMATOGRAPHY RESULTS

Test : EPA 8080 (ORGANOCHLORINE PESTICIDES & PCB'S)
Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Project	t Name:	PRIOR.	ITY POLLUTANTS						
Sample #	Client			Matrix			Extracted		
1 2	PULPER PULPER	PAPER PAPER	01 01/DUPLICATE	SOLID SOLID		08-JUN-95	12-JUN-95 12-JUN-95	21-JUN-95	1.00
Paramet				Units	1		2		
ALDRIN				MG/KG	<0.0	32	<0.031		
		•		MG/KG	<0.0	32	<0.031		
ALPHA-				MG/KG	<0.0	32	<0.031		
BETA-BI	HC (LI)	MDANEL		MG/KG	<0.0	32	<0.031		
DELTA-		NDANE)		MG/KG	<0.0	32	<0.031		
				MG/KG	<0.3	32	<0.31		
CHLORD				MG/KG	<0.0		<0.062		
2,4'-D					<0.0	64	<0.062		
2,4'-D				MG/KG	<0.0		<0.062	•	
2,4'-D				MG/KG	<0.0	064	<0.062		
4,4'-D				MG/KG	<0.0	064	<0.062		
4,4'-D				MG/KG	<0.0		<0.062		
4,4'-D				MG/KG	<0.0		<0.062		
DIELDR				MG/KG	<0.0		<0.031		
	LFAN I			MG/KG	<0.0	064	<0.062		
	LFAN II			MG/KG	<0.0		<0.062		
	LFAN SU	DEATE		MG/KG	<0.0		<0.062		
ENDRIN				MG/KG	<0.0		<0.062		
	KETONE			MG/KG	<0.0		<0.031		
HEPTAC		OVIDE		MG/KG	<0.0	032	<0.031		
	HLOR EP	OVIDE		MG/KG	<0.3		<0.31		
	YCHLOR			MG/KG	<0.0	54	<0.62		
TOXAPH				MG/KG	<0.3		<0.31		
	R-1016			MG/KG	<0.		<0.31		
	R-1221			MG/KG	<0.		<0.31		
)R-1232			MG/KG		32	<0.31		
	DR-1242			MG/KG		32	<0.31		
	DR-1248			MG/KG		32	<0.31		
	DR-1254			MG/KG	<0.		<0.31		
AROCLO	DR-1260			110/110	. = •				
SURROG	GATES			_	7.5		70		
DBC				8	75		, 0		

Page 9

GAS CHROMATOGRAPHY - QUALITY CONTROL

REAGENT BLANK

: EPA 8080 (ORGANOCHLORINE PESTICIDES & PCB'S)

ATI I.D. : 506082 Date Extracted: 12-JUN-95

Date Analyzed: 20-JUN-95

Blank I.D.: 35764
Client: NCCOSC RDT&E DIVISION
Project #: (NONE)
Project Name: PRIORITY POLLUTANTS

Dil. Factor : 1.00

Parameters	Units	Results
	MG/KG	<0.0050
ALDRIN	MG/KG	<0.0050
ALPHA-BHC	•	<0.0050
BETA-BHC	MG/KG	<0.0050
GAMMA-BHC (LINDANE)	MG/KG	<0.0050
DELTA-BHC	MG/KG	<0.050
CHLORDANE	MG/KG	
2,4'-DDD	MG/KG	<0.010
2,4'-DDE	MG/KG	<0.010
2,4'-DDT	MG/KG	<0.010
4,4'-DDD	MG/KG	<0.010
4,4'-DDE	MG/KG	<0.010
4,4'-DDT	MG/KG	<0.010
DIELDRIN	MG/KG	<0.010
ENDOSULFAN I	MG/KG	<0.0050
ENDOSULFAN II	MG/KG	<0.010
ENDOSULFAN SULFATE	MG/KG	<0.010
ENDRIN	MG/KG	<0.010
ENDRIN KETONE	MG/KG	<0.010
HEPTACHLOR	MG/KG	<0.0050
HEPTACHLOR EPOXIDE	MG/KG	<0.0050
METHOXYCHLOR	MG/KG	<0.050
TOXAPHENE	MG/KG	<0.10
AROCLOR-1016	MG/KG	<0.050
AROCLOR-1221	MG/KG	<0.050
AROCLOR-1232	MG/KG	<0.050
AROCLOR-1242	MG/KG	<0.050
AROCLOR-1248	MG/KG	<0.050
AROCLOR-1254	MG/KG	<0.050
AROCLOR-1254 AROCLOR-1260	MG/KG	<0.050
AROCHON 1200	/	
SURROGATES		
DBC	ક	74

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

Page 11

Test : EPA 8080 (ORGANOCHLORINE PESTICIDES & PCB'S)

ATI I.D. : 506082

Date Extracted: 12-JUN-95

MSMSD # : 76499

Date Extracted: 12-JUN-95
Date Analyzed: 20-JUN-95

Client : NCCOSC RDT&E DIVISION

Sample Matrix : SOIL

. Record Raine Division

REF I.D. : 506082-01

Project # : (NONE)

Project Name: Throndar								
Parameters	Units	Sample Result	Conc Spike	Spiked Sample	% Rec	Dup Spike	Dup % Rec	RPD
ALDRIN GAMMA-BHC (LINDANE) 4,4'-DDT DIELDRIN ENDRIN HEPTACHLOR	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	<0.0050 <0.0050 <0.010 <0.010 <0.010 <0.0050	0.21 0.21 0.43 0.43 0.43 0.21	0.19 0.15 0.35 0.34 0.36 0.17	90 71 81 79 84 81	0.17 0.15 0.29 0.29 0.32 0.15	81 71 67 67 74 71	11 0 19 16 12

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Spiked Sample Result - Duplicate Spike Result)*100/Average Result

GAS CHROMATOGRAPHY - QUALITY CONTROL

BLANK SPIKE

: EPA 8080 (ORGANOCHLORINE PESTICIDES & PCB'S) Test

: 506082 ATI I.D.

Blank Spike #: 57184

Date Extracted: 12-JUN-95

Date Analyzed: 20-JUN-95

Client : NCCOSC RDT&E DIVISION Project # : (NONE)

Sample Matrix : SOIL

Parameters	Units	Blank Result	Spiked Sample	Spike Conc.	% Rec
ALDRIN GAMMA-BHC (LINDANE) 4,4'-DDT DIELDRIN ENDRIN HEPTACHLOR	MG/KG	<0.0050	0.023	0.033	70
	MG/KG	<0.0050	0.024	0.033	73
	MG/KG	<0.010	0.059	0.067	88
	MG/KG	<0.010	0.054	0.067	81
	MG/KG	<0.010	0.057	0.067	89
	MG/KG	<0.0050	0.027	0.033	82

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Blank Result)*100/Average Result

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS) Test

ATI I.D. : 506082 Test Client Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

Sample Client ID #	Matrix		Date Sampled	Date Extracted	Date Analyzed	Factor
1 PULPER PAPER 01	SOLID		11×=.1110=45	いっしいいいーシン	10011 20	
1 PULPER PAPER 01 2 PULPER PAPER 01/DUPLICATE	SOLID		08-JUN-95	09-JUN-95	19-JUN-95	1.00
				2		
Parameter	Units	1 				
CHLOROMETHANE	MG/KG MG/KG	<0.5		<0.5		
VINYL CHLORIDE	MG/KG	<0.3		<0.3		
BROMOMETHANE	MG/KG	<0.5		<0.5		
CHLOROETHANE	MG/KG			<0.3		
ACETONE	MG/KG	2.1		1.2		
CHLOROETHANE ACETONE 1,1-DICHLOROETHENE METHYLENE CHLORIDE CARBON DISULFIDE TRANS-1,2-DICHLOROETHENE 1,1-DICHLOROETHANE CIS-1,2-DICHLOROETHENE CHLOROFORM 2-BUTANONE (MEK) 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE 1,2-DICHLOROETHANE BENZENE TRICHLOROETHENE 1,2-DICHLOROPROPANE BROMODICHLOROMETHANE 4-METHYL-2-PENTANONE (MIBK) CIS-1,3-DICHLOROPROPENE TOLUENE TRANS-1,3-DICHLOROPROPENE 2-HEXANONE (MBK)	MG/KG	<0.0	5	<0.05		
METHYLENE CHLORIDE	MG/KG	<0.3				
CARRON DISHLETDE	MG/KG	<0.1	95	<0.1		
mpang_1 2-DICHLOROETHENE	MG/KG	<0.0	5	<0.05		
1 1-DICHI OPOETHANE	MG/KG	<0.0)5)5	<0.05		
CIC 1 2-DICHIOROFTHENE	MG/KG	<0.0)5	<0.05		
CIS-1, Z-DICHBOROBINENS	MG/KG	<0.0)5	<0.05		
CHLOROFORT (MEV)	MG/KG	<0.5		<0.5		
Z-BUTANONE (MEA)	MG/KG	<0.0)5			
1,1,1-TRICHLOROETHAND	MG/KG	<0.0)5	<0.05		
CARBON TETRACHLORIDE	MG/KG	<0.0	55	<0.05		
1,2-DICHLOROEINANE	MG/KG	<0.0)5	<0.05		
BENZENE	MG/KG	<0.0)5	<0.05		
TRICHLOROETHENE	MG/KG	<0.0)5	<0.05		
1,2-DICHLOROPROPANE	MG/KG	<0.0	05	<0.05 <0.05		
BROMODICHLOROMEITANE	MG/KG	<0.)5 5	<0.5		
4-METHYL-Z-PENTANONE (MIDK)	MG/KG	<0.6	05	<0.05		
CIS-1,3-DICHLOROPROPENE	MG/KG	<0.)5 1	<0.1		
TOLUENE	MG/KG	<0.	05	<0.05		
TRANS-1,3-DICHLOROPROPENE	MG/KG	<0.	5	<0.05		
2-HEXANONE (MBK)	MG/KG	<0.	5 05			
1,1,2-TRICHLOROETHAND		<0.	05	<0.05		
TETRACHLOROETHENE	MG/KG	-0	0.5	<0.05		
DIBROMOCHLOROMETHANE	MG/KG MG/KG	<0.	05 05 05 05	<0.05		
CHLOROBENZENE	MG/KG MG/KG	<0.	05	<0.05		
ETHYLBENZENE	MG/KG MG/KG	<0	05	<0.05		
XYLENES (TOTAL)		-^	ΛE	<0.05		
STYRENE	MG/NG	<0	3	<0.3		
BROMOFORM	MG/NG	<0.	3 1 5 3 3	<0.1		
1,1,2,2-TETRACHLOROETHANE	MG/NG	<n< td=""><td>- 5</td><td><0.5</td><td></td><td></td></n<>	- 5	<0.5		
DICHLORODIFLUOROMETHANE	MG/KG	~O	. 3	<0.3		
TRICHLOROFLUOROMETHANE	MG/KG	~O.	2	<0.3		
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROBENZENE	MG/KG MG/KG	<0.	3	<0.3		

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS) Test

ATI I.D. : 506082 Client : NCCOSC RDT&E DIVISION
Project # : (NONE)

Sample	e Client ID	Matrix		Date Sampled	Date Extracted	Date Analyzed	Dil. Factor
1 2	PULPER PAPER 01 PULPER PAPER 01/DUPLICATE	SOLID SOLID		08-JUN-95 08-JUN-95	09-JUN-95 09-JUN-95	19-JUN-95 19-JUN-95	
Param	 eter	Units	1		2		
-	ICHLOROBENZENE ICHLOROBENZENE	MG/KG MG/KG	<0.3 <0.3		<0.3 <0.3		
	GATES ICHLOROETHANE-D4 NE-D8	95 95	480H 490H 470H	I	56@H 61 57		

Method : EPA 8240 (GC/MS FOR VOLATILE ORGANICS)
Client : NCCOSC RDT&E DIVISION

SOLID

ATI I.D.: 506082

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

 Sam	ple Parameters	Units	Results	
1	UNKNOWN HYDROCARBON METHYL ACETATE	MG/KG MG/KG	0.3	
2	UNKNOWN HYDROCARBON METHYL ACETATE	MG/KG MG/KG	0.3	

REAGENT BLANK

Page

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS) Test

ATI I.D. : 506082

Blank I.D. : 35756

Date Extracted: 09-JUN-95 Date Analyzed: 19-JUN-95

Client : NCCOSC RDT&E DIVISION Project # : (NONE)

Dil. Factor : 1.00

Parameters	Units	Results
CHLOROMETHANE	MG/KG	<0.5
VINYL CHLORIDE	MG/KG	<0.3
BROMOMETHANE	MG/KG	<0.5
CHLOROETHANE	MG/KG	<0.3
ACETONE	MG/KG	<0.5
1,1-DICHLOROETHENE	MG/KG	<0.05
METHYLENE CHLORIDE	MG/KG	<0.3
CARBON DISULFIDE	MG/KG	<0.1
TRANS-1,2-DICHLOROETHENE	MG/KG	<0.05
1,1-DICHLOROETHANE	MG/KG	<0.05
CIS-1,2-DICHLOROETHENE	MG/KG	<0.05
CHLOROFORM	MG/KG	<0.05
2-BUTANONE (MEK)	MG/KG	<0.5
1,1,1-TRICHLOROETHANE	MG/KG	<0.05
CARBON TETRACHLORIDE	MG/KG	<0.05
1,2-DICHLOROETHANE	MG/KG	<0.05
BENZENE	MG/KG	<0.05
TRICHLOROETHENE	MG/KG	<0.05
1,2-DICHLOROPROPANE	MG/KG	<0.05
BROMODICHLOROMETHANE	MG/KG	<0.05
4-METHYL-2-PENTANONE (MIBK)	MG/KG	<0.5
CIS-1,3-DICHLOROPROPENE	MG/KG	<0.05
TOLUENE	MG/KG	<0.1
TRANS-1,3-DICHLOROPROPENE	MG/KG	<0.05
2-HEXANONE (MBK)	MG/KG	<0.5
1,1,2-TRICHLOROETHANE	MG/KG	<0.05
TETRACHLOROETHENE	MG/KG	<0.05
DIBROMOCHLOROMETHANE	MG/KG	<0.05
CHLOROBENZENE	MG/KG	<0.05
ETHYLBENZENE	MG/KG	<0.05
XYLENES (TOTAL)	MG/KG	<0.05
STYRENE	MG/KG	<0.05
BROMOFORM	MG/KG	<0.3
1,1,2,2-TETRACHLOROETHANE	MG/KG	<0.1
DICHLORODIFLUOROMETHANE	MG/KG	<0.5
TRICHLOROFLUOROMETHANE	MG/KG	<0.3
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	MG/KG	<0.3
1,2-DICHLOROBENZENE	MG/KG	<0.3
1,3-DICHLOROBENZENE	MG/KG	<0.3
1,4-DICHLOROBENZENE	MG/KG	<0.3
SURROGATES	_	20
1,2-DICHLOROETHANE-D4	g	88
TOLUENE-D8	8	91
BFB	8	91
		_

REAGENT BLANK ADDITIONAL COMPOUNDS (SEMI-QUANTITATED)

Page 17

ATI I.D. : 506082

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS)

Blank I.D. : 35756 Client : NCCOSC RDT&E DIVISION
Project # : (NONE)

Parameters	Units	Results
		N7 / D
NONE DETECTED	N/A	N/A

GAS CHROMATOGRAPHY/MASS SPECTROSCOPY - QUALITY CONTROL

MSMSD

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS) Test

: 506082 ATI I.D. Date Extracted: 09-JUN-95

MSMSD # : 76484 Client

Date Analyzed: 19-JUN-95

: NCCOSC RDT&E DIVISION

Sample Matrix : SOIL REF I.D. : 506082-02

Project # : (NONE)

Parameters	Units	Sample Result	Conc Spike	Spiked Sample	% Rec	Dup Spike	Dup % Re	-
1,1-DICHLOROETHENE BENZENE TRICHLOROETHENE TOLUENE CHLOROBENZENE	MG/KG	<0.05	2.5	0.81*H	32	0.84*H	34	4
	MG/KG	<0.05	2.5	1.31*H	52	1.42*H	57	8
	MG/KG	<0.05	2.5	1.24*H	50	1.33*H	53	7
	MG/KG	<0.1	2.5	1.49*H	60	1.56*H	62	5
	MG/KG	<0.05	2.5	1.60*H	64	1.65*H	66	3

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative & Difference) = (Spiked Sample Result - Duplicate Spike Result)*100/Average Result

GAS CHROMATOGRAPHY/MASS SPECTROSCOPY - QUALITY CONTROL

BLANK SPIKE

Page 19

: EPA 8240 (GC/MS FOR VOLATILE ORGANICS) Test

: 506082

Blank Spike #: 57172

ATI I.D. Date Extracted: 09-JUN-95

Date Analyzed: 19-JUN-95

: NCCOSC RDT&E DIVISION Client

Sample Matrix : SOIL

Project # : (NONE)

Parameters	Units	Blank Result	Spiked Sample	Spike Conc.	% Rec
1,1-DICHLOROETHENE BENZENE TRICHLOROETHENE TOLUENE CHLOROBENZENE	MG/KG MG/KG MG/KG MG/KG MG/KG	<0.05 <0.05 <0.05 <0.1 <0.05	1.6 2.4 2.3 2.7 2.8	2.5 2.5 2.5 2.5 2.5	64 96 92 108 112

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Blank Result)*100/Average Result

: EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS) Test

Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS ATI I.D. : 506082

Sample Client ID #	Matrix		Date Sampled	Date Extracted	Date Analyzed	Factor
1 DITT DER DADER 01	SOLID SOLID		08-JUN-95 08-JUN-95	12-JUN-95 12-JUN-95	20-JUN-95	1.00
Parameter	Units	1		2		
N-NITROSODIMETHYLAMINE PYRIDINE PHENOL ANILINE BIS(2-CHLOROETHYL)ETHER		<0.1 <0.1 <0.3 <0.3	.7 .7 34 .7	<0.17 <0.17 <0.17 <0.34 <0.17		
2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE BENZYL ALCOHOL 1,2-DICHLOROBENZENE	MG/KG MG/KG MG/KG MG/KG MG/KG	<0.1 <0.1 <0.1 <0.1	17 17 17	<0.17 <0.17 <0.17 <0.17 <0.17		
2-METHYLPHENOL BIS(2-CHLOROISOPROPYL)ETHER 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE	MG/KG MG/KG MG/KG MG/KG MG/KG	<0.1 <0.1 <0.1 <0.1	L7 L7 L7	<0.17 <0.17 <0.17 <0.17 <0.17		
HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL	MG/KG MG/KG MG/KG MG/KG	<0.1 <0.1 <0.1	L7 L7 L7 L7	<0.17 <0.17 <0.17 <0.17		
BENZOIC ACID BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE	MG/KG MG/KG MG/KG MG/KG MG/KG	<0.8 <0.1 <0.1 <0.1	L7 L7 L7	<0.85 <0.17 <0.17 <0.17 <0.17		1
NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE	MG/KG MG/KG MG/KG MG/KG	<0.5 <0.5 <0.5	50 17 17 17	<0.50 <0.17 <0.17 <0.17		
HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE	MG/KG MG/KG MG/KG MG/KG	<0.8	17 35 17	<0.17 <0.17 <0.85 <0.17 <0.85		
2-NITROANILINE DIMETHYLPHTHALATE ACENAPHTHYLENE 2,6-DINITROTOLUENE	MG/KG MG/KG MG/KG MG/KG MG/KG	<0.3 0.2 <0.3 <0.3	9 17 17	<0.17 <0.17 <0.17 <0.85		
3-NITROANILINE ACENAPHTHENE	MG/KG	<0.		<0.17		

Test : EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS)
Client : NCCOSC RDT&E DIVISION
Project # : (NONE)
Project Name: PRIORITY POLLUTANTS

ATI I.D. : 506082

Sample	Client ID	Matrix		Date Sampled	Date Extracted	Analyzed	Factor
2	PULPER PAPER O1 PULPER PAPER O1/DUPLICATE	SOLID		08-JUN-95	12-JUN-95 12-JUN-95	20-00N-95	1.00
 Parame		Units	1		2		
2 4-DT	NITROPHENOL	MG/KG	 8.0>	5	<0.85		
-	ROPHENOL	MG/KG	<0.8 <0.1	5	<0.85		
		MG/KG	<0.1	7	<0.17		
	OFURAN INITROTOLUENE	MG/KG	<0.1	7	<0.17		
•		MG/KG	<0.1	7	<0.17		
	/LPHTHALATE	MG/KG	<0.1		<0.17		
	DROPHENYL-PHENYLETHER	MG/KG	<0.1	7	<0.17 <0.17		
FLUORE		MG/KG	<0.8	5	<0.85		
4-NITF	ROANILINE	MG/KG	<0.8		<0.85		
2-METH	HYL-4,6-DINITROPHENOL	MG/KG	<0.1		<0.17		
N-NITF	ROSODIPHENYLAMINE	MG/KG	<0.1		<0.17		
	MOPHENYL-PHENYLETHER	MG/KG MG/KG	<0.1		<0.17		
	HLOROBENZENE	•	<0.8		<0.85		
PENTAC	CHLOROPHENOL	MG/KG	<0.1		<0.17		
PHENAN	NTHRENE	MG/KG	<0.1		<0.17		
ANTHRA		MG/KG	<0.1		<0.17		
DI-N-E	BUTYLPHTHALATE	MG/KG	<0.1		<0.17		
FLUORA	ANTHENE	•			<0.17		
PYREN		MG/KG	<0.1		<0.17		
	BENZYLPHTHALATE	MG/KG	<0.1		<0.34		
3,3'-1	DICHLOROBENZIDINE	MG/KG	<0.3		<0.17		
BENZO	(a)ANTHRACENE	MG/KG	<0.1		<0.17		
CHRYSI		MG/KG	<0.1				
BIS(2-	-ETHYLHEXYL) PHTHALATE	MG/KG	<0.1		<0.17		
	OCTYLPHTHALATE	MG/KG	<0.1 <0.1	17	<0.17		
	(b) FLUORANTHENE	MG/KG	<0.1	1.7	<0.17		
	(k) FLUORANTHENE	MG/KG	<0.1 <0.1	17	<0.17		
	(a) PYRENE	MG/KG			<0.17		
	O(1,2,3-cd)PYRENE	MG/KG	<0.3		<0.17		
DIREN	Z(a,h)ANTHRACENE	MG/KG		17	<0.17		
	(g,h,i)PERYLENE	MG/KG	<0.3	17	<0.17		
SURRO		%	76		81		
	BENZENE-D5	* *	73 72		94		
	OROBIPHENYL	-	72 79		79		
TERPH	ENYL-D14	8	79 81		83		
PHENO	L-D6	%			68		
	OROPHENOL	ሄ	66		98		
2 4 6	-TRIBROMOPHENOL	%	88		70		

Page 21

Analytical Technologies ADDITIONAL COMPOUNDS (SEMI-QUANTITATED)

Page 22

Method

: EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS)

SOLID

ATI I.D.: 506082

Client : NCCOSC RDT&E DIVISION Project # : (NONE)

Sample	Parameters	5			Units	Results
1	ALIPHATIC	HYDROCARBONS	(C-16)		MG/KG	2
	ALIPHATIC	HYDROCARBONS	(C-16,	C-17)	MG/KG	0.6
	ALIPHATIC	HYDROCARBONS	(C-17)		MG/KG	0.5
	ALIPHATIC	HYDROCARBONS	(C-18,	C-19)	MG/KG	0.7
	ALIPHATIC	HYDROCARBONS	(C-20)	·	MG/KG	0.4
	•					
2	ALIPHATIC	HYDROCARBONS	(C-16)		MG/KG	1
	ALIPHATIC	HYDROCARBONS	(C-16,	C-17)	MG/KG	2
	ALIPHATIC	HYDROCARBONS	(C-17)	•	MG/KG	2
	ALIPHATIC	HYDROCARBONS	(C-18,	C-19)	MG/KG	2
		HYDROCARBONS	•	•	MG/KG	1

REAGENT BLANK

Page 23

: EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS)

ATI I.D. : 506082

Blank I.D. : 35693

Date Extracted: 12-JUN-95 Date Analyzed: 15-JUN-95

: NCCOSC RDT&E DIVISION Client

Dil. Factor : 1.00

Project # : (NONE)

Parameters	Units	Results
	MG/KG	<0.17
N-NITROSODIMETHYLAMINE	MG/KG	<0.17
PYRIDINE	MG/KG	<0.17
PHENOL	MG/KG	<0.34
ANILINE	MG/KG	<0.17
BIS(2-CHLOROETHYL)ETHER	MG/KG	<0.17
2-CHLOROPHENOL	MG/KG	<0.17
1,3-DICHLOROBENZENE	MG/KG	<0.17
1,4-DICHLOROBENZENE	MG/KG	<0.17
BENZYL ALCOHOL	MG/KG	<0.17
1,2-DICHLOROBENZENE	MG/KG	<0.17
2-METHYLPHENOL	MG/KG	<0.17
BIS(2-CHLOROISOPROPYL)ETHER	MG/KG	<0.17
4-METHYLPHENOL	•	<0.17
N-NITROSO-DI-N-PROPYLAMINE	MG/KG	<0.17
HEXACHLOROETHANE	MG/KG	<0.17
NITROBENZENE	MG/KG	<0.17
ISOPHORONE	MG/KG	<0.17
2-NITROPHENOL	MG/KG	<0.17
2,4-DIMETHYLPHENOL	MG/KG	<0.85
BENZOIC ACID	MG/KG	<0.17
BIS(2-CHLOROETHOXY)METHANE	MG/KG	<0.17
2,4-DICHLOROPHENOL	MG/KG	<0.17
1,2,4-TRICHLOROBENZENE	MG/KG	<0.17
NAPHTHALENE	MG/KG	<0.50
4-CHLOROANILINE	MG/KG	<0.17
HEXACHLOROBUTADIENE	MG/KG	<0.17
4-CHLORO-3-METHYLPHENOL	MG/KG	<0.17
2-METHYLNAPHTHALENE	MG/KG	<0.17
HEXACHLOROCYCLOPENTADIENE	MG/KG	
2,4,6-TRICHLOROPHENOL	MG/KG	<0.17
2,4,5-TRICHLOROPHENOL	MG/KG	<0.85
2-CHLORONAPHTHALENE	MG/KG	<0.17
2-NITROANILINE	MG/KG	<0.85
DIMETHYLPHTHALATE	MG/KG	<0.17
ACENAPHTHYLENE	MG/KG	<0.17
2,6-DINITROTOLUENE	MG/KG	<0.17
3-NITROANILINE	MG/KG	<0.85
ACENAPHTHENE	MG/KG	<0.17
2,4-DINITROPHENOL	MG/KG	<0.85
4-NITROPHENOL	MG/KG	<0.85
DIBENZOFURAN	MG/KG	<0.17
2,4-DINITROTOLUENE	MG/KG	<0.17
DIETHYLPHTHALATE	MG/KG	<0.17
4-CHLOROPHENYL-PHENYLETHER	MG/KG	<0.17
FLUORENE	MG/KG	<0.17
		<0.85

REAGENT BLANK

Page

ATI I.D. : 506082 Date Extracted: 12-JUN-95 Date Analyzed: 15-JUN-95

Dil. Factor : 1.00

Parameters	Units	Results	
2-METHYL-4,6-DINITROPHENOL	MG/KG	<0.85	•
N-NITROSODIPHENYLAMINE	MG/KG	<0.17	
4-BROMOPHENYL-PHENYLETHER	MG/KG	<0.17	į
HEXACHLOROBENZENE	MG/KG	<0.17	
PENTACHLOROPHENOL	MG/KG	<0.85	i
PHENANTHRENE	MG/KG	<0.17	
ANTHRACENE	MG/KG	<0.17	i
DI-N-BUTYLPHTHALATE	MG/KG	<0.17	
FLUORANTHENE	MG/KG	<0.17	(
PYRENE	MG/KG	<0.17	
BUTYLBENZYLPHTHALATE	MG/KG	<0.17	•
3,3'-DICHLOROBENZIDINE	MG/KG	<0.34	
BENZO(a)ANTHRACENE	MG/KG	<0.17	
CHRYSENE	MG/KG	<0.17	
BIS(2-ETHYLHEXYL)PHTHALATE	MG/KG	<0.17	•
DI-N-OCTYLPHTHALATE	MG/KG	<0.17	_
BENZO(b)FLUORANTHENE	MG/KG	<0.17	
BENZO(k)FLUORANTHENE	MG/KG	<0.17	
BENZO(a)PYRENE	MG/KG	<0.17	•
INDENO(1,2,3-cd)PYRENE	MG/KG	<0.17	
DIBENZ(a,h)ANTHRACENE	MG/KG	<0.17	
BENZO(g,h,i)PERYLENE	MG/KG	<0.17	i
SURROGATES			
NITROBENZENE-D5	8	68	
2-FLUOROBIPHENYL	ક્ષ	72	
TERPHENYL-D14	8	66	
PHENOL-D6	8	67	1
2-FLUOROPHENOL	ક્ષ	59	
2,4,6-TRIBROMOPHENOL	%	81	1

REAGENT BLANK ADDITIONAL COMPOUNDS (SEMI-QUANTITATED)

Page 25

ATI I.D. : 506082

Client

: EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS)

Blank I.D. : 35693

: NCCOSC RDT&E DIVISION

Project # : (NONE)

	Units	Results
Parameters	UNICS	
UNKNOWN HYDROCARBONS UNKNOWN HYDROCARBONS	MG/KG MG/KG	0.2

GAS CHROMATOGRAPHY/MASS SPECTROSCOPY - QUALITY CONTROL

MSMSD

: EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS)

MSMSD # : NCCOSC RDT&E DIVISION Client

Test

: 76364

: 506082 ATI I.D. Date Extracted: 12-JUN-95

Page

Date Analyzed: 20-JUN-95

Sample Matrix : SOIL

: 506082-02 REF I.D. Project # : (NONE) Project Name: PRIORITY POLLUTANTS

Parameters	Units	Sample Result	Conc Spike	Spiked Sample	% Rec	Dup Spike	Dup % Rec	RPI
PHENOL 2-CHLOROPHENOL 1,4-DICHLOROBENZENE N-NITROSO-DI-N-PROPYLAMINE 1,2,4-TRICHLOROBENZENE 4-CHLORO-3-METHYLPHENOL ACENAPHTHENE 4-NITROPHENOL 2,4-DINITROTOLUENE PENTACHLOROPHENOL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	<0.85 <0.85 <0.85 <0.85 <0.85 <0.85 <0.85 <0.85 <4.3 <0.85 <4.3	5.0 5.0 3.3 3.3 3.3 5.0 3.3 5.0	4.7 4.0 2.5 3.3 3.1 4.6 3.9 3.4 2.6 3.3	94 80 76 100 94 92 118 68 79 66	3.9 3.3 2.2 2.7 2.5 3.9 3.2 2.7 2.1 2.6	78 66 67 82 76 78 97 54 64	19 19 13 20 21 16 20 23 21 24
PYRENE	MG/KG	<0.85	3.3	2.8	85	2.2	67	24

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Spiked Sample Result - Duplicate Spike Result)*100/Average Result

PYRENE

GAS CHROMATOGRAPHY/MASS SPECTROSCOPY - QUALITY CONTROL

BLANK SPIKE

Page 27

ATI I.D. : 506082 : EPA 8270 (GC/MS FOR SEMIVOLATILE ORGANICS) Date Extracted: 12-JUN-95 Blank Spike #: 57065 Date Analyzed: 15-JUN-95

Client : NCCOSC RDT&E DIVISION Project # : (NONE) Sample Matrix : SOIL Project Name : PRIORITY POLLUTANTS

Units Blank Spiked Spike Result Sample Conc. ቄ ______ 5.0 MG/KG <0.17 2.7 MG/KG <0.17 3.0 MG/KG <0.17 2.1 54 PHENOL 60 MG/KG <0.17 2-CHLOROPHENOL 64 3.3 MG/KG <0.17 1,4-DICHLOROBENZENE 3.3 67 2.2 MG/KG <0.17 N-NITROSO-DI-N-PROPYLAMINE 70 2.3 3.3 MG/KG <0.17 1,2,4-TRICHLOROBENZENE 64 5.0 3.2 MG/KG <0.17 4-CHLORO-3-METHYLPHENOL 76 3.3 2.5 MG/KG <0.17 ACENAPHTHENE 72 5.0 <0.85 3.6 MG/KG 70 4-NITROPHENOL 3.3 2.3 <0.17 MG/KG 2,4-DINITROTOLUENE 76 5.0 <0.85 3.8 MG/KG PENTACHLOROPHENOL 73 3.3 2.4 <0.17 MG/KG

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Blank Result)*100/Average Result

ANALYTICAL TECHNOLOGIES, INC. SAN DIEGO FLAGS

INORGANICS

				
FLAG.	MESSAGE DESCRIPTION			

- B ABSOLUTE VALUE OF ANALYTE CONCENTRATION IS < CRDL BUT > THE IDL
- BB RESULT BETWEEN IDL AND LOQ
- D POST DIGESTION SPIKE FOR GFAA OUTSIDE LIMITS AFTER 1:25 DILUTION. SAMPLE REPORTED AT ORIGINAL CONCENTRATION.
- E ESTIMATED VALUE DUE TO INTERFERENCE
- M DUPLICATE INJECTION PRECISION NOT MET
- N SPIKED SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS
- S REPORTED VALUE WAS DETERMINED BY METHOD OF STANDARD ADDITIONS
- U COMPOUND WAS ANALYZED FOR BUT NOT DETECTED
- W POST DIGESTION SPIKE OUT OF CONTROL LIMITS; SAMPLE ABSORBANCE < 50% OF SPIKE ABSORBANCE FOR GF/AA
- X ABSOLUTE VALUE OF ANALYTE CONCENTRATION IS LESS THAN 3 TIMES THE MDL
- * DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS
- + CORRELATION COEFFICIENT FOR MSA IS LESS THAN 0.995
- *H RESULTS OUTSIDE OF LIMITS DUE TO SAMPLE MATRIX INTERFERENCE
- *Q INSUFFICIENT SAMPLE FOR ANALYSIS
- *R DATA IS NOT USABLE
- *V SAMPLE RESULT IS >4X SPIKED CONCENTRATION, THEREFORE SPIKE IS NOT DETECTABLE
- *Y RESULT NOT ATTAINABLE DUE TO SAMPLE MATRIX INTERFERENCE
- @C VARIABLE MESSAGE
- @H DETECTION LIMIT ELEVATED DUE TO MATRIX INTERFERENCE
- @Q DETECTION LIMIT ELEVATED DUE TO LIMITED SAMPLE FOR ANALYSIS
- @R RPD LIMIT IS 67% FOR INORGANIC RESULTS LESS THAN TEN TIMES THE REPORTING DETECTION LIMIT
- @S RPD: ONE RESULT ABOVE AND ONE RESULT BELOW REPORTING LIMIT (RL). RESULT ABOVE SHOULD BE < 5 TIMES RL TO BE IN CONTROL.
- @V PRE-DIGEST SPIKE OUT OF LIMITS. POST DIGESTION SPIKE YIELDED ACCEPTABLE RESULTS
- @W DETECTION LIMIT ELEVATED DUE TO REDUCED SAMPLE WEIGHT
- @Y ION BALANCE OUTSIDE OF ATI'S ACCEPTANCE LIMITS; REANALYSIS CONFIRMED ORIGINAL RESULT
- @X RESULTS VERIFIED BY REDIGESTION AND REANALYSIS

ANALYTICAL TECHNOLOGIES, INC. SAN DIEGO FLAGS

ORGANICS

FT.A.G	MESSAGE DESCRIPTION
ILAU	MESSAGE DESCRIPTION
٨	A TIC IS A SUSPECTED ALDOL-CONDENSATION PRODUCT
A B	ANALYTE FOUND IN THE ASSOCIATED REAGENT BLANK
C	
	PESTICIDE, WHERE THE IDENTIFICATION WAS CONFIRMED BY GC/MS
CO	THESE COMPOUNDS CO-ELUTE AND ARE QUANTITATED AS ONE PEAK
D	COMPOUND IDENTIFIED IN AN ANALYSIS AT SECONDARY DILUTION
E	ANALYTE AMOUNT EXCEEDS THE CALIBRATION RANGE
J	ESTIMATED VALUE
H	QUANTIFIED AS DIESEL BUT CHROMATOGRAPHIC PATTERN DOES NOT MATCH THAT OF DIESEL
K	QUANTIFIED AS KEROSENE BUT CHROMATOGRAPHIC PATTERN DOES NOT MATCH THAT OF KEROSENE
L	QUANTIFIED AS GASOLINE BUT CHROMATOGRAPHIC PATTERN DOES NOT MATCH
1	THAT OF GASOLINE
λī	
N	PRESUMPTIVE EVIDENCE OF A COMPOUND
P	PESTICIDE/AROCLOR TARGET ANALYTE, WHERE THERE IS GREATER THAN 25%
	DIFFERENCE FOR DETECTED CONCENTRATION BETWEEN 2 GC COLUMNS
TR	COMPOUND DETECTED AT AN UNQUANTIFIABLE TRACE LEVEL
U	COMPOUND WAS ANALYZED FOR BUT NOT DETECTED
X	SEE CASE NARRATIVE
Y	SEE CASE NARRATIVE
Z	SEE CASE NARRATIVE
*	OUTSIDE OF QUALITY CONTROL LIMITS
*D	COMPOUND ANALYZED FROM A SECONDARY ANALYSIS
*F	RESULT OUTSIDE OF ATI'S QUALITY CONTROL LIMITS
*G	RESULT OUTSIDE QUALITY CONTROL LIMITS. INSUFFICIENT SAMPLE FOR RE-
	EXTRACTION/ANALYSIS
*H	RESULT OUTSIDE OF LIMITS DUE TO SAMPLE MATRIX INTERFERENCE
*I	BECAUSE OF NECESSARY SAMPLE DILUTION, VALUE WAS OUTSIDE QC LIMITS
*K	DUE TO THE NECESSARY DILUTION OF THE SAMPLE, RESULT WAS NOT ATTAINABLE
*L	ANALYTE IS A SUSPECTED LAB CONTAMINANT
*P	A STANDARD WAS USED TO QUANTITATE THIS VALUE
*R	DATA IS NOT USABLE
*T	SURROGATE RECOVERY IS OUTSIDE QC CONTROL LIMITS. NO CORRECTIVE
-	ACTION INDICATED BY METHOD
*V	SAMPLE RESULT IS >4X SPIKED CONCENTRATION, THEREFORE SPIKE IS NOT DETECTABLE
*Y	RESULT NOT ATTAINABLE DUE TO SAMPLE MATRIX INTERFERENCE
@A	RESULTS OUT OF LIMITS DUE TO SAMPLE NON-HOMOGENEITY
@C	VARIABLE MESSAGE
@D	RESULT COULD NOT BE CONFIRMED DUE TO MATRIX INTERFERENCE ON THE
ω D	CONFIRMATION COLUMN
@E	RESULT MAY BE FALSELY ELEVATED DUE TO SAMPLE MATRIX INTERFERENCE
@F	RESULT OUTSIDE OF CONTRACT SPECIFIED QUALITY CONTROL LIMITS
@G	RESULT OUTSIDE OF CONTRACT SPECIFIED ADVISORY LIMITS
@H	DETECTION LIMIT ELEVATED DUE TO MATRIX INTERFERENCE
@M	RESULT NOT CONFIRMED BY U.V. DUE TO SAMPLE MATRIX INTERFERENCE
@N	RESULT NOT CONFIRMED BY FLUORESCENCE DUE TO SAMPLE MATRIX INTERFERENCE
@P	RESULT QUANTITATED USING FLUORESCENCE ONLY DUE TO THE LOW CONCENTRATION
@Q	DETECTION LIMIT ELEVATED DUE TO LIMITED SAMPLE FOR ANALYSIS
@T	RESULT DUE TO TCLP EXTRACTION MATRIX INTERFERENCE. NO OC LIMITS
W I	HAVE BEEN ESTABLISHED
@U	
ω \circ	SAMPLE CHROMATOGRAM DOES NOT RESEMBLE COMMON FUEL HYDROCARBON FINGERPRINTS
@7	
@Z	SAMPLE CHROMATOGRAM DOES NOT RESEMBLE A FUEL HYDROCARBON .

APPENDIX B

PULPED MATERIAL PARTICLE SIZING REPORT

Source:

Pulped Material Particle Sizing.

San Diego, California

Environmental Testing Associates (ETA), 1994

NUMERICAL SIZE DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project # : 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-1

Client Project#: Paper sizing

Client Sample #: P2-1 (slides E-H)

Sample Description: White paper slurry (final dilution = 0.00008)

Analysis Requested : Size distribution analysis

Analysis Method : Polarized Light Microscopy

Magnification(x): 50
Scale (μm/division): 9.90
Total particles counted: 100

Total particles	counted	100		···			<u> </u>					
HYDRODYNAMI	C SIZE DI	STRIBUTIO	N AND	<i>I</i> ORPHO	LOGY STA	ATISTICS	(all pape	r particle:	s)			
Description		Mean	Std. Dev.	95% C.L.	Descript	ion			Mean	Std. Dev.	95% C.L.	
Hydrodynamic Diameter	(μm)	183	±239	±47	Fibers / S	tructure			1.40	±2.15	±0.42	
X-Section Diameter (µm))	330	±520	±102	Paper Fib	er Diame		21.30	±13.22	±2.59		
Median (μm)		76			Aspect R	atio (all p	articles)		17.07	±0.19	±0.04	
Mode (size category)		≥31			Structure	Spherici	ty		0.47	±0.18	±0.04	
Skewness		2.6	(positive)		Surface A	Area/parti	icle (mm2	2)	0.28			
Kurtosis		7.7	(peaked)		Total Sur	face Area	a / Volum	e Ratio	0.01		-8-	
HYDRODYNAMIC SIZE DISTRIBUTION (μm ≥ stated size)												
Particle Size (μm)	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000	
Midpoint size (µm)	6	12	23	47	94	188	375	750	1500	3000	≥4000	
Numerical Count ≥	100	100	100	92	63	39	21	9	3			
Individual Count			8	29	24	18	12	6	3			
Individual Numerical %	,		8.0%	29.0%	24.0%	18.0%	12.0%	6.0%	3.0%			
Cumulative Numerical %			8.0%	37.0%	61.0%	79.0%	91.0%	97.0%	100.0%			
		Estimate	d Volume	(Mass E	quivalent)	Distribu	tion					
Particle Size (μm)	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000	
Individual Volume %			0.0%	0.0%	0.2%	1.8%	7.9%	22.2%	67.8%			
Cumulative Volume %			0.0%	0.0%	0.2%	2.1%	10.0%	32.2%	100.0%	,		

		ChOSS-	SECTIONS	SIZE DIS	MIDOTIO						
Particle Size (µm)	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
Midpoint size (μm)	6	12	23	47	94	188	375	750	1500	3000	≥4000
Numerical Count ≥	100	100	100	92	64	45	32	20	9	2	
Individual Count			8	28	19	13	12	11	7	2	
Individual Numerical %			8.0%	28.0%	19.0%	13.0%	12.0%	11.0%	7.0%	2.0%	
Cumulative Numerical %			8.0%	36.0%	55.0%	68.0%	80.0%	91.0%	98.0%	100.0%	

Particle	Count	Estimated	Ave. Hydrodynamic	Ave. X-section	Ave. Aspect
Category	%	Volume %	Size (µm)	Size (µm)	Ratio
paper particle	25.0%	0.0%	38	42	2.2
fiber	68.0%	47.3%	197	367	31.6
bundle	4.0%	3.3%	296	500	11.1
matrix	3.0%	49.3%	926	1667	47.7
non-paper					
•					

Analyst : _____/ _____

COMPOSITION DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-1

Client Project#: Paper sizing

Client Sample #: P2-1 (slides E-H)

Sample Description: White paper slurry (final dilution = 0.00008)

Magnification(x): 50

Analysis Requested: Size distribution analysis

Scale (µm/div.): 9.90

Analysis Method: Polarized Light Microscopy

Total particles counted: 100

Particle	Numerical			Individual Count % ≥ "Hydrodynamic" Stated Size(μm)									
Category	Count	<8	 ≥8	≥16	≥31	≥ 11yana ≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000	
paper particle	25			6%	17%	2%							
fiber	68			2%	12%	21%	17%	10%	5%	1%			
bundle	4					1%	1%	1%	1%	,			
matrix	3.							1%		2%			
non-paper	•												
Particle	Numerical		С	umulativ	e Count	% ≥ State	d "Hydro	dvnamic"	Size(um)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	, ≥1000	≥2000	≥4000	
paper particle	25			6%	23%	25%							
fiber	68			2%	14%	35%	52%	62%	67%	68%			
bundle	4					1%	2%	3%	4%				
matrix	3							1%	1%	3%			
non-paper										0,0			

Particle	Numerical		Ir	dividual	Count %	≥ "Cross	s-section"	Stated 5	size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	25			6%	17%	2%						
fiber	68			2%	11%	16%	12%	12%	9%	5%	1%	,
bundle	4					1%	1%		1%	1%		'
matrix	3								1%	1%	1%	'
non-paper	•								-			
Particle Particle	Numerical		c	umulativ	e Count '	% ≥ state	d "Cross-	-section"	Size(um)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	25			6%	23%	25%						
fiber	68			2%	13%	29%	41%	53%	62%	67%	68%	ľ
bundle	4					1%	2%	2%	3%	4%	• • • •	ŀ
matrix	3								1%	2%	3%	,
non-paper											0 /0	1
The state of the s												!

Particle	Normalized		Individual H	lydrody	namic No	rmalized	Count %	< maxim	um stripp	ed size		2000um
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	25			6%	17%	2%						
fiber	68			2%	12%	21%	17%	10%	5%	1%		
bundle	4					1%	1%	1%	1%	170		
matrix	3							1%		2%		
non-paper										270		
• •												

Numerical percent of distribution <2000μm = 100%

Specific Gravity and thickness to diameter ratios utilized in mass / volume calculations.

Category	paper particle	fiber	bundle	matrix	non-paper	
Thickness: diameter ration	0.80	1.00	0.75	0.50	0.70	
Specific Gravity	1.40	1.40	1.40	1.40	1.40	

Client Sample #: P2-1 (slides E-H)

INDIVIDUAL SIZE DISTRIBUTION COUNT DATA

Page 1

Client Name: NRaD

Client Project#: Paper sizing

ETA Project # : 94-4274 ETA Sample # : 4274-1

Sample Description : White paper slurry (final dilution = 0.00008)

Analysis Requested : Size distribution analysis Analysis Method : Polarized Light Microscopy

Magnification(x): 50 Total particles counted: 100

	Conv	ersion (μπ	າ / div.) :	9.90									
Γ	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers	X-section	Hydro.		Particle	Surface	
	Number	Type	(μm)	Dia.(µm)	Dia.(μm)	(μm)	in struc.	Dia.(μm)	Dia.(μm)			Area(mm2)	
	1	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
1	2	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
1	3	f	1188	20	20	20	1	604	303	60.0	0.26	0.289	0.020
	4	p .	1782	297	20	134	9	1040	576	6.0	0.32	1.042	0.010
	5	ť	1485	20	20	20	1	752	352	75.0	0.24	0.390	0.017
1	6	f	624	30	30	30	1	327	226	21.0	0.36	0.161	0.027
1	7	f	89	30	30	30	1	59	62	3.0	0.69	0.012	0.097
1	8	f	693	15	15 ⁻	15	1 1	354	192	46.7	0.28	0.116	0.031
	9	f	5940	40	40	40	1	2990	1118	150.0	0.19	3.927	0.005
	10	f	3119	40	40	40	1	1579	728	78.8	0.23	1.663	0.008
	11	f	1188	20	20	20	1	604	303	60.0	0.26	0.289	0.020
1	12	р	30	15	15	12	1	22	20	2.0	0.68	0.001	0.295
1	13	р	30	20	20	16	1	25	22	1.5	0.75	0.002	0.268
۱	14	f	990	20	20	20	1	505	269	50.0	0.27	0.227	0.022
	15	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
1	16	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
1	17	f	2475	40	40	40	1	1257	624	62.5	0.25	1.222	0.010
1	18	f	248	5	5	5	1	126	67	50.0	0.27	0.014	0.089
-	19	f	594	20	20	20	1	307	191	30.0	0.32	0.115	0.031
	20	р	59	20	20	16	1	40	35	3.0		0.004	0.169
1	21	р	30	30	30	24	1	30	26	1.0	0.86	0.002	0.234
	22	f	594	20	20	20	1	307	191	30.0	0.32	0.115	0.031
	23	f	149	20	20	20	1	84	76	7.5		0.018	0.079
İ	24	f	248	20	20	20	1	134	107	12.5	0.43	0.036	0.056
	25	f	50	10	10	10	1	30	29	5.0	0.58	0.003	0.207
١	26	f	743	20	20	20	1	381	222	37.5		0.155	0.027
ı	27	m	2970	990	40	416	21	1980	1155	3.0	0.39	4.190	0.005
	28	f	69	10	10	10	1	40	36	7.0		0.004	0.166
- 1	29	f	50	10	10	10	1	30	29	5.0		0.003	0.207
1	30	f	50	20	20	20	1	35	36	2.5		0.004	0.165
-	31	р	119	40	40	32	1	79	71	3.0		0.016	0.085
	32	p	89	20	20	16	1	54	47	4.5		0.007	0.129
	33	f	89	15	15	15	1	52	49	6.0		0.008	0.122
	34	f	228	10	10	10	1	119	80	23.0		0.020	0.075
ļ	35	f	79	20	20	20	1	50	50	4.0		0.008	0.120
	36	р	69	30	30	24	1	50	45	2.3		0.006	0.133
l	37	p p	79	30	30	24	1	54	49	2.7		0.008	
	38	Р	69	30	30	24	1	50	45	2.3		0.006	
	39	f	1188	79	79	79	1	634	482	15.0	0.41	0.729	
- 1	40	f	347	79	79	79	1	213	212	4.4	0.61	0.141	0.028

Note: Thickness measurements are based on estimated thickness to diameter ratios for each structure type.

	Structur	е Туре С	odes	
Р	paper particle	m	matrix	
f	fiber	n	non-paper	
b	bundle			

INDIVIDUAL SIZE DISTRIBUTION COUNT DATA

Page 2

Client Name: NRaD

Client Project#: Paper sizing

ETA Project #: 94-4274

Client Sample # : P2-1 (slides E-H) ETA Sample # : 4274-1

	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers	X-section	Hydro.	Aspect	Particle	Surface	Sur.Area /
	Number	Туре	(µm)	Dia.(μm)	Dia.(µm)	(μm)	in struc.	Dia.(µm)	Dia.(µm)	Ratio	Sphericity	Area(mm2)	Vol. Ratio
	41	f	99	30	30	30	1	64	66	3.3	0.67	0.014	
	42	f	297	10	10	10	1	153	96	30.0	0.32	0.029	
	43	f	149	10	10	10	1	79	60	15.0	0.41	0.011	0.100
	44	f	396	30	30	30	1	213	167	13.3	0.42	0.088	0.036
	45	f	267	20	20	20	1	144	112	13.5	0.42	0.040	
	46	р	20	20	20	16	1	20	17	1.0	0.86	0.001	0.352
	47	f	1584	20	20	20	1	802	368	80.0	0.23	0.425	
	48	þ	1188	59	15	45	4	624	361	20.0	0.30	0.410	
	49	ŕ	208	20	20	20	1	114	95	10.5	0.46	0.028	0.063
	50	f	842	20	20	20	1	431	241	42.5	0.29	0.183	0.025
	51	m	1188	59	30	45	3	624	361	20.0	0.30	0.410	
	52	р	30	30	30	24	1	30	26	1.0	0.86	0.002	
	53	f	376	20	20	20	1	198	141	19.0	0.37	0.062	0.043
	54	р	40	20	20	16	1	30	27	2.0	0.68	0.002	0.222
	55	f	99	20	20	20	1	59	58	5.0	0.58	0.002	0.222
	56	f	99	20	20	20	1	59	58	5.0	0.58	0.011	0.104
	57	f	129	30	30	30	1	79	79	4.3	0.61	0.020	0.076
	58	m	4752	40	30	59	4	2396	1262	120.0	0.27	5.007	0.005
	59	р	50	40	40	32	1	45	40	1.3	0.80	0.005	0.152
ĺ	60	f	891	20	20	20	1	455	251	45.0	0.28	0.197	0.024
	61	f	149	15	15	15	1	82	69	10.0	0.46	0.015	0.024
	62	f	198	10	10	10	1	104	73	20.0	0.37	0.017	0.082
	63	f	1485	20	20	20	1	752	352	75.0	0.24	0.390	0.002
į	64	f	693	20	20	20	1	356	212	35.0	0.24	0.390	0.017
	65	f	644	10	10	10	1	327	160	65.0	0.25	0.080	0.028
	66	f	297	15	15	15	1	156	109	20.0	0.23		
	67	f	842	20	20	20	1	431	241	42.5	0.37	0.038	0.055
	68	P	50	40	40	32	1	45	40	1.3	0.80	0.183	0.025
	69	f	495	20	20	20	1	257	169	25.0		0.005	0.152
	70	f	99	20	20	20	1	59	58	5.0	0.34	0.090	0.035
١	71	p p	50	40	40	32	1	45	40	1.3	0.58	0.011	0.104
ı	72	р	79	20	20	16	1	50	43	4.0	0.80	0.005	0.152
	73	f	3069	30	30	30	1	1549	654		0.54	0.006	0.140
İ	74	f	99	8	8	8	1	53	43	103.3	0.21	1.344	0.009
	75	f	1218	10	10	10	1	614	245	12.5 123.0	0.43	0.006	0.141
	76	f	178	8	8	8	1	93	63		0.20	0.188	0.025
1	77	, P	50	20	20	16	1	35	31	22.5 2.5	0.35 0.63	0.013	0.095
ı	78	f	347	20	20	20	1	183	133	17.5	0.83	0.003	0.191
Ì	79	p p	59	20	20	16	1	40	35			0.056	0.045
ł	80	р	89	20	20	16	1	54	33 47	3.0	0.60	0.004	0.169
	81	p	50	20	20	16	1	35		4.5	0.52	0.007	0.129
	82	f	3515	30	30	30	1		31	2.5	0.63	0.003	0.191
								1772	716	118.3	0.20	1.610	0.008
	83	f	2277	30	30	30	1	1153	536	76.7	0.24	0.903	0.011
	84	f	396	10	10	10	1	203	116	40.0	0.29	0.042	0.052
	85	f	446	10	10	10	1	228	125	45.0	0.28	0.049	0.048
	86	b	396	30	8	18	3	213	119	13.3	0.30	0.044	0.051
	87	f	475	20	20	20	1	248	165	24.0	0.35	0.085	0.036
-												2.000	0.0009

INDIVIDUAL SIZE DISTRIBUTION COUNT DATA

Page 3

Client Name: NRaD

Client Project#: Paper sizing

ETA Project #: 94-4274

Client Sample # : P2-1 (slides E-H)

ETA Sample #: 4274-1

Γ	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers		Hydro.		Particle		Sur.Area /
	Number	Туре	(µm)	Dia.(µm)	Dia.(µm)	(µm)	in struc.	Dia.(µm)	Dia.(µm)			Area(mm2)	
	88	b	208	40	20	45	3	124	129	5.3		0.053	0.046
	89	р	50	40	40	32	1	45	40	1.3		0.005	0.152
	90	f	89	15	15	15	1	52	49	6.0		0.008	0.122
	91	f	218	10	10	10	1	114	78	22.0		0.019	0.077
- [92	Р	50	30	30	24	1	40	36	1.7		0.004	0.167
-	93	f	149	20	20	20	1	84	76	7.5		0.018	0.079
	94	P	50	30	30	24	1	40	36	1.7		0.004	0.167
1	95	f	1564	50	50	50	1	807	495	31.6		0.769	0.012
1	96	f	99	10	10	10	1	54	46	10.0		0.007	
-	97	f	119	20	20	20	1	69	65	6.0		0.013	0.092
1	98	p	99	40	40	32	1	69	63	2.5		0.012 0.004	0.095 0.167
	99	р	50	30	30	24	1	40	36	1.7		0.004	0.167
-	100	f	891	30	30	30	1	460	287	30.0	0.32	0.236	0.021
		•											
ł						ľ							
ı													
			•										
1													
ļ													
L						1							

NUMERICAL SIZE DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Ou this a Nooco Di

ETA Cample # : 4274.2

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-3

Client Project#: Paper sizing

Client Sample #: P5-1

Sample Description: Brown paper / cardboard

Analysis Requested: Size and shape distribution analysis

Analysis Method: Polarized Light Microscopy

Magnification(x): 50 Scale (μm/division): 9.90 Total particles counted: 100

Total particles											
HYDRODYNAMI	C SIZE DI	STRIBUTIO	N AND N	<i>I</i> ORPHC	LOGY ST	ATISTICS	(all pape	r particle:	s)		
Description		Mean	Std. Dev.	95% C.L.	Descript	ion			Mean	Std. Dev.	95% C.L.
Hydrodynamic Diameter	(μm)	192	±245	±48	Fibers / S	tructure			1.55	±3.74	±0.73
X-Section Diameter (µm		358	±529	±104	Paper Fit	er Diame	eter (µm)		23.52	±19.90	±3.90
Median (μm)	-	84			Aspect R	atio (all p	articles)		18.02	±0.18	±0.04
Mode (size category)	,	≥31				0.44	±0.18	±0.04			
Skewness											
Kurtosis		10.9	(peaked)		Total Sur	face Area	a / Volum	e Ratio	0.01		
		HYDROD	YNAMIC	SIZE DIS	TRIBUTIO	N (μm≥s	stated size	e)			-
Particle Size (µm)	<8>	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
Midpoint size (μm)	6	12	23	47	94	188	375	750	1500	3000	≥4000
Numerical Count ≥	100	100	100	99	66	37	22	13	1		
Individual Count			1	33	29	15	9	12	1		
Individual Numerical %	,		1.0%	33.0%	29.0%	15.0%	9.0%	12.0%	1.0%		
Cumulative Numerical %			1.0%			78.0%	87.0%	99.0%	100.0%		
Estimated Volume (Mass Equivalent) Distribution											
Particle Size (µm)	<8	≥8	≥16	≥31	≥63	≥125	≥250 .	≥500	≥1000	≥2000	≥4000
Individual Volume %			0.0%	0.0%	0.2%	1.2%	4.6%	44.4%	49.5%		
Cumulative Volume %			0.0%	0.0%	0.3%	1.5%	6.1%	50.5%	100.0%		

≥ 8 12	≥16 23	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
12	23	4→						-2000	24000
	_0	47	94	188	375	750	1500	3000	≥4000
100	100	99	74	46	33	19	14	2	
	1	25	28	13	14	5	12	2	
	1.0%	25.0%	28.0%	13.0%	14.0%	5.0%	12.0%	2.0%	
	1.0%	26.0%	54.0%	67.0%	81.0%	86.0%	98.0%	100.0%	
	100	1 1.0%	1 25 1.0% 25.0%	1 25 28 1.0% 25.0% 28.0%	1 25 28 13 1.0% 25.0% 28.0% 13.0%	1 25 28 13 14 1.0% 25.0% 28.0% 13.0% 14.0%	1 25 28 13 14 5 1.0% 25.0% 28.0% 13.0% 14.0% 5.0%	1 25 28 13 14 5 12 1.0% 25.0% 28.0% 13.0% 14.0% 5.0% 12.0%	1 25 28 13 14 5 12 2 1.0% 25.0% 28.0% 13.0% 14.0% 5.0% 12.0% 2.0%

Particle	Count	Estimated	Ave. Hydrodynamic	Ave. X-section	Ave. Aspect
Category	%	Volume %	Size (µm)	Size (µm)	Ratio
paper particle	27.0%	0.2%	61	69	2.6
fiber	67.0%	42.4%	213	433	42.8
bundle	1.0%	4.9%	740	1460	13.8
matrix	5.0%	52.6%	497	708	5.6
non-paper					

Analyst : _____/ ____/ _____

COMPOSITION DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-3

Client Project#: Paper sizing

Client Sample #: P5-1

Sample Description: Brown paper / cardboard

Magnification(x): 50

Analysis Requested: Size and shape distribution analysis

Scale (µm/div.): 9.90

Analysis Method: Polarized Light Microscopy

Total particles counted: 100

Particle	Numerical		In	dividual	Count %	≥ "Hydro	dynamic	" Stated S	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	27				20%	5%	2%					
fiber	67			1%	11%	24%	12%	9%	10%			
bundle	1								1%			
matrix	5 .				2%		1%		1%	1%		
non-paper	•											
Particle	Numerical		С	umulativ	e Count ^c	% ≥ State	d "Hydro	dynamic"	Size(µm)		
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	´ ≥1000	≥2000	≥4000
paper particle	27				20%	25%	27%					
fiber	67			1%	12%	36%	48%	57%	67%			
bundle	1								1%			
matrix	5				2%	2%	3%	3%	4%	5%		
non-paper												

Particle	Numerical		In	dividual	Count %	≥ "Cross	-section"	Stated S	Size(μm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥ <u>̃</u> 500	≥1000	≥2000	≥4000
paper particle	27				19%	6%	2%					
fiber	67			1%	6%	20%	11%	13%	5%	10%	1%	
bundle	1									1%		
matrix	5					2%		1%		1%	1%	
non-paper	-											
Particle	Numerical		C	umulativ	e Count S	% ≥ stated	d "Cross-	section"	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	27				19%	25%	27%					
fiber	67			1%	7%	27%	38%	51%	56%	66%	67%	
bundle	1									1%		
matrix	5					2%	2%	3%	3%	4%	5%	
non-paper												

Particle	Normalized	ls	ndividual I	-lydrody:	namic No	rmalized	Count %	< maximi	um stripp	ed size		<2000µm
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	27				20%	5%	2%					
fiber	67			1%	11%	24%	12%	9%	10%			
bundle	1								1%			
matrix	5				2%		1%		1%	1%		
non-paper												

Numerical percent of distribution <2000μm = 100%

* Specific Gravity and thickness to diameter ratios utilized in mass / volume calculations.

			made / voiding dalog	nationo.		_
Category	paper particle	fiber	bundle	matrix	non-paper	
Thickness : diameter rat	io 0.80	1.00	0.75	0.50	0.70	
Specific Gravity	1.40	1.40	1.40	1.40	1.40	

Page 1

Client Name: NRaD

Client Project#: Paper sizing

ETA Project # : 94-4274

Sample Description : Brown paper / cardboard

Analysis Requested : Size and shape distribution analysis

Analysis Method: Polarized Light Microscopy

Magnification(x): 50

Total particles counted: 100

Client Sample #: P5-1

ETA Sample #: 4274-3

	Conve	ersion (μπ	า / div.) :	9.90							************		
Γ	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers		Hydro.		Particle		Sur.Area /
	Number	Туре	(μm)	Dia.(µm)	Dia.(μm)	(µm)	in struc.	Dia.(µm)	Dia.(μm)			Area(mm2)	
Г	1	m	3218	842	30	579	39	2030	1604	3.8	0.50	8.082	0.004
1	2	f	2376	30	30	30	1	1203	551	80.0	0.23	0.955	0.011
1	3	f	238	5	5	5	1	121	65	48.0	0.28	0.013	0.092
	4 .	ŧ.	248	10	10	10	1	129	85	25.0	0.34	0.023	0.071
	5	f	158	10	10	10	1	84	63	16.0	0.40	0.012	0.095
	6	f	178	5	5	5	1	92	54	36.0	0.30	0.009	0.111
	7	f	89	10	10	10	1	50	43	9.0	0.48	0.006	0.140
1	8	f	743	20	20	20	1	381	222	37.5	0.30	0.155	0.027
	9	f	2376	30	30	30	1	1203	551	80.0	0.23	0.955	0.011
	10	f	2079	30	30	30	1	1054	504	70.0	0.24	0.799	0.012
	11	р	69	30	30	24	1	50	45	2.3	0.65	0.006	0.133
	12	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
	13	f	277	10	10	10	1	144	91	28.0	0.33	0.026	0.066
İ	14	f	69	8	8	8	1	39	34	8.8	0.49	0.004	0.178
	15	f	257	5	5	5	1	131	69	52.0	0.27	0.015	0.087
	16	f	792	20	20	20	1	406	232	40.0	0.29	0.168	0.026
	.17	р	79	40	40	32	1	59	54	2.0	0.68	0.009	0.111
	18	m	119	50	10	15	3	84	40	2.4	0.33	0.005	0.151
	19	f	743	30	30	30	1	386	254	25.0	0.34	0.203	0.024
	20	р	99	30	30	24	1	64	57	3.3	0.58	0.010	0.105
1	21	f	178	20	20	20	1	99	86	9.0	0.48	0.023	0.070
1	22	f	941	10	10	10	1	475	206	95.0	0.22	0.133	0.029
	23	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
	24	f	50	5	5	5	1	27	23	10.0	0.46	0.002	0.261
	25	f	198	10	10	10	1	104	73	20.0	0.37	0.017	0.082
	26	b	2723	198	20	104	7	1460	740	13.8	0.27	1.718	0.008
	27	f	1386	20	20	20	1	703	336	70.0	0.24	0.355	0.018
	28	Р	59	59	59	48	1	59	51	1.0	0.86	0.008	0.117
	29	f	842	30	30	30	1	436	276	28.3	0.33	0.239	0.022
	30	f.	99	10	10	10	1	54	46	10.0	0.46	0.007	0.131
	31	р	119	30	30	24	1	74	64	4.0	0.54	0.013	0.093
	32	m	1931	149	50	99	4	1040	627	13.0	0.32	1.233	0.010
	33	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
	34	р	89	30	30	24	1,	59	53	3.0	0.60	0.009	0.113
	35	р	79	30	30	24	1	54	49	2.7		0.008	0.122
-	36	Þ	79	30	30	24	1	54	49	2.7		0.008	0.122
	37	P	59	50	50	40	1	54	48	1.2	0.81	0.007	i i
	38	P	50	50	50	40	1	50	43	1.0	0.86	0.006	
١	39	f	2129	20	20	20	1	1074	448	107.5	0.21	0.630	0.013
- [40	р	99	20	20	16	1	59	50	5.0	0.50	0.008	0.120

Note: Thickness measurements are based on estimated thickness to diameter ratios for each structure type.

	Structure	е Туре С	odes
р	paper particle	m	matrix
f	fiber	n	non-paper
b	bundle		

Page 2

Client Name: NRaD Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample # : P5-1 ETA Sample # : 4274-3

	Portiolo	Portido	Longth	Christian	Eibor	Thickness	# of Shore	Vacation	I leading	A 4	Destala	06	O A
	Particle	Particle	Length	Structure	Fiber		# of fibers		Hydro.		Particle		Sur.Area /
\vdash	Number	Туре	(μm)	Dia.(μm)	Dia.(µm)	(μm)	in struc.	Dia.(µm)	Dia.(μm)			Area(mm2)	
	41	p	69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
	42	f -	149	10	10	10	1	79	60	15.0	0.41	0.011	0.100
	43	p	69	50	50	40	1	59	53	1.4	0.77	0.009	0.112
	44	f	149	30	30	30	1	89	87	5.0	0.58	0.024	0.069
İ	45	f	495	30	30	30	1	262	194	16.7	0.39	0.118	0.031
	46	f	178	20	20	20	1	99	86	9.0	0.48	0.023	0.070
	47	f	644	20	20	20	1	332	202	32.5	0.31	0.128	0.030
	48	ŧ	3762	20	20	20	1	1891	654	190.0	0.17	1.345	0.009
İ	49	f	495	10	10	10	1	252	134	50.0	0.27	0.057	0.045
1	50	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092
	51	р	99	40	40	32	1	69	63	2.5	0.63	0.012	0.095
	52	р	297	149	149	119	1	223	203	2.0	0.68	0.130	0.030
	53	р	69	50	50	40	1	59	53	1.4	0.77	0.009	0.112
	54	f	69	10	10	10	1	40	36	7.0	0.52	0.004	0.166
	55	f	198	5	5	5	1	101	58	40.0	0.29	0.011	0.104
	56	f	3416	30	30	30	1	1723	702	115.0	0.21	1.550	0.009
	57	f	891	20	20	20	1	455	251	45.0	0.28	0.197	0.024
	58	f	198	20	20	20	1	109	92	10.0	0.46	0.027	0.065
	59	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
	60	f	3069	20	20	20	1	1544	571	155.0	0.19	1.026	0.011
	61	р	89	59	59	48	1	74	67	1.5	0.75	0.014	0.089
	62	f	3049	30	30	30	1	1539	651	102.7	0.21	1.332	0.009
	63	f	594	20	20	20	1	307	191	30.0	0.32	0.115	0.031
	64	f	416	10	10	10	1	213	120	42.0	0.29	0.045	0.050
	65	f	267	20	20	20	1	144	112	13.5	0.42	0.040	0.053
İ	66	ρ̈́	59	40	40	32	1	50	45	1.5	0.75	0.006	0.134
	67	f	1436	10	10	10	1	723	273	145.0	0.19	0.235	0.022
	68	f	495	30	30	30	1	262	194	16.7	0.39	0.118	0.031
	69	p	99	79	79	63	1	89	79	1.3	0.80	0.020	0.076
	70	, m	545	79	20	40	4	312	180	6.9	0.33	0.102	0.033
1	71	f	2525	30	30	30	1	1277	574	85.0	0.23	1.036	0.010
	72	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
	73	f	327	20	20	20	1	173	128	16.5	0.39	0.052	0.047
	74	р	89	20	20	16	1	54	47	4.5	0.52	0.007	0.129
	75	р	149	20	20	16	1	84	65	7.5	0.44	0.013	0.092
	76	р	79	30	30	24	1	54	49	2.7	0.62	0.008	0.122
	77	f	1752	20	20	20	1	886	393	88.5	0.22	0.486	0.015
	78	р	59	50	50	40	1	54	48	1.2	0.81	0.007	0.125
	79	f	178	30	30	30	1	104	98	6.0	0.55	0.030	0.061
1	80	р	238	79	79	63	1	158	142	3.0	0.60	0.063	0.042
	81	f	990	25	25	25	1	507	289	40.0	0.29	0.263	0.021
	82	f	347	5	5	5	1	176	84	70.0	0.24	0.022	0.071
	83	f	743	20	20	20	1	381	222	37.5	0.30	0.155	0.027
	84	f	79	10	10	10	1	45	40	8.0	0.50	0.005	0.152
	85	f	218	5									
					5	5	1	111	62	44.0	0.28	0.012	0.097
	86	m	99	50	8	16	4	74	37	2.0	0.37	0.004	0.163
	87	f	5643	30	30	30	1	2836	982	190.0	0.17	3.027	0.006

Page 3

Client Name: NRaD

Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample # : P5-1

ETA Sample #: 4274-3

Г	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers	X-section	Hydro.	Aspect	Particle	Surface	Sur.Area /
	Number	Туре	(µm)	Dia.(µm)	Dia.(µm)	(µm)	in struc.	Dia.(µm)	Dia.(μm)	Ratio	Sphericity	Area(mm2)	Vol. Ratio
-	88	f	79	5	5	5	1	42	31	16.0	0.40	0.003	0.191
	89	р	50	40	40	32	1	45	40	1.3	0.80	0.005	0.152
	90	p p	79	20	20	16	1	50	43	4.0	0.54	0.006	0.140
	91	f	218	20	20	20	1	119	98	11.0	0.45	0.030	0.061
	92	f	317	20	20	20	1	168	126	16.0	0.40	0.050	0.048
	93	f	3000	40	40	40	1	1520	709	75.8	0.24	1.579	0.008
	94	£ :	396	5	5	5	1	200	92	80.0	0.23	0.027	0.065
	95	f	297	20	20	20	1	158	120	15.0	0.41	0.046	0.050
	96	f	109	20	20	20	1	64	62	5.5	0.57	0.012	0.097
	97	f	1386	50	50	50	1	718	456	28.0	0.33	0.655	0.013
	98	f	297	20	20	20	1	158	120	15.0	0.41	0.046	0.050
	99	f	614	20	20	20	1	317	195	31.0	0.32	0.120	0.031
	100	р	59	30	30	24	1	45	41	2.0	0.68	0.005	0.148
													-

NUMERICAL SIZE DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-2

Client Project#: Paper sizing

Client Sample #: P6-1

Sample Description: White paper slurry

Analysis Requested: Size and shape distribution analysis

Analysis Method: Polarized Light Microscopy

Magnification(x): 50 Scale (μm/division): 9.90 Total particles counted: 100

HYDRODYNAMIC	SIZE DI	STRIBUTIO	N AND I	MORPHO	LOGY STA	TISTICS	(all pape	r particle:	s)		
Description		Mean	Std. Dev.	95% C.L.	Descripti	on			Mean	Std. Dev.	95% C.L.
Hydrodynamic Diameter (ım)	130	±179	±35	Fibers / S	tructure			1.38	±1.79	±0.35
X-Section Diameter (µm)	·	227	±402	±79	Paper Fib	er Diame	eter (µm)		19.30	±13.57	±2.66
Median (μm)		71			Aspect Ra	atio (all p	articles)		13.76	±0.15	±0.03
Mode (size category)		≥31			Structure	Spherici	ty		0.46	±0.17	±0.03
Skewness		4.4	(positive)		Surface A	rea/parti	cle (mm2	2)	0.15		
Kurtosis		25.9	(peaked)		Total Sur	face Area	a / Volum	e Ratio	0.01		
		HYDROD	YNAMIC	SIZE DIS	STRIBUTIO	N (μm ≥ s	stated size	e)			
Particle Size (μm) Midpoint size (μm)	<8 6	≥ 8 12	≥ 16 23	≥ 31 47	≥ 63 94	≥ 125 188	≥ 250 375	≥ 500 750	≥ 1000 1500	≥ 2000 3000	≥ 4000 ≥ 4000
Numerical Count ≥	100	100	100	93	54	29	13	3	1		****
Individual Count			7	39	25	16	10	2	1		
Individual Numerical %			7.0%			16.0% 87.0%	10.0% 97.0%	2.0% 99.0%	1.0% 100.0%		
Cumulative Numerical %		Ectimate	7.0%		71.0% Equivalent)			99.076	100.078		
	•			•	•	≥125	≥250	≥500	≥1000	≥2000	≥4000
Particle Size (µm)	<8	≥8	≥16	≥ 31	≥ 63	_	≥250 10.4%	≥500 18.7%	≥1000 67.9%	22000	≥4000
Individual Volume % Cumulative Volume %			0.0% 0.0%			2.5% 3.0%	13.4%	32.1%	100.0%		

		CROSS-	SECTION S	SIZE DIS	TRIBUTIO	N (μm ≥ s	stated size	e)			
Particle Size (μm)	<8	≥8	≥16	≥31	≥63	≥1 25	≥250	≥500	≥1000	≥2000	≥4000
Midpoint size (µm)	6	12	23	47	94	188	375	750	1500	3000	≥4000
Numerical Count ≥	100	100	100	96	59	39	20	12	3	1	
Individual Count			4	37	20	19	8	9	2	1	
Individual Numerical %			4.0%	37.0%	20.0%	19.0%	8.0%	9.0%	2.0%	1.0%	
Cumulative Numerical %			4.0%	41.0%	61.0%	80.0%	88.0%	97.0%	99.0%	100.0%	

Count	Estimated	Ave. Hydrodynamic	Ave. X-section	Ave. Aspect
%	Volume %	Size (µm)	Size (μm)	Ratio
28.0%	4.7%	62	116	9.4
66.0%	27.1%	140	233	27.5
1.0%	0.0%	79	218	10.0
5.0%	68.2%	379	770	5.4
	% 28.0% 66.0% 1.0%	% Volume % 28.0% 4.7% 66.0% 27.1% 1.0% 0.0%	% Volume % Size (μm) 28.0% 4.7% 62 66.0% 27.1% 140 1.0% 0.0% 79	% Volume % Size (μm) Size (μm) 28.0% 4.7% 62 116 66.0% 27.1% 140 233 1.0% 0.0% 79 218

Analyst:

Date : ____/ ___/ _____/

COMPOSITION DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

CA 92152 **ETA Sample #:** 4274-2

Client Project#: Paper sizing

Client Sample #: P6-1

Sample Description : White paper slurry

Magnification(x): 50

Analysis Requested: Size and shape distribution analysis

sis Scale (µm/div.): 9.90

Analysis Method: Polarized Light Microscopy

Total particles counted: 100

Analysis	Method: Pola	arized Lig	gnt Micro	scopy				lotal pa	articles c	ountea:	100	
Particle	Numerical		In	dividual	Count %	≥ "Hydro	dynamic'	'Stated S	ize(μm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	28			4%	21%	2%			1%			
fiber	66			3%	18%	19%	15%	10%	1%			
bundle	1					1%						
matrix	5					3%	1%	0		1%		
non-paper	,											
Particle	Numerical		С	umulativ	e Count ^c	% ≥ State	d "Hydro	dynamic"	Size(µm)	·	
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	28			4%	25%	27%	27%	27%	28%			
fiber	66			3%	21%	40%	55%	65%	66%			
bundle	1					1%						
matrix	5					3%	4%	4%	4%	5%		
non-paper												

Particle	Numerical		In	dividual	Count %	≥ "Cross-	section"	Stated S	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	28			2%	22%	3%				1%		
fiber	66			2%	15%	17%	15%	7%	9%	1%		
bundle	1						1%					
matrix	5						3%	1%			1%	
non-paper	•											
Particle	Numerical		Cı	umulativ	e Count 6	% ≥ stated	"Cross-	section"	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	28			2%	24%	27%	27%	27%	27%	28%		
fiber	66			2%	17%	34%	49%	56%	65%	66%		
bundle	1						1%					
matrix	5						3%	4%	4%	4%	5%	
non-paper												

0 ≥500 1%		≥2000	≥4000
1%			
% 1%			
	1%		
,	% 1%		

Numerical percent of distribution <2000μm = 100%

* Specific Gravity and thickness to diameter ratios utilized in mass / volume calculations.

Category	paper particle	fiber	bundle	matrix	non-paper	
Thickness: diameter ratio	0.80	1.00	0.75	0.50	0.70	
Specific Gravity	0.50	0.50	0.50	0.50	0.50	

Page 1

Client Name: NRaD

Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample #: P6-1 ETA Sample #: 4274-2

Sample Description: White paper slurry

Analysis Requested : Size and shape distribution analysis

Analysis Method : Polarized Light Microscopy

Magnification(x): 50
Conversion (um / div.): 9 90

Total particles counted: 100

_		ersion (μπ					# -4.Fb	Vasadas	Ll. idea	Acces	Particle	Surface	Sur Area /
	Particle	Particle	Length	Structure	Fiber	1	# of fibers		Hydro.				
L	Number	Туре	(µm)	Dia.(μm)	Dia.(µm)	(μm)	in struc.	Dia.(μm)	Dia.(μm)			Area(mm2)	
	1	f	30	10	10	10	1	20	21	3.0	0.69	0.001	0.291
l	2	f	594	30	30	30	1	312	219	20.0	0.37	0.150	0.027
	3	р	40	10	10	8	1	25	21	4.0	0.54	0.001	0.279
ı	4	ŧ	396	5	5	5	1	200	92	80.0	0.23	0.027	0.065
	5	f	79	5	5	5	1	42	31	16.0	0.40	0.003	0.191 0.083
	6	f	139	20	20	20	1	79	72	7.0	0.52	0.016	
ı	7	f	79	10	10	10	1	45	40	8.0	0.50	0.005	0.152
	8	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
l	9	f	376	30	30	30	1	203	161	12.7	0.43	0.082	0.037
	10	f	99	10	10	10	1	54	46	10.0	0.46	0.007	0.131
	11	р	59	30	30	24	1	45	41	2.0	0.68	0.005	0.148
	12	m	327	149	30	119	8	238	216	2.2	0.66	0.147	0.028
١	13	f	297	10	10	10	1	153	96	30.0	0.32	0.029	0.063
	14	р	89	30	30	24	1	59	53	3.0	0.60	0.009	0.113
	15	p	40	30	30	24	1	35	31	1.3	0.78	0.003	0.194
l	16	m	297	248	8	36	9	272	77	1.2	0.26	0.019	0.078
l	17	f	792	20	20	20	1	406	232	40.0	0.29	0.168	0.026
	18	f	990	15	15	15	1	502	244	66.7	0.25	0.187	0.025
	19	р	59	30	30	24	1	45	41	2.0	0.68	0.005	0.148
l	20	p p	79	40	40	32	1	59	54	2.0	0.68	0.009	0.111
	21	p p	3812	20	20	16	1	1916	569	192.5	0.15	1.017	0.011
	22	f	50	5	5	5	1	27	23	10.0	0.46	0.002	0.261
	23	f	99	5	5	5	1	52	36	20.0	0.37	0.004	0.165
	24	f	238	8	8	8	1	123	76	30.0	0.32	0.018	0.078
l	25	f	297	40	40	40	1	168	152	7.5	0.51	0.072	0.040
l	26	f	238	40	40	40	1	139	131	6.0	0.55	0.054	0.046
ŀ	27	f	119	-20	20	20	. 1	69	65	6.0	0.55	0.013	0.092
	28	р	30	30	30	24	1	30	26	1.0	0.86	0.002	0.234
	29	p	89	20	20	16	1	54	47	4.5	0.52	0.007	0.129
١	30	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
l	31	p	40	30	30	24	1	35	31	1.3	0.78	0.003	0.194
	32	P	50	40	40	32	1	45	40	1.3	0.80	0.005	0.152
	33	f	198	10	10	10	1	104	73	20.0	0.37	0.017	0.082
1	34	f	1485	15	15	15	1	750	320	100.0	0.22	0.322	0.019
	35	f	218	10	10	10	1	114	78	22.0		0.019	0.077
	36	f	178	5	5	5	1	92	54	36.0		0.009	
	37	b	396	40	5	11	3	218	79	10.0		0.020	
١	37 38		99	79	79	63	1	89	79	1.3		0.020	
	38 39	p f	396	50	50	50	1	223	198	8.0		0.123	
			89	50	5	5	1	47	34	18.0		0.004	
1	40	f	89	5_	5	<u> </u>	ı	4/	34	10.0	0.00	0.004	<u> </u>

Note: Thickness measurements are based on estimated thickness to diameter ratios for each structure type.

	Structure	е Туре С	odes	
р	paper particle	m	matrix	
f	fiber	n	non-paper	
b	bundle			

Page 2

Client Name: NRaD

Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample # : P6-1 ETA Sample # : 4274-2

Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers	X-section	Hydro.	Aspect	Particle	Surface	Sur.Area /
Number	Туре	(µm)	Dia.(µm)	Dia.(µm)	(µm)	in struc.	Dia.(µm)	Dia.(µm)	Ratio	Sphericity	Area(mm2)	Vol. Ratio
41	f	3762	40	40	40	1	1901	824	95.0	0.22	2.136	0.007
42	f	396	20	20	20	1	208	146	20.0	0.37	0.067	0.041
43	f	198	10	10	10	1	104	73	20.0	0.37	0.017	0.082
44	f	1683	20	20	20	1	851	383	85.0	0.23	0.460	0.016
45	р	59	20	20	16	1	40	35	3.0	0.60	0.004	0.169
46	f	139	5	5	5	1	72	46	28.0	0.33	0.007	0.131
47	f	1049	20	20	20	1	535	279	53.0	0.27	0.245	0.021
48	t j	99	5	5	5	1	52	36 :	20.0	0.37	0.004	0.165
49	f	743	5	5	5	1	374	140	150.0	0.19	0.061	0.043
50	p	40	40	40	32	1	40	34	1.0	0.86	0.004	0.176
51	m	5198	495	30	223	15	2846	1394	10.5	0.27	6.103	0.004
52	р	79	30	30	24	1	54	49	2.7	0.62	0.008	0.122
53	p	99	20	20	16	1	59	50	5.0	0.50	800.0	0.120
54	f	89	15	15	15	1	52	49	6.0	0.55	0.008	0.122
55	f	347	30	30	30	1	188	153	11.7	0.44	0.073	0.039
56	f	1337	30	30	30	1	683	376	45.0	0.28	0.444	0.016
57	f	792	40	40	40	1	416	292	20.0	0.37	0.267	0.021
58	f	99	8	8	8	1	53	43	12.5	0.43	0.006	0.141
59	f	99	10	10	10	1	54	46	10.0	0.46	0.007	0.131
60	f	69	10	10	10	1	40	36	7.0	0.52	0.004	0.166
61	р	89	30	30	24	1	59	53	3.0	0.60	0.009	0.113
62	f	99	20	20	20	1	59	58	5.0	0.58	0.011	0.104
63	f	1238	20	20	20	1	629	312	62.5	0.25	0.305	0.019
64	f	149	30	30	30	1	89	87	5.0	0.58	0.024	0.069
65	р	89	20	20	16	1	54	47	4.5	0.52	0.007	0.129
66	f	792	30	30	30	1	411	265	26.7	0.33	0.221	0.023
67	f	1089	40	40	40	1	564	361	27.5	0.33	0.409	0.017
68	f	594	20	20	20	1	307	191	30.0	0.32	0.115	0.031
69	f	99	10	10	10	1	54	46	10.0	0.46	0.007	0.131
70	f	297	5	5	5	1	151	76	60.0	0.26	0.018	0.079
71	f	99	20	20	20	1	59	58	5.0	0.58	0.011	0.104
72	f	79	5	5	5	1	42	31	16.0	0.40	0.003	0.191
73	р	89	20	20	16	1	54	47	4.5	0.52	0.007	0.129
74	f	743	20	20	20	1	381	222	37.5	0.30	0.155	0.027
75	f	129	20	20	20	1	74	69	6.5	0.54	0.015	0.087
76	f	89	3	3	3	1	46	29	30.0	0.32	0.003	0.209
77	р	50	20	20	16	1	35	31	2.5	0.63	0.003	0.191
78	Р	50	30	30	24	1	40	36	1.7	0.73	0.004	0.167
79	f	248	20	20	20	1	134	107	12.5	0.43	0.036	0.056
80	Р	50	20	20	16	1	35	31	2.5	0.63	0.003	0.191
81	f	248	3	3	3	1	125	57	83.3	0.23	0.010	0.106
82	f	208	5	5	5	1	106	60	42.0	0.29	0.011	0.100
83	f	337	20	20	20	1	178	131	17.0	0.39	0.054	0.046
84	р	99	30	30	24	1	64	57	3.3	0.58	0.010	0.105
85	f	297	15	15	15	1	156	109	20.0	0.37	0.038	0.055
86	f	208	20	20	20	1	114	95	10.5	0.46	0.028	0.063
87	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079

Page 3

Client Name: NRaD

Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample # : P6-1 ETA Sample # : 4274-2

Г	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers		Hydro.		Particle		Sur.Area /
	Number	Туре	(µm)	Dia.(µm)	Dia.(µm)	(µm)	in struc.	Dia.(μm)	Dia.(µm)			Area(mm2)	
Г	88	Р	99	50	50	40	1	74	68	2.0	0.68	0.014	
	89	Р	79	30	30	24	1	54	49	2.7	0.62	0.008	
	90	m	396	99	10	30	6	248	112	4.0	0.28	0.039	
	91	m	446	50	10	15	3	248	96	9.0	0.22	0.029	
ı	92	f	396	20	20	20	1	208	146	20.0	0.37	0.067	
	93	f	416	20	20	20	1	218	151	21.0	0.36	0.071	
	94	Ę	1337	50	50	50	1	693	446	27.0	0.33	0.624	
ł	95	р	69	30	30	24	1	50	45	2.3	0.65	0.006	
	96	f	119	20	20	20	1	69	65	6.0	0.55	0.013	
	97	f	1188	30	30	30	1	609	347	40.0	0.29	0.379	
	98	f	208	20	20	20	1	114	95	10.5	0.46	0.028	
	99	р	79	20	20	16	1	50	43	4.0	0.54	0.006	
	100	р	59	20	20	16	1	40	35	3.0	0.60	0.004	0.169
]							
1						1							
						1							

COMPOSITION DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274 ETA Sample #: 4274-4

Client Address: NCCOSC RDTE Division, San Diego, CA 92152 Client Project#: Paper sizing

Client Sample #: P8-1

Sample Description: Mixed paper

Magnification(x): 50

Analysis Requested: Size and shape distribution analysis

Scale (µm/div.): 9.90

Total particles counted: 100

Particle	Numerical		In	dividual	Count %	≥ "Hydro	dynamic'	" Stated S	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	26				22%	3%	1%					
fiber	68			1%	11%	21%	19%	12%	4%			
bundle	2					1%	1%			•		
matrix	4				1%	1%		4	1%	1%		
non-paper												
Particle Particle	Numerical		c	umulativ	e Count ^c	% ≥ State	d "Hydro	dynamic"	Size(µm)		
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	26	-			22%	25%	26%					
fiber	68			1%	12%	33%	52%	64%	68%			
bundle	2					1%	2%					
matrix	4				1%	2%	2%	2%	3%	4%		•
non-paper												

Particle	Numerical		In	dividual	Count %	≥ "Cross	-section"	Stated S	ize(μm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	26				20%	5%			1%			
fiber	68				5%	23%	8%	18%	10%	4%		
bundle	2						2%					
matrix	4					1%	1%				2%	
non-paper												
Particle	Numerical		C	umulativ	e Count '	% ≥ state	d "Cross-	section"	Size(µm)			
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	. 26				20%	25%	25%	25%	26%			
fiber	68				5%	28%	36%	54%	64%	68%		
bundle	2						2%					
matrix	4					1%	2%	2%	2%	2%	4%	
non-paper												

Particle	Normalized	lr	ndividual F	lydrodyi	namic No	rmalized	Count %	< maximi	um stripp	ed size		<2000µm
Category	Count	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
paper particle	26	•	· · · · · · · · · · · · · · · · · · ·		22%	3%	1%					
fiber	68			1%	11%	21%	19%	12%	4%			
bundle	2					1%	1%					
matrix	4				1%	1%			1%	1%		
non-paper												
•												

Numerical percent of distribution <2000μm = 100%

* Specific Gravity and thickness to diameter ratios utilized in mass / volume calculations.

Category	paper particle	fiber	bundle	matrix	non-paper	
Thickness: diameter ratio	0.80	1.00	0.75	0.50	0.70	
Specific Gravity	0.50	0.50	0.50	0.50	0.50	

NUMERICAL SIZE DISTRIBUTION ANALYSIS (Summary Report)

Client Name: NRaD

Analysis Date: 9/5/94

Contact: Stacey Curtis

ETA Project #: 94-4274

Client Address: NCCOSC RDTE Division, San Diego, CA 92152

ETA Sample #: 4274-4

Client Project#: Paper sizing

Client Sample #: P8-1

Sample Description: Mixed paper

Analysis Requested: Size and shape distribution analysis

Analysis Method: Polarized Light Microscopy

Magnification(x): 50 Scale (µm/division): 9.90 Total particles counted: 100

HYDRODYNAMIC	SIZE D	ISTRIBUTIO	I DNA NC	MORPHC	LOGY ST	ATISTICS	(all pape	r particle	:s)		
Description		Mean	Std. Dev.	95% C.L.	Descripti	ion			Mean	Std. Dev.	95% C.L.
Hydrodynamic Diameter (μm)	175	±232	±46	Fibers / S	Structure			1.65	±4.45	±0.87
X-Section Diameter (μm)		305	±455	±89	Paper Fib	oer Diam	eter (μm))	22.23		
Median (μm)	-	87			Aspect R	atio (all p	articles)		13.21	±0.16	±0.03
Mode (size category)		≥31		,	Structure	Spherici	ty		0.44	±0.16	±0.03
Skewness		4.5	(positive)	, !	Surface A	\rea/parti	icle (mm2	2)	0.27		
Kurtosis		28.1	(peaked)		Total Sur	face Area	a / Volum	ie Ratio	0.01		<u> </u>
		HYDROD	YNAMIC	SIZE DIS	STRIBUTIO	N (μm ≥ :	stated siz	:e)			
Particle Size (μm)	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
Midpoint size (μm)	6	12	23	47	94	188	375	750	1500	3000	≥4000
Numerical Count ≥	100	100	100	99	65	39	18	6	1	* ;	
Individual Count			1	34	26	21	12	5	1		
Individual Numerical %			1.0%	34.0%	26.0%	21.0%	12.0%	5.0%	1.0%		
Cumulative Numerical %			1.0%			82.0%	94.0%	99.0%	100.0%		
		Estimated	• Volume	(Mass F	Equivalent)) Distribu	tion				
Particle Size (μm)	<8	≥8	≥16	≥31	≥63	≥125	≥250	≥500	≥1000	≥2000	≥4000
Individual Volume %			0.0%	0.0%	0.2%	2.1%	5.7%	19.4%	72.6%		
Cumulative Volume %			0.0%	0.0%	0.2%	2.3%	8.0%	27.4%	100.0%		

		CROSS-	SECTION	SIZE DIS	TRIBUTIO	N (μm ≥ :	stated siz	e)			
Particle Size (μm) Midpoint size (μm)	<8 6	≥ 8 12	≥ 16 23	≥ 31 47	≥ 63 94	≥ 125 188	≥ 250 375	≥ 500 750	≥ 1000 1500	≥ 2000 3000	≥ 4000 ≥4000
Numerical Count ≥ Individual Count	100	100	100	100 25	75 29	46 11	35 18	17 11	6 4	2 2	24000
Individual Numerical % Cumulative Numerical %				25.0% 25.0%	29.0% 54.0%	11.0% 65.0%	18.0% 83.0%	11.0% 94.0%	4.0% 98.0%	2.0% 100.0%	

Particle	Count	Estimated	Ave. Hydrodynamic	Ave. X-section	Ave. Aspect
Category	%	Volume %	Size (μm)	Size (μm)	Ratio
paper particle	26.0%	0.2%	56	74	4.6
iber	68.0%	23.1%	19 1	338	32.7
oundle	2.0%	0.1%	136	196	8.0
natrix	4.0%	76.6%	680	1297	4.2
non-paper					

Analyst: Date: _

Page 1

Client Name: NRaD

Client Project#: Paper sizing

ETA Project # : 94-4274

Sample Description : Mixed paper

Analysis Requested: Size and shape distribution analysis

Analysis Method: Polarized Light Microscopy

Magnification(x): 50
Conversion (um / div.): 9.90

Total particles counted: 100

Client Sample #: P8-1

ETA Sample #: 4274-4

	Conve	rsion (µm		9.90	<u></u>								
	Particle	Particle	Length	Structure	Fiber	4	# of fibers		Hydro.		Particle		Sur.Area /
L	Number	Туре	(µm)	Dia.(µm)	Dia.(μm)	(µm)	in struc.	Dia.(µm)	Dia.(μm)			Area(mm2)	
	1	f	277	20	20	20	1	149	115	14.0	0.41	0.042	0.052
	2	р	69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
	3	р	1089	20	20	16	1	554	247	55.0	0.23	0.191	0.024
	4	£	792	20	20	20	1	406	232	40.0	0.29	0.168	0.026
	5	р	59	30	30	24	1	45	41	2.0	0.68	0.005	0.148
	6	f	515	20	20	20	1	267	174	26.0	0.34	0.095	0.035
	7	р	79	40	40	32	1	59	54	2.0	0.68	0.009	0.111
	8	f	69	10	10	10	1	40	36	7.0	0.52	0.004	0.166
	9	m	4455	990	25	569	46	2723	1866	4.5	0.42	10.938	
Į.	10	f	178	10	10	10	1	94	68	18.0	0.38	0.015	
ı	11	f	673	20	20	20	1	347	208	34.0	0.31	0.136	1
ı	12	f	743	20	20	20	1	381	222	37.5	0.30	0.155	1
	13	P	50	30	30	24	1	40	36	1.7	0.73	0.004	1
	14	р	99	30	30	24	1	64	57	3.3	0.58	0.010	
	15	f	277	20	20	20	1	149	115	14.0	0.41	0.042	
1	16	р	59	20	20	16	1	40	35	3.0	0.60	0.004	
	.17	f	941	40	40	40	1	490	327	23.8	0.35	0.336	
	18	f	109	20	20	20	1	64	62	5.5	0.57	0.012	
1	19	f	248	10	10	10	1	129	85	25.0	0.34	0.023	
	20	¹ f	644	15	15	15	1	329	183	43.3	0.28	0.105	
	21	f	614	20	20	20	1	317	195	31.0	0.32	0.120	
	22	f	1109	59	59	59	1	584	418	18.7	0.38	0.549	
	23	f	693	40	40	40	1	366	267	17.5	0.39	0.224	
-	24	р	59	30	30	24	1	45	41	2.0	0.68	0.005	
	25	f	178	30	30	30	1	104	98	6.0	0.55	0.030	
	26	m	3564	792	30	149	10	2178	707	4.5		1.571	
	27	p	89	25	25	20	1	57	50	3.6	0.56	0.008	
1	28	f	158	20	20	20	1	89	79	8.0	0.50	0.020	
	29	f	119	20	20	20	1	69	65	6.0	0.55	0.013	
	30	f '	198	20	20	20	1	109	92	10.0	0.46	0.027	
	31	р	50	40	40	32	1	45	40	1.3	0.80	0.005	
	32	f	218	15	15	15	1	116	89	14.7	0.41	0.025	
-	33	f	970	20	20	20	1	495	265	49.0	0.27	0.221	
-	34	m	277	59	20	30	3	168	104	4.7		0.034	
	35	f	792	20	20	20	1	406	232	40.0	0.29	0.168	
	36	р	50	50	50	40	1	50	43	1.0		0.006	
	37	f	3861	40	40	40	1	1950	839	97.5		2.211	
1	38	f	79	10	10	10	1	45	40	8.0		0.005	
	39	f	178	20	20	20	1	99	86	9.0		0.023	
	40	f	1782	20	20	20	1	901	398	90.0	0.22	0.497	0.015

Note: Thickness measurements are based on estimated thickness to diameter ratios for each structure type.

	Structure	е Туре С	odes
Р	paper particle	m	matrix
f	fiber	n	non-paper
b	bundle		

Page 2

Client Name: NRaD Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample # : P8-1 ETA Sample # : 4274-4

ı	Particle	Particle	Length	Structure	Fiber	Thickness	# of fibers	X-section	Hydro.	Aspect	Particle	Surface	Sur.Area /
L	Number	Туре	(µm)	Dia.(μm)	Dia.(µm)	(μm)	in struc.	Dia.(µm)	Dia.(µm)	Ratio	Sphericity	Area(mm2)	Vol. Ratio
1	41	f	2059	30	30	30	1	1044	501	69.3	0.24	0.789	0.012
-	42	f	1634	35	35	35	1	834	452	47.1	0.28	0.642	0.013
- [43	р	99	40	40	32	1	69	63	2.5	0.63	0.012	0.095
-	44	f	139	20	20	20	1	79	72	7.0	0.52	0.016	0.083
	45	f	267	20	20	20	1	144	112	13.5	0.42	0.040	0.053
	46	р	69	30	30	24	1	50	45	2.3	0.65	0.006	0.133
-	47	р	99	20	20	16	1	59	50	5.0	0.50	0.008	0.120
ı	48	Þ.	59	50	50	40	1	54	48	1.2	0.81	0.007	0.125
1	49	f	119	15	15	15	1	67	59	8.0	0.50	0.011	0.101
	50	f	1040	10	10	10	1	525	220	105.0	0.21	0.153	0.027
1	51	р	69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
	52	f	178	15	15	15	1	97	78	12.0	0.44	0.019	0.077
	53	f	99	20	20	20	1	59	58	5.0	0.58	0.011	0.104
1	54	f	1287	20	20	20	1	653	320	65.0	0.25	0.322	0.019
	55	f	3812	30	30	30	1	1921	756	128.3	0.20	1.794	0.008
	56	f .	891	15	15	15	1	453	228	60.0	0.26	0.163	0.026
	57	f	396	50	50	50	1	223	198	8.0	0.50	0.123	0.030
-	58	f	554	20	20	20	1	287	183	28.0	0.33	0.105	0.033
1	59	f	59	5	5	5	1	32	26	12.0	0.44	0.002	0.231
	60	f	188	20 -	20	20	1	104	89	9.5	0.47	0.025	0.068
1	61	m	178	59	5	12	5	119	43	3.0	0.24	0.006	0.138
	62	f	198	20	20	20	1	109	92	10.0	0.46	0.027	0.065
	63	f	614	20	20	20	1	317	195	31.0	0.32	0.120	0.031
	64	f	594	59	59	59	1	327	276	10.0	0.46	0.239	0.022
İ	65	р	69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
	66	р	69	30	30	24	1	50	45	2.3	0.65	0.006	0.133
1	67	f	198	5	5	5	1	101	58	40.0	0.29	0.011	0.104
	68	f	1238	10	10	10	1	624	248	125.0	0.20	0.192	0.024
1	69	р	119	40	40	32	1	79	71	3.0	0.60	0.016	0.085
	70	f	297	30	30	30	1	163	138	10.0	0.46	0.060	0.044
	71	f	644	15	15	15	1	329	183	43.3	0.28	0.105	0.033
ı	72	f	149	20	20	20	1	84	76	7.5	0.51	0.018	0.079
	73	f	1208	40	40	40	1	624	387	30.5	0.32	0.469	0.016
	74	р	69	40	40	32	1	54	50	1.8	0.72	0.008	0.121
1	75	f	178	5	5	5	1	92	54	36.0	0.30	0.009	0.111
ı	76	f	178	20	20	20	1	99	86	9.0	0.48	0.023	0.070
1	77	f	376	20	20	20	1	198	141	19.0	0.37	0.062	0.043
1	78	Р	69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
ı	79	b	297	50	5	15	4	173	73	6.0	0.25	0.017	0.082
	80	f	743	10	10	10	1	376	176	75.0	0.24	0.097	0.034
	81	f	446	5	5	5	1	225	99	90.0	0.22	0.031	0.060
	82	f	495	40	40	40	1	267	213	12.5	0.43	0.143	0.028
	83	f	2158	50	50	50	1	1104	613	43.6	0.28	1.181	0.010
	84	f	188	15	15	15	1	101	81	12.7	0.43		
	85	b	396	40	20							0.020	0.074
						45	3	218	199	10.0	0.50	0.124	0.030
	86	р	119	119	119	95	1	119	102	1.0	0.86	0.033	0.059
L	87	f	119	20	20	20	1	69	65	6.0	0.55	0.013	0.092

Page 3

Client Name: NRaD

Client Project#: Paper sizing ETA Project #: 94-4274

Client Sample #: P8-1 ETA Sample #: 4274-4

					T				A	David-1-	Confess	Com Area d
Particle	Particle	Length	Structure	Fiber	Thickness			Hydro.		Particle	Surface	1
Number	Туре	(µm)	Dia.(μm)	Dia.(μm)	(µm)	in struc.	Dia.(μm)	Dia.(μm)	2.7	0.62	Area(mm2) 0.008	0.122
88	р	79	30	30	24 5	1	54 106	49 60	42.0	0.82	0.008	0.122
89	f	208	5	5		1	69	55	13.0	0.43	0.009	0.110
90	f	129	10	10	10	1	69	61	3.7	0.43	0.012	0.099
91	þ	109	30	30	24	1	114	78	22.0	0.36	0.012	0.077
92	f	218	10	. 10	10 5	1 1	101	78 58	40.0	0.29	0.013	0.104
93	f	198	5 20	5 20	20	1	554	286 ÷	55.0	0.26	0.258	0.021
94	£:	1089 99	20 20	20	20	1	59	58	5.0	0.58	0.011	0.104
95	f	1337	20 20	20	20	1	678	328	67.5	0.25	0.339	0.018
96	ť	50	30	30	24	1	40	36	1.7	0.73	0.004	0.167
97 98	p f	1386	20	20	20	1	703	336	70.0	0.24	0.355	0.018
99		69	20	20	16	1	45	39	3.5	0.57	0.005	0.153
100	p f	673	25	25	25	1	349	224	27.2	0.33	0.157	0.027

MICROSCOPIC SIZE ANALYSIS DEFINITIONS AND RULES

Structure definitions:

Structure:

Bundle:

Fiber:

Matrix:

An individual particle composed of one or more paper fibers.

Paper particle with an aspect ration of < 5:1 Paper particle:

Paper particle with an aspect ratio of ≥ 5 : 1

3 or more fibers contacting each other and in parallel arrangement

3 or more fibers intersecting or attached to a central point

Counting rules:

A total of 100 "paper" structures greater than 5 divisions (49.5μm) are counted at a magnification of 50Χ

The largest structure on the first slide analyzed is sized first to account for a negative bias in counting large structures

Fields are established using the the "left" edge of a grid line, tabulating every 3rd structure crossing the vertical cross-hair.

After every 5th stucture counted, the slide is moved to the next horizontal grid square.

After every 25 structures counted, a new slide (comprising a different quarter section of the same filter) is counted.

All numerical size distribution statistics are based on the arithmetic mean diameter.

The estimated mass distribution is based on particle volume (formula for a sphere) in each size catagory, and does not take into account particle specific gravity.

Statistical Parameter Definitions & Formulas:

Arithmetic mean of "structure" length, width, and approximate thickness using the sphericity coefficient. Diameter = Structure length * Sphericity Hydrodynamic Diameter

Arithmetic mean of "structure" length and width not accounting for particle thickness. Diameter = (Structure length + structure diam.) / 2 Cross-section Diameter

Number in the middle of a distribution; that is, half the values are greater than the median, and half the values below

Degree of symmetry of a population around its mean. Positive skewness indicates a distribution with an asymmetric Most frequently occurring range in a size distribution. The largest size category is reported in bimodal distributions.

Skewness

Median Mode tail towards more positive values. Negative skewness indicates an asymmetric tail towards more negative values.

Relative peakedness or flatness of a distribution compared to the normal distribution. Positive kurtosis indicates

a relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution

95% Confidence Limit (i.e. probability that 95% of time the mean value will fall within the specified size range). Ratio of particle length divided by the particle width Aspect Ratio

95% C.L.

Kurtosis

Measure of effective particle size based on the formula (thickness ^2 / (length*width))^0.333

Particle Sphericity

Surface Area

Volume

APPENDIX C

LIQUID PHASE ORGANISM TOXICITY TESTING REPORT

Source:

ب

Marine Acute Toxicity Test Results of Pulped Paper/Cardboard

and Shredded Metal to Mysid Shrimp (Mysidopsis bahia),

Silverside Minnows (Menidia beryllina), Marine Dinoflagellates

(Gonyaulax polyedra), Bacteriam (Photobacterium phosphoreum),

and Chain Diatoms (Skeletonema costatum).

San Diego, California

Naval Command, Control & Ocean Surveillance Center, RDTE

Division, Code 522, 1995

Marine Acute Toxicity Test Results of Paper Pulp and Shredded Metal to Mysid Shrimp (Mysidopsis bahia), Silverside Minnows (Menidia beryllina), A Marine Dinoflagellate (Gonyaulax polyedra), a bacterium (Photobacterium phosphoreum), and a Chain Diatom (Skeletonema costatum)

By

David Lapota¹, Debbie Duckworth¹, Gunther Rosen², Jon Groves², and Bradley Davidson²

¹Naval Command, Control & Ocean Surveillance Center, RDTE Division, Code 522 53475 Strothe Road, San Diego, CA 92152-6310

Phone: (619) 553-2798; 2815 FAX: (619) 553-6305 email: lapota@nosc.mil

²Computer Sciences Corporation 4045 Hancock Street, San Diego, CA 92110-5164

July 1995

A report prepared for:

Bart Chadwick

EXECUTIVE SUMMARY

A series of static-renewal EPA acceptable bioassays were conducted to estimate the potential toxicity of 2 leachable materials. The materials, labelled Paper Pulp and Shredded Metal, were tested on the mysid shrimp (Mysidopsis bahia), the minnow (Menidia beryllina), the marine chain diatom (Sleletonema costatum, clone "Skel"), the Microtox bioassay (Photobacterium phosphoreum), and the Qwiklite Bioassay System, which uses the bioluminescent dinoflagellate, Gonyaulax polyedra. The marine diatom was used for the chlorophyll assays. Bioassay organisms representing different phylawere chosen and tested to represent a potential "risk" to the marine environment. Mysidopsis bahia was chosen to represent a benthic or bottom dwelling animal response, while the minnow Menidia beryllina was chosen to represent a pelagic or swimming animal response. The phytoplankton chain diatom species, Skeletonema costatum and the bioluminescent dinoflagellate, Gonyaulax polyedra, were used to observe any potential effect on the primary producers in marine waters. The endpoints measured were the concentration at which 50% of test organisms were affected (LC50/IC50) and the concentration at which no observable effect occurred (NOEC). The effects measured varied depending on the test species and were: survival in the mysids and minnows (LC50s), inhibition of bioluminescence of G. polyedra and the bacterium (IC50), and biomass or chlorophyll fluorescence (IC50) in the diatom tests.

Toxicity was observed in the mysid when exposed to a 5% leachate of Paper Pulp. No NOEC or LC50 value could be determined as significant toxicity was observed at the lowest leachate concentration and did not follow a dose response curve. Assays where the 5% leachate of Paper Pulp was centrifuged, less toxicity was observed and a dose response occurred. In only one mysid assay was a NOEC value observed at 6.25% (5%) leachate. No toxicity was observed in fish when exposed to 5% leachate of Paper Pulp. Each of the fish assays resulted in NOEC values of 100% (5%) Paper Pulp leachate. When tested with the diatom, S. costatum, a 5% leachate of Paper Pulp resulted in an IC50 value of between 12.5 and 50% leachate and NOEC values of 12.5% and 25% leachate respectively. The 5% Paper Pulp caused a dose response in the dinoflagellate, G. polyedra, where the IC50 was 27.7% and a NOEC was not applicable after 96 hours of exposure. A 0.01% leachate Paper Pulp resulted in an NOEC value of 100% due to variable bioluminescence levels which did not indicate a dose response curve to either hormesis or inhibition in the dinoflagellate, G. polyedra. There was up to 31% reduction of light output from bacteria after 5 minutes of exposure to 5% Paper leachate and an average of 20% reduction of light output from the bacterium after 5 minutes of exposure to 0.01% Paper leachate. The NOEC value after 96 hours of exposure to 5% leachate was 50% (5%) leachate and a NOEC value was not applicable after exposure to 0.01% leachate.

5% leachate of Shredded Metal had no adverse effects on mysid or fish. An IC50 value of 58.7% and an NOEC value of 25% was observed when *S. costatum* was exposed to 25% leachate of Shredded Metal. The 5% leachate Shredded Metal had no

adverse effect on the diatom resulting in an NOEC value of 100% (5%) leachate after 96 hours. When tested with the bioluminescent dinoflagellate, the 25% and 5% leachate resulted in similar IC50 values, 18.8% and 18.7% respectively. A NOEC value was not applicable when the dinoflagellate was exposed to 5% leachate but equal to 6.25% when tested with (25%) leachate. The 25% Metal leachate reduced light output from the bacterium by 37% after 5 minutes while the 5% leachate reduced light output by 23% after 5 minutes of exposure. NOEC values were not applicable for either concentration of leachate in the Microtox assays.

Complete Progress of Bioassays for Paper Pulp & Shredded Metal Study

	Mysidopsis bahia	Menidia beryllina	Skeletonema costatum	Gonyaulax polyedra	Photo- bacterium
Paper Pulp		· v			
25%					
2%	XXX	XXX	XXX	×	XXX
0.01%			×	×	XXX
Shredded Metal					
25%			×	×	XXX
%5	5% XXX	XXX	×	×	XXX

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	2
INTRODUCTION	6
MATERIALS AND METHODS	. 6
RESULTS	12
FIGURES	.18-47
RAW DATA, FISH & MYSID ASSAYS	48-67
RAW DATA, DIATOM ASSAYS	68-72
RAW DATA, MICROTOX ASSAYS	73-77
RAW DATA, QWIKLITE ASSAYS	78-93

INTRODUCTION

A series of static-renewal EPA (Environmental Protection Agency) acceptable bioassays, in addition to a suite of Microtox and Qwiklite Bioluminescence Assays, were conducted to estimate the potential toxicity of 2 materials. The materials, labelled Paper Pulp and Shredded Metal, were tested on the mysid shrimp (Mysidopsis bahia), the minnow (Menidia beryllina), the bioluminescent dinoflagellate (Gonyaulax polyedra), the bioluminescent bacteria (Photobacterium phosphoreum), and the marine chain diatom (Skeletonema costatum, clone "Skel"). The marine diatom was used for the chlorophyll assays. Bioassay organisms representing different phyla were chosen and tested to represent a potential "risk" to the marine environment. Mysidopsis bahia was chosen to represent a benthic or bottom dwelling animal response, while the minnow Menidia beryllina was chosen to represent a pelagic or swimming animal response. The phytoplankton chain diatom species and the dinoflagellate were used to observe any potential effect on the primary producers in marine waters. The endpoints measured were the concentration at which 50% of test organisms were affected (LC50/IC50) and the concentration at which no observable effect occurred (NOEC). The effects measured varied depending on the test species and were: survival in the mysids and minnows (LC50s), inhibition of bioluminescence of G. polyedra and the bacterium (IC50), and biomass or chlorophyll fluorescence (IC50) in the diatom tests.

MATERIALS AND METHODS

Test Equipment Preparation for Mysids and Minnows

All test chambers were constructed from borosilicate glass beakers with lids. All beakers were washed with a critical cleaner and rinsed with 10% nitric acid. Three deionized water rinses followed each cleaning procedure. All acute toxicity tests with the mysids were conducted in 300 ml beakers with 200 ml of dilution water. The minnows were maintained in 400 ml beakers with 250 ml of dilution water. The diatom assay required 125 ml Erlenmeyer flasks containing 25 ml of test solution. The bioluminescent assays used spectrophotometric grade cuvettes to contain approximately three ml of test solution.

Source and Acclimation of Test Species

Several day old M. bahia and M. beryllina were shipped overnight from Aquatic Indicators, St. Augustine, FL, to our laboratory. Both the mysids and minnows were slowly acclimated in a 25°C water bath and transferred by pipette to several holding tanks with filtered $(0.45\,\mu\text{m})$ seawater. The dilution water used in testing was obtained from the NCCOSC Biological Effects Program bioassay facility located near the mouth of San Diego Bay. Water was filtered through a coarse sand filter prior to final filtration $(0.45\,\mu\text{m})$. The test animals were slowly acclimated to the test water salinity of 33 partsper-thousand over several days. All test animals were fed daily with freshly hatched Artemia brine shrimp.

The marine diatom, *Skeletonema costatum*, clone "Skel" was obtained from the UCLA, Hopkins Marine Station. The cultures were maintained on an enriched seawater medium (ESM) using filtered (0.20 μ m) seawater collected from the Scripps Institute of Oceanography pier pump system in La Jolla. Samples of the stock were routinely

aliquoted into fresh media to maintain high cell densities. The diatom was cultured at room temperature (~25°C) under cool white fluorescent bulbs at a light intensity of approximately 4000 lux for 12 hours per day.

Sea Water Extraction of Paper Pulp and Shredded Metal Materials

Test Solution was attained by leaching each material in filtered sea water for one and a half hours, in which 30 min of mixing period was followed by one hour of settling period (Elutriate Preparation, EPA protocol, 1991).

A 25% elutriate was prepared (EPA protocol, 1991) by subsampling 1 L of filtered sea water exposed to 250 grams of the homogenized material (1: 4 ratio). This 25% elutriate was then used as 100% test solution. For testing purposes and to determine a dose response curve, the 100% test solution was diluted with filtered sea water by half until 6.25%. The test solutions for every assay ranged between 100% and 6.25% elutriate. In cases of expected extreme toxicity, a 5% elutriate was prepared (50 gm/1 L). The Paper Pulp was subject to a dry: wet weight conversion factor (1:6.3) due to the high percentage of water in the material. Additional assays with the Paper Pulp were conducted to observe a no effect level of exposure using a 0.01% elutriate (0.630 gm/1 L). The supernatant was carefully removed from the material with the use of a mesh filter. The elutriate resulting from leaching was then used to make dilutions of the test solution. Following the first three assays exposing mysids to an elutriate of Paper Pulp, suspended solids were suspected of causing the toxicity and the elutriates were then centrifuged following the leaching procedure. Centrifugation was for 7 minutes at 1800 rpm at 25°C on a Damon, IEC Centra-8R Centrifuge.

Experimental Test Design and Procedure for Mysidopsis bahia and Menidia beryllina

Toxicity testing of Paper Pulp and Shredded Metal consisted of 96 hour static renewal acute tests. These assays were conducted to test for potential toxicity arising from exposure to the leachates.

Environmental Protection Agency (EPA) test protocols were followed for the mysid and minnow bioassays (U.S. EPA, 1988). For acute bioassays, test chamber sizes for the mysids and minnows were typically 300 and 400 ml beakers filled with 200 ml and 250 ml of solution, respectively. The average age of the animals were 5 days and 13 days at the start of the bioassays for mysids and minnows, respectively. The mysids and minnows were set up at 10 animals per beaker with two replicates for each concentration. Each assay began when test species were distributed to test beakers with 50 ml of filtered seawater (0.45 μ m). Animals were then pipetted from holding tanks into test beakers. Dilutions of the material leachate were added to each beaker to a final volume of either 200 or 250 ml. All animals were fed daily newly hatched Artemia brine shrimp. The test beakers were covered with glass lids and placed in a temperature controlled bath at 25°C. Solutions were renewed every 24 hours at which time fecal material was removed and seawater chemistry measurements were recorded. Survival was recorded every 24 hours. Seawater parameters measured daily were dissolved oxygen, pH, and temperature. Minimum requirements for test acceptability for dissolved oxygen are 40% saturation for acute tests and the seawater temperature must not fluctuate more than \pm 2°C.

Test concentrations of 100%, 50%, 25%, 12.5%, and 6.25% with a seawater control were used for both materials in the mysid acute tests and the minnow acute tests.

Percent survival was calculated and graphed. A probit analysis was performed to estimate $LC_{50,s}$ (lethal concentration to cause mortality in 50% of the tested population), where appropriate. All data were analyzed using Toxis II and Prodas statistical programs.

Experimental Test Design and Procedure for Diatom Biomass (Fluorescence) in Skeletonema costatum (Clone "Skel")

Prior to testing, monocultures of *Skeletonema* were maintained in enriched seawater medium (ESM) in 2 L borosilicate Erlenmeyer flasks under a light regime of 12:12 hours (light: dark) at a light intensity of approximately 4000 lux from cool white fluorescent bulbs. Culture temperature was maintained near 19°C. This bioassay was conducted in accordance with the American Society for Testing and Materials Standard Guide for Conducting Static 96-hr Toxicity Test with Microalgae (E 1218) (ASTM, 1992). At the beginning of each bioassay, 400 μ l of diatom stock was introduced into three replicate Erlenmeyer flasks containing a combined 150 ml of leachate and filtered seawater for the controls and different concentrations of the elutriate. The dilution water was collected from the pumped seawater system at the pier of the Scripps Institute of Oceanography in La Jolla. All seawater was filtered with membrane filters to 0.2 μ m and enriched as the stock cultures. Both the Paper Pulp and Shredded Metal materials were tested at concentrations of 100%, 50%, 25%, 12.5%, and 6.25% with seawater controls. All elutriate concentrations were nominal values. The control groups

received no addition of elutriate and did not exhibit background fluorescence. A Turner Model 112 fluorometer was used to measure in-vivo fluorescence from the diatom cells. The fluorometer was equipped with a combination T-5 lamp, a red-sensitive photomultiplier tube (R-136), a blue (5-60) excitation filter, and a red (2-64) filter to detect fluorescence at wavelengths > 640 nanometers (nm). Chlorophyll a fluorescence has maximum emission at 663 nm. The instrument was blanked between readings with filtered (0.45 μ m) seawater. All flasks were read within 1 hour after the introduction of the diatoms into the flasks and at 24-hour intervals for a period of 96 hours. The measured fluorescence is directly related to cell number and to the presence of viable diatom cells relative to the leachate concentration. Mean relative fluorescence, standard deviation, and the coefficient of variation were calculated for each control and leachate concentration. Relative fluorescence, calculated as a percentage of control values, was plotted over time during the test.

Experimental Test Design for Microtox (Bioluminescence) Assay

The Microtox Bioassay System is an acute toxicity test utilizing a specially cultured bioluminescent bacteria (*Photobacterium phosphoreum*). The test is employed for the determination of a dose response curve, from which the inhibition concentration (IC) of test solution causing a specified effect is found. The method measures the effect on the bioluminescent light output of the bacteria as they are challenged by the test solution. Observations of light output are recorded at 5 and 15 minutes of exposure. This test is usually used as a screen test for toxic effects. Three trials of the Paper Pulp assay were performed with four dilutions and a control. Five minute and 15-minute readings were

taken. Both the EC20 and EC50 were determined graphing the calculated Microtox statistic on log/log paper. Also, the percent reduction of light output at the 100% leachate dilution was calculated.

Experimental Test Design for QWIKLITE (Bioluminescence) Bioassay System

The QWIKLITE Bioassay also measures the inhibition of light emitted by the bioluminescent dinoflagellate, *Gonyaulax polyedra*, exposed to a test solution. The test lasts 96 hours and results are expressed as the percent of control in which all dilutions are compared to the controls. Toxicity results are reported as the IC50 when a dose response is the effect of exposure.

Testing of the dinoflagellates is accomplished by placing individual cuvettes containing the test material, media, and cells into a darkened test chamber which is attached to a photomultiplier tube (PMT). We have used our QWIKLITE bioassay system which uses a 2-inch diameter 8575 PMT with an S-20 response used in the photon count mode. The top of the test chamber is removable and houses a small adjustable motor which drives a stainless steel shaft terminating in a plastic propeller. The propeller is seated into the cuvette and as the contents are stirred, bioluminescence is generated and measured by the PMT. Each test period is completed at 24 hour intervals thereafter until completion of the bioassay. Mean light output (PMT counts) is calculated for each experimental group and control. Light output means are then graphed as light output (percent of control) as a function of time. All graphs represent the data collected at 96 hours of exposure.

RESULTS

Effects of Paper Pulp and Shredded Metal to Mysidopsis bahia

Paper Pulp - 5% Leachate

Three assays resulted in 15% to 60% mortality at the lowest concentration (6.25%) and lethality in all higher concentrations of test solution (Figure 1. - 3). No dose response was observable. Suspended solids in the elutriate were suspected of contributing to toxicity. Consequently, no LC₅₀ was observed in *Mysidopsis bahia* from this material leachate and further assays would require centrifugation of the elutriate prior to becoming a test solution. A NOEC value was not applicable due to the observed effects.

Paper Pulp - 5% Leachate. Centrifuged

Two of three assays resulted in LC50 values of 22% and 32% test solution at 96 hours of exposure (Figure 4.- 5.). The third assay resulted in total lethality (97.5% mortality) in concentrations 12.5 thru 100% (Figure 6.) No LC50 was observable in *Mysidopsis bahia* from the third assay of this leachate. After 96 hours of exposure, a NOEC value was not applicable to two of the three assays due to observed effects but equal to 6.25% (5%) leachate in the third assay.

Shredded Metal - 5% Leachate, Centrifuged

Three assays conducted resulted in no significant mortality. No dose response observed (figure 19.-21). No LC50 was observable in *Mysidopsis bahia* from the three assays of this leachate. After 96 hours of exposure, the NOEC value was 100% leachate in each of the three assays.

Effects of Paper Pulp and Shredded Metal to Menidia beryllina

Paper Pulp - 5% Leachate, Centrifuged

In three assays conducted, no significant mortality occurred in any test concentration (Figure 7. - 9.). No LC_{50} was observed in *Menidia beryllina* from this material leachate. After 96 hours of exposure, the NOEC value was 100% in each of the three assays.

Shredded Metal - 5% Leachate, Centrifuged

Three assays conducted resulted in no mortality in any test concentration (Figure 22. - 24.). No LC₅₀ was observed in *Menidia beryllina* from this material leachate. After 96 hours of exposure, the NOEC value was 100% in each of the three assays.

Effects of Paper Pulp and Shredded Metal to Skeletonema costatum (Clone "Skel")

Paper Pulp - 5% Leachate, Centrifuged

Three assays resulted in dose responses where the IC50 values at 96 hours of exposure observed to be: 12.5% - 25%, 25%, and 25 - 50% respectively (Figure 10. - 12.). A decline in plant biomass with increased concentration of test solution was consistently observed daily until the assays ended at 96 hours. After 96 hours of exposure, the NOEC value in two of the three assays was 12.5% (5%) leachate and 25% (5%) leachate in the third assay.

Paper Pulp - 0.01% Leachate, Centrifuged

One assay conducted resulted in no decline of biomass (Figure 13.). A slight enhancement of growth was observed in conjunction with increased test solution. No IC50 value was observable in *Skeletonema costatum* from this leachate. After 96 hours of

exposure, the NOEC value was 100% (0.01%) leachate.

Shredded Metal - 25% Leachate, Centrifuged

A 25% Shredded Metal leachate assay resulted in an dose response and an IC50 value of 59% leachate (Figure 14.). After 96 hours of exposure, the NOEC value was equal to 25% (25%) leachate.

Shredded Metal - 5% Leachate. Centrifuged

One assay resulted in no decline or enhancement of plant biomass (Figure 15.). No IC50 was observable in *Skeletonema costatum* from this leachate. After 96 hours of exposure, the NOEC value was 100% (5%) leachate.

Effects of Paper Pulp and Shredded Metal to Gonyaulax polyedra

Paper Pulp - 5% Leachate, Centrifuged

One assay resulted in a dose response curve where after 95 hours of exposure, no NOEC value was applicable and an IC50 value of 27.7% (5%) leachate was observed (Figure 16.).

Paper Pulp - 0.01% Leachate, Centrifuged

One assay resulted in variable levels of bioluminescence (Figure 17.). A poor dose response resulted in no observable IC50 value. After 96 hours of exposure, a NOEC value was observed at 100% (0.01%) leachate.

Shredded Metal - 25% Leachate, Centrifuged

One assay resulted in a dose response curve and an IC50 value at 96 hours at an 18.8% leachate (Figure 18.). After 96 hours of exposure, the NOEC value was 6.25% (25%) leachate.

Shredded Metal - 5% Leachate. Centrifuged

One assay conducted resulted in a dose response curve and an IC50 value at 96 hours at an of 18.7% leachate (Figure 25.). An NOEC value was not applicable after 96 hours of exposure.

Effects of Paper Pulp and Shredded Metal to Photobacterium phosphoreum (Microtox)

Paper Pulp - 5% Leachate, Centrifuged

Trial 1 and 2 showed a 5-minute EC20 of 76% and 98%, respectively. The five minute EC50 in both those trials were at or exceeded 100%, the maximum dilution tested. The third trial showed no toxicity as the control and the 100% leachate reading were essentially the same. The 15-minute readings on trial 1 were inconclusive for determining EC values because all mean readings for the dilutions except 100% exceeded the control mean (Figure 26.). This yielded only one usable point, and a dose response curve could not be plotted. After 15 minutes of exposure, the NOEC value was 100% (5%) leachate in each of the three trials.

Paper Pulp - 0.01% Leachate, Centrifuged

A 0.01% Paper Pulp leachate was tested using four concentrations and a control for 5 and 15 minutes of exposure (Figure 28.). After 5 minutes, an EC20 value was observed at 90% (0.01%) leachate. No EC50 value was noted, although 20% reduction of light output occurred at 100% leachate. After 15 minutes, an EC20 value of 60% leachate was observed and 13% reduction of light output at 100% leachate. After 15 minutes of exposure, a NOEC value was not applicable due to effects observed.

Shredded Metal - 25% Leachate, Centrifuged & Non-centrifuged

A 25% Metal leachate, centrifuged and non-centrifuged, were tested using four dilutions, and a control, for 5 and 15 minutes of exposure time (Figure 27.). Only one trial was performed. The centrifuged sample appeared more toxic than the uncentrifuged. This may be due to enhanced stimulation in the uncentrifuged sample due to a white residue, resembling vegetable shortening, observed on the metal pieces used for the leachate. The 5 and 15 minute EC20 for the centrifuged sample are 27.5 and 46%, respectively. Both EC50 values exceeded 100% leachate. The 5 and 15 minute EC20 values for the uncentrifuged sample were 89 and 80% respectively. The EC50 values for this sample both exceeded 100%. A NOEC value was not applicable after 15 minutes of exposure due to an effect observed in the lowest concentration tested.

Shredded Metal - 5% Leachate. Centrifuged

A 5% Metal leachate, centrifuged, was tested using four dilutions and a control for 5 and 15 minutes of exposure (Figure 29.). After 5 minutes, an EC20 value at 44% leachate was observed. No EC50 was noted although there was a 23% reduction in light output at 100% leachate. After 15 minutes exposure, no EC20 or EC50 value was noted and only 13% reduction of light output occurred in 100% (5%) leachate. A NOEC value was not applicable after 5 or 15 minutes of exposure due to effects observed in the lowest concentration tested.

Figure 1. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #1

Figure 2. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #2

Figure 3. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #3

Figure 4. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #1 Centrifuged

Figure 5. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #2 Centrifuged

Higure 6. Paper Pulp - 5% Leachate Mysidopsis bahia - Trial #3 Centrifuged

Figure 7. Paper Pulb - 5% Leachate Centrifiged Meridia beryling – Trial #1

Figure 8. Paper Pulp - 5% Leachate Menidia beryllina - Trial #2 Centrifuged

Figure 9. Paper Pulp - 5% Leachate Centrifuged Menidia beryllina - Trial #3

Figure 10. Paper Pulp - 5% Leachate Skeletonema costatum - Trial #1 Centrifuged

Figure 11. Paper Pulp - 5% Leachate Skeletonema costatum - Trial #2 Centrifuged

Figure 12. Paper Pulp - 5% Leachate Skeletonema costatum - Trial #3 Centrifuged

Figure 13. Paper Pulp - 0.01% Leachate Skeletonema costatum - Trial #1 Centrifuged

Figure 14. Shredded Metal - 25% Skeletoriema costatum - Trial #1 Leachate, Centrifuged

Figure 15. Shredded Metal - 5% Skeletonema costatum - Trial #1 Leachate, Centrifuged

Figure 16. Paper Pulp - 5% Leachate, Centrifuged Gonyaulax polyedra - Trial #1

Figure 17. Paper Pulp - 0.01% Leachate Gonyaulax polyedra - Trial #1 Centrifuged

Figure 18. Shredded Metal - 25% Convaulax polyedra - Trial #1 Leachate, Centrifuged

5% Leachate, Centrifuged Figure 19. Shredded Metal Mysidopsis bahia - Trial #1

Figure 20. Shredded Metal 5% Leachate, Centrifuged Mysidopsis bahia - Trial #2

Figure 21. Shredded Metal 5% Leachate, Centrifuged Mysidopsis bahia - Trial #3

Figure 22. Shredded Metal 5% Leachate, Centrifuged Menidia beryllina - Trial #1

5% Leachate, Centrifuged Menidia beryllina - Trial #2 Figure 23. Shredded Metal

Figure 24. Shredded Metal 5% Leachate, Centrifuged Menidia beryllina - Trial #3

Gonyaulax polyedra - Trial #1 Figure 25. Shredded Metal 5% Leachate, Centrifuged

Photobacterium, Microtox - Trial #1-3 5% Leachate, Centrifuged Figure 26. Paper Pulp

Photobacterium, Microtox - Trial #1 25% Leachate, Centrifuged Figure 27. Shredded Metal

Photobacterium, Microtox - Trial #1 0.01% Leachate, Centrifuged Figure 28. Paper Pulp

Photobacterium, Microtox - Trial #1 5% Leachate, Centrifuged Figure 29. Shredded Metal

0.01% Leachate, Centrifuged Mysidopsis bahia, - Trial #1 Figure 30. Paper Pulp

0.01% Leachate, Centrifuged Mysidopsis bahia, - Trial #2 Figure 31. Paper Pulp

0.01% Leachate, Centrifuged Mysidopsis bahia, - Trial #3 Figure 32. Paper Pulp

TEST DATE

TEST NUMBER

FIGURE # 1

Start: 25-Apr-95

0000004024

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

___________ MYSID TEST DATA -----

Test Number: 0000004024 () Chronic (x) Acute 96 hours

Test Date: 25-Apr-95

Source:

Test Material: BPP (%)

		Cont			Dai	ίy	Sur	viv	al	Ргср	Females	Prop	Yeight
Conc	Яер	No.	Start	1	2	3	4	5	6 End	Alive	w/eggs	M\e338	/Mysid
0.000	1	ó	10	9	9	9	9			.90			
0.00	2	12	10	10	9	8	8			.30			
6.250	1	9	10	7	7	7	7			.70			
6.250	2	8	10	5	5	5	5			.50			
12.50	1	10	10	0	0	0	0			0.00			
12.50	2 2	2	10	3	3	2	Z			.20			
25.00	o 1	11	10	0	0	0	С			0.00			
25.00	0 2	. 7	10	0	0	0	G			0.00			
50.00	D 1	1	10	0	0	0	0			0.00			
50.00		. 3	10	0	0	0	0			0.00			
100.00		5	10	0	0	G	0			0.00			
100.00		_	10	0	0	0	С			0.00			

RAW DATA, REFER TO FIB. 2

TEST DATE

TEST NUMBER

Start: 25-Apr-95

0000004025

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

HYSID TEST DATA

Test Number: 0000004025 () Chronic (x) Acute 96 hours

Test Date: 25-Apr-95
Test Material: 8PP (%)

 Cant.							lγ	Sur	viv	al		Proc	Females		Weight
Conc ·	R			Start	1	2	3	4	5	ó	End	Alive	¥/eggs	w/eggs	/Mysid
 0.000		1	3	10	9	9	8	8				.80			_
0.00		2	2	10	9	9	9	9				.90			
6.25		1	4	10	٥	0	0	0				0.00			
6.25		2	5	10	3	3	3	3				.30			
12.50		1	10	10	0	0	O	0				0.00			
12.50		2	6	1 C	6	ć	6	ć				.60			
25.00		1	9	10	ó	5	6	ó				.60			
25.00		2	11	10	0	0	0	G				0.00			
50.00		1	8	10	0	0	0	0				0.00			
50.00		2	12		3	3	3	3				.30			
100.00			7	10	2	2	1	1				.10			
100.00			1	10	3	1	1	1				.10			

RAW DATA REFER TO FIG. 3

TEST DATE

TEST NUMBER

Start: 25-Apr-95

0000004026

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

MYSID TEST DATA

Test Number: 0000004026 () Chronic (x) Acute 96 hours

Test Date: 25-Apr-95

Source:

Test Material: BPP (%)

		Cont	:.		Dai	1y	Sur	viv	al		Prop	remates	P.00	Weight
Conc	Кер	Nc.	Start	1	. 2	3	4	5	ó	End	Alive	w/eggs	w/eggs	/Hysid
 0:000	1	4	10	10	10	10	10				1.00			
0.000	2	5	10	10	10	8	8				.80			
6.250	1	2	10	ó	ó	6	6				.á0			
6.250	2	9	10	3	2	2	2				.20			
12.500	1	1	10	5	5	6	ó				.ć0			
12.500	2	6	10	0	0	0	0				0.00			
25.000	1	3	10	0	0	0	0				0.00			
25.000	2	12	10	0	0	0	0				0.00			
50.000	1	10	10	4	4	4	4				.40			
50.000	2	11	10	5	5	4	4				.40			
100.000	1	7	10	2	2	2	2				.20			
100.000	2	8	10	4	4	4	4				.40			

RAW DATH, REFER TO FIG. 4

TEST DATE

TEST NUMBER

Start: 2-May-95

0000004026

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

MYSID TEST DATA

Test Number: 0000004028

Test Date: 2-Hay-95 Source:

() Chronic (x) Acute 96 hours

Test Material: 529 (%)

Cont.						ly	Sur	viv	/al		٩٢٥٥	Femalies	Prop	Weight
Cone	geb	No.	Start	1	2	3	4	5	ó i	End	Alive	w/eggs	W/8588	/Hysid
 0.000	1	10	10	10	10	10	10				1.00			
0.000	2	1	10	9	9	9	3				.80			
6.250	1	2	10	8	8	8	В				.80			
6.250	2	3	10	9	9	9	9				.90			
12.500	1	12	10	5	5	5	5				.50			
12.500	2	8	10	5	4	4	4				.40			
25.000	1	6	10	8	8	7	7				.70			
25.000	2	9	10	8	6	ó	5				.50			
50.000	1	7	10	1	1	1	1				.10			
50.000	2	4	10	ó	2	2	2				.20			
100.000	1	5	10	7	4	3	3				.30			
100,000	2	11	10	0	0	0	0				0.00			

						¥	ATER C	YT1 JAU	·		======		=====
==	Test Number:			======	====== T	est Da	===== te:	2-May-	1995	======= S	ource:		
		рĦ	DO	Salin	Temp	Cand	Hard	Alk	NH3	Chlor	S03	TS	
st													
	Minimum Maximum	7.70 8.00	.5 6.3										
													
	· · · · · · · · · · · · · · · · · · ·	рн	CO	Salin	Temp	Cond	Hard	Alk	Ени	Chlor	so3 ⁻	TS	
ay:	0												
	Minimum Maximum	7.90 8.00											
	1												
ay:		7.70	.5	32.00	26.0								
	Maximum	7.90	4.8									 	
ay:	2	10		,									
	Minimum			32.00									
	Maximum	7.90	4.4	32.00	25.5						-,- -		
ay:	3												
	Minimum.												
	Maximum	7.90	5.1	32.00	25.0								
ay:	4												
	Minimum		2.3						•				
	Maximum	7.90	5.0	32.00	25.5								

•

.

•

	======================================	=======	·.	WATE:	R QUAL!	TY				======		=:
	Test Number: 0000		Test Da	====== te: 2	-===== -May-19	* **** 795	T=====	Source:				
	Container Conc	на	DG	Salin	î Temo	Conci	Hard	Alk	NH3	Chlor	502	
Day: 0	Time: 1400										so3	;
	0.00			32.00								
	6.25			32.00								
	12.50			32.00								
	25.00			32.00								
	50.00			32.00	25.5							
	100.00	D 7.90	6.31	32.00	25.5					÷.		
Day: 1	Time: 1400										·	
······································	0.00 [7.0										
	6.25		4.80	32.00	25.0							
	12.50		3.98	32.00	26.0							
	25.00 0		1.82	32.00	26.0							
	50.00 0		2.00	32.00	25.0							
	100.00		1.76	32.00	25.0							
	.00.00 5	7.30	.51	32.00	25.0							
ay: 2	Time: 1400		.									
	0.00 0	7.90	4.40	77.00	36. =							
	0.00 p 6.25 p	, ,	4.40	32.00	25.5							
		7.90	4.20	32.00	25:5							
	6.25 0	7.90 7.30	4.20 3.89	32.00 32.00	25.5 25.5		-					
	6.25 D 12.50 D	7.90	4.20 3.89 2.40	32.00 32.00 32.00	25.5 25.5 25.5							
	6.25 D 12.50 D 25.00 D	7.90 7.30 7.30	4.20 3.89 2.40 1.20	32.00 32.00	25:5 25.5 25.5 25.5		-					
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D	7.90 7.30 7.30 7.30	4.20 3.89 2.40 1.20	32.00 32.00 32.00 32.00	25:5 25.5 25.5 25.5	,						
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D	7.90 7.80 7.80 7.80 7.70	4.20 3.89 2.40 1.20 1.14	32.00 32.00 32.00 32.00 32.00	25:5 25.5 25.5 25.5	,					-	
ay: 3	6.25 D 12.50 D 25.00 D 50.00 C 100.00 D	7.90 7.80 7.80 7.20 7.70	4.20 3.89 2.40 1.20 1.14 5.08 3	32.00 32.00 32.00 32.00 32.00 32.00	25:5 25.5 25.5 25.5							
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D	7.90 7.80 7.80 7.20 7.70	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3	32.00 32.00 32.00 32.00 32.00 32.00 32.00	25:5 25:5 25:5 25:5 25:5 25:5						-	
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D Time: 1400	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3	32.00 32.00 32.00 32.00 32.00 22.00 22.00 22.00 22.00	25:5 25:5 25:5 25:5 25:5 25:5							
эу: З	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D Time: 1400 0.00 D 6.25 D 12.50 D 25.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3	32.00 32.00 32.00 32.00 32.00 32.00 22.00 22.00 22.00 22.00 22.00 22.00	25:5 25:5 25:5 25:5 25:5 25:5						-	
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D 7 ime: 1400 0.00 D 6.25 D 12.50 D 25.00 D 50.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25.5 25.5 25.5 25.5 25.5 25.5 25.0 5.0 5.0 5.0						-	
ay: 3	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D Time: 1400 0.00 D 6.25 D 12.50 D 25.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25.5 25.5 25.5 25.5 25.5 25.5 25.0 5.0 5.0 5.0						•	
	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D 7 ime: 1400 0.00 D 6.25 D 12.50 D 25.00 D 50.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25.5 25.5 25.5 25.5 25.5 25.5 25.0 5.0 5.0 5.0					·	·	
	6.25 D 12.50 D 25.00 D 50.00 C 100.00 D Time: 1400 0.00 D 6.25 D 12.50 D 25.00 D 50.00 D 100.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.80	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3 1.30 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25:5 25:5 25:5 25:5 25:5 25:5 25:5 25:0 5:0 5:0 5:0						•	
9y: 3 y: 4	6.25 D 12.50 D 25.00 D 50.00 D 100.00 D 6.25 D 12.50 D 25.00 D 50.00 D 100.00 D	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.80 7.70	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3 1.30 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25:5 25:5 25:5 25:5 25:5 25:5 25:5 25:0 5:0 5:0					·		
	6.25 D 12.50 D 25.00 D 50.00 C 100.00 D 6.25 D 12.50 D 25.00 D 50.00 D 100.00 D Time: 1400 Time: 1400	7.90 7.80 7.80 7.20 7.70 7.90 7.80 7.80 7.80 7.70	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3 1.30 3 5.00 3 4.95 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25:5 25:5 25:5 25:5 25:5 25:5 25:5 25:0 5:0 5:0 5:0						·	
	6.25 D 12.50 D 25.00 D 50.00 C 100.00 D 6.25 D 12.50 D 25.00 D 50.00 D 100.00 C Time: 1400 Time: 1400	7.90 7.80 7.20 7.20 7.70 7.90 7.80 7.80 7.80 7.70	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3 1.30 3 5.00 33 4.95 33 4.77 32	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25.5 25.5 25.5 25.5 25.5 25.5 25.0 25.0					·	•	
	6.25 D 12.50 D 25.00 D 50.00 C 100.00 D 6.25 D 12.50 D 25.00 D 50.00 D 100.00 D Time: 1400 Time: 1400	7.90 7.30 7.30 7.20 7.70 7.90 7.80 7.80 7.80 7.70 7.90 7.90 7.90 7.90 7.90	4.20 3.89 2.40 1.20 1.14 5.08 3 4.93 3 4.54 3 4.36 3 2.48 3 1.30 3 5.00 3 4.95 3	32.00 32.00 32.00 32.00 32.00 32.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	25:5 25:5 25:5 25:5 25:5 25:5 25:5 25:0 5:0 5:0 5:0					·		

	======	:===== :	.000000/3						====== Sour		======	========
	lest A	umber:	00000040	40	Test Da	te: 2	-May- 17	77	3001			
ntaine	-	рH	DO	Salin	Temp	Cond	Hard	Alk	ЕНИ	Chlor	\$03	TS
Cor	ncentra	stion:	0.00	D								
Day	//Time											 ,
10	1400	8.00	6.29	32.00	25.5			į 1			1	
- <u>-</u>	1400	7.90	4.30	32.00	26.0							
_	1400	7.90,	4 40	32.00	1 25.5						 :	
_ -					ii	i				<u> </u>	<u> </u>	<u> </u>
13	1400	7.90	5.08	32.00	25.0			1			1	
- 4	1400	7.90	5.00	32.00	25.5							
l			-l		ll	!.		l		.!	l	.1i
Day	//Time_ 1400	8.00	6.17	32.00	25.5	ļ					 	
		7 70	1 3.98	32.00	25.0							1 7
1	1400	7.70	1 3.70	;	, ,			,		1	!	1 1
1 2	1400		_i		25.5				,		 	
i_		7.90	4.20	32.00	İi							
2	1480	7.90	4.20	32.00	İi							
2	1400	7.90	4.20	32.00 	25.0							
3	1400 1400	7.90	4.20	32.00 	25.0							
2 3 4 4	1400 1400 1400	7.90	4.20	32.00 	25.0							
2 3 4 Cor	1400 1400 1400 ncentra	7.90 7.80 .7.90	4.93	32.00	25.0							
2 3 4 4	1400 1400 1400 ncentro y/Time 1400	7.90 7.80 .7.90 	4.93	32.90 32.00 32.90	25.5					-		
2 3 4 Cor	1400 1400 1400 ncentra	7.90 7.80 .7.90 	4.93	32.90 32.00 32.90	25.0				• .	-		
2 3 4 4 Cor	1400 1400 1400 ncentro y/Time 1400	7.90 7.80 .7.90 .2.7.90	4.93 4.93 4.95 12.50	32.00 32.00 32.00 32.00 32.00	25.0 25.5 25.5 26.0							
2	1400 1400 1400 ncentra 1400 1400	7.90 7.80 .7.90 .7.90 .7.70 .7.70 .7.30	4.93 4.95 4.95 12.50	32.00 32.00 32.00 32.00 32.00	25.5 25.5 25.5 26.0 25.5							
2	1400 1400 1400 ncentra 1400 1400	7.90 7.80 7.90 2.7.90 2.7.90 2.7.90 2.7.90 2.7.90 2.7.90 2.7.80 2.7.80	4.93 4.95 4.95 12.50 6.11 1.82 3.89	32.00 32.00 32.00 32.00 32.00 32.00	25.5 25.5 25.5 25.5 25.0							

.

						ATER QUA						
=====			90000040		Test Da		====== -May-19		Sour		========	
ntaine	r	рн	50	Salin	Temp	Cana	Нага	Alk	хн3	Chlor	\$03	75
Cor	ncentra	ition:	25.00	D					,			
_	:											
uay	//Time_ 1400	3.00	1 6.29	32.00	i 25 5 !					1	1	
_			_	İ	ii							
11	1400	7.80	2.00	32.00	26.0	į	1			-		
2	1400	7.30	2.40	32.00	25.5			!]	
3	1400	7.30	4.36	32.00	25.0		l.	¦			!! !	
4	1400	7.80	4.15	32.00	25.5	i-					i 	
1 2 3	1400	7.80 7.80 7.80	1.20	32.00 32.00 32.00	25.5							
4	1400	7.80	3.56	32.00	25.5		 	i			[
!												
0ay	centra //Time_		100.00		•							
		7.90		D 32.00	25.5		-	<u> </u>				
0ay	//Time_		6.31		25.5 26.0		1					
0ay 0 _	//Time_ 1400	7.90	6.31	32.00	ii.	 						
Day	//Time_ 1400 1400	7.90	6.31	32.00	26.0							

Page: 2

Acuté Toxicity Bioassays - Mysids 9May95:08.30

Paper Pulp- 02MAY95

By > hour=96

 Tteration	Intercept	Slope	Mu	Sigma
. 0	5.58164339	-0.01818490	31.98495866	-54.99066801
1	5,71721008	-0.02212948	32.40970527	-45.18857999
2	5.72236353	-0.02236584	32.29761989	-44.71103310
3	5.72238119	-0.02236690	32.29688793	-44.70892691
1 4	5.72238119	-0.02236690	32.29688791	-44.70892686

Covariance Matrix

		Intercept	Slope
Intercept		0.07172943	-0.00122280
Slope	ξ.	-0.00122280	0.00004437

Covariance Matrix

	Mu	Sigma
Mu	78.01023950	-18.78825153
Sigma	-18.78825153	177.28496191

Chi-Square = 24.0402 With 10 Degrees Of Freedom Probability > Chi-Square = 0.0075

The above covariance matrices have been multiplied by the heterogeneity factor Check that large chi-square value is not from systematic variation A t value of 2.228092 will be used to compute 95 fiducial limits

Acute Toxicity Bioassays - Mysids Paper Pulp- 02MAY95

B₂ > hour=96

Probability	Dose	95% Fiducia	l Limits
		Lower	Upper
0.01	136.30540501	353.36728662	90.33992967
0.02	124.11779830	317.46209422	82.69455563
0.03	116.38515245	294.72500787	77.80020338
0.04	110.56818408	277.64961139	74.08954453
0.05	105.83652897	263.78232972	71.04897342
0.06	101.80914725	251.99766711	68.44239753
0.07	98.27792131	241.68111860	66.14064505
0.08	95.11612963	232.45866672	64.06491331
0.09	92.24060659	224.08496697	62.16336706
0.10	89.59368292	216.38999232	60.39996091
0.15	78.63471188	184.70079552	52.92893474
0.20	69.92486956	159.79560725	46.71082084
0.25	62.45260079	138.74550203	41.05990551
0.30	55.74227258	120.23019582	35.59687034
0.35	49.52415311	103.57891064	30.02864751
0.40	43.62376515	88.46445861	24.05895696
0.45	37.91507125	74.78527420	17.33898846
0.50	32.29688791	62.59163362	9.45690191
0.55	26.67870458	51.97407849	-0.00127007
0.60 .	20.97001067	42.90299739	-11.32934188
0.65 .	15.06962272	35.13626997	-24.64675705
0.70	8.85150325	28.28395750	-40.01395259
0.75	2.14117504	21.92418460	-57.63252107
0.80	-5.33109373	15.64285024	- 78.05220725
0.85	-14.04093605	8.97044287	-102.50310205
0.90	-24.99990709	1.15855432	-133.85143647
0.91	-27.64683077	-0.66367864	-141.48758431
0.92	-30.52235381	-2.62177039	-149.80473856
0.93	-33.68414548	-4.75215434	-158.97253823
0.94	37.21537143	-7.10710827	-169.23588530
0.95	-41.24275314	-9.76598129	-180.96825077
0.96	-45.97440825	-12.85869397	-194.78339088
0.97	-51.79137662	-16.62251674	-211.80562344
0.98	-59.52402247	-21.57330935	-234.48626943
0.99	-71.71162919	-29.28444588	-270.32569934

DOSE

RAW DATA, REFER TO FIL. 5

TEST DATE

TEST NUMBER

Start: 2-May-95

0000004029

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

David Taylor

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

MYSID TEST DATA

Test Number: 0000004029 () Chronic (x) Acute 96 hours

Test Date: 2-Hay-95

Source:

Test Material: 3PP (%)

	Cont.					Daily Survival						Prop Females Prop		
Conje	Rep	No.	Start	1	2	3	4	5	ćΞ	റർ	Alive	w/eggs	w/eggs	/Mysid
0.000) 1	11	10	10	8	3	8				.20			
0.000) 2	1	10	10	10	10	10				1.00			
6.250) 1	10	10	9	9	9	3				.80			
6.250	2	. 8	10	7	ó	6	6				.60			
12.500) 1	. 2	10	7	7	7	7				.70			
12.500	2	3	10	3	3	3	3				.30			
25.000) 1	7	10	ç	5	5	5				.50			
25.00	3 2	2 6	10	10	6	ó	5				.50			
50.00) 1	9	10	9	7	1	1				.10			
50.00	5 2	12	10	9	7	1	0				0.00			
100.00	٠ .	4	10	7	0	G	0				0.00			
100.00	2	2 5	10	3	1	1	1				.10			

Acuté Toxicity Bicassays - Mysids Paper Pulp- 02MAY95

Page: 2 9May95:08.31

By > hour=96

Iteration 0 1 2 3 4	Intercept 5.49634416 5.67416007 5.71033013 5.71269129 5.71270117	Slope -0.02144678 -0.02972672 -0.03218082 -0.03235435 -0.03235509	Mu 23.14305860 22.67858761 22.07308637 22.02768199 22.02748026 22.02748025	Sigma -46.62703879 -33.63976684 -31.07440547 -30.90774671 -30.90703555 -30.90703553
3 4 5	- · · -		22.02748026	-30.90703

Covariance Matrix

0 7 042 22 22 22 2		Intercept	Slope
Intercept	₹	0.09009237	-0.00211632
Slope		-0.00211632	0.00010545

Covariance Matrix

	Mu	Sigma
Ми	45.87520930	-6.09755290
sicma	-6.09755290	96:22445449
خاند ب ب		

Chi-Square = 26.9908 With 10 Degrees Of Freedom Probability > Chi-Square = 0.0026

The above covariance matrices have been multiplied by the heterogeneity factor Check that large chi-square value is not from systematic variation t value of 2.228092 will be used to compute 95 fiducial limits

Page: 3 9May95:08.31

Acute Toxicity Bicassays - Mysids 91 Paper Pulp- 02MAY95

B) > hour=96

Probability	Dose	- · ·	ial Limits
0.01	93.92799676	Lower 274.42628271	Upper 61.19330151
0.02	85.50277119	245.92433760	55.98915149
0.03	80.15723559	227.87828184	52.64977018
0.04	76.13599731	214.32785927	50.11276116
0.05	72.86503013	203.32493766	48.02979800
0.06	70.08092327	193.97590324	46.24068903
0.07	67.63980618	185.79287321	44.65774612
0.08	65.45407696	178.47891284	43.22744246
0.09		171.83925436	41.91454262
0.10	61.63643989	165.73893313	40.69452089
0.15	54.06056341		
		140.63301606	35.49226269
0.20	48.03949726	120.93127029	31.10603281
0.25	42.87395891	104.31673381	27.05523215
0.30	38.23514588	89.75424959	23.05960516
0.35	33.93659405	76.73112954	18.88586849
0.40	29.85768827	65.01565281	14.28320809
0.45	25.91129953	54.55928964	8.95158399
0.50	22.02748025	45.42006758	2.55313518
0.55	18.14366098	37.64520968	-5.20967781
0.60	14.19727224	31.14270566	-14.49516106
0.65	10.11836646	25.65663629	-25.32722881
0.70	5.81981463	20.85761398	-37.72506322
0.75	1.18100160	16.42749441	-51.85305486
0.80	-3.98453675	12.07181641	-68.16271401
0.85	-10.00560290	7.46593770	-87.64481094
0.90	-17.58147938	2.09878655	-112.58583505
0.91	-19.41128317	0.85029286	-118.65768432
0.92	-21.39911645	-0.48997984	-125.26996994
0.93	-23.58484567	-1.94674493	-132.55746888
0.94	-26.02596277	-3.55545202	-140.71473474
0.95	-28.81006962	-5.36989252	-150.03843764
0.96	-32.08103680	-7.47811743	-161.01609750
0.97	-36.10227508	-10.04088958	-174.54075693
0.98	-41.44781068	-13.40762869	-192.55945470
0.99	-49.87303625	-18.64366537	-221.02951334

RAW DATA, REFER TO FIG. 6

TEST DATE

TEST NUMBER

Start: 2-May-95

0000004030

SPECIES: Mysidopsis bahia

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST:

ATAG TEST GATA

Saurce:

Test Date: 2-Hay-95

Test Number: 0000004030 () Chronic (x) Acute 96 hours

Test Material: BPP (%)

 												(%	,		
		Cont			0a	ly	Sur	viv	ai		Pres	Females		Weight	
Conc	geb	Жo.	Start	1	2	3	4	5	ó	End	Alive		s w/eggs		
0.000) 1	1	10	10	9	9	9				.90	···			
0.000	2	2	10	10	10	9	9				.90				
6.250	1	9	10	7	7	7	7				.70				
6.250	2	5	10	7	7	7	7				.70				
12.500	1	3	10	0	0	0	0				0.00				
12.500	2	7	10			0	_				0.00				
25.000	1	8	10	1	1	1	1				.10				
25.000	2	12	10	5	c	o.	n				0.00				
50.000	1	11	10			0	-				0.00				
50.000	2	4	10	4		1	1								
100.000		á	10		4	o.	c .				.10				
100.000		10	10		C	0	-				0.00				

Acute Toxicity Bioassays - Mysids Paper Pulp - 02MAY95

Page: 2 9May95:08.32

By > hour=96

Iteration	Intercept	Slope	Mu	Sigma
0	5.96830788	-0.05441196	17.79586572	-18.37831337
1	5.49918111	-0.06142942	8.12609237	-16.27884590
2	5.59056440	-0.07346053	8.03920681	-13.61275225
3	5.60256892	-0.07519683	8.01322208	-13.29843242
4	5.60270301	-0.07521886	8.01265804	-13.29453797
5	5.60270303	-0.07521886	8.01265793	-13.29453735

Covariance Matrix

		Intercept	Slope
Intercept		0.68978369	-0.03324949
Slope	:	-0.03324949	0.00319034

Covariance Matrix

	Mu	Sigma
Mu	63.94239963	18.06106537
Sigma	18.06106537	99.66198435

Chi-Square = 141.6567 With 10 Degrees Of Freedom Probability > Chi-Square = 0.0000

The above covariance matrices have been multiplied by the heterogeneity factor Check that large chi-square value is not from systematic variation t value of 2.228092 will be used to compute 95 fiducial limits

Acute Toxicity Bioassays - Mysids Paper Pulp - 02MAY95

Page: 3 9May95:08.32

By > hour=96

Probability	Dose	95% Fiduc	Dial Timite
0.01 0.02 0.03 0.05 0.06 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	38.94037668 35.31629970 33.01693901 31.28721949 29.88022608 28.68265368 27.63261696 26.69243430 25.83737579 25.05029303 21.79156015 19.20162270 16.97968710 14.98432028 13.13531546 11.38079050 9.68326721 8.01265793 6.34204865 4.64452537 2.8900041 1.04099558 -0.95437123 -3.17630683 -5.76624429 -9.02497716 -9.81205992 -10.66711844 -11.60730109 -12.65733782 -13.85491021 -15.26190363 -16.99162314 -19.29098383 -22.91506082	95% Fiduc Lower -28.57590548 -22.60899271 -18.69003445 -15.63279992 -13.04111278 -10.72374405 -6.56274231 -6.46347563 -4.31659064 -1.90755802 4.10301701 5.54243205 6.77732192 7.88629117 8.91391651 9.88903257 10.83246869 11.76094676 12.68942483 13.63286095 14.60797701 15.63560235 14.60797701 15.63560235 14.72484946 8.59645034 8.00685171 7.40620330 6.78389359 6.12654858 5.41550567 4.62176537 3.69402456 2.52292754 0.77973022	Limits Upper 17.72027114 15.78168029 14.41856319 13.28398843 12.25623673 11.27002270 10.27618324 9.22197119 8.02552157 6.49136626 4.10301701 5.54243205 6.77732192 7.88629117 8.91391651 9.88903257 10.83246869 11.76094676 12.68942463 13.63236095 14.60797701 15.63560235 14.60797701 15.63560235 14.797946147 27.11290356 33.86352846 35.32800441 36.87908819 38.54645252 40.37095981 42.41315743 44.77083317 47.62123375 51.34817193 57.11969116

RAW DATA, REFER TO FIL. 7

TEST DATE

TEST NUMBER

Start: 9-May-95

0000004031

SPECIES: Menidia beryllina

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST: 0000004034

FISH TEST DATA

Test Date: 9-Hay-95

Source:

Test Number: 0000004031 () Chronic (x) Acute 96 hours

Test Material: SPP (%)

				Cont.			٥a	ily	Sur	viv	vai		Prop	Weight
	nc	2	(ep	No.	Start	1		3				End	Alive	_
0.0	3 0)	1	11	10	10	10	10	9					
0.0	3 ()	2	12	10				10				.90	
6.25	5 0)	1	3	10				10				1.00	
6.25	5 0)	2	7	10			10					1.00	
12.50	0	ı	1	8	10				10				1.00	
12.50	_		2	ó	10	9			9				.90	
25.00			1	10	10	10	10	10					1.00	
25.00			2	2	10			10					1.00	
50.00			1	5				10					1.00	
50.00	_		2	1	10	10	10	10	10				1.00	
100.00	_		1	9	10	10	10	10	10				1.00	
100.00	0		2	4	10	10	9	9	9				-90	

RAW DATA, REFER TO FIL.8

TEST DATE

TEST NUMBER

Start: 9-May-95

0000004032

SPECIES: Menidia beryllina

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST: 0000004034

FISH TEST DATA |

Test Number: 0000004032

Test Date: 9-May-95

() Chronic (x) Acute 96 hours

Source:

Test Material: BPP (%)

	· Conc	•	0	Cont.			Da	ily	Sür	viv	/al		Prop	Weight
			Rep	No.	Start	: 1	2	3	4	5	6	End	Alive	
0	.00	0	.1	ó	10	10	10	10	10					
C.	.00	Ð	2	. 5	10								1.00	
6.	. 25	Э	1	9	10				10				1.00	
6.	. 25	۵	2	1				10					1.00	
	50		1	,	10			10					1.00	
	50		2	2	10			10					1.00	
25.		ם	2	8	10	10	10	10	10				1.00	
		-	i -	12	10	10	10	10	10				1.00	
	00		2	11	10	10	10	10	10				1.00	
	CO		1	3	10	10		7						
	00	_	2	4	10	10							.60	
100.	00	ם	1	10 /	10	10							1.00	
100.0	00	0	2	7	10	10	9						1.00	
			-	•		13	7	9	9				.90	

RAW DATA, REFER TO FIG. 9

TEST DATE

TEST NUMBER

Start: 9-May-95

0000004033

SPECIES: Menidia beryllina

TEST MATERIAL: Paper Pulp

SOURCE:

PROTOCOL: EPA Acute, 4th addition, 1991

TEST TYPE: (96) hr acute () chronic

REFERENCE TOXICANT TEST: 0000004034

FISH TEST DATA

Test Number: 0000004033 () Chronic (x) Acute 96 hours

Test Date: 9-May-95

Source:

Test Material: 3PP (%)

•			Cont.			Вa	ily	Sur	vival		Scop	Veight
Cond	•	Rep	No.	Start	1	2	3	4	5 6 5	nd	Alive	/Fish
0.00	D	1	10	1C	10	10	10	16			1.00	
0.00	٥	2	3	10	10	10	10	10			1.00	
6.25	D	1	2	10	9	9	9	8			.20	
6.25	D	2	11	10	10	10	10	9			.90	
12.50	D	1	8	10	10	10	10	10			1.00	
12.50	0	2	1	10	10	10	10	10			1.00	
25.00	D	. 1	5	10	10	10	10	10			1.00	
25.00	Ð	2	5	10	10	10	10	10			1.00	
50.00	٥	1	4	10	10	10	9	9			.90	
50.00	D	2	12	10	10	10	10	10			1.00	
100.60	D	1	7	10	10	10	10	10			1.00	
100.00	٥	2	9	10	10	10	10	10			1.00	

٨

test species: <u>Skel clone</u>

toxicant: Bart's pulp Test #24

coserver(s): G. RoseN/D. Duckworth
test date: 24 April - 28 APRIL 95

	ری (1)				<u> </u>	<u> جمایت</u>	٤ -	رنبرے ہ	2							
		hour:	0	/	hour:	24		hour	48		hour:	1/2	2	hour	96	7	
		dacr	used:	10×	door	used:	lox	door	used:	Jx	deer	used:	/ X	door	used:	/×	
	rep j	Α	6	С	Α .	8	С	А	Œ	С	A	8	С	А	5	С	rep
	1	73.2 20.00	3 2.7	3 7.7	53.7	49.1	50.9	35.7	35.2	36.4	37.6	33 4	35.7	96.1	95.1	944	1
7	2	33.7	34.7	370	-	49.5	52, 3	34.4		72.7	30.7		31.3	106,9	167.5	Ö7.5	2
المتحو	3	33.3	32.5	33,3	47.6		47.3		32.1	33.4	27.3	35.1	30.1	91.9	37.5	902	3
	4		33.9	36.5	36.3		39.9	33.1		36.4			4/2.0	68.2	63.5	£3, Z	4/2/
اش از	5	31,4	<u> </u>		29,7	29.6	343			27.4		37.6		70.9	7-11	67.9	5/;/
21~ []	6	* 35.7		3 2.5		33 3		24.5		7.9.1	35.3			60 =	60.3	60,6	6 /:/
	7				22.0				193	223		34.2	357.4		53,0	72.7	7/2/
ų, is	ε	33,4	33.9	i i	224			75.4			. :		56.4	97 Z	508	54.2	8/:/
Ď,	9	31.2	319	31.3				231					31,2	42,2	43.2	38.9	9/:/
Ī	10	34.0	34.8	23.9	15.1		14.1		5.6	7.1	125	12.5	13,5	50.1	500	54.5	10
(6)	11 -	34.5		38.9	19.0		15.5		5.7	64	11.5		!	35.9	<u>%</u> 3	361	11
571	12	34.0	34.3	35.1	10.3		12.8			4.7			4.7		7.6	=,2	12
ا ا	13	36.9	i .	42.2	18.0		17.9	į ·	وما روا	7. i	5.4	5.1	6.0	6.0	5.9	5.9	13
	14	36.G	37/	34,9	G41.0		75.5		1		14.3		12.1	10,0	9.8	58	14
30°	15	36.8	40.4	38.7	26.8			11.3	11.5	13.3	19.2		Ī		15.9	14.9	15
r	16	4/.4	142.0	49.0	26.7		1		9.8	11.2	4,5		4.6		9.6	9.1	16
13 ² .	17	429	44.9	49.5	22,0		i		8.5	7.9		13,7	3.9	5.0	4.9	9.9	17
. ۶۶۴ ا	18	40.9	4.3.1	4/.1	3515	ī	1		11.3	11.9	4,9	4,6	4.1	5.2	5,3	5.4	18
	19 -	7				3.2											19
	20	*															20
	21	4"		İ 📉		<u> </u>				Ì			İ				21
	22					×-											22
	23																23
	24		1	1													24
	(-																

test species: <u>Skel clone</u>
toxicant: <u>Rarif pulp</u> <u>Test</u> 25

coserver(s): G. Rusew / D. Duckworth test cate: 14 April - 28 April 55

		hou	<u> </u>		iticu	r: 24		hou	r: yg		incu	r: 7;	 L	hour	96		
	<u></u>	door	r used	10x	doc	rused	101	acc	r used	: 3 x	ccc	rused		deer	used		
	rep	А	5 34.		A	8	C	Α	6	C	A	8	C	А	Б	$\frac{1}{C}$	re
1	1 ;	34.8	330	36.8	50.4	54.2	51.2	20.5	32.0	31.4	120	1 26.1	126.7	1034	103.7	1,372	
	2	33.6	31.6	1	K3,8			:						1072			2
	3	34.2 36.0	33.2	364	55.0		1661						41.3	1	730		3/:/
39	4	33,1	35.0	1	31 -	. 1	32.4	1	1						67.0	63.6	4,
7	5	32.3	35,7	34.2	1	!	1								;	58.9	5/
	60	•34.I		30.9													! !!
	7	35,=	37.4				25.9						347		1	61.0	7/.5
برد	8	37.3	136.4	36.6	1		•	1									8 🚖
	9	36,9		36,6												53.6	9/14
	10	35.7.	1	36.4		•	1 (1							<i>£</i> 3.9	,	68.4	10
**	11	37.3	37.3	1 11			26.3			6.6		1			575	585	1 1
-	 }	34.0	53.3	39,9		I	i il		;	\$ 6					475	·	12_
	13	35.5	39.0	37.7	20.6	73.6			:	7.2		j	10.5	27,5	27:0		13
73.	14	366	خَخْ دُ	38.2	32.5	É4, 3	35.5						15.5	31.7	<u> 306</u>	34,5	14
-	15	33.0	70.7		34.7			i		10,3			13.7	2.1	Z 4. Z CED	33:3	15
_	16	42.5	49.5	43.7	29.3	32.9	34.7						2./	2.7	3.5	<i>3</i> .3	16
12-1	17	39.5	41.8	477	27.3	35.2	il	i		6.4		'	: : : : : : : : : : : : : : : : : : : :	1.6:	1.6	1.8	17
-	18	42.1	43.2	42.8	32.5	37.5		1		7.6			ئ کی تھ	i	1.2	1.7	18
	19						1										19
- -	20																20
- -	21																21
- -	22																22
<u> </u>	23																23
1	24					l	i	İ		Ì		İ					24

test species: <u>Skeletorema costatum (Skel</u> clore) texicant: <u>Baris Paper Pulp Trial#</u>3

cbserver(s): G.Rosāv test date: A MAN 95 - MAN 95

1cs+ =26 hour: 72 hour: 96 hour: hour: hour: 01 door used: /y door used: /y coor used: 7,x door used: lax door used: / Ú X 8 6 C reo С В C A. 8 Ç 8 rep . 575 85,4 35 3 8ZG 81.4 178.1 25.7 hs.0 26.5 37.3 35.1 63.3 621 61.5 566 602 360 36.4 34.7 2 کین 63.7 66.6 59.9 2 27.8 127.4 S. 5 564 577 66.4 53.5 53.7 53.2 60.9 59.0 61.1 52.9 3 50.3 46.1 29.5 35.2 34.7 3 125.3 1268 24.8 60.5 64.5 62.6 77.3 77.5 79.1 73.2 68.9 59.9 77.5 27.8 Z3.0 22.7 23.7 4 1779 67.8 71.3 69.2 84.5 87.5 93.5 85.9 83.6 83.7 38.1 361 399 5 94,0 753 87.7 92.1 89.9 38.8 6 66.3 69. 11 91.3 37.4 37.9 6 23.4 61.L 23.5 23.6 25.2 23.7 261 48.9 52.1 64.5 92.1 925 93.7 95.9 95.7 92.0 382 38.3 7 25.4 24.7 28.7 54.3 55.160.0 91.4 96.1 130.0 109.7 1055 105.1 31.8 42.4 38.0 8 26.0 27.7 25.4 52.3 56.4 53.3 82.3 87.5 97.7 105.3 106.5 102.7 44.2 46.0 44.8 9 37.0 37.6 38.6 10 28.0 30.5 28.7 36.4 40.2 32.4 55.7 60.7 60.5 78.7 83.0 82:2 10 29.7 31.4 31.9 28-5 30.1 46,0 43.3 42.4 47.4 47.3 47.1 63.7 64.4 65.4 11 28.8 85.7 87.1 33.0 34.8 3.4 28.8 | 28.4 | 29.3 | 30.3 | 34.1 | 39.8 | 59.2 | 50.4 | 67.1 | 85.4 12 13.2 13.1 12.9 12.8 13.2 13 32.1 34.5 35.6 20.4 29.9 30.8 13.5 13 32.7 329 14 10.7 10.5 135 31.8 33.7 31.1 34.0 35.1 34.6 2.1 14.0 1137 14 34.3 327 52.0 329 35.2 3.4 4.4 15 4.7 14.2 14.4 14.6 33.4 34.4 34.0 33.9 37.240.5 15 16 12.4 12.5 13.5 3.5 11.2 4.1 3.7 1.5 1.7 16 42.9 41.4 43.6 29.2 29.3 28.7 17 1.9 426 43.6 43.3 32.5 35.9 37.1 12.5 137 13.8 25 2.8 1.0 09 17 3.2 18 17.3 4.6 4.5 4.5 1.3 51.4 0.3 46.2 43 , 49.4 37.4 34.8 54.7 17.5 77.1 18 19 19 20 20 21 21 22 22 23 23 24 24

F16.13

FILE. FLUCROHA

RELATIVE FLUORESCENCE DATA

test species Skeletonemo contatum toxicant: Alibert Proper Pula

cbserver(s): 6.2750 test date: 70 MAY 15-3 JUL 15

	hour	. 01		nour	: 2 Y	,	hour	: 4g	-	hour	72		nour	96	1	
	deer	used:	10%	deer	used:					ccor				used;	\ <u>\</u>	-5
rep	A	В	С	A.	8	C	A	5	C	А	5	C	À	B	C	r
1 ;	23.6	23.3	23.9	Ġ5.7	66.6	66.7	67.0	64.9	67.3	58.0	56.1	56.6	26.9	27.7	27.2	7
31	14	1	1 1	699												2
3				66.2												3
4				69.5												4
15				68.4												
ĉ	11	1	1 1	73.2	1	1 1			: 1	1	!			,		
7	<u>23.3</u>	25.3	24.6	69.6	69.4	60.6	75.4	73.4	76.8	64.7	65.9	65.1	29,4	<i>2</i> 2 .7	28.0	7
8	23.3	23.4	24.6	C.B. Y	69.4	00,0	82.5	<i>50.</i> 3	79.0	63.0	63.5	62.5	4. کټه	257. €	27.2	.8
9	24.4	23,0	246	65.7	68.9	69.2	83.3	82.9	62.9	77.5	76.5	76.6	<i>35.</i> 8	352	344	9
1C	25.2	24.4	25.5	1,3.1	69.5	67.6	77.1	74.3	74.9	72.1	72.1	67.5	322	31.8	31.7	10
11	240	270	26.1	74,0	77.8	69,1	78.5	78.0	76.6	68.9	63.4	6.5.3	Z8.3	295	29.6	1 1
12				69.3												12
13	24.3	26.8	28.Y	69.7	70.3	70.5	75.0	91.9	95-3	82.c	80-1	80.6	35.8	34.2		13
14	27.8	2-3	24.1	65.7	68.4	67,0	826	ಜ್ಯ	93.5	76.4	7610	76.0	34.4	30.9	35.5	14
15				66.6												13
16		1 !	! !!	1010.7	1	1 1	1								30.9	
	24.4	24.5	764	64.4	68. Ó	65.5	83.0	53.1	80.5	74.3	71.4	73.9	30.7	32.0	32.2	
18	25.4	27.0	27./	70.6	12/0.	63.4	86.7	88. o	54.1	76.6	74.7	75.7	38.7	32.5	30.5	18
19																
20															1	20
21				1											1	2
22																22
23														,		2
24												į				2=

test species: Skelet memor cost alum
toxicant: Para Di Metal (Assay 12)

observer(s): <u>(ลี. หิประหา</u> test date: <u>รับ May 15 - 3 รีมเริร</u>

	hour:	úΙ		nour:	24		hour:	UB		hour:	72		hour:	96		
	door	used:	104	door	used:	iox	door	used:	3 X	door	used:	x	door	used:	1 1 4	
rep	Α	В	С	А	5	С	А	В	С	А	В	С	А	В	С	rep
1 :	22.5	2.3.3	22.3	54.5	51.1	52.0	18.6	(€.6	189	10,9	10.6	10.3	5.7	6.2	6.2	1
		1		71.5	68.6	70.7	82.4	83.2	છાં. ઇ	80.4	79.6	79.7	33.5	36.4	36.4	2
3	23.4	21.7	29.5	62.1	63.1	67.0	69.4	68.1	63.1	67.0	in6. 5	65.9	31.5	34.3	31.1	3
4	23.5	23.2	24.7	66.2	٤.٤	7.2.2	134.3	723	95.6	99.2	96.7	98.3	44,5		41.9	4
5	22.5	24.4	24,8	62.2	<u>42.0</u>	5 8.3	43.6	47.5	46,0	56.4	55.3	55.1	27.5	23.5	23.5	5
6	22.4		24.4	ì	-	آسا	103.4			l .	1	, ,		i	í ,	6
7	24.6	24.1	23.5	65.9	66.4	6.6,0	97.1	945	75.2	94.5	92.6	95.5.	37.9	41.4	41.7	7
8	22.8	25.2	23.0	18.5	59,4	64.3	98.3	38.6	89,7	104.1	90.5	91.7	41.5	43.9	45.1	8
9	24.1	23.0	23.1	68.7	66.3	67.5	104.1	94.2	10ë. 1	105.9	94.7	97.3	40.2	40.8	40.8	9
10	26.1						78.7									
11	25.3	25.0	25.5	53.1	46.0	45.3	75.4	70.1	76.1	79.3	76.5	79.7	30.2-	31.5	29.5	11
12	24,8	t .	: ,	46.9		t i	78.1		- 1	1	1	}	23.6	§		12
13	35.0	286	27.2	34.z	34.2	3 3.7	22.3	23.6	22.6	11.3	11.4	11./	3.5	3.9	3.3	13
14	28.C	27.4	27.3	21.0	17.1	17.3	18.4	14.7	13.3	/ð.i	10.E	9,3	3.3	3.5	3.4	14
15	27.0						17.4			10.8	10.4	13.9	4,4	5.0	4.9	15
16	32.6	33.2	33.0	15.7	15.4	15.5	3.2	3.1	2.7	ე. ა	1.0	0.7	5.4	0.1	0.5	16
17	32.9	33.8	326	11.5	12.5	10.7	2.5	2.3	2.7	0.5	0.7	0.5	0.0	0.0	0.0	17
18	35.2	34.5	33.7	17.3	21.7	17.5	3.4	3.3	3.2	0.7	0.9	0.8	0-1	0.2	0.1	18
19															<u> </u>	19
20														<u> </u>		20
21																21
22																22
23								ļ					ļ	<u> </u>	-	23
24												<u> </u>				24

test species: Skal alone
toxicant: Webb slurg (5.0%)

observer(s): <u>G. Roseม</u> test date: <u>15 Jun 95 - 29 รบม 95</u>

1200, 1

	,							الما ا								
	hour:		· · · · · · · · · · · · · · · · · · ·	hour	24	/	hour:	48			7z		hour	70	2	
	door	used:	10x	door	used:	ЮX	door	used:	3×	door	used:	/x	deer	used:	187X	-
rep	А	В	С	А	Б	С	А	В	С	А	6	С	А	В	С	re
1 :	32.0	37.3	195	52.9	53.1	53.1	53.0	57.5	52.7	87.6	87.4	08. 2	74.5	74.7. 250	77.6	1
2	21.7	1		11	1		14	i	i	32.7	•	:	62.6	61,8		
3	22.9	24.0	24.8	4 بی کی	50.1	55.7	53.3	52.2	54.7	84.6	51.2	1	1	1	1 i	3
4	20.5	19.2	205	53.8	54.1	53.2	54.5	57.0	54.5	94.4	€9.5	92.6	72.3	79.7	749	4
5	20.2					,										5
6	20.4	13.9	21.0	47.6	45.7	45.7	43.4	48.0	49,8	93.0	709	e7./	රි ග ය	73 3	766	6
7	24.0	23.3	24.3	57.3	58.4	6-0	58-0	57. L	55.6	99.3	92.5	72.0	53.7	74.5	7e &	7
8	25.4	!	1 i	1		1 3				105:7			1		523	8
9	24.6	20.8	23.5	53.3	563	ز. ئ	59,0	54.2	58.Y	107.1	105.3	107,1	82.7 377 1	75.7	721	9
l	Z2.1	ſ		I .	i	: i			l i	102.7					73.4	10
11	20.1	21.0	25.6	54.2	55.2	58.6	54.9	52,5	J¥. 3	97.7	<i>3</i> 7.6	38 · 1	721	74.0	694	1
12	23.5	21.8	27.9	55.7	55.5	53.5	54.5	54,0	55.4	96.6	01.3	92.8	75.0	68 0	<i>[</i> 6.4.	12
13	27.3			1	1	1 !	1. 1			108.3		,	ı		1 1	
14	21.1		4 i	1			î i			93.9	i			1		
15	22. 2	i		!	i .	1 :	1 }		i	109.7			1	!	;	
16	22.1	1	1 !	l	i	i :	1 1		i	102.4			i	į.		- :
17	25.6	1		}	l .	! :	1 1			93.1		1		78.2		4 7
18	22.2	23.4	21.5	42.9	43.5	49,1	44.1	45,3	45:5	95.2	99.2	87.E	69.2	75.5	72.2	16
19														_		19
20						1										20
21										-						2
22																22
23																2
24																2

RUN: 7641. FILTER TYPE: 40-2 STIRRER: 7.30-	LABOTA.	THACK PAPER PULP (5%) Washate	AVG = 6032	TIME RUM ENDED
DATE: 8 ALKIC RUN: -	EXPERIMENTER:	TEST ARTICLE OR CHEMICAL:	DARK COUNTS:	TIME RUN STARTED 1635

CONCENTRATIONS OR DILUTIONS

REP#	CONTROL	(0.28%)	(0.25% 12.5% 25%) (1.14%) (1.14%)	2506	5008	5000 10006 (2:20%) (4:55%)	
	220,886 3,600,115	25 ps 25 ps	-822,224	285, 236	467,685	43,432	
V =	15-12,455 - 60,000 2,190,928 2,4241 - 1	2,724,236	2,190,928 65,856	24241	45/622	22,500 32,525	
	137,004	Play 145	129,571	-47.456-	212,322		
MEAN: S.D.	1,394,452	1,310,820 653,244 23,021	419.16	73, 621	243,213	35,019	
C.V.	///	601	1,11	164	\$7.43	47.72	
% of Con	Control:	86,70	46.84	5.23	17.44	1.38	
Het change	ıge:						

20505.			ΛVG =:	ş'
26118. FURER TYPE:	D. 14. 15. 11. (- 12pec 10p (0,012)		TIME RUR ENDED
ыте: <u>Дуся 25</u> кон:	EXPERIMENTER:	TEST ARTICLE OR CHEMICAL:	DARK COURTS:	THE RUIL STARTED

CONCENTRATIONS OR DILUTIONS

	POST OF	Part 625 12.5 25	57/	25	\$(76	
#asu							
	8911-31	16-1468 369257	84449	207749 318134	71(550	174524.	
2	26063	97749	192518	155019	115505	128894	
100	t-8161,	0/12/10	1081:2	0-17203	176998	tt8871	
-	91661	+9179/1	19088	142598	9646	i	
,0	18833			9809/	1,516	l j	
HEATE	\$1843	137 84.7	1/4/6/3	111,090	62042	103900	
s.b.	9877	behEEl	18.88 k.	2.006.89		67755	
C.V.							
% of Control:	trol:	7.56	1.30	2.4695	2.4695 7059	1,18	
Het change:	ıge:						

					\	^	_					
3050e				Bulap	297918	023977	422.2.09	366811 .		, 20		
30. Stirres: 75.		ફ		-56	64593	203711 73067	73545	35.468		05,27		:
	AVG		DITATIONS	00	4036 9349	3324	3575	255		0,00		
1747 - 100 - 2	(25%)		COUCEMPRATIONS OR DILUTIONS	.55	059004	26,4994	858,39	1638.62		21		
1842 FILTER TYPE:	Medal Stack (25%)	THE RULE BRIDED		6.67	0.59004 2016019	~ ~	158697			hhbt'		18.83%
		T.IME	1050 = 18,93%	6.25	2543933	2.01649-7	1964444			1,025		(Cso - minut 18.83%
DATE: //JOA/2/2/2 RUH:	LE OR CHEMICAL:	FARTED	10%	CONTROL	2405920	2245767- 1781792-				.01:		(Cso
DATE: ZZOA EXDERTHERTER:	TEST ARTICLE O	TIME RUIT STARFED							C.V.	% of Control:	Net change:	

3.02055 5.05 	1	1					
STURER: 2, 3 2, 4.2045)		AVG = 7526	ŧ		100%	281,695 72,420 6937 123,143 18,825 3204 65,792 302,023 25,333 120,020 115,940 169,063 147,54 720 169,063 147,54 720 169,063	
-			: !	COHCERTRATIONS OR DILUTIONS	50NJADL (4.25%) 1.265% A5%0 50%	1	
26. Hours filter type: 1220-2.	SHALPPLO INCT BL STO	2101 3056 3215		HCEHTRATT OUS	10. 25.0	1,201,825. 21,358. 1,335,589 4874. 1,329,161. 1,234,392. 803,009 150,326. 1,329,161. 1,234,292. 1,323,200 11,1321. 1,181,842. 717,442. 1,620,122. 135,743. 1,187,041. 1,020,292. 1,332,635. 1,93,756. 843,798. 22.65. 330,965. 103,3756. (66.39. 666.62. 37,62. 113,735.	
16. 400KS FII LA(0)7)	SHKLOBLOLI	/o1	ana ana anta	00	5%0 1.24.5	1, 235, 5 8.03, 90 81, 1,233, 22 10, 1,629, 12 12, 1,332, 6 2, 2,325, 6 2, 2,325, 6 2, 2,1,23	
			1500		(6.38)	1,201,825. 31,358. 1,339,/101. 1,287,392. 1,761,335. 1,886,021. 1,181,842. 717,442. 1,181,642. 717,442. 1,181,642. 717,442. 1,181,642. 719,442. 1,181,643. 748. 214,350. (61.39. 22.652.	18.69.61
DATE: $-(9/25/95$ RUH: EXPERTBER:	TEST ARTICLE OR CHEMICAL:	DARK COURTS:	The rule synched $- Bah$ the rule rules $- Bh$		S ON LON	1,201,875. 2 1,329,/61. 3 1,761,235. 4 1,851,895 4 1,181,642. 5 1,181,642. 5.0. 843,798. c.v. (61.39.	IC50= 18
DATE: EXPER	TEST	DARK	TIME		#458	HEAM: S.D. c.v. llet change:	J

	Pa	Microto	- 05/03/	95		
		5% L	ia chate			
5 minute readings	rep	Control	`12.5%	25%	50%	100%
Trial 1	1 2 3 <u>Mean</u>	93.5 68.0 <u>52.0</u> 71.2	83.0 73.0 83.0 79.7	75.5 71.0 <u>62.5</u> <u>69.7</u>	69.5 82.0 <u>30.5</u> 77.3	46.0 46.0 54.0 49.3
Trial 2	1 2 3 <u>Mean</u>	79.0 96.5 87.0 87.5	90.1 102.0 85.5 94.8	82.0 84.0 99.0 88.3	92.5 81.0 72.5 82.0	62.5 85.0 61.0 69.5
Trial 3	1 2 3 <u>Mean</u>	92.0 87.0 89.5	103.5 92.0 86.0 93.8	83.0 85.0 <u>95.5</u> <u>87.8</u>	76.0 103.5 92.5 90.7	81.0 78.5 <u>97.0</u> 85.5
15 minute readings						
Trial 1	1 2 3 <u>Mean</u>	96.0 63.0 50.0 69.7	85.0 58.5 83.5 75.7	79.5 70.0 <u>61.5</u> 70.3	69.5 82.5 <u>81.5</u> 77.8	50.0 43.0 53.0 50.3
Trial 2	<u>1</u> 2 3 <u>Mean</u>	75.0 95.0 <u>83.0</u> <u>84.3</u>	90.0 99.5 83.0 90.8	83.0 81.0 <u>97.0</u> 87.0	91.0 80.0 72.0 81.0	63.5 61.0 <u>58.5</u> 67.7
Trial 3	1 2 3 <u>Mean</u>	- 81.0 77.0 79.0	99.5 86.5 74.5 86.8	73.0 76.0 88.5 79.2	66.5 97.0 81.5 82.3	72.5 68.0 92.5 77.7
Calculated/Graphed	values					
	5 minute		1	.5 minute		
Trial 1	EC20 = 7 EC50 > 1 reduction	00%		nconclusive eduction =		**
Trial 2	EC20 = 9 EC50 = 1 reductio	00%	E	CC20 > 100% CC50 > 100% reduction =		
Trial 3	No toxic reductio	ity n = 4%	N T	To toxcicity reduction =	7 2%	
reduction = percen	t reductio	n in light	output	at 100% lea	achate.	

Microtox Test Metal leachates - 06/01/95

Centrifuged	rep	Control	12.5%	25%	50%	100%
5 minute	1 2 3 <u>Mean</u>	69.5 72.0 95.0 78.8	60.0 74.0 71.5 68.5	63.0 62.5 63.5 63.0	56.5 57.0 53.0 57.8	53.0 44.0 52.0 49.7
15 minute	1 2 3 <u>Mean</u>	61.0 64.0 92.0 72.3	64.5 71.5 <u>71.0</u> 69.0	60.5 64.5 61.5 62.2	55.0 55.0 56.5 55.5	50 . 50 . 50 . 50 . 50 . 60 . 60 . 60 .
Uncentrifuged						
5 minute	1 2 3 <u>Mear</u>	96.0 96.5 97.5 96.7	103.0 103.0 103.0	95.0 100.0 <u>103.0</u> 99.5	67.5 88.5 90.0 88.7	73.5 76.5 <u>70.0</u> 74.0
15 minute	1 2 3. <u>Mean</u>	97.0 99.0 99.5 96.5	99.5 103.0 103.0 101.8	92.0 95.0 <u>103.0</u> 96.7	85.5 89.0 80.0 80.0	71.0 74.5 70.0 71.3

Calculated/Graphed Values

	5 minute	15 minute
Centrifuged	EC20 = 27.5% EC50 > 100% reduction = 37%	EC20 = 45% EC50 > 100% reduction = 37%
Uncentrifuged	EC20 = 89% EC50 > 100% reduction = 23%	EC20 = 80% EC50 > 100% reduction = 27%

reduction = percent reduction in light output at 100% leachate.

Microtox Tests Paper Pulp - 05/03/95 Metal Leachate - 06/01/95

The tests conducted on 05/03/95 tested the first paper pulp leachate used. Three trials were performed with four dilutions and a control. Five minute and 15-minute readings were taken. Both the EC20 and EC50 were determined graphing the calculated Microtox statistic, 7 , on log/log paper. Also, the percent reduction of light output at the 100% leachate dilution was calculated. All results are reported on the attached page.

Trial 1 and 2 showed a 5-minute EC20 of 76% and 98%, respectively. The five minute EC50 in both those trials were at or exceeded 100%, the maximum dilution tested. The third trial showed no toxicity as the control and the 100% leachate reading were essentially the same. The 15- minute readings on trial 1 were inconclusive for determining EC values because all mean readings for the dilutions except 100% exceeded the control mean. This yielded only one usable point, and a dose response curve could not be plotted. The 15-minute EC20 and EC50 for trial 2 both exceeded the 100% dilution.

The tests conducted on 06/01/95 tested the metal leachate both centrifuged and uncentrifuged. Four dilutions and a control were tested, and 5 and 15-minute readings were taken. Only one trial of each were performed. The same calculations described above were made and are reported on the attached page.

The centrifuged sample appeared more toxic than the uncentrifuged, but this may be some effect of interference from the poor clarity of the uncentrifuged sample. The 5 and 15 minute EC20 for the centrifuged sample are 27.5 and 46%, respectively. Both EC50 values exceeded 100% leachate. The 5 and 15-minute EC20 values for the uncentrifuged sample were 69 and 80%, respectively. The EC50 values for this sample both exceeded 100%.

		M	icrot	ox Test		
Metal	and	racec	glug	leachates	-	06/27/95

5% Metal Leachate	rep	Control	12.5%	25%	50%	100종
5 minute	1 2 3 <u>Mean</u>	88.5 78.0 <u>87.0</u> 84.5	74.5 78.0 <u>75.5</u> 76.0	99.5 71.0 68.0 68.5	66.0 72.0 <u>67.0</u> 68.3	63.5 68.5 63.0 65.0
15 minute	1 2 3 <u>Mean</u>	100.0 90.5 <u>100.0</u> 95.3	85.0 92.0 89.0 88.9	82.0 88.0 82.0 84.0	80.5 91.0 64.0 35.2	82.0 89.0 80.5 83.8
0.01% Paper Pulp Le	eachate					
5 minute	1 2 3 <u>Mean</u>	94.0 86.5 90.0 90.2	67.0 61.0 <u>64.0</u>	76.5 78.0 <u>78.5</u> 77.7	72.0 74.0 73.0 73.0	75.0 76.0 71.0 72.0
15 minute	1 2 3 <u>Mean</u>	92.5 84.5 89.5 88.8	86.0 78.00 80.0 81.3	73.0 75.0 <u>77.0</u> 75.0	60.5 69.5 67.0 60.3	71.5 65.5 67.5 58.2

Calculated/Graphed Values

	5 minute	15 minute
5% Metal Leachate	EC20 = 44% EC50 > 100% reduction = 23%	EC20 > 100% EC50 > 100% reduction = 13%
0.01% Paper Pulp	EC20 = 90% EC50 > 100% reduction = 20%	EC20 = 60% EC50 > 100% reduction = 23%

reduction = percent reduction in light output at 100% leachate.

APPENDIX D

SOLID PHASE BENTHIC ORGANISM TOXICITY SCREENING REPORT

Source:

•

Toxicity Testing of Paper Pulp Slurry on Benthic Organisms.

A Report Submitted to: NCCOSC RDTE DIV CODE 522

San Diego, California

Coastal Resources Associates, Inc., 1995

	-
	_
	_
	
	_
	=
	,

A Report Submitted to: NCCOSC RD-T&E Div. Code 522 53475 Stroth Road, Rm 258 San Diego, CA 92152-6310

June 30, 1995

Toxicity Testing of Paper Pulp Slurry on Benthic Organisms

Submitted by: Coastal Resources Associates, Inc. 1185 Park Center Dr., Suite A Vista, CA 92083

Study Director: Thomas A. Dean, Ph.D.

Table of Contents

Summary	
1.0 Introduction	2
2.0 Methods	2
3.0 Results	4
4.0 Detailed Results - 10 day Amphipod Test	5
5.0 Detailed Results - 96 hour Polychaete Test	12
6.0 Detailed Results - Sediment Analysis	21

Toxicity Testing of Paper Pulp Slurry on Benthic Organisms

Summary

Laboratory toxicity tests were conducted using paper pulp slurry derived from mixed paper and cardboard waste from US ships. Tests were conducted during the months of May and June 1995, using amphipods and polychaetes. The tests were performed to investigate what effect, if any, the paper pulp slurry would have on the benthic community if disposed of into the ocean. Results of the toxicity tests showed no observed effect from the paper pulp slurry. The survival of both amphipods and polychaetes was similar in the control sediments, and in the sediments with paper slurry added.

Toxicity Testing of Paper Pulp Slurry on Benthic Organisms

1.0 Introduction

US ships are seeking to dispose of paper pulp slurry, derived from on board waste of mixed paper and cardboard, into the Baltic Sea, North Sea, Mediterranean Sea, Caribbean Sea, and Antarctic Ocean. Disposal of the paper slurry is proposed at an offshore distance of at least 12 miles and at least 50 meters depth. The slurry would be diluted prior to disposal to obtain a maximum concentration of 2% slurry, and then discharged into the ocean off the ship's wake.

Laboratory tests were conducted to examine the impact the paper slurry would have on the benthic infaunal community under "worst case" conditions. To accomplish this, the concentrations of paper slurry tested were higher than that expected to be found at the ocean floor. The organisms chosen for the laboratory tests were amphipods and polychaetes, which are both important components of most marine benthic communities. The amphipod species used during the tests was *Grandidierella japonica* and the polychaete used was *Neanthes arenaceodentata*.

2.0 Methods

A sample of the paper pulp slurry was delivered to the laboratory of Coastal Resources Associates, Inc. by NCCOSC. Tests were performed according to standard protocols for the 10 day amphipod test and the 96 hour polychaete test. The Standard Operating Procedures for these tests have been previously delivered to NCCOSC. The tests were performed in two types of sediment, fine sand and silty sand. Grain size analysis and total organic carbon analysis were also conducted on the sediment types to determine the influence of these variables on toxicity.

Both species were exposed to the paper slurry in the same manner. Sediment and seawater were collected from an unpolluted source and placed in test containers to settle overnight. On test initiation day, the seawater was renewed and the organisms were added to the test containers. The organisms were allowed to burrow for 1 hour before adding the test substance (paper slurry). The test substance was then added and allowed to settle on top of the organisms, simulating what would occur in the real environment.

The concentrations of the paper slurry used in the tests were equivalent to the amount of paper slurry that would settle on top of the sediment. Dilutions were prepared to create layers of paper slurry that were 0.01mm, 0.1mm, and 1.0mm in height. This was accomplished by preparing an initial stock solution of 0.1% (by volume of solid wet material) paper slurry in filtered seawater. The 0.1% stock solution was prepared by making serial dilutions of a 10% solution of the paper slurry. This final stock solution of 0.1% was then allowed to mix well using a stir plate for 1 hour. From prior calculations, enough of the 0.1% stock solution was added to each test container to achieve the desired layers of 0.01mm, 0.1mm, and 1.0mm of settled paper slurry.

After the test was initiated, the amphipods were exposed to the test substance for 10 days and the polychaetes were exposed for 96 hours. During these periods, water quality was monitored daily, and the overlying seawater was renewed every 48 hours without disturbing the sediment or the layer of paper slurry. At the end of the exposure period, the organisms were removed from the sediment and examined for mortality. In the amphipod test, the organisms were also examined to determine whether they would rebury in a new container of sediment and seawater (no test substance), after they were removed from the test container. This additional procedure to the amphipod test is to help determine if there were any sublethal effects on the organisms from the test substance.

3.0 Results

Toxicity tests were conducted using paper slurry at concentrations greater than that expected to be found at the ocean floor. No toxicity was observed in the amphipod or polychaete tests.

Results of the 10 day amphipod test showed no significant difference in survival between the controls and the highest concentration tested, a 1mm layer of paper slurry (P<0.05, Dunnett's test). A 90 - 100% survival rate was seen in all test concentrations. The paper slurry also showed no effect in the organisms ability to rebury in new sediment after completion of the test (P<0.05, Dunnett's test).

Results of the 96 hour polychaete test showed no significant difference in survival between the controls and the highest concentration tested, a 1mm layer of paper slurry (P<0.05, Dunnett's test). A 95 - 100% survival rate was seen in all test concentrations.

There was no apparent effect of grain size on the toxicity of the paper slurry. There were no toxic effects of the paper slurry in either sediment sample. Fine sand and silty sand were collected for testing based on a visual examination of sediments in the field. We did not use coarse sand in our tests, because amphipods cannot bury effectively in coarse sediments, and do not survive well. However, grain size analysis indicated that the two samples of sediment used in the polychaete test differed only slightly (see Section 6.0). In the polychaete test, both sediment samples were composed of 96-97% sand and 3-4% silt and clay, but the silty sand sample was somewhat higher in total organic carbon (861 vs 552 mg/kg). In the amphipod test, the fine sediment was composed of 96% sand and 4% silt and clay, while the silty sediment was composed of 92% sand and 8% silt and clay. The total organic carbon was slightly higher in the silty sediment (1190 vs 1040). There were no effects observed from the paper slurry in either sediment sample.

Details of specific test results, along with the physical/chemical data and individual test data are given in Sections 4.0, 5.0, and 6.0 that follow.

4.0 Results of the 10 day Amphipod Test

Table 1. Summary of test information for the 10 day amphipod test using paper pulp slurry.

Test Information:

Date and Time of Test Initiation: 13 June 1995, 1700 hours

Concentrations Used:

Fine Sand Test: 0, 0.01, 0.1, and 1.0 mm layer of paper slurry Silty Sand Test: 0, 0.01, 0.1, and 1.0 mm layer of paper slurry

Test Material Sources:

Dilution Water: La Jolla, CA.

Sediment: Newport Bay and Agua Hedionda Lagoon, CA.

Organisms: Newport Bay, CA.

Paper Slurry: NRAD

Dates of Collection:

Dilution Water: 6 June and 16 June 1995 Sediment: 10 June and 12 June 1995

Organisms: 10 June 1995 Paper Slurry: 27 April 1995

Table 2. Summary of final test results for the 10 day amphipod test using paper pulp slurry during June 1995. For survival, the NOEC (no observed effect concentration) and ANOVA Mean Square Errors (MSE) are given for analyses of arcsin transformed data. All tabulated means are for untransformed data.

Fine Sand Test

CONCENTRATION (mm Paper Slurry)	% SURVIVAL MEAN S.D.	% REBURIAL MEAN S.D.
0 0.01 0.1 1	98.0 4.47 100.0 0.00 90.0 12.25 96.0 5.48	90.0 12.25 88.0 26.83 85.4 20.48 92.0 13.04
	SURVIVAL:	REBURIAL:
	NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 92.51	NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 340.62

Silty Sand Test

CONCENTRATION (mm Paper Slurry)	% SURVIVAL MEAN S.D.	% REBURIAL MEAN S.D.
0 0.01 0.1 1	94.0 8.94 98.0 4.47 94.0 8.94 100.0 0.00	68.6 27.40 84.0 35.78 75.5 30.23 90.0 22.36
	SURVIVAL:	REBURIAL:
	NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 97.06	NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 572.44

Table 3. Individual test data for survival in the 10 day amphipod test using paper pulp slurry.

Fine Sand Test ###												
Conc.	Rep	Alive										
0	1									. 10		
0	2									. 10		
0	3									. 9		
0	4									. 10		
0	5									. 10		
0.01	1									. 10		
0.01	2									. 10	. 0	
0.01	3									. 10	0	
0.01	4									. 10	0	
0.01	4 5									. 10	0	
0.1	1									. 9	1	
0.1	2									. 9	1	
0.1	2 3									. 10		
0.1	4									. 7		
0.1	4 5									. 10		
1	1									. 10		
1	2									. 10	0	
1	3									. 10	0	
1	4									. 9		
1	5	•	•	•	•					. 9	1	

	Silty Sand Test ###												
Conc.	Rep										A		Dead
0	1											10	0
0	2									•	•	9	1
0	3	٠	•	•	•	•		•	٠		•	10	0
0 -	4	•		•	•	•	٠	•	٠	•	٠	8	2
0	5	•		•	•	•	•	•		•	•	10	0
0.01	1	•			•	٠	•	•	•	•	•	9	1
0.01	2									•	٠	10	0
0.01	3											10	0
0.01	4											10	0
0.01	5											10	0
0.1	1								•			9	1
0.1	2											8	2
0.1	3											10	0
0.1	4											10	0
0.1	5											10	0
1	1											10	0
1	2											10	0
1	3											10	0
1	4											10	0
1	5											10	0

Table 4. Individual test data for reburial in the 10 day amphipod test using paper pulp slurry.

Conc. Re	ер		<u>Fi</u>	ne S	San	<u>id 7</u>	<u> est</u>	· #	ŧ ab Re	ole bury	t able ebury
0	1									9	1
0	2									9	1
0	3									9	0
0	4									7	3
0	5									10	0
0.01	1									10	0
0.01	2									10	0
0.01	3									4	6
0.01	4									10	0
0.01	5									10	0
0.1	1									9	0
0.1	2									9	0
0.1	3									10	0
0.1	4									4	3
0.1	5									7	3
1	1									10	0
1	2									9	1
1	3									7	3
1	4 5									9	0
l 	5									9	 0

Conc. R	ер		 <u>Si</u>	lty	Sai	nd '	Tes	# able Rebury	# Not able to Rebury
0	1							. 10	0
0	2							. 5	4
0	3							. 7	3
0	4							. 7	1
0	5							. 3	7
0.01	1							. 9	0
0.01	2							. 10	0
0.01	3							. 2	8
0.01	4							. 10	0
0.01	5							. 10	0
0.1	1							. 9	0
0.1	2							. 7	1
0.1	3							. 10	0
0.1	4							. 3	7
0.1	5							. 6	4
1	1							. 10	0
1	2							. 5	5
1	3							. 10	0
1	4							. 10	0
1	5				•			. 10	0

Table 5. Physical/chemical measurements taken every 24 hours for the fine sand test and the silty sand test in the 10 day amphipod test using paper pulp slurry. Water quality parameters include temperature (°C), pH, dissolved oxygen (mg/l), and salinity (ppt).

Fine Sand Test

	*				T	ime (ho	urs)	•				
Parameter	Conc.	0	24	48	72	96	120	144	168	192	216	240
Temp.	0 mm 0.01 mm 0.1 mm 1.0 mm	18.5 18.6 18.9 18.8	19.3 19.5 19.3 19.2	18.0 18.2 18.0 17.8	18.7 18.8 18.3 17.6	18.2 18.3 18.3 18.1		18.2 18.2 18.2 18.1	18.2 18.3 18.3 18.1	18.1 18.2 18.2 18.1	18.5 18.6 18.6 18.4	18.6 18.7 18.6 18.4
Salinity	0 mm 0.01 mm 0.1 mm 1.0 mm	36 36 36 36	35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35		35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35
pН	0 mm 0.01 mm 0.1 mm 1.0 mm	7.9 7.9 7.9 7.9	7.7 7.8 7.8 7.7	7.9 7.9 7.9 7.9	8.1 8.2 8.1 8.0	8.1 8.0 8.0 8.0		8.1 8.2 8.1 8.0	8.0 8.0 8.0 7.9	8.0 8.0 8.0 7.9	7.9 8.0 8.0 7.9	7.9 8.0 8.0 7.9
D.O.	0 mm 0.01 mm 0.1 mm 1.0 mm		6.6 6.5 6.4 6.0	6.8 6.7 6.7 6.8	8.7 8.9 8.7 7.4	8.5 8.3 7.9 7.6		7.3 7.9 7.4 6.9	7.4 7.6 7.3 6.7	7.0 6.9 7.1 6.4	6.9 6.9 7.1 6.6	6.6 6.9 7.0 6.5

Note: Water quality parameters were not measured at the 120th test hour.

Table 5 continued.

Silty Sand Test

					Γ	ime (ho	ours)					
Parameter	Conc.	0	24	48	72	96	120	144	168	192	216	240
Temp.	0 mm 0.01 mm 0.1 mm 1.0 mm	18.7 18.7 18.5 18.8	19.0 19.0 18.8 19.2	18.0 17.8 18.0 17.8	18.2 18.1 18.1 18.4	17.7 17.6 17.6 18.0		17.7 17.6 17.5 18.1	17.9 18.1 17.8 17.9	17.7 17.7 17.7 18.1	18.0 17.9 17.9 18.2	18.1 18.0 18.0 18.4
Salinity	0 mm 0.01 mm 0.1 mm 1.0 mm	36 36 36 36	35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35	· · · ·	35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35	35 35 35 35
pН	0 mm 0.01 mm 0.1 mm 1.0 mm	7.9 7.9 8.0 7.9	7.8 7.8 7.9 7.9	7.9 7.9 7.9 7.9	8.1 8.1 8.1 8.0	8.0 8.0 7.9 7.9	· · ·	8.1 8.1 8.1 8.0	7.9 8.0 7.9 7.9	8.0 8.0 7.9 7.9	8.0 8.0 7.9 7.9	8.0 8.0 7.9 7.9
D.O.	0 mm 0.01 mm 0.1 mm 1.0 mm	6.6 6.6 6.7 6.4	6.1 6.1 6.2 6.0	6.6 6.8 6.7 6.7	8.2 8.2 8.1 7.8	8.5 8.4 8.3 8.1		7.9 8.0 7.6 7.5	7.2 7.1 7.1 6.9	6.9 6.8 6.6 6.3	6.9 6.9 6.7 6.4	6.9 7.0 6.8 6.4

Note: Water quality parameters were not measured on the 120th test hour.

5.0 Results of the 96 hour Polychaete Test

Table 6. Summary of test information for the 96 hour polychaete test using paper pulp slurry during May 1995.

Test Information:

Date and Time of Test Initiation: 2 May 1995, 1500 hours

Concentrations Used:

Fine Sand Test: 0, 0.01, 0.1, and 1.0 mm layer of paper slurry Silty Sand Test: 0, 0.01, 0.1, and 1.0 mm layer of paper slurry

Test Material Sources:

Dilution Water: La Jolla, CA. Sediment: Newport Bay, CA. Organisms: Long Beach, CA. Paper Slurry: NRAD

Dates of Collection:

Dilution Water: 26 April 1995 and 3 May 1995

Sediment: 28 April 1995 Organisms: 2 May 1995 Paper Slurry: 27 April 1995

Table 7. Summary of final test results for the 96 hour polychaete test using paper pulp slurry during May 1995. For percent survival, the NOEC (no observed effect concentration) and ANOVA Mean Square Errors (MSE) are given for analyses of arcsin transformed data. All tabulated means are for untransformed data.

Fine Sand Test

CONCENTRATION	% SURVIVAL					
(mm Paper Slurry)	MEAN	S.D.				
_						
0	100.0	0.00				
0.01	100.0	0.00				
0.1	100.0	0.00				
1	95.0	22.36				

SURVIVAL:

NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 101.25

Silty Sand Test

CONCENTRATION	% SURVIVAL						
(mm Paper Slurry)	MEAN	S.D.					
0	95.0	22.36					
0.01	95.0	22.36					
0.1	100.0	0.00					
1	95.0	22.36					

SURVIVAL:

NOEC = 1 LOEC = . EC50 = . ANOVA MSE = 303.75

Table 8. Individual test data for survival in the 96 hour polychaete test using paper pulp slurry during May 1995.

Fine Sand Test												0/
Conc.	Rep										% Alive	% Dead
0	1										. 100	0
0	2										. 100	0
0	3										. 100	0
0	4										. 100	. 0
0	5										. 100	0
0	6										. 100	0
0	7										. 100	0
0	8										. 100	0
0	9										. 100	0
0	10										. 100	0
0	11				•						. 100	0
0	12	•		•							. 100	0
0	13						•		•		. 100	0
0	14								•		. 100	0
0	15						•		•		. 100	0
0	16								•		. 100	0
0	17								•		. 100	0
0	18							•		•	. 100	0
0	19							•			. 100	0
0	20							•		•	. 100	0
0.01	1				•	•				•	. 100	0
0.01	2								٠	•	. 100	0
0.01	3	•	•		•	•	٠	• ·	•	•	. 100	0
0.01	4					•	•	•		•	. 100	0
0.01	5					•	٠	٠	٠	•	. 100	0
0.01	6	•						•	٠	•	. 100	0
0.01	.7	•	•	•	•	٠	•		٠	٠	. 100	0
0.01	8	•	•		•		•			•	. 100	0
0.01	9	•	•	•			•			•	. 100	0
0.01	10	•	•				•			•	. 100	0
0.01	11	•	٠		•	•	٠		•	•	. 100	0
0.01	12		٠	•	•	•			٠	•	. 100	0
0.01	13	•	٠		•	•			٠	•	. 100	0
0.01	14		•	•		•	٠	•	•	•	. 100	0
0.01	15	•	•	•			•	•		•	. 100	
0.01	16						•		•		. 100	
0.01	17	•	•	•		•	•	•	•	•	. 100	
0.01	18	•		•	•		•		•		. 100	
0.01	19	•	•				•	٠	•	٠	. 100	
0.01	20		•			•	•	٠	•	•	. 100	0

Table 8 continued.

A	0 1	783	· .•	• • •
Hine	Sand	1 PCT	continu	ad I
1 1110	Danu	1031	LVIIIII	vu i

Conc	. Rep										% Alive	% Dead
0.1	1										. 100	0
0.1	2										. 100	0
0.1	3										. 100	0
0.1	4										. 100	0
0.1	5										. 100	0
0.1	6										. 100	. 0
0.1	7										. 100	0
0.1	8										. 100	0
0.1	9									Ċ	. 100	0
0.1	10						·			Ċ	. 100	Ō
0.1	11						ĺ	•	•	·	. 100	Ō
0.1	12				Ī			·	•	•	. 100	Ŏ
0.1	13		·		•		Ċ	•		•	. 100	Ö
0.1	14						·		·	i	. 100	0
0.1	15										. 100	0
0.1	16										. 100	0
0.1	17										. 100	0
0.1	18										. 100	0
0.1	19										. 100	0
0.1	20										. 100	0
1	1										. 100	0
1	2 3										. 100	O
1	3										. 0	100
1	4										. 100	0
1	5 6										. 100	0
1	6										. 100	0
1	7										. 100	0
1	8										. 100	0
1	9										. 100	0
1	10										. 100	0
1	11										. 100	0
1	12										. 100	0
1	13										. 100	0
1	14										. 100	0
1	15	-									. 100	0
1	16				•						. 100	0
1	17	•	•			٠					. 100	0
1	18	•	٠	٠	•			•			. 100	0
1	19	•	•	٠	•	•		٠			. 100	0
1	20		•	•	•	•	•			•	. 100	0

Table 8 continued.

				<u>Si</u>	lty	Saı	nd T	Гes	<u>t</u>			%	%
Conc.	Rep										Al	ive	Dead
0	1										. 1	00	0
0	2											0	100
0	3											00	0
0	4											00	0
0	5											00	0
0	6											00	. 0
0	7	•										100	0
0	8											100	0
0	9											100	0
0	10											00	0
0	11											100	0
0	12											100	0
0	13											100	0
0	14											100	0
0	15											100	0
0	16											100	0
0	17											100	0
0	18											100	0
0	19				•							100	0
0	20		•									001	0
0.01	1						•	•	•			100	0
0.01	2	•					•	•	•	•		100	0
0.01	3			•		•	٠	•	•	•		100	0
0.01	4	•		٠	•	•	•	٠	•	٠		100	0
0.01	5	•		•		٠	٠	•	•	•		100	0
0.01	6	•	•	•			•	•	•	٠		100	0
0.01	7	•	•	٠		•		•	٠	٠		100	. 0
0.01	8	•	٠	•	•		•	•	•	٠		100	0
0.01	9	•	•	•		•		•	•	•		100	0
0.01	10	•		•	•	•	٠	٠	•	•		100	0
0.01	11	•	•	•	•		•	•	•	٠		100	0
0.01	12	•	•	•	•	•	•	٠	٠	•		100	0
0.01	13	•	•		٠		•	•	٠	•		100	0
0.01	14	٠	•	•	•	•	•	٠		•		100	0
0.01	15		•	٠	•	•	•	•	•	•		100	0
0.01	16	•	•	•	•	•	•	•	٠	•		100	0
0.01	17			٠	•	٠	•	٠	٠	•		100	0
0.01	18	•	•	٠	٠	•	•	•	•	٠		100	0
0.01	19	•	•	٠	•	•	•	٠	•	•		100	0
0.01	20								•	٠	•	0	100

Table 8 continued.

C'I	C 1	Tr 1	· .	1)
NIITV	Sana	PCT	contin	เบอกา
CALLY.	Dania	I COL	COLLETI	ucui

Conc.	Rep										% Alive	% Dead
0.1	1					_					. 100	0
0.1	2		Ċ								. 100	0
0.1	3										. 100	0
0.1	4										. 100	0
0.1	5										. 100	0
0.1	6										. 100	0
0.1	7										. 100	0
0.1	8										. 100	0
0.1	9										. 100	0
0.1	10	·	Ť	·	Ī	·		·		·	. 100	0
0.1	11	·	·	•	•	•	•	·	•	•	. 100	Ō
0.1	12	•	•	•	•	•	•	•	•	•	. 100	Ö
0.1	13	•		•	•	•	•	·	•	•	. 100	Ö
0.1	14	•	·	•	•	•		•	•	•	. 100	Ö
0.1	15		Ċ		·		•		·		. 100	Ö
0.1	16	Ċ							i	i	. 100	Ō
0.1	17								i		. 100	0
0.1	18										. 100	0
0.1	19	i						·	Ċ		. 100	0
0.1	20										. 100	0
1	1										. 100	0
1	2										. 100	0
1	3										. 100	0
1	4										. 100	0
1	5										. 100	0
1	6										. 0	100
1	7										. 100	0
1	8										. 100	0
1	9										. 100	0
1	10										. 100	0
1	11										. 100	0
1	12										. 100	0
1	13										. 100	0
1	14										. 100	0
1	15										. 100	0
1	16										. 100	0
1	17										. 100	0
1	18										. 100	0
1	19										. 100	0
1	20										. 100	0

Table 9. Physical/chemical measurements taken every 24 hours for the fine sand test and the silty sand test in the 96 hour polychaete test using paper pulp slurry. Water quality parameters include temperature (°C), pH, dissolved oxygen (mg/l), and salinity (ppt).

Fine Sand Test

÷			Time	(hours)	÷.	
Parameter	Concentration	0	24	48	72	96
Temp.	0 mm	15.4	15.4	15.6	15.0	15.5
	0.01 mm	15.3	15.1	15.2	14.7	15.2
	0.1 mm	16.0	15.5	15.7	15.0	15.6
	1.0 mm	15.3	15.9	16.8	16.2	16.9
Salinity	0 mm	36	36	36	36	36
	0.01 mm	36	36	36	36	36
	0.1 mm	36	36	36	36	36
	1.0 mm	36	36	36	36	36
pH .	0 mm	7.8	7.9	8.0	8.1	8.1
	0.01 mm	7.8	7.9	8.0	8.1	8.1
	0.1 mm	7.8	7.9	8.0	8.0	8.0
	1.0 mm	7.8	8.0	8.1	8.1	8.1
D.O.	0 mm	7.8	8.2	8.2	8.3	8.3
	0.01 mm	7.4	8.0	7.9	8.2	8.3
	0.1 mm	7.6	8.0	8.1	8.1	8.2
	1.0 mm	7.6	8.3	8.1	8.3	8.2

Table 9 continued.

Silty Sand Test

			Time	(hours)		
Parameter	Concentration	0	24	48	72	96
Temp.	0 mm	15.6	15.3	15.5	15.0	15.4
	0.01 mm	15.7	15.7	15.9	15.3	15.7
	0.1 mm	16.0	15.8	16.1	15.6	16.1
	1.0 mm	15.6	15.3	15.6	15.1	15.7
Salinity	0 mm	36	36	36	36	36
	0.01 mm	36	36	36	36	36
	0.1 mm	36	36	36	36	36
	1.0 mm	36	36	36	36	36
pH	0 mm	7.6	7.9	8.0	8.1	8.1
	0.01 mm	7.6	7.9	8.0	8.1	8.2
	0.1 mm	7.6	7.9	8.0	8.1	8.1
	1.0 mm	7.6	7.9	8.0	8.1	8.1
D.O	0 mm	7.8	8.0	8.2	8.4	8.3
	0.01 mm	7.8	8.1	8.4	8.6	8.2
	0.1 mm	7.7	7.9	8.2	8.3	8.2
	1.0 mm	7.8	7.7	8.1	8.3	8.2

6.0 Results of the Sediment Analysis

Sediment Analysis

Table 10. Results of grain size analysis and Total Organic Carbon (TOC) content in sediments used in toxicity tests with amphipods and polychaetes.

Amphipod Test

	Fine Sand	Silty Sand
Mean Grain Size:	166 microns	184 microns
% Sand:	95.5 %	91.7 %
% Silt:	2.1 %	3.4 %
% Clay:	2.4 %	4.9 %
TOC content:	1040 mg/kg	1190 mg/kg

٠,

Polychaete Test

	Fine Sand	Silty Sand
Mean Grain Size:	187 microns	178 microns
% Sand:	97.3 %	96.1 %
% Silt:	1.2 %	1.5 %
% Clay:	1.5 %	2.4 %
TOC content:	552 mg/kg	861 mg/kg

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 1 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

1.0 Scope

This SOP describes general test methods for the 96 hour acute test for sediment toxicity with polychaetes.

2.0 Application

This test is used as an acute marine sediment toxicity test for polychaetes.

3.0 Health & Safety

Test substances used in the polychaete sediment toxicity test may be toxic and special care will be taken in handling these toxic substances. Health and safety procedures relevant to toxicity testing are described in SOP's H 001 through H 015.

4.0 Definitions

NOEC - No observed effect concentration. The highest concentration of a test or reference substance that does not cause a statistically significant reduction in survival.

LOEC - Lowest observed effect concentration. The lowest concentration of a test or reference substance that causes a statistically significant reduction in survival.

 LC_{50} - A statistically or graphically derived estimate of the concentration of a test or reference substance that is lethal to 50% of the test systems exposed.

Control Substance - Any chemical substance or mixture, or any substance other than the test substance, feed, or water, that is administered to the test system in the course of the

Susan Trojano, Laboratory Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 2 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

study for the purpose of establishing a basis for comparison with the test substance for known chemical or biological measurements.

Dilution Water - The water used to dilute test substances for use in toxicity tests.

Reference Substance- Any chemical substance or mixture or analytical standard other than the test substance, feed, or water, that is administered to the test system in the course of the study for the purpose of establishing a basis for comparison with the test substance for known chemical or biological measurements.

Test Substance - A substance or mixture administered or added to a test system in a study.

Test System - Any organism (animal or plant) to which a test, control, or reference substance is administered or added for study.

Start time for the test - The time of addition of the first test system to the test substance, reference substance, or control.

5.0 Equipment

1 L glass beakers or jars (or equivalent disposable container)
Sieve (0.5 mm mesh)
Plastic sheeting
Thermometer
D.O. meter
pH meter
Refractometer
Cool white fluorescent light
Temperature controlled room

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 3 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

Continuous temperature monitor Air pump, air lines, and disposable pipet tip

6.0 Procedures

6.1 Test System

Species

Neanthes arenaceodentata

Source

Don Reish, California State University Long Beach, Long Beach, CA

ife_ctage

Age/Life-stage from the parent's tube

2 to 3 months from time of emergence

Acclimation

Acclimate to 18°C by adjusting

temperature at a rate of no more than 3°C

per 24 hours (SOP SY)

Records

Maintain test system log sheet

(SOP SY 001)

Feeding

None during conduct of test,

8 mg Tetramin per worm every other day

during holding

6.2 Test Substance

Test substances will be supplied by the client or sampled by an employee of Coastal Resources Associates, Inc.

6.3 General Test Conditions

Temperature

17 to 20°C ± 3°C

Salinity

34 ppt

Photoperiod

None specified

Susan (Kojano, Laboratory Manager

Approved: Chomas A Coan

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 4 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

Test chamber 1 L beaker, jar, or equivalent disposable

container

Dilution water source Uncontaminated seawater

Number dilutions per sample 5 (unless otherwise

specified in protocol)

Number of controls 1 (minimum) consists of a set of replicates

1

At 48 hours

At 48 hours

using sediment from the location at which

the organisms were collected and uncontaminated seawater, additional controls may be needed for testing other

700 ml/replicate (>175 ml for sediment)

20 recommended (10 minimum)

20 recommended (10 minimum)

sediments

Number of replicates

per test dilution

Number of replicates

per control

Volume of dilutions

Number of test systems

per chamber

Renewal of test substances

Renewal of reference

substances

Type of biological

Definition of death

observations

Number of animals alive

Opaque white coloration, immobility, and lack of reaction to gentle prodding

Times of biological

observations

Daily - number dead

At termination - number alive

Type of physical/chemical

measurements

Temperature, D.O., pH, salinity

Signed:

Susan T. Rojano, Labora

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 5 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

Times of physical/chemical

measurements

Continuous - room temperature

Daily - Chamber temperature, D.O., pH,

salinity

Dilutions for physical/ chemical measurements One randomly selected replicate per treatment - Chamber temperature, D.O.,

pH, salinity

Bath only - continuous temperature

Dilutions for test substance

Determined by range finding test or by

purpose of the study

6.4 Definitive Test with a Test Substance

Steps for conducting the definitive test are as follows:

- Receive polychaetes (SOP SY 001) and acclimate (SOP SY 011).
- The day before test initiation, add homogenized sediment and seawater to the test chambers and allow the sediment to settle. Enough sediment must be added to create a 2 cm deep layer on the bottom of each test chamber and overlying water should be added to the 700 ml mark on the test chambers.
- Cover all test chambers with plastic sheeting to minimize evaporation and reduce the risk of contamination.
- On test initiation day, prepare dilutions of the test substance and equilibrate dilutions to appropriate test conditions (SOP SU 014)
- Siphon as much overlying seawater off as possible without disturbing the sediment.

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 6 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

- Add the newly prepared dilutions of the test substance to the appropriate test chambers up to the 700 ml mark. Slowly pour the dilutions down the side of the test chamber or glass rod to reduce disturbance to the sediment.
- Measure physical/chemical parameters as described in section 6.3 above and record the results on the water quality data sheet (TS-18-1).
- Add 1 polychaete to each test chamber using a wide bore pipette with a fire polished tip (SOP SY 002).
- Confirm there is a polychaete in each test chamber. Record the results on the biological observations data sheet (TS-18-2).
- Approximately twenty-four hours after the start of the test, count the number of dead polychaetes in each test chamber. Remove any dead organisms from the test containers using a wide bore pipette with a fire polished tip. Record the results on the biological observations data sheet (TS-18-2).
- Measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-18-1).
- Approximately forty-eight hours after the start of the test, count the number of dead polychaetes in each test chamber and record the results on the biological observations data sheet (TS-18-2).

Susan T Rojano Laborator/Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 7 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

- Measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-18-1).

- Siphon off 75% of the test water and any dead organisms. Siphon using an airline with a wide bore pipette with a fire polished tip attached. Use a separate clean tip for each dilution.

- Add newly prepared dilutions of the test substance to the appropriate test chambers up to the 700 ml mark. Slowly pour the dilutions down the side of the test chamber or a glass rod to reduce disturbance to the sediment.
- After renewal, measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-18-1).
- Count the number of dead polychaetes daily and record on the biological observations data sheet (TS-18-2).
- Measure physical/chemical parameters as described in section 6.3 daily.
- Terminate the test after 96 hours of exposure.
- Sieve the contents of each test vessel individually through a 0.5 mm screen to remove the test organisms. Use dilution water with a salinity and temperature within two units for sieving.

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 8 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

- Rinse material retained on the screen into a tray for closer examination.
- Count the number of live polychaetes and record the results on the biological observations data sheet (TS-18-2).
- Dispose of the polychaetes (SOP SY 003) and the test substance (SOP SU 006).

6.5 Recording and analyzing data

- Enter all data onto data sheets according to procedures given in SOP D 001. Enter these data into computer files (SOP D 002).
- Analyze the test data as described in SOP D 003 using SAS statistical software. Determine the LC₅₀, the NOEC, and the LOEC.

6.6 Test Acceptability

- Total survival in the controls must be 90% or greater.

6.7 Documentation and Reports

- Documents listed in SOP D 005 will be completed. Data sheets specific to this test procedure are attached. These data and any subsequent analysis of the data will be archived as indicated in SOP D 006.
- Reports will be prepared as per SOP D 007 and documents archived per SOP D 008.

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 96 Hour Acute Sediment Toxicity Test with Polychaete Worms

Pg. 9 of 9

SOP No.: TS 018.00

Effective Date: 03/23/95

7.0 Personnel

All Coastal Resources Associates, Inc. technical staff trained in specific tasks related to this test will use this SOP.

Susan F. Rojano, Laboratory Manager

Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 1 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

1.0 Scope

This SOP describes general test methods for the 10 day acute test for sediment toxicity with amphipods. The procedures are modified from ASTM E1367 (1993).

2.0 Application

This test is used as a marine sediment toxicity test for amphipods.

3.0 Health & Safety

Test substances used in the amphipod sediment toxicity test may be toxic and special care will be taken in handling these toxic substances. Health and safety procedures relevant to toxicity testing are described in SOP's H 001 through H 015.

4.0 Definitions

NOEC - No observed effect concentration. The highest concentration of a test or reference substance that does not cause a statistically significant reduction in survival.

LOEC - Lowest observed effect concentration. The lowest concentration of a test or reference substance that causes a statistically significant reduction in survival.

 LC_{50} - A statistically or graphically derived estimate of the concentration of a test or reference substance that is lethal to 50% of the test systems exposed.

Control Substance - Any chemical substance or mixture, or any substance other than the test substance, feed, or water, that is administered to the test system in the course of the

Susan Drojano, Laboratory Manager

Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 2 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

study for the purpose of establishing a basis for comparison with the test substance for known chemical or biological measurements.

Dilution Water - The water used to dilute test substances for use in toxicity tests.

Reference Substance- Any chemical substance or mixture or analytical standard other than the test substance, feed, or water, that is administered to the test system in the course of the study for the purpose of establishing a basis for comparison with the test substance for known chemical or biological measurements.

Test Substance - A substance or mixture administered or added to a test system in a study.

Test System - Any organism (animal or plant) to which a test, control, or reference substance is administered or added for study.

Start time for the test - The time of addition of the first test system to the test substance, reference substance, or control.

5.0 Equipment

1 L glass beakers or jars (or equivalent disposable container)
Sieve (0.5 mm mesh)
Plastic sheeting
Thermometer
D.O. meter
pH meter
Refractometer
Cool white fluorescent light
Temperature controlled room

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 3 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

Continuous temperature monitor Air pump, air lines, and disposable pipet tip

6.0 Procedures

6.1 Test System

Species Grandidierella japonica or Rhepoxynius abronius

Source David Gutoff, San Diego, CA or

Ken Brooks, Port Townsend, WA

Age/Life-stage large immature and adult amphipods,

3 to 5 mm in length

Acclimate to 15°C for Rhepoxynius and

17°C for Grandidierella by adjusting

temperature at a rate of no more than 3°C

per 24 hours (SOP SY)

Identification Source for ID is Environment Canada

Propert EBS 1 (PM /26 (December 1993))

Report EPS 1/RM/26 (December 1992)

Records Maintain test system log sheet

(SOP SY 001)

Feeding None

6.2 Test and Reference Substance

Test substances will be supplied by the client or sampled by an employee of Coastal

Resources Associates, Inc.

Susan T. Rojano, Laboratory Manager

Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 4 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

6.3 General Test Conditions

Temperature $15^{\circ}\text{C} \pm 3^{\circ}\text{C}$ for *Rhepoxynius*

15 to 19°C \pm 3°C for *Grandidierella*

Salinity 28 ppt for *Rhepoxynius*

30 to 35 ppt for Grandidierella

Photoperiod Continuous throughout the test period

Test chamber 1 L beaker or jar, or equivalent

disposable container

Dilution water source Uncontaminated seawater

Number dilutions per sample 5 (unless otherwise

specified in protocol)

Number of controls 1 (minimum) consists of a set of replicates

using sediment from the location at which

the organisms were collected and uncontaminated seawater, additional controls may be needed for testing other

sediments

Number of replicates 5

per test dilution

Number of replicates

per control

Volume of dilutions 700 ml/replicate (>175 ml for sediment)

5

Number of test systems 20

per chamber

Renewal of test substances At 48 hour intervals

Renewal of reference At 48 hour intervals

substances

Signed:

Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 5 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

Type of biological observations

Emergence from sediment, number of animals alive, and ability to rebury

Definition of death

No movement when a pulse of water is applied through a disposable pipet to the

test system

Times of biological observations

Daily - emergence

At termination - number alive and ability

to rebury

Type of physical/chemical measurements

Temperature, D.O., pH, salinity

Times of physical/chemical

measurements

Continuous - room temperature

Daily - Chamber temperature, D.O., pH,

salinity

Dilutions for physical/ chemical measurements

One randomly selected replicate per treatment - Chamber temperature, D.O.,

pH, salinity

Bath only - continuous temperature

Dilutions for test substance

Determined by range finding test or by

purpose of the study

6.4 Definitive Test with a Test Substance

Steps for conducting the definitive test are as follows:

- Receive amphipods (SOP SY 001) and acclimate (SOP SY 011).
- The day before test initiation, add homogenized sediment and seawater to the test chambers and allow the sediment to settle. Enough sediment must be added to create a 2 cm deep layer on the bottom of each test chamber and overlying water should be added to the 700 ml mark on the test chambers.

Signed: Susan Y. Rojano, Laboratory Manager Approved:

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 6 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

- Cover each test chamber with plastic sheeting to minimize evaporation and reduce the risk of contamination.
- On test initiation day, prepare dilutions of the test substance and equilibrate dilutions to appropriate test conditions (SOP SU 014).
- Siphon as much overlying seawater off as possible without disturbing the sediment.
- Add the newly prepared dilutions of the test substance to the appropriate test chambers up to the 700 ml mark. Slowly pour the dilutions down the side of the test chamber or glass rod to reduce disturbance to the sediment.
- Measure physical/chemical parameters as described in section 6.3 above and record the results on the water quality data sheet (TS-9-1).
- Add 20 amphipods to each test chamber using a wide bore pipette with a fire polished tip (SOP SY 002).
- Carefully count as amphipods are added to confirm there are 20 in each test chamber. Record the results on the biological observations data sheet (TS-9-2).
- Approximately twenty-four hours after the start of the test, count the number of amphipods afloat in each test chamber. Record the results on the biological observations data sheet (TS-9-2).

Susan T. Rojano, Laboratory Manager

Approved:

Coastal Resources Associates, Inc. Standard Operating Procedure

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 7 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

- Measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-9-1).
- Approximately forty-eight hours after the start of the test, count the number of amphipods afloat in each test chamber and record the results on the biological observations data sheet (TS-9-2).
- Measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-9-1).
- Siphon off 75% of the test water and any floating organisms. Siphon using an airline with a wide bore pipette with a fire polished tip attached. Use a separate clean tip for each dilution.
- Add newly prepared dilutions of the test substance to the appropriate test chambers up to the 700 ml mark. Slowly pour the dilutions down the side of the test chamber or a glass rod to reduce disturbance to the sediment.
- After renewal, measure physical/chemical parameters as indicated in section 6.3 above and record the results on the water quality data sheet (TS-9-1).
- Count the number of amphipods afloat daily and record on the biological observations data sheet (TS-9-2).

Susan T. Rojano, Laboratory Manager

Approved:

Thomas A. Dean, Ph.D., Laboratory Director

Coastal Resources Associates, Inc. Standard Operating Procedure

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 8 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

- Measure physical/chemical parameters as described in section 6.3 daily. On renewal days measure the parameters before and after renewal.
- Renew the overlying water as described above at 48 hour intervals.
- Terminate the test after 10 days of exposure.
- Sieve the contents of each test vessel individually through a 0.5 mm screen to remove the test organisms. Use dilution water with a salinity and temperature within two units for sieving.
- Rinse material retained on the screen into a tray for closer examination.
- Count the number of live amphipods and record the results on the biological observations data sheet (TS-9-2).
- Place surviving amphipods from each dilution in a separate container with a 2 cm layer of control sediment.
- After 1 hour, count the number of surviving amphipods unable to rebury. Record the results on the biological observations data sheet (TS-9-2).
- Dispose of the amphipods (SOP SY 003) and the test substance (SOP SU 006).

Susan T. Rojano, Laboratory Manager

Approved:

homas A. Dean, Ph.D., Laboratory Director

Coastal Resources Associates, Inc. Standard Operating Procedure

Subject: 10 Day Amphipod Bioassay for Marine Sediment Toxicity

Pg. 9 of 9

SOP No.: TS 009.00

Effective Date: 03/23/95

6.5 Recording and analyzing data

- Enter all data onto data sheets according to procedures given in SOP D 001. Enter these data into computer files (SOP D 002).
- Analyze the test data as described in SOP D 003 using SAS statistical software. Determine the LC_{50} , the NOEC, and the LOEC.

6.6 Test Acceptability

- Total survival in the controls must be 90% or greater.
- Each individual control replicate must have at least 80% survival.

6.7 Documentation and Reports

- Documents listed in SOP D 005 will be completed. Data sheets specific to this test procedure are attached. These data and any subsequent analysis of the data will be archived as indicated in SOP D 006.
- Reports will be prepared as per SOP D 007 and documents archived per SOP D 008.

7.0 Personnel

All Coastal Resources Associates, Inc. technical staff trained in specific tasks related to this test will use this SOP.

Susan T. Kojano, Laboratory Manager

Approved:

Thomas A. Dean, Ph.D., Laboratory Director

APPENDIX E

ZOOPLANKTON INTERACTION REPORT

Source:

Effects of Paper Pulp Wastes on the Feeding of Copepods.

Marine Life Research Group 0218

San Diego, California

Scripps Institution of Oceanography, 1994-1995

Effects of paper pulp wastes on the feeding of copepods

Hae Jin Jeong

•

Marine Life Research Group 0218, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0218

Introduction

The amount and types of anthropogenic products introduced into marine environments have continuously increased. Usually, when these products are introduced into estuaries and semi-enclosed embayments where water circulation is restricted, food webs in these ecosystems can be significantly affected by these products. However, this may not occur in open oceans because of their large water volume and active circulation.

It is planned to dump naval pulp wastes (pulverized paper products) into offshore waters, and it must be determined whether these wastes may affect the ecology of some major components of marine organisms. Copepods are one of the dominant macrozooplankton in most marine environments and play important roles in food webs as major consumers of phytoplankton and microzooplankton, an important food source for diverse carnivores, and as nutrient regenerators. Therefore, changes in their abundances or feeding rates can significantly affect the abundances of their prey and/or predators.

Pulp wastes themselves, and/or leached chemicals, may significantly reduce ingestion rates of copepods on suitable prey by clogging the predators' feeding apparatus or by poisoning them (Ho1 and Ho3 below). If copepods can survive in dense pulp wastes and then recover their feeding rates on suitable prey after pulp waste has sunk or been dispersed, the

wastes will not significantly affect the ecology of copepods (H_02) .

To investigate these topics, the following hypotheses will be tested:

- Hol: The ingestion rate of phytoplankton by copepods is independent of the presence of slurry of Pulp wastes.
- Ho2: There is no effect on ingestion rates in slurry-free water of previous exposure to slurry.
- H₀3: there is no difference in ingestion rates in slurryfree sea water in which slurry had been soaked for 24 hour and then removed by filtration, relative to sea water never contacting slurry.

MATERIALS AND METHODS

Preparation of experimental organisms and conditions

The dinoflagellates <u>Gymnodinium sanguineum</u> and <u>Gonyaulax polyedra</u> and common copepods <u>Acartia</u> spp. and <u>Calanus pacificus</u> were chosen for these experiments. <u>G. sanguineum</u> and <u>G. polyedra are common red-tide dinoflagellates and known as prey for <u>Acartia</u> spp. and <u>C. pacificus</u>. They were grown in enriched f/4 seawater media (Guillard & Ryther 1962) without silicate, at room temperature (20-23°C) with continuous illumination of 100</u>

 μE m⁻²s⁻¹ of cool white fluorescent lights. Cultures in exponential growth phase were used for feeding experiments.

Adult female <u>C. pacificus</u> were collected from the coastal waters off La Jolla Bay, CA using a 303 μ m mesh net, and adult female <u>Acartia</u> spp. from the waters of Misson Bay, CA using a 54 μ m mesh net. Copepods were maintained at 15 °C room in 1 gallon jars with <u>G. sanguineum</u> or <u>G. polyedra</u> in filtered sea water for at least two days before experiments.

Experimental designs

The initial densities of the predator and prey, and slurry are given in Table 1. Experiments 1 and 2 was designed to test H₀1 (ingestion rate of <u>C. pacificus</u> or <u>Acartia</u> spp. is independent of the presence of slurry) stated previously. Experiment 3 was designed to test H₀1 and H₀2 (no difference in ingestion rates between copepods previously incubated with and without slurry). Experiment 4 was designed to test H₀3 (there is no difference in ingestion rates in slurry-free sea water in which slurry had been soaked for 24 hour and then removed by filtration, relative to sea water never contacting slurry).

To set up an experiment, three 1 ml aliquots from a <u>G. sanguineum</u> or <u>G. polyedra</u> culture were counted to determine density. The concentrations of <u>G. sanguineum</u> or <u>G. polyedra</u> were obtained by volume dilution with an autopipette. The wet weight of slurry was measured on a microbalance, and each concentration (ratio of wet weight of slurry to weight of sea water) of slurry

was obtained by adding a known weight of slurry into Polycarbonate (PC) bottles. Slurry inside bottles was not homogeneously distributed, even though bottles were rotated. Such an aggregation of slurry may be also true in nature.

Copepods maintained in a 15 °C room were rinsed with filtered sea water in a Petri-dish, and 5 healthy female Calanus (in experiments 1, 3, and 4) or 8 female Acartia spp. (in experiment 2) were transferred into each 500 or 270 ml PC bottle, respectively. Duplicate experiment bottles were set up, as were duplicate control bottles containing only G. sanguineum or <u>G. polyedra</u> and slurry at all slurry concentrations. Actual initial concentrations of G. sanguineum or G. polyedra were measured in one extra control bottle by counting and removing more than 200 individual cells with a Pasteur micropipette. Experimental and control bottles were placed on rotating wheels at 0.9 RPM under dim light at 15°C for 16 - 20 h. After incubation, 2 ml aliquots from each bottle were transferred into multiwell chambers for counting <u>G. sanguineum</u> or <u>G. polyedra</u> cells (after serial dilution where necessary), and <u>C. pacificus</u> or Acartia spp. were sieved onto a 101 μ m net and counted. Ingestion rates (prey ingested copepod-1 hour-1) of copepod on G. sanguineum or G. polyedra were calculated, using the equations of Frost (1972), from final concentrations of prey in bottles with and without Calanus or Acartia.

The slurry concentration of 0.6 % was used in experiment 3 because this concentration caused a large reduction in feeding

in experiment 1. Two different predator-prey combinations were initially set up in duplicate: (1) 5 female C. pacificus (10 C. pacificus 1^{-1}) and G. sanguineum (2) 5 female C. pacificus, G. sanguineum, and slurry. Duplicate control bottles were similarly set up without copepods. Bottles were incubated for 24 h as described above (in Table 1, t=0). After counting cells, all C. pacificus were sieved onto a 101 μ m net, counted, and transferred into new bottles containing only new G. sanguineum cells without slurry (in Table 1, t=24h). New duplicate control bottles containing only G. sanguineum were set up. Bottles were incubated again for 24 h as described above, and cells and Calanus were counted.

In experiment 4, 0.6% slurry in filtered sea water was placed in a 15°C room. Twenty-four hours later, the slurry was screened out onto a GF/C millipore filter, and the filtrate sea water was transferred into four PC bottles. G. sanguineum was added to all four, and 5 female C. pacificus to two of these. Controls were similarly set up using sea water which had not been exposed to slurry. Bottles were incubated for 24 h as described above, and cells and Calanus were counted.

Test of hypotheses

In experiments 1 and 2, the initial concentration of <u>G. sanguineum</u> or <u>G. polyedra</u> was fixed, while that of slurry varied (Table 1). An Analysis of Variance (ANOVA, Zar 1984) was used to test whether ingestion rates of <u>G. sanguineum</u> or <u>G.</u>

polyedra by C. pacificus or Acartia spp., respectively, at one slurry concentration were significantly different from those at other slurry concentrations (H_01) .

H₀2 can be rejected if ingestion rates of <u>C. pacificus</u> previously incubated with slurry are significantly different (by two-tailed, two-sample t test) from those never exposed to slurry.

H₀3 can be rejected if ingestion rates in sea water in which slurry had been soaked for 24 hour and then removed by filtration are significantly different (by two-tailed, two-sample t test) from those in sea water never contacting slurry.

RESULTS

Test of H₀1 (ingestion rate of phytoplankton by copepods is independent of the presence of slurry)

With increasing slurry concentration, the ingestion rates of <u>Gymnodiniuim sanguineum</u> by <u>Calanus pacificus</u> exponentially decreased from 205 to 12 prey <u>Calanus</u> $^{-1}$ h $^{-1}$ (Fig. 1).

Ingestion rates of <u>G. sanguineum</u> by <u>C. pacificus</u> were significantly reduced by slurry (ANOVA, p < 0.005; Zar 1984). Therefore, Hol can be rejected when <u>G. sanguineum</u> and <u>C. pacificus</u> were prey and predator. Ingestion rates at slurry concentrations of 0.05 and 0.1% were not significantly different

from that without added slurry (p > 0.05), but they were significantly depressed at slurry concentrations \geq 0.3% (p < 0.05).

With increasing slurry concentration, the ingestion rates of <u>Gonyaulax polyedra</u> by <u>Acartia</u> spp. also decreased from 22 to 5 prey <u>Acartia</u> $^{-1}$ h $^{-1}$ (Fig. 2).

Ingestion rates of <u>G. polyedra</u> by <u>Acartia</u> spp. were significantly reduced by slurry (ANOVA, p < 0.05). Therefore, Ho1 can also be rejected when <u>G. polyedra</u> and <u>Acartia</u> spp. were prey and predator. The ingestion rate at a slurry concentration of 0.1% was not significantly different from that without added slurry (p > 0.05), but was significantly depressed at 0.6% (p < 0.05).

Test of $H_{0}2$ (no effect on ingestion rates in slurry-free water of previous exposure to slurry)

In experiment 3, after first day incubation, the ingestion rate of <u>Calanus</u> on <u>Gymnodinium sanguineum</u> incubated with the slurry concentration of 0.6% was significantly different from that without slurry (Fig. 3, two tailed-t test, p < 0.05), similar to the result in experiment 1. However, the ingestion rate of the <u>Calanus</u>, originally incubated with 0.6% slurry for 24 hour and then transferred into new bottles containing <u>G. sanguineum</u> without slurry, was not significantly different from that of the <u>Calanus</u>, continuously incubated without slurry.

Therefore, H₀2 cannot be rejected. The results show that <u>Calanus</u> recovers its feeding rate when slurry disappears.

Test of H₀3 (there is no difference in ingestion rates in slurry-free sea water in which slurry had been soaked for 24 hour and then removed by filtration, relative to sea water never contacting slurry)

The ingestion rate of <u>Calanus</u> in slurry-free sea water in which slurry had been soaked for 24 hour and then removed by filtration was not significantly different from that in sea water never contacting slurry (p > 0.05, grey bars in Fig. 3).

Discussion

The presence of slurry significantly significantly reduced the ingestion rates of <u>Calanus pacificus</u> on <u>G. sanquineum</u> at the slurry concentrations ≥ 0.3 %. However, <u>Calanus</u>, originally exposed to 0.6 % slurry for 24 hour, can recover its feeding rates when slurry disappears (Fig. 3). Therefore, if slurry is diluted quickly due to water movement after being dumped at 0.6% concentration, its presence may not affect the abundance of <u>Calanus</u>. The presence of slurry also significantly reduced the ingestion rates of <u>Acartia</u> spp. on <u>Gonyaulax polyedra</u>, however, the magnitude of the reduction of ingestion rates by <u>Acartia</u> spp. (4 times) was smaller than that by <u>Calanus</u> (17 times). The habitat of <u>Acartia</u> spp. (i.e. estuaries or coastal waters) is in

habitat of <u>Acartia</u> spp. (i.e. estuaries or coastal waters) is in general more turbid and polluted than that of <u>Calanus</u> (i.e. offshore). The adaptation of <u>Acartia</u> spp. to turbid environments may be partially responsible for its greator tolerance of slurry.

Chemicals leached from slurry did not affect the feeding rate of <u>Calanus</u> (Fig. 3). Mechanical interferences of slurry on the feeding and/or swimming behavior of copepods may be mainly responsible for the reduction of the ingestion rates.

LITERATURE CITED

- Frost, B.W. (1972). Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod <u>Calanus pacificus</u>. Limnol. Oceanogr. 17:805-815
- Heinbokel, J.F. (1978). Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189
- Zar, J.H. (1984). Biostatistical analysis. Prentice Hall, Englewood Cliffs

Table 1. Design of experiments.

Experiment No.	t time ¹	Slurry (%) ²	Prey ³ (cells. ml ⁻¹)	Predator ⁴ (inds. l ⁻¹)
1	t=0	0, 0.05, 0.1, 0.3, 0.6	123	10*
2	t=0	0, 0.1, 0.6	190	30
3	t=0	0, 0.6	183	10
	t=24h	0, 0	117	10
4 .	t=0	0, 0 ⁵	117	10

^{1:} time exposed to 0.6% slurry before measurement of ingestion

^{2:} ratio of wet weight of slurry to that of filtered sea water

³ and 4: The initial densities of prey and predator (Gymnodinium sanguineum and Calanus pacificus in experiments 1, 3, and 4, and Gonyaulax polyedra and Acartia spp. in experiment 2)

^{5:} water in which slurry had been soaked for 24 hours

^{*:} Incubation bottle size (500 ml in experiments 1, 3, and 4, and 270 ml in experiment 2)

FIGURE CAPTIONS

- Fig. 1. Ingestion rates of <u>Gymnodinium sanguineum</u> by <u>Calanus pacificus</u> as a function of the slurry concentration. Symbols represent treatment means \pm 1 S.E. Relations are fitted by the curve linear regression. IR (prey eaten <u>Calanus</u>⁻¹ h⁻¹) = 183 x $e^{(-5.42 \times SC)}$ ($e^{(-5.42 \times SC)}$); where SC = slurry concentration.
- Fig. 2. Ingestion rates of <u>Gonyaulx polyedra</u> by <u>Acartia</u> spp. as a function of the slurry concentration. Symbols represent treatment means $\pm\ 1$ S.E.
- Fig. 3. Ingestion rates of <u>Gymnodinium sanguineum</u> by <u>Calanus pacificus</u>. Symbols represent treatment means \pm 1 S.E. Black bars Incubated without slurry in both Day 1 (t=0 in Table 1) and 2 (the initial <u>G. sanguineum</u> concentrations in Day 1 and 2 were 183 and 117 cells ml⁻¹, respectively). Open bars with 0.6% slurry (wet weight:wet weight) in Day 1 and without slurry in Day 2. Gray bar in slurry-free sea water in which slurry had been soaked for 24 hour and then removed by filtration.

Fig 1

hig 2

APPENDIX F

FISH INTERACTION REPORT

Source:

Fish Interaction Studies.

San Diego, California National Marine Fisheries Service, 1995

Effects of Dispersed Paper Effluent on the Filter-Feeding Capacity of Pacific sardine, Sardinops sagax: a preliminary study.

Russ Vetter Genetics and Physiology Group Southwest Fisheries Science Center National Oceanic and Atmospheric Administration

I. Background

Small, pelagic, clupeoid fishes (sardine, anchovy, herring, menhaden) are an important link in most coastal pelagic ecosystems. These organisms harvest the carbon found in phytoplankton and zooplankton and convert it to a large standing stock of small migratory, schooling fishes. In turn, these species are the forage base for larger predacious fishes (e.g. tuna, salmon, rockfish), seabird populations (pelicans, gulls, terns), and marine mammals (dolphin, seal, sea lion). On a weight basis, clupeoid fisheries are the most important fisheries world-wide. Off the west coast of North America northern anchovy, *Engraulis mordax* and Pacific sardine, *Sardinops sagax*, vary in abundance during different climate regimes but together represent the major stocks of clupeoid fishes. Presently the sardine biomass is estimated to be about 340,000 metric tons.

Fish such as Pacific sardine can reach such high biomass because they feed lower on the food chain than larger predacious fishes. They typically subsist on a diet of phytoplankton and zooplankton. Sardine can feed by two different methods. If the prey organisms are large enough, sardine will strike at and ingest individual particles. If the organisms are smaller but abundant, they will filter-feed. They use cartilaginous extensions on their gill rakers to filter water as it passes through the gills, and collect the organism trapped on the gill rakers. The size of the particles trapped depends on the size of the seive created by the gill rakers. This varies with species, and the size of the individual fish (Blaxter and Hunter 1982). Compared to invertebrate filter-feeders (clams, oysters, mussels), little is known about the filtration process in clupeoid fishes.

We have been asked to design experiments to test for possible effects of finely dispersed paper fibers. These fibers will potentially be released from Naval ships as a method of routine disposal of paper waste generated at sea. We have begun by examining the potential for different concentrations of these fibers to interfere with normal filter-feeding in Pacific sardine, *Sardinops sagax*.

II. Experimental Design

To test for possible effects on filter-feeding we devised a series of experiments where groups of sardine were exposed to small prey (Artemia nauplii) that stimulate filter-feeding. We then monitored the disappearance of prey in four tanks containing schools of equal sized sardine. The four tanks were a control tank receiving prey only, and three tanks receiving prey plus three different concentrations of paper effluent. The experiment ran 14 days. Fish were exposed to the effluent every other day. We measured the rate of disappearance of prey, weight gain or loss, and presence of paper in the stomach and intestines of the fish.

The paper concentrations tested in this initial experiment were 30,15 and 3 mg dry wt of paper /l of seawater. These concentrations were chosen as a reasonable range to bracket expected concentrations from the point of release from the shi, down to the expected concentration where dilution driven by the turbulence of the ship's wake would dissipate. Beyond that point, the rate of further dilution is dependent on ambient oceanographic conditions (these lower dilutions will be tested in the next series of experiments).

To determine the rate of prey disappearance we needed to maintain the tanks in a closed, recirculating mode. A feeding trial was done over an 8 hour period. Prey or prey plus effluent was added and samples taken throughout the 8 hour period to monitor the disappearance of prey under the various conditions. In the present experiment the two upper concentrations appeared to cause respiratory distress and it appeared that the fish would not survive two weeks if exposed to the paper effluent every day. We elected to subject the fish to the effluent every other day but to feed them every day. When the fish were not being tested or fed (the remaining 16 h each

day), the tanks were maintained in a flow-through mode.

We generated 8 feeding trials for the 14 day period. At the end we measured and weighed the fish, recorded growth information, and examined the condition of the gills and the digestive system.

III. Methods and Materials

1. Collection, Maintenance, and Measurement of Sardine

Sardines were transported from a San Diego bait dealer in February of 1995 to the laboratory and held in circular, vinyl-lined tanks measuring 5 m in diameter with 0.7 m of water. Sardine were maintained on a diet of Oregon Moist pellets.

Using an electrical top-loading balance and a standard measuring board, 240 Pacific sardines (Sardinops sagax) were weighed (wet wt.) and measured (SL,FL,TL). To minimize bias,we alternated tanks for each addition of ten fish. In other words, ten fish went into tank 1A, ten fish into 2A, etc., until all four tanks contained 60 fish. Fish were anesthetized in MS-222 using 30 mg/liter.

At the end of the last 8 hour exposure period, fish were anaesthetized and frozen to retain stomach contents. Fish were weighed whole while frozen. Later groups of 20 of each group were thawed and the gastro-intestinal tracts weighed, dissected, examined for stomach contents, and preserved. The relative amount of paper in the stomach and intestine was noted. Whenever a sardine was found dead in a tank, it was promptly removed, weighed and measured. Fish were then frozen for future examination.

2. Preparation, Addition, and Calculation of Artemia Concentrations

Anchovies consume 1.7% to 5.1% of their body wt. per day (Leong and O'Connell, 1969). We assumed the same approximate metabolic demand for sardine. A 12 cm

sardine filters 270 liters per day (Yoneda na d Yoshida, 1955). These basic measurements were used to calculate the number of Artemia nauplii needed to sustain a16 gm sardine stocked at a density of 60 sardine per tank. Fish were fed daily with 24-48 hour old Artemia nauplii at a rate of 1.7% body weight. We presented the fish with the minimum (233 nauplii/I) needed to maintain weight. The calculation is presented in Table 1. The nauplii were added to tanks at 0800 on all days.

3. Preparation, Addition, and Calculation of Paper Concentrations

To determine the paper effluent dosage protocol we first determined a dry wt to wet wt conversion. The results of this determination for the first shipment of paper (which was used for all experiments described here) is presented in Table 2a. Based on a dry to wet conversion of 6.55, 24 hours prior to each sampling day the frozen paper waste was weighed, thawed and sea-water was added to make a 12-liter mixture. A mechanical stirrer was used periodically throughout the day to help "fluff-up" paper.

Paper was added to each tank (except 4A) and allowed to mix for 10-15 minutes before adding artemia at time 0. The calculations for the different paper concentrations are presented in Table 2b.

Tank 1A - 30 mg dry wt. /liter

Tank 2A - 15 mg dry wt. /liter

Tank 3A - 03 mg dry wt. liter

The tanks were monitored to determine if the paper effluent remained suspended throughout the exposure period (Fig. 2 a-h, bottom panels).

4. Exposure Tanks

Four identical fiberglass tanks, 2 m in diameter, were plumbed to a depth of 0.64 m each, creating a water volume per tank of 1700 liters. Tank bottoms sloped

slightly to a center outlet covered with a PVC "cap" perforated with holes for draining. Drain leads to a standpipe adjacent to tank such that the height of the standpipe determines the water level in tank (Figure 1). All four tanks were rigged with the same materials in order to be as identical as possible. In-line water filters used were 5-micron Cuno filters, changed every other morning.

When fish were not being exposed to paper or food (16h each day), the tanks were kept on a flow-through regime of fresh, ambient seawater. Flow rates were four liters/minute.

When fish were being exposed to paper and/or food the tanks were kept in a closed but recirculating mode. Submersible pumps (1/30 HP, epoxy-coated, 500 gph) were used on the tank bottom to assist in keeping paper waste suspended in water column (Fig. 1). In addition air lift in the center of the tank lifted material from the bottom of the tank and resuspended it at the top (Fig. 1). The airlift also provided full oxygen saturation to the tanks. In either closed or open mode the tank temperatures remained between 15.2 and 17.3 degrees C throughout experiment.

At the end of each sampling day, tanks were drained down to approximately 3 inches in depth to assure a clean tank before beginning the next sample. At the beginning of each sampling day, with the tanks clean and re-filled, the incoming water was shut off, the submersible pumps turned on, and an air-line with airstone was put inside the standing drain-pipe to lift and circulate any paper waste tending to accumulate on tank bottom. By using pumps and airstones we were able to keep the paper waste suspended and evenly distributed throughout the tanks.

5. Sampling

Using a 250 ml plastic beaker, four 250 ml samples were collected from 4 places in each tank (total sample = 1000 ml). In each quadrant of each tank and midway between the center point and the inside wall, an inverted 250 ml beaker was lowered to approximately three inches below the surface. The beaker was then turned upright and removed. The four 250 ml samples were poured into a 1000 ml plastic graduated cylinder labelled specifically for that tank.

Samples were taken at six time points during the 8-hour duration of each experiment. Time points were 1,2,3,4,6 and 8 h from the start. A subjective assessment of feeding behavior was recorded at time of each sample.

6. Filtering and Counting Samples

Prior to beginning an experiment, filter papers were dried, weighed and given an i.d. number before being placed in a desiccator. After collecting a 1000 ml sample from each of four tanks, a labelled and pre-weighed filter was placed in a clean Buchner funnel in vacuum filtering manifold. Upon prewetting filter using seawater from rinse bottle, sample was slowly poured into funnel, keeping an inch or two of sample water in funnel at all times to help distribute the sample evenly. After sample has been completely filtered, vacuum pump was turned off and the filter paper carefully removed. The filter paper was then placed in a petri dish under a dissecting microscope and the number of nauplii counted and recorded.

Once counted, the filters were then placed on a clean container and placed in a drying oven at 60 °C. Upon having dried for a minimum of 72 hours, the filters were removed from the oven, placed in a desiccator to cool, and weighed again. By subtracting the initial filter paper weight from the final filter paper weight gave us the weight of paper waste plus brine shrimp contained in our 1000 ml sample.

IV. Results

1. Behavior and Appearance

There is an obvious difference in the way the gills are flared during normal breathing and when filter-feeding. We used three subjective criteria to assess visual signs of filtering behavior: 1. actively filtering, 2. passively filtering (occasional gulping) and 3. little or no feeding activity. At the two highest paper concentrations the filtering activity was a 1 when the food was first introduced in the first hour but dropped to a two in the second hour and then 3 for the remainder of the 8 hours even though

abundant prey was available. In the control tank feeding was always active (1) until the prey were gone. At the two highest paper concentrations fish did not maintain tight schooling behavior. Occasionally an individual would display lethargic or disoriented swimming behavior.

At all three paper concentrations there were fish with lumpy abdomens. At the end of experiment when fish with this outward appearance were dissected there were lumps of accumulated paper in the intestine that corresponded to the protrusions on the skin.

2. Feeding

The results from the eight feeding trials are presented in Fig. 2. All three paper concentrations had a readily observable negative effect on the ability of Pacific sardine to filter-feed on Artemia nauplii. There was a dose-dependent effect on filtering success with the highest concentration (30mg dw/l) almost completely inhibiting successful feeding on Artemia nauplii.

All treatments ingested the paper along with the prey, Fig. 3. The highest ingestion rate was in the group receiving the lowest levels of paper (3 mg dry wt/l).

3. Growth and Mortality

All groups lost weight during the experiment. The average initial wts for the 4 groups were 16.19,16.32,16.10,and 16.12g. At the conclusion of the experiment the average wts were respectively 14.0,14.4,14.3, and 13.9 g. There were no significant differences between the four groups.

There were significant differences in mortality. All three treatment groups had higher mortality rates than did the control, (Fig. 4).

V. Discussion and Preliminary Conclusions

At the three concentrations tested in these preliminary experiments. The paper

effluent had a strong effect on the filter-feeding of Pacific sardine. The effects at the two highest concentrations were not unexpected and represent a worst case scenario not likely to be encountered at sea except in the immediate area around a ship. The effects noted at the lowest concentration (3 mg/l) may be of greater concern if they represent potential environmental concentrations.

The greater concentration of paper in the stomachs of fish exposed to the lowest concentration is due to the behavior of the fish under the different treatments. At the two highest concentrations the fish are visibly stressed by the concentration and spent less time filter feeding. Thus they received less food and also less paper. At the lowest concentration the fish were measurably affected, but they did eventually remove all of the prey (Fig. 2). However, they consumed large amounts of the paper along with the prey. The harmful, or even beneficial, effects of consuming the paper fibers is not know, but the protrusions of the gut in fishes with paper plugs in their intestines is an alarming result. We found no evidence for digestion of the paper fibers. Fecal pellets that looked exactly like undigested but condensed pellets of paper were commonly observed at the bottoms of the three exposed tanks.

Differences in mortality were observed (Fig. 4), but the causes of mortality are not known. Fish from the three paper treatments were not significantly lighter, and starvation is not considered a likely cause of the mortality. All fish received a full ration in the absence of paper on alternate days and there was no differences in total weight. Even if we can account for some of this weight as paper in the gut, the weight differences between groups were not significant.

Our following experiments will attempt to: 1. find the no-effect level, 2. investigate differences in weight loss in longer term experiments, 3. gain biochemical and microscopical insights into the causes of the observed mortality.

VI. References and Background Literature

Blaxter, J.H.S., Hunter, J.R. 1982. The Biology of the Clupeoid Fishes, offprint from "Advances in Marine Biology", Vol. 20, pp 1-223.

Hunter, J.R., Dorr, H. 1982, Thresholds for filter feeding in northern anchovy, *Engraulis mordax*, CalCOFI Rep., /vol. XXIII.

Yoneda, Y., Yoshida, Y. 1955. The relation between the sardine and the food plankton - I. On the food intake by *Sardinops melanosticta*, Bulletin of the Japanese Society of Scientific Fisheries, Vol. 21, No. 2

Koslow, J. A., 1981. Feeding selectivity of schools of northern anchovy, Engraulis mordax, in the southern California bight, Fishery Bulletin: Vol. 79:131-229

Leong, R.J. H., O'Connell, C.P. 1969. A laboratory study of particulate and filter feeding of the northern anchovy(*Engraulis mordax*). J. Fish. Res. Bd. Canada 26: 557-582.

VI. Figure Legends

Fig. 1 This is a the basic configuration of tanks showing the water filtration, air lifts, etc.

Fig. 2 This is the basic data for the 8 days of feeding trials (the first day and every other day thereafter). Squares are 30 mg/l, circles are 20mg/l, triangles are 3 mg/l and diamonds are the control. Feeding rates are plotted two ways, the second nauplii/fish corrects for mortality during the experimental period. The paper conc traces are best used to verify that there were no long term changes in concentration throughout the 8h of the experiment. This is a measure of how well the air lift and pumps kept the paper effluent resuspended and evenly distributed.

- Fig. 3. This is a chart of the stomach weights for the four treatments. All treatments contained paper in the stomach, but the highest concentrations were in the low (3 mg/l) treatment.
- Fig. 4. All four tanks began with 60 fish. Mortality was lowest in the control. There were no differences between the three paper treatments.

METHODS & MATERIALS

SARDINES WERE TRANSPORTED FROM A SAN DIEGO BATT DEALER
IN FEBRUARY of 1995 TO THE LABORATORY AND HELD IN CIRCULAR
VINYL-LINED TANKS, SIMTERS IN DIAMETER WITH 9.7 METERS OF WATER FOLLOW
FOUR IDENTICAL FIBERGLASS TANKS, 2 M IN DIAMETER, WERE PLUMBED
TO A DEPTH of 0.64 m. EACH, CREATING A WATER CAPACITY of 1700 LITERS.
TANK BOTTOMS SLOPED SLIGHTLY TO A CENTER OUTLET COVERED WITH A PUC
"CAP" PERFORATED WITH HOLES FOR DRAINING. DRAIN LEADS TO A STANDPIPE ADJACENT TO TANK (HEIGHT OF STANDPIPE DETERMINES WATER LEVEL
IN TANK.) (SEE FIG. 1)

- ALL 4 TANKS WERE RIGGEDS WITH THE SAME MATERIALS IN ORDER TO BE
 AS IDENTICAL IN ALL ASPECTS AS POSSIBLE.
- IN-LINE FILTORS USES WORKE 5 TO CUNO-FILTORS, CHANGED EVERY OTHER MORNING,
- AMBIEUT SEAWATER FLOW RATES INTO TANKS AT 4 LITERS/MINUTE.
 TANK TEMPS. REMAINED BETWEEN 15.22 17.3°C THROUGHOUT EXPERIMENT.
- -SUBMERSIBLE PUMP SPECS. = 1/30 H.P., EPOXY-COATED, 500 GAH

Fig. 3 Stomach weights for the four treatments

Fig. 4 Percent mortality at the end of 14 days

Table 1.							
Tubio II	Calculations	used to estim	ate Artemia	nauplii needed	l to maintain	wt (minimum r	ation)
Anchovies con	sume 1.7% to	5.1% of their bo	dv wt. per dav	(Leong and O'	Connell, 1969)		
Atichiovies with	301116 1.7 70 10	1	<u> </u>	(
Volume of coa	water filtered r	or (24 hr 2)day	by 12 cm sare	dine = 270 liters	(Yoneda and	Yoshida, 1955) (135 l/12 hrs.)
Volume or sea	water intered p	ier (24 m)day	b) /2 cm; care				
			240000	-		Volume filtered	
Utah Brand Ar	temia cysts/gn	n =	240000			per fish	
			4 (0.40000	<u> </u>			
	of single naup	74	1 gm/240000) 		in 8 hr. day(I)	
Dry wt.	of single naup	lius(gm) =	4.1667E-06			90	
		cyst included; r		weigh less)	L		
Wet wt.	of single naup	lius(gm) =	4.17E-05	(assuming 90%	% water)		
Min. wet wt. o	nauplii neede	d per day = fis	h wt. x 0.017			No. fish	
						per tank	
Max. wet wt. o	f nauplii neede	ed per day = fis	h wt. x 0.051			60	
Mean		<u> </u>					
		No. tanks	ν	ol. of each tan	k(I) V	ol. of four tank	s(l)
Fish Wt.(gm)		4		1700	Γ΄	6800	
16.18		 		1			
		 		 	 		
		 			 		
		<u> </u>	1	. 4-5-4			
	Mi	n. food require	ment Ma	x. food require	nai e iit		
Fraction of							
body wt. cons	umed	0.017	to	0.051			
per day		ļ			 		
	<u></u>		1		ļ		
Grams food re	۹						
per day	l	0.27506	to	0.82518			
per fish							
					L		
*****					J		
Number of na	iilau						
req. to provid		6596	to	19788			
min. daily req.							
for 1 fish							
101 1 11811		+		 	 		
		72	to	220			
Density per I		73	- 10	+			· · · · · · · · · · · · · · · · · · ·
for 90 I				-			
		ļ. ———	 		 		
Number of				373783	-	 	
	 	10.000		3/3/63			
nauplii per		124594	to				
		124594	to				
nauplii per		124594	to				
nauplii per		124594	to				
nauplii per		0.52	to	1.56			
nauplii per tank				1.56			
nauplii per tank gms. Utah				1.56			
nauplii per tank gms. Utah				1.56			
nauplii per tank gms. Utah cysts needed	6			1.56			
nauplii per tank gms. Utah cysts needed Number of fis	6	0.52					
nauplii per tank gms. Utah cysts needed Number of fis tank will sup	6	0.52					
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42	6	0.52					
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities	6	0.52					
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to	port	0.52					
nauplii per tank gms. Utah cysts needed Number of fis tank will suplat C42 & E42 densities Factor to accommodate	port	0.52		19			
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to	port	0.52		19			
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank	port	0.52		19			
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I	port	0.52	to	3.18	nauplii per lite		
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all	h port	0.52	to	3.18	nauplii per lite		
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I	h port	0.52	to	3.18	nauplii per lite		
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all	h port	0.52	to	3.18			
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all	h port	0.52	to	3.18	nauplii per tar	k	
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all	h port	0.52	to	3.18		k 400K nauplii per	
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank	h port	0.52	to	3.18	nauplii per tar	400K nauplii per	ide a 16.18 gm
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah	b port	0.52	to	3.18	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of	ide a 16.18 gm its body wt. of
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass	ide a 16.18 gm its body wt. of suming it filters
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass	ide a 16.18 gm its body wt. of
nauplii per tank gms. Utah cysts needed Number of fis tank will sup at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass	ide a 16.18 gm its body wt. of suming it filters
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass	ide a 16.18 gm its body wt. of suming it filters
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	Note:	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass 90I of water in a	ide a 16.18 gm its body wt. of suming it filters n 8 hr feeding day.
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	nauplii per tar	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass 90I of water in a	ide a 16.18 gm its body wt. of suming it filters
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one tank	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	Note:	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass 90I of water in a	ide a 16.18 gm its body wt. of suming it filters n 8 hr feeding day.
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one tank Total gms. Utah	port	0.52 19 3.18 233 395,770	to to to to	3.18 3.18 698 4,749,237	Note:	400K nauplii per sufficient to prov fish with 1.7% of food per day, as: 90I of water in a	ide a 16.18 gm its body wt. of suming it filters n 8 hr feeding day.
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed tank Total gms. Utah cysts needed to feed one tank	port	0.52 19 3.18 233 395,770	to to to to	19 3.18 698 4,749,237	Note:	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass 90l of water in a Recommend cult decapsulated cysthat 400K x 4 =	ide a 16.18 gm its body wt. of suming it filters n 8 hr feeding day. uring 10-15 gms sts to ensure
nauplii per tank gms. Utah cysts needed Number of fis tank will supp at C42 & E42 densities Factor to accommodate all fish/tank Density / I to feed all fish in tank Total gms. Utah cysts needed to feed one tank Total gms. Utah	port	0.52 19 3.18 233 395,770	to to to to	19 3.18 698 4,749,237	Note:	400K nauplii per sufficient to prov fish with 1.7% of food per day, ass 90l of water in a Recommend cult decapsulated cysthat 400K x 4 =	ide a 16.18 gm its body wt. of suming it filters n 8 hr feeding day. urring 10-15 gms sts to ensure 1.6 x 10-6 nauplii This amount may

.

			(1st lot	of paper material	received)				
drying	time: 950322	950322(0930)-950411(1400)[20	days,	4.5 hrs.]					
			- 1						
			Date: 950328(0845)	Date: 950329(1005) Date:	Date: 950411(1400)				
	Filter	Paper	1#	#2	#3				
Number	Tare wt. (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Tare + Dry Wt. (g)	Tare + Dry Wt. (g)	Dry Wt. (g)	% water	% Dry Wt.	Dry to Wet Cony
-	1.5965	7.0690			2.6490		85.11	14.89	6 72
	1.5893	7.1378			2.7342	1.1449	83.96	16.04	6.23
	1.6231	7.1278			2.6799	1.0568	85.17	14.83	6.74
	1.5807	7.1649	2.6759	2.6729	2.6748	1.0941	84.73	15.27	6.55
	1.5955	7.1642			2.6282	1.0327	85.59	14.41	6.94
	1.5806	7.1914	2.6792	2.6777	2.6822	1.1016	84.68	15.32	6.53
	1.6231	7.2478			2.7533	1.1302	84.41	15.59	6.41
	1.6137	7.1217			2.7075	1.0938	84.64	15,36	6.51
	1.5937	7.1266			2.7139	1.1202	84.28	15.72	6.36
0	1.5809	7.1514			2.5998	1.0189	85.75	14.25	7.02
	1.6262	7.1747			2.7793	1.1531	83.93	16.07	6.22
	1.5844	6.8342			2.5659	0.9815	85.64	14.36	6.96
	1.6252	6.8652			2.6755	1.0503	84.70	15.30	6.54
	1.5739	7.1573	2.6879	2.6845	2.6847	1.1108	84.48	15.52	6.44
	1.5810	7.1907			2.7362	1.1552	83.93	16.07	6.22
	1.6136	7.9458			2.8332	1.2196	84.65	15.35	6.52
	1.5953	7.1571			2.6327	1.0374	85.51	14.49	6.90
	1.6023	7.0713			2.6557	1.0534	85.10	14.90	6.71
	1.5969	7.2978			2.7893	1.1924	83.66	16.34	6.12
	1.5981	7.3858	2.7785	2.7776	2.7800	1.1819	84.00	16.00	6.25
						Mean	84.70	15.30	6.55
						Ctdox	0.80	690	700

Table 2b.	Calculatio	pesn su	to determine	Calculations used to determine the wet wt. concentrations of paper needed for the three treatments.	ncentrations	of paper nee	ded for the th	ree treatment	'n
Tank	Treatment	esop %	Concentration	Conv. dry to wet	Tank capacity	Concentration	Concentration	Wet wt. paper	liters per tank
ÖZ			-		(Ilters)	mg wet paper/I	gm wet paper/I	per tank (gms)	of 12 I mixture
1 A	High	100	30	6.3	1700	189	0.189	321.3	7.5
).				
2.A	Medium	50	15	6.3	1700	94.5	0.0945	160.65	3.75
3.8	wol	10	က	6.3	1700	18.9	0.0189	32.13	0.75
									-
44	Control	0	0	***	1700	0	0	0	0
		Total:	48				Total:	514.08	gms in 12 liters
							÷		
						,	-		

Veter New Into

National Oceanic and Atmospheric Administration
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92093

FAX (619) 546-5656
Info (619) 546-7000

Genetics and Physiology Program

Date: 7-10-95 Number of Pages: 5

Addressee: Staces Curtil

Addressee's FAX: 553+6305

Originator: Russ Vetter
Originator's Phone: 619-546-7125

Comments:

Stacy, here are the results from the low-level experiment. It is pretty much the same experimental design as before except with higher initial artemia levels. Only the highest concentration (1.0 mg/l) showed an effect. This does not surprise me since 0.1 mg and .01 mg/l are very low concentrations for some thing like paper. The time scale is different than for the first experiment but the results for the 1 mg treatment do suggest that the previous results for the lowest concentration in expt 1 (3.0 mg/l) are real. Let me know what you think.

Lower Threshold Filtration Experiments.

- I. Experimental Design
- 1. # of fish: 60 per treatment
- 2. treatments
 - 1. control
 - 2, 1.0 mg/l dry wt.
 - 3, 0.1 mg/l-
 - 4. 0.01 mg/l

all treatments received a food ration of 863 nauplii per liter.

3. exposure conditions

Fish were exposed to the different conditions begining at 9:00 in the morning and were sampled every 15 minutes for two hours until food was gone from all treatments. Fish were exposed every day for 14 days. Filtering efficiency was measured every other day

II. Results

- 1. no mortality under any treatment condition
- 2. a measurable subjethal effect on filtering efficiency at 1 mg/l, no effect at .1 and .01mg/l
- 3. There were no lasting effects on filtering efficiency. Fish were tested for two additional days and all groups were like the controls.

III. Conclusion

The no-effect level for this experiment was between 1 and 0.1 mg/l

Recovery Trials: After 14 Days All Groups Tested With Artemia Only.

DAY 2 Recovery Period

APPENDIX G

SHIPBOARD METAL WASTE DISCHARGE CORROSION REPORT

Source:

Shipboard Solid Waste Discharge Corrosion Study.

San Diego, California

Naval Command, Control & Ocean Surveillance

Center, RDTE Division,

Code 522, 1995

MEMORANDUM

From: W. E. Glad, Code 02T S. L. Curtis, Code 522 To:

Head, Materials Science Branch, Code 815 Auf Via:

SHIPBOARD SOLID WASTE DISCHARGE CORROSION STUDY Subi:

(1) Solid Waste Discharge Corrosion Study of 21 Jun 95 Encl:

1. Enclosure (1) is a report on the characterization and corrosion rates of metal food preparation waste that is commonly discharged into the ocean by navy ships. This report was prepared by the Code 815 materials laboratory at the request of Code 522. The investigators who took part in this study were Gordon Chase (Code 02T), Wayne Glad (Code 02T) and Tom Knoebel (Code 815).

2. Enclosure (1) contains the results of laboratory characterization of waste materials that were supplied by Code 522 and a summary of the literature concerning the corrosion rates of these materials. The waste consisted of tin plated steel food cans and lids and standard aluminum beverage cans. The lifetimes of this waste in the ocean environment were estimated from the materials properties (composition, coatings, dimensions) that were measured in the laboratory and the corrosion rates that were found in the literature.

> m, E. - Son W. E. GLAD

SHIPBOARD SOLID WASTE DISCHARGE CORROSION STUDY

Solid Waste Discharge Corrosion Study

Introduction and background

The purpose of this study is to quantitatively assess the impact on the marine environment of metal food preparation waste that is thrown over the side of Navy ships. This metal waste is rinsed, shredded, packed in burlap sacks, and thrown overboard. Since this waste will corrode and release its constituent elements to the environment it is important to know the composition of the waste and the rate which with these materials corrode. This will also give information about the lifetime of the waste on the ocean floor. Because conditions in the marine environment may differ from location to location, it is also important to know how the corrosion rates depend on these varying conditions.

Corrosion in Sea Water

Types of Corrosion

Fontana¹ describes eight types of related but somewhat different types of corrosion. Four of these types are important for this study. Uniform attack occurs as direct oxidation over a wide area of metallic surface. Uniform attack allows for corrosion at rates that can be measured relatively reliably. The corrosion rate (expressed as mass of metal oxidized per unit time) is proportional to the surface area of the corroding metal. To a large extent, mild steel undergoes uniform attack when it is immersed in sea water. Pitting is a kind of localized attack that often occurs on metals, such as aluminum, that naturally resist corrosion due to the formation of passive oxide films. While the eventual rate of corrosion in a pit is determined by the rate of reduction of oxygen (usually at a surface away from the pit), a pit requires some kind of initiation process to start the pit formation. Thus the overall rate of corrosion on a pit forming metal like aluminum may depend on factors other than the dissolved oxygen concentration. Pitting is assisted by the presence of chloride ion, so salinity may also be a factor in pitting corrosion rates. Crevice Corrosion (and related filiform corrosion) occurs in small openings such as joints and under defects in non-metallic coatings. Corrosion on coated metals will begin with crevice or filiform corrosion that progresses under the coating and eventually results in the rupture of the coating due to the build up of corrosion products. Filiform corrosion is common on coated food and beverage cans that are exposed to the atmosphere. In sea water this type of corrosion would be expected to lead to the destruction of coatings and the exposure of the metal underneath to direct attack.

Corrosion measurement

The most reliable information about corrosion in sea water comes from the direct exposure of samples in the ocean environment. Well characterized samples (for chemistry, metallurgy and surface condition) are carefully measured and weighed before exposure. Good studies also record the exposure conditions (O₂ concentration, pH, temperature, flow rates) and their variation in time. After exposure the samples are cleaned to remove the corrosion products and any marine fouling, then weighed. Cleaning methods can be mechanical, chemical, or both, but standard methods are used to assure reproducibility in the measurements.² Corrosion rates are usually reported in mils (thousandths of an inch) per year (mpy) via the formula:

$$mpy = \frac{534W}{\rho AT},$$
 (1)

where W is the weight loss in milligrams, ρ is the density of the sample in grams/cm², A is the area of the specimen in square inches and T is the exposure time in hours. Reporting corrosion rates in this manner is

useful for the assessment of corrosion damage for structural materials. Since we are interested in the total amount of material corroded we must take into account the surface areas and densities of our samples.

Because direct exposure testing can be expensive and limited in the number of different conditions that can be realistically experienced, testing is also conducted in the laboratory. In addition to simple immersion tests, electrochemical studies that measure corrosion potentials and currents are also performed. These studies can be useful in elucidating corrosion mechanisms, as conditions such as temperature, oxygen concentration, and pH can be varied over wide ranges in the laboratory.

Sea water corrosion studies

The most widely cited studies of corrosion in sea water were undertaken by the Civil Engineering Laboratory, Naval Construction Battalion, Port Hueneme, California. The studies involved the exposure of about 20,000 samples of 475 different metal alloys at three depths in the Pacific Ocean. An exhaustive summary of the results was published.³ Some of these results, and the results of many other studies are summarized (with references) in *Corrosion of Metals in Marine Environments*,⁴ report compiled by the Metals and Ceramics Information Center. A useful study that compared the corrosion of mild steel in polluted and unpolluted sea water was performed by Shimada et. al.⁵ A study that examined the effect of water flow velocity on the corrosion of steel was produced by Peterson and Lennox.⁶ The consensus of these studies is that the main factor influencing the corrosion rate for carbon steel is the dissolved oxygen concentration. This is subject to the caveats that excessive flow rates will increase the corrosion rate substantially, and that in polluted waters with high sulfide concentration (and a correspondingly low oxygen concentration) the corrosion rates will be significantly higher than normally predicted from the oxygen concentration.

In addition to Reinhart³, studies on the corrosion of aluminum include a five year field study by Ailor⁷, and laboratory study by Dexter.⁸ There appears to be an increase in the corrosion rate of aluminum with depth, but the reasons are poorly understood.

Containers

Food containers are designed to keep the outside environment away from the food products. These containers must themselves prevent a breach of the container from corrosion that is initiated either from the outside environment or from the inside by the food product. Tin plated steel cans have been used for food preservation since the heyday of the British empire. Under most conditions tin is more noble than iron, and provides a barrier coating to prevent corrosion. The steel sheet used in tin plated containers is usually a mild steel with very low concentrations of additional elements. A mild steel has a carbon content of less than 0.2 % (in the case of steel for cans, less than 0.14%) and about 0.5 % manganese.

In some cases, the tin plating is not sufficient to prevent the corrosive action of some food products. In addition to the tin plating, organic coatings, called enamels in the industry, are also used. The enamels are often oleoresins (natural products) or epoxies (synthetic products), but other coatings can be used. Coatings can be used on the interior surface of the can only, but are sometimes present on both the interior and exterior surface. An interesting but slightly dated discussion about tin container technology is given in the *Metals Handbook*.9

Many beverages are distributed in aluminum cans. Modern aluminum cans are deep drawn from 3004 alloy sheet. The lids on the cans are stamped from type 5182 sheet. The 3004 alloy contains about 1% manganese and 1% magnesium. The 5182 alloy contains about 4% magnesium and 0.3 % manganese. Because of the very corrosive nature of some of the beverages, these cans also have organic coatings on the inside. The outsides of the cans, however, are usually coated only with decorative paint that does not completely cover the metallic exterior.

Chemistry of alloy components in sea water

The chemistry of the corrosion products from these containers, in the ocean environment, is influenced by the same factors that control the rates of corrosion themselves. While a detailed discussion of the marine chemistry of these corrosion products is beyond the scope of this study, a simplified discussion of the fates of these products follows:

Iron: Because of the presence of dissolved oxygen in the ocean, iron in this environment exists almost completely in the Fe(III) oxidation state. In spite of the high concentration of chloride in sea water, chloride complexes of Fe(III) are not a factor in the distribution of iron. The very small solubility product of Fe(OH)₃ (about 10⁻³⁷) guarantees that at the near neutral pH levels in sea water most iron exists as solid or colloidal Fe(OH)₃. The net stoichiometry for the oxidation of iron to Fe(OH)₃ is:

$$Fe + \frac{3}{4}O_2 + \frac{3}{2}H_2O \rightarrow Fe(OH)_3$$
 (2)

Fe(OH)₃ is metastable, and must undergo dehydration

$$2Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O \tag{3}$$

to produce more stable forms such as Fe₂O₃ that are common in ocean sediment. 10

Manganese: Manganese can exist in sea water in either the Mn(II), Mn(III) or Mn(IV) oxidation states, depending on the oxidative potential of the sea water. Since manganese is only a trace element in sea water, yet is common in ocean sediments, most manganese must precipitate. The major precipitates of manganese are believed to be MnCO₃, MnO(OH), and MnO₂. The net reactions would be:

$$Mn + \frac{1}{2}O_2 + H_2O + CO_3^{2-} \rightarrow MnCO_3 + 2OH^-$$
 (4)

$$Mn + \frac{3}{4}O_2 + \frac{1}{2}H_2O \to MnOOH$$
 (5)

$$Mn + O_2 \rightarrow MnO_2$$
 (6)

Aluminum: Aluminum is oxidized to Al(OH)₃ in neutral solution via:

$$Al + \frac{3}{4}O_2 + \frac{3}{2}H_2O \rightarrow Al(OH)_3$$
 (7)

Aluminum chemistry in the oceans can be quite complex. Aluminum is a major element in the earth's crust and in ocean sediments. To a large extent, at ocean pH levels, any aluminum produced by the corrosion of metallic aluminum probably ends up as insoluble $Al(OH)_3$. This aluminum hydroxide may also eventually dehydrate to the oxide (Al_2O_3) as does iron.

Magnesium: Magnesium is oxidized via:

$$Mg + \frac{1}{2}O_2 + H_2O \rightarrow Mg^{2+} + 2OH^-$$
 (8)

Magnesium is a major component of sea water, present at about the 1300 μ g/ml level. A significant portion may be present as the ion pair MgSO₄.

Tin: Tin is easily oxidized from the Sn(II) state to the Sn(IV) state. At ocean pH levels the Sn(IV) probably exists as insoluble SnO_2 .

With the exception of tin, these major corrosion products are common constituents of ocean sediments and the earth's crust in general. As average oxide percent of ocean sediment, aluminum is present at 12%, iron at 6.5%, magnesium at 2.3% and manganese at 0.9%. Tin is present at about the 11 ppm level.¹⁰

Experimental Methods

General Analysis Methods

A general discussion of the materials analysis methods used in this study is given here to provide background for the specific procedures that follow.

ICP

Inductively Coupled Plasma (ICP) spectroscopy is used in the materials laboratory to determine the composition of metal alloys. Metal samples are dissolved in mineral acids and diluted to known volumes. The solutions are nebulized into a continuously running plasma where the constituent metal atoms are excited to emit visible and ultraviolet light. The light is dispersed by a grating and detected by photo multiplier tubes. These atomic emission lines are usually well resolved. The intensities of the lines can be compared with the intensities from synthetic solution standards, allowing for a quantitative analysis of the dissolved material. The ICP provides measurement precision of about 1% relative, and is sensitive to concentrations in the low parts per billion for many elements. Metal alloys can be analyzed for major, minor, and trace elements using the ICP.

Carbon/Sulfur Analysis

Due to the insolubility of some metal carbides and relatively poor sensitivity for carbon, the ICP is not used to determine the carbon content of steels. Instead, a dedicated carbon/sulfur analyzer is used. Samples of steel are combusted in an induction furnace in a stream of oxygen. The carbon dioxide that is produced is measured using infrared absorption spectroscopy. Sulfur is similarly determined from the sulfur dioxide that is produced. Analysis times are usually less than a minute, and experimental precision is better than 1 % relative.

Metallography

Metallography is the examination of polished and sometimes etched metal samples under the microscope. Samples are mounted in plastics for support during grinding and polishing. The polished samples are examined on an inverted stage, incident-light, metallurgical microscope. The microscope is equipped with either bright or dark field illumination and has a polarized light illuminator and a Numarski prism attachment for enhanced phase contrast. The image may be viewed through binocular eyepieces and photographed. Metallographic methods are useful for examining the microstructure of metals and making microscopic measurements.

Electron Microscopy and Energy Dispersive X-ray Analysis

The scanning electron microscope (SEM) uses a focused electron beam to image specimens. The SEM is capable of greater depth of field, higher magnification, and better resolution than optical microscopes. Non-conductive specimens must be made conductive to be imaged in the SEM. In our laboratory non-conductive specimens are sputter coated with a thin layer of gold. Samples in the electron beam of the SEM are induced by the beam to emit x-rays at energies that are characteristic of their elemental composition. Detection and analysis of these x-rays allow nondestructive qualitative and semi-quantitative elemental analysis of the sample. The spatial resolution of x-ray analysis in the SEM is on the order of 1 micron. Elements at the 0.2 percent level and above can be detected using this technique.

Table 1
X-ray Fluorescence Energies For Selected Elements

Element	Energy (keV)	Element	Energy (keV)	Element	Energy (keV)	Element	Energy (keV)	Element	Energy (keV)
С	0.277	S	2.31	Fe	6.4	Kr	1.59	Ag	2.98
N	0.392	C1	2.62	Co	6.92	Rb	1.69	Au	2.123
0	0.525	Ar	2.96	Ni	7.47	Sr	1.81	Cu	0.93
F	0.677	K	3.31	Cu	8.03	Y	1.92	Fe	0.705
Ne	0.852	Ca	3.69	Zn	8.62	Zr	2.04	Pb	2.346
Na	1.04	Sc	4.09	Ga	9.24	Nb	2.16	Sn	3.414
Mg	1.25	Ti	4.51	Ge	9.88	Mo	2.29	Zn	1.022
Al ·	1.48	V	4.95	As	10.52	Ru	2.55	Cd	3.538
Si	1.74	Cr	5.41	Se	1.38	Rh	2.7	В	0.183
P	2.01	Mn	5.89	Br	1.48	Pd	2.84	Ba	4.466

Analysis of Shipboard Metallic Waste

The samples of shredded food container waste that were received for analysis in the materials laboratory are shown in figure 1. Sample descriptions are given in table 2.

Table 2
Description of Samples in figure 1

Sample Label	Description
A	Tin plated can lid
В	Tin plated can lid
С	Tin plated can body with attached bottom; can interior is white
D	Tin plated can body
Е	Pepsi can body and top lid
F	Coca Cola can body and top lid
G	Sunkist Orange can body and top lid
Н	Pepsi can body
I	Tin plated can body

Figure 1. Shredded Food Preparation Waste.

The samples consist of some tin plated can bodies and lids and some aluminum beverage cans. An initial visual examination showed that both the tin plated cans and the aluminum cans had organic coatings at least on their interior surfaces, and maybe on the exterior surfaces as well. The aluminum beverage cans have decorative paint on their outer surfaces. Pieces from samples B, C, and D were attached to an aluminum SEM stub with conductive copper tape and sputter coated with a thin layer of gold before examination in the SEM.

Pieces from samples C, D, E, F, and G were mounted on edge in filled epoxy hot pressed mounts. The mounts were ground through 600 grit silicon carbide paper. The samples were examined with direct and polarized light and selective photographs were made of the overall can wall configuration and of the coatings on the materials. The container thicknesses for the samples were measured using a calibrated eyepiece reticle. Some of the coatings were pigmented and active to polarized light, making them easily seen; others were not. The coatings on the aluminum cans were difficult to see, and the actual coating boundaries could not be positively identified. The samples were further polished with 6 micron diamond slurry on a cotton cloth and re-examined. Finally the samples were etched to reveal the can metal microstructure. Representative photomicrographs were made. The mount was then given a thin gold coating and examined in the SEM.

The aluminum cans had organic coatings on the inside of the body and organic coatings on both the insides and outsides of the lids. Most of the paint was removed from the metal surface by light grinding with silicon carbide abrasive paper. The organic coatings and remaining paint were removed from the samples by heating them in the flame of a Meeker burner. Samples weighing about 0.2 g were then dissolved in 5 ml concentrated HNO₃, 5 ml of concentrated HCl and 5 ml of deionized water. The solutions were diluted to 100.0 ml with deionized water and analyzed using the ICP.

Rectangular pieces of the tin plated can material were cut from samples A, C, and D. The areas of the pieces were measured. The samples were immersed in concentrated hydrochloric acid to remove the organic coatings and tin plating. The samples were attacked by the acid at edges and defects in the organic coatings. After about an hour the organic coatings were undercut and floated free from the samples; the tin platings had been dissolved. The samples were removed from the acid solution and washed with deionized water. The hydrochloric acid solutions were analyzed for tin using the ICP spectrometer. Pieces of steel from what remained of the samples were used for chemical analysis. Samples for ICP analysis were weighed, then dissolved in a mixture of 2.5 ml of concentrated HNO₃, 2.5 ml of concentrated HCl, and 2.5 ml of deionized water. Solutions were diluted to 50.0 ml and then analyzed with the ICP. Samples for carbon/sulfur analysis were weighed into crucibles and combusted in the carbon/sulfur analyzer.

Results

Aluminum Containers

The results of the ICP analysis for the aluminum containers are given in table 3 below.

Table 3
ICP Analysis Results for Aluminum Containers
(Values in weight Percent; Balance is Aluminum)

Sample	Cr	Cu	Mg	Mn	Si	Ti	Zn	Fe
Sample E	0.005	0.181	1.09	1.01	0.132	0.018	0.05	0.40
body								
Sample F	0.007	0.160	1.06	1.08	0.162	0.024	0.03	0.36
body								
Sample E lid	0.019	0.028	4.01	0.288	0.030	0.009	0.01	0.19
Sample F lid	0.010	0.009	4.10	0.291	0.030	0.014	0.01	0.15
3004	_	0.25	0.8-1.3	1.0-1.5	0.30	-	0.25	0.7
Specification		max			max		max	max
5182	0.10	0.15	4.0-5.0	0.20-0.50	0.20	0.10	0.25	0.35
Specification	max	max			max	max	max	max

The chemistry of the body alloy is consistent with aluminum alloy type 3004. The lid is consistent with type 5182.

The dimensions of the aluminum containers as measured by metallography are given in table 4 below.

Table 4
Aluminum Container Dimensions

Sample	Metal Thickness (in.)	Coating thickness (in.)
Sample G side wall	0.0044	
Sample F side wall	0.0043	0.0002
Sample F upper side wall	0.0067	0.0002
Sample H, bottom	0.0128	
Sample H, lower side	0.0101	
Sample F, top	0.0096	
Sample F, pop top	0.0090	
Sample F, pull tab	0.0133	

Figure 2 is a micrograph of the aluminum side wall of sample F.

Figure 2. 800 X.

The inner coating is just barely visible. It is presumed that this is an organic coating of some type, but its exact nature is not known. Also visible in the microstructure of the aluminum are inclusions of aluminum-manganese intermetallic particles that are typical of this alloy type.

Figure 3 is a micrograph of the top to side joint from sample F.

Figure 3 50 X.

Modern aluminum beverage cans are two piece cans that have joints only on the top lid. The bottom of the can is formed from the same piece of metal as the can side walls.

Tin Plated Steel Containers

Figures 4-11 show energy dispersive x-ray spectra from surfaces of the tin plated steel material that was examined in the SEM. The outside, "tin," surface of sample B showed both light and dark regions in the SEM. The dark regions were areas where a thick organic coating was present, as indicated by figure 4. The bright areas must have been locations where the organic coating was either very thin or missing altogether. The x-ray spectrum from the bright area (figure 5)shows intense tin and iron lines. Most likely this is from a thin (less than 1 µm) coating of tin that is penetrated by the electron beam to cause x-ray emission from the iron below. The inside can surface of sample B, which had a "gold" appearance, was covered with an organic coating, as is shown from the x-ray spectrum in figure 6. The x-ray spectrum from an area on the same side of sample B where the golden coating had been scraped away is shown in figure 7. Tin is present beneath this coating as well. The tin to iron intensity ratios indicate that the thickness of the tin is probably larger on the "gold" side of sample B than the "tin" side. The x-ray spectra of sample D (figures 10 and 11) were very similar to sample B. Samples B and D appear to be tin plated on each side and have organic coatings on top of the tin plate. Sample C is tin plated on one side (figure 8) and has a paint-like coating on the other side (figure 9) that contains some titanium dioxide pigment.

Figure 4. X-ray spectrum showing organic coating on "tin" side of Sample B.

Energy (keV)

230

Sample B "Tin Side" Bright Region

Figure 5. X-ray spectrum showing tin plate over iron on "tin" side of sample B.

Figure 6. X-ray spectrum showing organic coating on "gold" side of Sample B.

Figure 7. X-ray spectrum showing a thicker tin plate on "gold" side than "tin" side of Sample B.

002240

Figure 8. X-ray spectrum showing tin plate over iron on "tin" side of Sample C.

Figure 9. X-ray spectrum showing paint-like coating on "white" side of Sample C.

Figure 10. X-ray spectrum showing tin plate under organic coating on Sample D.

Figure 11. X-ray spectrum from a scratch on the "gold"" side of Sample showing tin plate.

The chemical analysis results for the tin plated steel containers are given in Table 5 below:

Table 5
Chemical Analysis of Can Body and Lid Steel
(Values in weight percent; Balance is iron.)

Sample	C	Al	Cr	Ni	Mn	Cu	Si	s	P	Mo	V	Со
	0.110	0.052	0.016	0.018	0.51	0.014	0,010	0.007	0.013	0.000	0.003	0.001
D A	0.110	0.052	0.018	0.018	0.43	0.014	0.003	0.009	0.004	0.001	0.002	0.002
Type L specification (maximum values)	0.13	•	0.06	0.04	0.60	0.06	0.020	0.05	0.015	0.05	0.02	0.02

The steel meets the specifications for Type L steel (see ASTM A 623), a type commonly used for tin plate food containers. This steel is a mild carbon steel that is very low in residual elements. Tables 6 gives results of the thickness measurements for tin plated steel containers.

Table 6
Tin Plated Steel Container Dimensions

Sample	Metal Thickness (in.)	Coating thickness (in.)
Sample C side wall	0.0096	< 0.005
Sample D side wall	0.0113	0.003
Sample D welded Seam	0.0131	0.0019
Sample D near seam	0.0067	<0.005
Sample C, bottom lid	0.0087	0.0002

Figure 12 is an optical micrograph of the side wall seam from sample D.

Figure 12. 100 X

The seam appears to be a resistance weld. It does not have the bent geometry one would expect from a solder joint. Neither is there evidence of lead in the x-ray spectrum from the joint. A fair amount of an organic coating had been applied around the seam. The x-ray spectrum from the coating is shown in figure 13 below.

Figure 13. X-ray spectrum from sample D Seam Coating

The coating appears to be a chlorinated organic material that is filled with barium sulfate. The barium sulfate may be present as an aid to automated x-ray inspection of the coating integrity.

Figure 14 is an optical micrograph of the bottom to side joint from sample C.

Figure 14. 20 X.

Optical micrograph of Bottom to Side Joint of Sample C

This joint has typical geometry for a side to end joint. Figure 15 is the x-ray spectrum from the joint sealant.

Figure 15. X-ray spectrum from Joint Sealant in figure 14.

The sealant is chlorinated organic compound, that in this case is filled with aluminum and silicon compounds, probably oxides. (It is also possible that silicon is present as embedded silicon carbide from the grinding media).

Figure 16 is a micrograph of the sample C side wall that shows the white coating in cross-section.

 $\label{eq:Figure 16.800 X.}$ Optical Micrograph of Sample C side wall.

The coating is actually two layers. The layer closest to the steel appears to contain the most pigment. The x-ray spectrum of the layer closest to the steel is shown in figure 17 below.

Figure 17. X-ray spectrum from inner coating layer in figure 16

The layer actually looks like a paint that contains a significant amount of titanium dioxide pigment.

Figure 18 barely shows the presence of the tin plating on the etched surface of sample D.

Figure 18. 1250 X Optical micrograph of Sample D showing the tin plating.

The plating is too thin for its thickness to be measured optically. The measurement of tin plating thickness is usually done indirectly by stripping the tin from the sheet and using bulk chemical analysis to determine how much tin was present on a given surface area.

Tin plating thicknesses were estimated from the ICP analysis of the solutions containing tin stripped from samples A, C, and D by:

$$t = \frac{m_{S_n}}{\rho_{S_n} A} \tag{9}$$

where t is the total plating thickness, m_{Sn} is the mass of the tin from the analysis, ρ_{Sn} is the density of tin and A is the area of the sample. The results for three samples were:

Table 7
Tin Plate Total thickness from ICP Measurement

Sample	Total thickness
A	45 μ inch
C	10 μ inch
D	73 μ inch

In the case of the sample A and D, the total thickness includes coatings on both sides. The measurement for sample C is for only one side, as the acid did not attack the paint like coating on the other side. Examinations in the SEM confirm the presence of a tin plating of around 30 μ inch adjacent to the paint surface on Sample C.

Discussion

Aluminum Containers

The aluminum container bodies are constructed of type 3004 aluminum. The lid materials are of type 5182 aluminum. The containers have an organic coating on the inside of the body. The lids appear to have organic coatings on both the inside and outside.

Reinhart³ has no corrosion data for type 3004 aluminum. He does give data for type 3003-H14 (shown in Table 8), which does not have the 1% magnesium that is present in type 3004. Data is given for samples that were directly exposed to sea water and samples that were buried in bottom mud. Since magnesium additions have been shown to not affect the pitting potential of aluminum alloys⁴, the performance of type 3003 would be similar to that of type 3004. The H14 in the designation refers to some strain hardening to the alloy. The aluminum in beverage can bodies is severely strain hardened.

Table 8
Corrosion rate data for 3003-H14 aluminum³

Depth (ft)	O ₂ Concentration (ml/l)	pН	Salinity (ppt)	Temperature °C	Exposure time (days)	Rate Exposed (mpy)	Rate Buried (mpy)
5	5.9	8.1	33.51	15	181	1.1	-
5	5.9	8.1	33.51	15	366	1.0	-
5	5.5	8.1	33.31	15	588	1.2	-
2340	0.4	7.5	34.36	5	197	1.2	1.6
2370	0.4	7.5	34.36	5	402	1.4	1.7
5640	1.3	7.6	34.51	2.3	123	0.5	1.9
5640	1.3	7.6	34.51	2.3	751	2.3	2.5
5300	1.2	7.5	34.51	2.6	1064	2.0	1.9
6780	1.6	7.7	34.40	2.2	403	3.9	3.7

These data appear somewhat scattered, but the corrosion rates are higher at the greatest depths.

Similarly, there is no data for type 5182, but the data for most 5000 series aluminum alloys are very similar. The 5000 alloys tend to be more corrosion resistant than the 3000 series alloys. The composition of type 5086 (4 % Mg, 0.4% Mn) is not too different from the lid alloy 5182.

Table 9
Corrosion rate Data for 5056 Aluminum³

Depth (ft)	O ₂ Concentration (ml/l)	pН	Salinity (ppt)	Temperature °C	Exposure time (days)	Rate Exposed (mpy)	Rate Buried (mpy)
5	5.9	8.1	33.51	15	181	1.2	-
5	5.9	8.1	33.51	15	366	0.8	-
5	5.5	8.1	33.31	15	588	1.6	-
2340	0.4	7.5	34.36	5	197	0.7	1.1
2370	0.4	7.5	34.36	5	402	0.6	1.3
5640	1.3	7.6	34.51	2.3	123	0.1	1.4
5640	1.3	7.6	34.51	2.3	751	2.0	-
5300	1.2	7.5	34.51	2.6	1064	0.9	1.2
6780	1.6	7.7	34.40	2.2	403	0.6	0.8

Electrochemical measurements of corrosion potentials and currents on aluminum by Dexter⁸ indicate that the apparent increase in corrosion rates of aluminum with depth is probably due to the effect of reduced pH. He found that when oxygen concentration and pH are varied together, the effect of pH dominates the corrosion rate. Lower pH increases both the pit initiation rate and the pit growth rate.

The above data show very little effect of temperature on the corrosion of aluminum. While one study does indicate that the corrosion rate of 3004 aluminum is a factor of two higher at 25 °C than 10 °C, the corrosion rate of type 6061 alloy aluminum in tropical waters near the Panama canal zone is not significantly greater than the rate near Port Hueneme, California.⁴ The passivity of the oxide films on aluminum may be diminished at higher temperatures, as the corrosion mechanism has been seen to change from pitting to uniform attack at higher temperatures.⁴

Corrosion data for shallow water immersion tests of 5086-H112 by Ailor give the following rates:

Table 10 Corrosion rates for 5086 aluminum from a five year study⁷

Exposure time	Rate mpy		
1 year	0.25		
2 year	0.17		
5 years	0.15		

These rates are about an order of magnitude smaller than those observed by Reinhart. Since exposure conditions are not given in Ailor's study it is difficult to comment critically on the reasons for the difference. It may be that some experimental factor such as the cleaning method is involved.

Tin Plated Steel Containers

÷.

While the samples that were examined are somewhat limited, some conclusions about the materials can be drawn. Food containers are made from a mild steel that has a low concentration of residual elements. The cans may or may not have tin platings. The cans may or may not have organic coatings. Some foods, such as tomatoes, are known to taste better if there is no organic coating on the inside of the can. Joints are sealed with organic sealants that can contain a variety of inorganic fillers. We observed no lead containing solders, but our sample was quite limited. The more corrosion resistant organic coatings (and the thicker tin plate) will usually be on the inside of the can. The measured thicknesses of the cans (with the exception of seam areas) range from about 0.009 inch to 0.013 inch. In the tin industry this is commonly referred to as 80-112 lb "plate". The samples that we examined had varying thickness of tin plating. Table 11 lists common tin plating thickness.

. The tin plating thickness measurement of Sample D in table 7 is consistent with a D 100/25 differential coating. Sample A is consistent with a D 50/25 differential coating. Sample C is probably also from a D 50/25 differential coating. The thickness of the thin platings thus can vary from can to can (or between bodies and lids) and between the inside and outside. The thicknesses common in food containers, will weigh around 100 pounds. Thus, less than 1 percent of the mass of a tin plated steel food container is tin.

Corrosion rates for pure tin in seawater have been measured both at the surface and at depth.³ The rates range from 8 mpy at the surface to 0.5 mpy at 5640 ft. The rates are somewhat correlated with the dissolved oxygen content. In seawater tin is cathodic (more noble than) to iron, so one might expect iron in contact with tin to corrode preferentially. However, with the very thin tin platings present on our samples (0.015 to 0.060 mil), it seems likely that the tin plating (where not protected by organic coatings) would be rapidly undercut and spalled away from the can surface by iron oxide corrosion products. The tin plating should corrode away quite rapidly in seawater.

Table 11 Common tin plating thicknesses¹¹

Designation	Tin Coating weight each surface (lb/base box)	Tin Thickness each side (μ inch)		
10	0.05/0.05	.06/0.06		
20	0.10/0.10	12/12		
25	0.125/0.125	15/15		
35	0.175/0.175	22/22		
50	0.25/0.25	30/30		
75	0.375/0.375	45/45		
100	0.50/0.50	60/60		
D 50/25	0.25/0.125	30/15		
D 75/25	0.375/0.125	45/15		
D 100/25	0.50/0.125	60/15		
D 100/50	0.50/0.25	60/30		
D 135/25	0.675/0.125	82/15		

Table 12 below shows corrosion rate data for AISI type 1010 steel, a mild steel very similar in composition to the Type L steel used in tin plated food cans.

Table 12 Corrosion Rates for AISI 1010 Steel (from Reinhart³)

Depth	O ₂ Concentration (ml/l)	pН	Salinity (ppt)	Temperature °C	Exposure time (days)	Rate Exposed (mpy)	Rate Buried (mpy)
5	5.9	8.1	33.51	15	181	9.1	-
5	5.9	8.1	33.51	15	366	8.0	-
5	5.5	8.1	33.31	15	588	8.9	-
2340	0.4	7.5	34.36	5	197	1.6	1.2
2370	0.4	7.5	34.36	5	402	1.1	1.1
5640	1.3	7.6	34.51	2.3	123	2.7	1.9
5640	1.3	7.6	34.51	2.3	751	0.8	0.6
5300	1.2	7.5	34.51	2.6	1064	1.0	0.7
6780	1.6	7.7	34.40	2.2	403	1.9	1.1

Table 13 shows corrosion rate data for JIS SS41steel (equivalent to AISI 1020), a mild steel with around 0.2% carbon.

Table 13
Corrosion rate data for JIS SS41 steel (from Shimada⁵)

Depth (ft)	O ₂ (ml/l)	pН	Exposure time (days)	Rate (mpy) Exposed
6.6	6.9	8.1	720	11
98	6.4		720	9
197	3.3		720	4
295	6.2		720	8

Figure 19. Corrosion rate of mild steel vs. oxygen concentration.

The data from the Reinhart and Shimada studies show remarkably good correlation between oxygen concentration and corrosion rate, as is shown in figure 19. However the Shimada study also examined corrosion rates in a polluted bay, where the dissolved oxygen concentration was only 0.09 ml/l. The corrosion rate under those conditions was about 7.9 mpy, much larger than would be expected from the oxygen level. This may be due to the presence of sulfate reducing bacteria and the sulfide that they produce. The presence of sulfide generally increases the corrosion rate of steel in seawater. This may be due to catalytic effects that increase the rates of both the oxidation and reduction reactions at the steel surface, as well as stabilization of the corrosion products as insoluble sulfides. 12

Peterson and Lennox⁵ measured the corrosion rates of mild steel where the mean temperature was 25 °C, the mean dissolved oxygen content was 8.6 ml/l and the mean pH was 8.07. Samples were exposed in a laboratory cell at a low flow rate, from a pier with normal tidal flow, and in a flume at flow of 0.23 meters/s. The corrosion rates were 2.3, 4.2, and 7.9 mpy respectively. While these data show the effect of

flow, the corrosion rates are somewhat less than might be expected from the oxygen concentration when compared with the data in figure 19. This is indicative of the variability in results that might be expected between different studies that use perhaps slightly different materials and methodologies at different locations. Other near-surface immersion studies⁴ (exposure conditions unknown) give initial corrosion rates for carbon steel of about 4-5 mpy, which stabilize over the long term (many years) to around 3 mpy.

Controlled laboratory studies have shown that the corrosion of steel should be accelerated by increasing temperature.⁵ However, in natural waters, the temperature has a significant effect on other factors such as the dissolved oxygen concentration and level of biological activity. For example, Shimada et. al. ⁵ found that in unpolluted seawater the corrosion rates were highest in winter months when oxygen concentrations were highest even though temperatures were lower. In polluted seawater (with very low oxygen levels) the corrosion rates were highest in summer months when biological activity was at its highest. Reinhart and Jenkins¹³ used linear multivariate regression analysis to give the following formula for the dependence of the corrosion rate of steel on oxygen concentration and temperature:

Corrosion Rate(
$$\mu$$
m/yr) = 21.3 + 25.4 [O₂ (ml/l)]+ 0.356 [T (° C)] (10)

At ocean oxygen concentrations that typically range from 1-7 ml/l, it is clear from equation 10 that oxygen concentration dominates the corrosion rate for steel in seawater.

The effect of biofouling on the corrosion rates of steel is open to some question. In theory, marine organism growth should slow uniform attack corrosion by restricting access of oxygen to the steel surface. Pitting and crevice corrosion should be increased by the creation of differential aeration cells at marine organism attachment sites. Comparison of corrosion rates between samples immersed in filtered and unfiltered sea water show no significant difference, either in the general corrosion rate or the depth of pits. Other studies indicate that under fouling conditions initial corrosion rates can be quite large (>13 mpy) until specimens are covered by marine organisms (after about 1.5 years). At that point corrosion rates decrease until oxygen is excluded from the specimen surface and corrosion is controlled by sulfate reducing bacteria. The corrosion rates then stabilize at about 2-3 mpy.

Use of Corrosion rates to predict lifetimes and mass loading

The simplest use of the corrosion rate information is in the prediction of the lifetime of a particular container in seawater. A complicating factor is the presence of the organic coatings on the container surfaces. These coatings will tend to protect the metal from corrosion, but not indefinitely. The shredding process provides ample edges and defects for the origination of crevice corrosion. The crevice corrosion will eventually destroy the usefulness of the coating. The inside of the tin plated steel cans are generally much better protected with tin plating and coatings than the outside. Similarly, the aluminum can bodies have a protective coating on the inside, and only decorative paint on the outside. The outsides of the cans will begin to corrode first. The can may completely corrode from the outside in before the interior surfaces are significantly attacked. Experience from the exposure of some shipboard waste in San Diego bay for ten months seems to confirm this hypothesis. The coated interiors of tin plated steel cans remained in relatively good condition after ten months exposure (the tin plating was still intact under the organic coating) while the exteriors of the cans showed severe corrosion. Consequently, container lifetimes can be estimated by simply dividing the container wall thicknesses by the corrosion rates. For a steel can that is nominally 0.010 inch thick, the lifetime at a corrosion rate of 4 mpy would be 2.5 years. We measured aluminum can wall thicknesses that varied from as little as 0.004 inch near the middle to 0.013 inch on the bottom. For an aluminum can body to completely corrode at 2 mpy would take 6.5 years. The aluminum

can lids would be expected to corrode more slowly, as they are coated on both sides and are made of the more corrosion resistant 5000 series alloy.

Additional information can be gained by calculating what we call the mass removal rate fraction, $m_{\rm f}$. We define this as fraction of mass removed by corrosion per year for a given container thickness, or

$$m_{f} = r\rho \left(\frac{\text{effective container surface area}}{\text{container mass}} \right)$$
 (11)

where r is the corrosion rate in inches per year and ρ is the density of the alloy. A "base box" of tin plated steel has a total area of 31360 in². If we assume on the average 100 lbs per base box, and a corrosion rate of 4 mpy, m_f for tin plated steel cans would be 0.355 pounds of corroded metal per pound of cans per year. An aluminum can weighs about 0.48 ounce¹⁶ and has a surface area of about 25 in² of 3004 aluminum alloy and about 3.6 in² of 5182 aluminum alloy. Because the nature of the corrosion of aluminum makes it difficult to predict corrosion rates as a function of ocean conditions, and because the rates do not vary so greatly between the two can alloys it seems prudent to just make an order of magnitude estimate independent of alloy or conditions. If one takes 2 mpy as the corrosion rate (this should probably be considered an upper bound), then m_f for aluminum can waste would be about 0.18 pounds corroded per pound of waste per year.

In a situation where waste is thrown overboard at a constant rate, W, the amount of material remaining uncorroded on the ocean floor, M, can be modeled by the differential equation:

$$\frac{dM}{dt} = W - m_f M \tag{12}$$

where t is the time. This simply says that the rate of waste accumulation on the ocean floor equals the difference between the rate of addition and the rate of loss due to corrosion. Under steady state conditions, where dM/dt is zero, we have

$$M = \frac{W}{m_f}$$
 (13)

and by definition of steady state, the amount of material being lost as corrosion equals the amount of material that is being added by being thrown overboard. Using the m_f calculated above for tin plated steel cans, if 100 pounds per year of waste is thrown overboard, at steady state 282 pounds of waste would be always present on the ocean floor. A complete solution of equation 12 leads to:

$$M = \frac{W}{m_f} (1 - e^{-m_f t})$$
 (14)

This indicates that steady state is only achieved at infinite time. Steady state is approached with time constant $1/m_f$. Given the m_f calculated above for tin plated steel, 50% of steady state is reached in 2.0 years, 90% in 6.5 years, and 99% in 13 years.

References

- 1. Fontana, M. G., Corrosion Engineering, McGraw Hill, New York, (1986).
- 2. ASTM Standard Practice G1-81, ASTM, Philadelphia (1981).
- 3. Reinhart, F. M. "Corrosion of Metals and Alloys in the Deep Ocean", Technical Report R 834, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California 93043, February 1976.
- 4. Beavers, J. A., Koch, G. H., and Berry, W. E., Corrosion of Metals in Marine Environments, MCIC Report 86-50, Battelle Columbus Division, Columbus, Ohio 43201-2693, July 1986.
- 5. Shimada, H. Miida, K., and Yokooji, T, "The Relation Between the Corrosion Behavior of Steels and the Characteristics of Various Ocean Environments", *International Ocean Development Conference*, vol 2, 165-83 (1975).
- 6. Peterson, M. H. and Lennox T. J. Jr., "Effects Of Exposure Conditions On The Corrosion Of Mild Steel, Copper, And Zinc In Seawater", *Materials Performance*, 23, 15-18, (1984).
- 7. Ailor, W. H. Jr., "Aluminum Alloys After Five Years in Seawater", *Materials Performance and the Deep Sea, ASTM STP 445*, 115-130, American Society for Testing and Materials,)1969).
- 8. Dexter, S. C., "Effect of Variation in Sea Water Upon the Corrosion of Aluminum", *Corrosion*, <u>36</u>, 423-432, (1980).
- 9. Brick, R. M., Daly, J. J., Koehler, E. L. and Skibbe, A. G., "The Selection of Tin Coatings for Steel Containers", *Metals Handbook*, vol 1, pp1133-1141, Taylor Lyman Editor, Metals Park, Ohio, 1961.
- 10. Horne, R. A., Marine Chemistry, John Wiley and Sons, New York, 1969.
- 11. ASTM Standard A 624 (1984).
- 12. West, J. M. Basic Corrosion and Oxidation, p122, John Wiley and Sons, New York, 1980.
- 13. Reinhart, F. M. and Jenkins, J. F., "The Relationship Between the concentratio of Oxygen in Seawater and the Corrosion of Metals", U. S. Naval Civil Eng. Lab. Report, pp. 562-577.
- 14. Traverso, E. et al., "Effects of Rolling Direction and Tensile Stress on the Corrosion of Naval Carbon Steel in Natural Marine Environments-I: Natural Seawater, *British Corrosion Journal*, 14 (2), pp97-102 (1979).
- 15. Shumacher, M. Seawater Corrosion HandBook, p. 383, Noyes Data Corporation, Park Ridge, New Jersey (1979).
- 16. Hosford, W. F., and Duncan, J. L., "The Aluminum Beverage Can", Scientific American, 271(3), 49,(1994).

APPENDIX H

WAKE DISPERSION MODELING RESULTS

Source:

٠,

Wake Dispersion Modeling.

San Diego, California

Naval Command, Control & Ocean Surveillance

Center, RDTE Division, Code 522, Naval Coastal Systems Station, 1995 **DIANA::HYMAN**

JOB 224

CVN20.LAS;1

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN20.LAS;1 File:

Last Modified: 25-MAY-1995 12:52

Owner UIC: [HYMAN]

Length: 1707 blocks 27 bytes Longest record:

Priority: 100

Submit queue: LASER_B1102C

25-MAY-1995 12:52 Submitted: LASER_B1102C Printer queue:

Printer device: LPS17A

Digital Equipment Corporation OpenVMS AXP system V6.1

PrintServer 17 LPS17A **DECprint Supervisor V1.1A**

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 0.56 km = 1.69 L

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 1.06 km = 3.19 L

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 2.06 km = 6.20 L

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 3.06 km = 9.22 L

DIANA::HYMAN

JOB 1104

FFG10.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG10.LAS;1

Last Modified: 26-MAY-1995 10:26

Owner UIC: [HYMAN]

Length: 1209 blocks Longest record: 27 bytes

Priority: 100

Submit queue: LASER_B1102C Submitted: 26-MAY-1995 10:26

Printer queue: LASER_B1102C

Printer device: LPS17A

OpenVMS AXP system V6.1

PrintServer 17 LPS17A

DECprint Supervisor V1.1A

Frigate - 10 kts (5.15 m/s) Unstratified X = 0.56 km = 4.26 L

umuuvanventkattan PTELU(C/M**3) AT 0.56 KM	M 0.89808E-08 18 0.8228E-01 CONTOUR HIERVR. OF 0.4888SE-02 PT.3.3)= 0.22868E-03 LABELS SCREED BY 100
uuruun YOOD MYEKBA PHRTII PABULHYIBA HI O'SEKKM	THEFT THE CONTROL OF THE PROPERTY OF THE PARTY OF THE STATES OF THE STAT

Frigate - 10 kts (5.15 m/s) Unstratified X = 1.06 km = 8.07 L

Frigate - 10 kts (5.15 m/s)Unstratified X = 1.56 km = 11.87 L

TOOU WICKEN PHRI. PUBBULHIIBN'HI'T.SK'KM

Frigate - 10 kts (5.15 m/s)
Unstratified X = 2.06 km = 15.68 L

Frigate - 10 kts (5.15 m/s) Unstratified X = 0.66 km = 5.01 L

	-	
FILLILLILLILLILLILLILLILLILLILLILLILLILL		

CONTEXT FORM 0.100002-03 TO 0.10587 CONTEXT INTERIOR OF 19.501 CONTEXT INTERIOR OF 10.00.0

| Context from 0.100002-03 TO 0.10587 CONTEXT INTERIOR OF 0.50055-02 F13.31= 0.500505-03 LOGGES SCREEGE OF 10.00.0

Frigate - 10 kts (5.15 m/s) Unstratified X = 1.32 km = 10.01 L

Frigate - 10 kts (5.15 m/s) Unstratified X = 2.63 km = 20.01 L

:::::	:			
111111				
11883				:::::::
IIIIII:				
		:::::::::		
1::::			:::::::::::::::::::::::::::::::::::::::	
1:::::				
11111				
11333				
1111	<u>:</u>			
1:::::		• • • • • • • • • • • • • • • • • • • •		

MAXIMUM VECTOR

X = 3.94 km = 30.01 LFrigate - 10 kts (5.15 m/s) Unstratified X = 3.9

10 kts (5.15 m/s)	X = 6.57 km = 50.0	
Frigate - 10 kts	Unstratified	

0.496E-01 MAXINUM VECTOR

ELITATION OF SERVING AND THE S CONTIONA FROM -0.33127E-06 TO 0.11679E-01 CONTOUR INTERVIL OF 0,73398E-03 PTI3.31= 0.00000E+00 LIGELS SCALED BY

DIANA::HYMAN

JOB 577

CVN20-STRAT.LAS;2

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN20-STRAT.LAS;2

Last Modified: 7-JUN-1995 10:20

Owner UIC:

[HYMAN]

Length:

2049 blocks

Longest record:

27 bytes

Priority:

Submit queue:

LASER_B1102C

Submitted: Printer queue: 7-JUN-1995 10:20 LASER_B1102C

Printer device:

LPS17A

Digital Equipment Corporation OpenVMS AXP system V6.1

PrintServer 17 LPS17A **DECprint Supervisor V1.1A** Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 0.56 km = 1.69 L

= 1.06 km = 3.19 LAircraft Carrier - 20 kts (10.3 m/s) Stratified X = 1.06 km =

X = 2.06 km = 6.20 LAircraft Carrier - 20 kts (10.3 m/s) Stratified

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 3.06 km = 9.22 L

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 5.06 km = 15.24 L

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 0.55 km = 1.67 L

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 1.11 km = 3.34 L

COMINAR INTERVAL OF 0.81315E-02 PT(3.31= -0.15878E-35 LABELS SCALED BY 1000.0

CONTOUR FROM -0.82796E-03 10 0.12786

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 2.21 km = 6.67 L

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 3.32 km = 10 L

SUMLEM FIRM -0.19445-02 18 0.58106E-01 COMIGNE HIERNAL OF 0.30025E-02 PT.3.31: 0.79137E-29 LIGELS SCRLED BY 10000

Aircraft Carrier - 20 kts (10.3 m/s) Stratified X = 5.53 km = 16.67 L

DIANA::HYMAN

JOB 1792

FFG10-STRAT.LAS;2

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG10-STRAT.LAS;2

Last Modified: 12-JUN-1995 13:48

Owner UIC:

[HYMAN]

Length:

5091 blocks

Longest record:

27 bytes

Priority:

Submit queue: LPS40\$LAZER

Submitted: 12–JUN–1995 13:48 Printer queue: LPS40\$LAZER

Printer device:

LAZER

Digital Equipment Corporation

PrintServer 40 LAZER

OpenVMS AXP system V6.1

DECprint Supervisor V1.1A

			=
			_
			\
			V.
	इं		4
			_
			-
•			
			=

Frigate - 10 kts (5.15 m/s) Stratified X = 0.66 km = 5.01 L

ELLILLLILLLILLLILLLILLLILLLILLLILLLILLL
TILLILLILLILLILLILLILLILLILLILLILLILLILL

7

CONTRA FIRM TO 27425E-02 18 0.11914 CONTRA PLEASE OF 0.6591E-02 PT 13.31= 0.00000E-00 LOGGES SCALED BY 1000.0 CONTOUR FROM -0.27425E-02 TO 0.11914

Frigate - 10 kts (5.15 m/s) Stratified X = 1.32 km = 10.01 L

General management of the Secretary of 10.01 Linear management of the Secretary of the Secr	CONTOUR FROM 5.0697 TO 5.3194 CONTOUR INTERVIL OF 0.12403E-01 PT(3.3)= 5.1450

HINE TREATMENT AND THE TREATME

CRNICUR FROM 0.39347E-04 10 0.45799E-02 CONICUR INIERVAL OF 0.22703E-03 P1(3.3)= 0.13252E-03 LPBELS SCALED BY 0.10000E-06

			1
			_
::::		:::::	8
::::		:::::	0.130€+00
::::		:::::	=
::::		:::::	0
			1
:::::		:::::	ł
:::::		:::::	1
:::::	:::::::::::::::::::::::::::::::::::::::	:::::	1
:::::		::::::	
:::::		::::::	ł
::::		:::::	
::::	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:::: : :	
:::;	}{::::::::::::::::::::::::::::::::::::	:::::	
H_{i}		:::::	
11:25		:::::	
11:::			
11:5		::::::	-
13:2		:::::	
137		:::::	
::::		:::::	
:::::		:::::	
:::::		:::::	
:::::	=======================================	:::::	
	25(5)		
:::::			
1333			
1333		:::::	
11:5	\$\ :::::::	:::::	
(E)	/):::::::::::::::::::::::::::::::::::::	:::::	
:E%	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	:::::	
:::::			
:::::		:::::	
:::::	:::::::::::::::::::::::::::::::::::::::	:::::	
:::::	: : : : : : : : : : : : : : : : : : : :	:::::	
:::::	:::::::::::::::::::::::::::::::::::::::	:::::	
:::::	: : : : : : : : : : : : : : : : : : : :	:::::	
		:::::	
:::::			

Frigate - 10 kts (5.15 m/s) Stratified X = 1.97 km = 15.01 L

	:						:	:	:															_			-	
1:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:				:
1:	:	÷	÷	÷	٠	٠	•	•	٠	•	•	٠	٠	•		•	•	·	÷	٠	•	•	÷	•	•		•	
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
f:	٠	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
1:	:	;	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	•
Į:	÷	÷	÷	•	•	٠	•	•	•	•		•	•			•	•	٠	÷	•	٠	٠	:	•	•	•	٠	-
1:	:	:	;	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
ŀ	•	٠	:	:	:	:	:	•	٠	٠	÷	٠	٠	٠	٠	٠	٠	٠	٠	÷	٠	÷	÷	÷	÷	÷	٠	•
1:	:	:	:	÷	÷	÷	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1:	:	:	;	ï	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1.	i	٠	:	:	•	=	:	٠	٠	٠	٠	:	•	:	•	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•
1:	:	٠	٠	÷	•	٠	٠	٠	٠	:	:	:	:	•	:	٠	•	٠	í	•	:	٠	:	•	:	:	•	-
1:	;	:	÷	7	5			٠,	.:	.;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
ŀ	:	:	;	1	1	1		-	-	٠	٠	-	:	:	:	:	:	:	:	:	:	:	:	#	٠	:	:	:
1:	:	÷	1	!	1	!	1	5	::	:	:	:	ï	÷	:	:	•	÷	·	•	:	:	:	•	ï	:	:	
1:	:	:	į	į	į	į	í	:	}	1	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
t:	:	:	:	₹	١.	₹.	`	ċ	į	į	i	÷	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
Į;	:	٠	•	١.	١:	٠	٠.	-:	2	:	;	:	÷	÷	÷	٠	÷	٠	٠	•	÷	÷	÷	•	·	٠	٠	•
1:	:	:	:	÷		Ξ.	Ξ.	2	=	=	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
1;	;	;	·	٠	٠	٠	٠	٠	÷	÷	٠	٠	٠	٠	÷	÷	•	٠	٠	٠	•	•	•	•	•	•	•	•
1:	:	:	:	:	:	:	:	:	÷	÷	:	:	:	:	:	;	:	:	;	:	:	:	:	:	:	:	:	::
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
ŀ	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•
1:	:	:	:	÷	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
t:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
1:	٠	•	•	٠	٠	٠	٠	٠	٠	•	÷	:	٠	•	·	·	٠	٠	·	÷	٠	•	•	•	٠	•	•	
ł٠	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
1:	:	٠	٠	٠	٠	•	:	٠	٠	٠	٠	÷	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
ŧ:	٠	٠	÷	;		·	÷	÷	:	÷	÷	:	:	:	:	:	:	:	:	ï	:	:	:	:	:	:	÷	
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
1:	:	:	•	٠	-	2	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:
1:	•	:	ï	ï	ï	,	٠	٠	٠	÷	٠	÷	•	·	:	·	٠	٠	٠	•	·	•	•	•	•	•	•	•
1;	;	:	:	1	!	1	ì	ì	ï	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
H	;	:	;	Ş	ļ	١	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1;	:	:	ì	١	3	3		•	:	:	:	:	:	:	:	÷	٠	٠	÷	÷	÷	÷	÷	٠	٠	٠	٠	:
11	÷	:	:	:	;	;	:	:	÷	:	÷	ï	ï	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:
r:	;	:	:	1	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
t:	:	:	÷	ž	i	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	:	:	:	:	:
ł٠	٠	٠	:	:	:	:	:			•	÷	÷	•	٠			:	÷	÷	:	:	:	٠	•	:	:	:	
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	;	:	:	:	:	:	:	:	:	:
t:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ŀ	•	٠	:	÷	•	÷	÷	÷	÷		•	•	•	•	•	÷		÷	÷	í	•		•	•		•		•
1:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1:	:	:	:	÷	÷	:	:	:	٠	:	•	÷	•	•	•	:	•	•	:	÷	•	•	:	٠	•	•	•	٠
1:	;	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1:	:	:	:	:	:	•	:	٠	٠	÷	٠	÷	•	÷	•	÷		·	÷	٠	•	٠	٠	•		•	٠	•
1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
t .	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	•	:	•	•	٠	:	:	•	:

O.184E+DO HAXIMUH VECTOR

CONTRACT FROM D. 15357E-04 19 0.22357E-02 CONTRACT INTERVAL OF 0.11101E-03 P113.31= 0.67451E-04 LORGELS SCRIED BY 0.11000E-06	CONTOUR FROM -0.2015NE-02 10 0.79810E-01 CONTOUR PROPERTY
	CGN

Frigate - 10 kts (5.15 m/s) Stratified X = 2.63 km = 20.01 L

0.256E+00 MAXINUM YECTOR

X = 3.94 km = 30.01 LFrigate - 10 kts (5.15 m/s) Stratified X = 3.9

HILLING THE THE THE THE THE THE THE THE THE THE

CONTOUR INTERYPL OF 0.92457E-02 PT(3.31= 5.1450 18 5,2503 CONTOUR FROM 5.0654

	:::::::::::::::::::::::::::::::::::::::
	:::::::::::::::
, , , , , , , , , , , , , , , , , , ,	
	:::::::::
	• • • • • • • • •
	:::::::::::::::::::::::::::::::::::::::
	:::::::::::::::::::::::::::::::::::::::
	:::::::::::::::::::::::::::::::::::::::

	: :::::::::
	• • • • • • • • • •
	:::::::::::::::::::::::::::::::::::::::
·	: : : : : : : : : : : : : : : : : : :
:::::::::::::::::::::::::::::::::::::::	**********
	: ' : : : : : :
 	::::.
· · · · · · · · · · · · · · · · · · ·	:::::::

	:::::::::::::::::::::::::::::::::::::::
	:::::::::::::::::::::::::::::::::::::::
	:::::::::::::::::::::::::::::::::::::::

HAX1HUM VECTOR

• इं

JOB 430

CVN20.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN20.LAS;1

Last Modified: 7-JUN-1995 08:25

Owner UIC: [HYMAN]

Length: 6542 blocks Longest record: 27 bytes

Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 7–JUN-1995 08:25

Printer queue: LPS40\$LAZER

Printer device: LAZER

OpenVMS AXP system V6.1

PrintServer 40 LAZER
DECprint Supervisor V1.1A

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 0.55 km = 1.67 L

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 1.11 km = 3.34 L

X = 2.21 km = 6.67 LAircraft Carrier - 20 kts (10.3 m/s) Unstratified

0.177E+00 MAXIMUM YECTOR

CONTOUR FROM 0,10000E-03 18 0,37476E-01 CONTOUR INTERVIL OF 0,1858BE-02 P1(3,3)= 0,53126E-03 LABELS SCALED BY 10000,

Aircraft Carrier - 20 kts (10.3 m/s) Unstratified X = 3.32 km = 10 L

X = 5.53 km = 16.67 LAircraft Carrier - 20 kts (10.3 m/s) Unstratified

O.103E+DO MAXIMUM VECTOR

CONTOLAR FROM 0.10000E-03 TO 0.10373E-01 CONTOLAR INTERVIL OF 0.51364E-03 PT13.3)= 0,21223E-03 LABELS SCALED BY

\$

JOB 1672

FFG-20.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG-20.LAS;1

Last Modified: 1-JUN-1995 15:29

Owner UIC: [HYMAN]

Length:

1604 blocks

Longest record:

27 bytes

Priority:

100

Submit queue:

LPS40\$LAZER 1-JUN-1995 15:29

Submitted: Printer queue:

LPS40\$LAZER

Printer device:

LAZER

Digital Equipment Corporation

PrintServer 40 LAZER

OpenVMS AXP system V6.1

DECprint Supervisor V1.1A

Frigate - 20 kts (10.3 m/s) Unstratified X = 1.06 km = 8.07 L

Frigate - 20 kts (10.3 m/s) Unstratified X = 2.06 km = 15.68 L

	CONTRACTOR OF DESCRIPTION OF TELLUTON THE Z. US KM L E E E E CONTRACTOR OF THE LOCATION OF THE LUTON OF THE Z. US KM CONTRACTOR OF THE CONTRACTOR OF THE STATE OF SPRINGS SCALED BY DISCORDE.08
200.	CONTRACT THE CONTRACT OF STATE OF THE PARTY. THE CONTRACT OF T

= 3.06 km = 23.29 LFrigate - 20 kts (10.3 m/s) Unstratified

Frigate - 20 kts (10.3 m/s) Unstratified X = 5.06 km = 38.52 L

X = 0.66 km = 5.01 LFrigate - 20 kts (10.3 m/s) Unstratified X = 0.60

1000.0

Frigate - 20 kts (10.3 m/s) Unstratified X = 1.32 km = 10.01 L

THE FIGURE FROM 10.048 TO 10.794 CONTOUR WITEWAY OF 0.37298-01 PT(3.3)= 10.293	
CONTOUR FROM	

0.805E-01 MAXIMUM YECTOR

Frigate - 20 kts (10.3 m/s) Unstratified X = 2.63 km = 20.01 L

Frigate - 20 kts (10.3 m/s) Unstratified X = 3.94 km = 30.01 L

0.517E-01 MAXIMUM YECTOR

CENTRAR FIRST OLICODE-03 16 D. SESSER-DZ CENTRAR PLANTING THE TITLE THE TITL

Frigate - 20 kts (10.3 m/s) Unstratified X = 6.57 km = 50.01 L

JOB 668

FFG20-STRAT.LAS;1

File: \$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG20-STRAT.LAS;1

Last Modified: 13-JUN-1995 08:08

Owner UIC: [HYMAN]

Length: 1793 blocks

Longest record: 27 bytes
Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 13–JUN–1995 08:08

Printer queue: LPS40\$LAZER

Printer device: LAZER

OpenVMS AXP system V6.1

PrintServer 40 LAZER

DECprint Supervisor V1.1A

Frigate - 20 kts (10.3 m/s) Stratified X = 3.06 km = 23.29 L

Frigate - 20 kts (10.3 m/s) Stratified X = 5.06 km = 38.52 L

Frigate - 20 kts (10.3 m/s) Stratified X = 0.56 km = 4.26 L

	CONCENTRATTON FTE	6 J	HUNTHI U.56 KM
1 003	E Emmunitudu WILKWA PHRI III PBPULHI IBA HY O'SSIKM	2.35	CONTRACTOR FROM 50.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000006.00 TO 0.000000000 TO 0.000006.00 TO 0.00006.

Frigate - 20 kts (10.3 m/s) Stratified X = 1.06 km = 8.07 L

Frigate - 20 kts (10.3 m/s) Stratified X = 2.06 km = 15.68 L

JOB 674

FFG20-STRAT.LAS;2

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG20-STRAT.LAS;2

Last Modified: 13-JUN-1995 08:11

Owner UIC: [HYMAN]

Length: 6156 blocks Longest record: 27 bytes

Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 13-JUN-1995 08:11

Printer queue: LPS40\$LAZER

Printer device: LAZER

Digital Equipment Corporation

OpenVMS AXP system V6.1

PrintServer 40 LAZER

DECprint Supervisor V1.1A

Frigate - 20 kts (10.3 m/s) Stratified X = 1.32 km = 10.01 L

	HILLI HEULILULI HELLE STANDEN
	<u> </u>
	KYHL'YE
	=
	CONTRUR FROM 10, 101
	CONTRA
<u> </u>	ᇤ

		-	_	_	-				:	:																		:						_	_
::	::	:	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:						***************************************				
::	::	:	: :	:	:	:	÷	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
::	::	:		:	:	÷	÷	÷	÷	:	٠	÷	:	÷	٠	:	÷	٠	÷	÷	÷	÷	÷	÷	:	÷	÷	:	÷	÷	:	÷	÷		
::	•	÷			÷	:	:	:	:	÷	÷	÷	÷	÷	:	÷	:	÷	÷	:	÷	:	÷	÷	÷	÷	·	÷	÷	÷	÷	÷	÷	÷	÷
።	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	።	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	٠			÷	÷	٠	÷	•	÷	٠	٠	٠	÷	٠	٠	٠	٠	٠	÷	٠	٠	٠	٠	÷	٠	٠	٠	÷	٠	:	ż	٠	•	•
::	: :	:	: :	:	÷	:	:	:	:	÷	÷	÷	÷	÷	÷	:	÷	÷	÷	:	÷	:	:	÷	:	÷	:	:	:	:	÷	:	÷	:	÷
::	• •	:		:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	፡	:	:	:	:	:	:	:	:	:
።	::	:	: :	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	÷		:	:	:	:	÷	:	:	:	÷	٠	:	:	÷	÷	:	÷	:	:	÷	:	÷	:	÷	÷	:	:	:	:	:	:	÷	:
• • •	• •	:			:	÷	-	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	•	٠	:	:	:	÷
:::	::	:			7	2	:		;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	÷	1	į	í	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	1	1	١	:	:	į	į	i	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	٠	٠
•	::	:	::	:	١.	:	•	ż	ż	÷	÷	ċ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:				
::	•	2	::	:	2	-	=:	-:	÷	:	÷	:	÷	÷	÷	÷	÷	÷	÷	·	٠	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷		:	:	÷
::	;;			-	-		=	=	:	:	:	÷	:	:	:	:	÷	:	:	:	፡	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	::	::	::	:	:	:	:	;	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	::	::	::	:	:	:	:	ï	ï	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
;;	-	::	3	::	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1;	1	:	Š	Š		٠	٠	٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ħ	1		:	ï	1	ï	ì	÷	:	:	:	:	٠	÷	:	٠	÷	÷	÷	÷	÷	÷	·	÷	٠	÷	÷	٠	÷	٠	÷	٠	÷	•	÷
и.		÷.	;;	,	j	į	;	÷	·	٠	٠	÷	٠	÷	÷	:	÷	•	÷	÷	÷	÷	÷	٠	:	:	:	•	:	:	÷	:	÷	:	÷
		٤,	1	1	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•					•	•	:	:	:
:::	::	;			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:							:	:	:
::	::	:	::		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	: :	::	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	•		:	٠		:		**************************************	:	:	:	٠	:	:	:	:	:	:	:	:	i	÷	i	:	:	:	:	:					÷		
።	:	:	. :		•	:	•	•	•	-	•		:	ī	•	:	•	÷	•	÷	÷	:	•	•	÷	:		:		•	:	:	:		:
::	::		: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:		:	:	:	:
።	::	:	: :		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	::	:	::	:	:	:	:	;	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	::	:	:	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	:	::	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
• •	:	:	:		:	:	:	:	:	:	:	:		:	٠	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	Ė
::	:	: :	;	. :	. :	٠	÷	÷	i	:	•	•	:	÷	:	:			÷	:	÷	÷	:	:	:	:	:	:		:	:		•	:	:
::	: :	::	:	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	:	::	:	: :	:	:	:	:	:	:	:	;	:	:	;	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	:	::	:	::	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
::	:	::	:	: :	:	:	:	:	:	:	:	:	•	:	•	•	•	:	:	:	:	:	:	•	:	:		:		:	:	•	:	:	:
• •		: :	÷	•	:	•	•	•	•	:	:	:	•		:	:	:	•	:	:	•	:	:	:	:	:	•	•	:	:	:	:	:		٠
• •	:	::	:	::	::	:	:	:			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		**************************************	**************************************	**************************************			***************************************		**************************************	* * * * * * * * * * * * * * * * * * *				:	:	:	;	:	:	:
• •	•																																		
							:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:		:	•

0.137E+00 HAXIMUN VECTOR

CONTRACT FIRST OLIGOGE-03 TO CARGO PARTICIPATION PROPERTY OF THE CONTRACT FIRST OLIGOGE-03 LONG. STATES OF THE CONTRACT FIRST OLIGOGE-03 TO CARGO PARTICIPATION PROPERTY OF THE CONTRACT FIRST OLIGOGE-03 TO CARGO PARTICIPATION PROPERTY OF THE CONTRACT FIRST OLIGOGE-03 TO CARGO PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATE PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY OF THE CONTRACT PARTICIPATION PROPERTY PARTICIPATION PAR	
--	--

Frigate - 20 kts (10.3 m/s) Stratified X = 0.66 km = 5.01 L

Frigate - 20 kts (10.3 m/s) Stratified X = 2.63 km = 20.01 L

∃	AND THE STATE OF T
Emmann	And Carried

CONTOUR FROM

:	:	:	•	•	•	•	•	•	•				-	-		-			-					:	:	:	:	•	:					-	-	-	-	7
:	÷	÷	፧	:	:	:	٠	:	•		3		:	:	:	:							:	:	÷	፧	÷	÷	÷	:								ı
÷	÷	÷	i	÷	:	:	:	:			3		:	÷	:								:	÷	:	፥	፥	:	÷	:				:	:	:		ı
:	÷	÷	•	:	:	÷	:	:	3	•	3	8	:	:	:	3			:				•	÷	÷	÷	÷	÷	:		:	:		:	:	:		ı
:	:	:	:	:	:	:	:	:	:				:	:	:	1			:				:	:	;	÷	÷	:	:	:							•	ı
:	:	:	:	:	:	:	:	:	;				:	:	:				:				:	:	:	:	:	:	:	:	:			:		:	٠	i
:	:	:	:	:	:	:	:	:	:				:	:	:	:			:			:	:	:	:	:	:	:	:	:	:	: :		::		:	:	I
:	:	:	:	:	:	:	:	:				:	:	:	:	;			:				:	:	:	:	:	:	:	:	:	: :		:	. :	:	:	i
:	:	:	:	:	:	;	;	;	:				:	:	:		::		:				:	:	:	;	:	:	:	:	:	::		::	. :	:	:	
:	:	:	:	:	:	:	:	:	:		:	:		:	:	:			:				:	:	:	:	:	:	;	:	:	::		::	. :	::		1
:	:	:	:	:	:	:	:	:						:	:				: :			: :	:	:	:	:	:	:	:	:	:	::		::	:	::	:	1
:	:	:	:	:	:	:	:	:	:		:		:	:	:	:			: :				:	:	:	:	:	:	:	:	:	:		::		::	:	1
:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:			:			: :	:	:	:	:	:	:	:	:	:	:			:	:	:	1
:	:	:	:	:	:	:	:	:					:	:	:	1	:		:			: :		:	:	:	:	:	:	:	:	:		::	:	:	:	1
÷	ŀ	٠	÷	Ē	Ė	:	;			•	•	:		•	•				•		8			:	:	÷	ċ	:	:	•	•	. :		::	:	:	:	ł
:	:	:	:	:	;	ĺ	i							:	:										:	:	:	:	Ī								٠	}
:	:	:	:	÷	į	1	į	٠		:				:	:	:			:					:	:	:	:	:	:	:	:						:	
:	;	;	:	:	٠	٠	Ş	:	Ξ	1	:		:	:	:	1			:					:	:	:	:	:	:	:	:	:				. :	:	
!	i	:	:	:	:	:	;	:	:				:	:	:	:			: :	: :		:		:	:	:	:	:	:	:	:	::	: :	::		::	:	
į	į	:	:	:	;	:	:				:	:					: :		: :				::	:	:	:	:	:	:	:	:	::		::		::	:	1
į	i	:	:	:	;	:	1		:	:	-	:					:	:	: :	:	:	:	: :	:	:	:	:	:	:	:	:	:		::		::	:	
į	:	:	:	;	:	1	1	::	:	:	:	÷	:				:		•	:	:	:	: :		:	:	:	:	:	:	:	:	:	::			:	
ŧ	i	:	:	:	1		1		1	:	:	:				•	•	:	•	•	•	:	•	:	:	:	:	:	:	:	:	:	:	: :		::	:	
;	:	-	:	1	1		:				٠.	•					:	•	•		•	•	•		:	:	÷	٠	÷	÷	:	•					÷	
:	:	-	•	•	1	ď	:												: :						•	÷	٠	٠	÷	:	•	•	•	•		•	•	į
:	:												:	:	:		: :		: :			:			;	:	:	:	:	÷	:	:						
:	:		:	:	;	:	;		-					:	:										:	•	÷	:	÷	:	÷	:					•	
•	;	:	:	;	:	;	:	:	:										: :				: :		:	:	:	:	:	;	:	:	:	:				
;	;	:	:	:	:	:	:					:					:		: :	:	:	:	: :		:	:	:	:	:	:	:	:	•	:			٠	
ì	:	:	:	:	:	:	:				:	ï	1				:		: :	:	:	:	: :		:	:	:	:	:	:	:	:	-				. :	
i	ï	:	:	1	1	3	1			:	•	:					::		: :		:			:	:	:	:	:	:	:	:	:				. :	::	
i	į	;	:		1					:	:	:		: :			::		: :			:	::			:	:	:	:	:	:	:	:	::	:	::	::	
;	į		;					i		•	:	:				: :	: :		: :	:	:	:	::		:	:	:	:	:	:	:	:	:	: :	:	::	::	
;	;		;	:	ij	I	1	ŀ	ì	i	:	:		:		:	:		::	:	:	:	::			:	:	:	:	:	:	:	:	:	:	::	::	١.
;	;	;	:	:	2	1	1	ı		ı	•	:	:	:	:	:	:	:	:	:	:	:	: :			:	:	:	:	:	:	:	:	:	:	: :	::	
:	:	:	:	:	1		i	1	١	١.	٤	:	:	:	:	:	:	:	: :	:	:	:	:			:	:	:	:	:	:	:	:	: :	:	: :	::	
:	:	:	:	:	:			١	;	;	Ξ	÷	•	•	•	÷	÷	:	Ė	:	:	:	:			:	:	:	÷	÷	÷	÷	:	:	•	:	:	
•	:	•	:	:	3		÷	:	ì	ì	:	÷	:	:	-	•	÷	•	•	:	•	•	•			•	•	•	:	·	÷	÷	•	•	•	•	•	
			•		:				:	:	:	:	:	:	•	:	:	•		:	:	:	-					÷	÷	÷	:	÷	÷	•	÷			
:	:		÷	:			. :	:	:	:	:	:		:	:		፥	:	:	:	:	:	:					:	:	:	:	:	:	:	:	:	::	:
1	:		;					:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :	:	:	:	:	:	:	:	:	:	:	:	::	:
1	:	: :						:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	::	:
:	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						:					:				:		:						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					***************************************		:
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。				: :		:		:	:	:	:	:		:	•	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	::	:
						:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:	:	:	:	:	::	:
ľ						:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	::	:
ŀ								•	:	:	٠	÷	÷	:	÷	:	÷	÷	:	•	:	÷	÷	•				:	:	:	•	ŕ	÷	÷	÷	:	:	
ŀ						-		•	•	•	٠	٤	•	•	•	i	•	:	·	÷	í	•	÷	:	•			:	3	:	:	÷	÷	÷	Ē	:	•	
1				:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	•	•
1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	;	:	:	:	:
١		•	٠	•	•	•		٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•		•	٠	٠	٠	٠	٠	٠	•	• •	•

O, 136E+DO MAXIHUM YECTOR

Frigate - 20 kts (10.3 m/s) Stratified X = 3.94 km = 30.01 L

Frigate - 20 kts (10.3 m/s) Stratified X = 6.57 km = 50.01 L

THE THE PART OF TH	The state of the s	. <u> </u>	TO IN AGA CONTONIO INTERVIT OF IN (448.0F. II) PT-3-3) - IN 202
A A A A A A A A A A A A A A A A A A A	ET / BANGO .		OF 0.144
A STATE OF THE PROPERTY OF THE PARTY OF THE	A LANGE OF THE PROPERTY OF THE	/#\\\	NIN INTERVO
A STATE OF THE PROPERTY OF THE PARTY OF THE		≠	CONTO
A A A A A A A A A A A A A A A A A A A		∄.	10.494
		THE STATE OF THE S	
			10 20
		ППППП	VIOLE FROM
		fumu	15

÷	٠	•	٠	٠	٠			•	-	-	٠	-	-		-	-	-	-	-		-	-	-	-	-			-	_	-	_	_	_	_	_	-	-
÷	•	٠	÷	:	٠	:	÷	÷					:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:			:		:		
÷	•	•	•	٠	١	1	į	٠	•	÷	:	÷	:	÷	:	:	:	:	:	:	:	፥	:	:	:	:	፡	:	:	:	:		:	:	:	٠.	٠.
:	:	:	:	:	i	į	i	ï	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		•	. :	::	: :	::
:	:	:	:	:	₹	;	٠	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	. :	: :	:	: :	::	: :	::
÷	÷	٠	:	:	ì	1	ì	:	:	:	•	٠	٠	٠	•	٠	٠	÷	•	•	•	•	٠	÷	•	٠	•	•	٠	٠	•		•	•	•	•	
:	ï	፡	•	:	;	ţ	ţ	٠	•	:	:	:	:	:	:	:	•	:	:		:	:	÷	÷	:	:	:	:	:	:							
:	:	:	:	ė	l	į	i		:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	: :	:	:	::	::	::
:	:	:	:	÷	ï	۲.	2	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	::	::	::	::
÷	٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	::	::
÷	i	÷	٠	:	:	:	٠	:	:	:	:	:	•	÷	÷	٠	÷	÷	:	:	•	•	:	٠	٠	÷	٠	•	٠	٠	•			•	•	• •	
:	:	:	•	٠	٠	•	÷	÷	٠	•	-	-	:	-	:	:	•	÷	÷	•	•	:	÷	÷	÷	÷	:	:	:	:			:		:	: :	::
:	።	:	•	٠	1	'	1	7	ï	=	-		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::		:		::	::	::
:	:	:	:	٤	ż	į	?	?	-		-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	::	: :	::
:	:	:	:	í	Í	1	j	í	;	:	:	•	:	٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	::	: :	: :	::
:	:	:	:	;	į	ł	ł	١.	١.	:	ċ	ì	į	i	i	ŕ	٠	í	:	:	:	÷	:	:	:	:	:	:	:	:				:			
÷	÷	•	:	;	;	١.	١.	١		-	é.		:	٤.	÷	÷	÷	÷	٠	•	٠	•	÷	٠	÷	٠	ć	٠	í		. :			. :	. :		::
:	:	:	٠	١	i	٤					-		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :			: :	::	::	::
:	;	:	:	ï	ï	:	:	:	2		=		:			:	:	:	:	::	:	:	:	:	:	:	:	:	::	:		: :		::	::	::	::
:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	:	:	:	:	:	:		:	:	::	::	::	::
٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			: :	: :	•	• •
÷	ï	•	:	:	:	:	:	•	٠	·	٠	٠	÷	٠	•	•	٠	٠	•	٠	•	٠	٠	•	•	÷	÷	•									
:	:	:	:	٠	٠	٠	٠	:	:	:	:	:	:	:	•	:	:	:	2	:	:	÷	:	:	:	:	:	:	:	:	: :			::	::		::
:	:	:	÷	÷	÷	÷	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	٠	:	:	:	:	:	:	::	: :	:	::		::	::
:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	::		::	::
÷	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	:	:					: :	::	:	::
÷	:	:	:	:	:	:	:	÷	÷	÷	÷	÷	•	÷	•	•	÷	:	•	•	•	•	:	-	÷	÷	÷								•	•	•
÷	٠	-	•	•	٠	٠	÷	÷	٠	:	:	:	÷	÷	٠	٠	:	÷	:	•	•	•	•	•	÷		:										
i	:	:	:	:	:	:	·	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :			: :	::	::	::
÷	:	:	;	:	:	:	:	:	-	:	።	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	: :		::	: :	::	::
ì	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :			::	::	::	::
;	:	:	٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::		:	::	::	::	:
:	:	÷	÷	÷	ï	i	•	:	:	:	:	:	:	٠	•	٠	:	•		•	٠	÷	÷	÷	٠	٠	٠	•	•						•	•	
÷	٠	:	:	i	:	:	÷	٠	÷	:	÷	÷	÷	÷	:	÷	:	÷	:		:	•	•	:	:	:	:										
÷	÷	:	:	:	;	:	:	:	:	٠	÷	÷	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::			:	::	::	::
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :			: :	::	: ;	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	: :		: :	::		:
;	:	:	:	÷	i	i	÷	:	:	:	:	:	:	:	:	:	•	÷	•	•	•	•	:	:	:	:	:	:	:	:	: :				::	•	:
:	:	:	i	ì	÷	i	ï	÷	÷	:	:	:	:	÷	•	:	٠	÷	÷	÷	:	:	·	÷	÷	:	٠	•	÷	í	. :			- :	. :	. :	
÷	٠	•	:	:	;	:	ï	;	:	÷	÷	÷	•	÷	:	-	:	:	;	:	;	:	:	:	:	:	÷	:	:	:			:	:	. :	: :	::
÷	ï	:	:	:	:	١	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	: :	::	: :	::
	**************************************	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			~			**************************************	······································	***************************************	· · · · · · · · · · · · · · · · · · ·		······································			***************************************	***************************************	······································	· · · · · · · · · · · · · · · · · · ·	······································	······································						:		::		
:	:	:	:	i	i	i	i	į	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ċ	:	:	:	:	:	:			:	:	:	::
:	:	:	:	i	į	į	į	į	÷	:	:	:	:	:	:	:	÷	÷	:	÷	÷	:	÷	÷	:	÷	÷	÷	÷	÷	:	•	•	•	-	-	. :
:	٠	:	:	:	;	;	:	:	:	÷	:	:	:	:	:	:	:	:	÷	•	÷	•	÷	:	:	:	÷	÷	:	٠	÷		:	÷	÷	÷	::
:	÷	:	:	:	;	ł	ŧ	i	:	:	÷	:	÷	÷	:	÷	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	::
:	:	:	:	:	:	١	į	į	;	:	;	፥	:	:	:	:	:	:	:	:	:	:	;	;	:	:	:	:	:	:	:	:	:	:	:	:	::
;	:	:	:	:	:	i	į	į	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
:	;	;	:	:	٠	į	ì	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	·	:	:	:	:	÷	:	:	:	:	:	:	÷	: :
:	;	:	:		:	٠	;	;	:		٠	÷	÷	٠	:	÷	÷	÷	÷	٠	٠	٠	٠	٠	•	÷	÷	÷	٠	٠	•	•	•	•	•	÷	• •
i	į	i	:	:	:	١	١	١	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	::
i	í	i	;	:	:	ĺ	į	;	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
ŧ	i	;	;	:	i	i	į	į	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
;	:	:	:	٠	i	1	1	'	:	÷	÷	:	•	:	:	:	:	:	:	:	:	i	÷	:	:	÷	÷	٠	٠	•	÷	•	•	•	÷	•	
:	:	:	:	:	4	1	1	ž	٠	٠	•	•	:	:	:	:	:	:	÷	:	:	:	:	:	•	•	:	•	:	٠	٠	٠	٠	•	•	٠	• •

O.156E+DO HAXIYOM VECTOR

CONTOUR FROM -0.12938E-01 TO 0.30192E-02 CONTOUR HIERVIT, OF 0.15161E-03 P113.31= 0.30258E-01 LIPELS SCRLED BY 0.10000E-06

JOB 232

CVN10.LAS;1

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN10.LAS;1

Last Modified: 25-MAY-1995 13:02

Owner UIC:

[HYMAN]

Length:

1316 blocks 27 bytes

Longest record: Priority:

. 100

Submit queue:

LASER_B1102C

Submitted: Printer queue:

25-MAY-1995 13:02 LASER_B1102C

Printer device:

LPS17A

Digital Equipment Corporation

OpenVMS AXP system V6.1

PrintServer 17 LPS17A

DECprint Supervisor V1.1A

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 0.56 km = 1.69 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 1.06 km = 3.19 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 1.56 km = 4.70 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 2.06 km = 6.20 L

JOB 415

CVN10.LAS;1

Aucio- Comer 10 sts (5.5 m/s) Drstrocker

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN10.LAS;1

Last Modified: 7-JUN-1995 08:10

Owner UIC:

[HYMAN]

Length:

7709 blocks

Longest record:

27 bytes

Priority:

100

Submit queue:

LPS40\$LAZER

Submitted:

7-JUN-1995 08:10

Printer queue:

LPS40\$LAZER

Printer device:

LAZER

1=332 m

X= 1.62x732= 554 m

Digital Equipment Corporation

OpenVMS AXP system V6.1

PrintServer 40 LAZER

DECprint Supervisor V1.1A

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 0.55 km = 1.67 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 1.11 km = 3.34 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 1.66 km = 5.00 L

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 2.21 km = 6.67 L

0.234E-01 MIXIMUM VECTOR

Aircraft Carrier - 10 kts (5.15 m/s) Unstratified X = 2.77 km = 8.34 L

CONTRUM HIERYAL OF 0.72314E-02 PIL3.31= -0.65328E-35 LIGELS SCALED BY 1000.0

CONTOUR FR8H -0.14852E-05 10 0.14463

X = 3.32 km = 10 LAircraft Carrier - 10 kts (5.15 m/s) Unstratified

DIANA::HYMAN

JOB 412

CVN10-STRAT.LAS;2

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN10-STRAT.LAS;2

Last Modified: 7-JUN-1995 08:07

Owner UIC:

[HYMAN]

Length:

8383 blocks

Longest record:

27 bytes

Priority:

100

Submit queue:

LPS40\$LAZER

Submitted:

7-JUN-1995 08:07 LPS40\$LAZER

Printer queue: Printer device:

LAZER

Digital Equipment Corporation OpenVMS AXP system V6.1

PrintServer 40 LAZER **DECprint Supervisor V1.1A** Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 0.56 km = 1.69 L

X = 1.06 km = 3.19 LAircraft Carrier - 10 kts (5.15 m/s) Stratified

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 1.56 km = 4.70 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 2.06 km = 6.20 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 2.56 km = 7.71

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 0.55 km = 1.67 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 1.11 km = 3.34 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 1.66 km = 5.00 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 2.21 km = 6.67 L

Aircraft Carrier - 10 kts (5.15 m/s) Stratified X = 2.77 km = 3.42 km

0.425E+00 MAX1MUM VEC18R

DIANA::HYMAN

JOB 220

CVN25.LAS;1

File:

_\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN25.LAS;1

Last Modified: 25-MAY-1995 12:50

Owner UIC:

[HYMAN]

Length:

1737 blocks

Longest record:

27 bytes

Priority:

100

Submit queue:

LASER_B1102C

Submitted: Printer queue: 25-MAY-1995 12:49 LASER_B1102C

Printer device:

LPS17A

Digital Equipment Corporation

OpenVMS AXP system V6.1

PrintServer 17 LPS17A

DECprint Supervisor V1.1A

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 0.56 km = 1.69 L

HILLING HILLIN	4111111111111111111111111111111111111	mmumuy	E	
WHAT THE THE TELLICY MAX 331 TO SERVICE WHAT THE THE THE THE THE THE THE THE THE TH			E	
WHAT THE THE TELLICY MAX 331 TO SERVICE WHAT THE THE THE THE THE THE THE THE THE TH	Ē	=	Ē	1111 0 BY
WHITE OF THE CONTRACTOR CONTRACTOR INTERNAL BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY T		=	E	
WHITE OF THE CONTRACTOR CONTRACTOR INTERNAL BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY THE CONTRACTOR BY T	E	3	Ē	# S S S S S S S S S S S S S S S S S S S
WHAPTION FIELDUC/M**3 WHAPTION FIELDUC/M**3 WHAPTION FIELDUC/M**3 SOUTH WHEN PHRI II PUBLOUGHT		1	Ē	- 12 H
WHAPTION FIELD (C/M**3) WHAPTION FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (CANOAR FIRM 0.000006.00 TO 0.000050.01 CONTOON INTERNAL PROPOULHT)		孝	E	<u>_</u> 26 €
WHAT I IN THE LITTER WAS THE CONTRACT OF THE LITTER WAS THE CONTRACT OF THE LITTER WAS THE CONTRACT OF THE CON)	<u></u>	Ę	
WHAPTION FIELD (C/M**3) WHAPTION FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (CANOAR FIRM 0.000006.00 TO 0.000050.01 CONTOON INTERNAL PROPOULHT)	E /	₹;		1.3
WHAPTION FIELD (C/M**3) WHAPTION FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (C/M**3) SOUTH WHICKIN PHRITTEN FIELD (CANOAR FIRM 0.000006.00 TO 0.000050.01 CONTOON INTERNAL PROPOULHT)	E/Pa			手
WHAPTION FIELDUC/M**3 WHAPTION FIELDUC/M**3 WHAPTION FIELDUC/M**3 SOUTH WHEN PHRI II PUBLOUGHT		手		₹
WHAT THE THE TABLE TO SERVE TO		<u></u>	E	₹
WHAT THE THE TABLE TO SERVE TO		= <u> </u> *	E	## ## ## ## ## ## ## ## ## ## ## ## ##
WHAT THE THE TABLE TO SERVE THE TOTAL THE THE THE THE THE THE THE THE THE THE		₹.	Ē	£::
WHAT THE THE TABLE TO SERVE THE TOTAL THE THE THE THE THE THE THE THE THE THE	1		Ē	## *
WHAT THE THE TABLE TO SERVE THE TOTAL THE THE THE THE THE THE THE THE THE THE	Ē	計	E	1. ₩
WHAT THE THE TABLE TO SERVE THE TOTAL THE THE THE THE THE THE THE THE THE THE		盂		
WHALL HULL HULL HE STATE OF KINDS OF KI		<u> </u>		F 18
WHAT WITH THE THE THE THE THE THE THE THE THE T		#	E.C.	₹
WHAT HAT THE THE THE THE THE THE THE THE THE TH		圭		半 章
WHAT WITH THE THE THE THE THE THE THE THE THE T	E	業	E	M-H
WHAT WITH THE THE THE THE THE THE THE THE THE T		禁	E	₽
WHAT WITH THE THE THE THE THE THE THE THE THE T	Ē	***	Ē	10 m
WHAT WITH THE THE THE THE THE THE THE THE THE T	Ę	1	Ē	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WHALLIAM THE THE THE THE THE THE THE THE THE THE	Ē	===	Ę	7.088
WHANTITITITITITITITITITITITITITITITITITITI	Ē	1	Ē	
WHAT WITH THE THE THE THE THE THE THE THE THE T	E		F	<u> </u>
WILLIAM THE THE THE THE THE THE THE THE THE THE				
			Emmunum	<u></u>
		OOD WICKBN PHRI. PAPULHTIBN HT 0.55 KM		YILLIUMHITHIININ HIO 56 KM
		"YOOD WICKBN PHRI "PUBDLHTIBN HT U.SE KM		YILLIUMHITHIININ HIO 56 KM
TT TT TT TT TT TT TT TT TT TT TT TT TT		TOUR WICKBN PHRITTING HYIBN HY 10.55 KM		YILLIUMHITHIININ HIO 56 KM
		E E E E E E E E E E E E E E E E E E E		YILLIUMHITHIININ HIO 56 KM
		E TOOD WICKEN PHRI "PABOLHTIBN HT 10.55 KM	THE THE THE THE TABLE THE	YILLIUMHITHIININ HIO 56 KM

100000

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 1.06 km = 3.19 L

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 2.06 km = 6.20 L

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 3.06 km = 9.22 L

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 5.06 km = 15.24 L

DIANA::HYMAN

JOB 72

CVN25.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN25.LAS;1

Last Modified: 8-JUN-1995 15:09

Owner UIC: [HYMAN]

Length: 7539 blocks

Longest record: 27 bytes
Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 8–JUN–1995 15:09

Printer queue: LPS40\$LAZER

Printer device: LAZER

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 0.55 km = 1.67 L

O. SOZE+DO MAXIMUÑ YECTØR

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 1.11 km = 3.34 L

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 2.21 km = 6.67 L

0.255E+00 MAX1MUM YECTOR

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 3.32 km = 10 L

Aircraft Carrier - 25 kts (12.875 m/s) Unstratified X = 5.53 km = 16.67 L

O.155E+00 MAXINUM YECTOR

CONTOUR FROM 0.100000E-03 TO 0.1670[E-0] CONTOUR INTERVIL OF 0.83401E-03 PT(3.3)= 0.259[7E-03 LABELS SCALED BY

DIANA::HYMAN

JOB 1221

CVN25-STRAT.LAS;1

File: \$40\$DUA29:[HYMAN.GRID.DISPERSION]CVN25-STRAT.LAS;1

Last Modified: 9-JUN-1995 15:31

Owner UIC: [HYMAN]

Length: 6533 blocks

Longest record: 27 bytes Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 9–JUN-1995 15:31

Printer queue: LPS40\$LAZER

Printer device: LAZER

Digital Equipment Corporation

PrintServer 40 LAZER

DECprint Supervisor V1.1A

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 0.56 km = 1.69 L

	KHIIBN FIELD(G7M**3) FITT		ELLILLILLILLILLILLILLILLILLILLILLILLILLI
.015	1000 MICKON PARI, POPULATION AT U.56 KM	1.91 1.91	ELLILLILLELLLLLLLLLLLLLLLLLLLLLLLLLLLL

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 1.06 km = 3.19 L

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 2.06 km = 6.20 L

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 3.06 km = 9.22 L

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 5.06 km = 15.24 L

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 0.55 km = 1.67 L

X = 1.11 km = 3.34 LAircraft Carrier - 25 kts (12.875 m/s) Stratified

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 2.21 km = 6.67 L

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 3.32 km = 10 L

0.185E+00 MAXIMUN VECTOR

Aircraft Carrier - 25 kts (12.875 m/s) Stratified X = 5.53 km = 16.67 L

DIANA::HYMAN

JOB 703

FFG25.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG25.LAS;1

Last Modified: 13-JUN-1995 08:39

Owner UIC: [HYMAN]

Length: 1734 blocks Longest record: 27 bytes

Priority: 100

Submit queue: LPS40\$LAZER

Submitted: 13-JUN-1995 08:39

Printer queue: LPS40\$LAZER

Printer device: LAZER

Digital Equipment Corporation

PrintServer 40 LAZER

OpenVMS AXP system V6.1

DECprint Supervisor V1.1A

Frigate - 25 kts (12.875 m/s) Unstratified X = 0.56 km = 4.26 L

CONCENTRATION TIELUTCOME, 3) HI 0.56 KM	CONTRACT FIRM 0.00000E.00 TO 0.2200E-02 CONTRACT HERVILL OF DESCRIPTION HILL OF SERIES BY 010000E-05	
	CONTRACTOR OF DESCRIPTION OF THE CONTRACTOR OF THE STREET	

Frigate - 25 kts (12.875 m/s) Unstratified X = 1.06 km = 8.07 L

X = 2.06 km = 15.68 LFrigate - 25 kts (12.875 m/s) Unstratified

Frigate - 25 kts (12.875 m/s) Unstratified X = 3.06 km = 23.29 L

Frigate - 25 kts (12.875 m/s) Unstratified X = 5.06 km = 38.52 L

Frigate - 25 kts (12.875 m/s) Unstratified X = 0.66 km = 5.01 L

Frigate - 25 kts (12.875 m/s)
Unstratified X = 1.32 km = 10.01 L

. Ennannmannannma	ΠĒ
E	3
E	3
E	∄ ೄ
E	38.2
E	3 "
Ē	∃ ë
E	∃ €
E	= =
	7365
	∃ . €.
	丰"。
	10.01 Enver.
	₹
	± 5 5
	≟
	WELBC!
	₹ %
	H.WE
	HXYAL 18 13.
E	₹ ~
E	
E	12.5
E	, E
E	CONTOUR FROM 12.565
E	1 1
E	∄ 8
E	=
	ᇳ

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:				:	:	:	:					Ξ	7	
***************************************			÷	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						······································											· · · · · · · · · · · · · · · · · · ·	······································		· · · · · · · · · · · · · · · · · · ·					······································								_
:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	::				:	:	0.1065+00
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :	:	:	:	:	: :			٠.	:	: 1	19
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	÷	٠	•			•	٠	٠	•	•				•	٠	- 5
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :	:	:	:	:					:	: 1	- 3
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	: :		: :	:	:	: 1	
٠	•	٠	٠	٠	٠	•	٠	٠	:	•	٠	•	٠	٠	٠	٠	٠	٠	:	•	٠	٠	٠	٠	٠	•		•	-	٠	:	•	•		٠	:	: }	
:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	ï	:	:	:	:	:	:		:	:	:	:	:					:	- 1	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:		: :		:	:	: 1	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	::		:	:	: !	
:	:	•	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:				:	:	:				:	:	: }	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :	:	:	:	:	::	: :		:	:	: (
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	::	:		:	:	: 1	
:	:	:	٠	-	٠	:	:				•	٠	•	٠		·	•	•	•	•	•	٠	÷	•			. :	÷	٠	÷	٠					٠	• }	
í	í	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	፥	:	:	:	:	:	: :	:	:	:	:	: :	:		:	:	: 1	
í	₹	(ć	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	;	:	:	:	: :		:	:	: 1	
:	١,	١,	٠	:	í	÷	:	•	•	•	÷	•	٠	÷	٠	÷	٠	÷	٠	٠	٠	ŕ	÷	٠	٠	•	. :	•	٠	•	•	•	•		•	•	:1	
÷	í	í	,, , ,	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	: :		:	:	: [
÷	;	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	::	:	:	:	: 1	
1	;	;	:	:	٠	•			•	٠	٠	٠	٠	٠	÷	÷	÷	٠	٠	٠	٠	÷	٠	÷	ŀ	•	•	•	٠	٠	÷	•	•		•	:	: 1	
!	į	ì	•		:		:	:		:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:		:	:	÷	:					:	: [
ŧ	i	ċ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	: :	: :		:	:	: 1	
;	;	:	:	:	:	÷	٠	•	•	•	٠	٠	٠	٠	٠	٠	÷	:	:	:	:	•	:	:	•	•	: :	:	:	:	:	•	•		•	:	: 1	
į	ż	٠	i	٠	•	:	:	:		:	:	:	:	:	:	:	:	:	:	:	፡	:	:	:	:				:	÷	:				:	:	: 1	
í	į	i	;	;	:	:		:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:		:	:	:1	
ł	ï	;	;	;	2	:	:		٠,		ì	٠	٠	٠	٠	٠	:	:	•	•	•	•	:	•	•	•	: :	:	:	•	:	:	•	:	•	:	: 1	
I	ţ	!	!	•	•						;	:	i	;	:	:	÷	÷	÷	÷	:	:	÷	•	÷				÷	:						•	- 1	
i	1	į	į	ï	:	:	:	:	;	;	į	į	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	::	:		:	:	::	
1	₹	ì	١	:	:	:	•	i	i	ż	ż	ż	i	•	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	::	: :		:	:	: 1	
1	١	١	2	•	-	-	5	5	;	;	;	;	;	5	÷	:	:	÷	٠	÷	٠	٠	÷	÷	÷		•		•	÷	٠	•	•			•	•	
i	٠	٠		_	2	5	5	1	1	,	:	:	:	:	ï	•	:	·	÷	:	:	፡	:	:	:	:	::		:	፡	:	:	:	:		:	: }	
:	:	:	-	_	=	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	: :	:	:	:	: 1	
,	,	-	-	-	=	Ξ	•	٠	•	•	:	:	:	•	:	:	:	:	:	:	:	:	:	:	•	•	: :	•	•	•	•	•	•	•	•	:	:	
1	';	٠.		:	•	,					:		÷	•	÷		÷	•		·	÷	÷	÷	÷	·	:				:	:	÷	:	:	•	÷		
į	1	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	:	:	:	:	:	:	
į	,	•	•	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	•	•	:	:	: 1	ł
1	:	:	ï										٠	•		•	•	٠		•	•	•	٠			÷						÷	÷		•	÷	:	
:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	::	:	:	:	:	:	:	:	:	:	1
:	j	2	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:	:	:	:	: 1	
ï	,	,	۶	-		.:		•			•	•	:	•	٠	•	•	•	•	٠	•	٠	٠	٠	٠	٠	٠.		٠	٠	٠	٠	٠	•	٠	٠	•	!
;	1	;									:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:	:	:	:	: 1	
:	1	1	:						: :		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:	:	:	:	: 1	
;	•	•	•		•						•	•	٠	•	•	:	•	•	•	•	٠	٠	:	•	:	٠	•		•	:	•	•	٠	•	٠	:	: 1	
:	:	:	:	:	:						:	:	:	:	:	:	:		:	:	:	:	:	:	÷	-	. :		:	:	:	÷	:	•		:	:	
:	:	:	:	:	:	:	:	: :			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:	:	:	:	: :	
:	•	:	•	:	:						:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: 1	1
	:										٠			•	•		•				٠	•	•	•	÷	٠				•	÷	٠	٠	٠	•	•		ł
:	:	:	:	:	:				: :		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	:	: :	1
:	:	:	:	:							:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	İ
٠	•	•	•	•			. :		. :		•	•	٠	•	•	٠	٠					٠	•	-	÷	÷	•		٠	٠	÷	٠	÷	٠	÷	•	•	ł
:	:	:	:	:			:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	:	:	:	:	: :	1
:	:	:	:	:	:	:		:			:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1
	•										•		•	•		•	•		•		•	÷	÷	:	÷	÷	•	. :	. :	-	ŕ	٠	ě	•	÷	÷	•	i
:	:	:	:										:	:	:	:	:				:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	::	1
:	:	:	:	:				: :	:	:		:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	1

Frigate - 25 kts (12.875 m/s) Unstratified X = 2.63 km = 20.01 L

Frigate - 25 kts (12.875 m/s) Unstratified X = 3.94 km = 30.01 L

11111111111111111111111111111111111111
THE

CONTINUE THE THE PROPERTY OF THE STATE OF TH

Frigate - 25 kts (12.875 m/s)
Unstratified X = 6.57 km = 50.01 L

DIANA::HYMAN

JOB 691

FFG25-STRAT.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG25-STRAT.LAS;1

Last Modified: 13-JUN-1995 08:28

Owner UIC: [HYMAN]

Length: 1767 blocks

Longest record: 27 bytes Priority: 100

Submit queue: LPS40\$LAZER

Submitted: 13–JUN–1995 08:28 Printer queue: LPS40\$LAZER

Printer device: LAZER

OpenVMS AXP system V6.1

PrintServer 40 LAZER
DECprint Supervisor V1.1A

Frigate - 25 kts (12.875 m/s) Stratified X = 0.66 km = 5.01 L

	Emmanamanaman KINETIC ENERGY AI 15.01 Promonamanamanaman B	CENTRAR 0.10000E-03 10 0.19142 CENTRAR HIERVIR OF 0.95691E-02 PTI3.31= 0.52787E-03 LREES STRED BY 1000.0	
	Emminimummummumphphphphphphphphmmmmmmmmmmmmmm	CONTOUN FROM 12,392 TO 11,122 CONTOUR INTERVAL OF 0.08494E-01 P113,31= 12,669	

Frigate - 25 kts (12.875 m/s) Stratified X = 1.32 km = 10.01 L

Frigate - 25 kts (12.875 m/s) Stratified X = 2.63 km = 20.01 L

<i>.</i>	
0,	FILLILLILLILLILLILLILLILLILLILLILLILLILL

CONTACT THE THIRD THE THIRD THE THE THE THE THIRD THE TH
--

Frigate, - 25 kts (12.875 m/s) Stratified X = 3.94 km = 30.01 L

Frigate - 25 kts (12.875 m/s) Stratified X = 6.57 km = 50.01 L

CONTOUR FREM -0.200106-03 TO 0.11037E-01 CONTOUR INTERVAL OF 0.56184E-03 P113.31= -0.47744E-33 LABELS SCRIED BY 10000.

CONTOUR FIRSH -0.194066-04 TO 0.504986-02 CONTOUR HIERYIL OF 0.319456-03 P113.31= 0.59378E-04 LIBELS SCREED BY 0.10000E-05

Gunnammannammakkkykykykykykykytytymmannammannam

Frigate - 25 kts (12.875 m/s) Stratified X = 0.56 km = 4.26 L

	Euronomovancentrattivan 412CVVVAN**31 H1 Vosebrandomos	8	ETITITITITITITITITITITITITITITITITITITI
E00°.	Ĕ Ĕııınırınırı 1000 MYCRBN PHRT, "PBPULHTIBN "HT"U"SB" KM	1.97	ELLILLILLILLILLILLILLILLILLILLILLILLILLI

Frigate - 25 kts (12.875 m/s) Stratified X = 1.06 km = 8.07 L

1.56 1.56 CONIGUE FROM G.COCCOCE-00 10 0100005 CONIGUE INTERVAL OF DESTRIES-OF PT13.31= 0120106E-02

Frigate - 25 kts (12.875 m/s) Stratified X = 5.06 km = 38.52 L

X = 2.06 km = 15.68 LFrigate - 25 kts (12.875 m/s) Stratified

Frigate - 25 kts (12.875 m/s) Stratified X = 3.06 km = 23.29 L

DIANA::HYMAN

JOB 1784

FFG10-STRAT.LAS;1

File: _\$40\$DUA29:[HYMAN.GRID.DISPERSION]FFG10-STRAT.LAS;1

Last Modified: 12-JUN-1995 13:43

Owner UIC: [HYMAN]

Length: 1826 blocks

Longest record: 27 bytes Priority: 100

Submit queue: LPS40\$LAZER
Submitted: 12–JUN–1995 13:43

Submitted: 12–JUN–1995 13:43
Printer queue: LPS40\$LAZER

Printer device: LAZER

OpenVMS AXP system V6.1

PrintServer 40 LAZER
DECprint Supervisor V1.1A

Frigate - 10 kts (5.15 m/s) Stratified X = 0.56 km = 4.26 L

	ECONCENTRATION FIELD (CAM**3) HI U.S. KM TELLINE		CONTORA FROM 0.000005-00 TO . 800005-01 CONTORA HITEMAN OF 0.300005-02 PITS-31= 0.551805-03 LPRELS SCREED BY 10000.
, 005	EHOOU WICKBN PART. PBPUCHTIBN HY V.SB RW	. 637	E. CONTRACT CONTRACT OF OPERSOR OF THE OPERSOR OF THE STREET OF THE STRE

Frigate - 10 kts (5.15 m/s) Stratified X = 1.06 km = 8.07 L

	**************************************		EMILITEREMENTALISTER D. SEGGE CO. CONTINUE PHR PER DESCOSE OF 113.31= 0. 500006-03 LABELS SCALED BY 01000006-06
. 004	Emmandodd MYCkbN PHRTPBPUCHTIBN HIM 2084RM	. 529 . 482	ETTITICULULULULULULULULULULULULULULULULULULUL

Frigate - 10 kts (5.15 m/s) Stratified X = 1.56 km = 11.87 L

CONTEMP THE CONTEMP THE CONTEMP OF STREET OF S

Frigate - 10 kts (5.15 m/s) Stratified X = 2.06 km = 15.68 L

Frigate - 10 kts (5.15 m/s) Stratified X = 3.06 km = 23.29 L

:

APPENDIX I

AMBIENT DISPERSION MODELING RESULTS

Source:

Ambient Dispersion Modeling.

San Diego, California

FAR FIELD DISPERSION OF PAPER PARTICULATES FROM SURFACE VESSEL DISCHARGES

by

Scott A. Jenkins, Ph.D. and Joseph Wasyl

Scripps Institution of Oceanography La Jolla, California

Submitted to:

Dr. James Rohr

NRaD Code 574

Fluid Mechanics & Energy Research Branch 53560 Hull Street, Room B-374, Building 1

San Diego, CA 92152-6040

28 June 1995

FAR FIELD DISPERSION OF PAPER PARTICULATES FROM SURFACE VESSEL DISCHARGES

by Scott A. Jenkins, Ph.D. and Joseph Wasyl

I. INTRODUCTION

This study effort performs numerical dilution modeling of paper particulate discharges in the far field of surface vessel wakes. These dilution simulations account for ambient advection and mixing effects at a sufficiently large distance downstream from the vessel that residual mixing from the wake turbulence is negligible. The ambient advection and mixing effects are associated with the action of wind stress throughout the depths of the mixed layer, surface wave boundary layers due to sea and swell conditions, interfacial shear from current variations across the pycnocline, hindered settling from density variations across the pycnocline, and bottom current boundary layers associated with seafloor roughness. The far field advection-mixing boundary value problem is specified for characteristic ambient conditions for the central Baltic Sea in winter and for the southern portions of the North Sea in summer. The particle distributions used to initialize the ambient advection-mixing code (SEDXPORT) were provided by the far field cross-wake data plane from the wake code, TBWAKE.

The SEDXPORT code used to calculate the far field particle dilution has evolved from a sediment transport model originally developed for non-interacting spherical particles in a field of gravity waves (Jenkins & Inman, 1985). It was subsequently expanded to include dispersion by both currents and waves, and was adapted to solve problems of sewage dispersion for the State of California Water Resources Control Board (Jenkins, Nichols & Skelly, 1989). The model was further refined to include cohesive particle dynamics in problems of scour and erosion of muddy seabeds (Jenkins & Wasyl, 1990), and hindered settling dynamics due to particle-to-particle stress transfer in high concentration suspensions (Aijaz & Jenkins, 1994). Recently the model has been expanded to include vertical stratification of the water column due to river plumes and mixed layer dynamics, calculating features of hindered settline layers at the pycnocline interface and bottom turbid layers. In this most recent version, the model has been integrated into the Navy's Coastal Water Clarity Model (CWC) and the Littoral Remote Sensing Simulator (LRSS) (see Hammond et al, 1995). The SEDXPORT code has been validated for

relatively small (less than 30 microns) optically active particles in mid-to-inner shelf waters (see Hammond et al, 1995, and Schoonmaker et al, 1994). Validation of the SEDXPORT code was shown by three independent methods: 1) direct measurement of particle numbers and particle size distributions by means of a laser particle sizer, 2) measurements of water column optical properties, and 3) comparison of computed particle dispersion patterns with LANDSAT imagery.

The SEDXPORT code is a time stepped finite element model which solves the advection diffusion equations over a fully configurable 3-dimensional grid. The vertical dimension is treated as a two-layer ocean, with a homogeneous surface mixed layer and a homogeneous bottom layer separated by a pycnocline interface. The code accepts any arbitrary density and velocity contrast between the mixed layer and bottom layer that satisfies the Richardson number and Froude number stability criteria. The code does not time split advection and diffusion calculations, and will compute additional advective field effects arising from spatial gradients in eddy diffusivity, i.e., the so-called "gradient eddy diffusivity velocities" after Armi (1979). Eddy mass diffusivities are calculated from momentum diffusivities by means of a series of Peclet number corrections based upon particle size and mass and upon the mixing source. Peclet number corrections for the surface and bottom boundary layers are derived from the work of Nielsen (1979), Jenssen & Carlson (1976), and Jenkins & Wasyl (1990). Peclet number correction for the wind-induced mixed layer diffusivities are calculated from algorithms developed by Martin and Meiburg (1994), while Peclet number corrections to the interfacial shear at the pycnocline are derived from Lazaro and Lasheras (1992a and 1992b). The momentum diffusivities to which these Peclet number corrections are applied are due to Thoracle (1914), Schmidt (1917), Durst (1924) and Newman (1952) for the wind-induced mixed layer turbulence and to List et al (1990) for the current-induced turbulence.

GRIDDING AND INITIALIZATION

In the far field, the ship wake is treated as an infinite line source particles. Therefore, the ambient advection mixing problem was treated as 2-dimensional in the cross-wake plane. SEDXPORT was gridded in a 200 x 200 YZ-computational domain with 1.0 meter depth increments (Z-dimension) and 1.5 meter horizontal increments (Y-dimension). This allowed the cross-wake data plane of the initial particle distribution from the TBWAKE code to be nested

inside the far field grid using compatible grid cell dimensions. The TBWAKE YZ-data plane was 99 x 41 in 1.5 x 1.0 meter grid cells, and was centered inside the SEDXPORT grid with the sea surface at Z=0. The remaining portions of the 200 x 200 SEDXPORT grid not occupied by the TBWAKE grid were initialized with zero particles at time t=0.

Time step lengths varied depending upon the size of particulates. SEDXPORT computes advection-mixing dynamics independently for each of the size fractions which make up the particulate distribution, because each size fraction has a different Peclet number and corresponding diffusivity. Typically, time step lengths would also be controlled by the mean currents; but because no information is available on the spatial structure of the current field for the particular sites nor the orientation of the ship track relative to the currents, the currents are assumed to be normal to the computational plane, i.e., parallel to the axis of the wake. Similarly, the wave propagation is also assumed to be parallel to the ship track. Consequently, particle advection is exclusively due to settling and the only dynamic influence of the currents is to enhance diffusivities by interfacial shear at the pycnocline or by current boundary layer turbulence at the bottom. The particle size distribution was divided into 9 particle size bins according to the following mass fractions and corresponding settling velocities and time step lengths (see Table 1).

TABLE 1: PARTICLE SIZE PROPERTIES

Particle Size (microns)	Mass Fraction	Settling Velocity (cm/sec)	Time Step Length (sec)
200	0.088	0.048	7000
500	0.111	0.241	1120
800	0.105	0.296	437
1000	0.067	0.391	280
1200	0.066	0.391	194.4
1400	0.065	1.227	142.8
1600	0.064	2.095	109.4
1800	0.063	2.992	86.4
3000	0.367	7.713	31.1

The dry particle density was assumed to be the same for all size bins and was taken as 1.54 gm/cm³. Note that the predominant mass fraction belonged to the largest size bin of 3000 microns, and that these large particles had significantly large settling velocities, 0 (7.7 cm/sec). The time step lengths indicated by Table 1 insured that particles moved only a few grid cells (less than 4) in a time step to maintain numerical stability of the resulting solutions. Because the larger particles advect vertically faster due to gravity, they require shorter time step intervals.

The environmental conditions for the Baltic and North Seas are specified according to characteristic "climate atlas" figures provided by NRaD. SEDXPORT boundary conditions and forcing function inputs derived from these climate atlas figures are shown in Table 2 below:

TABLE 2: BOUNDARY CONDITIONS AND INPUT FORCING

	Central Baltic (Winter)	Southern North Sea (Summer)
Depth	200 m	50 m
Swell Height	0 m	0 m
Swell Period	0 sec	0 sec
Wind Wave Height	2.0 m	0.5 m
Wind Wave Period	6.0 sec	6.0 sec
Winds	9.0 m/sec	5.0 m/sec
Mixed Layer Depth	50 m	50 m
Mixed Layer Density	6.0 sigma t	14.6 sigma t
Bottom Layer Density	12.0 sigma t	24.6 sigma t
Mixed Layer Current	0 cm/sec	10 cm/sec
Bottom Layer Current	0 cm/sec	0 cm/sec
Bottom Roughness	2.0 cm	10.0 cm

In both the Baltic and North Sea simulations, no specific bathymetry was evaluated for effects on wave shoaling or current boundary layers; and thus horizontal gradients in diffusivity were not possible. The absence of such gradients insures that the 2-dimensional YZ-computational plane remains adequate for representation of the problem. The bottom was treated as a flat plane boundary with random roughness of height indicated in Table 2.

III. RESULTS

Cross wake particle dispersion simulations from SEDXPORT are plotted in Appendix A for the winter time Baltic Sea conditions, and in Appendix B for the summer time North Sea conditions. In each of these appendices, dispersion plots are given for three separate particle size bins spanning the complete particle size distribution shown in Table 1, namely 200 micron, 1200 micron and 3000 micron size particles, each with specific gravities of 1.54. Each particle size dispersion pattern begins from the initial far field distribution from TBWAKE at time t=0. All

plots have depth on the vertical axis with the surface appearing at the top of the plot at Z = 0.0. For the Baltic cases in Appendix A, the full vertical scale is from 0 to 200 meters while for the North Sea cases in Appendix B, the full range vertical scale is from 0 to 50 meters. In both appendices, the horizontal scale is in terms of grid cell number across the wake from port to starboard. Thus the full range horizontal scale is from 0 meters on port to 300 meters on starboard, with the ship wake centered at grid cell #100, or at Y = 150 meters. Thus all dispersion plots have a vertical exaggeration, which was 1.8 to 1 for the Baltic and 7.2 to 1 for the North Sea. All dispersion plots have been dynamically scaled in terms of particle number concentrations.

The Baltic cases in Appendix A give the worst-case scenarios in terms of arrival time at the seafloor, but the best-case scenarios for minimum dilution. This is due to the greater depths, higher sea states and stronger winds of the Baltic relative to the North Sea. All particle size fractions are released from separate port and starboard discharges which appear in the initial distributions as four distinct "blobs", two on the port side and two on the starboard side of the wake centerline. In all initial far field distributions, the port side blobs have greater particle abundance than the starboard side blobs. It is interesting how the 200 micron size particles in the Baltic conditions begin merging of the port and starboard blobs as they pass through the hindered settling regime at the 50-meter depth pycnocline. Below the pycnocline, the port and starboard blobs become fully merged, with an asymmetric center of mass displaced to the port side of the wake. The larger size particles which fall faster and have smaller diffusivities. They are less well-mixed, and the dispersion patterns continue to show distinct port and starboard blobs throughout the residence time in the water column.

In the Baltic, the 200 micron size particles begin with 0 (20,000 particles/m³) at the surface at time zero and dilute about 20 to 1 while passing through the mixed layer. They begin arriving at the bottom after about 78 hours while the center of mass of the dispersion pattern has reached depths of about 120 meters and has diluted to 0 (500 particles/m³) or 40:1 minimum dilution. The center of mass of the 200 micron size particles reaches the bottom after about 117 hours and has diluted to 0 (250 particles/m³) or a minimum dilution of 80 to 1. By contrast, the larger size fractions have much shorter bottom arrival times and less dilution. The center of mass of the 1200 micron particles reaches the bottom in 10.8 hours with a minimum dilution of 20 to

1. The 300 micron size particles which account for 37% of the total mass reach the bottom in 41 minutes with a minimum dilution of only 10 to 1.

In the calmer conditions and shallower depths of the North Sea in summer, there is much less ambient mixing and correspondingly less dilution. Inspection of the dispersion plots in Appendix B reveals much less merging of blobs and less lateral dispersion (although the vertical exaggeration is also greater in these plots). Here the center of mass of the 200 micron size particles reaches the bottom in about 29 hours with a minimum dilution of 20 to 1. The 1200 micron size particles reach the bottom in 97 minutes at 7 to 1 dilution, while the 3000 micron size particles reach the bottom in only 10 minutes at 5 to 1 dilution.

REFERENCES

- Armi, L.A., 1979, "Effects of variations in eddy diffusivity on property distributions in the oceans," *Journal of Marine Res.*, v. 37, n. 3, pp. 515-530.
- Durst, C.S., "The relationship between current and wind," Quart. J. R. Met. Soc., v. 50, p. 113 (London), 1924.
- Jenkins, S.A., & D.L. Inman, "On a submerged sphere in a viscous fluid excited by small-amplitude motions," *Jour. Fluid Mech.*, v. 157, pp. 199-224.
- Jenkins, S.A., J.A. Nichols & D.W. Skelly, 1989, "Coupled physical-biological dispersion model for the fate of suspended solids in sewage discharged into the ocean," SIO Reference Series 89-3, 53 pp.
- Jenkins, S.A., & J. Wasyl, 1990, "Resuspension of esturial sediments by tethered wings," *Jour. of Coastal Res.*, v. 6, n. 4, pp. 961-980.
- Jenkins, S.A., & S. Aijaz, 1994, "On the electrokinetics of the dynamic shear stress in fluid mud suspensions," *Jour. Geophysical Res.*, v. 99, n. C6, pp. 12,697-12-706.
- Jenkins, S.A., & J. Wasyl, 1994, "Time stepped suspended transport model for the dispersion of optical particles in coastal waters," submitted to Office of Naval Research, Code 1153, 84 pp.
- Hammond, R.R., Jenkins, S.A., Cleveland, J.S., Talcott, J.C., Heath, A.L., Wasyl, J., Goosby, S.G., Schmitt, K.F., and Levin, L.A., 1995, "Coastal Water Clarity Modeling," SAIC, Technical Report 01-1349-03-4841-000, 491 pp.
- Lazaro, B.J. & Lasheras, J.C., 1992a, "Particle dispersion in a developing free shear layer, Part 1, Unforced flow," *J. Fluid Mech.* 235, pp. 143-178.
- Lazaro, B.J. & Lasheras, J.C., 1992b, "Particle dispersion in a developing free shear layer, Part 2, Forced flow," *J. Fluid Mech.* 235, pp. 179-221.
- List, E.J., Gartrell, G. & C.D. Winant, 1990, "Diffusion and dispersion in coastal waters," *Jour. Hydraulic Eng.*, v. 116, n. 10, pp. 1158-1179.
- Martin, J.E., & Meiburg, E., 1994, "The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers, 1: The fundamental and subharmonic cases," *Phys. Fluids*, A-6, pp. 1116-1132.
- Neumann, G., "Ober die komplexe Natur des Seeganges, Teil 1 and 2," *Deut. Hydrogr. Zeit.*, v. 5, n. 2/3, pp. 95-110, n. 5/6, pp. 252-277, 1952.

- Nielsen, P., I.A. Svendsen, & C. Staub, "Onshore-offshore sediment movement on a beach," in <u>Proceedings of 16th International Conference of Coastal Engineering</u>, pp. 1475-1492, ASCE, New York, 1978.
- Nielsen, P., "Some basic concepts of wave sediment transport," Series Paper No. 20, Institute of Hydrodyn. and Hydr. Eng., Techn. Univ. of Denmark, 1979.
- Schoonmaker, J.S., R.R. Hammond, A.L. Heath & J.S. Cleveland, 1994, "A numerical model for prediction of sub-littoral optical visibility," SPIE Ocean Optics XII, pp. 18.
- Thorade, H., "Die Geschwindigkeit von Triftstromungen and die Ekman'sche Theorie," 1914, Ann. d. Hydr. u. Marit. Meteorol., v. 42, p. 379.

APPENDIX A:

CROSS-WAKE PARTICLE DISPERSION PLOTS FOR WINTER TIME CONDITIONS IN THE BALTIC SEA

VERTICAL EXAGGERATION = 1.8 TO 1.0

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

APPENDIX B:

CROSS-WAKE PARTICLE DISPERSION PLOTS FOR SUMMER TIME CONDITIONS IN THE SOUTHERN NORTH SEA

VERTICAL EXAGGERATION = 7.2 TO 1.0

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

Port-Starboard grid Cells, (1.5 m/grid cell)

Particle Numbers / Cubic Meter

APPENDIX J

FIELD STUDIES PLAN/ACQUISITION REPORT

Source:

Field Studies Plan.

San Diego, California

Naval Command, Control & Ocean Surveillance

Center, RDTE Division, Code 522, 1995

Revision: 17 January, 1995

SOLID WASTE FIELD SAMPLING PLANS

GENERAL DESCRIPTION

An at-sea test will be conducted late January 1995 approximately 2 miles offshore Coronado (approximate central position: 32° 37.09'N, 117° 10.90' W) to measure the dispersion of pulped cellulose and dye as part of the Shipboard Solid Waste Discharge Project. Three vessels, and one helicopter will be involved: The R/V ECOS, the R/V ACOUSTIC EXPLORER, a 21' skiff, and a helicopter hired through the photoshop, topside. The ACOUSTIC EXPLORER will serve as a discharge vessel, discharging pulped cellulose material and rhodamine fluorescent dye in a liquid slurry while transiting at approximately 10 knots along a 1 km line. The ECOS, will serve as a measurement vessel, taking a suité of measurements in the wake of the ACOUSTIC EXPLORER after the material has been discharged. The helicopter will be used to obtain aerial photography of the wake and nearby area for a period of time following the discharge in order to visually record the dispersion of the material. The skiff will be used for transferring personnel, and for making some measurements such as plankton net tows.

ADMINISTRATIVE ISSUES

1.	Letters to agencies for "permits"	Stacey
2.	Hiring of the Acoustic Explorer (late January)	Stacey
3.	Purchase of dye (16 gallons of 20%)	Stacey
4.	Chemical analyses Stub (BOD/TOC/NUTS)	Stacey/Bart
	MESC equipment repairs (cable, haul-out, fathometer)	Brad/Chuck/Bart
6.	Get paper 100 lbs (also ask where likely pump location will be)	Stacey/Bart
7.	Helicopter Imaging/photos	Stacey
8.	Check on other operations in the area (including flight restrictions)	Jim
	Fax to Coast Guard	Jim
10.	Arrange for NaCl from inventory	Chuck
11.	Purchase fluorometer filter kits	Chuck
12.	Obtain drifters	Bart
13.	Tracor Setup	Stacey
	Sampling Bottles	Chuck
	Talk with Dave re: nutrient analyses	Bart

EXPERIMENT SCALING

Initial Scaling

Basis for comparison: Carrier operating pulper discharge @ 1500 lbs/hr (680 kg/hr)

Assumed Carrier beam*draft: = $10 \text{ m} * 40 \text{ m} = 400 \text{ m}^2$ Acoustic Explorer beam*draft = $8 \text{ m} * 3 \text{ m} = 24 \text{ m}^2$

Scaling Factor: 400/24 = 17

Discharge rate off of Acoustic Explorer: (680 kg/hr)/17 = 40 kg/hr

Length scale of the wake: @10 kts (5m/s) = 300 m/min

Revision: 17 January, 1995

Discharging over 3.3 minutes gives a length scale of 1000 m

Disharge over the 3.3 minutes = 2.2 kg paper

Using 10% TSS as guide: 22 kg paper, 222 kg seawater mix = 230 L (61 gal)

Requires pump rate of 70 L/min

Near-Field Wake cross-section size: $8*beam*draft= 8*3*8 = 192 \text{ m}^2$ Volume of plume field= $192\text{m}^2*1000 \text{ m} = 1.92*10^5 \text{ m}^3 = 1.92*10^8 \text{ L}$

Concentration scaling for dye: 16 gallons of 20% Rhodamine WT = 12.1 L dye

Near-field Concentration: $12.1/1.92*10^8 = 6.3*10^{-8} = 63$ ppb

Final Scaling

Pump for 3.3 minutes to create plume of 1 km in length

Use 60.6 L (16 gals) 20% dye

Pump mixture = 61 L of 20% dye, 22 kg paper, 155 L seawater

Total Volume of Pump Mixture = 230 L (61 gal)

Pumping Rate Required: 70 L/min (18.4 gpm)

Starting Concentration of TSS = 10 % (22kg/220 kg)

Theoretical Maximum Dye Concentration in wake = $63 \text{ ppb} (60.6 \text{ L}*20\%/1.92*10^8\text{L})$

Additional salt needed for salinity adjustment: 2.0 kg (33g/L * 61 L = 2013 g)

EXPERIMENT CHRONOLOGY

Date/Time

Date: 24 January 1995

Tide: Low @ 10:10, High @ 16:08, Height @ 1.0 - 3.2'

Times: Leave Dock @ 0700, Deploy Array @ 0800, Start Pre-DischargeMapping @ 0815, Begin

Discharge and Mapping @ 0945

Alternate Date/Time

Date: 25 January 1995

Tide: Low @ 11:29, High @ 17:47, Height @ 0.3 - 3.4'

Times: Leave Dock @ 0800, Deploy Array @ 0900, Start Pre-DischargeMapping @ 0915, Begin

Discharge and Mapping @ 1045

Location of Discharge Line

Start Position: 32° 36.94' N, 117° 11.18' W End Position: 32° 37.21' N, 117° 10.62' W

Line Direction: 240°

Expected Current Direction: 330° Expected Current Speed: 0.5 kts

Line Length: 1 km (3.3 mins @10 kts)

Water Depth: 20-22 m

Distance to site from NRaD: ~ 11 km Time to Site from NRaD: ~ 1 hr Revision: 17 January, 1995

Location of Current Meter Array Mooring

Position:

32° 37.09'N, 117° 10.90' W

Water Depth:

20 m

Vertical:

S4 Current Meters @ 3 m, 10 m, 17 m

RTM @ 1 m, 3 m, 10 m, 17 m

General Chronology

1) Deploy current meter array

2) Map out area with ECOS, collecting discrete samples for TSS, NUTS, BOD, and Chl-a before arrival of ACOUSTIC EXPLORER; use skiff or ECOS for plankton net tows

3) Discharge pulped material and dye from ACOUSTIC EXPLORER, then sample and map plume dispersion with ECOS, skiff, and helicopter, until parameters of interest are back to background

EXPERIMENT SPECIFICS

Pre-Discharge Mapping

After deployment of the current meter array, the ECOS will run surface mapping transects parallel to the Discharge Line and then a single perpendicular transect line doing a series of tow-yos (see attached Figure). The perpendicular line will be run such that it crosses near the current meter array and follows the expected direction of the plume (surface current). Seven complete verticals will be performed along this transect. The mapping will cover 13.75 line-kilometers and take approximately 1.5 hrs to complete. All ECOS instrumentation will be used during these transects (see below). Discrete samples will be collected from the towed system for BOD, TSS, TOC, NUTS, and Chl-a at locations shown in the attached Figure. Vertical plankton net tows will be run on the skiff and/or the ECOS.

Discharge Mapping

The ACOUSTIC EXPLORER will run along the Discharge Line dumping the cellulose and dye waste stream. The discharge will go for approximately 3.3 minutes over a distance of 1 km. As the current meter array is passed, a drifter will be thrown over the side to begin marking the surface advective field.

The ECOS will wait for the ACOUSTIC EXPLORER to pass and dump the drifter, then will begin to map the dispersion of the plume mainly by drifting back and forth through the patch (perpendicular to Discharge Line) performing vertical profiles with its towed system. The Drifter and helicopter sightings will be used to position the ECOS through the center of the plume as it slowly transits back and forth through the patch. The speed through the plume must take into account the space scale expected for the near field plume which is 3 * beam = 24 m Discrete samples will again be collected from the towed system for BOD, TSS, TOC, NUTS, and Chl-a at the locations shown in the attached Figure. Vertical plankton net tows may also be run on the ECOS.

The Helicopter will be used for photographing the dispersion of the plume as well as for sighting the ECOS in the visible patch.

Revision: 17 January, 1995

The skiff will be used to transfer personnel from the ACOUSTIC EXPLORER to the ECOS and make measurements such as vertical plankton net tows.

Revision: 17 January, 1995

INSTRUMENTATION AND ANALYSES

- 1. Hull mounted pumping system with dye fluorometer, Optical Backscatter Sensor if available
- 2. Standard tow body configuration with CTD, transmissometer, flow-through dye fluorometer
- 3. Third dye fluorometer @ 3-5 m stationary depth along with transmissometer
- 4. ADCP
- 5. Tracor package attached to tow system
- 6. Three each S4 Current Meters
- 7. Four each RTMs
- 8. Plankton net tows from either ECOS or SKIFF
- 9. 30 each 1 L polycarbonate water bottles for collection of seawater samples for TSS and Nutrients
- 10. 15 each 0.5 L polyethylene water bottles for collection of seawater samples for Chlorophyll-a
- 11. Sample Bottles for ATI analysis:

30 BOD

30 TOC

- 5 Nuts (duplicates with in-house measurements)
- 5 TSS (duplicates with in-house measurements)

PERSONNEL

R/VACOUSTIC EXPLORER: Dumping- Chuck, Other?

R/V ECOS: Bradley, Andy, Bart, Stacey, Tracor personnel, Schoonmaker

SKIFF: John, Others (Scripps...)
HELICOPTER: Photographer, other?

OTHER: Friotographer, other:

Gerhard (S4 setup)

ACOUSTIC EXPLORER

Identify DGPS capability or install ours Obtain vessel specifications including beam, draft, speed, navigation, space, power Identify dumping point, available power for pump, deck space for 100 gallon container

SKIFF

Determine if DGPS needed and install Setup for hand plankton tows

Helicopter Photos

Identify vendor-Photoshop

Determine flight restrictions-Done by helo vendor

Identify photographer and photography system (video/stills include filters etc) - photoshop

MESC SURVEY DATA ACQUISITION REPORT GAR1

GOAL:

Field test for Environmental Assessment of Shipboard Discharges Program. The ECOS, skiff, and a helicopter were used to track the dispersion of rhodamine dye and pulper material dumped along a 1 km trackline (by the ACOUSTIC EXPLORER) off the west

coast of Coronado.

DATE:

27 January, 1995 JD 27

TIME:

06:57 - 18:15, Left Dock @ 07:08, Use data from 08:20 - 16:39

RECORDS:

RTAPS: 13590 (2 second acquisition rate), LABVIEW 30021 (1 second acquisition

rate)

PERSONNEL: ECOS: Chadwick, Curtis, Davidson, Katz, Patterson, Schoonmaker, Samilo (Tracor)

22' SKIFF: Groves, Fransham

ACOUSTIC EXPLORER: Rohr, Katz (during discharge only)

Helicopter: Jerry Mosley

SENSOR SYSTEMS CONFIGURATION:

TOW SYSTEM

SEABIRD Model 19 CTD w/ in-situ pump assembly

SEABIRD pH/DO₂ Sensors (SN 220261)

SEA TECH Transmissometer (SN 298)

TRACOR TAPS (attached to cage)

On-board centrifugal pump with standard teflon hose tow cable # 1 (4 wire only)

Flow: Hose > pump > overflow > bubble trap > Model 10 AU oil fluorometer (SN 5110) > Model 10

chl-a fluorometer (SN 401) > Model 10 AU rhodamine fluorometer (SN 5109)

DELAY: 60 seconds to overflow; 80 seconds to rhodamine fluorometer

HULL SYSTEM

WETLABS Multi-wavelength Transmissometer (Schoonmaker's)

Model 10 Rhodamine Fluorometer (SN 0126) w/ broken range output voltage

Submersible bilge pump with teflon hose > overflow valve > fluorometer > transmissometer

DELAY: 10 seconds to fluorometer (use same to overflow valve)

BOW SYSTEM (3 m fixed tow depth)

SEA TECH Transmissometer (Lapota's)

Model 10 Rhodamine Fluorometer (SN 5555)

Submersible bilge pump with teflon hose direct to fluorometer with no bypass flow

Transmissometer and pump attached to wire winch off of bow davit (starboard) using a 2' V-fin depressor

DELAY: 38 seconds to fluorometer

CURRENT METER ARRAY

Three S4s, and four TempMentors deployed at center of discharge line, 32° 37.059' N, 117° 10.968' W in 21.7 m of water @ 0755 ~1700

1 RTM SN 900804

3 m S4 SN 05451194, RTM SN 900958

10 m S4 SN 04590867, RTM SN 900805

17 m S4 SN 05451203, RTM SN 900806

OTHER SENSOR SYSTEMS

ECOS: ADCP- standard hull-mounted configuration

WIND- standard configuration

FATHOMETER- standard configuration

DGPS- standard configuration

SKIFF: DGPS standard self-logging configuration, vertical plankton net tows (30 um)

HELICOPTER: Photos/videos with time stamp ACOUSTIC EXPLORER: GPS and photos/videos

DATA STREAM CONFIGURATION:

TOW SYSTEM

CTD, pH/DO₂, transmissometer, fathometer to RTAPS

Model 10 AU oil fluorometer (SN 5110) to RTAPS and LABVIEW

Model 10 chl-a fluorometer (SN 401) to RTAPS and LABVIEW

Model 10 AU rhodamine fluorometer (SN 5109) to LABVIEW

TRACOR TAPS (self-logging acoustic package)

HULL SYSTEM

WETLABS Multiwavelength Transmissometer to standalone computer/files (Schoonmaker) Model 10 Rhodamine Fluorometer (SN 0126) to LABVIEW

BOW SYSTEM (3 m fixed tow depth)

SEA TECH Transmissometer to LABVIEW Model 10 Rhodamine Fluorometer (SN 555) to LABVIEW

CURRENT METER ARRAY- S4s internal logging, RTMs internal logging

OTHER

ADCP- to standalone computer/files
WIND- to LABVIEW
FATHOMETER- to RTAPS
DGPS- to RTAPS, LABVIEW, and ADCP
SKIFF- DGPS standard self-logging configuration, discrete samples from plankton tows
HELICOPTER- Photos/videos with time stamp
ACOUSTIC EXPLORER- GPS file, photos/videos

DISCRETE SAMPLES:

30 TSS + 5 (ATI)
22 Chlorophyll a
30 Nutrients + 4 (ATI)
30 BOD (ATI)
30 TOC (ATI)
31 Plankton Net Vertical Tows

TIDE: Ebb-Slack-Flood; High @ 06:06, Low @ 13:17, High @ 19:41, Range ~ 7.7' (calendar)

GENERAL WEATHER CONDITIONS:

Weather during the survey day was partly cloudy and calm prior to departure. Seas remained calm until and after the discharge of the dye. Afternoon breezes came up and created a 2-3' chop along with a long and 1-2' swell. Previous days of the week were rainy and stormy. The result of the rains was a highly turbid layer, about 3 m deep, in the survey area.

GENERAL SURVEY NOTES:

PRE-DISCHARGE. The ECOS departed the dock with the skiff following @ 0708. The current meter array was deployed @ 0757 and a pre-discharge mapping survey ensued. The ECOS collected both hull and tow system data at the surface. A set of tow-yos were also performed along a track expected to be traveled following the dye release (last transect of the mapping survey). The skiff performed pre-discharge vertical net tows during this time period.

DISCHARGE. At 10:28:55, the ACOUSTIC EXPLORER began discharging pulped paper and dye (see mixture information below). The discharge occurred along a 1 km trackline which ran more or less SW-NE, and passed the current meter array (about midpoint of the trackline). A current drogue was also discharged when passing the current meter array. The discharge ceased at 10:32:52. During the discharge, photos and videos were taken aboard the ACOUSTIC EXPLORER and from a helicopter.

<u>POST-DISCHARGE</u>. After the discharge, the ECOS and skiff moved slowly into the area of the ship wake, transecting the wake in a perpendicular direction. The ECOS mapped the dispersion of dye/pulp etc., attempting to continually cross perpendicular to the wake while following the advective field (using the drogue). The skiff followed the general pattern of the ECOS collecting vertical tows inside and outside the wake area. The post-discharge mapping went on for approximately 6 hours after the discharge. The current meter array was picked up at the end of the mapping. During the first couple of hours after the discharge, photos and videos were taken aboard the ACOUSTIC EXPLORER and from a helicopter.

GENERAL. The mixture dumped from the ACOUSTIC EXPLORER was as follows: 61L 20% Rhodamine WT, 27.7 kg (wet weight) of pulped paper (@ 6.3 kg wet/1 kg dry measured), 2 kg NaCl, mixed to a total volume of 231 L in seawater. This mixture provided starting concentrations of 53g/kg (~5%) dye and 19 g/L pulped paper (~2%). The salt was added to bring the salinity up to background, ~33 psu. The paper was obtained from NSWC, Carderock. The mixture was pumped out of a large vat using a Jabsco pump @ 59 L/min (measured). See the attached Solid Waste Field Sampling Plan (previous deliverable) for scaling considerations.

Discrete samples for BOD, TSS, Chl-a, Nutrients, and TOC were collected throughout the survey aboard the ECOS from either the hull or towed systems. These samples were generally filled in the following order: BOD, TSS, Chl-a, Nutrients (2 bottles), TOC from the TSS bottle. When duplicates were taken, they were filled immediately after the first bottle of the same sample type. The first 8 sets of samples were obtained during the pre-discharge mapping, while the remaining 22 sets were obtained after the discharge. Not all sample types were collected during each sampling (in particular, Chl-a). Exact start times for each sample can be retrieved from the "Green Book".

Manual range scale changes were made for the hull fluorometer system because of a bad range voltage output. The range changes for this fluorometer were as follows:

TIME RANGE (coarse sensitivity)

0826 31.6 (*100) 1125 31.6 (*1) 1134 31.6 (*100) 1158 1 (*100) 1205 31.6 (*100) 1209 1 (*100)

3.16(*100)

1552

Sample Suite	Start Time	Comment	Sample Suite	Start Time	Comment
1	08:51:30	Filled from one large container	16	11:23:53	Tow system
2	09:00:00	TSS, NUTS duplicates	17	11:32:26	
3	09:32:20		18	11:52:21	
4	09:52:25		19	11:53:34	TSS, NUTS duplicates (no chl
5	09:56:00	Tow system	20	11:56:20	Tow system
6	10:01:25		21	12:00:00	No chl-a
7	10:05:40	Tow system	22	12:25:04	
8	10:12:41		23	12:26:40	No chl-a
9	10:35:21	After Discharge	24	12:29:00	Tow system, no chl-a
10	10:38:29		25	12:31:53	TSS, NUTS duplicates (no chl
11	10:43:44		26	13:28:14	
12	10:53:46		27	13:30:18	TSS duplicates, no chl-a
13	10:58:12	Tow system	28	13:33:30	Tow system, no chl-a
14	11:18:52	TSS, NUTS duplicates	29	14:20:26	
15	11:22:09	·	30	14:25:56	No chl-a

DATA ACQUISITION FILES CREATED:

GAR1.CFG Note: Blanking = 1 m, Bottom bin set to 30 m, Salinity to 33.3 psu, ADCP:

FN00001 added to file (Also note: possible changes from previous surveys for

ADCP commands: V 12 cf. 16; J 10 cf. 5; O 109 cf. 77; R 291 cf. 200)

GAR1001R.000 GAR1001P.000

GAR1002R.000 - GAR1002R.008 GAR1002P.000 - GAR1002P.008

RTAPS: GAR1.SDA

> GAR1.STA GAR1.RND GAR1.INI GAR1.INM GAR1.INR

LABVIEW: TRACOR TAPS:

ب

GAR1LV.CSV Not yet available Not yet available

TEMPMENTORS:

WETLABS:

CURRENT METERS: GAR01S4.XLS GAR1TEMP.ASC

SKIFF DGPS:

16260270.ASC, .DAT, .EPH, .ION, .MES, .SSF

HELICOPTER:

Photos w/ negatives

Video Tapes (1)

ACOUSTIC EXPLORER:

FDG19027.100 (GPS file)

Photos w/ negatives Video Tapes (2)

CALIBRATIONS:

OIL: **OILCAL.XLS** CHL: CHLCAL.XLS TSS: TSSCAL.XLS RHO: GARCALRH.XLS

Full CTD including DO2 and pH Sensor SN 220261 recalibrated for this survey on 24 January 1995.

DO2: SOC: 2.2267, BOC: -0.0110

pH: m: 4.5527, b: 2.6153

TRANS: lm: 19.91 lb: -0.279 based on: 0%: 0.014, 100%: 4.60 (91.3% Full Scale in Air)

Calibrated 1 February (After PRF8) OIL:

Copied from GAR1.ini:

cal sc,12 oxsocboc,0,2.2267,-0.0110 phmb,0,4.5527,2.6153 trmb,0,19.91,-.279 pressure,0,81.07479,-2.167891e-2,1.813005e-8 cond,0,7.2996e-6,5.0228e-1,-4.1821,5.0761e-4,4.5 temperature,0,3.6756e-3,5.7471e-4,8.3729e-6,-1.774e-6,2350.06 ln,3,63.1037,-5.186 xx,19,-1 fr,6,7 xx,7,100

APPENDIX K

SEWAGE EMISSIONS DATA

Source:

Sewage Emissions Data.

San Diego, California

Naval Command, Control & Ocean Surveillance Center, RDTE Division, Code 522, 1995

		_
		-
		-
		-
		=
		_
		_
		_
		_
		1
		1
		1

PRUGRAM W433/05

WATER AACHIVE SYSTEM

14:03 64/04/95 PAGE

WATER QUALITY SAMPLE SUMMARIES

		REQUEST NO		Flow	Inst.	M1/d	396.2	175	1078	<16-4	141		-
		a.	38	Flox	Rean	F1/d							
			182	Silic	ate	J./ bw						-	
			85 . 135 143 182	Sols		m 1/6m	4.434	5.817	39	-	13		13
			135	Solias	A/N pasns	u 1/6w	19.16	13.13	158	< 2	246		2
			85	8 6 008	ATU S	m 3/6 m	13.98	9.344 13.13 5.817	8 6	<2.8	241	 ;	13
. UENT		14:01	92	8 000	o se		1329 149.4 199.5 16.87 ,1135 ,5778 1.926 84.41 13.98 19.16 4.434	6:92	175	33	192		
FINAL EFFLUENT		FOR PERICO C1/01/1990 00:01 TC 04/04/1995 14:01	180	Ortno (P04- 8	שמֹור שמֹור שמור	1.926	3.22 4.949 5.349 .2242 1.052 1.714 26.9	17.2	<.05	526		~
FIN		04/04	117	N03	as s	ı]/ßw	.5778	1.052	14	۲.۱	240		112
	s	:01 TC	118	N 0 2			.1135	.2242	3.34	.012	240		117
M. 1 S	RIVER	00 066	11	- :	N Se	J/Em	10.87	5.349	31.4	<.22	544		-
DAVYHULME	SAMPLED BY RIYERS	1/101/1	172 162 111 118	ALKAL NH3	Cl CaCO3 as N as N	7/6m 7/6m 7/6m	199.5	676.4	263	196	2		
DAVY	SAMP	S dolk	172	73		1/6	149.4	73.22	1560 259	28	5		
5525		OR PE	77	Cono	и 25C as	us/cm mg/t	1329	.0573 164.1 7		1172 82	7		
NGR :- 8J 74763 96525		_	6	, Ha		_	75.7	.0573	7.35	7.2	4.		
- SJ 7	ı		82	0155	0.5	1/5W							
NG 3 :	; ; ; ;		. 81	Diss	0.5							•	
U			76	Temp	PURP Water	Deg C X	9.833	1.443	11.5	6	~		
DAVOF2			PURP		PURP	0 F							
01.694					P. E.						J C C UR S		
SPT :- 01.6940AV0F2C	f 1 1 1				SAMPLE		MEAN	°0°S	MAX	N E	NO. OF OCCURS.	NO. GT.	NO. LT.

DATA RECORDED AS BEING LESS THAN LIMIT OF DETECTION - TAKEN AS 2/3 RECORDED VALUE

IF NO: OF LT'S EXCEEDS 33% TREAT DATA WITH CAUTION--IF MORE THAN 50% CONSULT STATISTICS DEPT.

END OF LISTING OF FILE :NHGTEBI.DATA(1,*,1).JAM1035(1) FOR USER :NHGTEBI AT 1995/04/04 14:10:57

WATER GUALITY SAMPLE SUMMARIËS

		REQUEST NO		25	Flow	Inst.	MLZd _{ii}	68.93	34.06	Jo	3.6	ø			
AT CUTLET OF PRIMARY TANKS	HALE BANK WIDNES		E	92 85 135143182 38	HOD 5 Solid Sols Sillic Flox	as C. ATU Suspd N/Vate. Mean	3/14	7.302 9.595 397.6 176.6 112.8 47.16	120.5 71.71 35.71 29.58	83C 460 210 9c	121 <20 32 13	197 245 247 79	10	n .	
		1995 17:		1 0 0	Ortno C00	P04- as	17/E	2 9, 595		29	<.25	226		₩	
FINAL EFFLUENT SAMPLED	OFF HALE GATE LANE	06/04/					-Mg/ L	7.30	3.057 12.45 7.32	. 69.5	5.35	5 233		6	
L EFFLL	FHALE	0:01 TO		111 118 117	NH3 NOZ NO3	as N as N	176W	38.92 1.31	17,09 3.0.	è . 52 è	5 <.02	0 235		5 01	
WIDNES STW	AIDNES STR OF	FOR PERIOD 61/01/1990 60:01-10 06/04/1995 17:08		77 172 162 111	CL ALKAL NH	w 25c as Cl. CaCO3 as N		3995 649 38.	111.7	4130 717 91.6	3860 523 <.25	2 3 240			
:- SJ 49310 82655	I	FOR		32 01	Diss pH Cond	02	1/6E	8 - 49	1.12 190.9	27.5	7.5	~			
016925101240162 NGR :-				PURP 76 81	Temo Diss	PURP water 02	OF Deg C %	3.444	.527	ć	90	· S.			
SPT :- 01092	1 1					SAMPLE		NEAN	<u>5</u> .	ЙАХ	NIN	NO.0F OCCURS.	NO: GT.	NO. LT.	

DATA RECORDED AS BEING LESS THAN LIMIT OF DETECTION - TAKEN AS 2/3 RECORDED VALUE

IF NO: OF LT'S EXCEEDS 30% TREAT DATA WITH CAUTION--IF MORE THAN SUR CONSULT STATISTICS DEPT.

END OF LISTING OF FILE :4HGTESI.DATA(1,*,1).JAMCAB(1) FOR USER :NHGTESI AT 1995/04/07__12:17:54

NATER ARCHIVE SYSTEM

17:17 06/04/95

PAGE

WATER QUALITY SAMPLE SUMMARIES

NGR :- SJ 32434 93168 LIVERPOOL STW PRIMARY TANK EFFLUENT TO RIVER	TAKEN BEFORE SYPHON TO RIVER
NGR :- SJ 32434 93168	
SPT :- 016938003LIV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* FOR PERIOD 61/61/1990 00:01 TO 06/04/1995 17:15

REQUEST NO

=					
,,,,,,,,	27	107	nst.	, p/1	j
;	38 47	Ortho COD BOD 5 Solid Sols Silic Flow Flow	I UE		1
	?	C F L	ð.) M	
	18	511.	ate	1/6m	
	143	o (s_	^ ^	9/۱-	
	135143	Lia_S	N pd s		
	55	00 _800_5. Solia_SolsS	Su	D W	
		BOD	ATU	1/6w	
	92. 85135143.	٥٥	s 0	1751	
	180	t no (6 4	/ ا	
	17	J.C.	0 d	L mg	
	-	NO 3	a s	/5 E	
	01 27 1.72 162 111 116 117 180 92 85 135 143 182	N02	a.s.	1/5m	
	111	13	N.	176	
	162	at N	03. a	E .	
	31 82 61 <u>77 172</u> 162	Atk	L_Ca(/ 6 w	
	1 77 172	٦,	-a s C	1/6 m	
	17	ong	.23ເ	S/.cm_	
	2 01 77	3	æ	ח	
	32 (H C			
		015	0.2)/6w-	
	81	0155	0.2	"	•
	76 81 32 61 77 172 162	o w o	ater	J ba	
	PURP 76 81	TempDiss_Diss_DHCondCLAlkal,NH3_NO2_NO3	SAMPLE PURP water 02 02 as CL_CaCO3 as N as N PO4- as O ATU Suspd N/V ate Mean Inst.	OFbeg_C_Xmg/!us/cm_mg/!_mg/!_mg/!_mg/!_mg/!_mg/!_mg/!_mg/	
	<u>ئ</u>		ا ا ا)	
	ì	; ;	MPLE		:
	;		SA		!

# EAN	. 6	4140.	40. 477.6.165 12.01 .2194 .5768 2.943 274.2 107.7 87.06 19.62	12.0	1 .2194	.5763	2.943	274.2	107.7	87.06	19.62	170	170 167
-8.0.	0.0	. O	479.4 6.0 5.363 .3921 1.875 2.167 117.2 51.92 35.09 12.7	5.36	3 .3921	1.875	2.107	117.2	51.92	35.09	12.7	0.0	0.0 86.8
MAX	6.9	4140	40 1030 165 36.6 2.32 24.2 24.4 752 290 355 60	36.6	2,32	24.2	54.4	752	29.0	355	09	170	170 583
N. N. I. W.	6.0	4140	40 169 165 <.25 <.005 <.05 <.05 85 18 17 5	<.25	<.005	\$0°>	<.05	8 5	ές ec	17	ī	170	9.331
NO. OF OCCURS.		-	3 1 178 177 175 176 103 174 179 24	178	177	175	176	103	174	179	72	~	
NO. 6T.									•				
					1 75 122 4	122	4		ن ب			**	

PDATA RECORDED AS BEING LESS THAN LIMIT OF DETECTION - TAKEN AS 2/3 RECORDED VALUE

IF NO: OF LT'S EXCEEDS 30% TREAT DATA WITH CAUTION--IF MORE THAN 50% CONSULT STATISTICS DEPT.

END OF LISTING OF FILE :NHGTEGI.DATA(1, 1, 1). JAMCAB3(1) FOR USER :NHGTEBI AT 1995/04/07_12:16:51 the second secon PAGE

14:03 64/04/95

MATER QUALITY SAMPLE SUMMARIES

SPT :- 016925	:- 010925101160104		NGR :- SJ 58034		85626	WARRI	NOTON	WARRINGTON SOUTH STW	STW	95rL	HOUSE	LANE A	BELLHOUSE LANE ACTON GRANGE	RANGE	MOORE	523		
! ! ! !		1 1 1	1 1			FINAL	. EFFLL	FINAL EFFLUENT FINAL TANK	NAL TAI	NK OUTLET		SESTEL D	DEAN SA	SAMPLER				
				u.	FOR PERI	100 01	1/01/15	00 01/01/1990 00:01 TC 04/04/1995 14:01	01 TC	140170	1995 1	4:01					8	REQUEST NC
	PURP 7	75 81	82	61	11	172	162	111	111 118 117		180	26	85	135	143 182	182	38	24
	Temp	Diss	Diss	рН	Cona	ָר . נו	Alkal	N EHN	N 02 N	NO3 0	Ortho C	C 0 0	8 00 8 8	Solids	Sols S	Silic F	F (04 F	Flow
SAMPLE	PURP Water	. 05 ·	0.2	. :	d 25 C as		C.r caco3	as x	e N se	d N se	b - +0d	as 0	ATU	Suspd	N/V a	ate	rean I	Inst.
	OF Deg C	х С	1/5m	ם	us/cm mg/i		mg/ L	mg/l m	m 1/6m	m 1/èm	m 1/óm)/bm	u 7/5m	m 1/bm	mg/l m	של/ן גּ	W 1/0 M	ML/d
MEAN	12	12.53	9.58	7.585	2457	_	8667 100	16.43	16.43 .4002	2.418	6.607	55.52	8.597	12.29	2.418 6.007 55.52 8.597 12.29 4.724 3.5		F1	10.78
8.0.	3.	3.655	0.0	.2189	2982	37001	0.0	8.745 .429	624.	3.172	2.925	33.66	7.624	3.172 2.925 33.66 7.624 10.79	6.893	0.0	0.0	4.057
MAX	19.4	4.	9.58	5.5	6969	74200	100	34	3.05	16.1	13	278	3.7	2.2	8 7	3.5	31	9.8
NIW	ю		9.58	7.4	106	7.2	160	.26	.01		.05	2.7	< 2	< >		3.5	31	65.4
NO.OF OCCURS.		13	, v-	7	7	4		118	118	118	117	66	133	135	5.5	-	~	13
NO. GT.																		
NO. LT.									17	36	-		Ξ	4	2			

IF NO: OF LT'S EXCEEDS 30% TREAT DATA WITH CAUTION--IF MORE THAN 50% CONSULT STATISTICS DEPT. DATA RECORDED AS BEING LESS THAN LIMIT OF DETECTION - TAKEN AS 2/3 RECORDED VALUE

PROGRAM W433/05

WATER ARCHIVE SYSTEM

17:12 Cé/34/95

ON L

*ATER GUALITY SAMPLE SUMMARIES

SPT :- 016935003HwD	S J O 3 H W D	1 NG % 1	NGR :- 31 48917 82364	95364	HALENGO	HALEWOOD STW PRIMARY TANK EFFLUENT	IMARY	TANK EI	FLUENT	ē						
: : : :		1 1 1 1			SAMPLED	SAMPLED SY EPIC SAMPLER FROM CHAMBER ADJ. NOG SED TANK	SAMPL	ER FRO	1 CHAME	IER ADJ	90N •	SED TA	X X			
				FOR PE	Pearob 61/61/1990 00:01 to 06/04/1995 17:12	1/1990 0	0:01 1	0 06/04	4/1995	17:12					ж Э	REQUEST N
	PURP	76 à1	52 01	77	17.2 1.	172 162 111 118 117 185 92	113	117	180	6		135	85 135 143 182	182	3.8	27
	⊢	Temp Diss Di	Diss on	Cona	כו אוצ	Alkal NHS	N02	 NO3	Crtho CCD	GO 0	300 5	Solia	3CD 5 Solia Sols Silic Flow	Silic		Flow
SAMPLE	PURP Water 02	ter 02 02				03 as N	S S S	≥ 	- 40d	as c	ATU	Suspd	> \	ate	Mean	Inst.
	OF Deg C %		1/5m	uS/cm	1/6m m3/5n	1/6w 1	ן / Św	1/6m 1/5m)/5w)/5m)/5m)/5m)/bw	1/6ш	1/64	P/1W	ml/d
MEAN	М	8.375	3,162	8.162 2570 314.3	314.3	46.59	46.59 1.1		16.15	676.9	2.447 16.15 676.9 270.7 86.2	86.2	32.1		70.	43.09
.0.8	\$.	.5175	33559	3559 288.4	145.4	38.76	38.76 1.32		13.53	322.7	4.235 13.53 322.7 192.7 36.78 17.06	36.78	17.06		0.0	341.3
MAX	6		66.0	2810	478	ימ מי	10.3		43.8 81.1		2730 2550 380	3 8 0	9.6		* 0 *	3470
NIN	œ		7.	2250	2250 >200	3.6	<.02	<.0> 1.47	1.47	215	17.5 25	. \$2	12		70.	<1E-4
NO.OF OCCURS.		œ	· 5	~1	٣	234	232	559	221	187	240	243	80		~	103
NO. GT.											17					

DATA RECORDED AS BEING LESS THAN LIMIT OF CETECTION - TAKEN AS 2/3 RECORDED VALUE

χ γ

5.

NO. LT.

IF NO: OF LT'S EXCEEDS 33% TREAT DATA WITH CAUTION--IF MORE THAN 50% CONSULT STATISTICS DEPT.

END OF LISTING OF FILE :NHGTE 31. DATA(1/*/1) .JAMCA±1(1) FOR USER :NHOTEBI AT 1995/34/07__12:15:59

0

WATER GUALITY SAMPLE SUMMARIES

SPT :- 0174750000121	NGR :- SD 18541 70339	8541	9020A	SARROW IN	FURNESS	NORTH	SCALE	ST.	FFLUE	AT (SE	TLEME	êFFLUENT (SETTLE™ENT ONLY)	•		
 	1 1 1 1 1 2			& OUTFALL TO WALNEY CHAMNEL	TO WALN	ІЕҮ СНА	NNEL			ξ					
			전 (C) (C) (E)	RICD 01/01/1996 60:01 TC 04/04/1995 14:01	:00 066	U1 TC	04/04/	1995 1	4:01					REQUEST	0 N
oran 7eno	82 Diss. Diss	о 10	77	172 102 Ct Alkal	111 NH3 N	11¢ NO2 N	117 NO3 0	180 Ortho C	6.000	85 85 85 85	135	143	7 28 4	30 L	47
Wate	02 02		25C	as Cl CaCO3	as Na	e N se			-				e Rean	I I St.	
OF Deg C	1/0E		u S / c m	1/58 1/58	m 1/6m	m 1/6m	m 1/6m	m 7/6m	. 7/6m	m 7/6m	m d/t m	bm 7/6m	שמ/ו או/פ	d #1./d	
こていた		7.57	7.575 745	50.94	26.5	26.5 .0748 .4246 6.125 347.8 149.4 105.5 34.13	.4245	6.125	347.8	149.4	105.5	34.13		.	. C741
S.D.		.403	.4038 144.8	3 13.36	13.32	.1649	.7738	3.892	186.6	186.6 78.27	63.1	34.05		. ~	.2222-
MAX		9.1	1193	3 157	λ 83 •	.1.11	4.26	2.5	910	405	325	176		7	
. ZIE		0 •	255	72	6.5	<.01	<.05	1.2	109	37	2.2	5		0	0.0
NO.OF OCCURS.		7 7	29	51	53	53	53	53	55	53	53	51			٠
NC. GT.										2					
NO. LT.						S	9					_			←

IF NO: OF LT'S EXCEEDS 36% TREAT DATA WITH CAUTION--IF MORE THAN 50% CONSULT STATISTICS DEPT. DATA RECORDED AS BEING LESS THAN LIMIT OF DETECTION - TAKEN AS 2/3 RECORDED VALUE

REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT 112.25 12.25	I REGION - CHEMICAL DATA PROCESSING SYSTEM FROM GENERAL DATA ABSTRACTION FACILITY	712 - PART 3 - STATISTICAL SUMMARY REPORT	COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92 NO. OF SAMPLES - 52	GRID REF INAL SEDIMENTATION TANK EFFLUENT	RANGE) STD.DEV. 95XILE(OR RANGE) HINIMUM HAXIMUM	12.0833 >5.3179 21.9458(LOG NORMAL) 4.0 27.5 11.25 8.3866 >5.3779 21.9458(LOG NORMAL) 4.0 27.5 11.25 8.3866 >5.786 14.8924(LOG NORMAL) 4.0 18.34 7.0 0.0 <5.0 (ONLY VALUE) <5.0 <5.0 <5.0 <5.0 <5.0 18.34 7.0	REGION - CHEMICAL DATA PROCESSING	PERIOD(S) FROM 01/01/93 TO 31/12/93	STHAM STW. FINAL EFFLUENT. INAL SEDIMENTATION TANK EFFLUENT	RANGE) STD.DEV.	9.1458
34 I HA 34 I HA 37 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A. ANGLIAN REGI	TYPE 712	COVERS	P WITHAM FINAL S	NO. OF VALUES MEAN VALUE(OR RANG	7.6489 11.7708-7 7.0887-7 5.0 0.8398-7 14.4483 5.279 14.4.0432 0.0513-0.0513-0.0513-108.3513	OUTPUT F	PORT COVERS	P WITHAM	S MEAN VALUE(OR	7.66 8.3125- 5.6041- 0.4191- 0.0386 13.21 12.7554 5.047

MEDIAN
7.645
11.25
7.0
6.30
0.3895
13.1
5.325
147.0
60.1
60.1

7.63 7.75 6.05 6.05 0.2875 0.016 110.9 11.3 5.08

OUIPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94

SAMPLE POINT - SO34ITHAM DP FINAL SEDIMENIATION TANK EFFLUENT. SAMPLE TYPE - DP FINAL SEDIMENIATION TANK EFFLUENT DEFERMINAND UNITS VALUES HEAN VALUE(OR RANGE) STD.DEV. 95XILE(OR RANGE) HININUM MAXIMUM MEDIAN PH				REPORT COV	ERS PERIOU)(S) FROM 01/0	REFORT COVERS FERIOD(S) FROM 01/01/94 TO 31/12/94	NO. OF SAMPLES	MPLES - 25	
AND UNITS VALUES HEAN VALUE(OR RANGE) STD.DEV. 95XILE(OR RANGE) HINIMUM MAXIMIM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMIM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMIM MAXIMUM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMIM MAXIMI	SAMPL	.E POINT - 8	ЗИІТНАМ		1AM STW. FI	INAL EFFLUENT. FATION TANK EF		GRIO REF	ı	
3061. PH UNITS 22 0 7.6759 0.1237 7.9197~ 7.432 7.5 8.0 0135 HG/L 21 2 7.5952~ 8.2619 >2.6571 12.8573(L0G NORMAL) 4.4 14.5 0088 HG/L 20 4x 18.6473~ 18.64 >51.7993 71.0465(L0G NORMAL) 62.0 238.0 0111 HG/L 21 4 0.3804~ 0.4 >51.285 0.1 1.5 0111 HG/L 31 4 0.154. >0.164 >0.1268 0.4 >0.1 1.5 0117 HG/L 5 0 9.94 0.164 >0.1668 14.3 (MAX VALUE) 5.6 14.3 0116 HG/L: N 5 0 13.65 5.5303 24.0232(L0G NORMAL) 5.8 25.9 0191 HG/L: AS P 22 0 13.62 9.6381(L0G NORMAL) 2.2 10.2 9072 L/S 22 0 136.409 47.5441. 224.8231(L0G NORMAL) 47.0 310.0 1	DETERMINAND	UNITS	NO. OF	MEAN VALUE(OR	. RANGE)	STD.DEV.	95xILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
0135 MG/L 21 2< 7.5952- 8.2619 >2.6571. 12.8573(LOG NORMAL) 4.4 14.5 14.5 0.08 MG/L 0 20 4x 18.64/3- 18.64 >51.7993 71.0465(LOG NORMAL) <2.0 238.0 0.11 14.5 0.3904- 0.4 >0.4 >0.3288 1.0014(LOG NORMAL) 0.1 1.5 0.154/L N 21 0 0.154, 0.164 >0.1268. 0.37 (MAX VALUE) <0.05 0.37 0.17 MG/L N 5 0 9.94 4.0586 14.3 (MAX VALUE) 5.6 14.3 0.16 MG/L:N 22 0 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 0.19 MG/L:N 22 0 13.65 1.886 1.876 9.6381(LOG NORMAL) 2.2 10.2 0.972.L/S 22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1	PH 3061	PH UNITS	22 0	7.6759		0.1237		7.5	8.0	7.7
0088 MG/L 0 20 4x 18.6473- 18.64 >51.7993 71.0465(LOG NORMAL) <2.0 238.0 218.0 0111 MG/L N 21 1< 0.3904- 0.4 >0.3286 1.0014(LOG NORMAL) 0.1 1.5 0115 MG/L N 5 1< 0.154,- 0.164 >0.1268. 0.37 (MAX VALUE) <0.05 0.37 0117 MG/L N 5 0 9.94 4.0586 14.3 (MAX VALUE) 5.6 14.3 0116 MG/L:N 22 0 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 0191 MG/L.AS P 22 0 6.28 1.8276 9.6381(LOG NORMAL) 2.2 10.2 0972.L/5 22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1		1 MG/L	21 2<	7.5952-	8.2619	>2.6571.	ž	7.7	14.5	<8.0
0111 MG/L N 21 1< 0.3904- 0.4 >0.3286 1.0014(LOG NORMAL) 0.1 1.5 0118: MG/L N 5 1< 0.154 0.164 >0.1268. 0.37 (MAX VALUE) <0.05 0.37 0117 MG/L N 5 0 9.94 4.0586 14.3 (MAX VALUE) 5.6 14.3 0116 MG/L: N 22 0 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 0191 MG/L.AS P 22 0 6.28 1.8276 9.6381(LOG NORMAL) 2.2 10.2 9072.L/S 22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0		3 MG/L 0	20 4x	18.6473-	18.64	>51.7993	71.0465(LOG NORMAL)	<2.0	238.0	6.25
0118.MG/LN 5 1< 0.154.— 0.164 >0.1268. 0.37 (MAX VALUE) <0.05 0.37 0.37 0117 MG/LN 5 0 9.94 4.0586 14.3 (MAX VALUE) 5.6 14.3 14.3 0116 MG/L.N 22 0 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 0191 MG/L.AS P 22 0 6.28 1.8276 9.6381(LOG NORMAL) 2.2 10.2 9072.L/S 22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1		I MG/L N	21 14	0.3904-	4-0	>0.3286	1,0014(LOG NORMAL)	0.1	1.5	0.3
0117 MG/L N 5 0 9.94 4.0586 14.3 (MAX VALUE) 5.6 14.3 (11.3 MG/L.N 22 0 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 25.9 (191 MG/L.AS P 22 0 6.28 1.8276 9.6381(LOG NORMAL) 2.2 10.2 9072.L/s 22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1		8. MG / L. N	5 14	0.154	0.164	>0.1268.	0.37 (MAX VALUE)	<0.05	0.37	0.13
L: N 22 0 . 13.65 5.5303 24.0232(LOG NORMAL) 5.8 25.9 L. AS P 22 0 6.28 1.8226 9.6381(LOG NORMAL) 2.2 10.2 2.2 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1		7 MG/L N	2 0	76.6		4.0586	14.3 (MAX VALUE)	5.6	14.3	10.6
L.AS P 22 0 6.28 1.8276 9.6381(LOG NORMAL) 2.2 10.2 2.0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0 1		5 MG / L: N	. 0 .22	13.65		5.5303	24.0232(LOG NORMAL)	5.8	25.9	13.0
22 0 136.409 47.5461. 224.8231(LOG NORMAL) 47.0 310.0		1 MG/L. AS P	25 0	6-28		1.8276	9.6381 (LOG NORMAL)	2-2	10.2	6.25
	INST FLOW, 9073	2. L/S	22 0	136,409		47.5461.	224.8231(LOG NORMAL)	47.0	310.0	123.0

CED	
0	
	/95
ш	0.5
DAT	Š

PAGE NO. 3

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

			REPORT COVE.	RS PERIOD(S) FROM 01/	REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92	792	NO. OF SAMPLES -	MPLES - 99	
SAMPLE	SAMPLE POINT - SOGNORVICHDPO SAMPLE TYPE - DP	SOGNORWICH DP		CH (WHITLI SEDIMENTA	NORWICH (WHITLINGHAM) STW FINAL EF FINAL SEDIMENTATION TANK EFFLUENT	NORWICH (WHITLINGHAM) STW FINAL EFF COMB FINAL SEDIMENTATION TANK EFFLUENT	र	GRID REF	GRID REF - TG 27900 07800	7 80 0
DETERMINAND	UNITS	NO. OF	MEAN VALUE(OR RANGE)	RANGE)	S T D. D EV.	95% SALE (OR RANGE)	ANGE)	MINIMUM	MAXIMUM	MEDIAN
PH 0061	PH UNITS	72 0	7.4359		0.1408	7.7135-	7.1584	7,13	8.06	7.43
SS 105 C 0135	MG /L.	98 29<	5,2013	6.7727	>3.9562.	13.4442(LOG NORMAL)	NORMAL)	1.0	35.0	5.5
800+ATU.T 0085	MG/L 0	98 86<	1,0022	8.744	>1.9415	3,5118(L0G	NORMAL)	3.24	19.7	<9,105
AMMONIA N 0111	MG/L N	>97 86	0.1844-	0.2782	>0.1477.	0.5102(LOG NORMAL)	NORMAL)	<0.2	1.3	0.2125
TON AS N 0116	MG/L.N	71 0	16-4438/		4.7547:	25.1812(LOG NORMAL)	NORMAL)	7-54	33.7	16.3
P SOL.REAC 0191	0191 MG/L AS P	72 0	4.032		0.83	5.5215(LOG NORMAL)	NORMAL)	1.64	6.2	4.085
INSTFLOW 9072.L/S	1/18	84 0	747.5357		165.3459.	1045.652 (LOG NORMAL)	NORMALD	510.0	1780.0	735.5

DATE PRODUCED	Z	N.R.A. ANGLIAN REGION	1	CHEMICAL	DATA PROCESSING SYSTEM		P A(PAGE NO. 3
		OUTPUT FROM	GENERAL D	ATA ABSTRAC	OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY			
•		REPORT TYPE 712	- PART 3	STATIS	STATISTICAL SUMMARY REPORT			
		REPORT COVERS	PER100(S)	FROM 01/01	REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93	NO. OF SAMPLES	MPLES - 52	-
SAMPLE POINT - SO SAMPLE TYPE - DP	SO 6 N O R W I C H D P D P		CWHITLING EDIMENTATI	NORWICH (WHITLINGHAM) STW FINAL E FINAL SEDIMENTATION TANK EFFLUENT	NORWICH (WHITLINGHAM), STW FINAL EFF COMB FINAL SEDIMENTATION TANK, EFFLUENT	GRID REF	GRIO REF - TG 27900 07800	00820
DETERMINAND UNITS	NO. OF VALUES	MEAN VALUE(OR RANGE)		STD. DEV.	95%ILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
	0 67	7.4734		0.1345.	7.7384- 7.2084	7.19	7.8	7.45
SS 105 C 0135 MG/L.	49 18<	ţ		>2.5754.	LOG- 20	<5.0	14.0	5.5
	>95 65	0.471.		>2.5692.	8.7303(LOG NORMAL)	<2.9	<10.1	<7.7>
0111	49 20<			>1.6032.	2.0534(LOG NORMAL)	<0.2	11.4	0.219
0118	11 0	0.1795		0.2506.	0.5784(LOG NORMAL)	0.011	0.802	0.048
	11 0	17.8036		6.1709.	29.2747(LOG NORMAL)	8.14	30.8	16.3
	. 0 67	17.9349		5.9088		8.19	31.8	17.4
AC	0 65	3.6798		0.8589	5.2341(LOG NORMAL)	1.37	5.39	3.81
INST-FLOW 9072 L/S	43 0	796-4814	2	258-8886 1	1275.736 (LOG NORMAL)	12.7	1620.0	. 772.0

PAGE NO.

DATE PR0 DUCED 15/06/95

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

STATISTICAL SUMMARY REPORT. PART 3 -REPORT TYPE 712

- 16 27900 07800 NO. OF SAMPLES -GRID REF REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94 NORWICH CWHITLINGHAM) STW FINAL EFF COMB FINAL SEDIMENTATION TANK EFFLUENT SAMPLE POINT - SOGNORWICHOPO SAMPLE TYPE - DP

47

7.4 5.55 62.95 60.15 60.05 18.4 4.65 MED IAN 7.65.7 MAXIMUM 26.0 26.0 3.6 3.6 3.6 29.9 1310.0 MINIMUM 7.2 1.5 1.6 0.0 0.0 0.2 0.2 2.9 7.7205-15.3622(L0G NORMAL) 5.6334(L0G NORMAL) 0.6491(L0G NORMAL) 0.0539(L0G NORMAL) 28.28 (L0G NORMAL) 28.4847(L0G NORMAL) 6.3076(L0G NORMAL) 1051-1433(LOG NORMAL) 95XILE(OR RANGE) >4.9886 >1.5285 >0.5133 >0.0133 6.8822 5.3948 0.8058 STD.DEV. 0.1492 6.8826 3.2521 0.2315 0.0435 MEAN VALUE(OR. RANGE) 7.4265 5.3826-2.2282-0.1065-0.014, -15.3181 18.5733 789.9636 12 17 39 00 0 NO. OF S 105 C 0135 MG/L
BOD+ATU T 0085 MG/L.0
AMHONIA N 0111 MG/L N
NITRITE:N 0112 MG/L N
NITRATE N 0115 MG/L N
TON AS N 0116 MG/L N
P SOL.REAC 0191 MG/L AS P UN ITS 9072 L/S DETERMINAND INST. FLOW

- CHEMICAL DATA PROCESSING SYSTEM R EG 1 0N ANGL I AN

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

- STATISTICAL SUMMARY REPORT - PART 3 REPORT TYPE 712 REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

SAMPLE POINT - SO4PYEWIPEDB SAMPLE TYPE - DB

PYEWIPE PUMPING STATION CRUDE SEWAGE Crudé sewage(at sewage treatment works)

NO. OF SAMPLES

- TA 26300 10900 GRID REF

ج

0.6495 6.955 414.0 601.5 24.146 <0.6 5.1066 MEDIAN 9.17 7.72 1210.0 1140.0 49.7 3.01 MAXIMUM 866.0 0.152 6.07 136.0 <150.0 8.0 <0.6 0.866 MINIMUM 3.236 (LOG NORMAL)
7.72 - 6.1799
391.2534(LOG NORMAL)
1302.8499(LOG NORMAL)
1.6944(LOG NORMAL)
9.1146(LOG NORMAL) CMAX VALUE) 95XILECOR RANGE) 866.0 0.3908 235.7052. >215.2123 7.7238 >0.5939 282,3322. 1:8958 STD.DEV. 0.8314 904-4454 MEAN VALUE(OR RANGE) 0.93 6.95 6.95 5.99 6.067 2.5.953 0.4176 5.5954 469.2665 NO. OF 0 0 4 0 0 0 PH 0061 PH UNITS S 105 C 0135 MG/L 900b+ATU T 3085 MG/L 0 AMMONIA M 0111 MG/L N TON AS M 0116 MG/L N P SOL.REAC 0191 MG/L AS P UNITS 3037. M3/S DETERMINAND INST FLOW INST FLOW

CHEMICAL DATA PROCESSING N.R.A. ANGLIAN REGION - CHEMICAL DATA

DATE PRODUCED 15/06/95

0 N.

PAGE

SYSTEM

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

- STATISTICAL SUMMARY REPORT - PART 3 REPORT TYPE 712

REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93

SAMPLE POINT - SO4PYEWIPEDB SAMPLE TYPE - DB

PYEWIPE PUMPING STATION CRUDE SEWAGE CRUDE SEWAGE (AT SEWAGE TREATMENT WORKS)

- TA 2630Q 10900 GRID REF

NO. OF SAMPLES

0.536 7.13 320.0 414.0 414.2 0.1055 0.1055 0.6 4.15 0.993 7.72 558.0 793.0 35.9 0.652 1.78 6.05 MAXIMUM 0.178 6.32 65.0 171.0 0.0297 0.05 0.436 MINIMOM 280.0 7.9512- 6.1702 562.4106(LOG NORMAL) 762.1871(LOG NORMAL) 37.6378(LOG NORMAL) 0.118 (MAX VALUE) 0.652 (MAX VALUE) 1.1153(LOG NORMAL) 6.5852(LOG NORMAL) 6.1702 1.0572(LOG NORMAL) CMAX VALUE) 95XILECOR. RANGE) 0.0335, >0.0335, >0.0509. >0.3235. 1.5643. 0.2556 0.452 127.6839. 172.3623 248.5715 9,6004 SID.DEV. MEAN VALUE(OR RANGE) 0.5756 7.0607 323.2307 433.4384 19.4923 0.0931 0.2021-0.297 0000004600 NO. OF VALUES 3037 M3/S 0061 PH UNITS 0135 MG/L 3085 MG/L 0111 MG/L N 0118 MG/L N 0116 MG/L N UNITS 9072 L/S DETERMINAND P SOL.REAC SS 105 C BOD+ATU T NITAATE N INST: FLOW INST FLOW AYMONIA N NITRITE N TON AS N.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

GRID REF - TA 26300 10900 NO. OF SAMPLES ÷ REPORT COVERS PERIOD(S), FROM 01/01/94 TO 31/12/94 PYEWIPE PUMPING STATION CRUDE SEWAGE CRUDE SEWAGE(AT SEWAGE TREATMENT WORKS) SAMPLE POINT - SO4PYEWIPEOB SAMPLE TYPE - 08

2637 260.0 377.0 26.3 0.06 0.06 0.06 MEDIAN 1,223 7,9 542.0 1030.0 36.6 1.17 1.53 2.6 8.3 MAXIMUM MINIMUM 0.33 114.0 >67.4 3.7 <0.05 <0.1 <0.2 1.217 (LOG NORMAL)
8.0384- 6.0846
518.4034(LOG NORMAL)
911.9136(LOG NORMAL)
4.6849(LOG NORMAL)
1.17 (HAX VALUE)
1.53 (MAX VALUE)
1.3394(LOG NORMAL)
10.0167(LOG NORMAL) 95%ILE(OR. RANGE) 0.4958 122.9201 >257.5443 10.5486 >0.4954 >0.496 >0.633 2.45 S TD. DEV. 0.2859 0.2433 0.5716 0.5923 MEAN VALUE(OR RANGE) >395.125 0,6796 7,0615 7,0615 424,9181* 24,8538 0,305,0 0,2 NO. OF VALUES INST FLOW 3037 M3/S
PH 0061 PH UNITS
SS 105. C 0135 M6/L
B0D+ATU T 3085 M6/L N
AMMONIA, N 0111 M6/L N
NITRIE N 0118 M6/L N
10N AS N 0116 M6/L N
P SOL.REAC 0191 M6/L AS P UNITS DETERMINAND

PAGE NO.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT. TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

NO. OF SAMPLES

7.64 16.0 10.5 23.134 <0.6 3.997 562.0 - TL 22260 98160 7.84 78.5 71.8 61.6 42.8 2000.0 GRID REF 7.16 <5.0 <5.0 10.1 <0.6 1.31 368.0 7 7.8688- 7.377 44.9875(LOG NORMAL) 34.0127(LOG NORMAL) 36.3623(LOG NORMAL) 6.2196(LOG NORMAL) 7.5908(LOG NORMAL) 1562,1963(LOG NORMAL) 95%ILE(OR RANGE) FLAG FEN STW COMBINED FINAL EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT STD.DEV. 0.1248 >12.9786. >11.4462. 7.4573. >6.2746. 386,0525. 20.6105 14.3736 MEAN VALUE(OR RANGE) 7.6229 20.3473-11.765.-22.5414 1.4416-3.9891 833.8648 SAMPLE POINT - SOTFLAGFENDP SAMPLE TYPE - DP 48 0 57 25 57 14X 57 0 45 25< 48 0 NO. OF VALUES 3061.PH UNITS 0135 MG/L 0085.MG/L:0 0111.MG/L:N 0116 MG/L:N UN I TS 9072 L/S DETERMINAND PH SS 105 C 0 800+ATU T 0 AMMONIA.N 0 TON AS N 0 P SOL.REAC 0 INST FLOW

SYSTEM · - CHEMICAL DATA PROCESSING OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY ANSLIAN REGION DATE PRODUCED 15/05/95

PAGE NO.

REPORT TYPE 712 - PART 3 - STAFISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93

FLAG FEN STW COMBINED FINAL EFFLUENT FINAL SEDIMENTATION TANK, EFFLUENT

> SAMPLE POINT - SO7FLAGFENDP SAMPLE TYPE - DP

- TL 22260 98160

GRID REF

NO. OF SAMPLES

7.63 24.25 18.4 22.45 0.011 <0.622 4.215 44.0 38.7 28.7 28.7 0.927 2.33 3.26 7.69 9.5 <7.5 10.8 0.0073 <0.5 <0.6 MINIMUM 7.4729 NORMAL) NORMAL) 7.7591- 7.4729 38.4551(LOG NORMAL) 30.9675(LOG NORMAL) 30.7731(LOG NORMAL) 0.3913(LOG NORMAL) 1.4026(LOG NORMAL) 6.7021(LOG NORMAL) 978_6547(LOG NORMAL) 95% ILECOR. RANGE) 0.0726 7.8435 >6.9631. 4.8254 0.2897. >0.5572. >0.4087. 1.3086. STD.DEV. 18.0145 0.888 MEAN VALUE(OR RANGE) 7.616 23.927. 17.8583-22.077. 0.1025 0.4815-4.2897 NO. OF VALUES 0061 PH UNITS 0135 4G/L 0085 MG/L 0 0111 MG/L N 0118 MG/L N 0117 MG/L N UNITS 9072.L/S DETERMINAND P SOL.REAC BOD+ATU T AYMONIA. N NITRITE N TON AS N' INST FLOW

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S), FROM 01/01/94 TO 31/12/94

20

NO. OF SAMPLES -

SA	SAMPLE POINT - SO7.FLAGFE Sample type - op	SOZFLAGFEN DP	NDP FLAG F FINAL	FEN STW C L SEDIMENT	FEN STW COMBINED FINAL EFFLUENT . SEDIMENTATION TANK EFFLUENT	L EFFLUENT FFLUENT	GRID REF	GRID REF - TL 22260 98160	8160
DETERMINAND	D UNITS	NO. OF VALUES	MEAN VALUECOR RANGE)	RANGE)	STO.DEV.	95XILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
00	3061 PH UNITS	47	7,5336		0.1705.	7.8696- 7.1976	7.0	8.11	7.5
SS 105 C 01	135. MG/L.	>2 24	26.8063-	27.3595	>11.0347	47.7867(LOG NORMAL)	<1.0	52.0	27.0
+ATU T OC	085 MG/L.0	45	16.2295-	17.8511	>7,3092.	30.7881(LOG NORMAL)	5.9	>40.2	17.6
IONIA N O	111 MG/L. N	25	20.8869-	20.8723	>5.6767	31.2613(LOG. NORMAL)	<0.5	30.1	20.8
	118 MG/L N	11	0.0081-	0.0318	>0.0177.	0.0524(LOG NORMAL)	0.01	0.05	0.02
ITRATE N 01	117 MG/L N	11	0.4727-	0.7818	>1.4783.	2.3373(LOG NORMAL)	<0.1	5.2	<0.5
ON AS N 01	116 MG/L N	46 43<	0.2695-	0.7	>1.2764.	1.836 (LOG NORMAL)	<0.1	8.9	40.6
P SOL.REAC 01	191 MG/L AS P	47	4.2208-	4.2272	>1.5853.	7.1852(LOG NORMAL)	, <0.3	9-6	4.2
INST FLOW 90	9072.L/S	37 0	818.7557		228,1502.	1236.714 (LOG NORMAL)	391.0	1490.0	788.0

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

92
`
'n
7
_
~
10
2
/ 92
=
0
$\stackrel{\sim}{\sim}$
5
FROM
S
\sim
00
PER I
æ
P
OVERS
w
8
చ
REPORT

WISBECH STW COMBINED EFFLUENT FROM1/8/85 FINAL SEDIMENTATION TANK EFFLUENT

SAMPLE POINT - SO7WISBECHOP SAMPLE TYPE - DP

GRID REF - TF 45900 14900

54

NO. OF SAMPLES

MEDIAN	7.85 22.75 22.75 20.00 0.5253 16.6 7.3881 206.56 00.1 <0.1 <0.05	E NO. 3		14900	MEDIAN	7.805 22.5 (16.465 0.4465 0.307 31.8 31.3 31.3 8.52 238.0 (0.1 (0.0 (25.0 (25.0 (25.0 (441.0 141.0
MAXIMUM	133.0 151.0 >151.0 9.13 44.1 14.1 15.8 315.0 0.21 <0.1 <0.1	P A 6	SAMPLES - 25	- IF 45900	MAXIMUM	8.02 2084.0 2095 2.99 0.333 51.3 51.6 12.7 535.0 60.1 60.05 625.0 625.0 625.0 6441.0
MINIMUM	7.22 9.0 <12.0 <0.2 0.759 4.08 108.0 <0.1 <0.1 <0.1 <0.1		NO. 0F S	GRID REF	MINIMUM	7.53 65.0 65.2 60.2 0.279 17.9 2.34 2.86 150.0 60.1 60.1 60.0
95XILE(OR RANGE)	8.1577	ICAL DATA PROCESSING SYSTEM ABSTRACTION FACILITY STATISTICAL SUMMARY REPORT	01/01/93 T0 31/12/93	.UENT FROM1/8/85 EFFLUENT	95XILECOR RANGE)	8.066 - 7.5597 204.2291(LOG NORMAL) 62.578 (LOG NORMAL) 2.0768(LOG NORMAL) 0.333 (MAX VALUE) 51.3 (MAX VALUE) 51.3 (MAX VALUE) 51.3 (MAX VALUE) 50.8355(LOG NORMAL) 12.31335(LOG NORMAL) 12.31335(LOG NORMAL) 60.8 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE) 625.0 (ONLY VALUE)
S TD. DEV.	0.1774 26.0321 >25.5197 >1.8338 11.3062 2.0023 34.0337 >0.0028 0.0 151.3172.	CHEMICA DATA ABS	FROM	H STW COMBINED EFFLUENT SEDIMENTATION TANK EFFLU	STD.DEV.	0.1284 155.9816 >40.0554 >0.7466 0.027 16.778 11.8845 2.2133 76.0038 >0.0 0.0 0.0 0.0 0.0 0.0 0.0
R RANGE)	26, 7356 1, 1928 0, 1275	REGION FROM GENERAL	COVERS PERIOD(S)	WISBECH STW C Final Sedimen	OR RANGE)	22, 2791 0, 7551 0, 11 0, 05
MEAN VALUE(OR	7.8081 30.746 10.3689- 1.1808- 17.2476 7.7934 204.6086 0.055- 0.05	R.A. AN3LIAN OUTPUT	REPORT C		MEAN VALUE(OR	7.8129 53.3333 11.2291- 0.7385- 0.3063 33.6656 28.51 8.27 250.0 0.0 25.0 25.0 441.0 441.0
NO. OF VALUES	44 0 50 37 X 50 37 X 50 37 X 50 37 X 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	α 		SO 74 I SBE CHO PDPP	NO. OF VALUES	22 2 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
UNITS	PH UNITS MG/L MG/L.0 MG/L.N MG/L.N MG/L.N MG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL UG/L.CL	,		E POINT -	UNITS	F. PH UNITS F. MG/L. F. MG/L. N F
DETERMINAND	PH 0061 F \$\$ 105 C 0135 P BOD+ATU T 0085 P AMMONIA N 0111 P TON AS N 0116 P P 50L.REAC 0171 P CH.DSL.REAC 0172 P CD T0TAL 9265 L HG T0TAL 9269 L 124C6H3CL3 7410 L 123C6H6CL3 7411 L	DATE PRODUCED 15/06/95		SAMPLE SAMPLE	DETERMINAND	PH 35 C 0135 800+ATU T 0085 AMMONIA N 0111 NITRIE N 0118 NITRIE N 0116 P SOL.REAC 0191 CHLORIDE 0172 CD 101AL 9265 HG TOTAL 9269 TECNAZINE 7422 C643CL4N 7422 C643CL4N 7473 C744CL4S 7473 C1-PROPHAM 7528 INST FLOW 9072.

m

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94	MISBECH STW. COMBINED EFFLUENT FROM 1/8/85 FINAL SEDIMENTATION TANK EFFLUENT
	SAMPLE POINT - SOTWISBECHDP SAMPLE TYPE, + DP

GRID REF - 1F 45900 14900

NO. OF SAMPLES -

MEDIAN	20.0 8.0 8.0 60.2 0.19 28.5 28.5 28.7 27.0 <0.05
MAXIMUM	8.31 60.5 17.2 >20.0 20.2 40.0 13.6 13.6 60.5 60.5 23.4.0
MINIMUM	7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
95XILE(OR RANGE)	8.1761- 7.436 49.7894(LOG NORMAL) 15.4076(LOG NORMAL) 2.427(LOG NORMAL) 0.21 (MAX VALUE) 35.1 (MAX VALUE) 49.8053(LOG NORMAL) 14.1411(LOG NORMAL) 15.1171(LOG NORMAL) 0.3631(LOG NORMAL) 0.3631(LOG NORMAL) 0.055 (MAX VALUE)
STD.DEV.	0.1878 >4.1174 >4.1174 >0.0174 >18.5971 >13.5296 49.0102 >0.1187 >0.0028
R RANGE)	23.4739 8.5428 1.1545 0.15 21.2333 24.213 0.2053
MEAN VALUE(OR	7.806 22.5608- 6.6857- 0.1519- 0.133- 24.1782- 24.1782- 263.7626 0.0823- 142.9
NO. OF VALUES	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
UNITS	PH. UNITS #6/L #6/L #6/L #6/L #6/L #6/L #6/L #6/L
DETERMINAND	PH 0061 85 105 C 0135 800+110 T 0085 AMMONIA M 0118 NITRIE M 0117 NO AS N. 0116 P SOL.REAC 0191 CHLORIDE 0172. CD TOTAL. 9265 HG TOTAL. 9265

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

	MEDIAN	6.57	128.0	446.47	29.7	9.0>	7.8561	445.06	0.19	1.2	11.0	<0:1	<0.1	318.0	203.0
1.	MAXIMUM	7.59	1640.0	1310.0	57.6	8.93	14.0	1034.1	0.45	8.95	11.0	<0.1	<0.1	362.0	442.75
GRID REF	MINIMUM	5.99	50.5	30,3	9.56	40. 6	1.68	168.0	0.11	<0.5	11.0	<0.1	<0.1	274.0	121,58
FLUENT	95%ILE(OR RANGE)	7.3273- 5.9288	532.1164(LOG NORMAL)		48.8333(LOG NORMAL)	3.5456(LOG NORMAL)	12.4206(LOG NORMAL)	975.1811(LOG NORMAL)	0.4193(LOG NORMAL)	6.2244(LOG NORMAL)	11.0 CONLY. VALUE)	<0.1. (ONLY VALUE)	<0.1 (ONLY VALUE)	362.0 (MAX VALUE)	489.1999(LOG NORMAL)
/ F/E ATION TANK.EF	SID.DEV.	0.3549	227.1643	>199.3103	9.7404	>1.8774	2,545	247.0309	0.1008	>2.1839	0.0	0.0	0.0	62-2254	126,0055
INGS LYNN STW Inal Sediment	(OR RANGE)			>443.8935		1-1964				2,3314					
••	MEAN VALUE	6-6281	156-7593	440.482. *	30.8359	0.8021-	7-7044	508.4382	0-2294	2,2524-	111.0	0.1	0.1	318.0	250.9371
SOZKINGLYNI SP	NO. OF VALUES	37 0	45	45	45	35	37	45	19 0	19	-	1 1<	1 1	0 2	14 0
SAMPLE POINT - S SAMPLE TYPE - D	DETERMINAND UNITS	PH 0061 PH UNITS	0135	3085	0111	0116	0191	0172	9265	9198	7070	7410	7411	9071	
	SOZKINGLYND? KINGS LYNN STW F/E DP	PLE POINT - SOZKINGLYND PKINGS LYNN STW F/E PLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT NO. OF NO. OF MEAN VALUE(OR RANGE) STO. DEV. 95ZILE(OR RANGE) MINIMUM MAXIMUM	PLE POINT - SOZKINGLYND PKINGS LYNN STW F/E PLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT NO. OF NOTES MEAN VALUE(OR RANGE) STO.DEV. 95ZILE(OR RANGE) MINIMUM MAXIMUM 61 PH UNITS 37 0 6.6281 0.3549 7.3273- 5.9288 5.99 7.59	SAMPLE POINT - SOZKINGLYND P KINGS LYNN STW F/E SAMPLE TYPE - DP NO. OF NO. OF NOND UNITS VALUES MEAN VALUE(OR RANGE) STD.DEV. 95ZILE(OR RANGE) MINIMUM MAXIMUM 0061 PH UNITS 37 D 6.6281 0135 MG/L 45 D 156.7593 227.1643 532.1164(LOG NORMAL) 50.5 1640.0	SAMPLE POINT - SOZKINGLYND F KINGS LYNN STW F/E SAMPLE TYPE - DP NO. OF NO.	SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF TANK EFFLUENT NO. OF TANK EFFLUENT NAXIMUM MAXIMUM MAXIMUM NAXIMUM MAXIMUM NAX	AMPLE POINT - SOZKINGLYND F KINGS LYNN STW F/E AMPLE TYPE - DP NO. OF NO. O	AMPLE POINT - SOZKINGLYND F KINGS LYNN STW F/E AMPLE TYPE - DP NO. OF NO. O	AMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT ST. 0.0.0 of the tension of tension of te	SAMPLE POINT - SOZKINGLYND P KINGS LYNN STW F/E SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT NO. OF FINAL SEDIMENTATION TANK EFFLUENT ODG51 PH UNITS 37 O 6.46281 OD5549 7.3273- 5.9288 5.99 7.559 OD55 MG/L 0 45 O 156.7593 227.1643 532.1164(LOG NORMAL) 50.5 1640.0 OD715 MG/L 0 45 O 156.7593 227.1643 532.1164(LOG NORMAL) 50.5 1640.0 OD11 MG/L N 45 O 30.8359 9.7404 48.8353(LOG NORMAL) 7.56 57.6 OD11 MG/L N 35 23< 0.8359 9.7404 3.5456(LOG NORMAL) 70.6 8.93 OD11 MG/L N 35 23< 0.8359 7.7014 2.545 17.4206(LOG NORMAL) 1.68 14.0 OD172 MG/L CL 79 0 0.2294 0.3008 9.75.1811(LOG NORMAL) 168.0 1034.1 OD172 MG/L CL 79 0 0.2294 0.3008 0.4193(LOG NORMAL) 168.0 1034.1	AMPLE TYPE - DP	AMPLE POINT - SOZKINGLYND F KINGS LYNN STW F/E FILUENT GRID REF - FINAL SEDIMENIATION TANK EFFLUENT GRID REF - FINAL SEDIMENIATION TANK EFFLUENT GRID REF - FINAL SEDIMENIATION TANK EFFLUENT ST 0 6.6281 0.3549 7.3273- 5.9288 5.99 7.59 0.135 MG/L 45 0 156.7593 2.27.1643 532.1164(LOG NORMAL) 50.5 1640.0 0.135 MG/L 45 0 156.7593 2.27.1643 532.1164(LOG NORMAL) 50.5 1640.0 0.111 MG/L N 45 0 156.7593 2.27.1643 532.1164(LOG NORMAL) 50.5 150.0 0.111 MG/L N 45 0 156.7593 9.7404 48.8333(LOG NORMAL) 9.56 57.6 0.111 MG/L N 45 0 508.4382 2.545 12.4206(LOG NORMAL) 1.68 14.0 0.116 MG/L N 5 1 1.00 1.00 0.100 0.100 0.110 MG/L N 5 1 1.00 1.00 0.10	AMPLE TYPE - DP	AMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REF - TANK EFFLUENT GRID REAL GRID	AMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID RAY GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID REF - FINAL GRID REF - FINAL SEDIMENTATION TANK EFFLUENT GRID RAY

- CHEMICAL DATA PROCESSING SYSTEM OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY N.R.A. ANGLIAN REGION

DATE PRODUCED 15/06/95

REPORT TYPE 712 - PART'3 - STATISTICAL SUMMARY REPORT

PAGE NO. 1

38 NO. OF SAMPLES -GRID REF -REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93 KINGS LYNN STW F/E FINAL SEDIMENTATION TANK EFFLUENT SAMPLE POINT - SOZKINGLYNOP SAMPLE TYPE - DP

MEDIAN	95.9	133.0	476.0	30.35	. 0, 125	9.0>	0.623	6.68	398.5	0.185	<0.0>	2,155	×1.0	0.66666>	<8°0	31300.0	290.0
MAXIMUM	7.36	336.0	982.0	105.0	0.195	60.6	9.29	20.4	1430.0	<1.0	0.282	7-7	<20.0	0.66666	0°8×	> 50000.0	562.0
MINIMUM	0.9	84.0	32.4	6.51	0.02	<0.2	<0.2	<0.3	<3.3	0.11	<0.05	<0.5	<0°2	>99999-0	<8.0 8.0	>10000.0	86.0
RANGE)	6.0109	OG NORMAL)	DG NORMAL)	OG NORMAL)	OG NORMAL)	OG NORMAL)	OG NORMAL).	OG. NORMAL)	OG NORMAL)	OG NORMAL)	0.282 (MAX VALUE)	AX VALUE)	OG NORMAL)	NLY.VALUE)	NLY VALUE)	(MAX VALUE)	(LOG NORMAL)
95xILE(OR RANGE)	7-1717-	240.3215(L0G N	817.8493(L	62.5467(L	0.2216(106	5.3439(L0G	3.2687(L0G	14.1123(L0G.	1059.8734CL	0.6545 (106 1	0.282 (M	4.7 CM	6.2752(L	0) 0.66666			9 2
STD.DEV.	0.2946	. 49.902	>179.6692.	16.5512	0,0502.	>2.6275	>1,5105	>3.8077	>306.1648	>0.2402.	>0.0813	>1,3333.	>5,1539		0.0		168.8086
(OR RANGE)			>484.2368								0.0811	2,3837	2,6201			>30650.0	
MEAN VALUE(OR RANGE)					0.1274			-2006-9			0.0498-			66		m	
NO. OF VALUES	0	0	۾	0	0	*	17<	¥	*	*	2	7	15<	4	~	^	1
NO VA	38	38	38	38	7	1.	38	38	38	56	∞	∞	26	,-	-	4	= .
UNITS	S1 PH UNITS	55. MG / L	35 MG/L 0	11 MG/L.N	18 MG/L N	17 MG/L.N	16 MG/L N	91 MG/L. AS P	72. MG/L.CL	55. UG/L, CD	59. UG / L. HG	51. UG / L. AS	98 UG/L.	49.NO/100ML	70 % CONC.	92 NO/ML	9072 L/S
DETERMINAND					NITRITE N 011			P SOL, REAC 019	CHLORIDE 012	CD TOTAL 926	HG TOTAL. 924	AS TOTAL 926	SILVER TOT 915	E COLI P 254	ST 40 LC50 70	S FAEC P 70	INST FLOW 907

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94

39

NO. OF SAMPLES -

. •,	SAMPLE TYPE - DP	1	3514.50	_	FINAL SEDIMEN	SEDIMENTATION TANK	EF FLUENT	•	GRIO REF	ı	
DETERMINAND	AND UNITS	S	NO. OF VALUES	MEAN VALUE(OR RANGE)	(OR RANGE)	STD.DEV.	95%ILE(OR RANGE)	RANGE)	MINIMUM	MAXIMUM	MEDIA
	3061 PH UNITS	1.15	36 0	6.543		0.432	7.3942-	5.6918	5.6	7.3	6.5
SS 105 C	0135 MG/L			127.3297		42,5286	206.1988(106	G NORMAL)	39.2	246.0	126.0
D+ATU T	3085 MG/L.C	6	35 9>	471.1269*	>445.3142	>254.4349	952,7076(106	SMORMAL	30-3	1210.0	<417.0
N AINOME	0111 MG/L. N	~		27.4983*	>27.05	>8.2118	42.6137 (L 06	G NORMAL)	0.5	40.6	28.7
NITRITE N	0118 MG/L N	~	11 0	0.1018		0.0244	0,146 (100	G NORMAL)	0.07	0.14	0.1
TRATE N	0117 MG/L N	~		- 0.0	0.35	>0.2085	0.52816606	SNORMAL	<0.0>	<0.5	5.0>
TON AS N	0116	~	34 28<	0.4181-	0.7828	>1,3678	2,2241(106	G NORMAL)	0.016	· «	9-0>
SOL.REAC	0191	4S P	34 0	7.305		3,235	13.399 (LOG N	G NORMAL)	0.297	20,1	7.1

7.84 29.0 8.6 22.63 12.6 19.5312 3.2 190.41 0.05 0.045 0.045 0.045 0.045 GRID REF - TF 26100 25200 GRID REF - TF 26100 25200 23.701 25.426 4.7537 302.9 0.067 214.0 0.083 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 8.14 49.0 41.4 17.0 1.58 17.8 8.12 117.0 8.6 103.0 NO. OF SAMPLES -OF SAMPLES 7. 48 10.0 11.2 3. 59 2.02 0.972 113.0 60.05 60.025 60.025 60.025 60.025 60.025 60.025 60.025 60.025 1.58 (MAX VALUE)
17.8 (MAX VALUE)
24.1511(LOG NORMAL)
5.1809(LOG NORMAL)
0.08.5241(LOG NORMAL)
0.08.5241(LOG NORMAL)
0.08.5241(LOG NORMAL)
0.08.5241(LOG NORMAL)
0.08.5241(LOG NORMAL)
0.08.642 VALUE)
0.09.642 VALUE)
0.09.642 VALUE)
0.09.642 VALUE)
0.09.642 VALUE)
0.09.642 VALUE)
0.09.642 VALUE) 68.8319(LOG NORMAL)
55.9849(LOG NORMAL)
21.8101(LOG NORMAL)
20.4439(LOG NORMAL)
20.2629(LOG NORMAL)
260.2629(LOG NORMAL)
0.067 (MAX VALUE)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL)
0.0753(LOG NORMAL) NORMAL) STATISTICAL SUMMARY REPORT STATISTICAL SUYMARY REPORT 95XILE(OR. RANGE) 95XILE(OR_RANGE) DATA PROCESSING REPORT COVERS PERLOD(S) FROM 01/01/93 TO 31/12/93 REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92 44.1133 (LOG N 32.5411 (LOG N 17.004 (LOG N 1.58 (MAX V OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY SPALDING STW F/E FINAL SEDIMENTATION TANK EFFLUENT SPALDING STW F/E FINAL SEDIMENTATION TANK EFFLUENT CHEMICAL 0.0903 8.9721 7.9017 4.9673 0.4517 6.4591 5.1749 0.8683 >0.0163 >0.0164. >0.0054. >0.0054. 5.1248. 1.0905 37.9948. >0.0085. >0.0277. >0.0252. 0.0 0.132 19.0439. 0.0 >0.0227 >0.0277 >0.0277 >0.0277 >0.0054 >0.0054 45.5931 5.0354 >16.8127 - PART 3 m PART 0.0542 0.0529 0.0529 0.0554 0.0591 0.032 0.044 0.044 0.044 0.044 MEAN VALUECOR RANGE) MEAN VALUE(OR RANGE) REGION REGION REPORT TYPE 712 REPORT TYPE 712 N.R.A. ANGLIAN ANGL IAN 1.012. 1.1012. 1.1012. 1.1012. 1.1012. 1.1013. 7.8912 27.5 15.7541-7.8295 32.7941 8.6 2.20484-12.3625 10.7656 2.9837 192.2703 SAMPLE POINT - SO7SPALDNGOP SAMPLE TYPE - DP - SO7SPALDNGDP - DP 00,000000,000 0.5 VALUES VALUES 0.5 AMMONIA N 0111 MG/L N TON AS N 0116 MG/L N P SOL.REAC 0191 MG/L AS P GH TOTAL 9269 UG/L HG DICHLONS 0507 UG/L HG MALATHION 0535 UG/L PARATHION 0543 UG/L HG TOTAL 9269 UG/L HG MALATHION 0543 UG/L MALATHION 0543 UG/L 0113 MG / L. N 0117 MG / L. N 0116 MG / L. N 0172 MG / L. CL 9269 UG / L. HG 1/8/ 16/1 16/1 16/1 OATE PRODUCED . 15/06/95 DETERMINAND TON AS N
P SOL REAC (
CHL)RIDE (
HG TOTAL AZ INPH-ETH PENTHION 123C6H6CL3 PARATH-MET DICHLORVOS NITRITE N NITRATE N MALATHION BOD LATU T AMMONIA N FENTHION

<0.0505

<0.04
<0.04
<0.04
<0.04
<0.04
<0.04
<0.04
</pre>

3.81

7.88 27.5 18.15 8.03 1.079 10.23

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94

23

GRID REF - TF 26100 25200 NO. OF SAMPLES -SPALDING STW F/E FINAL SEDIMENTATION TANK EFFLUENT SAMPLE POINT - SO7SPALONGOP SAMPLE TYPE - DP

MEDIAN	2.9	21.6	16.35	7.35	1.18	17.3	12.4	3.6	196.0	*0°0>	<0.02	<0.02	<0.02	<0.0>	<0.0>	<0.02	117.0
MAXIMUM	8.0	73.0	4.09	27.4	1.2	23.5	23.7	0.9	270.0	<0.0>	<0.028	<0.02	<0.0>	<0.02	<0.02	<0.0>	277.0
MINIMUM	7.4	<5.0	<2.0	0.3	>1.16	11.1	6.9	5.4	125.0	<0.01	<0.02	<0.02	<0.02	<0~0>	<0.0>	<0.015	35.6
95%ILE(OR RANGE)	8-14 - 7.5754	50.5502(LOG NORMAL)	40.6245 (LOG NORMAL)	22.0707(LOG NORMAL)	1.2. (MAX VALUE)	23.5 (MAX VALUE)	20.8745(LOG NORMAL)	5.6899(LOG NORMAL)	241,6089(LOG NORMAL)	<0.05 (MAX VALUE)	<0.028 (MAX VALUE)	<0.02 (MAX VALUE)	<0.02 (MAX VALUE)	<0.02 (MAX VALUE)	<0.02. (MAX VALUE)	<0.02 (MAX VALUE)	241_2798(LOG NORMAL)
STD.DEV.	0.1432.	>13.7577	>11.9845	6.9782	>0.02	8.7681	4.2475	1,0513	27.9348	>0.0191.	>0.304	>0.0	>0.0<	>0.0	>0.0	>0.0025	63.076
R RANGE)		24.6227	18.6363		>1.18					0.035	0.022	0.02	0.02	0.02	0-02	0.0187	
MEAN VALUECO	7.8577	24.3954-	17.445 -	9.0727	1.19 *	17.3	13,009	3,7636	192,5454	0.0075-	0.0	- 0.0	- 0.0	- 0.0	0.0	0.0	121-9456
NO. OF	22 0	22 1<	22 3X	22 0	3 3	2 0	22 0	22 0	22 0	4 3<	>4 4	3<	3 3<	3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	> 7	21, 0
DETERMINAND UNITS	PH 3061 PH UNITS	SS 105 C 0135 MG/L	_		NITRITE N 0118: MG/L N	N 0117	0116	AC 0191	0172 MG/L. CL	9269	\$ 0507	0535	0543	0772 H	7441	PARATH-MET 7442 UG/L	9072

۵	
ш	
o	
\neg	
۵	
0	S
ō.	0
۵	-
	9
w	0
-	₹
⋖	
۵	

SYSTEM CHEMICAL DATA PROCESSING ANGLIAN REGION

PAGE NO.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

STATISTICAL SUMMARY REPORT - PART 3 REPORT TYPE 712

REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

-. TF 35600 40900

GRID REF

NO. OF SAMPLES

8.01 20.0 <10.0 0.868 26.2705 4.82 183.0 8.29 66.0 17.51 5.8674 46.9 7.8268 MAXIMUM 7.84 <5.0 7.45 0.221 10.4 3.18 MINIHUM 8.2443-47.8724(LOG.NORMAL). 13.1606(LOG.NORMAL). 3.889(LOG.NORMAL). 44.4465(LOG.NORMAL). (MAX YALUE) 95XILE(OR.RANGE) BOSTON HUMUS TANK EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT 0.1124 >12.9273. >2.5316 1.1609 9.0705. 0.8909. 33.3205 STD.DEV. 23.4634 10.3819 MEAN VALUE(OR RANGE) 8,0228 23,3414-6,6209-1,2784 27,6447 172.44 SAMPLE POINT - SO4BOSTON DP SAMPLE TYPE - DP NO. OF VALUES 0 4 4 0 0 0 0061 PH. UNITS 0135 MG/L. 0085 MG/L. 0111 MG/L. N 0116 MG/L. N UNITS 9072.L/S DETERMINAND PH SS 105 C C B0 D+ATU T O AMMONIA N C TON AS N C INST FLOW

PAGE NO. OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY CHEMICAL REGION N.R.A. ANGLIAN ATE PRODUCED 15/05/95

- STATISTICAL SUMMARY REPORT - PART 3 REPORT TYPE 712 REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93

BOSTON HUMUS TANK EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT

SAMPLE POINT - SO4BOSTON DP SAMPLE TYPE - DP

GRID REF - TF 35600 40900

7.98 29.5 12.7 0.64 0.154 24.0 25.3 MEDIAN 8.22 58.5 21.6 4.74 0.333 36.9 37.0 6.59 7.84 11.5 5.5 0.264 0.053 15.2 15.4 MINIMUM 8.2232-59.1609(LOG NORMAL) 22.0515(LOG NORMAL) 4.143 (LOG NORMAL) 0.3831(LOG NORMAL) 39.2686(LOG NORMAL) 38.0468(LOG NORMAL) 7.1827(LOG NORMAL) 319.8694(LOG NORMAL) 95XILECOR RANGE) 0.1133 15.2029 >5.1926 1.537 0.104 7.7918 7.0666 STD.DEV. 8.8314 MEAN VALUE(OR RANGE) 30-4156 11-6583-1-447. 0-1716 24.88 25.0916 4.955. 134-8996 NO. OF VALUES 0000000 PH UNITS MG / L . O . MG / L . O . MG / L . N . MG / L . N . MG / L . N . MG / L . N . MG / L . N . MG / L . N . MG / L . N . MG / L . A S 9072 L/S 0135 0135 0111 0111 0116 DETERMINAND BOD+ATU T AMMONIA N NITRITE N NITRATE N INST. FLOW 105 C

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

76
1121
0 31
1 76
/01/
0M 01
FROM
(\$)00
PERIOD
COVERS
REPORT

NO. OF SAMPLES -

SAMPI	SAMPLE TYPE - DP	9.0	FINAL SEDIMENTATION TANK EFFLUENT	TATION TANK EF	FLUENT			
DETERMINAND	UNITS	NO. OF VALUES	MEAN VALUE(OR RANGE)	STD.DEV.	95XILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
.900 Ha	STIND HO 1	12 0	7 - 8 5 6 6	0.2055.	8.2616- 7.4517	7-4	8.2	7.875
\$5 105 C 013'	S MG/1	12 0	21.3156	11.7475.		8.4	46.0	18.85
BOOF ATU T 208	7 NG / 1	12:0	10.9166	5-9686	22.2144 (LOG NORMAL)	2.6	23.2	9.35
AMMONTA N 0111	N 1/5% 1	12 0	1.4	0.8984.	3.0958(LOG NORMAL)	0.1	2.7	1.05
NITRIE N 011	N 1/9W 8	11.0	0.4545	0.155	0.7424(LOG NORMAL)	0.2	0.74	7.0
NITRATE N 011	7 MG/L N	110	19-4454	9.0574,	36.5368(LOG NORMAL)	7.4	32.7	17.9
	N 1/9W 9	12 0	20-4916	9.2315	37.8905(LOG NORMAL)	7.8	32.7	19.0
	0191 MG/L AS P	12 0	5.4583	1.2471	7.7118(LOG NORMAL)	2.2	7.4	5.45

	RODUCED	
	DATE PRO	2

CHEMICAL DATA PROCESSING SYSTEM REGION N.R.A. ANGLIAN

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

- STATISTICAL SUMMARY REPORT - PART 3 REPORT TYPE 712

REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

GRID REF - TA 32100 07100 NO. OF SAMPLES ? CLEETHORPES SOUTHERN OUTFALL CRUDE SEW CRUDE SEWAGE(AT SEWAGE TREATHENT WORKS) SAMPLE POINT - SOGCLEETHPOB SAMPLE TYPE - DB

UNITS

DETERMINAND

0037 N.M3 / S

YINST FLOW

9073 M3/0.

MU D FLOW

TON AS N P SOL.REAC \$\$ 105 C 800+ATU T AYMONIA N

0.3 7.65 330.0 344.0 36.64 1.44 MEDIAN 0.44 8.19 440.0 385.26 62.875 12.4 MAXIMUM 20300.0 0.28 7.38 220.0 221.0 26.2 <0.6 11800.0 8.2767- 7.1093 428.03231.06 NORMAL) 417.1774(LOG NORMAL) 5.96661.06 NORMAL) 0.4902(LOG NORMAL) 11.2805(LOG NORMAL) 2916.9108. 20408.5366(LOG NORMAL) (MAX VALUE) 95X1LECOR. RANGE) 0.0739. 0.2962. 58.592. 53.71. 10.412 >0.056 STD.DEV. MEAN VALUE(OR RANGE) 0.33. 7.693. 323.7692. 322.0807: 37.9116 0.1611-15198-5384 VALUES 0000000000 NO. OF 13. 13 0061 PH-UNITS 0135 MG/L 0085 MG/L 0011 MG/L 0116 MG/L 0116 MG/L 0119 MG/L N

PAGE NO. DATA PROCESSING SYSTEM CHENICAL N.R.A. ANGLIAN REGION ATE PRODUCED 15/06/95

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

STATISFICAL SUMMARY REPORT - PART 3 REPORT TYPE 712

GRID REF - TA 32100 07100 OF SAMPLES . 0 N REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93 CLEETHORPES SOUTHERN OUTFALL CRUDE SEW CRUDE SEWAGE(AT SEWAGE TREATMENT WORKS) - SO4CLEETHPDB - DB SAMPLE POINT Sample type

2.09 7.72 306.0 282.0 30.1 0.099 <0.6 5.14 MED IAN 2.09 8.01 752.0 454.0 454.0 0.15 1.3 7.56 8.84 26900.0 MAXIMUM 2.09 7.24 93.0 126.0 5.73 0.0334 <0.5 1.49 HINIHUM 9670.0 2.09 (ONLY VALUE,
8.0832- 7.3214
621.5727(LOG NORMAL)
480.2699(LOG NORMAL)
46.0502(LOG NORMAL)
0.155 (MAX VALUE)
1.3 (MAX VALUE) 160_2537 621.57276L0G NORMAL)
104_1517 480_2699CL0G NORMAL)
9.7872 46.0502(L0G NORMAL)
0.0545, 0.155 (MAX VALUE)
>2.0132 4.7467(L0G NORMAL)
2.2584, 9.375.2786(L0G NORMAL) 95XILECOR RANGE) 0.1933 SID.DEV. 0.0 0.699 MEAN VALUE(OR RANGE) 0.3156-1.3554-5.353. 2.09 7.7023 318.5384. 286.0769 27.8407 15513-0769 NO. OF VALUES 0000004400 3037. M3/S 0061 PH UNITS 0135 MG/L 3085. MG/L N 0111 MG/L N 0117 MG/L N 0116 MG/L N 9073. M3 / b DETERMINAND TON AS N P SOL. REAC AMMONIA N NITRITE N NITRATE N \$\$ 105 C 800+ATU T INST FLOW O FLOW

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMHARY REPORT

REPORT COVERS PERIOD(S), FROM 01/01/94 TO 31/12/94

12

NO. OF SAMPLES -

	n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ין פרייטפר יאר	CKUDE SEWAGETAJ SEWAGE IKEAIMENI WURKSJ	KKSJ			
0 6 1	DETERMINAND	ND UNITS		NO. OF VALUES	MEAN VALUE(OR RANGE)	(OR RANGE)	STD. DEV.	95%11E	95xile(or range)	MINIMIN	MAXIMUM	MEDIAN
Hd	_	0061 PH. UNIT	2	0	7.7857		0.3387.	7.4	8,5	7.4	8.5	7.7
\$\$ 105 C		0135 MG/L	7	0	293.2857		166.2886	650.0		118.0	650.0	259.0
800+	BOD+ATU T	0085. MG/L, 0	7	<u>^</u>	311,6656*	>276-4285	>157.9059.	534.0	(MAX VALUE)	\$65.0 ·	534.0	287.0
A:Y HO		0111 MG/L N	7	0	36.2		15.347	67.4	(HAX VALUE)	24.2	4.19	37.6
MITRI	NITRITE N	0118 MG/L. N	*	34	0.015		>0.00	0.06	(MAX VALUE)	<0.05	0.06	<0.0>
NITRA	NITRATE N	0117 MG/L.N	7	34	- 50*0		>0.15	<0.5	(MAX VALUE)	0.2	. <0.5	<0,
TON /	TON AS N	0116 MG/L N	7	>9	0.0857-	0.5285	>0.1496	9.0	(MAX VALUE)	<0.2	9.0	9.0>
1CS 4	SOL. REAC	0191. MG/L. AS	P 7	0	7,3671.		2,3867	11.5	(MAX VALUE)	4.3	11.5	6.2
M. 0	FLOW	M. D FLOW 9073 M3/D	₩.	3	1.0912.5		6721.9764.	19900.0	(MAX VALUE)	190.0	19900.0	11405,0

UCED	
PROD	
DATE	7070
٥	•

SYSTEM PROCESSING DATA CHEMICAL REGION ANGL IAN

PAGE NO.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

STATISTICAL SUMMARY REPORT ı - . PART 3 REPORT TYPE 712 REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

7.33 206.0 318.0 39.4 <0.6 TM 17200 41900 45 7.86 448.0 623.79 50.9 1.5673 MAXIMUM ı GRID REF MINIMUM 6.85 38.0 96.5 7.74 <0.6 NORMAL) NORMAL) NORMAL) NORMAL) NORMAL) 95%ILE(OR.RANGE) 7.8071-336.1342 (LOG N 537.3529 (LOG N 54.4676 (LOG N 0.8231 (LOG N 13.8104 (LOG N CLIFF QUAY FINAL EFFLUENT PRIMARY SEDIMENTATION TANK EFFLUENT 0.2372. 71.5812 7113.7765 10.3085 >0.2015 2.717 STD.DEV. 326.9729 0.6746 MEAN VALUECOR RANGE) 7,3397 202,9268. 324,5339-35,5302 0,2118-8,7978 - SOGCLIFFQUD JO - DJ NO. OF VALUES 0061 PH UNITS 0135 MG/L 0085 MG/L 0 0111 MG/L N 0116 MG/L N PH UNITS UNITS SAMPLE POINT SAMPLE TYPE DETERMINAND TON AS N (SS 105 C BOD+ATU T AMMONIA N

PAGE NO. SYSTEM STATISTICAL SUYMARY REPORT DATA PROCESSING OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY CHEMICAL PART .3 ANGLIAN REGION REPORT TYPE 712 ATE PRODUCED

54 OF SAMPLES REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93

CLIFF QUAY, FINAL EFFLUENT PRIMARY, SEDIMENTATION TANK EFFLUENT

SAMPLE POINT - SOCCLIFFQUDJO SAMPLE TYPE, - DJ

- TM 17200 41900

GRID REF

7.38 144.0 258.5 38.25 0.078 <0.6 6.805 MEDIAN 284.0 284.0 57.3 57.3 0.258 0.258 1.06 MAXIMUM 6.95 23.0 62.7 9.35 0.012 <0.5 1.71 MINIMUM 7.839 - 6.8842 288.2673(LOG NORMAL) 465.4071(LOG NORMAL) 55.9278(LOG NORMAL) 0.2568(LOG NORMAL) 0.6558(LOG NORMAL) 14.057 (LOG NORMAL) 95XILE(OR.RANGE) 0.2423 70.8357. >109.2794. 11.15. 0.0859. >0.0859. >0.1041. 3.4922. STD.DEV. 0.5754 267.6583 MEAN VALUE(OR RANGE) 7.3616 154.6791 252.4652-35.327 0.0992 0.1663-0.2805-7.4662 NO. OF VALUES 00200820 0061 PH. UNITS 0135 MG/L 0085 MG/L. 0 0111 MG/L. N 0118 MG/L. N 0116 MG/L. N PH. UNITS DETERMINAND P SOL. REAC SS 105 C BOD+ATU T AMMONIA N NITRITE N NITRATE N

JATE PRODUCED 15/06/95

PAGE NO. 1

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94

23

NO. OF SAMPLES -

					PRIMARY SEDIMENTATION TANK EFFLUENT	NIATION TANK	EF FLUENT				
DETERMINAND			NO. OF VALUES	MEAN VALUECOR RANGE)	OR RANGE)	STD. DEV.	95%ILE(OR RANGE)	NGE)	MINIMUM	MAXIMUM	MEDIAN
Н			22 0	7.4018		0.262	7_9179-	6.8856	96.9	ø	7,35
ss 105 ¢	0135		22 0	155.9636		64.7142.	90	_	29.0	278.0	151.5
30D+ATU T	0085		22 3X	245.695 -	257,4545	>84.7956	408.9201 (LOG	NORMAL	28.9	395.0	251.5
AMMONIA N			22 0	41.8		13.4477.	66.6776(106	NORMALD	16.8	71.4	39.75
NITRITE N	0118		11 1<	0.0772-	0.0318	>0,0337.	0.1429(1.06	NORMAL)	<0.0>	0.17	0.08
NITRATE N	0117	z	11 9<	0.1063-	0.3345	>0.2863	0.69 (1.06	NORMAL)	<0.01	0.97	0.2
TON AS N	0116	N	22 22	- 0.0	0.4272	>0.1956	0.5687 (LOG N	NORMAL)	<0.2	9.0>	<0.5
P SOL. REAC	0191	AS P	22 0	8.8045		2,3032	12.4232(106	NORMAL	4.6	12.2	9.05

0	
w	
ပ	
\supset	
٥	
0	
œ	
٩	
	4
ш	
-	
⋖	
0	_

N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING SYSTEM

PAGE NO. 2

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92

52

NO. OF SAMPLES -

	MED IAN	7.5 18.0 9.3 2.79 17.483
0	MAXIMUM	8.6 53.5 28.5 9.54 22.671 6.58
GRID REF	MINIMUM	7.31 7.5 <5.0 0.4073 9.78 2.23
.v. FLUENT	95%ILE(OR RANGE)	7.938 - 7.1046 33.8987(LOG NORMAL) 20.2277(LOG NORMAL) 7.1972(LOG NORMAL) 22.5779(LOG NORMAL) 6.6934(LOG NORMAL)
CHELMSFORD MIXED FINAL EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT	STD.DEV.	0.2115 7.9315 >5.1997. 2.2076 3.1643
IELMSFORD MIX NAL SEDIMENI	OR RANGE)	10.7534
	MEAN VALÜE(OR RANGE)	7.5213 18.9993 10.0391- 3.06 16.9356 4.7543
SO3CHELMSDO DP	NO. OF	37 0 49 0 49 5 49 0 36 0 37 0
SAMPLE POINT - SOJCHELMSDOP Sample type - DP	UNITS	61 PH UNITS 35 MG/L 85 MG/L.0 11 MG/L.N 16 MG/L.N
SAM.	DETERMINAND	SS 105 C 0135 MG/L 45 BODEATU T 2085 MG/L 0 45 AMMONIA N 0111 MG/L N 45 TON AS N 0116 MG/L N 35 P SOL.REAC 0191 MG/L AS P 3

SAMPLE POINT - SO3CHELHSDDP N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING SYSTEM PAGE SAMPLE POINT - SO3CHELHSDDP CHELMSFORD HIXED FINAL EFFLUENT SAMPLE POINT - SO3CHELHSDDP CHELMSFORD HIXED FINAL EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT SAMPLE TYPE - DP SAMPLE TYPE	PAGE NO. 2			MEDIAN	7.555 15.5 10.35 1.955 0.236 17.15
DUCED	9 A G		-	MAXIMUM	7.86 66.0 31.1 6.52 23.2 23.2 25.5 6.81
DUCED N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING		NO. OF SA	GRID REF	MINIMUM	7.13 9.0 <3.8 0.694 0.117 13.1 13.1
DUCED N.R.A. ANGLIAN REGION - CHEMI OUTPUT FROM GENERAL DATA A OUTPUT FROM GENERAL DATA A OUTPUT FROM GENERAL DATA A COUTPUT FROM GENERAL DATA A COUTPUT FROM GENERAL DATA A REPORT TYPE 712 - PART 3 - REPORT TYPE 712 - PART 3 - REPORT TYPE 712 - PART 3 - CHELMSFORD MIXED FINAL RAMPLE TYPE - DP NO. OF NO. OF AND UNITS 24 0 7.5429 O155 MG/L O155 MG/L O158 MG/L O158 MG/L O158 MG/L O179 MG/L O170 M	8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	1/93 TO 31/12/93	JENT FLUENT	95XILE(OR RANGE)	2225522
DUCED N.R.A. SAMPLE POINT - SO3CHELMSDDP SAMPLE TYPE - DP NO. OF N	CHEMICAL D	0 (S) FROM 01/01	IXED FINAL EFFLU ITATION TANK EFF	STD.DEV.	0.1378 16.4902 >7.4698 1.7673 0.1536 3.531 3.6288 0.9301.
DUCED N.R.A. SAMPLE POINT - SO3CHELMSDDP SAMPLE TYPE - DP NO. OF N	LIAN REGION TYPUT FROM GENER TYPE 712 - PA	IRT COVERS PERIO	CHELMSFORD MI FINAL SEDIMEN	(LUECOR RANGE)	1
SAMPLE POINT - SO3CHEL SAMPLE TYPE - DP NO. 0 ETERMINAND UNITS 24 C 105 C 0135 MG/L 24 C 1011 MG/L N 24 C	REPOR	REPO	MS00P		22.915 5. 12.645 6. 25.33 7. 25.33 17.55 7. 36.975
SAMPLE POINT SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE 0061.PH UNI 105 C 0135 MG/L 0 0011 MG/L N 101 N 0111 MG/L N RRITE N 0117 MG/L N RRITE N 0117 MG/L N RRITE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N RATE N 0116 MG/L N			- SO3CHEL - DP		15 24 0 24 0 24 0 0 24 0 0 0 0 0 0 0 0 0 0
	FE PRODUCED 5/05/95		SAMPLE POINT Sample type		0061. 0135 0085 0111 0118 0116

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

. OF SAMPLES -
2
,
56
12
7
31
TO 31/12/9
34
01/01/94
0/
-
Σ
RO
<u>.</u>
S
ERIOD(S
A I
PE
R S
COVERS
REPORT

56

SAMPLE POINT - SO3CHELMSD SAMPLE TYPE - DP	JINT - 'PE -	SO3 СНЕ L DP	MSD 0 P		SFORD MIX SEDIMENT	CHELMSFORD MIXED FINAL EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT	LUENT FFLUENT	GRID REF	F	
DETERMINAND	UNITS	NO. OF	u. 67	MEAN VALUE(OR RANGE)	RANGE)	SID.DEV.	95%ILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
	UNITS	25		7-4896		0.2955	5 0718 × -8170 8	٠ ،	a	r
55 105 C 0135 MG/		25	~		14.352	>10.2385	=		0.0	* * * * * * * * * * * * * * * * * * * *
	0.1	25	~		7-168	>4-6577	15 A8 87 C OG NOBRALD	. r	0,400	- 1
	z L	25	~		5.348	>4.4227	13.5098 (LOG NORMAL)	20.7	1.02	7 7
NITRITE N 0118 MG/L.N	ء د تـ	Ξ	0	0.239		0.0832.	0.3938(LOG NORMAL)	0.13	0.38	0.23
	: z		v		12.909	>5.7062	23.6336(LOG NORMAL)	<0.5	21.6	13.5
0 501 8545 0101 MG/L.N		54		16.1		3,45	22.307 (LOG NORMAL)	5.6.	21.8	15,15
SOL. KEAL UIST. MG/	LASP	S :	v		4.892	>2.0528	8.7453(LOG NORMAL)	<0.2	10.3	4-7
INST. FLOW 9072 L/S		13 0	_	458-8461		63,4032	569-9087 (LOG NORMAL)	350.0	616.0	458.0

٥	
w	
c	
\neg	
0	
0	r
α	0
٥.	`
	~
ш	C
-	
⋖	S
0	_

SYSTEM - CHEMICAL DATA PROCESSING REGION ANGL IAN N. R. A.

PAGE NO.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

7 TOVO

NO. OF SAMPLES - 12	GRID REF - TM 55600 93700
REPORT COVERS PERIOD(S) FROM 01/01/92 TO 31/12/92	SAMPLE POINT - SO&LOWESTOD BO LOWESTOFT NESS POINT SEA OUTFALL SAMPLE TYPE - DB CRUDE SEWAGE(AT SEWAGE TREATMENT WORKS)

6.615. 393.0 592.5 27.176 <0.6 5.5529 MEDIAN 7.99 975.0 1150.0 35.0 2.1286 MAX IMUM MINIMUM 4.67 116.5 356.6 5.69 <0.6 8.1285- 4.8147 852.0297(LOG NORMAL) 1185.987(LOG NORMAL) 40.25.62(LOG NORMAL) 10.5512(LOG NORMAL) 95ZILE(OR.RANGE) 0.841 235.768 271.1097 8.2065 >0.6215 2.4679 STO.DEV. 1.0202 MEAN VALUE(OR RANGE) 6.4716 405.875. 677.8058 25.0567 0.693.— NO. OF 0000%0 PH 0061 PH UNITS S 105 C 0135 MG/L B00+4TU T 0085 MG/L O AMMONIA N 0111 MG/L N TON AS N 0116 MG/L N P SOL.REAC 0191 MG/L AS P UNITS DETERMINAND

CHEMICAL DATA PROCESSING SYSTEM N.R.A. ANGLIAN REGION JATE PRODUCED 15/06/95

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

- STATISTICAL SUMMARY REPORT

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93

LOWESTOFT NESS POINT SEA OUTFALL CRUDE SEWAGE(AT SEWAGE TREATMENT WORKS)

SAMPLE POINT - SO6LOWESTOD BO SAMPLE TYPE - DB

GRID REF - TM 55600'93700

NO. OF SAMPLES -

DETERMINAND	D UNITS	NO. OF VALUES	MEAN VALUE(OR RANGE)	GE) S	TD DEV.	95%ILE(OR RANGE)	MINIMUM	, MAXIMUM	MEDIAN
ŏ	J61 PH. UNITS	12 0	6.6283		0.9071	8_4154- 4.8412	4.35	7.63	6.76
0 2	135 MG/L	12 0	752.8333	•	37.5461	1925,6425(LOG NORMAL)	266.0	25 60 • 0	530.0
TUT	385 MG/L 0	12 0	390,8333	,-	151.9721	2274.8139(LOG NORMAL)	404.0	3190.0	206.5
IA N O	111 MG/L. N	12 0	27,5083		8.5437.	43.2766(LOG NORMAL)	11.1	44.4	28.65
1E N 0	118 MG/L N	11, 0	0.3718		0.7075	1_3236(LOG NORMAL)	0.0076	2.23	0.095
O W HI	117 MG/L.N	11 5<			>0.9147.	2.5698(LOG NORMAL)	<0.5	5.66	9.0>
O N S	TON AS N 0116 MG/L.N 1	12 5<	1,357 1,	209	>1,4917.	4.1351(LOG NORMAL)	9.0>	. 88.	699.0
REAC 0	101 MG/1 AS P	120			1.1837	7.826 (LOG NORMAL)	2.29	7.51	5.725

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94 ... NO. OF SAMPLES. -

15

	SAMPLE TYPE - 08.	80	UDE SEWAGECA	IT SEWAGE TRE	CRUDE SEWAGE(AT SEWAGE TREATMENT WORKS)			
	NO. OF VALUES	MEAN VALUE(OR RANGE)	OR RANGE)	STD.DEV.	95%ILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
PH UNITS	12 0		•	0.4962.	7.8693- ,5.914	5.7	7.6	7.0
	12 0	425.5		144.6409	2 50	88.0	623.0	419.5
	10 1>		>458.47	>218.4829	912.7724(LOG NORMAL)	> 20.7	875.0	461.0
	12 0			14.5536	53.17'95 (LOG NORMAL)	2, 18	51.4	25.65
	11 2<		0.0797	>0.0366	0.1463(LOG NORMAL)	<0.00	0.14	0.08
	11 11<		0,3545	>0.2018	0.5241(LOG NORMAL)	<0.1	<0.5	<0.5
	12 8<		1.0191	>0.3918	2.5859(LOG NORMAL)	<0.1	3.1	<0°0>
MG/L AS P	10 0			2.792	11.6958(LOG NORMAL)	1.82	10.0	6.55

SYSTEM

N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

REPORT COVĖRS PERIOD(S) FROM 01/01/92 TO 31/12/92

54

SAMPLES

P.

POINT - SOJBURNHAMDP BURNHAM FINAL EFFLUENT TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT	NO. OF UNITS VALUES MEAN VALUE(OR RANGE) STD. DEV. 95XILE(OR RANGE) MINIMUM MAXIMUM MEDIAN	PH UNITS 22 0 7.5972 0.1466 7.8862 7.3083 7.32 7.92 7.6 MG/L 24 2 13.5 - 13.9166 >12.071 35.77466L0G NORMAL) 5.0 59.0 10.0 MG/L 0 24 10 5.4687 - 10.0562 >11.7814 25.7888L0G NORMAL) 2.2 <60.0 <5.61 MG/L N 24 1 14.0211 14.0294 >14.888 40.14456L0G NORMAL) <0.2 38.9 5.29 MG/L N 21 4 12.7861 12.0317 34.55816L0G NORMAL) <0.6 34.344 9.79 MG/L N 21 4 12.8804 >12.0317 34.55816L0G NORMAL) <0.6 34.344 9.79 MG/L A 12.661 11.049 (LOG NORMAL) <0.3 9.4 7.0287	N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING SYSTEM OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY	E 712 - PART 3 - STATISTICAL SU
SAMPLE POINT SAMPLE TYPE	DETERMINAND UNITS	S 105. C 0135 MG/L 80.0+ATU T 0085 MG/L 0 AM MONIA N 0111 MG/L N TON AS N 0116 MG/L N P S0L.REAC 0191 MG/L AS	oate Produced 15/06/95	

7.46 5.5 5.5 0.396 0.644 17.3 17.2 6.22 16.00 58250.00 58250.00 1.35 0.335

25.5 14.3 26.7 20.7 19.1 23.7 23.7 25.0 60.05 90.00 1.9 1.9

7.31 <5.0 <3.1 0.249 0.399 12.7 5.5 5.5 5.5 5.6 0.79 0.79 0.79 0.16 0.16

7.745- 7.198
15.3874(LOG NORMAL)
10.9503(LOG NORMAL)
0.712 (MAX VALUE)
19.1 (MAX VALUE)
24.3701(LOG NORMAL)
8.7124(LOG NORMAL)
224.5797(LOG NORMAL)
224.5797(LOG NORMAL)
1.424 (LOG NORMAL)
2.4577(LOG NORMAL)
1.424 (LOG NORMAL)
2.4177(LOG NORMAL)
2.4177(LOG NORMAL)
1.424 (LOG NORMAL)
2.4577(LOG NORMAL)
2.51301(LOG NORMAL)
2.525.0 (MAX VALUE)

0.1386 >4.7473 >3.2591 4.5624 0.1646 3.3005 4.7503 1.3187 27.7797 >0.0 46174.0727 0.6201 0.513 0.0421 25.9711

7.4713 5.413 -2.73042.9016 0.585 16.3656 15.6152 6.3447 175.5652 0.0 1.453 0.511. 0.0 1.87.0

PH
SS 105 C
BB0b+ATU T
NITRATE N
TON AS N
P SJL, REAC
CHLORIDE
GCLLOROFORM
ECOLI P
CHOROFORM
ECOLI P
CHOROFORM
GROMOFORM
INST. FLOW
9

0172 MG/L C 9269 UG/L H 2549 NO/1000 9067 UG/L 9068 UG/L 9070 UG/L 9072 L/S

0061. PH UNITS 0135 MG/L. 0085 MG/L. 0111 MG/L.N 0118 MG/L.N 0117 MG/L.N 0191 MG/L.N 0191 MG/L.N 0192 MG/L.C 9269 UG/L.C 9269 UG/L.C 0.12

MINIMUM

95XILECOR RANGE)

MEAN VALUE(OR RANGE)

NO. OF VALUES

DETERMINAND

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

- STATISTICAL SUMMARY REPORT - PART 3 REPORT IYPE 712

54

NO. OF SAMPLES

GRID REF

REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94

BURNHAM FINAL EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT

SAMPLE POINT - SO3BURNHAMDP SAMPLE TYPE - DP

7.5 6.0 <3.0 1.0 14.95 14.95 5.6 160.5 <0.05 >16950.0 1700.0 7.8 55.0 539.7 339.7 30.86 16.5 16.5 16.5 10.0 277.0 27 MAXIMUM 7.2 -1.2 -1.0 -0.15 13.4 -0.0 13900.0 13900.0 13900.0 13900.0 140.0 146.0 MINIMUM 7.8154- 7.1483
27.8902(L0G NORMAL)
13.377(L0G NORMAL)
13.8536(L0G NORMAL)
50.86 (MAX VALUE)
16.5 8318(L0G NORMAL)
10.6495(L0G NORMAL)
23.4435(L0G NORMAL)
20.00 (MAX VALUE)
7700 (MAX VALUE)
720.00 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE)
1.0 (MAX VALUE) 95XILE(OR RANGE) >7.3953 13.853 >0.502 >0.86 2.192 16.86 >0.913 25.831 2.2312 10.649 35.3351 233.443 >0.0213 >20300.0 0.0 1700.0 >8131,7279 >20300.0 0.4668 2.2 >0.1751 >0.0875 >0.3412. 24.7019 >13.0783 S TD.DEV. 0.1693 8.7333 5.019 3.914 >0.505 0.0376 0.825 MEAN VALUE(OR RANGE) * >14250.0 * >16950_{*}0 7.4819 7.8285-2.235-3.8727-0.15 * 14.95 12.7409-6.5045 170.0 1.2375 0.2562-0.135 -189.3235 1730<u>.</u>0 8530<u>.</u>0 13930.0 NO. OF VALUES 0085 MG/L.0 0111 MG/L.N 0118 MG/L.N 0117 MG/L.N 0116 MG/L.N 0117 MG/L.N 0172 MG/L.CL 9193 NO/100ML 2346 NO/100ML 2549 NO/100ML PH UNITS 0061. 0135 0085 9067 9068 9069 9070 DETERMINAND

٥	
w	
ပ	
⊃	
٥	
0	
æ	
٩	
	V
ш	C
_	_
4	
۵	_

N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING SYSTEM

PAGE NO.

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT
SUMMARY
STATISTICAL
- 2 -
- PAR
F 712
1 T
REPOR

				REPURI COVERS PERIODIS) FROM OLIGINSE TO STAILS 72		2012	
COLCHESTER FINAL SEDI	HESTER L SEDI	COM	COLCHESTER COMBINED EFFLUENT FINAL SEDIMENTATION TANK EFFLUENT	T FLUENT	GRID REF		
MEAN VALUE(OR RANGE)	RANG	E)	STO.DEV.	95XILE(OR RANGE)	MINIMUM	MAXIMUM	MEDIAN
7.6584			0.1269	7.9085- 7.4082	7.35	8.07	7.65
	17.0	4.8	>22.2836	52,6915(LOG NORMAL)	4.5	143.0	10.75
	14.7	14.7309	>11,4552	34.5756(LOG NORMAL)	2,93	73.5	10.9
			14.8539	39.8235 (LOG NORMAL)	0,386	78.068	5.935
	8	8.3585	>5.4389	18.5966(LOG NORMAL)	9.0>	16.6	8.395
6.1224			2,1939	10.2091(LOG NORMAL)	0-341	12.9	6.298

PAGE NO.			- 34	-	
			NO. OF SAMPLES	GRID REF -	
DATE PRODUCED N.R.A. ANGLIAN REGION - CHEMICAL DATA PROCESSING SYSTEM 15/06/95	OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY	REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT	REPORT COVERS PERIOD(S) FROM 01/01/93 TO 31/12/93	SAMPLE POINT - SO3COLCHTRDP COLCHESTER COMBINED EFFLUENT SAMPLE TYPE - DP FINAL SEDIMENTATION TANK EFFLUENT	NO. OF

MEDIAN	7.81 13.75 9.5 25.65 0.589 1.675 1.81
MAXIMUM	8.02 169.0 169.0 33.4 2.27 2.27 10.8
HINIMUM	7.53 6.0 <4.2 4.6 0.111 0.873 <0.6
95%ILE(OR.RANGE)	8.0083- 73.4994(LOG NORMAL) 53.306 (LOG NORMAL) 55.904(LOG NORMAL) 1.9561(LOG NORMAL) 4.0282(LOG NORMAL) 6.7646(LOG NORMAL) 15.9091(LOG NORMAL)
SID. DEV.	0.1052 36.9936 >28.6531, 7.359 0.6515 1.1081 >2.3224, 5.3426
OR RANGE)	15,8937.
MEAN VALUE(OR	7.8009 21.125 22.2562. 0.7599 1.931. 2.5272- 6.1265
NO. OF VALUES	32 0 32 0 32 9 32 9 10 0 10 0 32 2<
UNITS	0061 PH UNITS 0135 MG/L 0085 MG/L 0 0111 MG/L N 0117 MG/L N 0116 MG/L N
DETERMINAND	PH 000 \$\$ 105 c 013 800+ATU T 008 A4MONIA N 011 NITRITE N 011 NITRATE N 011 NITRATE N 011 P SOL. REAC 011

DATE PRODUCED 15/06/95

OUTPUT FROM GENERAL DATA ABSTRACTION FACILITY

REPORT TYPE 712 - PART 3 - STATISTICAL SUMMARY REPORT

~		MEDIAN	7.635	12.0	æ. ∞.	19.85	7.0	0.75	1.0	5.55
NO. OF SAMPLES - 27	ı	MAXIMUM	6-2	166.0	57.2	35.7	1.79	8.8	10.4	11.3
NO. OF SA	GRID REF	MINIMUM	9.9	4.0	2.8	4.0	0.03	0.3	9.0>	1.9
194	í	ANGE)	7.0937	NORMAL)	NORMAL)	NORMAL)	NORMAL)	NORMAL)	NORMAL	NORMAL)
1/94 TO 31/12	FLUENT	95%ILE(OR RANGE)	8.0893-	70,018 (LOG N	29.6556(106	37.7263(L06	1.7284(LOG NORMAL)	6.4846(L0G	10.0575(LOG NORMAL)	9.4966(206
REPORT COVERS PERIOD(S) FROM 01/01/94 TO 31/12/94	COLCHESTER COMBINED EFFLUENT FINAL.SEDIMENTATION TANK EFFLUENT	SID.DEV.	0.2527	>33,9433	>10.6522	8.994	0.6305	>2.7772	>3.761	2.0635
ERS PERIOD (CHESTER COME	RANGE)		20.7653	>11,2			2,103	3.56	
REPORT COV	, .	MEAN VALUE(OR RANĢE)	7.5915	20.15 -	10.6727*	20.8038	0.613	1.953 -	3-416 -	5.6484
	SAMPLE POINT - SO3COLCHTRD SAMPLE TYPE - DP	NO. OF VALUES	.0 92	>2 92						
	SAMPLE POINT - S SAMPLE TYPE - C	UNITS	PH UNITS	MG/L	MG/L.0	MG/L.N	MG/L N	MG / L. N		MG/L AS P
	SAMPLE	DETERMINAND	РН 0061		-	0111	0118	N 0117	_	P SOL.REAC 0191

- Discharges into Tampa Bay which Runs into the Gulf

the mind of this is

56.57

FEB HAR HAY JUL JUL SEP OCT MOV DEC

7.

10 20

HAR HAY HAY HOG OCT DEC

PERMIT REQUIREMENTS

PERMITTEE: city of Tampa Hookers Point AWWTP

CITY OF TAMPAZAWTP

GMS ID NO.: 4029M03950 PERMIT NO.: D029-184532B

Feb 09,95

SPECIFIC CONDITIONS:

- Drawings, plans, documents or specifications submitted by the permittee, not attached hereto, but retained on file at the Southwest District Office, are made a part hereof.
- In accordance with Chapter 17-602, F.A.C., the required certified operator on site time is: A Class C or better operator for 24 hours/day, and 7 days a week. The lead/chief operator must be Class A.
- The effluent shall be sampled in accordance with Chapter 17-601, F.A.C. and shall meet the following limitations:

			туре
Unit	Minimum	Maximum	Sample Frequency
mg/l	**	5 annual a	**fpo Daily wy 7 days/wk
mg/l	Report	-	**fpc Daily 7 days/wk
#100			grab Daily
	detecta		7 days/wk avg **fpc Daily
mg/1	-	3. annuar	avg **ipc bally 7days/wk
mg/l	Report	-	**fpc Daily 7days/wk
mq/1	Report	_	**fpc Daily
	*		7days/wk
			grab Hourly/24
mg/1	-	0.01	any sample hrs/day
ngd	-		***rmf&t Continuous
NU OTE	6.00		****meter Continuous
1g/1	5.00	-	****meter Continuous
	mg/l #100 mg/l mg/l mg/l mg/l	mg/l - mg/l Report #100 *Non- detecta mg/l - mg/l Report mg/l Report mg/l Report	mg/l Report - #100 *Non- 25 detectable mg/l - 3 annual mg/l Report - mg/l Report - mg/l Report - mg/l - 0.01 mg/l - 70.0 ADF agd - 70.0 ADF agd 6.00 8.50

^{*} Non-detectable in at least seventy-five (75%) of samples collected during the monthly operating period (e.g. 23 per 30 samples)

** fpc-Flow Proportional Composite (24 Hours)

*** rmf&t-Recording Flowmeter and Totalizer

The results shall be reported monthly on DER Form 17-601.900(1) to

Page 2 of 7

and the control of the second state additional and the second second second second second and an expensive second

^{****} hourly measurements for 24 hours may be substituted for continuous measurement

SISTEMA DE AGUAS RESIDUALES DE LA CIUDAD DE TIJUANA, B.C.

FECHA: 6/ ABRI) 95
1
PARA : MARISA CABAILERO
EMPRESA O DEPENDENCIA:
CIUDAD : ESTADO :
No. DE FAX (614) 55-35-404
DE: QUIMO: BENIGNO MEDINA PARRO
DEPARTAMENTO: TEATAMIENTO
No. DE PAGINAS 2 INCLUYENDO CARATULA.
ASUNTO: SE VUELVEN A ENVIAR DATOS
TRASMITIO : J.M.
HORA: 18:00
RECIBIO:

AUTOPISTA TIJUANA-ENSENADA KM. 16+500, PUNTA BANDERA B. C TEL Y FAX: (91 661) 3-30-12 Y 3-30-14

EN U.S.A. 482 W. SAN YSIDRO BLVD. SUITE 1615, SAN YSIDRO, CA 92173

The parties of the second of the second seco

COMISION DE SERVICIOS DE AGUA DEL ESTADO SISTEMA DE ALEJAMIENTO Y TRATAMIENTO DE AGUAS RESIDUALES DE LA CIUDAD DE TIJUANA, B.C.

CALIDAD DE AGUA RECIBIDA Y PRODUCIDA POR EL SISTEMA.

UNIDAD	PARAMETRO	AFLUENTE DE LA PLANTA DE TRATAMIENTO	EFLUENTE DE LA PLANTA DE TRATAMIENTO
mg/l	D.B.O.5 (total)	427.7	54.6
226/2	OXIGENO		
mg/l	DISUELTO	0.3	2.8
	DEMANDA QUIMICA		
mg/l	DE OXIGENO (total)	811.0	117.0
G,	GRASAS	·	
mg/l	Y ACEITES	244.3	50.9
	SOLIDOS SUSPENDIDOS		
mg/l	TOTALES TOTALES	302,7 [.]	41.5
	SOLIDOS		
ml/l	SEDIMENTABLES	5.4	0.0
	FOSFORO PR		
mg/l	TOTAL	7.3	3.8
	NITROGENO NH		
mg/l	AMONIACAL	47.1	20.6
	DETERGENTES		
mg/l	SAAM	29.8	16
,	COLIFORMES		
NMP/100 ml	TOTALES	24000E6	<250
	COLIFORMES		
NMP/100 ml	FECALES	· 24000E6	<250
	TEMPERATURA		
90		21.3	21.0
	POTENCIAL DE		~ ~
PH	HIDROGENO	7.2	7.3

FACSIMILIE TRANSMITTAL

FAX No. (619) 553-5404	Job No.
= 10 - 9-	Time:
Wedon Killer	
TO: Wanissa Caballens	Tel (
OF:	
And a 1104 regueste	d.
SUBJECT: Ando you requoste	
Af you need were i	y enwation
of details please	call
PedRo	
	736-6669
C dea dead	• *
- SECONDARY TREATMENT	
Plant Maintains 5 outfails	
1 LARGE 40 mgd	
2/3 Medium 11/12 mgd	
2/3 Small 3/4 mad	
discharges eventually friends etc.	Plow into the Gulf
Andonali Rivires etc.	·
	<u> </u>
	Pages 7
	Pages

MUNICIPAL WATER POLLUTION PREVENTION MWPP

ENVIRONMENTAL AUDIT

REPORT

1	_	H		H	U	B)	

MUNICIPALITY: Jefferson Parish___ STATE: _____

ADDRESS: 1221 Elimond Park Blvd.

Harahan, IA 70123

NPDES PERMIT #: LA 0042048
FOR WASTEWATER TREATMENT PLANT

CONTACT PERSON: Mr. Dennis P. Butler

MUNICIPAL OFFICIAL

Director, Dept. of Severage

TITLE

TELEPHONE #: 504-736-5561

CHIEF OPERATOR: Ron Johnson

NAME

REPRESENTATIVE

TELEPHONE #: 504-349-5133

SIGNATURE:

Director, Dept.

of Sewerage

AUTHORIZED

TITLE

DALE

EPA REGION 6

AUGUST 1992

PART 1: INFLUENT FLOW/L	DADINGS	
-------------------------	---------	--

List the average monthly wolumetric flows and BODs loadings received at A. your facility during your 12 month MMPP reporting period. (Influent) sampling should be at the same frequency as the required effluent sampling.}

HWPP R	eporting	Col. 1 Average Monthly Influent Flow	Col. 2 Average Monthly Influent BODg Concentrations	Col. 3 Average Konthly Influent BOD ₅ Loading
Year	<u> Month</u>	(MCD)		(pounds per day)
	₹ .			•
92	July	10.72	150	12,046
92	August	13-68	111	10,765
92	September	15,67	89	10,887
92	October	10.18	155	12,881
92	November	16.74	89	10,534
92	December	14.41	114	12,765
93	January	14.57	103	11,859
93	February	10.95	143	13,217
93	_March	13.26	121	13,664
<u>93 ·</u>	April	11.58	143	13,019
93	May	11.17	141	12,525
93	June	9.58	168	13.055

Give source of data listed above: Data obtained from laboratory testing of daily influent monitoring performed by the Jefferson Parish Department of .

ı

Environment and Development Control.

1.35 =

Part 21	BFFLUENT QUALITY/PLANT PERFORMANCE
A. For load which mitr	For the permitted parameters, list the average monthly affluent concentration and average mont, loading produced by your facility during your 12 month HMPP reporting period. Disregard any, which are not applicable to your permit. Circle whether you are notabled month of the chast nitrogen (Months and Arco

(1) Concentration

	00 LO	<u>, </u>		1.5	1 1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(// <u></u>	,,' _e		/ -	/]	' ij
	Lounst/	Highert)	. 7.07 7.82	7.07 7.74	7.08 7.78	7.09 17.84	6.70 77.84	7.11 17.75	6.70 /7.84	7.10 7.90		6.93 7.45	7.02 1.37
	Fecal Collform	(Count/ 100 ml) 11	31	29	6	25	6	11	6	12	11,	12	6
	rotal Phosphorus	(T/6m)									•		
·-	HB3-N or	(7 / Bus)											4
	155 (mg/1)	7.8	6.5	5.9	3.6	3,8	5.1	6.1	4,8	8,1	13.2	10.2	7.7
	BOD ₆ (mg/1)	13.1	18.2	14.3	5.7	5.5	7.5	8.0	9.6	11.5	14.2	12.7	16.7
alng	Kenth	July	August	September	October	Мочешьег	December	January	February	March	April	May	June
HMPP Reporting Pariod	Xear	92	92	92	92	92	92	93	93	93	93	93	93

(2) Average Monthly Mass Loading

MMPP Reporting Period	Bonth	BOD5 (lbs/day)	TSS (lbs/day)	ME3-M or MO3-M (lbs/day)	Total Phosphorus (lbs/day)	: Other	
92	July	1,119	673	·			
92	August	2,010	709				
92	September	1,912	856		**************************************	:	
92	October	488	301	•	·	-	
92	November	773	556			:	
92	December	964	691				
93	January	983	780			i	*
93	February	884	462			: . : :	
93	March	1,276	883				
93	April	1,415	1,396				
93	: May	1,189	989				
93	June	1,318	611				

7

Circle whether your permit lists nist the monthly parmit limits for the facility in the blanks below. ammonta nitrogen (NH3-N) or nitrate nitrogen (NO3-N). <u>.</u>

	Fecal BODs Colliform (mg/l) (Count/	BOD (mg/1)	188 (mg/l)	NH3-H OF NO3-H (mg/1)	Fecal BODs T88 NH3-N or Total Other Other Coliform (mg/l) (mg/l) NO3-H Phosphorus CL Residual (count/ (mg/l) (mg/l) mg/l	Jan J	other hal	Other	other
Parmit Limites	200/400 30/45	0 30/45	30/45			1.43			
90% of the Fermit Limits:		27	27			1.29			

(Attach additional sheats for Other if necessary.) Average Konthly Rass Loading (2)

1	1 1	Į
Other		-
Other		
óther		
Other		
Other		
Total Phosphorus		
NH3-N Or NO3-N		
TSS (1bs/day)	2,402	2,162
(lbe/day)	2,402	2,162
	Permit Limites	90% of the Permit Limits:

Houston Treatment Plant

NOZ POL

HARRIS COUNTY W.C.I.D. #1 HASTEHATER TREATHENT PLANT

								~					
	CBOD	TSS	NAM	TKN	D.O.	<u> </u>	SS.EFF	CL2.RES	SU2RES	<u> SOLIDS</u>	AERA.D.O.	FLOW MO. AVE	GALS PER MONTH
Jan	3.80	9.0	0.4	1.50	8.70	7.5	0.00	2.20	0.01	540	4.30	1,285,000	39,846,000
FEB	2.80	6.0	0.2	1.20	8.B¢	7.6	0.00	1.80	0.02	470	4.50	1,452,000	40,677,000
HAR.	3.30	8.0	0.1	1.00	8.30	7.4	0.01	2.20	0.01	550	3.90	1,457,000	45,157,000
APR.	2.80	4.9	0.3	1.70	B.00	7.1	0.00	2.60	0.01	770	1.80	988,000	29,651,000
MAY	2.80	6.0	0.0	0.90	7.70	7.1	0,00	1.80	0.01	540	3.30	1,709,000	53,008,000
JUN.	3.10	5.3	0.2	1.00	7.80	7.0	0.00	3.00	0.91	600	2.30	1,152,000	34,869,000
JUL.	2.30	٤.0	0.6	0.80	6.80	7.1	0.00	2,60	0.01	550	2.30	910,000	28,211,000
aUG.	2.50	3.8.	0.0	0.70	6.60	7.2	0.00	4.00	0.01	410	4.00	851,000	26,692,000
SEPT.	2.80	5.0	0.0	Ģ.89	6.70	7.0	0.00	6.00	0.02	540	3.40	757,800	22,733,000
DCT.	3,00	7.0	0.0	1.10	7.30	6,90	0.00	6.20	0.02	440	4.50	2,001,200	62,038,000
NOV.	3.30	6.0	0.0	0.80	6.60	7,10	0.00	3.29	0.02	610	2.90	843,000	25,313,000
DEC.	3.20	5.0	ō, û	C.B0	7.30	7.29	0,00	2.40	0.02	590	2.60	1,761,800	54,600,000
TOTAL	35.70	72.0	1.80	12.30	90.60	88,20	0.01	38.00	0,17	6710	39,80	15, 191, 200	462,795,000
AVG.	3.Ģŷ	6.00	0.20	1.00	7.60	7.20	0.00	3.20	16.0	560	3,30	1,265,900	38,568,250

100 L 11 1 gal/

× 10°

?`ŝ

City of San Diego Metropolitan Wastewater Department

Wastewater Chemistry Laboratory

5530 Kiowa Drive La Mesa, CA 91942 FAX: (619) 668-3250

ゴララーレニンの

Please deliver to:	MAK 155A	CABALLERO		
Organization:	NAVY	•	:	
FAX Number:			Total pages sent:	this one)
Sent by: WA	JER- KANAP	<u>U</u>	Phone:	1.668-3209

Notes/Comments:

These are the page from the Californian June flow that give waste linkinge requirement.

Effluent

came into Plaint 78.4 mg/L

1994 Avy annual 44.5 mg/L Monthy JAN - 54.8 Feb - 55.3 MAKIN- 71.0 April - 76.8 may - 701.3 June - 65.7 July - 80.5 Aug - Ste. 9 Sept - 54.0

nov - 77.4

FAX.WPF

18

B. DISCHARGE SPECIFICATIONS¹

1.a. The discharge of waste through the Point Loma Ocean Outfall containing pollutants in excess of the following effluent limitations are prohibited:

Constituent U	6-Mo: Inits Med	nth ² 30- lian Aver	Day ³	7-Day ⁴ erage Ma	Daily ⁵ Ins ximum M	stantaneous ⁶ aximum
Biochemical Oxygen Demand BOD ₅ @ 20° C	mg/L I lb/day	55,	.30 000 8	45 88,000 9	50 1,000 9	50 1,000
Suspended Solids	mg/L lb/day	55,	30 000 8	45 88,000 9	50 1,000 9	50
рН	pH Units	Wit		limits	of 6.0 ~	9.0 at all
Grease & Oil	mg/ī lb/day	46,	25 000 7	40 73,000 1	75 40,000 14	75 0,000
Settleable Solids	ml/L	·	1.0	1.5	3.0	. 3.0
Turbidity	·NTU		75	100	225	225
Acute Toxicity	y ^{8'} TUa		1.5	2.0	2.5	2.5
Arsenic	mg/L lb/day	0.005 10	200 000 VV		0.02 40	0.05 100
Cadmium	mg/L lb/day	0.011 20			0.044 80	200
Chromium (Hexavalent)	mg/L lb/day	0.05 90			0.2 360	0.5° 900
	mg/L lb/day		,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.28 520	0.7 1300
Lead	mg/L lb/day	0.1 160			0.4 640	1.0 1600
Mercury	mg/L lb/day	0.0005 0.9			0.002 3-6	0.005
Nickel	mg/L lb/day	0.06 110		Date 440 DM	0.24 440	0.6 1100
Selenium	mg/L lb/day	0.0014			0.005 9.2	0.014 23

Constituent	6-M Units Med	onth ² 30 dian Aver	-Day ³ Tage Av	7-Day ⁴ erage Ma	Daily ⁵ Ins	tantaneous ⁶ ximum
Silver	mg/L lb/day	0.03 50		. un	0.12 200	0.3 500
Zinc	mg/L lb/day		#- #		0.32 560	0.8 1400
Cyanide ¹⁰	mg/L lb/day	0.01 20			0.04 80	0.1 200
Total Residual Chlorine (TRC)	mg/L lb/day				0.9 1300	6.9 9,700
Ammonia (ex- pressed nitrogen)	mg/L lb/day 80	60 , 0 00			260 50,000 8	600 600,000
Chronic Toxicity ¹²	TUC	man yang man			113	
Phenolic Com- pounds (nonchlorina	lb/day	0.014 26		Pair San	0.056 100	0.14
Chlorinated Phenolics	mg/L lb/day	0.0036 6.8			0.014 27	0.036 68
Endosulfan ¹³	ug/L lb/day	0.07 0.13	W		0.14 0.26	
Endrin	ug/L lb/day	0.006			0.012 0.022	
HCH ¹⁴	ug/L lb/day	0.13 0.24			0.26 0.48	0.39 0.72

Radioactivity Not to exceed limits specified in Title 17, Chapter 5, Subchapter 4, Group 3, Article 3, Section 30269 of the California Code of Regulations.

Note:

mg/L

milligrams per liter Nephelometric turbidity units NTU Darg

TUa = Acute toxicity units Tuc = Chronic toxicity units ug/L = micrograms per liter

lb/day = pounds per day

Order No. 90-32

1,3-dichloropropene

20

B.1.b. LIMITATIONS FOR PROTECTION OF HUMAN HEALTH--NONCARCINOGENS

Constituent	30-day	Average
	(ug/L)	(lb/day)
Acrolein .	7	13
Antimony	320	580
Bis(2-chloroethoxy)methane	53	100
Bis(2-chloroisopropyl)ether	57	, 100
Chlorobenzene	60	, JIO
Chromium (III)	70	130
di-n-butvl phthalate	25	45
Dichlorobenzenes 14	44	80
1,1-dichloroethylene	28	50
Diethyl phthalate	19	35
Dimethyl phthalate	16	30
4,6-dinitro-2-methylphenol	240	430
2,4-dinitrophenol	420	760
Ethylbenzene	72	130
Fluoranthene	22	40
	22 4	7
Hexachlorocyclopentadiene	22	. 40
Isophorone		
Nitrobenzene	19	35 330
Thallium	400	730
Toluene .	100	180
1,1,2,2-tetrachloroethane	69	130
Tributyltin	0.10	0.2
1,1,1-trichloroethane	38	70
1,1,2-trichloroethane	50	90
B.1.c. LIMITATIONS FOR PROTECT	ION OF HUMAN	HEALTH CARCINOG
Acrylonitrile	3	5
Aldrin	0.0025	0.005
Benzene	22	40
Benzidine	0.008	0.015
Beryllium	3.7	6.8
Bis(2-chloroethyl)ether	0.005	0.009
Bis (2-ethylhexyl) phthalate	10	20
Carbon Tetrachloride	14 .	25
Chlordane 15	0.003	0.005
Chloroform	50	90
DDT 16	0.02	. 0.04
1,4-dichlorobenzene	22	40
3,3-dichlorobenzidine	0.9	1.6
1,2-dichloroethane	14	25
Dichloromethane	450	820

30

45

Order No. 90-32

21

B.1.c CONT'D

Constituent	30-day Average				
	(ug/L)	(lb/day)			
Dieldrin	0.005	0.009			
2,4-dinitrotoluene	29	50			
1,2-diphenylhydrazine	18	30			
Halomethanes T	24	45			
Heptachlor 18	0.02	0.04			
Hexachlorobenzene	0.02	0.04			
Hexachlorobutadiene	5	8			
Hexachloroethane	8.0	15			
N-nitrosodimethylamine	250	450			
N-nitrododiphenylamine	9.5	20			
	1.0	1.8			
PCBs 20	0.002	0.004			
TCDD equivalents 21	0.0004	0.0007			
Tetrachloroethylene	50	90			
Toxaphene	0.02	0.04			
Trichloroethylene	9.5	20			
2,4,6-trichlorophenol	14	25			
Vinyl Chloride	0.90	1.6			

- The arithmetic mean of biochemical oxygen demand and total suspended solids values, by weight, for effluent samples collected in the period of 30 consecutive days shall not exceed 15 percent of the arithmetic mean of values, by weight, for influent samples collected at approximately the same times during the same period.
- 3. Waste discharged through the Point Loma Ocean Outfall must be essentially free of:
 - (a) Material that is floatable or will become floatable upon discharge.
 - (b) Settleable material or substances that form sediments which degrade benthic communities or other aquatic life.
 - (c) Substances which will accumulate to toxic levels in marine waters, sediments or biota.
 - (d) Substances that significantly decrease the natural light to benthic communities and other marine life.
 - (e) Materials that result in aesthetically undesirable discoloration of the ocean surface.

APPENDIX L

BIBLIOGRAPHY

Source:

Bibliography

San Diego, California

Naval Command, Control & Ocean Surveillance

Center, RDTE Division, Code 522, 1995

BIBLOGRAPHY

At the onset of this project, a literature review was conducted to obtain information useful to understanding the fate and effects of solid wastes discharges to the ocean in general, and within Special Areas in particular. Some of this information has already been used in the pervious sections. The literature was examined for previous studies performed within Special Areas, as well as for studies that related to more general issues such as the characteristics of discharged materials, regulations, and naval operations. As a result, the search covered a broad range of topics including:

Regulatory Framework and Regulations Oceanographic and Meteorological Conditions
Environmental Conditions
Ecology and Fisheries
General Waste Dumping
Pulp Mill Discharges
Sewage Treatment Plant Discharges
River and Other Industrial Discharges
Operations Conditions including ship traffic patterns, ship types, and waste generation
Composition of Glass, Metal, and Paper Material
Corrosion Processes
Dispersion and Dispersion Modeling

The University of California library system was the main system used to search and acquire literature. This was done using the library's computerized search capability and utilizing the large holdings available at the University of California, San Diego (UCSD). The NRaD library system was also used during this search, particularly when interlibrary loans were required.

The literature was first searched using the names of five seas (Mediterranean, Baltic, North, Caribbean, and Antarctic) in the search parameter (subject search). The database of books, research journal articles, and government reports generated under this search included thousands of titles. These were subjectively reviewed for titles that seemed appropriate for the study at hand, resulting in an annotated list composed of hundreds of titles. An attempt was made to obtain all the citations from this annotated bibliography, although this was not always possible or time effective. The literature obtained was reviewed for useful content, photocopied as necessary, and returned to the library.

The bibliography presented in this section is a result of the above searches and contains all titles that were obtained for review. The bibliographic information is therefore more extensive than just those references noted in the report.

- 1991 MARPOL Amendments Enter into Force. Marine Pollution Bulletin, V26, N6, pp. 294-295, 1993.
- 1993 Annual Report. Waste Management Institute, Stony Brook, New York, 1993.
- A Review of The Past and Present Measurements of Selected Trace Metals in Sea Water in the OSLO Commission and ICNAF (NAFO) Areas. Copenhagen: International Council for the Exploration of the Sea, 1980.
- Abelmann A., R. Gersonde. *Biosiliceous Particle Flux In The Southern Ocean*. Marine Chemistry, V35 N1-4:503-536, 1991.
- Accumulation and Transformation of Chemical Contaminants by Biotic and Abiotic Processes in the Marine Environment, La Spezia, Italy. FAO/UNEP/IAEA Consultation Meeting on the Accumulation and Transformation of Chemical Contaminants by Biotic and Abiotic Processes in the Marine Environment (1990: La Spezia, Italy) Proceedings of the FAO/UNEP/IAEA Consultation Meeting on the Athens UNEP, 1991.
- Aijaz, S., S. A. Jenkins. On the Electrokinetics of the Dynamic Shear Stress in Fluid Mud Suspensions. Journal of Geophysical Research, V99, NC6, pp. 12, 697-12,706, 1994.
- Ailor, W.H. Jr. Aluminum Alloys After Five Years in Seawater. Materials Performance and the Deep Sea. ASTM STP 445, 115-130, American Society for Testing and Materials, 1969.
- Airborne Pollution of The Mediterranean Sea: Report And Proceedings of The Second IMO/UNEP Workshop. Athens, UNEP, 1992.
- Aitsam, A., J. Elken, L. Talsepp, J. Laanemets. *Topographically Induced Variability in the Baltic Sea*. Institute of Themophysics and Electrophysics Academy of Sciences of Estonian SSR.
- Akerblom, A. 3rd Soviet-Swedish Symposium on the Pollution of the Baltic. The National Swedish Environment Protection Board, Stockholm, 1975.
- Akerblom, A. 3rd Soviet-Swedish Symposium on the Pollution of the Baltic. Sovetskoshvedskii Simpozium po Zagriazneniiu Baltiiskogo Moria, Oslo: National Swedish Environment Protection Board, Irvington-on-Hudson, N.Y., Columbia University Press, 1978.
- Alig, C.S. Dispersion of Sanitary Wastewater Discharges From Navy Ships. Naval Ship Research and Development Center Annapolis, Maryland, August, 1974.
- Alldredge, A.L., C.C. Gotshalk. *Bacterial Carbon Dynamics on Marine Snow*. Continental Shelf Research, V10, pp. 41-58, 1990.
- Allen W. Increased Dangers To Caribbean Marine Ecosystems Cruise Ship Anchorsand Intensified Tourism Threaten Reefs. Bioscience, V42 N5, pp. 330-335, 1992.
- Aller, R.C. Diagenetic Processes Near the Sediment-Water Interface of Long Island Sound I.

 Decomposition and Nutrient Element Geochemistry (S, N, P). Ed. B. Saltzman, Estaurine

- Physics and Chemistry: Studies in Long Island Sound, Advances in Geophysics, V22, Academic Press, 1980.
- Amann, R.I., B.J. Binder, R.J. Olson, S.W. Chisolm, R. Devereux, D.A. Stahl. Combination Of 16S Rrna-Targeted Oligonucleotide Probes With Flow Cytometry For Analyzing Mixed Microbial Populations. Applied Environmental Microbiology. V56, pp.1919-1925, 1990.
- American Meteorological Society. *Bibliography On Meteorology, Climatology, and Physical/Chemical Oceanography.* Washington [US National Oceanographic Data Center], 1970.
- American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards, Standard A 624. ASTM, Philadelphia, Pennsylvania, 1984.
- American Society for Testing and Materials. Annual Book of ASTM Standards, ASTM Standard Practice G1-81. ASTM, Philadelphia, Pennsylvania, 1981.
- Andrulewicz, E., Rohde, K.H. Harmful Substances: Petroleum Hydrocarbons. Helsinki: Baltic Marine Environment Protection Commission, Baltic Sea Environment Proceedings, N17 B, 351, pp. 170-198, 1987.
- Anglophone and Francophone Caribbean Performance History A Select Bibliography. Theatre Research International, V15 N3, pp. 260-261, 1990.
- Annex V of MARPOL 73/78, Regulations for the Prevention of Pollution by Garbage from Ships. International Maritime Organization.
- Antarctic Environmental Protection Act Of 1993. Hearing Before The Subcommittee On Science, Space, and Technology, U.S. House Of Representatives, 103 Congress, First Session, N21, 1993.
- Apel, J.R. *Principles of Ocean Physics*. International Geophysics Series 38, Academic Press, 1-634, 1987.
- apRheinallt, T. Impact of Sewage Sludge. FWR Environment, U.K.
- Armi, L.A. Effects of Variations in Eddy Diffusivity on Property Distributions in the Oceans. Journal of Marine Research, V37, N3, pp. 515-530, 1979.
- Arntz W., M. Gorny. Shrimp (Decapoda, Natantia) Occurrence and Distribution In The Eastern Weddell Sea, Antarctica. Polar Biology, V11 N3, pp. 169-177, 1991.
- Atmospheric Transport Of Contaminants In The Mediterranean Region /IMO.

 IMO/FAO/UNESCO/IMO/WHO/IAEA/UN/UNEP Joint Group of Experts on The Scientific Aspects of Marine Pollution. UNESCO/IMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution GESAMP, Geneva: World Meteorological Organization, 1985.
- Atwood D., J. Hendee, A. Mendez. An Assessment Of Global Warming Stress On Caribbean Coral Reef Ecosystems. Bulletin of Marine Science, V51 N1, pp. 118-130, 1992.

- Augier, H. Protected Marine Areas: The Example Of France: Appraisal and Prospects, Basis Of A Strategy For The Creation Of A European Network Of Marine Protected Areas In The Mediterranean Region. Strasbourg Council of Europe, Croton, Publishing. Company, Distributor, N.Y., Manhattan, 1985.
- Ayrton, W.R., S. Oldridge. *Littoral Zones, Amenities, and Tourism.* Scarborough Borough Council, England, for the Institution of Environmental Health Officers, London, England.
- Bak R., A. Boldrin, G. Nieuwland, S. Rabitti. *Biogenic Particles and Nano Picoplankton In Water Masses Over The Scotia-Weddell Sea Confluence, Antarctica*. Polar Biology, V12 N2:219-224, 1992.
- Bak, R.P.M. Variations In Coral Reefs in Response to Gradients Limiting Primary Production. Netherlands Institute for Sea Research, The Netherlands.
- Ball, J., T. Reynolds. *Dispersion of Liquid Waste From a Moving Barge*. Journal WPCF, V48, N11, pp. 2541-2547, November, 1976.
- Balopoulos, E.T., A.E. James. Surface Currents in the N.W. Aegean Sea (Greece) As Shown From the Movement of Driftcards. Institute of Oceanographic and Fisheries Research, Department of Oceanography, University College, Singleton Park Swansea S A2 8PP, S. Wales (U.K.), VII Journees Etud. Pollutions, 1984.
- Baltic Sea Monitoring Symposium (1986: Tallinn, Estonia). Baltic Sea Monitoring Symposium, Tallinn, USSR, 10-15 March 1986. Helsinki: Baltic Marine Environment Protection Commission, Helsinki Commission, 1986.
- Baltic Sea. New Encyclopedia Britannica 15th Edition, Encyclopedia Britannica Inc., 1974.
- Baltic, Marine Environment Protection Commission. Reception Of Wastes From Ships In The Baltic Sea Area A MARPOL 73/78 Special Area. Baltic Sea Environment Proceedings, (28), pp. 84, 1989.
- Barrow 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Outfall to Walney Channel, United Kingdom, 1990-1995.
- Bathmann U., G. Fischer, P. Muller, D. Gerdes. Short-Term Variations In Particulate Matter Sedimentation Off Kapp Norvegia, Weddell Sea, Antarctica Relation To Water Mass Advection, Ice Cover, Plankton Biomass and Feeding Activity. Polar Biology, V11 N3, pp. 185-195, 1991.
- Beavers, J.A., G.H. Koch, W.E. Berry. *Corrosion of Metals in Marine Environments*. MCIC Report 86-50, Battelle Columbus Division, Columbus, Ohio, July, 1986.
- Becker, C.D. Regional Survey Of Marine Biota For Bioassay Standardization Of Oil And Oil Dispersant Chemicals: Research Report. American Petroleum Institute Committee on Environmental Affairs. Richland, Washington: Battelle Pacific Northwest Laboratories, 1973.

- Becker, C.D., J.A. Lichatowich, M.J. Schneider, J.A. Stand. Regional Survey of Marine Biota for Bioassay Standardization of Oil and Oil Dispersing Chemicals. American Petroleum Institute Committee on Environmental Affairs, API Publication N4167, April, 1973.
- Beckmann, M., G. Liebezeit. Organic Carbon In The North Sea In May/June 1986: Distribution and Controlling Factors. Scientific, Common Problems Of The Environment United, Nations Environment Programme, Hamburg (FRG) International Carbon Unit. Biogeochemistry and Distribution of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65 pp. 99-116, 1986.
- Benner, R, A.E. Maccubbin, R.E. Hodson. Temporal Relationship Between the Deposition and Microbial Degradation Of Lignocellulosic Detritus in a Georgia Salt Marsh and the Okefenokee Swamp. Microbiology Ecology, V12, pp. 291-298, 1986.
- Benner, R., M.A. Moran, R.E. Hodson. Effects of pH and Plant Source on Lignocellulose Biodegradation Rates In Two Wetland Ecosystems, The Okefenokee Swamp and A Georgia Salt Marsh. Limnology Oceanography V30, pp. 489-499, 1985.
- Benner, R., R.E. Hodson. Microbial Degradation Of The Leachable and Lignocellulosic Components Of Leaves And Wood From Rhizophora Mangle In A Tropical Mangrove Swamp. Marine Ecology Progress Series, V23, pp. 221-230, 1985.
- Benner, R., S.Y. Newell, A.E. Maccubbin, R.E. Hodson. Relative Contributions Of Bacteria and Fungi To Rates of Degradation of Lignocellulosic Detritus in Salt Marsh Sediments.

 Applied and Environmental Microbiology, V48, pp. 36-40, 1984.
- Benninghoff, W.S., W.N. Bonner. Man's Impact on The Antarctic Environment: A Procedure For Evaluation Impacts From Scientific and Logistic Activities. Scientific Committee on Antarctic Research, Scott Polar Research Institute, 1985.
- Berkman P., M. Nigro. Trace Metal Concentrations In Scallops Around Antarctica Extending The Mussel Watch Programme To The Southern Ocean. Marine Pollution Bulletin, N6:322-323 V24, 1992.
- Bermuda Biological Station For Research. Primary Productivity In The Tropical North Atlantic Off Barbados And The Caribbean Sea Off Jamaica, Final Report/Bermuda Biological Station, St. George's West, Bermuda, 1965.
- Berner, R.A. Early Diagenesis, A Theoretical Approach. Princeton University Press, Princeton, New Jersey, 1980.
- Bernhard, M. Heavy Metals and Chlorinated Hydrocarbons in the Mediterranean. VIII.
- Bertels, A. R/V Cruise No. 75, 16 Oct.-19 Dec. 1967: Summary Cruise Report Track Charts, Bathymetry, And Location Of Observations. North Atlantic Ocean-Caribbean Sea, Lesser Antillean Arc And Mid-Atlantic Ridge Survey.
- Bethoux J., P. Courau, E. Nicolas, D. Ruizpino. *Trace Metal Pollution In The Mediterranean Sea.* Oceanologica Acta, V13 N4, pp. 481-488, 1990.

- Bethoux, J.P. Phosphorus And Nitrogen In The Mediterranean Sea: Budgets and Potential Fertility. Marine Chemistry, 10(2), pp. 141-158, 1981.
- Beusekom, J., E.E. Von. Distribution Of Dissolved Aluminum In The North Sea: Influence Of Suspended Matter. Eds. S. Kempe, G. Liebezeit, V. Dethlefsen, U. Harms, Scientific Committee on Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter in The North Sea And Implications To Fisheries Biology, N65 pp. 117-136, 1988.
- Bianchi F., A. Boldrin, F. Cioce, G. Dieckmann, H. Kuosa, A.M. Larsson, E.M. Nothig, P.I. Sehlstedt, G. Socal, E.E. Syvertsen. *Phytoplankton Distribution In Relation To Sea Ice, Hydrography and Nutrients In The Northwestern Weddell Sea In Early Spring 1988 During EPOS.* Polar Biology, V12 N2, pp. 225-235, 1992.
- Bidigare R., M. Ondrusek, J. Brooks. *Influence Of The Orinoco River Outflow On Distributions Of Algal Pigments In The Caribbean Sea.* Journal Of Geophysical Research-Oceans, V98 pp. 2259-2269, 1993.
- Bingel, F., D. Avsar, M. Unsal A Note on Plastic Materials In Trawl Catches In The Northeastern Mediterranean. Meeresforschung (Reports on Marine Research) 31(3-4), pp. 227-233. Institute of Marine Science, Erdemli-Icel, Turkey, 1987.
- Birkhoff, G., Zarantonello. Jets, Wakes and Cavities. Academic Press, New York, pp. 353, 1957.
- Bjornsen P., J. Kuparinen. Growth and Herbivory By Heterotrophic Dinoflagellates In The Southern Ocean, Studied By Microcosm Experiments. Marine Biology, V109 N3, pp. 397-405, 1991.
- Blaxter, J.H.S., J.R. Hunter. *The Biology of the Clupeoid Fishes*. Off Print from Advances in Marine Biology, V20, pp.1-223, 1982.
- Bleaching Of Coral Reefs In The Caribbean. United States Congress Senate Committee on Appropriations Subcommittee on Commerce, Justice, State, The Judiciary, and Related Agencies. Hearing Before a Subcommittee of The Committee on Appropriations, United States Senate, One Hundredth Congress, First Session: Special Hearing, Washington, 1988.
- Blough N., O. Zafiriou, J. Bonilla. Optical Absorption Spectra of Waters From The Orinoco River Outflow-Terrestrial Input of Colored Organic Matter to The Caribbean. Journal of Geophysical Research-Oceans, V98 Nc2, pp. 2271-2278, February, 1993.
- Boltovskoy D., V. Alder, F. Spinelli. Summer Weddell Sea Microplankton Assemblage Structure, Distribution and Abundance, With Special Emphasis On The Tintinnina. Polar Biology, V9 N7, pp. 447-456, 1989.
- Boltovskoy D., V. Alder. *Microzooplankton and Tintinnid Species-Specific Assemblage*Structures Patterns Of Distribution and Year-To-Year Variations In The Weddell Sea (Antarctica). Journal Of Plankton Research, V14 N10, pp. 1405-1423, 1992.

- Boston Humus 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Boston Humus Treatment Works, United Kingdom, 1992-1994.
- Bourne, W.R.P. Oil and Garbage in the Gulf. Marine Pollution Bulletin, V20, N2, 1989.
- Boysenennen E., W. Hagen, G. Hubold, U. Piatkowski. Zooplankton Biomass In The Ice-Covered Weddell Sea, Antarctica. Marine Biology, V111 N2, pp. 227-235, 1991.
- Branica, M., G. Kniewald. International Symposium on The Chemistry of The Mediterranean (10th: 1988: Primosten, Croatia) Physico-Chemical Characteristics of The Aquatic System: 10th International Symposium 'Chemistry Of The Mediterranean,' 4-12 May, 1988, Primosten, Yugoslavia. Amsterdam, New York: Elsevier, 1989.
- Branica, M., G. Kniewald. International Symposium On The Chemistry Of The Mediterranean (9th: 1986: Primosten, Croatia) Reliability of Environmental Analytical Data: Ix International Symposium 'Chemistry Of The Mediterranean,' 1-7 May, 1986, Primosten, Yugoslavia. Amsterdam, Netherlands, 1987.
- Breslin, V.T, S.E. Tisdell. *Thermoplastic Stabilization of MSW Combustor Ash.* Journal of Environmental Engineering, V120, N1, January/February, 1994.
- Breslin, V.T. Degradation of Starch-Plastic Composites in a Municipal Solid Waste Landfill. Journal of Environmental Polymer Degradation, V1, N2, 1993.
- Breslin, V.T., F.J. Roethel, V.P. Schaeperkoetter. *Physical and Chemical Interactions of Stabilized Incineration Residue with the Marine Environment*. Marine Pollution Bulletin, V19, N11B, pp. 628-632, 1988.
- Brey T., J. Gutt. The Genus Sterechinus (Echinodermata, Echinoidea) On The Weddell Sea Shelf and Slope (Antarctica) Distribution, Abundance and Biomass. Polar Biology, V11 N4, pp. 227-232, 1991.
- Brick, R.M., J.J. Daly, E.L. Koehler, A.G. Skibbe. *The Selection of Tin Coatings for Steel Containers*. Ed. T. Lyman Metals Handbook, V1, pp. 1133-1141, Ohio, 1961.
- Brisou, J. An Environmental Sanitation Plan for the Mediterranean Seaboard. Pollution and Human Health, World Health Organization, Geneva, 1976.
- Brockmann U., L. Rwpm, H. Postma. Cycling of Nutrient Elements in The North Sea. Netherlands Journal of Sea Research, V26 N2-4, pp. 239-264, 1990.
- Broman, D. Transport and Fate of Hydrophobic Organic Compounds in The Baltic Aquatic Environment: Polycyclic Aromatic Hydrocarbons, Polychlorinated Dibenzodioxins and Dibenzofurans. University of Stockholm, Stockholm, 1990.
- Brooks, N.H. R.G. Arnold, R.C.Y. Koh, G.A. Jackson, W.K. Faisst. *A Research Plan for Deep-Ocean Disposal of Sewage Sludge*. Robert E. Krieger Publishing Company, Malabar, Florida, 1987.

- Brügmann L, P. Bernard, R. Vangrieken. Geochemistry of Suspended Matter From The Baltic Sea .2. Results of Bulk Trace Metal Analysis By AAS. Marine Chemistry, V38 N3-4 pp. 303-323, 1992.
- Brunnee J. International Conference On Ecology And Law In The Baltic Sea Area Sources And Developments, Held In The University-Of-Latvia, Riga, Latvia, USSR, During 26-31 August 1990. Environmental Conservation, V17 N4 pp. 375-375, 1990.
- Budzichawski, T. *Tan Book*. United States Navy, Carderock Division Naval Surface Warfare Center Annapolis Detachment Solid Waste Management Branch, 1995.
- Burmester, H. Vessel Source Pollution: The Integration of International and Domestic Responses in the Search for an Effective Legal Framework. Oceans Policy Study 1:6, 1978.
- Burnham 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Burnham Treatment Works, United Kingdom, 1992-1994.
- Burns, D.A. Hydrographic Measurements In The Grenada Basin, Southeastern Caribbean Sea. 1981.
- Burns, D.A., M. Car. Current Meter Data Report For The Eastern Part Of The Caribbean Sea. 1975.
- Burton J., M. Althaus, G. Millward, A. Morris. *Processes Influencing The Fate Of Trace Metals In The North Sea*. Philosophical Transactions of The Royal Society of London Series A-Physical Sciences and Engineering, V343 N1669, pp. 557-568, 1993.
- Busch, H.J. Exports of Wastes By Sea. Gefaehrliche Ladung, V34, N1, pp. 9-10, 1989.
- Bythell J., C. Sheppard. *Mass Mortality of Caribbean Shallow Corals*. Marine Pollution Bulletin, V26 N6, pp. 296-297, 1993.
- Cadee G. Organic Carbon In The Upper Layer and Its Sedimentation During The Ice-Retreat Period In The Scotia-Weddell Sea, 1988. Polar Biology, V12 N2, pp. 253-259, 1992.
- Calamari, D. Selected Bibliography On Studies And Research Relevant To Pollution In The Mediterranean = Bibliographie Selectionnee Sur Les Etudes Et Recherches Relatives A La Pollution En Mediterranee. Rome: Food and Agriculture Organization of the United Nations, 1977.
- Capuzzo, J.M., D.R. Kester. Oceanic Processes in Marine Pollution Volume I, Biological Processes and Wastes in the Ocean. Robert E. Krieger Publishing Company, Malabar, Florida, U.S., 1987.
- Carde, K.L., R.G. Steward. Optical Means Of Measuring Particle-Sea Interactions In The Caribbean Sea And Gulf Of Mexico. 1983.
- Caribbean Geological Evolution: Report of A Workshop To Define Caribbean Geological Problems, Needed Investigations, and Initiatives For Ocean Drilling, 1987.

- Caribbean Sea. New Encyclopedia Britannica 15th Edition, Encyclopedia Britannica Inc., 1974.
- Caribbean Study Project Working Papers And Selection From Dialogue At Preparatory
 Conference, Jamaica, October 1972, [Malta]: Published For The International Ocean
 Institute By Malta University Press, 1974.
- Caribbean Zooplankton. Office Of Naval Research, Department of The Navy U.S. Government Printing Office Washington, 1976.
- Carlson, Herbert. *Quality status of the North Sea.* Report, International Conference on the Protection of the North Sea, Bremen, 1984.
- Cederwall H., R. Elmgren. Biological Effects Of Eutrophication In The Baltic Sea, Particularly The Coastal Zone. Ambio, V19 N3 pp. 109-112, 1990.
- Cevasco, F.M. Coastal Characteristics and Their Effect on Tanker Discharge Operations. U.S. Army Mobility Equipment Research and Development Command, Fort Belvoir, Virginia, January, 1977.
- Chadwick, D.B., M.H. Salazar. *Integrated Technologies for Monitoring the Marine Environment*. Ocean Proceedings 1991 Conference, pp. 343-350, 1991.
- Charnock, H., K.R. Dyer, J.M. Huthnance, P.S. Liss, J.H. Simpson, P.B. Tett. *Understanding the North Sea System*. Chapman & Hall for the Royal Society, 1994.
- Chelmsford 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Chelmsford Treatment Works, United Kingdom, 1992-1994.
- Chester, R. Marine Geochemistry. Unwin Hyman Ltd, London, England, 1990.
- Chrást, R.J., H. Rai. Ectoenzyme Activity And Bacterial Secondary Production In Nutrient-Impoverished And Nutrient-Enriched Freshwater Mesocosms. Microbial Ecology, V25, pp. 131-150, 1993.
- CICAR Ichthyoplankton Workshop (1974: Mexico City, Mexico) Ichthyoplankton: Report Of The CICAR Ichthyoplankton Workshop, Mexico City, 17-26 July 1974. Paris, France: Unesco, 1975.
- City of Tampa 1994 Annual Sewage Discharge Monitoring Report. City of Tampa Sewage Treatment Works, Florida, 1994.
- Clark, C.D. Satellite Remote Sensing of Marine Pollution. Int. J. Remote Sensing, V14, N16, pp. 2985-3004, 1993.
- Clark, C.D. Satellite Remote Sensing for Marine Pollution Investigations. Marine Pollution Bulletin, Vol. 26, No. 7, pp. 357-368, 1993.
- Clark, R. B. Marine Pollution, Third Edition. Clarendon Press, Oxford, New York, 1992.
- Cleethorpes Southern 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Cleethorpes Southern Treatment Works, United Kingdom, 1992-1994.

- Cliff Quay 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Cliff Quay Treatment Works, United Kingdom, 1992-1994.
- Coast Guard Oil, Noxious Liquid Substances, Garbage, Municipal or Commercial Waste and Ballast Water Regulations. The Bureau of National Affairs, Inc., February, 1995.
- Colchester 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Colchester Treatment Works, United Kingdom, 1992-1994.
- Colwell, R.R. Microbiological Effects of Ocean Pollution. University of Maryland, USA.
- Committee on Merchant Marine and Fisheries, House of Representatives One Hundred Third Congress First Session. The Effectiveness of the Coast Guard's Efforts to Enforce Laws Which Prohibit the Dumping of Garbage into the Oceans and Examine the Two Publicized Cases of Illegal Dumping. U.S. Government Printing Office, 1993.
- Common Measures Adopted By The Contracting Parties To The Convention For The Protection Of The Mediterranean Sea Against Pollution. Athens: UNEP, 1990.
- Connor, M.S. *At-Sea Incineration: Up in Smoke?* Research Fellow Interdisciplinary Programs in Health, Harvard School of Public Health.
- Contributions to Antarctic Research I. V50 Antarctic Series, American Geophysical Union, Washington D.C., 1990.
- Convention For The Protection And Development Of The Marine Environment Of The Wider Caribbean Region (1983) Convention For The Protection And Development Of The Marine Environment Of The Wider Caribbean Region: U.S.G.P.O., 1984.
- Cooperative Investigation Of The Caribbean And Adjacent Regions. Guide To CICAR Standard Observations: With Special Reference To CICAR Survey Months And Standard Sections / Compiled By The Operations Coordinator Of CICAR, Tom Van 'T Hof. Curacao, Netherlands Antilles: CICAR, 1974.
- Cooperative Research Report. A Review of the Past and Present Measurements of Selected Trace Metals in Sea Water in the OSLO Commission and ICNAF (NAFO) Areas., 1980.
- Cooperative Research Report. The ICES Coordinated Monitoring Programme for Contaminants in Fish and Shellfish, 1978 and 1979 and Six-Year Review of ICES Coordinated Monitoring Programs, 1984.
- Coral Reefs, Seagrass Beds, and Mangroves: Their Interaction in the Coastal Zones of the Caribbean. Report of a Workshop, West Indies Laboratory, St. Croix, U.S. Virgin Islands, Unesco, 1983.
- Cormaci M., G. Furnari, B. Scammacca. *The Benthic Algal Flora Of Terra Nova Bay (Ross Sea, Antarctica)*. Botanica Marina, V35 N6, pp. 541-552, 1992.
- Cota G., S. Kottmeier, D. Robinson, W. Smith. Bacterioplankton In The Marginal Ice Zone Of The Weddell Sea - Biomass, Production and Metabolic Activities During Austral

- Autumn. Deep-Sea Research Part A-Oceanographic Research Papers, V37 N7, pp. 45-1167, 1990.
- Cripps G. Baseline Levels Of Hydrocarbons In Seawater Of The Southern Ocean Natural Variability and Regional Patterns. Marine Pollution Bulletin, V24 N2, pp. 109-114, 1992.
- Cripps G. Hydrocarbons In The Seawater and Pelagic Organisms Of The Southern Ocean. Polar Biology, V10 N5, pp. 393-402, 1990.
- Cruz G., V. Lopez, C. Sosa. *Pollution By Solid Wastes Carried By Marine Currents To The Caribbean Coast Of Honduras*. Revista De Biologia Tropical, V38 N2, pp. 339-342. Language: Spanish, 1990.
- Cruz, G.A., V. Lopez, C. Sosa. Contaminacion por Desechos Solidos Llevados por Corrientes Marinas a la Costa Caribena de Honduras. Departamento de Biologia, Tegucigalpa, Honduras, 1990.
- Csanady, G.T, J.H. Churchill. Environmental Engineering Analysis of Potential Dumpsites.
 Robert E. Krieger Publishing Company, Malabar, Florida, 1987.
- Csanady, G.T. Accelerated Diffusion in the Skewed Shear Flow of Lake Currents. J. Geophysics Research, 71, pp. 411-420, 1966.
- Csanady, G.T. An Analysis of Dumpsite Diffusion Experiments: Ocean Dumping of Industrial Wastes. Woods Hole Oceanographic Institution Woods, Hole, Plenum Press, New York and London, pp. 109-129, 1981.
- Csanady, G.T. An Analysis of Dumpsite Diffusion Experiments. Eds. B.H. Ketchum, D.R. Kester, P.K. Park, Plenum Press, New York & London, 1979.
- Csanady, G.T. Turbulent Diffusion in the Environment. J. Atmospheric Science, 26, pp. 414-426, 1973.
- Cubit, J.D., et al. Hydrographic And Meteorological Studies Of A Caribbean Fringing Reef At Punta Galeta, Panama: Hourly And Daily Variations For 1977-1985. Washington, D.C.: Smithsonian Institution Press, 1988.
- Cuomo, V., V. Pane, P. Contesso. *Marine Litter: Where does the Problem Lie?*. Research Laboratory, Ciba-Geigy A/S, Torre Annunziata, Naples, Italy, 1988.
- Daan, N., P. Bromley, J. Hislop, N. Nielsen. *Ecology Of North Sea Fish*. Netherlands Journal Of Sea Research, V26 N2-4, pp. 343-386, 1990.
- Dahl, J.B., O. Tollan. Measurement of Dilution of Tank Waste Water in the Wake of M/T "Esso Bergen". Institute for Atomic Energy, Kjeller, Norway, 1972.
- Dahl, J.B., U. Haagensen, C. Qvenild, O. Tollan. Dilution in the Ship's Wake of Tank Washings Released From M/T "Esso Slagen". Institute of Atomic Energy, Kjeller, Norway, 1973.

- Dahl, J.B., U. Haagensen, C. Qvenild, O. Tollan. Measurements of the Dilution of Tank Washings in the Wake of M/T "Esso Slagen". Institute of Atomic Energy, Kjeller, Norway, 1975.
- Data Profiles For Chemicals For The Evaluation Of Their Hazards To The Environment Of The Mediterranean Sea. Franklin Institute VI, Geneva: International Register of Potentially Toxic Chemicals, United Nations Environment Programme, 1978.
- Davaki, A. Directory Of Mediterranean Marine Environmental Centres. MAP Technical Reports Series N65, Athens, UNEP, 1992.
- Davidson, L., G. Kristina. Special Area Status for the Wider Caribbean Region Under Annex I of the International Convention for the Prevention of Pollution From Ships. U.S. Coast Guard, 1989.
- Davidson, S. Atmospheric Depositions. International Journal of Estuarine and Coastal Law.
- Davidson, S. Atmospheric Depositions. The North Sea: Perspectives On Regional Environmental Cooperation. Eds. D. Freestone, T. Ijlstra, V5, N1-3 pp. 288-299, 1990.
- Davis, R. Sea Surface Films. In a Report to the MITRE Corporation, JSR-86-105, McLean, Virginia, November, 1986.
- Davyhulme 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Davyhulme, Sampled by Rivers, United Kingdom, 1990-1995.
- Day, R.H., D.G. Shaw. Patterns in the Abundance of Pelagic Plastic and Tar in the North Pacific Ocean, 1976-1985. Marine Pollution Bulletin, V18 N6B, pp. 311-316, 1987.
- De Armas, J.D. *Pelagic Tar in the Western Mediterranean*. Instituto Espanol de Oceanografia, Laboratorio de Caraias, Islas Canarias, VII Jounees Etud. Pollutions, 1984.
- De Bievre A.F.M. Shipping and the North Sea Environment. Werkgroep Noordzee.
- De Flora, S., M. Bagnasco, P. Zanacchi. Genotoxic, Carcinogenic, and Teratogenic Hazards in The Marine Environment, With Special Reference To The Mediterranean Sea. Mutation Research, V258 N3, pp. 285-320, 1991.
- De Wolfe, P., Zijlstra, J.J. *The Ecosystem*. Eds W. Salomons, B.L. Bayne, E.K. Duursma & U. Forstner, North Sea Pollution, pp. 118-151, Berlin, Springer-Verlag, 1988.
- Defense Mapping Agency. Ocean Basin Environment. Sailing Directions (Planning Guide) for the North Atlantic Ocean. Defense Mapping Agency, 3rd Edition, 1988.
- Defense Mapping Agency. Ocean Basin Environment. Sailing Directions (Planning Guide) for the North Sea and Baltic Sea. Defense Mapping Agency, 3rd Edition, 1990.
- Defense Mapping Agency. Ocean Basin Environment. Sailing Directions (Planning Guide) for Antarctica. Defense Mapping Agency, 2nd Edition, 1992.

- Defense Mapping Agency. Ocean Basin Environment. Sailing Directions (Planning Guide) for the Mediterranean. Defense Mapping Agency, 5th Edition, 1991.
- Dehairs F., N. Stroobants, L. Goeyens. Suspended Barite As A Tracer Of Biological Activity In The Southern Ocean. Marine Chemistry, V35 N1-4, pp. 399-410, 1991.
- Dekker, L. Management Of Toxic Materials In An International Setting: A Case Study Of Cadmium In The North Sea. Rotterdam, Netherlands, Brookfield, VT, USA: A.A. Balkema, 1987.
- Delft Hydraulics Laboratory. *Dilution of Liquids Discharged From A Ship*. Report M 1312. Delft Hydraulics Laboratory, Delft, The Netherlands, 1975.
- Delille D. Marine Bacterioplankton At The Weddell Sea Ice Edge, Distribution Of Psychrophilic and Psychrotrophic Populations. Polar Biology, V12 N2, pp. 205-210, 1992.
- Delvigne, G.A.L. Experiments on The Dilution Capacity of Wakes From Tankers Dumping In The North Sea. Malabar, Krieger Publishing Company, pp. 235, Florida, 1987.
- Dethlefsen V. Fish In The Polluted North Sea. Dana-A Journal of Fisheries and Marine Research, V8:109-129, 1989.
- Devine, M. Analysis of Mixing and Dispersion of Industrial Wastes Dumped into the Deep Sea. Oceanic Processes in Marine Pollution, Robert E. Krieger Publishing Co., V2, pp. 63-70, Malabar, Florida, 1979.
- Dexter, S.C. Effect of Variation in Sea Water Upon the Corrosion of Aluminum. Corrosion, V36, pp. 423-432, 1980.
- Dietrich S. ed. Scientific Seminar On Antarctic Ocean Variability and Its Influence On Marine Living Resources, Particularly Krill (1987: Paris, France) Antarctic Ocean and Resources Variability. [Scientific Seminar On Antarctic Ocean Variability and Its Influence On Marine Living Resources, Particularly Krill, Paris, 2-6 June 1987] Berlin, New York: Springer-Verlag, 1988.
- Dijkstra F. North Sea Pollution Technical Strategies For Improvement. Proceedings Of The Iawprc International Conference, Held In Amsterdam, The Netherlands, 10-14 September 1990 Preface. Water Science And Technology, V24 N10:R9-R9, 1991.
- Disposal. United Press International.
- Dixon, T. R. Operational Discharges From Ships And Platforms [Garbage, Packaged Dangerous Or Harmful Goods And Pyrotechnics]. pp.45 47, 1990 North Sea Report. London: The Marine Forum for Environmental Issues, pp.164, 1990.
- Dixon, T.R., T.J. Dixon. *Marine Litter Surveillance*. Marine Pollution Bulletin, V14, N4, pp. 145-148, 1983.
- Donohue, G.L., J.W. Hoyt. *Harbor Pollution From Large Ships*. Fleet Engineering Department, Naval Undersea Center, San Diego, California, Oct., 1973.

- Dorten W., F. Elbazpoulichet, L. Mart, J. Martin. Reassessment Of The River Input of Trace Metals Into The Mediterranean Sea. Ambio, V20 N1, pp. 2-6, 1991.
- Drake, J., S. Gill, K. Bayer. *Technical Evaluation (TECHEVAL) Test Report for the Large Pulper Installed Onboard the U.S.S.*. *George Washington (CVN 73)*. Carderock Division, Naval Surface Warfare Center, CARDIVNSWC-TM-63-94/4, Washington. D.C., 1994.
- Du Bois, P.B., P. Guegueniat, R. Gandon, R. Leon, Y. Baron. Percentage Contribution of Inputs From the Atlantic, Irish Sea, English Channel and Baltic into the North Sea During 1988: A Tracer-Based Evaluation Using Artificial Radionuclides. Netherlands Journal of Sea Research, 1993.
- Dubinsky, Z. Coral Reefs. Elsevier Science Publishers, Amsterdam, 1990.
- Ducklow, H.W., D.L. Kirchman, G.T. Rowe. *Production and Vertical Flux of Attached Bacteria In The New York Bight As Studied With Floating Sediment Traps*. Applied Environmental Microbiology, V43, pp. 769-776, 1982.
- Duckworth, D., D. Lapota, D.E. Rosenberger, J.H. Grovhoug. *Bioluminescence, Chlorophyll Fluorescence, and Phototaxis Luhibition in the Dinoflagellate, Gongaulax Polyedra*. Bioluminescence and Chemiluminescence, John Wiley & Sons, Chichester, pp. 540-543, 1994.
- Durst, C.S. *The Relationship Between Current and Wind*. Quart. J. R. Met. Society, V50, pp. 113, London, 1924.
- Duursma, E.K. Assessment of Environmental Impact of Nutrients. Netherlands Institute for Sea Research, 1987.
- Earthscan. Environmental Wars & Environmental Refugees: The Political Background To The Cartagena Convention. London: Earthscan, International Institute For Environment And Development, Series Title: Earthscan Press Briefing Document, No. 34B, 1983.
- Earthscan. The Improbable Treaty: The Cartagena Convention and The Caribbean Environment. London: International Institute for Environment and Development, 1983.
- Effects of Pollution on Marine Ecosystems, Blanes, Spain, 7-11 October 1985 =
 Communications Presentees a la Reunion FAO/PNUE sur les Effets de la Pollution Sur.
 FAO/UNEP Meeting on the Effects of Pollution on Marine Ecosystems (1985: Blanes,
 Spain) Papers Presented at the FAO/UNEP Meeting on the Rome: Food and Agriculture
 Organization of the United Nations, 1987.
- Ehlers, P. Environmental Protection In Shipping What Is Expected Of Europe. DTSCH. HYDROGR. Z. 1991-92. V44, N2, pp. 107-111, 1991.
- Eisma D. Transport and Deposition of Suspended Matter in The North Sea and The Relation To Coastal Siltation, Pollution, and Bottom Fauna Distribution. Aquatic Sciences, V3 N2-3, pp. 181-216, 1990.

- Ekau W. Demersal Fish Fauna Of The Weddell Sea, Antarctica. Antarctic Science, V2 N2, pp. 129-137, 1990.
- El Gindy, A.A.H., A.A. Hamed. Wind Pattern and Expected Direction of Floating Pollutant Transport in the Nearshore Alexandria Water. Physical Oceanography, Oceanography Department Faculty of Science, Alexandria University, Alexandria, Egypt, VII Jounees Etud. Pollutions Lucerne, 1984.
- Eliminating Floatable Refuse in the New York Area. Joint Hearing Before the Subcommittee on Water Resources, Transportation, and Infrastructure and the Subcommittee on Superfund, Ocean, and Water Protection of the Committee on Environment and Public Works United States Senate One Hundred First Congress First Session on S.506, 1989.
- Elliot, D.H. Contributions to Antarctic Research III. V57 Antarctic Series, American Geophysical Union, Washington D.C., 1990.
- Elliot, D.H. Contributions to Antarctic Research. American Geophysical Union, Washington D.C., 1991.
- Elliott, A. J., Z. Li. Thermocline Depths And Water Temperatures At Selected Sites In The N.W. European Shelf Seas. Marine Pollution Bulletin, V22(6), pp. 282-286, 1991.
- Elmgren R. Mans Impact On The Ecosystem Of The Baltic Sea Energy Flows Today And At The Turn Of The Century. Ambio, V18 N6 pp. 326-332, 1989.
- El-Sayed, S.Z. Plankton. Elsevier, New York, New York, 1977.
- Emelianov, E.M.Y. Geochemistry and Sedimentology of The Mediterranean Sea. Kluwer Academic Publishers, MA, U.S., 1986.
- England M. On the Formation of Antarctic Intermediate and Bottom Water in Ocean General Circulation Models. Journal Of Physical Oceanography, V22 N8, pp. 918-926, 1992.
- England M., J. Godfrey, A. Hirst, M. Tomczak. *The Mechanism For Antarctic Intermediate Water Renewal In A World Ocean Model*. Journal Of Physical Oceanography, V23 N7, pp. 1553-1560, 1993.
- Environmental Acoustics Atlas Of The Caribbean Sea And Gulf Of Mexico. Marine Environment, V2, 1972.
- Environmental Agenda For The 1990's: A Synthesis of the Eastern Caribbean Country Environmental Profile Series: Antigua and Barbuda, Dominica, Grenada, St. Kitts and Nevis, St. Lucia, St. Vincent and The Grenadines. St. Michael, Barbados: Caribbean Conservation Association, St. Thomas, V.I., Island Resources Foundation, 1991.
- Environmental Laws of the Commonwealth Caribbean Analysis and Needs Assessment. A Study by the Caribbean Law Institute, 1992.
- Environmental Management, March-April, V14 N2:221-227, 1990.

- Environmental-Acoustics Atlas Of The Caribbean Sea and Gulf Of Mexico. Marine Acoustics, V1, 1986.
- Ernst, W., J.P. Boon, K. Weber. Occurrence and Fate of Organic Micropollutants In The North Sea. Pollution Of The North Sea, An Assessment. Eds. W. Salomons, B.L. Bayne, E.K. Duursma, U. Foerstner, pp. 284-299, 1988.
- Estrada M., M. Delgado. Summer Phytoplankton Distributions In The Weddell Sea. Polar Biology, V10 N6, pp. 441-449, 1990.
- Eutrophication in The Mediterranean Sea: Receiving Capacity and Monitoring of Long-Term Effects. Report and Proceedings of A Scientific Workshop, Bologna, Italy, 2-6 March 1987 Sponsored By UNESCO Paris, 1988.
- Evans, R.J. Death in Hamburg. Society and Politics in the Cholera Years 1830-1910. Oxford University Press, Oxford, 1987.
- Everaarts J., C. Fischer. *The Distribution Of Heavy Metals (Cu, Zn, Cd, Pb) In The Fine Fraction Of Surface Sediments Of The North Sea.* Netherlands Journal Of Sea Research, V29 N4, pp. 323-331, 1992.
- Fabiano M., P. Povero, R. Danovaro. *Distribution and Composition Of Particulate Organic Matter In The Ross Sea (Antarctica)*. Polar Biology, V13 N8, pp. 525-533, 1993.
- Fahrbach E., G. Rohardt, G. Krause. *The Antarctic Coastal Current In The Southeastern Weddell Sea*. Polar Biology, V12 N2, pp. 171-182, 1992.
- Fahrbach E., M. Knoche, G. Rohardt. An Estimate Of Water Mass Transformation In The Southern Weddell Sea. Marine Chemistry, V35 N1-4, pp. 25-44, 1991.
- Farmer C., C. Moore, R. Zika, R. Sikorski. Effects Of Low And High Orinoco River Flow On The Underwater Light Field of The Eastern Caribbean Basin. Journal Of Geophysical Research-Oceans, V98, N2, pp. 2279-2288, 1993.
- Farmer, D., D. Lemon. Dispersion of Dyed Sea-Water Discharged from Moving Vessels in Coastal Waters. Pacific Marine Science Report, Institute of Ocean Sciences, Patrician Bay, Victoria, BC., 1975.
- Farrell, Jr., C.A. Disposal of Marine Sewage: An Environmental Management Standard For Naval Ships. Naval Undersea Center, San Diego, California, June, 1972.
- Federal Regulations. Subpart A-Implementation of MARPOL 73/78. Bureau of National Affairs, 1994.
- Feldman, M.H. Trace Materials in Wastes Disposed to Coastal Waters-Fates, Mechanisms and Ecological Guidance and Control. National Technical Information Service, Federal Water Quality Administration, Corvallis, Oregon, July, 1970.
- Ferm, R. Integrated Management Of The Baltic Sea. Marine Pollution Bulletin, V23, pp. 533-540, 1991.

- Figueiras F., F. Perez, Y. Pazos, A. Rios. Light and Productivity Of Antarctic Phytoplankton During Austral Summer In An Ice Edge Region In The Weddell-Scotia Sea. Journal of Plankton Research, V16 N3, pp. 233-253, 1994.
- Final Reports On Research Projects Dealing With The Effects of Pollutants on Marine
 Communities and Organisms = Rapports Finaux Sur Les Projets De Recherche Traitant
 Des Effets De Polluants Sur Les Communautes Et... Athens: UNEP, 1993.
- First Baltic Sea Pollution Load Compilation. Helsinki: Baltic Marine Environment Protection Commission, Helsinki Commission, 1987.
- Fischer G. Stable Carbon Isotope Ratios Of Plankton Carbon and Sinking Organic Matter From The Atlantic Sector of The Southern Ocean. Marine Chemistry, V35 N1-4, pp. 581-596, 1991.
- Fisheries and Pollution To The North Sea Biota. Water Science and Technology, V24 N10, pp. 147-153, 1991.
- Fitzmaurice M. The New Helsinki Convention On The Protection Of The Marine Environment Of The Baltic Sea Area. Marine Pollution Bulletin, V26 N2, pp. 64-67, 1993.
- Fitzmaurice, M. International Legal Problems of the Environmental Protection of the Baltic Sea. Graham & Trotman, Norwell, Kluwer Academic Publishers, MA, U.S., 1992.
- Five Years of Solid Waste Planning in New York State. Waste Management Research Report, V5, N2., 1993.
- Flag Fen 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Flag Fen Treatment Works, United Kingdom, 1992-1994.
- Floatable Pollution in the New Jersey-New York Harbor Complex. Hearing Before the Subcommittee on Oversight and Investigations of the Committee on Merchant Marine and Fisheries House of Representatives, One Hundred First Congress First Session on Oversight of Legislation Governing the Problem of Pollution in the New York-New Jersey Harbor Complex and a Look at Long-Term Solutions to these Long-Term Problems, 1989.
- Flushing Times Of The North Sea. Copenhagen, Denmark: International Council for the Exploration of the Sea, 1983.
- Focus on Incinerator Ash Research. Waste Management Research Report, V1, N2, Spring, 1989.
- Focus on Marine Pollution. Waste Management Research Report, V3, N2, 1991.
- Focus on Secondary Materials. Waste Management Research Report, V2, N2, Summer, 1990.
- Focus on Source Reduction. Waste Management Research Report, V3, N1, 1991.
- Focus on the Relevance of Research. Waste Management Research Report, V4, N1, 1992.

- Foldvik A., J. Middleton, T. Foster. *The Tides Of The Southern Weddell Sea. Deep-Sea Research Part A.* Oceanographic Research Papers, V37 N8, pp. 1345-1362, 1990.
- Fontana, M.G., Corrosion Engineering. McGraw Hill, New York, 1986
- Francis, A. The Caribbean Basin And Recent Developments In The Law Of The Sea, & Human Rights In The Commonwealth Caribbean: An International Relations Perspective, St. Augustine, Republic Of Trinidad & Tobago: Institute Of International Relations, 1983.
- Frankenhoff, C., C.A. Matos, E. Towle, J. McEachern, L.T. Giulini. *Environmental Planning and Development In The Caribbean: Analysis and Needs Assessment.* Project Coordinator, Duke E.E. Pollard, Contributors, Editorial Universitaria, Universidad De Puerto Rico, 1977.
- Franklin, A. ed. Monitoring And Surveillance of Non-Radioactive Contaminants In The Aquatic Environment and Activities Regulating The Disposal Of Wastes At Sea, 1988/89.

 Ministry of Agriculture Fisheries and Food, Directorate of Fisheries Research, Aquatic Environment Monitoring Report, N26, pp. 90, 1989.
- Fransz H., J. Mommaerts, G. Radach. *Ecological Modeling of The North Sea*. Netherlands Journal of Sea Research, V28 N1-2, pp. 67-140, 1991.
- Freestone, D. Protection of Marine Species and Ecosystems in the Wider Caribbean, the Protocol on Specially Protected Areas and Wildlife. Marine Pollution Bulletin, V22, N12, pp. 579-581, 1991.
- Frost, B.W. Effects of Size and Concentration of Food Particles on the Feeding Behavior of the Marine Planktonic Copepod Calanus pacificus. Limnology Oceanography, 17:805-815, 1972.
- Fryxell G. Marine Phytoplankton At The Weddell Sea Ice Edge Seasonal Changes At The Specific Level. Polar Biology, V10 N1, pp. 1-18, 1989.
- Furness, R.W., P.S. Rainbow. Heavy Metals in the Marine Environment. CRC Press, Boca Raton, Florida, 1990.
- Gabaldon A. *The Disposal of Toxic or Dangerous Waste In Latin-America and The Caribbean*. Marine Policy, V14 N3, pp. 254-258, 1990.
- Gable F., M. Affs, J. Gentile, D. Aubrey. *Global Climatic Issues In The Coastal Wider Caribbean Region*. Environmental Conservation, V17 N1, pp. 51-60, Spring, 1990.
- Gabrielides, G.P., A. Golik, L. Loizides, M.G. Marino, F. Bingel, M.V. Torreg Rossa. Man Made Garbage Pollution on the Mediterranean Coastline. Environmental Management And Appropriate Use Of Enclosed Coastal Seas Emecs'-90. CODEN: International Conference on the Environmental Management of Enclosed Coastal Seas '90: EMECS '90, Kobe, Hyogo Prefect. (Japan), 3-6 August 1990 Marine Pollution Bulletin, V23, 1991.

- Gabrielidies, G.P. Proceedings of the FAO/UNEP/IAEA Consultation Meeting on the Accumulation and Transformation of Chemical Contaminants by Biotic and Biotic Processes in the Marine Environment., Mediterranean Action Plan, UNEP, MAP Technical Reports Series N59, La Spezia, Italy, pp. 24-28, September, 1990.
- Garrison D., K. Buck . Protozooplankton In The Weddell Sea, Antarctica Abundance and Distribution In The Ice-Edge Zone. Polar Biology, V9 N6, pp. 341-351, 1989.
- Garrison D., K. Buck. The Biota Of Antarctic Pack Ice In The Weddell Sea and Antarctic Peninsula Regions. Polar Biology, V10 N3, pp. 211-219, 1989.
- Garrity S., S. Levings. *Marine Debris Along The Caribbean Coast Of Panama*. Marine Pollution Bulletin, V26 N6, pp. 317-324, 1993.
- Gerdes D., M. Klages, W. Arntz, R. Herman, J. Galeron, S. Hain, *Quantitative Investigations On Macrobenthos Communities Of The Southeastern Weddell Sea Shelf Based On Multibox Corer Samples*. Polar Biology, V12 N2, pp. 291-301, 1992.
- Gerlach, S.A. *Nutrients-an Overview*. Institute for Marine Science, University of Kiel, Federal Republic of Germany.
- Geyer, R.A. Marine Environmental Pollution, 2, Dumping and Mining, Elsevier Scientific Publishing Company, New York, New York, 1981.
- Geyer, R.A. Naturally Occurring Hydrocarbon Seeps In The Gulf Of Mexico and The Caribbean Sea.
- Giam, C.S., H.J. Dou. Strategies and Advanced Techniques for Marine Pollution Studies: Mediterranean Sea. NATO Advanced Study Institute Berlin, New York: Springer-Verlag, 1986.
- Gibbs, R.J., M. Angelidis. Effect of Sludge Digestion on Metal Segregation During Ocean Dumping. Marine Pollution Bulletin, V20, N10, pp. 503-508, 1989.
- Giovanardi, F., R. Marchetti, G. Montanari, A Rinaldi, R. Barnard. Eutrophication Problems in the Northern Adriatic Empirical Dispersion Model For Total Phosphorus. Istituto Ricerca Sulle Acque, C.N.R. Brugherio, Milano, Italia, VII Journees Etud. Pollutions, Lucerne, 1984.
- Glas, P.C.G. A North Sea Computational Framework For Environmental And Management Studies: An Application For Eutrophication and Nutrient Cycles/ P.C.G. Glas and T.A. Nauta.[Delft, Netherlands]: Delft Hydraulics, 1990.
- Glasby, G.P. Antarctic Sector of the Pacific. Elsevier, New York, New York, 1990.
- Glass Products and Production. Encyclopedia Britannica Macropedia 15th Edition, V13, Encyclopedia Britannica Inc., 1974.
- Gleitz M., U. Bathmann, K. Lochte. Build Up and Decline Of Summer Phytoplankton Biomass In The Eastern Weddell Sea, Antarctica. Polar Biology, V14 N6, pp. 413-422, 1994.

- Goenaga C. The State Of Coral Reefs in The Wider Caribbean. Interciencia, V16 N1, pp. 12-20, 1991.
- Golchert, H.J. Waste Disposal From The Point Of View Of Shipping Companies In Particular With Regard To The Situation Aboard. Schiff Hafen Seewirtsch. 1990.V42, N12, pp. 12-19, 1990.
- Golik, A., 1934-*Tar Pollution In The Mediterranean Sea*. Prepared In Cooperation With IOC. Nairobi, Kenya: Oceans and Coastal Areas Programme Activity Centre, 1988.
- Golik, A., Y. Gertner. *Litter On The Israeli Coastline*. Marine Environmental Research, pp. 1-15, 1992.
- Gordon, A.L. *Oceanography of Antarctic Waters*. Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York, 1971.
- Gramentz, D. Involvement Of Loggerhead Turtle With The Plastic, Metal, And Hydrocarbon Pollution In The Central Mediterranean. Marine Pollution Bulletin, V19, pp. 11-13, 1988.
- Graneli E., W. Graneli, M. Rabbani, N. Daugbjerg, G. Fransz, J. Cuzin-Roudy, V.A. Alder. *The Influence of Copepod and Krill Grazing On The Species Composition Of Phytoplankton Communities From The Scotia-Weddell-Sea An Experimental Approach*. Polar Biology, V13 N3, pp. 201-213, 1993.
- Gray J., K. Clarke, R. Warwick, G. Hobbs. Detection of Initial Effects of Pollution on Marine Benthos An Example From The Ekofisk And Eldfisk Oilfields, North Sea. Marine Ecology-Progress Series, SEP, V66 N3, pp. 285-299, 1990.
- Great Britain. Department of The Environment. United Kingdom North Sea Action Plan, 1985-1995: Presented To The Third North Sea Conference Held In The Hague, March 1990. Department of The Environment, London, 1990.
- Greek Environmental Clean-Up Programme. Marine Pollution Bulletin, V28, N11, Nov., 1994.
- Grenon, M., M. Batisse, eds. Futures For The Mediterranean Basin: The Blue Plan. Foreword By M.K. Tolba, Oxford University Press, New York, 1989.
- Griffin, O.W., R.D. Peltzer, A.M. Reed, R.F. Beck. *Remote Sensing of Surface Ship Wakes*. Naval Engineers Journal, pp. 245-258, May, 1992.
- Grimalt, J., J.M. Bayona, J. Albaiges. Chemical Markers for the Characterization of Pollutant Inputs in the Coastal Zones. Instituto de Quimica Bio-Organica, Jorge Girona Salgado, Barcelona, Spain, VII Journees Etud. Pollutions, pp. 18-26, 1984.
- Grogan, W.C., Compiler. Input Of Contaminants To The North Sea From The United Kingdom. Final Report Prepared for the Department of the Environment by the Institute of Offshore Engineering. Institute of Offshore Engineering, Heriot-Watt University, Edinburgh, 203pp. 1984 Institute of Offshore Engineering., Heriot-Watt Univ., Edinburgh, EH14 4AS, U.K., 1984.

- Grosch, C.E. Turbulent Diffusion in a Stratified Fluid with Application to the Ocean. Ocean and Atmospheric Science, Inc., NTIS, 1972.
- Grossmann S., G. Dieckmann. Bacterial Standing Stock, Activity, and Carbon Production During Formation and Growth Of Sea Ice In The Weddell Sea, Antarctica. Applied and Environmental Microbiology, V60 N8, pp. 2746-2753, 1994.
- Groups Ask EPA to Convene Conference on Runoff Pollution in Mississippi, Gulf. Environmental Reporter, Current Developments, pp. 1839, 1994.
- Gruener, K., R. Reuter, H. Smid. A New Sensor System For Airborne Measurements Of Maritime Pollution and of Hydrographic Parameters. Geojournal, V24, N1, pp. 103-117, 1991.
- Guidelinés for the Designation of Special Areas an the Identification of Particularly Sensitive Sea Areas. Draft Assembly Resolution Annex 17, MEPC 31/21.
- Guruswamy, L. Environmental Management In A North Sea Coastal Zone: Law, Institutions and Policy. Natural Resources Journal, V25, Albuquerque, New Mexico: University of New Mexico, School of Law, 1985.
- Gutt J. On The Distribution and Ecology Of Holothurians In The Weddell Sea (Antarctica). Polar Biology, V11 N3, pp. 145-155, 1991.
- Guzman H., C. Jimenez. Contamination of Coral Reefs By Heavy Metals Along The Caribbean Coast of Central America (Costa-Rica And Panama) Marine Pollution Bulletin, V24 N11, pp. 554-561, 1992.
- Guzman H., I. Holst. Effects Of Chronic Oil-Sediment Pollution on The Reproduction of The Caribbean Reef Coral Siderastrea-Siderea. Marine Pollution Bulletin, V26 N5, pp. 276-282, 1993.
- Guzzella, L., A. De Paolis. *Polycyclic Aromatic Hydrocarbons in Sediments of the Adriatic Sea.* Marine Pollution Bulletin, V28, N3, pp. 159-165, 1994.
- Haas, P.M. Saving The Mediterranean: The Politics of International Environmental Cooperation. Columbia University Press, New York, 1990.
- Halewood 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Halewood Primary Tank Effluent, United Kingdom, 1990-1995.
- Hallberg R. Environmental Implications of Metal Distribution In Baltic Sea Sediment. Ambio, V20, N7 pp. 309-316, 1991.
- Halminski, S.J. Temperature, Salinity, Oxygen, and Phosphate in Waters Off Eastern Central America and Northern South America. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Key To Oceanographic Records Documentation, N4, Washington, 1975.
- Hammond, R.R., S.A. Jenkins, J.S. Cleveland, J.C. Talcott, A.L. Heath, J. Wasyl, S.G. Goosby, K.F. Schmitt, L.A. Levin. Coastal Water Clarity Modeling. SAIC, Technical Report 01-1349-03-4841-000, pp. 491, 1995.

- Hanson, M.B., P. Aguilar. *Marine Debris Bibliography*. NOAA's Marine Debris Information Office, 1989.
- Harden C. Water Resources Management In Latin-America and The Caribbean Lee, T. Professional Geographer, V43 N4, pp. 545-545, 1991.
- Hardisty, J. The British Seas: An Introduction To The Oceanography and Resources of The North West European Continental Shelf. London: Routledge, pp. 272, 1990.
- Harms, J. Marine Plastic Litter as an Artificial Hard Bottom Fouling. Biologische Anstalt Helgoland, Hambury, Germany, 44, pp. 503-506, 1990.
- Harris County 1994 Annual Sewage Discharge Monitoring Report. Harris County Wastewater Treatment Plant, Houston Texas, 1994.
- Hazelworth, J.B. Oceanographic Conditions In The Caribbean Sea During The Summer of 1971.

 Boulder, Colorado Environmental Research Laboratories, For Sale By The Support of Documents., U.S. Government Printing Building Office, 1975.
- Hecla. H.M.S. Oceanographic Observations In The Eastern Caribbean Sea. 1971.
- Heezen, B.C., M. Tharp. Physiographic Diagram of The South Atlantic Ocean, The Caribbean Sea, The Scotia Sea, and The Eastern Margin of The South Pacific Ocean. New York, Geological Society of America, 1961.
- Heinbokel, J.F. Studies on the Functional Role of Tintinnids in the Southern California Bight. I. Grazing and Growth Rates in Laboratory Cultures. Marine Biology V47, pp. 177-189, 1978.
- Heneman, B. Persistent Marine Debris In The North Sea, Northwest Atlantic Ocean, Wider Caribbean Area, and The West Coast Of Baja California. Henneman, Burr Bolinas, pp. 160, California, 1988.
- Henwood, T., W. Stuntz. Evaluation of U.S. Turtle Protective Measures Under Existing Regulations, Including Estimates of Shrimp Trawler Related Turtle Mortality In The Wider Caribbean. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1992.
- Herman R., H. Dahms. Meiofauna Communities Along A Depth Transect Off Halley Bay (Weddell Sea-Antarctica). Polar Biology, V12 N2, pp. 313-320, 1992.
- Hey E. A Healthy North Sea Ecosystem And A Healthy North Sea Fishery 2 Sides Of The Same Regulation. Ocean Development and International Law, V23 N2-3, pp. 217-238, 1992.
- Hey, E., G. Peet, eds. *The Status of The North Sea Environment. Reasons For Concern:*Proceedings of the 2nd North Sea Seminar '86, Rotterdam, V2. pp. 257-284, 1986.
- Hickel, W. Nitrogen and Phytoplankton Stocks in the German Bight in Relation to the Eutrophication Problem. Hamburg: Biologist Anstalt Helgoland, 1989.

- Hickel, W., E. Bauerfeind, U. Niermann, H.V. Westernhagen. Oxygen Deficiency In The South-Eastern North Sea: Sources And Biological Effects. Hamburg: Biologische Anstalt Helgoland, 1989.
- Highfield, R. Survey Into North Sea Waste Could Save One Billion Pounds A Year. Daily Telegraph, 7 November, p.9, SHIP: "challenger"/rv. 1989.
- Hill, H.W. Currents and Water Masses. North Sea Science, NATO North Sea Science Conference, MIT Press, Cambridge, Massachusetts, pp. 17-42, 1973.
- Hill, R.T., I.T. Knight, M.S. Anikis, R.R. Colwell. Benthic Distribution of Sewage Sludge Indicated by Clostridium Perfringens at a Deep-Ocean Dump Site. Applied and Environmental Microbiology, V59, N1, pp. 47-51, 1993.
- Hiroshi, I. ed. *The Mediterranean Resorts: Method of Environmental Preservation and Development*. Chichukai No Rizoto: Kankyohozon To Kaihatsu, Tokyo, Japan: Process Architecture Publishing Company, 1990.
- Hjulstrom, F. Transportation of Detritus by Moving Water. Recent Marine Sediments in Trask, pp. 5-31, 1939.
- Hodges, L. Environmental Pollution. Second Edition, Holt, Rinehart and Winston, New York, New York, 1973.
- Hoekstra, M. Macrowake Features of a Range of Ships. Report N410461-1-PV, Maritime Research Institute, Netherlands, 1991.
- Holm-Hansen, O., S.Z. El-Sayed. *Primary Production and the Factors Controlling Phytoplankton Growth in the Southern Ocean.* Applications Within Antarctic Biology. Smithsonian Institution, pp. 11-50, Washington, D.C., 1977.
- Horne, R.A.. Marine Chemistry. John Wiley and Sons, New York, 1969.
- Hosford, W.F., J.L. Duncan. *The Aluminum Beverage Can*. Scientific American, 271(3), 49, 1994.
- Hovland, F. Shipboard-generated Waste Treatment and Disposal Systems on Cruise Vessels. Waste and Gallery Systems, 1992.
- Hubold G., W. Ekau. Feeding Patterns of Post-Larval and Juvenile Notothenioids In The Southern Weddell Sea (Antarctica). Polar Biology, V10 N4, pp. 255-260, 1990.
- Hunter, J.R., H. Dorr. *Thresholds for Filter Feeding in Northern Anchovy, Engraulis mordax*. CalCOFI Report, VXXIII, 1982.
- Hupkes R. Pollution Of The North Sea By West European Rivers. Water Science and Technology, V24 N10: pp. 69-75, 1991.
- Hydes, D. J., H. Edmunds. NERC North Sea Community Research Programme Qualitative Assessment Of Nutrient Measurements September 1988 To August 1989: Preliminary

- Report For The Department of The Environment. School of Environmental Sciences, University of East Anglia, Norwich, 1989.
- Hydrographic Data For Caribbean Sea, and For Pesca Serial Station At 1738'N 67 00'W For 1971. Compiled By G.E. Shanley, Series Title: University of Puerto Rico (Mayaguez Campus), Department of Marine Sciences Data Reference Report, 72-1, 1971.
- Hyman, M. Modeling Ship Microbubble Wakes. Dahlgren Division Naval Suffice Warfare Center, Panama City, Florida, 1994.
- Hyman, M., J. Kamman, R. Smith, R.C. Nguyen. Bubble Transport in Ship Wakes With Application to Wake Modification. Naval Coastal System Center Technical Memorandum, June, 1987.
- Hyman, M.C. Influence of Temperature Stratification on the Development of Surface Ship Micro-Bubble Wakes. NCSC TN 1017-90, 1989.
- Hyman, M.C. Initial Data Plane Estimation for Surface Ships-II. NCSC Technical Note, NCSC TN 930-88, 1988.
- Hyman, M.C. Numerical Simulation of the Hydrodynamic Wake of a Surface Ship. Naval Coastal System Center Technical Note, pp. 544-690, 1990.
- Hyman, M.C. Simulation of the Interaction Between A Wind-Driven Sea State and Surface Ship Wakes. Naval Coastal System Center Technical Memorandum, CSS TM pp. 584-591. 1992.
- Ibrekk H., J. Molvaer, B. Faafeng. Nutrient Loading To Norwegian Coastal Waters and Its Contribution To The Pollution Of The North Sea. Water Science and Technology, V24 N10, pp. 239-249, 1991.
- ICES Coordinated Monitoring Programme For Contaminants In Fish And Shellfish, 1978 and 1979, and Six-Year Review of ICES Coordinated Monitoring Programme. Copenhagen: International Council for the Exploration of the Sea, Series title: Cooperative research report, N126, 1984.
- ICES Coordinated Monitoring Programme, 1977. Copenhagen, Denmark: International Council for the Exploration of the Sea, Series title: Cooperative research report, N98, 1980.
- Ichiye, T. Experiments On Circulation of The Gulf of Mexico and The Caribbean Sea With A Rotating Tank., 1969.
- IDOE Workshop On The Geology And Marine Geophysics of The Caribbean Region And Its Resources (1975: Kingston, Jamaica) Geology, Geophysics and Resources of The Caribbean: Report of The IDOE Workshop on The Geology and Marine Geophysics Of The Caribbean Region and Its Resources, Kingston, Jamaica, 17-22 February, Oceanographic Commission, UNESCO, 1977.

- Ijlstra T. North Sea Pollution Vessel-Source Pollution, Environmental Management and The Establishment of Eezs. Marine Policy, V17 N2, pp. 130-135, 1993.
- Ijlstra, T. Laws Of The Sea. Enforcement Of MARPOL: Deficient Or Impossible? Marine Pollution Bulletin V20(12), pp. 596-597, 1989.
- Ijlstra, T., F. Jong F. Current Legal Developments. North Sea. International J. Esturary Coast Law, V3, N3, pp. 246-265, 1988.
- IMO Adopts North Sea Annex V Special Area Status. North Sea Monitor, 89.4, p.10, 1989.
- IMO Caribbean Project Gets Under Way. Marine Pollution Bulletin, V28, N11, 1994.
- IMO Special Areas (Antarctic). Department of Transportation, U.S. Coast Guard 33 CFR Parts 151 and 155, Final Rule, 1994.
- IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP. Review Of Potentially Harmful Substances. Joint Group of Experts on The Scientific Aspects of Marine Pollution [GESAMP]. Nutrients. GESAMP Reports and Studies N34, pp. 40, 1990.
- Implementation of the Ocean Dumping Ban Act of 1988. Hearing Before the Subcommittee on Oceanography, Great Lakes and the Outer Continental Shelf and the Subcommittee on Fisheries and Wildlife Conservation and the Environment of the Committee on Merchant Marine and Fisheries House of Representatives, One Hundred Second Congress, First Session on Implementation of the 1988 Ocean Dumping Ban Act and Legislative Reauthorization, Current Permit and Penalty Structures, Trust Accounts and New Treatment Technologies, Research to Assess Effects of Sludge on Marine Life, and Beneficial Uses of Sludge, 1991.
- Incineration Ships Poison North Sea's Sediments. New Scientist, 119 [1632], p.33, 1988.
- Ingri J., R. Lofvendahl, K. Bostrom. Chemistry of Suspended Particles In The Southern Baltic Sea. Marine Chemistry, V32 N1 pp. 73-87, 1991.
- International Atomic Energy Agency. An Oceanographic Model for the Dispersion of Wastes Disposed of in the Deep Sea. Joint Group of Experts on the Scientific Aspects of Maine Pollution GESAMP Originally Approved at its Thirteenth Session Held in Geneva, 1983.
- International Convention for the Prevention of Pollution from Ships, 1973. MARPOL 73.
- International Council For The Exploration of The Sea. Advisory Committee On Marine Pollution. ICES, Cooperative Research Report, N190, 1992.
- International Council for the Exploration of the Sea. Working Group for the International Study of the Pollution of the North Sea and its Effects on Living Resources and their Exploitation. Report of Working Group for the International Study of the Pollution of the North Sea and its Effects on Living Resources and their Exploitation. Charlottenlund, Denmark: International Council for the Exploration of the Sea, 1974.
- International Maritime Organization. Articles, Protocols, Annexes, Unified Interpretations of the International Convention for the Prevention of Pollution from Ships, 1973, as Modified

- by the Protocol of 1978 Relating Thereto. MARPOL 73/78 Consolidated Edition 1991, IMO London, 1992.
- International Maritime Organization. Guidelines for the Implementation of Annex V of MARPOL 73/78. International Maritime Organization, London, 1988.
- International Symposium on Biological and Hydrographical Problems of Water Pollution in the North Sea and Adjacent Waters (1967: Helgoland, West Germany) Internationales Symposium 1967: Vortrage und Diskussionen = International Symposium 1967: Hamburg: Biologische Anstalt Helgoland, 1968.
- Introduction of Sea Garbage Disposal Regulation. Marine Pollution Bulletin, V20, N2, 1989.
- Inventory of Caribbean Marine And Coastal Protected Areas. Washington, D.C.: Department of Regional Development, Executive Secretariat of Economic and Social Affairs, General Secretariat, Organization Of American States: Office Of International Affairs, National Park Service, U.S. Department of the Interior, 1988.
- IOC/FAO/UNEP International Workshop On Marine Pollution In The Caribbean And Adjacent Regions (1976: Port Of Spain, Trinidad And Tobago) Report of The IOC/FAO/UNEP International Workshop on Marine Pollution In The Caribbean and Adjacent Regions, Port-of-Spain, Trinidad, 13-17 December 1976, Paris, France: Unesco, 1977.
- Jansson, B.O. *Ecosystem Approach to the Baltic problem.* Bulletins From the Ecological Research Committee, Stockholm, Ekologikommitten, Statens, 1972.
- Jany, I., K. Scanlon, A. Mauffret. Geological Interpretation Of Combined Seabeam, Gloria and Seismic Data From Anegada Passage (Virgin-Islands, North Caribbean). Marine Geophysical Researches, V12 N3, pp. 173-196, 1990.
- Jefferson 1992-1993 Sewage Discharge Monitoring Report. Jefferson Department, New Orleans, LA, 1992-1993.
- Jeftic, L., M. Bernhard, A. Demetropoulous, F. Fernex, G. Gabrielides, F. Gasparovic, Y. Halim, D. Orhon, L.J. Saliba. State of The Marine Environment In The Mediterranean Region. UNEP Regional Seas Report Study, N132, pp. 172, 1990.
- Jenkins, B.S. Density Currents and Turbidity Currents in Waste Disposal in the Ocean. The University of New South Wales Water Research Laboratory, Manly Vale, N.S.W., Australia, 1970.
- Jenkins, S.A., D.L. Inman. On a Submerged Sphere in a Viscous Fluid Excited by Small-Amplitude Motions. Journal Fluid Mechanics, V157, pp. 199-224. 1985.
- Jenkins, S.A., J. Wasyl. Resuspension of Esturial Sediments by Tethered Wings. Journal of Coastal Research, V6, N4, pp. 961-980, 1990.
- Jenkins, S.A., J. Wasyl. *Time Stepped Suspended Transport Model for the Dispersion of Optical Particles in Coastal Waters*. Submitted to Office of Naval Research, Code 1153, pp. 84, 1994.

- Jenkins, S.A., J.A. Nichols, D.W. Skelly. Coupled Physical-Biological Dispersion Model for the Fate of Suspended Solids in Sewage Discharged into the Ocean. SIO Reference Series 89-3, pp. 53, 1989.
- Jerlov, N.G. Factors Influencing The Transparency of The Baltic Waters. Goteborg, Elanders Boktryckeri Aktiebolag, 1955.
- Joannessen, O.M. Preliminary Results of Some Oceanographical Observations Carried Out Between Barbados and Tobago. Marine Sciences Manuscript Report N8, McGill University, November, 1968.
- Johnston, C.S., R.J. Morris, eds. Oily Water Discharges: Regulatory, Technical And Scientific Considerations. London: Applied Science Publishers, 1980.
- Johnston, R., P.G.W. Jones. Inorganic Nutrients In The North Sea. New York: American Geographical Society, 1965.
- Johnston, R.K., D. Lapota. A New Approach for Evaluating Biological Toxicity at Aquatic Hazardous Waste Sites. Reprinted from Proceedings of Sixth Symposium on Coastal and Ocean Management/ASCE, Charleston, pp. 422-436, 1989.
- Joiris C. Spring Distribution and Ecological Role Of Seabirds and Marine Mammals In The Weddell Sea, Antarctica. Polar Biology, V11 N7, pp. 415-424, 1991.
- Jones R., J. Amador. Methane and Carbon Monoxide Production, Oxidation, and Turnover Times in The Caribbean Sea as Influenced by The Orinoco River. Journal of Geophysical Research-Oceans, V98 N2, pp. 2353-2359, 1993.
- Jones, Dr. N.V. The North Sea: Perspectives On Regional Environmental Cooperation-The North Sea Environment: Features and Problems. London, Boston: Graham & Trotman Martinus Nijhoff, 1990.
- Jones, W.P., B.E. Launder. *The Prediction of Laminarization with a two Equation Model of Turbulence*. International J. Heat Mass Transfer, 15, pp. 301, 1972.
- Jonsson P., C. Rappe, L. Kjeller, A. Kierkegaard. Pulp-Mill Related Polychlorinated Organic Compounds In Baltic Sea Sediments. Ambio, V22 N1, pp. 37-43, February, 1993.
- Jonsson, I.G., N.A. Carlsen. Experimental and Theoretical Investigations in an Oscillatory Turbulent Boundary Layer. J. Hydraulic Research, V14, N1, pp. 45-60, 1976.
- Joy, S. Effect Of Shipping And Navigation On The Marine Environment. North Sea Forum. London: Council for Environmental Conservation, pp. 147-151, 1987.
- Kamath, S. Biological Nitrification/Denitrification of High Sodium Nitrite (Navy Shipyard) Wastewater. Environmental Pollution, V69, pp. 25-38, 1991.
- Kang, S.H., G.A. Fryxell. Phytoplankton in the Weddell Sea, Antarctica: Composition, Abundance, and Distribution in the Water-Column Assemblages of the Marginal Ice-Edge Zone During Autral Autumn. Marine Biology, V116, pp. 335-348, 1993.

- Kasoulides, G.C. *North Sea Declared A 'Special Area'*. Marine Pollution Bulletin, V19 [11], pp. 551-552, 1988.
- Kastelein, R.A., M.S.S. Lavaleije. Foreign Bodies In The Stomach Of A Female Harbour Porpoise (Phocoena phocoena) From The North Sea. Aquatic Mammals, V18, N2, pp. 40-46, 1992.
- Katz, C.N., D.B. Chadwick, G.S. Douglas. *Real-Time Fluorescence for Measurements Intercalibrated with GC-MS.* Ocean Proceedings 1991 Conference, pp. 351-358, 1991.
- Katz, C.N., D.B. Chadwick. Synoptic Mapping and Modeling of a Sewage Outfall Plume. The Marine Technology Society Ocean Conference Proceedings, pp. 207-215, California, 1993.
- Kautsky H. *The Impact Of Pulp-Mill Effluents On Phytobenthic Communities In The Baltic Sea*. Ambio, V21 N4m, pp. 308-313, 1992.
- Kavanaugh, M.C., J.C. Leckie, eds. *Particulates in Water, Characterization, Fate, Effects, and Removal.* Advances in Chemistry Series, 1980.
- Kemp, J.F., A.F.M. De Bievre. A Regional Vessel Traffic Service For The North Sea. The North Sea: Perspectives on Regional Environmental Cooperation. Eds. D. Freestone, T. Ijlstra, V5, N1-3 pp. 167-179, 1990.
- Kempe, S., G. Liebezeit, V. Dethlefsen, U. eds. *Biogeochemistry and Distribution of Suspended Matter In The North Sea and Implications To Fisheries Biology*. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) pp. 552, 1988.
- Kempe, S., T.C. Jennerjahn. *The Vertical Particle Flux In The Northern North Sea, Its Seasonality And Composition*. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea and Implications-To-Fisheries-Biology, pp. 65 229-268, 1988.
- Kennedy, J.F., R.A. Froebel. *Two-Dimensional Turbulent Wakes in Density-Stratified Liquids*. A.S.M.E. Publication, 64-WA/UNT-11, 1964.
- Kennett, J. Marine Geology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.
- Kersten, M., Klatt, V. Trace Metal Inventory And Geochemistry Of The North Sea Shelf Sediments. Scientific, Common Problems Of The Environment United, Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65, pp. 289-311, 1988.
- Kester, D.R., W.V. Burt, J.M. Capuzzo, P.K. Park, B.H. Ketchum, I.W. Duedall. Wastes in the Ocean Volume 5. John Wiley & Sons, New York, 1985.

- Ketchum, B.H., D.R. Kester, P.K. Park. Ocean Dumping of Industrial Wastes. Plenum Press, New York, 1979.
- Keys, J.R. Antarctic Marine Environments and Offshore Oil. Commission for the Environment Wellington, New Zealand, 1984.
- Kings Lynn 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Kings Lynn Treatment Works, United Kingdom, 1992-1994.
- Kivi K., H. Kuosa. Late Winter Microbial Communities In The Western Weddell Sea (Antarctica). Polar Biology, V14 N6, pp. 389-399, 1994.
- Kjerfve, B. Physical Flow Processes in Caribbean Waters Over a Range of Scales, Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina.
- Klages N. Food and Feeding Ecology Of Emperor Penguins In The Eastern Weddell Sea. Polar Biology, V9 N6, pp. 385-390, 1989.
- Klomp R. Modeling The Transport And Fate Of Toxics In The Southern North Sea. Science of The Total Environment, V97-8, pp. 103-114, 1990.
- Kohonen J.T. Protection of The Marine Environment of The Baltic Sea An Example On Multilateral Cooperation. Marine Pollution Bulletin, V23, pp. 541-544, 1991.
- Koroleva, N.D., V.A. Kiselev. Soviet Marine Pollution Legislation, Prevention of Pollution from Ships and the Law of the Sea Convention. Soviet Association of Maritime Law.
- Koslow, J.A. Feeding Selectivity of Schools Northern Anchovy, Engraulis mordax, in the Southern California Bight. Fishery Bulletin, V79, pp. 131-229, 1981.
- Koubbi P. Influence of The Frontal Zones on Ichthyoplankton and Mesopelagic Fish
 Assemblages In The Crozet Basin (Indian Sector Of The Southern Ocean). Polar Biology,
 V13 N8, pp. 557-564, 1993.
- Kress N., A. Golik, B. Galil, M. Krom. Monitoring The Disposal of Coal Fly Ash at a Deep Water Site in The Eastern Mediterranean Sea. Marine Pollution Bulletin, V26, N8, pp. 447-456, 1993.
- Kristiansen S., E. Syvertsen, T. Farbrot. Nitrogen Uptake In The Weddell Sea During Late Winter and Spring. Polar Biology, V12 N2, pp. 245-251, 1992.
- Krohn J., A. Muller, W. Puls. Pollutant Transport Monitoring And Prediction By Mathematical Modeling-North Sea and Adjacent Estuaries. Marine Pollution Bulletin, V23, pp.699-702, 1991.
- Kruize R. Water Pollution Control In Amsterdam Its Effect On North Sea Environment and The Role of Harbour Reception Facilities. Water Science and Technology, V24 N10, pp. 155-160, 1991.

- Kruize, R.R. ed. North Sea Pollution--Technical Strategies For Improvement: Proceedings of The IAWPRC International Conference, Held In Amsterdam. The Netherlands, 10-14 September 1990, Oxford, New York: Pergamon Press, 1991.
- Kullenberg, G. Entrainment Velocity in Natural Stratified Sheer Flow. Estuary Coastal Marine Science, 5, pp. 329-338, 1977.
- Kullenberg, G. Overall Report On The Baltic Open Sea Experiment 1977 (BOSEX).

 Copenhagen, Denmark: International Council for the Exploration of the Sea, 1984.
- Kullenberg, G. The State Of The Baltic. Oxford, Pergamon Press, New York, 1981.
- Kuparinen J., P. Bjornsen. Bottom-Up and Top-Down Controls Of The Microbial Food Web In The Southern Ocean Experiments With Manipulated Microcosms: Polar Biology, V12 N2, pp. 189-195, 1992.
- La Violette, P.E., ed. Seasonal and Interannual Variability of the Western Mediterranean Sea. Coastal and Estuarine Studies Series, V46, AGU, 1994.
- Laane R.W.P.M., J. Vandermeer, A. Devries, A. Vandergiessen. Monitoring The Progress of Attempts To Reduce Nutrient Load And Inputs of Certain Compounds In The North Sea By 50-Percent. Environmental Management, March-April, V14 N2, pp. 221-227, 1990.
- Laevastu, T. Surface Water Types of the North Sea and its Characteristics. Serial Atlas of the Marine Environment Folio, 4, American Geographic Society, 1963.
- Laevastu, T. Synopsis of Information on Oceanography of the North Sea. FAO, Fisheries Division, Biology Branch, Report FB/60/SZ, 1960.
- Lajczak A., M. Jansson. Seasonal Variations In Suspended Sediment Yield In The Baltic Sea Drainage Basin. Nordic Hydrology, V24 N1 pp. 53-64, 1993.
- Lancelot C., G. Billen, C. Veth, S. Becquevort S, S.Mathot. *Modelling Carbon Cycling Through Phytoplankton and Microbes In The Scotia-Weddell Sea Area During Sea Ice Retreat.*Marine Chemistry, V35 N1-4, pp. 305-324, 1991.
- Lancelot C., S. Mathot, C. Veth, H. Debaar. Factors Controlling Phytoplankton Ice-Edge Blooms In The Marginal Ice-Zone Of The Northwestern Weddell Sea During Sea Ice Retreat 1988 - Field Observations and Mathematical Modelling. Polar Biology, V13 N6, pp. 377-387, 1993.
- Landmann, G. An In Situ Camera System, Developed And Tested For The Characterization Of Suspended Matter In The Ocean. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea and Implications-To-Fisheries-Biology. N65 pp. 207-228. 1988.
- Lapota, D., D.E. Rosenberger, D. Duckworth. *A Bioluminescent Dinoflagellate Assay for Detecting Toxicity in Coastal Waters*. Bioluminescence and Chemiluminescence, John Wiley & Sons, Chichester, 1994.

- Lapota, D., G.J. Moskowitz, D.E. Rosenberger, J.G. Grovhoug. The Use of Stimulable Bioluminescence from Marine Dinoflagellates as a Means of Detecting Toxicity. The Marine Environment, ASTM Publication 1216, pp. 18, 1994.
- Larue D., Warner A. Sedimentary Basins of The NE Caribbean Plate Boundary Zone and Their Petroleum Potential. Journal of Petroleum Geology, V14 N3, pp. 275-290, 1991.
- Latin American and Caribbean Commission on Development and Environment. Our Own Agenda. Latin American and Caribbean Commission on Development and Environment. Washington, D.C.: Inter-American Development Bank, United Nations Development Programme, New York, N.Y., 1990.
- Laubscher R., R. Perissinotto, C. Mcquaid. *Phytoplankton Production and Biomass At Frontal Zones In The Atlantic Sector Of The Southern Ocean.* Polar Biology, V13 N7, pp. 471-481, 1993.
- Lavoie, D.M. Chemical, Biological, And Physical Measurements From The Mediterranean Sea, Summer 1980. 1982.
- Law Of The Sea With Emphasis on The Mediterranean Issues. Thessaloniki: Institute of International Public Law and International Relations of Thessaloniki, 1991.
- Lawrence J., N. Craig. Strategy For Protecting The North Sea-A Chemical Industry Perspective. Water Science and Technology, V24 N10, pp.269-276, 1991.
- Laws of the Sea, The Development of International Regimes of the Protection of Marine Areas. Marine Pollution Bulletin, V22, N1, pp. 6-8, 1991.
- Laws of the Sea, the North Sea Conference: Bremen 1984-London 1987. Marine Pollution Bulletin, V17, N9, pp. 394-399, 1986.
- Lazaro, B.J., J.C. Lasheras. Particle Dispersion in a Developing Free Shear Layer, Part I Forced Flow. J. Fluid Mechanics, V235, pp. 179-221, 1992.
- Lazaro, B.J., J.C. Lasheras. Particle Dispersion in a Developing Free Shear Layer, Part 2 Forced Flow. J. Fluid Mechanics, V235, pp. 179-221, 1992.
- Lebedev, V. Antarctica. Foreign Languages Publishing House, Moscow, Russia, 1959.
- Lee, A.J. *The North Sea, Setting the Scene*. Eds. P.J. Newman, A.R. Agg, Environmental Protection of the North Sea, Professional Publishing, 1988.
- Lee, A.J. *The Currents and Water Masses of the North Sea*. Oceanography, Marine Biology, 8, pp. 33-71, 1970.
- Lee, A.J., J. Ramster. The Hydrography of the North Sea. A Review of Our Knowledge in Relation of Pollution Problems. Helgol. Wiss. Meeresunters, 17, pp. 44-63, 1968.
- Leithe-Eirksen, R. The Seas of Europe, The Baltic. Greenpeace.
- Leithe-Eriksen, R. The Baltic. Collins & Brown, London, 1992.

- Leong, R.J., O'Connell. A Laboratory Study of Particulate and Filter Feeding of the Northern Anchovy, Engraulis mordax. J. Fish. Res. Bd. Canada V26, pp. 557-582, 1969.
- Lewis, R. E., A.M. Riddle. Sea Disposal: Modelling Studies Of Waste Field Dilution. Marine Pollution Bulletin, V20, N3, pp. 124-129, 1989.
- Leynaert A., P. Treguer, B. Queguiner, J. Morvan. *The Distribution of Biogenic Silica and the Composition of Particulate Organic Matter in the Weddell-Scotia Sea During Spring 1988*. Marine Chemistry, V35 N1-4, pp. 435-447, 1991.
- Lieberman, S.H., S. Clavell, D.B. Chadwick. *Techniques for Real-Time Environmental Monitoring*. Proceedings of the 16th Meeting U.S.-Japan Marine Facilities Panel: United States Cooperative Program in Natural Resources on Marine Facilities, pp. 495-499, 1989.
- Liebezeit, G. Distribution Of Dissolved Humic Compounds In The Southern North Sea. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65 pp. 153-162, 1988.
- Lipton, J., J.W. Gillett. *Uncertainty in Ocean-Dumping Health Risks: Influence of Bioconcentration, Commercial Fish Landings and Seafood Consumption.*Environmental Toxicology and Chemistry, V10, pp. 967-976, 1991.
- Liss, P.S. Chemistry of the Sea Surface Microlayer. Eds. J.P. Riley, G. Skirrow, Chemical Oceanography, V2, 2nd Edition, Academic Press, New York, Pp. 193-243, 1975.
- Liss, P.S. Land To Ocean Transport of Contaminants: Comparison of River and Atmospheric Fluxes. UNEP Regional Seas Reports and Studies, N114/2, 417-446, 1990.
- List, E.J., G. Gartrell, C.D. Winant. *Diffusion and Dispersion in Coastal Waters*. Journal of Hydraulic Engineering, V116, N10, pp. 1158-1179, 1990.
- Lithner, G. Ronnskarsundersokningen. Statens Naturvardsverk PM, 497, pp. 1-174, 1974.
- Littler M., P. Taylor, D. Littler. Complex Interactions In The Control of Coral Donation on A Caribbean Reef Flat. Oecologia, V80 N3, pp. 331-340, 1989.
- Liverpool 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Liverpool Primary Tank Effluent to Syphon River, United Kingdom, 1990-1995.
- Lizotte M., C. Sullivan. Biochemical Composition and Photosynthate Distribution In Sea Ice Microalgae Of McMurdo-Sound, Antarctica - Evidence For Nutrient Stress During The Spring Bloom. Antarctic Science, V4 N1, pp. 23-30, 1992.
- Lodge D., W. Mcdowell. Summary Of Ecosystem-Level Effects Of Caribbean Hurricanes. Biotropica, V23 N4, pp. 373-378, 1991.
- London Dumping Convention, the First Decade and Beyond. Provisions of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972

- Leong, R.J., O'Connell. A Laboratory Study of Particulate and Filter Feeding of the Northern Anchovy, Engraulis mordax. J. Fish. Res. Bd. Canada V26, pp. 557-582, 1969.
- Lewis, R. E., A.M. Riddle. Sea Disposal: Modelling Studies Of Waste Field Dilution. Marine Pollution Bulletin, V20, N3, pp. 124-129, 1989.
- Leynaert A., P. Treguer, B. Queguiner, J. Morvan. The Distribution of Biogenic Silica and the Composition of Particulate Organic Matter in the Weddell-Scotia Sea During Spring 1988. Marine Chemistry, V35 N1-4, pp. 435-447, 1991.
- Lieberman, S.H., S. Clavell, D.B. Chadwick. *Techniques for Real-Time Environmental Monitoring*. Proceedings of the 16th Meeting U.S.-Japan Marine Facilities Panel: United States Cooperative Program in Natural Resources on Marine Facilities, pp. 495-499, 1989.
- Liebezeit, G. Distribution Of Dissolved Humic Compounds In The Southern North Sea. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65 pp. 153-162, 1988.
- Lipton, J., J.W. Gillett. Uncertainty in Ocean-Dumping Health Risks: Influence of Bioconcentration, Commercial Fish Landings and Seafood Consumption. Environmental Toxicology and Chemistry, V10, pp. 967-976, 1991.
- Liss, P.S. Chemistry of the Sea Surface Microlayer. Eds. J.P. Riley, G. Skirrow, Chemical Oceanography, V2, 2nd Edition, Academic Press, New York, Pp. 193-243, 1975.
- Liss, P.S. Land To Ocean Transport of Contaminants: Comparison of River and Atmospheric Fluxes. UNEP Regional Seas Reports and Studies, N114/2, 417-446, 1990.
- List, E.J., G. Gartrell, C.D. Winant. *Diffusion and Dispersion in Coastal Waters*. Journal of Hydraulic Engineering, V116, N10, pp. 1158-1179, 1990.
- Lithner, G. Ronnskarsundersokningen. Statens Naturvardsverk PM, 497, pp. 1-174, 1974.
- Littler M., P. Taylor, D. Littler. Complex Interactions In The Control of Coral Donation on A Caribbean Reef Flat. Oecologia, V80 N3, pp. 331-340, 1989.
- Liverpool 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Liverpool Primary Tank Effluent to Syphon River, United Kingdom, 1990-1995.
- Lizotte M., C. Sullivan. Biochemical Composition and Photosynthate Distribution In Sea Ice Microalgae Of McMurdo-Sound, Antarctica - Evidence For Nutrient Stress During The Spring Bloom. Antarctic Science, V4 N1, pp. 23-30, 1992.
- Lodge D., W. Mcdowell. Summary Of Ecosystem-Level Effects Of Caribbean Hurricanes. Biotropica, V23 N4, pp. 373-378, 1991.
- London Dumping Convention, the First Decade and Beyond. Provisions of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972

- (amended 1978, 1980, and 1989), and Decisions made by the Consultative Meeting of its Contracting Parties (1975-1989). Prepared by the Office of the London Dumping Convention, IMO, London, 1991.
- Long, E.R., D.D. Mcdonald, S.L. Smith, F.D. Calder. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments.

 -Environmental Management, V19, N1, pp. 81-97, Springer-Verlad New York, Inc., 1995.
- Lowestoft 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Lowestoft Treatment Works, United Kingdom, 1992-1994.
- Lundhansen L., M. Pejrup, J. Valeur, A. Jensen. Gross Sedimentation Rates in The North Sea-Baltic Sea Transition Effects Of Stratification, Wind Energy Transfer, and Resuspension. Oceanologica Acta, V16 N3, pp. 205-212, 1993.
- Lyons M., P. Balls, W. Turrell. A Preliminary Study of The Relative Importance of Riverine Nutrient Inputs To The Scottish North Sea Coastal Zone. Marine Pollution Bulletin, V26 N11, pp. 620-628, 1993.
- MacIntryre, F. *Chemical Fractionation and Sea-Surface Microlayer Processes*. Ed. E.D. Goldberg, The Sea, V5, Wiley, New York, pp. 245-299, 1974.
- Manos A. An International Programme For The Protection Of A Semi-Enclosed Sea. The Mediterranean Action Plan. Marine Pollution Bulletin, V23, pp. 489-496, 1991.
- Manzi, D. Shipboard-Generated Solid Waste Analysis-Naval Station, Norfolk, 1994.
- Manzi, D. Shipboard-Generated Solid Waste Analysis: Phase II Report. Carderock Division, Naval Surface Warfare Center, Technical Report 63, CR93/01, January, 1994.
- Marine Environmental and Water Quality Models. Copenhagen: International Council for the Exploration of the Sea, Series title: Cooperative Research Report, N156. 1980.
- Marine Pollution Bulletin, Environmental Perspectives for the Northern Seas. Proceedings of Environment Northern Seas 1993, V29, N6-12, 1994.
- MARPOL 73/78 Consolidated Edition, 1991. Articles, Protocols, Annexes, Unified Interpretations of the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto, IMO, London, 1992.
- MARPOL Amended to Harmonize Survey and Certification Aspects. Marine Environment Protection Committee-29th Session.
- Marshall, N. *Understanding The Eastern Caribbean and The Antilles*: With Checklists Appended/Nelson Marshall, St. Michaels, Md.: Th'Anchorage Publisher, 1992.
- Martin J., F. Elbazpoulichet, C. Guieu, M. Loyepilot. *River Versus Atmospheric Input of Material To The Mediterranean Sea An Overview.* Marine Chemistry, V28 N1-3, pp. 159-182, 1989.

- Martin, J.E., E. Meiburg. The Accumulation and Dispersion of Heavy Particles in Forced Two-Dimensional Mixing Layers, 1: The Fundamental and Subharmonic Cases. Physical Fluids, A-6, pp. 1116-1132, 1994.
- Marvin, M., J. Burns, D.G. Capone. *Microbial Degradation of Sweetheart Cups in the Marine Environment*. A Report Submitted to the Sweetheart Cup Company, Inc., Chesapeake Biological Laboratory, University of Maryland, September, 1993.
- Mathot S., J. Dandois, C. Lancelot. Gross and Net Primary Production In The Scotia-Weddell Sea Sector Of The Southern Ocean During Spring 1988. Polar Biology, V12 N2, pp. 321-332, 1992.
- Matthews, J.E., T.L. Holcombe. Regional Geological/Geophysical Study of The Caribbean Sea (Navy Ocean AreaNa-9). Geophysical Maps of The Eastern Caribbean, 1976.
- Maul, G.A. English-Spanish Bibliography In Physical Oceanography and Ocean Climate For The Caribbean Sea and Adjacent Regions. Bibliografia Ingles- Espanol De Oceanografia Fisica Y Clima Oceanico Del Mar Caribe Y, Paris: Intergovernmental Oceanographic Commission, Unesco, 1988.
- Maul, G.A. Implications Of Climatic Changes In The Wider Caribbean Region: Preliminary Conclusions Of The Task Team Of Experts. Prepared By George Maul, Kingston, Jamaica: Caribbean Environment Programme, United Nations Environment Programme, CEP Technical Report, Mailliard TD171.5.C3 C46 N3, 1989.
- McConnell B., C. Chambers, M. Fedak. Foraging Ecology of Southern Elephant Seals In Relation To The Bathymetry and Productivity of The Southern Ocean. Antarctic Science, V4 N4, pp. 393-398, 1992.
- McCoy, F.W. Floating Mega-litter In The Eastern Mediterranean. Marine Pollution Bulletin, V19, N1, pp. 25-28, 1988.
- Mcdonald A. Coastal Waters, Vol 1, Water Quality Management Plan North Sea Framework For Analysis Koudstaal, R. Environment & Planning, V22 N11:1547-1549, Nov., 1990.
- McDonald S., M. Kennicutt, J. Sericano, T. Wade, H. Liu, S.H. Safe. Correlation Between Bioassay-Derived P4501A1 Induction Activity and Chemical Analysis Of Clam (Laternula-elliptica). Extracts From McMurdo Sound, Antarctica. Chemosphere, V28 N12, pp. 2237-2248, 1994.
- McIntyre, A.D. *Pollution in the North Sea From Oil-Related Industry, an Overview*. Eds. P.J. Newman, A.R. Agg, Environmental Protection of the North Sea, Heinemann, Oxford, pp. 425, 1988.
- McIntyre, A.D. *The Benthos of the Western North Sea*. Rapp. R.-v Reun. Cons. Internationa Expolorer, Mer, 172, pp. 405-417, 1978.
- McIntyre, A.D., J.B. Pearce, eds. Biological Effects Of Marine Pollution and The Problems of Monitoring: Proceedings From ICES Workshop Held In Beaufort, North Carolina 26 February-2 March 1979. Copenhague K, Denmark: Conseil International Pour

- L'exploration de la mer, Series title: Rapports et Proces-Verbaux des Reunions V179, 1980.
- McLeay, D. Aquatic Toxicity of Pulp and Paper Mill Effluent: A Review. Environment Canada, Fisheries and Oceans, D. McLeay and Associates Ltd., 1987.
- Meadows, G.A., D. Lyzenga, J. Lyden, R. Beck. *Nonintrusive, Multiple-Point Measurements of Water Surface Slope, Elevation and Velocity*. Proceedings of the Eighteenth ONR Symposium on Naval Hydrodynamics, National Academy Press, pp. 349-360, Washington, D.C., 1990.
- Meadows, L., G. Meadows, A. Troesch, S. Cohen, K.P. Beier, G. Rot. Lagranigian Velocity Profiles in the Wake of a High Speed Vessel. Ocean Engineering, V21, N2, pp. 221-242, 1994
- Mediterranean Action Plan and Convention For The Protection of The Mediterranean Sea Against Pollution and Its Related Protocols. CA CORPORATE AUTHOR(S): UNEP, Nairobi (Kenya). Athens Greece UNEP pp. 61, 1992.
- Mediterranean Coastal Pollution: Proceedings of A Conference Held In Palma, Mallorca, 24-27 September, 1979. New York: Pergamon Press, 1980.
- Mediterranean Pollution: Proceedings of A Conference Held in Palma, Mallorca, 24-27 September, 1979. Oxford, New York: Pergamon Press, 1980.
- Mediterranean Sea. New Encyclopedia Britannica 15th Edition, Encyclopedia Britannica Inc., 1974.
- Melvasalo, T. Assessment of the Effects of Pollution on the Natural Resources of the Baltic Sea. Eds. J. Pawlak, K. Grasshoff, L. Thorell, A. Tsiban, Baltic Sea Environment, Proc. 5B, pp. 322-342, 1980.
- Melvasalo, T. ed. Assessment Of The Effects Of Pollution On The Natural Resources Of The Baltic Sea, 1980. Helsinki: Baltic Marine Environment Protection Commission, Helsinki Commission, 1981.
- Mercier, J.R., R.I. Hires, M. Wu. *Model Study of the Dilution of Soluble Liquids Discharged From Tankers*. Report No. CD-D-12-74. Department of Transportation, U.S. Coast Guard, Washington, D.C., 1973.
- Merritt, G.E. Wake Laboratory Experiment. Cornell Aeronautical Laboratory Inc. New York, 1972.
- Metcalf, W.G. Hydrographic Station Data Caribbean Sea Atoantis II Cruise 78 And Knorr Cruise 37. Woods Hole Oceanographic Institution Reference, pp. 74-90, 1974.
- Metcalf, W.G. Hydrographic Station Data From Atlantis II Cruise 56 To The Southeastern Approaches To The Caribbean Sea. Woods Hole Oceanographic Institution Reference, 71-13, 1971.
- Metcalf, W.G., et al. Hydrographic Station Data, Caribbean Sea, Knorr Cruise 25, 1973.

- Miller R., J. Reinemund. Energy And Mineral Potential Of The Central American-Caribbean Region -San-Jose, Costa-Rica. Episodes, V13 N1:28-31, 1990.
- Miller, A.R. *Physical Oceanography of The Mediterranean Sea: A Discourse.* Woods Hole Oceanographic Institution Woods Hole, Massachusetts, U.S., 1964.
- Miller, R. 1913-History and Atlas Of The Fishes Of The Antarctic Ocean. Carson City, Nevada: Foresta Institute For Ocean and Mountain Studies, 1993.
- Miloradov, M. ed. Pollution Of The Mediterranean Sea: Proceedings Of An IAWPRC International Regional Conference Held In Split, Yugoslavia, 2-5 October 1985.

 International Association on Water Pollution Research and Control Conference 1985: Split, Yugoslavia Pergamon Press, Oxford, New York, 1986.
- Miner, W.E., S.E. Ramber. A Method of Approximating the Initial Data Plane for Surface Ship Wake Simulations. Naval Research Laboratory Report 6376, November, 1988.
- Mitchell B., E. Brody, O. Holmhansen, C. McClain, J. Bishop. *Light Limitation Of Phytoplankton Biomass and Macronutrient Utilization In The Southern Ocean.* Limnology and Oceanography, V36 N8, pp. 1662-1677, 1991.
- Mitchell, Dr. R. Conservation of Marine Benthic Biocenoses in The North Sea and The Baltic: A Framework For The Establishment of A European Network of Marine Protected Areas In The North Sea And The Baltic. European Committee For The Conservation of Nature and Natural Resources, 1987.
- Moraitou-Apostolopoulou, M., V. Kiortsis. *Mediterranean Marine Ecosystems*. Plenum Press, New York, 1985.
- Moran S., R. Moore, S. Westerlund. *Dissolved Aluminum In The Weddell Sea*. Deep-Sea Research Part A-Oceanographic Research Papers, V39 N3-4a, pp. 537-547, 1992.
- Moran, M.A., R. Benner, R.E. Hodson. Kinetics of Microbial Degradation of Vascular Plant Material In Two Wetland Ecosystems. Oecologia V79, pp. 158-167, 1989.
- Moran, M.A., R.E. Hodson. Dissolved Humic Substances of Vascular Plat Origin In A Coastal Marine Environment. Limnology Oceanography, 1994.
- Moran, M.A., R.E. Hodson. Contributions of Three Subsystems of A Freshwater Marsh To Total Bacterial Secondary Productivity. Microbiology Ecology V24, pp. 161-170, 1992.
- Moran, M.A., R.E. Hodson. Formation and Bacterial Utilization of Dissolved Organic Carbon Derived From Detrital Lignocellulose. Limnology Oceanography V34, pp. 1034-1047, 1989.
- Moran, M.A., R.J. Wicks, R.E. Hodson. Export of Dissolved Organic Matter From A Mangrove Swamp Ecosystem: Evidence From Natural Fluorescence, Dissolved Lignin Phenols, and Bacterial Secondary Production. Marine Ecological Program Series V76, pp. 175-184, 1991.

- More Measures To Curb North Sea Pollution. Meeting of International Maritime Organization's Environment Protection Committee [MEPC]. Marine Pollution Bulletin, V20 [12], pp. 591, 1989.
- Most Litter Is Plastic, Beach Study Shows. Results of Pilot Study of Mediterranean Sea Beaches in 1988, IMO News, p.3, 1990.
- Muench R., H. Fernando, G. Stegen. *Temperature and Salinity Staircases In The Northwestern Weddell Sea.* Journal of Physical Oceanography, V20 N2, pp. 295-306, 1990.
- Muller-Karger F., C. Mcclain, T. Fisher, W. Esaias, R. Varela. *Pigment Distribution in The Caribbean Sea* Observations From Space. Progress In Oceanography, V23 N1, pp. 23-64, 1989.
- Mullin, M.M. Particle Size Analysis on Mixed Paper Pulp, ETA. Limnology and Oceanography, Vol. 10, pp. 459-462, 1965.
- Naudascher, E. Flow in the Wake of Self-Propelled Bodies and Related Sources of Turbulance. J. Fluid Mech. 2, Part 4, 635, 1965.
- NAVSEA. U.S. Navy Shipboard Solid and Plastics Waste Management Program Plan. Naval Sea Systems Command, 1993.
- Nedwell D., T. Walker, J. Ellisevans, A. Clarke. Measurements of Seasonal Rates and Annual Budgets of Organic Carbon Fluxes In An Antarctic Coastal Environment At Signy Island, South Orkney Islands, Suggest A Broad Balance Between Production and Decomposition. Applied and Environmental Microbiology, V59 N12, pp. 3989-3995, 1993.
- Nehring D., W. Matthaus. Current Trends in Hydrographic and Chemical Parameters and Eutrophication in The Baltic Sea. Internationale Revue Der Gesamten Hydrobiologie, V76 N3, pp. 297-316, 1991.
- Nekritz, R. *Bottom Sediment Distribution In The Mediterranean Sea*. Marine Science Department U.S. Naval Oceanographic Office, Washington, D.C., 1963.
- Nelson, D.M., W.O. Jr. Smith. Sverdrup Revisited Critical Depths, Maximum Chlorophyll Levels, and The Control Of Southern Ocean Productivity By The Irradiance-Mixing Regime. Limnology and Oceanography, V36 N8, pp. 1650-1661, 1991.
- Neumann, G. Ober Die Komplexe Natr Des Seeganges, Teil 1 and 2. Deut Hydrogr. Zeit., V5, N2/3, pp. 95-110, N5/6, pp. 252-277, 1952.
- Neumann, G., W.J. Jr. Pierson. *Principles of Physical Oceanography*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.
- Newman, P.J., A.R. Agg. *Environmental Protection of the North Sea.* Heinemann Professional Publishing, 1988.
- Nguyen, T.C., M. Hyman. Simulation of Surface Ship Wakes Using a K-epsilon Turbulence Model. NCSC Technical Note, NCSC TN 940-88, 1988.

- Nguyen, T.D., M. Hyman. Free Shear Flow Simulations with an Algebraic Stress Model. NCSC Technical Note, NCSC TN 928-88, 1988.
- Nicol S., M. Stolp. Sinking Rates of Cast Exoskeletons of Antarctic Krill (Euphausia-superba dana) and Their Role In The Vertical Flux of Particulate Matter and Fluoride In The Southern Ocean. Deep-Sea Research Part A-Oceanographic Research Papers, V36 N11, pp. 1753-1762, 1989.
- Niels Daan, N. ed. Data Base Report Of The Stomach Sampling Project 1981. Copenhagen, Denmark: International Council for the Exploration of the Sea, 1989.
- Nielsen, J.N. Golfströmmen. Geografisk Tidskrift, V28, N1, 1925.
- Nielsen, P., I.A. Svedsen, C. Staub. *Onshore-Offshore Sediment Movement on a Beach*.

 Proceedings of 18th International Conference of Coastal Engineering, pp. 1475-1492, ASCE, New York, 1978.
- Nielson, H., ed. Environment and Pollution Measurement Sensors and Systems. ECO3
 Proceedings, The International Society for Optical Engineering, Washington, V1269,
 March, 1990.
- Nielson, P. Some Basic Concepts of Wave Sediment Transport. Series Paper N20, Institute of Hydrodyn. and Hydr. Engineering, Technical University of Denmark, 1979.
- Nihoul, J.C. Hydrodynamic Models Of Shallow Continental Seas: Application To The North Sea. Nihoul, Neupre, E. Riga, 1982.
- Nollkaemper, A. Laws of the Sea, Legal Protection of the Marine Environment From Pollution of International Watercourses: Recent Developments. Marine Pollution Bulletin, V26, N6, pp. 298-301, 1993.
- Nolting R., H. Debaar, A. Vanbennekom, A. Masson. Cadmium, Copper and Iron In The Scotia Sea, Weddell Sea and Weddell Scotia Confluence (Antarctica). Marine Chemistry, V35 N1-4, pp. 219-243, 1991.
- Nordic Action Plan On Pollution Of The Seas. Copenhagen: Nordic Council of Ministers. pp. 105, 1990.
- North Sea becomes MARPOL 'Special Area'. Marine Pollution Bulletin, 22 [5], pp. 218-219, 1991.
- North Sea to be Made Annex V "special area". Marine Environment Protection Committee 28th Session, World Maritime University, 1989.
- North Sea To Be Made Annex V 'Special Area'. IMO News, [1], pp. 12. 1990.
- North Sea. Encyclopedia Americana, V20, Danberry Connecticut, 1990.
- North Sea. Encyclopedia Britannica Macropedia, 15th Edition, Encyclopedia Britannica Inc., 1974.

- North Sea. McGraw Hill Encyclopedia of Science and Technology, 7th Edition, V12, McGraw Hill Inc., 1992.
- Northern Europe's Seas, Northern Europe's Environment: Report To The Nordic Council's International Conference On The Pollution Of The Seas, 16-18 October 1989.

 Stockholm, Sweden: The Council, 1989.
- Norton, R.L. Assessment Of Pollution Loads To The North Sea. National Technical Information Service, 1982.
- Norwich 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Norwich Treatment Works, United Kingdom, 1992-1994.
- Nothig E., B. Vonbodungen, Q. Sui. *Phytozooplankton and Protozooplankton Biomass During Austral Summer In Surface Waters of The Weddell Sea and Vicinity.* Polar Biology, V11 N5, pp. 293-304, 1991.
- Nowlin W. On Water Mass Exchange Between The Southern Ocean and The World Ocean Emphasis On The Atlantic Sector. Marine Chemistry, V35 N1-4, pp. 1-7, 1991.
- Nystuen J., C. Andrade. *Tracking Mesoscale Ocean Features In The Caribbean Sea Using Geosat Altimetry*. Journal Of Geophysical Research-Oceans, V98 N5 pp. 8389-8394, 1993.
- O'Connor, T.P., W.V. Burt, I.W. Duedall. Oceanic Processes in Marine Pollution, Volume 2 Physicochemical Processes and Wastes in the Ocean. Robert E. Krieger Publishing Company, Inc., Malabar, Florida, 1987.
- Ocean Dumping and Pollution. Hearings Before the Subcommittee on Oceanography and the Subcommittee on Fisheries and Wildlife Conservation of the Environment of the Committee on Merchant Marine and Fisheries House of Representatives Ninety-Fifth Congress on Ocean Dumping (H.R. 4715, H.R. 5282, H.R. 5851), Ocean Pollution Research (S.1617), Nuclear Waste Disposal, Marine Sanctuaries, Serial No. 95-42, 1978.
- Ocean Refuse and its Impact on the Texas Shoreline. Hearing Before the Subcommittee on Oversight and Investigations of the Committee on Merchant Marine and Fisheries House of Representatives, Ninety-Ninth Congress Second Session on The Problem of Coastal Pollution Caused by trash Discarded Offshore into the Marine Environment and the Options that Exist on the International, Federal, State, and Local Levels for Responding to it, 1986.
- Oceanographic Characteristics of the Mediterranean.
- Odegaard H., B. Paulsrud, T. Bilstad, J. Pettersen. Norwegian Strategies In The Treatment of Municipal Wastewater Towards The Reduction of Nutrient Discharges To The North Sea. Water Science and Technology, V24 N10, pp. 179-186, 1991.
- Oehlenschlager J., H. Karl. On The Burden of Fish and Other Marine Food From The Baltic Sea With Inorganic and Organic Pollutants. Deutsche Lebensmittel-Rundschau, V88 N4, pp. 115-116, 1992.

- Ogden, J.C., E.H. Gladfelter. Caribbean Coastal Marine Productivity: Results of A Planning Workshop at Discovery Bay Marine Laboratory, University of The West Indies Jamaica, Paris: Unesco, 1986.
- Okubo, A. Oceanic Diffusion Diagrams. Deep-Sea Research, V18, pp. 789, 1971.
- Olson, P.H. Handling of Waste in Ports. Marine Pollution Bulletin, V29, N6-12, pp.284-295, Pergamon Press, New York, 1994.
- Olson, T.M., S.E. Gill, C.S. Alig. Study of Solid and Plastic Waste Management Aboard USS Emory S. Land (AS 39). David Taylor Research Center, Bethesda, pp. 45, MD, 1989.
- OPHELIA, International Journal of Marine Biology. Proceedings of the 8th Symposium of the Baltic Marine Biologists, Marine Biological Laboratory, Helsingor, Denmark, 1984.
- Oslo and Paris Commissions. Progress Report On The Activities Of The Oslo And Paris Commissions, November 1987 March 1990. London: Secretariat of the Oslo and Paris Commissions, pp. 51, 1990.
- Otto L., J. Zimmerman, G. Furnes, M. Mork, R. Saetre, G. Becker. *Review Of The Physical Oceanography of The North Sea*. Netherlands Journal of Sea Research, V26 N2-4, pp. 161-238, 1990.
- Owens N., J. Priddle, M. Whitehouse. Variations In Phytoplanktonic Nitrogen Assimilation Around South Georgi and In The Bransfield Strait (Southern Ocean). Marine Chemistry, V35 N1-4, pp. 287-304, 1991.
- Palanques A., D. Drake. Distribution and Dispersal of Suspended Particulate Matter on The Ebro Continental Shelf, Northwestern Mediterranean Sea. Marine Geology, V95 N3, pp. 193-206, 1990.
- Pan, B.Y.K., T. Delorea, M. Crist, S. Preiss. *Determination of Navy and Marine Corps Wastewater: Rates and Sources Volume III*. Naval Facilities Engineering Command, Port Hueneme, California, December, 1990.
- Panagopoulos, P., D. Karavellas. Applicability of Remote Sensing For Survey of Water Quality Parameters In The Mediterranean. Mediterranean Action Plan, Athens (Greece) IOC, Paris (France), Map Technical Athens Greece UNEP, N67, pp. 140, 1992.
- Paolo F., F. Giuliano, eds. Semi-Enclosed Seas: Exchange of Environmental Experiences
 Between Mediterranean And Caribbean Countries. London, New York Elsevier Applied
 Science, 1992.
- Paper and Paper Production. Greenpeace, Washington D.C., 1995.
- Park Y., L. Gamberoni, E. Charriaud. Frontal Structure and Transport of The Antarctic Circumpolar Current In The South Indian Ocean Sector, 40-80-Degrees-E. Marine Chemistry, V35 N1-4, pp. 45-62, 1991.
- Park, P.K., T.P. O'Connor, B.H. Ketchum, eds. *Historical and International Considerations*. Plenum, New York, New York, 1980.

- Parker, R.D. Surface Drifter Data From The Caribbean Sea and Gulf Of Mexico. 1979.
- Parr, A.E. A Contribution To The Hydrography Of The Caribbean and Cayman Seas Based Upon The Observations Made By The Research Ship Atlantis, 1933-34. Bingham Oceanography Collection, Bulletin, V5, 4, pp. 110, New Haven, 1937.
- Pearson, E.A., F.E. DeFraja. Marine Pollution and Marine Waste Disposal, Proceedings of the 2nd International Congress, San Remo, 17-21st December 1973. Pergamon Press Ltd Oxford, England, 1975.
- Peng, T.H., W.S. Broecker, G.G. Mathieu, Y.H. Li, A.E. Bainbridge. Radon Evasion Rates in the Atlantic and Pacific Oceans as Determined During the GEOSECS Program. J. Geophysics Research, 84, pp. 2471-2486, 1979.
- Perissinotto R., C. Rae. Occurrence of Anticyclonic Eddies on The Prince-Edward Plateau (Southern Ocean) Effects on Phytoplankton Biomass and Production. Deep-Sea Research Part A-Oceanographic Research Papers, V37 N5, pp. 777-793, 1990.
- Perry, R.K. Bathymetry of The Gulf of Mexico and The Caribbean Sea. William & Heintz Map Corporation. Tulsa, Oklahoma: American Association of Petroleum Geologists, 1984.
- Peterson, M.H., T.J. Lennox Jr. Effects of Exposure Conditions on The Corrosion of Mild Steel, Copper, and Zinc In Seawater. Materials Performance, V23, pp. 15-18, 1984.
- Pimenov N., M. Ivanov. Bacterial Chemosynthetic Processes in The Water Column of The Baltic Sea in The Winter. Microbiology, V60 N6, pp. 778-783, 1991.
- Pineschi, L. The Prevention of Marine Pollution From Ships According To Annex IV To The Protocol on Environmental Protection To The Antarctic Treaty. Marine Pollution Bulletin, V24, N5, pp. 228-230, 1992.
- Pitter, P., J. Chudoba. *Biodegradability of Organic Substances in the Aquatic Environment*. CRC Press, Inc., Boca Raton, Florida, 1990.
- Pollution Of The Baltic Sea: A Two-Day Seminar On Legal Problems Concerned With Pollution, Uto, 14th - 15th September, 1985. Stockholm: Stiftelsen Juristforlaget vid Stockholms Universitet, 1988.
- Pollution Prevention, The Navy Needs Better Plans for Reducing Ship Waste Discharges. U.S. General Accounting Office, Letter Report for Congressional Requesters, National Security and International Affairs Division, November, 1994.
- Pomar M., V. Bruni, T. Maugeri. *Picoplankton Biomass In The Ross Sea (Antarctica)*. Polar Biology, V13 N1, pp. 1-6, 1993.
- Pomeroy, L.R., J.E. Sheldon, W.M. Sheldon. Changes In Bacterial Numbers and Leucine Assimilation During Estimations of Microbial Respiratory Rates In Seawater By The Precision Winkler Method. Applied and Environmental Microbiology, V60, pp. 328-332, 1994.

- Progress Reports On Cadmium, Mercury, Copper and Zinc. Helsinki: Baltic Marine Environment Protection Commission, Helsinki Commission, 1987.
- Pruter, A.T. Sources, Quantities and Distribution of Persistent Plastics in the Marine Environment. Marine Pollution Bulletin, V18, N6B, pp. 305-310, 1987.
- Pujos M., O. Javelaud. Depositional Facies of A Mud Shelf Between The Sinu River and The Darien Gulf (Caribbean Coast of Colombia)-Environmental Factors That Control Its Sedimentation and Origin of Deposits. Continental Shelf Research, V11 N7, pp. 601-623. 1991.
- Pulp and Paper. Greenpeace, Washington D.C., 1994.
- Pyewipe 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Pyewipe Pumping Station, United Kingdom, 1992-1994.
- Radach G., M. Regener, F. Carlotti, W. Kuhn, A. Moll. Modeling Water Column Processes In The North Sea. Philosophical Transactions of The Royal Society of London Series A-Physical Sciences and Engineering, V343 N1669, pp. 509-517, 1993.
- Radach, G., J. Berg. Trends in den Konzentrationen der Nahrstoffe und des Phytoplanktons in der Helgolander Bucht (Helgoland Reede Daten). Berichte der Biologischen Anstalt Helgoland N2., 1986.
- Rao, A.D., S.K. Dube, P.C. Sinha. Wind Driven Seasonal Ocean Circulation Around Southern India Peninsula. Indian Journal of Marine Sciences, V21, pp. 196-200, 1992.
- Rapson, W.H. Paper. Greenpeace, Washington D.C., 1995.
- Rau G., C. Sullivan, L. Gordon. *Delta-C-13 and Delta-N-15 Variations In Weddell Sea Particulate Organic Matter*. Marine Chemistry, V35 N1-4, pp. 355-369, 1991.
- Raudkivi, A.J. Loose Boundary Hydraulics. Third Edition, Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York, 1990.
- Rawn, A.M. F.R. Bowerman, N.H. Brooks. *Diffusers for Disposal of Seage in Sea Water*. Diffusers for Disposal of Sewage in Sea Water. J. Sanit. Division, ASCE, 86, SA2, pp.65-105, 1960.
- Raymont, J.E.G. *Plankton and Productivity in the Oceans, Volume 2-Zooplankton*. Pergamon Press, Second Edition.
- Raymundo, C.C., M.R. Preston. The Distribution of Linear Alkylbenzenes in Coastal and Estuarine Sediments of the Western North Sea. Marine Pollution Bulletin, V24, N3, 1992.
- Reading A. Caribbean Tropical Storm Activity Over The Past 4 Centuries. International Journal of Climatology, V10 N4, pp. 365-376, 1990.

- Recent Advances In Selected Areas of Ocean Sciences In The Regions of The Caribbean, Indian Ocean, and The Western Pacific. Presented at The Fourteenth Session of The IOC. Assembly, Unesco, Paris, 1989.
- Redfield, A.C. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton. James Johnstone Memorial Volume, Liverpool, University Press, pp. 348, 1934.
- Reed, J.B. Tracking Technologies For Radioactive Waste Shipments. Denver, Colorado: National Conference of State Legislatures, Series Title: State Legislative Report, V15, N4, 1990.
- Rees H., A. Eleftheriou. North Sea Benthos A Review Of Field Investigations Into The Biological Effects of Mans Activities. Journal Du Conseil, V45 N3, pp. 284-305, 1989.
- Rees, H.L., M.D. Nicholson. Trends in Lead Levels in the Horse-mussel From the Western North Sea. Marine Pollution Bulletin, V20, N2, 1989.
- Refuse Disposal Systems. Encyclopedia Britannica Macropedia 15th Edition, V13, Encyclopedia Britannica Inc., 1974.
- Reid, J.L. Antarctic Oceanography I. V53 Antarctic Series, American Geophysical Union, Washington D.C., 1971.
- Reijnders P., K. Lankester. Status Of Marine Mammals In The North Sea. Netherlands Journal of Sea Research, V26 N2-4, pp. 427-435, 1990.
- Reinhart, F.M. Corrosion of Metals and Alloys in the Deep Ocean. Technical Report R 834, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California, February, 1976.
- Reinhart, F.M., J.F. Jenkins. *The Relationship Between the Concentration of Oxygen in Seawater and the Corrosion of Metals*. U.S. Naval Civil Engineering Laboratory Report, pp. 562-577, 1971.
- Reish D. Pollution Of The Mediterranean Sea. Water Environment Research, V65 N5, pp. 611-611, 1993.
- Report Of The ICES Advisory Committee On Marine Pollution, 1991. Copenhagen, Denmark: International Council for the Exploration of the Sea, N177. 1991.
- Report Of The Mid-Term Expert Consultation On The Joint FAO (GFCM)/UNEP Coordinated Project On Pollution In The Mediterranean, Dubrovnik, 2-3 May 1977. Expert Consultation on the Joint FAO (GFCM)/UNEP Coordinated Project on Pollution in the Mediterranean (1977: Dubrovnik) Rome: Food and Agriculture Organization of the United Nations, 1977.
- Report to the Congress on Ocean Dumping Research, January Through December 1975.

 Submitted in Compliance with Section 201, Title II of the Marine Protection, Research, and Sanctuaries Act of 1972, ON, U.S. Department of Commerce, 1976.

- Report to the Congress on Ocean Dumping Research, January Through December 1976.

 Submitted in Compliance with Section 201, Title II of the Marine Protection, Research, and Sanctuaries Act of 1972, NOAA, U.S. Department of Commerce, 1977.
- Report/Joint FAO(GFCM)/UNEP Coordinated Project on Pollution in the Mediterranean.

 Rome. Joint FAO(GFCM)/UNEP Coordinated Project on Pollution in the Mediterranean.

 General Fisheries Council for the Mediterranean, 1976.
- Review Of Contaminants In Baltic Sediments. Cooperative Research Report, Copenhagen, Denmark: International Council for the Exploration of the Sea, 1992.
- Review of Several Plastic Dumping Incidents Involving the Navy, and What the Navy is Doing to End These Types of Incidents. Hearing Before the Subcommittee on Oceanography, Great Lakes and the Outer Continental Shelf of the Committee on Merchant Marine and Fisheries House of Representatives One Hundred Second Congress, U.S. Government Printing Office, 1991.
- Rheinallt, T. Impact Of Sewage Sludge. Pollution Of The North Sea. An Assessment. Eds. W. Salomons, B.L. Bayne, E.K. Duursma, U. Foerstner, pp. 489-509, 1988.
- Richards, F.A. Physical, Chemical and Productivity Data From A Survey of The Caribbean Sea and The Northeastern Tropical Pacific Ocean. R. V. Thomas, G. Thompson Cruise 001, 1970.
- Richards, W.J. 1936-Kinds and Abundances of Fish Larvae In The Caribbean Sea And Adjacent Areas. Seattle, WA: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1984.
- Ritchie, P., B. Calder. *The Pollution of The Mediterranean Sea.* Pacem In Maribus, Herbert Lang, 1972.
- Rivkin R. Seasonal Patterns of Planktonic Production In Mcmurdo Sound, Antarctica. American Zoologist, V31 N1, pp. 5-16, 1991.
- Roberts H., P. Wilson, A. Lugofernandez. Biologic and Geologic Responses To Physical Processes - Examples Form Modern Reef Systems of The Caribbean-Atlantic Region. Continental Shelf Research, V12 N7-8, 809-834, 1992.
- Robinson, M. 1906-Atlas of Monthly Mean Sea Surface and Subsurface Temperature and Depth of The Top of The Thermocline, Gulf of Mexico and Caribbean Sea. San Diego, Scripps Institution of Oceanography, University of California, 1973.
- Robinson, M.K. Atlas of Monthly Mean Sea Surface and Subsurface Temperature and Depth of The Top of The Thermocline Gulf of Mexico and Caribbean Sea. 1973.
- Roethel F.J., V.T. Breslin. Ash Disposal, Unique Method of Ash Disposal Can Benefit Marine Life. Solid Waste and Power, 1988.

- Roethel, F.J., V.T. Breslin, K. Aldous. *Mobility of Dioxins and Furans Associated with Stabilized Incineration Residues in the Marine Environment*. Waste Management Institute, Sony Brook, New York.
- Roethel, F.J., V.T. Breslin. *Mobility of Dioxins, Furans, and Trace Metals From Stabilized MSW Combustor Ash in Seawater*. Waste Management Institute, Stony Brook, New York, 1993.
- Roethel, F.J., V.T. Breslin. Stony Brook's MSW Combustor Ash Demonstration Programs. Waste Management Institute, Stony Brook, New York.
- Romieu I., H. Weitzenfeld, J. Finkelman. *Urban Air Pollution In Latin America and The Caribbean*. Journal of The Air & Waste Management Association, V41 N9, pp. 1166-1171, 1991.
- Roots O. Observations on The Transport and Wet Deposition of Airborne Pollutants Over The Baltic Sea and West-Estonian Islands. Ambio, V21 N4 pp. 321-322, 1992.
- Sackett, W.M. An Evaluation of the Effects of Man-Derived Wastes on the Viability of the Gulf of Mexico.
- Saetre, R., M. Mork. The Norwegian Coastal Current. University Bergen, pp.795, 1981.
- Salemaa H., I. Vuorinen, P. Valipakka. *The Distribution And Abundance of Mysis Populations In The Baltic Sea.* Annales Zoologici Fennici, V27 N3 pp. 253-257, 1990.
- Saliba, L.J. Regional Measures For Marine Pollution Control In The Mediterranean. Viewpoint, Marine Pollution Bulletin V20(1), pp. 12-17, 1989.
- Salomons, W., B.L. Bayne, E.K. Duursma, U. Forstner. *Pollution of The North Sea: An Assessment*. Berlin, New York: Springer-Verlag, 1988.
- Sand, P.H. Marine Environment Law in the United Nations Environment Programme, An Emergent Eco-Regime. Tycooly Publishing, London and New York.
- Sandberg, M. Baltic Sea Region Environmental Protection: "Eastern" Perspectives And International Cooperation. Stockholm, Sweden: Almqvist & Wiksell International, 1992.
- Savchuk O., V. Volkova. *Study And Forecast of Baltic Sea Eutrophication With The Help of Simulation Model*. Doklady Akademii Nauk Sssr, V314 N4, pp. 1006-1009, 1990.
- Saydam, C., I. Salihoglu. Dissolved/Dispersed Petroleum Hydrocarbons Suspended Sediment, Plastic Pelagic Tar and Other Litter in the North-Eastern Mediterranean. Middle East Technical University Institute of Marine Sciences, P.K. 28, Erdemli-Ice 1, Turkey, VII Jounees Etud. Pollutions, Lucerne, 1984.
- Schiewer U. *Eutrophication of The Baltic Sea* Foreword. Internationale Revue Der Gesamten Hydrobiologie, V76 N3 pp. 293-294, 1991.

- Schink, D.R. Budget For Dissolved Silica In The Mediterranean Sea. Sponsored by Office of Naval Research, 1967.
- Schlosser P., J. Bullister, R. Bayer. Studies of Deep Water Formation and Circulation In The Weddell Sea Using Natural and Anthropogenic Tracers. Marine Chemistry, V35 N1-4, pp. 97-122, 1991.
- Schluter M. Organic Carbon Flux and Oxygen Penetration Into Sediments Of The Weddell Sea Indicators For Regional Differences In Export Production. Marine Chemistry, V35 N1-4, pp. 569-579, 1991.
- Schmidt D. Mercury in Baltic and North Sea Waters. Water Air And Soil Pollution, V62 N1-2 pp. 43-55, 1992.
- Schneider, H. Results And Perspectives of The International Conference For The Protection of The North Sea. Abh. Naturw. Verein Bremen 40(3):209-216, 1985.
- Schooley, A.H. Wake Collapse in a Stratified Fluid: Experimental Exploration of Scaling Characteristics. Science 160, 763, 1968.
- Schooley, A.H. Wake Collapse in Stratified Fluid. Science 157, 421, 1967.
- Schooley, A.H., R.W. Stewart. Experiments with a Self-Propelled Body Submerged in a Fluid with a Vertical Density Gradient. J. Fluid Mech. 15, Part I, 83, 1963.
- Schoomaker, J.S., R.R. Hammond, A.L. Heath, J.S. Cleveland. *A Numerical Model for Prediction of Sub-Littoral Optical Visibility*. SPIE Ocean Optics XII, pp. 18, 1994.
- Schroeder, W. W. Physical Environment Atlas of The South Central Insular Shelf, Grand Bahama Island. Alexander City, Alabama: B. and R. Russell, Educational and Charitable Foundation, Inc., Dauphin Island, Marine Science Programs, University of Alabama System, 1977.
- Schuchert, C., 1858-1942. Historical Geology Of The Antillean-Caribbean Region, Or, The Lands Bordering The Gulf Of Mexico And The Caribbean Sea. New York, Hafner Pub. Colorado, 1968.
- Scully-Power, P. Navy Oceanographer Shuttle Observations STS41-G. Naval Underwater Systems Center, NUSC Technology, Document 7611, 1986.
- Sebek, V. *The North Sea and The Concept Of Special Areas*. Eds. T. Ijlstra, D. Freestone, The North Sea: Perspectives On Regional Environmental Cooperation, V5, N1-3 pp. 157-166, 1990.
- Seibold, E., W.H. Berger. *The Sea Floor, An Introduction to Marine Geology*. Springer-Verlag Berlin Heidelberg, New York, 1982.
- Seiwell, H.R. Application of The Distribution of Oxygen To The Physical Oceanography of The Caribbean Sea Region. Papers in Physical Oceanography and Meteorol., V6, N1, pp. 60, 1938.

- Shiber, J. G. *Plastic Pellets and Tar On Spain's Mediterranean Beaches*. Marine Pollution Bulletin, V18, pp. 84-86, 1987.
- Shillabeer, N. Benthic Population Studies Of A North Sea Disposal Area Used For Industrial Liquid Waste. Environmental Pollution, V69 N2-3, pp. 181-191, 1991
- Shimada, H., K. Miida, T. Yokooji. *The Relation Between the Corrosion Behavior of Steels and the Characteristics of Various Ocean Environments*. International Ocean Development Conference, V2, pp. 165-83, 1975.
- Ship's Guide, Shipboard Solid and Plastics Waste Management. Office of the Chief of Naval Operations In Conjunction with: Commander, Pacific Fleet, Commander, Atlantic Fleet, Naval Sea Systems Command, Naval Supply Systems Command, David Taylor Research Center, 1991.
- Shomura, R.S., M.L. Godfrey. Proceedings of the Second International Conference on Marine Debris 2-7 April 1989, Honolulu, Hawaii. ON Technical Memorandum NMFS, 1990.
- Shumacher, M. Seawater Corrosion Handbook. Noyes Data Corporation, pp 383, Park Ridge, New Jersey, 1979.
- Side, J. *The North Sea Conference: Bremen 1984 London 1987*. Marine Pollution Bulletin V17(9), pp. 394-399. 1987.
- Siegel V., B. Bergstrom, J. Stromberg, P. Schalk. Distribution, Size Frequencies and Maturity Stages of Krill, Euphausia-superba, In Relation To Sea-Ice In The Northern Weddell Sea. Polar Biology, V10 N7, pp. 549-557, 1990.
- Simon, M., A.L. Alldredge, F. Azam. *Bacterial Carbon Dynamics on Marine Snow*. Marine Ecology Programe Series V65, pp. 205-211, 1990.
- Sivkov V., Y. Zhurov. On The Origin of Accumulations of Suspended Matter in The Deep Basins of The Baltic Sea. Okeanologiya, V31 N6, pp. 1060-1066, 1991.
- Skjaerseth, J.B. *Towards The End Of Dumping In The North Sea*. Ed. W.E. Butler, VIII Anglo Soviet Symposium On The Law Of The Sea and International Shipping. Marine Polity CODEN V16, N2. pp. 130-140, 1992.
- Slaczka, W., E. Andrulewicz, A. Trzosinska. First Periodic Assessment of the State of the Marine Environment of the Baltic Sea Area, 1980-1985. Helsinki: Baltic Marine Environment Protection Commission, Helsinki Commission, 1986-1987.
- Slip D., H. Burton. Accumulation Of Fishing Debris, Plastic Litter, and Other Artefacts, On Heard and Macquarie Islands In The Southern Ocean. Environmental Conservation, V18 N3, pp. 249-254, 1991.
- Smed, J. History of International North Sea Research ICES. J. Sundermann & W. Lenz. North Sea Dynamics, Springer Verlag, Heidelberg, pp. 1-25, 1983.
- Smet M. Case Studies Of Land-Based Pollution Policy 1 The North Sea. Marine Policy, V16 N1, pp. 50-51, 1992.

- Smith O., J. Morrison. Shipboard Acoustic Doppler Current Profiling in The Eastern Caribbean Sea, 1985-1986. Journal of Geophysical Research-Oceans, V94 N7, pp. 9713-9719, 1989.
- Smith, D.C., M. Simon, A.L. Alldredge, F. Azam. Intense Hydrolytic Enzyme Activity on Marine Aggregates and Implications For Rapid Particle Dissolution. Nature, V359, pp. 139-142, 1992.
- Smith, R.W., M.C. Hyman. Connective-Diffusive Bubble Transport in Ship Wakes. Naval Coastal Systems Technical Note pp. 857-887, 1987.
- Smookler, A., C. Alig. The Navy's Shipboard Waste Management Research & Development Program. Naval Engineers Journal, 1992.
- Somer, E. Heavy Metals in the Baltic. ICES C.M., 1977.
- Spalding 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Spalding Treatment Works, United Kingdom, 1992-1994.
- Specter C., D. Gayle. Managing Technology Transfer For Coastal Zone Development Caribbean Experts Identify Major Issues. International Journal of Remote Sensing, V11 N10, pp. 1729-1740, 1990.
- Squires, M.D. Facilities For The Reception Of Wastes: A Shipping Industry View. Workgroup Noordzee. Proceedings of the 2nd North Sea Seminar '86, Rotterdam, 1, 2, 3 October 1986, edited by E. Hey and G. Peet. V2. pp.195-211, Amsterdam, 1986.
- Stagg R. North Sea Task Force Biological Effects Monitoring Programme. Water Science and Technology, V24 N10, pp. 87-98, 1991.
- Stebbing, A.R.D., V. Dethlefsen, M. Carr. Biological Effects o Contaminants In The North Sea: Results of The ICES/IOC Bremerhaven Workshop. Amelinghausen: Inter-Research, 1992.
- Stefels J., H. Revier. *Protecting The North Sea Environment Trends and Issues*. Water Science and Technology, V24 N10, pp. 277-281, 1991.
- Stephan K. ed. Biogeochemistry and Distribution Of Suspended Matter In The North Sea and Implications To Fisheries Biology. Hamburg: Geologisch-Palaontologischen Institutes der Universitat Hamburg, 1988.
- Stewart, M. Numerical Prediction of Thermal Ship Wakes. Naval Research Laboratory Memorandum Report 4955, September, 1987.
- Storer, R. Standard Guide E 12 18. 1992 Annual Book of ASTM Standards, American Society for testing & Materials. ASTM, Philadelphia, pp. 874-883, 1992.
- Studies of The Pollution Of The Baltic Sea. ICES/SCOR Working Group on the Study of Pollution of the Baltic. Charlottenlund, Denmark: International Council for the Exploration of the Sea, 1977.

- Study of The Risk For Accidents and The Related Environmental Hazards From The
 Transportation of Chemicals By Tankers in The Baltic Sea Area: Report on A Study of
 The Transportation Pattern For Chemicals in The Baltic. Helsinki: Baltic Marine
 Environment Protection Commission, Helsinki Commission, 1990.
- Sturges, W. Numerical Modeling Studies of The Gulf Of Mexico and The Caribbean Sea Using The Bryan-Cox Model. Florida State University, Department of Oceanography, The New Orleans, U.S. Department of The Interior, Minerals Management Service, Gulf of Mexico OCS Region, 1991.
- Sullivan, S.M. A Review of the Biological Information Relating to OTEC Operation. Oceanic Engineering Operations Interstate Electronics Corporation, Anaheim, CA.
- Summer, A.B., A. Smookler, C. Alig. *The Navy's Shipboard Waste Management R&D Program*. Session 2C, Naval Engineers Journal, 1992.
- Sundermann, J. Suspended Particulate Matter In The North Sea Field Observations and Model Simulations. Philosophical Transactions of The Royal Society of London Series A-Physical Sciences and Engineering, V343 N1669:423-430, 1993.
- Sundermann, J., W. Lenz, eds. North Sea Dynamics. Berlin, New York: Springer-Verlag, 1983.
- Surface Sediment Distribution, Mediterranean Sea. Prepared by Scripps Institution of Oceanography for U.S. Fleet Numerical Weather Central [S.l.: s.n.], 1970 (Presidio of Monterey, California: Defense Language Institute, Systems Development Agency), 1970.
- Survey of The Status of Oil Pollution Control In The South American Sub-Region of The Wider Caribbean Region. Prepared In Co-Operation With IMO, Nairobi, Kenya: Oceans and Coastal Areas Programme Activity Centre, United Nations Environment Programme, 1990.
- Sverdrup, H.U. On Vertical Circulation In The Ocean Due To The Action Of The Wind With Application To Conditions Within The Antarctic Circumpolar Current. Cambridge, University Press, 1983.
- Sverdrup, H.U., M.W. Johnson, R.H. Feming. The Oceans. Prentice Hall, New Jersey, 1942.
- Sverdrup, H.U., M.W. Johnson, R.H. Fleming. *The Oceans, Their Physics, Chemistry, and General Biology.* Prentice-Hall, Inc., Englewood Cliffs, N.J.
- Swanson, R.L. The Incongruity of Policies Regulating New York City's Sewage Sludge: Lessons for Coastal Management. Coastal Management, V21, pp. 299-312, 1993.
- Swanson, R.L., A. Valle-Levinson, C.J. Decker. *Recreation vs. Waste Disposal: The Use and Management of Jamaica Bay.* Long Island Historical Journal, V5, N1, pp. 21-41, Fall, 1992.
- Swanson, R.L., A. Valle-Levinson. *Meteorological Conditions That Kept Long Island and New Jersey Beaches Free of Floatables During the Summer of 1989*. State University of New York at Stony Brook, Baywood Publishing Co., Inc., 1990.

- Swanson, R.L., R.L. Zimmer. Meterological Conditions Leading to the 1987 and 1988 Washups of Floatable Wastes on New York and New Jersey Beaches and Comparison of these Conditions with the Historical Record. Estuarine, Coastal and Shelf Science, 30, pp. 59-78, 1990.
- Swanson, R.L., R.R. Young, S.S. Ross. An Analysis of Proposed Shipborne Waste Handling Practices Aboard United States Navy Vessels. Marine Sciences Research Center, University at Stony Brook, Stony Brook, New York, 1994.
- Swanson, R.L., T.M. Bell, J. Kahn, J. Olha. *Use Impairments and Ecosystem Impacts of the New York Bight*. Chemistry and Ecology, V5, pp. 99-127, 1991.
- Symposium on Investigations and Resources of The Caribbean Sea and Adjacent Regions, 1968: Willemstad, Curacao Papers on Fishery Resources. Contribuciones Sobre Recursos Pesqueros. Edited By Marine Biology and Environment Branch, Fishery Resources Division, FAO. Rome, Food and Agriculture Organization of The United Nations, 1971.
- Symposium on Investigations and Resources of The Caribbean Sea and Adjacent Regions,
 Papers on Physical and Chemical Oceanography. Willemstad, Curacao, 1968. Papers
 On Physical and Chemical Oceanography, Marine Geology and Geophysics and Marine
 Biology. Paris, Unesco, 1971.
- Symposium On Progress In Marine Research In The Caribbean And Adjacent Regions (1976: Caracas, Venezuela) Symposium on Progress In Marine Research In The Caribbean and Adjacent Regions. Caracas, Venezuela, 12-16 July 1976: Papers On Oceanography, Meteorology, Geology and Geo-Physics = Symposia Sobre Adelantos En. Rome: Food and Agriculture Organization of The United Nations, 1978.
- Szekielda, K.H., D. McGinnis, B. Ambroziak, P. McClain, D. Clark. Satellite Observations Over The North Sea. Eds. S. Kempe, G. Liebezeit, V. Dethlefsen, U. Harms, Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry And Distribution of Suspended Matter In The North Sea and Implications-To-Fisheries-Biology. 1988. N65 pp. 1-33, 1988.
- Tay, K.L. The Role and Application of Environmental Bioassay Techniques in Support of the Impact Assessment and Decision-Making Under the Ocean Dumping Control Act in Canada. Marine Environmental Branch, Environmental Protection, Conservation and Protection, Environment Canada, 1988.
- Ten Years After the Signing of the Helsinki Convention: National Statements by the Contracting Parties on the Achievements in Implementing the Goals of the Convention on the Protection of the Marine Environment. Helsinki, Baltic Marine Environment Protection Commission, Helsinki Commission, 1984.
- Tennekes, H., Lumley. J.L. *A First Course in Turbulence*. MIT Press, Cambridge, Massachusetts., pp. 300, 1972.

- Texas General Land Office. The Gulf of Mexico as a Special Area Under MARPOL Annex V. Report Compiling Information in Support of Designation. For Consideration by United States Delegation to the International Maritime Organization, 1987.
- Thorade, H. Die Geschwindigkeit van Triftstromungen and die Ekman'sche Theorie. Ann. d. Hydr. u. Marit. Meteorol., V42, pp. 379, 1914.
- Tijuana Monthly Sewage Discharge Report. Comision de Servicios De Agua Del Estado Sistema De Alejamiento Y Tratamiento De Aguas Residuales De La Ciudad De Tijuana, BC, Mexico, 1994.
- Tilzer M., W. Gieskes, R. Heusel, N. Fenton. The Impact Of Phytoplankton On Spectral Water Transparency In The Southern Ocean - Implications For Primary Productivity. Polar Biology, V14 N2, pp. 127-136, 1994.
- Time That Solid Waste Remains In The Sea. Sherkin Comment, N6, pp. 21, Medwaves, 19 January, 1990.
- Title I of the Ocean Dumping Ban Act of 1988. Hearings Before the Subcommittee on Oversight and Investigations, Subcommittee on Fisheries and Wildlife Conservation and the Environment and the Subcommittee on Oceanography and the Great Lakes of the Committee on Merchant Marine and Fisheries House of Representatives, One Hundred First Congress First Session on Implementation of Title I of Public Law 100-66, The Ocean Dumping Ban Act of 1988, 1989.
- Tomascik T. Settlement Patterns of Caribbean Scleractinian Corals On Artificial Substrata Along A Eutrophication Gradient, Barbados, West-Indies. Marine Ecology-Progress Series, V77 N2-3, pp. 261-269, 1991.
- Topping; G., J.M. Bewers, P.G.W. Jones. A Review of The Past And Present Measurements of Selected Trace Metals In Sea Water In The Oslo Commission And ICNAF/NAFO Areas. Copenhagen: International Council for the Exploration of the Sea, 1980.
- Toxicity and Bioaccumulation of Selected Substances in Marine Organisms. FAO/UNEP Meeting on Toxicity and Bioaccumulation of Selected Substances in Marine Organisms (1984: Rovinj, Yugoslavia) Report of the FAO/UNEP Meeting on Rovinj, Yougoslavia, 5-9 November 1984. Rome: Food and Agriculture Organization of the United Nations, 1985.
- Traverso, E. Effects of Rolling Direction and Tensile Stress on the Corrosion of Naval Carbon Steel. Natural Marine Environments-I: Natural Seawater, British Corrosion Journal, V14 (2), pp. 97-102, 1979.
- Treatment and Discharge of Industrial Wastewater In The Mediterranean Area: Report On A WHO Workshop, Venice, 10-14 June 1985. Copenhagen: World Health Organization, Regional Office for Europe, 1986.
- Treguer P., B. Queguiner. Biochemistry and Circulation of Water Masses In The Southern Ocean. Based on Papers Presented At The International Symposium, Brest, France, 2-6 July 1990-Preface. Marine Chemistry, V35 N1-4:R11-R12, 1991.

- Treguer P., Jacques G. Dynamics Of Nutrients and Phytoplankton, and Fluxes Of Carbon, Nitrogen and Silicon In The Antarctic Ocean. Polar Biology, V12 N2, pp. 149-162. 1992.
- Tromp D, R. Coenen. The 3rd International Conference On The Protection Of The North Sea Review and Challenges. Water Science and Technology, V24 N10:R15-R20, 1991.
- Turkstra E, M. Scholten, C. Bowmer, H. Schobben. A Comparison of The Ecological Risks From Fisheries and Pollution To The North Sea Biota. Water Science And Technology, V24 N10:147, 1991.
- U.S. Coast Guard. Adoption of Amendments to the Annex of the Protocol of 1978 Relating to the International Convention for the Prevention of Pollution From Ships, 1973 (Designation of the Gulf of Aden as a Special Area). MEPC25/20, 1994.
- U.S. Coast Guard. IMO Special Areas, Final Rule. Draft, Antarctic Designation, 1994.
- U.S. Environmental Protection Agency (EPA). Designation of the Gulf of Mexico. The Oceanic Society, 1990.
- U.S. Environmental Protection Agency (EPA). Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. EPA Washington D.C. and Department of the Army, Washington D.C., 1991.
- U.S. Environmental Protection Agency (EPA). Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. First Edition, EPA/600/4-89/001, 1988.
- U.S. Environmental Protection Agency (EPA). Technical Support Document for Water Quality-Based Toxics Control. Office of Water, EPA 505/2-90-001, March, 1991.
- U.S. Navy Climatic Study Of The Caribbean Sea And Gulf Of Mexico. United States, Naval Oceanography Command Detachment, Asheville, N.C. V1: West Caribbean Sea and Central American Waters, 1985.
- U.S. Navy Climatic Study Of The Caribbean Sea and Gulf Of Mexico. United States. Naval Oceanography Command Detachment, Asheville, N.C. V4: Gulf Of Mexico and Gulf Of Tehuantepec, 1986.
- Uchupi, E. Bathymetric Atlas of The Atlantic, Caribbean, and Gulf Of Mexico. Compiled, Woods Hole, Massachusetts, Woods Hole Oceanographic Institution, 1971.
- Underwood, P.C. New Law of The Sea For The Caribbean An Examination of Marine Law and Policy Issues In The Lesser Antilles Gold, E. Marine Policy, V13 N4, pp. 353-355, 1989.
- UNEP. Assessment of Organotin Compounds As Marine Pollutants In The Mediterranean = Evaluation Des Composes Organostanniques En Tant Que Polluants Du Milieu Marin En Mediterranee. Athens: MAP Technical Reports Series N33, UNEP, 1989.

- UNEP. Assessment of The State Of Pollution Of The Mediterranean Sea By Cadmium and Cadmium Compounds = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Le Cadmium Et Les Composes De Cadmium. MAP Technical Reports Series N34 Athens: UNEP, 1989.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Mercury and Mercury Compounds = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Le Mercure Et Les Composes Mercuriels. Athens: UNEP, 1987.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Organohalogen
 Compounds = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Les
 Composes Organohalogenes. MAP Technical Reports Series N39 UNEP, 1990.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Organophosphorus Compounds = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Les Composes Organophosphores. MAP Technical Reports Series N58, UNEP, 1988.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Persistent Synthetic Materials Which May Float, Sink or Remain In Suspension. MAP Technical Reports Series N56, Mediterranean Action Plan, MEDPOL N56, pp. 111, 1991.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Petroleum

 Hydrocarbons = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Les

 Hydrocarbures De Petrole. Athens: UNEP, 1988.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Radioactive Substances = Evaluation De L'etat De La Pollution De La Mer Mediterranee Par Les Substances Radioactives. Athens: UNEP, 1992.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Persistent Synthetic Materials Which May Float, Sink Or Remain In Suspension. Map Technical Report Series, Athens-Greece, UNEP, N56, pp. 111, 1991.
- UNEP. Assessment of The State of Pollution of The Mediterranean Sea By Radioactive Substances. Athens: UNEP, 1992.
- UNEP. Regional Seas Programme In Latin America and Wider Caribbean/United Nations Environment, UNEP Regional Seas Reports and Studies N22 Rev. 22, 1985.
- UNEP. State Of The Mediterranean Marine Environment. United Nations Environment Programme, Mediterranean Action Plan, Athens: UNEP, 1989.
- UNEP. Technical Annexes to the Report on the State of the Marine Environment. UNEP Regional Seas Reports and Studies N114/2, 1990.
- UNESCO. Coastal Ecosystems of Latin America and the Caribbean. Objectives, Priorities and Activities of Unesco's COMAR Project for the Latin American and Caribbean Region, Caracas, Venezuela, 1983.

- United States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy Climatic Study Of The Caribbean Sea And Gulf Of Mexico, V3: Florida Coastal Waters and Southwest Atlantic, 1986.
- Van Pagee, J. A.. Transport and Water Quality Modeling In The Southern North Sea In Relation To Coastal Pollution Research and Control. Delft, Netherlands: Waterloopkundig Laboratorium, 1986.
- van Pagee, J.A. Mathematical Modelling As A Tool For Assessment Of Coastal Water Pollution: Case Study, North Sea Delft, Netherlands: Delft Hydraulics, 1989.
- van Pagee, J.A. North Sea Pollution: The Use of Modeling Techniques for Impact Assessment of Waste Inputs. Delft Hydraulics, Delft, Netherlands, 1989.
- Vanderloeff M., A. Vanbennekom. Weddell Sea Contributes Little To Silicate Enrichment In Antarctic Bottom Water. Deep-Sea Research Part A-Oceanographic Research Papers, V36 N9. pp. 1341-1357, 1989.
- Vanderloeff M., G. Berger. Scavenging and Particle Flux-Seasonal and Regional Variations In The Southern Ocean (Atlantic Sector). Marine Chemistry, V35 N1-4, pp. 553-567, 1991.
- Vauk, G., G. Dahlmann, E. Hartwig, J. Ranger, B. Reineking, E. Schrey, E. Vauk, E. Hentzelt. Recording of Oil Victims on The German North Sea Coast And Results of Oil Analyses As Well As Investigations of Burdening of The German Bight By Ship's Refuse. Umweltbundesamt, Berline FRG. TEXTE, N30, pp. 153, 1987.
- Vauk, G.J.M., E. Schrey. Litter Pollution from Ships in the German Bight. Marine Pollution Bulletin, V18, N6B, pp. 316-319, 1987.
- Venizelos, L.E. The Endangered Loggerheads Of Zakynthos (Greece): A Part Of The Mediterranean Sea Turtle Conservation Issue. The Formation of MEDASSET (Mediterranean Association to Save the Sea Turtles). Thalassoraphica. V13, N1, pp. 53-59, 1990.
- Verlencar X., V. Dhargalkar. Primary Productivity and Nutrients In The Indian Sector of The Southern Ocean. Indian Journal of Marine Sciences, V21 N1, pp. 6-12, 1992.
- Vernette G., A. Mauffret, C. Bobier, L. Briceno. *Mud Diapirism, Fan Sedimentation and Strike-Slip Faulting, Caribbean Colombian Margin*. Tectonophysics, V202 N2-4, pp. 335-349, 1992.
- Vesecky, J.F., R.H. Stewart. The Observation of Ocean Surface Phenomena Using Imagery From the SEASAT Synthetic Aperture Radar: An Assessment. Journal Geophysics, Research, V87(C5), pp. 3397-3430, 1982.
- Veth C. The Structure and Evolution of The Top Layers of The Water Column Across The Marginal Ice Zone During Spring 1988 In The Scotia-Weddell Sea Sector of The Southern Ocean. Marine Chemistry, V35 N1-4, pp. 63-76, 1991.

- Veth C., C. Lancelot, S. Ober. On Processes Determining The Vertical Stability Of Surface Waters In The Marginal Ice Zone of The North-Western Weddell Sea and Their Relationship With Phytoplankton Bloom Development. Polar Biology, V12 N2, pp. 237-243, 1992.
- Viale, D., N. Verneau, Y. Tison. Stomach Obstruction In A Spermwhale Beached On The Lavezzi Islands: Macropollution In The Mediterranean. Journal de Recherche Oceanographique, Union des Oceanographes de France, 16 [3/4], 100-102. In French, English abstract, 1992.
- Voipio, A. The Baltic Sea. Elsevier Scientific Publication Co., New York, New York, 1981.
- von Wachenfeldt, T., L. Edler, eds. Symposium of The Baltic Marine Biologists (8th: 1983 Lund, Śweden) Proceedings of The 8th Symposium Of The Baltic Marine Biologists Recent Changes in The Baltic Ecosystem. Denmark Marine Biological Laboratory, 1984.
- Waite T., R. Szymczak. Particulate Iron Formation Dynamics In Surface Waters of The Eastern Caribbean. Journal of Geophysical Research. Oceans, V98 N2, pp. 2371-2383, 1993.
- Walney 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Walney Channel Sewage Treatment Works U.K., 1990-1995.
- Walton, D.W.H. Antarctic Science. Cambridge University Press, Great Britain, 1987.
- Wangersky, P.J., S.R. Aston, J.T. Baker, B.B. Benson, M. Branica, J.N. Butler, R. Chester, R.A. Duce, E.K. Duursma, D. Dyrssen, M. Ehrhardt, J.M. Gieskes, N. Handa, A. Jensen, I.R. Kaplan, R. Kilho Park, Y. Kitano, K. Kremling, A.P. Lisitzin, P.S. Liss, C.S. Martens, A. Nissenbaum, H.G. Ostlund, H. Postma, A. Walton, R.F. Weiss, M. Whitfield, J. Willey, T.R.S. Wilson, R.G. Zika. Marine Chemistry, An International Journal for Studies of all Chemical Aspects of the Marine Environment. Elsevier Science Publishers, B.V., Amsterdam, V19, 1986.
- Warrington 1990-1995 Sewage Discharge Monitoring Report. National Rivers Authority, Warrington South, Final Effluent Tank Outlet Bestel Dean Sampler, U.K., 1990-1995.
- Waste Discharge Into The Marine Environment: Principles and Guidelines For The Mediterranean Action Plan. Prepared in Collaboration with the Institute of Sanitary Engineering, Polytechnic of Milan, Italy, 1st ed. Oxford [Oxfordshire], New York: Pergamon Press, 1982.
- Waste Disposal Establish NOPC. Hearings Before the Subcommittee on Oceanography and the Committee on Merchant Marine and Fisheries House of Representatives Ninety-Eighth Congress First Session on Hazardous Waste Disposal H.R. 1700, Establishing a National Oceans Policy Commission H.R. 2853, Serial No. 98-15, 1983.
- Wastes in Marine Environments, Summary. Congress of the United States, Office of Technology Assessment, Washington D.C., U.S., 1987.
- Wastewater Chemistry Laboratory. Discharge Specifications for the Point Loma Ocean Outfall. City of San Diego. Metropolitan Wastewater Department, 1994.

- Watermann, B, H. Kranz. *Pollution and Fish Diseases in The North Sea Some Historical Aspects*. Marine Pollution Bulletin, V24 N3, pp. 131-138, 1992.
- Weast, R. CRC Handbook of Chemistry and Physics, 52nd Edition. The Chemical Rubber Company, July, 1971.
- Weber, C. Short-Term Methods for Estimating the Acute Toxicity of Effluents & Receiving Waters to Marine & Estuarine Organisms. Environmental Monitoring & Support Laboratory, Cincinnati, 1988.
- Wefer G., G. Fischer. Annual Primary Production and Export Flux In The Southern Ocean From Sediment Trap Data. Marine Chemistry, V35 N1-4, pp. 597-613, 1991.
- Wenk, V.D. Water Pollution: Domestic Wastes. A Technology Assessment Methodology, National Technical Information Service, V6, 1971.
- West, J.M. Basic Corrosion and Oxidation. John Wiley and Sons, pp. 122, New York, 1980.
- Westerlund S., P. Ohman. Cadmium, Copper, Cobalt, Nickel, Lead, and Zinc In The Water Column Of The Weddell Sea, Antarctica. Geochimica Et Cosmochimica Acta, V55 N8, pp. 2127-2146,. 1991.
- Westerlund S., P. Ohman. *Iron In The Water Column Of The Weddell Sea.* Marine Chemistry, V35 N1-4, pp. 199-217, 1991.
- Westing, A.H. Comprehensive security for the Baltic: An Environmental Approach.London, SAGE, Newbury Park, California, 1989.
- White M., U. Piatkowski. Abundance, Horizontal and Vertical Distribution Of Fish In Eastern Weddell Sea Micronekton. Polar Biology, V13 N1, pp. 41-53, 1993.
- Widnes 1990-1995 Sewage Monitoring Report. National Rivers Authority, Widnes Final Effluent, Hale Bank, U.K., 1995.
- Wilburn, A.M. Current Velocity and Hydrographic Observations In The Straits Of Florida, The Caribbean Sea And Offshore Of The Antillean Archipelago: Subtropical Atlantic Climate Study (STACS) 1984 and 1985, Miami, Florida: National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Atlantic Oceanographic and Meteorological Laboratory, Sprinfield, VA, 1987.
- Wilde, P. Environmental Monitoring and Assessment Program at Potential OTEC Sites.

 Lawrence Berkeley Laboratory, University of California Berkeley, California, U.S.
- Wilde, P. Status of OTEC Environmental Monitoring Program. Lawrence Berkeley Laboratory, Berkeley, California, U.S.
- Wilkinson C., A. Cheshire. Comparisons of Sponge Populations Across The Barrier Reefs Of Australian And Belize Evidence For Higher Productivity In The Caribbean. Marine Ecology-Progress Series, V67 N3, pp. 285-294, 1990.
- Will The Mediterranean Be Saved? Outlook, SHIP: "series". N66, pp. 9-10, 1989.

- Williams S. Experimental Studies of Caribbean Seagrass Bed Development. Ecological Monographs, V60 N4, pp. 449-469, 1990.
- Williams, P.M. Chemical and Microbiological Studies of Sea-Surface Films in the Southern Gulf of California and Off the West Coast of Baja California. Marine Chemistry, V19, pp. 17-98, 1986.
- Williams, R., J. Aiken. Optical Measurements From Underwater Towed Vehicles Deployed From Ships Of Opportunity In The North Sea. Belhaven, Washington: International Society for Optical Engineering. pp. 198, SPIE Proceedings V1269, 1990.
- Wirth, H., M.G. Wiesner. Sedimentary Facies In The North Sea. Scientific Common Problems of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry and Distribution of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65 pp. 269-287, 1988.
- Wirth, H., R. Seifert. Mineralogy, Geochemistry And SEM Observations Of Suspended Particulate Matter From The North Sea, Spring 1984. Eds. S. Kempe, G. Liebezeit, V. Dethlefsen, U. Harms, Scientific Common Problems Of The Environment United Nations Environment Programme, Hamburg (FRG) International Carbon Unit, Biogeochemistry And Distribution Of Suspended Matter In The North Sea And Implications-To-Fisheries-Biology, N65 pp. 163-181, 1988.
- Wisbech 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Wisbech Treatment Works, U.K., 1992-1994.
- Witham 1992-1994 Sewage Discharge Monitoring Report. National Rivers Authority, Witham Treatment Works, U.K., 1992-1994.
- Wolanski, E., R. Gibbs, P. Ridd, A. Mehta. Settling of Ocean-dumped Dredged Material, Townsville, Australia. Estuarine, Coastal and Shelf Science, 35, pp. 473-489, 1992.
- Wolfe, D. Persistent Plastics and Debris in the Ocean: an International Problem of Ocean Disposal. Marine Pollution Bulletin, V18, N6B, pp. 303-305, 1987.
- Wolfe, D.A. ed. Plastics in the Sea, Selected Papers from the Sixth International Ocean Disposal Symposium. Marine Pollution Bulletin, Pergamon Press, Oxford, New York, V18, V6B, 1986.
- Worf, D.L. Biological Monitoring for Environmental Effects. D.C. Heath and Company, U.S., 1980.
- Workshop On Pollution Of The Mediterranean (5th: 1980: Cagliari, Italy) Ves Journees
 D'etudes Sur Les Pollutions Marines En Mediterranee: Cagliari, 9-13 Octobre 1980/
 Commission Internationale Pour L'exploration Scientifique De La Mer Mediterranee,
 Monaco, Et Programme Des Nations Monaco: Secretariat General De La Commission,
 1981.
- Workshop On Pollution Of The Mediterranean (7th: 1984: Lucerne, Switzerland) Viies Journees D'etudes Sur Les Pollutions Marines En Mediterranee: Lucerne, 11-13

- Octobre 1984. Commission Internationale Pour L'exploration Scientifique de la mer Mediterranee, Monaco, Programme, Monaco: Secretariat general de la C.I.E.S.M, 1985.
- World Bank. The Environmental Program For The Mediterranean: Preserving A Shared Heritage and Managing A Common Resource. World Bank, Luxembourg: European Investment Bank, Washington, D.C., USA, 1990.
- World Health Organization, Regional Office for Europe. The Hazards To Health And Ecological Effects Of Pollution Of The North Sea: Report On A Working Group Convened By The Regional Office For Europe Of The World Health Organization: Bilthoven, 6-8 December 1972. Copenhagen: The Office, 1973.
- World Health Organization. The Hazards to Health and Ecological Effects of Persistent Substances in the Environment, Sources, Turnover in the Environment, and Ecological Effects of Arsenic, Cadmium, Lead, Manganese and Mercury. World Health Organization, Regional Office For Europe, Stockholm, 1973.
- Wulff F., A. Niemi. *Priorities For The Restoration of The Baltic Sea A Scientific Perspective*. Ambio, V21 N2, pp. 193-195, 1992.
- Wulff F., L. Rahm, P. Jonsson, L. Brydsten. A Mass-Balance Model of Chlorinated Organic Matter For The Baltic Sea - A Challenge For Ecotoxicology. Ambio, V22 N1, pp. 27-31, 1993.
- Wulff F., L. Rahm. Accumulation of Chlorinated Organic Matter In The Baltic Sea From 50 Years Of Use A Threat To The Environment. Marine Pollution Bulletin, V26 N5 pp. 272-275, 1993.
- Wust, G. 1890-Stratification and Circulation in The Antillean-Caribbean Basins. New York, Columbia University Press, 1964.
- Wyatt, J.R. Tar Ball Pollution in the Western Caribbean. University of the West Indies, Mona, Kingston, 7, Jamaica, 1982.
- Xavier, P. ed. The Mediterranean. London: Collins & Brown, 1991.
- Yanchinski, S. UN Strides Into Caribbean Pollution. New Scientist, 1980.
- Yoneda, Y., Y.Yoshida. The Relation Between the Sardine and the Food Plankton-I. On the Food Intake by Sardinops melanosticta. Bulletin of the Japanese Society of Scientific Fisheries, V21, N2, 1955.
- Yurkovskis A., F. Wulff, L. Rahm, A. Andruzaitis. A Nutrient Budget of The Gulf Of Riga, Baltic Sea. Estuarine Coastal and Shelf Science, V37 N2, pp. 113-127, 1993.
- Zanke, U. Seegang Erzeugte Kolke am Bauwerken, Sonderforschungsbereich 79, Teilsprojekt B9. Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York, 1977
- Zar, J.H. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, 1984.

- Zika R., P. Milne, O. Zafiriou. *Photochemical Studies of The Eastern Caribbean An Introductory Overview*. Journal Of Geophysical Research-Oceans, V98.
- Zmarzly, D.L., T.D. Stebbins, D. Pasko, R.M. Duggan, K.L. Barwick. Spatial Patterns and Temporal Succession in Soft-Bottom Macroinvertebrate Assemblages Surrounding an Ocean Outfall on the Southern San Diego Shelf: Relation to Anthropogenic and Natural Events. Marine Biology Laboratory, San Diego, California, 1993.
- Zmudzinski, L. *Environmental Quality in the Baltic Region*. University of Education, Slupsk, Poland, in Comprehensive Security for the Baltic, SAGE Publications, 1989.
- Zoffmann, C. Microbial and Nutrient Pollution Along the Coasts of Alicante, Spain. Marine Pollution Bulletin, V20, N2, 1989.
- Zutic, V., G. Cauwet, A. Monaco. Role of Organic Aggregates in the Transport of Pollutants in Mediterranean Estuaries. Center for Marine Research, "Rudjer Boskovic" Institute Zagreb, Yugoslvia, VII Jounees Etud. Pollutions, Lucerne, 1984.