Package 'depPPR'

April 23, 2020

Type Package	
Title depPPR - Dependence Post-processing in R	
Version 0.1.0	
Author Kate Saunders	
Maintainer Kate Saunders < K.R.Saunders@tudelft.nl>	
Description Package for restoring dependence after to univariate forecasts that have been statistically post-processed.	
License General licence	
Encoding UTF-8	
LazyData true	
Depends tidyverse	
RoxygenNote 6.1.1	
R topics documented: apply_ecc_template create_member_names get_ecc_quantiles hello interpolate_missing_values reorder_members sample_ecc_members sample_schaake_dates schaake_shuffle shuffle_members	$ \begin{array}{c} 1 \\ 3 \\ 4 \\ \hline 6 \\ 6 \\ \hline 8 \\ 9 \\ \hline 10 \\ \end{array} $
Index 1	12
apply_ecc_template	

Description

Reshuffles univariate forecasts so that the multivariate forecast inherits the dependence structure the raw ensemble.

2 apply_ecc_template

Usage

```
apply_ecc_template(X_raw, Y_forecast)
```

Arguments

X_raw is a matrix where the columns correspond to the raw ensemble members
Y_forecast is a matrix where the entries correspond to the univariate forecasts

Details

Univariate forecasts are generated using sample_ecc_members_norm(). These univariate forecasts are then reshuffled using a dependence template inherited from the raw ensemble, X_raw. This process is known as Empircal Copula Coupling (ECC). The type of ECC depends on the sampling type used to generate the members in sample_ecc_members_norm.

This function is functionally the same as schaake_shuffle(), but to be consistent with the formulation in the original papers has different inputs.

Value

a matrix where the columns corresponds to the post-processed multivariate forecasts

Author(s)

Kate Saunders and Kirien Whan

References

Schefzik, Roman, Thordis L. Thorarinsdottir, and Tilmann Gneiting. "Uncertainty quantification in complex simulation models using ensemble copula coupling." Statistical science 28.4 (2013): 616-640.

Hu, Yiming, et al. "A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution." Journal of Hydrometeorology 17.9 (2016): 2405-2417.

```
# code for this example was based on the function vs_sample()
# in the scoringRules package

d <- 3  # number of dimensions
m <- 5  # number of ensemble members
mu0 <- rep(0, d)
mu <- rep(1, d)
S0 <- S <- diag(d)
S[S==0] <- 0.1
S0[S0==0] <- 0.2

# generate samples from multivariate normal distributions
obs <- drop(mu0 + rnorm(d) %*% chol(S0))
raw_ensemble <- replicate(m, drop(mu + rnorm(d) %*% chol(S)))

pars = data.frame(mu = mu0, sigma = rep(1, d))
draw_type = 'R'
univariate_forecast <- sample_ecc_members_norm(num_members = m, pars, draw_type)</pre>
```

create_member_names 3

```
apply_ecc_template(raw_ensemble, univariate_forecast)
```

create_member_names

Creates member names

Description

Takes a prefix string, ie "fc" and creates member reference names, ie, "fc001" "fc002"

Usage

```
create_member_names(prefix_string, num_members, width)
```

Arguments

width (optional) this is the width for zero padding with the prefix string (default

is 3)

M prefix string

Value

a vector containing the names of the ensemble members

Author(s)

Kate Saunders and Kirien Whan

Examples

```
create_member_names(prefix_string = "fc", num_members = 10)
create_member_names(prefix_string = "fc", num_members = 10, width = 2)
```

get_ecc_quantiles

Creates a vector of quantiles

Description

This function produces qunatiles for ECC-R (random qunatiles), ECC-Q (uniform quantiles) or ECC-S (jittered quantiles).

Usage

```
get_ecc_quantiles(m, ecc_type)
```

4 hello

Arguments

m number of members in the ensemble (must be an integer)

 ${\tt ecc_type} \qquad \qquad {\tt one \ of \ the \ characters \ 'R', \ 'Q', \ 'Q1', \ or \ 'S'. \ This \ character \ corresponds}$

to the desired ECC sampling method. There are two types of equi-spaced

quantiles, 'Q' and 'Q1'.

Details

If the ecc_type is 'R' then quantiles are randomly sampled. If the ecc_type is 'Q' then quantiles are equally sampled. #' If the ecc_type is 'Q1' then quantiles are equally sampled (Bröck et al. 2012) If the ecc_type is 'S' then the quantiles are jittered.

Value

a vector of sample quantiles

Author(s)

Kate Saunders and Kirien Whan

References

Schefzik, Roman, Thordis L. Thorarinsdottir, and Tilmann Gneiting. "Uncertainty quantification in complex simulation models using ensemble copula coupling." Statistical science $28.4\ (2013)$: 616-640.

Hu, Yiming, et al. "A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution." Journal of Hydrometeorology 17.9 (2016): 2405-2417.

See Also

```
sample_ecc_members
```

Examples

```
get_ecc_quantiles(3, "R")
get_ecc_quantiles(4, "Q")
get_ecc_quantiles(5, "S")
```

hello

Hello, World!

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

interpolate_missing_values

Interpolates missing observations

Description

Occasionally missing observations are present in observations sampled that are to be used in the Schaake shuffle. If only a few of observations are missing if can be useful to interpolate the missing values, particularly if only a few dates are available for sampling.

Usage

```
interpolate_missing_values(M)
```

Arguments

М

is a matrix where columns corresponds to different sample observations

Details

For each column with a missing observation, the next closest column is found in terms of the smallest mean square error. If this close column has a valid observation in the same row as the missing observation, then this value is used to interpolate the missing observation. This is a simple method of data imputation, M can be subsetted in such a way to improve the reliability of the imputed value. Care should be taken that the reason the observation was missing was not for a systematic reason.

Value

M with any missing values interpolated

Author(s)

Kate Saunders and Kirien Whan

```
M = matrix(c(1,2,3,1,NA,3,4,5,6), nrow = 3)
interpolate_missing_values(M)

M = matrix(c(-1,-2,-3,1,NA,3,4,5,6), nrow = 3)
interpolate_missing_values(M)

M_all = matrix(c(1, 2, 3, 7, 10, 1, NA, 3, 4, 5, 2, 3, 4, 5, 6), nrow = 5)
interpolate_missing_values(M_all)
interpolate_missing_values(M_all[1:3, ])
```

 $sample_ecc_members$

reorder_members

Reorders ensemble members

Description

Reorders the row entries of a matrix using a template based on order statistics

Usage

```
reorder_members(X, B)
```

Arguments

X is a matrix where the columns correspond to multivariate forecasts.

B is a matrix with common dimension to X, and contains order statistics

for reshuffling

Details

Each columns of X corresponds to an ensemble member. The order statistics in B are generated from climatologically similar days to the forecast day. This function is internal and used within schaake_shuffle()

Value

a reshuffled version of matrix according the order statistics given in B.

Author(s)

Kate Saunders and Kirien Whan

Examples

```
X = matrix(c(2,1,3, 5,6,7), nrow = 2, byrow = TRUE)

B = matrix(c(2,1,3, 3,2,1), nrow = 2, byrow = TRUE)

reorder\_members(X, B)
```

sample_ecc_members

Samples ensemble members from a normal distribution

Description

This functions samples ensembe members from the provided distribution function. The type of sampling can be one of ECC-R (random), ECC-Q (uniform quantiles) or ECC-S (jittered quantiles).

Usage

```
sample_ecc_members(num_members, function_type, pars, ecc_type)
```

sample_ecc_members 7

Arguments

num_members number of members in the ensemble (must be an integer)

function_type a function to simulate the members from

pars a data frame with named columns corresponding to parameters

ecc_type one of the characters, 'R', 'Q' or 'S'. This character corresponds to the

desired ECC sampling method

Details

If the ecc_type is 'R' then the function_type should be for random sampling of quantiles, ie. `rnorm`. If the ecc_type is 'Q' or 'S' then the function_type should be for quantile sampling, ie `qnorm`.

This function uses get_ecc_quantiles for quantile sampling.

Value

a matrix where the columns give the sampled ensemble members

Author(s)

Kate Saunders and Kirien Whan

References

Schefzik, Roman, Thordis L. Thorarinsdottir, and Tilmann Gneiting. "Uncertainty quantification in complex simulation models using ensemble copula coupling." Statistical science 28.4 (2013): 616-640.

Hu, Yiming, et al. "A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution." Journal of Hydrometeorology 17.9 (2016): 2405-2417.

See Also

```
get_ecc_quantiles and reorder_members
```

```
num_members = 5
pars <- data.frame(mean = 0, sd = 1)
sample_ecc_members(num_members, rnorm, pars, 'R')
sample_ecc_members(num_members, qnorm, pars, 'Q')
sample_ecc_members(num_members, qnorm, pars, 'S')

pars <- data.frame(mean = c(0,10), sd = c(1,1))
sample_ecc_members(num_members, rnorm, pars, 'R')

num_members = 4
pars <- data.frame(rate = c(1,2,3))
sample_ecc_members(num_members, rexp, pars, 'R')</pre>
```

Description

For a given date, this function samples dates within a surrounding window across different years. These dates can be used in the Schaake shuffle to generate a dependence template that is based on climatology.

Usage

```
sample_schaake_dates(num_draws, dates, date_val, window = 7)
```

Arguments

dates vector of all possible dates that will be cross-referenced with the climate

window

date_val date of the observation for which a similar climatology is required

window integer that gives the radius of the date window, date_val +- window (unit

is days)

Details

This function assumes the window of interest is in given in days

Value

a vector of length num_draws that gives the sampled dates

Author(s)

Kate Saunders and Kirien Whan

References

Clark, Martyn, et al. "The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields." Journal of Hydrometeorology 5.1 (2004): 243-262.

```
date_val = lubridate::as_date("2019-01-01")
dates = seq(lubridate::as_date("2018-01-01"), lubridate::as_date("2020-01-01"), by = "days")
set.seed(1)
sampled_dates <- sample_schaake_dates(num_draws = 3, dates = dates, date_val = date_val, window = 7)
sampled_dates
set.seed(1)
new_dates = setdiff(dates, sampled_dates) %>% lubridate::as_date()
new_sampled_dates <- sample_schaake_dates(num_draws = 3, dates = new_dates, date_val = date_val, window = 7)
new_sampled_dates</pre>
```

schaake_shuffle 9

schaake	shuffle

Performs the schaake shuffle

Description

For a forecast that has been subject to univariate post-processing the members need to be reshuffled to so that the forecast has the correct dependence structure. This function does the reshuffling using a dependence structure that is inherited from days that have are climatologically similar.

Usage

```
schaake_shuffle(X, Y)
```

Arguments

X is a matrix where the columns correspond to multivariate forecasts.

Y is a matrix where the columns give climatologically similar observations to that of the forecast day.

Details

For the input matrix X, the number of rows correspond to the dimension of the multivariate forecast and the number of columns corresponds the ensemble members. The dimension of Y must correspond to X. To get climatologically similar days use the function sample_schaake_dates().

No missing values should be present in Y. Data imputation or date resampling should be used.

This function is functionally the same as <code>apply_ecc_template()</code>, but to be consistent with the formulation in the original papers has different inputs.

Value

a matrix where the forecasts in X have been reshuffled according to the dependence inherited from the climatological template in Y.

Author(s)

Kate Saunders and Kirien Whan

References

Clark, Martyn, et al. "The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields." Journal of Hydrometeorology 5.1 (2004): 243-262.

10 shuffle_members

Examples

```
# code for this example was based on the function vs_sample()
# in the scoringRules package

d <- 3  # number of dimensions
m <- 5  # number of samples from multivariate forecast distribution

mu0 <- rep(0, d)
mu <- rep(1, d)
S0 <- S <- diag(d)
S[S==0] <- 0.1
S0[S0==0] <- 0.2

# generate samples from multivariate normal distributions
obs <- drop(mu0 + rnorm(d) %*% chol(S0))
climate_example <- replicate(m, drop(mu + rnorm(d) %*% chol(S)))

forecast_example <- matrix(mu0 + rnorm(d*m), nrow = d, ncol = m)
schaake_shuffle(X = forecast_example, Y = climate_example)</pre>
```

shuffle_members

Function to rank, order or sort ensemble members

Description

Applies one of the functions rank, order or sort to the ensemble members.

Usage

```
shuffle_members(M, type, ...)
```

Arguments

M is a matrix where the columns correspond to multivariate forecasts.

type is a string of either 'rank', 'order' or 'sort'. This operation is applied to

the rows

Details

No missing values should be present in M.

This function is used within schaake_shuffle() and ecc().

Value

a matrix where the ensemble members in M have been altered according to the function

Author(s)

Kate Saunders and Kirien Whan

shuffle_members 11

```
M = matrix(c(2,3,1, 5,6,7), nrow = 2, byrow = TRUE)
shuffle_members(M, 'rank')
shuffle_members(M, 'order')
shuffle_members(M, 'sort')
```

Index

```
apply_ecc_template, 1
create_member_names, 3
get_ecc_quantiles, 3, 7
hello, 4
interpolate_missing_values, 5
reorder_members, 6, 7
sample_ecc_members, 4, 6
sample_schaake_dates, 8
schaake_shuffle, 9
shuffle_members, 10
```