

Nearest neighbor decoding for Tardos fingerprinting codes

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

IH&MMSec 2019, Paris, France (July 5, 2019)

Problem: Illegal redistribution

User	Co	ору	rig	hte	d c	ont	en	t									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	•••

Problem: Illegal redistribution

User	Co	ру	rig	hte	d c	ont	ten	t									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	•••
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

User	Co	ру	rig	hte	d c	ont	en	t (f	ing	erp	rin	tec	l)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••

User	Cop	yrig	hte	d c	ont	ten	t (f	ing	erp	rin	tec	l)				
Antonino	0 1	1 1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0 1	1 1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0 1	1 0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0 1	1 1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0 1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0 1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0 1	1 1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0 1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••
Сору	0 1	1 0	1	0	1	0	1	1	0	1	1	1	0	0	0	

User	Cop	pyri	ghte	d c	ont	en	t (f	ing	erp	rin	tec	l)				
Antonino	0	1 1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1 1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1 0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1 1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1 0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1 0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1 1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1 0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••
Сору	0	1 0	1	0	1	0	1	1	0	1	1	1	0	0	0	•••

User	Co	ру	rig	hte	d c	ont	en	t (f	ing	erp	rin	ted	l)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	•••

Problem: Collusion attacks

User	Cop	pyrig	hte	d c	ont	en	t (f	ing	erp	rin	tec	l)				
Antonino	0	1 1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1 1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1 0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1 1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1 0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1 0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1 1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1 0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••

Problem: Collusion attacks

User	Cop	yrig	hte	d c	ont	en	t (f	ing	erp	rin	tec	l)				
Antonino	0 1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0 1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0 1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0 1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0 1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0 1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0 3	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0 1	L O	1	0	1	1	1	1	0	0	1	0	1	1	0	•••
Сору	0 1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Problem: Collusion attacks

User	Cop	yrig	hte	d c	ont	en	t (f	ing	erp	rin	tec	l)				
Antonino	0 1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0 1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0 1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0 1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0 1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0 1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0 1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0 1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	•••
Сору	0 1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

User	Cop	yrig	hte	d c	on	ten	t (f	ing	erp	rin	tec	l)				
Antonino	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0 1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

User	Cop	yrig	hte	d c	on	ten	t (f	ing	erp	rin	ted	l)				
Antonino	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0 3	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0 3	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0 3	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	•••
Сору	0 :	1 ?	1	0	?	?	1	1	0	?	1	?	?	?	0	

1. An algorithm to construct collusion-resistant codes

User	Co	ру	rig	hte	d c	on	en	t (f	ing	erp	rin	tec	l)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	• • •
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User Copy	Copyrighted content (fingerprinted)								
Antonino	?	? ?	?	? ? ?					
Boris	?	? ?	?	? ? ?					
Caroline	?	? ?	?	? ? ?					
David	?	? ?	?	? ? ?					
Eve	?	? ?	?	? ? ?					
Fred	?	? ?	?	? ? ?					
Gábor	?	? ?	?	? ? ?					
Henry	?	? ?	?	? ? ?					
Сору	?	? ?	?	? ? ?					

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)	
Antonino		
Boris		
Caroline		
David	$oldsymbol{V}$	
Eve	$oldsymbol{\Lambda}$	
Fred		
Gábor		
Henry		
Сору	у	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Tardos' scheme

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with probability p_i .
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - **1a.** For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with probability p_i .
- 2. An algorithm to trace pirate copies to colluders

 - 2a. For each segment *i*, user *j*, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$. 2b. For each user *j*, accuse user *j* iff $S_j = \sum_i S_{i,i} > \eta$ is "large".

p_i	p_1	p_2	p_3	p_4	p_5		p_{1200}
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$		$X_{1,1200}$
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$			$X_{2,1200}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$		$X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$		$X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$		$X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$		$X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$		$X_{7,1200}$
Henry	$X_{8,1}$			$X_{8,4}$	$X_{8,5}$	• • •	$X_{8,1200}$
Copy	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	y_5		<i>y</i> ₁₂₀₀

Tardos' scheme

1a. For each segment *i*, generate $p_i \sim F$.

p_i	p_1	p_2	p_3	p_4	p_5	• • •	p_{1200}
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$		$X_{1,1200}$
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$		$X_{2,1200}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$		$X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$		$X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$		$X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$		$X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$		$X_{7,1200}$
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$		• • •	$X_{8,1200}$
Сору	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅		<i>y</i> ₁₂₀₀

Tardos' scheme

1a. For each segment i, generate $p_i \sim F$.

71										
p_i	0.20	0.05	0.88	0.79	0.98		0.18			
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$		$X_{1,1200}$			
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$		$X_{2,1200}$			
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$		$X_{3,1200}$			
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$		$X_{4,1200}$			
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$		$X_{5,1200}$			
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$		$X_{6,1200}$			
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$		$X_{7,1200}$			
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	• • •	$X_{8,1200}$			
Copy	y_1	y_2	y_3	<i>y</i> ₄	y_5		y_{1200}			

Tardos' scheme

1b. For each segment i, user j, choose $X_{i,j} = 1$ with prob. p_i .

	,				- · · · - · · · · · · · · · · · · · · ·			
p_i	0.20	0.05	0.88	0.79	0.98		0.18	
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$		$X_{1,1200}$	
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$		$X_{2,1200}$	
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$		$X_{3,1200}$	
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$		$X_{4,1200}$	
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$		$X_{5,1200}$	
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$		$X_{6,1200}$	
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$		$X_{7,1200}$	
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	•••	$X_{8,1200}$	
Copy	y_1	y_2	y_3	<i>y</i> ₄	y_5		y_{1200}	

1b. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .

		-		J,			
p_i	0.20	0.05	0.88	0.79	0.98	•••	0.18
Antonino	0	0	1	1	1		0
Boris	1	0	1	1	1		1
Caroline	1	0	0	1	0		0
David	0	0	1	1	1		0
Eve	0	0	1	0	1		0
Fred	1	0	1	0	1		0
Gábor	0	0	1	0	1		0
Henry	1	0	0	0	1		0
Copy	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	y_5		y_{1200}

TU/e

Tardos' scheme

The copy is distributed and detected by the tracer.

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	O	0	1	1	1	 0
Eve	O	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	0	0	0	1	1	 0

Coalition = {Caroline, Eve, Henry}

Tardos' scheme

2a. For each segment *i*, user *j*, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.

				,,-		,,	
p_i	0.20	0.05	0.88	0.79	0.98		0.18
Antonino	0	0	1	1	1		0
Boris	1	0	1	1	1		1
Caroline	1	0	0	1	0		0
David	0	0	1	1	1		0
Eve	0	0	1	0	1		0
Fred	1	0	1	0	1		0
Gábor	0	0	1	0	1		0
Henry	1	0	0	0	1		0
Сору	0	0	0	1	1		0

Coalition = {Caroline, Eve, Henry}

Tardos' scheme

2a	For each segment i	user i	calculate S	$= \sigma(X_{\cdot \cdot \cdot} v_{\cdot \cdot} n_{\cdot})$
Za.	roi each segment i	, user j,	calculate $S_{i,i}$	$-g(A_{i,i},y_{i},p_{i}).$

		5,		J,t		,175 171	
p_i	0.20	0.05	0.88	0.79	0.98	•••	0.18
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5
Boris	-2.0	+0.2	-0.4	+0.5	+0.1		-2.1
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2		+0.5
David	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5
Eve	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5
Fred	-2.0	+0.2	-0.4	-1.9	+0.1		+0.5
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	• • •	+0.5
Сору	0	0	0	1	1		0

 $Coalition = \{Caroline, Eve, Henry\}$

Tardos' scheme

2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

	3,		, ,	— [],[
p_i	0.20	0.05	0.88	0.79	0.98		0.18	$\sum_i S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5	0
Boris	-2.0	+0.2	-0.4	+0.5	+0.1		-2.1	0
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2		+0.5	0
David	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5	0
Eve	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5	0
Fred	-2.0	+0.2	-0.4	-1.9	+0.1		+0.5	0
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5	0
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	• • •	+0.5	0
Сору	0	0	0	1	1		0	

 $Coalition = \{Caroline, Eve, Henry\}$

Tardos' scheme

2b. For each user *j*, accuse user *j* iff $\sum_{i} S_{i,j}$ is "large".

				— [],:				
p_i	0.20	0.05	0.88	0.79	0.98		0.18	$\sum_i S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1		-2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2		+0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1		+0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1		+0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1		+0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	• • •	+0.5	+269
Сору	0	0	0	1	1		0	

 $Coalition = \{Caroline, Eve, Henry\}$

Tardos' scheme

2b. For each user *j*, accuse user *j* iff $\sum_{i} S_{i,j}$ is "large".

25. For each user j, we case user j in $\sum_{i} \delta_{j,i}$ is large.							
p_i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_i S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

Coalition = {Caroline, Eve, Henry} Accused = {Caroline, Eve, Henry}

Tardos' scheme

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

- 1. An algorithm to construct collusion-resistant codes
 - **1a.** For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with probability p_i .
- 2. An algorithm to trace pirate copies to colluders

 - 2a. For each segment *i*, user *j*, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$. 2b. For each user *j*, accuse user *j* iff $S_j = \sum_i S_{i,i} > \eta$ is "large".

- Tardos (STOC 2003): arcsine distribution
- Nuida–Hagiwara–Watanabe–Imai (*IH 2007*): optimal discrete shape (small *c*)
- Furon–Guyader–Cerou (IH 2008): why the arcsine distribution
- Huang–Moulin (WIFS 2010): arcsine distribution optimal (large c)
- Laarhoven–De Weger (*IH&MMSec 2014*): optimal discrete distributions (small *c*) converge to arcsine distribution (large *c*)

$$f(p) = \frac{1}{\pi \sqrt{p(1-p)}}, \qquad p \in (0,1).$$
 (1)

Tardos' scheme Score functions

- Tardos (STOC 2003): "asymmetric" score function
- Skoric–Katzenbeisser–Celik (DCC 2008): symmetric score function
- Furon–Guyader–Cerou (IH 2008): why these score functions
- Furon–Perez-Freire (MMSec 2009): EM decoder
- Meerwald–Furon (IEEE-TIFS 2012): iterative joint decoder
- Furon-Guyader-Cerou (WIFS 2012): MCMC joint decoder
- Oosterwijk–Skoric–Doumen (IH&MMSec 2013): optimal simple decoder
- Desoubeaux–Herzet–Puech–Guelvouit (MMSP 2013): MAP-based joint decoder
- Laarhoven (IH&MMSec 2014): more optimal simple decoders
- Furon-Desoubeaux (WIFS 2014): comprehensive comparison of decoders

Tardos' scheme Code lengths

- Tardos (STOC 2003): $\ell = 100c^2 \ln n$
- Skoric–Vladimirova–Celik–Talstra (*IEEE-TIT 2006*): $\ell \approx 39.48c^2 \ln n$
- Blayer–Tassa (DCC 2008): $\ell \approx 19.74c^2 \ln n$
- Skoric–Katzenbeisser–Celik (DCC 2008): $\ell \approx 9.87c^2 \ln n$
- Nuida-...-Imai (*DCC 2009*): $\ell \approx 5.35c^2 \ln n$
- Laarhoven–De Weger (DCC 2014): $\ell \approx 4.93c^2 \ln n$
- Nuida-Hagiwara-Watanabe-Imai (IH 2007): code lengths for small collusions
- Amiri–Tardos (SODA 2009): achievable code length with joint decoding
- Furon–Perez-Freire–Guyader–Cerou (IH 2009): estimating ℓ in practice
- Berchtold–Schafer (MMSec 2012): optimizing ℓ for joint decoders

Tardos' scheme Decoding methods

- Tardos (STOC 2003): linear-time simple decoder
- Amiri–Tardos (SODA 2009): theoretical joint decoder
- Furon–Perez-Freire (MMSec 2009): fast EM decoder
- Laarhoven–Doumen–Roelse–Skoric–De Weger (IEEE-TIT 2011): dynamic decoder
- Meerwald–Furon (IEEE-TIFS 2012): iterative joint decoder
- Furon-Guyader-Cerou (WIFS 2012): MCMC joint decoder
- Desoubeaux–Herzet–Puech–Guelvouit (MMSP 2013): MAP-based joint decoder
- Laarhoven (IH&MMSec 2015): sequential decoders

Tardos' scheme Decoding methods

- Tardos (STOC 2003): linear-time simple decoder
- Amiri–Tardos (SODA 2009): theoretical joint decoder
- Furon–Perez-Freire (MMSec 2009): fast EM decoder
- Laarhoven–Doumen–Roelse–Skoric–De Weger (IEEE-TIT 2011): dynamic decoder
- Meerwald–Furon (IEEE-TIFS 2012): iterative joint decoder
- Furon-Guyader-Cerou (WIFS 2012): MCMC joint decoder
- Desoubeaux–Herzet–Puech–Guelvouit (MMSP 2013): MAP-based joint decoder
- Laarhoven (IH&MMSec 2015): sequential decoders
- This work: sublinear-time simple decoder

Nearest neighbor decoder Main ideas

Intuition: View code words as high-dimensional vectors

- Code words, pirate output can be seen as length- ℓ binary vectors
- Usually colluder vectors have a higher similarity with pirate output
- Does not work for e.g. minority voting attack

Nearest neighbor decoder Main ideas

Intuition: View code words as high-dimensional vectors

- Code words, pirate output can be seen as length- ℓ binary vectors
- Usually colluder vectors have a higher similarity with pirate output
- Does not work for e.g. minority voting attack

Actual scheme: View score vectors as high-dimensional vectors

- For each coordinate, two possible values depending on p_i
- Collusion strategy influences average scores
- Regardless of attack, colluder vectors most similar to output vector
- Can use nearest neighbor data structures for fast lookups

Nearest neighbor decoder Algorithms

Preprocessing algorithm

- Create many hash buckets of similar score vectors
- Store all user score vectors in these hash buckets
 - Limitation: Only seems to work for symmetric score function

Tracing algorithm

- Given pirate output, find buckets which contain similar vectors
- Compute scores only for users in these hash buckets

Generally: need more space, but find colluders faster

Nearest neighbor decoder

Experimental data

Nearest neighbor decoder

Time-space trade-offs

С	linear space	balanced trade-off	instant decoding
1	$(S,T) = (n,\log n)$		
2	$(S,T) = (n,n^{0.75})$	$(S,T) = (n^{1.33}, n^{0.33})$	$(S,T) = (n^{5.00}, n^{o(1)})$
3	$(S,T) = (n,n^{0.89})$	$(S,T) = (n^{1.50}, n^{0.50})$	$(S,T) = (n^{8.00}, n^{o(1)})$
	$(S,T) = (n,n^{0.94})$	$(S,T) = (n^{1.60}, n^{0.60})$	$(S,T) = (n^{15.0}, n^{o(1)})$
5	$(S,T) = (n,n^{0.96})$	$(S,T) = (n^{1.68}, n^{0.68})$	$(S,T) = (n^{25.8}, n^{o(1)})$
6	$(S,T) = (n,n^{0.97})$	$(S,T) = (n^{1.72}, n^{0.72})$	$(S,T) = (n^{37.6}, n^{o(1)})$
7	$(S,T) = (n,n^{0.98})$	$(S,T) = (n^{1.77}, n^{0.77})$	$(S,T) = (n^{57.3}, n^{o(1)})$
8	$(S,T) = (n,n^{0.99})$	$(S,T) = (n^{1.79}, n^{0.79})$	$(S,T) = (n^{75.2}, n^{o(1)})$

Main conclusions

Good news

- Can significantly decrease the decoding time in practice
- Can be used in place, with exact same code constructions
- May be useful for online/live applications with quick decisions

Main conclusions

Good news

- Can significantly decrease the decoding time in practice
- Can be used in place, with exact same code constructions
- May be useful for online/live applications with quick decisions

Bad news

- Does not scale well with the collusion size
- Improvement not big enough to make joint decoding more practical
- Does not work nicely for other score functions
- Decoding time is not the main bottleneck in practice

Main conclusions

Good news

- Can significantly decrease the decoding time in practice
- Can be used in place, with exact same code constructions
- May be useful for online/live applications with quick decisions

Bad news

- Does not scale well with the collusion size
- Improvement not big enough to make joint decoding more practical
- Does not work nicely for other score functions
- Decoding time is not the main bottleneck in practice

Bon appétit!