1 January 9

1.1 Complex Numbers

Starts with $\mathbb{N}=\{1,2,3,\ldots\}$. We can solve x+2=5 (x=3), but we cannot solve x+5=2. So we introduce $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Now x+a=b is always solvable in \mathbb{Z} $(a,b\in\mathbb{Z})$, namely $x=b-a\in\mathbb{Z}$. So consider 2x=8. This has the solution $x=4\in\mathbb{Z}$. But it's easy to come up with equations like this that aren't solvable in \mathbb{Z} , namely 8x=2. So we enlarge our system of numbers to $\mathbb{Q}=\{\frac{p}{q}\mid p,q\in\mathbb{Z},q\neq 0\}$. Now we can solve ax=b for $a,b\in\mathbb{Q}$ as long as $a\neq 0$.

Remark 1. If we tried to add another number ∞ to \mathbb{Q} so that ∞ is a solution to 0x = 1, this would lead to a breakdown of the rules of arithmetic because $0 \cdot a = 0$ for all a by distributive law $(0 \cdot a + 0 \cdot a = (0+0) \cdot a = 0 \cdot a = 0 + 0 \cdot a \implies 0 \cdot a = 0)$.

We can now do linear algebra: in \mathbb{Q} , we can solve all linear equations and systems of linear equations. From \mathbb{Q} to \mathbb{R} : we want to do calculus. Put in all limits of monotone increasing bounded sequences, e.g.

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \notin \mathbb{Q}$$

$$\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{i^2} = \sum_{i=1}^\infty \frac{1}{i^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots = \frac{pi^2}{6} \notin \mathbb{Q}$$

Actually, calculating the above limit is a highlight of this course.

As a consequence, we get the intermediate value theorem: $f:[a,b]\to\mathbb{R}$ continuous, f(a)<0, f(b)>0, then $\exists x\in(a,b)$ such that f(x)=0. Also the extremal value theorem: $f:[a,b]\to\mathbb{R}$ continuous, then $\exists x\in[a,b]$ such that $\forall y\in[a,b]$, $f(x)\geq f(y)$. In particuluar, say a>0, then $f(x)=x^2-a$ on the interval [0,1+a], f(0)=-a<0 and $f(1+a)=(1+a)^2-a=1+a+a^2>2$, so by the IVT: $\exists x\in\mathbb{R}$ such that f(x)=0. So $x^2-a=0$ has a solution in \mathbb{R} . So we have a solution to this quadratic equation in \mathbb{R} . The notation we use is \sqrt{a} . Positive real numbers have square roots in \mathbb{R} . So we can sole all quadratic equations $x^2+bx+c=0$ if $b^2-4c\geq0$, namely $x=-\frac{b}{2}\pm\frac{\sqrt{b^2-4c}}{2}$. Now we go from \mathbb{R} to \mathbb{C} : if $b^2-4c<0$, we cannot solve x^2+bx+c in \mathbb{R} .

$$x = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2} = -\frac{b}{2} \pm \frac{1}{2}\sqrt{-1}\sqrt{4c - b^2}$$

where $\sqrt{4c-b^2} \in \mathbb{R}$. So we need to make sense of $\sqrt{-1}$, and then we can solve all quadratic equations $x^2+bx+c=0$ where $b,c\in\mathbb{R}$. We simply add the symbol $i:=\sqrt{-1}$ to \mathbb{R} . We then get the solutions $x=\alpha\pm i\beta$ where $\alpha=-\frac{b}{2}$ and $\beta=\frac{1}{2}\sqrt{4c-b^2}$ where $\alpha,\beta\in\mathbb{R}$. We call i the "imaginary unit" and write numbers as $\alpha+i\beta$ where $\alpha,\beta\in\mathbb{R}$. We do our calculations the usual way using the extra rule $i^2=-1$.

Miracle: this leads to a coherent system of numbers \mathbb{C} , the complex numbers, where all quadratic equations can be solved, and we can do calculus (the contents of this course).

Some definitions of the operations:

$$+: (a+ib) + (c+id) = (a+c) + i(b+d) \times: (a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

Now, this was somewhat informal. So formally, we define $\mathbb{C} = \mathbb{R}^2$ (assuming \mathbb{R} is given). Addition is the same as vector addition. The multiplication is (a,b)(c,d) = (ac-bd,ad+bc). One can check that this multiplication is commutative, associative, satisfies the distributive law, there is a multiplicative unit (1,0), and every nonzero complex number has a multiplicative inverse: $(a,b)^{-1} = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$. Hence, we can freely divide (multiplying by the multiplicative inverse) by nonzero complex numbers. So \mathbb{C} is a field (see [BMPS]).

We can map \mathbb{R} to \mathbb{C} by $a \mapsto (a,0)$. So geometrically, \mathbb{C} is the plane and \mathbb{R} is the x-axis. This is a "field morphism", i.e. it respects addition and multiplication and sends the multiplication unit to the multiplication unit (so $(a \cdot b,0) = (a,0) \cdot (b,0)$ and (a+b,0) = (a,0) + (b,0)). We have $\alpha \in \mathbb{R}$, $(a,b) \in \mathbb{C}$, scalar multiplication: $\alpha(a,b) = (\alpha a,\alpha b)$ and complex multiplication: $(\alpha,0) \cdot (a,b) = (\alpha a,\alpha \beta)$. So we identify \mathbb{R} with its image in \mathbb{C} . Standard basis of $\mathbb{C} = \mathbb{R}^2$: (1,0),(0,1). We can abbreviat 1 = (1,0) and i = (0,1). Write (a,b) = a(1,0) + b(0,1) = a1 + bi = a + ib. We can check that $i^2 = -1$: $(0,1) \cdot (0,1) = (-1,0) = -1$.

We write $z \in \mathbb{C}$ as z = a + ib, $a, b \in \mathbb{R}$. We call a the real part and b the imaginary part, and write a = Re(z), b = Im(z). $|a + ib| = \sqrt{a^2 = b^2}$ as the norm / absolute value / modulus of z = a + ib.

1.1.1 Polar form

It is often convenient to write complex numbers in a different form. Imagining z as a point on the Cartesian plane, we let r be the distance from the origin and θ the angle z sweeps out. We can compute $a = r\cos\theta$ and $b = r\sin\theta$. So $a + ib = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta)$. r is the modulus of a + ib and we call θ the argument. The argument is ambiguous, but we can restrict $\theta \in (-\pi, \pi]$, which is called the principal value of the argument. $r(\cos\theta + i\sin\theta) = s(\cos\phi + i\sin\phi)$ if and only if r = s and $\phi - \theta \in 2\pi\mathbb{Z}$.

With this, we can get a geometric meaning of multiplication. Fix $z = r(\cos \theta + i \sin \theta)$. Consider the "multiplying by z" map $\mathbb{C} \to \mathbb{C}$ where $w \mapsto zw$. Write (x, y) as $\binom{x}{y}$.

$$w = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto r(\cos\theta + i\sin\theta) \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= r(\cos\theta + i\sin\theta) \cdot (x + iy)$$

$$= rx\cos\theta - ry\sin\theta + i(yr\cos\theta + xr\sin\theta)$$

$$= \begin{pmatrix} rx\cos\theta - ry\sin\theta \\ ry\cos\theta + rx\sin\theta \end{pmatrix}$$

$$= \begin{pmatrix} r\cos\theta - r\sin\theta \\ r\sin\theta - r\cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= r\begin{pmatrix} \cos\theta - \sin\theta \\ \sin\theta - \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

where we have the rotation matrix. So we are scaling w by the modulus r and rotating it by the argument θ .

2 January 11

More about the argument: let $z=1(\cos\pi/3+i\sin\pi/3)$. The possible values of $\arg(z)$ are $\ldots,\pi/3-2\pi,\pi/3,\pi/3+2\pi,\pi/3+4\pi,\ldots=\pi/3+2\pi\mathbb{Z}$ where $2\pi\mathbb{Z}=2\pi\{\ldots,-1,0,1,2,\ldots\}=\{\ldots,-2\pi,0,2\pi,4\pi,\ldots\}$. Then $\operatorname{Arg}(z)=\pi/3+2\pi\mathbb{Z}=\{\ldots,\pi/3-2\pi,\pi/3,\pi/3+2\pi,\pi/3+4\pi,\ldots\}$. Hence, $\operatorname{Arg}(z):=$ the multivalued argument of z. It is an example of a multifunction which associates to each $z\in\mathbb{C}$ a set of complex numbers. So $\operatorname{Arg}(\frac{1}{2}+\frac{1}{2}i\sqrt{3})=\frac{\pi}{3}+2\pi\mathbb{Z}$. The principal argument of z is the unique $\pi\in\operatorname{Arg}(z)$ such that $-\pi<\theta\leq\pi$. Notation: $\operatorname{arg}(z)$ is the principal argument. (Warning: other sources use different notation.) E.g. $\operatorname{arg}(-1)=\pi$ but $\operatorname{Arg}(-1)=\pi+2\pi\mathbb{Z}$.

2.1 Complex Conjugation

Definition 1 (Complex Conjugate). $\overline{a+ib} := a-ib$ (reflection across the real axis).

Some properties of the conjugate:

- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} + \overline{wz}$
- $|z|^2 = z\overline{z}$

See that if z = a + ib, then

$$z\overline{z} = (a+ib)(a-ib) = a^2 - i^2b + aib - aib = a^2 + b^2 = |a+ib|^2$$

2.1.1 The standard way to divide complex numbers

We have previously defined the multiplicative inverse of a complex number, but the standard way to divide is actually using the conjugate. We have

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac+bd+i(bc-ad)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$

2.2 *n*th roots of complex numbers

Proposition 1 (De Moivre's formula).

$$z = r(\cos \theta + i \sin \theta)$$
$$z^{n} = r^{n}(\cos(n\theta) + i \sin(n\theta))$$

To find a third root of $z = r(\cos \theta + i \sin \theta)$, divide θ by 3 and extract a third root of r (can always find a real nth root because $r \ge 0$):

$$w_1 = \sqrt[3]{r} \left(\cos \frac{\theta}{3} + i \sin \frac{\theta}{3} \right)$$

then $w_1^3 = z$. But there are in fact 3 3rd roots of z. The others are found by dividing the circle with radius $\sqrt[3]{r}$ equally:

$$w_2 = \sqrt[3]{r} \left(\cos \left(\frac{\theta}{3} + \frac{2\pi}{3} \right) + i \sin \left(\frac{\theta}{3} + \frac{2\pi}{3} \right) \right)$$
$$w_3 = \sqrt[3]{r} \left(\cos \left(\frac{\theta}{3} + \frac{4\pi}{3} \right) + i \sin \left(\frac{\theta}{3} + \frac{4\pi}{3} \right) \right)$$

Another example $(1+i)^8 = 1 + 8i + {8 \choose 2}i^2 + {8 \choose 3}i^4 + \cdots$ which isn't something we want to work with. Since $1+i=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$, we can actually write (and compute) it much easier:

$$(1+i)^8 = \sqrt{2}^8 \left(\cos\left(8\frac{\pi}{4}\right) + i\sin\left(8\frac{\pi}{4}\right)\right) = 16\left(\cos(2\pi) + i\sin(2\pi)\right) = 16$$

The fact that this is a real number is because 1+i is a vertex of the octagon that has a vertex along the x-axis.

2.3 Phase

The phase of $z \neq 0$ is $\frac{z}{|z|}$. The phase of z is the complex number of modulus 1 with the same argument. The phase keeps track of the "angle" without the ambiguity in the argument.

A phase portraint is used for visualization. We associate colours to the phases. Red is associated with the positive real numbers, green with $\theta = 2\pi/3$ and blue with $-2\pi/3$. Then yellow is $\pi/3$, magenta is $-\pi/3$, and cyan is the negative real numbers.

2.4 The complex exponential

Recall for $x \in \mathbb{R}$,

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}x^n$$

This also works for complex numbers. If $z \in \mathbb{C}$:

$$e^z = 1 + z + \frac{1}{2}z^2 + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}z^n$$

For $z = i\theta$ where $\theta \in \mathbb{R}$ (purely imaginary) we get

$$e^{z} = e^{i\theta} = 1 + i\theta - \frac{1}{2}\theta^{2} - \frac{1}{3!}i\theta^{3} + \frac{1}{4!}\theta^{4} + \frac{1}{5!}i\theta^{5} + \cdots$$

$$= 1 - \frac{1}{2}\theta^{2} + \frac{1}{4!}\theta^{4} - \frac{1}{6!}\theta^{6} + \cdots + i\left(\theta - \frac{1}{3!}\theta^{3} + \frac{1}{5!}\theta^{5} + \cdots\right)$$

$$= \cos\theta + i\sin\theta$$

So if all these infinte sums behave proerply, we deduce from this Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

From now on, z in polar coordinates will be written $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ where r is the modulus and θ is the argument from before. We get the famous identity with this formula:

$$e^{2\pi i} = 1$$

In fact, $e^{2\pi i\mathbb{Z}} = \cos(2\pi\mathbb{Z}) + i\sin(2\pi\mathbb{Z}) = 1$. The complex exponential function ha speriod $2\pi i$:

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z \cdot 1 = e^z$$