ANALYSE FONCTIONNELLE

Q1 – Fonctions d'adaptation (Fonctions de contraintes)

Fa1: Etre d'une manipulation aisée pour l'utilisateur.

<u>Fa2</u> : Assurer la compatibilité des matériaux du dispositif avec le milieu ambiant (atmosphère de la salle blanche).

<u>Fa3</u>: Faciliter les branchements entre les tuyauteries et le dispositif, et opter pour des tuyauteries souples autorisant les mouvements d'agitation.

<u>Fa4</u> : Minimiser l'encombrement du dispositif afin d'assurer son intégration sous la hotte à flux laminaire.

ETUDE MECANIQUE DE L'AGITATEUR

MODELISATION

Q2 – Degré d'hyperstatisme du modèle proposé

Le modèle proposé est un système 4 barres.

Sa mobilité cinématique vaut $m_c = 1$,

l'entrée étant la rotation de l'excentrique $\underline{\mathbf{1}}$.

Le nombre total d'inconnues cinématiques vaut $N_C = 4$.

Grâce à la relation de la mobilité, on en déduit le degré d'hyperstatisme :

 $h = m_c + 6 - N_C \implies \underline{h = 3}$ Système hyperstatique d'ordre 3

<u>03 – 04 – Nouveau modèle rendant le système isostatique – Degré de mobilité</u>

Il suffit de substituer aux liaisons pivot L_{21} et L_{32} des liaisons **rotules**.

Alors $N_C = 8$.

De toute évidence $m_c = 2$ mobilité utile $m_u = 1$ Rotation de l'excentrique $\underline{\mathbf{1}}$.

mobilité interne $m_i = I$ Rotation propre de la bielle $\underline{2} / (A,B)$

Degré d'hyperstatisme : $h = m_c + 6 - N_C \implies \underline{h} = 0$ Système isostatique

CINEMATIQUE GRAPHIQUE

Q5 – Etude cinématique en 2D

Les liaisons entre les solides étant des pivots d'axes parallèles à (O_1, \vec{z}) , chacun des solides a donc un mouvement plan sur plan parallèle au plan de référence (O_1, \vec{x}, \vec{y}) , par conséquent on traite la cinématique en 2D.

<u>**06 – Construction graphique de**</u> $\vec{V}_{G_C,3/0}$ (Voir le Document Réponse page suivante)

- $\bullet \text{ On construit } \vec{V}_{O_2,1/0} \text{ sachant que}: \vec{V}_{O_2,1/0} = \vec{\Omega}_{1/0} \wedge \overrightarrow{O_1O_2} \text{ , avec } \underline{\omega_{I/0} = -12 \ rd/s}$ $\vec{V}_{O_2,2/0} = \vec{V}_{O_2,1/0} \text{ avec}: \left\| \vec{V}_{O_2,2/0} \right\| = 300 \ mm/s \rightarrow \text{graphiquement}: 30 \ mm.$
 - ullet On construit $\vec{V}_{B,3/0}$ sachant que :

*
$$\vec{V}_{B,3/0} \perp \overrightarrow{O_3B}$$
 , en effet : $\vec{V}_{B,3/0} = \vec{\Omega}_{3/0} \wedge \overrightarrow{O_3B}$

*
$$\vec{V}_{B,3/0} = \vec{V}_{B,2/0}$$

* On exploite l'équiprojectivité du champ des vitesses de la bielle $\underline{\bf 2}$ dans son mouvement plan par rapport au bâti $\underline{\bf 0}$:

$$\overrightarrow{V}_{B,2/0} \cdot \overrightarrow{BO_2} = \overrightarrow{V}_{O_2,2/0} \cdot \overrightarrow{BO_2} \iff \overrightarrow{BK} = \overrightarrow{O_2H}$$

ullet On trace le triangle des vitesses du bras ${\bf 3}$ dans son mouvement par rapport au bâti ${\bf 0}$, ce qui permet de trouver graphiquement $\vec{V}_{A,3/0}$.

On constate que : $\|\overrightarrow{O_3G_C}\| = \|\overrightarrow{O_3A}\|$,

par conséquent on construit $\vec{V}_{G_C,3/0}$ tel que $\vec{V}_{G_C,3/0} \perp \overrightarrow{O_3 G_C}$

Sur l'épure, à $\|\vec{V}_{G_C,3/0}\| \to 40 \ mm$, par conséquent : $\|\vec{V}_{G_C,3/0}\| = 400 \ mm \ / \ s$

DOCUMENT REPONSE

Question 6:

échelle cinématique : 1mm correspond à 10 mm/s

 $\|\overline{V_{G_c,3/0}}\| = 400 \text{ mm/A}$

CINEMATIQUE ANALYTIQUE

07 – Détermination de la loi d'entrée-sortie du modèle du mécanisme

- a – Fermeture géométrique

$$\overrightarrow{O_1O_2} + \overrightarrow{O_2B} + \overrightarrow{BO_3} + \overrightarrow{O_3O_1} = \vec{0} \Leftrightarrow e \cdot \vec{x}_1 + b \cdot \vec{x}_2 - L \cdot \vec{x}_3 + c \cdot \vec{x} - d \cdot \vec{y} = \vec{0} \quad (1)$$

<u>Nota:</u> Je ferais personnellement, une figure plane dans une vue selon $-\vec{z}$, ce qui autorise une analyse plus conventionnelle.

- b – Fermeture cinématique

Les vecteurs sont exprimés par leurs composantes dans la base $(\vec{x}, \vec{y}, \vec{z})$

$$\bullet \ \{V_{1/0}\}_{O_1} = \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_{1/0} & 0 \end{cases}_{O_1} \text{ avec } \omega_{1/0} = \dot{\theta_1}$$

$$\bullet \ \{V_{2/1}\}_{O_2} = \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_{2/1} & 0 \end{cases} \text{ avec } \omega_{2/1} = \dot{\theta_2}$$

•
$${V_{3/2}}_B = \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_{3/2} & 0 \end{cases}_B \text{ avec } \omega_{3/2} = -\theta$$

$$\begin{aligned}
&\text{Or } \vec{V}_{O_{1},3/2} = \vec{V}_{B,3/2} + \overrightarrow{O_{1}B} \wedge \vec{\Omega}_{3/2} \implies \\
&\{V_{3/2}\}_{O_{1}} = \begin{cases}
0 & [e \cdot S\theta_{1} + b \cdot S(\theta_{1} + \theta_{2})] \cdot \omega_{3/2} \\
0 & -[e \cdot C\theta_{1} + b \cdot C(\theta_{1} + \theta_{2})] \cdot \omega_{3/2} \\
\omega_{3/2} & 0
\end{aligned} \right\}_{O_{1}}$$

$$\bullet \ \{V_{3/0}\}_{O_3} = \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_{3/0} & 0 \end{cases}_{O_3} \text{ avec } \omega_{3/0} = \dot{\theta_3} \quad \Rightarrow \quad \{V_{3/0}\}_{O_1} = \begin{cases} 0 & d \cdot \omega_{3/0} \\ 0 & c \cdot \omega_{3/0} \\ \omega_{3/0} & 0 \end{cases}_{O_1}$$

Fermeture de la boucle :

$$\{V_{0/3}\}_Q + \{V_{3/2}\}_Q + \{V_{2/1}\}_Q + \{V_{1/0}\}_Q = \{0\} \quad (II)$$

$$(II) \Leftrightarrow \begin{cases} -\omega_{3/0} + \omega_{3/2} + \omega_{2/1} + \omega_{1/0} = 0 & (1) \\ -d \cdot \omega_{3/0} + [e \cdot S\theta_1 + b \cdot S(\theta_1 + \theta_2)] \cdot \omega_{3/2} + e \cdot \omega_{2/1} \cdot S\theta_1 = 0 & (2) \\ -c \cdot \omega_{3/0} - [e \cdot C\theta_1 + b \cdot C(\theta_1 + \theta_2)] \cdot \omega_{3/2} - e \cdot \omega_{2/1} \cdot C\theta_1 = 0 & (3) \end{cases}$$

<u>Remarque</u>: On constate que le rang du système d'équations scalaires cinématiques vaut $r_c = 3$, or le nombre total d'inconnues cinématiques est $N_C = 4$; on retrouve donc la mobilité cinématique $m_c = 1$ et le degré d'hyperstatisme $h = m_c + 6 - N_C = 3$.

- c – Loi d'entrée-sortie

Il est préférable de reprendre la fermeture géométrique, on déduit du système des équations scalaires :

(a):
$$b \cdot C(\theta_1 + \theta_2) = L \cdot C\theta_3 - e \cdot C\theta_1 - c$$

(b):
$$b \cdot S(\theta_1 + \theta_2) = L \cdot S\theta_3 - e \cdot S\theta_1 + d$$

On élève chacune de ces expressions au carré :

$$b^{2} \cdot C^{2}(\theta_{1} + \theta_{2}) = L^{2} \cdot C^{2}\theta_{3} + e^{2} \cdot C^{2}\theta_{1} + c^{2} - 2eL \cdot C\theta_{1} \cdot C\theta_{3} - 2cL \cdot C\theta_{3} + 2ec \cdot C\theta_{1}$$
$$b^{2} \cdot S^{2}(\theta_{1} + \theta_{2}) = L^{2} \cdot S^{2}\theta_{3} + e^{2} \cdot S^{2}\theta_{1} + d^{2} - 2eL \cdot S\theta_{1} \cdot S\theta_{3} + 2dL \cdot S\theta_{3} - 2ed \cdot S\theta_{1}$$

On additionne membre à membre :

$$b^{2} = L^{2} + e^{2} + c^{2} + d^{2} - 2eL \cdot C(\theta_{1} - \theta_{3}) + 2L \cdot (d \cdot S\theta_{3} - c \cdot C\theta_{3}) - 2e \cdot (d \cdot S\theta_{1} - c \cdot C\theta_{1})$$

On dérive cette relation par rapport au temps :

$$0 = 0 + eL \cdot (\dot{\theta_1} - \dot{\theta_3}) \cdot S(\theta_1 - \theta_3) + L \cdot \dot{\theta_3} \cdot (d \cdot C\theta_3 + c \cdot S\theta_3) - e \cdot \dot{\theta_1} \cdot (d \cdot C\theta_1 + c \cdot S\theta_1)$$

$$L \cdot [e \cdot S(\theta_1 - \theta_3) - d \cdot C\theta_3 - c \cdot S\theta_3] \cdot \dot{\theta_3} = e \cdot [L \cdot S(\theta_1 - \theta_3) c \cdot S\theta_1 - d \cdot C\theta_1] \cdot \dot{\theta_1}$$

$$\frac{\dot{\theta_3}}{\dot{\theta_1}} = \frac{e}{L} \cdot \frac{L \cdot \sin(\theta_1 - \theta_3) - c \cdot \sin\theta_1 - d \cdot \cos\theta_1}{e \cdot \sin(\theta_1 - \theta_3) - d \cdot \cos\theta_3 - c \cdot \sin\theta_3}$$

Q8 – Loi d'entrée-sortie approchée

 $\theta_3 \in [-7^\circ, 7^\circ]$, on fait les approximations suivantes : $\cos \theta_3 \approx 1$ et $\sin \theta_3 \approx 0$ et on a alors : $\sin (\theta_1 - \theta_3) \approx \sin \theta_1$

$$\frac{\dot{\theta_3}}{\dot{\theta_1}} = \frac{e}{L} \cdot \frac{(L-c) \cdot \sin \theta_1 - d \cdot \cos \theta_1}{e \cdot \sin \theta_1 - d}$$

Nota : L'expression simplifiée dans l'énoncé présente une erreur de signe .

DYNAMIQUE

09 – Expression littérale approchée du moment d'inertie I_{03z} de l'ensemble {1}

Plaque (1)

$$I_{O3z}^{1} = I_{G31y31}^{1} + m_{31} \cdot \left(\frac{L_{31}}{2}\right)^{2}$$
 Théo. de Huyghens

$$I_{O3z}^{1} = \frac{m_{31}}{12} \left(L_{31}^{2} + h_{31}^{2} \right) + m_{31} \cdot \left(\frac{L_{31}}{2} \right)^{2}$$

$$I_{O3z}^1 = \frac{m_{31}}{12} \left(4 \cdot L_{31}^2 + h_{31}^2 \right)$$

$$I_{O3z}^1 = \frac{m_{31}}{3} L_{31}^2 \left(1 + \frac{h_{31}^2}{4 \cdot L_{31}^2} \right)$$
 or $\frac{h_{31}^2}{4 \cdot L_{31}^2} < \frac{1}{36} << 1$ donc $I_{O3z}^1 \approx \frac{m_{31}}{3} L_{31}^2$

$$I_{O3z}^1 \approx \frac{m_{31}}{3} L_{31}^2$$

Plaque (2)

Hypothèses: $e_3 << h_{32}$; $G_{32}O_3 \approx L_{31}$

$$I_{O3z}^2 = I_{G32x32}^2 + m_{32} \cdot L_{31}^2$$
 Théo. de Huyghens

$$I_{O3z}^2 = \frac{m_{32}}{12} \cdot (h_{32}^2 + e_3^2) + m_{32} \cdot L_{31}^2 \approx \frac{m_{32}}{12} \cdot h_{32}^2 + m_{32} \cdot L_{31}^2$$

$$I_{O3z}^2 = m_{32} \cdot L_{32}^2 \cdot \left(1 + \frac{h_{32}^2}{12 \cdot L_{31}^2}\right)$$

$$\frac{h_{32}^2}{12 \cdot L_{31}^2} < \frac{1}{432} << 1$$
 donc $I_{O3z}^2 \approx m_{32} \cdot L_{32}^2$

Plaque (3)

$$I_{O3z}^3 = I_{G33x33}^3 + m_{33} \cdot (x^2 + y^2)$$

Dans l'expression de I_{G33x33}^3 on néglige le terme en e_3^2 devant celui en h_{33}^2 ; de même dans $m_{33} \cdot (x^2 + y^2)$ on néglige le terme en y^2 devant celui en x^2 .

Il vient donc :
$$I_{O3z}^3 \approx m_{33} \cdot d_{33}^2$$
 , en effet : $x \# d_{33}$.

 \vec{z}

Cylindre (M₂)

$$I_{O3z}^{M2} = \frac{m_2}{12} \left(3 \cdot \frac{D_{M2}^2}{4} + h_{M2}^2 \right) + m_2 \cdot \left(x_{GM2}^2 + y_{GM2}^2 \right)$$

$$1 + \frac{y_{GM2}^2}{x_{GM2}^2} + \frac{D_{M2}^2}{16 \cdot x_{GM2}^2} + \frac{h_{M2}^2}{12 \cdot x_{GM2}^2} \approx 1 + \frac{1}{25} + \frac{1}{16 \cdot 25} + \frac{1}{12 \cdot 9}$$

On fait donc l'approximation suivante :
$$I_{O3z}^{M2} = m_2 \cdot x_{GM2}^2$$

Ensemble ©

$$I_{O3z}^{C} = \frac{m_{cr}}{12} \left(3 \cdot \frac{D_{cr}^{2}}{4} + h_{cr}^{2} \right) + m_{cr} \cdot \left(x_{Gc}^{2} + y_{Gc}^{2} \right)$$

$$I_{O3z}^{C} = m_{cr} \cdot x_{Gc}^{2} \cdot \left(1 + \frac{y_{Gc}^{2}}{x_{Gc}^{2}} + \frac{D_{cr}^{2}}{16 \cdot x_{Gc}^{2}} + \frac{h_{cr}^{2}}{12 \cdot x_{Gc}^{2}}\right)$$

$$1 + \frac{y_{Gc}^2}{x_{Gc}^2} + \frac{D_{cr}^2}{16 \cdot x_{Gc}^2} + \frac{h_{cr}^2}{12 \cdot x_{Gc}^2} < 1 + \frac{1}{13^2} + \frac{1}{16 \cdot 16} + \frac{1}{12 \cdot 25}$$

On fait donc l'approximation suivante : $I_{O3z}^{C} \approx m_{cr} \cdot x_{Gc}^{2}$

Conclusion:
$$I_{O3z} = 2 \cdot I_{O3z}^1 + I_{O3z}^2 + I_{O3z}^3 + I_{O3z}^{M2} + I_{O3z}^C$$

$$I_{O3z} \approx \frac{2}{3} \cdot m_{31} \cdot L_{31}^2 + m_{32} \cdot L_{31}^2 + m_{33} \cdot d_{33}^2 + m_2 \cdot x_{G_{M2}}^2 + m_{cr} \cdot x_{Gc}^2$$

<u>010 – Expression littérale du couple moteur C_m</u>

On applique le théorème de l'énergie cinétique à l'ensemble {1}:

$$\frac{d}{dt}E_C(\{1\}/R_0) = P(\overline{1} \rightarrow 1/R_0) + P_{\text{int}}$$

Actions mécaniques extérieures à l'ensemble {1} :

- Action du stator de M1 sur le rotor : couple de moment $C_m(t) \cdot \vec{z}$
 - \Rightarrow Puissance galiléenne : $P(Sta. \rightarrow Rot./R_0) = C_m \cdot \dot{\theta_1}$
- Actions de liaison de $\underline{\mathbf{0}}$ sur $\underline{\mathbf{3}}$ et de $\underline{\mathbf{0}}$ sur $\underline{\mathbf{1}}$ (Hyp. : liaisons parfaites)
 - \Rightarrow Puissance galiléenne : $P(0 \rightarrow 3/R_0) = 0$

$$P(0 \to 1/R_0) = 0$$

- Action de la pesanteur sur l'ensemble {1} Puissance galiléenne

$$P(pes. \rightarrow 1/R_0) = -mg \cdot \vec{y} \cdot \vec{V}_{G,\{1\}/R_0} = -mg \cdot \vec{y} \cdot x_G \cdot \dot{\theta}_3 \cdot \vec{y}_3 = -mg \cdot x_G \cdot \dot{\theta}_3 \cdot \cos \theta_3$$

Hyp.:
$$\theta_3$$
 voisin de zéro $\Rightarrow cos \theta_3 \approx 1$
 $\Rightarrow P(pes. \rightarrow 1/R_0) = -mg \cdot x_G \cdot \dot{\theta}_3$

Conclusion:
$$P(\overline{1} \rightarrow 1/R_0) = C_m \cdot \dot{\theta}_1 - mg \cdot x_G \cdot \dot{\theta}_3$$

Actions mécaniques intérieures à l'ensemble {1} ou puissance des actions mutuelles de <u>liaison</u>

L'hypothèse liaisons parfaites $\Rightarrow \underline{P_{int}} = \underline{0}$

Le mouvement de l'ensemble $\{1\}/R_0$ étant une rotation d'axe fixe (O_3, \vec{z}) , il vient :

$$E_C(\{1\}/R_0) = \frac{1}{2} \cdot I_{O3z} \cdot \dot{\theta}_3^2$$

T.E.C.:
$$I_{O3z} \cdot \dot{\theta}_3 \cdot \ddot{\theta}_3 = C_m \cdot \dot{\theta}_1 - mg \cdot x_G \cdot \dot{\theta}_3$$

$$C_m = \frac{1}{\dot{\theta_1}} \cdot (I_{O3z} \cdot \ddot{\theta_3} + mg \cdot x_G) \cdot \dot{\theta_3}$$

<u>Q11 – Tableau des valeurs du couple moteur C_m à différents instants</u>

On exploite, à cet effet les courbes représentatives de $\dot{\theta}_3$ et du produit $\dot{\theta}_3 \cdot \ddot{\theta}_3$ en fonction du temps, fournies en annexe.

$$C_m \approx 0.05 \cdot \dot{\theta}_3 \cdot \ddot{\theta}_3 + 1 \cdot \dot{\theta}_3$$

t(s)	$\dot{\theta}_3 (\text{rd.s}^{-1})$	$\dot{\theta}_3 \cdot \ddot{\theta}_3 \text{ (rd}^2.\text{s}^{-3})$	C _m (N.m)
0,1	- 1,6	5	-1,35
0,15	- 1,4	- 14	- 2,1
0,25	0	0	0
0,35	1,4	14	2,1

<u>Q12 – Fonctionnement du moteur M1</u>

M1 fonctionne dans les quadrants : 1 en MOTEUR

4 en FREIN

013 - Présence du ressort - Nouvelle expression du couple moteur C_m

Nouvelle action mécanique extérieure à l'ensemble {1} : Action du ressort

Cas $\theta_3 > 0$ Vue suivant $(-\vec{z})$

$$\vec{F}_{\text{Ressort} \to 3} = -k \cdot x_D \cdot \sin \theta_3 \cdot \vec{y} \approx -k \cdot x_D \cdot \theta_3 \cdot \vec{y}$$

$$\vec{V}_{D,3/0} = \vec{\Omega}_{3/0} \wedge \overrightarrow{O_3D} = \dot{\theta}_3 \cdot \vec{z} \wedge x_D \cdot \vec{x}_3 = x_D \cdot \dot{\theta}_3 \cdot \vec{y}_3 \approx x_D \cdot \dot{\theta}_3 \cdot \vec{y}$$

Puissance de l'action du ressort : $P(ressort \rightarrow 3/R_0) = -k \cdot x_D^2 \cdot \theta_3 \cdot \dot{\theta}_3$

Cas $\theta_3 > 0$ Vue suivant $(-\vec{z})$

$$\vec{F}_{\text{Ressort} \to 3} = k \cdot x_D \cdot |\sin \theta_3| \cdot \vec{y}$$

Or
$$|\sin \theta_3| = -\sin \theta_3 \implies \vec{F}_{\text{Ressort} \to 3} = -k \cdot x_D \cdot \sin \theta_3 \cdot \vec{y} \approx -k \cdot x_D \cdot \theta_3 \cdot \vec{y}$$

Conclusion: \forall le signe de θ_3 la puissance de l'action du ressort vaut: $P(ressort \rightarrow 3/R_0) = -k \cdot x_D^2 \cdot \theta_3 \cdot \dot{\theta}_3$

Le théorème de l'énergie cinétique appliqué à l'ensemble {1} donne :

$$I_{O3z} \cdot \dot{\theta}_3 \cdot \ddot{\theta}_3 = C_m \cdot \dot{\theta}_1 - mg \cdot x_G \cdot \dot{\theta}_3 - k \cdot x_D^2 \cdot \theta_3 \cdot \dot{\theta}_3$$

On en déduit :
$$C_m = \frac{1}{\dot{\theta}_1} \cdot (I_{O3z} \cdot \ddot{\theta}_3 + mg \cdot x_G + k \cdot x_D^2 \cdot \theta_3) \cdot \dot{\theta}_3$$

<u>014 – Bénéfices</u> apportés par le ressort

AUCUN,

la machine M1 fonctionne toujours en **FREIN** quand $\theta_3 \downarrow$ et en **MOTEUR** quand $\theta_3 \uparrow$. De plus le couple maxi est sensiblement le même.

Q15 - Présence du ressort et d'un amortisseur – Troisième expression du couple moteur

Rappel: $\vec{V}_{D,3/0} \approx x_D \cdot \dot{\theta}_3 \cdot \vec{y}$

Donc: $\vec{F}_{Amort \rightarrow 3} = -C \cdot x_D \cdot \dot{\theta}_3 \cdot \vec{y}$

$$\Rightarrow P(Amot. \rightarrow 3/R_0) = \vec{F}_{Amort. \rightarrow 3} \cdot \vec{V}_{D,3/0} = -C \cdot x_D^2 \cdot \dot{\theta}_3^2$$

Par conséquent, il vient :

$$C_{m} = \frac{1}{\dot{\theta_{1}}} \cdot \left(I_{O3z} \cdot \ddot{\theta_{3}} + mg \cdot x_{G} + k \cdot x_{D}^{2} \cdot \theta_{3} + C \cdot x_{D}^{2} \cdot \dot{\theta_{3}} \right) \cdot \dot{\theta_{3}}$$

Q16 - Choix de la solution répondant aux exigences souhaitées

Solution avec **ressort** et **amortisseur unidirectionnel**, car $C_m > 0$ (M1 fonctionne dans le premier quadrant) et $C_{m,Max} \approx 3.2 \ N.m$, alors qu'avec les deux autres solutions proposées $C_{m,Max} \approx 6.5 \ N.m$.

ETUDE DE LA REGULATION EN TEMPERATURE DE L'ENCEINTE

Q 17 – Signification du sommateur situé en amont du bloc de transfert de la chambre

Prise en compte de la **perturbation** que représente l'énergie calorifique q_p perdue ou reçue par la chambre.

<u>Q 18 – Identification de la F.T.B.O.</u> (Voir le Document Réponse page suivante)

La réponse à l'échelon de tension :

- présente une tangente horizontale à l'origine,
- est apériodique amorti.

Par conséquent la forme proposée, fonction de transfert du **second ordre** avec pôles **réels négatifs** est pertinente.

De toute évidence $G = \frac{1}{2}$

En exploitant la remarque "Si $\tau_1 << \tau_2$ on peut approximer τ_1 comme l'intersection..." on relève :

- \bullet $\tau_1 \approx 15$
- $\tau_1 + \tau_2 \approx 120 \text{ s} \implies \tau_2 \approx 105 \text{ s}$

DOCUMENT REPONSE

Question 18 - Réponse indicielle et Zoom

<u>Q20 – Temps de réponse du système régulé</u>

$$H_{bf}(p) = \frac{U_t(p)}{U_{tc}(p)} = \frac{H_{bo}(p)}{1 + H_{bo}(p)}$$

car le retour est unitaire.

$$H_{bf}(p) = \frac{\frac{1}{3}}{1 + \frac{105}{1,5} \cdot p + \frac{500}{1,5} \cdot p^2}$$

D'où l'on déduit :

- la pulsation propre ω_n telle que : $\omega_n^2 = \frac{1.5}{500} = 30 \cdot 10^{-4} \implies \omega_n = 5.5 \cdot 10^{-2} \text{ rd/s}$
- le facteur d'amortissement ξ tel que : $\frac{2 \cdot \xi}{\omega_n} = 70 \implies \xi = 1,92 \# 2$

L'abaque « Temps de réponse réduit pour second ordre » retourne :

 $\omega_n . t_{5\%} \approx 12 \Rightarrow \underline{t_{5\%}} = 218 \text{ s}$ Incompatible avec le cahier des charges (Montée en température rapide : 3 mn maximum).

<u>Q21 – Ecart de position – Ecart de traînage</u>

Fonction de transfert de classe 0 (zéro)
$$\Rightarrow \begin{cases} \varepsilon_p = \frac{1}{1 + G_{FTBO}} \\ \varepsilon_v = \infty \end{cases}$$

 $\underline{\varepsilon_p} = 0.66$ <u>66 %</u> Incompatible avec le cahier des charges.

Q22 – Diagrammes de Bode de la F.T.B.O.

On procède par superposition :
$$H_{bo}(j\omega) = H_1(j\omega) \cdot H_2(j\omega) = \frac{0.5}{1 + j \cdot 5\omega} \cdot \frac{1}{1 + j \cdot 100\omega}$$

Pulsations de brisure $\omega_1 = 0.2 \text{ rd/s}$; $\omega_2 = 0.01 \text{ rd/s}$

Qd
$$\omega \to 0$$
 $H_{bo} \approx \frac{1}{2} \Rightarrow \begin{cases} G \approx -6dB \\ \varphi \approx 0 \end{cases}$
$$G = -6dB - 10 \cdot Log(1 + 25 \cdot \omega^2) - 10 \cdot Log(1 + 10^4 \cdot \omega^2)$$

$$\varphi = -Arc \tan(5 \cdot \omega) - Arc \tan(100 \cdot \omega)$$

ω (rd/s)	0,01	0,1	1
G (dB)	- 9	- 27	- 60
φ (°)	- 48	- 115	- 169

Valeurs du gain, de la phase à différentes pulsations

Tracé des lieux asymptotiques et réels : Voir le Document Réponse page suivante

Q23 – Marges de gain, de phase

Marge de gain : $\underline{M}_G = \underline{\infty}$

Marge de phase : $M_{\varphi} = 180^{\circ}$

Q 24 – Réglage du correcteur Proportionnel assurant la stabilité et optimisant les performances du système

Il faut écarter la solution consistant à régler K afin que le lieu de transfert en B.O. soit tangent au contour fermé à 2,3 dB, car alors le facteur d'amortissement devient inférieur à 1, (0,4 pour un second ordre et le dépassement est environ de 25%) ce qui entraînera un dépassement lors la montée en température (Non respect du C.d.C.)

On règle K de telle sorte que $\xi \geq I$; la réponse indicielle est alors apériodique critique ou apériodique amorti.

$$H_{bo}(\omega) = \frac{0.5 \cdot K}{1 + 105 \cdot p + 500 \cdot p^2}$$

$$H_{bf}(p) = \frac{U_t(p)}{U_{tr}(p)} = \frac{H_{bo}(p)}{1 + H_{bo}(p)}$$
 car le retour est unitaire.

$$H_{bf}(p) = \frac{\frac{0.5 \cdot K}{1 + 0.5 \cdot K}}{1 + \frac{105}{1 + 0.5 \cdot K}p + \frac{500}{1 + 0.5 \cdot K}p^2}$$

DOCUMENT REPONSE

Question 22 : Tracé de Bode

Tournez la page S.V.P.

Pulsation propre :
$$\omega_n = \sqrt{\frac{1 + 0.5 \cdot K}{500}}$$

Facteur d'amortissement, il est tel que : $\frac{2 \cdot \xi}{\omega_n} = \frac{105}{1 + 0.5 \cdot K}$,

$$\Rightarrow \xi = \frac{105}{2 \cdot \sqrt{500} \cdot \sqrt{1 + 0.5 \cdot K}}$$

Condition de **non dépassement** : $\xi \ge 1 \iff K \le 9,02$

On choisit $\underline{K} = 9$ alors $\underline{\xi} \approx 1$ la réponse indicielle est apériodique critique.

Par conséquent, sur le diagramme de Black, **on translate** le lieu de transfert en B.O. **dans la direction verticale** de <u>20 Log 9</u>, c'est-à-dire d'environ <u>19 dB</u>.

<u>O 25 – Eléments de performances, temps de réponse à 5 %, écarts de position et de traînage</u>

Voir le Document Réponse à la dernière page (Courbe repérée H_{bo2})

La marge de gain est inchangée : $\underline{M_G} = \infty$

On relève : $\underline{M_{\varphi}} = 90^{\circ}$ La stabilité est assurée.

Pulsation propre :
$$\omega_n = \sqrt{\frac{1+0.5\cdot 9}{500}} = \sqrt{\frac{5.5}{500}} \approx 0.1 \quad rd/s$$

L'abaque « Temps de réponse réduit pour second ordre » retourne :

 $\omega_n . t_{5\%} \approx 5 \Rightarrow \underline{t_{5\%}} = \underline{50 \text{ s}}$ Compatible avec le cahier des charges (Montée en température rapide : 3 mn maximum).

Fonction de transfert de classe 0 (zéro)
$$\Rightarrow \begin{cases} \varepsilon_p = \frac{1}{1 + G_{FTBO}} \\ \varepsilon_v = \infty \end{cases}$$

 $\underline{\varepsilon}_p = 0.55$ 55 % Incompatible avec le cahier des charges.

<u>Q26 – Tension en entrée de l'amplificateur, tension d'alimentation du collier chauffant</u> <u>lorsque l'échelon de tension de consigne U_{tc} est de 5 V</u>

A 17° C correspond $U_c = 0 V$, donc $U_t = 0 V$.

Si
$$U_{tc} = 5 V \implies \underline{U_c = 45 V}$$
. ($U_c = K.\varepsilon$)

Alors $\underline{U_a} = 450 \text{ V}$ Il y aura **saturation de l'ampli** et donc augmentation du temps de réponse.

Q 27 - Choix d'un correcteur à action P.I. - Réglage de ce correcteur

$$C(p) = \frac{K}{T_i p} (1 + T_i p)$$

Le réglage du correcteur se fait **par compensation du pôle le plus lent**. Méthode qui consiste à choisir la constante de temps T_i du correcteur égale à la constante de temps la plus **grande** du système à corriger. On réglera le gain K du correcteur afin que la réponse **indicielle ne présente pas de dépassement** (on choisit $\xi = 1$). Le choix de T_i devant satisfaire le C.d.C. (Montée en température rapide : $3 \, mn$ maximum).

La F.T.B.O. s'écrit alors :
$$H_{bo}(\omega) = \frac{0.5 \cdot K}{T_i \cdot p + 500 \cdot p^2}$$

La F.T.B.F. s'écrit alors :
$$H_{bf}(\omega) = \frac{1}{1 + \frac{T_i}{0.5 \cdot K} \cdot p + \frac{500}{0.5 \cdot K} \cdot p^2}$$

La pulsation propre (non amortie) vaut alors : $\omega_n = \frac{1}{10} \cdot \sqrt{\frac{K}{10}}$

Le facteur d'amortissement vaut alors : $\xi = \frac{T_i}{10 \cdot \sqrt{10 \cdot K}}$

On choisit $\xi = 1$ la réponse indicielle est apériodique critique.

Alors: $K = 10^{-3} \cdot T_i$

On a toujours: $\omega_n . t_{5\%} \approx 5$ puisque $\xi = 1$

Tableau des valeurs de K, ω_n , $t_{5\%}$ en fonction du choix de T_i

T_i	K	ω_n	<i>t</i> 5%	Commentaires
5 s	25.10 ⁻³	5.10 ⁻³ rd/s	1 000 s	A rejeter
<u>100 s</u>	10	0,1 rd/s	<u>50 s</u>	A RETENIR

Tracé du lieu de transfert de la F.T.B.O. dans le plan de Black :

$$H_{bo}(j\omega) = \frac{5}{j \cdot 100\omega \cdot (1 + j \cdot 5\omega)}$$

Gain:
$$G = -26 dB - 20 \cdot Log\omega - 10 \cdot Log(1 + 25 \cdot \omega^2)$$

Argument: $\varphi = -90^{\circ} - Arc \tan(5\omega)$

ω (rd/s)	0,01	0,1	0,2	1
G (dB)	14	- 7	- 15	- 40
φ (°)	- 93	- 117°	- 135	- 169

Valeurs du gain, de la phase à différentes pulsations

Compte tenu de la forme de la F.T.B.O. , le lieu de transfert présente deux asymptotes verticales d'équations $\varphi = -90^{\circ}$ et $\varphi = -180^{\circ}$.

Voir le Document Réponse à la dernière page (Courbe repérée H_{bo3})

La marge de gain est inchangée : $\underline{M}_G = \underline{\infty}$

On relève : $\underline{M_{\varphi} \approx 77^{\circ}}$ La stabilité est assurée.

<u>O 28 – Nouvel écart de position</u>

Le système est de <u>classe 1</u> \Rightarrow $\underline{\varepsilon_p} = \underline{\theta}$

DOCUMENT REPONSE

Question 24 - Tracé de Black

