On the metric dimension and fractional metric dimension for hierarchical product of graphs

Min Feng Kaishun Wang*

Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

Abstract

A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W. The metric dimension for G, denoted by $\dim(G)$, is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product $G_2^{u_2} \sqcap G_1^{u_1}$ of two rooted graphs $G_2^{u_2}$ and $G_1^{u_1}$, we first introduce a new parameter, the rooted metric dimension $\operatorname{rdim}(G_1^{u_1})$ for a rooted graph $G_1^{u_1}$. If G_1 is not a path with an end-vertex u_1 , we show that $\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1})$, where $|V(G_2)|$ is the order of G_2 . If G_1 is a path with an end-vertex u_1 , we obtain some tight inequalities for $\dim(G_2^{u_2} \sqcap G_1^{u_1})$. Finally, we show that similar results hold for the fractional metric dimension.

Key words: resolving set; metric dimension; resolving function; fractional metric dimension; hierarchical product; binomial tree.

2010 MSC: 05C12.

1 Introduction

All graphs considered in this paper are nontrivial and connected. For a graph G, we often denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For any two vertices u and v of G, denote by $d_G(u,v)$ the distance between u and v in G, and write $R_G\{u,v\} = \{w \mid w \in V(G), d_G(u,w) \neq d_G(v,w)\}$. If the graph G is clear from the context, the notations $d_G(u,v)$ and $R_G\{u,v\}$ will be written d(u,v) and $R\{u,v\}$, respectively. A subset W of V(G) is a resolving set of G if $W \cap R\{u,v\} \neq \emptyset$ for any two distinct vertices u and v. A metric basis of G is a resolving set of G with minimum cardinality. The cardinality of a metric basis of G is the metric dimension for G, denoted by $\dim(G)$.

Metric dimension was introduced independently by Harary and Melter [15], and by Slater [24]. As a graph parameter it has numerous applications, among them are computer science and robotics [18], network discovery and verification [5], strategies

^{*}Corresponding author. E-mail address: wangks@bnu.edu.cn

for the Mastermind game [8] and combinatorial optimization [23]. Metric dimension has been heavily studied, see [3] for a number of references on this topic.

The problem of finding the metric dimension for a graph was formulated as an integer programming problem independently by Chartrand et al. [7], and by Currie and Oellermann [10]. In graph theory, fractionalization of integer-valued graph theoretic concepts is an interesting area of research (see [22]). Currie and Oellermann [10] and Fehr et al. [11] defined fractional metric dimension as the optimal solution of the linear relaxation of the integer programming problem. Arumugam and Mathew [1] initiated the study of the fractional metric dimension for graphs. For more information, see [2, 12, 13].

Let $g:V(G)\longrightarrow [0,1]$ be a real value function. For $W\subseteq V(G)$, denote $g(W)=\sum_{v\in W}g(v)$. The weight of g is defined by |g|=g(V(G)). We call g a resolving function of G if $g(R\{u,v\})\geq 1$ for any two distinct vertices u and v. The minimum weight of a resolving function of G is called the fractional metric dimension for G, denoted by $\dim_f(G)$.

It was noted in [14, p. 204] and [18] that determining the metric dimension for a graph is an NP-complete problem. So it is desirable to reduce the computation for the metric dimension for product graphs to the computation for some parameters of the factor graphs; see [6] for cartesian products, [16] for lexicographic products, and [25] for corona products. Recently, the fractional metric dimension for the above three products was studied in [2, 12, 13].

In order to model some real-life complex networks, Barrière et al. [4] introduced the hierarchical product of graphs and showed that it is associative. A rooted graph G^u is the graph G in which one vertex u, called root vertex, is labeled in a special way to distinguish it from other vertices. Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. The hierarchical product $G_2^{u_2} \sqcap G_1^{u_1}$ is the rooted graph with the vertex set $\{x_2x_1 \mid x_i \in V(G_i), i = 1, 2\}$, having the root vertex u_2u_1 , where x_2x_1 is adjacent to y_2y_1 whenever $x_2 = y_2$ and $\{x_1, y_1\} \in E(G_1)$, or $x_1 = y_1 = u_1$ and $\{x_2, y_2\} \in E(G_2)$. See [17, 19, 20, 21] for more information.

In this paper, we study the (fractional) metric dimension for the hierarchical product $G_2^{u_2} \sqcap G_1^{u_1}$ of rooted graphs $G_2^{u_2}$ and $G_1^{u_1}$. In Section 2, we introduce a new parameter, the rooted metric dimension $\operatorname{rdim}(G^u)$ for a rooted graph G^u . If G_1 is not a path with an end-vertex u_1 , we show that $\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1})$. If G_1 is a path with an end-vertex u_1 , we obtain some tight inequalities for $\dim(G_2^{u_2} \sqcap G_1^{u_1})$. In Section 3, we show that similar results hold for the fractional metric dimension.

2 Metric dimension

In order to study the metric dimension for the hierarchical product of graphs, we first introduce the rooted metric dimension for a rooted graph.

A rooted resolving set of a rooted graph G^u is a subset W of V(G) such that $W \cup \{u\}$ is a resolving set of G. A rooted metric basis of G^u is a rooted resolving set of G^u with the minimum cardinality. The cardinality of a rooted metric basis of G^u is called rooted metric dimension for G^u , denoted by $rdim(G^u)$. The following

observation is obvious.

Observation 2.1 If there exists a metric basis of G containing u, then $rdim(G^u) = dim(G) - 1$. If any metric basis of G does not contain u, then $rdim(G^u) = dim(G)$.

For graphs H_1 and H_2 we use $H_1 \cup H_2$ to denote the disjoint union of H_1 and H_2 and $H_1 + H_2$ to denote the graph obtained from the disjoint union of H_1 and H_2 by joining every vertex of H_1 with every vertex of H_2 .

Observation 2.2 Let G be a graph of order n. Then $1 \leq \dim(G) \leq n-1$. Moreover,

- (i) $\dim(G) = 1$ if and only if G is the path P_n of length n.
- (ii) $\dim(G) = n 1$ if and only if G is the complete graph K_n on n vertices.

Proposition 2.3 [7, Theorem 4] Let G be a graph of order $n \geq 4$. Then $\dim(G) = n-2$ if and only if $G = K_{s,t}$ $(s,t \geq 1)$, $G = K_s + \overline{K_t}$ $(s \geq 1,t \geq 2)$, or $G = K_s + (K_1 \cup K_t)$ $(s,t \geq 1)$, where $\overline{K_t}$ is a null graph and $K_{s,t}$ is a complete bipartite graph.

Proposition 2.4 Let G^u be a rooted graph of order n. Then $0 \le \text{rdim}(G^u) \le n-2$. Moreover,

- (i) $rdim(G^u) = 0$ if and only if $G = P_n$ and u is one of its end-vertices.
- (ii) $rdim(G^u) = n 2$ if and only if $G = K_n$, or $G = K_{1,n-1}$ and u is the centre.

Proof. If G is a complete graph, by Observation 2.2 (ii) we have $\dim(G) = n - 1$. Observation 2.1 implies that $\operatorname{rdim}(G^u) = n - 2$. If G is not a complete graph, then $1 \leq \dim(G) \leq n - 2$, which implies that $0 \leq \operatorname{rdim}(G^u) \leq n - 2$ by Observation 2.1.

- (i) Since $rdim(G^u) = 0$ if and only if $\{u\}$ is a metric basis of G, by Observation 2.2 (i), (i) holds.
- (ii) Suppose $\operatorname{rdim}(G^u) = n-2$. Then $\operatorname{dim}(G) = n-1$ or n-2. If $\operatorname{dim}(G) = n-1$, then $G = K_n$. Now we consider $\operatorname{dim}(G) = n-2$. If n=3, then $\operatorname{dim}(G) = 1$, which implies that $G = K_{1,2}$ and u is the centre. Now suppose $n \geq 4$. Then G is one of graphs listed in Proposition 2.3. If $s, t \geq 2$ or $G = K_s + (K_1 \cup K_t)$, then there exists a metric basis containing u, which implies that $\operatorname{rdim}(G^u) = n-3$, a contradiction. Hence $G = K_{1,n-1}$. Since any metric basis of $K_{1,n-1}$ does not contain the centre, the vertex u is the centre of $K_{1,n-1}$. The converse is routine.

Next, we study the metric dimension for the hierarchical product of graphs.

Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. For any two vertices x_2x_1 and y_2y_1 of $G_2^{u_2} \sqcap G_1^{u_1}$, observe that

$$d(x_2x_1, y_2y_1) = \begin{cases} d_{G_1}(x_1, y_1), & \text{if } x_2 = y_2, \\ d_{G_2}(x_2, y_2) + d_{G_1}(x_1, u_1) + d_{G_1}(y_1, u_1), & \text{if } x_2 \neq y_2. \end{cases}$$
(1)

Lemma 2.5 Let x_2x_1 and y_2y_1 be two distinct vertices of $G_2^{u_2} \sqcap G_1^{u_1}$.

(i) If $x_2 = y_2$, then

$$R\{x_2x_1, y_2y_1\} = \begin{cases} \{x_2z \mid z \in R_{G_1}\{x_1, y_1\}\}, & \text{if } u_1 \notin R_{G_1}\{x_1, y_1\}, \\ V(G_2^{u_2} \sqcap G_1^{u_1}) \setminus \{x_2z \mid z \notin R_{G_1}\{x_1, y_1\}\}, & \text{if } u_1 \in R_{G_1}\{x_1, y_1\}. \end{cases}$$

(ii) If $x_2 \neq y_2$, then $\{x_2z, y_2z\} \cap R\{x_2x_1, y_2y_1\} \neq \emptyset$ for any $z \in V(G_1)$.

Proof. (i) If $u_1 \notin R_{G_1}\{x_1, y_1\}$, then $d_{G_1}(x_1, u_1) = d_{G_1}(y_1, u_1)$. By (1), the inequality $d(x_2x_1, z_2z_1) \neq d(y_2y_1, z_2z_1)$ holds if and only if $z_2 = x_2$ and $d_{G_1}(x_1, z_1) \neq d_{G_1}(y_1, z_1)$. It follows that $R\{x_2x_1, y_2y_1\} = \{x_2z \mid z \in R_{G_1}\{x_1, y_1\}\}$. If $u_1 \in R_{G_1}\{x_1, y_1\}$, then $d_{G_1}(x_1, u_1) \neq d_{G_1}(y_1, u_1)$. By (1), the equality $d(x_2x_1, z_2z_1) = d(y_2y_1, z_2z_1)$ holds if and only if $z_2 = x_2$ and $d_{G_1}(x_1, z_1) = d_{G_1}(y_1, z_1)$. It follows that $R\{x_2x_1, y_2y_1\} = V(G_2^{u_2} \sqcap G_1^{u_1}) \setminus \{x_2z \mid z \notin R_{G_1}\{x_1, y_1\}\}$.

(ii) Suppose $x_2z \notin R\{x_2x_1, y_2y_1\}$. Then $d(x_2x_1, x_2z) = d(y_2y_1, x_2z)$. By (1),

$$d_{G_1}(x_1, z) = d_{G_2}(y_2, x_2) + d_{G_1}(y_1, u_1) + d_{G_1}(z, u_1) \ge d_{G_2}(x_2, y_2) + d_{G_1}(y_1, z),$$

which implies that

$$d_{G_2}(x_2, y_2) + d_{G_1}(x_1, u_1) + d_{G_1}(z, u_1) \ge 2d_{G_2}(x_2, y_2) + d_{G_1}(y_1, z) > d(y_2y_1, y_2z).$$

Hence, $y_2z \in R\{x_2x_1, y_2y_1\}$, as desired.

Lemma 2.6 Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. Then

$$\operatorname{rdim}(G_2^{u_2} \sqcap G_1^{u_1}) \ge |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1}).$$

Proof. Let \overline{W} be a rooted metric basis of $G_2^{u_2} \sqcap G_1^{u_1}$. For $v \in V(G_2)$, write $\overline{W}_v = \{z \mid vz \in \overline{W}\}$. For any two distinct vertices x, y of G_1 , there exists a vertex wz in $\overline{W} \cup \{u_2u_1\}$ such that $d(vx, wz) \neq d(vy, wz)$. If w = v, by (1) we get $d_{G_1}(x, z) \neq d_{G_1}(y, z)$, which implies that $z \in (\overline{W}_v \cup \{u_1\}) \cap R_{G_1}\{x, y\}$. If $w \neq v$, by (1) we have $d_{G_1}(x, u_1) \neq d_{G_1}(y, u_1)$, which implies that $u_1 \in R_{G_1}\{x, y\}$. Therefore, we have $(\overline{W}_v \cup \{u_1\}) \cap R_{G_1}\{x, y\} \neq \emptyset$, which implies that \overline{W}_v is a rooted resolving set of $G_1^{u_1}$. Hence

$$\operatorname{rdim}(G_2^{u_2} \cap G_1^{u_1}) = |\overline{W}| = \sum_{v \in V(G_2)} |\overline{W}_v| \ge |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1}),$$

as desired. \Box

Theorem 2.7 Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. If G_1 is not a path with an end-vertex u_1 , then

$$\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)| \cdot \mathrm{rdim}(G_1^{u_1}).$$

Proof. By Lemma 2.6, we only need to prove that

$$\dim(G_2^{u_2} \cap G_1^{u_1}) \le |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1}). \tag{2}$$

Let W be a rooted metric basis of $G_1^{u_1}$. Then $W \neq \emptyset$. Write $\overline{W} = \{vw \mid v \in V(G_2), w \in W\}$. Note that $|\overline{W}| = |V(G_2)| \cdot \operatorname{rdim}(G_1^{u_1})$. In order to prove (2), we only need to show that \overline{W} is a resolving set of $G_2^{u_2} \sqcap G_1^{u_1}$. It suffices to show that, for any two distinct vertices x_2x_1 and y_2y_1 of $G_2^{u_2} \sqcap G_1^{u_1}$,

$$\overline{W} \cap R\{x_2x_1, y_2y_1\} \neq \emptyset. \tag{3}$$

If $x_2 = y_2$ and $u_1 \notin R_{G_1}\{x_1, y_1\}$, then $W \cap R_{G_1}\{x_1, y_1\} \neq \emptyset$, by Lemma 2.5 (i) we obtain (3). If $x_2 = y_2$ and $u_1 \in R_{G_1}\{x_1, y_1\}$, by (1) we have $vw \in \overline{W} \cap R\{x_2x_1, y_2y_1\}$ for any $v \neq x_2$ and any $w \in W$, which implies that (3) holds. If $x_2 \neq y_2$, then (3) holds by Lemma 2.5 (ii). We accomplish our proof.

Combining Observation 2.1 and Theorem 2.7, we have the following result.

Corollary 2.8 Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs.

(i) If there exists a metric basis of G_1 containing u_1 and G_1 is not a path, then

$$\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)|(\dim(G_1) - 1).$$

(ii) If any metric basis of G_1 does not contain u_1 , then

$$\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)| \dim(G_1).$$

The binomial tree T_n is the hierarchical product of n copies of the complete graph on two vertices, which is a useful data structure in the context of algorithm analysis and designs [9]. It was proved that the metric dimension for a tree can be expressed in terms of its parameters in [7, 15, 24].

Corollary 2.9 Let $n \geq 2$. Then $\dim(T_n) = 2^{n-2}$.

Proof. Note that $\dim(T_2) = 1$. Now suppose $n \geq 3$. Since $T_n = (K_2^0 \sqcap \cdots \sqcap K_2^0) \sqcap (K_2^0 \sqcap K_2^0)$ and $\mathrm{rdim}(K_2^0 \sqcap K_2^0) = 1$, the desired result follows by Theorem 2.7. \square

We always assume that 0 is one end-vertex of P_n . In the remaining of this section, we shall prove some tight inequalities for $\dim(G^u \sqcap P_n^0)$.

Proposition 2.10 Let G^u be a rooted graph with diameter d. Then

$$\dim(G^u \cap P_n^0) \le \dim(G^u \cap P_{n+1}^0) \text{ for } 1 \le n \le d-1, \tag{4}$$

$$\dim(G^u \cap P_n^0) = \dim(G^u \cap P_{n+1}^0) \text{ for } n \ge d.$$
 (5)

Proof. If $G = K_2$, then $G^u \sqcap P_n^0$ is the path, which implies that (5) holds. Now we only consider $|V(G)| \geq 3$. Suppose that \overline{W}_n is a metric basis of $G^u \sqcap P_n^0$. Let $P_n = (z_0 = 0, z_1, \dots, z_{n-1})$. Define $\pi_n : V(G^u \sqcap P_{n+1}^0) \longrightarrow V(G^u \sqcap P_n^0)$ by

$$\pi_n(vz_i) = \begin{cases} vz_{n-1}, & \text{if } i = n, \\ vz_i, & \text{if } i \le n-1. \end{cases}$$

Then $\pi_n(\overline{W}_{n+1})$ is a resolving set of $G^u \cap P_n^0$, which implies that $\dim(G^u \cap P_n^0) \leq \dim(G^u \cap P_{n+1}^0)$ for any positive integer n. So (4) holds.

In order to prove (5), we only need to show that \overline{W}_n is a resolving set of $G^u \cap P_{n+1}^0$ for $n \geq d$. Pick any two distinct vertices $v_1 z_i$ and $v_2 z_j$ of $G^u \cap P_{n+1}^0$. It suffices to prove that

$$\overline{W}_n \cap R_{G^u \cap P_{n+1}^0} \{ v_1 z_i, v_2 z_j \} \neq \emptyset. \tag{6}$$

We claim that there exist two distinct vertices w_1 and w_2 of G such that $\overline{W}_n \cap \{w_s z_k \mid 0 \le k \le n-1\} \ne \emptyset$ for $s \in \{1,2\}$. Suppose for the contradiction that there

exists a vertex $w \in V(G)$ such that $\overline{W}_n \subseteq \{wz_k \mid 0 \le k \le n-1\}$. If the degree of w in G is one, then there exists a path (w, x, y) in G. For any $wz_k \in \overline{W}_n$, we have $d(xz_1, wz_k) = k + 2 = d(yz_0, wz_k)$, contrary to the fact that \overline{W}_n is a metric basis of $G^u \cap P_n^0$. If the degree of w in G is at least two, pick two distinct neighbors x and y of w in G. Then $d(xz_0, wz_k) = k + 1 = d(yz_0, wz_k)$ for any $wz_k \in \overline{W}_n$, a contradiction. Hence our claim is valid.

Now we prove (6). Without loss of generality, we may assume that $0 \le i \le j \le n$. If $j \le n-1$, then $R_{G^u \sqcap P_{n+1}^0}\{v_1z_i, v_2z_j\} \supseteq R_{G^u \sqcap P_n^0}\{v_1z_i, v_2z_j\}$; and so (6) holds. Now suppose j=n.

Case 1. $v_1 = v_2$. By the claim, the set $\{w_1 z_k \mid 0 \le k \le n-1\}$ or $\{w_2 z_k \mid 0 \le k \le n-1\}$ is a subset of $R_{G^u \cap P_{n+1}^0} \{v_1 z_i, v_1 z_n\}$. So (6) holds.

Case 2. $v_1 \neq v_2$.

Case 2.1. i=0. By the claim, we can choose $w_s z_k \in \overline{W}_n$ with $w_s \neq v_2$. Then

$$d(v_1z_0, w_sz_k) = d_G(v_1, w_s) + k \le d + k \le n + k < d_G(v_2, w_s) + n + k = d(v_2z_n, w_sz_k),$$

which implies that $w_s z_k \in R_{G^u \cap P_{n+1}^0} \{v_1 z_0, v_2 z_n\}$. So (6) holds.

Case 2.2. $i \geq 1$. Note that

$$R_{G^u \sqcap P_{n+1}^0}\{v_1z_i, v_2z_n\} = R_{G^u \sqcap P_{n+1}^0}\{v_1z_{i-1}, v_2z_{n-1}\} \supseteq R_{G^u \sqcap P_n^0}\{v_1z_{i-1}, v_2z_{n-1}\}.$$

Then
$$(6)$$
 holds.

Proposition 2.11 For any rooted graph G^u , we have

$$\dim(G) \le \dim(G^u \cap P_n^0) \le |V(G)| - 1. \tag{7}$$

Proof. Let z be the other end-vertex of P_n . Fix a vertex $v_0 \in V(G)$ and write $\overline{S} = \{vz \mid v \in V(G) \setminus \{v_0\}\}$. Since $\{z\}$ is a resolving set of P_n , the set \overline{S} resolves $G \sqcap P_n$ by (1). Hence $\dim(G^u \sqcap P_n^0) \leq |\overline{S}| = |V(G)| - 1$. Since G^u is isomorphic to $G^u \sqcap P_1^0$, Proposition 2.10 implies that $\dim(G) \leq \dim(G^u \sqcap P_n^0)$.

For $m \geq 2$, we have $\dim(K_m^u \sqcap P_n^0) = m - 1$. This shows that the inequalities (4) and (7) are tight.

Example 2.12 For $m, n \geq 2$, we have $\dim(P_m^u \cap P_n^0) = 2$.

Proof. Write $P_k = (z_0 = 0, z_1, \dots, z_{k-1})$. Then $\{z_0 z_{n-1}, z_{m-1} z_{n-1}\}$ is a resolving set of $P_m^u \sqcap P_n^0$.

Example 2.13 Let C_m be the cycle with length m. Then $\dim(C_m^u \sqcap P_n^0) = 2$.

Proof. Let $P_n = (z_0 = 0, z_1, \dots, z_{n-1})$ and $C_m = (c_0, c_1, \dots, c_{m-1}, c_0)$. Then $\{c_0 z_{n-1}, c_1 z_{n-1}\}$ is a resolving set of $C_m^u \cap P_n^0$.

3 Fractional metric dimension

In order to study the fractional metric dimension for the hierarchical product of graphs, we first introduce the fractional rooted metric dimension for a rooted graph.

Similar to the fractionalization of metric dimension, we give a fractional version of the rooted metric dimension for a rooted graph. Let G^u be a rooted graph of order n. Write

$$\mathcal{P}^{u} = \{ \{v, w\} \mid v, w \in V(G), v \neq w, d(v, u) = d(w, u) \}.$$

Suppose $\mathcal{P}^u \neq \emptyset$. Write $V(G) \setminus \{u\} = \{v_1, \dots, v_{n-1}\}$ and $\mathcal{P}^u = \{\alpha_1, \dots, \alpha_m\}$. Let A^u be the $m \times (n-1)$ matrix with

$$(A^u)_{ij} = \begin{cases} 1, & \text{if } v_j \text{ resolves } \alpha_i, \\ 0, & \text{otherwise.} \end{cases}$$

The integer programming formulation of the rooted metric dimension for G^u is given by

Minimize
$$f(x_1, \dots, x_{n-1}) = x_1 + \dots + x_{n-1}$$

Subject to $A^u \mathbf{x} \ge \mathbf{1}$

where $\mathbf{x} = (x_1, \dots, x_{n-1})^T, x_i \in \{0, 1\}$ and $\mathbf{1}$ is the $m \times 1$ column vector all of whose entries are 1. The optimal solution of the linear programming relaxation of the above integer programming problem, where we replace $x_i \in \{0,1\}$ by $x_i \in [0,1]$, gives the fractional rooted metric dimension for G^u , which we denote by $\mathrm{rdim}_f(G^u)$.

Let G^u be a rooted graph which is not a path with an end-vertex u. A rooted resolving function of a rooted graph G^u is a real value function $g:V(G)\longrightarrow [0,1]$ such that $g(R\{v,w\}) \geq 1$ for each $\{v,w\} \in \mathcal{P}^u$. The fractional rooted metric dimension for G^u is the minimum weight of a rooted resolving function of G^u .

Proposition 3.1 Let G^u be a rooted graph which is not a path with an end-vertex u. Then

- (i) $\operatorname{rdim}_f(G^u) \leq \operatorname{rdim}(G^u)$.
- (ii) $\operatorname{rdim}_f(G^u) \leq \frac{|V(G)|-1}{2}$. (iii) $\operatorname{dim}_f(G) 1 \leq \operatorname{rdim}_f(G^u) \leq \operatorname{dim}_f(G)$.

Proof. (i) Let W be a rooted metric basis of G^u . Define $g:V(G)\longrightarrow [0,1]$ by

$$g(v) = \begin{cases} 1, & \text{if } v \in W, \\ 0, & \text{if } v \notin W. \end{cases}$$

For any $\{x,y\} \in \mathcal{P}^u$, there exists a vertex $v \in W$ such that $d(x,v) \neq d(y,v)$. Then $q(R\{x,y\}) \geq q(v) = 1$, which implies that q is a rooted resolving function of G^u . Hence $\operatorname{rdim}_f(G^u) \leq |g| = |W| = \operatorname{rdim}(G^u)$.

(ii) The function $g:V(G)\longrightarrow [0,1]$ defined by

$$g(v) = \begin{cases} 0, & \text{if } v = u, \\ \frac{1}{2}, & \text{if } v \neq u \end{cases}$$

is a rooted resolving function of G^u . Hence $\mathrm{rdim}_f(G^u) \leq \frac{|V(G)|-1}{2}$. (iii) It is clear that $\mathrm{rdim}_f(G^u) \leq \mathrm{dim}_f(G)$. Let g be a rooted resolving function of G^u . Then the function $h:V(G)\longrightarrow [0,1]$ defined by

$$h(v) = \begin{cases} 1, & \text{if } v = u, \\ g(v), & \text{if } v \neq u \end{cases}$$

is a resolving function of G. Hence $\dim_f(G) \leq \operatorname{rdim}_f(G^u) + 1$, as desired.

If u is not an end-vertex of the path P_n , then $\mathrm{rdim}_f(P_n^u) = \mathrm{rdim}(P_n^u) = \mathrm{dim}_f(P_n) =$ 1, which implies that the upper bounds in Proposition 3.1 (i) and (iii) are tight. The fact that $\mathrm{rdim}_f(K_n^u) = \frac{n-1}{2}$ shows that the inequality in Proposition 3.1 (ii) is tight.

Next, we study the fractional metric dimension for the hierarchical product of graphs.

For two rooted graphs $G_1^{u_1}$ and $G_2^{u_2}$, write

$$\mathcal{P}^{u_1} = \{ \{x, y\} \subseteq V(G_1) \mid x \neq y, d_{G_1}(x, u_1) = d_{G_1}(y, u_1) \},$$

$$\overline{\mathcal{P}}^{u_2 u_1} = \{ \{x_2 x_1, y_2 y_1\} \subseteq V(G_2^{u_2} \sqcap G_1^{u_1}) \mid x_2 x_1 \neq y_2 y_1, d(x_2 x_1, u_2 u_1) = d(y_2 y_1, u_2 u_1) \}.$$

Lemma 3.2 Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. If G_1 is not a path with an end-vertex u_1 , then

$$\operatorname{rdim}_f(G_2^{u_2} \sqcap G_1^{u_1}) \ge |V(G_2)| \cdot \operatorname{rdim}_f(G_1^{u_1}).$$

Proof. Suppose that \overline{g} is a rooted resolving function of $G_2^{u_2} \sqcap G_1^{u_1}$ with weight $\operatorname{rdim}_f(G_2^{u_2} \sqcap G_1^{u_1})$. For each $z \in V(G_2)$, define

$$\overline{g}_z:V(G_1)\longrightarrow [0,1],\quad x\longmapsto \overline{g}(zx).$$

Write $\overline{\mathcal{P}}^{u_1} = \{\{zx, zy\} \mid z \in V(G_2), \{x, y\} \in \mathcal{P}^{u_1}\}$. By (1), we have $\overline{\mathcal{P}}^{u_1} \subseteq \overline{\mathcal{P}}^{u_2u_1}$. Hence $\overline{g}_z(R_{G_1}\{x, y\}) \ge 1$ for any $\{x, y\} \in \mathcal{P}^{u_1}$, which implies that $|\overline{g}_z| \ge \operatorname{rdim}_f(G_1^{u_1})$. Consequently,

$$\operatorname{rdim}_f(G_2^{u_2} \sqcap G_1^{u_1}) = |\overline{g}| = \sum_{z \in V(G_2)} |\overline{g}_z| \ge |V(G_2)| \cdot \operatorname{rdim}_f(G_1^{u_1}),$$

as desired.

Theorem 3.3 Let $G_1^{u_1}$ and $G_2^{u_2}$ be two rooted graphs. If G_1 is not a path with an end-vertex u_1 , then

$$\dim(G_2^{u_2} \sqcap G_1^{u_1}) = |V(G_2)| \cdot \mathrm{rdim}_f(G_1^{u_1}).$$

Combining Proposition 3.1 and Lemma 3.2, we only need to prove that

$$\dim_f(G_2^{u_2} \sqcap G_1^{u_1}) \le |V(G_2)| \cdot \mathrm{rdim}_f(G_1^{u_1}). \tag{8}$$

By Proposition 2.4 we have $\mathcal{P}^{u_1} \neq \emptyset$. Let g be a rooted resolving function of G_1 with weight $\operatorname{rdim}_f(G_1^{u_1})$. Define

$$\overline{g}: V(G_2^{u_2} \sqcap G_1^{u_1}) \longrightarrow [0,1], \quad x_2x_1 \longmapsto g(x_1).$$

We shall show that, for any two distinct vertices x_2x_1 and y_2y_1 of $G_2^{u_2} \sqcap G_1^{u_1}$,

$$\overline{g}(R\{x_2x_1, y_2y_1\}) \ge 1.$$
 (9)

Case 1. $x_2 = y_2$. If $u_1 \notin R_{G_1}\{x_1, y_1\}$, by Lemma 2.5 we get $R\{x_2x_1, y_2y_1\} = \{x_2z \mid z \in R_{G_1}\{x_1, y_1\}\}$, which implies that $\overline{g}(R\{x_2x_1, y_2y_1\}) = g(R_{G_1}\{x_1, y_1\})$. Since $\{x_1, y_1\} \in \mathcal{P}^{u_1}$, we obtain (9). If $u_1 \in R_{G_1}\{x_1, y_1\}$, by Lemma 2.5 we have $R\{x_2x_1, y_2y_1\} \supseteq \{vz \mid z \in V(G_1)\}$ for any $v \in V(G_2) \setminus \{x_2\}$, which implies that $\overline{g}(R\{x_2x_1, y_2y_1\}) \ge |g|$, so (9) holds.

Case 2. $x_2 \neq y_2$. Write $W = \{z \mid x_2z \in R\{x_2x_1, y_2y_1\}\}$ and $S = \{z \mid y_2z \in R\{x_2x_1, y_2y_1\}\}$. By Lemma 2.5 we have $W \cup S = V(G_1)$. Then

$$\overline{g}(R\{x_2x_1, y_2y_1\}) \ge \sum_{z \in W} \overline{g}(x_2z) + \sum_{z \in S} = g(W) + g(S)\overline{g}(y_2z) \ge |g|,$$

which implies that (9) holds.

Therefore, \overline{g} is a resolving function of $G_2^{u_2} \sqcap G_1^{u_1}$, which implies that $\dim_f(G_2^{u_2} \sqcap G_1^{u_1}) \leq |\overline{g}|$. Since $|\overline{g}| = |V(G_2)| \cdot \mathrm{rdim}_f(G_1^{u_1})$, we obtain (8). Our proof is accomplished.

Corollary 3.4 Let $n \geq 2$. Then $\dim_f(T_n) = 2^{n-2}$.

Proof. It is immediate from Theorem 3.3.

By Corollaries 2.9 and 3.4, the binomial tree T_n is a graph whose metric dimension is equal to its fractional metric dimension.

Finally, we shall prove some tight inequalities for $\dim_f(G^u \cap P_n^0)$.

Proposition 3.5 For any rooted graph G^u , we have

$$\dim_f(G) \le \dim_f(G^u \cap P_n^0) \le \dim_f(G^u \cap P_{n+1}^0) \le \frac{|V(G)|}{2}.$$

Proof. Write $P_n = (z_0 = 0, z_1, \dots, z_{n-1})$. For a resolving function \overline{g}_{n+1} of $G^u \cap P_{n+1}^0$, we define $\overline{g}'_{n+1} : V(G^u \cap P_n^0) \longrightarrow [0,1]$ by

$$\overline{g}'_{n+1}(x_2x_1) = \begin{cases} \overline{g}_{n+1}(x_2z_{n-1}) + \overline{g}_{n+1}(x_2z_n), & \text{if } x_1 = z_{n-1}, \\ \overline{g}_{n+1}(x_2x_1), & \text{if } x_1 \neq z_{n-1}. \end{cases}$$

Then \overline{g}'_{n+1} is a resolving function of $G^u \cap P_n^0$. Since $|\overline{g}'_{n+1}| = |\overline{g}_{n+1}|$, we have

$$\dim_f(G) = \dim_f(G^u \cap P_1^0) \le \dim_f(G^u \cap P_n^0) \le \dim_f(G^u \cap P_{n+1}^0).$$

Define $\overline{h}:V(G^u\sqcap P^0_{n+1})\longrightarrow [0,1]$ by

$$\overline{h}(x_2x_1) = \begin{cases} \frac{1}{2}, & \text{if } x_1 = z_n, \\ 0, & \text{if } x_1 \neq z_n. \end{cases}$$

Then \overline{h} is a resolving function of $G^u \cap P_{n+1}^0$ with weight $\frac{|V(G)|}{2}$. Hence $\dim_f(G^u \cap P_{n+1}^0) \leq \frac{|V(G)|}{2}$.

For $m \geq 2$, we have $\dim_f(K_m^u \cap P_n^0) = \frac{m}{2}$. This shows that all the inequalities in Proposition 3.5 are tight.

Acknowledgement

This research is supported by NSFC(11271047), SRFDP and the Fundamental Research Funds for the Central University of China.

References

- [1] S. Arumugam and V. Mathew, The fractional metric dimension of graphs, Discrete Math. 312 (2012) 1584–1590.
- [2] S. Arumugam, V. Mathew and J. Shen, On fractional metric dimension of graphs, preprint.
- [3] R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43 (2011), 209–242.
- [4] L. Barrière, F. Comellas, C. Dalfó and M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36–48.
- [5] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ák, and L.S. Ram, Network discovery and verification, IEEE J. on Selected Areas in Communications 24 (2006), 2168–2181.
- [6] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423–441.
- [7] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113.
- [8] V. Chvátal, Mastermind, Combinatorica 3 (1983) 325–329.
- [9] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990. second ed. 2001.
- [10] J. Currie and O.R. Oellermann, The metric dimension and metric independence of a graph, J. Combin. Math. Combin. Comput. 39 (2001) 157–167.
- [11] M. Fehr, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006) 31–41.
- [12] M. Feng, B. Lv and K. Wang, On the fractional metric dimension of graphs, arXiv:1112.2106v2.
- [13] M. Feng and K. Wang, On the fractional metric dimension of corona product graphs and lexicographic product graphs, arXiv:1206.1906v1.
- [14] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

- [15] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
- [16] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math. 312 (2012) 3349–3356.
- [17] S. Jung, S. Kim and B. Kahng, Geometric fractal growth model for scale-free networks, Phys. Rev. E 65 (2002) 056101.
- [18] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229.
- [19] J.D. Noh, Exact scaling properties of a hierarchical network model, Phys. Rev. E 67 (2003) 045103.
- [20] E. Ravasz and A.-L. Barabsi, Hierarchical organization in complex networks, Phys. Rev. E 67 (2003) 026112.
- [21] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai and A.-L. Barabsi, Hierarchical organization of modularity in metabolic networks, Science 297 (2002) 1551–1555.
- [22] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory, in: Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1997.
- [23] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393.
- [24] P.J. Slater, Leaves of trees, Conger. Numer. 14 (1975) 549–559.
- [25] I.G. Yero, D. Kuziak, and J.A. Rodríguez-Velázquez, On the metric dimension of corona product graphs, Comput. Math. Appl. 61 (2011) 2793–2798.