#### Brachistochrone Problem

Rajeev Atla

### Administrivia

Definitions

Getting Started

Lagrangians

## Brachistochrone Problem

Rajeev Atla

Physics Club

November 20, 2020

Brachistochrone Problem

Rajeev Atla

#### Administrivia

Definitions

Getting Started

Lagrangians

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

\_agrangians

More advanced

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

ŭ

agrangians

- More advanced
- Goals

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

. .

- More advanced
- Goals
  - ullet Get everyone to pass F=ma exam

Brachistochrone Problem

Rajeev Atla

Administrivia

B 6 33

Getting Started

. .

- More advanced
- Goals
  - ullet Get everyone to pass F=ma exam
  - USAPhO Qualifiers!!

#### Brachistochrone Problem

#### Administrivia

- More advanced
- Goals
  - Get everyone to pass F=ma exam
  - USAPhO Qualifiers!!
- Prerequisites (recommended)

#### Brachistochrone Problem

### Administrivia

- More advanced
- Goals
  - Get everyone to pass F=ma exam
  - USAPhO Qualifiers!!
- Prerequisites (recommended)
  - Taken/currently taking a physics class

#### Brachistochrone Problem

Rajeev Atla

### Administrivia

Getting Started

Ü

- More advanced
- Goals
  - Get everyone to pass F=ma exam
  - USAPhO Qualifiers!!
- Prerequisites (recommended)
  - Taken/currently taking a physics class
  - Or...

#### Brachistochrone Problem

Rajeev Atla

Administrivia

\_ ....

Getting Started

Ŭ

- More advanced
- Goals
  - Get everyone to pass F=ma exam
  - USAPhO Qualifiers!!
- Prerequisites (recommended)
  - Taken/currently taking a physics class
  - Or...
  - Willingness to learn

## **PSA: Problems**

Brachistochrone Problem

Rajeev Atla

### ${\sf Administrivia}$

Definition:

Getting Started

\_\_\_\_\_\_

On classroom

## **PSA: Problems**

#### Brachistochrone Problem

Rajeev Atla

### Administrivia

Definitions

**Getting Started** 

agrangians

On classroom

• Due date: next meeting

## **PSA**: Problems

#### Brachistochrone Problem

### Administrivia

- On classroom
- Due date: next meeting
- We hope to continue this pattern for the rest of this year

What Do I mean?

Brachistochrone Problem

Rajeev Atla

. . . . . . .

Definitions

C .... C. .

Getting Started

Lagrangians

Etymology

What Do I mean?

#### Brachistochrone Problem

Rajeev Atla

. . . . . . . . .

Definitions

Cotting Starter

-----

Etymology

• Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"

What Do I mean?

#### Brachistochrone Problem

**Definitions** 

Etymology

- Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
- Chronos  $(\chi \rho o \nu o \sigma)$  means "time"

What Do I mean?

#### Brachistochrone Problem

Rajeev Atla

. . . . . . .

Definitions

Catting Starton

Getting Startet

- Etymology
  - Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
  - Chronos  $(\chi \rho o \nu o \sigma)$  means "time"
- A brachistochrone curve is the path such that a ball traveling along this path takes the least amount of time

What Do I mean?

#### Brachistochrone Problem

Definitions

- Etymology
  - Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
  - Chronos  $(\chi \rho o \nu o \sigma)$  means "time"
- A brachistochrone curve is the path such that a ball traveling along this path takes the least amount of time
- This is our problem

What Do I mean?

#### Brachistochrone Problem

Rajeev Atla

. . . . . . .

Definitions

C-44:-- C4-4-4

Getting Started

- Etymology
  - Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
  - Chronos  $(\chi \rho o \nu o \sigma)$  means "time"
- A brachistochrone curve is the path such that a ball traveling along this path takes the least amount of time
- This is our problem
- Formal problem statement

What Do I mean?

#### Brachistochrone Problem

Definitions

- Etymology
  - Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
  - Chronos  $(\chi \rho o \nu o \sigma)$  means "time"
- A brachistochrone curve is the path such that a ball traveling along this path takes the least amount of time
- This is our problem
- Formal problem statement
  - Constraints: given two points  $P_1(x_1, y_1)$  and  $P_2(x_2, y_2)$

What Do I mean?

#### Brachistochrone Problem

Definitions

- Etymology
  - Brachistos  $(\beta \rho \alpha \chi \iota \sigma \tau \sigma)$  means "shortest"
  - Chronos  $(\chi \rho o \nu o \sigma)$  means "time"
- A brachistochrone curve is the path such that a ball traveling along this path takes the least amount of time
- This is our problem
- Formal problem statement
  - Constraints: given two points  $P_1(x_1, y_1)$  and  $P_2(x_2, y_2)$
  - Find function y = f(x) such that the time it takes for a ball to travel under the influence of gravity from  $P_1$  to  $P_2$



# Getting Started

Brachistochrone Problem

Rajeev Atla

dministrivia

. . . .

Getting Started

Jetting Jeantee

• Let s be a position vector

# Getting Started

Brachistochrone Problem

Rajeev Atla

Administrivia

5 0111110115

Getting Started

\_agrangian:

- Let s be a position vector
- Let v be the associated velocity vector

# **Getting Started**

#### Brachistochrone Problem

reaject / tela

Administrivia

Getting Started

Lagrangians

- Let s be a position vector
- Let v be the associated velocity vector
- From last lecture, recall that

$$v = \frac{ds}{dt} \Rightarrow dt = \frac{ds}{v} \Rightarrow t_{12} = \int_{P_1}^{P_2} \frac{ds}{v}$$

Brachistochrone Problem

Rajeev Atla

Definitions

**Getting Started** 

Lagrangians

Brachistochrone Problem

Rajeev Atla

dminietrivia

Definitions

**Getting Started** 

\_agrangians

• Kinetic energy  $K = \frac{1}{2}mv^2$ 

Brachistochrone Problem

Rajeev Atla

r (dillillistiivi

D 0.....

**Getting Started** 

Lagrangian

- Kinetic energy  $K = \frac{1}{2}mv^2$
- Gravitational potential energy U = mgy

#### Brachistochrone Problem

Aummstrivia

Getting Started

\_agrangian:

- Kinetic energy  $K = \frac{1}{2}mv^2$
- Gravitational potential energy U = mgy
- Conservation of energy means that these two are equal

#### Brachistochrone Problem

Administrivia

Getting Started

agrangians

- Kinetic energy  $K = \frac{1}{2}mv^2$
- Gravitational potential energy U = mgy
- Conservation of energy means that these two are equal

$$\frac{1}{2}mv^2 = mgy \Rightarrow v = \sqrt{2gy}$$

#### Brachistochrone Problem

Getting Started

detting Startet

\_agrangian

- Kinetic energy  $K = \frac{1}{2}mv^2$
- Gravitational potential energy U = mgy
- Conservation of energy means that these two are equal

$$\frac{1}{2}mv^2 = mgy \Rightarrow v = \sqrt{2gy}$$

• We can substitute this into the last equation

## Pythagorean Theorem

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

**Getting Started** 

$$ds^{2} = dx^{2} + dy^{2}$$

$$ds^{2} = dx^{2} \left( 1 + \left( \frac{dy^{2}}{dx^{2}} \right) \right)$$

$$ds^{2} = dx^{2} \left( 1 + \left( \frac{dy}{dx} \right)^{2} \right)$$

$$ds^{2} = dx^{2} \left( 1 + y'^{2} \right)$$

$$ds = dx \sqrt{1 + y'^{2}}$$

# Putting It All Together

Brachistochrone Problem

Rajeev Atla

dministrivia

**Definitions** 

**Getting Started** 

\_agrangians

Original equation:

$$t_{12} = \int\limits_{P_1}^{P_2} \frac{ds}{v}$$

# Putting It All Together

#### Brachistochrone Problem

Rajeev Atla

dministrivia

Definitions

**Getting Started** 

Lagrangian

Original equation:

$$t_{12} = \int\limits_{P_1}^{P_2} \frac{ds}{v}$$

Conservation of energy:

$$v=\sqrt{2gy}$$

# Putting It All Together

#### Brachistochrone Problem

Rajeev Atla

. . . . . . .

Definitions

**Getting Started** 

Lagrangian

Original equation:

$$t_{12} = \int\limits_{P_1}^{P_2} \frac{ds}{v}$$

• Conservation of energy:

$$v = \sqrt{2gy}$$

• Pythagorean theorem:

$$ds = dx \sqrt{1 + y'^2}$$

## Lagrangians

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

Lagrangians

$$t_{12} = \int\limits_{P_1}^{P_2} \sqrt{\frac{1 + y'^2}{2gy}} dx$$

# Lagrangians

Brachistochrone Problem

Rajeev Atla

-amministrivia

Definitions

Getting Started

Lagrangians

$$t_{12} = \int\limits_{P_1}^{P_2} \sqrt{\frac{1 + y'^2}{2gy}} dx$$

• We want to minimize this by...

### Lagrangians

#### Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

$$t_{12} = \int_{P_1}^{P_2} \sqrt{\frac{1 + y'^2}{2gy}} dx$$

- We want to minimize this by...
- picking a function y = f(x) to minimize integral

## Lagrangians

Brachistochrone Problem

Rajeev Atla

Administrivia

D. C. 111....

Getting Started

$$t_{12} = \int\limits_{P_1}^{P_2} \sqrt{\frac{1 + y'^2}{2gy}} dx$$

- We want to minimize this by...
- picking a function y = f(x) to minimize integral
- How do we do it???

## Lagrangians

Brachistochrone Problem

Rajeev Atla

Administrivia

Definitions

Getting Started

$$t_{12} = \int\limits_{P_1}^{P_2} \sqrt{\frac{1 + y'^2}{2gy}} dx$$

- We want to minimize this by...
- picking a function y = f(x) to minimize integral
- How do we do it???
- Lagrangians

## More About Lagrangians

Brachistochrone Problem

Administrivia

Definitions

Getting Started

Lagrangians

Let the Lagrangian be

$$\mathcal{L} = \sqrt{\frac{1 + y'^2}{2gy}}$$

## More About Lagrangians

#### Brachistochrone Problem

Administrivia

Definitions

Getting Started

Lagrangians

• Let the Lagrangian be

$$\mathcal{L} = \sqrt{\frac{1 + y'^2}{2gy}}$$

• Remeber that y = f(x)

$$\mathcal{L}(x) = \sqrt{\frac{1 + f'(x)^2}{2gf(x)}}$$

•  $f'(x) = \frac{df(x)}{dx}$  (Lagrangian notation)

## Least Action Principle

Brachistochrone Problem

•

Administrivia

Definitions

Getting Started

Lagrangians

• We need to minimize the time

$$t_{12} = \int\limits_{P_1}^{P_2} \mathcal{L}(x) dx$$

# Least Action Principle

#### Brachistochrone Problem

Administrivia

Definitions

Getting Started

Lagrangians

• We need to minimize the time

$$t_{12} = \int\limits_{P_1}^{P_2} \mathcal{L}(x) dx$$

• Any ideas?

## Least Action Principle

#### Brachistochrone Problem

•

Administrivia

Definitions

detting Startet

Lagrangians

• We need to minimize the time

$$t_{12} = \int\limits_{P_1}^{P_2} \mathcal{L}(x) dx$$

- Any ideas?
- Euler-Lagrange equation

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right) = \frac{\partial \mathcal{L}}{\partial x}$$

Brachistochrone Problem

Rajeev Atla

. . . . . . .

D (0.14)

Getting Starter

Lagrangians

ullet Symbol is  $\partial$ 

#### Brachistochrone Problem

....

Administrivia

Deminitions

Getting Started

- ullet Symbol is  $\partial$
- Hold all other variables constant while taking a derivative

#### Brachistochrone Problem

Aummistrivia

Getting Started

- Symbol is  $\partial$
- Hold all other variables constant while taking a derivative
- Let f(x,y) = 2x + 3y, what are  $\frac{\partial f(x,y)}{\partial x}$  and  $\frac{\partial f(x,y)}{\partial y}$ ?

#### Brachistochrone Problem

Administrivia

Getting Started

- ullet Symbol is  $\partial$
- Hold all other variables constant while taking a derivative
- Let f(x,y) = 2x + 3y, what are  $\frac{\partial f(x,y)}{\partial x}$  and  $\frac{\partial f(x,y)}{\partial y}$ ?

$$\frac{\partial f(x,y)}{\partial x} = 2$$
$$\frac{\partial f(x,y)}{\partial y} = 3$$