Informe de Trabajo Práctico N°5B

Cinemática Inversa

Robótica I

Ingeniería en Mecatrónica Facultad de Ingeniería - UNCUYO

Alumno: Juan Manuel BORQUEZ PEREZ Legajo: 13567

1. Robot

Figura 1: Robot 6gdl - muñeca esférica

La definición de los sistemas en el robot es la que se indica en fig. 2

Figura 2: Robot 6gdl - Sistemas DH

La matriz de DH que resulta es table 1. Para el caso, se utilizaran solamente valores unitarios para los parámetros de longitud de DH $(a_i \text{ y} d_i)$.

Sistema	θ	d	a	α	σ
1	q_1	d_1	0	$\pi/2$	0
2	q_2	0	a_2	0	0
3	q_3	0	0	$\pi/2$	0
4	q_4	d_4	0	$\pi/2$	0
5	q_5	0	0	$\pi/2$	0
6	q_6	d_6	0	0	0

Cuadro 1: Robot 6gdl - Matriz DH

2. Ejercicio 1: Primer Problema de Pieper

Figura 3: Robot 6gdl - Primer problema de Pieper

Como se puede observar en el esquema cinemático de la fig. 1 los eslabones 1, 2, 3 y 4 se mueven siempre en un mismo plano que contiene al eje Z_0 y el ángulo que el mismo forma con respecto al plano X_0Z_0 es el ángulo θ_1 .