

Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Límites

25 de Mayo MAT1106 - Introducción al Cálculo

Calcule los siguientes límites, o muestre que no existen.

$$\lim_{n\to\infty}\frac{n^2+1}{n^2-1}.$$

Hint: 1 = -2 + 1.

$$\lim_{n\to\infty} \frac{n^2 + 2n + 1}{n}.$$

Hint: $(n+1)^2 > n$.

$$\lim_{n \to \infty} \frac{\sin(n)}{n}.$$

 $Hint: |\sin(n)| < 2.$

$$\lim_{n \to \infty} \frac{\cos(n)}{n}.$$

 $Hint: |\cos(n)| < 2.$

$$\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n}.$$

Hint: Intente dejar las raices en el denominador.

$$\lim_{n \to \infty} \frac{a_j n^j + a_{j-1} x^{j-1} + \dots + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_0}, \text{ donde } k, j \in \mathbb{N} \text{ (TODOS los casos)}.$$

Hint: Factorice por n^j .

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Hint: Telescópica.

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{2^k}.$$

Hint: Transfórmelo a una serie geométrica.

$$\lim_{n \to \infty} \frac{2020^n}{n!}.$$

Hint: Para un n suficiente grande, $\frac{2020}{n} < \frac{1}{2}$.

$$\lim_{n\to\infty}\frac{k^n}{n!}, \text{ con } k\in\mathbb{N} \text{ fijo.}$$

Hint: Desde un n suficientemente grande, $\frac{k}{n} < \frac{1}{2}$.

$$\lim_{n\to\infty}\frac{\pi(n-2)}{n}.$$

Hint:
$$\frac{n-2}{n} = 1 - \frac{2}{n}$$
.

Sea
$$x_n = \sum_{k=1}^n \frac{1}{k}$$
. Pruebe que $\lim_{n \to \infty} x_{n+p} - x_n = 0$ para cualquier $p \in \mathbb{N}$ fijo.

Hint: Hay una cantidad p de términos siempre, por lo que se pueden acotar por arriba.

Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de enteros que converge a algún real L. Pruebe que la sucesión eventualmente se vuelve constante.

Hint: Si la sucesión converge y L no es entero, entonces en un punto tiene que estar entre la brecha formada por |L| y $\lceil L \rceil$.

(Convergencia de Cesàro) Sea
$$\{x_n\}$$
 una sucesión. Sea $c_n = \frac{x_1 + x_2 + \cdots + x_n}{n}$.

Encuentre una sucesión x_n tal que x_n no converja, pero $c_n \to L \in \mathbb{R}$.

Hint: Hay sucesiones oscilantes vistas en clase/taller/ayudantía que cumplen esto.

Muestre que si $x_n \to 0$, entonces $c_n \to 0$.

Hint: Por designaldad triangular, basta ver que para $|x_n|$ se cumpla. Además, dado un $2 \cdot \varepsilon$ fijo, existe un n_0 tal que los términos desde n_0 en adelante están acotados por ε . Intente acotar los OTROS (desde x_1 hasta x_{n_0-1}).

Muestre que si $x_n \to L$ con $L \in \mathbb{R}$, entonces $c_n \to L$.

Hint: Use el problema anterior.

Sea n natural. Sea la función $\sigma_0: \mathbb{N} \to \mathbb{N}$ que para cada natural entrega su cantidad de divisores (por ejemplo, $\sigma_0(1) = 1$, $\sigma_0(3) = 2$, $\sigma_0(6) = 4$ y $\sigma_0(2020) = 12$). También definimos $\sigma_1 : \mathbb{N} \to \mathbb{N}$, que para cada natural entrega la suma de sus divisores (por ejemplo, $\sigma_1(1) = 1$, $\sigma_1(3) = 4$, $\sigma_1(6) = 12$ $y \sigma_1(2020) = 4284$).

Muestre que $\lim_{n\to\infty} \frac{\sigma_0(n)}{n^2} = 0$.

Hint: En el peor caso hay n divisores.

Muestre que $\lim_{n\to\infty} \frac{\sigma_1(n)}{n^3} = 0.$

Hint: Cada divisor es a lo más n. Use esto con el hint anterior.

Muestre que $\lim_{n\to\infty} \frac{\sigma_0(n)}{n} = 0$.

Hint: Intente acotar $\sigma_0(n)$ por $2\sqrt{n}$ viendo el peor caso.