

Lietuvos mokinių informatikos olimpiada

Miesto (rajono) etapas • 2020 m. gruodžio 15 d. • X-XII kl.

apgavikas-vyr

Apgavikas

Martynas kartu su N draugų žaidžia kompiuterinį žaidimą "Apgavikas". Veiksmas vyksta kosminiame laive, kurį sudaro M kambarių. Žaidimo pradžioje kiekvienas slaptai gauna rolę: vienas žaidėjas būna apgavikas, o kiti -igulos nariai.

Įgulos tikslas yra išsiaiškinti apgaviką neapleidžiant laivo užduočių, o apgaviko – likti vieninteliam laive.

"Apgavikas" žaidžiamas turais. Turo metu:

- 1. Kiekvienas žaidėjas nueina į jam šiam turui paskirtą kambarį.
- 2. Įgulos nariai atlieka jiems paskirtas kosminio laivo priežiūros užduotis.
- 3. Apgavikas parenka auką, esančią tame pačiame kambaryje kaip ir jis, ir ją pašalina iš kosminio laivo. Apgavikui visada paskiriamas kambarys, kuriame jis bus ne vienas.
- 4. Visi, esantys kambaryje kartu su apgaviku, mato, kaip jis pašalina žaidėją. Taigi jie sužino, kuris žaidėjas yra apgavikas, ir žino tai visą likusį žaidimo laiką.
- 5. Po turo visi likę kosminiame laive žaidėjai išeina iš kambarių ir kiekvienas balsuoja spusteldamas raudoną arba geltoną mygtuką. Žinantys, kas yra apgavikas, spusteli raudoną mygtuką, nežinantys geltoną.
- 6. Jei spustelėta daugiau raudonų mygtukų, nei geltonų apgavikas demaskuojamas, jis pralaimi žaidimą ir žaidimas stabdomas.

Apgavikas laimi žaidimą, jei pašalinami visi N žaidėjų, o jis (t.y. (N+1)-asis žaidėjas) vienintelis lieka žaidime.

Pavyzdinę žaidimo eigą galite pamatyti žemiau pateiktame pavyzdyje.

Lietuvos mokinių informatikos olimpiada

Miesto (rajono) etapas • 2020 m. gruodžio 15 d. • X-XII kl.

apgavikas-vyr

Martynas sužinojo, kad naujai žaidžiamame žaidime jis bus apgavikas, bei tai, kuris žaidėjas į kokį kambarį bus siunčiamas kiekvieno turo metu.

Martynas išanalizavo šiuos duomenis ir iš anksto suplanavo, kurį žaidėją pašalins kiekvieno turo metu.

Užduotis. Nustatykite, ar pavyks Martynui laimėti žaidimą, o jei nepavyks – kurio turo metu jis bus pašalintas iš žaidimo.

Pradiniai duomenys. Pirmojoje pradinių duomenų eilutėje pateikti du teigiami sveikieji skaičiai – žaidėjų, kurie nėra apgavikai, skaičius N, ir kambarių skaičius M.

Antrojoje eilutėje pateikti N skirtingų sveikųjų teigiamų skaičių p_i – žaidėjų, kuriuos Martynas pašalins i-ojo turo metu, numeriai.

Toliau pateikta N eilučių po N sveikųjų teigiamų skaičių: i-oje eilutėje j-asis skaičius atitinka $k_{i,j}$ – į kurį kambarį i-ojo turo metu eis j-asis žaidėjas, jei dar nebus pašalintas iki to laiko.

Rezultatai. Išveskite vieną teigiamą sveikąjį skaičių: N, jei Martynas laimės žaidimą, kitu atveju – turo, kurio metu Martynas bus pašalintas, numerį.

Pavyzdžiai.

Pradiniai duomenys	Rezultatai	Paaiškinimas
5 3	3	Pavyzdys atitinka aukščiau pateiktą ilius-
3 2 1 4 5		traciją.
1 1 2 2 3		
1 2 2 1 2		
3 2 2 1 1		
1 3 2 2 3		
3 1 1 2 3		

Pradiniai duomenys	Rezultatai	Paaiškinimas
5 3	5	Šiame pavyzdyje Martynas pašalina kitokia
5 1 4 2 3		tvarka, taip užsitikrindamas, kad pats ne-
1 1 2 2 3		būtų pašalintas.
1 2 2 1 2		
3 2 2 1 1		
1 3 2 2 3		
3 1 1 2 3		

Ribojimai. $1 \le N, M \le 1000, 1 \le k_{i,j} \le M$ ir $1 \le p_i \le N$ visiems i, j.