

LECTURE NOTES MINGGU 2

UKURAN-UKURAN DALAM STATISTIKA

PROBABILITAS DAN STATISTIKA/III1A2

Riska Yanu Fa'rifah, S,Si., M.Si. (RYF)

UKURAN PUSAT

1. Mean (Rata-Rata Hitung)

 Arithmetic mean (seringkali hanya disebut mean) atau rata-rata hitung adalah salah satu ukuran pusat data. Untuk sampel ukuran n:

$$\overline{X} = \frac{\displaystyle\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 Ukuran Sampel Nilai Observasi

- Seringkali dipakai sebagai ukuran untuk menentukan ukuran pusat.
- Dipengaruhi nilai ekstrim (outliers).

2. Median

- Nilai tengah setelah data diurutkan dari kecil ke besar
- Membagi data dua sama banyak
- Tidak dipengaruhi nilai ekstrim

Lokasi Median :

Letak Median =
$$\frac{n+1}{2}$$
 setelah data diurutkan

Jika jumlah data ganjil, maka median persis berada di tengah. Jika jumlah data genap, mediannya adalah rata-rata dari dua data yang letaknya berada di tengah.

3. Modus

- Salah satu ukuran pemusatan data.
- Nilai yang sering muncul.
- Tidak dipengaruhi nilai ekstrim.
- Selain digunakan untuk data numerik juga digunakan untuk data kategori.
- Mungkin saja suatu data tidak punya modus tapi mungkin juga punya beberapa modus.

Berdasarkan mean, median, dan modus, kita dapat menentukan distribusi suatu data, yaitu:

A negatively Skewed Distribution Memungkinkan data outlier

An unskewed, symmetrical distribution Tidak ada data outlier

A positively Skewed Distribution Memungkinkan data outlier

UKURAN LETAK

1. Kuartil

• Kuartil membagi data yang sudah diurutkan menjadi empat sama rata.

- Quartil pertama, Q₁= P₂₅ (Persentil 25) merupakan nilai yang mencakup 25 % data pertama.
- Q₂ sama dengan median (mencakup setangah data pertama).
- Q₃ = P₇₅ mencakup 75% data pertama.

• Untuk menentukan nilai kuartil, harus dicari dulu lokasi/letak kuartil, yaitu

Lokasi
$$Q_i = \frac{i(n+1)}{4}$$

dengan n menyatakan banyaknya sampel.

2. Desil

Desil membagi data yang sudah diurutkan menjadi 10 bagian yang sama.

Lokasi
$$D_i = \frac{i(n+1)}{10}$$

3. Persentil

Persentil membagi data yang sudah diurutkan menjadi 100 bagian yang sama.

Lokasi
$$P_i = \frac{i(n+1)}{100}$$

UKURAN KERAGAMAN

Ukuran keragaman memberikan informasi tentang penyebaran data (penyimpangan data dari ukuran pusatnya).

1. Range

- Ukuran keragaman yang sederhana
- Selisih antara data terbesar dan data yang terkecil:

Range =
$$X_{max} - X_{min}$$

 Kerugian menggunakan range adalah mengabaikan distribusi data dan range sensitif terhadap nilai ekstrim.

2. Jangkauan Antar Kuartil (Interquartile Range)

Jangkauan antar kuartil (JAK) digunakan untuk mengurangi problem data yang ekstrim.

Interquartile Range =
$$Q_3 - Q_1$$

3. Simpangan Baku (Deviasi Standar)

- Ukuran yang sering digunakan untuk menunjukkan ukuran keragaman data
- Akar dari variansi

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

• Menunjukkan penyimpangan data dari mean

4. Variansi

Variansi adalah Rata-rata kuadrat penyimpangan data dari mean.

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

dengan $\overline{\mathbf{X}}$ = mean, n = ukuran sampel, dan $\mathbf{X}_{\mathbf{i}}$ = nilai data ke-i

5. Koefisien Variansi

- Ukuran keragaman relatif
- Selalu dalam bentuk persentase (%)
- Menunjukkan variasi relatif terhadap mean
- Dapat digunakan untuk membandingkan dua atau lebih data yang berbeda

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

DATA PENCILAN (OUTLIER)

Langkah-langkah mencari data outlier adalah:

1. Tentukan nilai Jangkauan Antar Kuartil (JAK), yaitu:

Interquartile Range =
$$Q_3 - Q_1$$

2. Tentukan nilai pagar dalam, yaitu:

$$PD_1 = Q_1 - \frac{3}{2}JAK$$
 dan $PD_2 = Q_3 + \frac{3}{2}JAK$

3. Tentukan nilai pagar luar, yaitu:

$$PL_1 = Q_1 - 3.JAK$$
 dan $PL_2 = Q_3 + 3.JAK$

4. Apabila ada data yang terletak di antara PD1 dan PL1, atau terletak diantara PD2 dan PL2, maka data tersebut merupakan data pencilan/outlier.

REFERENSI

- 1. Ross, Sheldon.(2010), A first course in probability, 8th ed., Pearson Prentice Hall, United States of America.
- 2. Walpole, Ronald E., Myers, Raymond H., Myers, Sharon L. (2013), Essentials of Probability & Statistics for Engineers & Scientists, Pearson Education, United States of America.