Question 2: Velocity, components	august 29'02
$\frac{q(1-e^2)}{1-e^2} + \frac{1^2}{4}$	V
(1) 7= 1+ecos (2) (3)	V _O V _n
$\frac{1}{2} = \frac{H}{(1 + e\cos\theta)^2} e\sin\theta \cdot \frac{2}{2}$	
$= 2\frac{H^{2}/\nu}{(1+e\cos\Theta)^{2}}e\sin\Theta\Theta \frac{(1+e\cos\Theta)^{2}}{H^{4}/\nu^{2}}$	
1)	Ž=Vslhy
76	9=Vcosk
- HESING	1=2 V cbsy
$2 = \frac{11/\nu}{1 + e\cos\theta} = \frac{1}{1 + e\cos\theta} \left[\frac{2^2 - 1}{2^2} \right]$	
1+2coo 11 (2)	
$= \frac{70}{10000000000000000000000000000000000$	
= Ve=sin(180-0)= sin()= 1+/pe = +1	
$V_n = 2\Theta + \frac{1}{\tan(180-\Theta)} = 2\Theta + \frac{1}{\tan\Theta}$	ăr .
= 20 + 30 COO = 20 + 40 - 21	
$= \frac{1}{2} \left(1 + e \cos \Theta \right) = \frac{1}{2} \left(\cos \Theta \right) = \frac{1}{2} \left(1 + e \cos \Theta \right)$	eroso)-Lecost
H SING COSO - H TITT	CCOO, H
H A A A A A A A A A A A A A A A A A A A	

Substitution in

$$2=a(1-e\cos E)=a\frac{dM}{dE}$$

$$\left(\frac{S}{O}\right) = \left(\frac{dE}{dM}\right)^{-1}$$

d)
$$E = M + e \sin M + e^2 \frac{1}{2} \sin (2M)$$

$$\frac{dE}{dM} = 1 + e\cos M - e^2\cos(2M) + \dots$$

$$(1+y)^{-1} = 1 - y + y^2 - y = e \cos M + e^2 \cos(2M)$$

Question & Keplers equation $E-e \sin E = n(t-5) = M$ 1=9(1-e cos E Eseccentrin anomaly e: anomaly no mean angular velocity n=/12 : Eime 2: distance a: Semi-major axis Mimean anomaly Ha a(He)-X = E - M = esin E = esin (x+M)= e Sin x cos Mt ecosxsin M = ecosM(x-1x3)+esinM/1-1x2+ $X = +X_2 e^2 + X_3 e^3 + = \sin M e + \cos M x_1 e^2 + O(e^3)$ $X_i = SinM$ $X_2 = X_1 \cos M = \sin M \cos M = \frac{1}{2} \sin (2M)$ En=X+M=M+esin M+e2 = sin (2M) +O(e3)

Relativistic effects 29 gugust 02 U: distance sattelite to grantational O: angular velocity : gravitational constant of body angular velocity C = Speed of light U=U0+02 H4 [1+=e2+e05in(q-6) · increase u with constant Fluctuating term growing constantly Lith p · pure oscilation with constant only taking long term in account U= 1/2 / 1+e cos(4-W) + 0 / 1/2 e 45/11/4-W u= H2[1+e cos(φ-c)+ β eφsin(φ-c)