

limits: take lim an. $n \rightarrow \infty$ we say lim on = L when there is a real number L that an gets doser and closer to I.e. lim an = L means: For any E>O, there exists a natural number N such that if n > N then $|a_n - L| < \epsilon$. $E_X: a_n = \frac{1}{n^2}$ $\lim a_n = 0$ Ex: for E = 0.1, we can find N=4, since 16 < 0.1 we see $\left|\frac{1}{n^2} - 0\right| < 0.1$ for n > 4.

	$a_n = e^n + 5$
2	$\begin{vmatrix} A_n & _{im} & A_n & = \infty \\ e+s & n \to \infty \end{vmatrix}$ e^2+s e^3+s e^n+s e^s+s
	lim $a_n = \pm \infty$ or DNE, we say a_n divergen $n \to \infty$ lim $a_n = L$ we say a_n converges. $n \to \infty$
Ex:	$a_n = (-1)^n$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$