Mathematics for Data Science Lecture 1

Eva FEILLET¹

 $^{1} {\sf LISN}$ Paris-Saclay University

M1[AI], Fall 2025

Table of Contents

- Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- Rank

Table of Contents

- Vector Spaces
- 2 Subspaces
- Linear transformations
- 4 Rank

Vector spaces

Vector spaces: the basic setting in which linear algebra happens Elements of V are called **vectors**.

Vector spaces

Vector spaces: the basic setting in which linear algebra happens Elements of V are called **vectors**.

Vector space

A \mathbb{F} -vector space $(V, +, \cdot)$ is a set endowed with two operations:

- $+: V \times V \to V$ that allows to sum two vectors: $(x, y) \mapsto x + y$
- $\cdot : \mathbb{R} \times V \to V$ that is the multiplication of a vector by a **scalar**: $(a, x) \mapsto a \cdot x$

Vector spaces can be defined over any **field** \mathbb{F} . We take $\mathbb{F} = \mathbb{R}$ in this course.

Group

Let G be a non-empty set. G is a group if there exists an operation \star such that:

Group

Let G be a non-empty set. G is a group if there exists an operation \star such that:

- **Olympia** Closure. For any $\mathbf{x}, \mathbf{y} \in G$, $\mathbf{x} \star \mathbf{y}$ also belongs to G.
- **4** Associativity. For all $x, y, z \in V$, $(x \star y) \star z = x \star (y \star z)$.
- **Neutral element/Identity.** There exists $e \in G$ such that $\mathbf{x} \star \mathbf{e} = \mathbf{e} \star \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in G$.
- **Symmetric element/Inverse.** For each $x \in G$, there exists an element $x' \in G$, such that x' * x = x * x' = e.

Vector spaces

A number of axioms must be satisfied such that (V, +) is an **additive** group.

Vector spaces

A number of axioms must be satisfied such that (V, +) is an **additive** group.

- **Additive identity.** There exists an element in V, denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- **Additive inverse.** For each $x \in V$, there exists an element in V, denoted -x, such that x + (-x) = 0.
- **Multiplicative identity.** There exists an element in \mathbb{R} , denoted 1, such that $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- **©** Commutativity. For all $x, y \in V$, x + y = y + x.
- **Associativity.** For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{R}$, $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ and $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$.
- **Distributivity.** For all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{R}$ $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ and $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$.

Examples of Vector Spaces

Examples of Vector Spaces

Example

- \bullet ($\mathbb{R}, +, \cdot$) is a vector space where \mathbb{R} is the set of real numbers.
- ...

Can we substract vectors?

Examples of Vector Spaces

Example

- \bullet $(\mathbb{R},+,\cdot)$ is a vector space where \mathbb{R} is the set of real numbers.
- . . .

Can we substract vectors? We can subtract vectors because a subtraction is the addition of the opposite vector.

Product of vector spaces

Cartesian product of two sets A and B, denoted $A \times B$:

$$\{(a,b), a \in A, b \in B\}$$

.

Definition

Let E and F be two \mathbb{F} -vector spaces. The sum of $(x,y) \in E \times F$ and $(x',y') \in E \times F$ is defined as (x,y) + (x',y') = (x+x',y+y'). The multiplication of (x,y) by a scalar $\lambda \in \mathbb{F}$ is defined as $\lambda(x,y) = (\lambda x, \lambda y)$.

Proposition

Endowed with the above operations, $E \times F$ is a \mathbb{F} -vector space. It is the called the product vector space of E by F.

Euclidean space

Let n be a positive integer.

Example

 $(\mathbb{R}^n,+,\cdot)$ is a vector space, called the **Euclidean space**.

Euclidean space

The vectors in the Euclidean space consist of *n*-tuples of real numbers, i.e. for $x \in \mathbb{R}^n, x = (x_1, x_2, \dots, x_n)$. The x_i are the components or entries of the vector.

NB: It will be useful to think of vectors of \mathbb{R}^n as $n \times 1$ matrices, or **column vectors**.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

E. Feillet (LISN)

Examples of Operations

Example

- Summation of two vectors in \mathbb{R}^2 .
- Multiplication by a scalar in \mathbb{R}^n .

Examples of Operations

Example

- Summation of two vectors in \mathbb{R}^2 .
- Multiplication by a scalar in \mathbb{R}^n .

Addition and scalar multiplication are defined component-wise on vectors in \mathbb{R}^n :

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}, \quad \alpha \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

In \mathbb{R}^n , a vector **x** has a **direction** and an **amplitude**.

Scalar multiplication changes the amplitude but keeps the same direction. Parallel vectors: We say that two vectors $v, w \in \mathbb{R}^n$ are **parallel** if there is a non-zero scalar $r \in \mathbb{R}$ such that

$$w = rv$$
.

Figure 1: Vector addition and scalar multiplication: a vector \mathbf{v} (blue) is added to another vector \mathbf{w} (red, upper illustration). Below, \mathbf{w} is multiplied by a factor of 2, yielding the sum $\mathbf{v} + 2\mathbf{w}$. (image from Wikipedia)

E. Feillet (LISN) Maths for Data Science Fall 2025 11 / 37

Table of Contents

- 1 Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- 4 Rank

Subspaces

Vector spaces can contain other vector spaces.

Subspace

If V is a vector space, then $S \subseteq V$ is said to be a **subspace** of V if

- **0 0** ∈ *S*
- **0** S is closed under addition: $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x} + \mathbf{y} \in S$
- **9** S is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$

Subspaces

Vector spaces can contain other vector spaces.

Subspace

If V is a vector space, then $S \subseteq V$ is said to be a **subspace** of V if

- $0 \in S$
- **3** S is closed under addition: $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x} + \mathbf{y} \in S$
- **9** S is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$

Example

- ullet V is always a subspace of V.
- The trivial vector space which contains only 0.
- A line passing through the origin is a subspace of the Euclidean space.

Subspace

Proposition

Let V be a vector space on \mathbb{F} . Any subspace U of V is a vector space on \mathbb{F} .

Proof.

By definition, the null element belongs to U. Verify the composition rules.

Linear Combination

Linear combination

Given vectors $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ and scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$ we say that a vector of the form

$$w = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$$

is a **linear combination** of the vectors v_1, v_2, \ldots, v_k with scalar coefficients c_1, c_2, \ldots, c_k .

NB : The scalars c_i are sometimes called **weights**.

Propositions

Span (Sous-espace vectoriel engendré)

Span

The **span** of a set of vectors $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ is the set of all the vectors which can be written as a linear combination of the v_1, v_2, \ldots, v_k , i.e.

$$\mathrm{span}\{v_1, v_2, \dots, v_k\} = \{c_1v_1 + c_2v_2 + \dots + c_kv_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

NB: equivalent to the French notation $Vect(v_1, v_2, ..., v_k)$

Example

- $\operatorname{span}((1,0),(0,1)) = \mathbb{R}^2$
- What is the span of ((2,0),(0,1))?
- What is the span of ((1,0),(3,0))?

Given p_0 , fixed in \mathbb{R}^n , a line in \mathbb{R}^n is given by (cf affine equation in \mathbb{R}^2):

$$\ell = \{ x \in \mathbb{R}^n \mid x = p_0 + tv, \ t \in \mathbb{R} \}.$$

A special case is $\operatorname{span}\{v\}=\{tv\mid t\in\mathbb{R}\}$, the line through the origin $(p_0=0)$ in direction v.

Example

Let $p_1 = (1, 2)$ and $p_2 = (3, 1)$ be on

$$\ell = \{(1,2) + (2,-1)t \mid t \in \mathbb{R}\}.$$

Is $p_1 + p_2$ on the line?

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Given p_0 , fixed in \mathbb{R}^n , a line in \mathbb{R}^n is given by (cf affine equation in \mathbb{R}^2):

$$\ell = \{ x \in \mathbb{R}^n \mid x = p_0 + tv, \ t \in \mathbb{R} \}.$$

A special case is $\operatorname{span}\{v\} = \{tv \mid t \in \mathbb{R}\}$, the line through the origin $(p_0 = 0)$ in direction v.

Example

Let $p_1 = (1, 2)$ and $p_2 = (3, 1)$ be on

$$\ell = \{(1,2) + (2,-1)t \mid t \in \mathbb{R}\}.$$

Is $p_1 + p_2$ on the line?

NB: If $u, w \in \operatorname{span}\{v_1, \dots, v_k\}$, then $u + w \in \operatorname{span}\{v_1, \dots, v_k\}$. However, the sum of two points on a line need not be on the line.

17 / 37

A plane in \mathbb{R}^n through p_0 with directions \mathbf{u}, \mathbf{v} is

$$P = \{x \in \mathbb{R}^n \mid x = p_0 + s\mathbf{u} + t\mathbf{v}, \ s, t \in \mathbb{R}\}.$$

If $p_0 = 0$, then $P = \operatorname{span}\{\mathbf{u}, \mathbf{v}\}$.

Figure 2: The cross-hatched plane is the linear span of \mathbf{u} and \mathbf{v} in both \mathbb{R}^2 and \mathbb{R}^3 (figure in perspective from Wikipedia).

E. Feillet (LISN)

Hypersurfaces: In \mathbb{R}^n , through p_0 in directions v_1, \ldots, v_k :

$$P = \{ x \in \mathbb{R}^n \mid x = p_0 + s_1 v_1 + \dots + s_k v_k, \ s_1, \dots, s_k \in \mathbb{R} \}.$$

If $p_0 = 0$, then $P = \text{span}\{v_1, ..., v_k\}$.

E. Feillet (LISN)

Linear Independence

Linear independence

A list of vectors v_1, \ldots, v_k is **linearly independent** if none of the vectors can be written as a linear combination of the others.

Example

Are the following vectors linearly independent?

$$v_1 = (1,0,0), v_2 = (3,0,0), v_3 = (0,0,1)$$

$$v_1 = (1,0), v_2 = (0,2)$$

Linear Independence

Linear independence

A list of vectors v_1, \ldots, v_k is **linearly independent** if none of the vectors can be written as a linear combination of the others.

Example

Are the following vectors linearly independent?

$$v_1 = (1,0,0), v_2 = (3,0,0), v_3 = (0,0,1)$$

$$v_1 = (1,0), v_2 = (0,2)$$

Proposition

 v_1, \ldots, v_k are linearly independent iff

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0 \quad \Rightarrow \quad \alpha_1 = \cdots = \alpha_k = 0$$

Spanning List

Spanning list

A **spanning list** of V is a list whose span is V.

Example

- Verify that $\{(2,1),(0,1)\}$ is a spanning list of \mathbb{R}^2 .
- Let us consider $V = \{(x,0,0), x \in \mathbb{R}\}$ and $v_1 = (1,0,0)$. Verify that V is a vector space and that (v_1) is a spanning list of V.

Basis of a vector space

Basis

A linearly independent spanning list of vectors from a vector space V is called a **basis** of V.

Example

The standard basis of \mathbb{R}^n , called the **canonical basis**:

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, 0, \dots, 0), \quad \dots, \quad e_n = (0, \dots, 0, 1)$$

Proposition

Given a basis, every vector has a unique coordinate representation.

Dimension of a vector space

Dimension

All bases of a vector space have the same length, called the **dimension**.

Example

 $\dim(\mathbb{R}^n) = n$

Sum of subspaces

Definition

Let U and W be subspaces of V. Their sum is defined as

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Verify that this set is also a subspace of V.

Sum of subspaces

Definition

Let U and W be subspaces of V. Their sum is defined as

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Verify that this set is also a subspace of V.

Definition

If $U \cap W = \{0\}$, the sum is said to be a **direct sum** (sous-espaces vectoriels supplémentaires, in French) and written $U \oplus W$.

Equivalently, every vector in $U \oplus W$ can be written uniquely as the sum of a vector from U and a vector from W.

Sum of subspaces

Proposition

For U and W subspaces of V,

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

Corollary : $dim(U \oplus W) = dim(U) + dim(W)$ for a direct sum.

Table of Contents

- 1 Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- 4 Rank

Function

Function

A **function** f from a set X to a set Y assigns to each element of X exactly one element of Y. Notation: $f: X \to Y$.

Vocabulary

Function

Function

A **function** f from a set X to a set Y assigns to each element of X exactly one element of Y. Notation: $f: X \to Y$.

Vocabulary

- The set *X* is called the **domain** of the function
- The set Y is called the **codomain** of the function.
- If the element $y \in Y$ is assigned to $x \in X$ by the function f, one says that f maps x to y, and this is commonly written y = f(x).
- In this notation, x is the **argument** or **variable** of the function.
- A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the f.

Remark: functional notation, arrow notation

Image and Preimage (inverse image)

Image

The image of a function is the set of the images of all the elements in the domain. Notation: f(X).

$$f(X) = \{f(x) \mid x \in X\}$$

NB: If A is a subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A. We have $f(A) \subset f(X)$.

Preimage

The **inverse image** or **preimage** under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y. Notation : $f^{-1}(y)$.

$$f^{-1}(y) = \{x \in X \mid f(x) = y\}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q G

Bijection, injection, surjection

Let $f: X \to Y$ be a function.

Injectivity

The function f is injective if $f(a) \neq f(b)$ for every two different elements a and b of X. Equivalently, f is injective iff, for every $y \in Y$, the preimage $f^{-1}(y)$ contains at most one element.

Surjectivity

The function f is surjective if its image f(X) equals its codomain Y. That is, for every element $y \in Y$, there exists an element $x \in X$ such that f(x) = y. Equivalently : $\forall y \in Y, f^{-1}(y) \neq \emptyset$.

Bijectivity

The function f is bijective if it is both injective and surjective.

→ロト→部ト→差ト→差 のQで

Bijection, injection, surjection

Figure 3: image source: Wikipedia

E. Feillet (LISN)

Linear maps / linear transformations

Vocabulary

- A homomorphism is a <u>structure-preserving map</u> between two algebraic structures of the same type (e.g. two groups, or two vector spaces).
- Homomorphisms of vector spaces are also called linear maps, linear mappings or linear transformations.
- A linear map from V to itself is called a **linear operator**.
- A homomorphism where the inverse is also a homomorphism is called an isomorphism.

NB: In some branches of mathematics, the term map is used to mean a function.

Linear transformation

Linear transformation

L:V o W is linear if for all $v_1,v_2\in V$ and $a,b\in\mathbb{R}$,

$$L(av_1 + bv_2) = aL(v_1) + bL(v_2)$$

Example

- Show that $L:(x,y)\mapsto (x,0)$ is linear.
- Show that $L:(x,y)\mapsto 10(x,y)$ is linear.
- Finite-dimensional vector spaces^a of the same dimension are isomorphic.

^adefined over the same field

Table of Contents

- 1 Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- Rank

Rank

Rank of a linear transformation

The **rank** of a linear transformation $L: V \to W$ is:

$$\operatorname{rank}(L) = \dim(L(V))$$

where $L(V) = \{ y \in W \mid y = L(x), x \in V \}.$

NB: L(V) is called the **image** of L. We write rank(L) = dim(Im(L)).

Example: $L: \mathbb{R}^2 \to \mathbb{R}$ given by L(x, y) = x has rank 1.

E. Feillet (LISN)

Kernel / Null Space

Kernel

If $L: V \to W$ is a linear map, we define the **nullspace**, also called **kernel**^a of L as

$$\mathsf{null}(T) = \{ \mathbf{x} \in V \mid L(\mathbf{x}) = \mathbf{0} \}$$

^aWatch out, the word "kernel" has another meaning in machine learning.

Example

For
$$L(x, y) = x$$
, $ker(L) = \{(0, y) \mid y \in \mathbb{R}\}.$

Verify that the nullspace and range of a linear map are always subspaces of its domain and codomain, respectively.

Rank-Nullity Theorem

Rank-Nullity Theorem

If V is finite-dimensional and $L: V \to W$ is linear:

$$rank(L) + dim(ker(L)) = dim(V)$$

Example

For
$$L: \mathbb{R}^2 \to \mathbb{R}$$
, $(x, y) \mapsto (2x, 0)$, $rank(L) = 1$ and $dim(ker(L)) = 1$.

Proof

Next topics

Next class : matrices (Lecture 2)