EKONOMETRIK MODELLER

PROGRAM: Gazi Üniversitesi FBE İstatistik YL ÖĞRETİM ÜYESİ: PROF. DR. M. AKİF BAKIR ÖDEV NO:5

ISIM SOYISIM: GAMZE ZORLU

ÖĞRENCİ NO: 22830301032

DERS: EKONOMETRİK MODELLER
PROGRAM: Gazi Üniversitesi FBE İstatistik YL
ÖĞRETİM ÜYESİ: PROF. DR. M. AKİF BAKIR

ÖDEV 5:

Çoklu regresyon tahmini, Çoklu bağlantı irdelemesi

AMAC:

- Bu ödevin amacı klasik çoklu doğrusal regresyon parametrelerinin EKK ile tahmin edilmesini ve çıktının yorumlanmasını öğrenmek.
- 2. Çoklu bağlantı problemini irdelemek

SON TARIH:

NOT: Cözümleri STATA'da yapınız.

LONGLEY VERISI

Aşağıda Longley tarafından toplanmış olan veriler yer almaktadır. Veriler orijinal olarak çeşitli bilgisayar programlarında EKK tahminlerinin hesaplama doğruluğunu değerlendirmek için toplanmış olmasına rağmen Longley verisi çoklu bağlantı probleminin de dâhil olduğu bazı ekonometrik problemleri göstermek üzere popüler bir veri haline gelmiştir. Veriler 1947-1962 arası zaman dizisi verisidir ve değişkenlerin tanımları şöyledir:

Y = istihdam edilen kişi sayısı, (x000);

X₁ = zımni GSMH fiyat deflatörü,

 $X_2 = GSMH$, (milyon \$);

 $X_1 = issiz sayısı (x000),$

X4 = asker sayısı,

X_s = 14 yaş üzeri kurumsal olmayan nüfus;

X₆ = yil (1947=1, 1948=2, ve 1962=16).

TABLE 10.7 LONGLEY DATA

Observation	y	X,	Xt	X ₃	X4 :	*	Time
1947	60,323	830	234,289	2356	1590	107,608	٦
1948	61,122	885	259,426	2325	1456	108,632	2
1949	60,171	882	258,054	3682	1616	109,773	3
1950	61,167	895	284,599	3351	1650	110,929	4
1951	63,221	962	328,975	2099	3099	112,075	5
1952	63,639	981	346,999	1932	3594	113,270	6
1953	64,989	990	365,385	1870	3547	115,094	7
1954	63,761	1000	363,112	3578	3350	116,219	
1955	66,019	1012	397,469	2904	3048	117,368	
1956	67,857	1046	419,180	2622	2857	118,734	10
1957	68,169	1084	442,769	2936	2796	120,445	11
1958	66,513	1108	444,546	4681	2637	121,950	12
1959	68,655	1126	482,704	3813	2552	123,366	13
1960	69,564	1142	502,601	3931	2514	125,368	14
1961	69,331	1157	518,173	4806	2572	127,852	15
1962	70,551	1169	554,894	4007	2827	130,061	16

Source: See footnote 44.

Amacımız altı tane X değişkeninin hepsini kullanarak doğrusal modeli tahmin etmektir.

- 1. Doğrusal Regresyon modelinin parametrelerini tahmin ediniz. (Bilgisayar çıktısını düzenleyerek, okunabilir biçimde veriniz.)
- 2. Parametrelerin teker teker anlamlılık testlerini yapınız.
- 3. Modelin bütünü anlamlı mıdır?
- Aynı modeli 1947-1961 dönemi verilerini kullanarak tahmin ediniz ve tüm 1947-1962 verisini kullanarak elde ettiğiniz tahmin modeliyle karşılaştırarak bu irdelemeden ulaştığınız sonucu açıklayınız.
- Çoklu ortak doğrusallığın varlığını tüm öğretilen ölçütleri ayrı ayrı kullanarak araştırınız ve yorumlayınız.
- 6. Bu problem için ÇB problemi var ise bu problemi ortadan kaldıracak uygun yöntem/yöntemleri kullanarak analizi gerçekleştirip, sonuçları yorumlayınız. Yöntemi kullanma gerekçesini açıklayınız. (1)2de elde ettiğiniz modelle karşılaştırınız.

. reg y x1 x2 x3 x4 x5 x6

Source	SS	df	MS	Number of obs		16
				F(6, 9)	-	330.29
Model	184172402	6	30695400.3	Prob > F	=	0.0000
Residual	836424.056	9	92936.0062	R-squared	-	0.9955
				Adj R-squared	=	0.9925
Total	185008826	15	12333921.7	Root MSE	=	304.85

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	15.06187	84.91493	0.18	0.863	-177.029	207.1528
x2	0358192	.033491	-1.07	0.313	1115811	.0399427
x3	-2.02023	.4883997	-4.14	0.003	-3.125067	915393
x4	-1.033227	.2142742	-4.82	0.001	-1.517949	30.30.30.30
x5	0511041	.2260732	-0.23	0.826	5625172	548505
x6	1829.151	455.4785	4.02	0.003		.460309
_cons	-3482259	890420.4	-3.91	0.004	798.7875 -5496529	2859.515 -1467988

model Derkleui:

Y= \hat{\beta}0+\hat{\beta}1x1+\hat{\beta}2x2+\hat{\beta}3x3+\hat{\beta}4x4+\hat{\beta}5x5+\hat{\beta}6x6

Y:=-3482259+ 15.06187 X1+0.0358191 X2+2.02013X3-1.033227 X4-0.05/1041X5 + 1829.151 XL

Soru-2) 30=> p-value = 0,004 + istatiotiqi = -3.91

Ho: Bo= O (Bo katseyisi model ian anlawli degildir)

H1: 30 +0 (Bo katsoyioi model ign onlaulider)

P-value = 0,004 < x=0.05 oldupunden Ho hipoteti reddedulin. Your Bi katsoyisi %95 piver distagnade onlaulidir.

3, > p-value = 0,863 tistatistiqi = 0,18

Ho: 3 =0

H1: P1+0

p-value = 0,863 > or old-pinder Ho reddedilever. Yori 9.95

given disterende Bi katsegisi sinlauti degildir.

B1 > P-value = 0,313 + istatutigi = -1,07

Ho: B1=0

p-value = 0,3137 & old-puden Ho reddediturs.

Voni %95 pour disemble \$2 katsayisi H1: B2 \$0

model in malauli degildia

B3=> p-value = 0.003 +- istatistiqi = -4.14

Ho: By=0 p-value = 0,003 La old-punder Ho reddedillir.

H1: Ps \$0 Yori 7095 priver directinde B3 kotsayion
model 14in enlawlides

Bu > p-value = 0,001 +- istatistipi = - 4.82

Ho: By=0 p-value=0,001 La oldyandon Ho hipatett reddedil.
Hi: By +0 Yori By kotsgron %95 poren disterpede model

ian anlaulides

B5 => p_value = 0,826 +-istatistipi = -0,23

Ho: B5 = 0 p-value = 0,8267 x oldyander to hipotess reddedilever

H1: 35 \Delta Vani 35 katsayion %95 piver diternde model ran sintauli degildir.

26 ⇒ p-value = 0.003 t-istatistica = 6.02

Ho: P6=0 P-value = 0,003 Kox oldgandon Ho reddedilir. Yani

H1: 36+0 %95 given disternde B6 kotsogion model ion enlaulador.

Soru-3)

 $\begin{aligned} &\mathcal{A}_{i} = -3482259 + 15.06187 \, \chi_{1} = 0.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\text{Std error:} \left(890420.4 \right) \left(84.91493 \right) \left(0.023491 \right) \left(0.4883997 \right) \left(0.2142742 \right) \left(0.2260732 \right) \left(4.052485 \right) \\ &\mathcal{A}_{i} = -3482259 + 15.06187 \, \chi_{1} = 0.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 + 15.06187 \, \chi_{1} = 0.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 + 15.06187 \, \chi_{1} = 0.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 + 15.06187 \, \chi_{1} = 0.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 \, \chi_{1} + 15.06187 \, \chi_{1} + 10.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 \, \chi_{1} + 15.06187 \, \chi_{1} + 10.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 \, \chi_{1} + 10.0358492 \, \chi_{2} - 1.02023 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 \, \chi_{1} + 10.035827 \, \chi_{2} + 1.033227 \, \chi_{3} + 1.033227 \, \chi_{4} - 0.0511041 \, \chi_{5} + 1829.151 \, \chi_{6} \\ &\mathcal{A}_{i} = -3482259 \, \chi_{1} + 10.035827 \, \chi_{2} + 1.033227 \, \chi_{3} + 1.033227 \, \chi_{4} + 1.03227 \, \chi_{4} + 1.033227 \, \chi_{4} + 1.033227 \, \chi_{4} + 1.03227 \, \chi_{4} + 1.03227 \, \chi_{4} + 1.03227 \, \chi_{4} + 1.03227 \, \chi_{4} + 1.03$

gen g 6 = 0.4822 dis tic-dis tic lag) dis tic lag)*100

p_value = 0.0000

Ho: Model mal degilder.

HI: Model onlawlider.

p-value = 0,000 Za oldupinden the hipoteti reddedilv. Your 9095 piven distryade model enlaulidir.

Baginsit degiskerler bajanlı değiskeri vayanını 9,992 oranında açıklar

. drop if x6==1962 (1 observation deleted)

. reg y x1 x2 x3 x4 x5 x6

Source	ss	df	мѕ	Numb	er of obs	~	15
Model	155088615	6	25848102.4		> F	-	295.77 0.0000
Residual	699138.24	8	87392.28	R-sq	uared	123	0.9955
				- Adj	R-squared	-	0.9921
Total	155787753	14	11127696.6	Root	MSE	24	295.62
У	Coef.	Std. Err.	t	P> t	[95% Con:	f.	Interval
x1	-20.51082	87.0974	-0.24	0.820	-221.3578		180.3361
x2	0273342	.0331748	-0.82	0.434	1038355		.0491671
ж3	-1.952293	.4767006	-4.10	0.003	-3.051567		8530199
x4	9582393	.2162271	-4.43	0.002	-1.45686		4596187
x5	.0513397	.233968		0.832	4881915		.5908709
ж6	1585.156	482.6832		0.011	472.086		
_cons	-3017441	939728.1		0.012	-5184458		2698.225 -850424 5

model derbleui:

Yi=-8017441-20.51082xi-0.0273342xz-1.952293xz-0.9582393 x4+0.0513397x5

kategyilarn anlauliligna baktiquista: Ho: Bi=0

p-value La le Ho red.

βο, βο, βο, βο katsayıları model ian anlaulıdır (%. 95 puen dister)
βι, βο, βο katsayıları model lain anlaulı değildir

Modelm butono lan; p-value = 0,0000 $\Omega^2 = 0,9995$ Duteltilus $\Omega^2 = 0,9921$

model anlaulidis

. fgtest y x1 x2 x3 x4 x5 x6

· Farrar-Glauber Multicollinearity Tests

Ho: No Multicollinearity - Ha: Multicollinearity

* (1) Farrar-Glauber Multicollinearity Chi2-Test:
Chi2 Test = 202,8242 P-Value > Chi2(15) 0.0000

* (2) Farrar-Glauber Multicollinearity F-Test:

Variable	F_Test	DF1	DF2	P_Value
×1	232.540	9.000	5.000	0.000
*2	2681.600	9.000	5.000	0.000
×3	56.201	9.000	5.000	0.000
×4	5.146	9.000	5.000	0.043
x5	623.878	9.000	5.000	0.000
×6	1341.810	9.000	5.000	0.000

* (3) Farrar-Glauber Multicollinearity t-Test:

Variable	, x1	×2	×3	×4	x 5	ж6
×1			1			
×2	26.534		1		1	
×3	2.202	2.110			11.46	
×4	1.593	1.549	-0.623			
×5	16.217	20.738	2.743	1.199		
×6	22.016	29.271	2.543	1.397	32.405	

Ho: Collu boplati yaktur. Hi: Ciolelu boplati vardır.

p-value=0,0000 x2=202.8242

> p La oldyanden Ho reddedillr.

Colly boplant, vardes

. collin x1 x2 x3 x4 x5 x6 (obs=15)

Collinearity Diagnostics

		SQRT		R-
Variable	VIF	VIF	Tolerance	Squared
×1	130.19	11.41	0.0077	0.9923
x2	1490.72	38.61	0.0007	0.9993
×3	32.22	5.68	0.0310	0.9690
×4	3.86	1.96	0.2591	0.7409
×5	347.60	18.64	0.0029	0.9971
×6	746.46	27.32	0.0013	0.9987

VIF= 458.51710

Cond Eigenval Index 1.0000 6.8575 1 0.0874 8.8559 12.4284 0.0444 25.4752 0.0106 0.0001 277.6460 0.0000 1111.0658 45676.0390 0.0000

Mean VIF 458.51

Condition Number 45676.0390

Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept)
Det(correlation matrix) 0.0000

Soru -5

. correlate x1 x2 x3 x4 x5 x6
(obs=16)

	×1	x2	x 3	×4	×5	×6
×1	1.0000					
x2	0.9916	1.0000				
ж3	0.6206	0.6043	1.0000			
×4	0.4647	0.4464	-0.1774	1.0000		
x 5	0.9792	0.9911	0.6866	0.3644	1.0000	
x6	0.9911	0.9953	0.6683	0.4172	0.9940	1.0000

Bogment degiskenler arounda ikili ilizkyr inceledigimitte gerel olorak aralamda yüksek korelayın olduğmu görüyorut.

		4
v	1	-1

1/VIF	VIF	Variable
0.000559	1788.51	×2
0.001318	758.98	х6
0.002505	399.15	x5
0.007378	135.53	×1
0.029745	33.62	х3
0.278635	3.59	x4
	519.90	Mean VIF

VIF dageri bir bopusit dagiskem diper bopusit degiskenlerle olan ilizkishin derecesini belirlevek iam hesaplanı. VIF dagerinin 10 dan byyik olucus coklu boplantı problevinin i savetlerinden biridir.

mea VIF = 519.90 >10 oldparder collu degreed boplants
problemen oldpara izaretter.

* Farrar-Glauber Multicallingsitu Mosts

Ho: No Multicollinearity - Ha: Multicollinearity

* (1) Farrar-Glauber Multicollinearity Chi2-Test:
Chi2 Test = 218.5559 P-Value > Chi2(15) 0.0000

* (2) Farrar-Glauber Multicollinearity F-Test:

Variable	F_Test	DF1	DF2	P_Value
x1	269.066	10.000	5.000	0.000
x2	3574.850	10.000	5.000	0.000
х3	65.238	10.000	5.000	0.000
×4	5.178	10.000	5.000	0.042
x 5	796.307	10.000	5.000	0.000
x6	1515.957	10.000	5.000	0.000

* (3) Farrar-Glauber Multicollinearity t-Test:

Variable	x1	x2	ж3	×4	x 5	×б
x1			4	Total Time	1414	
x2	24.228		to the said			
x 3	2.503	2.398	for the		5 5	
x4	1.660	1.578	-0.570	The state of	A STATE OF THE STA	
x 5	15.248	23.530	2.986	1.237	L V L H	
x6	23.610	32.409	2.841	1.452	28.624	

Farrar-Glauber istatistique pare, ortogenallikter sapma arttikaa aoklu doğrusal looplarti durunu kuvetlerir.

Ho: A veri matrisi orto-spralder. (Coklu boplanti Hoktur)
Hi: A veri matrisi ortogonal degitar. (Coklu boplanti vorder)

P-value = 0,0000 < a oldupadon Ho reddedille.

Your golde dograd baglante vardes

Dogrusal mel Baglant in Problemini Gloderne in Yollar incres (

- 1) Gotten sayion artima
- 2) Degisker Seami (Degiskersilne)

 Goklu boplanti problemni proemek iain bagimli degisker

 uternde daha at etkili olan bagimsit degisker ya da

 degiskerlu madel dizirda birakilabila.

2 mm: GSMH fight deflations (XI) = GSMH (X2) x 100

reel GSMH = $\frac{\chi_2}{\chi_1} \times 100$

and the second second by

who are yet rough by Fritting theretain him

4) Model seumi galny oldper iun olabilir. Model seumi degistissebilir.

. reg y reel_gsmh x3 x4 x5 x6

Source	SS	df	MS	Number of obs	=	16
Model	184031329	5	36806265.8	F(5, 10) Prob > F	=	376.54
Residual	977497.183	10	97749.7183		=	0.0000
				Adj R-squared	=	0.9921
Total	185008826	15	12333921.7	Root MSE	=	312.65
-						
У	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
reel_gsmh	0067896	.02341	-0.29	0.778058950	3	.0453711
х3	-1.580112	.3169032	-4.99	0.001 -2.28621	6	8740075
x4	9288877	.1946236	-4.77	0.001 -1.36253	6	4952393
x5	2173108	.1291503	-1.68	0.123505075	7	.0704541
x6	1379.172	325.3048	4.24	0.002 654.347	9	2103.996
_cons	-2594741	623291.5	-4.16	0.002 -398352	1	-1205961

. vif

Variable	VIF	1/VIF
х6	368.08	0.002717
reel_gsmh	292.70	0.003416
x 5	123.85	0.008074
x3	13.46	0.074310
×4	2.82	0.355234
Mean VIF	160.18	

XI ve X2 yi X2 x 100 olarak tek bir dejişken

Dlorak i fade edersek ve sonrasında model kwarsak çoklu

baplantı problemin VIF=160.18 olarak ataldığını fakat

giderilmediğini pörtyorut.

15 = 14 yaz vier: kirmsel olunyon nufus , X6 = 41 opertikae: dirttiquen X6 41 model dienda birakip denersek;

. reg y reel_gsmh x3 x4 x5

Source	SS	df	MS	Number of obs	=	16
Model	182274330	4	45568582.4	F(4, 11) Prob > F	=	183.31
Residual	2734496.29	11	248590.572	oquarea	=	0.9852
Total	185008826	15	12333921.7	Adj R-squared Root MSE	=	0.9798 498.59
У	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
reel_gsmh	.0739538	.0217092	3.41	0.006 .026172	23	.1217354
x 3	5359239	.318017	-1.69	0.120 -1.23587	15	.1640267
×4	7272152	.3009571	-2.42	0.034 -1.38961	.7	064813
x 5	0540364	.1965889	-0.27	0.789486725	6	.3786527
_cons	47497.85	14656.23	3.24	0.008 15239.	7	79756

. vif

1/VIF	VIF	Variable
0.008862	112.84	x5
0.010103	98.98	reel_gsmh
0.187658	5.33	ж3
0.377803	2.65	x4
	54.95	Mean VIF

Forrar-Glauber Chi2. Test=75.5080 p_value = 0,0000

X6 = 411 deqisters modele dahil ediluedique VIF degeri
d'Arius fakat coldu boplanti problem pideriluenisti.
Log-Log, Lin-Log, Log-Lin modelleri yygulannis fakat coldu
baplanti problem b- modellerde de men cuttur.