INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

lcabrera@ubiobio.cl

Universidad del Bío Bío

Facultad de Ciencias Empresarias Ingeniería de Ejecución en Computación e Informática

Lecture 2

EN EL CAPÍTULO ANTERIOR...

- Concepto de inteligencia artificial.
- Orígenes de la inteligencia artificial.
- La inteligencia artificial en nuestros tiempos.

EN ESTE CAPÍTULO

- ¿Qué es un agente?.
- Ambiente de los agentes.
- Tipos de agentes inteligentes.

Introducción

Tres leyes de la robótica.

- Daño: Un robot no hará daño a un ser humano o, por inacción, permitirá que un ser humano sufra daño.
- Órdenes: Un robot debe cumplir las órdenes dadas por los seres humanos, a excepción de aquellas que entrasen en conflicto con la primera ley.
- Autosustento: Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la primera o con la segunda ley.

Introducción

Dilema de "Yo, robot"

¿Cuál es la mejor decisión posible?

¿QUÉ ES UN AGENTE?

- La palabra 'Agente' viene del latín agere (hacer), por lo que su principal función es actuar ante su entorno.
- 'Agente' e 'inteligente' normalmente están relacionados, pero pueden distinguirse según el diagrama de Nwanna:

UNA MANERA DE PROGRAMAR

- Trabajar con agentes es un paradigma de programación, al igual que POO. La idea es programar a través de agentes es seguir el lineamiento siguiente:
 - Persistencia.
 - Autonomía.
 - Habilidad social.
 - Reactividad.
- El siguiente diagrama muestra como actúa un agente:

EJEMPLOS DE AGENTES

Ejemplos:

► Agente Humano:

> Percepción: Sentidos

> Actuación: Muchos

> Percepción: Sensores

> Actuación: Actuadores

► Agente Software:

> Percepción: Fuentes de datos

> Actuación: Resultados (Información).

¿MATEMÁTICAS?

Un agente puede ser visto como una función matemática en varias variables. Sean "n" perceptores y "m" actuadores:

$$f(\overline{x}) = f_1(\overline{x}), f_2(\overline{x}), \dots, f_m(\overline{x})$$

 $\operatorname{con} \overline{x} = (x_1, x_2, \dots, x_n)$

MEDICIÓN

El Agente mide su racionalidad a través de normas externas que definen su rendimiento.

AMBIENTES

El Agente percibe su ambiente y actúa sobre él. Independiente de la capacidad del agente, es el problema que enfrenta muchas veces el que define su comportamiento.

Mientras más restringido el problema \leftrightarrow Menos elementos tiene el entorno \leftrightarrow Más sencillo el agente a diseñar.

Clasificación 1: Accesibilidad.

- Se dice que un ambiente es totalmente accesible (o realmente accesible) si el agente es capaz de captar todos los datos de su entorno.
- Esto libera al agente de mantener en memoria estados internos sobre el exterior.
- En caso contrario, se le denomina no totalmente accesible (o parcialmente accesible)

Clasificación 2: Determinismo.

- Se dice que un ambiente es determinista si es posible determinar el siguiente estado del ambiente a partir del actual y las acciones del agente.
- Si algún elemento del entorno está fuera de la influencia del agente, se dice que el ambiente es no determinista (o estocástico).
- Si el ambiente es determinado por el estado actual más la acción de otros agentes, se dice que el ambiente es Estratégico.
- Por lo general:
 - Accesible → Determinista.
 - ullet No Accesible o Aparentemente no Determinista.

Clasificación 3: Episódico.

- Se dice que el ambiente es episódico cuando el agente necesita tomar una decisión basada en un instante y esta no tiene consecuencias futuras.
- Un ambiente secuencial, por el contrario, las acciones pueden tener consecuencias incluso a largo plazo (ej: ajedrez).
- OBS: El episódico es mucho más sencillo.

Clasificación 4: Dinamismo.

- Se dice que un ambiente es dinámico si este cambia mientras el agente toma su decisión. El agente debe preocuparse por el tiempo que pasa desde la percepción y la acción.
- Se dice que el ambiente es semi-dinámico si el que cambia es la medida de calificación de rendimiento del propio agente.
- Si el ambiente no cambia mientras el agente toma su decisión, se dice que es estático.

Clasificación 5: Discreto.

- Se dice que un ambiente es discreto si la cantidad de percepciones es limitada igual que las acciones, además de ser claramente distinguibles.
- En caso contrario, se dice que el ambiente es continuo.

Clasificación 6: Multiplicidad.

- Se dice que un ambiente es multi-agente si la cantidad agentes actuando es mayor que 1.
 - Ajedrez = 2 agentes.
 - Tráfico = Muchísimos agentes.
- ¿Es la lluvia un agente?
- Se considera agente dentro del mismo entorno si su medida de rendimiento depende de otro.

EJEMPLOS

Ambiente	Observable	Determinista	Episódico	Estático	Discreto	Agentes
Ajedres con reloj	Totalmente	Determinista	Secuencial	Semi	Discreto	Multi
Ajedres sin reloj	Totalmente	Determinista	Secuencial	Estático	Discreto	Multi
Póquer	Parcialmen te	Estratégico	Secuencial	Estático	Discreto	Multi
Diagnostic o medico	Parcialmen te	Estocástico	Secuencial	Dinámico	Continuo	Individual
Analisis de imagenes	Totalmante	Determinista	Episódico	Semi	Continuo	Individual
Clasificado r de partes	?	?	?	?	?	?
Control de refinería	?	?	?	?	?	?
Tutor de ingles	?	?	?	?	?	?

Según *Stuart Russell* and *Peter Norvig* en su libro **Artificial Intelligence: A Modern Approach**, se pueden clasificar los agentes según la percepción que tenemos de su inteligencia y capacidad.

Agente Reactivo Simple

- Estos agentes actúan según reglas if then según la percepción actual.
- Recomendados ambientes totalmente observables.

Agente Reactivo Basado en Modelos

- Estos agentes poseen un modelo del ambiente y estados internos.
- Pueden trabajar en ambientes no totalmente observables.

Agente Basado en Metas

- Se le añade información de la meta a lograr para tomar acción.
- Generalmente más lentos, pero más flexibles.

Agente Basado en Utilidad

- Las acciones se toman basadas en la utilidad del próximo estado.
- Basado en metas: Blanco y Negro.
- Basado en Utilidad: Escala de grises.

Agente de Aprendizaje

• Este agente se basa en su performance para realizar mejoras a su comportamiento, y desde ahí genera acción al ambiente.

EN EL PRÓXIMO CAPÍTULO

- Solución de Problemas mediante búsqueda.
- Tipos de Problemas.
- Problemas bien definidos.

INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

lcabrera@ubiobio.cl

Universidad del Bío Bío

Facultad de Ciencias Empresarias Ingeniería de Ejecución en Computación e Informática

Lecture 2

