For C_3 and C_4 , the carry generation, propagation and annihilation behavior of both cases are identical. Hence we only discuss $C(\tau) = C_3$. In this case, (??) is modified to give (1). We have $Y_{[\tau+1]}=Y_{[\tau]}$ as the appending digit $y_{\tau+\delta+1}=0$. Thus D only depends on the number of leading non-zero digits of $Y_{[\tau]}$.

$$P_{[\tau+1]} = r^{-\delta+1}(x_{\tau+\delta+1}Y_{[\tau+1]}) = r^{-\delta+1}(x_{\tau+\delta+1}Y_{[\tau]})$$
 (1)

For the first stage where $\tau = -\delta$, substituting this into (1) yields $P_{[-\delta+1]} = r^{-\delta+1}(x_1y_1)$. Therefore the value in (??) can only be obtained when $C(-\delta) = C_2$, otherwise $d(-\delta) = C_2$

For the other stages where $\tau > -\delta$, there are 2 possible situations for $\tau' = \tau - 1$ as stated below:

• If $y_{\tau'+\delta+1} \neq 0$, then D equals to the maximum wordlength of $Y_{[\tau'+1]}$. Thus we have $d(\tau) = d(\tau')_{max} - 1$.

- If $y_{\tau'+\delta+1}=0$, then $Y_{[\tau']}=Y_{[\tau'-1]}$. This is a recursive process and these two judgements will be performed again for $\tau''=\tau'-1$. It terminates when the first judgement is satisfied or .