- 4. If $X \sim \mathcal{N}(0,1)$, then prove that $P(|X| \ge u) \le \sqrt{2/\pi} \frac{e^{-u^2/2}}{u}$ for all u > 0. How does this bound compare with that given by Chebyshev's inequality? [10+5 = 15 points]
- Consider n values $\{x_i\}_{i=1}^n$ drawn independently from a Laplacian distribution with mean 0 and parameter σ . The probability density for a Laplacian random variable X is given by $f_X(x) = \frac{1}{2\sigma}e^{-|x|/\sigma}$ (note the absolute value in the exponent). Given $\{x_i\}_{i=1}^n$, derive the maximum likelihood estimate for σ , as well as its bias, variance, MSE. [15 points]
- 6. In this problem, we will derive higher order moments of specific random variables in a new way.
 - Consider $X \sim \mathcal{N}(\mu, \sigma^2)$. Then prove that $E[g(X)(X \mu)] = \sigma^2 E[g'(X)]$ where g is a differentiable function such that $E[|g'(X)|] < \infty$, $|g(x)| < \infty$. Use this to derive an expression for $E[X^3]$ in terms of G and G. Do not use any other method (eg. MGFs) to derive $E[X^3]$. [5+5=10 points]
 - Consider $X \sim \text{Poisson}(\lambda)$. Then prove that $E[\lambda g(X)] = E[Xg(X-1)]$ where g is a function such that $-\infty < E[g(X)] < \infty, -\infty < g(-1) < \infty$. Use this to derive an expression for $E[X^3]$ assuming known expressions for E[X], $E[X^2]$. Do <u>not</u> use any other method (eg: MGFs) to derive $E[X^3]$. [5+5=10 points]
 - 7. (a) A student is trying to design a procedure to generate a sample from a distribution function F, where F is invertible. For this, (s)he generates a sample u_i from a [0,1] uniform distribution using the 'rand' function of MATLAB, and computes $v_i = F^{-1}(u_i)$. This is repeated n times for i = 1...n. Prove that the values $\{v_i\}_{i=1}^n$ follow the distribution F. [6 points]
 - (b) Let $Y_1, Y_2, ..., Y_n$ represent data from a continuous distribution F. The empirical distribution function F_e of these data is defined as $F_e(x) = \frac{\sum_{i=1}^n \mathbf{1}(Y_i \leq x)}{n}$ where $\mathbf{1}(z) = 1$ if the predicate z is true and 0 otherwise. Now define $D = \max_x |F_e(x) F(x)|$. Also define $E = \max_{0 \leq y \leq 1} \left| \frac{\sum_{i=1}^n \mathbf{1}(U_i \leq y)}{n} y \right|$ where $U_1, U_2, ..., U_n$ represent data from a [0, 1] uniform distribution. Now prove that $P(E \geq d) = P(D \geq d)$. Briefly explain what you think is the practical significance of this result in statistics. [8+6=14 points]