东南大学电工电子实验中心 实验报告

课程名称: 数字逻辑电路实验 C

第 4 次实验

实验名称: 中规模组合逻辑

院(系): 网络空间安全学院 专业: 计算机类

姓 名: 梁耀欣 学 号: <u>IS322405</u>

实验室: _502 _实验组别: _

同组人员: ____实验时间: 2023.4.27

评定成绩: 审阅教师:

中规模组合逻辑

- 一. 实验目的
 - 1. 掌握常用中规模组合逻辑器件的功能和使用方法。
 - 2. 掌握逻辑函数工程设计方法。
 - 3. 了解存储器实现复杂逻辑函数的原理和存储器的使用过程。
- 二. 实验原理

1. 74HC86 是四组 2 输入异或门:

1A [1	U ₁₄ V _{CC}	FUNCTION TABLE (each gate)			
1B 🛮 2	13 [] 4B	INP	UTS	OUTPUT	
1Y 🛮 3	12 4 4A	Α	В	Υ	
2A 4	11 H 4Y	L	L	L	
2B 🛮 5	10 3B	L	Н	Н	
2Y 6	9 H 3A	Н	L	Н	
GND 7	8 J 3Y	Н	Н	L	

2. 74HC138 是 3-8 译码器:

		TRUTH TABLE 'HC138, 'HCT138													
A0 1 16	Vcc	INPUTS						\neg							
			ENABLE			ADDRESS	3				OUT	PUTS			
A1 2 15	Y0 (Y0)	E3	E2	E1	A2	A1	A0	YO	Y1	Y2	¥3	Y4	Y5	Y6	¥7
		Х	X	Т	Х	Х	X	н	Н	H	н	π	т	Н	Н
A2 3 14	Y1 (Y 1)	П	Х	X	Х	Х	Х	н	Н	Н	Н	H	Н	Н	Н
E1 4 13	Y2 (\overline{Y2})	X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
- L	12 (12)	Н	L	١	١	L	L	١	I	I	I	I	Н	Η	Н
E2 5 12	Y3 (Y3)	Н	П	L	٦	L	Н	Н	L	н	н	Н	Н	Н	Н
4	,	Н	L	L	٦	H	L	I	Ι	_	Ι	Ξ	Н	H	H
E3 6 11	Y4 (Y4)	Н	L	٦	٦	Η	н	I	I	I	_	I	Н	Н	H
	, ,	Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	H
(Y7) Y7 7 10	Y5 (Y5)	Н	L	L	I	L	Н	н	H	I	I	Ι	L	Н	Н
=		н	L	L	н	н	L	н	н	н	н	н	н	L	н
GND 8 9	Y6 (Y6)	Т	г	Г	Н	π	Η	Н	Н	н	Н	Н	I	π	L
		H = High	Voltage L	evel, L = l	.ow Volta	ge Level,)	x = Don't (Care							

3. 74HC151 是 8 选 1 数据选择器:

三. 实验内容

- 1. 设计一个 3 位二进制原码转补码电路,用三种方案实现
- 1) 全部用门电路实现,提示:异或逻辑可以直接选用7486
- 2) 用数据选择器74151+门电路实现
- 3) 用三八译码器74138+门电路实现
- (1) 输入、输出信号编码:(由于正数的补码和原码相同,只考虑0和负数)

输入信号: 三位二进制原码 B2B1B0 输出信号: 三位二进制补码 Y2Y1Y0

(2) 列出真值表:

根据题目要求,列出真值表:

次数	B2	B1	В0	Y2	Y1	YO
1	0	0	0	0	0	0
2	0	0	1	1	1	1
3	0	1	0	1	1	0
4	0	1	1	1	0	1
5	1	0	0	1	0	0
6	1	0	1	0	1	1
7	1	1	0	0	1	0
8	1	1	1	0	0	1

列出卡诺图:

Y2:

0	0	1	1	1
1	1	0	0	0

Y1:

B ₁ B ₀	00	01	11	10
0	0	1	0	1
1	0	1	0	1

Y0:

B ₁ B ₀	00	01	11	10
0	0	1	1	0
1	0	1	1	0

根据卡诺图写出逻辑表达式,并进行化简:

1) 用门电路实现:

$$5 = B_2B_1B_0 + \overline{B}_2B_0 + \overline{B}_2B_1 = \overline{B}_2(B_1 + B_0) + \overline{B}_2B_1 = \overline{B}_2(B_1 + B_0) + \overline{B}_2B_1 = \overline{B}_2(B_1 + B_0) + \overline{B}_1B_0 = \overline{B}_1B_0 + \overline{B}_1B_0 = \overline{B}_1B_0 =$$

2) 用数据选择器74151+门电路实现:

根据真值表写出最小项表达式:

 $Y2 = \Sigma m(1, 2, 3, 4)$

 $Y1 = \Sigma m(1, 2, 5, 6)$

 $Y0 = \Sigma m(1, 3, 5, 7) = B0$

3) 用三八译码器74138+门电路实现:

同 2)

- (3)逻辑电路图
- 1) 用门电路实现:

右边输出从上到下依次为Y2, Y1, Y0。

2) 用数据选择器74151+门电路实现:

3) 用三八译码器74138+门电路实现:

- (4) 实物连接图:
- 1) 用门电路实现:

2) 用数据选择器74151+门电路实现:

2. 实验设计方案(血型配对)

(1) 输入、输出信号编码

输入信号:用两位二进制数G₁G₀代表输血者的4种血型,R₁R₀代表受血者的4种血型:

输血者				受血者	
G1	GO	血型	R1	RO	血型
0	0	0型	0	0	0型
0	1	A型	0	1	A型
1	0	B型	1	0	B型
1	1	AB型	1	1	AB型

输出信号: S代表是否满足输血/受血条件,"1"满足,"0"不满足;

(2) 列出真值表

G1	G0	R1	R0	S	G1	G0	R1	R0	S
0	0	0	0	1	1	0	0	0	0
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1

(3) 逻辑化简

R1R0 R1R0	00	01	11	10
00	0	0	0	0
01	1	0	0	1
11	1	1	0	1
10	1	1	0	0

对卡诺图进行降维:

R_1R_0	00	01	11	10
0	GO	0	0	GO
1	1	1	0	GO

S(G1,R1,R0)=G1R1+G0R1R0+G0G1R1R0 =ZM(45)

逻辑函数表达式为:

(4) 逻辑电路图

(5) 实物连接图

蓝色线接输出信号, 黄色从左到右分别接R0, G0, 绿色从左到右分别接G1, R1。

3. 实验设计方案(发电机控制器)

(1) 输入、输出信号编码

输入信号: 用ABC代表三台用电设备的工作情况: "1"为工作, "0"为不工作;输出信号: 用XY代表两台发电机组的工作情况: "1"为工作, "0"为不工作;

(2) 列出真值表

A (15kW)	B (10kW)	C (5KW)	X (15kW)	Y (25kW)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(3) 逻辑化简

(4) 逻辑电路图

(5) 实物连接图

4. 实验设计方案(2位全加器)(选做)

(1) 输入、输出信号编码

输入信号:两组两位二进制数P0P1和Q1Q0代表输入的两组数据,C-1代表低位向本位的进位;

输出信号: SOS1代表相加得到的和, CO代表相加向更高位的进位;

(2) 列出真值表

本实验中, 先构建出一位全加器, 再进行级联, 从而实现二位全加器。 一位全加器的直值表,

区工/// 冊 17天	输入端	输出	输出端 S CO 0 0 1 0 1 0 0 1		
P	Q	C ₋₁	S	CO	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

(3) 逻辑化简

使用74138实现,所以只须把逻辑函数表达式写为最小项和的形式: $S(P,Q,C_{-1})=\Sigma m(1,2,4,7)$, $C_0(P,Q,C_{-1})=\Sigma m(3,5,6,7)$

(4) 逻辑电路图

(5) 实物连接图

把两个全加器级联,可以得到2位全加器。(其中左边器件应为74138)

四. 实验总结

每一个电路设计均应对应真值表,遍历所有输入组合,观察输出是否与真值表上预期相符。

五. 实验建议

合理的意见及建议, 欢迎大家提出宝贵意见