

WEBENCH® Design Report

VinMin = 30.0V VinMax = 65.0V Vout = 15.0V Iout = 0.1A Device = LM5009MM/NOPB Topology = Buck Created = 2/9/14 3:59:49 PM BOM Cost = \$1.82 Footprint = 210.0 mm<sup>2</sup> BOM Count = 14 Total Pd = 0.15W

Design: 1231947/58 LM5009MM/NOPB LM5009MM/NOPB 30.0V-65.0V to 15.0V @ 0.1A



## **Electrical BOM**

| #  | Name | Manufacturer | Part Number                        | Properties                                                      | Qty | Price  | Footprint                  |
|----|------|--------------|------------------------------------|-----------------------------------------------------------------|-----|--------|----------------------------|
| 1. | Cb   | TDK          | C1005X7R1C103K<br>Series= X7R      | Cap= 10.0 nF<br>ESR= 62.3 mOhm<br>VDC= 16.0 V<br>IRMS= 0.0 A    | 1   | \$0.01 | 0402 3 mm <sup>2</sup>     |
| 2. | Cbyp | Taiyo Yuden  | EMK212B7474KD-T<br>Series= X7R     | Cap= 470.0 nF<br>VDC= 16.0 V<br>IRMS= 0.0 A                     | 1   | \$0.02 | 0805 7 mm <sup>2</sup>     |
| 3. | Cff  | Kemet        | C1206C562K5RACTU<br>Series= X7R    | Cap= 5.6 nF<br>ESR= 221.0 mOhm<br>VDC= 50.0 V<br>IRMS= 326.0 mA | 1   | \$0.06 | 1206 11 mm <sup>2</sup>    |
| 4. | Cin  | TDK          | C3216X7R2A105M<br>Series= 285      | Cap= 1.0 uF<br>ESR= 6.0 mOhm<br>VDC= 100.0 V<br>IRMS= 4.5 A     | 1   | \$0.11 | 1206 11 mm <sup>2</sup>    |
| 5. | Cinx | TDK          | C2012X7R2A104K<br>Series= X7R      | Cap= 100.0 nF<br>ESR= 15.8 mOhm<br>VDC= 100.0 V<br>IRMS= 0.0 A  | 1   | \$0.03 | 0805 7 mm <sup>2</sup>     |
| 6. | Cout | MuRata       | GRM21BR61E475KA12L<br>Series= X5R  | Cap= 4.7 uF<br>ESR= 4.0 mOhm<br>VDC= 25.0 V<br>IRMS= 0.0 A      | 1   | \$0.05 | 0805 7 mm <sup>2</sup>     |
| 7. | D1   | Diodes Inc.  | B1100-13-F                         | VF@Io= 790.0 mV<br>VRRM= 100.0 V                                | 1   | \$0.10 | SMA 37 mm <sup>2</sup>     |
| 8. | L1   | Bourns       | SRR7032-471M                       | L= 470.0 μH<br>DCR= 2.4 Ohm                                     | 1   | \$0.25 | SRR7032 81 mm <sup>2</sup> |
| 9. | Rfbb | Vishay-Dale  | CRCW04021K00FKED<br>Series= CRCWe3 | Res= 1000.0 Ohm<br>Power= 63.0 mW<br>Tolerance= 1.0%            | 1   | \$0.01 | 0402 3 mm <sup>2</sup>     |

| # Name      | Manufacturer              | Part Number                        | Properties                                            | Qty | Price  | Footprint                 |
|-------------|---------------------------|------------------------------------|-------------------------------------------------------|-----|--------|---------------------------|
| 10. Rfbt    | Vishay-Dale               | CRCW04024K99FKED<br>Series= CRCWe3 | Res= 4.99 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%   | 1   | \$0.01 | 0402 3 mm <sup>2</sup>    |
| 11. Rilim   | Vishay-Dale               | CRCW0402169KFKED<br>Series= CRCWe3 | Res= 169.0 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>    |
| 12. Ron     | Vishay-Dale               | CRCW0402332KFKED<br>Series= CRCWe3 | Res= 332.0 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>    |
| 13. Rseries | Stackpole Electronics Inc | CSR1206FKR500<br>Series= ?         | Res= 500.0 mOhm<br>Power= 500.0 mW<br>Tolerance= 1.0% | 1   | \$0.05 | 1206 11 mm <sup>2</sup>   |
| 14. U1      | Texas Instruments         | LM5009MM/NOPB                      | Switcher                                              | 1   | \$1.10 | MUA08A 24 mm <sup>2</sup> |











## **Operating Values**

| Opo | operating values |                       |          |                                           |  |  |  |
|-----|------------------|-----------------------|----------|-------------------------------------------|--|--|--|
| #   | Name             | Value                 | Category | Description                               |  |  |  |
| 1.  | Cin IRMS         | 34.175 mA             | Current  | Input capacitor RMS ripple current        |  |  |  |
| 2.  | Cout IRMS        | 22.7 mA               | Current  | Output capacitor RMS ripple current       |  |  |  |
| 3.  | IC lpk           | 139.317 mA            | Current  | Peak switch current in IC                 |  |  |  |
| 4.  | lin Avg          | 25.452 mA             | Current  | Average input current                     |  |  |  |
| 5.  | L lpp            | 78.634 mA             | Current  | Peak-to-peak inductor ripple current      |  |  |  |
| 6.  | M1 Irms          | 49.013 mA             | Current  | Q lavg                                    |  |  |  |
| 7.  | BOM Count        | 14                    | General  | Total Design BOM count                    |  |  |  |
| 8.  | FootPrint        | 210.0 mm <sup>2</sup> | General  | Total Foot Print Area of BOM components   |  |  |  |
| 9.  | Frequency        | 325.0 kHz             | General  | Switching frequency                       |  |  |  |
| 10. | IC Tolerance     | 50.0 mV               | General  | IC Feedback Tolerance                     |  |  |  |
| 11. | M Vds Act        | 60.06 mV              | General  | Voltage drop across the MosFET            |  |  |  |
| 12. | Pout             | 1.5 W                 | General  | Total output power                        |  |  |  |
| 13. | Total BOM        | \$1.82                | General  | Total BOM Cost                            |  |  |  |
| 14. | D1 Tj            | 39.484 degC           | Op_Point | D1 junction temperature                   |  |  |  |
| 15. | Vout OP          | 15.0 V                | Op_Point | Operational Output Voltage                |  |  |  |
| 16. | Duty Cycle       | 24.023 %              | Op_point | Duty cycle                                |  |  |  |
| 17. | Efficiency       | 90.667 %              | Op_point | Steady state efficiency                   |  |  |  |
| 18. | IC Tj            | 43.596 degC           | Op_point | IC junction temperature                   |  |  |  |
| 19. | ICThetaJA        | 200.0 degC/W          | Op_point | IC junction-to-ambient thermal resistance |  |  |  |
| 20. | IOUT_OP          | 100.0 mA              | Op_point | lout operating point                      |  |  |  |
| 21. | VIN_OP           | 65.0 V                | Op_point | Vin operating point                       |  |  |  |
| 22. | Vout p-p         | 6.443 mV              | Op_point | Peak-to-peak output ripple voltage        |  |  |  |
| 23. | Cin Pd           | 7.007 µW              | Power    | Input capacitor power dissipation         |  |  |  |
| 24. | Cout Pd          | 2.061 μW              | Power    | Output capacitor power dissipation        |  |  |  |
| 25. | Diode Pd         | 60.022 mW             | Power    | Diode power dissipation                   |  |  |  |
| 26. | IC Pd            | 67.978 mW             | Power    | IC power dissipation                      |  |  |  |
| 27. | L Pd             | 26.4 mW               | Power    | Inductor power dissipation                |  |  |  |
| 28. | Total Pd         | 154.403 mW            | Power    | Total Power Dissipation                   |  |  |  |
|     |                  |                       |          |                                           |  |  |  |

## **Design Inputs**

| #  | Name    | Value   | Description            |
|----|---------|---------|------------------------|
| 1. | lout    | 100.0 m | Maximum Output Current |
| 2. | lout1   | 100.0 m | Output Current #1      |
| 3. | VinMax  | 65.0    | Maximum input voltage  |
| 4. | VinMin  | 30.0    | Minimum input voltage  |
| 5. | Vout    | 15.0    | Output Voltage         |
| 6. | Vout1   | 15.0    | Output Voltage #1      |
| 7. | base_pn | LM5009A | Base Product Number    |
| 8. | source  | DC      | Input Source Type      |
| 9. | Та      | 30.0    | Ambient temperature    |

## Design Assistance

- 1. For a Constant On Time device to be stable, we need to provide a ripple at the feedback comparator. There are various methods to implement the ripple. Depending on the circuit complexity vs. the allowable ripple, we have three options to choose from. The simplest option, 'Low Complexity', would require only a high ESR cap at the output. This means that the BOM count will be small, but the output voltage ripple will be quite large. The 'Optimal Solution' would require a feed-forward cap in parallel with the upper feedback resistor to AC couple the ripple to the feedback node. This increases the BOM count slightly, but now we have more control over the output voltage ripple. If the output voltage requirement is very tight, then the best option is to go for the 'Low Output Ripple' solution. In this option we can go with very low ESR output caps and have very good control over the output voltage ripple.
- 2. LM5009A Product Folder: http://www.ti.com/product/lm5009: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.