Introductory Real Analyis Exercises

A.Kolmogorov & S.Fomin

Max Suica

Chaper _ Exercises

Problem 1

Let X be an uncountable set, and let \mathscr{R} be the ring consisting of all finite subsets of X and their complements. Is \mathscr{R} a σ -ring?

Problem 2

Are open intervals Borel sets?

Problem 3

Let y = f(x) be a function defined on a set M and taking values in a set N. Let \mathcal{M} be a system of subsets of M, and let $f(\mathcal{M})$ denote the system of all images f(A) of sets $A \in \mathcal{M}$. Moreover, let \mathcal{N} be a system of subsets of N, and let $f^{-1}(\mathcal{N})$ denote the system of all preimages $f^{-1}(B)$ of sets $B \in \mathcal{N}$. Prove that

- a) If \mathcal{N} is a ring, so is $f^{-1}(\mathcal{N})$.
- b) If \mathcal{N} is an algebra, so is $f^{-1}(\mathcal{N})$.
- c) If \mathcal{N} is a B-algebra, so is $f^{-1}(\mathcal{N})$.
- d) $\mathscr{R}(f^{-1}(\mathcal{N})) = f^{-1}(\mathscr{R}(\mathcal{N})).$
- e) $\mathscr{B}(f^{-1}(\mathcal{N})) = f^{-1}(\mathscr{B}(\mathcal{N})).$

Which of these assertions remain true if \mathcal{N} is replaced by \mathcal{M} and f^{-1} by f?