Title

Structure under a temperature gradient force

Description

Analyze a beam under a temperature gradient force. The structure is modeled with beam elements, plate elements and solid elements separately.

Determine the displacements at the free end and the reaction when both ends are constrained for each case.

(a) Structure modeled with beam elements

(b) Structure modeled with plate elements

(c) Structure modeled with soild elements

Structural geometry and analysis model

MODEL

Analysis Type

3-D static thermal stress analysis

Unit System

m, tonf

Dimension

Length 5m

Element

Beam element, plate element (Thick type) and solid element

Material

Concrete Modulus of elasticity $E = 2.1 \times 10^6 \text{ tonf/m}^2$

Coefficient of thermal expansion $\alpha_c = 1.0 \times 10^{-5} \,\text{m/m} \,^{\circ}C$

Poisson's ratio v = 0.167

Section Property

SB $200 \times 400 \text{ mm}$

Boundary Condition

Displacement calculation condition; Constrain all DOFs of the nodes on the A-

plane

Reaction force calculation condition; Constrain all DOFs of the nodes on the A and B-

planes.

Analysis Case

A temperature gradient of 10 degrees is applied through the depth of the structure.

Results

Displacements: Beam element model – TS-2-1

	Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
•	1	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	CASE1	0.000000	0.000000	-0.001563	0.000000	0.001250	0.000000
	3	CASE1	0.000000	0.000000	-0.006250	0.000000	0.002500	0.000000

${\it Displacements: Plate\ element\ model-TS-2-2}$

	Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
•	1	CASE1	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000
	2	CASE1	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000
	21	CASE1	0,000000	0,000000	-0,006318	0,000100	0,002514	0,000000
	22	CASE1	0,000000	0,000000	-0,006318	-0,000100	0,002514	0,000000

Displacements solid element model – TS-2-3

	Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
-	1	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	3	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	4	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	5	CASE1	-0.000252	0.000010	-0.006350	0.000000	0.000000	0.000000
	6	CASE1	-0.000252	-0.000010	-0.006350	0.000000	0.000000	0.000000
	7	CASE1	0.000252	-0.000010	-0.006350	0.000000	0.000000	0.000000
	8	CASE1	0.000252	0.000010	-0.006350	0.000000	0.000000	0.000000

Comparison of Results

Unit: m, tonf· m Plate element Solid element Result Theoretical Beam element In the \boldsymbol{Z} -0.00625 -0.006250 -0.006318 -0.006350 Displacement direction at the free end In the Ry 0.0025 0.00250 0.002514direction Reaction when A and B 0.280 0.280 0.284 planes are constrained

Reference

Gere & Timoshenko, "Mechanics of Materials", Chapter 7. 2nd Edition