

Shikshan Prasarak Sanstha's

S.N.ARTS, D.J.M. COMMERCE & B.N.S. SCIENCE COLLEGE, SANGAMNER DEPARTMENT OF MATHEMATICS AND STATISTICS

2019-2020

A PROJECT REPORT ON

"STATISTICAL ANALYSIS OF PRODUCTON OF CROPS IN INDIA"

Submitted By:

WADEKAR AMOL B.

Under the guidance of;

Prof.Kurhe S.V.

Prof.Chaure K.O.

Prof. Shete P.S.

Shikshan Prasarak Sanstha's

S.N.ARTS, D.J.M. COMMERCE & B.N.S SCIENCE COLLEGE, SANGAMNER

DEPARTMENT OF MATHEMATICS AND STATISTICS

CERTIFICATE

This is to certify that the _______ of Class T.Y.BSc has completed all assigned project of the "Statistical Analysis of Production of India" As laid down by the "Savitribai Phule Pune University" for the acadmic year 2019- 2020.

Crops in

Project Guide Head of Department

Internal Examiner External Examiner

INDEX

SR.NO	TITLE	PAGE NO.
1	ACKNOWLEDGEMENT	
2	INTRODUCTION	
3	OBJECTIVE	
4	DATA	
5	GRAPHICAL	
	REPRESENTATION	
6	TIME SERIES	
7	DISCRIPTIVE STATISTICS	
8	ANOVA(RBD)	

9	HYPOTHESIS	
10	CONCLUSION	
11	REFERENCE	

ACKNOWLEDGEMENT

We are thankful to **Prof**. **Kurhe S.V., Prof**. **Chaure K.O. & Prof**. **Shete P.S**. for their support and guidance for this project .

We are thankful for this opportunity to express our deepsence of gratitude and hold hearted thanks to our best guide "**Team stat**" giving their priceless guidance inspiration and encouragement to embark this project.

Also we would like to thank all our statistician friends to help us directly or indirectly in our endeavor and infused their help for the success of our project.

INTRODUCTION

Agriculture has been the backbone of the Indian economy and it will continue to remain so for a long time. It has to support almost 17 % of world population from 2.3 % of world geographical area and 4.2 % of world's water resources. The economic reforms, initiated in the country during the early 1990s, have put the economy on a higher growth trajectory. Annual growth rate in GDP has accelerated from below 6 % during the initial years of reforms to more than 8 % in recent years. This happened mainly due to rapid growth in non-agriculture sector. The workforce engaged in agriculture between 1980-81 and 2006-07 witnessed a very small decline; from 60.5 % to 52 %.

Indian agriculture is characterized by agro-ecological diversities in soil, rainfall, temperature, and cropping system. Besides favorable solar energy, the country receives about 3 trillion m cube of rainwater, 14 major, 44 medium and 55 minor rivers share about 83 % of the drainage basin. About 210 billion m3 water is estimated to be available as ground water. Irrigation water is becoming a scarce commodity. Thus proper harvesting and efficient utilization of water is of great importance.

The constraints of low productivity in agriculture were realized and thus, central and state governments emphasized the need for accelerated development of agriculture. Adoption of high yielding varieties by farmers coupled with the use of higher doses of fertilizer and assured irrigation through tube wells accelerated the pace of progress in agriculture. As a result of adoption of improved inputs and management practices, the total food grain production increased from a mere million tonnes in 2005-06, to 212 million tonnes in 2006-07 and productivity increased from 522 kg/ha to more than 1707 kg/ha (Table 2). The productivity of wheat, rice and oilseeds increased to a greater extent than other crops. The increase in production of food grain was possible as a result of adoption of quality seeds, higher dose of fertilizer and plant protection chemicals, coupled with assured irrigation.

OBJECTIVE

- > To study the Linear trend of Production of Crops .
- > To study and compare all production of crops.
- > To Forecast the Production of Crops for year 2019-2020.
- > To handling the different software.

(in million tonne's)

Data:

years	2005-	2006-	2007-	2008-	2009-	2010-	2011-	2012-	2013-	2014-	2015-	2016-	2017-	2018-
years	06	07	08	09	10	11	12	13	14	15	16	17	18	19
Sugarcan	2811.7	3555.2	3481.8	2850.2	2923.0	3423.8	3610.3	3412	3521.4	3623.3	3484.4	3060.6	3799.0	4001.5
е	2	3333.2	8	9	2	2	7	0412	2	3	8	9	5	7
cotton	184.99	226.32	258.84	222.76	240.22	330	352	342.2	359.02	348.05	300.05	325.77	328.85	287.08
Cereals	195.22	203.08	216.01	219.9	203.45	226.25	242.2	238.78	245.79	234.87	235.22	251.98	259.6	261.55
Soyabean	82.74	88.51	109.68	99.05	99.64	127.36	122.14	146.66	118.61	103.74	85.7	131.59	109.33	137.86
Jute	99.7	103.17	102.2	96.34	112.3	100.09	107.36	103.4	110.83	106.18	99.4	104.32	95.91	93.49
Rice	91.79	93.36	96.69	99.18	89.09	95.98	105.3	105.23	106.65	105.48	104.41	109.7	112.76	116.42
Wheat	69.35	75.81	78.57	80.68	80.8	86.87	94.88	93.51	95.85	86.53	92.29	98.51	99.87	102.19
Mustord	81.31	74.38	58.34	72.01	66.08	81.79	66.04	80.29	78.77	62.82	67.97	79.17	84.3	93.39
Groundnu t	79.93	48.64	91.83	71.68	54.28	82.65	69.65	46.95	97.14	74.02	67.33	74.62	92.53	66.95
Nutri	34.07	33.92	40.75	40.04	33.55	43.4	42.01	40.04	43.3	42.86	38.52	43.77	46.97	42.95
Maize	14.71	15.1	18.96	19.73	16.72	21.73	21.76	22.26	24.26	24.17	22.57	25.9	28.75	27.23
Nutri cereals	18.14	17.5	20.6	18.62	15.47	20.01	18.64	16.03	17.03	17.08	14.52	16.12	16.44	11.95
Castorsee d	9.91	7.62	10.54	11.71	10.09	13.5	22.95	19.64	17.25	18.7	17.52	13.76	15.68	12.15
Bajara	7.68	8.42	9.97	8.89	6.51	10.37	10.28	8.74	9.25	9.18	8.07	9.73	9.21	8.61
Gram	5.6	6.33	5.75	7.06	7.48	8.22	7.7	8.83	9.53	7.33	7.06	9.38	11.38	10.13

years	2005-	2006-	2007-	2008-	2009-	2010-	2011-	2012-	2013-	2014-	2015-	2016-	2017-	2018-
-	06	07	08	09	10	11	12	13	14	15	16	17	18	19
Seasum	6.41	6.18	7.57	6.4	5.88	8.93	8.1	6.85	7.15	8.28	8.5	7.47	7.55	7.55
Sunflower	14.39	12.28	14.63	11.58	8.51	6.51	5.17	5.44	5.01	4.34	2.96	2.51	2.22	2.19
Mesta	8.7	9.56	9.9	7.31	5.87	6.11	6.63	5.9	6.07	5.08	5.83	5.3	4.43	4.19
Jowar	7.63	7.15	7.93	7.25	7.7	7	5.98	5.28	5.54	5.45	4.24	4.57	4.8	3.76
Tur	2.74	2.31	3.08	2.27	2.46	2.86	2.65	3.02	3.17	2.81	2.56	4.87	4.29	3.59
Urad	1.25	1.44	1.46	1.17	1.24	1.76	1.77	1.97	1.7	1.96	1.95	2.83	3.49	3.26
Ragi	2.35	1.44	2.15	2.04	1.89	2.19	1.93	1.57	1.98	2.06	1.82	1.39	1.22	0.37
Linseed	1.73	1.68	1.63	1.69	1.54	1.47	1.52	1.49	1.42	1.55	1.26	1.84	1.74	1.59
Barley	1.22	1.33	1.2	1.69	1.35	1.66	1.62	1.75	1.83	1.61	1.44	1.75	1.78	1.75
Moong	0.95	1.12	1.52	1.03	0.69	1.8	1.63	1.19	1.61	1.5	1.59	2.17	2.02	2.35
Safflower	2.29	2.4	2.25	1.89	1.79	1.5	1.45	1.09	1.13	0.9	0.53	0.94	0.55	0.24
Lentil	0.95	0.91	0.81	0.95	1.03	0.94	1.06	1.13	1.02	1.04	0.98	1.22	1.62	1.56
Nigerseed	1.08	1.21	1.1	1.17	1	1.08	0.98	1.01	0.98	0.76	0.74	0.85	0.7	0.65
Small millets	0.47	0.48	0.55	0.44	0.38	0.44	0.45	0.44	0.43	0.39	0.39	0.44	0.44	0.37

Graphical representation:

Graphical representation is another way of analysing numerical data. A graph is a sort of chart through which statistical data are representation in the form of lines or curve drawn across the coordinated point plotted on its surface.

From the above graph we observe that production of crop sugarcane is approximately same for all the years. It increases linearly from 2012-13 except for the year 2016-17.

From the above graph we observe that production of cotton is maximum from years 2010-11 to 2014-15 and it is at average level for other years.

From the above graph we observe that there is a slightly increasing trend in production of cereals.

From the above graph we observe that there is a great fluctuation in the production of soyabean.

From the above graph there is a slight variation seen in the production of jute in all the years.

From the above graph there is a slight variation seen in the production of Rice in all the years.

From the above graph we can see that there iss a slight increase in the production of wheat

From the above graph we can observe that there is a great variation seen from years 2005-6 to 2013-14 and there is a continuous increasing trend from years 2014-15

From the above graph we can conclude that there is a slight variation seen in the production of nutri in all the years.

From the above graph we can conclude that there is a great variation in production of groundnut.

From the above graph we can conclude that there is a slight increase production of Maize.

From the there is castor s a contin

From the above graph we can observe that the production of bajara do not show much variation except for year 2009-10 when there is a major drop.

From the above graph we can conclude that there is a continuously increasing trend except for years 2014-16 where there is a major drop.

Pie Chart:

We draw pie chart by usig R-software . The R command required is as follow -

R-command:

```
> x=scan("clipboard");x

Read 29 items
[1] 102.2885714 88.2650000 6.0200000 8.9221429 1.7428571
[6] 0.4364286 17.0107143 21.7035714 1.5700000 40.4392857
[11] 230.9928571 3.0485714 7.9842857 1.9464286 1.5121429
```

- [16] 1.0871429 72.7285714 14.3585714 7.3442857 0.9507143
- [21] 111.6150000 6.9814286 74.7614286 1.5821429 1.3535714
- [26] 3397.0600000 293.2964286 102.4778571 6.4914286
- > y=seq(1:29);y
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- [26] 26 27 28 29
- > pie(x,main="pie chart",col=16:05,name.arg=y)

pie chart

Time Series:

A time series is a series of data points indexed in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data.

The techniques / methods in time series :

- 1) Graphical method
- 2) Method of moving average
- 3) Least square
- 4) Exponential method
- 5) Double exponential method

Exponential smoothing:

It is a technique used for smoothing time series data .It is an easily learned and easily applied procedure for making some determination based on previous observations.

Forecasts

Perio	Forecas		
d	t	Lower	Upper
15	3584.84	2795.3	4374.3
		6	3

From the above graph we conclude the forecasted value for year 2019-20 of sugarcane will be **3584.84 million** tonne.

Forecasts cotton

Perio	Forecas		
d	t	Lower	Upper
15	280.723	215.43	346.01

2 5

From the above graph we conclude the forecasted value for year 2019-20 of sugarcane will be **280.723 million tonne**.

Forecasts cereals

Perio	Forecas		
d	t	Lower	Upper
15	261.665	239.35	283.97
		2	8

From the above graph we conclude the forecasted value for year 2019-20 of sugarcane will be **261.665 million tonne.**

Forecasts jute

Perio	Forecas		
d	t	Lower	Upper
15	101.608	90.746	112.47
		6	0

From the above graph we conclude the forecasted value for year 2019-20 of jute will be **101.608 million tonne**.

Forecast soyabean

Perio	Forecas		
d	t	Lower	Upper
15	121.347	81.620	161.07
		0	4

From the above graph we conclude the forecasted value for year 2019-20 of soyabean will be **121.347 million tonne**.

FUTURE PREDICTION:

The other forecast values for the year 2019-20 of different crops are represent as follows:

crops	sugarca	cotto	cereal	soyabe	jute	rice	wheat	muster	Ground	nutric	maize	Nutric
	ne	n	S	an				ed	.n			cereal
Predict	3584.84	28.72	261.6	121.34	101.6	116.5	102.3	76.538	74.345	43.40	27.39	14.794
ed		3	65	7	08	26	91	4	6	44	59	49

crops	Castorsee ds	bajra	gram	seasu m	sunflowe r	mesta	jawar	tur	urad	ragi
Predicted	12.7816	9.0530 5	10.113 5	70521 8	2.19174	4.1716 6	3.889 7	3.764 1	3.199	0.67

crops	linsee d	barley	mug	safflowe r	lentin	nigersee d	smallmille t
Predicte d	1.589	1.728 7	2.127 6	0.2385	1.447 1	0.6767	0.4103

Descriptive statistics:

In this we calculate the number of count ,their sum , average and variance with respect to row as well as column (i.e for yearly and cropwise).

Average = sum of all observations / number of observations

Variance = (sum of square of all observations /number of observation)- (average)²

SUMMARY	Count	Sum	Average	Variance
Row 1	14	52.16	3.725714	16.55724
Row 2	14	49.49	3.535	13.85933
Row 3	14	55.78	3.984286	18.4517
Row 4	14	46.88	3.348571	11.35135
Row 5	14	41.33	2.952143	7.690018
Row 6	14	44.25	3.160714	7.486069
Row 7	14	40.94	2.924286	6.015149
Row 8	14	38.13	2.723571	4.707563
Row 9	14	39.04	2.788571	4.859429
Row 10	14	37.73	2.695	5.159058
Row 11	14	34.79	2.485	5.255673
Row 12	14	38.15	2.725	4.247704
Row 13	14	36.85	2.632143	4.120064
Row 14	14	33.42	2.387143	3.963868
Column 1	14	102.82	7.344286	0.845734
Column 2	14	97.74	6.981429	20.26797
Column 3	14	90.88	6.491429	3.158136
Column 4	14	84.28	6.02	1.9834
Column 5	14	42.68	3.048571	0.557829
Column 6	14	27.25	1.946429	0.545855
Column 7	14	24.4	1.742857	0.265099
Column 8	14	22.15	1.582143	0.022664
Column 9	14	21.98	1.57	0.047523
Column 10	14	21.17	1.512143	0.229787
Column 11	14	18.95	1.353571	0.488055
Column 12	14	15.22	1.087143	0.05513
Column 13	14	13.31	0.950714	0.03253
Column 14	14	6.11	0.436429	0.002163

Analysis of variance (ANOVA):

It's is a technique to compare mean of more than two samples at a time. It is a collection of statistical models used to analyze the differences between group means and their associated procedures .

ANOVA has three main types -

- 1) CRD(completely randomized design)
- 2) RBD(randomized block design)
- 3) LSD(least square design)
- 4) Factorial design

Here we fit randomized block design since we have two factors into consideration. We have two main factor in our data that is years and different crops . we consider row as years and columns as crops in equal number (number of rows =number of columns) .

We construct RBD with the help of MS-EXCEL the result obtain is as follow,

Hypotheses:

- 1) H₀₁: Average production for each year is significant. VS
 - H_{11} : Average production for each year is insignificant.
- 2) H_{02} : Average production of individual crop is significant.

VS

 H_{12} : Average production of individual crop is

insignificant.

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Rows	42.03695	13	3.233611	1.663626	0.072889	1.778459
Columns	1149.928	13	88.45596	45.50877	2.72E-48	1.778459
Error	328.4874	169	1.943712			
Total	1520.452	195				

From above table we observe that

$$(F_R)_{calculate} = 1.6636$$
 $(F_R)_{table} = 1.7784$ $(F_c)_{calculate} = 45.5088$ $(F_c)_{table} = 1.7784$

Decision rule:

If (F)_{calculate} >(F)_{table}, then we reject H₀ at α % level of significance, accept otherwise.

For row, $(F_R)_{calculate}$ < $(F_R)_{table}$, we accept H_0 at 5% level of significance . For column, $(F_c)_{calculate}$ > $(F_c)_{table}$, we reject H_0 at 5% level of significance .

Conclusion:

- 1) Average production for each year is significant.
- 2) Average production of individual crop is insignificant

CONCLUSION

- ➤ We conclude that the total production of an agriculture crop increases chronologically. This happens due to increase in human population and their requirement of feeds such as grains, vegetables etc.
- ➤ The production of all crops for year 2005-06 is 3839.02M.T and that of for year 2018-19 is 5306.94M.T, so the total production within 13 years is increased by 1467.92M.T.
- ➤ The production of year 2019-2020 will increase.
- Future forecasting helps government agencies to maintain their managements, so our future forecasted values are helpful for it.
- ➤ It is observe that the production of sugarcane increases largely and corresponding production of nutri goes on

decreasing.

- > Average production for all years are significant.
- > Average production of individual crop is insignificant.

References

- Fundamental of applied statistics.
- Fundamental of applied mathematical and statistics.

- Software MS-EXCEL , R-SOFTWARE ,MINI TAB,
- Agriculture wealfare department.

THANK YOU