Worksheet 1 Review

Hyungmo Gu

April 9, 2020

Question 1

- a. $A^c = \{1, 3, 4, 6\}$
- b. $A = U \setminus A$
- c. $A^c \cap B^c = \{x \mid x \in U, \ x \le 0 \text{ and } x \ge 4\}$ $A^c \cup B^c = \{x \mid x \in U, \ x < 1 \text{ and } x > 2\}$ $(A \cap B)^c = \{x \mid x \in U, \ x < 1 \text{ and } x > 2\}$

$$(A \cap B)^{\circ} = \{x \mid x \in U, \ x < 1 \text{ and } x > 2\}$$

 $(A \cup B)^c = \{x \mid x \in U, \ x \le 0 \text{ and } x \ge 4\}$

Correct Solution:

$$A^c \cap B^c = \{x \mid x \in U, \ x \le 0 \text{ or } x \ge 4\}$$

$$A^c \cup B^c = \{x \mid x \in U, \ x < 1 \text{ or } x > 2\}$$

$$(A \cap B)^c = \{x \mid x \in U, \ x < 1 \text{ or } x > 2\}$$

$$(A \cup B)^c = \{x \mid x \in U, \ x \le 0 \text{ or } x \ge 4\}$$

It follows from above that $A^c \cap B^c = (A \cup B)^c$ and $A^c \cup B^c = (A \cap B)^c$

Question 2

a.
$$T_0 = \{3, 6, 9, \dots\}$$

$$T_1 = \{1, 4, 7, \dots\}$$

$$T_2 = \{2, 5, 8, \dots\}$$

$$T_3 = \{6, 12, 18, \dots\}$$

b. A partition of \mathbb{Z} is $\{T_0, T_1, T_2\}$.

All four sets can't be used because elements in T_3 overlaps with T_0 . A partition cannot have any elements in common.

Notes:

• **Definition of Partition:** Let A be a set. A (finite or infinite) collection of nonempty sets $\{A_1, A_2, A_3\}$ is called a **partition** of A when (1) A is the union of all of the A_i , and (2) the sets A_1, A_2, A_3, \ldots do not have any element in common.

Question 3

a. All strings over the alphabet $\{0,1\}$ of length three are

000, 100, 010, 001, 110, 101, 011, 111

b.
$$S_1 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$$

 $S_2 = \{a, b, c, aa, bb, cc, \dots\}$
 $S_1 \cap S_2 = \{aa, bb, cc\}$
 $S_1 \setminus S_2 = \{ab, ac, ba, bc, ca, cb\}$

c.
$$S_1 = (S_1 \cap S_2) \cup (S_1 \setminus S_2)$$

d.		$\lfloor x \rfloor$	$\lceil x \rceil$
	$\frac{25}{4}$	6	7
	0.99	0	1
	-2.01	-3.0	-2.0

Notes:

- floor of a negative number: ceiling but with negative sign
- ceiling of a negative number: floor but with negative sign
- e. Domain of the floor & ceiling function: \mathbb{R} Codomain of the floor & ceiling function: \mathbb{N}

Question 4