Thermoelektrische Wandler

Manuel Maringolo | The Fundamentals of IoT | SS2021

Agenda

Elektronenverhalten bei Wärme

Halbleiter

Kalt

Warm

Halbleiter

Eigene Darstellung

P-Halbleiter

Positive Ladung

N-Halbleiter

Negative Ladung

Eigene Darstellung

Praxisbeispiele

Seebeck Effekt

https://www.cool-mania.net/mini/w-980/data/product/47/82f2151a301b9ba1118f52042d8fed.JPC

Perltier-Effekt

Thermopaar

https://www.fuehlersysteme.de/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/t/p/tpk_e_web_00.j

Peltier-Element

https://www.cool-mania.net/mini/w-980/data/product/47/82f2151a301b9ba1118f52042d8fed.JPG

Thermopaar

Peltier-Element

https://www.voelkner.de/products/54445/TDK-B57237-S109-M-Haissleiter-S237-1 html

Temperaturabhängiger Widerstand

Thermistor Kennlinie

NTC - Heißleiter

Negative Temperature Coeffizient

PTC - Kaltleiter

Positive Temperature Coeffizient

Thermistor Schaltzeichen

NTC - Heißleiter

Negative Temperature Coeffizient

nttps://upload.wikimedia.org/wikipedia/commons/e/ea/Widerstand_NTC_DIN-EN.svg

PTC - Kaltleiter

Positive Temperature Coeffizient

https://upload.wikimedia.org/wikipedia/commons/e/ee/Widerstand_PTC_DIN-EN.svg

Steinhart-Hart Gleichung

Ambient temperat e		Temperature coefficient	KTY81/210				KTY81/220			
(°C)	A	(%/K)	Resistance (Ω)			Temperature	Resistance (Ω)			Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
5	-67	29	951	980	1009	±3.02	941	9	1019	02
-50	-58	0.98	1000	1030	1059	±2.92	990	1030	1070	±3 4
-40	-40	0.96	1105	1135	1165	±2.74	100	1135	1176	±3.7
-30	-22	0.93	1218	1247	1277	±2.55	4 05	1247	1289	±3.62
-20	-4	0.91	38	1367	1396	±2.35	1325	1367	1410	±3.45
-10	14	0.88	146	1495	1523	±2.14	1452	1495	1538	±3.27
)	32	0.85	1603	1 630	1656	±1 °	1587	1630	1673	±3.08
10	50	0.83	1748	1 2	1797	.67	1730	1772	1814	±2.88
20	68	0.80	1901	1922	1944	±1.41	1881	1922	1963	±2.66
25	77	0.79	1980	2000	7	±1.27	1960	2000	2040	±2.54
30	86	0.78	2057	2080		±1.39	2036	2080	2123	±2.68
10	104	0.75	2217	2245	2272	±1.64	2194	2245	2295	±2.97
50	122	0.73	2383	2 1	2451	91	2359	2417	2475	±3.28
60	140	0.71	2557	2597	2637	±2.	2531	2597	2663	±3.61
70	158	0.69	272	2785	2832	±2.49	2709	2785	2860	±3.94
30	176	0.67	24	2980	3035	±2.8	2894	2980	3065	±4.3
90	194	0.65	3118	3182	3246	±3.12	86	3182	3278	±4.66
100	212	0.63	3318	3392	3466	±3.46	328	3392	3500	±5.0
10	230	0.50	3523	3607	3691	±3.93	3487	3607	3728	± 5 1
9	248	J3	3722	3817	3912	±4.7	3683	3 7	3950	5.59
25	257	0.49	3815	3915	4016	±5.26	3775	3915	4055	±7.31
30	25	0.44	3901	4008	4114	±6	3861	4008	15	±8.27
40	1	0.33	4049	4166	4283	±8.45	4008	4166	∠ 5	±11.46
150	302	0.20	4153	4280	4407	±14.63	4110	4280	4450	±19.56

$$T = \frac{1}{A + B \cdot \ln(R) + C \cdot \ln^3(R)}$$

T: Temperatur \rightarrow [T] = K

A, B & C: Steinhart-Hart-Koeffizienten

R: Widerstand bei Temperatur T \rightarrow [R] = Ω

Steinhart-Hart Gleichung

Ambient temperature		Temperature coefficient	KTY81/210				KTY81/220				
(°C)	(°F)	(%/K)	Resistance (Ω)			Temperature	Resistance (Ω)			Temperature	
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)	
-55	-67	0.99	951	980	1009	±3.02	941	980	1019	±4.02	
-50	-58	0.98	1000	1 030	1059	±2.92	990	1030	1070	±3.94	
-40	-40	0.96	1105	1135	1165	±2.74	1094	1135	1176	±3.78	
-30	-22	0.93	1218	1247	1277	±2.55	1205	1247	1289	±3.62	
-20	-4	0.91	1338	1367	1396	±2.35	1325	1367	1410	±3.45	
10	-11	0.00	1 107	1 105	1520	12.11	1 152	1 105	1500	±0.27	
0	32	0.85	1603	1 630	1656	±1.91	1587	1630	1673	±3.08	
10	50	0.83	1748	1//2	1797	±1.6/	1730	1772	1814	±2.88	
20	- 60	0.00	1001	1022	1011	11.11	1001	1022	1000	12.00	
25	77	0.79	1980	2000	2020	±1.27	1960	2000	2040	±2.54	
30	86	0.78	2057	2080	2102	±1.39	2036	2080	2123	±2.68	
40	104	0.75	2217	2245	2272	+1 64	2194	2245	2295	+2 97	
50	122	0.73	2383	2417	2451	±1.91	2359	2417	2475	±3.28	
00	140	0.71	2557	2337	2007	12.13	2501	2337	2000	10.01	
70	158	0.69	2737	2785	2832	±2.49	2709	2785	2860	±3.94	
80	176	0.67	2924	2980	3035	±2.8	2894	2980	3065	±4.3	
90	194	0.65	3118	3182	3246	±3.12	3086	3182	3278	±4.66	
100	212	0.63	3318	3392	3466	±3.46	3284	3392	3500	±5.05	
110	230	0.59	3523	3607	3691	±3.93	3487	3607	3728	±5.61	
120	248	0.53	3722	3817	3912	±4.7	3683	3817	3950	±6.59	
125	257	0.49	3815	3915	4016	±5.26	3775	3915	4055	±7.31	
130	266	0.44	3901	4008	4114	±6	3861	4008	4154	±8.27	
140	284	0.33	4049	4166	4283	±8.45	4008	4166	4325	±11.46	
150	302	0.20	4153	4280	4407	±14.63	4110	4280	4450	±19.56	

https://asset.conrad.com/media10/add/160267/c1/-/en/000181048DS01/datenblatt-181048-nxp-semiconductors-kty81220112-temperatursensor-50-bis-150-c-2000-to-92-radial-bedrahtet.pdf

https://www.thinksrs.com/downloads/programs/therm%20calc/ntccalibrator/ntccalculator.html

Beispiel

Beispiel

```
* Codebeispiel zur Berechnung der Temperatur mit Hilfe eines
#include <Arduino.h>
#define powerPin 21 //Pin für Strom
#define thermistorInputPin 26 //Analoger Input Pin des Temperatursensors
#define maxAnalogOutput 4095 //Maximaler Wert den der Thermistor ausgeben kann (Achtung: kein Ohm! Muss erst in Ohm umgerechnet werden)
#define T 25 25 //Raumtemperatur (sind bei dieser Berechnung immer 25°C)
#define R 25 2000 //Widerstand des Temperatursensors bei 25°C (Aus Datenblatt des Sensors zu entnehmen)
#define scA 0.02592894
#define scB -0.00373536
#define scC 1.3247E-05 //e-5 entspricht 10^-5
void setup(void) {
  Serial.begin(115200);
```

Feuchtigkeitssensor

Feuchtigkeitssensoren

Messverfahren

Kapazitive Messung

Elektrische Leitfähigkeit

Feuchtigkeitsänderung

Feuchtigkeitsänderung

Veränderung der Kapazität

Veränderung des Widerstandes

Beispiel eines Temperatur- und Feuchtigkeissensors an einem Arduino

Vielen Dank!

Noch Fragen?