C5 I	173 Lecture 4
Divisi	bility
·"di	vides : a divides b (a 1 b) for a, b E I iff b = an for some integer n
	710 since 0=7·n, n=0
	ox7 since 7=0·n to
	-3/12 since 12 =- 3 4
Proof	
- Ex	- prove: For any integers a, x, y, b, c, if alx and aly then albx+cy
	Let $a, x, y, b, c \in \mathbb{Z}$ and let $a \mid x$ and $a \mid y$. By definition of divides, $x = a - n$ and $y = a - n$ for some m , $n \in \mathbb{Z}$. Then $b \mid x + cy \mid = b(an) + c(am) = a(bn + cm)$.
	Since b, n, c, m & Z, bn+cm & Z, so a bx+cy.
GCD	and LCM
•60	D: greatest common divisors of integers a and b is the largest c such that clarandalb
·1f	gcd(a,b)=1, a and b are relatively prime
·LCM	- least common multiple of integers a, b is the smallest positive integer c such that alc and ble
Congi	rvence mod K
·If	K is any positive integer, then a and be are congruent mod K iff k a-b
	cally a and b differ by some multiple of K
·a	b (mod K) => b = a (mod K)
	not an operator aka a = k b
ex.	prove for any integers a, b, c, d, k where k > 0, if a = b (mod k) and c = d (mod k), then
•	$(a+c) \equiv (b+d) \pmod{k}$
	Lemma: Let's first prove that linearity of divides holds under addition. For a, b, k & Z,
interw	rediate step if k/a and k/b, then k/(a+b)
	Lemma proof: Let a, b, k EZ and suppose k/a and k/b. Then by definition of divides,
	$a = kn$ and $b = km$ for some $m, n \in \mathbb{Z}$. Then $a + b = kn + km = k(n+m)$, $n, m \in \mathbb{Z}$,
	n+m EZ by definition of divides k (a+b)
	Proof: Let a, b, c, d, k & Z where k>D such that a = b (mod k) and c = d (mod k). By
	congruency and k definition, k (a-b) and k (c-d). Using our lemma,
	k ((a-b) + (c-d)). This is equivalent to k ((catc) - (b+d)) so by definition,
	we know (a+c) = (b+d) (mod K)

Disc	บรรเจท	Prol	olems	2	-2ab	2 -	3 ~	2.	4a												
2.2	Thin	king a	bout 1	numbe	er theo	$\mathbf{r}\mathbf{y}$			2.3	2.3 Thinking about gcd											
	here an in		atisfying b	oth congr	ruences sin	nultaneous	sly? $x \equiv 7$	7 (mod 9)		following of tion (if true	bllowing claims true or false? Give a counter-example (if false) or an informal on (if true).										
	there an in		atisfying b	oth congr	uences sin	nultaneous	sly? $x \equiv 5$	5 (mod 6)	_ (a) For any positive integers p, q , and r , if $gcd(p, q) = 1$ and $gcd(q, r) = 1$, then $gcd(p, r) = 1$. 2.4 Proof using the divides relation												
	Prove the following claims directly from the de																				
									(a) The divides relation is transitive, i.e. for any integers a , b , and c , if $a \mid b$ and $b \mid c$, then												
2.2	a)	B	th	e d	lefinil	rion	of	w	dular	Con	gruenc	e,	℃ =	7 (mo	d 9)	meo	LNS	χ=	7+9,	م سال	erc
N	E 72	. a	nd	χ	= 5 (v	nod 1	2)	means	, 2	= 5 +	12 m	wh	ure	m E	Z.	Then	7+	9n =	5+12v	n,	
2 =	12 m	- 9n	,	$\frac{2}{3} = 4$	m - 31	n ,	which	n îs	inv	alid	bec	ause	m, h	67	- T	nerefo	re,	there	doe	5 1/0	t
exi	st 50	ome	intege	u x	s.t	χ	= 7(mod	9)	and	x = 5	(mod	(12)								
			e de											means	χ:	5+6	m u	vhere	м Е	Z	
and			od 10)		ans				•												
1 = 6	5n-3	m,	lf													· '			,	9=1)	•
			(3)=																		
			e,																		
			4 ≠			10	,		,	J	,			0		,					
2.40	,				Ь, С	£ -	7	let	a	b	and	6/0	. 8	u t	he a	lefini	tion	of	div	رخفان	
	′		c:		,		,							′							D .
			7_																		,
C	1	P	Salar-		1100	your.								/		0	0.				