Introduction à la simulation moléculaire et au modèle de Hartree-Fock

Eric CANCES

Ecole Polytechnique - MAP 583

1 - Overview of electronic structure models

Molecular biology

Nanotechnology

First-principle molecular simulation

ullet A molecular system is a set of M nuclei and N electrons.

ullet The state space $\mathcal{H} \subset L^2(\mathbb{R}^{3(M+N)}, \mathbb{C}^s)$, the Hamiltonian and the other observables of the molecule can be deduced from its chemical formula:

$$H^{\text{mol}} = -\sum_{k=1}^{M} \frac{1}{2m_k} \Delta_{\mathbf{R}_k} - \sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_i} - \sum_{i=1}^{N} \sum_{k=1}^{M} \frac{z_k}{|\mathbf{r}_i - \mathbf{R}_k|} + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{1 \le k < l \le M} \frac{z_k z_l}{|\mathbf{R}_k - \mathbf{R}_l|}$$

Atomic units:
$$\hbar = 1$$
, $m_e = 1$, $e = 1$, $4\pi\varepsilon_0 = 1$.

This model is free of empirical parameters specific to the system.

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be solved. (Dirac, 1929)

Ionization energy of Helium (Nakatsuji et al., '01):

$$\mathbf{He} + \mathbf{h} \nu \rightarrow \mathbf{He}^+ + \mathbf{e}^-$$

Ground state energy of He

exp.: 5 945 204 238 MHz ('97)

Ground state energy of He

$$H_{\rm He} = -\frac{1}{2m}\Delta_{\mathbf{R}} - \frac{1}{2}\Delta_{\mathbf{r}_1} - \frac{1}{2}\Delta_{\mathbf{r}_2} - \frac{2}{|\mathbf{r}_1 - \mathbf{R}|} - \frac{2}{|\mathbf{r}_2 - \mathbf{R}|} + \frac{1}{|\mathbf{r}_2 - \mathbf{R}|} + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} + \mathbf{Breit terms}$$

$$H_{\mathrm{He}^+} = -\frac{1}{2m}\Delta_{\mathbf{R}} - \frac{1}{2}\Delta_{\mathbf{r}_1} - \frac{2}{|\mathbf{r}_1 - \mathbf{R}|} + \mathbf{Breit terms}, \qquad m =$$

$$m = 7294.2984 \cdots$$
 a.u.

1 - Overview of electronic structure models

The electronic problem for a fixed nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$

$$H_N^{\{\mathbf{R}_k\}} = -\sum_{i=1}^N \frac{1}{2} \Delta_{\mathbf{r}_i} - \sum_{i=1}^N \sum_{k=1}^M \frac{z_k}{|\mathbf{r}_i - \mathbf{R}_k|} + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \quad \text{on} \quad \bigwedge_{i=1}^N \mathbb{C}^2(\mathbb{R}^3, \mathbb{C}^2)$$

(Pauli principle)

Zhislin's theorem : if $N \le \sum_{k=1} z_k$ (neutral or positively charged system), then $\sigma(H_N^{\{\mathbf{R}_k\}}) = \left\{ E_0^{\{\mathbf{R}_k\}} \le E_1^{\{\mathbf{R}_k\}} \le E_2^{\{\mathbf{R}_k\}} \cdots \right\} \cup [\Sigma^{\{\mathbf{R}_k\}}, +\infty).$

Ground state Excited states

Essential spectrum

The electronic problem for a fixed nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$

$$H_N^{\{\mathbf{R}_k\}} = -\sum_{i=1}^N \frac{1}{2} \Delta_{\mathbf{r}_i} - \sum_{i=1}^N \sum_{k=1}^M \frac{z_k}{|\mathbf{r}_i - \mathbf{R}_k|} + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \quad \text{on} \quad \bigwedge L^2(\mathbb{R}^N)$$

 $\bigwedge L^2(\mathbb{R}^3,\mathbb{C}^2)$

(Pauli principle)

The bound states are obtained by solving the Schrödinger equation

$$\left(-\frac{1}{2}\sum_{i=1}^{N} \Delta_{\mathbf{r}_i} + \sum_{i=1}^{N} V_{\{\mathbf{R}_k\}}^{\text{ne}}(\mathbf{r}_i) + \sum_{1 \leq i < j \leq N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}\right) \Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N) = E \Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$

$$\forall p \in \mathfrak{S}_N, \qquad \Psi(\mathbf{x}_{p(1)}, \cdots, \mathbf{x}_{p(N)}) = \varepsilon(p)\Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$

$$\mathbf{x}_i = (\mathbf{r}_i, \sigma_i) \in \mathbb{R}^3 \times \{|\uparrow\rangle, |\downarrow\rangle\}$$
 position and spin,

$$V_{\{\mathbf{R}_k\}}^{\mathrm{ne}}(\mathbf{r}) = -\sum_{k=1}^{\mathbf{r}} rac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$$

1 - Overview of electronic structure models

Potential energy surfaces :
$$W_n(\mathbf{R}_1,\cdots,\mathbf{R}_M)=E_n^{\{\mathbf{R}_k\}}+\sum_{1\leq k< l\leq M}\frac{z_kz_l}{|\mathbf{R}_k-\mathbf{R}_l|}$$

Born-Oppenheimer approximation of the full Schrödinger equation:

- ullet adiabatic approximation : electron mass \ll masses of the nuclei
- ullet semiclassical approximation on the nuclear dynamics: $\hbar \to 0$.
- Classical molecular dynamics on the ground state PES.

1 - Overview of electronic structure models

Beyond the Born-Oppenheimer approximation

Quantum nuclear dynamics

Electronic excited states

Non-adiabatic electronic dynamics

Applications in molecular biology, photochemistry, femtochemistry, laser control of molecular processes, ...

Mathematical contributions by Hagedorn, Joye, Panati, Spohn, Teufel, Fermanian, Lasser, Lubich, ...

Zewail's group (Caltech)

Main challenge in first principle molecular simulation:

- solve numerically the electronic Schrödinger equation (3N dim. PDE)
- up to chemical accuracy

energy of a C atom : ~ 100 ha

energy of a H atom: 0.5 ha

energy of a covalent bond : ~ 0.15 ha (100 kcal/mol)

electronic excitation energy : ~ 0.03 ha (1 eV)

energy of a hydrogen bond : $\sim 0.003~ha~(2~kcal/mol)$

 k_BT at room temperature : \sim 0.001 ha (1/40 eV)

van der Waals characteristic energy : \sim 0.0003 ha (0.2 kcal/mol)

spectroscopic accuracy : \sim 0.000005 ha (1 cm $^{-1}$ =29,470 MHz)

1 - Overview of electronic structure models

Methods for electronic structure calculations

2 - Mathematical formulation of the Hartree-Fock model

From now on,

ullet the positions of the nuclei are fixed : we drop the superscript $\{\mathbf{R}_k\}$;

• we omit the spin variable.

2 - Mathematical formulation of the Hartree-Fock model

Variational expression of the ground state energy

$$E_0 = \inf\left\{ \langle \psi | H_N | \psi \rangle, \ \psi \in \mathcal{W}_N \right\} \qquad \mathcal{W}_N = \left\{ \psi \in \bigwedge^N H^1(\mathbb{R}^3), \ \|\psi\|_{L^2} = 1 \right\}$$

Hartree-Fock approximation : minimize the exact energy $\langle \psi | H_N | \psi \rangle$ on the subset of \mathcal{W}_N defined as

$$\begin{cases} \psi_{\Phi} = \phi_1 \wedge \dots \wedge \phi_N, \ \Phi = (\phi_1, \dots, \phi_N) \in (H^1(\mathbb{R}^3))^N, \ \int_{\mathbb{R}^3} \phi_i \phi_j = \delta_{ij} \end{cases}$$

$$\psi_{\Phi}(\mathbf{r}_1, \dots, \mathbf{r}_N) \stackrel{\mathbf{def}}{=} \frac{1}{\sqrt{N!}}$$

$$\psi_{\Phi}(\mathbf{r}_1, \dots, \mathbf{r}_N) \stackrel{\mathbf{def}}{=} \frac{1}{\sqrt{N!}}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\phi_N(\mathbf{r}_1) \ \phi_N(\mathbf{r}_2) \ \dots \ \phi_N(\mathbf{r}_N)$$
(Slater determinant)

Molecular orbital formulation of the Hartree-Fock model

$$E_0 \le E_0^{\mathrm{HF}} = \inf \left\{ E^{\mathrm{HF}}(\Phi), \ \Phi = (\phi_1, \cdots, \phi_N) \in (H^1(\mathbb{R}^3))^N, \ \int_{\mathbb{R}^3} \phi_i \phi_j = \delta_{ij} \right\}$$

$$E^{\mathrm{HF}}(\Phi) = \frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^3} |\nabla \phi_i|^2 + \int_{\mathbb{R}^3} \rho_{\Phi} V^{\mathrm{ne}}$$

$$+ \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho_{\Phi}(\mathbf{r}) \, \rho_{\Phi}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' - \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|\gamma_{\Phi}(\mathbf{r}, \mathbf{r}')|^2}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, c$$
Coulomb term
exchange term

 $ho_{\Phi}(\mathbf{r}) = \sum_{i=1} |\phi_i(\mathbf{r})|^2.$ $\gamma_{\Phi}(\mathbf{r},\mathbf{r}') = \sum_{i=1}^N \phi_i(\mathbf{r}) \, \phi_i(\mathbf{r}'),$ $V^{\mathrm{ne}}(\mathbf{r}) = -\sum_{k=1} rac{z_k}{|\mathbf{r} - \mathbf{R}_k|},$

Invariance property : if $\Phi \in (H^1(\mathbb{R}^3))^N$ satisfies the L^2 -orthonormality constraints, then so does ΦU for all $U \in O(N)$ and $E(\Phi U) = E(\Phi)$. Theorem. Assume that $N \leq Z := \sum_{k=1}^{M} z_k$ (neutral or positively charged molecular system). Then

- 1. the HF model has a ground state $\Phi^0=(\phi_1^0,\cdots,\phi_N^0)$ (Lieb & Simon '77);
- 2. Euler-Lagrange equations : there exists $\lambda \in \mathbb{R}^{N \times N}$ symmetric such that

$$\begin{cases} \Phi^0 = (\phi_1^0, \cdots, \phi_N^0) \in (H^1(\mathbb{R}^3))^N \\ -\frac{1}{2} \Delta \phi_i^0 + V^{\text{ne}} \phi_i^0 + \left(\rho_{\Phi^0} \star |\cdot|^{-1}\right) \phi_i^0 - \int_{\mathbb{R}^3} \frac{\gamma_{\Phi^0}(\cdot, \mathbf{r}')}{|\cdot - \mathbf{r}'|} \phi_i^0(\mathbf{r}') d\mathbf{r}' = \sum_{j=1} \lambda_{ij} \phi_j^0 \end{cases}$$

3. Elliptic regularity : $\phi_i^0 \in H^2(\mathbb{R}^3) \cap C^{0,1}(\mathbb{R}^3) \cap C^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{R}_k\})$;

 $\int_{\mathbb{R}^3} \phi_i^0 \phi_j^0 = \delta_{ij};$

Theorem (continued).

4. Fock operator:

$$\mathcal{F}_{\Phi^0} := -\frac{1}{2} \Delta + V^{\mathrm{ne}} + \rho_{\Phi^0} \star |\cdot|^{-1} + \mathcal{K}_{\Phi^0} \quad \text{where} \quad (\mathcal{K}_{\Phi^0} \phi)(\mathbf{r}) = -\int_{\mathbb{R}^3} \frac{\gamma_{\Phi^0}(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \phi(\mathbf{r}') \, d\mathbf{r}'$$

is a self-adjoint operator on $L^2(\mathbb{R}^3)$ with domain $H^2(\mathbb{R}^3)$. It is bounded below and $\sigma_{\rm ess}(H_0)=[0,+\infty)$; 5. Hartree-Fock equations : up to replacing Φ^0 by Φ^0U for some $U \in O(N)$,

$$\mathcal{F}_{\Phi^0}\phi_i^0=\varepsilon_i\phi_i^0, \qquad \int_{\mathbb{R}^3}\phi_i^0\phi_j^0=\delta_{ij}, \qquad \varepsilon_1\leq \cdots\leq \varepsilon_N<0;$$

6. Aufbau principle: $\varepsilon_1 \le \varepsilon_2 \le \cdots \le \varepsilon_N$ are the lowest N eigenvalues of \mathcal{F}_{Φ^0} ;

where ε_{N+1} is the $(N+1)^{st}$ eigenvalue of \mathcal{F}_{Φ^0} (counting multiplicities) if 7. No unfilled-shell property (Bach, Lieb, Loss, Solovej '94): $\varepsilon_N < \varepsilon_{N+1}$ \mathcal{F}_{Φ^0} has at least (N+1) negative eigenvalues and 0 otherwise.

3 - Discretization of the Hartree-Fock model

Galerkin Approximation

 $\mathcal{X} = \mathbf{Span}(\chi_1, \cdots, \chi_{N_b})$ subspace of $H^1(\mathbb{R}^3)$ of finite finite dimension N_b .

$$E_0 \le E_0^{\mathrm{HF}} \le E_{0,\mathcal{X}}^{\mathrm{HF}} = \inf \left\{ E^{\mathrm{HF}}(\Phi), \Phi = (\phi_1, \cdots, \phi_N) \in \mathcal{X}^N, \int_{\mathbb{R}^3} \phi_i \phi_j = \delta_{ij} \right\}$$

$$\Phi = (\phi_1, \cdots, \phi_N) \in \mathcal{X}^N \quad \Rightarrow \quad \phi_i(\mathbf{r}) = \sum_{\mu=1}^{N_b} C_{\mu i} \chi_{\mu}(\mathbf{r})$$

3 - Discretization of the Hartree-Fock model

Discretized formulation of the Hartree-Fock model

$$E_{0,\mathcal{X}}^{\mathrm{HF}} = \inf \left\{ E^{\mathrm{HF}}(CC^T), \ C \in \mathbb{R}^{N_b \times N}, \ C^T S C = I_N \right\}$$

$$E^{\mathrm{HF}}(D) = \mathbf{Tr}(hD) + \frac{1}{2}\mathbf{Tr}(G(D)D), \qquad [G(D)]_{\mu\nu} = \sum_{\kappa\lambda} \left[(\mu\nu|\kappa\lambda) - (\mu\lambda|\kappa\nu) \right] \, D_{\kappa\lambda}$$

Electronic integrals

$$ullet$$
 Overlap matrix : $S_{\mu
u} = \int_{\mathbb{R}^3} \chi_\mu \chi_
u$

$$\bullet \ \, \text{Core Hamiltonian matrix} : h_{\mu\nu} = \frac{1}{2} \int_{\mathbb{R}^3} \nabla \chi_{\mu} \cdot \nabla \chi_{\nu} - \sum_{k=1}^M z_k \int_{\mathbb{R}^3} \frac{\chi_{\mu}(\mathbf{r}) \chi_{\nu}(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_k|} \, d\mathbf{r}$$

$$\bullet \ \, \text{Two-electron integrals:} \ (\mu\nu|\kappa\lambda) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\chi_{\mu}(\mathbf{r})\chi_{\nu}(\mathbf{r})\chi_{\kappa}(\mathbf{r}')\chi_{\lambda}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}'$$

3 - Discretization of the Hartree-Fock model

Fundamental remark (Boys 1950) : if the χ_{μ} are gaussian-polynomials

$$\chi_{\mu}(\mathbf{r}) = p(\mathbf{r}) \exp(-\alpha |\mathbf{r}|^2)$$

then the one-electron integrals

$$S_{\mu\nu} = \int_{\mathbb{R}^3} \chi_{\mu} \chi_{\nu}, \qquad h_{\mu\nu} = \frac{1}{2} \int_{\mathbb{R}^3} \nabla \chi_{\mu} \cdot \nabla \chi_{\nu} + \int_{\mathbb{R}^3} V^{\mathrm{ne}} \chi_{\mu} \chi_{\nu}$$

and the two-electron integrals

$$(\mu\nu|\kappa\lambda) = \int_{\mathbb{R}^3} \frac{\chi_{\mu}(\mathbf{r})\chi_{\nu}(\mathbf{r})\chi_{\kappa}(\mathbf{r}')\chi_{\lambda}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

can be computed analytically.

Atomic orbital basis sets

- of gaussian polynomials are associated with each chemical element A of 1. A collection $\{\xi_{\mu}^A\}_{1\leq\mu\leq r_A}$ of n_A linearly independent linear combination the periodic table : these are the atomic orbitals of A.
- 2. To perform a calculation on a given chemical system, one builds a basis $\{\chi_{\mu}\}$ by putting together all the atomic orbitals related to all the atoms of the system.

Example of the water molecule H_2O

$$\{\chi_{\mu}\} = \{\xi_{1}^{H}(\mathbf{r} - \mathbf{R}_{H_{1}}), \cdots, \xi_{n_{H}}^{H}(\mathbf{r} - \mathbf{R}_{H_{1}}); \xi_{1}^{H}(\mathbf{r} - \mathbf{R}_{H_{2}}), \cdots, \xi_{n_{H}}^{H}(\mathbf{r} - \mathbf{R}_{H_{2}});$$

 $\xi_{1}^{O}(\mathbf{r} - \mathbf{R}_{O}), \cdots, \xi_{n_{O}}^{O}(\mathbf{r} - \mathbf{R}_{O})\},$

where \mathbf{R}_{H_1} , \mathbf{R}_{H_2} and \mathbf{R}_O denote the positions in \mathbb{R}^3 of the Hydrogen nuclei and of the Oxygen nucleus respectively.

3 - Discretization of the Hartree-Fock model

Molecular orbital formulation

For simplicity, the basis $\{\chi_{\mu}\}_{1\leq\mu\leq N_b}$ is assumed to be orthonormal.

$$E_{0,\mathcal{X}}^{\mathrm{HF}} = \inf\left\{E^{\mathrm{HF}}(CC^T), \ C \in \mathcal{C}\right\}$$

$$\mathcal{C} = \left\{ C \in \mathbb{R}^{N_b imes N}, \ C^T \, C = I_N
ight\}$$
 (Stiefel manifold)

$$E^{\mathrm{HF}}(D) = \mathbf{Tr}(hD) + rac{1}{2}\mathbf{Tr}(G(D)D)$$
 \uparrow
 \uparrow
Innear quadratic

3 - Discretization of the Hartree-Fock model

When C varies in the set

$$C = \left\{ C \in \mathbb{R}^{N_b \times N}, \ C^T C = I_N \right\},$$

 $D = CC^T$ varies in the set

$$\mathcal{P} = \{ D \in \mathbb{R}^{N_b \times N_b}, \ D = D^T, \ \mathbf{Tr}(D) = N, \ D^2 = D \}$$

(Grassmann manifold) = { set of rank-N orthogonal projectors }

Density matrix formulation

$$E_{0,\mathcal{X}}^{\mathrm{HF}} = \inf \left\{ E^{\mathrm{HF}}(D), \ D \in P \right\}$$

$$E^{\mathrm{HF}}(D) = \mathbf{Tr}(hD) + \frac{1}{2}\mathbf{Tr}(G(D)D)$$

quadratic

linear

$$\mathcal{P} \ = \ \left\{ D \in \mathbb{R}^{N_b \times N_b}, \ D = D^T, \ \mathbf{Tr}(D) = N, \ D^2 = D \right\}$$

$$= \ \left\{ \ \mathbf{rank-}N \ \mathbf{orthogonal projectors} \ \right\}$$

Numerical simulations show that the (discretized) Hartree-Fock problem has many local minima.

Local optimization methods usually lead to local, non global, minima.

Most numerical methods aim at solving the associated Euler-Lagrange equation by a fixed point method.

Let us denote by F(D) = h + G(D) the Fock matrix, i.e. the gradient of

$$E^{\mathrm{HF}}(D) = \mathbf{Tr}(hD) + \frac{1}{2}\mathbf{Tr}(G(D)D).$$

Necessary conditions for D being a minimizer of the HF energy

$$(F(D)\Phi_i = \varepsilon_i \, \Phi_i$$

$$\Phi_i^T\Phi_j=\delta_{ij}$$

 $\varepsilon_1 \le \varepsilon_2 \le \cdots \le \varepsilon_N$ are the lowest N eigenvalues of F(D)

$$D = \sum_{i=1}^{N} \Phi_i \Phi_i^T$$

Roothaan algorithm

$$\begin{cases} F(D^k)\Phi_i^{k+1} = \varepsilon_i^{k+1}\Phi_i^{k+1} \\ \Phi_i^{k+1}T\Phi_j^{k+1} = \delta_{ij} \end{cases}$$

$$\begin{cases} \varepsilon_i^{k+1} \leq \varepsilon_2^{k+1} \leq \cdots \leq \varepsilon_N^{k+1} \text{ are the lowest } N \text{ eigenvalues of } F(D^k) \\ \varepsilon_1^{k+1} \leq \varepsilon_2^{k+1} \leq \cdots \leq \varepsilon_N^{k+1} \end{cases}$$

Theorem. The sequence (D_k) generated by the Roothaan algorithm satisfies one of the following two properties:

- ullet either (D_k) converges towards an Aufbau solution to the HF equations;
- ullet or (D_k) oscillates between two states, none of them being an Autbau solution to the HF equations.

Ground state calculations of atoms with the Roothaan algorithm

Convergence to another solution to the HF equations

Convergence to the ground state

Oscillation

Not available

Calculations performed with the DIIS algorithm (Pulay 1982, default algorithm in several codes)

Energy of D^0 (Ha) Energy at convergence (Ha)	-375.3869 Does not CV	00 -2085.5449 39 -2085.4042	96 -1717.8928 -1717.7355
Energy of D	-374.0038	-2069.5400	-1700.7596
System	$\mathbf{CH}_{3}\text{-}\mathbf{NH}\text{-}\mathbf{CH}\text{=}\mathbf{CH}\text{-}\mathbf{NO}_{2}$ $6\text{-}\mathbf{31G}$	\mathbf{Cr}_2 6-31G	$[{f Fe}({f H}_2{f O})_6]^{2+}$ 178 AO

Relaxed Constrained Algorithm

Replace the Hartree-Fock problem

$$\inf\left\{E^{\mathrm{HF}}(D),\ D\in\mathcal{P}\right\}$$

$$\mathcal{P} = \left\{ D \in \mathbb{R}^{N_b \times N_b}, \ D^T = D, \ \mathbf{Tr}(D) = N, \ D^2 = D \right\}$$

by

$$\inf\left\{E^{\mathrm{HF}}(D),\ D\in\widetilde{\mathcal{P}}\right\}$$

$$\widetilde{\mathcal{P}} = \left\{ D \in \mathbb{R}^{N_b \times N_b}, \ D^T = D, \ \mathbf{Tr}(D) = N, \ D^2 \le D \right\}$$

Fundamental property: (1) and (2) have the same local minima (discrete counterpart of Lieb's variational principle, Lieb '81).

What is gained: the set \overline{P} is convex

Proof. Assume that \widetilde{D} is a minimizer of E^{HF} on $\widetilde{\mathcal{P}}$ that does not verify the constraint $D^2 = D$.

The optimality conditions lead to

$$\widetilde{D} = \sum_{\varepsilon_i < \varepsilon_F} \Phi_i \Phi_i^T + \sum_{\varepsilon_j = \varepsilon_F} n_j \Phi_j \Phi_j^T \quad \text{with } 0 \le n_j \le 1.$$

By transfering $0 < \delta n \ll 1$ electron from Φ to Φ' , one obtains Let Φ and Φ' two partially occupied orbitals (0 < n, n' < 1).

$$\widetilde{D}' = \widetilde{D} + \delta n \, \left(\Phi' \Phi'^T - \Phi \Phi^T \right) \quad \in \widetilde{\mathcal{P}}$$

and

$$\Delta E = E^{\mathrm{HF}}(\widetilde{D}') - E^{\mathrm{HF}}(\widetilde{D}) = -\frac{\delta n^2}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|\phi(\mathbf{r}) \, \phi'(\mathbf{r}') - \phi(\mathbf{r}') \, \phi'(\mathbf{r})|^2}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} \, d\mathbf{r}' < 0,$$
where $\phi(\mathbf{r}) = \sum_{\mu=1}^{N_b} \Phi_{\mu} \chi_{\mu}(\mathbf{r})$ and $\phi'(\mathbf{r}) = \sum_{\mu=1}^{N_b} \Phi'_{\mu} \chi_{\mu}(\mathbf{r})$.

Optimal Damping Algorithm (ODA)

"Optimal step gradient":

1. Calculation of a descent direction $d=D^{k+1}-\widetilde{D}^k$ where

$$D^{k+1} = \operatorname{arginf} \left. \left\{ \frac{d}{d\lambda} E \left(\tilde{D}^k + \lambda (\tilde{D} - \tilde{D}^k) \right) \right|_{\lambda = 0}, \; \tilde{D} \in \tilde{\mathcal{P}} \right\} \; ;$$

2. Line search : set $\widetilde{D}^{k+1} = \operatorname{arginf}\left\{E(\widetilde{D}),\ \widetilde{D} \in \operatorname{Seg}[\widetilde{D}^k,D^{k+1}]\right\}$ where

$$\mathbf{Seg}[\widetilde{D}^k, D^{k+1}] = \left\{ (1 - \lambda)\widetilde{D}^k + \lambda D^{k+1}, \ \lambda \in [0, 1] \right\}.$$

ODA steepest descent calculation

$$D^{k+1} = \underset{\text{arginf}}{\operatorname{arginf}} \left\{ \frac{d}{d\lambda} E^{\operatorname{HF}} \left(\tilde{D}^k + \lambda (\tilde{D} - \tilde{D}^k) \right) \Big|_{\lambda = 0}, \ \tilde{D} \in \tilde{\mathcal{P}} \right\}$$

$$= \underset{\text{arginf}}{\operatorname{arginf}} \left\{ \operatorname{Tr}(F(\tilde{D}^k)D), \ D \in \mathcal{P} \right\}$$

$$\begin{cases} D^{k+1} = \sum_{i=1}^{N} \Phi_i^{k+1} \Phi_i^{k+1} T \\ F(\widetilde{D}^k) \Phi_i^{k+1} = \varepsilon_i^{k+1} \Phi_i^{k+1} \end{cases}$$

$$\left\{egin{array}{l} arepsilon_1^{k+1} \le arepsilon_2^{k+1} \le \cdots \le arepsilon_N^{k+1} \ ext{are the lowest } N \ ext{eigenvalues of} \ F(\widetilde{D}^k) \end{array}
ight.$$

 $\Phi_i^{k+1} \, {}^T\!\Phi_j^{k+1} = \delta_{ij}$

4 - SCF algorithms

Comparison between DIIS (defaut algorithm in Gaussian 98) and ODA (default algorithm in Gaussian 03).

System	$E^{RHF}(D_0)$	DIIS (Ha)	ODA (Ha)	ODA (Ha) ΔE (kcal/mol)
$\mathbf{CH}_{3}\mathbf{-NH-CH}=\mathbf{CH-NO}_{2}$ $\mathbf{6-31G}$	-374.0038	-375.3869 Does not CV	-375.3869	0 -
\mathbf{Cr}_2 6-31G	-2069.5400	-2085.5449	-2085.8060	163.71 251.93
${f [Fe(H_2O)_6]^{2+}}$ 178 AO	-1700.7596	-1717.8928	-1718.0151	76.68

5 - Limitations of the Hartree-Fock method

Correlation energy

$$E_{\text{correlation}} := E_0^{\text{HF}} - E_0 \ge 0.$$

Three situations may occur:

- 1. Hartree-Fock is accurate enough for the purpose of the study
- 2. Hartree-Fock is not accurate enough but the N-body ground state can be correctly approximated by a "small" number of Slater determinants

Multiconfigurations or DFT \uparrow Non dynamical correlation

3. The ground state cannot be correctly approximated by a "small" number of Slater determinants

Quantum Monte Carlo or DFT 介 Dynamical correlation

5 - Limitations of the Hartree-Fock method

Example when the Hartree-Fock approximation works well:

System Bulk	Bulk modulus HF	modulus HF Bulk modulus exp. Relative error	Relative error
$\mathbf{Al}_2\mathbf{O}_3$	287	261	+10 %
BeO	253	224	+12 %
$MgAl_2O_4$	227	206	+10 %
MgO	186	167	+11.4 %
CaO	128	120	% L'9+
\mathbf{MgCO}_3	125	117	+6.8 %
$CaCO_3$	75.3	79.9	-5.8 %

5 - Limitations of the Hartree-Fock method

Example of non-dynamical correlation: dissociation of H₂

Example of dynamical correlation: CuCl₂ (Daudey et al., 2005)

Transition between two electronic states : $X^2\Pi_g -^2\Delta_g$

Wavenumber in cm⁻¹ Number of config. Method

5273

5984

Hartree-Fock

22 920

7130/7753/7780/7893 + ACPF

The Hartree-Fock problem is now well understood from both theoretical and numerical viewpoints. • Theoretical foundations (1977-1994): V. Bach, E.H. Lieb, P-L. Lions, M. Loss, B. Simon, J.-P. Solovej, ... • Numerical analysis (1999-2013): E.C., C. Le Bris, A. Levitt, Y. Maday, G. Turinici, ... The simulation of very large molecular systems still is an active field of research.