SUCESSÕES E SÉRIES

<u>Definição</u>: Chama-se *sucessão de números reais* a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

$$u: IN \to IR$$

$$n \to u(n) = u_n$$

Definição:

i) $(u_n)_{n \in IN}$ é crescente $\Leftrightarrow \forall n \in IN, u_{n+1} \ge u_n$

ii) $(u_n)_{n \in IN}$ é estritamente crescente $\Leftrightarrow \forall n \in IN, u_{n+1} > u_n$

 $iii)(u_n)_{n\in\mathbb{IN}}$ é decrescente $\Leftrightarrow \forall n\in\mathbb{IN}, u_{n+1}\leq u_n$

iv) $(u_n)_{n \in IN}$ é estritamente decrescente $\Leftrightarrow \forall n \in IN, u_{n+1} < u_n$

<u>Definição</u>: Chama-se *série numérica* ou *série de números reais* a uma expressão que se pode escrever na forma

$$\sum_{n=1}^{+\infty} u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots$$

em que $u_1, u_2, u_3 \dots$ são designados por termos da série e u_n termo geral.

<u>Definição</u>: Designa-se por *sucessão das somas parciais* ou *sucessão associada* à série $\sum_{n=1}^{+\infty} u_n$, a sucessão de termo geral

$$S_n = u_1 + u_2 + u_3 + \dots + u_n = \sum_{k=1}^n u_k$$

<u>Definição</u>: Uma série numérica $\sum_{n=1}^{+\infty} u_n$, diz-se convergente se e somente se $(S_n)_{n\in IN}$ é convergente.

Definição: Uma série numérica do tipo

$$\sum_{n=0}^{+\infty} a r^n = a + ar + ar^2 + ar^3 + \dots, \quad a, r \in \mathbb{R} \setminus \{0\}$$

designa-se por Série Geométrica.

<u>Teorema:</u> Uma série geométrica converge se |r| < 1 e diverge se $|r| \ge 1$.

Definição: Uma série numérica do tipo

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \dots, \quad \alpha \in]0, +\infty[$$

designa-se por Série de Dirichelet (ou de Riemann).

<u>Teorema:</u> Uma série de Dirichelet converge se $\alpha > 1$ e diverge se $0 < \alpha \le 1$.

Teorema:

- *i*) Se $\sum_{n=1}^{+\infty} u_n$ e $\sum_{n=1}^{+\infty} v_n$ são duas séries convergentes e $a \in IR$, então:
 - a) a série $\sum_{n=1}^{+\infty} a u_n$ é convergente e tem-se $\sum_{n=1}^{+\infty} a u_n = a \sum_{n=1}^{+\infty} u_n$
 - **b**) a série $\sum_{n=1}^{+\infty} (u_n \pm v_n)$ é convergente e tem-se $\sum_{n=1}^{+\infty} (u_n \pm v_n) = \sum_{n=1}^{+\infty} u_n \pm \sum_{n=1}^{+\infty} v_n$
- *ii*) Se $\sum_{n=1}^{+\infty} u_n$ é convergente e $\sum_{n=1}^{+\infty} v_n$ é divergente então a série $\sum_{n=1}^{+\infty} (u_n + v_n)$ é divergente.

<u>Teorema:</u> Se $\sum_{n=1}^{+\infty} u_n$ é convergente então $\lim_{n \to +\infty} u_n = 0$.

<u>Teorema:</u> Se $\lim_{n\to +\infty} u_n$ não existe ou $\lim_{n\to +\infty} u_n \neq 0$, então $\sum_{n=1}^{+\infty} u_n$ é divergente.

SÉRIES NUMÉRICAS DE TERMOS NÃO NEGATIVOS

Teorema: (1º Critério de Comparação)

Seja $u_n \ge 0$, $v_n \ge 0$ e $u_n \le v_n$, $\forall n \in IN$, então:

- *i*) Se a série $\sum_{n=1}^{+\infty} v_n$ é convergente então a série $\sum_{n=1}^{+\infty} u_n$ é convergente.
- *ii*) Se a série $\sum_{n=1}^{+\infty} u_n$ é divergente então a série $\sum_{n=1}^{+\infty} v_n$ é divergente.

Teorema: (2º Critério de Comparação)

Seja $u_n \ge 0$, $v_n > 0$ e $\lim_{n \to +\infty} \frac{u_n}{v_n} = L$, $\forall n \in IN$, então:

- i) Se $L \neq 0, +\infty$ então as séries $\sum_{n=1}^{+\infty} u_n$ e $\sum_{n=1}^{+\infty} v_n$ são da mesma natureza.

Teorema: (Critério de Cauchy ou da Raiz)

Seja $u_n \ge 0$ e $\lim_{n \to +\infty} \sqrt[n]{u_n} = L$, $\forall n \in IN$, então:

- i) Se L < 1 então a série $\sum_{n=1}^{+\infty} u_n$ é convergente.
- *ii*) Se L > 1 então a série $\sum_{n=1}^{+\infty} u_n$ é divergente.
- *iii*) Se L=1 então nada se pode concluir, excepto se $\sqrt[n]{u_n} \to 1$ por valores superiores, e, neste caso, a série $\sum_{n=1}^{+\infty} u_n$ é divergente.

Teorema: (Critério de D'Alembert ou da Razão)

Seja $u_n > 0$ e $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = L$, $\forall n \in \mathbb{IN}$, então:

- *i*) Se L < 1 então a série $\sum_{n=1}^{+\infty} u_n$ é convergente.
- *ii*) Se L > 1 então a série $\sum_{n=1}^{+\infty} u_n$ é divergente.
- iii) Se L=1 então nada se pode concluir, excepto se $\frac{u_{n+1}}{u_n} \to 1$ por valores superiores, e, neste caso, a série $\sum_{n=1}^{+\infty} u_n$ é divergente.

Teorema: (Critério de Raabe)

Seja
$$u_n > 0$$
 e $\lim_{n \to +\infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = L, \ \forall \ n \in \mathbb{IN}$, então:

- Se L < 1 então a série $\sum_{n=1}^{+\infty} u_n$ é divergente;
- Se L > 1 então a série $\sum_{n=0}^{+\infty} u_n$ é convergente;
- Se L=1 então nada se pode concluir, excepto se $n \left| \frac{u_n}{u_{n+1}} 1 \right| \to 1$ por valores inferiores, e, neste caso, a série $\sum_{n=0}^{\infty} u_n$ é divergente.

Exemplo: Determine a natureza das seguintes séries numéricas:

$$\mathbf{a)} \sum_{n=1}^{+\infty} \frac{\sin^2(n\pi)}{n^2}$$

b)
$$\sum_{n=5}^{+\infty} \frac{1}{n^2 + 3n}$$

$$\mathbf{c}) \sum_{n=2}^{+\infty} \frac{1}{n-1}$$

$$\mathbf{d}) \sum_{n=1}^{+\infty} \operatorname{sen}\left(\frac{\pi}{n}\right)$$

e)
$$\sum_{n=2}^{+\infty} \frac{n^3 + 5n}{n^5 + 2}$$

$$\mathbf{f}) \sum_{n=3}^{+\infty} \frac{n^{3/2} + n^{1/2}}{n^2 - n}$$

$$\mathbf{g}) \sum_{n=1}^{+\infty} \left(\frac{4n-1}{2n+1} \right)^n$$

h)
$$\sum_{n=2}^{+\infty} \left(\frac{3}{\ln(n) + 1} \right)^{2n}$$
 i) $\sum_{n=3}^{+\infty} \frac{1}{n!}$

$$\mathbf{i}) \sum_{n=3}^{+\infty} \frac{1}{n!}$$

$$\mathbf{j}) \sum_{n=1}^{+\infty} \frac{e^n}{n}$$

k)
$$\sum_{n=1}^{+\infty} \frac{1.3.5.\cdots(2n-1)}{2.4.6.\cdots 2n}$$

SÉRIES ABSOLUTAMENTE E SIMPLESMENTE CONVERGENTES

<u>Definição</u>: Diz-se que a série $\sum_{n=1}^{+\infty} u_n$ é *absolutamente convergente* se e só se a série dos valores absolutos (módulos) dos seus termos $\sum_{n=1}^{+\infty} |u_n|$ é convergente.

<u>Teorema:</u> Se a série $\sum_{n=1}^{+\infty} u_n$ é absolutamente convergente então é convergente. Além disso

$$\left| \sum_{n=1}^{+\infty} u_n \right| \le \sum_{n=1}^{+\infty} |u_n|.$$

<u>Definição</u>: A série $\sum_{n=1}^{+\infty} u_n$ é simplesmente convergente se e só se a série $\sum_{n=1}^{+\infty} u_n$ é convergente e $\sum_{n=1}^{+\infty} |u_n|$ é divergente.

<u>Definição</u>: Uma *série* diz-se *alternada* se e só se é da forma $\sum_{n=1}^{+\infty} (-1)^{n+1} u_n$ ou $\sum_{n=1}^{+\infty} (-1)^n u_n$ com $u_n \ge 0$.

Teorema: Uma série alternada é absolutamente convergente se e só se a série $\sum_{n=0}^{+\infty} u_n$ é convergente.

Teorema: (Critério de Leibniz)

Seja $\sum_{n=1}^{+\infty} (-1)^n u_n$ uma série de termos alternados, com $u_n \ge 0$, se:

- *i*) $(u_n)_{n \in IN}$ é decrescente
- \mathbf{ii} $\lim_{n\to+\infty}u_n=0$,

então a série $\sum_{n=1}^{+\infty} (-1)^n u_n$ é convergente e diz-se simplesmente convergente. Caso contrário é divergente.

Exemplo: Determine a natureza das seguintes séries numéricas:

$$\mathbf{a}) \sum_{n=1}^{+\infty} \frac{\cos(n)}{3^n}$$

b)
$$\sum_{n=3}^{+\infty} (-1)^n \frac{1}{5^n}$$
 c) $\sum_{n=2}^{+\infty} (-1)^n \frac{1}{n}$

c)
$$\sum_{n=2}^{+\infty} (-1)^n \frac{1}{n}$$

SUCESSÕES E SÉRIES DE FUNÇÕES

<u>Definição</u>: Chama-se *série de funções* a uma expressão que se pode escrever na forma $\sum_{n=1}^{+\infty} f_n(x)$, com $f_n(x)$, funções reais de variável real, todas definidas no mesmo intervalo [a, b].

Teorema: (Critério de Weierstrass)

Consideremos a série de funções $\sum_{n=1}^{+\infty} f_n(x)$, definida no intervalo [a,b]. Se:

- *i*) existem constantes M_n tais que $|f_n(x)| \le M_n$
- ii) a série numérica $\sum_{n=1}^{+\infty} M_n$ é convergente,

então a série $\sum_{n=1}^{+\infty} f_n(x)$ é absolutamente convergente em [a,b].

Definição: Uma série de potências é uma série da forma

$$\sum_{n=0}^{+\infty} a_n (x-b)^n \quad \text{com } b, a_n \in \mathbb{IR}, \ \forall n \in \mathbb{IN}.$$

Definição: Uma série de potências de x é uma série da forma

$$\sum_{n=0}^{+\infty} a_n x^n \quad \text{com } a_n \in \text{IR} , \ \forall n \in \text{IN} .$$

Teorema: (Teorema de Abel)

- i) Se a série de potências $\sum_{n=0}^{+\infty} a_n x^n$ é convergente em $x_0 \neq 0$, então é absolutamente convergente $\forall x : |x| < |x_0|$;
- *ii*) Se a série de potências $\sum_{n=0}^{+\infty} a_n x^n$ é divergente em x_0 , então é divergente $\forall x: |x| > |x_0|$.

Consideremos o seguinte conjunto de números reais

$$A = \left\{ |x_0| : \sum_{n=0}^{+\infty} a_n x^n \text{ \'e convergente para } x = x_0 \right\}$$

<u>Definição</u>: Chama-se *raio de convergência* da série $\sum_{n=0}^{+\infty} a_n x^n$ e representa-se por r à quantidade

$$r = \begin{cases} \sup A, \\ +\infty & \text{se sup A não existe} \end{cases}$$

<u>Teorema</u>: A série $\sum_{n=0}^{+\infty} a_n x^n$ é absolutamente convergente se e só se

$$\lim_{n \to +\infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| < 1.$$

<u>Teorema</u>: A série $\sum_{n=0}^{+\infty} a_n x^n$ é absolutamente convergente se e só se

$$\lim_{n\to+\infty} \sqrt[n]{|a_n x^n|} < 1.$$

<u>Exemplo</u>: Determine o intervalo de convergência das seguintes séries de funções:

$$\mathbf{a)} \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$\mathbf{b}) \sum_{n=1}^{+\infty} n^n x^n$$

c)
$$\sum_{n=2}^{+\infty} \frac{\ln(n)}{2^n} (x-2)^n$$

$$\mathbf{d}) \sum_{n=0}^{+\infty} \frac{(2n)!}{n!} x^n$$

e)
$$\sum_{n=1}^{+\infty} \frac{(x-1)^n}{b^n}, b > 0$$

DESENVOLVIMENTO DE FUNÇÕES EM SÉRIES DE POTÊNCIAS

Consideremos a série de potências

$$\sum_{n=0}^{+\infty} a_n (x-b)^n$$

e seja I(r) o seu intervalo de convergência.

Definição: Dada a função

$$f: I(r) \to IR$$

$$x \to f(x) = \sum_{n=0}^{+\infty} a_n (x-b)^n$$

Para cada $x \in I(r)$, f(x) é a soma da série $\sum_{n=0}^{+\infty} a_n (x-b)^n$ que se diz **desenvolvimento de** f(x) **segundo as potências de** (x-b).

Fórmula de Taylor e Mac-Laurin

<u>Definição</u>: Seja $f: D \subset IR \to IR$, n+1 vezes diferenciável no ponto $b \in int(D)$ e $t \in]b, x[$ (ou]x,b[), então a **fórmula de Taylor** pode ser escrita como

$$f(x) = f(b) + f'(b)(x-b) + \frac{f''(b)}{2!}(x-b)^2 + \cdots$$
$$\cdots + \frac{f^{(n)}(b)}{n!}(x-b)^n + R_{n+1}(x)$$

em que $R_{n+1}(x) = \frac{f^{(n+1)}(t)}{(n+1)!}(x-b)^{n+1}$, se designa por **Resto de Lagrange de Ordem n+1**.

<u>Definição</u>: Seja $f: D \subset IR \to IR$, n+1 vezes diferenciável no ponto b = 0 e $t \in [b, x[$ (ou [x, b[), então a **fórmula de Mac-Laurin** pode escrever-se como

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_{n+1}(x)$$

Séries de Taylor e Mac-Laurin

<u>Definição</u>: Seja $f: D \subset IR \to IR$, infinitamente diferenciável numa vizinhança do ponto $b \in int(D)$, tal que $\lim_{n \to +\infty} R_{n+1}(x) = 0$ com $R_{n+1}(x)$ o resto obtido a partir da fórmula de Taylor. Designa-se por **Série de Taylor de** f(x) **no ponto** b, à série

$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n$$

e tem -se

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n.$$

Nota: Para b=0 tem-se a Série de Mac-Laurin.

Teorema: Seja

$$f: I(r) \to IR$$

$$x \to f(x) = \sum_{n=0}^{+\infty} a_n (x-b)^n$$

então

- i) f(x) é contínua em I(r);
- *ii*) f(x) é finitamente diferenciável no interior de I(r) e $\forall x \in]b-r,b+r[$

$$f'(x) = \sum_{n=0}^{+\infty} \left[\frac{d}{dx} (a_n (x - b)^n) \right];$$

f(x) é primitivável no interior de I(r) e $\forall x \in [b-r,b+r[$ iii)

$$\int f(x) dx = \sum_{n=0}^{+\infty} \left[\int a_n (x - b)^n dx \right].$$

Exemplo: Obtenha o desenvolvimento em série de potências de x, e respectivo intervalo de convergência, das seguintes funções:

$$\mathbf{a)} \ f(x) = e^x$$

b)
$$f(x) = sen(x)$$
 c) $f(x) = cos(x)$

c)
$$f(x) = \cos(x)$$