

Beijing-Dublin International College

SEMESTER I FINAL EXAMINATION - 2018/2019
--

BDIC2002J Discrete Mathematics

Time Allowed: 95 minutes

Instructions for Candidates

All questions carry equal marks. The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

BJU1 Student ID:	_ UCD Student ID:	
I have read and clearly understand the	e Examination Rules of bo	oth Beijing University of
Technology and University College Dub	blin. I am aware of the Puni	ishment for Violating the
Rules of Beijing University of Technology	ology and/or University Co	ollege Dublin. I hereby
promise to abide by the relevant rules	and regulations by not givir	ng or receiving any help
during the exam. If caught violating the	rules, I accept the punishm	nent thereof.
Honesty Pledge:		(Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates. The Full Score of All Items of the Exam Paper

Item	1	2	3	4	5	6	7	Full
Full score	14	14	14	14	14	14	16	100

Obtained score

Question 1: Suppose that R is a binary relation on the set A such that R is reflexive and transitive. Denote \circ to be the composition of two relations. Prove that $R \circ R = R$

Obtained score

Question 2: Let a_1, a_2, \ldots, a_n be arbitrary n positive integers. Prove that two integers $i \geq 0, k \geq 1$ exist such that $a_{i+1} + a_{i+2} + \ldots + a_{i+k}$ is divisible by n (i.e. $a_{i+1} + a_{i+2} + \ldots + a_{i+k} = mn$ for some positive integer m).

Obtained score

Question 3: Prove the following tautological implication using Conclusion Premise (CP) rule

$$A \to (B \to C), (C \land D) \to E, \neg F \to (D \land \neg E) \Rightarrow A \to (B \to F)$$

Obtained score

Question 4: Compute the Prenex Normal Form of

$$(\forall y C(y) \to \forall z D(y, z)) \to \exists x (A(x) \to B(x, y))$$

Obtained score

Question 5: Let (G, *) be a group such that

$$(a*b)^5 = a^5 * b^5$$

$$(a*b)^3 = a^3 * b^3$$

hold for any element a, b of G. Prove that G is a commutative group.

Obtained score

Question 6: Let (G, *) be a group of order $n \ge 5$, such that a * a = e holds for any element a of G. Prove that G has at least a subgroup of order four.

Obtained score

Question 7: Let G be a simple undirected graph which has six vertices and thirteen edges.

- (1) Prove that G is a Hamiltonian graph.
- (2) Prove that G is a non-planar graph.