

www.uneatlantico.es

MATEMÁTICAS

Determinantes

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Aprender a Calcular el Determinante de una Matriz Cuadrada

- Cálculo de Determinantes mediante el Método General
- Reglas de Cálculo para Determinantes de Matrices Pequeñas (2x2 y 3x3)

Determinantes

Suponga que A es una matriz cuadrada.

- i) Si A = [a] es una matriz 1×1 , entonces det A = a.
- ii) Si A es una matriz $n \times n$, con n > 1, el **menor** M_{ij} es el determinante de la submatriz $(n-1) \times (n-1)$ de A obtenida al quitar la i-ésima fila y la j-ésima columna de la matriz A.
- iii) El **cofactor** A_{ij} asociado con M_{ij} está definido por $A_{ij} = (-1)^{i+j} M_{ij}$.

iv) El **determinante** de la matriz $A n \times n$, cuando n > 1, está dado ya sea por

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}, \text{ para } i = 1, 2, \dots, n,$$

o mediante

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}, \text{ para cualquier } j = 1, 2, \dots, n.$$

Determinantes

Ejemplo:

Encuentre el determinante de la matriz:

$$A = \begin{bmatrix} 2 & -1 & 3 & 0 \\ 4 & -2 & 7 & 0 \\ -3 & -4 & 1 & 5 \\ 6 & -6 & 8 & 0 \end{bmatrix}$$

Determinantes

Propiedades:

Suponga que A es una matriz $n \times n$:

- i) Si cualquier fila o columna A sólo tiene entradas cero, entonces det A = 0.
- ii) Si A tiene dos filas o dos columnas iguales, entonces det A = 0.
- iii) Si \tilde{A} se obtiene a partir de A mediante la operación $(E_i) \leftrightarrow (E_j)$, con $i \neq j$, entonces det $\tilde{A} = -\det A$.
- iv) Si \tilde{A} se obtiene a partir de A mediante la operación $(\lambda E_i) \to (E_i)$, entonces $\tilde{A} = \lambda \det A$.
- v) Si \tilde{A} se obtiene a partir de A mediante la operación $(E_i + \lambda E_j) \to (E_i)$ con $i \neq j$, entonces det $\tilde{A} = \det A$.
- vi) Si B también es una matriz $n \times n$, entonces det $AB = \det A \det B$.
- vii) $\det A^t = \det A$.
- viii) Cuando A^{-1} existe, $\det A^{-1} = (\det A)^{-1}$.
 - ix) Si A es una matriz triangular superior, triangular inferior o diagonal, entonces $A = \prod_{i=1}^{n} a_{ii}$.

Reglas de Cálculo para matrices Pequeñas

www.uneatlantico.es

Matrices 2x2:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Matrices 3x3:

Regla de Sarrus:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{12}a_{23}a_{31} - \left[a_{13}a_{22}a_{31} + a_{12}a_{21}a_{33} + a_{23}a_{32}a_{11} \right]$$

Regla Práctica: positivos los términos de la diagonal principal y de sus paralelas / negativos, los términos de la diagonal secundaria y sus paralelas

Reglas de Cálculo para Matrices Pequeñas

www.uneatlantico.es

Ejemplo:

Calcule el Determinante de las siguientes matrices:

$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 7 \\ 6 & -6 & 8 \end{bmatrix} \qquad \begin{bmatrix} 4 & 7 \\ 6 & 8 \end{bmatrix}$$

$$\left[egin{array}{cc} 4 & 7 \ 6 & 8 \end{array}
ight]$$

www.uneatlantico.es