GENGDA SHE

+86 14789891018 | m202171734@hust.edu.cn | https://github.com/sgd88888

EDUCATION

Huazhong University of Science and Technology

Wuhan, China Sep 2021 – Present

MSc in Cyber Security

- AVG: 86.47/100;
- Selected Awards: First-Class Master's Academic Award (2021-2022), Second-Class Master's Academic Award (2022-2023);
- Core Courses: Fundamental of Computing Theory, Epidemic Model of Computer Virus, Quantum Computing and Quantum Cryptography, Information Retrieval, Software Reverse Analysis Technology and Its Application, Modern Cryptography, Intelligent Media Computing.

Huazhong University of Science and Technology

Wuhan, China

Bachelor of Engineering (Information Security)

Sep 2017 – Jun 2021

- GPA:3.81/4, AVG 86.5/100;
- Selected Awards: Self-improvement Scholarship (2017 & 2018), Public Welfare Scholarship (2019 & 2020), Academic Excellence Scholarship (2018, 2019 & 2020), Outstanding Graduate of 2021;
- Core Courses: Wireless Network Security, Network Security Programming, Program Analysis for Security, Network Forensic, Reverse Engineering Technology, Advanced Cryptography Application, Assembly Language Programming, Comprehensive Practice of Network Security.
- Thesis: Fuzz Testing for Linux Hardware Drivers. (Supervisor: Dr. Cai Fu)

RESEARCH EXPERIENCE

HUST – NetSec Academy of the National Cybersecurity Talent Base (Wuhan)

Research Assistant to Prof. Cai Fu (PI: Cybersecurity Lab)

May 2020 – Present

Main Project: Kernel Driver Vulnerability Mining Using Fitness and Input Constraint Models

- Directed the project's design, from conceptualization to code development in *Python* and *C*, to ensure rigorous research trial management;
- Utilized advanced instrumentation with eBPF, Kprobes, and IDA Pro for precise basic block probing;
- Formulated a tailored input constraint model that was derived from in-depth driver code analysis to optimize the fuzzing process;
- Formulated a unique fitness computation strategy that integrates state-of-the-art genetic algorithms to amplify vulnerability detection capabilities;
- Authored an academic paper on the project (refer to the "Publication" section).

Main Project: EFPSDN - Intelligent Protection Solution for Scalable and Resilient SDN Controller

- Strategized the overall system blueprint to ensure it met the latest cybersecurity standards;
- Led the coding and implementation phase using *Python, Mininet, and Hping3*;
- Simulated real-world data center environments using *mininet* to craft an authentic topology map for testing;
- Employed *ping3* to simulate realistic DDOS attacks, assess and prove the system's robust defense capabilities;
- Secured the Second Prize in the 2022 Network Technology Challenge, Central China Region.

Other Projects:

Basic Theory and Techniques of Liquid Code;

Online Integrated Management Prototype System for Mobile Terminals;

Tensor-based approach for cross-platform vulnerability detection in binary code.

Roles:

• Designed and rolled out the DOP system's demonstration interface for the Liquid Code research to enhance the visual representation of the data-driven programming techniques;

- Employed *IDA Pro* and *Python* scripts for Tensor project to automate function window information extraction and streamline feature vector extraction;
- Configured and tested a simulated server environment using *VMware* for the Mobile Terminal Management project to guarantee robust system integration on the *Bear-Pi* platform;
- Collected and analyzed vulnerabilities containing gadgets within the Liquid Code research, and identified potential CVEs in openharmony vulnerabilities for more in-depth experimentation;
- Oversaw testing of all functionalities of the Integrated Management Prototype System to solidify mobile terminal security and optimize cryptographic resource protocols.

PUBLICATION

She, G., Fu, C., Cen, Z., & Lü, J. (2023). Kernel Driver Vulnerability Mining - Based on Fitness and Input Constraint Models. *Computer Application Research*, 40(7). ISSN: 1001-3695.

PROGRAMMING

Languages:

- Python;
- C, C++;
- HTML.

Tools:

• Hping3, Django, Iperf, Kcov, Ping3.

Frameworks:

• eBPF, Kprobes, IDA Pro, VMware, Mininet, AFL, Syzkaller, Origin OllyDebug.

Operating Systems:

• Ubuntu, Linux, Fedora, Android.

Development Environments:

• Pycharm, Codeblocks.