- 1. Una función f que satisface: f(0.7x+0.4y) > = f(0.7x)+0.4f(y), para que x y que pertenezca a cierto subconjunto S₁ de un conjunto convexo S y satisface que f(0.7x+0.4y) < = f(0.7x)+0.4f(y), entonces el complemento de S₁.
 - a) Es convexa sobre S
 - b) Es cóncava sobre S
 - c) Es cóncava y convexa sobre S
 - d) No es ni cóncava ni convexa sobre S.
- 2. Una función es convexa si y sólo si:
 - a) -f es cóncava
 - b) -f es convexa
 - c) f-1 es convexa
 - d) f⁻¹ es convexa
- 3. Es cierto que:
 - a) Si x* es un mínimo local de un problema de programación convexo, entonces x* es un mínimo global
 - b) Si x* es un mínimo local de un problema de programación lineal, entonces x* es un mínimo local
 - c) Si x* es mínimo local estricto de un problema de programación convexo, entonces x* es un máximo global
 - d) Son verdaderas a, b, y c
 - e) Ninguna de las anteriores es verdadera
- 4. En una restricción de desigualdad, un punto \bar{x} que está en la frontera es:
 - a) Un punto interior b) Un punto activo
- c) El único punto activo

- d) un punto óptimo e) Uno de los puntos óptimos

Parte 2

- 1. En una economía lineal para producir 3 unidades de trigo se requieren 6 unidades de tierra, \$8 en semilla y 3 trabajadores. Para producir 4 unidades de centeno se requieren 5 unidades de tierra, \$10 de semilla y 6 trabajadores. El precio por unidad de trigo y centeno es \$15 y \$20.5 respectivamente, siendo las cantidades disponibles de tierra y de trabajo de 100 y 130 unidades respectivamente. Si el empresario desea optimizar el resultado de su explotación, formule un modelo de programación lineal. Objetivo: maximizar beneficio. (3.0 puntos)
- 2. Considerar el problema:

Minimizar: x₁-x₂

Sujeto a:

$$x_1^2 + x_2^2 \le 9$$

 $x_2^2 > 4$

Grafique la región factible. Use el gráfico para encontrar todos los mínimos locales para el problema, y determine cual o cuales de ellos son también mínimos globales. (3.0 puntos)

3. Para la siguiente función, determine si es convexa o cóncava

(3.0 puntos)

$$f(x) = \begin{cases} 3 - (x - 1)^3, para \ 0 \le x < 3\\ -2 + (x - 4)^2, para \ 3 \le x < 6 \end{cases}$$

- 4. Expresar $(\frac{7}{5}, \frac{5}{3})^{T}$ como una combinación convexa en los puntos $(2,1)^{T}, (1,3)^{T}y(1,1)^{T}$ (3.0 puntos)
- 5. Sea $f(x_1, x_2) = 2x_1^2 4x_1x_2 + 4x_2^2 2x_1 + 6x_2$ determinar la convexidad (3.0 puntos)
- 6. Sea $S_1 = \{x: x_1 + x_2 \le 1, x_1 \ge 0\}$ y $S_2 = \{x: x_1 x_2 \ge 1, x_1 \le 1\}$ y sea $S = S_1 \cup S_2$ Pruebe que S_1 y S_2 son ambos conjuntos convexos pero que S no es un conjunto convexo. (3.0 puntos)