

Planning a sequencing project

Adapted from Nick Loman University of Birmingham

https://github.com/lexnederbragt/denovo-assembly-tutorial

Generating sequence is easy

Assembly is difficult ... because of

Repeats

Ploidy

Size

Contamination

Repeats and read length

Difficulty levels

Easy

- Chlamydia genome (small, no repeats)
 E. coli (small, some repeats)
 Small eukaryotic
- Large, diploid (*Homo sapiens*)Large, polyploid (wheat)

Hard

Biology comes first

- How long do you want to spend on this?
- Where's the value to you?
- Gene finding only (RNA-Seq, very draft WGS)
- Draft incomplete
- Draft complete
- Contiguous / circular complete
- Finished the holy grail

Resources to help you decide

- What have others done already?
- Close reference available?
- What's your budget?
- What's your timescale?
- What are your bioinformatics resources?
- What choice of sequencing technology?

Choosing technologies

- Strengths/weaknesses
- "Cut your cloth to suit your purse"

- 454
 - Long reads
 - Low throughput
 - Homopolymeric tract errors
 - Expensive!

Choosing technologies

- Illumina, short reads (but getting longer)
 - High throughput
 - Cheap
 - Short reads (2x150 best)
- SOLiD NO!

 Ion Torrent – short reads, low throughput, medium-cost

Choosing technologies

- PacBio
 - Loooooong reads
 - Low quality per base
 - Low throughput
 - Finished bacterial genomes!
 - Large genomes:
 - Need short reads for correction
 - (or need better software)

Mate-pairs

- 454
 - 3 to 20kb protocols
- Illumina
 - 3 to 10 kb (20?) protocols
- IonTorrent
 - demonstrated 3 and 9 kb protocols

What size is it?

How many sequencing reads to you need?

 Rule of thumb: 50x for short reads, 10x for long reads

What is the repeat structure?

- Transposons
 - LINEs
 - SINEs
 - IS elements
- Number, length, size
- Best read length
- Determine mate-pair strategy, or decide to give up on completeness!

What is the minimum information I need?

Genes

Regulatory regions

Contiguous chromosomes

Finished

Bioinformatics

Large assemblies require large amount of memory

Estimating requirements may be difficult

Sometimes still not possible – wheat

Hybrid assemblies not always straight-forward

- Challenge: short read + long reads
- →use de Bruijn graph?
- →use Overlap Layout Consensus?

Use a single program with all data

OR

Correct assembly with data from other technology/technologies

OR

- Use different programs for each dataset
 - → merge into one

Hybrid assembly options

• Celera

sanger

454

Illumina

PacBio

Hybrid assembly options

- Ray, Abyss, ...
 - → 454 and Illumina
- Newbler
 - \rightarrow 454
 - → Illumina?

• Does it work?

Are we there yet?

Non-sequence data

Closely related genome

→ requires synteny

Non-sequence data

Linkage map

- → superscaffolds
- → pseudochromosomes

Non-sequence data

Optical maps

5. Overlapping of the multiple single-molecule maps gives us the consensus genomic optical map

Basic recipes for genome

Bacterial - Illumina

- Paired-end reads required
- the more mate pair libraries, the better

Basic recipes for genome

Bacterial – PacBio

- 60-100x in long reads
 - 2 SMRTcells (chips)
- May give 1 scaffold per chromosome
- Very high quality
- Can determine base modifications

How to sequence a genome

Eukaryote

Foundation of Illumina data

- 100x coverage Paired End reads (2x100bp)
- several Mate Pair libraries
 - 2kb, 3kb, 8k, 10kb, bigger?
- this is now very cheap!

Fill gaps with long reads

PacBio

How to sequence a genome

Add lots of bioinformatics...

http://cores.montana.edu/index.php?page=bioinformatics-core-facility