Lecture 8: Point estimation: Asymptotics

Ma Xuejun

School of Mathematical Sciences

Soochow University

https://xuejunma.github.io

Outline

Asymptotic Theory

2 Consistency of MLE

Robustness

Asymptotic Theory

- Until now, what we have introduced are all assumed that the sample size n is given
- Currently, we usually have large sample size. In practice, " $n \ge 30$ " usually works
- We write it as $n \to \infty$. Under this condition, what will happen to our estimators?
 - Review of o, O, and convergence
 - Review of distance between probability distributions
 - Consistency
 - Efficiency and Relative Efficiency
 - MLE
 - Robustness

Review

We need some terms to describe what will happen when $n o \infty$

- $a_n = o(1)$ means that $a_n \to 0$ when $n \to \infty$
- $X_n = o_p(1)$ if $X_n \stackrel{P}{\to} 0$ as $n \to \infty$
- $X_n = o_p(a_n)$ if $X_n/a_n \stackrel{P}{\to} 0$ as $n \to \infty$
- $\bullet \ n^b o_p(1) = o_p(n^b), \text{so} \ \sqrt{n} o_p(1/\sqrt{n}) = o_p(1)$
- $a_n = O_p(1)$ if $|a_n|$ is bounded by a constant as $n \to \infty$
- $Y_n=O_p(1)$ if for any $\epsilon>0$ there exists a constant M such that $\lim_{n\to\infty}P(|Y_n|>M)<\epsilon$ as $n\to\infty$
- $Y_n = o_p(b_n)$ if $Y_n/b_n = O_p(1/\sqrt{n})$
- If $\sqrt{n}(Y_n-c)\stackrel{d}{\to} Y$, then, $Y_n=O_p(1/\sqrt{n})$
- $\bullet \ O_p(1) \times O_p(1) = O_p(1), o_p(1) \times o_p(1) = o_p(1), o_p(1) \times O_p(1) = o_p(1)$

Distances

Let P and Q be distributions with densities p and q.

- Total Variance distance: $TV(P,Q) = \sup_A |P(A) Q(A)|$
- L_1 distance: $d_1(P,Q) = \int |p-q|$
- Hellinger distance: $h(P,Q) = \sqrt{\int{(\sqrt{p} \sqrt{q})^2}}$
- Kullback-Leibler distance: $K(P,Q) = \int p \log(p/q)$
- L_2 distance: $d_2(P,Q) = \int (p-q)^2$
- \bullet As one type of distance,all of them satisfies that D(P,Q)>0 if $P\neq Q$
- The distances are closely related, say,

$$TV(P,Q) \le h(P,Q) \le \sqrt{2TV(P,Q)}$$

Note:all integrals are integrals w.r.t. the probability measure.

Consistency

- Recall: with LLN, the sample average satisfies that $\bar{X_n} \stackrel{P}{\to} E[X]$
- Generally,for an estimator $\hat{\theta}$, we hope $\hat{\theta} \stackrel{P}{\to} \theta$

Definition: Consistency

Let $\hat{\theta}_n$ be an estimator for θ . The estimator is said to be <u>consistent</u> if

$$\hat{\theta} \stackrel{P}{\to} \theta$$

To show consistency, we can:

- \bullet Prove that $P(|\hat{\theta}_n \theta| > \epsilon) \to 0$ for any $\epsilon > 0$
- Recall that L^p convergence indicate convergence in probability,so if $\hat{\theta}_n \overset{L^2}{\to} \theta, \hat{\theta}_n$ is consistent. The L^2 distance between $\hat{\theta}_n$ and θ is

$$\int (\hat{\theta}_n - \theta)^2 dF(\hat{\theta}) = E[(\hat{\theta}_n - \theta)^2] = MSE(\hat{\theta}_n)$$

So,if $MSE(\hat{\theta}_n) \rightarrow 0, \hat{\theta}_n$ is consistent.

Example. Let $X_1, \dots, X_n \sim Bernoulli(p)$.

- Consider the MLE $\hat{p} = \bar{X}_n$. According to LLN, $\bar{X}_n \stackrel{P}{\to} p$. So, the MLE \hat{p} is consistent.
- Consider the function $\tau(p)=\log(p/(1-p))$.Let the estimator be $W=\log(\bar{X}_n/(1-barX_n))$.According to the continuous mapping theorem, $W\stackrel{P}{\to} \tau(p)$.So W is consistent
- Consider the estimator

$$\hat{p} = \frac{\sum X_i + 1}{n+1}.$$

For \hat{p} , we have that

$$Bias(\hat{p}) = E[\hat{p}] - p = \frac{1-p}{(n+1)} \to 0 \quad Var(\hat{p}) = \frac{np(1-p)}{(n+1)^2} \to 0.$$

Therefor, $MSE(\hat{p}) = Bias^2 + Var \rightarrow 0.\hat{p}$ is consistent.

Consistency

- Consistency ≠ Unbiasedness
 - ullet \hat{p} is biased, but consistent
 - ullet X_1 is unbiased for E[X], but not consistent
 - In reality,we prefer consistency(when we have more samples,we can be closer to the truth)
- According to LLN, the MoM estimators are always consistent (the random sample should satisfy the conditions for LNN)
- For Bayes model, it depends on the prior. If we the prior in inappropriate, then the estimator is not consistent.
- How about the the MLE?

Consistency of MLE

Theorem: Consistency of MLE

Let X_1, X_2, \cdots be i.i.d. $f(x;\theta)$,and let $L(\theta)$ be the likelihood function.Let θ be the MLE of θ .If

- θ is identifiable,i.e.,if $\theta_1 \neq \theta_2$,the $f(x|\theta_1) \neq f(x|\theta_2)$;and
- $f(x;\theta)$ have common support w.r.t. different θ ,and differentiable in θ ;and
- the true parameter θ_0 is an interior point of the parameter space then for any continuous function of θ , $\tau(\theta)$, there is

$$\tau(\hat{\theta}) \stackrel{P}{\to} \tau(\theta)$$

- If the function is $\tau(\theta)=\theta$,then there is $\hat{\theta}\xrightarrow{P}\theta$,which shows the consistency of MLE
- According to the invariance of MLE, $\tau(\hat{\theta})$ is the MLE $\tau(\theta)$. So the consistency of MLE holds even for a function of θ

Proof

To prove it, we define a new term as the expectation of the one sample log-likelihood function:

$$l(\theta) = E[\log f(X_i; \theta)].$$

The sketch of the proof is

- The MLE $\hat{\theta}$ is the maximiser of the log-likelihood function $l_n(\theta),$ and also $\frac{1}{n}l_n(\theta)$
- The true parameter θ_0 is the maximiser of $l(\theta)$
- For any θ , $\frac{1}{n}l_n(\theta) \stackrel{P}{\to} l(\theta)$

Combine these conclusions, with the regularity conditions above and the technique in mathematical analysis, we can have the result.

In this class, we show these 3 conclusions only. The last part is easier for compact parameter space, but quite hard when we set such flexible conditions.

Proof

- The MLE $\hat{\theta}$ is the maximiser of the log-likelihood function $l_n(\theta)$. \Leftarrow Definition of MLE.
- The true parameter θ_0 is the maximiser of $l(\theta)$.

$$l(\theta) - l(\theta_0) = E_{\theta_0}[\log f(X; \theta)] - E_{\theta_0}[\log f(X; \theta_0)]$$

$$= E_{\theta_0} \left(\log \frac{f(X; \theta)}{f(X; \theta_0)}\right)$$

$$< \log \left[E_{\theta_0} \left(\frac{f(X; \theta)}{f(X; \theta_0)}\right)\right] = 0^1$$

• For any θ , $\frac{1}{n}l_n(\theta) \stackrel{p}{\to} l(\theta)$. Note that

$$\frac{1}{n}l_n(\theta) = \frac{1}{n}\sum_{i}\log_i f(X_i;\theta) \xrightarrow{P} E[\log_i f(X;\theta)] = l(\theta)$$

The conergence comes from WLLN.

 $^{^{1}}Eg(X) \leq g(EX): g(\cdot)$ is a convex function

Example. Let $Y_{11}, Y_{12} \sim N(\mu_1, \sigma^2), Y_{21}, Y_{22} \sim N(\mu_2, \sigma^2), \cdots, Y_{n1}, Y_{n2} \sim N(\mu_n, \sigma^2)$ Then in this case, the number of parameters increase as n increases, different from the case we discussed before, that the parameter space is fixed.

Solution. The MLE for σ^2 in this problem is

$$\hat{\sigma}^2 = \sum_{i=1}^n \sum_{j=1}^2 \frac{(Y_{ij} - \bar{Y}_i)^2}{2n}, \quad \bar{Y}_i = (Y_{i1} + Y_{i2})/2$$

which is the average of the MLE of σ^2 in each small group. Now,for each item in the summation, note that

$$\hat{\sigma}_{i}^{2} = \sum_{j=1}^{2} (Y_{ij} - \bar{Y}_{i})^{2} = (Y_{i1} - \frac{Y_{i1} + Y_{i2}}{2})^{2} + (Y_{i2} - \frac{Y_{i1} + Y_{i2}}{2})^{2}$$
$$= \frac{(Y_{i1} + Y_{i2})^{2}}{2} \sim \sigma^{2} \chi_{1}^{2}.$$

So,with LLN, $\hat{\sigma}^2 = \frac{1}{2n} \sum \hat{\sigma_i}^2 = \frac{1}{n} \sum \hat{\sigma_i}^2/2 \stackrel{P}{\to} \sigma^2/2$. It does not converge to σ^2 in probability! The modified estimator $2\hat{\sigma}^2$ is consistent,

Asymptotic Properties

 $\bullet \ \, \text{Unbiasedness} \longrightarrow \text{Asymptotic unbiasedness}$

$$E[\hat{\theta}_n] - \theta \to 0, \qquad n \to \infty.$$

- Unbiasedness is not that important in the asymptotic theory, since we have the consistency property
- Multiple consistent estimators?
- ullet Crámer-Rao Lower Bound \longrightarrow Asymptotic efficient

$$Var(\hat{\theta}_n) \to Cr\acute{a}mer - Rao\ Lower\ Bound, \qquad n \to \infty$$

 Asymptotic relative efficiency: comparing the variance of these two estimators

Asymptotic Variance

Definition

Let $\hat{\theta}_n$ be an estimator for $\theta=\theta_0.$ If for some deterministic sequence (a_n) , we have

$$a_n(\hat{\theta}_n - \hat{\theta}_0) \stackrel{d}{\to} N(0, \sigma^2)$$

The σ^2 is called the asymptotic variance.

- If we study $\hat{\theta}_n \hat{\theta}_0$ directly, then we have that it converges to 0 in prob. since it is consistent. That does not provide more information to us.
- Usually, for (a_n) , we take it as n^c , which increases w.r.t. n, without any constant term that would impact the asymptotic variance.
- Example. In CLT, the average follows the estimation is that

$$\sqrt{n}(\bar{X}_n - E[X]) \stackrel{d}{\to} N(0, Var(X_1))$$

Here, $a_n=\sqrt{n}=n^{1/2}$ and the asymptotic variance is $Var(X_1).$ If $a_n=n^c$ where c<1/2, then $Var(a_n\bar{X}_n)\to 0$. If $a_n=n^c$ where c>1/2,then $Var(\sqrt{n}\bar{X}_n)\to \infty$

• Note: the asymptotic variance is different from $\lim_{n\to\infty} Var(a_n^*\hat{\theta}_n)^*$

Example

Example. Let $Y_n|W_n=w_n\sim N(0,w_n+(1-w_n)\sigma_n^2)$ with $W_n\sim Bernoulli(p_n)$, where the sequence $(\sigma_n^2),(p_n)$ are known.Now,

$$Var(Y_n) = E[Var(Y_n|W_n)] + Var(E[Y_n|W_n])$$
$$= E(W_n + (1 - W_n)\sigma_n^2)$$
$$= p_n + (1 - p_n)\sigma_n^2$$

The variance would converge only if $\lim_{n\to\infty}(1-p_n)\sigma_n^2<\infty$. Now we consider the asymptotic variance. First we should figure out the distribution it converges to in distribution. For some fixed a,

$$P(Y_n \le a) = E[P(Y_n \le a|W_n)] = (1 - p_n)\Phi(a/\sigma_n) + p_n\Phi(a),$$

where $\Phi(\cdot)$ is the CDF for standard normal distribution. Therefor, if $p_n \to 1$ then $Y_n \to N(0,1)$,so that the asymptotic variance is 1. However, if $\lim_{n \to \infty} (1-p_n)\sigma_n^2 = \infty$ then this is the value of the limiting variance, which is of course different.

Asymptotic Efficiency

Definition

The estimator $\hat{\theta}_n$ is asymptotic efficient for a parameter $\theta=\theta_0$ if

•
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} N(0, v(\theta))$$
 and

•

$$v(\theta_0) = \frac{1}{I(\theta_0)}$$
 Crámer – Rao Lower Bound

- One estimator is efficient, as long as it's asymptotic variance exists, and meets the CRLB.
- \bullet Obviously, for $\tau(\theta),$ the definition also works, except that the CRLB becomes the CRLB for $\tau(\theta)$
- MLE is always asymptotic efficient

Asymptotic Normality of the MLE

Regularity conditions:

- ullet the dimension of the parameter space does not change with n;
- $f(x, \theta)$ have common support w.r.t. different θ , and is differentiable in θ ;
- ullet the differentiation w.r.t. heta is interchangeable with integration over x.

Theorem: Asymptotic Normality of MLE

Let $\hat{\theta}_n$ be the MLE for the parameter $\theta.$ Under the regularity condition, there is

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \frac{1}{I(\theta)}).$$

• Hence, $\hat{\theta}_n = \theta + O_p(1/\sqrt{n})$.

Asymptotic Normality of the MLE

Proof. By Taylor's theorem

$$l'(\hat{\theta}) = l'(\theta) + (\hat{\theta} - \theta)l''(\theta) + \cdots$$

Recall that $l'(\hat{\theta}) = 0$ since $\hat{\theta}$ is MLE,so we have

$$0 = l'(\theta) + (\hat{\theta} - \theta)l''(\theta) + \cdots$$
$$(\hat{\theta} - \theta) \approx -\frac{l'(\theta)}{l''(\theta)}$$
$$\sqrt{n}(\hat{\theta} - \theta) \approx -\frac{\frac{1}{\sqrt{n}}l'(\theta)}{-\frac{1}{n}l''(\theta)} \equiv \frac{A}{B}$$

Now, $A=\frac{1}{\sqrt{n}}l'(\theta)=\sqrt{n}\times\frac{1}{n}\sum_{i=1}^nS(\theta,X_i)=\sqrt{n}(\bar{S}_n-0),$ where $S(\theta,X_i)$ is the score function based on X_i . Recall that $E[S(\theta,X_i)]=0$ and $Var(S(\theta,X_i))=I(\theta).$ By CLT, $A\stackrel{d}{\to} N(0,I(\theta)).$

By WLLN, $B \stackrel{P}{\to} E[l''(\theta)] = I(\theta).$ Combine them, by Slutsky's theorem,

$$\sqrt{n}(\hat{\theta} - \theta) \approx \frac{A}{B} \stackrel{d}{\to} \frac{1}{I(\theta)} N(0, I(\theta)) = N(0, 1/I(\theta)).$$

According to the proof, we can see that

$$\hat{\theta} = \theta + \frac{1}{n} \sum_{i=1}^{n} \frac{S(\theta, X_i)}{I(\theta)} + o_p(n^{-1/2}).$$

The function $\frac{S(\theta, X_i)}{I(\theta)}$ is called the <u>influence function</u>.

- \bullet The asymptotic variance of $\hat{\theta}$ is $1/I(\theta)$
- \bullet The estimated asymptotic variance of $\hat{\theta}$ is $1/I(\hat{\theta})$
- If τ is a smooth function of θ , then

$$\sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \stackrel{d}{\to} N(0, (\tau'(\theta))^2/I(\theta)),$$

with asymptotic variance $(\tau'(\theta))^2/I(\theta)$.The estimated asymptotic variance is $(\tau'(\hat{\theta}))^2/I(\hat{\theta})$

Example

Example. $X_1, X_2, \cdots, X_n \overset{i.i.d}{\sim} Exponential(\theta)$

Now $f(x;\theta)=\theta e^{-\theta x}$ and $L(\theta)=\theta^n e^{-n\theta \bar{X}}$, Hence, the log-likelihood function

$$l(\theta) = -n\theta \bar{X} + n\log\theta$$

and

$$S(\theta) = \frac{n}{\theta} - n\bar{X}, \qquad l''(\theta) = -n/\theta^2 < 0$$

The MLE is $\hat{\theta}=1/\bar{X}.$ The Fisher information is $I_n(\theta)=-E[-n/\theta^2]=n/\theta^2.$ Therefore,

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\to} N(0, \theta^2)$$

Example. $X_1, X_2, \cdots, X_n \stackrel{i.i.d}{\sim} Bernoulli(p)$

We can find that the Fisher information for n=1 is I(p)=1/(p(1-p)).So, for the MLE $\hat{p}=\bar{X}$,

$$\sqrt{n}(\bar{X}-p) \stackrel{d}{\to} N(0,p(1-p)).$$

Now suppose we want to estimate $\tau=p(1-p).$ The MLE is $\hat{\tau}=\bar{X}/(1-\bar{X}),$ according to the invariance od MLE.Now

$$\frac{\partial}{\partial p} \frac{p}{1-p} = \frac{1}{(1-p)^2}.$$

The asymptotic distribution for $\hat{\tau}$ is

$$\sqrt{n} \Big(\bar{X}/(1-\bar{X}) - p/(1-p)\Big) \overset{d}{\to} N\Big(0, \frac{1}{(1-p)^4} \times p(1-p)) = N(0, \frac{p}{(1-p)^3}\Big)$$

Asymptotic Efficiency

- Asymptotic variance: different with limiting of variance, since we can ignore some extreme values with small probability
- Asymptotic efficiency: asymptotic variance achieves CRLB
- Asymptotic normality of MLE

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta) \stackrel{d}{\to} N(0, \frac{1}{I(\theta)}).$$

Comparison with other estimators?

Asymptotic Relative Efficiency

Defination: Asymptotic Relative Efficiency

Suppose that two estimator W_n and V_n statisfy

$$\sqrt{n}(W_n - \tau(\theta_0)) \stackrel{d}{\to} N(0, \sigma_W^2)$$

$$\sqrt{n}(V_n - \tau(\theta_0)) \stackrel{d}{\to} N(0, \sigma_V^2)$$

then the asymptotic relative efficiency is defined as

$$ARE(W_n, V_n) = \frac{\sigma_V^2}{\sigma_W^2}$$

 \bullet When W_n and V_n have the same convergence rate, the ARE compares the efficiency of them.

Example

Example. Let $X_1,\cdots,X_n\stackrel{i.i.d}{\sim} Poisson(\lambda)$. The MLE of λ is \bar{X} . Let $\tau=P(X_i=0)=e^{-\lambda}$. Define $Y_i=I(X_i=0)$. This suggests the estimator

$$W_n = \frac{1}{n} \sum Y_i$$

Another estimator is the MLE $V_n=e^{-X}$. Compare them. Since $E[X_1]=\lambda, Var(X_1)=\lambda$, so according to CLT, there is

$$\sqrt{n}(\bar{X} - \lambda) \stackrel{d}{\to} N(0, \lambda).$$

According to the data method, we have

$$\sqrt{n}(V_n - e^{-\lambda}) \xrightarrow{d} N(0, e^{-2\lambda}\lambda).$$

Note that $Y_i \sim Bernoulli(e^{-\lambda})$, so

$$\sqrt{n}(W_n - e^{-\lambda}) \stackrel{d}{\to} N(0, e^{-\lambda}(1 - e^{-\lambda})).$$

So we have

$$ARE(W_n, V_n) = \frac{e^{-2\lambda}\lambda}{e^{-\lambda}(1 - e^{-\lambda})} = \frac{\lambda}{e^{\lambda} - 1} \le 1.$$

So, for most λ . MLE is more efficient.

Robustness

 MLE is efficient only if the model is right. It can be vary bad if the model is wrong

Example. Suppose $X_1, \dots, X_n \stackrel{i.i.d}{\sim} N(\theta, \sigma^2)$. The MLE is $\hat{\theta}_n = \bar{X}_n$. Suppose, we have a perturbed model that $X_i \sim N(\theta, \sigma^2)$ with probability $1-\delta$ and $X_i \sim f(x)$ with probability δ , where

$$f(x) = \frac{1}{\pi(x^2 + 1)}.$$

This is the Cauchy distribution, which is quite famous as an example that $E[X] = +\infty$. Therrfore, $Var(\bar{X}) = \infty$.

If we still apply \bar{X}_n , then the Cauchy distribution will destroy its good properties. However, for small δ , the median still keeps the same. On the other hand, if we consider the normal model as correct, then in the next slide we can show that $ARE(M_n, mle) = 0.64 < 1$, which indicates that MIF is better.

- Nonparametric estimation (say, the median) is a solution
- Even when the model is wrong, sometimes the MLE still provides some information ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Robustness

Find the asymptotic distribution for the median of X, assuming the model is $N(\theta,1)$. (Let $\sigma^2=1$ for simplicity. The result is the same for any σ^2) For fixed a, Let $Y_i=I(X_i\leq \theta+a/\sqrt{n})$. Then $Y_i\sim Bernoulli(p_n)$, where

$$p_n = \Phi(\theta + a\sqrt{n}) = \Phi(\theta) + \frac{a}{\sqrt{n}}\phi(\theta) + o(n^{-1/2}) = \frac{1}{2} + \frac{a}{\sqrt{n}}\phi(\theta) + o(n^{-1/2})$$

Also, $\sum_i Y_i$ has mean np_n and standard $\sigma_n = \sqrt{np_n(1-p_n)}$. Note that, $M_n \leq \theta + a/\sqrt{n}$ if and only if $\sum Y_i \geq \frac{n+1}{2}$. Then

$$P(\sqrt{n}(M_n - \mu) \le a) = P(M_n \le \theta + a/\sqrt{n}) = p(\sum Y_i \ge \frac{n+1}{2})$$
$$= P(\frac{\sum Y_i - np_n}{\sigma_n} \ge \frac{(n+1)/2 - np_n}{\sigma_n}).$$

Now, $\frac{(n+1)/2-np_n}{\sigma_n} \to -2a\phi(\theta)$, and hence

$$P(\sqrt{n}(M_n - \mu) \le a) \to P(N(0, 1) \ge -2a\phi(\theta)) = P(\frac{N(0, 1)}{2\phi(\theta)} \le a),$$

so that $\sqrt{n}(M_n-\theta)\stackrel{d}{\to} N(0,\frac{1}{4\phi(\theta)^2})$, and $ARE(M_n,mle)=0.64$.

Summary: Parameter Estimation

- Unbiased estimator
 - ullet Improve an unbiased estimator: conditional expectation w.r.t. sufficient statistics; U-statistics
 - UMVUE
 - Crámer Rao Lower Bound for the UMVUE
 - score function (random with expentation 0); Fisher information(a function of θ);
- Mean squared error
- Multiple loss functions; risk functions
 - Maximum risk ⇒ Minimax estimator
 - Bayes risk ⇒ Bayes estimator. Bayes estimator is to minimize the posterior risk given the data points
 - Minimax estimator is closely related to Bayes estimator
- Asymptotic properties:
 - Consistency: MLE is always consistent
 - Efficiency: asymptotic variance achieves CRLB; asymptotic relative efficiency
 - Robustness