Генетический выбор частичных порядков на множестве значений признаков в задаче классификации

Сорокин Олег, 317

ММП ВМК МГУ

Спецсеминар 9 марта 2023 г.

Задача классификации по прецедентам

Пусть задано некоторое множество объектов M, представимое в виде объединения I непересекающихся множеств-классов $K_1,...,K_l$. Элементы множества M есть признаковые описания вида $x_1,...,x_n$, где каждый из признаков принимает конечное число значений. Имеется $\{S_1,...,S_m\}\subset M$ — множество объектов, принадлежность которых к определённым классам известна. Такие объекты называются прецедентами.

Требуется по предъявленному набору значений признаков $(b_1,...,b_n) \in M$ определить класс объекта.

Частичные порядки в признаковых пространствах

Особый интерес представляют задачи со сложными отношениями на множествах значений признаков. Существуют эффективные подходы (в смысле качества классификации), основанные на задании линейных порядков.

Определение

Элементы x, y из частично упорядоченного множества P называются сравнимыми, если x предшествует y (запись $x \le y$).

Определение

Пусть $P = P_1 \times ... \times P_n$, где $P_1, ..., P_n$ — конечные частично упорядоченные множества.

Элемент $x=(x_1,...,x_n)\in P$ следует за элементом $y=(y_1,...,y_n)\in P$, если x_i следует за y_i (i=1,2,...,n)

Определение

Пусть $R \subset P$, R^+ — множество элементов, следующих за элементами из R. Элемент $x \in P \backslash R^+$ называется независимым от R элементом множества P.

Если же кроме того $\forall y \in P \backslash R^+$ не выполнено отношение x < y, то x — максимальный независимый от R элемент множества P.

Постановка задачи для произведения частичных порядков

Аналогично предыдущей постановке, пусть $M=\cup_{n=1}^{l}K_n$, где $K_i\cap K_j=\varnothing$ при $i\neq j$.

Пусть теперь M представимо в виде $N_1 \times ... \times N_n$, где N_i ($i \in \{1,2,...,n\}$) — конечное множество допустимых значений признака x_i . Не ограничивая общности, можно считать, что N_i имеет наибольший элемент k_i . Пусть также задан набор прецедентов $S_1 = (a_{11},...,a_{1n}), S_2 = (a_{21},...,a_{2n}),..., S_m = (a_{m1},...,a_{mn})$.

Требуется по предъявленному набору значений признаков $(a_1,...,a_n)$ объекта $S \in M$ (класс которого, вообще говоря, неизвестен) определить этот класс.

Определение

Пусть R(K) и $R(\overline{K})$ — множества прецедентов из класса K и не из класса K соответственно.

Будем говорить, что алгоритм A классифицирует объект из R(K) правильно, если A относит его к классу K.

Определение

Алгоритм A называется корректным на M алгоритмом, если A правильно классифицирует каждый прецедент $S_1,...,S_m$.

Определение

Пусть $H = \{x_{j_1},...,x_{j_r}\}$, $\sigma = (\sigma_1,...,\sigma_r)$, $\sigma_i \in N_{j_i}$ (i = 1,2,...,r). Пара (σ,H) называется элементарным классификатором (эл. кл.) ранга r.

Замечание

Эл. кл. порождает набор
$$S_{(\sigma,H)}=(\gamma_1,...,\gamma_n)$$
, где $\gamma_{j_i}=\sigma_i$ $(i=1,2,...,r)$ и $\gamma_t=k_t$ при $t\notin\{j_1,...,j_r\}$.

Определение

$$\hat{B}(\sigma, S, H) = \begin{cases} 1, a_{j_i} \leq \sigma_i (i = 1, 2, ..., r) \\ 0, otherwise \end{cases}$$

Определение

Эл. кл. (σ, H) называется корректным для класса K, если нельзя указать пару объектов $S' \in R(K)$ и $S'' \in R(\overline{K})$: $\hat{B}(\sigma, S', H) = \hat{B}(\sigma, S'', H) = 1$.

Определение

Корректный для класса K эл. кл. (σ, H) называется тупиковым, если $\forall (\sigma', H')$: $S_{(\sigma, H)} < S_{(\sigma', H')}$ не является корректным для класса K.

Определение

(Тупиковый) корректный эл. кл. называется (тупиковым) представительным для класса K, если хотя бы один прецедент из класса K содержит данный эл. кл.

Общая схема работы алгоритма

- ① Обучение: для каждого класса K строится некоторое множество представительных эл. кл. $C^A(K)$.
- 🤰 Процедура голосования: вычисление оценок вида

$$\Gamma(\mathcal{S},K) = \frac{1}{|C^A(K)|} \sum_{(\sigma,H) \in C^A(K)} P_{(\sigma,H)} * \hat{B}(\sigma,\mathcal{S},H)$$

Здесь $P_{(\sigma,H)}$ — веса, обычно это число объектов из R(K), содержащих (σ,H) .

Теоремы

Теорема 1.

Пусть $C^A(K)$ содержит все тупиковые представительные эл. кл. класса K. Алгоритм A правильно классифицирует объект $S' \in R(K)$ тогда и только тогда, когда S' — независимый от $R(\overline{K})$ элемент множества M.

Теорема 2.

Пусть $\phi: M \to M \times \tilde{M}$ дублирует описание объекта с обратным отношением порядка. Если классы множества M не пересекаются, то любой прецедент из класса $\phi(K)$ содержит представительный эл. кл. класса $\phi(K)$.

Быстрая процедура независимого линейного упорядочения значений признаков

- Пусть $\mu_{ij}^{(1)}(a)$ ($i \in \{1,2,...,I\}$, $j \in \{1,2...,\}$, $a \in N_j$) доля прецедентов класса K_i , у которых признак x_j принимает значение a. Аналогично определим $\mu_{ij}^{(2)}(a)$ для прецедентов не из класса K.
- ullet Введём $\mu_{ij}(a)=\mu_{ij}^{(1)}(a)-\mu_{ij}^{(2)}(a)$ вес значения a.
- $\forall y,z\in N_j$ считаем $y\leq z$ тогда и только тогда, когда $\mu_{ij}(y)\geq \mu_{ij}(z).$

Замечание

Порядок на множестве значений каждого признака выбирается независимо от выбора порядков для других признаков.

Процедура корректного упорядочения значений признаков

- Пусть для любого класса K множество $C^A(K)$ содержит все тупиковые представительные эл. кл. класса K.
- Построим булеву матрицу B_K :
 - 1 Каждой строке соответствует пара объектов $S' \in R(K)$, $S'' \in R(\overline{K})$, а каждому столбцу соответствует тройка (j, a, b), где $j \in \{1, 2, ..., n\}$, $a, b \in N_i$, $a \neq b$.
 - **2** Элемент на пересечении строки (S', S'') и столбца (j, a, b) равен 1, если признак x_j равен a и b у объектов S' и S'' соответственно.

Процедура корректного упорядочения значений признаков

Определение

Частичный порядок на M называется (A, K)-корректным, если алгоритм A правильно классифицирует каждый объект из R(K).

Теорема 3.

Частичный порядок, заданный на множестве M, является (A,K)-корректным тогда и только тогда, когда существует неприводимое покрытие H матрицы B_K такое, что $\forall j \in \{1,2,...,n\}$ и $\forall a,b \in N_j$ (a < b) столбец (j,b,a) не входит в H.

Одна из схем генетического алгоритма

- ① Создаётся начальная популяция заданного объёма N_p . Для каждого индивида вычисляется приспособленность.
- Окрещивание. Из популяции выбираются два родителя. К ним применяется оператор скрещивания, получается потомок.
- Мутация. Потомок с заданной вероятностью подвергается мутации.
- Отбор. Вычисляется приспособленность потомка.
 Одна из менее приспособленных особей заменяется.
- 5 Если не выполнено условие останова, то переход к п.2.

Одна из схем генетического алгоритма

Возможные способы представления особей:

- Бинарное. Код особи есть бинарный вектор $g=(g_1,...,g_n)$, где $g_i=1$ тогда и только тогда, когда i-й столбец входит в набор столбцов H.
- Целочисленное. Код особи есть целочисленный вектор $g = (g_1, ..., g_m)$, где i-я компонента равна номеру столбца, который покрывает строку с номером i.

Формирование начальной популяции

- В бинарном случае все компоненты выбираются случайно. Если полученный набор столбцов не является покрытием, то он дополняется новыми столбцами.
 - Для целочисленного случая каждый раз случайно выбирается столбец из числа покрывающих нужную строку.
- $oldsymbol{2}$ По вектору g восстанавливается набор столбцов.
- ③ Для каждого набора в порядке убывания весов столбцов проверяется, является ли $H \setminus \{j\}$ покрытием. Если да, то столбец исключается.
- **4** Если в P нет особи (H,g), то она добавляется в P.
- **5** Если сгенерировано достаточно особей, то процесс завершается. Иначе переход к п.1.

Выбор родителей

- Панмиксия все особи имеют одинаковую вероятность.
- Инбридинг первый случайно, второй наиболее похожий в каком-то смысле.
- Аутбридинг первый случайно, второй наиболее отличный в каком-то смысле.
- Селективное скрещивание устанавливается порог приспособленности для возможности скрещивания.

Оператор скрещивания (кроссовер)

- Одноточечный в наборе хромосом происходит разрыв по случайной точке, а затем обмен получившимися частями.
- Многоточечный выбираются несколько таких точек.
- Однородный каждая хромосома копируется от одного из родителей случайным образом. Для бинарного случая

$$g_i = egin{cases} g_i^1, p_1 = rac{f_2}{f_1 + f_2} \ g_i^2, p_2 = rac{f_1}{f_1 + f_2} \end{cases}$$

Мутация

В зависимости от модификации алгоритма, может зменяться одна или несколько случайно выбранных хромосом. При этом возможен выход из локального минимума.

Также можно изменять количество мутируемых хромосом со временем. Например,

$$k(t) = k_0 * (1 - \frac{1}{C * t + 1})$$

Восстановление допустимости решения

При применении операторов скрещивания и мутации может возникнуть набор, не являющийся (неприводимым) покрытием. Пусть не покрыты строки M_H . В этом случае необходимо произвести процедуру восстановления допустимости решения:

- ① H дополняется до покрытия матрицы последовательным добавлением столбцов, покрывающих M_H и минимизирующих $\frac{w_j}{|M_H \cap M_j|}$.
- ② Из H конструируется неприводимое покрытие: убираем столбец j (в порядке убывания весов), если $H \setminus \{j\}$ является покрытием.

Функции приспособленности из статей (покрытие минимального веса)

1
$$f = \sum_{i=1}^{n} [g_i = 1] * w_i$$
 (в целочисленном случае аналогично, вычисляется вес покрытия).

$$2 \ f_i = w_i - \min_{j \in \{1, \dots, N\}} w_j + 1$$
 (исправляет проблему предыдущей функции).

Функции приспособленности, которые можно попробовать для поиска любых покрытий

- $oxed{1}$ Пусть B' матрица, составленная из столбцов H. $f_1 = \sum\limits_{i=1}^m [\sum\limits_{j=1}^n B'_{ij} = 0] + 1$
- Некоторые строки покрываются малым числом столбцов. Если ГА их не включает, то застревает в локальном минимуме. Идея: покрытие таких строк должно сильнее минимизировать функцию. Можно перейти ко взвешенной задаче.

Классический ГА для поиска минимальных покрытий

