

Grundlagen der Elektrischen Energietechnik (SoSe2024)

4. Übung Leistungselektronik

Hochsetzsteller

Aufgabe 1:

Um die Traktionsbatterie eines Elektrofahrzeuges mithilfe einer leistungsfähigen PV-Anlage zu laden, wird ein Hochsetzsteller eingesetzt. Bei der Batterie handelt es sich um einen Lithiumakkumulator aus 44 in Reihe geschalteten Einzelzellen mit 3,7 V Nennspannung. Jede Zelle besitzt eine ladestandsabhängige Spannung von 2,5 V im entladenen Zustand bis 4,2 V im vollständig geladenen Zustand. Alle Bauelemente können dabei verlustfrei angenommen werden.

Für alle Aufgabenteile gelten folgende Werte:

$$U_E = 52 \text{ V}$$
 $R_{Bat} = 100 \text{ m}\Omega$ $C \rightarrow \infty$ $f_T = 25 \text{ kHz}$

a) Vervollständigen Sie das Ersatzschaltbild des Hochsetzstellers.

b) Berechnen Sie die Lade- und die Entladeschlussspannung des Akkumulators.

c) Welcher Tastgrad v_T ist erforderlich, um die vollständig entladene Batterie mit einem Strom von 10 A zu laden?

d) Skizzieren Sie den Verlauf der Ausgangsspannung bezogen auf die Eingangsspannung U_a/U_e für $v_T=0;\,0,25;\,0,5;\,0,75;\,1$

e) Wie groß ist in diesem Betriebspunkt der mittlere Strom in der Induktivität L?

Aufgabe 2:

Annahme: Der Akku erreicht nun seine Ladeschlussspannung.

a) Wie groß muss die Induktivität mindestens sein, um den Ladevorgang bei Erreichen der Ladeschlussspannung mit 2 A lückfrei zu beenden?

b) Wie groß ist in diesem Betriebszustand der mittlere Strom I_L , der minimale Strom I_{L_min} und der maximale Strom I_{L_max} in der Induktivität?

c) Skizzieren Sie die zeitlichen Verläufe der Spannung $u_L(t)$ und des Stroms $i_L(t)$ für den Betrieb an der Lückgrenze. Kennzeichnen Sie U_L , I_L , T und te

