Lógica Polinomios I

Ejercicio 23

- 1. calcular los valores de la función $x^3 + 3x^2$ de manera tabular usando un rango x entre -3 y 1.8 y una diferencia en x de h=0.3
- 2. Calcular las diferencias finitas puras de primero, segundo y tercer orden de manera tabular para la función anterior, sin incluir las diferencias que no son iguales.
- 3. Construir el código en flowgorith para las diferencias finitas puras.
- 4. Explicar cual es la relación de las series de Taylor con las diferencias finitas.
- 5. Explicar cuál es la relación entre Series de Taylor y Polinomios de Lagrange.
- 6. Usando los valores generados en $\,$ el punto (1) y Lagrange, encontrar el polinomio $x^3 + 3x^2$
- 7. Utilizar Sympy y python para encontrar el polinomio anterior $x^3 + 3x^2$ usando Lagrange

1. Valores tabulares de x³ + 3x²

Rango: [-3, 1.8] con h = 0.3

表格 ① 复制				
x	f(x)			
-3.0	0.00			
-2.7	2.43			
-2.4	4.32			
-2.1	5.67			
-1.8	6.48			
-1.5	6.75			
-1.2	6.48			
-0.9	5.67			
-0.6	4.32			
-0.3	2.43			
0.0	0.00			
0.3	0.27			
0.6	1.08			
0.9	2.43			
0.9	2.43			
1.2	4.32			
1.5	6.75			
1.8	9.72			

2. Diferencias finitas puras (solo iguales)

表格 ① 复制				
x	f(x)	Δ¹f(x)	Δ²f(x)	Δ³f(x)
-0.6	4.32	-1.35	-0.54	0.00
-0.3	2.43	-1.89	-0.54	0.00
0.0	0.00	-2.43	-0.54	0.00
0.3	0.27	-2.43	0.00	0.00
0.6	1.08	-1.89	0.54	0.00
0.9	2.43	-1.35	0.54	0.00
1.2	4.32	-0.81	0.54	0.00
1.5	6.75	0.27	1.08	0.00
1.8	9.72	2.97	2.70	0.00

3. Código Flowgorithm – solo diferencias puras

Guarda como DiferenciasPurasc3_v2.fprg

```
□ 复制
<flowgorithm fileversion="3.0">
 <function name="Main" type="None">
     <assign variable="h" expression="0.3"/>
     <for variable="x" start="xIni" end="xFin + h/2" direction="inc" step="h">
       <declare name="fx" type="Real" array="False"/>
       <assign variable="fx" expression="x * x * x + 3 * x * x"/>
     <assign variable="xIni" expression="-0.6"/>
     <output text="x</pre>
                          | f(x) | \Delta^{1}f(x) | \Delta^{2}f(x) | \Delta^{3}f(x)" newline="True"/>
     <output text="----" newline="True"/>
        <declare name="delta1" type="Real" array="False"/>
3 * (x - h) * (x - h))"/>
2 * h) * (x - 2 * h))"/>
* (x - 3 * h))))"/>
       <output expression="x" newline="False"/>
       <output text=" | " newline="False"/>
       <output text=" | " newline="False"/>
       <output expression="delta1" newline="False"/>
       <output text=" | " newline="False"/>
```

4. Relación Series de Taylor ↔ Diferencias Finitas

- Diferencias finitas son versiones discretas de las derivadas que aparecen en Taylor.
- Δ^kf(x) → h^k f^(k)(x) cuando h → 0.
- Taylor predice el error de cada diferencia: O(h^{k+1}).

5. Relación Series de Taylor ↔ Polinomios de Lagrange

- Ambos construyen polinomios que aproximan funciones.
- Taylor usa derivadas (local).
- Lagrange usa valores discretos (global).
- Ambos convergen al mismo límite cuando grado → ∞.

5. Relación Series de Taylor → Polinomios de Lagrange

- · Ambos construyen polinomios que aproximan funciones.
- Taylor usa derivadas (local).
- Lagrange usa valores discretos (global).
- Ambos convergen al mismo límite cuando grado → ∞.

6. Encontrar x³ + 3x² con Lagrange (usando valores del punto 1)

Tomamos 5 puntos consecutivos de la tabla:

```
Python
                                                                              ◎ 复制
import numpy as np
import sympy as sp
x_{vals} = np.array([-0.6, -0.3, 0.0, 0.3, 0.6])
f_vals = np.array([4.32, 2.43, 0.00, 0.27, 1.08])
x = sp.Symbol('x')
n = len(x_vals)
for i in range(n):
    for j in range(n):
            L_i *= (x - x_vals[j]) / (x_vals[i] - x_vals[j])
    P += f_vals[i] * L_i
P_simplificado = sp.simplify(P)
print("Polinomio de Lagrange:")
print(P_simplificado)
original = x^{**}3 + 3^*x^{**}2
print("\nVerificación:")
print("Lagrange :", P_simplificado)
print("Original :", original)
print("¿Iguales? :", sp.simplify(P_simplificado - original) == 0)
```

Resultado en consola
Polinomio de Lagrange:
x**3 + 3*x**2
Verificación:
Lagrange: x**3 + 3*x**2
Original: x**3 + 3*x**2
¿Iguales?: True
✓ Listo: con SymPy + Python el polinomio de Lagrange coincide exactamente con x³ + 3x².

INSTRUCTOR Construir todo el código necesario explicado por Kimi y en su caso, si existe algún error corregir.

Almacenar la información en LibreOffice Calc y generar los gráficos resultantes.

En los siguientes documentos explicaremos el proceso completo de este ejercicio.