# A tale of two variables

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON



Maarten Van den Broeck Content Developer at DataCamp



#### Swedish motor insurance data

- Each row represents one geographic region in Sweden.
- There are 63 rows.

| n_claims | total_payment_sek |
|----------|-------------------|
| 108      | 392.5             |
| 19       | 46.2              |
| 13       | 15.7              |
| 124      | 422.2             |
| 40       | 119.4             |
| •••      | •••               |

# Descriptive statistics

```
import pandas as pd
print(swedish_motor_insurance.mean())
```

```
n_claims 22.904762
total_payment_sek 98.187302
dtype: float64
```

```
print(swedish_motor_insurance['n_claims'].corr(swedish_motor_insurance['total_payment_sek']))
```

0.9128782350234068



# What is regression?

- Statistical models to explore the relationship a response variable and some explanatory variables.
- Given values of explanatory variables, you can predict the values of the response variable.

| n_claims | total_payment_sek |
|----------|-------------------|
| 108      | 3925              |
| 19       | 462               |
| 13       | 157               |
| 124      | 4222              |
| 40       | 1194              |
| 200      | ???               |

what if claims increased to 200?



### Jargon

#### Response variable (a.k.a. dependent variable)

The variable that you want to predict.

#### Explanatory variables (a.k.a. independent variables)

The variables that explain how the response variable will change.

these are interchangeable



# Linear regression and logistic regression

#### Linear regression

• The response variable is numeric.

#### Logistic regression

• The response variable is logical.

#### Simple linear/logistic regression

• There is only one explanatory variable.

# Visualizing pairs of variables



# Adding a linear trend line

trendline follows the data points

regplot is a more advanced version of Implot



#### Course flow

#### **Chapter 1**

Visualizing and fitting linear regression models.

#### **Chapter 2**

Making predictions from linear regression models and understanding model coefficients.

#### **Chapter 3**

Assessing the quality of the linear regression model.

#### **Chapter 4**

Same again, but with logistic regression models



# Python packages for regression

#### statsmodels

Optimized for insight (focus in this course)

#### scikit-learn

Optimized for prediction (focus in other DataCamp courses)



# Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON



# Fitting a linear regression

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON



Maarten Van den Broeck Content Developer at DataCamp



# Straight lines are defined by two things

#### Intercept

The y value at the point when x is zero.

#### Slope

The amount the y value increases if you increase x by one.

#### **Equation**

y = intercept + slope \* x

# **Estimating the intercept**





# **Estimating the intercept**





# **Estimating the intercept**





















# Running a model

```
Intercept 19.994486
n_claims 3.413824
dtype: float64
```

this does that for you instead of you finding it



# Interpreting the model coefficients

```
Intercept 19.994486
n_claims 3.413824
dtype: float64
```

#### Equation

 $total\_payment\_sek = 19.99 + 3.41 * n\_claims$ 

for every new claim expect to pay 3.41

# Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON



# Categorical explanatory variables

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON



Maarten Van den Broeck Content Developer at DataCamp



#### Fish dataset

- Each row represents one fish.
- There are 128 rows in the dataset.
- There are 4 species of fish:
  - Common Bream
  - European Perch
  - Northern Pike
  - Common Roach

| species | mass_g |
|---------|--------|
| Bream   | 242.0  |
| Perch   | 5.9    |
| Pike    | 200.0  |
| Roach   | 40.0   |
| •••     | •••    |

# Visualizing 1 numeric and 1 categorical variable

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.displot(data=fish,
            x="mass_g",
            col="species",
            col_wrap=2,
            bins=9)
plt.show()
```

two graphs per row



250

# Summary statistics: mean mass by species

```
summary_stats = fish.groupby("species")["mass_g"].mean()
print(summary_stats)
```

```
species
Bream 617.828571
Perch 382.239286
Pike 718.705882
Roach 152.050000
Name: mass_g, dtype: float64
```



# Linear regression

```
from statsmodels.formula.api import ols
mdl_mass_vs_species = ols("mass_g ~ species", data=fish).fit()
print(mdl_mass_vs_species.params)
```

```
Intercept 617.828571
species[T.Perch] -235.589286
species[T.Pike] 100.877311
species[T.Roach] -465.778571
```

# Model with or without an intercept

From previous slide, model with intercept

Model without an intercept

```
mdl_mass_vs_species = ols(
    "mass_g ~ species", data=fish).fit()
print(mdl_mass_vs_species.params)
```

```
mdl_mass_vs_species = ols(
    "mass_g ~ species + 0", data=fish).fit()
print(mdl_mass_vs_species.params)
```

```
Intercept 617.828571
species[T.Perch] -235.589286
species[T.Pike] 100.877311
species[T.Roach] -465.778571
```

```
      species[Bream]
      617.828571

      species[Perch]
      382.239286

      species[Pike]
      718.705882

      species[Roach]
      152.050000
```

The coefficients are relative to the intercept: 617.83 - 235.59 = 382.24!

In case of a single, categorical variable, coefficients are the means.

# Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

