Antonio Martínez Cegarra

Tipología de examen: Parcial

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Teoría

- 1. (2,5 puntos) Da (¡breve!) respuesta a las siguientes preguntas:
 - a) ¿Cuándo es falsa una proposicion $P \Rightarrow Q$?
 - b) Si $A, B \subseteq S$, ¿Qué relación hay entre $c(A), c(B), c(A \cap B)$ y $c(A \cup B)$?
 - c) ¿Cuándo se dice que una aplicación es inyectiva? ¿Y sobreyectiva?
 - d) ¿Qué es una relación de equivalencia? ¿Qué es el conjunto cociente?
 - e) ¿Qué es un anillo conmutativo?
 - f) ¿Qué nos dice la distributividad generalizada en un anillo?
 - g) ¿Qué es una unidad en un anillo conmutativo? ¿Qué es un cuerpo?
 - h) ¿Qué significa la expresión na, donde $n \in \mathbb{Z}$ y a es un elemento de un anillo?
 - i) ¿Qué es la norma de un entero o de un racional cuadrático?
 - j) ¿Qué es un homomorfismo entre anillos?
- 2. (2,5 puntos) Demuestra que, para cualesquiera $a, b \in \mathbb{N}$, con $b \neq 0$, existen dos únicos $q, r \in \mathbb{N}$, tales que a = bq + r y r < b.

2. Cuestiones teórico-prácticas

- 1. (1 punto) Calcula el cociente y el resto de dividir el entero -2120 entre 19. Calcula el resto de dividir por 19 el resultado de multiplicar 4825 por -2120. (Deja constancia del procedimiento y cálculos que has usado)
- 2. (1 punto) Sea $f: S \to T$ una aplicación. Prueba que, para cualesquiera subconjuntos $A \subseteq S$ y $B \subseteq T$, se verifica que $f_*(A \cap f^*(B)) = f_*(A) \cap B$ (Recuerda que, si $X \subseteq S$ e $Y \subseteq T$, entonces $f_*(X) = \{f(x) \mid x \in X\}$ y $f^*(Y) = \{x \in S \mid f(x) \in Y\}$)

- 3. (1 punto) Determina todas las unidades del anillo $\mathbb{Z}[\sqrt{-5}]$. Calcula también el inverso de $\frac{1}{2} + \frac{3}{5}\sqrt{-5}$ en el cuerpo $\mathbb{Q}[\sqrt{-5}]$. (Deja constancia del procedimiento y cálculos que has usado)
- 4. (1 punto) ¿Es correcto definir una aplicación $f: \mathbb{Q} \to \mathbb{R}$ diciendo que la imagen de cada racional $\frac{a}{b}$ es $f(\frac{a}{b}) = a b$? ¿Y si la pregunta es $f(\frac{a}{b}) = ab^{-1}$? En caso afirmativo para alguna de ellas, ¿es esa aplicación un homomorfismo? ¿Y monomorfismo? (Razona la respuesta)
- 5. (1 punto) Prueba que, para cualquier $n \ge 2$, las aplicaciones polinómicas $f, g : \mathbb{Z}_3[x] \to \mathbb{Z}_3$, definidas por los polinomios $f = x^2 + 2x + 1$ y $g = (x^2 + 2x + 1)^n + 1$ son iguales. (Deja constancia del procedimiento y cálculos que has usado)