$EDLD652_Lab_5$

Michelle Cui

2025-02-05

```
gap <- read_csv(here("data/gapminder.csv"))</pre>
```

Lab Tasks

1. Recreate the final plot you generated in Lab PS-2 with just the countries in the American Continent

Life Expectancy at Birth in the America Countries over GDP

2. Add labels to the countries as there are fewer categories to compare

Life Expectancy at Birth in the America Countries over GDP

3. Highlight (hint: use gghighlight) only those countries that have life expectancy greater than 75.

Life Expectancy at Birth in the America Countries over GDP

4. Try a marked up elipse(hint: use ggforce library) and geom_mark_elipse) to highlight the two outliers on the SW grid of the plot instead of gghighlight

```
gap_1987_am %>%
ggplot(aes(x = gdpPercap, y = lifeExp, size = pop)) +
geom_point(aes(color = continent)) +
scale_color_viridis_d()+
scale_shape_manual(values = c(2))+
scale_size_continuous(labels = label_comma())+
scale_x_log10(labels = label_dollar()) +
geom_mark_ellipse(
  data = filter(gap_1987_am, lifeExp < 60 & gdpPercap < 3000),
  aes(x = gdpPercap, y = lifeExp))+
labs(title = "Life Expectancy at Birth in the America Countries over GDP",
  x = "GDP per Capita (dollars)",
  y = "Life Expectancy (years)")</pre>
```


Which one do you prefer between #3 and #4?

Answer: I like plot #3 more than #4 because the visualization on #3 is much clear and neat. It presents the outliers with a simple and direct approach. It might also because the outliers are not large in the dataset.