2. 빅데이터 처리

1. 빅데이터 처리 기술 개요

- 1. 빅데이터란 무엇인가
 - 크기가 크고 빠르게 증가하는 데이터 파일
 - 일반적으로 TB or PB
 - 비정형 데이터
 - 관계형 모델에 적합하지 않음
 - 사용자, 어플리케이션, 시스템, 센서 등에서 파생된 데이터

- 데이터 볼륨 (Lake)
- 데이터 속도 (Waterfall)
- 데이터 다양성 (Recreation)
 - 빅데이터 전송/저장/특징(3V)/관리/처리 이슈

- 2. 빅데이터 처리 기술 아키텍처
- 하둡을 중심으로 생태계가 꾸려져 있음
- 하둡보다 더 알려지고 있는 제품들도 늘어나고 있음
- but, 근본인 하둡을 이해해야 다른 프로그램들도 편할 것임
- NoSQL (아파치, HBase)
- DataWarehouse (HIVE)
- 수집 및 전송 (Flume)
- 처리 및 워크플로우 (Oozie)
- 아파치 스파크 (메모리 기반, batch 처리라서 다소 느린 하둡을 보완)
- RDBMS (HDFS, 하둡)
 - RDBMS에서 하둡 분산 파일 시스템으로 (혹은 반대)로 파일을 옮기고 싶을 때의
 - 게이트웨이 역할인 Sqoop(스쿱)이 있음

분야	솔루션
NoSQL	HBase, Cassandra, MongoDB, CouchDB, Couchbase, Cloudata, Riak, Neo4j
Cache	Redis, Memcached
RPC	Thrift, Avro, Protocol Buffer
Collect	Scribe, Flume, Chukwa, Logstash, Fluentd
Query	Hive, Pig, Hcatalog, Impala, Tajo, SparkSQL, BigQuery
Streaming	Akka, Storm, SparkStreaming, Esper, S4
Search	Elastic Search, Solr, Katta
File System	Hadoop, Swift, GlusterFS, Ceph
ETC	Machine Learning(Mahout), Distributed Coordinator(Zookeeper) Queue(Kafka), Data Integration(Sqoop), Statistics(R), Workflow(Oozie)

• 요즘에 많이 쓰이는 솔루션 - HBase, Cassandra, Neo4j / Redis, Memcached / ...

- 쿼리(질의)를 통해서 Raw데이터에서 인사이트를 얻을 수 있는 솔루션이 많음 --> 스톰, 스파크 스트리밍, 임팔라
- 비동기처리 및 동시성처리(Akka), 제조 및 보안(Elastic Search)
- 배치(batch) 처리 못지않게 실시간 처리가 중요해진 시대

- 과거) 고가의 서버를 이용해서 데이터웨어하우스를 구축
- 현재) 일반 범용 서버를 이용해서 하둡 구축 ->데이터웨어하우스(DW) ->SQL이용 대시보드/알람 등 활용
- 하둡 배치처리에 적합
- 하이브 온라인에서 배치처리 =) 안정적이지만 느림

4. Lambda Architecture (람다 아키텍처) => 데이터 처리 프레임워크 아키텍처

Lambda Architecture

• 람다 자체의 문자가 2가지로 이뤄짐 (Batch층, Speed층)

- 람다 아키텍처를 꾸릴때, Batch/Speed/Serving Layer까지 3가지를 구현함
- 새로운 데이터 빠르게 들어옴 -> Kafka(messageQ(?)역할)로 받음 i) 아파치 스파크(배치 처리) -> 하둡에 HDFS의 배치를 위해 Raw 데이터를 저장할 수도

HDFS의 처리를 통해 -> 화면에 띄워주기/알람 등 -> 처리를 할 수 있는 솔루션(맵리듀스, 피그, Spark) (물론, 배치처리도 가능) -> Serving Layer로 보낼 수도

- ii) 스파크 스트리밍(들어온 데이터를 실시간으로 처리) -> 처리 결과를 Serving Layer로 보낼 수도
 - NoSQL (몽고DB, 카산드라)
 --> Batch Layer(배치성으로 보여줄 View) / Speed Layer(실시간으로 처리해서 보여줄 Realtime View)
 - Spark -> Lambda 꾸리는 경우가 많다고 함

빅데이터 처리 프로세스

오늘의 주제

ETL (추출->변형->적재)

DW (임사결정 및 분석에 도움을 주기 위해 분석 가능한 형태 정보장고

DM (USER 또는 팀, 사업단에게 제공 되는 분석가능한 정보 저장공간)

점형데이터

SCM (Spply Chain Management)
CRM (Customer Relationship Management)
ERP (Enterprise Resource Planning)

점형데이터

SCM (원자재, 재고, 납품 등 공급관리) CRM (고객관계, 고객관리 등 거래관리) ERP [기업 물적, 인적자원 관리)

- 1. 빅데이터 처리 프로세스
- 2. 빅데이터 소스
- 3. 빅데이터 수집
- 4. 빅데이터 저장
- 5. 빅데이터 처리

7. 빅데이터 표현

Hadoop: 대용량 데이터를 분산 처리할 수 있는 자바기반의 오픈 소스 프레임 워크

2. 리눅스 기초 및 활용