2 Introduction to quantum mechanics

I ain't no physicist but I know what matters.

- Popeye the Sailor

Quantum mechanics: Real Black Magic Calculus

Albert Einstein

Quantum mechanics is the most accurate and complete description of the world known. It is also the basis for an understanding of quantum computation and quantum information. This chapter provides all the necessary background knowledge of quantum mechanics needed for a thorough grasp of quantum computation and quantum information. No prior knowledge of quantum mechanics is assumed.

Quantum mechanics is easy to learn, despite its reputation as a difficult subject. The reputation comes from the difficulty of some *applications*, like understanding the structure of complicated molecules, which aren't fundamental to a grasp of the subject; we won't be discussing such applications. The only prerequisite for understanding is some familiarity with elementary linear algebra. Provided you have this background you can begin working out simple problems in a few hours, even with no prior knowledge of the subject.

Readers already familiar with quantum mechanics can quickly skim through this chapter, to become familiar with our (mostly standard) notational conventions, and to assure themselves of familiarity with all the material. Readers with little or no prior knowledge should work through the chapter in detail, pausing to attempt the exercises. If you have difficulty with an exercise, move on, and return later to make another attempt.

The chapter begins with a review of some material from linear algebra in Section 2.1. This section assumes familiarity with elementary linear algebra, but introduces the notation used by physicists to describe quantum mechanics, which is different to that used in most introductions to linear algebra. Section 2.2 describes the basic postulates of quantum mechanics. Upon completion of the section, you will have understood all of the fundamental principles of quantum mechanics. This section contains numerous simple exercises designed to help consolidate your grasp of this material. The remaining sections of the chapter, and of this book, elucidate upon this material, without introducing fundamentally new physical principles. Section 2.3 explains *superdense coding*, a surprising and illuminating example of quantum information processing which combines many of the postulates of quantum mechanics in a simple setting. Sections 2.4 and 2.5 develop powerful mathematical tools – the density operator, purifications, and the Schmidt decomposition – which are especially useful in the study of quantum computation and quantum information. Understanding these tools will also help you consolidate your understanding of elementary quantum mechanics. Finally, Section 2.6 examines the question of how quantum mechanics goes beyond the usual 'classical' understanding of the way the world works.

2.1 Linear algebra

This book is written as much to disturb and annoy as to instruct.

- The first line of *About Vectors*, by Banesh Hoffmann.

Life is complex – it has both real and imaginary parts. – Anonymous

Linear algebra is the study of vector spaces and of linear operations on those vector spaces. A good understanding of quantum mechanics is based upon a solid grasp of elementary linear algebra. In this section we review some basic concepts from linear algebra, and describe the standard notations which are used for these concepts in the study of quantum mechanics. These notations are summarized in Figure 2.1 on page 62, with the quantum notation in the left column, and the linear-algebraic description in the right column. You may like to glance at the table, and see how many of the concepts in the right column you recognize.

In our opinion the chief obstacle to assimilation of the postulates of quantum mechanics is not the postulates themselves, but rather the large body of linear algebraic notions required to understand them. Coupled with the unusual Dirac notation adopted by physicists for quantum mechanics, it can appear (falsely) quite fearsome. For these reasons, we advise the reader not familiar with quantum mechanics to quickly read through the material which follows, pausing mainly to concentrate on understanding the absolute basics of the notation being used. Then proceed to a careful study of the main topic of the chapter – the postulates of quantum mechanics – returning to study the necessary linear algebraic notions and notations in more depth, as required.

The basic objects of linear algebra are *vector spaces*. The vector space of most interest to us is \mathbb{C}^n , the space of all *n*-tuples of complex numbers, (z_1, \ldots, z_n) . The elements of a vector space are called *vectors*, and we will sometimes use the column matrix notation

$$\begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \tag{2.1}$$

to indicate a vector. There is an *addition* operation defined which takes pairs of vectors to other vectors. In \mathbb{C}^n the addition operation for vectors is defined by

$$\begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} + \begin{bmatrix} z'_1 \\ \vdots \\ z'_n \end{bmatrix} \equiv \begin{bmatrix} z_1 + z'_1 \\ \vdots \\ z_n + z'_n \end{bmatrix}, \tag{2.2}$$

where the addition operations on the right are just ordinary additions of complex numbers. Furthermore, in a vector space there is a *multiplication by a scalar* operation. In \mathbb{C}^n this operation is defined by

$$z \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \equiv \begin{bmatrix} zz_1 \\ \vdots \\ zz_n \end{bmatrix}, \tag{2.3}$$

where z is a *scalar*, that is, a complex number, and the multiplications on the right are ordinary multiplication of complex numbers. Physicists sometimes refer to complex numbers as c-numbers.

Quantum mechanics is our main motivation for studying linear algebra, so we will use the standard notation of quantum mechanics for linear algebraic concepts. The standard quantum mechanical notation for a vector in a vector space is the following:

$$|\psi\rangle$$
. (2.4)

 ψ is a label for the vector (any label is valid, although we prefer to use simple labels like ψ and φ). The $|\cdot\rangle$ notation is used to indicate that the object is a vector. The entire object $|\psi\rangle$ is sometimes called a *ket*, although we won't use that terminology often.

A vector space also contains a special zero vector, which we denote by 0. It satisfies the property that for any other vector $|v\rangle, |v\rangle + 0 = |v\rangle$. Note that we do not use the ket notation for the zero vector – it is the only exception we shall make. The reason for making the exception is because it is conventional to use the 'obvious' notation for the zero vector, $|0\rangle$, to mean something else entirely. The scalar multiplication operation is such that z0 = 0 for any complex number z. For convenience, we use the notation (z_1, \ldots, z_n) to denote a column matrix with entries z_1, \ldots, z_n . In \mathbb{C}^n the zero element is $(0, 0, \ldots, 0)$. A vector subspace of a vector space V is a subset W of V such that W is also a vector space, that is, W must be closed under scalar multiplication and addition.

Notation	Description
z^*	Complex conjugate of the complex number z .
	$(1+i)^* = 1-i$
$ \psi angle$	Vector. Also known as a ket.
$\langle \psi $	Vector dual to $ \psi\rangle$. Also known as a bra .
$\langle \varphi \psi \rangle$	Inner product between the vectors $ \varphi\rangle$ and $ \psi\rangle$.
$ arphi angle\otimes \psi angle$	Tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
$ arphi angle \psi angle$	Abbreviated notation for tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
A^*	Complex conjugate of the A matrix.
A^T	Transpose of the A matrix.
A^\dagger	Hermitian conjugate or adjoint of the A matrix, $A^{\dagger} = (A^T)^*$.
	$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{\dagger} = \left[\begin{array}{cc} a^* & c^* \\ b^* & d^* \end{array}\right].$
$\langle \varphi A \psi \rangle$	Inner product between $ \varphi\rangle$ and $A \psi\rangle$.
	Equivalently, inner product between $A^{\dagger} \varphi\rangle$ and $ \psi\rangle$.

Figure 2.1. Summary of some standard quantum mechanical notation for notions from linear algebra. This style of notation is known as the *Dirac* notation.

2.1.1 Bases and linear independence

A spanning set for a vector space is a set of vectors $|v_1\rangle, \ldots, |v_n\rangle$ such that any vector $|v\rangle$ in the vector space can be written as a linear combination $|v\rangle = \sum_i a_i |v_i\rangle$ of vectors

in that set. For example, a spanning set for the vector space \mathbb{C}^2 is the set

$$|v_1\rangle \equiv \begin{bmatrix} 1\\0 \end{bmatrix}; |v_2\rangle \equiv \begin{bmatrix} 0\\1 \end{bmatrix},$$
 (2.5)

since any vector

$$|v\rangle = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \tag{2.6}$$

in \mathbb{C}^2 can be written as a linear combination $|v\rangle = a_1|v_1\rangle + a_2|v_2\rangle$ of the vectors $|v_1\rangle$ and $|v_2\rangle$. We say that the vectors $|v_1\rangle$ and $|v_2\rangle$ span the vector space \mathbb{C}^2 .

Generally, a vector space may have many different spanning sets. A second spanning set for the vector space \mathbb{C}^2 is the set

$$|v_1\rangle \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}; |v_2\rangle \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix},$$
 (2.7)

since an arbitrary vector $|v\rangle = (a_1, a_2)$ can be written as a linear combination of $|v_1\rangle$ and $|v_2\rangle$,

$$|v\rangle = \frac{a_1 + a_2}{\sqrt{2}}|v_1\rangle + \frac{a_1 - a_2}{\sqrt{2}}|v_2\rangle.$$
 (2.8)

A set of non-zero vectors $|v_1\rangle, \ldots, |v_n\rangle$ are *linearly dependent* if there exists a set of complex numbers a_1, \ldots, a_n with $a_i \neq 0$ for at least one value of i, such that

$$a_1|v_1\rangle + a_2|v_2\rangle + \dots + a_n|v_n\rangle = 0.$$
 (2.9)

A set of vectors is *linearly independent* if it is not linearly dependent. It can be shown that any two sets of linearly independent vectors which span a vector space V contain the same number of elements. We call such a set a *basis* for V. Furthermore, such a basis set always exists. The number of elements in the basis is defined to be the *dimension* of V. In this book we will only be interested in *finite dimensional* vector spaces. There are many interesting and often difficult questions associated with infinite dimensional vector spaces. We won't need to worry about these questions.

Exercise 2.1: (Linear dependence: example) Show that (1, -1), (1, 2) and (2, 1) are linearly dependent.

2.1.2 Linear operators and matrices

A linear operator between vector spaces V and W is defined to be any function $A:V\to W$ which is linear in its inputs,

$$A\left(\sum_{i} a_{i} | v_{i} \rangle\right) = \sum_{i} a_{i} A\left(|v_{i}\rangle\right). \tag{2.10}$$

Usually we just write $A|v\rangle$ to denote $A(|v\rangle)$. When we say that a linear operator A is defined on a vector space, V, we mean that A is a linear operator from V to V. An important linear operator on any vector space V is the *identity operator*, I_V , defined by the equation $I_V|v\rangle \equiv |v\rangle$ for all vectors $|v\rangle$. Where no chance of confusion arises we drop the subscript V and just write I to denote the identity operator. Another important linear operator is the zero operator, which we denote 0. The zero operator maps all vectors to

the zero vector, $0|v\rangle \equiv 0$. It is clear from (2.10) that once the action of a linear operator A on a basis is specified, the action of A is completely determined on all inputs.

Suppose V, W, and X are vector spaces, and $A: V \to W$ and $B: W \to X$ are linear operators. Then we use the notation BA to denote the *composition* of B with A, defined by $(BA)(|v\rangle) \equiv B(A(|v\rangle))$. Once again, we write $BA|v\rangle$ as an abbreviation for $(BA)(|v\rangle)$.

The most convenient way to understand linear operators is in terms of their *matrix* representations. In fact, the linear operator and matrix viewpoints turn out to be completely equivalent. The matrix viewpoint may be more familiar to you, however. To see the connection, it helps to first understand that an m by n complex matrix A with entries A_{ij} is in fact a linear operator sending vectors in the vector space \mathbb{C}^n to the vector space \mathbb{C}^m , under matrix multiplication of the matrix A by a vector in \mathbb{C}^n . More precisely, the claim that the matrix A is a linear operator just means that

$$A\left(\sum_{i} a_{i} | v_{i} \rangle\right) = \sum_{i} a_{i} A | v_{i} \rangle \tag{2.11}$$

is true as an equation where the operation is matrix multiplication of A by column vectors. Clearly, this is true!

We've seen that matrices can be regarded as linear operators. Can linear operators be given a matrix representation? In fact they can, as we now explain. This equivalence between the two viewpoints justifies our interchanging terms from matrix theory and operator theory throughout the book. Suppose $A:V\to W$ is a linear operator between vector spaces V and W. Suppose $|v_1\rangle,\ldots,|v_m\rangle$ is a basis for V and $|w_1\rangle,\ldots,|w_n\rangle$ is a basis for W. Then for each j in the range $1,\ldots,m$, there exist complex numbers A_{1j} through A_{nj} such that

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle. \tag{2.12}$$

The matrix whose entries are the values A_{ij} is said to form a matrix representation of the operator A. This matrix representation of A is completely equivalent to the operator A, and we will use the matrix representation and abstract operator viewpoints interchangeably. Note that to make the connection between matrices and linear operators we must specify a set of input and output basis states for the input and output vector spaces of the linear operator.

Exercise 2.2: (Matrix representations: example) Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. Give a matrix representation for A, with respect to the input basis $|0\rangle, |1\rangle$, and the output basis $|0\rangle, |1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

Exercise 2.3: (Matrix representation for operator products) Suppose A is a linear operator from vector space V to vector space W, and B is a linear operator from vector space W to vector space X. Let $|v_i\rangle, |w_j\rangle$, and $|x_k\rangle$ be bases for the vector spaces V, W, and X, respectively. Show that the matrix representation for the linear transformation BA is the matrix product of the matrix representations for B and A, with respect to the appropriate bases.

Exercise 2.4: (Matrix representation for identity) Show that the identity operator on a vector space V has a matrix representation which is one along the diagonal and zero everywhere else, if the matrix representation is taken with respect to the same input and output bases. This matrix is known as the *identity matrix*.

2.1.3 The Pauli matrices

Four extremely useful matrices which we shall often have occasion to use are the *Pauli matrices*. These are 2 by 2 matrices, which go by a variety of notations. The matrices, and their corresponding notations, are depicted in Figure 2.2. The Pauli matrices are so useful in the study of quantum computation and quantum information that we encourage you to memorize them by working through in detail the many examples and exercises based upon them in subsequent sections.

$$\sigma_0 \equiv I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\sigma_1 \equiv \sigma_x \equiv X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\sigma_2 \equiv \sigma_y \equiv Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\sigma_3 \equiv \sigma_z \equiv Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Figure 2.2. The Pauli matrices. Sometimes I is omitted from the list with just X, Y and Z known as the Pauli matrices.

2.1.4 Inner products

An inner product is a function which takes as input two vectors $|v\rangle$ and $|w\rangle$ from a vector space and produces a complex number as output. For the time being, it will be convenient to write the inner product of $|v\rangle$ and $|w\rangle$ as $(|v\rangle, |w\rangle)$. This is not the standard quantum mechanical notation; for pedagogical clarity the (\cdot, \cdot) notation will be useful occasionally in this chapter. The standard quantum mechanical notation for the inner product $(|v\rangle, |w\rangle)$ is $\langle v|w\rangle$, where $|v\rangle$ and $|w\rangle$ are vectors in the inner product space, and the notation $\langle v|$ is used for the dual vector to the vector $|v\rangle$; the dual is a linear operator from the inner product space V to the complex numbers \mathbb{C} , defined by $\langle v|(|w\rangle) \equiv \langle v|w\rangle \equiv (|v\rangle, |w\rangle)$. We will see shortly that the matrix representation of dual vectors is just a row vector.

A function (\cdot, \cdot) from $V \times V$ to \mathbf{C} is an inner product if it satisfies the requirements that:

(1) (\cdot, \cdot) is linear in the second argument,

$$\left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right) = \sum_{i} \lambda_{i} \left(|v\rangle, |w_{i}\rangle\right). \tag{2.13}$$

- (2) $(|v\rangle, |w\rangle) = (|w\rangle, |v\rangle)^*$.
- (3) $(|v\rangle, |v\rangle) \ge 0$ with equality if and only if $|v\rangle = 0$.

For example, \mathbb{C}^n has an inner product defined by

$$((y_1, \dots, y_n), (z_1, \dots, z_n)) \equiv \sum_i y_i^* z_i = \begin{bmatrix} y_1^* \dots y_n^* \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}.$$
 (2.14)

We call a vector space equipped with an inner product an *inner product space*.

Exercise 2.5: Verify that (\cdot, \cdot) just defined is an inner product on \mathbb{C}^n .

Exercise 2.6: Show that any inner product (\cdot, \cdot) is conjugate-linear in the first argument,

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \sum_{i} \lambda_{i}^{*}(|w_{i}\rangle, |v\rangle). \tag{2.15}$$

Discussions of quantum mechanics often refer to *Hilbert space*. In the finite dimensional complex vector spaces that come up in quantum computation and quantum information, a Hilbert space is *exactly the same thing* as an inner product space. From now on we use the two terms interchangeably, preferring the term Hilbert space. In infinite dimensions Hilbert spaces satisfy additional technical restrictions above and beyond inner product spaces, which we will not need to worry about.

Vectors $|w\rangle$ and $|v\rangle$ are *orthogonal* if their inner product is zero. For example, $|w\rangle \equiv (1,0)$ and $|v\rangle \equiv (0,1)$ are orthogonal with respect to the inner product defined by (2.14). We define the *norm* of a vector $|v\rangle$ by

$$|||v\rangle|| \equiv \sqrt{\langle v|v\rangle} \,. \tag{2.16}$$

A unit vector is a vector $|v\rangle$ such that $||v\rangle|| = 1$. We also say that $|v\rangle$ is normalized if $||v\rangle|| = 1$. It is convenient to talk of normalizing a vector by dividing by its norm; thus $|v\rangle/|||v\rangle||$ is the normalized form of $|v\rangle$, for any non-zero vector $|v\rangle$. A set $|i\rangle$ of vectors with index i is orthonormal if each vector is a unit vector, and distinct vectors in the set are orthogonal, that is, $\langle i|j\rangle = \delta_{ij}$, where i and j are both chosen from the index set.

Exercise 2.7: Verify that $|w\rangle \equiv (1, 1)$ and $|v\rangle \equiv (1, -1)$ are orthogonal. What are the normalized forms of these vectors?

Suppose $|w_1\rangle, \ldots, |w_d\rangle$ is a basis set for some vector space V with an inner product. There is a useful method, the Gram-Schmidt procedure, which can be used to produce an orthonormal basis set $|v_1\rangle, \ldots, |v_d\rangle$ for the vector space V. Define $|v_1\rangle \equiv |w_1\rangle/\| |w_1\rangle\|$, and for $1 \le k \le d-1$ define $|v_{k+1}\rangle$ inductively by

$$|v_{k+1}\rangle \equiv \frac{|w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle |v_i\rangle}{\||w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle |v_i\rangle\|}.$$
 (2.17)

It is not difficult to verify that the vectors $|v_1\rangle, \ldots, |v_d\rangle$ form an orthonormal set which is also a basis for V. Thus, any finite dimensional vector space of dimension d has an orthonormal basis, $|v_1\rangle, \ldots, |v_d\rangle$.

Exercise 2.8: Prove that the Gram-Schmidt procedure produces an orthonormal basis for V.

From now on, when we speak of a matrix representation for a linear operator, we mean a matrix representation with respect to orthonormal input and output bases. We also use the convention that if the input and output spaces for a linear operator are the same, then the input and output bases are the same, unless noted otherwise.

With these conventions, the inner product on a Hilbert space can be given a convenient matrix representation. Let $|w\rangle = \sum_i w_i |i\rangle$ and $|v\rangle = \sum_j v_j |j\rangle$ be representations of vectors $|w\rangle$ and $|v\rangle$ with respect to some orthonormal basis $|i\rangle$. Then, since $\langle i|j\rangle = \delta_{ij}$,

$$\langle v|w\rangle = \left(\sum_{i} v_{i}|i\rangle, \sum_{j} w_{j}|j\rangle\right) = \sum_{ij} v_{i}^{*}w_{j}\delta_{ij} = \sum_{i} v_{i}^{*}w_{i}$$
 (2.18)

$$= \begin{bmatrix} v_1^* \dots v_n^* \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}. \tag{2.19}$$

That is, the inner product of two vectors is equal to the vector inner product between two matrix representations of those vectors, provided the representations are written with respect to the same orthonormal basis. We also see that the dual vector $\langle v|$ has a nice interpretation as the row vector whose components are complex conjugates of the corresponding components of the column vector representation of $|v\rangle$.

There is a useful way of representing linear operators which makes use of the inner product, known as the *outer product* representation. Suppose $|v\rangle$ is a vector in an inner product space V, and $|w\rangle$ is a vector in an inner product space W. Define $|w\rangle\langle v|$ to be the linear operator from V to W whose action is defined by

$$(|w\rangle\langle v|) (|v'\rangle) \equiv |w\rangle\langle v|v'\rangle = \langle v|v'\rangle|w\rangle. \tag{2.20}$$

This equation fits beautifully into our notational conventions, according to which the expression $|w\rangle\langle v|v'\rangle$ could potentially have one of two meanings: we will use it to denote the result when the operator $|w\rangle\langle v|$ acts on $|v'\rangle$, and it has an existing interpretation as the result of multiplying $|w\rangle$ by the complex number $\langle v|v'\rangle$. Our definitions are chosen so that these two potential meanings coincide. Indeed, we define the former in terms of the latter!

We can take linear combinations of outer product operators $|w\rangle\langle v|$ in the obvious way. By definition $\sum_i a_i |w_i\rangle\langle v_i|$ is the linear operator which, when acting on $|v'\rangle$, produces $\sum_i a_i |w_i\rangle\langle v_i|v'\rangle$ as output.

The usefulness of the outer product notation can be discerned from an important result known as the *completeness relation* for orthonormal vectors. Let $|i\rangle$ be any orthonormal basis for the vector space V, so an arbitrary vector $|v\rangle$ can be written $|v\rangle = \sum_i v_i |i\rangle$ for some set of complex numbers v_i . Note that $\langle i|v\rangle = v_i$ and therefore

$$\left(\sum_{i}|i\rangle\langle i|\right)|v\rangle = \sum_{i}|i\rangle\langle i|v\rangle = \sum_{i}v_{i}|i\rangle = |v\rangle. \tag{2.21}$$

Since the last equation is true for all $|v\rangle$ it follows that

$$\sum_{i} |i\rangle\langle i| = I. \tag{2.22}$$

This equation is known as the *completeness relation*. One application of the completeness relation is to give a means for representing any operator in the outer product notation. Suppose $A:V\to W$ is a linear operator, $|v_i\rangle$ is an orthonormal basis for V, and $|w_j\rangle$ an orthonormal basis for W. Using the completeness relation twice we obtain

$$A = I_W A I_V \tag{2.23}$$

$$= \sum_{ij} |w_j\rangle\langle w_j|A|v_i\rangle\langle v_i| \tag{2.24}$$

$$= \sum_{ij} \langle w_j | A | v_i \rangle | w_j \rangle \langle v_i |, \qquad (2.25)$$

which is the outer product representation for A. We also see from this equation that A has matrix element $\langle w_j | A | v_i \rangle$ in the ith column and jth row, with respect to the input basis $|v_i\rangle$ and output basis $|w_j\rangle$.

A second application illustrating the usefulness of the completeness relation is the *Cauchy–Schwarz inequality*. This important result is discussed in Box 2.1, on this page.

Exercise 2.9: (Pauli operators and the outer product) The Pauli matrices (Figure 2.2 on page 65) can be considered as operators with respect to an orthonormal basis $|0\rangle, |1\rangle$ for a two-dimensional Hilbert space. Express each of the Pauli operators in the outer product notation.

Exercise 2.10: Suppose $|v_i\rangle$ is an orthonormal basis for an inner product space V. What is the matrix representation for the operator $|v_j\rangle\langle v_k|$, with respect to the $|v_i\rangle$ basis?

Box 2.1: The Cauchy-Schwarz inequality

The Cauchy–Schwarz inequality is an important geometric fact about Hilbert spaces. It states that for any two vectors $|v\rangle$ and $|w\rangle$, $|\langle v|w\rangle|^2 \leq \langle v|v\rangle\langle w|w\rangle$. To see this, use the Gram–Schmidt procedure to construct an orthonormal basis $|i\rangle$ for the vector space such that the first member of the basis $|i\rangle$ is $|w\rangle/\sqrt{\langle w|w\rangle}$. Using the completeness relation $\sum_i |i\rangle\langle i| = I$, and dropping some non-negative terms gives

$$\langle v|v\rangle\langle w|w\rangle = \sum_{i} \langle v|i\rangle\langle i|v\rangle\langle w|w\rangle \tag{2.26}$$

$$\geq \frac{\langle v|w\rangle\langle w|v\rangle}{\langle w|w\rangle}\langle w|w\rangle \tag{2.27}$$

$$= \langle v|w\rangle\langle w|v\rangle = |\langle v|w\rangle|^2, \tag{2.28}$$

as required. A little thought shows that equality occurs if and only if $|v\rangle$ and $|w\rangle$ are linearly related, $|v\rangle = z|w\rangle$ or $|w\rangle = z|v\rangle$, for some scalar z.

2.1.5 Eigenvectors and eigenvalues

An eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to $|v\rangle$. It will often be convenient to use the notation v both as a label for the eigenvector, and to represent the eigenvalue. We assume that you are familiar with the elementary properties of eigenvalues and eigenvectors – in particular, how to find them, via the characteristic equation. The characteristic function is defined to be $c(\lambda) \equiv \det |A - \lambda I|$,

where det is the *determinant* function for matrices; it can be shown that the characteristic function depends only upon the operator A, and not on the specific matrix representation used for A. The solutions of the *characteristic equation* $c(\lambda) = 0$ are the eigenvalues of the operator A. By the fundamental theorem of algebra, every polynomial has at least one complex root, so every operator A has at least one eigenvalue, and a corresponding eigenvector. The *eigenspace* corresponding to an eigenvalue v is the set of vectors which have eigenvalue v. It is a vector subspace of the vector space on which A acts.

A diagonal representation for an operator A on a vector space V is a representation $A = \sum_i \lambda_i |i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A, with corresponding eigenvalues λ_i . An operator is said to be diagonalizable if it has a diagonal representation. In the next section we will find a simple set of necessary and sufficient conditions for an operator on a Hilbert space to be diagonalizable. As an example of a diagonal representation, note that the Pauli Z matrix may be written

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|, \tag{2.29}$$

where the matrix representation is with respect to orthonormal vectors $|0\rangle$ and $|1\rangle$, respectively. Diagonal representations are sometimes also known as *orthonormal decompositions*.

When an eigenspace is more than one dimensional we say that it is degenerate. For example, the matrix A defined by

$$A \equiv \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right] \tag{2.30}$$

has a two-dimensional eigenspace corresponding to the eigenvalue 2. The eigenvectors (1,0,0) and (0,1,0) are said to be *degenerate* because they are linearly independent eigenvectors of A with the same eigenvalue.

Exercise 2.11: (Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, and Z.

Exercise 2.12: Prove that the matrix

$$\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] \tag{2.31}$$

is not diagonalizable.

2.1.6 Adjoints and Hermitian operators

Suppose A is any linear operator on a Hilbert space, V. It turns out that there exists a unique linear operator A^{\dagger} on V such that for all vectors $|v\rangle, |w\rangle \in V$,

$$(|v\rangle, A|w\rangle) = (A^{\dagger}|v\rangle, |w\rangle). \tag{2.32}$$

This linear operator is known as the *adjoint* or *Hermitian conjugate* of the operator A. From the definition it is easy to see that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. By convention, if $|v\rangle$ is a vector, then we define $|v\rangle^{\dagger} \equiv \langle v|$. With this definition it is not difficult to see that $(A|v\rangle)^{\dagger} = \langle v|A^{\dagger}$.

Exercise 2.13: If $|w\rangle$ and $|v\rangle$ are any two vectors, show that $(|w\rangle\langle v|)^{\dagger} = |v\rangle\langle w|$.

Exercise 2.14: (Anti-linearity of the adjoint) Show that the adjoint operation is anti-linear,

$$\left(\sum_{i} a_i A_i\right)^{\dagger} = \sum_{i} a_i^* A_i^{\dagger}. \tag{2.33}$$

Exercise 2.15: Show that $(A^{\dagger})^{\dagger} = A$.

In a matrix representation of an operator A, the action of the Hermitian conjugation operation is to take the matrix of A to the conjugate-transpose matrix, $A^{\dagger} \equiv (A^*)^T$, where the * indicates complex conjugation, and T indicates the transpose operation. For example, we have

$$\begin{bmatrix} 1+3i & 2i \\ 1+i & 1-4i \end{bmatrix}^{\dagger} = \begin{bmatrix} 1-3i & 1-i \\ -2i & 1+4i \end{bmatrix}.$$
 (2.34)

An operator A whose adjoint is A is known as a Hermitian or self-adjoint operator. An important class of Hermitian operators is the projectors. Suppose W is a k-dimensional vector subspace of the d-dimensional vector space V. Using the Gram–Schmidt procedure it is possible to construct an orthonormal basis $|1\rangle, \ldots, |d\rangle$ for V such that $|1\rangle, \ldots, |k\rangle$ is an orthonormal basis for W. By definition,

$$P \equiv \sum_{i=1}^{k} |i\rangle\langle i| \tag{2.35}$$

is the *projector* onto the subspace W. It is easy to check that this definition is independent of the orthonormal basis $|1\rangle,\ldots,|k\rangle$ used for W. From the definition it can be shown that $|v\rangle\langle v|$ is Hermitian for any vector $|v\rangle$, so P is Hermitian, $P^{\dagger}=P$. We will often refer to the 'vector space' P, as shorthand for the vector space onto which P is a projector. The *orthogonal complement* of P is the operator $Q \equiv I - P$. It is easy to see that Q is a projector onto the vector space spanned by $|k+1\rangle,\ldots,|d\rangle$, which we also refer to as the *orthogonal complement* of P, and may denote by Q.

Exercise 2.16: Show that any projector P satisfies the equation $P^2 = P$.

An operator A is said to be *normal* if $AA^{\dagger} = A^{\dagger}A$. Clearly, an operator which is Hermitian is also normal. There is a remarkable representation theorem for normal operators known as the *spectral decomposition*, which states that an operator is a normal operator if and only if it is diagonalizable. This result is proved in Box 2.2 on page 72, which you should read closely.

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.

A matrix U is said to be *unitary* if $U^{\dagger}U = I$. Similarly an operator U is unitary if $U^{\dagger}U = I$. It is easily checked that an operator is unitary if and only if each of its matrix representations is unitary. A unitary operator also satisfies $UU^{\dagger} = I$, and therefore U is normal and has a spectral decomposition. Geometrically, unitary operators are important because they preserve inner products between vectors. To see this, let $|v\rangle$ and $|w\rangle$ be any

two vectors. Then the inner product of $U|v\rangle$ and $U|w\rangle$ is the same as the inner product of $|v\rangle$ and $|w\rangle$,

$$(U|v\rangle, U|w\rangle) = \langle v|U^{\dagger}U|w\rangle = \langle v|I|w\rangle = \langle v|w\rangle. \tag{2.36}$$

This result suggests the following elegant outer product representation of any unitary U. Let $|v_i\rangle$ be any orthonormal basis set. Define $|w_i\rangle\equiv U|v_i\rangle$, so $|w_i\rangle$ is also an orthonormal basis set, since unitary operators preserve inner products. Note that $U=\sum_i |w_i\rangle\langle v_i|$. Conversely, if $|v_i\rangle$ and $|w_i\rangle$ are any two orthonormal bases, then it is easily checked that the operator U defined by $U\equiv\sum_i |w_i\rangle\langle v_i|$ is a unitary operator.

- Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is, can be written in the form $e^{i\theta}$ for some real θ .
- Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli matrices are Hermitian and unitary.
- Exercise 2.20: (Basis changes) Suppose A' and A'' are matrix representations of an operator A on a vector space V with respect to two different orthonormal bases, $|v_i\rangle$ and $|w_i\rangle$. Then the elements of A' and A'' are $A'_{ij} = \langle v_i|A|v_j\rangle$ and $A''_{ij} = \langle w_i|A|w_j\rangle$. Characterize the relationship between A' and A''.

A special subclass of Hermitian operators is extremely important. This is the *positive* operators. A positive operator A is defined to be an operator such that for any vector $|v\rangle$, $(|v\rangle, A|v\rangle)$ is a real, non-negative number. If $(|v\rangle, A|v\rangle)$ is strictly greater than zero for all $|v\rangle \neq 0$ then we say that A is positive definite. In Exercise 2.24 on this page you will show that any positive operator is automatically Hermitian, and therefore by the spectral decomposition has diagonal representation $\sum_i \lambda_i |i\rangle \langle i|$, with non-negative eigenvalues λ_i .

- Exercise 2.21: Repeat the proof of the spectral decomposition in Box 2.2 for the case when M is Hermitian, simplifying the proof wherever possible.
- Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.
- Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1.
- Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator is necessarily Hermitian. (*Hint*: Show that an arbitrary operator A can be written A = B + iC where B and C are Hermitian.)
- Exercise 2.25: Show that for any operator A, $A^{\dagger}A$ is positive.

2.1.7 Tensor products

The tensor product is a way of putting vector spaces together to form larger vector spaces. This construction is crucial to understanding the quantum mechanics of multiparticle systems. The following discussion is a little abstract, and may be difficult to follow if you're not already familiar with the tensor product, so feel free to skip ahead now and revisit later when you come to the discussion of tensor products in quantum mechanics.

Suppose V and W are vector spaces of dimension m and n respectively. For convenience we also suppose that V and W are Hilbert spaces. Then $V \otimes W$ (read 'V tensor

Box 2.2: The spectral decomposition – important!

The *spectral decomposition* is an extremely useful representation theorem for normal operators.

Theorem 2.1: (Spectral decomposition) Any normal operator M on a vector space V is diagonal with respect to some orthonormal basis for V. Conversely, any diagonalizable operator is normal.

Proof

The converse is a simple exercise, so we prove merely the forward implication, by induction on the dimension d of V. The case d=1 is trivial. Let λ be an eigenvalue of M, P the projector onto the λ eigenspace, and Q the projector onto the orthogonal complement. Then M=(P+Q)M(P+Q)=PMP+QMP+PMQ+QMQ. Obviously $PMP=\lambda P$. Furthermore, QMP=0, as M takes the subspace P into itself. We claim that PMQ=0 also. To see this, let $|v\rangle$ be an element of the subspace P. Then $MM^{\dagger}|v\rangle=M^{\dagger}M|v\rangle=\lambda M^{\dagger}|v\rangle$. Thus, $M^{\dagger}|v\rangle$ has eigenvalue λ and therefore is an element of the subspace P. It follows that $QM^{\dagger}P=0$. Taking the adjoint of this equation gives PMQ=0. Thus M=PMP+QMQ. Next, we prove that QMQ is normal. To see this, note that QM=QM(P+Q)=QMQ, and $QM^{\dagger}=QM^{\dagger}(P+Q)=QM^{\dagger}Q$. Therefore, by the normality of M, and the observation that $Q^2=Q$,

$$QMQ QM^{\dagger}Q = QMQM^{\dagger}Q \tag{2.37}$$

$$= QMM^{\dagger}Q \tag{2.38}$$

$$=QM^{\dagger}MQ\tag{2.39}$$

$$=QM^{\dagger}QMQ\tag{2.40}$$

$$= QM^{\dagger}Q \, QMQ \,, \tag{2.41}$$

so QMQ is normal. By induction, QMQ is diagonal with respect to some orthonormal basis for the subspace Q, and PMP is already diagonal with respect to some orthonormal basis for P. It follows that M = PMP + QMQ is diagonal with respect to some orthonormal basis for the total vector space.

In terms of the outer product representation, this means that M can be written as $M = \sum_i \lambda_i |i\rangle\langle i|$, where λ_i are the eigenvalues of M, $|i\rangle$ is an orthonormal basis for V, and each $|i\rangle$ an eigenvector of M with eigenvalue λ_i . In terms of projectors, $M = \sum_i \lambda_i P_i$, where λ_i are again the eigenvalues of M, and P_i is the projector onto the λ_i eigenspace of M. These projectors satisfy the completeness relation $\sum_i P_i = I$, and the orthonormality relation $P_i P_j = \delta_{ij} P_i$.

W') is an mn dimensional vector space. The elements of $V \otimes W$ are linear combinations of 'tensor products' $|v\rangle \otimes |w\rangle$ of elements $|v\rangle$ of V and $|w\rangle$ of W. In particular, if $|i\rangle$ and $|j\rangle$ are orthonormal bases for the spaces V and W then $|i\rangle \otimes |j\rangle$ is a basis for $V \otimes W$. We often use the abbreviated notations $|v\rangle |w\rangle$, $|v,w\rangle$ or even $|vw\rangle$ for the tensor product

 $|v\rangle \otimes |w\rangle$. For example, if V is a two-dimensional vector space with basis vectors $|0\rangle$ and $|1\rangle$ then $|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle$ is an element of $V \otimes V$.

By definition the tensor product satisfies the following basic properties:

(1) For an arbitrary scalar z and elements $|v\rangle$ of V and $|w\rangle$ of W,

$$z(|v\rangle \otimes |w\rangle) = (z|v\rangle) \otimes |w\rangle = |v\rangle \otimes (z|w\rangle). \tag{2.42}$$

(2) For arbitrary $|v_1\rangle$ and $|v_2\rangle$ in V and $|w\rangle$ in W,

$$(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle. \tag{2.43}$$

(3) For arbitrary $|v\rangle$ in V and $|w_1\rangle$ and $|w_2\rangle$ in W,

$$|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle. \tag{2.44}$$

What sorts of linear operators act on the space $V \otimes W$? Suppose $|v\rangle$ and $|w\rangle$ are vectors in V and W, and A and B are linear operators on V and W, respectively. Then we can define a linear operator $A \otimes B$ on $V \otimes W$ by the equation

$$(A \otimes B)(|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle. \tag{2.45}$$

The definition of $A \otimes B$ is then extended to all elements of $V \otimes W$ in the natural way to ensure linearity of $A \otimes B$, that is,

$$(A \otimes B) \left(\sum_{i} a_{i} | v_{i} \rangle \otimes | w_{i} \rangle \right) \equiv \sum_{i} a_{i} A | v_{i} \rangle \otimes B | w_{i} \rangle. \tag{2.46}$$

It can be shown that $A\otimes B$ defined in this way is a well-defined linear operator on $V\otimes W$. This notion of the tensor product of two operators extends in the obvious way to the case where $A:V\to V'$ and $B:W\to W'$ map between different vector spaces. Indeed, an arbitrary linear operator C mapping $V\otimes W$ to $V'\otimes W'$ can be represented as a linear combination of tensor products of operators mapping V to V' and W to W',

$$C = \sum_{i} c_i A_i \otimes B_i, \tag{2.47}$$

where by definition

$$\left(\sum_{i} c_{i} A_{i} \otimes B_{i}\right) |v\rangle \otimes |w\rangle \equiv \sum_{i} c_{i} A_{i} |v\rangle \otimes B_{i} |w\rangle. \tag{2.48}$$

The inner products on the spaces V and W can be used to define a natural inner product on $V \otimes W$. Define

$$\left(\sum_{i} a_{i} | v_{i} \rangle \otimes | w_{i} \rangle, \sum_{j} b_{j} | v_{j}' \rangle \otimes | w_{j}' \rangle\right) \equiv \sum_{ij} a_{i}^{*} b_{j} \langle v_{i} | v_{j}' \rangle \langle w_{i} | w_{j}' \rangle. \tag{2.49}$$

It can be shown that the function so defined is a well-defined inner product. From this inner product, the inner product space $V \otimes W$ inherits the other structure we are familiar with, such as notions of an adjoint, unitarity, normality, and Hermiticity.

All this discussion is rather abstract. It can be made much more concrete by moving

to a convenient matrix representation known as the *Kronecker product*. Suppose A is an m by n matrix, and B is a p by q matrix. Then we have the matrix representation:

$$A \otimes B \equiv \begin{bmatrix} A_{11}B & A_{12}B & \dots & A_{1n}B \\ A_{21}B & A_{22}B & \dots & A_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \dots & A_{mn}B \end{bmatrix} \} mp.$$
 (2.50)

In this representation terms like $A_{11}B$ denote p by q submatrices whose entries are proportional to B, with overall proportionality constant A_{11} . For example, the tensor product of the vectors (1,2) and (2,3) is the vector

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 \\ 1 \times 3 \\ 2 \times 2 \\ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}. \tag{2.51}$$

The tensor product of the Pauli matrices X and Y is

$$X \otimes Y = \begin{bmatrix} 0 \cdot Y & 1 \cdot Y \\ 1 \cdot Y & 0 \cdot Y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix}.$$
 (2.52)

Finally, we mention the useful notation $|\psi\rangle^{\otimes k}$, which means $|\psi\rangle$ tensored with itself k times. For example $|\psi\rangle^{\otimes 2} = |\psi\rangle \otimes |\psi\rangle$. An analogous notation is also used for operators on tensor product spaces.

- Exercise 2.26: Let $|\psi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$. Write out $|\psi\rangle^{\otimes 2}$ and $|\psi\rangle^{\otimes 3}$ explicitly, both in terms of tensor products like $|0\rangle|1\rangle$, and using the Kronecker product.
- Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli operators (a) X and Z; (b) I and X; (c) X and I. Is the tensor product commutative?
- Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations distribute over the tensor product,

$$(A \otimes B)^* = A^* \otimes B^*; \ (A \otimes B)^T = A^T \otimes B^T; \ (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}.$$
 (2.53)

- Exercise 2.29: Show that the tensor product of two unitary operators is unitary.
- Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian.
- Exercise 2.31: Show that the tensor product of two positive operators is positive.
- Exercise 2.32: Show that the tensor product of two projectors is a projector.
- Exercise 2.33: The Hadamard operator on one qubit may be written as

$$H = \frac{1}{\sqrt{2}} \left[(|0\rangle + |1\rangle)\langle 0| + (|0\rangle - |1\rangle)\langle 1| \right]. \tag{2.54}$$

Show explicitly that the Hadamard transform on n qubits, $H^{\otimes n}$, may be written as

$$H^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x,y} (-1)^{x \cdot y} |x\rangle \langle y|. \tag{2.55}$$

Write out an explicit matrix representation for $H^{\otimes 2}$.

2.1.8 Operator functions

There are many important functions which can be defined for operators and matrices. Generally speaking, given a function f from the complex numbers to the complex numbers, it is possible to define a corresponding matrix function on normal matrices (or some subclass, such as the Hermitian matrices) by the following construction. Let $A = \sum_a a|a\rangle\langle a|$ be a spectral decomposition for a normal operator A. Define $f(A) \equiv \sum_a f(a)|a\rangle\langle a|$. A little thought shows that f(A) is uniquely defined. This procedure can be used, for example, to define the square root of a positive operator, the logarithm of a positive-definite operator, or the exponential of a normal operator. As an example,

$$\exp(\theta Z) = \begin{bmatrix} e^{\theta} & 0\\ 0 & e^{-\theta} \end{bmatrix}, \qquad (2.56)$$

since Z has eigenvectors $|0\rangle$ and $|1\rangle$.

Exercise 2.34: Find the square root and logarithm of the matrix

$$\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}. \tag{2.57}$$

Exercise 2.35: (Exponential of the Pauli matrices) Let \vec{v} be any real, three-dimensional unit vector and θ a real number. Prove that

$$\exp(i\theta\vec{v}\cdot\vec{\sigma}) = \cos(\theta)I + i\sin(\theta)\vec{v}\cdot\vec{\sigma}, \qquad (2.58)$$

where $\vec{v} \cdot \vec{\sigma} \equiv \sum_{i=1}^{3} v_i \sigma_i$. This exercise is generalized in Problem 2.1 on page 117.

Another important matrix function is the trace of a matrix. The trace of A is defined to be the sum of its diagonal elements,

$$tr(A) \equiv \sum_{i} A_{ii}.$$
 (2.59)

The trace is easily seen to be *cyclic*, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, and *linear*, $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$, $\operatorname{tr}(zA) = z \operatorname{tr}(A)$, where A and B are arbitrary matrices, and z is a complex number. Furthermore, from the cyclic property it follows that the trace of a matrix is invariant under the unitary *similarity transformation* $A \to UAU^{\dagger}$, as $\operatorname{tr}(UAU^{\dagger}) = \operatorname{tr}(U^{\dagger}UA) = \operatorname{tr}(A)$. In light of this result, it makes sense to define the trace of an *operator* A to be the trace of any matrix representation of A. The invariance of the trace under unitary similarity transformations ensures that the trace of an operator is well defined.

As an example of the trace, suppose $|\psi\rangle$ is a unit vector and A is an arbitrary operator. To evaluate $\operatorname{tr}(A|\psi\rangle\langle\psi|)$ use the Gram–Schmidt procedure to extend $|\psi\rangle$ to an

orthonormal basis $|i\rangle$ which includes $|\psi\rangle$ as the first element. Then we have

$$tr(A|\psi\rangle\langle\psi|) = \sum_{i} \langle i|A|\psi\rangle\langle\psi|i\rangle$$

$$= \langle\psi|A|\psi\rangle.$$
(2.60)

$$= \langle \psi | A | \psi \rangle. \tag{2.61}$$

This result, that $\operatorname{tr}(A|\psi\rangle\langle\psi|) = \langle\psi|A|\psi\rangle$ is extremely useful in evaluating the trace of an operator.

Exercise 2.36: Show that the Pauli matrices except for I have trace zero.

Exercise 2.37: (Cyclic property of the trace) If A and B are two linear operators show that

$$tr(AB) = tr(BA). (2.62)$$

Exercise 2.38: (Linearity of the trace) If A and B are two linear operators, show that

$$tr(A+B) = tr(A) + tr(B)$$
(2.63)

and if z is an arbitrary complex number show that

$$tr(zA) = ztr(A). (2.64)$$

Exercise 2.39: (The Hilbert-Schmidt inner product on operators) The set L_V of linear operators on a Hilbert space V is obviously a vector space – the sum of two linear operators is a linear operator, zA is a linear operator if A is a linear operator and z is a complex number, and there is a zero element 0. An important additional result is that the vector space L_V can be given a natural inner product structure, turning it into a Hilbert space.

(1) Show that the function (\cdot, \cdot) on $L_V \times L_V$ defined by

$$(A, B) \equiv \operatorname{tr}(A^{\dagger}B) \tag{2.65}$$

is an inner product function. This inner product is known as the Hilbert-Schmidt or trace inner product.

- (2) If V has d dimensions show that L_V has dimension d^2 .
- (3) Find an orthonormal basis of Hermitian matrices for the Hilbert space L_V .

2.1.9 The commutator and anti-commutator

The *commutator* between two operators A and B is defined to be

$$[A, B] \equiv AB - BA. \tag{2.66}$$

If [A, B] = 0, that is, AB = BA, then we say A commutes with B. Similarly, the anti-commutator of two operators A and B is defined by

$$\{A, B\} \equiv AB + BA; \tag{2.67}$$

we say A anti-commutes with B if $\{A, B\} = 0$. It turns out that many important properties of pairs of operators can be deduced from their commutator and anti-commutator. Perhaps the most useful relation is the following connection between the commutator and the property of being able to simultaneously diagonalize Hermitian operators A and B, that is, write $A = \sum_i a_i |i\rangle\langle i|$, $B = \sum_i b_i |i\rangle\langle i|$, where $|i\rangle$ is some common orthonormal set of eigenvectors for A and B.

Theorem 2.2: (Simultaneous diagonalization theorem) Suppose A and B are Hermitian operators. Then [A, B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis. We say that A and B are simultaneously diagonalizable in this case.

This result connects the commutator of two operators, which is often easy to compute, to the property of being simultaneously diagonalizable, which is *a priori* rather difficult to determine. As an example, consider that

$$[X,Y] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (2.68)

$$=2i\begin{bmatrix}1&0\\0&-1\end{bmatrix}\tag{2.69}$$

$$=2iZ, (2.70)$$

so X and Y do not commute. You have already shown, in Exercise 2.11, that X and Y do not have common eigenvectors, as we expect from the simultaneous diagonalization theorem.

Proof

You can (and should!) easily verify that if A and B are diagonal in the same orthonormal basis then [A, B] = 0. To show the converse, let $|a, j\rangle$ be an orthonormal basis for the eigenspace V_a of A with eigenvalue a; the index j is used to label possible degeneracies. Note that

$$AB|a,j\rangle = BA|a,j\rangle = aB|a,j\rangle,$$
 (2.71)

and therefore $B|a,j\rangle$ is an element of the eigenspace V_a . Let P_a denote the projector onto the space V_a and define $B_a \equiv P_a B P_a$. It is easy to see that the restriction of B_a to the space V_a is Hermitian on V_a , and therefore has a spectral decomposition in terms of an orthonormal set of eigenvectors which span the space V_a . Let's call these eigenvectors $|a,b,k\rangle$, where the indices a and b label the eigenvalues of A and B_a , and k is an extra index to allow for the possibility of a degenerate B_a . Note that $B|a,b,k\rangle$ is an element of V_a , so $B|a,b,k\rangle = P_a B|a,b,k\rangle$. Moreover we have $P_a|a,b,k\rangle = |a,b,k\rangle$, so

$$B|a,b,k\rangle = P_a B P_a |a,b,k\rangle = b|a,b,k\rangle. \tag{2.72}$$

It follows that $|a, b, k\rangle$ is an eigenvector of B with eigenvalue b, and therefore $|a, b, k\rangle$ is an orthonormal set of eigenvectors of both A and B, spanning the entire vector space on which A and B are defined. That is, A and B are simultaneously diagonalizable. \square

Exercise 2.40: (Commutation relations for the Pauli matrices) Verify the commutation relations

$$[X, Y] = 2iZ; [Y, Z] = 2iX; [Z, X] = 2iY.$$
 (2.73)

There is an elegant way of writing this using ϵ_{ikl} , the antisymmetric tensor on

three indices, for which $\epsilon_{jkl} = 0$ except for $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$, and $\epsilon_{321} = \epsilon_{213} = \epsilon_{132} = -1$:

$$[\sigma_j, \sigma_k] = 2i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l. \tag{2.74}$$

Exercise 2.41: (Anti-commutation relations for the Pauli matrices) Verify the anti-commutation relations

$$\{\sigma_i, \sigma_i\} = 0 \tag{2.75}$$

where $i \neq j$ are both chosen from the set 1, 2, 3. Also verify that (i = 0, 1, 2, 3)

$$\sigma_i^2 = I. (2.76)$$

Exercise 2.42: Verify that

$$AB = \frac{[A,B] + \{A,B\}}{2}. (2.77)$$

Exercise 2.43: Show that for j, k = 1, 2, 3,

$$\sigma_j \sigma_k = \delta_{jk} I + i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l. \tag{2.78}$$

Exercise 2.44: Suppose [A, B] = 0, $\{A, B\} = 0$, and A is invertible. Show that B must be 0.

Exercise 2.45: Show that $[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}].$

Exercise 2.46: Show that [A, B] = -[B, A].

Exercise 2.47: Suppose A and B are Hermitian. Show that i[A, B] is Hermitian.

2.1.10 The polar and singular value decompositions

The *polar* and *singular value* decompositions are useful ways of breaking linear operators up into simpler parts. In particular, these decompositions allow us to break general linear operators up into products of unitary operators and positive operators. While we don't understand the structure of general linear operators terribly well, we do understand unitary operators and positive operators in quite some detail. The polar and singular value decompositions allow us to apply this understanding to better understand general linear operators.

Theorem 2.3: (Polar decomposition) Let A be a linear operator on a vector space V. Then there exists unitary U and positive operators J and K such that

$$A = UJ = KU, (2.79)$$

where the unique positive operators J and K satisfying these equations are defined by $J \equiv \sqrt{A^{\dagger}A}$ and $K \equiv \sqrt{AA^{\dagger}}$. Moreover, if A is invertible then U is unique.

We call the expression A = UJ the *left polar decomposition* of A, and A = KU the *right polar decomposition* of A. Most often, we'll omit the 'right' or 'left' nomenclature, and use the term 'polar decomposition' for both expressions, with context indicating which is meant.

Proof

 $J \equiv \sqrt{A^{\dagger}A}$ is a positive operator, so it can be given a spectral decomposition, $J = \sum_{i} \lambda_{i} |i\rangle \langle i|$ ($\lambda_{i} \geq 0$). Define $|\psi_{i}\rangle \equiv A|i\rangle$. From the definition, we see that $\langle \psi_{i} | \psi_{i} \rangle = \lambda_{i}^{2}$. Consider for now only those i for which $\lambda_{i} \neq 0$. For those i define $|e_{i}\rangle \equiv |\psi_{i}\rangle/\lambda_{i}$, so the $|e_{i}\rangle$ are normalized. Moreover, they are orthogonal, since if $i \neq j$ then $\langle e_{i} | e_{j}\rangle = \langle i|A^{\dagger}A|j\rangle/\lambda_{i}\lambda_{j} = \langle i|J^{2}|j\rangle/\lambda_{i}\lambda_{j} = 0$.

We have been considering i such that $\lambda_i \neq 0$. Now use the Gram–Schmidt procedure to extend the orthonormal set $|e_i\rangle$ so it forms an orthonormal basis, which we also label $|e_i\rangle$. Define a unitary operator $U \equiv \sum_i |e_i\rangle\langle i|$. When $\lambda_i \neq 0$ we have $UJ|i\rangle = \lambda_i |e_i\rangle = |\psi_i\rangle = A|i\rangle$. When $\lambda_i = 0$ we have $UJ|i\rangle = 0 = |\psi_i\rangle$. We have proved that the action of A and UJ agree on the basis $|i\rangle$, and thus that A = UJ.

J is unique, since multiplying A=UJ on the left by the adjoint equation $A^{\dagger}=JU^{\dagger}$ gives $J^2=A^{\dagger}A$, from which we see that $J=\sqrt{A^{\dagger}A}$, uniquely. A little thought shows that if A is invertible, then so is J, so U is uniquely determined by the equation $U=AJ^{-1}$. The proof of the right polar decomposition follows, since $A=UJ=UJU^{\dagger}U=KU$, where $K\equiv UJU^{\dagger}$ is a positive operator. Since $AA^{\dagger}=KUU^{\dagger}K=K^2$ we must have $K=\sqrt{AA^{\dagger}}$, as claimed.

The singular value decomposition combines the polar decomposition and the spectral theorem.

Corollary 2.4: (Singular value decomposition) Let A be a square matrix. Then there exist unitary matrices U and V, and a diagonal matrix D with non-negative entries such that

$$A = UDV. (2.80)$$

The diagonal elements of D are called the *singular values* of A.

Proof

By the polar decomposition, A = SJ, for unitary S, and positive J. By the spectral theorem, $J = TDT^{\dagger}$, for unitary T and diagonal D with non-negative entries. Setting $U \equiv ST$ and $V \equiv T^{\dagger}$ completes the proof.

- Exercise 2.48: What is the polar decomposition of a positive matrix P? Of a unitary matrix U? Of a Hermitian matrix, H?
- **Exercise 2.49:** Express the polar decomposition of a normal matrix in the outer product representation.
- Exercise 2.50: Find the left and right polar decompositions of the matrix

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} . \tag{2.81}$$

2.2 The postulates of quantum mechanics

All understanding begins with our not accepting the world as it appears.

– Alan Kay

The most incomprehensible thing about the world is that it is comprehensible.

– Albert Einstein

Quantum mechanics is a mathematical framework for the development of physical theories. On its own quantum mechanics doesn't tell you what laws a physical system must obey, but it does provide a mathematical and conceptual framework for the development of such laws. In the next few sections we give a complete description of the basic postulates of quantum mechanics. These postulates provide a connection between the physical world and the mathematical formalism of quantum mechanics.

The postulates of quantum mechanics were derived after a long process of trial and (mostly) error, which involved a considerable amount of guessing and fumbling by the originators of the theory. Don't be surprised if the motivation for the postulates is not always clear; even to experts the basic postulates of quantum mechanics appear surprising. What you should expect to gain in the next few sections is a good working grasp of the postulates – how to apply them, and when.

2.2.1 State space

The first postulate of quantum mechanics sets up the arena in which quantum mechanics takes place. The arena is our familiar friend from linear algebra, Hilbert space.

Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

Quantum mechanics does *not* tell us, for a given physical system, what the state space of that system is, nor does it tell us what the state vector of the system is. Figuring that out for a *specific* system is a difficult problem for which physicists have developed many intricate and beautiful rules. For example, there is the wonderful theory of quantum electrodynamics (often known as QED), which describes how atoms and light interact. One aspect of QED is that it tells us what state spaces to use to give quantum descriptions of atoms and light. We won't be much concerned with the intricacies of theories like QED (except in so far as they apply to physical realizations, in Chapter 7), as we are mostly interested in the general framework provided by quantum mechanics. For our purposes it will be sufficient to make some very simple (and reasonable) assumptions about the state spaces of the systems we are interested in, and stick with those assumptions.

The simplest quantum mechanical system, and the system which we will be most concerned with, is the *qubit*. A qubit has a two-dimensional state space. Suppose $|0\rangle$ and $|1\rangle$ form an orthonormal basis for that state space. Then an arbitrary state vector in the state space can be written

$$|\psi\rangle = a|0\rangle + b|1\rangle,\tag{2.82}$$

where a and b are complex numbers. The condition that $|\psi\rangle$ be a unit vector, $\langle\psi|\psi\rangle=1$, is therefore equivalent to $|a|^2+|b|^2=1$. The condition $\langle\psi|\psi\rangle=1$ is often known as the normalization condition for state vectors.

We will take the qubit as our fundamental quantum mechanical system. Later, in Chapter 7, we will see that there are real physical systems which may be described in terms of qubits. For now, though, it is sufficient to think of qubits in abstract terms, without reference to a specific realization. Our discussions of qubits will always be referred to some orthonormal set of basis vectors, $|0\rangle$ and $|1\rangle$, which should be thought of as being fixed in advance. Intuitively, the states $|0\rangle$ and $|1\rangle$ are analogous to the two values 0 and 1 which a bit may take. The way a qubit differs from a bit is that *superpositions* of these two states, of the form $a|0\rangle + b|1\rangle$, can also exist, in which it is not possible to say that the qubit is definitely in the state $|0\rangle$, or definitely in the state $|1\rangle$.

We conclude with some useful terminology which is often used in connection with the description of quantum states. We say that any linear combination $\sum_i \alpha_i |\psi_i\rangle$ is a superposition of the states $|\psi_i\rangle$ with *amplitude* α_i for the state $|\psi_i\rangle$. So, for example, the state

$$\frac{|0\rangle - |1\rangle}{\sqrt{2}} \tag{2.83}$$

is a superposition of the states $|0\rangle$ and $|1\rangle$ with amplitude $1/\sqrt{2}$ for the state $|0\rangle$, and amplitude $-1/\sqrt{2}$ for the state $|1\rangle$.

2.2.2 Evolution

How does the state, $|\psi\rangle$, of a quantum mechanical system change with time? The following postulate gives a prescription for the description of such state changes.

Postulate 2: The evolution of a *closed* quantum system is described by a *unitary* transformation. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2 ,

$$|\psi'\rangle = U|\psi\rangle. \tag{2.84}$$

Just as quantum mechanics does not tell us the state space or quantum state of a particular quantum system, it does not tell us which unitary operators U describe real-world quantum dynamics. Quantum mechanics merely assures us that the evolution of any closed quantum system may be described in such a way. An obvious question to ask is: what unitary operators are natural to consider? In the case of single qubits, it turns out that any unitary operator at all can be realized in realistic systems.

Let's look at a few examples of unitary operators on a single qubit which are important in quantum computation and quantum information. We have already seen several examples of such unitary operators – the Pauli matrices, defined in Section 2.1.3, and the quantum gates described in Chapter 1. As remarked in Section 1.3.1, the X matrix is often known as the quantum NOT gate, by analogy to the classical NOT gate. The X and Z Pauli matrices are also sometimes referred to as the *bit flip* and *phase flip* matrices: the X matrix takes $|0\rangle$ to $|1\rangle$, and $|1\rangle$ to $|0\rangle$, thus earning the name bit flip; and the Z matrix leaves $|0\rangle$ invariant, and takes $|1\rangle$ to $-|1\rangle$, with the extra factor of -1 added known as a *phase factor*, thus justifying the term phase flip. We will not use the term phase flip for

Z very often, since it is easily confused with the phase gate to be defined in Chapter 4. (Section 2.2.7 contains more discussion of the many uses of the term 'phase'.)

Another interesting unitary operator is the *Hadamard gate*, which we denote H. This has the action $H|0\rangle \equiv (|0\rangle + |1\rangle)/\sqrt{2}$, $H|1\rangle \equiv (|0\rangle - |1\rangle)/\sqrt{2}$, and corresponding matrix representation

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} . \tag{2.85}$$

Exercise 2.51: Verify that the Hadamard gate H is unitary.

Exercise 2.52: Verify that $H^2 = I$.

Exercise 2.53: What are the eigenvalues and eigenvectors of H?

Postulate 2 requires that the system being described be closed. That is, it is not interacting in any way with other systems. In reality, of course, all systems (except the Universe as a whole) interact at least somewhat with other systems. Nevertheless, there are interesting systems which can be described to a good approximation as being closed, and which are described by unitary evolution to some good approximation. Furthermore, at least in principle every open system can be described as part of a larger closed system (the Universe) which is undergoing unitary evolution. Later, we'll introduce more tools which allow us to describe systems which are not closed, but for now we'll continue with the description of the evolution of closed systems.

Postulate 2 describes how the quantum states of a closed quantum system at two different times are related. A more refined version of this postulate can be given which describes the evolution of a quantum system in *continuous time*. From this more refined postulate we will recover Postulate 2. Before we state the revised postulate, it is worth pointing out two things. First, a notational remark. The operator H appearing in the following discussion is not the same as the Hadamard operator, which we just introduced. Second, the following postulate makes use of the apparatus of differential equations. Readers with little background in the study of differential equations should be reassured that they will not be necessary for much of the book, with the exception of parts of Chapter 7, on real physical implementations of quantum information processing.

Postulate 2': The time evolution of the state of a closed quantum system is described by the *Schrödinger equation*,

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle.$$
 (2.86)

In this equation, \hbar is a physical constant known as *Planck's constant* whose value must be experimentally determined. The exact value is not important to us. In practice, it is common to absorb the factor \hbar into H, effectively setting $\hbar=1$. H is a fixed Hermitian operator known as the *Hamiltonian* of the closed system.

If we know the Hamiltonian of a system, then (together with a knowledge of \hbar) we understand its dynamics completely, at least in principle. In general figuring out the Hamiltonian needed to describe a particular physical system is a very difficult problem – much of twentieth century physics has been concerned with this problem – which requires substantial input from experiment in order to be answered. From our point of

view this is a problem of *detail* to be addressed by physical theories built within the framework of quantum mechanics — what Hamiltonian do we need to describe atoms in such-and-such a configuration — and is not a question that needs to be addressed by the theory of quantum mechanics itself. Most of the time in our discussion of quantum computation and quantum information we won't need to discuss Hamiltonians, and when we do, we will usually just posit that some matrix is the Hamiltonian as a starting point, and proceed from there, without attempting to justify the use of that Hamiltonian.

Because the Hamiltonian is a Hermitian operator it has a spectral decomposition

$$H = \sum_{E} E|E\rangle\langle E|, \tag{2.87}$$

with eigenvalues E and corresponding normalized eigenvectors $|E\rangle$. The states $|E\rangle$ are conventionally referred to as *energy eigenstates*, or sometimes as *stationary states*, and E is the *energy* of the state $|E\rangle$. The lowest energy is known as the *ground state energy* for the system, and the corresponding energy eigenstate (or eigenspace) is known as the *ground state*. The reason the states $|E\rangle$ are sometimes known as stationary states is because their only change in time is to acquire an overall numerical factor,

$$|E\rangle \to \exp(-iEt/\hbar)|E\rangle.$$
 (2.88)

As an example, suppose a single qubit has Hamiltonian

$$H = \hbar \omega X. \tag{2.89}$$

In this equation ω is a parameter that, in practice, needs to be experimentally determined. We won't worry about the parameter overly much here – the point is to give you a feel for the sort of Hamiltonians that are sometimes written down in the study of quantum computation and quantum information. The energy eigenstates of this Hamiltonian are obviously the same as the eigenstates of X, namely $(|0\rangle + |1\rangle)/\sqrt{2}$ and $(|0\rangle - |1\rangle)/\sqrt{2}$, with corresponding energies $\hbar\omega$ and $-\hbar\omega$. The ground state is therefore $(|0\rangle - |1\rangle)/\sqrt{2}$, and the ground state energy is $-\hbar\omega$.

What is the connection between the Hamiltonian picture of dynamics, Postulate 2', and the unitary operator picture, Postulate 2? The answer is provided by writing down the solution to Schrödinger's equation, which is easily verified to be:

$$|\psi(t_2)\rangle = \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right]|\psi(t_1)\rangle = U(t_1, t_2)|\psi(t_1)\rangle, \qquad (2.90)$$

where we define

$$U(t_1, t_2) \equiv \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right]. \tag{2.91}$$

You will show in the exercises that this operator is unitary, and furthermore, that any unitary operator U can be realized in the form $U = \exp(iK)$ for some Hermitian operator K. There is therefore a one-to-one correspondence between the discrete-time description of dynamics using unitary operators, and the continuous time description using Hamiltonians. For most of the book we use the unitary formulation of quantum dynamics.

Exercise 2.54: Suppose A and B are commuting Hermitian operators. Prove that $\exp(A) \exp(B) = \exp(A + B)$. (*Hint*: Use the results of Section 2.1.9.)

Exercise 2.55: Prove that $U(t_1, t_2)$ defined in Equation (2.91) is unitary.

Exercise 2.56: Use the spectral decomposition to show that $K \equiv -i \log(U)$ is Hermitian for any unitary U, and thus $U = \exp(iK)$ for some Hermitian K.

In quantum computation and quantum information we often speak of applying a unitary operator to a particular quantum system. For example, in the context of quantum circuits we may speak of applying the unitary gate X to a single qubit. Doesn't this contradict what we said earlier, about unitary operators describing the evolution of a closed quantum system? After all, if we are 'applying' a unitary operator, then that implies that there is an external 'we' who is interacting with the quantum system, and the system is not closed.

An example of this occurs when a laser is focused on an atom. After a lot of thought and hard work it is possible to write down a Hamiltonian describing the total atom—laser system. The interesting thing is that when we write down the Hamiltonian for the atom—laser system and consider the effects on the atom alone, the behavior of the state vector of the atom turns out to be almost but not quite perfectly described by another Hamiltonian, the *atomic Hamiltonian*. The atomic Hamiltonian contains terms related to laser intensity, and other parameters of the laser, which we can vary at will. It is *as if* the evolution of the atom were being described by a Hamiltonian which we can vary at will, despite the atom not being a closed system.

More generally, for many systems like this it turns out to be possible to write down a *time-varying* Hamiltonian for a quantum system, in which the Hamiltonian for the system is not a constant, but varies according to some parameters which are under an experimentalist's control, and which may be changed during the course of an experiment. The system is not, therefore, closed, but it does evolve according to Schrödinger's equation with a time-varying Hamiltonian, to some good approximation.

The upshot is that to begin we will often describe the evolution of quantum systems – even systems which aren't closed – using unitary operators. The main exception to this, quantum measurement, will be described in the next section. Later on we will investigate in more detail possible deviations from unitary evolution due to the interaction with other systems, and understand more precisely the dynamics of realistic quantum systems.

2.2.3 Quantum measurement

We postulated that closed quantum systems evolve according to unitary evolution. The evolution of systems which don't interact with the rest of the world is all very well, but there must also be times when the experimentalist and their experimental equipment – an external physical system in other words – observes the system to find out what is going on inside the system, an interaction which makes the system no longer closed, and thus not necessarily subject to unitary evolution. To explain what happens when this is done, we introduce Postulate 3, which provides a means for describing the effects of measurements on quantum systems.

Postulate 3: Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is $|\psi\rangle$ immediately before the measurement then the probability that result m occurs is

given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle , \qquad (2.92)$$

and the state of the system after the measurement is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}} \,. \tag{2.93}$$

The measurement operators satisfy the *completeness equation*,

$$\sum_{m} M_m^{\dagger} M_m = I. \tag{2.94}$$

The completeness equation expresses the fact that probabilities sum to one:

$$1 = \sum_{m} p(m) = \sum_{m} \langle \psi | M_m^{\dagger} M_m | \psi \rangle.$$
 (2.95)

This equation being satisfied for all $|\psi\rangle$ is equivalent to the completeness equation. However, the completeness equation is much easier to check directly, so that's why it appears in the statement of the postulate.

A simple but important example of a measurement is the *measurement of a qubit in* the computational basis. This is a measurement on a single qubit with two outcomes defined by the two measurement operators $M_0 = |0\rangle\langle 0|$, $M_1 = |1\rangle\langle 1|$. Observe that each measurement operator is Hermitian, and that $M_0^2 = M_0$, $M_1^2 = M_1$. Thus the completeness relation is obeyed, $I = M_0^{\dagger} M_0 + M_1^{\dagger} M_1 = M_0 + M_1$. Suppose the state being measured is $|\psi\rangle = a|0\rangle + b|1\rangle$. Then the probability of obtaining measurement outcome 0 is

$$p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = |a|^2. \tag{2.96}$$

Similarly, the probability of obtaining the measurement outcome 1 is $p(1) = |b|^2$. The state after measurement in the two cases is therefore

$$\frac{M_0|\psi\rangle}{|a|} = \frac{a}{|a|}|0\rangle \tag{2.97}$$

$$\frac{M_1|\psi\rangle}{|b|} = \frac{b}{|b|}|1\rangle. \tag{2.98}$$

We will see in Section 2.2.7 that multipliers like a/|a|, which have modulus one, can effectively be ignored, so the two post-measurement states are effectively $|0\rangle$ and $|1\rangle$, just as described in Chapter 1.

The status of Postulate 3 as a fundamental postulate intrigues many people. Measuring devices are quantum mechanical systems, so the quantum system being measured and the measuring device together are part of a larger, isolated, quantum mechanical system. (It may be necessary to include quantum systems other than the system being measured and the measuring device to obtain a completely isolated system, but the point is that this can be done.) According to Postulate 2, the evolution of this larger isolated system can be described by a unitary evolution. Might it be possible to *derive* Postulate 3 as a consequence of this picture? Despite considerable investigation along these lines there is still disagreement between physicists about whether or not this is possible. We, however, are going to take the very pragmatic approach that in practice it is clear when to apply

Postulate 2 and when to apply Postulate 3, and not worry about deriving one postulate from the other.

Over the next few sections we apply Postulate 3 to several elementary but important measurement scenarios. Section 2.2.4 examines the problem of *distinguishing* a set of quantum states. Section 2.2.5 explains a special case of Postulate 3, the *projective* or *von Neumann* measurements. Section 2.2.6 explains another special case of Postulate 3, known as *POVM* measurements. Many introductions to quantum mechanics only discuss projective measurements, omitting a full discussion of Postulate 3 or of POVM elements. For this reason we have included Box 2.5 on page 91 which comments on the relationship between the different classes of measurement we describe.

Exercise 2.57: (Cascaded measurements are single measurements) Suppose $\{L_l\}$ and $\{M_m\}$ are two sets of measurement operators. Show that a measurement defined by the measurement operators $\{L_l\}$ followed by a measurement defined by the measurement operators $\{M_m\}$ is physically equivalent to a single measurement defined by measurement operators $\{N_{lm}\}$ with the representation $N_{lm} \equiv M_m L_l$.

2.2.4 Distinguishing quantum states

An important application of Postulate 3 is to the problem of *distinguishing quantum states*. In the classical world, distinct states of an object are usually distinguishable, at least in principle. For example, we can always identify whether a coin has landed heads or tails, at least in the ideal limit. Quantum mechanically, the situation is more complicated. In Section 1.6 we gave a plausible argument that non-orthogonal quantum states cannot be distinguished. With Postulate 3 as a firm foundation we can now give a much more convincing demonstration of this fact.

Distinguishability, like many ideas in quantum computation and quantum information, is most easily understood using the metaphor of a game involving two parties, Alice and Bob. Alice chooses a state $|\psi_i\rangle$ ($1 \le i \le n$) from some fixed set of states known to both parties. She gives the state $|\psi_i\rangle$ to Bob, whose task it is to identify the index i of the state Alice has given him.

Suppose the states $|\psi_i\rangle$ are orthonormal. Then Bob can do a quantum measurement to distinguish these states, using the following procedure. Define measurement operators $M_i \equiv |\psi_i\rangle\langle\psi_i|$, one for each possible index i, and an additional measurement operator M_0 defined as the positive square root of the positive operator $I - \sum_{i \neq 0} |\psi_i\rangle\langle\psi_i|$. These operators satisfy the completeness relation, and if the state $|\psi_i\rangle$ is prepared then $p(i) = \langle\psi_i|M_i|\psi_i\rangle = 1$, so the result i occurs with certainty. Thus, it is possible to reliably distinguish the orthonormal states $|\psi_i\rangle$.

By contrast, if the states $|\psi_i\rangle$ are not orthonormal then we can prove that there is no quantum measurement capable of distinguishing the states. The idea is that Bob will do a measurement described by measurement operators M_j , with outcome j. Depending on the outcome of the measurement Bob tries to guess what the index i was using some rule, i = f(j), where $f(\cdot)$ represents the rule he uses to make the guess. The key to why Bob can't distinguish non-orthogonal states $|\psi_1\rangle$ and $|\psi_2\rangle$ is the observation that $|\psi_2\rangle$ can be decomposed into a (non-zero) component parallel to $|\psi_1\rangle$, and a component orthogonal to $|\psi_1\rangle$. Suppose j is a measurement outcome such that f(j) = 1, that is, Bob guesses that the state was $|\psi_1\rangle$ when he observes j. But because of the component of $|\psi_2\rangle$ parallel

to $|\psi_1\rangle$, there is a non-zero probability of getting outcome j when $|\psi_2\rangle$ is prepared, so sometimes Bob will make an error identifying which state was prepared. A more rigorous argument that non-orthogonal states can't be distinguished is given in Box 2.3, but this captures the essential idea.

Box 2.3: Proof that non-orthogonal states can't be reliably distinguished

A proof by contradiction shows that no measurement distinguishing the non-orthogonal states $|\psi_1\rangle$ and $|\psi_2\rangle$ is possible. Suppose such a measurement is possible. If the state $|\psi_1\rangle$ ($|\psi_2\rangle$) is prepared then the probability of measuring j such that f(j) = 1 (f(j) = 2) must be 1. Defining $E_i \equiv \sum_{j:f(j)=i} M_j^{\dagger} M_j$, these observations may be written as:

$$\langle \psi_1 | E_1 | \psi_1 \rangle = 1; \quad \langle \psi_2 | E_2 | \psi_2 \rangle = 1. \tag{2.99}$$

Since $\sum_i E_i = I$ it follows that $\sum_i \langle \psi_1 | E_i | \psi_1 \rangle = 1$, and since $\langle \psi_1 | E_1 | \psi_1 \rangle = 1$ we must have $\langle \psi_1 | E_2 | \psi_1 \rangle = 0$, and thus $\sqrt{E_2} | \psi_1 \rangle = 0$. Suppose we decompose $|\psi_2\rangle = \alpha |\psi_1\rangle + \beta |\varphi\rangle$, where $|\varphi\rangle$ is orthonormal to $|\psi_1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$, and $|\beta| < 1$ since $|\psi_1\rangle$ and $|\psi_2\rangle$ are not orthogonal. Then $\sqrt{E_2} |\psi_2\rangle = \beta \sqrt{E_2} |\varphi\rangle$, which implies a contradiction with (2.99), as

$$\langle \psi_2 | E_2 | \psi_2 \rangle = |\beta|^2 \langle \varphi | E_2 | \varphi \rangle \le |\beta|^2 < 1, \tag{2.100}$$

where the second last inequality follows from the observation that

$$\langle \varphi | E_2 | \varphi \rangle \le \sum_i \langle \varphi | E_i | \varphi \rangle = \langle \varphi | \varphi \rangle = 1.$$
 (2.101)

2.2.5 Projective measurements

In this section we explain an important special case of the general measurement postulate, Postulate 3. This special class of measurements is known as *projective measurements*. For many applications of quantum computation and quantum information we will be concerned primarily with projective measurements. Indeed, projective measurements actually turn out to be *equivalent* to the general measurement postulate, when they are augmented with the ability to perform unitary transformations, as described in Postulate 2. We will explain this equivalence in detail in Section 2.2.8, as the statement of the measurement postulate for projective measurements is superficially rather different from the general postulate, Postulate 3.

Projective measurements: A projective measurement is described by an *observable*, M, a Hermitian operator on the state space of the system being observed. The observable has a spectral decomposition,

$$M = \sum_{m} m P_m \,, \tag{2.102}$$

where P_m is the projector onto the eigenspace of M with eigenvalue m. The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable. Upon measuring the state $|\psi\rangle$, the probability of getting result m is

given by

$$p(m) = \langle \psi | P_m | \psi \rangle. \tag{2.103}$$

Given that outcome m occurred, the state of the quantum system immediately after the measurement is

$$\frac{P_m|\psi\rangle}{\sqrt{p(m)}}. (2.104)$$

Projective measurements can be understood as a special case of Postulate 3. Suppose the measurement operators in Postulate 3, in addition to satisfying the completeness relation $\sum_m M_m^\dagger M_m = I$, also satisfy the conditions that M_m are orthogonal projectors, that is, the M_m are Hermitian, and $M_m M_{m'} = \delta_{m,m'} M_m$. With these additional restrictions, Postulate 3 reduces to a projective measurement as just defined.

Projective measurements have many nice properties. In particular, it is very easy to calculate average values for projective measurements. By definition, the average (see Appendix 1 for elementary definitions and results in probability theory) value of the measurement is

$$\mathbf{E}(M) = \sum_{m} m \, p(m) \tag{2.110}$$

$$=\sum_{m}m\langle\psi|P_{m}|\psi\rangle\tag{2.111}$$

$$= \langle \psi | \left(\sum_{m} m P_{m} \right) | \psi \rangle \tag{2.112}$$

$$= \langle \psi | M | \psi \rangle. \tag{2.113}$$

This is a useful formula, which simplifies many calculations. The average value of the observable M is often written $\langle M \rangle \equiv \langle \psi | M | \psi \rangle$. From this formula for the average follows a formula for the standard deviation associated to observations of M,

$$[\Delta(M)]^2 = \langle (M - \langle M \rangle)^2 \rangle \tag{2.114}$$

$$= \langle M^2 \rangle - \langle M \rangle^2. \tag{2.115}$$

The standard deviation is a measure of the typical spread of the observed values upon measurement of M. In particular, if we perform a large number of experiments in which the state $|\psi\rangle$ is prepared and the observable M is measured, then the standard deviation $\Delta(M)$ of the observed values is determined by the formula $\Delta(M) = \sqrt{\langle M^2 \rangle - \langle M \rangle^2}$. This formulation of measurement and standard deviations in terms of observables gives rise in an elegant way to results such as the *Heisenberg uncertainty principle* (see Box 2.4).

Exercise 2.58: Suppose we prepare a quantum system in an eigenstate $|\psi\rangle$ of some observable M, with corresponding eigenvalue m. What is the average observed value of M, and the standard deviation?

Two widely used nomenclatures for measurements deserve emphasis. Rather than giving an observable to describe a projective measurement, often people simply list a complete set of orthogonal projectors P_m satisfying the relations $\sum_m P_m = I$ and $P_m P_{m'} = I$

Box 2.4: The Heisenberg uncertainty principle

Perhaps the best known result of quantum mechanics is the *Heisenberg uncertainty principle*. Suppose A and B are two Hermitian operators, and $|\psi\rangle$ is a quantum state. Suppose $\langle \psi | AB | \psi \rangle = x + iy$, where x and y are real. Note that $\langle \psi | [A,B] | \psi \rangle = 2iy$ and $\langle \psi | \{A,B\} | \psi \rangle = 2x$. This implies that

$$|\langle \psi | [A, B] | \psi \rangle|^2 + |\langle \psi | \{A, B\} | \psi \rangle|^2 = 4 |\langle \psi | AB | \psi \rangle|^2.$$
 (2.105)

By the Cauchy-Schwarz inequality

$$|\langle \psi | AB | \psi \rangle|^2 \le \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle, \tag{2.106}$$

which combined with Equation (2.105) and dropping a non-negative term gives

$$|\langle \psi | [A, B] | \psi \rangle|^2 \le 4 \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle. \tag{2.107}$$

Suppose C and D are two observables. Substituting $A = C - \langle C \rangle$ and $B = D - \langle D \rangle$ into the last equation, we obtain Heisenberg's uncertainty principle as it is usually stated:

$$\Delta(C)\Delta(D) \ge \frac{|\langle \psi | [C, D] | \psi \rangle|}{2}. \tag{2.108}$$

You should be wary of a common misconception about the uncertainty principle, that measuring an observable C to some 'accuracy' $\Delta(C)$ causes the value of D to be 'disturbed' by an amount $\Delta(D)$ in such a way that some sort of inequality similar to (2.108) is satisfied. While it is true that measurements in quantum mechanics cause disturbance to the system being measured, this is most emphatically *not* the content of the uncertainty principle.

The correct interpretation of the uncertainty principle is that if we prepare a large number of quantum systems in identical states, $|\psi\rangle$, and then perform measurements of C on some of those systems, and of D in others, then the standard deviation $\Delta(C)$ of the C results times the standard deviation $\Delta(D)$ of the results for D will satisfy the inequality (2.108).

As an example of the uncertainty principle, consider the observables X and Y when measured for the quantum state $|0\rangle$. In Equation (2.70) we showed that [X,Y] = 2iZ, so the uncertainty principle tells us that

$$\Delta(X)\Delta(Y) \ge \langle 0|Z|0\rangle = 1. \tag{2.109}$$

One elementary consequence of this is that $\Delta(X)$ and $\Delta(Y)$ must both be strictly greater than 0, as can be verified by direct calculation.

 $\delta_{mm'}P_m$. The corresponding observable implicit in this usage is $M = \sum_m m P_m$. Another widely used phrase, to 'measure in a basis $|m\rangle$ ', where $|m\rangle$ form an orthonormal basis, simply means to perform the projective measurement with projectors $P_m = |m\rangle\langle m|$.

Let's look at an example of projective measurements on single qubits. First is the measurement of the observable Z. This has eigenvalues +1 and -1 with corresponding eigenvectors $|0\rangle$ and $|1\rangle$. Thus, for example, measurement of Z on the state $|\psi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ gives the result +1 with probability $\langle \psi | 0 \rangle \langle 0 | \psi \rangle = 1/2$, and similarly the

result -1 with probability 1/2. More generally, suppose \vec{v} is any real three-dimensional unit vector. Then we can define an observable:

$$\vec{v} \cdot \vec{\sigma} \equiv v_1 \sigma_1 + v_2 \sigma_2 + v_3 \sigma_3. \tag{2.116}$$

Measurement of this observable is sometimes referred to as a 'measurement of spin along the \vec{v} axis', for historical reasons. The following two exercises encourage you to work out some elementary but important properties of such a measurement.

Exercise 2.59: Suppose we have qubit in the state $|0\rangle$, and we measure the observable X. What is the average value of X? What is the standard deviation of X?

Exercise 2.60: Show that $\vec{v} \cdot \vec{\sigma}$ has eigenvalues ± 1 , and that the projectors onto the corresponding eigenspaces are given by $P_{\pm} = (I \pm \vec{v} \cdot \vec{\sigma})/2$.

Exercise 2.61: Calculate the probability of obtaining the result +1 for a measurement of $\vec{v} \cdot \vec{\sigma}$, given that the state prior to measurement is $|0\rangle$. What is the state of the system after the measurement if +1 is obtained?

2.2.6 POVM measurements

The quantum measurement postulate, Postulate 3, involves two elements. First, it gives a rule describing the measurement statistics, that is, the respective probabilities of the different possible measurement outcomes. Second, it gives a rule describing the post-measurement state of the system. However, for some applications the post-measurement state of the system is of little interest, with the main item of interest being the probabilities of the respective measurement outcomes. This is the case, for example, in an experiment where the system is measured only once, upon conclusion of the experiment. In such instances there is a mathematical tool known as the *POVM formalism* which is especially well adapted to the analysis of the measurements. (The acronym POVM stands for 'Positive Operator-Valued Measure', a technical term whose historical origins we won't worry about.) This formalism is a simple consequence of the general description of measurements introduced in Postulate 3, but the theory of POVMs is so elegant and widely used that it merits a separate discussion here.

Suppose a measurement described by measurement operators M_m is performed upon a quantum system in the state $|\psi\rangle$. Then the probability of outcome m is given by $p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$. Suppose we define

$$E_m \equiv M_m^{\dagger} M_m. \tag{2.117}$$

Then from Postulate 3 and elementary linear algebra, E_m is a positive operator such that $\sum_m E_m = I$ and $p(m) = \langle \psi | E_m | \psi \rangle$. Thus the set of operators E_m are sufficient to determine the probabilities of the different measurement outcomes. The operators E_m are known as the POVM elements associated with the measurement. The complete set $\{E_m\}$ is known as a POVM.

As an example of a POVM, consider a projective measurement described by measurement operators P_m , where the P_m are projectors such that $P_m P_{m'} = \delta_{mm'} P_m$ and $\sum_m P_m = I$. In this instance (and only this instance) all the POVM elements are the same as the measurement operators themselves, since $E_m \equiv P_m^{\dagger} P_m = P_m$.

Box 2.5: General measurements, projective measurements, and POVMs

Most introductions to quantum mechanics describe only projective measurements, and consequently the general description of measurements given in Postulate 3 may be unfamiliar to many physicists, as may the POVM formalism described in Section 2.2.6. The reason most physicists don't learn the general measurement formalism is because most physical systems can only be measured in a very coarse manner. In quantum computation and quantum information we aim for an exquisite level of control over the measurements that may be done, and consequently it helps to use a more comprehensive formalism for the description of measurements.

Of course, when the other axioms of quantum mechanics are taken into account, projective measurements augmented by unitary operations turn out to be completely equivalent to general measurements, as shown in Section 2.2.8. So a physicist trained in the use of projective measurements might ask to what end we start with the general formalism, Postulate 3? There are several reasons for doing so. First, mathematically general measurements are in some sense simpler than projective measurements, since they involve fewer restrictions on the measurement operators; there is, for example, no requirement for general measurements analogous to the condition $P_i P_j = \delta_{ij} P_i$ for projective measurements. This simpler structure also gives rise to many useful properties for general measurements that are not possessed by projective measurements. Second, it turns out that there are important problems in quantum computation and quantum information – such as the optimal way to distinguish a set of quantum states – the answer to which involves a general measurement, rather than a projective measurement.

A third reason for preferring Postulate 3 as a starting point is related to a property of projective measurements known as *repeatability*. Projective measurements are repeatable in the sense that if we perform a projective measurement once, and obtain the outcome m, repeating the measurement gives the outcome m again and does not change the state. To see this, suppose $|\psi\rangle$ was the initial state. After the first measurement the state is $|\psi_m\rangle = \left(P_m|\psi\rangle\right)/\sqrt{\langle\psi|P_m|\psi\rangle}$. Applying P_m to $|\psi_m\rangle$ does not change it, so we have $\langle\psi_m|P_m|\psi_m\rangle = 1$, and therefore repeated measurement gives the result m each time, without changing the state.

This repeatability of projective measurements tips us off to the fact that many important measurements in quantum mechanics are not projective measurements. For instance, if we use a silvered screen to measure the position of a photon we destroy the photon in the process. This certainly makes it impossible to repeat the measurement of the photon's position! Many other quantum measurements are also not repeatable in the same sense as a projective measurement. For such measurements, the general measurement postulate, Postulate 3, must be employed. Where do POVMs fit in this picture? POVMs are best viewed as a special case of the general measurement formalism, providing the simplest means by which one can study general measurement statistics, without the necessity for knowing the post-measurement state. They are a mathematical convenience that sometimes gives extra insight into quantum measurements.

Exercise 2.62: Show that any measurement where the measurement operators and the POVM elements coincide is a projective measurement.

Above we noticed that the POVM operators are positive and satisfy $\sum_m E_m = I$. Suppose now that $\{E_m\}$ is some arbitrary set of positive operators such that $\sum_m E_m = I$. We will show that there exists a set of measurement operators M_m defining a measurement described by the POVM $\{E_m\}$. Defining $M_m \equiv \sqrt{E_m}$ we see that $\sum_m M_m^\dagger M_m = \sum_m E_m = I$, and therefore the set $\{M_m\}$ describes a measurement with POVM $\{E_m\}$. For this reason it is convenient to define a POVM to be any set of operators $\{E_m\}$ such that: (a) each operator E_m is positive; and (b) the completeness relation $\sum_m E_m = I$ is obeyed, expressing the fact that probabilities sum to one. To complete the description of POVMs, we note again that given a POVM $\{E_m\}$, the probability of outcome m is given by $p(m) = \langle \psi | E_m | \psi \rangle$.

We've looked at projective measurements as an example of the use of POVMs, but it wasn't very exciting since we didn't learn much that was new. The following more sophisticated example illustrates the use of the POVM formalism as a guide for our intuition in quantum computation and quantum information. Suppose Alice gives Bob a qubit prepared in one of two states, $|\psi_1\rangle = |0\rangle$ or $|\psi_2\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$. As explained in Section 2.2.4 it is impossible for Bob to determine whether he has been given $|\psi_1\rangle$ or $|\psi_2\rangle$ with perfect reliability. However, it is possible for him to perform a measurement which distinguishes the states some of the time, but *never* makes an error of mis-identification. Consider a POVM containing three elements,

$$E_1 \equiv \frac{\sqrt{2}}{1 + \sqrt{2}} |1\rangle\langle 1|, \tag{2.118}$$

$$E_2 \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{\left(|0\rangle - |1\rangle\right) \left(\langle 0| - \langle 1|\right)}{2},\tag{2.119}$$

$$E_3 \equiv I - E_1 - E_2. \tag{2.120}$$

It is straightforward to verify that these are positive operators which satisfy the completeness relation $\sum_m E_m = I$, and therefore form a legitimate POVM.

Suppose Bob is given the state $|\psi_1\rangle = |0\rangle$. He performs the measurement described by the POVM $\{E_1, E_2, E_3\}$. There is zero probability that he will observe the result E_1 , since E_1 has been cleverly chosen to ensure that $\langle \psi_1|E_1|\psi_1\rangle = 0$. Therefore, if the result of his measurement is E_1 then Bob can safely conclude that the state he received must have been $|\psi_2\rangle$. A similar line of reasoning shows that if the measurement outcome E_2 occurs then it must have been the state $|\psi_1\rangle$ that Bob received. Some of the time, however, Bob will obtain the measurement outcome E_3 , and he can infer nothing about the identity of the state he was given. The key point, however, is that Bob never makes a mistake identifying the state he has been given. This infallibility comes at the price that sometimes Bob obtains no information about the identity of the state.

This simple example demonstrates the utility of the POVM formalism as a simple and intuitive way of gaining insight into quantum measurements in instances where only the measurement statistics matter. In many instances later in the book we will only be concerned with measurement statistics, and will therefore use the POVM formalism rather than the more general formalism for measurements described in Postulate 3.

Exercise 2.63: Suppose a measurement is described by measurement operators M_m .

Show that there exist unitary operators U_m such that $M_m = U_m \sqrt{E_m}$, where E_m is the POVM associated to the measurement.

Exercise 2.64: Suppose Bob is given a quantum state chosen from a set $|\psi_1\rangle, \ldots, |\psi_m\rangle$ of linearly independent states. Construct a POVM $\{E_1, E_2, \ldots, E_{m+1}\}$ such that if outcome E_i occurs, $1 \le i \le m$, then Bob knows with certainty that he was given the state $|\psi_i\rangle$. (The POVM must be such that $\langle \psi_i|E_i|\psi_i\rangle > 0$ for each i.)

2.2.7 Phase

Phase' is a commonly used term in quantum mechanics, with several different meanings dependent upon context. At this point it is convenient to review a couple of these meanings. Consider, for example, the state $e^{i\theta}|\psi\rangle$, where $|\psi\rangle$ is a state vector, and θ is a real number. We say that the state $e^{i\theta}|\psi\rangle$ is equal to $|\psi\rangle$, up to the global phase factor $e^{i\theta}$. It is interesting to note that the statistics of measurement predicted for these two states are the same. To see this, suppose M_m is a measurement operator associated to some quantum measurement, and note that the respective probabilities for outcome m occurring are $\langle \psi | M_m^{\dagger} M_m | \psi \rangle$ and $\langle \psi | e^{-i\theta} M_m^{\dagger} M_m e^{i\theta} | \psi \rangle = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$. Therefore, from an observational point of view these two states are identical. For this reason we may ignore global phase factors as being irrelevant to the observed properties of the physical system.

There is another kind of phase known as the *relative phase*, which has quite a different meaning. Consider the states

$$\frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 and $\frac{|0\rangle - |1\rangle}{\sqrt{2}}$. (2.121)

In the first state the amplitude of $|1\rangle$ is $1/\sqrt{2}$. For the second state the amplitude is $-1/\sqrt{2}$. In each case the *magnitude* of the amplitudes is the same, but they differ in sign. More generally, we say that two amplitudes, a and b, differ by a relative phase if there is a real θ such that $a = \exp(i\theta)b$. More generally still, two states are said to differ by a relative phase in some basis if each of the amplitudes in that basis is related by such a phase factor. For example, the two states displayed above are the same up to a relative phase shift because the $|0\rangle$ amplitudes are identical (a relative phase factor of 1), and the $|1\rangle$ amplitudes differ only by a relative phase factor of -1. The difference between relative phase factors and global phase factors is that for relative phase the phase factors may vary from amplitude to amplitude. This makes the relative phase a basis-dependent concept unlike global phase. As a result, states which differ only by relative phases in some basis give rise to physically observable differences in measurement statistics, and it is not possible to regard these states as physically equivalent, as we do with states differing by a global phase factor

Exercise 2.65: Express the states $(|0\rangle + |1\rangle)/\sqrt{2}$ and $(|0\rangle - |1\rangle)/\sqrt{2}$ in a basis in which they are *not* the same up to a relative phase shift.

2.2.8 Composite systems

Suppose we are interested in a composite quantum system made up of two (or more) distinct physical systems. How should we describe states of the composite system? The following postulate describes how the state space of a composite system is built up from the state spaces of the component systems.

Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state $|\psi_i\rangle$, then the joint state of the total system is $|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$.

Why is the tensor product the mathematical structure used to describe the state space of a composite physical system? At one level, we can simply accept it as a basic postulate, not reducible to something more elementary, and move on. After all, we certainly expect that there be some canonical way of describing composite systems in quantum mechanics. Is there some other way we can arrive at this postulate? Here is one heuristic that is sometimes used. Physicists sometimes like to speak of the superposition principle of quantum mechanics, which states that if $|x\rangle$ and $|y\rangle$ are two states of a quantum system, then any superposition $\alpha|x\rangle + \beta|y\rangle$ should also be an allowed state of a quantum system, where $|\alpha|^2 + |\beta|^2 = 1$. For composite systems, it seems natural that if $|A\rangle$ is a state of system A, and $|B\rangle$ is a state of system B, then there should be some corresponding state, which we might denote $|A\rangle|B\rangle$, of the joint system AB. Applying the superposition principle to product states of this form, we arrive at the tensor product postulate given above. This is not a derivation, since we are not taking the superposition principle as a fundamental part of our description of quantum mechanics, but it gives you the flavor of the various ways in which these ideas are sometimes reformulated.

A variety of different notations for composite systems appear in the literature. Part of the reason for this proliferation is that different notations are better adapted for different applications, and we will also find it convenient to introduce some specialized notations on occasion. At this point it suffices to mention a useful subscript notation to denote states and operators on different systems, when it is not clear from context. For example, in a system containing three qubits, X_2 is the Pauli σ_x operator acting on the second qubit.

Exercise 2.66: Show that the average value of the observable X_1Z_2 for a two qubit system measured in the state $(|00\rangle + |11\rangle)/\sqrt{2}$ is zero.

In Section 2.2.5 we claimed that projective measurements together with unitary dynamics are sufficient to implement a general measurement. The proof of this statement makes use of composite quantum systems, and is a nice illustration of Postulate 4 in action. Suppose we have a quantum system with state space Q, and we want to perform a measurement described by measurement operators M_m on the system Q. To do this, we introduce an *ancilla system*, with state space M, having an orthonormal basis $|m\rangle$ in one-to-one correspondence with the possible outcomes of the measurement we wish to implement. This ancilla system can be regarded as merely a mathematical device appearing in the construction, or it can be interpreted physically as an extra quantum system introduced into the problem, which we assume has a state space with the required properties.

Letting $|0\rangle$ be any fixed state of M, define an operator U on products $|\psi\rangle|0\rangle$ of states $|\psi\rangle$ from Q with the state $|0\rangle$ by

$$U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle. \tag{2.122}$$

Using the orthonormality of the states $|m\rangle$ and the completeness relation $\sum_m M_m^\dagger M_m =$

I, we can see that U preserves inner products between states of the form $|\psi\rangle|0\rangle$,

$$\langle \varphi | \langle 0 | U^{\dagger} U | \psi \rangle | 0 \rangle = \sum_{m m'} \langle \varphi | M_m^{\dagger} M_{m'} | \psi \rangle \langle m | m' \rangle$$
 (2.123)

$$=\sum_{m}\langle\varphi|M_{m}^{\dagger}M_{m}|\psi\rangle\tag{2.124}$$

$$= \langle \varphi | \psi \rangle. \tag{2.125}$$

By the results of Exercise 2.67 it follows that U can be extended to a unitary operator on the space $Q \otimes M$, which we also denote by U.

Exercise 2.67: Suppose V is a Hilbert space with a subspace W. Suppose

 $U: W \to V$ is a linear operator which preserves inner products, that is, for any $|w_1\rangle$ and $|w_2\rangle$ in W,

$$\langle w_1 | U^{\dagger} U | w_2 \rangle = \langle w_1 | w_2 \rangle. \tag{2.126}$$

Prove that there exists a unitary operator $U': V \to V$ which extends U. That is, $U'|w\rangle = U|w\rangle$ for all $|w\rangle$ in W, but U' is defined on the entire space V. Usually we omit the prime symbol ' and just write U to denote the extension.

Next, suppose we perform a projective measurement on the two systems described by projectors $P_m \equiv I_Q \otimes |m\rangle\langle m|$. Outcome m occurs with probability

$$p(m) = \langle \psi | \langle 0 | U^{\dagger} P_m U | \psi \rangle | 0 \rangle \tag{2.127}$$

$$= \sum_{m',m''} \langle \psi | M_{m'}^{\dagger} \langle m' | (I_Q \otimes |m\rangle \langle m|) M_{m''} |\psi\rangle |m''\rangle$$
 (2.128)

$$= \langle \psi | M_m^{\dagger} M_m | \psi \rangle, \tag{2.129}$$

just as given in Postulate 3. The joint state of the system QM after measurement, conditional on result m occurring, is given by

$$\frac{P_m U|\psi\rangle|0\rangle}{\sqrt{\langle\psi|U^{\dagger}P_m U|\psi\rangle}} = \frac{M_m|\psi\rangle|m\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}}.$$
 (2.130)

It follows that the state of system M after the measurement is $|m\rangle$, and the state of system Q is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}},\tag{2.131}$$

just as prescribed by Postulate 3. Thus unitary dynamics, projective measurements, and the ability to introduce ancillary systems, together allow any measurement of the form described in Postulate 3 to be realized.

Postulate 4 also enables us to define one of the most interesting and puzzling ideas associated with composite quantum systems – *entanglement*. Consider the two qubit state

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}.\tag{2.132}$$

This state has the remarkable property that there are no single qubit states $|a\rangle$ and $|b\rangle$ such that $|\psi\rangle = |a\rangle|b\rangle$, a fact which you should now convince yourself of:

Exercise 2.68: Prove that $|\psi\rangle \neq |a\rangle|b\rangle$ for all single qubit states $|a\rangle$ and $|b\rangle$.

We say that a state of a composite system having this property (that it can't be written as a product of states of its component systems) is an *entangled* state. For reasons which nobody fully understands, entangled states play a crucial role in quantum computation and quantum information, and arise repeatedly through the remainder of this book. We have already seen entanglement play a crucial role in quantum teleportation, as described in Section 1.3.7. In this chapter we give two examples of the strange effects enabled by entangled quantum states, superdense coding (Section 2.3), and the violation of Bell's inequality (Section 2.6).

2.2.9 Quantum mechanics: a global view

We have now explained *all* the fundamental postulates of quantum mechanics. Most of the rest of the book is taken up with deriving consequences of these postulates. Let's quickly review the postulates and try to place them in some kind of global perspective.

Postulate 1 sets the arena for quantum mechanics, by specifying how the state of an isolated quantum system is to be described. Postulate 2 tells us that the dynamics of *closed* quantum systems are described by the Schrödinger equation, and thus by unitary evolution. Postulate 3 tells us how to extract information from our quantum systems by giving a prescription for the description of measurement. Postulate 4 tells us how the state spaces of different quantum systems may be combined to give a description of the composite system.

What's odd about quantum mechanics, at least by our classical lights, is that we can't directly observe the state vector. It's a little bit like a game of chess where you can never find out exactly where each piece is, but only know the rank of the board they are on. Classical physics – and our intuition – tells us that the fundamental properties of an object, like energy, position, and velocity, are directly accessible to observation. In quantum mechanics these quantities no longer appear as fundamental, being replaced by the state vector, which can't be directly observed. It is as though there is a *hidden world* in quantum mechanics, which we can only indirectly and imperfectly access. Moreover, merely observing a classical system does not necessarily change the state of the system. Imagine how difficult it would be to play tennis if each time you looked at the ball its position changed! But according to Postulate 3, observation in quantum mechanics is an invasive procedure that typically changes the state of the system.

What conclusions should we draw from these strange features of quantum mechanics? Might it be possible to reformulate quantum mechanics in a mathematically equivalent way so that it had a structure more like classical physics? In Section 2.6 we'll prove *Bell's inequality*, a surprising result that shows any attempt at such a reformulation is doomed to failure. We're stuck with the counter-intuitive nature of quantum mechanics. Of course, the proper reaction to this is glee, not sorrow! It gives us an opportunity to develop tools of thought that make quantum mechanics intuitive. Moreover, we can exploit the hidden nature of the state vector to do information processing tasks beyond what is possible in the classical world. Without this counter-intuitive behavior, quantum computation and quantum information would be a lot less interesting.

We can also turn this discussion about, and ask ourselves: 'If quantum mechanics is so different from classical physics, then how come the everyday world looks so classical?' Why do we see no evidence of a hidden state vector in our everyday lives? It turns out

that the classical world we see can be *derived* from quantum mechanics as an approximate description of the world that will be valid on the sort of time, length and mass scales we commonly encounter in our everyday lives. Explaining the details of how quantum mechanics gives rise to classical physics is beyond the scope of this book, but the interested reader should check out the discussion of this topic in 'History and further reading'at the end of Chapter 8.

2.3 Application: superdense coding

Superdense coding is a simple yet surprising application of elementary quantum mechanics. It combines in a concrete, non-trivial way all the basic ideas of elementary quantum mechanics, as covered in the previous sections, and is therefore an ideal example of the information processing tasks that can be accomplished using quantum mechanics.

Superdense coding involves two parties, conventionally known as 'Alice' and 'Bob', who are a long way away from one another. Their goal is to transmit some classical information from Alice to Bob. Suppose Alice is in possession of two classical bits of information which she wishes to send Bob, but is only allowed to send a single qubit to Bob. Can she achieve her goal?

Superdense coding tells us that the answer to this question is yes. Suppose Alice and Bob initially share a pair of qubits in the entangled state

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}.\tag{2.133}$$

Alice is initially in possession of the first qubit, while Bob has possession of the second qubit, as illustrated in Figure 2.3. Note that $|\psi\rangle$ is a fixed state; there is no need for Alice to have sent Bob any qubits in order to prepare this state. Instead, some third party may prepare the entangled state ahead of time, sending one of the qubits to Alice, and the other to Bob.

Figure 2.3. The initial setup for superdense coding, with Alice and Bob each in possession of one half of an entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using only a single qubit of communication and this preshared entanglement.

By sending the single qubit in her possession to Bob, it turns out that Alice can communicate two bits of classical information to Bob. Here is the procedure she uses. If she wishes to send the bit string '00' to Bob then she does nothing at all to her qubit. If she wishes to send '01' then she applies the phase flip Z to her qubit. If she wishes to send '10' then she applies the quantum NOT gate, X, to her qubit. If she wishes to send '11' then she applies the iY gate to her qubit. The four resulting states are easily seen

to be:

$$00: |\psi\rangle \to \frac{|00\rangle + |11\rangle}{\sqrt{2}} \tag{2.134}$$

$$01: |\psi\rangle \to \frac{|00\rangle - |11\rangle}{\sqrt{2}} \tag{2.135}$$

$$10: |\psi\rangle \to \frac{|10\rangle + |01\rangle}{\sqrt{2}} \tag{2.136}$$

$$11: |\psi\rangle \to \frac{|01\rangle - |10\rangle}{\sqrt{2}}.\tag{2.137}$$

As we noted in Section 1.3.6, these four states are known as the *Bell basis*, *Bell states*, or *EPR pairs*, in honor of several of the pioneers who first appreciated the novelty of entanglement. Notice that the Bell states form an orthonormal basis, and can therefore be distinguished by an appropriate quantum measurement. If Alice sends her qubit to Bob, giving Bob possession of both qubits, then by doing a measurement in the Bell basis Bob can determine which of the four possible bit strings Alice sent.

Summarizing, Alice, interacting with only a single qubit, is able to transmit two bits of information to Bob. Of course, two qubits are involved in the protocol, but Alice never need interact with the second qubit. Classically, the task Alice accomplishes would have been impossible had she only transmitted a single classical bit, as we will show in Chapter 12. Furthermore, this remarkable superdense coding protocol has received partial verification in the laboratory. (See 'History and further reading' for references to the experimental verification.) In later chapters we will see many other examples, some of them much more spectacular than superdense coding, of quantum mechanics being harnessed to perform information processing tasks. However, a key point can already be seen in this beautiful example: information is physical, and surprising physical theories such as quantum mechanics may predict surprising information processing abilities.

Exercise 2.69: Verify that the Bell basis forms an orthonormal basis for the two qubit state space.

Exercise 2.70: Suppose E is any positive operator acting on Alice's qubit. Show that $\langle \psi | E \otimes I | \psi \rangle$ takes the same value when $| \psi \rangle$ is any of the four Bell states. Suppose some malevolent third party ('Eve') intercepts Alice's qubit on the way to Bob in the superdense coding protocol. Can Eve infer anything about which of the four possible bit strings 00, 01, 10, 11 Alice is trying to send? If so, how, or if not, why not?

2.4 The density operator

We have formulated quantum mechanics using the language of state vectors. An alternate formulation is possible using a tool known as the *density operator* or *density matrix*. This alternate formulation is mathematically equivalent to the state vector approach, but it provides a much more convenient language for thinking about some commonly encountered scenarios in quantum mechanics. The next three sections describe the density operator formulation of quantum mechanics. Section 2.4.1 introduces the density operator using the concept of an ensemble of quantum states. Section 2.4.2 develops some general

properties of the density operator. Finally, Section 2.4.3 describes an application where the density operator really shines – as a tool for the description of *individual subsystems* of a composite quantum system.

2.4.1 Ensembles of quantum states

The density operator language provides a convenient means for describing quantum systems whose state is not completely known. More precisely, suppose a quantum system is in one of a number of states $|\psi_i\rangle$, where i is an index, with respective probabilities p_i . We shall call $\{p_i, |\psi_i\rangle\}$ an ensemble of pure states. The density operator for the system is defined by the equation

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|. \tag{2.138}$$

The density operator is often known as the *density matrix*; we will use the two terms interchangeably. It turns out that all the postulates of quantum mechanics can be reformulated in terms of the density operator language. The purpose of this section and the next is to explain how to perform this reformulation, and explain when it is useful. Whether one uses the density operator language or the state vector language is a matter of taste, since both give the same results; however it is sometimes much easier to approach problems from one point of view rather than the other.

Suppose, for example, that the evolution of a closed quantum system is described by the unitary operator U. If the system was initially in the state $|\psi_i\rangle$ with probability p_i then after the evolution has occurred the system will be in the state $U|\psi_i\rangle$ with probability p_i . Thus, the evolution of the density operator is described by the equation

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| \xrightarrow{U} \sum_{i} p_{i} U |\psi_{i}\rangle\langle\psi_{i}| U^{\dagger} = U \rho U^{\dagger}. \tag{2.139}$$

Measurements are also easily described in the density operator language. Suppose we perform a measurement described by measurement operators M_m . If the initial state was $|\psi_i\rangle$, then the probability of getting result m is

$$p(m|i) = \langle \psi_i | M_m^{\dagger} M_m | \psi_i \rangle = \text{tr}(M_m^{\dagger} M_m | \psi_i \rangle \langle \psi_i |), \tag{2.140}$$

where we have used Equation (2.61) to obtain the last equality. By the law of total probability (see Appendix 1 for an explanation of this and other elementary notions of probability theory) the probability of obtaining result m is

$$p(m) = \sum_{i} p(m|i)p_i \tag{2.141}$$

$$= \sum_{i} p_{i} \operatorname{tr}(M_{m}^{\dagger} M_{m} | \psi_{i} \rangle \langle \psi_{i} |)$$
 (2.142)

$$= \operatorname{tr}(M_m^{\dagger} M_m \rho). \tag{2.143}$$

What is the density operator of the system after obtaining the measurement result m? If the initial state was $|\psi_i\rangle$ then the state after obtaining the result m is

$$|\psi_i^m\rangle = \frac{M_m|\psi_i\rangle}{\sqrt{\langle\psi_i|M_m^{\dagger}M_m|\psi_i\rangle}}.$$
 (2.144)

Thus, after a measurement which yields the result m we have an ensemble of states $|\psi_i^m\rangle$ with respective probabilities p(i|m). The corresponding density operator ρ_m is therefore

$$\rho_m = \sum_i p(i|m)|\psi_i^m\rangle\langle\psi_i^m| = \sum_i p(i|m) \frac{M_m|\psi_i\rangle\langle\psi_i|M_m^{\dagger}}{\langle\psi_i|M_m^{\dagger}M_m|\psi_i\rangle}.$$
 (2.145)

But by elementary probability theory, $p(i|m) = p(m,i)/p(m) = p(m|i)p_i/p(m)$. Substituting from (2.143) and (2.140) we obtain

$$\rho_m = \sum_i p_i \frac{M_m |\psi_i\rangle \langle \psi_i | M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)}$$
 (2.146)

$$=\frac{M_m \rho M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)}.$$
 (2.147)

What we have shown is that the basic postulates of quantum mechanics related to unitary evolution and measurement can be rephrased in the language of density operators. In the next section we complete this rephrasing by giving an intrinsic characterization of the density operator that does not rely on the idea of a state vector.

Before doing so, however, it is useful to introduce some more language, and one more fact about the density operator. First, the language. A quantum system whose state $|\psi\rangle$ is known exactly is said to be in a *pure state*. In this case the density operator is simply $\rho = |\psi\rangle\langle\psi|$. Otherwise, ρ is in a *mixed state*; it is said to be a *mixture* of the different pure states in the ensemble for ρ . In the exercises you will be asked to demonstrate a simple criterion for determining whether a state is pure or mixed: a pure state satisfies $\text{tr}(\rho^2) = 1$, while a mixed state satisfies $\text{tr}(\rho^2) < 1$. A few words of warning about the nomenclature: sometimes people use the term 'mixed state' as a catch-all to include both pure and mixed quantum states. The origin for this usage seems to be that it implies that the writer is not necessarily *assuming* that a state is pure. Second, the term 'pure state' is often used in reference to a state vector $|\psi\rangle$, to distinguish it from a density operator ρ .

Finally, imagine a quantum system is prepared in the state ρ_i with probability p_i . It is not difficult to convince yourself that the system may be described by the density matrix $\sum_i p_i \rho_i$. A proof of this is to suppose that ρ_i arises from some ensemble $\{p_{ij}, |\psi_{ij}\rangle\}$ (note that i is fixed) of pure states, so the probability for being in the state $|\psi_{ij}\rangle$ is $p_i p_{ij}$. The density matrix for the system is thus

$$\rho = \sum_{ij} p_i p_{ij} |\psi_{ij}\rangle\langle\psi_{ij}| \qquad (2.148)$$

$$=\sum_{i}p_{i}\rho_{i},\tag{2.149}$$

where we have used the definition $\rho_i = \sum_j p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}|$. We say that ρ is a mixture of the states ρ_i with probabilities p_i . This concept of a mixture comes up repeatedly in the analysis of problems like quantum noise, where the effect of the noise is to introduce ignorance into our knowledge of the quantum state. A simple example is provided by the measurement scenario described above. Imagine that, for some reason, our record of the result m of the measurement was lost. We would have a quantum system in the state ρ_m with probability p(m), but would no longer know the actual value of m. The state of

such a quantum system would therefore be described by the density operator

$$\rho = \sum_{m} p(m)\rho_m \tag{2.150}$$

$$= \sum_{m} \operatorname{tr}(M_{m}^{\dagger} M_{m} \rho) \frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}(M_{m}^{\dagger} M_{m} \rho)}$$
(2.151)

$$=\sum_{m}M_{m}\rho M_{m}^{\dagger},\tag{2.152}$$

a nice compact formula which may be used as the starting point for analysis of further operations on the system.

2.4.2 General properties of the density operator

The density operator was introduced as a means of describing ensembles of quantum states. In this section we move away from this description to develop an intrinsic characterization of density operators that does not rely on an ensemble interpretation. This allows us to complete the program of giving a description of quantum mechanics that does not take as its foundation the state vector. We also take the opportunity to develop numerous other elementary properties of the density operator.

The class of operators that are density operators are characterized by the following useful theorem:

Theorem 2.5: (Characterization of density operators) An operator ρ is the density operator associated to some ensemble $\{p_i, |\psi_i\rangle\}$ if and only if it satisfies the conditions:

- (1) (Trace condition) ρ has trace equal to one.
- (2) (Positivity condition) ρ is a positive operator.

Proof

Suppose $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ is a density operator. Then

$$\operatorname{tr}(\rho) = \sum_{i} p_{i} \operatorname{tr}(|\psi_{i}\rangle\langle\psi_{i}|) = \sum_{i} p_{i} = 1, \tag{2.153}$$

so the trace condition ${\rm tr}(\rho)$ = 1 is satisfied. Suppose $|\varphi\rangle$ is an arbitrary vector in state space. Then

$$\langle \varphi | \rho | \varphi \rangle = \sum_{i} p_{i} \langle \varphi | \psi_{i} \rangle \langle \psi_{i} | \varphi \rangle \tag{2.154}$$

$$=\sum_{i} p_{i} |\langle \varphi | \psi_{i} \rangle|^{2} \tag{2.155}$$

$$\geq 0, \tag{2.156}$$

so the positivity condition is satisfied.

Conversely, suppose ρ is any operator satisfying the trace and positivity conditions. Since ρ is positive, it must have a spectral decomposition

$$\rho = \sum_{j} \lambda_{j} |j\rangle\langle j|, \qquad (2.157)$$

where the vectors $|j\rangle$ are orthogonal, and λ_j are real, non-negative eigenvalues of ρ .

From the trace condition we see that $\sum_{j} \lambda_{j} = 1$. Therefore, a system in state $|j\rangle$ with probability λ_{j} will have density operator ρ . That is, the ensemble $\{\lambda_{j}, |j\rangle\}$ is an ensemble of states giving rise to the density operator ρ .

This theorem provides a characterization of density operators that is intrinsic to the operator itself: we can *define* a density operator to be a positive operator ρ which has trace equal to one. Making this definition allows us to reformulate the postulates of quantum mechanics in the density operator picture. For ease of reference we state all the reformulated postulates here:

Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the *state space* of the system. The system is completely described by its *density operator*, which is a positive operator ρ with trace one, acting on the state space of the system. If a quantum system is in the state ρ_i with probability p_i , then the density operator for the system is $\sum_i p_i \rho_i$.

Postulate 2: The evolution of a *closed* quantum system is described by a *unitary* transformation. That is, the state ρ of the system at time t_1 is related to the state ρ' of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2 ,

$$\rho' = U\rho U^{\dagger}. \tag{2.158}$$

Postulate 3: Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is ρ immediately before the measurement then the probability that result m occurs is given by

$$p(m) = \operatorname{tr}(M_m^{\dagger} M_m \rho), \tag{2.159}$$

and the state of the system after the measurement is

$$\frac{M_m \rho M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)}.$$
 (2.160)

The measurement operators satisfy the *completeness equation*,

$$\sum_{m} M_m^{\dagger} M_m = I. \tag{2.161}$$

Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state ρ_i , then the joint state of the total system is $\rho_1 \otimes \rho_2 \otimes \ldots \rho_n$.

These reformulations of the fundamental postulates of quantum mechanics in terms of the density operator are, of course, mathematically equivalent to the description in terms of the state vector. Nevertheless, as a way of thinking about quantum mechanics, the density operator approach really shines for two applications: the description of quantum systems whose state is not known, and the description of subsystems of a composite quantum system, as will be described in the next section. For the remainder of this section we flesh out the properties of the density matrix in more detail.

Exercise 2.71: (Criterion to decide if a state is mixed or pure) Let ρ be a density operator. Show that $tr(\rho^2) \leq 1$, with equality if and only if ρ is a pure state.

It is a tempting (and surprisingly common) fallacy to suppose that the eigenvalues and eigenvectors of a density matrix have some special significance with regard to the ensemble of quantum states represented by that density matrix. For example, one might suppose that a quantum system with density matrix

$$\rho = \frac{3}{4}|0\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1|. \tag{2.162}$$

must be in the state $|0\rangle$ with probability 3/4 and in the state $|1\rangle$ with probability 1/4. However, this is not necessarily the case. Suppose we define

$$|a\rangle \equiv \sqrt{\frac{3}{4}}|0\rangle + \sqrt{\frac{1}{4}}|1\rangle \tag{2.163}$$

$$|b\rangle \equiv \sqrt{\frac{3}{4}}|0\rangle - \sqrt{\frac{1}{4}}|1\rangle, \tag{2.164}$$

and the quantum system is prepared in the state $|a\rangle$ with probability 1/2 and in the state $|b\rangle$ with probability 1/2. Then it is easily checked that the corresponding density matrix is

$$\rho = \frac{1}{2}|a\rangle\langle a| + \frac{1}{2}|b\rangle\langle b| = \frac{3}{4}|0\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1|. \tag{2.165}$$

That is, these two *different* ensembles of quantum states give rise to the *same* density matrix. In general, the eigenvectors and eigenvalues of a density matrix just indicate *one* of many possible ensembles that may give rise to a specific density matrix, and there is no reason to suppose it is an especially privileged ensemble.

A natural question to ask in the light of this discussion is what class of ensembles does give rise to a particular density matrix? The solution to this problem, which we now give, has surprisingly many applications in quantum computation and quantum information, notably in the understanding of quantum noise and quantum error-correction (Chapters 8 and 10). For the solution it is convenient to make use of vectors $|\tilde{\psi}_i\rangle$ which may not be normalized to unit length. We say the set $|\tilde{\psi}_i\rangle$ generates the operator $\rho \equiv \sum_i |\tilde{\psi}_i\rangle \langle \tilde{\psi}_i|$, and thus the connection to the usual ensemble picture of density operators is expressed by the equation $|\tilde{\psi}_i\rangle = \sqrt{p_i}|\psi_i\rangle$. When do two sets of vectors, $|\tilde{\psi}_i\rangle$ and $|\tilde{\varphi}_j\rangle$ generate the same operator ρ ? The solution to this problem will enable us to answer the question of what ensembles give rise to a given density matrix.

Theorem 2.6: (Unitary freedom in the ensemble for density matrices) The sets $|\tilde{\psi}_i\rangle$ and $|\tilde{\varphi}_i\rangle$ generate the same density matrix if and only if

$$|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle \,,$$
 (2.166)

where u_{ij} is a unitary matrix of complex numbers, with indices i and j, and we

'pad' whichever set of vectors $|\tilde{\psi}_i\rangle$ or $|\tilde{\varphi}_j\rangle$ is smaller with additional vectors 0 so that the two sets have the same number of elements.

As a consequence of the theorem, note that $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i| = \sum_j q_j |\varphi_j\rangle \langle \varphi_j|$ for normalized states $|\psi_i\rangle, |\varphi_j\rangle$ and probability distributions p_i and q_j if and only if

$$\sqrt{p_i}|\psi_i\rangle = \sum_j u_{ij}\sqrt{q_j}|\varphi_j\rangle, \qquad (2.167)$$

for some unitary matrix u_{ij} , and we may pad the smaller ensemble with entries having probability zero in order to make the two ensembles the same size. Thus, Theorem 2.6 characterizes the freedom in ensembles $\{p_i, |\psi_i\rangle\}$ giving rise to a given density matrix ρ . Indeed, it is easily checked that our earlier example of a density matrix with two different decompositions, (2.162), arises as a special case of this general result. Let's turn now to the proof of the theorem.

Proof

Suppose $|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle$ for some unitary u_{ij} . Then

$$\sum_{i} |\tilde{\psi}_{i}\rangle\langle\tilde{\psi}_{i}| = \sum_{ijk} u_{ij} u_{ik}^{*} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{k}|$$
 (2.168)

$$= \sum_{jk} \left(\sum_{i} u_{ki}^{\dagger} u_{ij} \right) |\tilde{\varphi}_{j}\rangle \langle \tilde{\varphi}_{k}| \tag{2.169}$$

$$= \sum_{jk} \delta_{kj} |\tilde{\varphi}_j\rangle \langle \tilde{\varphi}_k| \tag{2.170}$$

$$=\sum_{j}|\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}|,\tag{2.171}$$

which shows that $|\tilde{\psi}_i\rangle$ and $|\tilde{\varphi}_j\rangle$ generate the same operator.

Conversely, suppose

$$A = \sum_{i} |\tilde{\psi}_{i}\rangle\langle\tilde{\psi}_{i}| = \sum_{i} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}|. \tag{2.172}$$

Let $A = \sum_k \lambda_k |k\rangle\langle k|$ be a decomposition for A such that the states $|k\rangle$ are orthonormal, and the λ_k are strictly positive. Our strategy is to relate the states $|\tilde{\psi}_i\rangle$ to the states $|\tilde{k}\rangle \equiv \sqrt{\lambda_k} |k\rangle$, and similarly relate the states $|\tilde{\varphi}_j\rangle$ to the states $|\tilde{k}\rangle$. Combining the two relations will give the result. Let $|\psi\rangle$ be any vector orthonormal to the space spanned by the $|\tilde{k}\rangle$, so $\langle\psi|\tilde{k}\rangle\langle\tilde{k}|\psi\rangle=0$ for all k, and thus we see that

$$0 = \langle \psi | A | \psi \rangle = \sum_{i} \langle \psi | \tilde{\psi}_{i} \rangle \langle \tilde{\psi}_{i} | \psi \rangle = \sum_{i} |\langle \psi | \tilde{\psi}_{i} \rangle|^{2}. \tag{2.173}$$

Thus $\langle \psi | \tilde{\psi}_i \rangle = 0$ for all i and all $|\psi\rangle$ orthonormal to the space spanned by the $|\tilde{k}\rangle$. It follows that each $|\tilde{\psi}_i\rangle$ can be expressed as a linear combination of the $|\tilde{k}\rangle$, $|\tilde{\psi}_i\rangle = \sum_k c_{ik} |\tilde{k}\rangle$. Since $A = \sum_k |\tilde{k}\rangle\langle \tilde{k}| = \sum_i |\tilde{\psi}_i\rangle\langle \tilde{\psi}_i|$ we see that

$$\sum_{k} |\tilde{k}\rangle\langle\tilde{k}| = \sum_{kl} \left(\sum_{i} c_{ik} c_{il}^*\right) |\tilde{k}\rangle\langle\tilde{l}|. \tag{2.174}$$

The operators $|\tilde{k}\rangle\langle\tilde{l}|$ are easily seen to be linearly independent, and thus it must be that

 $\sum_i c_{ik} c_{il}^* = \delta_{kl}$. This ensures that we may append extra columns to c to obtain a unitary matrix v such that $|\tilde{\psi}_i\rangle = \sum_k v_{ik} |\tilde{k}\rangle$, where we have appended zero vectors to the list of $|\tilde{k}\rangle$. Similarly, we can find a unitary matrix w such that $|\tilde{\varphi}_j\rangle = \sum_k w_{jk} |\tilde{k}\rangle$. Thus $|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle$, where $u = vw^{\dagger}$ is unitary.

Exercise 2.72: (Bloch sphere for mixed states) The Bloch sphere picture for pure states of a single qubit was introduced in Section 1.2. This description has an important generalization to mixed states as follows.

(1) Show that an arbitrary density matrix for a mixed state qubit may be written as

$$\rho = \frac{I + \vec{r} \cdot \vec{\sigma}}{2},\tag{2.175}$$

where \vec{r} is a real three-dimensional vector such that $||\vec{r}|| \le 1$. This vector is known as the *Bloch vector* for the state ρ .

- (2) What is the Bloch vector representation for the state $\rho = I/2$?
- (3) Show that a state ρ is pure if and only if $||\vec{r}|| = 1$.
- (4) Show that for pure states the description of the Bloch vector we have given coincides with that in Section 1.2.

Exercise 2.73: Let ρ be a density operator. A minimal ensemble for ρ is an ensemble $\{p_i, |\psi_i\rangle\}$ containing a number of elements equal to the rank of ρ . Let $|\psi\rangle$ be any state in the support of ρ . (The support of a Hermitian operator A is the vector space spanned by the eigenvectors of A with non-zero eigenvalues.) Show that there is a minimal ensemble for ρ that contains $|\psi\rangle$, and moreover that in any such ensemble $|\psi\rangle$ must appear with probability

$$p_i = \frac{1}{\langle \psi_i | \rho^{-1} | \psi_i \rangle}, \qquad (2.176)$$

where ρ^{-1} is defined to be the inverse of ρ , when ρ is considered as an operator acting only on the support of ρ . (This definition removes the problem that ρ may not have an inverse.)

2.4.3 The reduced density operator

Perhaps the deepest application of the density operator is as a descriptive tool for *sub-systems* of a composite quantum system. Such a description is provided by the *reduced density operator*, which is the subject of this section. The reduced density operator is so useful as to be virtually indispensable in the analysis of composite quantum systems.

Suppose we have physical systems A and B, whose state is described by a density operator ρ^{AB} . The reduced density operator for system A is defined by

$$\rho^A \equiv \operatorname{tr}_B(\rho^{AB}),\tag{2.177}$$

where tr_B is a map of operators known as the *partial trace* over system B. The partial trace is defined by

$$\operatorname{tr}_{B}\left(|a_{1}\rangle\langle a_{2}|\otimes|b_{1}\rangle\langle b_{2}|\right) \equiv |a_{1}\rangle\langle a_{2}|\operatorname{tr}(|b_{1}\rangle\langle b_{2}|),\tag{2.178}$$

where $|a_1\rangle$ and $|a_2\rangle$ are any two vectors in the state space of A, and $|b_1\rangle$ and $|b_2\rangle$ are any two vectors in the state space of B. The trace operation appearing on the right hand side

is the usual trace operation for system B, so $\operatorname{tr}(|b_1\rangle\langle b_2|) = \langle b_2|b_1\rangle$. We have defined the partial trace operation only on a special subclass of operators on AB; the specification is completed by requiring in addition to Equation (2.178) that the partial trace be linear in its input.

It is not obvious that the reduced density operator for system A is in any sense a description for the state of system A. The physical justification for making this identification is that the reduced density operator provides the correct measurement statistics for measurements made on system A. This is explained in more detail in Box 2.6 on page 107. The following simple example calculations may also help understand the reduced density operator. First, suppose a quantum system is in the product state $\rho^{AB} = \rho \otimes \sigma$, where ρ is a density operator for system A, and σ is a density operator for system B. Then

$$\rho^A = \operatorname{tr}_B(\rho \otimes \sigma) = \rho \operatorname{tr}(\sigma) = \rho, \tag{2.184}$$

which is the result we intuitively expect. Similarly, $\rho^B = \sigma$ for this state. A less trivial example is the Bell state $(|00\rangle + |11\rangle)/\sqrt{2}$. This has density operator

$$\rho = \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}}\right) \tag{2.185}$$

$$= \frac{|00\rangle\langle00| + |11\rangle\langle00| + |00\rangle\langle11| + |11\rangle\langle11|}{2}.$$
 (2.186)

Tracing out the second qubit, we find the reduced density operator of the first qubit,

$$\rho^1 = \operatorname{tr}_2(\rho) \tag{2.187}$$

$$= \frac{\operatorname{tr}_2(|00\rangle\langle00|) + \operatorname{tr}_2(|11\rangle\langle00|) + \operatorname{tr}_2(|00\rangle\langle11|) + \operatorname{tr}_2(|11\rangle\langle11|)}{2}$$
(2.188)

$$=\frac{|0\rangle\langle 0|\langle 0|0\rangle + |1\rangle\langle 0|\langle 0|1\rangle + |0\rangle\langle 1|\langle 1|0\rangle + |1\rangle\langle 1|\langle 1|1\rangle}{2}$$
(2.189)

$$=\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2} \tag{2.190}$$

$$=\frac{I}{2}. (2.191)$$

Notice that this state is a *mixed state*, since $tr((I/2)^2) = 1/2 < 1$. This is quite a remarkable result. The state of the joint system of two qubits is a pure state, that is, it is known *exactly*; however, the first qubit is in a mixed state, that is, a state about which we apparently do not have maximal knowledge. This strange property, that the joint state of a system can be completely known, yet a subsystem be in mixed states, is another hallmark of quantum entanglement.

Exercise 2.74: Suppose a composite of systems A and B is in the state $|a\rangle|b\rangle$, where $|a\rangle$ is a pure state of system A, and $|b\rangle$ is a pure state of system B. Show that the reduced density operator of system A alone is a pure state.

Exercise 2.75: For each of the four Bell states, find the reduced density operator for each qubit.

Quantum teleportation and the reduced density operator

A useful application of the reduced density operator is to the analysis of quantum teleportation. Recall from Section 1.3.7 that quantum teleportation is a procedure for sending

Box 2.6: Why the partial trace?

Why is the partial trace used to describe part of a larger quantum system? The reason for doing this is because the partial trace operation is the *unique* operation which gives rise to the correct description of *observable* quantities for subsystems of a composite system, in the following sense.

Suppose M is any observable on system A, and we have some measuring device which is capable of realizing measurements of M. Let \tilde{M} denote the corresponding observable for the same measurement, performed on the composite system AB. Our immediate goal is to argue that \tilde{M} is necessarily equal to $M\otimes I_B$. Note that if the system AB is prepared in the state $|m\rangle|\psi\rangle$, where $|m\rangle$ is an eigenstate of M with eigenvalue m, and $|\psi\rangle$ is any state of B, then the measuring device must yield the result m for the measurement, with probability one. Thus, if P_m is the projector onto the m eigenspace of the observable M, then the corresponding projector for \tilde{M} is $P_m\otimes I_B$. We therefore have

$$\tilde{M} = \sum_{m} m P_m \otimes I_B = M \otimes I_B. \tag{2.179}$$

The next step is to show that the partial trace procedure gives the correct measurement statistics for observations on part of a system. Suppose we perform a measurement on system A described by the observable M. Physical consistency requires that any prescription for associating a 'state', ρ^A , to system A, must have the property that measurement averages be the same whether computed via ρ^A or ρ^{AB} ,

$$\operatorname{tr}(M\rho^{A}) = \operatorname{tr}(\tilde{M}\rho^{AB}) = \operatorname{tr}((M \otimes I_{B})\rho^{AB}). \tag{2.180}$$

This equation is certainly satisfied if we choose $\rho^A \equiv \operatorname{tr}_B(\rho^{AB})$. In fact, the partial trace turns out to be the *unique* function having this property. To see this uniqueness property, let $f(\cdot)$ be any map of density operators on AB to density operators on A such that

$$tr(Mf(\rho^{AB})) = tr((M \otimes I_B)\rho^{AB}), \qquad (2.181)$$

for all observables M. Let M_i be an orthonormal basis of operators for the space of Hermitian operators with respect to the Hilbert–Schmidt inner product $(X, Y) \equiv \operatorname{tr}(XY)$ (compare Exercise 2.39 on page 76). Then expanding $f(\rho^{AB})$ in this basis gives

$$f(\rho^{AB}) = \sum_{i} M_i \operatorname{tr}(M_i f(\rho^{AB}))$$
 (2.182)

$$= \sum_{i} M_{i} \operatorname{tr}((M_{i} \otimes I_{B}) \rho^{AB}). \tag{2.183}$$

It follows that f is uniquely determined by Equation (2.180). Moreover, the partial trace satisfies (2.180), so it is the unique function having this property.

quantum information from Alice to Bob, given that Alice and Bob share an EPR pair, and have a classical communications channel.

At first sight it appears as though teleportation can be used to do faster than light communication, a big no-no according to the theory of relativity. We surmised in Section 1.3.7 that what prevents faster than light communication is the need for Alice to communicate her measurement result to Bob. The reduced density operator allows us to make this rigorous.

Recall that immediately before Alice makes her measurement the quantum state of the three qubits is (Equation (1.32)):

$$|\psi_{2}\rangle = \frac{1}{2} \left[|00\rangle \left(\alpha |0\rangle + \beta |1\rangle \right) + |01\rangle \left(\alpha |1\rangle + \beta |0\rangle \right) + |10\rangle \left(\alpha |0\rangle - \beta |1\rangle \right) + |11\rangle \left(\alpha |1\rangle - \beta |0\rangle \right) \right].$$
 (2.192)

Measuring in Alice's computational basis, the state of the system after the measurement is:

$$|00\rangle \left[\alpha |0\rangle + \beta |1\rangle\right]$$
 with probability $\frac{1}{4}$ (2.193)

$$|01\rangle \left[\alpha |1\rangle + \beta |0\rangle\right]$$
 with probability $\frac{1}{4}$ (2.194)

$$|10\rangle \left[\alpha |0\rangle - \beta |1\rangle\right]$$
 with probability $\frac{1}{4}$ (2.195)

$$|11\rangle \left[\alpha |1\rangle - \beta |0\rangle\right]$$
 with probability $\frac{1}{4}$. (2.196)

The density operator of the system is thus

$$\rho = \frac{1}{4} \left[|00\rangle\langle 00|(\alpha|0\rangle + \beta|1\rangle)(\alpha^*\langle 0| + \beta^*\langle 1|) + |01\rangle\langle 01|(\alpha|1\rangle + \beta|0\rangle)(\alpha^*\langle 1| + \beta^*\langle 0|) + |10\rangle\langle 10|(\alpha|0\rangle - \beta|1\rangle)(\alpha^*\langle 0| - \beta^*\langle 1|) + |11\rangle\langle 11|(\alpha|1\rangle - \beta|0\rangle)(\alpha^*\langle 1| - \beta^*\langle 0|) \right].$$
(2.197)

Tracing out Alice's system, we see that the reduced density operator of Bob's system is

$$\rho^{B} = \frac{1}{4} \Big[(\alpha|0\rangle + \beta|1\rangle) (\alpha^{*}\langle 0| + \beta^{*}\langle 1|) + (\alpha|1\rangle + \beta|0\rangle) (\alpha^{*}\langle 1| + \beta^{*}\langle 0|)$$

$$+ (\alpha|0\rangle - \beta|1\rangle) (\alpha^{*}\langle 0| - \beta^{*}\langle 1|) + (\alpha|1\rangle - \beta|0\rangle) (\alpha^{*}\langle 1| - \beta^{*}\langle 0|) \Big]$$

$$= \frac{2(|\alpha|^{2} + |\beta|^{2})|0\rangle\langle 0| + 2(|\alpha|^{2} + |\beta|^{2})|1\rangle\langle 1|}{4}$$
(2.199)

$$=\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}\tag{2.200}$$

$$=\frac{I}{2},\tag{2.201}$$

where we have used the completeness relation in the last line. Thus, the state of Bob's system after Alice has performed the measurement but before Bob has learned the measurement result is I/2. This state has no dependence upon the state $|\psi\rangle$ being teleported, and thus any measurements performed by Bob will contain no information about $|\psi\rangle$, thus preventing Alice from using teleportation to transmit information to Bob faster than light.

2.5 The Schmidt decomposition and purifications

Density operators and the partial trace are just the beginning of a wide array of tools useful for the study of composite quantum systems, which are at the heart of quantum computation and quantum information. Two additional tools of great value are the *Schmidt decomposition* and *purifications*. In this section we present both these tools, and try to give the flavor of their power.

Theorem 2.7: (Schmidt decomposition) Suppose $|\psi\rangle$ is a pure state of a composite system, AB. Then there exist orthonormal states $|i_A\rangle$ for system A, and orthonormal states $|i_B\rangle$ of system B such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle, \qquad (2.202)$$

where λ_i are non-negative real numbers satisfying $\sum_i \lambda_i^2 = 1$ known as *Schmidt* co-efficients.

This result is very useful. As a taste of its power, consider the following consequence: let $|\psi\rangle$ be a pure state of a composite system, AB. Then by the Schmidt decomposition $\rho^A = \sum_i \lambda_i^2 |i_A\rangle \langle i_A|$ and $\rho^B = \sum_i \lambda_i^2 |i_B\rangle \langle i_B|$, so the eigenvalues of ρ^A and ρ^B are identical, namely λ_i^2 for both density operators. Many important properties of quantum systems are completely determined by the eigenvalues of the reduced density operator of the system, so for a pure state of a composite system such properties will be the same for both systems. As an example, consider the state of two qubits, $(|00\rangle + |01\rangle + |11\rangle)/\sqrt{3}$. This has no obvious symmetry property, yet if you calculate tr $((\rho^A)^2)$ and tr $((\rho^B)^2)$ you will discover that they have the same value, 7/9 in each case. This is but one small consequence of the Schmidt decomposition.

Proof

We give the proof for the case where systems A and B have state spaces of the same dimension, and leave the general case to Exercise 2.76. Let $|j\rangle$ and $|k\rangle$ be any fixed orthonormal bases for systems A and B, respectively. Then $|\psi\rangle$ can be written

$$|\psi\rangle = \sum_{jk} a_{jk} |j\rangle |k\rangle, \tag{2.203}$$

for some matrix a of complex numbers a_{jk} . By the singular value decomposition, a = udv, where d is a diagonal matrix with non-negative elements, and u and v are unitary matrices. Thus

$$|\psi\rangle = \sum_{ijk} u_{ji} d_{ii} v_{ik} |j\rangle |k\rangle. \tag{2.204}$$

Defining $|i_A\rangle \equiv \sum_j u_{ji}|j\rangle$, $|i_B\rangle \equiv \sum_k v_{ik}|k\rangle$, and $\lambda_i \equiv d_{ii}$, we see that this gives

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle. \tag{2.205}$$

It is easy to check that $|i_A\rangle$ forms an orthonormal set, from the unitarity of u and the orthonormality of $|j\rangle$, and similarly that the $|i_B\rangle$ form an orthonormal set.

Exercise 2.76: Extend the proof of the Schmidt decomposition to the case where A and B may have state spaces of different dimensionality.

Exercise 2.77: Suppose ABC is a three component quantum system. Show by example that there are quantum states $|\psi\rangle$ of such systems which can not be written in the form

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle |i_{C}\rangle, \qquad (2.206)$$

where λ_i are real numbers, and $|i_A\rangle, |i_B\rangle, |i_C\rangle$ are orthonormal bases of the respective systems.

The bases $|i_A\rangle$ and $|i_B\rangle$ are called the *Schmidt bases* for A and B, respectively, and the number of non-zero values λ_i is called the *Schmidt number* for the state $|\psi\rangle$. The Schmidt number is an important property of a composite quantum system, which in some sense quantifies the 'amount' of entanglement between systems A and B. To get some idea of why this is the case, consider the following obvious but important property: the Schmidt number is preserved under unitary transformations on system A or system A alone. To see this, notice that if $\sum_i \lambda_i |i_A\rangle |i_B\rangle$ is the Schmidt decomposition for A0 is a unitary operator acting on system A3 alone. Algebraic invariance properties of this type make the Schmidt number a very useful tool.

Exercise 2.78: Prove that a state $|\psi\rangle$ of a composite system AB is a product state if and only if it has Schmidt number 1. Prove that $|\psi\rangle$ is a product state if and only if ρ^A (and thus ρ^B) are pure states.

A second, related technique for quantum computation and quantum information is purification. Suppose we are given a state ρ^A of a quantum system A. It is possible to introduce another system, which we denote R, and define a pure state $|AR\rangle$ for the joint system AR such that $\rho^A = \operatorname{tr}_R(|AR\rangle\langle AR|)$. That is, the pure state $|AR\rangle$ reduces to ρ^A when we look at system A alone. This is a purely mathematical procedure, known as purification, which allows us to associate pure states with mixed states. For this reason we call system R a reference system: it is a fictitious system, without a direct physical significance.

To prove that purification can be done for *any* state, we explain how to construct a system R and purification $|AR\rangle$ for ρ^A . Suppose ρ^A has orthonormal decomposition $\rho^A = \sum_i p_i |i^A\rangle\langle i^A|$. To purify ρ^A we introduce a system R which has the same state space as system A, with orthonormal basis states $|i^R\rangle$, and define a pure state for the combined system

$$|AR\rangle \equiv \sum_{i} \sqrt{p_i} |i^A\rangle |i^R\rangle.$$
 (2.207)

We now calculate the reduced density operator for system A corresponding to the state $|AR\rangle$:

$$\operatorname{tr}_{R}(|AR\rangle\langle AR|) = \sum_{ij} \sqrt{p_{i}p_{j}} |i^{A}\rangle\langle j^{A}| \operatorname{tr}(|i^{R}\rangle\langle j^{R}|)$$
 (2.208)

$$= \sum_{ij} \sqrt{p_i p_j} |i^A\rangle \langle j^A| \, \delta_{ij} \tag{2.209}$$

$$=\sum_{i} p_{i} |i^{A}\rangle\langle i^{A}| \tag{2.210}$$

$$= \rho^A. \tag{2.211}$$

Thus $|AR\rangle$ is a purification of ρ^A .

Notice the close relationship of the Schmidt decomposition to purification: the procedure used to purify a mixed state of system A is to define a pure state whose Schmidt basis for system A is just the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root of the eigenvalues of the density operator being purified.

In this section we've explained two tools for studying composite quantum systems, the Schmidt decomposition and purifications. These tools will be indispensable to the study of quantum computation and quantum information, especially quantum information, which is the subject of Part III of this book.

Exercise 2.79: Consider a composite system consisting of two qubits. Find the Schmidt decompositions of the states

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}; \quad \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}; \text{ and } \quad \frac{|00\rangle + |01\rangle + |10\rangle}{\sqrt{3}}. \quad (2.212)$$

- Exercise 2.80: Suppose $|\psi\rangle$ and $|\varphi\rangle$ are two pure states of a composite quantum system with components A and B, with identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $|\psi\rangle = (U \otimes V)|\varphi\rangle$.
- Exercise 2.81: (Freedom in purifications) Let $|AR_1\rangle$ and $|AR_2\rangle$ be two purifications of a state ρ^A to a composite system AR. Prove that there exists a unitary transformation U_R acting on system R such that $|AR_1\rangle = (I_A \otimes U_R)|AR_2\rangle$.
- Exercise 2.82: Suppose $\{p_i, |\psi_i\rangle\}$ is an ensemble of states generating a density matrix $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ for a quantum system A. Introduce a system R with orthonormal basis $|i\rangle$.
 - (1) Show that $\sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$ is a purification of ρ .
 - (2) Suppose we measure R in the basis $|i\rangle$, obtaining outcome i. With what probability do we obtain the result i, and what is the corresponding state of system A?
 - (3) Let $|AR\rangle$ be any purification of ρ to the system AR. Show that there exists an orthonormal basis $|i\rangle$ in which R can be measured such that the corresponding post-measurement state for system A is $|\psi_i\rangle$ with probability p_i .

2.6 EPR and the Bell inequality

Anybody who is not shocked by quantum theory has not understood it. – Niels Bohr

I recall that during one walk Einstein suddenly stopped, turned to me and asked whether I really believed that the moon exists only when I look at it. The rest of this walk was devoted to a discussion of what a physicist should mean by the term 'to exist'.

- Abraham Pais

...quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.

- Asher Peres

...what is proved by impossibility proofs is lack of imagination.

- John Bell

This chapter has focused on introducing the tools and mathematics of quantum mechanics. As these techniques are applied in the following chapters of this book, an important recurring theme is the unusual, *non-classical* properties of quantum mechanics. But what exactly is the difference between quantum mechanics and the classical world? Understanding this difference is vital in learning how to perform information processing tasks that are difficult or impossible with classical physics. This section concludes the chapter with a discussion of the Bell inequality, a compelling example of an essential difference between quantum and classical physics.

When we speak of an object such as a person or a book, we assume that the physical properties of that object have an existence independent of observation. That is, measurements merely act to reveal such physical properties. For example, a tennis ball has as one of its physical properties its position, which we typically measure using light scattered from the surface of the ball. As quantum mechanics was being developed in the 1920s and 1930s a strange point of view arose that differs markedly from the classical view. As described earlier in the chapter, according to quantum mechanics, an unobserved particle does not possess physical properties that exist independent of observation. Rather, such physical properties arise as a consequence of measurements performed upon the system. For example, according to quantum mechanics a qubit does not possess definite properties of 'spin in the z direction, σ_z ', and 'spin in the z direction, σ_z ', each of which can be revealed by performing the appropriate measurement. Rather, quantum mechanics gives a set of rules which specify, given the state vector, the probabilities for the possible measurement outcomes when the observable σ_z is measured, or when the observable σ_x is measured.

Many physicists rejected this new view of Nature. The most prominent objector was Albert Einstein. In the famous 'EPR paper', co-authored with Nathan Rosen and Boris Podolsky, Einstein proposed a thought experiment which, he believed, demonstrated that quantum mechanics is not a complete theory of Nature.

The essence of the EPR argument is as follows. EPR were interested in what they termed 'elements of reality'. Their belief was that any such element of reality *must* be represented in any complete physical theory. The goal of the argument was to show that quantum mechanics is not a complete physical theory, by identifying elements of reality that were not included in quantum mechanics. The way they attempted to do this was by introducing what they claimed was a *sufficient condition* for a physical property to

be an element of reality, namely, that it be possible to predict with certainty the value that property will have, immediately before measurement.

Box 2.7: Anti-correlations in the EPR experiment

Suppose we prepare the two qubit state

$$|\psi\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}},\tag{2.213}$$

a state sometimes known as the *spin singlet* for historical reasons. It is not difficult to show that this state is an entangled state of the two qubit system. Suppose we perform a measurement of spin along the \vec{v} axis on both qubits, that is, we measure the observable $\vec{v} \cdot \vec{\sigma}$ (defined in Equation (2.116) on page 90) on each qubit, getting a result of +1 or -1 for each qubit. It turns out that no matter what choice of \vec{v} we make, the results of the two measurements are always opposite to one another. That is, if the measurement on the first qubit yields +1, then the measurement on the second qubit will yield -1, and vice versa. It is as though the second qubit knows the result of the measurement on the first, no matter how the first qubit is measured. To see why this is true, suppose $|a\rangle$ and $|b\rangle$ are the eigenstates of $\vec{v} \cdot \vec{\sigma}$. Then there exist complex numbers α , β , γ , δ such that

$$|0\rangle = \alpha |a\rangle + \beta |b\rangle \tag{2.214}$$

$$|1\rangle = \gamma |a\rangle + \delta |b\rangle. \tag{2.215}$$

Substituting we obtain

$$\frac{|01\rangle - |10\rangle}{\sqrt{2}} = (\alpha\delta - \beta\gamma) \frac{|ab\rangle - |ba\rangle}{\sqrt{2}}.$$
 (2.216)

But $\alpha\delta - \beta\gamma$ is the determinant of the unitary matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$, and thus is equal to a phase factor $e^{i\theta}$ for some real θ . Thus

$$\frac{|01\rangle - |10\rangle}{\sqrt{2}} = \frac{|ab\rangle - |ba\rangle}{\sqrt{2}},\tag{2.217}$$

up to an unobservable global phase factor. As a result, if a measurement of $\vec{v} \cdot \vec{\sigma}$ is performed on both qubits, then we can see that a result of +1 (-1) on the first qubit implies a result of -1 (+1) on the second qubit.

Consider, for example, an entangled pair of qubits belonging to Alice and Bob, respectively:

$$\frac{|01\rangle - |10\rangle}{\sqrt{2}}.\tag{2.218}$$

Suppose Alice and Bob are a long way away from one another. Alice performs a measurement of spin along the \vec{v} axis, that is, she measures the observable $\vec{v} \cdot \vec{\sigma}$ (defined in Equation (2.116) on page 90). Suppose Alice receives the result +1. Then a simple quantum mechanical calculation, given in Box 2.7, shows that she can predict with certainty

that Bob will measure -1 on his qubit if he also measures spin along the \vec{v} axis. Similarly, if Alice measured -1, then she can predict with certainty that Bob will measure +1 on his qubit. Because it is always possible for Alice to predict the value of the measurement result recorded when Bob's qubit is measured in the \vec{v} direction, that physical property must correspond to an element of reality, by the EPR criterion, and should be represented in any complete physical theory. However, standard quantum mechanics, as we have presented it, merely tells one how to calculate the probabilities of the respective measurement outcomes if $\vec{v} \cdot \vec{\sigma}$ is measured. Standard quantum mechanics certainly does not include any fundamental element intended to represent the value of $\vec{v} \cdot \vec{\sigma}$, for all unit vectors \vec{v} .

The goal of EPR was to show that quantum mechanics is incomplete, by demonstrating that quantum mechanics lacked some essential 'element of reality', by their criterion. They hoped to force a return to a more classical view of the world, one in which systems could be ascribed properties which existed independently of measurements performed on those systems. Unfortunately for EPR, most physicists did not accept the above reasoning as convincing. The attempt to impose on Nature *by fiat* properties which she must obey seems a most peculiar way of studying her laws.

Indeed, Nature has had the last laugh on EPR. Nearly thirty years after the EPR paper was published, an *experimental test* was proposed that could be used to check whether or not the picture of the world which EPR were hoping to force a return to is valid or not. It turns out that Nature *experimentally invalidates* that point of view, while agreeing with quantum mechanics.

The key to this experimental invalidation is a result known as *Bell's inequality*. Bell's inequality is *not* a result about quantum mechanics, so the first thing we need to do is momentarily *forget* all our knowledge of quantum mechanics. To obtain Bell's inequality, we're going to do a thought experiment, which we will analyze using our common sense notions of how the world works – the sort of notions Einstein and his collaborators thought Nature ought to obey. After we have done the common sense analysis, we will perform a quantum mechanical analysis which we can show *is not consistent with the common sense analysis*. Nature can then be asked, by means of a real experiment, to decide between our common sense notions of how the world works, and quantum mechanics.

Imagine we perform the following experiment, illustrated in Figure 2.4. Charlie prepares two particles. It doesn't matter how he prepares the particles, just that he is capable of repeating the experimental procedure which he uses. Once he has performed the preparation, he sends one particle to Alice, and the second particle to Bob.

Once Alice receives her particle, she performs a measurement on it. Imagine that she has available two different measurement apparatuses, so she could choose to do one of two different measurements. These measurements are of physical properties which we shall label P_Q and P_R , respectively. Alice doesn't know in advance which measurement she will choose to perform. Rather, when she receives the particle she flips a coin or uses some other random method to decide which measurement to perform. We suppose for simplicity that the measurements can each have one of two outcomes, +1 or -1. Suppose Alice's particle has a value Q for the property P_Q . Q is assumed to be an objective property of Alice's particle, which is merely revealed by the measurement, much as we imagine the position of a tennis ball to be revealed by a measurement of the property P_R .

Similarly, suppose that Bob is capable of measuring one of two properties, P_S or P_T , once again revealing an objectively existing value S or T for the property, each taking value +1 or -1. Bob does not decide beforehand which property he will measure, but waits until he has received the particle and then chooses randomly. The timing of the experiment is arranged so that Alice and Bob do their measurements at the same time (or, to use the more precise language of relativity, in a causally disconnected manner). Therefore, the measurement which Alice performs cannot disturb the result of Bob's measurement (or vice versa), since physical influences cannot propagate faster than light.

Figure 2.4. Schematic experimental setup for the Bell inequalities. Alice can choose to measure either Q or R, and Bob chooses to measure either S or T. They perform their measurements simultaneously. Alice and Bob are assumed to be far enough apart that performing a measurement on one system can not have any effect on the result of measurements on the other.

We are going to do some simple algebra with the quantity QS + RS + RT - QT. Notice that

$$QS + RS + RT - QT = (Q + R)S + (R - Q)T.$$
 (2.219)

Because $R, Q = \pm 1$ it follows that either (Q + R)S = 0 or (R - Q)T = 0. In either case, it is easy to see from (2.219) that $QS + RS + RT - QT = \pm 2$. Suppose next that p(q, r, s, t) is the probability that, before the measurements are performed, the system is in a state where Q = q, R = r, S = s, and T = t. These probabilities may depend on how Charlie performs his preparation, and on experimental noise. Letting $E(\cdot)$ denote the mean value of a quantity, we have

$$E(QS + RS + RT - QT) = \sum_{qrst} p(q, r, s, t)(qs + rs + rt - qt)$$

$$\leq \sum_{qrst} p(q, r, s, t) \times 2$$
(2.221)

$$\leq \sum_{qrst} p(q, r, s, t) \times 2 \tag{2.221}$$

$$= 2.$$
 (2.222)

Also,

$$\mathbf{E}(QS + RS + RT - QT) = \sum_{qrst} p(q, r, s, t)qs + \sum_{qrst} p(q, r, s, t)rs$$

$$+ \sum_{qrst} p(q, r, s, t)rt - \sum_{qrst} p(q, r, s, t)qt \qquad (2.223)$$

$$= \mathbf{E}(QS) + \mathbf{E}(RS) + \mathbf{E}(RT) - \mathbf{E}(QT). \qquad (2.224)$$

Comparing (2.222) and (2.224) we obtain the *Bell inequality*,

$$E(QS) + E(RS) + E(RT) - E(QT) \le 2.$$
 (2.225)

This result is also often known as the CHSH inequality after the initials of its four discoverers. It is part of a larger set of inequalities known generically as Bell inequalities, since the first was found by John Bell.

By repeating the experiment many times, Alice and Bob can determine each quantity on the left hand side of the Bell inequality. For example, after finishing a set of experiments, Alice and Bob get together to analyze their data. They look at all the experiments where Alice measured P_Q and Bob measured P_S . By multiplying the results of their experiments together, they get a sample of values for QS. By averaging over this sample, they can estimate $\mathbf{E}(QS)$ to an accuracy only limited by the number of experiments which they perform. Similarly, they can estimate all the other quantities on the left hand side of the Bell inequality, and thus check to see whether it is obeyed in a real experiment.

It's time to put some quantum mechanics back in the picture. Imagine we perform the following quantum mechanical experiment. Charlie prepares a quantum system of two qubits in the state

$$|\psi\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}.\tag{2.226}$$

He passes the first qubit to Alice, and the second qubit to Bob. They perform measurements of the following observables:

$$Q = Z_1 S = \frac{-Z_2 - X_2}{\sqrt{2}} (2.227)$$

$$R = X_1 T = \frac{Z_2 - X_2}{\sqrt{2}}. (2.228)$$

Simple calculations show that the average values for these observables, written in the quantum mechanical $\langle \cdot \rangle$ notation, are:

$$\langle QS \rangle = \frac{1}{\sqrt{2}}; \ \langle RS \rangle = \frac{1}{\sqrt{2}}; \ \langle RT \rangle = \frac{1}{\sqrt{2}}; \ \langle QT \rangle = -\frac{1}{\sqrt{2}}.$$
 (2.229)

Thus,

$$\langle QS \rangle + \langle RS \rangle + \langle RT \rangle - \langle QT \rangle = 2\sqrt{2}.$$
 (2.230)

Hold on! We learned back in (2.225) that the average value of QS plus the average value of RS plus the average value of RT minus the average value of QT can never exceed two. Yet here, quantum mechanics predicts that this sum of averages yields $2\sqrt{2}$!

Fortunately, we can ask Nature to resolve the apparent paradox for us. Clever experiments using photons – particles of light – have been done to check the prediction (2.230) of quantum mechanics versus the Bell inequality (2.225) which we were led to by our common sense reasoning. The details of the experiments are outside the scope of the book, but the results were resoundingly in favor of the quantum mechanical prediction. The Bell inequality (2.225) is *not* obeyed by Nature.

What does this mean? It means that one or more of the assumptions that went into the derivation of the Bell inequality must be incorrect. Vast tomes have been written analyzing the various forms in which this type of argument can be made, and analyzing the subtly different assumptions which must be made to reach Bell-like inequalities. Here we merely summarize the main points.

There are two assumptions made in the proof of (2.225) which are questionable:

- (1) The assumption that the physical properties P_Q , P_R , P_S , P_T have definite values Q, R, S, T which exist independent of observation. This is sometimes known as the assumption of realism.
- (2) The assumption that Alice performing her measurement does not influence the result of Bob's measurement. This is sometimes known as the assumption of *locality*.

These two assumptions together are known as the assumptions of *local realism*. They are certainly intuitively plausible assumptions about how the world works, and they fit our everyday experience. Yet the Bell inequalities show that at least one of these assumptions is not correct.

What can we learn from Bell's inequality? For physicists, the most important lesson is that their deeply held commonsense intuitions about how the world works are wrong. The world is *not* locally realistic. Most physicists take the point of view that it is the assumption of realism which needs to be dropped from our worldview in quantum mechanics, although others have argued that the assumption of locality should be dropped instead. Regardless, Bell's inequality together with substantial experimental evidence now points to the conclusion that either or both of locality and realism must be dropped from our view of the world if we are to develop a good intuitive understanding of quantum mechanics.

What lessons can the fields of quantum computation and quantum information learn from Bell's inequality? Historically the most useful lesson has perhaps also been the most vague: there is something profoundly 'up' with entangled states like the EPR state. A lot of mileage in quantum computation and, especially, quantum information, has come from asking the simple question: 'what would some entanglement buy me in this problem?' As we saw in teleportation and superdense coding, and as we will see repeatedly later in the book, by throwing some entanglement into a problem we open up a new world of possibilities unimaginable with classical information. The bigger picture is that Bell's inequality teaches us that entanglement is a fundamentally new resource in the world that goes essentially *beyond* classical resources; iron to the classical world's bronze age. A major task of quantum computation and quantum information is to exploit this new resource to do information processing tasks impossible or much more difficult with classical resources.

Problem 2.1: (Functions of the Pauli matrices) Let $f(\cdot)$ be any function from complex numbers to complex numbers. Let \vec{n} be a normalized vector in three dimensions, and let θ be real. Show that

$$f(\theta \vec{n} \cdot \vec{\sigma}) = \frac{f(\theta) + f(-\theta)}{2} I + \frac{f(\theta) - f(-\theta)}{2} \vec{n} \cdot \vec{\sigma}. \tag{2.231}$$

Problem 2.2: (Properties of the Schmidt number) Suppose $|\psi\rangle$ is a pure state of a composite system with components A and B.

- (1) Prove that the Schmidt number of $|\psi\rangle$ is equal to the rank of the reduced density matrix $\rho_A \equiv \operatorname{tr}_B(|\psi\rangle\langle\psi|)$. (Note that the rank of a Hermitian operator is equal to the dimension of its support.)
- (2) Suppose $|\psi\rangle = \sum_j |\alpha_j\rangle |\beta_j\rangle$ is a representation for $|\psi\rangle$, where $|\alpha_j\rangle$ and $|\beta_j\rangle$ are (un-normalized) states for systems A and B, respectively. Prove that the

number of terms in such a decomposition is greater than or equal to the Schmidt number of $|\psi\rangle$, Sch (ψ) .

(3) Suppose $|\psi\rangle = \alpha |\varphi\rangle + \beta |\gamma\rangle$. Prove that

$$Sch(\psi) \ge |Sch(\varphi) - Sch(\gamma)|$$
. (2.232)

Problem 2.3: (Tsirelson's inequality) Suppose

 $Q = \vec{q} \cdot \vec{\sigma}, R = \vec{r} \cdot \vec{\sigma}, S = \vec{s} \cdot \vec{\sigma}, T = \vec{t} \cdot \vec{\sigma}$, where $\vec{q}, \vec{r}, \vec{s}$ and \vec{t} are real unit vectors in three dimensions. Show that

$$(Q \otimes S + R \otimes S + R \otimes T - Q \otimes T)^2 = 4I + [Q, R] \otimes [S, T]. \quad (2.233)$$

Use this result to prove that

$$\langle Q \otimes S \rangle + \langle R \otimes S \rangle + \langle R \otimes T \rangle - \langle Q \otimes T \rangle \le 2\sqrt{2},$$
 (2.234)

so the violation of the Bell inequality found in Equation (2.230) is the maximum possible in quantum mechanics.

History and further reading

There are an enormous number of books on linear algebra at levels ranging from High School through to Graduate School. Perhaps our favorites are the two volume set by Horn and Johnson^[HJ85, HJ91], which cover an extensive range of topics in an accessible manner. Other useful references include Marcus and Minc^[MM92], and Bhatia^[Bha97]. Good introductions to linear algebra include Halmos^[Hal58], Perlis^[Per52], and Strang^[Str76].

There are many excellent books on quantum mechanics. Unfortunately, most of these books focus on topics of tangential interest to quantum information and computation. Perhaps the most relevant in the existing literature is Peres' superb book^[Per93]. Beside an extremely clear exposition of elementary quantum mechanics, Peres gives an extensive discussion of the Bell inequalities and related results. Good introductory level texts include Sakurai's book^[Sak95], Volume III of the superb series by Feynman, Leighton, and Sands^[FLS65a], and the two volume work by Cohen-Tannoudji, Diu and Laloë^[CTDL77a, CTDL77b]. All three of these works are somewhat closer in spirit to quantum computation and quantum information than are most other quantum mechanics texts, although the great bulk of each is still taken up by applications far removed from quantum computation and quantum information. As a result, none of these texts need be read in detail by someone interested in learning about quantum computation and quantum information. However, any one of these texts may prove handy as a reference, especially when reading articles by physicists. References for the history of quantum mechanics may be found at the end of Chapter 1.

Many texts on quantum mechanics deal only with projective measurements. For applications to quantum computing and quantum information it is more convenient – and, we believe, easier for novices – to start with the general description of measurements, of which projective measurements can be regarded as a special case. Of course, ultimately, as we have shown, the two approaches are equivalent. The theory of generalized measurements which we have employed was developed between the 1940s and 1970s. Much of the history can be distilled from the book of Kraus^[Kra83]. Interesting discussion of quantum measurements may be found in Section 2.2 of Gardiner^[Gar91], and in the book by Braginsky and Khahili^[BK92]. The POVM measurement for distinguishing

non-orthogonal states described in Section 2.2.6 is due to Peres^[Per88]. The extension described in Exercise 2.64 appeared in Duan and Guo^[DG98].

Superdense coding was invented by Bennett and Wiesner^[BW92]. An experiment implementing a variant of superdense coding using entangled photon pairs was performed by Mattle, Weinfurter, Kwiat, and Zeilinger^[MWKZ96].

The density operator formalism was introduced independently by Landau^[Lan27] and by von Neumann^[von27]. The unitary freedom in the ensemble for density matrices, Theorem 2.6, was first pointed out by Schrodinger^[Sch36], and was later rediscovered and extended by Jaynes^[Jay57] and by Hughston, Jozsa and Wootters^[HJW93]. The result of Exercise 2.73 is from the paper by Jaynes, and the results of Exercises 2.81 and 2.82 appear in the paper by Hughston, Jozsa and Wootters. The class of probability distributions which may appear in a density matrix decomposition for a given density matrix has been studied by Uhlmann^[Uhl70] and by Nielsen^[Nie99b]. Schmidt's eponymous decomposition appeared in^[Sch06]. The result of Exercise 2.77 was noted by Peres^[Per95].

The EPR thought experiment is due to Einstein, Podolsky and Rosen^[EPR35], and was recast in essentially the form we have given here by Bohm^[Boh51]. It is sometimes misleadingly referred to as the EPR 'paradox'. The Bell inequality is named in honour of Bell^[Bel64], who first derived inequalities of this type. The form we have presented is due to Clauser, Horne, Shimony, and Holt^[CHSH69], and is often known as the CHSH inequality. This inequality was derived independently by Bell, who did not publish the result.

Part 3 of Problem 2.2 is due to Thapliyal (private communication). Tsirelson's inequality is due to Tsirelson^[Tsi80].