

Grafo plano

Un grafo G es **plano** si tiene un embebimiento libre de cruces. Este embebimiento se denomina **embebimiento plano** de G.

Ky y Q3 son grafos planos.

Teorema (Euler)

Si G es un grafo conexo plano con n vértices, e aristas y f caras, entonces

$$n-e+f=2$$

Longitud o grado

La **longitud o grado de una cara** en un grafo plano G es la longitud de la(s) caminata(s) cerrada(s) sobre la frontera de la cara.

$$n=7$$
 $e=8$ $f=3$

Lema

Si $I(F_i)$ denota la longitud de la cara F_i en un grafo plano G, entonces

$$\sum I(F_i) = 2e$$

Corolario

Si G es un grafo plano simple con al menos tres vértices, entonces

$$e \leq 3n - 6$$

Contra riec(peoro:

Si e> 3n-6 ent G nu es plano o no es simple o no tiene al menos 3 vértires.

Uso: Si G es simple, nr3 y er3n-6 ent G no es plano.

Corolario

 K_5 no es plano.

• K_5 es un grafo simple con e = 10 y n = 5. Como e > 3n - 6, K_5 no es plano.

$$K_5$$
 es simple, $n_{7,3}$
 $n=5$ $e=10$
 $10 > 3(5)-6$

$$\begin{cases} K_{3i3} & n=6 & e=9 \\ ie > 1n-6? \end{cases}$$

$$\begin{cases} E \mid corolario \\ no sirue \end{cases}$$

$$9 \neq 12$$

Corolario

Si G es un grafo plano simple con al menos tres vértices y G no tiene ciclos de longitud 3, entonces

$$e \leq 2n - 4$$

 $K_{3,3}$

K_{3,3} es simple,
$$n_{7/3}$$
/

K_{3,3} no tiene 3-ciclos: porque es B; partito
$$i e > 2n-4?$$

$$9 > 2(6)-4 \checkmark$$

Corolario

Si G es un grafo plano simple, entonces $\delta(G) \leq 5$.

Uso: Si G es simple y d(G) > 5 ent G no es plano.

(De Kz en adelante -> Kn nz.z no es plano)

 K_6 no es plano ($\delta(k_6)=5$) (No aplica este corbinatio).