1 Answer:

(a)

Hence, the regular expression is $a*b(ba*b \cup a)*$.

2 Answer:

3 Answer:

Answer: Suppose that A_2 is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = a^p b a^p$. Note that $s \in A_2$ since $s = s^{\mathcal{R}}$, and $|s| = 2p + 1 \ge p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the conditions

i. $xy^iz \in A_2$ for each $i \geq 0$,

ii. |y| > 0,

iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third condition implies that x and y consist only of a's. So z will be the rest of the first set of a's, followed by ba^p . The second condition states that |y| > 0, so y has at least one a. More precisely, we can then say that

 $x = a^{j}$ for some $j \ge 0$, $y = a^{k}$ for some $k \ge 1$, $z = a^{m}ba^{p}$ for some $m \ge 0$.

Since $a^pba^p = s = xyz = a^ja^ka^mba^p = a^{j+k+m}ba^p$, we must have that j + k + m = p. The first condition implies that $xy^2z \in A_2$, but

$$xy^2z = a^j a^k a^k a^m b a^p$$
$$= a^{p+k} b a^p$$

since j + k + m = p. Hence, $xy^2z \notin A_2$ because $(a^{p+k}ba^p)^{\mathcal{R}} = a^pba^{p+k} \neq a^{p+k}ba^p$ since $k \geq 1$, and we get a contradiction. Therefore, A_2 is a nonregular language.

4 Answer:

For each $n \ge 1$, we can construct a DFA with the n states $(q_0, q_1, ..., q_{n-1})$ to recognize a^n , the start state q_0 is also accept state.

The transition function is $\delta(q_j,a)=q_{j+1}$, for j=0,1,...,n-2, and $\delta(q_{n-1},a)=q_0$.

Then add an ϵ transition from q_{n-1} to q_0 , this NFA can recognize a^k , k is a multiple of n, for each n.

5 Answer:

a.

If $x \in B$, then there is some positive integer k such that $x = 1^k y$ where y is over $\{0,1\}$ and has at least k 1s.

So $x = 1^k(0^*1)^k\{0,1\}^* \Rightarrow x = 11^{k-1}(0^*1)^k\{0,1\}^* \Rightarrow x = 1z$ where z over $\{0,1\}$ and has at least 2k - 1 $1s \Rightarrow x = 1z$ where z has at least one 1 (because $k \ge 1$, so $2k-1 \ge 1$) $\Rightarrow x \in \{1y \mid y \in \{0,1\}^* \text{ and } y \text{ contains at least one } 1\}$.

Let A = $\{1y \mid y \in \{0,1\}^* \text{ and } y \text{ contains at least one 1}\}$. As proven above, if $x \in B \Leftrightarrow x \in A$. And A can described by the regular expression $10^*1\{0 \cup 1\}^*$. Hence, B is regular.

h

Assume that C is regular. Let p be the pumping length given by the Pumping Lemma. Choose s to be the string $1^p0^p1^p$. Because s is a member of C and s is longer than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, satisfying the three conditions of the pumping lemma.

Since the first p symbols of s are all 1's, the third condition ($|xy| \le p$) implies that x and y consist only of 1's. So z will be the rest of the first set of 1's, followed by 0^p1^p .

The second condition states that |y| > 0, so y has at least one 1. So we can say that $x = 1^j$ for some $j \ge 0$, $y = 1^k$ for some $k \ge 1$, $z = 1^{p-j-k}0^p1^p$.

The first condition implies that $xz \in C$, but $xz = 1^j \ 1^{p \cdot j \cdot k} 0^p 1^p = 1^{p \cdot k} 0^p 1^p \notin C$, and we get a contradiction. Therefore, C is not regular.