Multi-channel Communications Fall 2022

Lecture 11
Transmit Diversity

Dr. R. M. Buehrer

Transmit Diversity - Overview

- o Motivation
- o Basic Concept
- Open-Loop Techniques
 - o Delay diversity
 - o PSTD
 - o Space-Time Block Codes
 - Switch diversity
 - Antenna hopping transmit from all antennas in round-robin fashion (loses 1/Nt bandwidth efficiency)
- O Closed-Loop Techniques
 - Antenna selection
 - o Co-phasing
 - o Generalized "Beam-forming"
 - o Maximum Ratio Transmission

Motivation

- We have seen that diversity can dramatically improve the performance of wireless systems
 - o Primary tool against fading
- Receive antenna diversity not always a practical option
 - o e.g., downlink of mobile systems
- Would like to move diversity to the transmit side of such systems
 - This is called *transmit diversity*

Concept

o Can we simply transmit from mulitple widely separated antennas?

Concept (cont.)

- Thus, we must transmit from multiple antennas intelligently
- o Two forms of transmit diversity
 - o Open-loop
 - o No information is reported to the transmitter
 - o Closed-loop
 - o Some information is fed-back from the receiver
 - Information could be partial channel information or full channel information
 - Information feedback and feedback errors impair the performance of this scheme

Open-Loop Transmit Diversity

- No information fed-back from receiver to the transmitter
- Since there is no information available at the transmitter, most techniques attempt to convert spatial diversity to temporal diversity which can be exploited by error control coding
 - Antenna hopping (blind antenna switching)
 - Also called orthogonal transmit diversity
 - o Phase-sweep transmit diversity
 - o Delay Diversity
- One major exception Space-Time Block Coding
 - Achieves full diversity even without coding

Antenna Hopping

- Concept: Every symbol switch the transmit antenna among N_t possible antennas
 - Could also switch every K symbols and use interleaving
- In the absence of coding, the technique is not helpful, since each transmit symbol still experiences the single-antenna fading
- In the presence of coding, the codeword decision metric will experience diversity

Antenna Hopping

Performance Example

- o $N_t = 4$
- o BPSK
- Rayleigh fading
- Independent channels
- o K=8, rate $\frac{1}{4}$ conv. Coding

Phase Sweep Transmit Diversity

signal

Sweep frequency

 Beneficial in slow Rayleigh fading since it provides time diversity in conjunction with coding and interleaving.

Example

- $o f_d = 10Hz$
- $of_{sweep} = 100Hz$
- Fades are just as deep, but much shorter
- Allows for better performance with coding

Effect of PSTD - Viterbi Path Metric CDF

- Constraint length K = 9
- rate = 3/4

Delay Diversity

- Transmit from two (or more) antennas with the other antennas containing a delay
- Relies on an equalizer or Rake receiver (when spread spectrum is used) to remove self interference
- Provide symbol-level diversity (coding not necessary for diversity benefit

Space-Time Transmit Diversity

- All of the preceding techniques converted spatial diversity into temporal diversity
- Temporal diversity is typically exploited through channel coding
- One major exception to this approach is space-time transmit diversity which provides two-fold diversity using a very simple but elegant space-time code
 - It can be generalized and is known as spacetime block coding

STTD - cont.

 A pair of symbols is re-encoded and transmitted over two time slots on two antennas

STTD - Decision Metric

o Decision Metric

$$\hat{s}_1 = f \{ \hat{\alpha}_1^* r[1] + \hat{\alpha}_2 r^*[2] \} \\
\hat{s}_2 = f \{ \hat{\alpha}_2^* r[1] - \hat{\alpha}_1 r^*[2] \}$$

$$\hat{s}_{1} = f \left\{ \sqrt{\frac{P_{1}}{2}} \left(|\tilde{\alpha}_{1}|^{2} + |\tilde{\alpha}_{2}|^{2} \right) s_{1} + \tilde{n}_{1} \right\}$$

$$\hat{s}_{2} = f \left\{ \sqrt{\frac{P_{1}}{2}} \left(|\tilde{\alpha}_{1}|^{2} + |\tilde{\alpha}_{2}|^{2} \right) s_{2} + \tilde{n}_{2} \right\}$$

$$f \{x\}$$
 = decision function
 $\hat{\alpha}_i$ = estimate of the *i*th complex channel $\tilde{\alpha}_i$

Go to the board.....

o All cross-interference is eliminated

Performance

- o Rayleigh fading
- Independent channels
- Perfect channel estimates
- STTD is 3dB worse than twofold receive diversity

Closed-Loop Transmit Diversity

- o If information about the channel can be fed back from the receiver to the transmitter before the channel changes, we can exploit this information at the transmitter
 - Can also be done by transmitter itself in TDD systems
- o Forms
 - Antenna selection
 - o Generalized "beamforming"
 - o Maximal Ratio Transmission

Antenna Selection

o Best of the N_t channels is fed back to the receiver

o Pilots must be sent from each antenna to measure all

Feedback

Go to the board.....

Multi-Channel Communications ECE 6634 Fall 2022

Impact of Feedback Error

- o Feeback
 error =
 0.1%
- o 4 Tx antennas
- Rayleigh fading
- Independent channels

Impact of Feedback Error

- o Feeback
 error = 1%
- o 4 Tx antennas
- Rayleigh fading
- Independent channels

Impact of Feedback Error

- o Feeback
 error = 10%
- 4 Tx antennas
- Rayleigh fading
- Independent channels

Generalized Beamforming

- o Relative phases from all N_t channels are fed back to the receiver
- o Pilots must be sent from each antenna to measure all antennas
- Not beamforming in the strict sense since no beams are formed

ECE 6634 Fall 2022

Generalized Beamforming (cont.)

 Better performance can be obtained if the signals are weighted and co-phased

Maximal Ratio Transmission

 Generalized version of the previous scheme with multiple receive antennas

Performance Example

- Simulation results
- $0 N_{t} = 4$
- $o M_r = 4$
- Rayleigh fading
- Independent channels

Performance Example

- Simulation results
- $o N_{t} = 2$
- $o M_r = 2$
- Rayleigh fading
- Independent channels

Conclusions

- o Today we considered transmit diversity techniques. There are two basic forms
 - o Without feedback
 - o PSTD
 - o Antenna Hopping
 - o Space-Time block coding
 - o With feedback
 - Antenna selection
 - Generalized beamforming

Backup Slide – Antenna Selection

- Simulation vs. Theory
- o Feeback error = 0.1%
- o 4 Tx antennas
- Rayleigh fading
- Independent channels

Backup Slide – Antenna Selection

- Simulation vs. Theory
- o Feeback
 error = 1%
- o 4 Tx antennas
- Rayleigh fading
- Independent channels

Multi-Channel Communications ECE 6634 Fall 2022

Backup Slide – Antenna Selection

- Simulation vs. Theory
- o Feeback
 error = 10%
- o 4 Tx antennas
- Rayleigh fading
- Independent channels