

Bangladesh

Date: Sep 02, 2024

• For now, we are focusing on Case Study 1. So, you can skip next few slides and concentrate from Slides 08-14

Optimizing last-mile delivery

Research Outline

- Introduction
 - Background
 - RQ
- Method
 - Proposed methodology
 - Solution algorithm
- Computational Result
- Discussion

Background & Motivation

- Last-mile delivery is the most time-consuming and costly part of the supply chain, making its optimization crucial for competitive advantage.
- To meet rising e-commerce demands, logistics companies are turning to innovative solutions like drone delivery to improve efficiency.
- This paper addresses the challenges of optimizing large-scale last-mile drone delivery by using a column generation approach to solve the Vehicle Routing Problem with Drone (VRP-D).
- Extensive experiments show that the proposed method improves delivery efficiency and reduces costs, offering valuable insights for optimizing lastmile logistics with advanced technologies.

Research Questions

Model itself

- What novel mathematical models can be developed to incorporate multi-modal transportation (e.g., combining trucks, drones, bikes) into the VRP for last-mile delivery?
- 2. How can models for drones be adapted to handle dynamic, real-time conditions, such as sudden changes in delivery locations, or unexpected drone failures?

Solution algorithm

- 3. How can the pricing problem in column generation be optimized to generate routes more effectively for last-mile delivery?
- 4. How can heuristics or metaheuristics be integrated with column generation to improve solution quality for last-mile delivery optimization?

Sensitivity

- 5. What are the impacts of various problem parameters (e.g., number of customers, geographic distribution) on the performance of VRP models for last-mile delivery?
- 6. What are the trade-offs between solution quality and computational time when using heuristic-based column generation?
- 7. What are the impacts of varying problem parameters (e.g., number of deliveries, geographic distribution) on the performance of VRP algorithms in drone delivery?

Proposed Method

Solution algorithm

- Column Generation ++
- Relevance to large-scale optimization??

Problem Statement

- How we can maximize the coverage of shelter points given:
 - Disrupted road network
 - Resource constraints
 - Limited capacity of vehicles

 Coverage: delivering reliefs from warehouse to shelters

Data

- Cyclone shelter centers geolocation
- Road networks in Bangladesh
- GIS map of each districts
- Population in each district

- Warehouse: need to assume
- Shelters: capacity, geo-location
- Road network: national& regional highway, other roads, disrupted (can we get flood elevation or other info++ Riad)
- Demand: resource needed, Location of people
- Resource/relief: Quantity and warehouse location

Data Exploration

Feni

- Total population in Feni 1.6M
- Sonagachi (where most shelters are) 0.39M population
- 0.6M in Feni Sadar (small central region)

Optimization model (VRP's variant)

Conceptual Model

- 1. Objective: maximizing coverage of shelter (demand) points
- 2. DV: no. of vehicles (# of drone, helicopter, truck), capacity of these vehicle
 - a. Vehicle level: x_ijk, from where to where
 - b. Routing level: road selection (disrupted, non-disrupted routes)
- 3. Input parameters: packages.
 - a. Disrupted vs non-disrupted networks
- 4. Constraint
 - a. Travel each demand points only once
 - b. Capacity constraints: for each vehicle
 - c. Travelling distance: helicopter (max coverage), every vehicle (truck refuel), other practical limits
 - d. Time-window

Capacity Consideration:

 The decision variables are multiplied by the truck and drone capacities, ensuring that the total amount of supplies delivered does not exceed the availability at each warehouse.

Availability Constraint:

 The constraint ensures that the total resources delivered from each warehouse, by trucks and drones combined, do not exceed the available resources at that warehouse.

Math Programming

Results

Web app

- Input
 - Availability (in warehouse) and capacity (of vehicles)
- Output
 - A table
 - A GIS map

Reference data

- 25% coverage availability = {'W1': 1500, 'W2': 2000} capacities = {'D1': 1000, 'D2': 2000, 'T1': 1600, 'T2': 2000}
- 46% coverage availability = {'W1': 1500, 'W2': 20000} capacities = {'D1': 1000, 'D2': 12000, 'T1': 1600, 'T2': 2000}

Main Task for now:

- 1. Build the minimalistic online web app (anyone can input these two inputs, and get the GIS map)
- 2. Edges of the map should be roads of GIS graph, not straight line, add an animation if possible

Computational Result: Dataset

• Dataset 1 (Wu et al., 2024):

 Dataset 2 (US Arctic emergency response related VRP): summary of the dataset+

Implementation

- Modeling: Python/Pyomo
- Solver: CPLEX/Gurobi
- Simulation: AnyLogic
- Versioning: Github
- Packaging: Docker & Streamlit