Pаспространение Klebsiella pneumoniae среди новорожденных пациентов роддома г. Казани

Васильев И.Ю.

Казань - 2019

Klebsiella pneumoniae

- Выделена в 1882 году немецким микробиологом Карлом Фридлендером из ткани умершего от пневмонии пациента
- Может существовать в свободноживущем виде
- Скрыто присутствует у ~5% популяции в ЖКТ и на слизистых
- Персистенции способствуют некоторые пищевые привычки и алкоголизм
- Может вызывать пневмонию, урогенитальные инфекции, гнойные абсцессы печени, селезёнки, плевры, перикарда, гаймориты, эндофтальмиты, нозокомиальные инфекции, эпизоотии
- Смертность после сепсиса ~30%
- Гипервирулентные штаммы опасны даже для неослабленных людей

Рост *K. pneumoniae*:

> Arap McConkey

Кровяной агар

Pacпространение Klebsiella pneumoniae среди новорожденных пациентов роддома г. Казани

- Новорожденные доношены (?)
- Меконий стерилен (?)
- Инфекция штаммами *К. pneumoniae* с множественной лекарственной устойчивостью (MDRKP) в фенотипе
- На 4-5-й день $10^8...10^9$ КОЕ MDRKP / г стула новорожденного
- Бессимптомное носительство, манифестации нет
- Состояние оценивается как здоровое (?)

Информация об образцах

sample_name	patient_id	checkpoint_a ge_days	checkpoint_k pneumoniae_ lg_cfu_per_g	extended- spectrum_bet a-lactamases	klebsiella_pha ge	pyo_bacterio phage
Kleb22	1	4	9	True	susceptible	susceptible
Kleb90	1	120	8	False	resistant	susceptible
Kleb24	3	4	8	False	resistant	susceptible
Kleb27	4	4	8	False	resistant	susceptible
Kleb28	5	5	9	True	not defined	susceptible
Kleb29	6	4	8	True	resistant	susceptible
Kleb60	7	4	9	True	susceptible	susceptible
Kleb85	8	5	9	True	susceptible	susceptible
Kleb91	2	4	8	True	resistant	susceptible
Kleb102	2	30	7	False	resistant	susceptible

Данные микродилуционного теста (фенотипирование на ABR)

sample_na me	amoxicillin- clavulanic acid	ampicillin	amikacin	aztreonam	nitrofurant oin	ceftriaxone	sulfametho xazole	trimethopri m	ciprofloxaci n	chloramphe nicol	fosfomycin	netilmicin	gentamicin	imipenem	meropene m
Kleb22	resistant	resistant	susceptible	resistant	intermediat e	resistant	resistant	resistant	intermediat e	susceptible	resistant	resistant	susceptible	susceptible	susceptible
Kleb90	susceptible	resistant	susceptible	not defined	resistant	susceptible	not defined	not defined	susceptible	susceptible	not defined	not defined	not defined	not defined	not defined
Kleb24	susceptible	resistant	susceptible	susceptible	susceptible	susceptible	susceptible	susceptible	susceptible	susceptible	intermediat e	susceptible	susceptible	susceptible	susceptible
Kleb27	susceptible	resistant	susceptible	susceptible	resistant	susceptible	susceptible	susceptible	susceptible	susceptible	resistant	susceptible	not defined	intermediat e	susceptible
Kleb28	resistant	resistant	susceptible	resistant	resistant	resistant	resistant	resistant	resistant	susceptible	resistant	resistant	resistant	resistant	susceptible
Kleb29	resistant	resistant	susceptible	resistant	intermediat e	resistant	resistant	resistant	intermediat e	susceptible	resistant	resistant	resistant	intermediat e	susceptible
Kleb60	resistant	resistant	susceptible	resistant	resistant	resistant	resistant	resistant	susceptible	susceptible	resistant	susceptible	susceptible	resistant	susceptible
Kleb85	resistant	resistant	susceptible	resistant	resistant	resistant	resistant	resistant	susceptible	susceptible	resistant	susceptible	susceptible	resistant	susceptible
Kleb91	resistant	resistant	susceptible	resistant	resistant	resistant	resistant	resistant	susceptible	susceptible	resistant	intermediat e	susceptible	resistant	susceptible
Kleb102	resistant	resistant	susceptible	resistant	resistant	resistant	susceptible	susceptible	susceptible	not defined	resistant	susceptible	susceptible	resistant	resistant

Цели

- Произвести генотипирование секвенированных последовательностей изолятов MDRKP
- Выявить локусы:
 - Устойчивости
 - Вирулентности
- Установить связь между изолятами

Результаты

Общие результаты генотипирования

strain	contig_cou nt	N50	ST	virulence_s core	resistance_ score	Lance class	mum resisi		Colibactin	Aerobactin	Salmocheli n
Kleb102	101	350001	ST983-1LV	1	0	5	6	ybt unknown	-	-	-
Kleb22	123	307112	ST23	5	1	8	16	ybt 1; ICEKp10	clb 2	iuc 1	iro 1
Kleb24	110	319410	ST37	0	0	2	3	-	-	-	-
Kleb27	83	322041	ST23	5	0	0	0	ybt 1; ICEKp10	clb 2	iuc 1	iro 1
Kleb28	129	307112	ST23	5	1	8	10	ybt 1; ICEKp10	clb 2	iuc 1	iro 1
Kleb29	124	307112	ST23	5	1	8	10	ybt 1; ICEKp10	clb 2	iuc 1	iro 1
Kleb60	106	263911	ST268	5	1	5	10	ybt 17; ICEKp10	clb 3	iuc 1	iro 1
Kleb85	74	358425	ST45	0	1	6	8	1	1	-	-
Kleb90	118	307112	ST23	5	1	8	15	ybt 1; ICEKp10	clb 2	iuc 1	iro 1
Kleb91	78	437151	ST45	0	1	6	8	-	-	-	-

Результаты генотипирования на ABR

strain	AGly	Flq	MLS	Phe	Sul	Tet	Tmt	Bla	Bla_ESBL	Bla_broad	Bla_broad_inh R
Kleb102	StrB;StrA*	ı	ı	CatA1*	SulII*	TetA	-	SHV- 187*;AmpH*	-	1	TEM-30*
Kleb22	StrB;StrA*;Aac 3- IIa*;StrB;StrA*	QnrB1?	-	CatB4	SullI;SullI	TetA	DfrA14;DfrA14	SHV- 190*;AmpH;O XA-1	CTX-M-15;CTX- M-15	1	TEM-30*;TEM- 30*
Kleb24	StrB;StrA	-	-	-	-	-	-	AmpH*	-	SHV-77*	-
Kleb27	-	-	-	-	-	-	-	SHV- 190*;AmpH	-	-	-
Kleb28	StrB;StrA*;Aac 3-IIa*	QnrB1?	1	CatB4	SullI	TetA	DfrA14	SHV- 190*;AmpH;O XA-1	CTX-M-15	1	TEM-30*
Kleb29	StrB;StrA*;Aac 3-IIa*	QnrB1?	1	CatB4	SullI	TetA	DfrA14	SHV- 190*;AmpH;O XA-1	CTX-M-15	-	TEM-30*
Kleb60	StrB;StrA*;Aph 3-la*	1	EreA2	1	Sull;SullI*	1	DfrA5	AmpH*	SHV-13*;CTX- M-3;CTX-M-3	-	-
Kleb85	StrB;StrA*	-	-	CatB4	SullI	-	DfrA14	AmpH*;OXA-1	CTX-M-15	-	SHV-26*;TEM- 30*
Kleb90	StrB;StrA*;Aac 3- IIa*;StrB;StrA*	QnrB1?	-	CatB4	SullI;SullI	TetA	DfrA14	SHV- 190*;AmpH;O XA-1	CTX-M-15;CTX- M-15	-	TEM-30*;TEM- 30*
Kleb91	StrB;StrA*	-	-	CatB4	SullI	-	DfrA14	AmpH*;OXA-1	CTX-M-15	-	4

Результаты пангеномного анализа

- 2 группы
 - Менее гетерогенная: образцы №№ 29, 90,28, 22, 27
 - Более гетерогенная: образцы №№ 102, 60, 24, 85, 91
- Ветвление полностью соответствует данным MLST

	date	origin	strain	refseq_id	assembly_id
	27-MAY-2019		NCTC9157	GCF_901422065.1	40345_F01
×	20-MAY-2019	Chongqing, China.	2e	GCF_005377825.1	ASM537782v1
7	25-JUN-2019		FDAARGOS_775	GCF_006364295.1	ASM636429v1
1	27-MAY-2019		NCTC11698	GCF_901421925.1	38656_F01
	21-FEB-2017		YH43	GCF_001548315.1	ASM154831v1
$\rightarrow \overline{Z} \times$	27-MAY-2019		NCTC9170	GCF_901422025.1	38445_C01
$\overline{}$	28-DEC-2018		NCTC11357	GCF_900635925.1	36109_E01
а Б	09-FEB-2019		NCTC9180	GCF_900635945.1	37430_C01
χ×	18-OCT-2018		INF078	GCF_003660185.1	ASM366018v1
	06-AUG-2019		IA565	GCF_007833555.1	ASM783355v1
ΣŹ	21-FEB-2017	Shanghai, China.	RJF293	GCF_001530015.1	ASM153001v1
Б	20-FEB-2017		NTUH-K2044	GCF_000009885.1	ASM988v1
	21-FEB-2017	Kaohsiung, Taiwan.	ED23	GCF_001708225.1	ASM170822v1
	03-MAY-2019	Atlanta, GA.	ST23	GCF_004924315.1	ASM492431v1
	09-DEC-2017	UK NCTC	SGH10	GCF_002813595.1	ASM281359v1
	04-DEC-2018	Kowloon, Hong Kong.	R210-2	GCF_003855515.1	ASM385551v1
ИЯ ЫХ	01-FEB-2019		AP8555	GCF_004118955.1	ASM411895v1
15 	01-FEB-2019	Shanghai, China.	RJF999	GCF_001529935.1	ASM152993v1
	13-MAR-2018		KPHS1249	GCF_002970895.1	ASM297089v1
コ エ	31-JAN-2019		1084	GCF_000294365.1	ASM29436v1
ص <u>ک</u>	01-FEB-2019	Kaohsiung, Taiwan.	ED2	GCF_001708245.1	ASM170824v1
Y I	26-DEC-2018		11492	GCF_003953905.1	ASM395390v1
<u> </u>	08-NOV-2017	Beijing, China.	P1428	GCF_002761315.1	ASM276131v1
C	12-JUL-2018	Kowloon, Hong Kong.	SC-7	GCF_003286995.1	ASM328699v1
$\frac{1}{2}$	03-APR-2019	Vellore, India.	BA4656	GCF_004209795.1	ASM420979v1
<u> </u>	27-FEB-2019	Vellore, India.	BA34918	GCF_004295405.1	ASM429540v1
ф ф	05-JUN-2017	Shanghai, China.	RJA166	GCF_002163895.1	ASM216389v1
_	12-MAY-2018		WCHKP13F2	GCF_002257935.3	ASM225793v3
<u> </u>	21-AUG-2018		NUHL30457	GCF_002944845.1	ASM294484v1
$Z \sigma$	12-MAR-2019		18CPO060	GCF_004332075.1	ASM433207v1
	01-FEB-2019		F81	GCF 004120155.1	ASM412015v1

MLST изолятов MDRKP и тип родов

group	sample_name	delivery	ST
1	Kleb22	vaginal	ST23
1	Kleb90	vaginal	ST23
2	Kleb24	vaginal	ST37
1	Kleb27	vaginal	ST23
1	Kleb28	vaginal	ST23
1	Kleb29	vaginal	ST23
2	Kleb60	caesarean	ST268
2	Kleb85	caesarean	ST45
2	Kleb91	caesarean	ST45
2	Kleb102	caesarean	ST983-1LV

Accession IDs

SUBID	BioProject	BioSample	Accession	Organism
SUB5915929	PRJNA556398	SAMN12349649	VOOA0000000	Klebsiella pneumoniae KZN_INI_KINF_22
SUB5915929	PRJNA556398	SAMN12349650	VOOB00000000	Klebsiella pneumoniae KZN_INI_KINF_90
SUB5915929	PRJNA556398	SAMN12349651	VOOC00000000	Klebsiella pneumoniae KZN_INI_KINF_24
SUB5915929	PRJNA556398	SAMN12349652	VOOD00000000	Klebsiella pneumoniae KZN_INI_KINF_27
SUB5915929	PRJNA556398	SAMN12349653	VOOE00000000	Klebsiella pneumoniae KZN_INI_KINF_28
SUB5915929	PRJNA556398	SAMN12349654	VOOF00000000	Klebsiella pneumoniae KZN_INI_KINF_29
SUB5915929	PRJNA556398	SAMN12349655	VOOG00000000	Klebsiella pneumoniae KZN_INI_KINF_60
SUB5915929	PRJNA556398	SAMN12349656	VOOH00000000	Klebsiella pneumoniae KZN_INI_KINF_85
SUB5915929	PRJNA556398	SAMN12349657	VOOI00000000	Klebsiella pneumoniae KZN_INI_KINF_91
SUB5915929	PRJNA556398	SAMN12349658	VOOJ00000000	Klebsiella pneumoniae KZN_INI_KINF_102

Выводы

- Произведено генотипирование 10 изолятов Klebsiella pneumoniae от 8 новорожденных пациентов
- Подтверждено наличие генных детерминант множественной лекарственной устойчивости:
 - AGly (аминогликозиды)
 - Bla (бета-лактамазы)
 - Bla broad (бета-лактамазы широкого спектра)
 - Bla broad inhR (бета-лактамазы широкого спектра с устойчивостью к ингибиторам бета-лактамаз)
 - Bla_ESBL (бета-лактамазы расширенного спектра)
 - Flq (флюорохинолоны)
 - MLS (макролиды)
 - Phe (фениколы)
 - Sul (сульфаниламиды)
 - Tet (тетрациклины)
 - Tmt (триметоприм)
- Подтверждено наличие детерминант вирулентности: генов синтеза сидерофоров йерсиниабактина, аэробактина, сальмохелина и ДНК-алкилирующего агента колибактина, а также детерминант гипермукоидности, К- и Оантигенов
- Выявлено наличие двух групп инфицированных:
 - Менее гетерогенная носители гипервирулентных штаммов MDRKP после вагинальных родов
 - Более гетерогенная носители вирулентных штаммов с меньшим числом генов ABR после кесарева сечения и вагинальных родов

