Лабораторна робота № 5

Дослідження адаптивних цифрових фільтрів на основі алгоритму LMS

Мета роботи: ознайомлення з адаптивним цифровим фільтром на основі алгоритму LMS, реалізація алгоритму і програми розрахунку адаптивного цифрового фільтру на основі алгоритму LMS, тестування реалізованої програми.

1. Теоретична частина

Серед адаптивних фільтрів найбільшого поширення отримали лінійні адаптивні фільтри з оберненим зв'язком, реалізовані на основі нерекурсивних ЦФ (фільтрів зі скінченною імпульсною характеристикою – СІХ фільтрів). Структурна схема такого адаптивного фільтра зображена на рис. 5.1.

Рис. 5.1. Структурна схема лінійного адаптивного фільтра з оберненим зв'язком На виході адаптивного фільтра формуються два сигнали:

- вихідний сигнал y_k ;
- сигнал похибки e_k :

$$e_k = d_k - y_k. (5.1)$$

Згідно різницевого рівняння вихідний сигнал CIX – фільтра рівний лінійній комбінації відліків вхідного сигналу:

$$y_k = \sum_{i=0}^{N-1} h_i x_{k-i} , \qquad (5.2)$$

де h_i , i = 0,1,...,N-1 - коефіцієнти СІХ — фільтра. Коефіцієнти різницевого рівняння СІХ — фільтра співпадають з відліками його імпульсної характеристики.

Згідно (5.2) сигнал похибки рівний:

$$e_k = d_k - \sum_{i=0}^{N-1} h_i x_{k-i} . {(5.3)}$$

В методі найменших квадратів (МНК) — алгоритмі LMS (Least Mean Squares) і його модифікації НМНК (нормований метод найменших квадратів) реалізовано рекурентне обчислення оцінок параметрів адаптивного фільтра \hat{h}_k . Як критерій найкращого наближення вихідного сигналу y_k до взірцевого сигналу d_k використовується мінімум квадрату сигналу похибки:

$$e_k^2 = \left[d_k - \sum_{i=0}^{N-1} h_i x_{k-i} \right]^2 \to \min_h.$$
 (5.4)

Для цього адаптивного фільтра оптимізуюча функція ϵ функцією часу k:

$$F(k,h) = e_k^2 = \left[d_k - \sum_{i=0}^{N-1} h_i x_{k-i} \right]^2.$$
 (5.5)

Для пошуку мінімуму функції F(k,h) використовується градієнтний метод найшвидшого спуску – ітераційна процедура, яка визначає траєкторію найшвидшого покрокового наближення до мінімуму, де крокам ітерації відповідають моменти дискретного нормованого часу k.

У відповідності з даним методом, на кожному кроці ітерації оцінюється вектор \hat{h}_{k+1} , зміщений відносно вектора \hat{h}_k на величину, пропорційну градієнту функції F(k,h) в точці k:

$$\hat{h}_{k+1} = \hat{h}_k + \frac{\mu}{2} \nabla_k, \tag{5.6}$$

де \hat{h}_{k+1} - вектор оцінок параметрів адаптивного фільтра в момент часу k+1; μ - додатна константа (крок адаптації); ∇_k - градієнт функції F(k,h), що визначається як вектор, елементами якого є частинні похідні даної функції по всіх h_i в момент часу k:

$$\nabla_k = 2 \left[d_k - \sum_{i=0}^{N-1} h_i x_{k-i} \right] x_{k-i}$$
 (5.7)

або з врахуванням (5.3):

$$\nabla_k = 2e_k x_{k-i}, \quad i = 0, 1, ..., N-1.$$
 (5.8)

Після підстановки (5.8) в (5.6) отримуємо рекурентну формулу для оцінок параметрів адаптивного фільтра:

$$\hat{h}_{k+1} = \hat{h}_k + \mu e_k x_k, \tag{5.9}$$

де x_k - вектор відліків вхідного сигналу.

Значення кроку адаптації μ впливає на швидкість збіжності оцінок параметрів адаптивного фільтра до оптимальних параметрів h_{opt} в фільтрі Вінера.

При виборі значення µ з діапазону

$$0 < \mu < \frac{2}{\lambda_{max}},\tag{5.10}$$

де λ_{max} - максимальне власне значення матриці R_x , гарантується збіжність в середньому — для середніх значень оцінок параметрів адаптивного фільтра при $k \to \infty$.

Практичне значення має діапазон значень кроку адаптації μ , що гарантує збіжність в середньому квадраті — для середніх квадратів оцінок параметрів адаптивного фільтра, при умові, що останні прямують до фіксованих значень. Це забезпечується для значень μ в діапазоні

$$0 < \mu \le \frac{2}{N \cdot P_x},\tag{5.11}$$

де P_x - середній квадрат вхідного сигналу x_k довжиною L:

$$P_{x} = \frac{1}{L} \sum_{k=0}^{L-1} x_{k}^{2} . {(5.12)}$$

Значення кроку адаптації μ вибирається з компромісних міркувань: з одного боку воно впливає на швидкість збіжності алгоритму LMS (чим більше μ , тим більше він відрізняється від сигналу похибки в фільтрі Вінера).

В нормалізованому алгоритмі NLMS рекурентна формула (5.9) замінюється іншою, в якій крок адаптації µ залежить від часу:

$$\hat{h}_{k+1} = \hat{h}_k + \mu_k e_k x_k, \tag{5.13}$$

так як він нормується до енергії сигналу x_{k-i} , i = 0, 1, ..., N-1:

$$\mu_k = \frac{\mu_0}{x_k^t x_k + \varepsilon} \,, \tag{5.14}$$

де $x_k^t x_k$ - енергія сигналу, рівна добутку вектора — рядка x_k^t на вектор — стовпець x_k ; μ_0 - фіксоване значення кроку, яке впливає на збіжність алгоритму адаптації (вибирається з діапазону $0 < \mu_0 < 2$); ε - мала додатна константа, яка визначає максимальне значення μ_k , рівне μ_0 при нульовому вхідному сигналі.

Ітераційна процедура обчислення оцінок параметрів адаптивного фільтра в алгоритмах LMS і NLMS включає в себе наступні кроки:

- 1. k = 0. Задання початкових (зазвичай нульових) значень оцінок параметрів адаптивного фільтра h(0).
 - 2. Обчислення вихідного сигналу y_k згідно виразу (5.2).
 - 3. Обчислення сигналу похибки e_k згідно виразу (5.3).
- 4. Оновлення оцінок параметрів адаптивного фільтра \hat{h}_{k+1} згідно виразу (5.9) або (5.13).
 - 5. k = k + 1. Перехід до нової ітерації.
 - 5. Повторення кроків 2 5.

Основною перевагою алгоритму LMS ϵ його простота, а недоліком відносно повільна збіжність ітераційної процедури обчислення параметрів адаптивного фільтра.

Завдання до лабораторної роботи

Вихідні дані для завдання цієї лабораторної роботи приведені в табл. 5.1.

Табл. 5.1. Вихідні дані для проектування адаптивного цифрового фільтра на основі алгоритму LMS

Змінна	Призначення	Значення	Ідентифікатор
N_{var} .	Номер варіанту	N_{var} .	N_{v}
N	Довжина СІХ фільтра в складі АЦФ	$N = (N_{var.} \bmod 10) + 41$	N
L	Довжина вибірки вхідного сигналу	$L = 500(N_{var.} \mod 10) + 100$	L
$f_{s.}$	Частота дискретизації	$f_{S.} = 2000 (N_{var.} \mod 10)$	F_{s}
A_1	Амплітуда сигналу	$A_{\rm l} = 0.25 + 0.01 N_{var}.$	A_{l}
f_1	Частота сигналу	$f_1 = f_{\ddot{a}.}/8$	f_1

- **1.** *Моделювання нормального білого шуму*. Створити модель нормального білого шуму r(n) (ідентифікатор r_gauss) довжини L з нульовим середнім значенням і одиничною дисперсією.
- **2.** Моделювання структури АЦФ з алгоритмом LMS. Створити модель структури АЦФ з алгоритмом LMS у вигляді об'єкта з іменем AFIR_LMS і вивести його властивості.

Задати вхідні параметри об'єкта:

- довжину CIX фільтра N;
- крок адаптації μ (ідентифікатор m_u), рівний половині максимального кроку адаптації (ідентифікатор mu_max) в (5.11).

При обчисленні кроку адаптації μ як вхідний сигнал АЦФ x(n) (ідентифікатор x) використовувати нормальний білий шум r(n): x(n) = r(n); решта параметрів вибираються по замовчуванню.

3. Моделювання структури АЦФ з алгоритмом NLMS. Створити модель структури АЦФ з алгоритмом NLMS у вигляді об'єкта з іменем AFIR_NLMS і вивести його властивості.

Задати вхідні параметри об'єкта:

- довжину CIX фільтра N;
- константу $\varepsilon = 10^{-6}$ (ідентифікатор epsilon) в (5.14) ;
- решта параметрів вбираються по замовчуванню.
- 4. Фільтрація сигналу від шумів з допомогою АЦФ.

Моделювання процесу фільтрації сигналу від шуму включає в себе наступні кроки:

- моделювання вхідного сигналу для невідомого АЦФ $x(n) = x_{\phi}(n)$ (ідентифікатор x). Як шум (ідентифікатор x_noise) вибрати нормальний білий шум r(n): $x_{\phi}(n) = r(n)$.
- моделювання корисного сигналу s(n) (ідентифікатор s) у вигляді періодичної послідовності з періодом L:

$$s(n) = A_1 \cos(2\pi f_1 nT). \tag{5.15}$$

Тотожне перетворення останнього виразу:

$$s(n) = A_1 \cos\left(\frac{2\pi f_1}{f_{\ddot{\alpha}}}n\right) = A_1 \cos(\hat{\omega}_1 n). \tag{5.16}$$

- моделювання вхідного сигналу АЦФ d(n) (ідентифікатор d) у вигляді адитивної суміші сигналу s(n) з шумом $x_{\phi}(n)$:

$$d(n) = s(n) + x_{\phi}(n). \tag{5.17}$$

- обчислення вихідного сигналу y(n) і сигналу похибки $\varepsilon(n)$ АЦФ з іменем AFIR_LMS (ідентифікатори y_lms і e_lms).

Вивести графіки:

- корисного сигналу s(n) і його адитивної суміші з шумом d(n);
- сигналів похибки АЦФ (оцінок корисного сигналу) для об'єктів AFIR_LMS і AFIR_NLMS;
- оцінок корисного сигналу в усталеному режимі з використанням алгоритмів LMS і NLMS.

Початковий момент усталеного режиму $n_{\hat{i}\,\hat{i}\,\hat{\cdot}\,\hat{\cdot}}$ (ідентифікатор n_start) задати рівним 0.05L.

Додаток 1. Фрагмент програми генерації масиву випадкових чисел з нормальним розподілом.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0df /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */
```

^{/*} Tempering parameters */

```
#define TEMPERING MASK B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING SHIFT U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y \ll 7)
#define TEMPERING SHIFT T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y \gg 18)
#define PI 3.1415926
static unsigned long mt[N]; /* the array for the state vector */
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */
/* initializing the array with a NONZERO seed */
void
sgenrand(unsigned long seed)
  /* setting initial seeds to mt[N] using
                                          */
  /* the generator Line 25 of Table 1 in
                                           */
  /* [KNUTH 1981, The Art of Computer Programming */
  /* Vol. 2 (2nd Ed.), pp102]
  mt[0]= seed & 0xffffffff;
  for (mti=1; mti<N; mti++)
    mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
}
double /* generating reals */
/* unsigned long */ /* for integer generation */
genrand()
  unsigned long y;
  static unsigned long mag01[2]={0x0, MATRIX_A};
  /* mag01[x] = x * MATRIX_A for x=0,1 */
  if (mti \geq N) { /* generate N words at one time */
    int kk;
    if (mti == N+1) /* if sgenrand() has not been called, */
       sgenrand(4357); /* a default initial seed is used */
    for (kk=0;kk<N-M;kk++) {
       y = (mt[kk]\&UPPER\_MASK)|(mt[kk+1]\&LOWER\_MASK);
       mt[kk] = mt[kk+M] \land (v >> 1) \land mag01[v \& 0x1];
    }
```

```
for (;kk< N-1;kk++) {
       y = (mt[kk]\&UPPER\_MASK)|(mt[kk+1]\&LOWER\_MASK);
       mt[kk] = mt[kk+(M-N)] \land (y >> 1) \land mag01[y \& 0x1];
     }
    y = (mt[N-1]\&UPPER\ MASK)|(mt[0]\&LOWER\ MASK);
    mt[N-1] = mt[M-1] \land (y >> 1) \land mag01[y \& 0x1];
    mti = 0;
  }
  y = mt[mti++];
  y ^= TEMPERING_SHIFT_U(y);
  y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
  y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
  y ^= TEMPERING_SHIFT_L(y);
  return ( (double)y / (unsigned long)0xffffffff ); /* reals */
  /* return y; */ /* for integer generation */
int main()
{ int i, k, n_1 = 1000;
 double y_1[2000];
 double xround_1, xround_2;
 for (i = 1; i \le n_1; ++i)
Lb_1: xround_1 = genrand();
     xround_2 = genrand();
     y_1[i] = sqrt(-2.0*log(xround_1))*cos(2.0*PI*xround_2);
     if (abs(y_1[i]) >= 10.0) \{ goto Lb_1; \}
  FILE *filePR;
  filePR = fopen("Wait_noise.txt","w");
  for (k = 1; k \le n_1; ++k) fprintf(filePR," %11.5f\n", y_1[k]);
  fclose(filePR);
  return 0;
```