. . . .

Eye Tracking Project

Stav Aizik

מטרת הפרויקט

מטרת הפרויקט היא הוכחת היכולת לפתח וליישם טכנולוגיות מעקב עיניים מבוססת תוכנה באמצעות שימוש במערכת מבוססת מצלמת רשת RGB במחשב אישי ואלגוריתמים מתקדמים למעקב עיניים בזמן אמת.

המצב הנוכחי

מערכת	עלות מינימלית	עלות מקסימלית	ממוצע
Tobii	\$5,000	\$25,000	\$14,000
EyeLink	\$10,000 \$30,000		\$20,000
הפתרון שלנו	\$0 (שימוש באלגוריתמים קוד פתוח)	+ מחשב (מחשב (מאטב)	\$100~

מוטיבציה לניסוי

. . . .

כוח אדם מוסמך

נדרש בודקים מוסמכים, אנליסטים ומשתתפים מתאימים

ניסוי לכל אחד בכל זמן ובכל מקום

אין צורך בבודקים מוסמכים , ניתן להפעלה אצל כל אחד במחשב האישי

עלויות גבוהות

-מערכות יקרות , מצלמות אינפרה אדום , מחשבים עם עיבוד חזק, תשתיות חשמל וגיבוי

~

עלויות נמוכות

מתבסס על מחשב אישי ומצלמת רשת

חומרה ותוכנה יעודית

רכיבים ספציפים המתאימים לניסוי ותוכנות הדורשות רישויים

תוכנתי - לא תלוי חומרה

נדרש רק הרצה של פייתון על המחשב, אין צורך בציוד אינפרה אדום

ההתפתחות המכנולוגית

התפתחות בחומרות ויכולות עיבוד של מחשבי קצה ושרתים פריצה בתחומי ה**Al** ופיתוח אלגוריתמים חזקים לשימוש כקוד פתוח הנגשת אלגוריתמים וכלי Al למשתמשי קצה ופריצות דרך בתחום Computer Vision ו-10205 (2015 – 2025)

בויקט: : תכנון ומימוש הפרויקט:

העמקה במגמות הטכנולוגיות ובפערים הקיימים

2 סקירה אקדמאית

הורדת תוכנות והתקנת סיפריות ניתוח ובחינת אלגוריתמים מתאימים

0

5 כתיבת קוד ראשונית

ריוק ושינוי הקוד בהתאם לניסוי ותהייה

ביצוע ניסויים ובדיקות הנדסיות אישובים וזיקוק התוצאות למסקנות

תהליך הניסוי

הרצת התוכנית והכנסת נתוני משתמש

תהליך כיול מול המסך 25 נקודות שמירת נתוני כיול

קריאת טקסט מעקב אחרי מבט, מצמוצים ומיקום עכבר

שמירת פרמטרים בטבלאות

הצגת גרפים

הדגמת וידיאו

תוצאות הניסוי

תוצאות הניסוי

אלגוריתמים וטכנולוגיות: : : אלגוריתמים

ייעוד	האלגוריתם שנבחר	היתרון המרכזי שלו	אלטרנטיבות	חסרונות האלטרנטיבות
זיהוי מיקום עיניים ופנים	MediaPipe Face Mesh	דיוק גבוה (468 נקודות), בזמן אמת, יציב בתנאי תאורה משתנים	Dlib 68 landmarks, OpenCV Haar Cascades	פחות מדויק ופחות יציב; Dlib מתאים רק לזיהוי פנים דמאים גס ולא למעקב עיניים
מיפוי מבט למיקום על המסך	Polynomial Regression (דרגה 3)	ריצה מהירה, מתאים ליחס לא ליניארי, פשום לאימון	SVR, Neural Networks	SVR :דורש הרבה כיוונון ואימי דורש הרבה דורש הרבה דאמה וכוח חישוב
החלקת תנועת מבט	Kalman Filter	מנקה רעש ויודע לחזות תנועה הבאה, מתאים לריל־טיים	Optical Flow	רגיש לתנאי תאורה, סטיות גדולות בתזוזות חדות
החלקה ממפורלית פשוטה	Sliding Window Average	קל ליישום, מייצב תנודות מהירות	Moving Average	אין תחזית, מגיב באיחור
הצגת ממשק גרפי	Pygame	מציג טקסט ומצלמה במסך מלא, קל לחכנות	Tkinter, Flask	Tkinter גרפי מוגבל: Flask מיועד לאינטרנט ולא לאפליקציה גרפית מקומית
עיבוד נתוני ניסוי	Pandas + Matplotlib	ניתוח כמותי וגראפי של קיבעון, רגרסיות, קצב קריאה	Excel, GUI מוכנים מראש	פחות גמיש, לא ניתן לשלב אלגוריתמים או להרחיב פונקציונליות

מסקנות

המערכת פועלת גם עם משקפי ראיה

תאורה משפיעה על איכות המעקב

יש רגישות לחזוזות ראש

שינויים בגודל פונט / רווחים לא משפיעים על ה<u>איכות</u>

קיימת רגישות לנוכחות אנשים ברקע

הצלחת הניסוי תלויה רבות בשלב הכיול

המלצות להמשך

פיתוח אפליקציה שניתנת להתקנה עצמית

הוספת תמיכה בתנאי תאורה משתנים הרחבת מדגם המשתתפים בניסוי

שילוב **DL** של המידע שנאגר מהניסויים

פיתוח מנגון הסתגלות לתנועות ראש