

Budapest University of Technology and Economics Department of Electron Devices

Microelectronics, BSc course

nMOS/CMOS Logic Gates II: Schematic, layout, x-section, std cells

The abstraction level of our study:

The CMOS inverter – recall

X-sectional view of a CMOS inverter

Characteristic of the CMOS inverter

2 basic cases, depending on the supply voltage and threshold voltages of the transistors

1. small supply voltage:

 $V_{DD} < V_{Tn} + |V_{Tp}|$ only one transistor is "on" at a time

2. larger supply voltage:

 V_{DD} > V_{Tn} + $|V_{Tp}|$ when switching over, both transistors are "on" at the same time

Characteristic of the CMOS inverter

■ 1. small supply voltage: $V_{DD} < V_{Tn} + /V_{Tp} /$

the characteristics:
$$U_{OUT} = \begin{cases} V_{DD} & \text{if } \dots U_{IN} < V_{DD} - |V_{Tp}| \\ \text{indefinit if } \dots V_{Tn} < U_{IN} < V_{DD} - |V_{Tp}| \\ O & \text{if } \dots U_{IN} > V_{Tn} \end{cases}$$

The middle part of the transfer characteristic is very steep, this is the specific advantage of CMOS inverters.

Characteristic of the CMOS inverter

■ 2. large supply voltage: $V_{DD} > V_{Tn} + |V_{Tp}|$ Switching over? - "mutual conduction"

► Constructing the characteristic:

The CMOS inverter

Design for symmetrical operation:

If $U_{IN}=U_{IN}$ logic threshold voltage, both transistors have equal current:

$$K_{n}(U_{inv} - V_{Tn})^{2} = K_{p}(U_{DD} - U_{inv} - |V_{Tp}|)^{2}$$

$$U_{inv} = \frac{U_{DD} - |V_{Tp}| + V_{Tn}\sqrt{K_{n}/K_{p}}}{1 + \sqrt{K_{n}/K_{p}}}$$

$$K_{X} = \left(\frac{W}{L}\right)_{X} \frac{\mu_{X}C_{ox}}{2}$$

$$U_{GSn} = U_{K}$$

$$U_{GSp} = V_{DD} - U_{K}$$

The inverter logic threshold voltage depends on the ratio of the current constants of the transistors.

To have U_{inv} at $V_{DD}/2$ and $V_{Tn}=|V_{Tp}|$, then $K_n=K_p$ has to be set.

$$\left(\frac{W}{L}\right)_{P} = 2..2.5 \times \left(\frac{W}{L}\right)_{n}$$
 since hole mobility is 2 ... 2.5 times less

The logic threshold voltage can be set by the W/L ratios

The CMOS inverter / dynamic char.

- Calculation of the switching times
 - What do they depend on?
 - the current driving capability of the output
 - the capacitive load on the output

• If the characteristics of the two transistors are exactly complementary $(K_n = K_p \text{ and } V_{Tn} = |V_{Tp}|)$, rising and falling times will be equal

The capacitances

- Intrinsic capacitances of the driving stage
- Input capacitance of the loading stage (next gate) extrinsic or fanout capacitances
- wiring (interconnect) capacitance

intrinsic MOS transistor capacitances

extrinsic MOS transistor (fanout) capacitances wiring (interconnect) capacitance

The capacitances

- The intrinsic capacitances:
 - S-G G-D overlap capacitances
 - the MOS capacitance of the channel
 - capacitances of pn junctions

- The wiring capacitance
 - depends on the interconnect geometry (width, length)
 - with the advance of manufacturing processes this capacitance tends to increase

Modern metallization

Intel 0.25 µm process

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER_	PITCH	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio

Interconnect capacitances

Interconnect - substrate: parallel plate capacitance

Dielectric constant
$$(SiO_2 => 3.9)$$

$$C_{pp} = (\epsilon_{di}/t_{di}) WL$$

Interconnect capacitances

Other issues of interconnects

- Series resistance
- Distributed parameter RC line (see transmission lines)

Sort of a representation of the diffusion equation

The CMOS inverter / dynamic char.

- Calculation of switching times
 - identical times, integration for the extreme values of the voltage of the load capacitance:

$$t_l = \int_{V_{DD}}^{V_{LM}} \frac{C_L}{I_D} dU$$

If

$$I_D \approx K(V_{DD} - V_T)^2$$

 V_{LM} – minimal voltage of the load capacitance

then

$$t_{l} = \frac{C_{L}(V_{DD} - V_{LM})}{K(V_{DD} - V_{T})^{2}}$$

Can be reduced by increasing the supply voltage or the W/L ratio

Power consumption of CMOS inv.

- There is no static consumption since there is no static current
- There is dynamic consumption during switching which consists of 2 parts:
 - Mutual conduction:
 - During the rise of the input voltage both transistors are "on"

$$V_{Tn} < U_{IN} < V_{DD} - V_{Tp}$$

Charge pumping:

At switching over the output to 1 the $C_{L \text{ loading}}$ capacitor is charged to the supply voltage through the p transistor, then it is discharged towards the ground through the *n* transistor.

Charge is pumped from VDD to GND.

Power consumption of CMOS inv.:

• Mutual conduction ("short power"):

• During a certain period of the rise of the input signal both transistors are "on" if $V_{Tn} < U_{IN} < V_{DD} - V_{Tp}$ this is called mutual conduction

• charge flowing through: $\Delta Q = bt_{UD}I_{MAX}$, where t_{UD} is the time while current is flowing, **b** is a constant depending on the signal shape. $b\approx 0.1$ -0.2

$$P = f\Delta QV_{DD} = fV_{DD}bt_{UD}K(V_{DD}/2-V_T)^2$$

 $P \sim f V_{DD}^3$

Power consumption of CMOS inv.:

Charge pumping:

At switching the C_i load capacitance is charged to VDD through the p-channel device when the output changes to 1, later, when switching the output to 0, it is discharged towards GND through the n-channel device.

$$\Delta Q_L = C_L V_{DD}$$

$$\Delta Q_L = C_L V_{DD} \qquad P_{cp} = f C_L V_{DD}^2$$

- The power consumption due to charge pumping is proportional to the frequency and the square of the supply voltage.
- Total consumption: sum of the two components (if there is mutual conduction), directly proportional to the frequency and the 2nd and 3rd power of the supply voltage.

Components of the consumption of CMOS circuits

- Dynamic components at every switching event
 - mutual conduction, charge pumping
 - proportional to the event density
 - clock frequency
 - circuit activity

- Further components due to parasitics:
 - subthreshold currents
 - leakage currents of pn junctions nowadays already significant
 - leakage (tunneling) through the a gate dielectric

Construction

- ► Constructing CMOS gates on schematic (circuit) level
- ► Process and layout
 - ► Recall the nMOS process and layout
 - ► Stick diagram layout
 - ► Full layout
 - ► Create standard cells

CMOS gates

- PDN: Create an nMOS switching circuit (pull down network):
 - series path: NAND function
 - parallel path: NOR function
 - combination of these: complex gate
 - Switches: nMOS transistors
- PUN: Load of the former nMOS gates with no active control is replaced by a full network: the dual circuit of the nMOS pull down network:
 - Dual topology (series → parallel, parallel \rightarrow series, aka the loop-cut duality)
 - Dual component: **pMOS** transistors
- The transistor gates in the PDN and PUN recieve the same control signals (inputs)

GND

CMOS gates

- In a CMOS inverter both transistors are actively controlled
- In case of gates there will be a PUN (pull up network: pMOS circuit) and a PDN (pull down network: nMOS circuit). The number of transistors both in PUN and PDN is equal to the number of inputs of the gate
 - For input combinations where the output is 0, the PDN realizes a short towards GND and the PUN is an open circuit;
 - if the output function is equal to 1, the PDN will be an open circuit and the PUN realizes a short towards VDD.

Circuits with dual topology should be realized from n and p channel transistors

Gates of transistors receiving the same signal are connected

CMOS gates

■ NOR gate duality of the logic function NAND gate

For an *n* input CMOS gate 2*n* transistors are needed (passive load gates need only n+1 transistors)

Construction complex CMOS gates

- dual topology (loop \Rightarrow cut, cut \Rightarrow loop)
- dual components: nMOS replaced by pMOS
- transistor gates corresponding to the same signal must be connected
- proper sizing of the W/L ratios (electron/hole mobility mismatch)

$$F = \overline{A + BC}$$

The abstraction level of our study:

Metal gate MOS transistor

Poly-Si gate MOS transistor

In-depth structure: Drain Gate Source doping thin oxide doping Layout view: Source **Advantages** Drain smaller V_T contact self alignment

- Start with: p type substrate (Si wafer)
 - · cleaing,
 - grow thick SiO₂ this is called *field oxide*

- Create the active zone with photolithography
 - · coat with resist,
 - expose to UV light through a mask,
 - development, removal of exposed resists
 - etching of SiO₂ removal of the resist

M1: active zone

- Create the gate structure:
 - growth of thin oxide
 - deposit poly-Si
 - pattern poly-Si with photolithography
 - etch poly-Si, etch thin oxide

M2: poly-Si pattern

(resist, exposure, develop)

- ► S/D doping (implantation)
 - the exide (thin, thick) masks the dopants
 - this way the self-alignment of the gate is assured
- ► Passivation: deposit PSG

- Open contact windows through PSG
 - photolithography (resist, expose pattern, develop)
 - etching (copy the pattern)

M3: contact window pattern

- Metallization
 - Deposit Al
 - photolithography, etching, cleaning

M4: metallization pattern

- ► The recepy of the process is given, the in-depth structure is determined by the sequence of the masks
- One needs to specify the shapes on the masks
 - The set of shapes on subsequent masks is called layout

Steps of the self-aligned poli-Si gate process

1) Open window for the active region

M

- photolitography, field oxide etching
- 2) Growth of thin oxide
- 3) Window for hidden contacts

M

- Contacts the poli-Si gate (yet to be deposited) with the active region (after doping).
- 3) Deposit poli-Si
- 4) Patterning of poli-Si

M

5) Open window through the thin oxide (etching only)

Layout of a depletion mode inverter

- Layout == set of 2D shapes on subsequent masks
- Masks are color coded:

active zone: red

poly-Si: green

contact windows: black

blue metal:

Mask == layout layer

Where is a transistor? Channel between two doped regions:

CHANNEL = ACTIVE AND POLY

Simplified layout: stick diagram

Si-compilers

- Logic schematic / netlist / high level description
- Transistor level schematic with W/L information
- Stick diagram layout
- **Actual layout**
 - Automatic conversion between these representations
 - HARDWARF SYNTHESIS
 - From behavioural description structural description
 - Implementation of the structural description with a given realization mode / manufacturing process: technology mapping
 - We have seen basics of the realization of an application specific integrated circuit (ASIC)
 - Designs can also be mapped to an FPGA

Layout primitives: simple shapes

Layout macros – from primitives

layout of an nMOS transistor: layout primitives on actual layers corresponding to real masks

nMOS transistor layout + outline + pins

G
D
nMOS
S

nMOS transistor macro:

outline, pins, scripts: pseudo layers

Layout macros – from macros and primitives

Gate level layout

CMOS structure (inverter)

CMOS structures

- Further masks:
 - n-well (or p-well, depending on the substrate)
 - p doping (or n doping, depending on the substrate)
- Multiple metal layer CMOS:
 - each metallization needs own mask,
 - contact windows, vias
- There could be multiple poly-Si layers (analog CMOS)
- Typically: 15..20 masks
- Certain rules need to be kept for manufacturability: design rules
 - come from the process, given by Si-foundry

Layout of a CMOS inverter

Standard cells of gates

The CMOS inverter layout shown before has also been created according to conventions of standard cell design

Standard cells

 In layout view on can refer to the inverter through its layout macro (cell outline and pins)

Standard cells

Standard cella in a row:

Standard cell IC:

supply tree (comb)

Detail of a standard cell IC:

Details of a CMOS circuit

Layout extraction: checking, real delays

