False Discovery Type Procedures: caveats to reproducibility—its all about dispersion

Grant Izmirlian

Biostat Dept, Northwestern University, January 25th, 2021

1/108

Introduction

- BH-FDR Procedure: A review & Its properties
- Main theoretical results

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- Simulation Study
 - Design
 - Results

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- Simulation Study
 - Design
 - Results
- Conclusions

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- 2 Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Powe
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

• m simultaneous tests resulting in m p-values, P_1, P_2, \ldots, P_m .

- m simultaneous tests resulting in m p-values, P_1, P_2, \ldots, P_m .
- Order statistics $P_{(1:m)}, P_{(2:m)}, \dots, P_{(m:m)}$.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 夕 Q C

- m simultaneous tests resulting in m p-values, P_1, P_2, \ldots, P_m .
- Order statistics $P_{(1:m)}, P_{(2:m)}, \dots, P_{(m:m)}$.
- The BH-FDR procedure: specify the FDR, α .

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

- m simultaneous tests resulting in m p-values, P_1, P_2, \ldots, P_m .
- Order statistics $P_{(1:m)}, P_{(2:m)}, \dots, P_{(m:m)}$.
- The BH-FDR procedure: specify the FDR, α .

$$R_m = \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

4 / 108

Izmirlian

- m simultaneous tests resulting in m p-values, P_1, P_2, \dots, P_m .
- Order statistics $P_{(1:m)}, P_{(2:m)}, \dots, P_{(m:m)}$.
- The BH-FDR procedure: specify the FDR, α .

$$R_m = \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

• R_m is the number declared significant.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● のQで

• The empirical CDF estimate of the common CDF, $F(u) = \mathbb{P}(X \leq u)$, for a sequence of i.i.d., $\{X_i\}_{i=1}^m$ variables is:

• The empirical CDF estimate of the common CDF, $F(u) = \mathbb{P}(X \le u)$, for a sequence of i.i.d., $\{X_i\}_{i=1}^m$ variables is:

$$\hat{F}_m(u) = m^{-1} \sum_{i=1}^m I(X_i \le u)$$

• The empirical CDF estimate of the common CDF, $F(u) = \mathbb{P}(X \le u)$, for a sequence of i.i.d., $\{X_i\}_{i=1}^m$ variables is:

$$\hat{F}_m(u) = m^{-1} \sum_{i=1}^m I(X_i \le u)$$

= $m^{-1} \max\{i : X_{(i:m)} \le u\}$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ りへで

5 / 108

• The empirical CDF estimate of the common CDF, $F(u) = \mathbb{P}(X \le u)$, for a sequence of i.i.d., $\{X_i\}_{i=1}^m$ variables is:

$$\hat{F}_m(u) = m^{-1} \sum_{i=1}^m I(X_i \le u)$$

= $m^{-1} \max\{i : X_{(i:m)} \le u\}$

• where $X_{(1:m)}, X_{(2:m)}, \ldots, X_{(m:m)}$ are the order statistics for the sequence, $\{X_i\}_{i=1}^m$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

• Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \le u\}$

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \le u\}$
- Then the number declared significant in the BH-FDR procedure

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \le u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

6 / 108

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

• This Fixed Point Property

< □ ト < 圖 ト < 重 ト < 重 ト 三 重 の Q ()

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

- This Fixed Point Property
 - is used to specify suitably large enough α ,

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

- This Fixed Point Property
 - ullet is used to specify suitably large enough lpha,
 - determine the most general conditions on the p-value CDF, G

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

6/108

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

- This Fixed Point Property
 - ullet is used to specify suitably large enough lpha,
 - determine the most general conditions on the p-value CDF, G
 - prove almost sure convergence of R_m/m and related quantities

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

6/108

- Empirical CDF for p-values: $\hat{G}_m(u) = m^{-1} \max\{i : P_{(i:m)} \leq u\}$
- Then the number declared significant in the BH-FDR procedure

$$R_m/m = m^{-1} \max\{i : P_{(i:m)} \le m^{-1}i\alpha\}$$

= $\hat{G}_m(m^{-1}R_m\alpha)$
satisfies a fixed point property.

- This Fixed Point Property
 - ullet is used to specify suitably large enough lpha,
 - determine the most general conditions on the p-value CDF, G
 - prove almost sure convergence of R_m/m and related quantities
- The connection with the empirical CDF is used to prove a central limit theorem. Non-optionally Stopped Brownian Bridge.

on distribution of sequence of test statistics

on distribution of sequence of test statistics

• The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF:

on distribution of sequence of test statistics

• The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x)$, $p_0 = 1 - p_1$

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 p_1$
- F_0 and F_A have common support.

4日 > 4日 > 4目 > 4目 > 4目 > 990

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of P-values

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of P-values

• The sequence of p-values, $\{P_i\}_{i=1}^m$, is i.i.d with common CDF:

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 - p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of P-values

• The sequence of p-values, $\{P_i\}_{i=1}^m$, is i.i.d with common CDF: $G(u) = p_0 u + p_1 \bar{F}_A(\bar{F}_0^{-1}(u)), \quad p_0 = 1 - p_1$

FDP-dispersion 7 / 108

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 - p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of P-values

- The sequence of p-values, $\{P_i\}_{i=1}^m$, is i.i.d with common CDF: $G(u) = p_0 u + p_1 \bar{F}_A(\bar{F}_0^{-1}(u)), \quad p_0 = 1 - p_1$
- G(0) = 0, G(1) = 1.

FDP-dispersion 7 / 108

on distribution of sequence of test statistics

- The sequence of test statistics, $\{X_i\}_{i=1}^m$, is i.i.d with common CDF: $F(x) = p_0 F_0(x) + p_1 F_A(x), p_0 = 1 p_1$
- F_0 and F_A have common support.
- There is an open subinterval of the common support upon which F_A stochastically dominates F_0 .

on distribution of sequence of P-values

- The sequence of p-values, $\{P_i\}_{i=1}^m$, is i.i.d with common CDF: $G(u) = p_0 u + p_1 \bar{F}_A(\bar{F}_0^{-1}(u)), \quad p_0 = 1 p_1$
- G(0) = 0, G(1) = 1.
- The minimal point of intersection of G with its concave hull, \tilde{G} occurs at a value $\tilde{u} = \inf\{u : G(u) = \tilde{G}(u)\}$ that is less than 1.

R, V, T, FDP & TPP

• Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \# Positive Calls$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩€

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \#$ Positive Calls
- $V_m = \sum_{i=1}^m (1 \xi_i) I(P_i \le m^{-1} R_m \alpha)$ # False Positive Calls

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \# \text{Positive Calls}$
- $V_m = \sum_{i=1}^m (1 \xi_i) I(P_i \le m^{-1} R_m \alpha) \#$ False Positive Calls
- $T_m = \sum_{i=1}^m \xi_i I(P_i \le m^{-1} R_m \alpha) \#$ True Positive Calls

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

Izmirlian

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \# \text{Positive Calls}$
- $V_m = \sum_{i=1}^m (1 \xi_i) I(P_i \le m^{-1} R_m \alpha) \#$ False Positive Calls
- $T_m = \sum_{i=1}^m \xi_i I(P_i \le m^{-1} R_m \alpha) \#$ True Positive Calls
- R_m/m is the Positive Proportion, PP

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \# \text{Positive Calls}$
- $V_m = \sum_{i=1}^m (1 \xi_i) I(P_i \le m^{-1} R_m \alpha)$ # False Positive Calls
- $T_m = \sum_{i=1}^m \xi_i I(P_i \le m^{-1} R_m \alpha) \#$ True Positive Calls
- R_m/m is the Positive Proportion, PP
- V_m/R_m is the False Discovery Proportion, FDP

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Izmirlian

- Unobserved variables, $\xi_i \in \{0,1\}$, $i=1,2,\ldots,m$ are i.i.d., $p_1 = \mathbb{P}\{\xi_i = 1\}$, $M_m = \sum_{i=1}^m \xi_i$
- $R_m = \sum_{i=1}^m I(P_i \le m^{-1}R_m\alpha) \# \text{Positive Calls}$
- $V_m = \sum_{i=1}^m (1 \xi_i) I(P_i \le m^{-1} R_m \alpha) \#$ False Positive Calls
- $T_m = \sum_{i=1}^m \xi_i I(P_i \le m^{-1} R_m \alpha) \#$ True Positive Calls
- R_m/m is the Positive Proportion, PP
- V_m/R_m is the False Discovery Proportion, FDP
- T_m/M_m is the True Positive Proportion, TPP

→ □ ト → □ ト → 三 ト → 三 → つへの

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Powe
 - Average Power
 - The tp-TPP power
- Simulation Study
 - Design
 - Results
- Conclusions

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

$$\frac{R_m}{m} \stackrel{a.s.}{\longrightarrow} \gamma$$
, where $\gamma = \sup\{u : u = G(\alpha u)\}$

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

$$\frac{R_m}{m} \xrightarrow{a.s.} \gamma, \text{ where } \gamma = \sup\{u : u = G(\alpha u)\}$$

$$m^{-1}V_m \xrightarrow{a.s.} p_0 \gamma \alpha,$$

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

$$\frac{R_m}{m} \xrightarrow{a.s.} \gamma, \text{ where } \gamma = \sup\{u : u = G(\alpha u)\}$$

$$m^{-1}V_m \xrightarrow{a.s.} p_0\gamma\alpha,$$

$$m^{-1}T_m \xrightarrow{a.s.} p_1\bar{F}_A(\bar{F}_0^{-1}(\gamma\alpha)),$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

10 / 108

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

$$\frac{R_m}{m} \xrightarrow{a.s.} \gamma, \text{ where } \gamma = \sup\{u : u = G(\alpha u)\}$$

$$m^{-1}V_m \xrightarrow{a.s.} p_0\gamma\alpha, \qquad \frac{V_m}{R_m} \xrightarrow{a.s.} p_0\alpha$$

$$m^{-1}T_m \xrightarrow{a.s.} p_1\bar{F}_A(\bar{F}_0^{-1}(\gamma\alpha)),$$

4□ > 4□ > 4□ > 4□ > 4□ > □
9

PP, FDP, TPP

• In addition to the above 3 conditions, assume that $\alpha \geq \tilde{u}/G(\tilde{u})$, where \tilde{u} is the first point of intersection between G and its concave conjugate, \tilde{G} .

$$\begin{array}{cccc} \frac{R_m}{m} & \xrightarrow{a.s.} & \gamma, \text{ where } \gamma = \sup\{u : u = G(\alpha u)\} \\ \\ m^{-1}V_m & \xrightarrow{a.s.} & p_0\gamma\alpha, & \frac{V_m}{R_m} \xrightarrow{a.s.} p_0\alpha \\ \\ m^{-1}T_m & \xrightarrow{a.s.} & p_1\bar{F}_A(\bar{F}_0^{-1}(\gamma\alpha)), & \frac{T_m}{M_m} \xrightarrow{a.s.} \bar{F}_A(\bar{F}_0^{-1}(\gamma\alpha)) \doteq \pi_1 \end{array}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● のQで

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The positive proportion decomposes:

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The positive proportion decomposes:

$$R_m/m = V_m/m + T_m/m$$

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The positive proportion decomposes:

$$R_m/m = V_m/m + T_m/m$$

•
$$\mathbb{E}[R_m/m] = \gamma$$
, $\mathbb{E}[V_m/m] = \rho_0 \gamma \alpha$, $\mathbb{E}[T_m/m] = \rho_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The positive proportion decomposes:

$$R_m/m = V_m/m + T_m/m$$

- $\mathbb{E}[R_m/m] = \gamma$, $\mathbb{E}[V_m/m] = p_0 \gamma \alpha$, $\mathbb{E}[T_m/m] = p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$
- $\mathbb{E}[V_m/R_m] = \rho_0 \alpha$, $\mathbb{E}[T_m/M_m] = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha)) \doteq \pi_1$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q ()

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

The positive proportion decomposes:

$$R_m/m = V_m/m + T_m/m$$

- $\mathbb{E}[R_m/m] = \gamma$, $\mathbb{E}[V_m/m] = \rho_0 \gamma \alpha$, $\mathbb{E}[T_m/m] = \rho_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$
- $\mathbb{E}[V_m/R_m] = p_0 \alpha$, $\mathbb{E}[T_m/M_m] = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha)) \doteq \pi_1$
- The BH-FDR controls the FDR: $\mathbb{E}[V_m/R_m] = p_0 \alpha \leq \alpha$

• The CDF, *G*, of the P-values decomposes:

$$G(\gamma \alpha) = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

$$\gamma = p_0 \gamma \alpha + p_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$$

• The positive proportion decomposes:

$$R_m/m = V_m/m + T_m/m$$

- $\mathbb{E}[R_m/m] = \gamma$, $\mathbb{E}[V_m/m] = \rho_0 \gamma \alpha$, $\mathbb{E}[T_m/m] = \rho_1 \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha))$
- $\mathbb{E}[V_m/R_m] = \rho_0 \alpha$, $\mathbb{E}[T_m/M_m] = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha)) \doteq \pi_1$
- The BH-FDR controls the FDR: $\mathbb{E}[V_m/R_m] = p_0 \alpha \leq \alpha$
- $\pi_1 \doteq \mathbb{E}[T_m/M_m]$ is the Average Power

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Distribution of the FDP for 50k Simultaneous Tests

m=50k, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q Q

Distribution of the FDP for 1000 Simultaneous Tests

m=1000, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

Distribution of the FDP for 200 Simultaneous Tests

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ b 4 個 b 4 恵 b 4 恵 b 9 Qで

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha)<1/\alpha$, then:

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m}\left(\frac{R_m}{m}-\gamma\right) \stackrel{\mathcal{D}}{\longrightarrow} N(0,\tau^2)$$

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$
where

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$
where

$$\tau^2 = \frac{\gamma(1-\gamma)}{(1-\alpha\dot{G}(\gamma\alpha))^2},$$

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$
where

$$au^2 = \frac{\gamma(1-\gamma)}{(1-\alpha\dot{G}(\gamma\alpha))^2}, \quad s^2 = \gamma^{-2}p_0\gamma\alpha(1-p_0\gamma\alpha),$$

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$
where

$$\tau^2 = \frac{\gamma(1-\gamma)}{(1-\alpha \dot{G}(\gamma\alpha))^2}, \quad s^2 = \gamma^{-2} \rho_0 \gamma \alpha (1-\rho_0 \gamma\alpha),$$

and

• In addition to all of the above 4 conditions, assume that G is differentiable at $\gamma\alpha$ and $\dot{G}(\gamma\alpha) < 1/\alpha$, then:

$$\sqrt{m} \left(\frac{R_m}{m} - \gamma \right) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

$$\sqrt{m} \left(\frac{V_m}{R_m} - p_0 \alpha \right) \xrightarrow{\mathcal{D}} N(0, s^2)$$

$$\sqrt{m} \left(\frac{T_m}{M_m} - \pi_1 \right) \xrightarrow{\mathcal{D}} N(0, \sigma^2),$$
where

$$\begin{array}{rcl} \tau^2 & = & \frac{\gamma(1-\gamma)}{(1-\alpha \dot{\mathcal{G}}(\gamma\alpha))^2}, \quad s^2 = \gamma^{-2} \rho_0 \gamma \alpha (1-\rho_0 \gamma\alpha), \\ \\ \text{and } \sigma^2 & = & \rho_1^{-2} \rho_1 \pi_1 (1-\rho_1 \pi_1) + \dots \end{array}$$

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

The BH-FDR Procedure Controls the $FDR = \mathbb{E}[FDP] \leq \alpha$

m=50k, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

Izmirlian

The BH-FDR Procedure Controls the $FDR = \mathbb{E}[FDP] \leq \alpha$

m=1000, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

FDP-dispersion

4 L P 4 B P 4 E P 4 E P 5 E *)((*)

18 / 108

Want to control $\mathbb{P}(FDP > \delta) \leq \alpha$

m=1000, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

4 L P 4 EP 4 E P 4

Want to control $\mathbb{P}(FDP > \delta) \leq \alpha$

m=1000, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

21 / 108

• Romano's Procedure controls $\mathbb{P}(FDP > \delta) \leq \alpha$

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) \leq \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) \leq \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

$$\psi_{m}(i,\delta) = \frac{\lfloor i\delta \rfloor + 1}{m + \lfloor i\delta \rfloor + 1 - i}$$

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) < \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

$$\psi_{m}(i,\delta) = \frac{\lfloor i\delta \rfloor + 1}{m + \lfloor i\delta \rfloor + 1 - i}$$

$$R_m^{\dagger} = \min\left\{i: P_{(i:m)} > \alpha \psi_m(i, \delta)\right\} - 1$$

22 / 108

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) < \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

$$\psi_m(i,\delta) = \frac{\lfloor i\delta \rfloor + 1}{m + \lfloor i\delta \rfloor + 1 - i}$$

$$R_m^{\dagger} = \min\left\{i: P_{(i:m)} > \alpha \psi_m(i,\delta)\right\} - 1$$

• R_m^{\dagger} is the number declared significant or number of positive calls under Romano's procedure

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) \leq \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

$$\psi_m(i,\delta) = \frac{\lfloor i\delta \rfloor + 1}{m + \lfloor i\delta \rfloor + 1 - i}$$

$$R_m^{\dagger} = \min\left\{i: P_{(i:m)} > \alpha \psi_m(i, \delta)\right\} - 1$$

• R_m^{\dagger} is the number declared significant or number of positive calls under Romano's procedure

$$V_m^{\dagger} = \sum_{i=1}^{R_m^{\dagger}} (1 - \xi_{(i:m)}),$$

- Romano's Procedure controls $\mathbb{P}(FDP > \delta) \leq \alpha$
- Specify α and δ . You could use $\delta = \alpha$. Let

$$\psi_m(i,\delta) = \frac{\lfloor i\delta \rfloor + 1}{m + \lfloor i\delta \rfloor + 1 - i}$$

$$R_{m}^{\dagger} = \min\left\{i: P_{(i:m)} > \alpha \psi_{m}(i,\delta)\right\} - 1$$

• R_m^{\dagger} is the number declared significant or number of positive calls under Romano's procedure

$$V_m^\dagger = \sum_{i=1}^{R_m^\dagger} (1 - \xi_{(i:m)}), ~~ T_m^\dagger = \sum_{i=1}^{R_m^\dagger} \xi_{(i:m)}.$$

Izmirlian

BH-FDR:
$$R_m = \max\{i : P_{(i:m)} \le \alpha i/m\}$$

BH-FDR: $R_m = \max\{i : P_{(i:m)} \le \alpha i/m\}$ $\mbox{Romano: } R_{\it m}^{\dagger} \ = \ \min \left\{ i : P_{(i:m)} > \alpha \psi_{\it m}(i,\delta) \right\} - 1$

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

• Romano criterion: $\psi_m(i, \delta)$, BH-FDR criterion: i/m.

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

- Romano criterion: $\psi_m(i, \delta)$, BH-FDR criterion: i/m.
- Romano calls significant only p-values smaller than the first larger than its criterion.

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

- Romano criterion: $\psi_m(i,\delta)$, BH-FDR criterion: i/m.
- Romano calls significant only p-values smaller than the first larger than its criterion.
- BH-FDR calls significant all p-values less than the largest which is less than its criterion.

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

- Romano criterion: $\psi_m(i,\delta)$, BH-FDR criterion: i/m.
- Romano calls significant only p-values smaller than the first larger than its criterion.
- BH-FDR calls significant all p-values less than the largest which is less than its criterion.
- Romano is a *step down* procedure

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

- Romano criterion: $\psi_m(i,\delta)$, BH-FDR criterion: i/m.
- Romano calls significant only p-values smaller than the first larger than its criterion.
- BH-FDR calls significant all p-values less than the largest which is less than its criterion.
- Romano is a step down procedure
- BH-FDR is a step up procedure

BH-FDR:
$$R_m = \max \{i : P_{(i:m)} \le \alpha i/m\}$$

Romano: $R_m^{\dagger} = \min \{i : P_{(i:m)} > \alpha \psi_m(i, \delta)\} - 1$

- Romano criterion: $\psi_m(i,\delta)$, BH-FDR criterion: i/m.
- Romano calls significant only p-values smaller than the first larger than its criterion.
- BH-FDR calls significant all p-values less than the largest which is less than its criterion.
- Romano is a step down procedure
- BH-FDR is a step up procedure
- No limit law for T^{\dagger}/M_m , so no closed form power function.

Romano ψ_m and BHFDR identity function versus u, and Bonferroni, dashed, m=100, alpha=0.15

Romano ψ_m and BHFDR identity function versus u, and Bonferroni, dashed, m=100, alpha=0.15

Romano ψ_m and BHFDR identity function versus u, and Bonferroni, dashed, m=100, alpha=0.15

Xi	ξ_i	Pi	$\alpha i/m$	$\alpha \psi_m(i,\alpha)$	$P_i \leq (4)$	$P_i \leq (5)$
4.32	1	0.000024	0.000750	0.000750	1	1
4.21	1	0.000036	0.001500	0.000754	1	1
4.13	1	0.000051	0.002250	0.000758	1	1
3.51	1	0.000536	0.003000	0.000761	1	1
3.41	1	0.000766	0.003750	0.000765	1	0
3.41	1	0.000768	0.004500	0.000769	1	1
3.05	1	0.002597	0.005250	0.001538	1	0
3.03	1	0.002760	0.006000	0.001546	1	0
2.98	1	0.003245	0.006750	0.001554	1	0
-2.69	0	0.007591	0.007500	0.001562	0	0
2.69	1	0.007652	0.008250	0.001571	1	0
2.46	0	0.014481	0.009000	0.001579	0	0
-2.21	0	0.028401	0.009750	0.001587	0	0
2.15	0	0.032578	0.010500	0.002381	0	0
-2.11	0	0.035854	0.011250	0.002394	0	0

Table 1: Comparing the BHFDR and Romano procedures

BH-FDR:
$$R_m = \max\{i : P_{(i:m)} \le \alpha i/m\}$$

BH-FDR:
$$R_m = \max \left\{ i : P_{(i:m)} \le \alpha i / m \right\}$$

Romano: $R_m^{\dagger} = \min \left\{ i : P_{(i:m)} > \alpha \psi_m(i, \delta) \right\} - 1$

$$\begin{array}{lcl} \text{BH-FDR: } R_m &=& \max \left\{ i: P_{(i:m)} \leq \alpha i/m \right\} \\ \text{Romano: } R_m^\dagger &=& \min \left\{ i: P_{(i:m)} > \alpha \psi_m(i,\delta) \right\} - 1 \\ \text{Modified Romano: } R_m^\dagger &=& \max \left\{ i: P_{(i:m)} \leq \alpha \psi_m(i,\delta) \right\} \end{array}$$

$$\begin{array}{lcl} \text{BH-FDR: } R_m &=& \max \left\{ i: P_{(i:m)} \leq \alpha i/m \right\} \\ \text{Romano: } R_m^\dagger &=& \min \left\{ i: P_{(i:m)} > \alpha \psi_m(i,\delta) \right\} - 1 \\ \text{Modified Romano: } R_m^\ddagger &=& \max \left\{ i: P_{(i:m)} \leq \alpha \psi_m(i,\delta) \right\} \end{array}$$

• Modified Romano uses the Romano criterion $\alpha \psi_m(i, \delta)$ but takes all rows up to the largest $P_{(i:m)}$ which is less than the criterion.

```
\begin{array}{lcl} \text{BH-FDR: } R_m &=& \max \left\{ i: P_{(i:m)} \leq \alpha i/m \right\} \\ \text{Romano: } R_m^\dagger &=& \min \left\{ i: P_{(i:m)} > \alpha \psi_m(i,\delta) \right\} - 1 \\ \text{Modified Romano: } R_m^\ddagger &=& \max \left\{ i: P_{(i:m)} \leq \alpha \psi_m(i,\delta) \right\} \end{array}
```

- Modified Romano uses the Romano criterion $\alpha \psi_m(i, \delta)$ but takes all rows up to the largest $P_{(i:m)}$ which is less than the criterion.
- Modified Romano is a step up procedure

$$\begin{array}{lcl} \text{BH-FDR: } R_m &=& \max \left\{ i: P_{(i:m)} \leq \alpha i/m \right\} \\ \text{Romano: } R_m^\dagger &=& \min \left\{ i: P_{(i:m)} > \alpha \psi_m(i,\delta) \right\} - 1 \\ \text{Modified Romano: } R_m^\ddagger &=& \max \left\{ i: P_{(i:m)} \leq \alpha \psi_m(i,\delta) \right\} \end{array}$$

- Modified Romano uses the Romano criterion $\alpha \psi_m(i, \delta)$ but takes all rows up to the largest $P_{(i:m)}$ which is less than the criterion.
- Modified Romano is a step up procedure
- Limit laws: $m^{-1}R_m^{\ddagger} \xrightarrow{a.s.} \gamma^{\ddagger}$, $T^{\ddagger}/M_m \xrightarrow{a.s.} \pi_1^{\ddagger}$, corresponding CLT's.

28 / 108

$$\begin{array}{lcl} \text{BH-FDR: } R_m &=& \max \left\{ i: P_{(i:m)} \leq \alpha i/m \right\} \\ \text{Romano: } R_m^\dagger &=& \min \left\{ i: P_{(i:m)} > \alpha \psi_m(i,\delta) \right\} - 1 \\ \text{Modified Romano: } R_m^\ddagger &=& \max \left\{ i: P_{(i:m)} \leq \alpha \psi_m(i,\delta) \right\} \end{array}$$

- Modified Romano uses the Romano criterion $\alpha \psi_m(i, \delta)$ but takes all rows up to the largest $P_{(i:m)}$ which is less than the criterion.
- Modified Romano is a step up procedure
- Limit laws: $m^{-1}R_m^{\ddagger} \xrightarrow{a.s.} \gamma^{\ddagger}$, $T^{\ddagger}/M_m \xrightarrow{a.s.} \pi_1^{\ddagger}$, corresponding CLT's.
- We conjecture asymptotic equivalence.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP control
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

• Specify α, δ .

- Specify α, δ .
- Use asymptotic approximation to the distribution of V_m^\star/R_m^\star to find $\alpha^\star \leq \alpha$ such that the BH-FDR procedure at α^\star gives $\mathbb{P}\{V_m^\star/R_m^\star \geq \delta\} \leq \alpha$

- Specify α, δ .
- Use asymptotic approximation to the distribution of V_m^\star/R_m^\star to find $\alpha^\star \leq \alpha$ such that the BH-FDR procedure at α^\star gives $\mathbb{P}\{V_m^\star/R_m^\star \geq \delta\} \leq \alpha$
- Results in R_m^{\star} , V_m^{\star} , and T_m^{\star} positive, false postive and true positive calls, respectively.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

| Izmirlian | FDP-dispersion | 33 / 108

- Specify α, δ .
- Use asymptotic approximation to the distribution of V_m^\star/R_m^\star to find $\alpha^\star \leq \alpha$ such that the BH-FDR procedure at α^\star gives $\mathbb{P}\{V_m^\star/R_m^\star \geq \delta\} \leq \alpha$
- Results in R_m^{\star} , V_m^{\star} , and T_m^{\star} positive, false postive and true positive calls, respectively.
- Like the power, effect size, α and p_1 ,

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

- Specify α, δ .
- Use asymptotic approximation to the distribution of V_m^\star/R_m^\star to find $\alpha^\star \leq \alpha$ such that the BH-FDR procedure at α^\star gives $\mathbb{P}\{V_m^\star/R_m^\star \geq \delta\} \leq \alpha$
- Results in R_m^{\star} , V_m^{\star} , and T_m^{\star} positive, false postive and true positive calls, respectively.
- Like the power, effect size, α and p_1 ,
 - α^* should be considered a design parameter.

| Izmirlian | FDP-dispersion | 33 / 108

- Specify α, δ .
- Use asymptotic approximation to the distribution of V_m^\star/R_m^\star to find $\alpha^\star \leq \alpha$ such that the BH-FDR procedure at α^\star gives $\mathbb{P}\{V_m^\star/R_m^\star \geq \delta\} \leq \alpha$
- Results in R_m^{\star} , V_m^{\star} , and T_m^{\star} positive, false postive and true positive calls, respectively.
- Like the power, effect size, α and p_1 ,
 - α^{\star} should be considered a design parameter.
- Corresponding limit laws.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

 $\mathsf{BHCLT}(\delta,\alpha)$

BHCLT
$$(\delta, \alpha)$$

Let $\ell = 1, \epsilon_0 = 1$, and $\alpha_0^{\star} = \alpha$

$$\begin{array}{l} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell = 1, \epsilon_0 = 1, \, \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad \left(\epsilon_{\ell-1} > \mathsf{tol}\ \right) \end{array}$$


```
\begin{aligned} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \ \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & (\epsilon_{\ell-1} > \mathsf{tol}\ ) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be}\ \mathsf{the}\ \mathsf{solution}\ \mathsf{to}\ \gamma^\star &= \mathcal{G}\big(\gamma^\star \alpha_{\ell-1}^\star\big) \end{aligned}
```

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

$$\begin{split} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \ \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & \left(\epsilon_{\ell-1} > \mathsf{tol}\ \right) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be\ the\ solution\ to}\ \gamma^\star &= G\big(\gamma^\star \alpha_{\ell-1}^\star\big) \\ \mathsf{Let}\ s_\ell^\star &= \sqrt{p_0 \alpha_{\ell-1}^\star(1 - p_0 \alpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star} \end{split}$$

4□ > 4□ > 4□ > 4□ > 4□ > □
9

$$\begin{split} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \ \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & (\epsilon_{\ell-1} > \mathsf{tol}\) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be}\ \mathsf{the}\ \mathsf{solution}\ \mathsf{to}\ \gamma^\star &= G\big(\gamma^\star \alpha_{\ell-1}^\star\big) \\ \mathsf{Let}\ s_\ell^\star &= \sqrt{p_0 \alpha_{\ell-1}^\star(1-p_0 \alpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star} \\ \mathsf{Let}\ \alpha_\ell^\star &= p_0^{-1} \delta - \big(p_0 \sqrt{m}\big)^{-1} s_\ell^\star \Phi^{-1}(1-\alpha) \end{split}$$

$$\begin{split} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \ \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & (\epsilon_{\ell-1} > \mathsf{tol}\) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be}\ \mathsf{the}\ \mathsf{solution}\ \mathsf{to}\ \gamma^\star &= G\big(\gamma^\star \alpha_{\ell-1}^\star\big) \\ \mathsf{Let}\ s_\ell^\star &= \sqrt{p_0 \alpha_{\ell-1}^\star(1 - p_0 \alpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star} \\ \mathsf{Let}\ \alpha_\ell^\star &= p_0^{-1} \delta - \big(p_0 \sqrt{m}\big)^{-1} \, s_\ell^\star \Phi^{-1}(1 - \alpha) \\ \mathsf{Let}\ \epsilon_\ell &= |\alpha_\ell^\star - \alpha_{\ell-1}^\star| \end{split}$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

$$\begin{split} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \ \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & (\epsilon_{\ell-1} > \mathsf{tol}\) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be}\ \mathsf{the}\ \mathsf{solution}\ \mathsf{to}\ \gamma^\star &= G\big(\gamma^\star \alpha_{\ell-1}^\star\big) \\ \mathsf{Let}\ s_\ell^\star &= \sqrt{p_0 \alpha_{\ell-1}^\star(1 - p_0 \alpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star} \\ \mathsf{Let}\ \alpha_\ell^\star &= p_0^{-1} \delta - \big(p_0 \sqrt{m}\big)^{-1} \, s_\ell^\star \Phi^{-1}(1 - \alpha) \\ \mathsf{Let}\ \epsilon_\ell &= |\alpha_\ell^\star - \alpha_{\ell-1}^\star| \\ \mathsf{Let}\ \ell &= \ell + 1 \end{split}$$

<ロト < 個 ト < 重 ト < 重 ト の Q (で)

$$\begin{split} \mathsf{BHCLT}(\delta,\alpha) \\ \mathsf{Let}\ \ell &= 1, \epsilon_0 = 1, \, \mathsf{and}\ \alpha_0^\star = \alpha \\ \mathsf{While} \quad & (\epsilon_{\ell-1} > \mathsf{tol}\) \\ \mathsf{Let}\ \gamma_\ell^\star, \ \mathsf{be}\ \mathsf{the}\ \mathsf{solution}\ \mathsf{to}\ \gamma^\star &= G\big(\gamma^\star \alpha_{\ell-1}^\star\big) \\ \mathsf{Let}\ s_\ell^\star &= \sqrt{p_0 \alpha_{\ell-1}^\star(1 - p_0 \alpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star} \\ \mathsf{Let}\ \alpha_\ell^\star &= p_0^{-1} \delta - \big(p_0 \sqrt{m}\big)^{-1} \, s_\ell^\star \Phi^{-1}(1 - \alpha) \\ \mathsf{Let}\ \epsilon_\ell &= |\alpha_\ell^\star - \alpha_{\ell-1}^\star| \\ \mathsf{Let}\ \ell &= \ell + 1 \end{split}$$
 Find While

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

```
BHCLT(\delta, \alpha)
       Let \ell = 1, \epsilon_0 = 1, and \alpha_0^{\star} = \alpha
       While
                      (\epsilon_{\ell-1} > \mathsf{tol}\ )
                             Let \gamma_{\ell}^{\star}, be the solution to \gamma^{\star} = G(\gamma^{\star} \alpha_{\ell-1}^{\star})
                             Let s_\ell^\star = \sqrt{p_{_0} lpha_{\ell-1}^\star (1-p_{_0} lpha_{\ell-1}^\star \gamma_\ell^\star)/\gamma_\ell^\star}
                             Let \alpha_{\ell}^{\star} = p_0^{-1} \delta - (p_0 \sqrt{m})^{-1} s_{\ell}^{\star} \Phi^{-1} (1 - \alpha)
                             Let \epsilon_{\ell} = |\alpha_{\ell}^{\star} - \alpha_{\ell}^{\star}|_{1}
                             Let \ell = \ell + 1
       End While
 End BHCLT
```

4□ > 4□ > 4□ > 4 = > 4 = > = 90

BHCLT: Order of Conservatism

• The Romano procedure is less conservative than Bonferroni correction.

BHCLT: Order of Conservatism

- The Romano procedure is less conservative than Bonferroni correction.
- If the line of slope α^*/α and the curve $\psi(u,\delta)$ intersect at a point $u^* \in (0,1) \geq \gamma^*$ then the BHCLT procedure is less conservative than the Romano procedure. True in all simulation results.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

BHCLT: Order of Conservatism

- The Romano procedure is less conservative than Bonferroni correction.
- If the line of slope α^{\star}/α and the curve $\psi(u,\delta)$ intersect at a point $u^{\star} \in (0,1) \geq \gamma^{\star}$ then the BHCLT procedure is less conservative than the Romano procedure. True in all simulation results.
- \bullet Because $\alpha \geq \alpha^{\star},$ the BH-FDR procedure is less conservative than the BHCLT procedure

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

| Izmirlian | FDP-dispersion | 35 / 108

• BH-FDR: because the FDP is dispersed the FDP could be substantially larger than α with reasonable proability

- BH-FDR: because the FDP is dispersed the FDP could be substantially larger than α with reasonable proability
- Romano: very conservative, no closed form power function e.g. not useful in determining sample sizes over large number of design settings.

- ullet BH-FDR: because the FDP is dispersed the FDP could be substantially larger than lpha with reasonable proability
- Romano: very conservative, no closed form power function e.g. not useful in determining sample sizes over large number of design settings.
 - Modified Romano procedure has a closed form power function but you need $mp_1 > 1$ or 2 for it to work

- BH-FDR: because the FDP is dispersed the FDP could be substantially larger than α with reasonable proability
- Romano: very conservative, no closed form power function e.g. not useful in determining sample sizes over large number of design settings.
 - Modified Romano procedure has a closed form power function but you need $mp_1>1$ or 2 for it to work
- BHCLT: requires adequate asymptotic approximation, $m \ge 50$. Makes a substantial difference if $StdErr[FDP]/\alpha > 0.10$ or so.

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

• Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- Its the per test power at level of significance $\gamma \alpha$.

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- Its the per test power at level of significance $\gamma \alpha$.
- BH-FDR: $\pi_1 = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha), \text{ where } \gamma = G(\gamma \alpha)$

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- Its the per test power at level of significance $\gamma \alpha$.
- BH-FDR: $\pi_1 = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha), \text{ where } \gamma = G(\gamma \alpha)$
- Mod Romano: $\pi_1^{\ddagger} = \bar{F}_A(\bar{F}_0^{-1}(\alpha\psi(\gamma^{\ddagger},\delta)),$

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- Its the per test power at level of significance $\gamma \alpha$.
- BH-FDR: $\pi_1 = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha), \text{ where } \gamma = G(\gamma \alpha)$
- Mod Romano: $\pi_1^{\ddagger} = \bar{F}_A(\bar{F}_0^{-1}(\alpha\psi(\gamma^{\ddagger},\delta)),$
 - where $\gamma^{\ddagger} = \mathcal{G}(\alpha \psi(\gamma^{\ddagger}, \delta))$

38 / 108

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- ullet Its the per test power at level of significance $\gamma \alpha.$
- BH-FDR: $\pi_1 = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha), \text{ where } \gamma = G(\gamma \alpha)$
- Mod Romano: $\pi_1^{\ddagger} = \bar{F}_A(\bar{F}_0^{-1}(\alpha\psi(\gamma^{\ddagger},\delta)),$
 - where $\gamma^{\ddagger} = \textit{G}(\alpha \psi(\gamma^{\ddagger}, \delta))$
 - and $\psi(\gamma, \delta) = \lim_{m \to \infty} \psi_m(i_m, \delta)$ where $i_m/m \to \gamma$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

- Expected value of the TPP: $\pi_1 = \mathbb{E}\left[T_m/M_m\right]$
- Its the per test power at level of significance $\gamma \alpha$.
- BH-FDR: $\pi_1 = \bar{F}_A(\bar{F}_0^{-1}(\gamma \alpha), \text{ where } \gamma = G(\gamma \alpha)$
- Mod Romano: $\pi_1^{\ddagger} = \bar{F}_A(\bar{F}_0^{-1}(\alpha\psi(\gamma^{\ddagger},\delta)),$
 - where $\gamma^{\ddagger} = \textit{G}(\alpha \psi(\gamma^{\ddagger}, \delta))$
 - and $\psi(\gamma, \delta) = \lim_{m \to \infty} \psi_m(i_m, \delta)$ where $i_m/m \to \gamma$.
- BHCLT: $\pi_1^{\star} = \bar{F}_A(\bar{F}_0^{-1}(\alpha^{\star}\gamma^{\star}), \text{ where } \gamma^{\star} = G(\alpha^{\star}\gamma^{\star})$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

•
$$\mathbb{E}[TPP] = \pi_1$$

39 / 108

- $\mathbb{E}[TPP] = \pi_1$
- Independent of the number of simultaneous tests, m

- $\mathbb{E}[TPP] = \pi_1$
- Independent of the number of simultaneous tests, m
- \bullet Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required

- $\mathbb{E}[TPP] = \pi_1$
- Independent of the number of simultaneous tests, m
- • Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,

- $\mathbb{E}[TPP] = \pi_1$
- Independent of the number of simultaneous tests, m
- • Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,
 - Specify all design parameters and calculate average power

- $\mathbb{E}[TPP] = \pi_1$
- Independent of the number of simultaneous tests, m
- Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,
 - Specify all design parameters and calculate average power
 - Specify desired average power and all but one of the design parameters and solve for the missing one.

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Distribution of the TPP for 50,000 simultaneous tests

m=50k, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

Distribution of the TPP for 1,000 simultaneous tests

m=1k, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□
□◆□▶

Izmirlian FDP-dispersion 41 / 108

Distribution of the TPP for 200 simultaneous tests

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- 2 Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Power
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

43 / 108

Izmirlian FDP-dispersion

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りで

Izmirlian FDP-dispersion 44 / 108

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q Q

Izmirlian FDP-dispersion 45/108

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q C

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q Co

Izmirlian FDP-dispersion 47/108

m=200, eff sz=0.5, p1=0.05, n=113, avg pwr= 0.85, FDR cntrld at alpha=0.15, 1000 sim reps.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣 Q (C)

Izmirlian FDP-dispersion 48 / 108

•
$$\mathbb{P}\{TPP \geq \lambda\} \approx 1 - \Phi((\lambda - \pi_1)/(\sqrt{m}\sigma))$$

Izmirlian FDP-dispersion 49 / 108

- $\mathbb{P}\{TPP \geq \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m

Izmirlian FDP-dispersion 49 / 108

$\overline{\mathsf{tp}}$ - $\overline{\mathsf{TPP}}$ $\overline{\mathsf{Power}} = \mathbb{P}\{\overline{\mathit{TPP}} \geq \lambda\}$

- $\mathbb{P}\{TPP \geq \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m
- Specify λ

Izmirlian FDP-dispersion 49 / 108

- $\mathbb{P}\{TPP \ge \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m
- Specify λ
- ullet Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required

Izmirlian FDP-dispersion 49/108

- $\mathbb{P}\{TPP \ge \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m
- Specify λ
- • Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Izmirlian

- $\mathbb{P}\{TPP \geq \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m
- Specify λ
- • Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,
 - Specify all design parameters and calculate tp-TPP power

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

- $\mathbb{P}\{TPP \geq \lambda\} \approx 1 \Phi((\lambda \pi_1)/(\sqrt{m}\sigma))$
- Given the number of simultaneous tests, m
- Specify λ
- • Specify a method of FDP control (BHFDR, Romano or BHCLT), and δ if required
- Design parameters: α , effect size, sample size, n, p_1 ,
 - Specify all design parameters and calculate tp-TPP power
 - Specify desired tpp-TPP power and all but one of the design parameters and solve for the missing one.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Possibilities: FDP control method and definitin of power

FDP-Cntl-Mthd	Avg Pwr	tp-TPP Pwr
Romano	*	*
BHCLT	*	*
BH-FDR	*	*

Table 2: FDP-Control methods for two definitions of power

All possible options described are accommodated

Izmirlian FDP-dispersion 51 / 108

- All possible options described are accommodated
- Calculate average power/tp-TPP power

Izmirlian FDP-dispersion 51/108

- All possible options described are accommodated
- Calculate average power/tp-TPP power
- Calculate missing design parameter given average power/tp-TPP power

Izmirlian FDP-dispersion 51 / 108

- All possible options described are accommodated
- Calculate average power/tp-TPP power
- Calculate missing design parameter given average power/tp-TPP power
- Accommodates one sample, two sample paired, un-paired balanced or unbalanced, k-sample balanced or unbalanced tests

Izmirlian FDP-dispersion 51/108

- All possible options described are accommodated
- Calculate average power/tp-TPP power
- Calculate missing design parameter given average power/tp-TPP power
- Accommodates one sample, two sample paired, un-paired balanced or unbalanced, k-sample balanced or unbalanced tests
- normal, t-distributed, F-distributed test statistics

Izmirlian FDP-dispersion 51/108

- All possible options described are accommodated
- Calculate average power/tp-TPP power
- Calculate missing design parameter given average power/tp-TPP power
- Accommodates one sample, two sample paired, un-paired balanced or unbalanced, k-sample balanced or unbalanced tests
- normal, t-distributed, F-distributed test statistics
- Simulation option available

 Parameter "FDP.control.method" has options "Romano", "BHFDR", "BHCLT" and "Auto"

Izmirlian FDP-dispersion 52 / 108

- Parameter "FDP.control.method" has options "Romano", "BHFDR", "BHCLT" and "Auto"
- "Auto" option

Izmirlian FDP-dispersion 52 / 108

- Parameter "FDP.control.method" has options "Romano", "BHFDR", "BHCLT" and "Auto"
- "Auto" option
 - Tests $stderr[FDP] \ge \alpha/10$. If yes, then use Romano or BHCLT

Izmirlian FDP-dispersion 52 / 108

- Parameter "FDP.control.method" has options "Romano", "BHFDR", "BHCLT" and "Auto"
- "Auto" option
 - Tests $stderr[FDP] \ge \alpha/10$. If yes, then use Romano or BHCLT
 - Test $m \ge 50$ if yes then use BHCLT, if no use Romano

Izmirlian FDP-dispersion 52 / 108

- Parameter "FDP.control.method" has options "Romano", "BHFDR", "BHCLT" and "Auto"
- "Auto" option
 - Tests $stderr[FDP] \ge \alpha/10$. If yes, then use Romano or BHCLT
 - Test $m \ge 50$ if yes then use BHCLT, if no use Romano
 - If BHCLT is indicated but has no non-negative solution, then use Romano

Izmirlian FDP-dispersion 52 / 108

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Powe
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

• 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)

54 / 108

Izmirlian FDP-dispersion

- 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)
- 2 settings for definition of power: Average Power (m) and tp-TPP power (c).

54 / 108

Izmirlian FDP-dispersion

- 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)
- 2 settings for definition of power: Average Power (m) and tp-TPP power (c).
- $m \in \{20, 50, 100, 500, 1000, 2000, 5000, 10000\}$

Izmirlian FDP-dispersion 54 / 108

- 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)
- 2 settings for definition of power: Average Power (m) and tp-TPP power (c).
- $m \in \{20, 50, 100, 500, 1000, 2000, 5000, 10000\}$
- effect size 0.60 to 1.1 in increments of 0.10

54 / 108

FDP-dispersion

- 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)
- 2 settings for definition of power: Average Power (m) and tp-TPP power (c).
- $m \in \{20, 50, 100, 500, 1000, 2000, 5000, 10000\}$
- effect size 0.60 to 1.1 in increments of 0.10
- $\alpha \in \{0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30\}$

- 4 settings for type I error control: FDR (m), Romano (r), BHCLT (c), and Auto (a)
- 2 settings for definition of power: Average Power (m) and tp-TPP power (c).
- $m \in \{20, 50, 100, 500, 1000, 2000, 5000, 10000\}$
- effect size 0.60 to 1.1 in increments of 0.10
- $\alpha \in \{0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30\}$
- $p_1 \in \{0.03, 0.05, 0.10, 0.25, 0.30\}$

Izmirlian FDP-dispersion 54/108

 Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings

Izmirlian FDP-dispersion 55 / 108

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%
 - Additionally, looked at effect of dependence by repeating all simulations with correlated test statistics, $\rho \in \{0.05, 0.10, 0.15, 0.20\}$, in blocks of size 50.

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%
 - Additionally, looked at effect of dependence by repeating all simulations with correlated test statistics, $\rho \in \{0.05, 0.10, 0.15, 0.20\}$, in blocks of size 50.
- All calculations/simulations done using features of R package, "pwrFDR"

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%
 - Additionally, looked at effect of dependence by repeating all simulations with correlated test statistics, $\rho \in \{0.05, 0.10, 0.15, 0.20\}$, in blocks of size 50.
- All calculations/simulations done using features of R package, "pwrFDR"
- Used the NIH biowulf high performance computing facility

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%
 - Additionally, looked at effect of dependence by repeating all simulations with correlated test statistics, $\rho \in \{0.05, 0.10, 0.15, 0.20\}$, in blocks of size 50.
- All calculations/simulations done using features of R package, "pwrFDR"
- Used the NIH biowulf high performance computing facility
 - all 7200 conditions run for 10 simulation replicates on each node, with total of 100 nodes.

- Theoretical sample size calculated at each choice for FDP control method, definition of power and design parameters.
- Did simulation at that sample size under given settings
 - Additionally, looked at sample sizes decreased by up to 25% in increments of 5%
 - Additionally, looked at effect of dependence by repeating all simulations with correlated test statistics, $\rho \in \{0.05, 0.10, 0.15, 0.20\}$, in blocks of size 50.
- All calculations/simulations done using features of R package, "pwrFDR"
- Used the NIH biowulf high performance computing facility
 - all 7200 conditions run for 10 simulation replicates on each node, with total of 100 nodes.
 - Job took 1.66 ± 0.014 hours

Outline

- Introduction
 - BH-FDR Procedure: A review & Its properties
 - Main theoretical results
- Other Methods for FDP contro
 - The case for controlling the right tail of the FDP
 - Romano's procedure
 - The BH-CLT procedure
- Notions of Powe
 - Average Power
 - The tp-TPP power
- 4 Simulation Study
 - Design
 - Results
- Conclusions

es	P_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	68	CLT	0.15	0.143	0.039	0.039	0.915	0.873
0.7	0.10	60	FDR		0.136	0.105	0.105	0.916	0.956
0.7	0.25	49	FDR		0.112	0.000	0.000	0.913	0.982
0.7	0.30	46	FDR		0.105	0.000	0.000	0.907	0.869
8.0	0.05	53	CLT	0.15	0.142	0.032	0.032	0.918	0.921
0.8	0.10	46	FDR		0.135	0.099	0.099	0.913	0.916
8.0	0.25	38	FDR		0.113	0.000	0.000	0.915	0.988
8.0	0.30	36	FDR		0.105	0.000	0.000	0.911	0.970
0.9	0.05	42	CLT	0.15	0.142	0.033	0.033	0.917	0.897
0.9	0.10	37	FDR		0.135	0.103	0.103	0.916	0.943
0.9	0.25	30	FDR		0.112	0.000	0.000	0.912	0.964
0.9	0.30	29	FDR		0.105	0.000	0.000	0.915	0.996
1.0	0.05	35	CLT	0.15	0.143	0.037	0.037	0.923	0.953
1.0	0.10	30	FDR		0.135	0.106	0.106	0.914	0.923
1.0	0.25	25	FDR		0.113	0.000	0.000	0.918	0.997
1.0	0.30	24	FDR		0.105	0.000	0.000	0.919	0.999
1.1	0.05	29	CLT	0.15	0.143	0.039	0.039	0.920	0.939
1.1	0.10	25	FDR		0.135	0.095	0.095	0.913	0.905
1.1	0.25	21	FDR		0.113	0.000	0.000	0.920	1.000
1.1	0.30	20	FDR		0.105	0.000	0.000	0.918	1.000

Table 3: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=10000, $\rho = 0$

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.143	0.036	0.036	0.858	0.008
0.7	0.10	51	FDR		0.136	0.111	0.111	0.852	0.000
0.7	0.25	42	FDR		0.113	0.000	0.000	0.858	0.000
0.7	0.30	40	FDR		0.105	0.000	0.000	0.857	0.000
8.0	0.05	45	CLT	0.15	0.142	0.039	0.039	0.851	0.001
8.0	0.10	39	FDR		0.136	0.098	0.098	0.847	0.000
0.8	0.25	33	FDR		0.113	0.000	0.000	0.865	0.000
0.8	0.30	31	FDR		0.105	0.000	0.000	0.859	0.000
0.9	0.05	36	CLT	0.15	0.143	0.039	0.039	0.852	0.003
0.9	0.10	32	FDR		0.134	0.080	0.080	0.859	0.001
0.9	0.25	26	FDR		0.113	0.000	0.000	0.860	0.000
0.9	0.30	25	FDR		0.105	0.000	0.000	0.863	0.000
1.0	0.05	30	CLT	0.15	0.142	0.026	0.026	0.860	0.010
1.0	0.10	26	FDR		0.135	0.094	0.094	0.856	0.000
1.0	0.25	21	FDR		0.113	0.000	0.000	0.854	0.000
1.0	0.30	20	FDR		0.105	0.000	0.000	0.854	0.000
1.1	0.05	25	CLT	0.15	0.142	0.042	0.042	0.858	0.004
1.1	0.10	22	FDR		0.136	0.111	0.111	0.861	0.001
1.1	0.25	18	FDR		0.113	0.000	0.000	0.865	0.000
1.1	0.30	17	FDR		0.105	0.000	0.000	0.860	0.000

Table 4: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=10000, $\rho=0$

Izmirlian FDP-dispersion 58 / 10

es	P_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	69	CLT	0.15	0.143	0.097	0.097	0.919	0.855
0.7	0.10	60	CLT	0.15	0.135	0.154	0.179	0.916	0.885
0.7	0.25	49	FDR		0.112	0.000	0.000	0.913	0.925
0.7	0.30	47	FDR		0.105	0.000	0.000	0.913	0.934
8.0	0.05	54	CLT	0.15	0.142	0.092	0.092	0.924	0.909
8.0	0.10	47	CLT	0.15	0.135	0.139	0.152	0.920	0.940
8.0	0.25	38	FDR		0.112	0.000	0.000	0.914	0.948
8.0	0.30	36	FDR		0.105	0.000	0.000	0.911	0.925
0.9	0.05	43	CLT	0.15	0.143	0.112	0.112	0.924	0.901
0.9	0.10	37	CLT	0.15	0.135	0.151	0.171	0.916	0.890
0.9	0.25	30	FDR		0.113	0.000	0.000	0.912	0.923
0.9	0.30	29	FDR		0.105	0.000	0.000	0.915	0.969
1.0	0.05	35	CLT	0.15	0.141	0.085	0.085	0.923	0.893
1.0	0.10	31	CLT	0.15	0.135	0.149	0.171	0.924	0.969
1.0	0.25	25	FDR		0.112	0.000	0.000	0.918	0.980
1.0	0.30	24	FDR		0.105	0.000	0.000	0.918	0.986
1.1	0.05	29	CLT	0.15	0.141	0.090	0.090	0.919	0.846
1.1	0.10	26	CLT	0.15	0.135	0.151	0.175	0.926	0.974
1.1	0.25	21	FDR		0.113	0.000	0.000	0.920	0.988
1.1	0.30	20	FDR		0.105	0.000	0.000	0.918	0.989

Table 5: Sample size determined via tp-TPP power, under AutFDP control, $\alpha=$ 0.15, m=5000, $\rho=$ 0

Izmirlian FDP-dispersion 59 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.143	0.101	0.101	0.857	0.042
0.7	0.10	51	CLT	0.15	0.134	0.128	0.159	0.851	0.004
0.7	0.25	42	FDR		0.112	0.000	0.000	0.858	0.000
0.7	0.30	40	FDR		0.105	0.000	0.000	0.857	0.000
8.0	0.05	45	CLT	0.15	0.142	0.086	0.086	0.851	0.022
8.0	0.10	39	CLT	0.15	0.135	0.144	0.175	0.846	0.000
8.0	0.25	33	FDR		0.113	0.000	0.000	0.866	0.000
8.0	0.30	31	FDR		0.105	0.000	0.000	0.858	0.000
0.9	0.05	36	CLT	0.15	0.143	0.103	0.103	0.851	0.016
0.9	0.10	32	CLT	0.15	0.136	0.163	0.195	0.860	0.009
0.9	0.25	26	FDR		0.113	0.000	0.000	0.860	0.000
0.9	0.30	25	FDR		0.105	0.000	0.000	0.863	0.000
1.0	0.05	30	CLT	0.15	0.142	0.092	0.092	0.860	0.043
1.0	0.10	26	CLT	0.15	0.134	0.156	0.169	0.855	0.003
1.0	0.25	21	FDR		0.112	0.000	0.000	0.854	0.000
1.0	0.30	20	FDR		0.106	0.000	0.000	0.853	0.000
1.1	0.05	25	CLT	0.15	0.144	0.115	0.115	0.858	0.042
1.1	0.10	22	CLT	0.15	0.135	0.160	0.186	0.860	0.005
1.1	0.25	18	FDR		0.113	0.000	0.000	0.864	0.000
1.1	0.30	17	FDR		0.105	0.000	0.000	0.861	0.000

Table 6: Sample size determined via average power, under BHFDR control, $\alpha=$ 0.15, m=5000, $\rho=$ 0

Izmirlian FDP-dispersion 60 / 100

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	72	CLT	0.14	0.142	0.132	0.181	0.933	0.895
0.7	0.10	63	CLT	0.14	0.136	0.145	0.278	0.929	0.917
0.7	0.25	50	FDR		0.111	0.000	0.000	0.918	0.912
0.7	0.30	48	FDR		0.105	0.000	0.000	0.919	0.936
8.0	0.05	56	CLT	0.14	0.145	0.160	0.207	0.935	0.900
8.0	0.10	48	CLT	0.14	0.137	0.169	0.312	0.926	0.910
8.0	0.25	38	FDR		0.113	0.007	0.007	0.914	0.853
8.0	0.30	37	FDR		0.106	0.000	0.000	0.919	0.944
0.9	0.05	44	CLT	0.14	0.142	0.161	0.213	0.931	0.872
0.9	0.10	39	CLT	0.14	0.134	0.154	0.254	0.932	0.940
0.9	0.25	31	FDR		0.113	0.008	0.008	0.921	0.935
0.9	0.30	29	FDR		0.105	0.000	0.000	0.914	0.869
1.0	0.05	36	CLT	0.14	0.145	0.154	0.208	0.931	0.879
1.0	0.10	32	CLT	0.14	0.136	0.168	0.284	0.933	0.947
1.0	0.25	25	FDR		0.112	0.002	0.002	0.916	0.881
1.0	0.30	24	FDR		0.106	0.001	0.001	0.919	0.937
1.1	0.05	31	CLT	0.14	0.144	0.170	0.224	0.941	0.935
1.1	0.10	27	CLT	0.14	0.135	0.159	0.263	0.936	0.968
1.1	0.25	21	FDR		0.112	0.005	0.005	0.919	0.926
1.1	0.30	20	FDR		0.105	0.000	0.000	0.918	0.918

Table 7: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=2000, $\rho =$ 0

Izmirlian FDP-dispersion 61 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.14	0.140	0.141	0.206	0.857	0.146
0.7	0.10	51	CLT	0.14	0.135	0.166	0.283	0.852	0.049
0.7	0.25	42	FDR		0.112	0.007	0.007	0.857	0.006
0.7	0.30	40	FDR		0.105	0.001	0.001	0.857	0.003
0.8	0.05	45	CLT	0.14	0.143	0.152	0.232	0.850	0.112
8.0	0.10	39	CLT	0.14	0.136	0.169	0.302	0.848	0.031
8.0	0.25	33	FDR		0.113	0.004	0.004	0.865	0.020
8.0	0.30	31	FDR		0.105	0.001	0.001	0.859	0.003
0.9	0.05	36	CLT	0.14	0.143	0.164	0.215	0.851	0.112
0.9	0.10	32	CLT	0.14	0.135	0.155	0.279	0.860	0.071
0.9	0.25	26	FDR		0.112	0.006	0.006	0.860	0.012
0.9	0.30	25	FDR		0.104	0.000	0.000	0.863	0.012
1.0	0.05	30	CLT	0.14	0.143	0.149	0.210	0.861	0.179
1.0	0.10	26	CLT	0.14	0.134	0.125	0.267	0.854	0.045
1.0	0.25	21	FDR		0.112	0.008	0.008	0.855	0.003
1.0	0.30	20	FDR		0.104	0.000	0.000	0.852	0.000
1.1	0.05	25	CLT	0.14	0.142	0.144	0.196	0.855	0.122
1.1	0.10	22	CLT	0.14	0.136	0.151	0.295	0.860	0.058
1.1	0.25	18	FDR		0.113	0.009	0.009	0.865	0.020
1.1	0.30	17	FDR		0.105	0.000	0.000	0.860	0.006

Table 8: Sample size determined via average power, under BHFDR control, $\alpha=$ 0.15, m=2000, $\rho=$ 0

Izmirlian FDP-dispersion 62 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	76	CLT	0.13	0.141	0.147	0.253	0.947	0.916
0.7	0.10	65	CLT	0.13	0.135	0.131	0.319	0.938	0.932
0.7	0.25	51	CLT	0.15	0.113	0.036	0.036	0.924	0.917
0.7	0.30	48	CLT	0.15	0.105	0.009	0.009	0.918	0.856
0.8	0.05	58	CLT	0.13	0.142	0.143	0.264	0.945	0.902
0.8	0.10	50	CLT	0.13	0.134	0.150	0.325	0.939	0.922
0.8	0.25	39	CLT	0.15	0.114	0.041	0.041	0.923	0.898
0.8	0.30	37	CLT	0.15	0.104	0.004	0.004	0.919	0.849
0.9	0.05	47	CLT	0.13	0.140	0.136	0.257	0.950	0.930
0.9	0.10	40	CLT	0.13	0.135	0.155	0.315	0.940	0.925
0.9	0.25	31	CLT	0.15	0.113	0.040	0.040	0.921	0.859
0.9	0.30	30	CLT	0.15	0.104	0.005	0.005	0.923	0.907
1.0	0.05	38	CLT	0.13	0.144	0.159	0.277	0.946	0.903
1.0	0.10	33	CLT	0.13	0.138	0.176	0.367	0.940	0.943
1.0	0.25	26	CLT	0.15	0.112	0.033	0.033	0.929	0.939
1.0	0.30	24	CLT	0.15	0.105	0.015	0.015	0.917	0.840
1.1	0.05	32	CLT	0.13	0.141	0.131	0.255	0.948	0.912
1.1	0.10	28	CLT	0.13	0.135	0.165	0.335	0.945	0.953
1.1	0.25	22	CLT	0.15	0.113	0.037	0.037	0.931	0.952
1.1	0.30	21	CLT	0.15	0.106	0.011	0.011	0.930	0.965

Table 9: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=1000, $\rho =$ 0

Izmirlian FDP-dispersion 63 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.13	0.141	0.152	0.269	0.855	0.227
0.7	0.10	51	CLT	0.13	0.134	0.154	0.323	0.852	0.117
0.7	0.25	42	CLT	0.15	0.113	0.042	0.042	0.858	0.043
0.7	0.30	40	CLT	0.15	0.105	0.015	0.015	0.856	0.027
0.8	0.05	45	CLT	0.13	0.141	0.153	0.276	0.850	0.210
0.8	0.10	39	CLT	0.13	0.135	0.148	0.332	0.846	0.097
8.0	0.25	33	CLT	0.15	0.113	0.048	0.048	0.865	0.067
8.0	0.30	31	CLT	0.15	0.104	0.007	0.007	0.858	0.041
0.9	0.05	36	CLT	0.13	0.141	0.140	0.255	0.851	0.208
0.9	0.10	32	CLT	0.13	0.138	0.147	0.344	0.860	0.171
0.9	0.25	26	CLT	0.15	0.112	0.049	0.049	0.860	0.054
0.9	0.30	25	CLT	0.15	0.106	0.010	0.010	0.864	0.051
1.0	0.05	30	CLT	0.13	0.145	0.151	0.301	0.859	0.258
1.0	0.10	26	CLT	0.13	0.135	0.158	0.328	0.856	0.135
1.0	0.25	21	CLT	0.15	0.113	0.046	0.046	0.855	0.030
1.0	0.30	20	CLT	0.15	0.105	0.012	0.012	0.853	0.023
1.1	0.05	25	CLT	0.13	0.142	0.148	0.278	0.856	0.241
1.1	0.10	22	CLT	0.13	0.136	0.161	0.355	0.859	0.157
1.1	0.25	18	CLT	0.15	0.112	0.035	0.035	0.865	0.079
1.1	0.30	17	CLT	0.15	0.106	0.008	0.008	0.860	0.039

Table 10: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=1000, $\rho=0$

Izmirlian FDP-dispersion 64 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	81	CLT	0.11	0.141	0.154	0.320	0.960	0.920
0.7	0.10	69	CLT	0.12	0.135	0.151	0.364	0.953	0.934
0.7	0.25	52	CLT	0.15	0.113	0.108	0.108	0.929	0.888
0.7	0.30	49	CLT	0.15	0.105	0.049	0.049	0.923	0.840
8.0	0.05	62	CLT	0.11	0.141	0.150	0.311	0.960	0.910
8.0	0.10	53	CLT	0.12	0.133	0.122	0.360	0.952	0.927
8.0	0.25	40	CLT	0.15	0.112	0.107	0.107	0.928	0.869
8.0	0.30	38	CLT	0.15	0.104	0.038	0.038	0.926	0.860
0.9	0.05	50	CLT	0.11	0.145	0.161	0.336	0.961	0.914
0.9	0.10	43	CLT	0.12	0.134	0.155	0.357	0.956	0.944
0.9	0.25	32	CLT	0.15	0.112	0.095	0.095	0.930	0.874
0.9	0.30	31	CLT	0.15	0.105	0.038	0.038	0.933	0.933
1.0	0.05	41	CLT	0.11	0.141	0.153	0.319	0.964	0.926
1.0	0.10	35	CLT	0.12	0.136	0.154	0.370	0.955	0.954
1.0	0.25	26	CLT	0.15	0.113	0.099	0.099	0.928	0.863
1.0	0.30	25	CLT	0.15	0.105	0.030	0.030	0.931	0.907
1.1	0.05	34	CLT	0.11	0.143	0.150	0.317	0.964	0.928
1.1	0.10	29	CLT	0.12	0.133	0.143	0.345	0.953	0.939
1.1	0.25	22	CLT	0.15	0.113	0.097	0.097	0.931	0.891
1.1	0.30	21	CLT	0.15	0.105	0.042	0.042	0.932	0.915

Table 11: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=500, $\rho =$ 0

Izmirlian FDP-dispersion 65 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.11	0.143	0.153	0.329	0.854	0.319
0.7	0.10	51	CLT	0.12	0.136	0.158	0.397	0.851	0.215
0.7	0.25	42	CLT	0.15	0.112	0.118	0.118	0.857	0.128
0.7	0.30	40	CLT	0.15	0.107	0.054	0.054	0.856	0.099
0.8	0.05	45	CLT	0.11	0.144	0.163	0.365	0.848	0.309
0.8	0.10	39	CLT	0.12	0.134	0.144	0.367	0.846	0.191
0.8	0.25	33	CLT	0.15	0.112	0.120	0.120	0.865	0.162
0.8	0.30	31	CLT	0.15	0.105	0.061	0.061	0.858	0.091
0.9	0.05	36	CLT	0.11	0.145	0.157	0.357	0.848	0.300
0.9	0.10	32	CLT	0.12	0.136	0.146	0.394	0.855	0.231
0.9	0.25	26	CLT	0.15	0.112	0.111	0.111	0.860	0.134
0.9	0.30	25	CLT	0.15	0.105	0.060	0.060	0.862	0.123
1.0	0.05	30	CLT	0.11	0.143	0.152	0.335	0.858	0.334
1.0	0.10	26	CLT	0.12	0.134	0.161	0.356	0.856	0.226
1.0	0.25	21	CLT	0.15	0.112	0.116	0.116	0.855	0.119
1.0	0.30	20	CLT	0.15	0.104	0.041	0.041	0.853	0.079
1.1	0.05	25	CLT	0.11	0.141	0.150	0.329	0.858	0.340
1.1	0.10	22	CLT	0.12	0.136	0.145	0.389	0.862	0.265
1.1	0.25	18	CLT	0.15	0.113	0.124	0.124	0.864	0.167
1.1	0.30	17	CLT	0.15	0.104	0.047	0.047	0.857	0.097

Table 12: Sample size determined via average power, under BHFDR control, $\alpha=$ 0.15, m=500, $\rho=$ 0

Izmirlian FDP-dispersion 66 / 100

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	100	CLT	0.06	0.142	0.126	0.368	0.980	0.932
0.7	0.10	84	CLT	0.07	0.141	0.164	0.453	0.983	0.931
0.7	0.25	60	CLT	0.12	0.113	0.148	0.267	0.960	0.906
0.7	0.30	56	CLT	0.13	0.105	0.142	0.216	0.952	0.899
8.0	0.05	77	CLT	0.06	0.138	0.136	0.369	0.976	0.929
8.0	0.10	65	CLT	0.07	0.134	0.144	0.410	0.983	0.926
8.0	0.25	46	CLT	0.12	0.114	0.162	0.293	0.960	0.907
8.0	0.30	43	CLT	0.13	0.104	0.147	0.196	0.952	0.881
0.9	0.05	62	CLT	0.06	0.134	0.127	0.358	0.983	0.949
0.9	0.10	51	CLT	0.07	0.127	0.149	0.380	0.982	0.920
0.9	0.25	37	CLT	0.12	0.116	0.169	0.287	0.960	0.917
0.9	0.30	34	CLT	0.13	0.105	0.169	0.229	0.952	0.879
1.0	0.05	51	CLT	0.06	0.146	0.150	0.380	0.982	0.944
1.0	0.10	42	CLT	0.07	0.135	0.155	0.430	0.983	0.920
1.0	0.25	30	CLT	0.12	0.114	0.168	0.280	0.960	0.917
1.0	0.30	28	CLT	0.13	0.106	0.167	0.210	0.955	0.900
1.1	0.05	42	CLT	0.06	0.147	0.144	0.389	0.980	0.940
1.1	0.10	35	CLT	0.07	0.138	0.157	0.431	0.978	0.919
1.1	0.25	25	CLT	0.12	0.115	0.172	0.271	0.961	0.919
1.1	0.30	23	CLT	0.13	0.108	0.182	0.241	0.954	0.895

Table 13: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=100, $\rho = 0$

Izmirlian FDP-dispersion 67 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.06	0.139	0.000	0.365	0.842	0.523
0.7	0.10	51	CLT	0.07	0.135	0.158	0.409	0.849	0.425
0.7	0.25	42	CLT	0.12	0.112	0.153	0.283	0.850	0.314
0.7	0.30	40	CLT	0.13	0.101	0.140	0.202	0.854	0.319
0.8	0.05	45	CLT	0.06	0.150	0.000	0.389	0.846	0.514
0.8	0.10	39	CLT	0.07	0.131	0.148	0.398	0.843	0.401
0.8	0.25	33	CLT	0.12	0.116	0.162	0.297	0.864	0.374
0.8	0.30	31	CLT	0.13	0.107	0.170	0.240	0.857	0.323
0.9	0.05	36	CLT	0.06	0.141	0.000	0.388	0.829	0.480
0.9	0.10	32	CLT	0.07	0.138	0.166	0.433	0.856	0.462
0.9	0.25	26	CLT	0.12	0.117	0.177	0.308	0.856	0.357
0.9	0.30	25	CLT	0.13	0.108	0.172	0.244	0.865	0.343
1.0	0.05	30	CLT	0.06	0.138	0.000	0.363	0.832	0.500
1.0	0.10	26	CLT	0.07	0.134	0.172	0.422	0.850	0.444
1.0	0.25	21	CLT	0.12	0.113	0.147	0.283	0.857	0.355
1.0	0.30	20	CLT	0.13	0.111	0.181	0.264	0.852	0.309
1.1	0.05	25	CLT	0.06	0.141	0.000	0.369	0.840	0.504
1.1	0.10	22	CLT	0.07	0.140	0.159	0.437	0.852	0.449
1.1	0.25	18	CLT	0.12	0.113	0.151	0.279	0.862	0.389
1.1	0.30	17	CLT	0.13	0.107	0.152	0.212	0.858	0.327

Table 14: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=100, $\rho=0$

Izmirlian FDP-dispersion 68 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	120	Rom		0.157	0.130	0.380	0.909	0.905
0.7	0.10	104	Rom		0.134	0.095	0.427	0.993	0.985
0.7	0.25	67	CLT	0.10	0.113	0.158	0.325	0.975	0.929
0.7	0.30	62	CLT	0.11	0.100	0.149	0.248	0.967	0.913
8.0	0.05	92	Rom		0.129	0.113	0.333	0.908	0.906
8.0	0.10	81	Rom		0.129	0.101	0.403	0.988	0.974
0.8	0.25	52	CLT	0.10	0.112	0.157	0.329	0.976	0.932
8.0	0.30	48	CLT	0.11	0.108	0.179	0.302	0.970	0.930
0.9	0.05	74	Rom		0.151	0.117	0.362	0.918	0.915
0.9	0.10	64	Rom		0.136	0.091	0.437	0.993	0.980
0.9	0.25	41	CLT	0.10	0.115	0.165	0.324	0.974	0.925
0.9	0.30	38	CLT	0.11	0.110	0.178	0.301	0.971	0.925
1.0	0.05	60	Rom		0.148	0.131	0.367	0.922	0.921
1.0	0.10	53	Rom		0.134	0.105	0.410	0.992	0.980
1.0	0.25	34	CLT	0.10	0.112	0.151	0.322	0.974	0.927
1.0	0.30	31	CLT	0.11	0.101	0.168	0.272	0.970	0.927
1.1	0.05	50	Rom		0.145	0.126	0.360	0.920	0.916
1.1	0.10	44	Rom		0.129	0.077	0.398	0.989	0.978
1.1	0.25	28	CLT	0.10	0.110	0.148	0.315	0.979	0.949
1.1	0.30	26	CLT	0.11	0.101	0.136	0.260	0.969	0.915

Table 15: Sample size determined via tp-TPP power, under AutFDP control, $\alpha=0.15$, m=50, $\rho=0$

Izmirlian FDP-dispersion 69 / 108

			Δ		EDD	. FDD .	. EDD	A D	. TDD
es	$\frac{p_1}{p_1}$	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.141	0.134	0.333	0.793	0.659
0.7	0.10	51	Rom		0.134	0.114	0.409	0.832	0.495
0.7	0.25	42	CLT	0.10	0.112	0.163	0.333	0.852	0.442
0.7	0.30	40	CLT	0.11	0.108	0.174	0.306	0.859	0.426
8.0	0.05	45	Rom		0.139	0.118	0.329	0.809	0.690
8.0	0.10	39	Rom		0.129	0.110	0.379	0.824	0.499
0.8	0.25	33	CLT	0.10	0.107	0.152	0.308	0.865	0.474
0.8	0.30	31	CLT	0.11	0.106	0.161	0.305	0.862	0.434
0.9	0.05	36	Rom		0.158	0.159	0.374	0.786	0.659
0.9	0.10	32	Rom		0.137	0.121	0.405	0.845	0.514
0.9	0.25	26	CLT	0.10	0.112	0.157	0.333	0.857	0.474
0.9	0.30	25	CLT	0.11	0.105	0.161	0.282	0.857	0.413
1.0	0.05	30	Rom		0.156	0.139	0.361	0.779	0.634
1.0	0.10	26	Rom		0.132	0.128	0.403	0.848	0.525
1.0	0.25	21	CLT	0.10	0.115	0.181	0.340	0.853	0.448
1.0	0.30	20	CLT	0.11	0.106	0.165	0.294	0.849	0.394
1.1	0.05	25	Rom		0.147	0.123	0.339	0.789	0.662
1.1	0.10	22	Rom		0.142	0.126	0.434	0.850	0.538
1.1	0.25	18	CLT	0.10	0.112	0.133	0.334	0.860	0.464
1.1	0.30	17	CLT	0.11	0.108	0.162	0.311	0.861	0.428

Table 16: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=50, $\rho =$ 0

Izmirlian FDP-dispersion 70 / 100

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	132	Rom		0.147	0.135	0.263	0.654	0.654
0.7	0.10	115	Rom		0.124	0.124	0.289	0.857	0.856
0.7	0.25	91	Rom		0.124	0.104	0.398	0.993	0.981
0.7	0.30	86	Rom		0.105	0.072	0.316	0.993	0.972
8.0	0.05	102	Rom		0.145	0.141	0.247	0.648	0.648
8.0	0.10	88	Rom		0.137	0.137	0.332	0.881	0.880
8.0	0.25	70	Rom		0.114	0.096	0.366	0.993	0.982
8.0	0.30	66	Rom		0.109	0.074	0.339	0.995	0.974
0.9	0.05	81	Rom		0.144	0.129	0.238	0.638	0.638
0.9	0.10	70	Rom		0.125	0.116	0.310	0.881	0.881
0.9	0.25	56	Rom		0.109	0.078	0.342	0.992	0.977
0.9	0.30	53	Rom		0.109	0.086	0.327	0.995	0.975
1.0	0.05	66	Rom		0.148	0.136	0.274	0.661	0.661
1.0	0.10	58	Rom		0.144	0.125	0.330	0.862	0.861
1.0	0.25	46	Rom		0.106	0.088	0.327	0.992	0.979
1.0	0.30	43	Rom		0.109	0.072	0.326	0.991	0.969
1.1	0.05	55	Rom		0.142	0.132	0.248	0.638	0.638
1.1	0.10	48	Rom		0.127	0.140	0.317	0.894	0.894
1.1	0.25	38	Rom		0.120	0.093	0.375	0.993	0.978
1.1	0.30	36	Rom		0.108	0.082	0.323	0.994	0.975

Table 17: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=20, $\rho = 0$

Izmirlian FDP-dispersion 71 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.150	0.126	0.249	0.576	0.556
0.7	0.10	51	Rom		0.146	0.142	0.325	0.758	0.666
0.7	0.25	42	Rom		0.115	0.104	0.366	0.847	0.507
0.7	0.30	40	Rom		0.106	0.095	0.328	0.843	0.450
0.8	0.05	45	Rom		0.137	0.115	0.236	0.578	0.556
0.8	0.10	39	Rom		0.121	0.109	0.283	0.741	0.656
8.0	0.25	33	Rom		0.115	0.105	0.370	0.853	0.529
8.0	0.30	31	Rom		0.110	0.112	0.355	0.847	0.436
0.9	0.05	36	Rom		0.133	0.127	0.214	0.561	0.541
0.9	0.10	32	Rom		0.135	0.128	0.308	0.748	0.655
0.9	0.25	26	Rom		0.116	0.115	0.359	0.847	0.545
0.9	0.30	25	Rom		0.100	0.089	0.296	0.848	0.481
1.0	0.05	30	Rom		0.149	0.117	0.242	0.554	0.526
1.0	0.10	26	Rom		0.122	0.123	0.263	0.749	0.654
1.0	0.25	21	Rom		0.115	0.119	0.346	0.845	0.521
1.0	0.30	20	Rom		0.109	0.094	0.342	0.849	0.459
1.1	0.05	25	Rom		0.142	0.132	0.238	0.590	0.570
1.1	0.10	22	Rom		0.133	0.126	0.301	0.757	0.671
1.1	0.25	18	Rom		0.122	0.123	0.378	0.848	0.534
1.1	0.30	17	Rom		0.099	0.085	0.308	0.852	0.481

Table 18: Sample size determined via average power, under BHFDR control, $\alpha=$ 0.15, m=20, $\rho=$ 0

Izmirlian FDP-dispersion 72 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	68	CLT	0.15	0.143	0.058	0.058	0.925	0.902
0.7	0.10	60	FDR		0.134	0.089	0.089	0.922	0.927
0.7	0.25	49	FDR		0.112	0.000	0.000	0.919	0.979
0.7	0.30	46	FDR		0.105	0.000	0.000	0.913	0.905
0.8	0.05	53	CLT	0.15	0.144	0.048	0.048	0.929	0.931
0.8	0.10	46	FDR		0.135	0.114	0.114	0.924	0.956
8.0	0.25	38	FDR		0.113	0.000	0.000	0.922	0.984
8.0	0.30	36	FDR		0.105	0.000	0.000	0.919	0.982
0.9	0.05	42	CLT	0.15	0.143	0.050	0.050	0.931	0.944
0.9	0.10	37	FDR		0.135	0.108	0.108	0.928	0.973
0.9	0.25	30	FDR		0.112	0.000	0.000	0.922	0.988
0.9	0.30	29	FDR		0.105	0.000	0.000	0.924	0.998
1.0	0.05	35	CLT	0.15	0.142	0.036	0.036	0.939	0.977
1.0	0.10	30	FDR		0.135	0.101	0.101	0.929	0.978
1.0	0.25	25	FDR		0.113	0.000	0.000	0.930	1.000
1.0	0.30	24	FDR		0.105	0.000	0.000	0.930	1.000
1.1	0.05	29	CLT	0.15	0.142	0.047	0.047	0.939	0.977
1.1	0.10	25	FDR		0.135	0.123	0.123	0.931	0.979
1.1	0.25	21	FDR		0.113	0.000	0.000	0.933	1.000
1.1	0.30	20	FDR		0.105	0.000	0.000	0.932	1.000

Table 19: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=10000, $\rho = 0.1$

Izmirlian FDP-dispersion 73/1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.142	0.052	0.052	0.871	0.151
0.7	0.10	51	FDR		0.134	0.113	0.113	0.865	0.024
0.7	0.25	42	FDR		0.113	0.000	0.000	0.868	0.006
0.7	0.30	40	FDR		0.105	0.000	0.000	0.867	0.002
0.8	0.05	45	CLT	0.15	0.142	0.045	0.045	0.870	0.152
0.8	0.10	39	FDR		0.135	0.117	0.117	0.864	0.037
8.0	0.25	33	FDR		0.112	0.000	0.000	0.878	0.036
8.0	0.30	31	FDR		0.105	0.000	0.000	0.871	0.005
0.9	0.05	36	CLT	0.15	0.143	0.045	0.045	0.875	0.187
0.9	0.10	32	FDR		0.135	0.125	0.125	0.879	0.135
0.9	0.25	26	FDR		0.113	0.000	0.000	0.877	0.023
0.9	0.30	25	FDR		0.105	0.000	0.000	0.879	0.027
1.0	0.05	30	CLT	0.15	0.141	0.045	0.045	0.886	0.331
1.0	0.10	26	FDR		0.135	0.104	0.104	0.880	0.168
1.0	0.25	21	FDR		0.112	0.000	0.000	0.875	0.020
1.0	0.30	20	FDR		0.105	0.000	0.000	0.874	0.010
1.1	0.05	25	CLT	0.15	0.142	0.041	0.041	0.889	0.353
1.1	0.10	22	FDR		0.135	0.101	0.101	0.890	0.312
1.1	0.25	18	FDR		0.112	0.000	0.000	0.889	0.167
1.1	0.30	17	FDR		0.105	0.000	0.000	0.884	0.088

Table 20: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=10000, $\rho=0.1$

Izmirlian FDP-dispersion 74/1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	69	CLT	0.15	0.143	0.123	0.123	0.929	0.843
0.7	0.10	60	CLT	0.15	0.135	0.163	0.188	0.923	0.871
0.7	0.25	49	FDR		0.113	0.000	0.000	0.918	0.912
0.7	0.30	47	FDR		0.105	0.000	0.000	0.920	0.939
8.0	0.05	54	CLT	0.15	0.142	0.108	0.108	0.935	0.905
8.0	0.10	47	CLT	0.15	0.135	0.159	0.183	0.929	0.940
0.8	0.25	38	FDR		0.113	0.000	0.000	0.922	0.953
0.8	0.30	36	FDR		0.105	0.000	0.000	0.919	0.926
0.9	0.05	43	CLT	0.15	0.144	0.125	0.125	0.936	0.914
0.9	0.10	37	CLT	0.15	0.135	0.156	0.182	0.928	0.917
0.9	0.25	30	FDR		0.113	0.000	0.000	0.922	0.952
0.9	0.30	29	FDR		0.105	0.000	0.000	0.924	0.964
1.0	0.05	35	CLT	0.15	0.143	0.119	0.119	0.938	0.927
1.0	0.10	31	CLT	0.15	0.136	0.179	0.196	0.938	0.975
1.0	0.25	25	FDR		0.112	0.000	0.000	0.930	0.981
1.0	0.30	24	FDR		0.105	0.000	0.000	0.930	0.995
1.1	0.05	29	CLT	0.15	0.143	0.124	0.124	0.939	0.937
1.1	0.10	26	CLT	0.15	0.134	0.157	0.173	0.941	0.979
1.1	0.25	21	FDR		0.113	0.000	0.000	0.934	0.996
1.1	0.30	20	FDR		0.105	0.000	0.000	0.932	0.994

Table 21: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=5000, $\rho =$ 0.1

Izmirlian FDP-dispersion 75 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.142	0.105	0.105	0.874	0.276
0.7	0.10	51	CLT	0.15	0.135	0.170	0.198	0.864	0.116
0.7	0.25	42	FDR		0.112	0.000	0.000	0.869	0.042
0.7	0.30	40	FDR		0.105	0.000	0.000	0.868	0.028
0.8	0.05	45	CLT	0.15	0.142	0.119	0.119	0.868	0.225
0.8	0.10	39	CLT	0.15	0.135	0.162	0.191	0.864	0.100
8.0	0.25	33	FDR		0.113	0.000	0.000	0.878	0.104
8.0	0.30	31	FDR		0.105	0.000	0.000	0.872	0.043
0.9	0.05	36	CLT	0.15	0.142	0.106	0.106	0.875	0.276
0.9	0.10	32	CLT	0.15	0.135	0.159	0.198	0.878	0.237
0.9	0.25	26	FDR		0.112	0.000	0.000	0.877	0.093
0.9	0.30	25	FDR		0.105	0.000	0.000	0.878	0.079
1.0	0.05	30	CLT	0.15	0.143	0.110	0.110	0.887	0.415
1.0	0.10	26	CLT	0.15	0.135	0.158	0.185	0.880	0.251
1.0	0.25	21	FDR		0.113	0.001	0.001	0.876	0.080
1.0	0.30	20	FDR		0.105	0.000	0.000	0.875	0.061
1.1	0.05	25	CLT	0.15	0.141	0.114	0.114	0.888	0.411
1.1	0.10	22	CLT	0.15	0.135	0.162	0.191	0.889	0.369
1.1	0.25	18	FDR		0.113	0.001	0.001	0.889	0.270
1.1	0.30	17	FDR		0.105	0.000	0.000	0.884	0.153

Table 22: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=5000, $\rho =$ 0.1

Izmirlian FDP-dispersion 76 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	72	CLT	0.14	0.142	0.168	0.218	0.940	0.859
0.7	0.10	63	CLT	0.14	0.135	0.164	0.294	0.935	0.876
0.7	0.25	50	FDR		0.112	0.011	0.011	0.925	0.888
0.7	0.30	48	FDR		0.105	0.001	0.001	0.923	0.892
8.0	0.05	56	CLT	0.14	0.144	0.181	0.222	0.944	0.878
8.0	0.10	48	CLT	0.14	0.135	0.157	0.272	0.934	0.891
0.8	0.25	38	FDR		0.112	0.016	0.016	0.923	0.876
8.0	0.30	37	FDR		0.106	0.002	0.002	0.926	0.917
0.9	0.05	44	CLT	0.14	0.141	0.149	0.199	0.942	0.877
0.9	0.10	39	CLT	0.14	0.135	0.153	0.290	0.942	0.925
0.9	0.25	31	FDR		0.113	0.015	0.015	0.931	0.940
0.9	0.30	29	FDR		0.105	0.002	0.002	0.924	0.897
1.0	0.05	36	CLT	0.14	0.143	0.170	0.213	0.944	0.889
1.0	0.10	32	CLT	0.14	0.133	0.165	0.266	0.945	0.942
1.0	0.25	25	FDR		0.112	0.018	0.018	0.929	0.922
1.0	0.30	24	FDR		0.105	0.001	0.001	0.930	0.959
1.1	0.05	31	CLT	0.14	0.141	0.146	0.181	0.954	0.937
1.1	0.10	27	CLT	0.14	0.135	0.164	0.280	0.950	0.959
1.1	0.25	21	FDR		0.113	0.018	0.018	0.934	0.953
1.1	0.30	20	FDR		0.105	0.001	0.001	0.932	0.963

Table 23: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=2000, $\rho =$ 0.1

Izmirlian FDP-dispersion 77 / 1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.14	0.142	0.175	0.235	0.873	0.362
0.7	0.10	51	CLT	0.14	0.135	0.167	0.302	0.862	0.230
0.7	0.25	42	FDR		0.112	0.013	0.013	0.868	0.144
0.7	0.30	40	FDR		0.105	0.007	0.007	0.867	0.098
0.8	0.05	45	CLT	0.14	0.144	0.174	0.241	0.869	0.352
0.8	0.10	39	CLT	0.14	0.136	0.182	0.312	0.863	0.224
8.0	0.25	33	FDR		0.112	0.016	0.016	0.877	0.187
8.0	0.30	31	FDR		0.105	0.004	0.004	0.871	0.132
0.9	0.05	36	CLT	0.14	0.142	0.151	0.203	0.870	0.359
0.9	0.10	32	CLT	0.14	0.133	0.141	0.254	0.878	0.346
0.9	0.25	26	FDR		0.113	0.012	0.012	0.876	0.205
0.9	0.30	25	FDR		0.105	0.001	0.001	0.878	0.206
1.0	0.05	30	CLT	0.14	0.141	0.146	0.197	0.887	0.490
1.0	0.10	26	CLT	0.14	0.134	0.140	0.247	0.879	0.338
1.0	0.25	21	FDR		0.113	0.026	0.026	0.876	0.208
1.0	0.30	20	FDR		0.104	0.002	0.002	0.874	0.159
1.1	0.05	25	CLT	0.14	0.143	0.155	0.212	0.892	0.511
1.1	0.10	22	CLT	0.14	0.135	0.164	0.276	0.888	0.436
1.1	0.25	18	FDR		0.113	0.018	0.018	0.888	0.344
1.1	0.30	17	FDR		0.104	0.004	0.004	0.886	0.294

Table 24: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=2000, $\rho=0.1$

Izmirlian FDP-dispersion 78 / 10

es	D.	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
	$\frac{\rho_1}{}$								
0.7	0.05	76	CLT	0.13	0.139	0.156	0.256	0.950	0.857
0.7	0.10	65	CLT	0.13	0.135	0.156	0.332	0.944	0.876
0.7	0.25	51	CLT	0.15	0.113	0.066	0.066	0.929	0.856
0.7	0.30	48	CLT	0.15	0.105	0.016	0.016	0.926	0.854
0.8	0.05	58	CLT	0.13	0.145	0.165	0.286	0.951	0.875
8.0	0.10	50	CLT	0.13	0.136	0.181	0.336	0.944	0.889
0.8	0.25	39	CLT	0.15	0.111	0.047	0.047	0.928	0.851
8.0	0.30	37	CLT	0.15	0.105	0.016	0.016	0.927	0.856
0.9	0.05	47	CLT	0.13	0.143	0.172	0.295	0.955	0.888
0.9	0.10	40	CLT	0.13	0.137	0.171	0.354	0.947	0.894
0.9	0.25	31	CLT	0.15	0.112	0.057	0.057	0.930	0.867
0.9	0.30	30	CLT	0.15	0.105	0.014	0.014	0.934	0.916
1.0	0.05	38	CLT	0.13	0.143	0.162	0.287	0.958	0.905
1.0	0.10	33	CLT	0.13	0.133	0.151	0.308	0.951	0.920
1.0	0.25	26	CLT	0.15	0.113	0.066	0.066	0.939	0.931
1.0	0.30	24	CLT	0.15	0.105	0.021	0.021	0.929	0.878
1.1	0.05	32	CLT	0.13	0.147	0.188	0.302	0.960	0.915
1.1	0.10	28	CLT	0.13	0.135	0.177	0.349	0.957	0.953
1.1	0.25	22	CLT	0.15	0.113	0.046	0.046	0.944	0.942
1.1	0.30	21	CLT	0.15	0.105	0.025	0.025	0.941	0.961

Table 25: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=1000, $\rho = 0.1$

Izmirlian FDP-dispersion 79 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.13	0.144	0.150	0.283	0.869	0.446
0.7	0.10	51	CLT	0.13	0.135	0.171	0.347	0.859	0.293
0.7	0.25	42	CLT	0.15	0.113	0.063	0.063	0.870	0.239
0.7	0.30	40	CLT	0.15	0.104	0.022	0.022	0.866	0.187
8.0	0.05	45	CLT	0.13	0.141	0.164	0.273	0.868	0.434
8.0	0.10	39	CLT	0.13	0.134	0.179	0.342	0.862	0.321
8.0	0.25	33	CLT	0.15	0.112	0.054	0.054	0.876	0.321
8.0	0.30	31	CLT	0.15	0.103	0.019	0.019	0.870	0.218
0.9	0.05	36	CLT	0.13	0.143	0.156	0.285	0.871	0.466
0.9	0.10	32	CLT	0.13	0.136	0.171	0.345	0.879	0.434
0.9	0.25	26	CLT	0.15	0.114	0.072	0.072	0.875	0.307
0.9	0.30	25	CLT	0.15	0.104	0.023	0.023	0.876	0.278
1.0	0.05	30	CLT	0.13	0.140	0.153	0.278	0.886	0.537
1.0	0.10	26	CLT	0.13	0.134	0.163	0.333	0.876	0.405
1.0	0.25	21	CLT	0.15	0.112	0.063	0.063	0.873	0.280
1.0	0.30	20	CLT	0.15	0.106	0.025	0.025	0.873	0.241
1.1	0.05	25	CLT	0.13	0.142	0.149	0.274	0.884	0.513
1.1	0.10	22	CLT	0.13	0.138	0.172	0.361	0.886	0.471
1.1	0.25	18	CLT	0.15	0.112	0.056	0.056	0.887	0.406
1.1	0.30	17	CLT	0.15	0.105	0.024	0.024	0.883	0.348

Table 26: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=1000, $\rho =$ 0.1

Izmirlian FDP-dispersion 80 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	81	CLT	0.11	0.145	0.162	0.320	0.967	0.920
0.7	0.10	69	CLT	0.12	0.133	0.157	0.353	0.954	0.889
0.7	0.25	52	CLT	0.15	0.111	0.108	0.108	0.932	0.817
0.7	0.30	49	CLT	0.15	0.104	0.065	0.065	0.931	0.834
8.0	0.05	62	CLT	0.11	0.142	0.168	0.325	0.965	0.915
0.8	0.10	53	CLT	0.12	0.133	0.153	0.363	0.956	0.894
8.0	0.25	40	CLT	0.15	0.113	0.135	0.135	0.935	0.854
8.0	0.30	38	CLT	0.15	0.104	0.068	0.068	0.932	0.839
0.9	0.05	50	CLT	0.11	0.145	0.164	0.335	0.969	0.931
0.9	0.10	43	CLT	0.12	0.134	0.163	0.378	0.962	0.929
0.9	0.25	32	CLT	0.15	0.113	0.130	0.130	0.937	0.866
0.9	0.30	31	CLT	0.15	0.105	0.061	0.061	0.940	0.890
1.0	0.05	41	CLT	0.11	0.143	0.166	0.319	0.972	0.939
1.0	0.10	35	CLT	0.12	0.134	0.187	0.357	0.961	0.917
1.0	0.25	26	CLT	0.15	0.114	0.130	0.130	0.940	0.886
1.0	0.30	25	CLT	0.15	0.105	0.066	0.066	0.940	0.875
1.1	0.05	34	CLT	0.11	0.144	0.165	0.337	0.971	0.929
1.1	0.10	29	CLT	0.12	0.133	0.156	0.358	0.962	0.919
1.1	0.25	22	CLT	0.15	0.112	0.117	0.117	0.944	0.901
1.1	0.30	21	CLT	0.15	0.104	0.062	0.062	0.944	0.904

Table 27: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=500, $\rho = 0.1$

Izmirlian FDP-dispersion 81 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.11	0.144	0.165	0.343	0.864	0.461
0.7	0.10	51	CLT	0.12	0.136	0.174	0.394	0.859	0.403
0.7	0.25	42	CLT	0.15	0.111	0.127	0.127	0.869	0.348
0.7	0.30	40	CLT	0.15	0.105	0.062	0.062	0.867	0.292
8.0	0.05	45	CLT	0.11	0.140	0.140	0.327	0.864	0.469
0.8	0.10	39	CLT	0.12	0.137	0.167	0.380	0.859	0.391
8.0	0.25	33	CLT	0.15	0.114	0.137	0.137	0.875	0.383
8.0	0.30	31	CLT	0.15	0.104	0.069	0.069	0.870	0.313
0.9	0.05	36	CLT	0.11	0.143	0.170	0.332	0.873	0.498
0.9	0.10	32	CLT	0.12	0.134	0.158	0.375	0.878	0.482
0.9	0.25	26	CLT	0.15	0.111	0.139	0.139	0.876	0.360
0.9	0.30	25	CLT	0.15	0.104	0.065	0.065	0.876	0.341
1.0	0.05	30	CLT	0.11	0.140	0.160	0.314	0.877	0.504
1.0	0.10	26	CLT	0.12	0.137	0.152	0.382	0.880	0.500
1.0	0.25	21	CLT	0.15	0.112	0.114	0.114	0.878	0.388
1.0	0.30	20	CLT	0.15	0.103	0.063	0.063	0.875	0.360
1.1	0.05	25	CLT	0.11	0.144	0.165	0.346	0.881	0.541
1.1	0.10	22	CLT	0.12	0.136	0.182	0.378	0.884	0.521
1.1	0.25	18	CLT	0.15	0.113	0.125	0.125	0.891	0.500
1.1	0.30	17	CLT	0.15	0.105	0.072	0.072	0.882	0.405

Table 28: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=500, $\rho =$ 0.1

Izmirlian FDP-dispersion 82 / 100

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	100	CLT	0.06	0.145	0.167	0.376	0.984	0.960
0.7	0.10	84	CLT	0.07	0.127	0.130	0.371	0.985	0.932
0.7	0.25	60	CLT	0.12	0.113	0.175	0.286	0.960	0.883
0.7	0.30	56	CLT	0.13	0.103	0.161	0.210	0.958	0.876
0.8	0.05	77	CLT	0.06	0.137	0.150	0.350	0.982	0.951
0.8	0.10	65	CLT	0.07	0.134	0.164	0.403	0.983	0.926
8.0	0.25	46	CLT	0.12	0.111	0.159	0.276	0.961	0.891
0.8	0.30	43	CLT	0.13	0.107	0.181	0.228	0.956	0.884
0.9	0.05	62	CLT	0.06	0.148	0.169	0.377	0.981	0.953
0.9	0.10	51	CLT	0.07	0.142	0.172	0.439	0.980	0.929
0.9	0.25	37	CLT	0.12	0.112	0.162	0.263	0.965	0.918
0.9	0.30	34	CLT	0.13	0.106	0.172	0.219	0.955	0.871
1.0	0.05	51	CLT	0.06	0.146	0.155	0.381	0.987	0.960
1.0	0.10	42	CLT	0.07	0.139	0.166	0.414	0.984	0.947
1.0	0.25	30	CLT	0.12	0.114	0.169	0.280	0.967	0.924
1.0	0.30	28	CLT	0.13	0.105	0.171	0.216	0.958	0.879
1.1	0.05	42	CLT	0.06	0.149	0.155	0.384	0.988	0.966
1.1	0.10	35	CLT	0.07	0.132	0.145	0.388	0.983	0.923
1.1	0.25	25	CLT	0.12	0.109	0.153	0.260	0.966	0.921
1.1	0.30	23	CLT	0.13	0.103	0.158	0.212	0.960	0.901

Table 29: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=100, $\rho =$ 0.1

Izmirlian FDP-dispersion 83 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.06	0.140	0.000	0.356	0.856	0.553
0.7	0.10	51	CLT	0.07	0.132	0.156	0.412	0.856	0.491
0.7	0.25	42	CLT	0.12	0.113	0.178	0.294	0.864	0.470
0.7	0.30	40	CLT	0.13	0.105	0.180	0.236	0.862	0.468
0.8	0.05	45	CLT	0.06	0.140	0.000	0.358	0.862	0.575
0.8	0.10	39	CLT	0.07	0.137	0.164	0.413	0.855	0.496
8.0	0.25	33	CLT	0.12	0.118	0.181	0.302	0.871	0.480
0.8	0.30	31	CLT	0.13	0.106	0.175	0.240	0.872	0.487
0.9	0.05	36	CLT	0.06	0.135	0.000	0.348	0.869	0.615
0.9	0.10	32	CLT	0.07	0.132	0.156	0.403	0.875	0.549
0.9	0.25	26	CLT	0.12	0.112	0.165	0.279	0.869	0.466
0.9	0.30	25	CLT	0.13	0.105	0.148	0.228	0.875	0.486
1.0	0.05	30	CLT	0.06	0.140	0.000	0.351	0.880	0.632
1.0	0.10	26	CLT	0.07	0.132	0.148	0.398	0.882	0.559
1.0	0.25	21	CLT	0.12	0.107	0.135	0.245	0.870	0.497
1.0	0.30	20	CLT	0.13	0.102	0.167	0.217	0.864	0.457
1.1	0.05	25	CLT	0.06	0.144	0.000	0.359	0.875	0.624
1.1	0.10	22	CLT	0.07	0.136	0.166	0.413	0.880	0.565
1.1	0.25	18	CLT	0.12	0.111	0.157	0.284	0.889	0.550
1.1	0.30	17	CLT	0.13	0.102	0.164	0.209	0.883	0.516

Table 30: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=100, $\rho =$ 0.1

Izmirlian FDP-dispersion 84 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	120	Rom		0.138	0.121	0.339	0.928	0.925
0.7	0.10	104	Rom		0.134	0.095	0.407	0.990	0.977
0.7	0.25	67	CLT	0.10	0.105	0.135	0.288	0.978	0.937
0.7	0.30	62	CLT	0.11	0.103	0.173	0.277	0.970	0.918
8.0	0.05	92	Rom		0.139	0.134	0.344	0.927	0.925
8.0	0.10	81	Rom		0.134	0.104	0.397	0.988	0.971
8.0	0.25	52	CLT	0.10	0.113	0.169	0.313	0.976	0.920
8.0	0.30	48	CLT	0.11	0.100	0.154	0.249	0.973	0.917
0.9	0.05	74	Rom		0.133	0.128	0.319	0.940	0.938
0.9	0.10	64	Rom		0.136	0.094	0.407	0.989	0.982
0.9	0.25	41	CLT	0.10	0.110	0.174	0.299	0.980	0.941
0.9	0.30	38	CLT	0.11	0.103	0.165	0.267	0.973	0.925
1.0	0.05	60	Rom		0.145	0.135	0.348	0.918	0.917
1.0	0.10	53	Rom		0.128	0.090	0.396	0.996	0.983
1.0	0.25	34	CLT	0.10	0.106	0.130	0.276	0.981	0.941
1.0	0.30	31	CLT	0.11	0.109	0.183	0.304	0.973	0.918
1.1	0.05	50	Rom		0.133	0.110	0.325	0.924	0.923
1.1	0.10	44	Rom		0.137	0.117	0.404	0.990	0.983
1.1	0.25	28	CLT	0.10	0.114	0.174	0.323	0.978	0.932
1.1	0.30	26	CLT	0.11	0.104	0.153	0.275	0.972	0.921

Table 31: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=50, $\rho = 0.1$

Izmirlian FDP-dispersion 85 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.138	0.132	0.312	0.791	0.676
0.7	0.10	51	Rom		0.128	0.120	0.386	0.847	0.558
0.7	0.25	42	CLT	0.10	0.113	0.153	0.325	0.859	0.499
0.7	0.30	40	CLT	0.11	0.106	0.163	0.297	0.868	0.502
8.0	0.05	45	Rom		0.139	0.120	0.323	0.796	0.674
8.0	0.10	39	Rom		0.126	0.106	0.378	0.872	0.601
8.0	0.25	33	CLT	0.10	0.108	0.146	0.304	0.865	0.523
0.8	0.30	31	CLT	0.11	0.108	0.187	0.311	0.865	0.489
0.9	0.05	36	Rom		0.137	0.121	0.315	0.804	0.683
0.9	0.10	32	Rom		0.131	0.123	0.386	0.867	0.599
0.9	0.25	26	CLT	0.10	0.112	0.140	0.312	0.867	0.509
0.9	0.30	25	CLT	0.11	0.101	0.153	0.283	0.868	0.506
1.0	0.05	30	Rom		0.156	0.132	0.351	0.814	0.708
1.0	0.10	26	Rom		0.141	0.099	0.418	0.863	0.595
1.0	0.25	21	CLT	0.10	0.111	0.156	0.308	0.873	0.539
1.0	0.30	20	CLT	0.11	0.110	0.174	0.294	0.865	0.501
1.1	0.05	25	Rom		0.128	0.122	0.299	0.809	0.704
1.1	0.10	22	Rom		0.128	0.104	0.392	0.871	0.614
1.1	0.25	18	CLT	0.10	0.110	0.152	0.313	0.893	0.609
1.1	0.30	17	CLT	0.11	0.106	0.164	0.284	0.876	0.524

Table 32: Sample size determined via average power, under BHFDR control, $\alpha = 0.15$, m=50, $\rho = 0.1$

Izmirlian FDP-dispersion 86 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	132	Rom	_	0.149	0.144	0.251	0.612	0.612
0.7	0.10	115	Rom		0.151	0.152	0.337	0.876	0.876
0.7	0.25	91	Rom		0.112	0.090	0.360	0.994	0.982
0.7	0.30	86	Rom		0.101	0.081	0.305	0.995	0.973
8.0	0.05	102	Rom		0.142	0.122	0.247	0.652	0.652
8.0	0.10	88	Rom		0.133	0.126	0.303	0.876	0.874
8.0	0.25	70	Rom		0.116	0.089	0.358	0.997	0.985
8.0	0.30	66	Rom		0.105	0.071	0.301	0.995	0.976
0.9	0.05	81	Rom		0.140	0.130	0.236	0.636	0.636
0.9	0.10	70	Rom		0.137	0.120	0.322	0.873	0.871
0.9	0.25	56	Rom		0.107	0.087	0.337	0.990	0.980
0.9	0.30	53	Rom		0.105	0.067	0.311	0.995	0.979
1.0	0.05	66	Rom		0.148	0.150	0.250	0.633	0.633
1.0	0.10	58	Rom		0.145	0.161	0.335	0.869	0.867
1.0	0.25	46	Rom		0.116	0.096	0.356	0.995	0.984
1.0	0.30	43	Rom		0.106	0.078	0.325	0.997	0.982
1.1	0.05	55	Rom		0.139	0.131	0.231	0.650	0.650
1.1	0.10	48	Rom		0.139	0.131	0.319	0.868	0.867
1.1	0.25	38	Rom		0.110	0.095	0.339	0.993	0.981
1.1	0.30	36	Rom		0.107	0.077	0.309	0.994	0.974

Table 33: Sample size determined via tp-TPP power, under AutFDP control, $\alpha=0.15$, m=20, $\rho=0.1$

Izmirlian FDP-dispersion 87 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.146	0.132	0.239	0.568	0.555
0.7	0.10	51	Rom		0.135	0.116	0.299	0.769	0.683
0.7	0.25	42	Rom		0.117	0.118	0.339	0.846	0.555
0.7	0.30	40	Rom		0.112	0.109	0.335	0.864	0.536
8.0	0.05	45	Rom		0.136	0.129	0.222	0.554	0.538
8.0	0.10	39	Rom		0.135	0.138	0.289	0.745	0.649
8.0	0.25	33	Rom		0.108	0.098	0.328	0.869	0.603
8.0	0.30	31	Rom		0.108	0.095	0.335	0.856	0.535
0.9	0.05	36	Rom		0.148	0.147	0.245	0.579	0.559
0.9	0.10	32	Rom		0.133	0.114	0.292	0.769	0.693
0.9	0.25	26	Rom		0.114	0.107	0.362	0.876	0.608
0.9	0.30	25	Rom		0.101	0.093	0.312	0.874	0.569
1.0	0.05	30	Rom		0.133	0.124	0.215	0.571	0.555
1.0	0.10	26	Rom		0.142	0.151	0.321	0.794	0.711
1.0	0.25	21	Rom		0.108	0.105	0.321	0.861	0.573
1.0	0.30	20	Rom		0.112	0.110	0.344	0.858	0.521
1.1	0.05	25	Rom		0.143	0.147	0.237	0.585	0.572
1.1	0.10	22	Rom		0.132	0.120	0.301	0.793	0.722
1.1	0.25	18	Rom		0.114	0.103	0.345	0.881	0.608
1.1	0.30	17	Rom		0.107	0.088	0.321	0.880	0.581

Table 34: Sample size determined via average power, under BHFDR control, $\alpha = 0.15$, m=20, $\rho = 0.1$

Izmirlian FDP-dispersion 88 / 100

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	68	CLT	0.15	0.142	0.067	0.067	0.925	0.844
0.7	0.10	60	FDR		0.135	0.160	0.160	0.923	0.882
0.7	0.25	49	FDR		0.113	0.000	0.000	0.918	0.918
0.7	0.30	46	FDR		0.105	0.000	0.000	0.913	0.843
8.0	0.05	53	CLT	0.15	0.143	0.078	0.078	0.929	0.869
8.0	0.10	46	FDR		0.135	0.160	0.160	0.923	0.889
0.8	0.25	38	FDR		0.112	0.000	0.000	0.923	0.966
0.8	0.30	36	FDR		0.105	0.000	0.000	0.919	0.935
0.9	0.05	42	CLT	0.15	0.142	0.069	0.069	0.930	0.888
0.9	0.10	37	FDR		0.135	0.157	0.157	0.928	0.932
0.9	0.25	30	FDR		0.113	0.000	0.000	0.922	0.956
0.9	0.30	29	FDR		0.105	0.000	0.000	0.925	0.986
1.0	0.05	35	CLT	0.15	0.143	0.073	0.073	0.938	0.942
1.0	0.10	30	FDR		0.135	0.166	0.166	0.930	0.933
1.0	0.25	25	FDR		0.113	0.000	0.000	0.929	0.992
1.0	0.30	24	FDR		0.105	0.000	0.000	0.929	0.999
1.1	0.05	29	CLT	0.15	0.141	0.070	0.070	0.939	0.922
1.1	0.10	25	FDR		0.135	0.162	0.162	0.931	0.954
1.1	0.25	21	FDR		0.112	0.000	0.000	0.933	0.994
1.1	0.30	20	FDR		0.105	0.000	0.000	0.931	0.999

Table 35: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=10000, $\rho = 0.2$

Izmirlian FDP-dispersion 89 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.142	0.080	0.080	0.871	0.227
0.7	0.10	51	FDR		0.136	0.163	0.163	0.866	0.103
0.7	0.25	42	FDR		0.112	0.000	0.000	0.868	0.017
0.7	0.30	40	FDR		0.105	0.000	0.000	0.867	0.016
0.8	0.05	45	CLT	0.15	0.142	0.074	0.074	0.869	0.209
0.8	0.10	39	FDR		0.134	0.137	0.137	0.864	0.103
8.0	0.25	33	FDR		0.112	0.000	0.000	0.879	0.097
8.0	0.30	31	FDR		0.105	0.000	0.000	0.871	0.022
0.9	0.05	36	CLT	0.15	0.142	0.072	0.072	0.875	0.260
0.9	0.10	32	FDR		0.135	0.148	0.148	0.880	0.210
0.9	0.25	26	FDR		0.112	0.000	0.000	0.876	0.073
0.9	0.30	25	FDR		0.105	0.000	0.000	0.879	0.070
1.0	0.05	30	CLT	0.15	0.143	0.067	0.067	0.885	0.363
1.0	0.10	26	FDR		0.135	0.159	0.159	0.883	0.260
1.0	0.25	21	FDR		0.112	0.000	0.000	0.875	0.068
1.0	0.30	20	FDR		0.105	0.000	0.000	0.874	0.038
1.1	0.05	25	CLT	0.15	0.143	0.074	0.074	0.890	0.421
1.1	0.10	22	FDR		0.135	0.153	0.153	0.889	0.346
1.1	0.25	18	FDR		0.112	0.000	0.000	0.889	0.247
1.1	0.30	17	FDR		0.104	0.000	0.000	0.884	0.140

Table 36: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=10000, $\rho =$ 0.2

Izmirlian FDP-dispersion 90 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	69	CLT	0.15	0.143	0.136	0.136	0.928	0.802
0.7	0.10	60	CLT	0.15	0.134	0.192	0.207	0.923	0.826
0.7	0.25	49	FDR		0.112	0.003	0.003	0.918	0.845
0.7	0.30	47	FDR		0.105	0.000	0.000	0.919	0.873
0.8	0.05	54	CLT	0.15	0.144	0.150	0.150	0.934	0.856
0.8	0.10	47	CLT	0.15	0.136	0.229	0.246	0.930	0.875
8.0	0.25	38	FDR		0.112	0.007	0.007	0.921	0.889
8.0	0.30	36	FDR		0.105	0.000	0.000	0.920	0.892
0.9	0.05	43	CLT	0.15	0.142	0.147	0.147	0.936	0.870
0.9	0.10	37	CLT	0.15	0.135	0.193	0.214	0.927	0.859
0.9	0.25	30	FDR		0.112	0.004	0.004	0.921	0.891
0.9	0.30	29	FDR		0.105	0.000	0.000	0.925	0.948
1.0	0.05	35	CLT	0.15	0.142	0.150	0.150	0.938	0.866
1.0	0.10	31	CLT	0.15	0.136	0.211	0.243	0.938	0.933
1.0	0.25	25	FDR		0.112	0.002	0.002	0.929	0.944
1.0	0.30	24	FDR		0.105	0.001	0.001	0.929	0.963
1.1	0.05	29	CLT	0.15	0.141	0.148	0.148	0.939	0.885
1.1	0.10	26	CLT	0.15	0.135	0.223	0.246	0.941	0.958
1.1	0.25	21	FDR		0.113	0.001	0.001	0.933	0.979
1.1	0.30	20	FDR		0.105	0.000	0.000	0.932	0.978

Table 37: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=5000, $\rho = 0.2$

Izmirlian FDP-dispersion

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.15	0.144	0.162	0.162	0.872	0.340
0.7	0.10	51	CLT	0.15	0.137	0.223	0.261	0.866	0.189
0.7	0.25	42	FDR		0.113	0.007	0.007	0.867	0.078
0.7	0.30	40	FDR		0.105	0.000	0.000	0.867	0.068
8.0	0.05	45	CLT	0.15	0.143	0.137	0.137	0.866	0.299
8.0	0.10	39	CLT	0.15	0.136	0.212	0.231	0.864	0.187
8.0	0.25	33	FDR		0.113	0.007	0.007	0.878	0.194
8.0	0.30	31	FDR		0.105	0.000	0.000	0.871	0.084
0.9	0.05	36	CLT	0.15	0.142	0.137	0.137	0.870	0.321
0.9	0.10	32	CLT	0.15	0.136	0.222	0.245	0.880	0.320
0.9	0.25	26	FDR		0.113	0.004	0.004	0.876	0.155
0.9	0.30	25	FDR		0.105	0.000	0.000	0.879	0.152
1.0	0.05	30	CLT	0.15	0.142	0.133	0.133	0.885	0.406
1.0	0.10	26	CLT	0.15	0.134	0.185	0.216	0.880	0.329
1.0	0.25	21	FDR		0.112	0.003	0.003	0.875	0.149
1.0	0.30	20	FDR		0.105	0.000	0.000	0.874	0.115
1.1	0.05	25	CLT	0.15	0.142	0.134	0.134	0.887	0.461
1.1	0.10	22	CLT	0.15	0.135	0.208	0.237	0.889	0.412
1.1	0.25	18	FDR		0.113	0.004	0.004	0.888	0.326
1.1	0.30	17	FDR		0.105	0.000	0.000	0.883	0.210

Table 38: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=5000, $\rho =$ 0.2

Izmirlian FDP-dispersion 92 /

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	72	CLT	0.14	0.142	0.187	0.239	0.940	0.802
0.7	0.10	63	CLT	0.14	0.136	0.208	0.317	0.936	0.841
0.7	0.25	50	FDR		0.112	0.032	0.032	0.926	0.835
0.7	0.30	48	FDR		0.105	0.012	0.012	0.925	0.840
8.0	0.05	56	CLT	0.14	0.144	0.205	0.249	0.942	0.845
8.0	0.10	48	CLT	0.14	0.136	0.201	0.306	0.934	0.839
0.8	0.25	38	FDR		0.113	0.031	0.031	0.923	0.802
0.8	0.30	37	FDR		0.105	0.010	0.010	0.926	0.853
0.9	0.05	44	CLT	0.14	0.143	0.178	0.212	0.942	0.840
0.9	0.10	39	CLT	0.14	0.135	0.192	0.296	0.943	0.898
0.9	0.25	31	FDR		0.113	0.034	0.034	0.930	0.869
0.9	0.30	29	FDR		0.105	0.014	0.014	0.923	0.841
1.0	0.05	36	CLT	0.14	0.142	0.197	0.243	0.944	0.851
1.0	0.10	32	CLT	0.14	0.136	0.204	0.315	0.944	0.896
1.0	0.25	25	FDR		0.112	0.039	0.039	0.929	0.863
1.0	0.30	24	FDR		0.105	0.012	0.012	0.930	0.892
1.1	0.05	31	CLT	0.14	0.141	0.191	0.223	0.955	0.913
1.1	0.10	27	CLT	0.14	0.135	0.210	0.300	0.949	0.921
1.1	0.25	21	FDR		0.112	0.037	0.037	0.933	0.903
1.1	0.30	20	FDR		0.105	0.011	0.011	0.932	0.917

Table 39: Sample size determined via tp-TPP power, under AutFDP control, $\alpha=0.15$, m=2000, $\rho=0.2$

Izmirlian FDP-dispersion 93 / 10

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.14	0.142	0.184	0.234	0.864	0.406
0.7	0.10	51	CLT	0.14	0.136	0.218	0.323	0.862	0.318
0.7	0.25	42	FDR		0.113	0.041	0.041	0.868	0.216
0.7	0.30	40	FDR		0.106	0.017	0.017	0.865	0.177
8.0	0.05	45	CLT	0.14	0.143	0.187	0.244	0.866	0.423
8.0	0.10	39	CLT	0.14	0.136	0.209	0.337	0.859	0.296
8.0	0.25	33	FDR		0.111	0.033	0.033	0.877	0.272
8.0	0.30	31	FDR		0.105	0.012	0.012	0.872	0.215
0.9	0.05	36	CLT	0.14	0.144	0.213	0.260	0.873	0.479
0.9	0.10	32	CLT	0.14	0.137	0.215	0.327	0.877	0.405
0.9	0.25	26	FDR		0.113	0.060	0.060	0.875	0.282
0.9	0.30	25	FDR		0.104	0.014	0.014	0.876	0.256
1.0	0.05	30	CLT	0.14	0.140	0.176	0.237	0.882	0.526
1.0	0.10	26	CLT	0.14	0.136	0.219	0.307	0.880	0.416
1.0	0.25	21	FDR		0.112	0.039	0.039	0.875	0.283
1.0	0.30	20	FDR		0.105	0.014	0.014	0.875	0.247
1.1	0.05	25	CLT	0.14	0.141	0.188	0.240	0.882	0.488
1.1	0.10	22	CLT	0.14	0.135	0.190	0.298	0.888	0.472
1.1	0.25	18	FDR		0.112	0.041	0.041	0.890	0.414
1.1	0.30	17	FDR		0.104	0.015	0.015	0.885	0.340

Table 40: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=2000, $\rho =$ 0.2

Izmirlian FDP-dispersion 94/108

_										
	es	P_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
	0.7	0.05	76	CLT	0.13	0.145	0.201	0.316	0.946	0.836
	0.7	0.10	65	CLT	0.13	0.135	0.201	0.343	0.943	0.837
	0.7	0.25	51	CLT	0.15	0.113	0.105	0.105	0.926	0.786
	0.7	0.30	48	CLT	0.15	0.105	0.054	0.054	0.924	0.786
	8.0	0.05	58	CLT	0.13	0.141	0.179	0.286	0.951	0.852
	8.0	0.10	50	CLT	0.13	0.134	0.194	0.347	0.942	0.846
	8.0	0.25	39	CLT	0.15	0.113	0.103	0.103	0.929	0.816
	8.0	0.30	37	CLT	0.15	0.106	0.053	0.053	0.926	0.805
	0.9	0.05	47	CLT	0.13	0.143	0.195	0.282	0.956	0.875
	0.9	0.10	40	CLT	0.13	0.133	0.189	0.331	0.945	0.856
	0.9	0.25	31	CLT	0.15	0.114	0.104	0.104	0.930	0.828
	0.9	0.30	30	CLT	0.15	0.105	0.049	0.049	0.933	0.851
	1.0	0.05	38	CLT	0.13	0.139	0.163	0.266	0.959	0.895
	1.0	0.10	33	CLT	0.13	0.136	0.212	0.354	0.952	0.893
	1.0	0.25	26	CLT	0.15	0.111	0.097	0.097	0.939	0.886
	1.0	0.30	24	CLT	0.15	0.104	0.046	0.046	0.929	0.828
	1.1	0.05	32	CLT	0.13	0.142	0.186	0.274	0.959	0.889
	1.1	0.10	28	CLT	0.13	0.135	0.219	0.347	0.956	0.894
	1.1	0.25	22	CLT	0.15	0.112	0.102	0.102	0.943	0.908
	1.1	0.30	21	CLT	0.15	0.105	0.051	0.051	0.941	0.916

Table 41: Sample size determined via tp-TPP power, under AutFDP control, $\alpha =$ 0.15, m=1000, $\rho =$ 0.2

Izmirlian FDP-dispersion

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.13	0.141	0.182	0.283	0.865	0.485
0.7	0.10	51	CLT	0.13	0.135	0.195	0.352	0.861	0.391
0.7	0.25	42	CLT	0.15	0.112	0.115	0.115	0.866	0.310
0.7	0.30	40	CLT	0.15	0.104	0.052	0.052	0.867	0.280
8.0	0.05	45	CLT	0.13	0.142	0.183	0.304	0.859	0.465
0.8	0.10	39	CLT	0.13	0.132	0.171	0.331	0.864	0.413
8.0	0.25	33	CLT	0.15	0.112	0.110	0.110	0.877	0.387
8.0	0.30	31	CLT	0.15	0.104	0.056	0.056	0.870	0.328
0.9	0.05	36	CLT	0.13	0.143	0.197	0.306	0.867	0.504
0.9	0.10	32	CLT	0.13	0.136	0.197	0.345	0.873	0.456
0.9	0.25	26	CLT	0.15	0.112	0.094	0.094	0.876	0.374
0.9	0.30	25	CLT	0.15	0.105	0.057	0.057	0.877	0.368
1.0	0.05	30	CLT	0.13	0.141	0.169	0.267	0.879	0.566
1.0	0.10	26	CLT	0.13	0.133	0.191	0.341	0.884	0.498
1.0	0.25	21	CLT	0.15	0.115	0.114	0.114	0.876	0.390
1.0	0.30	20	CLT	0.15	0.106	0.066	0.066	0.874	0.314
1.1	0.05	25	CLT	0.13	0.142	0.173	0.292	0.886	0.577
1.1	0.10	22	CLT	0.13	0.134	0.177	0.323	0.885	0.505
1.1	0.25	18	CLT	0.15	0.112	0.100	0.100	0.889	0.474
1.1	0.30	17	CLT	0.15	0.106	0.065	0.065	0.883	0.384

Table 42: Sample size determined via average power, under BHFDR control, $\alpha =$ 0.15, m=1000, $\rho =$ 0.2

Izmirlian FDP-dispersion 96 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	81	CLT	0.11	0.145	0.186	0.338	0.966	0.905
0.7	0.10	69	CLT	0.12	0.133	0.197	0.369	0.956	0.877
0.7	0.25	52	CLT	0.15	0.113	0.169	0.169	0.932	0.787
0.7	0.30	49	CLT	0.15	0.105	0.107	0.107	0.927	0.757
8.0	0.05	62	CLT	0.11	0.141	0.161	0.326	0.966	0.909
0.8	0.10	53	CLT	0.12	0.134	0.194	0.360	0.954	0.872
8.0	0.25	40	CLT	0.15	0.112	0.153	0.153	0.934	0.815
8.0	0.30	38	CLT	0.15	0.103	0.109	0.109	0.931	0.783
0.9	0.05	50	CLT	0.11	0.137	0.170	0.301	0.968	0.915
0.9	0.10	43	CLT	0.12	0.134	0.183	0.382	0.958	0.883
0.9	0.25	32	CLT	0.15	0.110	0.161	0.161	0.936	0.818
0.9	0.30	31	CLT	0.15	0.105	0.127	0.127	0.940	0.835
1.0	0.05	41	CLT	0.11	0.136	0.163	0.294	0.967	0.910
1.0	0.10	35	CLT	0.12	0.135	0.201	0.365	0.963	0.906
1.0	0.25	26	CLT	0.15	0.114	0.168	0.168	0.938	0.837
1.0	0.30	25	CLT	0.15	0.105	0.102	0.102	0.937	0.835
1.1	0.05	34	CLT	0.11	0.139	0.171	0.311	0.970	0.923
1.1	0.10	29	CLT	0.12	0.134	0.185	0.378	0.964	0.908
1.1	0.25	22	CLT	0.15	0.112	0.166	0.166	0.943	0.846
1.1	0.30	21	CLT	0.15	0.104	0.101	0.101	0.941	0.849

Table 43: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=500, $\rho = 0.2$

Izmirlian FDP-dispersion 97 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.11	0.141	0.182	0.333	0.869	0.537
0.7	0.10	51	CLT	0.12	0.134	0.183	0.382	0.856	0.477
0.7	0.25	42	CLT	0.15	0.111	0.165	0.165	0.867	0.398
0.7	0.30	40	CLT	0.15	0.106	0.109	0.109	0.863	0.357
8.0	0.05	45	CLT	0.11	0.135	0.177	0.313	0.855	0.502
0.8	0.10	39	CLT	0.12	0.130	0.176	0.338	0.850	0.485
8.0	0.25	33	CLT	0.15	0.112	0.172	0.172	0.876	0.439
8.0	0.30	31	CLT	0.15	0.103	0.104	0.104	0.869	0.363
0.9	0.05	36	CLT	0.11	0.143	0.195	0.355	0.869	0.540
0.9	0.10	32	CLT	0.12	0.138	0.206	0.401	0.867	0.521
0.9	0.25	26	CLT	0.15	0.112	0.171	0.171	0.876	0.437
0.9	0.30	25	CLT	0.15	0.104	0.101	0.101	0.883	0.488
1.0	0.05	30	CLT	0.11	0.141	0.178	0.328	0.879	0.571
1.0	0.10	26	CLT	0.12	0.131	0.180	0.354	0.875	0.541
1.0	0.25	21	CLT	0.15	0.116	0.197	0.197	0.871	0.402
1.0	0.30	20	CLT	0.15	0.104	0.113	0.113	0.870	0.380
1.1	0.05	25	CLT	0.11	0.143	0.164	0.331	0.879	0.557
1.1	0.10	22	CLT	0.12	0.133	0.196	0.357	0.888	0.598
1.1	0.25	18	CLT	0.15	0.112	0.157	0.157	0.883	0.504
1.1	0.30	17	CLT	0.15	0.107	0.123	0.123	0.881	0.462

Table 44: Sample size determined via average power, under BHFDR control, $\alpha = 0.15$, m=500, $\rho = 0.2$

Izmirlian FDP-dispersion 98 / 108

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	100	CLT	0.06	0.134	0.144	0.335	0.982	0.944
0.7	0.10	84	CLT	0.07	0.131	0.154	0.379	0.983	0.936
0.7	0.25	60	CLT	0.12	0.114	0.174	0.266	0.958	0.861
0.7	0.30	56	CLT	0.13	0.100	0.155	0.208	0.958	0.869
0.8	0.05	77	CLT	0.06	0.145	0.162	0.354	0.979	0.945
0.8	0.10	65	CLT	0.07	0.131	0.165	0.381	0.986	0.944
8.0	0.25	46	CLT	0.12	0.107	0.155	0.245	0.964	0.886
8.0	0.30	43	CLT	0.13	0.109	0.195	0.245	0.959	0.871
0.9	0.05	62	CLT	0.06	0.143	0.150	0.337	0.982	0.947
0.9	0.10	51	CLT	0.07	0.132	0.157	0.391	0.986	0.937
0.9	0.25	37	CLT	0.12	0.112	0.196	0.268	0.961	0.872
0.9	0.30	34	CLT	0.13	0.107	0.194	0.244	0.956	0.859
1.0	0.05	51	CLT	0.06	0.144	0.156	0.355	0.989	0.967
1.0	0.10	42	CLT	0.07	0.127	0.158	0.369	0.983	0.932
1.0	0.25	30	CLT	0.12	0.113	0.189	0.277	0.964	0.901
1.0	0.30	28	CLT	0.13	0.103	0.174	0.214	0.959	0.878
1.1	0.05	42	CLT	0.06	0.141	0.146	0.357	0.989	0.973
1.1	0.10	35	CLT	0.07	0.138	0.155	0.401	0.985	0.942
1.1	0.25	25	CLT	0.12	0.110	0.177	0.264	0.967	0.907
1.1	0.30	23	CLT	0.13	0.103	0.179	0.220	0.957	0.862

Table 45: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=100, $\rho = 0.2$

Izmirlian FDP-dispersion 99 / 108

es	p_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	CLT	0.06	0.133	0.000	0.326	0.857	0.591
0.7	0.10	51	CLT	0.07	0.131	0.136	0.386	0.865	0.543
0.7	0.25	42	CLT	0.12	0.109	0.165	0.268	0.864	0.520
0.7	0.30	40	CLT	0.13	0.103	0.178	0.234	0.856	0.491
0.8	0.05	45	CLT	0.06	0.134	0.000	0.336	0.851	0.581
0.8	0.10	39	CLT	0.07	0.139	0.158	0.389	0.855	0.529
8.0	0.25	33	CLT	0.12	0.114	0.187	0.287	0.877	0.566
0.8	0.30	31	CLT	0.13	0.104	0.179	0.233	0.860	0.514
0.9	0.05	36	CLT	0.06	0.133	0.000	0.321	0.879	0.645
0.9	0.10	32	CLT	0.07	0.129	0.142	0.373	0.877	0.579
0.9	0.25	26	CLT	0.12	0.110	0.175	0.277	0.871	0.555
0.9	0.30	25	CLT	0.13	0.106	0.168	0.229	0.872	0.560
1.0	0.05	30	CLT	0.06	0.139	0.000	0.358	0.872	0.622
1.0	0.10	26	CLT	0.07	0.137	0.164	0.391	0.868	0.563
1.0	0.25	21	CLT	0.12	0.116	0.208	0.295	0.864	0.527
1.0	0.30	20	CLT	0.13	0.103	0.167	0.216	0.870	0.541
1.1	0.05	25	CLT	0.06	0.139	0.000	0.337	0.873	0.628
1.1	0.10	22	CLT	0.07	0.130	0.159	0.359	0.882	0.605
1.1	0.25	18	CLT	0.12	0.111	0.186	0.278	0.881	0.582
1.1	0.30	17	CLT	0.13	0.099	0.151	0.203	0.871	0.532

Table 46: Sample size determined via average power, under BHFDR control, $\alpha = 0.15$, m=100, $\rho = 0.2$

Izmirlian FDP-dispersion 100 / 100

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	120	Rom		0.143	0.120	0.332	0.916	0.912
0.7	0.10	104	Rom		0.133	0.098	0.373	0.992	0.983
0.7	0.25	67	CLT	0.10	0.106	0.161	0.277	0.977	0.928
0.7	0.30	62	CLT	0.11	0.107	0.172	0.260	0.970	0.905
8.0	0.05	92	Rom		0.133	0.122	0.309	0.922	0.919
8.0	0.10	81	Rom		0.132	0.095	0.365	0.995	0.988
8.0	0.25	52	CLT	0.10	0.116	0.177	0.326	0.982	0.947
8.0	0.30	48	CLT	0.11	0.106	0.184	0.271	0.974	0.915
0.9	0.05	74	Rom		0.141	0.125	0.313	0.912	0.911
0.9	0.10	64	Rom		0.131	0.095	0.369	0.989	0.969
0.9	0.25	41	CLT	0.10	0.113	0.175	0.307	0.973	0.917
0.9	0.30	38	CLT	0.11	0.102	0.161	0.262	0.974	0.916
1.0	0.05	60	Rom		0.143	0.118	0.324	0.908	0.907
1.0	0.10	53	Rom		0.128	0.092	0.365	0.995	0.987
1.0	0.25	34	CLT	0.10	0.113	0.168	0.303	0.981	0.933
1.0	0.30	31	CLT	0.11	0.104	0.181	0.270	0.974	0.921
1.1	0.05	50	Rom		0.131	0.106	0.303	0.929	0.926
1.1	0.10	44	Rom		0.132	0.084	0.363	0.994	0.981
1.1	0.25	28	CLT	0.10	0.112	0.179	0.314	0.980	0.943
1.1	0.30	26	CLT	0.11	0.099	0.166	0.261	0.977	0.932

Table 47: Sample size determined via tp-TPP power, under AutFDP control, $\alpha = 0.15$, m=50, $\rho = 0.2$

Izmirlian FDP-dispersion 101 / 1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.124	0.113	0.278	0.800	0.707
0.7	0.10	51	Rom		0.131	0.123	0.366	0.860	0.582
0.7	0.25	42	CLT	0.10	0.111	0.171	0.295	0.850	0.516
0.7	0.30	40	CLT	0.11	0.108	0.160	0.279	0.853	0.510
8.0	0.05	45	Rom		0.142	0.112	0.311	0.797	0.700
8.0	0.10	39	Rom		0.126	0.096	0.350	0.855	0.584
0.8	0.25	33	CLT	0.10	0.107	0.151	0.290	0.871	0.571
8.0	0.30	31	CLT	0.11	0.111	0.185	0.298	0.864	0.568
0.9	0.05	36	Rom		0.145	0.139	0.296	0.792	0.695
0.9	0.10	32	Rom		0.126	0.105	0.365	0.884	0.658
0.9	0.25	26	CLT	0.10	0.116	0.163	0.311	0.869	0.568
0.9	0.30	25	CLT	0.11	0.100	0.153	0.243	0.872	0.556
1.0	0.05	30	Rom		0.142	0.135	0.306	0.831	0.728
1.0	0.10	26	Rom		0.125	0.094	0.348	0.877	0.625
1.0	0.25	21	CLT	0.10	0.106	0.149	0.285	0.873	0.585
1.0	0.30	20	CLT	0.11	0.104	0.168	0.260	0.858	0.514
1.1	0.05	25	Rom		0.135	0.120	0.313	0.833	0.742
1.1	0.10	22	Rom		0.144	0.106	0.390	0.870	0.661
1.1	0.25	18	CLT	0.10	0.107	0.151	0.267	0.879	0.583
1.1	0.30	17	CLT	0.11	0.103	0.168	0.279	0.873	0.574

Table 48: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=50, $\rho=0.2$

Izmirlian FDP-dispersion 102 / 1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	132	Rom		0.126	0.109	0.215	0.649	0.649
0.7	0.10	115	Rom		0.135	0.139	0.322	0.891	0.891
0.7	0.25	91	Rom		0.107	0.085	0.331	0.993	0.981
0.7	0.30	86	Rom		0.108	0.078	0.320	0.996	0.980
8.0	0.05	102	Rom		0.142	0.136	0.237	0.644	0.644
8.0	0.10	88	Rom		0.122	0.119	0.278	0.873	0.872
0.8	0.25	70	Rom		0.113	0.090	0.352	0.994	0.983
0.8	0.30	66	Rom		0.099	0.065	0.293	0.994	0.975
0.9	0.05	81	Rom		0.127	0.112	0.215	0.621	0.621
0.9	0.10	70	Rom		0.130	0.125	0.288	0.880	0.880
0.9	0.25	56	Rom		0.109	0.096	0.340	0.994	0.983
0.9	0.30	53	Rom		0.107	0.082	0.319	0.997	0.988
1.0	0.05	66	Rom		0.121	0.104	0.207	0.621	0.621
1.0	0.10	58	Rom		0.123	0.108	0.287	0.850	0.849
1.0	0.25	46	Rom		0.105	0.094	0.313	0.997	0.992
1.0	0.30	43	Rom		0.105	0.092	0.313	0.996	0.982
1.1	0.05	55	Rom		0.133	0.118	0.221	0.648	0.648
1.1	0.10	48	Rom		0.127	0.112	0.289	0.886	0.886
1.1	0.25	38	Rom		0.110	0.110	0.330	0.994	0.980
1.1	0.30	36	Rom		0.112	0.082	0.321	0.995	0.979

Table 49: Sample size determined via tp-TPP power, under AutFDP control, $\alpha=0.15$, m=20, $\rho=0.2$

Izmirlian FDP-dispersion 103 / 1

es	ρ_1	n ac	Aut	a st	FDR	t FDP a	t FDP	AvgP	t TPP
0.7	0.05	59	Rom		0.131	0.114	0.228	0.603	0.582
0.7	0.10	51	Rom		0.145	0.149	0.291	0.746	0.677
0.7	0.25	42	Rom		0.115	0.109	0.336	0.852	0.602
0.7	0.30	40	Rom		0.105	0.088	0.319	0.855	0.536
8.0	0.05	45	Rom		0.130	0.125	0.210	0.577	0.563
8.0	0.10	39	Rom		0.128	0.120	0.278	0.745	0.664
8.0	0.25	33	Rom		0.111	0.101	0.322	0.871	0.615
8.0	0.30	31	Rom		0.104	0.091	0.300	0.869	0.583
0.9	0.05	36	Rom		0.127	0.113	0.211	0.601	0.584
0.9	0.10	32	Rom		0.124	0.110	0.269	0.767	0.700
0.9	0.25	26	Rom		0.104	0.091	0.306	0.865	0.597
0.9	0.30	25	Rom		0.108	0.096	0.308	0.866	0.564
1.0	0.05	30	Rom		0.136	0.127	0.222	0.593	0.577
1.0	0.10	26	Rom		0.138	0.141	0.302	0.758	0.699
1.0	0.25	21	Rom		0.114	0.105	0.332	0.846	0.602
1.0	0.30	20	Rom		0.106	0.090	0.297	0.857	0.567
1.1	0.05	25	Rom		0.138	0.131	0.228	0.566	0.550
1.1	0.10	22	Rom		0.126	0.123	0.282	0.804	0.746
1.1	0.25	18	Rom		0.113	0.112	0.338	0.875	0.630
1.1	0.30	17	Rom		0.105	0.086	0.296	0.871	0.589

Table 50: Sample size determined via average power, under BHFDR control, $\alpha=0.15$, m=20, $\rho=0.2$

Izmirlian FDP-dispersion 104 / 108

• Even though assumption of i.i.d. test statistics is unrealistic,

105 / 108

Izmirlian FDP-dispersion

- Even though assumption of i.i.d. test statistics is unrealistic,
 - rate of deterioration of performance with increasing departure from assumptions is not too bad

- Even though assumption of i.i.d. test statistics is unrealistic,
 - rate of deterioration of performance with increasing departure from assumptions is not too bad
 - a closed form power function allows rapid navigation of a large number of potential design settings

- Even though assumption of i.i.d. test statistics is unrealistic,
 - rate of deterioration of performance with increasing departure from assumptions is not too bad
 - a closed form power function allows rapid navigation of a large number of potential design settings
 - the simulation option with correlated blocks can be used for a more realistic representation of reality for zooming in on specific spots of the design space.

- Even though assumption of i.i.d. test statistics is unrealistic,
 - rate of deterioration of performance with increasing departure from assumptions is not too bad
 - a closed form power function allows rapid navigation of a large number of potential design settings
 - the simulation option with correlated blocks can be used for a more realistic representation of reality for zooming in on specific spots of the design space.
- Even for adequately powered studies, the dispersion of the FDP warrants control of its right tail probability rather than its mean for situations of fewer than 2000 simultaneous tests

- Even though assumption of i.i.d. test statistics is unrealistic,
 - rate of deterioration of performance with increasing departure from assumptions is not too bad
 - a closed form power function allows rapid navigation of a large number of potential design settings
 - the simulation option with correlated blocks can be used for a more realistic representation of reality for zooming in on specific spots of the design space.
- Even for adequately powered studies, the dispersion of the FDP warrants control of its right tail probability rather than its mean for situations of fewer than 2000 simultaneous tests
- Sample sizes should be derived using the tail probability based tp-TPP power rather than the average power.

• "Auto" FDP control method setting

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \ge 5000$ simultaneous tests

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - ullet Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - ullet Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - ullet Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50
 - At the boundaries it depends upon effect size and p_1 .

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - \bullet Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50
 - At the boundaries it depends upon effect size and p_1 .
- Simulation suggests that

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50
 - At the boundaries it depends upon effect size and p_1 .
- Simulation suggests that
 - all of the FDP control methods control the promised characteristic at the nominal level

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50
 - At the boundaries it depends upon effect size and p_1 .
- Simulation suggests that
 - all of the FDP control methods control the promised characteristic at the nominal level
 - Both the population mean based average power and the CLT based tp-TPP power perform well under all of the FDP control methods

- "Auto" FDP control method setting
 - Favors BH-FDR procedure at power (average or tp-TPP) for $m \geq 5000$ simultaneous tests
 - ullet Favors BHCLT procedure at power for 50 < m < 5000 simultaneous tests
 - Favors Romano procedure at power for m < 50
 - At the boundaries it depends upon effect size and p_1 .
- Simulation suggests that
 - all of the FDP control methods control the promised characteristic at the nominal level
 - Both the population mean based average power and the CLT based tp-TPP power perform well under all of the FDP control methods
 - When $mp_1 < 5$ the performance deteriorates greatly, but this is a non-sensical design.

What about Bonferroni

• If desired expected number of true positives, $m\pi_1$, is 3 or less then use Bonferroni

Thanks

• Thank you for your time and attention

Thanks

- Thank you for your time and attention
- Questions/Comments?

