Math 31AH: Fall 2021 Homework 4 Solution Due 5:00pm on Friday 10/22/2021

Problem 1: Projections. Let V and W be \mathbb{F} -vector spaces. Recall the direct sum of V and W

$$V \oplus W = \{ (\mathbf{v}, \mathbf{w}) : \mathbf{v} \in V, \mathbf{w} \in W \}$$

defined last time. Define a function $P_V: V \oplus W \to V$ by $P_V(\mathbf{v}, \mathbf{w}) = \mathbf{v}$. The function P_V is called 'projection onto V'.

Prove that P_V is linear. When is P_V surjective? When is P_V injective?

Solution: Let $(\mathbf{v}, \mathbf{w}), (\mathbf{v}', \mathbf{w}') \in V \oplus W$ and $c \in \mathbb{F}$. We have

$$P_V((\mathbf{v}, \mathbf{w}) + (\mathbf{v}', \mathbf{w}')) = P_V(\mathbf{v} + \mathbf{v}', \mathbf{w} + \mathbf{w}') = \mathbf{v} + \mathbf{v}' = P_V(\mathbf{v}, \mathbf{w}) + P_V(\mathbf{v}', \mathbf{w}')$$

and

$$P_V(c(\mathbf{v}, \mathbf{w})) = P_V(c\mathbf{v}, c\mathbf{w}) = c\mathbf{v} = cP_V(\mathbf{v}, \mathbf{w})$$

so that P_V is linear.

For any $\mathbf{v} \in V$ we have $P_V(\mathbf{v}, \mathbf{0}) = \mathbf{v}$ so that P_V is surjective.

We claim that P_V is injective if any only if W = 0. If $W \neq 0$, choose $\mathbf{w} \neq \mathbf{0}$ in W. Then $P_V(\mathbf{v}, \mathbf{w}) = \mathbf{v} = P_V(\mathbf{v}, \mathbf{0})$. Since $(\mathbf{v}, \mathbf{w}) \neq (\mathbf{v}, \mathbf{0})$, P_V is not injective. If W = 0, then $V \oplus W = \{(\mathbf{v}, \mathbf{0}) : \mathbf{v} \in V\}$ and

$$P_V(\mathbf{v}, \mathbf{0}) = P_V(\mathbf{v}', \mathbf{0}) \Leftrightarrow \mathbf{v} = \mathbf{v}' \Leftrightarrow (\mathbf{v}, \mathbf{0}) = (\mathbf{v}', \mathbf{0})$$

so that P_V is injective.

Problem 2: Linear maps and spanning. Let $T: V \to W$ be a linear transformation of \mathbb{F} -vector spaces. If $S \subseteq V$ spans V, prove that

$$T(S) := \{ T(\mathbf{v}) : \mathbf{v} \in S \}$$

spans Image(T).

Solution: Let $\mathbf{w} \in \text{Image}(T)$. There exists $\mathbf{v} \in V$ so that $T(\mathbf{v}) = \mathbf{w}$. Since S spans V, there exist $\mathbf{v}_i \in S$ and $c_i \in \mathbb{F}$ so that

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

Since T is linear we have

$$\mathbf{w} = T(\mathbf{v}) = T(c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + \dots + c_nT(\mathbf{v}_n)$$

so that $\mathbf{w} \in \text{span}T(S)$. We conclude that T(S) spans Image(T).

Problem 3: Linear maps and independence. Let $T: V \to W$ be an injective linear transformation between \mathbb{F} -vector spaces. If $I \subseteq V$ is linearly independent in V, prove that

$$T(I) := \{ T(\mathbf{v}) : \mathbf{v} \in I \}$$

is linearly independent in W. Does this necessarily hold if we remove the assumption that T is injective?

Solution: Suppose $\mathbf{v}_i \in I$ and $c_i \in \mathbb{F}$ are such that

$$c_1T(\mathbf{v}_1) + \cdots + c_nT(\mathbf{v}_n) = \mathbf{0}$$

in W. We claim that $c_1 = \cdots = c_n = 0$. Indeed, since T is linear

$$\mathbf{0} = c_1 T(\mathbf{v}_1) + \dots + c_n T(\mathbf{v}_n) = T(c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n)$$

and since T is injective Ker(T) = 0 so that

$$c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$$

in V. Since I is linearly independent in V, we have $c_1 = \cdots = c_n = 0$. We conclude that T(I) is linearly independent in W.

This does **not** necessarily hold if we remove the assumption that T is injective. For example, let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the zero map, $T(\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in \mathbb{R}^2$. The set $\{\mathbf{e}_1, \mathbf{e}_2\}$ consisting of the two standard basis vectors is linearly independent in \mathbb{R}^2 , but $T(\{\mathbf{e}_1, \mathbf{e}_2\}) = \{\mathbf{0}\}$ is not linearly independent.

Problem 4: Representing matrices. Let V_n denote the \mathbb{R} -vector space of polynomials in x of degree $\leq n$ with real coefficients. The derivative map

$$T: V_3 \to V_2$$
 $T(f(x)) = f'(x)$

is a linear transformation. Consider the ordered bases $\mathcal{B} := (x^3, x^2, x, 1)$ of V_3 and $\mathcal{C} := ((x+1)^2, x+1, 1)$ of V_2 . Calculate $[T]_{\mathcal{C}}^{\mathcal{B}}$, the representing matrix of T with respect to these bases.

Solution: We take the derivative of the elements of \mathcal{B} and expand the result in terms of the entries of \mathcal{C} :

$$T(x^3) = 3x^2 = 3(x+1)^2 - 6(x+1) + 3(1)$$

$$T(x^2) = 2x = 0(x+1)^2 + 2(x+1) - 2(1)$$

$$T(x) = 1 = 0(x+1)^2 + 0(x+1) + 1(1)$$

$$T(1) = 0 = 0(x+1)^2 + 0(x+1) + 0(1)$$

Recording these coefficients in a matrix gives

$$[T]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ -6 & 2 & 0 & 0 \\ 3 & -2 & 1 & 0 \end{pmatrix}$$

Problem 5: A matrix map. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Find a basis of Ker(T) and a basis of Image(T).

Solution: We have $Ker(T) = \{ \mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0} \}$. The RREF of A is computed as in the previous homework

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

so that

$$\operatorname{Ker}(T) = \{ \mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0} \} = \left\{ \begin{pmatrix} z \\ -2z \\ z \end{pmatrix} : z \in \mathbb{R} \right\}$$

and a basis of Ker(T) is the one-element set

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

The image of T is given by

Image(T) = {
$$A$$
x : **x** $\in \mathbb{R}^3$ } = { c_1 **v**₁ + c_2 **v**₂ + c_3 **v**₃ : c_1 , c_2 , c_3 $\in \mathbb{R}$ }

where $A = (\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3)$ are the columns of A. By the previous paragraph, we have $\mathbf{v}_1 - 2\mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$ so that $\{\mathbf{v}_1, \mathbf{v}_2\}$ spans Image(A). In fact, the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is also linearly independent (indeed, the RREF of the 3×2 matrix $(\mathbf{v}_1 \ \mathbf{v}_2)$ has a pivot 1 in each column, so that there are no nontrivial solutions (c_1, c_2) to $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$). Therefore, the space Image(T) has basis

$$\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{pmatrix} 1\\4\\7 \end{pmatrix}, \begin{pmatrix} 2\\5\\8 \end{pmatrix} \right\}$$

Problem 6: Inverses of linear maps. Let $T:V\to W$ be an invertible linear transformation between \mathbb{F} -vector spaces. Prove that the inverse $T^{-1}:W\to V$ is also linear.

Solution: Let $\mathbf{w}, \mathbf{w}' \in W$ and $c \in \mathbb{F}$. Since T is invertible, there exist unique $\mathbf{v}, \mathbf{v}' \in V$ with $T(\mathbf{v}) = \mathbf{w}$ and $T(\mathbf{v}') = \mathbf{w}'$. Then $T^{-1}(\mathbf{w}) = \mathbf{v}$ and $T^{-1}(\mathbf{w}) = \mathbf{v}'$. To calculate $T^{-1}(\mathbf{w} + \mathbf{w}')$ observe that

$$T(\mathbf{v} + \mathbf{v}') = T(\mathbf{v}) + T(\mathbf{v}') = \mathbf{w} + \mathbf{w}'$$

so that

$$T^{-1}(\mathbf{w} + \mathbf{w}') = \mathbf{v} + \mathbf{v}' = T^{-1}(\mathbf{w}) + T^{-1}(\mathbf{w}')$$

Furthermore, we have $T(c\mathbf{v}) = cT(\mathbf{v}) = c\mathbf{w}$ so that

$$T^{-1}(c\mathbf{w}) = c\mathbf{v} = cT^{-1}(\mathbf{w})$$

and we conclude that T^{-1} is linear.

Problem 7: Polynomial change of basis. Let V_3 be the vector space of polynomials in x of degree ≤ 3 with real coefficients. Consider the two bases \mathcal{B} and \mathcal{C} of V given by

$$\mathcal{B} := (1, x+1, x^2 + x + 1, x^3 + x^2 + x + 1)$$

$$\mathcal{C} := (1, x-1, x^2 - x + 1, x^3 - x^2 + x - 1)$$

Calculate the transition matrix from \mathcal{B} to \mathcal{C} and the transition matrix from \mathcal{C} to \mathcal{B} .

Solution: We express the elements of $\mathcal B$ in terms of those of $\mathcal C$ as follows

$$1 = 1(1) + 0(x - 1) + 0(x^{2} - x + 1) + 0(x^{3} - x^{2} + x - 1)$$

$$x + 1 = 2(1) + 1(x - 1) + 0(x^{2} - x + 1) + 0(x^{3} - x^{2} + x - 1)$$

$$x^{2} + x + 1 = 2(1) + 2(x - 1) + 1(x^{2} - x + 1) + 0(x^{3} - x^{2} + x - 1)$$

$$x^{3} + x^{2} + x + 1 = 2(1) + 2(x - 1) + 2(x^{2} - x + 1) + 1(x^{3} - x^{2} + x - 1)$$

so that the transition matrix from \mathcal{B} to \mathcal{C} is

$$[\mathrm{id}_{V_3}]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Expressing the elements of \mathcal{C} in terms of those of \mathcal{B} yields

$$1 = 1(1) + 0(x+1) + 0(x^{2} + x + 1) + 0(x^{3} + x^{2} + x + 1)$$

$$x - 1 = -2(1) + 1(x+1) + 0(x^{2} + x + 1) + 0(x^{3} + x^{2} + x + 1)$$

$$x^{2} - x + 1 = 2(1) + (-2)(x+1) + 1(x^{2} + x + 1) + 0(x^{3} + x^{2} + x + 1)$$

$$x^{3} - x^{2} + x - 1 = (-2)(1) + 2(x+1) + (-2)(x^{2} + x + 1) + 1(x^{3} + x^{2} + x + 1)$$

so that the transition matrix from C to B is

$$[\mathrm{id}_{V_3}]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} 1 & -2 & 2 & -2 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

This is the inverse of the transition matrix from \mathcal{B} to \mathcal{C} .

Problem 8: Invariant subspaces and block matrices. Let V be an n-dimensional \mathbb{F} -vector space and let $W \subseteq V$ be a subspace of dimension m. Show that there exists an ordered basis

$$\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \dots, \mathbf{v}_n)$$

of V such that $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m)$ is an ordered basis of W. (Hint: A problem on Homework 3 should make this a one-liner!)

Let $T: V \to V$ be a linear transformation. The subspace $W \subseteq V$ is called *invariant under* T if $T(\mathbf{w}) \in W$ for all $\mathbf{w} \in W$. If \mathcal{B} is a basis of V as above, prove that W is invariant under T if and only if the representing matrix $[T]_{\mathcal{B}}^{\mathcal{B}}$ for T with respect to B has the block form

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

where A is $m \times m$ and C is $(n-m) \times (n-m)$.

Solution: Let $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ be an ordered basis of W. The vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent in V so by Problem 7 on Homework 3, this list may be extended to an ordered basis

$$\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \dots, \mathbf{v}_n)$$

of V.

Suppose W is invariant under T. For $1 \le j \le m$ we have $\mathbf{v}_j \in W$ so that $T(\mathbf{v}_j) \in W$. Since $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ is a basis of W we have

$$T(\mathbf{v}_j) = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m + 0 \mathbf{v}_{m+1} + \dots + 0 \mathbf{v}_n$$

for some $c_1, \ldots, c_m \in \mathbb{F}$. The j^{th} column of $[T]^{\mathcal{B}}_{\mathcal{B}}$ is therefore

$$\begin{pmatrix} c_1 \\ \vdots \\ c_m \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

and the matrix $[T]^{\mathcal{B}}_{\mathcal{B}}$ has the required form.

On the other hand, suppose the matrix $[T]^{\mathcal{B}}_{\mathcal{B}}$ has the given form. This implies that for $1 \leq j \leq m$ there are scalars a_{ij} so that

$$T(\mathbf{v}_i) = a_{1i}\mathbf{v}_1 + \dots + a_{mi}\mathbf{v}_m \in W$$

Since W is a subspace of V, we conclude that

$$T(c_1\mathbf{v}_1 + \dots + c_m\mathbf{v}_m) = c_1T(\mathbf{v}_1) + \dots + c_mT(\mathbf{v}_m) \in W$$

for any scalars $c_1, \ldots, c_m \in W$. Since $\mathbf{v}_1, \ldots, \mathbf{v}_m$ span W this shows that W is invariant under T.

Problem 9: (Optional; not to be handed in.) Let \mathbb{K} be a finite field of characteristic p. You proved on a previous homework that p is prime. Show that $\mathbb{F} := \{0, 1, 2, \dots, p-1\} \subseteq \mathbb{K}$ is a subfield of \mathbb{K} (i.e. is a subset which is also a field), so that \mathbb{K} is a \mathbb{F} -vector space. Conclude that

Any finite field has size equal to some power p^r of a prime number p, where r > 0 is an integer.

For example, there is no field with 6 elements.