Solution TD 3: Architecture des ordinateurs 2020/2021

Question 1 quelles sont les deux partie d'ne instruction machine

- ☐ rale, une instruction est composée de deux champs :
 - Le code opération, qui indique au processeur quelle instruction réaliser ;
 - Le champ opérande qui contient la donnée, ou la référence à une donnée en mémoire (son adresse).

Champ Code opération Champ Code opérande

<u>Question 2</u> Dans un registre 8 bits, on effectue des opérations sur des nombres; donner le résultat des opérations suivantes et positionner les indicateurs d'états suivant

$\begin{array}{r} 10110000 \\ + \ 10111100 \end{array}$	$\begin{array}{r} 11110000 \\ + 00010000 \end{array}$	$\begin{array}{c} 0101 & 0000 \\ + & 0110 & 0000 \end{array}$
01101100	0000000	1011 0000
SF=0	SF=0	SF= 1
CF= 1	CF= 1	CF=0
$\mathbf{ZF} = 0$	ZF = 1	$\mathbf{ZF} = 0$
OF= 1	OF= 0	OF= 1

Question 3 Dans l'extrait de programme suivant, préciser pour chacune des instructions le mode d'adressage

Instruction	Mode d'adressage	
MOV AL, [000B]	Adressage direct	
ADD AL, C4	Adressage immédiat	
INC AX	Adressage implicite	
MOV [BX], 00	Adressage indirect	
JNE 020B	Adressage relatif	

<u>Question 4</u> Soit une carte mère, où sont disposés un processeur 8 bits dont le bus d'adresse est de 24 bits ainsi que des circuits mémoire 8 bits de capacité 512 Ko. Si l'on suppose que la totalité de l'espace adressable est occupé par les mémoires, combien de circuits mémoire sont présents sur cette carte mère ?

24 bits d'adresse permettent d'adresser 2²⁴ adresse occupée chacune par 1 octet donc 16 Mo soit 16 x 1024 Ko on aura :

16 x 1024 / 512 = 32 donc la carte mère intègre 32 circuits mémoire pour gérer l'espace adressable

<u>Question 5</u> Un module de mémoire 8 bits de 64 Ko est connecté à un microcontrôleur par 4 fils données. Combien faut-il de bits d'adresse pour accéder à toute la mémoire ?

Espace adressable: 2ⁿ x 4

 $64 \text{ Ko} = 2^{10} \text{ x } 2^6 \text{ x 8 bits égalité des deux}$

 $2^{n} \times 4 = 2^{10} \times 2^{6} \times 8 \Rightarrow 2^{n} = 2^{10} \times 2^{6} \times 2 \Rightarrow n = 6 + 10 + 1 = 17$

Question 6 Combien d'octets contient une case mémoire de 64 bits ?

a. 64 b. 6,4 (64/10) c. 8 (64/8) d. 512 (8*64)

Réponse : d. 512 (8*64)

Question 7 Donnez le contenu de AL et les états des indicateurs : ZF, CF, SF, et OF après l'exécution des programmes :

Programme 1	Programme 2	Programme 3
MOV AL, 65H	MOV AL, B4H	MOV AL, 02H
ADD AL, 60H	ADD AL, B4H	ADD AL, 03H

Programme 1		Programme 2		Programme 3			
MOV AL, 65H	Charge la valeur 65H dans le registre AL : Partie de poids faible de AX	MOV AL, B4H	Charge la valeur B4H dans le registre AL : Partie de poids faible de AX	MOV AL, 02H	Charge la valeur 02H dans le registre AL : Partie de poids faible de AX		
MOV:							
ADD AL, 60H	Additionne la valeur 60H avec le contenue du registre AL : Partie de poids faible de AX Le résultat sera dans AL	ADD AL, B4H	Additionne la valeur B4H avec le contenue du registre AL: Partie de poids faible de AX Le résultat sera dans AL	ADD AL, 03H	Additionne la valeur 03H avec le contenue du registre AL: Partie de poids faible de AX Le résultat sera dans AL		