Mastering MLP - Part 1

Computation Intelligence and its Application in Mechatronics

• **Issue:** As gradients backpropagate, they may shrink to near-zero (vanishing) or grow too large (exploding).

- Effect:
 - Vanishing gradients slow down learning or prevent deeper layers from learning.
 - Exploding gradients cause instability and divergence.

Solutions to Vanishing/Exploding Gradients

- 1. Better Weight Initialization (Glorot, He)
- 2. Nonsaturating Activation Functions (Leaky ReLU, etc.)
- 3. Batch Normalization
- 4. Gradient Clipping

Weight Initialization Techniques

Glorot (Xavier) Initialization

- Formula: Uniform Distribution $w \sim U\left(-\frac{\sqrt{6}}{\sqrt{n_{\mathsf{in}} + n_{\mathsf{out}}}}, \frac{\sqrt{6}}{\sqrt{n_{\mathsf{in}} + n_{\mathsf{out}}}}\right)$, Normal Distribution $w \sim \mathcal{N}\left(0, \frac{2}{n_{\mathsf{in}} + n_{\mathsf{out}}}\right)$
- Suitable for sigmoid and tanh activations.

He Initialization

- Formula: Uniform Distribution $w \sim U\left(-\frac{\sqrt{6}}{\sqrt{n_{\text{in}}}}, \frac{\sqrt{6}}{\sqrt{n_{\text{in}}}}\right)$, Normal Distribution $w \sim \mathcal{N}\left(0, \frac{2}{n_{\text{in}}}\right)$
- Best for ReLU and Leaky ReLU activations

Nonsaturating Activation Functions

Leaky ReLU (LReLU) =
$$\begin{cases} x, & \text{if } x > 0 \\ \alpha x, & \text{if } x \le 0 \end{cases}$$

Randomized Leaky ReLU (RReLU) (randomizes α during training)

Parametric Leaky ReLU (PReLU) (learns the negative slope α during training)

Exponential Linear Unit (ELU) =
$$\begin{cases} x, & x > 0 \\ \alpha(\exp(x) - 1), & x \le 0 \end{cases}$$

Scaled Exponential Linear Unit (SELU)

Nonsaturating Activation Functions

Batch Normalization

Normalizes activations across the mini-batch:

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}, \qquad z_i = \gamma \hat{x}_i + \beta$$

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i$$
, $\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$

- x_i is the input activation of the neuron.
- μ_B is the mean of the mini-batch.
- σ_B^2 is the variance of the mini-batch.
- \hat{x}_i is the normalized activation.
- $oldsymbol{\epsilon}$ is a small constant to prevent division by zero.
- γ (scale) and β (shift) are trainable parameters.

So during training, BN standardizes its inputs, then rescales and offsets them. Good!

What about at test time?

Gradient Clipping

Prevents exploding gradients by limiting their magnitude.

Avoiding Overfitting - Regularization Techniques

L1 and L2 regularization

L1 regularization: lasso regression

New Cost =
$$\frac{1}{n} \sum_{i=1}^{i} y_i - \hat{y}_i + \lambda \sum_{i=1}^{i} |w_i|$$

L2 regularization: ridge regression

New Cost =
$$\frac{1}{n} \sum_{i=1}^{i} y_i - \hat{y}_i + \lambda \sum_{i=1}^{i} w_i^2$$

Avoiding Overfitting - Regularization Techniques

Dropout

What's Coming Next

Training your model with faster optimizers