Part III – Advanced Coding Techniques

José Vieira

SPL — Signal Processing Laboratory
Departamento de Electrónica, Telecomunicações e Informática / IEETA
Universidade de Aveiro, Portugal

2010

Ocean Store

The Infinite disk

Error Correction Code

Unpredictable Channel Conditions

- Dissemination of data: How to encode data files to distribute them by a huge number of disks around the world?
- Resilience: How can we encode data files to make any encoded data useful?
- Ratelessness: How to generate an infinite number of codewords?
- Answer: random coding!

- Dissemination of data: How to encode data files to distribute them by a huge number of disks around the world?
- Resilience: How can we encode data files to make any encoded data useful?
- Ratelessness: How to generate an infinite number of codewords?
- Answer: random coding!

- Dissemination of data: How to encode data files to distribute them by a huge number of disks around the world?
- Resilience: How can we encode data files to make any encoded data useful?
- Ratelessness: How to generate an infinite number of codewords?
- Answer: random coding!

- Dissemination of data: How to encode data files to distribute them by a huge number of disks around the world?
- Resilience: How can we encode data files to make any encoded data useful?
- Ratelessness: How to generate an infinite number of codewords?
- Answer: random coding!

Essential Textbooks and Papers

- David J. C. Mackay, "Information Theory, Inference and Learning Algorithms", Cambridge, 2004
- Mackay, D. J. C., "Fountain Codes", IEE Proceedings -Communications, Vol.152, N.6, pp.1062-1068, December, 2005
- Luby, Michael, "LT Codes", Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'02), pp.271-280, IEEE, November, 2002
- Maymounkov, Petar, "Online Codes", New York University, New York, November, 2002
- Fragouli, Christina, Boudec, Jean-Yves Le, and Widmer, Jörg, "Network Coding: Na Instant Primer", ACM SIGCOMM Computer Communication Review, Vol.36, N.1, pp.63-68, January, 2006

Suplementar Papers

- Shokrollahi, Amin, "Raptor Codes", IEEE Transactions on Information Theory, Vol.52, N.6, pp.2551-2567, June, 2006
- Shamai, Shlomo, Telatar, I. Emre, and Verdú, Sergio, "Fountain Capacity", IEEE Transactions on Information Theory, Vol.53, N.11, pp.4372-4376, November, 2007
- Dimakis, Alexandros G., Prabhakaran, Vinod, and Ramchandran, Kannan, "Decentralized Erasure Codes for Distributed Networked Storage", IEEE Transactions on Information Theory, Vol.52, N.6, pp.2809-2816, June, 2006

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Coding with Real Numbers

One linear combination

$$egin{bmatrix} egin{bmatrix} c_1 \ 1 imes 1 \end{bmatrix} = egin{bmatrix} - & g_1 \ 1 imes K \end{bmatrix} - egin{bmatrix} m{m} \ m{k} imes 1 \end{bmatrix}$$

Coding with Real Numbers

Two linear combinations

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$\xrightarrow{K \times 1}$$

Coding with Real Numbers

Adding redundancy to a signal — N > K

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \\ & \vdots \\ - & g_N & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}_{K \times 1}$$

$$N \times K$$

Coding with Real Numbers

Adding redundancy to a signal — N > K

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \\ & \vdots \\ - & g_N & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}_{K \times 1}$$

$$N \times K$$

$$c = Gm$$

Outline

- 1 Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- 2 Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Erasures

Lost samples at known positions

How to recover the message *m* from incomplete *c*?

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \\ - & g_3 & - \\ - & g_4 & - \\ - & g_5 & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}_{K \times 1}$$

If only *L* samples of *c* are received we have:

$$\begin{bmatrix} c_1 \\ \cancel{x}_2 \\ c_3 \\ \cancel{x}_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & \cancel{x}_2 & - \\ - & g_3 & - \\ - & \cancel{x}_4 & - \\ - & g_5 & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$K \times 1$$

Define $J = \{1, 3, 5\}$ as the set of the received samples

Solve the following system of equations to obtain the original signal m

$$\begin{bmatrix} c_1 \\ c_3 \\ c_5 \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_3 & - \\ - & g_5 & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$\stackrel{L \times 1}{}$$

$$c(J)=G(J)m$$

Depending on L (number of received samples), there are three possible situations

- L < K Underdetermined system of equations. In general not enough information to recover m uniquely. Additional restrictions can be imposed in order to get an unique solution.
- ullet ${\sf L}={\sf K}$ Determined system of equations, one solution (max.).

$$\hat{m} = G(J)^{-1}c(J)$$

• L > K — Overdetermined system of equations. In general there is not an unique solution. In the field $\mathbb R$ we can choose the least squares solution, the one that best approximates all the equations in L_2 sense

$$\hat{m} = (G(J)^TG(J))^{-1}G(J)^Tc(J) = G(J)^\dagger \text{ MAP } \text{ tele} \text{ } \text{ distributions}$$

Depending on L (number of received samples), there are three possible situations

- L < K Underdetermined system of equations. In general not enough information to recover m uniquely. Additional restrictions can be imposed in order to get an unique solution.
- $\mathbf{L} = \mathbf{K}$ Determined system of equations, one solution (max.).

$$\hat{m} = G(J)^{-1}c(J)$$

• L > K — Overdetermined system of equations. In general there is not an unique solution. In the field $\mathbb R$ we can choose the least squares solution, the one that best approximates all the equations in L_2 sense

$$\hat{m} = (G(J)^T G(J))^{-1} G(J)^T c(J) = G(J)^\dagger \text{ The leading problem in the example of the matter problem in the example of the problem of$$

Depending on L (number of received samples), there are three possible situations

- L < K Underdetermined system of equations. In general not enough information to recover m uniquely. Additional restrictions can be imposed in order to get an unique solution.
- L = K Determined system of equations, one solution (max.).

$$\hat{m} = G(J)^{-1}c(J)$$

• $\mathbf{L} > \mathbf{K}$ — Overdetermined system of equations. In general there is not an unique solution. In the field $\mathbb R$ we can choose the least squares solution, the one that best approximates all the equations in L_2 sense.

$$\hat{m} = (G(J)^T G(J))^{-1} G(J)^T c(J) = G(J)^\dagger$$
 (LAP) tele in telecommunications

Outline

- 1 Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- 2 Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Errors

Errors: Lost samples at unknown positions

How can we find the errors positions?

• Consider an $N \times N$ orthogonal matrix partitioned in the following way:

$$F = \left[\begin{array}{c|c} G & H \\ N \times K & N \times (N - K) \end{array} \right]$$

$$\bullet \begin{bmatrix} G^T \\ H^T \end{bmatrix} [GH] = \begin{bmatrix} G^T G & G^T H \\ H^T G & H^T H \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

• So we have $H^TG = 0$

• Consider an $N \times N$ orthogonal matrix partitioned in the following way:

$$F = \left[\begin{array}{c|c} G & H \\ N \times K & N \times (N - K) \end{array} \right]$$

$$\bullet \begin{bmatrix} G^T \\ H^T \end{bmatrix} [GH] = \begin{bmatrix} G^TG & G^TH \\ H^TG & H^TH \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

• So we have H'G = 0

• Consider an $N \times N$ orthogonal matrix partitioned in the following way:

$$F = \left[\begin{array}{c|c} G & H \\ N \times K & N \times (N - K) \end{array} \right]$$

$$\bullet \begin{bmatrix} G^T \\ H^T \end{bmatrix} [GH] = \begin{bmatrix} G^TG & G^TH \\ H^TG & H^TH \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

• So we have $H^TG = 0$

• Received y and given F, if there are no errors, then

$$y = c = Gm$$

We can use the matrix H to test the received signal y

$$s = H^T y = H^T c = \underbrace{H^T G m}_{=0} = 0$$

• Received y and given F, if there are no errors, then

$$y = c = Gm$$

We can use the matrix H to test the received signal y

$$s = H^T y = H^T c = \underbrace{H^T G}_{=0} m = 0$$

 The received vector y is a corrupted version of c at unknown positions, example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e_3 \\ 0 \\ 0 \end{bmatrix}$$

$$y = c + e$$

The matrix H is used to verify that the received signal y is a codeword

$$s = H^T y = H^T c + H^T e = H^T e \neq 0$$

• The syndrome s is a linear combination of the columns of H^T where the e_i are the coefficients.

 The received vector y is a corrupted version of c at unknown positions, example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e_3 \\ 0 \\ 0 \end{bmatrix}$$

$$y = c + e$$

The matrix H is used to verify that the received signal y is a codeword

$$s = H^T y = H^T c + H^T e = H^T e \neq 0$$

• The syndrome s is a linear combination of the columns of H^T where the e_i are the coefficients.

MAP tele DOCTORAL PROBRAMS IN TELECOMMUNICATION.

 The received vector y is a corrupted version of c at unknown positions, example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e_3 \\ 0 \\ 0 \end{bmatrix}$$

$$y = c + e$$

ullet The matrix H is used to verify that the received signal y is a codeword

$$s = H^T y = H^T c + H^T e = H^T e \neq 0$$

• The syndrome s is a linear combination of the columns of H^T where the e_i are the coefficients.

MAP tele DOCTORAL PROBRAMS IN THE LECCOMMUNICATION.

• The received vector y is a corrupted version of c at unknown positions, example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e_3 \\ 0 \\ 0 \end{bmatrix}$$

$$y = c + e$$

• The matrix H is used to verify that the received signal y is a codeword

$$s = H^T y = H^T c + H^T e = H^T e \neq 0$$

ullet The syndrome s is a linear combination of the columns of H^T where the e; are the coefficients.

Example: repetition code

Repetition code:

$$F = \begin{bmatrix} G & H \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Suppose we code

$$c = Gm = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [2] = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Example: repetition code

Repetition code:

$$F = \begin{bmatrix} G & H \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Suppose we code

$$c = Gm = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [2] = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

• If an error occurs y = c + e =

$$\left[\begin{array}{c}2\\2\end{array}\right]+\left[\begin{array}{c}1\\0\end{array}\right]=\left[\begin{array}{c}3\\2\end{array}\right]$$

Example: repetition code

• Repetition code:

$$F = \begin{bmatrix} G & H \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Suppose we_code

$$c = Gm = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [2] = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

• If an error occurs y = c + e =

$$\left[\begin{array}{c}2\\2\end{array}\right]+\left[\begin{array}{c}1\\0\end{array}\right]=\left[\begin{array}{c}3\\2\end{array}\right]$$

 We can verify that the received vector <u>y</u> has an error

$$H^Ty = \begin{bmatrix} 1-1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 1 \neq 0$$

Coding with Real Numbers

• Linear code:
$$F = \begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 1/2 & 1/2 & | & -2 \end{bmatrix}$$

- ullet To code the message $m=\left[egin{array}{c}1\\1\end{array}
 ight]$ we get $c=Gm=\left[egin{array}{c}1\\1\\1\end{array}
 ight]$
- If an error occurs $y = c + e = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix}$
- To verify that the received vector y has an error

$$s = H^T y = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix} = 1 \neq 0$$

- Linear code: $F = \begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 1/2 & 1/2 & | & -2 \end{bmatrix}$
- ullet To code the message $m=\left[egin{array}{c}1\\1\end{array}
 ight]$ we get $c=\mathit{Gm}=\left[egin{array}{c}1\\1\\1\end{array}
 ight]$
- If an error occurs $y = c + e = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix}$
- To verify that the received vector y has an error

$$s = H^T y = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix} = 1 \neq 0$$

- Linear code: $F = \begin{bmatrix} 3 & H \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1/2 & 1/2 & -2 \end{bmatrix}$
- ullet To code the message $m=\left[egin{array}{c}1\\1\end{array}
 ight]$ we get $c=\mathit{Gm}=\left[egin{array}{c}1\\1\\1\end{array}
 ight]$
- If an error occurs $y = c + e = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix}$
- To verify that the received vector y has an erro

$$s = H^T y = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix} = 1 \neq 0$$

- Linear code: $F = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1/2 & 1/2 & -2 \end{bmatrix}$
- ullet To code the message $m=\left[egin{array}{c}1\\1\end{array}
 ight]$ we get $c=\mathit{Gm}=\left[egin{array}{c}1\\1\\1\end{array}
 ight]$
- If an error occurs $y = c + e = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix}$
- To verify that the received vector y has an error

$$s = H^T y = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix} = 1 \neq 0$$

The Syndrome as a linear combination of columns of H^T

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = \begin{bmatrix} & & & & & \\ & & & & \\ & h_1 & h_2 & \cdots & h_N \\ & & & & & \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ \vdots \\ e_N \end{bmatrix}$$

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} h_1 \\ h_1 \end{bmatrix} + e_2 \begin{bmatrix} h_2 \\ h_2 \end{bmatrix} + \cdots + e_N \begin{bmatrix} h_N \\ h_N \end{bmatrix}$$

The Syndrome as a linear combination of columns of H^T

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = \begin{bmatrix} & & & & & & \\ & & & & & \\ & h_1 & h_2 & \cdots & h_N \\ & & & & & & \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ \vdots \\ e_N \end{bmatrix}$$

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} | \\ h_1 \\ | \end{bmatrix} + e_2 \begin{bmatrix} | \\ h_2 \\ | \end{bmatrix} + \dots + e_N \begin{bmatrix} | \\ h_N \\ | \end{bmatrix}$$

$$\begin{bmatrix} | \\ h_N$$

Brute force approach

Problem

Find the linear combination of vectors h; that best approximates s

- The error vector e is a sparse vector, so we want the sparsest solution
- Brute force approach: test all error patterns
- Equivalent to solve the following optimization problem:

Problem

$$min \|e\|_0 \quad s.t. \quad s = H^T e$$

Brute force approach

Problem

Find the linear combination of vectors h; that best approximates s

- ullet The error vector e is a sparse vector, so we want the sparsest solution
- Brute force approach: test all error patterns
- Equivalent to solve the following optimization problem:

Problem

$$min \|e\|_0 \quad s.t. \quad s = H^T e$$

Brute force approach

Problem

Find the linear combination of vectors h; that best approximates s

- The error vector e is a sparse vector, so we want the sparsest solution
- Brute force approach: test all error patterns
- Equivalent to solve the following optimization problem:

Problem

$$min \|e\|_0$$
 s.t. $s = H^T e$

Brute force approach

Search for the "best" linear combination

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} 1 \\ h_1 \\ 1 \end{bmatrix} + e_2 \begin{bmatrix} 1 \\ h_2 \\ 1 \end{bmatrix} + \dots + e_N \begin{bmatrix} 1 \\ h_N \\ 1 \end{bmatrix}$$

• Find the minimum of $\|s - \hat{s}\|_2$ for all error patterns and each number of errors

	$\sum_{n=1}^{L} \binom{N}{n}$

This is a NP hard combinatorial problem

Brute force approach

Search for the "best" linear combination

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} | \\ h_1 \\ | \end{bmatrix} + e_2 \begin{bmatrix} | \\ h_2 \\ | \end{bmatrix} + \cdots + e_N \begin{bmatrix} | \\ h_N \\ | \end{bmatrix}$$

• Find the minimum of $||s - \hat{s}||_2$ for all error patterns and each number of errors

n		Nº Combinations
1	$\hat{s} = e_i h_i$	N
2	$\hat{s} = e_i h_i \hat{s} = e_i h_i + e_j h_j$	$\binom{N}{2}$
÷	:	:
L	$\hat{s} = \sum_{i=J} e_i h_i$	$\sum_{n=1}^{L} \binom{N}{n}$

Brute force approach

Search for the "best" linear combination

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} | \\ h_1 \\ | \end{bmatrix} + e_2 \begin{bmatrix} | \\ h_2 \\ | \end{bmatrix} + \cdots + e_N \begin{bmatrix} | \\ h_N \\ | \end{bmatrix}$$

• Find the minimum of $\|s - \hat{s}\|_2$ for all error patterns and each number of errors

n		Nº Combinations
1	$\hat{s} = e_i h_i$	N
2	$\hat{s} = e_i h_i \hat{s} = e_i h_i + e_j h_j$	$\binom{N}{2}$
:	:	<u>:</u>
L	$\hat{s} = \sum_{i=J} e_i h_i$	$\sum_{n=1}^{L} \binom{N}{n}$

• This is a NP hard combinatorial problem.

Avoiding the combinatorial explosion

Solutions

- Solution 1: Use coding matrices *G* and parity check matrices *H* with a convenient **structure**:
 - Hamming
 - DFT (BCH cyclic codes)
 - DCT
 - etc.
- Solution 2: Use random matrices and L₁ minimization to obtain a sparse solution for the error vector
- Solution 3: Use sparse random matrices and fast algorithms that take advantage of sparsity (LDPC and LT codes)

Avoiding the combinatorial explosion

Solutions

- Solution 1: Use coding matrices *G* and parity check matrices *H* with a convenient **structure**:
 - Hamming
 - DFT (BCH cyclic codes)
 - DCT
 - etc.
- Solution 2: Use **random matrices** and L_1 minimization to obtain a sparse solution for the error vector
- Solution 3: Use sparse random matrices and fast algorithms that take advantage of sparsity (LDPC and LT codes)

Avoiding the combinatorial explosion

Solutions

- Solution 1: Use coding matrices *G* and parity check matrices *H* with a convenient **structure**:
 - Hamming
 - DFT (BCH cyclic codes)
 - DCT
 - etc.
- Solution 2: Use **random matrices** and L_1 minimization to obtain a sparse solution for the error vector
- Solution 3: Use sparse random matrices and fast algorithms that take advantage of sparsity (LDPC and LT codes)

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- 3 Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Coding with structured matrices

- Choose β_i as the roots of unity in any field (finite or not). Note that the roots of unity are the solutions of $a^n = 1$
- Construct the Vandermonde matrix

$$\begin{bmatrix} \beta_0^0 & \beta_1^0 & \cdots & \beta_{N-1}^0 \\ \beta_0^1 & \beta_1^1 & \cdots & \beta_{N-1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ \beta_0^{N-1} & \beta_1^{N-1} & \cdots & \beta_{N-1}^{N-1} \end{bmatrix} \text{ with } \beta_i \neq \beta_j$$

• These codes can correct at least $\frac{N-K}{2}$ errors

Coding with the DFT

- In a Galois field, only certain values of N have roots of unity
- In the Complex field $\mathbb C$ the roots of unity of order N are $\beta_i = e^{j\frac{2\pi}{N}i}$ DFT matrix
- These codes are known as the BCH codes.
- A codeword c is generated by evaluating the IDFT of a zero padded message vector m

$$\begin{bmatrix} | \\ | \\ c \\ | \\ | \end{bmatrix} = \begin{bmatrix} IDFT \end{bmatrix} \begin{bmatrix} | \\ m \\ | \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} G \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$\begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

Coding with the DFT

• The syndrome s is part of the DFT of e

$$s = H^T e$$

• The complete equation will be

$$\begin{bmatrix} s' \\ s \end{bmatrix} = \begin{bmatrix} G^T \\ H^T \end{bmatrix} e$$

- If we have a way of obtaining s' then we could calculate the error e by inverse transform.
- As e is sparse with only L values different from zero, s is a linear combination of only L components:

$$s_n = \sum_{k=1}^L a_k s_{n-k}$$

M A P tele DOCTORAL PROGRAMME

Coding with the DFT

• The syndrome s is part of the DFT of e

$$s = H^T e$$

• The complete equation will be

$$\begin{bmatrix} s' \\ s \end{bmatrix} = \begin{bmatrix} G^T \\ H^T \end{bmatrix} e$$

- If we have a way of obtaining s' then we could calculate the error e by inverse transform.
- As e is sparse with only L values different from zero, s is a linear combination of only L components:

$$s_n = \sum_{k=1}^L a_k s_{n-k}$$

MAP tele DOCTORAL PROGRAMME

Coding with the DFT

• The syndrome s is part of the DFT of e

$$s = H^T e$$

• The complete equation will be

$$\begin{bmatrix} s' \\ s \end{bmatrix} = \begin{bmatrix} G^T \\ H^T \end{bmatrix} e$$

- If we have a way of obtaining s' then we could calculate the error e
 by inverse transform.
- As e is sparse with only L values different from zero, s is a linear combination of only L components:

$$s_n = \sum_{k=1}^L a_k s_{n-k}$$

Coding with the DFT

The syndrome s is part of the DFT of e

$$s = H^T e$$

• The complete equation will be

$$\begin{bmatrix} s' \\ s \end{bmatrix} = \begin{bmatrix} G^T \\ H^T \end{bmatrix} e$$

- If we have a way of obtaining s' then we could calculate the error e
 by inverse transform.
- As e is sparse with only L values different from zero, s is a linear combination of only L components:

$$s_n = \sum_{k=1}^L a_k s_{n-k}$$

MAP tele DOCTORAL PROGRAMME

Coding with the DFT

The syndrome s is part of the DFT of e

$$s = H^T e$$

• The complete equation will be

$$\begin{bmatrix} s' \\ s \end{bmatrix} = \begin{bmatrix} G^T \\ H^T \end{bmatrix} e$$

- If we have a way of obtaining s' then we could calculate the error e
 by inverse transform.
- As e is sparse with only L values different from zero, s is a linear combination of only L components:

$$s_n = \sum_{k=1}^L a_k s_{n-k}$$

MAP tele DOCTORAL PROGRAMME IN TELECOMMUNICATIONS

Decoding example

- Consider the following example:
- *N* = 16
- Two errors at $J = \{2, 14\}$

Decoding example

- In this example, due to the error vector symmetry, the syndrome is a real vector
- We have the following difference equation

$$s_n = a_1 s_{n-1} + a_2 s_{n-2}$$

 We have two unknowns and with the four known elements of the syndrome we can form

$$\left\{egin{array}{l} s_3=a_1s_2+a_2s_1\ s_4=a_1s_1 \end{array}
ight.$$

- Due to the structure of the coding matrix G and the parity check matrix H, the syndrome reconstruction is very sensitive to burst of errors
- This is a direct consequence of the structure of the matrix H.
 Contiguous row vectors are almost colinear, leading to bad conditioned system of equations
- To improve the reconstruction stability, we have to modify the structure of H
- On real number codes we have stability problems. On finite fields those codes behave poorly for burst errors
- Conclusion: The coding matrix structure is fundamental for both fields: Real and Finite

 MIAIP tele DOCTORAL PROBLEMENT

- Due to the structure of the coding matrix G and the parity check matrix H, the syndrome reconstruction is very sensitive to burst of errors
- This is a direct consequence of the structure of the matrix H.
 Contiguous row vectors are almost colinear, leading to bad conditioned system of equations
- To improve the reconstruction stability, we have to modify the structure of H
- On real number codes we have stability problems. On finite fields those codes behave poorly for burst errors
- Conclusion: The coding matrix structure is fundamental for both fields: Real and Finite

- Due to the structure of the coding matrix G and the parity check matrix H, the syndrome reconstruction is very sensitive to burst of errors
- This is a direct consequence of the structure of the matrix H.
 Contiguous row vectors are almost colinear, leading to bad conditioned system of equations
- To improve the reconstruction stability, we have to modify the structure of H
- On real number codes we have stability problems. On finite fields those codes behave poorly for burst errors
- Conclusion: The coding matrix structure is fundamental for both fields: Real and Finite

- Due to the structure of the coding matrix G and the parity check matrix H, the syndrome reconstruction is very sensitive to burst of errors
- This is a direct consequence of the structure of the matrix H.
 Contiguous row vectors are almost colinear, leading to bad conditioned system of equations
- To improve the reconstruction stability, we have to modify the structure of H
- On real number codes we have stability problems. On finite fields those codes behave poorly for burst errors
- Conclusion: The coding matrix structure is fundamental for both fields: Real and Finite

- Due to the structure of the coding matrix G and the parity check matrix H, the syndrome reconstruction is very sensitive to burst of errors
- This is a direct consequence of the structure of the matrix H.
 Contiguous row vectors are almost colinear, leading to bad conditioned system of equations
- To improve the reconstruction stability, we have to modify the structure of H
- On real number codes we have stability problems. On finite fields those codes behave poorly for burst errors
- **Conclusion**: The coding matrix structure is fundamental for both fields: Real and Finite

Solution 1+1/2

Turbo Codes

- The first attempt to randomise the coding matrix structure was achieved with turbo codes
- The message is codded with two different coding matrices usually the DFT and a column permuted version
- Those codes perform better than the BCH codes for both fields. They
 come close to the Shannon limit

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Coding with random matrices

• Consider a $N \times K$ random real number coding matrix G

$$c = Gm$$

 To correct errors we need to evaluate the syndrome with a parity check matrix H which must obey the condition

$$H^TG=0$$

• The columns of H should be orthogonal to the columns of G. This can be obtained by applying the Gram-Schmidt orthogonalization algorithm to a $N \times N$ random matrix

Coding with random matrices

Problem

How to solve the underdetermined system of equations

$$s = H^T e$$

- As H has no structure a general method must be found
- Additional restrictions must be applied to the vector e in order to define an unique solution, e.g.:
 - Minimum energy min $||e||_2$ (L_2 norm)
 - Sparsest min $||e||_0$ (L_0 pseudonorm)

Coding with random matrices

Problem

$$s = H^T e$$

- As H has no structure a general method must be found
- Additional restrictions must be applied to the vector *e* in order to define an unique solution, e.g.:
 - Minimum energy min $||e||_2$ (L_2 norm)
 - Sparsest min $||e||_0$ (L_0 pseudonorm)

Coding with random matrices

Problem

$$s = H^T e$$

- As H has no structure a general method must be found
- Additional restrictions must be applied to the vector e in order to define an unique solution, e.g.:
 - Minimum energy min $||e||_2$ (L_2 norm)
 - Sparsest min $||e||_0$ (L_0 pseudonorm)

Coding with random matrices

Problem

$$s = H^T e$$

- As H has no structure a general method must be found
- Additional restrictions must be applied to the vector e in order to define an unique solution, e.g.:
 - Minimum energy min $||e||_2$ (L_2 norm)
 - Sparsest min $\|e\|_0$ (L_0 pseudonorm)

Coding with random matrices

Problem

$$s = H^T e$$

- As H has no structure a general method must be found
- Additional restrictions must be applied to the vector e in order to define an unique solution, e.g.:
 - Minimum energy min $||e||_2$ (L_2 norm)
 - Sparsest min $||e||_0$ (L_0 pseudonorm)

L_0 to L_1 equivalence

• Donoho and Elad in 2001 founded empirically and theoretically that instead of solving the hard L_0 problem to find the sparsest solution

Problem

$$\min \|e\|_0$$
 s.t. $s = H^T e$

• They could solve the easiest L_1 problem and under certain conditions, still obtain the same sparsest solution

Problem

$$\min \|e\|_1 \quad s.t. \quad s = H^T e$$

• This problem can be solved by Linear Programing using the Simplex algorithm or Interior Point methods

MAP tele DOCTOBLA PROGRAMMENT

L_0 to L_1 equivalence

• Donoho and Elad in 2001 founded empirically and theoretically that instead of solving the hard L_0 problem to find the sparsest solution

Problem

$$\min \|e\|_0 \quad s.t. \quad s = H^T e$$

• They could solve the easiest L_1 problem and under certain conditions, still obtain the same sparsest solution

Problem

$$\min \|e\|_1$$
 s.t. $s = H^T e$

• This problem can be solved by Linear Programing using the Simplex algorithm or Interior Point methods

MAP tele DECEMBRATION

L_0 to L_1 equivalence

 Donoho and Elad in 2001 founded empirically and theoretically that instead of solving the hard L_0 problem to find the sparsest solution

Problem

$$\min \|e\|_0 \quad s.t. \quad s = H^T e$$

• They could solve the easiest L_1 problem and under certain conditions, still obtain the same sparsest solution

Problem

$$\min \|e\|_1 \quad s.t. \quad s = H^T e$$

• This problem can be solved by Linear Programing using the Simplex algorithm or Interior Point methods

Coding with random matrices

We can write the equation to solve in the following form

$$\begin{bmatrix} s_1 \\ \vdots \\ s_{N-K} \end{bmatrix} = e_1 \begin{bmatrix} | \\ h_1 \\ | \end{bmatrix} + e_2 \begin{bmatrix} | \\ h_2 \\ | \end{bmatrix} + \cdots + e_N \begin{bmatrix} | \\ h_N \\ | \end{bmatrix}$$

- The syndrome s is a linear combination of L vectors h_i
- We want to find the linear combination of vectors h_i that better "explains" the syndrome using the smallest number of vectors h_i

Coding with random matrices

$$L<\frac{1+1/M(H^T)}{2}=ebp$$

- ebp is the Equivalent Break Point and is an estimate of the maximum number of correctable errors
- M(A) is the mutual incoherence of matrix A

$$M(H^T) = \max_{i \neq j} \left| h_i^T h_j \right|, \quad such that \quad ||h_k||_2 = 1$$

- How to choose *H*?
- All the sets of N-K columns of H^T should be linearly independent
- Ideally, $h_i^T h_j \approx 0$ $i \neq j$

Coding with random matrices

$$L<\frac{1+1/M(H^T)}{2}=ebp$$

- ebp is the Equivalent Break Point and is an estimate of the maximum number of correctable errors
- M(A) is the mutual incoherence of matrix A

$$M(H^T) = \max_{i \neq j} \left| h_i^T h_j \right|, \quad such that \quad \left\| h_k \right\|_2 = 1$$

- How to choose H?
- All the sets of N-K columns of H^T should be linearly independent
- Ideally, $h_i' h_j \approx 0$ $i \neq j$

Coding with random matrices

$$L<\frac{1+1/M(H^T)}{2}=ebp$$

- ebp is the Equivalent Break Point and is an estimate of the maximum number of correctable errors
- M(A) is the mutual incoherence of matrix A

$$M(H^T) = \max_{i \neq j} \left| h_i^T h_j \right|, \quad such that \quad \left\| h_k \right\|_2 = 1$$

- How to choose *H*?
- All the sets of N-K columns of H^T should be linearly independent
- Ideally, $h_i^T h_j \approx 0$ $i \neq j$

Coding with random matrices

$$L<\frac{1+1/M(H^T)}{2}=ebp$$

- ebp is the Equivalent Break Point and is an estimate of the maximum number of correctable errors
- M(A) is the mutual incoherence of matrix A

$$M(H^T) = \max_{i \neq j} \left| h_i^T h_j \right|, \quad \text{such that} \quad \left\| h_k \right\|_2 = 1$$

- How to choose *H*?
- All the sets of N K columns of H^T should be linearly independent
- Ideally, $h_i^T h_j \approx 0$ $i \neq j$

Coding with random matrices

$$L<\frac{1+1/M(H^T)}{2}=ebp$$

- ebp is the Equivalent Break Point and is an estimate of the maximum number of correctable errors
- M(A) is the mutual incoherence of matrix A

$$M(H^T) = \max_{i \neq j} \left| h_i^T h_j \right|, \quad such that \quad ||h_k||_2 = 1$$

- How to choose *H*?
- All the sets of N K columns of H^T should be linearly independent
- Ideally, $h_i^T h_j \approx 0$ $i \neq j$

Coding with random matrices

Random matrices are the solution

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- 3 Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Coding with random sparse matrices

- With random sparse matrices is possible to find efficient algorithms to code and decode.
- This algorithms make use of the sparsity and avoid the slower L1 optimisation
- We will introduce two different types of codes that uses sparse matrices
 - LDPC codes Low-Density Parity-Check codes [Gallager 1968]
 - LT codes The first rateless erasure codes [Luby 2002]
 - Online codes Almost the first rateless erasure code [Maymounkov 2002]

Coding with random sparse matrices

- With random sparse matrices is possible to find efficient algorithms to code and decode.
- This algorithms make use of the sparsity and avoid the slower L1 optimisation
- We will introduce two different types of codes that uses sparse matrices
 - LDPC codes Low-Density Parity-Check codes [Gallager 1968]
 - LT codes The first rateless erasure codes [Luby 2002]
 - Online codes Almost the first rateless erasure code [Maymounkov 2002]

Coding with random sparse matrices

- With random sparse matrices is possible to find efficient algorithms to code and decode.
- This algorithms make use of the sparsity and avoid the slower L1 optimisation
- We will introduce two different types of codes that uses sparse matrices
 - LDPC codes Low-Density Parity-Check codes [Gallager 1968]
 - LT codes The first rateless erasure codes [Luby 2002]
 - Online codes Almost the first rateless erasure code [Maymounkov 2002]

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity MAP tele DOTTORAL PROBRAME.

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity MAP tele TOTAL PROBRAME INTELECTION OF THE RELEGIOUS AND THE RELEGIOUS AND THE RESERVE OF THE RES

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity MAIP tele ROSCIONAL PROBRAMMENTATION

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity

 MAP tele NOTIONAL PROGRAMMENT AND INTERCOMPANIES AND INTERCOMPANIES

- The parity check matrix is highly sparse: the number of nonzero elements grows linearly with N
- Due to sparsity low complexity algorithms exists
- The parity check matrix can be generated randomly but must obey certain rules
- Usually N is very large (1000 to 10000 or more)
- Usually the coding matrix is not sparse, which implies a coding complexity quadratic with N
- As N becomes large the LDPC codes approach the Shannon limit [MacKay1999]
- An "optimal" LDPC code can get within ≈ 0.005 dB of channel capacity

LDPC codes example

The LDPC parity check matrix can be represented by a Tanner graph

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$s = H^T e$$

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

What is a Digital Fountain?

- Is a new paradigm for data transmission that changes the standard approach where a user must receive an ordered stream of data symbols to one where the user must receive enough symbols to reconstruct the original information.
- With a Digital Fountain is possible to generate an infinite data stream from a *K* symbol file. Once the receiver gets any *K* symbols from the stream it can reconstruct the original message.

Digital Fountain?

The name Digital Fountain comes from the analogy with a water fountain filling a glass of water. The glass must be filled up, not with some specific drops of water.

Concept

One linear combination

$$egin{bmatrix} egin{bmatrix} c_1 \ 1 imes 1 \end{bmatrix} = egin{bmatrix} - & g_1 \ 1 imes K \end{bmatrix} - egin{bmatrix} m{m} \ m{k} imes 1 \end{bmatrix}$$

Concept

Two linear combinations

$$\begin{bmatrix} c_1 \\ c_2 \\ 2 \times 1 \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$K \times 1$$

Concept

Infinite number of linear combinations

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} - & g_1 & - \\ - & g_2 & - \\ & \vdots \end{bmatrix} \begin{bmatrix} | \\ m \\ | \end{bmatrix}$$

$$N \times 1 \qquad N \times K \qquad K \times 1$$

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- ullet The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

Concept

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

Concept

- On Fountain Codes, each line g_i of G is generated online
- Each g_i has only a finite number of 1's (degree)
- ullet The number of 1's is a random variable with distribution ho
- The symbols to combine (XOR) are chosen randomly
- We can generate linear combinations as needed
- The receiver can be filled with codewords until it is sufficient to decode the original message
- ullet The K original symbols can be recovered from $K(1+\epsilon)$ coded symbols with probability $1-\delta$

Decoding

- Find a codeword c with all message symbols decoded except one
- **2** Recover that message symbol $m_X = c \oplus m_1 \oplus m_2 \oplus \cdots \oplus m_{i-1}$ where $m_1, m_2, \ldots, m_{i-1}$ are the recovered symbols associated with c
- Apply the previous steps until no more message symbols left

Decoding Example 1

Received codewords

Symbols to decode

Decoding Example 2

Decoding Example 3

Decoding Example 4

Distribution Example

MAPtele

Decoding simulation

Outline

- Linear Codes in any Field
 - Correcting Erasures
 - Correcting Errors
- 2 Coding Matrices
 - Structured Matrices
 - Random Matrices
 - Sparse Random Matrices
- Coding with Sparse Random Matrices
 - Fountain Codes
 - Applications

Applications

Applications

Applications

