Differentiable dynamic programming for structured prediction and attention

Arthur Mensch

École Normale Supérieure Département de Mathématiques Appliquées Paris, France

January 29, 2019

Dynamic programming in machine learning

Belief propagation Viterbi algorithm

Dynamic time warping

Value iteration

New layers for deep predictive modelling

Dynamic programming

- Function evaluation on a big space
- From evaluation on smaller space (divide and conquer)

Modern machine learning

• Modular models, trainable with gradient descent

This talk: Principled differentiable dynamic programming layers

- Application to complex predictive models (e.g. attention mechanisms)
- Sparse output probabilities in structured setting

Modular structured prediction: potentials + linear programming

Classification: $\mathcal{Y} = [1, k]$

Modular structured prediction: potentials + linear programming

Classification: $\mathcal{Y} = [1, k]$

Structured output ? $\mathcal{Y} \subset \mathbb{R}^D$ (edges of a polytope), *e. g.* a tag sequence

Modular structured prediction: potentials + linear programming

Classification: $\mathcal{Y} = [1, k]$

Structured output ? $\mathcal{Y} \subset \mathbb{R}^D$ (edges of a polytope), *e. g.* a tag sequence Deep feature representation ______ Inference mechanism

Structure prediction:

Structure prediction: *Structured perceptron loss*

Structure prediction: *Structured perceptron loss*

Backprop through the max operator.

Structure prediction: *Structured perceptron loss*

Backprop through the max operator. Not differentiable everywhere.

Structured prediction as an inner layer

Example: Attention mechanisms, 1 where c are the attention weights.

¹Dzmitry Bahdanau et al. (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: Proc. of ICLR.

Structured prediction as an inner layer

Example: Attention mechanisms, 1 where c are the attention weights.

We need to backpropagate through the argmax.

¹Dzmitry Bahdanau et al. (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: Proc. of ICLR.

Structured prediction as an inner layer

Example: Attention mechanisms, 1 where c are the attention weights.

We need to backpropagate through the argmax. Zero gradient.

¹Dzmitry Bahdanau et al. (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: Proc. of ICLR.

Gradient from regularization: from max to softmax

Gradient from regularization: from max to softmax

Multinomial loss, softmax attention: differentiable layers

Questions and goal

• From **max** to **softmax**: Where does this comes from and can we use different smoothing techniques ?

Questions and goal

- From **max** to **softmax**: Where does this comes from and can we use different smoothing techniques ?
- How to smooth a wide class of **structured prediction** LP problems?

$$\max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}(x), \boldsymbol{Y} \rangle \qquad \qquad \boldsymbol{Y} \in \mathcal{Y} \subset \mathbb{R}^D = \operatorname*{argmax} \langle \boldsymbol{\theta}(x), \boldsymbol{Y} \rangle$$

Questions and goal

- From max to softmax: Where does this comes from and can we use different smoothing techniques?
- How to smooth a wide class of structured prediction LP problems?

$$\max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}(x), \boldsymbol{Y} \rangle \qquad \qquad \boldsymbol{Y} \in \mathcal{Y} \subset \mathbb{R}^D = \operatorname{argmax} \langle \boldsymbol{\theta}(x), \boldsymbol{Y} \rangle$$

Focus on inference mechanisms that relies on dynamic programming

- Smooth max layers for new structured losses
- Differentiable argmax layers for test and inner inference mechanisms

Contributions

Generic framework for differentiable structured prediction:

- Regularizing the max operators with strongly convex penalties.
- May output sparse continuous outputs

Applications:

- End-to-end audio to score alignment
- Named entity recognition with sparse predictions
- Block sparse attention mechanisms

Extends and ground in theory^{2,3,4,5}

²Yann LeCun et al. (2006). "A tutorial on energy-based learning". In: *Predicting structured data* 1.0.

³Guillaume Lample et al. (2016). "Neural Architectures for Named Entity Recognition". In: *Proc. of NAACL*, pp. 260–270.

⁴Yoon Kim et al. (2017). "Structured Attention Networks". In: *Proc. of ICLR*.

⁵Marco Cuturi and Mathieu Blondel (2017). "Soft-DTW: a Differentiable Loss Function for Time-Series". In: Proc. of ICML, pp. 894–903.

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

• Compute LP(θ) in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

• Compute LP(θ) in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Also provide the **argmax** in $\mathcal{O}(D)$:

$$\operatorname*{argmax}_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

• Compute $LP(\theta)$ in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Also provide the **argmax** in $\mathcal{O}(D)$:

$$\underset{\boldsymbol{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

Examples:

- Viterbi algorithm for infering tag sequences
- Dynamic time warping algorithm for infering alignment matrices

Dynamic programming as best path in a DAG

Directed acyclic graph

- ullet $G=(\mathcal{N},\mathcal{E})$, with 1 root and 1 leaf, nodes numbered in topo. order [1,N]
- Edge (i,j) has weight $\theta_{i,j}$ j parent, i child. $\theta \in \mathbb{R}^{n \times n}$ incidence matrix
- Path $\mathbf{Y} \in \mathcal{Y} \subset \{0,1\}^{N \times N}$: $y_{i,j} = 1$ iff (i,j) is taken

Single path value: $\langle Y, \theta \rangle$

Highest score among all paths

$$\mathsf{LP}(oldsymbol{ heta}) = \max_{oldsymbol{Y} \in \mathcal{V}} \langle oldsymbol{Y}, oldsymbol{ heta}
angle$$

Maximum value computation (finding the max)

Max value from 1 to i

$$v_i(\boldsymbol{\theta}) = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j(\boldsymbol{\theta})$$

One pass over the graph

$$(v_1 = 0, v_2, \dots, v_n \triangleq \mathsf{DP}(\boldsymbol{\theta}))$$

Bellman equation

Maximum value computation (finding the max)

Max value from 1 to i

$$v_i(oldsymbol{ heta}) = \max_{j \in \mathcal{P}_i} heta_{i,j} + v_j(oldsymbol{ heta})$$

One pass over the graph

$$(v_1 = 0, v_2, \dots, v_n \triangleq \mathsf{DP}(\boldsymbol{\theta}))$$

Bellman equation

The DP recursion solves the linear problem (Bellman, 1958)

$$\mathsf{DP}(oldsymbol{ heta}) = \mathsf{LP}(oldsymbol{ heta}) = \max_{oldsymbol{Y} \in \mathcal{V}} \langle oldsymbol{Y}, oldsymbol{ heta}
angle$$

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

The argmax is computable using backpropagation = backtracking

Danskin theorem (Danskin, 1966)

$$\partial \mathsf{DP}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}}(\boldsymbol{\theta} \to \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)) = \mathsf{conv}(\underset{\boldsymbol{Y} \in \mathcal{Y}}{\mathsf{argmax}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)$$

• When the argmax is unique: $\partial_{\theta} \mathsf{DP}(\theta) = \mathsf{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \mathbf{Y}, \theta \rangle$

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

The argmax is computable using backpropagation = backtracking

Danskin theorem (Danskin, 1966)

$$\partial \mathsf{DP}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}}(\boldsymbol{\theta} \to \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)) = \mathsf{conv}(\underset{\boldsymbol{Y} \in \mathcal{Y}}{\mathsf{argmax}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)$$

• When the argmax is unique: $\partial_{\theta} \mathsf{DP}(\theta) = \mathsf{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \mathbf{Y}, \theta \rangle$

Dynamic programming layers

- Max layer: $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta}) = \mathsf{max}_{oldsymbol{Y}} \langle oldsymbol{Y}, oldsymbol{ heta}
 angle$
- Argmax layer: $\theta \to \partial_{\theta} \mathsf{DP}(\theta) \sim \mathsf{argmax}_{\mathbf{Y}} \langle \mathbf{Y}, \boldsymbol{\theta} \rangle$

Example: Linear conditional random field

$$(\mathbf{x}_1,\ldots,\mathbf{x}_T)$$
 observation, $(y_1,\ldots,y_T)\in[S]^T$ states. $\mathbf{Y}\in\mathcal{Y}\in\{0,1\}^{S\times S\times T}$

$$\mathbf{y} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{T} \theta_t \big(y_t, y_{t-1}, \mathbf{x}_t \big) = \operatorname*{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \mathbf{Y} \rangle$$

Y computed with dynamic programming = **Viterbi algorithm**.

Example: Dynamic time warping

Elastic matching

- Two time-series A, B
- Distance matrix: $\theta_{i,j} = \|a_i b_i\|_2^2$

Alignment matrices

- $\bullet \ (1,1) \rightarrow (\mathit{N}_{A},\mathit{N}_{B})$
- \downarrow , \rightarrow , \searrow moves

Best alignment: $\mathbf{Y}(\mathbf{A}, \mathbf{B}) = \underset{\mathbf{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \mathbf{Y}, \mathbf{\theta} \rangle$

DTW distance: $d(m{A}, m{B}) = \max_{m{Y} \in \mathcal{Y}} \langle m{Y}, m{ heta}
angle$

Computable by dynamic programming

- $oldsymbol{\cdot} \mathcal{Y}$ set of alignment matrices
- $oldsymbol{ heta}$ distance matrix

Regularizing dynamic programming

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- ullet Argmax layer $oldsymbol{ heta} o \partial \mathsf{DP}(oldsymbol{ heta})$ is piecewise constant / not defined

Regularizing dynamic programming

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- Argmax layer $heta o \partial \mathsf{DP}(heta)$ is piecewise constant / not defined

Culprit is the Bellman recursion

$$x \in \mathbb{R}^d o \max(x) \in \mathbb{R}$$

- Not differentiable everywhere
- Piecewise linear (null Hessian)

Regularizing dynamic programming

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- Argmax layer $heta o \partial \mathsf{DP}(heta)$ is piecewise constant / not defined

Culprit is the Bellman recursion

$$\mathbf{x} \in \mathbb{R}^d o \max(\mathbf{x}) \in \mathbb{R}$$

- Not differentiable everywhere
- Piecewise linear (null Hessian)

Solution: smooth the maximum operator

Max smoothing

 $\Omega: \mathbb{R} \to \mathbb{R}$ strongly-convex function. $\mathbf{x} \in \mathbb{R}^d$. Δ^d : d-dim simplex.

Smoothed max operator (Moreau, 1965; Nesterov, 2005)

$$\max_{\Omega}(\mathbf{x}) = \max_{\mathbf{y} \in \Delta^d} \langle \mathbf{x}, \mathbf{y} \rangle - \sum_{i=1}^d \Omega(\mathbf{y}_i)$$

Max smoothing

 $\Omega: \mathbb{R} \to \mathbb{R}$ strongly-convex function. $\mathbf{x} \in \mathbb{R}^d$. Δ^d : d-dim simplex.

Smoothed max operator (Moreau, 1965; Nesterov, 2005)

$$\max_{\Omega}(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \Delta^d} \langle \boldsymbol{x}, \boldsymbol{y} \rangle - \sum_{i=1}^d \Omega(y_i)$$

Properties:

- Consistent smoothing: $\max_0(x) = \max(x)$
- Twice differentiable almost everywhere with non-zero Hessian

Examples of regularization

Shannon entropy:
$$\Omega(x) = x \log(x) \longrightarrow Softmax$$
 operator $\max_{\Omega}(x) = \log(Z)$, where $Z = \sum_{j} \exp(x_{j})$ $\nabla \max_{\Omega}(x) = (\exp(x_{i})/Z)_{i \in \mathbb{R}^{d}}$

Examples of regularization

Shannon entropy:
$$\Omega(x) = x \log(x) \longrightarrow Softmax$$
 operator $\max_{\Omega}(x) = \log(Z)$, where $Z = \sum_{j} \exp(x_{j})$

$$\ell_2^2$$
 norm: $\Omega(x) = x^2 \longrightarrow Sparsemax$ (Martins and Astudillo, 2016)

 $\nabla \max_{\Omega}(\mathbf{x}) = (\exp(x_i)/Z)_{i \in \mathbb{R}^d}$

 $abla\mathsf{max}_\Omega(m{x}) = \mathsf{argmin}_{p \in \triangle^d} \| m{x} - m{p} \|_2^2$ Sparse: eucl. projection on simplex

Dynamic programming regularization

What we have at hand

- 1. Smooth max: $\max_{\Omega}(x) = \max_{y \in \Delta^d} \langle x, y \rangle \sum_{i=1}^d \Omega(y_i)$
- **2. Bellman recursion:** $v_i = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j$, $\mathsf{DP}(\Theta) \triangleq v_N$

Dynamic programming regularization

What we have at hand

- 1. Smooth max: $\max_{\Omega}(x) = \max_{y \in \Delta^d} \langle x, y \rangle \sum_{i=1}^d \Omega(y_i)$
- **2. Bellman recursion:** $v_i = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j$, $\mathsf{DP}(\mathbf{\Theta}) \triangleq v_N$

Bottom-up construction

For all $i \in [N]$:

$$v_i(\boldsymbol{\theta}) = \max_{\Omega} (\theta_{i,j} + v_j)_{j \in \mathcal{P}_i}$$

$$\mathsf{DP}_\Omega(\boldsymbol{\theta}) \triangleq \mathsf{v}_N(\boldsymbol{\theta})$$

Regularized best-path: $\nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$

From max to smoothed max:

$$\mathbf{Y}(\mathbf{\theta}) = \partial \mathsf{DP}(\mathbf{\theta}) \Longrightarrow \mathbf{Y}_{\Omega}(\mathbf{\theta}) \triangleq \nabla \mathsf{DP}_{\Omega}(\mathbf{\theta})$$

Regularized best-path: $\nabla \mathsf{DP}_{\Omega}(\theta)$

From max to smoothed max:

$$\mathbf{Y}(\mathbf{\theta}) = \partial \mathsf{DP}(\mathbf{\theta}) \Longrightarrow \mathbf{Y}_{\Omega}(\mathbf{\theta}) \triangleq \nabla \mathsf{DP}_{\Omega}(\mathbf{\theta})$$

Computed with backpropagation

Requirements: Gradients of Bellman equations

$$\mathbf{q}_i =
abla \max_{\Omega} (\theta_{i,j} + \mathbf{v}_j)_{j \in \mathcal{P}_i}$$

Differentiable DP properties

Usable for loss design: $\theta \to \mathsf{DP}_\Omega(\theta)$ is convex, bounds $\mathsf{DP}(\theta)$

Differentiable DP properties

Usable for loss design: $\theta \to \mathsf{DP}_\Omega(\theta)$ is convex, bounds $\mathsf{DP}(\theta)$

Is local regularization equivalent to global regularization?

$$\mathsf{LP}_{\Omega}(\boldsymbol{\theta}) \triangleq \mathsf{max}_{\Omega} \, \left(\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle \right)_{\boldsymbol{Y} \in \mathcal{Y}} = \mathsf{max}_{\boldsymbol{p} \in \triangle^{D}} \, \left\langle \boldsymbol{p}, (\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)_{\boldsymbol{y} \in \mathcal{Y}} \right\rangle - \Omega(\boldsymbol{p})$$

Theorem:

- $\mathsf{DP}_{\Omega}(\theta) = \mathsf{LP}_{\Omega}(\theta)$ if and only if $\Omega(p) = -\gamma \sum_{i} p_{i} \log p_{i}$
- ullet DP $_{\Omega}(oldsymbol{ heta})$ is the CRF (Lafferty et al., 2001) log-partition

$$\mathsf{DP}_{\Omega}(\boldsymbol{\theta}) = \mathsf{log}(\sum_{\boldsymbol{Y} \in \mathcal{Y}} \mathsf{exp}(\langle \boldsymbol{\theta}, \, \boldsymbol{Y}))$$

New motivation for Shannon reg. But ℓ_2^2 has other interesting properties.

Relaxed gradient properties

Probabilistic interpretation

Backprop defines a distribution \mathcal{D}_Ω on the set of paths $\mathcal Y$

$$abla\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathbb{E}_{\mathcal{D}_\Omega}[oldsymbol{Y}] \in \mathsf{conv}(\mathcal{Y})$$

 \Rightarrow Probability of path \boldsymbol{Y} : $p_{\boldsymbol{\theta},\Omega}(\boldsymbol{Y})$

Relaxed gradient properties

Probabilistic interpretation

Backprop defines a distribution \mathcal{D}_Ω on the set of paths \mathcal{Y}

$$abla\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathbb{E}_{\mathcal{D}_\Omega}[oldsymbol{Y}] \in \mathsf{conv}(\mathcal{Y})$$

 \Rightarrow Probability of path \boldsymbol{Y} : $p_{\boldsymbol{\theta},\Omega}(\boldsymbol{Y})$

- **Shannon:** Gibbs distribution: $p_{\theta,\Omega}(\mathbf{Y}) \propto \langle \mathbf{Y}, \theta \rangle$
- ℓ_2^2 : \mathcal{D}_{Ω} has a small support o $\nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$ is **sparse**

Backpropagating through $\nabla \mathsf{DP}_{\Omega}(\Theta)$

Regularized best-path layer: $\theta \in \mathbb{R}^{N \times N} \to \nabla \mathsf{DP}_{\Omega}(\theta)$

Jacobian ? $\nabla \nabla \mathsf{DP}_{\Omega}(\Theta) = \nabla^2 \mathsf{DP}_{\Omega}(\Theta) = \mathsf{Hessian}$

Hessian vector-product

$$\nabla(\nabla \mathsf{DP}_{\Omega}(\Theta))Z = \nabla^2 \mathsf{DP}_{\Omega}(\Theta)Z, \qquad Z \in \mathbb{R}^{n \times n} \quad \mathsf{direction}$$

Computable in $\mathcal{O}(|\mathcal{E}|)$: reverse-on-forward differentiation

Highest-score layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}} o \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Highest score layer, backward pass Best path layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}}
ightarrow
abla \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Highest-score layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}} o \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Highest score layer, backward pass Best path layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}}
ightarrow
abla \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Best-path layer: backward pass

$$oldsymbol{ heta}, oldsymbol{Z} \in \mathbb{R}^{ extit{N} imes extit{N}} imes \mathbb{R}^{ extit{N} imes extit{N}}
ightarrow
abla^2 \mathsf{DP}_\Omega(oldsymbol{ heta}) oldsymbol{Z}$$

Highest-score layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}} o \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Highest score layer, backward pass Best path layer, forward-pass

$$oldsymbol{ heta} \in \mathbb{R}^{ extit{N} imes extit{N}}
ightarrow
abla \mathsf{DP}_\Omega(oldsymbol{ heta})$$

Best-path layer: backward pass

$$oldsymbol{ heta}, oldsymbol{Z} \in \mathbb{R}^{ extit{N} imes extit{N}} imes \mathbb{R}^{ extit{N} imes extit{N}}
ightarrow
abla^2 \mathsf{DP}_{\Omega}(oldsymbol{ heta}) oldsymbol{Z}$$

- Sparse/dense output with ℓ_2 /entropy regularization
- Total computational cost: $\mathcal{O}(|\mathcal{E}|)$

Applications

$$\nabla \mathsf{Vit}_{\mathsf{O}} : \mathbb{R}^{T \times S \times S} \to \mathbb{R}^{T \times S \times S}$$

$$\nabla \mathsf{DTW}_{\mathsf{O}}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$$

Audio-to-score alignment

- Input data: audio sequence $x_a \in \mathbb{R}^{n \times k}$, one-hot key sequence $x_s \in \mathbb{R}^{m \times d}$
- Labels: Alignment $Y_{\text{true}} \in \mathcal{Y} \subset \mathbb{R}^{n \times m}$

Metric learning experiment

Learn the distance matrix:

- Baseline: multinomial classification, audio-frame to score key
- Our model: end-to-end training of a linear model with final soft-DTW layer

Data: Supervised dataset: 10 annotated Bach quatuors (Bach10)

Validation:

- Leave-one-out prediction
- At test time: Hard DTW on the learned distance matrix
- RMSE between predicted onsets

Results

RMSE	Test set	Train set
End-to-end training Non-structure training Random	$egin{array}{l} {f 1.26 \pm 0.64} \ 3.70 \pm 2.85 \ 14.64 \pm 2.63 \end{array}$	$egin{array}{l} {f 0.17 \pm 0.01} \ 1.80 \pm 0.14 \ 14.64 \pm 0.29 \end{array}$

Named entity recognition

- **Input data:** Sentences **x** of length **T**
- Labels Y: {Begin/Inside/Outside}{Person/Org./Loc./Misc.}

K-best set predictions in named entity recognition

Quantitative comparison of losses

- Potential-convex loss: $\ell_{\Omega}(\boldsymbol{\theta}, \boldsymbol{Y}) = \mathsf{DP}_{\Omega}(\boldsymbol{\theta}) \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle$
- Cost-sensitive loss: $\ell_{\Omega}(\boldsymbol{\theta}, \boldsymbol{Y}) = \Delta(\nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta}), \boldsymbol{Y}).$

Ω	Loss	English	Spanish	German	Dutch
Negentropy	Convex loss Cost-sensitive	90.80 90.47	86.68 86.20	77.35 77.56	87.56 87.37
ℓ_2^2	Convex loss Cost-sensitive	90.86 89.49	85.51 84.07	76.01 76.91	86.58 85.90
Lample e	t al., 2016 ⁶	90.96	85.75	78.76	81.74

- ullet eg. achieves comparable accuracy with more interpretable predictions
- Training directly from potential-derived losses is slightly better

⁶Guillaume Lample et al. (2016). "Neural Architectures for Named Entity Recognition". In: *Proc. of NAACL*, pp. 260–270.

Structured attention — Neural machine transation

- Compute an attention vector c: 2 state linear-chain CRF
- $c = \mathbb{E}[z]$, $z_i = 1$ if attention, $z_i = 0$ if no-attention
- Use ${\sf Vit}_\Omega$, with sparse marginal computation $\Omega=\ell_2^2$.

Similar BLEU scores WMT14 1M

Attention model	fr→en	en→fr
$\begin{array}{l} Softmax \\ CRF + entropy \\ CRF + \ell_2^2 \; reg. \end{array}$	27.96 27.96 27.21	28.08 27.98 27.28

Structured attention — Neural machine transation

- Compute an attention vector c: 2 state linear-chain CRF
- $c = \mathbb{E}[z]$, $z_i = 1$ if attention, $z_i = 0$ if no-attention
- Use ${\sf Vit}_\Omega$, with sparse marginal computation $\Omega=\ell_2^2$.

Similar BLEU scores WMT14 1M

Attention model	fr→en	en→fr
Softmax $\operatorname{CRF} + \operatorname{entropy} \operatorname{CRF} + \ell_2^2 \operatorname{reg}.$	27.96 27.96 27.21	28.08 27.98 27.28

Block sparse attention

Conclusion

General framework to use DP algorithms in arbitrary networks

- Efficient and stable algorithms
- Flexibility of regularization (sparse output)

Experiments: ℓ_2 /entropy have similar performance

• ℓ_2^2 : More interpretable outputs / k-best sets with sparsity

PyTorch package didyprog available (fast custom Viterbi and DTW layer)

Conclusion

General framework to use DP algorithms in arbitrary networks

- Efficient and stable algorithms
- Flexibility of regularization (sparse output)

Experiments: ℓ_2 /entropy have similar performance

• ℓ_2^2 : More interpretable outputs / k-best sets with sparsity

PyTorch package didyprog available (fast custom Viterbi and DTW layer)

Arthur Mensch and Mathieu Blondel (2018). "Differentiable Dynamic Programming for Structured Prediction and Attention". In: Proceedings of the International Conference on Machine Learning

Conclusion

General framework to use DP algorithms in arbitrary networks

- Efficient and stable algorithms
- Flexibility of regularization (sparse output)

Experiments: ℓ_2 /entropy have similar performance

• ℓ_2^2 : More interpretable outputs / k-best sets with sparsity

PyTorch package didyprog available (fast custom Viterbi and DTW layer)

Arthur Mensch and Mathieu Blondel (2018). "Differentiable Dynamic Programming for Structured Prediction and Attention". In: Proceedings of the International Conference on Machine Learning

Related work at Google: Framwork formalizes differentiable beam search (Goyal et al., 2017), similar effor in reinforcement learning (Haarnoja et al., 2018)

Bibliography I

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: *Proc. of ICLR*.
- Bellman, Richard (1958). "On a routing problem". In: *Quarterly of applied mathematics* 16.1, pp. 87–90.
- Cuturi, Marco and Mathieu Blondel (2017). "Soft-DTW: a Differentiable Loss Function for Time-Series". In: *Proc. of ICML*, pp. 894–903.
- Danskin, John M (1966). "The theory of max-min, with applications". In: *SIAM Journal on Applied Mathematics* 14.4, pp. 641–664.
- Goyal, Kartik et al. (July 2017). "A Continuous Relaxation of Beam Search for End-to-End Training of Neural Sequence Models". In: arXiv:1708.00111 [cs]. arXiv: 1708.00111 [cs].

Bibliography II

- Haarnoja, Tuomas et al. (2018). "Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor". en. In: *Proceedings of the International Conference on Machine Learning*, p. 10.
- Kim, Yoon et al. (2017). "Structured Attention Networks". In: Proc. of ICLR.
- Lafferty, John, Andrew McCallum, and Fernando CN Pereira (2001).
 - "Conditional random fields: Probabilistic models for segmenting and labeling sequence data". In: *Proc. of ICML*, pp. 282–289.
- Lample, Guillaume et al. (2016). "Neural Architectures for Named Entity Recognition". In: *Proc. of NAACL*, pp. 260–270.
- LeCun, Yann et al. (2006). "A tutorial on energy-based learning". In: *Predicting* structured data 1.0.

Bibliography III

- Martins, André F.T. and Ramón Fernandez Astudillo (2016). "From softmax to sparsemax: A sparse model of attention and multi-label classification". In: *Proc. of ICML*, pp. 1614–1623.
- Mensch, Arthur and Mathieu Blondel (2018). "Differentiable Dynamic Programming for Structured Prediction and Attention". In: *Proceedings of the International Conference on Machine Learning*.
- Moreau, Jean-Jacques (1965). "Proximité et dualité dans un espace hilbertien". In: Bullet de la Société Mathémathique de France 93.2, pp. 273–299.
- Nesterov, Yurii (2005). "Smooth minimization of non-smooth functions". In: *Mathematical Programming* 103.1, pp. 127–152.