

analyticsC apstone project

Le Zhou - MS of Data Science Dr. Christelle Scharff

lz25261n@pace.edu

https://github.com/50dollarsbuddy/CS668 capstone

A prediction model that identify how many R&D cost is good for IBM's stock price

Research and development(R&D)

A direct expenditures relating to a company's efforts to develop, design, and enhance its products, services, technologies or processes

Amazon (AMZN), \$42.74 billion

Alphabet (GOOG, GOOGL), \$27.57 billion

Microsoft (MSFT), \$19.27 billion

amazon

Introduction

Accurate prediction is hard in chaotic commercial system. However, the logic of analysing financial report give a new idea to revisit the process that people evaluate a company by accounting experience. Accounting is the process of recording financial transactions pertaining to a business and historic standard which is designed by exports. We could build a relation to quickly analysis their accounting's change. It is hard to find an explainable mathematics model between R&D and company's developing potential, but it is reasonable for the relation and exploring its application.

- 1. IBM's identity(top 500, high technology, dow jones index)
- 2. R&D management
- 3. A relationship between R&D and IBM's stock price(value and future)

Literature review

- 1. K-Nearest Neighbor regression with Principal component analysis for financial Time series Prediction
 - (1)PCA for reducing redundancy information and extracting essential features
 - (2)set data set by time series
 - (3) K-NN regression
- 2. A machine learning Aproach for Stock Price Prediction
 - (1)structural support vector machines(SSVMs) non-linearly separated data
- (2)Data mining and machine learning approaches can be incorporated into business intelligence(BI) systems to help users for decision support
- 3. Stock Price Prediction Bases on Machine Learning Approaches
 (1)Logisttic regression + support vector machine

Summary

Data set

Financial data need a suitable format

01.

02.

variable(features)

Focus on principal component

model

Non-linear issues cross validation Complex model 03.

04.

evaluation

R-Squared MSE MAE

Solution

Time series analysis

01.

02.

R*D, Nasdaq_value, IBM's stock price

Random forest, decision tree Voting regression 03.

04.

evaluation

R-Squared MSE MAE

Build a forecast model between RED and stock price

Feature

R&D(research and development expense)
Nasdaq index - reflect the whole market's trend
IBM's stock price

Model

Decision tree regression Random forest regression

Optimize Model

Ensemble method Voting regression

Data format

Time series data - it is a collection of observations obtained through repeated measurement over time.

The result will indicate the relation between R&D and IBM's stock price, which remind users to have a better budget in R&D for next year

Data set

1. R&D from IBM's financial report(quarterly)

IBM's financial report - Yahoo Finance

df				
	name	tta	06/30/2021	03/31/2021
0	TotalRevenue	74402000000.00	18745000000.00	17729000000.00
1	\tOperatingRevenue	74402000000.00	18745000000.00	17729000000.00
2	CostOfRevenue	38241000000.00	9741000000.00	9525000000.00
3	GrossProfit	36161000000.00	9004000000.00	8204000000.00
4	OperatingExpense	28102000000.00	6857000000.00	6658000000.00
•••				
56	Total Unusual Items Excluding Goodwill	(270000000.00)	(65000000.00)	(45000000.00)
57	TotalUnusualItems	(270000000.00)	(65000000.00)	(45000000.00)
58	NormalizedEBITDA	13777000000.00	3578000000.00	2902000000.00
59	TaxRateForCalcs	0.06	0.15	0.40
60	TaxEffectOfUnusualItems	(15990667.62)	(9555000.00)	(18000000.00)

Feature: date, R&D(109 rows)

df RD Date R&D 06/30/2021 1657000000.00 03/31/2021 1630000000.00 12/31/2020 1611000000.00 09/30/2020 1515000000.00 06/30/2020 1582000000.00 104 06/30/1995 9.74e+08 03/31/1995 9.13e+08 106 12/31/1994 1118000000.00 09/30/1994 1.053e+09 108 06/30/1994 1.091e+09

109 rows × 2 columns

2. IBM's stock price

Yahoo finance API - yfinance

Import finance as yf
Import pandas as pd
Ibm = yf.Ticker('ibm')
Ibm_his = ibm.history(period='max')

ibm = yf.Ticker('ibm')
ibm_his = ibm.history(period="max")
ibm_his

	Open	High	Low	Close	Volume	Dividends	Stock Splits
Date							
1962-01-02	1.733500	1.733500	1.714022	1.714022	407940	0.0	0.0
1962-01-03	1.714023	1.729006	1.714023	1.729006	305955	0.0	0.0
1962-01-04	1.729006	1.729006	1.711027	1.711776	274575	0.0	0.0
1962-01-05	1.709528	1.709528	1.675068	1.678065	384405	0.0	0.0
1962-01-08	1.676567	1.676567	1.633117	1.646601	572685	0.0	0.0
							870
2021-12-16	123.510002	126.639999	123.480003	125.930000	7280500	0.0	0.0
2021-12-17	125.870003	128.639999	125.209999	127.400002	10379000	0.0	0.0
2021-12-20	125.720001	127.199997	124.699997	127.059998	4941400	0.0	0.0
2021-12-21	127.660004	129.339996	127.660004	128.970001	4856000	0.0	0.0
2021-12-22	129.059998	129.789993	127.599998	129.750000	3883634	0.0	0.0

```
df_IBM_stockprice = df_IBM_stockprice[['Date','Close']]
df_IBM_stockprice = df_IBM_stockprice.rename({'Close': 'stockprice'}, axis=1)
df_IBM_stockprice['Date'] = pd.to_datetime(df_IBM_stockprice['Date'])
df_IBM_stockprice
```


3. NASDAQ composite index

Yahoo finance API - yfinance

Import finance as yf
Import pandas as pd
naq = yf.Ticker('^IXIC')
his_naq = naq.history(period="max")

[9]		icker(' <mark>^IXIC'</mark> naq.history(p				
0	his_naq					
[-		Open	High	Low	Close	Vo
	Date					
	1971-02-05	100.000000	100.000000	100.000000	100.000000	
	1971-02-08	100.839996	100.839996	100.839996	100.839996	
	1971-02-09	100.760002	100.760002	100.760002	100.760002	
	1971-02-10	100.690002	100.690002	100.690002	100.690002	
	1971-02-11	101.449997	101.449997	101.449997	101.449997	
	-	222				
	2021-12-16	15629.080078	15633.190430	15119.490234	15180.429688	4890470
	2021-12-17	15036.769531	15288.780273	14960.370117	15169.679688	7616320
	2021-12-20	14933.000000	15007.299805	14860.040039	14980.940430	4576750
	2021-12-21	15140.429688	15349.059570	15015.030273	15341.089844	4546230
	2021-12-22	15319.200195	15525.973633	15303.063477	15521.892578	3657080

```
df Nasdaq = df Nasdaq.dropna()
   df Nasdaq = df Nasdaq[['Date', 'Close']]
   df_Nasdaq['Date'] = pd.to_datetime(df_Nasdaq['Date'])
   df Nasdaq =df Nasdaq.rename({'Close': 'Nasdaq value'}, axis=1)
    df Nasdag
D.
                 Date Nasdaq value
      0 1971-02-05
                       100.000000
           1971-02-08
                       100.839996
         1971-02-09
                       100.760002
           1971-02-10
                       100.690002
          1971-02-11 101.449997
    12799 2021-11-03 15811.580078
    12800 2021-11-04 15940.309570
    12801 2021-11-05 15971.589844
    12802 2021-11-08 15982.360352
    12803 2021-11-09 15886.540039
   12804 rows × 2 columns
```

Merge by R&D's date and drop null value

ı		
и	м	,
	_	

df_1 = pd.merge(df_RD, df_Nasdaq, how="outer", on=['Date'])
df_1

C.

	Date	R&D	Nasdaq_value
0	1994-06-30	1.091e+09	705.960022
1	1994-09-30	1.053e+09	764.289978
2	1994-12-31	11180000000.00	NaN
3	1995-03-31	9.13e+08	817.210022
4	1995-06-30	9.74e+08	933.450012
	-		
12831	2021-11-03	NaN	15811.580078
12832	2021-11-04	NaN	15940.309570
12833	2021-11-05	NaN	15971.589844
12834	2021-11-08	NaN	15982.360352
12835	2021-11-09	NaN	15886.540039

df_2 = pd.merge(df_1, df_IBM_stockprice, how="outer", on=['Date'])
df_2

	Date	R&D	Nasdaq_value	stockprice
0	1994-06-30	1.091e+09	705.960022	14.041587
1	1994-09-30	1.053e+09	764.289978	16.640774
2	1994-12-31	1118000000.00	NaN	NaN
3	1995-03-31	9.13e+08	817.210022	19.628345
4	1995-06-30	9.74e+08	933.450012	22.944551
			2	<u> </u>
12831	2021-11-03	NaN	15811.580078	121.539200
12832	2021-11-04	NaN	15940.309570	120.849998
12833	2021-11-05	NaN	15971.589844	123.610001
12834	2021-11-08	NaN	15982.360352	124.540001
12835	2021-11-09	NaN	15886.540039	120.849998

```
[ ] df_IBM = df_2.dropna()
df_IBM['R&D'] = pd.to_numeric(df_IBM['R&D'], downcast='float')
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
   A value is trying to be set on a copy of a slice from a DataFram
   Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/
      """Entry point for launching an IPython kernel.
```

df IBM

	Date	R&D	Nasdaq_value	stockprice
0	1994-06-30	1.091000e+09	705.960022	14.041587
1	1994-09-30	1.053000e+09	764.289978	16.640774
3	1995-03-31	9.130000e+08	817.210022	19.628345
4	1995-06-30	9.740000e+08	933.450012	22.944551
9	1996-09-30	1.115000e+09	1226.920044	29.756214
		22	220	
104	2020-06-30	1.582000e+09	10058.769531	115.458893
105	2020-09-30	1.515000e+09	11167.509766	116.319313
106	2020-12-31	1.611000e+09	12888.280273	120.344170
107	2021-03-31	1.630000e+09	13246.870117	127.399620
108	2021-06-30	1.657000e+09	14503.950195	140.143402

Import method and set independent variable and dependent variable

```
] x = df_IBM.iloc[:,1:3].values

y = df_IBM.iloc[:,3].values

from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error,mean_absolute_error
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
```

Decision tree regression with Cross Validation

```
xtrain DTR, xtest DTR, ytrain DTR, ytest DTR=train test split(x, y, random state=33, test size=0.19)
regressor = DecisionTreeRegressor()
regressor.fit(xtrain DTR,ytrain DTR)
DecisionTreeRegressor()
score DTR = regressor.score(xtest DTR,ytest DTR)
print('R-squared:', score DTR)
R-squared: 0.8140956617200699
ypred DTR = regressor.predict(xtest DTR)
mse DTR = mean squared error(ytest DTR, ypred DTR)
rmse DTR = mean absolute error(ytest DTR, ypred DTR)
print('MSE: ', mse DTR)
print('RMSE: ', rmse DTR)
MSE: 562.8930318412687
RMSE: 15.423040399999998
```


Random forest regression with Cross Validation

```
xtrain RFR, xtest RFR, ytrain RFR, ytest RFR=train test split(x, y, test size=0.15)
rfr = RandomForestRegressor()
rfr.fit(xtrain RFR, ytrain RFR)
score RFR = rfr.score(xtrain RFR, ytrain RFR)
print("R-squared:", score RFR)
R-squared: 0.9535096541587306
ypred RFR = rfr.predict(xtest RFR)
mse RFR = mean squared error(ytest RFR, ypred RFR)
print("MSE: ", mse RFR)
print("RMSE: ", mse RFR*(1/2.0))
MSE: 371.75072653418755
RMSE: 185.87536326709377
```


Voting regression(ensemble method)

```
from sklearn.ensemble import VotingRegressor
  er = VotingRegressor([('DTR',regressor),('RFR',rfr)])
  er.fit(x,y)
  score er = er.score(x, y)
  ypred er = er.predict(x)
  mse_er = mean_squared_error(y, ypred_er)
  rmse er = mean absolute error(y, ypred er)
  print("R-squared:", score er)
  print('MSE: ', mse er)
  print('RMSE: ', rmse er)
 R-squared: 0.9913489040193093
  MSE: 16.447809293776036
  RMSE: 3.045853476883111
```


Evaluation of Different models

	Decision tree	Random forest	Voting regression
R-squared	0.81	0.95	0.99
MSE	562.89	371.75	16.45
RMSE	15.42	185.88	3.05

conclusion

- 1. Time series data is a way to load massive accounting data in regression model.
- 2. Decision tree regression and random forest regression can treat non-linear issues and less feature.
- 3. Random forest also is a suitable addition by voting model. It often adapt in same conditions because random forest is a bagging of decision tree.
- 4. The model reach the intended result that accuracy is 99%. R&D could build an accurate relationship with IBM's stock price, which is a workable method to predict the company's value then guide R&D management

Thank you

Reference

- [1] Tang, L., Pan, H., & Yao, Y. (2018). K-nearest neighbor regression with principal component analysis for financial time series prediction. *Proceedings of the 2018 International Conference on Computing and Artificial Intelligence ICCAI 2018*. https://doi.org/10.1145/3194452.3194467
- [2] Sen, J., Mehtab, S., & Dutta, A. (2021). Stock price prediction using machine learning and LSTM-based deep learning models. https://doi.org/10.36227/techrxiv.15103602.v1
- [3] Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., & Smith, N. A. (2009). Predicting risk from financial reports with regression. *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics on NAACL '09*. https://doi.org/10.3115/1620754.1620794
- [4] Wang, H. (2020). Stock price prediction based on machine learning approaches. *Proceedings of the 3rd International Conference on Data Science and Information Technology*. https://doi.org/10.1145/3414274.3414275
- [5] Sen, J., Mehtab, S., & Dutta, A. (2021). Stock price prediction using machine learning and LSTM-based deep learning models. https://doi.org/10.36227/techrxiv.15103602.v1