GIS Extensions for Dremio - SQL Function Reference

Authored by Brian Holman bholman@dezota.com

This independent project is not affiliated with, sponsored, or endorsed by Dremio Corporation. Dremio is a registered trademark of Dremio Corporation and they retain all trademark and other intellectual property rights. "Dremio" is used here by reference to integrating with their published User-Defined Functions Specification for advanced users to develop their own custom functions for use in SQL queries.

Figure 1: DAC with GIS extensions

The **GIS Extensions** allow Dremio to perform standard GIS functions within Dremio SQL with 66 industry-standard GIS functions. These extensions use the *Esri Java Geometry Library* for the underlying implementation of the core geometry functions. The author made heavy use of Esri's *Spatial Framework for Hadoop* as a reference for a similar implementation that also relies on the same library.

There were two significant gaps in the Geometry Library supplied by Esri that limited transforming geometries from EPSG: 4326 to other coordinate systems and performing geodesic rather than 2D area and length calculations. Geodesic area function helpers backing the ST_GeodesicAreaWGS84 function are copied almost exactly from the *Trino Geospatial Library* as found in our FunctionHelpers.stSphericalArea() and FunctionHelpers.computeSphericalExcess(). Conversion to other coordinate systems in the ST_Transform function leverages the Proj4J Library. All of the referenced works are also published under the *Apache 2.0 License*.

(1) ST_Area

Definition

Returns the area of polygon or multipolygon

Syntax

ST_Area(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_Area(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8, 0 0), (1	24.0
1, 1 5, 5 1, 1 1))'))	

(2) ST_AsGeoJSON

Definition

Returns the GeoJSON representation of geometry.

Syntax

ST_AsGeoJSON(binary geometry)

Return Type

string

Query	Result
SELECT ST_AsGeoJSON(ST_Point(1, 2))	'{"type":"Point","coordinates":[1,2],"crs":{"type":"name","properties":{"na

(3) ST_AsText

Definition

Returns the Well-Known Text (WKT) representation of geometry.

Syntax

ST_AsText(binary geometry)

Return Type

string

Examples

Query			Result	
SELECT	<pre>ST_AsText(ST_Point(1,</pre>	2))	'POINT (1 2)'

(4) ST_Buffer

Definition

Returns geometry object that is the buffer surrounding source geometry at specified distance.

Syntax

ST_Buffer(binary geometry, number distance)

Return Type

binary

Examples

Query	Result
SELECT ST_Buffer(ST_Point(0, 0), 1)	polygon approximating a unit circle

(5) ST_Centroid

Definition

Takes a polygon, multipolygon, or multilinestring and returns the point that is in the center of the geometry's envelope. That means that the centroid point is halfway between the geometry's minimum and maximum x and y extents.

Syntax

ST_Centroid(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('point (2 3)')))	'POINT(2 3)'
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('MULTIPOINT ((0 0), (1	'POINT(2 0)'
1), (1 -1), (6 0))')))	
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('linestring (0 0, 6	'POINT(3 0)'
0)')))	
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('POLYGON ((0 0, 0 8, 8	'POINT(4 4)'
8, 8 0, 0 0))')))	
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('POLYGON ((1 1, 5 1, 3	'POINT(3 2)'
4))')))	

(6) ST_Contains

Definition

Returns true if geometry1 contains geometry2.

Syntax

ST_Contains(binary geometry1, binary geometry2)

Return Type

boolean

Query	Result
SELECT ST_Contains(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4	true
1))'), ST_Point(2, 3))	
SELECT ST_Contains(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4	false
1))'), ST_Point(8, 8))	

(7) ST_CoordDim

Definition

Returns count of coordinate components.

Syntax

ST_CoordDim(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_CoordDim(ST_Point(1.5, 2.5))	2
<pre>SELECT ST_CoordDim(ST_GeomFromText('POINTZ (1.5 2.5 3)'))</pre>	3

(8) ST_Crosses

Definition

Returns true if geometry1 crosses geometry2, otherwise false.

Syntax

ST_Crosses(binary geometry1, binary geometry2)

Return Type

boolean

Query	Result
SELECT ST_Crosses(ST_GeomFromText('LINESTRING (0 0, 1 1)'), ST_GeomFromText('LINESTRING (1 0, 0 1))'))	true
SELECT ST_Crosses(ST_GeomFromText('LINESTRING (2 0, 2 3)'),	true
ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))')) SELECT ST_Crosses(ST_GeomFromText('LINESTRING (0 2, 0 1)'),	false
ST_GeomFromText('LINESTRING (2 0, 1 0)'))	14126

(9) ST_Difference

Definition

Returns a geometry object that is the difference of the source objects.

Syntax

ST_Difference(binary geometry1, binary geometry2)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Difference(ST_GeomFromText('MULTIPOINT (1 1, 1.5 1.5, 2 2)'), ST_Point(1.5, 1.5)))	'MULTIPOINT ((1 1), (2 2))'
<pre>SELECT ST_AsText(ST_Difference(ST_GeomFromText('POLYGON ((0 0, 0 10, 10 10, 10 0))'), ST_GeomFromText('POLYGON ((0 0, 0 5, 5 5, 5 0))')))</pre>	'POLYGON ((5 0, 10 0, 10 10, 0 10, 0 5, 5 5, 5 0))'

(10) ST_Dimension

Definition

Returns spatial dimension of geometry.

Syntax

ST_Dimension(binary geometry)

Return Type

number

Query	Result
SELECT ST_Dimension(ST_Point(1.5, 2.5))	0
SELECT ST_Dimension(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'))	1
SELECT ST_Dimension(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'))	2

(11) ST_Disjoint

Definition

Returns true if the intersection of the two geometries produces an empty set; otherwise, it returns false.

Syntax

ST_Disjoint(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Disjoint(ST_GeomFromText('LINESTRING (0 0, 0 1)'),	true
ST_GeomFromText('LINESTRING (1 1, 1 0)'))	
<pre>SELECT ST_Disjoint(ST_GeomFromText('LINESTRING (0 0, 1 1)'),</pre>	false
ST_GeomFromText('LINESTRING (1 0, 0 1)'))	

(12) ST_Distance

Definition

Returns the distance between two geometry objects.

Syntax

ST_Distance(binary geometry1, binary geometry2)

Return Type

number

Examples

Query	Result
SELECT ST_Distance(ST_Point(0.0,0.0), ST_Point(3.0,4.0))) 5.0

(13) ST_DWithin

Definition

Returns true if the two geometries are within the specified distance of one another; otherwise, it returns false.

Syntax

ST_DWithin(binary geometry1, binary geometry2, number distance)

Return Type

boolean

Examples

Query	Result
SELECT ST_DWithin(ST_GeomFromText('POLYGON ((10.02 20.01, 11.92 35.64, 25.02 34.15, 19.15 33.94, 10.02 20.01))'), ST_Point	true
(1,2),100)	£-1
SELECT ST_DWithin(ST_GeomFromText('POLYGON ((101.02 200.01, 111.92 350.64, 250.02 340.15, 190.15 330.94, 101.02 200.01))'), ST_Point (10.02,20.01), 100)	false

(14) ST_Envelope

Definition

Returns the minimum bounding box of the geometry object as a polygon

Syntax

ST_Envelope(binary geometry)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LINESTRING (0 0, 2 2))')))	'POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))'
<pre>SELECT ST_AsText(ST_Envelope(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))')))</pre>	'POLYGON ((2 0, 3 0, 3 3, 2 3, 2 0))'

(15) ST_Equals

Definition

Returns true if the two geometries occupy the same space even if they have a different number of vertices, otherwise it returns false.

Syntax

ST_Equals(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 1 1)'),ST_GeomFromText('LINESTRING (1 1, 0 0)'))	true
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 1 1)'),ST_GeomFromText('LINESTRING (1 0, 0 1)'))	false
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 3 3)'),ST_GeomFromText('LINESTRING (3 3, 2 2, 1 1, 0 0)'))	true

(16) ST_ExteriorRing

Definition

Returns the exterior ring of a polygon as a linestring.

Syntax

ST_ExteriorRing(binary geometry)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 1))')))	'LINESTRING (1 1, 4 1, 1 4, 1 1)'
SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))')))	'LINESTRING (0 0, 8 0, 0 8, 0 0)'

(17) ST_Generalize

Definition

Simplifies geometries using the Douglas-Peucker algorithm. {maxDeviation} is the maximum allowed deviation from the generalized geometry to the original geometry. When {removeDegenerateParts} is true, the degenerate parts of the geometry will be removed from the output.

Syntax

ST_Generalize(binary geometry, number maxDeviation, boolean removeDegenerateParts)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Generalize(ST_GeomFromText('POLYGON ((0 0, 1 1,	'POLYGON ((0 0, 5 0, 5 10, 0 10, 0 0))'
2 0, 3 2, 4 1, 5 0, 5 10, 0 10))'), 2, true))	

(18) ST_GeodesicAreaWGS84

Definition

Returns the area in square meters of a geometry on the Earth's surface using spherical model. Requires the geometry to be in the WGS84 spatial reference.

Syntax

 $ST_GeodesicAreaWGS84(binary\ geometry)$

Return Type

number

Query	Result
SELECT ST_GeodesicAreaWGS84(ST_GeomFromText('POLYGON ((-114.04702599994988 39.90609700007656, -114.0500520000997 37.0001909997149, -109.04517199998776 36.99897700038832, -109.05002599989996 41.000691000389395, -111.04681499981234 40.997875000031286, -111.04671399965133 42.00170200004732, -114.04147700036322 41.99387299963928, -114.04702599994988 39.90609700007656))'))/4047 AS utah_acreage	5.416484897473004E7

(19) ST_GeodesicLengthWGS84

Definition

Returns distance along line on WGS84 spheroid, in meters, for geographic coordinates. Requires the geometry to be in the WGS84 spatial reference.

Syntax

ST_GeodesicLengthWGS84(binary geometry)

Return Type

number

Examples

Query	Result
SELECT SELECT ST_GeodesicLengthWGS84(ST_GeomFromText('MultiLineString((0.0 80.0, 0.3 80.4))', 4326))	45026.96274781222

(20) ST_GeometryN

Definition

Takes a geometry collection and an integer index (1-based index) and returns the nth geometry object in the collection.

Syntax

ST_GeometryN(binary geometry, number index)

Return Type

Examples

Query	Result
SELECT ST_AsText(ST_GeometryN(ST_GeomFromText('MULTIPOINT (10 40,	'POINT (20 20)'
40 30, 20 20, 30 10)'), 3))	
SELECT ST_AsText(ST_GeometryN(ST_GeomFromText('MULTILINESTRING ((2	'LINESTRING (20 20, 7 8)'
4, 10 10), (20 20, 7 8))'), 2))	

(21) ST_GeometryType

Definition

Takes a geometry object and returns its geometry type (for example, Point, Line, Polygon, MultiPoint) as a string.

Syntax

ST_GeometryType(binary geometry)

Return Type

string

Examples

Query	Result
SELECT ST_GeometryType(ST_Point(1.5, 2.5)) SELECT ST_GeometryType(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'))	'ST_POINT' 'ST_LINESTRING'
<pre>SELECT ST_GeometryType(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'))</pre>	'ST_POLYGON'

(22) ST_GeomFromEWKB

Definition

Converts a Hex encoded binary string from Postgres/PostGIS geometry to native geometry including embedded SRID.

Syntax

 $ST_GeomFromEWKB(string\ hexEncodedGeometry)$

Return Type

Examples

Query	Result
SELECT SELECT ST_AsText(ST_GeomFromEWKB(the_geom)) FROM table("postgis".external_query('SELECT ST_GeomFromText(''POINT(-71.064544 42.28787)'',4326) AS the_geom'))	'POINT (-71.064544 42.28787)'

(23) ST_GeomFromGeoJSON

Definition

Constructs a geometry from GeoJSON.

Syntax

ST_GeomFromGeoJSON(string geoJsonString)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"Point", "coordinates":[1.2, 2.4]}'))	'POINT (1.2 2.4)'
<pre>SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"LineString", "coordinates":[[1,2], [3,4]]}'))</pre>	'LINESTRING (1 2, 3 4)'

(24) ST_GeomFromText

Definition

Takes a well-known text representation and returns a geometry object.

Syntax

 $ST_GeomFromText(string\ wktString)$

Return Type

(25) ST_GeomFromText
Definition
Takes a well-known text representation and a spatial reference ID and returns a geometry object.
Syntax
ST_GeomFromText(string wktString, number SRID)
Return Type
binary
(26) ST_GeomFromWKB
Definition
Takes a well-known binary (WKB) representation and returns a geometry object.
Syntax
ST_GeomFromWKB(binary wkbValue)
Return Type
binary
(27) ST_GeomFromWKB
Definition
Takes a well-known binary (WKB) representation and a spatial reference ID and returns a geometry object.
Syntax
ST_GeomFromWKB(binary wkbValue, number SRID)

(28) ST_GeoSize

Definition

Takes a geometry object and returns its size in bytes.

Syntax

ST_GeoSize(binary geometry)

Return Type

number

(29) ST_InteriorRingN

Definition

Returns a LineString which is the nth interior ring of the input Polygon (1-based index)

Syntax

ST_InteriorRingN(binary geometry, number index)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText('polygon ((0 0, 8	'LINESTRING (1 1, 1 5, 5 1, 1 1)'
0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'), 1))	

(30) ST_Intersection

Definition

Returns a geometry object that is the geometric intersection of the source objects.

Syntax

ST_Intersection(binary geometry1, binary geometry2)

binary

Examples

Query	Result
<pre>SELECT ST_AsText(ST_Intersection(ST_Point(1,1), ST_Point(1,1)))</pre>	'POINT (1 1)'
SELECT ST_AsText(ST_Intersection(ST_GeomFromText('LINESTRING(0 2, 0	'MULTILINESTRING ((1 0, 2 0), (0 2, 0 1))'
0, 2 0)'), ST_GeomFromText('LINESTRING(0 3, 0 1, 1 0, 3 0)')))	
SELECT ST_AsText(ST_Intersection(ST_GeomFromText('POLYGON ((2 0, 2	'POLYGON ((2 1, 2.66666666666667 1, 2 3, 2 1))'
3, 3 0))'), ST_GeomFromText('POLYGON ((1 1, 4 1, 4 4, 1 4))')))	

(31) ST_Intersects

Definition

Returns true if geometry1 intersects with geometry2, otherwise returns false.

Syntax

ST_Intersects(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Intersects(ST_GeomFromText('LINESTRING (2 0, 2 3)'),	true
ST_GeomFromText('POLYGON ((1 1, 4 1, 4 4, 1 4))'))	
<pre>SELECT ST_Intersects(ST_GeomFromText('LINESTRING (8 7, 7 8)'),</pre>	false
ST_GeomFromText('POLYGON ((1 1, 4 1, 4 4, 1 4))'))	

(32) ST_Is3D

Definition

Returns true if the geometry object is three-dimensional including height 'Z', otherwise returns false.

Syntax

ST_Is3D(binary geometry)

boolean

Examples

Query	Result
SELECT ST_Is3D(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	false
SELECT ST_Is3D(ST_GeomFromText('LINESTRING (0 0, 3 4, 0 4, 0 0)'))	false
SELECT ST_Is3D(ST_Point(3, 4))	false
SELECT ST_Is3D(ST_PointZ(3, 4, 2))	true

(33) ST_IsClosed

Definition

Return true if the linestring or multi-line has start and end points that are coincident.

Syntax

ST_IsClosed(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_IsClosed(ST_GeomFromText('LINESTRING(0 0, 3 4, 0 4, 0 0)'))	true
SELECT ST_IsClosed(ST_GeomFromText('LINESTRING(0 0, 3 4)'))	false

(34) ST_IsEmpty

Definition

Return true if the geometry object is empty of geometric information.

Syntax

ST_IsEmpty(binary geometry)

boolean

Examples

Query		Result
SELECT	ST_IsEmpty(ST_Point(1.5, 2.5))	false
SELECT	<pre>ST_IsEmpty(ST_GeomFromText('POINT EMPTY'))</pre>	true

(35) ST_IsMeasured

Definition

Returns true if the geometry object is measured including an additional dimension 'M', otherwise returns false.

Syntax

ST_IsMeasured(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_IsMeasured(ST_PointZ(3, 4, 2))	false
<pre>SELECT ST_IsMeasured(ST_GeomFromText('POINT M (1 1 80)'))</pre>	true
<pre>SELECT ST_IsMeasured(ST_GeomFromText('POINT ZM (1 1 5 60)'))</pre>	true

(36) ST_IsRing

Definition

Returns true if the geometry is a linestring and the linestring is closed and simple.

Syntax

 $ST_IsRing(binary\ geometry)$

Return Type

boolean

Examples

Query	Result
SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 3 4, 0 4, 0 0)'))	true
SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 1 1, 1 2, 2 1, 1 1, 0 0)'))	false
SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 3 4)'))	false

(37) ST_IsSimple

Definition

Returns true if the geometry object is simple as defined by the Open Geospatial Consortium (OGC), otherwise, it returns false

Syntax

ST_IsSimple(binary geometry)

Return Type

boolean

Examples

Query	Result
<pre>SELECT ST_IsSimple(ST_Point(1.5, 2.5)) SELECT ST_IsSimple(ST_GeomFromText('LINESTRING (0 0, 1 1, 0 1, 1 0)'))</pre>	true false

(38) ST_Length

Definition

Returns the length of a line string or multiline string.

Syntax

ST_Length(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_Length(ST_GeomFromText('LINESTRING (0 0, 3 4)'))	5.0
SELECT ST_Length(ST_GeomFromText('MULTILINESTRING ((1 0, 2 0), (0	2.0
2, 0 1))'))	

(39) ST_M

Definition

Takes a Point as an input parameter and returns its measure m-coordinate.

Syntax

ST_M(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_M(ST_GeomFromText('POINT M (1 1 80)'))	80.0
<pre>SELECT ST_M(ST_GeomFromText('POINT ZM (1 1 5 60)'))</pre>	60.0

(40) ST_MaxM

Definition

Takes a geometry as an input parameter and returns its maximum measure m-coordinate.

Syntax

ST_MaxM(binary geometry)

Return Type

number

Query	Result
SELECT ST_MaxM(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	2.0
SELECT ST_MaxM(ST_GeomFromText('POINT M (1.5 2.5 3)'))	3.0

(41) ST_MaxX

Definition

Takes a geometry as an input parameter and returns its maximum x-coordinate.

Syntax

ST_MaxX(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MaxX(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2	3.0
SELECT ST_MaxX(ST_GeomFromText('POINT M (1.5 2.5 3)'))	1.5

(42) ST_MaxY

Definition

Takes a geometry as an input parameter and returns its maximum y-coordinate. $\,$

Syntax

ST_MaxY(binary geometry)

Return Type

number

Query	Result
SELECT ST_MaxY(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	2.5
SELECT ST_MaxY(ST_GeomFromText('POINT M (1.5 2.5 3)'))	2.5

(43) ST_MaxZ

Definition

Takes a geometry as an input parameter and returns its maximum z-coordinate.

Syntax

ST_MaxZ(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MaxZ(ST_GeomFromText('LINESTRING ZM (1.5 2.5 2 60, 3.0 2.2 1 80)'))	2.0
SELECT ST_MaxZ(ST_GeomFromText('LINESTRING Z (1.5 2.5 3, 3.0 2.2 4)'))	4.0

(44) ST_MinM

Definition

Takes a geometry as an input parameter and returns its minimum m-coordinate.

Syntax

ST_MinM(binary geometry)

Return Type

number

Query	Result
SELECT ST_MinM(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	1.0
SELECT ST_MinM(ST_GeomFromText('POINT M (1.5 2.5 3)'))	3.0

(45) ST_MinX

Definition

Takes a geometry as an input parameter and returns its minimum x-coordinate.

Syntax

ST_MinX(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MinX(ST_GeomFromText('LINESTRING M (1.25 2.5 2, 3.0 2.2 1)'))	1.25
SELECT ST_MinX(ST_GeomFromText('POINT M (1.75 2.5 3)'))	1.75

(46) ST_MinY

Definition

Takes a geometry as an input parameter and returns its minimum y-coordinate. $\,$

Syntax

ST_MinY(binary geometry)

Return Type

number

Query	Result
SELECT ST_MinY(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	2.2
SELECT ST_MinY(ST_GeomFromText('POINT M (1.5 2.25 3)'))	2.25

(47) ST_MinZ

Definition

Takes a geometry as an input parameter and returns its minimum z-coordinate.

Syntax

ST_MinZ(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MinZ(ST_GeomFromText('LINESTRING ZM (1.5 2.5 2 60, 3.0 2.2 1 80)'))	1.0
SELECT ST_MinZ(ST_GeomFromText('LINESTRING Z (1.5 2.5 3, 3.0 2.2 4)'))	3.0

(48) ST_NumGeometries

Definition

Returns the number of geometries in the geometry collection.

Syntax

ST_NumGeometries(binary geometry)

Return Type

number

Query	Result
SELECT ST_NumGeometries(ST_GeomFromText('MULTIPOINT ((10 40), (40	4
30), (20 20), (30 10))')) SELECT ST_NumGeometries(ST_GeomFromText('MULTILINESTRING ((2 4, 10	2
10), (20 20, 7 8))'))	

(49) ST_NumInteriorRing

Definition

Returns the number of interior rings in the polygon geometry.

Syntax

ST_NumInteriorRing(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_NumInteriorRing(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8,	1
0 0), (1 1, 1 5, 5 1, 1 1))'))	

(50) ST_NumPoints

Definition

Returns the number of points (vertices) in the geometry. For polygons, both the starting and ending vertices are counted, even though they occupy the same location.

Syntax

ST_NumPoints(binary geometry)

Return Type

number

Query	Result
SELECT ST_NumPoints(ST_Point(1.5, 2.5))	1
SELECT ST_NumPoints(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0	2
2.2)'))	
SELECT ST_NumPoints((ST_GeomFromText('POLYGON ((0 0, 10 0, 0 10, 0	4
0))')))	

(51) ST_Overlaps

Definition

Returns true if geometry1 overlaps geometry2.

Syntax

ST_Overlaps(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Overlaps(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	true
SELECT ST_Overlaps(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	false

(52) ST_Point

Definition

Returns a 2D point geometry from the provided lon (x) and lat (y) values.

Syntax

ST_Pointnumber lon, number lat

Return Type

(53) ST_PointN

Definition

Returns the point that is the nth vertex in an LineString or MultiPoint (1-based index)

Syntax

ST_PointN(binary geometry, number index)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_PointN(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'), 2))	'POINT (3 2.2)'

(54) ST_PointZ

Definition

Returns a 3D point geometry from the provided lon (x), lat (y), and elev (z) values.

Syntax

ST_PointZnumber lon, number lat, number elev

Return Type

binary

(55) ST_Relate

Definition

Compares the two geometries and returns true if the geometries meet the conditions specified by the DE-9IM pattern matrix string, otherwise, false is returned.

Syntax

ST_Relate(binary geometry1, binary geometry2, string relation)

binary

Examples

Query	Result
SELECT ST_Relate(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'),	true
ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), '****T****')	
<pre>SELECT ST_Relate(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'),</pre>	false
ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), 'T******')	
<pre>SELECT ST_Relate(ST_GeomFromText('LINESTRING (0 0, 3 3)'),</pre>	true
ST_GeomFromText('LINESTRING (1 1, 4 4)'), 'T*******')	
<pre>SELECT ST_Relate(ST_GeomFromText('LINESTRING (0 0, 3 3)'),</pre>	false
ST_GeomFromText('LINESTRING (1 1, 4 4)'), '****T****')	

(56) ST_SetSRID

Definition

Sets the Spatial Reference ID of SRID of the geometry.

Syntax

ST_SetSRID(binary geometry, number SRID)

Return Type

binary

(57) ST_Simplify

Definition

Simplifies the geometry or determines if the geometry is simple. The goal is to produce a geometry that is valid to store without additional processing.

Syntax

ST_Simplify(binary geometry)

Return Type

(58) ST_StartPoint

Definition

Returns the first point of a Linestring.

Syntax

ST_StartPoint(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_StartPoint(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)')))	'POINT(1.5 2.5)'

(59) ST_SymmetricDiff

Definition

Returns a geometry object that is the symmetric difference of the source objects.

Syntax

ST_SymmetricDiff(binary geometry1, binary geometry2)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_SymmetricDiff(ST_GeomFromText('LINESTRING (0 2, 2 2)'), ST_GeomFromText('LINESTRING (1 2, 3 2)')))	'MULTILINESTRING ((0 2, 1 2), (2 2, 3 2))'
SELECT ST_AsText(ST_SymmetricDiff(ST_GeomFromText('POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))'), ST_GeomFromText('POLYGON ((1 1, 3 1, 3 3, 1 3, 1 1))')))> 'MULTIPOLYGON (((0 0, 2 0, 2 1, 1 1, 1 2, 0 2, 0 0)), ((2 1, 3 1, 3 3, 1 3, 1 2, 2 2, 2 1)))'	undefined

(60) ST_Touches

Definition

Returns true if none of the points common to both geometries intersect the interiors of both geometries, otherwise, it returns false. At least one geometry must be a LineString, Polygon, MultiLineString, or MultiPolygon.

Syntax

ST_Touches(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Touches(ST_Point(1, 2), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	true
SELECT ST_Touches(ST_Point(8, 8), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	false

(61) ST_Transform

Definition

Takes the two-dimensional geometry as input and returns values converted from the spatial source reference specified by sourceSRID to the one specified by targetSRID.

Syntax

ST_Transform(binary geometry, number sourceSRID, number targetSRID)

Return Type

binary

Query	Result
((-114.04702599994988 39.90609700007656, -114.0500520000997 37.0001909997149, -109.04517199998776 36.99897700038832, -109.05002599989996 41.000691000389395, -111.04681499981234 40.997875000031286, -111.04671399965133 42.00170200004732,	'POLYGON ((-12695656.860801652 4852305.919673687, -12695993.71359747 4439133.410181124, -12138853.020503571 4438964.195256694, -12139393.365302108 5012443.58678148, -12361674.899993964 5012028.231889712, -12361663.65670747 5161234.398812287, -12695039.148993252 5160061.69329091, -12695656.860801652 4852305.919673687))'

(62) ST_Union

Definition

Returns a geometry as the union of the two supplied geometries.

Syntax

ST_Union(binary geometry1, binary geometry2)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Union(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4,	'POLYGON ((1 1, 4 1, 8 1, 4 8, 4 4, 1 4, 1 1))'
4 1))'), ST_GeomFromText('POLYGON ((4 1, 4 4, 4 8, 8 1))')))	

(63) ST_Within

Definition

Returns true if geometry1 is completely inside geometry2.

Syntax

ST_Within(binary geometry1, binary geometry2)

Return Type

boolean

Query	Result
SELECT ST_Within(ST_Point(2, 3), ST_GeomFromText('POLYGON ((1 1, 1	true
4, 4 4, 4 1))'))	
SELECT ST_Within(ST_Point(8, 8), ST_GeomFromText('POLYGON ((1 1, 1	false
4, 4 4, 4 1))'))	

(64) ST_X

Definition

Takes a Point as an input parameter and returns its longitude (x) coordinate.

Syntax

ST_X(binary geometry)

Return Type

number

Examples

Query			Result
SELECT	ST_X(ST_Point(5,	7))	5.0

(65) ST_Y

Definition

Takes a Point as an input parameter and returns its latitude (y) coordinate.

Syntax

ST_Y(binary geometry)

Return Type

number

Query	Result
SELECT ST_Y(ST_GeomFromText('POINT (5 7)'))	7.0

(66) ST_Z

Definition

Takes a Point as an input parameter and returns its elevation (z) coordinate.

Syntax

ST_Z(binary geometry)

Return Type

number

Query	Result
SELECT ST_Z(ST_GeomFromText('POINT Z (5 7 9)'))	9.0