1. (a) On the same graph sketch the curves $y = x^2$ and $y = 3 - \frac{1}{x}$ for values of x from 0 to 4 and values of y from 0 to 4. Show your scales on your axes.

(4)

(b) Find the points of intersection of these two curves.

(4)

- (c) (i) Find the gradient of the curve $y = 3 \frac{1}{x}$ in terms of x.
 - (ii) Find the value of this gradient at the point (1, 2).

(4)

(d) Find the equation of the tangent to the curve $y = 3 - \frac{1}{x}$ at the point (1, 2).

(3) (Total 15 marks)

2. The functions f and g are defined by

$$f: x \mapsto \frac{x+4}{x}, x \in \mathbb{R}, x \neq 0$$

$$g: x \mapsto x, x \in \mathbb{R}$$

(a) Sketch the graph of f for $-10 \le x \le 10$.

(4)

(b) Write down the equations of the horizontal and vertical asymptotes of the function f.

(4)

(c) Sketch the graph of g on the same axes.

(2)

(d) Hence, or otherwise, find the solutions of $\frac{x+4}{x} = x$.

(4)

(e) Write down the range of function f.

(2)

(Total 16 marks)

3. Two functions f(x) and g(x) are given by

$$f(x) = \frac{1}{x^2 + 1} ,$$

$$g(x) = \sqrt{x}, x \ge 0.$$

(a) Sketch the graphs of f(x) and g(x) together on the same diagram using values of x between -3 and 3, and values of y between 0 and 2. You must label each curve.

- (b) State how many solutions exist for the equation $\frac{1}{x^2+1} \sqrt{x} = 0$.
- (c) Find a solution of the equation given in part (b).

Working:	
	Answers:
	(b)
	(c)
	(Total 6 mar

4. The figure below shows the graphs of the functions $f(x) = 2^x + 0.5$ and $g(x) = 4 - x^2$ for values of x between -3 and 3.

- (a) Write down the coordinates of the points A and B.
- (b) Write down the set of values of x for which f(x) < g(x).

1. (a)

For correct axes from 0 to 4. (A1)

For correct curve
$$y = x^2$$

For correct curve
$$y = x^2$$
. (A1)

For correct curve
$$y = 3 - \frac{1}{x}$$
. (A1)

(b)
$$(0.347, 0.121)$$
 or $x = 0.347, y = 0.121$ (by GDC) $(G1)(G1)$ $(1.53, 2.35)$ or $x = 1.53, y = 2.35$. $(G1)(G1)$

(c) (i)
$$\frac{dy}{dx} = \frac{1}{x^2}$$
 for losing the constant. (A1)

For attempting to write $\frac{1}{x}$ as a power (can be implied). (M1)

For correct answer $\frac{1}{x^2}$ or x^{-2} . (A1)

(ii) 1 (A1) 4

(d) For using y = mx + c or equivalent with their m, to find c.

(M1) c = 1 y = x + 1(A1)

[15]

2. (a)

For x-axis from
$$-10$$
 to 10 .

For -4 marked.

For correct shape of graph.

(A1)

(A1)

(A1)

(b) Horizontal asymptote
$$y = 1$$
 (A1) Vertical asymptote $x = 0$ (A1) $x = 0$

(d)
$$(2.56, 2.56) (-1.56, -1.56)$$
 (A1)(A1)(A)

(e) Range
$$y \in \mathbb{R}, y \neq 1$$
 (A1)(A1) [16]

3. (a) With the given domain, the correct answer is

Notes: Award (A1) for a neat window complying reasonably with the requirements.

The window must clearly have used x values from -3 to 3 and y values at least from 0 to 1. Axes labels are not essential. Some indication of scale must be present but this need not be a formal scale, eg tick marks, a single number on each axis or coordinates of the intersection are all adequate.

Award (A1) for each curve correct and correctly labelled with f and g or the expressions for f and g. Can follow through both curves, for example if curves are incomplete due to a poor window, and penalize only once if both curve labels are missing. Examiners should familiarize themselves with the

graph of $\frac{1}{x^2}+1$ as this is expected to appear in error. With the

correct window, this graph will not be seen at all, but with a larger y interval it might look a little like the correct graph except that it would have asymptotes at x = 0 and y = 1. Award (A0) for this curve.

(b) One solution.

Solution occurs at the point of intersection of the curves, (c) where x = 0.5698400.570. (M1)(A1)(C2)Notes: The (M1) can also be awarded for the intersection point indicated on the sketch. (0.57 is an (AP))If a coordinate pair is given as the answer and the x value is correct with no method mentioned, award (C1) or if the method is mentioned, award (M1)(A0). Can follow through if curve $\frac{1}{x^2}+1$ is drawn, answer to (c) is then 1.75. **[6]** 4. A(-1.79, 0.789) and B(1.14, 2.70)(C2)(C2)(a) Notes: Award (C2) for each pair of coordinates obtained from the Award (A1)(A2)(ft) if bracket is not used. -1.79 < x < 1.14(b) (A1)(ft)(A1)(ft)(C2)

Note: Award (A1) for both numbers, (A1) for correct inequalities.

[6]