

Universidad de Granada

FACULTAD DE INGENIERÍA INFORMÁTICA Y TELECOMUNICACIONES

PRÁCTICA 2: DIVIDE Y VENCERÁS

Doble Grado Ingeniería Informática y Matemáticas

Autores:

Adolfo Martínez Olmedo, Pablo Delgado Galera, Marcos Baena Solar

Marzo 2025

Índice

1.	Introducción	2
2.	Objetivos	2
3.	Problemas a Resolver 3.1. El número más pequeño	2
4.	3.3. La envolvente convexa Metodología y Diseño de los Algoritmos 4.1. Análisis de Fuerza Bruta	2 3 3
5.	Resultados Experimentales 5.1. Configuración de las Pruebas	3
6.	Conclusiones	4
7.	Bibliografía	4

1. Introducción

En esta sección, se incluye una breve descripción del tema de estudio: por qué son importantes los algoritmos Divide y Vencerás, dónde se aplican y qué se espera conseguir con la práctica.

2. Objetivos

Detallar brevemente cuáles son los objetivos que se persiguen con la realización de la práctica:

- Comprender la técnica de Divide y Vencerás y sus ventajas.
- Comparar con la estrategia de fuerza bruta y analizar la complejidad.
- Implementar ambos enfoques (fuerza bruta y Divide y Vencerás) para cada problema.
- Experimentar con el umbral de la técnica de Divide y Vencerás.

3. Problemas a Resolver

En esta sección se describen los diferentes problemas que se abordarán.

3.1. El número más pequeño

Describir el problema de obtener el entero más pequeño de k cifras a partir de un vector de dígitos. Mencionar requisitos, entrada y salida.

3.2. El par de puntos más cercano

Describir el problema de encontrar dos puntos con la mínima distancia Euclídea dentro de un conjunto. Explicar la versión de fuerza bruta y la necesidad de mejorar su eficiencia.

3.3. La envolvente convexa

Explicar en qué consiste la envolvente convexa de un conjunto de puntos, así como la forma de resolverla mediante algoritmos de fuerza bruta y Divide y Vencerás.

4. Metodología y Diseño de los Algoritmos

Explicar detalladamente cómo abordar cada problema tanto con fuerza bruta como con Divide y Vencerás.

4.1. Análisis de Fuerza Bruta

- Descripción general de la estrategia de fuerza bruta.
- Complejidad temporal para cada uno de los tres problemas.
- Ventajas y desventajas.

4.2. Análisis de Divide y Vencerás

- Descripción de la plantilla general de Divide y Vencerás.
- Aplicación concreta para cada problema (pasos de división, recursión y combinación).
- Complejidad temporal teórica y justificación.
- Discusión sobre el umbral para comparar cuándo es mejor la aproximación recursiva.

4.3. Detalles de Implementación

- Lenguaje de programación utilizado (por ejemplo, C++).
- Estructura de los ficheros (módulos, cabeceras, etc.).
- Consideraciones sobre la lectura de datos, tratamiento de casos límite, etc.

5. Resultados Experimentales

En esta sección se incluyen los experimentos realizados para comparar las implementaciones de fuerza bruta y Divide y Vencerás.

5.1. Configuración de las Pruebas

- Descripción del entorno de ejecución (CPU, memoria, compilador, etc.).
- Conjunto de datos utilizados para las pruebas (tamaño, forma de generarlos).

5.2. Tablas y Gráficos de Rendimiento

Insertar aquí las tablas y/o gráficos que muestren los tiempos de ejecución, uso de memoria, etc.

5.3. Análisis de los Resultados

- Comparación cualitativa (efectividad, facilidad de implementación).
- Comparación cuantitativa (tiempos de ejecución, consumo de memoria).
- Conclusiones sobre el umbral experimental.

6. Conclusiones

Resumen de los hallazgos principales. Mencionar qué se aprendió y qué aspectos se pueden mejorar o extender.

7. Bibliografía

Citar las referencias utilizadas para la elaboración de la práctica, por ejemplo, libros, apuntes de clase o fuentes externas:

Referencias

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to Algorithms*. MIT Press, 3rd Edition, 2009.
- [2] Apuntes de la asignatura de Algorítmica, Departamento de Ciencias de la Computación e I.A., Universidad de Granada.