420 Rec'd PCT/PTO 01 FEB 2000

420 Rec'd PCT/PTO '0
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

REQUEST FOR FILING NATIONAL PHASE OF

To:

PCT APPLICATION UNDER 35 U.S.C. 371 AND 37 CFR 1.494 OR 1.495
Asst. Commissioner of Patents (Our Deposit Account No. 03-3975

	and Trademarks Washington, D.C. 20231										
	SMITTAL LETTER TO THE UNITED STATES Atty Dkt: PM 265461 /PHM.70251/UST NATED/ELECTED OFFICE (DO/EO/US) /Client Ref.										
From:	Pillsbury Madison & Sutro LLP, IP Group: Date: February 1, 2000										
	This is a REQUEST for FILING a PCT/USA National Phase Application based on:										
1.	International Application 2. International Filing Date 3. Earliest Priority Date Claimed										
	PCT/GB98/02259 28 July 1998 01 August 1997 û country code Day MONTH Year Day MONTH Year										
4.	(use item 2 if no earlier priority) Measured from the earliest priority date in item 3, this PCT/USA National Phase Application Request is being filed within:										
	(a) \square 20 months from above item 3 date (b) \boxtimes 30 months from above item 3 date,										
	(c) Therefore, the due date (unextendable) is February 1, 2000										
17 17 the second of the second	Title of Invention ZGGBP1, NOVEL PEPTIDES RELATED TO BIPOLAR AFFECTIVE DISORDERS TYPE 1, SEQUENCES AND USES THEREOF.										
6.	Inventor(s) FLANNERY, Angela Veronica et al										
Applica	ant herewith submits the following under 35 U.S.C. 371 to effect filing:										
1 7. □ 8.	☑ Please immediately start national examination procedures (35 U.S.C. 371 (f)).										
**************************************	☑ A copy of the International Application as filed (35 U.S.C. 371(c)(2)) is transmitted herewith (file if in English but, if in foreign language, file only if not transmitted to PTO by the International Bureau) including:										
	 a. ⊠ Request; b. ⊠ Abstract; c. 16 pgs. Spec. and Claims; d. 19 sheet(s) Drawing which are ☐ informal ⊠ formal of size ⊠ A4 ☐ 11" 										
9.	☑ A copy of the International Application has been transmitted by the International Bureau.										
10.	A translation of the International Application into English (35 U.S.C. 371(c)(2)) a. is transmitted herewith including: (1) Request; (2) Abstract; (3) pgs. Spec. and Claims; (4) sheet(s) Drawing which are: informal formal of size A4 11"										
	 is not required, as the application was filed in English. is not herewith, but will be filed when required by the forthcoming PTO Missing Requirements Notice per Rule 494(c) if box 4(a) is X'd or Rule 495(c) if box 4(b) is X'd. Translation verification attached (not required now). 										

09/463.8443

RE: USA National Filing of PCT/GB98/02259 420 Rec'd PCT/PTO 0 1 FEB 2000

11.	⊠ a. ⊠	PLEASE AMEND the specification before its first line by inserting as a separate paragraph:This application is the national phase of international application PCT/GB98/02259										
	b. 🗌	filed July 28, 1998 which designated the U.SThis application also claims the benefit of U.S. Provisional Application No.										
12.		60/, filed Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)), i.e., <u>before 18th month</u> from first priority date above in item 3, are transmitted herewith (file only if in <u>English</u>) including:										
13.	\boxtimes	PCT Article 19 claim amendments (if any) have been transmitted by the International Bureau										
14.		Translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)), i.e., of claim amendments made before 18th month, is attached (required by 20th month from the date in item 3 if box 4(a) above is X'd, or 30th month if box 4(b) is X'd, or else amendments will be considered canceled).										
15.	A decl a. ⊠ b. □	laration of the inventor (35 U.S.C. 371(c)(4)) is submitted herewith ⊠ Original ☐ Facsimile/Copy is not herewith, but will be filed when required by the forthcoming PTO Missing Requirements Notice per Rule 494(c) if box 4(a) is X'd or Rule 495(c) if box 4(b) is X'd.										
16. -		ernational Search Report (ISR): s prepared by European Patent Office Japanese Patent Office Other has been transmitted by the international Bureau to PTO. copy herewith (2 pg(s).) plus Annex of family members (1 pg(s).).										
16. 17.	Interna a. ⊠ b. ⊠ c.1 □ c.2 □	during Examination) including attached amended:										
- 18.	 d. □	Dwg Sheets # Translation of Annex(es) to IPER (required by 30 th month due date, or else annexed amendments will be considered canceled).										
18.	Inform a. ⊠ b. □ c. ⊠	nation Disclosure Statement including: Attached Form PTO-1449 listing documents Attached copies of documents listed on Form PTO-1449 A concise explanation of relevance of ISR references is given in the ISR.										
19.		Assignment document and Cover Sheet for recording are attached. Please mail the recorded assignment document back to the person whose signature, name and address appear at the end of this letter.										
20.		Copy of Power to IA agent.										
21.		Drawings (complete only if 8d or 10a(4) not completed): sheet(s) per set: ☐ 1 set informal; ☐ Formal of size ☐ A4 ☐ 11"										
22.		(No.) Verified Statement(s) establishing "small entity" status under Rules 9 & 27										
23.	filed in in (cou	ty is hereby claimed under 35 U.S.C. 119/365 based on the priority claim and the certified copy, both the International Application during the international stage based on the filing untry) UNITED KINGDOM of:										
(1)	971616	plication No. Filing Date Application No. Filing Date 2.4 August 1, 1997 (2) Filing Date										
(3) (5)		2.4 August 1, 1997 (2)										
	a. 🛚	See Form PCT/IB/304 sent to US/DO with copy of priority documents. If copy has not been received, please proceed promptly to obtain same from the IB.										
	b. 🗌	Copy of Form PCT/IB/304 attached.										

RE: U	SA Nati	ional	Filing of PCT/GE	398/02259	•	, ,	400 Dan		T		age 3 01 3
24.	Attac	hed:	16 pages of Sec	quence Listir	ng		420 Rec	a PCI/F	,10	UIF	EB 200
25.	Preli	mina	ary Amendment:	:							
25.5	Per It	tem	17.c2, <u>cancel ori</u>	ginal pages	#, cla	ims #	, Drawing SI	neets#			
26. Based	Calcı d on <u>am</u>	ulati ende	on of the U.S. Need claim(s) per ab	ational Fee ove item(s)	(35 U.S.C. 3	371 (c)(1)) a 14, ☐ 17,	<u>nd other fee</u> ☐ 25, ☐ 25	es is as fol 5.5 (hilite)	lows:		
Indepe	Effective endent (proper	Clair			minus 20 = minus 3 = lent claim is	2 3 present,		3/\$39 =	\$36 \$234 +260		966/967 964/965 968/969
BASIC	NATIO	DNA	L FEE (37 CFR 1	.492(a)(1)-(4	- -)): →→ BA	SIC FEE RE	EQUIRED, <u>N</u>	<u>ow</u> →→-	→ →		
A.	If cou	ıntry	code letters in ite	em 1 are <u>not</u>	"US","BR","	BB","TT","M	X","IL" "NZ",	"IN" or "ZA	•		
Affairs a	1.	Sea	<u>16 re:</u> rch Report was <u>n</u> rch Report was pi						+840	1	960/961 970/971
SKIP E	B, C, D A	ND I	E UNLESS countr	y code letters	s in item 1 ar	e "US","BR"	,"BB","TT","	MX","IL", "	NZ", "II	N" or "Z	<u>A"</u>
SKIP E (X) (only) (one) →		В.	If <u>USPTO</u> did no (ISR) <u>and</u> (if box Examination Rep	4(b) above	is X'd) the Ir	ternational	add\$9	970/\$485	+0		960/961
E (01)		C.	If <u>USPTO</u> issued X'd),	I ISR but not	IPER (or bo	ox 4(a) abov		690/\$345	+0		958/959
☐ (these) ☐ (4) → ☐ (boxes) ☐ →		D.	If <u>USPTO</u> issued YES,					370/\$335	+0		956/957
		E.	If international properties of the USPTO and Rule Sec. V all 3 boxes	es 492(a)(4)	and 496(b)	satisfied (IP	ER	96/\$48	+0		962/963
27.							SUBT	OTAL =	\$137	0	=
28.	If Ass	signr	nent box 19 abov	e is X'd, add	Assignmen	t Recording	fee of\$4	0	+40	***	(581)
29.	Attac	hed	is a check to cove	er the			TOTA	L FEES	\$0	:	
	Our D		sit Account No. 0 r No. 9901			265461					
				C#			M#				
filed, or w or hereafi <u>duplicate</u>	hich should ter relative t copy of this	I have to this a sheet	The Commissioner is herely been filed herewith or con application and the resulting is attached. NT does not authorize ch	cerning any paper ng Official documer	filed hereafter, and nt under Rule 20, c	d which may be re- or credit any overp	quired under Rules ayment, to our Acc	16-18 and 492 (ount/Order Nos.	missing or	insufficient	fee only) now
				Pillsbury Intellectu	Madison & al Property	Sutro LLP					
1100 N Ninth F		: Ave	nue, NW	By Atty:	Donald J.	Bird	7	Reg	. No	25323	
Washir			0005-3918	Sig:	_(\)	XX		Fax: Tel:			322-0944 361-3027

NOTE: File in <u>duplicate</u> with 2 postcard receipts (PAT-103) & attachments.

Atty/Sec: DJB/mhn

10

15

20

25

30

19/PRTS

WO 99/06539

19/463844 420 Rec'd PCT/PTO 0 1 PCT/GB98/02259

-1-

ZGGBP1, NOVEL PEPTIDES RELATED TO BIPOLAR AFFECTIVE DISORDER TYPE 1, SEQUENCES AND USES THEREOF

This invention relates to a novel human gene (ZGGBP1) associated with affective neurological disorders such as bipolar affective disorder. The invention also relates to homologues of the ZGGBP1 gene in species such as rat and mouse useful in providing animal models of affective disorders. The invention further relates to both the cDNA and the structural gene and to fragments encoding functional domains within the gene. The invention also relates to means for producing the protein encoded by the gene and to means for regulating its production and activity in vivo.

Affective disorders comprise a broad and heterogeneous category of psychiatric illness with a prevalence of up to 20% in the population. The most severe of these disorders is bipolar type I which affects approximately 1% of the population and this rate is fairly consistent across countries. The disease affects young adults, with a mean age of onset of 22 years. Treatment depends upon the phase of the disease and pharmacological agents include lithium carbonate, carbamazepine or valproic acid, tricyclic antidepressants. Monoamine oxidase inhibitors and selective serotonin re-uptake inhibitors are now also being used. The success rate of individual drugs is variable and some patients are treated with a combination of agents, although most have some unwanted side-effects. At present the precise diagnosis of individual affective disorders is difficult and new, gene based, diagnostic methods are desirable.

Family, twin and adoption studies have suggested the importance of genetic predisposition to bipolar affective disorder. On this basis, several groups have undertaken genetic linkage analysis in families with a high incidence of the disorder to find a causal gene. Many of the studies show conflicting data suggesting that a single gene is unlikely to be the cause. Rather, multiple interacting genetic traits may be involved. A recent study (Stine et al. 1995) identified two regions on chromosome 18 showing linkage to the disease.

The present invention is based on our discovery of a novel gene which maps to 18q21 and which unexpectedly shows appreciable sequence homology to the ned-4 gene on chromosome 15. Ned-4 is the human homologue of the mouse nedd-4 gene which is known to be differentially expressed during neural development and to be involved in signal transduction. Human ned-4 has been shown (Schild et al. 1996, Straub

10

15

20

25

30

et al. 1996) to be a negative regulator of a sodium channel which is deleted in Liddle's syndrome (a hereditary form of hypertension).

Nedd-4 was originally isolated as a partial cDNA clone from a mouse brain library (Kumar et al. 1992) as one of a set of genes which were differentially expressed during development (Neural precursor cells expressed developmentally down-regulated). The derived amino acid sequence contains three copies of the WW domain (Andre & Springael 1994, Bork & Sudol, 1994; Hofmann & Boucher, 1995), a Ca lipid binding (CaLB/C2) domain (Brose et al. 1995) and a Hect (homologous to the E6-AP carbodyl terminus) domain which has homology to a ubiquitin ligase (E3) enzyme (Huibregtse et al. 1995). The human homologue of nedd-4 (Ned-4) was isolated as an randomly cloned EST (KIAA0093) from immature myeloblast mRNA (Nomura et al. 1994) and shown by sequence comparison to have 86% identity at the amino acid level to the mouse sequence. The human sequence, however, has a fourth copy of the WW domain.

The WW domain is a 40 amino acid sequence found in several unrelated proteins. The two highly conserved tryptophans give it its name. The function of the domain is thought to be involved in protein-protein interactions. Despite their functional diversity, the proteins listed all appear to be involved in cell signalling or regulation. It has been shown that the WW domains of Nedd-4 interact with the proline-rich PY motifs in the epithelial sodium channel in the kidney (Schild et al. 1996). Mutational deletion of the PY motifs in the epithelium sodium channel in Liddle's syndrome, an inherited disease causing systemic hypertension characterised by hyperactivity of the sodium channel, has been shown to abrogate binding of Nedd-4 (Straub et al. 1996). It is therefore likely that Nedd-4 has a negative regulatory role when bound to the channel.

The Hect domain is an E3 ubiquitin-protein ligase domain and enzymes with this domain catalyse polyubiquitination, which is involved in several cellular processes including proteolytic degradation.

The CaLB/C2 domain is thought to be involved in calcium-dependent phospholipid binding, although some proteins containing this domain do not bind calcium and other putative functions for the C2 domain such as binding to inositol -1,3,4,5-tetraphosphate have been suggested. Examples of proteins containing this domain are Protein Kinase C (PKC) isoenzymes and synaptogamins.

15

20

25

30

WO 99/06539 PCT/GB98/02259

-3-

PCT patent application WO97/12962 discloses a protein (Pub3) with homology to Pub1, a Schizosaccaromyces Pombe protein which has an apparent function in the ubiquitination of, among other cellular proteins, the mitotic activating tyrosine phosphatase cdc25 and the tumour suppresser protein p53. As such this protein may be involved in regulating the progression of proliferation in eukaryotic cells by effectively controlling the activity of the cdk complexes by modulating the availability of cdc25 and/or p53.

A comparison of Pub3 with ZGGBP1 revealed that the sequences represent two distinct genes which code for two separate, structurally unrelated proteins. The two genes share sequence homology within a certain defined region, the sequences are identical within the region 516-3568 of ZGGBP1, but they do not show any homology within the regions 5' and 3'of this sequence. In addition the derived amino acid sequence for ZGGBP1 is completely different to that derived for Pub 3 as both have been initiated from a different start methionine. A comparison of the nucleotide sequences for ZGGBP1 and Pub 3 is outlined in Figure 5.

Therefore in a first aspect of the present invention we provide the ZGGBP1 gene having the full length cDNA as set out in SEQ ID NO: 1. We further provide fragments of the ZGGBP1 gene comprising ZGGBP1 sequence outside the region defined by base pairs 516-3568 of the ZGGBP1 gene. By fragments we mean contiguous regions of the gene including complementary DNA and RNA sequences, starting with short sequences useful as probes or primers of say about 8-50 bases, such as 10-30 bases or 15-35 bases, to longer sequences of up to 50, 100, 200, 500 or 1000 bases. Indeed any convenient fragment of the gene of say up to 2kb, 3kb, 4kb or more than 4kb may be a useful gene fragment for further research, therapeutic or diagnostic purposes. Further convenient fragments include those whose terminii are defined by restriction sites within the gene of one or more kinds, such as any combination of Rsa1, Alu1 and Hinf1.

In a further aspect of the invention we provide homologues of the ZGGBP1 gene in species such as rat and mouse useful in providing animal models of affective disorders. By homologue, we mean a corresponding ZGGBP1 gene in another species, which displays greater than 85% sequence homology, conveniently greater than 90%, for example 95%, to the human ZGGBP1 sequence. The full sequences of the individual homologues may be determined using conventional techniques such as hybridisation, PCR

10

15

20

25

30

and sequencing techniques, starting with any convenient part of the sequence set out in SEQ ID NO: 1. The partial sequence of the mouse gene is set out in SEQ ID NO: 3 and this gene and the protein encoded by this gene represent further independent aspects of the invention.

In a further aspect of the invention we provide polynucleotide sequences capable of specifically hybridising to the ZGGBP1 gene. By specifically hybridising we mean that the polynucleotide hybridises under stringent conditions to the sequence on chromosome 18q21 as set out in SEQ ID No: 1, or to the corresponding non-coding sequence, to the exclusion of other genomic loci. It is contemplated that a species such as a peptide nucleic acid may be an acceptable equivalent to a polynucleotide, at least for purposes that do not require translation into protein.

In a further aspect of the invention we provide a recombinant ZGGBP1 protein obtained by expression of all or a part of the cDNA as set out in SEQ ID NO: 1. The recombinant protein may comprise all or a convenient part of the peptide sequence set out in SEQ ID NO: 2. The production of a protein according to the invention may be achieved using standard recombinant DNA techniques involving the expression of the protein by a host cell as described for example by Sambrook et al. 1989. The isolated nucleic acids described herein may for example be introduced into any convenient expression vector for example the T7 Studier system for expression in E.coli (US-A-4952496), Pichia pastoris for expression in yeast, the Baculovirus system for expression in insect cells and the GS system for expression control elements therein and transforming any suitable prokaryotic or eukaryotic host cell with the vector using well known procedures.

Therefore in a further aspect of the invention we provide a recombinant plasmid comprising all or a part of the ZGGBP1 cDNA of the invention.

The invention further extends to cells containing said recombinant plasmids and to a process for producing a ZGGBP1 protein of the invention which comprises culturing said cells such that the desired protein is expressed and recovering the protein from the culture.

By way of example, the nucleotide sequence in SEQ ID NO: 1 is inserted downstream of the SV40 promoter in the pGEX plasmid vector, and either transiently or

10

15

20

25

30

stably expressed in COS -7 cells. Expression of the protein according to the invention can be detected following disruption of the cells by Western blotting.

It may be desirable to produce the individual functional domains of the protein according to the invention in isolation from the rest of the molecule. This may be achieved using the above standard recombination DNA techniques except that in this instance the DNA sequence used is that encoding one of the partial amino acid sequences of the domains identified in Figure 1 or a combination of these.

By way of further example, the nucleotide sequence in SEQ ID NO: 1 is inserted downstream of the SV40 promoter and the glutathione-S-transferase (GST) coding sequence in the pBC plasmid vector, and either transiently or stably expressed in COS -7 cells allowing expression of the corresponding fusion protein. Expression of the fusion protein can be detected following disruption of the cells by Western blotting with antibodies to GST, and furthermore the fusion protein can be used in an affinity binding procedure to find proteins which are functional partners of the protein of the invention from cell extracts.

A ZGGBP1 protein of the invention may in particular be used to screen for compounds which regulate the activity of the enzymes and the invention extends to such a screen and to the use of compounds obtainable therefrom to regulate the activity of the protein in vivo.

Thus according to a further aspect of the invention we provide a method for identifying a compound capable of modulating the action of a ZGGBP1 protein which method comprises subjecting one or more test compounds to a screen comprising (A) a protein containing the amino acid sequence shown in SEQ ID NO: 2 or a homologue or fragment thereof, or (B) the nucleotide sequence shown in SEQ ID NO: 1 or a homologue or fragment thereof, or (C) a host cell expressing a ZGGBP1 polypeptide or a homologue or fragment thereof.

The screen according to the invention may be operated using conventional procedures, for example by bringing the test compound or compounds to be screened and an appropriate substrate into contact with the protein or a cell capable of producing it and determining affinity for the protein in accordance with conventional procedures.

Any compound identified in this way may be used in the treatment of humans and/or other animals of one or more of the above mentioned diseases. The invention thus

10

15

20

25

30

extends to a compound selected through its ability to regulate the activity of the protein in vivo as primarily determined in a screening assay utilising the protein containing an amino acid sequence shown in SEQ ID NO: 2 or a homologue or fragment thereof, or a gene coding therefor for use in the treatment of a disease in which the over- or under-activity or unregulated activity of the protein is implicated.

In a further aspect of the invention we provide examples of insertions/deletions and single base change polymorphisms (mutations) as outlined in Figure 6, 7, 8, 9 and 10.

The ZGGBP1 gene of the invention may also be used as the basis for diagnosis, for example to determine expression levels in a human subject, by for example direct DNA sequence comparison or DNA/RNA hybridisation assays. Diagnostic assays may involve the use of nucleic acid amplification technology such as the PCR and in particular the Amplification Refractory Mutation System (ARMS) as claimed in our European Patent No. 0 332 435. Such assays may be used to determine allelic variants of the gene, for example insertions, deletions and/or mutations such as one or more point mutations. Such variants may be heterozygous or homozygous.

In a further aspect of the invention, amplification primers may be provided for use in the above diagnostic methods. In general, these are provided as a set and used for PCR amplification. One of the primers conveniently hybridises to a ZGGBP1 locus outside the region defined by base pairs 516-3568 thus allowing the ZGGBP1 gene on 18q21 to be identified to the exclusion of other loci.

The ZGGBP1 gene may also be used in gene therapy, for example where it is desired to modify the production of the protein in vivo, and the invention extends to such uses.

Knowledge of the gene according to the invention also provides the ability to regulate its expression in vivo by for example the use of antisense DNA or RNA. Thus, according to a further aspect of the invention we provide an antisense DNA or an antisense RNA which is complementary to the polynucleotide sequence shown in SEQ ID NO: 1. By complementary we mean that the two molecules can base pair to form a double stranded molecule.

The antisense DNA or RNA for co-operation with the gene in SEQ ID NO: 1 can be produced using conventional means, by standard molecular biology and/or by chemical synthesis as described above. If desired, the antisense DNA or antisense RNA may be

10

15

20

25

WO 99/06539 PCT/GB98/02259

-7-

chemically modified so as to prevent degradation in vivo or to facilitate passage through a cell membrane and/or a substance capable of inactivating mRNA, for example ribozyme, may be linked thereto and the invention extends to such constructs.

The antisense DNA or antisense RNA may be of use in the treatment of diseases or disorders in humans in which the over- or under-regulated production of the gene product has been implicated. Such diseases or disorders may include those described under the general headings of neurologic, eg.stroke, dementia, renal eg. hypertension, nephrosis, cardiovascular disorders.

Convenient DNA sequences may be obtained using conventional molecular biology procedures, for example by probing a human genomic or cDNA library with one or more labelled oligonucleotide probes containing 10 or more contiguous nucleotides designed using the nucleotide sequences described here. Alternatively, pairs of oligonucleotides one of which is homologous to the sense strand and one to the antisense strand, designed using the nucleotide sequences described here to flank a specific region of DNA may be used to amplify that DNA from a cDNA library.

The ZGGBP1 protein of the invention and homologues or fragments thereof may be used to generate substances which selectively bind to it and in so doing regulate the activity of the protein. Such substances include, for example, antibodies, and the invention extends in particular to an antibody which is capable of recognising one or more epitopes containing the protein binding domains shown in Figure 1. In particular the antibody may be neutralising antibody.

As used herein the term antibody is to be understood to mean a whole antibody or a fragment thereof, for example a F(ab)2, Fab, FV,. VH or VK fragment, a single chain antibody, a multimeric monospecific antibody or fragment thereof, or a bi- or multispecific antibody or fragment thereof.

The invention will now be illustrated but not limited by reference to the following detailed description, References, Examples and Figures wherein:

Figure 1 shows the predicted amino acid sequence of ZGGBP1. The C2 domain is indicated by carets, the four WW domains are indicated by asterisks and the Hect domain is indicated by underlining.

- Figure 2 shows a comparison of amino acid sequences of human ned4 Swissprot entry P46934 and ZGGBP1.
- Figure 3 shows a Northern blot analysis of various human tissues probed with ZGGBP1.
- Figure 4 shows a comparison of the nucleic acid sequences of human and mouse
- 5 ZZGBP1. The mouse sequence is a partial cDNA which spans the C-terminal portion of the human protein coding region.
 - Figure 5 shows a comparison of the nucleic acid sequences for ZGGBP1 and Pub3
 - Figure 6 shows a polymorphism located at position 3554 of the cDNA sequence
 - Figure 7 shows a polymorphism located at position 4828 of the cDNA sequence
- 10 Figure 8 shows a polymorphism located in an intronic sequence derived from a BAC containing ZGGBP1
 - Figure 9 shows a variable number of tetranucleotide repeats located within an intronic sequence from ZGGBP1
 - Figure 10 shows an insertion at position 4032 of the cDNA sequence

References

Stine O.C. et al. (1994) Am.J.Hum.Genet. 57, 1384-1394;

Lovett M., Kere J. and Hinton L. (1991) Proc.Natl.Acad.Sci. USA 88, 9628-9632;

Schuler G.D. et al. (1996) Science 274, 540-546;

- 20 Kumar S., Tomooka Y. and Noda M. (1992) Biochem. Biophys. Res. Commun. 185, 1155-1161;
 - Andre B. and Springael J.Y. (1994) Biochem.Biophys.Res.Commun. 205, 1201-1205;

Bork P. and Sudol M. (1994) Trends Biochem.Sci. 19, 531-533;

Hofmann K. and Boucher P. (1995) FEBS Letts. 358, 153-157;

- 25 Brose N., Hofmann K.O., Hata Y., Suedhof T.C.(1995) J. Biol. Chem. 270, 25273-25280;
 - Huibregtse J.M., Scheffner M., Beaudenon S. and Howley P.M. (1995)

Proc.Natl.Acad.Sci. USA, 92, 2563-2567;

Nomura N. et al. (1994) DNA Res. 2, 37-43;

30 Schild L., Lu Y., Gautschi I., Schneeberger E., Lifton R.P. and Rossier B.C. (1996) EMBO J. 15, 2381-2387; Straub O., Dho S., Henry P.C., Correa J., Ishikawa T., McGlade J. and Rotin D. (1996) EMBO J. 15, 2371-2380;

Shizua H., Birren B., Kim U-J, Mancino V., Slepak T., Tachiiri Y. and Simon M. (1992) Proc.Natl.Acad.Sci. USA 89, 8794-8797;

Kim U-J., Shizuya H., Kang H-L., Choi S-S., Garrett C.L., Smink L.J., Birren B.W., Korenberg J.R., Dunham I. and Simon M. (1996) Proc.Natl.Acad.Sci. USA 93, 6297-6301.

Sambrook J., Fritsch E.F. and Maniatis T. (1989) "Molecular Cloning: A Laboratory Manual (2nd edition)" Cold Spring Harbor Laboratory Press NY

Example 1

10

15

25

30

Identification of ZGGBP1

We used two methods for investigating the 18q21 region of interest. In one method we used positional cloning to identify novel transcripts from physical clones representing the region and in a second method we utilised public databases to identify transcripts which had been assigned to a low resolution map of the region by radiation hybrid mapping and assigned them to physical clones representing a high resolution map of the region.

20 Method 1 - Positional Cloning

The 18q21 region described by Stine et al. (1995) is delimited by the STS markers used by that group to identify linkage. They found the most strongly linked marker to be D18S41, which had a LOD score of 3.51 in cases of paternal inheritance. Linkage declined over flanking markers. We identified a set of four Yeast Artificial Chromosomes (YACs) which comprised a contiguous overlapping set of genomic clones covering the defined region by the presence in those YACs of STS markers used in the Stine study.

DNA from the YACs was prepared and used in a PCR-based hybridisation approach to enrich for transcripts from a human fetal brain cDNA library. This approach, known as direct selection (Lovett et al. 1991) has been shown to be efficient in identifying transcripts present on large genomic clones.

Method 2 - Refining Radiation Hybrid Mapped Transcripts

The UNIGENE database is a repository for transcripts which have been mapped by taking representative Expressed Sequence Tagged Sites (ESTs) and performing PCR analysis on a panel of radiation hybrids which have been calibrated with respect to a framework of 1000 genetic markers (Schuler et al. 1996). We found 36 EST clusters which had been mapped to a radiation hybrid map interval which corresponded to the 18q21 region of interest and to flanking regions outside.

All the ESTs were tested by PCR on our YAC genomic clones to determine which were present. We found approximately half of the ESTs to be present within the genomic clones and were able to order them based on their position within the YAC contig.

Results

5

10

15

20

25

30

Several clones from our direct selection experiments showed sequence homology to a known EST which we had previously shown to be present in two of the YACs within the contig. The EST was representative of a cluster of sequences. All of these sequences were assembled together using DNAStar Seqman and the consensus sequences obtained were used iteratively to search for other database members within both Unigene, dbEST and EMBL databases. This resulted in the surprising identification of two further clusters of ESTs which had previously not been related to each other on the basis of sequence analysis. The two new EST clusters were annotated as having sequence similarity to ned-4. This was an unexpected finding since we had recently mapped the human ned-4 by Fluorescence In Situ Hybridisation (FISH) to chromosome 15. We were aware that ned-4 was involved in neuronal cell signalling and we concluded that the EST cluster on 18q21 must represent a closely related gene and therefore likely to be involved in affective neurological disorders such as bipolar affective disorder.

The assembly of the EST clusters did not give rise to a single complete contiguous sequence. The reason for this is that many of the EST sequences were derived from IMAGE cDNA clones for which end sequence only was available. In order to fill in the gaps and give a complete contig, four of these clones (IMAGE I.D. 80951, 33059, 79526 and 79984) were sequenced completely to fill the gaps and give an entire complete contiguous sequence. Comparison of the sequence with ned-4 showed that the contig comprised 2kb of 3'Untranslated Region (UTR) and 700bp of the coding region of a gene

10

15

20

25

30

which had approximately 85% identity at the amino acid level to ned-4 and which we named ZGGBP1.

Isolation of the full length gene for ZGGBP1

The extending of partial transcripts to full length clones can be a complex and difficult process requiring skill and expertise for success. Having considered several possibilities, we opted for a PCR-based approach to isolate and characterise the full length ZGGBP1 gene. Human foetal brain double stranded cDNA was synthesised from mRNA using standard methods (Sambrook et al. 1989) and ligated into lambda Zap vector by use of adapters. However, in order to minimise the loss of transcripts often seen following the cloning step, the resulting ligation mix was not cloned but was instead used as a template for PCR. Oligonucleotide primers specific to ZGGBP1 were used in combination with vector specific primers to amplify DNA across the unknown part of the gene. Since the distance to be covered was unknown, we performed long PCR using the commercially available BCL Expand enzyme and long (30mer) oligonucleotide primers. Since we were using unamplified material, where our target cDNAs were likely to be present only in very small amounts, we utilised a secondary PCR step with nested oligonucleotide primers and again using long PCR to yield sufficient PCR products to be visible by gel analysis and also to minimise the possibility of non-specific PCR amplification. The PCR products derived from these experiments were then purified and sequenced directly. Where necessary, the DNA sequence obtained was used to design further primers to walk along the gene in a 3' - 5' direction. The complete nucleotide sequence derived from this work is 5.2kb and the translated amino acid sequence is shown in SEQ ID NO: 1.

The amino acid sequence derived from the cDNA was compared with that of ned-4 and is shown in Figure 2. The proteins diverge markedly towards the N-terminal portion of the protein, although there is conservation of the common functional motifs.

Northern analysis using a probe derived from the 3'UTR of ZGGBP1 showed a band at approximately 4.8kb but also a more abundant band of 9kb in size in several neurological tissues, with the exception of medulla or spinal cord. These bands are likely to be due to alternative splicing (Figure 3). Other tissues contained the 4.8kb band at higher abundance with respect to the 9kb band and also a 4kb band. ZGGBP1 was

10

15

20

25

30

expressed in all tissues examined with the exception of liver where we could not detect a transcript at our current detection sensitivity.

Comparison of Amino Acid Sequences of human ned-4 and ZGGBP1

A comparison of the amino acid sequences of human ned-4 and ZGGBP1 is shown in Figure 6. The two proteins have a high level of homology over much of the C-terminal region, including the Hect and WW domains, but diverge over the central portion of the protein. There is a further block of homology near to the N-terminal region, including the C2 domain. The presence of these domains in ZGGBP1 suggests some common functionality with ned-4.

Identification of polymorphic variants of ZGGBP1

500bp regions of the ZGGBP1 cDNA were PCR amplified from a variety of tissues and lymphoblastoid cell lines. Sequencing was carried out and polymorphisms identified as outlined in Figures 5 and 6. Some intronic sequence had been identified from a genomic clone and sequence analysis of these regions identified a further polymorphic variant as outlined in Figure 7. A tetranucleotide repeat (GATT) was also identified in an intronic sequence derived from this BAC and this was found to have variable numbers of repeats (Figure 8).

Isolation of Genomic Clone for ZGGBP1

The Research Genetics human Bacterial Artificial Chromosome (BAC) library (Shizua et al. 1992, Kim et al. 1996) was screened by PCR using primers specific to the 3'UTR of ZGGBP1 and BACs were isolated. These are being used to characterise the structural gene including the intron/exon structure and the 5' regulatory region.

Isolation of Mouse homologue for ZGGBP1

The full length sequence of ZGGBP1 shown in SEQ ID NO: 1 was used to search the dbEST database to identify homologous mouse sequences. Three overlapping IMAGE clones were identified (IMAGE I.D.479436, 573510, 482922) comprising a partial transcript. Comparison of the mouse and human nucleotide sequence is shown in Figure 4. The mouse clones were isolated for use as a probe for in situ hybridisation on sections

ng463844 nen166

of mouse brain during development, and as a probe of mouse genomic libraries to isolate genomic clones and to produce transgenic mice by gene targeting using homologous recombination.

25

CLAIMS

5

- 1. A polynucleotide comprising a nucleic acid sequence which encodes the polypeptide of Seq ID No 2, and homologues and fragments thereof.
- 2. A polynucleotide as claimed in claim 1 which comprises the cDNA sequence of Seq ID No 1.
- 3. Polymorphic variants of the polynucleotide as claimed in claim 2, selected from the group in which:
 - i) T at position 3554 is replaced by C.
 - ii) C at position 4828 is replaced by G.
 - iii) T within an intronic region associated with ZGGBP1 is replaced by C.
 - iv) C is inserted at position 4032.
 - 4. A polynucleotide which comprises an animal homologue of the nucleic acid claimed in claims 1-3.
- 5. A polynucleotide as claimed in claim 4 which comprises the cDNA sequence of Seq20 ID No 3, and homologues and fragments thereof.
 - 6. A polynucleotide which is capable of specifically hybridising to eight or more contiguous nucleotides comprised in Seq ID No 1 or Seq ID No 3 or comprised in the complementary strands thereof.
 - 7. A polynucleotide which comprises a ZGGBP1 gene fragment.
 - 8. A vector comprising a polynucleotide of claims 1-7.
- 30 9. A host cell transformed with a vector of claim 8.

- 10. A polypeptide comprising the amino acid sequence of Seq ID No 2 and homologues and fragments thereof.
- 11. A polypeptide comprising the amino acid sequence of Seq ID No 4 and homologues5 and fragments thereof.
 - 12. A fusion protein in which a polypeptide of claim 10 or claim 11 is fused with glutathione-S-transferase.
- 10 13. A method for producing cells which express a polypeptide of claim 10 or claim 11 or a fusion protein of claim 12, comprising:
 - a) culturing a host cell of claim 9 under conditions suitable for the expression of the polypeptide.
 - b) recovering the polypeptide from the host cell culture.

- 14. A method for identifying a compound capable of modulating the activity of a ZGGBP1 protein , which method comprises subjecting one or more test compounds to a screen comprising:
- a) a protein as claimed in claims 10-12 or a homologue or fragment thereof,

20 or

b) a polynucleotide as claimed in claims 1-7 or a homologue or fragment thereof,

or

c) a host-cell expressing a polypeptide of a ZGGBP1 molecule, and measuring an effect of the test compound on ZGGBP1 activity.

25

- 15. A compound that modulates the activity of a human ZGGBP1 identified by the method of claim 14.
- 16. A pharmaceutical composition comprising a compound that modulates the activity of a protein identified by the method of claim 14.

- 17. A diagnostic assay for the detection of ZGGBP1, which assay comprises measuring the presence or absence of a protein as claimed in claims 10-12 or a polynucleotide as claimed in claims 1-7.
- 5 18. An antisense molecule comprising a complement of the polynucleotide in claims 1-7 or a biologically effective fragment thereof.
 - 19. Use of a polynucleotide as claimed in claims 1-7 or claim 18 in gene therapy.
- 10 20. An antibody specific for a protein of claims 10-12 or fragments thereof.
 - 21. A set of amplification primers for selective amplification of a ZGGBP1 gene sequence.

PCT/GB98/02259

1/19

MFRLRSWASSTTGSRYGSAFCGSPTLAWCVCVPVCYGESRILRVKVVSG
IDLAKKDIFGASDPYVKLSLYVADENRELALVQTKTIKKTLNPKWNEEF
YFRVNPSNHRLLFEVFDENRLTRDDFLGQVDVPLSHLPTEDPTMERPYT
FKDFLLRPRSHKSRVKGFLRLKMAYMPKNGGQDEENSDQRDDMEHGWEV
VDSNDSASQHQEELPPPPLPPGWEEKVDNLGRTYYVNHNNRTTQWHRPS
LMDVSSESDNNIRQINQEAAHRRFRSRRHISEDLEPEPSEGGDVPEPWE *
TISEEVNIAGDSLGVVLPPPPASPGSRTSPQELSEELSRRLQITPDSNG
EQFSSLIQREPSSRLRSCSVTDAVAEQGHLPPPSVAYVHTTPGLPSGWE
ERKDAKGRTYYVNHNNRTTTWTRPIMQLAEDGASGSATNSNNHLIEPQI
RRPRSLSSPTVTLXAPLEGAKDSPVRRAVKDTLSNPQSPQPSPYNSPKP
QHKVTQSFLPPGWEMRIAPNGRPFFIDHNTKTTTWEDPRLKFPVHMRSK
TSLNPNDLGPLPPGWEERIHLDGRTFYIDHNSKITQWEDPRLQNPAITG
PAVPYSREFKQKYDYFRKKLKKPADIPNRFEMKLHRNNIFEESYRRIMS
VKRPDVLKARLWIEFESEKGLDYGGVAREWFFLLSKEMFNPYYGLFEYS
ATDNYTLQINPNSGLCNEDHLSYFTFIGRVAGLAVFHGKLLDGFFIRPF
YKMMLGKQITLNDMESVDSEYYNSLKWILENDPTELDLMFCIDEENFGQ
TYQVDLKPNGSEIMVTNENKREYIDLVIQWRFVNRVQKQMNAFLEGFTE
LLPIDLIKIFDENELELLMCGLGDVDVNDWRQHS1 <u>YKNGYCPNHPVIO</u> W
FWKAVLLMDAEKRIRLLOFVTGTSRVPMNGFAELYGSNGPOLFTIEOWG
${\tt SPEKLPRAHTCFNRLDLPPYETFEDLREKLLMAVENAOGFEGVD}.$

2/19

1		P46934 ZGGBP-1
39 38		P46934 ZGGBP-1
79 73		P46934 ZGGBP-1
118 113	1	P46934 ZGGBP-1
158 153		P46934 ZGGBP-1
198 193	G W V V L D Q P D A A C H L Q Q Q Q E P S P L P P G W E E R Q D I L G R T Y Y V G W E V V D S N D S A S Q H Q E E L P P P P P L P P G W E E K V D N L G R T Y Y V	P46934 ZGGBP·1
238 233	N H E S R R T Q W K R P T P O D N L T D A B N G N I Q L Q A Q R A F T T R N H N N R T T Q W H R P S L M D V S S E S D N N I R O I N Q E A A H R R F R S R	P46934 ZGGBP-1
275 273		P46934 ZGGBP-1
313 313	PPSSKLDV PTHLAEELNARLTIFGNSAVSQPASSSNH PPPASPGSRTSPOELSEELSRRLO1TPDSNGEOFSSLIOR	P46934 ZGGBP-1
350 353	S S R R G S L Q A Y T F E E Q P T L P V L L P T S S G L P P G M E E P S S R L R S C S V T D A V A E Q G H L P P P S V A Y V H T T P G L P S G W E	P46934 ZGGBP-1
383 393		P46934 ZGGBP-1
414 433		P46934 ZGGBP-1
435 473	SGOQVTQPSEIEQGFLPXGWEVRHAPNGR	P46934 ZGGBP-1
464 513	P F F I D H N T K T T T W E D P R L K I P À H L R G K T S L D T S N D L G P L P	P46934 ZGGBP-1
504 552		P46934 ZGGBP-1
544 592		P46934 ZGGBP-1
584 632		P46934 ZGGBP-1
624 673	1	
664 71		
70- 75:		P46934 ZGGBP-1
74- 79:	4 NGGSEIVVTNKN KKEYIYLVIQH R F VN RIQKOM A A FKEG F 2 PNGSEIMVTN EN KREYI DLVI QH R F VN R V O K O MNA F L EG F	P46934 ZGGBP-1
	4 FELIPODLIKIFDENELELLMCGLGDVDVNDWREHTKYKN 2 TELLPIDLIKIFDENELELLMCGLGDVDVNDWRQHSIYKN	
82 87		P46934 ZGGBP-1
86 91	4 GFAELYGSNGPQSFTVEQWGTPEKLPRAHTCFNRLDLPPY	P46934
90 95	4 ESFEELHOKLOMATENTOGFDGV-DJ 2 ETFEDLREKLLMAVENAOGFEGVD.	P46934 ZGGBP-1

3/19

en Radd Formal College

4/19

_			
1	CAGAGAAAGGTCTTGACTATEGEGETGTGGCCAGAGAATG	Kuman :	266BF-1 266BF-1
25 41	GTTCTTCTTACTGTCCAAAGAGATGTTTAACCCCTACTAT	auuo) aemui	eggbp-1 eggbp-1
65 81	GGCCTCTTTGAGTACTCTGCCACGACAACTACACACTTC	ionae :	zccbp-1 zccbp-1
105 121	A G A T C A A T C C C A A C T C A G G C C T C T G T A A T G A A G A C C A T T T T		ZGGBP-1 ZGGBP-1
145 161	GTCCTATTTCACCTTTCATTCCAACACTTCCTGGCCTAGCG	Mouse Human	2GGBP-1 2GGBP-1
	GTGTTTCATGGGAAAGTCTTAGATGGATTCTTCATTCCAC	-	ZGGBP-1 ZGCBD-1
225	CATTOTACAAGATGATGTTGGGGAAGCAGATAACGCTGAA		2GGBP-1 2GGBP-1
265 281	CGACATGGAGTCCGTGGACAGCGGAGTACTACAACTCTTTG	Mouse Human	2GGBP - 1 2GGBP - 1
305	A A L T G G A T C T T A G A A A A C G A C C C C A C G B A A C T T G A C C T C A A A L T G G A T C C T C C A C T A C T G A C C T C A C A	Moure	eccep-1
345	TETTETECATAGACEN WENGARCTTTEGECAGACATACCA TETTCTECATAGACGAAGAAAACTTTEGACAGACATATCA	Mouse	2GC8P-1
389	AGTCCSTCTCAACCCCAACGCGTCAGAAATAATGGTAACC AGTCGATTTGAAGCCCAATGGGTCAGAAATAATGCTCACA	Mouse	ZGGBP-1
425	AATGAGAACAAACGAGAATACATTAACTTAGTCATCCAGT	Mouse	ZGGBP-1
469	GCAGATTTCTCAACAGGCTCCAGAACCAAATGAATGCCTT	Mouse	2GGBP-1
	G G A G A T T T G T G A A C A G G G T C C A G A A C C A G A T G A A C G C C T T		
505 523	CTTGGAGGCATTTACAGAACTTCTTCCAATCGACTTCATT CTTGGAGGGATTCACAGAACTACTTCCTATTGATTGATT	Mouse Human	2665P-1 2665P-1
24. 56	A A A A T T T T T G A T G A A A T G A G C T G G A G T T G C T G A T C T C C G G A G T T G C T C A T G T G C G		eggbp • 1
58 60	C C C T T G G T G T G T G T G T G T G T	Mouse Human	2ccep-1 2ggpp-1
62 64	TATTTACAAGAACGGCTACTGCCCCAACCACCTGTCATC	Мацее Нимап	ZGGBP-1 ZGGBP-1
66 68	CACTCCTTCTGGAAGGCCCTGCTCCTGATGGATGCTGAGA LCAGTGGTTCTGGAAGGCTCTCCTACTCATGGAGAGAA	Mouse	2GGBP-1 2GGBP-1
78 72	S A O C C C A T C C C C C T A C T A C A C T T T G T C A C A C C A C C T C C A C L A C C C A C C A C C C C C C C	Mouse	: ZGGBP-1
	S AGTACCCATGATTGGATTTCCCCAACTCTATGGTTCCAAT	MOUSE	
7 E	5 GGTCCTCAGCTGTTTACAATAGAGCAATGGGGCAGTCC-G	Mouse	2GGBP-1 2GGBP-1
	4 AAAAACTACC-AGAGCTCI-TACATGCTT-AATEGC 1 AGAAACTGCCCAGAGCTCACACATGCTTTAATCGCCTTG	Моля	= 266by-1 n 266by-1

TOTAL CEDICA

5/19

	CGGPATTATCAGCAGAGG	
16 41	GTCGCCAGGACTGCGTTARCGGGCACTG Pub-3.seq	
31	CTTTAAAACTGGAAGGAGG	
51 121	GGTCGTCCTCGACGGTTGCCCTCCTCGTCCTGTTCCAG	
53 161	GACGAG GCCAGGGAG Pub-3.seq GGTGAGTGGGGATACCAGGTGTCCACGGGAAGGTACGG	
68 201	CCCGACATCGCCATCGTCGTCGAG Pub-3.seq	
74 241	AAAAGCGTTCCAGGTCACCAAAGGTAGAT Pub-3.seq	
90 281	TTCCAGCAGCGCTAG Pub-3.seq TTTCAGGTCGGGGGGAACAGGGTCTTGAGGTAG	
105 321	TCCAGCTGAA CACTTTCCAG CCT Pub-3.seq	
128 361	TGTT	
141	CTTT	
145 441	TACGGAGAGTCCCGTATTCTCAGAGTAAAGT AT Pub-3.seq	

DYHOZSKI CHOLOC

6/19

Pub-3.seg ZGGBP1.seg	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq
TWGATCTCGCCAAAAGGACATCTTTGGAGCCAGTGA	GTATGTGAAACTTTCATTGTACGTAGCGGATGAGAAT GTATGTGAAACTTTCATTGTACGTAGCGGATGAGAAT	GAACTTGCTTTGGTCCAGACAAAAACAATTAAAAAGA GAACTTGCTTTGGTCCAGACAAAAACAATTAAAAAGA	TGAACCCAAAATGGAATGAAGAATTTTATTTCAGGGT TGAACCCAAAATGGAATGAAGAATTTTATTTCAGGGT	CCCATCTAATCACAGACTCCTATTTGAAGTATTTGAC CCCATCTAATCACAGACTCCTATTTGAAGTATTTGAC	AATAGACTGACACGACGGCTTCCTGGGCCAGGTGGAATAGACTGGGCCAGGTGG	TGCCCCTTAGTCACCTTCCGACAGAAGATCCAACCAT TGCCCCTTAGTCACCTTCCGACAGAAGATCCAACCAT	GCGACCCTATACATTTAAGGACTTTCTCCTCAGACCA	AGTCATAAGTCTCGAGTTAAGGGATTTTTGCGATTGA AGTCATAAGTCTCGAGTTAAGGGGATTTTTGCGATTGA	TGGCCTATATGCCAAAAAATGGAGGTCAAGATGAAGA TGGCCTATATGCCAAAAATGGAGGTCAAGATGAAGA	CAGTGACCAGAGGGATGACATGGAGCATGGATGGAA CAGTGACCAGGGATGACATGGAGCATGGATGGGAA	GTTGACTCAAATGACTCGGCTTCTCAGCACCAAGAGG GTTGACTCAAATGACTCGGCTTCTCAGCACCAAGAGG
157 481 GAA	162 T C C 521 T C C	202 A G A 561 A G A	242 CAC 601 CAC	282 A A A 641 A A A	322 G A A 681 G A A	362 A C G 721 A C G	402 G G A 761 G G A	442 A G A 801 A G A	482 A A A 841 A A A	522 A A A 881 A A A	562 GTT 921 GTT
4	ન છે.	4 10	0 0	9 10	9	w r	4 1	4 00	4, 60	ίn σο	n o

7/19

PCT/GB98/02259

8/19

Pub-3.seq ZGGBP1.seq	a e d	e q se q	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	e ಭ ೫e ಭ	ad ദേദ്യ	s d se d	seq . seq	ed sed
3. s	3.8	3.5	3.8	3.8	3.8 21.	3.5	3.8	3. E	3. S	3. B
Pub-3.seq ZGGBP1.se	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.se	Pub-3.seq ZGGBP1.se	Pub-3.seq ZGGBP1.se	Pub-3.seq ZGGBP1.seq	Pub-3.seg ZGGBP1.seg	Pub-3.seq ZGGBP1.seq	Pub-3.seq ZGGBP1.se	Pub-3.seq ZGGBP1.seq
AA	F F	G G	ATA	H H	AA	U U	4 4	0 0	U U	A C
AA	AA	AA	UU	ט ט	υυ	E+ E+	UU	UU	E1 E1	UU
0 B	A A	0 0	AA	00	0 0	7 7 7	0 0	0 0	E FI	1 1
AA	AA	4 4	O A A	E E	E4 E4	0 0	U U	A A	F F1	AA
AAAA	TA	0 0 F F	AAC	UU	0 0	0 0	4 4	0 0	0 0	D A A
A G	A A	0 0	TA	A A	0 0	A A	AA	7 7 G G	0 0	AA
AA	4 4	UU	ဗဗ	TT	00	AA	UU	F F	0 0	0 0
0 0	AA	1 1	4 4	0 0	0 0	0 0	AAA	O O	0 0	9 9
0 0	UU	AA	AA	E E	UU	AA	HH	HH	0 0	O O
E E	G T	7 F	AA	0 0	0 0	O D	0 0	0 0	0 0	COA
00	E1 E1	KK	UU	00	UU	F+ F+	A A	AA	RA	AA
A A	TAT	U U	OO	0 0	0 0	7 T G	1 H	D B	AAA	A A
00	UU	UU	UU	UU	0 0	UU	AA	ပပ	00	4 H
7 7	TAT	G A A	A G	0 0	시스	0 0	0 0	SA	0 0	A C
υυ	4 4	UU	UU	OO	H H	0 0	0 0	AA	UU	0 0
0 0	A A	C C	TA	AT	FF	7 C	CA	1 t	AAG	AAA
E-4 E-1	UU	AA	0 0	00	E-1 E-1	0 0	A A	0 0	E EI	A A
0 D	0 0	0 0	0 0	OO	0 D	A A	0 0	AAA	GA	O A
0 0	0 0	4 4	O U	D D	AAA	G G	0 0	O O	A G	O O
ט ט	0 0	OO	0 0	ပပ	7 7	UU	F F	AA	0 0	AAA
0 0	G G	AAAA	0 0	D A A	O O	0 0	A G	CO	TA	ATT
0 0	AA	UU	F F	0 0	UU	AA	UU	AA	AA	UU
A A	O O	A A	0 0	0 0	AA	0 0	AA	A A	G A	ATT
ပပ	0 0	ပပ	£ £	AA	UU	ပပ	บบ	υυ	0 0	0 0
OA	ATT	AA	G A A	TA	0 0	G A A	O A	OU	E E	4 4
F+ F+	ပ ပ	00	A A	ပပ	υυ	ပ ပ	44	4 4	ပပ	A A
1122 1481	1162	1202 1561	1242	1282	1322 1681	1362 1721	1402	1442	1482	1522
7 7	44		4 4	-		4 4	ન ન	~ ~	~ ~	

9/19

TTT Pub-3.seq GAA ZGGBP1.seq GAA ZGGBP1.seq GAA ZGGBP1.seq GCA ZGGBP1.seq GCA ZGGBP1.seq GCA ZGGBP1.seq TAAA ZGGBP1.seq TAAA ZGGBP1.seq ACT Pub-3.seq ACT Pub-3.seq ACT Pub-3.seq TAAA ZGGBP1.seq	
00 00 4 4 00 00 4 4 1 1 0 0 0 0 0 0 0 0	TCTTGACTATGG CTGTCCAAAGAGA CTGTCCAAAGAGA AGTACTCTGCCA TAATTCAGGCCT
AGTACATATGOGOCTTGGTGGGTGGGTGGGTGGGCCCCTTTGGGTGGCCCCTTTGGATGGCCGGAAACTGGGGAATGGGCTGGGAATGCCCCAATAGGAATATGAAGGGAATGTCCCCAATAGGAATGTCCCCAATAGGAGAGACCAGATGTCCCAATAGGAGAGACCAGATGTCCCAATAGGAGAGACCAGATGTCCCAATAGGAGAGAGA	ATCAGAGAAAGG TGGTTCTTCTTA TGGTTCTTCTTA ACGGCCTCTTTG ACGGCCTCTTTG TCAGATCAACCC
1562 GTTTGAAATTTCC 1921 GTTTGAAATTTCC 1961 AAACCCCCAATGAC 1961 AAACCCCCAATGAC 1961 AAACCCCCAATGAC 2001 GAAAGAATTCAT 2001 GAAAGAATTCACT 2001 GAAAGAATTCACT 2001 GAAATTAAGCAAAAT 2001 GAATTTAAGCAAAAT 2001 GAATTTAAGCAAAA 2121 GAATTTAAGCAGA 2121 GAATTTAAGCAGA 2121 GAATTTAAGCAAAA 2121 ATGTCCGTGAAAA 2241 ATGTCCGTGAAAA 2241 ATGTCCGTGAAAA	Т Т С А В С С С С В В В В В В В В В В В В В

10/19

| Pub-3.seq
ZGGBP1.seq |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Pub | Pub- | Pub | Pub- | Pub | Pub | Pub | Pub.
ZGG | Pub- | Pub- | Pub- |
| 0 0
A A | 9 B | AAA | AA | TA | 4 4 | Q Q | 9 0 | AA | 1 1 | ១១ |
| AA | AA | AA | 0 0 | UU | UU | E E | HH | 0 0 | UU | F+ F+ |
| AA | 0 0 | 0 0 | E E | OO | KK | 0 0 | AA | COA | AA | ပပ |
| 0 0 | TAT | 0 0 | A A | 0 U | AA | 0 0 | FE | 0 0 | C C | A G |
| HH | EH EH | E1 E1 | € € | 00 | RA | H H | EH EH | EH EH | AA | 0 0 |
| H H | UU | E1 F1 | AA | H H | 0 0 | A A | AA | 0 0 | AA | Fr Fr |
| TAT | E E | 0 0 | 0 0 | AA | AAA | A O | 8 8 | 0 0 | A G | AAA |
| FF | 00 | AA | E E | ပ ပ | 0 0 | ပပ | 00 | AA | 0 0 | AA |
| H H | AA | 0 0 | ပ ပ | AA | UU | ပပ | 0 0 | O O | AA | AA |
| T D | 0 B | AAT | 00 | 0 0 | G A A | 9 8 | AA | AAA | D D | 11 11 |
| AA | 0 0 | 0 0 | H H | H H | AA | AA | AA | 0 0 | E E | AA |
| ပ ပ | ט ט | AA | AA | UU | E+ E+ | ပ ပ | 4 4 | E+ E+ | A A | 00 |
| 44 | ATA | A A | 8 8 | 00 | A A | 7 7 | A A
C | T G | 0 0 | HH |
| T T | A D | AA | 0 0 | AAT | 0 0 | 7 7 | AA | TT | 0 0 | 44 |
| AA | E | E+ E+ | E- E- | 0 0 | F- F- | AA | AA | H E | AA | E E |
| E+ E+ | E E | E E | AA | ပ ပ | OO | 0 0 | AA | AA | 0 0 | E E |
| 0 0 | ATA | 11 | CO | ATT | 4 4 | 9 5 | 1 1 | D A | 7 G | AAA |
| HH | E E | AA | 0 0 | AA | 0 0 | 00 | AA | 00 | E+ E+ | AA |
| 00 | 0 0 | ပပ | EH EH | AA | E- E- | A A | AA | 00 | UU | AA |
| 7 7 | 0 0 | AA | AA | 9 5 | CAA | A A | O O A | D D | 11 11 | TT |
| F F | 0 0 | 0 0 | 00 | HH | 11 11 | F F | AA | AA | 0 0 | A A |
| 44 | 0 0 | AA | F+ E+ | E4 E4 | UU | AA | ပပ | ပပ | U U | 00 |
| ပပ | E E | t+ t+ | UU | UU | 00 | E E | E E | UU | ပ်ပ | F F- |
| TA | E E | TA | U U | E E | GA | O O | 0 0 | FA | AAC | 11 |
| 00 | טט | 00 | AA | AA | 0 0 | AA | E E | UU | AA | AA |
| 00 | ပြပ | E- E- | AA | AA | F+ F+ | ပ ပ | 4 4 | F1 E1 | ပပ | ပြပ |
| AA | F F | F F | HH | ט ט | υυ | AA | AA | 00 | HH | F F |
| 9 6 | 0 0 | F F1 | G A | FF | 0 0
0 0 | OU | TA | TA | A A | TA |
| AA | FF | E E | A A | E1 E1 | 0 0 | 00 | AA | HH | AA | 4 4 |
| T T A A | F- E- | € € | ပပ | AA | F F | ပ ပ | G A | O O | 00 | ပပ |
| E- E- | 00 | 0 0 | 00 | 타타 | ပြပ | 타터 | 0 0 | A A | 0 0 | ပ ပ |
| 2082 | 2122
2481 | 2162
2521 | 2202 | 2242
2601 | 2282
2641 | 2322
2681 | 2362 | 2402 | 2442
2801 | 2482
2841 |

OS FORST F. GEOLOG

11/19

AGTIGCICATGIGCG AGTIGCICATGIGCG	
2562 CTGGAGACAGCATTCTATTTACAAGAACGGCTACTGCCCA Pub-3.seq 2921 CTGGAGACAGCATTCTATTTACAAGAACGGCTACTGCCCA ZGGBF1.seq	
2602 AACCACCCGGTCATTCAGTGGTTTCTGGAAGGCTGTGCTAC Pub-3.seq 2961 AACCACCCGGTCATTCAGTGGTTCTGGAAGGCTGTGCTAC ZGGBP1.seq	
2642 TCATGGACGCCGAAAGCGTATCCGGTTACTGCAGTTTGT Pub-3.seq 3001 TCATGGACGCCGAAAGCGTATCCGGTTACTGCAGTTTGT ZGGBP1.seq	
2682 CACAGGGACATCGCGAGTACCTATGAATGGATTTGCGAA Pub-3.seq 3041 CACAGGGACATCGCGAGTACCTATGAATGGATTTGCCGAA ZGGBP1.seq	
2722 CTTTATGGTTCCAATGGTCCTCAGCTGTTTACAATAGAGC Pub-3.seq 3081 CTTTATGGTTCCAATGGTCCTCAGCTGTTTACAATAGAGC ZGGBP1.seq	
2762 AATGGGGCAGTCCTGAGAAACTCCCCAGAGCTCACATG Pub-3.seq 3121 AATGGGGCAGTCCTGAGAAACTGCCCAGAGCTCACACATG ZGGBP1.seq	
2802 CTTTAATCGCCTTGACTTACCTCCATATGAAACCTTTGAA Pub-3.seq 3161 CTTTAATCGCCTTGACTTACCTCCATATGAAACCTTTGAA ZGGBP1.seq	
2842 GATTTACGAGAGAAACTTCTCATGGCCGTGGAAAATGCTC Pub-3.seq 3201 GATTTACGAGAAACTTCTCATGGCCGTGGAAAATGCTC ZGGBP1.seq	
2882 AAGGATTTGAAGGGGTGGATTAAGCACCCTGTGCCTCGGG Pub-3.seq 3241 AAGGATTTGAAGGGGTGGATTAAGCACCCTGTGCCTCGGG ZGGBP1.seq	
2922 GGTGGTTGTTCTTCAAGCAAGTTCTGCTTGCACTTTGCA Pub-3.seq 3281 GGTGGTTCTTCAAGCAAGTTCTGCTTGCACTTTGCA ZGGBP1.seq	
2962 TTTGCCTAACAGACTTTTGCAGAGGCGATGGCAGAGGCA Pub-3.seq 3321 TTTGCCTAACAGACTTTTGCAGAGGCGATGGCAGAGGCA ZGGBP1.seq	
3002 GCTGCAGGCATGGTCCCTGGAGCCGAGCCTTCACCACGCA Pub-3.seq 3361 GCTGCAGGCATGGTCCCTGGAGCCGAGCCTTCACCACGCA ZGGBP1.seq	

12/19

3208
3208
3214
3214
3214
3214
3214
3214
3214
3214
3214
4280 GTTTTTGTTGTAAATGCACCAATTCTGAAGGCACTTTATG ZGGBP1.seq
3214 Pub-3.8eq 4320 TACTACATGGAGGTCATATCTTTTTTTTTTTTTTT ZGGBP1.8eq

13/19

Pub-3.seg ZGGBP1.seg	Pub-3.seq ZGGBP1.seq									
3214	3214	3214	3214	3214	3214	3214	3214	214	3214	3214
C3 42	ω 4π	C) 44	LL 44	€ C1 42	(L) 42,	(1) A	(L) 4,	ሬ ላ	(1) (2)	(L) 47g

14/19

	Decoration 'Decoration #1': Box residues that match the Consensus exactly.
Pub-3.seq ZGGBP1.seq	3226 5120 CCTGGTAGTGATCAGAAACTTAGATGCTATGTAACTC
Pub-3.seq A ZGGBP1.seq	3226 5080 AGCTGAGTGTTGGTTCCTTTTTTTTTGGTTGAAATT
Pub-3.seq G ZGGBP1.seq	3220
- Pub-3.seq G ZGGBP1.seq	3220
- Pub-3.seq C ZGGBP1.seq	3220
- Pub-3.seq A ZGGBP1.seq	3220
- Pub-3.seq G ZGGBP1.seq	4880 GCGAGTCATCAATAGGACAAAAAAGTTGTGGTTTGGGGA
- Pub-3.seq T ZGGBP1.seq	3214
C ZGGBP1.seq	4800 AACGACCCTGCTGTCCTTTTAACCTGTGTTGTCCTAGAC

15/19

Wild Type (human foetal brain)	T/T
Variant Type (human adult brain)	T/C
Polymorphism Position	3554
RFLP	-

WO 99/06539 PCT/GB98/02259

16/19

Wild Type (GM1416) C/C C/G Variant (7225) 4828 Position

FIGURE 7

17/19

Primer sequences derived from BAC and used on lymphoblastoid cell lines from BPAD Patients.

Homozygous wild type (KK169) - T/T

Homozygous variant (KK232) - C/C

Figure 9

18/19

Tetranucleotide repeat underlined

19/19

Top electropherogram (human foetal brain) - wild type

Lower electropherogram (7225)

- heterozygous variant

Arrow indicates the position of the C+C insertion - position 4032

FIGURE 10

RULE 63 (37 C.F.R. 1.63)
DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION IN THE
UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, I hereby declare that my residence, post office address and citizenship are

as stated below next to my name and I believe I am the original, first and sole inventor (if only one

name is listed below) or an original, first and joint inventor (if plural names are listed below) of the

subject matter which is claimed and for which a patent is sought on the INVENTION ENTITLED:

ZGGBP1, NOVEL PEPTIDES RELATED TO BIPOLAR AFFECTIVE DISORDERS TYPE 1, SEQUENCES AND USES THEREOF.

the specification of which

is attached hereto

was filed on

as U.S. application serial No.

X was filed as PCT international application No. PCT/GB98/02259 on 28/07/1998 and (if applicable) was amended on

I hereby state that I have reviewed and understand the contents of the above identified specification,

including the claims, as amended by any amendment referred to above. I acknowledge the duty to

disclose all information which is known to me to be material to patentability as defined in 37 C.F.R.

1.56. I hereby claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s)

for patent or inventor's certificate listed below and have also identified below any foreign application

for patent or inventor's certificate filed by me or my assignee disclosing the subject matter claimed in

this application and having a filing date (1) before that of the application on which priority is claimed,

or (2) if no priority is claimed, before the filing date of this application:

PRIOR FOREIGN APPLICATION(S)

Number Country Day/MONTH/Year Filed Date First Laid Date

<u>Date First Laid</u> <u>Date Patented</u> <u>Open or published</u> <u>or Granted</u> Priority claimed
Yes No

9716162.4 United Kingdom 1 Aug 1997

 \mathbf{X}

I hereby claim the benefit under 35 U.S.C. 120/365 of all United States applications listed below and

PCT international applications listed above or below and, if this is a continuation-in-part (CIP)

application insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed such in the prior applications. I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56 which became available between the filing date of each such prior application and the national or PCT international filing date of this application:

PRIOR U.S. OR PCT APPLICATION(S)
Application No. (Serial Code/Serial No.) Day/MONTH/Year Filed

Status (patented, pending abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

And I hereby appoint Cushman, Darby & Cushman, L.L.P. 1100 New York Avenue, N.W. Ninth Floor, East Tower, Washington, D.C. 20005-3918, telephone number 861-3000 (to whom all communications should be directed), and the below named persons (of the same address) individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent and I hereby authorise them to act and reply instructions communicate from and directly with the person/assignee/attorney/firm/organisation who/which first sends/sent this case to them and by who/which I hereby declare that I have consented after full disclosure to be represented unless/until I instruct Cushman, Darby and Cushman in writing to the contrary.

Paul N Kokulis 16773 Kevin E Joyce 20508 Raymond F Lippitt 17519 Edward M Prince 22429 G Lloyd Knight 17698_ James D. Berquist 34776 Carl G Love _18781_ David W Brinkman 20817 Edgar H Martin 20534 George M Sirilla 18221 William K West Jr 22057 Timothy J. Klima 34852

29-

W Warren Taltavull	25647	Donald J Bird	25323
Peter W Gowdey	25872	Lawrence Harbin	27644
Dale S Lazar	28872	Paul E White Jr	32011
Glenn J Perry	28458	Kendrew H Colton	30368
Chris Comuntzis	31097	Jeffrey A Simenauer	31933
Michelle N Lester	32331	John P. Moran	30906
Robert A Molan	29834	David A Jakopin	32955
G Paul Edgell	24238	Mark G Paulson	30793
Lynn E Eccleston	35861		

INVENTOR'S SIGNATURE Juda Veronica January Date 16th December 1999

Alderley Park,, Macclesfield, , Cheshire. SK10 4TG, United Kingdom. & X Residence and Post Office Address

British Citizenship

INVENTOR'S SIGNATURE Mana Christina Martina Hinnegapate 20th December 1999

MARIA CHRISTINA MARTINA FINNEGAN

Alderley Park, Macclesfield, , Cheshire. SK10 4TG, United Kingdom. SK10 4TG, United Kingdom.

British Citizenship

420 Rec'd PCT/PTO 0 1 FEB 2000

SEQUENCE LISTING

-1-

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Zeneca Limited
 - (B) STREET: 15 Stanhope Gate
 - (C) CITY: London (D) STATE: England
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): W1Y 6LN
 - (G) TELEPHONE: 0171 304 5000
 - (H) TELEFAX: 0171 304 5151
 - (I) TELEX: 0171 304 2042
- (ii) TITLE OF INVENTION: NOVEL COMPOUNDS
- (iii) NUMBER OF SEQUENCES: 5
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9716162.4
 - (B) FILING DATE: 01-AUG-1997
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5154 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CAAGCGCGCA ATTAACCCTC ACTAAAGGGA ACACCAACAC GTCGCCAGGA CTGCGCCGTT 60

CGCTGCGCTC ATAGGCGGCG ATTTCATCAA GGGTGGCAAG GATCGCCTGG TCGACGGTCA 120

GGTCGTCCTC GACGCGGTTG CCCTCCTCGT CCTGTTCCAG GGTGAGTGGG CGATACCAGG 180

TGTCCACCGG GAAGGTACGG CCCGACACCT CGACAATCGG CGCATCGTCG AAGTGCTTGG 240

AAAAGCGCTC CAGGTCGATG GTGGCCGAGG TGATGATGAC TTTCAGGTCG GGGCGACGCG 300

GCAACAGGGT CTTGAGGTAG CCGAGCAGGA AGTCGATGTT CAGGCTGCGT TCGTGGGCTT 360

CGTCGACGAC AGGCTCGCGT TATGGCTCCG CTTTCTGCGG CTCTCCTACC CTGGCATGGT 420

GTGTGTGT GCCTGTGTGC TACGGAGAGT CCCGTATTCT CAGAGTAAAA GTTGTTCTGG 480

AATGATCTCG CCAAAAAGGA CATCTTTGGA GCCAGTGATC CGTATGTGAA ACTTTCATTG 540

TACGTAGCGG ATGAGAATAG AGAACTTGCT TTGGTCCAGA CAAAAACAAT TAAAAAGACA 600

CTGAACCCAA AATGGAATGA AGAATTTTAT TTCAGGGTAA ACCCATCTAA TCACAGACTC 660

CTATTTGAAG TATTTGACGA AAATAGACTG ACACGAGACG ACTTCCTGGG CCAGGTGGAC 720

GTGCCCCTTA GTCACCTTCC GACAGAAGAT CCAACCATGG AGCGACCCTA TACATTTAAG 780

GACTTTCTCC TCAGACCAAG AAGTCATAAG TCTCGAGTTA AGGGATTTTT GCGATTGAAA 840

ATGGCCTATA TGCCAAAAAA TGGAGGTCAA GATGAAGAAA ACAGTGACCA GAGGGATGAC 900

ATGGAGCATG GATGGGAAGT TGTTGACTCA AATGACTCGG CTTCTCAGCA CCAAGAGGAA 960

CTTCCTCCTC CTCCTCTGCC TCCCGGGTGG GAAGAAAAG TGGACAATTT AGGCCGAACT 1020

TACTATGTCA ACCACAACAA CCGGACCACT CAGTGGCACA GACCAAGCCT GATGGACGTG 1080

TCCTCGGAGT CGGACAATAA CATCAGACAG ATCAACCAGG AGGCAGCACA CCGGCGCTTC 1140

CGCTCCCGCA GGCACATCAG CGAAGACTTG GAGCCCGAGC CCTCGGAGGG CGGGGATGTC 1200

CCCGAGCCTT GGGAGACCAT TTCAGAGGAA GTGAATATCG CTGGAGACTC TCTCGGTGTG 1260

GTTTTGCCCC CACCACCGC CTCCCCAGGA TCTCGGACCA GCCCTCAGGA GCTGTCAGAG 1320

GAACTAAGCA GAAGGCTTCA GATCACTCCA GACTCCAATG GGGAACAGTT CAGCTCTTTG 1380

ATTCAAAGAG AACCCTCCTC AAGGTTGAGG TCATGCAGTG TCACCGACGC AGTTGCAGAA 1440

CAGGGCCATC TACCACCGCC ATCAGTGGCC TATGTACATA CCACGCCGGG
TCTGCCTTCA 1500

GGCTGGGAAG AAAGAAAGA TGCTAAGGGG CGCACATACT ATGTCAATCA TAACAATCGA 1560

ACCACAACTT GGACTCGACC TATCATGCAG CTTGCAGAAG ATGGTGCGTC CGGATCAGCC 1620

ACAAACAGTA ACAACCATCT AATCGAGCCT CAGATCCGCC GGCCTCGTAG CCTCAGCTCG 1680

CCAACAGTAA CTTTATTGCC CCGCTGGAGG GTGCCAAGGA CTCACCCGTA CGTCGGGCTG 1740

TGAAAGACAC CCTTTCCAAC CCACAGTCCC CACAGCCATC ACCTTACAAC TCCCCCAAAC 1800

CACAACACAA AGTCACACAG AGCTTCTTGC CACCCGGCTG GGAAATGAGG ATAGCGCCAA 1860

ACGGCCGGCC CTTCTTCATT GATCATAACA CAAAGACTAC AACCTGGGAA GATCCACGTT 1920

TGAAATTTCC AGTACATATG CGGTCAAAGA CATCTTTAAA CCCCAATGAC CTTGGCCCCC 1980

TTCCTCCTGG CTGGGAAGAA AGAATTCACT TGGATGGCCG AACGTTTTAT ATTGATCATA 2040

ATAGCAAAAT TACTCAGTGG GAAGACCCAA GACTGCAGAA CCCAGCTATT ACTGGTCCGG 2100

CTGTCCCTTA CTCCAGAGAA TTTAAGCAGA AATATGACTA CTTCAGGAAG AAATTAAAGA 2160

AACCTGCTGA TATCCCCAAT AGGTTTGAAA TGAAACTTCA CAGAAATAAC ATATTTGAAG 2220

AGTCCTATCG GAGAATTATG TCCGTGAAAA GACCAGATGT CCTAAAAGCT AGACTGTGGA 2280

TTGAGTTTGA ATCAGAGAAA GGTCTTGACT ATGGGGGTGT GGCCAGAGAA TGGTTCTTCT 2340

TACTGTCCAA AGAGATGTTC AACCCCTACT ACGGCCTCTT TGAGTACTCT GCCACGGACA 2400

ACTACACCCT TCAGATCAAC CCTAATTCAG GCCTCTGTAA TGAGGATCAT TTGTCCTACT 2460

TCACTTTAT TGGAAGAGTT GCTGGTCTGG CCGTATTTCA TGGGAAGCTC TTAGATGGTT 2520

TCTTCATTAG ACCATTTTAC AAGATGATGT TGGGAAAGCA GATAACCCTG AATGACATGG 2580

AATCTGTGGA TAGTGAATAT TACAACTCTT TGAAATGGAT CCTGGAGAAT GACCCTACTG 2640

AGCTGGACCT CATGTTCTGC ATAGACGAAG AAAACTTTGG ACAGACATAT CAAGTGGATT 2700

TGAAGCCCAA TGGGTCAGAA ATAATGGTCA CAAATGAAAA CAAAAGGGAA TATATCGACT 2760

TAGTCATCCA GTGGAGATTT GTGAACAGGG TCCAGAAGCA GATGAACGCC TTCTTGGAGG 2820

GATTCACAGA ACTACTTCCT ATTGATTTGA TTAAAATTTT TGATGAAAAT GAGCTGGAGT 2880

TGCTCATGTG CGGCCTCGGT GATGTGGATG TGAATGACTG GAGACAGCAT TCTATTTACA 2940 AGAACGGCTA CTGCCCAAAC CACCCCGTCA TTCAGTGGTT CTGGAAGGCT GTGCTACTCA 3000

TGGACGCCGA AAAGCGTATC CGGTTACTGC AGTTTGTCAC AGGGACATCG CGAGTACCTA 3060

TGAATGGATT TGCCGAACTT TATGGTTCCA ATGGTCCTCA GCTGTTTACA ATAGAGCAAT 3120

GGGGCAGTCC TGAGAAACTG CCCAGAGCTC ACACATGCTT TAATCGCCTT GACTTACCTC 3180

CATATGAAAC CTTTGAAGAT TTACGAGAGA AACTTCTCAT GGCCGTGGAA AATGCTCAAG 3240

GATTTGAAGG GGTGGATTAA GCACCCTGTG CCTCGGGGGT GGTTGTTCTT CAAGCAAGTT 3300

CTGCTTGCAC TTTTGCATTT GCCTAACAGA CTTTTGCAGA GGCGATGGCA GAGAGCAGCT 3360

GCAGGCATGG TCCCTGGAGC CGAGCCTTCA CCACGCACTC GTCCAAGTTC GGGATGCGGG 3420

AACCTGGTCC CAGCTTGAGT TCCTGCCTTT CCCACCACAA ATTATCAACT GGTTGATGTG 3480

TACACTAATT ACATTTCAGG AGGACTTAAT GCTATTTATG TTGTCCTCTG CAGGCAAAGC 3540

CCTTAATAAA TATTTTACAT CCTTTCTAAT GACAATGAAT GGAATTAATC ACTCAACAGG 3600

TATAGTATTA CGACTCATGT TTACTTTTTA AAATGATTTA GACCGATTTT CAGATTTTAT 3660

TTCGTTATGA TTAAAGATGT CTCATGTACT TGGAAAAGTG AGCATTTTTT
TTTTTTTTG 3720

TATTTCACTT TCATACCAGG CTTAATGTCA ATGACATTTT TATTTTTGAA GTACTCTGAC 3780

ACCTCCACCC TCTACTTTAT TAGAATTGGA AGGCAAATTT TTGTCCAAAA ACCTACAGAC 3840

AAGTACTTTG AGAGAATTTC CAATATAATA TTAGACATAA TGATAATTTT TTCCATACTC 3900

AGAATGAAAA ACTGGATATT ACGTTTTTGT TTTGGGGTTT TTTTGTACAA ATTTAGCTAA 3960

TAGCTACAGG CTGAGAGAAT TGTAACATAG CATGACAAAT TTTGTGTTGA CTTGAAAGGA 4020

ATCACACCAT TATTCCTTAG AAGTAATTAC ATGTGTTCTA ACACATTTGA GACAGGGTTG 4080

GACTCCCATT TCTCATCCGA GAAATTACTT AACCCTTCCT GGGCGCTGTA CAGTCATCTT 4140

TTATTCTATT TCCTCTTTGC TGTTTGTAGT AGAGACATTT TGAATGAAAC TTGGCACTGC 4200

TTGATTCAAA ACTGTGGAAA CCAGATCTGT TTAGTCTCCT GTTTGTATGC GTTTGCTAAT 4260

GGTAGCTAAA TAACCAGTTT TTGTTGTAAA TGCACCAATT CTGAAGGCAC TTTATGTACT 4320

ACATGGAGGT CATATCTGGT TTTGTTTTTA TTTTTTTATC ATGAACATTA AATGTGATGA 4380

TGATTTCTTT TCCCTGCACA CATCTTTCCG GTGCAATATC TATCAATTGT GAATCTGGCT 4440

GCTGGTGTAT AAAAACCTGG ATGTAAAGCT GAGCCTACAG ACCTGTCCTC ACCAACTGTT 4500

TTGTGATTTC TACTCAACTA CAAAGATTTA TTTAATGTAC TCTTAATCTA ACTGAGTTTT 4560

GTTACCAATG ACCTGTTGCA TGCTTCAATA CCGTGTACTG CCTGAGTTGT GCCTCTTGTG 4620

TGCTAGATTA AAAGTGAGAC AGAGACTTGA CTTGATCCTC TGAGCCTCAA GCTATTGAGC 4680

TGGTAGTGGC AGAGGACTGA GGGTACCTGC ACAGTTTGAT TCTTTTCCCA CGTTGTAAGT 4740

CTCCATTGCA GAATTGTCGT GCGTTTGAGA AAACACCTGA GGCAGTGTGG GAGTTGAACG 4800

ACCCTGCTGT CCTTTTTAAC CTGTGTTGTC CTAGACCTGT CGGGGCAGTC AGGGGACACT 4860

AGAGATTTGA TCTCATGCGA GTCATCAATA GGACAAAAA GTTGTGGTTT GGGGAGGTCT 4920

GTTTGTTACA TAAAAAGGAC CTTTCGGTGT AAGAAATTGC CGTTTTTACC CTGCCCTGGC 4980

TGGCATGTGA GAAGCCATGG AAGGTTGTGG TTGTAAATGA GTTGTCTAAA GGGGTGCAGA 5040

GGCCTGAGGT TTCTAAAAGA AGGTAGATTT CTACAGAGCT GAGTGTTGGT TCCTTTTTCT 5100

TATTGGTTGA AAATTACCTG GTAGTGATCA GAAAACTTAG ATGCTATGTA ACTC 5154

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 975 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Phe Arg Leu Arg Ser Trp Ala Ser Ser Thr Thr Gly Ser Arg Tyr 1 5 10 15

Gly Ser Ala Phe Cys Gly Ser Pro Thr Leu Ala Trp Cys Val Cys Val 20 25 30

Pro Val Cys Tyr Gly Glu Ser Arg Ile Leu Arg Val Lys Val Val Ser 35 40 45

Gly Ile Asp Leu Ala Lys Lys Asp Ile Phe Gly Ala Ser Asp Pro Tyr 50 55 60

Val Lys Leu Ser Leu Tyr Val Ala Asp Glu Asn Arg Glu Leu Ala Leu 65 70 75 80

Val Gln Thr Lys Thr Ile Lys Lys Thr Leu Asn Pro Lys Trp Asn Glu 85 90 95

- Glu Phe Tyr Phe Arg Val Asn Pro Ser Asn His Arg Leu Leu Phe Glu 100 105 110
- Val Phe Asp Glu Asn Arg Leu Thr Arg Asp Asp Phe Leu Gly Gln Val 115 120 125
- Asp Val Pro Leu Ser His Leu Pro Thr Glu Asp Pro Thr Met Glu Arg 130 135 140
- Pro Tyr Thr Phe Lys Asp Phe Leu Leu Arg Pro Arg Ser His Lys Ser 145 150 155 160
- Arg Val Lys Gly Phe Leu Arg Leu Lys Met Ala Tyr Met Pro Lys Asn 165 170 175
- Gly Gly Gln Asp Glu Glu Asn Ser Asp Gln Arg Asp Asp Met Glu His
 180 185 190
- Gly Trp Glu Val Val Asp Ser Asn Asp Ser Ala Ser Gln His Gln Glu 195 200 205
- Glu Leu Pro Pro Pro Pro Leu Pro Pro Gly Trp Glu Glu Lys Val Asp 210 215 220
- Asn Leu Gly Arg Thr Tyr Tyr Val Asn His Asn Asn Arg Thr Thr Gln 225 230 235 240
- Trp His Arg Pro Ser Leu Met Asp Val Ser Ser Glu Ser Asp Asn Asn 245 250 255
- Ile Arg Gln Ile Asn Gln Glu Ala Ala His Arg Arg Phe Arg Ser Arg 260 265 270
- Arg His Ile Ser Glu Asp Leu Glu Pro Glu Pro Ser Glu Gly Gly Asp 275 280 285
- Val Pro Glu Pro Trp Glu Thr Ile Ser Glu Glu Val Asn Ile Ala Gly 290 295 300
- Asp Ser Leu Gly Val Val Leu Pro Pro Pro Pro Ala Ser Pro Gly Ser 305 310 315 320
- Arg Thr Ser Pro Gln Glu Leu Ser Glu Glu Leu Ser Arg Arg Leu Gln 325 330 335
- Ile Thr Pro Asp Ser Asn Gly Glu Gln Phe Ser Ser Leu Ile Gln Arg 340 345 350

- Glu Pro Ser Ser Arg Leu Arg Ser Cys Ser Val Thr Asp Ala Val Ala 355 360 365
- Glu Gln Gly His Leu Pro Pro Pro Ser Val Ala Tyr Val His Thr Thr 370 375 380
- Pro Gly Leu Pro Ser Gly Trp Glu Glu Arg Lys Asp Ala Lys Gly Arg 385 390 395 400
- Thr Tyr Tyr Val Asn His Asn Asn Arg Thr Thr Thr Trp Thr Arg Pro
 405 410 415
- Ile Met Gln Leu Ala Glu Asp Gly Ala Ser Gly Ser Ala Thr Asn Ser 420 425 430
- Asn Asn His Leu Ile Glu Pro Gln Ile Arg Arg Pro Arg Ser Leu Ser 435 440 445
- Ser Pro Thr Val Thr Leu Xaa Ala Pro Leu Glu Gly Ala Lys Asp Ser 450 455 460
- Pro Val Arg Arg Ala Val Lys Asp Thr Leu Ser Asn Pro Gln Ser Pro 465 470 475 480
- Gln Pro Ser Pro Tyr Asn Ser Pro Lys Pro Gln His Lys Val Thr Gln 485 490 495
- Ser Phe Leu Pro Pro Gly Trp Glu Met Arg Ile Ala Pro Asn Gly Arg 500 505 510
- Pro Phe Phe Ile Asp His Asn Thr Lys Thr Thr Trp Glu Asp Pro 515 520 525
- Arg Leu Lys Phe Pro Val His Met Arg Ser Lys Thr Ser Leu Asn Pro 530 535 540
- Asn Asp Leu Gly Pro Leu Pro Pro Gly Trp Glu Glu Arg Ile His Leu 545 550 555 560
- Asp Gly Arg Thr Phe Tyr Ile Asp His Asn Ser Lys Ile Thr Gln Trp 565 570 575
- Glu Asp Pro Arg Leu Gln Asn Pro Ala Ile Thr Gly Pro Ala Val Pro 580 585 590
- Tyr Ser Arg Glu Phe Lys Gln Lys Tyr Asp Tyr Phe Arg Lys Lys Leu 595 600 605

- Lys Lys Pro Ala Asp Ile Pro Asn Arg Phe Glu Met Lys Leu His Arg 610 615 620
- Asn Asn Ile Phe Glu Glu Ser Tyr Arg Arg Ile Met Ser Val Lys Arg 625 630 635 640
- Pro Asp Val Leu Lys Ala Arg Leu Trp Ile Glu Phe Glu Ser Glu Lys 645 650 655
- Gly Leu Asp Tyr Gly Gly Val Ala Arg Glu Trp Phe Phe Leu Leu Ser 660 665 670
- Lys Glu Met Phe Asn Pro Tyr Tyr Gly Leu Phe Glu Tyr Ser Ala Thr 675 680 685
- Asp Asn Tyr Thr Leu Gln Ile Asn Pro Asn Ser Gly Leu Cys Asn Glu 690 695 700
- Asp His Leu Ser Tyr Phe Thr Phe Ile Gly Arg Val Ala Gly Leu Ala 705 710 715 720
- Val Phe His Gly Lys Leu Leu Asp Gly Phe Phe Ile Arg Pro Phe Tyr 725 730 735
- Lys Met Met Leu Gly Lys Gln Ile Thr Leu Asn Asp Met Glu Ser Val 740 745 750
- Asp Ser Glu Tyr Tyr Asn Ser Leu Lys Trp Ile Leu Glu Asn Asp Pro 755 760 765
- Thr Glu Leu Asp Leu Met Phe Cys Ile Asp Glu Glu Asn Phe Gly Gln 770 775 780
- Thr Tyr Gln Val Asp Leu Lys Pro Asn Gly Ser Glu Ile Met Val Thr 785 790 795 800
- Asn Glu Asn Lys Arg Glu Tyr Ile Asp Leu Val Ile Gln Trp Arg Phe 805 810 815
- Val Asn Arg Val Gin Lys Gln Met Asn Ala Phe Leu Glu Gly Phe Thr 820 825 830
- Glu Leu Leu Pro Ile Asp Leu Ile Lys Ile Phe Asp Glu Asn Glu Leu 835 840 845
- Glu Leu Leu Met Cys Gly Leu Gly Asp Val Asp Val Asp Trp Arg 850 855 860

Gln His Ser Ile Tyr Lys Asn Gly Tyr Cys Pro Asn His Pro Val Ile 865 870 875 880

Gln Trp Phe Trp Lys Ala Val Leu Leu Met Asp Ala Glu Lys Arg Ile 885 890 895

Arg Leu Leu Gln Phe Val Thr Gly Thr Ser Arg Val Pro Met Asn Gly 900 905 910

Phe Ala Glu Leu Tyr Gly Ser Asn Gly Pro Gln Leu Phe Thr Ile Glu 915 920 925

Gln Trp Gly Ser Pro Glu Lys Leu Pro Arg Ala His Thr Cys Phe Asn 930 935 940

Arg Leu Asp Leu Pro Pro Tyr Glu Thr Phe Glu Asp Leu Arg Glu Lys 945 950 955 960

Leu Leu Met Ala Val Glu Asn Ala Gln Gly Phe Glu Gly Val Asp 965 970 975

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 854 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ACAATGGGG CGTGGCAGAG AATGGTTCTT CTTACTGTCC AAAGAGATGT TTAACCCCTA 60

CTATGGCCTC TTCGAGTACT CTGCCACGGA CAACTACACA CTTCAGATCA ATCCCAACTC 120

AGGCCTCTGT AATGAAGACC ATTTGTCCTA TTTCACCTTC ATTGGAAGAG TTGCTGGCCT 180

AGCGGTGTTT CATGGGAAAC TCTTAGATGG ATTCTTCATT CGACCATTCT ACAAGATGAT 240

GCTGGGGAAG CAGATAACGC TGAACGACAT GGAGTCCGTG GACAGCGAGT ACTACAACTC 300

TTTGAAGTGG ATCTTAGAAA ACGACCCCAC GGAACTTGAC CTCATGTTCT GCATAGACGA 360

GAGAACTTTG GGCAGACATA CCAAGTGGAT CTGAAGCCCA ACGGGTCAGA AATAATGGTA 420

ACCAATGAGA ACAAACGAGA ATACATTGAC TTAGTCATCC AGTGGAGATT TGTGAACAGG 480

GTCCAGAAGC AAATGAATGC CTTCTTGGAG GGATTTACAG AACTTCTTCC AATCGACTTG 540

ATTAAAATTT TTGATGAAAA TGAGCTGGAG TTGCTGATGT GCGGCCTTGG TGATGTCGAC 600

GTGAACGACT GGAGACAGCA CTCTATTTAC AAGAACGGCT ACTGCCCCAA CCACCCTGTC 660

ATCCAGTGGT TCTGGAAGGC CGTGCTCCTG ATGGATGCTG AGAAGCGCAT CCGGTTACTA 720

CAGTTTGTCA CAGGCACCTC CAGAGTACCC ATGAATGGAT TTGCCGAACT CTATGGTTCC 780

AATGGTCCTC AGCTGTTTAC AATAGAGCAA TGGGGCAGTC CGAAAAACTA CCAGAGCTCT 840

ACATGCTTAA TCGC

854

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 604 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

- His Ala Cys Ser Asn Ala Ala Ser Arg Ala Ala Ala Arg Val Ala Ala 1 5 10 15
- Arg Cys Thr Ala Arg Ser Arg Ser Gly Arg Arg Ser Ser Ser Val Ser 20 25 30
- Arg Ser Ser Ser Arg Gly Ala Ser Ser Ser Met Ser Ser Asp Met Ala 35 40 45
- Ala Asp Ser Ala Val Ser Asp Val Trp Cys Asp Lys Thr Asp Gly Gly 50 55 60
- Gly Ser Gly Ser Asp Val Thr Asp Thr Cys Cys Gly Cys Trp Asn Asn 65 70 75 80
- Ser His Val Thr Ala Asp Tyr His Asn Asp Asp Thr Arg Val Val Arg 85 90 95
- Val Lys Val Ala Gly Gly Ala Lys Lys Asp Gly Ala Ser Asp Tyr Val 100 105 110
- Arg Val Thr Tyr Asp Met Ser Gly Thr Ser Val Thr Lys Thr Lys Lys 115 120 125
- Ser Asn Lys Trp Asn Arg Val Arg His Arg Val Asp Asn Arg Thr Arg 130 135 140
- Asp Asp Gly Val Asp Val Tyr Thr Asn Arg Met Arg Tyr Thr Lys Asp 145 150 155 160
- Val His Arg Ser His Lys Ser Arg Val Lys Gly Tyr Arg Lys Met Thr 165 170 175
- Tyr Lys Asn Gly Ser Asp Asn Ala Asp Ala Gly Trp Val Val Asp Asp 180 185 190
- Ala Ala Thr His His Ser Gly Trp Arg Asp Val Gly Arg Thr Tyr Tyr 195 200 205
- Val Asn His Ser Arg Arg Thr Trp Lys Arg Ser Asp Asp Asp Thr Asp 210 215 220
- Asp Asn Asp Met Ala Arg Ala Thr Thr Arg Arg Ser Asp Val Asp 225 230 235 240
- Gly Asp Asn Arg Ser Asn Trp Val Arg Asp Asn Thr Tyr Ser Gly Ala 245 250 255

- Val Ser Ser Gly His Asp Val Thr His Ala Asn Thr Arg Ala Val Cys 260 265 270
- Gly Asn Ala Thr Ser Val Thr Ser Ser Asn His Ser Ser Arg Gly Gly 275 280 285
- Ser Thr Cys Thr Val Thr Ser Ser Gly Gly Trp Lys Asp Asp Arg Gly 290 295 300
- Arg Ser Tyr Tyr Val Asp His Asn Ser Lys Thr Thr Trp Ser Lys 305 310 315 320
- Thr Met Asp Asp Arg Ser Lys Ala His Arg Gly Lys Thr Asp Ser Asn 325 330 335
- Asp Gly Gly Trp Arg Thr His Thr Asp Gly Arg Val Asn His Asn Lys 340 345 350
- Lys Thr Trp Asp Arg Asn Val Ala Thr Gly Ala Val Tyr Ser Arg Asp 355 360 365
- Tyr Lys Arg Lys Tyr Arg Arg Lys Lys Lys Thr Asp Asn Lys Met Lys 370 375 380
- Arg Arg Ala Asn Asp Ser Tyr Arg Arg Met Gly Val Lys Arg Ala Asp 385 390 395 400
- Lys Ala Arg Trp Asp Gly Lys Gly Asp Tyr Gly Gly Val Ala Arg Trp 405 410 415
- Ser Lys Met Asn Tyr Tyr Gly Tyr Ser Ala Thr Asp Asn Tyr Thr Asn 420 425 430
- Asn Ser Gly Cys Asn Asp His Ser Tyr Lys Gly Arg Val Ala Gly Met 435 440 445
- Ala Val Tyr His Gly Lys Asp Gly Arg Tyr Lys Met Met Lys Thr His 450 455 460
- Asp Met Ser Val Asp Ser Tyr Tyr Ser Ser Arg Trp Asn Asp Thr Asp 465 470 475 480
- Arg Asp Gly Thr His His Lys Thr Gly Gly Ser Val Val Thr Asn Lys 485 490 495
- Asn Lys Lys Tyr Tyr Val Trp Arg Val Asn Arg Lys Met Ala Ala Lys 500 505 510

Gly Asp Lys Asp Asn Met Cys Gly Gly Asp Val Asp Val Asn Asp Trp 515 520 525

Arg His Thr Lys Tyr Lys Asn Gly Tyr Ser Met Asn His Val His Trp 530 535 540

Trp Lys Ala Val Trp Met Met Asp Ser Lys Arg Arg Val Thr Gly Thr 545 550 555 560

Xaa Ser Arg Val Met Asn Gly Ala Tyr Gly Ser Asn Gly Ser Thr Val 565 570 575

Trp Gly Thr Asp Lys Arg Ala His Thr Cys Asn Arg Asp Tyr Ser Asp 580 585 590

Trp Asp Lys Met Ala Asn Thr Gly Asp Gly Val Asp 595 600

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 615 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TGCTGCAAGT GACAGGTTCC AAGAAGCCCG AGGGCTCAGA GCTGAATGAT GAAGCGCAGT 60

CCCCAAAGTG CCTGGCCACC CCTCCCTCCC TGGATCACTG CTGCCTGGGC TTGATTGATT 120

GATTGATTGA TTGATTGATT GATTTTGAGA GAGATTCTCA CTGTCACCCA GGCTGGAGTA 180

CAGTGGTGCG ATCTCGGCTC ACTGCAGCCT CTGCCTCCCG GGTTCAAGCA ATTCTCCTGC 240

CTCAGCCTCC CAAGTAGCTG GGACTACAGG CACGCGCCAC CACACCCAGC TAATTTTGTA 300

TTTTTAGTAA AAGACGGGGT TTCACCATGT TGGGCCAGGA TGGTCTTGAT CTCCTGACCT 360

CATGATCCAC CCGCCCGGC TTCCAAAGTG CTGGGATACA GGCATGAACC CGACGCGCCC 420

AGCATGGACA TTTTTTTTA ATCCCCTGCC CTTTTCTTGG GCATAATTCA TTGCAGGTCT 480

CTTCTATACA GATCATGGAA AACACATTTT CTTAACTGAG TTTTATTATT TATACCCAGC 540

ACCTCATGAC ATTTACCCTG TTACAACAAA ATGGGCACCT GCCAAAACAA CTTTATATAA 600

GGATGCTCCA GGCCT

615