

Risk Weighting

The best thing since One Hot Encoding?

Laurel Ruhlen

Data Science @ Braintree github.com/lruhlen

Agenda

- What is risk-weighting?
- Simple example
- Code
- Pros, cons, and algebra

What is this & why do we care?

- Because: categorical variables
 - With high ordinality

What is this & why do we care?

Kermit = ["green", 64, 4]

For example

Monsters?

Monsters?

Monsters	Total
2	4
2	4
3	4

Monsters?

Color	Monsters	Total	Risk of being a monster
Green	2	4	0.5
Red	2	4	0.5
Blue	3	4	0.75

Kermit = ["green", 64, 4]

Monsters? Kermit = [0.5, 64, 4]

data = pd.read_csv("example_data.csv").set_index("name")

color age weight is_monster name Kermit The Frog green 64 False 8 Dr. Bunsen Honeydew green 47 False Karli green 3 2 True Oscar The Grouch green 12 57 True 40 4 Beaker red False Pepe The King Prawn red 30 False Animal red 60 7 True Elmo red 35 True 4 Sam The Eagle blue 70 12 False Gonzo blue 67 5 True Grover blue 55 5 True **Cookie Monster** 20 blue 63 True

As Code

As Code

target_name="is_monster"

feature_names=["color",]

rwt = RiskWeightTransformer(feature_names, target_name=target_name)
rwt.fit(data)

data["color_monster_risk"] = rwt.transform(data)

color_monster_risk age weight is_monster

name		100000	usona Transi	
Kermit The Frog	0.50	64	4	False
Dr. Bunsen Honeydew	0.50	47	8	False
Karli	0.50	2	3	True
Oscar The Grouch	0.50	57	12	True
Beaker	0.50	40	4	False
Pepe The King Prawn	0.50	30	1	False
Animal	0.50	60	7	True
Elmo	0.50	35	4	True
Sam The Eagle	0.75	70	12	False
Gonzo	0.75	67	5	True
Grover	0.75	55	5	True
Cookie Monster	0.75	63	20	True

Why Not OHF?

ls green	ls blue	ls purple	ls orange	Is red	ls yellow	ls pink	Is beige	
0	0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0

- 2 equations (rows)
- 8 unknowns (columns)
- Can't solve!

$$y = 2x + 1$$

Why Not OHE?

When To Use

<u>Risk</u>	One Hot		
<u>Weighting</u>	Encoding		
High ordinality	Low ordinality		
Supervised	Unsupervised		
learning	learning		
True/False outcomes	3+ outcomes		

Let's be friends!

- https://github.com/lruhlen
- @yelling_at_computers on ChiPy Slack!