OverFeat Notes

1. 两种结构的模型

Layer	1	2	3	4	5	6	7	Output 8
Stage	conv + max	conv + max	conv	conv	conv + max	full	full	full
# channels	96	256	512	1024	1024	3072	4096	1000
Filter size	11x11	5x5	3x3	3x3	3x3	-	-	-
Conv. stride	4x4	1x1	1x1	1x1	1x1	-	-	-
Pooling size	2x2	2x2	-	-	2x2	-	-	-
Pooling stride	2x2	2x2	-	-	2x2	-	-	-
Zero-Padding size	-	-	1x1x1x1	1x1x1x1	lxlxlxl	-	-	-
Spatial input size	231x231	24x24	12x12	12x12	12x12	6x6	1x1	lxl

Table 1: **Architecture specifics for** *fast* **model.** The spatial size of the feature maps depends on the input image size, which varies during our inference step (see Table 5 in the Appendix). Here we show training spatial sizes. Layer 5 is the top convolutional layer. Subsequent layers are fully connected, and applied in sliding window fashion at test time. The fully-connected layers can also be seen as 1x1 convolutions in a spatial setting. Similar sizes for *accurate* model can be found in the Appendix.

Layer	1	2	3	4	5	6	7	8	Output 9
Stage	conv + max	conv + max	conv	conv	conv	conv + max	full	full	full
# channels	96	256	512	512	1024	1024	4096	4096	1000
Filter size	7x7	7x7	3x3	3x3	3x3	3x3	-	-	-
Conv. stride	2x2	1x1	1x1	1x1	1x1	1x1	-	-	-
Pooling size	3x3	2x2	-	-	-	3x3	-	-	-
Pooling stride	3x3	2x2	-	-	-	3x3	-	-	-
Zero-Padding size	-	-	lxlxlxl	lxlxlxl	1x1x1x1	1x1x1x1	-	-	-
Spatial input size	221x221	36x36	15x15	15x15	15x15	15x15	5x5	1x1	1x1

Table 3: **Architecture specifics for** *accurate* **model.** It differs from the *fast* model mainly in the stride of the first convolution, the number of stages and the number of feature maps.

2. Alexnet 图片分类回顾

- 训练阶段

每张训练图片 256*256, 然后我们随机裁剪出 224*224 大小的图片, 作为 CNN 的输入进行训练。

- 测试阶段

输入 256*256 大小的图片, 我们从图片的 5 个指定的方位(上下左右+中间)进行裁剪出 5 张 224*224 大小的图片, 然后水平镜像一下再裁剪 5 张, 这样总共有 10 张; 然后我们把这 10 张裁剪图片分别送入已经训练好的 CNN 中, 分别预测结果, 最后用这 10 个结果的平均作为最后的输出。

3. FCN (Fully Convolutional Network)

- 卷积层→全连接层

直接对 feature map 进行卷积,如输入大小是 5*5*4096,传统做法是将其拉成一个一维向量,然后通过矩阵乘法直接做全连接操作(W的大小为 4096 by 5*5*4096), FCN 的做法是使用 5*5 大小的卷积核直接对特征图做卷积操作,最后都能得到1*1*4096 大小的输出。

- 全连接层→全连接层

把它看成是用 1*1 大小的卷积核进行卷积操作。

- 示意图

如上图所示,上面图中绿色部分表示卷积核大小。假设我们设计了一个 CNN 模型,输入图片大小是 14*14,通过第一层卷积后我们得到 10*10 大小的图片,然后通过池化得到了 5*5 大小的图片。OK,关键部分来了,接着要从 5*5 大小的图片 →1*1 大小的图片:

- (1) 传统的 CNN: 如果从以前的角度进行理解的话,那么这个过程就是全连接层,我们会把这个 5*5 大小的图片,展平成为一个一维的向量,进行计算(写 CNN 代码的时候,经常会在这里加一个 flatten 函数,就是为了展平成一维向量)。
- (2) FCN: FCN 并不是把 5*5 的图片展平成一维向量,再进行计算,而是直接采用 5*5 的卷积核,对一整张图片进行卷积运算。

AlexNet 在测试阶段采用了对输入图片的四个角落进行裁剪、预测,分别得到结果,最后的结果就是类似对应于上面 2*2 的预测图。这个 2*2 的每个像素点,就类似于对应于一个角落裁剪下来的图片预测分类结果。只不过 AlexNet 把这 4 个像素点相加在一起,求取平均值,作为该类别的概率值。

4. Offset max-pooling

示意图

Figure 3: 1D illustration (to scale) of output map computation for classification, using y-dimension from scale 2 as an example (see Table 5). (a): 20 pixel unpooled layer 5 feature map. (b): max pooling over non-overlapping 3 pixel groups, using offsets of $\Delta = \{0,1,2\}$ pixels (red, green, blue respectively). (c): The resulting 6 pixel pooled maps, for different Δ . (d): 5 pixel classifier (layers 6,7) is applied in sliding window fashion to pooled maps, yielding 2 pixel by C maps for each Δ . (e): reshaped into 6 pixel by C output maps.

以往的 CNN 中,一般我们只用了 \triangle =0 得到池化结果后,就送入一层。文献的方法是,把上面的 \triangle =0、 \triangle =1、 \triangle =2 的三种组合方式的池化结果,分别送入网络的下一层。这样的话,我们网络在最后输出的时候,就会出现 3 种预测结果了。

我们前面说的是一维的情况,如果是 2 维图片的话,那么($\triangle x$, $\triangle y$)就会有 9 种取值情况(3*3); 如果我们在做图片分类的时候,在网络的某一个池化层加入了这种offset 池化方法,然后把这 9 种池化结果,分别送入后面的网络层,最后我们的图片分类输出结果就可以得到 9 个预测结果(每个类别都可以得到 9 种概率值,然后我们对每个类别的 9 种概率,取其最大值,作为此类别的预测概率值)。

5. OverFeat 算法

- 训练阶段与 AlexNet 基本相同。
- 测试阶段

在测试阶段,我们不再是用一张 221*221 大小的图片作为网络的输入,而是用了 6 张大小都不相同的图片,也就是所谓的多尺度输入预测,如下表格所示:

	250 0101 1111							
	Input	Layer 5	Layer 5	Classifier	Classifier			
Scale	size	pre-pool	post-pool	map (pre-reshape)	map size			
1	245x245	17x17	(5x5)x(3x3)	(1x1)x(3x3)xC	3x3xC			
2	281x317	20x23	(6x7)x(3x3)	(2x3)x(3x3)xC	6x9x <i>C</i>			
3	317x389	23x29	(7x9)x(3x3)	(3x5)x(3x3)xC	9x15x <i>C</i>			
4	389x461	29x35	(9x11)x(3x3)	(5x7)x(3x3)xC	15x21x <i>C</i>			
5	425x497	32x35	(10x11)x(3x3)	(6x7)x(3x3)xC	18x24x <i>C</i>			
6	461x569	35x44	(11x14)x(3x3)	(7x10)x(3x3)xC	21x30x <i>C</i>			

256 channels

从 Layer-5 pre-pool 到 Layer-5 post-pool:这一步的实现是通过池化大小为 3*3 进行池化,然后 $\triangle x=0$ 、1、2, $\triangle y=0$ 、1、2,这样对于每一张特征图,我们都可以得到 9 幅池化结果图。以上面表格中的 sacle1 为例,Layer-5 pre-pool 大小是 17*17,经过池化后,大小就是 5*5,然后有 3*3 张结果图(不同 offset 得到的结果)。

从 Layer-5 post-pool 到 Classifier map(pre-reshape): 我们知道在训练的时候,从卷积层到全连接层,输入的大小是 4096*(5*5),然后进行全连接,得到 4096*(1*1)。但是我们现在输入的是各种不同大小的图片,因此接着就采用 FCN 的招式,让网络继续前向传导。我们从 Layer-5 post-pool 到第六层的时候,如果把全连接看成是卷积,那么其实这个时候卷积核的大小为 5*5,因为训练的时候,Layer-5 post-pool 得到的结果是 5*5。因此在预测分类的时候,假设 Layer-5 post-pool 得到的是 7*9(上面表格中的 scale 3),经过 5*5 的卷积核进行卷积后,它将得到(7-5+1)*(9-5+1)=3*5的输出。

然后我们就只需要在后面把它们拉成一维向量摆放就 ok 了,这样在一个尺度上,我们可以得到一个 C*N 的预测值矩阵,每一列就表示图片属于某一类别的概率值,然后我们求取每一列的最大值,作为本尺度的每个类别的概率值。我们一共用了 6 种不同尺度做了预测,然后把这六种尺度结果再做一个平均,作为最后的结果。

从上面过程,我们可以看到整个网络分成两部分:layer 1~5 这五层我们把它称之为特征提取层;layer 6~output 我们把它们称之为分类层。