Final project

2025-07-22

R Markdown

Identify one gene, one continuous covariate, and two categorical covariates in the provided dataset. Generate the following three plots using ggplot2 for your covariates of choice: charlson score, disease status, sex

```
### Read in files.
setwd("/Users/mengyingxia/Desktop/QBS103/Final_project")
#check where we are
getwd()
```

[1] "/Users/mengyingxia/Desktop/QBS103/Final_project"

```
#use read.csv
gene_exp <- read.csv(file ="QBS103_GSE157103_genes.csv",row.names=1)
meta_data <- read.csv(file = "QBS103_GSE157103_series_matrix-1.csv",row.names=1)

#my rationale to choose the gene - the range of expression is wide across sample

#calculate range for each row
diff_exp <- apply(gene_exp, 1, function(x) max(x) - min(x))

#sort the range
diff_exp <- sort(diff_exp)
print(diff_exp)</pre>
```

##	AADAC	ABCA12	ABCA8	A1CF	ABCC12	AADACL2
##	0.00	0.01	0.01	0.02	0.02	0.03
##	ABCC8	AADACL4	AADAT	ABCG8	AADACL3	ABCG4
##	0.03	0.04	0.06	0.06	0.07	0.07
##	A2ML1	ABCG5	A4GNT	ABCB5	ABCB11	ABHD1
##	0.10	0.10	0.19	0.22	0.40	0.47
##	AARD	ABCA10	ABCA9	A4GALT	ABCG2	ABCC11
##	0.55	0.65	0.65	0.72	0.74	0.77
##	A2M	ABHD14A-ACY1	AASS	ABHD16B	ABCA3	AANAT
##	0.88	1.08	1.10	1.19	1.21	1.46
##	ABCA4	ABCB4	A3GALT2	ABHD12B	ABCA6	A1BG
##	1.51	1.65	1.75	2.17	2.67	2.75
##	AARS2	ABCC9	ABCC2	ABHD8	ABCB8	AACS
##	4.93	4.95	5.00	5.16	5.19	5.28
##	ABCA5	ABCD2	ABCB6	ABCA13	ABHD6	ABCB9

##	5.96	6.12	6.29	8.09	8.23	8.31
##	ABI2	ABHD17C	ABCB1	ABCC6	ABCC10	ABCB7
##	8.54	8.72	8.73	8.85	8.87	9.28
##	ABHD18	ABHD15	ABCF2	ABCD1	AASDH	ABHD17B
##	9.37	9.93	10.41	10.46	11.23	12.65
##	ABCC1	AAK1	ABCC4	ABCD3	ABHD11	ABHD12
##	12.97	13.05	13.56	14.98	15.31	15.84
##	ABCD4	ABCB10	ABCC3	ABAT	ABCF2-H2BE1	ABHD10
##	17.53	17.81	18.24	18.50	18.62	19.13
##	AATK	AAMDC	AARSD1	AAAS	ABHD14A	ABCA2
##	19.48	19.93	21.04	24.29	24.55	25.04
##	AAR2	AASDHPPT	AAGAB	ABHD13	ABCF3	AARS1
##	25.78	26.04	26.30	26.48	28.32	29.11
##	ABCF1	ABCC5	ABCE1	ABCG1	ABHD17A	ABCA1
##	30.91	31.31	37.09	43.76	43.92	47.82
##	ABHD4	AATF	ABCA7	ABHD14B	ABHD16A	AAMP
##	47.84	49.79	53.35	58.87	62.25	70.13
##	ABHD2	ABI1	ABHD5	ABHD3		
##	88.22	93.54	173.79	202.71		

#The gene I choose is ABHD5 and the reference is https://www.ncbi.nlm.nih.gov/gene/51099

combine gene expression data and demographic data

```
#reshape the gene expression data
exp_ABHD5 <- as.data.frame(t(gene_exp["ABHD5",]))

#there is one row named differently in two data sets, locate and rename it
setdiff(rownames(meta_data),rownames(exp_ABHD5))

## [1] "COVID_06_:y_male_NonICU"

setdiff(rownames(exp_ABHD5),rownames(meta_data))

## [1] "COVID_06_.y_male_NonICU"

#the age was missing for this participant
rownames(meta_data)[rownames(meta_data) == "COVID_06_:y_male_NonICU"] <- "COVID_06_missing_male_NonICU"

rownames(exp_ABHD5)[rownames(exp_ABHD5) == "COVID_06_.y_male_NonICU"] <- "COVID_06_missing_male_NonICU"

#check if the rowname is identical after renaming
identical(rownames(meta_data),rownames(exp_ABHD5))

## [1] TRUE

#merge
df <- merge(meta_data, exp_ABHD5, by = "row.names")</pre>
```

#change the rowname and drop the first column which is rowname

rownames(df) <- df[,1]

df <- df[,-1]

Histogram for gene expression (5 pts)

```
library(ggplot2)
# Create histogram
ggplot(df, aes(x = ABHD5)) +
  geom histogram(aes(y=..density..*100),
                 binwidth = 5,
                 fill = "lightblue",
                 color = "white",
                 boundary = 0) +
  geom_smooth(aes(y = ..density..*100),
              stat = "density",
              color = "#5B91BE" , size = 0.5) +
  labs(title = "Distribution of the Gene Expression of ABHD5",
       x = "Gene Expression of ABHD5",
       y = "Percent Density (%)") +
  scale_x_{continuous}(breaks = c(0, 25, 50, 75, 100, 125, 150, 175)) +
  scale_y_continuous(expand = expansion(mult = c(0, 0.05))) +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold"),
   panel.grid.major = element_line(color = "gray",
                                    size = 0.5,
                                    linetype = "dotted").
   panel.grid.minor = element_line(color = "gray",
                                    size = 0.5,
                                    linetype = "dotted"),
   panel.border = element_rect(color = "black", fill = NA, size = 0.8),
   panel.background = element_rect(fill = "white"),
   #plot.background = element_rect(fill = "lightgray"),
   axis.line = element blank()
 )
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: The 'size' argument of 'element_rect()' is deprecated as of ggplot2 3.4.0.
## i Please use the 'linewidth' argument instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: The 'size' argument of 'element_line()' is deprecated as of ggplot2 3.4.0.
## i Please use the 'linewidth' argument instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: The dot-dot notation ('..density..') was deprecated in ggplot2 3.4.0.
## i Please use 'after_stat(density)' instead.
```

This warning is displayed once every 8 hours.
Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
generated.

Distribution of the Gene Expression of ABHD5

Scatterplot for gene expression and continuous covariate (5 pts)

#check the spelling of each category, pay attention to the blank in front of the character table(df\$sex)

```
## ## female male unknown ## 51 74 1
```

levels(df\$sex)

NULL

```
#change the name of each level
df <- df[which(!df$sex == " unknown"),]
df$sex[df$sex == " female"] <- "Female"
df$sex[df$sex == " male"] <- "Male"
df$sex<-as.factor(df$sex)</pre>
```

```
## [1] 125 25
```

```
levels(factor(df$sex))
## [1] "Female" "Male"
ggplot(df, aes(x = charlson_score, y = ABHD5, color = sex)) +
    geom_point(shape = 1, size = 1, stroke = 1)+
    geom_smooth(method = "lm", size = 1.2, fill = NA)+
  labs(title = "Distribution of the Gene Expression of ABHD5 \n According to Charlson Score by Sex",
       x = "Charlson Score",
       y = "Gene Expression of ABHD5",
       color = "Sex") +
  scale_x_continuous(breaks = c(0,2,4,6,8,10))+
  theme(
    plot.title = element_text(hjust = 0.5, face="bold"),
    panel.background = element rect(fill = "white"),
    plot.background = element_rect(fill = "lightgray"),
    panel.grid.major = element_line(color = "gray",
                                    size = 0.5,
                                    linetype = "dotted"),
    panel.grid.minor = element_line(color = "gray",
                                    size = 0.5,
                                    linetype = "dotted"),
    axis.line = element_line(color = "black"),
    legend.position = "right")
```

'geom_smooth()' using formula = 'y ~ x'


```
# we can see from the plot that there are a potential different patterns for female and male:
# the expression of ABHD5 tends to increase along the increase of Charlson Score in female,
# while the expression of ABHD5 tends to decrease along the increase of Charlson Score.
# The line graphs converge at a point with Charlson Score being 9.
# Given there is an extraordinary outlier in male, such pattern will need further study to confirm.
```

Boxplot of gene expression separated by both categorical covariates (5 pts)

```
#check the spelling of each category
table(df$disease_status)
##
##
       disease state: COVID-19 disease state: non-COVID-19
##
                            100
                                                          25
#change the name
df$disease_status[df$disease_status == "disease state: COVID-19"] <- "COVID-19"</pre>
df$disease status[df$disease status == "disease state: non-COVID-19"] <- "non-COVID-19"
df$disease_status<-as.factor(df$disease_status)</pre>
#check each category again
table(df$disease_status)
##
##
       COVID-19 non-COVID-19
##
            100
                           25
```

```
ggplot(df, aes(x = sex, y = ABHD5, fill = disease_status)) +
  geom_boxplot(position = position_dodge(width = 0.8)) +
  labs(title = "Distribution of the Gene Expression of ABHD5 \n by Disease Status and Sex",
        x = "Sex",
        y = "Gene Expression of ABHD5",
        fill = "Disease status") +
  theme(
    plot.title = element_text(hjust = 0.5, face="bold"),
    panel.background = element_rect(fill = "white"),
    plot.background = element_rect(fill = "lightgray"),
    panel.border = element_rect(color = "black", fill = NA, size = 0.8),
    panel.grid = element_blank(),
    axis.line = element_blank(),
    legend.position = "right")
```


#the patients with COVID-19 have a significant increase in ABHD5 expression #compared to the patients without COVID-19 #such trend is observed in both female and male population