

<110> HANMI PHARM. IND. CO., LTD.

<120> IgG Fc FRAGMENT FOR A DRUG CARRIER AND METHOD FOR THE PREPARATION THEREOF

<130> Q115525

<140> 10/535,341

<141> 2006-06-09

<150> PCT/KR04/02942

<151> 2004-11-13

<150> KR 10-2003-0080299

<151> 2003-11-13

<160> 26

<170> KopatentIn 1.71

<210> 1

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 1
cgtcatgcc agcacctgag ttccctgggg gacca 35

<210> 2

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 2
gggggatct catttaccca gagacagggg gaggtcttc tg 42

<210> 3

<211> 12

<212> PRT

<213> Homo sapiens

<400> 3
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro
1 5 10

<210> 4

<211> 663

<212> DNA

<213> homo sapiens

<400> 4
tcatgccca gacctgagtt cctgggggg ccatcagtct tcctgttccc cccaaaaaccc 60

aaggacactc tcatgatctc ccggaccctt gaggtcacgt gcgtgggtt ggacgtgagc	120
caggaagacc ccgagggtcca gttcaactgg tacgtggatg gcgtggaggt gcataatggc	180
aagacaaaggc cgccggagga gcagttaaac agcacgtacc gtgtggtcag cgtctcacc	240
gtcctgcacc aggactggctt gaacggcaag gagtacaagt gcaagggtctc caacaaggc	300
ctcccggtctt ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agagccacag	360
gtgtacaccc tgccccatc ccaggaggag atgaccaaga accaggtcag cctgacctgc	420
ctggtaaagg gcttctaccc cagegacatc gccgtggagt gggagagcaa tggcagcccg	480
gagaacaact acaagaccac gcctcccggt ctggactccg acggctctt cttectctac	540
agcaggctaa ccgtggacaa gagcagggtgg caggaggggaa atgtcttctc atgtcccggt	600
atgcatgagg ctctgcacaa ccactacaca cagaagagcc tctccctgtc tctgggtaaa	660
tga	663

<210> 5
<211> 69
<212> DNA
<213> homo sapiens

<400> 5 atgaaaaaga caatcgattt tcttcttgc tctatgttcg tttttctat tgctacaaaat	60
gccccaggcg	69

<210> 6
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6 tctattgtca caaatggccca ggccttccca accattccct tatcc	45
---	----

<210> 7
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 7 agataacgtat gtttacgggtt ccggaaagggtt tggtaaggaa atagg	45
--	----

<210> 8
<211> 220

<212> PRT
<213> homo sapiens

<400> 8
Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe
1 5 10 15
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
20 25 30
Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe
35 40 45
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
50 55 60
Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
65 70 75 80
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
85 90 95
Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala
100 105 110
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln
115 120 125
Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
130 135 140
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
145 150 155 160
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
165 170 175
Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu
180 185 190
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
195 200 205
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
210 215 220

<210> 9
<211> 654
<212> DNA
<213> homo sapiens

<400> 9
gcacacctgagt tcctgggggg accatcagtc ttccctgttcc ccccaaaaacc caaggacact 60
ctcatgatct cccggacccc tgaggtcacg tgctgtggtg tggacgtgag ccaggaagac 120
cccgagggtcc agtcaactg gtacgtggat ggcgtggagg tgcataatgc caagacaaag 180
cccgccggagg agcagttaaa cagcacgtac cgtgtggtca gcgctctac cgtcctgcac 240
caggactggc tgaacggcaa ggagtacaag tgcaaggct ccaacaaagg cctcccgccc 300

tccatcgaga aaaccatctc	caaagccaaa	ggcagcccc	gagagccaca	ggtgtacacc	360
ctgccccat cccaggagga	gatgaccaag	aaccaggatca	gcctgacctg	cctggtaaa	420
ggcttctacc ccagcgacat	cgccgtggag	tggagagaca	atgggcagcc	ggagaacaac	480
tacaagacca cgcctccgt	gctggactcc	gacggctctt	tcttcctcta	cagcaggct	540
accgtggaca agagcaggtg	gcaggagggg	aatgtttct	catgtccgt	gatgtcatgg	600
gctctgcaca accactacac	acagaagagc	ctctccctgt	ctctggtaa	atga	654

<210> 10
 <211> 217
 <212> PRT
 <213> homo sapiens

Ala Pro Glu Phe Leu Gly Gly	Pro Ser Val	Phe Leu Phe	Pro Pro Lys	
1	5	10	15	
Pro Lys Asp Thr Leu Met Ile Ser Arg	Thr Pro Glu Val	Thr Cys Val		
20	25	30		
Val Val Asp Val Ser Gln Glu Asp	Pro Glu Val Gln	Phe Asn Trp Tyr		
35	40	45		
Val Asp Gly Val Glu Val His Asn Ala Lys	Thr Lys Pro Arg	Glu Glu		
50	55	60		
Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val	Leu Thr Val Leu His			
65	70	75	80	
Gln Asp Trp Leu Asn Gly Lys Glu Tyr	Lys Cys Lys Val Ser Asn Lys			
85	90	95		
Gly Leu Pro Ser Ser Ile Glu Lys	Thr Ile Ser Lys Ala Lys	Gly Gln		
100	105	110		
Pro Arg Glu Pro Gln Val Tyr	Thr Leu Pro Pro Ser Gln	Glu Glu Met		
115	120	125		
Thr Lys Asn Gln Val Ser Leu	Thr Cys Leu Val Lys	Gly Phe Tyr Pro		
130	135	140		
Ser Asp Ile Ala Val Glu Trp	Glu Ser Asn Gly Gln	Pro Glu Asn Asn		
145	150	155	160	
Tyr Lys Thr Thr Pro Pro Val	Leu Asp Ser Asp Gly	Ser Phe Phe Leu		
165	170	175		
Tyr Ser Arg Leu Thr Val Asp Lys	Ser Arg Trp Gln	Glu Gly Asn Val		
180	185	190		
Phe Ser Cys Ser Val Met His	Glu Ala Leu His Asn	His Tyr Thr Gln		
195	200	205		
Lys Ser Leu Ser Leu Ser Leu	Gly Lys			
210	215			

<210> 11

```

<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
cgccgtgccc agcacctgaa ctccctgggg gac 33

<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
gggggatcct catttacccg gagacaggga gag 33

<210> 13
<211> 15
<212> PRT
<213> homo sapiens

<400> 13
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10 15

<210> 14
<211> 660
<212> DNA
<213> homo sapiens 60

<400> 14
ccgtggccag cacctgaact cctgggggaa ccgtcagttt tccctttccc cccaaaaccc
aaggacaccc tcatgtatctc ccggacccct gaggtcacat gcgtgggtgg gcacgtgagc 120
cacgaagacc ctgaggtaa gttcaactgg taatgtggacg gcgtggaggt gcataatggc
aagacaaagc cgcgggagga gcagttacaac agcacgtacc gtgtggtcag cgtcctcacc 240
gtccctgcacc aggactggct gaatggcaag gatgtacatc gcaagggtctc caacaaagcc
ctcccaagccc ccatacgagaa aaccatctcc aaagccaaag ggcagccccg agagccacacg 360
gtgtacaccc tgccccatcc ccggatggatctt ctgaccaaga accaggttcac cttccatcc
ctggtcaag gtttctatcc cagcgacatc gccgtggagt gggagagcaa tggcagccg 480
gagaacaaact acaagaccac gcctcccggtt ctggactcccg acggcttccctt cttccatcc
agcaagctca ccgtggacaa gaggcagggtgg cagcaggggaa acgttcccttc atgtctccgtg 600
atgtatgtggg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tccgggttaaa 660

```

<210> 15
<211> 220
<212> PRT
<213> homo sapiens

<400> 15
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe
1 5 10 15
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
20 25 30
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
35 40 45
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
50 55 60
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
65 70 75 80
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
85 90 95
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
100 105 110
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
115 120 125
Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
130 135 140
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
145 150 155 160
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
165 170 175
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
180 185 190
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
195 200 205
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215 220

<210> 16
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
cggcacctgaa actcctgggg ggaccg

<210> 17
<211> 651
<212> DNA
<213> homo sapiens

<400> 17
gcacctgaac tcctggggg accgtcagtc ttccctttcc ccccaaaacc caaggacacc 60
ctcatgatct cccggacccc tgaggtcaca tgcgtggtgg tggacgtgag ccacgaagac 120
cctgaggtca agttcaactg gtacgtggac ggcgtggagg tgcataatgc caagacaaaag 180
ccgcgggagg agcagtacaa cagcacgtac cgtgtggtca gcgccttcac cgtctgcac 240
caggactggc tgaatggcaa ggagtacaag tgcaggctt ccaacaaagc cctcccagcc 300
cccacatcgaga aaaccatctc caaagccaa gggcagcccc gagagccaca ggtgtacacc 360
ctggcccccatt cccgggatga gctgaccaag aaccaggctca gcctgaccc cctggtcaaa 420
ggttctatc ccagcgacat cgccgtggag tggagagca atggcagcc ggagaacaac 480
tacaagacca cgcctccctg gctggactcc gacggctctt tcttcctcta cagcaagctc 540
accgtggaca agagcaggta gcaagcaggaa aacgtcttct catgctccgt gatgcatgag 600
gctctgcaca accactacac gcagaagac ctctccctgt ctccggtaa a 651

<210> 18
<211> 217
<212> PRT
<213> homo sapiens

<400> 18
Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
35 40 45
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
50 55 60
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
65 70 75 80
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95
Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu
115 120 125
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 155 160
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
195 200 205
Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215

<210> 19
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 19
cgccgtgccc agcacctccg gtggcgaaa

29

<210> 20
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
gggggatccat ttacccg gagacaggaa gag

33

<210> 21
<211> 12
<212> PRT
<213> homo sapiens

<400> 21
Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
1 5 10

<210> 22
<211> 657
<212> PRT
<213> homo sapiens

<400> 22
Cys Cys Gly Thr Gly Cys Cys Cys Ala Gly Cys Ala Cys Cys Thr Cys
1 5 10 15
Cys Gly Gly Thr Gly Gly Cys Gly Gly Ala Ala Cys Cys Gly Thr Cys
20 25 30

Ala Gly Thr Cys Thr Thr Cys Cys Thr Cys Thr Thr Cys Cys Cys Cys
35 40 45

Cys Cys Ala Ala Ala Ala Cys Cys Cys Ala Ala Gly Gly Ala Cys Ala
50 55 60

Cys Cys Cys Thr Cys Ala Thr Gly Ala Thr Cys Thr Cys Cys Cys Gly
65 70 75 80

Gly Ala Cys Cys Cys Cys Thr Gly Ala Gly Gly Thr Cys Ala Cys Ala
85 90 95

Thr Gly Cys Gly Thr Gly Gly Thr Gly Gly Thr Gly Ala Cys Gly
100 105 110

Thr Gly Ala Gly Cys Cys Ala Cys Gly Ala Ala Gly Ala Cys Cys Cys
115 120 125

Thr Gly Ala Gly Gly Thr Cys Cys Ala Gly Thr Thr Cys Ala Ala Cys
130 135 140

Thr Gly Gly Thr Ala Cys Gly Thr Gly Gly Ala Cys Gly Gly Cys Gly
145 150 155 160

Thr Gly Gly Ala Gly Gly Thr Cys Ala Thr Ala Ala Thr Gly Cys
165 170 175

Cys Ala Ala Gly Ala Ala Cys Ala Ala Gly Cys Cys Gly Cys Gly Gly
180 185 190

Gly Ala Gly Gly Ala Gly Cys Ala Gly Thr Thr Thr Ala Ala Cys Ala
195 200 205

Gly Cys Ala Cys Gly Thr Thr Cys Gly Thr Gly Thr Gly Gly Thr
210 215 220

Cys Ala Gly Cys Gly Thr Cys Cys Thr Cys Ala Cys Cys Gly Thr Cys
225 230 235 240

Gly Thr Gly Cys Ala Cys Cys Ala Gly Gly Ala Cys Thr Gly Gly Cys
245 250 255

Thr Gly Ala Ala Thr Gly Gly Cys Ala Ala Gly Gly Ala Gly Thr Ala
260 265 270

Cys Ala Ala Gly Thr Gly Cys Ala Ala Gly Gly Thr Cys Thr Cys Cys
275 280 285

Ala Ala Cys Ala Ala Ala Gly Gly Cys Cys Thr Cys Cys Ala Gly
290 295 300

Cys Cys Cys Cys Cys Ala Thr Cys Gly Ala Gly Ala Ala Ala Ala Cys
305 310 315 320

Cys Ala Thr Cys Thr Cys Cys Ala Ala Ala Cys Cys Ala Ala Ala
325 330 335

Gly Gly Gly Cys Ala Gly Cys Cys Cys Gly Ala Gly Ala Gly Cys
340 345 350

Cys Ala Cys Ala Gly Gly Thr Gly Thr Ala Cys Ala Cys Cys Cys Thr
355 360 365

Gly Cys Cys Cys Cys Cys Ala Thr Cys Cys Cys Gly Gly Gly Ala Ala
370 375 380

Gly Ala Gly Ala Thr Gly Ala Cys Cys Ala Ala Gly Ala Ala Cys Cys
385 390 395 400

Ala Gly Gly Thr Cys Ala Gly Cys Cys Thr Gly Ala Cys Cys Thr Gly
405 410 415

Cys Cys Thr Gly Gly Thr Cys Ala Ala Ala Gly Gly Cys Thr Thr Cys
420 425 430

Thr Ala Thr Cys Cys Cys Ala Gly Cys Gly Ala Cys Ala Thr Cys Gly
435 440 445

Cys Cys Gly Thr Gly Gly Ala Gly Thr Gly Gly Ala Gly Ala Gly
450 455 460

Cys Ala Ala Thr Gly Gly Cys Ala Gly Cys Cys Gly Gly Ala Gly
465 470 475 480

Ala Ala Cys Ala Ala Cys Thr Ala Cys Ala Ala Gly Ala Cys Cys Ala
485 490 495

Cys Gly Cys Cys Thr Cys Cys Cys Ala Thr Gly Cys Thr Gly Gly Ala
500 505 510

Cys Thr Cys Cys Gly Ala Cys Gly Gly Cys Thr Cys Cys Thr Thr Cys
515 520 525

Thr Thr Cys Cys Thr Cys Thr Ala Cys Ala Gly Cys Ala Ala Gly Cys
530 535 540

Thr Cys Ala Cys Cys Gly Thr Gly Gly Ala Cys Ala Ala Gly Ala Gly
545 550 555 560

Cys Ala Gly Gly Thr Gly Gly Cys Ala Gly Cys Ala Gly Gly Gly
565 570 575

Ala Ala Cys Gly Thr Cys Thr Thr Cys Thr Cys Ala Thr Gly Cys Thr
580 585 590

Cys Cys Gly Thr Gly Ala Thr Gly Cys Ala Thr Gly Ala Gly Gly Cys
595 600 605

Thr Cys Thr Gly Cys Ala Cys Ala Ala Cys Cys Ala Cys Thr Ala Cys
610 615 620

Ala Cys Gly Cys Ala Gly Ala Ala Gly Ala Gly Cys Cys Thr Cys Thr
625 630 635 640

Cys Cys Cys Thr Gly Thr Cys Thr Cys Cys Gly Gly Gly Thr Ala Ala
645 650 655

Ala

<210> 23
<211> 219
<212> PRT
<213> homo sapiens

<400> 23
Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro
1 5 10 15
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
20 25 30
Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn
35 40 45
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
50 55 60
Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val
65 70 75 80
Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
85 90 95
Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys
100 105 110
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
115 120 125
Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
130 135 140
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
145 150 155 160
Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe
165 170 175
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
180 185 190
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
195 200 205
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215

<210> 24
<211> 10
<212> PRT
<213> Homo sapiens

<400> 24
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
1 5 10

<210> 25
<211> 10
<212> PRT
<213> Homo sapiens

<400> 25
Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly
1 5 10

<210> 26
<211> 10
<212> PRT
<213> Homo sapiens

<400> 26
Pro Cys Pro Ala Pro Pro Val Ala Gly Pro
1 5 10