Pesquisa Operacional

Modelagem de Problemas de Programação Linear

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Prob. Produção

Sumário

- 1 Prob. Produção
- 2 Prob. Dieta
- 3 Prob. Mistura
- 4 Prob. Aloc. Recursos
- Prob. Transporte

Problemas de Produção

Problema de Produção [Silva et al., 2010]¹

¹Apud, [Diego Mello da Silva, 2016]

Certa empresa fabrica dois produtos, P_1 e P_2 . O lucro unitário do produto P_1 é de 1.000 unidades monetárias, e o lucro unitário de P_2 é de 1.800 unidades monetárias. A empresa precisa de 20 horas para fabricar uma unidade de P_1 , e de 30 horas para fabricar uma unidade de P_2 . O tempo anual de produção disponível para fabricação é de 1.200 horas. A demanda esperada para cada produto é de 40 unidades anuais de P_1 e 30 unidades anuais de P_2 .

Formule o problema de programação linear que maximiza o lucro, a partir da produção dos produtos P_1 e P_2 .

Prob. Produção

- Certa empresa fabrica dois produtos, P_1 e P_2 .
- \bullet O lucro unitário do produto P_1 é de 1.000 unidades monetárias, e o lucro unitário de P_2 é de 1.800 unidades monetárias.
- \bullet A empresa precisa de 20 horas para fabricar uma unidade de P_1 , e de 30 horas para fabricar uma unidade de P_2 .
- O tempo anual de produção disponível para fabricação é de 1.200 horas.
- ullet A demanda esperada para cada produto é de 40 unidades anuais de P_1 e 30 unidades anuais de P_2 .
- Formule o problema de programação linear que maximiza o lucro, a partir da produção dos produtos P_1 e P_2 .

Prob. Produção

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Maximizar o lucro

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de produção (o que eu vou produzir)?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
 - Quais as restrições de produção?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
 - Quais as restrições de produção?
 - Tempo anual de produção disponível para fabricação: (1.200 horas)
- Quais as restrições de demanda?

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
 - Quais as restrições de produção?
 - Tempo anual de produção disponível para fabricação: (1.200 horas)
- Quais as restrições de demanda?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
 - Quais as restrições de produção?
 - Tempo anual de produção disponível para fabricação: (1.200 horas)
- Quais as restrições de demanda?
 - Produto P₁: (40 unidades)
 - Produto P₂: (30 unidades)

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
- Quais as restrições de produção?
 - Tempo anual de produção disponível para fabricação: (1.200 horas)
- Quais as restrições de demanda?
 - Produto P₁: (40 unidades)
 - Produto P₂: (30 unidades)
- Existem outras restrições?

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de produção (o que eu vou produzir)?
 - Produto $P_1(x_1)$
 - Produto $P_2(x_2)$
- Quais as restrições de produção?
 - Tempo anual de produção disponível para fabricação: (1.200 horas)
- Quais as restrições de demanda?
 - Produto P₁: (40 unidades)
 - Produto P₂: (30 unidades)
- Existem outras restrições?
 - Não

Função Objetivo:

Prob. Produção

000000000000000

- Qual o objetivo do problema?

Prob. Dieta

Função Objetivo:

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?

Função Objetivo:

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?
 - Produto P₁: (1000 unidades monetárias)
 - Produto P₂: (1800 unidades monetárias)

$$max \ z = 1000x_1 + 1800x_2$$

Função Objetivo:

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?
 - Produto P₁: (1000 unidades monetárias)
 - Produto P₂: (1800 unidades monetárias)

$$max \ z = 1000x_1 + 1800x_2$$

Prob. Produção

- Restrição 1: Tempo disponível para fabricação (1200 horas)

$$20x_1 + 30x_2 \le 1200$$

$$x_1 \le 40$$

Restrições:

Prob. Produção

- Restrição 1: Tempo disponível para fabricação (1200 horas)
 - Produção do produto P_1 : 20 horas
 - Produção do produto P₂: 30 horas

$$20x_1 + 30x_2 \le 1200$$

Prob. Produção

000000000000000

- Restrição 1: Tempo disponível para fabricação (1200 horas)
 - Produção do produto P_1 : 20 horas
 - Produção do produto P2: 30 horas

$$20x_1 + 30x_2 \le 1200$$

Restrição 2: Demanda produto P_1 : (40 unidades)

$$x_1 \le 40$$

$$x_2 \le 30$$

Prob. Produção

000000000000000

- Restrição 1: Tempo disponível para fabricação (1200 horas)
 - Produção do produto P₁: 20 horas
 - ullet Produção do produto P_2 : 30 horas

$$20x_1 + 30x_2 \le 1200$$

• Restrição 2: Demanda produto P₁: (40 unidades)

$$x_1 \leq 40$$

Restrição 3: Demanda produto P₂: (30 unidades)

Prob. Produção

000000000000000

- Restrição 1: Tempo disponível para fabricação (1200 horas)
 - Produção do produto P₁: 20 horas
 - Produção do produto P₂: 30 horas

$$20x_1 + 30x_2 \le 1200$$

• Restrição 2: Demanda produto P₁: (40 unidades)

$$x_1 \leq 40$$

Restrição 3: Demanda produto P₂: (30 unidades)

Sumarizando

$$max \ z = 1000x_1 + 1800x_2$$

suj. a:
$$20x_1+30x_2\leq 1200$$
 (horas disponíveis) $x_1\leq 40$ (demanda P_1) $x_2\leq 30$ (demanda P_2) $x_1,x_2>0$ (não negatividade)

Prob. Produção

Problema de Produção [Moreira, 2013]²

²Apud. [Diego Mello da Silva, 2016]

Problema de Produção [Moreira, 2013]

Uma fábrica produz dois produtos, A e B. Cada um deles é processado por duas máquinas, M_1 e M_2 . Devido à programação de outros produtos, a máquina M_1 tem 24 horas de tempo disponível para os produtos A e B, enquanto que a máquina M_2 tem 16 horas de tempo disponível. Para produzir uma unidade de produto A gastam-se 4 horas em cada uma das máquinas. Para produzir uma unidade de produto B gastam-se 6 horas na máquina M_1 e 2 horas na máquina M_2 . Cada unidade vendida do produto A gera um lucro de R\$80,00, enquanto que cada unidade vendida de produto B gera um lucro de R\$60,00. Existe previsão máxima de demanda para o produto B de 3 unidades e não existe restrição de demanda do produto A.

Formule o problema de programação linear que maximiza o lucro, a partir da produção dos produtos A e B.

Prob. Produção

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Maximizar o lucro

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?

Problema de Produção [Moreira, 2013]

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
 - Quais as restrições de produção?

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
 - Quais as restrições de produção?
 - Tempo disponível da máquina M_1 : (24 horas)
 - Tempo disponível da máquina M_2 : (16 horas)

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
 - Quais as restrições de produção?
 - Tempo disponível da máquina M_1 : (24 horas)
 - Tempo disponível da máquina M_2 : (16 horas)
- Quais as restricões de demanda?

- Qual o objetivo do problema?
 - Maximizar o lucro
 - Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
 - Quais as restrições de produção?
 - Tempo disponível da máquina M_1 : (24 horas)
 - Tempo disponível da máquina M_2 : (16 horas)
 - Quais as restricões de demanda?
 - Produto B: (3 unidades)

Problema de Produção [Moreira, 2013]

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
- Quais as restrições de produção?
 - Tempo disponível da máquina M_1 : (24 horas)
 - Tempo disponível da máquina M2: (16 horas)
- Quais as restricões de demanda?
 - Produto B: (3 unidades)
- Existem outras restrições?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de produção?
 - Produto A (x₁)
 - Produto B (x₂)
- Quais as restrições de produção?
 - Tempo disponível da máquina M_1 : (24 horas)
 - Tempo disponível da máquina M2: (16 horas)
- Quais as restricões de demanda?
 - Produto B: (3 unidades)
- Existem outras restrições?
 - Não

Prob. Produção

- Qual o objetivo do problema?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?
 - Produto A: (R\$80,00)
 - Produto B: (R\$60,00)

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto?
 - Produto A: (R\$80,00)
 - Produto B: (R\$60,00)

$$max \ z = 80x_1 + 60x_2$$

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M_2 : (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M₂: (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M_2 : (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Problema de Produção [Moreira, 2013]

Restrições:

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M_2 : (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Problema de Produção [Moreira, 2013]

Restrições:

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M_2 : (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Prob. Produção

0000000000000000

- Restrição 1: Tempo disponível da máquina M_1 : (24 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 6 horas

$$4x_1+6x_2\leq 24$$

- Restrição 2: Tempo disponível da máquina M_2 : (16 horas)
 - Produção do item A: 4 horas
 - Produção do item B: 2 horas

$$4x_1+2x_2\leq 16$$

Sumarizando...

$$\max \ z = 80x_1 + 60x_2$$
 suj. a:
$$4x_1 + 6x_2 \leq 24 \quad \text{(horas máquina 1)}$$

$$4x_1 + 2x_2 \leq 16 \quad \text{(horas máquina 2)}$$

$$x_2 \leq 3 \quad \text{(demanda prod B)}$$

$$x_1, x_2 \geq 0 \quad \text{(não negatividade)}$$

Prob. Produção

PROBLEMAS DE DIETA

Problema de Dieta [Silva et al., 2010]³

³Apud. [Diego Mello da Silva, 2016]

Problema de Dieta [Silva et al., 2010]

Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades/dia, e a de proteínas de 36 unidades/dia. Uma pessoa dispõe de carnes e ovos para se alimentar. Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de carne custa \$3,00, e cada unidade de ovos custa \$2,50 unidades monetárias.

Formule o problema de programação linear de forma a minimizar o custo da dieta, de modo a suprir as necessidades de vitaminas e proteínas

Problema de Dieta [Silva et al., 2010]

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?

Problema de Dieta [Silva et al., 2010]

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) • Ovo: (x₂)

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) • Ovo: (x₂)
 - Quais as restrições/recomendações da dieta?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) • Ovo: (x₂)
 - Quais as restrições/recomendações da dieta?
 - Consumo de vitaminas: (32 unidades) Consumo de proteínas: (36 unidades)

- Qual o obietivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) Ovo: (x₂)
 - Quais as restricões/recomendações da dieta?
 - Consumo de vitaminas: (32 unidades) Consumo de proteínas: (36 unidades)
 - Quais as restrições de demanda/disponibilidade?

- Qual o obietivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) Ovo: (x₂)
 - Quais as restricões/recomendações da dieta?
 - Consumo de vitaminas: (32 unidades) Consumo de proteínas: (36 unidades)
 - Quais as restricões de demanda/disponibilidade?
 - Não há restricões de disponibilidade

- Qual o obietivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x_1) Ovo: (x₂)
 - Quais as restricões/recomendações da dieta?
 - Consumo de vitaminas: (32 unidades) Consumo de proteínas: (36 unidades)
 - Quais as restricões de demanda/disponibilidade?
 - Não há restricões de disponibilidade
 - Existem outras restrições?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis da dieta (itens)?
 - Carne: (x₁)Ovo: (x₂)
 - Quais as restrições/recomendações da dieta?
 - Consumo de vitaminas: (32 unidades)
 - Consumo de proteínas: (36 unidades)
- Quais as restricões de demanda/disponibilidade?
 - Não há restrições de disponibilidade
- Existem outras restrições?
 - Não

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?
 - Carne: (\$3,00)
 - Ovo: (\$2,50)

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?
 - Carne: (\$3,00)
 - Ovo: (\$2,50)

min
$$z = 3x_1 + 2, 5x_2$$

- Restrição 1: Vitaminas
 - Carne: 4 unidade
 - Ovo: 8 unidades

$$4x_1 + 8x_2 \ge 32$$

- Restrição 2: Proteínas
 - Carne: 6 unidade
 - Ovo: 6 unidades

$$6x_1 + 6x_2 \ge 36$$

Problema de Dieta [Silva et al., 2010]

Restrições:

Prob. Produção

• Restrição 1: Vitaminas

Carne: 4 unidadesOvo: 8 unidades

$$4x_1 + 8x_2 \ge 32$$

- Restrição 2: Proteínas
 - Carne: 6 unidade
 - Ovo: 6 unidade

$$6x_1+6x_2\geq 36$$

Prob. Produção

• Restrição 1: Vitaminas

Carne: 4 unidadesOvo: 8 unidades

$$4x_1 + 8x_2 \ge 32$$

- Restrição 2: Proteínas
 - Carne: 6 unidade
 - Ovo: 6 unidade

$$6x_1 + 6x_2 \ge 36$$

Problema de Dieta [Silva et al., 2010]

Restrições:

Prob. Produção

• Restrição 1: Vitaminas

Carne: 4 unidades
 Ovo: 8 unidades

$$4x_1 + 8x_2 \ge 32$$

• Restrição 2: Proteínas

• Carne: 6 unidades

Ovo: 6 unidades

$$6x_1+6x_2\geq 36$$

Prob. Produção

Restrição 1: Vitaminas

 Carne: 4 unidades Ovo: 8 unidades

$$4x_1 + 8x_2 \ge 32$$

Restrição 2: Proteínas

Carne: 6 unidades

$$6x_1+6x_2\geq 36$$

Problema de Dieta [Silva et al., 2010]

Sumarizando...

$$min z = 3x_1 + 2, 5x_2$$

suj. a:
$$4x_1 + 8x_2 \ge 32$$
 (vitaminas) $6x_1 + 6x_2 \ge 36$ (proteínas) $x_1, x_2 \ge 0$ (não negatividade)

Suponha que uma certa dieta alimentar esteja restrita a leite desnatado, carne magra de boi, carne de peixe e uma salada de composição bem conhecida. Sabe-se ainda que os requisitos nutricionais serão expressos em termos de vitaminas A, C e D e controlados por suas quantidades mínimas (em miligramas). Os indivíduos que seguirem a dieta devem ingerir uma quantidade nutricional mínima, para preservação de sua saúde. A tabela a seguir resume a quantidade de cada vitamina disponível nos alimentos e a sua necessidade diária.

Vitamina	Leite (litro)	Carne (kg)	Peixe (kg)	Salada (100g)	Requisito Nutricional Minimo
Α	2 mg	2 mg	10 mg	20 mg	11 mg
С	50 mg	20 mg	10 mg	30 mg	70 mg
D	80 mg	70 mg	10 mg	80 mg	250 mg
Custo	2 reais	4 reais	1,5 real	1 real	

Fonte: [Goldbarg and Luna, 2005]

Formule o problema de programação linear de forma a minimizar o custo da dieta.

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis do problema?
 - Leite: (x₁
 - Carne: (x₂
 - Peixe: (x₃
 - Salada: (x4
 - Quais as restrições/recomendações da dieta?
 - Consumo de vitamina A: (11 unidades
 - Consumo de vitamina C: (70 unidades
 - Consumo de vitamina D: (250 unidades
 - Existem outras restrições?
 - Não

- Qual o objetivo do problema?
 - Minimizar o custo da dieta

- Qual o obietivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis do problema?

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis do problema?
 - Leite: (x₁)
 - Carne: (x₂)Peixe: (x₃)
 - Salada: (x₄)
 - Quais as restrições/recomendações da dieta
 - Consumo de vitamina A: (11 unidades
 - Consumo de vitamina C: (70 unidades
 - Consumo de vitamina D: (250 unidades
 - Existem outras restrições
 - Não

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Quais as variáveis do problema?
 - Leite: (x₁)Carne: (x₂)
 - Peixe: (x_3)
 - Salada: (x₄)
- Quais as restrições/recomendações da dieta?
 - Consumo de vitamina A: (11 unidades
 - Consumo de vitamina C: (70 unidades
 - Consumo de vitamina D: (250 unidades
- Existem outras restrições?
 - Não

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis do problema?
 - Leite: (x₁)
 Carne: (x₂)
 Peixe: (x₃)
 - Salada: (x₄)
- Quais as restrições/recomendações da dieta?
 - Consumo de vitamina A: (11 unidades)
 - Consumo de vitamina C: (70 unidades)
 - Consumo de vitamina D: (250 unidades)
- Existem outras restrições?
 - a Não

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
 - Quais as variáveis do problema?
 - Leite: (x₁)
 Carne: (x₂)
 Peixe: (x₃)
 - Salada: (x₄)
- Quais as restrições/recomendações da dieta?
 - Consumo de vitamina A: (11 unidades)
 - Consumo de vitamina C: (70 unidades)
 - Consumo de vitamina D: (250 unidades)
- Existem outras restrições?
 - a Não

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Quais as variáveis do problema?
 - Leite: (x₁)Carne: (x₂)
 - Peixe: (x₃)Salada: (x₄)
- Quais as restrições/recomendações da dieta?
 - Consumo de vitamina A: (11 unidades)
 - Consumo de vitamina C: (70 unidades)
 - Consumo de vitamina D: (250 unidades)
- Existem outras restricões?
 - Não

Prob. Produção

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?
 - Leite: (\$2.00)
 - Carne: (\$4,00)
 - Peixe: (\$1,50
 - Peixe: (\$1,50)

 $min \ z = 2x_1 + 4x_2 + 1,5x_3 + 1x_4$

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?
 - Leite: (\$2.00)
 - Carne: (\$4,00)
 - Peixe: (\$1,50)
 - Salada: (\$1,00)

$$min \ z = 2x_1 + 4x_2 + 1,5x_3 + 1x_4$$

Prob. Produção

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?

Leite: (\$2,00)Carne: (\$4,00)Peixe: (\$1,50)

Peixe: (\$1,50)Salada: (\$1,00)

$$min \ z = 2x_1 + 4x_2 + 1,5x_3 + 1x_4$$

- Qual o objetivo do problema?
 - Minimizar o custo da dieta
- Qual o custo de cada item da dieta?
 - Leite: (\$2,00)Carne: (\$4,00)Peixe: (\$1,50)
 - Peixe: (\$1,50)Salada: (\$1,00)

min
$$z = 2x_1 + 4x_2 + 1,5x_3 + 1x_4$$

Restrições:

- Restrição 1: Vitaminas A
 - Leite: (2 unidades
 - Carne: (2 unidades)
 - Peixe: (10 unidades
 - Salada: (20 unidades

$$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$$

- Restrição 2: Vitaminas C
 - Leite: (50 unidades)
 - Carne: (20 unidades
 - Peixe: (10 unidades
 - Salada: (30 unidades

$$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$$

- Restrição 1: Vitaminas A
 - Leite: (2 unidades)
 - Carne: (2 unidades)
 - Peixe: (10 unidades)
 - Salada: (20 unidades)

$$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$$

- Restrição 2: Vitaminas C
 - Leite: (50 unidades)
 - Carne: (20 unidades)
 - Peixe: (10 unidades
 - Salada: (30 unidades

$$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$$

Restrições:

- Restrição 1: Vitaminas A
 - Leite: (2 unidades)
 - Carne: (2 unidades)
 - Peixe: (10 unidades)Salada: (20 unidades)
 - $2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$
- Restrição 2: Vitaminas C
 - Leite: (50 unidades)
 - Carne: (20 unidades
 - Peixe: (10 unidades
 - Salada: (30 unidades)

$$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$$

Restrições:

- Restrição 1: Vitaminas A
 - Leite: (2 unidades)
 - Carne: (2 unidades)
 - Peixe: (10 unidades)
 - Salada: (20 unidades)

$$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$$

- Restrição 2: Vitaminas C
 - Leite: (50 unidades)
 - Carne: (20 unidades)
 - Peixe: (10 unidades)
 - Salada: (30 unidades)

$$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$$

- Restrição 1: Vitaminas A
 - Leite: (2 unidades)
 - Carne: (2 unidades)
 - Peixe: (10 unidades)
 - Salada: (20 unidades)

$$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$$

- Restrição 2: Vitaminas C
 - Leite: (50 unidades)
 - Carne: (20 unidades)
 - Peixe: (10 unidades)
 - Salada: (30 unidades)

$$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$$

- Restrição 3: Vitaminas D

Prob. Produção

Restrição 3: Vitaminas D

 Leite: (80 unidades) Carne: (70 unidades) Peixe: (10 unidades) • Salada: (80 unidades)

Prob. Produção

Restrição 3: Vitaminas D

Leite: (80 unidades)Carne: (70 unidades)Peixe: (10 unidades)

Salada: (80 unidades)

$$80x_1 + 70x_2 + 10x_3 + 80x_4 \ge 250$$

Sumarizando...

$$\begin{aligned} \min z &= 2x_1 + 4x_2 + 1,5x_3 + 1x_4 \\ \text{suj. a:} & 2x_1 + 2x_2 + 10x_3 + 20x_4 \geq 11 \quad \text{(vitamina A)} \\ & 50x_1 + 20x_2 + 10x_3 + 30x_4 \geq 70 \quad \text{(vitamina C)} \\ & 80x_1 + 70x_2 + 10x_3 + 80x_4 \geq 250 \quad \text{(vitamina D)} \\ & x_1, \ x_2, \ x_3, \ x_4 \geq 0 \quad \text{(não negatividade)} \end{aligned}$$

Problemas de Mistura

31 / 68

Problema de Mistura [Silva et al., 2010]⁴

⁴Apud, [Diego Mello da Silva, 2016]

Problema de Mistura [Silva et al., 2010]

Uma liga especial é constituída de Ferro, Carvão, Silício e Níquel. Ela pode ser obtida a partir de uma mistura destes minerais puros e/ou 2 tipos de materiais recuperados. Os materiais recuperados, MR1 e MR2, tem sua composição definida por:

- MR1: ferro 60%, carvão 20%, silício 20%.
- MR2: ferro 70%, carvão 20%, silício 5%, níquel 5%.

Os materiais MR1 e MR2 tem custo/kg de \$0.20 e \$0.25, respectivamente. O custo/kg dos materiais puros de Ferro, Carvão, Silício e Níquel são de \$0.30, \$0.20, \$0.28 e \$0.50, respectivamente. A composição final da liga deve atender aos critérios descritos na tabela abaixo.

Matéria Prima		% Mínima	% Máxima	
	Ferro	60	65	
	Carvão	15	20	
	Silício	15	20	
	Níquel	5	8	

Fonte: [Silva et al., 2010] apud. [Diego Mello da Silva, 2016]

Formule o problema de programação linear de forma a minimizar o custo por kg, a partir dos materiais disponíveis.

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Quais as variáveis da mistura?
 - Material recuperado MR1: (x1)
 - Material recuperado MR2: (xo
 - Ferro: (xa
 - Carvão: (xa
 - Silício: (x₅)
 - Níquel: (x₆)

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Quais as variáveis da mistura?

Problema de Mistura [Silva et al., 2010]

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Quais as variáveis da mistura?
 - Material recuperado MR1: (x₁)
 - Material recuperado MR2: (x₂)
 - Ferro: (x_3)
 - Carvão: (x₄)
 - Silício: (x₅)
 - Níquel: (*x*₆)

• Quais as restrições da mistura?

Problema de Mistura [Silva et al., 2010]

- Quais as restrições da mistura?
 - Mínimo Ferro: (60%)
 - Máximo Ferro: (65%)
 - Mínimo Carvão: (15%)
 - Máximo Carvão: (20%)
 - Mínimo Silício: (15%)
 - Máximo Silício: (20%)
 - Mínimo Níquel: (5%)
 - Máximo Níquel: (8%)
- Existem outras restrições
 - Sim, a soma dos materiais deve ser igual a 100%

Problema de Mistura [Silva et al., 2010]

- Quais as restrições da mistura?
 - Mínimo Ferro: (60%)
 - Máximo Ferro: (65%)
 - Mínimo Carvão: (15%)
 Avi : Carvão: (20%)
 - Máximo Carvão: (20%)
 - Mínimo Silício: (15%)
 - Máximo Silício: (20%)
 - Mínimo Níquel: (5%)
 - Máximo Níquel: (8%)
- Existem outras restrições?
 - Sim, a soma dos materiais deve ser igual a 100%

- Quais as restrições da mistura?
 - Mínimo Ferro: (60%)
 - Máximo Ferro: (65%)
 - Mínimo Carvão: (15%)
 - Máximo Carvão: (20%)
 - Mínimo Silício: (15%)
 - Máximo Silício: (20%)
 - Mínimo Níquel: (5%)
 - Máximo Níquel: (8%)
- Existem outras restrições?
 - Sim, a soma dos materiais deve ser igual a 100%.

- Qual o objetivo do problema?

Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Qual o custo de cada item disponível para a liga?
 - Material recuperado MR1: (\$0.20)
 - Material recuperado MR2: (\$0.25)
 - Ferro: (\$0.30
 - Carvão: (\$0.20)
 - Silício: (\$0.28)
 - Níquel: (\$0.50)

$$min \ z = 0.2x_1 + 0.25x_2 + 0.3x_3 + 0.2x_4 + 0.28x_5 + 0.5x_6$$

Problema de Mistura [Silva et al., 2010]

Função Objetivo:

Prob. Produção

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Qual o custo de cada item disponível para a liga?
 - Material recuperado MR1: (\$0.20)
 Material recuperado MR2: (\$0.25)
 - Ferro: (\$0.30)
 Carvão: (\$0.20)
 Silício: (\$0.28)
 Níquel: (\$0.50)

min $z = 0.2x_1 + 0.25x_2 + 0.3x_3 + 0.2x_4 + 0.28x_5 + 0.5x_6$

Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo da liga metálica
- Qual o custo de cada item disponível para a liga?
 - Material recuperado MR1: (\$0.20)
 Material recuperado MR2: (\$0.25)
 - Ferro: (\$0.30)
 Carvão: (\$0.20)
 Silício: (\$0.28)
 Níquel: (\$0.50)

min
$$z = 0.2x_1 + 0.25x_2 + 0.3x_3 + 0.2x_4 + 0.28x_5 + 0.5x_6$$

- Restrição 1: Mínimo percentual de ferro (60%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \ge 0.6$$

- Restrição 2: Máximo percentual de ferro (65%)
 - Material recuperado MR1: (60%
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \le 0.65$$

- Restrição 1: Mínimo percentual de ferro (60%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \ge 0.6$$

- Restrição 2: Máximo percentual de ferro (65%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \le 0.65$$

- Restrição 1: Mínimo percentual de ferro (60%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \ge 0.6$$

- Restrição 2: Máximo percentual de ferro (65%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \le 0.65$$

- Restrição 1: Mínimo percentual de ferro (60%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \ge 0.6$$

- Restrição 2: Máximo percentual de ferro (65%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \le 0.65$$

- Restrição 1: Mínimo percentual de ferro (60%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \ge 0.6$$

- Restrição 2: Máximo percentual de ferro (65%)
 - Material recuperado MR1: (60%)
 - Material recuperado MR2: (70%)
 - Ferro: (100%)

$$0.6x_1 + 0.7x_2 + 1x_3 \le 0.65$$

Problema de Mistura [Silva et al., 2010]

Restrições:

Prob. Produção

- Restrição 3: Mínimo percentual de carvão (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (20%)
 - Carvão: (100%

$$0.2x_1 + 0.2x_2 + 1x_4 \ge 0.15$$

• Restrição 4: Máximo percentual de carvão (20%

$$0.2x_1 + 0.2x_2 + 1x_4 \le 0.2$$

Prob. Produção

- Restrição 3: Mínimo percentual de carvão (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (20%)
 - Carvão: (100%)

$$0.2x_1 + 0.2x_2 + 1x_4 \ge 0.15$$

• Restrição 4: Máximo percentual de carvão (20%

$$0.2x_1 + 0.2x_2 + 1x_4 \le 0.2$$

Problema de Mistura [Silva et al., 2010]

Restrições:

Prob. Produção

- Restrição 3: Mínimo percentual de carvão (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (20%)
 - Carvão: (100%)

$$0.2x_1 + 0.2x_2 + 1x_4 \ge 0.15$$

• Restrição 4: Máximo percentual de carvão (20%)

$$0.2x_1 + 0.2x_2 + 1x_4 \le 0.2$$

Prob. Produção

- Restrição 3: Mínimo percentual de carvão (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (20%)
 - Carvão: (100%)

$$0.2x_1 + 0.2x_2 + 1x_4 \ge 0.15$$

• Restrição 4: Máximo percentual de carvão (20%)

$$0.2x_1 + 0.2x_2 + 1x_4 \le 0.2$$

Prob. Produção

- Restrição 5: Mínimo percentual de silício (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (5%)
 - Silício: (100%)

$$0.2x_1 + 0.05x_2 + 1x_5 \ge 0.15$$

• Restrição 6: Máximo percentual de silício (20%

$$0.2x_1 + 0.05x_2 + 1x_5 \le 0.2$$

Problema de Mistura [Silva et al., 2010]

Restrições:

Prob. Produção

- Restrição 5: Mínimo percentual de silício (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (5%)
 - Silício: (100%)

$$0.2x_1 + 0.05x_2 + 1x_5 \ge 0.15$$

• Restrição 6: Máximo percentual de silício (20%

$$0.2x_1 + 0.05x_2 + 1x_5 \le 0.2$$

Prob. Produção

- Restrição 5: Mínimo percentual de silício (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (5%)
 - Silício: (100%)

$$0.2x_1 + 0.05x_2 + 1x_5 \ge 0.15$$

• Restrição 6: Máximo percentual de silício (20%)

$$0.2x_1 + 0.05x_2 + 1x_5 \le 0.2$$

Prob. Produção

- Restrição 5: Mínimo percentual de silício (15%)
 - Material recuperado MR1: (20%)
 - Material recuperado MR2: (5%)
 - Silício: (100%)

$$0.2x_1 + 0.05x_2 + 1x_5 \ge 0.15$$

• Restrição 6: Máximo percentual de silício (20%)

$$0.2x_1 + 0.05x_2 + 1x_5 \le 0.2$$

Prob. Produção

- Restrição 7: Mínimo percentual de níquel (5%)
 - Material recuperado MR2: (5%)
 - Níquel: (100%)

$$0.05x_2 + 1x_6 \ge 0.05$$

Restrição 8: Máximo percentual de níquel (8%)

$$0.05x_2 + 1x_6 \le 0.08$$

Prob. Produção

- Restrição 7: Mínimo percentual de níquel (5%)
 - Material recuperado MR2: (5%)
 - Níquel: (100%)

$$0.05x_2 + 1x_6 \ge 0.05$$

• Restrição 8: Máximo percentual de níquel (8%)

$$0.05x_2 + 1x_6 \le 0.08$$

Prob. Produção

- Restrição 7: Mínimo percentual de níquel (5%)
 - Material recuperado MR2: (5%)
 - Níquel: (100%)

$$0.05x_2 + 1x_6 \ge 0.05$$

• Restrição 8: Máximo percentual de níquel (8%)

$$0.05x_2 + 1x_6 \le 0.08$$

Prob. Produção

- Restrição 7: Mínimo percentual de níquel (5%)
 - Material recuperado MR2: (5%)
 - Níquel: (100%)

$$0.05x_2 + 1x_6 \ge 0.05$$

• Restrição 8: Máximo percentual de níquel (8%)

$$0.05x_2 + 1x_6 \le 0.08$$

Prob. Produção

Restrição 9: A soma dos materiais deve ser igual a 100%.

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 1$$

Prob. Produção

• Restrição 9: A soma dos materiais deve ser igual a 100%.

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 1$$

Problema de Mistura [Silva et al., 2010]

Sumarizando...

$$\begin{aligned} \min z &= 0.2x_1 + 0.25x_2 + 0.3x_3 + 0.2x_4 + 0.28x_5 + 0.5x_6 \\ \text{suj. a:} & 0.6x_1 + 0.7x_2 + x_3 \geq 0.6 \quad \text{(m\'inimo ferro)} \\ & 0.6x_1 + 0.7x_2 + x_3 \leq 0.65 \quad \text{(m\'aximo ferro)} \\ & 0.2x_1 + 0.2x_2 + x_4 \geq 0.15 \quad \text{(m\'inimo carvão)} \\ & 0.2x_1 + 0.2x_2 + x_4 \leq 0.2 \quad \text{(m\'aximo carvão)} \\ & 0.2x_1 + 0.05x_2 + x_5 \geq 0.15 \quad \text{(m\'inimo sil\'icio)} \\ & 0.2x_1 + 0.05x_2 + x_5 \leq 0.2 \quad \text{(m\'aximo sil\'icio)} \\ & 0.05x_2 + x_6 \geq 0.05 \quad \text{(m\'inimo n\'iquel)} \\ & 0.05x_2 + x_6 \leq 0.08 \quad \text{(m\'aximo n\'iquel)} \\ & x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 1 \quad \text{(soma materiais)} \\ & x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \quad \text{(n\~ao negatividade)} \end{aligned}$$

Problema Alocação Recursos [Prado, 2016]⁵

⁵Apud. [Diego Mello da Silva. 2016]

Problema Alocação Recursos [Prado, 2016]

Modelos de agropecuária procuram determinar qual o melhor uso da terra. Neste exemplo, deseja-se otimizar o lucro pela utilização de até quatro opções de cultura (milho, trigo, soja e cana de açúcar). Restrições referem-se ao espaço utilizado, gastos com preparo do terreno e utilização de mão-de-obra, dados pela tabela:

Atividade	Milho	Trigo	Soja	Açúcar	Disponibilidade
Espaço (hectares)	1	1	1	1	400
Preparo do terreno (R\$)	1.000	1.200	1.500	1.200	500.000
Mão de obra (homens/dia)	20	30	25	28	10.000
Lucro Hectare (R\$)	600	800	900	500	_

Fonte: [Prado, 2016] apud [Diego Mello da Silva, 2016]

Formule o problema de programação linear que possibilite a destinação de terras para cada cultura de modo a maximizar o lucro total.

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Maximizar o lucro

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁) • Trigo: (x₂) Soja: (x₃) Açúcar: (x₄)

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁) • Trigo: (x₂) Soja: (x₃) Açúcar: (x₄)
- Quais as restrições da alocação de recursos?

Qual o objetivo do problema?

Prob. Produção

- Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁) • Trigo: (x₂) Soja: (x₃) Açúcar: (x₄)
- Quais as restrições da alocação de recursos?
 - Espaço (hectares): (400)
 - Preparo terreno (\$): (500.000)
 - Mão de obra (homens/dia): (10.000)
- Quais as restrições de demanda?

Prof. Felipe Reis

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁)
 Trigo: (x₂)
 Soja: (x₃)
 Açúcar: (x₄)
- Quais as restrições da alocação de recursos?
 - Espaço (hectares): (400)
 - Preparo terreno (\$): (500.000)
 - Mão de obra (homens/dia): (10.000)
- Quais as restrições de demanda?
 - Sem restrições
- Existem outras restrições
 - Não

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁) • Trigo: (x₂) Soja: (x₃) Açúcar: (x₄)
- Quais as restrições da alocação de recursos?
 - Espaço (hectares): (400)
 - Preparo terreno (\$): (500.000)
 - Mão de obra (homens/dia): (10.000)
- Quais as restrições de demanda?
 - Sem restricões

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?
 - Milho: (x₁)
 Trigo: (x₂)
 Soja: (x₃)
 Açúcar: (x₄)
- Quais as restrições da alocação de recursos?
 - Espaço (hectares): (400)
 - Preparo terreno (\$): (500.000)
 - Mão de obra (homens/dia): (10.000)
- Quais as restrições de demanda?
 - Sem restrições
- Existem outras restrições?
 - Não

- Qual o objetivo do problema?
 - Maximizar o lucro
- Quais as variáveis de alocação de recursos?

• Milho: (x₁) • Trigo: (x₂) Soja: (x₃) Açúcar: (x₄)

- Quais as restrições da alocação de recursos?
 - Espaço (hectares): (400)
 - Preparo terreno (\$): (500.000)
 - Mão de obra (homens/dia): (10.000)
- Quais as restrições de demanda?
 - Sem restricões
- Existem outras restrições?
 - Não

- Qual o objetivo do problema?
- Qual o lucro por produto (hectare)?

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto (hectare)?

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto (hectare)?

Milho: (600)Trigo: (800)Soja: (900)Açúcar: (500)

 $max \ z = 600x_1 + 800x_2 + 900x_3 + 500x_4$

Prob. Produção

- Qual o objetivo do problema?
 - Maximizar o lucro
- Qual o lucro por produto (hectare)?

Milho: (600)Trigo: (800)Soja: (900)Acúcar: (500)

$$max \ z = 600x_1 + 800x_2 + 900x_3 + 500x_4$$

Prob. Produção

- Restrição 1: Espaço (hectares)
 - Milho: (1
 - Trigo: (1
 - Soja: (1)
 - Açúcar: (1)

$$x_1 + x_2 + x_3 + x_4 \le 400$$

- Restrição 2: Preparo do terreno (\$)
 - Milho: (1000)
 - Trigo: (1200)
 - Soja: (:
 - Açúcar: (1500)

 $1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \le 500000$

Prob. Produção

- Restrição 1: Espaço (hectares)
 - Milho: (1)
 - Trigo: (1)
 - Soja: (1)
 - Açúcar: (1)

$$x_1 + x_2 + x_3 + x_4 \le 400$$

- Restrição 2: Preparo do terreno (\$)
 - Milho: (1000
 - Trigo: (1200)
 - Soia: (1200)
 - Açúcar: (1500)

 $1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \le 500000$

Problema Alocação Recursos [Prado, 2016]

Restrições:

- Restrição 1: Espaço (hectares)
 - Milho: (1)
 - Trigo: (1)
 - Soja: (1)
 - Açúcar: (1)

$$x_1 + x_2 + x_3 + x_4 \le 400$$

- Restrição 2: Preparo do terreno (\$)
 - Milho: (1000
 - Trigo: (1200)
 - Soja: (1200)
 - Açúcar: (1500)

 $1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \le 500000$

Prob. Produção

• Restrição 1: Espaço (hectares)

Milho: (1)Trigo: (1)Soja: (1)Acúcar: (1)

$$x_1 + x_2 + x_3 + x_4 \le 400$$

• Restrição 2: Preparo do terreno (\$)

Milho: (1000)Trigo: (1200)Soja: (1200)Acúcar: (1500)

$$1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \le 500000$$

- Restrição 1: Espaço (hectares)
 - Milho: (1)
 - Trigo: (1)
 - Soja: (1)
 - Açúcar: (1)

$$x_1 + x_2 + x_3 + x_4 \le 400$$

- Restrição 2: Preparo do terreno (\$)
 - Milho: (1000)Trigo: (1200)Soja: (1200)
 - Açúcar: (1500)

$$1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \le 500000$$

- Restrição 3: Mão de obra (homens/dia)

Problema Alocação Recursos [Prado, 2016]

Restrições:

Prob. Produção

• Restrição 3: Mão de obra (homens/dia)

Milho: (20)Trigo: (30)

• Soja: (25)

• Açúcar: (28)

 $20x_1 + 30x_2 + 25x_3 + 28x_4 \le 10000$

Prob. Produção

• Restrição 3: Mão de obra (homens/dia)

Milho: (20)Trigo: (30)

• Soja: (25)

• Açúcar: (28)

$$20x_1 + 30x_2 + 25x_3 + 28x_4 \le 10000$$

Problema Alocação Recursos [Prado, 2016]

Sumarizando...

$$\max \ z = 600x_1 + 800x_2 + 900x_3 + 500x_4$$

$$\text{suj. a:} \quad x_1 + x_2 + x_3 + x_4 \leq 400 \qquad \text{(espaço)}$$

$$1000x_1 + 1200x_2 + 1200x_3 + 1500x_4 \leq 500000 \qquad \text{(preparo terreno)}$$

$$20x_1 + 30x_2 + 25x_3 + 28x_4 \leq 10000 \qquad \text{(mão de obra)}$$

$$x_1, x_2, x_3, x_4 \geq 0 \quad \text{(não negatividade)}$$

Problema Alocação Recursos [Silva et al., 2010]⁶

⁶Apud. [Diego Mello da Silva, 2016]

O departamento de marketing de uma empresa estuda a forma mais econômica de aumentar em 30% as vendas de cada um dos seus dois produtos, P_1 e P_2 . As alternativas são:

- Investir em um programa institucional com outras empresas do mesmo ramo. Este programa requer um investimento mínimo de \$3.000,00 e deve proporcionar um aumento de 3% nas vendas de cada produto, para cada \$1.000,00 investidos;
- ② Investir diretamente na divulgação dos produtos. Cada \$1.000,00 investidos em P_1 retornam um aumento de 4% nas vendas, enquanto que para P_2 o aumento é de 10%.

A empresa dispõe de \$10.000,00 para este empreendimento.

Formule o problema de programação linear que faça alocação de recursos para cada atividade.

O departamento de marketing de uma empresa estuda <u>a forma mais econômica</u> de aumentar em 30% as vendas de cada um dos seus dois produtos, P_1 e P_2 . As alternativas são:

- Investir em um programa institucional com outras empresas do mesmo ramo. Este programa requer um investimento mínimo de \$3.000,00 e deve proporcionar um aumento de 3% nas vendas de cada produto, para cada \$1.000,00 investidos;
- ② Investir diretamente na divulgação dos produtos. Cada \$1.000,00\$ investidos em P_1 retornam um aumento de 4% nas vendas, enquanto que para P_2 o aumento é de 10%.

A empresa dispõe de \$10.000,00 para este empreendimento.

Formule o problema de programação linear que faça alocação de recursos para cada atividade.

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%

- Qual o objetivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?

- Qual o objetivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)

- Qual o obietivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?

- Qual o obietivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?
 - Investimento institucional mínimo: (\$3000)
 - Aumento mínimo produto P₁: (30%)
 - Aumento mínimo produto P2: (30%)

- Qual o obietivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?
 - Investimento institucional mínimo: (\$3000)
 - Aumento mínimo produto P₁: (30%)
 - Aumento mínimo produto P2: (30%)
- Quais as restricões de verba?

- Qual o obietivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?
 - Investimento institucional mínimo: (\$3000)
 - Aumento mínimo produto P₁: (30%)
 - Aumento mínimo produto P2: (30%)
- Quais as restricões de verba?
 - Total disponível: (\$10000)

- Qual o obietivo do problema?
 - Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?
 - Investimento institucional mínimo: (\$3000)
 - Aumento mínimo produto P₁: (30%)
 - Aumento mínimo produto P2: (30%)
- Quais as restricões de verba?
 - Total disponível: (\$10000)
- Existem outras restrições?

• Qual o obietivo do problema?

Prob. Produção

- Minimizar o custo para aumentar as vendas em 30%
- Quais as possibilidades de alocação de recursos?
 - Investimento institucional: (x_1)
 - Investimento produto P_1 : (x_2)
 - Investimento produto P_2 : (x_3)
- Quais as restrições da alocação de recursos?
 - Investimento institucional mínimo: (\$3000)
 - Aumento mínimo produto P₁: (30%)
 - Aumento mínimo produto P2: (30%)
- Quais as restricões de verba?
 - Total disponível: (\$10000)
- Existem outras restrições?
 - Não

Prof. Felipe Reis

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Minimizar o custo⁷
- Qual o custo de cada investimento?

⁷Custo será minimizado em função do mínimo de \$1000 por investimento

- Qual o objetivo do problema?
 - Minimizar o custo⁷
- Qual o custo de cada investimento?
 - Investimento institucional⁸: (\$1000)
 - Investimento produto P_1 : (\$1000)
 - Investimento produto P_2 : (\$1000)

⁷Custo será minimizado em função do mínimo de \$1000 por investimento

⁸Investimento inicial será tratado em uma restrição

Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo⁷
- Qual o custo de cada investimento?
 - Investimento institucional⁸: (\$1000)
 - Investimento produto P_1 : (\$1000)
 - Investimento produto P_2 : (\$1000)

$$min \ z = 1000x_1 + 1000x_2 + 1000x_3$$

⁷Custo será minimizado em função do mínimo de \$1000 por investimento

⁸Investimento inicial será tratado em uma restrição

Restrições:

Prob. Produção

- Restrição 2: Aumento mínimo produto P_1 : (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_1 : (4%)

Prob. Produção

$$x_1 \geq 3$$

- Restrição 2: Aumento mínimo produto P₁: (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_1 : (4%)

$$3x_1 + 4x_2 \ge 30$$

Prob. Produção

$$x_1 \geq 3$$

- Restrição 2: Aumento mínimo produto P₁: (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_1 : (4%)

$$3x_1 + 4x_2 \ge 30$$

Restrições:

Prob. Produção

$$x_1 \geq 3$$

- Restrição 2: Aumento mínimo produto P₁: (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_1 : (4%)

$$3x_1+4x_2\geq 30$$

Prob. Produção

- Restrição 3: Aumento mínimo produto P_2 : (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_2 : (10%)

$$3x_1 + 10x_3 \ge 30$$

Restrição 4: Total disponível para investimento: (10000)

$$x_1+x_2+x_3\leq 10$$

Prob. Produção

- Restrição 3: Aumento mínimo produto P2: (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_2 : (10%)

$$3x_1 + 10x_3 \ge 30$$

Restrição 4: Total disponível para investimento: (10000)

$$x_1+x_2+x_3\leq 10$$

Prob. Produção

- Restrição 3: Aumento mínimo produto P_2 : (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_2 : (10%)

$$3x_1+10x_3\geq 30$$

Restrição 4: Total disponível para investimento: (10000)

$$x_1 + x_2 + x_3 \le 10$$

Prob. Produção

- Restrição 3: Aumento mínimo produto P_2 : (30%)
 - Investimento institucional: (3%)
 - Investimento produto P_2 : (10%)

$$3x_1+10x_3\geq 30$$

• Restrição 4: Total disponível para investimento: (10000)

$$x_1+x_2+x_3\leq 10$$

Problema Alocação Recursos [Silva et al., 2010]

Sumarizando...

$$min\ z=1000x_1+1000x_2+1000x_3$$
 suj. a: $x_1\geq 3$ (invest. instituc. mín) $3x_1+4x_2\geq 30$ (aumento mínimo P_1) $3x_1+10x_3\geq 30$ (aumento mínimo P_2) $x_1+x_2+x_3\leq 10$ (disponibilidade \$) $x_1, x_2, x_3\geq 0$ (não negatividade)

PROBLEMAS DE TRANSPORTE

Problema de Transporte [Corrar and Theóphilo, 2009]⁹

⁹Apud. [Diego Mello da Silva, 2016]

A Transportes Ótimos é responsável pela distribuição de produtos de uma indústria de refrigerantes, que possui duas fábricas e três depósitos. A administração da distribuidora está empenhada em reduzir os custos de transporte dos produtos das fábricas para os depósitos. O gerente da empresa reuniu dados relativos ao próximo período e elaborou tabelas com propósito de determinar a distribuição ótima dos produtos. A Fábrica 1 produz o equivalente à 160 viagens de caixas de refrigerante/dia, enquanto que a Fábrica 2 produz 100 viagens de caixas/dia. A capacidade de armazenamento dos depósitos são, respectivamente, 100, 120 e 80 caminhões completos. Os custos de remessa por caminhão, com carga total, para cada trajeto estão descritos na tabela abaixo:

Fábrica	Depósito 1	Depósito 2	Depósito 3
Fab. 1	\$ 450	\$ 580	\$ 380
Fab. 2	\$ 630	\$ 720	\$ 410

Fonte: [Corrar and Theóphilo, 2009] apud. [Diego Mello da Silva, 2016]

Formule o problema de programação linear para definição da quantidade de caminhões que devem ser enviados de cada fábrica para cada depósito, de modo que o custo de transporte seja mínimo.

- Qual o objetivo do problema?

- Qual o objetivo do problema?
 - Minimizar o custo de transporte

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Quais as variáveis de transporte?

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Quais as variáveis de transporte?
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Quais as variáveis de transporte?
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

Fábrica A \rightarrow Depósito B: (x_{FabDep})

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões
 - Produção Depósito 3: (80 caminhões)
- Existem outras restricões
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões)
 - Produção Depósito 3: (80 caminhões)
- Existem outras restrições
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões)
 - Produção Depósito 3: (80 caminhões)
- Existem outras restricões
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões
 - Produção Depósito 3: (80 caminhões)
- Existem outras restrições
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões)
 - Produção Depósito 3: (80 caminhões)
- Existem outras restrições
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões)
 - Produção Depósito 3: (80 caminhões)
- Existem outras restrições?
 - Não

- Quais as restrições de produção?
 - Produção Fábrica 1: (160 caminhões de refrigerante)
 - Produção Fábrica 2: (100 caminhões de refrigerante)
- Quais as restrições de armazenamento?
 - Produção Depósito 1: (100 caminhões)
 - Produção Depósito 2: (120 caminhões)
 - Produção Depósito 3: (80 caminhões)
- Existem outras restrições?
 - Não

Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Qual o custo por transporte de mercadorias?
 - Fábrica 1 → Depósito 1: (\$450)
 - Fábrica 1 → Denósito 2: (\$580)
 - Fábrica 1 → Depósito 3: (\$380)
 - Fábrica 2 \ Dopásito 1: (\$630)
 - Fabrica 2 \rightarrow Deposito 1: (\$630)
 - Fábrica 2 → Depósito 2: (\$720)
 - Fábrica 2 → Depósito 3: (\$410)

```
min \ z = 450x_{11} + 580x_{12} + 380x_{13} + 630x_{21} + 720x_{22} + 410x_{23}
```


Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Qual o custo por transporte de mercadorias?

```
    Fábrica 1 → Depósito 1: ($450)
    Fábrica 1 → Depósito 2: ($580)
    Fábrica 1 → Depósito 3: ($380)
    Fábrica 2 → Depósito 1: ($630)
    Fábrica 2 → Depósito 2: ($720)
    Fábrica 2 → Depósito 3: ($410)
```

```
min\ z = 450x_{11} + 580x_{12} + 380x_{13} + 630x_{21} + 720x_{22} + 410x_{23}
```


Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Qual o custo por transporte de mercadorias?
 - Fábrica 1 → Depósito 1: (\$450)
 - Fábrica 1 → Depósito 2: (\$580)
 - Fábrica 1 → Depósito 3: (\$380)
 - Fábrica 2 → Depósito 1: (\$630)
 - Fábrica 2 → Depósito 2: (\$720)
 - Fábrica 2 → Depósito 3: (\$410)

Problema Transporte [Corrar and Theophilo, 2009]

Função Objetivo:

- Qual o objetivo do problema?
 - Minimizar o custo de transporte
- Qual o custo por transporte de mercadorias?
 - Fábrica 1 → Depósito 1: (\$450)
 - Fábrica 1 → Depósito 2: (\$580)
 - Fábrica 1 → Depósito 3: (\$380)
 - Fábrica 2 → Depósito 1: (\$630)
 - Fábrica 2 → Depósito 2: (\$720)

 - Fábrica 2 → Depósito 3: (\$410)

$$min\ z = 450x_{11} + 580x_{12} + 380x_{13} + 630x_{21} + 720x_{22} + 410x_{23}$$

- Restrição 1: Produção Fábrica 1 (160 caminhões)
 - Fábrica $1 \rightarrow \text{Depósito } 1$: (x_{11})
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica $1 \rightarrow \text{Depósito } 3$: (x_1)

$$x_{11} + x_{12} + x_{13} = 160$$

- Restrição 2: Produção Fábrica 2 (100 caminhões)
 - Fábrica 2 \rightarrow Depósito 1: $(x_{21}]$
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

$$x_{21} + x_{22} + x_{23} = 100$$

- Restrição 1: Produção Fábrica 1 (160 caminhões)
 - Fábrica $1 \rightarrow \text{Depósito } 1$: (x_{11})
 - Fábrica $1 \rightarrow \text{Depósito } 2$: (x_{12})
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})

$$x_{11} + x_{12} + x_{13} = 160$$

- Restrição 2: Produção Fábrica 2 (100 caminhões)
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22}
 - Fábrica 2 → Depósito 3: (x₂₃)

$$x_{21} + x_{22} + x_{23} = 100$$

- Restrição 1: Produção Fábrica 1 (160 caminhões)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica $1 \rightarrow \text{Depósito } 2$: (x_{12})
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})

$$x_{11} + x_{12} + x_{13} = 160$$

- Restrição 2: Produção Fábrica 2 (100 caminhões)
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22}
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

$$x_{21} + x_{22} + x_{23} = 100$$

- Restrição 1: Produção Fábrica 1 (160 caminhões)
 - Fábrica $1 \to \text{Depósito } 1$: (x_{11})
 - Fábrica $1 \rightarrow \text{Depósito } 2$: (x_{12})
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})

$$x_{11} + x_{12} + x_{13} = 160$$

- Restrição 2: Produção Fábrica 2 (100 caminhões)
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{21} + x_{22} + x_{23} = 100$$

Restrições:

- Restrição 1: Produção Fábrica 1 (160 caminhões)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica $1 \rightarrow \text{Depósito } 2: (x_{12})$
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})

$$x_{11} + x_{12} + x_{13} = 160$$

- Restrição 2: Produção Fábrica 2 (100 caminhões)
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{21} + x_{22} + x_{23} = 100$$

Prob. Produção

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - \bullet Fabrica 1 \rightarrow Deposito 1: (x_{11})
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica $1 \to \text{Depósito } 2$: (x_{12})
 - Fábrica 2 → Depósito 2: (x₂₂)

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80
 - Fábrica 1 → Depósito 3: (x₁₃
 - Fábrica 2 → Depósito 3: (xo₃)

Prob. Produção

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})
 - Fábrica 2 → Depósito 3: (x₂₂)

Prob. Produção

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80)
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})
 - Fábrica 2 → Depósito 3: (x₂₃)

Restrições:

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica 1 \rightarrow Depósito 2: (x_{12})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

Prob. Produção

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica $1 \rightarrow \text{Depósito } 2: (x_{12})$
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80)
 - Fábrica 1 \rightarrow Depósito 3: (x_{13})
 - Fábrica 2 → Depósito 3: (x₂₃)

Restrições:

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica $1 \rightarrow \text{Depósito } 2: (x_{12})$
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80)
 - Fábrica $1 \rightarrow \text{Depósito } 3: (x_{13})$
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

$$x_{13} + x_{23} \le 80$$

- Restrição 3: Capacidade armazenamento Depósito 1 (100)
 - Fábrica $1 \rightarrow \text{Depósito } 1: (x_{11})$
 - Fábrica 2 \rightarrow Depósito 1: (x_{21})

$$x_{11} + x_{21} \le 100$$

- Restrição 4: Capacidade armazenamento Depósito 2 (120)
 - Fábrica $1 \rightarrow \text{Depósito } 2$: (x_{12})
 - Fábrica 2 \rightarrow Depósito 2: (x_{22})

$$x_{12} + x_{22} \le 120$$

- Restrição 5: Capacidade armazenamento Depósito 3 (80)
 - Fábrica $1 \rightarrow \text{Depósito } 3: (x_{13})$
 - Fábrica 2 \rightarrow Depósito 3: (x_{23})

$$x_{13} + x_{23} \le 80$$

Sumarizando...

min z =
$$450x_{11} + 580x_{12} + 380x_{13} + 630x_{21} + 720x_{22} + 410x_{23}$$

suj. a: $x_{11} + x_{12} + x_{13} = 160$ (capacidade produção Fábrica 1) $x_{21} + x_{22} + x_{23} = 100$ (capacidade produção Fábrica 2) $x_{11} + x_{21} \le 100$ (capacidade armaz. Depósito 1) $x_{12} + x_{22} \le 120$ (capacidade armaz. Depósito 2) $x_{13} + x_{23} \le 80$ (capacidade armaz. Depósito 3) $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$ (não negatividade)

Referências I

Prob. Produção

Belfiore, P. and Fávero, L. P. (2013).

Pesquisa operacional para cursos de engenharia. Elsevier, 1 edition.

Corrar, J. L. and Theóphilo, C. R. (2009).

Pesquisa Operacional para Decisão em Contabilidade e Administração. Editora Atlas. 2 edition.

Diego Mello da Silva (2016).

Pesquisa Operacional - Slides de Aula.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

Goldbarg, M. C. and Luna, H. P. L. (2005).

Otimização combinatória e programação linear: modelos e algoritmos. Elsevier. 2 edition.

Moreira, D. A. (2013).

Pesquisa operacional: curso introdutório. 2a edição revista e atualizada. Cengage Learning, 2 edition.

Prado, D. (2016).

Programação Linear (Pesquisa Operacional Livro 1).

Silva, E. M. d., Silva, E. M. d., and Gonçalves, V. (2010).

Pesquisa Operacional para os Cursos de Administração e Engenharia. Editora Atlas. 4 edition.