### Пример

Вычислим объем тела, образованного вращением параболы  $y^2=2x$  вокруг оси OX при  $0\leq x\leq 1.$ 





Рис. 9: Параболоид вращения

# 3.4 Площадь поверхности тела вращения

Площадь произвольной криволинейной поверхности в общем случае не удается ввести по аналогии с определением длины кривой. Однако если поверхность есть поверхность тела вращения, то подобное определение становится корректным. Именно о нем пойдет речь в настоящем параграфе. Общее определение площади поверхности будет дано позже при рассмотрении поверхностных интегралов.

# Определение

Пусть поверхность  $\Sigma$  образована вращением вокруг оси OX плоской спрямляемой кривой. Впишем в кривую ломаную  $M_0M_1$  . . .  $M_n$ . Обозначим за  $S_n$  площадь поверхности, образованной вращением вокруг оси OX данной ломаной. Рассмотрим предел  $S_n$  при измельчении разбиения кривой (то есть при  $\max_i |M_{i-1}M_i| \to 0$ ). Если данный предел существует и конечен и не зависит от выбора точек  $M_i$ , то он называется площадью поверхности вращения  $\Sigma$ :

$$S = \lim_{\max_{i} |M_{i-1}M_{i}| \to 0} S_{n}. \tag{3.13}$$

Найдем формулу для вычисления площади поверхности. Площадь поверхности, полученной вращением ломаной, равна сумме площадей боковых поверхностей усеченных конусов ( $S_{\text{усеч.конус}} = \pi(r+R)L$ , где R – радиус нижнего основания усеченного конуса, r – радиус верхнего основания, L – образующая):



Рис. 10: Усеченный конус, вписанный в поверхность

$$S_{n} = \sum_{i=1}^{n} \pi(y_{i-1} + y_{i}) \cdot |M_{i-1}M_{i}| =$$

$$= \pi \sum_{i=1}^{n} (2y_{i-1} + y_{i} - y_{i-1}) \cdot |M_{i-1}M_{i}| =$$

$$= 2\pi \sum_{i=1}^{n} y_{i-1} \cdot |M_{i-1}M_{i}| + \pi \sum_{i=1}^{n} (y_{i} - y_{i-1}) \cdot |M_{i-1}M_{i}|.$$
(3.14)

Покажем, что второе слагаемое стремится к нулю при измельчении разбиения. Так как

$$\max_{i} |y_i - y_{i-1}| \le /$$
Катет меньше гипотенузы $/ \le \max_{i} |M_{i-1}M_i| \to 0$ ,

то для второго слагаемого будет выполнено:

$$\left| \sum_{i=1}^{n} (y_i - y_{i-1}) \cdot |M_{i-1}M_i| \right| \le \sum_{i=1}^{n} |y_i - y_{i-1}| \cdot |M_{i-1}M_i| \le$$

$$\leq \max_{i} |y_i - y_{i-1}| \underbrace{\sum_{i=1}^{n} |M_{i-1}M_i|}_{\leq l} \leqslant \max_{i} |y_i - y_{i-1}| \cdot l \to 0,$$

где l — длина кривой. Сделав предельный переход в формуле (3.14), получим:

$$S = \lim_{\substack{\max |M_{i-1}M_i| \to 0}} S_n = \lim_{\substack{\max |M_{i-1}M_i| \to 0}} 2\pi \sum_{i=1}^n y_{i-1} \cdot |M_{i-1}M_i|.$$
 (3.15)

Пусть кривая задана уравнением y = f(x), где f(x) – непрерывно дифференцируемая функция,  $x \in [a, b]$ . Согласно формуле (3.4), длина отрезка ломаной равна  $\sqrt{1 + (f'(\xi_i))^2}(x_i - x_{i-1})$ . Следовательно,

$$S = \lim_{\substack{\max \\ i} |M_{i-1}M_i| \to 0} 2\pi \sum_{i=1}^n \underbrace{f(x_{i-1})}_{y_{i-1}} \sqrt{1 + (f'(\xi_i))^2} (x_i - x_{i-1}).$$

Полученная сумма не является интегральной, поскольку функции f и f' вычислены в разных точках, но можно доказать что она имеет тот же предел. Делается по аналогии с получением формулы для длины кривой, заданной параметрически (параграф 3.2, формула (3.8)). Таким образом, площадь поверхности тела вращения равна:

$$S = 2\pi \int_{a}^{b} f(x) \underbrace{\sqrt{1 + (f'(x))^{2}} dx}.$$
 (3.16)

Здесь dl – это дифференциал длины дуги кривой.

#### Замечание

В случае если кривая задана параметрически или в полярных координатах, то формула (3.16) сохраняется с точностью до замены dl на соответсвующее выражение в данных координатах.

### Пример

Найдем площадь поверхности удлиннённого эллипсоида вращения (то есть эллипса  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , вращаемого вокруг большой оси):

$$S = 2\pi \int_{-a}^{a} y\sqrt{1 + y'^2} dx = 2\pi \int_{-a}^{a} \sqrt{y^2 + (yy')^2} dx.$$

Продифференцируем уравнение  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , получим:

$$\frac{2x}{a^2} + \frac{1}{b^2} \cdot 2yy' = 0 \implies yy' = -\frac{b^2x}{a^2}.$$

Кроме того,

$$y^2 = b^2 \left( 1 - \frac{x^2}{a^2} \right).$$

Следовательно,

$$S = 2\pi \int_{-a}^{a} \sqrt{b^2 - \frac{b^2 x^2}{a^2} + \frac{b^4 x^2}{a^4}} dx = 2\pi b \int_{-a}^{a} \sqrt{1 - \frac{x^2}{a^2} \left(1 - \frac{b^2}{a^2}\right)} dx =$$

$$/ \text{Эксцентриситет} \quad e^2 = \frac{c^2}{a^2} = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2} /$$

$$= 2\pi b \int_{-a}^{a} \sqrt{1 - \frac{e^2 x^2}{a^2}} dx =$$

/Интеграл от четной функции по симметричному промежутку/

$$= 4\pi b \int_{0}^{a} \sqrt{1 - \frac{e^{2}x^{2}}{a^{2}}} dx = \frac{4\pi ba}{e} \int_{0}^{a} \sqrt{1 - \left(\frac{ex}{a}\right)^{2}} d\left(\frac{ex}{a}\right) =$$

$$= \left/ t = \frac{ex}{a} \right/ = \frac{4\pi ba}{e} \int_{0}^{e} \sqrt{1 - t^{2}} dt.$$

Вычислим  $\int \sqrt{1-t^2}dt$ .

$$\int \sqrt{1 - t^2} dt = \left/ u = \sqrt{1 - t^2}, \ dv = dt, \quad v = t, \ du = -\frac{t}{\sqrt{1 - t^2}} dt \right/$$

$$= t\sqrt{1 - t^2} + \int \frac{t^2 - 1 + 1}{\sqrt{1 - t^2}} dt = t\sqrt{1 - t^2} - \int \sqrt{1 - t^2} dt + \underbrace{\int \frac{dt}{\sqrt{1 - t^2}}}_{\text{arcsin } t + C} \Rightarrow$$

$$\Rightarrow \int \sqrt{1 - t^2} dt = \frac{1}{2} (t\sqrt{1 - t^2} + \arcsin t + C).$$

Следовательно,

$$S = \frac{4\pi ba}{e} \cdot \frac{1}{2} \left( t \sqrt{1 - t^2} \Big|_0^e + \arcsin t \Big|_0^e \right) = 2\pi ba \left( \sqrt{1 - e^2} + \frac{\arcsin e}{e} \right) =$$

$$= \Big/ \Im \text{ксцентриситет эллипса } e = \sqrt{1 - \frac{b^2}{a^2}} \Big/ = 2\pi b^2 + 2\pi ba \frac{\arcsin \sqrt{1 - \frac{b^2}{a^2}}}{\sqrt{1 - \frac{b^2}{a^2}}}.$$

### 3.5 Центр тяжести

В физических задачах важную роль играет понятие центра масс. Центр масс – это точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого. В случае систем материальных точек и тел с однородной по объёму плотностью в однородном гравитационном поле центр масс совпадает с центром тяжести (то есть с точкой приложения равнодействующей гравитационных сил), хотя в общем случае это разные понятия. Например, если рассматривать малое тело на поверхности Земли, то силы тяжести во всех его точках можно считать одинаковыми по величине и параллельными друг другу. В этой ситуации точка приложения равнодействующей этих сил (центр тяжести) совпадет с центром масс. Если же рассматривать достаточно большое тело (настолько большое, что в пределах этого тела кривизна земной поверхности начинает играть существенную роль), то гравитационные силы в разных его точках будут непараллельны и могут отличаться по величине. Здесь точка приложения равнодействующей этих сил (центр тяжести) уже не будет совпадать с центром масс.

В настоящем параграфе мы будем рассматривать физические тела относительно малого размера, для которых описанное различие между центром тяжести и центром масс пренебрежимо мало. То есть мы будем отождествлять эти понятия. Найдем центры тяжести различных геометрических объектов.

# 1. Центр тяжести системы материальных точек

Положение центра масс системы материальных точек определяется следующим образом:

$$x_{c} = \frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}, \qquad y_{c} = \frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}},$$
(3.17)

где  $(x_c, y_c)$  – координаты центра масс,  $x_i$  – координата i-ой точки с массой  $m_i$ .

#### Замечание

В трехмерном пространстве к вышеперечисленным координатам следует добавить еще одну:

$$z_c = \frac{\sum\limits_{i=1}^n m_i y_i}{\sum\limits_{i=1}^n m_i}.$$

### 2. Центр тяжести плоской кривой

Рассмотрим плоскую кривую с плотностью  $\rho(x, y)$ , заданную уравнением y = f(x), где f(x) – непрерывно дифференцируемая функция на отрезке [a, b]. Под плотностью мы подразумеваем линейную плотность распределения массы, то есть массу, приходящуюся на единицу длины кривой. Координаты центра тяжести плоской кривой определяются формулами:

$$\begin{cases} x_c = \frac{1}{M} \int_a^b \rho(x, f(x)) \cdot x \sqrt{1 + (f'(x))^2} dx, \\ y_c = \frac{1}{M} \int_a^b \rho(x, f(x)) \cdot f(x) \sqrt{1 + (f'(x))^2} dx, \end{cases}$$
(3.18)

где 
$$M = \int_{a}^{b} \rho(x, f(x)) \sqrt{1 + (f'(x))^2} dx$$
 – масса кривой. (3.19)

# Теорема 1 (Первая теорема Гульдина)

Площадь поверхности, полученной при вращении дуги однородной плоской кривой ( $\rho=1$ ) вокруг некоторой оси (лежащей в её плоскости и не пересекающей её), равняется произведению длины вращающейся дуги на длину пути, описанного при этом вращении центром тяжести дуги.

# Доказательство:

Пусть кривая, заданная уравнением y = f(x), где f(x) – непрерывно дифференцируемая функция на отрезке [a, b], вращается вокруг оси OX.

Так как  $\rho = 1$ , то масса кривой согласно формуле (3.19), будет равна:

$$M = \int_{a}^{b} \underbrace{\sqrt{1 + (f'(x))^2} dx}_{dl} = l.$$
 (3.20)

Тогда по формуле (3.18):

$$My_c = ly_c = \int_a^b f(x)\sqrt{1 + (f'(x))^2}dx.$$
 (3.21)

Согласно формуле (3.16), площадь поверхности тела вращения равна:

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx = 2\pi y_{c} \cdot l.$$
 (3.22)

Заметим, что  $2\pi y_c$  – это длина окружности, пройденная центром тяжести кривой при вращении. Что и требовалось доказать.

# 3. Центр тяжести плоской фигуры

Найдем центр тяжести однородной плоской фигуры с плотностью  $\rho=1$ , ограниченной графиками функций  $y=f_1(x)$  и  $y=f_2(x)$  снизу и сверху соответственно, а также вертикальными прямыми x=a и x=b с боков.



Рис. 11: Центр тяжести плоской фигуры

Координаты центра тяжести данной фигуры даются формулами:

$$\begin{cases} x_c = \frac{1}{S} \int_a^b x(f_2(x) - f_1(x)) dx, \\ y_c = \frac{1}{2S} \int_a^b (f_2^2(x) - f_1^2(x)) dx, \end{cases}$$
(3.23)

где 
$$S = \int_{a}^{b} (f_2(x) - f_1(x))dx$$
 – площадь фигуры. (3.24)

## Теорема 2 (Вторая теорема Гульдина)

Объём тела, полученный при вращении плоской фигуры вокруг некоторой оси (лежащей в её плоскости и не пересекающей её), равен произведению площади вращающейся фигуры на длину пути, описанного её центром тяжести при вращении.

### Доказательство:

Пусть плоская фигура, описанная выше, вращается вокруг оси OX. По формуле (3.23) получим:

$$2y_c \cdot S = \int_a^b (f_2^2(x) - f_1^2(x)) dx. \tag{3.25}$$

Тогда согласно формуле (3.12), объем полученного тела вращения можно вычислить как разность двух объемов, полученных при вращении кривых  $y = f_2(x)$  и  $y = f_1(x)$  соответственно:

$$V = \pi \int_{a}^{b} f_{2}^{2}(x)dx - \pi \int_{a}^{b} f_{1}^{2}(x)dx = \pi \int_{a}^{b} (f_{2}^{2}(x) - f_{1}^{2}(x))dx = 2\pi y_{c} \cdot S. \quad (3.26)$$

Заметим, что  $2\pi y_c$  – это длина окружности, пройденная центром тяжести фигуры при вращении. Что и требовалось доказать.

## Пример 1

Найдем объём тора, образованного вращением круга радиуса r вокруг

некоторой оси, лежащей в плоскости круга на расстоянии a от его центра. По второй теореме Гульдина (формула (3.26)) получим:

$$V = 2\pi a \cdot S = 2\pi a \cdot \pi r^2 = 2\pi^2 a r^2.$$

### Пример 2

Найдем площадь поверхности тора, образованного вращением круга радиуса r вокруг некоторой оси, лежащей в плоскости круга на расстоянии a от его центра. По первой теореме Гульдина (формула (3.22)) получим:

$$S = 2\pi a \cdot l = 2\pi a \cdot 2\pi r = 4\pi^2 ar.$$

### Пример 3

Найдем координаты центра тяжести полукруга радиуса R (смотри рисунок (3.5)). Для этого рассмотрим его вращение вокруг оси OX, в результате которого получается шар радиуса R. Объем шара равен:  $V=\frac{4}{3}\pi R^3$ . Площадь вращающегося полукруга равна  $\frac{\pi R^2}{2}$ . Следовательно, по второй теореме Гульдина (формула (3.26)) получим:

$$\underbrace{\frac{4}{3}\pi R^3}_{V} = 2\pi y_c \cdot \underbrace{\frac{\pi}{2}R^2}_{S} \implies y_c = \frac{4}{3}\frac{R}{\pi}.$$

Из симметрии полукруга ясно, что  $x_c = 0. \label{eq:xc}$ 



Рис. 12: Полукруг радиуса R

# Пример 4

Найдем центр тяжести полуокружности радиуса R. Аналогично примеру 3, рассмотрим ее вращение вокруг оси OX, в результате которого получается сфера радиуса R. Площадь поверхности сферы известна:  $S=4\pi R^2$ . Длина вращающейся полуокружности равна  $l=\pi R$ . Тогда по первой

теореме Гульдина (формула (3.22)) получим:

$$\underbrace{4\pi R^2}_{S} = 2\pi y_c \cdot \underbrace{\pi R}_{l} \Rightarrow y_c = \frac{2}{\pi} R.$$

Из симметрии полуокружности очевидно, что  $x_c = 0$ .