Filozoficzne i metodologiczne aspekty indukcji eliminacyjnej

Szymon Klarman

Problem Indukcji Eliminacyjnej (I)

Problem Indukcji Eliminacyjnej (II)

Na mocy jakich reguł wolno prawomocnie zredukować liczbę konkurencyjnych hipotez, jeśli żadna z nich nie może zostać odrzucona na mocy aktualnej wiedzy?

$$H = \{h_1, h_2, ..., h_n\}$$
 - skończony zbiór hipotez

w - aktualna wiedza badacza

1.h) w '
$$h_1 \vee h_2 \vee ... \vee h_i \vee ... \vee h_n$$

2.h) dla każdego $i\neq j$ jest tak, że w ' $\neg(h_i \land h_j)$

Metoda Indukcji Eliminacyjnej (MIE)

MIE to metoda wnioskowania, której:

- przesłanką jest niepusty zbiór H spełniający warunki 1.h i 2.h
- wnioskiem jest niepusty zbiór H', taki że H'⊆H
- regułą eliminacji jest pewna indukcyjna reguła wnioskowania wraz z określonym kryterium eliminacji

Demonstratywna MIE

p – warunki początkowe; $E_p = \{e_1, e_2, ..., e_m\}$ – możliwe wyniki obserwacji dla p;

1.*d*) Dla dowolnego p oraz $h_i \in H$ istnieje dokładnie jedno takie $e_k \in E$, że: $h_i \wedge p$ ' e_k

2.*d*) Dla każdego $i \neq j$ istnieje takie p, że: $h_i \wedge p \cdot e_k \text{ oraz } h_i \wedge p - e_k$

Demonstratywna MIE - Eliminacja

Eliminacja hipotezy na mocy sfalsyfikowania:

Jeśli
$$h_i \wedge p$$
 ' e_k to $p \wedge \neg e_k$ ' $\neg h_i$

$$El(h_i) \Leftrightarrow \neg h_i$$

Schemat eliminacji:

$$\frac{h_1 \vee h_2 \vee ... \vee h_{i-1} \vee h_i \vee h_{i+1} \vee ... \vee h_n}{\neg h_i}$$

$$\frac{h_1 \vee h_2 \vee ... \vee h_{i-1} \vee h_{i+1} \vee ... \vee h_n}{\neg h_i}$$

Probabilistyczna MIE

```
p – warunki początkowe;

E_p = \{e_1, e_2, ..., e_m\} – możliwe wyniki obserwacji dla p;

P – funkcja prawdopodobieństwa;

0.h^*) dla każdego i jest tak, że: 0 > P(h_i) > 1

1.h^*) \sum_{i=1}^{n} P(h_i) = 1

2.h^*) dla każdego i \neq j jest tak, że: P(h_i \wedge h_j) = 0
```

- 1.*p*) Dla dowolnego p oraz $h_i \in H$ jest tak, że dla każdego $e_k \in E_p$ ustalona jest wartość prawdopodobieństwa warunkowego $P(e_k|h_i)$
- 2.p) Dla każdego $i\neq j$ istnieje takie p i takie $e_k \in E_p$, że $P(e_k|h_j) \neq P(e_k|h_j)$

Probabilistyczna MIE - Eliminacja

• Twierdzenie Bayesa:
$$P(h_i / e_k) = \frac{P(h_i)P(e/h_i)}{\sum_{i=1}^{n} P(h_i)P(e/h_i)}$$

- Eliminacja hipotez na mocy:
 - Zbieżności funkcji prawdopodobieństwa dla h_i w punkcie 0 w granicy nieskończonego ciągu eksperymentów:

$$EI(h_i) \Leftrightarrow \lim_{e} P(h_i \mid e) = 0$$

LUB

Osiągnięcia ustalonego progu odrzucania:

$$EI(h_i) \Leftrightarrow P(h_i) \leq r$$

Konwencjonalistyczna MIE

p – warunki początkowe; $E_p = \{e_1, e_2, ..., e_m\}$ – możliwe dla p; ε_p – "niezinterpretowana" obserwacja dokonana w wyniku p

- 1.k) Dla dowolnego p oraz $h_i \in H$ istnieje dokładnie jedno takie $e_k \in E$, że: $h_i \wedge p$ ' e_k
- 2.k) Dla dowolnego p i każdej $h_i \in H$ jest tak, że: $h_i \wedge p \mid \approx \varepsilon_p$

Konwencjonalistyczna MIE - Eliminacja

Konwencja "od dołu":

konw.

dla wybranego k ustala się: $\varepsilon \Leftrightarrow e_k$

Eliminacja hipotezy na mocy sfalsyfikowania:

Jeśli
$$h_i \wedge p$$
 ' e_k to $p \wedge \neg e_k$ ' $\neg h_i$

Konwencja "od góry":

- K miara wybranej "apriorycznej" własności hipotez (np. prostoty, siły eksplanacyjnej, itp.)
- Eliminacja hipotezy na mocy lokalnego zdominowania pod względem miary K przez inną hipotezę : El(h_i) ⇔ ∃_{i≠i}K(h_i) < K(h_i)

Zestawienie

Dem. MIE	Prob. MIE		Konw. MIE
$\neg h_{i}$	$\lim_{e} P(h_i \mid e) = 0$	$P(h_i) \leq r$	$\exists_{j \neq i} \mathcal{K}(h_i) < \mathcal{K}(h_j)$
Możliwość rozstrzygnięcia wyłącznie na mocy doświadczenia			Możliwość rozstrzygnięcia bez udziału doświadczenia
Nierównoważność empiryczna hipotez			Równoważność empiryczna hipotez
Korespondencyjna teoria prawdy			Brak korespondencji między zdaniem obserwacyjnym a doświadczeniem
Wnioskowanie niezawodne			Wnioskowanie indukcyjne
Założenie o istnieniu eksperymentu rozstrzygającego	Idealny postulat nieskończonej granicy badania	Arbitralność rozstrzygnięcia	

Model Decyzji Kognitywnej (MDK)

Holistyczne ujęcie problemu indukcji eliminacyjnej:

$$EI(H') \Leftrightarrow Ac(H-H')$$

- Akt akceptacji jako racjonalna decyzja w warunkach niepewności.
- Maksymalizacja użyteczności epistemicznej jako cel badania naukowego.
- Podstawowe dezyderaty badania naukowego: unikanie ryzyka błędu i dążenie do informacji.

Model Decyzji Kognitywnej (MDK) - Eliminacja

Dla pewnego $H=\{h_1, h_2, h_3\}$ oraz funkcji prawdopodobieństwa P:

<u>Akt</u>	Ryzyko błędu	Zawartość informacyjna
Brak eliminacji	0	0
<i>El</i> (<i>h</i> ₁)	$P(h_1)$	1/3
$EI(h_1 \lor h_2)$	$P(h_1)+P(h_2)$	2/3
$EI(h_1 \lor h_2 \lor h_3)$	1	1

Eliminacja hipotez na mocy kryterium maksymalizacji oczekiwanej użyteczności: $EI(H') \Leftrightarrow \max EU(H-H')$

Podsumowanie

- Ugruntowanie racjonalności MDK jako procedury indukcyjnej
- Uwzględnienie wielokryterialnego charakteru badania naukowego
- Wykorzystanie struktury sytuacji eliminacyjnej do zdefiniowania pojęcia zawartości informacyjnej
- Uniwersalność MDK