Bitcoin Analytics

Les Enjeux

• Le Bitcoin

- Crypto monnaie faisant de plus en plus d'adeptes
- Monnaie très volatile avec un taux de change qui fluctue beaucoup
- On dénombre en moyenne entre 7 et 10 transactions par seconde

But

- Suivre l'évolution de bitcoin en index, nombre et volume de transactions
- Connaître les mineurs qui gagnent le plus par jour et par mois
- Traiter un nombre important de transactions en temps réel
- Concevoir une architecture évolutive capable de passer à l'échelle

Choix des composants logiciels

Apache Kafka

- Publication et consommation de données et temps réel
- Fonctionne en mode publish/subscribe
- Partitionnement de données permettant leur consommation en parallèle
- Réplication de données et tolérance aux pannes

Storm

• Traitement des données en parallèle via l'utilisation de DAG

Choix des composants logiciels (suite)

Elasticsearch

- Base de donnée NoSQL offrant la recherche fulltext
- Optimisé pour les calculs basés sur des agrégations
- Partitionnement et Réplication de données, tolérance aux pannes

Kibana

- Outil de présentation de données
- Optimisé pour Elasticsearch car faisant partie de la stack ELK (Elasticsearch, Logstash, Kibana)

Choix de l'architecture de la solution

- Le choix s'est porté sur Kubernetes (k8s) et Docker
 - K8s est un gestionnaire de cluster de conteneurs Linux. Il permet de gérer l'élasticité et la résilience.
 - Docker est un gestionnaire de conteneurs. Il permet l'isolation et le packaging des composants.
 - Scripts de configuration du cluster k8s et des composants techniques de la solution :
 - Création de VM: https://github.com/plawson/kubernetes-cluster/tree/master/virtual-machines
 - Zookeeper: https://github.com/plawson/kubernetes-cluster/tree/master/kubernetes-zookeeper
 - Kafka: https://github.com/plawson/kubernetes-cluster/tree/master/kubernetes-zookeeper
 - Storm: https://github.com/plawson/kubernetes-cluster/tree/master/kubernetes-storm
 - Elasticsearch, kibana: https://github.com/plawson/kubernetes-cluster/tree/master/kubernetes-esstack
 - NFS provisioner: https://github.com/plawson/kubernetes-cluster/tree/master/nfs-provisioner/manifests

Solution

Producteurs

- Un script python pour les transactions et les blocks.
- Un script python pour l'index du prix.
- Les scripts injectent les données récoltés dans 3 topics Kafka.
- Scripts: https://github.com/plawson/oc-projet3/tree/master/bitcoin-producers

Consommateurs

- Un programme Java crée une topologie Storm qui lit les données dans Kafka, les transforme et les injecte dans Elasticsearch
- Programme: https://github.com/plawson/oc-projet3/tree/master/bitcoin-consumers
- Restitution
 - Dashboard Kibana

Implémentation de la solution

Graphes Bitcoins

Graphes Mineurs

Métriques Kafka

Métriques Storm

Topology summary

Name	ld	Owner	Status	Uptime	Num workers	Num executors	Num tasks	Replication count	Assigned Mem (MB)
Bitcoin-Transactions	Bitcoin-Transactions-1-1525960127	root	ACTIVE	1d 13h 22m 39s	3	24	34	1	2496

Kafka Spouts Lag

Id	Topic	Partition	Latest Offset	Spout Committed Offset	Lag
btc-tx-spout	btc_tx	0	32882	32874	8
btc-bx-spout	btc_tx	1	32246	32241	5
btc-tx-spout	btc_tx	2	32266	32260	6
btc-tx-spout	btc_tx	3	32367	32362	5
btc-tx-spout	btc_tx	4	32326	32323	3
btc-tx-spout	btc_tx	5	32471	32464	7
btc-tx-spout	btc_tx	6	32536	32532	4
btc-tx-spout	btc_tx	7	32410	32407	3
btc-tx-spout	btc_tx	8	32203	32199	4
btc-tx-spout	btc_tx	9	32434	32429	5
bpi-spout	bpi_eur	0	2238	2238	0
btc-blk-spout	btc_blk	0	208	208	0

Spouts (All time)

Id	▲ Executors		⊕ Emitted			♣ Acked	∳ Failed		⊕ Error Time	\$
bpi-spout	1	1	2120	25440	4.723	2240	0			
btc-blk-spout	1	1	220	220	5.200	200	0			
btc-tx-spout	5	5	322220	322220	3.075	323900	0			

Showing 1 to 3 of 3 entries

Bolts (All time)

Id	▲ Executors			Transferred	Capacity (last 10m)	Execute latency (ms)	Executed	Process latency (ms)	Acked		Error Port	
bpi-es-bolt	1	1	0	0	0.009	506.634	2240	421.741	2240	0		
bpi-parsing-bolt	1	1	2000	2000	0.000	0.170	2240	0.152	2240	0		
btc-blk-es-bolt	1	1	0	0	0.006	522.091	220	1252.000	220	0		
btc-blk-parsing-bolt	1	1	260	260	0.000	0.156	2440	0.138	2440	0		
btc-tx-es-bolt	5	10	0	0	0.289	482.502	323900	476.808	323900	0		
btc-tx-parsing-bolt	5	10	323880	323880	0.000	0.121	346260	0.114	346320	0		

Search:

Showing 1 to 6 of 6 entries

Scénario catastrophe

- Composants techniques (Zookeeper, kafka, storm, Elasticsearch...):
 - La perte d'une instance est gérée par la configuration des ressources k8s.
 - Si une instance stateful (ex: Kafka) tombe, elle est redémarrée sur un autre nœud et le filesystem de l'instance perdue est automatiquement remontée sur le nouveau pod et sera accédé par le nouveau conteneur sans perte de données.
 - En cas de perte d'une instance stateless (ex: Master node ES), elle est automatiquement redémarrée sur un autre nœud.
- Défaillance filesystem:
 - Dans l'environnement d'intégration, les tests ont été réalisés avec des disques hébergés sur un NAS (4 NIC) dans un volume en RAID 6. Ils sont montés par ISCSI via Disk Mapper Multipath (DM-Multipath) sur la machine hôte. En cas de corruption d'un ou deux disque(s), il suffit de le(s) remplacer.