Theory of Computation Based on lectures by Dr. Arpit Sharma

Notes taken by Rwik Dutta

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.¹

Contents

1	Fini	ite Automata	4
	1.1	Deterministic Finite Automaton(DFA)	4
	1.2	Regular Language	4
	1.3	Set Operations on Regular Languages	4
	1.4	Regular Expression	
	1.5	Non-deterministic Finite Automaton(NFA)	:

¹This is how Dexter Chua describes his lecture notes from Cambridge. I could not have described mine in any better way.

1 Finite Automata

1.1 Deterministic Finite Automaton(DFA)

Definition 1 (Deterministic Finite Automaton). A collection $(Q, \Sigma, \delta, q_0, F)$ such that

- 1. Q is a finite set of states.
- 2. Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accepting states.

We will use automata to solve set membership problems, i.e., given a finite alphabet Σ and a finite language $L \subset \Sigma^*$, we need to find whether a given string $x \in L$.

Note. Before a finite automaton has received any input, it is in its initial state, which is an accepting state precisely if the null string is accepted.

Note. At each step, a finite automaton is in one of a finite number of states (it is a finite automaton because its set of states is finite). Its response depends only on the current state and the current symbol.

Definition 2 (String accepted by DFA). A DFA has one only one final state for a given string. The string is said to be accepted by the DFA if the final state is also an accepting state of the DFA.

1.2 Regular Language

Definition 3 (Language of Automaton). L(M) of an automaton M is the set of all strings x that are accepted by the automaton.

Definition 4 (Extended transition function of DFA). Let $M(Q, \Sigma, \delta, q_0, F)$ be a finite automaton. The extended transition function is given by

$$\delta^* : Q \to \Sigma^*$$
$$\delta^*(q, \epsilon) = q$$
$$\delta^*(q, xa) = \delta(\delta^*(q, x), a)$$

for all $q \in Q, x \in \Sigma^*, a \in \Sigma$. $\epsilon \in \Sigma^*$ represents the empty string.

Hence, $x \in L(M)$ if $\delta^*(q_0, x) \in F$.

Definition 5 (Regular language). A language L is a regular language if \exists some finite automaton M such that L(M) = L.

1.3 Set Operations on Regular Languages

Regular languages are closed under certain operations.

Theorem 1. If $M(Q, \Sigma, \delta, q_0, F)$ accepts L, L^C is accepted by the finite automaton $M'(Q, \Sigma, \delta, q_0, F')$ where

$$F' = Q \backslash F = F^C$$

Lemma 1.1. L is a regular language $\implies L^C$ is a regular language.

Theorem 2. Let $M_1(Q_1, \Sigma, \delta_1, q_1, F_1)$ accept L_1 and $M_2(Q_2, \Sigma, \delta_2, q_2, F_2)$ accept L_2 . Let $M(Q, \Sigma, \delta, q_0, F)$ be a finite automaton with

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

$$\delta((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$$

We have L(M) =

1. $L_1 \cup L_2$ if $F = \{(p,q)| p \in F_1 \text{ or } q \in F_2\}$

- 2. $L_1 \cap L_2$ if $F = \{(p,q) | p \in F_1 \text{ and } q \in F_2\}$
- 3. $L_1 \setminus L_2$ if $F = \{(p,q) | p \in F_1 \text{ and } q \notin F_2\}$

Lemma 2.1. L_1, L_2 are regular languages with the same alphabet $\implies L_1 \cup L_2, L_1 \cap L_2$ and $L_1 \setminus L_2$ are regular languages.

Theorem 3 (Contatenation). If L_1, L_2 are regular languages, so is

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Theorem 4 (Kleene Closure). If L is a regular language, so is

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Note. $L^0 = {\epsilon}, L^1 = L, L^2 = LL$ and so on.

1.4 Regular Expression

Definition 6 (Regular Expression). A regular expression over a finite alphabet Σ and operators $*, +, \cdot$ is defined as

- 1. \emptyset , ϵ and $a \in \Sigma$ are regular expressions.
- 2. If R is a regular expression so is R^* .
- 3. If R_1, R_2 are regular expressions so are $R_1 + R_2$ and R_1R_2 .

Example 1. Let $\Sigma = \{0,1\}$. $\epsilon, 1, 0^*, 1+0, 11, (1+01)^*$ are all examples of regular expressions.

Definition 7 (Precedence of Operators). $*, \cdot, +$ is the order of decreasing precedence.

Definition 8 (Language represented by a regular expression).

- 1. $\varnothing \to \varnothing$
- 2. $\epsilon \to \{\epsilon\}$
- 3. $a \rightarrow \{a\}$
- $4. \ R \to L \implies R^* \to L^*$
- 5. $R_1 \rightarrow L_1$ and $R_2 \rightarrow L_2 \implies R_1 + R_2 \rightarrow L_1 \cup L_2$
- 6. $R_1 \to L_1$ and $R_2 \to L_2 \implies R_1 R_2 \to L_1 L_2$

Theorem 5. Every regular expression represents a unique regular language.

Note. Every regular language represents a regular expression. However, this expression is not unique.

Definition 9 (Equality). Two regular expressions are said to be equal if they represent the same language.

Theorem 6. For $\Sigma = \{0, 1\}, (0^*1^*)^* = (0+1)^*$. Both represent Σ^* .

1.5 Non-deterministic Finite Automaton(NFA)

Definition 10 (Non-deterministic Finite Automaton). A collection $(Q, \Sigma, \delta, q_0, F)$ such that

- 1. Q is a finite set of states.
- 2. Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is the transition 'function'.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accepting states.

Note. $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

Note. $\mathcal{P}(Q)$ is the set of all subsets of Q.

Note. The transition function of an NFA is not a mathematical function. For a given state $q \in Q$ and symbol $a \in \Sigma$, $\delta(q, a)$ may not exist or may have multiple values in Q. This is what mathematicians call a relation.

Note. The definition of regular languages refers to finite automaton which includes NFA.

Definition 11 (String accepted by NFA). An NFA can end up in mutiple final states or no state at all with some input string. If **any one** of these final states is an accepting state of the NFA, we say the NFA accepts the string.