Course Codes Title Topic Code	S Description Enrolling	May Aug May PDI Max.	Assignments	Final Exan	n Grading	Sample Reading List Author Name	Title	Sections Form	SCOF Num Max. Enrol	Meetings Beg. End	Place	Days =	Instructors First M	ddle Last	
MAE 305 Y Mathematics in Engineering I	A treatment of the theory of differential equations. The objective is to provide the	F? dit?		Final		Boyce & DiPrima	Elementary Differential Equations &	L 01	o 120 20079	Time Time 11:00:00 11:50:0	0 BOWEN	Day Z	Morton Da	aniel Kostin	
MAT 301 N	student with an ability to solve standard problems in this field.			5	oolus st		Boundary Value Problems	D 01	0.40 00050	10.00.00 14.00.00	222	W F	Zhanhua	Chen adeep Kukillaya Ma	
MAE 221 Y Thermodynamics	Heat and work in physical systems. Concepts of energy conversion and entropy, primarily from a macroscopic viewpoint. Thermodynamic potentials and chemical equilibrium. Applications to engines, heat pumps, and fuel cells. In the laboratory, students will carry out experiments in the fields of analog electronics and	N N	Weekly reading assignments and problem sets, about 9 hours per week.	Final	20 MidTerm Exam 40 Final Exam 40 Problem Set(s)	Moran & Shapiro	Fundamentals of Engineering Thermodynamics, 5th Ed.	B 01	0 12 20059	13:30:00 16:20:0	J209	M	Michael Syed So	Vocaturo phail Zaidi amid Jomaas	<u> </u>
	thermodynamics. FOR MAE CONCENTRATORS ONLY, a combined laboratory grade will be issued in the spring laboratory course MAE 224, which includes the laboratory work of both MAE 221 and MAE 224.							B 02	X 12 20060	13:30:00 16:20:0	0 EQUAJ J209	T N	Michael	Vocaturo Phail Zaidi	
								B 03	O 12 20061	13:30:00 16:20:0	0 EQUAJ J209	WN	Grunde Michael Syed So	Jomaas Vocaturo	<u></u>
								B 04	O 12 20062	13:30:00 16:20:0	0 EQUAJ	Th N	H	amid Stockman Vocaturo	
											J209		Chun-Wei	phail Zaidi amid Pao	
										10:00:00 10:50:0		W F		ark Nosenchu	
MAE 223 Y Modern Solid Mechanics	Fundamental principles of solid mechanics: equilibrium equations, reactions, 60	YY	Weekly homework assignments, accounts for 30% of the final grade. Weekly	Final	25 MidTerm Exam	E.J. Hearn	Mechanics of Materials, Volumes 1 &			12:30:00 13:20:0 11:00:00 12:20:0	D221	M N	Syed So Hi	ark Nosenchuo hail Zaidi amid etteri Haataia	CK
CEE 323 N	internal forces, stress, strain, Hooke's law, torsion, beam bending and deflection, and analysis of stress and deformation in simple structures. Integrates aspects of solid mechanics that have applications to mechanical and aerospace structures		quizzes, accounts for 5% of the final grade.	T mui	40 Final Exam 5 Quizzes 30 Problem Set(s)	J.P. Den Hartog	2 (Pergamon) Mechanics (Dover)	2 01	0 00 2000	11.00.00 12.20.0	D221	Th	Yong	Yang	
	(engines and wings), as well as to microelectronic and biomedical devices (thin films and artificial hearts). Topics include stress concentration, fracture, plasticity, fatigue, visco-elasticity and thermal expansion. The course synthesizes descriptive														
MAE 331 Y Aircraft Flight Dynamics	observations, mathematical theories, and engineering consequences. Introduction to the performance, stability, and control of aircraft. Fundamentals of configuration aerodynamics. Methods for analyzing the dynamics of physical systems. Characterization of modes of motion and desirable flying qualities. Case	N N	Mix of problem sets and short projects.	Final	20 MidTerm Exam 35 Final Exam 10 Precept	R. Stengel	Flight Dynamics, Princeton University Press, 2004 Airplane Stability and Control	L 01	0 60 20081	15:00:00 16:20:0	0 EQUAD D221	T N		eredith Taylor ank Stengel	
MAE 321 Y Engineering Design	studies in aircraft stability and control. Focus on engineering fundamentals, design processes and procedures. Course 59	N N	Reading from references and notes. One major project. Lab reports and problem	Take-Hom	Participation 35 Problem Set(s)	Larrabee	Mechanical Engineering Design		X 60 22359 X 15 20065	13:30:00 16:20:0	0 FOUAC	MN	Sunil De	oulatram Ahuja ther Northey	
	covers materials selection and design, machine design and innovation, and design and manufacture for a global environment. Parametric-design and finite-element simulation techniques are introduced in the computer-design laboratory. Instruction		sets. Mid-term exam. The project will involve design concepts, component and system design, construction and device fabrication.		25 Design Project (s) 25 Take Home	M.F. Ashby	Materials Selection in Mechanical Design	B 02	O 15 20066	13:30:00 16:20:0	C119 0 EQUAC C119	T N	Guoguang	Fu ther Northey Chen	_
	in basic and computer-based fabrication and prototyping methods is given in the manufacturing laboratory. Teams of students conduct design projects which involve the complete design cycle from concept and fundamental engineering through optimization, prototype, and test. Description continued in Other Information.				Final Exam 10 Lab Reports 15 Problem Set(s)					13:30:00 16:20:0 13:30:00 16:20:0	C119 0 EQUAC	W N Th N	Jun	ther Northey Song ther Northey	
	opumization, prototype, and test. Description continued in other information.									13:30:00 16:20:0 11:00:00 12:20:0	C119	F N		ther Northey	
MAE 324 Y Structure and Properties of Materials	Provides the materials background needed to satisfy the department requirement in 55 this area. Relates properties of metals, alloys, polymers, composite materials,	YY	Weekly problem sets, question cards, and reading in reference texts.	Final	20 MidTerm Exam 40 Final Exam	Callister	Materials Science & Engineering			13:30:00 14:50:0		Th N	Winston O	uwole Soboyejo nn Carter	
indicado	semiconductors, and ceramics to their atomic level and microscopic structure. Relates special materials properties to their exploitation in advanced technology and will illustrate this with specific examples.				20 Other Exam 5 Precept Participation			P 01	X 55 20083	12:30:00 13:20:0	0 EQUAD D221	Th N	Srevatsan	Muralidha	ran
MAE 335 Y Fluid Dynamics	The first half of the course deals with one-dimensional compressible flows, with special emphasis on jet propulsion applications. The second half of the course deals	YY	Reading 30-40 pages of text. Weekly problem sets.	Final	15 Problem Set(s) 30 MidTerm Exam 40 Final Exam	Anderson Kuethe & Chow	Fundamentals of Aerodynamics Foundations of Aerodynamics	L 01	0 50 20071	10:00:00 10:50:0	0 EQUAD D221	<u>M</u> N	Maria Pi	no Martin	
	with aerodynamics of two and three-dimensional wings and bodies, concepts of thrust, lift and drag (frictional and lift-induced). Homework will include design problems and computational examples.				30 Problem Set(s)	Smits Liepmann and	A Physical Introduction to Fluid Mechanics Elements of Gas Dynamics	P 01	X 50 20084	19:30:00 20:50:0	0 EQUAD D221	F N	Bo Zhili	Xu Zhang	
MAE 501 Y Mathematical Methods of Engineering Analysis I	Methods of mathematical analysis for the solution of problems in physics and engineering. Topics include an introduction to functional analysis, linear analysis & eigenvalue problems for matrices & operators. Sturm-Liouville theory. Green's	N Y		Other		Roshko L. Debnath & PR Mikusinski RA Horn & CR	Introduction to Hilbert Spaces with Applications Matrix Analysis	L 01	0 50 20311	09:00:00 10:20:0	0 EQUAA A224	T N	Naomi El	nrich Leonard	
	eigenvalue problems for matrices & operators, Sturm-Liouville theory, Green's functions for the solution of linear ordinary differential equations and Poisson's equation, and the calculus of variations, and the inverse and implicit function theorems.					RA Horn & CR Johnson M. Greenberg IS Sokolniroff & RM	Matrix Analysis Foundations of Applied Mathematics Mathematics of Physics & Modern								
MSE 501 Y Introduction to Materials MAE 561 N	Emphasizes the connection between microstructural features of materials and their properties, and how processing conditions control structure. Topics include atomic	YY		Other		Redheffer J.F. Nye P. Haasen	Engineering Physical Properties of Crystals Physical Metallurgy	L 01	O 50 21439	14:30:00 15:50:0	0 BOWEN 222	<u>M</u> N	George W	. Scherer	
	bonding, crystal structure, thermodynamics, phase diagrams, defects, microstructure, diffusion, phase transformations, nucleation, coarsening, glasses, elastic and plastic deformation, fracture, processing, composites, and electronic					C. Hall Y.T. Ciang, D. Birnie, and W.D.	Polymers Materials Physical Ceramics								
	properties.					Easterling	Phase Transformations in Metals and Alloys								
MAE 339 Y Independent Work	Student selects subject and advisor - defines problem to be studied and proposes work plan. A list of possible subjects of particular interest to faculty and staff members is provided. Written report and oral presentation at end of semester to	N N		Other	75 Paper In Lieu of Final 20 Oral	C. Kittel	Introduction to Solid State Physics			12:30:00 13:20:0 19:30:00 20:20:0				remy Kasdin remy Kasdin	
	faculty, staff, fellow students and guests. Independent work is intended for juniors or seniors doing only a one term project. 339 Fall Term project; 340 Spring Term project.				Presentation(s) 5 Precept Participation										
MAE 339 D Y Independent Work with Design	D Course similar to MAE 339-340. Principal difference is that the project must incorporate aspects and principals of design for a system, product, vehicle, device, apparatus, or other design element. Written report and oral presentation at end of	N N		Other	75 Paper In Lieu of Final 20 Oral					12:30:00 13:20:0 19:30:00 20:20:0				remy Kasdin remy Kasdin	
	semester to faculty, staff, fellow students and guests. Independent work with design is intended for juniors or seniors doing only a one term project. 339D Fall Term project; 340D Spring Term project.				Presentation(s) 5 Precept Participation										
MAE 427 Y Fossil Fuel Energy Conversion: Mobile Power Plants	This course will develop an overview of technology and emission control of modern 40 internal combustion power plants. Fundamental concepts of phenomena associated with mobile power plant design and applications, including both air-breathing and non-airbreathing propulsion will be discussed. Material on spark ignition and diesel	N N	Homework problems, readings, and a sharply focused paper, (10 pages). Check within two weeks of Course Initiation for Recommended Textbook Purchases. Library reserve of all references will be available.	Final	30 MidTerm Exam 35 Final Exam 5 Precept	Ferguson and Kirkpatrick Hill and Peterson	Internal Combustion Engines:Applied Thermal Sciences, 2nd Ed Mechanics and Thermodynamics of Propulsion			11:00:00 11:50:0 10:00:00 10:50:0	D221	M N F		wis Dryer	
	power plants, as well as air-breathing propulsion devices, primarily gas turbines, and chemical rockets, will be covered. In addition, combustion emission and emission control will be discussed. Throughout the course, (See other information)				Participation 30 Problem Set(s)	Wark, Warner, and Davis Sutton	Air Pollution, Its Origin and Control Rocket Propulsion Elements	COI	0 40 20077	10:00:00 10:50:0	D221	Th N	Frederick Le Timothy M	chael Ombrello	
						Lecture notes are generally distributed throughout	the course								
ELE 521 Y Linear System Theory MAE 547 N Linear System Theory	This course covers the fundamentals of linear system theory. Various topics important for further study in dynamic systems, control and communication and signal processing are presented.	Y		Final		Brockett Delchamps	Finite Dimensional Linear Systems State Space and Input Output Linear Systems	L 01	O 36 20487	15:00:00 16:20:0	0 FRIEN 108	M N	Peter Je Jiaping	ffrey Ramadge Liu	_
						Kailath Wonham Rugh	Linear Systems Linear Multivariable Control: A Geometric Approach Linear Systems Theory								
MAE 435 Y Special Topics in Mechanical and Aerospace Engineering Entrepreneurial Engineering	This course builds on the technical foundations established in the engineering program, and extends the scope to include the business, financial, and marketing components that lead to successful entrepreneurial ventures. Students will be	YY	Reading/Writing Assignments: Reading will be from distributed materials and printed and web-based references. Midterm and final reports (business plans and design reports). Presentations.	Other	50 Design Project (s) 25 Oral		J. New Business Ventures & the Entrepreneur, 1999 McGraw Hill	L 01	O 30 20078	15:00:00 16:20:0	0 EQUAD D221	M N	Daniel M	ark Nosenchu	ck
	directly engaged in the process of identifying, creating and exploiting entrepreneurial opportunities. Entrepreneurial design will be introduced and developed. Students, working in small multidisciplinary teams, will identify, design				Presentation(s) 25 Precept Participation	(Wiley 2003) -	of Entrepreneurship: What it Takes to Create Successful								
	and prototype a highly marketable, consumer product. Classic and modern market analysis, manufacture and distribution will be introduced along with business planning & finance.					Essentials T.R. Hawthorne, NTC Business Books	The Complete Guide to Infomercial , Marketing								
						L.C. Farrell (Wiley 2003) - Getting Entrepreneurial:	Creating & Growing Your Own Business in the 21st Century								
MAE 437 Y Introduction to Innovation Process Management	In today's hypercompetitive global marketplace, innovation is the lifeblood of any business enterprise. This course exposes students to all fundamental aspects of the technological innovation process: invention/concept development, intellectual	Y	Specific reading assignments will be given out at the beginning of each lecture. Attendance counts for 20% of the final grade.	Take-Hom	Final Exam 20 Oral	W.L. Miller and L. Morris M.L. Patterson	Fourth Generation R&D Accelerating Innovation	L 01	0 30 22100	11:00:00 12:20:0	0 FRIEN 108	Th N	Karl H.	Zaininger	
	property, business plan preparation, competitive intelligence, R&D management, and critical success factors, project management, commercialization. It covers the basic management practices required to excel in the craft of successful innovation and prepares students to become technology-savvy leaders of industry or				Presentation(s) 20 Precept Participation 20 Other (See	P. Drucker	Juice: The Creative Fuel that Drives World-Class Inventors Management Challenges for the 21st Century								
	government, as well as managers and executives in a complex technological society.				Instructor)	J.A. Heim and W.D. Compton R.G. Cooper,									
MAE 541 Y Applied Dynamical Systems	Phase-plane methods and single-degree-of-freedom nonlinear oscillators; invariant 30	YY		Other		Winning at New Products: J. Guckenheimer &		L 01	O 30 20316	13:30:00 14:50:0	0 FINEH 110	<u>T</u> N	Clarence W	orth Rowley	
APC 571 N	manifolds, local and global analysis, structural stability and bifurcation, center manifolds, and normal forms; averaging and perturbation methods, forced oscillations, homoclinic orbits, and chaos; and Melnikov's method, the Smale horseshoe, symbolic dynamics, and strange attractors.					P. Holmes A.A. Andronov, E.A. Vitt, S.E. Khaiken M.W. Hirsch, S.	Systems & Bifurcations of Theory of Oscillators Dirrential Equations, Dynamical					III			
MAE 542 Y Advanced Dynamics	Principles and methods for formulating and analyzing mathematical models of 30	N Y		Other		SImale adn R.L. Devaney H. Goldstein	Systems & An Intro to Chaos Classical Mechanics	S 01	0 30 20317	11:00:00 12:20:0	0 EQUAA	<u>T</u> N	N. Je	remy Kasdin	
	physical systems; Newtonian, Lagrangian, and Hamiltonian formulations of particle and rigid and elastic body dynamics; canonical transformations, Hamilton-Jacobi theory; and integrable and nonintegrable systems. Additional topics are explored at the discretion of the instructor.					V.I. Arnold C. Lanczos	Mathematical Methods of Classical Mechanics The Variational Principles of				A224	Th			
AST 551 Y General Plasma Physics I MAE 525 N	the discretion of the instructor. An introductory course to plasma physics, with sample applications in fusion, space and astrophysics, semiconductor etching, microwave generation, plasma propulsion, high power laser propagation in plasma; characterization of the plasma	Y		Other		Goldston and Rutherford Stix and von Goeler	Introduction to Plasma Physics GPPI lecture notes	C 01	O 30 21697	10:00:00 10:50:0	0 JADWH A07	M N W	Nathaniel J. Hong	Fisch Qin	
	state, Debye shielding, plasma and cyclotron frequencies, collision rates and mean- free paths, atomic processes, adiabatic invariance, orbit theory, magnetic confinement of single-charged particles, two-fluid description,					Hazeltine and Waelbroeck	The Framework of Plasma Physics								
GEO 425 Y Introduction to Physical	magnetohydrodynamic waves and instabilities, heat flow, diffusion, kinetic description, and Landau damping. The course may be taken by undergraduates with permission of the instructor. The study of the oceans as a major influence on the atmosphere and the world 30	N N	Three to four problems every two weeks.	Final	20 MidTerm Exam	Pond & Pickard	Introductory Dynamical	L 01	0 30 20027	10:00:00 10:50:0	0 GUYOT 154	<u>M</u> N	Anand	Gnanadesi	ikan
MAE 425 N Oceanography	environment. The contrasts between the properties of the upper and deep oceans; the effects of stratification; the effect of rotation; the wind-driven gyres; the thermohaline circulation.				40 Final Exam 40 Problem Set(s)	Pickard & Emery	Oceanography, 2nd ed. Descriptive Physical Oceanography: An Introduction		3021	10.30.0	2. 104	W F			
						Open University Course Team Open University Course Team	Ocean Circulation (2001) Waves, tides, and Shallow-Water								
MAE 521 Y Optics and Lasers	An introduction to principles of lasers. Topics include propagation theory, interaction of light and matter, Fourier optics, and a description of operational characteristics of lasers, light scattering, and nonlinear optics.	N Y		Other		Course Team Eckbreth, Alan C	Processes Laser Diagnostics for Combustion Temperature & Species	L 01	0 20 20312	13:30:00 14:20:0	0 EQUAJ J201	M N N F	Richard Br	yant Miles	
MAE 551 Y Fluid Mechanics	An introduction to fluid mechanics. The course explores the development of basic conservation laws in integral and differential form; one-dimensional compressible flows, shocks and expansion waves; effects of energy addition and friction;	N Y		Other				L 01	0 20 20318	10:00:00 11:20:0	0 EQUAJ J201	M N W F	Garry Le	slie Brown	
	unsteady and two-dimensional flows and method of characteristics. Reviews classical incompressible flow concepts, including vorticity, circulation, and potential flows. Introduces viscous and diffusive phenomena.														
CEE 361 Y Structural Analysis and Introduction to Finite Element Methods	Basic concepts of matrix structural analysis. Direct stiffness method. Axial force member. Beam bending member. Formation of element stiffness matrix. Assembling of global stiffness matrix. Introduction of boundary conditions. Solution of linear algebraic equations. Special analysis procedures. The finite element	Y N	Eight homework sets, two midterm exams, one final project.	Other	30 MidTerm Exam 30 Design Project (s) 40 Problem Set(s)	McGuire & Gallagher, John Wiley Kwon and Bang,	Matrix Structural Analysis The Finite Element Method Using			11:00:00 12:20:0 19:30:00 22:20:0		Th	Nima	Prevost Rahbar Prevost	
	method. Introduction and basic formulation. Plane stress and plane strain problems. Plate bending problems. The use and implementation of structural analysis and finite element computer codes using Mathlab is emphasized				40 Problem Set(s)	Kwon and Bang, CRC Zienkiewicz, Taylor and Zhu; Elsevier	MatLab	P 02	X 25 22366	19:30:00 22:20:0	0 MCCOH	M N	Jean-Herve Scott Ed Nima	Prevost Mard Sanborn Rahbar	
WWS 585 B Y Topics in Science, Living in a Greenhouse: Technology, and Provincemental Policy	throughout the course. gy These are courses intended to help students develop and apply skills in the application of scientific, technological, and environmental analyses to problems of	YY		Other				S 01	0 20 23080	19:00:00 22:00:0	0 ROBEH 015	M N	Robert Ha	arry Socolow	
MAE 527 Y Physics of Gases	policy interest. Fall courses are numbered 585, Spring courses are numbered 586. Physical and chemical topics of basic importance in modern fluid mechanics, plasma dynamics, and combustion science: statistical calculations of thermodynamic properties of gases; chemical and physical equilibria; adiabatic temperatures of	N Y		Other				L 01	0 15 20313	09:00:00 09:50:0	0 EQUAJ J201	<u>M</u> N	Szymon	Suckewer	
	complex reacting systems; quantum mechanical analysis of atomic and molecular structure and atomic-scale collision phenomena; transport properties; reaction kinetics, including chemical, vibrational, and ionization phenomena; and														
MAE 531 Y Combustion	propagation, emission, and absorption of radiation. Chemical thermodynamics, theory of chemical kinetics, oxidation of hydrogen and hydrocarbons, transport phenomena, conservation equations of chemically	N Y		Other		SR Turns	An Introduction to Combustion; Concepts and Applications	L 01	0 15 20314	15:00:00 16:20:0	0 FRIEN 202	<u>M</u> N	Chung Ki	ng Law	
MAE 555 Y Non-Equilibrium Gas	reacthing flows, Rankin-Hugoniot relations, laminar premixed and diffusion flames, turblent flames, detonation waves, droplet and spray combustion, ignition and extinction, flame stabilization and blowoff, pollutant chemistry. Noncontinuum descritpion of transport and reactive flow. The course examins 15	Y		Other		I Glassman K. Kikao	Combustion Principles of Combustion Molecular Gas dynamics and direct	01	0 15 20315	11:00:00 12:20:0	0 FRIFN 304	<u>M</u> N	Yiguang	Ju	
Dynamics	mlecular collisions Bolzmunn equation, and Chapmann-Easkog expansion for near- equilibrium flows; flows with transnational, vibrational and chemical non- equiliburum; shock structure; and plasma with chemical reactions					WG Vincenti & CH Kruger Jr	simulation					Th IN		Ju	
MAE 553 Y Turbulent Flow	Physical and statistical descriptions of turbulence, and a critical review of phenomenological theories for turbulent flows. The course examines scales of motion; correlations and spectra; homogeneous turbulent flows; inhomogeneous	N Y		Other				L 01	0 15 20319	11:00:00 12:20:0	0 EQUAJ J201	T N	Alexander Jo	hn Smits	
MAE 564 Y Structural Materials	shear flows; turbulent flows in pipes and channels; turbulent boundary layers; calculation methods for turbulent flows (Reynolds stress equations, LES, DNS); and current directions in turbulence research. This course is offered in alternate years. Stress/strain behavior of materials; dislocation theory and strengthening 15	N V		Other				J 01	0 15 23503	15:00:00 16:20:0	0 COMPIL 103	T N	Winston O	uwole Soboyejo	
MSE 512 N Structural Materials	mechanisms; yield strength; materials selection. Fundamentals of plasticity, Tresca and Von Mieses yield criteria. Case study on forging: upper and lower bounds. Basic elements of fracture. Fracture mechanics. Mechanisms of fracture. The			Sind				2 01	23392	. 5.50.00 10.20:0	- Swif O 102	Th			
	fracture toughness. Case studies and design. Fatigue mechanisms and life prediction methodologies.														