```
In [110]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [111]: data=pd.read_csv("/home/placenent/Downloads/Titanic Dataset.csv")

In [112]: data.describe()
```

Out[112]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [113]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
                             Non-Null Count Dtype
               Column
                _ _ _ _ _ _
                                              ----
               PassengerId 891 non-null
                                             int64
                             891 non-null
           1
               Survived
                                             int64
               Pclass
           2
                             891 non-null
                                             int64
           3
                             891 non-null
                                             obiect
               Name
           4
                             891 non-null
                                             object
               Sex
                             714 non-null
                                             float64
           5
               Age
                             891 non-null
                                             int64
               SibSp
           7
               Parch
                             891 non-null
                                             int64
                             891 non-null
                                             obiect
               Ticket
                                             float64
           9
               Fare
                             891 non-null
           10
               Cabin
                             204 non-null
                                             obiect
           11 Embarked
                             889 non-null
                                             object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.7+ KB
In [114]: data.isna().sum()
Out[114]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
```

localhost:8888/notebooks/Titanic.ipynb

Name

Sex

Age SibSp

Parch

Fare

Cabin

Embarked dtype: int64

Ticket

0

0 177

0

0

0

0

687

In [115]: data.head(100)

Out[115]:

1	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
95	96	0	3	Shorney, Mr. Charles Joseph	male	NaN	0	0	374910	8.0500	NaN	S
96	97	0	1	Goldschmidt, Mr. George B	male	71.0	0	0	PC 17754	34.6542	A5	С
97	98	1	1	Greenfield, Mr. William Bertram	male	23.0	0	1	PC 17759	63.3583	D10 D12	С
98	99	1	2	Doling, Mrs. John T (Ada Julia Bone)	female	34.0	0	1	231919	23.0000	NaN	S
99	100	0	2	Kantor, Mr. Sinai	male	34.0	1	0	244367	26.0000	NaN	S

100 rows × 12 columns

```
In [116]: data['Pclass'].unique()
Out[116]: array([3, 1, 2])
In [117]: data['Survived'].unique()
Out[117]: array([0, 1])
In [118]: data['SibSp'].unique()
Out[118]: array([1, 0, 3, 4, 2, 5, 8])
```

```
In [119]: data['Age'].unique()
Out[119]: array([22. , 38. , 26.
                                   , 35. ,
                                              nan, 54.
                                                        , 2.
                                                               . 27. . 14. .
                                   , 39. , 55. , 31.
                     . 58.
                            . 20.
                                                        , 34.
                                                                . 15.
                                          , 42. , 21.
                                                        , 18.
                                                                , 3.
                            . 40.
                                   , 66.
                                                                         7.
                                   , 28.5 , 5.
                             . 65.
                                                 , 11.
                                                         , 45.
                                                                . 17.
                                                 , 23.
                                          , 33.
                                                        , 24.
                     , 25.
                            , 0.83, 30.
                                                               , 46.
                           , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                               , 9.
                     . 37.
                 51. , 55.5 , 40.5 , 44. , 1. , 61.
                                                        , 56.
                 45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
                 60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
                 70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [120]: data['Parch'].unique()
Out[120]: array([0, 1, 2, 5, 3, 4, 6])
In [121]: data['Cabin'].unique()
Out[121]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                 'F G73', 'E31',
                                 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101'
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                        'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37'. 'C30'.
                               'D20'.
                                      'B79', 'E25', 'D46', 'B73', 'C95', 'B38'
                 'B39', 'B22',
                               'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                               'D19', 'D50', 'D9', 'A23', 'B50', 'A26',
                        'A20',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'], dtype=object)
```

```
In [122]: data['Embarked'].unique()
Out[122]: array(['S', 'C', 'Q', nan], dtype=object)
In [123]: data['Sex'].unique()
Out[123]: array(['male', 'female'], dtype=object)
In [124]: data['Ticket'].unique()
Out[124]: array(['A/5 21171', 'PC 17599', 'STON/02. 3101282', '113803', '373450',
                  '330877', '17463', '349909', '347742', '237736', 'PP 9549',
                 '113783', 'A/5. 2151', '347082', '350406', '248706', '382652',
                 '244373', '345763', '2649', '239865', '248698', '330923', '113788',
                 '347077', '2631', '19950', '330959', '349216', 'PC 17601',
                 'PC 17569', '335677', 'C.A. 24579', 'PC 17604', '113789', '2677',
                 'A./5. 2152', '345764', '2651', '7546', '11668', '349253',
                 'SC/Paris 2123', '330958', 'S.C./A.4. 23567', '370371', '14311',
                 '2662', '349237', '3101295', 'A/4. 39886', 'PC 17572', '2926',
                 '113509', '19947', 'C.A. 31026', '2697', 'C.A. 34651', 'CA 2144',
                 '2669', '113572', '36973', '347088', 'PC 17605', '2661',
                 'C.A. 29395', 'S.P. 3464', '3101281', '315151', 'C.A. 33111',
                 'S.O.C. 14879', '2680', '1601', '348123', '349208', '374746',
                 '248738', '364516', '345767', '345779', '330932', '113059',
                 'SO/C 14885', '3101278', 'W./C. 6608', 'SOTON/OO 392086', '343275',
                 '343276', '347466', 'W.E.P. 5734', 'C.A. 2315', '364500', '374910',
                 'PC 17754', 'PC 17759', '231919', '244367', '349245', '349215',
                 '35281', '7540', '3101276', '349207', '343120', '312991', '349249',
                  '371110', '110465', '2665', '324669', '4136', '2627',
```

```
In [125]: data['Fare'].unique()
                                                               8.05
Out[125]: array([ 7.25
                              71.2833,
                                          7.925 ,
                                                   53.1
                                                                          8.4583.
                                         11.1333,
                                                    30.0708,
                                                              16.7
                   51.8625.
                              21.075 ,
                                                                         26.55
                   31.275 ,
                               7.8542,
                                         16.
                                                   29.125 ,
                                                              13.
                                                                         18.
                    7.225 ,
                                          8.0292,
                                                   35.5
                                                              31.3875, 263.
                              26.
                    7.8792,
                               7.8958,
                                         27.7208, 146.5208,
                                                               7.75
                   82.1708,
                              52.
                                          7.2292,
                                                   11.2417,
                                                               9.475 ,
                                                                         21.
                              15.5
                                         21.6792,
                                                   17.8
                                                              39.6875,
                   41.5792.
                                                   46.9
                                                              80.
                                                                         83.475
                   76.7292,
                              61.9792,
                                         27.75
                   27.9
                              15.2458,
                                          8.1583,
                                                    8.6625,
                                                              73.5
                                                                         14.4542,
                   56.4958,
                               7.65
                                         29.
                                                    12.475 ,
                                                               9.
                                                                          9.5
                                        15.85
                    7.7875,
                              47.1
                                                    34.375 ,
                                                              61.175 .
                                                                         20.575 ,
                                        23.
                   34.6542,
                              63.3583,
                                                   77.2875,
                                                                8.6542,
                                                                          7.775 ,
                                         14.4583, 247.5208,
                   24.15
                               9.825 ,
                                                               7.1417,
                                                                         22.3583,
                                         14.5
                    6.975 ,
                               7.05
                                                    15.0458,
                                                              26.2833,
                                                                          9.2167,
                                         11.5
                   79.2
                               6.75
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                   66.6
                               7.3125,
                                         61.3792,
                                                     7.7333,
                                                              69.55
                                                                         16.1
                   15.75
                              20.525 ,
                                         55.
                                                    25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                   25.4667,
                              28.7125,
                                          0.
                                                    15.05
                                                                         22.025 ,
                                          6.4958,
                   50.
                               8.4042,
                                                    10.4625,
                                                              18.7875,
                                                                         31.
                              27.
                                                   90.
                                                               9.35
                                                                         13.5
                  113.275 ,
                                         76.2917,
                    7.55
                              26.25
                                         12.275 ,
                                                    7.125 ,
                                                              52.5542,
                                                                         20.2125,
                   86.5
                            512.3292,
                                         79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                              77.9583,
                                         20.25
                                                    78.85
                                                              91.0792,
                                                                         12.875 ,
                           , 151.55
                                         30.5
                                                   23.25
                                                              12.35
                     8.85
                                                                      , 110.8833,
                  108.9
                              24.
                                         56.9292,
                                                   83.1583, 262.375
                                                                         14.
                  164.8667, 134.5
                                          6.2375,
                                                              28.5
                                                    57.9792,
                                                                      , 133.65
                                         35.
                                                   75.25
                                                              69.3
                   15.9
                                                                         55.4417,
                               9.225 ,
                  211.5
                               4.0125, 227.525 ,
                                                    15.7417,
                                                                7.7292,
                                                                         12.
                              12.65
                                         18.75
                                                              32.5
                                                                          7.875 ,
                  120.
                                                     6.8583,
                   14.4
                              55.9
                                          8.1125,
                                                   81.8583,
                                                              19.2583,
                                                                         19.9667,
                   89.1042,
                              38.5
                                          7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                                                                         15.1
                              12.2875,
                                          9.5875,
                    7.5208,
                                                    49.5042,
                                                              78.2667,
                              22.525 ,
                    7.6292,
                                         26.2875,
                                                    59.4
                                                               7.4958,
                                                                         34.0208,
                   93.5
                           , 221.7792, 106.425 ,
                                                    49.5
                                                              71.
                                                                         13.8625,
                    7.8292.
                              39.6
                                                    51,4792.
                                                              26.3875,
                                                                         30.
                                         17.4
                   40.125 ,
                               8.7125,
                                         15.
                                                    33.
                                                              42.4
                                                                         15.55
                              32.3208,
                                          7.0542,
                                                    8.4333,
                                                              25.5875,
                                                                          9.8417,
                   65.
                              10.1708, 211.3375,
                                                   57.
                                                              13.4167.
                    8.1375.
                                                                          7.7417.
                    9.4833,
                              7.7375,
                                         8.3625, 23.45 ,
                                                              25.9292,
                                                                          8.6833,
```

```
8.5167, 7.8875, 37.0042, 6.45, 6.95, 8.3
6.4375, 39.4, 14.1083, 13.8583, 50.4958, 5.
9.8458, 10.5167])
```

In [126]: datal=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
datal

Out[126]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [127]: list(data1)
```

Out[127]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']

```
In [128]: data1.isna().sum()
Out[128]: Survived
                        0
          Pclass
                        0
          Sex
                        0
          Age
                      177
          Fare
                        0
          Embarked
                        2
          dtype: int64
In [129]: data1.shape
Out[129]: (891, 6)
In [130]: data1['Sex']=data1['Sex'].map({'male':1, 'female':0})
          data1
```

Out[130]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[132]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[133]: <Axes: >


```
In [134]: #plt.hist(data2['Age'])
plt.hist(data1['Age'])
```



```
In [135]: plt.hist(data2['Fare'])
Out[135]: (array([732., 106., 31., 2., 11.,
                                               6., 0.,
                                                          0.,
                                                                0., 3.]),
          array([ 0. , 51.23292, 102.46584, 153.69876, 204.93168, 256.1646 ,
                 307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]),
          <BarContainer object of 10 artists>)
          700
          600
          500
          400
          300
          200 -
```

200

300

400

500

100 -

0

100

```
In [136]: data2.isna().sum()
Out[136]: Survived
                      0
          Pclass
                      0
          Sex
                      0
          Age
          Fare
          Embarked
          dtype: int64
In [137]: data2.fillna(35,inplace=True)
In [138]: data2.isna().sum()
Out[138]: Survived
                      0
          Pclass
                      0
          Sex
                      0
          Age
          Fare
          Embarked
          dtype: int64
In [139]: data2.describe()
```

Out[139]:

	Survived	Pclass	Sex	Age	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.647587	29.361582	32.204208
std	0.486592	0.836071	0.477990	13.019697	49.693429
min	0.000000	1.000000	0.000000	0.420000	0.000000
25%	0.000000	2.000000	0.000000	22.000000	7.910400
50%	0.000000	3.000000	1.000000	28.000000	14.454200
75%	1.000000	3.000000	1.000000	35.000000	31.000000
max	1.000000	3.000000	1.000000	80.000000	512.329200

```
In [140]: data2['Age'].unique()
Out[140]: array([22. , 38. , 26. , 35. , 28.
                                             , 54. , 2. , 27. , 14. ,
                          , 20.
                                       , 55.
                4. , 58.
                                , 39.
                                             , 31.
                                                   , 34.
               19. , 40. , 66. , 42. , 21.
                                             , 18.
                                                    , 3.
                                                         , 7.
               29. , 65. , 28.5 , 5. , 11.
                                             , 45.
                                                          , 32.
                                                    , 17.
               25. , 0.83, 30. , 33. , 23. , 24.
                                                    , 46.
               37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                   , 9.
                                                          , 36.5 , 51.
               55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                   , 50. , 36.
               20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. , 60. ,
               10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. , 70. ,
               24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [141]: | data3=data2.groupby(['Age']).count()
         data3
```

Out[141]:

Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

Survived Pclass Sex Fare Embarked

88 rows × 5 columns

```
In [142]: data2['Pclass']=data2['Pclass'].map({1:'F',2:'S',3:'T'})
```

In [143]: data2.head(10)

Out[143]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Т	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Т	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Т	1	35.0	8.0500	S
5	0	Т	1	28.0	8.4583	Q
6	0	F	1	54.0	51.8625	S
7	0	Т	1	2.0	21.0750	S
8	1	Т	0	27.0	11.1333	S
9	1	S	0	14.0	30.0708	С

In [144]: data4=pd.get_dummies(data2)
 data4

Out[144]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	28.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 11 columns

In [145]: cor=data4.corr()
cor

Out[145]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.125722
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.075229	0.030248	-0.031415	-0.014665
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.192061
Pclass_T	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.009511
Embarked_35	0.060095	-0.064296	0.075229	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.076588
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.000000

Out[146]: <Axes: >


```
In [157]: data4.groupby('Survived').count()
Out[157]:
                   Sex Age Fare Pclass_F Pclass_S Pclass_T Embarked_35 Embarked_C Embarked_Q Embarked_S
            Survived
                 0 549 549
                                              549
                                                                            549
                                                                                        549
                                                                                                  549
                             549
                                     549
                                                      549
                                                                 549
                 1 342 342
                             342
                                     342
                                              342
                                                      342
                                                                 342
                                                                            342
                                                                                        342
                                                                                                  342
In [158]: #pridected value we removed from data frame
           y=data4['Survived']
          x=data4.drop('Survived',axis=1)
In [159]: y
Out[159]: 0
                  0
                  1
           3
                  0
           886
                  0
           887
           888
           889
           890
           Name: Survived, Length: 891, dtype: int64
```

```
In [160]: #divide the data into testing & training
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [161]: #to show starting rows
x test.head(5)

Out[161]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	${\bf Embarked_C}$	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	0	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	0	1
39	0	14.0	11.2417	0	0	1	0	1	0	0

In [162]: x_train.head(5)

Out[162]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
6	1	54.0	51.8625	1	0	0	0	0	0	1
718	1	28.0	15.5000	0	0	1	0	0	1	0
685	1	25.0	41.5792	0	1	0	0	1	0	0
73	1	26.0	14.4542	0	0	1	0	1	0	0
882	0	22.0	10.5167	0	0	1	0	0	0	1

In [163]: y_test.head(5)

Out[163]: 709 1 439 0 840 0 720 1 39 1

Name: Survived, dtype: int64

```
In [164]: y train.head(5)
Out[164]: 6
                 0
          718
                 0
          685
          73
          882
          Name: Survived, dtype: int64
In [165]: #Logistic Regression
          from sklearn.linear model import LogisticRegression
          classifier=LogisticRegression()
          classifier.fit(x train,y train)#command for taining/fitting the model
Out[165]:
           ▼ LogisticRegression
          LogisticRegression()
In [167]: y pred=classifier.predict(x test)
In [168]: y_pred
Out[168]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0])
```

154-tp 83-tn 21-fp 37-fn

```
In [173]: from sklearn.metrics import accuracy score
          accuracy_score(y_test,y_pred)
Out[173]: 0.8033898305084746
In [174]: y
Out[174]: 0
                 0
          886
          887
          888
          889
                 1
          890
          Name: Survived, Length: 891, dtype: int64
In [176]: (154+83)/295
Out[176]: 0.8033898305084746
 In [ ]:
```