# Computer Networks COL 334/672

Application Layer: video streaming

Tarun Mangla

Slides adapted from KR

Sem 1, 2024-25

## HTTP Adaptive Streaming (HAS)

Tomo



- "intelligence" at client: client determines
  - when to request chunk (so that buffer starvation, or overflow does not occur)
  - what encoding rate to request (higher quality) when more bandwidth available)

**Bitrate adaptation** 

## Designing Bitrate Adaptation Algorithm

- Design goal: Maximize application performance
- Q: What does application performance depend on in adaptive streaming?
  - Video stalls
  - Video quality
  - Video smoothness

Minimize stall duration



Maximize average bitrate



Minimize bitrate switches



## Bitrate Adaptation

260p DD Key fram / Independ from



## Bitrate adaptation: Algo #1

(Rate-based adaptation)

- Idea:
  - Estimate network bandwidth based on the past download rate.
  - Download chunk at a bitrate just less than the estimated network bandwidth

#### Algorithm

1. Estimation: Take into account historical values, not just the last chunk throughput

2. Smoothing: Apply a smoothing filter such as average, harmonic mean or EWMA

3.Quantization: Select bitrate from the discrete set of bitrates based on estimated throughput

Example
Available biteates

= { 200, 400, 800, 1600}

Example

Example

Available biteates

Example

Available biteates

T & Chlotok throughput

\$ 700, anoquition, 700 }

## Issue with Rate-based Adaptation



## Issue with Rate-based Adaptation

Poor interaction with the underlying TCP congestion control



# TCP Throughput of the Video Flow

Negative feedback

- TCP sender resets its congestion window during OFF period
- Throughput will be affected especially with a competing flow
- Experience packet loss during slow start
- 50% of the segments get < 1.8Mb/s

## Constant \_ L File 2 LXR duration Size =

## **Smaller Chunk Size for Lower Video Rate**





# The Complete Story



Being conservative can trigger a vicious cycle!

### **Buffer-based adaptation: Algorithm Sketch**



#### Advantages of buffer-based adaptation

- Utilize the full capacity of the link
  - Avoid on-off behavior as long as the video quality is less than maximum
  - Request the highest video rate before the buffer is full
- & Avoid "unnecessary" re-buffering
  - Reduce the bitrate as the buffer occupancy decreases





## Summary

- HTTP-based adaptive streaming (HAS) used for delivering Internet video
- Bitrate adaptation is important to ensure a high Quality of Experience (QoE)
- Various bitrate adaptation algorithms have been proposed
  - Rate-based: Rely on past observed throughput
  - Buffer-based: Rely on current buffer occupancy
- Other methods: Control theory approach, machine learning
- Open problems: Bitrate adaptation, encoding, storage, server selection ...