Optimization: Global optimization

Global optimization

Local minimum versus global minimum

Finding global minimum \rightarrow computationally hard problem (cf. grid search)

Complexity of grid search

• Grid size: ε

Number of variables: n

$$ightarrow$$
 complexity $\sim \left(rac{1}{arepsilon}
ight)^n$

- Example: $\varepsilon = 10^{-4}$, $n = 50 \rightarrow \text{complexity} \sim 10^{200}$
- So what ... just use fast computer with parallel processors

Complexity of grid search (continued)

- Processor at size of proton
- # processors = # protons in universe
- Clock period = time for light to traverse proton
- ullet Run time is 10 imes current age of universe

Number of evaluations $\approx 10^{168} \leftrightarrow 10^{200}$ required

⇒ grid search fails even for relatively small-sized problems

Global optimization

Global optimization methods:

- Random search
- Multi-start local optimization
- Simulated annealing
- Genetic algorithm

Characteristics:

- Convergence to global minimum not guaranteed
- But yield "good" solutions on the average

Random search & Multi-start local minimization

Random search:

- Select random points, uniformly distributed over feasible set
- Evaluate objective function values
- Keep point with lowest value

Multi-start local minimization:

- Select random starting points, uniformly distributed over feasible set
- Run local minimization algorithm
- Keep point with lowest value

Simulated annealing

Simulated annealing:

$$\min_{x} f(x)$$
 s.t. $x \in \mathcal{G}$

- \rightarrow mimic annealing of metal (f = energy)
 - ullet Molten metal, liquid o particles arranged randomly
 - ullet Cooling o movement of particles restricted
 - Slow cooling \rightarrow crystal-like structure (minimum energy configuration)
 - ullet Fast cooling o glass-like/defects in structure (metastable, locally optimal structure)
 - Descent algorithm = fast cooling, local optimization
 - Simulated annealing = slow cooling, more global optimization

Basic simulated annealing algorithm

- Initialization: select initial point $x_{current}$, initial temperature T>0
- Iteration:

```
generate random point x_{\text{new}} \in \mathcal{G} in neighborhood of x_{\text{current}} define \delta = f(x_{\text{new}}) - f(x_{\text{current}}) if \delta < 0 then x_{\text{current}} \leftarrow x_{\text{new}} else select random number r \in (0,1) if r < \exp(-\delta/T) then x_{\text{current}} \leftarrow x_{\text{new}} every m steps: cooling (e.g. T \leftarrow \alpha T, 0 < \alpha < 1)
```

 Stop if stopping criterion is satisfied (e.g. maximum number of steps reached) Basic simulated annealing algorithm (continued)

```
\delta = f(x_{\text{new}}) - f(x_{\text{current}}) if \delta < 0 then x_{\text{current}} \leftarrow x_{\text{new}} else \text{select random number } r \in (0,1) if r < \exp(-\delta/T) then x_{\text{current}} \leftarrow x_{\text{new}} ...
```


Uphill move if $r < \exp(-\delta/T)$

Value of
$$\exp(-\delta/T)$$
:

$$\delta > 0$$
, large $\rightarrow \pm 0$

$$\delta >$$
 0, small $\rightarrow \pm 1$

$$T \text{ high} \rightarrow \pm 1$$

$$T \text{ low } \rightarrow \pm 0$$

Basic simulated annealing algorithm (continued)

Uphill move if $r < \exp(-\delta/T)$

Value of $\exp(-\delta/T)$: $\delta>0$, large $\to \pm 0$ $\delta>0$, small $\to \pm 1$ T high $\to \pm 1$ T low $\to \pm 0$

Summary:

- Sometimes up-hill move (which increases f) is accepted
- Small increases more likely to be accepted
- ullet T high o most up-hill moves accepted
- $T \text{ low} \rightarrow \text{most up-hill moves rejected}$

Example: Simulated annealing

$$\min_{x} 85 + (1 - x) \sin \frac{x}{5} + x \cos \frac{x}{2}$$

s.t. $x \in [0, 63]$

Simulated annealing (continued)

Characteristics of simulated annealing algorithm:

- Does not use derivatives
- Sometimes accepts move which increases *f*
- Can also be used for problems with discrete or real-valued parameters
- Uses probabilistic transition rules
- Can escape from local minima!!

Genetic algorithms

$$\max_{x} f(x)$$
 s.t. $x \in G$

 \rightarrow mimic evolution in biology (f = fitness)

Code $x \in G$ as binary string

Basic genetic algorithm (assume f > 0):

- Initialization: set up initial population
- Iteration: create new generation
 - select parents probability \sim relative fitness: $\frac{f_i}{\sum f_i}$
 - create off-spring (e.g. 1-point cross-over):

• mutation: flip bits with probability p_{mut}

$$10111 \rightarrow 11111$$

Stop if maximum number of generations reached

Example: Genetic algorithm

$$\max_{x} 85 + (1 - x)\sin\frac{x}{5} + x\cos\frac{x}{2}$$

s.t. $x \in \{0, 1, ..., 63\}$

Code x as 6-bit string

e.g.
$$24 = 16 + 8 = 2^4 + 2^3 \rightarrow 011000$$

Example: Genetic algorithm (continued)

Initial population:

i	Xį	b _i						$f(b_i)$	$\frac{f(b_i)}{\sum_i f(b_i)}$
1	25	0	1	1	0	0	1	132.96	0.20
2	23	0	1	0	1	1	1	117.98	0.18
3	15	0	0	1	1	1	1	88.22	0.14
4	6	0	0	0	1	1	0	74.40	0.11
5	38	1	0	0	1	1	0	86.76	0.13
6	62	1	1	1	1	1	0	151.82	0.23

Average f_i : 108.69, max f_i : 151.82

Selection of parents
$$\sim \frac{f(b_i)}{\sum f(b_i)}$$
:

$$p_1 = b_1$$
, $p_2 = b_2$, $p_3 = b_2$, $p_4 = b_6$, $p_5 = b_6$, $p_6 = b_5$

Example: Genetic algorithm (continued)

Cross-over:

i	parent <i>p_i</i>							child <i>c_i</i>				
1	0	1	1	0	0	1	0	1	1	0	0	1
2	0	1	0	1	1	1	0	1	0	1	1	1
3	0	1	0	1	1	1	0	1	0	1	1	0
4	1	1	1	1	1	0	1	1	1	1	1	1
5	1	1	1	1	1	0	1	1	0	1	1	0
6	1	0	0	1	1	0	1	0	1	1	1	0

Mutation with $p_{\text{mut}} = 0.01$ per bit:

expected # mutations: $0.01 \cdot 6 \cdot 6 = 0.36$ bits

$$c_5$$
: 110110 \rightarrow 110010

Example: Genetic algorithm (continued)

New generation:

i	Xį	b _i						$f(b_i)$	$\frac{f(b_i)}{\sum_i f(b_i)}$
1	25	0	1	1	0	0	1	132.96	0.19
2	23	0	1	0	1	1	1	117.98	0.17
3	22	0	1	0	1	1	0	105.08	0.14
4	63	1	1	1	1	1	1	145.69	0.20
5	50	1	1	0	0	1	0	161.22	0.23
6	46	1	0	1	1	1	0	50.46	0.07

Average f_i : 118.90, max f_i : 161.22

. . .

Genetic algorithms (continued)

Characteristics of genetic algorithms:

- Do not use derivatives
- Work with a coding of the feasible set
- Search from a population of points
- Use probabilistic transition rules
- Can escape from local minima!!

Summary

- Global optimization: not tractable
- Use algorithms that yield "good" solutions on the average:
 - Multi-start local optimization
 - Simulated annealing
 - Genetic algorithm