ZAFCO Al Warranty Claims Analysis - Case Study

DevKraft Al-Powered Tire Warranty Processing System

OVERVIEW

Industry: Tire Manufacturing & Warranty Processing **Challenge:** Manual claims processing taking 48+ hours with 30% inconsistency **Solution:** Al-powered automation with computer vision and intelligent decision engine **Results:** 99% faster processing, 82% cost reduction, 44% higher customer satisfaction

About ZAFCO

ZAFCO operates in the tire warranty claims processing industry, handling warranty claims for multiple tire manufacturers and retail partners. Their traditional process relied on manual inspection by trained adjusters who examined tire images, reviewed warranty documentation, and made subjective decisions on claim validity.

The Business Challenge: As their retail partner network expanded, ZAFCO faced a critical bottleneck. Manual processing with 5-10 adjusters working concurrently could handle only limited daily volume, with each claim taking 48 hours to adjudicate. Decision inconsistency across adjusters led to disputes and appeals, while the inability to scale without proportional staff increases threatened their growth strategy.

Why They Needed AI: ZAFCO required a solution that could maintain quality while dramatically increasing throughput. The system needed to detect tire defects accurately, apply complex manufacturer-specific warranty rules consistently, and provide complete audit trails for compliance—all while processing claims in minutes instead of days.

SUMMARY

DevKraft delivered an Al-powered warranty claims processing system for ZAFCO that combines computer vision (YOLOv8) with multi-modal Al analysis (OpenAl GPT-5 Vision) and an intelligent business rules engine.

Key Results:

- 99% reduction in processing time (48 hours → <5 minutes)
- 82% reduction in processing cost per claim
- 75% improvement in claim reassessment rate
- 44% increase in customer satisfaction
- 100x scalability improvement

Technology Stack: FastAPI microservices, YOLOv8 custom-trained model (52 defect classes), OpenAI GPT-5 Vision, PostgreSQL, Redis, AWS S3

Implementation Timeline: 12 weeks from discovery to production deployment

The Innovation: Hybrid Al approach that uses specialized computer vision for precise defect detection combined with general-purpose Al for contextual analysis and business rule evaluation, ensuring both accuracy and consistency in decision-making.

THE CHALLENGE

Claims Trapped in Manual Processing Bottleneck

01

Unbearable Processing Times

Claims adjusters spent 2-3 days per claim manually inspecting tire images, reading warranty documents, and making subjective decisions. Backlog grew to 2,000+ pending claims.

Impact: 48-72 hour average turnaround

02

High Cost of Inconsistent Decisions

Different adjusters made different decisions on similar claims, leading to appeals, disputes, and manufacturer complaints. No standardized evaluation criteria or audit trail.

Impact: 30% decision inconsistency rate

03

Unable to Scale Operations

Manual processing limited throughput to 5-10 claims per adjuster per day.

Growing retail partner network needed 3x capacity, requiring proportional staff increase and training costs.

Impact: Linear scaling costs

04

Complex Multi-Brand Rule Management

Each tire manufacturer has unique warranty rules (mileage limits, defect coverage, time periods). Rules changed quarterly, requiring constant training and frequent errors in application.

Impact: 15% rule application errors

THE SOLUTION

12 Weeks to Production: Our Al Automation Framework

We deployed our enterprise Al framework—a proven process for scaling Al from concept to production. Our DevKraft team embedded with ZAFCO's operations group, working in 2-week sprints to deliver measurable value at each phase.

4-Phase Implementation Timeline

Discovery &
Architecture

→ Data audit
→ System
design

→ Workflows

→ Tech stack

Week 1-3

Deliverable: Architecture blueprint Week 4-7

Build Core AI Pipeline

→ Y0L0v8 training → OpenAI integration

→ Database setup

Deliverable: Working AI analysis Week 8-11

Integration
& Testing

→ Business rules engine → NAT with

→ UAT with claims

→ Frontend dashboard Deliverable: Complete platform Week 12

Production Launch

→ Deploy to AWS

→ Staff training

→ Monitor
& optimize

Deliverable: Live system processing claims

Key Technologies & Why They Mattered

Multi-LLM Intelligence

OpenAI GPT-5 Vision + YOLOv8

→ Specialized computer vision for defect detection + general AI for contextual analysis and rule evaluation

YOLOv8 Defect Detection

Custom—trained YOLOv8n model

→ Detects 52 tire defect classes across
10 major categories with 90% accuracy,
processes images in 1–3 seconds vs.
15 minutes manual

High-Performance Infrastructure

FastAPI + PostgreSQL + Redis + AWS

→ Async processing supports 100+
concurrent claims with sub-second
response times and automatic scaling

Intelligent Rules Engine

Hybrid deterministic + AI—assisted

→ Hard rules for compliance + AI for
contextual evaluation with confidence
scores and automatic escalation

Architecture Highlights

Before: Manual claim review with paper checklists and desktop tools

After: Cloud-native microservices architecture with:

- API Gateway orchestrating multiple AI services
- YOLOv8 microservice for specialized defect detection

- PostgreSQL for persistent storage with full audit trails
- Redis caching for performance optimization
- OpenAl integration for multimodal analysis
- RESTful API for seamless integration with existing systems

THE RESULTS

Transformation at Scale

MEASURABLE OUTCOMES

99% Reduction in Processing Time 48 hours \rightarrow <5 minutes average Claims adjudicated rapidly with complete audit trail

82% Reduction in Processing Cost Per-claim cost reduced through automation Eliminates manual review overhead for routine claims

75% Improvement in Claim Reassessment Rate Consistent Al-powered decisions Reduced appeals and disputes significantly

44% Increase in Customer Satisfaction Faster turnaround times Transparent decision-making process

100x Concurrency Scale 5-10 concurrent manual → 100+ concurrent automated Zero performance degradation under load

PERFORMANCE TRANSFORMATION

Metric	Before	After DevKraft
Avg Processing Time	48 hours	<5 minutes
Processing Cost per Claim	Baseline	-82%
Concurrent Processing Capacity	5-10 manual	100+ automated
Reassessment/Appeal Rate	Baseline	+75% improvement
Customer Satisfaction	Baseline	+44%
Decision Consistency	Variable (30% variance)	Standardized
System Uptime	99.0% (manual shifts)	99.9% (automated)
Audit Trail	Incomplete	100% comprehensive

Strategic Benefits Delivered

82% cost reduction per claim from automated processing and reduced manual overhead

Competitive advantage: Industry-leading claim turnaround (<5 minutes vs. competitors' 24-48 hours)

Innovation velocity: Teams freed from routine work to focus on complex cases and customer service

Compliance maintained: Complete audit trails with decision reasoning for regulatory requirements

Institutional knowledge captured: Al learns from historical decisions, preserving expertise when staff changes

Scalability unlocked: Can 10x claim volume without proportional cost increase

Customer satisfaction: 44% increase in satisfaction scores from faster turnaround and transparency

Pattern detection: Al identifies suspicious patterns across claims that humans might miss

Visual Performance Improvement

Processing Time Trend (Phase by Phase)

- Week 1-3: Baseline 48 hours (discovery phase)
- Week 4-7: 12 hours (pilot with automated intake)
- Week 8-11: 8 minutes (UAT with full AI)
- Week 12+: <5 minutes (production optimization)

Cost Reduction Achievement

- 82% reduction in per-claim processing cost
- Achieved through automation of routine claim analysis
- Infrastructure scales efficiently with volume

Quality and Satisfaction Improvements

- Reassessment rate improved by 75%
- Customer satisfaction increased by 44%
- Consistent decision-making through standardized Al analysis

KEY TAKEAWAYS

Key Insights: What Enabled These Results

1. Hybrid Al Strategy

Combined specialized computer vision (YOLOv8 for defects) with general-purpose AI (GPT-5 for context and reasoning). This achieved 75% improvement in reassessment rates through consistent, standardized decision-making. Matching the right AI tool to each task was critical.

2. Confidence-Based Escalation

Every Al decision includes a confidence score. Claims below 70% confidence automatically escalate to human review. This hybrid human-Al workflow maintains quality while maximizing automation—88% of claims fully automated.

3. Comprehensive Audit Trails

Structured JSON logging of every decision, applied rule, and Al analysis. This wasn't just for compliance—it enabled continuous improvement by analyzing which rules and patterns led to appeals, allowing rule refinement over time.

Lessons for Similar Organizations

If You're Automating Claims or Document Analysis, Consider This:

Start with a focused scope — We began with 3 common defect types before expanding to 10. This allowed rapid deployment and learning.

Budget for data preparation -40% of project time was cleaning historical claim data for Al training. Quality data = quality Al.

Build confidence scoring from day 1 — Don't aim for 100% automation. Design for human oversight on edge cases from the start.

Involve domain experts early — Claims adjusters tested the system in weeks 9-10, catching nuances that would have caused production issues.

Design for integration — RESTful API allowed ZAFCO to integrate with their existing CRM without replacing systems.

Ready to Achieve Similar Results?

Facing warranty, claims, or document processing challenges like ZAFCO?

We'll Show You How To:

- Reduce processing time by 99% (days → min)
- Cut processing costs by 82% per transaction
- Scale from 10 to 1000+ concurrent processes
- Improve quality metrics by 44-75%
- Deploy in weeks (not months or years)

SCHEDULE YOUR FREE TECHNICAL ASSESSMENT

What You'll Get: • Analysis of your current processing challenges and bottlenecks • Custom ROI projection based on your claim volume • 8-12 week deployment roadmap tailored to your operations • Technology stack recommendations for your specific use case • No obligation—just expert insights from our AI automation team

[SCHEDULE ASSESSMENT BUTTON]

APPENDIX: Technical Specifications

System Architecture

Microservices Design:

- API Gateway (FastAPI) Port 8000
- YOLOv8 Defect Detection Service Port 8001
- PostgreSQL Database Persistent storage
- Redis Cache Performance optimization
- OpenAl GPT-5 Vision Multimodal Al analysis

Key Capabilities:

- 52-class tire defect detection organized into 10 major categories (bead defects, sidewall defects, shoulder defects, tread defects, liner defects, wear patterns, crack types, external damage, belt/ply separations, and structural defects)
- Automatic information extraction from images (brand, model, serial, DOT code)
- · Video analysis for dynamic tire issues
- Intelligent business rules engine (deterministic + Al-assisted)
- · Real-time claim status tracking
- · Webhook integration for external systems
- Comprehensive audit logging

Performance Metrics:

- 100+ concurrent request capacity
- Sub-second API response times
- <5 minute average claim processing
- 75% improvement in reassessment rate
- 99.9% system uptime

Security & Compliance:

- · Complete audit trails for all decisions
- Document-level access control
- Structured JSON logging with correlation IDs
- · RESTful API with authentication
- Production-ready error handling and circuit breakers

Technology Stack Detail

Layer	Technology	Version	Purpose
Web Framework	FastAPI	0.104.1	REST API, async handling
App Server	Uvicorn	0.24.0	ASGI server
Database	PostgreSQL	15	Persistent storage
ORM	SQLAlchemy	2.0.23	Async database operations

Layer	Technology	Version	Purpose
Cache	Redis	7	Performance optimization
AI - Vision	OpenAl GPT-5	Latest	Multimodal analysis
CV Model	YOLOv8n	Latest	Defect detection
Validation	Pydantic	2.5.0	Data validation
Logging	Structlog	23.2.0	Structured logging
Image Processing	Pillow	10.1.0	Image quality assessment
File Storage	AWS S3 (Boto3)	1.35.20	Uploaded media storage

Comprehensive Defect Detection Taxonomy

The YOLOv8 model has been custom-trained to detect **52 distinct tire defect classes** organized into 10 major categories, providing industry-leading defect detection granularity:

1. Bead Defects (8 classes)

- bead bent Bent or deformed bead wire
- bead_burst Catastrophic bead failure
- bead_damage General bead area damage
- bead_failure Complete bead structural failure
- broken_bead Broken bead wire or core
- chafed_bead Bead wear from friction
- torque_cracks Stress cracks from mounting torque
- turn_up_separation Bead turn-up ply separation

2. Sidewall Defects (5 classes)

- sidewall_bulge Sidewall bulges or deformations
- sidewall_cut Cuts or tears in sidewall
- sidewall_damage General sidewall structural damage
- sidewall_separation Sidewall ply separation

3. Shoulder Defects (6 classes)

- shoulder_cracks Cracks in shoulder area
- shoulder_cut Cuts or tears in shoulder
- shoulder_scrubbing Abrasion wear on shoulder
- shoulder_separation Shoulder ply separation
- shoulder_wear Irregular shoulder wear patterns

4. Tread Defects (9 classes)

- tread_burst Catastrophic tread failure
- tread_chunking Missing tread chunks
- tread cut Cuts or tears in tread

- tread deformation Tread shape deformation
- tread_irregular_wear Uneven tread wear
- tread_seperation Tread separation from casing
- diagonal_tread_wear Diagonal wear patterns
- rib punch Rib area punctures
- rib_sinking Depressed rib areas
- rib_tearing Torn tread ribs

5. Liner Defects (4 classes)

- liner_cut Cuts in inner liner
- liner_external_damage External damage to liner
- liner separation Liner separation from casing
- liner_split Split or torn liner

6. Wear Pattern Defects (9 classes)

- center_wear Center rib excessive wear
- feather edge wear Feathered edge wear patterns
- heel_and_toe_wear Heel-toe wear on tread blocks
- one_side_wear Wear on one side only
- scallop_wear Cupped or scalloped wear
- spot_wear Localized spot wear
- two_side_wear Both sides worn
- worn out Tire at end of life

7. Crack Defects (4 classes)

- groove_cracks Cracks in tread grooves
- lateral_cracks Lateral sidewall cracks
- ozone_cracks Environmental ozone cracking

8. External Damage (5 classes)

- chemical_damage Chemical exposure damage
- external_damage General external damage
- handling_damage Damage from improper handling
- kerb_damage Kerb impact damage
- run_flat_damage Damage from running flat

9. Belt/Ply Separations (3 classes)

- belt_edge_separation Belt edge separation
- cut_separation Separation initiated by cuts
- ply_end_separation Ply end separation

10. Miscellaneous Defects (2 classes)

- pin_hole Pin holes or small punctures
- scaring Surface scarring or marking

This comprehensive taxonomy enables precise defect classification for accurate warranty adjudication, going far beyond industry-standard 8-10 class systems to provide detailed, actionable insights for claims processing.

Project Timeline & Milestones

Week 1-3: Discovery & Architecture

- · Analyzed historical claims data
- Designed microservices architecture
- Selected technology stack
- Created data pipeline strategy

Week 4-7: Build Core Al Pipeline

- Trained custom YOLOv8 model on tire defects
- Integrated OpenAl GPT-5 Vision API
- Built PostgreSQL database schema
- Developed API gateway with FastAPI

Week 8-11: Integration & Testing

- Implemented business rules engine
- Created UAT environment
- Tested with real claims alongside adjusters
- Built React dashboard for claim review

Week 12: Production Launch

- Deployed to AWS with auto-scaling
- Trained staff on new system
- Migrated initial claims to production
- · Established monitoring and alerting

Post-Launch: Continuous Improvement

- Refined defect detection thresholds based on feedback
- Added comprehensive filtering and analytics
- Enhanced frontend with professional UI/UX
- Achieved target performance metrics

© 2025 DevKraft. All rights reserved.

This case study represents a 12-week AI implementation project completed in 2025.