Reply to Office Action of December 28, 2006

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method of preparing bimodal meso/macroporous siliceous materials comprising combining an organic polyol silane precursor with one or more additives under conditions suitable for hydrolysis and condensation of the precursor to a siliceous material and for-phase-separation-to-occur-before-qelation, wherein the one or more additives are selected—from one or more water-soluble polymers and one or more trifunctional-silanes of Formula I:

wherein OR⁴, OR⁹ and OR⁸ are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide Si OH groups; and R⁴ is group that is not hydrolyzed under normal sol-gel conditions, wherein the conditions suitable for hydrolysis and condensation of the precursor to a siliceous material comprise combining the organic polyol silane precursor with the one or more additives at a pH in the range of about 4 to 10 about 11.5.

- (Original) The method according to claim 1, wherein the one or more additives are water soluble polymers selected from one or more of polyethers, polyalcohols, polysaccharides, poly(vinyl pyridine), polyacids, polyacrylamides and polyallylamine.
- (Original) The method according to claim 2, wherein the one or more additives
 are water soluble polymers selected from one or more of polyethylene oxide (PEO),
 polyethylene glycol (PEG), amino-terminated polyethylene oxide (PEO-NH₂), aminoterminated polyethylene glycol (PEG-NH₂), polypropylene glycol (PPG), polypropylene

Appl. No. 10/814,123

Amdt. dated April 27, 2007

Reply to Office Action of December 28, 2006

oxide (PPO), polypropylene glycol bis(2-amino-propyl ether) (PPG-NH₂), polyvinyl alcohol, poly(acrylic acid), poly(vinyl pyridine), poly(N-isopropylacrylamide) (polyNIPAM) and polyallylamine (PAM).

- (Original) The method according to claim 3, wherein the one or more additives are water soluble polymers selected from one or more of PEO, PEO-NH₂, PEG, PPG-NH₂, polyNIPAM and PAM.
- (Original) The method according to claim 3, wherein the one or more additives are water soluble polymers selected from one or more of PEO, PEO-NH₂ and polyNIPAM.
- (Original) The method according to claim 1, wherein the one or more additives is a mixture of water soluble polymers,
- (Original) The method according to claim 6 wherein the mixture of water soluble polymers comprises PEO and PEO-NH₂.
- (Original) The method according to claim 5, wherein the one or more additives is PEO.
- (Original) The method according to claim 8, wherein the PEO has a molecular weight that is greater than about 10.000 g/mol.
- 10. (Original) The method according to claim 9, wherein the PEO is used at a concentration of greater than about 0.005 g/mL of final solution.
- (Original) The method according to claim 5, wherein the one or more additives is PEO-NH₂.

- 12. (Original) The method according to claim 11, wherein the PEO-NH $_2$ has a molecular weight that is greater than about 3,000 g/mol and is used at a concentration of about 0.005 g/mL of final solution.
- 13. (Original) The method according to claim 5, wherein the one or more additives is poly(N-isopropylacrylamide).
- 14. (Original) The method according to claim 13, wherein the poly(N-isopropylacrylamide) has a molecular weight that is about 10,000 g/mol and is used at a concentration of about 0.005 g/mL of final solution.

15. - 36. (Cancelled herein)

- 37. (Original) The method according to claim 1, wherein the organic polyol silane precursor is selected from the group consisting of diglycerylsilane (DGS), monosorbitylsilane (MSS), monomaltosylsilane (MMS), dimaltosylsilane (DMS) and dextran-based silane (DS).
- 38. (Currently amended) The method according to claim 1, wherein the conditions suitable for the hydrolysis and condensation of the procursor to a siliceous material comprise combining the organic polyol silane precursor with the one or more additives in aqueous solutions and with optional sonication to assist in dissolution.
- (Previously amended) A method of preparing siliceous materials with low shrinkage characteristics comprising:
 - (a) combining an aqueous solution of one or more compounds of Formula I:

I,

wherein OR¹, OR² and OR³ are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide Si-OH groups; and R⁴ is group

Reply to Office Action of December 28, 2006

that is not hydrolyzed under normal sol-gel conditions, with an aqueous solution of an organic polyol silane precursor;

- (b) adjusting the pH of the solution in (a) to about 4-11.5;
- (c) allowing the solution of (b) to gel;
- (d) aging the gel of (c); and
- (e) drying the aged gel in air.
- 40. (Original) A siliceous material prepared using the method according to claim 1.
- 41. (Currently amended) A method of preparing monolithic <u>bimodal</u> <u>meso/macroporous</u> silica materials comprising combining an organic polyol silane precursor with one or more additives selected from one or more water-soluble polymers and one or more compounds of Formula I:

wherein OR¹, OR² and OR³ are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide Si-OH groups, R⁴ is group

$$\begin{array}{c} OR^{\,l} \\ R^{2O-S} \stackrel{!}{\longleftarrow} (linker)_{n} - polymer - (linker)_{n} - \\ selected \ from \ polymer - (linker)_{n^{-}} \ and \ n = 0 - \\ \end{array}$$
 selected from polymer-(linker)_{n^{-}} and

- 1, under conditions <u>suitable for hydrolysis and condensation of the precursor to a siliceous material and for</u> where a phase transition <u>to</u> occurs before gelation, wherein the conditions where a phase transition occurs before gelation comprise combining the organic polyol silane precursor with the one or more additives at a pH in the range of about 4 to 10 about 11.5.
- 42. (Original) The method according to claim 41, wherein R⁴ is $\underset{\stackrel{}{\cap} D3}{OR^1} {\rm R^{2}O-S_{D3}^{1}-(linker)_n-polymer-(linker)_n-}$

- 43. (Original) The method according to claim 42, wherein the linker group is a C_{1-4} alkylene group and n is 1.
- 44. (Original) The method according to claim 42, wherein OR¹, OR² and OR³ are the same and are selected from C₁₋₄alkoxy.
- 45. (Original) The method according to claim 42, wherein the polymer is PEO.
- 46. (Original) The method according to claim 41 wherein the compound of Formula I is selected from the group consisting of:

 $\begin{array}{lll} (CH_2CH_2O)_p[(EtO)_3Si(C_3H_6)]_2, & p \sim 4-5, \ average\ MW\ 200\ (Compound\ 5a); \\ (CH_2CH_2O)_p[(EtO)_3Si(C_3H_6)]_2, & p \sim 13, \ average\ MW\ 600\ (Compound\ 5b); \\ (CH_2CH_2O)_p[(EtO)_3Si(C_3H_6)]_2, & p \sim 44, \ average\ MW\ 2000\ (Compound\ 5c); \ and \\ (CH_2CH_2O)_p[(EtO)_3Si(C_3H_6)]_2, & p \sim 227, \ average\ MW\ 10,000\ (Compound\ 5d). \end{array}$

- 47. (Original) The method according to claim 41, wherein the water soluble polymer is selected from one or more of PEO. PEO-NH₂ and poly(NIPAM).
- 48. (Original) A meso/macroporous silica monolith prepared using the method according to claim 41.
- 49.-53. (Cancelled herein)
- 54. (Currently amended) A method of preparing a <u>bimodal meso/macroporous</u> monolithic silica chromatographic column comprising placing a solution comprising an organic polyol silane precursor and one or more additives selected from one or more water-soluble polymers and one or more compounds of Formula I:

١.

the range of about 4 to 10 about 11.5.

wherein OR1, OR2 and OR3 are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide a Si-OH group; R4 is group

$$\begin{array}{c} OR^1 \\ R^2O-Si \longrightarrow (linker)_n - polymer - (linker)_n - \\ selected from polymer - (linker)_n - and OR^3 \qquad \qquad and n = 0-1, in a column under conditions suitable for
$$\begin{array}{c} OR^1 \\ OR^3 \longrightarrow (linker)_n - polymer - (linker)_n - \\ & and n = 0-1, \\$$$$

combining the organic polyol silane precursor with the one or more additives at a pH in

- 55. (Previously amended) The method according to claim 54, wherein the solution further comprises one or more substances, which provide cationic sites that counterbalance an anionic charge of the silica to reduce non-selective interactions
- 56. (Currently amended) A chromatographic column comprising a <u>bimodal</u> <u>meso/macroporous</u> silica monolith prepared by combining an organic polyol silane precursor and one or more additives selected from one or more water-soluble polymers and one or more compounds of Formula I:

wherein OR^1 , OR^2 and OR^3 are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide Si-OH groups; R^4 is group

$$\begin{array}{c} OR^1 \\ R^2O-Si \longrightarrow (linker)_n-polymer-(linker)_n-\\ selected from polymer-(linker)_n- and OR^3 \qquad \qquad and n=0-\\ 1, under conditions \underbrace{suitable\ for\ hydrolysis\ and\ condensation\ of\ the\ precursor\ to\ a}_{siliceous\ material\ and\ for\ where\ a\ phase\ transition\ to\ occurs\ before\ gelation,\ wherein\ the\ conditions\ suitable\ for\ a\ phase\ transition\ to\ occurs\ before\ gelation\ comprise\ combining\ the\ organic\ polyol\ silane\ precursor\ with\ the\ one\ or\ more\ additives\ at\ a\ pH\ in\ the\ range\ of\ about\ 4\ to\ 10\ about\ 11.5. \end{array}$$

- 57. (Currently amended) A method of preparing a <u>bimodal meso/macroporous</u> silica column having an active biomolecule entrapped therein comprising combining:
- a) a polyol-silane derived silica precursor;
- b) one or more additives selected from one or more water soluble polymers and one or more compounds of Formula I:

$$\begin{array}{c} OR^1 \\ R^4 \cdot S_1^i \cdot OR^2 \\ OR^3 \end{array}$$

wherein OR¹, OR² and OR³ are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide Si-OH groups, R⁴ is group

c) a biomolecule:

1: and

- under conditions <u>suitable for hydrolysis and condensation of the precursor to a siliceous</u> <u>material and for wherein a phase separation to occurs before gelation</u>, wherein the conditions <u>suitable for a phase transition to occur before gelation</u> comprise combining the organic polyol silane precursor with the one or more additives at a pH in the range of about 4 to 10 about 11.5.
- (Original) The method according to claim 57, wherein the one or more additives is one or more water soluble polymers or one or more compounds of Formula I, wherein

$$R^{2}O-Si$$
 — $(linker)_{n}$ — $polymer$ — $(linker)_{n}$ — R^{4} is OR^{3}

59. (Previously amended) The method according to claim 57, wherein the organic polyol silane silica precursor, one or more additives and biomolecules are also combined with a substance which provides cationic sites that counterbalance an anionic charge of the silica to reduce non-selective interactions.

Reply to Office Action of December 28, 2006

- (Original) A chromatographic column prepared using a method according to 60. claim 57.
- (Original) A method of performing immunoaffinity chromatography, sample 61. cleanup, solid phase extraction or preconcentration of analytes, removal of unwanted contaminants, solid phase catalysis or frontal affinity chromatography comprising:
 - (a) applying a sample to a column according to claim 60: and
 - (b) performing immunoaffinity chromatography, sample cleanup, solid phase extraction or preconcentration of analytes, removal of unwanted contaminants, solid phase catalysis or frontal affinity chromatography.
- (Previously amended) A method of preparing siliceous materials with enhanced 62. protein stabilizing ability comprising combining an organic polyol silane precursor with one or more additives under conditions suitable for hydrolysis and condensation of precursor to a siliceous material, wherein the one or more additives is selected from one or more trifunctional silanes of Formula I:

wherein wherein OR1, OR2 and OR3 are the same or different and represent a group that is hydrolyzed under normal sol-gel conditions to provide a Si-OH group and R4 is polyol-(linker)-.

- 63 (Previously amended) The method according to claim 62, wherein the polyol in R4 is derived from sugar alcohols, sugar acids, saccharides, oligosaccharides or polysaccharides.
- (Original) The method according to claim 63, wherein the polvol in R4 is derived 64. from allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, threose, erythrose, glyceraldehydes, sorbose, fructose,

Appl. No. 10/814,123

Amdt, dated April 27, 2007

Reply to Office Action of December 28, 2006

dextrose, levulose, sorbitol, sucrose, maltose, cellobiose, lactose, dextran (500-50,000 MW), amylose, pectin, glycerol, propylene glycol or trimethylene glycol.

- (Currently amended) The method according to claim 64, wherein the polvol in R4 65 is derived from glycerol, sorbitol, maltose, trehalose, glucose, sucrose, amvlose, pectin, lactose, fructose, dextrose ort dextran.
- (Original) The method according to claim 65, wherein the polvol in R4 is derived 66. from glycerol, sorbitol, glucose, maltose or dextran.
- (Original) The method according to claim 66, wherein the polvol in R4 is derived 67. from glucose or maltose.
- (Previously amended) The method according to claim 62 wherein the one or 68. more additives is GluconamideSi (Compound 1) and/or MaltonamideSi (Compound 2).
- 69. (Original) The method according to claim 62, wherein the protein is a kinase, luciferase, or urease or is Factor Xa.
- 70. (Original) The method according to claim 69, wherein the protein is Src protein tyrosine kinase.
- 71 (Original) The method according to claim 62, further comprising combining the organic polyol silane precursor and one or more additives with a substrate for the protein to be entrapped.
- (Original) The method according to claim 71, wherein the protein is a kinase and 72. the substrate is a source of phosphate.
- (Original) The method according to claim 72, wherein the substrate is ATP. 73.

- 74. (Previously added) The method according to claim 59, wherein the substance which provides cationic sites that counterbalance an anionic charge of the silica to reduce non-selective interactions is aminopropyltriethoxysilane (APTES), PAM, PPG-NH₂ and/or PEG-NH₂.
- 75. (New) The method according to claim 39, wherein OR¹, OR² and OR³ are the same or different and are derived from organic di- or polyols.
- 76. (New) The method according to claim 75, wherein OR¹, OR² and OR³ are the same or different and are derived from sugar alcohols, sugar acids, saccharides, oligosaccharides or polysaccharides.
- 77. (New) The method according to claim 75, wherein OR¹, OR² and OR³ are the same or different and are derived from allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, threose, erythrose, glyceraldehydes, sorbose, fructose, dextrose, levulose, sorbitol, sucrose, maltose, cellobiose, lactose, dextran (500-50,000 MW), amylose, pectin, glycerol, propylene glycol or trimethylene glycol.
- 78. (New) The method according to claim 77, wherein OR¹, OR² and OR³ are the same or different and are derived from glycerol, sorbitol, maltose, trehalose, glucose, sucrose, amylose, pectin, lactose, fructose, dextrose and dextran.
- 79. (New) The method according to claim 77, wherein OR¹, OR² and OR³ are the same or different and are derived from glycerol, sorbitol, maltose or dextran.
- 80. (New) The method according to claim 39, wherein OR¹, OR² and OR³ are the same or different and are selected from C₁₋₄alkoxy, aryloxy and arylalkyleneoxy.

81. (New) The method according to claim 80, wherein wherein OR^1 , OR^2 and OR^3 are the same or different and are selected from C_{14} alkoxy, phenyoxy, naphthyloxy and benzyloxy.

82. (New) The method according to claim 81, wherein wherein OR¹, OR² and OR³ are the same or different and are selected from C₁₄alkoxy.

83. (New) The method according to claim 82, wherein OR^1 , OR^2 and OR^3 are all ethoxy.

84. (New) The method according to claim 39, wherein R⁴ is selected from the group consisting of:

$$\begin{array}{c} \text{polyol-(linker)-;}\\ \text{polymer-(linker)_n-; and}\\ OR^{1}\\ R^{2}O\text{-}S^{1}_{i}\text{---}(linker)_{n}\text{---polymer--(linker)_{n}\text{---}}\\ OR^{3} \end{array}$$

wherein n is 0-1.

- 85. (New) The method according to claim 84, wherein the polyol is an organic di- or polyol.
- 86. (New) The method according to claim 85, wherein the polyol is selected from the group consisting of a sugar alcohol, sugar acid, saccharide, oligosaccharide and polysaccharide.
- 87. (New) The method according to claim 86, wherein the polyol is a selected from the group consisting of allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, threose, erythrose, glyceraldehydes, sorbose,

Reply to Office Action of December 28, 2006

fructose, dextrose, levulose, sorbitol, sucrose, maltose, cellobiose, lactose, dextran, (500-50,000 MW), amylose, pectin, glycerol, propylene glycol and trimethylene glycol.

- 88. (New) The method according to claim 87, wherein the polyol is selected from the group consisting of glycerol, sorbitol, maltose, trehalose, glucose, sucrose, amylose, pectin, lactose, fructose, dextrose and dextran.
- 89. (New) The method according to claim 88, wherein the polyol is selected from the group consisting of glycerol, sorbitol, glucose, maltose and dextrose.
- (New) The method according to claim 84 wherein the polymer is a water soluble polymer.
- 91. (New) The method according to claim 90, wherein the polymer is selected from the group consisting of polyethylene oxide (PEO), polyethylene glycol (PEG), aminoterminated polyethylene oxide (PEO-NH₂), aminoterminated polyethylene glycol (PEG-NH₂), polypropylene glycol (PPG), polypropylene oxide (PPO), polypropylene glycol bis(2-amino-propyl ether) (PPG-NH₂), polyvinyl alcohol, poly(acrylic acid), poly(vinyl pvridine), poly(N-isopropylacrylamide) (polyNIPAM) and polyallylamine (PAM).
- 92. (New) The method according to claim 91, wherein the water soluble polymer is selected from the group consisting of PEO, PEO-NH₂, PEG, PPG-NH₂, polyNIPAM and PAM
- 93. (New) The method according to claim 92, wherein the polymer is PEO.
- 94. (New) The method according to claim 84, wherein the linker is selected from the group consisting of C₁₋₂₀alkylene, C₁₋₂₀alkenylene, organic ethers, thioethers, amines, esters, amides, urethanes, carbonates and ureas.

95. (New) The method according to claim 84, wherein the compound of Formula I is selected from one or more of:

GluconamideSi (Compound 1):

MaltonamideSi (Compound 2);

DextronamideSi (Compound 3);

(CH₂CH₂O)_p[(EtO)₃Si(C₃H₆)]₂, p ~4-5, average MW 200 (Compound 5a);

 $(CH_2CH_2O)_p[(EtO)_3Si(C_3H_6)]_2$, p ~13, average MW 600 (Compound 5b);

(CH₂CH₂O)₀[(EtO)₃Si(C₃H₆)]₂, p ~44, average MW 2000 (Compound **5c**); and

 $(CH_2CH_2O)_0[(EtO)_3Si(C_3H_6)]_2$, p ~227, average MW 10,000 (Compound 5d).

- 96. (New) The method according to claim 1, further comprising combining the organic polyol silane and one or more additives in the presence of one or more biomolecules.
- 97. (New) The method according to claim 39, further comprising combining the organic polyol silane and one or more additives in the presence of one or more biomolecules.
- 98. (New) The method according to claim 41, further comprising combining the organic polyol silane and one or more additives in the presence of one or more biomolecules.
- 100. (New) A method for the quantitative or qualitative detection of a test substance that reacts with, binds to and/or whose reactivity is catalyzed by an active biological substance, wherein said biological substance is encapsulated within a siliceous material, comprising:
- (a) preparing the siliceous material comprising said active biological substance entrapped within a porous, silica matrix using a method according to claim 98;
- (b) bringing said biological-substance-containing siliceous material into contact with a gas or aqueous solution comprising the test substance; and

Reply to Office Action of December 28, 2006

(c) quantitatively or qualitatively detecting, observing or measuring the change in one or more characteristics in the biological substance entrapped within the siliceous material and/or, alternatively, quantitatively or qualitatively detecting, observing or measuring the change in one or more characteristics in the test substance.

101. (New) The method according to claim 100, wherein the change in one or more characteristics of the entrapped biological substance is qualitatively or quantitatively measured by spectroscopy, utilizing one or more techniques selected from UV, IR, visible light, fluorescence, luminescence, absorption, emission, excitation and reflection.

102. (New) A method of storing a biologically active biological substance in a silica matrix, wherein the biological substance is an active protein or active protein fragment, wherein the silica matrix prepared using a method according to claim 98.