Universidade Federal do Rio de Janeiro

Departamento de Engenharia Eletrônica e de Computação

EEL350 - Sistemas Lineares I

2016/1 Lista 4

Data de Expedição: 15/11/2016

Limite de Tempo: 1 Semana - Data de Entrega: 22/11/2016

Série de Fourier

Questão 1 ()

Para o sinal periódico contínuo descrito na equação 1, determine:

$$x(t) = 2 + \cos\left(\frac{2\pi}{3}t\right) + 4\sin\left(\frac{5\pi}{3}t\right) \tag{1}$$

- (a) A frequencia fundamental ω_0 do sinal x(t)
- (b) Os coeficientes a_n da Série de Fourier no formato da equação 2

$$x(t) = \sum_{n = -\infty}^{+\infty} a_n e^{jn\omega_0 t} \tag{2}$$

(c) Esboce o sinal decomposto acima com 1, 3, 10, 100 termos com uma ferramenta de simulação a sua escolha e anexe UMA figura com todos os plots e o código a estrega da lista

Questão 2 ()

Considere um SLIT com resposta em frequência dada pela equação 3, se a sua entrada é descrita pela equação 4 com período T=8, determine a saída y(t) do sistema.

$$H(j\omega) = \int_{-\infty}^{+\infty} h(t)e^{j\omega t}dt = \frac{\sin(4\omega)}{\omega}$$
 (3)

$$x(t) = \begin{cases} 1, & 0 \le t < 4 \\ -1, & 4 \le t < 8 \end{cases} \tag{4}$$

Questão 3 ()

Determine:

(a) A representação na forma exponencial da Série de Fourier do sinal da equação 5 com período T=2, além disso, esboce o sinal expandido para 1, 3, 10 e 100 termos (anexe o código fonte e UMA figura com todos os plots)

$$x(t) = e^{-t}, \quad para - 1 < t < 1$$
 (5)

(b) A representação na forma trigonométrica da Série de Fourier do sinal da equação 6 com período T=4, além disso, esboce o sinal expandido para 1, 3, 10 e 100 termos (anexe o código fonte e UMA figura com todos os plots)

$$x(t) = \begin{cases} \sin(\pi t), & 0 \le t \le 2\\ 0, & 2 < t \le 4 \end{cases}$$
 (6)

Questão 4 ()

Considere um SLIT causal em que a entrada x(t) se relacione com a saída y(t) através da equação diferencial 7. Encontre a representação da saída y(t) a cada uma das entradas abaixo:

$$\frac{\partial y(t)}{\partial t} + 4y(t) = x(t) \tag{7}$$

- (a) $x(t) = cos(2\pi t)$
- (b) $x(t) = cos(4\pi t) + cos(6\pi t + \pi/4)$

Questão 5 ()

Considere um sinal periódico $x_1(t)$ com frequência fundamental ω_1 e coeficientes da série de Fourier exponencial D_n^1 . Se um sinal sintético $x_2(t) = x_1(1-t) + x_1(t-1)$ for analisado, determine:

- (a) A frequência fundamental ω_2 de $x_2(t)$ em função de ω_1
- (b) Os coeficientes D_n^2 da série de Fourier exponencial de $x_2(t)$ em função de D_n^1 .

Questão 6 ()

Considere os três sinais periódicos descritos abaixo:

$$x_1(t) = \sum_{n=0}^{100} \left(\frac{1}{2}\right)^n e^{jn\frac{2\pi}{50}t}$$

$$x_2(t) = \sum_{n=-100}^{100} \cos(n\pi) e^{jn\frac{2\pi}{50}t}$$

$$x_3(t) = \sum_{n=-100}^{100} j \sin(n\pi) e^{jn\frac{2\pi}{50}t}$$

- (a) Quais dos sinais podem ser classificados como sinais reais?
- (b) Quais dos sinais podem ser classificados como sinais pares?

Transformada de Fourier

Questão 7 ()

Um sinal x(t) possui $X(\omega)$ como transformada de Fourier. Represente as transformadas de Fourier dos Sinais abaixo em função de $X(\omega)$.

(a)
$$x_1(t) = x(1-t) + x(-1-t)$$

(b)
$$x_2(t) = x(3t - 6)$$

(c)
$$x_3(t) = \frac{\partial^2 x(t-1)}{\partial t^2}$$

Questão 8 ()

Dado que x(t) possui transformada de Fourier igual a $X(\omega)$, h(t) possui transformada de Fourier igual a $H(\omega)$, que y(t) = x(t) * h(t) e que g(t) = x(3t) * h(3t). Mostre que g(t) pode ser expresso por $g(t) = A \cdot y(Bt)$

Questão 9 ()

Dado que x(t) possui transformada de Fourier igual a $X(\omega) = \delta(\omega) + \delta(\omega - \pi) + \delta(\omega - 5)$ e h(t) = u(t) - u(t-2).

- (a) x(t) é periódico?
- (b) x(t) * h(t) é periódico?

Questão 10 ()

Dado um SLIT com resposta em frequencia $H(\omega)\frac{1}{j\omega+1}$, para uma entrada específica x(t), foi obtida a resposta $y(t)=e^{-3t}u(t)-e^{-4t}u(t)$. Determine x(t).

Questão 11 ()

Dado um SLIT com relação de entrada e saída dada pela equação 8, encontre:

$$\frac{\partial^2 y(t)}{\partial t^2} + 6 \frac{\partial y(t)}{\partial t} + 8y(t) = 2x(t) \tag{8}$$

- (a) A resposta ao impulso do sistema
- (b) A resposta a entrada $x(t) = te^{-2t}u(t)$

Property	erty Section Periodic Signal		Fourier Series Coefficients
		x(t) Periodic with period T and	a_k
		$y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	b_k
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting		$e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	3.5.6	$x^*(t)$	a_{-k}^*
Time Reversal	3.5.3	x(-t)	a_{-k}
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a$
			$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \end{cases}$
			$\operatorname{Gre}\{a_k\} = \operatorname{Gre}\{a_{-k}\}$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$egin{aligned} & \mathcal{G}m\{a_k\} = -\mathcal{G}m\{a_{-k}\} \ & a_k = a_{-k} \ & \not < a_k = - \not < a_{-k} \end{aligned}$
Real and Even Signals	3.5.6	x(t) real and even	$a_k = -\sqrt{a_{-k}}$
Real and Odd Signals	3.5.6	x(t) real and odd	a_k purely imaginary and odd
Even-Odd Decomposition	3.3.0		$\Re\{a_k\}$
of Real Signals		$\begin{cases} x_e(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	
or room pignans		$ \{x_o(t) = Oa\{x(t)\} [x(t) \text{ real}] $	jIm{a _k }
	Pa	arseval's Relation for Periodic Signals	
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$	

Figura 1: Tabela com as Propriedades da Série de Fourier
(Extraída do Livro Oppenheim 2^a Edição)

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section	Property	Aperiodic signal	Fourier transform
		x(t)	$X(j\omega)$
		y(t)	$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re{\{X(j\omega)\}} = \Re{\{X(-j\omega)\}} \\ \Im{\{X(j\omega)\}} = -\Im{\{X(-j\omega)\}} \\ X(j\omega) = X(-j\omega) \\ X(j\omega) = -\langle X(-j\omega) \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega) = -4X(-j\omega)$ $X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
100		$x_e(t) = \mathcal{E}v\{x(t)\} [x(t)]$	real] $\Re \{X(j\omega)\}$
4.3.3	Even-Odd Decomposition for Real Signals	$x_o(t) = \mathfrak{O}d\{x(t)\} [x(t)]$	real] $j\mathfrak{G}m\{X(j\omega)\}$
4.3.7		on for Aperiodic Signals	
	$\int_{-\infty} x(t) ^2 dt =$	$=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega$	

Figura 2: Tabela com as Propriedades da Transformada de Fourier (Extraída do Livro Oppenheim 2^a Edição)

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0).$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t)$ $\begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	The property of the second
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	axsolitavia et ara
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	——————————————————————————————————————
$te^{-at}u(t)$, $\Re\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),}{\Re e\{a\}>0}$	$\frac{1}{(a+j\omega)^n}$	ent, prosenta de la composición del composición de la composición

Figura 3: Tabela com os pares da Transformada de Fourier (Extraída do Livro Oppenheim 2^a Edição)