School of Mathematics, Thapar University Operations Research (UMA-019) Tutorial Sheet 2

- 1. Write the standard form of the LPP
- (i) Max $Z = 2x_1 + x_2 + x_3$ s. t. $x_1 - x_2 + 2x_3 \ge 2$, $|2x_1 + x_2 - x_3| \le 4$, $3x_1 - 2x_2 - 7x_3 \le 3$ $x_1, x_3 \ge 0, x_2 \le 0$
- (ii) Max $Z = x_1 + 2x_2 x_3$ s. t. $x_1 + x_2 - x_3 \le 5$, $-x_1 + 2x_2 + 3x_3 \ge -4$, $2x_1 + 3x_2 - 4x_3 \ge 3$, $x_1 + x_2 + x_3 = 2$, $x_1 \ge 0$, $x_2 \ge p$, x_3 is unrestricted in sign.
- (iii) Min $Z = 2x_1 x_2 + 2x_3$ s. t. $-x_1 + x_2 + x_3 = 4$, $-x_1 + x_2 - x_3 \le 6$, $x_1 \le 0$, $x_2 \ge 0$, x_3 is unrestricted in sign.
- (iv) Max $Z = 2x_1 2x_2 + 3x_3$ s.t. $x_1 + x_2 - x_3 \le 5$, $x_1 - x_2 + 2x_3 \ge 2$, $3x_1 - 2x_2 - 7x_3 \le 3$

 $x_1 \le 0$, x_2 , x_3 are unrestricted in sign.

2. Examine whether the following sets are convex or not:

(a)
$$\{(x_1, x_2): x_1x_2 \le 1\}$$
 (b) $\{(x_1, x_2): x_1^2 + x_2^2 < 1\}$ (c) $\{(x_1, x_2): x_1^2 + x_2^2 \ge 3\}$

(d)
$$\{(x_1, x_2) : 4x_1 \ge x_2^2\}$$
 (e) $\{(x_1, x_2) : 0 < x_1^2 + x_2^2 \le 4\}$

(f)
$$\{(x_1, x_2): x_2 - 3 \ge -x_1^2, x_1, x_2 \ge 0\}$$

(g)
$$\{(x_1, x_2): 2x_1 + 5x_2 \le 20, x_1 + 2x_2 \ge 6\}$$
 (h) $\{(x_1, x_2): x_1x_2 \ge 4, x_1, x_2 \ge 0\}$

- 3. Prove that intersection of any collection (finite or infinite) of convex sets in \mathbb{R}^n is a convex set.
- 4. Show that the set of all optimal solutions of a linear programming problem is a convex set.
- 5. Find all the extreme points of the set $S = \{(x_1, x_2) \mid x_1 + 2x_2 \ge -2, -x_1 + x_2 \le 4, x_1 \le 4\}$ and represent the point (2, 3) as the convex combination of the extreme points of S.
- 6. Prove that half space $\{\mathbf{X} \in \mathbf{R}^n : \mathbf{a}^T \mathbf{X} \ge \alpha\}$ is a convex set.
- 7. Let S_1 and S_2 be two disjoint nonempty set in \mathbb{R}^n . Then show that the set $S = \{X_1 X_2 : X_1 \in S_1, X_2 \in S_2\}$ is convex.
- 8. Linearize the following objective function: Max $z = \min \{ |2x_1 + 5x_2|, |7x_1 3x_2| \}$
- 9. Solve the following linear programming problems graphically and state what your solution indicate.
- (i) $Max \ z = 5x_1 + 3x_2$, $s/t \ 3x_1 + 5x_2 \le 15$, $5x_1 + 2x_2 \le 10$, $x_1, x_2 \ge 0$.

(ii)
$$Min \ z = 2x_1 + 3x_2, \ s/t \ x_1 + x_2 \le 4, \ 6x_1 + 2x_2 \ge 8, \ x_1 + 5x_2 \ge 4, \ x_1 \le 3, \ x_2 \le 3, \ x_1, x_2 \ge 0.$$

(iii)
$$Max \ z = 2x_1 + 2x_2, \ s/t \ x_1 - x_2 \ge -1, \ -0.5x_1 + x_2 \le 2, \ x_1, x_2 \ge 0.$$

(iv)
$$Max z = -3x_1 + 2x_2$$
, $s/t x_1 - x_2 \le 0$, $x_1 \le 3$, $x_1, x_2 \ge 0$.

(v)
$$Max z = -x_1 + 2x_2$$
, $s/t x_1 - x_2 \ge -1$, $-0.5x_1 + x_2 \le 2$, $x_1, x_2 \ge 0$.

(vi)
$$Max z = 3x_1 - 2x_2$$
, $s/t x_1 + x_2 \le 1$, $2x_1 + 2x_2 \ge 4$, $x_1, x_2 \ge 0$.

(vii)
$$Max z = x_1 + x_2$$
, $s/t x_1 - x_2 \ge 0$, $3x_1 - x_2 \le -3$, $x_1, x_2 \ge 0$.

10. Consider the following LPP

$$Max z = -4x_1 + 6x_2$$
, $s/t 2x_1 - 3x_2 \ge -6$, $-x_1 + x_2 \le 1$, $x_1, x_2 \ge 0$.

Show graphically that the variable can be increased indefinitely while the optimal value of the objective function remains constant.