Package 'cdmTools'

January 22, 2021

Type Package

Version 0.1.1

Title Useful Tools for Cognitive Diagnosis Modeling

Date 2021-01-22	
Description Provides useful tools for cognitive diagnosis modeling (CDM) for both applied and sin lation studies. It includes empirical Q-matrix estimation and validation methods, as well as precedures for determining the dimensionality (i.e., number of attributes) underlying CDM data.	
License GPL-3	
LazyData TRUE	
Depends R (>= $3.6.0$)	
Imports GDINA (>= 2.8.0), ggplot2 (>= 3.3.0), psych (>= 1.9.12), sirt (>= 3.9-4), parallel (>= 3.6.3), stats (>= 3.6.3), GPArotation (>= 2014.11-1), combinat (>= 0.0-8)	
Suggests CDM	
<pre>URL https://github.com/pablo-najera/cdmTools</pre>	
BugReports https://github.com/pablo-najera/cdmTools/issues	
RoxygenNote 7.1.1	
Encoding UTF-8	
Author Pablo Nájera [aut, cre, cph], Miguel A. Sorrel [aut, cre, cph], Francisco J. Abad [aut, cre, cph]	
Maintainer Pablo Nájera <pablo.najera@uam.es></pablo.najera@uam.es>	
R topics documented:	2
genQ	4
is.Qid	5
missQ	7
orderQ	10
paK	11
valQ	13
Index	16

estQ

estQ

Empirical Q-matrix estimation

Description

Empirical Q-matrix estimation based on the *discrete factor loading* method (Wang, Song, & Ding, 2018) as used in Najera, Abad, and Sorrel (2020). Apart from the conventional dichotomization criteria, the procedure based on loading differences described in Garcia-Garzon, Abad, and Garrido (2018) is also available. Furthermore, the bagging bootstrap implementation (Xu & Shang, 2018) can be applied; it is recommended when working with small sample sizes. The psych package (Revelle, 2020) is used for estimating the required exploratory factor analysis (EFA).

Usage

```
estQ(
    r,
    K,
    n.obs = NULL,
    criterion = "row",
    boot = FALSE,
    efa.args = list(cor = "tet", rotation = "oblimin", fm = "uls"),
    boot.args = list(N = 0.8, R = 100, verbose = TRUE, seed = NULL)
)
```

Arguments

r

A correlation matrix or raw data (matrix or data.frame). If a correlation matrix is used, it must have dimensions J items $\times J$ items. Please note that tetrachoric or polychoric correlations should be used when working with dichotomous or polytomous items, respectively. If raw data is used, it must have dimensions N individuals $\times J$ items. Missing values need to be coded as NA.

K

Number of attributes to use.

n.obs

Number of individuals if r is a correlation matrix. If n.obs is provided, r will be treated as a correlation matrix. Use NULL if r is raw data. The default is NULL.

criterion

Dichotomization criterion to transform the factor loading matrix into the Q-matrix. The possible options include "row" (for row means), "col" (for column means), "loaddiff" (for the procedure based on loading differences), or a value between 0 and 1 (for a specific threshold). The default is "row".

boot

Apply the bagging bootstrap implementation? Only available if r is raw data. If FALSE, the EFA will be applied once using the whole sample size. If TRUE, several EFAs will be applied with different subsamples; the estimated Q-matrix will be dichotomized from the bootstrapped Q-matrix, but the EFA fit indices, factor loadings, and communalities will be computed from the EFA with the whole sample size. The default is FALSE.

efa.args

A list of arguments for the EFA estimation:

cor Type of correlations to use. It includes "cor" (for Pearson correlations) and "tet" (for tetrachoric/polychoric correlations), among others. See fa function from the psych R package for additional details. The default is "tet".

estQ 3

rotation Rotation procedure to use. It includes "oblimin", "varimax", and "promax", among others. An oblique rotation procedure is usually recommended. See fa function from the psych R package for additional details. The default is "oblimin".

fm Factoring method to use. It includes "uls" (for unweighted least squares), "ml" (for maximum likelihood), and "wls" (for weighted least squares), among others. See fa function from the psych R package for additional details. The default is "uls".

boot.args

A list of arguments for the bagging bootstrap implementation (ignored if boot = FALSE):

N Sample size (or proportion of the total sample size, if lower than 1) to use in each bootstrap replication. The default is .8.

R Number of bootstrap replications. The default is 100.

verbose Show progress? The default is TRUE.

seed A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

Value

estQ returns an object of class estQ.

est.Q Estimated Q-matrix (matrix).

efa.loads Factor loading matrix (matrix).

efa.comm EFA communalities (vector).

efa.fit EFA model fit indices (vector).

boot. O Bagging bootstrap Q-matrix before dichotomization. Only if boot = TRUE (matrix).

is.Qid Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).

specifications Function call specifications (list).

References

Garcia-Garzon, E., Abad, F. J., & Garrido, L. E. (2018). Improving bi-factor exploratory modelling: Empirical target rotation based on loading differences. *Methodology*, *15*, 45–55. DOI: 10.1027/1614-2241/a000163.

Najera, P., Abad, F. J., & Sorrel, M. A. (2020). Determining the number of attributes in cognitive diagnosis modeling. *Frontiers in Psychology*.

Revelle, W. (2019). *psych: Procedures for Psychological, Psychometric, and Personality Research*. R package version 1.9.12. Retrieved from https://CRAN.R-project.org/package=psych.

Wang, W., Song, L., & Ding, S. (2018). An exploratory discrete factor loading method for Q-matrix specification in cognitive diagnosis models. In: M. Wilberg, S. Culpepper, R. Janssen, J. Gonzalez, & D. Molenaar (Eds.), *Quantitative Psychology. IMPS 2017. Springer Proceedings in Mathematics & Statistics* (Vol. 233, pp. 351–362). Springer.

Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. *Journal of the American Statistical Association*, 113, 1284–1295. DOI: 10.1080/01621459.2017.1340889.

4 genQ

Examples

```
## Not run:
library(GDINA)
dat <- sim30GDINA$simdat</pre>
Q <- sim30GDINA$simQ
# Using default specifications
#-----
sugQ1 \leftarrow estQ(r = dat, K = 5) # Estimate Q-matrix
sugQ1\$est.Q <- \ orderQ(sugQ1\$est.Q, \ Q)\$order.Q \ \# \ Reorder \ Q-matrix \ attributes
mean(sugQ1\$est.Q == Q) # Check similarity with the generating Q-matrix
# Using the bagging bootstrap method
#-----
sugQ2 <- estQ(r = dat, K = 5, boot = TRUE, boot.args = list(seed = 123)) # Estimate Q-matrix</pre>
sugQ2$est.Q <- orderQ(sugQ2$est.Q, Q)$order.Q # Reorder Q-matrix attributes</pre>
sugQ2$boot.Q # Check the proportion of replicas a q-entry has been specified in the estimated Q-matrix
mean(sugQ2\$est.Q == Q)  # Check similarity with the generating Q-matrix
## End(Not run)
```

genQ

Generate Q-matrix

Description

Generates a Q-matrix. The criteria from Chen, Liu, Xu, & Ying (2015) and Xu & Shang (2018) can be used to generate identifiable Q-matrices. Only binary Q-matrix are supported so far. Useful for simulation studies.

Usage

```
genQ(J, K, Kj, I = 2, min.JK = 3, max.Kcor = 1, Qid = "none", seed = NULL)
```

Arguments

J	Number of items.
K	Number of attributes.
Kj	A vector specifying the number (or proportion, if summing up to 1) of items measuring 1, 2, 3,, attributes. The first element of the vector determines the number (or proportion) of items measuring 1 attribute, and so on. See Examples.
I	Number of identity matrices to include in the Q-matrix (up to column permutation). The default is 2.
min.JK	Minimum number of items measuring each attribute. It can be overwritten by I , if I is higher than min. JK. The default is 3 .
max.Kcor	Maximum allowed tetrachoric correlation among the columns. A value lower than 1 might prevent from attribute overlapping (Najera, Sorrel, de la Torre, & Abad, 2020). The default is 1.

is.Qid 5

Qid Assure that the generated Q-matrix is identifiable. It includes "none" (for no identifiability assurance), "DINA", "DINO", or "others" (for other CDMs iden-

tifiability). The default is "none".

seed A seed for obtaining consistent results. If NULL, no seed is used. The default is

NULL.

Value

genQ returns an object of class genQ.

gen.Q The generated Q-matrix (matrix).

JK Number of items measuring each attribute (vector).

Kcor Tetrachoric correlations among the columns (matrix).

is.Qid Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).

specifications Function call specifications (list).

References

Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. *Journal of the American Statistical Association*, *110*, 850-866. DOI: 10.1080/01621459.2014.934827.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2020). Balancing fit and parsimony to improve Q-matrix validation. *British Journal of Mathematical and Statistical Psychology*.

Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. *Journal of the American Statistical Association*, 113, 1284-1295. DOI: 10.1080/01621459.2017.1340889.

Examples

```
## Not run: Kj \leftarrow c(15, 10, 0, 5) # 15 one-attribute, 10 two-attribute, 0 three attribute, and 5 four-attribute items Q \leftarrow genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123) ## End(Not run)
```

is.Qid

Check whether a Q-matrix is identifiable

Description

Checks whether a Q-matrix is complete (Kohn & Chiu, 2017, 2018) and identifiable according to the criteria from Chen, Liu, Xu, & Ying (2015) and Xu & Shang (2018).

Usage

```
is.Qid(Q, model = "others", verbose = TRUE)
```

6 missQ

Arguments

Q A *J* items x *K* attributes Q-matrix (matrix or data.frame).

model CDM to be considered. It includes "DINA", "DINO", or "others" (for other

CDMs; e.g., G-DINA, A-CDM). The default is "others".

verbose Should a message about the identifiability of the Q-matrix be printed? The de-

fault is TRUE.

Value

is.Qid returns an object of class is.Qid.

id.Q Is the Q-matrix identifiable? (logical).

comp.Q Is the Q-matrix complete? (logical).

criteria.Qid Identifiability criteria and whether they are fulfilled or not (vector).

message A message about the identifiability of the Q-matrix and references (string).

specifications Function call specifications (list).

References

Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. *Journal of the American Statistical Association*, *110*, 850-866. DOI: 10.1080/01621459.2014.934827.

Kohn, H.-F., & Chiu, C.-Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. *Psychometrika*, 82, 112-132. DOI: 10.1007/s11336-016-9536-7.

Kohn, H.-F., & Chiu, C.-Y. (2018). How to build a complete Q-matrix for a cognitively diagnostic test. *Journal of Classification*, *35*, 273-299. DOI: 10.1007/s00357-018-9255-0.

Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. *Journal of the American Statistical Association*, 113, 1284-1295. DOI: 10.1080/01621459.2017.1340889.

Examples

```
## Not run:
Kj <- c(15, 10, 0, 5)
Q <- genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123)$gen.Q
idQ <- is.Qid(Q)
## End(Not run)</pre>
```

missQ

Introduce random misspecifications in Q-matrix

Description

Introduces random misspecifications in a Q-matrix. Only binary Q-matrix are supported so far. Useful for simulation studies.

Usage

```
missQ(Q, qjk, retainJ = 0, Qid = "none", seed = NULL)
```

modelcompK 7

Arguments

Q	A J items x K attributes Q-matrix (matrix or data.frame).
qjk	Number (or proportion, if lower than 1) of q-entries to modify in the Q-matrix.
retainJ	Number of items to retain (i.e., not modify) in the Q-matrix. It will retain the first retainJ items. It is useful for assuring the completeness of the misspecified Q-matrix if the first items conform one or more identity matrices. The default is 0.
Qid	Assure that the generated Q-matrix is identifiable. It includes "none" (for no identifiability assurance), "DINA", "DINO", or "others" (for other CDMs identifiability). The default is "none".
seed	A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

Value

```
{\tt missQ} returns an object of class {\tt missQ}.
```

miss.Q The misspecified Q-matrix (matrix).

Q The input (true) Q-matrix (matrix).

JK Number of items measuring each attribute (vector).

Kcor Tetrachoric correlations among the columns (matrix).

is.Qid Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).

specifications Function call specifications (list).

References

Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. *Journal of the American Statistical Association*, 113, 1284-1295. DOI: 10.1080/01621459.2017.1340889.

Examples

```
## Not run: Kj \leftarrow c(15, 10, 0, 5) # 15 one-attribute, 10 two-attribute, 0 three attribute, and 5 four-attribute items Q \leftarrow genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123) miss.Q \leftarrow missQ(Q = Q\$gen.Q, qjk = .20, retainJ = 4, seed = 123) ## End(Not run)
```

modelcompK

CDM fit comparison - dimensionality assessment method

8 modelcompK

Description

A procedure for determining the number of attributes underlying CDM using model fit comparison. For each number of attributes under exploration, a Q-matrix is estimated from the data using the discrete factor loading method (Wang, Song, & Ding, 2018), which can be further validated using the Hull method (Najera, Sorrel, de la Torre, & Abad, 2020). Then, a CDM is fitted to the data using the resulting Q-matrix, and several fit indices are computed. After the desired range of number of attributes has been explored, the fit indices are compared. A suggested number of attributes is given for each fit index. The AIC index should be preferred among the other fit indices. For further details, see Najera, Abad, & Sorrel (2020). This function can be also used by directly providing different Q-matrices (instead of estimating them from the data) in order to compare their fit and select the most appropriate Q-matrix. Note that, if Q-matrices are provided, this function will no longer serve as a dimensionality assessment method, but just as an automated model comparison procedure.

Usage

```
modelcompK(
  dat,
  rangeK = 1:7,
  Qs = NULL,
  stop = "none",
  val.Q = TRUE,
 estQ.args = list(criterion = "row", cor = "tet", rotation = "oblimin", fm = "uls"),
 valQ.args = list(index = "PVAF", iterative = "test.att", maxitr = 5, CDMconv = 0.01),
  verbose = TRUE
)
```

Arguments

dat A N individuals x J items (matrix or data.frame). Missing values need to be

coded as NA.

Number of attributes to use. The number of attributes to explore. The default is rangeK

from 1 to 7 attributes.

Qs A list of Q-matrices to compare in terms of fit. If Qs is used, rangeK is ignored.

stop A fit index to use for stopping the procedure if a model leads to worse fit than

a simpler one. This can be useful for saving time without exploring the whole rangeK when it is probable that the correct dimensionality has been already visited. It includes "AIC", "BIC", "CAIC", "SABIC", "M2", "SRMSR", "RMSEA2", or "sig.item.pairs". The latter represents the number of items that show bad fit with at least another item based on the transformed correlations (see itemfit function in the GDINA package; Ma & de la Torre, 2020). It can be also "none", which means that the whole rangeK will be examined. The default is "none".

val.Q Validate the estimated Q-matrices using the *Hull* method? Note that validating the Q-matrix is expected to increase its quality, but the computation time will

increase. The default is TRUE.

A list of arguments for the discrete factor loading empirical Q-matrix estimation method (see the estQ function):

criterion Dichotomization criterion to transform the factor loading matrix into the Q-matrix. The possible options include "row" (for row means), "col" (for column means), "loaddiff" (for the procedure based on loading differences), or a value between 0 and 1 (for a specific threshold). The default is "row".

estQ.args

modelcompK 9

cor Type of correlations to use. It includes "cor" (for Pearson correlations) and "tet" (for tetrachoric/polychoric correlations), among others. See fa function from the psych R package for additional details. The default is "tet".

- rotation Rotation procedure to use. It includes "oblimin", "varimax", and "promax", among others. An oblique rotation procedure is usually recommended. See fa function from the psych R package for additional details. The default is "oblimin".
- fm Factoring method to use. It includes "uls" (for unweighted least squares), "ml" (for maximum likelihood), and "wls" (for weighted least squares), among others. See fa function from the psych R package for additional details. The default is "uls".

valQ.args

A list of arguments for the *Hull* empirical Q-matrix validation method. Only applicable if valQ = TRUE (see the valQ function):

index What index to use. It includes "PVAF" or "R2". The default is "PVAF".

- iterative (Iterative) implementation procedure. It includes "none" (for noniterative), "test" (for test-level iterations), "test.att" (for test-level iterations modifying the least possible amount of q-entries in each iteration), and "item" (for item-level iterations). The default is "test.att".
- maxitr Maximum number of iterations if an iterative procedure has been selected. The default is 5.
- CDMconv Convergence criteria for the CDM estimations between iterations (only if an iterative procedure has been selected). The default is 0.01.

verbose

Show progress? The default is TRUE.

Value

modelcompK returns an object of class modelcompK.

- sug.K The suggested number of attributes for each fit index (vector). Only if Qs = NULL.
- sel.Q The suggested Q-matrix for each fit index (vector).
- fit The fit indices for each fitted model (matrix).
- exp.rangeK Explored dimensionality (vector). It can be different from rangeK if stop has been used.
- usedQ Q-matrices used to fit each model (list). They will be the estimated (and validated) Q-matrices if Qs = NULL. Otherwise, they will be Qs.
- specifications Function call specifications (list).

References

Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. *Journal of Statistical Software*, 93(14). DOI: 10.18637/jss.v093.i14.

Najera, P., Abad, F. J., & Sorrel, M. A. (2020). Determining the number of attributes in cognitive diagnosis modeling. *Frontiers in Psychology*.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2020). Balancing fit and parsimony to improve Q-matrix validation. *British Journal of Mathematical and Statistical Psychology*.

Wang, W., Song, L., & Ding, S. (2018). An exploratory discrete factor loading method for Q-matrix specification in cognitive diagnosis models. In: M. Wilberg, S. Culpepper, R. Janssen, J. González, & D. Molenaar (Eds.), *Quantitative Psychology. IMPS 2017. Springer Proceedings in Mathematics & Statistics* (Vol. 233, pp. 351-362). Springer.

10 orderQ

Examples

```
## Not run:
library(GDINA)
dat <- sim30GDINA$simdat</pre>
Q <- sim30GDINA$simQ
# Assess dimensionality from CDM data
mcK <- modelcompK(dat = dat, rangeK = 1:7, stop = "AIC", val.Q = TRUE, verbose = TRUE)</pre>
mcK$sug.K # Check suggested number of attributes by each fit index
mcK$fit # Check fit indices for each K explored
\verb|sug.Q <- mcK\$usedQ[[mcK\$sug.K["AIC"]]]| \# Extract the suggested Q-matrix by the suggested dimentionality accorded to the suggested dimensional suggest
sug.Q <- orderQ(sug.Q, Q)$order.Q # Reorder Q-matrix attributes</pre>
\mbox{mean(sug.Q == Q)} # Check similarity with the generating Q-matrix
# Automatic fit comparison of competing Q-matrices
trueQ <- Q
missQ1 \leftarrow missQ(Q, .10, seed = 123)$miss.Q
missQ2 \leftarrow missQ(Q, .20, seed = 456)$miss.Q
missQ3 \leftarrow missQ(Q, .30, seed = 789)miss.Q
Qs <- list(trueQ, missQ1, missQ2, missQ3)
mc <- modelcompK(dat = dat, Qs = Qs, verbose = TRUE)</pre>
mc$sel.Q # Best-fitting Q-matrix for each fit index
mc$fit # Check fit indices for each Q explored
## End(Not run)
```

orderQ

Reorder Q-matrix columns

Description

Reorders Q-matrix columns according to a target matrix (e.g., another Q-matrix). Specifically, it provides a reordered Q-matrix which columns show the lowest possible average Tucker index congruent coefficient with the target columns. Reordering a Q-matrix is alike relabeling the attributes and it does not change the model. Useful for simulation studies (e.g., comparing a validated Q-matrix with the generating Q-matrix).

Usage

```
orderQ(Q, target)
```

Arguments

Q A J items \times K attributes Q-matrix (matrix or data.frame). This is the Q-matrix that will be reordered.

target A J items \times K attributes Q-matrix (matrix or data.frame). This could be the "true", generating Q-matrix.

paK 11

Value

```
orderQ returns an object of class orderQ.
```

```
order.Q The reordered Q-matrix (matrix).
```

configs Comparison information between the different column configurations of the Q-matrix and the target Q-matrix, including the average absolute difference and the average Tucker index of factor congruence (matrix). The function will not look for all possible specifications if a perfect match is found.

specifications Function call specifications (list).

Examples

```
## Not run:
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
sugQ1 <- estQ(r = dat, K = 5) # Estimate Q-matrix
sugQ1$est.Q <- orderQ(sugQ1$est.Q, Q)$order.Q # Reorder Q-matrix attributes
mean(sugQ1$est.Q == Q) # Check similarity with the generating Q-matrix
## End(Not run)</pre>
```

paK

Parallel analysis - dimensionality assessment method

Description

Parallel analysis with column permutation (i.e., resampling) as used in Najera, Abad, & Sorrel (2020). It is recommended to use principal components, Pearson correlations, and mean criterion (Garrido, Abad, & Ponsoda, 2013; Najera, Abad, & Sorrel, 2020). The parallel analysis based on principal axis factor analysis is conducted using the fa.parallel function of the psych R package (Revelle, 2020). The tetrachoric correlations are efficiently estimated using the sirt R package (Robitzsch, 2020). The graph is made with the ggplot2 package (Wickham et al., 2020).

Usage

```
paK(
    dat,
    R = 100,
    fa = "pc",
    cor = "both",
    cutoff = "mean",
    fm = "uls",
    plot = TRUE,
    verbose = TRUE,
    seed = NULL
)
```

12 paK

Arguments

dat	A N individuals x J items (matrix or data.frame). Missing values need to be coded as NA.
R	Number of simulated datasets (i.e., replications) to generate. The default is 100.
fa	Extraction method to use. It includes "pc" (for principal components analysis), "fa" (for principal axis factor analysis), and "both". The default is "pc".
cor	What type of correlations to use. It includes "cor" (for Pearson correlations), "tet" (for tetrachoric/polychoric correlations), and "both". The default is "both".
cutoff	What criterion to use as the cutoff. It can be "mean" (for the average generated eigenvalues) or a value between 0 and 100 (for a percentile). A vector with several criteria can be used. The default is "mean".
fm	Factoring method to use. It includes "uls" (for unweighted least squares), "ml" (for maximum likelihood), and "wls" (for weighted least squares), among others. The default is "uls".
plot	Print the parallel analysis plot? Note that the plot might be messy if many variants are requested. The default is TRUE.
seed	A seed for obtaining consistent results. If NULL, no seed is used. The default is $\ensuremath{NULL}.$
Show	progress. The default is TRUE.

Value

paK returns an object of class paK.
sug.K The suggested number of attributes for each variant (vector).
e.values The sample and reference eigenvalues (matrix).
plot The parallel analysis plot. Only if plot = TRUE (plot).

specifications Function call specifications (list).

References

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at Horn's parallel analysis with ordinal variables. *Psychological Methods*, *18*, 454-474.

Najera, P., Abad, F. J., & Sorrel, M. A. (2020). Determining the number of attributes in cognitive diagnosis modeling. *Frontiers in Psychology*.

Revelle, W. (2019). *psych: Procedures for Psychological, Psychometric, and Personality Research*. R package version 1.9.12. Retrieved from https://CRAN.R-project.org/package=psych.

Robitzsch, A. (2020). *sirt: Supplementary Item Response Theory Models*. R package version 3.9-4. Retrieved from https://CRAN.R-project.org/package=sirt.

Wickham, H., et al. (2020). *ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*. R package version 3.3.2. Retrieved from https://CRAN.R-project.org/package=ggplot2.

valQ 13

Examples

```
## Not run:
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
pa.K <- paK(dat = dat, fa = "pc", cutoff = c("mean", 95), plot = TRUE, verbose = TRUE, seed = 123)
pa.K$sug.K # Check suggested number of attributes by each parallel analysis variant
pa.K$e.values # Check eigenvalues
pa.K$plot # Show parallel analysis plot
## End(Not run)</pre>
```

valQ

Empirical Q-matrix validation

Description

Empirical Q-matrix validation using the *Hull* method (Najera, Sorrel, de la Torre, & Abad, 2020a). The procedure can be used either with the PVAF (de la Torre & Chiu, 2016) or McFadden's pseudo R-squared (McFadden, 1974). The PVAF is recommended (Najera, Sorrel, de la Torre, & Abad, 2020a). Note that the pseudo R-squared might not be computationally feasible for highly dimensional Q-matrices, say more than 10 attributes. Different iterative implementations are available, such as the test-level implementation (see Terzi & de la Torre, 2018), attribute-test-level implementation (Najera, Sorrel, de la Torre, & Abad, 2020b), and item-level implementation (Najera, Sorrel, de la Torre, & Abad, 2020b). If an iterative implementation is used, the GDINA R package (Ma & de la Torre, 2020) is used for the calibration of the CDMs.

Usage

```
valQ(
   fit,
   index = "PVAF",
   iterative = "test.att",
   emptyatt = TRUE,
   maxitr = 100,
   CDMconv = 1e-04,
   verbose = TRUE
)
```

Arguments

fit A G-DINA model fit object from the GDINA package (Ma & de la Torre, 2020).

index What index to use. It includes "PVAF" or "R2". The default is "PVAF".

iterative (Iterative) implementation procedure. It includes "none" (for non-iterative),

"test" (for test-level iterations), "test.att" (for attribute-test-level), and "item"

(for item-level iterations). The default is "test.att".

emptyatt Is it possible for the suggested Q-matrix to have an empty attribute (i.e., an

attribute not measured by any item)? Although rarely, it is possible for iterative procedures to provide a suggested Q-matrix in which one or more attributes are empty. This might indicate that the original Q-matrix had more attributes than necessary. If FALSE, then at least one item (i.e., the one that is most likely) will

measure each attribute in the suggested Q-matrix. The default is TRUE.

14 valQ

maxitr Maximum number of iterations if an iterative procedure has been selected. The

default is 100.

CDMconv Convergence criteria for the CDM estimations between iterations (only if an

iterative procedure has been selected). The default is 0.0001.

verbose Print information after each iteration if an iterative procedure is used. The de-

fault is TRUE.

Value

valQ returns an object of class valQ.

sug.Q Suggested Q-matrix (matrix).

Q Original Q-matrix (matrix).

sugQ.fit Several fit indices from the model obtained with the suggested Q-matrix (vector).

index PVAF or pseudo R-squared (depending on which one was used) for each item (matrix).

iter.Q Q-matrices used in each iteration (list). Provided only if an iterative procedure has been used.

iter.index PVAF or pseudo R-squared (depending on which one was used) for each item in each iteration (list). Provided only if an iterative procedure has been used.

n.iter Number of iterations used (double). Provided only if an iterative procedure has been used.

convergence Convergence information (double). It can be 1 (convergence), 2 (lack of convergence: maximum number of iterations achieved), 3 (lack of convergence: empty attribute obtained), and 4 (lack of convergence: loop Q-matrices). Provided only if an iterative procedure has been used.

time Initial and finish time (vector).

time.used Total computation time (difftime).

specifications Function call specifications (list).

References

de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation. *Psychometrika*, 81, 253-273. DOI: 10.1007/s11336-015-9467-8.

Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. *Journal of Statistical Software*, 93(14). DOI: 10.18637/jss.v093.i14.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), *Frontiers in Economics* (pp. 105-142). Academic Press.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2020a). Balancing fit and parsimony to improve Q-matrix validation. *British Journal of Mathematical and Statistical Psychology*.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2020b). Improving robustness in Q-matrix validation using an iterative and dynamic procedure. *Applied Psychological Measurement*. DOI: 10.1177/0146621620909904.

Terzi, R., & de la Torre, J. (2018). An iterative method for empirically-based Q-matrix validation. *International Journal of Assessment Tools in Education*, *5*, 248-262. DOI: 10.21449/ijate.407193.

valQ 15

Examples

```
## Not run:
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ # Generating Q-matrix
miss.Q <- missQ(Q = Q, qjk = .30, retainJ = 5, seed = 123)$miss.Q # Misspecified Q-matrix
fit <- GDINA(dat, miss.Q) # GDINA object
sug.Q <- valQ(fit = fit, verbose = TRUE) # Hull method for Q-matrix validation
mean(sug.Q$sug.Q == Q) # Check similarity with the generating Q-matrix
## End(Not run)</pre>
```

Index

```
estQ, 2
genQ, 4
is.Qid, 5
missQ, 6
modelcompK, 7
orderQ, 10
paK, 11
valQ, 13
```