Ако е даден полиномът на Жегалкин на булева функция $f \in \mathcal{F}_2^n$, то полиномът на Жегалкин на f^{\star} се намира като всяко участие на променлива x се замества с $x \oplus 1$ и накрая се добавя още една 1.

Например, да разгледаме следната триместна функция:

$$m(x, y, z) = xy \oplus xz \oplus yz.$$

Тя се нарича медиана, тъй като лесно се вижда, че m(x,y,z) връща тази булева стойност, която се среща повече пъти в редицата от аргументите x, y, z. За двойнствената m^* на m получаваме:

$$\begin{split} m^{\star}(x,y,z) &= (x\oplus 1)(y\oplus 1) \oplus (x\oplus 1)(z\oplus 1) \oplus (y\oplus 1)(z\oplus 1) \oplus 1 \\ &= xy \oplus x \oplus y \oplus 1 \oplus xz \oplus x \oplus z \oplus 1 \oplus yz \oplus y \oplus z \oplus 1 \oplus 1 \\ &= xy \oplus xz \oplus yz &= m(x,y,z). \end{split}$$

Получихме, че $m^* = m$.

Да разгледаме още едно приложение на принципа за двойнственост. Нека $f \in \mathcal{F}_2^n$ е такава, че $f \neq \widetilde{1}$. Тогава $f^\star \neq \widetilde{0}$ и можем да запишем

съвършената дизюнктивна нормална форма на f^\star :

$$f^{\star}(x_1, x_2, \dots, x_n) = \bigvee_{\substack{a_1, \dots, a_n \in \{0, 1\} \\ f^{\star}(a_1, a_2, \dots, a_n) = 1}} x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}.$$

От принципа за двойнственост получаваме:

$$f(x_1, x_2, \dots, x_n) = \bigwedge_{\substack{a_1, \dots, a_n \in \{0,1\}\\ f^*(a_1, a_2, \dots, a_n) = 1}} (x_1^{a_1} \lor x_2^{a_2} \lor \dots \lor x_n^{a_n}).$$

Нека сменим променливите: $a_i = \overline{b_i} \Leftrightarrow \overline{a_i} = b_i$. Тогава

$$f(x_1, x_2, \dots, x_n) = \bigwedge_{\substack{b_1, \dots, b_n \in \{0, 1\}\\ f(b_1, b_2, \dots, b_n) = 0}} (x_1^{\overline{b_1}} \vee x_2^{\overline{b_2}} \vee \dots \vee x_n^{\overline{b_n}}).$$

Получената формула наричаме съвършена конюнктивна нормална форма на f. Тя представлява конюнкция на елементарни дизюнкции, във всяка от които участват всички променливи x_1, x_2, \ldots, x_n .

Например, $xy = (x \lor y)(x \lor \overline{y})(\overline{x} \lor y)$ е съвършената конюнктивна нормална форма на конюнкцията. В нея има по една елементарна дизюнкция за всяка нулева стойност на конюнкцията. Разбира се, конюнкцията има и други конюнктивни нормални форми: $xy = xy = x(\overline{x} \vee y) = y(x \vee \overline{y})$, но те не са съвършени.

Дефиниция 1 Булевата функция $f \in \mathcal{F}_2$ наричаме самодвойнствена, ако $f = f^*$. Означаваме:

$$S^n = \{f \in \mathcal{F}_2^n \mid f \ e \ camodeo$$
йнствена $\}, \quad S = \bigcup_{n=1}^{\infty} S^n.$

Примери: както вече видяхме, $x, \overline{x} \in S$. Също така, $xy, x \lor y, \widetilde{0}, \widetilde{1} \notin S$.

За медианата m също проверихме, че е $m \in S$. Лесно се съобразява, че няма самодвойнствени булеви функции на две променливи, които да зависят съществено и от двете си променливи.

Лема 2
$$f \in S^n \iff \forall \alpha \in \{0,1\}^n \ f(\alpha) \neq f(\overline{\alpha}).$$

Доказателство. $f \in S$ означава $f = f^*$, т.е. $f(\alpha) = \overline{f(\overline{\alpha})}$ за всяко $\alpha \in \{0,1\}^n$. Това е същото като $f(\alpha) \neq f(\overline{\alpha})$ за всяко $\alpha \in \{0,1\}^n$, тъй като две булеви стойности са противоположни точно когато са различни.

Следствие
$$3 |S^n| = 2^{2^{n-1}}$$
.

Наистина, лявата половина на вектора на една самодвойнствена функция еднозначно определя дясната половина, така че имаме свобода да избираме половината 2^{n-1} стойности на f.

Твърдение 4 Mножеството S е затворено.

Доказателство. Проверяваме двете условия от критерия за затвореност:

- 1. $(I_k^n)^\star(x_1,x_2,\ldots,x_n)=\overline{\overline{x_k}}=x_k=I_k^n(x_1,x_2,\ldots,x_n)$, така че $I_k^n\in S$.
- 2. Нека $f, g_1, \ldots, g_k \in S$ и $h = f(g_1, \ldots, g_k)$. От принципа за двойнственост: $h^* = f^*(g_1^*, \ldots, g_k^*) = f(g_1, \ldots, g_k) = h$, така че $h \in S$.

Монотонни булеви функции

В множеството $\{0,1\}^n$ въвеждаме релацията *предшестване* \leq . За $\alpha, \beta \in \{0,1\}^n$, $\alpha = a_1 a_2 \dots a_n$, $\beta = b_1 b_2 \dots b_n$:

$$\alpha \preccurlyeq \beta \iff a_1 \leq b_1, \ a_2 \leq b_2, \ \ldots, \ a_n \leq b_n.$$

Лесно се вижда, че \leq е частична наредба, която не е линейна при n > 1.

Изрично да отбележим, че предшестването на n-мерни булеви вектори е нова частична наредба и тя не съвпада със стандартната линейна наредба (освен при n=1). Съобразете, че всъщност стандартната линейна наредба разширява предшестването.

Въвеждаме още една релация $\prec \bullet$ в $\{0,1\}^n$, която ще наричаме *непосредствено предшестване*.

$$\alpha \prec \bullet \beta \Leftrightarrow \exists i (a_i = 0 \& b_i = 1 \& \forall j \neq i (a_i = b_i)).$$

С други думи, $\alpha \prec \bullet \beta$, ако α и β се различават в единствена позиция, в която α има 0, а β има 1.

Лема 5 Нека $\alpha \preccurlyeq \beta$ и $\alpha \neq \beta$. Съществува редица

$$\alpha_1 \prec \bullet \alpha_2 \prec \bullet \ldots \prec \bullet \alpha_k$$

такава че $\alpha_1 = \alpha$, $\alpha_k = \beta$.

Доказателство. По условие, α и β се различават в $s \geq 1$ позиции, нека тези позиции имат номера i_1, i_2, \ldots, i_s . Следователно, векторите α и β изглеждат по следния начин:

$$\alpha = \dots a_{i_1} \dots a_{i_2} \dots \dots a_{i_s} \dots,$$

$$\beta = \dots b_{i_1} \dots b_{i_2} \dots \dots b_{i_s} \dots$$

При това имаме, че $\alpha \preccurlyeq \beta$, така че $a_{i_1}=a_{i_2}=\ldots=a_{i_s}=0$ и $b_{i_1}=b_{i_2}=\ldots=b_{i_s}=1.$

Идеята е да променим тези нули на единици на s стъпки. Нека $\alpha_1=\alpha$, α_2 се получава от α с инвертиране на a_{i_1} , α_3 се получава от α с инвертиране на a_{i_1} и a_{i_2} и така нататък, α_s се получава от α с инвертиране на $a_{i_1}, a_{i_2}, \ldots, a_{i_{s-1}}$ и накрая $\alpha_{s+1}=\beta$. Ясно е, че при k=s+1 получаваме исканата редица: $\alpha=\alpha_1 \prec \bullet \alpha_2 \prec \bullet \ldots \prec \bullet \alpha_k=\beta$.

От лемата става ясно, че релацията \preccurlyeq представлява рефлексивното и транзитивно затваряне на релацията \prec •.

Дефиниция 6 Булевата функция $f \in \mathcal{F}_2$ наричаме монотонна, ако за всеки $\alpha, \beta \in \{0,1\}^n$ имаме: $\alpha \preccurlyeq \beta \Longrightarrow f(\alpha) \leq f(\beta)$. Означаваме: $M^n = \{f \in \mathcal{F}_2^n \mid f \text{ е монотонна}\}, \quad M = \bigcup_{n=1}^{\infty} M^n$.

Примери: $x, xy, x \lor y, \ \widetilde{0}, \ \widetilde{1} \in M; \ \overline{x}, \ x \oplus y \notin M$. Наистина, $0 \preccurlyeq 1$, но $\overline{0} = 1 > 0 = \overline{1}$ и $01 \preccurlyeq 11$, но $0 \oplus 1 = 1 > 0 = 1 \oplus 1$.

За разлика от останалите множества от булеви функции, които разглеждаме, тук формула за $|M^n|$ не е известна.

Твърдение 7 Нека $f \in \mathcal{F}_2^n$ е такава, че $f \notin M$. Тогава съществуват $\alpha, \beta \in \{0,1\}^n$, такива че $\alpha \prec \bullet \beta$ и $f(\alpha) > f(\beta)$ (т.е. $f(\alpha) = 1$ и $f(\beta) = 0$).

Доказателство. Тъй като $f \notin M$, съществуват $\alpha', \beta' \in \{0,1\}^n$, такива че $\alpha' \preccurlyeq \beta'$ и $f(\alpha') > f(\beta')$. В частност, $\alpha' \neq \beta'$ и от горната лема съществува редица $\alpha_1 \prec \bullet \alpha_2 \prec \bullet \ldots \prec \bullet \alpha_k$, такава че $\alpha_1 = \alpha'$ и $\alpha_k = \beta'$. Да допуснем, че за всяко i < k имаме $f(\alpha_i) \leq f(\alpha_{i+1})$. Тогава е ясно, че получаваме: $f(\alpha_1) \leq f(\alpha_2) \leq \ldots \leq f(\alpha_k)$, което влече $f(\alpha') = f(\alpha_1) \leq f(\alpha_k) = f(\beta')$. Достигнахме до противоречие с избора на α' и β' . Така съществува i < k, такова че $f(\alpha_i) > f(\alpha_{i+1})$ и също $\alpha_i \prec \bullet \alpha_{i+1}$, което означава че $\alpha = \alpha_i$ и $\beta = \alpha_{i+1}$ изпълняват нужните условия.

Твърдение 8 *Множеството М е затворено.*

Доказателство. Проверяваме двете условия от критерия за затвореност:

1. Нека $\alpha, \beta \in \{0,1\}^n$, $\alpha = a_1 a_2 \dots a_n$, $\beta = b_1 b_2 \dots b_n$. Ако е изпълнено $\alpha \preccurlyeq \beta$, то $a_i \leq b_i$ за всяко i. Тогава $I_k^n(\alpha) = a_k \leq b_k = I_k^n(\beta)$ и с това установихме, че $I_k^n \in M$.

2. Нека $f, g_1, \ldots, g_k \in M$ и $h = f(g_1, \ldots, g_k)$. Да вземем $\alpha, \beta \in \{0, 1\}^n$, такива че $\alpha \preccurlyeq \beta$. Тъй като $g_1, \ldots, g_k \in M$ имаме

$$g_1(\alpha) \le g_1(\beta), \ldots, g_k(\alpha) \le g_k(\beta),$$

така че можем да запишем $(g_1(\alpha), \ldots, g_k(\alpha)) \leq (g_1(\beta), \ldots, g_k(\beta))$. Сега използваме, че $f \in M$, което дава $f(g_1(\alpha), \ldots, g_k(\alpha)) \leq f(g_1(\beta), \ldots, g_k(\beta))$ или което е същото $h(\alpha) < h(\beta)$. Получихме, че $h \in M$.

Линейни булеви функции

Дефиниция 9 Булевата функция $f \in \mathcal{F}_2$ наричаме линейна, ако нейният полином на Жегалкин има вида $a_0 \oplus a_1 x_1 \oplus \ldots \oplus a_n x_n$. Означаваме: $L^n = \{ f \in \mathcal{F}_2^n \mid f \text{ e линейна} \}, \quad L = \bigcup_{n=1}^{\infty} L^n$.

Примери: $x, \overline{x} = x \oplus \widetilde{1} \in L$, $x \oplus y \in L$, $xy \notin L$, $x \vee y = xy \oplus x \oplus y \notin L$. Ясно е, че $|L^n| = 2^{n+1}$, тъй като в общия вид на линеен полином има n+1 свободни коефициенти.

Твърдение 10 *Множеството L е затворено.*

Доказателство. Проверяваме двете условия от критерия за затвореност:

- 1. Полиномът на Жегалкин на $I_k^n(x_1,\ldots,x_n)$ е x_k , така че $I_k^n\in L$.
- 2. Нека $f,g_1,\ldots,g_k\in L$ и $h=f(g_1,\ldots,g_k)$. Да въведем означения за коефициентите: $f(y_1,\ldots,y_k)=b_0\oplus b_1y_1\oplus\ldots\oplus b_ky_k$ и $g_i(x_1,\ldots,x_n)=a_{i0}\oplus a_{i1}x_1\oplus\ldots\oplus a_{in}x_n$ за $i=1,\ldots,n$. Тогава

$$h(x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$

$$= b_0 \oplus b_1 g_1(x_1, \dots, x_n) \oplus \dots \oplus b_k g_k(x_1, \dots, x_n)$$

$$= b_0 \oplus b_1 (a_{10} \oplus a_{11} x_1 \oplus \dots \oplus a_{1n} x_n) \oplus \dots$$

$$\oplus b_k (a_{k0} \oplus a_{k1} x_1 \oplus \dots \oplus a_{kn} x_n)$$

$$= c_0 \oplus c_1 x_1 \oplus \dots \oplus c_n x_n,$$

където $c_0 = b_0 \oplus b_1 a_{10} \oplus \ldots \oplus b_k a_{k0}$ и при $i \geq 1, \ c_i = b_1 a_{1i} \oplus \ldots \oplus b_k a_{ki}$. Окончателно, $h \in L$.

Критерий за пълнота на множество от булеви функции

Теорема 11 (Пост-Яблонски) Множеството $F \subseteq \mathcal{F}_2$ е пълно тогава и само тогава, когато $F \nsubseteq T_0$, $F \nsubseteq T_1$, $F \nsubseteq S$, $F \nsubseteq M$, $F \nsubseteq L$.

Доказателство. Лесната посока е (\Longrightarrow) . Нека F е пълно и да допуснем, че $F\subseteq K$ за някое $K\in \{T_0,T_1,S,M,L\}$. От свойствата на затварянето, $\mathcal{F}_2=[F]\subseteq [K]=K$, тъй като K е затворено. Получихме, че K съдържа всички булеви функции - противоречие. Идеята тук е, че щом $F\subseteq K$ и K е затворено, то не е възможно с формули над F да се излезе от множеството

K, т.е. чрез формули над F не е възможно да получим функциите извън K, от което следва, че F не може да е пълно.

За другата посока (\iff), нека $F \nsubseteq K$ за $K \in \{T_0, T_1, S, M, L\}$. Да изберем $f_0 \in F \setminus T_0, f_1 \in F \setminus T_1, f_S \in F \setminus S, f_M \in F \setminus M$ и $f_L \in F \setminus L$. Нека $F' = \{f_0, f_1, f_S, f_M, f_L\}$. Достатъчно е да покажем, че F' е пълно, тъй като $F' \subseteq F$. Доказателството разбиваме на три етапа.

Етап 1. (осигуряване на константите)

Нека $g_0(x) = f_0(x, x, \dots, x)$ и $g_1(x) = f_1(x, x, \dots, x)$.

Преди всичко, $g_0, g_1 \in [F']$. Тъй като $f_0 \notin T_0$, $g_0(0) = f_0(0, 0, \dots, 0) = 1$ и аналогично $f_1 \notin T_1$, така че $g_1(1) = f_1(1, 1, \dots, 1) = 0$. Имаме четири случая за другите две стойности $g_0(1)$ и $g_1(0)$.

Случай 1. $g_0(1)=0$ и $g_1(0)=0$. Тогава $g_0(x)=\overline{x}$ и $g_1=\widetilde{0}$. Константата $\widetilde{1}$ получаваме като $g_0(g_1(x))$.

Случай 2. $g_0(1)=1$ и $g_1(0)=0$. Тогава $g_0=\widetilde{1}$ и $g_1=\widetilde{0}$.

Случай 3. $g_0(1)=1$ и $g_1(0)=1$. Тогава $g_0=\widetilde{1}$ и $g_1(x)=\overline{x}$. Константата $\widetilde{0}$ получаваме като $g_1(g_0(x))$.

Забележете, че и в трите случая имаме $\widetilde{0}, \widetilde{1} \in [F']$.

Случай 4. $g_0(1)=0$ и $g_1(0)=1$. Тогава $g_0(x)=g_1(x)=\overline{x}$ и дотук имаме само $\overline{x}\in [F']$. Да вземем функцията $f_S\notin S$. Можем да изберем $\alpha\in\{0,1\}^n$, такова че $f_S(\alpha)=f_S(\overline{\alpha})$. Нека $\alpha=a_1a_2\dots a_n$. Да разгледаме функцията $g_S(x)=f_S(x^{a_1},x^{a_2},\dots,x^{a_n})$. Преди всичко, $g_S\in [F']$, тъй като $x^{a_i}\in\{x,\overline{x}\}\subseteq [F']$. За двете стойности на g_S имаме:

$$g_S(0) = f_S(0^{a_1}, 0^{a_2}, \dots, 0^{a_n}) = f_S(\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}) = f_S(\overline{\alpha}),$$

$$g_S(1) = f_S(1^{a_1}, 1^{a_2}, \dots, 1^{a_n}) = f_S(a_1, a_2, \dots, a_n) = f_S(\alpha).$$

Така $g_S(0) = g_S(1)$ и g_S е константа и тъй като $g_0(x) = \overline{x} \in [F']$, получаваме другата константа като $g_0(g_S(x))$.

Преборихме се за двете константи $\tilde{0}$, $\tilde{1}$ и в четирите случая. В един от случаите липсва отрицанието, което води до следващия етап.

Етап 2. (осигуряване на отрицание)

За функцията $f_M \notin M$ от доказана лема по-горе можем да изберем $\alpha, \beta \in \{0,1\}^n$, такива че $\alpha \prec \bullet \beta$ и $f_M(\alpha) = 1$, $f_M(\beta) = 0$. За подходящо i можем да запишем $\alpha = a_1 \ldots a_{i-1}0a_{i+1} \ldots a_n$ и $\beta = a_1 \ldots a_{i-1}1a_{i+1} \ldots a_n$. Да разгледаме функцията $g_M(x) = f_M(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$. Ясно е, че $g_M \in [F']$, тъй като g_M е суперпозиция на f_M и на константите, които са осигурени от първия етап. За стойностите на g_M имаме: $g_M(0) = f_M(\alpha) = 1$ и $g_M(1) = f_M(\beta) = 0$. Така $g_M(x) = \overline{x}$ и вече разполагаме с отрицание.

Етап 3. (осигуряване на конюнкция)

Да разгледаме полинома на Жегалкин на $f_L \notin L$. Нека $xyz_1...z_k$ е един $нa\ddot{u}$ - κz_c нелинеен член на този полином. Заместваме променливите z_1, \ldots, z_k с $\widetilde{1}$ и всички останали променливи (без x,y) с $\widetilde{0}$. Тъй като всеки друг нелинеен член на полинома на f_L съдържа поне една променлива,

различна от x,y,z_1,\ldots,z_k , при заместването този член се анулира и така получаваме $g_L(x,y)=xy\oplus ax\oplus by\oplus c$. Тъй като сме заместили променливи с константи, от първия етап $g_L\in [F']$. Да направим следната смяна на променливите: $x=u\oplus b$ и $y=v\oplus a$. Получаваме функцията

$$h_L(u,v) = g_L(u \oplus b, v \oplus a) = (u \oplus b)(v \oplus a) \oplus a(u \oplus b) \oplus b(v \oplus a) \oplus c$$
$$= uv \oplus ua \oplus bv \oplus ba \oplus au \oplus ab \oplus bv \oplus ba \oplus c = uv \oplus d,$$

където $d=c\oplus ab$. Ясно е, че имаме $h_L\in [F']$, тъй като h_L е получена от g_L със суперпозиция на $u\oplus b,v\oplus a\in [\overline{x}]$, като отрицанието <u>е осигу</u>рено на втория етап. Ако d=0, то $uv=h_L(u,v)$. Ако d=1, то $uv=\overline{h_L(u,v)}$. С това е осигурена и конюнкцията.

След трите етапа $\{\overline{x}, xy\} \subseteq [F']$, така че F' е пълно и окончателно F също е пълно.

Дефиниция 12 Булевата функция $f \in \mathcal{F}_2$ се нарича Шеферова, ако $\{f\}$ е пълно множество.

Примери: чертата на Шефер $x|y=\overline{xy}$ и стрелката на Пирс $x\downarrow y=\overline{x\vee y}$ са Шеферовите функции на две променливи.

От теоремата на Пост-Яблонски, f е Шеферова тогава и само тогава, когато $f \notin T_0, f \notin T_1, f \notin S, f \notin M, f \notin L$. Следващата теорема показва, че е достатъчно да проверим само първите три от тези непринадлежности.

Теорема 13 (критерий за Шеферовост) За булева функция $f \in \mathcal{F}_2$: f е Шеферова тогава и само тогава, когато $f \notin T_0 \cup T_1 \cup S$.

Доказателство. Ако f е Шеферова, то $f \notin T_0 \cup T_1 \cup S$ следва от теоремата на Пост-Яблонски.

Нека $f \notin T_0 \cup T_1 \cup S$. Тогава $f(0,0,\dots,0)=1$ и $f(1,1,\dots,1)=0$. Но $(0,0,\dots,0) \preccurlyeq (1,1,\dots,1)$, така получаваме $f \notin M$. Допускаме, че $f \in L$. Нека $f(x_1,\dots,x_n)=a_0\oplus a_1x_1\oplus\dots\oplus a_nx_n$. От $f(0,0,\dots,0)=1, a_0=1$. От $f(1,1,\dots,1)=0, a_0\oplus a_1\oplus\dots\oplus a_n=0$, което влече $a_1\oplus\dots\oplus a_n=1$. Но тогава:

$$f^{\star}(x_1,\ldots,x_n) = a_0 \oplus a_1(x_1 \oplus 1) \oplus \ldots \oplus a_n(x_n \oplus 1) \oplus 1$$
$$= f(x_1,\ldots,x_n) \oplus a_1 \oplus \ldots \oplus a_n \oplus 1 = f(x_1,\ldots,x_n).$$

Получихме $f\in S$, което е противоречие. Така $f\notin T_0\cup T_1\cup S\cup M\cup L$ и от теоремата на Пост-Яблонски, функцията f е Шеферова.

Едно множество $F \subseteq \mathcal{F}_2$ се нарича *базис*, ако F е пълно и никое собствено подмножество на F не е пълно. Например, всяка Шеферова функция образува базис с един елемент. Примери за базиси с два елемента: $\{\overline{x}, xy\}$ и $\{\overline{x}, x \vee y\}$ От теоремата на Пост-Яблонски е ясно, че всеки базис се състои от най-много 5 функции (всъщност може да се види, че са най-много 4).

Примерна задача. Дадено е множеството от булеви функции

$$F = \{xy, \ \overline{x}, \ \widetilde{0}, \ \widetilde{1}, \ x \oplus y \oplus z, \ xy \oplus xz \oplus yz\}.$$

Да се намерят всички базиси, които се съдържат във F.

Решение. Образуваме таблица, в която показваме принадлежността на всяка от функциите във F към 5-те основни множества T_0, T_1, S, M, L . Ще казваме, че една функция f покрива множеството K, ако $f \notin K$. Покриването ще отбелязваме със \star .

	T_0	T_1	S	M	L
xy			*		*
\overline{x}	*	*		*	
õ		*	*		
ĩ	*		*		
$x \oplus y \oplus z$				*	
$xy \oplus xz \oplus yz$					*

Само най-долните два реда се нуждаят от коментар.

За функцията $x\oplus y\oplus z$: очевидно запазва 0 и 1, също е самодвойнствена: $(x\oplus y\oplus z)^\star=(x\oplus 1)\oplus (y\oplus 1)\oplus (z\oplus 1)\oplus 1=x\oplus y\oplus z$, немонотонна: $100\preccurlyeq 110$ и $1\oplus 0\oplus 0=1, 1\oplus 1\oplus 0=0$, линейна.

За функцията $m=xy\oplus xz\oplus yz$: запазва 0 и 1, проверихме по-горе, че е самодвойнствена, монотонна: съобразете, че $xy\oplus xz\oplus yz=xy\vee xz\vee yz$, така че m е суперпозиция на конюнкции и дизюнкции, нелинейна.

За да покрием T_0 задължително трябва да вземем \overline{x} или $\widetilde{1}$.

Случай 1. Взимаме \overline{x} . Покрити са T_0, T_1, M . За да покрием S имаме три варианта.

Случай 1.1. Взимаме xy. Покрити са S и L. Получаваме базисът $\{\overline{x}, xy\}$.

Случай 1.2. Взимаме $\widetilde{0}$. Покрит е S и остава да покрием L. Можем да вземем xy, но тогава няма да получим базис, тъй като xy покрива и S, така че $\widetilde{0}$ става излишна. Затова имаме единствен вариант да вземем m. Получаваме базисът $\{\overline{x}, \widetilde{0}, m\}$.

Случай 1.3. Взимаме $\widetilde{1}$. Разсъждението е както в предния случай 1.2. Получаваме базисът $\{\overline{x},\ \widetilde{1},\ m\}$.

Дотук намерихме всички базиси, които съдържат \overline{x} . По-нататък няма да взимаме отрицанието.

Случай 2. Взимаме $\widetilde{1}$. Покрити са T_0 и S. Единственият начин да покрием T_1 е да вземем $\widetilde{0}$. Единственият начин да покрием M е да вземем $x \oplus y \oplus z$. Остава да покрием L.

Случай 2.1. Взимаме xy. Получаваме базисът $\{\widetilde{1}, \widetilde{0}, x \oplus y \oplus z, xy\}$. Забележете, че xy покрива и S, но няма как да премахнем константата $\widetilde{0}$ или $\widetilde{1}$, тъй като няма друга функция, покриващата T_1 или T_0 .

Случай 2.2. Взимаме m. Получаваме базисът $\{\widetilde{1}, \widetilde{0}, x \oplus y \oplus z, m\}$.

Така видяхме, че в множеството F се съдържат пет базиса.