Sprawozdanie Algorytmy ewolucyjne

Mateusz Olsztyński

Zakres

W swoich obliczeniach do selekcji wykorzystałem selekcję turniejową o wielkości tour = 5. Do tworzenia nowych osobników użyłem operator krzyżowania OX (Ordered Crossover). Natomiast do mutacji wykorzystałem operator inwersji, który okazał się skuteczniejszy niż mutacja typu swap.

W swoich testach uwzględniłem następujące instancje: berlin11, berlin52, kroA100, kroA150. Ze względów ograniczeń sprzętowych instancje z większą liczbą miast okazały się zbyt dużym wyzwaniem.

Testy algorytmu genetycznego

Osie wykresów:

-oś pionowa: przystosowanie

-oś pozioma: numer generacji

Parametry:

pop_size – wielkość populacji, gen – liczba generacji,

Pm – prawdopodobieństwo mutacji, Px – prawdopodobieństwo krzyżowania

Instancja berlin11

pop_size = 100, gen = 20, Pm = 0.3, Px = 0.8

Instancja berlin52

Instancja KroA100

+ wymiana 40% populacji co 10 generację

Instancja KroA150

pop_size = 10000, gen = 1000

Pm = 0.5, Px = 0.8

+ wymiana 40% populacji co 10 generację

Porównanie algorytmu ewolucyjnego z innymi nieewolucyjnymi algorytmami

Instancja	Optimum	Zachłanny	Losowy				Ewolucyjny			
			best	avg	worst	std	best	avg	worst	std
berlin11	4038	4543	4874	7110	8448	927	4038	4192	4529	219
berlin52	7542	8980	26826	29574	31653	1375	7567	8079	9321	580
kroA100	21282	26856	160328	174520	186123	7912	23143	24192	26331	1018
kroA150	26524	33609	236325	251690	269849	8672	30438	32002	32816	575

Wnioski

Przy odpowiednim doborze parametrów algorytmu genetycznego, jest on skuteczniejszy od algorytmu zachłannego. Działanie samego algorytmu wymaga jednak większej mocy obliczeniowej oraz dłuższego czasu oczekiwania na wynik (co utrudnia dobór optymalnych parametrów). Odpowiedni dobór wielkości parametrów takich jak rozmiar populacji, liczba generacji, prawdopodobieństwo krzyżowania oraz mutacji, jest uzależniony od typu oraz wielkości rozpatrywanego problemu.