3D CSEM inversion using a Parallel Discrete Adjoint method

Oscar Peredo, Vladimir Puzyrev, Jelena Koldan, José M. Cela

{oscar.peredo, vladimir.puzyrev, jelena.koldan, josem.cela}@bsc.es

INTRODUCTION

Barcelona

Supercomputing

We have developed a framework to deploy 3D CSEM inversion using massively parallel nodal finite element forward simulations based on secondary Coulomb-gauged EM potentials. The core of our implementation is based in the discrete adjoint method which builds gradients of a misfit function with respect to the electric conductivity of each nodal point of the mesh.

DISCRETE ADJOINT METHOD FORWARD PROBLEM

The discrete adjoint method [3], is a versatile and powerful technique to obtain gradients in PDE-constrained optimization problems. Formally, a PDE-constrained optimization problem (after discretization) can be formulated as:

with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, J : \mathbb{K}^{n_u} \times \mathbb{K}^{n_d} \to \mathbb{R} \text{ cost and }$ $\mathbf{r}: \mathbb{K}^{n_u} \times \mathbb{K}^{n_d} \to \mathbb{K}^{n_u}$ constraint functions, $\mathbf{r}(\mathbf{u}, \mathbf{d}) := \mathbf{K}(\mathbf{d})\mathbf{u} - \mathbf{f}(\mathbf{d})$. Considering the implicit dependency $\mathbf{u}(\mathbf{d}) = [\mathbf{K}(\mathbf{d})]^{-1}\mathbf{f}(\mathbf{d})$ $([\mathbf{K}(\mathbf{d})]^{-1})$ is never calculated, a new unconstrained problem is defined:

$$\underset{\mathbf{d} \in \mathbb{K}^n d}{\text{minimize}} \quad j(\mathbf{d}) := J(\mathbf{u}(\mathbf{d}), \mathbf{d})$$

which can be solved using gradient-based methods. The steps to build $\nabla_{\mathbf{d}} j(\mathbf{d}_k)$ are:

- 1 Set initial value of \mathbf{d}_k ;
- $\mathbf{u}_k \leftarrow \mathbf{r}(\mathbf{u}, \mathbf{d}_k) = \mathbf{0} \ (forward \ problem);$
- з Calculate^a $\nabla_{\mathbf{u}} J(\mathbf{u}_k, \mathbf{d}_k), \nabla_{\mathbf{u}} \mathbf{r}(\mathbf{u}_k, \mathbf{d}_k);$
- 4 $\lambda_k \leftarrow \nabla_{\mathbf{u}} \mathbf{r}(\mathbf{u}_k, \mathbf{d}_k)^* \lambda = \nabla_{\mathbf{u}} J(\mathbf{u}_k, \mathbf{d}_k)^*$ (adjoint problem);
- 5 Calculate^a $\nabla_{\mathbf{d}} J(\mathbf{u}_k, \mathbf{d}_k), \nabla_{\mathbf{d}} \mathbf{r}(\mathbf{u}_k, \mathbf{d}_k);$
- $\nabla_{\mathbf{d}} j(\mathbf{d}_k) =$
- $-\boldsymbol{\lambda}_{k}^{*}\nabla_{\mathbf{d}}\mathbf{r}(\mathbf{u}_{k},\mathbf{d}_{k}) + \nabla_{\mathbf{d}}J(\mathbf{u}_{k},\mathbf{d}_{k});$

REFERENCES

- [1] E. A. Badea, M. E. Everett, G. A. Newman, and O. Biro. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3):786-799, 2001.
- [2] M. Commer and G. A. Newman. New advances in threedimensional controlled-source electromagnetic inversion. Geophys. J. Int., 172:513-535, 2008.
- [3] M. B. Giles and N. A. Pierce. Adjoint equations in CFD: duality, boundary conditions, and solution behaviour. In 13th AIAA Computational Fluid Dynamics Conference, number AIAA-97-1850, Snowmass Village, CO, June 1997.
- [4] G. Houzeaux, M. Vázquez, R. Aubry, and J. M. Cela. A massively parallel fractional step solver for incompressible flows. Journal of Computational Physics, 228(17):6316 -6332, 2009.
- [5] V. Puzyrev, J. Koldan, J. de la Puente, G. Houzeaux, M. Vázquez, and J. M. Cela. A parallel finite-element method for 3D controlled-source electromagnetic forward modeling. Geophys. J. Int., 193(2):678-693, 2013.

Described in [5] following ideas from [1], it is formulated in terms of $(\mathbf{A}_s, \nabla \phi_s)$ with homogeneous Dirichlet b.c. in a 3D domain Ω as:

$$\nabla^{2} \mathbf{A}_{s} + i\omega\mu_{0}\overline{\sigma}(\mathbf{A}_{s} + \nabla\phi_{s}) = -i\omega\mu_{0}\delta\overline{\sigma}(\mathbf{A}_{p} + \nabla\phi_{p})$$

$$\nabla \cdot (i\omega\mu_{0}\overline{\sigma}(\mathbf{A}_{s} + \nabla\phi_{s})) = -\nabla \cdot (i\omega\mu_{0}\delta\overline{\sigma}(\mathbf{A}_{p} + \nabla\phi_{p}))$$

with electrical conductivity $\overline{\sigma} := \overline{\sigma}_{base} + \delta \overline{\sigma}$, angular frequency $\omega = 2\pi f$ and magnetic permeability of free space μ_0 . After finite element discretization using N nodes, the forward problem is: $\mathbf{K}(\mathbf{d})\mathbf{u} = \mathbf{f}(\mathbf{d})$ with \mathbf{d} the discrete values of $\delta \overline{\sigma}$ in the domain, $\mathbf{u} =$ $(\mathbf{A}_s^1, \mathbf{A}_s^2, \mathbf{A}_s^3, \phi_s)^T \in \mathbb{C}^{4N}, \ \mathbf{K}(\mathbf{d}) \in \mathbb{C}^{4N \times 4N}$ and $\mathbf{f}(\mathbf{d}) \in \mathbb{C}^{4N}$.

ADJOINT PROBLEM

Cost (misfit) function:

 $J(\mathbf{u}, \mathbf{d}) = \overline{(\mathbf{D}(\mathbf{u} - \mathbf{u}^{obs}))}^T \mathbf{D}(\mathbf{u} - \mathbf{u}^{obs})$ Adjoint problem (isotropy assumed in $\overline{\sigma}$, i.e. d=N):

$$\mathbf{K}(\mathbf{d})^T \, \overline{oldsymbol{\lambda}} = \overline{\mathbf{D}(\mathbf{u} - \mathbf{u}^{obs})}$$

Gradient:

$$\nabla_{\mathbf{d}} j(\mathbf{d}) = -2\Re \left\{ \overline{\lambda}^T \nabla_{\mathbf{d}} \mathbf{r}(\mathbf{u}, \mathbf{d}) \right\}$$

Log transformation $\gamma_i = \ln(\overline{\sigma}_{base} + d_i)$:

$$\nabla_{\gamma} j(\gamma) = -2\Re \left\{ \overline{\lambda}^T \nabla_{\mathbf{d}} \mathbf{r}(\mathbf{u}, \mathbf{d}) \right\} \cdot \nabla_{\gamma} \mathbf{d}(\gamma)$$

FEATURES

Current:

- $\mathbf{D}_{ii} = \operatorname{distance}(\operatorname{Tx}, \operatorname{Rx}_i)^{\alpha}, \ \alpha > 0.$
- Depth-based Gradient preconditioner:

• Multi-Tx support: $\nabla_{\gamma} j(\gamma) = \sum_{k} \nabla_{\gamma} j_{k}(\gamma)$.

Future work:

- New preconditioners.
- Regularization in misfit function [2].
- Misfit function based in (\mathbf{E}, \mathbf{H}) fields using moving least squares interpolation of (\mathbf{A}, ϕ) potentials.

Does $-\nabla_{\gamma}j$ gives us some useful information at $f=0.5\mathrm{Hz}?$

Target models with anomaly at $\sigma_{target} = 0.5$ and depth 800 meters:

How does $-\nabla_{\gamma} j$ looks at different frequencies using several Tx's?

Target model with anomaly at $\sigma_{target} = 0.5$ and depth 800 meters: 3 Tx (2000m separation) 1 Tx 5 Tx (1000m separation)

Alya (multi-physics parallel PDE solver [4]):

- Fortran 90 / MPI+OpenMP
- Mesh partitioning with METIS
- Sparsity: iterative methods
- Portable: runs in IBM PowerPC, Intel Xeon/SandyBridge, ...
- Big mesh \rightarrow almost linear scalability
- Integration with well-known postprocessors: VisIt, Paraview, GiD, ...

FORWARD/ADJOINT SOLVER GRADIENT IMPLEMENTATION

- 1 INPUT: γ , $\mathbf{d} := \mathbf{d}(\gamma)$;
- 2 $\mathbf{u} \leftarrow \text{solve}(\mathbf{K}(\mathbf{d}), \mathbf{f}(\mathbf{d}))^a;$ 3 $\lambda \leftarrow \text{solve}(\mathbf{K}(\mathbf{d})^T, \mathbf{D}(\mathbf{u} - \mathbf{u}^{obs}));$
- for $node_i = 1 : N do$
- $\frac{\partial j}{\partial \boldsymbol{\gamma}_i} = 0;$ if $node_i \in Region$ -Of-Interest then assemble $\left(\frac{\partial \mathbf{K}}{\partial \mathbf{d}_i}, \frac{\partial \mathbf{f}}{\partial \mathbf{d}_i}\right);$ $rac{\partial \mathbf{r}}{\partial \mathbf{d}_i} = rac{\partial \mathbf{K}}{\partial \mathbf{d}_i} \mathbf{u} - rac{\partial \mathbf{f}}{\partial \mathbf{d}_i};$
- 8 OUTPUT: $\nabla_{\gamma} j(\gamma)$
- a In red we show the operations performed in parallel.

We calculate $\nabla_{\gamma} j$ in each node of the domain, using two mesh sizes of 1.1M and 4.8M elements (177K and 812K nodes respectively) with MPI-only processes:

9 Tx (500m separation)

#CPUs	N	Time (hh:mm)	Time (hh:mm)
		IBM PPC 970MP	Intel Xeon E5-2670
		4 cores-per-node	16 cores-per-node
		$2.3 \mathrm{GHz}$	$2.6 \mathrm{GHz}$
128		00:12	00:06
256	177K	00:07	00:04
512		00:03	00:02
128		04:12	01:48
256	812K	02:18	01:10
512		01:15	00:27

 \uparrow cores-per-node $\Longrightarrow \downarrow$ time. Suitable for new multiprocessor chips (> 50 cores).

a using automatic differentiation, finite differences or taking derivatives $by\ hand$