

TSMC Libraries

Advanced Technology Standard Cells Industry Standard I/Os

Empowering Innovation

ion

Library Features

Standard cells

- 9 tracks, 600 cells
- Multiple Vt, ECO cells, low power architectures
- All major EDA views

General purpose I/Os

- Latch-up characterized to 200 milliamps
- Pad- and core-limited varieties available
- ESD characterized to 2kV/200V model (HBM/MM)

Empowering Innovation

TSMC Library Distribution and Support

- Developed and validated by TSMC
- Distributed by <Distributor>
 - Standard cells
 - General purpose digital I/O's
- Support provided by <Distributor>
 - Hotline and AE service in the excellent tradition of <Distributor>
 - Library updates and bug fixes are done by TSMC
 - If customized characterization or library elements are required, <Distributor> will direct those requests to TSMC

Empowering Innovation

3

Why is TSMC Creating Libraries?

- To create a comprehensive choice of industry-leading standard cell, I/O and memory libraries in the leading process technologies, complementing internal offerings with 3rd party partner offerings
- To productize the cells used in wafer process development, and test them in real-world EDA flows, to provide processtuned design architectures that fully utilize TSMC's silicon technology
- To set the industry standard for quality with TSMC 9000 compliant products
- To fulfill increasing demand for segment-targeted building blocks

To utilize distribution partners with strong, global field organizations to serve designers throughout the design cycle

Empowering Innovation

Who is Using TSMC Libraries?

- I/Os: In production, in hundreds of products
- Standard cells: Rapid customer adoption in
 - communications segment
 - consumer segment
- All geographic regions
 - Americas
 - Japan
 - Europe
 - Asia
- All leading processes
 - 0.15 µm
 - 0.13 µm
 - 90 nm

The advanced technology libraries for TSMC design

tsmc

TSMC Standard Cell Libraries

The advanced technology libraries for TSMC design

Empowering Innovation

Advanced Technology Library Features

Ready for market

Competitive cell density, 9 track architecture Pre-tested with advanced design flows Commercial and industry specs available Tested in silicon

- Power
- Timing
- DFM

Empowering Innovation

a

Cell Family	0.15um	0.13um	90nm	Drive Strength
(AND/NAND) / (OR/NOR) / (XOR/XNOR)	3 each	3 each	3 each	5/6/4 each
BUFFER / 3-STATE BUFFER: w/ & w/o enable/inverter	1 each	1 each	1 each	11 each
AOI / OAI / AO / OA / MAO / MOAI	12 each	39	39	4 each
ADDER: half/full adder	1 each	3	3	3/2 each
MUX: w & w/o inverted output	3 each	6	6	4 each
CLK BUFFER / Inverted CLK BUFFER / Gated CLK LATCH	1 each	1 each	1 each	11 / 11 / 10 eac
DFF: pos-edge, neg-edge, async/sync R/S, w/o R/S	15	15	15	3 each
ENABLE DFF; async/sync R, w/o R flip-flop	6	6	6	3 each
SCAN DFF: all version of scan flip-flop	21	23	23	3 each
LATCH: active high/low enable, async R/S	8	8	8	3 each
INV/NAND/AND/MUX/XOR (balanced rise/fall)	1 each	5	5	4 each
DELAY/TIE-HIGH/TIE-LOW cell	1 each	4	4	4/1/1(7/1/1)
ANTENNA/DECOUPLING cell	2, 7	7	7	N/A
Total Cell Number	514	600*	600*	

(PROCESS)	PRODUCT NAME	Raw Gate Density (Kgates/mm²)	Leakage (nW)	Internal Power (nW/MHz)	Speed (ns)	Voltage
CLN90G	TCBN90G	EW 5 413	4.11	2.25	0.031	1.0V
	TCBN90GHVT		2.2	2.1	0.041	
	TCBN90GLVT		61.8	2.75	0.028	
	TCBN90GOD		7.62	3.85	0.026	1.2V
	TCBN90GODHVT		4.84	3.2	0.0327	
	TCBN90GODLVT ₹		114.9	5.15	0.0237	
	TCBN90LP		0.13	2.45	0.04	
CLN90LP	TCBN90LPHVT		0.02	2.4	0.05	
	TCBN90LPUHVT		0.01	2.55	0.07	
CL013G	TCB013GHP	196	0.76	5.5	0.052	1.2V
	TCB013GHPHVT		0.2	5.3	0.067	
	TCB013GHPLVT		8.16	6.3	0.04	
CL013LV	TCB013LVHP		7.19	3.7	0.04	1.0V
	TCB013LVHPHVT		1.19	3.3	0.044	
	TCB013LVHPOD		12.5	6.2	0.0329	1.2V
	TCB013LVHPODHVT₹		2.42	5.05	0.0351	
CL013LP	TCB013LPHP		0.008	8.5	0.067	1.5V
JEUIJEE	TCB013LPHPLVT		0.171	7.4	0.042	
CL015G	TCB015G	404	0.058	9.8	0.055	1.5V
CL015LV	TCB015LV	131	0.51	6.1	0.05	1.2V

TSMC Standard Cell Characterization Sets the industry standard

- Extensive Characterization:
 - Input pin capacitance
 - Propagation Delay, Transition Time
 - Setup/Hold Time
 - Recovery/Removal Time/Minimum Pulse Width
 - Leakage, Internal Power
- High Accuracy:
 - 7 X 7 Lookup Table for timing & power calculation
- **Advanced Power Parameters:**
 - Pin-to-Pin Power Table supported
 - State-dependent delay, internal power (selected cells)
 - Input pin state-dependent leakage
 - Cell output Irms characterized for EM at 500MHz

Empowering Innovation

21

Widespread Adoption, Working Silicon

90 nm

• 0.13 μm

- Customer #1: network Taped out MPW in February 2003, silicon functional
- Customer #2: programmable logic Taped out MPW in June 2003, silicon functional
- Customer #3: major IDM Multiple tape-outs planned
- Customer #1: handset

Taped out 0.13G multi-Vt in April 2003, silicon functional

Customer #2: wireless

Taped out 0.13G multi-Vt in July 2003, silicon functional

- Customer #3: computer
- Will tape out 0.13LV-OD in Q4/2003
- Customer #4: storage Will tape out 0.13G in Q4/2003
- Customer #1: communication
- **0.15** μm
- In pilot production now (0.15G) Customer #2: consumer
- Will tape out in Q4/2003 (0.15G) Customer #3: consumer Will tape out in Q4/2003 (0.15LV)

Empowering Innovation

CL013 Success Story – Cellular Phone Chip

Design specification: First time silicon success!

Process: TSMC 0.13 μm 1.2V/3.3V 1P6M FSG

Gate count: 1.44M gates

Memory: 485KB

Chip size: 9x9 mm square
Frequency Target: 122.5MHz
Package: 504 pins BGA

Library & Flow:

TSMC 0.13 μm multi-Vt Std. cell library

TSMC digital & analog I/O cells

Multi-Vt script design methodology

Precise leakage cell modeling for leakage and speed trade-off

Empowering Innovation

25

Summary

- Advanced DFM features
- Advanced power features
- Advanced ECO flexibility
- Most extensive characterization
- Flow proven and silicon validated
- Rapid market adoption

The advanced technology libraries for TSMC design

Empowering Innovation

TSMC Standard I/O Libraries

The most widely used I/O libraries for TSMC design

Empowering Innovation

Summary

- Available for production in TSMC processes
- Used in hundreds of products, tens of thousands of wafers
- Packaged by all leading backend houses

The most widely used I/O libraries for TSMC design

Empowering Innovation