Math 412. Adventure sheet on polynomial rings

DEFINITION: A polynomial is **monic** if its leading term (i.e., the term of highest degree) has coefficient 1.

THE DIVISION ALGORITHM FOR POLYNOMIALS. Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials $q(x), r(x) \in F[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
 and either $r(x) = 0$ or $\deg r(x) < \deg g(x)$.

THEOREM 4.8: Let F be a field and $a(x), b(x) \in F[x]$, not both zero. Then there is a unique monic polynomial that is the *greatest common divisor* d(x) of a(x) and b(x). There exist (not necessarily unique) $u(x), v(x) \in F[x]$ such that u(x)a(x) + v(x)b(x) = d(x).

THEOREM 4.14: Let F be a field. Every nonconstant polynomial in F[x] can be factored into *irreducible polynomials*. This factorization is essentially unique in the sense that if we have two factorizations into irreducibles

$$f_1 \cdots f_r = g_1 \cdots g_s,$$

then r = s, and after reordering, each f_i is a unit multiple of g_i for all i.

A. PRACTICE WITH THE DIVISION ALGORITHM FOR POLYNOMIALS. You may have learned to divide polynomials to find a quotient and remainder in high school. The goal in every step is to find some ax^n (that will go into the "quotient") that makes the leading term of the divisor cancel the leading term of the dividend.

- (1) Let $f = x^3 + 4x^2 + x + 1$ in $\mathbb{R}[x]$. Find q and r so that $f = qx^2 + r$, where $\deg r < 2$.
- (2) In the ring $\mathbb{F}_2[x]$, divide the polynomial $x^5 + 3x^3 + x^2 + 1$ by $x^2 + 1$. What are the quotient and remainder?
- (3) In the ring $\mathbb{Q}[x]$, divide $x^4 + 3x^3 x^2 + 5$ by x + 1. What are the quotient and remainder?
- (4) Consider the polynomials $f(x) = x^2 3$ and g(x) = 2x 1 in $R = \mathbb{Z}[x]$. What happens if you try to divide f(x) by g(x) in $\mathbb{Z}[x]$? Is the division algorithm theorem for polynomials true if we only assume that "F" is a *domain*?

B. THE PROOF OF THE DIVISION ALGORITHM FOR POLYNOMIALS:

The proof uses a similar method as the proof for \mathbb{Z} .

- (1) Consider the set $S := \{f(x) g(x)q(x) \mid q(x) \in F[x]\} \subseteq F[x]$. Explain why the existence part of the Division algorithm is equivalent to the statement that $0 \in S$ or S contains an element of degree less than $\deg d$.
- (2) Show that if S contains an element of degree 0, the division algorithm holds for f(x) and g(x).
- (3) If S contains an element h of degree $\delta' \geqslant \delta = \deg(g)$, subtract a suitable multiple of g to find a smaller degree element in S.
- (4) Prove the existence part of the statement. Hint: Chose an element of smallest positive degree in S. What axiom guarantees we can do this?
- (5) Prove the uniqueness part of the statement.

¹Hint: If this is unfamiliar to you, the first term we want in q is some ax^n such that $(ax^n)(x^2) = (x^3)$. Now subtract off $(ax^n)(x^2)$ from f and continue...

- C. FINDING GCDS. Use Theorem 4.14 to find the greatest common divisor of the given polynomials.
 - (1) Compute the **greatest common divisor** of $2x^2 10x + 12$ and $x^7 3x^6$ in $\mathbb{Q}[x]$.
 - (2) Compute the **greatest common divisor** of $(x^2 + 1)(x^3 + x^2)$ and $x^5(x + 1)^2$ in $\mathbb{Z}_2[x]$.
 - (3) Discuss Theorem 4.8 above with your team. Write out what the theorem says about the gcds you found (1) and (2). [Your statement should use the words "there exist".]
- D. EUCLIDEAN ALGORITHM IN $\mathbb{F}[x]$. Fix a field \mathbb{F} .
 - (1) Suppose that $f, g \in \mathbb{F}[x]$, and we use the division algorithm to write f = qg + r for some appropriate $q, f \in \mathbb{F}[x]$. Prove that $\gcd(f, g) = \gcd(g, r)$. [Hint: the proof is basically "the same" as for the ring \mathbb{Z} .]
 - (2) Use the Euclidean Algorithm to compute (f, g), where $f = x^3 + 4x^2 + x$ and $g = x^2 + x$ in $\mathbb{C}[x]$.
 - (3) Express x as a linear combination of f and g from the previous part.
 - (4) Sketch a proof of THEOREM 4.8.
- E. THE REMAINDER THEOREM AND THE FACTOR THEOREM. Fix $f \in \mathbb{F}[x]$.
 - (1) **Remainder Theorem:** Prove that for any $\lambda \in \mathbb{F}$, the remainder when f is divided by $(x \lambda)$ is $f(\lambda)$.
 - (2) **Factor Theorem:** Prove that $(x \lambda)$ divides f if and only if $f(\lambda) = 0$.
 - (3) Show that 1, 2, 3 and 4 are all roots of $x^4 1$ in $\mathbb{Z}_5[x]$.
 - (4) Use the factor theorem to find the factorization of $x^5 x$ completely into irreducibles as guaranteed by Theorem 4.14 in the ring $\mathbb{Z}_5[x]$.
 - (5) Find the factorization of $x^5 x$ completely into irreducibles as guaranteed by Theorem 4.14 in the ring $\mathbb{Z}_7[x]$.
- F. IRREDUCIBILITY. Let \mathbb{F} be any field.
 - (1) Show that if a polynomial $g \in \mathbb{F}[x]$ has degree three or two, then g is irreducible if and only if g has no roots.
 - (2) Show that (1) is false for polynomials of degree 4, even in $\mathbb{R}[x]$.
- G. POLYNOMIAL RINGS OVER DOMAINS. Let R be a domain (which may or may *not* be a field!).
 - (1) Let $g(x) \in R[x]$ be a *monic* polynomial, and $f(x) \in R[x]$ be any polynomial. Show that there exist unique polynomials $q(x), r(x) \in R[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
 and either $r(x) = 0$ or $\deg r(x) < \deg g(x)$.

(2) Show that if $r \in R$, and $f(x) \in R[x]$, then f(r) = 0 if and only if (x - r) divides f(x) in R[x].

Fix a polynomial $f(x) \in \mathbb{F}[x]$. Define two polynomials $g, h \in \mathbb{F}[x]$ to be **congruent modulo** f if f|(g-h). We write $g \equiv h \mod f$. The set of all polynomials congruent to g modulo f is written $[g]_f$.

G. CONGRUENCE IN $\mathbb{F}[x]$.

- (1) Prove that Congruence is an equivalence relation:
 - (a) reflexive: for all g, we have $g \equiv g \mod f$;
 - (b) symmetric: $g \equiv h \mod f$ implies $h \equiv g \mod f$ for all $g, h \in \mathbb{F}[x]$.
 - (c) transitive: $g \equiv h \mod f$ and $h \equiv k \mod f$ implies $g \equiv k \mod f$ for all $g, h, k \in \mathbb{F}[x]$.
- (2) Prove that $[g]_f = \{g + kf \mid k \in \mathbb{F}[x]\}.$
- (3) Prove that if $h \in [g]_f$, then $[g]_f = [h]_f$.
- (4) Explain why, for any two polynomials $g, h \in \mathbb{F}[x]$, either $[g]_f = [h]_f$ or $[g]_f \cap [h]_f = \emptyset$.
- H. CONGRUENCE CLASSES IN $\mathbb{F}[x]$. Fix a polynomial $f(x) \in \mathbb{F}[x]$ of degree d > 0.
 - (1) Prove that every congruence class $[g]_f$ contains a *unique* polynomial of degree less than d.
 - (2) How many distinct congruence classes are there for $\mathbb{Z}_2[x]$ modulo $x^3 + x$?
 - (3) How many distinct congruence classes are there for $\mathbb{Z}_3[x]$ modulo $x^2 + x$?
- I. RING STRUCTURE ON THE SET OF CONGRUENCE CLASSES MODULO f in $\mathbb{F}[x]$.
 - (1) Fix a polynomial $f(x) \in \mathbb{F}[x]$ of degree d > 0. Let \mathcal{R} be the set of all congruence classes modulo f. Can you define a natural addition and multiplication on \mathcal{R} to make it into a ring? Remember: Each is element of \mathcal{R} is a set, so be careful with your definition!
 - (2) In the case of $\mathbb{Z}_2[x]$ modulo x^2 , the ring \mathcal{R} has only four elements: why? Make a table for your operations on \mathcal{R} . To what familiar ring is \mathcal{R} isomorphic?