4. előadás

VALÓS SOROZATOK 3.

Műveletek konvergens sorozatokkal

A sorozatok konvergencia-tulajdonságainak vizsgálatánál kiemelt szerepet játszanak a nullasorozatok.

1. definíció. $Az(a_n)$ sorozatot nullasorozatnak nevezzük, ha a sorozat konvergens és $\lim (a_n) = 0$, azaz

$$\forall \varepsilon > 0 \text{-}hoz \ \exists \ n_0 \in \mathbb{N}, \ \forall \ n > n_0 \colon |a_n - 0| = |a_n| < \varepsilon.$$

- 1. tétel (Nullasorozatok alaptulajdonságai).
 - $\mathbf{1}^{o}(a_{n})$ nullasorozat \iff $(|a_{n}|)$ nullasorozat.
 - $\mathbf{2}^{o}(a_{n})$ konvergens és $\lim (a_{n}) = A \iff (a_{n} A)$ nullasorozat.
 - 3º Majoráns kritérium. Ha (a_n) nullasorozat és $|c_n| \le |a_n|$ $(m.m \ n \in \mathbb{N})$, akkor (c_n) is nullasorozat.

Bizonyítás.

 $\mathbf{1}^{o} \lim (a_{n}) = 0 \iff \forall \varepsilon > 0$ -hoz $\exists n_{0} \in \mathbb{N}$, hogy $\forall n > n_{0} : |a_{n}| < \varepsilon$, azaz $|a_{n}| - 0 < \varepsilon$, és ez azt jelenti, hogy $\lim (|a_{n}|) = 0$.

 $\mathbf{2}^{o} \lim (a_n) = A \iff \forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n - A| < \varepsilon, \text{ azaz} |(a_n - A) - 0| < \varepsilon, \text{ tehát } \lim (a_n - A) = 0.$

 $\mathbf{3}^o \quad \lim{(a_n)} = 0 \Longrightarrow \ \forall \, \varepsilon > 0$ mellett egy alkalmas $n_1 \in \mathbb{N}$ küszöbindexszel

$$|a_n| < \varepsilon \quad \forall n > n_1 \text{ indexre.}$$

Ugyanakkor a $|c_n| \leq |a_n|$ (m.m. $n \in \mathbb{N}$) "majoráns feltétel" miatt van olyan $n_2 \in \mathbb{N}$, amellyel

$$|c_n| \le |a_n| \quad \forall n > n_2 \text{ indexre.}$$

Ha tehát $n_0 := \max\{n_1, n_2\}$, akkor

$$|c_n| \le |a_n| < \varepsilon \quad \forall n > n_0 \text{ indexre},$$

1

ami azt jelenti, hogy $\lim (c_n) = 0$.

2. tétel (Műveletek nullasorozatokkal). Tegyük fel, hogy $\lim(a_n) = 0$ és $\lim(b_n) = 0$. Ekkor

 $\mathbf{1}^{o} (a_n + b_n)$ is nullasorozat,

 $\mathbf{2}^{o}$ ha (c_n) korlátos sorozat, akkor $(c_n \cdot a_n)$ nullasorozat,

 $\mathbf{3}^{o} (a_n \cdot b_n) \ null as or ozat.$

Bizonyítás.

 $\mathbf{1}^{o}$ Mivel $\lim (a_n) = \lim (b_n) = 0$, ezért $\forall \varepsilon > 0$ -hoz

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : |a_n| < \frac{\varepsilon}{2} \text{ és}$$
$$\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : |b_n| < \frac{\varepsilon}{2}.$$

Legyen $n_0 := \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$|a_n + b_n| \le |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy $\lim (a_n + b_n) = 0$, azaz $(a_n + b_n)$ valóban nullasorozat.

 $\mathbf{2}^{o}$ A (c_{n}) sorozat korlátos, ezért

$$\exists K > 0: |c_n| < K \quad (n \in \mathbb{N}).$$

Mivel (a_n) nullasorozat, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n| < \frac{\varepsilon}{K},$

következésképpen minden $n > n_0$ indexre

$$|c_n \cdot a_n| < K \cdot \frac{\varepsilon}{K} = \varepsilon,$$

azaz $\lim (c_n \cdot a_n) = 0.$

 $\mathbf{3}^{o}$ Mivel minden konvergens sorozat korlátos, ezért a lim $(b_n) = 0$ feltételből következik, hogy (b_n) korlátos sorozat. Az állítás tehát $\mathbf{2}^{o}$ közvetlen következménye.

Megjegyzések.

1º Az előző tételből következik, hogy egy nullasorozat konstansszorosa és két nullasorozat különbsége is nullasorozat.

2º Nullasorozatok hányadosának a határértéke (vagyis két "kicsi" szám hányadosa) bármi lehet. Ezt illusztrálják az alábbi példák:

•
$$\frac{\frac{1}{n^2}}{\frac{1}{n^3}} = n \to +\infty$$
, ha $n \to +\infty$,
• $\frac{\frac{1}{n^3}}{\frac{1}{n^2}} = \frac{1}{n} \to 0$, ha $n \to +\infty$,
• $\frac{\frac{c}{n}}{\frac{1}{n}} = c \to c$, ha $n \to +\infty$ (itt $c \in \mathbb{R}$),
• $\frac{(-1)^n}{\frac{1}{n}} = (-1)^n$ sorozat divergens.

A konvergens sorozatok és az algebrai műveletek kapcsolatát fejezi ki a következő tétel. Azt állítja, hogy a konvergens sorozatok a műveletek során a legtöbb esetben jól viselkednek abban az értelemben, hogy a három alapművelet és a határérték képzés sorrendje felcserélhető.

3. tétel (Műveletek konvergens sorozatokkal). Tegyük fel, hogy az (a_n) és a (b_n) sorozat konvergens. Legyen

$$\lim (a_n) = A \in \mathbb{R}$$
 és $\lim (b_n) = B \in \mathbb{R}$.

Ekkor

 $\mathbf{1}^{o}$ $(a_n + b_n)$ is konvergens és $\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B$,

 $\mathbf{2}^{o} \ (a_n \cdot b_n) \ is \ konvergens \ és \ \lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B,$

3° ha $b_n \neq 0 \ (n \in \mathbb{N})$ és $\lim (b_n) \neq 0$, akkor

$$\left(\frac{a_n}{b_n}\right) \quad is \ konvergens \quad \acute{e}s \quad \lim\left(\frac{a_n}{b_n}\right) = \frac{\lim\left(a_n\right)}{\lim\left(b_n\right)} = \frac{A}{B}.$$

Bizonyítás. Gyakran fogjuk alkalmazni a nullasorozatok $\mathbf{2}^o$ alaptulajdonságát, ami azt állítja, hogy

(*) (x_n) konvergens és $\alpha \in \mathbb{R}$ a határértéke \iff $(x_n - \alpha)$ nullasorozat.

1º A (*) állítás miatt elég azt megmutatni, hogy

$$((a_n + b_n) - (A + B))$$
 nullasorozat.

Ez nyilván igaz, mert

$$((a_n + b_n) - (A + B)) = (a_n - A) + (b_n - B),$$

és két nullasorozat összege is nullasorozat.

 ${\bf 2}^o$ A (*) állítás miatt elég azt megmutatni, hogy $\left(a_nb_n-AB\right)$ nullasorozat. Ez a következő átalakítással igazolható:

$$a_n b_n - AB = a_n b_n - Ab_n + Ab_n - AB =$$

$$= \underbrace{b_n \cdot (a_n - A)}_{\text{korlátos}} + \underbrace{A \cdot (b_n - B)}_{\text{0-sorozat}} \cdot \underbrace{b_{\text{norozat}}}_{\text{0-sorozat}} \cdot \underbrace{b_{\text{norozat}}}_{\text{0-sorozat}}$$

A fenti gondolatmenetben a (b_n) sorozat azért korlátos, mert konvergens. Így $(a_nb_n - AB)$ valóban nullasorozat, ezért az $(a_n \cdot b_n)$ szorzat-sorozat konvergens, és $A \cdot B$ a határértéke, azaz

$$\lim (a_n \cdot b_n) = A \cdot B = \lim (a_n) \cdot \lim (b_n)$$

3° A bizonyításhoz először egy önmagában is érdekes állítást igazolunk.

Segédtétel. Ha $b_n \neq 0 \ (n \in \mathbb{N})$ és (b_n) konvergens, továbbá $B := \lim(b_n) \neq 0$, akkor az

$$\left(\frac{1}{b_n}\right)$$

reciprok-sorozat korlátos.

Ennek bizonyításához legyen $\varepsilon:=|B|/2$. Ekkor egy alkalmas $n_0\in\mathbb{N}$ küszöbindex mellett

$$|b_n - B| < \varepsilon = \frac{|B|}{2}$$
 $\forall n > n_0 \text{ indexre.}$

Így minden $n > n_0$ esetén

$$|b_n| = |B + b_n - B| \ge |B| - |b_n - B| > |B| - \frac{|B|}{2} = \frac{|B|}{2}.$$

Tehát

$$\left|\frac{1}{b_n}\right| < \frac{2}{|B|}, \quad \text{ha } n > n_0,$$

következésképpen az

$$\left|\frac{1}{b_n}\right| \le \max\left\{\frac{1}{|b_0|}, \frac{1}{|b_1|}, \dots, \frac{1}{|b_{n_0}|}, \frac{2}{|B|}\right\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ számra teljesül, ezért az $(1/b_n)$ sorozat valóban korlátos. A segédtételt tehát bebizonyítottuk. \square

Most azt látjuk be, hogy a (b_n) sorozatra tett feltétel mellett

$$\left(\frac{1}{b_n}\right)$$
 sorozat konvergens és $\lim \left(\frac{1}{b_n}\right) = \frac{1}{B}$.

Ez (*)-ból következik az alábbi átalakítással:

$$\frac{1}{b_n} - \frac{1}{B} = \frac{B - b_n}{B \cdot b_n} = \underbrace{\frac{1}{B \cdot b_n} \cdot \underbrace{(B - b_n)}_{\text{0-sorzat}}}_{\text{0-sorzat}}.$$

A 3° állítás bizonyításának a befejezéséhez már csak azt kell figyelembe venni, hogy

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \qquad (n \in \mathbb{N}),$$

más szóval az (a_n/b_n) "hányados-sorozat" két konvergens sorozat szorzata. Így a 2^o állítás és a reciprok sorozatról az előbb mondottak miatt

$$\left(\frac{a_n}{b_n}\right)$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = A \cdot \frac{1}{B} = \frac{A}{B} = \frac{\lim(a_n)}{\lim(b_n)}$.

4

A műveletek és a határérték kapcsolata

$\overline{\mathbb{R}}$ struktúrája

A kibővített valós számok

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

halmazában bevezettünk egy rendezést is. \mathbb{R} eredeti rendezését megtartva azt mondtuk, hogy legyen

$$-\infty < x < +\infty$$

minden $x \in \mathbb{R}$ esetén.

Állapodjunk meg abban, hogy az \mathbb{R} -beli **műveleteket** az alábbiak szerint terjesztjük ki $\overline{\mathbb{R}}$ -ra:

1º Összeg:

(i) Minden x valós számra legyen

$$x + (+\infty) := (+\infty) + x := +\infty,$$
 $x + (-\infty) := (-\infty) + x := -\infty,$

(ii)
$$(+\infty) + (+\infty) := +\infty$$
, $(-\infty) + (-\infty) := -\infty$.

2º Szorzat:

(i) Minden x pozitív valós számra legyen

$$x \cdot (+\infty) := (+\infty) \cdot x := +\infty, \qquad x \cdot (-\infty) := (-\infty) \cdot x := -\infty.$$

(ii) Minden x negatív valós számra legyen

$$x \cdot (+\infty) := (+\infty) \cdot x := -\infty, \qquad x \cdot (-\infty) := (-\infty) \cdot x := +\infty.$$

$$(iii) (+\infty) \cdot (+\infty) := +\infty, (-\infty) \cdot (-\infty) := +\infty, (+\infty) \cdot (-\infty) := (-\infty) \cdot (+\infty) := -\infty.$$

3º Hányados:

(i) Minden x valós számra legyen

$$\frac{x}{+\infty} := \frac{x}{-\infty} := 0.$$

(ii) Minden x pozitív valós számra legyen

$$\frac{+\infty}{x} := +\infty, \qquad \frac{-\infty}{x} := -\infty.$$

(iii) Minden x negatív valós számra legyen

$$\frac{+\infty}{x} := -\infty, \qquad \frac{-\infty}{x} := +\infty.$$

Megjegyzések.

 $\mathbf{1}^o$ A műveletek és a rendezés definíciói összhangban vannak a végtelenről kialakult szemléletes képünkkel; pl. $x+(+\infty):=+\infty$ azzal, hogy egy valós szám és egy "mindennél nagyobb" szám összege "mindennél nagyobb".

 $\mathbf{2}^o$ Felhívjuk a figyelmet arra, hogy $\overline{\mathbb{R}}$ -on lényegében nem "igazi" műveleteket, azaz nem a teljes $\overline{\mathbb{R}} \times \overline{\mathbb{R}}$ halmazon értelmezett $\overline{\mathbb{R}}$ -beli értékeket felvevő függvényeket értelmeztünk. Bizonyos műveleteket nem definiáltunk. Ilyenek többek között a következők:

$$(+\infty) + (-\infty), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{c}{0} \quad (c \in \overline{\mathbb{R}}).$$

A nem értelmezett esetek később fontos szerepet fognak játszani a határértékszámításban.

Műveletek határértékekkel

A konvergens sorozatoknál láttuk, hogy az alapműveletek és a határérték képzés sorrendje felcserélhető. A következő tétel azt állítja, hogy a "legtöbb esetben" ez igaz a tágabb értelemben vett határértékre is.

4. tétel (A műveletek és a határérték kapcsolata). Tegyük fel, hogy az (a_n) és a (b_n) sorozatoknak van határértéke, és legyen

$$\lim(a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor

 $\mathbf{1}^{o}$ az $(a_n + b_n)$ összeg-sorozatnak is van határértéke, és

$$\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B,$$

feltéve, hogy az $A + B \in \overline{\mathbb{R}}$ összeg értelmezve van;

 2^{o} az $(a_n \cdot b_n)$ szorzat-sorozatnak is van határértéke, és

$$\lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B,$$

feltéve, hogy az $A \cdot B \in \overline{\mathbb{R}}$ szorzat értelmezve van;

 $\mathbf{3}^o$ ha $b_n \neq 0 \ (n \in \mathbb{N})$, akkor az $\left(\frac{a_n}{b_n}\right)$ hányados-sorozatnak is van határértéke, és

$$\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim \left(a_n\right)}{\lim \left(b_n\right)} = \frac{A}{B},$$

feltéve, hogy az $\frac{A}{B} \in \overline{\mathbb{R}}$ hányados értelmezve van.

Bizonyítás. Tekintettel a már igazolt, "műveletek konvergens sorozatokkal" című tételre, elegendő a tételt igazolni a hiányzó $A \in \overline{\mathbb{R}}$ vagy $B \in \overline{\mathbb{R}}$ tartalmazó esetekre. Ez összesen 28 eset jelent (lásd a bizonyítás utáni megjegyzést). Példaként három állítás bizonyítását mutatjuk meg (a többi hasonlóan igazolható).

•
$$\lim (a_n) = \lim (b_n) = +\infty$$
 \Longrightarrow $\lim (a_n + b_n) = +\infty$

Legyen $P_0:=1$ és P>0egy tetszőlegesen rögzített valós szám. Ekkor

$$\lim (a_n) = +\infty \quad \Longrightarrow \quad \exists n_1 \in \mathbb{N}, \ \forall n > n_1 \colon a_n > P_0 = 1,$$

$$\lim (b_n) = +\infty \implies \exists n_2 \in \mathbb{N}, \ \forall n > n_2 \colon b_n > P.$$

Legyen $n_0 = \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ esetén

$$a_n + b_n > 1 + P > P$$
 \Longrightarrow $\lim (a_n + b_n) = +\infty$.

•
$$\lim (a_n) = A \in \mathbb{R}^+, \lim (b_n) = -\infty \implies \lim (a_n b_n) = -\infty$$

Legyen $\varepsilon := A/2$ és P < 0egy tetszőleges valós szám. Ekkor

$$\lim (a_n) = A \implies \exists n_1 \in \mathbb{N}, \ \forall n > n_1 : |a_n - A| < \varepsilon = \frac{A}{2}, \text{ és fgy } a_n > \frac{A}{2} \quad (> 0),$$

$$\lim (b_n) = -\infty \quad \Longrightarrow \quad \exists n_2 \in \mathbb{N}, \ \forall n > n_2 \colon b_n < \frac{2P}{A} \quad (<0).$$

Legyen $n_0 = \max \{n_1, n_2\}$. Ekkor $\forall n > n_0$ esetén

$$a_n b_n < a_n \cdot \frac{2P}{A} < \frac{A}{2} \cdot \frac{2P}{A} = P \implies \lim (a_n b_n) = -\infty.$$

$$\lim (a_n) = A \in \mathbb{R}, \lim (b_n) = +\infty \implies \lim \left(\frac{a_n}{b_n}\right) = 0$$

Elegendő megmutatni, hogy $(1/b_n)$ nullasorozat, hiszen az (a_n) sorozat korlátos. Legyen $\varepsilon > 0$ tetszőleges valós szám és $P := 1/\varepsilon > 0$. Ekkor

$$\lim (b_n) = +\infty \implies \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon b_n > P = \frac{1}{\varepsilon},$$

és így

$$\frac{1}{b_n} < \varepsilon \implies \left| \frac{1}{b_n} - 0 \right| < \varepsilon \implies \lim (b_n) = 0.$$

Megjegyzés. Figyeljük meg, hogy a konvergens sorozatok és a műveletek kapcsolatára vonatkozó korábbi eredményeinket (figyelembe véve az \mathbb{R} -beli műveletek definícióit) további 28 állítással egészítettük ki. Ezt szemléltetik az alábbi táblázatok.

$$A = \lim (a_n)$$
 $B = \lim (b_n)$

Összeg	$A \in \mathbb{R}$	$A = +\infty$	$A = -\infty$	
$B \in \mathbb{R}$	A + B	+∞	$-\infty$	
$B = +\infty$	$+\infty$	+∞		
$B = -\infty$	$-\infty$		$-\infty$	

Szorzat	A > 0	A = 0	A < 0	$A = +\infty$	$A = -\infty$
B > 0				+∞	$-\infty$
B = 0		$A \cdot B$			
B < 0				$-\infty$	$+\infty$
$B = +\infty$	$+\infty$		$-\infty$	+∞	$-\infty$
$B = -\infty$	$-\infty$		+∞	$-\infty$	$+\infty$

Hányados	A > 0	A = 0	A < 0	$A = +\infty$	$A = -\infty$
B > 0	A/B	A/B	A/B	+∞	$-\infty$
B < 0	A/B	A/B	A/B	$-\infty$	+∞
B = 0					
$B = +\infty$	0	0	0		
$B = -\infty$	0	0	0		

Kritikus határértékekről beszélünk akkor, ha az imént megfogalmazott tétel nem alkalmazható. Ezeket az eseteket a táblázatban üresen hagyott helyek jelölik, és ez azt jelenti, hogy A és B megadott értékei nem határozzák meg az összeg-, a szorzat-, illetve a hányados-sorozat határértékét.

Ha pl. $A = +\infty$ és $B = -\infty$, akkor az $(a_n + b_n)$ összeg-sorozat határértékére (a_n) és (b_n) megválasztásától függően "minden" előfordulhat. Ezt mutatják az alábbi példák:

$$\begin{array}{lll} a_n := n + c, & b_n := -n \; (n \in \mathbb{N}, \; c \in \mathbb{R}) & \Longrightarrow & \lim(a_n + b_n) = c, \\ a_n := 2n, & b_n := -n \; (n \in \mathbb{N}) & \Longrightarrow & \lim(a_n + b_n) = +\infty, \\ a_n := n, & b_n := -2n \; (n \in \mathbb{N}) & \Longrightarrow & \lim(a_n + b_n) = -\infty, \\ a_n := n + (-1)^n, & b_n := -n \; (n \in \mathbb{N}) & \Longrightarrow & (a_n + b_n) \text{-nek nincs határértéke.} \end{array}$$

Ezért nem értelmeztük $\overline{\mathbb{R}}$ -ben $(+\infty)$ -nek és $(-\infty)$ -nek az összegét.

Hasonló egyszerű példákat lehet megadni a többi kritikus esetben is. Ekkor röviden

$$(+\infty) + (-\infty) \quad (\text{vagy } (+\infty) - (+\infty)), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{0}{0}, \quad \frac{c}{0} \ (c \in \overline{\mathbb{R}})$$

típusú határértékekről beszélünk. Ilyenkor a sorozat határértékének a meghatározása során a következő "módszert" követjük: a kritikus határértéket valamilyen "alkalmas" átalakítással igyekszünk nem kritikus határértékre visszavezetni. ■

Monoton sorozatok határértéke

A sorozatok egy légyeges osztályát képezik a monoton sorozatok. Látni fogjuk azt, hogy minden monoton sorozatnak van határértéke. Ha még azt is feltesszük, hogy a sorozat korlátos, akkor a sorozat konvergens is. Nem korlátos sorozatok határértéke pedig vagy $+\infty$ vagy $-\infty$. Mivel a monotonitást, illetve a korlátosságot egyszerűbb eldönteni, mint a konvergenciát vagy a határértéket, ezért a következő tétel sok esetben jól használható módszert ad a határérték-vizsgálatokhoz.

- **5. tétel.** Minden (a_n) monoton sorozatnak van határértéke.
 - **1º** (a) Ha $(a_n) \nearrow \acute{e}s$ felülről korlátos, akkor (a_n) konvergens $\acute{e}s$

$$\lim (a_n) = \sup \{a_n \mid n \in \mathbb{N}\}.$$

(b) Ha $(a_n) \searrow \acute{e}s$ alulról korlátos, akkor (a_n) konvergens $\acute{e}s$

$$\lim (a_n) = \inf \{ a_n \mid n \in \mathbb{N} \}.$$

 2^{o} (a) Ha $(a_n) \nearrow \acute{e}s$ felülről nem korlátos, akkor

$$\lim (a_n) = +\infty.$$

(b) Ha $(a_n) \searrow \acute{e}s$ alulról nem korlátos, akkor

$$\lim (a_n) = -\infty.$$

Bizonyítás. Az állítást csak monoton növekedő sorozatokra fogjuk igazolni. Értelemszerű módosításokkal bizonyíthatjuk be az állítást a monoton csökkenő sorozatokra.

 $\mathbf{1}^{o}$ (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről korlátos. Legyen

$$A := \sup \{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R}.$$

Ez azt jelenti, hogy A a szóban forgó halmaznak a legkisebb felső korlátja, azaz

- $\forall n \in \mathbb{N} : a_n \leq A$ és
- $\forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N} : A \varepsilon < a_{n_0} \le A$.

Mivel a feltételezésünk szerint az (a_n) sorozat monoton növekedő, ezért az

$$A - \varepsilon < a_n \le A$$

becslés is igaz minden $n > n_0$ indexre.

Azt kaptuk tehát, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n > n_0 : |a_n - A| < \varepsilon$.

Ez pontosan azt jelenti, hogy az (a_n) sorozat konvergens és $\lim (a_n) = A$.

 $\mathbf{2}^{o}$ (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről nem korlátos. Ekkor

$$\forall P > 0$$
-hoz $\exists n_0 \in \mathbb{N} : a_{n_0} > P$.

A monotonitás miatt ezért egyúttal az is igaz, hogy

$$\forall n > n_0: a_n > P$$

és ez pontosan azt jelenti, hogy $\lim (a_n) = +\infty$.

Megjegyzés. A tételben elég feltenni azt, hogy a sorozat egy küszöbindextől kezdve monoton, hiszen véges sok tag nem befolyásolja a határértéket. ■

Nevezetes sorozatok 1.

1. Az $(1/n^k)$, (n^k) és $(\sqrt[k]{n})$ sorozatok határértéke.

6. tétel. Legyen $k = 1, 2, \dots$ egy rögzített természetes szám. Ekkor

(a)
$$\lim_{n \to +\infty} \frac{1}{n^k} = 0,$$

(b)
$$\lim_{n \to +\infty} n^k = +\infty$$
,

(c)
$$\lim_{n\to+\infty} \sqrt[k]{n} = +\infty$$
.

Bizonyítás. A tételt a határérték definíciója alapján fogjuk bebizonyítani.

(a) Azt kell megmutatni, hogy

(*)
$$\forall \varepsilon > 0\text{-hoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : \left| \frac{1}{n^k} - 0 \right| < \varepsilon.$$

Rögzítsük az $\varepsilon > 0$ számot. Mivel az

$$\left| \frac{1}{n^k} - 0 \right| = \frac{1}{n^k} \le \frac{1}{n} < \varepsilon \qquad \left(\Longrightarrow \ \frac{1}{\varepsilon} < n \right)$$

egyenlőtlenség igaz minden $n > \left[\frac{1}{\varepsilon}\right]$ index
re, ezért az $n_0 := \left[\frac{1}{\varepsilon}\right]$ küszöbindex megválasztásával (*) teljesül.

(b) Most azt kell belátnunk, hogy

(**)
$$\forall P > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : n^k > P.$$

Rögzítsük a P>0 számot. Mivel az

$$n^k \ge n > P$$

egyenlőtlenség igaz minden n > [P] index
re, ezért az $n_0 := [P]$ küszöbindex megválasztásával (**) teljesül.

(c) Végül azt kell megmutatni, hogy

$$(***) \qquad \forall P > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \sqrt[k]{n} > P.$$

Rögzítsük a P > 0 számot. Mivel az

$$\sqrt[k]{n} > P$$
 \iff $n > P^k$

egyenlőtlenség igaz minden $n > [P^k]$ indexre, ezért az $n_0 := [P^k]$ küszöbindex megválasztásával (***) teljesül.

10

- **2.** Konvergens sorozatok m-edik gyökének határértéke, ahol $m=2,3,\ldots$ rögzített természetes szám.
 - **7. tétel.** Legyen $m \geq 2$ rögzített természetes szám. Tegyük fel, hogy az $(a_n) : \mathbb{N} \to \mathbb{R}_0^+$ sorozat konvergens és $\lim (a_n) =: A \in \mathbb{R}$. Ekkor $A \geq 0$, továbbá az $\left(\sqrt[m]{a_n}\right)$ sorozat is konvergens, és

$$\lim_{n \to +\infty} \sqrt[m]{a_n} = \sqrt[m]{A}.$$

Bizonyítás. Mivel $\sqrt[n]{a_n} \ge 0$ $(n \in \mathbb{N})$, így a rendezés és a határérték kapcsolata alapján $A \ge 0$.

Ha A=0, akkor az állítás a definíció közvetlen következménye. Valóban, rögzített $\varepsilon>0$ mellett, ha $\lim{(a_n)=0}$, akkor

$$\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \ 0 \le a_n < \varepsilon^m, \quad \text{és fgy} \quad 0 \le \sqrt[m]{a_n} < \varepsilon,$$

azaz $\lim \left(\sqrt[m]{a_n} \right) = 0.$

Tegyük most fel, hogy m=2 és A>0. Ekkor

$$\sqrt{a_n} - \sqrt{A} = \left(\sqrt{a_n} - \sqrt{A}\right) \cdot \frac{\sqrt{a_n} + \sqrt{A}}{\sqrt{a_n} + \sqrt{A}} = \frac{1}{\sqrt{a_n} + \sqrt{A}} \cdot \left(a_n - A\right),$$

következésképpen

$$0 \le \left| \sqrt{a_n} - \sqrt{A} \right| \le \frac{1}{\sqrt{A}} \cdot |a_n - A| \quad (n \in \mathbb{N}).$$

Mivel $\lim (a_n) = A \implies \lim (|a_n - A|) = 0$, ezért a közrefogási elvből következik, hogy $\left| \sqrt{a_n} - \sqrt{A} \right| \to 0$, ha $n \to +\infty$, így $\sqrt{a_n} \to \sqrt{A}$, ha $n \to +\infty$.

Az m>2 és A>0 esetében a bizonyítás hasonló. A gyöktelenítéshez az

$$a_n - A = \left(\sqrt[m]{a_n} - \sqrt[m]{A}\right) \cdot \left(\left(\sqrt[m]{a_n}\right)^{m-1} + \left(\sqrt[m]{a_n}\right)^{m-2} \cdot \sqrt[m]{A} + \dots + \left(\sqrt[m]{A}\right)^{m-1}\right)$$

azonosságot fogjuk alkalmazni. Ekkor minden $n \in \mathbb{N}$ indexre

$$\sqrt[m]{a_n} - \sqrt[m]{A} = \frac{a_n - A}{\left(\sqrt[m]{a_n}\right)^{m-1} + \left(\sqrt[m]{a_n}\right)^{m-2} \cdot \sqrt[m]{A} + \dots + \left(\sqrt[m]{A}\right)^{m-1}},$$

így

$$0 \le \left| \sqrt[m]{a_n} - \sqrt[m]{A} \right| \le \frac{1}{\left(\sqrt[m]{A}\right)^{m-1}} \cdot |a_n - A| \to 0 \quad \text{ha } n \to +\infty.$$

Ezért a közrefogási elvből következik a tétel állítása.

- 3. A geometriai/mértani sorozat határértéke.
- **8. tétel.** Minden rögzített $q \in \mathbb{R}$ esetén a (q^n) mértani sorozat határértékére a következők teljesülnek:

$$\lim_{n\rightarrow +\infty}q^n \begin{cases} =0, & ha \; |q|<1, \\ =1, & ha \; q=1, \\ =+\infty, & ha \; q>1, \\ nem \; l\acute{e}tezik, & ha \; q\leq -1. \end{cases}$$

Bizonyítás.

• $\underline{q>1}$. Írjuk fel ezt a számot q=1+h~(h>0) alakban. A Bernoulli-egyenlőtlenségből következik, hogy

$$q^n = (1+h)^n \ge 1 + nh > nh$$
 $(n \in \mathbb{N}^+).$

A határérték és műveletek kapcsolatára vonatkozó tétel szerint $n\to +\infty,\ h>0 \implies nh\to +\infty.$ Ezért

$$q^n > nh \to +\infty$$
 ha $n \to +\infty$.

Így a rendezés és a határérték kapcsolatára vonatkozó tétel alapján $\lim (q^n) = +\infty$.

- $\underline{q} = 1$. Ekkor az azonosan 1 konstans sorozatot kapjuk, ami konvergens, és 1 a határértéke.
- |q| < 1. Ha q = 0, akkor az állítás nyilvánvaló. Ha 0 < |q| < 1, akkor az $\frac{1}{|q|} > 1$ számot írjuk fel az $\frac{1}{|q|} = 1 + h$ (h > 0) alakban. Ismét a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{1}{|q|^n} = \left(\frac{1}{|q|}\right)^n = (1+h)^n > 1 + nh > nh \quad (n \in \mathbb{N}^+),$$

azaz

$$0 < |q|^n < \frac{1}{nh} \to 0$$
 ha $n \to +\infty$.

Így a közrefogási elv szerint $\lim (q^n) = 0$.

- q = -1. Már láttuk, hogy a $((-1)^n)$ sorozatnak nincs határértéke.
- $\underline{q} < -1$. A (q^n) sorozat páros, illetve páratlan indexű részsorozatainak különböző a határértéke (a páros indexű részsorozat határértéke $+\infty$, a páratlan indexű részsorozaté pedig $-\infty$), ezért a (q^n) sorozatnak nincs határértéke.

Az előző tétel értelmében $\lim_{n\to+\infty} 2^n = +\infty$, illetve

$$\lim_{n\to +\infty} \left(\frac{1}{2}\right)^n = \lim_{n\to +\infty} \left(-\frac{1}{2}\right)^n = 0.$$

Azonban a $\lim_{n \to +\infty} (-2)^n$ határérték nem létezik.

4. n-edik gyökös kifejezéssel megadott sorozatok határértéke.

(lásd például https://www.wolframalpha.com/)

9. tétel.

1º Minden a > 0 valós szánra az $(\sqrt[n]{a})$ sorozat konvergens, és $\lim_{n \to +\infty} \sqrt[n]{a} = 1$.

 $\mathbf{2}^{o}$ Az $(\sqrt[n]{n})$ sorozat konvergens, és $\lim_{n \to +\infty} \sqrt[n]{n} = 1$.

3º Tegyük fel, hogy az $(x_n): \mathbb{N} \to \mathbb{R}_0^+$ nemnegatív tagokból álló sorozat konvergens, és $\lim(x_n) = A \in \mathbb{R}^+$, azaz A > 0 valós szám. Ekkor az $\left(\sqrt[n]{x_n}\right)$ sorozat is konvergens, és

$$\lim_{n \to +\infty} \sqrt[n]{x_n} = 1.$$

Bizonyítás.

 1^o (i) a > 1. A számtani és a mértani közép közötti egyenlőtlenség alapján

$$1 \le \sqrt[n]{a} = \sqrt[n]{a \cdot 1 \cdot \ldots \cdot 1} < (n-1 \text{ darab 1-es}) < \frac{a+n-1}{n} = 1 + \frac{a-1}{n} \to 1,$$

ha $n \to +\infty$. Így a közrefogási elv szerint $\lim_{n \to +\infty} \sqrt[n]{a} = 1$.

(ii) $\underline{a=1}$. Ekkor az állítás nyilvánvaló.

(iii) 0 < a < 1. Ekkor $\frac{1}{a} > 1$, ezért (i), valamint a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tétel alapján

$$\sqrt[n]{a} = \frac{1}{\sqrt[n]{\frac{1}{a}}} \to \frac{1}{1} = 1, \quad \text{ha} \quad n \to +\infty.$$

2º Ismét a számtani és a mértani közép közötti egyenlőtlenséget alkalmazzuk:

$$1 \le \sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \dots \cdot 1} < (n-2 \text{ darab 1-es}) < \frac{2\sqrt{n} + n - 2}{n} = 1 - \frac{2}{n} + \frac{2}{\sqrt{n}}$$

A jobb oldalon szereplő sorozat határértéke 1. Így a közrefogási elv alkalmazásával azt kapjuk, hogy $\lim(\sqrt[n]{n}) = 1$.

3º $\lim (x_n) = A > 0$ valós szám \implies az $\varepsilon := A/2 > 0$ -hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0$:

$$|x_n - A| < \varepsilon = \frac{A}{2} \implies \frac{A}{2} < x_n < \frac{3A}{2} \implies \sqrt[n]{\frac{A}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3A}{2}}.$$

Alkalmazzuk a tétel $\mathbf{1}^o$ állítását az a=A/2 és az a=3A/2 választással. Ekkor

$$1 \leftarrow \sqrt[n]{\frac{A}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3A}{2}} \to 1$$
, ha $n \to +\infty$.

13

Így a közrefogási elv szerint $\lim \left(\sqrt[n]{x_n} \right) = 1$.

Az előző tétel értelmében $\lim_{n\to+\infty} \sqrt[n]{2} = 1$. Nem annyira meglepő, hogy az $\left(\sqrt[n]{2}\right)$ sorozat konvergens, hiszen nyilván monoton csökkenő és alulról korlátos (minden értéke 1-nél nagyobb). Az alábbi táblázatban látjuk, hogy a sorozat értékei egyre közelebb kerülnek az 1 értékhez.

n	2	3	4	5	6	100	1 000	10 000
$\sqrt[n]{2}$	1,414	1,256	1,189	1, 149	1,122	1,0069	1,00069	1,000069

Ennek reciprok-sorozata $(\sqrt[n]{0,5})$ szintén konvergens, hiszen monoton növekedő és felülről korlátos (minden értéke 1-nél kisebb). A tétel általánosan azt állítja, hogy tetszőleges pozitív konstans n-edik gyökeiből képzet sorozat konvergens és határértéke 1.

A $\lim_{n\to +\infty} \sqrt[n]{n} = 1$ eredmény valamivel érdekesebb. Az $\left(\sqrt[n]{n}\right)$ sorozat nyilván alulról korlátos (minden értéke 1-nél nagyobb), de nem monoton. Igazolható azonban, hogy a sorozat egy index után monoton csökkenő, ami már nem annyira nyilvánvaló. Az alábbi táblázatban látjuk, hogy a sorozat értékei egyre közelebb kerülnek az 1 értékhez.

n	2	3	4	5	6	100	1 000	10 000
$\sqrt[n]{n}$	1,414	1,442	1,414	1,379	1,348	1,047	1,00693	1,00092

Végül, az $(\sqrt[n]{x_n})$ típusú sorozatokra vonatkozó állítás jelentősen megkönnyíti több, n-edik gyökös kifejezésekkel megadott sorozatok határértékének kiszámítását. Pl. a

$$\lim_{n \to +\infty} \sqrt[n]{n^2 + 1} = 1$$

határérték igazolható közrefogási elvvel:

$$1 \leftarrow \underbrace{(\sqrt[n]{n})^2}_{\to 1^2} = \sqrt[n]{n^2} < \sqrt[n]{n^2 + 1} < \sqrt[n]{n^2 + n^2} = \sqrt[n]{2n^2} = \underbrace{\sqrt[n]{2}}_{\to 1} \cdot \underbrace{(\sqrt[n]{n})^2}_{\to 1^2} \to 1,$$

vagy az alábbi átalakítással:

$$\sqrt[n]{n^2+1} = \sqrt[n]{n^2} \cdot \sqrt[n]{1+\frac{1}{n^2}} = \underbrace{(\sqrt[n]{n})^2}_{\rightarrow 1^2} \cdot \underbrace{\sqrt[n]{x_n}}_{\rightarrow 1} \rightarrow 1, \quad \text{hiszen} \quad x_n := 1+\frac{1}{n^2} \rightarrow 1 \in \mathbb{R}^+.$$