Control Systems

G V V Sharma*

	Contents		9 Phase Margin 3
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula	1 1 1	10 Oscillator 3 10.1 Introduction
2	Bode Plot2.1Introduction	1 1 1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.
3	Second order System 3.1 Damping	1 1 1 1	Download python codes using svn co https://github.com/gadepall/school/trunk/ control/codes
4	Routh Hurwitz Criterion4.1Routh Array4.2Marginal Stability4.3Stability4.4Example	3 3 3 3 3	1 Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula
5	State-Space Model5.1Controllability and Observability5.2Second Order System5.3Example5.4Example5.5Example	3 3 3 3 3 3	2 Bode Plot 2.1 Introduction 2.2 Example 3 Second order System 3.1 Damping
6	Nyquist Plot 6.1 Introduction	3 3 3 3	3.2 Example3.3 Settling Time3.3.1. Find the closed loop transfer function for the system in Fig. given that
7	Compensators7.1Phase Lead	3 3 3	system in Fig. given that $G(s) = \frac{1}{s^2 + 2s}$ (3.3.1.1)
	Gain Margin 8.1 Introduction		$ \begin{array}{c} r \\ \hline \end{array} $ $k \longrightarrow G(s) \longrightarrow y$

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 3.3.1

Solution: The closed loop transfer function is

$$H(s) = \frac{kG(s)}{1 + kG(s)}$$

$$= \frac{k}{s^2 + 2s + k}$$
(3.3.1.2)

after substituting from (3.3.1.1).

3.3.2. Find the step response of the system.

Solution: The characteristics of the poles of transfer function describes the property of the transfer function.

Calculating poles:

$$s^{2} + 2s + k = 0$$

$$s = \frac{-2 \pm \sqrt{(-2)^{2} - 4(1)(k)}}{2(1)}$$
(3.3.2.2)

$$s = -1 \pm \sqrt{1 - k} \tag{3.3.2.3}$$

Over Damped System:

For the closed loop transfer function (3.3.1.3) to be Over damped system, poles should be Real and Distinct.

As poles are Real and Distinct k should be less than 1

Considering k=0.5

$$H(s) = \frac{0.5}{s^2 + 2s + 0.5}$$
 (3.3.2.4)

after substituting from (3.3.1.3). From (3.3.2.3)

$$s = -1 \pm \sqrt{0.5} \tag{3.3.2.5}$$

Poles are at $-1 + \frac{1}{\sqrt{2}}$, $-1 - \frac{1}{\sqrt{2}}$ Calculating Step response

$$X(s) = \frac{1}{s} \tag{3.3.2.6}$$

$$Y(s) = H(s)X(s)$$
 (3.3.2.7)

$$=\frac{0.5}{s^2+2s+0.5}\frac{1}{s}$$
 (3.3.2.8)

$$y(t) = \left(1 - e^{-t} \cosh\left(\frac{t}{\sqrt{2}}\right) - \sqrt{2}e^{-t} \sinh\left(\frac{t}{\sqrt{2}}\right)\right) u(t)$$
(3.3.2.9)

Under Damped System:

For the closed loop transfer function (3.3.1.3) to be Under damped system, poles should be

Complex and Conjugate.

As poles are Complex and Conjugate k should be greater than 1 Considering k=2

$$H(s) = \frac{2}{s^2 + 2s + 2}$$
 (3.3.2.10)

after substituting from (3.3.1.3). From (3.3.2.3)

$$s = -1 \pm \iota \tag{3.3.2.11}$$

Poles are at $-1+\iota$, $-1-\iota$ Calculating Step response

$$X(s) = \frac{1}{s} \tag{3.3.2.12}$$

$$Y(s) = H(s)X(s)$$
 (3.3.2.13)

$$=\frac{2}{s^2+2s+2}\frac{1}{s} \tag{3.3.2.14}$$

$$y(t) = (1 - e^{-t}\cos t - e^{-t}\sin t)u(t)$$
(3.3.2.15)

Critical Damped System:

For the closed loop transfer function (3.3.1.3) to be Critical damped system, poles should be Real at same location.

As poles are Real and equal k should be 1

$$H(s) = \frac{1}{s^2 + 2s + 1}$$
 (3.3.2.16)

after substituting from (3.3.1.3). From (3.3.2.3)

$$s = -1$$
 (3.3.2.17)

Pole is at -1 and it is a second order pole. Calculating Step response

$$X(s) = \frac{1}{s} \tag{3.3.2.18}$$

$$Y(s) = H(s)X(s)$$
 (3.3.2.19)

$$=\frac{1}{s^2+2s+1}\frac{1}{s} \tag{3.3.2.20}$$

$$y(t) = (1 - e^{-t} - te^{-t}) u(t)$$
 (3.3.2.21)

3.3.3. Find *k* in such that the step response of the closed-loop system has minimum settling time and have no overshoot.

Solution: Settling time is defined as the time required for the transient's damped oscillations to reach and stay within $\pm 2\%$ of the steady-state value.

Fig. 3.3.3: Plot of step response of systems

Above plot justifies that critical damped system (k = 1) has minimum settling time and also doesn't overshoot.

Calculating Settling time

$$1 - e^{-t} - te^{-t} = 0.98 (3.3.3.1)$$

Solving (3.3.3.1) graphically

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- **6** Nyouist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example

Fig. 3.3.3