Lecture 5: Location-Scale Families

MATH 667-01 Statistical Inference University of Louisville

September 12, 2017

Introduction

- We define and prove a few general properties of location and scale families of distributions described in Section 3.5 of Casella and Berger (2001)¹.
- We will also prove a result discussed in Section 5.2 for the sampling distribution of \bar{X} for a random sample from a location-scale family.

¹Casella, G. and Berger, R. (2001). Statistical Inference, second edition. Duxbury Press.

• Theorem L5.1 (Thm 3.5.1 on p.116): Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constants. Then the function

$$g(x|\mu,\sigma) = \frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right).$$

is a pdf.

- Proof of Theorem L5.1: A function is a pdf if it is nonnegative and if it integrates to 1.
 - 1. Clearly, $g(x|\mu,\sigma) \ge 0$ since f is nonnegative and $\sigma > 0$.
 - 2. Letting $z=\frac{x-\mu}{\sigma}$ so that $dz=\frac{dx}{\sigma}\Rightarrow dx=\sigma dz$. Then

$$\int g(x|\mu,\sigma) \ dx = \int \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) \ dz = \int \frac{1}{\sigma} f(z) \sigma dz = \int f(z) dz = 1.$$

- Definition L5.1 (Def 3.5.2 on p.116): Let f(x) be any pdf. Then the family of pdfs $f(x-\mu)$, indexed by the parameter μ , $-\infty < \mu < \infty$, is called the *location family with standard pdf* f(x) and μ is called the *location parameter* for the family.
- Definition L5.2 (Def 3.5.4 on p.119): Let f(x) be any pdf. Then for any $\sigma>0$, the family of pdfs $(1/\sigma)f(x/\sigma)$, indexed by the parameter σ , is called the scale family with standard pdf f(x) and σ is called the scale parameter of the family.
- Definition L5.3 (Def 3.5.5 on p.119): Let f(x) be any pdf. Then for any μ , $-\infty < \mu < \infty$, and any $\sigma > 0$, the family of pdfs $(1/\sigma)f((x-\mu)/\sigma)$, indexed by the parameter (μ,σ) , is called the location-scale family with standard pdf f(x); μ is called the location parameter and σ is called the scale parameter.

• Let $Z\sim {\sf Normal}(0,1)$; its pdf is $f(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}$. Then the ${\sf Normal}(\mu,\sigma)$ family of pdfs

$$f(x|\mu,\sigma) = \frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

is a location-scale family with standard pdf f(z).

 \bullet An exponential family of pdfs with scale parameter β (see p.101) has the form

$$f(x|\beta) = \frac{1}{\beta} e^{-x/\beta} I_{(0,\infty)}(x).$$

It is a scale family with standard pdf $f(z) = e^{-z} I_{(0,\infty)}(z)$.

- Theorem L5.2 (Thm 3.5.6 on p.120): Let $f(\cdot)$ be any pdf. Let μ be any real number and let σ be any positive real number. Then X is a random variable with pdf $(1/\sigma)f((x-\mu)/\sigma)$ if and only if there exists a random variable Z with pdf f(z) and $X = \sigma Z + \mu$.
- Proof of Theorem L5.2:

Suppose there exists a random variable Z with pdf f(z) and $X=\sigma Z+\mu$. Let $g(z)=\sigma z+\mu$. Then $g^{-1}(x)=\frac{x-\mu}{\sigma}$ and the pdf of X is

$$f_X(x) = f_Z(g^{-1}(x)) \left| \frac{d}{dx} \left[g^{-1}(x) \right] \right| = f\left(\frac{x - \mu}{\sigma} \right) \frac{1}{\sigma}.$$

Conversely, suppose X has pdf $f((x-\mu)/\sigma)/\sigma$. Let $g(x)=\frac{x-\mu}{\sigma}$ and Z=g(X) so that $X=\sigma Z+\mu$. Then $g^{-1}(z)=\sigma z+\mu$ and the pdf of Z is

$$f_Z(z) = f_X(g^{-1}(z)) \left| \frac{d}{dz} \left[g^{-1}(z) \right] \right| = f\left(\frac{(\sigma z + \mu) - \mu}{\sigma} \right) \frac{1}{\sigma} \sigma = f(z).$$

• Theorem L5.3 (Thm 3.5.7 on p.121): Let Z be a random variable with pdf f(z). Suppose $\mathsf{E}[Z]$ and $\mathsf{Var}[Z]$ exist. If X is a random variable with pdf $(1/\sigma)f((x-\mu)/\sigma)$, then

$$\mathsf{E}[X] = \sigma \mathsf{E}[Z] + \mu \text{ and } \mathsf{Var}[X] = \sigma^2 \mathsf{Var}[Z].$$

• Proof of Theorem L5.3: By Theorem L5.2, there exists a random variable Z^* with pdf f(z) and $X = \sigma Z^* + \mu$. By Theorem L3.1(a), $\mathsf{E}[X] = \sigma \mathsf{E}[Z^*] + \mu = \sigma \mathsf{E}[Z] + \mu$. By Theorem L3.2, $\mathsf{Var}[X] = \sigma^2 \mathsf{Var}[Z^*] = \sigma^2 \mathsf{Var}[Z]$.

Example L5.1: Suppose X is a random variable with pdf

$$f(x|\alpha,\beta,\mu) = \frac{1}{\Gamma(\alpha)\beta} \left(\frac{x-\mu}{\beta}\right)^{\alpha-1} e^{-(x-\mu)/\beta} I_{(\mu,\infty)}.$$

- (a) If $\mu = 0$ and $\beta = 1$, find E[X] and Var[X].
- (b) Find E[X] and Var[X].
- Answer to Example L5.1: (a) For any positive integer n, we have

$$\begin{split} \mathsf{E}[X^n] &= \int_0^\infty x^n f(x|\alpha) \ dx \\ &= \int_0^\infty x^n \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \ dx \\ &= \frac{1}{\Gamma(\alpha)} \int_0^\infty x^{\alpha + n - 1} e^{-x} \ dx \end{split}$$

Answer to Example L5.1 continued:

$$= \frac{1}{\Gamma(\alpha)} \int_0^\infty x^{\alpha+n-1} e^{-x} dx$$
$$= \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} = \frac{(\alpha+n-1)\cdots\alpha\Gamma(\alpha)}{\Gamma(\alpha)} = (\alpha+n-1)\cdots\alpha.$$

So,
$$\mathrm{E}[X]=\alpha$$
 and
$$\mathrm{Var}[X]=\mathrm{E}[X^2]-(\mathrm{E}[X])^2=(\alpha+1)\alpha-\alpha^2=\alpha.$$

(b) Applying *Theorem L5.3* to the answer for part (a), we have

$$\mathsf{E}[X] = \beta \alpha + \mu$$

$$\mathsf{Var}[X] = \beta^2 \alpha.$$

Sampling Distribution of \bar{X} for Location-Scale Families

- (p.216): Suppose that X_1, \ldots, X_n is a random sample from a distribution with pdf $\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$.
- Then there exist independent random variables Z_1, \ldots, Z_n where $X_i = \sigma Z_i + \mu$ and the pdf of Z_i is f(z).
- So Z_1, \ldots, Z_n is a random sample from a distribution with pdf f(z).
- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} (\sigma Z_i + \mu) = \frac{\sigma}{n} \sum_{i=1}^{n} Z_i + \frac{1}{n} n \mu$ = $\sigma \bar{Z} + \mu$
- If g(z) is the pdf of \bar{Z} , then $\frac{1}{\sigma}g\left((x-\mu)/\sigma\right)$ is the pdf of \bar{X} .

Convolutions

• Theorem L5.4 (Thm 5.2.9 on p.215): If X and Y are independent continuous random variables with pdfs $f_X(x)$ and $f_Y(y)$, then the pdf of Z=X+Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z - w) \ dw.$$

• Proof of Theorem L5.4: Let W=X and consider the transformation from (X,Y) to (Z,W). The inverse of this transformation is X=W and Y=Z-W.

The Jacobian is $J = \left| \frac{\partial(x,y)}{\partial(w,z)} \right| = \left| \begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right| = 1.$

The joint density of (Z, W) is $f_{Z,W}(z, w) = f_{X,Y}(w, z - w)|J| = f_X(w)f_Y(z - w)$. Integrating out w, the pdf of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z - w) \ dw.$$

Sampling Distribution of \bar{X} for Location-Scale Families

• Example L5.2: A random variable is said to have a $\mathsf{Cauchy}(\mu,\sigma)$ pdf if its pdf has the form

$$f(x|\mu,\sigma) = \frac{1}{\sigma\pi \left(1 + \left(\frac{x-\mu}{\sigma}\right)^2\right)}.$$

(a) If $X \sim \mathsf{Cauchy}(0,1)$ and $Y \sim \mathsf{Cauchy}(0,m)$ are independent random variables, then use the partial fractions decomposition

$$\frac{1}{(1+w^2)\left(1+(\frac{z-w}{m})^2\right)} = \frac{1}{a(z)}\left(\frac{b(w,z)}{1+w^2} + \frac{c(w,z)}{1+(\frac{z-w}{m})^2}\right)$$

where
$$a(z) = \left(z^2 + (m+1)^2\right) \left(z^2 + (m-1)^2\right)$$
, $b(w,z) = m^2(2zw + m^2 + z^2 - 1)$, and $c(w,z) = 2z(z-w) + z^2 - m^2 + 1$ to show that $X+Y \sim \mathsf{Cauchy}(0,m+1)$.

Sampling Distribution of \bar{X} for Location-Scale Families

- Example L5.2 continued:
 - (b) If Z_1, \ldots, Z_n are independent Cauchy(0,1) random variables, then show that $\bar{Z} \sim \mathsf{Cauchy}(0,1)$.
 - (c) If X_1, \ldots, X_n are independent Cauchy (μ, σ) random variables, find the pdf of \bar{X} .
- Answer to Example L5.2:
 - (a) The pdf of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z - w) \ dw$$

$$= \frac{1}{m\pi a(z)} \int_{-\infty}^{\infty} \left(\frac{b(w, z)}{1 + w^2} + \frac{c(w, z)}{1 + (\frac{z - w}{m})^2} \right) \ dw$$

$$= \frac{1}{m\pi^2 a(z)} \pi (m^2 + m) (z^2 + (m - 1)^2)$$

$$= \frac{m + 1}{\pi ((m + 1)^2 + z^2)} = \frac{1}{(m + 1)\pi \left(1 + \left(\frac{z}{m + 1} \right)^2 \right)}.$$

Sampling Distribution of $ar{X}$ for Location-Scale Families

- Answer to Example L5.2 continued:
 - (b) It can be shown that $\sum_{i=1}^{n} Z_i \sim \mathsf{Cauchy}(0,n)$ by induction.
 - Basis step: $Z_1 \sim \mathsf{Cauchy}(0,1)$
 - Inductive step: Assume $\sum_{i=1}^k Z_i \sim \mathsf{Cauchy}(0,k)$. Then, $\sum_{i=1}^{k+1} Z_i = \sum_{i=1}^k Z_i + Z_{k+1} \sim \mathsf{Cauchy}(0,k+1)$ by part (a).

Since $\bar{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i$, Theorem L5.2 implies that \bar{Z} has pdf

$$\frac{1}{1/n}f\left(\frac{z}{1/n}\right) = nf(nz) = n\frac{1}{n\pi\left(1 + (nz/n)^2\right)} = \frac{1}{\pi\left(1 + z^2\right)}.$$

• (c) Since $g(z)=\frac{1}{\pi(1+z^2)}$ is the pdf of \bar{Z} , the work on slide 5.10 implies that the pdf of \bar{X} is

$$\frac{1}{\sigma}g\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma\pi\left(1 + \left(\frac{x-\mu}{\sigma}\right)^2\right)}$$

so $\bar{X} \sim \mathsf{Cauchy}(\mu, \sigma)$.