CS 161: Design and Analysis of Algorithms

Announcements

Homework 3, problem 3 removed

Greedy Algorithms 4: Huffman Encoding/Set Cover

- Huffman Encoding
- Set Cover

Alphabets and Strings

- Alphabet = finite set of symbols
 - English alphabet = {a,b,c,...,z}
 - Hex values = $\{0,1,...,9,A,B,C,D,E,F\}$
- String = sequence of symbols from some alphabet
 - "This is a string"

- Computers store things as 0s and 1s
- How do we encode strings as sequence of bits?
 - Must be invertible (one-to-one)
 - What to use as few bits as possible
 - One approach: choose encoding for characters, induce encoding of strings by concatenating codes for each character

- Obvious solution: If alphabet size is $\leq 2^k$ for some k, encode each character using k bits
 - Each character takes k bits
 - n characters
 - kn bits total

Letter	Encoding
А	00
В	01
С	10
D	11

• Issues:

Wasteful: If not exactly 2^k characters, some sequences never used

Letter	Encoding
Α	00
В	01
С	10

Never use 11

Issues:

— What if one character occurs very often?

AAAAAAABAACAABAADAAAAAAACAAAB

If almost all letters are A's, then an encoding that uses fewer bits to represent A and more to represent everything else would save on space

Variable Length Encoding

- Variable Length Encoding = encoding of characters as bits where different letters may use a different number of bits
 - Still need encoding on strings to be one-to-one. What does this say about the encoding for characters?

Variable Length Encoding

Letter	Encoding
Α	0
В	01
С	10
D	11

$$AC \longrightarrow 010$$

$$BA \longrightarrow 010$$

Not one-to-one!

 A prefix of a bit sequence is the first i bits, for some i

```
0100101101000110101
```

0

01

010

0100

01001

• • •

 A prefix-free encoding is an encoding of an alphabet such that no encoding of any character is a prefix of the encoding of any other character

Letter	Encoding
Α	0
В	01
С	10
D	11

The encoding of A is a prefix of the encoding of C

 A prefix-free encoding is an encoding of an alphabet such that no encoding of any character is a prefix of the encoding of any other character

Letter	Encoding
А	0
В	10
С	110
D	111

 Theorem: Any prefix-free encoding of an alphabet induces a one-to-one encoding of strings over that alphabet

- Proof: Suppose toward contradiction that S and T are two different strings that map to the same sequence of bits
 - Assume w.l.o.g. that S and T differ on the first character. Let c be the first character of S, d the first character of T.
 - Let E(c) and E(d) be the encodings of c and d
 - Assume w.l.o.g. |E(c)| ≥ |E(d)|

- Since all bits in encodings of S and T are the same, the first |E(d)| bits are
- Therefore, the first |E(d)| bits of |E(c)| are equal to E(d)
- E(d) is a prefix of E(c)
- Since c was assumed different from d, our encoding is not prefix-free.

Tree View of Prefix-Free Encoding

- Every node represents a partial codeword
- Every node has two children, one for appending 0 to the partial codeword, one for appending 1.
- Leaves correspond to actual codewords
- Root is empty

Tree View of Prefix-Free Encoding

Tree View of Prefix-Free Encoding

- To encode: Find path from root to character, concatenate edge labels
- To decode b₁b₂...: Starting from the root, follow edge labeled b₁, then edge labeled b₂, ... until we find a leaf. Output that character, and start over from the root

- What is the best possible prefix-free encoding we can find?
- Let n be the length of the string
- Let C be the cost of the encoding, defined as (length of encoding)/n
 - C = average length of encoding of characters,
 weighted by frequency

- Let l_i be the length of the encoding of character i
- Let f_i be the frequency i occurs in the string
 - f_i (number of instances of i)/n

$$C = \sum_{i} f_{i} l_{i}$$

- I_i is also the depth of character i in the encoding tree.
- Optimal encoding is always a full binary tree
 - If there is a node with only 1 child, replace node with child.
 - Depth of leafs only decreases.

Entropy:

$$H = -\sum f_i \log f_i$$

• Theorem (Shannon Coding Theorem):

$$C \ge H$$

- Let $g(x) = x \log x$
- Lemma: $g((x+y)/2) \le (g(x)+g(y))/2$

- True when only 2 characters
 - Only possible encoding is for each character to get
 1 bit. C = 1

$$H = -f_1 \log f_1 - f_2 \log f_2 = -2 \left(\frac{g(f_1) - g(f_2)}{2} \right) \le -2 \left(g\left(\frac{f_1 + f_2}{2} \right) \right) = -2g(1/2) = 1$$

- Inductively assume true for m-1 characters
- Let T be the tree corresponding to an optimal encoding over some alphabet of m characters
- At least two leafs at bottom level. Assume
 w.l.o.g. these correspond to characters 1 and 2
- Replace all instances of characters 1 and 2 with a new character
 - Has frequency $f_1 + f_2$

- Now we have an alphabet of size m-1
- Encoding for alphabet:
 - start with T
 - delete the nodes corresponding to characters 1
 and 2
 - Assign the new character to the parent of these nodes (which is now a leaf)
 - New character has code length 1 less than deleted characters

- How does C change?
 - Removed character 1 with length I, frequency f₁
 - Removed character 2 with length I, frequency f₂
 - Added new character, length l-1, frequency f₁+ f₂

$$C = \sum_{i} f_{i} l_{i}$$

$$C' = C - (f_{1} + f_{2})l + (f_{1} + f_{2})(l - 1) = C - (f_{1} + f_{2})$$

By inductive assumption,

$$\begin{split} C' &\geq H' = -\sum_{i} f_i \log f_i' = -\sum_{i \geq 3} f_i \log f_i - (f_1 + f_2) \log(f_1 + f_2) \\ &= -\sum_{i} f_i \log f_i + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log(f_1 + f_2) \\ &= H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log(f_1 + f_2) \end{split}$$

Recall

$$C = C' + f_1 + f_2$$

$$C \ge H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \left(\log(f_1 + f_2) - 1 \right)$$

$$= H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log \left(\frac{f_1 + f_2}{2} \right)$$

$$= H + 2 \left(\frac{1}{2} g(f_1) + \frac{1}{2} g(f_2) - g \left(\frac{f_1 + f_2}{2} \right) \right)$$

 $\geq H$

How to Find Optimal Encoding

- Claim 1: There is an optimal solution where the two least frequent characters have the longest codewords (i.e. lowest level of tree), and are identical except for last bit
 - If not, swap these two characters with two of the characters with the longest codewords
 - Can swap with two that are siblings

How to Find Optimal Encoding

- Assume the two lowest-frequency characters are 1 and 2.
- What if we merge the two characters into a new character with frequency f₁ + f₂?
 - New character gets codeword obtained by dropping last bit of the codewords for 1 or 2

Merging Two Characters

Merging Two Characters

How to Find Optimal Encoding

 Claim 2: For any optimal encoding, the encoding obtained by merging characters 1 and 2 must be an optimal encoding for the reduced alphabet, where characters 1 and 2 are replaced with a new character of frequency f₁ + f₂

How to Find Optimal Encoding

Character	Frequency	Codeword
Α	f_1	0
В	f_2	11
С	f_3	1000
D	f_4	101
E	f_5	1001

• Idea:

- Take two characters with lowest frequency
- Merge them
- Recursively solve reduced problem
- Split characters apart again

Character	Frequency	Codeword
Α	0.45	
В	0.25	
С	0.10	
D	0.15	
E	0.05	

Character	Frequency	Codeword
А	0.45	
В	0.25	
С	0.10	
D	0.15	
Е	0.05	

Character	Frequency	Codeword
Α	0.45	
В	0.25	
[CE]	0.15	
D	0.15	

Character	Frequency	Codeword
А	0.45	
В	0.25	
[CE]	0.15	
D	0.15	

Character	Frequency	Codeword
А	0.45	
В	0.25	
[[CE]D]	0.30	

Character	Frequency	Codeword
Α	0.45	
В	0.25	
[[CE]D]	0.30	

Character	Frequency	Codeword
Α	0.45	
[[[CE]D]B]	0.55	

Character	Frequency	Codeword
Α	0.45	
[[[CE]D]B]	0.55	

Character	Frequency	Codeword
[A[[[CE]D]B]]	1.00	

Character	Frequency	Codeword
[A[[[CE]D]B]]	1.00	

Character	Frequency	Codeword
Α	0.45	0
[[[CE]D]B]	0.55	1

Character	Frequency	Codeword
Α	0.45	0
В	0.25	11
[[CE]D]	0.30	10

Character	Frequency	Codeword
Α	0.45	0
В	0.25	11
[CE]	0.15	100
D	0.15	101

Character	Frequency	Codeword	
Α	0.45	0	
В	0.25	11	
С	0.10	1000	
D	0.15	101	
Е	0.05	1001	

- Let q be a heap of characters, ordered by frequency
- For each character c, q.insert(c)
- While q has at least two characters:
 - $-c_1 = q.deletemin(), c_2 = q.deletemin()$
 - Create a node labeled [c₁c₂] with children c₁ and c₂
 - $-f([c_1c_2]) = f(c_1) + f(c_2)$
 - $-q.insert([c_1c_2])$
- Return q.deletemin()

Running Time

- n inserts initially: O(n log n)
- Every run of loop decreases size of heap by 1
 - n-1 runs of loop
- Each run of loop involves 3 heap operations:
 O(log n)
- Total running time: O(n log n)

Set Cover

 Given a set of elements B, and a collection of subsets S_i, output a selection of the S_i whose union is B, such that the number of subsets used is minimal.

Example: Schools

- Suppose we have a collection of towns, and we want to figure out the best towns to put schools
 - Need at least one school within 20 miles of each town
 - Every school should be in a town

Example: Schools

- B = set of towns
- S_i = subset of towns within 20 miles of town i

Greedy Solution

Obvious solution: repeatedly pick the set S_i with the largest number of uncovered elements.

- $B = \{1, 2, 3, 4, 5, 6\}$
- $S_1 = \{1, 2, 3\}$
- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: Elements left: {1, 2, 3, 4, 5, 6}

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: Ele $\{S_1\}$

Elements left:

 ${4, 5, 6}$

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: Elements left: $\{S_1, S_2\}$ $\{5, 6\}$

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{1, 4\}$$

•
$$S_3 = \{2, 5\}$$

•
$$S_4 = \{3, 6\}$$

Greedy Algorithm

Sets used: Elements left: $\{S_1, S_2, S_3\}$ $\{6\}$

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{1, 4\}$$

•
$$S_3 = \{2, 5\}$$

•
$$S_4 = \{3, 6\}$$

Greedy Algorithm

Sets used: Elements left: $\{S_1, S_2, S_3, S_4\}$ $\{\}$

•
$$B = \{1, 2, 3, 4, 5, 6\}$$

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{1, 4\}$$

•
$$S_3 = \{2, 5\}$$

•
$$S_4 = \{3, 6\}$$

Greedy Algorithm

Sets used: Elements left:
$$\{S_1, S_2, S_3, S_4\}$$
 $\{\}$

Optimal: $\{S_2, S_3, S_4\}$

Set Cover

- Greedy algorithm isn't optimal!
- Obtaining optimal solution believed hard
- Settle for approximation:
 - If optimal uses k sets, want to get solution using only slightly more than k sets

Approximation

 Claim: If B contains n elements, and the optimal solution uses k sets, then greedy uses at most k ln n sets

- Let n_t be the number of uncovered elements after t iterations of greedy algorithm ($n_0 = n$)
- Remaining elements covered by the optimal k sets
- Must be some set with at least n_t/k of the uncovered elements
- Therefore, greedy picks a set that covers at least n_t/k of the remaining elements

- Greedy picks a set that covers at least n_t/k of the remaining elements
- $n_{t+1} \le n_t n_t/k = n_t(1-1/k)$
- Therefore, $n_t \le n_0 (1-1/k)^t = n(1-1/k)^t$

• Fact: $1-x \le e^{-x}$, with equality if and only if x = 0

- $n_t \le n(1-1/k)^t < n(e^{-1/k})^t < ne^{-t/k}$
- After t = k ln n iterations, n_t < n e^{-ln n} = 1
- Therefore, after t = k In n iterations, n_t = 0
- Therefore, greedy algorithm uses at most k ln n sets, as desired

Can We Do Better

- Our algorithm achieves an approximation ratio of ln n
- This gives two questions:
 - Can the analysis be tightened so that greedy achieves a better approximation ratio?
 - Are there more sophisticated algorithms that achieve better approximation ratio?
- Answer to both: most likely not
 - If domr efficient algorithm can do much better, than we can solve a whole host of very difficult problems efficiently