

Background

Montgomery County

is the third-most populous county in the Commonwealth of Pennsylvania. locally referred to as Montco. Montgomery County is very diverse, ranging from farms and open land in Upper Hanover to densely populated rowhouse streets in Cheltenham.

911 Calls

is an emergency telephone number created by Congress in 2004 as the 911 Implementation and Coordination Office (ICO), the National 911 Program is housed within the National Highway Traffic Safety Administration at the U.S. Department of Transportation and is a joint program with the National Telecommunication and Information Administration in the Department of Commerce.

Data Description

- This dataset contains emergency calls from Montgomery County, PA.
- It includes 663,522 calls records from 2015 to 2020 and 9 Features.
- Link: Emergency 911 Calls | Kaggle

Feature Columns:

- lat: String variable, Latitude
- Ing: String variable, Longitude
- desc: String variable, Description of the Emergency Call
- zip: String variable, ZIP Code
- title: String variable, Title of Emergency
- timeStamp: String variable, Date and time of the call, YYYY-MM-DD HH:MM:SS
- twp: String variable, Township
- addr: String variable, General Address
- e: String variable, Dummy variable, Index column (always 1)

Questions

- What are the top 5 zip codes for 911 calls?
- How many unique title of emergency codes are there?
- What is the most common Reason for a 911 call?
- What are the top 10 emergency calls from all the categories?
- Can we predict the type reason of the next call?

Tools

Python and Jupyter Notebook

Pandas and Numpy for Data Processing

Seaborn for Visualization

skLearn & Tensorflow for classification

Imports & read data

```
import numpy as np
import pandas as pd

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

df = pd.read_csv('C:/Users/BUDUR/Desktop/Data scinsce Bootcamp/project/archive/911.csv')

Clean data

Dropping column e

```
In [6]: df = df.drop('e',axis=1)
In [7]: print(df.columns.values)
         ['lat' 'lng' 'desc' 'zip' 'title' 'timeStamp' 'twp' 'addr']
         missing values
In [8]: print('Missing values:',df.isnull().values.sum())
         df.isnull().sum()
         Missing values: 80492
Out[8]: lat
         lng
          desc
         zip
                       80199
         title
         timeStamp
                         293
          twp
          addr
         dtype: int64
         Type Markdown and LaTeX: \alpha^2
In [9]: df['zip'].isnull().sum()/df.shape[0]
 Out[9]: 0.12086863736243862
In [10]: df['twp'].isnull().sum()/df.shape[0]
Out[10]: 0.0004415829467598663
         zip code contains 12% Nan
```

Clean data

df[df['twp'].isnull()]

	lat	Ing	desc	zip	title	timeStamp	twp	addr
1635	40.162804	-75.097848	TURNPIKE OVERPASS; ; 2015-12-14 @ 21:36:52-Sta	19040.0	Fire: VEHICLE ACCIDENT	2015-12-14 21:36:52	NaN	TURNPIKE OVERPASS
1821	40.099265	-75.175706	CHURCH RD; ; Station 322; 2015-12-15 @ 11:31:36;	NaN	EMS: UNKNOWN MEDICAL EMERGENCY	2015-12-15 11:31:36	NaN	CHURCH RD
5455	40.222272	-75.138302	GIANT; ; 2015-12-24 @ 17:30:07- Station:STA98;	18976.0	Fire: VEHICLE ACCIDENT	2015-12-24 17:30:07	NaN	GIANT
7281	40.113517	-75.332257	HIGH ST; ; Station 329; 2015-12-30 @ 03:32:49;	19401.0	EMS: VEHICLE ACCIDENT	2015-12-30 03:32:49	NaN	HIGH ST
7282	40.113517	-75.332257	HIGH ST; ; 2015-12-30 @ 03:32:28- Station:STA58;	19401.0	Fire: VEHICLE ACCIDENT	2015-12-30 03:32:28	NaN	HIGH ST
659226	40.229008	-75.387852	NO LOCATION - NEIGHBORING COUNTY; ; Station 3	NaN	EMS: UNKNOWN MEDICAL EMERGENCY	2020-07-17 12:33:06	NaN	NO LOCATION - NEIGHBORING COUNTY
660100	40.157506	-75.072525	RAILS TO TRAILS CONNECTOR TRL; ; 2020-07-19 @	19006.0	Fire: RESCUE - WATER	2020-07-19 21:12:52	NaN	RAILS TO TRAILS CONNECTOR TRL
660102	40.157506	-75.072525	RAILS TO TRAILS CONNECTOR TRL; ; Station 322A	19006.0	EMS: RESCUE - WATER	2020-07-19 21:13:08	NaN	RAILS TO TRAILS CONNECTOR TRL
660154	40.229008	-75.387852	NO LOCATION - NEIGHBORING COUNTY; ; Station 3	NaN	EMS: RESPIRATORY EMERGENCY	2020-07-20 03:34:03	NaN	NO LOCATION - NEIGHBORING COUNTY
661678	40.164183	-75.208340	ROSE; ; Station 351; 2020-07-24 @ 06:06:18;	19002.0	EMS: OVERDOSE	2020-07-24 06:06:18	NaN	ROSE

293 rows × 8 columns

Records with no townships are mostly dead ends. Lets skip them

What are the top 5 zip codes for 911 calls?

```
df_zip = pd.DataFrame(df['zip'].value_counts().head(5))
df_zip.rename(columns = {'zip':'Top 5'}, inplace = True)
df_zip.style.background_gradient(cmap='Blues')
```

Top 5 19401.0 45606 19464.0 43910 19403.0 34888 19446.0 32270 19406.0 22464

These are the top 5 zip codes for 911 calls

How many unique title of emergency codes are there?

```
df['title'].nunique()
```

148

There are 148 unique title of emergency codes

Adding new feature - Reason feature & Title_code

Reason feature

In the titles column there are "Reasons/Departments" specified before the title code. These are EMS, Fire, and Traffic.

```
]: df['reason'] = df['title'].apply(lambda title: title.split(':')[0])
```

Title_code feature

Using the same method from above, we are going to create a column with just the title code.

```
]: df['title_code'] = df['title'].apply(lambda title: title.split(':')[1])
```

Exploratory Data Analysis (EDA)

What is the most common Reason for a 911 call?

- The number one reason for 911 calls are Emergency Medical Services.
- Almost half of the reasons are for EMS.

What are the top 10 emergency calls from all the categories?

- Vehicle accidents are the number one reason people call 911.
- Disabled vehicle and fire alarm are in second and third place.

Traffic 911 Emergency Calls

• The most common emergency titles are vehicle accident, disable vehicle and road obstruction.

Fire 911 Emergency Calls

• The most common emergency titles are fire alarm, vehicle accident and fire investigation.

EMS 911 Emergency Calls

• The most common emergency titles are fall victim, respiratory emergency and cardiac emergency.

Feature Engineering

 Convert the timeStamp column from string to DateTime object to create 3 new columns called Hour, Month, and Day of Week.

```
df['timeStamp'] = pd.to_datetime(df['timeStamp'])

df['Hour'] = df['timeStamp'].apply(lambda time: time.hour)

df['Month'] = df['timeStamp'].apply(lambda time: time.month)

df['Day of Week'] = df['timeStamp'].apply(lambda time: time.dayofweek)

dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}

df['Day of Week'] = df['Day of Week'].map(dmap)
```


Weekly and monthly calls

- It looks like friday is the day with more calls during the week.
- Regarding the monthly calls, looks like during the first semester there are more calls.

Date feature

```
df['Date'] = df['timeStamp'].apply(lambda t: t.date())
```

- Create a new column called 'Date' that contains the date from the timeStamp column.
- groupby this Date column with the count() aggregate and create a plot of counts of 911 calls by reason.

Traffic

Fire

EMS

Heatmap

- In the heatmap we can see that during 14:00 and 17:00 hours there are more calls.
- Friday and Wednesday have more calls.
- Apparently during Sunday, the calls drop.

Can we predict the type reason of the next call?

Modelling – imports

```
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import re
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf
```

data = pd.read csv('C:/Users/BUDUR/Desktop/Data scinsce Bootcamp/project/archive/911.csv', nrows=50000)

	lat	Ing	desc	zip	title	timeStamp	twp	addr	е
0	40.297876	-75.581294	REINDEER CT & DEAD END; NEW HANOVER; Station	19525.0	EMS: BACK PAINS/INJURY	2015-12-10 17:10:52	NEW HANOVER	REINDEER CT & DEAD END	1
1	40.258061	-75.264680	BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP	19446.0	EMS: DIABETIC EMERGENCY	2015-12-10 17:29:21	HATFIELD TOWNSHIP	BRIAR PATH & WHITEMARSH LN	1
2	40.121182	-75.351975	HAWS AVE; NORRISTOWN; 2015-12- 10 @ 14:39:21-St	19401.0	Fire: GAS-ODOR/LEAK	2015-12-10 14:39:21	NORRISTOWN	HAWS AVE	1
3	40.116153	-75.343513	AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;	19401.0	EMS: CARDIAC EMERGENCY	2015-12-10 16:47:36	NORRISTOWN	AIRY ST & SWEDE ST	1
4	40.251492	-75.603350	CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S	NaN	EMS: DIZZINESS	2015-12-10 16:56:52	LOWER POTTSGROVE	CHERRYWOOD CT & DEAD END	1
	***	***							
49995	40.052428	-75.120794	CHELTENHAM AVE & WALNUT PARK DR; CHELTENHAM;	19012.0	EMS: HEMORRHAGING	2016-04-18 13:21:55	CHELTENHAM	CHELTENHAM AVE & WALNUT PARK DR	1
49996	40.254768	-75.660459	SHOEMAKER RD & ROBINSON ST; POTTSTOWN; 2016-04	19464.0	Traffic: VEHICLE ACCIDENT -	2016-04-18 13:21:27	POTTSTOWN	SHOEMAKER RD & ROBINSON ST	1
49997	40.069832	-75.316295	CONSHOHOCKEN STATE RD & SCHUYLKILL EXPY OVERPA	NaN	Fire: RESCUE - ELEVATOR	2016-04-18 13:30:04	WEST CONSHOHOCKEN	CONSHOHOCKEN STATE RD & SCHUYLKILL EXPY OVERPASS	1
49998	40.289027	-75.399590	HARLEYSVILLE PIKE & MAIN ST; LOWER SALFORD; S	19438.0	EMS: RESPIRATORY EMERGENCY	2016-04-18 13:35:02	LOWER SALFORD	HARLEYSVILLE PIKE & MAIN ST	1
49999	40.100441	-75.107253	MEETINGHOUSE RD & DELENE RD; ABINGTON; 2016-04	19046.0	Fire: WOODS/FIELD FIRE	2016-04-18 13:44:24	ABINGTON	MEETINGHOUSE RD & DELENE RD	1

Modelling

None

```
X_inputs = tf.keras.Input(shape=(X_train.shape[1],))
desc inputs = tf.keras.Input(shape=(desc train.shape[1],))
addr inputs = tf.keras.Input(shape=(addr train.shape[1],))
# X inputs
X dense1 = tf.keras.layers.Dense(128, activation='relu')(X inputs)
X dense2 = tf.keras.layers.Dense(128, activation='relu')(X dense1)
# desc inputs
desc embedding = tf.keras.layers.Embedding(
    input dim=10000,
   output dim=64,
   input length=desc train.shape[1]
)(desc_inputs)
desc_flatten = tf.keras.layers.Flatten()(desc_embedding)
# addr inputs
addr_embedding = tf.keras.layers.Embedding(
    input dim=10000,
   output dim=64,
   input length=addr train.shape[1]
)(addr inputs)
addr_flatten = tf.keras.layers.Flatten()(addr_embedding)
# Concatenate results
concat = tf.keras.layers.concatenate([X_dense2, desc_flatten, addr_flatten])
# Make predictions
outputs = tf.keras.layers.Dense(3, activation='softmax')(concat)
model = tf.keras.Model(inputs=[X_inputs, desc_inputs, addr_inputs], outputs=outputs)
print(model.summary())
tf.keras.utils.plot_model(model)
```

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 174)]	0	
input_2 (InputLayer)	[(None, 24)]	0	
input_3 (InputLayer)	[(None, 14)]	0	
dense (Dense)	(None, 128)	22400	input_1[0][0]
embedding (Embedding)	(None, 24, 64)	640000	input_2[0][0]
embedding_1 (Embedding)	(None, 14, 64)	640000	input_3[0][0]
dense_1 (Dense)	(None, 128)	16512	dense[0][0]
flatten (Flatten)	(None, 1536)	0	embedding[0][0]
flatten_1 (Flatten)	(None, 896)	0	embedding_1[0][0]
concatenate (Concatenate)	(None, 2560)	0	dense_1[0][0] flatten[0][0] flatten_1[0][0]
dense_2 (Dense)	(None, 3)	7683	concatenate[0][0]
		=======	

Training

```
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)

history = model.fit(
    [X_train, desc_train, addr_train],
    y_train,
    validation_split=0.2,
    batch_size=32,
    epochs=20,
    callbacks=[
        tf.keras.callbacks.ReduceLROnPlateau()
    ]
)
```

```
875/875 [===========] - 8s 9ms/step - loss: 0.1309 - accuracy: 0.9581 - val loss: 0.0118 - val accuracy: 0.9976
875/875 [==========] - 8s 9ms/step - loss: 0.0053 - accuracy: 0.9992 - val loss: 0.0068 - val accuracy: 0.9990
875/875 [==========] - 8s 9ms/step - loss: 0.0019 - accuracy: 0.9997 - val loss: 0.0042 - val accuracy: 0.9994
875/875 [==========] - 8s 9ms/step - loss: 8.2584e-04 - accuracy: 0.9998 - val loss: 0.0038 - val accuracy: 0.9993
875/875 [=========== ] - 8s 9ms/step - loss: 2.7862e-04 - accuracy: 1.0000 - val loss: 0.0037 - val accuracy: 0.9991
875/875 [=========== ] - 7s 8ms/step - loss: 1.2712e-04 - accuracy: 1.0000 - val loss: 0.0035 - val accuracy: 0.9993
875/875 [============] - 8s 9ms/step - loss: 7.1434e-05 - accuracy: 1.0000 - val loss: 0.0036 - val accuracy: 0.9993
Epoch 8/20
875/875 [===========] - 7s 9ms/step - loss: 4.3320e-05 - accuracy: 1.0000 - val loss: 0.0037 - val accuracy: 0.9993
875/875 [============ ] - 8s 9ms/step - loss: 2.4316e-05 - accuracy: 1.0000 - val loss: 0.0038 - val accuracy: 0.9993
875/875 [============] - 8s 9ms/step - loss: 1.4416e-05 - accuracy: 1.0000 - val loss: 0.0034 - val accuracy: 0.9994
875/875 [========== ] - 8s 9ms/step - loss: 8.5148e-06 - accuracy: 1.0000 - val loss: 0.0040 - val accuracy: 0.9993
875/875 [========== ] - 7s 9ms/step - loss: 5.4619e-06 - accuracy: 1.0000 - val loss: 0.0041 - val accuracy: 0.9993
Epoch 13/20
875/875 [=========== ] - 8s 9ms/step - loss: 2.4549e-06 - accuracy: 1.0000 - val loss: 0.0040 - val accuracy: 0.9994
875/875 [===========] - 8s 9ms/step - loss: 1.3315e-06 - accuracy: 1.0000 - val_loss: 0.0043 - val_accuracy: 0.9994
875/875 [=========== ] - 7s 8ms/step - loss: 8.3403e-07 - accuracy: 1.0000 - val loss: 0.0042 - val accuracy: 0.9994
875/875 [========== ] - 8s 9ms/step - loss: 4.9513e-07 - accuracy: 1.0000 - val loss: 0.0045 - val accuracy: 0.9994
875/875 [============] - 8s 9ms/step - loss: 3.1701e-07 - accuracy: 1.0000 - val loss: 0.0045 - val accuracy: 0.9994
Epoch 20/20
075 /075 5
```

Results

```
results = model.evaluate([X_test, desc_test, addr_test], y_test, verbose=0)
print("Model loss: {:.5f}".format(results[0]))
```

print("Model accuracy: {:.2f}%".format(results[1] * 100))

Model loss: 0.00773 Model accuracy: 99.95%