

LISTA DE EJERCICIOS - ÁLGEBRA GEM - 2021

Caleb - Michaell

Pregunta 1. Se \mathbb{F} un cuerpo finito de orden q. Pruebe que $[GL_n(\mathbb{F}) : SL_n(\mathbb{F})] = q - 1$.

Pregunta 2. Pruebe los siguientes isomorfismos de grupos, probando también la normalidad de los respectivos subgrupos:

a)
$$\frac{\mathrm{GL}_n(\mathbb{C})}{\mathrm{SL}_n(\mathbb{C})} \cong \mathbb{C}^*$$
.

b)
$$\frac{U_m}{U_n} \cong U_{m/n}$$
 siempre que $n|m$.

Pregunta 3. Pruebe que para todo $a \in \mathbb{Z} - p\mathbb{Z}$ con p primo se tiene:

$$a^{p-1} \equiv 1 \pmod{p}$$

Pregunta 4. Pruebe que S_4 no es isomorfo a D_{12} .

Daniel - Cristopher

Pregunta 1. Pruebe que si H es el único subgrupo de G con orden n entonces H es un subgrupo normal.

Pregunta 2. Sea $G = \mathbb{R} - \{1\}$, definamos la operación binaria:

$$a * b = a + b + ab$$

Pruebe que (G, *) es un grupo y que $(G, *) \cong (\mathbb{R}^*, \cdot)$.

Pregunta 3. Un subgrupo $H \leq G$ se denomina característico, denotado H char G, si es que para cualquier automorfismo $\sigma: G \to G$ se tiene que $\sigma(H) \subseteq H$. Pruebe que:

- a) Dado un grupo G, pruebe que G, $\{e\}$ y Z(G) son característicos.
- b) Si H es el único subgrupo de orden n pruebe que H char G.
- c) Si H char G y $K \triangleleft G$ entonces $H \triangleleft G$.

Pregunta 4. Sean $M, N \triangleleft G$ tal que G = MN. Pruebe que:

$$\frac{G}{M\cap N}\equiv \frac{G}{M}\times \frac{G}{N}$$

Miller - Jhonatan

Pregunta 1. Considere $(\mathbb{Q}/\mathbb{Z}, +)$.

- a) Pruebe que dado $q_1 \in \mathbb{Q}$ existe un $q \in \mathbb{Q}$ con $0 \leq q < 1$ tal que $q\mathbb{Z} = q_1\mathbb{Z}$.
- b) Pruebe que todo elemento de \mathbb{Q}/\mathbb{Z} tiene orden finito.
- c) Pruebe que \mathbb{Q}/\mathbb{Z} es isomorfo al grupo multiplicativo de las raíces de la unidad (Este grupo está formado por todos los números complejos z tales que $z^n=1$ para algún n).

Pregunta 2. Sean K, H subgrupos de G con índices finitos [G:H] = m y [G:K] = n. Pruebe que:

$$mcm(m, n) \le [G : H \cap K] \le mn$$

Concluya que si (m, n) = 1 entonces $[G : H \cap K] = [G : H][G : K]$.

Pregunta 3. Pruebe los siguientes isomorfismos:

- a) Si (m, n) = 1 entonces $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- b) Considere $n \geq 3$, entonces:

$$\left\{ \begin{pmatrix} \pm \overline{1} & \overline{k} \\ 0 & \overline{1} \end{pmatrix} : \overline{k} \in \mathbb{Z}_n \right\} \cong D_{2n}$$

Pregunta 4. Sean H, K subgrupos con índice finito y además coprimos. Pruebe que G = HK.

Juan Paucar - Marco

Pregunta 1. Sea $N \triangleleft G$ con [G:N] y |N| coprimes. Pruebe que si $x \in G$ con $x^{|N|} = 1$ entonces $x \in N$.

Pregunta 2. Sean $a, n \text{ con } (a, n) = 1 \text{ con } n \geq 2$. Pruebe que:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

donde $\varphi(n)$ indica la cantidad de números coprimos menores que n.

Pregunta 3. Sean $H \leq K \leq G$, pruebe que [G:H] = [G:K][K:H].

Pregunta 4. Sea $H \lhd G$ tal que $H \neq G/H$ sean finitamente generados. Pruebe que G es finitamente generado.