Who Gets Placed Where and Why? An Empirical Framework for Foster Care Placement

Alejandro Robinson-Cortés University of Exeter

Annual Conference in Dynamic Structural Econometrics: Market Design

Massachusetts Institute of Technology

August, 2022

Motivation

Foster care

System that provides **temporary care** for children removed from home by child-protective services

Motivation

Foster care

System that provides temporary care for children removed from home by child-protective services

In the U.S.

- Up to 5.91% (1 out of 17) of children are placed in foster care
- On any given day, nearly 450,000 children are in foster care
- On average, children stay 19 months in foster care (median = 14 months)
- Exit foster care: reunification (55%), adoption (35%), emancipation (10%)

Why market design in foster care?

• Goal: Study how matching between children and foster parents is done, and how to improve it

Why market design in foster care?

• Goal: Study how matching between children and foster parents is done, and how to improve it

Motivating Problem

Many foster children go through several foster homes before exiting foster care

- Prevalent problem: 56.1% > 1, avg = 2.56 (U.S., 2015)
- Placement disruptions are detrimental for children
- Social workers (say they) try to minimize disruptions
 - Do what is best for children, and minimize workload

This paper

1. How is it done?

- NO explicit systematic matching algorithm → Revealed preference exercise
- Formulate and estimate structural model of matching in foster care
- How do social workers weigh duration and disruptions when assigning children to foster homes
- Model accounts for sample selection due to unobservable heterogeneity

2. How to improve it?

- Use model estimates to study new policies aimed at improving outcomes
- Keep estimated preferences fixed
- Improve placement outcomes by increasing market thickness through
 - Temporal aggregation (delaying assignments)
 - Geographical centralization (centralizing regional offices)

This paper

1. How is it done?

- NO explicit systematic matching algorithm → Revealed preference exercise
- Formulate and estimate structural model of matching in foster care
- How do social workers weigh duration and disruptions when assigning children to foster homes
- Model accounts for sample selection due to unobservable heterogeneity

2. How to improve it?

- Use model estimates to study new policies aimed at improving outcomes
- Keep estimated preferences fixed
- Improve placement outcomes by increasing market thickness through
 - Temporal aggregation (delaying assignments)
 - Geographical centralization (centralizing regional offices)

Los Angeles County, CA

- Foster care administered at the county level
- County with most foster children in the U.S.
 - On any given day, 17,000 children in foster care
 - 40 children assigned to a foster home everyday
 - 19 regional offices (color-coded)
- Data Confidential administrative records from LA's child-protective services agency
- Sample Every placement assigned in Jan–Feb 2011 (2,087 children; 2,358 placements)
 - Observe outcomes until 2016

This paper

1. How is it done?

- NO explicit systematic matching algorithm → revealed preference exercise
- Formulate and estimate structural model of matching in foster care
- How do social workers weigh duration and disruptions when assigning children to foster homes
- Model accounts for sample selection due to unobservable heterogeneity

2. How to improve it?

- Use model estimates to study new policies aimed at improving outcomes
- Keep estimated preferences fixed
- Improve placement outcomes by increasing market thickness through:
 - Temporal aggregation (delaying assignments)
 - Geographical centralization (centralizing regional offices)

Main Findings

- Within regional offices, social workers do a "fair job" assigning children to foster homes
 - Placements more likely to be disrupted are less likely to be assigned
 - Social workers minimize disruptions and the time children stay in foster care
 - Why "fair"? There might be room for improvement

Main Findings

- Within regional offices, social workers do a "fair job" assigning children to foster homes
 - Placements more likely to be disrupted are less likely to be assigned
 - Social workers minimize disruptions and the time children stay in foster care
 - Why "fair"? There might be room for improvement
- ↑ market thickness by delaying assignments does not improve outcomes substantially
- Decentralization into regional offices is sub-optimal: if system were centralized...
 - Avg. $\mathbb{P}(disruption)$ ↓ 4.2 %-pts \Longrightarrow 8% ↓ placements per child before exiting foster care
 - 54% less distance between foster homes and schools

Main Findings

- Within regional offices, social workers do a "fair job" assigning children to foster homes
 - Placements more likely to be disrupted are less likely to be assigned
 - Social workers minimize disruptions and the time children stay in foster care
 - Why "fair"? There might be room for improvement
- ↑ market thickness by delaying assignments does not improve outcomes substantially
- Decentralization into regional offices is sub-optimal: if system were centralized...
 - Avg. $\mathbb{P}(disruption)$ ↓ 4.2 %-pts \Longrightarrow 8% ↓ placements per child before exiting foster care
 - 54% less distance between foster homes and schools
- Moral Social workers do a decent job at matching; exogenous institutions cause inefficiencies
- Policy Conclusion Improve coordination between regional offices, do not delay assignments

Outline

- 1. Model Overview
- 2. Key Estimation Results
- 3. Counterfactual Policy Analysis

- Unit of observation: day within a regional office ("market")
- Empirical model:

$$(M, T, R)$$
 Endogenous

- M = matching between children and foster homes
- $\mathbf{T} = (T_{ch})_{(c,h)\in M}$ duration of placements
- $\mathbf{R} = (R_{ch})_{(c,h)\in M}$ termination reason of placements
 - $-R_{ch} \in \{$ disruption, permanenc emancipation $\}$
 - permanency ≡ reunification or adoption

- C = set of children
- *H* = set of **foster homes**
- X = children characteristics (age, school zip-code)
- Y = foster homes characteristics (type, zip-code)

- Unit of observation: day within a regional office ("market")
- Empirical model:

$$(M, T, R)$$
 Endogenous

- M = matching between children and foster homes
- $T = (T_{ch})_{(c,h)\in M}$ duration of placements
- $\mathbf{R} = (R_{ch})_{(c,h)\in M}$ termination reason of placements
 - $-R_{ch} \in \{ \text{ disruption, permanenc} \\ \text{emancipation } \}$
 - permanency ≡ reunification or adoption

$$(C, H, X, Y)$$
Exogenous

- $C = \text{set of } \mathbf{children}$
- $H = \text{set of } \mathbf{foster } \mathbf{homes}$
- X = children characteristics (age, school zip-code)
- Y = foster homes characteristics (type, zip-code)

- Unit of observation: day within a regional office ("market")
- Empirical model:

$$\underbrace{(M, \mathbf{T}, \mathbf{R})}_{\mathsf{Endogenous}}$$

- M = matching between children and foster homes
- $\mathbf{T} = (T_{ch})_{(c,h)\in M}$ duration of placements
- $\mathbf{R} = (R_{ch})_{(c,h)\in M}$ termination reason of placements
 - $R_{ch} \in \{$ disruption, permanency, emancipation $\}$
 - permanency ≡ reunification or adoption

- $C = \text{set of } \mathbf{children}$
- H = set of foster homes
- X = children characteristics (age, school zip-code)
- Y = foster homes characteristics (type, zip-code)

$$M = \underset{\tilde{M} \in \mathbb{M}(C, H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c, h) V(c, h) \right\}$$

• Matching between children and foster homes assigned according to:

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \underset{c \in C, h \in H}{\sum} \tilde{M}(c,h) \overline{V(c,h)} \right\}$$

- Payoff of placing child c in home h

• Matching between children and foster homes assigned according to:

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\pi(c,h) + \varepsilon_{cy_h} + \eta_{x_ch} \right] \right\}$$

- Payoff of placing child c in home h

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\overline{\pi(c,h)} + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \boldsymbol{\omega}_{ch}, \mathbf{x}_c, \mathbf{y}_h
 ight]$

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\overline{\pi(c,h)} + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c})\right] \omega_{ch}, \mathbf{x}_c, \mathbf{y}_h$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - μ_R = utility of termination reason R
 - $arphi_R=$ mg. utility of duration conditional on termination reason R
 - $T_{em,c} =$ time until emancipation (18 child's age)

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\overline{\pi(c,h)} + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \omega_{ch}, \mathsf{x}_c, \mathsf{y}_h\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \Sigma_{\omega})$ placement's unobservable characteristics
 - $(\mathbf{x}_c, \mathbf{y}_h)$ = child- and home-observable characteristics

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\pi(c,h) + \underbrace{\varepsilon_{cy_h} + \eta_{x_ch}} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \boldsymbol{\omega}_{ch}, \mathbf{x}_c, \mathbf{y}_h\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \mathbf{\Sigma}_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cy} \sim N(0, \mathbf{\Sigma}_{\varepsilon})$
 - Home-specific taste variation: $\eta_{xh} \sim \textit{N}(0, \mathbf{\Sigma}_{\eta})$

$$M = \underset{\tilde{M} \in \mathbb{M}(C,H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c,h) \left[\pi(c,h) + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c, h) = \mathbb{E}\left[u(T, R; T_{em, c}) \mid \omega_{ch}, \mathbf{x}_{c}, \mathbf{y}_{h}\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \Sigma_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cv} \sim N(0, \mathbf{\Sigma}_{\varepsilon})$
 - Home-specific taste variation: $\eta_{xh} \sim \textit{N}(0, \mathbf{\Sigma}_{\eta})$

$$M = \underset{\tilde{M} \in \mathbb{M}(C, H)}{\operatorname{arg\,max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c, h) \left[\pi(c, h) + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c, h) = \mathbb{E}\left[u(T, R; T_{em,c}) \mid \omega_{ch}, \mathbf{x}_c, \mathbf{y}_h\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \mathbf{\Sigma}_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cv} \sim N(0, \mathbf{\Sigma}_{\varepsilon})$
 - Home-specific taste variation: $\eta_{xh} \sim N(0, \mathbf{\Sigma}_{\eta})$
- Placement Outcome: $(T, R) | (\omega_{ch}, \mathbf{x}_c, \mathbf{y}_h) \sim \text{Burr Competing Risks Duration Model}$

$$M = \underset{\tilde{M} \in \mathbb{M}(C, H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c, h) \left[\pi(c, h) + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \boldsymbol{\omega}_{ch}, \mathbf{x}_c, \mathbf{y}_h
 ight]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \mathbf{\Sigma}_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cv} \sim N(0, \mathbf{\Sigma}_{\varepsilon})$
 - Home-specific taste variation: $\eta_{\mathsf{x}\mathsf{h}} \sim \mathit{N}(0, \mathbf{\Sigma}_{\eta})$
- Placement Outcome: $(T,R)|(\omega_{ch},\mathbf{x}_c,\mathbf{y}_h)\sim$ Burr Competing Risks Duration Model
- Note 1: $(T,R)|(M(c,h)=1,\mathbf{x}_c,\mathbf{y}_h)\sim \text{Mixed Outcome Distribution}$

$$M = \underset{\tilde{M} \in \mathbb{M}(C, H)}{\operatorname{arg\,max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c, h) \left[\pi(c, h) + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \boldsymbol{\omega}_{ch}, \mathbf{x}_c, \mathbf{y}_h\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \mathbf{\Sigma}_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cv} \sim N(0, \mathbf{\Sigma}_{\varepsilon})$
 - Home-specific taste variation: $\eta_{\mathsf{x}\mathsf{h}} \sim \mathit{N}(0, \mathbf{\Sigma}_{\eta})$
- Placement Outcome: $(T,R)|(\omega_{ch},\mathbf{x}_c,\mathbf{y}_h) \sim \text{Burr Competing Risks Duration Model}$
- Note 1: $(T,R)|(M(c,h)=1,\mathbf{x}_c,\mathbf{y}_h)\sim \text{Mixed Outcome Distribution}$
- Note 2: $M | (C, H, X, Y) \sim \text{Mixed Probit}$

$$M = \underset{\tilde{M} \in \mathbb{M}(C, H)}{\operatorname{arg max}} \left\{ \sum_{c \in C, h \in H} \tilde{M}(c, h) \left[\pi(c, h) + \varepsilon_{cy_h} + \eta_{x_c h} \right] \right\}$$

- Payoff of placing child c in home h
 - Outcome-based payoff: $\pi(c,h) = \mathbb{E}\left[u(T,R;T_{em,c}) \mid \boldsymbol{\omega}_{ch}, \mathbf{x}_c, \mathbf{y}_h\right]$
 - $u(T, R; T_{em}) = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$
 - $\omega_{ch} \sim N(0, \mathbf{\Sigma}_{\omega})$ placement's unobservable characteristics
 - Child-specific taste variation: $\varepsilon_{cv} \sim N(0, \Sigma_{\varepsilon})$
 - Home-specific taste variation: $\eta_{xh} \sim N(0, \Sigma_n)$
- Placement Outcome: $(T, R) | (\omega_{ch}, \mathbf{x}_c, \mathbf{y}_h) \sim \text{Burr Competing Risks Duration Model}$
- Note 1: $(T,R) | (M(c,h) = 1, \mathbf{x}_c, \mathbf{y}_h) \sim \text{Mixed Outcome Distribution}$
- Note 2: M | (C, H, X, Y) ~ Mixed Probit
- Identification: exogenous variation in (C, H, X, Y) across markets

Key Estimation Results

Estimated Hazard Rates

Utility function:

$$u = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$$

• Key observations:

• Utility function:

$$u = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$$

- Key observations:
 - 1. Placements more likely to be disrupted are less likely to be assigned:

-
$$\mu_{disrup} < 0$$
, $\mu_{perm} > 0$, $\mu_{eman} < 0$

• Utility function:

$$u = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$$

- Key observations:
 - 1. Placements more likely to be disrupted are less likely to be assigned:

-
$$\mu_{disrup} < 0$$
, $\mu_{perm} > 0$, $\mu_{eman} < 0$

- 2. Social workers minimize the time children stay in foster care:
 - $\varphi_{perm} < 0$

• Utility function:

$$u = \mu_R + \varphi_R \log T + \bar{\varphi}_R \log T_{em}$$

- Key observations:
 - 1. Placements more likely to be disrupted are less likely to be assigned:

-
$$\mu_{disrup} < 0$$
, $\mu_{perm} > 0$, $\mu_{eman} < 0$

2. Social workers minimize the time children stay in foster care:

-
$$\varphi_{perm} < 0$$

- "Stronger" preference over termination reason than duration
 - Unwilling to trade off an exit to permanency with long duration, over a disruption with short duration

How good are social workers at minimizing disruptions?

- Simulate assignments under alternative matching policies (change parameters in utility function)
- Average predicted disruption probability across assigned placements:

- Social workers
 - could do worse (up to a 10.3% increase)
 - do better than random (2.5% increase)
 - but could also do better (up to 8.2% decrease)

Counterfactual Policy Analysis

Counterfactual Policy Analysis

- Increasing market thickness by aggregating markets
 - Centralization Pool regional offices together into a single county-wide market
 - Temporal aggregation Assign placements within regional offices every $D \geqslant 1$ days
 - Benchmark Pool regional offices together and match everyone at once $(D = \infty)$
- Assume zero costs of information aggregation
 - Obtain upper bound of gains from greater market thickness

- y-axis = avg. termination probability
- x-axis = temporal aggregation

- y-axis = avg. termination probability
- x-axis = temporal aggregation
- dashed lines = spatial aggregation

- y-axis = avg. termination probability
- ullet x-axis = temporal aggregation
- dashed lines = spatial aggregation
- dotted lines = maximum market thickness

- y-axis = avg. termination probability (left), avg. distance to school (right)
- ullet x-axis = temporal aggregation
- dashed lines = spatial aggregation
- dotted lines = maximum market thickness

Conclusion Related Literature

- Objective Formulate and estimate structural model of placement assignment and outcomes
- Social workers do a "fair job" at minimizing disruptions
 - $-\uparrow \mathbb{P}(disruption) \Longrightarrow \downarrow \mathbb{P}(placement)$
 - Better than random, but there is room for improvement
- However,...
 - Regional offices coordinate sub-optimally with one another.
 - There are gains from centralizing the assignment of placements across LA County
 - $\mathbb{P}(disruption)$ ↓ 4.2 %-pts \Longrightarrow 8% ↓ fewer foster homes per child
 - 54% less distance between foster homes and schools
- What do we learn?
 - Social workers do a fair job at matching, but exogenous institutions cause inefficiencies
 - Policy recommendation Improve coordination between regional offices, do not delay assignments

Thank you.

Motivation (Sources) Back

In the U.S.

- 5.91% (1 out of 17) of children are placed in foster care
 - Estimated share of children from total population who spent at least a day in foster care before their
 18th birthday. 2000–2011 (Wildeman and Emanuel 2014)
- Every year, more than half a million children go through foster care
 - 2013 (638.041) through 2017 (690.548)
 - Source: U.S. Department of Health and Human Services (AFCARS Report, 2018)
- On any given day, nearly 450,000 children are in foster care
 - 10/30/2013 (400,39) through 10/30/2017 (442,995) (AFCARS Report, 2018)
- On average, children stay 19 months in foster care (median = 14 months)
 - Average and median length of stay across children who exited during FY 2017 (AFCARS Report, 2018)
- Exit foster care: reunification (55%), adoption (35%), emancipation (10%)
 - Discharge reasons across children who exited during FY 2017 (AFCARS Report, 2018)

Why market design in foster care? (Sources)

- Back
- Prevalent problem: 56.1% > 1, avg = 2.56 (U.S., 2015) (Source: AFCARS)
- Placement disruptions detrimental for children's development
 - — ↑ emergency and mental-health services (Rubin et al. 2004; Rubin, Alessandrini, Feudtner, Localio, and Hadley 2004)
 - – ↑ behavioral and attachment problems (Gauthier, Fortin, and Jéliu 2004; Rubin, O'Reilly, Luan, and Localio 2007)
 - affect children's bodily capacity to regulate cortisol (stress hormone) (Fisher, Ryzin, and Gunnar 2011)
- Also, associated with worse outcomes in adult life:
 - More and longer placements ⇒ ↑ depression, smoking, drug use, criminal convictions (Dregan and Gulliford 2012)

Why structural model?

Main Challenge

- Objective: Recover preferences over outcomes from data on which matchings were chosen
- Placement outcomes (duration and disruptions) are lotteries
- ⇒ Need to estimate conditional distribution of outcomes
- Problem Possible selection on unobservables
 - Unobservables → Expected match outcomes → Matching → Observed outcomes are selected
 - Endogeneity when estimating distribution of outcomes conditional on observables

Solution

- Structural model of matching and placement outcomes, with unobserved heterogeneity
- Identification Exogenous variation across dates and regions at which children enter foster care

Market Thickness

Market Thickness

Market Thickness

Background and Data

Summary Statistics

- Data Confidential county records (accessed through court order) from the Los Angeles County Department of Children and Family Services (DCFS)
- Dataset Records of all children who went through foster care between 2006 and 2016 (FY)
 - 112,755 children | 129,084 foster care episodes | 266,887 placements
 - Avg. episodes per child = 1.14
 - Avg. placements per episode = 2.09
 - Avg. episode duration = 14.02 months (median = 10.32 months)
 - Avg. placement duration = 7.39 months (median = 3.67 months)
- Sample Every placement assigned between January 1, 2011, and February 28, 2011
 - 2,087 children | 2,358 placements
 - Children characteristics Age, school zip-code
 - Foster homes characteristics Type (county, agency, group-home, relative), zip-code

Description of markets and excess supply

- Market = day × regional office × relatives
- Foster homes are observed conditional on being matched
 - Excess supply is not observed, but relatively small
 - Children are left unmatched only if there are no foster homes available
- Description of markets
 - Sample period = 58 days | Regional offices = 19 days | Office-days = 1102
 - Office-days with ≥ 1 child without a relative = 90.7%
 - At least one unmatched child in 88.1% of these office-days
 - 85% children are matched on same day they need a placement
 - Avg. waiting time (of those who wait) = 6.5 days
 - Takeaway Most children matched right away, but unmatched children in almost all office-days

Summary Statistics

	n	mean	sd	median
Termination Reasons				
Disruption	2358	0.51	0.5	1
Permanency	2358	0.42	0.49	0
Reunification	2358	0.31	0.46	0
Adoption	2358	0.12	0.32	0
Emancipation	2358	0.052	0.2	0
Censored	2358	0.015	0.12	0
Duration				
Duration (months)	2358	8.37	11.28	4.31
Duration—Disrup	1201	5.4	7.96	2.43
Duration—Perm	999	9.97	9.99	7.31
Duration—Emanc	122	12.94	14.3	7.61
Duration—Cens	36	47.89	27.88	64.56
Placement Characteristics				
Child's Age	2358	8.69	5.97	8.49
County Foster Home	2358	0.086	0.27	0
Agency Foster Home	2358	0.43	0.5	0
Group Home	2358	0.12	0.32	0
Relative Home	2358	0.37	0.48	0
Distance Plac-School (mi.)	1775	18.13	23.77	7.99
No School	2358	0.25	0.43	0

Note: Distance measures at zip-code level, computed using Google Maps API.

Summary Statistics (sample and full dataset)

	mean	sd	mean-full	sd-full
Termination Reasons				
Disruption	0.51	0.5	0.49	0.5
Permanency	0.42	0.49	0.37	0.48
Reunification	0.31	0.46	0.26	0.44
Adoption	0.12	0.32	0.11	0.31
Emancipation	0.052	0.2	0.048	0.21
Censored	0.015	0.12	0.090	0.27
Duration				
Duration (months)	8.37	11.28	8.12	10.66
Duration—Disrup	5.4	7.96	4.86	7.38
Duration—Perm	9.97	9.99	10.4	9.90
Duration—Emanc	12.94	14.3	13.23	15.93
Duration—Cens	47.89	27.88	13.99	17.28
Placement Characteristics				
Child's Age	8.69	5.97	8.55	5.91
County Foster Home	0.086	0.27	0.09	0.29
Agency Foster Home	0.43	0.5	0.36	0.48
Group Home	0.12	0.32	0.11	0.32
Relative Home	0.37	0.48	0.43	0.5
Distance Plac-School (mi.)	18.13	23.77	15.75	23.31
No School	0.25	0.43	0.33	0.47

Note: Distance measures at zip-code level, computed using Google Maps API.

Back

• T_R is the latent duration for $R \in \mathcal{R}$, and

$$T = \min \{T_R : R \in \mathcal{R}\}$$
 & $R = \arg \min \{T_R : R \in \mathcal{R}\}$.

- Need to specify the conditional outcome distribution: $(T,R) \mid \mathcal{I}_{ch}$
 - $\mathcal{I}_{\mathit{ch}} =$ central planner's information about (prospective) placement (c,h)

• T_R is the latent duration for $R \in \mathcal{R}$, and

$$T = \min \{T_R : R \in \mathcal{R}\}$$
 & $R = \arg \min \{T_R : R \in \mathcal{R}\}$.

Assumption: Normal Mixing Distribution

The central planner's information of a placement is $\mathcal{I}_{ch} = (\mathbf{x}_c, \mathbf{y}_h, \boldsymbol{\omega}_{ch})$ where:

$$\boldsymbol{\omega}_{\mathit{ch}} = (\omega_{\mathit{d}}, \omega_{\mathit{ex}})$$
 are unobservable frailty terms (or random effects)

$$oldsymbol{\omega}_{ch} \sim N(0, oldsymbol{\Sigma}_{\omega})$$

Note: "Frailty term" means that ω_R shifts the hazard rate of T_R

• T_R is the latent duration for $R \in \mathcal{R}$, and

$$T = \min \{ T_R : R \in \mathcal{R} \}$$
 & $R = \arg \min \{ T_R : R \in \mathcal{R} \}$.

Assumption: Burr Hazard Rates

3a. For $R \in \{d, ex\}$, conditional on \mathcal{I}_{ch} , \mathcal{T}_R follows a Burr distribution with hazard rate:

$$\lambda_R(T|\mathcal{I}_{ch}) = rac{k_R(\mathcal{I}_{ch})lpha_R T^{lpha_R-1}}{1+\gamma_R^2 k_R(\mathcal{I}_{ch})T^{lpha_R}}$$

where $\alpha_R > 0$, $\gamma_R \geqslant 0$, and $k_R(\mathcal{I}_{ch}) = \exp(\omega_{R,ch} + g(\mathbf{x}_c, \mathbf{y}_h)\beta_R)$.

Note 1: α_R and γ_R determine the shape (duration-dependence) of the hazard rate $\lambda_R(T | \mathcal{I}_{ch})$

Note 2: $\lambda_R(T|\mathcal{I}_{ch})$ is increasing in $k_R(\mathcal{I}_{ch})$

3b. Latent durations are independent conditional on \mathcal{I}_{ch} , $\omega_{ch} \perp \varepsilon_c$, and $\omega_{ch} \perp \eta_h$.

Identification and Estimation

Back

- Identification Details
 - Exogenous variation in (C, Y, X, Y) across markets identifies distribution of ω (Ackerberg and Botticini 2002; Sørensen 2007).
 - Intuition akin to traditional sample selection models (Heckman 1979)
- Estimation: Simulated Maximum Likelihood Details
 - Let $\mathbf{Z}_i \equiv (C_i, H_i, \mathbf{X}_i, \mathbf{Y}_i)$. Integrate joint conditional likelihood:

$$\begin{aligned} \left(M_i, \mathbf{T}_i, \mathbf{R}_i \right) | \mathbf{Z}_i &\sim \int (M_i, \mathbf{T}_i, \mathbf{R}_i) | (\mathbf{Z}_i, \mathbf{\Omega}_i) dG(\mathbf{\Omega}_i) \\ &\sim \int (M_i | \mathbf{Z}_i, \mathbf{\Omega}_i) (\mathbf{T}_i, \mathbf{R}_i | M_i, \mathbf{Z}_i, \mathbf{\Omega}_i) dG(\mathbf{\Omega}_i), \end{aligned}$$

where
$$\Omega_i = (\omega_{ch})_{(c,h) \in C_i \times H_i} \sim G \equiv \times_{c,h} N(0, \Sigma_{\omega}).$$

Average Partial Effects

	$\mathbb{P}(Disrup)$	$\mathbb{P}(Permanency)$	$\mathbb{E}(log\; \mathcal{T} Disrup)$	$\mathbb{E}(\log T Exit)$	$\mathbb{E}(\log T)$
Age At Plac.	0.0139	-0.0115	-0.0406	-0.022	-0.0401
County-FH	0.317	-0.266	-0.969	-0.628	-0.927
Agency-FH	0.320	-0.272	-1.221	-0.874	-1.174
Group Home	0.165	-0.158	0.287	0.450	0.339
Distance To School (zip)	0.00401	-0.00376	-0.007978	-0.00309	-0.00736
No School	0.1136	-0.09686	-0.5244	-0.3653	-0.5212
Number of placements			2358		

Average Partial Effects

	$\mathbb{P}(Disrup)$	$\mathbb{P}(Permanency)$	$\mathbb{E}(\log T \mid Disrup)$	$\mathbb{E}(\log T Exit)$	$\mathbb{E}(\log T)$
Age At Plac.	0.0139	-0.0115	-0.0406	-0.022	-0.0401
County-FH	0.317	-0.266	-0.969	-0.628	-0.927
Agency-FH	0.320	-0.272	-1.221	-0.874	-1.174
Group Home	0.165	-0.158	0.287	0.450	0.339
Distance To School (zip)	0.00401	-0.00376	-0.007978	-0.00309	-0.00736
No School	0.1136	-0.09686	-0.5244	-0.3653	-0.5212
Number of placements			2358		

Average Partial Effects

	$\mathbb{P}(Disrup)$	$\mathbb{P}(Permanency)$	$\mathbb{E}(\log T \mid Disrup)$	$\mathbb{E}(\log T \mid Exit)$	$\mathbb{E}(\log T)$
Age At Plac.	0.0139	-0.0115	-0.0406	-0.022	-0.0401
County-FH	0.317	-0.266	-0.969	-0.628	-0.927
Agency-FH	0.320	-0.272	-1.221	-0.874	-1.174
Group Home	0.165	-0.158	0.287	0.450	0.339
Distance To School (zip)	0.00401	-0.00376	-0.007978	-0.00309	-0.00736
No School	0.1136	-0.09686	-0.5244	-0.3653	-0.5212
Number of placements			2358		

Average Partial Effects

	$\mathbb{P}(Disrup)$	$\mathbb{P}(Permanency)$	$\mathbb{E}(\log T Disrup)$	$\mathbb{E}(\log T Exit)$	$\mathbb{E}(\log T)$
Age At Plac.	0.0139	-0.0115	-0.0406	-0.022	-0.0401
County-FH	0.317	-0.266	-0.969	-0.628	-0.927
Agency-FH	0.320	-0.272	-1.221	-0.874	-1.174
Group Home	0.165	-0.158	0.287	0.450	0.339
Distance To School (zip)	0.00401	-0.00376	-0.007978	-0.00309	-0.00736
No School	0.1136	-0.09686	-0.5244	-0.3653	-0.5212
Number of placements			2358		

Related Literature Back

Foster Care and Adoption

- Matching Baccara, Collard-Wexler, Felli, and Yariv (2014); Slaugh, Akan, Kesten, and Ünver (2015);
 MacDonald (2019); Olberg, Dierks, Seuken, Slaugh, and Ünver (2021)
- Foster care outcomes Doyle Jr. and Peters (2007); Doyle Jr. (2007, 2008, 2013); Doyle Jr. and Aizer (2018);
 Bald, Doyle Jr., Gross, and Jacob (2022); Gross and Baron (2022); Bald, Chyn, Hastings, and Machelett (2022)

Empirical Market Design

- Medical Match Agarwal (2015)
- School Choice Abdulkadiroğlu, Agarwal, and Pathak (2017); Agarwal and Somaini (2018)
- Kidney Exchange Agarwal, Ashlagi, Azevedo, Featherstone, and Karaduman (2017); Agarwal, Ashlagi, Rees,
 Somaini, and Waldinger (2019); Agarwal, Hodgson, and Somaini (2022)

Empirical Decentralized Matching

- Marriage Choo and Siow (2006); Galichon and Salanié (2015)

Competing Risks Duration Models

- Heckman and Honoré 1989
- Lancaster 1990
- Kalbfleisch and Prentice 2002

Borrow econometric methods and identification techniques

Empirical Contracting Models

- Ackerberg and Botticini 2002
- · Srensen 2007
- Ewens, Gorbenko, and Korteweg 2019

Use similar identification strategy for selection on unobservables

Burr Distribution

• The random variable $T \in \mathbb{R}_+$ has a <u>Burr distribution</u> with parameters $\alpha > 0$, $\gamma \ge 0$, and k > 0, if its hazard function takes the following form:

$$\lambda(T) = \frac{k\alpha T^{\alpha - 1}}{1 + \gamma^2 k T^{\alpha}}.$$

Left: Examples of Burr hazard functions for different values of α , γ .

Particular cases: Exponential ($\alpha=1,\,\gamma=1$), Weibull ($\gamma=0$), and Log-Logistic ($\gamma=1$)

Right: Examples of hazard functions for different values of k.

Data Generating Process (DGP)

Back

Need to identify the distribution of the endogenous ("left-hand side") variables

$$(M_i, \mathbf{T}_i, \mathbf{R}_i),$$

conditional on the exogenous ("right-hand side") ones

$$(C_i, H_i, \mathbf{X}_i, \mathbf{Y}_i).$$

• Also, need to identify distribution of the unobserved heterogeneity ("mixing distribution")

$$(M_i, \mathbf{T}_i, \mathbf{R}_i) | (C_i, H_i, \mathbf{X}_i, \mathbf{Y}_i) \sim \int (M_i, \mathbf{T}_i, \mathbf{R}_i) | (C_i, H_i, \mathbf{X}_i, \mathbf{Y}_i, \mathbf{\Omega}_i) dG(\mathbf{\Omega}_i),$$

where
$$\Omega_i = (\omega_{ch})_{(c,h) \in C_i \times H_i}$$
.

Identification Back

- 1. Duration Distribution (hazard rates and unobserved heterogeneity)
 - Mixed competing risks with covariates identified non-parametrically (Heckman and Honoré 1989).
 - Distribution of ω across observed outcomes is conditional on being matched: $\omega_{ch} \mid M(c,h) = 1$.
 - Exogenous variation in (C, Y, X, Y) across markets identifies distribution of ω (Ackerberg and Botticini 2002; Sørensen 2007).
 - Intuition akin to traditional sample selection models (Heckman 1979)
- Matching Distribution (multinomial probit)
 - Utility index $\sum_{c,h} M(c,h)\pi(c,h)$ linear in utility parameters $(\mu_R,\varphi_R,\bar{\varphi}_R)_{R\in\mathcal{R}}$.
 - Distribution of individual shocks ε_c and η_y can be backed out from composite error v_M
 - Exploit variation in (C, Y, X, Y) across markets, and observing unmatched children.

Estimation Back

- Estimate via Simulated Maximum Likelihood.
- Collect all the parameters of the model:

$$m{ heta}_{T} = (m{lpha}, m{\gamma}, m{eta}); \quad m{ heta}_{M} = (m{\mu}, m{arphi}, m{\Sigma}_{\epsilon}, m{\Sigma}_{\eta}); \quad m{ heta} = [m{\Sigma}_{\omega}, m{ heta}_{T}, m{ heta}_{M}] \,.$$

• The likelihood of observing $(M_i, \mathbf{T}_i, \mathbf{R})$, conditional on $\Omega_i = (\omega_{ch})_{(c,h) \in C_i \times H_i}$, is given by:

$$\mathcal{L}(\textit{M}_{\textit{i}}, \textbf{T}_{\textit{i}}, \textbf{R}_{\textit{i}} | \boldsymbol{\Omega}_{\textit{i}}, \boldsymbol{\theta}_{\textit{T}}, \boldsymbol{\theta}_{\textit{M}}) = \mathcal{L}_{\textit{M}}(\textit{M}_{\textit{i}} | \boldsymbol{\Omega}_{\textit{i}}, \boldsymbol{\theta}_{\textit{T}}, \boldsymbol{\theta}_{\textit{M}}) \prod_{(c,h) \in \textit{M}_{\textit{i}}} \mathcal{L}_{\textbf{T},\textbf{R}}(\textit{T}_{\textit{ch}}, \textit{R}_{\textit{ch}} | \boldsymbol{\omega}_{\textit{ch}}, \boldsymbol{\theta}_{\textit{T}}),$$

where:

$$\mathcal{L}_{M}(M_{i}|\mathbf{\Omega}_{i},oldsymbol{ heta}_{T},oldsymbol{ heta}_{M})=$$
 probit choice probability

$$\mathcal{L}_{\mathsf{T},\mathsf{R}}(T_{ch},R_{ch}|\omega_{ch},\theta_{T}) = \mathsf{Burr}$$
 competing risks conditional likelihood

Estimation

- Back
- Let $G = \times_{c,h} G_{ch}$ denote the distribution of Ω_i , i.e., $G_{ch} \equiv N(0, \Sigma_{\omega})$. Then,

$$\mathcal{L}(\textit{M}_{\textit{i}}, \textbf{T}_{\textit{i}}, \textbf{R}_{\textit{i}} \, | \, \boldsymbol{\theta}) = \int \mathcal{L}_{\textit{M}}(\textit{M}_{\textit{i}} \, | \, \boldsymbol{\Omega}_{\textit{i}}, \boldsymbol{\theta}_{\textit{T}}, \boldsymbol{\theta}_{\textit{M}}) \prod_{(c,h) \in \textit{M}_{\textit{i}}} \mathcal{L}_{\textbf{T},\textbf{R}}(\textit{T}_{\textit{ch}}, \textit{R}_{\textit{ch}} \, | \, \boldsymbol{\omega}_{\textit{ch}}, \boldsymbol{\theta}_{\textit{T}}) \textit{dG}(\boldsymbol{\Omega}_{\textit{i}} \, | \, \boldsymbol{\Sigma}_{\omega}).$$

- The log-likelihood of the data is $\ell(\theta) = \sum_{i=1}^{n} \log \mathcal{L}(M_i, \mathbf{T}_i, \mathbf{R}_i | \theta)$.
- Simulated analog of \mathcal{L} :

$$\mathcal{L}^{S_{\upsilon},S_{\omega}}\left(\textit{M}_{i},\textbf{T}_{i},\textbf{R}_{i}\,|\,\boldsymbol{\theta}\right) = \frac{1}{S_{\upsilon}}\frac{1}{S_{\omega}}\sum_{s_{\upsilon}=1}^{S_{\upsilon}}\sum_{s_{\omega}=1}^{S_{\omega}}\mathcal{L}^{s_{\upsilon}}_{\textit{M}}\left(\textit{M}_{i}\,|\,\boldsymbol{\Omega}^{s_{\omega}}_{i}\,,\boldsymbol{\theta}\right)\prod_{(c,h)\in\textit{M}_{i}}\mathcal{L}_{\textbf{T},\textbf{R}}\left(\textit{T}_{ch},\textit{R}_{ch}\,|\,\boldsymbol{\omega}^{s_{\omega}}_{ch}\,,\boldsymbol{\theta}_{\textit{T}},\boldsymbol{\Sigma}_{\omega}\right),$$

where $\mathcal{L}_{M}^{s_{v}}$ is the simulated probit choice probability using a logit-kernel (Train 2009).

- The SMLE of θ is given by: $\hat{\theta}_{SMLE} = \arg\max_{\theta} \sum_{i=1}^{n} \log \mathcal{L}^{S_{\upsilon}, S_{\omega}}(M_i, \mathbf{T}_i, \mathbf{R}_i | \theta)$
- $\hat{\theta}_{SMLE} \stackrel{a}{=} \hat{\theta}_{MLE}$ (consistent, asymptotically normal and efficient) if $n, S_v, S_\omega \to \infty$, and $\sqrt{n}/\min(S_v, S_\omega) \to 0$ (Gourieroux and Monfort 1997).

Aggregate payoff function

• The aggregate payoff of matching $M \in \mathbb{M}(C, H)$ is a linear function of the utility function parameters:

$$\sum_{c,h} M(c,h)\pi(c,h) = \sum_{R \in \mathcal{R}} \left\{ \left[\sum_{c,h} M(c,h) \mathbb{P}(R | \mathcal{I}_{ch}) \right] \mu_R \right.$$

$$+ \left[\sum_{c,h} M(c,h) \mathbb{P}(R | \mathcal{I}_{ch}) \mathbb{E} \left(\log T | R, \mathcal{I}_{ch} \right) \right] \varphi_R$$

$$+ \left[\sum_{c,h} M(c,h) \mathbb{P}(R | \mathcal{I}_{ch}) \log T_{em,c} \right] \bar{\varphi}_R \right\},$$

Expected placement outcomes

Termination probabilities and expected log-duration:

$$\mathbb{P}(R | \mathcal{I}_{ch}) = \int_{0}^{T_{em,c}} \bar{F}(T | \mathcal{I}_{ch}) \lambda_{R}(T | \mathcal{I}_{ch}) dT$$

$$\mathbb{E}\left(\log T | R, \mathcal{I}_{ch}\right) = \int_{0}^{T_{em,c}} \log T \left[\frac{\bar{F}(T | \mathcal{I}_{ch}) \lambda_{R}(T | \mathcal{I}_{ch})}{\mathbb{P}(R | \mathcal{I}_{ch})}\right] dT,$$

where $\bar{F}(T|\mathcal{I}_{ch})$ denotes the **conditional survival function** of T, given by

$$ar{F}(T|\mathcal{I}_{ch}) = \exp\left\{-\sum_{R\in\mathcal{R}_0} \gamma_R^{-2} \log\left[1 + \gamma_R^2 k_R(\mathcal{I}_{ch}) T^{lpha_R}
ight]
ight\}.$$

The integrals above have no closed-form solution. They need to be computed numerically.

Conditional Hazard Functions

	Disruption	Exit
$Var(\omega_R)$	0.873***	0.02955
	(0.2912)	(0.02867)
$Cov(\omega_d, \omega_{ex})$	0.1573*	0.1573*
	(0.08908)	(0.08908)
Age At Plac.	0.09872***	-0.01615
	(0.01767)	(0.01047)
County-FH	2.217***	-0.02375
	(0.332)	(0.2101)
Agency-FH	2.983***	0.4547***
	(0.2556)	(0.1237)
Group Home	-2.077**	-1.987***
	(0.9188)	(0.5642)
Age At Plac. × County-FH	-0.02272	0.01804
	(0.0261)	(0.01636)
Age At Plac. × Agency-FH	-0.07878***	-0.01007
	(0.0194)	(0.0124)
Age At Plac. × Group Home	0.2569***	0.1419***
	(0.06179)	(0.03894)
Distance To School (zip)	0.02052***	-0.006059***
(, ,	(0.002471)	(0.001724)
No School	0.9007***	0.1222
	(0.1603)	(0.08942)
Constant	-8.996***	-6.082***
	(0.5408)	(0.2132)
Alpha (α_R)	1.091***	0.9665***
	(0.07551)	(0.03427)
Gamma (γ_R)	0.9527***	0.2222
	(0.1183)	(0.2361)
Number of placements	,,	2358

Model Fit

Goodness of Fit and Estimation Parameters

	Predicted	Sample	
$\mathbb{P}(Disruption)$	0.514	0.5093	
$\mathbb{P}(E \times it)$	0.4303	0.4237	
P(Emanc/Cens)	0.05568	0.06701	
$\mathbb{E}(\log T \mid Disruption)$	4.482	4.141	
$\mathbb{E}(\log T \mid E \times it)$	4.721	4.994	
$\mathbb{E}(\log T \mid Emanc/Cens)$	7.19	5.534	
$\mathbb{E}(\log T)$	4.615	4.596	
Number of markets (n)	1467		
Number of assigned placements	2358		
Number of prospective placements	8900		
SMLL	-17005.86		
S_{ω}	50		
S_v	50		
$dim(oldsymbol{ heta})$	39		

Note: Average predicted outcomes and sample average outcomes. Averages taken across the sample of assigned placements in the data. The number of assigned placements in the data is equal to $\sum_i \sum_{c,h} h_{ij}(c,h)$. The number of prospective placements is equal to $\sum_i \sum_{c,h} |C_i| \times |H_j|$. SMLL gives the value of the simulated log-likelihood at the estimated vector of parameters. S_{ω} , $S_{\mathcal{V}}$, and ψ are the parameters of the simulated log-likelihood. dim(θ) refers to the number of parameters estimated