

AYUDANTÍA 11

DFS, topSort y Kosaraju

Ignacio Bascuñán

• topSort: Orden topológico.

topSort(G)

Crear lista *L* vacía

Ejecutar dfs(G) con tiempos:

• cada vez que calculamos el tiempo \pmb{end} para un nodo, insertamos ese nodo al frente de \pmb{L}

return L

L = [3]

L = [2, 3]

L = [1, 2, 3]

L = [4, 1, 2, 3]

L = [5, 4, 1, 2, 3]

L = [5, 4, 1, 2, 3]

L = [5, 4, 1, 2, 3]

L = [6, 5, 4, 1, 2, 3]

L = [7, 6, 5, 4, 1, 2, 3]

PROBLEMA 1: COMPLEJIDAD

- Hay C cursos y cada curso puede tener un máximo de A actividades, por lo que el grafo tiene un máximo de $C \cdot A$ vértices. Además, hay un máximo de R requisitos por actividad, por lo que hay un máximo de $C \cdot A \cdot R$ aristas.
- La complejidad de DFS, y por ende de topSort, es O(|E| + |V|).
- La complejidad del problema será $O(C \cdot A + C \cdot A \cdot R)$

kosaraju(G)

Crear lista *L* vacía

Ejecutar dfs(G) con tiempos

Insertar vértices en \boldsymbol{L} en orden descendiente de tiempos \boldsymbol{f}

for each u in L:

assign(u, u)

```
assign(u, rep):

if\ u.rep = \emptyset:

u.rep = rep

foreach\ v\ in\ \alpha'[u]:

assign(v, rep)
```


Grafo Transpuesto

Sets:

 $\begin{array}{c}
1 \rightarrow \\
2 \rightarrow \\
3 \rightarrow \\
4 \rightarrow \\
5 \rightarrow \\
7 \rightarrow \\
8 \rightarrow \\
9 \rightarrow
\end{array}$

Grafo Transpuesto

Sets:

 $\begin{array}{c}
1 \rightarrow \\
2 \rightarrow \\
3 \rightarrow \\
4 \rightarrow \\
5 \rightarrow \\
6 \rightarrow \\
7 \rightarrow \\
8 \rightarrow \\
9 \rightarrow 9
\end{array}$

Grafo Transpuesto

Sets:

 $1 \rightarrow 1$ $2 \rightarrow$ $3 \rightarrow$ $4 \rightarrow$ $5 \rightarrow$ $6 \rightarrow$ $7 \rightarrow$ $8 \rightarrow$ $9 \rightarrow 9$

Grafo Transpuesto

Sets:

 $1 \rightarrow 1$ $2 \rightarrow 1$ $3 \rightarrow$ $4 \rightarrow$ $5 \rightarrow$ $6 \rightarrow$ $7 \rightarrow$ $8 \rightarrow$ $9 \rightarrow 9$

Grafo Transpuesto

Sets:

 $1 \rightarrow 1$ $2 \rightarrow 1$ $3 \rightarrow 1$ $4 \rightarrow$ $5 \rightarrow$ $6 \rightarrow$ $7 \rightarrow$ $8 \rightarrow$ $9 \rightarrow 9$

Grafo Transpuesto

Sets:

 $1 \rightarrow 1$ $2 \rightarrow 1$ $3 \rightarrow 1$ $4 \rightarrow$ $5 \rightarrow$ $6 \rightarrow$ $7 \rightarrow$ $8 \rightarrow$ $9 \rightarrow 9$

Grafo Transpuesto

Sets:

 $1 \rightarrow 1$ $2 \rightarrow 1$ $3 \rightarrow 1$ $4 \rightarrow$ $5 \rightarrow$ $6 \rightarrow$ $7 \rightarrow$ $8 \rightarrow$ $9 \rightarrow 9$

Grafo Transpuesto

Sets:

Grafo Original Colapsado

Sets:

Grafo Original Colapsado

Solo los puntos 1, 2, 3, 4, 6 y 7 pertenecen a componentes fuertemente conexas de una cantidad mayor a 1, por lo que solo desde estos puntos existirá un camino especial.

Sets:

PROBLEMA 2: COMPLEJIDAD

- Kosaraju tiene una complejidad de O(|E| + |V|).
- Se tienen P vertices y C aristas.
- El observer la cantidad de elementos de los sets es O(1) si se guarda la información mientras se crean, sino, hay que contar todos los vertices lo que es O(P).
- La complejidad es O(P + C)