COLOURED GENUINE OPERADS

PETER BONVENTRE AND LUÍS PERERIA

ABSTRACT. Things and stuff

Contents

1	Coloured Operads	1
	1.1 Non-Equivariant Coloured Operads	1
	1.2 Equivariant Coloured Operads	2
	1.3 Single-Coloured Operads	4
	1.4 General Case	5
2	Coloured Genuine Equivariant Operads	6
3	$\mathbf{In}\ dSet_G\ \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	7
Re	ferences	8

1. Coloured Operads

1.1. Non-Equivariant Coloured Operads

Fix a closed symmetric monoidal category \mathcal{V} .

Definition 1.1. Fix a set \mathfrak{C} of colours. A tuple $\xi = (c_1, \dots, c_n; c_0) \in \mathfrak{C}^{\times n} \times \mathfrak{C}$ is called a signature of \mathfrak{C} , and let $|\xi|$ denote the length n (so $\xi \in \mathfrak{C}^{\times |\xi|+1}$).

A \mathfrak{C} -coloured operad¹ in \mathcal{V} consists of the following data:

- (1) An object $\mathcal{O}(\xi) \in \mathcal{V}$ for each signature ξ .
- (2) For each $c \in \mathfrak{C}$, a unit $1_c \in \mathcal{O}(c; c)$. (3) For any signature $\xi \in \mathfrak{C}^{\times n+1}$ and $\sigma \in \Sigma_n$, a map $\mathcal{O}(\xi) \to \mathcal{O}(\sigma \cdot \xi)$, where Σ_n acts on the left of $\mathfrak{C}^{\times n+1}$ by acting on the first n coordinates. Explicitly, this is a map

$$\mathcal{O}(c_1,\ldots,c_n;c_0) \xrightarrow{\sigma} \mathcal{O}(c_{\sigma^{-1}1},\ldots,c_{\sigma^{-1}n};c_0).$$

(4) For any compatible signatures $\xi = (c_1, \dots, c_n; c_0), \ \xi_i = (c_{i,1}, \dots, c_{i,m_i}; c_i), \ a \ composition$ map

$$\mathcal{O}(\xi) \times \mathcal{O}(\xi_1) \times \ldots \times \mathcal{O}(\xi_n) \to \mathcal{O}(c_{1,1}, \ldots, c_{n,m_n}; c_0)$$

Date: January 22, 2018.

¹These are also known as symmetric multicategories

subject to all the compatibilities you'd expect.

A map of \mathfrak{C} -coloured operads is a compatible collection of maps $\{\mathcal{O}(\xi) \to \mathcal{O}'(\xi)\}_{\xi}$.

Let $\mathsf{Op}^{\mathfrak{C}}(\mathcal{V})$ denote the category of \mathfrak{C} -coloured operads in \mathcal{V} .

Definition 1.2. Given a map $f: \mathfrak{C}' \to \mathfrak{C}$ and a \mathfrak{C} -coloured operad \mathcal{O} , there is a natural \mathfrak{C}' -coloured operad $f^*(\mathcal{O})$, where

$$f^*(\mathcal{O})(c'_1,\ldots,c'_n;c'_0) = \mathcal{O}(f(c'_1),\ldots,f(c'_n);f(c'_0)).$$

A map of coloured operads $\mathcal{O}' \to \mathcal{O}$ is given by the data of a map of colours $f: \mathfrak{C}' \to \mathfrak{C}$, and a map of \mathfrak{C}' -coloured operads $\mathcal{O}' \to f^*(\mathcal{O})$.

Let $\mathsf{Op}(\mathcal{V})$ denote the category of coloured operads in \mathcal{V} .

Remark 1.3. The category $\mathsf{Op}(\mathcal{V})$ is isomorphic to the Grothendieck construction on the functor

$$F \longrightarrow Cat$$

$$\mathfrak{C} \longmapsto \mathsf{Op}^{\mathfrak{C}}(\mathcal{V}).$$

Notation 1.4. In previous work, $Op(\mathcal{V})$ has been used to denote *single-coloured* operads specifically; that is, $\{*\}$ -coloured operads. For this article, we will write these as $Op^{\{*\}}(\mathcal{V})$.

1.2. Equivariant Coloured Operads

Definition 1.5. The category $\operatorname{Op}^G(\mathcal{V})$ of *G-coloured operads* in \mathcal{V} is the category of *G*-objects in $\operatorname{Op}(\mathcal{V})$.

Remark 1.6. Unpacking this definition, we see $\mathcal{O} \in \mathsf{Op}^G(\mathcal{V})$ consists of the following data:

- (1) A G-set \mathfrak{C} of colours.
- (2) For each signature ξ of \mathfrak{C} , an object $\mathcal{O}(\xi) \in \mathcal{V}$.
- (3) For each signature $\xi \in \mathfrak{C}^{\times n+1}$ and $(g,\sigma) \in G \times \Sigma_n$, a map $\mathcal{O}(\xi) \to \mathcal{O}((g,\sigma) \cdot \xi)$, where G acts on $\mathfrak{C}^{\times n+1}$ diagonally (across all n+1 coordinates), and Σ_n acts on the first n.
- (4) For each $c \in \mathfrak{C}$, a unit $1_c \in \mathcal{O}(c;c)^{G_c}$, where G_c is the stabilizer of c.
- (5) For compatible signatures ξ , ξ_1 , ..., ξ_n , composition maps

$$\mathcal{O}(\xi) \otimes \mathcal{O}(\xi_1) \otimes \ldots \otimes \mathcal{O}(\xi_n) \to \mathcal{O}(\xi \circ (\xi_1, \ldots, \xi_n)),$$

such that composition is compatible with the G-action on each component as well as the appropriate actions of Σ , and is unital and associative.

Remark 1.7. Unlike in the single-coloured case, this is *not* the same as coloured operads in \mathcal{V}^G . Indeed, objects in $\mathsf{Op}(\mathcal{V}^G)$ have a G-fixed set of colours, and each level $\mathcal{O}(\xi)$ is a full G-set (though only a partial $\Sigma_{|\xi|}$ -set).

Definition 1.8. Given a G-set \mathfrak{C} , let $\mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V})$ denote the category of \mathfrak{C} -coloured operads and maps which are the identity on colours.

Parallel to the non-equivariant case, $\mathsf{Op}^G(\mathcal{V})$ is isomorphic to the Grothendieck construction on the functor

$$\mathsf{F}^G \longrightarrow \mathsf{Cat}$$
 $\mathfrak{C} \longmapsto \mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V}).$

0100

1.2.1. Categorical Description.

Definition 1.9. Given a G-set X, let B_XG denote the translation category of X, with object set X and morphisms $g: x \to g \cdot x$ for all pairs $(g, x) \in G \times X$.

We will denote $B_{\{*\}}G$ by G.

Remark 1.10. We observe that we have a natural diagonal map

$$F \times G \hookrightarrow F \wr G$$
,

and so for any functor $F: \mathcal{C} \to \mathsf{F}$, we have an induced functor $F: \mathcal{C} \times \mathsf{G} \to \mathsf{F} \wr \mathsf{G}$.

Definition 1.11. Let $\mathfrak{C}\Sigma$ be the category

$$\mathfrak{C}\Sigma = \coprod_{n\geq 0} B_{\mathfrak{C}^{\times n} \times \mathfrak{C}}(G \times \Sigma_n).$$

We note that $\mathrm{Ob}(\mathfrak{C}\Sigma)$ is precisely the set of *signatures* in \mathfrak{C} . Further, we observe that this is equivalent to the pullback

$$\mathfrak{C}\Sigma \xrightarrow{E} \mathsf{F} \wr B_{\mathfrak{C}}G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Sigma \times \mathsf{G} \xrightarrow{E} \mathsf{F} \wr \mathsf{G}$$

where $E: \Omega \to \mathsf{F}$ sends a tree to its set of edges.

More generally, let $\mathfrak{C}\Omega$ be the pullback

$$\mathfrak{C}\Sigma \xrightarrow{E} \mathsf{F} \wr B_{\mathfrak{C}}G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega \times \mathsf{G} \xrightarrow{E} \mathsf{F} \wr \mathsf{G}$$

We have a natural inclusion of categories $\mathfrak{C}\Sigma \hookrightarrow \mathfrak{C}\Omega$. Moreover, we will called elements of these categories *coloured trees* (or *coloured corollas*), and denote them by (T,\mathfrak{c}) , where $\mathfrak{c}: E(T) \to \mathfrak{C}$ is a map of sets.

Remark 1.12. Unpacking definitions, we see that a map $(T, \mathfrak{c}) \to (S, \mathfrak{d})$ is given by a map $f: T \to S$ in Ω and an element $g \in G$, such that $g.\mathfrak{c}(e) = \mathfrak{d}(f(e))$ for all $e \in E(T)$.

$$E(T) \xrightarrow{f} E(S)$$

$$\downarrow 0$$

$$\mathfrak{C} \xrightarrow{g} \mathfrak{C}$$

In particular, we have maps of the form

$$g = (id, g) : (T, E(T) \to \mathfrak{C}) \to (T, E(T) \to \mathfrak{C} \xrightarrow{g \cdot} \mathfrak{C}).$$

Remark 1.13. $\mathfrak{C}\Omega$ is equivalent to the Grothendieck construction on the functor

$$\Omega^{op} \times G \longrightarrow \operatorname{Cat}$$

$$T \longmapsto \operatorname{Fun}(E(T), \mathfrak{C}).$$

and a similar result holds for $\mathfrak{C}\Sigma$.

Many of the natural functors around Ω and Σ have generalizations to the coloured setting, which can be built through a straightforward use of the universal property of pullbacks.

Definition 1.14. We have a natural vertex functor $V: \mathfrak{C}\Omega \to \Sigma \wr \mathfrak{C}\Sigma$, as colourings of a tree restrict to colourings of each vertex corolla.

Similarly, there is a leaf-root funct or $\mathsf{lr}: \mathfrak{C}\Omega \to \mathfrak{C}\Sigma$, where the colouring of $\mathsf{lr}(T)$ is a restrict of the colouring of T.

Definition 1.15. The category $\mathsf{Sym}^{G,\mathfrak{C}}$ of symmetric (G,\mathfrak{C}) -sequences is the category of functors $X: \mathfrak{C}\Sigma^{op} \to \mathcal{V}.$

Definition 1.16. Given $X \in Sym^{G,\mathfrak{C}}$, let $\mathbb{F}^{\mathfrak{C}}X$ denote the left Kan extension below.

$$\begin{array}{cccc} \mathfrak{C}\Omega^{op} & \xrightarrow{V} & (\Sigma \wr \mathfrak{C}\Sigma)^{op} & \xrightarrow{X} & (\Sigma \wr \mathcal{V}^{op})^{op} & \xrightarrow{\otimes} & \mathcal{V} \\ & & & & & & \\ \mathbb{C}\Sigma^{op} & & & & & & \\ \end{array}$$

1.3. Single-Coloured Operads

We first show that this generalizes the free single-coloured operad monad. When $\mathfrak{C} = \{*\}$, we have $\mathfrak{C}\Omega = \Omega \times G$, and similarly $\mathfrak{C}\Sigma = \Sigma \times G$.

Notation 1.17. Given $X \in \mathsf{Cat}(\mathcal{C}, \mathsf{Fun}(\mathcal{D}, \mathcal{V}))$, let \tilde{X} denote the adjoint functor in the isomorphic category $Cat(\mathcal{C} \times \mathcal{D}, \mathcal{V})$.

SPAN_LAN_LEM

Lemma 1.18. Conisder the two spans below.

$$\begin{array}{ccc} \mathcal{C} \stackrel{X}{\longrightarrow} \mathsf{Fun}(\mathcal{D}, \mathcal{V}) & \mathcal{C} \times \mathcal{D} \stackrel{\tilde{X}}{\longrightarrow} \mathcal{V} \\ \downarrow^p & & \downarrow^{p \times \mathsf{id}} \\ \mathcal{E} & \mathcal{E} \times \mathcal{D} \end{array}$$

Then $\operatorname{Lan}_{p} X$ is adjoint to $\operatorname{Lan}_{p \times \operatorname{id}} \tilde{X}$.

Proof. We have

$$\widehat{\operatorname{Lan}_p X}(e,d) = (\operatorname{Lan}_p X(e))(d) = \left(\operatorname{colim}_{\substack{\mathcal{C} \downarrow e \\ p(c) \to e}} X(c) \right)(d) = \operatorname{colim}_{\substack{\mathcal{C} \downarrow e \\ p(c) \to e}} (X(c)(d)) = \operatorname{colim}_{\substack{\mathcal{C} \downarrow e \\ p(c) \to e}} (\tilde{X}(c,d))$$

$$= \operatorname{colim}_{\mathcal{C} \times \{d\} \downarrow (e,d)} (\tilde{X}(c,d)) \cong \operatorname{colim}_{\substack{\mathcal{C} \times \mathcal{D} \downarrow (e,d) \\ p(c) \to e}} (\tilde{X}(c,d')) = \operatorname{Lan}_{p \times \operatorname{id}} \tilde{X}(c,d),$$
where the isomorphism holds by a straightforward finality argument. On maps, a similar argument

Notation 1.19 (\mathbb{P}^{17}). Let \mathbb{F}' denote the free single-coloured operad monad on \mathcal{V} , given by the left Kan extension of the following diagram.

Proposition 1.20. $\mathbb{F}^{\{*\}}$ is a monad, and moreover the category of $\mathbb{F}^{\{*\}}$ -algebras in $\mathsf{Fun}(\Sigma \times G, \mathcal{V})$ is equivalent to the category of \mathbb{F}' -algebras in $\mathsf{Fun}(\Sigma, \mathcal{V}^G)$.

Proof. Let $\tau: \tilde{X} \xrightarrow{\Sigma} X$ denote the isomorphism of categories $\operatorname{Fun}(\Sigma \times G, \mathcal{V}) \xrightarrow{\tau} \operatorname{Fun}(\Sigma, \mathcal{V}^G)$. Then $\mathbb{F}^{\{*\}} = \tau^{-1}\mathbb{F}'\tau$ by $\overline{1.18}$, and so $\mathbb{F}^{\{*\}}$ is in fact a monad, and the the isomorphism lifts to an isomorphism on the category of algebras.

1.4. General Case

Theorem 1.21. For every G-set \mathfrak{C} , $\mathbb{F}^{\mathfrak{C}}$ is a monad, with category of algebras given by $\mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V})$.

2. Coloured Genuine Equivariant Operads

Throughout this section, we will abuse notation, and refer to a coefficient system and its associated (Grothendieck) category over O_G by the same name.

Definition 2.1. Let $\underline{\mathfrak{C}}$ be a coefficient system of sets. Then the category $\underline{\mathfrak{C}}\Omega_G$ of $\underline{\mathfrak{C}}$ -coloured trees is defined to be the pullback below.

$$\underbrace{\underline{\mathfrak{C}}\Omega_G} \longrightarrow \operatorname{F} \wr \underline{\mathfrak{C}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_G \stackrel{E_G}{\longrightarrow} \operatorname{F} \wr O_G$$

The category $\underline{\mathfrak{C}}\Sigma_G$ of $\underline{\mathfrak{C}}$ -coloured corollas is the subcategory defined similarly, with Ω_G replaced with Σ_G .

Remark 2.2. Consider the Grothendieck construction on the functor

$$\mathsf{F}^{G,op} \longrightarrow \mathsf{Set}$$

$$A \longmapsto \mathsf{Set}^{O^{op}_G}(\Phi(A),\mathfrak{C}),$$

where $\Phi: \mathsf{Set}^G \to \mathsf{Set}^{O_G^{op}}$ sends a G-set X to its fixed-point system $G/H \mapsto X^H$. We will denote this by $\mathsf{F}^G \wr \mathfrak{C}$. Then $\mathfrak{C}\Omega_G$ is also isomorphic to the pullback

$$\underbrace{\mathfrak{C}}\Omega_G \longrightarrow \mathsf{F}^G \wr \underline{\mathfrak{C}}
\downarrow \qquad \qquad \downarrow
\Omega_G \stackrel{E}{\longrightarrow} \mathsf{F}^G.$$

We note that the class of morphisms in F^G in the image of E are those isomorphic to an adjunction counit $G \cdot_H A|_H \to A$.

Equivalently, $\underline{\mathfrak{C}}\Omega_G$ is isomorphic to the Grothendieck construction on the functor

$$\Omega_G^{op} \longrightarrow \mathsf{Cat}$$

$$T \longmapsto \mathsf{Set}^{O_G^{op}}(\Phi(E(T)),\underline{\mathfrak{C}}),$$

 $\underline{\mathfrak{C}}\Sigma_G$ can be defined similarly, with the relevant sources restricted to $\Sigma_G \subseteq \Omega_G$.

Objects of $\underline{\mathfrak{C}}\Omega_G$ are pairs (T,\mathfrak{c}) of a G-tree T with a map $\mathfrak{c}: E_G(T) \to \underline{\mathfrak{C}}$ over O_G . That is, each orbit of edges [e] is assigned a "colour" $\mathfrak{c}([e]) \in \underline{\mathfrak{C}}(G/G_{[e]})$, where $G_{[e]}$ is the stabilizer in G of e. Morphisms $(T,\mathfrak{c}) \to (S,\mathfrak{d})$ are given by quotients of trees $q: S \to T$ such that, for every edge orbit [e] of S, we have

$$\mathfrak{c}([e]) = q_{[e]}^* \mathfrak{d}([q(e)]),$$

where $q_{[e]}: G/G_{[e]} \to G/G_{[q(e)]}$ is the map in O_G induced by q.

Definition 3.1. Define the genuine operatic nerve $N: \mathsf{Op}_G \to \mathsf{dSet}_G$ by

$$N\mathcal{P}(T) = \operatorname{Hom}_{\mathsf{Op}_G}(T, \mathcal{P})$$

where we think of T as the operad $T \in \mathsf{Op}^G \hookrightarrow \mathsf{Op}_G$.

Remark 3.2. We note that $N\mathcal{P} \in (SCI)^{\square!}$, as $T \in \mathsf{Op}_G$ is a free \mathbb{F}_G -algebra on its vertices.

Remark 3.3. We can rephrase the definition of being an \mathbb{F}_G -algebra in terms of $N\mathcal{P}$. For $\mathcal{P} \in \mathsf{Sym}_G$ a G-symmetric sequence, a genuine G-operad structure on \mathcal{P} is given by:

- Composition Maps: maps $\mathcal{NP}(T) \to \mathcal{P}(\operatorname{Ir}(T))$ for all $T \in \Omega_G$.
- Naturality under restriction and conjugation: maps $N\mathcal{P}(T_1) \to N\mathcal{P}(T_0)$ for all quotient maps $T_0 \to T_1$ in $\Omega_{G,0}$, such that the following commutes:

$$N\mathcal{P}(T_1) \longrightarrow \mathcal{P}(\operatorname{Ir}(T_1))$$

$$\downarrow \qquad \qquad \downarrow$$
 $N\mathcal{P}(T_0) \longrightarrow \mathcal{P}(\operatorname{Ir}(T_0)).$

• Associativity under \mathbb{F}_G : maps $N\mathcal{P}(T_1) \to N\mathcal{P}(T_0)$ for all planar tall maps $T_0 \to T_1$ in Ω_G^t , such that the analogus diagram (with the right vertical map the identity) commutes.²

The above reflects the following result.

Proposition 3.4. Op_G is equivalent to the subcategory of dSet_G spanned by those X such that

- (1) $X(H/H) = \{*\} \text{ for all } H \leq G.$
- (2) $X(T) \cong \otimes_{T_v \in V(T)} X(T_v)$.

Proof. The fact that $N\mathcal{P} \in (SCI_G)^{\square!}$ is immediate, as remarked above.

For the reverse direction, we will follow the construction of the homotopy operad as in $[3, \S 6]$, replacing their use of inner horn inclusions with *orbital* inner *G*-horn inclusions, to show that any $X \in (OHI)^{\square!}$ is in the image of N; the result will then follow from [1, HYPER PROP].

In fact, interpreting all of their pictures are as orbital representations of G-trees yields that, for all $C \in \Sigma_G$

- \sim_{Ge} is an equivalence relation on X(C) for all $Ge \in E_G(C)$.
- The relations \sim_{Ge} and $\sim_{Ge'}$ are equal for all $e, e' \in E(C)$.
- $[h] \circ [f] = [h \circ f]$ yields a well-defined composition map.

need to show naturality, check associativity of composition

As in [2], we note that "associativity" under \mathbb{F}_G includes both the usual notion of associativity of our composition maps, but also unitality; this is recorded here by the fact that degeneracies are always planar tall.

REFERENCES

BP_Segal			
	BP17		
	MW08		

- [1] P. Bonventre and L. Pereira. Equivariant dendroidal sets and Segal stuff. In preparation. [2] P. Bonventre and L. Pereira. Genuine equivariant operads. arXiv preprint: 1707.02226, 2017.
- [3] I. Moerdijk and I. Weiss. On inner Kan complexes in the category of dendroidal sets. Adv. Math., 221(2):343–389,