Aufgabe

Aus der Vorlesung ist die Betragsfunktion

$$|-|: \mathbb{R} \to \mathbb{R}_0^+, x \mapsto \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

bekannt. Beweise folgende Eigenschaften:

- 1. $\forall x \in \mathbb{R} : |x| \ge 0$
- $2. \ \forall x \in \mathbb{R} \colon |x| = 0 \implies x = 0$
- 3. $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$
- 4. $\forall x, y \in \mathbb{R} : |x+y| \le |x| + |y|$
- 5. $\forall a, b \in \mathbb{R} : |a+b| + |a-b| \ge |a| + |b|$
- 6. $\forall a, b \in \mathbb{R}^* : \left| \frac{a}{b} + \frac{b}{a} \right| \geq 2$

Lösung

1. Beweis von $\forall x \in \mathbb{R} \colon |x| \geq 0$:

Sei $x \in \mathbb{R}$ beliebig. Wir unterscheiden zwei Fälle gemäß der Definition der Betragsfunktion:

Fall 1: $x \ge 0$. Dann ist $|x| = x \ge 0$ nach Voraussetzung.

Fall 2: x < 0. Dann ist |x| = -x. Da x < 0 ist, folgt durch Multiplikation mit -1 dass -x > 0, also $|x| > 0 \ge 0$.

In beiden Fällen gilt $|x| \geq 0$. \square

2. Beweis von $\forall x \in \mathbb{R} : |x| = 0 \implies x = 0$:

Sei $x \in \mathbb{R}$ mit |x| = 0. Wir unterscheiden wieder zwei Fälle:

Fall 1: $x \ge 0$. Dann ist |x| = x = 0, also x = 0.

Fall 2: x < 0. Dann ist |x| = -x = 0, also x = 0. Dies ist ein Widerspruch zur Annahme x < 0.

Also kann nur Fall 1 eintreten und es folgt x = 0. \square

3. Beweis von $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$:

Seien $x, y \in \mathbb{R}$ beliebig. Wir betrachten vier Fälle:

Fall 1: $x \ge 0$ und $y \ge 0$. Dann ist $xy \ge 0$, also

$$|xy| = xy = x \cdot y = |x| \cdot |y|.$$

Fall 2: $x \ge 0$ und y < 0. Dann ist $xy \le 0$, genauer xy < 0 falls x > 0 oder xy = 0 falls x = 0.

- Für x > 0: $|xy| = -(xy) = x \cdot (-y) = |x| \cdot |y|$.
- Für x = 0: $|xy| = |0| = 0 = 0 \cdot |y| = |x| \cdot |y|$.

Fall 3: x < 0 und $y \ge 0$. Analog zu Fall 2 mit vertauschten Rollen von x und y.

Fall 4: x < 0 und y < 0. Dann ist xy > 0, also

$$|xy| = xy = (-x) \cdot (-y) = |x| \cdot |y|.$$

In allen Fällen gilt $|xy| = |x| \cdot |y|$. \square

4. Beweis von $\forall x,y \in \mathbb{R} : |x+y| \le |x| + |y|$ (Dreiecksungleichung):

Seien $x,y\in\mathbb{R}$ beliebig. Wir nutzen folgende Beobachtung: Für alle $a\in\mathbb{R}$ gilt $-|a|\leq a\leq |a|$.

Dies folgt direkt aus der Definition: Für $a \ge 0$ ist |a| = a, also $-a \le a \le a$. Für a < 0 ist |a| = -a > 0, also -(-a) = a < 0 < -a = |a|, und somit -|a| < a < |a|.

Daher haben wir:

$$-|x| \le x \le |x| \tag{1}$$

$$-|y| \le y \le |y| \tag{2}$$

Addition der beiden Ungleichungen ergibt:

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

Dies bedeutet $|x+y| \le |x| + |y|$. \square

5. Beweis von $\forall a, b \in \mathbb{R} : |a + b| + |a - b| \ge |a| + |b|$:

Seien $a,b\in\mathbb{R}$ beliebig. Wir betrachten vier Fälle basierend auf den Vorzeichen von a und b:

Fall 1: $a \ge 0$ und $b \ge 0$. Dann ist $a + b \ge 0$, also |a + b| = a + b.

- Falls $a \ge b$, ist $a b \ge 0$, also |a b| = a b. Somit: $|a + b| + |a b| = (a + b) + (a b) = 2a = 2|a| \ge |a| + |b|$.
- Falls a < b, ist a b < 0, also |a b| = -(a b) = b a. Somit: $|a + b| + |a b| = (a + b) + (b a) = 2b = 2|b| \ge |a| + |b|$.

Fall 2: $a \ge 0$ und b < 0. Dann ist |a| = a und |b| = -b.

- Falls $a+b \ge 0$, ist |a+b| = a+b und |a-b| = a-b = a+(-b) = |a|+|b|. Somit: $|a+b|+|a-b| = (a+b)+(|a|+|b|) \ge |a|+|b|$.
- Falls a + b < 0, ist |a + b| = -(a + b) = -a b und |a b| = a b. Somit: $|a + b| + |a b| = (-a b) + (a b) = -2b = 2|b| \ge |a| + |b|$.

Fall 3: a<0 und $b\geq 0$. Analog zu Fall 2 mit vertauschten Rollen von a und b.

Fall 4: a < 0 und b < 0. Dann ist |a| = -a, |b| = -b, und a + b < 0, also |a + b| = -(a + b).

• Falls $a \le b$, ist $a - b \le 0$, also |a - b| = -(a - b) = b - a. Somit: $|a + b| + |a - b| = (-(a + b)) + (b - a) = -2a = 2|a| \ge |a| + |b|$.

• Falls a > b, ist a - b > 0, also |a - b| = a - b. Somit: |a + b| + |a - b| = a - b $(-(a+b)) + (a-b) = -2b = 2|b| \ge |a| + |b|.$

In allen Fällen gilt die behauptete Ungleichung. □

6. Beweis von $\forall a, b \in \mathbb{R}^* : |\frac{a}{b} + \frac{b}{a}| \ge 2$: Seien $a, b \in \mathbb{R}^*$ (also $a \ne 0$ und $b \ne 0$). Setze $x = \frac{a}{b}$. Dann ist $x \ne 0$ und wir müssen zeigen:

$$|x + \frac{1}{x}| \ge 2$$

Fall 1: x>0. Die Funktion $f(x)=x+\frac{1}{x}$ hat für x>0 ein Minimum bei x=1 mit f(1)=2. Dies kann man durch Ableitung zeigen: $f'(x)=1-\frac{1}{x^2}=0\iff x^2=1\iff x=1$ (da x>0). Für 0< x<1 ist $f'(x)=1-\frac{1}{x^2}<0$ (da $\frac{1}{x^2}>1$) und für x>1 ist $f'(x)=1-\frac{1}{x^2}>0$ (da $\frac{1}{x^2}<1$). Also hat f bei x=1 ein lokales Minimum. Da $\lim_{x\to 0^+}f(x)=+\infty$ und $\lim_{x\to +\infty}f(x)=+\infty$, ist dies auch ein globales Minimum. Daher ist $x+\frac{1}{x}\geq 2$ für alle x>0, also $|x+\frac{1}{x}|=x+\frac{1}{x}\geq 2$. Fall 2: x<0. Setze y=-x>0. Dann ist

$$|x + \frac{1}{x}| = |-y + \frac{1}{-y}| = |-y - \frac{1}{y}| = |-(y + \frac{1}{y})| = y + \frac{1}{y} \ge 2$$

nach Fall 1.

In beiden Fällen gilt $\left|\frac{a}{b} + \frac{b}{a}\right| \geq 2$. \square