

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently amended) An on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode comprising:

a p-GaAs single crystal substrate having a top surface and a bottom surface;

a p-(ZnSe/ZnTe)^m (m: integer denoting a number of pair layers) superlattice which is made by piling p-ZnSe thin films and p-ZnTe thin films reciprocally for changing bandgaps stepwise and is epitaxially grown directly on the top surface of the p-GaAs substrate;

a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the p-(ZnSe/ZnTe)^m superlattice or via a p-ZnSe buffer layer upon the p-(ZnSe/ZnTe)^m-superlattice;

an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;

an n- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;

a metallic n-electrode which is formed upon a part of the n- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer and has a top aperture for allowing incidence light to enter; and

a metallic p-electrode formed on the bottom surface of the p-GaAs substrate.

2. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein a p-ZnSe buffer layer is interposed between the p-(ZnSe/ZnTe)^m superlattice and the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.

3. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 2, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has an impurity concentration less than 10^{16} cm^{-3} .

4. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has a bandgap E_n which is equal to or higher than a bandgap E_i of the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer ($E_n \geq E_i$).

5. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 4, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an $i-ZnS_ySe_{1-y}$ layer including no Mg ($x=0$) and the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer including Mg ($x \neq 0$) or an $n-ZnS_ySe_{1-y}$ layer including no Mg ($x=0$).

6. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 4, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an $i-ZnSe$ layer including neither Mg nor S ($x=0, y=0$) and the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-ZnS_ySe_{1-y}$ layer including no Mg ($x=0, y \neq 0$) or an $n-ZnSe$ layer including neither Mg nor S ($x=0, y=0$).

7. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein the top aperture on the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer which receives incidence light is coated with a mask made of Al_2O_3 , SiO_2 , TiO_2 , La_2O_3 or MgF_2 for antireflection and protection.

8. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein external quantum efficiency is more than 30 % for light wavelengths between 300nm and 450nm.

9. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein external quantum efficiency is more than 40 % for a light wavelength of 400nm.

10. (Original) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein a dark current is less than 10^{-9} A/cm² under a reverse bias between 0 V and -20 V.

11. (Withdrawn) An on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode for inducing avalanche amplification by a strong electric field formed by applying a reverse bias below a breakdown voltage, comprising:

a p-GaAs single crystal substrate having a top surface and a bottom surface;
a p-(ZnSe/ZnTe)^m (m: integer denoting a number of pair layers) superlattice which is made by piling p-ZnSe thin films and p-ZnTe thin films reciprocally for changing bandgaps stepwise and is epitaxially grown on the top surface of the p-GaAs substrate;
a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the p-(ZnSe/ZnTe)^m superlattice or via a p-ZnSe buffer layer upon the p-(ZnSe/ZnTe)^m superlattice;
a lower-doped n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;
a higher-doped n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the lower-doped n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;
a metallic n-electrode which is formed upon a part of the higher-doped n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer and has a top aperture for allowing incidence light to enter; and
a metallic p-electrode formed on the bottom surface of the p-GaAs substrate.

12. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein a p-ZnSe buffer layer is interposed between the p-(ZnSe/ZnTe)^m superlattice and the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.

13. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer is interposed between the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer and the n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.

14. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein the n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has a bandgap E_n^+ which is equal to or higher than a bandgap E_n^- of the n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer ($E_n^+ \geq E_n^-$).

15. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 14, wherein the n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an n⁻- ZnS_ySe_{1-y} layer including no Mg (x=0) and the n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer including Mg (x ≠ 0) or an n⁺- ZnS_ySe_{1-y} layer including no Mg (x=0).

16. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 14, wherein the n⁻- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an n⁻-ZnSe layer including neither Mg nor S (x=0, y=0) and the n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an n⁺- ZnS_ySe_{1-y} layer including no Mg (x=0, y ≠ 0) or an n⁺-ZnSe layer including neither Mg nor S (x=0, y=0).

17. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein the top aperture on the n⁺- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer which receives incidence light is coated with a mask made of Al₂O₃, SiO₂, TiO₂, La₂O₃ or MgF₂ for antireflection and protection.

18. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein external quantum efficiency is more than 100 % for light wavelengths between 300nm and 450nm.

19. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein external quantum efficiency is more than 200 % for a light wavelength of 400nm.

20. (Withdrawn) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein external quantum efficiency is enhanced by a spin-orbit interaction at a wavelength of 395nm and sensitivity is nearly flat from 350nm to 430nm.

21. (New) An on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode comprising:
a p-GaAs single crystal substrate having a top surface and a bottom surface;
a p-(ZnSe/ZnTe)^m (m: integer denoting a number of pair layers) superlattice which is made by piling p-ZnSe thin films and p-ZnTe thin films reciprocally for changing bandgaps stepwise and is epitaxially grown directly on the top surface of the p-GaAs substrate;

a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown ~~on the p-~~
~~(ZnSe/ZnTe)^m superlattice or~~ via a p-ZnSe buffer layer upon ~~the~~ ~~a~~ p-(ZnSe/ZnTe)^m superlattice;

an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;

an n- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \leq x \leq 0.8$, $0 \leq y \leq 0.8$) layer epitaxially grown on the i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;

a metallic n-electrode which is formed upon a part of the n- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer and has a top aperture for allowing incidence light to enter; and

a metallic p-electrode formed on the bottom surface of the p-GaAs substrate.

22. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein a p-ZnSe buffer layer is interposed between the p-(ZnSe/ZnTe)^m superlattice and the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.

23. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 22, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has an impurity concentration less than 10^{16} cm^{-3} .

24. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has a bandgap E_n which is equal to or higher than a bandgap E_i of the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer ($E_n \geq E_i$).

25. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 24, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an $i-ZnS_ySe_{1-y}$ layer including no Mg ($x=0$) and the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer including Mg ($x \neq 0$) or an $n-ZnS_ySe_{1-y}$ layer including no Mg ($x=0$).

26. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 24, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an $i-ZnSe$ layer including neither Mg nor S ($x=0, y=0$) and the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-ZnS_ySe_{1-y}$ layer including no Mg ($x=0, y \neq 0$) or an $n-ZnSe$ layer including neither Mg nor S ($x=0, y=0$).

27. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein the top aperture on the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer which receives incidence light is coated with a mask made of Al_2O_3 , SiO_2 , TiO_2 , La_2O_3 or MgF_2 for antireflection and protection.

28. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein external quantum efficiency is more than 30 % for light wavelengths between 300nm and 450nm.

29. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein external quantum efficiency is more than 40 % for a light wavelength of 400nm.

30. (New) The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 21, wherein a dark current is less than 10^{-9} A/cm² under a reverse bias between 0 V and -20 V.