## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | (11) International Publication Number:                                                                                                                                                                                                                                                                        | WO 97/1116                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C12N 9/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                                | (43) International Publication Date:                                                                                                                                                                                                                                                                          | 27 March 1997 (27.03.97                                                                                                                                                                                                               |  |  |
| (22) International Application Number: PCT/CA( (22) International Filing Date: 12 September 1996 ( (30) Priority Data: 08/532,896 22 September 1995 (22.09.9)  (71) Applicant (for all designated States except US) DORECHERCHE INC. [CA/CA]; 2989 de la Pro Ste-Foy, Québec G1W 2J5 (CA).  (72) Inventors; and (75) Inventors/Applicants (for US only): LABRIE, [CA/CA]; 2989 de la Promenade, Ste-Foy, Québe 2J5 (CA). LUU-THE, Van [CA/CA]; 4460 rue de l' Charny, Québec G6X 1C6 (CA).  (74) Agent: MITCHELL, Richard, J.; Marks & Clerk, I 957, Station B, Ottawa, Ontario K1P 5S7 (CA). | 12.09.9  (5) U  (c): Elements  (c): Ferman  (c): G1  (c): Estuain | CA, CH, CN, CZ, DE, DK, EE, IS, JP, KE, KG, KP, KR, KZ, IMD, MG, MK, MN, MW, MX, SD, SE, SG, SI, SK, TJ, TM, TVN, ARIPO patent (KE, LS, M) patent (AM, AZ, BY, KG, KZ, M) patent (AT, BE, CH, DE, DK, ELU, MC, NL, PT, SE), OAPI pacent, GA, GN, ML, MR, NE, SN, Published  With international search report. | , ES, FI, GB, GE, HU, IL<br>LK, LR, LS, LT, LU, LV<br>NO, NZ, PL, PT, RO, RU<br>R, TT, UA, UG, US, UZ<br>W, SD, SZ, UG), Eurasia<br>ID, RU, TJ, TM), Europea<br>S, FI, FR, GB, GR, IE, IT<br>atent (BF, BJ, CF, CG, CI<br>I, TD, TG). |  |  |

### (57) Abstract

A novel type 5  $17\beta$ -hydroxysteroid dehydrogenase is provided. Methods of producing the enzyme and using the enzyme to identify potential compounds which inhibit or alter the activity of the enzyme are described. In addition, methods of using the gene sequence or portions thereof for probes or to produce expression-disrupting sense or antisense DNA fragments thereof, or antisense RNA, are provided.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| Armenia                  | GB                                                                                                                                                                                                                                      | United Kingdom                                                                                                                                                                                                                                                                                               | MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Malawi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Austria                  | GE                                                                                                                                                                                                                                      | Georgia                                                                                                                                                                                                                                                                                                      | MX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Australia                | GN                                                                                                                                                                                                                                      | Guinea                                                                                                                                                                                                                                                                                                       | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Niger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Barbados                 | GR                                                                                                                                                                                                                                      | Greece                                                                                                                                                                                                                                                                                                       | NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Belgium                  | HU                                                                                                                                                                                                                                      | Hungary                                                                                                                                                                                                                                                                                                      | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Norway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Burkina Faso             | IE                                                                                                                                                                                                                                      | Ireland                                                                                                                                                                                                                                                                                                      | NZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | New Zealand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bulgaria                 | П                                                                                                                                                                                                                                       | Italy                                                                                                                                                                                                                                                                                                        | PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Poland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Benin                    | JP                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                            | PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Portugal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Brazil                   | KE                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                            | RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Romania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Belarus                  | KG                                                                                                                                                                                                                                      | Kyrgystan                                                                                                                                                                                                                                                                                                    | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Russian Federation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Canada                   | KP                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sudan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Central African Republic |                                                                                                                                                                                                                                         | of Korea                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Congo                    | KR                                                                                                                                                                                                                                      | Republic of Korea                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Singapore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Switzerland              | KZ                                                                                                                                                                                                                                      | Kazakhstan                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Slovenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Côte d'Ivoire            | u                                                                                                                                                                                                                                       | Liechtenstein                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Slovakia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cameroon                 | LK                                                                                                                                                                                                                                      | Sri Lanka                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Senegal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| China                    | LR                                                                                                                                                                                                                                      | Liberia                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Swaziland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Czechoslovakia           | LT                                                                                                                                                                                                                                      | Lithnania                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Czech Republic           | LU                                                                                                                                                                                                                                      | Luxemboure                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Togo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Germany                  | LV                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tajikistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Denmark                  | MC                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trinidad and Tobago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Estonia                  |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ukraine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spain                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uganda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Finland                  | ML                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | United States of America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| France                   | MN                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uzhekistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gabon                    | MR                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Viet Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain Finland France | Austria GE Australia GN Barbados GR Belgium HU Burkina Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Switzerland KZ Côte d'Ivoire LI Cameroon LK China LR Czechoslovakia LT Czech Republic LU Germany LV Denmark MC Estonia MD Spain MG Finland ML France MN | Austris GE Georgia Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Faso IE Ireland Bulgaria IT Italy Benin JP Japan Brazil KE Kenya Belarus KG Kyrgystan Canada KP Democratic People's Republic of Korea Congo KR Republic of Korea Switzerland KZ Kazakhstan Côte d'Ivoire LI Liechtenstein Cameroon LK Sri Lanka China LR Liberia Czechoslovakia LT Lithuania Czech Republic LU Luxembourg Germany LV Latvia Demark MC Monaco Estonia MD Republic of Moklova Spain MG Madagascar Finland ML Mali France MN Mongolia | Austria GE Georgia MX Australia GN Guinea NE Barbados GR Greece NL Belgium HU Hungary NO Burkina Faso IE Ireland NZ Bulgaria IT Italy PL Benin JP Japan PT Brazil KE Kenya RO Belarus KG Kyrgystan RU Canada KP Democratic People's Republic SD Central African Republic of Korea SE Congo KR Republic of Korea SG Switzerland KZ Kazakhstan SI Côte d'Ivoire LJ Liechtenstein SK Cameroon LK Sri Lanka SN China LR Liberia SZ Czechoslovakia LT Lithnania TD Czech Republic LU Luxembourg TG Germany LV Latvia TJ Demmark MC Monaco TT Estonia MD Republic of Moldova UA Spain MG Madagascar UG France MN Mongolia UZ |

#### PRODUCTION AND USE OF TYPE 5 17BETA-HYDROXYSTEROID DEHYDROGENASE

# BACKGROUND OF THE INVENTION Field of the Invention

5

10

The present invention relates to the isolation and characterization of a novel enzyme which is implicated in the production of sex steroids, and more particularly, to the characterization of the gene and cDNA of a novel  $20\infty$ ,  $17\beta$ -hydroxysteroid dehydrogenase (hereinafter type 5  $17\beta$ -HSD) which has been implicated in the conversion of progesterone and 4-androstenedione ( $\Delta^4$ -dione) to  $20\infty$ -hydroxyprogesterone ( $20\infty$ -OH-P) and testosterone (T), respectively. The use of this enzyme as an assay for inhibitors of the enzyme is also described, as are several other uses of the DNA, fragments thereof and antisense fragments thereof.

#### Description of the Related Art

15

20

25

30

The enzymes identified as  $17\beta$ -HSDs are important in the production of human sex steroids, including androst-5-ene-3 $\beta$ ,17 $\beta$ -diol ( $\Delta^5$ -diol), testosterone and estradiol. It was once thought that a single gene encoded a single type of  $17\beta$ -HSD which was responsible for catalyzing all of the reactions. However, in humans, several types of  $17\beta$ -HSD have now been identified and characterized. Each type of  $17\beta$ -HSD has been found to catalyze specific reactions and to be located in specific tissues. Further information about Types 1, 2 and 3  $17\beta$ -HSD can be had by reference as follows: Type 1  $17\beta$ -HSD is described by Luu-The, V. et al., *Mol. Endocrinol.*, 3:1301-1309 (1989) and by Peltoketo, H. et al., *FEBS Lett*, 239:73-77 (1988); Type 2  $17\beta$ -HSD is described in Wu, L. et al., *J. Biol Chem*, 268:12964-12969 (1993); Type 3  $17\beta$ -HSD is described in Geissler, WM, *Nature Genetics*, 7:34-39 (1994). A fourth type which is homologous to porcine ovarian  $17\beta$ -HSD has recently been identified by researchers Adamski and de Launoit, however, applicant is not presently aware of published information on this type.

The present invention relates to a fifth type of  $17\beta$ -HSD which is described in detail below.

10

15

20

- 2 -

## SUMMARY OF THE INVENTION

It is an object of the present invention to provide a novel  $17\beta$ -hydroxysteroid dehydrogenase ( $17\beta$ -HSD) which is identified as type 5  $17\beta$ -HSD.

It is also an object of the present invention to provide a 17 $\beta$ -HSD which has been shown to be involved in the conversion of  $\Delta^4$ -dione to testosterone and in the conversion of progesterone to  $20\infty$ -hydroxyprogesterone ( $20\infty$ -OH-P).

It is a further object of this invention to provide the nucleotide sequences and a gene map for type 5  $17\beta$ -HSD.

It is also an object of this invention to provide methods of using type 5 17β-HSD in an assay to identify compounds which inhibit the activity of this enzyme, and thus may reduce production of testosterone or 20∞-hydroxyprogesterone, and can be used to treat medical conditions which respond unfavorably to these steroids.

It is an additional object of this invention to provide methods of preventing the synthesis of type 5 17 $\beta$ -HSD by administering an antisense RNA of the gene sequence of type 5 17 $\beta$ -HSD to interfere with the translation of the gene's mRNA.

These and other objects are discussed herein.

In particular, a novel enzyme, type 5  $17\beta$ -hydroxysteroid dehydrogenase, has been identified and characterized. The gene sequence for this type 5  $17\beta$ -HSD was found to encode a protein of 323 amino acids, having an apparent calculated molecular weight of 36,844 daltons. The protein is encoded by nucleotides +11 through 982, including the stop codon (amino acids +1 through 323), numbered in the 5' to 3' direction, in the following sequence (SEQ ID Nos. 1 and 2):

25

GTGACAGGGA ATG GAT TCC AAA CAG CAG TGT GTA AAG CTA AAT GAT GGC

Met Asp Ser Lys Gin Gin Cys Val Lys Leu Asn Asp Gly

1 5 10

30

CAC TTC ATG CCT GTA TTG GGA TTT GGC ACC TAT GCA CCT CCA GAG GTT 97 His Phe Met Pro Val Leu Gly Phe Gly Thr Tyr Ala Pro Pro Glu Val 15 20 25

35 CCG AGA AGT AAA GCT TTG GAG GTC ACC AAA TTA GCA ATA GAA GCT GGG 145 Pro Arg Ser Lys Ala Leu Glu Val Thr Lys Leu Ala ile Glu Ala Gly 30 35 40 45

TTC CGC CAT ATA GAT TCT GCT CAT TTA TAC AAT AAT GAG GAG CAG GTT 193

- 3 -

|    | Phe Arg His Ile Asp Ser Ala His Leu Tyr Asn Asn Glu Glu Gln Val<br>50 55 60                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | GGA CTG GCC ATC CGA AGC AAG ATT GCA GAT GGC AGT GTG AAG AGA GAA 241<br>Gly Leu Ala lie Arg Ser Lys lie Ala Asp Gly Ser Val Lys Arg Glu<br>65 70 75         |
| 10 | GAC ATA TTC TAC ACT TCA AAG CTT TGG TCC ACT TTT CAT CGA CCA GAG 289 Asp lie Phe Tyr Thr Ser Lys Leu Trp Ser Thr Phe His Arg Pro Glu 80 85 90               |
| 15 | TTG GTC CGA CCA GCC TTG GAA AAC TCA CTG AAA AAA GCT CAA TTG GAC 337<br>Leu Val Arg Pro Ala Leu Glu Asn Ser Leu Lys Lys Ala Gin Leu Asp<br>95 100 105       |
|    | TAT GTT GAC CTC TAT CTT ATT CAT TCT CCA ATG TCT CTA AAG CCA GGT 385  Tyr Val Asp Leu Tyr Leu Ile His Ser Pro Met Ser Leu Lys Pro Gly  110 115 120 125      |
| 20 | GAG GAA CTT TCA CCA ACA GAT GAA AAT GGA AAA GTA ATA TTT GAC ATA 433<br>Glu Glu Leu Ser Pro Thr Asp Glu Asn Gly Lys Val lie Phe Asp lie<br>130 135 140      |
| 25 | GTG GAT CTC TGT ACC ACC TGG GAG GCC ATG GAG AAG TGT AAG GAT GCA 481 Val Asp Leu Cys Thr Thr Trp Glu Ala Met Glu Lys Cys Lys Asp Ala 145 150 155            |
| 30 | GGA TTG GCC AAG TCC ATT GGG GTG TCA AAC TTC AAC CGC AGG CAG CTG 529<br>Gly Leu Ala Lys Ser He Gly Val Ser Asn Phe Asn Arg Arg Gin Leu<br>160 165 170       |
| 35 | GAG ATG ATC CTC AAC AAG CCA GGA CTC AAG TAC AAG CCT GTC TGC AAC 577 Glu Met lie Leu Asn Lys Pro Gly Leu Lys Tyr Lys Pro Val Cys Asn 175 180 185            |
| ,, | CAG GTA GAA TGT CAT CCG TAT TTC AAC CGG AGT AAA TTG CTA GAT TTC 625<br>Gin Val Gtu Cys His Pro Tyr Phe Asri Arg Ser Lys Leu Leu Asp Phe<br>190 195 200 205 |
| 10 | TGC AAG TCG AAA GAT ATT GTT CTG GTT GCC TAT AGT GCT CTG GGA TCT 673<br>Cys Lys Ser Lys Asp lie Vai Leu Vai Ala Tyr Ser Ala Leu Gly Ser<br>210 215 220      |
| 15 | CAA CGA GAC AAA CGA TGG GTG GAC CCG AAC TCC CCG GTG CTC TTG GAG 721 Gln Arg Asp Lys Arg Trp Val Asp Pro Asn Ser Pro Val Leu Leu Glu 225 230 235            |
| 50 | GAC CCA GTC CTT TGT GCC TTG GCA AAA AAG CAC AAG CGA ACC CCA GCC 769 Asp Pro Val Leu Cys Ala Leu Ala Lys Lys His Lys Arg Thr Pro Ala 240 245 250            |
|    | CTG ATT GCC CTG CGC TAC CAG CTG CAG CGT GGG GTT GTG GTC CTG GCC 817<br>Leu Ile Ala Leu Arg Tyr Glin Leu Gin Arg Gly Val Val Leu Ala<br>255 260 265         |
| 55 | AAG AGC TAC AAT GAG CAG CGC ATC AGA CAG AAC GTG CAG GTT TTT GAG 865<br>Lys Ser Tyr Asn Glu Gln Arg Ile Arg Gln Asn Val Gln Val Phe Glu<br>270 275 280 285  |

- 4 -

TTC CAG TTG ACT GCA GAG GAC ATG AAA GCC ATA GAT GGC CTA GAC AGA 913
Phe Gin Leu Thr Ala Glu Asp Met Lys Ala Ile Asp Gly Leu Asp Arg
290 295 300

5

25

30

35

40

AAT CTC CAC TAT TTT AAC AGT GAT AGT TTT GCT AGC CAC CCT AAT TAT 961
Asn Leu His Tyr Phe Asn Ser Asp Ser Phe Ala Ser His Pro Asn Tyr 305 310 315

CCA TAT TCA GAT GAA TAT TAA CATGGAGACT TTGCCTGATG ATGTCTACCA 1012
Pro Tyr Ser Asp Giu Tyr \* 320

GAAGGCCCTG TGTGTGGATG GTGACGCAGA GGACGTCTCT ATGCCGGTGA CTGGACATAT 1072

CACCTCTACT TAAATCCGTC CTGTTTAGCG ACTTCAGTCA ACTACAGCTC ACTCCATAGG 1132

CCAGAAATAC AATAAATCCT GTTTAGCGAC TTCAGTCAAC TACAGCTCAC TCCATAGGCC 1192

20 AGAAATACAA TAAA 1206

In addition, a complete gene map (Figure 5) and nucleotide sequences (SEQ. ID Nos. 3 through 29 and Figures 6A and 6B) of the chromosomal DNA of type 5 17β-HSD are provided. A more detailed description of the sequences will be provided *infra*.

The present invention includes methods for the synthetic production of type 5  $17\beta$ -HSD, as well as peptides that are biologically functionally equivalent, and to methods of using these compounds to screen test compounds for their ability to inhibit or alter the enzymatic function. In addition, methods of producing antisense constructs to the type 5  $17\beta$ -HSD gene's DNA or mRNA or portions thereof, and the use of those antisense constructs to interfere with the transcription or translation of the enzyme are also provided.

The nucleotide sequence which encodes type 5 17β-HSD and recombinant expression vectors which include the sequence may be modified so long as they continue to encode a functionally equivalent enzyme. Moreover, it is contemplated, within the invention, that codons within the coding region may be altered, *inter alia*, in a manner which, given the degeneracy of the genetic code, continues to encode the same protein or one providing a functionally equivalent protein. It is believed that nucleotide sequences analogous to SEQ ID No. 1, or those that hybridize under stringent conditions to the coding region of SEQ ID No. 1, are likely to encode a type 5 17β-HSD functionally equivalent to that encoded by the coding region of SEQ ID No. 1, especially if such analogous nucleotide sequence is at least 700, preferably at

10

15

20

25

30

least 850 and most preferably at least 969 nucleotides in length. As used herein, except where otherwise specified, "stringent conditions" means 0.1x SSC (0.3 M sodium chloride and 0.03M sodium citrate) and 0.1% sodium dodecyl sulphate (SDS) and 60° C.

It is also likely that tissues or cells from human or non-human sources and which tissues or cells have the enzymatic machinery to convert  $\Delta^4$ -dione to testosterone, or to convert progesterone to 20∞-hydroxyprogesterone, include a type 5 17β-HSD sufficiently analogous to human type 5 17β-HSD to be used in accordance with the present invention. In particular, cDNA libraries prepared from cells performing the foregoing conversions may be screening with probes in accordance with well known techniques prepared by reference to the nucleotides disclosed herein, and under varying degrees of stringency, in order to identify analogous cDNAs in other species. These analogous cDNAs are preferably at least 70% homologous to SEQ ID No. 1, more preferably at least 80% homologous, and most preferably at least 90% homologous. They preferably include stretches of perfect identity at least 10 nucleotides long, more preferably stretches of 15, 20 or even 30 nucleotides of perfect identity. Appropriate probes may be prepared from SEQ ID No. 1 or fragments thereof of suitable length, preferably at least 15 nucleotides in length. Confirmation with at least two distinct probes is preferred. Alternative isolation strategies, such as polymerase chain reaction (PCR) amplification, may also be used.

Homologous type 5  $17\beta$ -HSDs so obtained, as well as the genes encoding them, are used in accordance with the invention in all of the ways for using SEQ ID No. 2 and SEQ ID No. 1, respectively.

Recombinant expression vectors can include the entire coding region for human type 5 17 $\beta$ -HSD as shown in SEQ ID No. 1, the coding region for human type 5 17 $\beta$ -HSD which has been modified, portions of the coding region for human type 5 17 $\beta$ -HSD, the chromosomal DNA of type 5 17 $\beta$ -HSD, an antisense construct to type 5 17 $\beta$ -HSD. or portions of antisense constructs to type 5 17 $\beta$ -HSD.

In the context of the invention, "isolated" means having a higher purity than exists in nature, but does not require purification from a natural source. Isolated nucleotides encoding type 5  $17\beta$ -HSD may be produced synthetically, or by isolating cDNA thereof from a cDNA library or by any of numerous other methods well understood in the art.

15

20

25

30

In one embodiment, the invention provides an isolated nucleotide sequence encoding type 5  $17\beta$ -hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 1 or a complement thereof, to hybridize under stringent conditions to the coding region of SEQ ID No. 1 or a complement thereof and said sequence encoding an enzyme which catalyzes the conversion of progesterone to  $20\infty$ -hydroxyprogesterone and the conversion of 4-androstenedione to testosterone.

In a further embodiment, the invention provides an isolated nucleotide sequence comprising at least ten consecutive nucleotides identical to 10 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.

In an additional embodiment, the invention provides an oligonucleotide sequence selected from the group consisting of SEQ ID Nos. 30 through 59.

In another embodiment, the invention provides a recombinant expression vector comprising a promoter sequence and an oligonucleotide sequence selected from the group of SEQ ID Nos. 30 to 59.

In a further embodiment, the invention provides a method of blocking synthesis of type 5  $17\beta$ -HSD, comprising the step of introducing an oligonucleotide selected from the group consisting of SEQ ID Nos. 30 to 59 into cells.

In an additional embodiment, the invention provides an isolated chromosomal DNA fragment which upon transcription and translation encodes type 5  $17\beta$ -hydroxysteroid dehydrogenase and wherein said fragment contains nine exons and wherein said fragment includes introns which are 16 kilobase pairs in length.

In another embodiment, the invention provides an isolated DNA sequence encoding type 5  $17\beta$ -hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 3 or a complement thereof, to hybridize under stringent conditions to SEQ ID No. 3, or its complement.

In a further embodiment, the invention provides a method for producing type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the steps of preparing a recombinant host transformed or transfected with the vector of claim 3 and culturing said host under conditions which are conducive to the production of type 5  $17\beta$ -hydroxysteroid dehydrogenase by said host.

In an additional embodiment, the invention provides a method for determining the inhibitory effect of a test compound on the enzymatic activity of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the steps of providing type 5  $17\beta$ -

-7-

hydroxysteroid dehydrogenase; contacting said type 5  $17\beta$ -hydroxysteroid dehydrogenase with said test compound; and thereafter determining the enzymatic activity of said type 5  $17\beta$ -hydroxysteroid dehydrogenase in the presence of said test compound.

In an additional embodiment, the invention provides a method of interfering with the expression of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

In a further embodiment, there is provided a method of interfering with the synthesis of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

In an additional embodiment, the invention provides a method of interfering with the expression of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.

In another embodiment, the invention provides a method of interfering with the synthesis of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.

In a further embodiment, there is provided a method for determining the inhibitory effect of antisense nucleic acids on the enzymatic activity of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the steps of providing a host system capable of expressing type 5  $17\beta$ -hydroxysteroid dehydrogenase; introducing said antisense nucleic acids into said host system; and thereafter determining the enzymatic activity of said type 5  $17\beta$ -hydroxysteroid dehydrogenase.

Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.

30

5

10

15

20

25

### **BRIEF DESCRIPTION OF THE DRAWINGS**

Figures 1A and 1B are graphs showing the enzymatic activities of Type 5 17β-

10

15

HSD on various substrates. The enzyme was expressed in embryonal kidney (293) cells (ATCC CRL 1573) which were transfected with a vector, prepared in accordance with the invention, and containing the gene encoding human type 5 17 $\beta$ -HSD. Figure 1A shows the substrate specificity of type 5 17 $\beta$ -HSD. The concentration of each substrate was 0.1  $\mu$ M. Figure 1B shows the time course amount of 20 $\alpha$ -HSD and 17 $\beta$ -HSD activities of cells transfected with vectors containing human type 5 17 $\beta$ -HSD. The substrates, progesterone (P) and  $\Delta^4$ -dione, were added at a concentration of 0.1  $\mu$ M;

Figure 2 is a map of a pCMV vector which is exemplary of one that can be used to transfect host cells in accordance with the invention;

Figure 3 is the cDNA sequence (SEQ ID No. 1) and the deduced amino acid sequence (SEQ ID No. 2) of human type 5  $17\beta$ -HSD. The nucleotide sequence is numbered in the 5' to 3' direction with the adenosine of the initiation codon (ATG) designated as +11. The translation stop codon is indicated by asterisks. The potential post modification sites are underlined, wherein TSK = tyrosine sulfokinase; CK2 = casein kinase II; PKC = protein kinase C; NG = N-glycosylation; and NM = N-myrystoylation;

20

25

Figure 4 is a comparison of the deduced amino acid sequence of human type 5  $17\beta$ -HSD to the amino acid sequences of rabbit (rb), rat (r), and bovine (b)  $20\infty$ -HSD as well as human (h) and rat (r)  $3\infty$ -HSD, bovine prostaglandin f synthase (b pgfs) and frog  $\rho$ -crystallin (f  $\rho$ -crys). The amino sequences are indicated using the conventional single letter code and are numbered on the right. The dashes (-) and dots (.) indicate identical and missing amino acid residues, respectively;

Figure 5 is a map of the chromosomal DNA of a gene which encodes type 5  $17\beta$ -HSD; and

30

Figures 6A and 6B are the nucleotide sequence of the chromosomal DNA of a gene which encodes type 5  $17\beta$ -HSD.

-9-

#### DETAILED DESCRIPTION OF THE INVENTION

A gene encoding the enzyme, type 5  $17\beta$ -HSD, has been isolated and encodes a protein having 323 amino acids with a calculated molecular weight of 36,844 daltons. As shown in Figure 3, the coding portion of this gene includes nucleotides +11 through 982, including the stop codon (and encodes amino acids +1 through 323), numbered in the 5' to 3' direction.

10

15

20

25

30

The chromosomal DNA fragment of the gene for type 5 17β-HSD has also been characterized. A map of the gene is provided in Figure 5. In particular, it was found, using primer extension analysis, that the gene includes 16 kilobase pairs (kb) and contained nine short exons. A portion of the 5' flanking region, as set forth in SEQ ID No. 3, of the genomic DNA includes 730 base pairs (bp). Exon I (SEQ ID No. 4) contains 37 nucleotides in the 5'-noncoding region and the nucleotides for the first 28 amino acids. The second intron region includes the nucleotides set forth in SEQ ID Nos. 5 and 6, which are 252 and 410 bp, respectively. These are joined by a 1.2 kb region which is not important and therefore, its sequence has been omitted. Exon 2 (SEQ ID No. 7) contains nucleotides for the following 56 amino acids of human type 5 17β-HSD. The following intron region includes SEQ ID Nos. 8 and 9, 700 and 73 bp, respectively, which are joined by a 0.1 kb region for which the sequence has not been provided. Exon 3 (SEQ ID No. 10) includes the next 117 nucleotides which specify the following 39 amino acids. The fourth intron region is represented by SEQ ID Nos. 11 and 12, 152 and 208 nucleotides in length, respectively, with a 0.9 kb region in between which has not been provided. Exon 4 (SEQ ID No. 13) includes the next 78 bp which specify the following 26 amino acids of the enzyme. Intron region five contains SEQ ID Nos. 14 and 15, with 98 and 249 nucleotides, respectively, with a 0.1 kb region in the middle which has not been provided. The fifth exon (SEQ ID No. 16) contains nucleotides for the following 41 amino acids of human type 5 17β-HSD. The sixth intron region, set forth in SEQ ID Nos. 17 and 18 with 138 and 189 bp, respectively, also includes a 2.8 kb region which has not been provided. Exon 6 (SEQ ID No. 19) contains nucleotides for the following 36 amino acids of type 5 17β-HSD, as well as two nucleotides of the codon 227 (Trp). The next intron region includes a 136 bp portion (SEQ ID No. 20) and a

15

20

25

30

66 bp portion (SEQ ID No. 21) which are joined by a 0.1 kb region which is not set forth. Exon 7 (SEQ ID No. 22) contains nucleotides for the third nucleotide of codon 227 (Trp) and nucleotides for the following 55 codons. The following intron region includes a 136 nucleotide region (SEQ ID No. 23), a 2.5 kb region which is not provided and a 286 bp region (SEQ ID No. 24). Exon 8 (SEQ ID No. 25) includes 83 nucleotides which code for the following 27 amino acids and 2 nucleotides of codon 310. The ninth intron region contains 713 nucleotides (SEQ ID No. 26) followed by a 1 kb region which has not been provided followed by a 415 nucleotide region (SEQ ID No. 27). Exon 9 (SEQ ID No. 28) contains the third nucleotide of codon 310, 42 nucleotides for the last 13 amino acids and a stop codon and approximately 200 nucleotides in the 3'-untranslated region. A polymorphic (GT)<sub>n</sub> repeat region that can be used to perform genetic linkage mapping of the type 5 17β-HSD can be found 255 nucleotides downstream from the TAA stop codon. SEQ ID No. 29 sets forth 109 bp of additional genomic sequence. The nucleotide sequence of the gene fragment, as described above, is provided in Figures 6A and 6B.

The type 5 17β-HSD enzyme can be produced by incorporating the nucleotide sequence for the coding portion of the gene into a vector which is then transformed or transfected into a host system which is capable of expressing the enzyme. The DNA can be maintained transiently in the host or can be stably integrated into the genome of the host cell. In addition, the chromosomal DNA can be incorporated into a vector and transfected into a host system for cloning.

In particular, for the cloning and expression of type 5  $17\beta$ -HSD, any common expression vectors, such as plasmids, can be used. These vectors can be prokaryotic expression vectors including those derived from bacteriophage  $\lambda$  such as  $\lambda$ gtl1 and  $\lambda$ EMBL3, *E. coli* strains such as pBR322 and Bluescript (Stratagene); or eukaryotic vectors, such as those in the pCMV family. Vectors incorporating an isolated human cDNA shown in Sequence ID No. 1 (ATCC Deposit No. ) and the chromosomal DNA as shown in Sequence ID Nos. 3 through 29 (ATCC Deposit No. ) for type 5  $17\beta$ -HSD have been placed on deposit at the American Type Culture Collection (ATCC, Rockville, MD), in accordance with the terms of the Budapest Treaty, and will be made available to the public upon issuance of a patent based on the present patent application.

These vectors generally include appropriate replication and control sequences

- 11 -

which are compatible with the host system into which the vectors are transfected. A promoter sequence is generally included. For prokaryotes, some representative promoters include  $\beta$ -lactamase, lactose, and tryptophan. In mammalian cells, commonly used promoters include, but are not limited to, adenovirus, cytomegalovirus (CMV) and simian virus 40 (SV40). The vector can also optionally include, as appropriate, an origin of replication, ribosome binding sites, RNA splice sites, polyadenylation sites, transcriptional termination sequences and/or a selectable marker. It is well understood that there are a variety of vector systems with various characteristics which can be used in the practice of the invention. A map of the pCMV vector, which is an example of a vector which can be used in the practice of the invention, is provided in Figure 2.

10

15

20

25

30

Commonly known host systems which are known for expressing an enzyme, and which may be transfected with an appropriate vector which includes a gene for Type 5 17β-HSD can be used in the practice of the invention. These host systems include prokaryotic hosts, such as *E. coli*, bacilli, such as *Bacillus subtilus*, and other enterobacteria, such as *Salmonella*, *Serratia*, and *Pseudomonas* species. Eukaryotic microbes, including yeast cultures, can also be used. The most common of these is *Saccharomyces cerevisiae*. although other species are commercially available and can be used. Furthermore, cell cultures can be grown which are derived from mammalian cells. Some examples of suitable host cell lines include embryonal kidney (293), SW-13, chinese hamster ovary (CHO), HeLa, myeloma, Jurkat, COS-1, BHK, W138 and madin-darby canine kidney (MDCK). In the practice of the invention, the 293 cells are preferred.

Type 5 17 $\beta$ -HSD, whether recombinantly produced as described herein, purified from nature, or otherwise produced, can be used in assays to identify compounds which inhibit or alter the activity of the enzyme. In particular, since type 5 17 $\beta$ -HSD is shown to catalyze the conversion of progesterone to 20 $\infty$ -OH-P and the conversion of  $\Delta^4$ -dione to testosterone, this enzyme can be used to identify compounds which interfere with the production of these sex steroids. It is preferred that the enzyme be obtained directly from the recombinant host, wherein following expression, a crude homogenate is prepared which includes the enzyme. A substrate of the enzyme, such as progesterone or  $\Delta^4$ -dione and a compound to be tested are then mixed with the homogenate. The activity of the enzyme with and without the test compound

15

20

25

30

PCT/CA96/00605

is compared. Numerous methods are known which can be used to indicate the effects of the test compound on the activity of the substrate for easy detection of the relative amounts of substrate and product over time. For example, it is possible to label the substrate so that the label also stays on any product that is formed. Radioactive labels, such as C<sup>14</sup> or H<sup>3</sup>, which can be quantitatively analyzed are particularly useful.

It is preferred that the mixture of the enzyme, test compound and substrate be allowed to incubate for a predetermined amount of time. In addition, it is preferred that the product is separated from the substrate for easier analysis. A number of separation techniques are known, for example, thin layer chromatography (TLC), high pressure liquid chromatography (HPLC), spectrophotometry, gas chromatography, mass spectrophotometry and nuclear magnetic resonance (NMR). However, any known method which can differentiate between a substrate and a product can be used.

It is also contemplated that the gene for type 5 17β-HSD or a portion thereof can be used to produce antisense nucleic acid sequences for inhibiting expression of Type 5 17β-HSD *in vivo*. Thus activity of the enzyme and levels of its products (e.g. testosterone) may be reduced where desirable. In general, antisense nucleic acid sequences can interfere with transcription, splicing or translation processes. Antisense sequences can prevent transcription by forming a triple helix or hybridizing to an opened loop which is created by RNA polymerase or hybridizing to nascent RNA. On the other hand, splicing can advantageously be interfered with if the antisense sequences bind at the intersection of an exon and an intron. Finally, translation can be affected by blocking the binding of initiation factors or by preventing the assembly of ribosomal subunits at the start codon or by blocking the ribosome from the coding portion of the mRNA, preferably by using RNA that is antisense to the message. For further general information, see Hélène et al., *Biochimica et Biophysica Acta*, 1049:99-125 (1990), which is herein incorporated by reference in its entirety.

An antisense nucleic acid sequence is an RNA or single stranded DNA sequence which is complementary to the target portion of the target gene. These antisense sequences are introduced into cells where the complementary strand base pairs with the target portion of the target gene, thereby blocking the transcription, splicing or translation of the gene and eliminating or reducing the production of type 5  $17\beta$ -HSD. The length of the antisense nucleic acid sequence need be no more than is sufficient to interfere with the transcription, splicing or translation of functional type 5

- 13 -

 $17\beta$ -HSD. Antisense strands can range in size from 10 nucleotides to the complete gene, however, about 10 to 50 nucleotides are preferred, and 15 to 25 nucleotides are most preferred.

Although it is contemplated that any portion of the gene could be used to 5 produce antisense sequences, it is preferred that the antisense is directed to the coding portion of the gene or to the sequence around the translation initiation site of the mRNA or to a portion of the promoter. Some examples of specific antisense oligonucleotide sequences in the coding region which can be used to block type 5 17β-HSD synthesis include: TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30); 10 TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31); GATGAAAAGTGGACCA 32); ATCTGTTGGTGAAAGTTC (SEO ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34); CTTGTACTTGAGTCCTG (SEQ ID No. 35): CTCCGGTTGAAATACGGA (SEQ ID No. 36); CATCGTTTGTCTCGTTGAGA (SEO ID No. 37): 15 TCACTGTTAAAATAGTGGAGAT (SEQ ID No. 38); ATCTGAATATGGATAAT (SEQ ID No. 39). Examples of antisense oligonucleotide sequences which can block the splicing of the type 5 17β-HSD premessage are as follows: TTCTCGGAACCTGGAGGAGC (SEQ ID No. 40); GACACAGTACCTTTGAAGTG (SEQ ID No. 41); 20 TGGACCAAAGCTGCAGAGGT (SEQ ID No. 42); CCTCACCTGGCTGAAATAGA (SEQ ID No. 43): AAGCACTCACCTCCCAGGTG (SEQ ID No. 44); GACATTCTACCTGCAGTTGA (SEQ ID No. 45); CTCAAAAACCTATCAGAAA (SEQ ID No. 46); GGAAACTTACCTATCACTGT (SEQ ID No. 47); GCTAGCAAAACTGAAAAGAG (SEQ ID No. 48). 25 Examples of antisense oligonucleotide sequences which inhibit the promoter activity of type 5 17\beta-HSd include: GAGAAATATTCATTCTG (SEQ ID No. 49): CGAGTCCTGATAAAGCTG (SEQ ID No. 50); GATGAGGGTGCAAATAA (SEQ No. 51); GGAGTGTTAATTAATAACAGTTT (SEQ ID No. 52): 30 CAGAGATTACAAAAAAAAAT (SEQ ID No. 53); TGCCTTTTTACATTTCAATCA (SEQ ID No. 54); ACACATAATTTAAAGGA (SEO ID No. 55); TTAAATTATTCAAAAGG (SEO ID No. 56); AAGAGAAATATTCATTTCTG (SEQ ID No. 57);

- 14 -

CCCCTCCCCCACCCTGCA (SEQ ID No. 58); CTGCCGTGATAATGCCCC (SEQ ID No. 59).

As is well understood in the art, the oligonucleotide sequences can be modified in various manners in order to increase the effectiveness of the treatment with oligonucleotides. In particular, the sequences can be modified to include additional RNA to the 3' end of the RNA which can form a hairpin-loop structure and thereby prevent degradation by nucleases. In addition, the chemical linkages in the backbone of the oligonucleotides can be modified to also prevent cleavage by nucleases.

There are numerous methods which are known in the art for introducing the antisense strands into cells. One strategy is to incorporate the gene which encodes type 5  $17\beta$ -HSD in the opposite orientation in a vector so that the RNA which is transcribed from the plasmid is complementary to the mRNA transcribed from the cellular gene. A strong promoter, such as pCMV, is generally included in the vector, upstream of the gene sequence, so that a large amount of the antisense RNA is produced and is available for binding sense mRNA. The vectors are then transfected into cells which are then administered. It is also possible to produce single stranded DNA oligonucleotides or antisense RNA and incorporate these into cells or liposomes which are then administered. The use of liposomes, such as those described in WO95/03788, which is herein incorporated by reference, is preferred. However, other methods which are well understood in the art can also be used to introduce the antisense strands into cells and to administer to these patients in need of such treatment.

The following is an example of the expression of human type 5  $17\beta$ -HSD. This example is intended to be illustrative of the invention and it is well understood by those of skill in the art that modifications, alterations and different techniques can be used within the scope of the invention.

# Expression of $20\infty$ , $17\beta$ -HSD (Type 5 $17\beta$ -HSD)

30

5

10

15

20

25

Construction of the expression vector and nucleotide sequence determination

The phage DNA were digested with EcoRI restriction enzyme and the resulting cDNA fragments were inserted in the EcoRI site downstream to the cytomegalovirus

- 15 -

(CMV) promoter of the pCMV vector as shown in Figure 2. The recombinant pCMV plasmids were amplified in *Escherichia coli* DH5α competent cells, and were isolated using the alkaline lysis procedure as described by Maniatis in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press 1982). The sequencing of double-stranded plasmid DNA was performed according to the dideoxy chain termination method described by Sanger F. et al., *Proc. Natl. Acad. Sci.*, 74:5463-5467 (1977) using a T7 DNA polymerase sequencing kit (Pharmacia LKB Biotechnology). In order to avoid errors, all sequences were determined by sequencing both strands of the DNA. The oligonucleotide primers were synthesized using a 394 DNA/RNA synthesizer (Applied Biosystem).

As shown in Figure 2, the pCMV vector contains 582 nucleotides of the pCMV promoter, followed by 74 nucleotides of unknown origin which includes the EcoRI and HindIII sites, followed by 432 basepairs (bp) of a small t intron (fragment 4713 - 4570) and a polyadenylation signal (fragment 2825 - 2536) of SV40, followed by 156 nucleotides of unknown origin, followed by 1989 bp of the PvuII (628) to AatII (2617) fragment from the pUC 19 vector (New England Biolabs) which contains an *E. coli* origin of replication and an ampicillin resistance gene for propagation in *E. coli*.

### 20 Transient expression in transformed embryonal kidney (293) cells

The vectors were transfected using the calcium phosphate procedure described by Kingston, R.E., In: Current Protocols in Molecular Biology, Ausubel et al. eds., pp. 9.1.1 - 9.1.9, John Wiley & Sons, N.Y. (1987) and used 1 to 10 μg of recombinant plasmid DNA per 106 cells. The total amount of DNA is kept at 10μg of plasmid DNA per 106 cells by completing with pCMV plasmid without insert. The cells were initially plated at 104 cells/cm² in Falcon® culture flasks and grown in Dulbecco's modified Eagle's medium containing 10% (vol/vol) fetal bovine serum (hyclone, Logan, UT) under a humidified atmosphere of air/CO² (95%/5%) at 37°C and supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 IU penicillin/ml, and 100 μg streptomycin sulfate/ml.

#### Assay of enzymatic activity

5

10

15

25

30

The determination of enzymatic activity was performed as described by Luu-

- 16 -

The et al., *Biochemistry*, 13:8861-8865 (1991) which is herein incorporated by reference. See also Lachance et al., *J. Biol. Chem.*, 265:20469 - 20475 (1990). Briefly, 0.1 μM of the indicated <sup>14</sup>C-labeled substrate (Dupont Inc. (Canada)), namely, dehydroepiandrosterone (DHEA), 4-androstene-3,17-dione (Δ<sup>4</sup>-dione), testosterone (T), estrone (E1), estradiol (E2), dihydrotestosterone (DHT), and progesterone (PROG), was added to freshly changed culture medium in a 6-well culture plate. After incubation for 1 hour, the steroids were extracted twice with 2 ml of ether. The organic phase was pooled and evaporated to dryness. The steroids were solubilized in 50 μl of dichloromethane, applied to a Silica gel 60 thin layer chromatography (TLC) plate (Merck, Darmstad, Germany) and then separated by migration in the toluene-acetone (4:1) solvent system (Luu-The, V. et al., *J. Invest. Dermatol.*, 102:221-226 (1994) which is herein incorporated by reference). The substrates and metabolites were identified by comparison with reference steroids, revealed by autoradiography and quantitated using the Phosphoimager System (Molecular Dynamics, Sunnyvale, CA).

## Cloning of the type 5 17\beta-HSD genomic DNA clone

10

15

20

25

The hybridization and sequencing methods were as described above and as previously described (Luu-The et al., *Mol. Endocrinol.*, 4:268-275 (1990); Luu-The et al., *DNA and Cell Biol.*, 14:511-518 (1995); Lachance et al., *J. Biol. Chem.*, 265:20469-20475 (1990); Lachance et al., *DNA and Cell Biol.* 10:701-711 (1991): Bernier et al., *J. Biol. Chem.*, 269, 28200-28205, (1994) which are herein incorporated by reference).

About 20 recombinant clones which gave the strongest hybridization signal were selected for second and third screening in order to isolate a single phage plaque. The two longest clones that hybridized with specific oligonucleotides probes located at the 5' and 3' regions of type 5 17β-HSD, respectively, were selected for mapping, subcloning and sequencing. As shown in Figures 5 and 6, the gene is included in approximately 16 kilobase pairs of introns and contains 9 short exons. A primer extension analysis using oligoprimer CAT-CAT-TTA-GCT-TTA-CAT-ACT-GCT-G located at positions 13 to 27, indicates that the start site is situated 37 nucleotides upstream from the ATG initiating codon.

15

20

25

30

PCT/CA96/00605

The sites and signatures in the primary protein sequence were detected using PC/Gene software (Intelli Genetics Inc., Mountain View, CA). This analysis revealed a potential N-glycosylation site at Asn-198; five protein kinase C sites at Ser-73, Thr-82, Ser-102, Ser-121, and Ser-221; five casein kinase II phosphorylation sites at Ser-129, Thr-146, Ser-221, Ser-271, and Thr-289; two N-myristoylation sites at Gly-158 and Gly-298; a tyrosine sulfatation site at Tyr-55; an aldo/keto reductase family signature 1 (25) at amino acids 158 to 168 and an aldo/keto reductase family putative active site signature at amino acids 262 to 280.

As described above, the enzymatic activity of the type 5  $17\beta$ -HSD was evaluated by transfecting 293 cells with vectors which included the gene encoding human type 5  $17\beta$ -HSD. The ability of the enzyme to catalyze the transformation of progesterone (P) to  $20\infty$ -hydroxyprogesterone ( $20\infty$ -OH-P), 4-androstenedione ( $\Delta^4$ -dione) to testosterone (T),  $5\infty$ -androstane-3,17-dione (A-dione) to dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA) to 5-androstene-3 $\beta$ ,17 $\beta$ -diol, and estrone (E1) to estradiol (E2) was analyzed. As shown in Figure 1A, the enzyme possesses high reductive  $20\infty$ -HSD activity, wherein progesterone (P) is transformed to the inactive  $20\infty$ -OH-P, and  $17\beta$ -HSD activity, wherein  $\Delta^4$ -dione is converted to testosterone (T). However,  $3\infty$ -HSD activity which is responsible for the transformation of DHT to  $5\infty$ -androstane- $3\alpha$ ,17 $\beta$ -diol is negligible. The ability of this enzyme to transform E1 and E2 was also negligible (Figure 1A). Figure 1B shows that the  $20\infty$ -HSD and  $17\beta$ -HSD activities increased over time.

The isolated amino acid sequence of human type 5  $17\beta$ -HSD was also compared with rabbit  $20\infty$ -HSD (rb), rat  $20\infty$ -HSD (r), human  $3\infty$ -HSD (h), rat  $3\infty$ -HSD (r), bovine prostaglandin f synthase (b pgfs), frog  $\rho$ -crystallin (f  $\rho$ -crys) and human type 1 and type 2  $17\beta$ -HSDs (h) as shown in Figure 4. These sequences show 76.2%, 70.7%, 84.0%, 68.7%, 78.3%, 59.7%, 15.2% and 15.0% identity with type 5  $17\beta$ -HSD, respectively.

Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will be apparent to those skilled in the art.

- 18 -

### SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
  5
            (i) APPLICANT: LUU-THE, Van
                             LABRIE, Fernand
           (ii) TITLE OF INVENTION: PRODUCTION AND USE OF ISOLATED TYPE 5
 10
                    17B-HYDROXYSTEROID DEHYDROGENASE
          (iii) NUMBER OF SEQUENCES: 59
           (iv) CORRESPONDENCE ADDRESS:
 15
                 (A) ADDRESSEE: Ostrolenk, Faber, Gerb & Soffen
                  (B) STREET: 1180 Avenue of the Americas
                  (C) CITY: New York
                  (D) STATE: NY
                  (E) COUNTRY: US
20
                 (F) ZIP: 10036-8403
            (v) COMPUTER READABLE FORM:
                 (A) MEDIUM TYPE: Floppy disk
                 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
25
                 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
          (vi) CURRENT APPLICATION DATA:
                 (A) APPLICATION NUMBER:
30
                 (B) FILING DATE:
                 (C) CLASSIFICATION:
        (viii) ATTORNEY/AGENT INFORMATION:
                 (A) NAME: Meilman, Edward
35
                 (B) REGISTRATION NUMBER: 24,735
                 (C) REFERENCE/DOCKET NUMBER: P/1259-313
          (ix) TELECOMMUNICATION INFORMATION:
                 (A) TELEPHONE: (212) 382-0700
40
                 (B) TELEFAX: (212) 382-0888
                 (C) TELEX: 236925
      (2) INFORMATION FOR SEQ ID NO:1:
45
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 1206 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
50
                 (D) TOPOLOGY: linear
          (ix) FEATURE:
55
                (A) NAME/KEY: CDS
                 (B) LOCATION: 11..982
```

- 19 -

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

| 5  | GTG               | ACAG              | iGGA              | ATG<br>Met        | GAT<br>Asp        | TCC<br>Ser        | AAA<br>Lys        | CAG<br>Gln<br>5   | CAG<br>Gln        | TGT<br>Cys        | GTA<br>Val        | AAG<br>Lys        | CTA<br>Leu<br>10  | AAT<br>Asn        | GAT<br>Asp        | GGC<br>Gly        | 4   |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| 10 |                   | 15                | 1                 |                   |                   |                   | 20                | FIIC              | GIY               | ını               | ryr               | 25<br>25          | Pro               | Pro               | Gl:               | GTT<br>Val        |     |
| 15 | 30                |                   |                   | y.s               | , ALG             | 35                | GIU               | val               | The               | Lys               | 40                | Ala               | lle               | e Glu             | ı Ala             | GGG<br>Gly<br>45  |     |
| •• |                   |                   |                   |                   | 50                | Jei               | vra               | nis               | reu               | 55                | Asn               | Asn               | Glu               | Glu               | Glr<br>60         |                   |     |
| 20 | ,                 |                   |                   | 65                | ALY               | 261               | Lys               | 116               | 70                | Asp               | Gly               | Ser               | Val               | Lys<br>75         | Arg               | GAA<br>Glu        |     |
| 25 | GAC<br>Asp        | ATA<br>Ile        | TTC<br>Phe<br>80  | - 7 -             | ACT               | TCA<br>Ser        | AAG<br>Lys        | CTT<br>Leu<br>85  | Trp               | TCC<br>Ser        | ACT               | TTT<br>Phe        | CAT<br>His        | Arg               | CCA<br>Pro        | GAG<br>Glu        | 289 |
| 30 | TTG<br>Leu        | GTC<br>Val<br>95  | CGA<br>Arg        | CCA<br>Pro        | GCC<br>Ala        | TTG<br>Leu        | GAA<br>Glu<br>100 | AAC<br>Asn        | TCA<br>Ser        | CTG<br>Leu        | AAA<br>Lys        | AAA<br>Lys<br>105 | Ala               | CAA<br>Gln        | TTG<br>Leu        | GAC<br>Asp        | 337 |
| 35 | TAT<br>Tyr<br>110 | GTT<br>Val        | GAC<br>Asp        | CTC<br>Leu        | TAT<br>Tyr        | CTT<br>Leu<br>115 | ATT<br>Ile        | CAT<br>His        | TCT<br>Ser        | CCA<br>Pro        | ATG<br>Met<br>120 | Ser               | CTA<br>Leu        | AAG<br>Lys        | CCA<br>Pro        | GGT<br>Gly<br>125 | 385 |
|    | GAG<br>Glu        | GAA<br>Glu        | CTT<br>Leu        | TCA<br>Ser        | CCA<br>Pro<br>130 | ACA<br>Thr        | GAT<br>Asp        | GAA<br>Glu        | TAA<br>neA        | GGA<br>Gly<br>135 | Lys               | GTA<br>Val        | ATA<br>Ile        | TTT<br>Phe        | GAC<br>Asp<br>140 | ATA<br>Ile        | 433 |
| 40 | GTG<br>Val        | GAT<br>Asp        | CTC<br>Leu        | TGT<br>Cys<br>145 | ACC<br>Thr        | ACC<br>Thr        | TGG<br>Trp        | GAG<br>Glu        | GCC<br>Ala<br>150 | ATG<br>Met        | GAG<br>Glu        | AAG<br>Lys        | TGT<br>Cys        | AAG<br>Lys<br>155 | GAT<br>Asp        | GCA<br>Ala        | 481 |
| 45 | GGA<br>Gly        | TTG<br>Leu        | GCC<br>Ala<br>160 | AAG<br>Lys        | TCC<br>Ser        | ATT<br>Ile        | GGG<br>Gly        | GTG<br>Val<br>165 | TCA<br>Ser        | AAC<br>Asn        | TTC<br>Phe        | AAC<br>Asn        | CGC<br>Arg<br>170 | AGG<br>Arg        | CAG<br>Gln        | CTG<br>Leu        | 529 |
| 50 | GAG<br>Glu        | ATG<br>Met<br>175 | ATC<br>Ile        | CTC<br>Leu        | AAC<br>Asn        | AAG<br>Lys        | CCA<br>Pro<br>180 | GGA<br>Gly        | CTC<br>Leu        | AAG<br>Lys        | TAC<br>Tyr        | AAG<br>Lys<br>185 | CCT<br>Pro        | GTC<br>Val        | TGC<br>Cys        | AAC<br>Asn        | 577 |
| 55 | CAG<br>Gln<br>190 | GTA<br>Val        | GAA<br>Glu        | TGT<br>Cys        | CAT<br>His        | CCG<br>Pro<br>195 | TAT<br>Tyr        | TTC<br>Phe        | AAC<br>Asn        | CGG<br>Arg        | AGT<br>Ser<br>200 | AAA<br>Lys        | TTG<br>Leu        | CTA<br>Leu        | GAT<br>Asp        | TTC<br>Phe<br>205 | 625 |
|    | TGC<br>Cys        | AAG<br>Lys        | TCG<br>Ser        | AAA<br>Lys        | GAT<br>Asp<br>210 | ATT<br>Ile        | GTT<br>Val        | CTG<br>Leu        | ĠTT<br>Val        | GCC<br>Ala<br>215 | TAT<br>Tyr        | AGT<br>Ser        | GCT<br>Ala        | CTG<br>Leu        | GGA<br>Gly<br>220 | TCT<br>Ser        | 673 |
| 50 | CAA<br>Gln        | CGA<br>Arg        | GAC<br>Asp        | AAA<br>Lys<br>225 | CGA<br>Arg        | TGG<br>Trp        | GTG<br>Val        | GAC<br>Asp        | CCG<br>Pro<br>230 | AAC<br>Asn        | TCC<br>Ser        | CCG<br>Pro        | GTG<br>Val        | CTC<br>Leu<br>235 | TTG<br>Leu        | GAG<br>Glu        | 721 |
| 55 | GAC<br>Asp        | CCA<br>Pro        | GTC<br>Vai<br>240 | CTT<br>Leu        | TGT<br>Cys        | GCC<br>Ala        | reu               | GCA<br>Ala<br>245 | AAA<br>Lys        | AAG<br>Lys        | CAC<br>His        | Lys               | CGA<br>Arg<br>250 |                   | CCA<br>Pro        | GCC<br>Ala        | 769 |

- 20 -

|            | Leu        | ATT<br>Ile<br>255 | GCC               | CTG<br>Leu        | CGC<br>Arg        | TAC<br>Tyr              | CAG<br>Gln<br>260 | neu         | Glr               | CG1               | GG(        | GT<br>/ Va<br>26 | L Va.      | G GT<br>l Va | C CT                  | G GCC<br>u Ala    | 81   |
|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------|-------------------|-------------------|------------|------------------|------------|--------------|-----------------------|-------------------|------|
| 5          | 270        |                   | - , -             | ••••              | . UIU             | 275                     | Arg               | 116         | Arg               | GIN               | 280        | a Va:            | l Gli      | ı Va         | l Pho                 | GAG<br>Glu<br>285 | 865  |
| 10         | TTC        | CAG<br>Gln        | TTG<br>Leu        | ACT               | GCA<br>Ala<br>290 | 0.0                     | GAC<br>Asp        | ATG<br>Met  | AAA<br>Lys        | GCC<br>Ala<br>295 | 116        | GA:              | GG(        | CT/<br>Let   | A GA(<br>1 Asj<br>30( | AGA<br>Arg        | 913  |
| 15         | AAT<br>Asn | CTC               | CAC               | TAT<br>Tyr<br>305 |                   | AAC<br>Asn              | AGT<br>Ser        | GAT<br>Asp  | AGT<br>Ser<br>310 | rne               | GCT<br>Ala | Sei              | CAC<br>His | CC:<br>Pro   | ) Asr                 | TAT<br>Tyr        | 961  |
| 20         | CCA<br>Pro | TAT               | TCA<br>Ser<br>320 | GAT<br>Asp        | GAA<br>Glu        | TAT<br>Tyr              | TAA               | CAT         | GGAG              | ACT               | TTGC       | CTG              | ATG A      | TGT          | CTACC                 | :A                | 1012 |
|            |            |                   |                   |                   |                   |                         |                   |             |                   |                   |            |                  |            |              |                       | ACATAT            |      |
| 06         | CAC        | CTCT              | ACT '             | TAAA              | TCCG              | TC C                    | rGTT:             | PAGC        | G AC              | TTCA              | GTCA       | ACT              | 'ACAG      | CTC          | ACTO                  | CATAGG            | 1132 |
| 25         |            |                   |                   |                   |                   | CT G                    | ATTI              | CGA         | C TT              | CAGT              | CAAC       | TAC              | AGCT       | CAC          | TCCA                  | TAGGCC            | 1192 |
|            | AGA        | AATA              | CAA '             | TAAA              |                   |                         |                   |             |                   |                   |            |                  |            |              |                       |                   | 1206 |
| 30         | (2)        | INF               | ORMA:             | TION              | FOR               | SEQ                     | ID N              | 10:2:       | :                 |                   |            |                  |            |              |                       |                   |      |
|            |            |                   |                   | SEQUI             | ENCE              | CHAF                    | LACTE             | RIST        | rtcs              | :                 |            |                  |            |              |                       |                   |      |
| 35         |            | •                 |                   | (B)               | TYI               | NGTH:<br>PE: &<br>POLOC | minc<br>Y: 1      | aci<br>inea | d                 | acid              | <b>S</b>   |                  |            |              |                       |                   |      |
|            |            |                   |                   | MOLE              |                   |                         |                   |             |                   |                   |            |                  |            |              |                       |                   |      |
| 40         |            |                   |                   | SEQUE             |                   |                         |                   |             |                   |                   |            |                  |            |              |                       |                   | •    |
|            |            |                   |                   | Lys               | •                 |                         |                   |             |                   | 10                |            |                  |            |              | 15                    |                   |      |
| 45         |            |                   |                   | Gly<br>20         |                   |                         |                   |             | 23                |                   |            |                  |            | 30           |                       |                   |      |
| <b>5</b> 0 |            |                   |                   | Glu               |                   |                         |                   | 40          |                   |                   |            |                  | 45         |              |                       |                   |      |
| 50         |            |                   |                   | Ala               |                   |                         | 33                |             |                   |                   |            | 60               |            |              |                       |                   |      |
| 55         |            |                   |                   | Lys               |                   | , 0                     |                   |             |                   |                   | /5         |                  |            |              |                       | 80                |      |
|            |            |                   |                   | Lys               |                   |                         |                   |             |                   | 90                |            |                  |            |              | 95                    |                   |      |
| 60         | Pro        | Ala               | Leu               | Glu<br>100        | Asn               | Ser                     | Leu               | Lys         | Lys<br>105        | Ala               | Gln        | Leu              | Asp        | Tyr<br>110   | Val                   | Asp               |      |
|            |            |                   |                   | Ile               |                   |                         |                   | 120         |                   |                   |            |                  | 125        |              |                       |                   |      |
| 55         | Ser        | Pro<br>130        | Thr               | qeA               | Glu               | Asn                     | Gly<br>135        | Lys         | Val               | Ile               | Phe        | Asp              | Ile        | Val          | Asp                   | Leu               |      |

- 21 -

|    | Cys<br>145 | Thr        | Thr        | Trp                     | Glu                                | Ala<br>150    | Met                   | Glu          | Lys        | Cys        | Lys<br>155 | Asp        | Ala        | Gly        | Leu        | Ala<br>160 |   |     |
|----|------------|------------|------------|-------------------------|------------------------------------|---------------|-----------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|---|-----|
| 5  | Lys        | Ser        | Ile        | Gly                     | Val<br>165                         | Ser           | Asn                   | Phe          | Asn        | Arg<br>170 | Arg        | Gln        | Leu        | Glu        | Met<br>175 |            |   |     |
|    | Leu        | Asn        | Lys        | Pro<br>180              | Gly                                | Leu           | Lys                   | Tyr          | Lys<br>185 | Pro        | Val        | Cys        | Asn        | Gln<br>190 | Val        | Glu        |   |     |
| 10 | Cys        | His        | Pro<br>195 | Tyr                     | Phe                                | Asn           | Arg                   | Ser<br>200   | Lys        | Leu        | Leu        | Asp        | Phe<br>205 | Cys        | Lys        | Ser        |   |     |
| 15 | Lys        | Asp<br>210 | Ile        | Val                     | Leu                                | Val           | Ala<br>215            | Tyr          | Ser        | Ala        | Leu        | Gly<br>220 | Ser        | Gln        | Arg        | Asp        |   |     |
|    | Lys<br>225 | Arg        | Trp        | Val                     | Asp                                | Pro<br>230    | Asn                   | Ser          | Pro        | Val        | Leu<br>235 | Leu        | Glu        | Asp        | Pro        | Val<br>240 |   |     |
| 20 | Leu        | Cys        | Ala        | Leu                     | Ala<br>245                         | Lys           | Lys                   | His          | Lys        | Arg<br>250 | Thr        | Pro        | Ala        | Leu        | Ile<br>255 | Ala        |   |     |
|    | Leu        | Arg        | Tyr        | Gln<br>260              | Leu                                | Gln           | Arg                   | Gly          | Val<br>265 | Val        | Val        | Leu        | Ala        | Lys<br>270 | Ser        | Tyr        |   |     |
| 25 | Asn        | Glu        | Gln<br>275 | Arg                     | Ile                                | Arg           | Gln                   | Asn<br>280   | Val        | Gln        | Val        | Phe        | Glu<br>285 | Phe        | Gln        | Leu        |   |     |
| 30 | Thr        | Ala<br>290 | Glu        | Asp                     | Met                                | Lys           | Ala<br>295            | Ile          | Asp        | Gly        | Leu        | Asp<br>300 | Arg        | Asn        | Leu        | His        |   |     |
|    | Tyr<br>305 | Phe        | Asn        | Ser                     | Asp                                | Ser<br>310    | Phe                   | Ala          | Ser        | His        | Pro<br>315 | Asn        | Tyr        | Pro        | Tyr        | Ser<br>320 |   |     |
| 35 | Asp        | Glu        | Tyr        | •                       |                                    |               |                       |              |            |            |            |            |            |            |            |            |   |     |
|    | (2)        | INFO       | ORMAT      | rion                    | FOR                                | SEQ           | ID 8                  | 10:3:        | :          |            |            |            |            |            |            |            |   |     |
| 40 |            | (1)        | (1         | A) LI<br>3) Ti<br>3) Si | CE CHENGTH<br>PE:<br>TRANG<br>POLO | i: 73<br>nucl | 30 ba<br>Leic<br>ESS: | acio<br>sino | oairs<br>i | 5          |            |            |            |            |            |            |   |     |
| 45 |            | (ii)       | MOI        | LECUI                   | LE TY                              | PE:           | DNA                   | (ger         | omic       | :)         |            |            |            |            |            |            |   |     |
|    |            | (iii)      | HYI        | РОТН                    | ETIC                               | L: N          | 10                    |              |            |            |            |            |            |            |            |            |   |     |
| 50 |            | (iv)       | AN7        | ri-si                   | ense :                             | NO            |                       |              |            |            |            |            |            |            |            |            |   |     |
| 55 |            | (xi)       | SEC        | QUENC                   | CE DE                              | SCRI          | PTIC                  | on: s        | EQ I       | D NC       | ):3:       |            |            |            |            |            |   |     |
|    | AAG        | VACA       | TAF        | CTAT                    | TAAG                               | G CA          | CTGC                  | TTGC         | ATA        | TATT       | 'AAA       | TGAT       | GTCC       | AA A       | CTCC       | AAAAA      |   | 60  |
|    | CTG        | TAAT       | CAA 7      | CTAAC                   | CACTO                              | C A           | <b>LAAT</b>           | VAACI        | ACA        | CCAG       | AAT        | TTCT       | TTTT       | AT T       | TGCA       | CCCTC      | : | 120 |
| 60 |            |            |            |                         |                                    |               |                       |              |            |            |            |            |            |            |            | TACAA      |   | 180 |
|    |            |            |            |                         |                                    |               |                       |              |            |            |            |            |            |            |            | TATTT      |   | 240 |
| 65 |            |            |            |                         |                                    |               |                       |              |            |            |            |            |            |            |            | TAGTC      | ; | 300 |
|    | ATTO       | CTT        | K AA7      | TTAT                    | GTGT                               | 'A TO         | TCAC                  | CADA         | 303        | CCTA       | 202        | TCCT       | ***        | T 2 -      | -          | *****      |   |     |

- 22 -

|         | TGCAGTATAA AGAAGGGGCA TTATCACGGC AGAAACGAAA AAAGATATTT GTAGCTGGAG                                                                 | 420 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| •       | GTTTTTATAG TCTAACATAT GGTTGCTATT TGTTCTACAA ATCCTTTTGA ATAATTTAAT                                                                 | 480 |
| 5       | ATAGAGATTT CGAATAGAAA ATAATACTTT AGATAGAAAT TAATGAGTTT ATTATAACCA                                                                 | 540 |
|         | TATATTATAA TAATTTACTT AGGAATTCTC TTTGATAAGA AACAAATGAA CTGAATGCAA                                                                 | 600 |
| 10      | TTTTCTCCAC AGACCATATA AGACTGCCTA TGTACCTCCT CCTACATGCC ATTGGTTAAC                                                                 | 660 |
|         | CATCAGTCAG TTTGCAGGGG TGGGGGGGGG GGTTTCCTGC CCATTGTTTT TGTAATCTCT                                                                 | 720 |
|         | GAGGAGAAGC                                                                                                                        | 730 |
| 15      | (2) INFORMATION FOR SEQ ID NO:4:                                                                                                  |     |
| 20      | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 121 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
|         | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 25      | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|         | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 30      | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 38121                                                                              |     |
| 35      | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:                                                                                           |     |
|         | AGCAGCAAAC ATTTGCTAGT CAGACAAGTG ACAGGGAATG GATTCCAAAC AGCAGTGTGT                                                                 | 60  |
| 40      | AAAGCTAAAT GATGGCCACT TCATGCCTGT ATTGGGATTT GGCACCTATG CACCTCCAGA                                                                 | 120 |
|         | (2) INFORMATION FOR SEQ ID NO:5:                                                                                                  | 121 |
| 45      | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 252 base pairs                                                                          |     |
| 50      | (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                              |     |
|         | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 55      | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| <i></i> | (iv) ATTI-SENSE: NO                                                                                                               |     |
|         |                                                                                                                                   |     |
| 60      | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:                                                                                           |     |
|         | GTAAGAATAA TTCCTTTTAG TTTTCGGATT TCAAAAGAAT AAACCTAGTA GAAGTGAAAC                                                                 | 60  |
| 65      | CCGTATTGGG TTGTAAGGTT CGTGTTCCTA CCTTACTCTG GATGACTCAC TGGTCTAGGT                                                                 | 60  |
| <i></i> | TTCCTAGGCT AGGAGAAAAA AGTAGGCAAT CCTTGTTCTG CATTGAGGTC CATTCCTATG                                                                 | 120 |
|         | CINICCIAIG                                                                                                                        | 180 |

- 23 -

|     | GTCACGTACT GCTTATTTTT CGTTTGTGCA CTGTTTCTTT CTTCTGTTCA TGTCTAGTTC                                                                 | 24  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|     | CCAGCTTGGC AG                                                                                                                     | 25  |
| 5   | (2) INFORMATION FOR SEQ ID NO:6:                                                                                                  |     |
| 10  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 410 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
|     | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 15  | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|     | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 20  |                                                                                                                                   |     |
|     | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:                                                                                           |     |
|     | GGAAGTCTGA GTGAGCATTC TGTGTAATAT CACTGGGAGA GAACTCATAT GAGCTTGCAC                                                                 |     |
| 25  | CGTTTCCCTT CTATACTCCA TGTGATTTTT ACCATGTATA ATATCACTAT ATTAAAAATA                                                                 | 60  |
|     | ATTAGGACTA TITCAGTCAT GITAACTITT CCAACAAATC ACTGAATCTG AGGGTGTTAT                                                                 | 120 |
| 30  | GTGGTACCTC CATAACAGTG ATCAACCAGA GATTGCCTGA GACTGAAGGT GTTTCTGGGA                                                                 | 180 |
|     | TGCTCAACCT TTATTACTAA CCAGGAAAGA CTCAGGCAAA CTGAGATGGA CTTTTCACCC                                                                 | 240 |
|     | CACATACAGA CAGGAGGAAA AGCTGATTCT TGTATAAAAG TCAATGCTTG TGCCTGAACT                                                                 | 300 |
| 35  | ACCTCTCAGC CACAGTGATC ACCAGATACT ACCTTTGGTT GCTCCTCCAG                                                                            | 360 |
|     | (2) INFORMATION FOR SEQ ID NO:7:                                                                                                  | 410 |
| 40  | (i) SEQUENCE CHARACTERISTICS:                                                                                                     |     |
|     | (A) LENGTH: 168 base pairs (B) TYPE: nucleic acid                                                                                 |     |
| 4.5 | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                     |     |
| 45  | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|     | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 50  | (iv) ANTI-SENSE: NO                                                                                                               |     |
|     |                                                                                                                                   |     |
| e e | (ix) FEATURE: (A) NAME/KEY: exon                                                                                                  |     |
| 55  | (B) LOCATION: 1168                                                                                                                |     |
|     | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:                                                                                           |     |
| 50  | GTTCCGAGAA GTAAAGCTTT GGAGGTCACA AAATTAGCAA TAGAAGCTGG GTTCCGCCAT                                                                 |     |
|     | ATAGATTCTG CTCATTTATA CAATAATGAG GAGCAGGTTG GACTGGCCAT CCGAAGCAAG                                                                 | 60  |
| 55  | ATTGCAGATG GCAGTGTGAA GAGAGAAGAC ATATTCTACA CTTCAAAG                                                                              | 120 |
| در  | (2) INFORMATION FOR SEQ ID NO:8:                                                                                                  | 168 |
|     |                                                                                                                                   |     |

- 24 -

|            | - <b>47</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5          | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 700 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|            | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 10         | (iii) HYPOTHETICAL: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| ••         | (iv) ANTI-SENSE: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 15         | (with Charmen and control of the con |     |
|            | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 20         | GTACTGTGTC TATGATGAGC TTGTGTGCAC ATGTATTTAT TGTGATTGTG TGGAGATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60  |
| 20         | AATTCTATGA CTGGATGAGT AGTTGTGGGT GAATTTTGCT TCTGGGTTCA AATTTATTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 |
|            | CACATACTCA CATACTAAAA CTGAAATCAA AATCAAGGAA TGATGATCAC TTTTCATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180 |
| 25         | GGCTGTGTTC CAATTTATGA CCTGAAAGTC CCTTTACTTT TTTGAGCTTC AGCCGAGATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240 |
|            | AGTGTGATTT GACATGTGCT ATAGAATCAC AGAGAACAAT AATCATGTTA TGGTTTTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300 |
| 20         | TATCGCCTGG GTGATTTTCT AAGATTTCTT ATTATTCTCT CAATTGCTAT CTTTATCAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360 |
| 30         | GAGATAGAAA GCAATATAAG AAAGCTCTGG GAGTATTAAA TAATAGACAC TTAAATTGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420 |
|            | CTARATTGTG TCCAGCATAG TGAGCATGTT CAAAACTTGT TTTACCCCCC TTTTATGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480 |
| 35         | CTTTAGTTTC TAAGCAACAT AAATAGCTAT TCTTAAGCAT TGGGTTGAAT GGATAGAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540 |
|            | ATTAGACTGT TAAAATGAGT TGTAAACTCT ACTGAAGATA ATTCAGGTAA CATCATAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600 |
|            | ATTACTTAAT ACTAATCTTT ACATTTTAAG AATTTACTCC TATCATTCAG TAGATGTACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660 |
| 40         | AACTATACAT CCAACGTATA ATAAAGTTTA TAAGGATAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 700 |
|            | (2) INFORMATION FOR SEQ ID NO:9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 45         | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 73 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 50         | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|            | (iii) HYPOTHETICAL: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 66         | (iv) ANTI-SENSE: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 55         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 60         | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|            | ACTAGATGGC ACAAAGTAAT AAGATTTGCT CAAGCATTCA TTCAAAATCA CCTCCATTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60  |
| <i>( E</i> | TTAACCTCTG CAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73  |
| 65         | (2) INFORMATION FOR SEQ ID NO:10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|            | (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |

- 25 -

| 5          | <ul><li>(A) LENGTH: 117 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| J          | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                         |     |
|            | (iii) HYPOTHETICAL: NO                                                                                                                    |     |
| 10         | (iv) ANTI-SENSE: NO                                                                                                                       |     |
| 15         | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1117                                                                                       |     |
|            | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:                                                                                                  |     |
| 20         | CTTTGGTCCA CTTTTCATCG ACCAGAGTTG GTCCGACCAG CCTTGGAAAA CTCACTGAAA                                                                         | 6   |
|            | AAAGCTCAAT TGGACTATGT TGACCTCTAT CTTATTCATT CTCCAATGTC TCTAAAG                                                                            | 11  |
| 25         | (2) INFORMATION FOR SEQ ID NO:11:                                                                                                         |     |
| <b>4</b> J | (i) SEQUENCE CHARACTERISTICS:                                                                                                             |     |
| 30         | (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                           |     |
|            | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                         |     |
| 35         | (iii) HYPOTHETICAL: NO                                                                                                                    |     |
| <i>33</i>  | (iv) ANTI-SENSE: NO                                                                                                                       |     |
| 40         |                                                                                                                                           |     |
| 40         | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:                                                                                                  |     |
|            | GTATGCAGTT TGTATGAGCA TAAAATTGCG CTTCTGCTGT CATTATAAAC ATTGTTTATC                                                                         | 60  |
| 45         | TGGATAGTTG AACAGAGCTT TTTATTAGGA GGATGTAGGG ATTATCACAC AGAAGAAGAA                                                                         | 120 |
|            | CCGTAAGTGG AACACCTAAT TTCCTTTCTT TC                                                                                                       | 152 |
| <b>5</b> 0 | (2) INFORMATION FOR SEQ ID NO:12:                                                                                                         |     |
| 50         | (i) SEQUENCE CHARACTERISTICS:                                                                                                             |     |
| 55         | (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                           |     |
|            | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                         |     |
| 60         | (iii) HYPOTHETICAL: NO                                                                                                                    |     |
| •••        | (iv) ANTI-SENSE: NO                                                                                                                       |     |
| <i>.</i> . |                                                                                                                                           |     |
| 65         | (will provide procediments)                                                                                                               |     |

- 26 -

|         | ATATAATATT TGTAAGAGAT TAGAGGAAGC CTGTCTCCTG AATACATTCC TTATACCTTC                     |     |
|---------|---------------------------------------------------------------------------------------|-----|
|         | ATATGTAAAA CACTTAGCAC ATATGAGGGG                                                      | 60  |
| 5       | ATATGTAAAA CACTTAGCAC ATATCACTTT CTGGAGCATT GTACCACCTG TCTCATGGAG                     | 120 |
|         | SATTAGTGTC CTTAAAGGTA CCTGGGGTTA CAGCTATGAG TGGAGAAATT AATTTGTGAC                     | 180 |
|         | ATCATTAAAA TGACTGCTTC TATTTCAG                                                        | 208 |
| 10      | (2) INFORMATION FOR SEQ ID NO:13:                                                     |     |
|         | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs                               |     |
|         | (B) TYPE: nucleic acid                                                                |     |
| 15      | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                         |     |
|         | (ii) MOLECULE TYPE: DNA (genomic)                                                     |     |
| 20      | (iii) HYPOTHETICAL: NO                                                                |     |
| 20      | (iv) ANTI-SENSE: NO                                                                   |     |
|         |                                                                                       |     |
| 25      | (ix) FEATURE: (A) NAME/KEY: exon                                                      |     |
|         | (B) LOCATION: 178                                                                     |     |
|         | (xi) SECUENCE DECENTAGE                                                               |     |
| 30      | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:                                              |     |
|         | CCAGGTGAGG AACTTTCACC AACAGATGAA AATGGAAAAG TAATATTTGA CATAGTGGAT CTCTGTACCA CCTGGGAG | 60  |
| 35      |                                                                                       | 78  |
| J.J     | 2) INFORMATION FOR SEQ ID NO:14:                                                      |     |
|         | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 98 base pairs                               |     |
| 40      | (B) TYPE: nucleic acid (C) STRANDEDNESS: single                                       |     |
|         | 'D) TOPOLOGY: linear                                                                  |     |
|         | (ii) MOLECULE TYPE: DNA (genomic)                                                     |     |
| 45      | (iii) HYPOTHETICAL: NO                                                                |     |
|         | (iv) ANTI-SENSE: NO                                                                   |     |
| 50      |                                                                                       |     |
|         | 4.10                                                                                  |     |
|         | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:                                              |     |
| 55      | STGAGTGCTT GGCGGAGAGG ACACAGAGAA GGATGACAAA AAGAGAAAAT CTGTTTCCCA                     | 60  |
|         | GGTTCGATAG GAAAGAATGG AATATGCACC ATTAGATC                                             | 98  |
|         | (2) INFORMATION FOR SEQ ID NO:15:                                                     |     |
| 60      | (i) SEQUENCE CHARACTERISTICS:                                                         |     |
|         | (A) LENGTH: 249 base pairs (B) TYPE: nucleic acid                                     |     |
| 65      | (C) STRANDEDNESS: single (C) TOPOLOGY: linear                                         |     |
| <i></i> | (ii) MOLECULE TYPE: DNA (genomic)                                                     |     |

- 27 -

|          | - 27 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|          | (iii) HYPOTHETICAL: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|          | (iv) ANTI-SENSE: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|          | (vi) STOUTHOUT DESCRIPTION OF THE PROPERTY OF |     |
| 10       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|          | GACAGGAATC TCTTTCCTTG CTTGTGCATT AATCTATGCA GTTTCCTAAG GAAGAGATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60  |
|          | AAATTCTTAC TCTTGCTGCC TCTATCTTCT TCCCCTATTT GCTGTTTGAA TTTTTCTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 |
| 15       | TTTGACAATC ACTGCTAGCT ATTTTCATTG TCATACTTTG AAAGTTGTTG CTCTCACAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180 |
|          | TCTGTCTTGC ATTTACCGTG ATTTGCAGCC AACTGCACAA ATAATTCCTC ACAACCCCTT TCTCCACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 240 |
| 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 249 |
|          | (2) INFORMATION FOR SEQ ID NO:16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 25       | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 123 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|          | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 30       | (iii) HYPOTHETICAL: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •   |
|          | (iv) ANTI-SENSE: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 35       | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 40       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|          | GCCATGGAGA AGTGTAAGGA TGCAGGATTG GCCAAGTCCA TTGGGGTGTC AAACTTCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60  |
| 4.5      | CGCAGGCAGC TGGAGATGAT CCTCAACAAG CCAGGACTCA AGTACAAGCC TGTCTGCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 |
| 45       | CAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123 |
|          | (2) INFORMATION FOR SEQ ID NO:17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123 |
| 50<br>55 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 138 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDMESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| <i>J</i> | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|          | (iii) HYPOTHETICAL: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 60       | (iv) ANTI-SENSE: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 65       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|          | GTGAGCTCCC TTGGCCTTCT CTCCTTTCCC TTCTTCATCC CCCCTCTTCC TCCCCTCTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |

- 28 -

|                  | CCAAATATCT GTTTGTTTTG TCCCAGTTAT CTTTGTGAAG TAGAAGATTA TCTAGAGAGC                                                                 | 120 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 5                | AAAGCTTCTG TCAAGAAA                                                                                                               | 138 |
| ,                | (2) INFORMATION FOR SEQ ID NO:18:                                                                                                 | 136 |
| 10               | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 189 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| 15               | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|                  | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|                  | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 20               |                                                                                                                                   |     |
|                  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:                                                                                          |     |
| 25               |                                                                                                                                   |     |
|                  | ATTTCCATTT ATACTTTAG AAGATATATA AAATTTATTT CTATGAAAAA GGTTATTACT                                                                  | 60  |
|                  | TGACAATAAT ATCCTCAGCT CAAATATAAT GCTATACTGA TTATTATTCA GCTTCCTTAC                                                                 | 120 |
| 30               | TTTCATCTTT TCAATATTAA CATAACTATT TCATATAAAT TGATGCTTCT CTCTTTTGGT                                                                 | 180 |
|                  | CAACTGCAG                                                                                                                         | 189 |
| 35               | (2) INFORMATION FOR SEQ ID NO:19:                                                                                                 |     |
| <i>3</i> 3<br>40 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 110 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| 40               | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|                  | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 45               | (iv) ANTI-SENSE: NO                                                                                                               |     |
|                  |                                                                                                                                   |     |
| <b>5</b> 0       | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1110                                                                               |     |
|                  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:                                                                                          |     |
| <b>5</b> 5       | GTAGAATGTC ATCCGTATTT CAACCGGAGT AAATTGCTAG ATTTCTGCAA GTCGAAAGAT                                                                 | 60  |
|                  | ATTGTTCTGG TTGCCTATAG TGCTCTGGGA TCTCAACGAG ACAAACGATG                                                                            | 60  |
| 60               | (2) INFORMATION FOR SEQ ID NO:20:                                                                                                 | 110 |
|                  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 136 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single                       |     |
| 65               | (D) TOPOLOGY: linear                                                                                                              |     |
|                  | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |

- 29 -

|     | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 5   | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 10  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:                                                                                          |     |
|     | GTAATAAAAA CAATGGGACC TTTACATAAA CCTTCATTTT GCAGAAAATT TTTTAGTCAG                                                                 | 60  |
| 1.5 | AGCATCCTCA GTTTCCTGTA GTTAAGTTTC AAGTGGCTCA TGGAGAGGAA AGAGAATTGC                                                                 | 120 |
| 15  | GTTTCTGACG AGATCT                                                                                                                 | 136 |
|     | (2) INFORMATION FOR SEQ ID NO:21:                                                                                                 |     |
| 20  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 66 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear     |     |
| 25  | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|     | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 30  | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 35  | (x1) SEQUENCE DESCRIPTION: SEQ ID NO:21:                                                                                          |     |
|     | TTTAGGGAGC TGCCTAACAA ACTATCGGCA GCCTCAGGGC CTCAGCCTTT CTGCCTTTCC                                                                 | 60  |
|     | TTCCAG                                                                                                                            | 66  |
| 40  | (2) INFORMATION FOR SEQ ID NO:22:                                                                                                 |     |
| 45  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 166 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
|     | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 50  | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|     | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 55  | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1166                                                                               |     |
| 60  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:                                                                                          |     |
|     | GGTGGACCCG AACTCCCCGG TGCTCTTGGA GGACCCAGTC CTTTGTGCCT TGGCAAAAAA                                                                 | 60  |
| 65  | GCACAAGCGA ACCCCAGCCC TGATTGCCCT GCGCTACCAG CTGCAGCGTG GGGTTGTGGT                                                                 | 120 |
|     | CCTGGCCAAG AGCTACAATG AGCAGCGCAT CAGACAGAAC GTGCAG                                                                                | 166 |

- 30 -

|    | <b>30</b> °                                                                                                                       |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (2) INFORMATION FOR SEQ ID NO:23:                                                                                                 |     |
| 5  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 136 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|    | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|    | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 15 |                                                                                                                                   |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:                                                                                          |     |
| 20 | STGAGGAGCG GGGCTGTGGG CCTCAGGTCT CCTGCACAGT GTCCTTCACA CGTGTGCTTC                                                                 |     |
|    | TTGTAAGGCT CTCAGGACAG CCTTGGGCCA GCTCCATTTC CCTGTATTTC CCATATGAAT                                                                 | 60  |
|    | SCTTTGCGTG CATCCT                                                                                                                 | 120 |
| 25 | (2) INFORMATION FOR SEQ ID NO:24:                                                                                                 | 136 |
| 30 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 286 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| 35 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|    | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 40 | (iv) ANTI-SENSE: NO                                                                                                               |     |
|    |                                                                                                                                   |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:                                                                                          |     |
| 45 | CCTATCATG TGGGCACAAT GTCAGCGCTG TTTCTTCTCC ATTTTCTGTT GAAATTTTCT                                                                  | 60  |
|    | CTTTGTCTGC AGAGTTGCAC AGTTTCAATA CATAATATCT AGGAATGGAT TTCTGCTTAT                                                                 | 120 |
| 50 | TTTTCGTGAG CTATTCATTG ACCCACCTGA GTGTTTAGAG CTGACTTCTA TAACTGTTTA                                                                 | 180 |
|    | AAACTTACCA ATATTTTAAG TATTGTCTCT GCACCCTACT GTCTAATATA CTTGGGGATT                                                                 | 240 |
|    | CACAACTGGC AATCTAAAAA TAATAAAAGT TTTTTATTTC TGATAG                                                                                | 286 |
| 55 | .2) INFORMATION FOR SEQ ID NO:25:                                                                                                 |     |
| 60 | (i) SEQUENCE CHARACTERISTICS:  A) LENGTH: 83 base pairs  B) TYPE: nucleic acid  C) STRANDEDNESS: single  D) TOPOLOGY: linear      |     |
|    | (ii) MCLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 55 | (iii) HYPOTHETICAL: NO                                                                                                            |     |
|    | (iv) ATTI-SENSE: NO                                                                                                               |     |

- 31 -

| 5  | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 183                                                                                |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 10 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: GTTTTTGAGT TCCAGTTGAC TGCAGAGGAC ATGAAAGCCA TAGATGGCCT AGACAGAAAT                        | 60  |
| 10 |                                                                                                                                   | 60  |
|    | CTCCACTATT TTAACAGTGA TAG                                                                                                         | 83  |
| 15 | (2) INFORMATION FOR SEQ ID NO:26:                                                                                                 |     |
|    | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs                                                                          |     |
|    | (B) TYPE: nucleic acid (C) STRANDEDNESS: single                                                                                   |     |
| 20 | (D) TOPOLOGY: linear                                                                                                              |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
| 25 | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 23 | (iv) ANTI-SENSE: NO                                                                                                               |     |
|    |                                                                                                                                   |     |
| 30 |                                                                                                                                   |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:                                                                                          |     |
|    | GTAAGTTTCC TTTGTAAATG GGTGATCTAA TTTATTTCTG GAGAAGGAAT GTAGGATGGG                                                                 | 60  |
| 35 | TGTTGAGAGT GACCTCCATA CCAGAGGGAC AGAGGCCAAT GTGAGTCAGA GGTGAGACTG                                                                 | 120 |
|    | GAACTCTCCT GCTGGATTCA CTCCAGAGCT CTGTTCTCTG GCAGGGTGAG TGGGCAGGGA                                                                 | 180 |
| 40 | TCAGCATGGG TCAACCTGTG CCTCTGCTCT CCTGACTCCA TGGAACTTTC CAGAGCAGCC                                                                 | 240 |
|    | AACATCATTG CCAAGTCTGC ACGTTCCATA TAGGCCTGGT GTTTCTACCA CTGGACATGC                                                                 | 300 |
|    | TGTGGATACT GCCCATGTGA CTTCATTAGA TGTTTCCAAA TCTGTGCTTA TATCACATTG                                                                 | 360 |
| 45 | TCCCAAACCT GCTCAGCTCC TTATCAAATC AAAAACATTT CCATCAACTT TGTGGTCCAG                                                                 | 420 |
|    | GTGCCAATTC CCACCTCCTT CATATGGAAT TGCTTGCTAG ATCCTGTCAA TTCAGCATCT                                                                 | 480 |
| 50 | TTTATTATTT CAAATGTTTT TCCTCCTTCT CCTTGCACGT TTGTTCATGC CCCAAACTCT                                                                 | 540 |
| 50 | GCTTTTGCCT CCAGAAAGCC TTCCTTAGTG GAGTGAATAG GAGTGCTTGT CCTTGATTTC                                                                 | 600 |
|    | CTGCAATATG GAGCTCTCAA GGCAGAGAAT TTAAAAAAAT TTAAAATCAA GGAGTGTGAG                                                                 | 660 |
| 55 | TGTGGAGGCA GAAGCTCCAT TGTTGTATAT AATTTGTAGC TGATAAAAGA TCT                                                                        | 713 |
|    | (2) INFORMATION FOR SEQ ID NO:27:                                                                                                 |     |
| 60 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 415 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| 65 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|    | (iii) HYPOTHETICAL: NO                                                                                                            |     |

- 32 -

#### (iv) ANTI-SENSE: NO

| 5        |                                                                                                                                   |     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|          | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:                                                                                          |     |
| 10       | TTTAATGCAC TGTAGCTCCT TGGATATTAG ACCCTATATC ATATATAACA ATTTACATTT                                                                 | 6   |
|          | CTGAATCTTA CAAAATATAT TGCATACAGT AGGCAGTAGC AGGTAATAAG TAAAGTAACA                                                                 | 12  |
|          | AAAGAAAGTA TAATCAGAGT ATCTCTGCTC TGCTGACAGA TGTACAGGAA TATACTTGAA                                                                 | 18  |
| 15       | TATTTGACTT TGTGTGTTTT ACGTGTTAAC TTCCAGATAA GGGAATATGA TTGAATAATT                                                                 | 24  |
|          | TATTATTTTG AAAATACTGT ATTATGAAGC CATGTTCATA AAGGTAAGAA AGGCAGATTC                                                                 | 30  |
| 20       | TACAACTAGT CAGACAACTT AACATTCATA CTAATGACAG CTTCATTGAA ATCACTTTAC                                                                 | 36  |
|          | TACTCCCCTA GTAATGGAGT CATTGCATTT ATATTATACA TTATTCTCTT TTCAG                                                                      | 41  |
|          | (2) INFORMATION FOR SEQ ID NO:28:                                                                                                 |     |
| 25       | (i) SEQUENCE CHARACTERISTICS:                                                                                                     |     |
|          | (A) LENGTH: 230 base pairs (B) TYPE: nucleic acid                                                                                 |     |
| 30       | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                     |     |
|          | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|          | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 35       | (iv) ANTI-SENSE: NO                                                                                                               |     |
| 40       | (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1230                                                                               |     |
|          | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:                                                                                          |     |
| 45       | TTTTGCTAGC CACCCTAATT ATCCATATTC AGATGAATAT TAACATGGAG GGCTTTGCCT                                                                 | 60  |
|          | GATGATGTCT ACCAGAAGGC CCTGTGTGTG GATGGTGACG CAGAGGACGT CTCTATGCCG                                                                 | 120 |
| 50       | GTGACTGGAC ATATCACCTC TACTTAAATC CGTCCTGTTT AGCGACTTCA GTCAACTACA                                                                 | 180 |
| 50       | GCTGAGTCCA TAGGCCAGAA AGACAATAAA TTTTTATCAT TTTGAAATAA                                                                            | 230 |
|          | (2) INFORMATION FOR SEQ ID NO:29:                                                                                                 |     |
| 55<br>60 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 109 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| _ •      | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                 |     |
|          | (iii) HYPOTHETICAL: NO                                                                                                            |     |
| 65       | (iv) ANTI-SENSE: NO                                                                                                               |     |

- 33 -

|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:                                                                                     |     |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|
| 5  | TTGAATGTTT TCTCAAAGAT TCTTTACCTA CTCTGTTCTG TAGTGTGTGT TTTCTTCTGG                                                            | 60  |
|    | CTCAGAAGTG TGTGTGTGT TGTGTGTGCT TTCTTCTGGC TCAACAGGG                                                                         | 109 |
| 10 | (2) INFORMATION FOR SEQ ID NO: 30:                                                                                           |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid                                               |     |
| 15 | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
| 20 | (iii) HYPOTHETICAL: NO                                                                                                       |     |
|    | (iv) ANTI-SENSE: YES                                                                                                         |     |
|    |                                                                                                                              |     |
| 25 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:                                                                                     |     |
|    | TTTAGCTTTA CACACTGCTG TT                                                                                                     | 22  |
| 30 | (2) INFORMATION FOR SEQ ID NO:31:                                                                                            |     |
|    | (i) SEQUENCE CHARACTERISTICS:                                                                                                |     |
| 35 | (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                               |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
| 40 | (iii) HYPOTHETICAL: NO                                                                                                       |     |
|    | (iv) ANTI-SENSE: YES                                                                                                         |     |
| 45 |                                                                                                                              |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:                                                                                     |     |
| 50 | TCCAAAGCTT TACTTCTCGG                                                                                                        | 20  |
|    | (2) INFORMATION FOR SEQ ID NO:32:                                                                                            |     |
| 55 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |     |
| 60 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
| 30 | (iii) HYPOTHETICAL: NO                                                                                                       |     |
|    | (iv) ANTI-SENSE: YES                                                                                                         |     |

- 34 -(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32: GATGAAAAGT GGACCA 16 5 2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single 10 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 15 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: ATCTGTTGGT GAAAGTTC 18 25 2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 35 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: 45 TOCAGCTGCC TGCGGT 16 2) INFORMATION FOR SEQ ID NO:35: (i) SEQUENCE CHARACTERISTICS: 50 (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 55 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ACTI-SENSE: YES 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: 65 CTTGTACTTG AGTCCTG 17

- 35 -(2) INFORMATION FOR SEO ID NO: 36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid 5 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 10 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: 20 CTCCGGTTGA AATACGGA :3 (2) INFORMATION FOR SEQ ID NO: 37: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) AMTI-SENSE: YES 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37: 40 CATCGTTTGT CTCGTTGAGA 20 :2) INFORMATION FOR SEQ ID NO:38: 45 (i) SEQUENCE CHARACTERISTICS: A) LENGTH: 22 base pairs
3) TYPE: nucleic acid C) STRANDEDNESS: single : TOPOLOGY: linear 50 (ii) MCLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 55 (iv) ANTI-SENSE: YES 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39: TCACTGTTAA AATAGTGGAG AT 22 (2) INFORMATION FOR SEQ ID NO:39: 65 (i) SEQUENCE CHARACTERISTICS: A) LENGTH: 17 base pairs

- 36 -

```
(B) TYPE: nucleic acid
                  (C) STRANDEDNESS: single
                  (D) TOPOLOGY: linear
 5
          (ii) MOLECULE TYPE: DNA (genomic)
         (iii) HYPOTHETICAL: NO
          (iv) ANTI-SENSE: YES
10
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
15
      ATCTGAATAT GGATAAT
                                                                                       17
      (2) INFORMATION FOR SEQ ID NO:40:
20
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
                  (D) TOPOLOGY: linear
25
           (ii) MOLECULE TYPE: DNA (genomic)
          (iii) HYPOTHETICAL: NO
30
           (iv) ANTI-SENSE: YES
35
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
      TTCTCGGAAC CTGGAGGAGC
                                                                                       20
      (2) INFORMATION FOR SEQ ID NO:41:
40
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 20 base pairs
                  'B) TYPE: nucleic acid
                  (C) STRANDEDNESS: single
45
                  (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: DNA (genomic)
          (iii) HYPOTHETICAL: NO
50
           (iv) ANTI-SENSE: YES
55
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
      GACACAGTAC CTTTGAAGTG
                                                                                       20
60
       (2) INFORMATION FOR SEQ ID NO: 42:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
65
                  (D) TOPOLOGY: linear
```

- 37 -(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 5 (iv) ANTI-SENSE: YES 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: TGGACCAAAG CTGCAGAGGT 20 (2) INFORMATION FOR SEQ ID NO:43: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 25 (iv) ANTI-SENSE: YES 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: CCTCACCTGG CTGAAATAGA 20 35 (2) INFORMATION FOR SEQ ID NO:44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid 40 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 45 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: AAGCACTCAC CTCCCAGGTG 20 55 (2) INFORMATION FOR SEQ ID NO:45: (i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 60 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 65

(iii) HYPOTHETICAL: NO

- 38 -

(iv) ACTI-SENSE: YES

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: GACATTCTAC CTGCAGTTGA 20 10 .2) INFORMATION FOR SEQ ID NO:46: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 15 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 20 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46: CTCAAAAACC TATCAGAAA 19 30 .2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: DNA (genomic) 40 :iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47: 50 GGAAACTTAC CTATCACTGT 20 2) INFORMATION FOR SEQ ID NO:48: (i) SEQUENCE CHARACTERISTICS: 55 A) LENGTH: 20 base pairs 3) TYPE: nucleic acid C) STRANDEDNESS: single C: TOPOLOGY: linear 60 (ii) MCLECULE TYPE: DNA (genomic) :iii) HYPOTHETICAL: NO (iv) A:TI-SENSE: YES 65

- 39 -

|    | (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO:48:                                                                                          |    |
|----|----------|------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | GCTAGCAA | AA CTGAAAAGAG                                                                                                                | 20 |
| J  | (2) INFO | RMATION FOR SEQ ID NO:49:                                                                                                    |    |
| 10 | (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
| 15 | (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
|    | (iii)    | HYPOTHETICAL: NO                                                                                                             |    |
|    | (iv)     | ANTI-SENSE: YES                                                                                                              |    |
| 20 |          |                                                                                                                              |    |
|    | (ix)     | SEQUENCE DESCRIPTION: SEQ ID NO:49:                                                                                          |    |
| 25 | GAGAAATA | TT CATTCTG                                                                                                                   | 17 |
|    | (2) INFO | RMATION FOR SEQ ID NO:50:                                                                                                    |    |
| 30 | (i)      | SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear     |    |
| 35 | (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
|    | (iii)    | HYPOTHETICAL: NO                                                                                                             |    |
| 40 | (iv)     | ANTI-SENSE: YES                                                                                                              |    |
| 45 |          | SEQUENCE DESCRIPTION: SEQ ID NO:50:                                                                                          | 18 |
|    |          | RMATION FOR SEQ ID NO:51:                                                                                                    | 10 |
| 50 |          | SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear     |    |
| 55 | (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
|    |          | HYPOTHETICAL: NO                                                                                                             |    |
| 60 |          | ANTI-SENSE: YES                                                                                                              |    |
|    |          |                                                                                                                              |    |
| 65 | (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO:51:                                                                                          |    |
|    | GATGAGGG | TG CAAATAA                                                                                                                   | 17 |

- 40 -

|           | (2) INFORMATION FOR SEQ ID NO:52:                                                                                                |    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|----|
| 5         | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
| 10        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |    |
|           | (iii) HYPOTHETICAL: NO                                                                                                           |    |
| 15        | (iv) ANTI-SENSE: YES                                                                                                             |    |
| 20        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:                                                                                         |    |
| 20        | GGAGTGTTAA TTAATAACAG TTT                                                                                                        | 23 |
|           | (2) INFORMATION FOR SEQ ID NO:53:                                                                                                | 23 |
| 25        | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
| 30        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |    |
|           | (iii) HYPOTHETICAL: NO                                                                                                           |    |
| 35        | (iv) ANTI-SENSE: YES                                                                                                             |    |
| 40        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:                                                                                         |    |
|           | CAGAGATTAC AAAAACAAT                                                                                                             | :9 |
| 45        | (2) INFORMATION FOR SEQ ID NO:54:                                                                                                |    |
| 50        | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
|           | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |    |
| 55        | (iii) HYPOTHETICAL: NO                                                                                                           |    |
| <i>JJ</i> | (iv) ANTI-SENSE: YES                                                                                                             |    |
| 60        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:                                                                                         |    |
|           | TGCCTTTTTA CATTTCAAT CA                                                                                                          |    |
| 65        | (2: INFORMATION FOR SEQ ID NO:55:                                                                                                | 22 |
|           | (i) SEQUENCE CHARACTERISTICS:                                                                                                    |    |
|           |                                                                                                                                  |    |

- 41 -(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 10 (iv) ANTI-SENSE: YES 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55: ACACATAATT TAAAGGA 17 (2) INFORMATION FOR SEQ ID NO:56: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 30 (iv) ANTI-SENSE: YES 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: TTAAATTATT CAAAAGG 17 40 (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 45 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 50 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57: AAGAGAAATA TTCATTTCTG 20 60 (2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

65

- 42 -

```
(ii) MOLECULE TYPE: DNA (genomic)
          (iii) HYPOTHETICAL: NO
 5
           (iv) ANTI-SENSE: YES
10
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
      CCCCCCCC CACCCCTGCA
                                                                                            20
15
      (2) INFORMATION FOR SEQ ID NO:59:
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
20
           (ii) MOLECULE TYPE: DNA (genomic)
25
          (iii) HYPOTHETICAL: NO
           (iv) ANTI-SENSE: YES
30
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:
```

18

CTGCCGTGAT AATGCCCC

- 43 -

## **CLAIMS**

## We claim:

- An isolated nucleotide sequence encoding type 5 17β-hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 1 or a complement thereof, to hybridize under stringent conditions to the coding region of SEQ ID No. 1 or a complement thereof and said sequence encoding an enzyme which catalyzes the conversion of progesterone to 20∞-hydroxyprogesterone and the conversion of 4-androstenedione to testosterone.
  - 2. The nucleotide sequence, as recited in claim 1, wherein said sequence is the coding region of SEQ ID No. 1.
- 15 3. A recombinant expression vector comprising a promoter sequence and a nucleotide sequence in accordance with claim 1.
  - 4. A recombinant expression vector comprising a promoter sequence and a nucleotide sequence in accordance with claim 2.
  - 5. A recombinant host cell, transformed or transfected with the vector of claim 4.
  - 6. The recombinant host cell of claim 5, wherein said host cell is a eukaryotic cell.
  - 7. A recombinant host cell, transformed or transfected with the vector of claim 3.
  - 8. The recombinant host cell of claim 7, wherein said host cell is a eukaryotic cell.
  - 9. The recombinant host cell of claim 8, wherein a nucleotide sequence that hybridizes under stringent conditions with SEQ ID No. 1 or its complement is integrated into the genome of said host cell.

20

25

10

15

- 10. The recombinant host cell of claim 9, wherein said nucleotide sequence is located on a recombinant vector.
- 5 11. The recombinant host cell, as recited in claim 8, wherein said host cell is capable of expressing a biologically active type 5 17β-hydroxysteroid dehydrogenase.
  - 12. An isolated nucleotide sequence comprising at least ten consecutive nucleotides identical to 10 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
  - 13. The nucleotide sequence, as recited in claim 12, wherein said sequence comprises at least fifteen consecutive nucleotides identical to 15 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
  - 14. The nucleotide sequence, as recited in claim 13, wherein said sequence comprises at least twenty consecutive nucleotides identical to 20 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
- 20 15. The nucleotide sequence, as recited in claim 13, wherein said sequence comprises at least thirty consecutive nucleotides identical to 30 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
- An oligonucleotide sequence selected from the group consisting of 16. 25 TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30). TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA (SEQ ID No. 32). ATCTGTTGGTGAAAGTTC (SEQ ID No. TCCAGCTGCCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID No. 35). CTCCGGTTGAAATACGGA (SEO ID No. 36). 30 CATCGTTTGTCTCGTTGAGA (SEO ID No. 37). TCACTGTTAAAATAGTGGAGAT (SEO ID No. 38). and ATCTGAATATGGATAAT (SEQ ID No. 39).

- 45 -

| 17.  | An   | oligonucle | otide : | sequence | selected | from    | the g | group | cons | isting | of   |
|------|------|------------|---------|----------|----------|---------|-------|-------|------|--------|------|
| TTCT | `CGG | AACCTGC    | AGGA    | .GC      | (SEQ     | ]       | ID    | N     | o.   |        | 40), |
| GACA | ACAC | STACCTTI   | GAAG    | TG       | (SEQ     | ]       | D     | N     | Ο.   | •      | 41), |
| TGGA | ACCA | AAGCTG     | CAGAC   | GT       | (SEQ     | •       | ID    | N     | o.   | •      | 42), |
| CCTC | CACC | TGGCTGA    | AATA    | GA       | (SEQ     | 1       | D     | N     | ο.   |        | 43), |
| AAG  | CACT | CACCTCC    | CCAGG   | TG       | (SEQ     | 1       | D     | N     | О.   | •      | 44), |
| GAC  | ATTC | TACCTGC    | CAGTT   | GA (SEQ  | ID No. 4 | 5), CT( | CAAA  | AACC  | TAT  | CAGA   | AA   |
| (SEQ | ID   | No. 46),   | GGAA    | ACTTAC   | CTATCA   | CTGT    | (SEQ  | ID    | No.  | 47),   | and  |
| GCTA | \GCA | AAACTG     | 44440   | GAG (SEC | ID No. 4 | 8).     |       |       |      |        |      |

10

5

An oligonucleotide sequence selected from the group consisting of GAGAAATATTCATTCTG (SEQ ID No. 49), CGAGTCCTGATAAAGCTG (SEO No. **GATGAGGGTGCAAATAA** 50). (SEO No. ID 51). **GGAGTGTTAATTAATAACAGTTT** (SEO ID No. 52), 15 CAGAGATTACAAAAACAAT (SEQ ID No. 53), TGCCTTTTTACATTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA TTAAATTATTCAAAAGG (SEQ (SEO ID No. 55), ID No. 56), **AAGAGAAATATTCATTTCTG** (SEQ ID No. 57), CCCCTCCCCCACCCCTGCA No. (SEQ ID 58), and 20 CTGCCGTGATAATGCCCC (SEQ ID No. 59).

## 19. A recombinant expression vector comprising:

a promoter sequence; and

an oligonucleotide sequence selected from the group consisting of 25 TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30), TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA 32), ATCTGTTGGTGAAAGTTC (SEQ ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID No. 35), CTCCGGTTGAAATACGGA (SEQ ID No. 36), 30 CATCGTTTGTCTCGTTGAGA ID No. (SEO 37), **TCACTGTTAAAATAGTGGAGAT** (SEQ ID No. 38), and ATCTGAATATGGATAAT (SEQ ID No. 39).

5

10

- 46 -

## 20. A recombinant expression vector comprising:

a promoter sequence; and

| an      | oligonucleotide | sequence  | selected   | from th       | e group  | consisting of |
|---------|-----------------|-----------|------------|---------------|----------|---------------|
| TTCTCG  | GAACCTGGAG(     | GAGC      | (SEQ       | ID            | No       | . 40),        |
| GACACA  | GTACCTTTGAA     | AGTG      | (SEQ       | ID            | No       | . 41),        |
| TGGACC  | AAAGCTGCAG      | AGGT      | (SEQ       | ID            | No       | . 42),        |
| CCTCAC  | CTGGCTGAAA1     | TAGA      | (SEQ       | ID            | No       | . 43),        |
| AAGCAC  | TCACCTCCCAC     | GGTG      | (SEQ       | ID            | No       | . 44),        |
| GACATT  | CTACCTGCAG1     | TGA (SEQ  | ID No. 4   | 5), CTCA      | AAAACCI  | ATCAGAAA      |
| (SEQ ID | No. 46), GG/    | AAACTTAG  | CCTATCA    | CTGT (        | SEQ ID N | No. 47), and  |
| GCTAGC  | AAAACTGAAA      | AGAG (SEC | Q ID No. 4 | l <b>8</b> ). |          |               |

## 21. A recombinant expression vector comprising:

a promoter sequence; and

15 an oligonucleotide sequence selected from the group consisting of GAGAAATATTCATTCTG (SEQ ID No. 49), CGAGTCCTGATAAAGCTG (SEQ ID No. 50). GATGAGGGTGCAAATAA (SEO ID No. 51), **GGAGTGTTAATTAATAACAGTTT** (SEO ID No. 52), CAGAGATTACAAAAACAAT (SEO ID No. 53), TGCCTTTTTACATTTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA 20 ID No. 55), TTAAATTATTCAAAAGG (SEQ ID No. 56), **AAGAGAAATATTCATTTCTG** (SEQ ID No. 57), CCCCTCCCCCACCCCTGCA (SEQ ID No. 58), and CTGCCGTGATAATGCCCC (SEQ ID No. 59).

25

22. A method of blocking synthesis of type 5  $17\beta$ -HSD, comprising the step of: introducing an oligonucleotide selected from the group consisting of TTTAGCTTTACACACTGCTGTT (SEO ID No. 30). TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA 30 (SEQ ID No. 32), ATCTGTTGGTGAAAGTTC (SEQ ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID No. 35), CTCCGGTTGAAATACGGA (SEO ID No. 36). CATCGTTTGTCTCGTTGAGA (SEQ ID No. 37),

- 47 -

TCACTGTTAAAATAGTGGAGAT (SEQ ID No. 38), and ATCTGAATATGGATAAT (SEQ ID No. 39) into cells.

- 23. A method of blocking synthesis of type 5  $17\beta$ -HSD, comprising the step of:
- 5 introducing an oligonucleotide selected from the group consisting of TTCTCGGAACCTGGAGGAGC (SEQ  $\mathbf{ID}$ No. 40), GACACAGTACCTTTGAAGTG (SEQ ID No. 41), TGGACCAAAGCTGCAGAGGT (SEQ ID No. 42), CCTCACCTGGCTGAAATAGA (SEQ ID No. 43), 10 AAGCACTCACCTCCCAGGTG (SEQ ID No. 44), GACATTCTACCTGCAGTTGA (SEQ ID No. 45), CTCAAAAACCTATCAGAAA (SEQ ID No. 46), GGAAACTTACCTATCACTGT (SEQ ID No. 47), and

GCTAGCAAAACTGAAAAGAG (SEQ ID No. 48) into cells.

- 15 24. A method of blocking synthesis of type 5 17β-HSD, comprising the step of: introducing an oligonucleotide selected from the group consisting of GAGAAATATTCATTCTG (SEQ ID No. 49), CGAGTCCTGATAAAGCTG (SEQ ID No. GATGAGGGTGCAAATAA (SEO ID No. 51). **GGAGTGTTAATTAATAACAGTTT** (SEQ ID No. 52), 20 CAGAGATTACAAAAACAAT (SEQ ID No. 53), TGCCTTTTTACATTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA (SEQ ID No. 55), TTAAATTATTCAAAAGG ID (SEQ No. 56), **AAGAGAAATATTCATTTCTG** ID (SEQ No. 57), CCCCTCCCCCACCCCTGCA (SEQ ID No. 58), and 25 CTGCCGTGATAATGCCCC (SEQ ID No. 59) into cells.
  - 25. An isolated chromosomal DNA fragment which upon transcription and translation encodes type 5  $17\beta$ -hydroxysteroid dehydrogenase and wherein said fragment contains nine exons and wherein said fragment includes introns which are 16 kilobase pairs in length.

30

26. An isolated DNA sequence encoding type 5  $17\beta$ -hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 3 or a

complement thereof, to hybridize under stringent conditions to SEQ ID No. 3, or its complement.

27. A method for producing type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising 5 the steps of:

preparing a recombinant host transformed or transfected with the vector of claim 3; and

culturing said host under conditions which are conducive to the production of type 5  $17\beta$ -hydroxysteroid dehydrogenase by said host.

10

28. A method for determining the inhibitory effect of a test compound on the enzymatic activity of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the steps of:

providing type 5 17β-hydroxysteroid dehydrogenase;

contacting said type 5  $17\beta$ -hydroxysteroid dehydrogenase with said test compound; and thereafter

determining the enzymatic activity of said type 5  $17\beta$ -hydroxysteroid dehydrogenase in the presence of said test compound.

20 29. The method, as recited claim 28, wherein said step of determining enzymatic activity includes the steps of:

adding a substrate which is metabolized by said type 5  $17\beta$ -hydroxysteroid dehydrogenase; and

determining an amount of said substrate which is converted to metabolite.

25

30. A method of interfering with the expression of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

30

31. A method of interfering with the synthesis of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 1 or a

5

15

20

- 49 -

complement thereof.

- 32. A method of interfering with the expression of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.
- 33. A method of interfering with the synthesis of type 5 17β-hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary
   to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.
  - 34. A method for determining the inhibitory effect of antisense nucleic acids on the enzymatic activity of type 5  $17\beta$ -hydroxysteroid dehydrogenase, comprising the steps of:

providing a host system capable of expressing type 5  $17\beta$ -hydroxysteroid dehydrogenase;

introducing said antisense nucleic acids into said host system; and thereafter determining the enzymatic activity of said type 5 17β-hydroxysteroid dehydrogenase.



FIG. 1A



**SUBSTITUTE SHEET (RULE 26)** 



FIG. 2

| 49             | 97         | 145        | 193        | 241        | 289        | 337        |
|----------------|------------|------------|------------|------------|------------|------------|
| GGC<br>Gly     | GTT<br>Val | GGG<br>Gly | GTT<br>Val | GAA<br>Glu | GAG<br>Glu | GAC        |
| GAT (Asp (     | GAG<br>Glu | GCT        | CAG<br>Gln | AGA<br>Arg | CCA        | TTG        |
| AAT G          | CCA        | GAA<br>Glu | GAG<br>Glu | AAG Lys    | CGA<br>Arg | CAA        |
| CTA 1          | CCT        | ATA<br>Ile | GAG<br>Glu | GTG<br>Val | CAT        | GCT        |
| AAG CLys I     | GCA        | GCA        | AAT<br>Asn | AGT        | TTT        | AAA<br>Lys |
| GTA A          | TAT        | TTA        | AAT        | GGC<br>Gly | ACT        | AAA<br>Lys |
| TGT CYS V      | ACC<br>Thr | AAA<br>Lys | TAC        | GAT        | TCC        | CTG        |
| CAG 1          | GGC<br>Gly | ACC        | TTA        | GCA<br>Ala | TGG<br>Trp | TCA        |
| CAG C          | TTT<br>Phe | GTC        | CAT        | ATT        | CTT        | AAC<br>Asn |
| AAA C          | GGA<br>Gly | GAG<br>Glu | GCT        | AAG<br>Lys | AAG<br>Lys | GAA<br>Glu |
| ier I          | TTG        | TTG        | TCT        | AGC        | TCA        | TTG        |
| GAT TCC A      | GTA<br>Val | GCT        | GAT<br>Asp | CGA<br>Arg | ACT        | GCC<br>Ala |
|                | CCT        | AAA<br>Lys | ATA<br>Ile | ATC<br>Ile | TAC        | CCA        |
| GA A           | ATG        | AGT        | CAT        | GCC        | TTC<br>Phe | CGA        |
| CAGG           | TTC<br>Phe | aga<br>Afg | cgc<br>Arg | CTG        | ATA        | GTC        |
| GTGACAGGGA ATG | CAC        | CCG        | TTC        | GGA<br>Gly | GAC        | TTG        |
|                |            |            |            |            |            |            |

## FIG. 3A-1

| 385        | 433        | 481               | 529                                        | 577                                        | 625        | 673              | 721        |
|------------|------------|-------------------|--------------------------------------------|--------------------------------------------|------------|------------------|------------|
| GGT<br>Gly | ATA<br>Ile | GCA               | CTG                                        | AAC                                        | TTC<br>Phe | TCT<br>Ser       |            |
| CCA        | GAC        | GAT<br>Asp        | CAG<br>Gln                                 | TGC                                        | GAT        | GGA<br>G1y       | TTG        |
| AAG<br>Lys | TTT<br>Phe | AAG<br>Lys        | AGG                                        | GTC                                        | CTA        | CTG              | CTC        |
| CTA        | ATA<br>Ile | TGT<br>Cys        | cgc<br>Arg                                 | CCT<br>Pro                                 | TTG        | GCT              | GTG<br>Val |
| TCT        |            | AAG<br>Lys        | AAC                                        | AAG<br>Lys                                 | AAA<br>Lys | AGT              | CCG        |
| ATG        | AAA<br>Lys | GAG<br>Glu        | TTC                                        | 1<br>TAC<br>TYF                            | AGT        | TAT<br>Tyr       | TCC        |
| CCA        | GGA<br>Gly | ATG               |                                            | AAG<br>Lys                                 | CGG<br>Arg | GCC              | AAC<br>Asn |
| TCT<br>Ser | AAT        | GCC               | TCA                                        | ignat<br>CTC<br>Leu                        | AAC        | NG<br>GTT<br>Val | CCG        |
| CAT        | GAA<br>Glu | GAG<br>Glu        | GTG                                        | ly signation                               | TTC<br>Phe | CTG              | GAC        |
| ATT<br>Ile | GAT        | TGG<br>Trp        | ATT GGG GTG TCA AAC<br>Ile Gly Val Ser Asn |                                            | TAT<br>Tyr | GTT<br>Val       | GTG<br>Val |
| CTT        | ACA<br>Thr | ACC               | ATT                                        | AAG CCA<br>Lys Pro                         | CCG        | ATT<br>Ile       | TGG<br>Trp |
| TAT<br>Tyr | CCA        | ACC               | CK2<br>TCC<br>Ser                          | lucta<br>AAC<br>Asn                        | CAT        | GAT<br>Asp       | CGA<br>Arg |
| CIC        | TCA        | CK2<br>TGT<br>Cys | AAG                                        | CIC<br>Leu                                 | TGT        | AAA<br>Lys       | AAA<br>Lys |
| gac<br>Asp | CTT        | CTC               | GGA TTG GCC AAG<br>Gly Leu Ala Lys         | NM Aldo/Keto<br>GAG ATG ATC<br>Glu Met Ile | GAA<br>Glu | TCG              | GAC        |
| GTT<br>Val | GAA<br>Glu | GAT<br>Asp        | TTG                                        | ATG<br>Met                                 | GTA<br>Val | AAG<br>Lys       | CGA<br>Arg |
| TAT        | GAG        | GTG<br>Val        | GGA                                        | NM A<br>GAG<br>Glu                         | CAG<br>Gln | TGC              | CAA        |

## FIG. 3A-2

| 769                                                                                                                                | 817                                                                                                                         | 8 65                                                                               | 913                                                                                                                   | 961                            | 1012                                                                                   | 1072<br>1132<br>1192<br>1206                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAC CCA GTC CTT TGT GCC TTG GCA AAA AAG CAC AAG CGA ACC CCA GCC<br>Asp Pro Val Leu Cys Ala Leu Ala Lys Lys His Lys Arg Thr Pro Ala | CTG ATT GCC CTG CGC TAC CAG CTG CGT GGG GTT GTG GTC CTG GCC Leu Ile Ala Leu Arg Tyr Gln Leu Gln Arg Gly Val Val Val Leu Ala | CGC ATC AGA CAG AAC GTG CAG GTT TTT GAG<br>Arg Ile Arg Gln Asn Val Gln Val Phe Glu | TTG ACT GCA GAG ATG AAA GCC ATA GAT GGC CTA GAC AGA<br>Leu Thr Ala Glu Asp Met Lys Ala Ile Asp <u>Gly</u> Leu Asp Arg | c ccr aar tar<br>s Pro asn Tyr | CCA TAT TCA GAT GAA TAT TAA CATGGAGACT TTGCCTGATG ATGTCTACCA Pro Tyr Ser Asp Glu Tyr * | GAAGGCCCTG TGTGTGGATG GTGACGCAGA GGACGTCTCT ATGCCGGTGA CTGGACATAT 1(CACCTCTACT TAAATCCGTC CTGTTTAGCG ACTTCAGTCA ACTACAGCTC ACTCCATAGG 11CCAGAAATAC AATAAATCCT GTTTAGCGAC TTCAGTCAAC TACAGCTCAC TCCATAGGCC 11AGAAATACAA TAAA |
|                                                                                                                                    |                                                                                                                             |                                                                                    |                                                                                                                       |                                |                                                                                        |                                                                                                                                                                                                                             |

# FIG. 3A-3

## FIG. 4A-1

| 220                                                                                      | 275                                                                                           | 323                                                                            |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| SNFNRRQLEMILNKPGLKYKPVCNQVECHPYFNRSKLLDFCKSKDIVLVAYSALG 220                              | SQRDKRWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQ -H-EPEQSALIGQQI-T-K TY-YCINEDTD-ITMYQ | RIRQNVQVFEFQLTAEDMKAIDGLDRNLHYFNSDSFASHPNYPYSDEYKE-I                           |
| h 20aHSD<br>rb20aHSD<br>r 20aHSD<br>b 20ahsd<br>h 3aHSD<br>r 3aHSD<br>f pgfs<br>f p-crys | h 20aHSD<br>rb20aHSD<br>r 20aHSD<br>b 20aHSD<br>h 3aHSD<br>r 3aHSD<br>f p-crys                | h 20aHBD<br>rb20aHBD<br>r 20aHBD<br>b 20aHBD<br>h 3aHBD<br>r 3aHBD<br>f p-crys |

# FIG. 4A-2



**AAAGATATITGTAGCTGGAGGTTTTTATAGTCTAACATATGGTTGCTATITTGTTCTACAAATCCTTTTGAATAATTTAAT** aagaacaaatactattaaggcactgcttgcatatttaaatgatgtccaaactccaaaactgttaataattaacactcc **AATAAAAACTACACCAGAATTTCTTTTTATTTGCACCCTCATCAGGATTACAGCTTTTATCAGGACTGCATCTTCTTCAGA TTACAGITITIAACITITAATITITITITIGAGGACCAACIGITITGAAAAITICICATITAGICATICCITITAAATITGIGIA** TGTGAGAGAAAGACGTAAGATGGTTAATTATTTCAAATGATGCAGTATAAAGAAGGGGGCATTATCACGGCAGAAACAAA atagagatttcgaatagaaataatacittagatagaaattaatgagtitattataaccatattataataattactt **AGGAATTCTCTTTGATAAGAAACAAATGAATGCAATTTTTCTCCACAGACCATATAAGACTGCCTATGTACCTCCT** GAGGAGAAGC

10/15 **8** GGA Gly His Phe Met Pro Val Leu GGC CAC TTC ATG CCT GTA TTG Gln Gln Cys Val Lys Leu Asn Asp CAG CAG TGT GTA AAG CTA AAT GAT AGCAGCAAACATTTGCTAGTCAGACAAGTGACAGGGA Glu CCA GAG Pro Ala Pro CCT GCA TYT Lys AAA TCC ACC Ser Thr Gly Met Asp GAT 299 ATG Phe LLI

**TTAGGACTATTTCAGTCATGTTAACTTTTCCAACAAATCACTGAATCTGAGGGTGTTATGTGGTACCTCCATAACAGTGA IGAGATGGACTITTCACCCCACATACAGACAGGAGGAAAAGCTGATTCTTGTAAAAGTCAATGCTTGTGCCTGAACTA** TCAACCAGAGATTGCCTGAGACTGAAGGTGTTTTCTGGGATGCTCAACCTTTATTACTAACCAGGAAAGACTCAGGCAAAC **CGTGTTCCTACCTTACTCTGGATGACTCACTGGTCTAGGTTTCCTAGGCTAGGAGAAAAAAGTAGGCAATCCTTGTTCTG** STAAGAATAATTCCTTTTAGTTTTCGGATTTCAAAAGAATAAACCTAGTAGAAGTGAAACCCGTATTGGGTTGTAAGGTT CCTCTCAGCCACAGTGATCACCAGATACTACCTTTGGTTGCTCCTCCAG

## FIG. 6A-1

| 48                                                         | <b>68</b>  | 84                                         | 11/15                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leu Glu Val Thr Lys Leu Ala Ile Glu Ala Gly Phe Arg His 41 |            |                                            | GTACTGTGTCTATGAGGCTTGTGTGCACATGTATTTATTGTGATTGTGGAGATGACAATTCTATGACTGGAGAA  AGTTGTGGGTGAATTTTGCTTCTGGGTTCAAATTTATTCACACATACTCACATACTAAAATTCTATGAAATCAAGGAA  TGATGATCACTTTTCATTTTGCTTCCAATTTATGACCTGAAAGTCCCTTTACTTTTTGAGCTTCAGCCGAGATC  AGTGTGATCTTATTATTCATTAGAATCACAGAGAACAATAATCATGTTATGGTTTTTTTT |
| G1y<br>GGG                                                 | Ile        |                                            | CCTA<br>SAGC<br>CGCC<br>SCCC<br>ACCC<br>ACCC                                                                                                                                                                                                                                                         |
| Ala<br>GCT                                                 | Ala        | Lys                                        | CAAT<br>CTG<br>CTTTC<br>CTTTC<br>CTTTC<br>VATT                                                                                                                                                                                                                                                       |
| Glu                                                        | Leu        | Ser                                        | TTCT<br>TTCT<br>TTCT<br>TTCT<br>TTCT<br>TTCT<br>TTCT                                                                                                                                                                                                                                                 |
| Ile                                                        | Gly Leu    | Thr                                        | GAGA<br>TTTT<br>GTTT<br>AATA<br>AAAC                                                                                                                                                                                                                                                                 |
| Ala                                                        | Val        | TYE                                        | TGTG<br>TATCC<br>TATCC<br>TATCC<br>ATCCC                                                                                                                                                                                                                                                             |
| Leu                                                        | Gln<br>Can | Phe                                        | ATTGATGATTGATGATGATGATGATGATGATGATGATGAT                                                                                                                                                                                                                                                             |
| Lys                                                        | Glu        | Lys Arg Glu Asp Ile<br>AAG AGA GAA GAC ATA | TIGICACA<br>ACACA<br>ACCCT<br>PAATC<br>FIGAGA<br>FIGGG                                                                                                                                                                                                                                               |
| Thr                                                        | 61u        | ASP                                        | TTTAT<br>VITCA<br>VCAAT<br>VCAAT<br>VCAGT<br>CAGCAT                                                                                                                                                                                                                                                  |
| Val<br>GTC                                                 | Asn        | Glu                                        | GETAL<br>VITILI<br>VATITI<br>SAGAL<br>CITAL<br>CITAL<br>VICAL                                                                                                                                                                                                                                        |
| Glu                                                        | Asn        | Arg                                        | CAAL<br>CCAAL<br>CCAAL<br>CATCO<br>CATCO<br>CATCO                                                                                                                                                                                                                                                    |
| Leu                                                        | Tyr        | Lys                                        | GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                               |
| Ala                                                        | Leu        | Val                                        | TTGG<br>GGGC<br>FATAC<br>FCAA<br>FCAA<br>CCAA<br>CCAA<br>CAATTC                                                                                                                                                                                                                                      |
| LYS                                                        | His        | Ser                                        | GAGC<br>TEGCT<br>TETCT<br>TCTCT<br>TGTC                                                                                                                                                                                                                                                              |
| Ser                                                        | Ala        | G1y<br>GGC                                 | VIGAT<br>VALTI<br>VITCATO<br>VAGO                                                                                                                                                                                                                                                                    |
| Arg                                                        | Ser        | Asp                                        | STOTE<br>SETER<br>STITES<br>SECTI                                                                                                                                                                                                                                                                    |
| Pro                                                        | Asp        | Ala<br>GCA                                 | GTACTGTGTCTATGATGAGCTTGTGT<br>AGTTGTGGGTGAATTTTGCTTCTGGG<br>TGATGATCATTTTGGCTGT<br>AGTGTGATTTGACATGTGCTATAGAA<br>AAGATTTCTTATTATTCTCTCAATTG<br>TAATAGACACTTAAATTGTCCTAAAT<br>CTTTAGTTTCTAAGCAACATAATTGG                                                                                              |
| Val                                                        |            | Ile<br>ATT                                 | GTAC<br>AGTT<br>AGTC<br>AAGP<br>TAAT                                                                                                                                                                                                                                                                 |
|                                                            |            |                                            |                                                                                                                                                                                                                                                                                                      |

## FIG. 6A-2

| 104 | (    | 123 |     |
|-----|------|-----|-----|
| Lys | AAA  |     |     |
| Leu | CTG  | Lys | AAG |
| Ser | TCA  | Len | CIP |
| Asn | AAC  | Ser | ICI |
| _   | GAA  |     |     |
|     | TIG  |     |     |
|     | SCC  |     |     |
|     | CCA  |     |     |
|     | CGA  |     |     |
|     | GIC  |     |     |
|     | TTG  | •   | -   |
|     | GAG  |     |     |
| Pro | SCA  | Asp | GAC |
| -   | CGA  | •   | _   |
| His | CAT  | Tyr | TAT |
| Phe | TIL  | Asp | GAC |
| -   | ACT  | •   | -   |
| Ser | TCC  | Gln | CAA |
| _   | TGG  |     | _   |
| Leu | CILI | Lys | AAA |

| AAA GCT CAA TTG GAC TAT GTT GAC CTC TAT CTT ATT CAT TCT CCA ATG TCT CTA AAG       |
|-----------------------------------------------------------------------------------|
| GTATGCAGTTTGTATGAGCATAAAATTGCGCTTCTGCTGTCATTATAAACATTGTTTATGTTGGATAGTTGAACAGAGCTT |
| TITATTAGGAGGATGTAGGGATTATCACACAGAAGAACCGTAAGTGGAACACCTAATTTCCTTTCTTT              |
| 0.9 kbATATAATATTTGTAAGAGTTAGAGGAAGCCTGTCTCCTGAATACATTCCTTATACCTTCATAT             |
| GTAAAACACTTAGCACATATCACTTTCTGGAGCATTGTACCACCTGTCTCATGGAGGATTAGTGTCCTTAAAGGTACCTG  |
| GGGTTACAGCTATGAGTGGAGAATTAATTTGTGACATCATTAAAATGACTGCTTCTATTTCAG                   |

| Asp | GAT |     |     |
|-----|-----|-----|-----|
| Val | GTG |     |     |
| Ile |     |     |     |
| Asp | GAC |     |     |
| Phe | _   |     |     |
| Ile | ATA |     |     |
| Val |     |     |     |
| Lys | AAA | ŋ   |     |
| Gly | GGA | 14  |     |
| Asn | AAT |     |     |
| Glu | GAA |     |     |
| Asp | GAT |     |     |
| Thr | ACA |     |     |
| Pro | CCA |     |     |
| Ser | TCA | Glu | GAG |
| Leu | Fig | Trp | TGG |
|     |     | Thr |     |
| Glu | GAG | Thr | ACC |
| Gly | GGT | Cys | TCT |
| Pro | CCA | Leu | CIC |
|     |     |     |     |

12/15

143

TITITIGACAATCACTGCTAGCTATITICATIGICATACTITIGAAAGTIGTTGCTCTCACAGTICTGTCTTGCATTTACC GTGAGTGCTTGGCGGAGAGGACACAGAAGGATGACAAAAAGAGAAAATCTGTTTCCCAGGTTCGATAGGAAAGAATGG AATATGCACCATTAGATC.....0.1 kb............GACAGGAATCTCTTTCCTTGCTTGTGCATTAATCTAT **GCAGTTTCCTAAGGAAGATAGAAATTCTTACTCTTGCTGCCTCTATCTTCTTCCCCTATTTGCTGTTTGAATTTTTTT** GTGATTTGCAGCCAACTGCACAAATAATTCCTCACAACCCCTTTCTCCACAG

## FIG. 6A-3

| ALG MEC GIU LYS CYS LYS ASP ALA GIY Leu Ala LyS Ser Ile GIY Val Ser Ash Fhe Ash And GC AGG TAT GGG GGG TCA AAC TCC AAC GC AGG TCA AAC TCA AAC TCA AAC ATG GGG AGG GGG GGG CTG AAC TCC AAC TCC AAG TCC AGG GGG GGG CTG TCA AAC TGC AAC TCC AGG CAG GGA CTC AAG TCC AAG TCC AAG TCC AAC TGC AAC TCC AAC TGC AAC TCC AGG CTG GTC TGC AAC TCC AGG CAG CAG CAG CAG CTC GTC TGC AAC TGC AAC TCC AGG CAG CAG CAG CAG CTC GTC TGC AAC TGC AAC TCC AGG CAG CAG CTC GTC TGC CAG GIN CAG CAG CTC GTC TGC AAC TGC AAC TCC AGG CTC GTC TGC AAC TGC AGG CTG GTC TGC AAC TCC AGG CTC GTC TGC AAC TGC AGG CTC GTC TGC AAC TTC TCT TTTTTTTTTT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ara<br>GCC<br>GCC<br>GCC<br>GID<br>CAG<br>GTA<br>ACT<br>TTAA<br>TTAA<br>ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## FIG. 6B-1

| 246                                                                                                                                        | 266                                                                                                                                        | 282                                                                                                        |                                                                                                                             | 14/15                                                                                    | 302                                                                     | 310                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Pro Asn Ser Pro Val Leu Leu Glu Asp Pro Val Leu Cys Ala Leu Ala Lys<br>ccg Aac Tcc ccg GTG CTC TTG GAG GAC CCA GTC CTT TGT GCC TTG GCA AAA | Arg Thr Pro Ala Leu Ile Ala Leu Arg Tyr Gln Leu Gln Arg Gly Val Val<br>CGA ACC CCA GCC CTG ATT GCC CTG CGC TAC CAG CTG CAG CGT GGG GTT GTG | Lys Ser Tyr Asn Glu Gln Arg Ile Arg Gln Asn Val Gln<br>AAG AGC TAC AAT GAG CAG CGC ATC AGA CAG AAC GTG CAG | GTGAGGAGCGGGGCTGTGGGCCTCAGGTCTCCTGCACAGTGTCCTTCACGTGTGCTTCTTGTAAGGCTCTCAGGACA GCCTTGGGCCAGCTCCATTTCCCATATGAATGCTTTGCGTGCTCT | Itaaaacitaccaatatititaagtatigictcigcaccctactgtctaata<br>aaaataataaaagtitititatiticigatag | Glu Phe Gln Leu Thr Ala Glu Asp Met Lys Ala Ile Asp Gly Leu Asp Arg Asn | GAG TIC CAG TIG ACT GCA GAG GAC ATG AAA GCC ATA GAT GGC CIA GAC AGA AAI<br>Tyr Phe Asn Ser Asp Se |
|                                                                                                                                            | His Lys                                                                                                                                    | Leu Ala<br>CTG GCC                                                                                         | GTGAGGAGCGGGG<br>GCCTTGGGCCAGC<br>CCCT                                                                                      | AGTGTTTAGAGCT                                                                            | Phe Glu                                                                 |                                                                                                   |
|                                                                                                                                            |                                                                                                                                            | <b></b>                                                                                                    | D CT171                                                                                                                     |                                                                                          |                                                                         |                                                                                                   |

## FIG. 6B-2

15/15

323

**TCTGCTCTGCTGACAGATGTACAGGAATATACTTGAATATTTGACTTTGTGTGTTTTTACGTGTTAACTTCCAGATAAGGG** aatatgattgaataatttatttttettttgaaaatactgtattatgaagccatgttcataaagggaaggcagattctac aactagtcagacaacttaacattcatactaatgacagcttcattgaaatcactttactactcccctagtaatggagtcat **TGCATTTATATTACATTATTCTCTTTTCAG** 

**TITATITATITICAAATGITITITCCITCCITCCITGCACGIITIGITCAIGCCCCAAACICIGCITITGCCTCCAGAAAGCC** 

ttccitagtggagtgaataggagtgcttgtccttgatttcctgcaatatggagctctcaaggcaggaatttaaaaaaa TTAAAATCAAGGAGTGTGAGTGTGGAGGCAGAAGCTCCATTGTTGTATATATTTGTAGCTGATAAAAGATCT....

GCAGGGTGAGTGGGCAGGGATCAGCATGGGTCAACCTGTGCCTCTGCTCTTGACTCCATGGAACTTTCCAGAGCAGCC

aacatcattgccaagtctgcacgttgcatataggcctggtgtttctaccactggacatgctgtggatactgcccatgtga **CTTCATTAGATGTTTCCAAATCTGTGCTTATATCACATTGTCCCAAACCTGCTCAGCTCCTTATCAAATCAAAAACATTT** 

gtaagttttcctttgtaaatgggtgatctaattttatttctggagaaggaatgtaggatgggtggtgagagtgacctccata CCAGAGGGACAGAGGCCAATGTGAGTCAGAGGTGAGACTGGAACTCTTCTGCTGGATTCACTCCAGAGCTCTGTTCTCTG

Phe Ala Ser His Pro Asn Tyr Pro Tyr Ser Asp Glu Tyr End TTT GCT AGC CAC CCT AAT TAT CCA TAT TCA GAT GAA TAT TAA HE

actggacatatcacctctacttaaatccgtcctgtttagcgacttcagtcaactacagctgagtccataggccagaaaga **CAATAAATTTTTATCATTTTGAAATAA**  TGTGTGTGCTTTCTTGGCTCAACAGGG

FIG. 6B-3

## INTERNATIONAL SEARCH REPORT

I. .national Application No PCT/CA 96/00605

|                                                           | •                                                                                                                                                                                                                                                                | 10.70                                                                                                                                                                                                                              |                                                                                                   |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| A. CLASSI<br>IPC 6                                        | FICATION OF SUBJECT MATTER C12N9/04                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                                                                   |
| According to                                              | o International Patent Classification (IPC) or to both national cl                                                                                                                                                                                               | assification and IPC                                                                                                                                                                                                               |                                                                                                   |
|                                                           | SEARCHED                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |                                                                                                   |
| Mimmum d<br>IPC 6                                         | ocumentation searched (classification system followed by classif<br>C12N                                                                                                                                                                                         | ication symbols)                                                                                                                                                                                                                   |                                                                                                   |
| Documentat                                                | tion searched other than minimum documentation to the extent t                                                                                                                                                                                                   | nat such documents are included in the field                                                                                                                                                                                       | s searched                                                                                        |
| Electronic d                                              | lata base consulted during the international search (name of data                                                                                                                                                                                                | base and, where practical, search terms used                                                                                                                                                                                       | <b>3</b> )                                                                                        |
| C. DOCUM                                                  | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                   |
| Category *                                                | Citation of document, with indication, where appropriate, of the                                                                                                                                                                                                 | e relevant passages                                                                                                                                                                                                                | Relevant to claim No.                                                                             |
| X                                                         | CLINICAL AND INVESTIGATIVE MEDI<br>vol. 18, no. sup.4, September 1<br>TORONTO CA,                                                                                                                                                                                |                                                                                                                                                                                                                                    | 1-15,25,<br>26                                                                                    |
|                                                           | page b40 XP000196659 Y. ZHANG ET AL.: "Isolation ar characterization of human type 17-beta-hydroxysteroid dehydrog                                                                                                                                               | 5                                                                                                                                                                                                                                  |                                                                                                   |
| A                                                         | see the whole document                                                                                                                                                                                                                                           | en                                                                                                                                                                                                                                 | 16-24,<br>27-34                                                                                   |
| X                                                         | EMBL SEQUENCE DATABASE, Acc.No.: Emhuml:Hsorf1,15 Decem N. Miyajima, "Human mRNA (HA175 see abstract                                                                                                                                                             | ber 1993,<br>(3)".                                                                                                                                                                                                                 | 1,2,<br>12-15                                                                                     |
| A                                                         | XP002020808                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    | 3-11,<br>16-24,<br>27-34                                                                          |
|                                                           |                                                                                                                                                                                                                                                                  | -/                                                                                                                                                                                                                                 |                                                                                                   |
| X Furt                                                    | ther documents are listed in the continuation of box C.                                                                                                                                                                                                          | Patent family members are liste                                                                                                                                                                                                    | d in annex.                                                                                       |
| "A" docum<br>consid<br>"E" earlier<br>filing<br>"L" docum | ent which may throw doubts on priority claim(s) or                                                                                                                                                                                                               | "T" later document published after the user priority date and not in conflict cited to understand the principle or invention "X" document of particular relevance; if cannot be considered novel or cannot inventive step when the | with the application but<br>theory underlying the<br>ne claimed invention<br>not be considered to |
| O' docum other 'P' docum                                  | is atted to establish the publication date of another in or other special reason (as specified)  ment referring to an oral disclosure, use, exhibition or means  means  ment published prior to the international filing date but than the priority date claimed | "Y" document of particular relevance; it cannot be considered to involve an document is combined with one or ments, such combination being obvin the art.  "A" document member of the same pate                                    | inventive step when the<br>more other such docu-<br>tous to a person skilled                      |
|                                                           | actual completion of the international search                                                                                                                                                                                                                    | Date of mailing of the international                                                                                                                                                                                               | search report                                                                                     |
|                                                           | 2 December 1996                                                                                                                                                                                                                                                  | 0 6. 01. 97                                                                                                                                                                                                                        |                                                                                                   |
| Name and                                                  | mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Ripswijk  Tel. (-31-70) 340-2040, Tx. 31 651 epo nl,  Far (+31-70) 340-3016                                                                                             | Authorized officer  De Kok, A                                                                                                                                                                                                      |                                                                                                   |

. 1

## INTERNATIONAL SEARCH REPORT

I. -mational Application No PCT/CA 96/00605

| DON DOCUMENTS CONSIDERED TO BE BELEVANT                                                                                                                                                                                                                                   | PC1/CA 96/00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                        | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 46, 1993, OXFORD GB, pages 673-679, XP000196680 K.N. QIN ET AL.: "Molecular cloning of multiple cDNAs encoding human enzymes structurally related to                                                          | 1,2,<br>12-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3-alpha-hydroxysteroid dehydrogenase" see the whole document                                                                                                                                                                                                              | 3-11,<br>16-24,<br>27-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 55, no. 5-6, 1995, OXFORD GB, pages 581-587, XP000196678 V. LUU-THE ET AL.: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities" see the whole document               | 3-11,<br>27-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JOURNAL OF STEROID BIOCHEMISTRY, vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP000196658 F. LABRIE ET AL.: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document | 1-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document                         | 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document              | 1,25,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                           | JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 46, 1993, OXFORD GB, pages 673-679, XP000196680 K.N. QIN ET AL.: "Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3-alpha-hydroxysteroid dehydrogenase" see the whole document  JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 55, no. 5-6, 1995, OXFORD GB, pages 581-587, XP000196678 V. LUU-THE ET AL.: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities" see the whole document  JOURNAL OF STEROID BIOCHEMISTRY, vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP000196658 F. LABRIE ET AL.: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document  JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document  EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" |

## INTERNATIONAL SEARCH REPORT

PCT/CA 96/00605

| C.(Continue<br>Category | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                               | Relevant to claim No. |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A                       | JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 53, no. 1-6, 1995, OXFORD GB, pages 37-39, XP000196679 S. ANDERSSON ET AL.: "The molecular biology of androgenic 17-beta-hydroxysteroid dehydrogenases" see the whole document                   | 1,25,26               |
| A                       | JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 81, no. 20, 18 October 1989, BETHESDA US, pages 39-44, XP000351436 M. ROTHENBERG ET AL.: "Oligodeoxynucleotides as anti-sense inhibitors of gene expression: therapeutic implications" see the whole document | 16-24                 |
| P,X                     | EMBL SEQUENCE DATABASE, Acc. No.: Emhuml:Hs516761, 19 April 1996, P.J. Ciaccio et al., "Human dihydrodiol dehydrogenase gene, 5'-flanking region" XP002020809 see abstract                                                                                   | 26,32,33              |