תזכורת מתרגולים אחרונים

• מבנה סכמתי של קומפיילר

- ניתוח תחבירי:
- RD , LL(1) :Top Down -
 - :Bottom up
 - LR(0)
 - SLR •
 - CLR \LR(1)
 - LALR •

מנתח LR

<u>Eottom Up – ניתוח מלמטה למעלה</u>

- •מתחילים את הניתוח במילת הקלט, ומנסים להגיע עד למשתנה ההתחלתי (שורש עץ הגזירה).
 - מחליפים תבנית פסוקית במשתנה הגוזר אותה.

<u>משמעות LR</u>:

(L) קוראים את הקלט משמאל לימין•

דוגמא לניתוח בגישת Bottom-Up:

w=aaaccbbb מילת הקלט:

- •מוצאים את הגזירה **הימנית** (R) ביותר, בסדר **הפוך** לסדר הגזירה.
- (1) S --> A B
- (2) $A \longrightarrow \underline{a} \underline{a} \underline{a} C$
- (3) $B \longrightarrow \underline{b} \underline{b} \underline{b}$
- (4) $C \longrightarrow \underline{c} \underline{c}$

$$\underline{a \, a \, a \, c \, c \, | \, \underline{b} \, \underline{b} \, b} \; \Rightarrow \; \underline{a \, a \, a} \, C \, | \, \underline{b} \, \underline{b} \, \underline{b} \; \Rightarrow \; A \, \underline{b} \, \underline{b} \, \underline{b} \, | \; \Rightarrow \; A \, \underline{B} \, | \; \Rightarrow \; S \, |$$
 כיוון הגזירה \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow

מבנה מנתח LR

<u>מנתח LR מכיל:</u>

מחסנית: תוכנה מייצג את התבנית הפסוקית שראינו עד עתה.
 הניתוח ייעצר כאשר תוכנה יהיה רק S – שורש עץ הגזירה.
 טבלת ניתוח התלויה בדקדוק (goto -l action).

בניית מנתח LR

<u>שלבי בניית המנתח:</u>

- 1) בניית אוטומט פרפיקסי לפי הדקדוק הנתון
- בניית טבלת הניתוח ע"פ האוטומט הפרפיקסי (2

<u>הרצת המנתח על קלט:</u>

בכל צעד המנתח יכול:

להכניס תו מהקלט למחסנית (Shift)

או:

לצמצם תבנית פסוקית בראש המחסנית למשתנה הגוזר אותה (Reduce)

כלומר: בכל פעם שמגיעים לתת-עץ בסריקת הקלט, בונים אותו.

מנתח (LR(O – בניית האוטומט

≺lookahead אין•

מצפים מהאלגוריתם לזהות כל כלל לאחר קריאת כל החלק הימני שלו, בלי קריאת ההמשך.

- $A \rightarrow \alpha\beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) כאשר
- כל אחד ממצבי אוטומט המנתח הוא קבוצת פריטי (LR(0.
 - פריט מסמל את מצבו של המנתח.
- משמעותו: זיהינו את מה שנמצא לפני הנקודה, וכעת אנו מצפים למצוא את מה שנמצא מימינה.

? $A \rightarrow \epsilon$ אילו פריטים אפשר לקבל עבור הכלל:

מנתח (LR(O – בניית האוטומט

- $A \rightarrow \alpha\beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא
- כל אחד ממצבי אוטומט המנתח הוא קבוצת פריטי (LR(0.
- :על קבוצת פריטים I מוגדר באופן אינדוקטיבי (closure) על קבוצת פריטים \bullet
 - closure(I)=I: בסיס:
 - אז (A \rightarrow α \bullet B β) ∈closure(I) צעד: אם

 $(B \rightarrow \bullet \gamma) \in closure(I)$ גם $B \rightarrow \gamma \in P$ לכל

קבוצת פריטי LR(0)

 $\times X \in T \cup V$ ימן $\times X \in T \cup V$ ימן •

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta) | (A \to \alpha \bullet X \beta) \in I \}$$

מנתח (LR(O – בניית האוטומט

S' o S לפני בנית האוטומט מוסיפים לדקדוק כלל

<u>אלגוריתם בנית האוטומט</u>

– יסמן את המצב ההתחלתי של האוטומט, ויוגדר כ I_0 המצב המצב ויוגדר כ $I_0 = Closure(\{S'
ightarrow S\})$

כל עוד קיים מצב שלא פותח:

- (I) בוחרים מצב שלא פותח (I).
- $i \in I$ עבורו קיים פריט $X \in V \cup T$ מהצורה $X \in V \cup T$.
- (ומוסיפים אותו לקב' המצבים, אם עדיין לא חלק ממנה) $\delta(I,X)$ מחשבים את 1.
 - $\delta(I,X)$ יוצרים קשת עם הסימן X, שמובילה למצב 2.

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow aA$$

4)
$$B \rightarrow b$$

LR (0) - דוגמא

• בניית אוטומט פרפיקסי:

$$\begin{array}{c|c}
\mathbf{S} & \rightarrow \bullet \mathbf{S} \\
S & \rightarrow \bullet \mathbf{a} \mathbf{A} \\
S & \rightarrow \bullet \mathbf{a} \mathbf{B}
\end{array}$$

$$I_0 = closure(\{S' \rightarrow \bullet S\})$$

```
0) S' → S
1) S → aA
2) S → aB
3) A → a
```

4) B \rightarrow b

LR (0) - דוגמא

בניית אוטומט פרפיקסי:

- $A \to \alpha \cdot X\beta \in I$ עבורו קיים פריט $X \in V \cup T$ לכל סימן.
- (ומוסיפים אותו לקב' המצבים, אם עדיין לא חלק ממנה) $\delta(\emph{I},\emph{X})$ (מוסיפים אותו לקב' המצבים, אם עדיין (ומוסיפים אותו לקב' המצבים)
 - . $\delta(I,X)$ יוצרים קשת עם הסימן X, שמובילה למצב -2.

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta) | (A \to \alpha \bullet X \beta) \in I \}$$

0) $S' \rightarrow S$ 1) $S \rightarrow aA$ 2) $S \rightarrow aB$ 3) $A \rightarrow a$

4) $B \rightarrow b$

LR (0) - דוגמא

• בניית אוטומט פרפיקסי:

מנתח (LR(0 – בניית טבלת הניתוח

מנתח (LR(O – בניית טבלת הניתוח

הגדרת טבלת goto למנתח (LR(0).

$$goto[i, X] = \begin{cases} j & \delta(I_i, X) = I_j \\ error & otherwise \end{cases}$$

אלגוריתם הניתוח

Parser:

```
Q.push( 0.) //where 0 is the initial state pf the prefix automaton while true do

k = Q.top().state
t = next token
do action[k, t]
end while
```


- 0) $S' \rightarrow S$
- 1) S → aA
- 2) $S \rightarrow aB$
- 3) $A \rightarrow a$
- 4) $B \rightarrow b$

	а	b	\$	
0	s2			
1			acc	
2	s5	s6		on
3	r2	r2	r2	Action
4	r1	r1	r1	⋖
5	r3	r3	r3	
6	r4	r4	r4	

	S	Α	В	
0	1			
1				
2			3	
3				
4				
5				
6				

דוגמא (0) ברצה - LR - הרצה ab\$

ab\$ רצף האסימונים בקלט:

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$

- :(k אל מצב shift בצע) **shift(k)**
 - .1. דחוף למחסנית את (k<u>,t</u>).
- .2. קדם את הראש הקורא את הקלט צעד אחד ימינה.

דוגמא (0) - הרצה ab\$

ab\$ רצף האסימונים בקלט:

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$
Action[6,\$] = Reduce (4)	(0,), (2,a), (6,b)	\$
	(0,), (2,a), (3)B	\$

:(j לפי אמספרו הוא reduce לפי , $\mathbf{A} \rightarrow \alpha$ לפי (בצע reduce (j)

הגזירה בסדר הפוך תיתן את הגזירה הימנית ביותר.

- הוצא $|\alpha|$ זוגות מהמחסנית. סמן ב k' את המצב שהתגלה בראש 1. המחסנית.
 - . (goto[k',**A**],**A**) דחוף למחסנית את
- 3. ניתן להוציא כפלט את j (מספר כלל הגזירה בו השתמשנו). הדפסת כללי

- 0 **s**2 1 acc Action 2 **s**5 s6 r2 r2 r2 3 r1 r1 r1 4 r3 5 r3 r3 r4 r4 r4 0 1
- S A B

 0 1

 1
 2
 3
 4
 5
 6

goto

- 0) $S' \rightarrow S$
- 1) $S \rightarrow aA$
- 2) $S \rightarrow aB$
- 3) A → a
- 4) $B \rightarrow b$

ן - הרצה	LR (0)	דוגמא (

ab\$ רצף האסימונים בקלט:

	а	b	\$	
0	s2			
1			acc	
2	s5	s6		on
3	r2	r2	r2	Action
4	r1	r1	r1	⋖
5	r3	r3	r3	
6	r4	r4	r4	

	S	Α	В
0	1		
1			
2			3
3			
4			
5			
6			

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$
Action[6,\$] = Reduce (4)	(0,), (2,a), (6,b)	\$
Action[3,\$] = Reduce (2)	(0,), (2,a), (3,B)	\$
Action[1,\$] = accept	(0,), (1,S)	\$

>> על מנת שהמשתנה ההתחלתי יופיע בחוקי הגזירה רק באגף שמאל. כך בצמצום למשתנה ההתחלתי אכן יובטח שאין עוד סימנים במחסנית ונדע שהסתיימה הגזירה.

^{**}מדוע מוסיפים את כלל 0

ליקטים אפשריים במנתחי LR

• קונפליקט נוצר בטבלת הניתוח כאשר יש 2 פעולות שונות או יותר באותה משבצת בטבלה.

• קיימים 2 סוגי קונפליקטים:

: shift/reduce קונפליקט (1

? האם להמשיך לקרוא את הקלט או לצמצם

 $A \rightarrow \alpha \bullet$ $B \rightarrow \delta \bullet$

: reduce/reduce קונפליקט (2

לפי איזה כלל גזירה לצמצם ?

? shift/shift **שאלה**: מדוע אין קונפליקט

מנתח SLR

- בשביל להיפטר מקונפליקטים, נרצה להכניס הסתכלות על התו הראשון של הקלט
 - ? האם ההחלטה (shift, reduce) הגיונית בהקשר
 - ההקשר: מה יכול לקרות אחרי המשתנה הנוכחי
 - כלי אפשרי מתרגול קודם: follow

הגדרת טבלת action למנתח

$$\begin{array}{ll} \text{action[i\ ,\ t] =} & \begin{cases} SHIFT_j & \delta(I_i\ ,\ t) = I_j \\ REDUCE_k & \text{rule\ k\ is\ } A \to \alpha,\ (A \to \alpha ^\bullet) \in \ I_i \ \text{and\ } t \in \ \text{follow(A)} \\ ACCEPT & (S' \to S ^\bullet) \in \ I_i \ \text{and\ } t = \$ \\ ERROR & \text{otherwise} \end{cases}$$

SLR - דוגמא

<u>אוטומט פרפיקסי – נשאר אותו דבר:</u>

SLR - דוגמא

• בניית טבלת הניתוח:

 $follow(S) = follow(A) = follow(B) = \{\$\}$

LR(0) actions			
	а	b	\$
0	s2		
1			acc
2	s5	s6	
3	r2	r2	r2
4	r1	r1	r1
5	r3	r3	r3
6	r4	r4	r4

goto			
S	Α	В	
1			
	4	3	

SLR - דוגמא

• בניית טבלת הניתוח:

 $follow(S) = follow(A) = follow(B) = \{\$\}$

SLR actions			
	а	b	\$
0	s2		
1			acc
2	s5	s6	
3	r2	r2	r2
4	r1	r1	r1
5	r3	r3	r3
6	r4	r4	r4

goto			
S	A	В	
1			
	4	3	

R\R קונפליקט – קונפליקט

- 0. S` → S\$
- 1. $S \rightarrow Aa$
- 2. $S \rightarrow Bb$
- 3. $A \rightarrow b$
- 4. B \rightarrow b

LR(0)

	а	b	\$
0		s 1	
1	r3,r4	r3,r4	r3,r4
•••			
•••			

R\R דוגמא - קונפליקט

- 0. S` → S\$
- 1. $S \rightarrow Aa$
- 2. S \rightarrow Bb
- 3. A \rightarrow b
- 4. B \rightarrow b

Follow(A)={a}
Follow(B)={b}

	а	b	\$
0		s1	
1	-r3,r4	r3,r4	r3,r4
	r3	r4	,

נשים לב כי מעבר ל SLR פותר את הקונפליקט במקרה זה.

R\R דוגמא - קונפליקט

2.
$$S \rightarrow Ba$$

3.
$$A \rightarrow b$$

4. B
$$\rightarrow$$
 b

 $S^{*} \rightarrow S^{*}$

 $S \rightarrow \bullet Aa$

 $S \rightarrow \bullet Ba$

 $A \rightarrow \bullet b$

 $B \rightarrow \bullet b$

0

SLR

Follow(A)={a}
Follow(B)={a}

b●	
b●	
1	

	а	b	\$
0		s1	
1	r3, r4		
•••			

:אבל עבור הדקדוק הבא, עדיין יש בעיה

בדוגמא זו מעבר ל SLR אינו פותר את הקונפליקט.

Canonical LR (CLR / LR(1))

אלגוריתם (1) בדומה לאלגוריתמים LR בדומה לאלגוריתמים הקודמים שראינו.

∶הרעיון

- למצבים LR(0) על מנת למנוע קונפליקטים, נפרק את מצבי (Iookahead עדינים יותר, המכילים גם מידע על
- עידון של ההקשר: מה מגיע אחרי <u>במסלול ספציפי</u> במקום בכל
 מקום אפשרי בשפה

$$A \rightarrow \alpha \bullet B\beta \Rightarrow A \rightarrow \alpha \bullet B\beta$$
, t

LR(1) פריטי

- .closure-נעוץ רק ב LR(1) ו-(1) נעוץ רק ב-
 - $A \rightarrow \alpha \beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא (LR(0) פריט •
 - על קבוצת פריטים I מוגדר באופן אינדוקטיבי: $\underline{}$
 - closure(I)=I :סיס
- $(B \rightarrow \bullet \gamma)$ ∈ closure(I) גם $B \rightarrow \gamma \in P$ אז לכל ($A \rightarrow \alpha \bullet B\beta$) ∈ closure(I) צעד: אם
 - פונקצית המעברים של האוטומט:

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta) | (A \to \alpha \bullet X \beta) \in I \}$$

- $t ∈ T ∪ \{\$\}$, $A \rightarrow \alpha \beta ∈ P$ כאשר ($A \rightarrow \alpha \bullet \beta, t$) הוא (LR(1) הוא •
- על קבוצת פריטים I מוגדר באופן אינדוקטיבי: $\underline{}$
 - closure(I)=I :בסיס
- $x \in first(\beta t)$ אז לכל $B \rightarrow y \in P$ אז לכל ($A \rightarrow \alpha \bullet B\beta, t$) $\in closure(I)$ צעד: אם ($B \rightarrow \bullet y, x$) $\in closure(I)$ גם
 - פונקצית המעברים של האוטומט:

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta, t) | (A \to \alpha \bullet X \beta, t) \in I \}$$

משמעות פריט (1)LR: זיהינו את מה שמשמאל לנקודה, אנו מצפים למצוא את מה שמימין לה, <u>ולאחר</u> מכן את האסימון המצורף לפריט.

$R\R$ פתרון קונפליקט – LR(1)

- $0. S \rightarrow S$
- 1. $S \rightarrow AaBb$
 - S→BbAb .2
 - 2. $B \rightarrow c$
 - 3. $A \rightarrow c$

LR(1)

	а	b	С	\$
0			s1	
1	r3	r2		
•••				
•••				
•••				

בניית טבלת הניתוח

LR(0)/SLR וטבלת action בונים טבלת •

```
 \begin{aligned} \text{action[i\ ,\,t]} = & \begin{cases} & \text{SHIFT}_j & \delta(I_i\ ,\,t) = I_j \\ & \text{REDUCE}_k & \text{rule k is A} \to \alpha, \quad (\text{A} \!\to\! \alpha \!\bullet\! ,t) \in I_i \\ & \text{ACCEPT} & (\text{S}'\!\to\! \text{S}\!\bullet\! ,\$)\!\in I_i & \text{and t} = \$ \\ & \text{ERROR} & \text{otherwise} \end{cases}
```

דוגמא נוספת: רקורסיה

2. $S \rightarrow b$

1. $S \rightarrow aSc$

*החלקים בצהוב הם ה**גרעין** של המצב

 $0. S' \rightarrow S$

1. S \rightarrow aSc

 $2.S \rightarrow b$

דוגמא (1) -LR רצה

LR(0) הרצה באופן דומה

actions				goto	
	а	b	С	\$	S
0	s3	s2			1
1				acc	
2				r2	
3	s6	s5			4
4			s 7		
5			r2		
6	s6	s5			8
7				r1	
8			s9		
9			r1		

מחסנית	פעולה	קלט
(0,)	s3	aabcc\$
(0,)(3,a)	s6	abcc\$
(0,)(3,a)(6,a)	s5	bcc\$
(0,)(3,a)(6,a)(5,b)	r2	cc\$
(0,)(3,a)(6,a)(goto(6,S),S)		
(0,)(3,a)(6,a)(8,S)	s9	cc\$
(0,)(3,a)(6,a)(8,S)(9,c)	r1	c \$
(0,)(3,a)(goto(3,S),S)		
(0,)(3,a)(4,S)	s7	c \$
(0,)(3,a)(4,S)(7,c)	r1	\$
(0,)(goto(0,S),S)		
(0,)(1,S)	асс	\$

ביכום LR

- בונים את תת-העץ האפשרי הראשון LR מנתחי במעבר על הקלט
 - קונפליקטים נוצרים כאשר
 - יש יותר מתת-עץ אפשרי אחד –
 - אפשר לבנות תת-עץ או להמשיך לקרוא קלט –
 - כדי לאפשר יותר דקדוקים, דרוש יותר הקשר
- הקשר "עולה" בזמן חישוב (follow) ובזיכרון (גודל האוטומט והטבלה)

שאלה 1

נתון G=(V, T, P, S) השייך ל LR(1). עבור כל אחד מהדקדוקים הבאים, רשמו האם הוא **בהכרח** ב LR(1):

$$t \in T$$
 , $X \notin V$ כאשר $G_1 = (V \cup \{X\}, T, P \cup \{X \rightarrow t\}, S)$. א.

$$G_2 = (V,T,P \cup \{S \rightarrow \epsilon\},S)$$
 .

שאלה 1

 $t \in T, X \notin V$ כאשר

$$G_1 = (V \cup \{X\}, T,P \cup \{X \to t\}, S)$$
 . A

- :LR(1) בהכרח ב•
- המשתנה X הוא משתנה חדש שאינו נגזר באגף ימין של אף כלל.
 - X→t בזמן ביצוע closure במצבי האוטומט, הכלל לעולם לא ייכנס.
 - האוטומט יהיה זהה לאוטומט של G, שהוא חסר קונפליקטים.

! משתנה לא ישיג X

שאלה 1

$$G_2 = (V, T, P \cup \{S \rightarrow \varepsilon\}, S)$$
 .

- .LR(1) אינו בהכרח ב •
- הכלל החדש יכול להפוך את הדקדוק לדו משמעי.לדוגמא:

$$G = \{S \to A, A \to \varepsilon\}$$

$$G_2 = \{S \to A, A \to \varepsilon, S \to \varepsilon\}$$

דקדוק דו משמעי: יש שתי גזירות ימניות ביותר בדקדוק לאותה מילה.

מספר דגשים

- להוכחה ששפה מסויימת היא LR צריך לצייר את כל האוטומט ולהראות כי אין קונפליקטים באף מצב

- להפרכה, מספיק מסלול אחד באוטומט

שאלה ממבחן

- נתונה שפת סקריפטינג המורכבת ממשתנים גלובליים
 ורשימת פונקציות ספריה שלא מקבלות פרמטרים.
- תכנית מורכבת משורה אחת של אפס או יותר קריאות פונקציה על משתנה. מותר לקרוא לכל פונקציה על כל משתנה גלובאלי ועל כל תוצאה של הפעלת פונקציה. תכנית בשפה תיראה כך:

grades.sort().top5().awardExcellence()

כבר מומש עבורכם ניתוח לקסיקוגרפי המחזיר את האסימונים id (שם משתנה או פונק'), dot (נקודה) ו-pars (פתח וסגור סוגריים).

א. בנו דקדוק לשפה כך שניתן יהיה לבנות לו מנתח מאחת המחלקות שנלמדו בקורס **והוכיחו** כי ניתן.

 $Program \rightarrow id Funcs$ $Funcs \rightarrow dot id pars Funcs$ $Funcs \rightarrow \epsilon$

באיזו מחלקה הדקדוק? (פתרון על הלוח)