

第二章 z 变换与LSI系统频域分析

The z Transform and Frequency domain analysis of LSI System

第二章 z 变换与LSI系统频域分析

The z Transform and Frequency domain analysis of LSI System

2.4 系统频率响应的意义(1)

华东理工大学信息科学与工程学院 万永菁

系统频率响应的意义

- > 系统频率响应的基本概念
 - > 系统的幅频响应
 - > 系统的相频响应
- > 固定频率输入信号下的系统输出

2.4 系统频率响应的意义

- ➤ x(n)中的信号含有不同频率成分,经过系统后, 输出中这些频率成分发生了什么变化?
- ▶ 这些频率成分<u>还在吗</u>?
- > 这些频率成分会在同一时刻输出吗?

Frequency Response

定义: LSI系统的频率响应是单位脉冲响应h(n)的傅立叶变换

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) \cdot e^{-j\omega n}$$

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{j\frac{\theta(\omega)}{N}}$$

系统幅频响应:

决定频率成分的去留

系统相频响应:

决定频率成分的移位

幅度特性

Magnitude specifies

相位特性

Phase specifies

已知:
$$X(e^{j\omega}) = \text{DTFT}[x(n)] = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$H(e^{j\omega}) = \text{DTFT}[h(n)] = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$$

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$
时域卷积

证明:
$$Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$$

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y(n)e^{-j\omega n} = \sum_{n=-\infty}^{\infty} [\underline{x(n)*h(n)}]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x(m)h(n-m)e^{-j\omega n} = \sum_{m=-\infty}^{\infty} x(m)\sum_{n=-\infty}^{\infty} h(n-m)e^{-j\omega n}$$

$$= \sum_{m=-\infty}^{\infty} x(m)\sum_{k=-\infty}^{\infty} h(k)e^{-j\omega(m+k)} = \sum_{m=-\infty}^{\infty} x(m)e^{-j\omega m}\sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{j\theta(\omega)}|$$

1、系统的幅频响应(幅度响应,增益)—— $H(e^{j\omega})$

如果<u>幅度响应在某些频率上很小</u>的话,那么输出中输入的这些频率分量就<u>受</u>到抑制。

实际应用中,我们应该根据具体问题,<u>有选择地抑制某些频率分量,而让某</u> 些频率分量通过。

这种频率的选择(是通过还是抑制),是依靠幅频响应的设计来完成的。

$$\left|H(e^{j\omega})\right|$$
 的对数幅度 — $\left|20\log_{10}\left|H(e^{j\omega})\right|\right|$ dB

增益 $(dB) = 20 \log_{10}$	$\left H(e^{j\omega})\right $
--------------------------	-------------------------------

$$20m(dB) \longleftrightarrow |H(e^{j\omega})| = 10^m$$

	0dB	$\left H(e^{j\omega})\right = 1$
增益 20dB	→ 20dB	$\left H(e^{j\omega})\right = 10$
增益 40dB	→ 40dB	$\left H(e^{j\omega})\right = 100$
增益60dB	→ 60dB	$\left H(e^{j\omega})\right = 1000$

衰减
$$(dB) = -20 \log_{10} \left| H(e^{j\omega}) \right| = -$$
增益 (dB)

	0dB	$\left H(e^{j\omega})\right = 1$
衰减20dB	→-20dB	$\left H(e^{j\omega})\right = 0.1$
衰减 40dB	→-40dB	$\left H(e^{j\omega})\right = 0.01$
衰减60dB	→-60dB	$\left H(e^{j\omega})\right = 0.001$

2、系统的相频响应 (相位响应) —— $\theta(\omega)$

位响应实际上对应 着时域上该处频率 信号的<u>移位</u>情况。

$$|H(e^{j\omega})| = 1$$

$$\theta(\omega) = -n_d \omega$$

$$y(n) = x(n - n_d)$$

群延迟:

$$grd(\omega) = -\frac{d\theta(\omega)}{d\omega} = n_d$$

二、固定频率输入信号下的系统输出

1、若输入
$$x(n) = e^{j\omega_0 n}$$
 (-∞≤ n ≤∞),求输出 $y(n) = x(n)*h(n)$

$$y(n) = x(n) * h(n) = h(n) * x(n)$$

$$=\sum_{m=-\infty}^{\infty}h(m)x(n-m)=\sum_{m=-\infty}^{\infty}h(m)\cdot e^{j\omega_0(n-m)}$$

$$=e^{j\omega_0 n}\sum_{m=-\infty}^{\infty}h(m)\cdot e^{-j\omega_0 m} \qquad H(e^{j\omega_0})$$

$$\therefore y(n) = e^{j\omega_0 n} H(e^{j\omega_0}) = |H(e^{j\omega_0})| e^{j(\omega_0 n + \theta(\omega_0))}$$

$$H(e^{j\omega}) = |H(e^{j\omega})| e^{j\theta(\omega)}$$

二、固定频率输入信号下的系统输出

2、 若输入
$$x(n) = A\cos(\omega_0 n + \varphi)$$

线性相位
$$\theta(\omega_0) = -\tau\omega_0$$

$$\text{MI: } y(n) = A \left| H(e^{j\omega_0}) \left| \cos[\omega_0 n + \varphi + \theta(\omega_0)] \right| \cos[\omega_0 (n - \tau) + \varphi] \right|$$

其中,
$$H(e^{j\omega_0}) = |H(e^{j\omega_0})|e^{j\theta(\omega_0)}$$

说明: 若系统频率响应 $H(e^{i\omega})$ 存在且连续,则有:

- > 当系统的输入为正弦序列,则输出为同频的正弦序列。
- \rightarrow 其幅度受 $H(e^{j\omega})$ 的幅度 $|H(e^{j\omega})|$ 加权;
- > 其相位为输入相位与系统相位响应之和。

系统频率响应的意义

- > 系统频率响应的基本概念
 - > 系统的幅频响应
 - > 系统的相频响应
- > 固定频率输入信号下的系统输出