1

Assignment 15

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix_Theory_EE5609/tree/master/codes

1 Problem

Let **A** be a real matrix with characteristic polynomial $(x-1)^3$. Pick the correct statements from below:

- 1. A is necessarily diagonalizable.
- 2. If the minimal polynomial of **A** is $(x-1)^3$, then **A** is diagonalizate.
- 3. Characteristic polynomial of A^2 is $(x-1)^3$.
- 4. If **A** has exactly two Jordan blocks, then $(\mathbf{A} \mathbf{I})^2$ is diagonalizable.

2 **DEFINITIONS**

Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions

3 Explanation

Statement	Solution
1.	
	Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
	Since A is upper triangular matrix, $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 1$
	Therefore, $p(x) = (x - 1)^3$
	Soving $(\mathbf{A} - \mathbf{I})^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Soving $(\mathbf{A} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Soving $\mathbf{A} - \mathbf{I} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
	Since $A - I \neq 0$
	Therefore, $m(x) = (x - 1)^2$
Justification	Hence, the Jordan form of $\bf A$ is a 3×3 matrix consisting of two block: one block of order 2 with principal diagonal value as $\lambda=1$ and super diagonal of the block (i.e the set of elements that lies directly above the elements comprising the principal diagonal) contains 1. And one block of order 1 with $\lambda=1$. Hence the required Jordan form of $\bf A$ is,
	$\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	A matrix is diagonalizable iff its jordan form is a diagonal matrix. Since J is not diagonizable therefore A is not diagonizable.
Conclusion	Therefore the statement is false.

_	
')	
_	•

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Since **A** is upper triangular matrix, $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 1$

Therefore,
$$p(x) = (x - 1)^3$$

Soving
$$(\mathbf{A} - \mathbf{I})^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Soving
$$(\mathbf{A} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Since
$$(\mathbf{A} - \mathbf{I})^2 \neq \mathbf{0}$$

Therefore, $m(x) = (x - 1)^3$

Justification

Hence, the Jordan form of \mathbf{A} is a 3×3 matrix consisting of only one block with principal diagonal values as $\lambda_1 = 1$ and super diagonal of the matrix (i.e the set of elements that lies directly above the elements comprising the principal diagonal) contains 1. Hence the required Jordan form of \mathbf{A} is,

$$\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Since J is not diagonizable therefore A is not diagonizable.

Conclusion

Therefore the statement is false.

3.

Give that,
$$p(x)$$
 of $\mathbf{A} = (x-1)^3$

Hence the eigen values of A = 1, 1, 1

Hence the eigen values of $\mathbf{A}^2 = 1^2, 1^2, 1^2$ or 1, 1, 1

Therefore p(x) of $\mathbf{A}^2 = (x-1)^3$

Conclusion

Therefore the statement is True.

4.	We know that jordan form of a matrix is similar to the original matrix Let \mathbf{J} be the jordan form of the matrix \mathbf{A} then, $\mathbf{A} = \mathbf{PJP}^{-1}$ $\mathbf{A} - \mathbf{I} = \mathbf{PJP}^{-1} - \mathbf{I}$ $\mathbf{A} - \mathbf{I} = \mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}$ $(\mathbf{A} - \mathbf{I})^2 = \mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}\mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}$ $(\mathbf{A} - \mathbf{I})^2 = \mathbf{P}(\mathbf{J} - \mathbf{I})^2\mathbf{P}^{-1}$ Therefore $(\mathbf{A} - \mathbf{I})^2$ is similar to $(\mathbf{J} - \mathbf{I})^2$ Since \mathbf{A} has exactly two jordan blocks and order of \mathbf{A} is 3. $\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{J} - \mathbf{I} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $(\mathbf{J} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Since $(\mathbf{J} - \mathbf{I})^2$ is diagonal matrix. Therefore $(\mathbf{A} - \mathbf{I})^2$ is diagonalizable.
Conclusion	Therefore the statement is True.

TABLE 2: Solution summary