Selected Solutions to Exercise Problems

Section 2: Propositional Calculus.

S02E15. Use the method of conditional proof to explain in words why the sentence

$$\{(P \lor Q) \land [(P \Rightarrow R) \land (Q \Rightarrow S)]\} \Rightarrow (R \lor S)$$

is a tautology. Be explicit about discharging assumptions.

Proof.

A1: Suppose $(P \vee Q) \wedge [(P \Rightarrow R) \wedge (Q \Rightarrow S)]$ is true.

(We wish to show that $R \vee S$ is true.)

Then both of $P \vee Q$ and $(P \Rightarrow R) \wedge (Q \Rightarrow S)$ are true.

Since $P \vee Q$ is true, at least one of P and Q is true.

Case 1. Suppose P is true.

Since $(P \Rightarrow R) \land (Q \Rightarrow S)$ is true, $P \Rightarrow R$ is true.

Thus $P \Rightarrow R$ is true and P is true.

Hence, by modus ponens, R is true.

Case 2. Suppose Q is true.

Since $(P \Rightarrow R) \land (Q \Rightarrow S)$ is true, $Q \Rightarrow S$ is true.

Thus $Q \Rightarrow S$ is true and Q is true.

Hence, by modus ponens, S is true.

Thus in either case, R is true or S is true.

We have shown that $R \vee S$ is true under the assumption A1 that $(P \vee Q) \wedge [(P \Rightarrow R) \wedge (Q \Rightarrow S)]$ is true

Discharging A1, we see that $\{(P \lor Q) \land [(P \Rightarrow R) \land (Q \Rightarrow S)]\} \Rightarrow (R \lor S)$ is true under no assumptions, so it is a tautology.

S02E17. Use the method of conditional proof to explain in words why the sentence

$$(P \Rightarrow Q) \Rightarrow \{ [P \Rightarrow (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R) \}$$

is a tautology. Be explicit about discharging assumptions.

Proof.

A1: Suppose $A_1: P \Rightarrow Q$ is true. (We wish to show that $C_1: [P \Rightarrow (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$ is true.)

A2: Suppose $A_2: P \Rightarrow (Q \Rightarrow R)$ is true. (We wish to show that $C_2: P \Rightarrow R$ is true.)

A3: Suppose $A_3: P$ is true. (We wish to show that $C_3: R$ is true.)

From A1 and A3, we see that Q is true, by modus ponens.

From A2 and A3, we see that $Q \Rightarrow R$ is true, by modus ponens.

From this and the fact that Q is true, we see that R is true, by modus ponens.

We have shown that C_3 is true under A1, A2, and A3.

Discharging A3, we see that $C_2: A_3 \Rightarrow C_3$ is true under A1 and A2.

Discharging A2, we see that $C_1: A_2 \Rightarrow C_2$ is true under A1 alone.

Finally, discharging A1, we see that $A_1 \Rightarrow C_1$ is true under no assumptions, so it is a tautology.

Section 3: Quantifiers.

S03E07. Let P be the sentence

$$(\exists x \in \mathbb{R})(x \ge 0 \text{ and } \sqrt{x+2} < \sqrt{x} + \sqrt{2}).$$

(a) Use one of the generalized De Morgan's laws to show that $\neg P$ is logically equivalent to

$$(\forall x \in \mathbb{R})(x < 0 \text{ or } \sqrt{x+2} \geqslant \sqrt{x} + \sqrt{2}).$$

Proof.

$$\neg(\exists x \in \mathbb{R})(x \geqslant 0 \text{ and } \sqrt{x+2} < \sqrt{x} + \sqrt{2})$$
 iff $(\forall x \in \mathbb{R})\neg(x \geqslant 0 \text{ and } \sqrt{x+2} < \sqrt{x} + \sqrt{2})$ (by a generalized De Morgan's law) iff $(\forall x \in \mathbb{R})(x < 0 \text{ or } \sqrt{x+2} \geqslant \sqrt{x} + \sqrt{2})$ (by a De Morgan's law)

(b) The sentence $P: (\exists x \in \mathbb{R})(x \ge 0 \text{ and } \sqrt{x+2} < \sqrt{x} + \sqrt{2})$ is true because $2 \ge 0$ and $\sqrt{2+2} = \sqrt{4} = 2 < \sqrt{2} + \sqrt{2}$.

S03E10. For each of the following sentences, write out what it means in words, state whether it is true or false, and prove your statement.

(a) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x + y = x)$ means "There exists a real number y such that for each real number x, x + y = x." We claim that this sentence is true.

Proof. It suffices to exhibit a value of y such that the universal sentence $(\forall x \in \mathbb{R})(x+y=x)$ is true. We claim that 0 is such a value of y. To see this, let x_0 be any real number. Then $x_0+0=x_0$. Now x_0 is an arbitrary element of \mathbb{R} . Hence $(\forall x \in \mathbb{R})(x+y=x)$ is true. This proves the claim. Therefore $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x+y=x)$ is true.

(b) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y = x)$ means "For each real number x, there exists a real number y such that, x + y = x." We claim that this sentence is true.

Proof. Let x_0 be any real number. Then $x_0 + 0 = x_0$. Hence $(\exists y \in \mathbb{R})(x_0 + y = x_0)$ is true, because 0 is such a value of y. Now x_0 is an arbitrary element of \mathbb{R} . Therefore $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y = x)$ is true.

(e) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(xy = 1)$ means "There exists a real number y such that for each real number x, xy = 1." We claim that this sentence is false.

Proof. Suppose it is true. Then we can pick $y_0 \in \mathbb{R}$ such that $(\forall x \in \mathbb{R})(xy_0 = 1)$. But then in particular, $0 \cdot y_0 = 1$, so 0 = 1. But $0 \neq 1$. This is a contradiction. Hence $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(xy = 1)$ must be false.

(f) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(xy = 1)$ means "For each real number x, there exists a real number y such that xy = 1." We claim that this sentence is false.

Proof. Suppose it is true. Then in particular, since 0 is a real number, $(\exists y \in \mathbb{R})(0 \cdot y = 1)$ is true, so we can pick $y_0 \in \mathbb{R}$ such that $0 \cdot y_0 = 1$, so 0 = 1. But $0 \neq 1$. This is a contradiction. Hence $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(xy = 1)$ is false.

S03E11. Let S be a subset of \mathbb{R} .

(a)	Let S be the set of all real numbers. We claim that this S is not bounded above. By Example 3.15, S is not bounded above if and only if $(\forall b \in \mathbb{R})(\exists x \in S)(x > b)$, which we use in the proof below.	
	<i>Proof.</i> Let $b_0 \in \mathbb{R}$ be arbitrary. Since $b_0 + 1 \in \mathbb{R}$ and $b_0 + 1 > b_0$, it is an example value of x for which $(\exists x \in S)(x > b)$. Since b_0 is arbitrary, it follows that $(\forall b \in \mathbb{R})(\exists x \in S)(x > b)$. Therefore S is not bounded above.	
(b)	Let S be the set of all numbers x such that some person on earth has x hairs on his or her head. We claim that this S is bounded above. Recall that S is bounded above if and only if $(\exists b \in \mathbb{R})(\forall x \in S)(x \leqslant b)$ which we use in the proof below.	
	<i>Proof.</i> S is a finite set because there are finitely many people on earth. So S has a maximal element call it m. Then, for any $x_0 \in S$, $x_0 \le m$. Thus $(\forall x \in S)(x \le m)$ because x_0 is arbitrary. Hence $(\exists b \in \mathbb{R})(\forall x \in S)(x \le b)$ because m is an example value of b. Therefore S is bounded above.	
S03E14. For each of the following sentences, write out what it means in words, state whether it is true or false, and prove your statement.		
(c)	$(\exists ! x \in \mathbb{Z})(x^2 - 4x + 3 < 0)$ means "There exists a unique integer x such that $x^2 - 4x + 3$ is less than 0." We claim that this sentence is true.	
	<i>Proof.</i> 2 is an integer and $2^2-4\cdot 2+3=-1<0$. Now suppose x is another integer such that $x^2-4x+3<0$. (We wish to show that $x=2$.) By completing the square, $x^2-4x+3=(x-2)^2-1\geqslant -1$. Thus $-1\leqslant (x-2)^2-1<0$. Since x is an integer, $(x-2)^2-1$ is an integer, thus it must be the case that $(x-2)^2-1=-1$. It follows that $(x-2)^2=0$, so $x-2=0$, so $x=2$.	
(e)	$(\exists ! x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ means "There exists a unique real number x such that $x^2 - 4x + 5$ is 0." We claim that this sentence is false.	
	Proof. To disprove $(\exists ! x \in \mathbb{R})(x^2 - 4x + 5 = 0)$, we will show that $(\exists x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ is false. Assume $(\exists x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ is true. Then in particular, we can pick a real number x_0 such that $x_0^2 - 4x_0 + 5 = 0$. But $x_0^2 - 4x_0 + 5 = (x_0 - 2)^2 + 1 \ge 1$. So $x_0^2 - 4x_0 + 5 \ne 0$. This is a contradiction. So $(\exists x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ is false, and it follows that $(\exists ! x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ is false.	
(i)	$(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(xy = 0)$ means "For each real number x , there exists a unique real number y such that xy is 0." We claim that this sentence is false.	
	<i>Proof.</i> Suppose $(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(xy = 0)$ is true. Then in particular, since 0 is a real number $(\exists ! y \in \mathbb{R})(0 \cdot y = 0)$ is true. But 1 and -1 are two different real values of y for which $0 \cdot y = 0$. So $(\exists ! y \in \mathbb{R})(0 \cdot y = 0)$ is false. This is a contradiction. Therefore $(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(xy = 0)$ is false.	
(j)	$(\forall x \in \mathbb{R})[$ if $x \neq 0$, then $(\exists! y \in \mathbb{R})(xy = 0)]$ means "For each real number x , if x is nonzero, then there exists a unique real number y such that xy is 0." We claim that this sentence is true.	
	<i>Proof.</i> Let $x \in \mathbb{R}$ be arbitrary. Assume that $x \neq 0$. (Here we are proceeding by way of conditional proof. We wish to show that $(\exists! y \in \mathbb{R})(xy = 0)$ is true.) Note that 0 is a real number, $x \cdot 0 = 0$, and if y is another real number such that $xy = 0$, then $y = 0$ because $x \neq 0$. This shows that $(\exists! y \in \mathbb{R})(xy = 0)$ is true. Since x is arbitrary, we conclude that $(\forall x \in \mathbb{R})$ if $x \neq 0$, then $(\exists! y \in \mathbb{R})(xy = 0)$ is true.	

Section 4: First Examples of Mathematical Proofs.

S04E03. Let x be an integer. Prove that x(x+1) is even.

Pro	of. Since x is an integer, x is even or x is odd.
	Case 1. Suppose x is even. Then we can pick an integer k such that $x = 2k$. Then $x(x+1) = 2k(2k+1) = [k(2k+1)]$. Since $k(2k+1)$ is an integer, it follows that $x(x+1)$ is even.
1	Case 2. Suppose x is odd. Then we can pick an integer k such that $x = 2k$. Then $x(x+1) = (2k+1)((2k+1)+1) = (2k+1)(2k+2) = 2[(2k+1)(k+1)]$. Since $(2k+1)(k+1)$ is an integer, it follows that $(x+1)$ is even.
Thu	s in either case, $x(x+1)$ is even.
S04	E04.
(a)	The sentence "For each real number x , if x is an even number, then x is not an odd number." is true.
	<i>Proof.</i> Let $x \in \mathbb{R}$ be arbitrary. Suppose that x is even. We wish to show that x is not odd. Suppose x is odd. Then x is both even and odd. But, by (a) of Remark 4.12, x is not both even and odd. Thus we have reached a contradiction. Thus it must be that x is not odd. Since x is arbitrary, it follows that for each $x \in \mathbb{R}$, if x is even, then x is not odd.
(b)	The sentence "For each real number x , if x is not an odd number, then x is an even number." is false.
	<i>Proof.</i> Suppose it is true. Then in particular, $1/2$ is a real number and $1/2$ is not odd, so $1/2$ is even Then we can find $k \in \mathbb{Z}$ such that $1/2 = 2k$, so $1 = 2(2k)$. Thus 1 is even. But $1 = 2 \cdot 0 + 1$, so 1 is odd So 1 is both even and odd. But since 1 is an integer, by (a) of Remark 4.12, 1 is not both even and odd This is a contradiction. Therefore, the sentence must be false.
	In the proof above, we used the number $1/2$ is not odd without proving it. Though obvious, let's prove it here.
	Claim 1. The number 1/2 is not an odd number.
	<i>Proof.</i> Suppose $1/2$ is odd. Then we can pick $k \in \mathbb{Z}$ such that $1/2 = 2k + 1$, so $1 = 2(2k + 1)$. Thus is even. But $1 = 2 \cdot 0 + 1$, so 1 is odd. Since 1 is an integer, by part (c) of Remark 4.12, 1 is not even. This is a contradiction. So $1/2$ is not even.

(b) u - v is a rational number.

(a) -v is a rational number.

S04E08. Let u, v, and w be rational numbers.

Proof. Since v is a rational number, we can pick $a, b \in \mathbb{Z}$ such that $b \neq 0$ and v = a/b. Then -v = -(a/b) = (-a)/b. Since -a is an integer and b is an integer that is not zero, -v is a rational number. \square

Proof. (Using definition) Since u and v are rational numbers, we can pick $a,b,c,d\in\mathbb{Z}$ such that $b,d\neq 0$ and u=a/b and v=c/d. Then

$$u - v = \frac{a}{b} - \frac{c}{d} = \frac{ad}{bd} - \frac{bc}{bd} = \frac{ad - bc}{bd}.$$

Since ad - bc is an integer and bd is an integer that is not zero as a product of two nonzero integers, u - v is a rational number.

Proof. (Using other results) By part (a), since v is a rational number, -v is a rational number. By Example 4.21, since u and -v are both rational numbers, u + (-v) = u - v is a rational number.

(d) If $w \neq 0$, then 1/w is a rational number.

Proof. Let $w \neq 0$ be a rational number. Then we can pick $a, b \in \mathbb{Z}$ such that $a, b \neq 0$ and w = a/b. (Note that $a \neq 0$ because $w \neq 0$.) Then 1/w = 1/(a/b) = b/a. Since $a, b \in \mathbb{Z}$ and $a \neq 0$, it follows that 1/w is a rational number.

S04E10. Let x be a rational number and let y be an irrational number.

(a) -y is irrational.

Proof. Since y is irrational, y is real and y is not rational. Since y is real, -y is also real. It remains to show that -y is not rational. Suppose that -y is rational. Then by Exercise 8(a), -(-y) = y is rational. So y is not rational and y is rational. This is a contradiction. Thus -y is not rational. Hence -y is irrational.

(b) x - y is irrational.

Proof. Since x is rational and y is irrational, both x and y are real, so x-y is real. It remains to show that x-y is not rational. Suppose that x-y is rational. Then x-(x-y)=y is rational, because the difference of two rational numbers is rational; see Exercise 8(b). But y is not rational because y is irrational. This is a contradiction. Thus x-y is not rational. Therefore x-y is irrational.

(d) If $x \neq 0$, then xy is irrational.

Proof. Assume that $x \neq 0$. (We wish to show that xy is irrational.) Since x is rational and y is irrational, both x and y are real, so xy is real. It remains to show that xy is not rational. Suppose xy is rational. Then by Exercise 8(e), (xy)/x = y is rational. (Note that Exercise 8(b) is applicable since both x and xy are rational and $x \neq 0$.) But y is not rational because y is irrational. This is a contradiction. Thus xy is not rational. Therefore xy is irrational.

S04E12. For each $x \in \mathbb{R}$, $\pi + x$ is irrational or $\pi - x$ is irrational.

Proof. Let $x \in \mathbb{R}$. Assume, by way of contradiction, that $\pi + x$ is rational and $\pi - x$ is rational. Since the sum of two rational numbers is a rational number, $(\pi + x) + (\pi - x) = 2\pi$ is a rational number. Since the quotient of rational numbers (with nonzero denominator) is a rational number, $(2\pi)/2 = \pi$ is a rational number. But π is an irrational number. This is a contradiction. Hence $\pi + x$ is irrational or $\pi - x$ is irrational.

S04E14. Let $a, b, c \in \mathbb{Z}$.

(b) If a divides b and b divides a, then b = a or b = -a.

Proof. Since a divides b, we can pick $k \in \mathbb{Z}$ such that b = ka. Since b divides a, we can pick $\ell \in \mathbb{Z}$ such that $a = \ell b$. On substitution, $b = k(\ell b) = (k\ell)b$, so $b - (k\ell)b = b(1 - k\ell) = 0$, so b = 0 or $k\ell = 1$.

Case 1. Suppose b = 0. Then $a = \ell b = \ell \cdot 0 = 0$, so b = a.

Case 2. Suppose $k\ell = 1$. Then $k = \ell = 1$ or $k = \ell = -1$, because $k, \ell \in \mathbb{Z}$. In particular, k = 1 or k = -1. Since b = ka, it follows that b = a or b = -a.

Thus in either case, b = a or b = -a.

(c) If a divides b and b divides c, then a divides c.

Proof. Since a divides b and b divides c, we can pick $k, \ell \in \mathbb{Z}$ such that b = ka and $c = \ell b$. But then $c = \ell b = \ell(ka) = (\ell k)a$. Since $\ell k \in \mathbb{Z}$, it follows that a divides c.

S04E16. Let $n \in \mathbb{N}$. Prove that there exists a prime number q such that $n < q \le 1 + n!$.

Proof. Let x=1+n!. We claim that none of $2,3,\ldots,n$ divides x. By way of contradiction, assume that one of $2,3,\ldots,n$ divides x; call it k. But then k divides x-1=n! because n! is the product of $1,2,\ldots,n$, one of which is k. Thus k divides x and k divides x-1, so k divides x-(x-1)=1. This is a contradiction because $k\geqslant 2$ because k is one of $2,3,\ldots,n$ and $k\leqslant 1$ because k divides 1. Hence none of $1,2,\ldots,n$ divides 1. Now $1,2,\ldots,n$ divides $1,2,\ldots,n$ divides