Basics

Notations

• $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$

• $[n] := \{1, \dots, n\} \subset \mathbb{N}$ • Power set $2^X := \{A : A \subseteq X\}$

Graph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{\{u, v\} : u, v \in V\}$ $V, u \neq v$

Vertex set: V(G)

• Edge set: E(G)

• Isomorphic (G_1 to another graph G_2): if \exists bijection $f: V_1 \to V_2$ with $\{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2$

• Order: = |V(G)|, short |G|

Size: = |E(G)|, short ||G||

• Degree sequence: multiset of degrees of vertices in V(G)

 \circ graphic: deg. seq. (d_1, \ldots, d_n) , iff

1. $d_1 + \dots + d_n$ even 2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=1}^k i = k+1^n \min(d_i, k)$ $(\forall 1 \le k \le n)$

• Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$ • Minimum degree: $\delta(G)$ = degree of $v \in V(G)$ with smallest degree

• Maximum degree: $\Delta(G)$ = degree of $v \in V(G)$ with largest degree

• Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$

• Eulerian: if it contains an Eulerian tour

· Connected: for any two vertices there is a link between them

 \circ spanning tree: if G is connected, then it has a spanning tree

 \circ peeling leaves: vertices can be ordered v_1,\ldots,v_n s.t. $G[\{v_1,\ldots,v_i\}]$ is connected for $i \in \{1, \dots, n\}$

Digraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$ $V, u \neq v$

Multigraph

• **Definition**: G = (V, E) with vertex set V and multiset E of V-pairs

Hypergraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq V\}$

Vertex

• Incident to $e \in E(G)$ if $v \in e$

• Adjacent to $\tilde{v} \in V(G)$ if $\{v, \tilde{v}\} \in E(G)$

• Neighborhood: $N(v) = \{u : uv \in E(G)\}$

• Degree: deg(v) = d(v) = |N(v)|

Isolated: vertex with deg(v) = 0

• Leaf: vertex with deg(v) = 1

Subgraph

• **Definition**: H subgraph of G (write $H \subseteq G$) if $V(H) \subseteq V(G) \land E(H) \subseteq$

• Induced subgraph: H induced subgraph of G (write $H\subseteq G$), if $H\subseteq G$ and E(H) contains all edges from E(G) between vertices in V(H)

• Edge-induced subgraph: subgraph induced by $X \subseteq E(G)$, note G[X]

Spanning graph

· Definition: Subgraph with same vertex set as supergraph

Vertex cover

• **Definition**: $V' \subseteq V(G)$ s.t. any $e \in E(G)$ is incident to a vertex in V'

Cycle

• Definition: $C_n \coloneqq (\{v_1,\dots,v_n\},\{\{v_1,v_2\},\dots,\{v_{n-1},v_n\},\{v_n,v_1\}\})$

• Shorthand: (v_1,\ldots,v_n,v_1)

• Length (of cycle): $= |V| \equiv |E|$

• Cyclic subgraph: If $\delta(G) \ge 2$, then G has cycle with length $\ge \delta + 1$

Path

• **Definition**: $(\{v_1, \dots, v_n\}, \{\{v_1, v_2\}, \dots, \{v_{n-1}, v_n\}\})$

• Shorthand: (v_1,\ldots,v_n)

• Length (of path): = $|E| \neq |V|$

• v_0v_k -path: path starting at v_0 and ending at v_k

Walk

Definition: non-empty alternating sequence of vertices and edges

 $v_0 e_0 \dots e_{k-1} v_k$

with $e_i = v_i v_{i+1}$, length $k \in \mathbb{N}$

 \circ closed: if $v_0 = v_k$

 \circ even: if k is even

 \circ *odd*: if k is odd

· Eulerian tour:

o Definition: closed walk with

- no edges of G are repeatedly used

all edges of G are used

• Even degrees: G connected has Euler tour $\Leftrightarrow \forall v \in V(G) : \deg(v)$ even

+ v_0v_k -walk: walk starting at v_0 and ending at v_k

• Induces path: $\exists uv$ -walk $\Rightarrow \exists uv$ -path

- Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

Connected component

• **Definition**: maximal connected subgraph (connected, but any supergraph isn't)

Acyclic graph, Forest

· Definition: Graph with no cycle as subgraph

Tree

· Definition: Graph that is connected and acyclic

 $\circ \Leftrightarrow G$ is connected and $\forall e \in E(G) : G - e$ is disconnected (minimal-connected)

 $\circ \Leftrightarrow G$ is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)

 $\circ \iff G$ is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \le 1)$

 $\circ \iff G$ is connected and ||G|| = |G| - 1

 $\circ \iff G$ is acyclic and ||G|| = |G| - 1

 $\circ \iff \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$

· Special trees: path, star, spider, caterpillar, broom

• Leaf existance: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf

• Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n - 1$

k-regular graph

• **Definition**: Graph with $\deg(v) = k \in \mathbb{N}_0 \quad (\forall v \in V(G))$

Bipartite graph

• **Definition**: G is bipartite $\iff G$ contains no cycles of odd length

 \circ complete bipartite: $K_{m,n} = (A \cup B, \{a,b\} : a \in A, b \in B)$

Matchings:

• saturating: $G = (A \cup B, E)$ has matching saturating A

 $\Leftrightarrow \forall S \subseteq A : N(S) \ge |S| \ (N(S) := \{b \in B : ab \in E, a \in S\})$ • nearly: $G = (A \cup B, E), \forall S \subseteq A : |N(S)| \ge |S| - d \quad (d \ge 1).$

 $\Rightarrow \ \exists \ \mathrm{matching} \ M$ saturating all but at most d vertices of A

• Matching vs vertex cover: size of largest matching = size of smallest vertex cover

Matching

• **Definition**: graph with $\delta(G) = \Delta(G) = 1$

- Perfect matching: spanning + matching subgraph of G (aka 1-factor)

• Existance: G has perfect matching $\Leftrightarrow \forall S \subseteq V(G) : q(G - S) \leq S$ (q(G)) = number of components in G with odd order)

Proper coloring

• **Definition**: = $c: V(G) \rightarrow [k]$ with $c(u) \neq c(v) \quad (\forall uv \in E(G))$

Chromatic number

- Definition: $\chi(G)=\min\{k:G \text{ has proper coloring with } k \text{ colors}\}$ Examples: $\chi(C_{2n})=2$, $\chi(C_{2n+1})=3$

Factors

- **k-factor** (in G): spanning k-regular subgraph (easy to find)

Bipartite graphs