ANALISIS KEAMANAN APLIKASI *EMAIL* BAWAAN *ANDROID* DAN *GMAIL* PADA JARINGAN NIRKABEL

Hamid

Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia Jl. Kaliurang Km. 14,5 Sleman, Yogyakarta E-Mail : hamid@uii.ac.id

ABSTRACT

ARP Poisoning / ARP Spoofing and sniffing will always threaten wireless network user. The rise of android-based smartphone user and internet wireless network provider, allowing smartphone users to access anything including email from anywhere they want. This paper provides an overview of comparison of security analysis between use the embedded android email application with gmail email application that is connected to wireless network, as well as providing an overview of possible attack methods. This paper also provides solutions to prevent attacks from the vulnerability found.

Keywords: ARP Poisoning, ARP Spoofing, Sniffing, Wireless Network, Email Application.

1. LATAR BELAKANG

Android merupakan salah satu sistem operasi yang dikembangkan untuk perangkat bergerak yang bersifat open source. Sejak dirilis pada tahun 2007 (Alliance, 2007), ponsel pintar berbasis android langsung menguasai pasar ponsel pada kuartal keempat tahun 2010 dengan penguasaan pasar sebesar 32,5 % dari total penjualan ponsel pintar di dunia (Ricknäs, 2011).

Pada kuartal ketiga tahun 2013 ponsel pintar berbasis *android* menguasai pasar dunia dengan penguasaan pasar sebesar 81,9 % dengan total penjualan 205.222 unit (Meulen, 2013). Di Indonesia sendiri ponsel pintar berbasis *android* menguasai pasar dengan penguasaan pasar sebesar 56 % pada tahun 2012 (Einhorn, 2012).

Smartphone Operating System Market Share in Indonesia

GRAPHIC BY BLOOMBERG BUSINESSWEEK, DATA: IDC

Gambar 1. Penguasaan Pasar Ponsel Pintar Berbasis *Android* di Indonesia. (Einhorn, 2012)

Ponsel pintar terutama ponsel pintar berbasis android yang semakin mampu menggantikan tugas yang sebelumnya dilakukan oleh notebook ataupun komputer personal. menghadirkan fenomena ketergantungan dan menjadikan ponsel pintar sebagai kebutuhan primer. Fitur yang sudah umum tertanam dan digunakan oleh pengguna ponsel pintar adalah fitur email. Pada ponsel berbasis android fitur email adalah fitur wajib yang ada dan sudah tertanam otomatis bersama dengan sistem operasi android itu sendiri. Selain itu pengguna sistem operasi android diwajibkan menggunakan minimal 1 (satu) akun email dari google / gmail guna mengaktifkan sistem operasi dan fitur - fitur yang ada.

Selain aplikasi *email* bawaan pada sistem operasi *android*, pengguna dapat memasang aplikasi *email* lain yang disediakan oleh penyedia *email* masing masing. *Yahoo* dan *google* merupakan contoh penyedia *email* yang menyediakan aplikasi *email* yang dapat dipasang pada ponsel *android*. Bagi pengguna *email* yang tidak menyediakan aplikasi yang berbasis *android* tersendiri, biasanya menggunakan aplikasi bawaan yang tertanam dalam ponsel *android*.

Semakin menjamurnya pengguna ponsel android maupun perangkat bergerak lain, menjadikan semakin tinggi pula kebutuhan akan internet. Internet yang cepat dan murah sangat diharapkan oleh pengguna, penyedia layanan internet juga menangkap peluang fenomena yang ada dengan memberikan banyak layanan koneksi nirkabel pada lokasi pusat keramaian. Selain penyedia jasa layanan pengusaha internet. yang membutuhkan keramaian orang juga memanfaatkan fenomena ini dengan memasang berbagai layanan internet hotspot baik gratis maupun yang berbayar.

Kemudahan berbanding terbalik dengan keamanan. Fenomena menjamurnya layanan internet hotspot menjadikan titik - titik hotspot maupun pengguna yang memanfaatkan titik tersebut menjadi target

kejahatan bagi beberapa orang yang tidak bertanggung jawab.

Beberapa orang yang tidak bertanggung jawab tersebut dengan sedikit kemampuan lebih, mampu mengintip ataupun mencuri data dari pengguna layanan *internet hotspot*. Kemampuan yang dibutuhkan untuk melakukan kejahatan *internet* model seperti ini tidaklah tinggi. Bahkan sudah banyak tutorial - tutorial yang tersebar baik dalam bentuk buku maupun tutorial di *internet* yang dengan mudah dapat diakses oleh semua orang. Data yang diintip maupun dicuri bisa berupa *username*, alamat *email*, bahkan *password*.

2. LANDASAN TEORI

2.1. *Email*

Email atau surat elektronik merupakan layanan pengiriman surat digital yang disediakan oleh Internet Service Provider (ISP). ISP menyediakan server email atau mail server yang berfungsi untuk melakukan pendeteksian pesan dan mengirimkannya pada email tujuan. Layanan surat elektronik sendiri terbagi kedalam dua bagian layanan surat elektronik bebas (free) dan layanan surat elektronik terbatas. Layanan surat elektronik ini sendiri dapat diakses melaui berbagai cara:

1 Web Mail

Merupakan aplikasi berbasis website yang disediakan oleh penyedia layanan email agar para pengguna dapat dengan mudah mengakses layanan yang diberikan. Pengguna surat elektronik hanya membutuhkan web browser serta koneksi internet untuk melakukan pengaksesan layanan tersebut.

2. Aplikasi email Client

Merupakan aplikasi yang dibuat khusus untuk melakukan pengaksesan layanan surat elektronik. Dengan menggunakan aplikasi *mail client* ini pengguna dapat dengan mudah melakukan manajemen surat elektronik yang dimiliki, bahkan dapat melakukan penulisan surat elektronik

meskipun tidak terdapat koneksi *internet* (Butterfield, Tracy, & Jansen, 2007).

Fungsi yang dilakukan oleh *email client* adalah sebagai berikut (EC Council, 2010):

- a. Mengambil email dari kotak surat.
- b. Menampilkan *header* dari pesan-pesan yang ada di kotak surat. Pada beberapa kasus, sebagian isi *email* juga ditampilkan.
- c. Menulis email baru.

Beberapa *email client* yang sering digunakan antara lain : *Mozilla Thunderbird, Microsoft Outlook, Eudora Mail* dan beberapa aplikasi *email client* yang terintegrasi dengan sistem operasi perangkat bergerak.

3. Email Server

Email server atau yang biasa disebut dengan mail server adalah komputer yang terhubung ke jaringan yang berfungsi sebagai kantor pos virtual, dalam hal komputer yang berfungsi sebagai penyimpan dan penyampai surat elektronik (EC Council, 2010). Proses komunikasi jaringan antara email client dan email server dapat dilihat pada gambar 2.

Ketika email client meminta email baru ke email server, email server meminta username dan password akun email. Setelah email server mencocokkan keduanya, email server akan mengirimkan header email baru ke *email client*. Proses pengiriman *email* sendiri melalui beberapa protokol, yaitu:

1. SMTP

SMTP (Simple Mail Transfer Protocol) mekanisme yang digunakan untuk melakukan pengiriman surat elektronik antar host dalam jaringan komputer dengan menggunakan TCP / IP (Riabov & College, 2005). SMTP merupakan protokol yang handal dan efisien yang menggunakan port 25 untuk operasinya (Jonathan B. Postel, 1982). SMTP melakukan koneksi dengan melakukan pembukaan koneksi melalui SMTP client untuk melakukan koneksi ke server SMTP, setelah server mendapatkan koneksi dari klien SMTP server akan mencari keberadaan SMTP server tujuan dan mengirimkan surat elektronik tersebut.

2. POP3

POP (Post Office Protocol) versi 3 merupakan protokol yang dibuat pada tahun 1984 yang berfungsi untuk melakukan penerimaan surat elektronik. POP sendiri merupakan mekanisme penarikan surat elektronik dari mail server ke aplikasi email milik pengguna. POP pada dasarnya bekerja mirip dengan kotak surat konvensional. Dengan memanfaatkan protokol POP ini surat elektronik yang berada pada mail terhapus. server akan Seperti halnya lain POP protokol *email* yang menggunakan perintah dalam operasinya (Butterfield et al., 2007). Perintah yang digunakan dapat dilihat pada gambar 3.

Gambar 2. Proses Komunikasi *Email Client* dan *Email Server*. (EC Council, 2010)

3. IMAP

IMAP (Internet Message Access Protocol) merupakan pengembangan dari protokol POP versi 2. IMAP memiliki fungsi yang sama dengan POP yaitu digunakan melakukan pembacaan untuk elektronik. Perbedaan mendasar antara POP versi 3 dan IMAP terletak pada surat yang disimpan, jika POP3 akan menyalin seluruh surat dari server dan menyimpannya pada sisi klien, IMAP tidak melakukan penyalinan dan penghapusan surat elektronik dari mail server (Butterfield et al., 2007). Perintah perintah yang dijalankan oleh protokol IMAP dapat dilihat pada gambar 4.

2.2. Keamanan Email

Aspek yang penting dalam keamanan email adalah, kerahasiaan (Confidentiality), keaslian (Authentication), integritas penyangkalan (Integrity), anti (Nonrepudiation) (Stallings, 2011). Surat elektronik atau email itu sendiri bagaikan surat konvensional, jalur yang dilalui dari pengirim ke penerima sangat panjang melalui beberapa kantor pos cabang, pusat dan dibawa oleh beberapa petugas pengirim surat. *Email* juga demikian, jalur yang dilalui dari pengirim ke penerima melalui beberapa router, mail servers, dan beberapa jaringan komputer.

Email sangat rentan dengan serangan baik pasif maupun aktif. Contoh ancaman pasif yang mungkin adalah :

Basic Commands from	RFC 918
USER <name></name>	Set username
PASS <password></password>	Set password
STAT	Check the status of the mailbox, typically retrieves number of messages
LIST [msg]	List messages in the mailbox; Optional argument for message [msg]
RETR <msg></msg>	Retrieve message <msg></msg>
DELE <msg></msg>	Delete message <msg></msg>
QUIT	Quit
NOOP	No operation
RSET	Reset
Optional Commands for	rom RFC 1939
TOP <msg> <n></n></msg>	Retrieve the top <n> lines of message <msg></msg></n>
UIDL [msg]	Retrieve unique id for [msg]
APOP <name> <digest></digest></name>	A more robust form of authentication than USER/PASS
Extension Command for	rom RFC 2449
CAPA	Retrieve a list of capabilities supported by the POP3 server

Gambar 3. Perintah Pada Protokol POP. (Butterfield et al., 2007)

1. Pembukaan isi *email*

Kebanyakan *email* ditransmisikan dalam bentuk jelas (tanpa enkripsi), artinya beberapa orang dengan aplikasi tertentu bisa melihat isi *email*.

2. Analisa lalu lintas data

Beberapa negara secara rutin memantau isi *email*.

Sedangkan ancaman serangan aktif antara lain sebagai berikut :

1. Modifikasi isi email

Isi *email* dapat dimodifikasi pada saat *transport*asi atau penyimpanan. Selama penyerang ada dalam satu jaringan, penyerang bisa menggunakan *ARP spoofing* untuk mencegat lalu memodifikasi isi *email* ke *mail server* maupun dari *mail server*. Teknik ini yang nantinya akan digunakan untuk pengujian.

2. *Masquerade* (Penyamaran)

Dimungkinkan untuk mengirim pesan sebagai orang atau organisasi lain.

3. Spoofing

Pesan palsu dapat dimasukkan ke dalam sistem *mail* pengguna lain.

4. Denial of Service

Dimungkinkan untuk membuat *mail* server sibuk dan overload sehingga membuat *mail* server tersebut tidak bisa melayani pengguna lain (Toorani, 2008).

NOOP	Perform no operation
STARTTLS	Establish confidentiality and integrity protection
AUTHENTICATE <type></type>	Choose authentication method
LOGIN <user> <passwd></passwd></user>	Login with username and password
LOGOUT	Logout the current user
SELECT <mailbox></mailbox>	Select the desired mailbox to access
EXAMINE <mailbox></mailbox>	Same as SELECT except opens mailbox for read-only
CREATE <mailbox></mailbox>	Create a mailbox with the name <mailbox></mailbox>
DELETE <mailbox></mailbox>	Delete selected mailbox
RENAME <mailbox> <newmailbox></newmailbox></mailbox>	Rename mailbox
SUBSCRIBE <mailbox></mailbox>	Subscribe to selected mailbox
UNSUBSCRIBE <mailbox></mailbox>	Unsubscribe from selected mailbox
LIST <reference> [pattern]</reference>	List contents of current reference based on an optional pattern
LSUB <reference> [pattern]</reference>	List a set of mailboxes matching the pattern
STATUS <mailbox> <item></item></mailbox>	Show the status of specific items in the selected mailbox
APPEND <mailbox> [flags] <msg></msg></mailbox>	Append a message to the selected mailbox
CHECK	Perform a checkpoint on the currently selected mailbox
CLOSE	Close the currently selected mailbox
EXPUNGE	Expunge deleted messages from the mailbox
SEARCH <criteria></criteria>	Search the mailbox based on certain criteria
FETCH <message> <item></item></message>	Fetch the specified item from the selected message
STORE <message> <item> <newvalue></newvalue></item></message>	Update the selected item in a message
COPY <message> <mailbox></mailbox></message>	Copy a message to the provided mailbox
UID <command/> [args]	Perform an operation on a message based on its UID
CAPABILITY	Query the server for its capabilities

Gambar 4. Perintah Pada Protokol IMAP. (Butterfield et al., 2007)

Guna mengatasi ancaman - ancaman tersebut diatas, maka dikembangkan metode pengamanan *email* yang terenkripsi. Pada dasarnya ada 2 metode dalam enkripsi *email*, yaitu (Stallings, 2011):

Metode ini merupakan metode yang sangat sering digunakan. PGP dikembangkan oleh Phil Zimmerman dan dirilis pertama kali pada tahun 1991.

1. Pretty Good Privacy (PGP)

- dan dirilis pertama kali pada tahun 1991. PGP tersedia baik gratis maupun yang berbayar. PGP mendukung enkripsi dari 5 layanan, yaitu authentication, confidentiality, compression, e-mail compatibility dan segmentation. Selain 5 layanan itu, PGP juga mendukung digital signature.
- 2. S/MIME (Secure / Multipurpose Internet Mail Extensions)

S/MIME dicetuskan oleh RSA Data Security pada tahun 1995. Dalam hal fungsionalitas umum, S/MIME sangat menyerupai PGP. Keduanya menawarkan kemampuan untuk menandatangai dan atau mengenkripsi Layanan - layanan pesan. dienkripsi juga sama dengan PGP. Pada sisi penyedia layanan, enkripsi bisa dilakukan dalam komunikasi client ke server ataupun komunikasi antar mail Enkripsi ini biasanya server. menggunakan standar enkripsi TLS (Transport Layer Security). Protokol TLS sendiri mirip dengan protokol Secure Sockets Layer (SSL) yang dikombinasikan dengan protokol POP (995), IMAP (993), dan SMTP (465) berfungsi untuk enkripsi komunikasi antara aplikasi email client dan email server.

2.3. Aplikasi Email Pada Android

Aplikasi *email* pada *android* dibagi menjadi 2 macam, yaitu :

- 1. Aplikasi *email* bawaan *android* Aplikasi email bawaan android ini terpasang bersama dengan sistem operasi android. Pengguna bisa memasang akun email private maupun akun email public yang disediakan oleh penyedia jasa email seperti yahoo ataupun hotmail. Hanya email dari google yang tidak dapat dipasang pada aplikasi email bawaaan ini dikarenakan aplikasi email google juga merupakan aplikasi bawaan sistem operasi android. Pada aplikasi email bawaan android ini terdapat dua macam pengaturan, yaitu pengaturan secara otomatis maupun pengaturan
- 2. Aplikasi *email* dari penyedia jasa *email*. Aplikasi *email* dari penyedia jasa email biasanya disediakan oleh penyedia *email* public seperti yahoo ataupun google. Aplikasi *email* ini hanya bisa memasang *email* yang disediakan oleh penyedia *email* tersebut.

2.4. Aplikasi *Email Gmail*

secara manual.

Salah satu aplikasi *email* yang disediakan oleh *google* ini merupakan aplikasi *email* yang sangat popular digunakan oleh pengguna ponsel *android*. Fitur - fitur yang disediakan antara lain sebagai berikut :

- 1. Dapat mengatur lebih dari satu *email*.
- 2. Dapat membaca *email* pada saat *online* maupun *offline*.
- 3. Dapat membalas *email* saat *offline* lalu otomatis mengirim saat *online*.
- 4. Notifikasi yang dapat diatur.
- 5. Attachment dapat diihat ataupun langsung download.

Dengan beberapa fitur yang ditawarkan serta aplikasi yang bisa didapatkan dengan gratis ini maka banyak pengguna ponsel *android* memasang aplikasi ini pada ponselnya.

2.5. Komunikasi Nirkabel

Komunikasi nirkabel adalah perpindahan data atau informasi dari dua titik atau lebih yang tidak terhubung dengan konduktor listrik. Pemancar nirkabel pertama kali mengudara diawal abad 20 menggunakan radiotelegraphy (kode morse). Semenjak itu, dimungkinkan untuk memancarkan suara, musik, video melalui jaringan nirkabel (Rouse, 2006).

Teknologi nirkabel yang paling umum digunakan adalah teknologi nirkabel elektromagnetik seperti radio. Dengan digunakannya gelombang radio, penyesuaian perangkat bisa lebih fleksibel. Penggunaan gelombang radio jarak pendek bisa digunakan untuk remote control tv, remote control ac, dan beberapa perangkat nirkabel rumah tangga yang lain. Penggunaan jaringan nirkabel gelombang radio jarak jauh seperti contoh tv satelit, telepon seluler bahkan alat gps sudah banyak diterapkan saat ini.

Kelebihan penggunaan jaringan nirkabel antara lain (EC Council, 2010):

- 1. Tidak perlu menarik kabel.
- 2. Mobilitas perangkat yang tinggi.
- 3. Pemeliharaan jaringan relatif lebih mudah.

- 4. Rancangan fleksibel (jarak pendek maupun jauh).
- 5. Mengikuti perkembangan jaman.

Selain kelebihan komunikasi nirkabel juga memiliki kelemahan, antara lain :

- 1. Isu keamanan yang masih rentan dibandingkan dengan teknologi kabel.
- 2. Bandwidth yang dibutuhkan lebih besar.
- 3. Beberapa perangkat elektronik bisa melemahkan sinyal nirkabel.

2.6. ARP Poisoning / ARP Spoofing

ARPpoisoning / ARP spoofing serangan merupakan sebuah yang menyerang transisi antara layer 3 (layer network) ke layer 2 (layer data link) dalam referensi model OSI . ARP poisoning mengubah MAC address dari korban yang akan diserang. ARP poisoning juga dikenal dengan nama ARP spoofing. Teknik ARP poisoning sangat efektif digunakan pada jaringan kabel maupun wireless. Tujuan serangan dari ARP poisoning ini pada umumnya adalah sniffing.

Tipe serangan *ARP poisoning* ini akan membuat penyerang menjadi *gateway* dari sebuah jaringan (EC Council, 2008). Pada saat penyerang melakukan serangan jaringan yang diserang akan menganggap penyerang adalah *gateway* dari jaringan tersebut.

Gambar 5. Aplikasi Email Gmail Pada Ponsel Android.

No	Protokol	Informasi yang Bisa Di dapat
1	TELNET	Key Stroke
2	HTTP	Data Sent in Clear Text
3	SMTP	Password and Data sent in Clear Text
4	NNTP	Password and Data sent in Clear Text
5	POP	Password and Data sent in Clear Text
6	FTP	Password and Data sent in Clear Text
7	IMAP	Password and Data sent in Clear Text
8	SMB	Data Sent

Tabel 1 Informasi Yang Dapat Diambil Dari Serangan Sniffing (ECCouncil 2011)

Gambar 6. Proses Terjadinya *ARP Poisoning*. (EC Council, 2008)

2.7. Sniffing

Sniffing dalam pengertian berarti mengendus, sedangkan dalam ilmu keamanan jaringan sniffing merupakan aktifitas menangkap paket - paket data yang lewat dalam sebuah jaringan (Susanto, 2007). Sniffing sendiri biasanya digunakan untuk menangkap informasi - informasi vital dari sebuah jaringan seperti password, email text, dan File transfer. Sniffing biasanya menyerang protocol - protokol seperti Telnet, HTTP, POP, IMAP, SMB, FTP, dan lain - lain. Informasi yang didapat dari beberapa protokol di atas dapat dilihat pada tabel 1.

Dalam metode *hacking*, *sniffing* dibagi menjadi dua bagian yaitu *passive sniffing* dan *active sniffing* (Ornaghi & Valleri, 2013).

1. Passive Sniffing

Passive sniffing merupakan aktifitas sniffing yang dilakukan pada jaringan dengan media penghubung hub. Dimana hub akan melakukan broadcast seluruh paket yang melewatinya ke seluruh node yang terhubung ke hub tersebut. Hub merupakan

perangkat komputer yang melakukan broadcast paket data ke seluruh jaringan sehingga sniffing pada jaringan dengan hub sangat mudah dilakukan.

2. Active Sniffing

Active sniffing merupakan aktifitas sniffing yang dilakukan pada jaringan dengan media penghubung switch atau sejenisnya. Switch sendiri merupakan sebuah perangkat penghubung (Concentrator) yang memiliki *chip* untuk menyimpan tabel MAC address. Switch tidak lagi mem-broadcast paket ke seluruh jaringan namun paket data yang dikirim hanya melalui port asal dan port tujuan saja. Sehingga sangat sulit untuk melakukan sniffing pada switch. Diperlukan metode khusus untuk melakukan sniffing pada switch. Untuk melakukan sniffing pada jaringan dengan switch kita perlu membuat membanjiri media penyimpanan pada switch dengan MAC address sehingga switch tersebut tidak ada bedanya dengan hub. Untuk membanjiri media penyimpanan dapat menggunakan ARP poisoning ataupun MAC Flooding (Susanto, 2007).

3. HASIL DAN ANALISIS

3.1. Pengujian

Pengujian dilakukan untuk membandingkan tingkat keamanan aplikasi *email* yang otomatis terpasang pada sistem operasi *android* serta aplikasi *email gmail* yang keduanya terhubung dengan jaringan nirkabel. Dalam pengujian ini dilakukan proses *sniffing* dengan digabungkan dengan teknik *ARP spoofing / poisoning*. Skema pengujian dapat dilihat pada gambar 7.

Melakukan ARP spoofing atau ARP poisoning merupakan suatu kewajiban dalam tujuan untuk melakukan active sniffing. ARP poisoning dilakukan pada jaringan yang dipasang untuk skenario pengujian yaitu jaringan dengan akses poin yang difungsikan sekaligus sebagai gateway router.

Pengujian pada penelitian ini terdiri dari 3 (tiga) skenario pengujian sebagai berikut :

- 1. Pengujian pada aplikasi *email* bawaan dengan menggunaan protokol POP (*Post Office Protocol*).
- 2. Pengujian pada aplikasi *email* bawaan dengan menggunakan protokol IMAP (*Internet Message Access Protocol*).
- 3. Pengujian pada aplikasi *email gmail*.

Aplikasi *ettercap* digunakan untuk melakukan proses *ARP Poisoning*. *Ettercap* merupakan *tool* yang dibangun untuk melakukan proses *sniffing* pada jaringan (Ornaghi & Valleri, 2013).

Meskipun aplikasi *ettercap* dapat melakukan *ARP poisoning* sekaligus *sniffing*, namun aplikasi *wireshark* digunakan dalam melakukan proses *sniffing*. *Wireshark* sendiri merupakan aplikasi yang digunakan aplikasi yang dapat digunakan untuk melakukan *sniffing* sekaligus analisa hasilnya (Wireshark, 2013).

Tabel 2. Hasil Pengujian Protokol *Email*

PROTOKOL	DATA OTENTIKASI
POP	CLEAR TEXT
IMAP	CLEAR TEXT
POP TLS	ENCRYPTED
IMAP TLS	ENCRYPTED

Gambar 8. Komunikasi Data Aplikasi Email Bawaan Android Protokol IMAP.

Gambar 9. Komunikasi Data Aplikasi *Email Gmail*.

Setelah *ARP poisoning* berhasil dilakukan, komunikasi datang pengguna yang menggunakan jaringan nirkabel yang sama akan terekam. Contoh hasil *sniffing* dapat dilihat pada gambar 8.

Gambar diatas menampilkan komunikasi data aplikasi *email* bawaan dengan menggunakan protokol IMAP. Gambar tersebut memperlihatkan bahwa pengujian ke-2 menghasilkan komunikasi data dengan *username* dan *password* dapat dibaca dalam bentuk *cleartext* tanpa enkripsi apapun. Komunikasi data tersebut juga menunjukkan bahwa proses *login* dan *listing email* berhasil.

1. Pengujian pada aplikasi email gmail.

Hasil *sniffing* pada aplikasi *email gmail* dapat dilihat pada gambar 9. Terlihat pada gambar bahwa proses *login email* di enkripsi, yang terlihat hanya informasi bahwa proses *login* berhasil.

Dari hasil uji yang dilakukan pada 3 (tiga) skenario dengan langkah - langkah sebelumnya maka didapat hasil pada tabulasi pengujian. Hasil tabulasi dapat dilihat pada Tabel 2.

3.2. Analisis Hasil Uji

Pengujian dengan 3 (tiga) skenario telah dijalankan lalu pengujian serta analisa dilakukan lebih lanjut dengan hasil sebagai berikut

Komunikasi data pada pengujian aplikasi email bawaan dengan menggunakan POP opsi protokol menunjukkan bahwa *username* dan password dapat dilihat secara cleartext. Pengujian juga dilakukan dengan menunjukkan proses memasukan username dan password yang benar sehingga login berhasil dengan username dan password tersebut. Hal ini juga berarti bahwa username password yang terekam juga dapat dibuktikan kebenarannya.

- Komunikasi data pada pengujian aplikasi email bawaan dengan protokol menggunakan opsi **IMAP** menunjukkan bahwa username dan password dapat diilihat secara cleartext. Penguiian juga dilakukan dengan menunjukkan memasukan proses username dan password yang benar sehingga login berhasil dengan username dan password tersebut. Hal ini juga berarti bahwa *username* password yang terekam juga dapat dibuktikan kebenarannya.
- 3. Komunikasi data pada pengujian aplikasi *email gmail* menghasilkan *username* dan *password* yang terenskripsi. Komunikasi data yang dapat dilihat hanya proses *login* ke *server* serta proses *login* berhasil.

Pada pengujian ke-1 dan pengujian ke-2 digunakan 2 (dua) *private email*, sedangkan pada pengujian ke-3 digunakan *google mail*. Dari pengujian tersebut juga ditemukan bahwa:

- 1. Dua *private email* yang digunakan untuk pengujian mendukung penggunaan protokol POP dan IMAP.
- 2. Dua *private email* yang digunakan untuk pengujian tidak mendukung protokol POP dengan *security* dan IMAP dengan *security* (untuk pengaturan lebih lanjut).
- 3. Google mail pada pengujian (3) tidak perlu melakukan konfigurasi lebih lanjut dan otomatis menggunakan protokol TLS.

Walaupun aplikasi *email gmail* tidak dapat dilihat datanya, namun hal ini paling tidak membuktikan bahwa serangan *ARP poisoning / spoofing* sangat mungkin dilakukan pada jaringan nirkabel.

4. KESIMPULAN

Setelah dilakukan pengujian dan analisis dapat ditarik beberapa kesimpulan, sebagai berikut:

- 1. Salah satu serangan yang harus diwaspadai dalam jaringan nirkabel adalah serangan *ARP spoofing / poisoning*. Serangan ini bisa digunakan untuk mendukung serangan lain seperti *sniffing*.
- 2. Secara default saat melakukan konfigurasi aplikasi email bawaan android secara otomatis akun email menggunakan protokol POP ataupun penyedia. **IMAP** dengan sesuai Konfigurasi otomatis ini tanpa pengaturan security (TLS).
- 3. Pengaturan konfigurasi aplikasi *email* bawaan *android* secara *default* ataupun otomatis mengakibatkan *username* dan *password* dapat dibaca secara *cleartext*.
- TLS sudah dipublikasikan sebagai kesepakatan internet protokol pada tahun 1999 (Chandrataruna & Ngazis, 2013), namun masih banyak private email tidak menyertakan protokol TLS tambahan keamanan untuk pada protokol POP dan IMAP. Ini terjadi mahalnya infrastruktur dikarenakan maupun investasi yang harus disediakan untuk pengadaaan protokol TLS ini. Google sendiri mulai menggunakan protokol TLS pada POP dan IMAP pada tahun 2004, dan menggunakan TLS pada tahun 2011 **SMTP** (Chandrataruna & Ngazis, 2013).
- 5. Pencegahan untuk menghindari penyadapan data *email* dapat dilakukan dengan cara sebagai berikut :
 - a. Melakukan konfigurasi *advanced* / lanjut apabila menggunakan aplikasi *email* bawaan *android* sehingga dapat menambahkan protokol TLS. Hal ini tentu saja dapat dilakukan dengan catatan *server private email* tersebut mendukung protokol keamanan TLS.

- b. Untuk *private email* yang tidak menyediakan ataupun mendukung protokol keamanan TLS, bisa dipertimbangkan 2 (dua) alternatif berikut:
 - Menggunakan fitur forwarding email google, yang merupakan satu - satunya penyedia layanan email yang menggunakan protokol TLS pada penerimaan maupun pengiriman email (Chandrataruna & Ngazis, 2013).
 - Menggunakan aplikasi *email* gmail untuk private email. Gmail mendukung penggunaan akun email selain akun gmail itu sendiri untuk ditambahkan dalam aplikasi email gmail.

Standard operating procedure (SOP) juga diperlukan dalam mengantisipasi serangan ARP spoofing / poisoning ini. SOP ini berlaku baik untuk pengguna ataupun penyedia layanan jaringan nirkabel. Antara lain sebagai berikut :

- 1. Bagi pengguna layanan jaringan nirkabel, sebagai berikut:
 - a. Tidak sembarangan membuka koneksi ke jaringan nirkabel yang belum dikenal.
 - b. Memastikan *anti virus* ataupun *firewall* selalu dalam pembaruan terbaru.
- 2. Bagi penyedia layanan jaringan nirkabel, sebagai berikut :
 - a. Pemasangan *router* atau akses poin yang mendukung *anti ARP spoofing / poisoning*.
 - b. Menindak pelaku kejahatan komputer dalam wewenang jaringan penyedia.
 - c. *Update* berkala *firmware* akses poin ataupun *router*.

DAFTAR PUSTAKA

- Alliance, O. H., 2007. Industry Leaders Announce Open Platform for Mobile Devices. Retrieved January 02, 2014, from http://www.openhandsetalliance.com/press_110507.html.
- Butterfield, J., Tracy, M., & Jansen, W., 2007. Guidelines on Electronic Mail Security Recommendations of the National Institute of Standards and Technology.
- Chandrataruna, M., & Ngazis, A. N., 2013.

 Mengapa Badan Keamanan AS
 Bisa Sadap E-mail? Retrieved
 March 01, 2014, from
 http://m.news.viva.co.id/news/read/
 423514-mengapa-badankeamanan-as-bisa-sadap-e-mail.
- EC Council., 2008. Ethical Hacking and Countermeasures Module XIII Hacking Email Accounts News.
- EC Council., 2010a. CHFI v8 Module 17 Investigating Wireless Attacks.pdf.
- EC Council., 2010b. CHFI v8 Module 19 Tracking Emails and Investigating Email Crimes.pdf.
- EC Council., 2011. CHFI v8 Module 17 Investigating Wireless Attacks.pdf. ECCouncil.
- Einhorn, B., 2012. Indonesians Still Love Their BlackBerrys Businessweek. Retrieved January 04, 2014, from http://www.businessweek.com/articles/2012-12-06/indonesians-still-love-their-blackberrys.
- Jonathan B. Postel., 1982. SIMPLE MAIL TRANSFER PROTOCOL. *RFC*, 90291(August).
- Meulen, R. van der., 2013. Gartner Says Smartphone Sales Accounted for 55 Percent of Overall Mobile Phone Sales in Third Quarter of 2013. Retrieved January 03, 2014, from http://www.gartner.com/newsroom/id/2623415.

- Ornaghi, A., & Valleri, M., 2013. Ettercap. Retrieved March 23, 2013, from http://ettercap.github.io/ettercap/.
- Riabov, V. V, & College, R., 2005. SMTP (Simple Mail Transfer Protocol).
- Ricknäs, M., 2011. Android Becomes Best -Smartphone selling OS. Savs World. Canalys PC Retrieved January 04, 2014, from ://www.pcworld.com/article/218219 /android becomes best selling sm artphone os savs canalys.html.
- Rouse, M., 2006. Definition of Wireless. Retrieved March 27, 2013, from http://www.techtarget.com/.
- Stallings, W., 2011. Network Security
 Essentials: Applications And
 Standards (4th ed.).
- Susanto., 2007. *Seni Teknik Hacking 2* (Edisi Dua.). Jakarta: Jasakom.
- Toorani, M., 2008. SMEmail A New Protocol for the Secure E-mail in Mobile Environments. 2008

 Australasian Telecommunication

 Networks and Applications

 Conference, 39–44. doi:10.1109 /

 ATNAC. 2008. 4783292.