

# COMP2054 Tutorial Session 4: Recurrence Relations

Rebecca Tickle
Warren Jackson
AbdulHakim Ibrahim



### **Session outcomes**

- Solve recurrence relations to provide exact solutions.
- Use induction to prove recurrence relation definitions.



## **Exact Solutions**

Resolving exact solutions from recurrence relations

## Q1. T(n) = T(n-1) + 1 and T(1) = 1

- Given T(n) = T(n-1) + 1 and T(1) = 1, give the solution of T(n).
  - -T(1)=1
  - T(2) = T(1) + 1 = 1 + 1
  - T(3) = T(2) + 1 = 1 + 1 + 1
  - T(4) = T(3) + 1 = 1 + 1 + 1 + 1

$$T(n) = n$$

## **Q2.** $T(n) = 2 \cdot T(n-1)$ and T(1) = 1

- Given  $T(n) = 2 \cdot T(n-1)$  and T(1) = 1, give the solution of T(n).
  - -T(1) = 1
  - $T(2) = 2 \cdot T(1) = 2 \times 1$
  - $T(3) = 2 \cdot T(2) = 2 \times 2 \times 1$
  - $T(4) = 2 \cdot T(3) = 2 \times 2 \times 2 \times 1$

$$T(n) = 2^{n-1}$$



## **Q3.** $T(n) = 2 \cdot T(n/2)$ and T(1) = 1

- Given  $T(n) = 2 \cdot T(n/2)$  and T(1) = 1, give the solution of T(n).
  - $T(2) = T(2^1) = 2 \cdot T(1) = 2 \times 1$
  - $T(4) = T(2^2) = 2 \cdot T(2) = 2 \cdot 2 \cdot T(1) = 2 \times 2 \times 1$
  - $T(8) = T(2^3) = 2 \cdot T(4) = 2 \cdot 2 \cdot 2 \cdot T(1) = 2 \times 2 \times 2 \times 1$

$$T(2^k) = 2^k$$

Here we are dividing 'n' by a constant, in this case 2, so we want to evaluate the values of 'n' that are Powers of this constant. Here we are doing base case  $1 = 2^0$ , and then  $2^1, 2^2, 2^3$  hence we keep the term  $T(2^k)$  as it is generally easier for when we do the proofs.



### Resolve the exact solutions for the following:

■ Q4. 
$$T(n) = 3 \cdot T(n-1)$$
 and  $T(1) = 1$ 

- Q5.  $T(n) = 3 \cdot T(n/3)$  and T(1) = 1
- Q6.  $T(n) = 2 \cdot T(n/4)$  and T(1) = 1



### Resolve the exact solutions for the following:

■ Q4. 
$$T(n) = 3 \cdot T(n-1)$$
 and  $T(1) = 1$ 

■ Q5. 
$$T(n) = 3 \cdot T(n/3)$$
 and  $T(1) = 1$ 

• Q6. 
$$T(n) = 2 \cdot T(n/4)$$
 and  $T(1) = 1$ 

$$T(n) = 3^{n-1}$$

$$T(3^k) = 3^k$$

$$T(\mathbf{4}^k) = \mathbf{2}^k$$



## Recurrence Proofs

Proving exact solutions are the same as their recursive definitions



## Q1. Proof

```
Given: T(n) = T(n-1) + 1 and T(1) = 1
```

Assume "thing we need to prove" is true for n = k.

Prove: T(n) = n

### Base case:

■ T(1) = 1 From "thing we need to prove" with n = 1. Matches base case from definition. ✓

### **Induction step:**

Assume induction hypothesis is true for n = k such that T(k) = k and prove for n = k + 1:

- T(k+1) = T(k+1-1) + 1 Using original definition with n = k+1
  - = T(k) + 1 Simplify T(k+1-1) to T(k)
  - $\blacksquare = k + 1$  Use the equivalence from the induction hypothesis to replace (rewrite) T(k) with k.

**QED** We wanted to prove T(n) = n and have shown that T(k + 1) = k + 1 in the step case, hence, we have finished.

## Q2. Proof

Given:  $T(n) = 2 \cdot T(n-1)$  and T(1) = 1

Prove:  $T(n) = 2^{n-1}$ 

### Base case:

 $T(1) = 2^0 = 1$ 

### **Induction step:**

Assume induction hypothesis is true for n = k such that  $T(k) = 2^{k-1}$  and prove for n = k + 1:

- $T(k+1) = 2 \cdot T(k+1-1)$
- $\blacksquare = 2 \cdot T(k)$
- $= 2 \cdot 2^{k-1}$
- $= 2^k = 2^{(k+1)-1}$

### **QED**

Proof follows the same structure as the previous Q1 proof. Refer to previous slide.

## Q3. Proof

In this proof, we are doing induction on the 'k' as opposed to 'n' more generally as seen in the previous questions.

Given:  $T(n) = 2 \cdot T(n/2)$  and T(1) = 1

Prove:  $T(2^k) = 2^k$ 

### Base case:

 $T(1) = 2^0 = 1$ 

### **Induction step:**

Assume induction hypothesis is true for n = k such that  $T(2^k) = 2^k$  and prove for k + 1:

$$T(2^{k+1}) = 2 \cdot T\left(\frac{2^{k+1}}{2}\right)$$

 $\blacksquare = 2 \cdot T(2^k)$ 

 $\blacksquare = 2 \cdot 2^k$ 

 $= 2^{k+1}$ 

**QED** 

Notice here that because we are doing the induction on 'k' we are now proving that this holds for  $T(2^{k+1})$ ; not for  $T(2^k + 1)$ .

We wanted to prove  $T(2^k) = 2^k$  and have shown that  $T(2^{k+1}) = 2^{k+1}$  in the step case, hence, we have finished.



### Recurrence proofs

- Q4. Given  $T(n) = 3 \cdot T(n-1)$  and T(1) = 1Prove that  $T(n) = 3^{n-1}$
- Q5.  $T(n) = 3 \cdot T(n/3)$  and T(1) = 1Prove that  $T(3^k) = 3^k$
- Q6.  $T(n) = 2 \cdot T(n/4)$  and T(1) = 1Prove that  $T(4^k) = 2^k$

## Q4. Proof

Given:  $T(n) = 3 \cdot T(n-1)$  and T(1) = 1

Prove:  $T(n) = 3^{n-1}$ 

### Base case:

 $T(1) = 3^0 = 1$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(k) = 3^{k-1}$  and prove for k + 1:

- $T(k+1) = 3 \cdot T(k)$
- $= 3 \cdot 3^{k-1}$
- $= 3^k$
- $= 3^{(k+1)-1}$

## Q5. Proof

Given:  $T(n) = 3 \cdot T(n/3)$  and T(1) = 1

Prove:  $T(3^k) = 3^k$ 

### Base case:

 $T(1) = 3^0 = 1$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(3^k) = 3^k$  and prove for k + 1:

$$T(3^{k+1}) = 3 \cdot T\left(\frac{3^{k+1}}{3}\right)$$

$$\blacksquare = 3 \cdot T(3^k)$$

$$\blacksquare = 3 \cdot 3^k$$

$$= 3^{(k+1)}$$

## Q6. Proof

Given:  $T(n) = 2 \cdot T(n/4)$  and T(1) = 1

Prove:  $T(4^k) = 2^k$ 

### Base case:

 $T(1) = 4^0 = 1 = 2^0$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(4^k) = 2^k$  and prove for k + 1:

$$T(4^{k+1}) = 2 \cdot T\left(\frac{4^{k+1}}{4}\right)$$

$$\blacksquare = 2 \cdot T(4^k)$$

$$\blacksquare = 2 \cdot 2^k$$

$$= 2^{(k+1)}$$



## Additional Practice Questions



### For each of the following:

- 1. Find the exact solution
- 2. Prove by induction

• Q7. 
$$T(n) = 4 \cdot T(n/4)$$

• Q8. 
$$T(n) = 4 \cdot T(n/2)$$

■ Q9. 
$$T(n) = T(n-1) + n$$

• Q10. 
$$T(n) = 2 \cdot T(n/2) + 1$$

■ Q11. 
$$T(n) = n \cdot T(n-1)$$

Assume you are given T(1) = 1



## Q7. Exact solution

$$T(n) = 4 \cdot T(n/4)$$
  
 $T(1) = 1$   
 $T(4) = 4 \cdot T(1) = 4 \times 1 = 4$   
 $T(16) = 4 \cdot T(4) = 4 \times 4 \times 1 = 16$   
 $T(4^k) = 4^k$ 

## Q7. Proof

Given:  $T(n) = 4 \cdot T(n/4)$  and T(1) = 1

Prove:  $T(4^k) = 4^k$ 

### Base case:

 $T(1) = 4^0 = 1$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(4^k) = 4^k$  and prove for n = k + 1:

$$T(4^{k+1}) = 4 \cdot T\left(\frac{4^{k+1}}{4}\right)$$

$$\bullet = 4 \cdot T(4^k)$$

$$\blacksquare = 4 \cdot 4^k$$

$$=4^{(k+1)}$$



## Q8. Exact solution

$$T(n) = 4 \cdot T(n/2)$$
  
 $T(1) = 1$   
 $T(2) = 4 \cdot T(1) = 4 \times 1 = 4$   
 $T(4) = 4 \cdot T(2) = 4 \times 4 \times 1 = 16$   
 $T(8) = 4 \cdot T(4) = 4 \times 4 \times 4 \times 1 = 64$   
 $T(2^k) = 4^k$ 

## Q8. Proof

Given:  $T(n) = 4 \cdot T(n/2)$  and T(1) = 1

Prove:  $T(2^k) = 4^k$ 

### Base case:

 $T(1) = T(2^0) = 4^0 = 1$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(2^k) = 4^k$  and prove for n = k + 1:

$$T(2^{k+1}) = 4 \cdot T\left(\frac{2^{k+1}}{2}\right)$$

$$\bullet = 4 \cdot T(2^k)$$

$$\blacksquare = 4 \cdot 4^k$$

$$=4^{(k+1)}$$



## Q9. Exact solution

$$T(n) = T(n-1) + n$$

$$T(1) = 1$$

$$T(2) = T(1) + 2 = 1 + 2 = 2$$

$$T(3) = T(2) + 3 = 1 + 2 + 3 = 6$$

$$T(4) = T(3) + 4 = 1 + 2 + 3 + 4 = 10$$

### [Arithmetic series]

$$T(n) = \frac{n(n+1)}{2}$$

## Q9. Proof

Given: T(n) = T(n - 1) + n and T(1) = 1

Prove:  $T(n) = \frac{n(n+1)}{2}$ 

#### Base case:

 $T(1) = \frac{1 \cdot 2}{2} = 1$ 

#### **Induction step:**

Assume IH is true for n = k such that  $T(k) = \frac{k(k+1)}{2}$  and prove for n = k+1:

- T(k+1) = T(k) + k + 1
- $\bullet = \frac{k(k+1)}{2} + k + 1$
- $= \frac{k(k+1)+2k+2}{2}$
- $= \frac{k^2 + 3k + 2}{2}$
- $= \frac{(k+1)(k+2)}{2}$



## Q10. Exact solution

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 1$$

$$T(1) = 1$$

$$T(2) = 2 \cdot T(1) + 1 = (2 \times 1) + 1 = 3$$

$$T(4) = 2 \cdot T(2) + 1 = 2 \times ((2 \times 1) + 1) + 1 = 7$$

$$T(8) = 2 \cdot T(4) + 1 = 15$$

$$T(2^{k}) = 2^{k+1} - 1$$

## Q10. Proof

Given:  $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 1$  and T(1) = 1

Prove:  $T(2^k) = 2^{k+1} - 1$ 

#### Base case:

 $T(1) = T(2^0) = 2^1 - 1 = 1$ 

### **Induction step:**

Assume IH is true for n = k such that  $T(2^k) = 2^{k+1} - 1$  and prove for n = k + 1:

$$T(2^{k+1}) = 2 \cdot T\left(\frac{2^{k+1}}{2}\right) + 1$$

$$\bullet = 2 \cdot T(2^k) + 1$$

$$\bullet = 2 \cdot \left(2^{k+1} - 1\right) + 1$$

$$= 2^{k+1+1} - 1$$



## Q11. Exact solution

$$T(n) = T(n) = n \cdot T(n-1)$$

$$T(1) = 1$$

$$T(2) = 2 \cdot T(1) = 2 \times 1 = 2$$

$$T(3) = 3 \cdot T(2) = 3 \times 2 \times 1 = 6$$

$$T(4) = 4 \cdot T(3) = 4 \times 3 \times 2 \times 1 = 24$$

$$T(n) = n!$$

## Q11. Proof

Given:  $T(n) = n \cdot T(n-1)$ 

Prove: T(n) = n!

### Base case:

T(1) = 1! = 1

### Induction step:

Assume IH is true for n = k such that T(n) = n! and prove for n = k + 1:

- $T((n+1)) = (n+1) \times T(n)$
- $\blacksquare = (n+1) \times n!$
- $\blacksquare = 1 \times \cdots \times n \times (n+1) = (n+1)!$
- QED



## Thank you