Nama: Muhamad Hilmi Haidar

NIM: 1103213005

Penjelasan Hasil Eksperimen Fashion MNIST Dataset

Hasil eksperimen menunjukkan berbagai konfigurasi untuk arsitektur CNN menggunakan dataset Fashion MNIST. Berikut adalah analisis dari hasil yang diperoleh

1. Eksperimen Kernel Size

- KernelSize = 3: Akurasi terbaik mencapai 90.89% dengan waktu komputasi 154.33 detik.
- KernelSize = 5: Akurasi meningkat sedikit menjadi 91.06% dengan waktu 155.02 detik.
- KernelSize = 7: Akurasi tetap di 91.06%, namun waktu komputasi bertambah menjadi 156.61 detik.

Kesimpulan: Kernel berukuran 5x5 atau 7x7 memberikan akurasi terbaik. Namun, kernel yang lebih besar seperti 7x7 tidak meningkatkan akurasi lebih jauh dibanding 5x5, meskipun membutuhkan waktu komputasi lebih lama.

2. Eksperimen Pooling Type

- MaxPool2d: Akurasi terbaik mencapai 91.28% dengan waktu komputasi 159.76 detik.
- AvgPool2d: Akurasi lebih rendah di 88.14%, meskipun waktu komputasi hampir sama (159.16 detik).

Kesimpulan: MaxPooling lebih efektif dibandingkan AvgPooling dalam menangkap fitur yang relevan pada dataset ini, memberikan akurasi lebih tinggi.

3. Eksperimen Epoch

- 5 Epochs: Akurasi rendah di 83.80%, dengan waktu komputasi sangat cepat (16.05 detik).
- 50 Epochs: Akurasi meningkat signifikan menjadi 90.86% dengan waktu komputasi 165.20 detik.
- 100 Epochs: Akurasi mencapai 91.16%, namun waktu komputasi meningkat menjadi 222.45 detik.
- 250 Epochs: Akurasi terbaik sebesar 92.06%, tetapi waktu komputasi jauh lebih tinggi di 311.81 detik.
- 350 Epochs: Akurasi menurun menjadi 90.91%, dengan waktu komputasi 178.78 detik akibat Early Stopping.

Kesimpulan: Jumlah epoch optimal adalah antara 50 hingga 100, karena memberikan keseimbangan antara akurasi dan waktu komputasi. Early Stopping mencegah overfitting pada epoch lebih tinggi.

4. Eksperimen Optimizer

- SGD: Akurasi terbaik mencapai 90.99% dengan waktu komputasi 173.35 detik.
- RMSprop: Akurasi menurun menjadi 88.97%, tetapi waktu komputasi lebih cepat (89.02 detik).
- Adam: Akurasi sedikit lebih baik dari RMSprop di 89.47%, dengan waktu komputasi 119.06 detik.

Kesimpulan: SGD memberikan akurasi terbaik pada dataset Fashion MNIST, meskipun membutuhkan waktu komputasi lebih lama dibanding RMSprop dan Adam.

Ringkasan

- 1. **Kernel Size**: Kernel 5x5 memberikan keseimbangan optimal antara akurasi dan waktu komputasi.
- 2. **Pooling**: MaxPooling lebih baik dibanding AvgPooling dalam menangkap fitur dataset ini.
- 3. **Epochs**: 50 hingga 100 epoch adalah jumlah yang ideal, dengan Early Stopping mencegah overfitting pada epoch lebih tinggi.
- 4. **Optimizer**: SGD memberikan akurasi terbaik meskipun waktu komputasi lebih lama, diikuti oleh Adam.

Hasil ini menunjukkan bahwa konfigurasi optimal pada dataset Fashion MNIST melibatkan kernel 5x5, MaxPooling, 50-100 epoch, dan optimizer SGD untuk akurasi terbaik dengan waktu komputasi yang efisien.