

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K		(11) International Publication Number: WO 96/20689
		(43) International Publication Date: 11 July 1996 (11.07.96)
(21) International Application Number: PCT/US95/16248		(81) Designated States: AU, CA, JP, MX, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 13 December 1995 (13.12.95)		
(30) Priority Data: 08/364,338 27 December 1994 (27.12.94) US		Published <i>Without international search report and to be republished upon receipt of that report.</i>
(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).		
(72) Inventors: AMPARO, Eugene, Cruz; 416 Corner Ketch-Lyndell Road, Downingtown, PA 19335 (US). MILLER, William, Henry; 333 Fell Lane, Schwenksville, PA 19473 (US). PACOFSKY, Gregory, James; 510 Polk Street, Raleigh, NC 27604-1960 (US). WITYAK, John; 127 Kelton Road, West Grove, PA 19390-9439 (US). WEBER, Patricia, Carol; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). DUNCIA, John, Jonas, Vytautas; 124 Oldbury Drive, Wilmington, DE 19808-1420 (US). SANTELLA, Joseph, Basil, III; 250 Lewis Road, Springfield, PA 19064-2129 (US).		
(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).		
(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN		
(57) Abstract		
Novel boronic acid and ester and carboxyl-modified amino acid compounds of formula (I): R ¹ -Z-CHR ¹ -A, which are inhibitors of trypsin-like enzymes, are disclosed, where R ¹ , Z, R ² and A are defined within.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LJ	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

Title

Boronic Acid and Ester Inhibitors of Thrombin

Cross-reference to Earlier Filed Applications

5

This application is a continuation-in-part of U.S. Patent Application Serial Number 8/348/029, filed December 1, 1994, which is a continuation-in-part of U.S. Patent Application Serial Number 08/318/029, filed 10 October 4, 1994, which is a continuation-in-part of U.S. Patent Application Serial Number 08/036/377, filed March 24, 1993.

Field of the Invention

15 This invention relates to the discovery of new boronic acid derivatives which are inhibitors of thrombin and pharmaceutical compositions thereof.

Background of the Invention

20 Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which proteolytic enzymes such as thrombin play a key role. Blood coagulation may occur through either of two cascades of 25 zymogen activations, the extrinsic and intrinsic pathways of the coagulation cascade. Factor VIIa in the extrinsic pathway, and Factor IXa in the intrinsic pathway are important determinants of the activation of factor X to factor Xa, which itself catalyzes the activation of prothrombin to thrombin. The last 30 protease in each pathway is thrombin, which acts to hydrolyze four small peptides (two FpA and two FpB) from each molecule of fibrinogen, thus deprotecting its polymerization sites. Once formed, the linear fibrin 35 polymers may be cross-linked by factor XIIIa, which is itself activated by thrombin. In addition, thrombin is

- a potent activator of platelets, upon which it acts at specific receptors. Thrombin activation of platelets leads to aggregation of the cells and secretion of additional factors that further accelerate the creation
- 5 of a hemostatic plug. Thrombin also potentiates its own production by the activation of factors V and VIII (see Hemker and Beguin in: Jolles, et. al., "Biology and Pathology of Platelet Vessel Wall Interactions," pp. 219-26 (1986), Crawford and Scrutton in: Bloom and
- 10 Thomas, "Haemostasis and Thrombosis," pp. 47-77, (1987), Bevers, et. al., Eur. J. Biochem. 1982, 122, 429-36, Mann, Trends Biochem. Sci. 1987, 12, 229-33).
- Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic
- 15 mechanism results in intravascular thrombus formation. Etiological factors such as the presence of atherosclerotic plaque, phlebitis and septicemia may cause thrombosis, leading to impaired blood flow to the effected tissues and possible serious pathological
- 20 consequences. Thrombosis may be reduced by inhibition of the normal process of blood coagulation by anticoagulants. Anticoagulants act by reducing the amount of thrombin which is generated, or by inhibiting with the proteolytic actions of thrombin.
- 25 Currently, two of the most effective classes of drugs in clinical use as anticoagulants are the heparins and the vitamin K antagonists. The heparins are ill-defined mixtures of sulfated polysaccharides that bind to, and thus potentiate the action of antithrombin III.
- 30 Antithrombin III is a naturally occurring inhibitor of the activated clotting factors IXa, Xa, XIa, thrombin and probably XIIa (see Jaques, Pharmacol. Rev. 1980, 31, pp. 99-166). The vitamin K antagonists, of which warfarin is the most well-known example, act indirectly
- 35 by inhibiting the post-ribosomal carboxylations of the vitamin K dependent coagulation factors II, VII, IX and

X (see Hirsch, *Semin. Thromb. Hemostasis* 1986, 12, 1-11). While effective therapies for the treatment of thrombosis, heparins and vitamin K antagonists have the unfortunate side effects of bleeding and marked 5 interpatient variability, resulting in a small and unpredictable therapeutic safety margin. The use of direct acting thrombin inhibitors is expected to alleviate these problems.

Anticoagulants are also necessary in the processing 10 of blood for therapeutic or diagnostic purposes or for the production of blood products or fragments, since contact of blood with the surfaces commonly used for blood collection and storage causes activation of coagulation leading to thrombin formation and clot 15 formation.

The coagulation proteases thrombin, factor Xa, factor VIIa, and factor IXa are serine proteases having trypsin-like specificity for the cleavage of sequence-specific Arg-Xxx peptide bonds. As with other serine 20 proteases, the cleavage event begins with an attack of the active site serine on the scissile bond of the substrate, resulting in the formation of a tetrahedral intermediate. This is followed by collapse of the tetrahedral intermediate to form an acyl enzyme and 25 release of the amino terminus of the cleaved sequence. Hydrolysis of the acyl enzyme then releases the carboxy terminus.

A number of naturally occurring thrombin inhibitors 30 have been reported. These include nazumamide A from *Theonella* sp. (see Fusetani, et. al., *Tetrahedron Lett.* 1991, 32, 7073-4), cyclotheonamide A from *Theonella* sp. (see Fusetani, et. al., *J. Am. Chem. Soc.* 1990, 112, 7053-4), amblyommin from *Amblyomma hebraeum* (see Bonin, et. al., EP 345614), hirudin from *Hirudo medicinalis*, 35 recombinant versions of hirudin and hirudin fragments (see Rigbl and Jackson, EP 352903, Koerwer, WO 9109946,

Meyer, et. al., WO 9108233, Dawson, et. al., WO 9109125, Maraganore, et. al., WO 9102750 and Maraganore, EP 333356).

- Synthetic thrombin inhibitors have also been disclosed. Arylsulfonylarginine amides such as (2R,4R)-4-methyl-1-[N²-{(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl}-L-arginyl]-2-piperidinecarboxylate have been shown to be effective inhibitors of thrombin (see Okamoto, et. al. *Thromb Res.* 1976, 8, 77-82, Ohshiro, et. al., *Blood Vessel* 1983, 14, 216-8), as have compounds containing constrained arginine mimics such as (2-naphthylsulfonylglycyl)-4-amidino-phenylalanyl piperidide (see Stuerzebecher, et. al., *Thromb. Res.* 1983, 29, 635-42), 1-[2-[5-(dimethylamino)naphth-1-ylsulfonamido]-3-(2-iminohexahydropyrimidin-5-yl)propanoyl]-4-methylpiperidine dihydrochloride (see Ishikawa, JP 88227572 and Ishikawa and Inamura, JP 88227573), N-(trans-4-amino-methylcyclohexylcarbonyl)-4-O-(2-picoly)-L-tyrosine 4-acetanilide dihydrochloride (see Okamoto, et. al., EP 217286) and 4-[(aminoiminomethyl)amino]benzoic acid esters (see Fuji, et. al., DE 3005580, Matsuoka, et. al., *Jpn. J. Pharmacol.* 1989, 51, 455-63, and Takeshita, et. al., EP 435235).
- Inhibitor design has benefitted from the knowledge of the mechanism of action and of the peptide sequences which are thought to bind in the catalytic site of thrombin, e.g., -Gly-Val-Arg-Gly- of fibrinogen (see Blombäck, et. al., *J. Biol. Chem.*, 1972, 247, 1496-512), Ile-Pro-Arg-Ser- of prothrombin (see Magnussen, et. al., in: Reich, et. al., "Proteases and Biological Control," pp. 123-149 (1975)) and -Val-Pro-Arg-Gly- of factor XIII (see Takagi and Doolittle, *Biochemistry* 1974, 13, 750-6 and Nakamura, et. al., *Biochem. Biophys. Res. Commun.* 1974, 58, 250-256). This class of mechanism-based inhibitors are exemplified by the tripeptide aldehyde D-

Phe-Pro-N-Me-Arg-H (see Bajusz, et. al., *J. Med. Chem.* 1990, 33, 1729-35), the chloromethyl ketone Ac-D-Phe-Pro-ArgCH₂Cl (see Kettner and Shaw, *Thromb. Res.* 1979, 14, 969-73) and the trifluoromethyl ketone D-Phe-Pro-ArgCF₃ (see Kolb, et. al., US 697987).

Kettner and Shenvi (EP 293881, published June 12, 1988), disclose peptide boronic acid inhibitors of trypsin-like proteases of formula (1)

wherein Y¹ and Y², independently, are hydroxyl or fluoro or, taken together, form a moiety derived from a dihydroxy compound having at least two hydroxy groups
 15 separated by at least two connecting atoms in a chain or ring, said chain or ring comprising 1 to about 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O; R² is a substituted alkyl selected from the group consisting of -(CH₂)_z-X, -(CH(CH₃)-(CH₂)₂-X, -CH₂-CH-(CH₃)-CH₂-X, -(CH₂)₂-CH(CH₃)-X and -(CH₂)₂-CH(CH₃)₂-X,
 20 where X is -NH₂, -NH-C(NH)-NH₂ or -S-C(NH)-NH₂, and z is 3 to 5; n, o, p and q are, independently, either 0 or 1; A¹, A² and A³ are, independently, amino acids of L- or D-configuration selected from the group consisting of Ala,
 25 Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; and R¹ is a peptide comprised of 1 to about 20 amino acids, an acyl or a sulfonyl group comprised of 1 to about 20 carbon atoms, H, or an N-terminal protecting group. In this disclosure, Kettner and Shenvi demonstrated that the pinanediol esters of boropeptides are pharmacologically equivalent to the corresponding boronic acids.

Metternich (EP 0471651 A2) discloses borolysine thrombin inhibitors of formula (2)

35

wherein W is an N-protecting group; Y is a sequence of n amino acids such that the n+1 amino acid peptide Y-Lys or Y-Arg has an affinity for the active site of a trypsin-like protease; where n is an integer of from 1 to 10 and in which at least one amino acid is an unnatural amino acid having a hydrophobic side chain; Q¹ and Q² are the same or different and are selected from -OH, -COR₁, -CONR₁R₂, -NR₁R₂ or -OR₃ of Q¹ and Q² taken together form a diol residue; R₁, R₂ and R₃ which may be the same or different, are C₁₋₁₀alkyl, C₆₋₁₀aryl, C₆₋₁₀aralkyl, or phenyl substituted by up to three groups selected from C₁₋₄alkyl, halogen and C₁₋₄alkoxy; R₄ is hydrogen or C₁₋₁₀alkyl; R₅ is a group -A-X; wherein A is -(CH₂)_z- in which z is 2, 3, 4 or 5; -CH(CH₃)-(CH₂)₂-; -CH₂-CH(CH₃)-CH₂-; -(CH₂)₂-CH(CH₃)-; -(CH₂)₂-C(CH₃)₂-; CH(CH₃)-(CH₂)₃-; -CH₂-CH(CH₃)-(CH₂)₂-; -CH₂-CH₂-CH(CH₃)-CH₂-; -(CH₂)₃-CH(CH₃)-; -(CH₂)₃-C(CH₃)₂; C₆₋₁₀aryl C₆₋₁₀aralkyl and X is -NH₂, -NH-C(NH)-NH₂, -S-C(NH)-NH₂, N₃, -C₁₋₄alkoxy, C₁₋₄alkylthio or Si(CH₃)₃ or R₄ and R₅ taken together form a trimethylene group and the asymmetric carbon atom may have the D- or L-configuration or represent any mixture of these.

Surprising for their lack of a basic residue at P₁ are tripeptide thrombin inhibitors comprised of 1-aminoboronic and 1-aminophosphonic acid analogs of 3-methoxy-propylglycine (see Claeson, et. al., US 07-245428) and pentylglycine (see Cheng, et. al., "Symposium on Thrombosis and Hemostasis," 1991, Amsterdam, Abstract 2150).

In addition to thrombin inhibition, boropeptides have been disclosed with utility as a treatment for tumors, viral infections and arthritis (US 4963655A and EP 354522A), emphysema (US 4499082A), hypertension (EP 315574A) and as factor VII/VIIa inhibitors (WO 8909612A). Kleemann, et. al. (AU A-24693/88) disclose

renin-inhibiting 1-amino boronic acid derivatives of formula (3)

5 in which A^1 denotes a radical of formulae (4-8).

Despite the foregoing, more efficacious and specific inhibitors of coagulation proteases are needed as 15 potentially valuable therapeutic agents for the treatment of thrombosis. None of the cited references describe or suggest the new thrombin-inhibiting boronic acid derivatives of the present invention.

20 Summary of Invention

This invention pertains to novel compounds of formula (I):

(I)

25 wherein

A is

- a) -BY₁Y₂,
- b) -C(=O)CF₃,
- c) -C(=O)CHF₂,
- 30 d) -C(=O)CH₂F,
- e) -C(=O)CH₂Cl,
- f) -C(=O)OR³,
- g) -C(=O)NR¹⁵R¹⁶,
- h) -C(=O)R³,
- 35 i) -C(=O)COOR³,
- j) -C(=O)C(=O)NR¹⁵R¹⁶,

- k) $-C(=O)C(=O)R^3$,
- l) $-C(=O)CY^3Y^4COOR^3$,
- m) $-C(=O)CY^3Y^4C(=O)NR^{15}R^{16}$,
- n) $-C(=O)CY^3Y^4C(=O)R^3$,
- 5 o) $-PO_3H_2$, or
- p) $-CHO$;

Y^1 and Y^2 are independently

- a) $-OH$,
- b) $-F$,
- 10 c) $-NR^3R^4$, or
- d) C_1-C_8 alkoxy;

Y^1 and Y^2 can be taken together to form:

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 15 0-3 heteroatoms which can be N, S, or O,
- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,
- g) a cyclic boron amide-ester where said chain or 20 ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O;

Y^3 and Y^4 are independently

- a) $-OH$ or
- b) $-F$;

25 Z is

- a) $-(CH_2)_mCONR^8-$,
- b) $-(CH_2)_mCSNR^8-$,
- c) $-(CH_2)_mSO_2NR^8-$,
- d) $-(CH_2)_mCO_2-$,
- 30 e) $-(CH_2)_mC(S)O-$, or
- f) $-(CH_2)_mSO_2O-$;

R^1 is

- a) $-(CH_2)_p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, -R⁸,
 -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
 -(CH₂)_wOR⁸, -(C₁-C₆)-perfluoroalkyl,
 -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wCF₃,
 -(CH₂)_wS(O)_rR⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸,
 -(CH₂)_wCHO; -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹.
 -(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂,
 -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-
 CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl,
 -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl,
 -(CH₂)_wNHSO₂-phenyl, -(CH₂)_wNHSO₂-
 perfluorophenyl, -(CH₂)_wCN₄H, -O(CH₂)_wCN,
 -NH(CH₂)_wCN, -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-
 alkyl), -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl),
 -(CH₂)_wNH-CO-(phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-
 alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-perfluoroalkyl),
 -(CH₂)_wNH-CO₂-(phenyl), -O(C=O)-(C₁-C₅-alkyl),

;

b) heteroaryl, wherein heteroaryl is an
 20 unsubstituted, monosubstituted or disubstituted:

- i) quinolinyl,
- ii) isoquinolinyl,
- iii) benzopyranyl,
- iv) benzothiophenyl,
- 25 v) benzofuranyl,
- vi) 5,6,7,8-tetrahydroquinolinyl,
- vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are selected from the
 30 group consisting of halo (F, Cl, Br, I), -CN, C₁-
 C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-
 C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷,
 -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONHR⁸, NR⁸COR⁹, NR⁸CO₂R⁹,

5

e)

f)

10

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR¹³, S or O, provided that:

15

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present;

g)

wherein W, R, T, U and V are selected from the group consisting of: CR¹³ or N, provided that there be no less than 1 and no more than 3 N present;

5

h)

wherein

is as defined above;

i)

wherein

is as defined above;

j)

10

wherein G is O, S, or NP, where P is an amine protecting group selected from the group

15

consisting of: -R³, -C(=O)R³, -SO₂R³,
-C(=O)OR³;

k)

5 wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³,
-C(=O)OR³;

R² is

- 10 a) -(C₁-C₁₂ alkyl)-X,
b) -(C₂-C₁₂ alkenyl)-X, or
c)

X is

- 15 a) halogen (F, Cl, Br, I),
b) -CN,
c) -NO₂,
d) -CF₃,
e) -S(O)_xR¹⁴,
20 f) -NHR¹⁴
g) -NHS(O)_xR¹⁴,
h) -NHC(NH)H,
i) -NHC(NH)NHOH,
j) -NHC(NH)NH₂,
25 k) -NHC(NH)NHR¹⁴,

- l) -NHC(NH)NHCOR¹⁴,
- m) -C(NH)NHR¹⁴,
- n) -C(NH)NHCOR¹⁴,
- o) -C(O)NHR¹⁴,
- 5 p) -C(O)NHC(O)R¹⁴,
- q) -C(O)OR¹⁴,
- r) -OR¹⁴,
- s) -OC(O)R¹⁴,
- t) -OC(O)OR¹⁴,
- 10 u) -OC(O)NHR¹⁴,
- v) -OC(O)NHC(O)R¹⁴,
- w) -SC(=NH)NHR¹⁴, or
- x) -SC(=NH)NHC(=O)R¹⁴,

R³ is

- 15 a) hydrogen,
- b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl,
- d) C₅-C₇ cycloalkyl, or
- e) phenyl;

20 R⁴ is

- a) hydrogen,
- b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl,
- d) C₅-C₇ cycloalkyl,
- 25 e) phenyl, or
- f) phenylsulfonyl;

25 R⁵ and R⁶ are hydrogen or when taken together form a six membered aromatic ring optionally substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, -OR⁸, -NO₂, -CF₃, -S(O)₂R⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸R⁹, phenyl, benzyl, phenylethyl;

R⁷ is

- 35 a) phenyl,

- b) C₁-C₈-alkyl,
- c) C₁-C₄-alkoxy,
- d) -CF₃, or
- e) benzyl;

5 R⁸ and R⁹ are independently

- a) H,
- b)

- c) C₃-C₇ cycloalkyl, or
- d) C₁-C₈-alkyl;

10 R¹¹ is

- a) halo (F, Cl, Br, I),
- b) -CN,
- c) C₁-C₁₀-alkyl,
- d) C₃-C₈-cycloalkyl,
- e) C₂-C₁₀-alkenyl,
- f) C₂-C₁₀-alkynyl,
- g) -OR⁸,
- h) -NO₂,

15 i) -CF₃,

j) -S(O)_rR⁷,

k) -NR⁸R⁹,

l) -COR⁹,

m) -CO₂R⁸,

20 n) -CONR⁸R⁹, or

o) H

25 R¹² is

H, C₁-C₄ alkyl, phenyl, benzyl, -COR⁷, or
-S(O)_rR⁷;

30 R¹³ is

H, halogen (F, Cl, Br, I), (C₁-C₈)alkyl, (C₁-C₆)-perfluoroalkyl, -(CH₂)_r-D, C₃-C₈ cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, methylenedioxy,

$-(CH_2)_wOR^8$, $-(CH_2)_wNC$, $-(CH_2)_wCN$, $-(CH_2)_wNO_2$,
 $-(CH_2)_wCF_3$, $-(CH_2)_wS(O)R^7$, $-(CH_2)_wNR^8R^9$,
 $-(CH_2)_wCOR^8$, $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$,
 $-(CH_2)_wSO_2NH-(C_1-C_6)-alkyl$, $-(CH_2)_wSO_2NH_2$,
 $-(CH_2)_wSO_2NH-CO-(C_1-C_6)-alkyl$, $-(CH_2)_wSO_2NH-CO_2-(C_1-C_6)-alkyl$, $-(CH_2)_wSO_2NH$, $-(CH_2)_wNHSO_2-(C_1-C_6)-alkyl$, $-(CH_2)_wNHSO_2-(C_1-C_6)-perfluoroalkyl$,
 $-(CH_2)_wNHSO_2-phenyl$, $-(CH_2)_wNHSO_2-perfluorophenyl$, $-(CH_2)_wCN_4H$, $-O(C=O)-(C_1-C_5)-alkyl$, $-O(CH_2)_wCN$, $-NH(CH_2)_wCN$, $-S(CH_2)_wCN$,
 $-(CH_2)_wNH-CO-(C_1-C_6-alkyl)$, $-(CH_2)_wNH-CO-(C_1-C_6-perfluoroalkyl)$, $-(CH_2)_wNH-CO-(phenyl)$,
 $-(CH_2)_wNH-CO_2-(C_1-C_6-alkyl)$, $-(CH_2)_wNH-CO_2-(C_1-C_6-perfluoroalkyl)$, $-(CH_2)_wNH-CO_2-(phenyl)$,
 $-(CH_2)_wphenyl$ wherein the phenyl contains 0-3 substituents selected from R¹⁸, $-S-(CH_2)_wphenyl$ wherein the phenyl contains 0-3 substituents selected from R¹⁸, or $-O-(CH_2)_wphenyl$ wherein the phenyl contains 0-3 substituents selected from R¹⁸;

R^{14} is

- a) -H,
 - b) -CF₃
 - c) -C₁-C₄ alkyl.

25 d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted with one to three substituents selected from the group consisting of:

halogen (F, Cl, Br, I),
-CF₃,

- (C_1-C_4 alkyl),
 - $(CH_2)_xR^{15}$,
 - $(CH_2)_xCO(CH_2)_yR^{15}$,
 - $(CH_2)_xC(O)O(CH_2)_yR^{15}$,
 - $(CH_2)_xC(O)N[(CH_2)_yR^{15}] [(CH_2)_yR^{16}]$,
 - methylenedioxy,

- (C₁-C₄ alkoxy),
- (CH₂)_xO(CH₂)_yR¹⁵,
- (CH₂)_xOCO(CH₂)_yR¹⁵,
- (CH₂)_xOC(O)O(CH₂)_yR¹⁵,
- 5 - (CH₂)_xOC(O)N[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- (CH₂)_xOC(O)N[(CH₂)_yR¹⁵] [CO(CH₂)_yR¹⁶],
- (CH₂)_xS(O)_r(CH₂)_yR¹⁵,
- (CH₂)_xS(O)_r(CH₂)_yCOR¹⁵,
- (CH₂)_xS(O)_r(CH₂)_yC(O)OR¹⁵,
- 10 - (CH₂)_xS(O)_rN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶]
- (CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] [CO(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] [C(O)O(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] CON[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- 15 - (CH₂)_xN[(CH₂)_yR¹⁵] CON[(CH₂)_yR¹⁵].
[CO(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] [S(O)_r(CH₂)_yR¹⁶];

R¹⁵ and R¹⁶ are independently

- a) hydrogen,
- 20 b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl, where aryl is defined above,
- d) C₅-C₇ cycloalkyl,
- e) phenyl, substituted by 0-3 R¹⁸,
- 25 f) benzyl, substituted by 0-3 R¹⁸, or
- g) -(C₁-C₄ alkoxy);

R¹⁵ and R¹⁶ can be taken together to form a ring:

30 R¹⁸ and R¹⁹ are independently

- H, halo (F, Cl, Br, I), C₁-C₈-alkyl, C₃-C₈ cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
- (CH₂)_w-OR⁸, - (CH₂)_wCN, - (CH₂)_wNC, - (CH₂)_wNO₂,
- (CH₂)_wCF₃, - (CH₂)_wS(O)_rR⁷, - (CH₂)_wNR⁸R⁹,

- $(CH_2)_wCOR^8$, - $(CH_2)_wCO_2R^8$, - $(CH_2)_wCONR^8R^9$,
 - $(CH_2)_wSO_2NH-(C_1-C_6)$ -alkyl, - $(CH_2)_wSO_2NH_2$,
 - $(CH_2)_wSO_2NH-CO-(C_1-C_6)$ -alkyl, - $(CH_2)_wSO_2NH-$
 CO₂-(C₁-C₆)-alkyl, - $(CH_2)_wSO_2NH-$, - $(CH_2)_wNHSO_2-$
 5 - $(CH_2)_wNHSO_2-(C_1-C_6)$ -perfluoroalkyl, - $(CH_2)_wNHSO_2$ -phenyl,
 - $(CH_2)_wNHSO_2$ -perfluorophenyl, - $(CH_2)_wCN_4H$,
 - O(C=O)-(C₁-C₅-alkyl), - O(CH₂)_wCN, - NH(CH₂)_wCN,
 - S(CH₂)_wCN, - (CH₂)_wNH-CO-(C₁-C₆-alkyl),
 10 - (CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), - (CH₂)_wNH-
 CO-(C₁-C₆-phenyl), - (CH₂)_wNH-CO₂-(C₁-C₆-alkyl),
 - (CH₂)_wNH-CO₂-(C₁-C₆-phenyl), or - O(C=O)phenyl;

R18 and R19 can be taken together to form a methylenedioxy group;

15 R²⁰ and R^{20a} are independently

(C₁-C₈)alkyl, - (CH₂)_uphenyl wherein the phenyl contains 0-3 substituents selected from R18, (C₁-C₆)-perfluoroalkyl, or - (CH₂)_r-D;

m is 0 to 6;

20 n is 1 to 2;

p is 0 to 2;

q is 0 to 4.

r is 0 to 2;

s is 0 to 3;

25 t is 1 to 5;

u is 0 to 5;

v is 0 to 5;

w is 0 to 5;

x is 0 to 6;

30 y is 0 to 6;

D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl, oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, 35 or tetrazolyl;

E is -CO-, -SO₂-, -CH₂- or a single bond;

F is -CO-;

W is

- a) -O-,
- 5 b) -S(O)_r-,
- c) -NR⁴-,
- d) -NC(=O)R³-,
- e) a bond, or
- f) -(CH₂)_n-;

10 or prodrugs or pharmaceutically acceptable salts thereof.

Preferred compounds of formula (I) are those compounds wherein:

15 Z is

- a) -(CH₂)_mCONR⁸-,
- b) -(CH₂)_mCSNR⁸-,
- c) -(CH₂)_mSO₂NR⁸-,

R¹ is

20 a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, -R⁸,
 25 -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
 -(CH₂)_w-OR⁸, -(C₁-C₆)-perfluoroalkyl,
 -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wCF₃,
 -(CH₂)_wS(O)_rR⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸,

30 -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl,

-(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl,

35 -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, e-O(CH₂)_wCN, -NH(CH₂)_wCN, -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆)-alkyl, -(CH₂)_wNH-CO-(C₁-C₆)-

perfluoroalkyl), - $(\text{CH}_2)_w\text{NH-CO-(phenyl)}$, - $(\text{CH}_2)_w\text{NH-CO}_2\text{-}(\text{C}_1\text{-C}_6\text{-alkyl})$, - $(\text{CH}_2)_w\text{NH-CO}_2\text{-}(\text{C}_1\text{-C}_6\text{-perfluoroalkyl})$, or - $(\text{CH}_2)_w\text{NH-CO}_2\text{-}(\text{phenyl})$, - $\text{O}(\text{C=O-}(\text{C}_1\text{-C}_5\text{ alkyl}))$;

5 b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- i) quinolinyl,
- ii) isoquinolinyl,
- iii) benzopyranyl,
- iv) benzothiophenyl,
- v) benzofuranyl,
- vi) 5,6,7,8-tetrahydroquinolinyl,
- vii) 5,6,7,8-tetrahydroisoquinolinyl,

15 and wherein the substituents are selected from the group consisting of halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸H, NR⁸COR⁹, NR⁸CO₂R⁹;

20 c)

d)

e)

25

f) wherein the ring

represented by -J-K-L-M-Q- is a group selected from:

- 1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
- 5 3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
- 4) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 5) $-N-C(R^{13})=C(R^{13})-N=N-$
- 6) $-N-C(R^{13})=N-N=N-$,
- 7) $-N-N=C(R^{13})-N=N-$,
- 10 8) $=C-O-C(R^{13})=N-C(R^{13})=$,
- 9) $-C=C(R^{13})-O-C(R^{13})=N-$,
- 10) $=C-O-C(R^{13})=C(R^{13})-N=$,
- 11) $-C=C(R^{13})-C(R^{13})=N-O-$,
- 12) $=C-C(R^{13})=C(R^{13})-O-N=$,
- 15 13) $-C=C(R^{13})-O-N=C(R^{13})-$,
- 14) $=C-S-C(R^{13})=N-C(R^{13})=$,
- 15) $-C=C(R^{13})-S-C(R^{13})=N-$,
- 16) $=C-S-C(R^{13})=C(R^{13})-N=$,
- 17) $-C=N-S-N=C(R^{13})-$,
- 20 18) $-C=N-S-C(R^{13})=N-$,
- 19) $=C-S-N=C(R^{13})-N=$,
- 20) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$,
- 21) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-$,
- 22) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=$, or
- 25 23) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$;

g) wherein the ring

represented by -C-W-R-T-U-V- is a group selected from:

- 1) -C=N-C(R¹³)=C(R¹³)-C(R¹³)=C(R¹³)-,
- 2) -C=C(R¹³)-N=C(R¹³)-C(R¹³)=C(R¹³)-,
- 3) -C=C(R¹³)-C(R¹³)=N-C(R¹³)=C(R¹³)-,
- 4) -C=N-N=C(R¹³)-C(R¹³)=C(R¹³)-,
- 5) -C=C(R¹³)-N=N-C(R¹³)=C(R¹³)-,
- 6) -C=N-C(R¹³)=C(R¹³)-C(R¹³)=N-,
- 7) -C=N-C(R¹³)=C(R¹³)-N=C(R¹³)-,
- 8) -C=N-C(R¹³)=N-C(R¹³)=C(R¹³)-,
- 9) -C=C(R¹³)-N=C(R¹³)-N=C(R¹³)-,
- 10) -C=N-C(R¹³)=N-N=C(R¹³)-,
- 11) -C=N-C(R¹³)=C(R¹³)-N=N-, or
- 12) -C=C(R¹³)-N=C(R¹³)-N=N-;

15

h)

wherein

is as defined above;

i)

wherein

20

is as defined above;

j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

5

k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

10 R¹⁴ is

- a) -H,
- b) -CF₃,
- c) -C₁-C₄ alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl,

15 naphthyl, or fluorenyl unsubstituted substituted with one to three substituents selected from the group consisting of:

halogen (F, Cl, Br, I),

-CF₃,

20 - (C₁-C₄ alkyl),
 - methylenedioxy,
 - (C₁-C₄ alkoxy),
 - (CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶];

and all other required substituents of formula (I) are as defined in Claim 1.

More preferred compounds of the formula (I) are
5 those compounds wherein:

A is

- a) -BY¹Y²,
- b) -C(=O)CF₃,
- c) -C(=O)CHF₂,
- 10 d) -C(=O)CH₂F,
- e) -C(=O)CH₂Cl,
- f) -C(=O)OR³,
- g) -C(=O)NR¹⁵R¹⁶,
- h) -C(=O)R³,
- 15 i) -C(=O)COOR³,
- j) -C(=O)C(=O)NR¹⁵R¹⁶,
- k) -C(=O)C(=O)R³,
- l) -CHO;

Y¹ and Y² are independently

- 20 a) -OH, or
- b) C₁-C₈ alkoxy;

Y¹ and Y² can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

Z is

- a) -(CH₂)_mCONR⁸-,
- b) -(CH₂)_mCSNR⁸-, or
- c) -(CH₂)_mSO₂NR⁸-;

30 R¹ is

a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents independently selected at each occurrence from the group consisting of:

- 35 halo (F, Cl, Br, I), methylenedioxy, -R⁸, -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl,

$-(CH_2)_wOR^8$, $-(C_1-C_6)$ -perfluoroalkyl,
 $-(CH_2)_wCN$, $-(CH_2)_wNC$, $-(CH_2)_wNO_2$, $-(CH_2)_wCF_3$,
 $-(CH_2)_wS(O)R^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,
 $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$, $-(CH_2)_wSO_2NH-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH_2$, $-(CH_2)_wSO_2NH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH-CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH-$, $-(CH_2)_wNHSO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNHSO_2-(C_1-C_6)$ -perfluoroalkyl, $-(CH_2)_wNHSO_2$ -phenyl, $-(CH_2)_wNHSO_2$ -perfluorophenyl, $-(CH_2)_wCN_4H$, $-O(CH_2)_wCN$, $-NH(CH_2)_wCN$, $-S(CH_2)_wCN$, $-(CH_2)_wNH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_wNH-CO-(C_1-C_6$ -perfluoroalkyl), $-(CH_2)_wNH-CO-(phenyl)$, $-(CH_2)_wNH-CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNH-CO_2-(C_1-C_6$ -perfluoroalkyl), or $-(CH_2)_wNH-CO_2-(phenyl)$, $-O(C=O)-C_1-C_5$ -alkyl);

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- i) quinolinyl,
 - ii) isoquinolinyl,
 - iii) benzopyranyl,
 - iv) benzothiophenyl,
 - v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
 - vii) 5,6,7,8-tetrahydroisoquinolinyl.

wherein the substituents are members selected from the group consisting of: halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸H, NR⁸COR⁹, NR⁸CO₂R⁹;

c)

d)

e)

5

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

- 1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
- 10 3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
- 4) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 5) $-N-C(R^{13})=C(R^{13})-N=N-$
- 6) $-N-C(R^{13})=N-N=N-$,
- 7) $-N-N=C(R^{13})-N=N-$,
- 15 8) $=C-O-C(R^{13})=N-C(R^{13})=$,
- 9) $-C=C(R^{13})-O-C(R^{13})=N-$,
- 10) $=C-O-C(R^{13})=C(R^{13})-N=$,
- 11) $-C=C(R^{13})-C(R^{13})=N-O-$,
- 12) $=C-C(R^{13})=C(R^{13})-O-N=$,
- 15 13) $-C=C(R^{13})-O-N=C(R^{13})-$,
- 14) $=C-S-C(R^{13})=N-C(R^{13})=$,
- 15) $-C=C(R^{13})-S-C(R^{13})=N-$,
- 16) $=C-S-C(R^{13})=C(R^{13})-N=$,
- 17) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$,
- 20 18) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-$,
- 25

- 19) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=$, or
 20) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$;

f)

5 wherein the ring represented by $-C-W-R-T-U-V-$ is a group selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
- 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$,
- 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
- 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
- 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
- 10 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
- 10 10) $-C=N-C(R^{13})=N-N=C(R^{13})-$,
- 11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or
- 12) $-C=C(R^{13})-N=C(R^{13})-N=N-$;

g)

wherein

20

is as defined above;

h)

wherein

is as defined above; or

i)

5

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³);

R² is

- 10 a) -(C₁-C₁₂ alkyl)-X,
 b) -(C₂-C₁₂ alkenyl)-X, or
 c)

;

X is

- 15 a) halogen (F, Cl, Br, I),
 b) -CN,
 c) -NO₂,
 d) -CF₃,
 e) -NHR¹⁴
 f) -NHS(O)_rR¹⁴,
- 20

- g) -NHC(NH)H,
- h) -NHC(NH)NHOH,
- i) -NHC(NH)NHCN,
- j) -NHC(NH)NHR¹⁴,
- 5 k) -NHC(NH)NHCOR¹⁴,
- l) -C(NH)NHR¹⁴,
- m) -C(NH)NHCOR¹⁴,
- n) -C(O)NHR¹⁴,
- 10 o) -C(O)NHC(O)R¹⁴,
- p) -C(O)OR¹⁴,
- q) -OR¹⁴,
- r) -OC(O)R¹⁴,
- s) -OC(O)OR¹⁴,
- t) -OC(O)NHR¹⁴,
- 15 u) -OC(O)NHC(O)R¹⁴,
- v) -SC(=NH)NHR¹⁴, or
- w) -SC(=NH)NHC(=O)R¹⁴;

R¹³ is

- 20 H, halogen (F, Cl, Br, I), (C₁-C₆)alkyl,
 -(CH₂)_r-D, methylenedioxy, -(CH₂)_w-OR⁸,
 -(CH₂)_wCONR⁸R⁹, -(CH₂)_wNC, -(CH₂)_wCN,
 -(CH₂)_wNO₂, -(CH₂)_wS(O)_rR⁷, -(CH₂)_wCOR⁸,
 -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-
 25 C₅)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-
 C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl,
 -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-
 C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl,
 -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H,
 30 -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN,
 -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl),
 -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-
 CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl),
 -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl), -(CH₂)_wphenyl
 35 wherein the phenyl contains 0-3 substituents
 selected from R¹⁸, or -O(C=O)phenyl wherein the

phenyl contains 0-3 substituents selected from R¹⁸;

R¹⁴ is

- 5 a) -H,
- b) -CF₃
- c) -C₁-C₄ alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl are optionally substituted with one to three substituents selected from the group consisting of:
- halogen (F, Cl, Br, I),
- CF₃,
- (C₁-C₄ alkyl),
- 15 -methylenedioxy,
- (C₁-C₄ alkoxy), or
- (CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶];

R¹⁸ and R¹⁹ are independently

- 20 H, halo (F, Cl, Br, I), C₁-C₆-alkyl, -(CH₂)_w-OR⁸, -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wS(O)_rR⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl, -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN,
- 25 -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl), -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl), or -O(C=O)phenyl;
- 30 R¹⁸ and R¹⁹ can be taken together to form a methylenedioxy group;
- 35 R²⁰ and R^{20a} are independently

(C₁-C₈)alkyl, -(CH₂)_wphenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸, (C₁-C₆)-perfluoroalkyl, or -(CH₂)_r-D;

D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl, 5 oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or pyrimidin-4-yl;

W is

- 10 a) -O-,
- b) -NR⁴-,
- c) a bond, or
- d) -(CH₂)_n-;

and all other required substituents of formula (I) are 15 as defined in Claim 2.

Most preferred compounds of the formula (I) are those compounds wherein:

A is -By¹y²;

20 y¹ and y² are -OH;

y¹ and y² can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

25 Z is -(CH₂)_mCONR⁸-;

R¹ is

30 a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, -R⁸, -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl, -(CH₂)_w-OR⁸, -(C₁-C₆)-perfluoroalkyl, -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wCF₃, 35 -(CH₂)_wS(O)_rR⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-

C₆)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)_walkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl, -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(CH₂)_wCN, -NH(CH₂)_wCN, -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆)-alkyl, -(CH₂)_wNH-CO-(C₁-C₆)-perfluoroalkyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNH-CO₂-(C₁-C₆)-perfluoroalkyl), or -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl);

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted isoquinolinyl wherein the substituents are members selected from the group consisting of:

halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸R⁹, NR⁸COR⁹, NR⁸CO₂R⁹,

20 c)

d)

wherein the ring represented by -J-K-L-M-Q- is a
group selected from:

- $$2) \quad -N-C(R^{13}) = C(R^{13}) - N = N - .$$

- 3) $-N-N=C(R^{13})-N=N-$,
 5) $-N-C(R^{13})=N-N=N-$,
 6) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$, or
 7) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=;$

5

e)

wherein the ring represented by $-C-W-R-T-U-V-$ is a group selected from:

10

- 1) $-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$
 1) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
 2) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
 3) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
 4) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$, or
 5) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$;

15

f)

wherein

is as defined above;

g)

wherein

20

is as defined above; or

h)

wherein G is S;

R² is

a) -(C₁-C₁₂ alkyl)-X, or

5 b)

;

X is

a) halogen (F, Cl, Br, I),

b) -CN,

10 c) -NHR¹⁴

d) -NHC(NH)H,

e) -NHC(NH)NHR¹⁴,

f) -C(NH)NHR¹⁴,

g) -OR¹⁴, or

15 h) -SC(=NH)NHR¹⁴;

R¹¹ is H;

R¹³ is

H, halogen (F, Cl, Br, I), -(CH₂)_wNO₂, (C₁-C₆)alkyl, -(CH₂)_x-D, -(CH₂)_w-OR⁸,

20 -(CH₂)_wCONR⁸R⁹, -(CH₂)_wCN, -(CH₂)_wNC,

-(CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCO₂R³,

-(CH₂)_wNR⁸R³, -(CH₂)_wS(O)₂R⁷, -(CH₂)_wSO₂NHCO-(C₁-C₆)-alkyl,

-(CH₂)_wNHSO₂-phenyl-(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂,

-(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl,

25 -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl,

- $(CH_2)_wNHSO_2-(C_1-C_6)$ -perfluoroalkyl,
- $(CH_2)_wCN_4H$, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_tCN,
- NH(CH₂)_tCN, -S(CH₂)_tCN, - $(CH_2)_wNH-CO-(C_1-C_6$ -alkyl), - $(CH_2)_wNH-CO-(C_1-C_6$ -perfluoroalkyl), or
5 - $(CH_2)_w$ phenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸;

R¹⁴ is -H;

R¹⁸ and R¹⁹ are independently

10 H, halo (F, Cl, Br, I), C₁-C₆-alkyl, - $(CH_2)_w$ OR⁸, - $(CH_2)_w$ CN, - $(CH_2)_w$ NC, - $(CH_2)_w$ NO₂,
- $(CH_2)_w$ S(O)rR⁷, - $(CH_2)_w$ NR⁸R⁹, - $(CH_2)_w$ COR⁸,
- $(CH_2)_w$ CO₂R⁸, - $(CH_2)_w$ CONR⁸R⁹, - $(CH_2)_w$ SO₂NH-(C₁-C₅)-alkyl, - $(CH_2)_w$ SO₂NH₂, - $(CH_2)_w$ SO₂NH-CO-(C₁-C₆)-alkyl, - $(CH_2)_w$ SO₂NH-CO₂-(C₁-C₆)-alkyl,
15 - $(CH_2)_w$ NHSO₂-(C₁-C₆)-alkyl, - $(CH_2)_w$ NHSO₂-(C₁-C₆)-perfluoroalkyl, - $(CH_2)_w$ NHSO₂-phenyl,
- $(CH_2)_w$ NHSO₂-perfluorophenyl, - $(CH_2)_w$ CN₄H,
- O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_tCN, -NH(CH₂)_tCN,
- S(CH₂)_tCN, - $(CH_2)_w$ NH-CO-(C₁-C₆-alkyl),
20 - $(CH_2)_w$ NH-CO-(C₁-C₆-perfluoroalkyl), - $(CH_2)_w$ NH-CO-(C₁-C₆-phenyl), - $(CH_2)_w$ NH-CO₂-(C₁-C₆-alkyl),
- $(CH_2)_w$ NH-CO₂-(C₁-C₆-phenyl), or -O(C=O)phenyl;

R¹⁸ and R¹⁹ can be taken together to form a methylenedioxy group;

25 R²⁰ is selected from the group consisting of:

$(CH_2)_r$ -D, or - $(CH_2)_w$ phenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸;

and all other required substituents of formula (I) are
30 defined as in Claim 3.

Specifically preferred are those most preferred compounds listed below:

35 N¹- (4-phenylbenzoyl) - (R) - boroarginine, hydrochloride
N¹- (3-phenoxybenzoyl) - (R) - boroarginine, hydrochloride

- N*¹- (1-fluorenonyl) - (R) - boroarginine, hydrochloride
*N*¹- (4-[1-butyl]benzoyl) - (R) - boroarginine, hydrochloride
*N*¹- (2-benzoylbenzoyl) - (R) - boroarginine, hydrochloride
*N*¹- (5-phenyl-2-furoyl) - (R) - boroarginine, hydrochloride
5 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methylamino]-4-[1-butyl]-benzoyl) - (R) - boroarginine, hydrochloride
*N*¹- (2-phenyl-4-isoquinoloyl) - (R) - boroarginine,
hydrochloride
10 *N*¹- (4-cyclohexylbenzoyl) - (R) - boroarginine,
hydrochloride
*N*¹- (2-methyl-4-phenylbenzoyl) - (R) - boroarginine,
hydrochloride
15 *N*¹- [4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol
ester
15 *N*¹- [4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol
ester
20 *N*¹- [4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-
pinanediol ester
20 *N*¹- [4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-
pinanediol ester
25 *N*¹- [4-phenyl-2-(cyanomethyl)benzoyl]boroArg, (+)-
pinanediol ester
25 *N*¹- [4-phenyl-2-(diethylamino)benzoyl]boroArg, (+)-
pinanediol ester
30 *N*¹- [4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
benzoyl]boroArg, (+)pinanediol ester
30 *N*¹- [4-[2-(aminosulfonyl)phenyl]-2-methyl-
benzoyl]boroArg, (+)pinanediol ester
35 *N*¹- [4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methyl-
benzoyl]boroArg, (+)-pinanediol ester
35 *N*¹- [4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg,
(+)-pinanediol ester
35 *N*¹- [4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg-OH

- N^1 -[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroArg, (+)-pinanediol ester
 N^1 -[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroArg, (+)-pinanediol ester
5 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
 N^1 -[4-[2-(aminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
 N^1 -[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
10 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
 N^1 -[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
15 N^1 -[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
 N^1 -(3-phenylbenzoyl)boroarg, (+)-pinanediol
 N^1 -[4-(3-BOCNphenyl)2-methylbenzoyl]boroarg, (+)-pinanediol
20 N^1 -(5-phenyl-2-furoyl)boroarg, (+)-pinanediol
 N^1 -(5-phenyl-2-thienyl)boroarg, (+)-pinanediol
 N^1 -[4-(3-nitrophenyl)benzoyl]boroarg, (+)-pinanediol
 N^1 -[4-(3-aminophenyl)benzoyl]boroarg, (+)-pinanediol
 N^1 -(3-phenylbenzoyl)borolys, (+)-pinanediol
25 N^1 -(5-phenyl-2-furoyl)boroarg-OH
 N^1 -(3-phenylbenzoyl)boroIrg, (+)-pinanediol
(R)-[5-amino-1-[[[5-(phenylmethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
[3aS-[2(S*),3 α ,4 β ,6 β]]-(1,1-dimethylethyl) [3-[5-[[[4-
30 [(amino-iminomethyl)amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzo-dioxaborol-2-yl)butyl]amino]carbonyl]-2-thienyl]phenyl]carbamate
hydrochloride
[3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[5-amino-1-(hexahydro-
35 3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-

- 2-yl)pentyl]-5-(phenyl-methyl)-3-(2H-tetrazol-5-ylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-1-[2-[[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-5-(phenylmethyl)-1H-1,2,4-triazole-3-acetic acid hydrochloride 1:1 with [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-1-[2-[[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-(phenylmethyl)-1H-1,2,4-triazole-5-acetic acid hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-methyl 1-[2-[[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-5-(phenylmethyl)-1H-1,2,4-triazole-3-acetate hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-methyl 1-[2-[[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-(phenylmethyl)-1H-1,2,4-triazole-5-acetate hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-phenyl-5-(phenyl-methyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
- (R)-[5-amino-1-[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-triazol-1-yl]acetyl]-amino]pentyl boronic acid hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
- [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[4-[(aminoiminomethyl)-amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)butyl]-3-(3-

- nitrophenyl)-5-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3,5-bis(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 5 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[4-[(aminoiminomethyl)amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)butyl]-3,5-bis(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 10 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide
 15 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)acetyl]amino]-pentyl]boronic acid hydrochloride
 (R)-[5-amino-1-[[[3-(phenylmethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-methyl-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 20 [3aS-[2(R*),3a α ,4 β ,6 β]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-[(phenylmethoxy)methyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 25 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-(cyanomethyl)-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 30 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(phenylmethyl)-5-propyl-1H-1,2,4-triazole-1-acetamide hydrochloride
 35 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-

- 2-yl)pentyl]-5-phenyl-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
- (R)-[5-amino-1-[[5-methyl-3-(phenylmethyl)-1H-1,2,4-triazol-1-yl]acetyl]-amino]pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-phenyl-1H-1,2,4-triazole-1-acetamide hydrochloride
- 10 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-methyl-3-phenyl-1H-1,2,4-triazole-1-acetamide hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1,2,4-triazole-1-acetamide
- (R)-[5-amino-1-[[5-(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]pentyl]boronic acid hydrochloride
- 20 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3,5-bis(2-phenyl-ethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
- (R)-[5-amino-1-[[3,5-bis(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]pentyl]boronic acid hydrochloride
- 25 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(2-phenylethyl)-1H-1,2,4-triazole-1-acetamide
- (R)-[5-amino-1-[[3-(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(3-phenyl-propyl)-1H-1,2,4-triazole-1-acetamide

- (R) - [5-amino-1- [[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- (R) - [5-amino-1- [[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 5 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N- [5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-triazole-3-acetamide hydrochloride 2:8 with (R)-[5-amino-1- [[[1,5-bis(phenylmethyl)-1H-1,2,4-triazol-3-yl]acetyl]amino]-pentyl]boronic acid
- 10 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N- [5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide hydrochloride
- 15 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N- [5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide hydrochloride
- 20 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N- [4-[(amimoiminomethyl)amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)-butyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide hydrochloride
- 25 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N- [5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide hydrochloride
- (R) - [5-amino-1- [(6-phenyl-3-pyridinyl)carbonyl]amino]pentyl]boronic acid dihydrochloride
- 30
- 35

Illustrative of the compounds of this invention are the following:

- N*^L- (4-phenylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- N*^L- (3-phenylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- 5 *N*^L- (3-phenoxybenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- N*^L- (4-[4-pyridyl]benzoyl) - (R) - boroarginine (+) -
pinanediol, bisulfite
- N*^L- (2-benzoylbenzoyl) - (R) - boroarginine (+) - pinanediol,
10 bisulfite
- N*^L- (3-benzoylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- N*^L- (4-benzoylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- 15 *N*^L- (3-[N-benzyloxycarbonyl]aminobenzoyl) - (R) -
boroarginine (+) - pinanediol, bisulfite
- N*^L- (3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl) - (R) -
boroarginine (+) - pinanediol, bisulfite
- N*^L- (4-ethylbenzoyl) - (R) - boroarginine (+) - pinanediol,
20 bisulfite
- N*^L- (4-n-propylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- N*^L- (4-isopropylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- 25 *N*^L- (4-n-butylbenzoyl) - (R) - boroarginine (+) - pinanediol,
bisulfite
- N*^L- (4-tert-butylbenzoyl) - (R) - boroarginine (+) -
pinanediol, bisulfite
- N*^L- (4-n-hexylbenzoyl) - (R) - boroarginine (+) - pinanediol,
30 bisulfite
- N*^L- (4-cyclohexylbenzoyl) - (R) - boroarginine (+) -
pinanediol, bisulfite
- N*^L- (2-[N-(2-phenylethyl)carbonyl]aminobenzoyl) - (R) -
boroarginine (+) - pinanediol, bisulfite
- 35 *N*^L- (4-n-butyloxybenzoyl) - (R) - boroarginine (+) -
pinanediol, bisulfite

- N*¹- (4- [*N*-cyclopropylcarbonyl]aminobenzoyl) - (*R*) -
boroarginine (+)-pinanediol, bisulfite
- N*¹- (4- [*N*-cyclohexylcarbonyl]aminobenzoyl) - (*R*) -
boroarginine (+)-pinanediol, bisulfite
- 5 *N*¹- (4- [*N*- (4-methoxy)benzoyl]aminobenzoyl) - (*R*) -
boroarginine (+)-pinanediol, bisulfite
- 10 *N*¹- (4- [4-methoxy]phenylbenzoyl) - (*R*) - boroarginine (+)-
pinanediol, bisulfite
- 15 *N*¹- (2- [2-phenyl]benzyloxycarbonylbenzoyl) - (*R*) -
boroarginine (+)-pinanediol, bisulfite
- 20 *N*¹- (2- [1-naphthyl]benzoyl) - (*R*) - boroarginine (+)-
pinanediol, bisulfite
- 25 *N*¹- (4- [4-carboxy]phenylbenzoyl) - (*R*) - boroarginine (+)-
pinanediol, bisulfite
- 30 *N*¹- (4- phenylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 35 *N*¹- (3- phenylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 40 *N*¹- (3- phenoxybenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 45 *N*¹- (2-benzoylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 50 *N*¹- (3-benzoylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 55 *N*¹- (4-benzoylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 60 *N*¹- (3- [*N*-benzyloxycarbonyl]aminobenzoyl) - (*R*) -
borothioarginine (+)-pinanediol, hydrobromide
- 65 *N*¹- (3- [*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl) - (*R*) -
borothioarginine (+)-pinanediol, hydrobromide
- 70 *N*¹- (4- ethylbenzoyl) - (*R*) - borothioarginine (+)-pinanediol,
hydrobromide
- 75 *N*¹- (4- *n*-propylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide
- 80 *N*¹- (4- isopropylbenzoyl) - (*R*) - borothioarginine (+)-
pinanediol, hydrobromide

- 5 N^1 - (4-n-butylbenzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (4-tert-butylbenzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
5 5 N^1 - (4-n-hexylbenzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (4-cyclohexylbenzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
10 10 N^1 - (2-[N-(2-phenylethyl)carbonyl]aminobenzoyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
 N^1 - (4-n-butyloxybenzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (4-[N-cyclopropylcarbonyl]aminobenzoyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
15 15 N^1 - (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
 N^1 - (4-[N-(4-methoxy)benzoyl]aminobenzoyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
 N^1 - (4-[4-methoxy]phenylbenzoyl) - (R) - borothioarginine
20 20 (+)-pinanediol, hydrobromide
 N^1 - (2-[2-phenylbenzyloxycarbonyl]benzoyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
 N^1 - (2-[1-naphthyl]benzoyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
25 25 N^1 - (4-[4-carboxy]phenylbenzoyl) - (R) - borothioarginine
 (+)-pinanediol, hydrobromide
 N^1 - ([2-anthraquinonyl]carbonyl) - (R) - boroarginine (+) -
 pinanediol, bisulfite
 N^1 - ([2-dioxothioxanthinonyl]carbonyl) - (R) - boroarginine
30 30 (+)-pinanediol, bisulfite
 N^1 - ([2-anthraquinonyl]carbonyl) - (R) - borothioarginine
 (+)-pinanediol, hydrobromide
 N^1 - ([2-dioxothioxanthinonyl]carbonyl) - (R) -
 borothioarginine (+)-pinanediol, hydrobromide
35 35 N^1 - ([2-fluoren-9-onyl]carbonyl) - (R) - borothiohomoarginine
 (+)-pinanediol, hydrobromide

*N*¹-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
pinanediol, bisulfite

*N*¹-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
(+)-pinanediol, hydrobromide

5 *N*¹-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
(+)-pinanediol, hydrobromide

*N*¹-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
pinanediol, bisulfite

*N*¹-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
10 (+)-pinanediol, hydrobromide

*N*¹-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
pinanediol, bisulfite

*N*¹-(1-naphthoyl)-(R)-borothioarginine (+)-pinanediol,
hydrobromide

15 *N*¹-(1-naphthoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite

*N*¹-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-

20 borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

25 *N*¹-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
30 borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
(R)-borothioarginine (+)-pinanediol, hydrobromide

*N*¹-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-trifluoromethylbenzoyl) - (R) - boroarginine (+) - pinanediol, hydrobromide
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (R) - boroarginine (+) - pinanediol, hydrobromide
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (R) - boroarginine (+) - pinanediol, hydrobromide
- N^1 - (2-methyl-4-phenyl-5-methoxybenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- 10 N^1 - (2-methyl-4-phenyl-5-carboxamidobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-phenyl-5-fluorobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-phenyl-5-trifluoromethylbenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-phenyl-5-chlorobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-phenyl-5-hydroxybenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- 20 N^1 - (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- 25 N^1 - (2-methyl-4-[4-carboxy]phenyl-5-trifluoromethylbenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- 30 N^1 - (2-[5-phenyl]furylcarbonyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- N^1 - (2-[5-phenyl]thiophen-ylcarbonyl) - (R) - boroarginine (+) - pinanediol, bisulfite
- 35 N^1 - (2-[5-phenyl]thiophen-ylcarbonyl) - (R) - boroarginine (+) - pinanediol, bisulfite

- N^1 - (2-[5-phenyl]furylcarbonyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (2-[5-phenyl]thiophen-ylcarbonyl) - (R) -
 borothioarginine (+) -pinanediol, hydrobromide
 5 N^1 - (3-[6-phenyl]pyridylcarbonyl) - (R) - boroarginine (+) -
 pinanediol, bisulfite
 N^1 - (3-[5-benzyloxy]pyridylcarbonyl) - (R) - boroarginine
 (+) -pinanediol, bisulfite
 N^1 - (3-[6-phenyl]pyridylcarbonyl) - (R) - borothioarginine
 10 (+) -pinanediol, hydrobromide
 N^1 - (3-[5-benzyloxy]pyridylcarbonyl) - (R) - borothioarginine
 (+) -pinanediol, hydrobromide
 N^1 - (2-benzopyronylcarbonyl) - (R) - boroarginine (+) -
 pinanediol, bisulfite
 15 N^1 - (2-benzopyronylcarbonyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (3-isoquinolinylcarbonyl) - (R) - boroarginine (+) -
 pinanediol, bisulfite
 N^1 - (2-phenyl-4-isoquinolinylcarbonyl) - (R) - boroarginine
 20 (+) -pinanediol, bisulfite
 N^1 - (3-isoquinolinylcarbonyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (2-phenyl-4-isoquinolinylcarbonyl) - (R) -
 borothioarginine (+) -pinanediol, hydrobromide
 25 N^1 - (2-isoquinolinylcarbonyl) - (R) - boroarginine (+) -
 pinanediol, bisulfite
 N^1 - (2-isoquinolinylcarbonyl) - (R) - borothioarginine (+) -
 pinanediol, hydrobromide
 N^1 - (4-phenylbenzoyl) - (R) - boroarginine, hydrochloride
 30 N^1 - (3-phenylbenzoyl) - (R) - boroarginine, hydrochloride
 N^1 - (3-phenoxybenzoyl) - (R) - boroarginine, hydrochloride
 N^1 - (4-[4-pyridyl]benzoyl) - (R) - boroarginine,
 hydrochloride
 N^1 - (2-benzoylbenzoyl) - (R) - boroarginine, hydrochloride
 35 N^1 - (3-benzoylbenzoyl) - (R) - boroarginine, hydrochloride
 N^1 - (4-benzoylbenzoyl) - (R) - boroarginine, hydrochloride

- N*^L- (3 - [N-benzyloxycarbonyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
- N*^L- (3 - [N-benzyloxycarbonyl-N-methyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
- 5 *N*^L- (4-ethylbenzoyl) - (R) - boroarginine, hydrochloride
N^L- (4-n-propylbenzoyl) - (R) - boroarginine, hydrochloride
N^L- (4-isopropylbenzoyl) - (R) - boroarginine, hydrochloride
N^L- (4-tert-butylbenzoyl) - (R) - boroarginine,
hydrochloride
- 10 *N*^L- (4-n-hexylbenzoyl) - (R) - boroarginine, hydrochloride
N^L- (4-cyclohexylbenzoyl) - (R) - boroarginine,
hydrochloride
- 15 *N*^L- (2 - [N-(2-phenylethyl) carbonyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
N^L- (4 - [N-cyclopropylcarbonyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
- 20 *N*^L- (4 - [N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
N^L- (4 - [N-(4-methoxy)benzoyl]aminobenzoyl) - (R) -
boroarginine, hydrochloride
N^L- (4 - [4-methoxy]phenylbenzoyl) - (R) - boroarginine,
hydrochloride
- 25 *N*^L- (2 - [2-phenyl]benzyloxycarbonylbenzoyl) - (R) -
boroarginine, hydrochloride
N^L- (2 - [1-naphthyl]benzoyl) - (R) - boroarginine,
hydrochloride
- 30 *N*^L- (4 - [4-carboxy]phenylbenzoyl) - (R) - boroarginine,
hydrochloride
N^L- ([2-anthraquinonyl]carbonyl) - (R) - boroarginine,
hydrochloride
- 35 *N*^L- ([2-dioxothioxanthinonyl]carbonyl) - (R) - boroarginine,
hydrochloride
N^L- ([2-fluoren-9-onyl]carbonyl) - (R) - boroarginine,
hydrochloride

- N*¹-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
hydrochloride
- N*¹-(1-naphthoyl)-(R)-boroarginine, hydrochloride
- N*¹-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
5 hydrochloride
- N*¹-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
boroarginine, hydrochloride
- 10 *N*¹-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine,
hydrochloride
- N*¹-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine,
15 hydrochloride
- N*¹-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
boroarginine, hydrochloride
- 20 *N*¹-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(R)-
(R)-boroarginine, hydrochloride
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-
25 trifluoromethylbenzoyl)-(R)-boroarginine,
hydrochloride
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
30 boroarginine, hydrochloride
- N*¹-(2-[5-phenyl]furylcarbonyl)-(R)-boroarginine,
hydrochloride
- N*¹-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-boroarginine,
hydrochloride
- 35 *N*¹-(2-benzopyronylcarbonyl)-(R)-boroarginine,
hydrochloride

- N*¹- (2-isoquinolinylcarbonyl) - (R) - boroarginine,
hydrochloride
- N*¹- (3-isoquinolinylcarbonyl) - (R) - boroarginine,
hydrochloride
- 5 *N*¹- (2-phenyl-4-isoquinolinylcarbonyl) - (R) - boroarginine,
hydrochloride
- N*¹- (4-phenylbenzoyl) - (R) - borothioarginine,
hydrochloride
- 10 *N*¹- (3-phenylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (3-phenoxybenzoyl) - (R) - borothioarginine,
hydrochloride
- 15 *N*¹- (2-benzoylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (3-benzoylbenzoyl) - (R) - borothioarginine,
hydrochloride
- 20 *N*¹- (4-benzoylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl) - (R) -
borothioarginine, hydrochloride
- 25 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (4-ethylbenzoyl) - (R) - borothioarginine, hydrochloride
- N*¹- (4-n-propylbenzoyl) - (R) - borothioarginine,
hydrochloride
- 30 *N*¹- (4-isopropylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (4-n-butylbenzoyl) - (R) - borothioarginine,
hydrochloride
- 35 *N*¹- (4-tert-butylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (4-n-hexylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (4-cyclohexylbenzoyl) - (R) - borothioarginine,
hydrochloride

*N*¹- (2- [*N*- (2-phenylethyl) carbonyl] aminobenzoyl) - (*R*) -
borothioarginine, hydrochloride

*N*¹- (4-*n*-butyloxybenzoyl) - (*R*) - borothioarginine,
hydrochloride

5 *N*¹- (4- [*N*-cyclopropylcarbonyl] aminobenzoyl) - (*R*) -
borothioarginine, hydrochloride

*N*¹- (4- [*N*-cyclohexylcarbonyl] aminobenzoyl) - (*R*) -
borothioarginine, hydrochloride

*N*¹- (4- [*N*- (4-methoxy) benzoyl] aminobenzoyl) - (*R*) -
10 borothioarginine, hydrochloride

*N*¹- (4- [4-methoxy] phenylbenzoyl) - (*R*) - borothioarginine,
hydrochloride

*N*¹- (2- [2-phenylbenzyloxycarbonyl] benzoyl) - (*R*) -
borothioarginine, hydrochloride

15 *N*¹- (2- [1-naphthyl] benzoyl) - (*R*) - borothioarginine,
hydrochloride

*N*¹- (4- [4-carboxy] phenylbenzoyl) - (*R*) - borothioarginine,
hydrochloride

*N*¹- ([2-anthraquinonyl] carbonyl) - (*R*) - borothioarginine,
20 hydrochloride

*N*¹- ([2-dioxothioxanthinonyl] carbonyl) - (*R*) -
borothioarginine, hydrochloride

*N*¹- ([2-fluoren-9-onyl] carbonyl) - (*R*) -
borothiohomoarginine, hydrochloride

25 *N*¹- ([2-fluoren-9-onyl] carbonyl) - (*R*) - borothioarginine,
hydrochloride

*N*¹- ([3-fluoren-9-onyl] carbonyl) - (*R*) - borothioarginine,
hydrochloride

*N*¹- ([4-fluoren-9-onyl] carbonyl) - (*R*) - borothioarginine,
30 hydrochloride

*N*¹- (1-naphthoyl) - (*R*) - borothioarginine, hydrochloride

*N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl) - (*R*) -
borothioarginine, hydrochloride

*N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl) - (*R*) -
35 borothioarginine, hydrochloride

- N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl) - (R) -
borothioarginine, hydrochloride
- 5 *N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl) - (R) -
10 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl) -
(R) - borothioarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl) - (R) -
borothioarginine, hydrochloride
- 15 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-
trifluoromethylbenzoyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (R) -
borothioarginine, hydrochloride
- 20 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (2-[5-phenyl]furylcarbonyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (2-[5-phenyl]thiophenylcarbonyl) - (R) -
25 borothioarginine, hydrochloride
- N*¹- (3-[6-phenyl]pyridylcarbonyl) - (R) - boroarginine,
hydrochloride
- N*¹- (3-[5-benzyloxy]pyridylcarbonyl) - (R) - boroarginine,
hydrochloride
- 30 *N*¹- (3-[6-phenyl]pyridylcarbonyl) - (R) - borothioarginine,
hydrochloride
- N*¹- (3-[5-benzyloxy]pyridylcarbonyl) - (R) -
borothioarginine, hydrochloride
- N*¹- (2-benzopyronylcarbonyl) - (R) - borothioarginine,
35 hydrochloride

- N*¹- (3-isoquinolinylcarbonyl) - (R) -borothioarginine,
hydrochloride
- N*¹- (2-phenyl-4-isoquinolinylcarbonyl) - (R) -
borothioarginine, hydrochloride
- 5 *N*¹- (2-isoquinolinylcarbonyl) - (R) -borothioarginine,
hydrochloride
- N*¹- (4-phenylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- 10 *N*¹- (3-phenylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (3-phenoxybenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- 15 *N*¹- (4-[4-pyridyl]benzoyl) - (R) -borolysine (+)-pinanediol
hydrochloride
- 20 *N*¹- (2-benzoylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (3-benzoylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- 25 *N*¹- (4-benzoylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (3-[N-benzyloxycarbonyl]aminobenzoyl) - (R) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- (3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- 30 *N*¹- (4-ethylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-n-propylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- 35 *N*¹- (4-isopropylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-tert-butylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-n-hexylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride
- 35 *N*¹- (4-cyclohexylbenzoyl) - (R) -borolysine (+)-pinanediol,
hydrochloride

- N*¹- (2- [*N*- (2-phenylethyl) carbonyl] aminobenzoyl) - (*R*) -
borolysine (+)-pinanediol, hydrochloride
- N*¹- (4-*n*-butyloxybenzoyl) - (*R*) -borolysine (+)-pinanediol,
hydrochloride
- 5 *N*¹- (4- [*N*-cyclopropylcarbonyl] aminobenzoyl) - (*R*) -
borolysine (+)-pinanediol, hydrochloride
- N*¹- (4- [*N*-cyclohexylcarbonyl] aminobenzoyl) - (*R*) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- (4- [*N*- (4-methoxy) benzoyl] aminobenzoyl) - (*R*) -borolysine
10 (+)-pinanediol, hydrochloride
- N*¹- (4- [4-methoxy] phenylbenzoyl) - (*R*) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (2- [2-phenyl]benzyloxy carbonylbenzoyl) - (*R*) -borolysine
(+)-pinanediol, hydrochloride
- 15 *N*¹- (2- [1-naphthyl] benzoyl) - (*R*) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (4- [4-carboxy] phenylbenzoyl) - (*R*) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- ([2-anthraquinonyl] carbonyl) - (*R*) -borolysine (+)-
20 pinanediol, hydrochloride
- N*¹- ([2-dioxothioxanthinonyl] carbonyl) - (*R*) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- ([2-fluoren-9-onyl] carbonyl) - (*R*) -borolysine (+)-
pinanediol, hydrochloride
- 25 *N*¹- ([3-fluoren-9-onyl] carbonyl) - (*R*) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (1-naphthoyl) - (*R*) -borolysine (+)-pinanediol,
hydrochloride
- N*¹- ([4-fluoren-9-onyl] carbonyl) - (*R*) -borolysine (+)-
30 pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl) - (*R*) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl) - (*R*) -
borolysine (+)-pinanediol, hydrochloride
- 35 *N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl) - (*R*) -borolysine
(+)-pinanediol, hydrochloride

- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl) - (R) -borolysine
(+)-pinanediol, hydrochloride
- 5 *N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl) - (R) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- 10 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl) -
(R) -borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- 15 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-
trifluoromethylbenzoyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (R) -
borolysine (+)-pinanediol, hydrochloride
- 20 *N*¹- (2-[5-phenyl]furylcarbonyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (2-[5-phenyl]thiophen-ylcarbonyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (2-benzopyronylcarbonyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- 25 *N*¹- (2-isoquinolinylcarbonyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- N*¹- (3-isoquinolinylcarbonyl) - (R) -borolysine (+)-
pinanediol, hydrochloride
- 30 *N*¹- (2-phenyl-4-isoquinolinylcarbonyl) - (R) -borolysine
(+)-pinanediol, hydrochloride
- N*¹- (4-phenylbenzoyl) - (R) -borolysine, hydrochloride
- N*¹- (3-phenylbenzoyl) - (R) -borolysine, hydrochloride
- N*¹- (3-phenoxybenzoyl) - (R) -borolysine, hydrochloride
- 35 *N*¹- (4-[4-pyridyl]benzoyl) - (R) -borolysine, hydrochloride
- N*¹- (2-benzoylbenzoyl) - (R) -borolysine, hydrochloride

- N*¹- (3-benzoylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-benzoylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl) - (R) -borolysine,
hydrochloride
- 5 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl) - (R) -
borolysine, hydrochloride
*N*¹- (4-ethylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-*n*-propylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-isopropylbenzoyl) - (R) -borolysine, hydrochloride
- 10 *N*¹- (4-tert-butylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-*n*-hexylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-cyclohexylbenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl) - (R) -
borolysine, hydrochloride
- 15 *N*¹- (4-*n*-butyloxybenzoyl) - (R) -borolysine, hydrochloride
*N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl) - (R) -
borolysine, hydrochloride
*N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl) - (R) -
borolysine, hydrochloride
- 20 *N*¹- (4-[*N*-(4-methoxy)benzoyl]aminobenzoyl) - (R) -
borolysine, hydrochloride
*N*¹- (4-[4-methoxy]phenylbenzoyl) - (R) -borolysine,
hydrochloride
*N*¹- (2-[2-phenyl]benzyloxycarbonylbenzoyl) - (R) -
25 borolysine, hydrochloride
*N*¹- (2-[1-naphthyl]benzoyl) - (R) -borolysine,
hydrochloride
*N*¹- (4-[4-carboxy]phenylbenzoyl) - (R) -borolysine,
hydrochloride
- 30 *N*¹- ([2-anthraquinonyl]carbonyl) - (R) -borolysine,
hydrochloride
*N*¹- ([2-dioxothioxanthinonyl]carbonyl) - (R) -borolysine,
hydrochloride
*N*¹- ([2-fluoren-9-onyl]carbonyl) - (R) -borolysine,
35 hydrochloride

- N*^L-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine,
hydrochloride
- N*^L-(1-naphthoyl)-(R)-borolysine, hydrochloride
- N*^L-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine,
5 hydrochloride
- N*^L-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine,
hydrochloride
- N*^L-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
borolysine, hydrochloride
- 10 *N*^L-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine,
hydrochloride
- N*^L-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
borolysine, hydrochloride
- N*^L-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine,
15 hydrochloride
- N*^L-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine,
hydrochloride
- N*^L-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
borolysine, hydrochloride
- 20 *N*^L-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(R)-
borolysine, hydrochloride
- N*^L-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
borolysine, hydrochloride
- N*^L-(2-methyl-4-[4-carboxy]phenyl-5-
25 trifluoromethylbenzoyl)-(R)-borolysine,
hydrochloride
- N*^L-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
borolysine, hydrochloride
- N*^L-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
30 borolysine, hydrochloride
- N*^L-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine,
hydrochloride
- N*^L-(2-[5-phenyl]thiophenylcarbonyl)-(R)-borolysine,
hydrochloride
- 35 *N*^L-(2-benzopyronylcarbonyl)-(R)-borolysine,
hydrochloride

- N*¹- (2-isoquinolinylcarbonyl) - (R) -borolysine,
hydrochloride
- N*¹- (3-isoquinolinylcarbonyl) - (R) -borolysine,
hydrochloride
- 5 *N*¹- (2-phenyl-4-isoquinolinylcarbonyl) - (R) -borolysine,
hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) -R-borolysine,
hydrochloride
- 10 *N*¹- (2-methyl-4-phenylbenzoyl) -R-borolysine, (+)-
pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) -R-borothioarginine,
hydrobromide
- 15 *N*¹- (2-methyl-4-phenylbenzoyl) -R-borothioarginine, (+)-
pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) -R-boroarginine,
hydrochloride
- 20 *N*¹- (2-methyl-4-phenylbenzoyl) -R-boroarginine, (+)-
pinanediol, bisulfite
- N*¹- [4-phenyl-2-nitrobenzoyl]boroArg(Me), (+)-pinanediol
ester
- 25 *N*¹- [4-phenyl-2-fluorobenzoyl]boroArg(Me), (+)-pinanediol
ester
- N*¹- [4-phenyl-2-aminobenzoyl]boroArg(Me), (+)-pinanediol
ester
- 30 *N*¹- [4-phenyl-2-(methylsulfonamido)benzoyl]boroArg(Me),
(+)-pinanediol ester
- N*¹- [4-phenyl-2-(cyanomethylamino)benzoyl]boroArg(Me),
(+)-pinanediol ester
- 35 *N*¹- [4-phenyl-2-(cyanomethyl)benzoyl]boroArg(Me), (+)-
pinanediol ester
- N*¹- [4-phenyl-2-(diethylamino)benzoyl]boroArg(Me), (+)-
pinanediol ester
- N*¹- [4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
benzoyl]boroArg(Me), (+)pinanediol ester
- 35 *N*¹- [4-[2-(aminosulfonyl)phenyl]-2-methyl-
benzoyl]boroArg(Me), (+)pinanediol ester

- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methylbenzoyl]boroArg(Me), (+)-pinanediol ester
- 5 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg(Me), (+)-pinanediol ester
- 10 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg(Me)-OH
- 15 *N*¹-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroArg(Me), (+)-pinanediol ester
- 20 *N*¹-[4-[2-(diethylaminosulfonyl)phenyl]-2-methylbenzoyl]boroArg(Me), (+)pinanediol ester
- 25 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluorobenzoyl]boroArg(Me), (+)pinanediol ester
- 30 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-fluorobenzoyl]boroArg(Me), (+)pinanediol ester
- 35 *N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluorobenzoyl]boroArg(Me), (+)-pinanediol ester
- 40 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitrobenzoyl]boroArg(Me), (+)pinanediol ester
- 45 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-nitrobenzoyl]boroArg(Me), (+)pinanediol ester
- 50 *N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitrobenzoyl]boroArg(Me), (+)-pinanediol ester.
- 55 *N*¹-[4-phenyl-2-nitrobenzoyl]boro MPG, (+)-pinanediol ester
- 60 *N*¹-[4-phenyl-2-fluorobenzoyl]boro MPG, (+)-pinanediol ester
- 65 *N*¹-[4-phenyl-2-aminobenzoyl]boro MPG, (+)-pinanediol ester
- 70 *N*¹-[4-phenyl-2-(methylsulfonamido)benzoyl]boro MPG, (+)-pinanediol ester
- 75 *N*¹-[4-phenyl-2-(cyanomethylamino)benzoyl]boro MPG, (+)-pinanediol ester
- 80 *N*¹-[4-phenyl-2-(cyanomethyl)benzoyl]boro MPG, (+)-pinanediol ester

- N*¹-[4-phenyl-2-(diethylamino)benzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methylbenzoyl]boroMPG, (+)-pinanediol ester
- 5 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-methylbenzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methylbenzoyl]boroMPG, (+)-pinanediol ester
- 10 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroMPG-OH
- 15 *N*¹-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroMPG, (+)-pinanediol ester
- 20 *N*¹-[4-[2-(diethylaminosulfonyl)phenyl]-2-methylbenzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroMPG, (+)-pinanediol ester
- 25 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-benzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroMPG, (+)-pinanediol ester
- 30 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroMPG, (+)-pinanediol ester
- N*¹-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-phenyl-2-nitrobenzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-phenyl-2-fluorobenzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-phenyl-2-aminobenzoyl]boroACA, (+)-pinanediol ester

- N*¹-[4-phenyl-2-(methylsulfonamido)benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-phenyl-2-(cyanomethylamino)benzoyl]boroACA, (+)-pinanediol ester
- 5 *N*¹-[4-phenyl-2-(cyanomethyl)benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-phenyl-2-(diethylamino)benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methylbenzoyl]boroACA, (+)-pinanediol ester
- 10 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-methylbenzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methylbenzoyl]boroACA, (+)-pinanediol ester
- 15 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroACA-OH
- N*¹-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroACA, (+)-pinanediol ester
- 20 *N*¹-[4-[2-(diethylaminosulfonyl)phenyl]-2-methylbenzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroACA, (+)-pinanediol ester
- 25 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA, (+)-pinanediol ester
- 30 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA, (+)-pinanediol ester
- N*¹-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA, (+)-pinanediol ester

- N*¹-[4-phenyl-2-nitrobenzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-phenyl-2-fluorobenzoyl]boroLys, (+)-pinanediol ester
- 5 *N*¹-[4-phenyl-2-aminobenzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-phenyl-2-(methylsulfonamido)benzoyl]boroLys, (+)-pinanediol ester
- 10 *N*¹-[4-phenyl-2-(cyanomethylamino)benzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-phenyl-2-(cyanomethyl)benzoyl]boroLys, (+)-pinanediol ester
- 15 *N*¹-[4-phenyl-2-(diethylamino)benzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methylbenzoyl]boroLys, (+)pinanediol ester
- 20 *N*¹-[4-[2-(aminosulfonyl)phenyl]-2-methylbenzoyl]boroLys, (+)pinanediol ester
- N*¹-[4-[2-(methoxycarbonylamino)sulfonyl]phenyl]-2-methylbenzoyl]boroLys, (+)-pinanediol ester
- 25 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroLys-OH
*N*¹-[4-[2-(n-butoxycarbonylamino)sulfonyl]phenyl]-2-methyl-benzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-[2-(diethylaminosulfonyl)phenyl]-2-methylbenzoyl]boroLys, (+)pinanediol ester
- 30 *N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroLys, (+)pinanediol ester
- N*¹-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-benzoyl]boroLys, (+)pinanediol ester
- 35 *N*¹-[4-[2-(methoxycarbonylamino)sulfonyl]phenyl]-2-fluoro-benzoyl]boroLys, (+)-pinanediol ester
- N*¹-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroLys, (+)pinanediol ester

N^L-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroLys,
(+)-pinanediol ester

N^L-[4-[2-(methoxyaminosulfonyl)phenyl]-2-nitro-
benzoyl]boroLys, (+)-pinanediol ester.

5

Detailed Description of the Invention

Throughout the specification, the following conventional three-letter abbreviations for amino acid residues or amino acids apply:

10	Ala	= alanine
	Arg	= arginine
	Asn	= asparagine
	Asp	= aspartic acid
	Cys	= cysteine
15	Gln	= glutamine
	Glu	= glutamic acid
	Gly	= glycine
	His	= histidine
	Ile	= isoleucine
20	Leu	= leucine
	Lys	= lysine
	Met	= methionine
	Phe	= phenylalanine
	Pro	= proline
25	Ser	= serine
	Thr	= threonine
	Trp	= tryptophan
	Tyr	= tyrosine
	Val	= valine
30	Irg	= arginine where the guanidine is replaced with an isothiouronium (-SC(=NH)NH ₂)
	Arg(Me)	= arginine with the guanidino group methylated
35	MPG	= 5-methoxy-propylglycine

ACA = 3-(4-amino)cyclohexylalanine

The prefix "boro" indicates amino acid residues where the carboxy group is replaced by a boronic acid (Formula I, Y^1 and $\text{Y}^2 = -\text{OH}$).

The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C₁₀H₁₆-" and "-C₆H₁₂-" respectively. Other illustrations of diols useful for deriving a boronic acid orthoesters are 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, 1,2-dicyclohexylethanediol.

The formamidino modified amino group is abbreviated (CH=NH). For example, the formamidino analog of -boroOrn-OH {-NH-CH[(CH₂)₃-NH-CH(NH)H]B(OH)₂} is -boroOrn(CH=NH)-OH. Analogs containing sidechain substituents are described by indicating the substituent in parenthesis following the name of the parent residue. For example the analog of boroPhenylalanine containing a meta cyano group is -borоОphe(mCN)-. N-alkyl substituents on the guanidino group of boroArg- or on the isothiouronium analogs (boroIrg) are also put in parenthesis in a similar manner.

Other abbreviations are: Z, benzyloxycarbonyl; BSA, benzene sulfonic acid; THF, tetrahydrofuran; Boc-, t-butoxycarbonyl-; Ac-, acetyl; pNA, p-nitro-aniline; DMAP, 4-N,N-dimethylaminopyridine; Tris, Tris(hydroxymethyl)aminomethane; MS, mass spectrometry; FAB/MS, fast atom bombardment mass spectrometry. LRMS(NH₃-CI) and HRMS(NH₃-CI) are low and high resolution mass spectrometry, respectively, using NH₃ as an ion source

As used herein, the structure , wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR¹³, 5 S or O, provided that:

- i) there may be only one S or O present in the ring at a time;
 - ii) there may only be 1-2 N present when there is an O or S present;
 - 10 iii) there may be only 1-4 N present;
- is used as a substituent definition for R¹. This substituent may be exemplified by the following structures where -J-K-L-M-Q- is:

- | | |
|----|--|
| 15 | 1) -N-C(R ¹³)=C(R ¹³)-C(R ¹³)=C(R ¹³)- ,
2) -N-C(R ¹³)=C(R ¹³)-C(R ¹³)=N- ,
3) -N-C(R ¹³)=C(R ¹³)-N=C(R ¹³)- ,
4) -N-C(R ¹³)=N-C(R ¹³)=N- ,
5) -N-C(R ¹³)=C(R ¹³)-N=N- |
| 20 | 6) -N-C(R ¹³)=N-N=N- ,
7) -N-N=C(R ¹³)-N=N- ,
8) =C-O-C(R ¹³)=N-C(R ¹³)= ,
9) -C=C(R ¹³)-O-C(R ¹³)=N- ,
10) =C-O-C(R ¹³)=C(R ¹³)-N= , |
| 25 | 11) -C=C(R ¹³)-C(R ¹³)=N-O- ,
12) =C-C(R ¹³)=C(R ¹³)-O-N= ,
13) -C=C(R ¹³)-O-N=C(R ¹³)- ,
14) =C-S-C(R ¹³)=N-C(R ¹³)= ,
15) -C=C(R ¹³)-S-C(R ¹³)=N- , |
| 30 | 16) =C-S-C(R ¹³)=C(R ¹³)-N= ,
17) -C=N-S-N=C(R ¹³)- , |

- 18) $-C=N-S-C(R^{13})=N-$,
 19) $=C-S-N=C(R^{13})-N=$,
 20) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$,
 21) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-$,
 5 22) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=$, or
 23) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$.

As used herein, the structure , wherein in
 W, R, T, U and V are independently selected at each
 10 occurrence from the group consiting of: CR¹³ or N,
 provided that there may be only 1-3 N present, is used
 as a substituent definition for R¹. This substituent
 may be exemplified by the following structures where
 -C-W-R-T-U-V- is:

- 15 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$,
 20 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
 10) $-C=N-C(R^{13})=N-N=C(R^{13})-$,
 25 11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or
 12) $-C=C(R^{13})-N=C(R^{13})-N=N-$.

"Amino acid residues" as used herein, refers to
 natural or unnatural amino acids of either D- or L-
 30 configuration. Natural amino acids residues are Ala,
 Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Ile, Irg

Leu, Lys, Met, Orn, Phe, Phe(4-fluoro), Pro, Sar, Ser, Thr, Trp, Tyr, and Val. Roberts and Vellaccio, *The Peptides*, Vol 5; 341-449 (1983), Academic Press, New York, discloses numerous suitable unnatural amino acids
5 and is incorporated herein by reference for that purpose.

"Amino acids residues" also refers to various amino acids where sidechain functional groups are coupled with appropriate protecting groups known to those skilled in
10 the art. "The Peptides", Vol 3, 3-88 (1981) discloses numerous suitable protecting groups and is incorporated herein by reference for that purpose.

The reactions of the synthetic methods claimed
herein are carried out in suitable solvents which may be
15 readily selected by one of skill in the art of organic
synthesis, said suitable solvents generally being any
solvent which is substantially nonreactive with the
starting materials (reactants), the intermediates, or
products at the temperatures at which the reactions are
20 carried out, i.e., temperatures which may range from the
solvent's freezing temperature to the solvent's boiling
temperature. A given reaction may be carried out in one
solvent or a mixture of more than one solvent.
Depending on the particular reaction step, suitable
25 solvents for a particular reaction step may be selected.

The compounds herein described may have asymmetric centers. All chiral, diastereomeric, and racemic forms
are included in the present invention. Many geometric
isomers of olefins, C=N double bonds, and the like can
30 also be present in the compounds described herein, and
all such stable isomers are contemplated in the present
invention. It will be appreciated that certain
compounds of the present invention contain an
asymmetrically substituted carbon atom, and may be
35 isolated in optically active or racemic forms. It is
well known in the art how to prepare optically active

forms, such as by resolution of racemic forms or by synthesis, from optically active starting materials. Also, it is realized that cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

- When any variable (for example, R¹ through R²⁰, R^{20a}, m, n, D, E, F, W, X, etc.) occurs more than one time in any constituent or in Formula (I), its definition on each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-3 R¹¹, then said group may optionally be substituted with up to three R¹¹ and R¹¹ at each occurrence is selected independently from the defined list of possible R¹¹.
- Also, for example, in -N(R¹⁵)₂, each of the R¹⁵ substituents may be independently selected from the list of possible R²⁰ groups defined. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
- Similarly, by way of example, for the group -C(R¹¹)₂-, each of the two R¹¹ substituents on C is independently selected from the defined list of possible R¹¹.

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example -C_vF_w where v = 1 to 3 and w = 1 to (2v+1)); "alkoxy" represents an alkyl group of indicated number of carbon

atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-, bi- or poly-cyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
5 cycloheptyl, adamantyl and cyclooctyl; and "bicycloalkyl" is intended to include saturated bicyclic ring groups such as [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, and so forth. "Alkenyl" is intended to include
10 hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like; and "alkynyl" is intended to include hydrocarbon chains of
15 either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like.

"Halo" or "halogen" as used herein refers to
20 fluoro, chloro, bromo, and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate, and the like.

As used herein, "aryl" or "aromatic residue" is
25 intended to mean phenyl or naphthyl; the term "arylalkyl" represents an aryl group attached through an alkyl bridge. By way of examples: the term "C₇-C₁₀ arylalkyl" is intended to refer to an aryl group attached through a C₁-C₄ alkyl bridge to the residue of the indicated compound; the term "(C₁-C₃ alkyl)aryl" is intended to refer to a C₁-C₃ alkyl group which is attached through an aryl ring to the residue of the indicated compound; the term "aryl(C₁-C₃ alkyl)" is intended to refer to an aryl group attached through a
30 C₁-C₃ alkyl group to the residue of the indicated compound.
35

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 8-membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26-membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated and consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The term "heteroaryl" is intended to mean an aromatic form of a heterocyclic ring. Unless otherwise specified, the heterocyclic and heteroaryl rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Unless otherwise specified, examples of such heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl or octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-

thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thiophenyl,
thianthrenyl, pyranyl, isobenzofuranyl, chromenyl,
xanthenyl, phenoxythiinyl, 2H-pyrrolyl, isothiazolyl,
isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl,
5 isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4H-
quinolizinyl, phthalazinyl, naphthyridinyl,
quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl,
4aH-carbazolyl, carbazolyl, 8-carbolinyl,
phenanthridinyl, acridinyl, perimidinyl,
10 phenanthrolinyl, phenazinyl, phenarsazinyl,
phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl,
chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl,
pyrazolinyl, piperazinyl, indolinyl, isoindolinyl,
quinuclidinyl, morpholinyl, oxazolidinyl,
15 benzotriazolyl, benzisoxazolyl, oxindolyl,
benzoxazolinyl, or isatinoyl. Also included are fused
ring and spiro compounds containing, for example, the
above heterocycles.

When a bond to a substituent is shown to cross the
20 bond connecting two atoms in a ring, then such
substituent may be bonded to any atom on the ring. When
a substituent is listed without indicating the atom via
which such substituent is bonded to the rest of the
compound of formula I, then such substituent may be
25 bonded via any atom in such substituent. For example,
when the substituent is piperazinyl, piperidinyl, or
tetrazolyl, unless specified otherwise, said
piperazinyl, piperidinyl, tetrazolyl group may be bonded
30 to the rest of the compound of formula (I) via any atom
in such piperazinyl, piperidinyl, tetrazolyl group.

Combinations of substituents and/or variables are
permissible only if such combinations result in stable
compounds. By stable compound or stable structure it is
meant herein a compound that is sufficiently robust to
35 survive isolation to a useful degree of purity from a

reaction mixture, and formulation into an efficacious therapeutic agent.

The term "substituted", as used herein, means that an one or more hydrogen on the designated atom is

5 replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens on the atom are replaced.

10 As used herein, the term "any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino or sulfhydryl" means any group bonded to an O, N, or S atom, respectively, which is cleaved from the O, N, or S atom when the compound is

15 administered to a mammalian subject to provide a compound having a remaining free hydroxyl, amino, or sulfhydryl group, respectively. Examples of groups that, when administered to a mammalian subject, are cleaved to form a free hydroxyl, amino or sulfhydryl, 20 include but are not limited to, phosphate esters, C₁-C₆ alkyl substituted with 0-3 R¹¹, C₃-C₆ alkoxyalkyl substituted with 0-3 R¹¹, C₁-C₆ alkylcarbonyl substituted with 0-3 R¹¹, C₁-C₆ alkoxy carbonyl substituted with 0-3 R¹¹, C₁-C₆ alkylaminocarbonyl

25 substituted with 0-3 R¹¹, benzoyl substituted with 0-3 R¹², phenoxy carbonyl substituted with 0-3 R¹², phenylaminocarbonyl substituted with 0-3 R¹², or heteroarylcarbonyl. Examples of groups that, when administered to a mammalian subject, are cleaved to form 30 a free hydroxyl, amino or sulfhydryl, may include hydroxy, amine or sulfhydryl protecting groups, respectively.

As used herein, the term "amine protecting group" means any group known in the art of organic synthesis 35 for the protection of amine groups. Such amine protecting groups include those listed in Greene and

Wuts, "Protective Groups in Organic Synthesis" John Wiley & Sons, New York (1991) and "The Peptides: Analysis, Synthesis, Biology, Vol. 3, Academic Press, New York (1981), the disclosure of which is hereby incorporated by reference. Any amine protecting group known in the art can be used. Examples of amine protecting groups include, but are not limited to, the following: 1) acyl types such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate types such as benzyloxycarbonyl (Cbz) and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1-methylethoxycarbonyl, and 9-fluorenylmethoxycarbonyl (Fmoc); 3) aliphatic carbamate types such as tert-butyloxycarbonyl (Boc), ethoxycarbonyl, 15 diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4) cyclic alkyl carbamate types such as cyclopentyloxycarbonyl and adamantlyloxycarbonyl; 5) alkyl types such as triphenylmethyl and benzyl; 6) trialkylsilane such as trimethylsilane; and 7) thiol containing types such as phenylthiocarbonyl and dithiasuccinoyl.

The term "amino acid" as used herein means an organic compound containing both a basic amino group and an acidic carboxyl group. Included within this term are natural amino acids, modified and unusual amino acids, as well as amino acids which are known to occur biologically in free or combined form but usually do not occur in proteins. Included within this term are modified and unusual amino acids, such as those disclosed in, for example, Roberts and Vellaccio (1983) The Peptides, 5: 342-429, the teaching of which is hereby incorporated by reference. Modified or unusual amino acids which can be used to practice the invention include, but are not limited to, D-amino acids, 25 hydroxylysine, 4-hydroxyproline, an N-Cbz-protected amino acid, ornithine, 2,4-diaminobutyric acid,

- homoarginine, norleucine, N-methylaminobutyric acid, naphthylalanine, phenylglycine, β -phenylproline, tert-leucine, 4-aminocyclohexylalanine, N-methyl-norleucine, 3,4-dehydroproline, N,N-
- 5 dimethylaminoglycine, N-methylaminoglycine, 4-aminopiperidine-4-carboxylic acid, 6-aminocaproic acid, trans-4-(aminomethyl)-cyclohexanecarboxylic acid, 2-, 3-, and 4-(aminomethyl)-benzoic acid, 1-aminocyclopentanecarboxylic acid,
- 10 1-aminocyclopropanecarboxylic acid, and 2-benzyl-5-aminopentanoic acid.

The term "peptide" as used herein means a compound that consists of two or more amino acids (as defined herein) that are linked by means of a peptide bond. The

15 term "peptide" also includes compounds containing both peptide and non-peptide components, such as pseudopeptide or peptide mimetic residues or other non-amino acid components. Such a compound containing both peptide and non-peptide components may also be

20 referred to as a "peptide analog".

The term "peptide bond" means a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of one amino acid and the amino group of a second amino acid.

25 As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound of formula (I) is modified by making acid or base salts of the compound of formula (I). Examples of pharmaceutically acceptable salts include,

30 but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

35 "Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug according to formula (I) *in vivo* when such prodrug is

administered to a mammalian subject. Prodrugs of the compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.

5 Prodrugs include compounds of formula (I) wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate, or benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I); phosphate esters, dimethylglycine esters, aminoalkylbenzyl esters,

10 15 aminoalkyl esters and carboxyalkyl esters of alcohol and phenol functional groups in the compounds of formula (I); and the like.

The pharmaceutically acceptable salts of the compounds of formula (I) include the conventional non-toxic salts or the quaternary ammonium salts of the compounds of formula (I) formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the compounds of formula (I) which contain a basic or acidic moiety by conventional chemical methods. Generally, such salts

can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally,
5 nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby
10 incorporated by reference.

The disclosures of all of the references cited herein are hereby incorporated herein by reference in their entirety.

15

Synthesis

The compounds of formula (I) can be prepared using the reactions and techniques described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being affected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the chemical transformations proposed and this will sometimes require judgment as to the order of synthetic steps or selection of particular process scheme used from that shown below in order to obtain a desired compound of the invention.

Schema 1. Synthesis of Thrombin Inhibitors

Reagents: a. IBCF, NMM, RCO_2H , Et_3N , 0 °C, b. NaN_3 , c. H_2 , $\text{Pd}(\text{OH})_2/\text{C}$, HCl , d. DMAP, aminoiminomethanesulfonic acid, e. phenylboronic acid

5 Amine hydrochloride 1 is readily available via the procedure of Kettner and Shenvi (EP 0293881 A2).

10 There are numerous synthetic methods by which to prepare amide 2, however, competing with amide formation is the cyclization of 1 to afford a complex mixture containing the desired amide and the corresponding *N*-acylboroproline. Since purification at this stage is unfeasible, choosing the correct method for amide formation is crucial to obtaining 2 in a purity suitable for subsequent synthetic transformations.

Three methods are preferred for the preparation of 2. In the first, a solution of 1 in tetrahydrofuran or dichloromethane at 0 °C is treated sequentially with the desired acid chloride followed by two equivalents of 5 triethylamine. The mixture is then allowed to warm to room temperature overnight. The second method is the mixed anhydride procedure of Anderson, et. al. (J. Am. Chem. Soc. 1967, 89, 5012). In this method the isobutyl mixed anhydride is generated by dissolving the 10 carboxylic acid component in tetrahydrofuran and adding one equivalent of *N*-methylmorpholine. The solution is cooled to 0 °C and one equivalent of isobutyl chloroformate is added. After 5 minutes, a solution of 1 in chloroform is added, followed by the addition of 15 one equivalent of triethylamine. The mixture is typically stirred at 0 °C for one hour followed by one to several hours at room temperature. The third method for amide formation is the hydroxybenzotriazole/DCC method of König and Geiger (Chem. Ber. 1970, 103, 788-20 98). Thus, to a solution of 1 and the carboxylic acid component in dimethylformamide or tetrahydrofuran at 0 °C is added *N*-methylmorpholine, 1-hydroxybenzotriazole hydrate (2 eq) and DCC (1.05 eq). The solution is allowed to warm to room temperature overnight.

25 The preferred method for the preparation of azide 3 is by reaction of 2 with sodium azide (1.1 eq) in dimethylformamide at 70 °C for 2 hours.

The azide displacement may also be performed prior to amide formation. This is the preferred method in cases 30 where the rate of amide formation is slow relative to the rate of cyclization. Azide 4 is prepared by a modification of the procedure of Kettner and Shenvi (EP 0293881 A2) as shown in Scheme 2. Thus, bromide 5 is reacted with sodium azide, followed by homologation to 35 give 6, chloride displacement to afford 7 and acidic

hydrolysis to give 4. Amide formation between 4 and the carboxylic acid component then affords 3 directly.

Scheme 2. Synthesis of Azide 4

5

Reagents: a. NaN₃, b. CHCl₂Li, ZnCl₂, c. LiN(TMS)₂,
d. 4M HCl, dioxane.

Reduction of azide 3 to amine 8 may be accomplished by hydrogenation over precious metal catalysts. The preferred catalyst for this transformation is Pearlman's catalyst (palladium hydroxide on carbon). The amine is typically isolated as the hydrochloride salt. Isolation of 8 as the free base typically results in lowered yields. Salts of 8 which may confer superior physical properties may be preferred over the hydrochloride salt.

Formamidination of amine 8 may be accomplished using cyanamide. Due to the low reactivity of amine 8, however, the preferred method for this transformation is reaction with 4-dimethylaminopyridine (DMAP) and aminoiminomethanesulfonic acid (AMSA, prepared by the method of Kim, et. al., Tetrahedron Lett. 1988, 29, 3183-6). This affords guanidine 9, which is isolated as the bisulfite or hydrochloride salt.

Cleavage of pinanediol ester 9 may be accomplished using anhydrous boron trichloride according to the

procedure of Matteson and Ray (*J. Am. Chem. Soc.* 1980,

102, 7588). This method, however, is strongly Lewis

acidic and leads to partial destruction of the

substrate. The preferred method for water soluble

- 5 boronic acids is a transesterification reaction that is run in the presence of excess phenylboronic acid. The free boronic acid 10 may then be isolated using cation exchange chromatography.

10 The isothiouronium functionalized analogs 11/12 are prepared from bromide 2 according to the procedure of Kettner and Shenvi (EP 0293881 A2).

Inhibitors containing a sulfonamide in place of a carboxamide are prepared from either 1 or 4 by reaction with a sulfonyl chloride in the presence of a hindered 15 amine (Scheme 3). The product sulfonamide 13 is then converted to the guanidinium 14 or isothiouronium 15 in the same manner as the corresponding carboxamides.

Scheme 3. Synthesis of Sulfonamides

20

Inhibitors containing the borolysine moiety are prepared analogously to those containing boroarginine according to Kettner and Shenvi (EP 0293881 A2).

- Novel biaryls synthesized in this invention are
- 5 prepared through palladium catalyzed coupling of an appropriate arylmetal species to the aryl halide of choice using the methods described in Negishi, et. al., *Org. Synth.* 1987, 66, 67-74, and references cited within.
- 10 Synthetic approaches toward construction of pyrroles are numerous: R. J. Sundberg in "Comprehensive Heterocyclic Chemistry", A. R. Katritzky (Ed.), Pergamon Press, New York (1984), Vol. 4, p. 705; Synthesis, 1946, 281. The following discussion is restricted to the most common and reliable methods towards the synthesis of
- 15 pyrroles within the general scope of the invention.
- Compounds where R^1 is a pyrrole can be synthesized as shown on Scheme 4.

Scheme 4

Starting material diketone 16 may or may not have its substituents R^{13} - 16 in final form as defined in the scope. These substituents might be in protected forms or in the form of suitable precursors which make the heterocyclic portion, for example, amenable to synthesis. These precursor forms can then be converted to their final forms later on in the synthesis using procedures familiar to one skilled in the art.

The cyclization condensation of 1,4-dicarbonyl compounds with ammonia, primary amines or related compounds, the Paal-Knorr reaction, is one of the most general and widely applicable pyrrole syntheses, R. A.

- 5 Jones and G. P. Bean, "The Chemistry of Pyrroles", Academic Press, London, 1977; p. 77-81. The generality of this approach is primarily determined by the availability of the dicarbonyl precursors, 16, as illustrated by Scheme 4. By heating such diketones
10 with ammonia or amines in a solvent like benzene, toluene or methylene chloride with a catalyst such as sulfuric acid, acetic acid, p-toluenesulfonic acid, alumina or even titanium tetrachloride, pyrroles like 17 may be prepared.
15 Subsequent alkylation of pyrrole 17 with a bromoester, for example, leads to the alkylated heterocycle 18. Alkylation conditions include either first deprotonating with NaH or KH in DMF followed by addition of the alkylating agent or simply stirring the
20 heterocycle with the alkylating agent in an inert solvent such as DMF or DMSO at 0°C to 100°C in the presence of an acid scavenger such as K₂CO₃.
Saponification of ester 18 followed by coupling aminoboronic ester 1 or 19 as discussed previously
25 yields compound 20. This bromide may be either elaborated to the lysine side-chain 21 (X=1) or if X=0, into the corresponding ornithine side-chain or any other side-chain discussed previously. Subsequent hydrolysis of the boronic ester yields the boronic acid as
30 discussed previously too.

- The cyclization of diynes 23 with amines has been reported and an adaptation of this method is shown in Scheme 5 (K. E. Schulte et al., Chem. Ber. (1965) 98; A. J. Chalk Tet. Lett. (1972) 3487). The diynes are made
35 via transition metal catalyzed coupling of alkynes,

i.e., the Cadio-Chodkiewicz reaction (W. Chodkiewicz, Ann. Chim. (Paris) (1957) 2 81g).

Scheme 5

5

Scheme 6

Furans (27) have been converted directly to pyrroles by treatment with amines but the harsh conditions required ($400^{\circ}\text{C}/\text{Al}_2\text{O}_3$) precludes its generality. 2,5-5 Dialkoxytetrahydrofurans (29) have been more commonly

employed as furan (or 1,4-dicarbonyl) equivalents and react readily with aliphatic or aromatic amines (and even weakly nucleophilic sulfonamides) to give pyrroles as shown in Scheme 6, J. W. F. Wasley and K. Chan,

- 5 Synth. Commun. 3, 303 (1973). Although commercially available 2,5-dialkoxytetrahydrofurans (29) ($R^1=R^2=H$) generally restrict one to preparing 1-substituted pyrroles, more highly substituted systems may be obtained by a three-step alcoholysis of the
 10 appropriate furans (27) to the more highly substituted 2,5-dialkoxytetrahydrofurans (29) as shown in Scheme 6, N. L. Weinberg and H. R. Weinberg, Chem. Rev., 68, 449 (1968); N. Elming, Adv. Org. chem., 2, 67 (1960).

- The Hantzsch synthesis utilizes the condensation of
 15 β -haloketones (30a) and β -ketoesters (31) in the presence of ammonia or a primary amine to give pyrroles such as (32), as shown in Scheme 7, A. Hantzsch, Chem. Ber., 23, 1474 (1980); D. C. von Beelen, J. Walters, and S. von der Gen, Rec Trav. Chem. 98, 437 (1979). Among
 20 the numerous modifications reported over the years, the substitution of (30a) with the readily available α -hydroxyaldehydes or nitroalkenes has expanded the versatility and generality of this important method, D. M. McKinnon, Can. J. Chem. 43, 2628 (1965); H. George
 25 and H. J. Roth, Arch. Pharm. 307, 699 (1974); C. A. Grok and K. Camenisch, Helv. Chem. Acta, 36, 49 (1953).

Scheme 7

Scheme 8

- 5 The closely related Knorr condensation involves the reaction between amino carbonyl compounds (or their precursors) and carbonyl (or dicarbonyl) compounds, J. M. Patterson, *Synthesis*, 282 (1976). Representative methods for preparing substituted pyrroles (35 and 38)
- 10 are shown by Scheme 8, equations a) and b), S. Umio et al., Jap. Pat. 7018653, Fujisawa Pharmaceutical Co., Ltd., 1970 (*C. A.* 73, 77039, 1970); K. Tanaka, K. Kariyone, S. Umio, *Chem. Pharm. Bull. (Tokyo)*, 17, 611 (1969).
- 15 The elaboration of an appropriately functionalized pyrrole is another method for preparing pyrroles of general formula I. Methyl (or ethyl) 5-formyl-1*H*-pyrrole-2-carboxylate (43) is a particularly useful intermediate with regards to pyrroles claimed in this
- 20 invention and has been prepared by a number of methods

as shown by Scheme 9, eq. a, W. A. Davies, A. R. Pinder and I. G. Morris, Tetrahedron 18, 405 (1962); Org. Syn., vol 36, p. 74; Org. Syn., vol. 51.

- More recently, Ullrich has extended the Vilsmeyer-Haack formylation of pyrroles to include vinylogous systems such as (46) by using the 3-(N,N-dimethylformamide derivative, as shown by Scheme 9, eq. b, F. W. Ullrich and E. Breitmaier, Synthesis, 641 (1983); W. Heinz, et al., Tetrahedron, 42, 3753 (1986).
- 10 An especially attractive approach to pyrroles claimed in this invention has recently been reported, whereby lithiation of the 6-dimethylamino-1-azafulvene dimer (49) followed by treatment with an appropriate electrophile and subsequent hydrolysis leads to 5-substituted pyrrole-2-carboxaldehydes (51), as illustrated in Scheme 10, J. M. Muchowski and P. Hess, Tetrahedron Lett., 29, 777 (1988). The carboxylic acid, ester and aldehyde side-chains depicted in Schemes 9-10 can be readily converted to R13-16 by methods familiar
15 to one skilled in the art.
- 20

Scheme 9

Scheme 10

5 A general and versatile approach to pyrazoles
 (R¹=pyrazole) involves condensation of a 1,3-
 difunctional compound (usually dicarbonyl) with
 hydrazine or its derivatives, as shown in Scheme 11 for
 pyrazoles of the formula **53** and reviewed by G. Corspeau
 10 and J. Elguerv, Bull. Soc. Chim. Fr., 2717 (1970).
 Rarely have pyrazoles have been prepared in which the N-
 N bond is the last step of the ring closure, J. Elguerv
 in Comprehensive Heterocyclic Chemistry, S. R. Katsritzky

(Ed.) Pergamon Press, New York, Vol. 5 (1984), p. 274;
 J. Barluenga, J. Chem. Soc, Perkin Trans. I, 2275 (1983).

Scheme 11

5

The condensation of 1,3-dicarbonyl compounds with hydrazine hydrate derivatives is generally carried out
 10 by admixture of the two components in a suitable solvent like a lower alcohol, ether, or THF at 0°C to the reflux temperature for 1-18 hours.

The synthesis of 1,3-dicarbonyl compounds has received considerable attention in the literature and
 15 most of the major approaches towards 1,3-diketones 52 of interest in this invention are illustrated by Scheme 12.

Scheme 12

Scheme 12 (cont'd.)

- 5 Esters 54a can be reacted with ketones 54 using bases like sodium ethoxide, sodium hydride or sodium amide in a suitable solvent like alcohol, DMF, DMSO or benzene at 0°C to reflux for 4-18 hours with 30-70% efficiency, J. M. Sprague, L. J. Beckham and H. Adkins, 10 J. Amer. Chem. Soc., 56, 2665 (1934). Metallation of hydrazines 55 with n-BuLi followed by reaction with carboxylic acid chlorides and subsequent hydrolysis affords 52, D. Enders and P. Wenster, Tetrahedron Lett., 2853 (1978). Metallation of 54 with the non-15 nucleophilic mesityl lithium followed by acylation also affords 52, A. K. Beck, M. S. Hoelstein and D. Seebach, Tetrahedron Lett., 1187 (1977); D. Seebach, Tetrahedron Lett., 4839; (1976).
- As shown in Scheme 12, equation b, the addition of 20 Grignard reagents to β -keto carboxylic acid chlorides

may be limited to monoaddition at low temperatures to provide 52, C. D. Hurd and G. D. Kelso, J. Amer. Amer. Soc. 62, 1548 (1940); F .Sato, M. Trone, K. Oyuro, and M. Sato, Tetrahedron Lett. 4303 (1979). Lithium dialkyl 5 copper reagents ($R^2 CuLi$) have also been used, Luong-Thi and Riviero, J. Organomet. Chem. 77, C52 (1974). Analogously, addition of alkylolithium reagents ($R^{15}Li$) to the monoanions of β -keto esters 57 also give rise to 1,3-diketones, S. N. Huckin and L. Weiler, Can. J. Chem. 10 52, 1379 (1974).

Eschenmoser has demonstrated a synthesis of β -diketones through a sulfur extrusion reaction of keto thioesters 58 with tributylphosphine, triethylamine and lithium perchlorate, S. Eshenmoser, Helv. Chim. Acta., 15 54, 710 (1971).

The rearrangement of α,β -epoxy ketones 59 to β -diketones 52 catalyzed by Pd^0 has been reported, R. Noyori, J. Amer. Chem. Soc. 102, 2095 (1980).

Mixed anhydrides such as 61, available from 20 carboxylic acids 60 and trifluoroacetic anhydride, have been shown to acylate alkynes 62 to produce the enol trifluoroacetate of a β -diketone 63. Transesterification by refluxing with methanol liberates the β -diketone 52, A. L. Henne and J. M. Tedder, J. Chem. Soc. 3628 (1953).

Scheme 13

5 Scheme 14

Scheme 14, cont'd.

5 Compounds where R^1 =imidazole, such as 65, are readily available by any of a number of standard methods. For example, acylaminoketone 64 can be cyclized with ammonia or equivalents thereof, D. Davidson, et al., J. Org. Chem., 2, 319 (1937) to the 10 corresponding imidazole as shown in Scheme 13. The corresponding oxazole 66 can also be converted to imidazole 65 by action of ammonia or amines in general, H. Bredereck, et. al., Ber., 88, 1351 (1955); J. W. Cornforth and R. H. Cornforth, J. Chem. Soc., 96, 15 (1947).

Several alternative routes to imidazoles 65 are illustrated in Scheme 14. As shown in Scheme 14 equation a), reaction of the appropriate R^{13} substituted imide esters 67 with an appropriately substituted

α -hydroxy- or α -haloketone or aldehyde 68 in ammonia leads to imidazoles of formula 65, P. Dziuron, and W. Schunack, Archive, Pharmaz., 307 and 470 (1974).

- The starting imidazole compounds 65 wherein R¹³ is
- 5 hydrogen can be prepared as shown in equation b) by reaction of the appropriate R¹³-substituted imidate ester 67 with α -aminoacetaldehyde dimethyl acetal, M. R. Grimmett, Adv. Heterocyclic Chem., 12, 103 (1970).
- 10 As shown in equation c), imidazole 72 (wherein R¹³=hydrogen and CH₂OH) can be prepared by treatment of the imidate ester 67 with 1,3-dihydroxyacetone 71 in ammonia by the procedure described in Archive der Pharmazie, 307, 470 (1974). Halogenation of imidazole 72 or any imidazole wherein R¹³ is hydrogen is
- 15 preferably accomplished by reaction with one to two equivalents of N-halosuccinimide in a polar solvent such as dioxane or 2-methoxyethanol at a temperature of 40-100°C for 1-10 hours.

Compounds of formula 73 can also be prepared from 70

20 by reaction with formaldehyde as described in E. F. Godefroi, et al., Recueil, 91, 1383 (1972) followed by halogenation as was described above.

As shown in equation d) the imidazoles 65 can also be prepared by reaction of R¹³ substituted amidines 74

25 with an α -hydroxy- or α -haloketone or aldehyde 68 as described by F. Kunckel, Ber., 34, 637, (1901).

As shown in equation e), preparation of the nitroimidazoles (65, R¹³ = NO₂) is preferably accomplished by heating the appropriate starting

30 imidazole in a 3:1 mixture of conc. sulfuric acid/conc. nitric acid at 60-100°C for 1-6 hours. Nitration of the imidazole can be achieved by first converting the hydroxymethylimidazole to the corresponding chloromethylimidazole 75 employing thionyl chloride or

oxaryl chloride. Nitration, as described above, followed by hydrolysis provides the nitroimidazoles 77.

5 Imidazoles 80 where $R^{13} = CN$ can be prepared as shown in equation f) by reaction of R^{13} substituted ortho esters, ortho acids or aldehydes (followed by oxidation of the aldehyde) with diaminomaleonitrile 79 by the procedure described by R. W. Begland et al., J. Org. Chem., 39, 2341 (1974). Likewise, R^{13} substituted imide esters 67 also react with diaminomaleonitrile to give 4,5-dicyanoimidazoles 80. The nitrile groups can be further elaborated into other functional groups by methods familiar to one skilled in the art.

10 Compounds wherein $R^{13} =$ alkyl of 1-6 (straight or branched), phenyl, phenalkyl where alkyl is 1-3 carbon atoms, etc. and another $R^{13} = CH_2OH$ can be prepared as shown in equation g). The imidazoles 83 were prepared as described in L A. Reiter, J. Org. Chem., 52, 2714 (1987). Hydroxymethylation of 83 as described by U. Kempe, et al. in U.S. Patent 4,278,801 provides the

15 20 hydroxymethylimidazoles 84.

The CH_2OH group, as in imidazolemethanol 72, is a versatile synthon for other functional groups. Scheme 15 shows some of these transformations, all of which are familiar to one skilled in the art.

Scheme 15

A suitably protected imidazole 85 may undergo selective halogen-metal exchange followed by quenching with electrophiles to yield trisubstituted imidazoles (Scheme 16) (M. Groziak and L. Wei J. Org. Chem. (1992) 57, 3776). This strategy can be used to add several R¹³ groups onto the imidazole ring. By changing the order in which the electrophiles are added, one may change the position to which the electrophile gets attached onto the imidazole ring.

Scheme 16

5 where (R¹³)⁺ is a suitable electrophilic precursors
to R¹³.

10 The pyrazoles and imidazoles disclosed previously
and other heterocycles which will be mentioned later in
this specification may undergo alkylation onto a
nitrogen

Scheme 17

where Y' is a protected form or a suitable precursor to Y ; Y is COOH , SO_3H , etc., which is suitable for further coupling to an amine or alcohol to produce the "Z" group of Formula (I).

- 1) NaH or KH , DMF
 2) $\text{X}-(\text{CH}_2)_n-\text{Y}'$
 3) elaborate to Y

90

atom just as the pyrrole in Scheme 4 by simply stirring a mixture of the heterocycle 88 and alkylbromide,

5 iodide, mesylate or tosylate 89 in the presence of an acid scavenger such as potassium carbonate in an inert solvent such as THF or DMF for several hours to several days at room temperature or up to the reflux temperature of the solvent (Scheme 17).

10 Another way to make 90 involves first deprotonation of the N-H of heterocycle 88 with a base such as NaH , KH , $n\text{-BuLi}$, $t\text{-BuLi}$, etc., followed by displacement of the X -leaving group of 89 to yield 90.

15 This sequence can be performed in inert solvents such as ether or THF. NaH and KH can also be employed in DMF and DMSO at room temperature or at a higher temperature. Alkylation sometimes yields regioisomers when more than one nitrogen atom is present in the heterocycle. These isomers can be separated by standard methods such as crystallization or chromatography. Once

alkylated, the Y group can be coupled to the boronic acid moiety and all protecting groups removed to yield compounds of Formula I by procedures described previously.

- 5 Compounds where $R^1 = 1,2,4-triazole can be prepared by the route of H. Paul, G. Hilgetag and G. Jahnchen, Chem. Ber., 101, 2033 (1968) which is depicted in Scheme 18. Imidate ester 92 is formed from nitrile 91 by the method of P. Keynaud and R. D. Moreau Bull. Soc. Chim. France, 2997 (1964). Hydrazide 99 is easily$

Scheme 18

15

- prepared via the action of hydrazine on the corresponding methyl ester precursor. It is understood that R^{13} of 91 and 94 do not necessarily have to be in their final form, for example. In each case, they can 20 exist as either a protected species or in the form of a precursor to R^{13} .

- Alkylation of triazole 96 yields two isomeric products 97 and 98 when the R^{13} groups are not identical. These intermediates can be converted into 25 final products in the usual fashion as shown in Scheme 19.

Scheme 19

The regioselective syntheses of both 97 and 98 are shown in Scheme 20. Imidate ester 93 is reacted with hydrazine to form amidrazone 103. Alkylation with methyl μ -bromoacetate yields 104. Ring closure with either an ortho-ester, acid chloride or anhydride yields triazole 98. For a similar triazole synthesis, see David B. Reitz, European Patent Application 508, 445, published 14.10.92., G. D. Searle & Co. For schemes 20, 21 and 22, the different R^{13} groups are differentiated from one another by the placement of a prime symbol next to one of the R^{13} groups, i.e. $R^{13'}$.

Scheme 20

Yet another regioselective synthesis of 97 or 98 is depicted in Scheme 21 following a similar sequence as was shown in Scheme 20 (D. B. Reitz, *ibid.*) .

Scheme 21

5

1,2,4-Triazoles also undergo selective metalation at the 5-position when the nitrogen at the 1-position is suitably protected. The metallated triazole can then be 10 quenched through the addition of an electrophile to result in a newly functionalized triazole at the 5-

- position. Suitable protecting groups are benzyl and trityl. (D. K. Anderson, et al., J. Heterocyclic Chem., **23**, 1257 (1986) as well as diethoxymethyl (S. Ohta, et al., Chem. Pharm. Bull., **41**, 1226 (1993)). The 3-
5 position can also be metallated if the 5-position is
suitably protected (S. Ohta et al., *ibid.*). Thus here
we have two other methods for introducing R¹³
substituents at the 5- or 3-positions of the 1,2,4-
triazoles.
10 Compounds where R¹ = 1,2,3-triazole can be
synthesized via the 1,3-dipolar cycloaddition of an
azide to an alkyne as shown in Scheme 22 (for an example
of this cycloaddition reaction, see W. Kirmse and L.
Horner Justus Liebigs Ann. Chem. (1958) **614**, 1).
15

Scheme 22

Compounds where R¹ = tetrazole can be synthesized by the methods outlined in Scheme 23. In line a, three methods are given for the conversion of a nitrile into a tetrazole (ammonium chloride/sodium azide: W. G.

- 5 Finnegan et al., J. Am. Chem. Soc. 1958, 80, 3908; trialkyltin azides: J. G. Luitjen et al., Rec. Trav. Chim. Pays-Bas; dialkyltin oxide: S. Wittenberger and B. G. Donner, J. Org. Chem., 1993, 58, 4139).

In Scheme 23, line b, two procedures are given for 10 the regioselective synthesis of 1,5-disubstituted tetrazoles (DEAD, Ph₃P, TMSN₃: J. V. Duncia, M. E. Pierce, J. B. Santella III, J. Org. Chem. 1991, 56 2395; Tf₂O/NaN₃: E. W. Thomas Synthesis, 1993, 767) which can be more difficult to synthesize due to the steric 15 crowding of the substituents.

- Compounds where R¹ is an oxazole may be synthesized by a variety of methods including those outlined in Scheme 24. The oldest synthesis and one of the most versatile is shown on line a), namely the 20 cyclodehydration of 2-acylaminoketones (The Robinson-Gabriel Synthesis) (see I. J. Turchi in Oxazoles, Turchi, I. J., ed. John Wiley and Sons, New York (1986) p. 1). The 2-acylaminoketone starting materials may be synthesized from the Dakin-West reaction and 25 modifications thereof (G.H. Cleland and F.S. Bennett Synthesis (1985) 681 and references therein). Some cyclodehydration agents include PCl₅, H₂SO₄, P₂O₅, SOCl₂, etc).

Scheme 23

Scheme 24

R^a, R^b and R^c are equal to R¹³ which is described in the scope of this application. R¹³ in Scheme 24 does not have to be in finalized form as it appears in the scope, but can be in protected form or in the form of suitable precursors. It is understood that only when the entire molecule of formula I is synthesized do all of the substituents have to appear in their final forms as stated in the scope. Protected forms and suitable precursors to R¹³ are readily recognized by one skilled in the art of organic synthesis.

In line b, the reaction of α -acylketones 131 with ammonium acetate/acetic acid also yields oxazole 130 (D. Davidson, M. Weiss, M. Jelling J. Org. Chem. (1937), 2, 328). In line c, we find the regioselective formation of oxazole 130 from the reaction of an α -haloketone 134 with amide 133 (R. Lakham, B. Ternai, Adv. Heterocycl. Chem. (1974) 17, 99; I. J. Turchi, M. J. S. Dewar, Chem. Rev. (1975), 75, 389). Acid chlorides 135 react with oximes 136 to yield after a [3,3] sigmatropic rearrangement (138) oxazole 130 as shown in line d (G. S. Reddy and M. V. Bhatt Ind. J. Chem. (1981) 20B, 322; M. V. Bhatt, G. S. Reddy Tet. Lett. (1980) 21, 2359). In line e, μ -azidoketones (140), after reaction with triphenylphosphine to yield 141, react with acid chloride 135 to yield oxazole 130 (E. Zbiral, E. Bauer, J. Stroh Monatsh. Chem. (1971) 102, 168). Finally, oxazoles undergo deprotonation with strong bases such as n-BuLi at the 2-position when the 4 and 5 positions are blocked and after quenching with an electrophile can yield oxazole 130 (R. Schroder, V. Schollkopf, E. Blume, I. Hoppe Liebigs Ann. Chem., (1975) 533). As stated earlier, R¹³ can be either in final form as defined in the scope of this application or in the form of precursor functionality which later on can be elaborated into final form by methods familiar to one skilled in

the art. This holds true not only for the oxazoles discussed here, but for all of the other heterocyclic systems in this application where R¹³ appears as substituents.

5 Oxazoles are most readily brominated at the 5-position followed by the 4-position and finally the 2-position. A brominated oxazole (as well as other brominated heterocycles in this application) can undergo aryl cross-coupling reactions catalyzed by transition metals to yield aryl- or heteroaryl-substituted oxazoles (See for example E.-I. Negishi; A. O. King; N. Okukado J. Org. Chem. (1977) 42, 1821).

10 Compounds where R¹ is an isoxazole may be synthesized by the methods outlined in Scheme 25. In line a, reaction of 1,3-diketone 143 with hydroxylamine yields oxazoles 144 and 145. Nitrile oxide 146 can also add across the triple bond of alkyne 147 to yield isoxazoles 144 and 145. (See P. Grunanger and P. Vittimberga Isoxazoles, v. 49 pt. 1 of The Chemistry of Heterocyclic Compounds, E. C. Taylor and A. Weissberger, eds., John Wiley and Sons (New York: 1991) p. 126).

Scheme 25

As discussed previously R^a, R^b and R^c in Scheme 25 are again equal to R¹³ and are not necessarily in final form as they appear in the scope of this application.

- Compounds wherein R¹ is a thiazole may be
 5 synthesized by the method depicted in Scheme 26, which
 mimics the route of Scheme 24c) describing a route for
 oxazoles. Thus thioamide 148 reacts with α -halocarbonyl
 compound 134 to yield thiazole 149. Again as for the
 oxazole, R^a, R^b, and R^c have the same definitions. For
 10 the synthesis of thiazoles, by the route depicted in
 Scheme 26, see G. Vernin "General Synthetic Methods for
 Thiazole and Thiazolium Salts" in Thiazole and Its
 Derivatives, J. V. Metzger, ed., volume 34. pt. 1 in The
 Chemistry of Heterocyclic Compounds, A. Weissberger and
 15 E. C. Taylor, eds. John Wiley and Sons (New York:1979)
 p. 180.

Scheme 26

- Compounds wherein R¹ is a 1,2,5-thiadiazole may be synthesized by the methods shown in Scheme 27. Diamine 150 may be reacted with sulfur monochloride to yield
 25 1,2,5-thiadiazole 151. Likewise, α -diketone 152 may be converted into bisoxime 153 which also reacts with S₂Cl₂ to yield 151 (L. M. Weinstock, P. Davis, B. Handelman, R. Tull J. Org. Chem. (1967) 32, 2823). Z is defined in Scheme 24.

Scheme 27

5 Scheme 28

Compounds wherein R¹ is a 1,2,4-thiadiazole may be synthesized by the method depicted in Scheme 28. Oxidation of thioamide 154 with hydrogen peroxide yields S-oxide 155 which must be stored at 0°C. Further reaction of the S-oxide intermediate with thioamide 156 yields thioacylamidine 157 which cyclizes to product 158.

(V. Goerdeler, H. Porrmann Chem. Ber. (1962) 95, 627).

R^a and R^b are as defined previously in Scheme 24.

Compounds where R^l is a furan may be synthesized by the methods shown in Scheme 29, but as understood by one skilled in the art, not limited thereto, as in the case as for all of the schemes in this patent application.

In line a, cyclodehydration of 1,4-dicarbonyl compound 159 yields furan 160 (L. D. Krasnoslobodskaya, Ya. L Gol'dfarb Russ. Chem. Rev. (Engl. Trans.) 1969, 38, 389). In line b, α -bromoketone or aldehyde 161 protected as its dimethyl ketal or acetal reacts with trimethylsilylenol ether 162 to yield intermediate 163 which cyclizes to furan 160 (T. Mukaiyama, H. Ishihara, K. Inomata Chem. Lett., 1975, 527). R^a, R^b, R^c, and R^d are R¹³ which is described in the scope of this application and with similar limitations as were described under Scheme 24 for R¹³ with regards to being in final form or not.

Compounds where R^l is a thiophene may be synthesized by the methods shown in Scheme 30. In line a, 1,4-dicarbonyl compound 159 is reacted with a phosphorous sulfide (phosphorous pentasulfide, phosphorous trisulfide, phosphorous heptasulfide, etc.) to yield thiophene 164 (H. D. Hartough, Chem. Heterocycl. Compd., 1952, 3, 1). The dicarbonyl compound 159 also reacts with H₂S to favor thiophenes at lower temperatures (-50°C) (F. Duus Tetrahedron, 1976, 32, 2817). Reaction of alkenes 165 or 166 (line b) with sulfur and heat also yield thiophene 164 (A. S. Broun, M. G. Voronkov J. Gen. Chem. USSR. (Engl. Trans.) (1947) 17, 1162; M. g. Voronkov, A. S. Broun, ibid., (1948) 18, 700; J. Schmitt., M. Suquet, R. Fallard (C. R. Hebd. Seances Acad. Sci. (1956) 242, 1738. R^a, R^b, R^c and R^d are as defined in Scheme 29.

Scheme 29

dehydrating agents include H_2SO_4 , HCl , polyphosphoric acid, PCl_3 , $ZnCl_2$, DMSO, phosphoric esters, etc.

Scheme 30

Compounds where R^1 is a pyridine may be synthesized by the methods shown in Scheme 31. It is to be understood that each scheme and each reaction has its own scope and limitations and that no one synthesis is

universally applicable. It is also to be understood that one skilled in the art will be able to determine which synthesis is best suited for his or her needs. In line a, reaction of enamine 167 with ethynyl ketone 168 5 will cyclize to pyridine 170 (F. Bohlmann, D. Rahtz Chem. Ber. (1957) 90, 2265). Enamino ketones 171 (line b) condense with 1,3-diketones or beta-keto esters 172 10 to yield pyridine 174 where R is alkyl, aryl or alkoxy and aryloxy (N. K. Kachetkov, A. Gonsales, A. Nesmeyanov Dokl. Akad. Nauk, SSSR (1951) 79, 609; S. Auricchio, R. Bernardi, A. Ricca Tet. Lett. (1976) 9831; H. Henecka Chem. Ber. (1949) 82, 41).

The Hantsch dihydropyridine synthesis can be used in the synthesis of pyridines as shown in line c. There 15 are many modifications of this synthesis of which only one is shown. Reaction of 175 with beta-aminocrotonate 176 yields dihydropyridine 177 (F. Bassett, H. Meyer, E. Wehinger Angew. Chem. Int. Ed. Engl. (1981) 20, 762). Further oxidation with, for example, dilute nitric acid 20 yields pyridine 178 where R and R¹ can be different alkoxy groups (E. Knoevenagel, W. Rushaupt Ber. (1898) 31 1025). Cycloaddition of oxazole 179 with alkene 180 can also yield a pyridine (182) (M. Ya Karpeiskii, V. L. Florent'ev Russ. Chem. Rev. (Engl. Trans.) (1969) 38, 25 540; R. Lakhan, B. Ternai Adv. Heterocycl. Chem. (1974) 17, 99). In all of these pyridine synthesis, R^a, R^b, R^c, and R^d are as described for Scheme 29. All of the substituents around the pyridine ring can be in final form or in the form of a precursor to a given functional 30 group as would be recognized by one skilled in the art. Finally, in line e, hydroxypyridines, such as 183, may be triflated and coupled with an aryl- or heteroarylboronic acid or aryl- or heteroaryltrialkylstannane using a transition metal 35 catalyst such as Pd to yield aryl or

heteroarylpyridinecarboxylic acids, such as 186. This in turn may be coupled to aminoboronic acid esters as discussed previously to yield compounds of Formula I. Halogens, such as Br or I may be used instead of triflate in compound 184 to undergo what is known as the Suzuki coupling reaction. R and R¹ in line e) are any of the allowed phenyl substituents in the scope of this application (Suzuki reactions: A. Suzuki Pure Appl. Chem. (1985) 57, 1749).

Scheme 31

5 Compounds where R^1 is a pyridazine may be synthesized by the routes shown in Scheme 32. Reaction of 1,4-carbonyl compound 187 with hydrazine yields pyridazine 188. If the 1,4-dicarbonyl compound is

saturated as in line b (compound 159), then the product from the reaction with hydrazine 189 must be oxidized to yield pyridazine 188 (K. C. Nicolaou, W. E. Barnette, R. L. Magolda J. Am. Chem. Soc. (1979) 101, 766;

5

Scheme 32

- 10 M. Tisler, B. Stanovnik "Pyridazines and their Benzo Derivatives" in A. R. Katritzky, C W. Rees Comprehensive Heterocyclic Chemistry, v.3 (Pergamon Press: Oxford), 1984, p. 45). Halopyridazines or hydroxypyridazines may also undergo the same aromatic cross-coupling reactions
 15 as were described for pyridines. R^a , R^b , R^c and R^d , etc., are defined the same as in the pyridine case.

Compounds wherein R^1 is a pyrimidine may be synthesized by the methods shown in Scheme 33. Reaction of 1,3-dicarbonyl compound 190 with amidine 191 yields
 20 pyrimidine 192 (D. J. Brown, S. F. Mason The Pyrimidines in A. Weissberger ed. The Chemistry of Heterocyclic Compounds, (John Wiley: New York) 1962, p. 31).

Scheme 33

- 5 Reaction of amidine 191 with 193 also yields pyrimidines (P. Schenone, L. Sansebastiano, L. Mosti J. Heterocyclic Chem. (1990) 27, 295). R^a, R^b, R^c, and R^d are as defined previously in Scheme 32. Halopyrimidines or hydroxypyrimidines may also undergo the same aromatic cross-coupling reactions as were described for pyridines.
- 10

Scheme 34

- 5 Compounds in which R¹ is a 1,2,4-triazine may be synthesized by the procedures outlined in Scheme 34. In line a, 1,3-dicarbonyl compound 194 is condensed with amidrazone 195 to yield triazine 196 (H. Neunhoeffer and P. F. Wiley Chemistry of 1,2,3-Triazines and 1,2,4-Triazines and Pentazines, v. 33 in A. Weissberger, E. C. Taylor, eds., The Chemistry of Heterocyclic Compounds John Wiley and Sons (New York: 1978) pp 194-200 and p. 524). In line b, cyclization of acylhydrazone 197 with ammonia or ammonium acetate leads to triazine 196 (H. Neunhoeffer, P. F. Wiley, ibid., p. 196, 197). In line c, reaction 1,2-dicarbonyl compound 194 with oxalamidrazones 198 yields 1,2,4-triazine ester 199. Saponification of 199 yields 200 which can be decarboxylated to yield 1,2,4-triazine 201 (H. Neunhoeffer, P. F. Wiley, ibid., p. 526). R^a, R^b, and R^c are as defined in the pyridine case. Halotriazines or hydroxytriazines may undergo the same aromatic cross-

coupling reactions as were described earlier for pyridines.

Compounds in which R¹ is as described in lines k and l in the scope of this application may be synthesized by 5 the methods described in Scheme 35. If heterocycle -J-K-L-M-Q- 202 contains a bromine, iodine or a hydroxyl group (which can be triflated) designated by X, then it can undergo a Suzuki coupling to yield 204 where u is 0 (A. Suzuki, *ibid*) (Scheme 35, line a). If instead of 10 B(OH)₂ a trialkyltin group is present, then a Stille coupling can be performed when X = triflate (J. K. Stille *Angew. Chem. Int. Ed. Engl.* (1986) 25 508; J. K. Stille *Pure Appl. Chem.* (1985) 57, 1771).

15 Scheme 35

The X and B(OH)₂ (or trialkyltin) moieties may be reversed so that now X = B(OH)₂ (or R₃Sn) and the phenyl of 203 contains halogen or triflate group. The same coupling procedures may be used in synthesizing
5 compounds where R¹ is described by line 1 and u is 0 as were used in synthesizing compounds where R¹ is described by line k and u is 0.

When u is not 0, heterocycle 205 and its six-membered ring counterpart -C-W-R-T-U-V- (described in
10 line 1) must be synthesized from scratch by the methods described heretofore, with the -(CH₂)_u-Phenyl-(CH₂)_mCO₂R group being one of the substituents in final or precursor form. If heterocycle 205 contains an N-H which is alkylatable, then alkylation with 206 where X
15 is Cl, Br, I, mesylate tosylate or triflate yields 207 (Scheme 35, line b). The esters 204 and 207 can then be hydrolyzed to the free acid and coupled with aminoboronic acid ester derivative as described in Scheme 4, for example, to yield boronic acid esters
20 which can also be hydrolyzed to the corresponding free boronic acid products.

A general method (Scheme 36) for the synthesis of 4-carboxydihydroheterocycles (oxazolines, thiazolines, imidazolines) utilizes the condensation of an α -amino
25 acid ester (210) with an imidate (211) to provide 212, see: Meyers, A. I.; Hanagan, M. A.; Mazzu, A. L. *Heterocycles* 1981, 15, 361; Meyers, A. I.; Whitten, C. E. *Heterocycles* 1976, 1, 1687; North, M.; Pattenden, G. *Tetrahedron* 1990, 46, 8267; Jones, R. C. F.; Ward, G. J. *Tetrahedron Lett.* 1988, 29, 3853. In the case where R²⁰ = H, the cyclization might be conducted with trimethyl orthoformate instead of 211, see: Martin, P. K. et al. *J. Org. Chem.* 1968, 33, 3758. For compounds that are substituted only at the 2-position of the heterocycle,
30 serine or cysteine might be used as the amino acid ester partner. The dihydroimidazole-based materials would be

prepared from an N^{α} -monoprotected diaminopropionic acid to prevent tautomerization of the double bond once the cyclic system of 212 has been formed, see: Martin, P. K. et al. *J. Org. Chem.* 1968, 33, 3758. Hydrolysis of the ester then affords carboxylic acid 213.

Scheme 36: Synthesis of 4-Carboxyheterocycles.

G = O, S, NP
P = amine protecting group

10

It may be desirable to prepare more highly substituted heterocycles as well (Scheme 37). An approach to the oxazoline class could utilize reaction between the anion of 215 and formaldehyde to provide adducts 216 as recorded by Kanemasa, S. et al. *Tetrahedron Lett.* 1993, 34, 677 and Ito, Y. et al. *Tetrahedron* 1988, 44, 5253. Hydrolysis of the imine should deliver 217, an example of an α -substituted α -amino acids, as a mixture of isomers. Condensation as before with imidate (211) should generate cyclic moieties of general structure 218 which are hydrolyzed to 219.

The corresponding thiazolines should be available by installing a sulfhydryl group prior to cyclocondensation. To that end, N - protection of 217, followed by reaction with a sulfur nucleophile, a thiol 5 ester or an inorganic salt thereof, based on the work reported by Mitsunobu, O. *Synthesis* 1981, 1, and Yuan, W. et al. *J. Med. Chem.* 1993, 36, 211, should provide the substituted cysteine (220) upon premoval of the N-protecting group. Subsequent reaction with the 10 imidate should deliver 221 and ultimately 222, after hydrolysis of the ester.

Scheme 37: Synthesis of Substituted Heterocycles.

5 The imidazolines should be obtained via the condensation described by Jones, R. C. F.; Ward, G. J. *Tetrahedron Lett.* 1988, 29, 3853, of a suitable diamino acid with imide 211. The preparation parallels the sequences discussed above where the anion of 215 would
10 be expected to generate adduct 223 as described by

Gilbert, I. et al. *Tetrahedron Lett.* 1991, 32, 2277.
Manipulation of the protecting groups and implementation
of the aforementioned cyclization should give
imidazoline 225 which may be converted to the
5 corresponding carboxylic acid 226.

Using an analogous synthetic sequence (Scheme 38),
the polysubstituted versions of these heterocycles
should also be accessible. For the oxazo - or imidazo -
type compounds, reaction of the anion of 215 with an
10 electrophile 227 should deliver 228, as reported by
Kanemasa, S. et al. *Tetrahedron Lett.* 1993, 34, 677 [cf.
Meyer, R. et al. *Liebigs Ann. Chem.* 1977, 1183], and
liberation of the α -amino group should then provide
229, as a mixture of isomers. Application of the now
15 standard cyclocondensation should complete the synthesis
of 231 upon hydrolysis of 230.

A similar sequence should provide an entry into the
thiazolines series (235). However, in the case where
 $R^{3b} = H$, this material would be prepared by converting
20 232 to the corresponding mercaptan 233 using the
conditions described earlier; the ester in 234 could
then be hydrolyzed to afford 235. This reaction
sequence would be preferred to avoid use of a presumably
unstable thioaldehyde (227 where $U = S$ and $R^{3b} = H$),
25 see: Takahashi, T. et al. *Heterocycles* 1993, 36, 1601
and references therein.

SCHEME 38: Polysubstituted Heterocycles, Synthesis I.

A.

$\text{U} = \text{O, S, NP}$
(if $\text{U}=\text{S}$, then $\text{R}^{20b} \neq \text{H}$)

B.

5 Alternative methods for the preparation of these polysubstituted heterocycles employ (Scheme 39) the

addition of the anion of isocyanide 236 to an electrophile 227 to provide the heterocycle 237, see:
Ito, Y. et al. *Tetrahedron Lett.* 1989, 30, 4681; Ito, Y.
et al. *Tetrahedron Lett.* 1988, 29, 6321, 235; Ito, Y. et
5 al. *Tetrahedron Lett.* 1987, 28, 6215; Ito, Y. et al.
Tetrahedron 1988, 44, 5253; Meyer, R. et al. *Liebigs
Ann. Chem.* 1977, 1183. The carboxylic ester may be
manipulated at this time, however the preferred sequence
would implement either an exchange reaction mediated by
10 a transition metal catalyst as reported by Ito, Y. et
al. *Tetrahedron* 1988, 44, 5253 to provide derivatives
238; standard hydrolysis followed by reaction with
imidate 211 would also yield 238. Subsequent
conversion to the carboxylic acid 239 should proceed
15 smoothly. For cyclic compounds (243) where $R^{20} = H$, the
preferred sequence would involve the sequential
hydrolysis of adduct 240, transformation of the hydroxyl
group into a sulfhydryl function, cyclocondensation to
thiazoline 242 and finally hydrolysis to afford the
20 desired carboxylic acid 243.

SCHEME 39: Polysubstituted Heterocycles, Synthesis II.

A.

$U = O, S, NP$
(If $U=S$, then $R^{20b} \neq H$)

B.

5 Another noteworthy method (Scheme 40) for the assembly of oxazolines and thiazolines utilizes an appropriate *N*-acyl- β -hydroxy- α -amino acid (244) which

reacts intramolecularly by cyclization of the amide carbonyl onto the hydroxyl group of the amino acid. This transformation may occur upon treatment with triphenylphosphine and an azodicarboxylate, as reported
5 by Wipf, P.; Miller, C. P. *Tetrahedron Lett.* 1992, 33, 6267, 907 and Galéotti, N. et al. *Ibid.*, 2807, or through the use of diphenyl sulfoxide and triflic anhydride, as demonstrated by Yokokawa, F. et al. *Synlett* 1992, 153, to generate the requisite ring system; in 245. Hydrolysis of the ester then provides 246. Alternatively, this cyclization may be effected by intramolecular displacement of the corresponding halo derivative (-OH --> halogen in 244), which is generated *in situ*, to provide the oxazoline (245), see: Evans, D.
10 A. et al. *J. Org. Chem.* 1992, 57, 1961.

SCHEME 40: Alternative Syntheses of Oxazolines and Thiazolines.

The regioisomeric 5-carboxyheterocycles may be synthesized (Scheme 41) by condensation of an appropriate α -functionalized β -amino acid with imidate 211; for an example of this type of cyclization, see: Wolfe, S. et al. *Tetrahedron Lett.* 1979, 3913. In the event, nucleophilic opening of an α , β - epoxy acid (247) with an inorganic azide such as lithium azide according to Chong, J. M.; Sharpless, K. B. *J. Org. Chem.* 1985, 50, 1563 should provide 248; the corresponding esters also participate in this reaction, see:

Commerçon, A. et al. *Tetrahedron Lett.* 1992, 33, 5185. Reduction should give the requisite α -hydroxy- β -amino acid 249. Alternatively, it may be desirable to prepare 249 from an α -amino acid directly as described by
5 Poss, M. A.; Reid J. A. *Tetrahedron Lett.* 1992, 33, 1411, by reaction of the appropriate N-BOC compound (250) with 2-furyllithium to provide vicinal amino alcohol (251); manipulation of the furan moiety and deprotection then generates 249. A similar approach
10 using 2-lithiothiazoles may also be useful, see: Dondoni, A.; Perrone, D. *Tetrahedron Lett.* 1992, 33, 7259.

SCHEME 41: Regioisomeric Heterocycles, Synthesis I.

A.**B.**

Completion of the syntheses of the heterocycles should follow precedent. Reaction with of 249 with 211 should provide oxazoline 254 directly. This alcohol may also be used in a sequence described previously to allow 5 for incorporation of sulfur and ultimately provide 250; this mercaptan should lead to thiazoline 251.

- Additionally, 249 could be employed as a substrate for reaction with a nitrogen based nucleophile, see:
Mitsunobu, O. *Synthesis* 1981, 1 [cf. Cardani, S. et al.
10 *Tetrahedron* 1988, 44, 5563], to deliver 252 as a precursor for imidazoline 253.

The regioisomeric imiodazolines should be available from other routes as well (Scheme 42). One method would call for hydrolysis of imine 223, discussed earlier in 15 Scheme 37, followed by protection of the newly liberated α -amino group to give 254. Cleavage of the phthaloyl residue and reaction with imidate 211 should provide 255 which is hydrolyzed to 256. An alternative approach calls for reaction of an α -bromo-
20 α,β -unsaturated ester (257) with an amidine (258) [sterically hindered (P is large) materials do not react] to generate 259 in a single step as reported by Marsura, A. et al. *Synthesis* 1985, 537; hydrolysis of the ester should yield the acid 260.

25

SCHEME 42: Alternative Preparations of Imidazolines.

A.

 $\text{Phth} = \text{phthaloyl}$

B.

5 The several types of inhibitors disclosed in this invention can be broadly classified by their electrophilic functional group A, as defined in Formula (I). The compounds described below, unlike the boron containing peptides, utilize a highly electrophilic
10 carbon atom at A to interact with the active site serine of thrombin. The precursor for the electrophilic carbon

inhibitors is the appropriately protected amino acid (261) of Scheme 43.

Scheme 43

The preparation of (261) can be found in the general chemical literature, one such reference being the review by Morrison and Mosher (1976). According to Scheme 43
10 various terminal functional groups are available from (261) : the formamidino- (262), cyanoguanidino- (263), hydroxyguanidino- (264) and guanidino- analogs (265).

The preparation of amidine derivative (267) and phenylguanidines of formula (269) from amino acids (266)

and (268), respectively, is shown in Scheme 44. The conditions used to prepare amidines of formula (267) is discussed for (303) of Scheme 53 while the method for formamidinylation of (268) to give (269) is the same as 5 that described to prepare (295) of Scheme 52.

Scheme 44.

$v = 1-12$

M = alkyl or benzyl

PG = suitable amine protecting group

10

As shown in Scheme 45, appropriately protected derivatives of formulae (261-269), wherein M is an alkyl or benzyl group can be coupled with *N,N*-disubstituted acid (270) or (271) (wherein M is hydrogen). The X

group in compounds of formulae (261) through (269) and (272) in Scheme 45, as well as in compounds illustrated in the Schemes to follow, is a protected version of the terminal functional group X, as defined by Formula (I),
 5 unless deprotection is indicated to obtain the final compound of the sequence.

Scheme 45.

10

It is understood that the protecting group(s) used should compatible with the conditions of the process discussed; a good source for information on protecting
 15 group chemistry is Greene and Wuts (1991).

The preparation of the thrombin inhibitors trihalomethyl ketone (274) and α -ketoester (275) are shown in Scheme 46. The coupled ester (272), wherein M is alkyl or benzyl can be converted to the acid (M is hydrogen) by the methodology appropriate for the particular ester functionality as described in Greene and Wuts (1984). The aldehyde (273) can be prepared by selective reduction of the acid (272, M is hydrogen) to the primary alcohol followed by oxidation.
 20
 25

Scheme 46.

To obtain the primary alcohol, the acid can be transformed to the mixed anhydride by condensation of the trialkylammonium salt of the acid with an alkyl- or arylchloroformate in an inert non-polar solvent such as tetrahydrofuran, 1,2-dimethoxyethane or toluene at -78°C to room temperature. The solution of the resulting mixed anhydride is filtered and reduced to the peptidyl alcohol with an excess of a borohydride reducing agent in a compatible solvent like water or an alcohol at -78°C to room temperature according to the method of Rodriguez et. al., *Tetrahedron Lett.* 32, 923 (1991). The peptidyl alcohol can be oxidized to aldehyde (273) without over oxidation by a variety of procedures, as

detailed by Hudlicky in *Oxidations in Organic Chemistry*, American Chemical Society, p. 114 (1991); the preferred methods include Swern oxidation described by Omura and Swern, *Tetrahedron* 34, 1651 (1978); and the Pfitzner-Moffat oxidation described by Fearon et al. in *J. Med. Chem.* 30, 1617 (1987). A two step protocol reported by Edwards, *Tetrahedron Lett.* 33, 4279 (1992) can be used to prepare the trifluoromethyl ketones (274) (J is fluorine) from aldehyde (273). In this procedure a metallated trifluoromethyl anion is generated from an excess of trifluoromethyliodide or -bromide and an active metal such as zinc, magnesium, lithium or cadmium in inert, anhydrous solvents like tetrahydrofuran or N,N-dimethylformamide at temperatures of -100°C up to the reflux point of the solvent. Alternatively, the metallated trifluoromethyl anion may be generated by the transmetallation of trifluoromethyliodide or -bromide with an organometallic compound such as a Grignard reagent or alkylolithium compound in an inert solvent like tetrahydrofuran, hexane or ether at temperatures ranging from -78°C up to the reflux point of the selected solvent. Aldehyde (273) can be added to the solution of the metallated trifluoromethyl anion to form the trifluoroethanol derivative at temperatures of -100°C or higher. To obtain the trifluoromethyl ketone (274) where J is fluoro, the alcohol is oxidized by the Pfitzner-Moffat or Swern procedure. Removal of the protecting group(s) on terminal group X by the appropriate method will provide the thrombin inhibitors of formulae (274).

Trihalomethyl analogs of (274), where J is fluoro can also be prepared from aldehyde (273) by a different method. The trihalomethyl ketones are prepared by treating aldehyde (273) with either the trimethylsilyl trihaloacetate or the potassium or sodium trihaloacetate in a polar solvent such as an alcohol, *N,N*-

dimethylformamide or methylsulfoxide with or without a base such as a trialkyl amine, potassium carbonate or sodium hydroxide at temperatures of -78°C or higher according to the method of Beaulieu, *Tetrahedron Lett.*

5 32, 1031 (1991); Shell Int. Res., European Patent Application EP 16504). The resulting α,α -trihaloethanol is oxidized and group X can be deprotected as above to give the thrombin inhibitors or formulae (274).

10 The α -ketoester thrombin inhibitors, exemplified by (276), are prepared according to a route disclosed by Iwanowicz et. al. in *Bioorgan. Med. Chem. Lett.* 12, 1607 (1992). The tris(ethylthio)methyl anion is added to the peptidyl aldehyde (273) in a solvent such as

15 tetrahydrofuran, 1,2-dimethoxyethane or toluene at -100°C or higher to give the alcohol (275). The α -hydroxyl ester is generated from (275) by treatment with a mixture of mercuric salts, such as mercuric chloride and mercuric oxide, in an alcohol or water. Swern or
20 Pfitzner-Moffat oxidation of the α -hydroxyl ester followed by the deprotection of substituent X protecting group provides thrombin inhibitors of formula (276).

Another method for the preparation of compound (276) substitutes a 1-lithio-1-alkoxyethene or 1-
25 magnesio-1-alkoxyethene for the tris(ethylthio)methyl anion of Scheme 15 in an addition reaction with peptidyl aldehyde (273). There can be obtained an adduct analogus to the tris(ethylthio)hydroxyethyl compound (275) when excess 1-magnesio- or 1-lithio-1-alkoxyethene
30 anion is stirred at temperatures ranging from -100 °C to ambient temperature with (273) in anhydrous solvents such as diethyl ether or tetrahydrofuran. This alkoxyolefin product may then be transformed to (276) by oxidative cleavage with reagents such as ozone or
35 periodate in an inert solvent such as a halohydrocarbon, lower alkyl ketone, an alcohol or water at temperatures

ranging from -100 °C to ambient temperature, followed by oxidation of the intervening α -hydroxyester and deprotection as described above.

- The preparation of the α,α -dihalomethylketone
 5 thrombin inhibitors of this invention is outlined in
 Scheme 47.

Scheme 47.

10

279

- The α,α -dihalomethylketone (279), where J is fluoro can be prepared from the aldehyde (273) by selective reaction of the aldehyde with the anion of the
 15 corresponding dihalomethane. The metalated dihalomethane anion is generated from one equivalent each of a strong hindered base, such as lithium tetramethylpiperidide or tertbutyllithium, and the selected dihalomethane in an anhydrous, inert solvent
 20 like tetrahydrofuran or 1,2-dimethoxyethane at -100°C or higher according to the method of Taguchi et. al. Bull. Chem. Soc. Jpn., 50, 1588 (1977). The metalated dihalomethane anion can be added to the aldehyde (273) at -100°C or higher. Alternatively, the dihalomethane
 25 anion is generated from a dihalomethyl(trimethyl)silane

and an anhydrous fluoride ion source such as tris(diethylamino)sulfonium difluoromethyl silicate in an inert solvent like benzene, acetonitrile or tetrahydrofuran at -78°C or higher, then (273) can be
5 added to give dihaloethanol (278) according to the method of Fujita and Hiyama, *J. Am. Chem. Soc.* 107, 4085 (1985). The resulting dihaloethanol can be oxidized to ketone (279) by the Swern or Pfitzner-Moffat procedure. Removal of the protecting group(s) on substituent X of
10 (279) gives the $\alpha\alpha$ -dihalomethylketone thrombin inhibitors.

α -Halomethylketone thrombin inhibitors can be prepared by the process illustrated in Scheme 48. The acid chloride (281) can be prepared from acid (272),
15 wherein M is hydrogen or its trialkylammonium, sodium or potassium salt with a chlorinating agent such as thionyl chloride, oxalyl chloride or dichloromethylmethyl ether in a solvent like tetrahydrofuran or dichloromethane with or without a catalytic amount of *N,N*-dimethylformamide at -78°C or higher. Alternatively,
20 the mixed anhydride of (272) may be prepared as described for (272) in Scheme 46. Compound (281) or the mixed anhydride of (272) can be treated with an ether solution of diazomethane and either anhydrous hydrogen
25 fluoride or hydrogen chloride gas according to that described by McPhee and Klingsbury, *Org. Synth. Coll.* III, 119 (1955); or hydrogen bromide according to the method Miescher and Kaji, *Helv. Chim. Acta.* 24, 1471 (1941).

Scheme 48.

- 5 Selection of the hydrogen fluoride gas will give the α -fluoromethylketone analog, (282) wherein J is fluoro; and hydrogen chloride gas gives the α -chloromethylketone analog (282) wherein J is chloro. Deprotection of X gives the corresponding thrombin inhibitors of (282).
- 10 The general preparative route for the α,β -diketoester, -amide and -ketone thrombin inhibitors of this invention is exemplified in Scheme 49. Compound (281) or the mixed anhydride of (272) can be reacted with a Wittig reagent such as methyl (triphenyl-
- 15 phosphoranylidene)acetate in a solvent like tetrahydrofuran or acetonitrile at temperatures ranging from 0°C to the reflux point of the solvent to give (284). Oxidative cleavage of the phosphoranylidene (284) with an oxidizing agent like ozone or OXONE™ in
- 20 an inert solvent such as tetrahydrofuran, dichloromethane or water at temperatures of -78°C or higher gives the vicinal tricarbonyl compound (285), analogous to that described by Wasserman and Vu,

Tetrahedron Lett. 31, 5205 (1990). Cleavage of the protecting group can provide thrombin inhibitors of formula (285).

5

Scheme 49.

The preparative routes for the synthesis of the α -mono- and α,α -dihalo- β -ketoester-amide and ketone thrombin inhibitors of this invention are summarized in Scheme 50. The exemplified β -ketoester (287) is available from the acid derivative (272). The acid (272) can be treated with carbonyl diimidazole in an inert solvent such as tetrahydrofuran or dichloromethane at 0°C or higher to form the acyl imidazole. This acyl imidazole, or the mixed anhydride of (272), can be further reacted with lithioethylacetate in solvents such as 1,2-dimethoxyethane or tetrahydrofuran/hexane at temperatures ranging from -100°C to ambient temperature, according to the method of Dow, J. Org. Chem. 55, 386 (1990) to give β -ketoester (287).

Scheme 50.

5

Compound (287) serves as a substrate for both mono- and dihalogenation. The α -monochloro analog of (288), where J is each chlorine and hydrogen, can be prepared by controlled halogenation reactions with reagents like N-chlorosuccinimide or thionyl chloride in an inert halogenated solvent and at temperatures ranging from -20°C to the reflux point of the selected solvent according to the methods of Uhle, *J. Am. Chem. Soc.* 83, 1460 (1961); and DeKimpe et. al., *Synthesis* 2, 188 (1987). The α,α -dihalo analog (289) where J is chloro is available from halogenation with molecular chlorine in a halogenated solvent at temperatures of -20°C or higher according to the method of Bigelow and Hanslick, *Org. Syn. Coll. II*, 244 (1943). Reagents such as N-fluorobis[(trifluoromethyl)sulfonyl]imide are useful for the preparation of mono- and difluoro analogs (288) and (289) by reacting the appropriate stoichiometry of this

reagent with (287) in a halogenated solvent at temperatures of -78°C or higher according to the method of Resnati and DesMarteau, J. Org. Chem. 56, 4925 (1991). Deprotection of substituent X of the 5 halogenation products (288) and (289) can provide the corresponding thrombin inhibitors.

Compounds of formula (287) also serve as a substrate for the preparation of tricarbonyl derivatives such as (285) (Scheme 49). Condensation of (287) with 10 an aldehyde, such as benzaldehyde, gives an β -ene- α -dione. This ene-dione can be oxidatively cleaved with reagents like ozone or periodate to give tricarbonyl analog (285).

The preparation of the mono- and dihalomethylketone 15 thrombin inhibitors is outlined in Scheme 51. The intermediates formed in the preparation of the α -mono- and α,α -dihalo- β -ketoester thrombin inhibitors of Scheme 49 can be used in these preparations.

20

Scheme 51.

The decarboxylation of these halogenation products, 25 (288) and (289), can be effected by saponification of the ester with mild aqueous base such as potassium carbonate or sodium hydroxide in water miscible solvents like an alcohol, tetrahydrofuran or *N,N*-dimethylformamide, followed by adjusting the pH to a 30 range of 4 to 6. This mixture can be either stirred at

ambient temperatures or heated at various temperatures up to the reflux point of the solvent chosen until the formation of (279) or (282) is complete and is similar to that reported in Matsuda et. al., *Tetrahedron Lett.* 5 30, 4259 (1989). Removal of protecting group(s) can provide thrombin inhibitors corresponding to (279) or (282).

A process for the preparation of the boropeptide thrombin inhibitors of this invention from intermediates 10 (291) and (292) is disclosed in Scheme 52. Compound (291) serves as a starting point for isothiouronium thrombin inhibitors (296) and (297). The boronic ester (296) is prepared by stirring a solution of (291) and thiourea in an inert polar solvent, such as an alcohol 15 or *N,N*-dimethylformamide, at temperatures ranging from ambient to the reflux temperature of the selected solvent. It is understood that a boronic acid ester like compound (296) is an effective thrombin inhibitor, however, it may be transformed to the corresponding free 20 boronic acid (297) without a loss of biological activity. Compound (297) is derived from the boron ester (296) by transesterification under equilibrium conditions.

Thus stirring ester (296) with an excess of an alkyl- or aryl boric acid in a biphasic mixture of neutral or acidic water and an immiscible solvent, such as ethyl ether or toluene, gives (297) after several hours at ambient temperature. The conditions generally preferred use 5 to 10 equivalents of phenylboric acid in ethyl ether/water at neutral pH. Thrombin inhibitors (293) to 5 (299) are obtained by reduction of an azide intermediate prepared from (291) or (292). The azide intermediate is prepared by heating either (291) or (292) with an inorganic azide, such as sodium or potassium azide, in an anhydrous polar aprotic solvent, such as acetone, 10 dimethylformamide or methyl sulfoxide at temperatures ranging from ambient to 130°C. Alternatively, phase transfer conditions may be employed to prepare the azide intermediate from (291) or (292). For example, a 15

tetraalkylammonium azide in a non-polar aprotic solvent, such as tetrahydrofuran or toluene, or a crown ether and inorganic azide in biphasic mixtures of water and an immiscible solvent, such as benzene, toluene or xylene,

5 can be stirred at room temperature or heated up to the reflux point of the selected solvent. The primary amines (293) and (294) are most conveniently obtained from the catalytic hydrogenation of the azide in an inert solvent, such as an alcohol, ethyl acetate or

10 tetrahydrofuran with a transition metal catalyst such as platinum or palladium on carbon under an atmosphere of hydrogen gas. A variety of alternative methods are also useful and can be found in the monograph by Hudlicky (1984, pp. 76). The acid salt of the resulting amines

15 (293) and (294) may be formed by the addition of one equivalent of the desired acid to the hydrogenation mixture. Phenylboric acid mediated hydrolysis of esters (293) and (294) gives the free boronic acid thrombin inhibitors (298) and (299), compounds of formula (I) of

20 the invention.

Compounds containing a primary guanidine or *N*-alkyl guanidine functionality may be prepared by the alternative process outlined in Scheme 52. As illustrated with primary amine (293), the transformation

25 to (295) is effected with a guanidinylation agent, such as an S-alkyl thiourea, aminoiminomethane sulfonic acid reported by Miller and Bischoff *Synthesis* 9, 777 (1986), cyanamide reported by Kettner et al. (1990) or their *N*-alkyl derivatives. This mixture is stirred at room

30 temperature or higher with a base, such as potassium carbonate, triethylamine or *N,N*-dimethylaminopyridine in an inert solvent like water, alcohol, *N,N*-dimethylformamide or acetone. The guanidine boronic acid esters (295) can be deesterified to give the

35 corresponding boronic acid (300) by the phenylboric acid procedure described above.

According to Scheme 53, the bromide (292) is converted to the corresponding alkynitrile (302) upon exposure to the cyanide anion under a variety of conditions.

5

Scheme 53

- 10 Effective methods include the use of potassium or sodium cyanides in polar aprotic solvents, such as *N,N*-dimethylformamide, methylsulfoxide, acetone or ethylmethyl ketone, at temperatures ranging from ambient up to the reflux point of the selected solvent. More
 15 useful, however, are conditions employing phase transfer agents such as tetrabutylammonium cyanide in a nonpolar aprotic solvent such as tetrahydrofuran or toluene; or a

biphasic mixture of a crown ether and an inorganic cyanide in water with an immiscible solvent like benzene, toluene or xylene. These mixtures can be stirred at ambient temperature or heated up to the
5 reflux temperature of the selected solvent. An amidine like (303) is prepared by first treating nitrile (302) with a saturated solution of a mineral acid such as hydrogen chloride in an alcohol solvent at room temperature or lower. The intermediate O-alkylimidate
10 can be exposed to ammonia, or a primary or secondary amine under anhydrous conditions with or without an inert solvent. As illustrated in Scheme 5, compound (303) is produced by treating the O-alkylimidate formed from (302) with neat anhydrous ammonia at reflux. The
15 free boronic acid (304) is obtained by transesterification of (303) with phenylboric acid in a mixture of water and diethyl ether.

EXAMPLE 1: *N*¹-*(4-Phenylbenzoyl)boroarginine (+)-Pinanediol Bisulfite*

Part A: (+)-Pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)-pinanediol 4-bromo-1(R)-aminobutane-1-boronate hydrochloride (5.00 g, 13.6 mmol) in dichloromethane (50 mL) at 0 °C was added 4-phenylbenzoyl chloride (4.97 g, 22.9 mmol) followed by *N*-methylmorpholine (4 mL, 36 mmol). After 1 hour, the cooling bath was removed and the mixture stirred at room temperature for 2 hours. The mixture was then diluted with ethyl acetate and washed with 0.1 M hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The organic phase was dried over anhydrous magnesium sulfate, filtered and the filtrate concentrated in vacuo to afford 3.37 g (48%) of the desired amide, mass spectrum: (M+H)⁺ = 510/512; ¹H NMR (300 MHz, CDCl₃) δ7.9 (2H, d, J = 8.3), 7.84 (1H, bs), 7.6 (2H, d, J = 8.3), 7.44 (5H, m), 4.37 (1H, m), 3.41 (1H, t, J = 6.9), 2.0 (10H, m) 1.49 (3H, s), 1.38 (1H, m), 1.29 (3H, s), 0.91 (3H, s).

Part B: (+)-Pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (3.37 g, 6.60 mmol) in dimethylformamide (6 mL) was added sodium azide (547 mg, 8.41 mmol). The resulting mixture was heated at 70 °C for 2 hours, cooled to room temperature, and diluted with ethyl acetate. The mixture was then washed with water, saturated sodium chloride and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo gave 3.04 g (97%) of the desired azide, mass spectrum: (M+H)⁺ = 473; ¹H NMR (300 MHz, CDCl₃) δ7.89 (2H, d, J = 8.3), 7.75 (1H,

bs), 7.3 (7H, m), 4.32 (1H, m), 3.32 (1H, m), 2.0 (10H, m) 1.48 (3H, s), 1.3 (4H, m), 0.9 (3H, s).

Part C: N^1 - $(4$ -Phenylbenzoyl)bороornithine (+)-

5 pinanediol, hydrochloride. To a solution of (+)-pinanediol 4-azido-1(R)- $(4$ -phenylbenzoyl)aminobutane-1-boronate (3.04 g, 6.44 mmol) in methanol (30 mL) was added Pearlman's catalyst ($Pd(OH)_2/C$, 200 mg) and 1 M hydrochloric acid (6.5 mL, 6.5 mmol). The mixture was
10 placed on a Parr apparatus and hydrogenated at 50 psi for 3 hours. The mixture was filtered using Celite™, washed with methanol and the filtrate concentrated in vacuo. The resulting amorphous solid was dissolved in water and washed with ether. The aqueous phase was then
15 concentrated in vacuo and crystallized from ethyl acetate-hexanes, giving 1.52 g (49%) of the desired amine hydrochloride, mass spectrum: $(M+H)^+$ = 447; mp: 157-170 °C; 1H NMR (400 MHz, $CDCl_3/DMSO-d_6$) δ 9.88 (1H, bs), 8.18, (2H, d, J = 8.3), 8.13 (3H, bs), 7.68 (2H, d,
20 J = 8.3), 7.61 (2H, d J = 7.0), 7.45 (2H, d, J = 7.0), 7.37 (1H, d, J = 7.30), 4.20 (1H, d, J = 6.3), 2.99 (1H, m), 2.87 (2H, m), 2.31 (1H, m), 2.13 (1H, m), 1.84 (7H, m), 1.56 (1H, d, J = 10.0), 1.42 (3H, s), 1.29 (3H, s), 0.89 (3H, s).

25

Part D: N^1 - $(4$ -Phenylbenzoyl)bороarginine (+)-

pinanediol, bisulfite. To a solution of N^1 - $(4$ -phenylbenzoyl)bороornithine (+)-pinanediol, hydrochloride (80 mg, 0.17 mmol) in ethanol (2 mL) was
30 added 4-dimethylaminopyridine (40 mg, 0.33 mmol). After 15 minutes, aminoiminomethanesulfonic acid (40 mg, 0.32 mmol) was added and the resulting mixture heated at reflux for 3 hours. After cooling to room temperature, the mixture was filtered and the filtrate concentrated in vacuo. The residue was dissolved in chloroform and washed with 0.1 M hydrochloric acid, water and dried

over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate *in vacuo* afforded 73 mg (84%) of the desired guanidine, mass spectrum: $(M+H)^+ = 489$; ^1H NMR (400 MHz, CDCl_3 , 60 °C) δ 9.48 (1H, bs), 8.10 (2H, d, $J = 8.1$), 8.07 (1H, bs), 7.75 (1H, bs), 7.54 (2H, d, $J = 8.3$), 7.48 (2H, d, $J = 7.0$), 7.35 (3H, m), 7.06 (4H, bs), 4.19 (1H, bd, $J = 8.3$), 3.1 (2H, m), 2.84 (1H, m), 2.29 (1H, m), 2.12 (1H, m), 1.96 (1H, m), 1.75 (6H, m), 1.47 (1H, d, $J = 10.2$), 1.40 (3H, s), 1.24 (3H, s), 0.83 (3H, s).

EXAMPLE 34: (+)-Pinanediol 4-(Formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, Hydrobromide

15 (+)-Pinanediol 4-(formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, hydrobromide. To a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (200 mg, 0.392 mmol) in methanol (3 mL) was added thiourea (120 mg, 1.58 mmol).
20 The reaction was stirred at room temperature for 3 days. The mixture was concentrated *in vacuo*, the residue dissolved in water and washed with ether. Concentration of the aqueous portion afforded 80 mg (35%) of the desired isothiourea, mass spectrum: $(M+H)^+ = 506$; ^1H NMR (300 MHz, CDCl_3) δ 8.15 (2H, d, $J = 8.4$), 7.61 (2H, d, $J = 8.4$), 7.52 (2H, m), 7.38 (3H, m), 6.47 (1H, bs), 4.23 (1H, dd, $J = 6.6, 1.9$), 3.24 (1H, m), 3.14, (1H, m), 2.96, (1H, m), 2.32 (1H, m), 2.15 (1H, m), 1.99 (1H, m), 1.78 (6H, m), 1.48 (1H, d, $J = 10.1$), 1.42 (3H, s), 1.27 (3H, s), 0.86 (3H, s).

EXAMPLE 898: R-N¹-(3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; X = -CH₂NH₂, R¹³ = -CH₂Ph, R¹⁴ = -CH₂CN,
5 Y¹,Y² = (+)-pin.

Part A. Ethyl benzylimidate, hydrochloride.

HCl gas (17.1 g, 469 mmol, 1.1 eq) was slowly
10 bubbled into a solution of phenylacetonitrile (50.00 g,
427 mmol, 1 eq) in ethanol (27.6 mL, 469 mmol, 1.1 eq)
at 0 °C. The reaction was put into the refrigerator
over the weekend. After warming to room temperature,
ether (300 mL) was added to the reaction mixture which
15 had solidified and the contents were vigorously stirred
at 0 °C to pulverize the mixture. The solid material
was filtered while cold under an inert atmosphere and
the filter cake rinsed with some more ether. The
product was dried under high vacuum to yield 60.0 g (mp
20 94.0-95.0 °C) of a white solid. A second crop yielded
20.98 g (96.0-97.5 °C).

25 **Part B. 3-Cyanomethyl-5-phenylmethyl-1,2,4-triazole.**

The imidate from part A (14.92 g, 91 mmol, 1 eq)
was dissolved in ethanol (250 mL) and cooled to 0 °C

under an inert atmosphere. Cyanoacetohydrazide (9.06 g, 91 mmol, 1 eq) dissolved as best possible in warm ethanol was added, and the resultant mixture stirred at room temperature overnight. The mixture was filtered, 5 and the filtrate concentrated to yield a gummy orange solid. Trituration from hexanes yielded 19.72 g of solid product acylamidrazone (MS detects $(M+H)^+ = 216$). This intermediate was heated neat (oil bath) at 170 °C under an inert atmosphere for 0.5 h to crack out water. 10 The product was cooled to room temperature and dissolved in ethyl acetate. The solvent was dried ($MgSO_4$) and stripped to yield 11.89 g of an orange solid. Flash chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl acetate to 100% ethyl acetate to 4:1 chloroform/methanol yielded 6.76 g (38%) 15 of a light pink solid product; m.p. = 140.0-142.5 °C. NMR ($DMSO-d_6$) δ 14.00-13.60 (bs, 1H); 7.40-7.10 (m, 5H); 4.08 (s, 2H); 4.05 (s, 2H). MS: $(M+H)^+ = 199$.

20

Part C. Ethyl (3-cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate.

The compound from part B (3.36 g, 17 mmol, 1 eq) was added portionwise to a mixture of DMF and 50 % NaH (0.81 g, 17 mmol, 1 eq) at 25 °C. After H_2 evolution had ceased, the mixture was heated a little with a heat gun to ensure complete deprotonation. The mixture was cooled to 0 °C and ethyl bromoacetate (1.88 mL, 17 mmol, 1 eq) was added. The reaction was allowed to 25 warm to room temperature and was stirred overnight. Ethyl acetate was added and the mixture washed with water (5x) to remove the DMF. The organic layer was dried ($MgSO_4$) and stripped to yield 6.10 g of a reddish 30

oil. Flash chromatography in 3:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate yielded 2.93 g of an amber oil which consisted of a 4:1 mixture of regioisomers as determined by NMR with the major isomer being depicted above. NMR (major isomer) (CDCl_3) δ 7.40-7.20 (m, 5H); 4.68 (s, 2H); 4.25-4.05 (m, 4H); 3.84 (s, 2H); 1.23 (t, 3H, $J=7$ Hz).

10 Part D. (3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product of part C (1.00g, 3.52 mmol, 1 eq), 1.000 N NaOH (7.03 mL, 7.03 mmol, 2 eq) and methanol (10 mL) were mixed and stirred at room temperature. After 15 24h, the methanol was stripped and the aqueous mixture washed with ether (2x). The aqueous layer was then acidified with conc. HCl and extracted with ethyl acetate (3x). The organic layers were combined, dried (MgSO_4), and stripped to yield 0.66 g of an off-white glass. MS ($M+H$)⁺ = 257.

25 Part E. (+)-Pinanediol 5-bromo-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

N-methylmorpholine (0.42 mL, 3.86 mmol, 1.5 eq) was added to a solution of the product in part D (0.66 g,

2.58 mmol, 1 eq) in THF at 25 °C. The mixture was cooled to -20 °C and isobutylchloroformate (0.50 mL, 3.86 mmol, 1.5 eq) in THF was added dropwise. In a separate flask, pinanediol 5-bromo-1-R-aminopentane-1-5 boronate hydrochloride (0.98 g, 2.58 mmol, 1 eq) was dissolved in CHCl₃ and cooled to -78 °C. Triethylamine (0.36 mL, 2.58 mmol, 1 eq) was then added and the mixture syringed immediately into the reaction flask with the mixed anhydride. The reaction was allowed then 10 to warm to room temperature overnight. The next day, the precipitate was filtered off and the solids were rinsed with THF. The filtrate was stripped to yield 410 mg of a white oil. Flash chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl 15 acetate to 100% ethyl acetate to 4:1 chloroform/methanol yielded 300 mg of a clear, colorless viscous oil and only one regioisomer by NMR. MS (M+H)⁺ = 633 and 635. NMR (CDCl₃) δ 7.40-7.10 (m, 5H); 6.13 (d, 1H, J=6 Hz); 4.62 (s, 2H); 4.40-4.20 (m, 1H); 4.17 (s, 2H); 3.86 20 (s, 1H); 3.50-3.20 (m, 3H); 2.40-2.10 (m, 2H); 2.10-1.75 (m, 4H); 1.75-1.10 (m, 13 H); 0.83 (s, 3H).

Part F. (+)-Pinanediol 5-azido-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

The product from Part E (300 mg, 0.52 mmol, 1 eq), sodium azide (1.03 mmol, 2 eq), and DMSO (5 mL) were mixed and stirred at room temperature under an inert 30 atmosphere for 24 h. Ethyl acetate was added and the

mixture rinsed with water (5x). The ethyl acetate layer was dried ($MgSO_4$) and stripped to yield 256 mg of a light amber oil. IR (neat) 2096 cm^{-1} . NMR ($CDCl_3$) δ 7.40-7.10 (m, 5H); 6.15 (d, 1H, $J=6$ Hz); 4.62 (s, 2H); 5 4.40-4.20 (d of d, 1H, $J=7, 2$ Hz); 4.20-4.10 (m, 2H); 3.85 (s, 2H); 3.40-3.10 (m, 3H); 2.50-1.40 (m, 9H); 1.40-1.00 (m, 9 H); 0.84 (s, 3H).

10 Part G. (+)-Pinanediol 5-amino-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate, hydrochloride salt.

The product from Part F (250 mg, 0.46 mmol, 1 eq) and triphenylphosphine (157 mg, 0.6 mmol, 1.3 eq) and 15 THF (5 mL) were mixed and stirred at room temperature. After 1 h, water (11 μ M, 0.6 mmol, 1.3 eq) was added and the mixture stirred overnight. After 24 h, the reaction was not finished, and thus 1.3 eq more equivalents of water were added and the reaction stirred for another 24 h. The reaction was now complete and 1 equivalent of 20 1.000 N HCl was added. The reaction was then stripped and water was added and the reaction again stripped. Ethyl ether was added and the mixture stripped once more. The residue was dried under high vacuum to yield 25 138 mg of a white glass. MS detects $(M+H)^+ = 519$ and 385 (minus pinanediol). Mass calculated for $C_{28}H_{40}BN_6O_3$: 519.3255. Found: 519.3274. NMR shows a 1:1 mixture of pinanediol ester and free boronic acid.

EXAMPLE 908: R-N¹-(3-(1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; X = -CH₂NH₂, R¹³ = -CH₂Ph, R¹⁴ = -CH₂-(CN₄H), Y¹,Y² = (+)-pin.

10 Part A. Ethyl (3-(N-triphenylmethyl)-1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate

The product from Example 360, part C (1.83 g, 6.44 mmol, 1 eq), tributyltin chloride (1.75 mL, 6.44 mmol, 1 eq), sodium azide (0.42 g, 6.44 mmol, 1 eq), and xylenes (15 mL) were mixed and refluxed for 24h under an inert atmosphere. The mixture was cooled to room temperature and pyridine was then added (0.57 mL, 7.08 mmol, 1.1 eq) followed after 0.5 h by trityl chloride (1.97 g, 7.08 mmol, 1.1 eq). The following day, the reaction was worked up by adding ethyl ether and rinsing the mixture with water (3x). The ether layer was dried (MgSO₄), and stripped to yield 5.66 g of an amber oil. Flash chromatography in 3:1 pentane/ethyl acetate to 100% ethyl acetate over silica gel yielded 1.33 g of an amber

oil which eventually crystallized. MS detects $(M+H)^+ = 570$ and $328 (M+H-CPh_3)^+$.

5

Part B. (3-(N-Triphenylmethyl)-1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product from part A (200 mg, 0.35 mmol, 1 eq), 1.000 N NaOH (0.39 mL, 0.39 mmol, 1.1 eq) and THF (5 mL) were mixed and stirred at room temperature under an inert atmosphere for 24 h. The reaction was not finished and thus 0.5 eq more of 1.000 N NaOH were added and stirred overnight. Water was then added and the pH adjusted to 5 with 1N HCl. The mixture was stripped to dryness. The residue was stirred in ethyl acetate. Some solids were filtered and the filtrate was stripped to yield 190 mg of a white glass. NMR ($CDCl_3$) δ 7.40-7.15 (m, 12 H); 7.15-7.00 (m, 8 H); 4.55 (s, 2); 4.40 (s, 2H); 4.10 (s, 2H).

20

Part C. (+)-Pinanediol 5-azido-1(R)-((3-((N-triphenylmethyl)-1H-tetrazol-5-ylmethyl)-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

The compound in part B was converted to the corresponding azidoboronic acid pinanediol ester by the methods disclosed in example 360, parts E and F. IR (neat) 2095 cm⁻¹. NMR (CDCl₃) δ 7.45-7.20 (m, 12H); 5 7.17 (d, 2H, J=7 Hz); 7.12 (d, 6H, J=7 Hz); 6.34 (d, 1H, J=6 Hz); 4.60 (s, 2H); 4.42 (s, 2H); 4.27 (d, 1H, J=7 Hz); 3.13 (t, 2H, J=2 Hz); 3.06 (q, 1H, J=7 Hz); 2.40-2.10 (m, 2H); 2.01 (t, 1H, J=6 Hz); 1.95-1.70 (m, 2H); 1.60-1.40 (m, 4H); 1.37 (s, 3H); 1.35-1.20 (m, 10 5H); 1.16 (d, 1H, J=11 Hz); 0.82 (s, 3H). MS detects (M+H)⁺ = 830 and (M+H-CPh₃)⁺=588.

Part D. R-N¹-(3-(1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride.

The product from part C (135 mg, 0.16 mmol, 1 eq), 10% Pd on carbon (25 mg), chloroform (39 μL, 0.49 mmol, 3 eq) and methanol (5 mL) were mixed and stirred under 20 hydrogen under balloon pressure for 24 h at room temperature. The mixture was filtered through a Celite® cake rinsing the cake well with methanol afterwards. The filtrate was stripped to yield an off-white glass. This glass was triturated with ethyl ether to yield 25 after drying 50 mg of an off-white solid. Mass calcd. for C₂₈H₄₁BN₉O₃: 562.3425. Found: 562.3413. NMR (DMSO-d₆) δ 8.75-8.50 (m, 1H); 7.40-7.10 (m, 5H); 4.87 (bs, 2H); 4.30-4.00 (m, 5H); 2.96-2.60 (m, 3H); 2.40-

2.00 (m, 2H); 1.91 (t, 1H, J=6 Hz); 1.90-1.75 (m, 1H);
1.75-1.10 (m, 14 H); 0.80 (s, 3H).

5

EXAMPLE 3458. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride; X = -CH₂NH₂, R¹³ = -Ph, R¹⁴ = -CH₃, R¹⁵ = H, Y¹, Y² = (+)-pin.

10

Part A. 2-Phenyl-4-methylpyrimidin-5-carboxylic acid.

The above compound was synthesized by the procedure of P. Schenone, L. Sansebastiano, L. Mosti J.

15 Heterocyclic Chem. 1990, 27, 302 which is generally applicable to a wide variety of pyrimidine-5-carboxylic acids.

20 Part B. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride.

The product was obtained using the procedures described in example 360, parts E and F and example 361, part D followed by preparatory TLC in 4:1 chloroform/methanol. (M+H)⁺=477. NMR (DMSO-d₆) δ 8.86 (s, 1H); 8.50-8.30 (m, 2H); 7.70-7.40 (m, 3H); 4.25 (d, 1H, J=7 Hz); 2.90-2.70 (m, 3H); 2.64 (s, 3H); 2.40-1.00 (m, 15H); 0.84 (s, 3H).

EXAMPLE 3538. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borationine, (+)-pinanediol ester, 5 hydrochloride; X = -NH(C=NH)NH₂, R¹³ = -Ph, R¹⁴ = -CH₃, R¹⁵ = H, Y¹, Y² = (+)-pin..

Part A. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borationine, (+)-pinanediol ester, 10 hydrochloride.

The above intermediate was synthesized by the procedures described for example 361 using the appropriate starting materials.

Part B. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borationine, (+)-pinanediol ester, 15 hydrochloride.

The product from part A (500 mg, 1 mmol, 1 eq), formamidinesulfonic acid (224 mg, 1.8 mmol, 2 eq), 4-(N,N-dimethylamino)pyridine (220 mg, 1.8 mmol, 2 eq, and 20 ethanol (20 mL) were mixed and refluxed under an inert atmosphere for 5 hours. Some solid material was filtered and the filtrate was stripped to yield a yellow glass. The glass was taken up in chloroform/0.1 N HCl. Solids precipitated. These were filtered and dried to

yield 144 mg of product as a white powder: mp 132 °C
(dec.). $(M+H)^+ = 505$.

Mass calcd. for $C_{27}H_{38}BN_6O_3$: 505.3086. Found:
5 505.3098. NMR (DMSO-d₆) δ 8.89 (s, 1H); 8.60-8.40 (m,
2H); 8.05-7.80 (m, 1H); 7.65-7.40 (m, 3H); 7.40-6.80
(m, 3H); 4.19 (d, 1H, J=7 Hz); 3.60-3.20 (m, 3H);
2.85-2.40 (m, 4H); 2.40-1.95 (m, 1H); 1.95-1.00 (m, 16
H); 0.80 (t, 3H).

10

Example 5926. $N^1-[(4R)-2-(2\text{-Phenyl})\text{ethyl}\text{-Thiazoline-4-Carboxy}\text{-R-borothioarginine- (+)\text{-pinanediol ester}}$

Part A. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid ethyl ester.

15 Cysteine ethyl ester hydrochloride (950 mg, 5.10 mmol) was added to a solution of ethyl (2-phenyl)ethyliimidate (900 mg, 5.10 mmol) [prepared by the method of North, M.; Pattenden, G. *Tetrahedron* 1990, 46, 20 8267] in EtOH (20 mL) at room temperature. The reaction mixture was stirred for 16 h and concentrated under reduced pressure. The residue was partitioned between H₂O (ca. 50 mL) and EtOAc (ca. 100 mL) and the layers were separated; the aqueous phase was extracted with EtOAc (1 x 20 mL). The combined organic layers were washed with saturated aqueous NaCl (1 x 50 mL), dried (Na₂SO₄), and concentrated under reduced pressure to

give an oil which was purified by flash chromatography, elution with 3:1 hexanes - EtOAc, to afford 885 mg (66%) of the title compound as a colorless oil. ^1H NMR (300 MHz, CDCl₃) δ 7.23 (comp, 5H), 5.05 (dd, 1H, J = 9.5, 9.1 Hz), 4.27 (dq, 2H, J = 7.0, 1.8 Hz), 3.55 (m, 2H), 2.97 (m, 2H), 2.86 (m, 2H); 1.32 (t, 3H, J = 7.0 Hz); LRMS 264 (M + 1, base).

Part B. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid.

A solution of lithium hydroxide monohydrate (96 mg, 2.28 mmol) in H₂O (2 mL) was added to a solution of (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid ethyl ester (400 mg, 1.52 mmol) in THF (8 mL) and MeOH (5 mL). The reaction mixture was stirred at room temperature for 1 h at which time 2M aqueous HCl was added until pH = 2 and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with saturated aqueous NaCl (1 x 20 mL), dried (MgSO₄), and concentrated under reduced pressure to give 340 mg (95%) of the title compound as an oil. ^1H NMR (300 MHz, CDCl₃) δ 7.22 (comp, 5H), 6.86 (br s, 1H), 5.14 (dd, 1H, J = 9.5, 9.1 Hz), 3.64 (m, 2H), 2.96 (comp, 4H); LRMS 236 (M + 1, base).

25

Part C. (1R)-4-Bromo-1-[(4R)-2-(2-Phenyl)ethyl-thiazoline-4-carboxylamido-1-boronic acid- (+)-pinanediol ester.

A solution of (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid (335 mg, 1.43 mmol) and 4-methylmorpholine (0.47 mL, 4.28 mmol) in 10 mL of anhydrous THF at -20 °C was treated with i-butyl chloroformate (0.20 mL, 1.57 mmol) and stirred for 2 min after which a solution of (1R)-4-bromoaminobutane-1-boronic acid (+)-pinanediol ester (522 mg, 1.43 mmol) in 4 mL of anhydrous DMF was added. The reaction

mixture was stirred at -20 °C for 15 min, warmed to room temperature over 18 h then poured into EtOAc (ca. 100 mL) and washed with H₂O (3 x 25 mL), and saturated aqueous NaCl (1 x 25 mL), dried (Na₂SO₄) and

5 concentrated under reduced pressure. The residue was purified by flash chromatography, elution with 3:2 hexanes - EtOAc, to give 306 mg (39%) of the title compound as an oil. LRMS 549, 547 (M + 1, base).

10 Part D. N¹-[(4R)-2-(2-Phenyl)ethyl-Thiazoline-4-Carboxy]-R-borothioarginine-(+)-pinanediol ester.

A mixture of (1R) - 4 - bromo - 1 - [(4R) - 2 - (2-phenyl)ethyl - thiazoline - 4 - carboxy]amido - 1 - boronic acid (+) - pinanediol ester (295 mg, 0.54 mmol)

15 and thiourea (82 mg, 1.08 mmol) in 10 mL of EtOH was heated at reflux for 14 h then cooled to room temperature and concentrated under reduced pressure.

The residue was purified by size exclusion chromatography on Sephadex LH - 20, elution with MeOH,

20 to give a glass which was dissolved in 3 mL of THF and treated with Et₂O (ca. 10 mL) to give a solid that was washed with Et₂O (ca. 5 mL) and dried to afford 230 mg (68%) of the title compound. LRMS 543 (M + 1, base); HRMS Calcd for C₂₇H₄₀BN₄O₃S₂: 543.2635. Found:

25 543.2643.

The compounds in the following tables were or can be synthesized by the methods discussed previously or by methods familiar to one skilled in the art.

The compounds listed in Tables 1-61 may be prepared using the above examples. It is understood that R¹⁴⁻¹⁶ and R^{A-C} in the tables correspond to independent R¹³ groups as described within the scope of this application.

Table 1

10

Ex	X	R ^A	R ^B	R ^C	Y ¹ , Y ²	Phys. Data.
1	NHC(NH)NH ₂	H	H	Ph	(+)-pin	A
2	NHC(NH)NH ₂	H	Ph	H	(+)-pin	BZ
3	NHC(NH)NH ₂	H	OPh	Ph	(+)-pin	B
4	NHC(NH)NH ₂	H	H	4-pyridyl	(+)-pin	C
5	NHC(NH)NH ₂	COPh	H	H	(+)-pin	
6	NHC(NH)NH ₂	H	COPh	H	(+)-pin	
7	NHC(NH)NH ₂	H	H	COPh	(+)-pin	
8	NHC(NH)NH ₂	H	NHCbz	H	(+)-pin	
9	NHC(NH)NH ₂	H	NMeCbz	H	(+)-pin	
10	NHC(NH)NH ₂	H	H	Et	(+)-pin	
11	NHC(NH)NH ₂	H	H	n-Pr	(+)-pin	
12	NHC(NH)NH ₂	H	H	i-Pr	(+)-pin	
13	NHC(NH)NH ₂	H	H	n-Bu	(+)-pin	
14	NHC(NH)NH ₂	H	H	t-Bu	(+)-pin	
15	NHC(NH)NH ₂	H	H	n-hexyl	(+)-pin	
16	NHC(NH)NH ₂	H	H	cyclohexyl	(+)-pin	

17	NHC(NH)NH ₂	NHCO(CH ₂) ₂ Ph	H	H	(+)-pin
18	NHC(NH)NH ₂	H	H	O-n-Bu	(+)-pin
19	NHC(NH)NH ₂	H	H	NHCOcyclopr opyl	(+)-pin
20	NHC(NH)NH ₂	H	H	NHCO- cyclohexyl	(+)-pin
21	NHC(NH)NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	(+)-pin
22	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	(+)-pin
23	NHC(NH)NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	(+)-pin
24	NHC(NH)NH ₂	H	H	1-naphthyl	(+)-pin
25	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	(+)-pin
26	NHC(NH)NH ₂	COPh	H	Me	(+)-pin
27	NHC(NH)NH ₂	H	NHCbz	n-Bu	(+)-pin
28	NHC(NH)NH ₂	H	NMeCbz	n-Bu	(+)-pin
29	NHC(NH)NH ₂	Me	H	Ph	(+)-pin CB
30	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	(+)-pin
31	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin
32	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin
33	NHC(NH)NH ₂	H	OMe	Ph	(+)-pin
34	SC(NH)NH ₂	H	H	Ph	(+)-pin D
35	SC(NH)NH ₂	H	Ph	H	(+)-pin E
36	SC(NH)NH ₂	H	OPh	H	(+)-pin F
37	SC(NH)NH ₂	COPh	H	H	(+)-pin G
38	SC(NH)NH ₂	H	COPh	H	(+)-pin H
39	SC(NH)NH ₂	H	H	COPh	(+)-pin I
40	SC(NH)NH ₂	H	NHCbz	H	(+)-pin J
41	SC(NH)NH ₂	H	NMeCbz	H	(+)-pin K
42	SC(NH)NH ₂	H	H	Et	(+)-pin L
43	SC(NH)NH ₂	H	H	n-Pr	(+)-pin M
44	SC(NH)NH ₂	H	H	i-Pr	(+)-pin N
45	SC(NH)NH ₂	H	H	n-Bu	(+)-pin O
46	SC(NH)NH ₂	H	H	t-Bu	(+)-pin P
47	SC(NH)NH ₂	H	H	n-hexyl	(+)-pin Q

48	SC(NH)NH ₂	H	H	cyclohexyl	(+)-pin	R
49	SC(NH)NH ₂	NHCOCH ₂ CH ₂ Ph	H	H	(+)-pin	S
50	SC(NH)NH ₂	H	H	O-n-Bu	(+)-pin	T
51	SC(NH)NH ₂	H	H	NHCOcyclopr opyl	(+)-pin	U
52	SC(NH)NH ₂	H	H	NHCOcyclohe xyl	(+)-pin	V
53	SC(NH)NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	(+)-pin	W
54	SC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	(+)-pin	X
55	SC(NH)NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	(+)-pin	Y
56	SC(NH)NH ₂	H	H	1-naphthyl	(+)-pin	
57	SC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	(+)-pin	
58	SC(NH)NH ₂	H	NHCbz	n-Bu	(+)-pin	Z
59	SC(NH)NH ₂	H	NMeCbz	n-Bu	(+)-pin	AA
60	SC(NH)NH ₂	COPh	H	Me	(+)-pin	BB
61	SC(NH)NH ₂	H	H	4-pyridyl	(+)-pin	
62	SC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	(+)-pin	
63	SC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin	
64	SC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin	
65	SC(NH)NH ₂	Me	H	Ph	(+)-pin	
66	SC(NH)NH ₂	H	OMe	Ph	(+)-pin	
67	CH ₂ NH ₂	H	H	Ph	(+)-pin	
68	CH ₂ NH ₂	H	Ph	H	(+)-pin	YY
69	CH ₂ NH ₂	H	OPh	H	(+)-pin	
70	CH ₂ NH ₂	COPh	H	H	(+)-pin	
71	CH ₂ NH ₂	H	COPh	H	(+)-pin	
72	CH ₂ NH ₂	H	H	COPh	(+)-pin	
73	CH ₂ NH ₂	H	NHCbz	H	(+)-pin	
74	CH ₂ NH ₂	H	NMeCbz	H	(+)-pin	
75	CH ₂ NH ₂	H	H	Et	(+)-pin	
76	CH ₂ NH ₂	H	H	n-Pr	(+)-pin	
77	CH ₂ NH ₂	H	H	i-Pr	(+)-pin	
78	CH ₂ NH ₂	H	H	n-Bu	(+)-pin	

79	CH ₂ NH ₂	H	H	t-Bu	(+)-pin
80	CH ₂ NH ₂	H	H	n-hexyl	(+)-pin
81	CH ₂ NH ₂	H	H	cyclohexyl	(+)-pin
82	CH ₂ NH ₂	NHCOCH ₂ CH ₂ Ph	H	H	(+)-pin
83	CH ₂ NH ₂	H	H	O-n-Bu	(+)-pin
84	CH ₂ NH ₂	H	H	NHCOcyclopr opyl	(+)-pin
85	CH ₂ NH ₂	H	H	NHCOcyclohe xyl	(+)-pin
86	CH ₂ NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	(+)-pin
87	CH ₂ NH ₂	H	H	4-C ₆ H ₄ OMe	(+)-pin
88	CH ₂ NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	(+)-pin
89	CH ₂ NH ₂	H	H	1-naphthyl	(+)-pin
90	CH ₂ NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	(+)-pin
91	CH ₂ NH ₂	H	NHCbz	n-Bu	(+)-pin
92	CH ₂ NH ₂	H	NMeCbz	n-Bu	(+)-pin
93	CH ₂ NH ₂	COPh	H	Me	(+)-pin
94	CH ₂ NH ₂	H	H	4-pyridyl	(+)-pin
95	CH ₂ NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	(+)-pin
96	CH ₂ NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin
97	CH ₂ NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	(+)-pin
98	CH ₂ NH ₂	Me	H	Ph	(+)-pin
99	CH ₂ NH ₂	H	OMe	Ph	(+)-pin
100	CH ₂ NH ₂	H	OMe	Ph	OH, OH
101	NHC(NH)NH ₂	H	H	Ph	OH, OH
102	NHC(NH)NH ₂	H	Ph	H	OH, OH
103	NHC(NH)NH ₂	H	OPh	Ph	OH, OH
104	NHC(NH)NH ₂	H	H	4-pyridyl	OH, OH
105	NHC(NH)NH ₂	COPh	H	H	OH, OH
106	NHC(NH)NH ₂	H	COPh	H	OH, OH
107	NHC(NH)NH ₂	H	H	COPh	OH, OH
108	NHC(NH)NH ₂	H	NHCbz	H	OH, OH
109	NHC(NH)NH ₂	H	NMeCbz	H	OH, OH

110	NHC(NH)NH ₂	H	H	Et	OH, OH
111	NHC(NH)NH ₂	H	H	n-Pr	OH, OH
112	NHC(NH)NH ₂	H	H	i-Pr	OH, OH
113	NHC(NH)NH ₂	H	H	n-Bu	OH, OH
114	NHC(NH)NH ₂	H	H	t-Bu	OH, OH
115	NHC(NH)NH ₂	H	H	n-hexyl	OH, OH
116	NHC(NH)NH ₂	H	H	cyclohexyl	OH, OH
117	NHC(NH)NH ₂	NHCO(CH ₂) ₂ Ph	H	H	OH, OH
118	NHC(NH)NH ₂	H	H	O-n-Bu	OH, OH
119	NHC(NH)NH ₂	H	H	NHCOcyclopr opyl	OH, OH
120	NHC(NH)NH ₂	H	H	NHCO- cyclohexyl	OH, OH
121	NHC(NH)NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	OH, OH
122	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	OH, OH
123	NHC(NH)NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	OH, OH
124	NHC(NH)NH ₂	H	H	1-naphthyl	OH, OH
125	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	OH, OH
126	NHC(NH)NH ₂	COPh	H	Me	OH, OH
127	NHC(NH)NH ₂	H	NHCbz	n-Bu	OH, OH
128	NHC(NH)NH ₂	H	NMeCbz	n-Bu	OH, OH
129	NHC(NH)NH ₂	Me	H	Ph	OH, OH
130	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	OH, OH
131	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
132	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
133	NHC(NH)NH ₂	H	OMe	Ph	OH, OH
134	SC(NH)NH ₂	H	H	Ph	OH, OH
135	SC(NH)NH ₂	H	Ph	H	OH, OH
136	SC(NH)NH ₂	H	OPh	H	OH, OH
137	SC(NH)NH ₂	COPh	H	H	OH, OH
138	SC(NH)NH ₂	H	COPh	H	OH, OH
139	SC(NH)NH ₂	H	H	COPh	OH, OH
140	SC(NH)NH ₂	H	NHCbz	H	OH, OH

141	SC(NH)NH ₂	H	NMeCbz	H	OH, OH
142	SC(NH)NH ₂	H	H	Et	OH, OH
143	SC(NH)NH ₂	H	H	n-Pr	OH, OH
144	SC(NH)NH ₂	H	H	i-Pr	OH, OH
145	SC(NH)NH ₂	H	H	n-Bu	OH, OH
146	SC(NH)NH ₂	H	H	t-Bu	OH, OH
147	SC(NH)NH ₂	H	H	n-hexyl	OH, OH
148	SC(NH)NH ₂	H	H	cyclohexyl	OH, OH
149	SC(NH)NH ₂	NHCOCH ₂ CH ₂ Ph	H	H	OH, OH
150	SC(NH)NH ₂	H	H	O-n-Bu	OH, OH
151	SC(NH)NH ₂	H	H	NHCocyclopr opyl	OH, OH
152	SC(NH)NH ₂	H	H	NHCocyclohe xyl	OH, OH
153	SC(NH)NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	OH, OH
154	SC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	OH, OH
155	SC(NH)NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	OH, OH
156	SC(NH)NH ₂	H	H	1-naphthyl	OH, OH
157	SC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	OH, OH
158	SC(NH)NH ₂	H	NHCbz	n-Bu	OH, OH
159	SC(NH)NH ₂	H	NMeCbz	n-Bu	OH, OH
160	SC(NH)NH ₂	COPh	H	Me	OH, OH
161	SC(NH)NH ₂	H	H	4-pyridyl	OH, OH
162	SC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	OH, OH
163	SC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
164	SC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
165	SC(NH)NH ₂	Me	H	Ph	OH, OH
166	SC(NH)NH ₂	H	OMe	Ph	OH, OH
167	CH ₂ NH ₂	H	H	Ph	OH, OH
168	CH ₂ NH ₂	H	Ph	H	OH, OH
169	CH ₂ NH ₂	H	OPh	H	OH, OH
170	CH ₂ NH ₂	COPh	H	H	OH, OH
171	CH ₂ NH ₂	H	COPh	H	OH, OH

172	CH ₂ NH ₂	H	H	COPh	OH, OH
173	CH ₂ NH ₂	H	NHCbz	H	OH, OH
174	CH ₂ NH ₂	H	NMeCbz	H	OH, OH
175	CH ₂ NH ₂	H	H	Et	OH, OH
176	CH ₂ NH ₂	H	H	n-Pr	OH, OH
177	CH ₂ NH ₂	H	H	i-Pr	OH, OH
178	CH ₂ NH ₂	H	H	n-Bu	OH, OH
179	CH ₂ NH ₂	H	H	t-Bu	OH, OH
180	CH ₂ NH ₂	H	H	n-hexyl	OH, OH
181	CH ₂ NH ₂	H	H	cyclohexyl	OH, OH
182	CH ₂ NH ₂	NHOCH ₂ CH ₂ Ph	H	H	OH, OH
183	CH ₂ NH ₂	H	H	O-n-Bu	OH, OH
184	CH ₂ NH ₂	H	H	NHCOCyclopr opyl	OH, OH
185	CH ₂ NH ₂	H	H	NHCOCyclohe xyl	OH, OH
186	CH ₂ NH ₂	H	H	NHCO(4- C ₆ H ₄ OMe)	OH, OH
187	CH ₂ NH ₂	H	H	4-C ₆ H ₄ OMe	OH, OH
188	CH ₂ NH ₂	CO ₂ CH ₂ (2- C ₆ H ₄ Ph)	H	H	OH, OH
189	CH ₂ NH ₂	H	H	1-naphthyl	OH, OH
190	CH ₂ NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	OH, OH
191	CH ₂ NH ₂	H	NHCbz	n-Bu	OH, OH
192	CH ₂ NH ₂	H	NMeCbz	n-Bu	OH, OH
193	CH ₂ NH ₂	COPh	H	Me	OH, OH
194	CH ₂ NH ₂	H	H	4-pyridyl	OH, OH
195	CH ₂ NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	OH, OH
196	CH ₂ NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
197	CH ₂ NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	OH, OH
198	CH ₂ NH ₂	Me	H	Ph	OH, OH
199	NH(C=NH)NH ₂	F	H	Ph	(+)-pin SS
200	NH(C=NH)NH ₂	F	H	Ph	OH, OH
201	NH(C=NH)NH ₂	NH ₂	H	Ph	(+)-pin
202	NH(C=NH)NH ₂	NH ₂	H	Ph	OH, OH

203	NH (C=NH) NH ₂	NO ₂	H	Ph	(+)-pin	TT
204	NH (C=NH) NH ₂	NO ₂	H	Ph	OH, OH	
205	NH (C=NH) NH ₂	OH	H	Ph	(+)-pin	
206	NH (C=NH) NH ₂	OH	H	Ph	OH, OH	
207	NH (C=NH) NH ₂	-NHSO ₂ CF ₃	H	Ph	(+)-pin	
208	NH (C=NH) NH ₂	-NHSO ₂ CF ₃	H	Ph	(+)-pin	
209	NH (C=NH) NH ₂	-NHSO ₂ CH ₃	H	Ph	(+)-pin	
210	NH (C=NH) NH ₂	-NHSO ₂ CH ₃	H	Ph	(+)-pin	
211	NH (C=NH) NH ₂	CH ₂ CN	H	Ph	(+)-pin	
212	NH (C=NH) NH ₂	CH ₂ CN	H	Ph	OH, OH	
213	NH (C=NH) NH ₂	CH ₂ CH ₂ CN	H	Ph	(+)-pin	
214	NH (C=NH) NH ₂	CH ₂ CH ₂ CN	H	Ph	OH, OH	
215	NH (C=NH) NH ₂	OCH ₂ CN	H	Ph	(+)-pin	
216	NH (C=NH) NH ₂	OCH ₂ CN	H	Ph	OH, OH	
217	NH (C=NH) NH ₂	SCH ₂ CN	H	Ph	(+)-pin	
218	NH (C=NH) NH ₂	SCH ₂ CN	H	Ph	OH, OH	
219	NH (C=NH) NH ₂	NHCH ₂ CN	H	Ph	(+)-pin	
220	NH (C=NH) NH ₂	NHCH ₂ CN	H	Ph	OH, OH	
221	NH (C=NH) NH ₂	CH ₂ OH	H	Ph	(+)-pin	
222	NH (C=NH) NH ₂	CH ₂ OH	H	Ph	OH, OH	
223	NH (C=NH) NH ₂	CH ₃	H	2-(t-butyl- NHSO ₂) - Ph	(+)-pin	UU
224	NH (C=NH) NH ₂	CH ₃	H	2-(t-butyl- NHSO ₂) - Ph	OH, OH	
225	NH (C=NH) NH ₂	CH ₃	H	2-(ethyl- NHSO ₂) - Ph	(+)-pin	
226	NH (C=NH) NH ₂	CH ₃	H	2-(ethyl- NHSO ₂) - Ph	OH, OH	
227	NH (C=NH) NH ₂	CH ₃	H	2-(H ₂ NSO ₂) - Ph	(+)-pin	ZZ
228	NH (C=NH) NH ₂	CH ₃	H	2-(H ₂ NSO ₂) - Ph	OH, OH	
229	NH (C=NH) NH ₂	CH ₃	H	2-(MeCO- NHSO ₂) - Ph	(+)-pin	

230	NH (C=NH) NH ₂	CH ₃	H	2 - (MeCO-NHSO ₂) - Ph	OH, OH
231	NH (C=NH) NH ₂	CH ₃	H	2 - (MeOCO-NHSO ₂) - Ph	(+) - pin AB
232	NH (C=NH) NH ₂	CH ₃	H	2 - (MeOCO-NHSO ₂) - Ph	OH, OH
233	NH (C=NH) NH ₂	CH ₃	H	2 - (NH ₂) - Ph	(+) - pin
234	NH (C=NH) NH ₂	CH ₃	H	2 - (NH ₂) - Ph	OH, OH
235	NH (C=NH) NH ₂	CH ₃	H	2 - (CH ₃ SO ₂ NH) - Ph	(+) - pin
236	NH (C=NH) NH ₂	CH ₃	H	2 - (CH ₃ SO ₂ NH) - Ph	OH, OH
237	NH (C=NH) NH ₂	CH ₃	H	2 - (CF ₃ SO ₂ NH) - Ph	(+) - pin
238	NH (C=NH) NH ₂	CH ₃	H	2 - (CF ₃ SO ₂ NH) - Ph	OH, OH
239	NH (C=NH) NH ₂	CH ₃	H	2 - (CN ₄ H) - Ph	(+) - pin
240	NH (C=NH) NH ₂	CH ₃	H	2 - (CN ₄ H) - Ph	OH, OH
241	NH (C=NH) NH ₂	CH ₃	H	2 - (COOH) - Ph	(+) - pin
242	NH (C=NH) NH ₂	CH ₃	H	2 - (COOH) - Ph	OH, OH
243	NH (C=NH) NH ₂	CH ₃	H	3 - (NH ₂) - Ph	(+) - pin
244	NH (C=NH) NH ₂	CH ₃	H	3 - (NH ₂) - Ph	OH, OH
245	NH (C=NH) NH ₂	CH ₃	H	3 - (CH ₃ SO ₂ NH) - Ph	(+) - pin
246	NH (C=NH) NH ₂	CH ₃	H	3 - (CH ₃ SO ₂ NH) - Ph	OH, OH
247	NH (C=NH) NH ₂	CH ₃	OH	Ph	(+) - pin
248	NH (C=NH) NH ₂	CH ₃	OH	Ph	OH, OH
249	NH (C=NH) NH ₂	CH ₃	NH ₂	Ph	(+) - pin

250	NH (C=NH) NH ₂	CH ₃	NH ₂	Ph	OH, OH
251	NH (C=NH) NH ₂	F	H	2 - (t-butyl- (+)-pin NHSO ₂) - Ph	
252	NH (C=NH) NH ₂	F	H	2 - (t-butyl- OH, OH NHSO ₂) - Ph	
253	NH (C=NH) NH ₂	F	H	2 - (ethyl- (+)-pin NHSO ₂) - Ph	
254	NH (C=NH) NH ₂	F	H	2 - (ethyl- OH, OH NHSO ₂) - Ph	
255	NH (C=NH) NH ₂	F	H	2 - (H ₂ NSO ₂) - (+)-pin Ph	
256	NH (C=NH) NH ₂	F	H	2 - (H ₂ NSO ₂) - OH, OH Ph	
257	NH (C=NH) NH ₂	F	H	2 - (MeCO- (+)-pin NHSO ₂) - Ph	
258	NH (C=NH) NH ₂	F	H	2 - (MeCO- OH, OH NHSO ₂) - Ph	
259	NH (C=NH) NH ₂	F	H	2 - (MeOCO- (+)-pin NHSO ₂) - Ph	
260	NH (C=NH) NH ₂	F	H	2 - (MeOCO- OH, OH NHSO ₂) - Ph	
261	NH (C=NH) NH ₂	H	H	2 - (t-butyl- (+)-pin AC NHSO ₂) - Ph	
262	NH (C=NH) NH ₂	Cl	H	2 - (t-butyl- (+)-pin CE NHSO ₂) - Ph	
263	NH (C=NH) NH ₂	H	H	2 - (t-butyl- OH, OH AD NHSO ₂) - Ph	
264	NH (C=NH) NH ₂	Cl	H	2 - (t-butyl- OH, OH NHSO ₂) - Ph	
265	NH (C=NH) NH ₂	Cl	H	2 - (ethyl- (+)-pin NHSO ₂) - Ph	
266	NH (C=NH) NH ₂	Cl	H	2 - (ethyl- OH, OH NHSO ₂) - Ph	
267	NH (C=NH) NH ₂	Cl	H	2 - (H ₂ NSO ₂) - (+)-pin Ph	

268	NH(C=NH)NH ₂	Cl	H	2-(H ₂ NSO ₂)- OH, OH Ph
269	NH(C=NH)NH ₂	Cl	H	2-(MeCO- NHSO ₂) - Ph (+)-pin
270	NH(C=NH)NH ₂	Cl	H	2-(MeCO- NHSO ₂) - Ph OH, OH
271	NH(C=NH)NH ₂	Cl	H	2-(MeOCO- NHSO ₂) - Ph (+)-pin
272	NH(C=NH)NH ₂	Cl	H	2-(MeOCO- NHSO ₂) - Ph OH, OH
273	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(t-butyl- NHSO ₂) - Ph (+)-pin
274	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(t-butyl- NHSO ₂) - Ph OH, OH
275	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(ethyl- NHSO ₂) - Ph (+)-pin
276	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(ethyl- NHSO ₂) - Ph OH, OH
277	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(H ₂ NSO ₂)- Ph (+)-pin
278	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(H ₂ NSO ₂)- OH, OH Ph
279	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(MeCO- NHSO ₂) - Ph (+)-pin
280	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(MeCO- NHSO ₂) - Ph OH, OH
281	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(MeOCO- NHSO ₂) - Ph (+)-pin
282	NH(C=NH)NH ₂	NHSO ₂ CH ₃	H	2-(MeOCO- NHSO ₂) - Ph OH, OH
283	NH(C=NH)NH ₂	CH ₃	H	3-(t- butyloCO- NH) - Ph (+)-pin vv

284	NH (C=NH) NH ₂	CH ₃	H	3 - (t - butylOCO - NH) - Ph	OH, OH
285	NH (C=NH) NH ₂	N(Et) ₂	H	Ph	(+) - pin
286	NH (C=NH) NH ₂	CH ₃	H	2 - ((ethyl) ₂	(+) - pin CF - NSO ₂) - Ph
287	NH (C=NH) NH ₂	CH ₃	H	2 - (n - BuOCO - NHSO ₂) - Ph	(+) - pin
288	NH (C=NH) NH ₂	NO ₂	H	2 - (t - butyl - NHSO ₂) - Ph	(+) - pin CG
289	NH (C=NH) NH ₂	NO ₂	H	2 - (t - butyl - NHSO ₂) - Ph	OH, OH
290	NH (C=NH) NH ₂	NO ₂	H	2 - (ethyl - NHSO ₂) - Ph	(+) - pin
291	NH (C=NH) NH ₂	NO ₂	H	2 - (ethyl - NHSO ₂) - Ph	OH, OH
292	NH (C=NH) NH ₂	NO ₂	H	2 - (H ₂ NSO ₂) - Ph	(+) - pin
293	NH (C=NH) NH ₂	NO ₂	H	2 - (H ₂ NSO ₂) - Ph	OH, OH
294	NH (C=NH) NH ₂	NO ₂	H	2 - (MeCO - NHSO ₂) - Ph	(+) - pin
295	NH (C=NH) NH ₂	NO ₂	H	2 - (MeCO - NHSO ₂) - Ph	OH, OH
296	NH (C=NH) NH ₂	NO ₂	H	2 - (MeOCO - NHSO ₂) - Ph	(+) - pin
297	NH (C=NH) NH ₂	NO ₂	H	2 - (MeOCO - NHSO ₂) - Ph	OH, OH
298	NH (C=NH) NH ₂	H	NO ₂	Ph	(+) - pin AE
299	NH (C=NH) NH ₂	H	NH ₂	Ph	(+) - pin AF
300	NH (C=NH) NH ₂	H	NO ₂	Ph	OH, OH
301	NH (C=NH) NH ₂	H	NH ₂	Ph	OH, OH
302	NH (C=NH) H	H	H	2 - (t - butyl - NHSO ₂) - Ph	(+) - pin CH
303	NH (C=NH) NH ₂	2 - NHBOC	H	Ph	(+) - pin CI

304	NH(C=NH)NH ₂	2-NO ₂	H	Ph	(+)-pin	CJ
305	-OCH ₃	2-Me	H	2-(H ₂ NSO ₂)-	(+)-pin	CK
				Ph		
306	CH ₂ NH ₂	CH ₃	H	4-thiophen-	(+)-pin	
				2-yl		
307	CH ₂ NH ₂	CH ₃	H	4-thiophen-	(+)-pin	
				3-yl		
308	CH ₂ NH ₂	CH ₃	3-thio phen-	H	(+)-pin	
				2-yl		
309	CH ₂ NH ₂	CH ₃	3-thio phen-	H	(+)-pin	
				3-yl		
310	CH ₂ NH ₂	CH ₃	H	4-furan-2-	(+)-pin	
				yl		
311	CH ₂ NH ₂	CH ₃	H	4-furan-3-	(+)-pin	
				yl		
312	CH ₂ NH ₂	CH ₃	3- furan-	H	(+)-pin	
				2-yl		
313	CH ₂ NH ₂	CH ₃	3- furan-	H	(+)-pin	
				3-yl		
314	CH ₂ NH ₂	CH ₃	H	4-imidazol-	(+)-pin	
				2-yl		
315	CH ₂ NH ₂	CH ₃	H	4-imidazol-	(+)-pin	
				4-yl		
316	CH ₂ NH ₂	CH ₃	3-imid azol-	H	(+)-pin	
				2-yl		
317	CH ₂ NH ₂	CH ₃	3-imid azol-	H	(+)-pin	
				4-yl		
318	CH ₂ NH ₂	CH ₃	H	4-pyrazol-	(+)-pin	
				1-yl		

319	CH ₂ NH ₂	CH ₃	H	4-pyrazol- 2-yl	(+)-pin
320	CH ₂ NH ₂	CH ₃	3-pyra zol-1-	H	(+)-pin
			yl		
321	CH ₂ NH ₂	CH ₃	3-pyra zol-2-	H	(+)-pin
			yl		
322	CH ₂ NH ₂	CH ₃	H	4-pyrrol-1- yl	(+)-pin
323	CH ₂ NH ₂	CH ₃	H	4-pyrrol-2- yl	(+)-pin
324	CH ₂ NH ₂	CH ₃	3- pyrrol- -1-yl	H	(+)-pin
325	CH ₂ NH ₂	CH ₃	3- pyrrol- -2-yl	H	(+)-pin
326	CH ₂ NH ₂	CH ₃	H	4-(1,2,4- triazol-1- yl)	(+)-pin
327	CH ₂ NH ₂	CH ₃	H	4-(1,2,4- triazol-2- yl)	(+)-pin
328	CH ₂ NH ₂	CH ₃	3- (1,2,4- tri azol- 1-yl)	H	(+)-pin
329	CH ₂ NH ₂	CH ₃	3- (1,2,4- tri azol- 1-yl)	H	(+)-pin

330	CH ₂ NH ₂	CH ₃	H	4-(1,2,3- triazol-1- yl)	(+)-pin
331	CH ₂ NH ₂	CH ₃	H	4-(1,2,3- triazol-4- yl)	(+)-pin
332	CH ₂ NH ₂	CH ₃	3-	H (1,2,3- -tri- azol- 1-yl)	(+)-pin
333	CH ₂ NH ₂	CH ₃	3-	H (1,2,3- -tri- azol- 4-yl)	(+)-pin
334	CH ₂ NH ₂	CH ₃	H	4-tetrazol-1-yl	(+)-pin
335	CH ₂ NH ₂	CH ₃	H	4-tetrazol-5-yl	(+)-pin
336	CH ₂ NH ₂	CH ₃	3-	H tetra- zol-1- yl	(+)-pin
337	CH ₂ NH ₂	CH ₃	3-	H tetra- zol-5- yl	(+)-pin
338	CH ₂ NH ₂	CH ₃	H	4-oxazol-2-yl	(+)-pin
339	CH ₂ NH ₂	CH ₃	H	4-oxazol-4-yl	(+)-pin
340	CH ₂ NH ₂	CH ₃	H	4-oxazol-5-yl	(+)-pin

341	CH ₂ NH ₂	CH ₃	3 - oxazol -2-yl	H	(+)-pin
342	CH ₂ NH ₂	CH ₃	3 - oxazol -4-yl	H	(+)-pin
343	CH ₂ NH ₂	CH ₃	3 - oxazol -5-yl	H	(+)-pin
344	CH ₂ NH ₂	CH ₃		H 4-thiazol- 2-yl	(+)-pin
345	CH ₂ NH ₂	CH ₃		H 4-thiazol- 4-yl	(+)-pin
346	CH ₂ NH ₂	CH ₃		H 4-thiazol- 5-yl	(+)-pin
347	CH ₂ NH ₂	CH ₃	3-thia zol-2- yl	H	(+)-pin
348	CH ₂ NH ₂	CH ₃	3-thia zol-4- yl	H	(+)-pin
349	CH ₂ NH ₂	CH ₃	3-thia zol-5- yl	H	(+)-pin
350	CH ₂ NH ₂	CH ₃		H 4-pyridin- 2-yl	(+)-pin
351	CH ₂ NH ₂	CH ₃		H 4-pyridin- 3-yl	(+)-pin
352	CH ₂ NH ₂	CH ₃	3-pyri din-2- yl	H	(+)-pin
353	CH ₂ NH ₂	CH ₃	3-pyri din-3- yl	H	(+)-pin

354	CH ₂ NH ₂	CH ₃	H	4-pyrimi din-2-yl	(+)-pin
355	CH ₂ NH ₂	CH ₃	H	4-pyrimi din-4-yl	(+)-pin
356	CH ₂ NH ₂	CH ₃	H	4-pyrimi din-5-yl	(+)-pin
357	CH ₂ NH ₂	CH ₃	3-pyri midin- 2-yl	H	(+)-pin
358	CH ₂ NH ₂	CH ₃	3-pyri midin- 4-yl	H	(+)-pin
359	CH ₂ NH ₂	CH ₃	3-pyri midin- 5-yl	H	(+)-pin

(+)-pin indicates (+)-pinanediol

A: MS (M+H)⁺ = 489;

B: MS (DCI - NH₃), 505 (M + H)⁺.

C: MS (M+H)⁺ = 490.

5 D: MS (M+H)⁺ = 506;

E: mp 145-150 °C; MS (DCI - NH₃), Calc: 506, Found: 506.

F: MS (DCI - NH₃), 522 (M + H)⁺.

G: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

H: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2605.

10 I: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

J: [a]_D = -14.85° (c = 0.606, MeOH); MS (CI - NH₃), m/e (%) 537.2 (10.2, M + H - H₂NCN)⁺, 429.0 (42.8), 277.0 (100); Anal. Calcd for C₃₀H₄₀BBrN₄O₅S: C, 54.64; H, 6.11; N, 8.50; B, 1.64. Found: C, 54.52; H, 6.16; N,

15 8.45; B, 1.60.

K: [a]_D = -15.07° (c = 0.604, MeOH); MS (CI - NH₃), m/e (%) 593.2 (1.2, (M + H)⁺), 568.3 (22, (M + NH₄ - H₂NCN)⁺), 551.3 (100, (M + H - H₂NCN)⁺); Anal. Calcd for C₃₁H₄₂BBrN₄O₅S: C, 55.29; H, 6.29; N, 8.32; B, 1.61.

20 Found: C, 55.15; H, 6.21; N, 8.22; B, 1.47.

- L: $[\alpha]_D = -14.12^\circ$ ($c = 0.602$, MeOH); MS (DCI - NH₃), m/e (%) 458 (100, (M + H)⁺); Anal. Calcd for C₂₄H₃₇BBrN₃O₃S: C, 53.54; H, 6.93; N, 7.81; B, 2.01. Found: C, 53.75; H, 6.98; N, 7.74; B, 1.97.
- 5 M: $[\alpha]_D = -14.21^\circ$ ($c = 0.556$, MeOH); MS (CI - NH₃), m/e (%) 472.2 (13.5, (M + H)⁺), 430.2 (100, (M + H - H₂NCN)⁺), 278.0 (61.9); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.50; H, 7.18; N, 7.83; B, 1.73.
- 10 N: $[\alpha]_D = -13.79^\circ$ ($c = 0.602$, MeOH); MS (DCI - NH₃), m/e (%) 472 (100, (M + H)⁺), 430 (37, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.64; H, 7.17; N, 7.50; B, 1.74.
- 15 O: $[\alpha]_D = -13.19^\circ$ ($c = 0.364$, MeOH); MS (CI - NH₃), m/e (%) 486.2 (3.3, (M + H)⁺), 444.2 (87.1, (M + H - H₂NCN)⁺), 292.0 (100); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 54.99; H, 7.22; N, 7.29; B, 2.07.
- 20 P: $[\alpha]_D = -12.71^\circ$ ($c = 0.598$, MeOH); MS (DCI - NH₃), m/e (%) 486 (100, (M + H)⁺), 444 (16, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 55.09; H, 7.45; N, 7.40; B, 1.67.
- 25 Q: MS (DCI - NH₃), m/e (%) 514 (100, (M + H)⁺), 472 (16, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₈H₄₅BBrN₃O₃S: C, 56.57; H, 7.63; N, 7.07; B, 1.82. Found: C, 56.19; H, 7.53; N, 6.97; B, 1.99.
- R: $[\alpha]_D = -11.70^\circ$ ($c = 0.530$, MeOH); MS (DCI - NH₃),
- 30 m/e (%) 512 (100, (M + H)⁺), 470 (40, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₈H₄₃BBrN₃O₃S: C, 56.77; H, 7.32; N, 7.09; B, 1.82. Found: C, 56.49; H, 7.38; N, 6.96; B, 1.75.
- S: HRMS (DCI - NH₃), Calc: 577.3019, Found: 577.3025.
- 35 T: $[\alpha]_D = -8.31^\circ$ ($c = 0.614$, MeOH); MS (DCI - NH₃), m/e (%) 502 (100, (M + H)⁺), 460 (28, (M + H - H₂NCN)⁺);

Anal. Calcd for $C_{26}H_{41}BBrN_3O_4S$: C, 53.62; H, 7.10; N, 7.21; B, 1.86. Found: C, 53.61; H, 7.09; N, 7.20; B, 1.78.

U: HRMS (DCI - NH₃), Calc: 513.2707, Found: 513.2702.

5 V: HRMS (DCI - NH₃), Calc: 555.3165, Found: 555.3176.

W: HRMS (DCI - NH₃), Calc: 579.2812, Found: 579.2801.

X: HRMS (DCI - NH₃), Calc: 450.2962, Found: 450.2958.

Y: HRMS (DCI - NH₃), Calc: 640.3016, Found: 640.3022.

Z: $[\alpha]_D = -8.80^\circ$ (c = 0.602, MeOH); MS (CI - NH₃), m/e

10 (%) 593.2 (1.3, (M + H - H₂N CN)⁺), 485.2 (42.7), 333.0 (100); Anal. Calcd for $C_{34}H_{48}BBrN_4O_5S$: C, 57.07; H, 6.76; N, 7.83; B, 1.51. Found: C, 57.17; H, 6.84; N, 7.76; B, 1.41.

AA: MS (CI - NH₃), m/e (%) 649.4 (1.9, (M + H)⁺), 624.4

15 (31, (M + NH₄ - H₂N CN)⁺), 607.2 (100, (M + H - H₂N CN)⁺), 455.0 (39), 444.0 (29.8); Anal. Calcd for $C_{35}H_{50}BBrN_4O_5S$: C, 57.62; H, 6.91; N, 7.68; B, 1.48.

Found: C, 57.37; H, 6.86; N, 7.64; B, 1.40.

BB: HRMS (DCI - NH₃), Calc: 520.2805, Found: 520.2796.

20 SS. MS (DCI - NH₃), Calc: 507, Found: 507.

TT. MS (DCI - NH₃), Calc: 534, Found: 534.

UU. MS (DCI - NH₃), Calc: 638, Found: 638.

VV. MS (DCI - NH₃), Calc: 618, Found: 618.

XX. MS (DCI - NH₃), Calc: 489, Found: 489.

25 YY. MS (DCI - NH₃), Calc: 461, Found: 461.

ZZ. MS (DCI - NH₃), Calc: 582, Found: 582.

AB. MS (DCI - NH₃), Calc: 641, Found: 641.

AC. MS (DCI - NH₃), Calc: 625, Found: 625.

AD. MS (DCI - NH₃), Calc: 490, Found: 490.

30 AE. MS (DCI - NH₃), Calc: 534, Found: 534.

AF. MS (DCI - NH₃), Calc: 504, Found: 504.

CB. MS (M+H)⁺, Calc: 503.32, Found: 503.32.

CD. MS (M+H)⁺, Calc: , Found: .(WITYAK)

CE. MS (M+H)⁺, Calc: 658, Found: 658.

35 CF. MS (M+H)⁺, Calc: 638, Found: 638.

CG. MS (M+H)⁺, Calc: 669, Found: 669.

CH. MS (M+H)⁺, Calc: 609, Found: 609.

CI. MS (M+H)⁺, Calc: 604, Found: 604.

CJ. MS (M+H)⁺, Calc: 641, Found: 641.

CK. MS (M+H)⁺, Calc: 555, Found: 555.

5

Table 2

Ex	X	Y	Y ¹ , Y ²	Phys Data
365	CH ₂ NH ₂	CO	(+)-pin	
366	CH ₂ NH ₂	SO ₂	(+)-pin	
367	NHC(NH)NH ₂	CO	(+)-pin	
368	NHC(NH)NH ₂	SO ₂	(+)-pin	
369	SC(NH)NH ₂	CO	(+)-pin	CC
370	SC(NH)NH ₂	SO ₂	(+)-pin	DD
371	CH ₂ NH ₂	CO	OH, OH	
372	CH ₂ NH ₂	SO ₂	OH, OH	
373	NHC(NH)NH ₂	CO	OH, OH	
374	NHC(NH)NH ₂	SO ₂	OH, OH	
375	SC(NH)NH ₂	CO	OH, OH	
376	SC(NH)NH ₂	SO ₂	OH, OH	
10	CC: HRMS (DCI - NH ₃),	Calc: 560.2390,	Found: 560.2407.	
	DD: HRMS (DCI - NH ₃),	Calc: 596.2060,	Found: 596.2055.	

Table 3

Ex	X	t	Y ¹ , Y ²	Phys Data
382	NH ₂	2	(+)-pin	
383	SC(NH)NH ₂	2	(+)-pin	EE
384	SC(NH)NH ₂	1	(+)-pin	FF
385	NHC(NH)NH ₂	2	(+)-pin	
386	NHC(NH)NH ₂	1	(+)-pin	
387	NH ₂	2	OH, OH	
388	SC(NH)NH ₂	2	OH, OH	
389	SC(NH)NH ₂	1	OH, OH	
390	NHC(NH)NH ₂	2	OH, OH	
391	NHC(NH)NH ₂	1	OH, OH	
5	EE: HRMS (DCI - NH ₃), Calc: 546.2597, Found: 546.2604.			
	FF: HRMS (DCI - NH ₃), Calc: 534.2597, Found: 534.2609.			

Table 4

Ex	X	Y ¹ , Y ²	Phys Data
397	CH ₂ NH ₂	(+)-pin	
398	NHC(NH)NH ₂	(+)-pin	
399	SC(NH)NH ₂	(+)-pin	GG
400	CH ₂ NH ₂	OH, OH	
401	NHC(NH)NH ₂	OH, OH	
402	SC(NH)NH ₂	OH, OH	

5 GG: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2445.

Table 5

10

Ex	X	Y ¹ , Y ²	Phys Data
403	CH ₂ NH ₂	(+)-pin	
404	NHC(NH)NH ₂	(+)-pin	

405	SC(NH)NH ₂	(+)-pin	HH
406	CH ₂ NH ₂	OH,OH	
407	NHC(NH)NH ₂	OH,OH	
408	SC(NH)NH ₂	OH,OH	

HH: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2452.

Table 6

5

Ex	X	Y ¹ , Y ²	Phys. Data
436	NHC(NH)NH ₂	(+)-pin	
437	SC(NH)NH ₂	(+)-pin	II
438	CH ₂ NH ₂	(+)-pin	
439	NHC(NH)NH ₂	OH,OH	
440	SC(NH)NH ₂	OH,OH	
441	CH ₂ NH ₂	OH,OH	

II: HRMS (DCI - NH₃), Calc: 480.2493, Found: 480.2492.

Table 7

Ex	X	Y	Y ¹ ,Y ²	Phys Data
447	NHC(NH)NH ₂	O	(+)-pin	WW
448	SC(NH)NH ₂	O	(+)-pin	JJ
449	CH ₂ NH ₂	O	(+)-pin	
450	NHC(NH)NH ₂	S	(+)-pin	
451	SC(NH)NH ₂	S	(+)-pin	
452	CH ₂ NH ₂	S	(+)-pin	
453	NHC(NH)NH ₂	O	OH,OH	
454	SC(NH)NH ₂	O	OH,OH	
455	CH ₂ NH ₂	O	OH,OH	
456	NHC(NH)NH ₂	S	OH,OH	
457	SC(NH)NH ₂	S	OH,OH	
458	CH ₂ NH ₂	S	OH,OH	

5 JJ: HRMS (DCI - NH₃), Calc: 496.2441, Found: 496.2449.
 WW. MS (DCI - NH₃), Calc: 345, Found: 345.

Table 8

	Ex	X	R ^B	R ^C	Y ¹ , Y ²	Phys Data
	464	NHC(NH)NH ₂	H	Ph	(+)-pin	
	465	NHC(NH)NH ₂	OBn	H	(+)-pin	
	466	SC(NH)NH ₂	H	Ph	(+)-pin	KK
	467	SC(NH)NH ₂	OBn	H	(+)-pin	LL
	468	CH ₂ NH ₂	H	Ph	(+)-pin	CL
	469	CH ₂ NH ₂	OBn	H	(+)-pin	
	470	NHC(NH)NH ₂	H	Ph	OH, OH	
	471	NHC(NH)NH ₂	OBn	H	OH, OH	
	472	SC(NH)NH ₂	H	Ph	OH, OH	
	473	SC(NH)NH ₂	OBn	H	OH, OH	
	474	CH ₂ NH ₂	H	Ph	OH, OH	CM
	475	CH ₂ NH ₂	OBn	H	OH, OH	
5		KK: HRMS (DCI - NH ₃), Calc: 507.2601, Found: 507.2592.				
		LL: HRMS (DCI - NH ₃), Calc: 537.2667, Found: 537.2685.				
		CL: Anal. Calc'd. for C ₂₇ H ₃₆ BN ₃ O ₃ •(HCl)1.7•(H ₂ O)2.2: C, 57.60; H, 7.54; Cl, 10.70; N, 7.46. Found: C, 57.40; H, 7.23; Cl, 10.78; N, 7.53. MS (M+H) ⁺ : calc. 462, Found				
10		462.				
		CM: MS (M+H) ⁺ : Calc: 328, Found: 328.				

Table 9

Ex	X	Y ¹ , Y ²	Phys Data
476	NHC(NH)NH ₂	(+)-pin	
477	SC(NH)NH ₂	(+)-pin	MM
478	CH ₂ NH ₂	(+)-pin	
479	NHC(NH)NH ₂	OH, OH	
480	SC(NH)NH ₂	OH, OH	
481	CH ₂ NH ₂	OH, OH	

5 MM: HRMS (DCI - NH₃), Calc: 498.2233, Found: 498.2231.

Table 10

10

Ex	X	W ¹	W ²	R ³	Y ¹ , Y ²	Phys Data
482	NHC(NH)NH ₂	N	CH	H	(+)-pin	
483	SC(NH)NH ₂	N	CH	H	(+)-pin	NN
484	CH ₂ NH ₂	N	CH	H	(+)-pin	

485	NHC(NH)NH ₂	CH	N	Ph	(+)-pin	
486	SC(NH)NH ₂	CH	N	Ph	(+)-pin	OO
487	CH ₂ NH ₂	CH	N	Ph	(+)-pin	
488	NHC(NH)NH ₂	N	CH	H	OH,OH	
489	SC(NH)NH ₂	N	CH	H	OH,OH	
490	CH ₂ NH ₂	N	CH	H	OH,OH	
491	NHC(NH)NH ₂	CH	N	Ph	OH,OH	
492	SC(NH)NH ₂	CH	N	Ph	OH,OH	
493	CH ₂ NH ₂	CH	N	Ph	OH,OH	
NN:	HRMS (DCI - NH ₃)				Calc: 481.2445, Found: 481.2442.	
OO:	HRMS (DCI - NH ₃)				Calc: 557.2758, Found: 557.2754.	

Table 11

5

Ex	X	Y ¹ , Y ²	Phys Data
499	NHC(NH)NH ₂	(+)-pin	
500	SC(NH)NH ₂	(+)-pin	PP
501	CH ₂ NH ₂	(+)-pin	
502	NHC(NH)NH ₂	OH,OH	
503	SC(NH)NH ₂	OH,OH	
504	CH ₂ NH ₂	OH,OH	

PP: HRMS (DCI - NH₃) , Calc: 5481.2445, Found: 481.2440.

Table 12

	Ex	X	R ³	Y ¹ , Y ²	Phys Data
	510	SC(NH)NH ₂	H	(+)-pin	QQ
5	QQ: HRNS (NH ₃ -CI/DEP), Calc: 503.3193, Found: 503.3199.				

Table 13

10

Ex	m, X	R ^A	R ^B	R ^C	Y ¹ , Y ²	Phys Data
516	2, SC(NH)NH ₂	H	NHCO-(CH ₂) ₂ Ph	H	(+)-pin	RR
517	2, SC(NH)NH ₂	H	Ph	H	(+)-pin	
518	2, SC(NH)NH ₂	H	OPh	Ph	(+)-pin	
519	1, SC(NH)NH ₂	H	H	4-pyridyl	(+)-pin	
520	1, NHC(NH)NH ₂	COPh	H	H	(+)-pin	

521	3, NHC(NH)NH ₂	H	COPh	H	(+)-pin
522	3, NHC(NH)NH ₂	H	H	COPh	(+)-pin

RR: HRMS (DCI-NH₃), Calc: 605.333, Found: 605.3325.

Table 14

Ex	X	m	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
528	CH ₂ NH ₂	1	Ph	H	(+)-pin	
529	CH ₂ NH ₂	1	Ph	Methyl	(+)-pin	
530	CH ₂ NH ₂	1	Ph	Ethyl	(+)-pin	
531	CH ₂ NH ₂	1	Ph	n-Propyl	(+)-pin	
532	CH ₂ NH ₂	1	Ph	n-Butyl	(+)-pin	
533	CH ₂ NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin	
534	CH ₂ NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin	
535	CH ₂ NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin	
536	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin	
537	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin	
538	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin	
539	CH ₂ NH ₂	1	Ph	CH ₂ CN	(+)-pin	
540	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin	
541	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin	
542	CH ₂ NH ₂	1	Ph	CF ₃	(+)-pin	
543	CH ₂ NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin	
544	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin	
545	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin	
546	CH ₂ NH ₂	1	Ph	F ₅ -Ph	(+)-pin	
547	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin	
548	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin	
549	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
550	CH ₂ NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin	
551	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin	
552	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin	
553	CH ₂ NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin	
554	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin	
555	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin	

556	CH ₂ NH ₂	1	Ph	CH ₂ OH	(+)-pin
557	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin
558	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
559	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
560	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
561	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
562	CH ₂ NH ₂	1	Ph	Ph	(+)-pin
563	CH ₂ NH ₂	1	Ph	PhCH ₂	(+)-pin AG
564	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	(+)-pin
565	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
566	CH ₂ NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
567	CH ₂ NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
568	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
569	CH ₂ NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
570	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
571	CH ₂ NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
572	CH ₂ NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
573	NH(C=NH)NH ₂	1	Ph	H	(+)-pin
574	NH(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
575	NH(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
576	NH(C=NH)NH ₂	1	Ph	n-Propyl	(+)-pin
577	NH(C=NH)NH ₂	1	Ph	n-Butyl	(+)-pin
578	NH(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin
579	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
580	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
581	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
582	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
583	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
584	NH(C=NH)NH ₂	1	Ph	CH ₂ CN	(+)-pin
585	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin
586	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
587	NH(C=NH)NH ₂	1	Ph	CF ₃	(+)-pin
588	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin
589	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
590	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
591	NH(C=NH)NH ₂	1	Ph	F ₅ -Ph	(+)-pin
592	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin
593	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
594	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
595	NH(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin

596	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
597	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
598	NH(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin
599	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
600	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
601	NH(C=NH)NH ₂	1	Ph	CH ₂ OH	(+)-pin
602	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin
603	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
604	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
605	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
606	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
607	NH(C=NH)NH ₂	1	Ph	Ph	(+)-pin
609	NH(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
610	NH(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
611	NH(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
612	NH(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
613	NH(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
614	NH(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
615	NH(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
616	NH(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
617	CH ₂ NH ₂	1	Ph	H	OH, OH
618	CH ₂ NH ₂	1	Ph	Methyl	OH, OH
619	CH ₂ NH ₂	1	Ph	Ethyl	OH, OH
620	CH ₂ NH ₂	1	Ph	n-Propyl	OH, OH
621	CH ₂ NH ₂	1	Ph	n-Butyl	OH, OH
622	CH ₂ NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
623	CH ₂ NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH
624	CH ₂ NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
625	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
626	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
627	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
628	CH ₂ NH ₂	1	Ph	CH ₂ CN	OH, OH
629	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
630	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
631	CH ₂ NH ₂	1	Ph	CF ₃	OH, OH
632	CH ₂ NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
633	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
634	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
635	CH ₂ NH ₂	1	Ph	F ₅ -Ph	OH, OH
636	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH

637	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
638	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
639	CH ₂ NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
640	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
641	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
642	CH ₂ NH ₂	1	Ph	CH ₂ NO ₂	OH, OH
643	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
644	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
645	CH ₂ NH ₂	1	Ph	CH ₂ OH	OH, OH
646	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
647	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
648	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
649	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
650	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
651	CH ₂ NH ₂	1	Ph	Ph	OH, OH
652	CH ₂ NH ₂	1	Ph	PhCH ₂	OH, OH AH
653	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
654	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
655	CH ₂ NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
656	CH ₂ NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
657	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
658	CH ₂ NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
659	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
660	CH ₂ NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
661	CH ₂ NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
662	NH(C=NH)NH ₂	1	Ph	H	OH, OH
663	NH(C=NH)NH ₂	1	Ph	Methyl	OH, OH
664	NH(C=NH)NH ₂	1	Ph	Ethyl	OH, OH
665	NH(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
666	NH(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
667	NH(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
668	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH
669	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
670	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
671	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
672	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
673	NH(C=NH)NH ₂	1	Ph	CH ₂ CN	OH, OH
674	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
675	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
676	NH(C=NH)NH ₂	1	Ph	CP ₃	OH, OH

677	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
678	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
679	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
680	NH(C=NH)NH ₂	1	Ph	F ₅ -Ph	OH, OH
681	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
682	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
683	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
684	NH(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
685	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
686	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
687	NH(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	OH, OH
688	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
689	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
690	NH(C=NH)NH ₂	1	Ph	CH ₂ OH	OH, OH
691	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
692	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
693	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
694	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
695	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
696	NH(C=NH)NH ₂	1	Ph	Ph	OH, OH
697	NH(C=NH)NH ₂	1	Ph	PhCH ₂	OH, OH
698	NH(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
699	NH(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
700	NH(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
701	NH(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
702	NH(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
703	NH(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
704	NH(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
705	NH(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
706	NH(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
707	-S-(C=NH)NH ₂	1	Ph	H	(+)-pin
708	-S-(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
709	-S-(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
710	-S-(C=NH)NH ₂	1	Ph	n-Propyl	(+)-pin
711	-S-(C=NH)NH ₂	1	Ph	n-Butyl	(+)-pin
712	-S-(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin
713	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
714	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
715	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
716	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin

717	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
718	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN	(+)-pin
719	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin
720	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
721	-S-(C=NH)NH ₂	1	Ph	CF ₃	(+)-pin
722	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin
723	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
724	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
725	-S-(C=NH)NH ₂	1	Ph	F ₅ -Ph	(+)-pin
726	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin
727	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
728	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
729	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin
730	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
731	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
732	-S-(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin
733	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
734	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
735	-S-(C=NH)NH ₂	1	Ph	CH ₂ OH	(+)-pin
736	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin
737	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
738	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
739	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
740	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
741	-S-(C=NH)NH ₂	1	Ph	Ph	(+)-pin
742	-S-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
743	-S-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
744	-S-(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
745	-S-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
746	-S-(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
747	-S-(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
748	-S-(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
749	-S-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
750	-S-(C=NH)NH ₂	1	Ph	H	OH, OH
751	-S-(C=NH)NH ₂	1	Ph	Methyl	OH, OH
752	-S-(C=NH)NH ₂	1	Ph	Ethyl	OH, OH
753	-S-(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
754	-S-(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
755	-S-(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
756	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH

757	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
758	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
759	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
760	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
761	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN	OH, OH
762	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
763	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
764	-S-(C=NH)NH ₂	1	Ph	CF ₃	OH, OH
765	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
766	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
767	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
768	-S-(C=NH)NH ₂	1	Ph	F ₅ -Ph	OH, OH
769	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
770	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
771	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
772	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
773	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
774	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
775	-S-(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	OH, OH
776	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
777	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
778	-S-(C=NH)NH ₂	1	Ph	CH ₂ OH	OH, OH
779	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
780	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
781	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
782	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
783	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
784	-S-(C=NH)NH ₂	1	Ph	Ph	OH, OH
785	-S-(C=NH)NH ₂	1	Ph	PhCH ₂	OH, OH
786	-S-(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
787	-S-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
788	-S-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
789	-S-(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
790	-S-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
791	-S-(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
792	-S-(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
793	-S-(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
794	-S-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
795	CH ₂ NH ₂	2	Ph	H	(+)-pin
796	CH ₂ NH ₂	2	Ph	H	OH, OH

797	OMe	1	Ph	H	(+)-pin
798	OMe	1	Ph	Methyl	(+)-pin
799	OMe	1	Ph	Ethyl	(+)-pin
800	OMe	1	Ph	n-Propyl	(+)-pin
801	OMe	1	Ph	n-Butyl	(+)-pin
802	OMe	1	Ph	CH ₂ SCH ₃	(+)-pin
803	OMe	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
804	OMe	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
805	OMe	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
806	OMe	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
807	OMe	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
808	OMe	1	Ph	CH ₂ CN	(+)-pin
809	OMe	1	Ph	CH ₂ CH ₂ CN	(+)-pin
810	OMe	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
811	OMe	1	Ph	CF ₃	(+)-pin
812	OMe	1	Ph	CF ₂ CF ₃	(+)-pin
813	OMe	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
814	OMe	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
815	OMe	1	Ph	F ₅ -Ph	(+)-pin
816	OMe	1	Ph	CH ₂ CO ₂ H	(+)-pin
817	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
818	OMe	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
819	OMe	1	Ph	CH ₂ CN ₄ H	(+)-pin
820	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
821	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
822	OMe	1	Ph	CH ₂ NO ₂	(+)-pin
823	OMe	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
824	OMe	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
825	OMe	1	Ph	CH ₂ OH	(+)-pin
826	OMe	1	Ph	(CH ₂) ₂ OH	(+)-pin
827	OMe	1	Ph	(CH ₂) ₃ OH	(+)-pin
828	OMe	1	Ph	CH ₂ CO ₂ Me	(+)-pin
829	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
830	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
831	OMe	1	Ph	Ph	(+)-pin
832	OMe	1	Ph	PhCH ₂	(+)-pin
833	OMe	1	Ph	Ph(CH ₂) ₂	(+)-pin
834	OMe	1	Ph	3-NO ₂ -Ph	(+)-pin
835	OMe	1	Ph	4-NO ₂ -Ph	(+)-pin
836	OMe	1	Ph	3-CO ₂ H-Ph	(+)-pin

837	OMe	1	Ph	4-CO ₂ H-Ph	(+)-pin
838	OMe	1	Ph	3-CN ₄ H-Ph	(+)-pin
839	OMe	1	Ph	4-CN ₄ H-Ph	(+)-pin
840	OMe	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
841	OMe	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
842	OMe	1	Ph	H	OH, OH
843	OMe	1	Ph	Methyl	OH, OH
844	OMe	1	Ph	Ethyl	OH, OH
845	OMe	1	Ph	n-Propyl	OH, OH
846	OMe	1	Ph	n-Butyl	OH, OH
847	OMe	1	Ph	CH ₂ SCH ₃	OH, OH
848	OMe	1	Ph	CH ₂ (SO)CH ₃	OH, OH
849	OMe	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
850	OMe	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
851	OMe	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
852	OMe	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
853	OMe	1	Ph	CH ₂ CN	OH, OH
854	OMe	1	Ph	CH ₂ CH ₂ CN	OH, OH
855	OMe	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
856	OMe	1	Ph	CF ₃	OH, OH
857	OMe	1	Ph	CF ₂ CF ₃	OH, OH
858	OMe	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
859	OMe	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
860	OMe	1	Ph	F ₅ -Ph	OH, OH
861	OMe	1	Ph	CH ₂ CO ₂ H	OH, OH
862	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
863	OMe	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
864	OMe	1	Ph	CH ₂ CN ₄ H	OH, OH
865	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
866	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
867	OMe	1	Ph	CH ₂ NO ₂	OH, OH
868	OMe	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
869	OMe	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
870	OMe	1	Ph	CH ₂ OH	OH, OH
871	OMe	1	Ph	(CH ₂) ₂ OH	OH, OH
872	OMe	1	Ph	(CH ₂) ₃ OH	OH, OH
873	OMe	1	Ph	CH ₂ CO ₂ Me	OH, OH
874	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
875	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
876	OMe	1	Ph	Ph	OH, OH

877	OMe	1	Ph	PhCH ₂	OH, OH
878	OMe	1	Ph	Ph(CH ₂) ₂	OH, OH
879	OMe	1	Ph	3-NO ₂ -Ph	OH, OH
880	OMe	1	Ph	4-NO ₂ -Ph	OH, OH
881	OMe	1	Ph	3-CO ₂ H-Ph	OH, OH
882	OMe	1	Ph	4-CO ₂ H-Ph	OH, OH
883	OMe	1	Ph	3-CN ₄ H-Ph	OH, OH
884	OMe	1	Ph	4-CN ₄ H-Ph	OH, OH
885	OMe	1	Ph	3-(HOCH ₂)-Ph	OH, OH
886	OMe	1	Ph	4-(HOCH ₂)-Ph	OH, OH
887	CH ₂ NH ₂	1	PhCH ₂	H	(+)-pin AK
888	CH ₂ NH ₂	1	PhCH ₂	Methyl	(+)-pin AL
889	CH ₂ NH ₂	1	PhCH ₂	Ethyl	(+)-pin
890	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	(+)-pin AM
891	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
892	CH ₂ NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin AN
893	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
894	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
895	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
896	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
897	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
898	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin CN
899	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
900	CH ₂ NH ₂	1	PhCH ₂	CF ₃	(+)-pin
901	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
902	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
903	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
904	CH ₂ NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
905	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin AW
906	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
907	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
908	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
909	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
910	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
911	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
912	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
913	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin AO
914	CH ₂ NH ₂	2	PhCH ₂	CH ₂ OCH ₂ Ph	(+)-pin AP
915	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
916	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin

917	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin CP
918	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
919	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
920	CH ₂ NH ₂	1	PhCH ₂	Ph	(+)-pin AQ
921	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin AR
922	CH ₂ NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
923	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin AS
924	CH ₂ NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
925	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
926	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
927	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
928	CH ₂ NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
929	CH ₂ NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
930	CH ₂ NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
931	CH ₂ NH ₂	1	PhCH ₂	3-NH ₂ -Ph	(+)-pin CQ
932	NH(C=NH)NH ₂	1	PhCH ₂	H	(+)-pin
933	NH(C=NH)NH ₂	1	PhCH ₂	Methyl	(+)-pin
934	NH(C=NH)NH ₂	1	PhCH ₂	Ethyl	(+)-pin
935	NH(C=NH)NH ₂	1	PhCH ₂	n-Propyl	(+)-pin
936	NH(C=NH)NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
937	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
938	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
939	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
940	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
941	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
942	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
943	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
944	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
945	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
946	NH(C=NH)NH ₂	1	PhCH ₂	CF ₃	(+)-pin
947	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
948	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
949	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
950	NH(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
951	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
952	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
953	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
954	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
955	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
956	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin

957	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
958	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
959	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
960	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin
961	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
962	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
963	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
964	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
965	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
966	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin
967	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin AT
968	NH (C=NH) NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
969	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin AU
970	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
971	NH (C=NH) NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
972	NH (C=NH) NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
973	NH (C=NH) NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
974	NH (C=NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
975	NH (C=NH) NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
976	NH (C=NH) NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
977	CH ₂ NH ₂	1	PhCH ₂	H	OH, OH AI
978	CH ₂ NH ₂	1	PhCH ₂	Methyl	OH, OH
979	CH ₂ NH ₂	1	PhCH ₂	Ethyl	OH, OH
980	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	OH, OH
981	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	OH, OH
982	CH ₂ NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
983	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
984	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
985	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
986	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
987	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
988	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
989	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
990	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
991	CH ₂ NH ₂	1	PhCH ₂	CF ₃	OH, OH
992	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₃	OH, OH
993	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
994	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
995	CH ₂ NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
996	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH

997	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
998	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
999	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
1000	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1001	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1002	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1003	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1004	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
1005	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
1006	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1007	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1008	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1009	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1010	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1011	CH ₂ NH ₂	1	PhCH ₂	Ph	OH, OH AV
1012	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	OH, OH
1013	CH ₂ NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1014	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1015	CH ₂ NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
1016	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1017	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1018	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
1019	CH ₂ NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1020	CH ₂ NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
1021	CH ₂ NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1022	CH ₂ NH ₂	1	PhCH ₂	F	(+)-pin
1023	CH ₂ NH ₂	1	PhCH ₂	Cl	(+)-pin
1024	CH ₂ NH ₂	1	PhCH ₂	Br	(+)-pin
1025	CH ₂ NH ₂	1	PhCH ₂	I	(+)-pin
1026	CH ₂ NH ₂	1	PhCH ₂	COOH	(+)-pin
1027	CH ₂ NH ₂	1	PhCH ₂	COOMe	(+)-pin
1028	CH ₂ NH ₂	1	PhCH ₂	CHO	(+)-pin
1029	CH ₂ NH ₂	1	PhCH ₂	COMe	(+)-pin
1030	CH ₂ NH ₂	1	PhCH ₂	NO ₂	(+)-pin
1031	CH ₂ NH ₂	1	PhCH ₂	CN	(+)-pin
1032	CH ₂ NH ₂	1	PhCH ₂	isopropyl	(+)-pin
1033	CH ₂ NH ₂	1	PhCH ₂	3-F-phenyl	(+)-pin
1034	CH ₂ NH ₂	1	PhCH ₂	3-Cl-phenyl	(+)-pin
1035	CH ₂ NH ₂	1	PhCH ₂	4-Br-phenyl	(+)-pin
1036	CH ₂ NH ₂	1	PhCH ₂	4-I-phenyl	(+)-pin

1037	CH ₂ NH ₂	1	PhCH ₂	3-CH ₃ -phenyl	(+)-pin
1038	CH ₂ NH ₂	1	PhCH ₂	3-MeO-phenyl	(+)-pin
1039	CH ₂ NH ₂	1	PhCH ₂	3-CN-phenyl	(+)-pin
1040	CH ₂ NH ₂	1	PhCH ₂	4-CN-phenyl	(+)-pin
1041	CH ₂ NH ₂	1	PhCH ₂	3-NC-phenyl	(+)-pin
1042	CH ₂ NH ₂	1	PhCH ₂	4-NC-phenyl	(+)-pin
1043	CH ₂ NH ₂	1	PhCH ₂	3-CF ₃ -phenyl	(+)-pin
1044	CH ₂ NH ₂	1	PhCH ₂	3-CH ₃ S-phenyl	(+)-pin
1045	CH ₂ NH ₂	1	PhCH ₂	3-CH ₃ SO-phenyl	(+)-pin
1046	CH ₂ NH ₂	1	PhCH ₂	3-CH ₃ SO ₂ -phenyl	(+)-pin
1047	CH ₂ NH ₂	1	PhCH ₂	3-N(Me) ₂ -phenyl	(+)-pin
1048	CH ₂ NH ₂	1	PhCH ₂	3-MeCO-phenyl	(+)-pin
1049	CH ₂ NH ₂	1	PhCH ₂	3-CHO-phenyl	(+)-pin
1050	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ Me-phenyl	(+)-pin
1051	CH ₂ NH ₂	1	PhCH ₂	3-COMH ₂ -phenyl	(+)-pin
1052	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NHSO ₂ CF ₃	(+)-pin
1053	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NHSO ₂ CH ₃	(+)-pin
1054	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ -i-propyl	(+)-pin
1055	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CHO	(+)-pin
1056	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ COMe	(+)-pin
1057	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ O-i-propyl	(+)-pin
1058	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OCOMe	(+)-pin
1059	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OCO-i-propyl	(+)-pin
1060	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OCO-Phenyl	(+)-pin
1061	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NHCOMe	(+)-pin
1062	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NHCO-i-propyl	(+)-pin
1063	CH ₂ NH ₂	1	PhCH ₂	F	OH, OH
1064	CH ₂ NH ₂	1	PhCH ₂	Cl	OH, OH
1065	CH ₂ NH ₂	1	PhCH ₂	Br	OH, OH
1066	CH ₂ NH ₂	1	PhCH ₂	I	OH, OH
1067	CH ₂ NH ₂	1	PhCH ₂	COOH	OH, OH
1068	CH ₂ NH ₂	1	PhCH ₂	COOME	OH, OH
1069	CH ₂ NH ₂	1	PhCH ₂	CHO	OH, OH
1070	CH ₂ NH ₂	1	PhCH ₂	COMe	OH, OH
1071	CH ₂ NH ₂	1	PhCH ₂	NO ₂	OH, OH
1072	CH ₂ NH ₂	1	PhCH ₂	CN	OH, OH
1073	CH ₂ NH ₂	1	PhCH ₂	isopropyl	OH, OH
1074	CH ₂ NH ₂	1	PhCH ₂	3-F-phenyl	OH, OH
1075	CH ₂ NH ₂	1	PhCH ₂	3-Cl-phenyl	OH, OH
1076	CH ₂ NH ₂	1	PhCH ₂	4-Br-phenyl	OH, OH

1077	CH_2NH_2	1	PhCH_2	4-I-phenyl	OH, OH
1078	CH_2NH_2	1	PhCH_2	3-CH ₃ -phenyl	OH, OH
1079	CH_2NH_2	1	PhCH_2	3-MeO-phenyl	OH, OH
1080	CH_2NH_2	1	PhCH_2	3-CN-phenyl	OH, OH
1081	CH_2NH_2	1	PhCH_2	4-CN-phenyl	OH, OH
1082	CH_2NH_2	1	PhCH_2	3-NC-phenyl	OH, OH
1083	CH_2NH_2	1	PhCH_2	4-NC-phenyl	OH, OH
1084	CH_2NH_2	1	PhCH_2	3-CF ₃ -phenyl	OH, OH
1085	CH_2NH_2	1	PhCH_2	3-CH ₃ S-phenyl	OH, OH
1086	CH_2NH_2	1	PhCH_2	3-CH ₃ SO-phenyl	OH, OH
1087	CH_2NH_2	1	PhCH_2	3-CH ₃ SO ₂ -phenyl	OH, OH
1088	CH_2NH_2	1	PhCH_2	3-N(Me) ₂ -phenyl	OH, OH
1089	CH_2NH_2	1	PhCH_2	3-MeCO-phenyl	OH, OH
1090	CH_2NH_2	1	PhCH_2	3-CHO-phenyl	OH, OH
1091	CH_2NH_2	1	PhCH_2	3-CO ₂ Me-phenyl	OH, OH
1092	CH_2NH_2	1	PhCH_2	3-CONH ₂ -phenyl	OH, OH
1093	CH_2NH_2	1	PhCH_2	$\text{CH}_2\text{NHSO}_2\text{CF}_3$	OH, OH
1094	CH_2NH_2	1	PhCH_2	$\text{CH}_2\text{NHSO}_2\text{CH}_3$	OH, OH
1095	CH_2NH_2	1	PhCH_2	CH_2CO_2 -i-propyl	OH, OH
1096	CH_2NH_2	1	PhCH_2	CH_2CHO	OH, OH
1097	CH_2NH_2	1	PhCH_2	$\text{CH}_2\text{CH}_2\text{OMe}$	OH, OH
1098	CH_2NH_2	1	PhCH_2	$\text{CH}_2\text{CH}_2\text{O}$ -i-propyl	OH, OH
1099	CH_2NH_2	1	PhCH_2	CH_2OCOMe	OH, OH
1100	CH_2NH_2	1	PhCH_2	CH_2OCO -i-propyl	OH, OH
1101	CH_2NH_2	1	PhCH_2	CH_2OCO -Phenyl	OH, OH
1102	CH_2NH_2	1	PhCH_2	CH_2NHCOMe	OH, OH
1103	CH_2NH_2	1	PhCH_2	CH_2NHCO -i-propyl	OH, OH
1104	CH_2NH_2	1	3,4-Di-F- PhCH_2	CH_2CN	(+)-pin
1105	CH_2NH_2	1	3,4-Di- Cl-PhCH_2	CH_2CN	(+)-pin
1106	CH_2NH_2	1	4-Br- PhCH_2	CH_2CN	(+)-pin
1107	CH_2NH_2	1	4-I- PhCH_2	CH_2CN	(+)-pin
1108	CH_2NH_2	1	4-Me- PhCH_2	CH_2CN	(+)-pin
1109	CH_2NH_2	1	2-MeO- PhCH_2	CH_2CN	(+)-pin
1110	CH_2NH_2	1	2-CN- PhCH_2	CH_2CN	(+)-pin

1111	CH ₂ NH ₂	1	2-NC- PhCH ₂	CH ₂ CN	(+)-pin
1112	CH ₂ NH ₂	1	2-NO ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1113	CH ₂ NH ₂	1	2-CF ₃ - PhCH ₂	CH ₂ CN	(+)-pin
1114	CH ₂ NH ₂	1	2-MeS- PhCH ₂	CH ₂ CN	(+)-pin
1115	CH ₂ NH ₂	1	3-MeSO- PhCH ₂	CH ₂ CN	(+)-pin
1116	CH ₂ NH ₂	1	3-MeSO ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1117	CH ₂ NH ₂	1	2-NH ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1118	CH ₂ NH ₂	1	3-NHMe- PhCH ₂	CH ₂ CN	(+)-pin
1119	CH ₂ NH ₂	1	2-CHO- PhCH ₂	CH ₂ CN	(+)-pin
1120	CH ₂ NH ₂	1	3-MeCO- PhCH ₂	CH ₂ CN	(+)-pin
1121	CH ₂ NH ₂	1	2-MeO ₂ C- PhCH ₂	CH ₂ CN	(+)-pin
1122	CH ₂ NH ₂	1	2-NH ₂ OC- PhCH ₂	CH ₂ CN	(+)-pin
1123	CH ₂ NH ₂	1	2-HOCH ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1124	CH ₂ NH ₂	1	3,4-Di-F- PhCH ₂	CH ₂ CN	OH, OH
1125	CH ₂ NH ₂	1	3,4-Di- Cl-PhCH ₂	CH ₂ CN	OH, OH
1126	CH ₂ NH ₂	1	4-Br- PhCH ₂	CH ₂ CN	OH, OH
1127	CH ₂ NH ₂	1	4-I-PhCH ₂	CH ₂ CN	OH, OH
1128	CH ₂ NH ₂	1	4-Me- PhCH ₂	CH ₂ CN	OH, OH
1129	CH ₂ NH ₂	1	2-MeO- PhCH ₂	CH ₂ CN	OH, OH
1130	CH ₂ NH ₂	1	2-CN- PhCH ₂	CH ₂ CN	OH, OH

1131	CH ₂ NH ₂	1	2-NC- PhCH ₂	CH ₂ CN	OH, OH
1132	CH ₂ NH ₂	1	2-NO ₂ - PhCH ₂	CH ₂ CN	OH, OH
1133	CH ₂ NH ₂	1	2-CF ₃ - PhCH ₂	CH ₂ CN	OH, OH
1134	CH ₂ NH ₂	1	2-MeS- PhCH ₂	CH ₂ CN	OH, OH
1135	CH ₂ NH ₂	1	3-MeSO- PhCH ₂	CH ₂ CN	OH, OH
1136	CH ₂ NH ₂	1	3-MeSO ₂ - PhCH ₂	CH ₂ CN	OH, OH
1137	CH ₂ NH ₂	1	2-NH ₂ - PhCH ₂	CH ₂ CN	OH, OH
1138	CH ₂ NH ₂	1	3-NHMe- PhCH ₂	CH ₂ CN	OH, OH
1139	CH ₂ NH ₂	1	2-CHO- PhCH ₂	CH ₂ CN	OH, OH
1140	CH ₂ NH ₂	1	3-MeCO- PhCH ₂	CH ₂ CN	OH, OH
1141	CH ₂ NH ₂	1	2-MeO ₂ C- PhCH ₂	CH ₂ CN	OH, OH
1142	CH ₂ NH ₂	1	2-NH ₂ OC- PhCH ₂	CH ₂ CN	OH, OH
1143	CH ₂ NH ₂	1	2-HOCH ₂ - PhCH ₂	CH ₂ CN	OH, OH
1144	NH(C=NH)NH ₂	1	PhCH ₂	H	OH, OH
1145	NH(C=NH)NH ₂	1	PhCH ₂	Methyl	OH, OH
1146	NH(C=NH)NH ₂	1	PhCH ₂	Ethyl	OH, OH
1147	NH(C=NH)NH ₂	1	PhCH ₂	n-Propyl	OH, OH
1148	NH(C=NH)NH ₂	1	PhCH ₂	n-Butyl	OH, OH
1149	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
1150	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
1151	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1152	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1153	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1154	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1155	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1156	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
1157	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH

1158	NH(C=NH)NH ₂	1	PhCH ₂	CF ₃	OH, OH
1159	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	OH, OH
1160	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1161	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1162	NH(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
1163	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
1164	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1165	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1166	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
1167	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1168	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1169	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1170	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1171	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
1172	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
1173	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1174	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1175	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1176	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1177	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1178	NH(C=NH)NH ₂	1	PhCH ₂	Ph	OH, OH
1179	NH(C=NH)NH ₂	1	PhCH ₂	PhCH ₂	OH, OH
1180	NH(C=NH)NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1181	NH(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1182	NH(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
1183	NH(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1184	NH(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1185	NH(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
1186	NH(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1187	NH(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
1188	NH(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1189	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CHO	(+)-pin
1190	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CHO	OH, OH
1191	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CHO	(+)-pin
1192	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CHO	OH, OH
1193	-S-(C=NH)NH ₂	1	PhCH ₂	H	(+)-pin
1194	-S-(C=NH)NH ₂	1	PhCH ₂	Methyl	(+)-pin
1195	-S-(C=NH)NH ₂	1	PhCH ₂	Ethyl	(+)-pin
1196	-S-(C=NH)NH ₂	1	PhCH ₂	n-Propyl	(+)-pin
1197	-S-(C=NH)NH ₂	1	PhCH ₂	n-Butyl	(+)-pin

1198	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
1199	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
1200	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1201	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1202	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1203	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1204	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1205	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
1206	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1207	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₃	(+)-pin
1208	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
1209	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1210	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1211	-S-(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
1212	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
1213	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1214	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1215	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
1216	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1217	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1218	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1219	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1220	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1221	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin
1222	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1223	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1224	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1225	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1226	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1227	-S-(C=NH)NH ₂	1	PhCH ₂	Ph	(+)-pin
1228	-S-(C=NH)NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
1229	-S-(C=NH)NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1230	-S-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1231	-S-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1232	-S-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1233	-S-(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1234	-S-(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1235	-S-(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
1236	-S-(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
1237	-S-(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin

1238	-CN	1	PhCH ₂	CH ₂ CN	(+)-pin
1239	-NO ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1240	-CH ₂ NO ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1241	-CF ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1242	-NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1243	-NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1244	-NHOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1245	-CH ₂ NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1246	-CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1247	-NH(C=NH)CH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1248	-NH(C=NH)NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1249	-NH(C=NH)NNH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1250	-NH(C=NH)NHCN	1	PhCH ₂	CH ₂ CN	(+)-pin
1251	-NH(C=NH)NHCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1252	-NH(C=NH) NHCOCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1253	-C(=NH)NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1254	-C(=NH)NHMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1255	-C(=NH)NHCOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1256	-CONH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1257	-CONHCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1258	-CO ₂ CH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1259	-OH	1	PhCH ₂	CH ₂ CN	(+)-pin
1260	-CH ₂ OH	1	PhCH ₂	CH ₂ CN	(+)-pin
1261	-SCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1262	-SOCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1263	-SO ₂ CH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1264	-S-(C=NH)NHCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1265	-S-(C=NH) NHCOCH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1266	-S-(C=NH)NH ₂	1	PhCH ₂	H	OH, OH
1267	-S-(C=NH)NH ₂	1	PhCH ₂	Methyl	OH, OH
1268	-S-(C=NH)NH ₂	1	PhCH ₂	Ethyl	OH, OH
1269	-S-(C=NH)NH ₂	1	PhCH ₂	n-Propyl	OH, OH
1270	-S-(C=NH)NH ₂	1	PhCH ₂	n-Butyl	OH, OH
1271	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
1272	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
1273	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1274	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1275	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH

1276	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1277	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1278	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
1279	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1280	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₃	OH, OH
1281	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	OH, OH
1282	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1283	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1284	-S-(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
1285	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
1286	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1287	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1288	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
1289	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1290	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1291	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1292	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1293	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
1294	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
1295	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1296	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1297	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1298	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1299	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1300	-S-(C=NH)NH ₂	1	PhCH ₂	Ph	OH, OH
1301	-S-(C=NH)NH ₂	1	PhCH ₂	PhCH ₂	OH, OH
1302	-S-(C=NH)NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1303	-S-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1304	-S-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
1305	-S-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1306	-S-(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1307	-S-(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
1308	-S-(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1309	-S-(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
1310	-S-(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1311	-CN	1	PhCH ₂	CH ₂ CN	OH, OH
1312	-NO ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1313	-CH ₂ NO ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1314	-CF ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1315	-NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH

1316	-NHOH	1	PhCH ₂	CH ₂ CN	OH, OH
1317	-NHMe	1	PhCH ₂	CH ₂ CN	OH, OH
1318	-CH ₂ NHOH	1	PhCH ₂	CH ₂ CN	OH, OH
1319	-CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	OH, OH
1320	-NH(C=NH)CH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1321	-NH(C=NH)NHOH	1	PhCH ₂	CH ₂ CN	OH, OH
1322	-NH(C=NH)NNH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1323	-NH(C=NH)HCN	1	PhCH ₂	CH ₂ CN	OH, OH
1324	-NH(C=NH)NHCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1325	-NH(C=NH) NHCOCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1326	-C(=NH)NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1327	-C(=NH)NHMe	1	PhCH ₂	CH ₂ CN	OH, OH
1328	-C(=NH)NHCOMe	1	PhCH ₂	CH ₂ CN	OH, OH
1329	-CONH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1330	-CONHCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1331	-CO ₂ CH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1332	-OH	1	PhCH ₂	CH ₂ CN	OH, OH
1333	-CH ₂ OH	1	PhCH ₂	CH ₂ CN	OH, OH
1334	-SCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1335	-SOCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1336	-SO ₂ CH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1337	-S-(C=NH)NHCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1338	-S-(C=NH) NHCOCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1339	CH ₂ NH ₂	2	PhCH ₂	H	(+)-pin
1340	CH ₂ NH ₂	2	PhCH ₂	H	OH, OH
1341	OMe	1	PhCH ₂	H	(+)-pin
1342	OMe	1	PhCH ₂	Methyl	(+)-pin
1343	OMe	1	PhCH ₂	Ethyl	(+)-pin
1344	OMe	1	PhCH ₂	n-Propyl	(+)-pin
1345	OMe	1	PhCH ₂	n-Butyl	(+)-pin
1346	OMe	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
1347	OMe	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
1348	OMe	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1349	OMe	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1350	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1351	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1352	OMe	1	PhCH ₂	CH ₂ CN	(+)-pin CR
1353	OMe	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin

1354	OMe	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1355	OMe	1	PhCH ₂	CF ₃	(+)-pin
1356	OMe	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
1357	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1358	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1359	OMe	1	PhCH ₂	F ₅ -Ph	(+)-pin
1360	OMe	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
1361	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1362	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1363	OMe	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
1364	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1365	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1366	OMe	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1367	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1368	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1369	OMe	1	PhCH ₂	CH ₂ OH	(+)-pin
1370	OMe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1371	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1372	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1373	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1374	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1375	OMe	1	PhCH ₂	Ph	(+)-pin
1376	OMe	1	PhCH ₂	PhCH ₂	(+)-pin
1377	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1378	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1379	OMe	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1380	OMe	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1381	OMe	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1382	OMe	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1383	OMe	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
1384	OMe	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
1385	OMe	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
1386	OMe	1	PhCH ₂	H	OH, OH
1387	OMe	1	PhCH ₂	Methyl	OH, OH
1388	OMe	1	PhCH ₂	Ethyl	OH, OH
1389	OMe	1	PhCH ₂	n-Propyl	OH, OH
1390	OMe	1	PhCH ₂	n-Butyl	OH, OH
1391	OMe	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
1392	OMe	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
1393	OMe	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH

1394	OMe	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1395	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1396	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1397	OMe	1	PhCH ₂	CH ₂ CN	OH, OH
1398	OMe	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
1399	OMe	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1400	OMe	1	PhCH ₂	CF ₃	OH, OH
1401	OMe	1	PhCH ₂	CF ₂ CF ₃	OH, OH
1402	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1403	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1404	OMe	1	PhCH ₂	F ₅ -Ph	OH, OH
1405	OMe	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
1406	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1407	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1408	OMe	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
1409	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1410	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1411	OMe	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1412	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1413	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
1414	OMe	1	PhCH ₂	CH ₂ OH	OH, OH
1415	OMe	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1416	OMe	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1417	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1418	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1419	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1420	OMe	1	PhCH ₂	Ph	OH, OH
1421	OMe	1	PhCH ₂	PhCH ₂	OH, OH
1422	OMe	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1423	OMe	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1424	OMe	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
1425	OMe	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1426	OMe	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1427	OMe	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
1428	OMe	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1429	OMe	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
1430	OMe	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1431	CH ₂ NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin AX
1432	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1433	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin

1434	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1435	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1436	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
1437	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
1438	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1439	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1440	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1441	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1442	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1443	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
1444	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1445	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1446	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1447	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1448	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1449	CH ₂ NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
1450	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
1451	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1452	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1453	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
1454	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1455	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1456	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1457	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1458	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1459	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin CS
1460	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
1461	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1462	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1463	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1464	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1465	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ph	(+)-pin
1466	CH ₂ NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1467	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin AY
1468	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
1469	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
1470	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
1471	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
1472	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
1473	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin

1474	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
1475	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
1476	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin
1477	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1478	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
1479	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1480	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1481	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
1482	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
1483	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1484	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1485	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1486	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1487	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1488	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
1489	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1490	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1491	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1492	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1493	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1494	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
1495	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
1496	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1497	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1498	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
1499	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1500	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1501	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1502	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1503	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1504	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
1505	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
1506	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1507	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1508	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1509	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1510	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph	(+)-pin
1511	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1512	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1513	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin

1514	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
1515	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
1516	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
1517	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
1518	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
1519	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
1520	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
1521	CH ₂ NH ₂	1	PhCH ₂ CH ₂	H	OH, OH AZ
1522	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
1523	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
1524	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
1525	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
1526	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
1527	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
1528	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1529	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1530	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1531	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1532	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
1533	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
1534	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1535	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
1536	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
1537	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1538	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1539	CH ₂ NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
1540	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
1541	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1542	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1543	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
1544	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1545	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1546	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
1547	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
1548	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
1549	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
1550	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
1551	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
1552	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
1553	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH

1554	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1555	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ph	OH, OH
1556	CH ₂ NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	OH, OH
1557	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH AJ
1558	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
1559	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
1560	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
1561	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
1562	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
1563	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
1564	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
1565	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
1566	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	OH, OH
1567	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
1568	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
1569	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
1570	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
1571	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
1572	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
1573	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1574	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1575	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1576	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1577	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
1578	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
1579	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1580	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
1581	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
1582	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1583	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1584	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
1585	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
1586	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1587	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1588	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
1589	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1590	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1591	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
1592	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
1593	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH

1594	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
1595	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
1596	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
1597	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
1598	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1599	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1600	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph	OH, OH
1601	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	OH, OH
1602	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
1603	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
1604	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
1605	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
1606	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
1607	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
1608	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
1609	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
1610	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
1611	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin
1612	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1613	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
1614	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1615	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1616	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
1617	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
1618	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1619	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1620	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1621	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1622	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1623	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
1624	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1625	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1626	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1627	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1628	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1629	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
1630	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
1631	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1632	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1633	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin

1634	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1635	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1636	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1637	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1638	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1639	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
1640	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
1641	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1642	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1643	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1644	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1645	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph	(+)-pin
1646	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1647	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1648	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
1649	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
1650	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
1651	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
1652	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
1653	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
1654	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
1655	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
1656	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	OH, OH
1657	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
1658	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
1659	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
1660	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
1661	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
1662	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
1663	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1664	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1665	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1666	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1667	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
1668	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
1669	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1670	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
1671	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
1672	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1673	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH

1674	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
1675	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
1676	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1677	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1678	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
1679	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1680	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1681	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
1682	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
1683	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
1684	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
1685	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
1686	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
1687	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
1688	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1689	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1690	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph	OH, OH
1691	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	PhCH ₂	OH, OH
1692	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
1693	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
1694	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
1695	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
1696	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
1697	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
1698	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
1699	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
1700	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
1701	OMe	1	PhCH ₂ CH ₂	H	(+)-pin
1702	OMe	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1703	OMe	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
1704	OMe	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1705	OMe	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1706	OMe	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
1707	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
1708	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1709	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1710	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1711	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1712	OMe	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1713	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin

1714	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1715	OMe	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1716	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1717	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1718	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1719	OMe	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
1720	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
1721	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1722	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1723	OMe	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
1724	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1725	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1726	OMe	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1727	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1728	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1729	OMe	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
1730	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
1731	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1732	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1733	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1734	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1735	OMe	1	PhCH ₂ CH ₂	Ph	(+)-pin
1736	OMe	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1737	OMe	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1738	OMe	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
1739	OMe	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
1740	OMe	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
1741	OMe	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
1742	OMe	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
1743	OMe	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
1744	OMe	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
1745	OMe	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
1746	OMe	1	PhCH ₂ CH ₂	H	OH, OH
1747	OMe	1	PhCH ₂ CH ₂	Methyl	OH, OH
1748	OMe	1	PhCH ₂ CH ₂	Ethyl	OH, OH
1749	OMe	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
1750	OMe	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
1751	OMe	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
1752	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
1753	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH

1754	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1755	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1756	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1757	OMe	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
1758	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
1759	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1760	OMe	1	PhCH ₂ CH ₂	CF ₃	OH, OH
1761	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
1762	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1763	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1764	OMe	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
1765	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
1766	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1767	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1768	OMe	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
1769	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1770	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1771	OMe	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
1772	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
1773	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
1774	OMe	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
1775	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
1776	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
1777	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
1778	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1779	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1780	OMe	1	PhCH ₂ CH ₂	Ph	OH, OH
1781	OMe	1	PhCH ₂ CH ₂	PhCH ₂	OH, OH
1782	OMe	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
1783	OMe	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
1784	OMe	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
1785	OMe	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
1786	OMe	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
1787	OMe	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
1788	OMe	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
1789	OMe	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
1790	OMe	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
1791	NH(C=NH)H	1	Ph	H	(+)-pin
1792	NH(C=NH)H	1	Ph	Methyl	(+)-pin
1793	NH(C=NH)H	1	Ph	Ethyl	(+)-pin

1794	NH(C=NH)H	1	Ph	n-Propyl	(+)-pin
1795	NH(C=NH)H	1	Ph	n-Butyl	(+)-pin
1796	NH(C=NH)H	1	Ph	CH ₂ SCH ₃	(+)-pin
1797	NH(C=NH)H	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
1798	NH(C=NH)H	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
1799	NH(C=NH)H	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
1800	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1801	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1802	NH(C=NH)H	1	Ph	CH ₂ CN	(+)-pin
1803	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CN	(+)-pin
1804	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1805	NH(C=NH)H	1	Ph	CF ₃	(+)-pin
1806	NH(C=NH)H	1	Ph	CF ₂ CF ₃	(+)-pin
1807	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
1808	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1809	NH(C=NH)H	1	Ph	F ₅ -Ph	(+)-pin
1810	NH(C=NH)H	1	Ph	CH ₂ CO ₂ H	(+)-pin
1811	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
1812	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
1813	NH(C=NH)H	1	Ph	CH ₂ CN ₄ H	(+)-pin
1814	NH(C=NH)H	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
1815	NH(C=NH)H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
1816	NH(C=NH)H	1	Ph	CH ₂ NO ₂	(+)-pin
1817	NH(C=NH)H	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
1818	NH(C=NH)H	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
1819	NH(C=NH)H	1	Ph	CH ₂ OH	(+)-pin
1820	NH(C=NH)H	1	Ph	(CH ₂) ₂ OH	(+)-pin
1821	NH(C=NH)H	1	Ph	(CH ₂) ₃ OH	(+)-pin
1822	NH(C=NH)H	1	Ph	CH ₂ CO ₂ Me	(+)-pin
1823	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
1824	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
1825	NH(C=NH)H	1	Ph	Ph	(+)-pin
1826	NH(C=NH)H	1	Ph	PhCH ₂	(+)-pin
1827	NH(C=NH)H	1	Ph	Ph(CH ₂) ₂	(+)-pin
1828	NH(C=NH)H	1	Ph	3-NO ₂ -Ph	(+)-pin
1829	NH(C=NH)H	1	Ph	4-NO ₂ -Ph	(+)-pin
1830	NH(C=NH)H	1	Ph	3-CO ₂ H-Ph	(+)-pin
1831	NH(C=NH)H	1	Ph	4-CO ₂ H-Ph	(+)-pin
1832	NH(C=NH)H	1	Ph	3-CN ₄ H-Ph	(+)-pin
1833	NH(C=NH)H	1	Ph	4-CN ₄ H-Ph	(+)-pin

1834	NH(C=NH)H	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
1835	NH(C=NH)H	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
1836	NH(C=NH)H	1	Ph	H	OH, OH
1837	NH(C=NH)H	1	Ph	Methyl	OH, OH
1838	NH(C=NH)H	1	Ph	Ethyl	OH, OH
1839	NH(C=NH)H	1	Ph	n-Propyl	OH, OH
1840	NH(C=NH)H	1	Ph	n-Butyl	OH, OH
1841	NH(C=NH)H	1	Ph	CH ₂ SCH ₃	OH, OH
1842	NH(C=NH)H	1	Ph	CH ₂ (SO)CH ₃	OH, OH
1843	NH(C=NH)H	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
1844	NH(C=NH)H	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
1845	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1846	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1847	NH(C=NH)H	1	Ph	CH ₂ CN	OH, OH
1848	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CN	OH, OH
1849	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
1850	NH(C=NH)H	1	Ph	CF ₃	OH, OH
1851	NH(C=NH)H	1	Ph	CF ₂ CF ₃	OH, OH
1852	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
1853	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1854	NH(C=NH)H	1	Ph	F ₅ -Ph	OH, OH
1855	NH(C=NH)H	1	Ph	CH ₂ CO ₂ H	OH, OH
1856	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
1857	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
1858	NH(C=NH)H	1	Ph	CH ₂ CN ₄ H	OH, OH
1859	NH(C=NH)H	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
1860	NH(C=NH)H	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
1861	NH(C=NH)H	1	Ph	CH ₂ NO ₂	OH, OH
1862	NH(C=NH)H	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
1863	NH(C=NH)H	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
1864	NH(C=NH)H	1	Ph	CH ₂ OH	OH, OH
1865	NH(C=NH)H	1	Ph	(CH ₂) ₂ OH	OH, OH
1866	NH(C=NH)H	1	Ph	(CH ₂) ₃ OH	OH, OH
1867	NH(C=NH)H	1	Ph	CH ₂ CO ₂ Me	OH, OH
1868	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
1869	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
1870	NH(C=NH)H	1	Ph	Ph	OH, OH
1871	NH(C=NH)H	1	Ph	PhCH ₂	OH, OH
1872	NH(C=NH)H	1	Ph	Ph(CH ₂) ₂	OH, OH
1873	NH(C=NH)H	1	Ph	3-NO ₂ -Ph	OH, OH

1874	NH(C=NH)H	1	Ph	4-NO ₂ -Ph	OH, OH
1875	NH(C=NH)H	1	Ph	3-CO ₂ H-Ph	OH, OH
1876	NH(C=NH)H	1	Ph	4-CO ₂ H-Ph	OH, OH
1877	NH(C=NH)H	1	Ph	3-CN ₄ H-Ph	OH, OH
1878	NH(C=NH)H	1	Ph	4-CN ₄ H-Ph	OH, OH
1879	NH(C=NH)H	1	Ph	3-(HOCH ₂)-Ph	OH, OH
1880	NH(C=NH)H	1	Ph	4-(HOCH ₂)-Ph	OH, OH
1881	NH(C=NH)H	1	PhCH ₂	H	(+)-pin
1882	NH(C=NH)H	1	PhCH ₂	Methyl	(+)-pin
1883	NH(C=NH)H	1	PhCH ₂	Ethyl	(+)-pin
1884	NH(C=NH)H	1	PhCH ₂	n-Propyl	(+)-pin
1885	NH(C=NH)H	1	PhCH ₂	n-Butyl	(+)-pin
1886	NH(C=NH)H	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
1887	NH(C=NH)H	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
1888	NH(C=NH)H	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1889	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1890	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1891	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1892	NH(C=NH)H	1	PhCH ₂	CH ₂ CN	(+)-pin
1893	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
1894	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1895	NH(C=NH)H	1	PhCH ₂	CF ₃	(+)-pin
1896	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
1897	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1898	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1899	NH(C=NH)H	1	PhCH ₂	F ₅ -Ph	(+)-pin
1900	NH(C=NH)H	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
1901	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1902	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1903	NH(C=NH)H	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
1904	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1905	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1906	NH(C=NH)H	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1907	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1908	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1909	NH(C=NH)H	1	PhCH ₂	CH ₂ OH	(+)-pin
1910	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1911	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1912	NH(C=NH)H	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1913	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin

1914	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1915	NH (C=NH) H	1	PhCH ₂	Ph	(+)-pin
1916	NH (C=NH) H	1	PhCH ₂	PhCH ₂	(+)-pin
1917	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1918	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1919	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1920	NH (C=NH) H	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1921	NH (C=NH) H	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1922	NH (C=NH) H	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1923	NH (C=NH) H	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
1924	NH (C=NH) H	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
1925	NH (C=NH) H	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
1926	NH (C=NH) H	1	PhCH ₂	H	OH, OH
1927	NH (C=NH) H	1	PhCH ₂	Methyl	OH, OH
1928	NH (C=NH) H	1	PhCH ₂	Ethyl	OH, OH
1929	NH (C=NH) H	1	PhCH ₂	n-Propyl	OH, OH
1930	NH (C=NH) H	1	PhCH ₂	n-Butyl	OH, OH
1931	NH (C=NH) H	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
1932	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
1933	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
1934	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
1935	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
1936	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
1937	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	OH, OH
1938	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
1939	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
1940	NH (C=NH) H	1	PhCH ₂	CF ₃	OH, OH
1941	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₃	OH, OH
1942	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
1943	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
1944	NH (C=NH) H	1	PhCH ₂	F ₅ -Ph	OH, OH
1945	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
1946	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1947	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1948	NH (C=NH) H	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
1949	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1950	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1951	NH (C=NH) H	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1952	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1953	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH

1954	NH(C=NH)H	1	PhCH ₂	CH ₂ OH	OH, OH
1955	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1956	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1957	NH(C=NH)H	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1958	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1959	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1960	NH(C=NH)H	1	PhCH ₂	Ph	OH, OH
1961	NH(C=NH)H	1	PhCH ₂	PhCH ₂	OH, OH
1962	NH(C=NH)H	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1963	NH(C=NH)H	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1964	NH(C=NH)H	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
1965	NH(C=NH)H	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1966	NH(C=NH)H	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1967	NH(C=NH)H	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
1968	NH(C=NH)H	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1969	NH(C=NH)H	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
1970	NH(C=NH)H	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1971	NH(C=NH)H	1	PhCH ₂ CH ₂	H	(+)-pin
1972	NH(C=NH)H	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1973	NH(C=NH)H	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
1974	NH(C=NH)H	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1975	NH(C=NH)H	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1976	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
1977	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
1978	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
1979	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
1980	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
1981	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
1982	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1983	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
1984	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
1985	NH(C=NH)H	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1986	NH(C=NH)H	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1987	NH(C=NH)H	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
1988	NH(C=NH)H	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
1989	NH(C=NH)H	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
1990	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
1991	NH(C=NH)H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1992	NH(C=NH)H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1993	NH(C=NH)H	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin

1994	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1995	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1996	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1997	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1998	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1999	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
2000	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
2001	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
2002	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Na	(+)-pin
2003	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Na	(+)-pin
2004	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2005	NH (C=NH) H	1	PhCH ₂ CH ₂	Ph	(+)-pin
2006	NH (C=NH) H	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
2007	NH (C=NH) H	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
2008	NH (C=NH) H	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
2009	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
2010	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
2011	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
2012	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
2013	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
2014	NH (C=NH) H	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
2015	NH (C=NH) H	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
2016	NH (C=NH) H	1	PhCH ₂ CH ₂	H	OH, OH
2017	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	OH, OH
2018	NH (C=NH) H	1	PhCH ₂ CH ₂	Ethyl	OH, OH
2019	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
2020	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
2021	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
2022	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
2023	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2024	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2025	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2026	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2027	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
2028	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
2029	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2030	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₃	OH, OH
2031	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
2032	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CP ₂ CF ₃	OH, OH
2033	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH

2034	NH (C=NH) H	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
2035	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
2036	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2037	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2038	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
2039	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2040	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2041	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
2042	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
2043	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
2044	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
2045	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
2046	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
2047	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
2048	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2049	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2050	NH (C=NH) H	1	PhCH ₂ CH ₂	Ph	OH, OH
2051	NH (C=NH) H	1	PhCH ₂ CH ₂	PhCH ₂	OH, OH
2052	NH (C=NH) H	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
2053	NH (C=NH) H	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
2054	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
2055	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
2056	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
2057	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
2058	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
2059	NH (C=NH) H	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
2060	NH (C=NH) H	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
2061	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin CU
2062	NH (C=NH) NH ₂	1	Ph	PhCH ₂	(+)-pin
2063	NH (C=NH) NH ₂	1	Ph	PhCH ₂ CH ₂	(+)-pin
2064	-S-(C=NH)NH ₂	1	Ph	PhCH ₂	(+)-pin
2065	-S-(C=NH)NH ₂	1	Ph	PhCH ₂ CH ₂	(+)-pin
2066	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin CN
2067	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin CO
2068	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OCH ₂ Ph	(+)-pin CT

AG. Anal. calcd. for C₃₂H₄₂BN₅O₃·0.7 H₂O·1.7 HCl: C, 61.00; H, 7.21; Cl, 9.56 N, 11.11. Found: C, 60.93; H, 7.20; Cl, 9.57 N, 11.55.

- AH. Anal. calcd. for $C_{22}H_{28}BN_5O_3 \cdot 12H_2O \cdot 2.6HCl$: C, 36.09; Cl., 12.59; N, 9.56. Found: C, 36.25; Cl, 12.52; N, 9.32.
- AI. Anal. calcd. for $C_{16}H_{24}BN_5O_3 \cdot 1.5 H_2O \cdot 1.8 HCl$: C, 43.89; H, 6.63; Cl, 14.57; N, 16.06. Found: C, 44.01; H, 6.28; Cl, 14.21; N, 15.59.
- AJ. Anal. calcd. for $C_{25}H_{34}BN_5O_3 \cdot 2 H_2O \cdot 1.6 HCl$: C, 53.84; H, 7.16; Cl, 10.17; N, 12.56. Found: C, 53.71; H, 7.13; Cl, 10.25; N, 12.60.
- AK. MS $(M+H)^{++}$ Calc. 480, Found 480.
- AL. MS $(M+H)^{++}$ Calc. 494, Found 494.
- AM. MS $(M+H)^{++}$ Calc. 522, Found 522.
- AN. MS $(M+H)^{++}$ Calc. 540, Found 540.
- AO. MS $(M+H)^{++}$ Calc. 510, Found 510.
- AP. MS $(M+H)^{++}$ Calc. 600, Found 600.
- AQ. MS $(M+H)^{++}$ Calc. 556, Found 556.
- AR. MS $(M+H)^{++}$ Calc. 570, Found 570.
- AS. MS $(M+H)^{++}$ Calc. 601, Found 601.
- AT. MS $(M+H)^{++}$ Calc. 598, Found 598.
- AU. MS $(M+H)^{++}$ Calc. 629, Found 629.
- AV. MS $(M+H)^{++}$ Calc. 422, Found 422.
- AW. MS $(M+H)^{++}$ Calc. 538, Found 538.
- AX. MS $(M+H)^{++}$ Calc. 494, Found 494.
- AY. MS $(M+H)^{++}$ Calc. 598, Found 598.
- AZ. MS $(M+H)^{++}$ Calc. 360, Found 360.
- CN. MS $(M+H)^{++}$ Calc. 519, Found 519.
- CO. MS $(M+H)^{++}$ Calc. 562, Found 562.
- CP. MS $(M+H)^{++}$ Calc. 552, Found 552.
- CQ. MS $(M+H)^{++}$ Calc. 571, Found 571.
- CR. MS $(M+H)^{++}$ Calc. 520, Found 520.
- CS. MS $(M+H)^{++}$ Calc. 524, Found 524.
- CT. MS $(M+H)^{++}$ Calc. 614, Found 614.
- CU. MS $(M+H)^{++}$ Calc. 571, Found 571.

Table 15

Rx	X	m	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
2073	CH ₂ NH ₂	1	Ph	H	(+)-pin	BW
2074	CH ₂ NH ₂	1	Ph	Methyl	(+)-pin	BX
2075	CH ₂ NH ₂	1	Ph	Ethyl	(+)-pin	
2076	CH ₂ NH ₂	1	Ph	n-Propyl	(+)-pin	
2077	CH ₂ NH ₂	1	Ph	n-Butyl	(+)-pin	
2078	CH ₂ NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin	
2079	CH ₂ NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin	
2080	CH ₂ NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin	
2081	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin	
2082	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin	
2083	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin	
2084	CH ₂ NH ₂	1	Ph	CH ₂ CN	(+)-pin	
2085	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin	
2086	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin	
2087	CH ₂ NH ₂	1	Ph	CF ₃	(+)-pin	
2088	CH ₂ NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin	
2089	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin	
2090	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin	
2091	CH ₂ NH ₂	1	Ph	F ₅ -Ph	(+)-pin	
2092	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin	
2093	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin	
2094	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
2095	CH ₂ NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin	
2096	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin	
2097	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin	
2098	CH ₂ NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin	
2099	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin	
2100	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin	
2101	CH ₂ NH ₂	1	Ph	CH ₂ OH	(+)-pin	
2102	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin	
2103	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin	
2104	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ Ne	(+)-pin	

2105	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2106	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
2107	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2108	CH ₂ NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
2109	CH ₂ NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
2110	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
2111	CH ₂ NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
2112	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
2113	CH ₂ NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2114	CH ₂ NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2115	NH(C=NH)NH ₂	1	Ph	H	(+)-pin
2116	NH(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
2117	NH(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
2118	NH(C=NH)NH ₂	1	Ph	n-Propyl	(+)-pin
2119	NH(C=NH)NH ₂	1	Ph	n-Butyl	(+)-pin
2120	NH(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin
2121	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
2122	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
2123	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
2124	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2125	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2126	NH(C=NH)NH ₂	1	Ph	CH ₂ CN	(+)-pin
2127	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin
2128	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2129	NH(C=NH)NH ₂	1	Ph	CF ₃	(+)-pin
2130	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin
2131	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
2132	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2133	NH(C=NH)NH ₂	1	Ph	F ₅ -Ph	(+)-pin
2134	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin
2135	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2136	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
2137	NH(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin
2138	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
2139	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
2140	NH(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin
2141	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2142	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
2143	NH(C=NH)NH ₂	1	Ph	CH ₂ OH	(+)-pin
2144	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin

2145	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
2146	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
2147	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2148	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
2149	NH(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2150	NH(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
2151	NH(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
2152	NH(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
2153	NH(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
2154	NH(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
2155	NH(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2156	NH(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2157	CH ₂ NH ₂	1	Ph	H	OH, OH
2158	CH ₂ NH ₂	1	Ph	Methyl	OH, OH
2159	CH ₂ NH ₂	1	Ph	Ethyl	OH, OH
2160	CH ₂ NH ₂	1	Ph	n-Propyl	OH, OH
2161	CH ₂ NH ₂	1	Ph	n-Butyl	OH, OH
2162	CH ₂ NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
2163	CH ₂ NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH
2164	CH ₂ NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
2165	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
2166	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2167	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2168	CH ₂ NH ₂	1	Ph	CH ₂ CN	OH, OH
2169	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
2170	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
2171	CH ₂ NH ₂	1	Ph	CF ₃	OH, OH
2172	CH ₂ NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
2173	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
2174	CH ₂ NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2175	CH ₂ NH ₂	1	Ph	F ₅ -Ph	OH, OH
2176	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
2177	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2178	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
2179	CH ₂ NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
2180	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2181	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
2182	CH ₂ NH ₂	1	Ph	CH ₂ NO ₂	OH, OH
2183	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2184	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH

2185	CH ₂ NH ₂	1	Ph	CH ₂ OH	OH, OH
2186	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
2187	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
2188	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
2189	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
2190	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2191	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
2192	CH ₂ NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
2193	CH ₂ NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
2194	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
2195	CH ₂ NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
2196	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
2197	CH ₂ NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2198	CH ₂ NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
2199	NH(C=NH)NH ₂	1	Ph	H	OH, OH
2200	NH(C=NH)NH ₂	1	Ph	Methyl	OH, OH
2201	NH(C=NH)NH ₂	1	Ph	Ethyl	OH, OH
2202	NH(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
2203	NH(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
2204	NH(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
2205	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH
2206	NH(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
2207	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
2208	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2209	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2210	NH(C=NH)NH ₂	1	Ph	CH ₂ CN	OH, OH
2211	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
2212	NH(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
2213	NH(C=NH)NH ₂	1	Ph	CF ₃	OH, OH
2214	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
2215	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
2216	NH(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2217	NH(C=NH)NH ₂	1	Ph	F ₅ -Ph	OH, OH
2218	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
2219	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2220	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
2221	NH(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
2222	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2223	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
2224	NH(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	OH, OH

2225	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2226	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
2227	NH(C=NH)NH ₂	1	Ph	CH ₂ OH	OH, OH
2228	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
2229	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
2230	NH(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
2231	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
2232	NH(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2233	NH(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
2234	NH(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
2235	NH(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
2236	NH(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
2237	NH(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
2238	NH(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
2239	NH(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2240	NH(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
2241	-S-(C=NH)NH ₂	1	Ph	H	(+)-pin
2242	-S-(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
2243	-S-(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
2244	-S-(C=NH)NH ₂	1	Ph	n-Propyl	(+)-pin
2245	-S-(C=NH)NH ₂	1	Ph	n-Butyl	(+)-pin
2246	-S-(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin
2247	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
2248	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
2249	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
2250	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2251	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2252	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN	(+)-pin
2253	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin
2254	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2255	-S-(C=NH)NH ₂	1	Ph	CF ₃	(+)-pin
2256	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin
2257	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
2258	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2259	-S-(C=NH)NH ₂	1	Ph	F ₅ -Ph	(+)-pin
2260	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin
2261	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2262	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
2263	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	(+)-pin
2264	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin

2265	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
2266	-S-(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin
2267	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2268	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
2269	-S-(C=NH)NH ₂	1	Ph	CH ₂ OH	(+)-pin
2270	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin
2271	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
2272	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
2273	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2274	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
2275	-S-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2276	-S-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
2277	-S-(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
2278	-S-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
2279	-S-(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	(+)-pin
2280	-S-(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
2281	-S-(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2282	-S-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2283	-S-(C=NH)NH ₂	1	Ph	H	OH, OH
2284	-S-(C=NH)NH ₂	1	Ph	Methyl	OH, OH
2285	-S-(C=NH)NH ₂	1	Ph	Ethyl	OH, OH
2286	-S-(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
2287	-S-(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
2288	-S-(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	OH, OH
2289	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO)CH ₃	OH, OH
2290	-S-(C=NH)NH ₂	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
2291	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
2292	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2293	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2294	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN	OH, OH
2295	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CN	OH, OH
2296	-S-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH
2297	-S-(C=NH)NH ₂	1	Ph	CF ₃	OH, OH
2298	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₃	OH, OH
2299	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
2300	-S-(C=NH)NH ₂	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2301	-S-(C=NH)NH ₂	1	Ph	P ₅ -Ph	OH, OH
2302	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
2303	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2304	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH

2305	-S-(C=NH)NH ₂	1	Ph	CH ₂ CN ₄ H	OH, OH
2306	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2307	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
2308	-S-(C=NH)NH ₂	1	Ph	CH ₂ NO ₂	OH, OH
2309	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2310	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
2311	-S-(C=NH)NH ₂	1	Ph	CH ₂ OH	OH, OH
2312	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
2313	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
2314	-S-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	OH, OH
2315	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
2316	-S-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2317	-S-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
2318	-S-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
2319	-S-(C=NH)NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
2320	-S-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
2321	-S-(C=NH)NH ₂	1	Ph	3-CN ₄ H-Ph	OH, OH
2322	-S-(C=NH)NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
2323	-S-(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2324	-S-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH, OH
2325	CH ₂ NH ₂	2	Ph	H	(+)-pin
2326	CH ₂ NH ₂	2	Ph	H	OH, OH
2327	OMe	1	Ph	H	(+)-pin
2328	OMe	1	Ph	Methyl	(+)-pin
2329	OMe	1	Ph	Ethyl	(+)-pin
2330	OMe	1	Ph	n-Propyl	(+)-pin
2331	OMe	1	Ph	n-Butyl	(+)-pin
2332	OMe	1	Ph	CH ₂ SCH ₃	(+)-pin
2333	OMe	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
2334	OMe	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
2335	OMe	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
2336	OMe	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2337	OMe	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2338	OMe	1	Ph	CH ₂ CN	(+)-pin
2339	OMe	1	Ph	CH ₂ CH ₂ CN	(+)-pin
2340	OMe	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2341	OMe	1	Ph	CF ₃	(+)-pin
2342	OMe	1	Ph	CF ₂ CF ₃	(+)-pin
2343	OMe	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
2344	OMe	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin

2345	OMe	1	Ph	$F_5\text{-Ph}$	(+)-pin
2346	OMe	1	Ph	$\text{CH}_2\text{CO}_2\text{H}$	(+)-pin
2347	OMe	1	Ph	$(\text{CH}_2)_2\text{CO}_2\text{H}$	(+)-pin
2348	OMe	1	Ph	$(\text{CH}_2)_3\text{CO}_2\text{H}$	(+)-pin
2349	OMe	1	Ph	$\text{CH}_2\text{CN}_4\text{H}$	(+)-pin
2350	OMe	1	Ph	$(\text{CH}_2)_2\text{CN}_4\text{H}$	(+)-pin
2351	OMe	1	Ph	$(\text{CH}_2)_3\text{CN}_4\text{H}$	(+)-pin
2352	OMe	1	Ph	CH_2NO_2	(+)-pin
2353	OMe	1	Ph	$(\text{CH}_2)_2\text{NO}_2$	(+)-pin
2354	OMe	1	Ph	$(\text{CH}_2)_3\text{NO}_2$	(+)-pin
2355	OMe	1	Ph	CH_2OH	(+)-pin
2356	OMe	1	Ph	$(\text{CH}_2)_2\text{OH}$	(+)-pin
2357	OMe	1	Ph	$(\text{CH}_2)_3\text{OH}$	(+)-pin
2358	OMe	1	Ph	$\text{CH}_2\text{CO}_2\text{Me}$	(+)-pin
2359	OMe	1	Ph	$(\text{CH}_2)_2\text{CO}_2\text{Me}$	(+)-pin
2360	OMe	1	Ph	$(\text{CH}_2)_3\text{CO}_2\text{Me}$	(+)-pin
2361	OMe	1	Ph	3-NO ₂ -Ph	(+)-pin
2362	OMe	1	Ph	4-NO ₂ -Ph	(+)-pin
2363	OMe	1	Ph	3-CO ₂ H-Ph	(+)-pin
2364	OMe	1	Ph	4-CO ₂ H-Ph	(+)-pin
2365	OMe	1	Ph	3-CN ₄ H-Ph	(+)-pin
2366	OMe	1	Ph	4-CN ₄ H-Ph	(+)-pin
2367	OMe	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2368	OMe	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2369	OMe	1	Ph	H	OH, OH
2370	OMe	1	Ph	Methyl	OH, OH
2371	OMe	1	Ph	Ethyl	OH, OH
2372	OMe	1	Ph	n-Propyl	OH, OH
2373	OMe	1	Ph	n-Butyl	OH, OH
2374	OMe	1	Ph	CH_2SCH_3	OH, OH
2375	OMe	1	Ph	$\text{CH}_2(\text{SO})\text{CH}_3$	OH, OH
2376	OMe	1	Ph	$\text{CH}_2(\text{SO}_2)\text{CH}_3$	OH, OH
2377	OMe	1	Ph	$\text{CH}_2\text{CH}_2\text{SCH}_3$	OH, OH
2378	OMe	1	Ph	$\text{CH}_2\text{CH}_2(\text{SO})\text{CH}_3$	OH, OH
2379	OMe	1	Ph	$\text{CH}_2\text{CH}_2(\text{SO})_2\text{CH}_3$	OH, OH
2380	OMe	1	Ph	CH_2CN	OH, OH
2381	OMe	1	Ph	$\text{CH}_2\text{CH}_2\text{CN}$	OH, OH
2382	OMe	1	Ph	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CN}$	OH, OH
2383	OMe	1	Ph	CF_3	OH, OH
2384	OMe	1	Ph	CF_2CF_3	OH, OH

2385	O ₂ Me	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
2386	O ₂ Me	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2387	O ₂ Me	1	Ph	F ₅ -Ph	OH, OH
2388	O ₂ Me	1	Ph	CH ₂ CO ₂ H	OH, OH
2389	O ₂ Me	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2390	O ₂ Me	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
2391	O ₂ Me	1	Ph	CH ₂ CN ₄ H	OH, OH
2392	O ₂ Me	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2393	O ₂ Me	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
2394	O ₂ Me	1	Ph	CH ₂ NO ₂	OH, OH
2395	O ₂ Me	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2396	O ₂ Me	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
2397	O ₂ Me	1	Ph	CH ₂ OH	OH, OH
2398	O ₂ Me	1	Ph	(CH ₂) ₂ OH	OH, OH
2399	O ₂ Me	1	Ph	(CH ₂) ₃ OH	OH, OH
2400	O ₂ Me	1	Ph	CH ₂ CO ₂ Me	OH, OH
2401	O ₂ Me	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
2402	O ₂ Me	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2403	O ₂ Me	1	Ph	3-NO ₂ -Ph	OH, OH
2404	O ₂ Me	1	Ph	4-NO ₂ -Ph	OH, OH
2405	O ₂ Me	1	Ph	3-CO ₂ H-Ph	OH, OH
2406	O ₂ Me	1	Ph	4-CO ₂ H-Ph	OH, OH
2407	O ₂ Me	1	Ph	3-CN ₄ H-Ph	OH, OH
2408	O ₂ Me	1	Ph	4-CN ₄ H-Ph	OH, OH
2409	O ₂ Me	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2410	O ₂ Me	1	Ph	4-(HOCH ₂)-Ph	OH, OH
2411	CH ₂ NH ₂	1	PhCH ₂	H	(+)-pin BA
2412	CH ₂ NH ₂	1	PhCH ₂	Methyl	(+)-pin BC
2413	CH ₂ NH ₂	1	PhCH ₂	Ethyl	(+)-pin
2414	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	(+)-pin BD
2415	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
2416	CH ₂ NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin BE
2417	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
2418	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2419	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ SC ₃	(+)-pin
2420	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2421	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2422	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin BF
2423	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
2424	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin

2425	CH ₂ NH ₂	1	PhCH ₂	CF ₃	(+)-pin
2426	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2427	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CP ₂ CF ₃	(+)-pin
2428	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CP ₂ CP ₂ CF ₃	(+)-pin
2429	CH ₂ NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
2430	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin BG
2431	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2432	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2433	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
2434	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2435	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2436	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2437	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2438	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2439	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin CV
2440	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OCH ₂ Ph	(+)-pin CW
2441	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2442	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2443	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin CX
2444	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2445	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2446	CH ₂ NH ₂	1	PhCH ₂	Ph	(+)-pin
2447	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
2448	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2449	CH ₂ NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2450	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
2451	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
2452	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
2453	CH ₂ NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2454	CH ₂ NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
2455	CH ₂ NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2456	NH(C=NH)NH ₂	1	PhCH ₂	H	(+)-pin
2457	NH(C=NH)NH ₂	1	PhCH ₂	Methyl	(+)-pin
2458	NH(C=NH)NH ₂	1	PhCH ₂	Ethyl	(+)-pin
2459	NH(C=NH)NH ₂	1	PhCH ₂	n-Propyl	(+)-pin
2460	NH(C=NH)NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
2461	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
2462	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
2463	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2464	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin

2465	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2466	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2467	NH(C=NH)NH ₂	1	PhCH ₂	CR ₂ CN	(+)-pin
2468	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
2469	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2470	NH(C=NH)NH ₂	1	PhCH ₂	CF ₃	(+)-pin
2471	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2472	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2473	NH(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2474	NH(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
2475	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
2476	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2477	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2478	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
2479	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2480	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2481	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2482	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2483	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2484	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin
2485	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2486	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2487	NH(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2488	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2489	NH(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2490	NH(C=NH)NH ₂	1	PhCH ₂	Ph	(+)-pin
2491	NH(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin CY
2492	NH(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2493	NH(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
2494	NH(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
2495	NH(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
2496	NH(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2497	NH(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
2498	NH(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2499	CH ₂ NH ₂	1	PhCH ₂	H	OH, OH BH
2500	CH ₂ NH ₂	1	PhCH ₂	Methyl	OH, OH
2501	CH ₂ NH ₂	1	PhCH ₂	Ethyl	OH, OH
2502	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	OH, OH
2503	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	OH, OH
2504	CH ₂ NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH

2505	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
2506	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2507	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2508	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2509	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2510	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
2511	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
2512	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2513	CH ₂ NH ₂	1	PhCH ₂	CF ₃	OH, OH
2514	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CP ₃	OH, OH
2515	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CP ₂ CF ₃	OH, OH
2516	CH ₂ NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2517	CH ₂ NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
2518	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
2519	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2520	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2521	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
2522	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2523	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2524	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2525	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2526	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2527	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
2528	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2529	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
2530	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2531	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2532	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2533	CH ₂ NH ₂	1	PhCH ₂	Ph	OH, OH
2534	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
2535	CH ₂ NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2536	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
2537	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
2538	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
2539	CH ₂ NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
2540	CH ₂ NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2541	CH ₂ NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
2542	NH(C=NH)NH ₂	1	PhCH ₂	H	OH, OH
2543	NH(C=NH)NH ₂	1	PhCH ₂	Methyl	OH, OH
2544	NH(C=NH)NH ₂	1	PhCH ₂	Ethyl	OH, OH

2545	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	OH, OH
2546	NH (C=NH) NH ₂	1	PhCH ₂	n-Butyl	OH, OH
2547	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
2548	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
2549	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2550	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2551	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2552	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2553	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
2554	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
2555	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2556	NH (C=NH) NH ₂	1	PhCH ₂	CF ₃	OH, OH
2557	NH (C=NH) NH ₂	1	PhCH ₂	CF ₂ CF ₃	OH, OH
2558	NH (C=NH) NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2559	NH (C=NH) NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2560	NH (C=NH) NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
2561	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
2562	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2563	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2564	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
2565	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2566	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2567	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2568	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2569	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2570	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
2571	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2572	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
2573	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2574	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2575	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2576	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
2577	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2578	NH (C=NH) NH ₂	1	PhCH ₂	3-OO ₂ H-Ph	OH, OH
2579	NH (C=NH) NH ₂	1	PhCH ₂	4-OO ₂ H-Ph	OH, OH
2580	NH (C=NH) NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
2581	NH (C=NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
2582	NH (C=NH) NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2583	NH (C=NH) NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
2584	-S-(C=NH) NH ₂	1	PhCH ₂	H	(+)-pin

2585	-S-(C=NH)NH ₂	1	PhCH ₂	Methyl	(+)-pin
2586	-S-(C=NH)NH ₂	1	PhCH ₂	Ethyl	(+)-pin
2587	-S-(C=NH)NH ₂	1	PhCH ₂	n-Propyl	(+)-pin
2588	-S-(C=NH)NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
2589	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
2590	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
2591	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2592	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
2593	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2594	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2595	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
2596	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
2597	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2598	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₃	(+)-pin
2599	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2600	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2601	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2602	-S-(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin
2603	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
2604	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2605	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2606	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
2607	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2608	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2609	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2610	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2611	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2612	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin
2613	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2614	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2615	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2616	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2617	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2618	-S-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2619	-S-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2620	-S-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
2621	-S-(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
2622	-S-(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
2623	-S-(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2624	-S-(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin

2625	-S-(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2626	-S-(C=NH)NH ₂	1	PhCH ₂	H	OH, OH
2627	-S-(C=NH)NH ₂	1	PhCH ₂	Methyl	OH, OH
2628	-S-(C=NH)NH ₂	1	PhCH ₂	Ethyl	OH, OH
2629	-S-(C=NH)NH ₂	1	PhCH ₂	n-Propyl	OH, OH
2630	-S-(C=NH)NH ₂	1	PhCH ₂	n-Butyl	OH, OH
2631	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
2632	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
2633	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2634	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2635	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2636	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2637	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
2638	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
2639	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2640	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₃	OH, OH
2641	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₃	OH, OH
2642	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2643	-S-(C=NH)NH ₂	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2644	-S-(C=NH)NH ₂	1	PhCH ₂	F ₅ -Ph	OH, OH
2645	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
2646	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2647	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2648	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
2649	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2650	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2651	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2652	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2653	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2654	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
2655	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2656	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
2657	-S-(C=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2658	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2659	-S-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2660	-S-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
2661	-S-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2662	-S-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
2663	-S-(C=NH)NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
2664	-S-(C=NH)NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH

2665	-S-(C=NH)NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
2666	-S-(C=NH)NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2667	-S-(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
2668	OMe	1	PhCH ₂	H	(+)-pin
2669	OMe	1	PhCH ₂	Methyl	(+)-pin
2670	OMe	1	PhCH ₂	Ethyl	(+)-pin
2671	OMe	1	PhCH ₂	n-Propyl	(+)-pin
2672	OMe	1	PhCH ₂	n-Butyl	(+)-pin
2673	OMe	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
2674	OMe	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
2675	OMe	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2676	OMe	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
2677	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2678	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2679	OMe	1	PhCH ₂	CH ₂ CN	(+)-pin
2680	OMe	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
2681	OMe	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2682	OMe	1	PhCH ₂	CF ₃	(+)-pin
2683	OMe	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2684	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2685	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2686	OMe	1	PhCH ₂	F ₅ -Ph	(+)-pin
2687	OMe	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
2688	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2689	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2690	OMe	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
2691	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2692	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2693	OMe	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2694	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2695	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2696	OMe	1	PhCH ₂	CH ₂ OH	(+)-pin
2697	OMe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2698	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2699	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2700	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2701	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2702	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2703	OMe	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2704	OMe	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin

2705	OMe	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
2706	OMe	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
2707	OMe	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2708	OMe	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
2709	OMe	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2710	OMe	1	PhCH ₂	H	OH, OH
2711	OMe	1	PhCH ₂	Methyl	OH, OH
2712	OMe	1	PhCH ₂	Ethyl	OH, OH
2713	OMe	1	PhCH ₂	n-Propyl	OH, OH
2714	OMe	1	PhCH ₂	n-Butyl	OH, OH
2715	OMe	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
2716	OMe	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
2717	OMe	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2718	OMe	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2719	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2720	OMe	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2721	OMe	1	PhCH ₂	CH ₂ CN	OH, OH
2722	OMe	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
2723	OMe	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2724	OMe	1	PhCH ₂	CF ₃	OH, OH
2725	OMe	1	PhCH ₂	CF ₂ CF ₃	OH, OH
2726	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2727	OMe	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2728	OMe	1	PhCH ₂	F ₅ -Ph	OH, OH
2729	OMe	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
2730	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2731	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2732	OMe	1	PhCH ₂	CH ₂ CN ₄ H	OH, OH
2733	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2734	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2735	OMe	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2736	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2737	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2738	OMe	1	PhCH ₂	CH ₂ OH	OH, OH
2739	OMe	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2740	OMe	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
2741	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2742	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2743	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2744	OMe	1	PhCH ₂	3-NO ₂ -Ph	OH, OH

2745	O ₂ CMe	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2746	O ₂ CC ₂ H ₅	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
2747	O ₂ CC ₂ H ₅	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
2748	O ₂ CC ₂ H ₅	1	PhCH ₂	3-CN ₂ H-Ph	OH, OH
2749	O ₂ CC ₂ H ₅	1	PhCH ₂	4-CN ₂ H-Ph	OH, OH
2750	O ₂ CC ₂ H ₅	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2751	O ₂ CC ₂ H ₅	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
2752	CH ₂ NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin BI
2753	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
2754	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
2755	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
2756	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
2757	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
2758	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
2759	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2760	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
2761	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2762	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2763	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
2764	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
2765	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2766	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
2767	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
2768	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2769	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2770	CH ₂ NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
2771	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
2772	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2773	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2774	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
2775	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2776	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2777	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
2778	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2779	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2780	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin CZ
2781	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OCH ₂ Ph	(+)-pin DA
2782	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
2783	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
2784	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin

2785	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2786	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2787	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
2788	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
2789	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
2790	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
2791	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
2792	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
2793	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
2794	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
2795	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin
2796	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
2797	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
2798	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
2799	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
2800	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
2801	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
2802	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2803	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
2804	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2805	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2806	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
2807	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
2808	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2809	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
2810	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
2811	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2812	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2813	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
2814	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
2815	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2816	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2817	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
2818	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2819	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2820	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
2821	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2822	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2823	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
2824	NH(C-NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin

2825	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
2826	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
2827	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2828	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2829	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
2830	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
2831	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
2832	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
2833	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
2834	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
2835	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
2836	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
2837	CH ₂ NH ₂	1	PhCH ₂ CH ₂	H	OH, OH BJ
2838	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
2839	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
2840	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
2841	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
2842	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
2843	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
2844	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2845	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2846	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2847	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2848	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
2849	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
2850	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2851	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
2852	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CP ₃	OH, OH
2853	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2854	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2855	CH ₂ NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
2856	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
2857	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2858	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2859	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
2860	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2861	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2862	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
2863	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
2864	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH

2865	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
2866	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
2867	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
2868	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
2869	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2870	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2871	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
2872	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
2873	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
2874	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
2875	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
2876	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
2877	CH ₂ NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
2878	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
2879	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	H	OH, OH
2880	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
2881	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
2882	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
2883	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
2884	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
2885	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
2886	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2887	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2888	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2889	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2890	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
2891	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
2892	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2893	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
2894	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
2895	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2896	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2897	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
2898	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
2899	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2900	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2901	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
2902	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2903	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2904	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH

2905	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
2906	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
2907	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
2908	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
2909	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
2910	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
2911	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2912	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2913	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
2914	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
2915	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
2916	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
2917	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
2918	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
2919	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
2920	NH(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
2921	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	(+)-pin
2922	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
2923	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
2924	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
2925	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
2926	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
2927	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
2928	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
2929	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
2930	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
2931	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2932	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
2933	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
2934	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
2935	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
2936	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
2937	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
2938	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
2939	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
2940	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
2941	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2942	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2943	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
2944	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin

2945	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2946	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
2947	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2948	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2949	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
2950	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
2951	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
2952	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
2953	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2954	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2955	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
2956	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
2957	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
2958	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
2959	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
2960	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
2961	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
2962	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
2963	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	H	OH, OH
2964	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Methyl	OH, OH
2965	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ethyl	OH, OH
2966	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
2967	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
2968	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
2969	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
2970	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
2971	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
2972	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2973	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
2974	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
2975	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
2976	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
2977	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	OH, OH
2978	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
2979	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
2980	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
2981	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
2982	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
2983	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2984	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH

2985	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
2986	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2987	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2988	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
2989	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
2990	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
2991	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
2992	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
2993	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
2994	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
2995	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2996	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2997	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
2998	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
2999	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
3000	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
3001	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
3002	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
3003	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
3004	-S-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
3005	OMe	1	PhCH ₂ CH ₂	H	(+)-pin
3006	OMe	1	PhCH ₂ CH ₂	Methyl	(+)-pin
3007	OMe	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
3008	OMe	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
3009	OMe	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
3010	OMe	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
3011	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
3012	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
3013	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
3014	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
3015	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
3016	OMe	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
3017	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
3018	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
3019	OMe	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
3020	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
3021	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
3022	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
3023	OMe	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
3024	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin

3025	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
3026	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
3027	OMe	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
3028	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3029	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
3030	OMe	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
3031	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
3032	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
3033	OMe	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
3034	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
3035	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
3036	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
3037	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
3038	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3039	OMe	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
3040	OMe	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
3041	OMe	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
3042	OMe	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
3043	OMe	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
3044	OMe	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
3045	OMe	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
3046	OMe	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
3047	OMe	1	PhCH ₂ CH ₂	H	OH, OH
3048	OMe	1	PhCH ₂ CH ₂	Methyl	OH, OH
3049	OMe	1	PhCH ₂ CH ₂	Ethyl	OH, OH
3050	OMe	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
3051	OMe	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
3052	OMe	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH
3053	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
3054	OMe	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
3055	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
3056	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
3057	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
3058	OMe	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
3059	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
3060	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
3061	OMe	1	PhCH ₂ CH ₂	CF ₃	OH, OH
3062	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
3063	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
3064	OMe	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH

3065	OMe	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
3066	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
3067	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
3068	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
3069	OMe	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
3070	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
3071	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
3072	OMe	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
3073	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
3074	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
3075	OMe	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
3076	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
3077	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
3078	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
3079	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
3080	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
3081	OMe	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
3082	OMe	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
3083	OMe	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
3084	OMe	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
3085	OMe	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
3086	OMe	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
3087	OMe	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
3088	OMe	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH
3089	NH(C-NH)H	1	Ph	H	(+)-pin
3090	NH(C-NH)H	1	Ph	Methyl	(+)-pin
3091	NH(C-NH)H	1	Ph	Ethyl	(+)-pin
3092	NH(C-NH)H	1	Ph	n-Propyl	(+)-pin
3093	NH(C-NH)H	1	Ph	n-Butyl	(+)-pin
3094	NH(C-NH)H	1	Ph	CH ₂ SCH ₃	(+)-pin
3095	NH(C-NH)H	1	Ph	CH ₂ (SO)CH ₃	(+)-pin
3096	NH(C-NH)H	1	Ph	CH ₂ (SO ₂)CH ₃	(+)-pin
3097	NH(C-NH)H	1	Ph	CH ₂ CH ₂ SCH ₃	(+)-pin
3098	NH(C-NH)H	1	Ph	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
3099	NH(C-NH)H	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
3100	NH(C-NH)H	1	Ph	CH ₂ CN	(+)-pin
3101	NH(C-NH)H	1	Ph	CH ₂ CH ₂ CN	(+)-pin
3102	NH(C-NH)H	1	Ph	CH ₂ CH ₂ CH ₂ CN	(+)-pin
3103	NH(C-NH)H	1	Ph	CF ₃	(+)-pin
3104	NH(C-NH)H	1	Ph	CF ₂ CF ₃	(+)-pin

3105	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin
3106	NH(C=NH)H	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
3107	NH(C=NH)H	1	Ph	F ₅ -Ph	(+)-pin
3108	NH(C=NH)H	1	Ph	CH ₂ CO ₂ H	(+)-pin
3109	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
3110	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
3111	NH(C=NH)H	1	Ph	CH ₂ CN ₄ H	(+)-pin
3112	NH(C=NH)H	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
3113	NH(C=NH)H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
3114	NH(C=NH)H	1	Ph	CH ₂ NO ₂	(+)-pin
3115	NH(C=NH)H	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
3116	NH(C=NH)H	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
3117	NH(C=NH)H	1	Ph	CH ₂ OH	(+)-pin
3118	NH(C=NH)H	1	Ph	(CH ₂) ₂ OH	(+)-pin
3119	NH(C=NH)H	1	Ph	(CH ₂) ₃ OH	(+)-pin
3120	NH(C=NH)H	1	Ph	CH ₂ CO ₂ Me	(+)-pin
3121	NH(C=NH)H	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
3122	NH(C=NH)H	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
3123	NH(C=NH)H	1	Ph	3-NO ₂ -Ph	(+)-pin
3124	NH(C=NH)H	1	Ph	4-NO ₂ -Ph	(+)-pin
3125	NH(C=NH)H	1	Ph	3-CO ₂ H-Ph	(+)-pin
3126	NH(C=NH)H	1	Ph	4-CO ₂ H-Ph	(+)-pin
3127	NH(C=NH)H	1	Ph	3-CN ₄ H-Ph	(+)-pin
3128	NH(C=NH)H	1	Ph	4-CN ₄ H-Ph	(+)-pin
3129	NH(C=NH)H	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
3130	NH(C=NH)H	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
3131	NH(C=NH)H	1	Ph	H	OH, OH
3132	NH(C=NH)H	1	Ph	Methyl	OH, OH
3133	NH(C=NH)H	1	Ph	Ethyl	OH, OH
3134	NH(C=NH)H	1	Ph	n-Propyl	OH, OH
3135	NH(C=NH)H	1	Ph	n-Butyl	OH, OH
3136	NH(C=NH)H	1	Ph	CH ₂ SCH ₃	OH, OH
3137	NH(C=NH)H	1	Ph	CH ₂ (SO)CH ₃	OH, OH
3138	NH(C=NH)H	1	Ph	CH ₂ (SO ₂)CH ₃	OH, OH
3139	NH(C=NH)H	1	Ph	CH ₂ CH ₂ SCH ₃	OH, OH
3140	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
3141	NH(C=NH)H	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
3142	NH(C=NH)H	1	Ph	CH ₂ CN	OH, OH
3143	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CN	OH, OH
3144	NH(C=NH)H	1	Ph	CH ₂ CH ₂ CH ₂ CN	OH, OH

3145	NH (C=NH) H	1	Ph	CF ₃	OH, OH
3146	NH (C=NH) H	1	Ph	CF ₂ CF ₃	OH, OH
3147	NH (C=NH) H	1	Ph	CF ₂ CF ₂ CF ₃	OH, OH
3148	NH (C=NH) H	1	Ph	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
3149	NH (C=NH) H	1	Ph	F ₅ -Ph	OH, OH
3150	NH (C=NH) H	1	Ph	CH ₂ CO ₂ H	OH, OH
3151	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
3152	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
3153	NH (C=NH) H	1	Ph	CH ₂ CN ₄ H	OH, OH
3154	NH (C=NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
3155	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
3156	NH (C=NH) H	1	Ph	CH ₂ NO ₂	OH, OH
3157	NH (C=NH) H	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
3158	NH (C=NH) H	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
3159	NH (C=NH) H	1	Ph	CH ₂ OH	OH, OH
3160	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	OH, OH
3161	NH (C=NH) H	1	Ph	(CH ₂) ₃ OH	OH, OH
3162	NH (C=NH) H	1	Ph	CH ₂ CO ₂ Me	OH, OH
3163	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
3164	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
3165	NH (C=NH) H	1	Ph	3-NO ₂ -Ph	OH, OH
3166	NH (C=NH) H	1	Ph	4-NO ₂ -Ph	OH, OH
3167	NH (C=NH) H	1	Ph	3-CO ₂ H-Ph	OH, OH
3168	NH (C=NH) H	1	Ph	4-CO ₂ H-Ph	OH, OH
3169	NH (C=NH) H	1	Ph	3-CN ₄ H-Ph	OH, OH
3170	NH (C=NH) H	1	Ph	4-CN ₄ H-Ph	OH, OH
3171	NH (C=NH) H	1	Ph	3-(HOCH ₂)-Ph	OH, OH
3172	NH (C=NH) H	1	Ph	4-(HOCH ₂)-Ph	OH, OH
3173	NH (C=NH) H	1	PhCH ₂	H	(+)-pin
3174	NH (C=NH) H	1	PhCH ₂	Methyl	(+)-pin
3175	NH (C=NH) H	1	PhCH ₂	Ethyl	(+)-pin
3176	NH (C=NH) H	1	PhCH ₂	n-Propyl	(+)-pin
3177	NH (C=NH) H	1	PhCH ₂	n-Butyl	(+)-pin
3178	NH (C=NH) H	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin
3179	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO)CH ₃	(+)-pin
3180	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin
3181	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
3182	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
3183	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
3184	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	(+)-pin

3185	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin
3186	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
3187	NH(C=NH)H	1	PhCH ₂	CF ₃	(+)-pin
3188	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
3189	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₂ CF ₃	(+)-pin
3190	NH(C=NH)H	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	(+)-pin
3191	NH(C=NH)H	1	PhCH ₂	F ₅ -Ph	(+)-pin
3192	NH(C=NH)H	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
3193	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
3194	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
3195	NH(C=NH)H	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
3196	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3197	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
3198	NH(C=NH)H	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
3199	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
3200	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
3201	NH(C=NH)H	1	PhCH ₂	CH ₂ OH	(+)-pin
3202	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
3203	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
3204	NH(C=NH)H	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
3205	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
3206	NH(C=NH)H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3207	NH(C=NH)H	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
3208	NH(C=NH)H	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
3209	NH(C=NH)H	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
3210	NH(C=NH)H	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
3211	NH(C=NH)H	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
3212	NH(C=NH)H	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
3213	NH(C=NH)H	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin
3214	NH(C=NH)H	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
3215	NH(C=NH)H	1	PhCH ₂	H	OH, OH
3216	NH(C=NH)H	1	PhCH ₂	Methyl	OH, OH
3217	NH(C=NH)H	1	PhCH ₂	Ethyl	OH, OH
3218	NH(C=NH)H	1	PhCH ₂	n-Propyl	OH, OH
3219	NH(C=NH)H	1	PhCH ₂	n-Butyl	OH, OH
3220	NH(C=NH)H	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
3221	NH(C=NH)H	1	PhCH ₂	CH ₂ (SO)CH ₃	OH, OH
3222	NH(C=NH)H	1	PhCH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
3223	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
3224	NH(C=NH)H	1	PhCH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH

3225	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
3226	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	OH, OH
3227	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH
3228	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
3229	NH (C=NH) H	1	PhCH ₂	CF ₃	OH, OH
3230	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₃	OH, OH
3231	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₂ CF ₃	OH, OH
3232	NH (C=NH) H	1	PhCH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
3233	NH (C=NH) H	1	PhCH ₂	F ₅ -Ph	OH, OH
3234	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
3235	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
3236	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
3237	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₄ H	OH, OH
3238	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
3239	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
3240	NH (C=NH) H	1	PhCH ₂	CH ₂ NO ₂	OH, OH
3241	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
3242	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
3243	NH (C=NH) H	1	PhCH ₂	CH ₂ OH	OH, OH
3244	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
3245	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
3246	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
3247	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
3248	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
3249	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
3250	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
3251	NH (C=NH) H	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
3252	NH (C=NH) H	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
3253	NH (C=NH) H	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
3254	NH (C=NH) H	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
3255	NH (C=NH) H	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
3256	NH (C=NH) H	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
3257	NH (C=NH) H	1	PhCH ₂ CH ₂	H	(+)-pin
3258	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	(+)-pin
3259	NH (C=NH) H	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
3260	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
3261	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
3262	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	(+)-pin
3263	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	(+)-pin
3264	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	(+)-pin

3265	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	(+)-pin
3266	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	(+)-pin
3267	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
3268	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
3269	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	(+)-pin
3270	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	(+)-pin
3271	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
3272	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
3273	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CP ₂ CF ₃	(+)-pin
3274	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CP ₂ CF ₂ CF ₃	(+)-pin
3275	NH (C=NH) H	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
3276	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	(+)-pin
3277	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
3278	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
3279	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	(+)-pin
3280	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3281	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
3282	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
3283	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	(+)-pin
3284	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	(+)-pin
3285	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
3286	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
3287	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
3288	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
3289	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
3290	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3291	NH (C=NH) H	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+)-pin
3292	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
3293	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
3294	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-pin
3295	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+)-pin
3296	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+)-pin
3297	NH (C=NH) H	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
3298	NH (C=NH) H	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
3299	NH (C=NH) H	1	PhCH ₂ CH ₂	H	OH, OH
3300	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	OH, OH
3301	NH (C=NH) H	1	PhCH ₂ CH ₂	Ethyl	OH, OH
3302	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Propyl	OH, OH
3303	NH (C=NH) H	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
3304	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH, OH

3305	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO)CH ₃	OH, OH
3306	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ (SO ₂)CH ₃	OH, OH
3307	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH, OH
3308	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO)CH ₃	OH, OH
3309	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH, OH
3310	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
3311	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH, OH
3312	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CN	OH, OH
3313	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₃	OH, OH
3314	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₃	OH, OH
3315	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₃	OH, OH
3316	NH (C=NH) H	1	PhCH ₂ CH ₂	CF ₂ CF ₂ CF ₂ CF ₃	OH, OH
3317	NH (C=NH) H	1	PhCH ₂ CH ₂	F ₅ -Ph	OH, OH
3318	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ H	OH, OH
3319	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
3320	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
3321	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN ₄ H	OH, OH
3322	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
3323	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
3324	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH, OH
3325	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	OH, OH
3326	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
3327	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
3328	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	OH, OH
3329	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
3330	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
3331	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
3332	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
3333	NH (C=NH) H	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
3334	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
3335	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
3336	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
3337	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	OH, OH
3338	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH, OH
3339	NH (C=NH) H	1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	OH, OH
3340	NH (C=NH) H	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	OH, OH

BA. MS (M+H)⁺: Calc. 480, Found 480.

BC. MS (M+H)⁺: Calc. 494, Found 494.

BD. MS (M+H)⁺: Calc. 522, Found 522.

- BE. MS (M+H)⁺: Calc. 540, Found 540.
 BF. MS (M+H)⁺: Calc. 519, Found 519.
 BG. MS (M+H)⁺: Calc. 538, Found 538.
 BH. MS (M+H)⁺: Calc. 346, Found 346.
 BI. MS (M+H)⁺: Calc. 494, Found 494.
 BJ. Anal. calcd. for C₁₇H₂₆BN₅O₃·2 H₂O·1.8 HCl: C, 44.30; H, 6.95; Cl, 13.84; N, 15.20. Found: C, 44.22; H, 6.66; Cl, 14.03; N, 14.03.
 BW. MS (M+H)⁺: Calc. 466, Found 466.
 BX. MS (M+H)⁺: Calc. 480, Found 480.
 CV. MS (M+H)⁺: Calc. 510, Found 510.
 CW. MS (M+H)⁺: Calc. 600, Found 600.
 CX. MS (M+H)⁺: Calc. 552, Found 552.
 CY. MS (M+H)⁺: Calc. 629, Found 629.
 CZ. MS (M+H)⁺: Calc. 524, Found 524.
 DA. MS (M+H)⁺: Calc. 614, Found 614.

Table 16

Ex	X	m	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
3345	CH ₂ NH ₂	1	Ph	Ph	(+)-pin	
3346	CH ₂ NH ₂	1	Ph	PhCH ₂	(+)-pin	
3347	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	(+)-pin	
3348	CH ₂ NH ₂	1	PhCH ₂	Ph	(+)-pin	
3349	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin	BY
3350	CH ₂ NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin	
3351	CH ₂ NH ₂	1	Ph(CH ₂) ₂	Ph	(+)-pin	
3352	CH ₂ NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin	
3353	CH ₂ NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin	
3354	CH ₂ NH ₂	1	Ph	Ph	OH, OH	
3355	CH ₂ NH ₂	1	Ph	PhCH ₂	OH, OH	
3356	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH	
3357	CH ₂ NH ₂	1	PhCH ₂	Ph	OH, OH	
3358	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	OH, OH	

3359	CH ₂ NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3360	CH ₂ NH ₂	1	Ph(CH ₂) ₂	Ph	OH, OH
3361	CH ₂ NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3362	CH ₂ NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3363	NH(C=NH)NH ₂	1	Ph	Ph	(+)-pin
3364	NH(C=NH)NH ₂	1	Ph	PhCH ₂	(+)-pin
3365	NH(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	(+)-pin
3366	NH(C=NH)NH ₂	1	PhCH ₂	Ph	(+)-pin
3367	NH(C=NH)NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
3368	NH(C=NH)NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3369	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	Ph	(+)-pin
3370	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3371	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3372	NH(C=NH)NH ₂	1	Ph	Ph	OH, OH
3373	NH(C=NH)NH ₂	1	Ph	PhCH ₂	OH, OH
3374	NH(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
3375	NH(C=NH)NH ₂	1	PhCH ₂	Ph	OH, OH
3376	NH(C=NH)NH ₂	1	PhCH ₂	PhCH ₂	OH, OH
3377	NH(C=NH)NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3378	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	Ph	OH, OH
3379	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3380	NH(C=NH)NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3381	OMe	1	Ph	Ph	(+)-pin
3382	OMe	1	Ph	PhCH ₂	(+)-pin
3383	OMe	1	Ph	Ph(CH ₂) ₂	(+)-pin
3384	OMe	1	PhCH ₂	Ph	(+)-pin
3385	OMe	1	PhCH ₂	PhCH ₂	(+)-pin
3386	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3387	OMe	1	Ph(CH ₂) ₂	Ph	(+)-pin
3388	OMe	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3389	OMe	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3390	OMe	1	Ph	Ph	OH, OH
3391	OMe	1	Ph	PhCH ₂	OH, OH
3392	OMe	1	Ph	Ph(CH ₂) ₂	OH, OH
3393	OMe	1	PhCH ₂	Ph	OH, OH
3394	OMe	1	PhCH ₂	PhCH ₂	OH, OH
3395	OMe	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3396	OMe	1	Ph(CH ₂) ₂	Ph	OH, OH
3397	OMe	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3398	OMe	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH

3399	NH (C=NH) H	1	Ph	Ph	(+)-pin
3400	NH (C=NH) H	1	Ph	PhCH ₂	(+)-pin
3401	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	(+)-pin
3402	NH (C=NH) H	1	PhCH ₂	Ph	(+)-pin
3403	NH (C=NH) H	1	PhCH ₂	PhCH ₂	(+)-pin
3404	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3405	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	(+)-pin
3406	NH (C=NH) H	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3407	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3408	NH (C=NH) H	1	Ph	Ph	OH, OH
3409	NH (C=NH) H	1	Ph	PhCH ₂	OH, OH
3410	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	OH, OH
3411	NH (C=NH) H	1	PhCH ₂	Ph	OH, OH
3412	NH (C=NH) H	1	PhCH ₂	PhCH ₂	OH, OH
3413	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3414	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	OH, OH
3415	NH (C=NH) H	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3416	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3417	CH ₂ NH ₂	2	Ph	Ph	(+)-pin
3418	CH ₂ NH ₂	2	Ph	PhCH ₂	(+)-pin
3419	CH ₂ NH ₂	2	Ph	Ph(CH ₂) ₂	(+)-pin
3420	CH ₂ NH ₂	2	PhCH ₂	Ph	(+)-pin
3421	CH ₂ NH ₂	2	PhCH ₂	PhCH ₂	(+)-pin
3422	CH ₂ NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3423	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph	(+)-pin
3424	CH ₂ NH ₂	2	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3425	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3426	CH ₂ NH ₂	2	Ph	Ph	OH, OH
3427	CH ₂ NH ₂	2	Ph	PhCH ₂	OH, OH
3428	CH ₂ NH ₂	2	Ph	Ph(CH ₂) ₂	OH, OH
3429	CH ₂ NH ₂	2	PhCH ₂	Ph	OH, OH
3430	CH ₂ NH ₂	2	PhCH ₂	PhCH ₂	OH, OH
3431	CH ₂ NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3432	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph	OH, OH
3433	CH ₂ NH ₂	2	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3434	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3435	NH (C=NH) NH ₂	2	Ph	Ph	(+)-pin
3436	NH (C=NH) NH ₂	2	Ph	PhCH ₂	(+)-pin
3437	NH (C=NH) NH ₂	2	Ph	Ph(CH ₂) ₂	(+)-pin
3438	NH (C=NH) NH ₂	2	PhCH ₂	Ph	(+)-pin

3439	NH (C=NH) NH ₂	2	PhCH ₂	PhCH ₂	(+)-pin
3440	NH (C=NH) NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3441	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph	(+)-pin
3442	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3443	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3444	NH (C=NH) NH ₂	2	Ph	Ph	OH, OH
3445	NH (C=NH) NH ₂	2	Ph	PhCH ₂	OH, OH
3446	NH (C=NH) NH ₂	2	Ph	Ph(CH ₂) ₂	OH, OH
3447	NH (C=NH) NH ₂	2	PhCH ₂	Ph	OH, OH
3448	NH (C=NH) NH ₂	2	PhCH ₂	PhCH ₂	OH, OH
3449	NH (C=NH) NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3450	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph	OH, OH
3451	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3452	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH

BY. MS (M+H)⁺: Calc. 570, Found 570.

Table 17

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3457	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3458	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	BK
3459	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3460	CH ₂ NH ₂	Ph	methyl	methyl	(+)-pin	
3461	CH ₂ NH ₂	Ph	ethyl	H	(+)-pin	
3462	CH ₂ NH ₂	Ph	ethyl	methyl	(+)-pin	
3463	CH ₂ NH ₂	Ph	ethyl	ethyl	(+)-pin	
3464	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin	
3465	CH ₂ NH ₂	Ph	phenyl	H	(+)-pin	BL
3466	CH ₂ NH ₂	Ph	CH ₂ CN	H	(+)-pin	
3467	CH ₂ NH ₂	Ph	CH ₂ NC	H	(+)-pin	
3468	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin	
3469	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin	
3470	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin	
3471	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin	
3472	CH ₂ NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3473	CH ₂ NH ₂	Ph	CH ₂ COOH	H	(+)-pin	
3474	CH ₂ NH ₂	Ph	(CH ₂) ₂ COOH	H	(+)-pin	
3475	CH ₂ NH ₂	Ph	(CH ₂) ₂ CN	H	(+)-pin	
3476	CH ₂ NH ₂	Ph	CH=CHCOOMe	H	(+)-pin	
3477	CH ₂ NH ₂	Ph	CH=CNCOOH	H	(+)-pin	
3478	CH ₂ NH ₂	Ph	CH=CHCN	H	(+)-pin	
3479	CH ₂ NH ₂	Ph	CR ₂ CN ₄ H	H	(+)-pin	
3480	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin	
3481	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin	
3482	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin	
3483	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin	
3484	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin	
3485	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin	
3486	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin	
3487	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin	

3488	CH ₂ NH ₂	Ph	NO ₂	H	(+)-pin
3489	CH ₂ NH ₂	Ph	F	H	(+)-pin
3490	CH ₂ NH ₂	Ph	OH	H	(+)-pin
3491	CH ₂ NH ₂	Ph	H	H	OH, OH
3492	CH ₂ NH ₂	Ph	methyl	H	OH, OH
3493	CH ₂ NH ₂	Ph	methyl	methyl	OH, OH
3494	CH ₂ NH ₂	Ph	ethyl	H	OH, OH
3495	CH ₂ NH ₂	Ph	ethyl	methyl	OH, OH
3496	CH ₂ NH ₂	Ph	ethyl	ethyl	OH, OH
3497	CH ₂ NH ₂	Ph	isopropyl	H	OH, OH
3498	CH ₂ NH ₂	Ph	phenyl	H	OH, OH
3499	CH ₂ NH ₂	Ph	CH ₂ CN	H	OH, OH
3500	CH ₂ NH ₂	Ph	CH ₂ NC	H	OH, OH
3501	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3502	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3503	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3504	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3505	CH ₂ NH ₂	Ph	CH ₂ OH	H	OH, OH
3506	CH ₂ NH ₂	Ph	CH ₂ COOH	H	OH, OH
3507	CH ₂ NH ₂	Ph	(CH ₂) ₂ COOH	H	OH, OH
3508	CH ₂ NH ₂	Ph	(CH ₂) ₂ CN	H	OH, OH
3509	CH ₂ NH ₂	Ph	CH=CHCOOMe	H	OH, OH
3510	CH ₂ NH ₂	Ph	CH=CHCOOH	H	OH, OH
3511	CH ₂ NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3512	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3513	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3514	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3515	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3516	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3517	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3518	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3519	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3520	CH ₂ NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3521	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3522	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3523	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
3524	CH ₂ NH ₂	PhO	methyl	H	(+)-pin
3525	CH ₂ NH ₂	PhS	methyl	methyl	(+)-pin
3526	CH ₂ NH ₂	PhNH	ethyl	H	(+)-pin
3527	CH ₂ NH ₂	PhCONH	ethyl	methyl	(+)-pin

3526	CH ₂ NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3529	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin
3530	CH ₂ NH ₂	PhCH ₂	phenyl	H	(+)-pin
3531	CH ₂ NH ₂	PhO	CH ₂ CN	H	(+)-pin
3532	CH ₂ NH ₂	PhS	CH ₂ NC	H	(+)-pin
3533	CH ₂ NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3534	CH ₂ NH ₂	PhCONH	CH ₂ SCH ₃	H	(+)-pin
3535	CH ₂ NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3536	CH ₂ NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3537	NH(C=NH)NH ₂	Ph	H	H	(+)-pin
3538	NH(C=NH)NH ₂	Ph	methyl	H	(+)-pin
3539	NH(C=NH)NH ₂	Ph	methyl	H	(+)-pin
3540	NH(C=NH)NH ₂	Ph	methyl	methyl	(+)-pin
3541	NH(C=NH)NH ₂	Ph	ethyl	H	(+)-pin
3542	NH(C=NH)NH ₂	Ph	ethyl	methyl	(+)-pin
3543	NH(C=NH)NH ₂	Ph	ethyl	ethyl	(+)-pin
3544	NH(C=NH)NH ₂	Ph	isopropyl	H	(+)-pin
3545	NH(C=NH)NH ₂	Ph	phenyl	H	(+)-pin
3546	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	(+)-pin
3547	NH(C=NH)NH ₂	Ph	CH ₂ NC	H	(+)-pin
3548	NH(C=NH)NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin
3549	NH(C=NH)NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin
3550	NH(C=NH)NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin
3551	NH(C=NH)NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin
3552	NH(C=NH)NH ₂	Ph	CH ₂ OH	H	(+)-pin
3553	NH(C=NH)NH ₂	Ph	CH ₂ COOH	H	(+)-pin
3554	NH(C=NH)NH ₂	Ph	(CH ₂) ₂ COOH	H	(+)-pin
3555	NH(C=NH)NH ₂	Ph	(CH ₂) ₂ CN	H	(+)-pin
3556	NH(C=NH)NH ₂	Ph	CH=CHCOOMe	H	(+)-pin
3557	NH(C=NH)NH ₂	Ph	CH=CHCOOH	H	(+)-pin
3558	NH(C=NH)NH ₂	Ph	CH ₂ CN ₄ H	H	(+)-pin
3559	NH(C=NH)NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin
3560	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin
3561	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin
3562	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin
3563	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin
3564	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin
3565	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin
3566	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin
3567	NH(C=NH)NH ₂	Ph	NO ₂	H	(+)-pin

3568	NH(C=NH)NH ₂	Ph	F	H	(+)-pin
3569	NH(C=NH)NH ₂	Ph	OH	H	(+)-pin
3570	NH(C=NH)NH ₂	Ph	H	H	OH, OH
3571	NH(C=NH)NH ₂	Ph	methyl	H	OH, OH
3572	NH(C=NH)NH ₂	Ph	methyl	methyl	OH, OH
3573	NH(C=NH)NH ₂	Ph	ethyl	H	OH, OH
3574	NH(C=NH)NH ₂	Ph	ethyl	methyl	OH, OH
3575	NH(C=NH)NH ₂	Ph	ethyl	ethyl	OH, OH
3576	NH(C=NH)NH ₂	Ph	isopropyl	H	OH, OH
3577	NH(C=NH)NH ₂	Ph	phenyl	H	OH, OH
3578	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	OH, OH
3579	NH(C=NH)NH ₂	Ph	CH ₂ NC	H	OH, OH
3580	NH(C=NH)NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3581	NH(C=NH)NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3582	NH(C=NH)NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3583	NH(C=NH)NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3584	NH(C=NH)NH ₂	Ph	CH ₂ OH	H	OH, OH
3585	NH(C=NH)NH ₂	Ph	CH ₂ COOH	H	OH, OH
3586	NH(C=NH)NH ₂	Ph	(CH ₂) ₂ COOH	H	OH, OH
3587	NH(C=NH)NH ₂	Ph	(CH ₂) ₂ CN	H	OH, OH
3588	NH(C=NH)NH ₂	Ph	CH=CHCOOMe	H	OH, OH
3589	NH(C=NH)NH ₂	Ph	CH=CHCOOH	H	OH, OH
3590	NH(C=NH)NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3591	NH(C=NH)NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3592	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3593	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3594	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3595	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3596	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3597	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3598	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3599	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3600	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3601	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3602	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin
3603	NH(C=NH)NH ₂	PhO	methyl	H	(+)-pin
3604	NH(C=NH)NH ₂	PhS	methyl	methyl	(+)-pin
3605	NH(C=NH)NH ₂	PhNH	ethyl	H	(+)-pin
3606	NH(C=NH)NH ₂	PhCONH	ethyl	methyl	(+)-pin
3607	NH(C=NH)NH ₂	PhNHCO	ethyl	ethyl	(+)-pin

3608	NH(C=NH)NH ₂	Ph	isopropyl	H	(+)-pin
3609	NH(C=NH)NH ₂	PhCH ₂	phenyl	H	(+)-pin
3610	NH(C=NH)NH ₂	PhO	CH ₂ CN	H	(+)-pin
3611	NH(C=NH)NH ₂	PhS	CH ₂ NC	H	(+)-pin
3612	NH(C=NH)NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3613	NH(C=NH)NH ₂	PhCONH	CH ₂ SCH ₃	H	(+)-pin
3614	NH(C=NH)NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3615	NH(C=NH)NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3616	OMe	Ph	CH ₃	H	(+)-pin
3617	NH(C=NH)H	Ph	CH ₃	H	(+)-pin
3618	OMe	Ph	CH ₃	H	OH, OH
3619	NH(C=NH)H	Ph	CH ₃	H	OH, OH

BK. MS (M-H)⁺: Calc. 477, Found 477.

BL. MS (M-H)⁺: Calc. 539, Found 539.

BM. MS (M-H)⁺: Calc. 505, Found 505.

Table 18

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3624	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3625	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3626	CH ₂ NH ₂	Ph	ethyl	H	(+)-pin	
3627	CH ₂ NH ₂	Ph	ethyl	methyl	(+)-pin	
3628	CH ₂ NH ₂	Ph	ethyl	ethyl	(+)-pin	
3629	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin	
3630	CH ₂ NH ₂	Ph	phenyl	H	(+)-pin	
3631	CH ₂ NH ₂	Ph	CH ₂ CN	H	(+)-pin	
3632	CH ₂ NH ₂	Ph	CH ₂ NC	H	(+)-pin	
3633	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin	
3634	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin	
3635	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin	
3636	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin	
3637	CH ₂ NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3638	CH ₂ NH ₂	Ph	CH ₂ COOH	H	(+)-pin	
3639	CH ₂ NH ₂	Ph	CH ₂ CN ₄ H	H	(+)-pin	
3640	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin	
3641	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin	
3642	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin	
3643	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin	
3644	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin	
3645	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin	
3646	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin	
3647	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin	
3648	CH ₂ NH ₂	Ph	NO ₂	H	(+)-pin	
3649	CH ₂ NH ₂	Ph	F	H	(+)-pin	
3650	CH ₂ NH ₂	Ph	OH	H	(+)-pin	
3651	CH ₂ NH ₂	Ph	H	H	OH, OH	
3652	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
3653	CH ₂ NH ₂	Ph	methyl	methyl	OH, OH	
3654	CH ₂ NH ₂	Ph	ethyl	H	OH, OH	

3655	CH ₂ NH ₂	Ph	ethyl	methyl	OH, OH
3656	CH ₂ NH ₂	Ph	ethyl	ethyl	OH, OH
3657	CH ₂ NH ₂	Ph	isopropyl	H	OH, OH
3658	CH ₂ NH ₂	Ph	phenyl	H	OH, OH
3659	CH ₂ NH ₂	Ph	CH ₂ CN	H	OH, OH
3660	CH ₂ NH ₂	Ph	CH ₂ NC	H	OH, OH
3661	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3662	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3663	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3664	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3665	CH ₂ NH ₂	Ph	CH ₂ OH	H	OH, OH
3666	CH ₂ NH ₂	Ph	CH ₂ COOH	H	OH, OH
3667	CH ₂ NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3668	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3669	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3670	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3671	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3672	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3673	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3674	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3675	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3676	CH ₂ NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3677	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3678	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3679	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
3680	CH ₂ NH ₂	PhO	methyl	H	(+)-pin
3681	CH ₂ NH ₂	PhS	methyl	methyl	(+)-pin
3682	CH ₂ NH ₂	PhNH	ethyl	H	(+)-pin
3683	CH ₂ NH ₂	PhCONH	ethyl	methyl	(+)-pin
3684	CH ₂ NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3685	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin
3686	CH ₂ NH ₂	PhCH ₂	phenyl	H	(+)-pin
3687	CH ₂ NH ₂	PhO	CH ₂ CN	H	(+)-pin
3688	CH ₂ NH ₂	PhS	CH ₂ NC	H	(+)-pin
3689	CH ₂ NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3690	CH ₂ NH ₂	PhCONH	CH ₂ SCH ₃	H	(+)-pin
3691	CH ₂ NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3692	CH ₂ NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3693	NH(C=NH)NH ₂	Ph	H	H	(+)-pin
3694	NH(C=NH)NH ₂	Ph	methyl	methyl	(+)-pin

3695	NH(C=NH)NH ₂	Ph	ethyl	H	(+)-pin
3696	NH(C=NH)NH ₂	Ph	ethyl	methyl	(+)-pin
3697	NH(C=NH)NH ₂	Ph	ethyl	ethyl	(+)-pin
3698	NH(C=NH)NH ₂	Ph	isopropyl	H	(+)-pin
3699	NH(C=NH)NH ₂	Ph	phenyl	H	(+)-pin
3700	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	(+)-pin
3701	NH(C=NH)NH ₂	Ph	CH ₂ NC	H	(+)-pin
3702	NH(C=NH)NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin
3703	NH(C=NH)NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin
3704	NH(C=NH)NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin
3705	NH(C=NH)NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin
3706	NH(C=NH)NH ₂	Ph	CH ₂ OH	H	(+)-pin
3707	NH(C=NH)NH ₂	Ph	CH ₂ COOH	H	(+)-pin
3708	NH(C=NH)NH ₂	Ph	CH ₂ CN ₄ H	H	(+)-pin
3709	NH(C=NH)NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin
3710	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin
3711	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin
3712	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin
3713	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin
3714	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin
3715	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin
3716	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin
3717	NH(C=NH)NH ₂	Ph	NO ₂	H	(+)-pin
3718	NH(C=NH)NH ₂	Ph	F	H	(+)-pin
3719	NH(C=NH)NH ₂	Ph	OH	H	(+)-pin
3720	NH(C=NH)NH ₂	Ph	H	H	OH, OH
3721	NH(C=NH)NH ₂	Ph	methyl	H	OH, OH
3722	NH(C=NH)NH ₂	Ph	methyl	methyl	OH, OH
3723	NH(C=NH)NH ₂	Ph	ethyl	H	OH, OH
3724	NH(C=NH)NH ₂	Ph	ethyl	methyl	OH, OH
3725	NH(C=NH)NH ₂	Ph	ethyl	ethyl	OH, OH
3726	NH(C=NH)NH ₂	Ph	isopropyl	H	OH, OH
3727	NH(C=NH)NH ₂	Ph	phenyl	H	OH, OH
3728	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	OH, OH
3729	NH(C=NH)NH ₂	Ph	CH ₂ NC	H	OH, OH
3730	NH(C=NH)NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3731	NH(C=NH)NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3732	NH(C=NH)NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3733	NH(C=NH)NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3734	NH(C=NH)NH ₂	Ph	CH ₂ OH	H	OH, OH

3735	NH(C=NH)NH ₂	Ph	CH ₂ COOH	H	OH, OH
3736	NH(C=NH)NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3737	NH(C=NH)NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3738	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3739	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3740	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3741	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3742	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3743	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3744	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3745	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3746	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3747	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3748	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin
3749	NH(C=NH)NH ₂	PhO	methyl	H	(+)-pin
3750	NH(C=NH)NH ₂	PhS	methyl	methyl	(+)-pin
3751	NH(C=NH)NH ₂	PhNH	ethyl	H	(+)-pin
3752	NH(C=NH)NH ₂	PhCONH	ethyl	methyl	(+)-pin
3753	NH(C=NH)NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3754	NH(C=NH)NH ₂	Ph	isopropyl	H	(+)-pin
3755	NH(C=NH)NH ₂	PhCH ₂	phenyl	H	(+)-pin
3756	NH(C=NH)NH ₂	PhO	CH ₂ CN	H	(+)-pin
3757	NH(C=NH)NH ₂	PhS	CH ₂ NC	H	(+)-pin
3758	NH(C=NH)NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3759	NH(C=NH)NH ₂	PhCONH	CH ₂ SCH ₃	H	(+)-pin
3760	NH(C=NH)NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3761	NH(C=NH)NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3762	OMe	Ph	CH ₃	H	(+)-pin
3763	NH(C=NH)H	Ph	CH ₃	H	(+)-pin
3764	OMe	Ph	CH ₃	H	OH, OH
3765	NH(C=NH)H	Ph	CH ₃	H	OH, OH

Table 19

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3770	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3771	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3772	CH ₂ NH ₂	Ph	H	H	OH, OH	
3773	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
3774	NH(C=NH)NH ₂	Ph	H	H	(+)-pin	
3775	NH(C=NH)NH ₂	Ph	methyl	H	(+)-pin	
3776	NH(C=NH)NH ₂	Ph	H	H	OH, OH	
3777	NH(C=NH)NH ₂	Ph	methyl	H	OH, OH	
3778	OMe	Ph	CH ₃	H	(+)-pin	
3779	NH(C=NH)H	Ph	CH ₃	H	(+)-pin	
3780	OMe	Ph	CH ₃	H	OH, OH	
3781	NH(C=NH)H	Ph	CH ₃	H	OH, OH	

Table 20

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3786	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3787	CH ₂ NH ₂	Ph	methyl	methyl	(+)-pin	
3788	CH ₂ NH ₂	Ph	ethyl	H	(+)-pin	
3789	CH ₂ NH ₂	Ph	ethyl	methyl	(+)-pin	
3790	CH ₂ NH ₂	Ph	ethyl	ethyl	(+)-pin	
3791	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin	
3792	CH ₂ NH ₂	Ph	phenyl	H	(+)-pin	
3793	CH ₂ NH ₂	Ph	CH ₂ CN	H	(+)-pin	
3794	CH ₂ NH ₂	Ph	CH ₂ NC	H	(+)-pin	
3795	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin	
3796	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin	
3797	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin	
3798	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin	
3799	CH ₂ NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3800	CH ₂ NH ₂	Ph	CH ₂ COOH	H	(+)-pin	
3801	CH ₂ NH ₂	Ph	CH ₂ CN ₄ H	H	(+)-pin	
3802	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin	
3803	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin	
3804	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin	
3805	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin	
3806	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin	
3807	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin	
3808	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin	
3809	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin	
3810	CH ₂ NH ₂	Ph	NO ₂	H	(+)-pin	
3811	CH ₂ NH ₂	Ph	F	H	(+)-pin	
3812	CH ₂ NH ₂	Ph	OH	H	(+)-pin	
3813	CH ₂ NH ₂	Ph	H	H	OH, OH	
3814	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
3815	CH ₂ NH ₂	Ph	methyl	methyl	OH, OH	
3816	CH ₂ NH ₂	Ph	ethyl	H	OH, OH	

3817	CH ₂ NH ₂	Ph	ethyl	methyl	OH, OH
3818	CH ₂ NH ₂	Ph	ethyl	ethyl	OH, OH
3819	CH ₂ NH ₂	Ph	isopropyl	H	OH, OH
3820	CH ₂ NH ₂	Ph	phenyl	H	OH, OH
3821	CH ₂ NH ₂	Ph	CH ₂ CN	H	OH, OH
3822	CH ₂ NH ₂	Ph	CH ₂ NC	H	OH, OH
3823	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3824	CH ₂ NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3825	CH ₂ NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3826	CH ₂ NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3827	CH ₂ NH ₂	Ph	CH ₂ OH	H	OH, OH
3828	CH ₂ NH ₂	Ph	CH ₂ COOH	H	OH, OH
3829	CH ₂ NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3830	CH ₂ NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3831	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3832	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3833	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3834	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3835	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3836	CH ₂ NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3837	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3838	CH ₂ NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3839	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3840	CH ₂ NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3841	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
3842	CH ₂ NH ₂	PhO	methyl	H	(+)-pin
3843	CH ₂ NH ₂	PhS	methyl	methyl	(+)-pin
3844	CH ₂ NH ₂	PhNH	ethyl	H	(+)-pin
3845	CH ₂ NH ₂	PhCONH	ethyl	methyl	(+)-pin
3846	CH ₂ NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3847	CH ₂ NH ₂	Ph	isopropyl	H	(+)-pin
3848	CH ₂ NH ₂	PhCH ₂	phenyl	H	(+)-pin
3849	CH ₂ NH ₂	PhO	CH ₂ CN	H	(+)-pin
3850	CH ₂ NH ₂	PhS	CH ₂ NC	H	(+)-pin
3851	CH ₂ NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3852	CH ₂ NH ₂	PhCQNH	CH ₂ SCH ₃	H	(+)-pin
3853	CH ₂ NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3854	CH ₂ NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3855	NH(C=NH)NH ₂	Ph	H	H	(+)-pin
3856	NH(C=NH)NH ₂	Ph	methyl	methyl	(+)-pin

3857	NH (C=NH) NH ₂	Ph	ethyl	H	(+)-pin
3858	NH (C=NH) NH ₂	Ph	ethyl	methyl	(+)-pin
3859	NH (C=NH) NH ₂	Ph	ethyl	ethyl	(+)-pin
3860	NH (C=NH) NH ₂	Ph	isopropyl	H	(+)-pin
3861	NH (C=NH) NH ₂	Ph	phenyl	H	(+)-pin
3862	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	(+)-pin
3863	NH (C=NH) NH ₂	Ph	CH ₂ NC	H	(+)-pin
3864	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin
3865	NH (C=NH) NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin
3866	NH (C=NH) NH ₂	Ph	CH ₂ SOCH ₃	H	(+)-pin
3867	NH (C=NH) NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin
3868	NH (C=NH) NH ₂	Ph	CH ₂ OH	H	(+)-pin
3869	NH (C=NH) NH ₂	Ph	CH ₂ COOH	H	(+)-pin
3870	NH (C=NH) NH ₂	Ph	CH ₂ CN ₄ H	H	(+)-pin
3871	NH (C=NH) NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	(+)-pin
3872	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin
3873	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ NC	H	(+)-pin
3874	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	(+)-pin
3875	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	(+)-pin
3876	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	(+)-pin
3877	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	(+)-pin
3878	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin
3879	NH (C=NH) NH ₂	Ph	NO ₂	H	(+)-pin
3880	NH (C=NH) NH ₂	Ph	F	H	(+)-pin
3881	NH (C=NH) NH ₂	Ph	OH	H	(+)-pin
3882	NH (C=NH) NH ₂	Ph	H	H	OH, OH
3883	NH (C=NH) NH ₂	Ph	methyl	H	OH, OH
3884	NH (C=NH) NH ₂	Ph	methyl	methyl	OH, OH
3885	NH (C=NH) NH ₂	Ph	ethyl	H	OH, OH
3886	NH (C=NH) NH ₂	Ph	ethyl	methyl	OH, OH
3887	NH (C=NH) NH ₂	Ph	ethyl	ethyl	OH, OH
3888	NH (C=NH) NH ₂	Ph	isopropyl	H	OH, OH
3889	NH (C=NH) NH ₂	Ph	phenyl	H	OH, OH
3890	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	OH, OH
3891	NH (C=NH) NH ₂	Ph	CH ₂ NC	H	OH, OH
3892	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	H	OH, OH
3893	NH (C=NH) NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3894	NH (C=NH) NH ₂	Ph	CH ₂ SOCH ₃	H	OH, OH
3895	NH (C=NH) NH ₂	Ph	CH ₂ SO ₂ CH ₃	H	OH, OH
3896	NH (C=NH) NH ₂	Ph	CH ₂ OH	H	OH, OH

3897	NH(C=NH)NH ₂	Ph	CH ₂ COOH	H	OH, OH
3898	NH(C=NH)NH ₂	Ph	CH ₂ CN ₄ H	H	OH, OH
3899	NH(C=NH)NH ₂	Ph	CH ₂ NHSO ₂ CF ₃	H	OH, OH
3900	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN	H	OH, OH
3901	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NC	H	OH, OH
3902	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NO ₂	H	OH, OH
3903	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SCH ₃	H	OH, OH
3904	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SOCH ₃	H	OH, OH
3905	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ SO ₂ CH ₃	H	OH, OH
3906	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ OH	H	OH, OH
3907	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ COOH	H	OH, OH
3908	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ CN ₄ H	H	OH, OH
3909	NH(C=NH)NH ₂	Ph	CH ₂ CH ₂ NHSO ₂ CF ₃	H	OH, OH
3910	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin
3911	NH(C=NH)NH ₂	PhO	methyl	H	(+)-pin
3912	NH(C=NH)NH ₂	PhS	methyl	methyl	(+)-pin
3913	NH(C=NH)NH ₂	PhNH	ethyl	H	(+)-pin
3914	NH(C=NH)NH ₂	PhCONH	ethyl	methyl	(+)-pin
3915	NH(C=NH)NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3916	NH(C=NH)NH ₂	Ph	isopropyl	H	(+)-pin
3917	NH(C=NH)NH ₂	PhCH ₂	phenyl	H	(+)-pin
3918	NH(C=NH)NH ₂	PhO	CH ₂ CN	H	(+)-pin
3919	NH(C=NH)NH ₂	PhS	CH ₂ NC	H	(+)-pin
3920	NH(C=NH)NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3921	NH(C=NH)NH ₂	PhCONH	CH ₂ SCH ₃	H	(+)-pin
3922	NH(C=NH)NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3923	NH(C=NH)NH ₂	Ph(CH ₂) ₂	CH ₂ SO ₂ CH ₃	H	(+)-pin
3924	OMe	Ph	CH ₃	H	(+)-pin
3925	NH(C=NH)H	Ph	CH ₃	H	(+)-pin
3926	OMe	Ph	CH ₃	H	OH, OH
3927	NH(C=NH)H	Ph	CH ₃	H	OH, OH

Table 21

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3932	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3933	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3934	CH ₂ NH ₂	Ph	H	H	OH, OH	
3935	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
3936	NH(C-NH)NH ₂	Ph	H	H	(+)-pin	
3937	NH(C-NH)NH ₂	Ph	methyl	H	(+)-pin	
3938	NH(C-NH)NH ₂	Ph	H	H	OH, OH	
3939	NH(C-NH)NH ₂	Ph	methyl	H	OH, OH	
3940	OMe	Ph	CH ₃	H	(+)-pin	
3941	NH(C-NH)H	Ph	CH ₃	H	(+)-pin	
3942	OMe	Ph	CH ₃	H	OH, OH	
3943	NH(C-NH)H	Ph	CH ₃	H	OH, OH	

Table 22

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
3948	CH ₂ NH ₂	Ph	H	(+)-pin	
3949	CH ₂ NH ₂	Ph	methyl	(+)-pin	
3950	CH ₂ NH ₂	Ph	H	OH, OH	
3951	CH ₂ NH ₂	Ph	methyl	OH, OH	
3952	NH(C-NH)NH ₂	Ph	H	(+)-pin	
3953	NH(C-NH)NH ₂	Ph	methyl	(+)-pin	
3954	NH(C-NH)NH ₂	Ph	H	OH, OH	
3955	NH(C-NH)NH ₂	Ph	methyl	OH, OH	
3956	CMe	Ph	CH ₃	(+)-pin	
3957	NH(C-NH)H	Ph	CH ₃	(+)-pin	
3958	CMe	Ph	CH ₃	OH, OH	
3959	NH(C-NH)H	Ph	CH ₃	OH, OH	

Table 23

Ex	X	R ¹³	R ¹⁴	Y ¹ -Y ²	Phys. Data
3964	CH ₂ NH ₂	Ph	H	(+)-pin	
3965	CH ₂ NH ₂	Ph	methyl	(+)-pin	
3966	CH ₂ NH ₂	Ph	H	OH, OH	
3967	CH ₂ NH ₂	Ph	methyl	OH, OH	
3968	NH(C=NH)NH ₂	Ph	H	(+)-pin	
3969	NH(C=NH)NH ₂	Ph	methyl	(+)-pin	
3970	NH(C=NH)NH ₂	Ph	H	OH, OH	
3971	NH(C=NH)NH ₂	Ph	methyl	OH, OH	
3972	OMe	Ph	CH ₃	(+)-pin	
3973	NH(C=NH)H	Ph	CH ₃	(+)-pin	
3974	OMe	Ph	CH ₃	OH, OH	
3975	NH(C=NH)H	Ph	CH ₃	OH, OH	

Table 24

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
3980	CH ₂ NH ₂	Ph	H	(+)-pin	
3981	CH ₂ NH ₂	Ph	methyl	(+)-pin	
3982	CH ₂ NH ₂	Ph	H	OH, OH	
3983	CH ₂ NH ₂	Ph	methyl	OH, OH	
3984	NH(C=NH)NH ₂	Ph	H	(+)-pin	
3985	NH(C=NH)NH ₂	Ph	methyl	(+)-pin	
3986	NH(C=NH)NH ₂	Ph	H	OH, OH	
3987	NH(C=NH)NH ₂	Ph	methyl	OH, OH	
3988	OMe	Ph	CH ₃	(+)-pin	
3989	NH(C=NH)H	Ph	CH ₃	(+)-pin	
3990	OMe	Ph	CH ₃	OH, OH	
3991	NH(C=NH)H	Ph	CH ₃	OH, OH	

Table 25

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3996	CH ₂ NH ₂	Ph	H	H	(+)-pin	
3997	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3998	CH ₂ NH ₂	Ph	H	H	OH, OH	
3999	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
4000	NH(C=NH)NH ₂	Ph	H	H	(+)-pin	
4001	NH(C=NH)NH ₂	Ph	methyl	H	(+)-pin	
4002	NH(C=NH)NH ₂	Ph	H	H	OH, OH	
4003	NH(C=NH)NH ₂	Ph	methyl	H	OH, OH	
4004	OMe	Ph	CH ₃	H	(+)-pin	
4005	NH(C=NH)H	Ph	CH ₃	H	(+)-pin	
4006	OMe	Ph	CH ₃	H	OH, OH	
4007	NH(C=NH)H	Ph	CH ₃	H	OH, OH	

Table 26

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phy. Data
4012	CH ₂ NH ₂	Ph	H	H	(+)-pin	
4013	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
4014	CH ₂ NH ₂	Ph	H	H	OH, OH	
4015	CH ₂ NH ₂	Ph	methyl	H	OH, OH	
4016	CH ₂ NH ₂	Ph	H	Ph	(+)-pin	
4017	CH ₂ NH ₂	Ph	H	Ph	OH, OH	
4018	NH(C=NH)NH ₂	Ph	H	H	(+)-pin	
4019	NH(C=NH)NH ₂	Ph	methyl	H	(+)-pin	
4020	NH(C=NH)NH ₂	Ph	H	H	OH, OH	
4021	NH(C=NH)NH ₂	Ph	methyl	H	OH, OH	
4022	NH(C=NH)NH ₂	Ph	H	Ph	(+)-pin	
4023	NH(C=NH)NH ₂	Ph	H	Ph	OH, OH	
4024	OMe	Ph	CH ₃	H	(+)-pin	
4025	NH(C=NH)H	Ph	CH ₃	H	(+)-pin	
4026	OMe	Ph	CH ₃	H	OH, OH	
4027	NH(C=NH)H	Ph	CH ₃	H	OH, OH	

Table 27

Ex	X	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y ¹ -Y ²	Phys. Data
4032	CH ₂ NH ₂	Ph	H	H	H	(+)-pin	
4033	CH ₂ NH ₂	Ph	methyl	H	H	(+)-pin	
4034	CH ₂ NH ₂	Ph	H	H	H	OH, OH	
4035	CH ₂ NH ₂	Ph	methyl	H	H	OH, OH	
4036	NH(C=NH)NH ₂	Ph	H	H	H	(+)-pin	
4037	NH(C=NH)NH ₂	Ph	methyl	H	H	(+)-pin	
4038	NH(C=NH)NH ₂	Ph	H	H	H	OH, OH	
4039	NH(C=NH)NH ₂	Ph	methyl	H	H	OH, OH	
4040	NH(C=NH)NH ₂	Ph	H	CH ₃	CH ₃	(+)-pin	
4041	NH(C=NH)NH ₂	Ph	H	CH ₃	CH ₃	OH, OH	
4042	OMe	Ph	CH ₃	H	H	(+)-pin	
4043	NH(C=NH)H	Ph	CH ₃	H	H	(+)-pin	
4044	OMe	Ph	CH ₃	H	H	OH, OH	
4045	NH(C=NH)H	Ph	CH ₃	H	H	OH, OH	

Table 28

Ex	X	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y ¹ Y ²	Phy. Data
4050	CH ₂ NH ₂	Ph	CH ₂ CO ₂ H	H	H	(+)-pin	
4051	CH ₂ NH ₂	Ph	methyl	H	H	(+)-pin	
4052	CH ₂ NH ₂	Ph	CH ₂ CO ₂ H	H	H	OH, OH	
4053	CH ₂ NH ₂	Ph	methyl	H	H	OH, OH	
4054	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	H	(+)-pin	
4055	NH(C=NH)NH ₂	Ph	methyl	H	H	(+)-pin	
4056	NH(C=NH)NH ₂	Ph	CH ₂ CN	H	H	OH, OH	
4057	NH(C=NH)NH ₂	Ph	methyl	H	H	OH, OH	
4058	NH(C=NH)NH ₂	Ph	CH ₃	CH ₃	H	(+)-pin	
4059	NH(C=NH)NH ₂	Ph	CH ₃	CH ₃	H	OH, OH	
4060	CMe	Ph	CH ₃	H	H	(+)-pin	
4061	NH(C=NH)H	Ph	CH ₃	H	H	(+)-pin	
4062	CMe	Ph	CH ₃	H	H	OH, OH	
4063	NH(C=NH)H	Ph	CH ₃	H	H	OH, OH	
4064	CH ₂ NH ₂	Ph	H	H	H	(+)-pin	
4065	CH ₂ NH ₂	Ph	H	H	H	OH, OH	

Table 29

Ex	X	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y ¹ Y ²	Phys. Data
4070	CH ₂ NH ₂	Ph	H	H	H	(+)-pin	
4071	CH ₂ NH ₂	Ph	methyl	H	H	(+)-pin	
4072	CH ₂ NH ₂	Ph	H	H	H	OH, OH	
4073	CH ₂ NH ₂	Ph	methyl	H	H	OH, OH	
4074	NH(C=NH)NH ₂	Ph	H	H	H	(+)-pin	
4075	NH(C=NH)NH ₂	Ph	methyl	H	H	(+)-pin	
4076	NH(C=NH)NH ₂	Ph	H	H	H	OH, OH	
4077	NH(C=NH)NH ₂	Ph	methyl	H	H	OH, OH	
4078	NH(C=NH)NH ₂	Ph	CH ₃	CH ₃	H	(+)-pin	
4079	NH(C=NH)NH ₂	Ph	CH ₃	CH ₃	H	OH, OH	
4080	OMe	Ph	H	H	OH	(+)-pin	
4081	NH(C=NH)H	Ph	H	H	F	(+)-pin	
4082	OMe	Ph	H	H	Me	OH, OH	
4083	NH(C=NH)H	Ph	H	H	Et	OH, OH	

Table 30

Ex	X	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y ¹ Y ²	Phys. Data
4088	CH ₂ NH ₂	PhCH ₂	H	H	Cl	(+)-pin	
4089	CH ₂ NH ₂	PhCH ₂	H	methyl	H	(+)-pin	
4090	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	H	(+)-pin	
4091	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	H	(+)-pin	
4092	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	H	(+)-pin	
4093	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	H	(+)-pin	
4094	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	(+)-pin	
4095	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	H	(+)-pin	
4096	CH ₂ NH ₂	PhCH ₂	H	H	NO ₂	OH, OH	
4097	CH ₂ NH ₂	PhCH ₂	H	methyl	H	OH, OH	
4098	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	H	OH, OH	
4099	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	H	OH, OH	
4100	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	H	OH, OH	
4101	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	H	OH, OH	
4102	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	OH, OH	
4103	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	H	OH, OH	
4104	NH(C-NH)NH ₂	PhCH ₂	H	H	H	(+)-pin	
4105	NH(C-NH)NH ₂	PhCH ₂	H	methyl	H	(+)-pin	
4106	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ CN	H	(+)-pin	
4107	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ COOH	H	(+)-pin	
4108	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ NC	H	(+)-pin	
4109	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	H	(+)-pin	
4110	NH(C-NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	(+)-pin	
4111	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	H	(+)-pin	
4112	NH(C-NH)NH ₂	PhCH ₂	H	H	H	OH, OH	
4113	NH(C-NH)NH ₂	PhCH ₂	H	methyl	H	OH, OH	
4114	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ CN	H	OH, OH	
4115	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ COOH	H	OH, OH	
4116	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ NC	H	OH, OH	
4117	NH(C-NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	H	OH, OH	
4118	NH(C-NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	OH, OH	

4119 NH(C=NH)NH₂ PhCH₂ H CH₂SOCH₃ H OH, OH

Table 31

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
4124	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
4125	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
4126	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
4127	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
4128	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4129	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
4130	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4131	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
4132	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
4133	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
4134	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
4135	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
4136	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
4137	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
4138	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
4139	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	
4140	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin	
4141	NH(C=NH)NH ₂	PhCH ₂	H	methyl	(+)-pin	
4142	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
4143	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
4144	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4145	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
4146	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4147	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
4148	NH(C=NH)NH ₂	PhCH ₂	H	H	OH, OH	
4149	NH(C=NH)NH ₂	PhCH ₂	H	methyl	OH, OH	
4150	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
4151	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
4152	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
4153	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
4154	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	

4155 NH (C=NH) NH₂ PhCH₂ H CH₂SOCH₃ OH, OR

Table 32

Ex	X	R ¹³	R ¹⁵	R ¹⁴	Y ¹ Y ²	Phys. Data
4160	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
4161	CH ₂ NH ₂	PhCH ₂	Cl	H	(+)-pin	
4162	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
4163	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
4164	CH ₂ NH ₂	PhCH ₂	Cl	CH ₂ CN	(+)-pin	
4165	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
4166	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4167	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
4168	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4169	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
4170	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
4171	CH ₂ NH ₂	PhCH ₂	Cl	H	OH, OH	
4172	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
4173	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
4174	CH ₂ NH ₂	PhCH ₂	Cl	CH ₂ CN	OH, OH	
4175	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
4176	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
4177	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
4178	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
4179	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	
4180	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin	
4181	NH(C=NH)NH ₂	PhCH ₂	H	methyl	(+)-pin	
4182	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
4183	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
4184	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4185	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
4186	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4187	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
4188	NH(C=NH)NH ₂	PhCH ₂	H	H	OH, OH	
4189	NH(C=NH)NH ₂	PhCH ₂	H	methyl	OH, OH	

4190	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
4191	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
4192	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
4193	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
4194	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
4195	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH

Table 33

Ex	X	R^{13}	R^{14}	Y^1Y^2	Phys. Data
4200	CH_2NH_2	PhCH_2	H	(+)-pin	
4201	CH_2NH_2	PhCH_2	methyl	(+)-pin	
4202	CH_2NH_2	PhCH_2	CH_2CN	(+)-pin	
4203	CH_2NH_2	PhCH_2	CH_2CN	(+)-pin	
4204	CH_2NH_2	PhCH_2	CH_2COOH	(+)-pin	
4205	CH_2NH_2	PhCH_2	CH_2NC	(+)-pin	
4206	CH_2NH_2	PhCH_2	CH_2NO_2	(+)-pin	
4207	CH_2NH_2	PhCH_2	$(\text{CH}_2)_2\text{OH}$	(+)-pin	
4208	CH_2NH_2	PhCH_2	CH_2SOCH_3	(+)-pin	
4209	CH_2NH_2	PhCH_2	H	OH, OH	
4210	CH_2NH_2	PhCH_2	methyl	OH, OH	
4211	CH_2NH_2	PhCH_2	CH_2CN	OH, OH	
4212	CH_2NH_2	PhCH_2	CH_2CN	OH, OH	
4213	CH_2NH_2	PhCH_2	CH_2COOH	OH, OH	
4214	CH_2NH_2	PhCH_2	CH_2NC	OH, OH	
4215	CH_2NH_2	PhCH_2	CH_2NO_2	OH, OH	
4216	CH_2NH_2	PhCH_2	$(\text{CH}_2)_2\text{OH}$	OH, OH	
4217	CH_2NH_2	PhCH_2	CH_2SOCH_3	OH, OH	
4218	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	(+)-pin	
4219	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	methyl	(+)-pin	
4220	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2CN	(+)-pin	
4221	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{CN}$	(+)-pin	
4222	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2COOH	(+)-pin	
4223	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{COOH}$		
4224	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2NC	(+)-pin	
4225	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2NO_2	(+)-pin	
4226	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{OH}$	(+)-pin	
4227	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2SOCH_3	(+)-pin	
4228	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	OH, OH	
4229	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	methyl	OH, OH	

4230	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4231	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4232	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4233	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4234	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4235	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4236	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4237	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 34

Ex	X	R ¹³	Y ¹ Y ²	Phys. Data
n=1				
4242	CH ₂ NH ₂	PhCH ₂	(+)-pin	
4243	CH ₂ NH ₂	PhCH ₂	OH, OH	
4244	NH(C-NH)NH ₂	PhCH ₂	(+)-pin	
4245	NH(C-NH)NH ₂	PhCH ₂	OH, OH	
4246	OMe	PhCH ₂	(+)-pin	
4247	OMe	PhCH ₂	OH, OH	
4248	NH(C-NH)H	PhCH ₂	(+)-pin	
4249	NH(C-NH)H	PhCH ₂	OH, OH	
4250	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	DB
4251	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
4252	NH(C-NH)NH ₂	PhCH ₂ CH ₂	(+)-pin	
4253	NH(C-NH)NH ₂	PhCH ₂ CH ₂	OH, OH	
4254	OMe	PhCH ₂ CH ₂	(+)-pin	
4255	OMe	PhCH ₂ CH ₂	OH, OH	
4256	NH(C-NH)H	PhCH ₂ CH ₂	(+)-pin	
4257	NH(C-NH)H	PhCH ₂ CH ₂	OH, OH	DC
4258	CH ₂ NH ₂	Ph	(+)-pin	
4259	CH ₂ NH ₂	Ph	OH, OH	
4260	NH(C-NH)NH ₂	Ph	(+)-pin	
4261	NH(C-NH)NH ₂	Ph	OH, OH	
4262	OMe	Ph	(+)-pin	
4263	OMe	Ph	OH, OH	
4264	NH(C-NH)H	Ph	(+)-pin	
4265	NH(C-NH)H	Ph	OH, OH	
4266	CH ₂ NH ₂	PhCH ₂ CH ₂ S	(+)-pin	
4267	CH ₂ NH ₂	PhCH ₂ S	(+)-pin	
4268	CH ₂ NH ₂	PhCH ₂ CH ₂ S	OH, OH	
4269	CH ₂ NH ₂	PhCH ₂ S	OH, OH	
4270			n=2	

4271	CH ₂ NH ₂	PhCH ₂	(+)-pin
4272	CH ₂ NH ₂	PhCH ₂	OH, OH
4273	NH(C=NH)NH ₂	PhCH ₂	(+)-pin
4274	NH(C=NH)NH ₂	PhCH ₂	OH, OH
4275	OMe	PhCH ₂	(+)-pin
4276	OMe	PhCH ₂	OH, OH
4277	NH(C=NH)H	PhCH ₂	(+)-pin
4278	NH(C=NH)H	PhCH ₂	OH, OH
4279	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
4280	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
4281	NH(C=NH)NH ₂	PhCH ₂ CH ₂	(+)-pin
4282	NH(C=NH)NH ₂	PhCH ₂ CH ₂	OH, OH
4283	OMe	PhCH ₂ CH ₂	(+)-pin
4284	OMe	PhCH ₂ CH ₂	OH, OH
4285	NH(C=NH)H	PhCH ₂ CH ₂	(+)-pin
4286	NH(C=NH)H	PhCH ₂ CH ₂	OH, OH
4287	CH ₂ NH ₂	Ph	(+)-pin
4288	CH ₂ NH ₂	Ph	OH, OH
4289	NH(C=NH)NH ₂	Ph	(+)-pin
4290	NH(C=NH)NH ₂	Ph	OH, OH
4291	OMe	Ph	(+)-pin
4292	OMe	Ph	OH, OH
4293	NH(C=NH)H	Ph	(+)-pin
4294	NH(C=NH)H	Ph	OH, OH

DB. HRMS Calc'd. 495.3255, Found 495.3257

DC. HRMS Calc'd. 467.2442, Found 467.2950

Table 35

Ex	X	R ¹³	Y ¹ Y ²	Phys. Data
m=1				
4309	CH ₂ NH ₂	PhCH ₂	(+)-pin	
4300	CH ₂ NH ₂	PhCH ₂	OH, OH	
4301	NH(C-NH)NH ₂	PhCH ₂	(+)-pin	
4302	NH(C-NH)NH ₂	PhCH ₂	OH, OH	
4303	OMe	PhCH ₂	(+)-pin	
4304	OMe	PhCH ₂	OH, OH	
4305	NH(C-NH)H	PhCH ₂	(+)-pin	
4306	NH(C-NH)H	PhCH ₂	OH, OH	
4307	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	DE
4308	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
4309	NH(C-NH)NH ₂	PhCH ₂ CH ₂	(+)-pin	
4310	NH(C-NH)NH ₂	PhCH ₂ CH ₂	OH, OH	
4311	OMe	PhCH ₂ CH ₂	(+)-pin	
4312	OMe	PhCH ₂ CH ₂	OH, OH	
4313	NH(C-NH)H	PhCH ₂ CH ₂	(+)-pin	
4314	NH(C-NH)H	PhCH ₂ CH ₂	OH, OH	
4315	CH ₂ NH ₂	Ph	(+)-pin	
4316	CH ₂ NH ₂	Ph	OH, OH	
4317	NH(C-NH)NH ₂	Ph	(+)-pin	
4318	NH(C-NH)NH ₂	Ph	OH, OH	
4319	OMe	Ph	(+)-pin	
4320	OMe	Ph	OH, OH	
4321	NH(C-NH)H	Ph	(+)-pin	
4322	NH(C-NH)H	Ph	OH, OH	
4323	m=2			
4324	CH ₂ NH ₂	PhCH ₂	(+)-pin	
4325	CH ₂ NH ₂	PhCH ₂	OH, OH	
4326	NH(C-NH)NH ₂	PhCH ₂	(+)-pin	

4327	NH(C=NH)NH ₂	PhCH ₂	OH, OH
4328	OMe	PhCH ₂	(+)-pin
4329	OMe	PhCH ₂	OH, OH
4330	NH(C=NH) H	PhCH ₂	(+)-pin
4331	NH(C=NH) H	PhCH ₂	OH, OH
4332	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
4333	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
4334	NH(C=NH)NH ₂	PhCH ₂ CH ₂	(+)-pin
4335	NH(C=NH)NH ₂	PhCH ₂ CH ₂	OH, OH
4336	OMe	PhCH ₂ CH ₂	(+)-pin
4337	OMe	PhCH ₂ CH ₂	OH, OH
4338	NH(C=NH) H	PhCH ₂ CH ₂	(+)-pin
4339	NH(C=NH) H	PhCH ₂ CH ₂	OH, OH
4340	CH ₂ NH ₂	Ph	(+)-pin
4341	CH ₂ NH ₂	Ph	OH, OH
4342	NH(C=NH)NH ₂	Ph	(+)-pin
4343	NH(C=NH)NH ₂	Ph	OH, OH
4344	OMe	Ph	(+)-pin
4345	OMe	Ph	OH, OH
4346	NH(C=NH) H	Ph	(+)-pin
4347	NH(C=NH) H	Ph	OH, OH

DE. HRMS Calc'd. 495.3255, Found 495.3249

Table 36

Ex.	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
m=1					
4348	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4349	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4350	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4351	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4352	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4353	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4354	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4355	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4356	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4357	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4358	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4359	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4360	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4361	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4362	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4363	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4364	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin	
4365	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
4366	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4367	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4368	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4369	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	

4370	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4371	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4372	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4373	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4374	NH (C=NH) NH ₂	PhCH ₂	H	H, OH
4375	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4376	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4377	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4378	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4379	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4380	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4381	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4382	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4383	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4384			w=2	
4385	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4386	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4387	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4388	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4389	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4390	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4391	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4392	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4393	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4394	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4395	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4396	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4397	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4398	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4399	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4400	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4401	NH (C=NH) NH ₂	PhCH ₂		(+)-pin
4402	NH (C=NH) NH ₂	PhCH ₂	ethyl	(+)-pin
4403	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4404	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin

4405	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4406	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4407	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4408	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4409	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4410	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4411	NH (C=NH) NH ₂	PhCH ₂		OH, OH
4412	NH (C=NH) NH ₂	PhCH ₂	ethyl	OH, OH
4413	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4414	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4415	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4416	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4417	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4418	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4419	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4420	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4421			n=0	
4422	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4423	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4424	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4425	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4426	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4427	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4428	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4429	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4430	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4431	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4432	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4433	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4434	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4435	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4436	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4437	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4438	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
4439	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin

4440	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4441	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4442	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4443	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4444	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4445	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4446	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4447	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4448	NH (C=NH) NH ₂	PhCH ₂	H	H, OH
4449	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4450	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4451	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4452	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4453	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4454	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4455	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4456	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4457	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 37

Rx	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
$m=1$					
4462	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4463	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4464	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4465	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4466	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4467	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4468	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4469	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4470	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4471	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4472	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4473	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4474	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4475	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4476	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4477	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4478	NH(C=NH)NH ₂	PhCH ₂	H	(+)-pin	
4479	NH(C=NH)NH ₂	PhCH ₂	methyl	(+)-pin	
4480	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4481	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4482	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4483	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4484	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4485	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	

4486	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4487	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4488	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4489	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4490	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4491	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4492	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4493	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4494	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4495	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4496	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4497	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4498			m=2	
4499	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4500	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4501	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4502	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4503	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4504	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4505	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4506	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4507	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4508	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4509	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4510	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4511	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4512	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4513	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4514	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4515	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4516	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4517	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4518	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4519	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4520	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin

4521	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4522	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4523	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4524	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4525	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4526	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4527	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4528	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4529	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4530	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4531	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4532	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4533	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4534	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
n=0				
4535	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4536	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4537	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4538	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4539	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4540	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4541	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4542	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4543	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4544	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4545	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4546	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4547	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4548	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4549	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4550	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4551	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4552	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4553	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4554	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin

4555	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4556	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4557	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4558	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4559	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4560	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4561	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4562	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4563	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4564	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4565	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4566	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4567	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4568	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4569	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4570	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 38

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
$m=1$					
4575	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4576	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4577	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4578	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4579	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4580	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4581	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4582	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4583	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4584	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4585	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4586	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4587	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4588	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4589	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4590	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4591	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin	
4592	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
4593	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4594	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4595	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4596	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4597	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

4598	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4599	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4600	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4601	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4602	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4603	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4604	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4605	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4606	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4607	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4608	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4609	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4610	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
<i>m=0</i>				
4611	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4612	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4613	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4614	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4615	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4616	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4617	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4618	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4619	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4620	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4621	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4622	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4623	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4624	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4625	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4626	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4627	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4628	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4629	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4630	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4631	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin

4632	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4633	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4634	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4635	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4636	NH(C=NH)NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4637	NH(C=NH)NH ₂	PhCH ₂	H	OH, OH
4638	NH(C=NH)NH ₂	PhCH ₂	methyl	OH, OH
4639	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4640	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4641	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4642	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4643	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4644	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4645	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4646	NH(C=NH)NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 39

Ex	X	R^{13} $m=1$	R^{14}	Y^1Y^2	Phys. D ₂
4651	CH_2NH_2	PhCH_2	H	(+)-pin	
4652	CH_2NH_2	PhCH_2	methyl	(+)-pin	
4653	CH_2NH_2	PhCH_2	CH_2CN	(+)-pin	
4654	CH_2NH_2	PhCH_2	CH_2COOH	(+)-pin	
4655	CH_2NH_2	PhCH_2	CH_2NC	(+)-pin	
4656	CH_2NH_2	PhCH_2	CH_2NO_2	(+)-pin	
4657	CH_2NH_2	PhCH_2	$(\text{CH}_2)_2\text{OH}$	(+)-pin	
4658	CH_2NH_2	PhCH_2	CH_2SOCH_3	(+)-pin	
4659	CH_2NH_2	PhCH_2	H	OH, OH	
4660	CH_2NH_2	PhCH_2	methyl	OH, OH	
4661	CH_2NH_2	PhCH_2	CH_2CN	OH, OH	
4662	CH_2NH_2	PhCH_2	CH_2COOH	OH, OH	
4663	CH_2NH_2	PhCH_2	CH_2NC	OH, OH	
4664	CH_2NH_2	PhCH_2	CH_2NO_2	OH, OH	
4665	CH_2NH_2	PhCH_2	$(\text{CH}_2)_2\text{OH}$	OH, OH	
4666	CH_2NH_2	PhCH_2	CH_2SOCH_3	OH, OH	
4667	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	(+)-pin	
4668	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	methyl	(+)-pin	
4669	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2CN	(+)-pin	
4670	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{CN}$	(+)-pin	
4671	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2COOH	(+)-pin	
4672	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{COOH}$	(+)-pin	
4673	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2NC	(+)-pin	
4674	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	CH_2NO_2	(+)-pin	
4675	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	$(\text{CH}_2)_2\text{OH}$	(+)-pin	

4676	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4677	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4678	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4679	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4680	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4681	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4682	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4683	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4684	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4685	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4686	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
			m=0	
4687	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4688	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4689	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4690	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4691	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4692	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4693	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4694	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4695	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4696	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4697	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4698	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4699	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4700	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4701	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4702	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4703	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4704	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4705	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4706	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4707	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4708	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4709	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin

4710	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4711	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4712	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4713	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4714	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4715	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4716	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4717	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4718	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4719	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4720	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4721	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4722	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 40

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
<i>m</i> =1					
4727	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4728	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4729	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4730	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4731	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4732	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4733	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4734	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4735	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4736	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4737	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4738	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4739	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4740	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4741	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4742	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4743	NH(C=NH)NH ₂	PhCH ₂	H	(+)-pin	
4744	NH(C=NH)NH ₂	PhCH ₂	methyl	(+)-pin	
4745	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4746	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4747	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4748	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4749	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4750	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4751	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	

4752	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4753	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4754	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4755	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4756	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4757	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4758	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4759	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4760	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4761	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4762	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
n=0				
4763	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4764	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4765	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4766	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4767	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4768	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4769	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4770	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4771	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4772	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4773	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4774	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4775	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4776	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4777	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4778	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4779	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4780	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4781	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4782	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4783	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4784	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4785	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin

4786	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4787	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4788	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4789	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4790	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4791	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4792	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4793	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4794	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4795	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4796	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4797	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4798	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 41

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys.
4803	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4804	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4805	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4806	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4807	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4808	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4809	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4810	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4811	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4812	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4813	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4814	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4815	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4816	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4817	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4818	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4819	NH(C=NH)NH ₂	PhCH ₂	H	(+)-pin	
4820	NH(C=NH)NH ₂	PhCH ₂	methyl	(+)-pin	
4821	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4822	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4823	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4824	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4825	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4826	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4827	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	

4828	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4829	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4830	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4831	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4832	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4833	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4834	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4835	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4836	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4837	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4838	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
<i>n=0</i>				
4839	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4840	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4841	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4842	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4843	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4844	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4845	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4846	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4847	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4848	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4849	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4850	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4851	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4852	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4853	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4854	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4855	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4856	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4857	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4858	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4859	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4860	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4861	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin

4862	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4863	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4864	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4865	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4866	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4867	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4868	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4869	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4870	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4871	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4872	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4873	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4874	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 42

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
m=1					
4879	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4880	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4881	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4882	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4883	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4884	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4885	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4886	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4887	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
4888	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
4889	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4890	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4891	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4892	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
4893	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4894	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4895	NH(C=NH)NH ₂	PhCH ₂	H	(+)-pin	
4896	NH(C=NH)NH ₂	PhCH ₂	methyl	(+)-pin	
4897	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4898	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4899	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4900	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4901	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	

4902	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4903	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4904	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4905	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4906	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4907	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4908	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4909	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4910	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4911	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4912	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4913	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4914	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
n=2				
4915	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4916	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4917	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4918	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4919	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4920	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4921	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4922	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4923	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4924	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4925	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4926	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4927	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4928	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4929	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4930	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4931	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
4932	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4933	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4934	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4935	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin

4936	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4937	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4938	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4939	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4940	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4941	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4942	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4943	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4944	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4945	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4946	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4947	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4948	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4949	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4950	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
$m=0$				
4951	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4952	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4953	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4954	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4955	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4956	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4957	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4958	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4959	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4960	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4961	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4962	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4963	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4964	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4965	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4966	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4967	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
4968	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4969	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin

4970	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4971	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4972	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4973	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4974	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4975	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4976	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4977	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4978	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4979	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4980	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4981	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4982	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4983	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4984	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4985	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4986	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 43

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
n=1					
4991	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4992	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4993	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4994	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4995	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4996	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4997	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4998	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4999	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
5000	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
5001	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
5002	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
5003	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
5004	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
5005	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
5006	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
5007	NH(C=NH)NH ₂	PhCH ₂	H	(+)-pin	
5008	NH(C=NH)NH ₂	PhCH ₂	methyl	(+)-pin	
5009	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
5010	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
5011	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
5012	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
5013	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

5014	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5015	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5016	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5017	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5018	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5019	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5020	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5021	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5022	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5023	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5024	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5025	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5026	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
m=2				
5027	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
5028	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5029	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5030	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
5031	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
5032	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5033	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5034	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5035	CH ₂ NH ₂	PhCH ₂	H	OH, OH
5036	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5037	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5038	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5039	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5040	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5041	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5042	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
5043	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
5044	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5045	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5046	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
5047	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin

5048	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
5049	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5050	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5051	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5052	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5053	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5054	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5055	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5056	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5057	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5058	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5059	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5060	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5061	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5062	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

n=0

5063	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
5064	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5065	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5066	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
5067	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5068	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5069	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5070	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5071	CH ₂ NH ₂	PhCH ₂	H	OH, OH
5072	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5073	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5074	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5075	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5076	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5077	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5078	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
5079	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
5080	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5081	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin

5082	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5083	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5084	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5085	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5086	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5087	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5088	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5089	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5090	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5091	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5092	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5093	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5094	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5095	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5096	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5097	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5098	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

5160	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
5161	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5162	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5163	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5164	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5165	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5166	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5167	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5168	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5169	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5170	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5171	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5172	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5173	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5174	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
n=0				
5175	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
5176	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5177	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5178	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
5179	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5180	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5181	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5182	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5183	CH ₂ NH ₂	PhCH ₂	H	OH, OH
5184	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5185	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5186	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5187	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5188	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5189	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5190	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
5191	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
5192	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5193	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin

5194	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5195	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5196	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5197	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5198	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5199	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5200	NH(C=NH)NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5201	NH(C=NH)NH ₂	PhCH ₂	H	OH, OH
5202	NH(C=NH)NH ₂	PhCH ₂	methyl	OH, OH
5203	NH(C=NH)NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5204	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5205	NH(C=NH)NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5206	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5207	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5208	NH(C=NH)NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5209	NH(C=NH)NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5210	NH(C=NH)NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 45

Ex	X	R ¹³	Y ¹ Y ²	Phys. Data
<i>m</i> =1				
5215	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5216	CH ₂ NH ₂	PhCH ₂	OH, OH	
5217	NH(C=NH)NH ₂	PhCH ₂	(+)-pin	
5218	NH(C=NH)NH ₂	PhCH ₂	OH, OH	
5219	OMe	PhCH ₂	(+)-pin	
5220	OMe	PhCH ₂	OH, OH	
5221	NH(C=NH)H	PhCH ₂	(+)-pin	
5222	NH(C=NH)H	PhCH ₂	OH, OH	
5223	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5224	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
5225	NH(C=NH)NH ₂	PhCH ₂ CH ₂	(+)-pin	
5226	NH(C=NH)NH ₂	PhCH ₂ CH ₂	OH, OH	
5227	OMe	PhCH ₂ CH ₂	(+)-pin	
5228	OMe	PhCH ₂ CH ₂	OH, OH	
5229	NH(C=NH)H	PhCH ₂ CH ₂	(+)-pin	
5230	NH(C=NH)H	PhCH ₂ CH ₂	OH, OH	
5231	CH ₂ NH ₂	Ph	(+)-pin	
5232	CH ₂ NH ₂	Ph	OH, OH	
5233	NH(C=NH)NH ₂	Ph	(+)-pin	
5234	NH(C=NH)NH ₂	Ph	OH, OH	
5235	OMe	Ph	(+)-pin	
5236	OMe	Ph	OH, OH	
5237	NH(C=NH)H	Ph	(+)-pin	
5238	NH(C=NH)H	Ph	OH, OH	

m=0

5239	CH ₂ NH ₂	PhCH ₂	(+)-pin
5240	CH ₂ NH ₂	PhCH ₂	OH, OH
5241	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
5242	NH (C=NH) NH ₂	PhCH ₂	OH, OH
5243	OMe	PhCH ₂	(+)-pin
5244	OMe	PhCH ₂	OH, OH
5245	NH (C=NH) H	PhCH ₂	(+)-pin
5246	NH (C=NH) H	PhCH ₂	OH, OH
5247	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5248	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5249	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5250	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH
5251	OMe	PhCH ₂ CH ₂	(+)-pin
5252	OMe	PhCH ₂ CH ₂	OH, OH
5253	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin
5254	NH (C=NH) H	PhCH ₂ CH ₂	OH, OH
5255	CH ₂ NH ₂	Ph	(+)-pin
5256	CH ₂ NH ₂	Ph	OH, OH
5257	NH (C=NH) NH ₂	Ph	(+)-pin
5258	NH (C=NH) NH ₂	Ph	OH, OH
5259	OMe	Ph	(+)-pin
5260	OMe	Ph	OH, OH
5261	NH (C=NH) H	Ph	(+)-pin
5262	NH (C=NH) H	Ph	OH, OH

Table 46

Ex	X	R ¹³	Y ¹ -Y ²	Phys. Data
$m=1$				
5267	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5268	CH ₂ NH ₂	PhCH ₂	OH, OH	
5269	NH(C=NH)NH ₂	PhCH ₂	(+)-pin	
5270	NH(C=NH)NH ₂	PhCH ₂	OH, OH	
5271	OMe	PhCH ₂	(+)-pin	
5272	OMe	PhCH ₂	OH, OH	
5273	NH(C=NH)H	PhCH ₂	(+)-pin	
5274	NH(C=NH)H	PhCH ₂	OH, OH	
5275	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5276	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
5277	NH(C=NH)NH ₂	PhCH ₂ CH ₂	(+)-pin	
5278	NH(C=NH)NH ₂	PhCH ₂ CH ₂	OH, OH	
5279	OMe	PhCH ₂ CH ₂	(+)-pin	
5280	OMe	PhCH ₂ CH ₂	OH, OH	
5281	NH(C=NH)H	PhCH ₂ CH ₂	(+)-pin	
5282	NH(C=NH)H	PhCH ₂ CH ₂	OH, OH	
5283	CH ₂ NH ₂	Ph	(+)-pin	
5284	CH ₂ NH ₂	Ph	OH, OH	
5285	NH(C=NH)NH ₂	Ph	(+)-pin	
5286	NH(C=NH)NH ₂	Ph	OH, OH	
5287	OMe	Ph	(+)-pin	
5288	OMe	Ph	OH, OH	
5289	NH(C=NH)H	Ph	(+)-pin	
5290	NH(C=NH)H	Ph	OH, OH	

 $m=0$

5291	CH ₂ NH ₂	PhCH ₂	(+)-pin
5292	CH ₂ NH ₂	PhCH ₂	OH, OH
5293	NH(C=NH)NH ₂	PhCH ₂	(+)-pin
5294	NH(C=NH)NH ₂	PhCH ₂	OH, OH
5295	OMe	PhCH ₂	(+)-pin
5296	OMe	PhCH ₂	OH, OH
5297	NH(C=NH)H	PhCH ₂	(+)-pin
5298	NH(C=NH)H	PhCH ₂	OH, OH
5299	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5300	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5301	NH(C=NH)NH ₂	PhCH ₂ CH ₂	(+)-pin
5302	NH(C=NH)NH ₂	PhCH ₂ CH ₂	OH, OH
5303	OMe	PhCH ₂ CH ₂	(+)-pin
5304	OMe	PhCH ₂ CH ₂	OH, OH
5305	NH(C=NH)H	PhCH ₂ CH ₂	(+)-pin
5306	NH(C=NH)H	PhCH ₂ CH ₂	OH, OH
5307	CH ₂ NH ₂	Ph	(+)-pin
5308	CH ₂ NH ₂	Ph	OH, OH
5309	NH(C=NH)NH ₂	Ph	(+)-pin
5310	NH(C=NH)NH ₂	Ph	OH, OH
5311	OMe	Ph	(+)-pin
5312	OMe	Ph	OH, OH
5313	NH(C=NH)H	Ph	(+)-pin
5314	NH(C=NH)H	Ph	OH, OH

Table 47

Ex	X	R ¹³	Y ¹ Y ²	Phys . Data
m=1				
5319	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5320	CH ₂ NH ₂	PhCH ₂	OH, OH	
5321	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5322	NH (C=NH) NH ₂	PhCH ₂	OH, OH	
5323	OMe	PhCH ₂	(+)-pin	
5324	OMe	PhCH ₂	OH, OH	
5325	NH (C=NH) H	PhCH ₂	(+)-pin	
5326	NH (C=NH) H	PhCH ₂	OH, OH	
5327	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5328	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
5329	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5330	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH	
5331	OMe	PhCH ₂ CH ₂	(+)-pin	
5332	OMe	PhCH ₂ CH ₂	OH, OH	
5333	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
5334	NH (C=NH) H	PhCH ₂ CH ₂	OH, OH	
5335	CH ₂ NH ₂	Ph	(+)-pin	
5336	CH ₂ NH ₂	Ph	OH, OH	
5337	NH (C=NH) NH ₂	Ph	(+)-pin	
5338	NH (C=NH) NH ₂	Ph	OH, OH	
5339	OMe	Ph	(+)-pin	
5340	OMe	Ph	OH, OH	
5341	NH (C=NH) H	Ph	(+)-pin	
5342	NH (C=NH) H	Ph	OH, OH	
m=0				

5343	CH ₂ NH ₂	PhCH ₂	(+) -pin
5344	CH ₂ NH ₂	PhCH ₂	OH, OH
5345	NH (C=NH) NH ₂	PhCH ₂	(+) -pin
5346	NH (C=NH) NH ₂	PhCH ₂	OH, OH
5347	OMe	PhCH ₂	(+) -pin
5348	OMe	PhCH ₂	OH, OH
5349	NH (C=NH) H	PhCH ₂	(+) -pin
5350	NH (C=NH) H	PhCH ₂	OH, OH
5351	CH ₂ NH ₂	PhCH ₂ CH ₂	(+) -pin
5352	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5353	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+) -pin
5354	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH
5355	OMe	PhCH ₂ CH ₂	(+) -pin
5356	OMe	PhCH ₂ CH ₂	OH, OH
5357	NH (C=NH) H	PhCH ₂ CH ₂	(+) -pin
5358	NH (C=NH) H	PhCH ₂ CH ₂	OH, OH
5359	CH ₂ NH ₂	Ph	(+) -pin
5360	CH ₂ NH ₂	Ph	OH, OH
5361	NH (C=NH) NH ₂	Ph	(+) -pin
5362	NH (C=NH) NH ₂	Ph	OH, OH
5363	OMe	Ph	(+) -pin
5364	OMe	Ph	OH, OH
5365	NH (C=NH) H	Ph	(+) -pin
5366	NH (C=NH) H	Ph	OH, OH

Table 48

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
				n=1		
5371	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
5372	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
5373	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5374	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5375	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5376	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5377	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5378	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5379	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
5380	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5381	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
5382	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
5383	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
5384	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
5385	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
5386	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	
5387	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin	
5388	NH(C=NH)NH ₂	PhCH ₂	H	methyl	(+)-pin	
5389	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5390	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5391	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5392	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5393	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	

5394	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5395	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5396	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5397	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5398	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5399	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5400	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5401	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5402	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
5403				n=0	
5404	NH (C=NH) NH ₂	H	H	3-(t-butyl-O ₂ CNH)-Ph	(+)-pin BS
5405	NH (C=NH) NH ₂	H	H	3-(t-butyl-O ₂ CNH)-Ph	OH, OH
5406	NH (C=NH) NH ₂	H	H	3-(NH ₂)-Ph	(+)-pin
5407	NH (C=NH) NH ₂	H	H	3-(NH ₂)-Ph	OH, OH
5408	NH (C=NH) NH ₂	H	H	3-(CH ₃ SO ₂ NH)-Ph	(+)-pin
5409	NH (C=NH) NH ₂	H	H	3-(CH ₃ SO ₂ NH)-Ph	OH, OH
5410	NH (C=NH) NH ₂	H	methyl	Ph	(+)-pin
5411	NH (C=NH) NH ₂	H	methyl	Ph	OH, OH
5412	NH (C=NH) NH ₂	H	CH ₂ CN	Ph	(+)-pin
5413	NH (C=NH) NH ₂	H	CH ₂ CN	Ph	OH, OH
5414	NH (C=NH) NH ₂	H	methyl	3-(CH ₃ SO ₂ NH)-Ph	(+)-pin
5415	NH (C=NH) NH ₂	H	methyl	3-(CH ₃ SO ₂ NH)-Ph	OH, OH
5416	NH (C=NH) NH ₂	H	CH ₃	2-(CH ₃ SO ₂ NH)-Ph	(+)-pin
5417	NH (C=NH) NH ₂	H	CH ₃	2-(CH ₃ SO ₂ NH)-Ph	OH, OH
5418	NH (C=NH) NH ₂	H	CH ₂ CN	3-(CH ₃ SO ₂ NH)-Ph	(+)-pin

5419	NH (C=NH) NH ₂	H	CH ₂ CN	3 - (CH ₃ SO ₂ NH) - OH, OH Ph
5420	NH (C=NH) NH ₂	H	CH ₂ CN	2 - (CH ₃ SO ₂ NH) - (+) -pin Ph
5421	NH (C=NH) NH ₂	H	CH ₂ CN	2 - (CH ₃ SO ₂ NH) - OH, OH Ph
5422	NH (C=NH) NH ₂	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) - (+) -pin Ph
5423	NH (C=NH) NH ₂	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) - OH, OH Ph
5424	NH (C=NH) NH ₂	H	CH ₂ COOH	2 - (CH ₃ SO ₂ NH) - (+) -pin Ph
5425	NH (C=NH) NH ₂	H	CH ₂ COOH	2 - (CH ₃ SO ₂ NH) - OH, OH Ph
5426	NH (C=NH) NH ₂	H	H	3 - (t-butylOCO (+) -pin BP -NH) - Ph

BP. MS (M+H)+: Calc 610, Found 610.

BS. MS (M+H)+: Calc 610, Found 610.

Table 49

Ex.	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ -Y ²	Phys. Data
		m=1				
5431	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
5432	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
5433	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5434	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5435	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5436	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5437	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5438	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5439	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
5440	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5441	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
5442	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
5443	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
5444	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
5445	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
5446	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	
5447	NH (C=NH) NH ₂	PhCH ₂	H	H	(+)-pin	
5448	NH (C=NH) NH ₂	PhCH ₂	H	methyl	(+)-pin	
5449	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5450	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5451	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5452	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5453	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5454	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5455	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH	

5456	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5457	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5458	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5459	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5460	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5461	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5462	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
			n=0		
5463	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
5464	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5466	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin
5466	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin
5467	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5468	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5469	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH
5470	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH
5471	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5472	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5473	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5474	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5475	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5476	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
5477	NH (C=NH) NH ₂	PhCH ₂	H	H	(+)-pin
5478	NH (C=NH) NH ₂	PhCH ₂	H	methyl	(+)-pin
5479	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5480	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5481	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin
5482	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin
5483	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5484	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5485	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5486	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5487	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH

5488	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5489	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5490	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5491	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5492	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH

Table 50

Ex	X	R^{13}	R^{14}	R^{15}	Y^1Y^2	Phys. Data
				$m=1$		
5497	CH_2NH_2	PhCH_2	H	H	(+)-pin	
5498	CH_2NH_2	PhCH_2	H	methyl	(+)-pin	
5499	CH_2NH_2	PhCH_2	H	CH_2CN	(+)-pin	
5500	CH_2NH_2	PhCH_2	H	CH_2COOH	(+)-pin	
5501	CH_2NH_2	PhCH_2	H	CH_2NC	(+)-pin	
5502	CH_2NH_2	PhCH_2	H	CH_2NO_2	(+)-pin	
5503	CH_2NH_2	PhCH_2	H	$(\text{CH}_2)_2\text{OH}$	(+)-pin	
5504	CH_2NH_2	PhCH_2	H	CH_2SOCH_3	(+)-pin	
5505	CH_2NH_2	PhCH_2	H	H	OH, OH	
5506	CH_2NH_2	PhCH_2	H	methyl	OH, OH	
5507	CH_2NH_2	PhCH_2	H	CH_2CN	OH, OH	
5508	CH_2NH_2	PhCH_2	H	CH_2COOH	OH, OH	
5509	CH_2NH_2	PhCH_2	H	CH_2NC	OH, OH	
5510	CH_2NH_2	PhCH_2	H	CH_2NO_2	OH, OH	
5511	CH_2NH_2	PhCH_2	H	$(\text{CH}_2)_2\text{OH}$	OH, OH	
5512	CH_2NH_2	PhCH_2	H	CH_2SOCH_3	OH, OH	
5513	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	H	(+)-pin	
5514	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	methyl	(+)-pin	
5515	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	CH_2CN	(+)-pin	
5516	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	CH_2COOH	(+)-pin	
5517	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	CH_2NC	(+)-pin	
5518	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	CH_2NO_2	(+)-pin	
5519	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	PhCH_2	H	$(\text{CH}_2)_2\text{OH}$	(+)-pin	

5520	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5521	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5522	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5523	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5524	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5525	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5526	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5527	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5528	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
				m=O	
5529	NH (C=NH) NH ₂	H	H	3 - (t-butyl-O ₂ CNH) - Ph	(+)-pin BT
5530	NH (C=NH) NH ₂	H	H	3 - (t-butyl-O ₂ CNH) - Ph	OH, OH
5531	NH (C=NH) NH ₂	H	H	3 - (NH ₂) - Ph	(+)-pin
5532	NH (C=NH) NH ₂	H	H	3 - (NH ₂) - Ph	OH, OH
5533	NH (C=NH) NH ₂	H	H	3 - (CH ₃ SO ₂ NH) - Ph	(+)-pin
5534	NH (C=NH) NH ₂	H	H	3 - (CH ₃ SO ₂ NH) - Ph	OH, OH
5535	NH (C=NH) NH ₂	H	H	Ph	(+)-pin BU
5536	NH (C=NH) NH ₂	H	H	Ph	OH, OH BV
5537	NH (C=NH) NH ₂	H	CH ₃	Ph	(+)-pin
5538	NH (C=NH) NH ₂	H	CH ₃	Ph	OH, OH
5539	NH (C=NH) NH ₂	H	CH ₂ CN	Ph	(+)-pin
5540	NH (C=NH) NH ₂	H	CH ₂ CN	Ph	OH, OH
5541	NH (C=NH) NH ₂	H	CH ₂ COOH	Ph	(+)-pin
5542	NH (C=NH) NH ₂	H	CH ₂ COOH	Ph	OH, OH
5543	NH (C=NH) NH ₂	H	CH ₂ SO ₂ NH ₂	Ph	(+)-pin
5544	NH (C=NH) NH ₂	H	CH ₂ SO ₂ NH ₂	Ph	OH, OH
5545	NH (C=NH) NH	H	CH ₂ CN	3 - (CH ₃ SO ₂ NH) - Ph	(+)-pin
5546	NH (C=NH) NH	H	CH ₂ CN	3 - (CH ₃ SO ₂ NH) - Ph	OH, OH

5547	NH (C=NH) NH	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) - Ph	(+) -pin
5548	NH (C=NH) NH	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) - Ph	OH, OH
5549	NH (C=NH) NH	H	CH ₂ COOH	2 - (CH ₃ SO ₂ NH) - Ph	(+) -pin
5550	NH (C=NH) NH	H	CH ₂ COOH	2 - (CH ₃ SO ₂ NH) - Ph	OH, OH
5551	NH (C=NH) NH ₂	H	H	3 - (t-butylOCO -NH) -Ph	(+) -pin BO
5552	NH (C=NH) NH ₂	H	H	Ph	(+) -pin BQ
5553	NH (C=NH) NH ₂	H	H	Ph	OH BR

BO. MS (M+H)⁺: Calc. 594, Found 594.

BQ. MS (M+H)⁺: Calc. 479, Found 479.

5

BS. MS (M+H)⁺: Calc. 345, Found 345.

BT. MS (M+H)⁺: Calc. 594, Found 594.

10 BU. MS (M+H)⁺: Calc. 479, Found 479.

BV. MS (M+H)⁺: Calc. 345, Found 345.

Table 51

Ex	X	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
m=1						
5558	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
5559	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
5560	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5561	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5562	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5563	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5564	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5565	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5566	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
5567	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5568	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
5569	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
5570	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
5571	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
5572	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
5573	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	
5574	NH(C=NH)NH ₂	PhCH ₂	H	H	(+)-pin	
5575	NH(C=NH)NH ₂	PhCH ₂	H	methyl	(+)-pin	
5576	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
5577	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5578	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5579	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5580	NH(C=NH)NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5581	NH(C=NH)NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	

5582	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5583	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5584	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5585	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5586	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5587	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5588	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5589	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
			H=O		
5590	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
5591	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin
5592	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5593	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5594	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin
5595	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin
5596	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5597	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5598	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH
5599	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH
5600	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5601	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5602	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5603	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5604	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5605	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
5606	NH (C=NH) NH ₂	PhCH ₂	H	H	(+)-pin
5607	NH (C=NH) NH ₂	PhCH ₂	H	methyl	(+)-pin
5608	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5609	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5610	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin
5611	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin
5612	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5613	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5614	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5615	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH

5616	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5617	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5618	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5619	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5620	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5621	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH

Table 52

5

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
			m=0		
5626	CH ₂ NH ₂	H	H	(+)-pin	
5627	CH ₂ NH ₂	H	methyl	(+)-pin	
5628	CH ₂ NH ₂	H	H	OH, OH	
5629	CH ₂ NH ₂	H	methyl	OH, OH	
5630	CH ₂ NH ₂	H	CH ₂ CN	(+)-pin	
5631	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	(+)-pin	
5632	CH ₂ NH ₂	H	CH ₂ CN	OH, OH	
5633	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	OH, OH	
5634	CH ₂ NH ₂	H	CH ₂ COOMe	(+)-pin	
5635	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	(+)-pin	
5636	CH ₂ NH ₂	H	CH ₂ COOMe	OH, OH	
5637	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	OH, OH	
5638	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	(+)-pin	
5639	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	(+)-pin	
5640	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH	
5641	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH	
5642	NH(C=NH)NH ₂	H	H	(+)-pin	
5643	NH(C=NH)NH ₂	H	methyl	(+)-pin	
5644	NH(C=NH)NH ₂	H	H	OH, OH	
5645	NH(C=NH)NH ₂	H	methyl	OH, OH	
5646	NH(C=NH)NH ₂	H	CH ₂ CN	(+)-pin	
5647	NH(C=NH)NH ₂	H	(CH ₂) ₂ COOH	(+)-pin	
5648	NH(C=NH)NH ₂	H	CH ₂ CN	OH, OH	
5649	NH(C=NH)NH ₂	H	(CH ₂) ₂ COOH	OH, OH	

5650	NH (C=NH) NH ₂	H	CH ₂ COOMe	(+)-pin
5651	NH (C=NH) NH ₂	H	(CH ₂) COOH	(+)-pin
5652	NH (C=NH) NH ₂	H	CH ₂ COOMe	OH, OH
5653	NH (C=NH) NH ₂	H	(CH ₂) COOH	OH, OH
5654	NH (C=NH) NH ₂	H	(CH ₂) ₂ CN ₄ H	(+)-pin
5655	NH (C=NH) NH ₂	H	(CH ₂) CN ₄ H	(+)-pin
5656	NH (C=NH) NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH
5657	NH (C=NH) NH ₂	H	(CH ₂) CN ₄ H	OH, OH
5658	OMe	H	H	(+)-pin
5659	OMe	H	H	OH, OH
5660	NH (C=NH) H	H	H	(+)-pin
5661	NH (C=NH) H	H	H	OH, OH
5662	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5663	CH ₂ NH ₂	CH ₂ CN	H	OH, OH
5664	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	(+)-pin
5665	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	OH, OH
5666	OMe	CH ₂ COOMe	H	(+)-pin
5667	OMe	CH ₂ COOMe	H	OH, OH
5668	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	OH, OH
5669	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	(+)-pin
		m=1		
5670	CH ₂ NH ₂	H	H	(+)-pin
5671	CH ₂ NH ₂	H	methyl	(+)-pin
5672	CH ₂ NH ₂	H	H	OH, OH
5673	CH ₂ NH ₂	H	methyl	OH, OH
5674	CH ₂ NH ₂	H	CH ₂ CN	(+)-pin
5675	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	(+)-pin
5676	CH ₂ NH ₂	H	CH ₂ CN	OH, OH
5677	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	OH, OH
5678	CH ₂ NH ₂	H	CH ₂ COOMe	(+)-pin
5679	CH ₂ NH ₂	H	(CH ₂) COOH	(+)-pin
5680	CH ₂ NH ₂	H	CH ₂ COOMe	OH, OH
5681	CH ₂ NH ₂	H	(CH ₂) COOH	OH, OH
5682	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	(+)-pin
5683	CH ₂ NH ₂	H	(CH ₂) CN ₄ H	(+)-pin

5684	CH_2NH_2	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	OH, OH
5685	CH_2NH_2	H	$(\text{CH}_2)\text{CN}_4\text{H}$	OH, OH
5686	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	(+)-pin
5687	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	methyl	(+)-pin
5688	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	OH, OH
5689	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	methyl	OH, OH
5690	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2CN	(+)-pin
5691	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{COOH}$	(+)-pin
5692	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2CN	OH, OH
5693	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{COOH}$	OH, OH
5694	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2COOMe	(+)-pin
5695	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{COOH}$	(+)-pin
5696	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2COOMe	OH, OH
5697	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{COOH}$	OH, OH
5698	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	(+)-pin
5699	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{CN}_4\text{H}$	(+)-pin
5700	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	OH, OH
5701	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{CN}_4\text{H}$	OH, OH
5702	OMe	H	H	(+)-pin
5703	OMe	H	H	OH, OH
5704	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	(+)-pin
5705	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	OH, OH
5706	CH_2NH_2	CH_2CN	H	(+)-pin
5707	CH_2NH_2	CH_2CN	H	OH, OH
5708	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	$(\text{CH}_2)_2\text{COOH}$	H	(+)-pin
5709	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	$(\text{CH}_2)_2\text{COOH}$	H	OH, OH
5710	OMe	CH_2COOMe	H	(+)-pin
5711	OMe	CH_2COOMe	H	OH, OH
5712	$\text{NH}(\text{C}=\text{NH})\text{H}$	$(\text{CH}_2)_2\text{CN}_4\text{H}$	H	OH, OH
5713	$\text{NH}(\text{C}=\text{NH})\text{H}$	$(\text{CH}_2)_2\text{CN}_4\text{H}$	H	(+)-pin
			m=0	
5714	CH_2NH_2	H	H	(+)-pin
5715	CH_2NH_2	H	methyl	(+)-pin
5716	CH_2NH_2	H	H	OH, OH
5717	CH_2NH_2	H	methyl	OH, OH

5718	CH_2NH_2	H	CH_2CN	(+)-pin
5719	CH_2NH_2	H	$(\text{CH}_2)_2\text{COOH}$	(+)-pin
5720	CH_2NH_2	H	CH_2CN	OH, OH
5721	CH_2NH_2	H	$(\text{CH}_2)_2\text{COOH}$	OH, OH
5722	CH_2NH_2	H	CH_2COOMe	(+)-pin
5723	CH_2NH_2	H	$(\text{CH}_2)\text{COOH}$	(+)-pin
5724	CH_2NH_2	H	CH_2COOMe	OH, OH
5725	CH_2NH_2	H	$(\text{CH}_2)\text{COOH}$	OH, OH
5726	CH_2NH_2	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	(+)-pin
5727	CH_2NH_2	H	$(\text{CH}_2)\text{CN}_4\text{H}$	(+)-pin
5728	CH_2NH_2	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	OH, OH
5729	CH_2NH_2	H	$(\text{CH}_2)\text{CN}_4\text{H}$	OH, OH
5730	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	(+)-pin
5731	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	methyl	(+)-pin
5732	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	OH, OH
5733	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	methyl	OH, OH
5734	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2CN	(+)-pin
5735	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{COOH}$	(+)-pin
5736	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2CN	OH, OH
5737	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{COOH}$	OH, OH
5738	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2COOMe	(+)-pin
5739	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{COOH}$	(+)-pin
5740	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	CH_2COOMe	OH, OH
5741	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{COOH}$	OH, OH
5742	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	(+)-pin
5743	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{CN}_4\text{H}$	(+)-pin
5744	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)_2\text{CN}_4\text{H}$	OH, OH
5745	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	$(\text{CH}_2)\text{CN}_4\text{H}$	OH, OH
5746	OMe	H	H	(+)-pin
5747	OMe	H	H	OH, OH
5748	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	(+)-pin
5749	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	OH, OH
5750	CH_2NH_2	CH_2CN	H	(+)-pin
5751	CH_2NH_2	CH_2CN	H	OH, OH
5752	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	$(\text{CH}_2)_2\text{COOH}$	H	(+)-pin

5753	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	OH, OH
5754	OMe	CH ₂ COOMe	H	(+)-pin
5755	OMe	CH ₂ COOMe	H	OH, OH
5756	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	OH, OH
5757	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	(+)-pin

Table 53

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
5762	CH ₂ NH ₂	H	H	(+)-pin	
5763	CH ₂ NH ₂	H	H	OH, OH	
5764	NH(C=NH)NH ₂	H	H	(+)-pin	
5765	NH(C=NH)NH ₂	H	H	OH, OH	
5766	OMe	H	H	(+)-pin	
5767	OMe	H	H	OH, OH	
5768	NH(C=NH)H	H	H	OH, OH	
5769	NH(C=NH)H	H	H	(+)-pin	
5770	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin	
5771	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5772	NH(C=NH)NH ₂	(CH ₂)COOH	H	(+)-pin	
5773	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH	
5774	OMe	CH ₂ COOMe	H	(+)-pin	
5775	OMe	CH ₂ COOMe	H	OH, OH	
5776	NH(C=NH)H	(CH ₂)CN ₄ H	H	OH, OH	
5777	NH(C=NH)H	(CH ₂)CN ₄ H	H	(+)-pin	

Table 54

and $m=0$.

Ex	X	R ¹³	R ¹⁴	y ¹ y ²	Phys. Data
5782	CH ₂ NH ₂	CH ₃	H	(+)-pin	
5783	CH ₂ NH ₂	CH ₃	H	OH, OH	
5784	NH(C=NH)NH ₂	CH ₃	H	(+)-pin	
5785	NH(C=NH)NH ₂	CH ₃	H	OH, OH	
5786	OMe	H	H	(+)-pin	
5787	OMe	H	H	OH, OH	
5788	NH(C=NH)H	H	H	OH, OH	
5789	NH(C=NH)H	H	H	(+)-pin	
5790	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin	
5791	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5792	NH(C=NH)NH ₂	(CH ₂)COOK	H	(+)-pin	
5793	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH	
5794	OMe	CH ₂ COOMe	H	(+)-pin	
5795	OMe	CH ₂ COOMe	H	OH, OH	
5796	NH(C=NH)H	(CH ₂)CN ₄ H	H	OH, OH	
5797	NH(C=NH)H	(CH ₂)CN ₄ H	H	(+)-pin	

Table 55

and m=0

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
5802	CH ₂ NH ₂	H	H	(+)-pin	
5803	CH ₂ NH ₂	H	H	OH, OH	
5804	NH(C=NH)NH ₂	H	H	(+)-pin	
5805	NH(C=NH)NH ₂	H	H	OH, OH	
5806	OMe	H	H	(+)-pin	
5807	OMe	H	H	OH, OH	
5808	NH(C=NH)H	H	H	OH, OH	
5809	NH(C=NH)H	H	H	(+)-pin	
5810	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin	
5811	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5812	NH(C=NH)NH ₂	(CH ₂)COOH	H	(+)-pin	
5813	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH	
5814	OMe	CH ₂ COOMe	H	(+)-pin	
5815	OMe	CH ₂ COOMe	H	OH, OH	
5816	NH(C=NH)H	(CH ₂)CN ₂ H	H	OH, OH	
5817	NH(C=NH)H	(CH ₂)CN ₂ H	H	(+)-pin	

Table 56

Ex	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
5822	CH ₂ NH ₂	H	H	(+)-pin	
5823	CH ₂ NH ₂	H	H	OH, OH	
5824	NH(C=NH)NH ₂	H	H	(+)-pin	
5825	NH(C=NH)NH ₂	H	H	OH, OH	
5826	OMe	H	H	(+)-pin	
5827	OMe	H	H	OH, OH	
5828	NH(C=NH)H	H	H	OH, OH	
5829	NH(C=NH)H	H	H	(+)-pin	
5830	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin	
5831	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5832	NH(C=NH)NH ₂	(CH ₂)COOH	H	(+)-pin	
5833	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH	
5834	OMe	CH ₂ COOMe	H	(+)-pin	
5835	OMe	CH ₂ COOMe	H	OH, OH	
5836	NH(C=NH)H	(CH ₂)CN ₂ H	H	OH, OH	
5837	NH(C=NH)H	(CH ₂)CN ₂ H	H	(+)-pin	

Table 57

Ex.	X	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
m=1					
5842	CH ₂ NH ₂	H	H	(+)-pin	
5843	CH ₂ NH ₂	H	H	OH, OH	
5844	NH(C=NH)NH ₂	H	H	(+)-pin	
5845	NH(C=NH)NH ₂	H	H	OH, OH	
5846	OMe	H	H	(+)-pin	
5847	OMe	H	H	OH, OH	
5848	NH(C=NH)H	H	H	OH, OH	
5849	NH(C=NH)H	H	H	(+)-pin	
5850	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin	
5851	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5852	NH(C=NH)NH ₂	(CH ₂)COOH	H	(+)-pin	
5853	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH	
5854	OMe	CH ₂ COOMe	H	(+)-pin	
5855	OMe	CH ₂ COOMe	H	OH, OH	
5856	NH(C=NH)H	(CH ₂)CN ₄ H	H	OH, OH	
5857	NH(C=NH)H	(CH ₂)CN ₄ H	H	(+)-pin	
m=0					
5858	CH ₂ NH ₂	H	H	(+)-pin	
5859	CH ₂ NH ₂	H	H	OH, OH	
5860	NH(C=NH)NH ₂	H	H	(+)-pin	
5861	NH(C=NH)NH ₂	H	H	OH, OH	
5862	OMe	H	H	(+)-pin	
5863	OMe	H	H	OH, OH	
5864	NH(C=NH)H	H	H	OH, OH	

5865	NH (C=NH) H	H	H	(+)-pin
5866	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5867	CH ₂ NH ₂	CH ₂ CN	H	OH, OH
5868	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin
5869	NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH
5870	OMe	CH ₂ COOMe	H	(+)-pin
5871	OMe	CH ₂ COOMe	H	OH, OH
5872	NH (C=NH) H	(CH ₂) CN ₄ H	H	OH, OH
5873	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+)-pin

Table 58

Ex	X	R^{13}	R^{14}	Y^1Y^2	Phys. Data
$m=1$					
5878	CH_2NH_2	H	H	(+)-pin	
5879	CH_2NH_2	H	H	OH, OH	
5880	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	(+)-pin	
5881	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	OH, OH	
5882	OMe	H	H	(+)-pin	
5883	OMe	H	H	OH, OH	
5884	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	OH, OH	
5885	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	(+)-pin	
5886	CH_2NH_2	CH_2CN	H	(+)-pin	
5887	CH_2NH_2	CH_2CN	H	OH, OH	
5888	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	$(\text{CH}_2)_2\text{COOH}$	H	(+)-pin	
5889	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	$(\text{CH}_2)_2\text{COOH}$	H	OH, OH	
5890	OMe	CH_2COOMe	H	(+)-pin	
5891	OMe	CH_2COOMe	H	OH, OH	
5892	$\text{NH}(\text{C}=\text{NH})\text{H}$	$(\text{CH}_2)_2\text{CN}_2\text{H}$	H	OH, OH	
5893	$\text{NH}(\text{C}=\text{NH})\text{H}$	$(\text{CH}_2)_2\text{CN}_2\text{H}$	H	(+)-pin	
$m=0$					
5894	CH_2NH_2	H	H	(+)-pin	
5895	CH_2NH_2	H	H	OH, OH	
5896	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	(+)-pin	
5897	$\text{NH}(\text{C}=\text{NH})\text{NH}_2$	H	H	OH, OH	
5898	OMe	H	H	(+)-pin	
5899	OMe	H	H	OH, OH	
5900	$\text{NH}(\text{C}=\text{NH})\text{H}$	H	H	OH, OH	

5901	NH(C=NH)H	H	H	(+)-pin
5902	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5903	CH ₂ NH ₂	CH ₂ CN	H	OH, OH
5904	NH(C=NH)NH ₂	(CH ₂)COOH	H	(+)-pin
5905	NH(C=NH)NH ₂	(CH ₂)COOH	H	OH, OH
5906	OMe	CH ₂ COOMe	H	(+)-pin
5907	OMe	CH ₂ COOMe	H	OH, OH
5908	NH(C=NH)H	(CH ₂)CN ₄ H	H	OH, OH
5909	NH(C=NH)H	(CH ₂)CN ₄ H	H	(+)-pin

Table 59

Ex.	X	U	Y ¹ Y ²	Phys. Data
<i>m</i> =1				
5914	CH ₂ NH ₂	S	(+)-pin	
5915	NHC(=NH)NH ₂	S	(+)-pin	
5916	SC(=NH)NH ₂	S	(+)-pin	
5917	CH ₂ NH ₂	S	OH, OH	
5918	NHC(=NH)NH ₂	S	OH, OH	
5919	SC(=NH)NH ₂	S	OH, OH	
5920	CH ₂ NH ₂	O	(+)-pin	
5921	NHC(=NH)NH ₂	O	(+)-pin	
5922	SC(=NH)NH ₂	O	(+)-pin	
5923	CH ₂ NH ₂	O	OH, OH	
5924	NHC(=NH)NH ₂	O	OH, OH	
5925	SC(=NH)NH ₂	O	OH, OH	
<i>m</i> =2				
5926	CH ₂ NH ₂	S	(+)-pin	CA
5927	NHC(=NH)NH ₂	S	(+)-pin	
5928	SC(=NH)NH ₂	S	(+)-pin	
5929	CH ₂ NH ₂	S	OH, OH	
5930	NHC(=NH)NH ₂	S	OH, OH	
5931	SC(=NH)NH ₂	S	OH, OH	
5932	CH ₂ NH ₂	O	(+)-pin	
5933	NHC(=NH)NH ₂	O	(+)-pin	
5934	SC(=NH)NH ₂	O	(+)-pin	
5935	CH ₂ NH ₂	O	OH, OH	
5936	NHC(=NH)NH ₂	O	OH, OH	
5937	SC(=NH)NH ₂	O	OH, OH	

5 CA: HRMS Calc.: 543.2635, Found: 543.2643

Table 60

Ex.	X	U	Y ¹ Y ²	Phys. Data
<i>m</i> =1				
5942	CH ₂ NH ₂	S	(+)-pin	
5943	NHC(=NH)NH ₂	S	(+)-pin	
5944	SC(=NH)NH ₂	S	(+)-pin	
5945	CH ₂ NH ₂	S	OH, OH	
5946	NHC(=NH)NH ₂	S	OH, OH	
5947	SC(=NH)NH ₂	S	OH, OH	
5948	CH ₂ NH ₂	O	(+)-pin	
5949	NHC(=NH)NH ₂	O	(+)-pin	
5950	SC(=NH)NH ₂	O	(+)-pin	
5951	CH ₂ NH ₂	O	OH, OH	
5952	NHC(=NH)NH ₂	O	OH, OH	
5953	SC(=NH)NH ₂	O	OH, OH	
<i>m</i> =2				
5954	CH ₂ NH ₂	S	(+)-pin	
5955	NHC(=NH)NH ₂	S	(+)-pin	
5956	SC(=NH)NH ₂	S	(+)-pin	
5957	CH ₂ NH ₂	S	OH, OH	
5958	NHC(=NH)NH ₂	S	OH, OH	
5959	SC(=NH)NH ₂	S	OH, OH	
5960	CH ₂ NH ₂	O	(+)-pin	
5961	NHC(=NH)NH ₂	O	(+)-pin	
5962	SC(=NH)NH ₂	O	(+)-pin	
5963	CH ₂ NH ₂	O	OH, OH	
5964	NHC(=NH)NH ₂	O	OH, OH	
5965	SC(=NH)NH ₂	O	OH, OH	

Table 61

5

Ex	X	R ^A	R ^C	R ^D	Y ¹ , Y ²	Phys Data
5970	NHC(NH)NH ₂	Me	Ph	OMe	(+)-pin	
5971	NHC(NH)NH ₂	Me	Ph	CONH ₂	(+)-pin	
5972	NHC(NH)NH ₂	Me	Ph	F	(+)-pin	
5973	NHC(NH)NH ₂	Me	Ph	CF ₃	(+)-pin	
5974	NHC(NH)NH ₂	Me	Ph	Cl	(+)-pin	
5975	NHC(NH)NH ₂	Me	Ph	OH	(+)-pin	
5976	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pin	
5977	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pin	
5978	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pin	
5979	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pin	
5980	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	(+)-pin	
5981	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pin	
5982	SC(NH)NH ₂	Me	Ph	OMe	(+)-pin	
5983	SC(NH)NH ₂	Me	Ph	CONH ₂	(+)-pin	
5984	SC(NH)NH ₂	Me	Ph	F	(+)-pin	
5985	SC(NH)NH ₂	Me	Ph	CF ₃	(+)-pin	
5986	SC(NH)NH ₂	Me	Ph	Cl	(+)-pin	
5987	SC(NH)NH ₂	Me	Ph	OH	(+)-pin	
5988	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pin	
5989	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pin	
5990	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pin	

5991	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pin
5992	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	(+)-pin
5993	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pin
5994	CH ₂ NH ₂	Me	Ph	OMe	(+)-pin
5995	CH ₂ NH ₂	Me	Ph	CONH ₂	(+)-pin
5996	CH ₂ NH ₂	Me	Ph	F	(+)-pin
5997	CH ₂ NH ₂	Me	Ph	CF ₃	(+)-pin
5998	CH ₂ NH ₂	Me	Ph	Cl	(+)-pin
5999	CH ₂ NH ₂	Me	Ph	OH	(+)-pin
6000	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pin
6001	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pin
6002	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pin
6003	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pin
6004	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	(+)-pin
6005	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pin
6006	NHC(NH)NH ₂	Me	Ph	OMe	OH, OH
6007	NHC(NH)NH ₂	Me	Ph	CONH ₂	OH, OH
6008	NHC(NH)NH ₂	Me	Ph	F	OH, OH
6009	NHC(NH)NH ₂	Me	Ph	CF ₃	OH, OH
6010	NHC(NH)NH ₂	Me	Ph	Cl	OH, OH
6011	NHC(NH)NH ₂	Me	Ph	OH	OH, OH
6012	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	OH, OH
6013	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	OH, OH
6014	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	OH, OH
6015	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	OH, OH
6016	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	OH, OH
6017	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	OH, OH
6018	SC(NH)NH ₂	Me	Ph	OMe	OH, OH
6019	SC(NH)NH ₂	Me	Ph	CONH ₂	OH, OH
6020	SC(NH)NH ₂	Me	Ph	F	OH, OH
6021	SC(NH)NH ₂	Me	Ph	CF ₃	OH, OH
6022	SC(NH)NH ₂	Me	Ph	Cl	OH, OH
6023	SC(NH)NH ₂	Me	Ph	OH	OH, OH
6024	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	OH, OH
6025	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	OH, OH

6026	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	OH, OH
6027	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	OH, OH
6028	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	OH, OH
6029	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	OH, OH
6030	CH ₂ NH ₂	Me	Ph	OMe	OH, OH
6031	CH ₂ NH ₂	Me	Ph	CONH ₂	OH, OH
6032	CH ₂ NH ₂	Me	Ph	F	OH, OH
6033	CH ₂ NH ₂	Me	Ph	CF ₃	OH, OH
6034	CH ₂ NH ₂	Me	Ph	Cl	OH, OH
6035	CH ₂ NH ₂	Me	Ph	OH	OH, OH
6036	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	OH, OH
6037	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	OH, OH
6038	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	OH, OH
6039	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	OH, OH
6040	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	OH, OH
6041	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	OH, OH

Utility

The compounds of formula (I) are useful as inhibitors of trypsin-like enzymes, notably human thrombin, Factor VIIa, Factor IXa, Factor Xa, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions catalyzed by the aforesaid enzymes such as blood coagulation and inflammation. These compounds are also useful as anticoagulants for the processing of blood for therapeutic or diagnostic purposes or for the production of blood products or fragments, since contact of blood with the surfaces commonly used for blood collection and storage causes activation of coagulation leading to thrombin formation and clot formation.

The effectiveness of compounds of the present invention as inhibitors of blood coagulation proteases was determined using purified human proteases and synthetic substrates following procedures similar to those described in Kettner et al. (1990).

For these assays, the rate of enzymatic (thrombin, Factor Xa, and Factor VIIa) hydrolysis of chromogenic substrates (S2238 (H-D-Phe-Pip-Arg-pNA), S2222, and S2288, respectively; Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nm. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, K_i .

Thrombin and Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. VIIa determinations were made in 0.05 M tris buffer, pH 7.6, containing 0.10 M NaCl, 4 mM

CaCl_2 , and 0.1% bovine serum albumin. The Michaelis constant, K_m , for substrate hydrolysis was determined at 25 °C using the method of Lineweaver and Burk.

Values of K_i were determined by allowing 0.2 - 0.5 5 nM human thrombin or human factor Xa (Enzyme Research Laboratories, South Bend, IN), or 50 nM human factor VIIa (BiosPacific, Emeryville, CA) react with the substrate (0.20 mM - 1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the 10 velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate K_i values.

$$\frac{v_0 - v_s}{v_s} = \frac{I}{K_i (1 + S/K_m)}$$

15

where:

- v_0 is the velocity of the control in the absence of inhibitor;
- 20 v_s is the velocity in the presence of inhibitor;
- I is the concentration of inhibitor;
- K_i is the dissociation constant of the enzyme-inhibitor complex;
- S is the concentration of substrate;
- 25 K_m is the Michaelis constant.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit a K_i of less 500 μM thereby confirming the 30 utility of compounds of the invention as effective inhibitors of human blood coagulation proteases. The results of these assays are summarized in Table 62, where +++ indicates a $K_i < 500$ nM; ++ indicates a $K_i < 50,000$ nM; and + indicates a $K_i 500,000 < \text{nM}$; - 35 indicates inactive.

Table 62. K_i values for inhibition of Serine Proteases by compounds of the present invention.

EXAMPLE	Thrombin	Factor Xa	Factor VIIa
1	+++	++	NT
2	+++	+++	+++
29	+++	NT	NT
35	+++	+++	++
68	++	++	+++
129	+++	+++	NT
199	+++	+++	+++
203	+++	+++	+++
224	+++	+++	+++
227	+++	+++	++
231	+++	+++	++
261	+++	+++	+++
262	+++	+++	+++
263	+++	+++	+++
283	+++	+++	++
286	+++	+++	+++
288	+++	NT	+++
298	+++	+++	+++
299	+++	+++	+++
302	+++	+++	++
303	+++	++	++
304	++	++	++
305	++	++	++
468	++	++	++
474	++	++	++
887	+++	NT	NT
888	+++	++	++
890	+++	++	++
892	+++	++	++
898	+++	++	++
905	++	++	-
913	+++	-	++

914	+++	++	++
917	+++	++	++
920	+++	NT	NT
921	+++	++	++
923	+++	++	++
931	+++	++	++
967	+++	++	+++
969	+++	++	++
977	+++	NT	NT
1352	+++	++	NT
1431	+++	NT	NT
1459	++	++	++
1467	+++	NT	++
1521	+++	NT	NT
1557	+++	NT	++
2066	NT	NT	NT
2067	+++	NT	NT
2068	++	++	++
2073	+++	++	++
2074	+++	++	++
2411	+++	NT	NT
2412	+++	++	++
2414	+++	++	++
2416	+++	++	++
2422	+++	++	++
2430	++	++	-
2439	+++	++	++
2440	+++	++	++
2443	+++	++	++
2446	+++	++	++
2447	+++	++	++
2490	+++	++	+++
2491	+++	+++	++
2499	+++	++	++
2533	+++	++	-

2752	+++	NT	NT
2780	+++	++	+++
2781	+++	++	++
2837	++	NT	NT
3349	+++	++	NT
3458	+++	-	++
3465	+++	++	++
3538	+++	++	++
4064	++	++	++
4065	++	++	++
5426	+++	+++	NT
5529	+++	+++	NT
5551	NT	NT	NT

The final concentration of thrombin was 4 NIH units/mL. The effectiveness of compounds in prolonging clotting times is reported as $K_{1/2}TT$ (nM; level of

5 inhibitor required to prolong clotting to the time observed for 2 NIH units/mL thrombin in the absence of inhibitor). Compounds of the present invention were found to have $K_{1/2}TT$ values in the range of 100 - 6000 nM.

Generally, these compounds may be administered orally
10 or parenterally to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as will be obvious to one skilled in the art. In the case of large mammals such as humans, the
15 compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/Kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

20 Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or

the like which can serve as suitable dosage forms for administration of the compounds of this invention. Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

WHAT IS CLAIMED IS:

1. A compound of formula:

5

(I)

wherein:

A is

- a) $-BY^1Y^2$,
- b) $-C(=O)CF_3$,
- c) $-C(=O)CHF_2$,
- d) $-C(=O)CH_2F$,
- e) $-C(=O)CH_2Cl$,
- f) $-C(=O)OR^3$,
- g) $-C(=O)NR^{15}R^{16}$,
- h) $-C(=O)R^3$,
- i) $-C(=O)COOR^3$,
- j) $-C(=O)C(=O)NR^{15}R^{16}$,
- k) $-C(=O)C(=O)R^3$,
- l) $-C(=O)CY^3Y^4COOR^3$,
- m) $-C(=O)CY^3Y^4C(=O)NR^{15}R^{16}$,
- n) $-C(=O)CY^3Y^4C(=O)R^3$,
- o) $-PO_3H_2$, or
- p) $-CHO$;

 Y^1 and Y^2 are independently

25

- a) $-OH$,
- b) $-F$,
- c) $-NR^3R^4$, or
- d) C_1-C_8 alkoxy;

 Y^1 and Y^2 can be taken together to form:

30

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,
- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

35

g) a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and from 0-3 heteroatoms which can be N, S, or O;

Y^3 and Y^4 are independently

- 5 a) -OH or
 b) -F;

Z is

- 10 a) $-(CH_2)_mCONR^8-$,
 b) $-(CH_2)_mCSNR^8-$,
 c) $-(CH_2)_mSO_2NR^8-$,
 d) $-(CH_2)_mCO_2-$,
 e) $-(CH_2)_mC(S)O-$, or
 f) $-(CH_2)_mSO_2O-$;

R^1 is

- 15 a) $-(CH_2)_p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:
 halo (F, Cl, Br, I), methylenedioxy, $-R^8$,
 $-NR^8COR^9$, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl,
 $-(CH_2)_wOR^8$, $-(C_1-C_6)$ -perfluoroalkyl,
 $-(CH_2)_wCN$, $-(CH_2)_wNC$, $-(CH_2)_wNO_2$, $-(CH_2)_wCF_3$,
 $-(CH_2)_wS(O)_xR^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,
 $-(CH_2)_wCHO$; $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$.
 b) $-(CH_2)_wSO_2NH-(C_1-C_5)$ -alkyl, $-(CH_2)_wSO_2NH_2$,
 $-(CH_2)_wSO_2NH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH-$
 $CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNHSO_2-(C_1-C_6)$ -alkyl,
 $-(CH_2)_wNHSO_2-(C_1-C_6)$ -perfluoroalkyl,
 $-(CH_2)_wNHSO_2$ -phenyl, $-(CH_2)_wNHSO_2$ -
 perfluorophenyl, $-(CH_2)_wCN_4H$, $-O(CH_2)_wCN$,
 $-NH(CH_2)_wCN$, $-S(CH_2)_wCN$, $-(CH_2)_wNH-CO-(C_1-C_6)$ -
 alkyl, $-(CH_2)_wNH-CO-(C_1-C_6)$ -perfluoroalkyl),
 $-(CH_2)_wNH-CO-(phenyl)$, $-(CH_2)_wNH-CO_2-(C_1-C_6)$ -
 alkyl, $-(CH_2)_wNH-CO_2-(C_1-C_6)$ -perfluoroalkyl),
 $-(CH_2)_wNH-CO_2-(phenyl)$, $-O(C=O)-(C_1-C_5)$ -alkyl),

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- 5 i) quinolinyl,
- ii) isoquinolinyl,
- iii) benzopyranyl,
- iv) benzothiophenyl,
- v) benzofuranyl,
- vi) 5,6,7,8-tetrahydroquinolinyl,
- 10 vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are members selected from the group consisting of halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONHR⁸, NR⁸COR⁹, NR⁸CO₂R⁹,

f)

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR¹³, S or O, provided that:

5

10

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present;

g)

15

wherein W, R, T, U and V are selected from the group consisting of: CR¹³ or N, provided that there be no less than 1 and no more than 3 N present;

h)

wherein

20

is as defined above;

i)

wherein

is as defined above;

j)

5

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

k)

10

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

15 R² is

- a) -(C₁-C₁₂ alkyl)-X,
- b) -(C₂-C₁₂ alkenyl)-X, or
- c)

X is

a) halogen (F, Cl, Br, I),

b) -CN,

5 c) -NO₂,d) -CF₃,e) -S(O)_xR¹⁴,f) -NHR¹⁴g) -NHS(O)_xR¹⁴,

10 h) -NHC(NH)H,

i) -NHC(NH)HOH,

j) -NHC(NH)HCN,

k) -NHC(NH)NHR¹⁴,l) -NHC(NH)NHCOR¹⁴,15 m) -C(NH)NHR¹⁴,n) -C(NH)NHCOR¹⁴,o) -C(O)NHR¹⁴,p) -C(O)NHC(O)R¹⁴,q) -C(O)OR¹⁴,20 r) -OR¹⁴,s) -OC(O)R¹⁴,t) -OC(O)OR¹⁴,u) -OC(O)NHR¹⁴,v) -OC(O)NHC(O)R¹⁴,25 w) -SC(=NH)NHR¹⁴, orx) -SC(=NH)NHC(=O)R¹⁴;R³ is

a) hydrogen,

b) C₁-C₈ alkyl,30 c) -(C₁-C₄ alkyl)-aryl,d) C₅-C₇ cycloalkyl, or

e) phenyl;

R⁴ is

- a) hydrogen,
- b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl,
- d) C₅-C₇ cycloalkyl,
- e) phenyl, or
- f) phenylsulfonyl;

R⁵ and R⁶ are hydrogen or when taken together form a six

membered aromatic ring optionally substituted with
one, two or three substituents selected from the
group consisting of halo (F, Cl, Br, I), -CN, C₁-
C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-
alkynyl, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸,
-CO₂R⁸, -CONR⁸R⁹, phenyl, benzyl, phenylethyl;

R⁷ is

- a) phenyl,
- b) C₁-C₈-alkyl,
- c) C₁-C₄-alkoxy,
- d) -CF₃, or
- e) benzyl;

R⁸ and R⁹ are independently

- a) H,
- b)

25

- c) C₃-C₇ cycloalkyl,
- d) C₁-C₈-alkyl, or

R¹¹ is

- a) halo (F, Cl, Br, I),
- b) -CN,
- c) C₁-C₁₀-alkyl,
- d) C₃-C₈-cycloalkyl,
- e) C₂-C₁₀-alkenyl,

f) C₂-C₁₀-alkynyl,

g) -OR⁸,

h) -NO₂,

i) -CF₃,

5 j) -S(O)_xR⁷,

k) -NR⁸R⁹,

m) -CO₂R⁸,

n) -COR⁹,

10 n) -CONR⁸R⁹, or

o) H

R¹² is

H, C₁-C₄ alkyl, phenyl, benzyl, -COR⁷, or
-S(O)_xR⁷;

R¹³ is

15 H, halogen (F, Cl, Br, I), (C₁-C₈)alkyl, (C₁-C₆)-perfluoroalkyl, -(CH₂)_xD, C₃-C₈ cycloalkyl,
C₂-C₆-alkenyl, C₂-C₆-alkynyl, methylenedioxy,
-(CH₂)_w-OR⁸, -(CH₂)_wNC, -(CH₂)_wCN, -(CH₂)_wNO₂,
-(CH₂)_wCF₃, -(CH₂)_wS(O)_xR⁷, -(CH₂)_wNR⁸R⁹,
20 -(CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹,
-(CH₂)_wSO₂NH-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH₂,
-(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-(C₁-C₆)-perfluoroalkyl,
25 -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN, -S(CH₂)_wCN,
-(CH₂)_wNH-CO-(C₁-C₆-alkyl), -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-CO-(phenyl),
30 -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-CO₂-(phenyl),
-(CH₂)_uphenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸, -S-(CH₂)_uphenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸, or -O-(CH₂)_uphenyl wherein
35

the phenyl contains 0-3 substituents selected from R¹⁸;

R¹⁴ is

- 5 a) -H,
- b) -CF₃,
- c) -C₁-C₄ alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted with one to three substituents selected from the group consisting of:
- 10 halogen (F, Cl, Br, I),
- CF₃,
- (C₁-C₄ alkyl),
- (CH₂)_xR¹⁵,
- 15 -(CH₂)_xCO(CH₂)_yR¹⁵,
- (CH₂)_xC(O)O(CH₂)_yR¹⁵,
- (CH₂)_xC(O)N[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- methylenedioxy,
- 20 -(C₁-C₄ alkoxy),
- (CH₂)_xO(CH₂)_yR¹⁵,
- (CH₂)_xOCO(CH₂)_yR¹⁵,
- (CH₂)_xOC(O)O(CH₂)_yR¹⁵,
- (CH₂)_xOC(O)N[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- 25 -(CH₂)_xOC(O)N[(CH₂)_yR¹⁵] [CO(CH₂)_yR¹⁶],
- (CH₂)_xS(O)_r(CH₂)_yR¹⁵,
- (CH₂)_xS(O)_r(CH₂)_yCOR¹⁵,
- (CH₂)_xS(O)_r(CH₂)_yC(O)OR¹⁵,
- (CH₂)_xS(O)_rN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶]
- 30 -(CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] [CO(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] [C(O)O(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] CON[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶],
- (CH₂)_xN[(CH₂)_yR¹⁵] CON[(CH₂)_yR¹⁵] [CO(CH₂)_yR¹⁶],
- 35 -(CH₂)_xN[(CH₂)_yR¹⁵] [S(O)_r(CH₂)_yR¹⁶];

R¹⁵ and R¹⁶ are independently

- a) hydrogen,
- b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl, where aryl is defined above,
- 5 d) C₅-C₇ cycloalkyl,
- e) phenyl, substituted by 0-3 R¹⁸,
- f) benzyl, substituted by 0-3 R¹⁸, or
- g) -(C₁-C₄ alkoxy);

R¹⁵ and R¹⁶ can be taken together to form a ring:

10

R¹⁸ and R¹⁹ are independently

- H, halo (F, Cl, Br, I), C₁-C₈-alkyl, C₃-C₈ cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
- 15 - (CH₂)_w-OR⁸, - (CH₂)_wCN, - (CH₂)_wNC, - (CH₂)_wNO₂,
- (CH₂)_wCF₃, - (CH₂)_wS(O)_rR⁷, - (CH₂)_wNR⁸R⁹,
- (CH₂)_wCOR⁸, - (CH₂)_wCO₂R⁸, - (CH₂)_wCONR⁸R⁹,
- (CH₂)_wSO₂NH-(C₁-C₆)-alkyl, - (CH₂)_wSO₂NH₂,
- (CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, - (CH₂)_wSO₂NH-
- 20 CO₂-(C₁-C₆)-alkyl, - (CH₂)_wSO₂NH-(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, - (CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, - (CH₂)_wNHSO₂-phenyl,
- (CH₂)_wNHSO₂-perfluorophenyl, - (CH₂)_wCN₄H,
- O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN,
- 25 -S(CH₂)_wCN, - (CH₂)_wNH-CO-(C₁-C₆-alkyl),
- (CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), - (CH₂)_wNH-CO-(C₁-C₆-phenyl), - (CH₂)_wNH-CO₂-(C₁-C₆-alkyl),
- (CH₂)_wNH-CO₂-(C₁-C₆-phenyl), or -O(C=O)phenyl;

R¹⁸ and R¹⁹ can be taken together to form a

30 methylenedioxy group;

R²⁰ and R^{20a} are independently:

- (C₁-C₈)alkyl, -(CH₂)_wphenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸,
- (C₁-C₆)-perfluoroalkyl, or -(CH₂)_r-D;

m is 0 to 6;

n is 1 to 2;

p is 0 to 2;

q is 0 to 4.

5 r is 0 to 2;

s is 0 to 3;

t is 1 to 5;

u is 0 to 5;

v is 0 to 5;

10 w is 0 to 5;

x is 0 to 6;

y is 0 to 6;

D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-

15 yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-
4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl,
or tetrazolyl;

E is -CO-, -SO₂-, -CH₂- or a single bond.

20 F is -CO-;

W is

a) -O-,

b) -S(O)_r-,

c) -NR⁴-,

25 d) -NC(=O)R³-,

e) a bond, or

f) -(CH₂)_n-;

or prodrugs or pharmaceutically acceptable salts
thereof.

30

2. A compound of Claim 1 wherein:

Z is

a) -(CH₂)_mCONR⁸-,

b) -(CH₂)_mCSNR⁸-,

35 c) -(CH₂)_mSO₂NR⁸-,

R¹ is

a) $-(CH_2)_p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:

- 5 halo (F, Cl, Br, I), methylenedioxy, $-R^8$, $-NR^8COR^9$, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, $-(CH_2)_w-OR^8$, $-(C_1-C_6)$ -perfluoroalkyl, $-(CH_2)_w-CN$, $-(CH_2)_w-NC$, $-(CH_2)_w-NO_2$, $-(CH_2)_w-CF_3$, $-(CH_2)_w-S(O)_xR^7$, $-(CH_2)_w-NR^8R^9$, $-(CH_2)_w-COR^8$, $-(CH_2)_w-CO_2R^8$, $-(CH_2)_w-CONR^8R^9$, $-(CH_2)_w-SO_2NH-(C_1-C_6)$ -alkyl, $-(CH_2)_w-SO_2NH_2$, $-(CH_2)_w-SO_2NH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_w-SO_2NH-CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_w-NHSO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_w-NHSO_2-(C_1-C_6)$ -perfluoroalkyl, $-(CH_2)_w-NHSO_2$ -phenyl, $-(CH_2)_w-NHSO_2$ -perfluorophenyl, $-(CH_2)_w-CN_4H$, $-O(CH_2)_w-CN$, $-NH(CH_2)_w-CN$, $-S(CH_2)_w-CN$, $-(CH_2)_w-NH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_w-NH-CO-(C_1-C_6)$ -perfluoroalkyl, $-(CH_2)_w-NH-CO-(phenyl)$, $-(CH_2)_w-NH-CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_w-NH-CO_2-(C_1-C_6)$ -perfluoroalkyl, or $-(CH_2)_w-NH-CO_2-(phenyl)$, $O(C=O-(C_1-C_5)$ alkyl;

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- 25 i) quinolinyl,
- ii) isoquinolinyl,
- iii) benzopyranyl,
- iv) benzothiophenyl,
- v) benzofuranyl,
- vi) 5,6,7,8-tetrahydroquinolinyl,
- 30 vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are selected from the group consisting of halo (F, Cl, Br, I), $-CN$, C_1-C_{10} -alkyl, C_3-C_8 -cycloalkyl, C_2-C_{10} -alkenyl, C_2-C_{10} -alkynyl, R^8 , $-OR^8$, $-NO_2$, $-CF_3$, $-S(O)_xR^7$, $-NR^8R^9$, $-COR^8$, $-CO_2R^8$, $-CONR^8H$, NR^8COR^9 , $NR^8CO_2R^9$;

c)

d)

5

e)

f) wherein the ring

represented by -J-K-L-M-Q- is a group selected from:

10

- 1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
- 3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
- 4) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 5) $-N-C(R^{13})=C(R^{13})-N=N-$

15

- 6) $-N-C(R^{13})=N-N=N-$,
- 7) $-N-N=C(R^{13})-N=N-$,
- 8) $=C-O-C(R^{13})=N-C(R^{13})=$,
- 9) $-C=C(R^{13})-O-C(R^{13})=N-$,
- 10) $=C-O-C(R^{13})=C(R^{13})-N=$,

20

- 11) $-C=C(R^{13})-C(R^{13})=N-O-$,
- 12) $=C-C(R^{13})=C(R^{13})-O-N=$,
- 13) $-C=C(R^{13})-O-N=C(R^{13})-$,
- 14) $=C-S-C(R^{13})=N-C(R^{13})=$,

- 15) $-C=C(R^{13})-S-C(R^{13})=N-$,
 16) $=C-S-C(R^{13})=C(R^{13})-N=$,
 17) $-C=N-S-N=C(R^{13})-$,
 18) $-C=N-S-C(R^{13})=N-$,
 5 19) $=C-S-N=C(R^{13})-N=$,
 20) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$,
 21) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-$,
 22) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=$, or
 23) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$;

10 g) wherein the ring

represented by $-C-W-R-T-U-V-$ is a group

selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,
 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
 15 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$,
 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,
 20 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
 10) $-C=N-C(R^{13})=N-N=C(R^{13})-$,
 11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or
 12) $-C=C(R^{13})-N=C(R^{13})-N=N-$;

25 h)

wherein

is as defined above;

i)

wherein

is as defined above;

5

j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

10

k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R³, -C(=O)R³, -SO₂R³, -C(=O)OR³;

15 R¹⁴ is :

- a) -H,
- b) -CF₃
- c) -C₁-C₄ alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted

20

with one to three substituents selected from the group consisting of:

halogen (F, Cl, Br, I),

-CF₃,

5 - (C₁-C₄ alkyl),

-methylenedioxy,

- (C₁-C₄ alkoxy),

- (CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶];

and all other required substituents of formula (I) are
10 as defined in Claim 1.

3. A compound of Claim 2 wherein
A is

a) -BY¹Y²,

15 b) -C(=O)CF₃,

c) -C(=O)CHF₂,

d) -C(=O)CH₂F,

e) -C(=O)CH₂Cl,

f) -C(=O)OR³,

20 g) -C(=O)NR¹⁵R¹⁶,

h) -C(=O)R³,

i) -C(=O)COOR³,

j) -C(=O)C(=O)NR¹⁵R¹⁶,

k) -C(=O)C(=O)R³,

25 l) -CHO;

Y¹ and Y² are independently

a) -OH, or

b) C₁-C₈ alkoxy;

Y¹ and Y² can be taken together to form

30 a cyclic boron ester where said chain or ring
contains from 2 to 20 carbon atoms and from 0-
3 heteroatoms which can be N, S, or O,

Z is

a) -(CH₂)_mCONR⁸-,

35 b) -(CH₂)_mCSNR⁸-, or

c) $-(CH_2)_mSO_2NR^8-$;

R^1 is

a) $-(CH_2)_p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents independently selected at each occurrence from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, $-R^8$,
 $-NR^8COR^9$, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl,
 $-(CH_2)_w-OR^8$, $-(C_1-C_6)$ -perfluoroalkyl,
 $-(CH_2)_w-CN$, $-(CH_2)_wNC$, $-(CH_2)_wNO_2$, $-(CH_2)_wCF_3$,
 $-(CH_2)_wS(O)_xR^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,
 $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$, $-(CH_2)_wSO_2NH-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH_2$, $-(CH_2)_wSO_2NH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_wSO_2NH-CO_2-(C_1-C_6)$ -alkyl,
 $-(CH_2)_wNHSO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNHSO_2-(C_1-C_6)$ -perfluoroalkyl,
 $-(CH_2)_wNHSO_2$ -phenyl, $-(CH_2)_wNHSO_2$ -perfluorophenyl, $-(CH_2)_wCN_4H$, $-O(CH_2)_wCN$,
 $-NH(CH_2)_wCN$, $-S(CH_2)_wCN$, $-(CH_2)_wNH-CO-(C_1-C_6)$ -alkyl, $-(CH_2)_wNH-CO-(C_1-C_6)$ -perfluoroalkyl),
 $-(CH_2)_wNH-CO-(phenyl)$, $-(CH_2)_wNH-CO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNH-CO_2-(C_1-C_6)$ -perfluoroalkyl), or $-(CH_2)_wNH-CO_2-(phenyl)$, $-O(C=O)-C_1-C_5$ -alkyl);

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- i) quinolinyl,
- ii) isoquinolinyl,
- iii) benzopyranyl,
- iv) benzothiophenyl,
- v) benzofuranyl,
- vi) 5,6,7,8-tetrahydroquinolinyl,
- vii) 5,6,7,8-tetrahydroisoquinolinyl,

wherein the substituents are members selected from the group consisting of: halo (F, Cl, Br, I), -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸H, NR⁸COR⁹, NR⁸CO₂R⁹;

5

c)

10

d)

e)

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

15

20

25

- 12) $=C-C(R^{13})=C(R^{13})-O-N=,$
 13) $-C=C(R^{13})-O-N=C(R^{13})-,$
 14) $=C-S-C(R^{13})=N-C(R^{13})=,$
 15) $-C=C(R^{13})-S-C(R^{13})=N-,$
 5 16) $=C-S-C(R^{13})=C(R^{13})-N=,$
 17) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=,$
 18) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-,$
 19) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=,$ or
 20) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-;$

10 f)

wherein the ring represented by $-C-W-R-T-U-V-$ is a group selected from:

- 15 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-,$
 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-,$
 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-,$
 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-,$
 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-,$
 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-,$
 20 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-,$
 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-,$
 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-,$
 10) $-C=N-C(R^{13})=N-N=C(R^{13})-,$
 11) $-C=N-C(R^{13})=C(R^{13})-N=N-,$ or
 25 12) $-C=C(R^{13})-N=C(R^{13})-N=N-;$

g)

wherein

is as defined above;

b)

wherein

5

is as defined above; or

i)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: -R3, -C(=O)R3, -SO2R3, -C(=O)OR3);

10

R2 is

- (C1-C12 alkyl)-X,
- (C2-C12 alkenyl)-X, or
- c)

15

X is

- a) halogen (F, Cl, Br, I),
- 5 b) -CN,
- c) -NO₂,
- d) -CF₃,
- e) -NHR¹⁴,
- f) -NHS(O)_xR¹⁴,
- 10 g) -NHC(NH)H,
- h) -NHC(NH)NHOH,
- i) -NHC(NH)NHCN,
- j) -NHC(NH)NHR¹⁴,
- k) -NHC(NH)NHCOR¹⁴,
- 15 l) -C(NH)NHR¹⁴,
- m) -C(NH)NHCOR¹⁴,
- n) -C(O)NHR¹⁴,
- o) -C(O)NHC(O)R¹⁴,
- p) -C(O)OR¹⁴,
- 20 q) -OR¹⁴,
- r) -OC(O)R¹⁴,
- s) -OC(O)OR¹⁴,
- t) -OC(O)NHR¹⁴,
- u) -OC(O)NHC(O)R¹⁴,
- v) -SC(=NH)NHR¹⁴, or
- 25 w) -SC(=NH)NHC(=O)R¹⁴;

R¹³ is

- H, halogen (F, Cl, Br, I), (C₁-C₆)alkyl,
- (CH₂)_r-D, methylenedioxy, - (CH₂)_w-OR⁸,
- 30 - (CH₂)_wNC, - (CH₂)_wCN, - (CH₂)_wNO₂,
- (CH₂)_wS(O)_xR⁷, - (CH₂)_wNR⁸R⁹, - (CH₂)_wCOR⁸,

-

(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl, -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN, -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl), -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl), -(CH₂)_wphenyl
 wherein the phenyl contains 0-3 substituents selected from R¹⁸, or -O(C=O)phenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸;

-

R¹⁴ is

- a) -H,
 - b) -CF₃
 - c) -C₁-C₄ alkyl,
 - d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted with one to three substituents selected from the group consisting of:
- halogen (F, Cl, Br, I),
 -CF₃,
 -(C₁-C₄ alkyl),
 -methylenedioxy,
 -(C₁-C₄ alkoxy), or
 -(CH₂)_xN[(CH₂)_yR¹⁵] [(CH₂)_yR¹⁶];

R¹⁸ and R¹⁹ are independently

- H, halo (F, Cl, Br, I), C₁-C₆-alkyl, -(CH₂)_wOR⁸, -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wS(O)_xR⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-

C_5)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl,
 - (CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl,
 5 - (CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H,
 -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_wCN, -NH(CH₂)_wCN,
 -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl),
 - (CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl),
 10 -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl), or -O(C=O)phenyl;

R18 and R19 can be taken together to form a methylenedioxy group;

R²⁰ and R^{20a} are independently

(C₁-C₈)alkyl, -(CH₂)_wphenyl wherein the phenyl

15 contains 0-3 substituents selected from R¹⁸, (C₁-C₆)-perfluoroalkyl, or -(CH₂)_r-D;

D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl, oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or

20 pyrimidin-4-yl;

W is

- a) -O-,
- b) -NR⁴-,
- c) a bond, or
- d) -(CH₂)_n-;

and all other required substituents of formula (I) are as in claim 2.

30 4. A compound of Claim 3 wherein:

A is -By¹y²;

y¹ and y² are -OH;

y¹ and y² can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 35 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

Z is $-(CH_2)_mCONR^8-$;

R^1 is

a) $-(CH_2)p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three

5 substituents selected from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, $-R^8$,

$-NR^8COR^9$, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl,

$-(CH_2)_w-OR^8$, $-(C_1-C_6)$ -perfluoroalkyl,

10 $-(CH_2)_wCN$, $-(CH_2)_wNC$, $-(CH_2)_wNO_2$, $-(CH_2)_wCF_3$,

$-(CH_2)_wS(O)_xR^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,

$-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$, $-(CH_2)_wSO_2NH-(C_1-$

15 $C_6)$ -alkyl, $-(CH_2)_wSO_2NH_2$, $-(CH_2)_wSO_2NH-CO-(C_1-$

$C_6)$ -alkyl, $-(CH_2)_wSO_2NH-CO_2-(C_1-C_6)$ -alkyl,

15 $-(CH_2)_wNHSO_2-(C_1-C_6)$ -alkyl, $-(CH_2)_wNHSO_2-(C_1-$

$C_6)$ -perfluoroalkyl, $-(CH_2)_wNHSO_2$ -phenyl,

$-(CH_2)_wNHSO_2$ -perfluorophenyl, $-(CH_2)_wCN_4H$,

$-O(CH_2)_wCN$, $-NH(CH_2)_wCN$, $-S(CH_2)_wCN$, $-(CH_2)_wNH-$

$CO-(C_1-C_6)$ -alkyl), $-(CH_2)_wNH-CO-(C_1-C_6-$

20 $perfluoroalkyl)$, $-(CH_2)_wNH-CO-(C_1-C_6$ -phenyl),

$-(CH_2)_wNH-CO_2-(C_1-C_6)$ -alkyl), $-(CH_2)_wNH-CO_2-(C_1-$

$C_6)$ -perfluoroalkyl), or $-(CH_2)_wNH-CO_2-(C_1-C_6$ -

phenyl);

b) heteroaryl, wherein heteroaryl is an

25 unsubstituted, monosubstituted or disubstituted isoquinolinyl wherein the substituents are members selected from the group consisting of:

halo (F, Cl, Br, I), $-CN$, C_1-C_{10} -alkyl, C_3-C_8 -

cycloalkyl, C_2-C_{10} -alkenyl, C_2-C_{10} -alkynyl, R^8 ,

$-OR^8$, $-NO_2$, $-CF_3$, $-S(O)_xR^7$, $-NR^8R^9$, $-COR^8$,

$-CO_2R^8$, $-CONR^8R^9$, NR^8COR^9 , $NR^8CO_2R^9$,

c)

d)

wherein the ring represented by -J-K-L-M-Q- is a
5 group selected from:

- 1) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 2) $-N-C(R^{13})=C(R^{13})-N=N-$,
- 3) $-N-N=C(R^{13})-N=N-$,
- 5) $-N-C(R^{13})=N-N=N-$,
- 10 6) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$, or
- 7) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=;$

e)

wherein the ring represented by -C-W-R-T-U-V- is a
15 group selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$
- 1) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
- 3) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
- 20 4) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$, or
- 5) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$;

f)

wherein
is as defined above;

g)

wherein
is as defined above; or

h)

wherein G is S;

R² is

- 10 a) -(C1-C12 alkyl)-X, or
b)

X is

- a) halogen (F, Cl, Br, I),

- 15 b) -CN,

- c) -NHR¹⁴
- d) -NHC(NH)H,
- e) -NHC(NH)NHR¹⁴,
- f) -C(NH)NHR¹⁴,
- 5 g) -OR¹⁴, or
- h) -SC(=NH)NHR¹⁴;

R¹¹ is H;

R¹³ is

- H, halogen (F, Cl, Br, I), -(CH₂)_wNO₂, (C₁-C₆)alkyl, -(CH₂)_rD, -(CH₂)_w-OR⁸,
- 10 -(CH₂)_wCONR⁸R⁹, -(CH₂)_wCN, -(CH₂)_wNC,
- (CH₂)_wCOR⁸, -(CH₂)_wCO₂R⁸, -(CH₂)_wCO₂R³,
- (CH₂)_wNR⁸R³, -(CH₂)_wS(O)₂R⁷, -(CH₂)_wSO₂NHCO-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-phenyl -(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl,
- 15 -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl,
- (CH₂)_wCN₄H, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_tCN,
- NH(CH₂)_tCN, -S(CH₂)_tCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl), -(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), or
- 20 -(CH₂)_wphenyl wherein the phenyl contains 0-3 substituents selected from R¹⁸;

R¹⁴ is -H;

R¹⁸ and R¹⁹ are independently

- 25 H, halo (F, Cl, Br, I), C₁-C₆-alkyl, -(CH₂)_w-OR⁸, -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂,
- (CH₂)_wS(O)₂R⁷, -(CH₂)_wNR⁸R⁹, -(CH₂)_wCOR⁸,
- (CH₂)_wCO₂R⁸, -(CH₂)_wCONR⁸R⁹, -(CH₂)_wSO₂NH-(C₁-C₅)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl,
- 30 -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl,
- (CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(C=O)-(C₁-C₅-alkyl), -O(CH₂)_tCN, -NH(CH₂)_tCN,
- 35 -S(CH₂)_tCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl),

- $(CH_2)_wNH-CO-(C_1-C_6\text{-perfluoroalkyl})$, - $(CH_2)_wNH-CO-(C_1-C_6\text{-phenyl})$, - $(CH_2)_wNH-CO_2-(C_1-C_6\text{-alkyl})$,
 - $(CH_2)_wNH-CO_2-(C_1-C_6\text{-phenyl})$, or -O(C=O)phenyl;

R18 and R19 can be taken together to form a

5 methylenedioxy group;

R²⁰ is selected from the group consisting of:

$(CH_2)_rD$, or - $(CH_2)_u$ phenyl wherein the phenyl
 contains 0-3 substituents selected from R¹⁸;

10 and all other required substituents of formula (I) are defined as in Claim 3.

5. A compound of Claim 4 selected from the group consisting of:

- 15 N¹- (4-phenylbenzoyl) - (R) - boroarginine, hydrochloride
- N¹- (3-phenoxybenzoyl) - (R) - boroarginine, hydrochloride
- N¹- (1-fluorenonyl) - (R) - boroarginine, hydrochloride
- N¹- (4-[1-butyl]benzoyl) - (R) - boroarginine, hydrochloride
- N¹- (2-benzoylbenzoyl) - (R) - boroarginine, hydrochloride
- 20 N¹- (5-phenyl-2-furoyl) - (R) - boroarginine, hydrochloride
- N¹- (3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-benzoyl) - (R) - boroarginine, hydrochloride
- N¹- (2-phenyl-4-isouinoloyl) - (R) - boroarginine,
 hydrochloride
- 25 N¹- (4-cyclohexylbenzoyl) - (R) - boroarginine,
 hydrochloride
- N¹- (2-methyl-4-phenylbenzoyl) - (R) - boroarginine,
 hydrochloride
- N¹- [4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol
 ester
- 30 N¹- [4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol
 ester
- N¹- [4-phenyl-2-aminobenzoyl]boroArg, (+)-pinanediol
 ester
- 35 N¹- [4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-pinanediol ester

- 5 N^1 -[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-pinanediol ester
- 10 N^1 -[4-phenyl-2-(cyanomethyl)benzoyl]boroArg, (+)-pinanediol ester
- 15 5 N^1 -[4-[2-(diethylamino)benzoyl]boroArg, (+)-pinanediol ester
- 20 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]-2-methylbenzoyl]boroArg, (+)-pinanediol ester
- 25 N^1 -[4-[2-(aminosulfonyl)phenyl]-2-methylbenzoyl]boroArg, (+)-pinanediol ester
- 30 N^1 -[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methylbenzoyl]boroArg, (+)-pinanediol ester
- 35 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg, (+)-pinanediol ester-OH
- 40 N^1 -[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-methyl-benzoyl]boroArg, (+)-pinanediol ester
- 45 N^1 -[4-[2-(diethylaminosulfonyl)phenyl]-2-methylbenzoyl]boroArg, (+)-pinanediol ester
- 50 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
- 55 N^1 -[4-[2-(aminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
- 60 N^1 -[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-benzoyl]boroArg, (+)-pinanediol ester
- 65 N^1 -[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
- 70 N^1 -[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
- 75 N^1 -[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg, (+)-pinanediol ester
- 80 N^1 -(3-phenylbenzoyl)boroarg, (+)-pinanediol
- 85 N^1 -[4-(3-BOCNHphenyl)2-methylbenzoyl]boroarg, (+)-pinanediol
- 90 N^1 -(5-phenyl-2-furoyl)boroarg, (+)-pinanediol

- N^1 - (5-phenyl-2-thienyl)bороarg, (+)-pinanediol
 N^1 - [4- (3-nitrophenyl)benzoyl]bороarg, (+)-pinanediol
 N^1 - [4- (3-aminophenyl)benzoyl]bороarg, (+)-pinanediol
 N^1 - (3-phenylbenzoyl)borolys, (+)-pinanediol
5 N^1 - (5-phenyl-2-furoyl)bороarg-OH
 N^1 - (3-phenylbenzoyl)bороIrg, (+)-pinanediol
(R)- [5-amino-1- [[5-(phenylmethyl)-1H-1,2,4-triazol-1-
 yl]acetyl]amino]-pentyl]boronic acid hydrochloride
[3aS-[2(S*), 3a α , 4 β , 6 β]] - (1,1-dimethylethyl) [3- [5- [[4-
10 [(amino-iminomethyl)amino]-1- (hexahydro-3a,5,5-
 trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
 yl)butyl]amino]carbonyl]-2-thienyl]phenyl] carbamate
 hydrochloride
[3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]] - N- [5-amino-1- (hexahydro-
15 3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
 2-yl)pentyl]-5- (phenyl-methyl) -3- (2H-tetrazol-5-
 ylmethyl)-1H-1,2,4-triazole-1-acetamide
 hydrochloride
[3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]] - 1- [2- [[5-amino-1- (hexahydro-
20 3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
 2-yl)pentyl]amino]-2-oxoethyl]-5- (phenylmethyl)-1H-
 1,2,4-triazole-3-acetic acid hydrochloride 1:1 with
[3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]] - 1- [2- [[5-amino-1-
 (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
25 benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-
 (phenylmethyl)-1H-1,2,4-triazole-5-acetic acid
 hydrochloride
[3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]] - methyl 1- [2- [[5-amino-1-
 (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
30 benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-5-
 (phenylmethyl)-1H-1,2,4-triazole-3-acetate
 hydrochloride
[3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]] - methyl 1- [2- [[5-amino-1-
 (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
35 benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-3-

- (phenylmethyl)-1H-1,2,4-triazole-5-acetate
hydrochloride
- 5 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3-phenyl-5-(phenylmethyl)-1H-1,2,4-
triazole-1-acetamide hydrochloride
- 10 (R)-[5-amino-1-[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-
triazol-1-yl]acetyl]amino]pentyl]boronic acid
hydrochloride
- 15 10 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-
1H-1,2,4-triazole-1-acetamide hydrochloride
- 15 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[4-[(aminoiminomethyl)-
amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
1,3,2-benzodioxaborol-2-yl)butyl]-3-(3-
nitrophenyl)-5-(phenylmethyl)-1H-1,2,4-triazole-1-
acetamide hydrochloride
- 20 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3,5-bis(phenylmethyl)-1H-1,2,4-
triazole-1-acetamide hydrochloride
- 25 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[4-[(aminoiminomethyl)-
amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
1,3,2-benzodioxaborol-2-yl)butyl]-3,5-
bis(phenylmethyl)-1H-1,2,4-triazole-1-acetamide
hydrochloride
- 30 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-
acetamide
- (R)-[5-amino-1-[[3-(phenylmethyl)-1H-1,2,4-triazol-1-
yl]acetyl]amino]pentyl]boronic acid hydrochloride
- 35 [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-

- 2-yl)pentyl]-5-methyl-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride
 [3aS-[2(R*), 3a α , 4 β , 6 β]]-N-[5-amino-1-(hexahydro-3a, 5, 5-tri-methyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-5-[(phenyl-methoxy)methyl]-3-(phenylmethyl)-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-5-(cyanomethyl)-3-(phenylmethyl)-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-3-(phenylmethyl)-5-propyl-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-5-phenyl-3-(phenylmethyl)-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 20 (R)-[5-amino-1-[[5-methyl-3-(phenylmethyl)-1H-1, 2, 4-triazol-1-yl]acetyl]-amino]pentyl]boronic acid hydrochloride
 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-3-phenyl-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-5-methyl-3-phenyl-1H-1, 2, 4-triazole-1-acetamide hydrochloride
 30 [3aS-[2(S*), 3a α , 4 β , 6 β , 7a α]]-N-[5-amino-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1, 2, 4-triazole-1-acetamide
 35 (R)-[5-amino-1-[[5-(2-phenylethyl)-1H-1, 2, 4-triazol-1-yl]acetyl]amino]pentyl]boronic acid hydrochloride

- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3,5-bis(2-phenyl-ethyl)-1H-1,2,4-
triazole-1-acetamide hydrochloride
- 5 (R)-[5-amino-1-[[3,5-bis(2-phenylethyl)-1H-1,2,4-
triazol-1-yl]acetyl]amino]-pentyl]boronic acid
hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3-(2-phenylethyl)-1H-1,2,4-triazole-1-
acetamide
- (R)-[5-amino-1-[[3-(2-phenylethyl)-1H-1,2,4-triazol-1-
yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-3-(3-phenyl-propyl)-1H-1,2,4-triazole-
1-acetamide
- (R)-[5-amino-1-[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-
yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 20 (R)-[5-amino-1-[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-
yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-
triazole-3-acetamide hydrochloride 2:8 with (R)-
[5-amino-1-[[1,5-bis(phenylmethyl)-1H-1,2,4-
triazol-3-yl]acetyl]amino]-pentyl]boronic acid
hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-4-methyl-2-phenyl-5-
pyrimidinecarboxamide hydrochloride
- [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-

2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide
hydrochloride

[3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[4-

5 [(aminoiminomethyl)amino]-1-(hexahydro-3a,5,5-
trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)-
butyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide
hydrochloride

10 [3aS-[2(S*),3 α ,4 β ,6 β ,7 α]]-N-[5-amino-1-(hexahydro-
3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide
hydrochloride

15 (R)-[5-amino-1-[(6-phenyl-3-
pyridinyl)carbonyl]amino]pentyl]boronic acid
dihydrochloride

15 6. A pharmaceutical composition comprising a
pharmaceutically acceptable carrier and a
therapeutically effective amount of a compound of any
one of Claims 1 through 5.

20 7. A method of treating a physiological disorder in a
warm blooded animal catalyzed by trypsin-like enzymes
comprising administering to an animal in need of such
treatment an effective amount of a compound of any one
25 of Claims 1 through 5.