无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

Packet	Training	Key bits sequences	Guard
Head	sequences		band

Training sequences

一个数据的长度的为快

Lab 13: Frame Detection and Frequency Correction

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

- ▶1. Understand the function of **training sequence**.
- ▶2. Understand the **frame synchronization** problem.
- ≥3. Design and implement frame synchronization algorithm: sliding correlator.
- ▶ 4. Understand the **frequency offset correction** problem.
- ▶ 5. Design and implement frequency offset correction algorithm: Moose.
- ▶6. Evaluate the performance of the algorithms by simulation and USRP.

Demo: Training Sequence

3、观察训练序列波形, 帧同步原理

barker 序列满及的部件.

$$\left| \sum_{i=1}^{N_t - k} a_i a_{i+k} \right| \le 1 \qquad 1 \le k \le N_t$$

$$\left|\sum_{i=1}^{N_t-k} a_i a_{i+k}\right| = N_t \qquad k = 0$$

Code Length	Barker Sequence
2	[-+,]
3	[+]
4	[-+,-+++]
5	[+-]
7	[++-+]
11	[+++-++]
13	[+++-]

Autocorrelation of barker sequences

$$y[n] = hs[n-d] + v[n]$$

Training signal

$$R[n] = \left| \sum_{k=0}^{N_t - 1} t^*[k] y[n + k] \right|^2$$

$$\hat{d} = \max_{n} R[n]$$

$$\hat{d} = \arg\max_{n} \sum_{p=0}^{P-1} \left| \sum_{k=0}^{N_{tr}-1} t^*[k] y[n+k+pN_{tot}] \right|$$

8 bits, BPSK

Packet Training
Head sequences

Key bits sequences

Guard band

8 bits, BPSK

I/Q Barker sequence

Replicate sequence

Frame Synchronization

参数	设置值
调制类型	QPSK
训练序列类型	11位巴克码
Synchronization Method	Timing
下采样因子	10
Frame Detection Method	Sliding
发射接收端采样率 (Hz)	10M
包长度 (bits)	500

Demo: Frequency Correction

Frequency offset:

$$f_o = f_c - f_c'$$

$$z(t) = x(t)e^{j2\pi f_c t} \cdot e^{-j2\pi f' t} = x(t)e^{j2\pi (f_c - f')t} = x(t)e^{j2\pi f_o t}$$

Moose Algorithm

• Step 1: to estimate $\epsilon = f_0 T$ with the training sequences y[n],

$$y[n + N_t] = e^{j2\pi\epsilon N_t}y[n] + v[n + N_t]$$

$$\approx e^{j2\pi\epsilon N_t}y[n] \quad \min||y[n+N_t] - e^{j2\pi\epsilon N_t}y[n]|^2$$

Step 2: solve this problem by LLSE,
$$\hat{\epsilon} = \frac{\text{phase } \sum_{l=L}^{N_t-1} y[l+N_t] y^*[l]}{2\pi N_t}$$

$$\hat{f}_e = \frac{\text{phase } \sum_{l=L}^{N_t-1} y[l+N_t] y^*[l]}{2\pi T N_t}$$

$$\hat{\epsilon} = \frac{\text{phase } \sum_{l=L}^{N_t - 1} y[l + N_t] y^*[l]}{2\pi N_t}$$

$$\hat{f}_e = \frac{\text{phase } \sum_{l=L}^{N_t - 1} y[l + N_t] y^*[l]}{2\pi T N_t}$$

Step 3: Frequency offset correction by:

$$\tilde{y}[n] = e^{-j2\pi\epsilon n} y[n]$$

OF SCIENCE AND FECHNOLOGY

Algorithm Analysis

• Let $\hat{y}(t)$ denotes the demodulated signal,

$$y(t) = x(t)e^{j2\pi f_c t}$$

$$\hat{y}(t) = x(t)e^{j2\pi f_c t} \cdot e^{-j2\pi f' t} = x(t)e^{j2\pi (f_c - f')t} = x(t)e^{j2\pi f_o t}$$

• If the x(t) = x(t + N) is periodical,

$$\hat{y}(t+N) = x(t+N)e^{j2\pi f_o(t+N)}$$

$$\hat{y}(t+N) = x(t)e^{j2\pi f_0(t+N)} = x(t)e^{j2\pi f_0t} \cdot e^{j2\pi f_0N} = \hat{y}(t)e^{j2\pi f_0N}$$

Accuracy

$$\hat{f}_e \in \left[-\frac{1}{2T_s N_t}, \frac{1}{2T_s N_t} \right]$$

Frequency Offset Correction

Replace moose.vi

Steps

$$\widehat{f}_e = \frac{phase \sum_{l=L}^{N_t-1} y[l+N_t] y^*[l]}{2\pi T N_t}$$

Simulation Results

$$f_o = 100Hz$$

$$f_o = 450Hz$$

$$f_o = 900 Hz$$

Phase
$$deg. = 2 \cdot 180^{\circ} \cdot f_o \cdot n_{max} \cdot \frac{1}{f_s}$$
, $n_{max} = 299$, $f_s = 1M/s$

Performance Analysis

channel model		
AWGN		
noise power (dB)		
-Inf		
channel response		
0 +0 0 +0 0 +0		
frequency offset delay (sec)		
100		

HW parameters modulation parameters	
modulation type	RX oversample factorRX Sample Rate
QPSK 🗖	3 20 4M ▽
number of data symbols (derived)	pulse shaping parameters
250	modulation type
control information for packet header/tail	र्प) PSK pulse shaping filter र्प) Raised
Training Sequence (derived) Zer	0.5 filter length (symbols)
channel estimation/equalizer parameters	synchronization options
Equalization Method	Synchronization Method
Direct	Timing Estimation
channel estimate length	fixed offset
5) 2	0 Symbol Timing Recovery Method
equalizer length	Max Energy
1 4	Frame Detection Method
equalizer delay	Sliding
ਹੈ -1	Correct Frequency Offset
(set delay to -1 for equalizer to choose optimal delay)	

No Correction

$$f_o = 100Hz$$

$$f_o = 150Hz$$

$$f_o = 200Hz$$

Correction

Question ?

