ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA TOÁN - CƠ - TIN HỌC

TỐI ƯU HÓA

Optimization

CHUYÊN ĐỀ:

CÁC DẠNG BÀI TẬP TRONG TỐI ƯU HÓA

Mã lớp học phần: MAT2407

Sinh viên: Tạ Quang Tùng

Lớp: K66A2 Toán Tin

Mục lục

1	Dạng 1: Đưa bài toán về dạng chính tắc và chuẩn tắc1.1 Dạng chính tắc:	3 3 4
2	Dạng 2: Giải bài toán bằng thuật toán đơn hình2.1 Công thức tổng quát:	5 5
3	Dạng 3: Bài toán tìm nghiệm cơ sở3.1 Tìm nghiệm cơ sở:	7 7 8 8
4	Dạng 4: Thuật toán đơn hình hai pha dạng chuẩn tắc4.1 Công thức tổng quát:	9 9
5	Dạng 5: Thuật toán đơn hình hai pha dạng chính tắc5.1 Công thức tổng quát:	13 13 13
6	Dạng 6: Quy tắc Bland giải QHTT 6.1 Mô tả bài toán:	16 16 16 16
7	Dạng 7: Xây dựng bài toán đối ngẫu7.1 Bài toán từ Min -> Max:	19 19
8	Dạng 8: Sử dụng nguyên lý độ lệch bù để kiểm tra nghiệm 8.1 Mô tả bài toán:	21 21 21
9	Dạng 9: Giải LP bằng thuật toán đơn hình đối ngẫu9.1 Chuyển từ min -> max:	23 23 23
10	Dạng 10: Kiểm tra hàm lồi10.1 Điều kiện hàm lồi:	25 25 25

	10.3 Một số ví dụ:	25
	Dạng 11: Tìm cực trị hàm số 11.1 Nhận biết cực trị:	
	Dạng 12: Giải bài toán tối ưu	30
13	Dạng 13: Hàm lồi có cực trị	31
	13.1 Kiểm tra tính lồi của hàm số:	31
	13.2 Tìm cực trị địa phương và toàn cục của hàm số:	32

1 Dạng 1: Đưa bài toán về dạng chính tắc và chuẩn tắc

min
$$x_1 - x_2$$

s.t.
$$\begin{cases} 2x_1 - x_2 \le 2\\ -x_1 + 2x_2 - 3x_3 = 2\\ 2x_1 - x_2 + x_3 \ge 2\\ x_1 \le 1; -2 \le x_2 \le 1 \end{cases}$$

 \acute{Y} tưởng: $chuy \r{en}n$ min -> max

1.1 Dạng chính tắc:

$$\max x_2 - x_1$$
s.t.
$$2x_1 - x_2 + s_1 = 2$$

$$-x_1 + 2x_2 - 3x_3 = 2$$

$$2x_1 - x_2 + x_3 - s_2 = 2$$

$$x_2 + s_3 = 1$$

$$x_1 \le 1; -2 \le x_2$$

Đổi biến:
$$\begin{cases} x_1 = 1 - y_1 \\ x_2 = y_2 - 2 \\ x_3 = y_3^+ - y_3^- (biến tự do) \end{cases}$$

Sau khi đổi biến:

$$\max y_1 + y_2 - 3$$
s.t.
$$2y_1 + y_2 - s_1 = 2$$

$$y_1 + 2y_2 - 3y_3^+ + 3y_3^- = 7$$

$$2y_1 + y_2 - y_3^+ + y_3^- + s_2 = 2$$

$$y_2 + s_3 = 3$$

$$y_1, y_2, y_3^+, y_3^-, s_1, s_2, s_3 \ge 0$$

-> Dạng chính tắc

1.2 Dạng chuẩn tắc:

$$\max x_2 - x_1$$
s.t. $2x_1 - x_2 \le 2$

$$-x_1 + 2x_2 - 3x_3 = 2$$

$$2x_1 - x_2 + x_3 \ge 2$$

$$x_1 \le 1; -2 \le x_2 \le 1$$

Ý tưởng: tách đẳng thức thành các bất đẳng thức

Đổi biến:
$$\begin{cases} x_1 = 1 - z_1 \\ x_2 = z_2 - 2 \end{cases}$$

Ta được:

$$\max z_1 + z_2 - 3$$
s.t.
$$-2z_1 - z_2 \le 2$$

$$z_1 + 2z_2 - 3x_3 \le 7$$

$$-z_1 - 2z_2 + 3x_3 \le -7$$

$$2z_1 + z_2 - x_3 \le 2$$

$$z_2 \le 3$$

$$z_1, z_2, x_3 \ge 0$$

-> Dạng chuẩn tắc

2 Dạng 2: Giải bài toán bằng thuật toán đơn hình

2.1 Công thức tổng quát:

$$Ax \leq b$$

$$x \geq 0$$

$$b \geq 0$$
 Chọn:
$$\begin{cases} C\hat{\rho}t \ xoay \ max \geq 0 \\ Hàng \ xoay \ min \geq 0 \end{cases}$$

2.2 Ví dụ:

$$\begin{aligned} \max & x_1 + 3x_2 + 3x_3 \\ \text{s.t.} & x_1 \leq 2 \\ & x_2 \leq 5 \\ & x_3 \leq 4 \\ & 6x_1 + 2x_2 + 3x_3 \leq 28 \\ & \forall x_1, x_2, x_3 \geq 0 \end{aligned}$$

a) Bước 1: Thêm biến bù

$$\begin{cases} x_1 + t_1 = 2 \\ x_2 + t_2 = 5 \\ x_3 + t_3 = 4 \\ 6x_1 + 2x_2 + 3x_3 + t_4 = 28 \\ \forall x_1, x_2, x_3, t, t_1, t_2, t_3, t_4 \ge 0 \end{cases}$$

b) Bước 2: Thuật toán đơn hình

Lặp 1 đơn hình

t	x_1	x_2	x_3	t_1	t_2	t_3	t_4	VP	
0	1	0	0	1	0	0	0	2	
0	0	<u>1</u>	0	0	1	0	0	5	(5)
0	0	0	1	0	0	1	0	4	
0	6	2	3	0	0	0	1	28	14)
- 1	1	3	3	0	0	0	0	0	

Lặp 2 đơn hình

t	x_1	x_2	x_3	t_1	t_2	t_3	t_4	VP	
0	1	0	0	1	0	0	0	2	
0	0	1	0	0	1	0	0	5	
0	0	0	<u>1</u>	0	0	1	0	4	4
0	6	0	3	0	-2	0	1	18	6
- 1	. 1	0	3	0	-3	0	0	-15	

Nghiệm cơ sở: x = (0, 5, 0, 2, 0, 4, 18)

Lặp 3 đơn hình

\overline{t}	x_1	x_2	x_3	t_1	t_2	t_3	t_4	VP
0	1	0	0	1	1/3	1/2	-1/6	1
0	0	1	0	0	1	0	0	5
0	0	0	1	0	0	1	0	4
0	6	0	0	0	-2	-3	1	6
- 1	0	0	0	0	-8/3	-5/2	-1/6	-28

- -> Vậy giá trị tối ưu là max = 28 -> Nghiệm tối ưu là x = (1, 5, 4)

3 Dạng 3: Bài toán tìm nghiệm cơ sở

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
1 \\
0
\end{pmatrix}$$

3.1 Tìm nghiệm cơ sở:

$$H_4 <=> H_4 - H_3$$

$$H_4 <=> (-1).H_4$$

Xét hệ phương trình:
$$\begin{cases} x_1 + x_4 = 1 \\ x_2 + x_5 = 1 \\ x_3 + x_6 = 1 \\ x_4 + x_5 + x_6 - x_7 = 1 \end{cases}$$

=> Vậy nghiệm cơ sở với (x_1,x_2,x_3,x_4) là:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 1 - x_4 \\ 1 - x_5 \\ 1 - x_6 \\ 1 - x_5 - x_6 + x_7 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} x_5 + x_6 - x_7 \\ 1 - x_5 \\ 1 - x_6 \\ 1 - x_5 - x_6 + x_7 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

3.2 Chọn cơ sở thỏa mãn biến ngoài cơ sở = 0:

Cho biến ngoài cơ sở = $0 = x_5 = x_6 = x_7 = 0$ => Nghiệm cơ sở thỏa mãn là:

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (0, 1, 1, 1, 0, 0, 0)$$

3.3 Chọn cơ sở khác để cùng nghiệm cơ sở:

Ý tưởng: chọn 2 cơ sở (x_i, x_j, x_k, x_t) và $(x_i^+, x_j^+, x_k^+, x_t^+)$ sao cho có cùng nghiệm cơ sở

- Với $x_5 = x_6 = x_7 = 0$ thì có $(x_i, x_i, x_k, x_t) = (0, 1, 1, 1)$
- Tìm nghiệm cơ sở ứng với cơ sở (x_2, x_3, x_4, x_7)

$$\begin{cases} x_2 = 1 - x_5 \\ x_3 = 1 - x_6 \\ x_4 = 1 - x_1 \\ x_7 = x_4 + x_5 + x_6 - 1 = -x_1 + x_5 + x_6 \\ => \text{Nghiệm cơ sở ứng với } (x_2, x_3, x_4, x_7) \text{ là:} \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} x_1 \\ 1 - x_5 \\ 1 - x_6 \\ 1 - x_1 \\ x_5 \\ x_6 \\ -x_1 + x_5 + x_6 \end{pmatrix}$$

=> Cơ sở tương ứng là:

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (0, 1, 1, 1, 0, 0, 0)$$

4 Dạng 4: Thuật toán đơn hình hai pha dạng chuẩn tắc

4.1 Công thức tổng quát:

$$Ax \le b$$
$$x \ge 0$$
$$b \le 0$$

Nếu:
$$\begin{cases} b < 0 -> Bài \ toán \ phụ \\ b \geq 0 -> giống \ D2 \end{cases}$$

 \acute{Y} tưởng: cột max, hàng min

4.2 Ví dụ:

max
$$3x_1 + 2x_2$$

s.t.
$$\begin{cases} x_1 - 3x_2 \le -2 \\ -3x_1 + x_2 \le -2 \end{cases}$$
$$x_1 + x_2 \le 6$$
$$x_1, x_2 \ge 0$$

a) Thiết lập bài toán phụ:

max
$$-x_0$$

s.t.
$$\begin{cases}
-x_0 + x_1 - 3x_2 \le -2 \\
-x_0 - 3x_1 + x_2 \le -2 \\
-x_0 + x_1 + x_2 \le 6 \\
x_1, x_2 \ge 0
\end{cases}$$

b) Thực hiện thuật toán đơn hình 2 pha:

Pha 1:

Lặp 1

						VP	
<u>-1</u>	1	-3	1	0	0	-2 -2 6	(-2)
-1	-3	1	0	1	0	-2	2
-1	1	1	0	0	1	6	
0	3	2	0	0	0	0	
-1	0	0	0	0	0	0	

Nghiệm cơ sở: x = (0, 0, -2, -2, 6)

Lặp 2

x_0	$ x_1 $	x_2	x_3	x_4	x_5	VP	
1	-1	3	-1	0	0	$\begin{array}{ c c } 2 \\ 0 \\ 8 \end{array}$	2/3
0	-4	$\underline{4}$	-1	1	0	0	0
0	0	4	-1	0	1	8	2
					0		
-1	-1	3	-1	0	0	2	

Nghiệm cơ sở: x = (0, 0, -2, -2, 6)

Lặp 3

			x_3				
1	2	0	-1/4	-3/4	0	2	1
0	-4	4	-1	1	0	0	
0	$\mid 4 \mid$	0	-1/4 -1 0	-1	1	8	2
0	5	0	1/2	-1/2	0	0	
-1	2	0	1/2 -1/4	-3/4	0	2	

Nghiệm cơ sở: $\mathbf{x}=(0,\,0,\,0,\,8)$

Lặp $4\,$

				x_4		
1	2	0	-1/4	-3/4	0	2
2	0	4	-3/2	-1/2	0	4
-2	0	0	1/2	-3/4 -1/2 1/2	1	4
-5/2	0	0	9/8	11/8 0	0	-5
-2	0	0	0	0	0	0

Lặp 5

				x_4			
1	2	0	-1/4	-3/4	0	2	6
2	0	4	-3/2	-1/2	0	4	
-2	0	0	1/2	-3/4 -1/2 1/2	1	4	
-5/2	0	0	9/8	11/8 0	0	-5	
-1	0	0	0	0	0	0	

Nghiệm cơ sở: $\mathbf{x} = (1, 1, 0, 0, 4)$

Pha 2:

Lặp 1

$\overline{x_1}$	x_2	x_3	x_4	x_5	VP	
2	0	-1/4	-3/4	0	2	
0	4	-3/2	-3/4 -1/2	0	4	
0	0	1/2	$\frac{1/2}{1/2}$	1	4	8
0			11/8			

Lặp 2

x_1	x_2	x_3	x_4	x_5	VP
2	0	1/2	0	$\frac{3/2}{1}$	8
0					8
0	0	1/2	1/2	1	4
0	0	-1/4	0	-11/4	-16

Nghiệm cơ sở: x = (4, 2, 0, 8, 0)

=> Vậy nghiệm tối ưu $(x_1,x_2)=(4,2)$ với $\max=16$

5 Dạng 5: Thuật toán đơn hình hai pha dạng chính tắc

5.1 Công thức tổng quát:

$$Ax = b$$

$$x \ge 0$$

$$b \le 0$$

ý tưởng: cột min, hàng min Lưu ý: Chính tắc là đẳng thức, chuẩn tắc là bất đẳng thức

5.2 Ví dụ:

max
$$2x_1 + 2x_2 - 2x_3 - 3x_4$$

s.t.
$$\begin{cases}
-4x_1 - x_2 + x_3 - 3x_4 = -13 \\
x_1 + x_2 + x_3 + 2x_4 = 7 \\
2x_1 - x_2 - 3x_3 - x_4 = -1 \\
x_1, x_2, x_3, x_4 \ge 0
\end{cases}$$

a) Bước 1: Đổi đấu sao cho b>0

s.t.
$$\begin{cases} 2x_1 + 2x_2 - 2x_3 - 3x_4 \\ 4x_1 + x_2 - x_3 + 3x_4 = 13 \\ x_1 + x_2 + x_3 + 2x_4 = 7 \\ -2x_1 + x_2 + 3x_3 + x_4 = 1 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

b) Bước 2: Thiết lập bài toán phụ

max
$$3x_1 + 3x_2 + 3x_3 + 6x_4$$

s.t.
$$\begin{cases} 4x_1 + x_2 - x_3 + 3x_4 + x_5 = 13\\ x_1 + x_2 + x_3 + 2x_4 + x_6 = 7\\ -2x_1 + x_2 + 3x_3 + x_4 + x_7 = 1 \end{cases}$$

c) Bước 3: Lập bảng đơn hình hai pha

Pha 1:

Lặp 1

x_1	x_2	x_3	x_4	x_5	x_6	x_7		
4	1	-1	3	1	0	0	13	17)
1	1	1	2	0	1	0	7	7
-2	<u>1</u>	3	1	0	0	1	1	1
2	2	-2	-3	0	0	0	0	
3	3	3	0	0	0	0	0	

Nghiệm cơ sở: $\mathbf{x} = (0,\,0,\,0,\,0,\,13,\,7,\,1)$

Lặp 2

\bar{x}	1	x_2	x_3	x_4	x_5	x_6	x_7		
(3	0	-4 -2	2	1	0	-1	12	6
•	3	0	-2	1	0	1	-1	6	6
-	2	1	3	<u>1</u>	0	0	1	1	1
_(3	0	-8	-5	0	0	-2	-2	
()	0	-6	3	0	0	-3	-3	

Nghiệm cơ sở: $\mathbf{x} = (0, \, 1, \, 0, \, 0, \, 13, \, 7, \, 1)$

Lặp 3

$\overline{x_1}$	x_2	x_3	x_4	x_5	x_6	x_7		
10	-2	-10	0	1	0	-3	10	1
5	-1	-5	0	0	1	-2	5	1
-2	1	3	1	0	0	1	1	
		7					ı	
15	-3	15	0	0	0	-6	-6	
\uparrow								

Nghiệm cơ sở: $\mathbf{x} = (0, \, 0, \, 0, \, 1, \, 10, \, 5, \, 0)$

Lặp 4

x_1					x_6		1
0	0 -1	0	0	1	-2	1	0
5	-1	-5	0	0	1	-2	5
0	3/5	1	1	0	2/5	1/5	3
0	$\begin{array}{c} 21/5 \\ 0 \end{array}$	3	0	0	4/5	7/5	7
0	0	0	0	0	-3	0	-21

Pha 2:

Lặp 1

$\overline{x_1}$	x_2	x_3	x_4	VP	
5	-1	-5	0	5	
0	3/5	1	1	3	(5)
0	21/5	3	0	7	

 $-\!\!>$ Tiếp tục thuật toán đơn hình :

Lặp 2

x_1	x_2	x_3	x_4	
5	0	-10/3	5/3	10
0	3/5	1	1	3
0	0	-4	-7	-14

=> Vậy $\max=14$ với nghiệm tối ưu là:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 0 \\ 0 \end{pmatrix}$$

6 Dạng 6: Quy tắc Bland giải QHTT

Ý tưởng: cột xoay max, hàng xoay max

6.1 Mô tả bài toán:

$$\max \quad 10x_1 - 57x_2 - 9x_3 - 24x_4$$
s.t.
$$\begin{cases} \frac{1}{2}x_1 - \frac{11}{2}x_2 - \frac{5}{2}x_3 + 9x_4 \le 0\\ \frac{1}{2}x_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3 + x_4 \le 0\\ x_1 \le 1\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

6.2 Thêm biến bù:

$$\max \quad 10x_1 - 57x_2 - 9x_3 - 24x_4$$
s.t.
$$\begin{cases} \frac{1}{2}x_1 - \frac{11}{2}x_2 - \frac{5}{2}x_3 + 9x_4 + t_1 = 0\\ \frac{1}{2}x_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3 + x_4 + t_2 = 0\\ x_1 + t_3 = 0 \end{cases}$$

6.3 Lập hệ phương trình:

hpt:
$$\begin{cases} \frac{1}{2}x_1 - \frac{11}{2}x_2 - \frac{5}{2}x_3 + 9x_4 + t_1 = 0\\ \frac{1}{2}x_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3 + x_4 + t_2 = 0\\ x_1 + t_3 = 0\\ -t + 10x_1 - 57x_2 - 9x_3 - 24x_4 = 0 \end{cases}$$

6.4 Thực hiện thuật toán đơn hình:

Lặp 1

\overline{t}	$ x_1 $	x_2	x_3	x_4	t_1	t_2	t_3
0	1/2	-11/2 -3/2 0	-5/2	9	1	0	$0 \mid 0$
0	$\overline{1/2}$	-3/2	-1/2	1	0	1	$0 \mid 0$
0	1	0	0	0	0	0	$1 \mid 1$
-1	10	-57	-9	-24	0	0	0 0
	↑						·

Nghiệm cơ sở: x = (0, 0, 0, 0, 0, 0, 1)

Lặp 2

t	$ x_1 $	x_2	x_3	x_4	t_1	t_2	t_3	
0	1	-11	-5	18	2	0	0	0
0	0	<u>4</u>	2	-8	-1	1	0	0
0	0	11	5	-18	-2	0	1	1
-1	0	53	41	-204	-20	0	0	0
		\uparrow		18 -8 -18				•

Nghiệm cơ sở: $\mathbf{x} = (0,\,0,\,0,\,0,\,0,\,1)$

Lặp 3

\overline{t}	$ x_1 $	x_2	x_3	x_4	t_1	t_2	t_3	
0	1	0	1/2	-4	-3/4	11/4	0	0
0	0	4	$\overline{2}$	-8	-1	1	0	0
0	0	0	-1/2	4	3/4	1 -11/4	1	1
-1	0	0	29/2	-98	-27/4	-53/4	0	0
			\uparrow					

Nghiệm cơ sở: $\mathbf{x} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1)$

Lặp 4

t	$ x_1 $	x_2	x_3	x_4	t_1	t_2	t_3
0	2	0	1	-8	-3/2	11/2 -5/2 0	0 0
0	-1	1	0	<u>2</u>	1/2	-5/2	$0 \mid 0$
0	1	0	0	0	0	0	$0 \mid 1$
-1	-29	0	0	18	15	-93	0 0
				\uparrow			,

Lặp 5

t	x_1	x_2	x_3	x_4	t_1	t_2	t_3
0	-2	4	1	0	1/2	-9/2	0 0
0	-1/2	1/2	0	1	1/4	-5/4	$0 \mid 0$
0	1	0	0	0	0	-9/2 -5/4 0	$0 \mid 1$
-1	-20	-9	0	0	21/2	-141/2	0 0
					\uparrow		,

Lặp 6

t	$ x_1 $	x_2	x_3	x_4	t_1	t_2	t_3	
0	-1	3	1	-2 4 0	0	-2	0	0
0	-2	2	0	4	1	-5	0	0
0	1	0	0	0	0	0	0	1
-1	1	-30	0	-42	0	-18	0	0
	\uparrow							ı.

Lặp 7

t	x_1	x_2	x_3	x_4	t_1	t_2	t_3	
0	0	3	1	-2	0	-2	0	1
0	0	2	0	4	1	-5	0	2
0	1	0	0	0	0	-2 -5 0	0	1
-1	0	-30	0	-42	0	-18	0	-1

=> Vậy max = 1 với nghiệm tối ưu là x = (1, 0, 1, 0)

7 Dạng 7: Xây dựng bài toán đối ngẫu

7.1 Bài toán từ Min -> Max:

Ý tưởng: Dấu st giữ nguyên chiều, Dấu đk đổi chiều

min
$$3x_1 - 4x_2 + 3x_3$$

$$\begin{cases}
4x_1 + 4x_2 - 3x_3 + 2x_4 \le 3 & (y_1 \le 0) \\
4x_1 - 2x_2 - 3x_3 + 2x_4 \ge 3 & (y_2 \ge 0) \\
3x_1 - 2x_2 - 3x_3 + 4x_4 = 3 & (y_3 \ ty \ do) \\
x_2 \le 0 & (y_4 \le 0) \\
x_3, x_4 \ge 0 & (\mathring{doi} \ chi\grave{e}u \ st2)
\end{cases}$$

Chuyển về bài toán đối ngẫu:

$$\max 3y_1 + 3y_2 + 3y_3 + 0y_4
4y_1 + 4y_2 + 3y_3 + 0y_4 = 3
4y_1 - 2y_2 - 2y_3 + y_4 \ge -4
-3y_1 - 3y_2 + 3y_3 + 0y_4 \le 3
2y_1 + 2y_2 + 4y_3 + 0y_4 \le 0
y_1 \le 0; y_2 \ge 0; y_4 \le 0$$

7.2 Bài toán từ $Max \rightarrow Min$:

Ý tưởng: Dấu st đổi chiều, Dấu đ
k không đổi chiều

$$\max 3x_1 + 3x_2 + 3x_3
4x_1 + 4x_2 + 3x_3 = 3
4x_1 - 2x_2 - 2x_3 + x_4 \ge -4
-3x_1 - 3x_2 + 3x_3 \le 3
2x_1 + 2x_2 + 4x_3 + 0y_4 \le 0
x_1 \le 0; x_2 \le 0; x_4 \le 0$$

$$(y_1 t \psi do)$$

$$(y_2 \le 0)$$

$$(y_3 \ge 0)$$

$$(y_4 \ge 0)$$

$$(x_1 \le 0; x_2 \le 0; x_4 \le 0$$

$$(không đổi chiều st2)$$

Chuyển về bài toán đối ngẫu:

min
$$3y_1 - 4y_2 + 3y_3$$

$$\begin{cases}
4y_1 + 4y_2 - 3y_3 + 2y_4 \le 3 \\
4y_1 - 2y_2 - 3y_3 + 2y_4 \ge 3 \\
3y_1 - 2y_2 + 3y_3 + 4y_4 = 3 \\
y_2 \le 0 \\
y_3, y_4 \ge 0
\end{cases}$$

Dạng 8: Sử dụng nguyên lý độ lệch bù 8 để kiểm tra nghiệm

8.1Mô tả bài toán:

Kiểm tra các nghiệm sau có phải nghiệm tối ưu của LP không?

$$\begin{cases} x^1 = (0, 0, 0, 0)^T \\ x^2 = (0, 1, 1, 1)^T \\ x^3 = (0, 1, 0, 2)^T \end{cases}$$

(P)
$$\max 4x_1 + 2x_2 + 2x_3 + 4x_4$$

$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 \le 3 & (y_1 \ge 0) \\ x_1 + x_2 + 2x_4 \le 3 & (y_2 \ge 0) \\ x_1 + 2x_2 + 3x_3 + x_4 \le 7 & (y_3 \ge 0) \\ 2x_1 + x_3 + x_4 \le 2 & (y_4 \ge 0) \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Chuyển về bài toán đối ngẫu:

(D) min
$$3y_1 + 3y_2 + 7y_3 + 2y_4$$

st.
$$\begin{cases} 2y_1 + y_2 + y_3 + 2y_4 \ge 4 \\ y_1 + y_2 + 2y_3 \ge 2 \\ y_1 + 3y_3 + y_4 \ge 2 \\ y_1 + 2y_2 + y_3 + y_4 \ge 4 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

Kiểm tra nghiệm tối ưu:

a)
$$x^1 = (0, 0, 0, 0)^T$$
:

B1: thay vào các ràng buộc của (P), ta có:

B1: thay vào các ràng buộc của (P), ta có:
$$\begin{cases} 2*0+0+0+0=0 < 3 & -> y_1=0 \\ 0+0+2*0=0 < 3 & -> y_2=0 \\ 0+2*0+3*0+0=0 & -> y_3=0 \\ 2*0+0+0=0 & -> y_4=0 \end{cases} => y^1=(0,0,0,0)^T$$

B2: thay vào các ràng buộc của (D) có:

$$2 * 0 + 0 + 0 + 2 * 0 = 0 \ge 4(sai)$$

=> Vậy $x^1 = (0,0,0,0)^T$ không phải là nghiệm tối ưu

b)
$$x^2 = (0, 1, 1, 1)^T$$
:

B1: thay vào ràng buộc của (P), ta có:

$$\begin{cases} 2*0+1+1+1=3=3\\ 0+1+2*1=3=3\\ 0+2*1+3*1+1=6<7 & ->y_3=0\\ 2*0+1+1=2=2 \end{cases}$$

B2: Có $x_2, x_3, x_4 \ge 0$

$$\begin{cases} y_1 + y_2 + 2y_3 = 2 \\ y_1 + 3y_3 + y_4 = 2 \\ y_1 + 2y_2 + y_3 + y_4 = 4 \\ y_3 = 0 \end{cases}$$

$$=> \begin{cases} y_1 + y_2 = 2\\ y_1 + y_4 = 2\\ y_1 + 2y_2 + y_4 = 4\\ y_3 = 0 \end{cases}$$

Theo định lý độ lệch bù:
$$\begin{cases} y_1 + y_2 + 2y_3 = 2 \\ y_1 + 3y_3 + y_4 = 2 \\ y_1 + 2y_2 + y_3 + y_4 = 4 \\ y_3 = 0 \end{cases}$$

$$= > \begin{cases} y_1 + y_2 = 2 \\ y_1 + 2y_2 + y_4 = 4 \\ y_3 = 0 \end{cases} = > \begin{cases} y_1 = 1 \\ y_2 = 1 \\ y_3 = 0 \\ y_4 = 1 \end{cases} = > y^2 = (1, 1, 0, 1)$$

$$\begin{cases} 2*1+1+0+2*1=5 \ge 4\\ 1+1+2*0 \ge 2\\ 1+3*0+1 \ge 2\\ 1+2*1+0+1 \ge 4 \end{cases}$$

(1) là nghiệm tối ưu

c)
$$x^3 = (0, 1, 0, 2)^T$$

 $c) \; x^3 = (0,1,0,2)^T \colon$ B1: thay x^3 vào các ràng buộc của (P), ta có:

$$\begin{cases} 2*0+1+1+1=3=3\\ 0+1+2*2=5 \le 3 \end{cases}$$
 (sai)

 $c^3 = (0, 1, 0, 2)^T$ không phải là nghiệm tối ưu của LP

9 Dạng 9: Giải LP bằng thuật toán đơn hình đối ngẫu

(Q) min
$$3x_1 + x_2 + 4x_3$$

st.
$$\begin{cases} x_1 + x_2 - x_3 \le 3 \\ -x_1 + x_2 - 2x_3 \le 1 \\ -2x_1 - x_2 - x_3 \le -3 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

9.1 Chuyển từ min -> max:

(P)
$$\max -3x_1 - x_2 - 4x_3$$
st.
$$\begin{cases} x_1 + x_2 - x_3 \le 3\\ -x_1 + x_2 - 2x_3 \le 1\\ -2x_1 - x_2 - x_3 \le -3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Chuyển về bài toán đối ngẫu:

(D) min
$$2y_1 + y_2 - 3y_3$$

st.
$$\begin{cases} y_1 - y_2 - 2y_3 \ge -3 \\ y_1 + y_2 - y_3 \ge -1 \\ -y_1 - 2y_2 - y_3 \ge -4 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

9.2 Bảng đơn hình sau khi thêm biến bù:

Ý tưởng: chọn hàng có b < 0 đầu tiên (ngược với đơn hình bình thường) Lưu ý: chọn cột có hàng chia min

Lặp 1									
0	1	1	-1	1	0	0	2		
0	-1	1	-2	0	1	0	1		
0	1 -1 -2	<u>-1</u>	-1	0	0	0	0	\leftarrow	
-1	-3	-1	-4	0	0	0	0		
	-3	1	4						

Lặp 2

0	<u>-1</u>	0	-2	1	0	1	1	\leftarrow
0	-3	0	-3	0	1	1	-2	
0	2	1	-2 -3 1	0	0	-1	3	
-1	-1	0	-3 (3/2)	0	0	-1	3	
	1		(3/2)					

Dừng khi b > 0

Lặp 3

0	1	0	2	-1	0	-1	1
0	0	0	3	-3	1	-2	1
0	0	1	-3	-1 -3 2	0	1	1
-1	0	0	-1	-1	0	-2	4

=> Vậy giá trị tối ưu (P) có z = -4 -> (Q) min = 4 => Nghiệm tối ưu là:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

;

10 Dạng 10: Kiểm tra hàm lồi

10.1 Điều kiện hàm lồi:

- \bullet Định nghĩa: $f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)$ với $\lambda \in [0,1]$
- Định lý 1:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$

• Định lý 2: (đạo hàm cấp $2 \ge 0$)

$$\nabla^2 f(x) \succeq 0$$

10.2 Đạo hàm của ma trận:

- $\nabla(x^T B x) = (B + B^T)x = 2Bx$ (với B đối xứng)
- $(AB)^{-1} = A^{-1}B^{-1}$
- $\bullet (Ax)^T = x^T A^T$

10.3 Một số ví dụ:

VD1: $f(x) = a^x$ $\forall x \in R, \alpha > 0$

- $\bullet \ f'(x) = a^x ln(a)$
- $f''(x) = a^x (ln(a))^2 \ge 0$ $\forall x \in R, \alpha > 0$

 $=> f(x) = a^x$ là hàm lồi (theo t/c 2)

$$VD2: f(x) = a^T x + b \qquad \forall x \in \mathbb{R}^n, a, b \in \mathbb{R}^n$$

• Chứng minh bằng định nghĩa:

$$\begin{split} g(\lambda x + (1-\lambda)y) &\leq \lambda g(x) + (1-\lambda)g(y) \\ <=> a^T \lambda x + a^T (1-\lambda)y + b \leq \lambda a^T x + \lambda b + (1-\lambda)a^T y + (1-\lambda)b \\ <=> (a^T \lambda x - \lambda a^T x) + (a^T (1-\lambda)y - (1-\lambda)a^T y) \leq 0 \\ \text{mà} & \begin{cases} a^T \lambda x = \lambda a^T x \\ a^T (1-\lambda)y = (1-\lambda)a^T y \end{cases} => 0 + 0 \leq 0 \text{ (luôn đúng)} \end{split}$$

=> Vậy g(x) = a^Tx+b là hàm lồi với $\lambda \in [0,1]$

$$VD3: h(x) = ||y - Ax||^2 \text{ v\'oi } x \in \mathbb{R}^n, y \in \mathbb{R}^m, A \in \mathbb{R}^{m*n}$$

•
$$h(x) = ||y - Ax||_2^2 = (y - Ax)^T (y - Ax) = (y^T - x^T A^T) (y - Ax)$$

= $y^T y - y^T Ax - x^T A^T y + x^T A^T Ax$
= $y^T y - 2y^T Ax + x^T A^T Ax$ (do $y^T Ax = x^T A^T y$)

• Ta có:
$$\nabla^2 h(x) = \nabla^2 (y^T y - 2y^T A x + x^T A^T A x) = \nabla^2 (x^T A^T A x)$$

= $A^T A + (A^T A)^T = 2A^T A \ge 0$ (cần chứng minh)

=> Vây h(x) là hàm lồi

$$VD4: k(x) = \max\{x_1, x_2, ..., x_n\} \text{ v\'ot } x = (x_1, x_2, ..., x_n)^T \in R^n$$
 Gọi
$$\begin{cases} x_{m_1} = \max\{x_1. x_2...., x_n\} \\ y_{m_2} = \max\{y_1, y_2, ..., y_n\} \end{cases} \forall m_1, m_2 \in [1, n]$$

• Chứng minh theo định nghĩa:

$$k(\lambda x + (1 - \lambda)y) \le \lambda k(X) + (1 - \lambda)k(y)$$
=> $\lambda x + (1 - \lambda)y \le \lambda x_{m_1} + (1 - \lambda)y_{m_2}$
với VP = $(\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2, ..., \lambda x_n + (1 - \lambda)y_n)$

• Ta có
$$\begin{cases} \lambda x_i \leq \lambda x_{m_1} & \forall 0 \leq \lambda \leq 1\\ (1-\lambda)y_i \leq (1-\lambda)y_{m_2} & \forall i \in [1,n] \end{cases}$$
$$=> \lambda x_i + (1-\lambda)y_i \leq \lambda x_{m_1} + (1-\lambda)y_{m_2} & \forall i \in [1,n]$$
$$=> \max\{\lambda x_i + (1-\lambda)y_i\} \leq \lambda x_{m_1} + (1-\lambda)y_{m_2} \\ => k(\lambda x + (1-\lambda)y) \leq \lambda k(x) + (1-\lambda)k(y) \end{cases}$$

=> Vậy k(x) là hàm lỗi

$$VD5: l(x) = min\{x_1, x_2, ..., x_n\} \quad v \acute{\sigma} i \ x = (x_1, x_2, ..., x_n)^T \in R^n$$

Gọi
$$\begin{cases} x_{m_1} = min\{x_1. x_2...., x_n\} \\ y_{m_2} = min\{y_1, y_2, ..., y_n\} \end{cases} \quad \forall m_1, m_2 \in [1, n]$$

• Giả sử l(x) là hàm lồi

$$l(\lambda x + (1 - \lambda)y) \le \lambda l(X) + (1 - \lambda)l(y)$$

$$= > l(\lambda x + (1 - \lambda)y) \le \lambda l(x) + (1 - \lambda)l(y)$$
với VP = $(\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2, ..., \lambda x_n + (1 - \lambda)y_n)$

• Ta có:
$$\begin{cases} \lambda x_i \ge \lambda x_{m_1} & \forall 0 \le \lambda \le 1\\ (1-\lambda)y_i \ge (1-\lambda)y_{m_2} & \\ => \lambda x_i + (1-\lambda)y_i \ge \lambda x_{m_1} + (1-\lambda)y_{m_2} & \text{(vô lý)} \end{cases}$$

=> Vậy l(x) không là hàm lồi

VD6: Lấy một phản ví dụ về hàm lồi?

• Lấy
$$\begin{cases} x = (1,0)^T, y = (0,1)^T \\ \lambda = \frac{1}{2} \in [0,1] \\ => \lambda l(x) + (1-\lambda)l(y) = 0 \end{cases} => \begin{cases} l(x) = 0 \\ l(y) = 0 \end{cases} => \begin{cases} \lambda l(x) = 0 \\ (1-\lambda)l(y) = 0 \end{cases}$$

•
$$\lambda x + (1 - \lambda)y = (\lambda \ 1 - \lambda)^T = (\frac{1}{2}, \frac{1}{2})$$

=> $l(\lambda x + (1 - \lambda)y) = \frac{1}{2}$ (2)

• Từ (1) và (2) =>
$$l(\lambda x + (1 - \lambda)y) > l(x) + (1 - \lambda)l(y)$$

=> Vậy l(x) là hàm không lồi

11 Dạng 11: Tìm cực trị hàm số

11.1 Nhận biết cực trị:

• Cực trị địa phương:

$$\begin{pmatrix} A & B \\ B & C \end{pmatrix}$$

trong đó:
$$\begin{cases} A = f''_{x,x} \\ B = f''_{x,y} = f''_{y,x} \end{cases} => \Delta = AC - B^2$$

$$C = f''_{y,y}$$

TH1: Nếu A > 0, Δ > 0 thì là cực tiểu

TH2: Nếu A < 0. $\Delta > 0$ thì là cực đại

TH3: $\Delta \leq 0$ (còn lại) thì không là cực trị

• Cực trị toàn cục là cực trị địa phương duy nhất

11.2 Ví du minh hoa:

$$f(x,y) = x^4 + 2x^2 - 4xy + y^2$$

Bước 1: Tìm các điểm dừng:

$$\begin{cases} f'_x = 4x^3 + 4x - 4y = 0 \\ f'_y = -4x + 2y = 0 \end{cases} <=> \begin{cases} x^3 + x = y \\ 2x = y \end{cases} <=> \begin{cases} y = 2x \\ x^3 - x = 0 \end{cases}$$

$$<=> \begin{cases} y = 2x \\ x = 0 \\ x = 1 \\ x = -1 \end{cases} <=> \begin{cases} x = 0 \\ y = 0 \\ x = -1 \\ y = -2 \end{cases}$$

=> Các điểm dừng M(0, 0); N(1,2); P(1, -2)

Bước 2: Kiểm tra cực trị:

Ta có:
$$\begin{cases} f''_{x,x} = 12x^2 + 4 = A \\ f''_{x,y} = -4 = B \\ f''_{y,y} = 2 = C \end{cases}$$

Tạo bảng:

Bảng cực trị

Điểm dừng	$A = 12x^2 + 4$	B = -4	C=2	$\Delta = AC - B^2$	Kết luận
M(0,0)	4	-4	2	-8	Không là cực trị
N(1,2)	16	-4	2	16	Cực tiểu
P(1,-2)	16	-4	2	16	Cực tiểu

^{=&}gt; Vậy M(0,0) không là cực trị địa phương, N(1,2) và P(1,-2) là cực tiểu địa phương

12 Dạng 12: Giải bài toán tối ưu

Đề bài: Cho $A \in \mathbb{R}^{m*n}$ với m > n và $b \in \mathbb{R}^m$, rank(A) = n. Giải bài toán tối ưu: $min||Ax - b||_2^2$ với mọi x?

•
$$minf(x) = min||Ax - b||_2^2 = min[(Ax - b)^T (Ax - b)]$$

 $= min[(x^T A^T - b^T).(Ax - b)]$
 $= min(x^T A^T Ax - x^T A^T b - b^T Ax + b^T b)$
 $= min(x^T A^T Ax - 2b^T Ax + b^T b)$ (do $x^T A^T b = b^T Ax$)

• Ta có:
$$\nabla f(x) = \nabla (x^T A^T A x - 2b^T A x + b^T b)$$

= $\nabla (x^T A^T A x - 2b^T A x) = 2A^T A x - 2b^T A = 0$
<=> $2A^T A x = 2b^T A$
<=> $A^T A x = b^T A$
<=> $(A^T A)^{-1} (A^T A) x = (A^T A)^{-1} b^T A$
=> $x = (A^T A)^{-1} b^T A$

• Mà $\nabla^2 f(x) = 2A^T A > 0$

=> Vậy $min||Ax-b||_2^2$ xảy ra khi nghiệm tối ưu x = $(A^TA)^{-1}b^TA$ với giá trị tối ưu f(x) = $[(A^TA)^{-1}b^TA]^TA^TA[(A^TA)^{-1}b^TA]$

13 Dạng 13: Hàm lồi có cực trị

Xét hàm số Rosenbrock:

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

13.1 Kiểm tra tính lồi của hàm số:

a) Cách 1: Chứng minh tổng quát

•
$$\frac{df}{dx_1} = 100 * 2 * (x_2 - x_1^2) * (-2x_1) - 2 * (1 - x_1)$$

= $400x_1(x_1^2 - x_2) + 2(x_1 - 1)$
= $400x_1^3 - 400x_1x_2 + 2x_1 - 2$

•
$$\frac{df}{fx_2} = 100 * 2(x_2 - x_1^2) = 200x_2 - 200x_1^2$$

$$\bullet \ \frac{d^2f}{dx_1^2} = 1200x_1^2 - 400x_2 + 2$$

$$\bullet \ \frac{d^2f}{dx_1dx_2} = -400x_1 = \frac{d^2f}{dx_2dx_1}$$

$$\bullet \ \frac{d^2f}{dx_2^2} = 200$$

Xét ma trận Hessian:

$$H = \begin{vmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{vmatrix}$$

Xét điều kiện: $\begin{cases} H_1 = 1200x_1^2 - 400x_2 + 2 \\ H_2 = 240000x_1^2 - 80000x_2 + 400 - 160000x_1^2 \end{cases}$

$$<=> \begin{cases} H_1 = 1200x_1^2 - 400x_2 + 2\\ H_2 = 80000x_1^2 - 80000x_2 + 400 \end{cases}$$

=> Tồn tại $x_1, x_2 = x'_1, x'_2$ sao cho $H_1, H_2 < 0$

=> Ma trận Hessian không luôn xác định dương trên miền xác định của hàm số => Không là hàm lồi

b) Cách 2: Chỉ ra phản ví dụ

$$\bullet$$
 Chọn $(0,\,0)$ và $(1,\,1)\in R^n$ là tập lồi với $\lambda=\frac{1}{2}\in[0,1]$

• Ta có
$$\frac{1}{2}f(0,0) + (1-\frac{1}{2})f(1,1) = \frac{1}{2} * 1 + \frac{1}{2} * 0 = \frac{1}{2}$$

• Mà lại có
$$f(\frac{1}{2}(0,0) + (1-\frac{1}{2})(1,1)) = f(\frac{1}{2},\frac{1}{2}) = \frac{13}{2}$$

$$=> \frac{1}{2}f(0,0) + (1-\frac{1}{2})f(1,1) < f(\frac{1}{2}(0,0) + (1-\frac{1}{2})(1,1))$$

=> Vậy hàm số không lồi

13.2 Tìm cực trị địa phương và toàn cục của hàm số:

Ta có:
$$\begin{cases} \frac{df}{dx_1} = 400x_1^3 - 400x_1x_2 + 2x_1 - 2 = -0 \\ \frac{df}{dx_2} = 200x_2 - 200x_1^2 = 0 \end{cases}$$
$$\begin{cases} 400x_1^3 - 400x_1x_2 + 2x_1 - 2 = 0 \\ x_2 = x_1^2 \end{cases} <=> \begin{cases} 400x_1^3 - 400x_1^3 + 2x_1 - 2 = 0 \\ x_2 = x_1^2 \end{cases}$$
$$<=> \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases} => \text{Diểm dùng M}(1, 1)$$

Ta thấy điểm dùng M(1, 1) có $\begin{cases} |H_1(1, 1)| > 0 \\ |H_2(1, 1)| > 0 \end{cases}$

=> Vây M(1, 1) lầ cực tiểu đia phương

Ta thấy không có giá trị x_1, x_2 nào khác trường hợp yêu cầu => M(1, 1) cũng là cực tiểu toàn cục của $f(x_1, x_2)$

Tài liệu

[1] Pisces Kibo. $B\hat{\rho}$ công thức Tony, 2024.