Regularization & Sparsity

Marco Loo

TN/330 MACHINE LEADNIN

Outline

- Data & generalization →
 Empirical risk →
 Regression →
 Stability →
 Regularization →
 Sparsity →
 Time for more Qs?
 - Q: indicates a Q you should be able to answer...

7 T∪Delft

The Setting

- Say we have N feature vectors x_i and corresponding outputs or targets y_i
- Say we want to estimate a functional relationship f(x; w) ≈ y, with parameters w, to predict correct outputs to new and unseen feature vectors
- Q : how could we do this?

Empirical Risk

- All we have is N observations, so we could try and find a w that at least works well on these
- "Working well" is expressed in terms of loss ℓ
- · Total loss on all points is the empirical risk

$$\sum_{i=1}^{N} \ell(f(x_i; w), y_i)$$

TUDelft

Minimizing Empirical Risk

• One often considers the solution with the minimal empirical risk

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(f(x_i; w), y_i)$$

• Q: approaches you know that fit formulation?

Linear Least Squares Regression

· Standard regression solves

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2$$

• Where f is linear in $x : f(x; w) = w^T x$

Linear Least Squares Regression

Solution

$$w = (XX^T)^{-1}XY^T$$

X matrix with all x_i in columns; Y output row

- · In case of too few observations, we need pseudo-inverse : $w = (XX^T)^+XY^T$
- · Understand how to come to these solutions!!!

TUDelft

Many Dimensions / Few Observations

- · What happens with relatively few observations in relatively high dimensions?
- E.g. assume average x_1 and consider $w = (XX^T)^{-1}XY^T = (\frac{1}{N}X^T)^{-1}(\frac{1}{N}XY^T)$
 - Q : eigenvalues of the covariance matrix?
 - Q : effect of this on the vector XY^T ?
 - Do experiments if you do not see or believe...

Many Dimensions / Few Observations

- Solution $w = (XX^T)^{-1}XY^T$ is unstable and can be all over the place
- · Generalization to unseen data can, and will often, be very bad
- Q: how to stabilize the solution? Any ideas?

TUDelft

Stabilization, One Way to Perform

- Idea: keep eigenvalues away from 0
- Add identity to XX^T : $w = (XX^T + \lambda I)^{-1}XY^T$
- Q : why consider the identity?

Stabilization as Regularization

- Idea: keep eigenvalues away from 0
- Add identity to XX^T : $w = (XX^T + \lambda I)^{-1}XY^T$
- This choice of w is, in fact, the solution of

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 + \lambda ||w||^2$$

TUDelft

An Equivalent View

· Instead of solving

$$\min_{w} \sum_{i=1}^{N} (f(x_{i}, w) - y_{i})^{2} + \lambda ||w||^{2}$$

one can also solve

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2$$

s.t.
$$||w||^2 \le \tau$$

Short Intermezzo?

What is the shape

the shape of these function

functions

$$\sum_{i=1}^{N} (f(x_i, w) - y_i)^2 + \lambda ||w||^2$$

 $\sum_{i=1}^{N} (f(x_i, w) - y_i)^2$

 $||w||^2$

TUDelft

Regularized Risk

• General approach to regularization

$$\min_{w} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(f)$$

- Many learning problems in PR and ML can be [and are in fact] formulated in this way
- Different considerations give different R
- Various links : MAP, MDL, SRM, etc.

Introducing Sparsity

· For a change, let us consider

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2$$

s. t.
$$||w||_1 \le \tau$$

- Q : what is the shape of $||w||_1$?
- Q : what is the effect of this change of norm?

TUDelft

Again the Equivalent View...

• Include sparsifying norm as an additive term

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 + \lambda ||w||_1$$

• Matlab "demo"...?

TUDelft

Final Remarks

- Sparsity by regularization due to Tibshirani
 - Least absolute shrinkage and selection operator or lasso

TUDelft

- · Performs feature selection
- Compare to feature forward selection etc.!
- Regularization framework also used for classification...

TUDelft