# $\begin{array}{c} {\bf MGMT~237E:}\\ {\bf Empirical~Methods~in~Finance} \end{array}$

Homework 4

Yi-Chi Chan Zhaofang Shi Ahswin Kumar Ashok Kumar George Bonebright February 16, 2016

#### 1.a. Variance Ratio for Random Walk:

$$\begin{split} y_t &= \mu + y_t + \epsilon_t \\ &= \mu + \left(\mu + y_{t-2} + \epsilon_{t-1}\right) + \epsilon_t \\ &= 2\mu + y_{t-2} + \epsilon_t + \epsilon_{t-1} \\ &= k\mu + y_{t-k} + \sum_{i=0}^{k-1} \epsilon_{t-i} \\ y_t - y_{t-k} &= k\mu + \sum_{i=0}^{k-1} \epsilon_{t-i} \\ V[y_t - y_{t-k}] &= k\sigma^2 \\ \frac{V[y_t - y_{t-k}]}{k\sigma^2} &= \frac{k\sigma^2}{k\sigma^2} = 1; k \to \infty \end{split}$$

## Variance Ratio for AR(1) Model:

$$\begin{split} &for: |\phi| < 1 \\ &y_t = \mu + \phi y_{t-1} + \epsilon_t \\ &= \mu + \phi (\mu + \phi y_{t-2} + \epsilon_{t-1}) + \epsilon_t \\ &= (1+\phi)\mu + \phi^2 y_{t-2} + \phi \epsilon_{t-1} + \epsilon_t \\ &= (1+\phi+\ldots+\phi^{k-1})\mu + \phi^k y_{t-k} + \phi^{k-1} \epsilon_{t-k+1} + \ldots + \phi \epsilon_{t-1} + \epsilon_t \\ &y_t - y_{t-k} = \frac{1-\phi^k}{1-\phi}\mu + (\phi^k - 1)y_{t-k} + \phi^{k-1} \epsilon_{t-k+1} + \ldots + \phi \epsilon_{t-1} + \epsilon_t \\ &V[y_t - y_{t-k}] = (\phi^k - 1)V[y_{t-k}] + \frac{1-\phi^k}{1-\phi}\sigma^2 \\ &= \frac{(\phi^k - 1)\sigma^2}{1-\phi^2} + \frac{1-\phi^k}{1-\phi}\sigma^2 \\ &= \frac{\sigma(1-\phi^k)}{1-\phi^2}\sigma^2 \\ &= \frac{\sigma(1-\phi^k)}{k\sigma^2} = \frac{\phi(1-\sigma^k)}{k(1-\phi^2)} \\ &\frac{V[y_t - y_{t-k}]}{k\sigma^2} \to 0; k \to \infty \end{split}$$

#### 1.b. Variance Ratio Plots:

## Log Exchange Rate Variance Ratios (assuming random walk)



## Log Exchange Rate Variance Ratio (assuming AR(1))



Variance ratio approaches 0 as lags increase, so the series may not follow a random walk, but a time trend. It should also be noted that the sample size must be significantly greater than the number of lags (k) in order to have a reasonable variance estimate. Otherwise, the ratio will always trend to zero as the number of samples decreases and the k value increases.

1.c. Variance Ratio test (vrtest):

\$stat

[1] 1.256834

\$sum

[1] 1.122364

## Variance Ratios and 95% confidence band



Variance ratio initially increases above 1, but decreases thereafter.

## Per Capita GDP Plots:

-0.02

1950

1960



The plot of log GDP shows an upward trend. The first difference of log GDP seems to vary around about a constant mean, although the variation appears to change over time. The AR model of log/difference series is significant at lag 3, and the sample PACF of the log/difference series shown significant lag of 12. Therefore, Lag =13 that will take this into account in the augmented Dicky-Fuller unit root test. With growth of GDP over time, if the process has a unit root, it is expected to have a drift. If it is trend stationary, it is reasonable to expect a time trend.

1980 Quarter

2000

2010

1970

# Plots of ACF/PACF:

# Series Iggdpq\$loggdp



# Series lggdpq\$loggdp



# Series diff\_lggdp\$diff\_loggdp



# Series diff\_lggdp\$diff\_loggdp



**2.b.** We will calculate two augmented Dicky-Fuller tests, one with a constant/drift, and the other one with a constant and a time trend.

ADF test with constant:

 $H_0: \phi_1 = 1; H_1: |\phi_1| < 1$ 

 $Null Model: log gdp_t = \phi_0 + log gdp_{t-1} + \epsilon_t$ 

 $Alternative Model: log gdp_t = \phi_0 + \phi_1 * log gdp_{t-1} + \epsilon_t$ 

ADF test with a time trend and a constant:

 $H_0: \phi_1 = 1; H1: |\phi_1| < 1$ 

 $NullModel: loggdp_t = \phi_0 + loggdp_{t-1} + \vartheta * t + \epsilon_t$ 

 $Alternative Model: log gdp_t = \phi_0 + \phi_1 * log gdp_{t-1} + \vartheta * t + \epsilon_t$ 

```
2.c. ADF Test Results:
> adfTest (lggdpq$loggdp,lags=13,type=c("c"))
Title:
 Augmented Dickey-Fuller Test
Test Results:
  PARAMETER:
    Lag Order: 13
  STATISTIC:
    Dickey-Fuller: -1.7758
  P VALUE:
    0.3957
> adfTest (lggdpq$loggdp,lags=13,type=c("ct"))
Title:
 Augmented Dickey-Fuller Test
Test Results:
  PARAMETER:
    Lag Order: 13
  STATISTIC:
    Dickey-Fuller: -0.8176
  P VALUE:
    0.9592
```

Both tests fail to reject the null hypothesis of unit root in log GDP. It indicates that log GDP is non-stationary process.

# **3.a.** Time Series Plot of Currency Data:

## Time plot of daily log return



#### Series rets\$ret



# Series rets\$ret



Log return seems to be a constant plus innovation. Abstract conditional mean from variance.

Ljung-Box Q-test rejects the null hypothesis of no autocorrelation in volatility.

# Box-Ljung test

data: rets\$innovation^2
X-squared = 2118.4, df = 30, p-value < 2.2e-16</pre>

 $\ensuremath{\mathsf{ACF}}/\ensuremath{\mathsf{PACF}}$  of squared-innovations:

#### Series rets\$innovation^2



#### Series rets\$innovation^2



Squared-innovations show significant PACF for lags 1 to 12 as well as lag 18 and lag 30.

Try GARCH (1,1) with Gaussian innovations.

```
GARCH(1,1) Model Summary:
Title:
 GARCH Modelling
Call:
 garchFit(formula = ~1 + garch(1, 1), data = rets$ret, trace = F)
Mean and Variance Equation:
 data \sim 1 + garch(1, 1)
<environment: 0x10f886120>
 [data = rets$ret]
Conditional Distribution:
norm
Coefficient(s):
                omega
                           alpha1
                                        beta1
       mu
1.5208e-04 5.9516e-07 1.3766e-01 8.6636e-01
Std. Errors:
based on Hessian
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
                             1.379 0.168042
      1.521e-04 1.103e-04
                 1.700e-07 3.500 0.000464 ***
1.331e-02 10.341 < 2e-16 ***
omega 5.952e-07
alpha1 1.377e-01
beta1 8.664e-01 1.121e-02 77.290 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Log Likelihood:
8389.85
           normalized: 3.582344
Standardised Residuals Tests:
                               Statistic p-Value
                       Chi^2 892.9103 0
Jarque-Bera Test R
                      W
                               0.9718357 0
Shapiro-Wilk Test R
Ljung-Box Test
                   R
                        Q(10) 4.683022 0.9113224
                        Q(15) 7.879335 0.9285291
Ljung-Box Test
                   R
Ljung-Box Test
                        Q(20) 12.68464 0.8905009
                   R
Ljung-Box Test
                   R^2 Q(10) 7.705103 0.6576169
Ljung-Box Test
                   R^2 Q(15) 8.692776 0.8930256
                   R^2 Q(20) 9.236635 0.9800008
Ljung-Box Test
                        TR^2 8.01036
LM Arch Test
                   R
                                        0.7843202
Information Criterion Statistics:
     AIC
               BIC
                         SIC
-7.161273 -7.151437 -7.161279 -7.157690
```

# Volatility and ACF/PACF Plots:



No significant residuals; it appears that the  $\mathrm{GARCH}(1,1)$  model is a good fit for the data.

# **3.b.** 20 day Prediction:

|    | ${\tt meanForecast}$ | meanError   | ${\tt standardDeviation}$ |
|----|----------------------|-------------|---------------------------|
| 1  | 0.0001520827         | 0.007362577 | 0.007362577               |
| 2  | 0.0001520827         | 0.007417575 | 0.007417575               |
| 3  | 0.0001520827         | 0.007472386 | 0.007472386               |
| 4  | 0.0001520827         | 0.007527016 | 0.007527016               |
| 5  | 0.0001520827         | 0.007581469 | 0.007581469               |
| 6  | 0.0001520827         | 0.007635751 | 0.007635751               |
| 7  | 0.0001520827         | 0.007689865 | 0.007689865               |
| 8  | 0.0001520827         | 0.007743816 | 0.007743816               |
| 9  | 0.0001520827         | 0.007797608 | 0.007797608               |
| 10 | 0.0001520827         | 0.007851245 | 0.007851245               |
| 11 | 0.0001520827         | 0.007904732 | 0.007904732               |
| 12 | 0.0001520827         | 0.007958072 | 0.007958072               |
| 13 | 0.0001520827         | 0.008011268 | 0.008011268               |
| 14 | 0.0001520827         | 0.008064326 | 0.008064326               |
| 15 | 0.0001520827         | 0.008117247 | 0.008117247               |
| 16 | 0.0001520827         | 0.008170037 | 0.008170037               |
| 17 | 0.0001520827         | 0.008222697 | 0.008222697               |
| 18 | 0.0001520827         | 0.008275232 | 0.008275232               |
| 19 | 0.0001520827         | 0.008327644 | 0.008327644               |
| 20 | 0.0001520827         | 0.008379937 | 0.008379937               |

The 20 trading day return volatility (standard deviation) is 0.03525.

 $\bf 3.c.$  Value at Risk at 5% on \$2 billion long position in currency is \$115.95 million.

The m1 model predicts a constant mean of 1.521e-04, but it is not significantly different from 0, given its p-value of  $0.168 \pm 0.05$ . So we assume mean of 20-day log return is 0.

```
1 # MGMT237e HW5
2 ##setwd("C:/Users/SallyShi/Desktop/MGMT237E-Empirical Methods in
       Finance/HW4")
3 ##install.packages("vrtest")
4 ##install.packages ("fGarch")
6 library (lubridate)
7 library (xts)
8 library(ggplot2)
9 library (dplyr)
10 library (vrtest)
11 library (fUnitRoots)
12 library (zoo)
13 library (fGarch)
14
15 # question 1 part b
_{16} # get monthly exchange rate from 1970 to 2008
usdi <- read.csv ("dollar_broadindex_tradeweighted.csv")
usdiDate < -as.Date(usdi\\Date, format("%m/%d/%Y"))
usdi <- usdi [ which ( usdi $Date == "1971-01-31") : which ( usdi $Date
       =="2008-11-30"),
20 usdi <- select (usdi, Date, Close)
usdi$log <-log(usdi$Close)
22 #calculate and plot variance ratio for log exchange rate
23 sigma_sq1=var(diff(usdi$log))
ar1 < -arima(usdi$log, order = c(1,0,0))
sigma_sq2=ar1$sigma2
26
27 par (mfrow=c(1,1))
28 vr1_usdi <- sapply (1:100, function(x) {
    var(diff(usdi$log,lag=x))/(x*sigma_sq1)
30 })
31 plot(vrl_usdi, main="Log Exchange Rate Variance Ratios (assuming
      random walk)", xlab="Lag Value, K", ylab="Variance Ratio",pch
       =16, col="steelblue")
vr2\_usdi \leftarrow sapply (1:100, function(x))
    var(diff(usdi$log,lag=x))/(x*sigma_sq2)
33
34 })
35 plot(vr2_usdi, main="Log Exchange Rate Variance Ratio (assuming AR
       (1))", xlab="Lag Value, K", ylab="Variance Ratio", pch=16, col="
       firebrick")
36 # variance ratio approximate 0 as lags goes larger, so the series
      may not follow a random walk,
37 # but a time trend.
38
39 # question 1 part c
40 y <- usdi$log
nob <- length(y)
r \leftarrow diff(y, lag=1)
43 Auto.VR(r)
45 kvec < c(2,5,10,30,50,100,150)
46 VR. plot (r, kvec)
47 # variance ratio increase above 1 first, and decrease below 1 as
      holding period gets gets longer.
48 # It also shows that the series is not unit root.
```

```
50 # question 2 part a
  gdpq<-read.csv("rgdppc.csv")
colnames (gdpq) <-c("Date", "GDP")
53 gdpq$Date<-as.yearqtr(gdpq$Date, format = "%Y-%m-%d")
54 gdpq$Date <-as.Date(gdpq$Date, format="%Y%q")
55 gdpq$loggdp<-log(gdpq$GDP)
56 lggdpq<-gdpq[,c("Date","loggdp")]</pre>
57 # get difference for quarterly gdp
58 diff_lggdp <-diff(gdpq$loggdp)
^{59}\ diff\_lggdp <\!-data.frame (gdpq\$Date [2:length (gdpq\$Date)], diff\_lggdp)
colnames (diff_lggdp)<-c("Date", "diff_loggdp")
61 # plot Log GDP and its changes
62 p1<-ggplot(lggdpq)+geom_line(aes(lggdpq$Date,lggdpq$loggdp)) + xlab
       ("Quarter") + ylab ("Log GDP Per Capita") + ggtitle ("Log GDP Per
       Capita (Quarterly)")
63 p1
64 p2<-ggplot(diff_lggdp)+geom_line(aes(diff_lggdp$Date,
      diff_lggdp$diff_loggdp)) + xlab("Quarter") + ylab("Difference
      of Log GDP Per Capita") + ggtitle ("Difference of Log GDP Per
      Capita (Quarterly)")
65 p2
67 par (mfrow=c(2,1))
68 acf(lggdpq$loggdp)
  pacf(lggdpq$loggdp)
69
71 par (mfrow=c(2,1))
acf(diff_lggdp$diff_loggdp)
73 pacf(diff_lggdp$diff_loggdp)
  m1=ar(diff_lggdp$diff_loggdp, method = 'mle')
76 m1$order
78 # The plot of log GDP shows an upward trend. The first difference
      of log GDP seems to vary around a
  # fixed mean leve, although the variabilty appears to be smaller in
       recent years.
so # AR model of difference series is significant at lag 3, and the
      sample PACF of the differenced
81 # series shown significant lag of 12. Therefore, Lag =13 that will
      take this into account in the
82 # augmented Dicky-Fuller unit root test.
_{\rm 84} # With growth of GDP over time, if the process has a unit root, it
      is expected to have a drift.
  # If it is trend stationary, it is reasonable to expect a time
      trend.
87 # question 2 part b
89 # Therefore, we will do two augmented Dicky-Fuller test, one with a
       constant/drift,
90 # and the other one with a constant and a time trend.
91
92 # ADF test with constant
93 # H0: phi_1=1 H1: | phi_1 | <1
94 # null model: loggdp_t=phi_0+loggdp_t-1+error_t
```

```
95 # alternative model: loggdp_t=phi_0+phi_1*loggdp_t-1+error_t
97 # ADF test with a time trend and a constant
98 # H0: phi_1=1 H1: | phi_1 | <1
99 # null model: loggdp_t = phi_0 + loggdp_t - 1 + omega*t + error_t
# alternative model: loggdp_t = phi_0 + phi_1*loggdp_t - 1 + omega*t
       + error_t
101
102 # question 2 part c
103 # ADF test with constant
adfTest (lggdpq$loggdp, lags=13,type=c("c"))
_{105}\ \#\ ADF test with a time trend and a constant
adfTest (lggdpq$loggdp, lags=13,type=c("ct"))
108 # Both test fail to reject the null hypothesis of unit root in log
       GDP. It indicates that log GDP
   # is non-stationary process.
109
110
111 # question 3 part a
data <-read.csv("currency_fund_prices.csv")
data$Date <- as.Date(data$Date, format("%m/%d/%Y"))
114 # calculate daily log return
ccy <- select (data, Date, Adj. Close)
ccy$ret[2:length(ccy$Adj.Close)] <-diff(log(ccy$Adj.Close))
rets <- select(ccy, Date, ret)
rets <- rets[2:length(ccy$ret),]
119 par (mfrow=c(1,1))
   plot(rets, type="1", xlab = 'Year', ylab = 'ln-return', main = 'Time
120
        plot of daily log return')
121 par (mfrow=c(2,1))
   acf(rets$ret, lag=30)
pacf(rets$ret, lag=30)
124
# seems log return is a constant plus innovation. abstract
        conditional mean from variation
   rets$innovation <-rets$ret-mean(rets$ret)
Box. test (rets$innovation^2, lag=30, type='Ljung')
128 # LB Q-test rejects the null of no autocorrelation in volatility
129 par (mfrow=c(2,1))
   acf(rets$innovation^2, lag=30)
130
   pacf(rets$innovation^2, lag=30)
131
132
# innovation squared shows significant PACF for 1 to 12 lags as
       well as lag 18 and 30.
134 # one can employ more parsimonious GARCH model
135 # Try GARCH (1,1) with Gaussian innovations
m1 \leftarrow garchFit(~1+garch(1,1),data=rets\$ret,trace=F)
137 summary (m1)
\# GARCH(1,1) \mod el: r_t = 1.521e-04 + a_t, a_t = sigma_t * e_t
 \text{139} \# \text{sigma\_t^2} = 5.952 \text{e} - 07 + 1.377 \text{e} - 01 * \text{a\_(t-1)^2} + 8.664 \text{e} - 01 * 
       \operatorname{sigma}_{-}(t-1)^2
_{140} \# AIC = -7.161273
v1 = volatility (m1) # obtain volatility
142 resi <- residuals (m1, standardize=T) # standard residuals
vol <- data.frame(rets$Date,v1)
res <- data.frame(rets$Date, resi)
par (mfrow=c(2,1)) # show volatility and residuals
```

```
plot (vol, xlab='year', ylab='volatility', type='l')
plot (res, xlab='year', ylab='st. resi', type='l')
par(mfrow=c(2,2)) # obtain ACF & PACF
acf(resi, lag=24)
pacf(resi, lag=24)
acf(resi^2, lag=24)
pacf(resi^2, lag=24)
# no significant ACF/PACF for GARCH residuals
154 # model is good fit for the data
155
# question 3 part b
# prediction of log return level for next 20 periods
pred <- predict (m1, 20)
159 # log return volatility over 20 days, assuming iid daily log return
       , variance over 20 day period
# equals sum of standard error squared on each day.
std <- sqrt(sum(pred$standardDeviation^2))</pre>
# the 20-trading-day return volatility (standard deviation) is
       0.03525
163
164 # question 3 part c
^{165} # VaR at 5% on $2bn long position in currency is $115.95 million,
\# ml model predict constant mean is 1.521e-04, but it is not
        significant different from 0, given
# its p-value is 0.168>.05. So we assume mean of 20-day log return
       approximates 0.
2000*abs(qnorm(.05,mean=0,sd=std))
```