UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET

Marjan M. Matejić Lidija V. Stefanović Branislav M. Ranđelović Igor Ž. Milovanović

MATEMATIKA

KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT

2011.

Edicija: Pomoćni udžbenici

Marjan Matejić, Lidija Stefanović, Branislav Ranđelović, Igor Milovanović MATEMATIKA— KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT

II izdanje, 2011.

Recenzenti: Prof. dr Milan Kovačević, Doc. dr Slađana Marinković

Izdavač: Elektronski fakultet u Nišu, P. fah 73, 18000 Niš, Srbija,

http://www.elfak.ni.ac.rs

Glavni i odgovorni urednik: Prof. dr Zoran H. Perić

Tehnička obrada: mr Marjan Matejić, dr Lidija Stefanović,

mr Branislav Ranđelović

Odlukom Nastavno–naučnog veća Elektronskog fakulteta u Nišu, br. 07/05–008/10–003 od 6.5.2010. god.,

rukopis je odobren za štampu kao pomoćni udžbenik.

ISBN 978-86-6125-027-9

CIP – Каталогизација у публикацији

Народна библиотека Србије, Београд

51(079.1)

MATEMATIKA: kompleti zadataka za prijemni ispit/

Marjan M. Matejić ... [et al.]. –

2. izd. – Niš: Elektronski fakultet, 2011 (Niš: Unigraf). –

V, 150 str.: graf. prikazi; 24 cm. –

(Edicija Pomoćni udžbenici/ [Elektronski fakultet, Niš])

Na vrhu nasl. str.: Univerzitet u Nišu. –

Tiraž 300. – Bibliografija: str. 149–150.

ISBN 978-86-6125-027-9

- Матејић, Марјан М., 1977 [аутор]
- а) Математика Задаци

COBISS.SR-ID 183010060

Štampa: Unigraf – Niš

Tiraž: 300 primeraka

Bilo kakvo umnožavanje ove knjige ili njenih delova nije dozvoljeno bez pisanog odobrenja izdavača.

PREDGOVOR PRVOG IZDANJA

Ova zbirka sadrži zadatke iz onih oblasti elementarne matematike koje su obuhvaćene programom prijemnog ispita na tehničkim i prirodno—matematičkim fakultetima. Cilj zbirke je da čitalac, rešavajući testove, obnovi gradivo iz ovih oblasti i da se na taj način pripremi za uspešno polaganje prijemnog ispita iz matematike.

U prvom delu zbirke je dat kratak pregled teorije, neposredno vezane za zadatke. Teorijske činjenice koje su izostavljene, a potrebne su za rešavanje zadataka, navedene su ili izvedene u okviru rešenja. Drugi deo sadrži tekstove zadataka. Svi zadaci su pažljivo odabrani, prilagođeni nameni zbirke i grupisani u komplete kakvi se polažu na ispitu. Prilikom odabira zadataka, osim navedene literature, korišćeni su i časopisi "Rozhledy" (Češka), "Gazeta Matematica" (Rumunija), "Elemente der Mathematik" (Švajcarska), "Matematika v škole" (Rusija), "Tangenta" (Novi Sad) i "Triangle" (Sarajevo). Rešenja zadataka se nalaze u trećem delu zbirke.

Poslednji deo zbirke obuhvata tekstove zadataka sa ranijih prijemnih ispita iz matematike na Elektronskom fakultetu u Nišu, u periodu od 1989. do 2009. godine. Rešenja ovih zadataka mogu se naći u [14].

"MATEMATIKA – kompleti zadataka za prijemni ispit" je prvenstveno namenjena kandidatima koji se pripremaju za polaganje prijemnog ispita na Elektronskom fakultetu u Nišu, ali bi mogla da bude od koristi i kandidatima za ostale tehničke i prirodno–matematičke fakultete na kojima se u okviru prijemnog ispita polaže matematika.

Zahvaljujemo se recenzentima, prof. dr Milanu Kovačeviću i doc. dr Slađani Marinković, na korisnim sugestijama pri izradi zbirke.

Niš, 2010. g. Autori

PREDGOVOR DRUGOG IZDANJA

U odnosu na I izdanje, II izdanje je neznatno izmenjeno u smislu ispravke postojećih grešaka ili nekorektnosti, kao i zamene jednog zadatka u celini.

Autori se zahvaljuju saradnicima dr Lidiji Rančić, dr Dušanu Miloševiću i dr Vojkanu Davidoviću, kao i studentima, koji su učestvovali u uočavanju i otklanjanju grešaka.

Niš, 2011. g. Autori

SADRŽAJ

Podsetnik iz teorije	1
Tekstovi zadataka	13
Rešenja zadataka	43
Kompleti zadataka sa ranijih ispita	125
Literatura	149

PODSETNIK IZ TEORIJE

1. Oznake brojnih skupova

 \mathbb{N} - skup prirodnih brojeva ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$),

 \mathbb{Z} - skup celih brojeva,

Q - skup racionalnih brojeva,

I - skup iracionalnih brojeva,

 \mathbb{R} - skup realnih brojeva (\mathbb{R}^+ - skup pozitivnih realnih brojeva, $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$),

C - skup kompleksnih brojeva.

2. Apsolutna vrednost realnog broja

Neka su x, y, a i b realni brojevi. Tada je

$$|x|=\sqrt{x^2}=\max\{x,-x\}=\begin{cases} &x,\ x\geq 0,\\ &-x,\ x<0, \end{cases}$$
gde je $\max\{x,y\}=\frac{1}{2}(x+y+|x-y|),\,\min\{x,y\}=\frac{1}{2}(x+y-|x-y|).$

Osnovne osobine:

$$\begin{aligned} |x| &\geq 0; & |x| &= 0 \iff x = 0; & |-x| &= |x|; & |x|^2 &= x^2; & -|x| &\leq x \leq |x|; \\ |x| &\leq a \iff -a \leq x \leq a; & |x| \leq |y| \iff x^2 \leq y^2; & ||x| - |y|| \leq |x - y|; \\ |xy| &= |x||y|; & \left|\frac{x}{y}\right| &= \frac{|x|}{|y|}; & |x + y| \leq |x| + |y|; & |x - y| \leq |x| + |y|. \end{aligned}$$

3. Stepen realnog broja

Stepen realnog broja a^m ($a \in \mathbb{R}, m \in \mathbb{N}$) definiše se sa

$$a^0 = 1$$
, $a^1 = a$, $a^m = a \cdot a^{m-1}$, $(a \neq 0)$

Osnovne osobine $(a \neq 0, b \neq 0)$:

$$\begin{split} a^m \cdot a^n &= a^{m+n}; \quad \frac{a^m}{a^n} = a^{m-n}; \quad (a^m)^n = a^{mn}; \quad a^{-m} = \frac{1}{a^m}; \\ (ab)^m &= a^m b^m; \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} = \left(\frac{b}{a}\right)^{-m}; \quad 0^m = 0; \quad 0^0 \text{ nije definisano.} \end{split}$$

4. Koren realnog broja

Neka je $x,y\in\mathbb{R}^+$ i $n,m\in\mathbb{N}$. Aritmetički n-ti koren broja x je jedinstveno pozitivno rešenje jednačine $t^n=x$. Označava se sa $x^{1/n}$ ili $\sqrt[n]{x}$. Osnovne osobine:

$$\sqrt[n]{x^m} = x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m = (\sqrt[n]{x})^m; \quad \frac{1}{\sqrt[n]{x^m}} = \left(\frac{1}{x^{\frac{1}{n}}}\right)^m = \frac{1}{(x^{\frac{1}{n}})^m} = x^{-\frac{m}{n}}; \quad \sqrt[n]{0} = 0;$$

$$\sqrt[n]{x} \sqrt[n]{y} = \sqrt[n]{xy}; \quad \frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}; \quad \sqrt[nm]{x} = x^{\frac{1}{mn}} = \sqrt[m]{\sqrt[n]{x}} = \sqrt[n]{\sqrt[n]{x}}; \quad \sqrt[n]{1} = 1;$$

$$a \in \mathbb{R} \Rightarrow \sqrt[n]{a^n} = \begin{cases} a, \text{ ako je } n \text{ neparan broj.} \\ |a|, \text{ ako je } n \text{ paran broj.} \end{cases}$$

5. Celi racionalni izrazi i racionalizacija imenioca

$$(x-y)^2 = x^2 - 2xy + y^2; \qquad (x+y)^2 = x^2 + 2xy + y^2;$$

$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3; \qquad (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3;$$

$$x^2 - y^2 = (x-y)(x+y); \qquad x^2 + y^2 = (x+y-\sqrt{2xy})(x+y+\sqrt{2xy});$$

$$x^3 - y^3 = (x-y)(x^2 + xy + y^2); \qquad x^3 + y^3 = (x+y)(x^2 - xy + y^2);$$

$$x - y = (\sqrt[3]{x} - \sqrt[3]{y})(\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}); \qquad x + y = (\sqrt[3]{x} + \sqrt[3]{y})(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2});$$

$$x - y = (\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}).$$

$$\frac{x}{\sqrt{y}} = \frac{x\sqrt{y}}{y}; \qquad \frac{x}{\sqrt[3]{y}} = \frac{x\sqrt[3]{y^{n-1}}}{y}; \qquad \frac{1}{\sqrt{x} + \sqrt{y}} = \frac{\sqrt{x} - \sqrt{y}}{x - y}; \qquad \frac{1}{\sqrt{x} - \sqrt{y}} = \frac{\sqrt{x} + \sqrt{y}}{x - y};$$

$$\frac{1}{\sqrt[3]{x} + \sqrt[3]{y}} = \frac{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}}{x + y}; \qquad \frac{1}{\sqrt[3]{x} - \sqrt[3]{y}} = \frac{\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}}{x - y};$$

$$x^{2n} + y^{2n} = \left(x^n + y^n - \sqrt{2x^ny^n}\right) \left(x^n + y^n + \sqrt{2x^ny^n}\right);$$

$$x^{2n} - y^{2n} = (x - y) \left(x^{2n-1} + x^{2n-2}y + \dots + xy^{2n-2} + y^{2n-1}\right);$$

$$x^{2n-1} + y^{2n-1} = (x + y) \left(x^{2n-2} - x^{2n-3}y + \dots - xy^{2n-3} + y^{2n-2}\right);$$

$$x^{2n-1} - y^{2n-1} = (x - y) \left(x^{2n-2} + x^{2n-3}y + \dots + xy^{2n-3} + y^{2n-2}\right);$$

$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz.$$

6. Logaritam

Logaritam broja x za osnovu a je jedinstveno rešenje jednačine $x=a^t$. Označava se sa $\log_a x=t$. Uslovi egzistencije logaritma su $x>0,\ a>0$ i $a\neq 1$. Ako je a=10, to je dekadni logaritam ($\log_{10} x=\log x$). Ako je a=e ($e\approx 2.71...$), to je prirodni logaritam ($\log_e x=\ln x$).

Osnovne osobine:

$$\begin{split} a^{\log_a x} &= x; \quad \log_a a = 1; \quad \log_a x^p = p \log_a x; \quad \log_a x = \frac{1}{\log_x a}; \quad \log_a x = \frac{\log_b x}{\log_b a}; \\ \log_{a^p} x &= \frac{1}{p} \log_a x; \quad \log_{a^q} x^p = \frac{p}{q} \log_a x; \quad \log_a \sqrt[n]{x} = \frac{1}{n} \log_a x; \quad \log_a 1 = 0; \\ \log_a (xy) &= \log_a x + \log_a y; \quad \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y. \end{split}$$

7. Proporcije. Kamatni račun

Količnik veličina a i b, $b \neq 0$, je razmera, a broj a : b, tj. $\frac{a}{b}$ je vrednost razmere. Ako razmere a : b i c : d imaju istu vrednost, onda se kaže da čine proporciju

$$a:b=c:d,$$

a veličine $a,\,b,\,c$ i d su članovi proporcije. Članovi a i d su spoljašnji, a b i c unutrašnji. Veličine a i b su direktno proporcionalne ako je

$$b = ka, \quad k > 0,$$

a obrnuto proporcionalne ako je

$$b = k\frac{1}{a}, \quad a \neq 0, \quad k > 0.$$

Osnovne osobine proporcije su:

$$a:b=c:d \Leftrightarrow \frac{a}{b}=\frac{c}{d} \Leftrightarrow ad=bc \Leftrightarrow a=b\frac{c}{d},$$

$$a:b=c:d \Leftrightarrow d:b=c:a \Leftrightarrow a:c=b:d.$$

Ako je a:b=c:di $k\neq 0,$ tada je

$$(ak):(bk) = c:d,$$

 $(a:k):(b:k) = c:d,$
 $(ak):b = (ck):d,$
 $(a:k):b = (c:k):d.$

Ako je a:b=c:di ako su $m,\,n,\,p$ i qbrojevi različiti od nule, onda je

$$(a \pm b) : (c \pm d) = a : c = b : d,$$

 $(a + b) : (c + d) = (a - b) : (c - d),$
 $(ma \pm nb) : (mc \pm nd) = (pa \pm qb) : (pc \pm qd).$

Ako je

$$a_1:b_1=c_1:d_1,$$

 $a_2:b_2=c_2:d_2,$
 \vdots
 $a_n:b_n=c_n:d_n,$

tada je

$$(a_1 a_2 \cdots a_n) : (b_1 b_2 \cdots b_n) = (c_1 c_2 \cdots c_n) : (d_1 d_2 \cdots d_n).$$

Ako je

$$a:b=b:c$$
,

tada je

$$b = \sqrt{ac}$$
.

Ako je

$$a_1:a_2:\cdots:a_n=b_1:b_2:\cdots:b_n$$

i k_1, k_2, \ldots, k_n brojevi različiti od nule, tada je

$$\frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} = \frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$$

i

$$\frac{k_1a_1 + k_2a_2 + \dots + k_na_n}{k_1b_1 + k_2b_2 + \dots + k_nb_n} = \frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}.$$

Proporcija

$$a: x = x: (a - x), \quad a > x,$$

naziva se zlatni presek.

Neka je G glavnica, p procenat i q procentni iznos. Tada je

$$G: q = 100: p$$

tj.

$$q = \frac{Gp}{100}.$$

Neka je G glavnica, p procenat, v vreme (u godinama ili danima) i I dobit (interes). Tada ie

- za godine

$$I = \frac{Gpv}{100};$$

- za dane

$$I = \frac{Gpv}{36000}$$

8. Kompleksan broj

Skup kompleksnih brojeva, u oznaci \mathbb{C} , je skup uređenih parova (x, y), $x \in \mathbb{R}$, u kome su definisane operacije sabiranje + i množenje · na sledeći način:

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$ $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$ U skupu \mathbb{C} je 0 = (0, 0) kompleksna nula, 1 = (1, 0) kompleksna jedinica, a i = (0, 1) imaginarna jedinica.

 $1^{\circ} - z = (-x, -y)$ je suprotan broj broju z = (x, y);

$$2^{\circ} \quad \frac{1}{z}=z^{-1}=\left(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2}\right) \quad \text{je inverzan broj broju } z=(x,y), \quad (z\neq (0,0));$$

 3° $\bar{z} = (x, -y)$ je konjugovani broj broju z = (x, y)

Oduzimanje kompl. brojeva: $z_1 - z_2 = (x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$.

Deljenje kompl. brojeva:
$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = z_1 \cdot z_2^{-1} = \left(\frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2}, \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}\right).$$

Kompleksan broj z=(x,y) u normalnom obliku je z=x+iy, gde je x=Re(z) realan deo kompleksnog broja z, a y=Im(z) imaginaran deo kompleksnog broja z. Pri tome je

$$\overline{z} = x - iy;$$
 $\operatorname{Re}(z) = \frac{z + \overline{z}}{2};$ $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}.$

Za dva kompleksna broja $z_1 = x_1 + iy_1$ i $z_2 = x_2 + iy_2$ važi

$$z_1 = z_2 \quad \Leftrightarrow \quad x_1 = x_2 \ \land \ y_1 = y_2,$$

a rezultati računskih operacija nad njima su:

$$z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2});$$

$$z_{1} - z_{2} = (x_{1} - x_{2}) + i(y_{1} - y_{2});$$

$$z_{1} \cdot z_{2} = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{1}y_{2} + x_{2}y_{1});$$

$$\frac{z_{1}}{z_{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{x_{2}y_{1} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}};$$

$$\overline{(\overline{z})} = z;$$

$$\overline{z_{1} \pm z_{2}} = \overline{z_{1}} \pm \overline{z_{2}};$$

$$\overline{z_{1} \cdot z_{2}} = \overline{z_{1}} \cdot \overline{z_{2}};$$

$$\overline{\left(\frac{z_{1}}{z_{2}}\right)} = \frac{\overline{z_{1}}}{\overline{z_{2}}};$$

$$z_{2} = x^{2} + y^{2};$$

$$z_{3} = x^{2} + y^{2};$$

$$z_{3} = x^{2} + y^{2};$$

$$z_{4} = x^{2} + y^{2} +$$

Trigonometrijski oblik kompleksnog broja je $z=r(\cos\varphi+i\sin\varphi)$, a eksponencijalni (Eulerov) oblik je $z=re^{i\varphi}$, gde je $r=|z|=\sqrt{x^2+y^2}$ moduo (modul) kompleksnog broja, a $\varphi=\arg(z)$ argument kompleksnog broja, pri čemu je

$$\varphi = \arg(z) = \begin{cases} \arctan \frac{y}{x}, & x > 0, y \neq 0, \\ \pi + \arctan \frac{y}{x}, & x < 0, y > 0, \\ -\pi + \arctan \frac{y}{x}, & x < 0, y < 0, \end{cases}$$

$$0, \quad x > 0, y = 0,$$

$$\pi, \quad x < 0, y = 0,$$

$$\frac{\pi}{2}, \quad x = 0, y > 0,$$

$$-\frac{\pi}{2}, \quad x = 0, y < 0.$$

Za konjugovani broj broja z važi $\bar{z} = r(\cos \varphi - i \sin \varphi) = re^{-i\varphi}$. Osobine modula:

$$|z| \ge 0;$$
 $|z| = 0 \Leftrightarrow x = 0 \land y = 0;$ $|z| = |\bar{z}|;$ $|z|^2 = z\bar{z};$ $||z_1| - |z_2|| \le |z_1 - z_2|;$

$$|z_1z_2| = |z_1||z_2|; \qquad \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}; \qquad |z_1+z_2| \le |z_1| + |z_2|; \qquad |z_1-z_2| \le |z_1| + |z_2|.$$

Operacije sa kompleksnim brojevima u trigonometrijskom ili eksponencijalnom obliku:

$$z_1 z_2 = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)};$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right) = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)};$$

$$z^n = r^n \left(\cos n\varphi + i \sin n\varphi \right) = r^n e^{in\varphi}.$$

Moavrova formula $(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi = e^{in\varphi};$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\varphi + 2k\pi}{n} + \sin\frac{\varphi + 2k\pi}{n}\right) = \sqrt[n]{r}e^{i\frac{\varphi + 2k\pi}{n}}, \quad k = 0, 1, ..., n - 1;$$

$$\sqrt[n]{1} = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \quad k = 0, 1, ..., n - 1;$$

$$\sqrt[n]{-1} = \cos\frac{(2k+1)\pi}{n} + i\sin\frac{(2k+1)\pi}{n}, \quad k = 0, 1, ..., n - 1;$$

$$\sqrt[n]{i} = \cos\frac{(4k+1)\pi}{2n} + i\sin\frac{(4k+1)\pi}{2n}, \quad k = 0, 1, ..., n - 1.$$

9. Kvadratna jednačina

Kvadratna jednačina je $ax^2+bx+c=0,\ a\neq 0,\ a,b,c\in\mathbb{R}.$ Diskriminanta kvadratne jednačine je $D=b^2-4ac.$ U zavisnosti od znaka diskriminante, mogući su sledeći slučajevi:

$$D>0 \ \Rightarrow \text{rešenja su realna i različita}, \quad x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a},$$

$$D=0 \ \Rightarrow \text{rešenja su realna i jednaka}, \quad x_{1,2}=\frac{-b}{2a},$$

$$D<0 \ \Rightarrow \text{rešenja su konjugovano-kompleksna}, \quad x_{1,2}=-\frac{b}{2a}\pm i\frac{\sqrt{4ac-b^2}}{2a}.$$
 Vietove formule za kvadratnu jednačinu:
$$x_1+x_2=-\frac{b}{a}, \quad x_1x_2=\frac{c}{a}.$$
 Faktorizacija kvadratne jednačine:
$$ax^2+bx+c=a(x-x_1)(x-x_2).$$
 Kanonički oblik kvadratne funkcije:
$$ax^2+bx+c=a(x-\alpha)^2+\beta, \text{ gde je tačka } (\alpha,\beta)$$
 teme kvadratne funkcije i $\alpha=-\frac{b}{2a}, \ \beta=-\frac{D}{4a}.$

10. Faktorijeli i binomni koeficijenti

$$n! = \begin{cases} 1, & n = 0, \\ n \cdot (n-1)!, & n \geq 1; \end{cases}$$

$$n! = n(n-1)(n-2) \cdots 2 \cdot 1;$$

$$\binom{n}{k} = \begin{cases} 0, & k > n, \\ 1, & k = 0 \text{ ili } k = n, \\ \frac{n(n-1) \cdots (n-k+1)}{k!}, & n, k \in \mathbb{N} \text{ (ostali slučajevi)}; \end{cases}$$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}; & \binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}.$$

$$(a+b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1}b + \dots + \binom{n}{n} b^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k;$$

$$(a-b)^n = \binom{n}{0} a^n - \binom{n}{1} a^{n-1}b + \dots + (-1)^n \binom{n}{n} b^n = \sum_{k=0}^n (-1)^k \binom{n}{k} a^{n-k}b^k.$$
Važe jednakosti:
$$\sum_{k=0}^n \binom{n}{k} = 2^n \text{ i } \sum_{k=0}^n (-1)^k \binom{n}{k} = 0.$$

11. Trigonometrija

Osnovne jednakosti i veze između trigonometrijskih funkcija:

$$\sin^2 \alpha + \cos^2 \alpha = 1; \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha}; \quad \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}; \quad \sin^2 \alpha = \frac{\tan^2 \alpha}{1 + \tan^2 \alpha};$$
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}; \quad \cos^2 \alpha = \frac{\cot^2 \alpha}{1 + \cot^2 \alpha}; \quad \sin^2 \alpha = \frac{1}{1 + \cot^2 \alpha}.$$

Svođenje trigonometrijskih funkcija ma kog ugla na osnovni ugao:

x	$-\alpha$	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2k\pi + \alpha$
$\sin x$	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos \alpha$	$-\cos \alpha$	$\sin \alpha$
$\cos x$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin\alpha$	$\sin \alpha$	$\cos \alpha$

Adicione formule:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta; \qquad \sin 2\alpha = 2 \sin \alpha \cos \alpha;$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta; \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha;$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}; \qquad \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha};$$

$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \pm \cot \beta}; \qquad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha}.$$

Formule sa poluuglovima:

$$\begin{split} \sin^2\frac{\alpha}{2} &= \frac{1-\cos\alpha}{2}; \quad \cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}; \quad \tan^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{1+\cos\alpha}; \\ \cot^2\frac{\alpha}{2} &= \frac{1+\cos\alpha}{1-\cos\alpha}; \quad \sin\alpha = \frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}; \quad \cos\alpha = \frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}. \end{split}$$

Transformacije zbira trigonometrijskih funkcija u proizvod i obrnuto:

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}; & \sin\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}; \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}; & \cos\alpha - \cos\beta &= -2\sin\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2}; \\ \tan\alpha + \tan\beta &= \frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta}; & \tan\alpha - \tan\beta &= \frac{\sin(\alpha-\beta)}{\cos\alpha\cos\beta}; \\ \cot\alpha + \cot\beta &= \frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta}; & \cot\alpha - \cot\beta &= -\frac{\sin(\alpha-\beta)}{\sin\alpha\sin\beta}; \\ & \sin\alpha\cos\beta &= \frac{1}{2}\left[\sin(\alpha+\beta) + \sin(\alpha-\beta)\right]; \\ & \cos\alpha\cos\beta &= \frac{1}{2}\left[\cos(\alpha+\beta) + \cos(\alpha-\beta)\right]; \\ & \sin\alpha\sin\beta &= \frac{1}{2}\left[\cos(\alpha-\beta) - \cos(\alpha+\beta)\right]. \end{split}$$

Važnije vrednosti trigonometrijskih funkcija:

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0
$\cot \alpha$	$\pm \infty$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$\pm \infty$	0	$\pm \infty$

12. Planimetrija i stereometrija

TROUGAO: stranice $a,\ b,\ c;$ uglovi $\alpha,\ \beta,\ \gamma$ naspramni stranicama $a,\ b,\ c$ redom; poluprečnici upisanog i opisanog kruga $r,\ R;$

zbir uglova
$$\alpha + \beta + \gamma = 180^{\circ}$$
;

$$poluobim \ {\bf i} \ obim \ s=\frac{1}{2}(a+b+c), \quad O=a+b+c=2s;$$

$$\begin{array}{ll} površina & P=\frac{ah}{2}=\frac{ab\sin\gamma}{2}=\sqrt{s(s-a)(s-b)(s-c)}=rs=\frac{abc}{4R},\\ \text{gde je } h \text{ je visina koja odgovara stranici } a. \end{array}$$

PRAVOUGLI TROUGAO: katete a, b, hipotenuza c;

Pitagorina teorema $a^2 + b^2 = c^2$;

poluprečnik opisanog kruga $R = \frac{c}{2}$;

površina
$$P = \frac{ab}{2}$$
.

JEDNAKOKRAKI TROUGAO: kraci (stranice) a=b; uglovi $\alpha=\beta.$

JEDNAKOSTRANIČNI TROUGAO: stranice a = b = c; uglovi $\alpha = \beta = \gamma = 60^{\circ}$;

visina
$$h = \frac{a\sqrt{3}}{2}$$
;

poluprečnici upisanog i opisanog kruga $r = \frac{h}{3} = \frac{a\sqrt{3}}{6}, \quad R = \frac{2h}{3} = \frac{a\sqrt{3}}{3};$

obim i površina
$$O=3a, \quad P=\frac{a^2\sqrt{3}}{4};$$

značajne tačke (centri upisanog i opisanog kruga, težište, presek visina, preseci simetrala uglova i stranica) se poklapaju;

 $značajne\ linije$ (težišna linija, visina i simetrala stranice a, simetrala ugla $\alpha)$ se poklapaju.

SLIČNI TROUGLOVI: stranice paralelne; uglovi jednaki.

PODUDARNI TROUGLOVI: tri stranice jednake (pravilo SSS); jedna stranica i nalegli uglovi jednaki (pravilo USU); dve stranice i zahvaćeni ugao jednaki (pravilo SUS); dve stranice i ugao naspram veće od njih jednaki (pravilo SSU).

PARALELOGRAM: naspramne stranice a, c i b, d paralelne i a = c, b = d; naspramni uglovi jednaki;

obim i površina
$$O = 2a + 2b$$
, $P = ah$,

gde je h visina koja odgovara stranici a.

PRAVOUGAONIK: uglovi $\alpha = \beta = \gamma = \delta = 90^{\circ}$;

površina P = ab.

ROMB: stranice a=b=c=d; dijagonale $d_1,\,d_2$ normalne i polove se; visina h;poluprečnik upisanog kruga $r = \frac{\bar{h}}{2}$;

obim i površina O=4a, $P=ah=\frac{d_1d_2}{2}$.

KVADRAT: stranice a = b = c = d; uglovi $\alpha = \beta = \gamma = \delta = 90^{\circ}$;

dijagonale $d_1 = d_2 = d = a\sqrt{2}$ normalne i polove se;

poluprečnici upisanog i opisanog kruga $r = \frac{a}{2}, \quad R = \frac{d}{2} = \frac{a\sqrt{2}}{2};$

 $obim \ {\bf i} \ povr{\check s}ina \ O=4a, \quad P=a^2.$

TRAPEZ: osnovice a, b paralelne, kraci c, d;

 $srednja\ linija\ m=rac{a+b}{2};$

 $površina \ P = \frac{a+b}{2}h = mh,$

gde je h visina koja odgovara osnovicama.

JEDNAKOKRAKI TRAPEZ: kraci c = d; uglovi na osnovici jednaki; dijagonale jednake.

n-TOUGAO (mnogougao sa n stranica):

zbir uglova $(n-2) \cdot 180^{\circ}$.

PRAVILNI *n*-TOUGAO: stranice jednake; uglovi jednaki.

KRUŽNICA, KRUG (deo ravni ograničen kružnicom): poluprečnik r;

obim i površina kruga $O=2r\pi, \quad P=r^2\pi;$

 $\begin{array}{l} \textit{dužina luka} \; (\text{deo kružnice}) \;\; l = \frac{2r\pi}{360^{\circ}} \cdot \alpha; \\ \textit{površina isečka} \; (\text{deo kruga}) \;\; P = \frac{r^2\pi}{360^{\circ}} \cdot \alpha = \frac{rl}{2}, \end{array}$

gde je α centralni ugao iskazan u stepenima, koji odgovara luku l, odnosno kružnom isečku.

PRIZMA: baza (osnova) B mnogougao; strana S paralelogram; omotač M sastavljen od strana; ivice (bočne stranice) paralelne i jednake; visina H;

površina i zapremina P = 2B + M, V = BH.

PRAVA PRIZMA: ivice normalne na bazu; strana S pravougaonik.

PRAVILNA PRIZMA: prava prizma, baza pravilni mnogougao.

PARALELOPIPED: baza paralelogram.

KVADAR: prav paralelopiped, baza pravougaonik.

PIRAMIDA: baza (osnova) B mnogougao; strana S trougao; omotač M sastavljen od strana; teme; visina H;

površina i zapremina
$$P = B + M$$
, $V = \frac{BH}{3}$.

PRAVA PIRAMIDA: ivice (bočne stranice) jednake; strana S jednakokraki trougao.

PRAVILNA PIRAMIDA: prava piramida, baza pravilni mnogougao.

TETRAEDAR: piramida sa tri strane.

ZARUBLJENA PIRAMIDA: nastaje iz piramide (osnovna piramida) odstranjivanjem njenog vrha (dopunska piramida) pomoću ravni paralelne sa bazom; baze B_1 , B_2 , strana S trapez; omotač M sastavljen od strana; visina H;

površina i zapremina
$$P = B_1 + B_2 + M$$
, $V = \frac{(B_1 + \sqrt{B_1B_2} + B_2)H}{3}$.

VALJAK (CILINDAR): baza (osnova) B krug; omotač M; izvodnice paralelne i jednake; osa spaja centre baza; poluprečnik baze R; visina H;

površina i zapremina
$$P = 2B + M = 2R^2\pi + M$$
, $V = BH = R^2\pi H$.

PRAV VALJAK: osa normalna na bazu;

omotač i površina $M = 2R\pi H$, $P = 2R\pi (R + H)$.

KUPA (KONUS): baza (osnova) B krug; omotač M; izvodnica s; teme; osa spaja teme i centar baze; poluprečnik baze R; visina H;

$$\label{eq:povrsina} \textit{površina} \ \textit{i} \ \textit{zapremina} \ \ P = B + M = R^2\pi + M, \quad V = \frac{BH}{3} = \frac{R^2\pi H}{3}.$$

PRAVA KUPA: osa normalna na bazu;

omotač i površina
$$M = R\pi s$$
, $P = R\pi (R + s)$.

ZARUBLJENA KUPA: nastaje iz kupe (osnovna kupa) odstranjivanjem njenog vrha (dopunska kupa) pomoću ravni paralelne sa bazom; baze B_1 , B_2 ; omotač M; izvodnica s; osa spaja centre baza; poluprečnici baza R, r; visina H;

površina i zapremina
$$P = B_1 + B_2 + M$$
, $V = \frac{(B_1 + \sqrt{B_1B_2} + B_2)H}{3}$.

SFERA (LOPTA): poluprečnik R;

površina i zapremina sfere
$$P = 4R^2\pi$$
, $V = \frac{4R^3\pi}{3}$;

površina odsečka (kalota) $P = 2R\pi H$;

$$zapremina~isečka~V=\frac{2R^2\pi H}{3},$$
gde je $H\leq R$ visina odsečka, odnosno isečku pripadnog odsečka.

Zbog podrazumevanog razumevanja od strane čitalaca, a radi jednostavnosti zapisivanja, u zadacima iz ove oblasti su učinjene izvesne nekorektnosti. Na primer, duž AB i njena dužina (veličina duži) AB = 2 su isto označene, pri čemu merna jedinica (mm, cm, itd.) nije upisana. Kod površina i zapremina takođe nije upisivana merna jedinica (mm², cm², odnosno mm³, cm³). Nekorektnosti ovog tipa su naročito izražene u zadacima iz stereometrije.

TEKSTOVI ZADATAKA

1.1. Izračunati vrednost izraza

$$1\frac{5}{28} \cdot \left(7\frac{5}{7} : 3\frac{3}{5} - \frac{1}{7}\right) + 5\frac{5}{6} : \frac{5}{12}.$$

1.2. Rešiti jednačinu

$$\sqrt{6x - x^2 - 8} - 3x + 4 = 0.$$

1.3. Rešiti nejednačinu

$$4^x < \frac{16}{2^{\frac{4}{x+1}}}.$$

1.4. Rešiti jednačinu

$$\sin(x+1) - \sin(3x+3) = 4\sin^2(x+1)\cos(x+1).$$

- **1.5.** Izračunati površinu pravouglog trougla kod kojeg je hipotenuza c=2 i jedan oštar ugao $\alpha=22^{\circ}30'$.
- 1.6. Racionalisati razlomke

$$A = \frac{44}{2 + 3\sqrt[3]{3} + \sqrt[3]{9}} \qquad \text{i} \qquad B = \frac{1}{\sqrt[3]{4} + 3\sqrt[3]{2} + 2}.$$

Test 2

2.1. Naći vrednost izraza

$$\left(\frac{2}{15} + 1\frac{7}{12}\right) \cdot \frac{30}{103} - \left(2:2\frac{1}{4}\right) \cdot \frac{9}{32}.$$

2.2. Rešiti jednačinu

$$\log_{100} x^2 + \log_{10} (3x + 13) - 1 = 0.$$

2.3. Sastaviti kvadratnu jednačinu sa racionalnim koeficijentima ako se zna da je jedno njeno rešenje

$$x_1 = \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt{5}}.$$

2.4. Rešiti jednačinu

$$\cos(x-1) - \cos(3x-3) = 4\sin^3(x-1).$$

- **2.5.** Osnova prave prizme je romb. Omotač iznosi 48, dijagonala strane 5, a najkraće rastojanje naspramnih strana je jednako visini prizme. Izračunati zapreminu prizme.
- **2.6.** U rudniku je iskopano 2210 tona uglja i utvrđeno je da on sadrži 2% vlage. Na stovarištu se, usled čestih padavina i dugog stajanja, procenat vlage povećao na 15%. Za koliko se povećava ukupna težina iskopanog uglja?

Test 3

3.1. Izračunati vrednost izraza

$$5\frac{17}{24} \cdot 3 + 18\frac{3}{5} : 2 + \frac{0.1 - 0.090}{0.6 - 0.58}.$$

3.2. Rešiti jednačinu

$$\sqrt{7x+1} - \sqrt{3x-18} = \sqrt{2x+7}.$$

3.3. Rešiti nejednačinu

$$\log_7 \log_{\frac{1}{\sqrt{7}}}(x-2) < 1.$$

3.4. Rešiti jednačinu

$$\sin x - \sin \frac{x}{3} = 0.$$

- **3.5.** Ako su a, b katete i c hipotenuza pravouglog trougla, dokazati da je $a+b \le c\sqrt{2}$. Kada važi jednakost?
- **3.6.** Naći geometrijsko mesto tačaka u kompleksnoj ravni za koje je:
 - a) |z-i| = |z+2|;
 - **b)** 1 < |z + 2 3i| < 2.

4.1. Naći vrednost izraza

$$\frac{\left(5\frac{4}{45} - 4\frac{1}{15}\right) \cdot 30}{1\frac{1}{3}} - \frac{4.25 : 0.85 + 1 : 0.5}{(5.56 - 4.06) : 3}.$$

4.2. Rešiti jednačinu

$$\sqrt{x+1} \sqrt{2x-5} - x - 3 = 0.$$

4.3. Rešiti nejednačinu

$$5^{-x} < 25^{-\frac{1}{x+1}}$$

4.4. Naći:

- a) $\sin \alpha$, $\tan \alpha$ i $\cot \alpha$ ako je $\cos \alpha = -1/6$ i $\sin \alpha < \cos \alpha$;
- **b)** $\sin \alpha$, $\cos \alpha$ i $\tan \alpha$ ako je $\cot \alpha = -8/13$ i $\sin \alpha > \cos \alpha$;
- c) $\sin \alpha$, $\cos \alpha$ i $\cot \alpha$ ako je $\tan \alpha = \sqrt{2}$ i $\alpha \in (0, \pi)$;
- d) $\cos \alpha$, $\tan \alpha$ i $\cot \alpha$ ako je $\sin \alpha = 5/13$ i $\alpha \in [\pi/4, \pi]$.
- **4.5.** Osnova pravog paralelopipeda je paralelogram sa stranicama $a=3,\,b=8$ i zahvaćenim uglom $\gamma=30^\circ$. Ako je omotač M=220, izračunati površinu i zapreminu paralelopipeda.
- **4.6.** Zlatar treba da pomeša srebro finoće 600 $\%_0$ i srebro finoće 900 $\%_0$ da bi dobio 600 grama srebra finoće 850 $\%_0$. Koliko treba da uzme srebra finoće 600 $\%_0$, a koliko srebra finoće 900 $\%_0$?

Test 5

5.1. Odrediti vrednost izraza

$$\frac{(1.09 - 0.29) \cdot 1\frac{1}{4}}{\left(18.9 - 16\frac{13}{20}\right) \cdot \frac{8}{9}} + \frac{(11.81 + 8.19) \cdot 0.02}{9:11.25}.$$

5.2. Rešiti jednačinu

$$\log_{2^{-1}}(x-1) + \log_{0.5}(x+1) - \log_{\frac{1}{\sqrt{2}}}(7-x) = 1.$$

5.3. Rešiti nejednačinu

$$\sqrt{x^2 - 2x + 9} - x \le 2 + |2x - 7|.$$

5.4. Rešiti jednačinu

$$\sin x - \sin \frac{5x}{8} \cos \frac{3x}{8} = 0.$$

- **5.5.** U trouglu ABC je stranica AB=3, visina $CD=\sqrt{3}$ i AD=BC. Kolika je stranica AC?
- 5.6. Od ukupnog broja upisanih učenika na početku godine, bilo je 46% devojčica. U toku godine školu je napustilo 15 devojčica i 30 dečaka, pa je na kraju od ukupnog broja preostalih učenika 48% bilo devojčica. Koliko je učenika upisano na početku, a koliko ih je ostalo na kraju školske godine?

Test 6

6.1. Izračunati vrednost izraza

$$\frac{(82.15-5.7)\cdot 0.05}{2.23-1\frac{49}{50}} + \left(0.81+\frac{1}{2}\right)\cdot \left(0.81-\frac{1}{2}\right).$$

6.2. Rešiti jednačinu

$$\log_3(\log_2 x - 9) = 2 + \log_3(1 - 4\log_x 4).$$

6.3. Rešiti nejednačinu

$$\frac{x}{x^2 - 1} \le \frac{1}{3x + 2}.$$

6.4. Rešiti jednačinu

$$\cos 9x + \cos 5x + 2\sin^2 x - 1 = 0.$$

- **6.5.** Ivica pravilne trostrane prizme je 2, a zapremina $2\sqrt{3}/3$. Naći poluprečnik sfere opisane oko prizme.
- **6.6.** Petar i Kosta su zaradili izvesnu količinu novca i nameravali da ga podele u odnosu 3 : 5. Greškom je suma podeljena u odnosu 3 : 2 i tako je Petar dobio 360 dinara više nego što mu pripada. Izračunati ukupnu sumu

novca, kako treba pravilno podeliti novac i koliko je procenata ukupne sume novca dobio Petar više nego što mu pripada.

Test 7

7.1. Naći vrednost izraza

$$\frac{\left(2.4+1\frac{1}{2}\right)\cdot 2.5+\left(6\frac{1}{12}:6-1\frac{1}{72}\right):\left(8\frac{5}{7}-1\frac{5}{21}\right)}{54.75-4.5:0.1}.$$

7.2. Rešiti jednačinu

$$2\sqrt{1 - \frac{2}{1 - x}} - \frac{1}{1 - x} = 0.$$

7.3. Rešiti nejednačinu

$$3^{\frac{2x-13}{x+1}} > \sqrt[3]{27^{2x+17}}.$$

- **7.4.** Naći $\tan \alpha$ ako je $\sin^2 \alpha 2\cos^2 \alpha = \sin \alpha \cos \alpha$ i $\alpha \in (0, \pi/2)$.
- **7.5.** U krugu poluprečnika r=25 povučene su dve paralelne tetive $t_1=14$ i $t_2=48$. Koliko je njihovo rastojanje?
- 7.6. Na pismenoj vežbi su učenicima zadata tri zadatka. Pri tome, 12% učenika nije rešilo nijedan zadatak, 32% je rešilo jedan ili dva zadatka, a 14 učenika je rešilo sva tri zadatka. Koliko je ukupno učenika radilo ovu pismenu vežbu?

Test 8

8.1. Naći vrednost izraza

$$\frac{0.8: \left(\frac{4}{5} \cdot 1.25\right)}{0.64 - \frac{1}{25}} + \frac{\left(1.08 - \frac{2}{25}\right) : \frac{4}{7}}{\left(6\frac{5}{9} - 3\frac{1}{4}\right) \cdot 2\frac{2}{17}} + 1.2 \cdot 0.5 : \frac{4}{5}.$$

8.2. Sastaviti kvadratnu jednačinu sa realnim koeficijentima ako se zna da je jedno njeno rešenje

$$x_1 = \frac{1}{2 + i\sqrt{5}}.$$

8.3. Rešiti nejednačinu

$$\sqrt{\log_4(x-3)} > \log_{\frac{1}{4}} \frac{64}{x-3}.$$

- **8.4.** Naći $\cot \alpha$ ako je $3\sin^2 \alpha \cos^2 \alpha = 5 8\sin \alpha \cos \alpha$.
- **8.5.** Osnova piramide je trougao sa stranicama $a=9,\ b=8,\ c=7,\ a$ ugao između osnove i ivica je $\alpha=60^\circ$. Izračunati zapreminu piramide.
- 8.6. Naći koliko ima racionalnih sabiraka u binomnom razvoju izraza

$$\left(\sqrt{2} + \sqrt[3]{3}\right)^{20}.$$

Test 9

9.1. Naći vrednost izraza

$$\left(\frac{\left(11 - 9\frac{1}{2}\right) : 0.003}{\left(4.05 - 3\frac{13}{20}\right) \cdot 20} - \frac{0.45 - \frac{9}{40}}{13\frac{5}{8} : \left(2\frac{3}{5} + \frac{1}{8}\right)}\right) : 62\frac{91}{200}.$$

9.2. Rešiti jednačinu

$$49^{x+2} + 6 \cdot 7^{x+1} - 6^{-\log_6 7} = 0.$$

9.3. Rešiti nejednačinu

$$\frac{3x}{x^2 - 1} \ge \frac{10}{5x + 1}.$$

9.4. Dokazati da je

$$\frac{1-\sin^4\alpha-\cos^4\alpha}{\cos^4\alpha}=2\tan^2\alpha.$$

- **9.5.** Hipotenuza pravouglog trougla je c=40. Iz središta hipotenuze se povlači normala n=15 na hipotenuzu do preseka sa dužom katetom. Odrediti obim i površinu trougla.
- 9.6. Odrediti koliko ima racionalnih sabiraka u binomnom razvoju izraza

$$\left(\sqrt[3]{6} + \sqrt[4]{2}\right)^{100}$$
.

10.1. Izračunati vrednost izraza

$$\left(\frac{\left(1\frac{1}{4}:3\frac{7}{12}\right)\cdot 5\frac{1}{60}}{5.225 - \frac{5}{9} - 3\frac{5}{6}} - \frac{3\frac{13}{15}:\frac{42}{45} + \left(6\frac{53}{56} - 2.375\right)}{2.25 + 0.25 \cdot 8\frac{3}{7}}\right) \cdot 4.3.$$

10.2. Rešiti jednačinu

$$\frac{1}{\sqrt{x}} - \sqrt{3x - 4} + \sqrt{x} = 0.$$

10.3. Ako je

$$\log_4 11 = a$$
 i $\log_4 13 = b$,

naći

$$(\log_{11} 13 + \log_{13} 11)^{-1} + \log_{289} 17.$$

10.4. Rešiti jednačinu

$$\sin x - \sin \frac{x}{5} + 1 = 2\cos^2 \frac{3x}{10}.$$

- **10.5.** Osnova prave piramide je pravougaonik sa stranicama $a=12,\ b=9,\ a$ ivica piramide je s=25/2. Odrediti zapreminu piramide.
- 10.6. Dokazati da je

$$\frac{\sqrt[4]{0.98} - \sqrt[4]{0.02}}{\sqrt[4]{0.98} + \sqrt[4]{0.02}} = \frac{4 - \sqrt{7}}{3}.$$

Test 11

11.1. Naći x iz jednakosti

$$\left(1.7: \left(1\frac{2}{3} \cdot x - 3.75\right)\right): \frac{8}{25} = 1\frac{5}{12}.$$

11.2. Rešiti jednačinu

$$x + \sqrt{3 + \sqrt{x}} = 3.$$

11.3. Rešiti nejednačinu

$$2^{\frac{2x-1}{2}} + 2^{\frac{2x-5}{2}} > 25^{\frac{2x-7}{2}} - 5^{2x-8}.$$

11.4. Rešiti jednačinu

$$\sin x - \sin \frac{7x}{3} + \sin \frac{4x}{3} = 0.$$

- **11.5.** Katete pravouglog trougla su a=15 i b=20. U njega je upisan krug, a u krug je upisan novi trougao, sličan prethodnom. Koliki su obim i površina manjeg, upisanog trougla?
- 11.6. Zupčanik ima 54 zupca i izvrši 84 obrtaja u minutu. Koliko zubaca ima drugi zupčanik, koji radi u prenosu sa prvim i izvršava 126 obrtaja u minutu?

Test 12

12.1. Izračunati vrednost izraza

$$3\frac{1}{4} - \left(\frac{6 : \frac{3}{5} - 1\frac{1}{6} \cdot \frac{6}{7}}{4\frac{1}{5} \cdot \frac{10}{11} + 5\frac{2}{11}} - \frac{\left(\frac{3}{20} + \frac{1}{2} - \frac{1}{15}\right) \cdot \frac{12}{49}}{3\frac{1}{3} + \frac{2}{9}}\right) \cdot 2\frac{1}{3}.$$

12.2. Rešiti jednačinu

$$6 \cdot \frac{2^{x-2}}{2^{x+1} - 3^{x+1}} - \left(\frac{3}{2}\right)^{x+1} = 1.$$

12.3. Rešiti nejednačinu

$$\sqrt{x^2 + 8} + 2x \le 2 + 3|x|.$$

12.4. Rešiti jednačinu

$$\sin 5x - \sin 3x + \sin 2x = 0.$$

- **12.5.** Visina pravilne trostrane piramide je H=3, a zapremina $V=2\sqrt{3}/3$. Naći poluprečnik sfere opisane oko piramide.
- 12.6. Naći koliko ima racionalnih sabiraka u binomnom razvoju od

$$\left(\sqrt{3}+\sqrt[4]{5}\right)^{50}.$$

13.1. Odrediti vrednost izraza

$$\left(\frac{928 \cdot \frac{1}{100}}{0.8} - 0.6\right) \cdot \left(\frac{\left(42 \cdot 3\frac{5}{6} - 3.3 : 0.03\right) : \frac{1}{15}}{\left(3\frac{3}{4} : 0.625 - 0.84 : 0.8\right) : 0.03}\right).$$

13.2. Rešiti jednačinu

$$\sqrt{1 - \frac{4}{4 - x}} = \frac{1}{4 - x}.$$

13.3. Rešiti nejednačinu

$$\log_{x-2} x \le \log_{x-2} 4.$$

13.4. Rešiti jednačinu

$$\frac{\cos x}{\cos \frac{x}{3}} + 4\sin \frac{x}{3} + 1 = 0.$$

- 13.5. Katete pravouglog trougla ABC su $a=BC=3,\ b=AC=4.$ Naći rastojanje između temena C i centra upisane kružnice.
- 13.6. Naći koliko ima racionalnih sabiraka u binomnom razvoju od

$$\left(\sqrt[3]{12} + \sqrt[6]{3}\right)^{30}$$
.

Test 14

14.1. Izračunati vrednost izraza

$$\left(41\frac{23}{84} - 40\frac{49}{60}\right) \cdot \left(\left(4 - 3\frac{1}{2} \cdot \left(2\frac{1}{7} - 1\frac{1}{5}\right)\right) : 0.16\right).$$

14.2. Rešiti jednačinu

$$64^{\frac{1}{x-1}} + 4 \cdot 2^{\frac{3}{x-1}-1} - 24 = 0.$$

14.3. Rešiti nejednačinu

$$|x^2 - 4| - x + 1 \ge 0.$$

14.4. Naći $\cos(\alpha+\beta+\gamma)$ ako je $\sin\alpha=3/5,\ \sin\beta=12/13,\ \sin\gamma=7/25$ i $\alpha,\beta,\gamma\in[0,\pi/2].$

- 14.5. Ugao između osnove i strane pravilne trostrane piramide je $\alpha=60^\circ$, a najkraće rastojanje težišta osnove od strane je d=3. Izračunati zapreminu piramide.
- 14.6. Dokazati da je broj

$$\sqrt{2} + \sqrt{3} + \sqrt{5}$$

iracionalan.

Test 15

15.1. Naći vrednost izraza

$$\frac{\left(\left(40\frac{7}{30} - 38\frac{5}{12}\right) : 10.9 + \left(\frac{7}{8} - \frac{7}{30}\right) \cdot 1\frac{9}{11}\right) \cdot 4.2}{0.008}.$$

15.2. Data je jednačina

$$x^2 - 2(2+m)x + 12 + m^2 = 0.$$

- a) Naći uslove za parametar $m \in \mathbb{R}$ za koja su rešenja jednačine realna. Naći sumu rešenja.
- b) Naći uslov za parametar $m \in \mathbb{R}$ da rešenja budu dvostruka.
- **15.3.** Rešiti nejednačinu

$$\left| \frac{2x - 7}{x - 3} \right| < 3.$$

- **15.4.** Naći $\sin \alpha$, $\cos \alpha$, $\tan \alpha$ i $\cot \alpha$, ako je $\tan \frac{\alpha}{2} = 3$.
- 15.5. U krug poznatog poluprečnika R upisana su tri kruga jednakih poluprečnika, koji se međusobno dodiruju. Odrediti površinu upisanog kruga.
- **15.6.** U jednoj školi ima ukupno 760 učenika i nastavnika. Dečaka ima 8 puta više nego nastavnika, a broj devojčica odnosi se prema broju dečaka kao 5 : 4. Koliko je procenata dečaka, devojčica i nastavnika od ukupnog broja osoba u školi?

16.1. Odrediti vrednost izraza

$$\frac{\left(2.4+1\frac{1}{2}\right)\cdot 2.5+\left(6\frac{1}{12}:6-1\frac{1}{72}\right):\left(8\frac{5}{7}-1\frac{5}{21}\right)}{0.4\cdot \left(54.75-4.5:0.1\right)\cdot \left(3\frac{1}{2}+0.666\ldots\right)\cdot \frac{3}{5}}.$$

16.2. Rešiti jednačinu

$$\frac{1}{\sqrt{x+1}} + \sqrt{x+1} = \sqrt{3x-1}.$$

16.3. Rešiti nejednačinu

$$3^{\frac{2x+1}{2}} - 3^{\frac{2x-3}{2}} \le 2^{2x-1} + 4^x.$$

- **16.4.** Naći $\cos(\alpha \beta)$ ako je $\sin \alpha + \sin \beta = 1$ i $\cos \alpha + \cos \beta = \sqrt{2}$.
- 16.5. Stranice baza pravilne trostrane zarubljene piramide su $a=6,\,b=2$. Ugao između strane i veće baze je $\alpha=60^\circ$. Izračunati zapreminu zarubljene piramide.
- 16.6. Rešiti jednačinu

$$(z+i)^4 = (z-i)^4,$$

gde je z = x + iy kompleksan broj.

Test 17

17.1. Izračunati vrednost izraza

$$\left(4.25 - \frac{\left(4\frac{9}{16} - \left(2\frac{1}{3} - 0.333...\right)\right) \cdot \frac{18}{41}}{0.45}\right) : 1.4 + 0.08333...$$

17.2. Rešiti jednačinu

$$2^{5x+1} - 32^{x-1} + 5 \cdot 64^{\frac{5x+1}{6}} = 383.$$

17.3. Rešiti nejednačinu

$$\sqrt{x^2 - 2x + |x| + 1} + x > 0.$$

- 17.4. Naći $\tan \alpha$ i $\tan \beta$ ako je $\tan \alpha + \tan \beta = 2$, $\tan(\alpha + \beta) = 4$ i $\tan \alpha < \tan \beta$.
- 17.5. Krug poluprečnika r se iz tačke M vidi pod pravim uglom. Odrediti površinu dela ravni unutar tog ugla, a van kruga.
- 17.6. Nekoliko minuta posle 12 časova Nemanja je počeo da radi domaći zadatak i u tom trenutku je pogledao na sat. Kada je završio, ponovo je pogledao na sat i utvrdio da su kazaljke međusobno zamenile mesta. Kada je Nemanja počeo, a kada završio izradu domaćeg zadatka?

Test 18

18.1. Naći vrednost izraza

$$\frac{3:\frac{2}{5}-0.09:\left(0.15:2\frac{1}{2}\right)}{0.32\cdot 6+0.03-\left(5.3-3.88\right)+0.67}.$$

18.2. Rešiti jednačinu

$$4^{\sqrt{x-2}} - 12 = 2^{\sqrt{x-2}}$$

18.3. Rešiti nejednačinu

$$\log_{10} (5^x + x - 20) > x - x \log_{10} 2.$$

18.4. Ako su α , β , γ uglovi trougla i ako je

$$\sin \alpha + \sin \beta + \sin \gamma = \sqrt{3}(\cos \alpha + \cos \beta + \cos \gamma),$$

tada je bar jedan od ovih uglova jednak $\pi/3$. Dokazati.

- 18.5. Ugao između ose i osnove valjka je $\alpha = 60^{\circ}$, a jedan njegov osni presek je romb poznate stranice a. Kolika je zapremina valjka?
- 18.6. Rešiti jednačinu

$$x = 1 - 5(1 - 5x^2)^2$$
.

19.1. Odrediti vrednost izraza

$$\frac{\left(84.63:2.1-\frac{7}{8}\cdot 35.2+2\frac{5}{42}-7\frac{43}{48}\right):7\frac{25}{56}}{\left(14\frac{1}{6}-3.2:4\right):\left(17.25:2.3+\frac{2}{15}\right)\cdot\frac{229}{802}}.$$

19.2. Rešiti jednačinu

$$\sqrt{3x-8} - \sqrt{2x-3} + \sqrt{x-1} = 0.$$

19.3. Rešiti nejednačinu

$$\log_3 x \cdot (\log_3 x - 1) \le 2.$$

19.4. Ako su α , β i γ uglovi trougla, dokazati jednakost

$$\cos \alpha + \cos \beta + \cos \gamma = 1 + 4 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}.$$

- 19.5. Hipotenuza pravouglog trougla ABC je c=AB=4, a ugao kod temena A je $\alpha=30^\circ$. Kružnica sa centrom u temenu A deli trougao na dva dela jednakih površina. Naći poluprečnik te kružnice.
- 19.6. Rešiti jednačinu

$$z^3 - \overline{z} = 0 \qquad (z = x + iy).$$

Test 20

20.1. Naći x iz jednačine

$$\left(16\frac{1}{2} - 13\frac{7}{9}\right) \cdot x + 2.2 \cdot (0.242424... - 0.090909...) = \frac{20}{11}.$$

20.2. Data je kvadratna jednačina

$$x^{2} + (m-1)x + 3 + m - 4m^{2} = 0, \quad m \in \mathbb{R}.$$

a) Odrediti parametar m tako da jednačina ima realna rešenja.

b) Ako su x_1 i x_2 rešenja date jednačine, naći vrednost zbira

$$\frac{1}{x_1^2} + \frac{1}{x_2^2}$$
.

20.3. Rešiti nejednačinu

$$\left(\left(\frac{3}{7}\right)^{x^2 - 2x}\right)^{1/x^2} \ge 1.$$

20.4. Rešiti jednačinu

$$\frac{1}{\sin x} - 5\cos 3x - 5\cos x = 0.$$

- **20.5.** Visina i poluprečnik osnove pravog valjka su H = 25, R = 15. Iz valjka je odstranjen drugi valjak koji ima istu osu i visinu H, a poluprečnik osnove mu je r = 6. Izračunati površinu tako dobijenog "šupljeg valjka".
- 20.6. Naći vrednost izraza

$$\frac{1}{\sqrt{3}+1} + \frac{1}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{7}+\sqrt{5}} + \frac{1}{\sqrt{9}+\sqrt{7}}$$

Test 21

21.1. Odrediti x iz jednačine

$$\frac{\left(\left(4.625 - \frac{13}{18} \cdot \frac{9}{26}\right) : x + (2.5 : 1.25) : 6.75\right) : 1\frac{53}{68}}{\left(\frac{1}{2} - 0.375\right) : 0.125 + \left(\frac{5}{6} - \frac{7}{12}\right) : (0.358 - 1.4796 : 13.7)} = \frac{17}{27}.$$

21.2. Rešiti jednačinu

$$\sqrt{2^x \sqrt[3]{4^x (0.125)^{1/x}}} = 4\sqrt[3]{2}.$$

21.3. Rešiti nejednačinu

$$\sqrt{8-x} + \sqrt{x-3} - 3 \ge 0.$$

21.4. Rešiti jednačinu

$$\sin 9x - \sqrt{3}\cos 7x - \sin 5x = 0.$$

- **21.5.** Nad stranicom $a=AB=2\sqrt{6}$ jednakostraničnog trougla ABC kao prečnikom konstruisan je krug. Izračunati površine delova trougla, koji su unutar i van kruga.
- **21.6.** Ako Ana uloži u banku 25000 dinara na godinu dana dobiće kamatu od p%. Na sav novac koji uloži preko 25000 dinara dobija (p+2)% kamate. Koliko novca je Ana uložila u banku ako je ukupna kamata za godinu dana bila (p+0.4)%?

22.1. Izračunati x iz jednačine

$$\left(0.444\ldots + 3.4 \cdot \frac{(4.1333\ldots + 0.8 \cdot x) \cdot \frac{3}{136}}{1.7}\right) : 0.58 - 0.5 = \frac{11}{18}.$$

22.2. Rešiti jednačinu

$$\frac{x+2}{2\sqrt{x+1}-3} - \frac{\sqrt{x+1}+1}{3} - 4 = 0.$$

22.3. Rešiti nejednačinu

$$\left(\frac{4}{9}\right)^{\log_{4^{-1}}(x^2 - 7x + 10)} < 2.25.$$

22.4. Rešiti jednačinu

$$\cos x + \sqrt{3}\cos 2x + \cos 3x = 0.$$

- **22.5.** U prav valjak je upisana pravilna trostrana prizma, a u nju je upisan novi prav valjak. Odrediti odnos zapremina ovih valjkova.
- 22.6. Rešiti jednačinu

$$z^2 - \overline{z} = 0 \qquad (z = x + iy).$$

23.1. Naći vrednost izraza

$$\left(\frac{1.5:0.3}{0.6\cdot 5:\frac{3}{5}} - \frac{\left(\frac{1}{2} - \frac{2}{15}\right)\cdot \frac{30}{77}}{\left(2\frac{3}{25} + \frac{22}{7}\right)\cdot 25}\right):\frac{1}{3} + \frac{1}{307}.$$

23.2. Rešiti jednačinu

$$\log_2 x + \log_3 \frac{3}{x} = \frac{1}{2} \log_2 \sqrt{x} + \log_3 \frac{x^3}{\sqrt{3}}.$$

23.3. Rešiti nejednačinu

$$\frac{1 - \sqrt{1 - 4x^2}}{x} > \frac{3}{2}.$$

23.4. Rešiti jednačinu

$$2\left(\sqrt{3}\sin x\cos x - \sin^2 x\right) = \sqrt{2} - 1.$$

- **23.5.** Izračunati površinu paralelograma sa stranicama $a=9,\ b=6$ i tupim uglom $\beta=150^{\circ}.$
- **23.6.** Dokazati da za svako z=x+iy, sa osobinom $|z|\leq 1$, važi nejednakost

$$|3 + 2i - z| \ge \sqrt{13} - 1.$$

Test 24

24.1. Odrediti vrednost izraza

1.7:
$$\frac{(4.5 \cdot 1.666 \dots + 3.75) \cdot \frac{296}{4995}}{\frac{5}{9}} - 0.41666 \dots$$

24.2. U zavisnosti od realnog parametra k rešiti jednačinu

$$x^{2} - (8k - 2)x + (15k^{2} - 2k - 7) = 0.$$

24.3. Rešiti nejednačinu

$$\sqrt{2x+1} + \sqrt{2x-5} \ge \sqrt{5-2x}.$$

24.4. Uprostiti izraz

$$\frac{3 - 4\cos 2\alpha + \cos 4\alpha}{3 + 4\cos 2\alpha + \cos 4\alpha}.$$

- **24.5.** Ugao između izvodnice i visine prave kupe je $\alpha = 60^{\circ}$, a njihova razlika je 5. Izračunati površinu i zapreminu kupe.
- **24.6.** Dva radnika mogu da završe posao za 12 dana. Posle zajedničkog rada od 5 dana jedan radnik se razboli, pa je drugi sam produžio sa radom i završio posao za narednih 17.5 dana. Za koliko dana može da završi taj posao svaki radnik radeći sam?

Test 25

25.1. Odrediti x iz jednačine

$$\frac{x:9}{10.5 \cdot 0.24 - 14.15:7.5} = \frac{1\frac{11}{20} - 0.945:0.9}{1\frac{3}{40} - 4\frac{3}{8}:7}.$$

25.2. Rešiti jednačinu

$$x^2 + 4|x - 3| - 7x + 11 = 0.$$

25.3. Rešiti nejednačinu

$$\frac{\frac{7}{2}x - x^2 - \frac{3}{2}}{\log_2|x - 1|} > 0.$$

25.4. Rešiti jednačinu

$$\cos\frac{x}{3} - \cos x - 4\sin^3\frac{x}{3} = 0.$$

- **25.5.** Stranica romba je geometrijska sredina njegovih dijagonala. Koliki su uglovi romba?
- 25.6. Izračunati vrednost izraza

$$\frac{3\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}.$$

Test 26

26.1. Naći vrednost izraza

$$\frac{9 \cdot 3.333... + 19.5 : 4\frac{1}{2}}{\frac{62}{75} - 0.16} : \frac{3.5 + 2\frac{2}{15} + 4.666...}{0.5 \cdot \left(1\frac{1}{20} + 4.1\right)}.$$

26.2. Rešiti jednačinu

$$|\log(x-1) + \log(4-x) - \log x| = |\log x - \log 2|.$$

26.3. Rešiti nejednačinu

$$\sqrt{x^2 - 4x + 3} \ge 2 - x.$$

26.4. Rešiti jednačinu

$$\sin\frac{5x}{6} + \cos\frac{x}{3} - \cos 2x = 0.$$

- **26.5.** Osnova prave kupe je $B=7\pi$. Njen omotač M u razvijenom obliku je osmina odgovarajućeg kruga. Izračunati površinu i zapreminu kupe.
- **26.6.** Za koje celobrojne vrednosti k su koreni kvadratne jednačine

$$kx^2 - (1-2k)x + k - 2 = 0$$

racionalni?

Test 27

27.1. Naći vrednost izraza

$$\frac{\left(0.1 + \frac{1}{15} + 0.1666 \dots\right) : \left(\frac{1}{6} + 0.1 - 0.0666 \dots\right) \cdot 2.52}{\left(0.5 - \frac{1}{5} + 0.25 - 0.333 \dots\right) : \left(0.25 - \frac{1}{6}\right) \cdot \frac{7}{13}}.$$

27.2. Rešiti jednačinu

$$\sqrt[3]{2 + \sqrt{x}} + \sqrt[3]{2 - \sqrt{x}} = 1.$$

27.3. Rešiti nejednačinu

$$\frac{1}{2}\log_{7^{-\frac{1}{2}}}x - 2\log_{7^2}(x+6) + 2 \ge 0.$$

27.4. Dokazati da za svako $x \in (\pi/4, \pi/2)$ važi identitet

$$\frac{\sqrt{1-\sin 2x}}{\sin^2 x - \cos^2 x} + \frac{\sin 2x \cos x}{\sin x \cos x + \cos^2 x} = \sin x + \cos x.$$

- 27.5. Zbir dijagonala romba je 8, a površina romba je 7. Koliki je obim romba?
- 27.6. Racionalisati razlomak

$$\frac{1}{\sqrt{\sqrt{2}+\sqrt[3]{3}}}.$$

Test 28

28.1. Naći vrednost izraza

$$\frac{1}{4^{-1}} \cdot \left(\left(\frac{1}{0.25} \right)^2 \left(\frac{1}{2} \right)^3 - \left(-\frac{1}{0.5} \right)^3 \left(-\frac{1}{2} \right)^3 - \left(\frac{1}{0.8} \right)^2 \right) : \left(2 - \frac{1}{2} \right)^2.$$

28.2. U zavisnosti od realnog parametra m rešiti jednačinu

$$4x^2 + (m-2)x + m - 5 = 0.$$

28.3. Rešiti nejednačinu

$$0.3^{2x^2-3x+6} < 0.00243.$$

- **28.4.** Ako za neko $\alpha \in (0, \pi/4)$ važi $\sin \alpha \cos \alpha = 2/5$, izračunati:
 - a) $\sin \alpha + \cos \alpha$;
 - **b**) $\sin \alpha \cos \alpha$;
 - c) $\sin^{2m} \alpha + \cos^{2m} \alpha$, $m \in \mathbb{N}$.
- **28.5.** Oko prave kupe, čija je visina jednaka prečniku baze, opisana je lopta poluprečnika 8. Odrediti površinu i zapreminu kupe.
- **28.6.** Učenik je krenuo u školu između 8 i 9 sati ujutru i to u trenutku kada su se mala i velika kazaljka poklopile. Vratio se kući između 2 i 3 sata popodne, u trenutku kada su kazaljke gradile opružen ugao. Koliko je vremena proteklo od polaska do povratka iz škole?

Test 29

29.1. Izračunati vrednost izraza

$$\frac{3\frac{1}{3} \cdot \sqrt{\frac{9}{80}} - \left(\frac{5}{4} \cdot \sqrt{0.8} - 5 \cdot \sqrt{0.2} - \sqrt{20}\right) - 10 \cdot \sqrt{0.2}}{3\frac{1}{2} \cdot \sqrt{32} - \left(\sqrt{4\frac{1}{2}} - 2 \cdot \sqrt{\frac{1}{8}}\right) + 6 \cdot \sqrt{\frac{2}{9}} - 140 \cdot \sqrt{0.02}} \cdot \sqrt{\frac{2}{5}}.$$

29.2. Za koje vrednosti realnog parametra m jednačina

$$\log_4(3+x) - \log_{0.25}(1-x) = 1 + \log_4\log_2 m$$

može imati realna rešenja? Za koje celobrojne vrednosti parametra m data jednačina ima realna rešenja?

29.3. Rešiti nejednačinu

$$\frac{3x}{x^2 - 9} \le \frac{1}{x + 2}.$$

29.4. Rešiti jednačinu

$$\cos 2x + \cos 6x = -\sqrt{3}\cos 4x.$$

- **29.5.** Zbir dijagonala romba je 14, a manja dijagonala iznosi 3/4 veće. Izračunati stranicu romba i poluprečnik upisane kružnice.
- **29.6.** Da li je vrednost izraza

$$2\sqrt{8-2\sqrt{7}}+\sqrt{\left(2\sqrt{7}-6\right)^2}$$

racionalan ili iracionalan broj?

Test 30

30.1. Naći vrednost izraza

$$3\frac{5}{14} - \left(1\frac{11}{49} : \left(76 \cdot \frac{25}{38} - 47\frac{3}{7}\right)\right) \cdot \frac{12}{55}.$$

30.2. Za koju vrednost parametra k > 0 je jedan koren jednačine

$$8x^2 - 6x + 9k^2 = 0$$

jednak kvadratu drugog korena?

30.3. Rešiti nejednačinu

$$\left| \frac{3x+7}{x+2} \right| \le 5.$$

30.4. Rešiti jednačinu

$$\tan x + \cot x = 3 + 2\sin 2x.$$

- **30.5.** Izvodnica i poluprečnik osnove prave kupe su $s=5,\ R=3.$ Kupa je izdubljena pomoću pravog valjka, čija se osa poklapa sa osom kupe, a osnova mu je deo osnove kupe. Poluprečnik osnove valjka je r=1, a visina h je jednaka polovini visine H kupe. Izračunati površinu i zapreminu izdubljene kupe.
- **30.6.** Dokazati da je

$$\sqrt{11+6\sqrt{2}} + \sqrt{11-6\sqrt{2}}$$

prirodan broj.

Test 31

31.1. Odrediti vrednost izraza

$$\frac{\left(1.75 : \frac{2}{3} - 1.75 \cdot 1\frac{1}{8}\right) : \frac{7}{12}}{\left(\frac{17}{80} - 0.0325\right) : 400} : (6.79 : 0.7 + 0.3).$$

31.2. Rešiti jednačinu

$$\sqrt{2x - 6} + \sqrt{x + 4} = 5.$$

31.3. Rešiti nejednačinu

$$\frac{2}{|x|+3} - \frac{1}{|x|-1} < 0.$$

31.4. Uprostiti izraz

$$\frac{2(\sin 2x + 2\cos^2 x - 1)}{\cos x - \sin x - \cos 3x + \sin 3x}.$$

31.5. Dijagonala jednakokrakog trapeza je dva puta duža od njegove srednje linije m. Ako je m poznato, kolika je površina trapeza?

31.6. Cena neke robe je najpre povećana za 20%, a posle mesec dana smanjena za 20%. Posle ove promene prvobitna cena se smanjila za 60 dinara. Za koliko dinara bi se smanjila prvobitna cena ako bi se najpre smanjila za 20%, a zatim povećala za 20%?

Test 32

32.1. Naći vrednost izraza

$$\left(\left(\left(6\frac{9}{16} - 2\frac{1}{2} \cdot 1\frac{9}{14} \right) \cdot 0.56 \right) : 0.75 \right) : 6\frac{2}{3}.$$

32.2. Rešiti jednačinu

$$\log_2(2^x + 1) \cdot \log_2(2^{x+1} + 2) = 2.$$

32.3. Rešiti nejednačinu

$$\frac{|2x-1|}{x^2-x-2} > \frac{1}{2}.$$

32.4. Ako je $\sin \alpha = 3/5$ i $\cos \beta = -12/13, \ 0 < \alpha, \beta < \pi,$ izračunati vrednost izraza

$$T(\alpha, \beta) = \cos(2\alpha + \beta) + \sin(\beta - 2\alpha).$$

- **32.5.** Prava zarubljena kupa ima poluprečnike baza R=3, r=1 i visinu H=2. Odrediti odnos zapremina zarubljene i dopunske kupe.
- **32.6.** Racionalisati izraz

$$\frac{1}{2 + \sqrt{5} + 2\sqrt{2} + \sqrt{10}}.$$

Test 33

33.1. Izračunati

$$6: \frac{1}{3} - 0.8: \frac{1.5}{\frac{3}{2} \cdot 0.4 \cdot \frac{50}{1:\frac{1}{2}}} + \frac{1}{4} + \frac{1 + \frac{1}{2} \cdot \frac{1}{0.25}}{6 - \frac{46}{1 + 2.2 \cdot 10}}.$$

33.2. Da li jednačine

$$\sqrt{(3x+8)(x+3)} = 2$$
 i $\sqrt{3x+8}\sqrt{x+3} = 2$

imaju ista rešenja?

33.3. Rešiti nejednačinu

$$\sqrt{x^2 + 3x + 9} + 2x \le 3|x + 1|.$$

33.4. Rešiti jednačinu

$$\sin x + \cos x = -1.$$

- **33.5.** U jednakokrakom trapezu sa osnovicama a=8 i b=6 dijagonale se seku pod pravim uglom. Izračunati obim i površinu trapeza.
- **33.6.** Dokazati da je vrednost izraza

$$\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}$$

prirodan broj.

Test 34

34.1. Izračunati

$$\left(\left(\left(3^{\frac{5}{2}} \cdot 5^{\frac{4}{3}} \right) : 2^{-\frac{5}{4}} \right) : \left(16 : \left(5^2 \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{1}{2}} \right) \right) \right)^{\frac{1}{5}}.$$

34.2. Rešiti jednačinu

$$5^x + 12^x = 13^x$$
.

34.3. Rešiti nejednačinu

$$\log_{2x+3} x^2 < 1.$$

34.4. Rešiti jednačinu

$$\cos 2x - \cos x - \sin x = 0.$$

34.5. Pravilna četvorostrana prizma ima visinu H=2 i stranicu osnove a=4. Poluprečnik sfere je jednak rastojanju između najudaljenijih temena naspramnih strana prizme. Kolike su površina i zapremina sfere?

34.6. Od ulaska lokomotive do poslednjeg vagona u tunel proteklo je 15 sekundi. Od tog trenutka do izlaska poslednjeg vagona iz tunela proteklo je pola minuta. Kolika je dužina voza i kojom brzinom se voz kretao ako je dužina tunela 300 m?

Test 35

35.1. Naći vrednost izraza

$$\left(6.2 + 3\frac{9}{16} : \left(\frac{2.75}{14 : \frac{2}{7} - 2.5 : \frac{1}{18}} - \frac{7}{24}\right)\right) : 12.666 \dots$$

35.2. Da li jednačine

$$\log_2 x(x+1) = 1$$
 i $\log_2 x + \log_2(x+1) = 1$

imaju ista rešenja?

35.3. Rešiti nejednačinu

$$\frac{1}{5-x} + \frac{2}{1+x} < 1.$$

35.4. Rešiti jednačinu

$$\cos^6 x + \sin^6 x = 4\sin^2 2x$$

- **35.5.** U nejednakokrakom trapezu jedan krak je duži od drugog za 4. Veći krak je kraći od veće osnovice za 2. Zbir manje osnovice i krakova je 40. Jedna dijagonala polovi ugao na većoj osnovici. Odrediti stranice trapeza.
- **35.6.** Odrediti vrednost celobrojnog parametra m u kvadratnoj jednačini

$$x^2 - mx + 2m - 7 = 0.$$

tako da koreni jednačine zadovoljavaju uslov

$$\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{4}{5} = x_1 + x_2,$$

a zatim za tako nađeno m, ne rešavajući jednačinu, odrediti zbir kubova njenih korena.

Test 36

36.1. Izračunati

$$1\frac{9}{20} - \frac{\left(0.645:0.3 - 1\frac{107}{180}\right) \cdot \left(4:6.25 - 1:5 + \frac{1}{7} \cdot 1.96\right)}{1 - 2\frac{1}{5}:7}.$$

36.2. U skupu realnih brojeva naći rešenje jednačine

$$\log_2\left(xy + \frac{1}{xy}\right) = 1 - (x + y - 2)^2.$$

36.3. Rešiti nejednačinu

$$\frac{x^2 - |x| - 12}{x - 3} \ge 2x.$$

36.4. Rešiti jednačinu

$$\cos 7x + \cos 5x - \sin 2x = 0.$$

- **36.5.** Iz sfere poluprečnika R=5 je odstranjen isečak, čija pripadna kalota ima visinu H=1. Izračunati površinu i zapreminu tako dobijene "izdubljene sfere".
- **36.6.** Pešak je prešao put za četiri dana. Prvog dana je prešao 1/3 puta, drugog dana 1/5 puta, a trećeg dana 6.8 km. Za ta tri dana je prešao 6 puta više nego što mu je preostalo. Kolika je dužina puta? Koliko procenata puta je pešak prelazio svakoga dana?

Test 37

37.1. Naći vrednost izraza

$$3.5 + 1.5 \cdot \left(2.652 : \sqrt{1.69} - 1\frac{17}{30} + \frac{3}{50}\right) \cdot \left(19.21 - \left(4.26 - \frac{5}{24} : \frac{5}{42}\right)\right).$$

37.2. Rešiti jednačinu

$$\sqrt{x^2 - 1} + \sqrt{x^2 + x - 2} - \sqrt[4]{x^2 - 2x + 1} = 0.$$

37.3. Rešiti nejednačinu

$$\log_{x^2-1}(3x-1) < \log_{x^2-1}x^2.$$

- 37.4. Izračunati:
 - a) $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}$;
 - $\mathbf{b)}\,\cos\frac{\pi}{7}\cos\frac{3\pi}{7}\cos\frac{5\pi}{7}.$
- **37.5.** Iz kvadrata zadate stranice *a* su odstranjeni ugaoni delovi tako da je preostala figura pravilni osmougao. Kolika je površina tog osmougla?
- **37.6.** Ako je z = x + iy, rešiti jednačinu

$$|z| + z = 2 + i.$$

Test 38

38.1. Izračunati vrednost izraza

$$\frac{1}{2} \cdot \left(\frac{\sqrt{5}+1}{1+\sqrt{5}+\sqrt{7}} + \frac{\sqrt{5}-1}{1-\sqrt{5}+\sqrt{7}} \right) \cdot \left(7^{\frac{1}{2}} - 4 \cdot 7^{-\frac{1}{2}} + 2 \right) \cdot \sqrt{0.2}.$$

38.2. Rešiti jednačinu

$$|x^2 - 2x - 3| = |x^2 - 2x + 5|.$$

38.3. Rešiti nejednačinu

$$25^x < 6 \cdot 5^x - 5.$$

38.4. Uprostiti izraz

$$A = \frac{\sin^3(270^\circ - \alpha)\cos(\alpha - 360^\circ)}{\tan^3(90^\circ - \alpha)\cos^3(270^\circ - \alpha)}.$$

- **38.5.** Romb sa većom dijagonalom d=4 i oštrim uglom $\alpha=60^\circ$ rotira oko jedne svoje stranice. Odrediti površinu i zapreminu tako dobijenog obrtnog tela.
- **38.6.** Brojna vrednost izraza

$$\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}.$$

je ceo broj. Naći taj broj.

Test 39

39.1. Naći vrednost izraza

$$\left(\frac{3\frac{1}{3} + 4\frac{1}{9} - 6\frac{5}{6}}{5\frac{7}{8} - 2\frac{1}{4} - 0.5} : \left(13\frac{8}{11} - 8\frac{50}{99}\right)\right) \cdot \left(2\frac{3}{8} - 1\frac{5}{8}\right).$$

39.2. Rešiti jednačinu

$$\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1.$$

39.3. Rešiti nejednačinu

$$\log_{1/3} \frac{1}{27x} > 5\sqrt{\log_3 x}.$$

39.4. Rešiti jednačinu

$$\sin^3 x + \cos^3 x = 1 - \frac{1}{2}\sin 2x.$$

- **39.5.** Rastojanje između paralelnih stranica pravilnog šestougla je $d=2\sqrt{3}$. Izračunati obim i površinu šestougla.
- **39.6.** Prvi traktor može izorati neko polje za 15 sati, a drugi za 20 sati. Nakon jednog sata oranja prvim traktorom, u pomoć je došao drugi traktor i zajedno su poorali celo polje. Koliko su sati ovi traktori orali zajedno?

Test 40

40.1. Izračunati vrednost izraza

$$(-10)^{2} \cdot \frac{\left(6\frac{4}{25} : 15\frac{2}{5} - 10^{2} \cdot (-0.2)^{3}\right) \cdot (0.015 : 0.12 + 0.7)}{1.2 : \left((-3) \cdot \left(-\frac{1}{2}\right)^{3}\right) - 0.2}.$$

40.2. Rešiti jednačinu

$$|x+1| - |x| + 3|x-1| - 2|x-2| = x+2.$$

40.3. Rešiti nejednačinu

$$5^{\frac{3x-1}{x+1}} > \sqrt[3]{125^{2x+14}}$$
.

40.4. Rešiti jednačinu

$$\sin x + \cos x + \sin x \cos x = 1.$$

- **40.5.** Osnovice trapeza su $a=4+\sqrt{3},\,b=1,$ a uglovi na većoj osnovici $\alpha=45^\circ,$ $\beta=30^\circ.$ Izračunati površinu i zapreminu obrtnog tela koje nastaje kada trapez rotira oko svoje veće osnovice.
- **40.6.** Cena zlata na berzi svako prepodne poraste za 20%, a svako poslepodne opadne za 20%. Da li će posle 3 dana rada berze cena zlata biti veća ili manja od 80% prvobitne cene?

REŠENJA ZADATAKA

Test 1

- 1.1. Vrednost izraza je $16\frac{5}{14}$.
- **1.2.** Iz uslova $6x-x^2-8\geq 0$ dobijamo $x\in [2,4].$ Primetimo da za svako $x\in [2,4]$ važi 3x-4>0. Kvadriranjem jednačine

$$\sqrt{6x - x^2 - 8} = 3x - 4$$

dobijamo kvadratnu jednačinu

$$10x^2 - 30x + 24 = 0,$$

koja nema rešenja u skupu realnih brojeva.

1.3. Data nejednačina je definisana za svako $x \in \mathbb{R} \setminus \{-1\}$. Nejednačina je ekvivalentna sa

$$2^{2x} \cdot 2^{\frac{4}{x+1}} < 2^4 \quad \Leftrightarrow \quad 2^{2x + \frac{4}{x+1}} < 2^4.$$

Odavde dobijamo nejednačinu

$$2x + \frac{4}{x+1} < 4,$$

koja je ekvivalentna sa

$$\frac{2x(x-1)}{x+1} < 0.$$

Rešenje ove nejednačine je $x \in (-\infty, -1) \cup (0, 1)$, što je i rešenje polazne nejednačine.

1.4. Koristeći trigonometrijske identitete dobijamo

$$\sin(x+1) - \sin(3x+3) = 4\sin^2(x+1)\cos(x+1),$$

$$-2\sin(x+1)\cos 2(x+1) = 2\sin(x+1)\sin 2(x+1),$$

$$\sin(x+1)(\sin 2(x+1) + \cos 2(x+1)) = 0,$$

$$\sin(x+1)\left(\frac{\sqrt{2}}{2}\sin 2(x+1) + \frac{\sqrt{2}}{2}\cos 2(x+1)\right) = 0,$$

$$\sin(x+1)\sin\left(\frac{\pi}{4} + 2(x+1)\right) = 0.$$

Iz poslednje jednačine sledi

$$x_k + 1 = k\pi$$
 ili $\frac{\pi}{4} + 2(x_k + 1) = k\pi$, $k \in \mathbb{Z}$,

pa su rešenja polazne jednačine

$$x_k = k\pi - 1$$
 ili $x_k = \frac{(4k-1)\pi}{8} - 1$, $k \in \mathbb{Z}$.

1.5. Neka su a, b katete pravouglog trougla i α ugao naspram katete a.

Prema definiciji trigonometrijske funkcije sinus je

$$\sin \alpha = \frac{a}{c}$$

pa je

$$a = c \sin \alpha = 2 \sin \alpha$$
.

Koristeći trigonometrijsku jednakost

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

i imajući u vidu da je $2\alpha=45^\circ,\,\cos2\alpha=\cos45^\circ=\sqrt{2}/2,$ dobija se

$$\sin^2 \alpha = \frac{1 - \frac{\sqrt{2}}{2}}{2} = \frac{2 - \sqrt{2}}{4}, \quad \sin \alpha = \frac{\sqrt{2 - \sqrt{2}}}{2}.$$

Zato je jedna kateta

$$a = \sqrt{2 - \sqrt{2}}.$$

Primenom Pitagorine teoreme

$$a^2 + b^2 = c^2$$

sledi

$$2 - \sqrt{2} + b^2 = 4$$
, $b^2 = 2 + \sqrt{2}$,

odakle je druga kateta

$$b = \sqrt{2 + \sqrt{2}}.$$

Površina pravouglog trougla je

$$P = \frac{ab}{2} = \frac{\sqrt{2 - \sqrt{2}}\sqrt{2 + \sqrt{2}}}{2}$$
$$= \frac{\sqrt{(2 - \sqrt{2})(2 + \sqrt{2})}}{2} = \frac{\sqrt{4 - 2}}{2} = \frac{\sqrt{2}}{2}.$$

1.6. Neka je $x = \sqrt[3]{3}$. Dati izraz A proširujemo na sledeći način

$$A = \frac{44}{2+3x+x^2} = \frac{44(x^2-2x+4)(x^2-x+1)}{(x+2)(x+1)(x^2-2x+4)(x^2-x+1)}$$
$$= \frac{44(x^4-3x^3+7x^2-6x+4)}{(x^3+8)(x^3+1)}.$$

Kada u dobijenom izrazu zamenimo x dobijamo

$$A = 7\sqrt[3]{9} - 3\sqrt[3]{3} - 5$$
.

Neka je sada $x = \sqrt[3]{2}$. Na sličan način kao kod izraza A, izraz B postaje

$$B = \frac{1}{2 + 3x + x^2} = \frac{x^4 - 3x^3 + 7x^2 - 6x + 4}{(x^3 + 8)(x^3 + 1)} = \frac{7\sqrt[3]{4} - 4\sqrt[3]{2} - 2}{30}.$$

Test 2

- **2.1.** Vrednost izraza je $\frac{1}{4}$.
- **2.2.** Jednačina je definisana za $x \neq 0$ i 3x + 13 > 0, tj. za $x \in (-13/3, 0) \cup (0, +\infty)$. Transformišimo jednačinu na sledeći način:

$$\log_{100} x^2 + \log_{10} (3x + 13) - 1 = 0,$$

$$\frac{1}{2} \log_{10} x^2 + \log_{10} (3x + 13) - 1 = 0,$$

$$\log_{10} |x| + \log_{10} (3x + 13) - 1 = 0,$$

$$\log_{10} \frac{|x|(3x + 13)}{10} = 0.$$

Iz poslednje jednačine imamo |x|(3x+13)=10. Rešenja ove jednačine su: $x_1=-5,\ x_2=2/3,\ x_3=-10/3$ i $x_4=-1$. Budući da rešenje $x_1=-5$ ne pripada oblasti definisanosti jednačine, njega odbacujemo, pa su rešenje polazne jednačine $x\in\{-10/3,-1,2/3\}$.

2.3. Racionalisanjem datog korena jednačine imamo da je $x_1 = \sqrt{15} - 4$. Neka je

$$x^2 + bx + c = 0$$
, $b, c \in \mathbb{O}$,

jednačina koju treba naći. Na osnovu Vietovih formula za ovu kvadratnu jednačinu je

$$x_1 + x_2 = -b$$
, $x_1 x_2 = c$.

Da bi uslov zadatka $b, c \in \mathbb{Q}$ bio ispunjen, a s obzirom na vrednost korena x_1 , mora biti da je $x_2 = -\sqrt{15} - 4$. Sada je b = 8, c = 1, pa je tražena kvadratna jednačina

$$x^2 + 8x + 1 = 0.$$

2.4. Imamo sledeći niz ekvivalentnih jednačina:

$$\cos(x-1) - \cos(3x-3) = 4\sin^3(x-1),$$

$$2\sin(x-1)\sin 2(x-1) = 4\sin^3(x-1),$$

$$4\sin^2(x-1)\cos(x-1) = 4\sin^3(x-1),$$

$$\sin^2(x-1)(\cos(x-1) - \sin(x-1)) = 0,$$

$$\sin^2(x-1)\left(\frac{\sqrt{2}}{2}\cos(x-1) - \frac{\sqrt{2}}{2}\sin(x-1)\right) = 0,$$

$$\sin^2(x-1)\sin\left(\frac{\pi}{4} - x + 1\right) = 0.$$

Rešenja date jednačine su

$$x_k = k\pi + 1$$
 ili $x_k = \frac{(1 - 4k)\pi}{4} + 1$, $k \in \mathbb{Z}$.

2.5. Stranica romba je označena sa a, dijagonala strane sa d. Prizma je prava, pa se visina prizme H poklapa sa njenom ivicom. Takođe, najkraće rastojanje naspramnih strana je jednako visini romba, što znači da su visine romba i prizme jednake.

Strana prizme je pravouga
onik stranica a, H i njena površina je S=aH. Osnova prizme je romb, pa prizma ima četiri jednake strane i prema uslovu zadatka sledi da je omota
čM=4S=4aH=48. Još, prema Pitagorinoj teoremi, iz uslova d=5 sledi $d^2=a^2+H^2=25$. Dakle, dobijamo sistem jednačina

$$4aH = 48, \quad a^2 + H^2 = 25.$$

Iz prve jednačine je a = 12/H, što zamenom u drugu daje

$$H^4 - 25H^2 + 144 = 0.$$

Dobijena jednačina je bikvadratna i rešava se smenom $t=H^2$, posle koje postaje kvadratna jednačina

$$t^2 - 25t + 144 = 0.$$

Rešenja kvadratne jednačine su

$$t_{1,2} = \frac{25 \pm \sqrt{25^2 - 4 \cdot 144}}{2} = \frac{25 \pm 7}{2},$$

tj. $t_1 = 16, t_2 = 9$, pa su rešenja bikvadratne jednačine

$$H_1 = \sqrt{t_1} = 4$$
, $H_2 = \sqrt{t_2} = 3$.

Dalje je

$$a_1 = \frac{12}{H_1} = 3, \quad a_2 = \frac{12}{H_2} = 4.$$

Za visinu H i stranicu a romba važi $H \leq a$, pa je

$$H = H_2 = 3, \quad a = a_2 = 4.$$

Baza prizme je

$$B = aH = 12$$

i za zapreminu se dobija

$$V = BH = 36.$$

2.6. Kako je 2% iskopanog uglja voda, to je 98% čistog uglja, što znači da uglja ima $0.98 \cdot 2210$ t = 2165.8 t. Kada je procenat vlage porastao na 15%, ta ista količina uglja predstavlja sada 85% ukupne težine, pa je ukupna težina rude na stovarištu $(100/85) \cdot 2165.8$ t = 2548 t. Znači da se ukupna težina povećala za 338 t.

Test 3

- **3.1.** Vrednost izraza je $26\frac{37}{40}$.
- **3.2.** Zadatak ima smisla ako je $x \geq 6$. Dva puta kvadriranjem leve i desne strane dobijamo da je

$$4x - 12 = \sqrt{(7x+1)(3x-18)},$$

$$5x^2 - 27x = 162,$$

te je $x_1 = 9$ i $x_2 = -18/5$. Zbog uslova $x \ge 6$ rešenje x_2 ne dolazi u obzir. Zamenom $x_1 = 9$ u datoj jednačini vidimo da to jeste rešenje.

3.3. Nejednačina je definisana za 2 < x < 3. Transformacijom date nejednačine sledi:

$$\begin{aligned} \log_7 \log_{\frac{1}{\sqrt[7]{7}}}(x-2) &< 1, \\ \log_7 \log_7(x-2)^{-7} &< 1, \\ 0 &< \log_7(x-2)^{-7} &< 7, \\ 1 &< (x-2)^{-1} &< 7. \end{aligned}$$

Dakle, rešenje nejednačine je $x \in (15/7, 3)$.

3.4. Jednačinu rešavamo na sledeći način:

$$\sin x - \sin \frac{x}{3} = 0,$$

$$\sin \left(\frac{x}{3} + \frac{2x}{3}\right) - \sin \frac{x}{3} = 0,$$

$$\sin \frac{x}{3} \cos \frac{2x}{3} + \cos \frac{x}{3} \sin \frac{2x}{3} - \sin \frac{x}{3} = 0,$$

$$\sin \frac{x}{3} \left(1 - 2\sin^2 \frac{x}{3}\right) + \cos \frac{x}{3} 2\sin \frac{x}{3} \cos \frac{x}{3} - \sin \frac{x}{3} = 0,$$

$$\sin \frac{x}{3} \left(2 - 4\sin^2 \frac{x}{3}\right) = 0,$$

$$2\sin \frac{x}{3} \left(1 - \sqrt{2}\sin \frac{x}{3}\right) \left(1 + \sqrt{2}\sin \frac{x}{3}\right) = 0.$$

Dalje imamo:

$$\sin\frac{x}{3} = 0 \quad \Rightarrow \quad x_k = 3k\pi, \quad k \in \mathbb{Z},$$

$$\sin\frac{x}{3} = \frac{\sqrt{2}}{2} \quad \Rightarrow \quad x_k = \frac{3(8k+1)\pi}{4} \quad \text{ili} \quad x_k = \frac{3(8k+3)\pi}{4}, \quad k \in \mathbb{Z},$$

$$\sin\frac{x}{3} = -\frac{\sqrt{2}}{2} \quad \Rightarrow \quad x_k = \frac{3(8k-1)\pi}{4} \quad \text{ili} \quad x_k = \frac{3(8k-3)\pi}{4}, \quad k \in \mathbb{Z}.$$

Zadatak se jednostavnije rešava pomoću transformacije

$$\sin x - \sin \frac{x}{3} = \frac{1}{2} \sin \frac{x}{3} \cos \frac{2x}{3}.$$

3.5. Iz $(a-b)^2 = a^2 + b^2 - 2ab \ge 0$ sledi

$$2ab < a^2 + b^2$$

i, prema Pitagorinoj teoremi,

$$2ab \le c^2$$
, $c^2 + 2ab \le c^2 + c^2 = 2c^2$.

Iz $(a+b)^2 = a^2 + b^2 + 2ab$ dalje sledi

$$(a+b)^2 = c^2 + 2ab \le 2c^2,$$

pa je zaista

$$a+b \le c\sqrt{2}$$
.

Jednakost $a+b=c\sqrt{2}$ važi ako je $(a-b)^2=0,$ tj. a=b, što znači da je pravougli trougao jednakokraki.

3.6. a) Neka je z=x+iy. Na osnovu uslova zadatka sledi

$$|x + i(y - 1)| = |(x + 2) + iy|,$$

tj.

$$x^{2} + (y - 1)^{2} = (x + 2)^{2} + y^{2}.$$

Odavde dobijamo da je geometrijsko mesto tačaka prava zadata jednačinom

$$4x + 2y + 3 = 0.$$

b) Analogno kao u delu pod a) sledi

$$1 < |(x+2) + i(y-3)| < 2,$$

$$1 < \sqrt{(x+2)^2 + (y-3)^2} < 2,$$

$$1 < (x+2)^2 + (y-3)^2 < 4.$$

Dakle, geometrijsko mesto tačaka je kružni prsten.

Test 4

- 4.1. Vrednost datog izraza je 9.
- **4.2.** Jednačina ima smisla za $x \ge 5/2$. Kvadriranjem jednačine

$$\sqrt{x+1}\sqrt{2x-5} = x+3$$
,

dobijamo kvadratnu jednačinu

$$x^2 - 9x - 14 = 0$$
.

čija su rešenja $x_1 = \left(9 - \sqrt{137}\right)/2$ i $x_2 = \left(9 + \sqrt{137}\right)/2$. S obzirom na uslov $x \geq 5/2$, sledi da data jednačina ima jedinstveno rešenje $x = \left(9 + \sqrt{137}\right)/2$.

4.3. Nejednačina je definisana za svako $x \in \mathbb{R} \setminus \{-1\}$. Transformacijom nejednačine sledi:

$$5^{-x} < 25^{-\frac{1}{x+1}} \quad \Leftrightarrow \quad 5^{-x} < 5^{-\frac{2}{x+1}} \quad \Leftrightarrow \quad -x < -\frac{2}{x+1}$$

$$\Leftrightarrow \quad 0 < \frac{x^2 + x - 2}{x+1} \quad \Leftrightarrow \quad 0 < \frac{(x-1)(x+2)}{x+1}.$$

Rešavajući poslednju nejednačinu dobijamo da je rešenje polazne nejednačine $x \in (-2, -1) \cup (1, +\infty)$.

- **4.4.** a) $\sin \alpha = -\sqrt{35}/6$, $\tan \alpha = \sqrt{35}$, $\cot \alpha = \sqrt{35}/35$;
 - **b)** $\sin \alpha = 13\sqrt{233}/233$, $\cos \alpha = -8\sqrt{233}/233$, $\tan \alpha = -13/8$;
 - c) $\sin \alpha = \sqrt{6}/3$, $\cos \alpha = \sqrt{3}/3$, $\cot \alpha = \sqrt{2}/2$;
 - **d)** $\cos \alpha = -12/13$, $\tan \alpha = -5/12$, $\cot \alpha = -12/5$.
- **4.5.** Na slici je prikazana samo osnova paralelopipeda sa visinom h koja odgovara stranici b.

Visina h paralelograma se određuje iz $h/a = \sin \gamma$ i dobija se

$$h = a\sin\gamma = 3\sin 30^\circ = \frac{3}{2},$$

pa je baza

$$B = bh = 8 \cdot \frac{3}{2} = 12.$$

Različite strane paralelopipeda su

$$S_1 = aH = 3H, \quad S_2 = bH = 8H,$$

gde je ${\cal H}$ visina paralelopipeda. Paralelopiped ima jednake naspramne strane, pa je omotač

$$M = 2S_1 + 2S_2 = 22H = 220,$$

odakle je visina

$$H = 10.$$

Površina i zapremina paralelopipeda su

$$P = 2B + M = 24 + 220 = 244, \quad V = BH = 12 \cdot 10 = 120.$$

4.6. Ako sa x označimo masu srebra finoće 600 $\%_{00}$, a sa y masu srebra finoće 900 $\%_{00}$ koje treba da se pomešaju, na osnovu uslova zadatka postavljamo proporciju

$$x: y = (900 - 850): (850 - 600),$$

odakle je x:y=1:5. Kako je x+y=600 grama, iz proporcije imamo da je y=5x, pa ako to zamenimo u drugoj jednačini, dobijamo x+5x=6x=600 grama, tj. x=100 grama. Sada je y=600-100=500 grama.

Test 5

- **5.1.** Dati izraz ima vrednost 1.
- **5.2.** Da bi jednačina imala smisla mora da važi $x>1,\ x>-1$ i x<7, što je ekvivalentno sa $x\in(1,7).$ Dalje imamo

$$\begin{split} \log_{2^{-1}}(x-1) + \log_{0.5}(x+1) - \log_{\frac{1}{\sqrt{2}}}(7-x) &= 1, \\ \log_{2}(x-1)^{-1} + \log_{2}(x+1)^{-1} + \log_{2}(7-x)^{2} &= 1, \\ \log_{2}\frac{(7-x)^{2}}{(x-1)(x+1)} &= 1. \end{split}$$

Iz poslednje jednačine sledi

$$\frac{(7-x)^2}{x^2-1} = 2,$$

odakle se dobija kvadratna jednačina

$$x^2 + 14x - 51 = 0$$
.

čija su rešenja $x_1 = 3$ i $x_2 = -17$. S obzirom na uslov $x \in (1,7)$, jedino rešenje jednačine je x = 3.

5.3. Razlikovaćemo dva slučaja.

 1° Za $x \geq 7/2$ nejednačina postaje

$$\sqrt{x^2 - 2x + 9} \le 3x - 5,$$

čije je rešenje $x \ge 7/2$. 2° Za x < 7/2 dobijamo

$$\sqrt{x^2 - 2x + 9} \le -x + 9,$$

odakle je x < 7/2.

Dakle, rešenje polazne nejednačine je $x \in \mathbb{R}$.

5.4. Transformišimo datu jednačinu na način:

$$\sin x - \sin \frac{5x}{8} \cos \frac{3x}{8} = 0,$$

$$\sin \left(\frac{3x}{8} + \frac{5x}{8}\right) - \sin \frac{5x}{8} \cos \frac{3x}{8} = 0,$$

$$\sin \frac{3x}{8} \cos \frac{5x}{8} + \cos \frac{3x}{8} \sin \frac{5x}{8} - \sin \frac{5x}{8} \cos \frac{3x}{8} = 0,$$

$$\sin \frac{3x}{8} \cos \frac{5x}{8} = 0.$$

Iz poslednje jednačine dobijamo rešenja polazne jednačine

$$x_k = \frac{8k\pi}{3}, \quad x_k = \frac{4(2k+1)\pi}{5}, \quad k \in \mathbb{Z}.$$

5.5. Kako je CD visina trougla ABC, trouglovi ADC i DBC su pravougli.

Trouga
oDBCima katete $CD=\sqrt{3},\,DB=AB-AD=3-AD$ i hipotenuzu
 BC=AD. Prema Pitagorinoj teoremi je

$$CD^2 + DB^2 = BC^2$$

i dalje

$$3 + (3 - AD)^2 = AD^2,$$

odakle je

$$AD = 2$$
.

Primenjujući Pitagorinu teoremu na trouga
oADCsa katetama AD=2,
 $CD=\sqrt{3},$ dobija se

$$AC = \sqrt{AD^2 + CD^2} = \sqrt{4+3} = \sqrt{7}.$$

5.6. Pretpostavimo da je na početku školske godine bilo x učenika. Od tog broja je 0.46x devojčica i 0.54x dečaka. Kako je tokom godine školu napustilo 30 dečaka, broj dečaka na kraju godine je 0.54x-30. S druge strane, kako je školu napustilo ukupno 45 učenika preostalo ih je x-45, od čega je devojčica 0.48(x-45), a

dečaka 0.52(x-45). Izjednačavanjem broja dečaka dobijenih u ova dva slučaja dobijamo jednačinu

$$0.54x - 30 = 0.52(x - 45),$$

odakle je x = 330. Dakle, upisano je 330 učenika, a završilo njih 285.

Test 6

- **6.1.** Vrednost izraza je 15.6961.
- **6.2.** Zadatak ima smisla za $x>2^9$. Transformacijom date jednačine dobijamo

$$\log_3(\log_2 x - 9) = \log_3 9 \left(1 - \frac{8}{\log_2 x} \right) \iff \log_2 x - 9 = 9 \left(1 - \frac{8}{\log_2 x} \right).$$

Uvođenjem smene $t = \log_2 x$ poslednja jednačina postaje

$$t^2 - 18t + 72 = 0,$$

čija su rešenja $t_1=12$ i $t_2=6$. Odatle je $x_1=2^{12}$ i $x_2=2^6$. S obzirom na uslov $x>2^9$, zadatak ima samo jedno rešenje $x=2^{12}$.

6.3. Da bi nejednačina imala smisla mora da bude $x \neq 1$, $x \neq -1$ i $x \neq -2/3$. Nejednačinu rešavamo na sledeći način:

$$\frac{x}{x^2 - 1} \le \frac{1}{3x + 2} \iff \frac{x}{x^2 - 1} - \frac{1}{3x + 2} \le 0$$

$$\Leftrightarrow \frac{2x^2 + 2x + 1}{(x - 1)(x + 1)(3x + 2)} \le 0 \iff x \in (-\infty, -1) \cup (-2/3, 1).$$

6.4. Imamo

$$\cos 9x + \cos 5x + 2\sin^2 x - 1 = 0 \iff 2\cos 7x\cos 2x + \sin^2 x - \cos^2 x = 0.$$

Dalje, koristeći trigonometrijske identitete dobijamo

$$2\cos 7x \left(\cos^2 x - \sin^2 x\right) - \left(\cos^2 x - \sin^2 x\right) = 0,$$

$$(\cos x - \sin x)(\cos x + \sin x)(2\cos 7x - 1) = 0,$$

$$\sin\left(\frac{\pi}{4} - x\right)\sin\left(\frac{\pi}{4} + x\right)(2\cos 7x - 1) = 0.$$

Iz poslednje jednačine slede rešenja:

$$\sin\left(\frac{\pi}{4} - x\right) = 0 \quad \Rightarrow \quad x_k = \frac{(4k+1)\pi}{4}, \quad k \in \mathbb{Z},$$

$$\sin\left(\frac{\pi}{4} + x\right) = 0 \quad \Rightarrow \quad x_k = \frac{(4k-1)\pi}{4}, \quad k \in \mathbb{Z},$$

$$\cos 7x = \frac{1}{2} \quad \Rightarrow \quad x_k = \frac{1}{7} \left(\pm \frac{\pi}{3} + 2k\pi\right), \quad k \in \mathbb{Z}.$$

6.5. Trostrana prizma je pravilna, što znači da joj je osnova jednakostranični trougao, ivice su normalne na bazu i jednake visini H prizme. Kružnice opisane oko baza prizme pripadaju sferi opisanoj oko prizme. Kroz centre O_1 , O_2 opisanih kružnica poluprečnika r i centar O sfere poluprečnika R postavljena je visina prizme i uočena su temena M, N baza.

Iz V = BH i H = 2 sledi

$$B = \frac{V}{H} = \frac{\sqrt{3}}{3}.$$

Kako je B jednakostranični trougao, to je $B=a^2\sqrt{3}/4,$ odakle je $a^2=4B/\sqrt{3}=4/3$ i stranica baze iznosi

$$a = \frac{2}{\sqrt{3}},$$

a poluprečnik opisane kružnice

$$r = \frac{a\sqrt{3}}{3} = \frac{2}{3}.$$

Trouglovi OO_1M , OO_2N su pravougli sa jednakim hipotenuzama R i katetama r, pa su podudarni (pravilo SSU). Iz podudarnosti sledi jednakost drugih kateta i, zbog $OO_1 + OO_2 = H$,

$$OO_1 = OO_2 = \frac{H}{2} = 1.$$

Prema Pitagorinoj teoremi je $R^2=r^2+1=13/9$ i konačno

$$R = \frac{\sqrt{13}}{3}.$$

6.6. Petar je umesto 3/8 ukupno zarađene sume novca x dobio 3/5, pa je

$$\left(\frac{3}{5} - \frac{3}{8}\right)x = 360 \iff x = 1600 \text{ din.}$$

Da je raspodela bila pravilna, Petar bi dobio 600 din, a Kosta 1000 din. Dakle, Petar je dobio 22.5% više novca nego što mu pripada.

Test 7

- 7.1. Vrednost izraza je 1.
- **7.2.** Iz uslova

$$1 - \frac{2}{1 - x} \ge 0 \qquad i \qquad x \ne 1,$$

sledi da jednačina ima smisla za $x \in (-\infty, -1) \cup (1, +\infty)$. Kako za x > 1 važi

$$\frac{1}{x-1} > 0,$$

jednačina može imati rešenje samo kada je $x \in (-\infty, -1)$. Kvadriranjem jednačine dobijamo

$$4 \cdot \frac{x+1}{x-1} = \frac{1}{(1-x)^2},$$

odakle je rešenje $x = -\sqrt{5}/2$.

7.3. Nejednačina je definisana za svako $x \neq -1$ i ekvivalentna je nejednačini

$$3^{\frac{2x-13}{x+1}} > 3^{2x+17}.$$

Iz ove nejednačine sledi

$$\frac{2x - 13}{x + 1} > 2x + 17,$$

odakle dobijamo $x \in (-\infty, -6) \cup (-5/2, -1)$.

7.4. Deljenjem jednakosti $\sin^2\alpha-2\cos^2\alpha=\sin\alpha\cos\alpha$ sa $\sin\alpha\cos\alpha~(\neq0)$ dobijamo jednačinu

$$\frac{\sin\alpha}{\cos\alpha} - 2\frac{\cos\alpha}{\sin\alpha} = 1.$$

Uvodeći smenu $t = \tan \alpha$ dobijamo

$$t - \frac{2}{t} = 1 \quad \Leftrightarrow \quad t^2 - t - 2 = 0,$$

čija su rešenja $t_1 = 2$ i $t_2 = -1$. S obzirom na uslov $\alpha \in (0, \pi/2)$, sledi da je $\tan \alpha = 2$.

7.5. Sa O označimo centar kruga, sa A i C krajeve tetiva t_1 i t_2 , a sa B i D njihove sredine. Prečnik kruga, normalan na tetivu, polovi tetivu. Kako su t_1 i t_2 paralelne tetive, one imaju zajednički normalan prečnik, koji ih seče upravo u

tačkama B i D. Na slikama su prikazana dva moguća slučaja, kada su tetive sa raznih i kada su sa iste strane u odnosu na centar kruga.

Prema uslovima zadatka je

$$OA = OC = r = 25$$
, $AB = \frac{t_1}{2} = 7$, $CD = \frac{t_2}{2} = 24$.

Trouglovi OAB i OCD su pravougli i, na osnovu Pitagorine teoreme, sledi

$$OB^2 + AB^2 = r^2$$
, $OD^2 + CD^2 = r^2$,

tj.

$$OB^2 + 49 = 625$$
, $OD^2 + 576 = 625$.

Zato je

$$OB = 24, \quad OD = 7.$$

Traženo rastojanje između tetiva t_1 i t_2 je

$$BD = OB + OD = 31$$
, $BD = OB - OD = 17$

u slučajevima sa prve i druge slike redom.

7.6. Procenat učenika koji su uradili sva tri zadatka je 100% - (12% + 32%) = 56%, pa ako sa x obeležimo ukupan broj učenika koji su radili pismenu vežbu, važi proporcija x: 14 = 100: 56, odakle je $x = (14 \cdot 100)/56 = 25$ učenika.

Test 8

- **8.1.** Izraz ima vrednost $2\frac{1}{3}$.
- 8.2. Neka kvadratna jednačina koja se traži ima oblik

$$x^2 + ax + b = 0, \quad a, b \in \mathbb{R}.$$

Racionalisanjem datog korena dobijamo

$$x_1 = \frac{1}{2 + i\sqrt{5}} = \frac{2 - i\sqrt{5}}{9}.$$

Kako ova jednačina ima realne koeficijente, drugi koren jednačine je

$$x_2 = \overline{x}_1 = \frac{2 + i\sqrt{5}}{9}.$$

Sada, iz Vietovih formula dobijamo

$$a = -(x_1 + x_2) = -\frac{4}{9},$$

 $b = x_1 x_2 = \frac{1}{9},$

pa je tražena kvadratna jednačina

$$x^2 - \frac{4}{9}x + \frac{1}{9} = 0,$$

odnosno

$$9x^2 - 4x + 1 = 0.$$

8.3. Dajemo uputstvo. Datu nejednačinu svesti na oblik

$$\sqrt{\log_4(x-3)} > \log_4 \frac{x-3}{64} = \log_4(x-3) - 3, \quad x \ge 4,$$

a zatim uvesti smenu

$$\log_4(x-3) = t^2, \quad t \ge 0.$$

8.4. Imamo sledeći niz ekvivalentnih jednačina

$$3\sin^{2}\alpha - \cos^{2}\alpha = 5 - 8\sin\alpha\cos\alpha,$$

$$3\sin^{2}\alpha - \cos^{2}\alpha = 5\sin^{2}\alpha + 5\cos^{2}\alpha - 8\sin\alpha\cos\alpha,$$

$$2\sin^{2}\alpha + 6\cos^{2}\alpha = 8\sin\alpha\cos\alpha,$$

$$\frac{\sin\alpha}{\cos\alpha} + 3\frac{\cos\alpha}{\sin\alpha} = 4.$$

Uvođenjem smene $\cot\alpha=t$ dobijamo kvadratnu jednačinu

$$3t^2 - 4t + 1 = 0.$$

odakle je $\cot \alpha = 1$ ili $\cot \alpha = 1/3$.

8.5. Temena osnove su L, M, N, teme piramide je T, a visina piramide H = OT. Visina H je normalna na osnovu, pa je

$$\alpha = \angle OLT = \angle OMT = \angle ONT.$$

Kako je

$$\frac{H}{OL} = \frac{H}{OM} = \frac{H}{ON} = \tan \alpha = \tan 60^{\circ} = \sqrt{3},$$

to je

$$OL = OM = ON = \frac{H}{\sqrt{3}} = r,$$

što znači da je O centar, a r poluprečnik kruga opisanog oko osnove. Koristeći obrasce za površinu trougla, dobijamo

$$B = \sqrt{s(s-a)(s-b)(s-c)} = \frac{abc}{4r},$$

gde je poluobim osnove

$$s = \frac{1}{2}(a+b+c) = \frac{1}{2}(9+8+7) = 12.$$

Zato je

$$B = \sqrt{12(12 - 9)(12 - 8)(12 - 7)} = 12\sqrt{5},$$

$$r = \frac{abc}{4B} = \frac{9 \cdot 8 \cdot 7}{4 \cdot 12\sqrt{5}} = \frac{21}{2\sqrt{5}},$$

$$H = r\sqrt{3} = \frac{21\sqrt{3}}{2\sqrt{5}}$$

i tražena zapremina iznosi

$$V = \frac{BH}{3} = \frac{12\sqrt{5}}{3} \cdot \frac{21\sqrt{3}}{2\sqrt{5}} = 42\sqrt{3}.$$

8.6. Po binomnoj formuli je

$$\left(\sqrt{2} + \sqrt[3]{3}\right)^{20} = \sum_{i=0}^{20} \binom{20}{i} 2^{\frac{i}{2}} \cdot 3^{\frac{20-i}{3}}.$$

Tražimo sve one brojeve od 0 do 20 koji su deljivi sa 2 (parni), i istovremeno je razlika 20-i deljiva sa 3. To su brojevi 2,8,14,20. U suprotnom, član u binomnom razvoju je proizvod jednog racionalnog broja sa nekim od brojeva $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[3]{9}$, $\sqrt{2}\sqrt[3]{3}$, $\sqrt{2}\sqrt[3]{9}$. Da nijedan od navedenih brojeva nije racionalan pokazuje se na potpuno isti način kao što se to pokazuje za broj $\sqrt{2}$. Dakle, u posmatranom binomnom razvoju ima četiri racionalna sabirka.

Test 9

9.1. Vrednost izraza je 1.

9.2. Transformišući jednačinu dobijamo

$$49^{x+2} + 6 \cdot 7^{x+1} - 6^{-\log_6 7} = 0,$$

$$7^{2x+4} + 6 \cdot 7 \cdot 7^x - 7^{-1} = 0,$$

$$7^5 \cdot 7^{2x} + 6 \cdot 7^2 \cdot 7^x - 1 = 0,$$

odakle je $7^x = 7^{-3}$, pa je rešenje jednačine x = -3.

9.3. Rešenje je $x \in (-1, -1/5) \cup (1, +\infty)$.

9.4. Važi sledeće

$$\frac{1 - \sin^4 \alpha - \cos^4 \alpha}{\cos^4 \alpha} = \frac{1 - \left(\sin^2 \alpha + \cos^2 \alpha\right)^2 + 2\sin^2 \alpha \cos^2 \alpha}{\cos^4 \alpha}$$
$$= \frac{2\sin^2 \alpha \cos^2 \alpha}{\cos^4 \alpha} = 2\tan^2 \alpha,$$

što je i trebalo pokazati.

9.5. Uvođenjem oznaka kao na prvoj od sledećih slika, iz uslova zadatka sledi

$$AB = c = 40$$
, $BM = MA = 20$, $MN = n = 15$.

Prema Pitagorinoj teoremi, iz pravouglog trougla MNA se dobija:

$$MN^2 + MA^2 = NA^2$$
, $15^2 + 20^2 = NA^2$, $NA^2 = 625$, $NA = 25$.

Trouglovi ABC i AMN su slični jer imaju dva jednaka ugla: prav ugao i zajednički ugao kod temena A. Na drugoj slici je trougao AMN nacrtan tako da je sličnost očigledna. Iz ove sličnosti sledi

$$CA: MA = BA: NA, \quad CB: MN = BA: NA$$

i, zamenom konkretnih podataka,

$$CA: 20 = 40: 25$$
, $CB: 15 = 40: 25$.

Zato su katete trougla ABC

$$b = CA = \frac{20 \cdot 40}{25} = 32, \quad a = CB = \frac{15 \cdot 40}{25} = 24.$$

Obim i površina trougla ABC su

$$O = a + b + c = 24 + 32 + 40 = 96, \quad P = \frac{ab}{2} = \frac{24 \cdot 32}{2} = 384.$$

9.6. Kako je

$$\left(6^{\frac{1}{3}} + 2^{\frac{1}{4}}\right)^{100} = \sum_{i=0}^{100} \binom{100}{i} 6^{\frac{i}{3}} \cdot 2^{\frac{100-i}{4}} = \sum_{i=0}^{100} \binom{100}{i} 3^{\frac{i}{3}} \cdot 2^{\frac{300+i}{12}} \\
= \sum_{i=0}^{100} \binom{100}{i} 3^{\frac{i}{3}} \cdot 2^{25 + \frac{i}{12}},$$

to tražimo sve brojeve od 0 do 100 koji su deljivi sa 12. To su brojevi 0, 12, 24, 36, 48, 60, 72, 84, 96. U posmatranom izrazu ima devet racionalnih sabiraka.

Test 10

- 10.1. Vrednost izraza je $\frac{2}{5}$.
- 10.2. Jednačina je definisana za x > 0 i $x \ge 4/3$, tj. za $x \ge 4/3$. Dalje imamo

$$\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{3x - 4},$$

 $x + \frac{1}{x} + 2 = 3x - 4,$

odakle je $x = (3 + \sqrt{11})/2$.

10.3. Korišćenjem obrasca $\log_m n = \frac{\log_k n}{\log_k m}$ imamo

$$(\log_{11} 13 + \log_{13} 11)^{-1} + \log_{289} 17 = \left(\frac{\log_4 13}{\log_4 11} + \frac{\log_4 11}{\log_4 13}\right)^{-1} + \frac{1}{2}\log_{17} 17$$

$$= \left(\frac{b}{a} + \frac{a}{b}\right)^{-1} + \frac{1}{2}$$

$$= \frac{ab}{a^2 + b^2} + \frac{a^2 + b^2}{2(a^2 + b^2)}$$

$$= \frac{2ab + a^2 + b^2}{2(a^2 + b^2)} = \frac{(a + b)^2}{2(a^2 + b^2)}.$$

10.4. Transformišimo datu jednačinu na sledeći način

$$2\sin\frac{2x}{5}\cos\frac{3x}{5} - \cos\frac{3x}{5} = 0,$$
$$\cos\frac{3x}{5}\left(2\sin\frac{2x}{5} - 1\right) = 0.$$

Nadalje rešavamo na standardan način.

10.5. Dijagonala pravougaonika je označena sa d, presek dijagonala sa O i jedno teme sa L. Vrh piramide je T, a njena visina je H.

Ugao između susedenih stranica $a,\,b$ pravougaonika je prav i prema Pitagorinoj teoremi sledi

$$d^2 = a^2 + b^2 = 144 + 81 = 225$$
, $d = 15$.

Dijagonale pravouga
onika se polove, pa je OL=d/2 i iz pravouglog trougla
 OLT dalje sledi $H^2+(d/2)^2=s^2$, tj.

$$H^2 = s^2 - \left(\frac{d}{2}\right)^2 = \left(\frac{25}{2}\right)^2 - \left(\frac{15}{2}\right)^2 = \frac{400}{4} = 100, \quad H = 10.$$

Sada je

$$B = ab = 12 \cdot 9 = 108, \quad V = \frac{BH}{3} = \frac{108 \cdot 10}{3} = 360.$$

10.6. Polazeći od leve strane date jednakosti dobijamo

$$\frac{\sqrt[4]{0.98} - \sqrt[4]{0.02}}{\sqrt[4]{0.98} + \sqrt[4]{0.02}} = \frac{\sqrt[4]{49} - \sqrt[4]{1}}{\sqrt[4]{49} + \sqrt[4]{1}} = \frac{\sqrt{7} - 1}{\sqrt{7} + 1} = \frac{4 - \sqrt{7}}{3},$$

što je i trebalo dokazati.

Test 11

- **11.1.** Rešenje je x = 4.5.
- **11.2.** Za x > 1 je

$$x + \sqrt{3 + \sqrt{x}} > 3,$$

a za $0 \le x < 1$ je

$$x + \sqrt{3 + \sqrt{x}} < 3.$$

Dakle, jedino rešenje jednačine je x = 1.

11.3. Napišimo datu nejednačinu u ekvivalentnom obliku

$$2^{\frac{2x-1}{2}} + 2^{\frac{2x-5}{2}} > 25^{\frac{2x-7}{2}} - 5^{2x-8},$$

$$2^{x} \cdot 2^{-\frac{1}{2}} + 2^{x} \cdot 2^{-\frac{5}{2}} > 5^{2x} \cdot 5^{-7} - 5^{2x} \cdot 5^{-8},$$

$$2^{x} \cdot \frac{5}{2^{\frac{5}{2}}} > 25^{x} \cdot \frac{4}{5^{8}},$$

$$\left(\frac{2}{25}\right)^{x} > \left(\frac{2}{25}\right)^{\frac{9}{2}},$$

odakle sledi da je x < 9/2.

11.4. Sledeće jednačine su ekvivalentne

$$\sin x - \sin \frac{7x}{3} + \sin \frac{4x}{3} = 0,$$

$$-2\sin \frac{2x}{3}\cos \frac{5x}{3} + 2\sin \frac{2x}{3}\cos \frac{2x}{3} = 0,$$

$$\sin \frac{2x}{3}\left(\cos \frac{2x}{3} - \cos \frac{5x}{3}\right) = 0,$$

$$\sin \frac{2x}{3}\sin \frac{7x}{6}\sin \frac{x}{2} = 0.$$

Dakle, sva rešenja polazne jednačine su:

$$x_k = \frac{3k\pi}{2}, \quad x_k = \frac{6k\pi}{7}, \quad x_k = 2k\pi, \quad k \in \mathbb{Z}.$$

11.5. Upisani trougao je sličan polaznom, pa je takođe pravougli. Prav ugao upisanog trougla je periferni ugao kruga, što znači da je njegova hipotenuza istovremeno i prečnik kruga.

Posmatramo veći trougao. Na osnovu zadatih podataka, hipotenuza c, poluobim s i površina P ovog trougla su

$$c = \sqrt{a^2 + b^2} = \sqrt{15^2 + 20^2} = \sqrt{625} = 25,$$

$$s = \frac{1}{2}(a + b + c) = \frac{1}{2}(15 + 20 + 25) = 30,$$

$$P = \frac{ab}{2} = \frac{15 \cdot 20}{2} = 150.$$

Koristeći obrazac za površinu trougla

$$P = rs$$
,

gde je r poluprečnik upisanog kruga, nalazimo

$$r = \frac{P}{s} = \frac{150}{30} = 5.$$

Posmatramo sada manji trougao sa katetama $a_1,\,b_1$ i hipotenuzom

$$c_1 = 2r = 10.$$

Iz pretpostavljene sličnosti trouglova sledi

$$a: a_1 = c: c_1, \quad b: b_1 = c: c_1,$$

odakle je

$$a_1 = \frac{ac_1}{c} = \frac{15 \cdot 10}{25} = 6, \quad b_1 = \frac{bc_1}{c} = \frac{20 \cdot 10}{25} = 8.$$

Obim i površina upisanog trougla su

$$O = a_1 + b_1 + c_1 = 6 + 8 + 10 = 24, \quad P = \frac{a_1 b_1}{2} = \frac{6 \cdot 8}{2} = 24.$$

11.6. Iz obrnute proporcionalnosti datih veličina sledi 54 : x=126 : 84, odakle je $x=(54\cdot 84)/126=36$ zubaca.

Test 12

- **12.1.** Vrednost izraza je $\frac{97}{96}$.
- 12.2. Zapišimo jednačinu u obliku

$$6 \cdot \frac{2^{-3}}{1 - \left(\frac{3}{2}\right)^{x+1}} - \left(\frac{3}{2}\right)^{x+1} = 1.$$

Uvođenjem smene

$$\left(\frac{3}{2}\right)^{x+1} = t,$$

uz uslove t>0 i $t\neq 1$, dobijamo jednačinu $4t^2=1$, odakle je t=1/2, pa je rešenje jednačine

$$x = \frac{\log_{10} 3}{\log_{10} 2 - \log_{10} 3}.$$

12.3. Razlikovaćemo dva slučaja. 1° Za $x \geq 0$ imamo redom

$$\sqrt{x^2 + 8 + 2x} \le 2 + 3x,$$

$$\sqrt{x^2 + 8} \le 2 + x,$$

$$x^2 + 8 \le 4 + 4x + x^2,$$

odakle je $x \in [1, +\infty)$.

 2° Za x < 0 dobijamo

$$\sqrt{x^2 + 8 + 2x} \le 2 - 3x,$$
$$\sqrt{x^2 + 8} \le 2 - 5x,$$
$$6x^2 - 5x - 1 \ge 0,$$

odakle je $x \in (-\infty, -1/6]$.

Rešenje nejednačine je $x \in (-\infty, -1/6] \cup [1, +\infty).$

12.4. Koristeći trigonometrijske identitete dobijamo

$$\sin 5x - \sin 3x + \sin 2x = 0,$$

 $2\sin x\cos 4x + 2\sin x\cos x = 0.$

Dalje je

$$\sin x(\cos 4x + \cos x) = 0,$$

$$\sin x \cos \frac{3x}{2} \cos \frac{5x}{2} = 0,$$

odakle dobijamo rešenja

$$x_k = k\pi, \quad x_k = \frac{(2k+1)\pi}{3}, \quad x_k = \frac{(2k+1)\pi}{5}, \quad k \in \mathbb{Z}.$$

12.5. Temena osnove su L, M, N, teme piramide je T, a visina $H = O_1 T$.

Piramida je pravilna, što znači da je osnova B jednakostranični trougao, tj.

$$LM = MN = LN = a.$$

Iz uslova zadatka i obrasca za površinu jednakostraničnog trougla sledi

$$V = \frac{BH}{3}, \quad \frac{2\sqrt{3}}{3} = B = \frac{a^2\sqrt{3}}{4}, \quad a^2 = \frac{8}{3},$$

odakle je

$$a = \frac{2\sqrt{2}}{\sqrt{3}}.$$

Ivice pravilne piramide su jednake, tj.

$$LT = MT = NT$$
.

Ove ivice su hipotenuze pravouglih trouglova O_1LT , O_1MT , O_1NT , koji imaju zajedničku katetu H, pa su trouglovi podudarni (pravilo SSU) i važi

$$O_1L = O_1M = O_1N = r.$$

Dakle, O_1 je centar, a r poluprečnik kruga opisanog oko trougla LMN i iznosi

$$r = \frac{a\sqrt{3}}{3} = \frac{2\sqrt{2}}{3}.$$

Neka je O centar sfere opisane oko piramide, R njen poluprečnik i $O_1O=x$. Tada je x+R=H i, iz pravouglog trougla O_1OM , $x^2+r^2=R^2$, odnosno

$$x + R = 3$$
, $x^2 + \frac{8}{9} = R^2$.

Zamenom x = 3 - R iz prve jednačine u drugu, dobija se

$$(3-R)^2 + \frac{8}{9} = R^2$$
, $9-6R + \frac{8}{9} = 0$, $6R = \frac{89}{9}$

i na kraju

$$R = \frac{89}{54}.$$

12.6. Zadatak se rešava slično kao zadaci 8.6 i 9.6.

Test 13

- **13.1.** Vrednost izraza je 51.
- **13.2.** Rešenje je $x = 2 \sqrt{5}$.
- 13.3. Nejednačinu rešavamo na sledeći način

$$\begin{split} \log_{x-2} x & \leq \log_{x-2} 4 \quad \Leftrightarrow \quad \frac{\log_2 x - \log_2 4}{\log_2 (x-2)} \leq 0 \\ \Leftrightarrow \quad \frac{x-4}{x-3} & \leq 0 \ \land \ x > 0 \ \land \ x > 2 \ \land \ x \neq 3 \quad \Leftrightarrow \quad x \in (3,4]. \end{split}$$

13.4. Data jednačina je definisana za $\cos \frac{x}{3} \neq 0$, tj. za svako $x \neq \frac{3(2k+1)\pi}{2}$, $k \in \mathbb{Z}$. Dalje imamo

$$\cos x + \cos \frac{x}{3} + 4\sin \frac{x}{3}\cos \frac{x}{3} = 0,$$

$$2\cos \frac{2x}{3}\cos \frac{x}{3} + 4\sin \frac{x}{3}\cos \frac{x}{3} = 0,$$

$$2\cos \frac{x}{3}\left(\cos \frac{2x}{3} + 2\sin \frac{x}{3}\right) = 0,$$

$$\cos \frac{2x}{3} + 2\sin \frac{x}{3} = 0,$$

$$1 - 2\sin^2 \frac{x}{3} + 2\sin \frac{x}{3} = 0.$$

Iz kvadratne jednačine po sin $\frac{x}{3}$

$$1 - 2\sin^2\frac{x}{3} + 2\sin\frac{x}{3} = 0$$

sledi

$$\sin\frac{x}{3} = \frac{1+\sqrt{3}}{2} \quad \lor \quad \sin\frac{x}{3} = \frac{1-\sqrt{3}}{2}.$$

Kako je $\frac{1+\sqrt{3}}{2} > 1$, prvu jednakost odbacujemo, pa ostaje

$$\frac{x_k}{3} = \arcsin\left(\frac{1-\sqrt{3}}{2}\right) + 2k\pi, \quad \frac{x_k}{3} = \pi - \arcsin\left(\frac{1-\sqrt{3}}{2}\right) + 2k\pi, \quad k \in \mathbb{Z}.$$

13.5. Neka je O centar i r poluprečnik upisane kružnice, M, N dodirne tačke kružnice i kateta, a d = OC traženo rastojanje.

S obzirom na $a=3,\,b=4,$ hipotenuza c, poluobim s i površina P su

$$c = \sqrt{a^2 + b^2} = 5$$
, $s = \frac{1}{2}(a + b + c) = 6$, $P = \frac{ab}{2} = 6$.

Zato iz

$$P = rs$$

sledi

$$r = \frac{P}{s} = 1.$$

Poluprečnici OM i ON su normalni na katete, pa su sva četiri ugla četvorougla ONCM prava. Četvorougao je, dakle, kvadrat stranice r. Rastojanje d je dijagonala kvadrata i važi

$$d = r\sqrt{2} = \sqrt{2}.$$

13.6. Zadatak rešavamo slično kao zadatke 8.6, 9.6 i dobijamo šest racionalnih sabiraka za $i \in \{0, 6, 12, 18, 24, 30\}$.

Test 14

- 14.1. Vrednost izraza je 2.
- 14.2. Jednačina

$$64^{\frac{1}{x-1}} + 4 \cdot 2^{\frac{3}{x-1}-1} - 24 = 0$$

je definisana za svako $x \neq 1$. Uvođenjem smene

$$2^{\frac{3}{x-1}} = t$$

dobijamo kvadratnu jednačinu

$$t^2 + 2t - 24 = 0,$$

čija su rešenja $t_1 = -6$ i $t_2 = 4$. Iz uslova t > 0 sledi t = 4, pa je x = 5/2.

14.3. Za $x \in (-\infty, -2] \cup [2, +\infty)$ nejednačina postaje

$$x^2 - x - 3 > 0$$
.

čijim rešavanjem dobijamo $x \in (-\infty, -2] \cup [(1+\sqrt{13})/2, +\infty).$

Za $x \in (-2, 2)$ imamo

$$x^2 + x - 5 \le 0,$$

odakle je $x \in (-2, (-1 + \sqrt{21})/2].$

Rešenje polazne nejednačine je $x \in (-\infty, (-1 + \sqrt{21})/2] \cup [(1 + \sqrt{13})/2, +\infty).$

14.4. Kako je $\sin\alpha=3/5,\,\sin\beta=12/13,\,\sin\gamma=7/25,$ dobijamo da je $\cos\alpha=4/5,\,\cos\beta=5/13,\,\cos\gamma=24/25.$ Traženi rezultat dobijamo na osnovu jednakosti

$$\cos(\alpha + \beta + \gamma) = \cos\alpha\cos(\beta + \gamma) - \sin\alpha\sin(\beta + \gamma)$$
$$= \cos\alpha(\cos\beta\cos\gamma - \sin\beta\sin\gamma) - \sin\alpha(\sin\beta\cos\gamma + \sin\gamma\cos\beta).$$

14.5. Temena osnove su L, M, N, a teme piramide je T. Kroz ivicu LT i visinu $H = T_1T$ postavljena je ravan. Ova ravan je normalna na osnovu i seče osnovu duž težišne linije LE sa težištem T_1 . Iz težišta je povučena normala T_1F na stranu MNT piramide. Tada je $\alpha = \angle T_1ET$ i $d = T_1F$.

Iz pravouglog trougla T_1EF je

$$\frac{d}{T_1 E} = \sin \alpha, \quad \frac{3}{T_1 E} = \sin 60^\circ = \frac{\sqrt{3}}{2}, \quad T_1 E = \frac{6}{\sqrt{3}} = 2\sqrt{3}.$$

Težište deli težišnu liniju u odnosu

$$LT_1: T_1E = 2:1,$$

odakle je

$$\frac{LT_1}{2\sqrt{3}} = 2$$
, $LT_1 = 4\sqrt{3}$, $LE = LT_1 + T_1E = 6\sqrt{3}$.

Osnova piramide je jednakostranični trouga
oLMN jer je piramida pravila, pa se težišna linija i visina h trougla poklapaju, tj.

$$h = LE = 6\sqrt{3}.$$

Ako je a stranica trougla LMN, važi $h = a\sqrt{3}/2$ i

$$a = \frac{2h}{\sqrt{3}} = 12.$$

Zato je osnova

$$B = \frac{a^2\sqrt{3}}{4} = 36\sqrt{3}.$$

Iz pravouglog trougla T_1ET je

$$\frac{H}{T_1 E} = \tan \alpha, \quad \frac{H}{2\sqrt{3}} = \tan 60^\circ = \sqrt{3}$$

i za visinu piramide se dobija

$$H = 6$$

a za zapreminu

$$V = \frac{BH}{3} = \frac{36\sqrt{3} \cdot 6}{3} = 72\sqrt{3}.$$

14.6. Pretpostavimo suprotno, da je dati broj racionalan. Tada postoje prirodni brojevi p i q tako da je

$$\sqrt{2} + \sqrt{3} + \sqrt{5} = \frac{p}{q}.$$

Nakon kvadriranja izraza

$$\sqrt{2} + \sqrt{5} = \frac{p}{q} - \sqrt{3},$$

dobijamo

$$5 + 2\sqrt{10} + 2 = \frac{p^2}{q^2} + 3 - \frac{2p}{q}\sqrt{3},$$

tj.

$$\sqrt{10} + \frac{p}{q}\sqrt{3} = \frac{p^2}{2q^2} - 2.$$

Kako je na desnoj strani jednakosti racionalan broj, sledi da postoje prirodni brojevi p_1 i q_1 tako da je

$$\sqrt{10} + \frac{p}{q}\sqrt{3} = \frac{p_1}{q_1}.$$

Kvadriranjem ove jednakosti dobijamo da je

$$\sqrt{30} = \frac{q}{2p} \left(\frac{p_1^2}{q_1^2} - \frac{3p^2}{q^2} - 10 \right),$$

te zaključujemo da je $\sqrt{30}$ racionalan broj. Međutim to nije tačno, on je iracionalan broj. Pretpostavka da je dati broj racionalan je bila pogrešna, što znači da je on iracionalan broj.

Test 15

- 15.1. Vrednost izraza je 700.
- **15.2.** Diskriminanta date kvadratne jednačine je D = 16(m-2).
 - a) Rešenja kvadratne jednačine su realna ako je $D \ge 0$, odakle je $m \ge 2$. Iz Vietovih formula sledi $x_1 + x_2 = 2(2 + m)$.
 - **b)** Rešenja su dvostruka za m=2.
- **15.3.** Nejednačina je definisana za $x \in \mathbb{R} \setminus \{3\}$ i ekvivalenta je sa

$$-3 < \frac{2x - 7}{x - 3} < 3.$$

Rešavajući nejednačinu

$$\frac{2x-7}{x-3} - 3 < 0,$$

dobijamo da je $x \in (-\infty, 2) \cup (3, +\infty)$. S druge strane, rešenje nejednačine

$$\frac{2x - 7}{x - 3} + 3 > 0$$

je $x \in (-\infty, 3) \cup (16/5, +\infty)$. Konačno, rešenje polazne nejednačine je $x \in (-\infty, 2) \cup (16/5, +\infty)$.

- **15.4.** Rešenje je: $\sin \alpha = 3/5$, $\cos \alpha = -4/5$, $\tan \alpha = -3/4$ i $\cot \alpha = -4/3$.
- **15.5.** Neka su O, A, B, C centri kruga poluprečnika R i u njega upisanih krugova, a r poluprečnik upisanih krugova.

Trougao ABC je jednakostranični jer su njegove stranice međusobno jednake

$$AB = BC = CA = 2r = a.$$

Takođe je

$$OA = OB = OC = R - r = R_1,$$

pa je R_1 poluprečnik kružnice opisane oko trougla ABC. Kako za jednakostranični trougao važi

$$R_1 = \frac{a\sqrt{3}}{3},$$

to je

$$R - r = \frac{2r\sqrt{3}}{3},$$

odakle je

$$R = r + \frac{2r\sqrt{3}}{3} = \left(1 + \frac{2\sqrt{3}}{3}\right)r = \frac{2+\sqrt{3}}{\sqrt{3}}r, \quad r = \frac{\sqrt{3}}{2+\sqrt{3}}R.$$

Površina jednog upisanog kruga je

$$P = r^{2}\pi = \frac{3}{\left(2 + \sqrt{3}\right)^{2}}R^{2}\pi = \frac{3}{7 + 4\sqrt{3}}R^{2}\pi = 3\left(7 - 4\sqrt{3}\right)R^{2}\pi.$$

15.6. Na jednog nastavnika (N) dolazi 8 dečaka (M), a na tih 8 dečaka 10 devojčica (D). Sada imamo proporciju

$$N: M: D=1:8:10 \Leftrightarrow N=k, M=8k, D=10k.$$

Kako je 19k=760, tj. k=40, u školi ima N=40 nastavnika, što predstavlja oko 5.3%, M=320 dečaka, što predstavlja oko 42.1% i D=400 devojčica, što je oko 52.6%.

Test 16

- 16.1. Vrednost izraza je 1.
- **16.2.** Za $x \ge 1/3$ kvadriranjem jednačine dobijamo

$$\frac{1}{x+1} + x + 1 + 2 = 3x - 1,$$
$$\frac{1}{x+1} + 6 - 2(x+1) = 0.$$

Poslednju jednačinu rešavamo uvodeći smenu $x+1=t,\,t\geq 4/3.$ Sada dobijamo kvadratnu jednačinu

$$2t^2 - 6t - 1 = 0,$$

čija su rešenja

$$t_{1,2} = \frac{3 \pm \sqrt{11}}{2}.$$

Uzimajući u obzir uslov $t \geq 4/3$, imamo samo $t = \left(3 + \sqrt{11}\right)/2$, pa je rešenje polazne jednačine

$$x = \frac{1 + \sqrt{11}}{2}.$$

16.3. Nejednačinu zapisujemo u ekvivalentnom obliku

$$3^x \left(3^{\frac{1}{2}} - 3^{-\frac{3}{2}} \right) \le 4^x \cdot 2^{-1} + 4^x.$$

Dalje imamo

$$\begin{aligned} &4^{x} \cdot \frac{3}{2} \geq 3^{x} \left(\frac{9-1}{3\sqrt{3}} \right), \quad \left(\frac{4}{3} \right)^{x} \geq \frac{4^{2}}{3^{5/2}}, \\ &x \left(\log_{3} 4 - 1 \right) \geq 2 \log_{3} 4 - \frac{5}{2}, \quad x \geq \frac{4 \log_{3} 2 - \frac{5}{2}}{2 \log_{2} 2 - 1}. \end{aligned}$$

16.4. Kako je

$$\sin^2 \alpha + \sin^2 \beta + 2\sin \alpha \sin \beta = 1,$$
$$\cos^2 \alpha + \cos^2 \beta + 2\cos \alpha \cos \beta = 2,$$

sabiranjem jednačina dobijamo da je $\cos(\alpha - \beta) = 1/2$.

16.5. Pravilna zarubljena piramida nastaje iz pravilne osnovne piramide, pa su njene baze jednakostranični trouglovi, a ivice su jednake. Prikazana je na prvoj slici. Na istoj slici su $h_1 = EM$, $h_2 = FN$ visine baza, $H = T_1T_2$ visina zarubljene piramide koja leži na visini T_1T osnovne piramide i $\alpha = \angle T_1EF$. Na drugoj slici je izdvojen četvorougao ET_1T_2F sa prve slike.

Neka je B_1 veća, a B_2 manja baza. Tada je

$$B_1 = \frac{a^2\sqrt{3}}{4} = \frac{36\sqrt{3}}{4} = 9\sqrt{3}, \quad B_2 = \frac{b^2\sqrt{3}}{4} = \frac{4\sqrt{3}}{4} = \sqrt{3}.$$

Visine baza su

$$h_1 = \frac{a\sqrt{3}}{2} = 3\sqrt{3}, \quad h_2 = \frac{b\sqrt{3}}{2} = \sqrt{3}.$$

Težišta T_1 , T_2 dele visine h_1 , h_2 u odnosu

$$ET_1: T_1M = 1:2, \quad FT_2: T_2N = 1:2,$$

odakle je

$$T_1M = 2ET_1$$
, $h_1 = T_1M + ET_1 = 3ET_1$, $ET_1 = \frac{h_1}{3} = \sqrt{3}$, $T_2N = 2FT_2$, $h_2 = T_2N + FT_2 = 3FT_2$, $FT_2 = \frac{h_2}{3} = \frac{\sqrt{3}}{3}$.

Baze zarubljene piramide su paralelne, pa je četvorougao ET_1T_2F trapez sa osnovicama $ET_1 = \sqrt{3}$ i $FT_2 = \sqrt{3}/3$. Sa druge slike uočavamo da je

$$EG = ET_1 - FT_2 = \sqrt{3} - \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}, \quad \frac{H}{EG} = \tan \alpha = \tan 60^\circ = \sqrt{3}$$

i za visinu se dobija

$$H = \frac{2\sqrt{3}}{3} \cdot \sqrt{3} = 2.$$

Kako je $B_1B_2 = 9\sqrt{3} \cdot \sqrt{3} = 27$, zapremina je

$$V = \frac{\left(B_1 + \sqrt{B_1 B_2} + B_2\right) H}{3} = \frac{\left(9\sqrt{3} + 3\sqrt{3} + \sqrt{3}\right) \cdot 2}{3} = \frac{26\sqrt{3}}{3}.$$

16.6. Prvi način. Za $z \neq i$ dobijamo da je

$$\left(\frac{z+i}{z-i}\right)^4 = 1,$$

te se smenom

$$w = \frac{z+i}{z-i}$$

jednačina svodi na jednačinu

$$w^4 = 1.$$

Kako je polazna jednačina trećeg stepena, imamo da je

$$w_k = e^{i\frac{k\pi}{2}}, \quad k = 1, 2, 3,$$

pa je

$$\frac{z_k + i}{z_k - i} = e^{i\frac{k\pi}{2}}.$$

Sada je

$$z_k = i \frac{e^{i\frac{k\pi}{2}} + 1}{e^{i\frac{k\pi}{2}} - 1} = i \frac{e^{i\frac{k\pi}{4}} \left(e^{i\frac{k\pi}{4}} + e^{-i\frac{k\pi}{4}} \right)}{e^{i\frac{k\pi}{4}} \left(e^{i\frac{k\pi}{4}} - e^{-i\frac{k\pi}{4}} \right)}$$
$$= \frac{\cos\frac{k\pi}{4}}{\sin\frac{k\pi}{4}} = \cot\frac{k\pi}{4}, \qquad k = 1, 2, 3.$$

Drugi način. Nakon dizanja na četvrti stepen jednačina se svodi na jednačinu

$$z^3 - z = 0,$$

čija su rešenja

$$z_1 = 0$$
, $z_2 = 1$, $z_3 = -1$.

Test 17

- 17.1. Vrednost izraza je $\frac{4}{3}$.
- 17.2. Imamo redom

$$2^{5x+1} - 32^{x-1} + 5 \cdot 64^{\frac{5x+1}{6}} = 383,$$

$$2^{5x-5} \cdot 2^{6} - 2^{5x-5} + 5 \cdot 2^{5x-5} \cdot 2^{6} = 383,$$

$$2^{5x-5} \left(6 \cdot 2^{6} - 1 \right) = 383.$$

Iz poslednje jednačine dobijamo $2^{5x-5} = 1$, odakle je x = 1.

17.3. Posmatraćemo dva slučaja.

 1° Za $x \geq 0$ dobijamo nejednačinu

$$\sqrt{x^2 - x + 1} + x > 0$$
,

koja važi za svako $x \in [0, +\infty)$.

 2° Zax<0data nejednačina postaje

$$\sqrt{x^2 - 3x + 1} + x > 0.$$

Iz uslova $x^2-3x+1\geq 0$, a imajući u vidu uslov x<0, dobijamo $x\in (-\infty,0)$. Kvadriranjem poslednje nejednačine sledi

$$x^2 - 3x + 1 > x^2$$
,

odakle je x < 1/3, pa je rešenje u ovom slučaju $x \in (-\infty, 0)$. Dakle, nejednakost

$$\sqrt{x^2 - 2x + |x| + 1} + x > 0$$

važi za svako $x \in (-\infty, +\infty)$.

- **17.4.** Rezultat je $\tan \alpha = (2 \sqrt{2})/2$, $\tan \beta = (2 + \sqrt{2})/2$.
- 17.5. Ugao pod kojim se krug vidi iz tačke M je ugao između tangenata na krug koje prolaze kroz tačku M. Dodirne tačke tangenata i kruga označimo sa A i B, a centar kruga sa O.

Poluprečnik kruga koji ima zajedničku tačku sa tangentom je normalan na tangentu, pa četvorougao OAMB ima tri prava ugla, kod temena A, M i B. Zato je i ugao kod temena O prav, što znači da je četvorougao OAMB kvadrat. Stranica kvadrata OAMB je poluprečnik kruga r i površina kvadrata iznosi

$$P_1 = r^2$$
.

Površina P_2 kružnog isečka, koji je unutar kvadrata OAMB, je četvrtina površine kruga, pa je

 $P_2 = \frac{1}{4}r^2\pi.$

Tražena površina je sada

$$P = P_1 - P_2 = r^2 - \frac{1}{4}r^2\pi = \frac{4-\pi}{\pi}r^2.$$

17.6. Velika kazaljka opiše ugao x, a mala x/12 jer se 12 puta sporije kreće. Zbir ova dva ugla je pun krug, što odgovara vremenu od 60 minuta. Vremenski izraženo, to je

 $x + \frac{x}{12} = 60 \text{ minuta},$

odakle je $x = \frac{720}{13}$ minuta.

Pretpostavimo da je Nemanja počeo sa radom u 12 časova i y minuta. Vremenska razlika između kazaljki je tada $\frac{11}{12}y$, a to je $\frac{1}{13}$ punog kruga (60 minuta), pa je

$$\frac{11}{12}y = \frac{1}{13} \cdot 60.$$

Odavde je $y=\frac{720}{143}$ minuta. Dakle, Nemanja je počeo sa radom u 12 časova i $\frac{720}{143}$ minuta, a završio u 12 časova i $y+x=\frac{720}{143}+\frac{720}{13}=\frac{8640}{143}$ minuta, tj. u 13 časova i $\frac{60}{143}$ minuta.

Test 18

- **18.1.** Vrednost datog izraza je 5.
- 18.2. Zadatak ima smisla za $x \ge 2$. Uvođenjem smene

$$2^{\sqrt{x-2}} = t > 0$$

dobijamo kvadratnu jednačinu $t^2-t-12=0$, čija su rešenja $t_1=4$ i $t_2=-3$, od kojih, zbog uslova t>0, važi samo prvo. Za t=4 dobijamo

$$2^{\sqrt{x-2}} = 4 = 2^2 \Leftrightarrow x-2 = 4 \Leftrightarrow x = 6.$$

18.3. Kako je desna strana nejednačine jednaka

$$x(1 - \log_{10} 2) = x(\log_{10} 10 - \log_{10} 2) = x \log_{10} 5 = \log_{10} 5^x$$

to je nejednačina ekvivalentna nejednačini

$$5^x + x - 20 > 5^x \Leftrightarrow x > 20.$$

18.4. Zadatak rešavamo na sledeći način:

$$\begin{split} \sin\alpha + \sin\beta + \sin\gamma &= \sqrt{3}(\cos\alpha + \cos\beta + \cos\gamma), \\ \left(\sin\alpha - \sqrt{3}\cos\alpha\right) + \left(\sin\beta - \sqrt{3}\cos\beta\right) + \left(\sin\gamma - \sqrt{3}\cos\gamma\right) &= 0, \\ \sin\left(\alpha - \frac{\pi}{3}\right) + \sin\left(\beta - \frac{\pi}{3}\right) + \sin\left(\gamma - \frac{\pi}{3}\right) &= 0, \\ 2\sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{3}\right)\cos\frac{\alpha - \beta}{2} + 2\sin\left(\frac{\gamma}{2} - \frac{\pi}{6}\right)\cos\left(\frac{\gamma}{2} - \frac{\pi}{6}\right) &= 0, \\ \sin\left(\frac{\pi}{6} - \frac{\gamma}{2}\right)\cos\frac{\alpha - \beta}{2} + \sin\left(\frac{\gamma}{2} - \frac{\pi}{6}\right)\cos\left(\frac{\pi}{3} - \frac{\alpha + \beta}{2}\right) &= 0, \\ \sin\left(\frac{\gamma}{2} - \frac{\pi}{6}\right)\left(\cos\frac{\alpha - \beta}{2} - \cos\left(\frac{\alpha + \beta}{2} - \frac{\pi}{3}\right)\right) &= 0, \\ \sin\left(\frac{\gamma}{2} - \frac{\pi}{6}\right)2\sin\left(\frac{\alpha}{2} - \frac{\pi}{6}\right)\sin\left(\frac{\beta}{2} - \frac{\pi}{6}\right) &= 0, \\ \sin\left(\frac{\gamma}{2} - \frac{\pi}{6}\right) &= 0 \quad \forall \quad \sin\left(\frac{\beta}{2} - \frac{\pi}{6}\right) &= 0. \end{split}$$

Iz uslova $\alpha, \beta, \gamma \in (0, \pi)$ dobijamo

$$-\frac{\pi}{6} < \frac{\gamma}{2} - \frac{\pi}{6} < \frac{\pi}{3}, \quad -\frac{\pi}{6} < \frac{\alpha}{2} - \frac{\pi}{6} < \frac{\pi}{3}, \quad -\frac{\pi}{6} < \frac{\beta}{2} - \frac{\pi}{6} < \frac{\pi}{3},$$

pa dalje sledi

$$\frac{\gamma}{2} - \frac{\pi}{6} = 0 \quad \lor \quad \frac{\alpha}{2} - \frac{\pi}{6} = 0 \quad \lor \quad \frac{\beta}{2} - \frac{\pi}{6} = 0,$$

odnosno

$$\gamma = \frac{\pi}{3} \quad \lor \quad \alpha = \frac{\pi}{3} \quad \lor \quad \beta = \frac{\pi}{3}.$$

18.5. Na sledećoj slici je prikazan opisani valjak sa centrima baza O_1 , O_2 i visinom $H = MO_2$. Osni presek je osenčen.

Poluprečnik osnove je R = a/2 i za osnovu se dobija

$$B = R^2 \pi = \frac{a^2 \pi}{4}.$$

Izvodnica valjka je stranica romba a. Osa je paralelna izvodnicama, pa je $O_1O_2=a$ i iz pravouglog trougla O_1MO_2 sledi $H/a=\sin\alpha=\sin60^\circ=\sqrt{3}/2$, odakle je

 $H = \frac{a\sqrt{3}}{2}$.

Tražena zapremina je

$$V = BH = \frac{a^2\pi}{4} \cdot \frac{a\sqrt{3}}{2} = \frac{a^3\pi\sqrt{3}}{8}.$$

18.6. Uvođenjem smene

$$t = 1 - 5x^2,$$

dobijamo

$$x = 1 - 5t^2.$$

Oduzimanjem ove dve jednakosti dobijamo $t-x=5(t^2-x^2)$, odnosno

$$(t-x)(1-5(t+x)) = 0.$$

Odavde sledi da je

$$t = x$$
 ili $t = \frac{1}{5} - x$.

Iz sistema

$$t = 1 - 5x^2,$$

$$t = x.$$

dobijamo kvadratnu jednačinu $5x^2 + x - 1 = 0$, čija su rešenja

$$x_1 = \frac{-1 + \sqrt{21}}{10}, \quad x_2 = \frac{-1 - \sqrt{21}}{10}.$$

Iz sistema

$$t = 1 - 5x^2,$$

$$t = \frac{1}{5} - x,$$

dobijamo kvadratnu jednačinu $5x^2-x-4/5=0,$ čija su rešenja

$$x_3 = \frac{1 + \sqrt{17}}{10}, \quad x_4 = \frac{1 - \sqrt{17}}{10}.$$

Test 19

- **19.1.** Vrednost izraza je 1.
- 19.2. Oblast definisanosti jednačine je $x \ge 8/3$. Kvadriranjem se dobija

$$x - 3 + \sqrt{(3x - 8)(x - 1)} = 0,$$

odakle je

$$\sqrt{(3x-8)(x-1)} = -(x-3).$$

Uz dodatni uslov $x \leq 3,$ ponovnim kvadriranjem dobijamo kvadratnu jednačinu

$$2x^2 - 5x - 1 = 0,$$

koju posmatramo samo za $x \in [8/3, 3]$. U ovom segmentu jednačina ima jedno rešenje

$$x = \frac{5 + \sqrt{33}}{4}.$$

19.3. Za x>0 uvodeći smenu $t=\log_3 x$ dobija se nejednačina

$$t^2 - t - 2 < 0$$
,

čije je rešenje $t \in [-1,2]$, pa je rešenje polazne nejednačine $x \in [1/3,9]$.

19.4. Kako je $\alpha + \beta + \gamma = \pi$, koristeći trigonometrijske identitete dobijamo

$$\begin{aligned} \cos\alpha + \cos\beta + \cos\gamma &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} - 2\cos^2\frac{\alpha+\beta}{2} + 1 \\ &= 1 + 2\cos\frac{\alpha+\beta}{2}\left(\cos\frac{\alpha-\beta}{2} - \cos\frac{\alpha+\beta}{2}\right) \\ &= 1 + 2\cos\frac{\alpha+\beta}{2}2\sin\frac{\alpha}{2}\sin\frac{\beta}{2} \\ &= 1 + 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}. \end{aligned}$$

19.5. Katete trougla ABC označimo sa a=BC i b=AC, a poluprečnik kružnice sa r.

Kako je

$$\frac{a}{c} = \sin \alpha, \quad \frac{b}{c} = \cos \alpha$$

i $\sin\alpha = \sin 30^\circ = 1/2,\,\cos\alpha = \cos 30^\circ = \sqrt{3}/2,\,$ to je

$$a = c \sin \alpha = 4 \cdot \frac{1}{2} = 2, \quad b = c \cos \alpha = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3},$$

pa je površina pravouglog trougla ABC

$$P_1 = \frac{ab}{2} = \frac{2 \cdot 2\sqrt{3}}{2} = 2\sqrt{3}.$$

Za površinu P_2 kružnog isečka, koji se nalazi unutar trougla ABC, važi

$$P_2 = \frac{r^2 \pi}{360^{\circ}} \alpha = \frac{r^2 \pi}{360^{\circ}} \cdot 30^{\circ} = \frac{r^2 \pi}{12}.$$

Prema uslovu zadatka je

$$P_2 = P_1 - P_2,$$

odakle je

$$\frac{r^2\pi}{12} = 2\sqrt{3} - \frac{r^2\pi}{12}, \quad \frac{r^2\pi}{6} = 2\sqrt{3}, \quad r^2 = \frac{12\sqrt{3}}{\pi}$$

i za poluprečnik se dobija

$$r = 2\sqrt{\frac{3\sqrt{3}}{\pi}}.$$

19.6. Zamenom z=x+iy u datoj jednačini dobija se sistem

$$x(x^2 - 3y^2 - 1) = 0,$$

 $y(3x^2 - y^2 + 1) = 0.$

Rešavanjem ovog sistema dobija se

$$z_1 = 0$$
, $z_2 = 1$, $z_3 = -1$, $z_4 = i$, $z_5 = -i$.

Test 20

- **20.1.** Rešenje je $x = \frac{6}{11}$.
- 20.2. a) Diskriminanta date kvadratne jednačine je

$$D = 17m^2 - 6m - 11.$$

Rešenja su realna ako je $D \geq 0$, odakle dobijamo $m \in (-\infty, -11/17] \cup [1, +\infty)$.

b) Kako je

$$x_1 + x_2 = 1 - m,$$

 $x_1 x_2 = 3 + m - 4m^2,$

to je

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{(x_1 + x_2)^2 - 2x_1 x_2}{(x_1 x_2)^2} = \frac{9m + 5}{(m - 1)(4m + 3)^2}, \quad m \neq 1, \quad m \neq -\frac{3}{4}.$$

Za m=1 je $x_1=x_2=0$, te vrednost traženog izraza ne postoji. Za m=-3/4 je $x_1=0,\,x_2=7/4$, pa vrednost izraza, takođe, ne postoji.

20.3. Nejednačina ima smisla za $x \neq 0$ i ekvivalentna je nejednačini

$$\frac{x^2 - 2x}{x^2} \le 0,$$

koja važi za $x \in (0, 2]$, što je i rešenje date nejednačine.

20.4. Data jednačina je definisana za $\sin x \neq 0$, tj. za $x_k \neq k\pi$, $k \in \mathbb{Z}$. Transformacijom polazne jednačine sledi:

 $1 = 10\cos 2x\cos x\sin x,$

 $1 = 5\sin 2x \cos 2x,$

$$1 = \frac{5}{2}\sin 4x.$$

Dakle, rešenja su:

$$x_k = \frac{1}{4} \left(\arcsin \frac{2}{5} + 2k\pi \right), \quad x_k = \frac{1}{4} \left(\pi - \arcsin \frac{2}{5} + 2k\pi \right), \quad k \in \mathbb{Z}.$$

20.5. Šuplji valjak je prikazan na sledećoj slici.

Baze i omotači većeg i manjeg valjka su:

$$B_1 = R^2 \pi = 225\pi$$
, $M_1 = 2R\pi H = 750\pi$;
 $B_2 = r^2 \pi = 36\pi$, $M_2 = 2r\pi H = 300\pi$.

Šuplji valjak se sastoji od dva kružna prstena

$$B = B_1 - B_2 = 225\pi - 36\pi = 189\pi,$$

spoljašnjeg omotača M_1 i unutrašnjeg M_2 , pa je njegova površina

$$P = 2B + M_1 + M_2 = 378\pi + 750\pi + 300\pi = 1428\pi.$$

20.6. Racionalizacijom datog izraza dobija se

$$\begin{split} &\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\\ &=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+\frac{\sqrt{9}-\sqrt{7}}{2}=\frac{\sqrt{9}-1}{2}=1. \end{split}$$

Test 21

- **21.1.** Rešenje je $x = \frac{9}{4}$.
- **21.2.** Za $x \neq 0$ jednačina može da se transformiše u jednakost

$$2^{x/2} \cdot 4^{x/6} \cdot \left(\left(\frac{1}{8} \right)^{1/x} \right)^{1/6} = 2^{5x/6 - 1/(2x)} = 2^2 \cdot 2^{1/3},$$

odakle se dobija $x_1 = 3$ i $x_2 = -1/5$.

21.3. Nejednačina je definisana za $x \in [3, 8]$. Uzastopnim kvadriranjem nejednačine dva puta dobijamo redom:

$$\sqrt{8-x} + \sqrt{x-3} \ge 3$$
, $\sqrt{(8-x)(x-3)} \ge 2$, $x^2 - 11x + 28 \le 0$,

odakle dobijamo rešenje date nejednačine $x \in [4, 7]$.

21.4. Jednačinu rešavamo na sledeći način:

$$\sin 9x - \sqrt{3}\cos 7x - \sin 5x = 0,$$

$$2\sin 2x\cos 7x - \sqrt{3}\cos 7x = 0,$$

$$\cos 7x \left(2\sin 2x - \sqrt{3}\right) = 0.$$

Rešenja su:

$$x_k = \frac{(2k+1)\pi}{14}, \quad x_k = \frac{\pi}{6} + k\pi, \quad x_k = \frac{\pi}{3} + k\pi, \quad k \in \mathbb{Z}.$$

21.5. Označimo sa O centar kruga, sa r njegov poluprečnik i sa $M,\,N$ tačke u kojima krug seče trougao ABC.

Prema obrascu za površinu jednakostraničnog trougla, površina trougla ABC je

$$P_1 = \frac{a^2\sqrt{3}}{4} = \frac{\left(2\sqrt{6}\right)^2\sqrt{3}}{4} = 6\sqrt{3}.$$

Posmatramo trouglove OAM i OBN. Trougao OAM je jednakokraki jer je OA = OM = r, pa su uglovi na osnovici AM jednaki. Kako je $\angle OAM = 60^\circ$ kao ugao jednakostraničnog trougla ABC, to je i $\angle OMA = 60^\circ$, a time i $\angle AOM = 60^\circ$. Dakle, trougao OAM je jednakostranični. Na isti način se utvrđuje da je i trougao OBN jednakostranični. Oba trougla imaju stranicu

$$r = \frac{a}{2} = \sqrt{6},$$

pa su njihove površine

$$P_2 = P_3 = \frac{r^2\sqrt{3}}{4} = \frac{6\sqrt{3}}{4} = \frac{3\sqrt{3}}{2}.$$

Kružnom isečku OMN između trouglova OAM i OBN odgovara centralni ugao $\alpha=60^\circ$ zbog $\angle AOM+\alpha+\angle BON=180^\circ$. Zato je površina isečka

$$P_4 = \frac{r^2 \pi}{360^{\circ}} \alpha = \frac{6\pi}{360^{\circ}} \cdot 60^{\circ} = \pi.$$

Deo trouglaABCunutar kruga je sastavljen od trouglova $OAM,\ OBN$ i kružnog isečka OMN,pa ima površinu

$$P_5 = P_2 + P_3 + P_4 = \frac{3\sqrt{3}}{2} + \frac{3\sqrt{3}}{2} + \pi = 3\sqrt{3} + \pi.$$

Površina dela trougla ABC van kruga je tada

$$P_6 = P_1 - P_5 = 6\sqrt{3} - (3\sqrt{3} + \pi) = 3\sqrt{3} - \pi.$$

21.6. Neka je Ana uložila u banku x dinara. Na osnovu uslova zadatka dobijamo jednačinu

$$25000 \cdot p\% + (x - 25000) \cdot (p + 2)\% = x \cdot (p + 0.4)\%,$$

odakle je x = 31250 dinara.

Test 22

- **22.1.** Rešenje je $x = \frac{1}{2}$.
- **22.2.** Dajemo uputstvo. Uvesti smenu $x+1=t^2$ za $x\geq -1,\ x\neq 5/4$. Rešenja su $x_1=3$ i $x_2=440$.
- **22.3.** Data nejednačina ima smisla pod uslovom $x^2 7x + 10 > 0$, tj. za $x \in (-\infty, 2) \cup (5, +\infty)$. Njena rešenja odredićemo na sledeći način:

$$\left(\frac{4}{9}\right)^{\log_{1/4}(x^2 - 7x + 10)} < \frac{9}{4} \iff \log_{1/4}(x^2 - 7x + 10) > -1$$
$$\Leftrightarrow x^2 - 7x + 10 < 4$$
$$\Leftrightarrow x^2 - 7x + 6 < 0 \iff x \in (1.6).$$

Presek dobijenog intervala i uslova egzistencije nejednačine je $x \in (1,2) \cup (5,6)$.

22.4. Imamo:

$$\cos x + \sqrt{3}\cos 2x + \cos 3x = 0,$$

$$2\cos x \cos 2x + \sqrt{3}\cos 2x = 0,$$

$$2\cos 2x \left(\cos x + \frac{\sqrt{3}}{2}\right) = 0.$$

Rešenja su:

$$x_k = \frac{(2k+1)\pi}{2}, \quad x_k = \frac{5\pi}{6} + 2k\pi, \quad x_k = -\frac{5\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}.$$

22.5. Prva slika prikazuje prizmu i dva valjka visine H, a druga njihove baze, pri čemu je R poluprečnik baze spoljašnjeg, a r poluprečnik baze unutrašnjeg valjka.

Prizma je pravilna, što znači da je njena baza jednakostranični trougao. Baza B_1 spoljašnjeg valjka je krug opisan oko trougla, a baza B_2 unutrašnjeg valjka je krug upisan u trougao. Odnos poluprečnika ovih krugova kod jednakostraničnog trougla je R: r=2:1, tj. važi

$$R=2r$$
.

Oba valjka imaju istu visinu H, pa je odnos njihovih zapremina

$$\frac{V_1}{V_2} = \frac{B_1 H}{B_2 H} = \frac{B_1}{B_2} = \frac{R^2 \pi}{r^2 \pi} = \frac{4r^2 \pi}{r^2 \pi} = 4.$$

Dakle, zapremina V_1 spoljašnjeg valjka je četiri puta veća od zapremine V_2 unutrašnjeg valjka.

22.6. Zadatak se rešava slično kao i zadatak 19.6. Rezultat je

$$z_1 = 0$$
, $z_2 = 1$, $z_3 = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$, $z_4 = -\frac{1}{2} - \frac{i\sqrt{3}}{2}$.

Test 23

- **23.1.** Vrednost izraza je 3.
- 23.2. Transformišimo jednačinu na sledeći način:

$$\begin{split} \log_2 x - \log_3 x + 1 &= \frac{1}{4} \log_2 x + 3 \log_3 x - \frac{1}{2}, \\ 16 \log_3 x - 3 \log_2 x &= 6, \\ 16 \log_3 x - 3 \cdot \frac{\log_3 x}{\log_3 2} &= 6, \\ \log_3 x \cdot \frac{16 \log_3 2 - 3}{\log_3 2} &= 6, \\ \log_3 x &= \frac{6 \log_3 2}{16 \log_3 2 - 3}. \end{split}$$

Iz poslednje jednakosti je

$$x = 3^{\frac{6\log_3 2}{16\log_3 2 - 3}} = 2^{\frac{6}{16\log_3 2 - 3}}.$$

23.3. Nejednačina je definisana za $|x| \leq 1/2$ i $x \neq 0$. Za $0 < x \leq 1/2$ dobijamo ekvivalentnu nejednačinu

$$\sqrt{1 - 4x^2} < 1 - \frac{3}{2}x,$$

odakle, posle kvadriranja, dobijamo nejednačinu

$$\frac{25}{4}x^2 - 3x > 0,$$

čije je rešenje x>12/25. Znači, u ovom slučaju, rešenje je $12/25 < x \le 1/2$. Ako je $-1/2 \le x < 0$, imamo nejednačinu

$$1 - \sqrt{1 - 4x^2} < \frac{3}{2}x,$$

koja nema rešenja u posmatranom intervalu.

23.4. Datu jednačinu možemo da transformišemo na sledeći način:

$$2(\sqrt{3}\sin x \cos x - \sin^2 x) = \sqrt{2} - 1,$$

$$4\sin x \left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right) = \sqrt{2} - 1,$$

$$4\sin x \sin\left(\frac{\pi}{3} - x\right) = \sqrt{2} - 1,$$

$$2\left(\cos\left(\frac{\pi}{3} - 2x\right) - \cos\frac{\pi}{3}\right) = \sqrt{2} - 1,$$

$$\cos\left(\frac{\pi}{3} - 2x\right) = \frac{\sqrt{2}}{2}.$$

Poslednja jednakost važi za

$$x_k = \frac{7\pi}{24} + k\pi, \quad x_k = \frac{\pi}{24} + k\pi, \quad k \in \mathbb{Z}.$$

23.5. Neka je α oštar ugao paralelograma i h visina koja odgovara stranici a.

Za oštar i tup ugao paralelograma važi $\alpha + \beta = 180^{\circ}$, pa je

$$\alpha = 30^{\circ}$$
.

Trougao sa stranicama b, h i uglom α je pravougli. Zato je $h/b = \sin \alpha = \sin 30^\circ = 1/2$, odakle je

$$h = \frac{b}{2} = 3.$$

Površina paralelograma je

$$P = ah = 9 \cdot 3 = 27.$$

23.6. Primenom nejednakosti koje važe za kompleksne brojeve dobijamo

$$|3 + 2i - z| \ge ||3 + 2i| - |z|| \ge |\sqrt{13} - 1| = \sqrt{13} - 1.$$

Test 24

- **24.1.** Vrednost izraza je 1.
- 24.2. Diskriminanta jednačine je

$$D = 4(k^2 - 6k + 8) = 4(k - 2)(k - 4).$$

Za $k\in(2,4)$ jednačina nema rešenja u realnom domenu. Za $k\in(-\infty,2]\cup[4,+\infty)$ jednačina ima realna rešenja

$$x_{1,2} = (4k-1) \pm \sqrt{(k-2)(k-4)}$$

pri čemu su ta rešenja dvostruka za $k=2,\,k=4.$

24.3. Iz uslova egzistencije

$$x\geq -\frac{1}{2},\quad x\geq \frac{5}{2},\quad x\leq \frac{5}{2}$$

vidimo da nejednačina ima jedinstveno rešenje x = 5/2.

24.4. Izraz ćemo uprostiti na sledeći način

$$\frac{3 - 4\cos 2\alpha + \cos 4\alpha}{3 + 4\cos 2\alpha + \cos 4\alpha} = \frac{3 - 4\cos 2\alpha + 2\cos^2 2\alpha - 1}{3 + 4\cos 2\alpha + 2\cos^2 2\alpha - 1}$$
$$= \frac{2(1 - \cos 2\alpha)^2}{2(1 + \cos 2\alpha)^2} = \tan^4 \alpha.$$

24.5. U pravoj kupi visina H leži na osi, izvodnice su jednake i sa visinom zaklapaju jednake uglove. Osni preseci su zato podudarni jednakokraki trouglovi sa osnovicom 2R, krakom s i visinom H, gde je R poluprečnik baze kupe. Na sledećoj slici osni presek je trougao LNT, a O je centar baze.

Iz pravouglog trougla ONT je

$$\frac{H}{s} = \cos \alpha = \cos 60^{\circ} = \frac{1}{2}, \quad s = 2H,$$

pa iz uslova s-H=5sledi2H-H=5 i

$$H = 5, \quad s = 10.$$

Iz istog trougla je

$$\frac{R}{s} = \sin \alpha = \sin 60^{\circ} = \frac{\sqrt{3}}{2},$$

odakle je

$$R = \frac{s\sqrt{3}}{2} = 5\sqrt{3}.$$

Baza i omotač kupe su

$$B = R^2 \pi = 75\pi$$
, $M = R\pi s = 50\sqrt{3}\pi$,

a površina i zapremina su

$$P = B + M = (75 + 50\sqrt{3}) \pi$$
, $V = \frac{BH}{3} = 125\pi$.

24.6. Neka prvi radnik može da završi posao za x dana, a drugi za y dana. Na osnovu uslova zadatka dobijamo sistem jednačina

$$\frac{12}{x} + \frac{12}{y} = 1,$$
$$\frac{5}{x} + \frac{5}{y} + \frac{17.5}{y} = 1,$$

iz kojeg dobijamo x=20dana, y=30dana.

Test 25

25.1. Rešenje je
$$x = \frac{19}{3}$$
.

25.2. Razmatraćemo dva slučaja.

 1° Za $x \geq 3$ dobijamo jednačinu

$$x^2 - 3x - 1 = 0,$$

čija su rešenja

$$x_{1,2} = \frac{3 \pm \sqrt{13}}{2}.$$

S obzirom na uslov $x \geq 3$, prihvatamo samo rešenje $x = \left(3 + \sqrt{13}\right)/2$.

 2° Za x < 3 imamo jednačinu

$$x^2 - 11x + 23 = 0,$$

čija su rešenja

$$x_{1,2} = \frac{11 \pm \sqrt{29}}{2}.$$

S obzirom na uslov x < 3, prihvatamo samo rešenje $x = (11 - \sqrt{29})/2$.

25.3. Za x > 1 i $x \neq 2$, data nejednačina postaje

$$\frac{(3-x)\left(x-\frac{1}{2}\right)}{\log_2(x-1)} > 0,$$

i njeno rešenje je $x \in (2,3)$. Za x < 1 i $x \neq 0$, data nejednačina postaje

$$\frac{(3-x)\left(x-\frac{1}{2}\right)}{\log_2(1-x)} > 0 ,$$

i tačna je za $x \in (0, 1/2)$.

Konačno, rešenje nejednačine je $x \in (0, 1/2) \cup (2, 3)$.

25.4. Datu jednačinu rešavamo na sledeći način

$$\cos\frac{x}{3} - \cos x - 4\sin^{3}\frac{x}{3} = 0,$$

$$\cos\frac{x}{3} - \cos\frac{x}{3}\cos\frac{2x}{3} + \sin\frac{x}{3}\sin\frac{2x}{3} - 4\sin^{3}\frac{x}{3} = 0,$$

$$\cos\frac{x}{3} - \cos\frac{x}{3}\left(1 - 2\sin^{2}\frac{x}{3}\right) + 2\sin^{2}\frac{x}{3}\cos\frac{x}{3} - 4\sin^{3}\frac{x}{3} = 0,$$

$$4\sin^{2}\frac{x}{3}\cos\frac{x}{3} - 4\sin^{3}\frac{x}{3} = 0,$$

$$\sin^{2}\frac{x}{3}\left(\cos\frac{x}{3} - \sin\frac{x}{3}\right) = 0,$$

$$\sin^{2}\frac{x}{3}\cos\left(\frac{x}{4} + \frac{x}{3}\right) = 0.$$

Rešenja su:

$$x_k = 3k\pi$$
, $x_k = \frac{3(4k+1)\pi}{4}$, $k \in \mathbb{Z}$.

25.5. Sa a, h označavamo stranicu i visinu, sa d_1, d_2 dijagonale i sa α oštar ugao romba.

Iz izraza za površinu romba

$$P = ah = \frac{d_1 d_2}{2}$$

i pretpostavke zadatka $a = \sqrt{d_1 d_2}$ sledi

$$a^2 = d_1 d_2 = 2ah, \quad a = 2h.$$

Trougao sa stranicama a, h i uglom α je pravougli, pa dalje sledi

$$\sin \alpha = \frac{h}{a} = \frac{h}{2h} = \frac{1}{2}, \quad \alpha = 30^{\circ}.$$

Ako je β tup ugao romba, važi $\alpha+\beta=180^\circ$, odakle je $\beta=150^\circ$. Zaključujemo da su različiti uglovi romba

$$\alpha = 30^{\circ}, \quad \beta = 150^{\circ}.$$

25.6. Vrednost izraza računamo na sledeći način

$$\begin{split} \frac{3\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}} &= \frac{3\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}} \cdot \frac{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}} \\ &= \frac{2+4\sqrt{5}}{2\sqrt{5}} = \frac{10+\sqrt{5}}{5}. \end{split}$$

Test 26

- **26.1.** Vrednost izraza je $\frac{103}{8}$.
- **26.2.** Oblast definisanosti jednačine se dobija iz uslova $x-1>0,\ 4-x>0,\ x>0$ i to je $x\in(1,4).$

Transformišemo jednačinu u

$$\left| \log \frac{(x-1)(4-x)}{x} \right| = \left| \log \frac{x}{2} \right|,$$

odakle je

$$\log \frac{(x-1)(4-x)}{x} = \log \frac{x}{2} \quad \text{ili} \quad \log \frac{(x-1)(4-x)}{x} = -\log \frac{x}{2}.$$

U prvom slučaju je

$$\frac{(x-1)(4-x)}{x} = \frac{x}{2},$$

pa je $3x^2-10x+8=0$ i $x_1=2,\,x_2=4/3.$ U drugom slučaju je

$$\frac{(x-1)(4-x)}{x} = \left(\frac{x}{2}\right)^{-1} = \frac{2}{x},$$

pa je $x^2 - 5x + 6 = 0$ i $x_3 = 3$, $x_4 = 2$.

Kako je $x_1, x_2, x_3, x_4 \in (1, 4)$, jednačina ima tri rešenja

$$x_1 = 2$$
, $x_2 = 4/3$, $x_3 = 3$.

26.3. Nejednačina je definisana za one realne vrednosti promenljive x za koje je

$$x^2 - 4x + 3 > 0$$

a to je ispunjeno za $x \in (-\infty, 1] \cup [3, +\infty)$. Primetimo da za $x \geq 3$ važi

$$\sqrt{x^2 - 4x + 3} \ge 0, \qquad 2 - x \le 0,$$

pa je data nejednačina zadovoljena za svako $x \geq 3$. Za $x \leq 1$ je 2-x>0, pa kvadriranjem nejednačine dobijamo

$$x^{2} - 4x + 3 \ge 4 - 4x + x^{2}$$
.

odnosno $3 \ge 4$, što je nemoguće, pa u ovom slučaju nejednačina nema rešenja.

26.4. Dobijamo

$$\sin \frac{5x}{6} + \cos \frac{x}{3} - \cos 2x = 0,$$

$$\sin \frac{5x}{6} + 2\sin \frac{7x}{6}\sin \frac{5x}{6} = 0,$$

$$\sin \frac{5x}{6} \left(1 + 2\sin \frac{7x}{6}\right) = 0.$$

Rešenja su:

$$x_k = \frac{6}{5}k\pi, \quad x_k = \frac{6}{7}\left(-\frac{\pi}{6} + 2k\pi\right), \quad x_k = \frac{6}{7}\left(\frac{7\pi}{6} + 2k\pi\right), \quad k \in \mathbb{Z}.$$

26.5. Na prvoj slici je prikazana prava kupa sa visinom H, izvodnicom s i poluprečnikom osnove R. Druga slika prikazuje omotač M u razvijenom obliku.

Kako je $B=R^2\pi=7\pi$, poluprečnik osnove je

$$R=\sqrt{7}$$
.

Krug, čija je osmina omotač M, ima za poluprečnik izvodnicu s, a time i površinu $s^2\pi$. Zato je $M=s^2\pi/8$ i iz formule $M=R\pi s$ sledi

$$R\pi s = \frac{s^2\pi}{8}, \quad \sqrt{7} = \frac{s}{8},$$

odakle je izvodnica

$$s = 8\sqrt{7}$$
.

Dalje, prema Pitagorinoj teoremi, iz osenčenog trougla sa prve slike se dobija

$$H^2 = s^2 - R^2 = 64 \cdot 7 - 7 = (64 - 1) \cdot 7 = 63 \cdot 7 = 9 \cdot 7^2 = 21^2$$

pa je visina

$$H = 21.$$

Na osnovu dobijenih podataka, omotač kupe je

$$M = R\pi s = 56\pi,$$

a površina i zapremina su

$$P = B + M = 7\pi + 56\pi = 63\pi, \quad V = \frac{BH}{3} = 49\pi.$$

26.6. Jednačina je kvadratna za $k \neq 0$. Diskriminanta ove jednačine je D = 1 + 4k. Da bi rešenja bila racionalna, neophodno je da bude $D = t^2$, za neko $t \in \mathbb{Z}$, odakle dobijamo

$$k = \frac{t^2 - 1}{4}, \quad t \in \mathbb{Z} \setminus \{-1, 1\}.$$

Dalje, uslov $k \in \mathbb{Z}$ je ispunjen ako je $t^2 - 1$ deljivo sa 4, a to važi ako je t neparan broj, t = 2l + 1, $l \in \mathbb{Z} \setminus \{-1, 0\}$. Konačno dobijamo

$$k = \frac{(2l+1)^2 - 1}{4} = l^2 + l, \quad l \in \mathbb{Z} \setminus \{-1, 0\}.$$

Test 27

- 27.1. Vrednost izraza je 3.
- **27.2.** Jednačina ima smisla za $x \geq 0$. Dalje imamo

$$\sqrt[3]{2+\sqrt{x}} + \sqrt[3]{2-\sqrt{x}} = 1$$

$$\Leftrightarrow 2+\sqrt{x}+2-\sqrt{x}+3\sqrt[3]{(2+\sqrt{x})(2-\sqrt{x})} \cdot \left(\sqrt[3]{2+\sqrt{x}}+\sqrt[3]{2-\sqrt{x}}\right) = 1$$

$$\Rightarrow 4+3\sqrt[3]{(2+\sqrt{x})(2-\sqrt{x})} \cdot 1 = 1$$

$$\Leftrightarrow \sqrt[3]{4-x} = -1 \Leftrightarrow x = 5.$$

Proverom se dobija da x = 5 jeste rešenje.

27.3. Nejednačina je definisana za x > 0 i ekvivalentna je sa

$$\frac{x(x+6)}{49} \le 1.$$

27.4. Važi sledeće:

$$\frac{\sqrt{1-\sin 2x}}{\sin^2 x - \cos^2 x} + \frac{\sin 2x}{\sin x + \cos x} = \frac{\sqrt{1-2\sin x \cos x}}{\sin^2 x - \cos^2 x} + \frac{2\sin x \cos x}{\sin x + \cos x}$$

$$= \frac{\sqrt{(\sin x - \cos x)^2}}{(\sin x - \cos x)(\sin x + \cos x)} + \frac{2\sin x \cos x}{\sin x + \cos x}$$

$$= \frac{1}{\sin x + \cos x} + \frac{2\sin x \cos x}{\sin x + \cos x}$$

$$= \frac{\sin^2 x + \cos^2 x + 2\sin x \cos x}{\sin x + \cos x}$$

$$= \frac{(\sin x + \cos x)^2}{\sin x + \cos x} = \sin x + \cos x.$$

27.5. Neka je a stranica romba, a d_1 i d_2 njegove dijagonale.

Dijagonale romba su uzajamno normalne i polove se. One dele romb na četiri podudarna pravougla trougla, čije su katete $d_1/2$ i $d_2/2$, a hipotenuza je stranica a (pravilo podudarnosti SSS). Zato je, prema Pitagorinoj teoremi, $(d_1/2)^2 + (d_2/2)^2 = a^2$, tj.

$$d_1^2 + d_2^2 = 4a^2$$
.

Kako je površina romba $P = d_1 d_2/2 = 7$, to je

$$d_1d_2 = 14.$$

Dalje, iz $d_1 + d_2 = 8$ sledi

$$(d_1 + d_2)^2 = d_1^2 + d_2^2 + 2d_1d_2 = 64,$$

pa je

$$d_1^2 + d_2^2 = 64 - 2d_1d_2 = 64 - 28 = 36.$$

Na osnovu prethodnog zaključujemo da je

$$4a^2 = 36, \quad a = 3$$

i za obim romba se dobija

$$Q = 4a = 12$$
.

27.6. Rešenje je

$$\frac{1}{\sqrt{\sqrt{2}+\sqrt[3]{3}}} = \sqrt{\sqrt{2}+\sqrt[3]{3}} \left(\sqrt[3]{3}-\sqrt{2}\right) \left(4+2\sqrt[3]{9}+3\sqrt[3]{3}\right).$$

Test 28

- **28.1.** Vrednost izraza je -1.
- 28.2. Koreni date kvadratne jednačine su

$$x_{1,2} = \frac{(2-m) \pm \sqrt{(m-14)(m-6)}}{8}.$$

Za $m \in (6, 14)$ jednačina nema realna rešenja. Ima realna rešenja za $m \in (-\infty, 6] \cup [14, +\infty)$. Za m = 6 ili m = 14 imamo dvostruka rešenja.

28.3. Imamo da je

$$0.3^{2x^2 - 3x + 6} < 0.00243 \quad \Leftrightarrow \quad \left(\frac{3}{10}\right)^{2x^2 - 3x + 6} < \left(\frac{3}{10}\right)^5$$
$$\Leftrightarrow \quad 2x^2 - 3x + 6 > 5 \quad \Leftrightarrow \quad x \in \left(-\infty, \frac{1}{2}\right) \cup (1, +\infty).$$

28.4. a) Kako je $\sin\alpha\cos\alpha=2/5,\,\alpha\in(0,\pi/4),$ na osnovu jednakosti

$$(\sin \alpha + \cos \alpha)^2 = 1 + 2\sin \alpha \cos \alpha,$$

dobija se $\sin \alpha + \cos \alpha = 3\sqrt{5}/5$.

b) Takođe, kako za $\alpha \in (0, \pi/4)$ važi $\cos \alpha > \sin \alpha$, na osnovu jednakosti

$$(\cos \alpha - \sin \alpha)^2 = 1 - 2\sin \alpha \cos \alpha,$$

dobija se da je $\cos \alpha - \sin \alpha = \sqrt{5}/5$, tj. $\sin \alpha - \cos \alpha = -\sqrt{5}/5$.

c) Na osnovu prethodnih rezultata, imamo da je sin $\alpha = \sqrt{5}/5$ i $\cos \alpha = 2\sqrt{5}/5$. Sada je

$$\sin^{2m} \alpha + \cos^{2m} \alpha = (\sin^2 \alpha)^m + (\cos^2 \alpha)^m = \left(\frac{1}{5}\right)^m + \left(\frac{4}{5}\right)^m = \frac{1 + 4^m}{5^m}.$$

28.5. Neka su O, R centar i poluprečnik baze prave kupe, a O_1 , R_1 centar i poluprečnik opisane lopte. Još, neka je T teme kupe i L još jedna zajednička tačka kupe i lopte. Tada je OT = H visina kupe i $O_1O = x$ rastojanje između centara O_1 , O.

Prema uslovu zadatka i uvedenim oznakama je

$$H = 2R$$
, $H = x + R_1 = x + 8$,

pa je
$$2R = x + 8$$
, tj.

$$x = 2R - 8$$
.

Na osnovu Pitagorine teoreme iz pravouglog trougla OLO_1 sledi

$$R^2 + x^2 = R_1^2 = 64$$

i dalje

$$R^{2} + (2R - 8)^{2} = 64$$
, $5R^{2} - 32R = 0$, $5R - 32 = 0$.

Zato je

$$R = \frac{32}{5}$$
, $x = 2R - 8 = \frac{24}{5}$, $H = x + 8 = \frac{64}{5}$.

Izvodnicu s kupe određujemo iz pravouglog trougla OLT i dobijamo

$$s^{2} = R^{2} + H^{2} = \frac{32^{2}}{25} + \frac{64^{2}}{25} = \frac{32^{2} + 4 \cdot 32^{2}}{25} = \frac{32^{2}}{5},$$

odakle je

$$s = \frac{32}{\sqrt{5}} = \frac{32}{5}\sqrt{5}.$$

Sada su baza i omotač kupe

$$B = R^2 \pi = \left(\frac{32}{5}\right)^2 \pi, \quad M = R\pi s = \left(\frac{32}{5}\right)^2 \sqrt{5}\pi,$$

a površina i zapremina

$$\begin{split} P &= B + M = \left(\frac{32}{5}\right)^2 \left(1 + \sqrt{5}\right) \pi, \\ V &= \frac{BH}{3} = \frac{1}{3} \cdot \left(\frac{32}{5}\right)^2 \pi \cdot \frac{2 \cdot 32}{5} = \frac{2}{3} \left(\frac{32}{5}\right)^3 \pi. \end{split}$$

28.6. Označimo sa x broj minuta za koliko je prošlo 8 sati u prvom slučaju. Dok velika kazaljka prođe ceo krug, mala prođe dvanaesti deo, a to je podeok koji odgovara petoj minuti. Mala kazaljka startuje sa broja 8, tj. sa četrdesetog podeoka, a velika sa broja 12, tj. sa početnog položaja. U momentu poklapanja kazaljki važiće jednakost

$$40 + \frac{x}{12} = x.$$

Odavde je x = 480/11.

U drugom slučaju položaji kazaljki razlikuju se za 30 podeljaka, pa ako označimo sa y broj minuta za koliko je prošlo 2 sata, imamo jednačinu

$$10 + \frac{y}{12} = y - 30,$$

gde y označava broj minuta posle 2 sata, kada kazaljke grade ispružen ugao. Odavde je y=480/11. Dakle, x=y, pa je od polaska u školu do povratka prošlo tačno 6 sati.

Test 29

- **29.1.** Vrednost izraza je 1.
- **29.2.** Jednačina je definisana za m>1 i $x\in(-3,1)$. Napišimo jednačinu u ekvivalentnom obliku

$$\log_4(3+x) + \log_4(1-x) = \log_4 4 + \log_4 \log_2 m,$$
$$\log_4(3-2x-x^2) = \log_4 4 \log_2 m.$$

Iz poslednje jednačine dobijamo kvadratnu jednačinu

$$x^2 + 2x - 3 + 4\log_2 m = 0$$
,

čija su rešenja

$$x_{1,2} = \frac{-2 \pm \sqrt{16(1 - \log_2 m)}}{2} = -1 \pm 2\sqrt{\log_2 2m^{-1}}.$$

Iz uslova $\log_2 2m^{-1} \geq 0$ sledi $2m^{-1} \geq 1,$ tj. $m \leq 2.$ Sada imamo sledeće zaključke.

Jednačina ima realna rešenja za $m \in (1, 2]$.

Za jedinu celobrojnu vrednost parametra m, m = 2, rešenje je x = -1.

29.3. Nejednačina je ekvivalentna nejednačini

$$\frac{2x^2 + 6x + 9}{(x-3)(x+2)(x+3)} \le 0,$$

odakle je $x \in (-\infty, -3) \cup (-2, 3)$.

29.4. Rešenja su:

$$x_k = \frac{\pi}{8} + \frac{k\pi}{4}, \quad x_k = \pm \frac{5\pi}{12} + k\pi, \quad k \in \mathbb{Z}.$$

29.5. Ako je d_1 veća, a d_2 manja dijagonala, na osnovu uslova zadatka sledi

$$d_1 + d_2 = 14, \quad d_2 = \frac{3}{4}d_1,$$

pa je $d_1 + 3d_1/4 = 14$, odakle je

$$d_1 = 8, \quad d_2 = 6.$$

Kako je
$$a^2 = (d_1/2)^2 + (d_2/2)^2 = 16 + 9 = 25$$
, to je $a = 5$.

Za površinu romba važi $P = ah = d_1d_2/2$, pa je visina romba

$$h = \frac{d_1 d_2}{2a} = \frac{48}{10} = \frac{24}{5}.$$

Poluprečnik kružnice upisane u romb je

$$r = \frac{h}{2} = \frac{24}{10} = \frac{12}{5}$$
.

29.6. Kako je $\sqrt{a^2} = |a|, \sqrt{7} - 1 > 0$ i $2\sqrt{7} - 6 < 0$, sledi

$$2\sqrt{8-2\sqrt{7}} + \sqrt{(2\sqrt{7}-6)^2} = 2\sqrt{1-2\sqrt{7}+(\sqrt{7})^2} + \sqrt{(2\sqrt{7}-6)^2}$$
$$= 2\sqrt{(\sqrt{7}-1)^2} + \sqrt{(2\sqrt{7}-6)^2}$$
$$= 2 \cdot |\sqrt{7}-1| + |2\sqrt{7}-6|$$
$$= 2 \cdot (\sqrt{7}-1) + (6-2\sqrt{7}) = 4,$$

tj. ovaj broj je racionalan.

Test 30

30.1. Računamo vrednost izraza:

$$\begin{split} & 3\frac{5}{14} - \left(1\frac{11}{49} : \left(76 \cdot \frac{25}{38} - 47\frac{3}{7}\right)\right) \cdot \frac{12}{55} \\ = & \frac{47}{14} - \left(\frac{60}{49} : \left(50 - \frac{332}{7}\right)\right) \cdot \frac{12}{55} \\ = & \frac{47}{14} - \left(\frac{60}{49} : \frac{18}{7}\right) \cdot \frac{12}{55} \\ = & \frac{47}{14} - \left(\frac{60}{49} \cdot \frac{7}{18}\right) \cdot \frac{12}{55} \\ = & \frac{47}{14} - \left(\frac{60}{49} \cdot \frac{7}{18}\right) \cdot \frac{12}{55} \\ = & \frac{47}{14} - \frac{10}{21} \cdot \frac{12}{55} = \frac{47}{14} - \frac{8}{77} = \frac{501}{154}. \end{split}$$

30.2. Na osnovu Vietovih formula je

$$x_1 + x_2 = \frac{3}{4},$$
$$x_1 x_2 = \frac{9k^2}{8}.$$

Na osnovu uslova zadatka je, recimo, $x_1 = x_2^2$. Sada iz prve jednakosti dobijamo

$$x_2^2 + x_2 - \frac{3}{4} = 0,$$

odakle je $x_2 = -3/2$ ili $x_2 = 1/2$.

Za $x_2 = -3/2$ je $x_1 = 9/4$, pa iz jednakosti $x_1x_2 = 9k^2/8$ sledi $9/4 \cdot (-3/2) = 9k^2/8$, što je nemoguće.

Za $x_2 = 1/2$ je $x_1 = 1/4$, pa imamo $x_1x_2 = 1/8 = 9k^2/8$, odakle je k = 1/3.

- **30.3.** Rešenje nejednačine je $x \in (-\infty, -17/8] \cup [-3/2, +\infty)$.
- **30.4.** Za $x \neq (2k+1)\pi/2$ i $x \neq k\pi$, $k \in \mathbb{Z}$, sledi

$$\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = 3 + 2\sin 2x,$$
$$\frac{2}{2\sin x \cos x} = 3 + 2\sin 2x,$$
$$3\sin 2x + 2\sin^2 2x = 2.$$

Uvođenjem smene $\sin 2x = t$ dobijamo kvadratnu jednačinu

$$2t^2 + 3t - 2 = 0.$$

čija su rešenja $t_1=-2$ i $t_2=1/2$. S obzirom na uvedenu smenu rešenje t_1 odbacujemo, pa su rešenja jednačine data sa

$$x_k = \frac{(12k+1)\pi}{12}, \quad x_k = \frac{(12k+5)\pi}{12}, \quad k \in \mathbb{Z}.$$

30.5. Centar osnova kupe i valjka je označen sa O, teme kupe sa T i još jedno teme osnog preseka sa L.

Kako je h = H/2, prema Pitagorinoj teoremi iz pravouglog trougla OLT sledi

$$s^2 = R^2 + H^2$$
, $H^2 = s^2 - R^2 = 25 - 9 = 16$,

odakle je

$$H = 4, \quad h = 2.$$

Osnove, omotači i zapremine kupe i valjka su

$$B_1 = R^2 \pi = 9\pi, \quad B_2 = r^2 \pi = \pi;$$

 $M_1 = R\pi s = 15\pi, \quad M_2 = 2r\pi h = 4\pi;$
 $V_1 = \frac{B_1 H}{3} = 12\pi, \quad V_2 = B_2 h = 2\pi.$

Izdubljena kupa se sastoji od omotača kupe, kružnog prstena $B_1 - B_2$, omotača valjka i osnove valjka, pa je njena površina

$$P = M_1 + (B_1 - B_2) + M_2 + B_2 = M_1 + B_1 + M_2$$
$$= 15\pi + 9\pi + 4\pi = 28\pi.$$

Zapremina izdubljene kupe je

$$V = V_1 - V_2 = 12\pi - 2\pi = 10\pi.$$

30.6. Vrednost datog izraza možemo da izračunamo direktno

$$\sqrt{11+6\sqrt{2}} + \sqrt{11-6\sqrt{2}} = \sqrt{(3+\sqrt{2})^2} + \sqrt{(3-\sqrt{2})^2} = 3+3=6,$$

ili na sledeći način. Označimo sa

$$A = \sqrt{11 + 6\sqrt{2}} + \sqrt{11 - 6\sqrt{2}}.$$

Očigledno je A>0. Kvadriranjem prethodne jednakosti dobija se

$$A^{2} = 11 + 6\sqrt{2} + 11 - 6\sqrt{2} + 2\sqrt{121 - 72} = 36.$$

odakle je A = 6.

Test 31

- **31.1.** Vrednost izraza je 250.
- **31.2.** Stavimo $y=\sqrt{x+4}$. Tada je $x=y^2-4$, pa je $2x-6=2y^2-14$. Sada, data jednačina postaje $\sqrt{2y^2-14}+y=5.$

Kvadriranjem dobijamo jednačinu

$$y^2 + 10y - 39 = 0,$$

čija su rešenja $y_1 = 3$ i $y_2 = -13$. S obzirom na uslov $y \ge 0$, uzimamo samo y = 3, odakle je x = 5. Proverom vidimo da je ovo zaista rešenje polazne jednačine.

- **31.3.** Rešenje je $x \in (-5, -1) \cup (1, 5)$.
- 31.4. Primenom trigonometrijskih transformacija na dati izraz dobijamo

$$\frac{2(\sin 2x + 2\cos^2 x - 1)}{2\sin x \sin 2x + 2\sin x \cos 2x} = \frac{2(\sin 2x + 2\cos^2 x - 1)}{2\sin x (\sin 2x + \cos 2x)}$$
$$= \frac{2(\sin 2x + \cos 2x)}{2\sin x (\sin 2x + \cos 2x)} = \frac{1}{\sin x}.$$

31.5. Neka je ABCD jednakokraki trapez sa osnovicama a = AB i b = DC, a d ma koja njegova dijagonala.

Prvo pokazujemo da su dijagonale jednakokrakog trapeza jednake. Trouglovi ABC i ABD imaju jednake stranice BC, AD (kraci trapeza), zajedničku stranicu AB i jednake uglove $\angle ABC$, $\angle BAD$ (uglovi na osnovici trapeza). Prema pravilu SUS, ovi trouglovi su podudarni i zaista je AC = BD.

Osnovicu DC produžujemo od temena C do tačke E tako da je CE=AB=a. Tada je ABEC paralelogram jer su mu stranice AB i CE paralelne i jednake. Zato je i BE=AC=d.

Trougao BDE je jednakostranični sa stranicom d, što sledi iz definicije srednje linije trapeza m = (a+b)/2 i uslova zadatka d = 2m = a+b. Na osnovu obrasca za visinu jednakostraničnog trougla, visina h trougla BDE je

$$h = \frac{d\sqrt{3}}{2} = m\sqrt{3}.$$

Visina trougla BDE je istovremeno i visina trapeza ABCD, pa tražena površina iznosi

$$P = \frac{a+b}{2}h = mh = m^2\sqrt{3}.$$

31.6. Cena robe bi se smanjila za 60 dinara.

Test 32

- **32.1.** Vrednost izraza je $\frac{11}{40}$.
- **32.2.** Uvedimo smenu $\log_2(2^x + 1) = t$. Kako je

$$\log_2(2^{x+1}+2) = \log_2(2^x+1) = \log_2(2^x+1) = 1 + \log_2(2^x+1),$$

dobijamo jednačinu

$$t(t+1) = 2.$$

Odavde je t=-2 ili t=1. Za t=-2 je $\log_2(2^x+1)=-2$, odakle je $2^x+1=1/4$, odnosno $2^x=-3/4$, što je nemoguće. Za t=1 imamo $\log_2(2^x+1)=1$, odakle nalazimo jedino rešenje ove jednačine x=0.

- **32.3.** Rešenje je $x \in (-4, -1) \cup (2, 5)$.
- 32.4. Primenom adicionih formula dobija se

$$T(\alpha, \beta) = \cos(2\alpha + \beta) + \sin(\beta - 2\alpha)$$

= $\cos 2\alpha \cos \beta - \sin 2\alpha \sin \beta + \sin \beta \cos 2\alpha - \sin 2\alpha \cos \beta$
= $(\sin \beta + \cos \beta)(\cos^2 \alpha - \sin^2 \alpha - 2\sin \alpha \cos \alpha).$

Kako je $0 < \alpha < \pi$ i sin $\alpha = 3/5$, imamo da je cos $\alpha = \pm 4/5$. S druge strane, kako je $0 < \beta < \pi$ i cos $\beta = -12/13$, imamo da je sin $\beta = 5/13$. Tako izraz $T(\alpha, \beta)$ može da ima dve vrednosti, i to su $T_1(\alpha, \beta) = 119/325$ i $T_2(\alpha, \beta) = -217/325$.

32.5. Osnovna i zarubljena kupa imaju istu osu koja prolazi kroz centre O, O_1 baza zarubljene i teme T osnovne kupe. Prava zarubljena kupa nastaje iz prave osnovne kupe, pa visine OT, $H = OO_1$, $h = O_1T$ osnovne, zarubljene i dopunske kupe leže na osi. Dva temena osnog preseka zarubljene kupe su L, N.

TrougloviOLTi O_1NT su slični jer su im stranice paralelne, pa važi $OT:OL=O_1T:O_1N,$ tj.

$$\frac{H+h}{R} = \frac{h}{r}.$$

Zato je

$$\frac{2+h}{3} = \frac{h}{1}$$
, $2+h = 3h$, $2h = 2$

i za visinu dopunske kupe se dobija

$$h = 1$$
.

Neka je B_1 veća, a B_2 manja baza zarubljene kupe, koja je istovremeno i baza dopunske kupe. Tada je

$$B_1 = R^2 \pi = 9\pi, \quad B_2 = r^2 \pi = \pi.$$

Zapremine $V,\,V_1$ zarubljene i dopunske kupe su

$$V = \frac{\left(B_1 + \sqrt{B_1 B_2} + B_2\right) H}{3} = \frac{\left(9\pi + \sqrt{9\pi^2} + \pi\right) \cdot 2}{3} = \frac{26\pi}{3},$$

$$V_1 = \frac{B_2 h}{3} = \frac{\pi}{3},$$

pa je njihov odnos

$$\frac{V}{V_1} = 26.$$

Dakle, zarubljena kupa ima 26 puta veću zapreminu od dopunske kupe.

32.6. Racionalisanje vršimo na sledeći način

$$\begin{split} \frac{1}{2+\sqrt{5}+2\sqrt{2}+\sqrt{10}} &= \frac{1}{\left(\sqrt{5}+2\sqrt{2}\right)+\left(2+\sqrt{10}\right)} \cdot \frac{\left(\sqrt{5}+2\sqrt{2}\right)-\left(2+\sqrt{10}\right)}{\left(\sqrt{5}+2\sqrt{2}\right)-\left(2+\sqrt{10}\right)} \\ &= \frac{\sqrt{5}+2\sqrt{2}-2-\sqrt{10}}{5+4\sqrt{10}+8-4-4\sqrt{10}-10} \\ &= 2+\sqrt{10}-\sqrt{5}-2\sqrt{2}. \end{split}$$

Test 33

- **33.1.** Vrednost izraza je 11.
- 33.2. Jednačina

$$\sqrt{(3x+8)(x+3)} = 2$$

je definisana za $x \in (-\infty, -3] \cup [-8/3, +\infty)$ i ima dva rešenja

$$x_1 = -4, \quad x_2 = -\frac{5}{3}.$$

Jednačina

$$\sqrt{3x+8}\sqrt{x+3} = 2$$

je definisana za $x \in [-8/3, +\infty)$ i ima samo jedno rešenje

$$x = -\frac{5}{3}$$
.

- **33.3.** Rešenje je $x \in (-\infty, -9/8] \cup [0, +\infty)$.
- 33.4. Jednačinu rešavamo na sledeći način

$$\sin x + \cos x = -1,$$

$$\frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2} = 0,$$

$$\sin\left(\frac{\pi}{4} + x\right) + \sin\frac{\pi}{4} = 0,$$

$$2\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)\cos\frac{x}{2} = 0.$$

Rešenja jednačine su

$$x_k = (2k+1)\pi, \quad x_k = \frac{(4k-1)\pi}{2}, \quad k \in \mathbb{Z}.$$

33.5. Neka je ABCD jednakokraki trapez sa osnovicama $AB=a=8,\ CD=b=6,$ krakom c i presekom dijagonala S.

Posmatramo prvu sliku i pokazujemo da u bilo kom jednakokrakom trapezu važi

$$SA = SB = y, \quad SC = SD = x.$$

U tom cilju uočavamo trouglove SDA i SBC. Trouglovi ABC i ABD su podudarni (zadatak 31.5), pa imaju jednake uglove, tj. $\angle BDA = \angle ACB$, $\angle BAD = \angle ABC$, $\angle ABD = \angle BAC$, odakle je i

$$\angle SDA = \angle BDA = \angle ACB = \angle SCB,$$

 $\angle SAD = \angle BAD - \angle BAC = \angle ABC - \angle ABD = \angle SBC.$

Prema pravilu USU, trouglovi SDA i SBC su podudarni jer imaju jednake stranice AD, BC (kraci trapeza) i na njih nalegle uglove.

Uočavamo sada trouglove SAB i SCD sa prve slike. Ovi trouglovi su pravougli prema pretpostavci zadatka. Primenom Pitagorine teoreme sledi $2x^2 = b^2$, $2y^2 = a^2$ i, na osnovu datih podataka, $x^2 = 36/2 = 18$, $y^2 = 64/2 = 32$, tj.

$$x = 3\sqrt{2}, \quad y = 4\sqrt{2}.$$

Vraćamo se na trougao SBC, koji je takođe pravougli sa katetama x, y i nalazimo hipotenuzu, tj. krak trapeza,

$$c = \sqrt{x^2 + y^2} = \sqrt{18 + 32} = 5\sqrt{2}.$$

Trouga
oABCsa druge slike ima visinu $SB=y=4\sqrt{2}$ koja odgovara stranici
 $AC=x+y=7\sqrt{2}.$ Ako sa hoznačimo visinu koja odgovara stranici
 a,za površinu P_1 trougla ABCvaži

$$P_1 = \frac{AC \cdot SB}{2} = \frac{ah}{2},$$

odakle je

$$h = \frac{AC \cdot SB}{a} = \frac{7\sqrt{2} \cdot 4\sqrt{2}}{8} = 7.$$

Konačno, obim i površina trapeza su

$$O = a + b + 2c = 8 + 6 + 10\sqrt{2} = 14 + 10\sqrt{2},$$

$$P = \frac{a+b}{2}h = \frac{8+6}{2} \cdot 7 = 49.$$

33.6. Označimo sa

$$A = \sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}}.$$

Sada je

$$A^{3} = 4 + 3\sqrt[3]{\left(2 + \sqrt{5}\right)^{2} \left(2 - \sqrt{5}\right)} + 3\sqrt[3]{\left(2 + \sqrt{5}\right) \left(2 - \sqrt{5}\right)^{2}} = 4 - 3A,$$

tj.

$$A^3 + 3A - 4 = 0,$$

108

odakle je

$$(A-1)(A^2 + A + 4) = 0,$$

pa je

A=1.

Test 34

- **34.1.** Rezultat je $3^{3/5} \cdot 5^{2/3} \cdot 2^{-1/2}$.
- **34.2.** Deljenjem date jednačine sa 13^x dobijamo

$$\left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x = 1.$$

Za x < 2 važi

$$\left(\frac{5}{13}\right)^x > \left(\frac{5}{13}\right)^2 \quad \text{i} \quad \left(\frac{12}{13}\right)^x > \left(\frac{12}{13}\right)^2,$$

te je

$$\left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x > \left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2 = 1.$$

Analogno, za x > 2 važi

$$\left(\frac{5}{13}\right)^x < \left(\frac{5}{13}\right)^2 \quad \text{i} \quad \left(\frac{12}{13}\right)^x < \left(\frac{12}{13}\right)^2,$$

pa je

$$\left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x < \left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2 = 1.$$

Direktnom proverom vidimo da je jedino rešenje jednačine x=2.

34.3. Da bi nejednačina bila definisana neophodno je da bude $x^2>0,\ 2x+3>0,\ 2x+3\neq 1,$ tj. $x>-3/2,\ x\neq 0,\ x\neq -1.$

Pretpostavimo, najpre, da je 0 < 2x+3 < 1, odnosno -3/2 < x < -1. Tada je data nejednačina ekvivalentna sa

$$\log_{2x+3} x^2 < \log_{2x+3} (2x+3),$$

odnosno $x^2 > 2x+3$, tj. (x+1)(x-3) > 0. Odavde je x < -1 ili x > 3, pa zbog uslova -3/2 < x < -1, dobijamo da su rešenja svi brojevi iz intervala (-3/2, -1).

Ako je 2x + 3 > 1, tj. x > -1, dobijamo

$$\log_{2x+3} x^2 < \log_{2x+3} (2x+3),$$

što je ekvivalentno sa $x^2 < 2x+3$, odnosno -1 < x < 3, pa je rešenje proizvoljan broj iz intervala (-1,3).

Znači, rešenja date nejednačine su realni brojevi

$$x \in \left(-\frac{3}{2}, -1\right) \cup (-1, 0) \cup (0, 3).$$

34.4. Imamo

$$\cos 2x - \cos x - \sin x = 0,$$

$$(\cos x - \sin x)(\cos x + \sin x) - (\cos x + \sin x) = 0,$$

$$(\sin x + \cos x)(\cos x - \sin x - 1) = 0.$$

Rešavamo prvo jednačinu

$$\sin x + \cos x = 0,$$

tj.

$$\sin\left(\frac{\pi}{4} + x\right) = 0,$$

odakle je

$$x_k = \frac{(4k-1)\pi}{4}, \quad k \in \mathbb{Z}.$$

Jednačina $\cos x - \sin x - 1 = 0$ ekvivalentna je sa

$$\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2} = 0,$$

$$\sin\left(\frac{\pi}{4} - x\right) - \sin\frac{\pi}{4} = 0,$$

$$-2\sin\frac{x}{2}\cos\left(\frac{\pi}{4} - \frac{x}{2}\right) = 0,$$

odakle je

$$x_k = 2k\pi, \quad x_k = \frac{(4k-1)\pi}{2}, \quad k \in \mathbb{Z}.$$

34.5. Jedan par temena L, N naspramnih strana S_1 , S_2 prizme, čije je rastojanje najveće, uočen je na sledećoj slici. Prema uslovu zadatka, ovo rastojanje je jednako poluprečniku R sfere. Uočeno je i teme M strane S_2 .

Prizma je pravilna, pa je njena baza kvadrat stranice a=4, a ivice su jednake visini H=2. Dijagonala kvadrata je

$$d = a\sqrt{2} = 4\sqrt{2}$$
.

Prema Pitagorinoj teoremi, iz pravouglog trougla LMN sledi

$$R^2 = d^2 + H^2 = 32 + 4 = 36$$

i poluprečnik sfere iznosi

$$R=6.$$

Površina i zapremina sfere su

$$P = 4R^2\pi = 144\pi, \quad V = \frac{4R^3\pi}{3} = 288\pi.$$

34.6. Ako je v brzina voza, onda je 30v=300, pa je v=10 m/s. Prema tome, voz se kretao brzinom od 36 km/h. Dužina voza je $d=10\cdot 15=150$ m.

Test 35

- **35.1.** Vrednost izraza je 1.2.
- 35.2. Oblast definisanosti jednačine

$$\log_2 x(x+1) = 1$$

je $x \in (-\infty, -1) \cup (0, +\infty)$. Ona ima dva rešenja

$$x_1 = 1, \quad x_2 = -2.$$

Oblast definisanosti jednačine

$$\log_2 x + \log_2(x+1) = 1$$

je $x \in (0, +\infty)$. Ona ima samo jedno rešenje

$$x = 1$$
.

35.3. Nejednačina je ekvivalentna sa

$$\frac{(x-3)(x-2)}{(5-x)(x+1)} < 0.$$

Rešenje ove nejednačine je $x \in (-\infty, -1) \cup (2, 3) \cup (5, +\infty)$.

35.4. Kako je

$$\cos^{6} x + \sin^{6} x = (\cos^{2} x + \sin^{2} x) (\cos^{4} x - \cos^{2} x \sin^{2} x + \sin^{4} x)$$

$$= \cos^{4} x + 2 \cos^{2} x \sin^{2} x + \sin^{4} x - 3 \cos^{2} x \sin^{2} x$$

$$= (\cos^{2} x + \sin^{2} x)^{2} - 3 \cos^{2} x \sin^{2} x$$

$$= 1 - \frac{3}{4} \sin^{2} 2x,$$

data jednačina se može napisati u obliku

$$1 - \frac{3}{4}\sin^2 2x = 4\sin^2 2x,$$

tj.

$$19\sin^2 2x = 4.$$

Koristeći jednakost

$$\sin^2 2x = \frac{1 - \cos 4x}{2},$$

poslednja jednačina se svodi na sledeću jednačinu

$$\cos 4x = \frac{11}{19},$$

čija su rešenja

$$x_k = \pm \frac{1}{4} \arccos \frac{11}{19} + \frac{k\pi}{2}, \quad k \in \mathbb{Z}.$$

35.5. Sa ABCD označimo trapez u kome je a=AB veća i b=CD manja osnovica, c=BC veći i d=AD manji krak. Pretpostavimo da dijagonala AC polovi ugao $\angle BAD$ i uvedimo oznake $\alpha=\angle BAC$, $\beta=\angle CAD$. Uslovi zadatka sada glase:

$$c = d + 4$$
, $c = a - 2$, $b + c + d = 40$, $\alpha = \beta$.

Kako su α i $\angle ACD$ uglovi s paralelnim kracima, to je $\angle ACD = \alpha = \beta$, pa je trougao ACD jednakokraki i sledi

Iz uslova a = c + 2, c = d + 4 dalje sledi

$$a = (d+4) + 2 = d+6$$
.

Zamenom b = d i c = d + 4 u uslov b + c + d = 40, određuje se

$$d = 12$$
.

Konačno, stranice trapeza su:

$$a = d + 6 = 18$$
, $b = d = 12$, $c = d + 4 = 16$, $d = 12$.

Ako dijagonala BD polovi ugao $\angle ABC$, radi se analogno i dobija se:

$$a = \frac{50}{3}, \quad b = c = \frac{44}{3}, \quad d = \frac{32}{3}.$$

35.6. Na osnovu Vietovih pravila za datu kvadratnu jednačinu je

$$x_1 + x_2 = m$$
, $x_1 x_2 = 2m - 7$.

Sada dati uslov postaje

$$\frac{x_1^2 + x_2^2}{x_1 x_2} + \frac{4}{5} = x_1 + x_2, \quad m \neq \frac{7}{2},$$
$$\frac{(x_1 + x_2)^2 - 2x_1 x_2}{x_1 x_2} = (x_1 + x_2) - \frac{4}{5},$$
$$\frac{m^2 - 2(2m - 7)}{2m - 7} = \frac{5m - 4}{5}.$$

Odavde dobijamo kvadratnu jednačinu

$$5m^2 - 23m - 42 = 0,$$

čije je jedino celobrojno rešenje m=6.

Zbir kubova rešenja jednačine je

$$x_1^3 + x_2^3 = (x_1 + x_2)^3 - 3x_1^2x_2 - 3x_1x_2^2 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2)$$

= 216 - 90 = 126.

Test 36

36.1. Rezultat je $\frac{13}{15}$.

36.2. Uslov egzistencije date jednačine je xy > 0. Na osnovu nejednakosti

$$\left(\sqrt{xy} - \frac{1}{\sqrt{xy}}\right)^2 \ge 0 \quad \Leftrightarrow \quad xy + \frac{1}{xy} \ge 2,$$

pri čemu jednakost nastupa za xy = 1, zaključujemo da je

$$\log_2\left(xy + \frac{1}{xy}\right) \ge 1.$$

Jednakost važi samo za xy=1, pa kako je $(x+y-2)^2\geq 0$ imamo da je $1-(x+y-2)^2\leq 1$, pri čemu jednakost važi samo ako je x+y-2=0. Na osnovu prethodne analize, zadatak se svodi na rešavanje sistema jednačina

$$xy = 1, \quad x + y - 2 = 0,$$

koji ima jedinstveno rešenje (x, y) = (1, 1).

36.3. Za $x \ge 0$ imamo da je |x| = x, pa se data nejednačina sređivanjem svodi na

$$\frac{-x^2 + 5x - 12}{x - 3} \ge 0.$$

Kako je $-x^2+5x-12<0$ za svako $x\in\mathbb{R},$ prethodna nejednakost važi za $x\in[0,3).$

Za x < 0 imamo da je |x| = -x, pa se data nejednačina sređivanjem svodi na

$$\frac{-x^2 + 7x - 12}{x - 3} \ge 0 \quad \Leftrightarrow \quad x \le 4 \quad \land \quad x \ne 3.$$

S obzirom na to da smo ovu nejednakost dobili za x<0, rešenja u ovom slučaju su $x\in (-\infty,0)$.

Rešenje zadatka je $x \in (-\infty, 3)$.

36.4. Transformacijom polazne jednačine dobija se

$$\cos 7x + \cos 5x - \sin 2x = 0,$$

$$2\cos 6x \cos x - 2\sin x \cos x = 0,$$

$$2\cos x(\cos 6x - \sin x) = 0,$$

$$2\cos x\left(\cos 6x - \cos\left(\frac{\pi}{2} - x\right)\right) = 0.$$

36.5. Sferni isečak se sastoji od prave kupe sa temenom u centru O sfere i pripadne kalote (sferni odsečak). Kupa ima visinu $h = OO_1$, izvodnicu s = R i poluprečnik baze $r = O_1L$.

Kako je h+H=R, visina kupe je

$$h = R - H = 4$$
.

Prema Pitagorinoj teoremi, iz pravouglog trougla OO_1L sledi

$$r^2 = R^2 - h^2 = 25 - 16 = 9$$
,

pa je poluprečnik baze kupe

$$r = 3$$
.

Površina kalote i omotač kupe su

$$P_1 = 2R\pi H = 10\pi$$
, $M = r\pi s = r\pi R = 15\pi$.

Površina P izdubljene sfere se dobija kada se od površine sfere oduzme površina kalote i doda omotač kupe, tj.

$$P = 4R^2\pi - P_1 + M = 100\pi - 10\pi + 15\pi = 105\pi.$$

Zapremina V izdubljene sfere se dobija kada se od zapremine sfere oduzme zapremina V_1 isečka. Kako je

$$V_1 = \frac{2R^2\pi H}{3} = \frac{50\pi}{3},$$

to je

$$V = \frac{4R^3\pi}{3} - V_1 = \frac{500\pi}{3} - \frac{50\pi}{3} = \frac{450\pi}{3} = 150\pi.$$

36.6. Neka je x dužina puta. Tada je

$$\frac{1}{3}x + \frac{1}{5}x + 6.8 = 6\left(x - \frac{1}{3}x - \frac{1}{5}x - 6.8\right) \quad \Leftrightarrow \quad x = 21\,\mathrm{km}.$$

Dakle, prvog dana je prešao $7\,\mathrm{km}$, što je oko 33.33% puta, drugog dana $4.2\,\mathrm{km}$, što je 20% puta, trećeg dana $6.8\,\mathrm{km}$, što je oko 32.38% i četvrtog dana $3\,\mathrm{km}$, što je oko 14.29%.

Test 37

- **37.1.** Vrednost izraza je $\frac{843}{50}$.
- **37.2.** Rešenja su $x_1 = -2$ i $x_2 = 1$.
- 37.3. Razlikovaćemo dva slučaja. 1° Za $0 < x^2 1 < 1$ i x > 1/3, odnosno $1 < x < \sqrt{2}$ nejednačina je ekvivalentna

$$3x - 1 > x^2$$
 \Leftrightarrow $x^2 - 3x + 1 < 0$ \Leftrightarrow $x \in \left(\frac{3 - \sqrt{5}}{2}, \frac{3 + \sqrt{5}}{2}\right)$.

Dakle, u ovom slučaju rešenje je $x \in (1, \sqrt{2})$.

 2° Ako je $x^2-1>1$ i x>1/3,tj. $x>\sqrt{2},$ nejednačina je ekvivalentna sa

$$0 < 3x - 1 < x^2 \quad \Leftrightarrow \quad 3x - 1 > 0 \quad \land \quad x^2 - 3x + 1 > 0 \quad \Leftrightarrow \quad x > \frac{3 + \sqrt{5}}{2}.$$

U ovom slučaju rešenje je svako $x \in ((3+\sqrt{5})/2, +\infty).$

Dakle, rešenje date nejednačine je $x \in (1, \sqrt{2}) \cup ((3 + \sqrt{5})/2, +\infty)$.

37.4. a) Kako je
$$\cos(\pi - \alpha) = \cos(\alpha - \pi) = -\cos\alpha$$
, dobijamo

$$\cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}$$

$$= \frac{1}{\cos\frac{\pi}{14}} \left(\cos\frac{\pi}{14} \cos\frac{\pi}{7} + \cos\frac{\pi}{14} \cos\frac{3\pi}{7} + \cos\frac{\pi}{14} \cos\frac{5\pi}{7} \right)$$

$$= \frac{1}{2\cos\frac{\pi}{14}} \left(\cos\frac{3\pi}{14} + \cos\frac{\pi}{14} + \cos\frac{7\pi}{14} + \cos\frac{5\pi}{14} + \cos\frac{11\pi}{14} + \cos\frac{9\pi}{14} \right)$$

$$= \frac{1}{2\cos\frac{\pi}{14}} \left(\cos\frac{3\pi}{14} + \cos\frac{\pi}{14} + \cos\frac{\pi}{2} + \cos\frac{5\pi}{14} - \cos\frac{3\pi}{14} - \cos\frac{5\pi}{14} \right) = \frac{1}{2}.$$

b) Dati izraz transformisaćemo na sledeći način i koristićemo prethodno dobijeni

rezultat:

$$\cos \frac{\pi}{7} \cos \frac{3\pi}{7} \cos \frac{5\pi}{7} = \frac{1}{2} \cos \frac{3\pi}{7} \left(\cos \frac{6\pi}{7} + \cos \frac{4\pi}{7}\right)$$

$$= \frac{1}{2} \left(\cos \frac{3\pi}{7} \cos \frac{6\pi}{7} + \cos \frac{3\pi}{7} \cos \frac{4\pi}{7}\right)$$

$$= \frac{1}{4} \left(\cos \frac{9\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{7\pi}{7} + \cos \frac{\pi}{7}\right)$$

$$= \frac{1}{4} \left(-\cos \frac{2\pi}{7} - 1 + \frac{1}{2} - \cos \frac{5\pi}{7}\right)$$

$$= \frac{1}{4} \left(-\cos \frac{2\pi}{7} - 1 + \frac{1}{2} + \cos \frac{2\pi}{7}\right) = -\frac{1}{8}.$$

37.5. Na sledećoj slici su prikazani kvadrat ABCD i pravilni osmougao, čija temena $E,\,F$ pripadaju stranicama $AB,\,BC$ kvadrata.

Uglovi svakog pravilnog mnogougla, pa i osmougla, su jednaki. Zato je $\angle AEF = \angle EFC$, a time je i $\angle BEF = \angle BFE$. Dakle, trougao BFE je jednakokraki. Kako je ovaj trougao pravougli, to je $\angle BEF = \angle BFE = 45^{\circ}$. Isto važi za sve odstranjene trouglove. Ovi trouglovi su podudarni prema pravilu USU jer imaju jednake hipotenuze (stranice pravilnog osmougla) i jednake uglove na hipotenuzama (svi su 45°).

Označimo sa x katetu, a sa b hipotenuzu trougla BFE, tj. stranicu osmougla. Prema Pitagorinoj teoremi je

$$b^2 = x^2 + x^2 = 2x^2, \quad b = x\sqrt{2}.$$

Još je

$$BC = a = x + b + x = 2x + b,$$

pa sledi

$$a = 2x + x\sqrt{2} = (2 + \sqrt{2}) x = \sqrt{2} (\sqrt{2} + 1) x,$$

 $x = \frac{a}{\sqrt{2} (\sqrt{2} + 1)} = \frac{a (\sqrt{2} - 1)}{\sqrt{2}}.$

Površine kvadrata i svakog od odstranjenih trouglova su

$$P_1 = a^2$$
, $P_2 = \frac{x^2}{2} = \frac{a^2(\sqrt{2}-1)^2}{4}$,

a površina osmougla je

$$P = P_1 - 4P_2 = a^2 - a^2 \left(\sqrt{2} - 1\right)^2 = a^2 \left(1 - \left(\sqrt{2} - 1\right)^2\right) = 2a^2 \left(\sqrt{2} - 1\right).$$

37.6. Zamenom z = x + iy u datoj jednačini dobija se

$$\sqrt{x^2 + y^2} + x + iy = 2 + i.$$

Izjednačavanjem realnih i imaginarnih delova ovih kompleksnih brojeva sledi

$$y = 1$$
.

Sada je

$$\sqrt{x^2 + 1} + x = 2,$$

odakle dobijamo

$$x = \frac{3}{4}.$$

Znači, traženi kompleksan broj je

$$z = \frac{3}{4} + i.$$

Test 38

- **38.1.** Vrednost izraza je 1.
- **38.2.** Kako je

$$|x^{2} - 2x - 3| = \begin{cases} x^{2} - 2x - 3, & x \in (-\infty, -1] \cup [3, +\infty), \\ -x^{2} + 2x + 3, & x \in (-1, 3), \end{cases}$$

a $|x^2-2x+5|=x^2-2x+5$ za svako $x\in\mathbb{R},$ imamo dva slučaja. 1° Za $x\in(-\infty,-1]\cup[3,+\infty)$ jednačina postaje

$$x^2 - 2x - 3 = x^2 - 2x + 5$$

tj. -3 = 5, što je nemoguće, pa je očigledno da u ovom slučaju rešenje ne postoji.

 2° Za $x \in (-1,3)$ jednačina postaje

$$-x^2 + 2x + 3 = x^2 - 2x + 5$$
,

tj. $2x^2 - 4x + 2 = 0$. Njeno dvostruko rešenje je x = 1, što je i jedino rešenje polazne jednačine.

38.3. Uvođenjem smene $5^x = t$, t > 0, dobija se nejednačina

$$t^2 - 6t + 5 < 0$$
.

tj. (t-1)(t-5) < 0. Odavde je $t \in (1,5)$, pa je rešenje $x \in (0,1)$.

38.4. Dati izraz uprostićemo na sledeći način

$$A = \frac{\sin^3(270^\circ - \alpha)\cos(\alpha - 360^\circ)}{\tan^3(90^\circ - \alpha)\cos^3(270^\circ - \alpha)} = \frac{-\cos^3\alpha\cos\alpha\sin^3\alpha}{\cos^3\alpha(-\sin^3\alpha)} = \cos\alpha.$$

Prethodne jednakosti imaju smisla za $\alpha \neq \frac{(2k+1)\pi}{2}$ i $\alpha \neq k\pi, \ k \in \mathbb{Z}.$

38.5. Obrtno telo se sastoji od pravog valjka kojem je dodata prava kupa i iz njega izdubljena ista takva kupa. Visina valjka je H=a, gde je a stranica romba koji rotira (prva slika). U rombu su tri temena označena sa L, N, E, dok su E_1 , E_2 podnožja visine h (druga slika).

Posmatramo drugu sliku. Veća dijagonala polovi oštar ugao romba. Zato je $\angle NLE_2=\alpha/2=30^\circ$ i iz pravouglog trougla LE_2N sledi $h/d=\sin 30^\circ=1/2,$ odakle je

$$h = \frac{d}{2} = 2.$$

Dalje, iz pravouglog trougla LE_1E je $h/a = \sin \alpha = \sin 60^\circ = \sqrt{3}/2$, pa je

$$a = \frac{2h}{\sqrt{3}} = \frac{4}{\sqrt{3}}.$$

Posmatramo sada prvu sliku. Visina romba je poluprečnik R zajedničke osnove B valjka i kupe, a stranica romba je izvodnica s kupe, tj.

$$R = h = 2, \quad s = a = \frac{4}{\sqrt{3}}.$$

Ako je M_1 omotač kupe, a M_2 omotač valjka, dobija se

$$B = R^2 \pi = 4\pi$$
, $M_1 = R\pi s = \frac{8\pi}{\sqrt{3}}$, $M_2 = 2R\pi H = 2R\pi a = \frac{16\pi}{\sqrt{3}}$.

Površina obrtnog tela je zbir omotača valjka i dva omotača kupe, dok je zapremina jednaka zapremini valjka. Dakle, tražene površina i zapremina su

$$P = M_2 + 2M_1 = \frac{32\pi}{\sqrt{3}}, \quad V = BH = Ba = \frac{16\pi}{\sqrt{3}}.$$

38.6. Neka je

$$A = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}.$$

Kako je

$$A^3 = 40 + 6A$$

i jednačina

$$A^3 - 6A - 40 = 0,$$

tj.

$$(A-4)(A^2+4A+10)=0$$

ima jedinstven realni koren A=4, što je i vrednost datog izraza.

Test 39

- **39.1.** Vrednost izraza je $\frac{33}{1175}$.
- **39.2.** Primetimo da za $x \ge 1$ važe jednakosti

$$x + 3 - 4\sqrt{x - 1} = (\sqrt{x - 1} - 2)^{2},$$

 $x + 8 - 6\sqrt{x - 1} = (\sqrt{x - 1} - 3)^{2}.$

Sada, data jednačina postaje

$$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$$
,

i definisana je za svako $x \ge 1$. Razmotrićemo četiri slučaja.

1° Neka je $\sqrt{x-1}-2\geq 0$ i $\sqrt{x-1}-3\geq 0$, tj. neka je $x\geq 10$. U ovom slučaju jednačina ima jedinstveno rešenje x=10.

2° Ako je $\sqrt{x-1}-2\geq 0$ i $\sqrt{x-1}-3\leq 0$, t
j. ako je $5\leq x\leq 10$, tada je jednakost zadovoljena za svako $5\leq x\leq 10$.

 3° U slučaju kada je $\sqrt{x-1}-2\le 0$ i $\sqrt{x-1}-3\le 0,$ tj. za $x\le 5,$ jednačina ima jedinstveno rešenje x=5.

 4° Za $\sqrt{x-1}-2\leq 0$ i $\sqrt{x-1}-3\geq 0,$ jednačina, očigledno, nema rešenja.

Dakle, rešenje date jednačine je $5 \le x \le 10$.

39.3. Dajemo uputstvo. Nejednačina je definisana za $x \geq 1$ i može da se napiše u ekvivalentnom obliku

$$\log_3 27x > 5\sqrt{\log_3 x},$$

odnosno

$$\log_3 x + 3 > 5\sqrt{\log_3 x}.$$

Sada uvesti smenu $\log_3 x = t^2$, $t \ge 0$.

39.4. Sledeće jednačine su ekvivalentne:

$$\sin^{3} x + \cos^{3} x = 1 - \frac{1}{2}\sin 2x,$$

$$(\sin x + \cos x)(1 - \sin x \cos x) = 1 - \frac{1}{2}\sin 2x,$$

$$(\sin x + \cos x - 1)\left(1 - \frac{1}{2}\sin 2x\right) = 0,$$

$$\sin x + \cos x - 1 = 0,$$

$$\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

Iz poslednje jednačine dobijamo rešenja

$$x_k = \frac{\pi}{2} + 2k\pi, \quad x_k = 2k\pi, \quad k \in \mathbb{Z}.$$

39.5. Simetrale uglova pravilnog šestougla se seku u istoj tački i formiraju šest trouglova koji sa šestouglom imaju zajedničku po jednu stranicu a.

Primenom obrasca za zbir uglova n–tougla, a imajući u vidu jednakost uglova u pravilnom n–touglu, izračunavamo ugao pravilnog šestougla

$$\alpha = \frac{(6-2) \cdot 180^{\circ}}{6} = 120^{\circ}.$$

Simetrala ugla polovi ugao, pa svi trouglovi imaju po dva jednaka ugla $\alpha/2 = 60^{\circ}$, što znači da su jednakostranični. Kako su stranice trouglova jednake stranici a šestrougla, oni su i podudarni (pravilo USU ili SSS).

Ako je h visina trougla, iz utvrđene podudarnosti i uslova zadatka sledi

$$d = 2h = 2\sqrt{3}, \quad h = \sqrt{3}.$$

Za visinu jednakostraničnog trougla važi

$$h = \frac{a\sqrt{3}}{2},$$

odakle je

$$a = \frac{2h}{\sqrt{3}} = 2.$$

Obim šestougla je

$$O = 6a = 12.$$

Površina jednog trougla je

$$P_1 = \frac{a^2 \sqrt{3}}{4} = \sqrt{3},$$

pa je površina šestougla

$$P = 6P_1 = 6\sqrt{3}$$
.

39.6. Prvi traktor za jedan sat izore 1/15 polja, a drugi izore 1/20 polja. Ako su oba traktora orala x sati zajedno, onda iz uslova zadatka dobijamo jednačinu

$$\frac{x}{15} + \frac{x}{20} = \frac{14}{15}.$$

Odavde je x = 8.

Test 40

40.1. Vrednost datog izraza odredićemo na sledeći način

$$A = 10^{2} \cdot \frac{\left(\frac{154}{25} \cdot \frac{5}{77} + \frac{100}{125}\right) \cdot \left(\frac{15}{1000} \cdot \frac{100}{12} + \frac{7}{10}\right)}{\frac{12}{10} \cdot \frac{8}{3} - \frac{2}{10}} = 100 \cdot \frac{\frac{6}{5} \cdot \frac{33}{40}}{\frac{30}{10}} = 33.$$

40.2. Za $x \ge 2$ dobijamo identitet. Ako je $1 \le x < 2$, dobijamo jednačinu 4x = 8, koja nema rešenja u datom intervalu. Za $0 \le x < 1$ dobija se jednačina -2x = 2,

koja, takođe, nema rešenja u ovom intervalu. U slučaju $-1 \le x < 0$ sledi 0 = 2, što je nemoguće. Konačno, za x < -1 dobijamo rešenje x = -2. Dakle, rešenje je x = -2 ili $x \ge 2$.

40.3. Nejednačina je definisana za svako $x \neq -1$. Ako datu nejednačinu napišemo u ekvivalentnom obliku

$$5^{\frac{3x-1}{x+1}} > 5^{2x+14},$$

dobijamo nejednačinu

$$\frac{3x-1}{x+1} > 2x+14,$$

tj.

$$\frac{\left(x+5\right)\left(2x+3\right)}{x+1}<0.$$

Rešenje poslednje nejednačine je $x \in (-\infty, -5) \cup (-3/2, -1)$.

40.4. Stavimo $\sin x + \cos x = t$. Kako je $(\sin x + \cos x)^2 = 1 + 2\sin x \cos x$, to je

$$\sin x \cos x = \frac{1}{2} \left(t^2 - 1 \right),$$

pa se data jednačina svodi na jednačinu

$$t^2 + 2t - 3 = 0.$$

Rešenja ove jednačine su $t_1=1$ i $t_2=-3$. Drugo rešenje odbacujemo, jer je $\sin x + \cos x > -2$, pa su rešenja polazne jednačine

$$x_k = \frac{\pi}{2} + 2k\pi, \quad x_k = 2k\pi, \quad k \in \mathbb{Z}.$$

40.5. Obrtno telo se sastoji od pravog valjka i dve prave kupe. Visina H valjka je kraća osnovica trapeza koji rotira, tj. H=b. Izvodnice s_1 , s_2 kupa su kraci trapeza (prva slika). Temena trapeza su L, N, E, F, a E_1 , F_1 su podnožja njegove visine h (druga slika).

Posmatramo drugu sliku. Neka je $H_1=LE_1,\ H_2=F_1N.$ Iz pravouglih trouglova LE_1E i F_1NF sledi

$$\frac{h}{H_1} = \tan \alpha = \tan 45^\circ = 1, \quad \frac{h}{H_2} = \tan \beta = \tan 30^\circ = \frac{1}{\sqrt{3}},$$

pa je

$$H_1 = h, \quad H_2 = h\sqrt{3}.$$

Kako je

$$a = LN = LE_1 + E_1F_1 + F_1N = H_1 + b + H_2,$$

to je

$$4 + \sqrt{3} = h + 1 + h\sqrt{3}$$
, $3 + \sqrt{3} = (1 + \sqrt{3})h$, $\sqrt{3}(1 + \sqrt{3}) = (1 + \sqrt{3})h$,

odakle je

$$h = \sqrt{3}, \quad H_1 = \sqrt{3}, \quad H_2 = 3.$$

Iz istih pravouglih trouglova se primenom Pitagorine teoreme dobija

$$s_1^2 = H_1^2 + h^2 = 3 + 3 = 6$$
, $s_2^2 = H_2^2 + h^2 = 9 + 3 = 12$,

pa su kraci trapeza

$$s_1 = \sqrt{6}, \quad s_2 = 2\sqrt{3}.$$

Posmatramo prvu sliku. Valjak i obe kupe imaju isti poluprečnik R baze, koji je jednak visini trapeza, tj.

$$R = h = \sqrt{3}$$
.

Tada su omotači kupa

$$M_1 = R\pi s_1 = 3\sqrt{2}\pi, \quad M_2 = R\pi s_2 = 6\pi,$$

a omotač valjka je

$$M_3 = 2R\pi H = 2R\pi b = 2\sqrt{3}\pi.$$

Površina obrtnog tela je zbir nađenih omotača i iznosi

$$P = M_1 + M_2 + M_3 = (3\sqrt{2} + 6 + 2\sqrt{3}) \pi.$$

Zajednička baza valjka i kupe je

$$B = R^2 \pi = 3\pi.$$

Visine kupa su H_1 , H_2 , pa su njihove zapremine

$$V_1 = \frac{BH_1}{3} = \sqrt{3}\pi, \quad V_2 = \frac{BH_2}{3} = 3\pi.$$

Kako je zapremina valjka

$$V_3 = BH = Bb = 3\pi,$$

za zapreminu obrtnog tela se dobija

$$V = V_1 + V_2 + V_3 = (\sqrt{3} + 6) \pi.$$

40.6. Neka je početna cena zlata bila x. Posle prvog dana, nakon poskupljenja i pojeftinjenja, cena zlata je

$$x_1 = 120\% \cdot 80\% \cdot x = 0.96x.$$

Posle drugog dana cena je

$$x_2 = 0.96x_1 = 0.96^2x.$$

Konačno, nakon 3 dana cena zlata je

$$x_3 = 0.96^3 x \approx 0.885 x$$

što je više od 80% prvobitne cene.

KOMPLETI ZADATAKA SA RANIJIH ISPITA

JUN 1989. g.

- 1. Pravougli trougao ima poluprečnik opisanog kruga R=15, a poluprečnik upisanog kruga r=6. Odrediti dužine svih stranica trougla.
- 2. Izračunati vrednost izraza

$$I = \frac{3\frac{1}{3} \cdot \sqrt{\frac{9}{80}} - \left(\frac{5}{4} \cdot \sqrt{0.8} - 5 \cdot \sqrt{0.2} - \sqrt{20}\right) - 10 \cdot \sqrt{0.2}}{3\frac{1}{2} \cdot \sqrt{32} - \left(\sqrt{4\frac{1}{2}} - 2 \cdot \sqrt{\frac{1}{8}}\right) + 6 \cdot \sqrt{\frac{2}{9}} - 140 \cdot \sqrt{0.02}} \cdot \sqrt{\frac{2}{5}}.$$

3. Neka $a_i \ (i \in \mathbb{N})$ čine aritmetičku progresiju i neka je

$$S_k = a_1 + a_2 + \dots + a_k \quad (k \in \mathbb{N}).$$

Ako je $\frac{S_m}{S_n} = \frac{m^2}{n^2}$, dokazati da tada važi i jednakost $\frac{a_m}{a_n} = \frac{2m-1}{2n-1}$.

4. Rešiti jednačinu

$$\sin x + \sqrt{3} \cdot \sin \left(\frac{7\pi}{2} - x\right) + \tan x = \sqrt{3}.$$

5. Rešiti jednačinu

$$5^x \cdot \sqrt[x]{8^{x-1}} = 500 \quad (x \in \mathbb{N}).$$

JUN 1990. g.

1. Rešiti jednačinu

$$3^{\log \tan x} - 2 \cdot 3^{\log \cot x + 1} = 1 \quad (\log x \equiv \log_{10} x).$$

2. Odrediti sve vrednosti $x \in \mathbb{R}$ koje zadovoljavaju nejednakost

$$|x - 6| > |x^2 - 5x + 4|.$$

3. Rešiti jednačinu

$$\left(\cos\frac{x}{4} - 2\sin x\right) \cdot \sin x + \left(1 + \sin\frac{x}{4} - 2\cos x\right) \cdot \cos x = 0.$$

4. Neka su R=5 i r=2 poluprečnici opisanog i upisanog kruga datog pravouglog trougla, respektivno. Naći površinu ovog trougla.

SEPTEMBAR 1990. g.

1. Rešiti jednačinu

$$\frac{\sin^3 \frac{x}{2} - \cos^3 \frac{x}{2}}{2 + \sin x} = \frac{1}{3} \cos x.$$

2. Uprostiti sledeće izraze:

a)
$$A = \frac{2\sqrt{b}}{\sqrt{a} + \sqrt{b}} + \left(\frac{a^{3/2} + b^{3/2}}{\sqrt{a} + \sqrt{b}} - \frac{1}{(ab)^{-1/2}}\right) \cdot (a - b)^{-1};$$

b)
$$B = \left(\frac{3-\sqrt{a}}{9-a} + \frac{1}{3-\sqrt{a}} - 6\frac{a^2+162}{729-a^3}\right)^{-1} + \frac{a(a+9)}{54}$$
.

3. Naći sva rešenja jednačine

$$9x^2 - 18|x| + 5 = 0,$$

koja pripadaju oblasti definisanosti funkcije $y = \log((x+1)(x-2))$.

4. Rešiti jednačine:

a)
$$\left(\frac{4}{9}\right)^{x+1} \cdot \left(\frac{27}{8}\right)^{x-1} = \frac{4\log 4}{9\log 8},$$

b) $\log_3(4^x - 3) + \log_3(4^x - 1) = 1.$

b)
$$\log_3(4^x - 3) + \log_3(4^x - 1) = 1$$
.

JUN 1991. g.

1. Naći celobrojnu vrednost k tako da nejednakost

$$x^2 - 2(4k - 1)x + 15k^2 - 2k - 7 > 0$$

važi za svako realno x.

2. Rešiti sistem jednačina

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{5}{2},$$
$$x + y = 5$$

3. Rešiti jednačinu

$$0.125 \cdot 4^{2x-8} = \left(\frac{0.25}{\sqrt{2}}\right)^{-x}.$$

4. Uprostiti izraze:

a)
$$\frac{1 + \sin 4a - \cos 4a}{1 + \cos 4a + \sin 4a}$$
;

- b) $4\cos^4 a 2\cos 2a 0.5\cos 4a$.
- **5.** Srednja linija trapeza iznosi 10 cm. Ako ona deli površinu trapeza P na dva dela P_1 i P_2 , za koje je $P_1: P_2=3:5$, odrediti dužine osnovica.

JUN 1992. g.

1. Uprostiti izraz

$$\sin^6 t + \cos^6 t + 3\sin^2 t \cos^2 t.$$

2. Rešiti jednačinu

$$(0.4)^{\log^2 x + 1} = (6.25)^{2 - \log x^3}$$
 $(\log x = \log_{10} x).$

3. Rešiti nejednačinu

$$\frac{|x-3|}{x^2 - 5x + 6} \ge 2.$$

4. Rešiti jednačinu

$$\sqrt{x^2 + x + 4} + \sqrt{x^2 + x + 1} = \sqrt{2x^2 + 2x + 9}.$$

5. Visina i težišna linija povučene iz temena C trougla ABC dele ugao kod temena C na tri jednaka dela. Odrediti uglove trougla ABC.

SEPTEMBAR 1992. g.

1. Odrediti sve realne brojeve x koji zadovoljavaju nejednakost

$$\frac{2x+1}{x^2-3x+2}+\frac{3x+2}{x^2-4x+3}>\frac{1}{x-3}.$$

2. Rešiti jednačinu

$$(2+\sqrt{3})^x + 3(2-\sqrt{3})^x = 4.$$

3. Rešiti jednačinu

$$2\sin^2 x + (1 - \sqrt{3})\sin 2x - \sqrt{3}\cos 2x - \sqrt{3} = 0.$$

4. Dat je jednakokraki trougao čija je osnovica dužine 30 cm i poluprečnik upisanog kruga 7.5 cm. Odrediti površinu ovog trougla.

JUN 1993. g.

1. Neka su x_1 i x_2 koreni jednačine

$$x^2 + px - \frac{1}{2p^2} = 0,$$

gde je \boldsymbol{p} realni parametar. Dokazati nejednakost

$$x_1^4 + x_2^4 \ge 2 + \sqrt{2}$$
.

2. Rešiti nejednačinu

$$(1 - \cos x)(1 + \cos 2x)(1 - \cos 3x) < \frac{1}{2}.$$

3. Rešiti jednačinu

$$9^x - 4^x = 3(3^{2x} - 6^x).$$

4. U krug poluprečnika R upisana su tri jednaka kruga, tako da dodiruju jedan drugog i dati krug. Izračunati površinu krivolinijskog trougla ograničenog upisanim krugovima.

SEPTEMBAR 1993. g.

1. Dat je pravougli trougao čiji je poluprečnik opisanog kruga $R=15\,\mathrm{cm},$ a poluprečnik upisanog kruga $r=6\,\mathrm{cm}.$ Odrediti dužine svih stranica trougla.

2. Rešiti jednačinu

$$5^x \cdot \sqrt[x]{8^{x-1}} = 500 \quad (x \in \mathbb{N}).$$

3. Rešiti jednačinu

$$\frac{\sin^3 \frac{x}{2} - \cos^3 \frac{x}{2}}{2 + \sin x} = \frac{1}{3} \cos x.$$

4. Naći celobrojnu vrednost k tako da nejednakost

$$x^2 - 2(4k+1)x + 15k^2 - 2k - 7 > 0$$

važi za svako realno x.

JUN 1994. g.

- 1. Cena zlata na berzi svako prepodne poraste za 10%, a svako poslepodne opadne za 10%. Da li će posle 50 dana rada berze cena zlata biti veća, manja ili jednaka polovini prvobitne cene?
- 2. Rešiti jednačinu

$$\sin(\pi\cos x) - \cos(\pi\sin x) = 0.$$

3. Rešiti jednačinu

$$4^{-1/x} + 6^{-1/x} = 9^{-1/x}$$
.

- 4. Data je prava p i tačke A i B van nje sa iste strane. Odrediti na pravoj p tačku M tako da je dužina AM + BM najkraća. Koliko ima rešenja? Dokazati da je tačka M dobro određena.
- 5. Odrediti najmanji prirodan broj koji je deljiv brojem 7, a koji prilikom deljenja brojevima 2, 3, 4, 5 i 6 daje ostatak 1.

JUN 1995. g.

- 1. Razlomak $\frac{337}{140}$ prikazati kao zbir tri razlomka sa jednocifrenim imeniocima, pri čemu su brojioci prirodni brojevi. Detaljno obrazložiti postupak.
- 2. Rešiti jednačinu

$$25^{\sqrt{x}} - 124 \cdot 5^{\sqrt{x}} = 125.$$

3. Za koje vrednosti parametra m važe nejednačine

$$-6 < \frac{2x^2 + mx - 4}{x^2 - x + 1} < 4.$$

4. Rešiti jednačinu

$$\sin x \cos x + \cos x - \sin x = 0.$$

5. Oko kruga poluprečnika $r=1.5\,\mathrm{cm}$ opisan je jednakokraki trapez površine $P=15\,\mathrm{cm}^2$. Izračunati dužinu dijagonale ovog trapeza.

SEPTEMBAR 1995. g.

- 1. Zbog oštećenog puta, autobus se kretao brzinom za 22% manjom od planirane. Za koliko procenata vozač mora povećati brzinu kretanja, da bi se kretao planiranom brzinom?
- 2. Izračunati vrednost izraza

$$Q = \left(\frac{x}{y} + \frac{y}{x}\right) \cdot \frac{1}{x^2 - y^2} - \left(\frac{x}{y} - \frac{y}{x}\right) : (x^2 - 2xy + y^2),$$

za
$$x = 18.54$$
 i $y = 71.46$.

3. Zameniti * prirodnim brojevima tako da važi

Naći sva moguća rešenja.

4. Naći zbir

$$A = \tan \alpha \tan 2\alpha + \tan 2\alpha \tan 3\alpha + \dots + \tan n\alpha \tan(n+1)\alpha.$$

5. Krug poluprečnika 2r prolazi kroz centar kruga poluprečnika r. Zajedničke tangente ovih krugova dodiruju manji krug u tačkama A i B i seku se u tački C. Izračunati površinu figure ABC u zavisnosti od r, gde je AB manji luk datog kruga.

JUN 1996. g.

1. Uprostiti izraz

$$\frac{1-2\sin x - \cos 2x}{1+2\sin x - \cos 2x}.$$

2. Rešiti jednačinu

$$2^{2x+2} + 5^{2x+2} - 29 \cdot 5^x \cdot 2^x = 0.$$

3. Naći rešenja date nejednačine

$$\frac{|x-2|}{x^2 - 3x + 2} \ge 2.$$

- **4.** Na krugu, sa centrom u tački O, poluprečnika $2 \, \mathrm{cm}$ date su tačke A, B i C, koje dele krug u razmeri 3:5:7. Izračunati uglove trougla ABC.
- 5. Dva voza istovremeno polaze iz mesta A i B, jedan drugom u susret. Svaki od njih se, čim stigne u suprotno mesto, odmah vraća nazad. Prvo susretanje vozova je na 50 km od mesta A, a drugo na 30 km od mesta B. Brzina vozova je stalna. Kolika je udaljenost između mesta A i B?

SEPTEMBAR 1996. g.

1. Rešiti nejednačinu

$$|2x - 3| < x.$$

- 2. Dijagonalni presek pravilne četvorostrane piramide je ravnostran trougao površine $k^2\sqrt{3}$. Izračunati površinu i zapreminu piramide.
- 3. Rešiti jednačinu

$$\sin x + \sin 2x + \sin 3x + \sin 4x = 0.$$

4. Rešiti jednačinu

$$15^{\log_5 x} \cdot x^{\log_5 45x} = 1.$$

5. Cena neke robe je najpre povećana za 20%, a posle mesec dana smanjena za 20%. Posle ove promene prvobitna cena se smanjila za 60 dinara. Za koliko dinara bi se smanjila prvobitna cena, ako bi najpre bila smanjena za 10%, a zatim ta nova cena povećana za 10%?

JUN 1997. g.

- 1. Zadat je trocifren broj A, čija je cifra stotica a, cifra desetica b i cifra jedinica c. Neka je zbir cifara broja A jednak 24. Ako cifre ciklično promene mesta, tako da cifra stotica bude c, cifra desetica a, a cifra jedinica b, dobija se broj koji je za 189 veći od prvobitnog. Ako cifre ponovo ciklično promene mesta, tako da je cifra stotica b, cifra desetica c, a cifra jedinica a, dobija se broj koji je za 108 veći od prvobitnog, tj od broja A. Odrediti prvobitni trocifreni broj.
- 2. Jedan daktilograf može da otkuca jedan tekst za 5 sati i 20 minuta, a drugi daktilograf isti tekst za 4 sata i 40 minuta. Ukoliko isti tekst kucaju istovremeno, tako što svaki daktilograf kuca samo jedan deo teksta, drugi će otkucati tri stranice više od prvog. Koliko stranica ima tekst?
- 3. Rešiti jednačinu

$$\sqrt{2x+12} - \sqrt{x-8} = \sqrt{x+4}$$
.

4. Uprostiti izraz

$$\frac{1+\cos 4a+\sin 4a}{1+\sin 4a-\cos 4a}.$$

5. U ravnostrani trougao ABC, stranice a, upisan je kvadrat maksimalne površine, tako da jedna stranica ovog kvadrata leži na osnovi trougla. Odrediti odnos površina trougla i kvadrata.

SEPTEMBAR 1997. g.

1. Rešiti sistem jednačina

$$x \cos \alpha - y \sin \alpha = A,$$

 $x \sin \alpha + y \cos \alpha = B,$

gde je α dati uga
o $0<\alpha<2\pi,$ aAi Bdati realni brojevi. Naći vrednost izraz
a $R=x^2+y^2.$

2. Odrediti parametar a tako da sistem jednačina

$$x^2 + ax + 1 = 0,$$

 $x^2 + x + a = 0,$

ima bar jedno rešenje.

- 3. Ako cifre jedinica i desetica zamene mesta, vrednost trocifrenog broja se poveća za 45. Isti broj se smanji za 270, ako cifre stotica i desetica zamene mesta. Ako cifre stotica i jedinica zamene mesta, dobiće se broj koji je veći od datog. Za koliko?
- 4. Jedan radnik završi generalnu popravku automobila za 10 dana. Ako mu u popravci 2 dana pomaže drugi radnik, onda će popravka biti završena za 6 dana. Za koliko dana bi generalnu popravku automobila završio drugi radnik?
- 5. Dat je pravougli trougao ABC sa pravim uglom u temenu C i poluprečnikom upisanog kruga r. Iz temena C povučena je visina h. Ova visina deli trougao na dva pravougla trougla čiji su poluprečnici upisanih krugova r_1 i r_2 . Dokazati da važi jednakost $r + r_1 + r_2 = h$.

JUN 1998. g.

- 1. Rešiti nejednačinu $1 < \left| \frac{2-x}{x+1} \right| < 2.$
- **2.** Neka su x_1 i x_2 koreni jednačine

$$x^2 + px - \frac{a}{n^2} = 0,$$

gde je $a=(2+\sqrt{2})^{-1}$ i $p\ (p\neq 0)$ realni parametar. Dokazati nejednakost $x_1^4+x_2^4\geq 2.$

- 3. Rešiti jednačinu $\cos x + \cot x \sqrt{2} = \sqrt{2} \cos \left(\frac{7\pi}{2} + x \right)$.
- **4.** Ako je $\sin^4 x + \cos^4 x = \frac{31}{32}$, odrediti $\sin^2 2x$.
- 5. Simetrala ugla između stranice i dijagonale romba seče drugu stranicu romba pod uglom od 72° . Odrediti uglove romba.

SEPTEMBAR 1998. g.

1. Odrediti zbir kvadrata najmanje i najveće vrednosti funkcije

$$f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5$$

na segmentu [0, 2].

2. Brojna vrednost izraza

$$\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}$$

je ceo broj. Naći taj broj.

3. Uprostiti izraz

$$\frac{\sin\alpha + \cos\alpha}{\sin\alpha - \cos\alpha} - \frac{1 + 2\cos^2\alpha}{\cos^2\alpha(\tan^2\alpha - 1)}.$$

4. Rešiti jednačinu

$$64^x - 8^{x+1} + 7 = 0.$$

5. Rešiti nejednačinu

$$\frac{x^2+6}{x^2-2x-8} < -1.$$

JUN 2000. g.

1. Racionalisati razlomak

$$\frac{1}{\sqrt[3]{4} - \sqrt[3]{2} - 2}.$$

2. Rešiti jednačinu

$$\log_x 9x^2 \cdot \log_3^2 x = 4.$$

3. Rešiti jednačinu

$$8(4^{x} + 4^{-x}) - 54(2^{x} + 2^{-x}) + 101 = 0.$$

4. Rešiti jednačinu

$$\cos x - 2\sin\left(\frac{3\pi}{2} - \frac{x}{2}\right) = 3.$$

5. Romb stranice 6 cm i manje dijagonale 4 cm rotira oko ose koja prolazi kroz kraj veće dijagonale i normalna je na jednu stranicu romba. Odrediti površinu tako dobijenog tela.

SEPTEMBAR 2000. g.

- 1. Neka su x_1 i x_2 koreni jednačine $x^2 (m+1)x + 2m 1 = 0$, gde je m realan parametar. Odrediti m tako da važi jednakost $x_1 + x_2 + x_1x_2 = 1$.
- 2. Rešiti jednačinu

$$\sqrt{5x+4} - \sqrt{3x+1} = 5.$$

- **3.** Rešiti jednačinu $\log_5(x+3)=3-x$. Rešenje ilustrovati odgovarajućim graficima.
- 4. Neka su α , β i γ uglovi datog trougla za koje važi jednakost

$$\sin \gamma = \frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta}.$$

Dokazati da je trougao pravougli.

5. Odrediti vrednost izraza

$$\frac{1}{1/4} \left[\left(\frac{1}{0.25} \right)^2 \left(\frac{1}{2} \right)^3 - \left(-\frac{1}{0.5} \right)^3 \left(-\frac{1}{2} \right)^3 - \left(\frac{1}{0.8} \right)^2 \right] : \left(2 - \frac{1}{2} \right)^2.$$

JUN 2001. g.

1. Za koju vrednost realnog parametra m suma kvadrata korena jednačine

$$x^2 + (m-2)x - (m+3) = 0$$

dostiže minimalnu vrednost. Za tako dobijeno m rešiti datu jednačinu.

2. Rešiti jednačinu

$$4\sin^4 2x + \sin^2 4x = 2$$

3. Rešiti jednačinu

$$x + \log_{10}(1 + 2^x) = x \log_{10} 5 + \log_{10} 6.$$

- 4. a) Uzastopni uglovi nekog četvorougla su uzastopni članovi nekog aritmetičkog niza (progresije), kod koga je razlika $d=20^{\circ}$. Dokazati da je četvorougao trapez.
 - b) Ako su uzastopni uglovi nekog četvorougla α , $\alpha + 30^{\circ}$, $\alpha + 50^{\circ}$ i $\alpha + 80^{\circ}$, dokazati da je u pitanju trapez.

5. Ako se pravi valjak preseče jednom ravni paralelno njegovoj osi, izračunati površinu preseka u funkciji od poluprečnika r, visine H i rastojanja d od ose valjka. Zatim izračunati površinu preseka za $d = r\sqrt{3}/2$.

SEPTEMBAR 2001. g.

1. U jednačini

$$(m-2)x^2 - 2mx + 2m - 3 = 0,$$

odrediti realan parametar m tako da važi jednakost

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = 2.$$

Proveriti dobijeni rezultat.

 $\mathbf{2}$. Odrediti vrednosti x za koje je funkcija

$$f(x) = \log_{1/2} \left(\log_{1/3} \frac{x+1}{x-1} \right)$$

negativna.

3. Rešiti nejednačinu

$$\left(\frac{3}{4}\right)^{\cos 3x} < \frac{2}{\sqrt{3}}.$$

- **4.** Dokazati da je izraz $S(n) = 5^{4n-2} + 3^{4n-2}$, gde je $n \in \mathbb{N}$, deljiv sa 34.
- **5.** Osnovna ivica pravilne šestostrane prizme iznosi 3 m, a dijagonala bočne strane 6 m. Izračunati njenu zapreminu i površinu.

JUN 2002. g.

- 1. U zavisnosti od vrednosti realnog parametra m odrediti međusobni položaj prave 2x-y=0 i parabole $y=x^2+(2-m)x+m+1$.
- 2. Rešiti nejednačinu

$$(0.2)^{(2x-3)/(x-2)} > 5.$$

3. Uprostiti izraz

$$\left[\frac{(\sqrt{a} - \sqrt{b})^3 + 2a^{3/2} + b\sqrt{b}}{a\sqrt{a} + b^{3/2}} + \frac{3\sqrt{ab} - 3b}{a - b} \right]^{-3}.$$

4. a) Ako su a i b katete, a c hipotenuza pravouglog trougla, dokazati da važi nejednakost

$$\frac{a+b}{c} \le \sqrt{2}.$$

- b) Izračunati površinu pravouglog trougla kod koga je dužina hipotenuze 4 cm, a jedan oštar ugao iznosi 11°15′.
- 5. Odrediti zapreminu pravilne dvanaestostrane zarubljene piramide ako su poluprečnici kružnica opisanih oko osnova R i r, a bočne ivice nagnute pod uglom 60° prema ravni veće osnove.

SEPTEMBAR 2002. g.

1. Izračunati vrednost izraza

$$x = \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} : \frac{1}{1 - \frac{1}{1 - \frac{1}{2}}}.$$

2. Rešiti sistem jednačina

$$\sqrt{12 + x} + \sqrt{x - 9} = 7,$$
$$y^2 - x + 4y + 13 = 0.$$

3. Množenjem sa $\sin x$, ili na neki drugi način, dokazati da važi identitet

$$\frac{\cos 3x}{\sin 2x \sin 4x} + \frac{\cos 5x}{\sin 4x \sin 6x} + \frac{\cos 7x}{\sin 6x \sin 8x} = \frac{\sin 3x \cos 5x}{\sin x \sin 2x \sin 8x}.$$

4. Koristeći jednakost

$$\sqrt{2}\sqrt{n+\sqrt{n^2-1}} = \sqrt{n+1} + \sqrt{n-1}$$
,

ili na neki drugi način, odrediti prirodan broj m za koji važi jednakost

$$\sqrt{2} \left(\frac{1}{\sqrt{1 + \sqrt{1^2 - 1}}} + \dots + \frac{1}{\sqrt{m + \sqrt{m^2 - 1}}} \right) = \sqrt{101} + 9.$$

5. Da li će se promeniti površina pravougaonika i za koliko procenata ako se jedna njegova dimenzija poveća za 30%, a druga smanji za 30%?

JUN 2003. g.

1. Odrediti koje vrednosti može da uzima realan parametar m, tako da tačno jedno rešenje kvadratne jednačine

$$x^2 + x + 2^m - 4 = 0$$

leži u intervalu (-1,1).

2. Rešiti jednačinu

$$\log_{\cos x}(\sin x) + \log_{\sin x}(\cos x) = 2.$$

3. Ako je z = x + iy, rešiti jednačinu

$$|z| + z = 2 + i.$$

- **4.** Trougao je ograničen x-osom i pravama 5x + 12y = 60 i 3x + 4y = 12. Naći koordinate temena i površinu ovog trougla.
- 5. Omotač prave kupe, u razvijenom obliku, predstavlja kružni isečak sa centralnim uglom 36° i površinom od 110π cm². Odrediti površinu i zapreminu ove kupe.

SEPTEMBAR 2003. g.

1. Izračunati vrednost izraza

$$\frac{3\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}.$$

2. Neka su x_1 i x_2 koreni jednačine

$$x^2 - (m+1)x + 2m - 1 = 0,$$

gde je m realan parametar. Odrediti m tako da kvadratni trinom na levoj strani date jednačine bude pozitivan za svako x.

3. Rešiti nejednačinu

$$\sin x + \cos 2x > 1.$$

4. Rešiti jednačinu

$$\log_2^2 x + 2\log_2 \sqrt{x} - 2 = 0.$$

5. Odrediti zapreminu lopte, opisane oko prave pravilne četvorostrane prizme visine 2 cm i osnovne ivice 4 cm.

JUN 2004. g.

1. Data je kvadratna jednačina

$$x^2 + 4x - 21 = 0,$$

čija su rešenja x_1 i x_2 . Ne rešavajući ovu jednačinu, odrediti vrednost izraza

$$I = \frac{3x_1^2 - 4x_1x_2 + 3x_2^2}{x_1^3 + 2x_1^2x_2 + 2x_1x_2^2 + x_2^3}.$$

2. Rešiti nejednačinu

$$1 + \log_2 x + \log_2^2 x + \log_2^3 x + \dots > 0.$$

3. Rešiti jednačinu

$$4^{2/x} - 5 \cdot 4^{1/x} = -4.$$

- 4. Jednakokraki trapez, čije su osnovice dužina $a=20\,\mathrm{cm}$ i $b=8\,\mathrm{cm}$, a krak $c=10\,\mathrm{cm}$, rotira oko ose koja leži u njegovoj ravni, ne seče ga i paralelna je većoj osnovici trapeza na odstojanju $d=2.5\,\mathrm{cm}$ od nje. Izračunati zapreminu i površinu tako dobijenog tela.
- 5. a) Uprostiti izraz

$$\frac{\sin 130^{\circ} \cos 330^{\circ} \tan (270^{\circ} - \alpha) \cot 225^{\circ}}{\sin 270^{\circ} \cos 220^{\circ} \tan 210^{\circ} \cot (180^{\circ} - \alpha)}.$$

b) Rešiti jednačinu

$$\sin 3x = \cos 2x.$$

SEPTEMBAR 2004. g.

1. Neka su x_1 i x_2 koreni jednačine $x^2 - (m+1)x + 2m - 1 = 0$, gde je m realan parametar. Odrediti m tako da koreni budu realni i da važi nejednakost

$$\frac{x_1^2 + x_2^2}{x_1 + x_2} \le 1.$$

2. Rešiti jednačinu

$$\sqrt{5x+4} + \sqrt{3x+1} = 5.$$

- **3.** Ako je $\log_5 2 = a$ izračunati $\log_2 5,\,\log_8 125$ i $\log_{40} 25$ u funkciji od a.
- **4.** Odrediti ugao α , $\alpha \in (0, \pi/4)$, tako da je $\sin \alpha = \left(\sqrt{2 \sqrt{3}}\right)/2$.
- 5. Ivice pravouglog paralelopipeda odnose se kao a:b:c=2:3:6, a dužina njegove dijagonale je $D=35\,\mathrm{cm}$. Izračunati njegovu površinu i zapreminu.

JUN 2005. g.

1. Rešiti jednačinu

$$2\cos^2 x + 3\cos x - 2 = 0.$$

2. Odrediti za koje vrednosti promenljive x funkcija

$$f(x) = \log_{0.5} \frac{3x^2 - 5x - 3}{4x - 3}$$

ima pozitivne vrednosti.

3. Odrediti kompleksan broj z = x + iy, za koji važi

$$|z| - z = 1 + 2i.$$

4. Odrediti jednačinu zajedničke tangente elipse (E) i parabole (P), gde je

$$(E): 20x^2 + 45y^2 = 900, \quad (P): y^2 = 20x/3.$$

5. Dat je jednakokraki trapez, čija je srednja linija $m=10\,\mathrm{cm}$ i dijagonala $d=20\,\mathrm{cm}$. Izračunati njegovu površinu.

SEPTEMBAR 2005. g.

1. Odrediti najmanji zajednički sadržalac (NZS) i najveći zajednički delilac (NZD) za polinome

$$p_1(x) = x^4 - x^2$$
, $p_2(x) = x^3 - 2x^2 + x$ i $p_3(x) = x^2 - 1$.

2. Uprostiti izraz

$$\frac{\sin^2 x \tan^2 x - 2\sin^2 x + \cos^2 x}{\tan^2 x - 1}.$$

3. Rešiti jednačinu

$$\log_2^2 x + 2\log_2 \sqrt{x} - 2 = 0.$$

- **4.** Dva prečnika kruga leže na pravama x+y-14=0 i 2x-3y+12=0. Ako se zna da krug prolazi kroz koordinatni početak, naći njegovu jednačinu.
- 5. Osnova piramide je pravougaonik sa stranicama $a=12\,\mathrm{cm}$ i $b=9\,\mathrm{cm}$, a bočne ivice piramide su međusobno jednake i iznose $c=12.5\,\mathrm{cm}$. Odrediti zapreminu piramide.

JUN 2006. g.

1. Rešiti nejednačinu

$$\left(\frac{1}{3}\right)^{|x+2|/(1-|x|)} > 9.$$

2. Rešiti jednačinu

$$\sin 19x + \cos 19x = \sqrt{2}\cos 23x.$$

3. Odrediti vrednost izraza

$$5^{\log_{0.2} 0.5} + \log_{\sqrt{2}} \left(\frac{4}{\sqrt{7} + \sqrt{3}} \right) + \log_{0.5} \left(\frac{1}{10 + 2\sqrt{21}} \right).$$

- **4.** U tački A(1, y < 0) parabole $y^2 = 16x$ povučene su tangenta i normala na parabolu. Izračunati površinu trougla ograničenog tangentom, normalom i x-osom.
- 5. U jednakostraničan trougao, čija je stranica $a=6\,\mathrm{cm}$ upisan je krug. Iznad (pored) ovog kruga, takođe u unutrašnjosti trougla, upisan je novi

krug, koji dodiruje prethodni i dve bočne stranice trougla. Izračunati zbir površina i zbir obima ovih krugova.

SEPTEMBAR 2006. g.

1. Rešiti jednačinu

$$4^x - 10 \cdot 2^{x-1} = 24.$$

2. Rešiti nejednačinu

$$||2x+1|-5|>2.$$

3. Odrediti kompleksan broj z = x + iy za koji važi

$$|z| - z = 1 + 2i.$$

4. Dokazati identitet

$$\frac{3}{2}\cos^4 x - \cos^6 x + \frac{3}{2}\sin^4 x - \sin^6 x = \frac{1}{2}.$$

5. Odrediti zapreminu pravilne četvorostrane piramide, čija je visina $H=15\,\mathrm{cm},$ a površina dijagonalnog preseka $P_d=120\,\mathrm{cm}^2.$

JUN 2007. g.

1. Neka su x_1 i x_2 rešenja kvadratne jednačine $mx^2 - (m+2)x + 2 = 0$, gde je m realan parametar. Odrediti za koje vrednosti ovog parametra važi nejednakost

$$\frac{x_1 + x_2}{x_1 x_2} > 3.$$

2. Rešiti jednačinu

$$\left(\frac{3}{7}\right)^x \left(\frac{49}{27}\right)^x = \frac{49}{81}.$$

3. Ako je $\log_4 11 = a$ i $\log_4 13 = b,$ odrediti vrednost izraza

$$(\log_{11} 13 + \log_{13} 11)^{-1}$$
.

- **4.** Ugao između izvodnice i visine prave kružne kupe je 60°, razlika njihovih dužina je 5. Izračunati zapreminu kupe.
- 5. Rešiti jednačinu $\sin 2x + \cos x = 0$.

SEPTEMBAR 2007. g.

1. Ako za neko $\alpha \in (0, \pi/4)$ važi $\sin \alpha \cdot \cos \alpha = 2/5$, izračunati

$$\sin \alpha - \cos \alpha$$
.

2. Rešiti jednačinu

$$7^x + 7^{1-x} = 8$$
.

3. Data je jednačina

$$x^{2} + (a-1)x + 3 + a - 4a^{2} = 0$$
 $(a \in \mathbb{R}).$

Ako su x_1 i x_2 rešenja date jednačine, odrediti vrednost izraza

$$\frac{1}{x_1^2} + \frac{1}{x_2^2}$$
.

- 4. Osnova prave prizme je romb. Njen omotač iznosi M=48, dijagonala bočne strane je d=5, a najkraće rastojanje naspramnih bočnih strana jednako je visini prizme. Izračunati njenu zapreminu.
- 5. Rešiti jednačinu

$$\cos 2x + 4\cos x + 3 = 0.$$

JUN 2008. g.

- 1. Rešiti jednačinu $\sin 2x + \cos x = 0$.
- 2. Data je kvadratna jednačina $x^2 2(m+1)x + (m+3) = 0$. Odrediti vrednosti parametra m, za koje su oba korena jednačine realna i pozitivna.

3. Rešiti jednačinu

$$\log_3 x \cdot (\log_3 x - 1) = 2.$$

- 4. Odrediti visinu pravilnog tetraedra (trostrana, jednakoivična piramida) čija je zapremina $V = \sqrt{3}$.
- **5.** Rešiti jednačinu $2x^2 3|x| 2 = 0$.

SEPTEMBAR 2008. g.

1. Ako za neko $\alpha \in (0,\pi/4)$ važi $\sin \alpha \cdot \cos \alpha = 2/5$, izračunati

$$\sin \alpha + \cos \alpha$$
.

2. Izračunati vrednost izraza

$$A = \left(\frac{6}{1 - \sqrt{3}} - \frac{2}{1 + \sqrt{3}} + \frac{5}{2 - \sqrt{3}}\right) (8 + \sqrt{3})^{-1}.$$

3. Rešiti jednačinu

$$\log_3 x \cdot (\log_3 x - 1) = 2.$$

- 4. Odrediti visinu pravilnog tetraedra (trostrana, jednakoivična piramida) čija je zapremina $V=\sqrt{3}$.
- 5. Rešiti jednačinu

$$\sqrt{x+3} + \sqrt{2x-1} = \sqrt{4x+5}.$$

JUN 2009. g.

1. Ako za neko $\alpha \in (0, \pi/4)$ važi $\sin \alpha \cdot \cos \alpha = 2/5$, izračunati

$$\sin \alpha - \cos \alpha$$
.

2. Rešiti jednačinu

$$7^x + 7^{1-x} = 8.$$

3. Data je jednačina

$$x^{2} + (a-1)x + 3 + a - 4a^{2} = 0$$
 $(a \in \mathbb{R})$

Ako su x_1 i x_2 rešenja date jednačine, odrediti vrednost izraza

$$\frac{1}{x_1^2} + \frac{1}{x_2^2}.$$

- 4. Osnova prave prizme je romb. Njen omotač iznosi M=48, dijagonala bočne strane je d=5, a najkraće rastojanje naspramnih bočnih strana jednako je visini prizme. Izračunati njenu zapreminu.
- 5. Rešiti jednačinu

$$\cos 2x + 4\cos x + 3 = 0.$$

SEPTEMBAR 2009. g.

1. Rešiti jednačinu

$$\left(\frac{3}{7}\right)^x \left(\frac{49}{27}\right)^x = \frac{49}{81}.$$

2. Dokazati jednakost

$$\sin^4 x + \cos^4 x = \frac{3 + \cos 4x}{4}.$$

3. Data je jednačina

$$x^{2} + (a-1)x + 3 + a - 4a^{2} = 0$$
 $(a \in \mathbb{R}).$

Odrediti parametar a tako da data jednačina ima realna rešenja.

- 4. Izračunati zapreminu kosog valjka čiji je jedan osni presek romb stranice a i oštrog ugla 60° .
- 5. Rešiti jednačinu

$$2x^2 - 3|x| - 2 = 0.$$

LITERATURA

- [1] V.T. Bogoslavov, Zbirka rešenih zadataka iz matematike I, Zavod za udžbenike i nastavna sredstva, Beograd, 1985.
- [2] V. T. Bogoslavov, Zbirka rešenih zadataka iz matematike II, Zavod za udžbenike i nastavna sredstva, Beograd, 1985.
- [3] V. T. Bogoslavov, Zbirka rešenih zadataka iz matematike III, Zavod za udžbenike i nastavna sredstva, Beograd, 1985.
- [4] V. T. Bogoslavov, Zbirka rešenih zadataka iz matematike IV, Zavod za udžbenike i nastavna sredstva, Beograd, 1985.
- [5] В. А. Выменский, Н. В. Карташов, В. И. Михайловский, М. И. Ядренко, Сборник задач киевских математических олимпиад, "Вища школа", Киев, 1984.
- [6] Е.Б. Дынкин, С.А. Молчанов, А.Л. Розенталь, Математические соревнования арифметика и алгебра, ФизМатЛит, Москва, 1970.
- [7] **Н. С. Залогин**, Конкурсные задачи по математике, "Техника", Киев, 1964.
- [8] A. Zolić, V. Stojanović, Odabrani zadaci sa republičkih i pokrajinskih matematičkih takmičenja 7. i 8. razreda, Društvo matematičara Srbije, Beograd, 1992.
- [9] Ž. Ivanović, S. Ognjanović, MATEMATIKA 1 Zbirka zadataka i testova za I razred qimnazija i tehničkih škola, Krug, Beograd, 1999.
- [10] Ž. Ivanović, S. Ognjanović, MATEMATIKA 2 Zbirka rešenih zadataka za II razred gimnazija i tehničkih škola, Krug, Beograd, 1997.
- [11] Ž. Ivanović, S. Ognjanović, MATEMATIKA 3 Zbirka rešenih zadataka za III razred qimnazija i tehničkih škola, Krug, Beograd, 1997.
- [12] Ž. Ivanović, S. Ognjanović, MATEMATIKA 4 Zbirka zadataka i testova za IV razred gimnazija i tehničkih škola, Krug, Beograd, 1999.

- [13] I. Ž. Milovanović, B. M. Ranđelović, REŠENI ZADACI za pripremu prijemnog ispita iz matematike, Univerzitet u Nišu, Elektronski fakultet, Niš, 2000.
- [14] I. Ž. Milovanović, B. M. Ranđelović, MATEMATIKA zbirka testova za prijemni ispit, Univerzitet u Nišu, Elektronski fakultet, Niš, 2007.
- [15] S. Ognjanović, V. Kadelburg, MATEMATIKA 4⁺ rešeni zadaci sa prijemnih ispita na univerzitetima u Srbiji od 1990. do 1995., Krug, Beograd, 1996.
- [16] P. Protić, B. Stamenković, S. Tričković, N. Stevanović, Zbirka rešenih zadataka sa prijemnih ispita na Građevinsko-arhitektonskom fakultetu, Građevinsko-arhitektonski fakultet, Niš, 1999.
- [17] М. К. Потапов, В. В. Александров, П. И. Пасиченко, Алгебра, тригонометрия и елементарные функции, Висшая школа, Москва, 2001.
- [18] М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко, Конкурсные задачи по математике, ФизМатЛит, Москва, 2003.
- [19] **К. А. Рыбников**, Комбинаторный анализ задачи и упраженения, Наука, Москва, 1982.
- [20] V. Stojanović, MATEMATISKOP: Kako da postanem šampion matematike, Naučna knjiga, Beograd, 1988.
- [21] D. Herceg, Matematičke formule, Zmaj, Novi Sad, 2001.
- [22] Г. Н. Яковлева, Пособие по математике для поступающие в вузы, Наука, Москва, 1981.