Properties of the lowest mass Fe-core collapse supernovae

H. Umeda & K. Ishiguro (Univ. of Tokyo)

Our progenitor models

We consider $10^{-3}~Z_{\odot}$ models because we would like to compare with a metal poor star J1010+2358.

The lowest mass for Fe-core collapse: 9.5M_e (9.4M_e forms an ONeMg core)

c.f., Z_{\odot} model : $9.6M_{\odot}$ (lowest) (9.5M $_{\odot}$ forms an ONeMg core)

Abundance pattern of a metal poor star J1010+2358

Upper limit of Explosion energy	
Z _⊙ model (mass)	Upper Eex (B)
9.7	0.115
10.0	0.62
12.0	0.43
13.0	0.69
15.0	0.77
18.0	(>1.04)

Our progenitor models (Internal abundance)

■ Best fit to a VMP star J1010+2358

is obtained for a metal poor CCSN model with initial mass $10.1 M_{\odot}$, E_{exp} =0.15B, $M(^{56}Ni)$ =0.048 M_{\odot} , and weak neutrino process.

- Low mass CCSNe have small E_{exp} and 56 Ni ejection.
- \sim 9.5-10.0M $_{\odot}$ can be dark SNe II with small E_{exp} <0.1B without ⁵⁶Ni ejection.
- It will be interesting to study these models further (nucleosynthesis and light curves) with detailed 2D & 3D simulations.