

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคการเรียนที่ 1 ปีการศึกษา 2555

วิชา ENE 231 Digital Circuit and Logic Design สอบวันศุกร์ที่ 12 ธันวาคม 2555

วิศวกรรมอิเล็กฯ ชั้นปีที่ 2 เวลา 9.00-12 00 น.

<u>คำสั่ง</u>

คะแนนที่ได้

- 1. ข้อสอบมีทั้งหมด 6 ข้อ 14 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงใน<u>ข้อสอบ</u>
- 3. <u>ห้าม</u>นำเอกสารใด ๆ เข้าห้องสอบ
- 4 ไม่อนุญาดให้นำเครื่องคำนวณใด ๆ เข้าห้องลอบ

15

20

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระตาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบอาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ-สกุลรหัสนักศึกษาร									เลขที่นั่งสอบ
(ผศ. ดร. พินิจ กำหอม) ข้อสอบนี้ได้ผ่านการประเมินจาก ผู้ออกข้อสอบ ภาควิชาวิศวกรรมอิเล็กพรอนิกส์และใทรคุณนาคมแล้ว โทร. 02-470-9075									
				หัวหน้า		ดร. วุฒิชัย วกรรมอิเล็		ชติ) และโทรคมนาคม	1
ข้อที่	1	2	3	4	5	6			รวม
คะแนนเต็ม	10	20	15	20	15	20			100

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
lame-Surname	Student ID	Seat No.
	function table, (iv) gate-level circuit mplete remaining representations. epresentation ได้ 5 แบบได้แก่ (i) ชื่อ (ii	
1.1 (i) Name:1-bit 4-input M	UX	
(ii) Symbol	(iii) Function table	
	S	Output y
<pre>(v) VHDL code library ieee; use ieee.std_logic_1 entity mux4to1 is port(x0, x1, x2</pre>		;
S	:	·;
	: out of mux4to1 is);
<pre>begin with s select</pre>		
<=	when	
	when	
	when	;

end arch1;

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
lame-Surname	Student ID	Seat No.
1.2 (i) Name:		
(ii) Symbol	(iii) Function table	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
[‡] s (iv) Gate-level circuit		
<pre>(v) VHDL code library ieee;</pre>		
use ieee.std_logic	_1164. all ;	
entity	is	
port(
):		
); end	;	
	of	is

end _____;

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

2. [Memory Devices and Sequential Modules] (20 points) Memory devices or sequential modules given below may be described in 5 representations including (i) name, (ii) symbol, (iii) function table, (iv) gate-level circuit or block diagram, and (v) VHDL code. Given one of the 5 representations of each module, complete remaining representations.

แต่ละอุปกรณ์การจำที่ให้มาด้านล่างมี representation ได้ 5 แบบได้แก่ (i) ชื่อ (ii) สัญลักษณ์ (iii) ตารางฟังก์ชัน (iv) วงจรระดับเกท และ (v) VHDL code ในแต่ละข้อให้เขียน representation ที่ว่างไว้ให้สมบูรณ์

2.1 (i) Name: _____negative-edge D-FF with enable ____

(ii) Symbol

(iii) Function table

en	D	clk	Q	Action
0				

(iv) Gate-level circuit (treat block diagrams of memory devices such SR latch and D latch as gate-level)

(v) VHDL code

```
library ieee;
use ieee.std_logic_1164.all;
entity DFF_w_en is
  port( clk, en : in _____
         D
end DFF_w_en;
                    of DFF_w_en is
architecture
  signal q_reg, q_next :
begin
 process (_____)
 begin
            _____ and ____ then -- negative clk edge
    if
    end if;
 end process;
            _____ when _____ else _____;
 q_next <= _
 Q <= q_reg;
end arch1;
```

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.
2.2 (i) Name:		
(ii) Symbol	(iii) Function table	

R_n	S_n	D	clk	Q	Action
0		-	-	0	
1	0	-	-	1	
1	1	-	0, 1	Qold	Remember old value
1	1	0	†	0	
1	1	1	∱	1	

- (iv) Gate-level circuit (skip this part) (ไม่ต้องตอบส่วนนี้)
- (v) VHDL code

(v) VHDL code			
library ieee; use ieee.std_logic_ entity DFF_w_SR is port(clk, en, S	S_n,: in		
	:		_ ;
end DFF_w_SR;	:		_);
architecture	of DFF_w_SR	is	
begin		·;	
begin if			
elsif	<= then		
elsif	and	then positive clk	edge
end if; end process;	<=	;	
q_next <=	when	else	
	;		
Q <= q_reg;			
end arch1;			

- 2.3 (i) Name: _____ positive-edge 8-bit register with enable and active-high asynchronous reset ____
 - (ii) Symbol (skip this part)

(iii) Function table

(iv) Block diagram

R	en	clk	Output (Q)
1	-	-	Q = "0000000"
0	0	-	Q =
0	1	0	Q = Qold
0	1	1	Q =
0	1	†	Q = D

- (iv) Gate-level circuit (skip this part) (ไม่ต้องตอบส่วนนี้)
- (v) VHDL code

```
library ieee;
use ieee.std_logic_l164.all;
entity reg8_w_en_R is
 port( clk, en, R : in ______;
      ____;
              _____);
end reg8_w_en_R;
architecture ______ of reg8_w_en_R is
 signal _____, ____ : std_logic_vector(7 downto 0);
begin
 process(_____)
 begin
   if then
       ____;
   elsif ____ and ___ then -- positive clk edge
        ____;
   end if;
 end process;
 q_next <= _____ when ____ else
 Q <= q_reg;
end archl;
```

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

2.4 (i) Name: _____8-bit count up counter with count enable and active-low reset ____

(ii) Block diagram

(iii) Function table

R_n	count	clk	Output (Q)
0	_	-	Q = "00000000"
1	-	0	Q = Qold
1	_	1	Q = Qold
1	0	↑	Q =
1	1	†	Q = Qo.d + 1
		_	

(iv) Gate-level circuit (skip this part) (ไม่ต้องตอบส่วนนี้)

(v) VHDL code

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity counter8 is
 port( clk, R_n : in _____;
end counter8;
architecture _____ of counter8 is
  signal _____, ____ : unsigned(7 downto 0);
begin
 process(____)
 begin
   if _____ then -- reset
        <= <u>;</u>
    elsif _____ and ____ then -- positive clk edge
          <= ____;
    end if;
 end process;
 q_next <= q_reg + 1 when _____ else</pre>
         q_reg;
 Q <= std_logic_vector(q_reg);
end arch1;
```

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	_เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

- 3. [Sequential Circuit Design] (15 points) Design a state diagram and the corresponding state/output table of a synchronous sequential digital system to do the function specified as follows.
 - At the beginning the output X and Y is reset to '0', where X is a Moore-type nad Y is a Mealy-type.
 - If the output X has not been set, the system tries to detect the pattern "110" fed to input B if the input A is '1'. In the situation that X has not been set and A is '0', the system stays at the current state, which means that the previous meaningful sequence of B is remembered such that when input A is '1' again the system will continue to detect the pattern "110" using the previous sequence into account (see an example in the below table). Once the pattern "110" is found, the Moore-type output X is set to '1'.
 - Once the output X has been set to '1', which means that the first pattern "110" from input B has been found, the system will try to detect the second pattern "011" from input B ignoring the input A. Once the second pattern "011" is found from input B, the Mealy-type output Z is set to '1' and the system is reset to the initial state.
 - The below table shows how the system should work.

โห้ออกแบบ state diagram และ state/output table ที่ตรงกัน ของระบบดิจิทัลชนิดซีเควนเชียลแบบชิงโครนัส ที่ทำหน้าที่ดังต่อไปนี้

- ในตอนเริ่มต้น เอ้าท์พุททั้งสองของระบบคือ X กับ Y จะถูกรีเซ็ทเป็น '0' โดยเอ้าท์พุท X เป็นแบบ Moore และเอ้าท์พุท Y เป็นแบบ Mealy
- ในสภาวะที่เอ้าท์พุท X ยังไม่ถูกเช็ทให้เป็น '1' และอินพุท B เป็น '1' ระบบจะพยายามตรวจจับหารูปแบบ "110" ที่อินพุท A ถ้าเอ้าท์พุท X ยังไม่ถูกเช็ตให้เป็น '1' และ อินพุท B เป็น '0' ระบบจะอยู่ในสถานะปัจจุบัน นั่นคือระบบจะจำลำดับของอินพุทที่มีความหมายไว้ เพื่อใช้ในการตรวจจับหา "110" ต่อเมื่อ B กลับมาเป็น '1' อีก และไม่สนใจอินพุท (คูตัวอย่างในตารางด้านล่าง) เมื่อระบบตรวจจับรูปแบบ "110" ได้ ระบบจะเซ็ทเอ้าท์พุท X ให้เป็น '1' ค้างไว้จนกว่าจะถึงสภาวะของการรีเซ็ท
- ในสภาวะที่เอ้าท์พุท X ถูกเซ็ตเป็น '1' แล้ว ระบบจะตรวจจับหารูปแบบ "011" ที่อินพุท A โดยไม่สนใจค่าในอินพุท B จนกว่ารูปแบบ "011" จะถูกพบในอินพุท A เมื่อรูปแบบดังกล่าวถูกพบ ระบบจะบบจะเช็ดเอ้าท์พุท Y ให้เป็น '1' แล้วรีเซ็ตไปที่สถานะเริ่มต้น
- ตารางด้านล่างแสดงกรณีด้วอย่างของการทำงานของระบบ

Clock#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Input: A	0			0	14	1	0	1	1	0	0	0	1	0		0	
Input: B	0			0		Mary 1	0	'' 0	0	1	0	. 6E	3		10	1	643 KP
Output: X	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0
Output: Y	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
PS	50														50		

SO = the initial state

ชื่อ-สกุล					เลขประจํ	าตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname				Student ID			Seat No.
<u>Answer</u>							
1) State/output T	able						
Present State		Input	t: AB		Output		Meaning of the state
PS	00	01	11	10	×		
S0	50, 0	50, 0			0	Initial state	
						_	

Next State, Output Y NS, Y

2) State Diagram

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

4. [Sequential Circuit Synthesis] (20 points) Synthesize a circuit of a synchronous FSM corresponding to the given state diagram using DFFs as memory devices. Show the results of all synthesis steps including (i) the state/output table, (ii) state transition/output table, (iii) Karnaugh maps of the DFF's inputs and their minimal SOP or POS equations, and Karnaugh map of the output and its minimal SOP or POS equation, (iv) a sketch of the synthesized circuit.

สังเคราะห์วงจรของ FSM แบบซิงโครนัสที่ทำงานตาม state diagram ที่กำหนดให้โดยใช้ DFF เป็นอุปกรณ์ในการจำ แสดงผลการสังเคราะห์ทุกขึ้นตอนได้แก่ (i) (i) the state/output table, (ii) state transition/output table, (iii) Karnaugh maps พร้อมสมการ minimal SOP หรือ POS ของอินพุทของ DFFs และ Karnaugh map พร้อมสมการ minimal SOP หรือ POS ของเอ้าท์พุพ, (iv) สเก็ตวงจรที่สังเคราะห์ได้

Answer

(i) State/Output Table

Present State	Input: AB		Output	Note		
PS	00	01	11	10	X	
50						
S1						
52						
53						
V-11	N	ext State	e, Output	Y		
	(NS, Y)					

(ii) Transition/Output Table

State Assignment			Inpu	t: AB		Output	Note	
State Name	State Variables					×		
PS		00	01	11	10	1		
S0						0	Number of state = 4	
S1							Number of FFs =	
52							State Variables =	
S3							Type of FFs is D-FF	
	****				Y			
			(Next S	state, Y)				

(iv) the synthesized circuit (วงจรที่สังเคราะห์ได้)

ชื่อ-สกุล	เลขประจำตัวนักศึกษา	เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

5. [Sequential Circuit Model using VHDL] (15 points) Write the VHDL program describing the FSM whose function is given by the state diagram in Problem 4.

ให้เขียนโปรแกรม VHDL เพื่ออธิบายระบบ FSM ที่ทำงานตาม state diagram ในข้อ 4

library ieee;	
use ieee.std_logic 116	4.all;
entity a fsm is	11447
	· in
	: in
'	·
·	:);
<pre>end a_fsm;</pre>	
architecture	of a_fsm is
<pre>type state_type is</pre>	();
signal	: state_type;
begin	
state register	
process()
begin	······································
1 -	then reset
·	
61911	and then positive clk edge
end if;	<=;
·	
end process;	
output logic	
process()
begin	
case	is
case =>	
	<pre> /=; Moore output </pre>
<u> </u>	, Moore output
	·
when =>	;
	, W
	<pre><=; Moore output</pre>
	<=;
when =>	
1	
	<pre>; Moore output</pre>
	•
	<=;
	,
when =>	
·	<pre>; Moore output</pre>
<u>if</u>	then Moore output
	<= :
else	;
6126	
	;
end if;	
end case;	
end process;	

กุล	เลขปร	เลขที่นั่งสอบ		
Surname	Stud	Seat No.		
inued from the previous page) กหน้าที่แล้ว)				
- Next-state logic				
process ()		
begin	_			
case =>	is			
wnen =>				
if		th	en	
				
	<=	;		
else				
end if;		;		
when =>				
if		th	en	
	<=	;		
olgif			then	
elsif				
	<=	;		
else				
	<=	;		
end if;				
when =>				
if		+1-	nen.	
	<=	;		
else end if;	<=	;		
end 11; when =>				
wildir				
if		the	en	
-1	<=	;		
else	<=			
end if;		·'		
end case;				
end process;				
end arch1;				

ชื่อ-สกุล		_เลขที่นั่งสอบ
Name-Surname	Student ID	Seat No.

6. [Sequential System Analysis] (20 points) Analyze the synchronous FSM described by the circuit below. Show the results of all analysis steps including (i) the Boolean equations of FF's inputs and Boolean equation of the output, (ii) the state transition/output table (iii) the state/output table and its corresponding state diagram (iv) timing diagram given the below input sequence.

Answer

- (i) Boolean equations of the FFs
- (ii) The transition/output table

(iii) state/output table

