Optimization for data science

Introduction to optimization

R. Flamary

Master Data Science, Institut Polytechnique de Paris

September 10, 2024

Objective of this course

Optimization in machine learning and data science

- ▶ All ML and data science methods rely on numerical optimization.
- ightharpoonup Understanding the optimization problem.
- What is inside the black box of the skikit-learn .fit() function?

Your objectives

- Recognize the properties of optimization problems.
- ▶ Understand the optimization problems in ML approaches.
- Know the theory behind the optimization algorithms.
- Find a proper algorithm for a given problem.
- Be able to implement an optimization algorithm.
- Model new optimization problems (new ML method).

Course organization

Information

- ▶ 6 ECTS, 12 x 3h30 + Exam
- From 11/09/24 to 08/01/25
- ► Teaching material :
 - ► Moodle: https://moodle.polytechnique.fr/course/view.php?id=20498
 - My website : https://remi.flamary.com/cours/optim_ds.html
- ► All student uploads projects on Moodle (emails not graded)
- Grading:
 - ▶ 30% 2/3 Labs with Jupyter notebooks (python)
 - ▶ 30% Final project as Jupyter notebook
 - 40% 3h final exam

Strong suggestion

- ► Labs use jupyter notebooks, install locally or use Google Colab.
- ► Come with your laptop for all courses.
- ► Always try to do the small exercises : better understanding.
- Asks questions if you don't understand (interrupt if needed).

Course teaching staff

Professors

► Alexandre Gramfort

Senior Research Scientist at Meta Reality Labs, Paris. Research topics: Machine learning, optimization, signal processing, deep learning, brain imaging.

Rémi Flamary

Professor at École Polytechnique, Palaiseau. Research topics: Machine learning, optimal transport, domain adaptation, signal processing.

Teaching assistants

Matthieu Terris

Postdoctoral researcher, INRIA Saclay, Mind team. Research topics: Optimization, image processing.

▶ Joël Garde

PhD Student, Telecom Paris, S2A Team. Research topics: Optimization, optimal transport.

Full course overview

- 1. Introduction to optimization for data science
 - 1.1 ML optimization problems and linear algebra recap
 - 1.2 Optimization problems and their properties (Convexity, smoothness)
- 2. Smooth optimization: Gradient descent
 - 2.1 First order algorithms, convergence for smooth and strongly convex functions
- 3. Smooth Optimization: Quadratic problems
 - 3.1 Solvers for quadratic problems, conjugate gradient
 - 3.2 Linesearch methods
- 4. Non-smooth Optimization : Proximal methods
 - 4.1 Proximal operator and proximal algorithms
 - 4.2 Lab 1: Lasso and group Lasso
- 5. Stochastic Gradient Descent
 - **5.1** SGD and variance reduction techniques
 - 5.2 Lab 2: SGD for Logistic regression
- 6. Standard formulation of constrained optimization problems
 - 6.1 LP, QP and Mixed Integer Programming
- 7. Coordinate descent
 - 7.1 Algorithms and Labs
- 8. Newton and quasi-newton methods
 - 8.1 Second order methods and Labs
- 9. Beyond convex optimization
 - 9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Current course overview

1. Introduction to optimization	
1.1 About the course	2
1.2 Machine learning as an optimization problem	7
1.2.1 Empirical risk minimization	
1.2.2 Sparsity and variable selection	
1.2.3 Unsupervised learning	
1.3 Properties of optimization problems	17
1.3.1 Linear Algebra recap	
1.3.2 Optimization problem formulation	
1.3.3 Convexity	
1.3.4 Smoothness and constraints	
1.3.5 Characterizing a solution	
1.4 Conclusion	68
2. Smooth optimization : Gradient descent	72
3. Smooth Optimization: Quadratic problems	72
4. Non-smooth optimization: Proximal methods	72
5. Stochastic Gradient Descent	72
6. Standard formulation of constrained optimization problems	72
7. Coordinate descent	72
8. Newton and quasi-newton methods	72
9. Beyond convex optimization	72

Machine learning and data science

Objective of Machine Learning (ML) and Data Science

Teach a machine to process automatically a large amount of data (signals, images, text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

- Clustering
- Probability Density Estimation
- Generative modeling
- Dimensionality reduction

Supervised learning: Learning to predict.

- Classification
- Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward (games, autonomous vehicles, control).

Optimization is at the core of all ML methods.

Empirical risk minimization

Supervised Machine learning

$$\min_{f} \quad \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i)) \tag{1}$$

- Find the function f that minimizes the average error L of prediction on a finite dataset of size N.
- ▶ Usually f_{θ} is parametrized by $\theta \in \mathbb{R}^n$ so the optimization is done w.r.t. θ .
- ► The objective above is called Empirical Risk Minimization, but beware of over-fitting when the model *f* is too complex.

Structural Risk Minimization [Vapnik, 2013]

$$\min_{f} \quad \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i)) + \lambda R(f)$$
 (2)

- ightharpoonup R(f) is a regularization term that measure the complexity of f.
- $ightharpoonup \lambda$ is a regularization parameter that weight the regularization.

Least Square and ridge regression

Linear regression

$$\min_{\mathbf{x}} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \frac{1}{2} \|\mathbf{x}\|^2$$

- Objective: predict a continuous value with a linear model (regression).
- Quadratic loss : $L(y, f(\mathbf{x})) = \frac{1}{2}(y f(\mathbf{x}))^2$
- ▶ Quadratic regularization for Ridge : $R(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$.
- ▶ Smooth and strictly convex problem when $\lambda > 0$.
- ▶ Can be solved by solving a linear problem (linear equations).

Non-linear regression

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))^2$$

- Classical formulation for regression with neural networks.
- ightharpoonup Can be non-convex and non-smooth depending on the architecture of f_{θ} .
- ▶ Harder to regularize (what is the complexity of f_{θ} ?).

Data fitting for regression

Cost	$L(y,\hat{y})$
Square	$(y-\hat{y})^2$
Absolute value	$ y-\hat{y} $
ϵ insensible	$\max(0, y - \hat{y} - \epsilon)$

Regression problem

- Objective: predict a real value.
- ▶ Error if $y \neq \hat{y}$.
- **Error measure**: $|y \hat{y}|$

Data fitting for binary classification

Cost	$L(y,\hat{y})$
0-1 loss	$(1-sgn(y\hat{y}))/2$
Hinge	$\max(0, 1 - y\hat{y})$
Squared Hinge	$\max(0, 1 - y\hat{y})^2$
Logistic	$\log(1 + \exp(-y\hat{y}))$
Sigmoid	$(1 - \tanh(y\hat{y}))/2$
Perceptron	$\max(0, -y\hat{y})$

Classification problem

- Objective: predict a binary value.
- ► Error when $y \neq \operatorname{signe}(\hat{y})$ i.e. if y and \hat{y} have a different sign.
- **Error measure**: $y\hat{y}$
- Non symmetric loss.
- Multi-class classification with Softmax output and categorical cross-entropy.

Maximum Likelihood estimation

Maximum likelihood principle

- $ightharpoonup p_{\theta}$ is a probability distribution in \mathbb{R}^d .
- \blacktriangleright We have access to samples \mathbf{x}_i drawn I.I.D. from the distribution.
- ▶ The likelihood for independent samples can be expressed as

$$\prod_i p_{\theta}(\mathbf{x}_i)$$

ightharpoonup The maximum likelihood estimator of θ

$$\hat{\theta} = \arg\max_{\theta} \prod_{i} p_{\theta}(\mathbf{x}_{i})$$

In practice one can minimize the negative log-likelihood

$$\hat{\theta} = \arg\min_{\theta} - \sum_{i} \log(p_{\theta}(\mathbf{x}_{i}))$$

That is a special case of empirical risk minimization (least square, logistic regression).

Sparsity and variable selection

Variable selection

- In supervised learning variable section aim at finding a subset $I \in \{1, \dots, n\}$ of all variables that leads to a good prediction.
- lt is a combinatorial problem w.r.t. the number of variables n.
- ► There is a compromise between number of variables and performance.

Sparsity and linear model

For a linear model the sparsity prior can be expressed as two optimization problems

$$\min_{\mathbf{x}} \ L(\mathbf{H}\mathbf{x}, \mathbf{y}) + \lambda \|\mathbf{x}\|_0 \qquad \text{ or } \qquad \min_{\mathbf{x}, \|\mathbf{x}\|_0 < \tau} L(\mathbf{H}\mathbf{x}, \mathbf{y})$$

- $\lambda > 0$ and $\tau > 0$ are regularization parameters.
- $\|\mathbf{x}\|_0 = \sum_i 1_{|x_i| > 0}$ is the number of components in \mathbf{x} .
- ▶ The problem can be reformulated as a Mixed Integer Program.
- Often a continuous approximation of the problem is solved (Lasso).

Lasso estimator

$$\min_{\mathbf{x}} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{k=1}^{d} |x_k| \tag{3}$$

Optimization problem

- $\|\mathbf{x}\|_1 = \sum_{k=1}^d |x_k|$ is the L1 norm of vector \mathbf{w} .
- ▶ Objective function is non differentiable in $x_k = 0, \forall k$.
- ▶ For a large enough λ the solution of the problem is sparse.
- ► The problem is equivalent to

$$\min_{\mathbf{x}, \|\mathbf{x}\|_1 \le \mu} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 \tag{4}$$

I.e. there exists a μ that leads to the same solution of the problem for a given λ .

K-means clustering

► Non convex Optimization problem:

$$\min_{\bar{\mathbf{x}}_k, \forall_k} \quad \sum_{i=1}^N \min_k \left\| \bar{\mathbf{x}}_k - \mathbf{x}_i \right\|^2$$

- ► Very simple algorithm :
 - 1. Update cluster membership (find closest $\bar{\mathbf{x}}_k$ for each samples)
 - 2. Update cluster positions $\bar{\mathbf{x}}_k$ as mean of all cluster members.
- Decrease the objective value at each iteration (can be formulated as block coordinate descent).

Optimization for data science

ML and DS are built on numerical optimization

- Most ML methods are optimization problems.
- ▶ The objective function is the error of the model.
- Importance of the optimization algorithm.

Important questions

- ▶ What are the properties of the optimization problem (F, constraints)?
- ▶ How to find the good algorithm for a given problem (no free lunch)?
- ▶ What are the properties on an algorithm (convergence, complexity)?
- ► How to implement an optimization algorithm (speed, scaling)?

Section

1. Introduction to optimization

1.3 Properties of optimization problems	17
1.3.1 Linear Algebra recap	
1.3.2 Optimization problem formulation	
1.3.3 Convexity	
1.3.4 Smoothness and constraints	
1.3.5 Characterizing a solution	
1.4 Conclusion	68
2. Smooth optimization : Gradient descent	72
3. Smooth Optimization: Quadratic problems	72
4. Non-smooth optimization : Proximal methods	72
5. Stochastic Gradient Descent	72
6. Standard formulation of constrained optimization problems	72
7. Coordinate descent	72
8. Newton and quasi-newton methods	72
9. Beyond convex optimization	72

1.3.0 - Properties of optimization problems - - 16/57

Linear Algebra recap

Notation: vectors and matrices

- ▶ A vector $\mathbf{x} \in \mathbb{R}^n$ is a column of n real numbers (always column).
- ▶ A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a table of m rows and n columns.
- ▶ The *i*-th row of **A** is denoted $A_{i,:}$ and the *j*-th column $A_{:,j}$.
- ▶ The transpose of **A** is denoted \mathbf{A}^{\top} : $\mathbf{C} = \mathbf{A}^{\top}$ \Leftrightarrow $c_{i,j} = a_{j,i}$
- Matrix addition and multiplication are defined as for real numbers.

Matrix product

▶ The product of $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ is

$$\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$$

- ▶ The element $c_{i,j}$ of \mathbf{C} is : $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$
- ightharpoonup Matrix product is not commutative ($AB \neq BA$).
- ▶ Special case with B = b a vector, Ab is a linear combination of the columns of A.

Linear map and properties

Linear maps

lacktriangle A linear map (or linear function) $f_{\mathbf{A}}:\mathbb{R}^n \to \mathbb{R}^m$ can be expressed as

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the matrix of the linear map.

Properties and rank

▶ The image (or range) of A is the space spanned by the columns of A:

$$im(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{y} = \mathbf{A}\mathbf{x}, \ \forall \mathbf{x} \in \mathbb{R}^n \}$$

▶ The kernel (or null space) of **A** is the set of vectors **x** such that $\mathbf{A}\mathbf{x} = 0$.

$$\ker(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \ \mathbf{A}\mathbf{x} = 0 \}$$

- ▶ The rank of **A** is the dimension of its range : $rank(\mathbf{A}) = dim(im(\mathbf{A}))$
- ▶ $rank(A) \le min(m, n)$ and we have

$$\dim(\ker(\mathbf{A})) + \operatorname{rank}(\mathbf{A}) = n$$

Linear maps in real life applications

Computer graphics

- Rotation/deformation of objects.
- Illumination of objects.
- Projection of 3D objects on 2D screen.

Signal and image processing

- Many physical processes are linear (wave propagation, optics, filtering).
- Observed signals (astronomy, medial imaging).
- Fourier Transform, Wavelet Transform.
- Inverse problems/reconstruction to cancel map.

Machine learning

- Linear regression and classification (logistic).
- Neural networks layers.
- Principal Component Analysis (PCA).

Eigenvalues and linear operators

Eigenvalues and eigenvectors

 $lackbox{ A vector } \mathbf{x} \in \mathbb{R}^n$ is an eigenvector of a square matrix $\mathbf{A} \in \mathbb{R}^{n imes n}$ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

- \triangleright λ is the eigenvalue associated with eigenvector \mathbf{x} .
- ► The eigenvectors of **A** are the solutions of the equation $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$.
- ▶ The eigenvectors of a symmetric matrix are orthogonal.
- ▶ If x is an eigenvector then -x and αx are also eigenvectors.

Spectral theorem and eigendecomposition

Spectral Theorem

Le $\mathbf{A} = \mathbf{A}^{\top}$ a symmetric matrix, then there exists a basis of eigenvectors $\mathbf{x}_i \in \mathbb{R}^n$ and their sorted eigenvalues λ_i ($\lambda_1 \leq \cdots \leq \lambda_n$) of \mathbf{A} such that

- **1. Orthogonality**: $\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j = 0$ for $i \neq j$.
- **2.** Unit norm: $\|\mathbf{x}_i\| = 1$.
- **3.** Eigenvalues: $Ax_i = \lambda_i x_i$.

The matrix **A** can be decomposed as $\mathbf{A} = \sum_{i} \lambda_i \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$.

Matrix formulation of the spectral theorem

Matrix formulation

- Let $U = [x_1, ..., x_n]$ the matrix of eigenvectors of A.
- ▶ Let $\lambda = [\lambda_1, \dots, \lambda_n]^{\top}$ the vector of sorted eigenvalues.
- ▶ Let $\Lambda = diag(\lambda_1, ..., \lambda_n) = diag(\lambda)$ the diagonal matrix of eigenvalues.
- ightharpoonup Ortogonality+unit norm : $\mathbf{U}^{\top}\mathbf{U} =$
- **Eigenvalue**: $AU = U\Lambda$.
- ► Eigendecomposition/reconstruction :

Imlementation in Python

- ► Decomposition : lambd,U = numpy.linalg.eig(A)
- ► Reconstruction :
- ► For symmetric matrices : Use numpy.linalg.eig.

Matrix formulation of the spectral theorem

Matrix formulation

- Let $U = [x_1, ..., x_n]$ the matrix of eigenvectors of A.
- ▶ Let $\lambda = [\lambda_1, \dots, \lambda_n]^{\top}$ the vector of sorted eigenvalues.
- ▶ Let $\Lambda = diag(\lambda_1, ..., \lambda_n) = diag(\lambda)$ the diagonal matrix of eigenvalues.
- ▶ Ortogonality+unit norm : $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_n = \mathbf{U}\mathbf{U}^{\top}$ (orthonormality).
- **Eigenvalue**: $AU = U\Lambda$.
- ► Eigendecomposition/reconstruction :

Imlementation in Python

- ► Decomposition : lambd,U = numpy.linalg.eig(A)
- ► Reconstruction :
- ► For symmetric matrices : Use numpy.linalg.eig.

Matrix formulation of the spectral theorem

Matrix formulation

- ▶ Let $U = [x_1, ..., x_n]$ the matrix of eigenvectors of A.
- ▶ Let $\lambda = [\lambda_1, \dots, \lambda_n]^{\top}$ the vector of sorted eigenvalues.
- ▶ Let $\Lambda = diag(\lambda_1, ..., \lambda_n) = diag(\lambda)$ the diagonal matrix of eigenvalues.
- ▶ Ortogonality+unit norm : $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_n = \mathbf{U}\mathbf{U}^{\top}$ (orthonormality).
- **Eigenvalue**: $AU = U\Lambda$.
- ► Eigendecomposition/reconstruction :

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$$

Imlementation in Python

- ► Decomposition : lambd,U = numpy.linalg.eig(A)
- ► Reconstruction : Arec = U @ numpy.diag(lambd) @ U.T
- ► For symmetric matrices : Use numpy.linalg.eig.

Singular Value Decomposition (SVD)

SVD Decomposition

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ a non-square matrix with n > p, then there exists $\mathbf{U} \in \mathbb{R}^{n \times p}$ and $\mathbf{V} \in \mathbb{R}^{p \times p}$ such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

- ▶ Ortogonality : $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_p$ and $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}_p$.
- ▶ Singular values : $\sigma = [\sigma_1, \dots, \sigma_p]^{\top}$ with $0 \le \sigma_1 \le \dots \le \sigma_p$, $\Sigma = \text{diag}(\sigma)$.
- Other properties and tools :
 - ▶ The columns of V are the eigenvectors of A^TA .
 - ▶ Low rank approximation : $\mathbf{A} \approx \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top}$ from k largest singular values.
 - Sparse SVD : low rank approximation from sparse matrix (missing data).

Implementation in Python

- Decomposition: U,s,Vt = numpy.linalg.svd(A)
- ► Reconstruction : Arec = U @ numpy.diag(s) @ Vt
- ► Sparse SVD : Uk,sk,Vkt = scipy.sparse . linalg .svds(A,k)

Matrix norms

Norms

- Frobenius norm : $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} a_{i,j}^2} = \|\text{vec}(\mathbf{A})\|.$
- $\qquad \qquad \textbf{Spectral norm}: \ \|\mathbf{A}\|_2 = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2.$
- Norm induced by $\|\cdot\|_p: \|\mathbf{A}\|_p = \max_{\|\mathbf{x}\|_p} \|\mathbf{A}\mathbf{x}\|_p.$

Relation with SVD

- $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2(\mathbf{A})}$
- $\|\mathbf{A}\|_2 = \max_i \sigma_i(\mathbf{A}) = \sigma_{\mathsf{max}}(\mathbf{A}) = \|\boldsymbol{\sigma}(\mathbf{A})\|_{\infty}.$
- ▶ Nuclear norm : $\|\mathbf{A}\|_* = \sum_i \sigma_i(\mathbf{A}) = \|\boldsymbol{\sigma}(\mathbf{A})\|_1$.

Implementation in Python

- ► Frobenius norm : numpy.linalg.norm(A,'fro')
- ► Spectral norm : numpy.linalg.norm(A,2)
- ► Nuclear norm: numpy.linalg.norm(A,'nuc')

Numerical optimization problem

Problem formulation

$$\min_{\mathbf{x} \in \mathcal{C}} F(\mathbf{x}) \tag{5}$$

- F is the objective function (sometimes called cost function).
- $\mathbf{x} = [x_1, \dots, x_n]^{\top} \in \mathbb{R}^n$ is a vector of n variables.
- $ightharpoonup \mathcal{C} \subseteq \mathbb{R}^n$ is the set of admissible solutions.
- ▶ Objective : Find a solution $\mathbf{x}^* \in \mathcal{C}$, having the minimal value for F such that

$$F(\mathbf{x}^*) \le F(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{C}.$$

Assumptions (in this course)

- ▶ The problem is proper (there exists a solution), F is lower bounded on C.
- \blacktriangleright You have access to F and $\mathcal C$ (mathematical expression, no black box).

Notation: Lowercase bold is a vector, Uppercase bold is a matrix.

Standard constrained optimization

Problem reformulation

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & F(\mathbf{x}) \\ & \text{with} & h_j(\mathbf{x}) = 0 & \forall j = 1, \dots, p \\ & \text{and} & g_i(\mathbf{x}) \leq 0 & \forall i = 1, \dots, q. \end{aligned}$$

▶ This problem is equivalent to (27) when C can be expressed as

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{R}^n \mid h_j(x) = 0, \ \forall j = 1, \dots, p \text{ and } g_i(x) \le 0, \ \forall i = 1, \dots, q \}.$$

- \blacktriangleright h_i and g_i define respectively the equality and inequality constraints.
- ▶ When p = q = 0 the problem is said to be unconstrained and $C = \mathbb{R}^n$.
- ▶ The complexity of solving problems (27) and (6) depends on the properties of F and C.
- Problem above is a standard formulation for constrained optimization.

Definitions

$$\min_{\mathbf{x} \in \mathcal{C}} \quad F(\mathbf{x})$$

Feasible point

Any point $x \in C$ that satisfies the constraints in set C.

Optimal value

Minimal value function on the feasible set C, often denoted as F^* .

Optimality/Optimal solution

 $\mathbf{x}^\star \in \mathcal{C}$ is a solution of the optimization problem if satisfies the constraints in set \mathcal{C} and

$$F(\mathbf{x}^*) \leq F(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{C}.$$

 \mathbf{x}^{\star} might not be unique in the general case.

Sub-optimal point

 $\mathbf{x} \in \mathcal{C}$. is an ϵ -suboptimal point of the problem for $\epsilon > 0$ if

$$F(\mathbf{x}) \le F(\mathbf{x}^*) + \epsilon$$

Active constraint

 g_i is considered an active constraint in \mathbf{x} if $g_i(\mathbf{x}) = 0$.

Problem

$$\min_{\mathbf{x} \geq \mathbf{0}} \quad \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \qquad \text{with } \mathbf{y} \in \mathbb{R}^m \text{ and } \mathbf{H} \in \mathbb{R}^{m \times n}$$

Exercise

1. Express $F(\mathbf{x})$ and \mathcal{C} for the problem above.

Problem

$$\min_{\mathbf{x} \geq \mathbf{0}} \quad \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \qquad \text{with } \mathbf{y} \in \mathbb{R}^m \text{ and } \mathbf{H} \in \mathbb{R}^{m \times n}$$

Exercise

1. Express $F(\mathbf{x})$ and \mathcal{C} for the problem above.

$$F(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \quad \mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n | x_i \ge 0 \ \forall i\} = \mathbb{R}^{+n}$$

2. Find p, q the number of constraints :

Problem

$$\min_{\mathbf{x} \geq \mathbf{0}} \quad \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \qquad \text{with } \mathbf{y} \in \mathbb{R}^m \text{ and } \mathbf{H} \in \mathbb{R}^{m \times n}$$

Exercise

1. Express $F(\mathbf{x})$ and \mathcal{C} for the problem above.

$$F(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \quad \mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n | x_i \ge 0 \ \forall i\} = \mathbb{R}^{+n}$$

- **2.** Find p, q the number of constraints : p=0, q=n
- **3.** Express h_j and g_i if there are somme constraints:

Problem

$$\min_{\mathbf{x} \geq \mathbf{0}} \quad \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \qquad \text{with } \mathbf{y} \in \mathbb{R}^m \text{ and } \mathbf{H} \in \mathbb{R}^{m \times n}$$

Exercise

1. Express $F(\mathbf{x})$ and \mathcal{C} for the problem above.

$$F(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2, \quad \mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n | x_i \ge 0 \ \forall i\} = \mathbb{R}^{+n}$$

- 2. Find p, q the number of constraints : p=0, q=n
- **3.** Express h_j and g_i if there are somme constraints:

$$g_i(\mathbf{x}) = -x_i, \quad \forall i \in 1, \dots, n$$

Numerical optimization algorithm

$$\min_{\mathbf{x} \in \mathcal{C}} \quad F(\mathbf{x})$$

Iterative optimization algorithm

An iterative algorithm A is an algorithm providing a series $\mathbf{x}^{(k)}$ for $k=0,1,\ldots$ of iterates $\mathbf{x}^{(k+1)}=A(\mathbf{x}^{(k)})$ that converges to a solution \mathbf{x}^{\star} of the optimization problem starting from an initial guess $\mathbf{x}^{(0)}$.

- ▶ If $F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)})$, $\forall k$ then it is called a **descent algorithm**.
- In practice iterations are stopped when a convergence criterion is met.

Convergence of iterative methods

▶ The convergence speed can be expressed in objective value

$$|F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^{\star})| \le \gamma |F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star})|^q \tag{7}$$

Or it can be expressed in terms of iterates:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\| \le \gamma \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{q} \tag{8}$$

where $\gamma \in [0,1)$ and $q \ge 1$ is the convergence order (q=1 linear, q=2 quadratic...).

Properties of optimization problems

Know your optimization problem (and its properties)

- ► They with guide you toward the proper solver.
- ▶ They tell you how much you can trust the solution (well posed, unique solution).
- ► They will help you design the optimization problem.

Convexity

- Well posed problem.
- Unique solution when strict convexity.

Smoothness

- Continuity, differentiability
- When function smooth, one can use its gradients.

Solutions

- What is a solution of the optimization problem ?
- Criterions for reaching a solution (stopping the algorithm).

Convex set

Definition: Convex set

 $\mathcal{C}\subset\mathbb{R}^n$ is a convex set if for any two points $\mathbf{x},\mathbf{y}\in\mathcal{C}^2$ and for any $0\leq\alpha\leq1$ we have

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in \mathcal{C}$$

Image from [Boyd and Vandenberghe, 2004]

Convex set

Definition: Convex set

 $\mathcal{C}\subset\mathbb{R}^n$ is a convex set if for any two points $\mathbf{x},\mathbf{y}\in\mathcal{C}^2$ and for any $0\leq\alpha\leq1$ we have

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}$$

Image from [Boyd and Vandenberghe, 2004]

Convex set

Definition: Convex set

 $\mathcal{C}\subset\mathbb{R}^n$ is a convex set if for any two points $\mathbf{x},\mathbf{y}\in\mathcal{C}^2$ and for any $0\leq\alpha\leq1$ we have

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}$$

Image from [Boyd and Vandenberghe, 2004]

Examples of convex sets

Examples

- $ightharpoonup \mathbb{R}^n$
- ▶ Positive orthant of \mathbb{R}^n : \mathbb{R}^n_+ .
- $\blacktriangleright \; \mathsf{Hyperplan}: \; \{\mathbf{x} \in \mathbb{R}^d: \mathbf{a}^\top \mathbf{x} = b\}$
- ► Half space: $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a}^\top \mathbf{x} \leq b\}$
- Polyhedra: $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$
- Gömböc

Operations on set preserving convexity (1)

Intersection

If \mathcal{X}_k are convex set $\forall k$ then their intersection

$$\bigcap_{k=1}^K \mathcal{X}_k$$

is also convex.

Operations on set preserving convexity (2)

Cartesian product

If $\mathcal{X}_k \subset \mathbb{R}^{n_k}$, are convex $\forall k=1,\cdots,M$ then

$$\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_M = \{(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M) : \mathbf{x}_k \in \mathcal{X}_k\}$$

is convex.

Affine transform

If $\mathcal{X} \subset \mathbb{R}^d$ is convex and $\mathcal{A}(\mathbf{x}) \mapsto \mathbf{A}\mathbf{x} + \mathbf{b}$ is an affine transform defined by matrix $\mathbf{A} \in \mathbb{R}^{p \times d}$ and vector \mathbf{b} then

$$\mathcal{A}(\mathcal{X}) = \{\mathcal{A}(\mathbf{x}) : \mathbf{x} \in \mathcal{X}\}$$

is convex. These transformations include translation and rotations.

Convex function

Definition: Convex function

A function F is said to be convex if it lies below its chords, that is $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}), \text{ with } 0 \le \alpha \le 1.$$
 (9)

- A function is said to be strictly convex when the two inequalities are strict.
- Strict convexity implies that the function has a unique minimum.
- ▶ If a function F is convex, then the set $\{\mathbf{x} \in \mathbb{R}^n \mid F(\mathbf{x}) \leq 0\}$ is convex.
- A function F is concave if -F is convex.

Strongly convex function

Definition: strong convexity

A function F is said to be μ -strongly convex with $\mu>0$ if it satisfies $\forall \mathbf{x},\mathbf{y}\in\mathbb{R}^n$ and $0\leq \alpha\leq 1$

$$F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^2,$$
 (10)

- \blacktriangleright A μ -strongly convex function is convex and has a unique minimum.
- ightharpoonup A μ -strongly convex function is upper bounded by a convex quadratic function.

Examples of functions in $\mathbb R$

Convex functions

- Affine functions : $x \mapsto ax + b$ for all $a, b \in \mathbb{R}$.
- **Exponential functions** : $x \mapsto e^{ax}$ for all $a \in \mathbb{R}$.
- ▶ Power of absolute value : $x \mapsto |x|^p$, for all $p \ge 1$.
- ▶ Neg-entropy : $x \mapsto x \log x$ for x > 0

Concave Functions

- Affine functions : $x \mapsto ax + b$ for all $a, b \in \mathbb{R}$.
- ▶ Power : $x \mapsto x^p$, for x > 0 and for all $0 \le p \le 1$.
- ▶ Logarithm : $x \mapsto \log x$ for x > 0

Operations preserving convexity (1)

Positive sum

Let $\lambda_1, \lambda_2 \geq 0$ and f_1 , f_2 two convex function then

$$\lambda_1 f_1 + \lambda_2 f_2$$

is convex.

Composition with affine function

let $\mathbf{A} \in \mathbb{R}^{p \times d}$ and $b \in \mathbb{R}^p$ and $f : \mathbb{R}^p \mapsto \mathbb{R}$ be a convex function, the the composition

$$f(\mathbf{A}\mathbf{x} + b)$$

is convex

Example

- ▶ Log barrier : $f(\mathbf{x}) = -\sum_{i=1}^m \log(b_i \mathbf{a}_i^\top \mathbf{x})$ with dom $f = \{\mathbf{x} : \mathbf{a}_i^\top \mathbf{x} \leq b_i\}$
- ▶ Norm of an affine function : $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} + b\|$

Operations preserving convexity (2)

Composition

▶ let $g: \mathbb{R}^d \mapsto \mathbb{R}$ be a convex function and $h: \mathbb{R} \mapsto \mathbb{R}$ be a convex and increasing function, then

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

is convex.

Maximum

▶ If f_1, \dots, f_m are convex functions then

$$f(\mathbf{x}) = \max_{i} \{f_1(\mathbf{x}), \cdots, f_m(\mathbf{x})\}\$$

is convex.

Example

▶ Piecewise linear function: $f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{a}_i^{\top} \mathbf{x} + b)$

Convexity in optimization

Convex optimization problem

$$\min_{\mathbf{x} \in \mathcal{C}} F(\mathbf{x})$$

- ▶ The problem is convex if F is a convex function and C is a convex set.
- Any local minimizer of a convex function is a global minimizer.
- If the function is strictly convex the minimizer is unique.
- Maximizing a concave function under convex constraints is a convex problem.

Disciplined Convex Programming [Grant et al., 2006]

- Express the objective function and constraints as combination and composition of operations preserving convexity.
- Allows for designing generic solvers (Matlab [Grant and Boyd, 2014], Python [Diamond and Boyd, 2016]).

Smoothness and continuity

Differentiability classes in 1D

Let f be a real function. Then f is of differentiability class C^k if and only if $\frac{d^k f(x)}{dx^k}$ is continuous.

- $ightharpoonup C^0$ is the set of continuous real functions.
- $ightharpoonup C^1$ is the set of real functions with continuous derivatives.
- $ightharpoonup C^2$ is the set of real functions with continuous second derivatives.

Exercise 2: Differentiability and convexity

Function	Diff. Class	Convexity
$f(x) = x^2$		
$f(x) = e^x$		
f(x) = x		
$f(x) = \max(x, 0)$		
f(x) = sign(x)		
$f(x) = \log(1 + \exp(x))$		
f(x) = 2x + 1		
$f(x) = \max(x, 0)^2$		

Smoothness and continuity

Differentiability classes in 1D

Let f be a real function. Then f is of differentiability class C^k if and only if $\frac{d^k f(x)}{dx^k}$ is continuous.

- $ightharpoonup C^0$ is the set of continuous real functions.
- $ightharpoonup C^1$ is the set of real functions with continuous derivatives.
- $ightharpoonup C^2$ is the set of real functions with continuous second derivatives.

Exercise 2: Differentiability and convexity

Function	Diff. Class	Convexity
$f(x) = x^2$	C^{∞}	✓
$f(x) = e^x$	C^{∞}	✓
f(x) = x	C^0	✓
$f(x) = \max(x, 0)$	C^0	✓
f(x) = sign(x)	Not continuous	
$f(x) = \log(1 + \exp(x))$	C^{∞}	✓
f(x) = 2x + 1	C^{∞}	✓
$f(x) = \max(x, 0)^2$	C^1	✓

Gradient of a function

Gradient

The gradient $\nabla F(\mathbf{x})$ of a function $F: \mathbb{R}^n \to \mathbb{R}$ at point \mathbf{x} is the vector whose components are the partial derivatives of F

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \left[\frac{\partial F(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial F(\mathbf{x})}{\partial x_n} \right]^T$$
(11)

- ▶ If the gradient exists $\forall x$ in the domain of F, the function F is called **differentiable**.
- $\nabla_{\mathbf{x}} F(\mathbf{x})$ give the steepest direction (where F is increasing the most).
- ▶ The vector normal to surface $(\mathbf{x}, F(\mathbf{x}))$ is given by $(\nabla_{\mathbf{x}} F(\mathbf{x}), -1)$.

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \begin{bmatrix} 1 - x_2 \\ -1 - x1 \end{bmatrix}$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \begin{bmatrix} 1 - x_2 \\ -1 - x1 \end{bmatrix}$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = 2\mathbf{H}^T (\mathbf{H}\mathbf{x} - \mathbf{y})$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

$$\nabla_{\mathbf{x}} F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \begin{bmatrix} 1 - x_2 \\ -1 - x1 \end{bmatrix}$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the gradient $\nabla_{\mathbf{x}} F(\mathbf{x})$:

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = 2\mathbf{H}^T (\mathbf{H}\mathbf{x} - \mathbf{y})$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

$$\nabla_{\mathbf{x}} F(\mathbf{x}) = \mathbf{w} \exp(\mathbf{w}^T \mathbf{x} + b)$$

Smoothness and convexity

Strongly convex function lower bound

Convex function (first order definition)

F a differentiable function is **convex** if and only if

$$F(\mathbf{y}) \ge F(\mathbf{x}) + \nabla F(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y}, \mathbf{x} \in \text{dom} F$$
 (12)

- ▶ A convex function is lower bounded by its local linear approximation.
- ▶ For $C = \mathbb{R}^n$, if \mathbf{x} if a global minimum if and only if $\nabla_{\mathbf{x}} F(\mathbf{x}) = \mathbf{0}$.

Strongly convex function

If F is a differentiable μ -strongly convex then

$$F(\mathbf{y}) \geq F(\mathbf{x}) + \nabla F(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2, \quad \forall \mathbf{y}, \mathbf{x} \in \mathsf{dom} F$$

Hessian and second derivatives

Hessian of a function

The Hessian matrix $\mathbf{H} = \nabla_{\mathbf{x}}^2 F(\mathbf{x})$ of a twice differentiable function F is the matrix whose components can be expressed as

$$H_{i,j} = \left(\nabla_{\mathbf{x}}^2 F(\mathbf{x})\right)_{i,j} = \frac{\partial^2 F(\mathbf{x})}{\partial x_i \partial x_j}$$

- ▶ Convex function: F is convex if and only if $\nabla_{\mathbf{x}}^2 F(\mathbf{x})$ is semi definite positive $\forall \mathbf{x}$.
- ▶ If $\nabla_{\mathbf{x}}^2 F(\mathbf{x})$ is strictly positive definite $\forall \mathbf{x}$ then F is strictly convex.
- ▶ if F is μ -strongly convex then $\nabla^2_{\mathbf{x}}F(\mathbf{x}) \succeq \mu \mathbf{I} \ (\lambda_{\min}(\nabla^2_{\mathbf{x}}F(\mathbf{x})) \geq \mu)$.

Second Order Taylor approximation

The function can be approximated around \mathbf{x}_0 with

$$F(\mathbf{x}) \approx F(\mathbf{x}_0) + \underbrace{\nabla_{\mathbf{x}_0} F(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)}_{\text{Linear term}} + \underbrace{(\mathbf{x} - \mathbf{x}_0)^T \mathbf{H} (\mathbf{x} - \mathbf{x}_0)}_{\text{Quadratic term}}$$
(13)

The approximation is exact if F is a polynomial of order ≤ 2

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

Compute the Hessian $\nabla_{\mathbf{x}}^2 F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
, Not PSD

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
, Not PSD

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = 2\mathbf{H}^T \mathbf{H}, \quad \mathsf{PSD}$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

Compute the Hessian $\nabla_{\mathbf{x}}^2 F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) =$$

Two variables

$$F(\mathbf{x}) = x_1 - x_1 x_2 - x_2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad \text{Not PSD}$$

Quadratic loss

$$F(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = 2\mathbf{H}^T \mathbf{H}, \quad \mathsf{PSD}$$

Exponential with linear function

$$F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b)$$

Compute the Hessian $\nabla^2_{\mathbf{x}} F(\mathbf{x})$, is is positive semi definite ?

$$\nabla_{\mathbf{x}}^2 F(\mathbf{x}) = \exp(\mathbf{w}^T \mathbf{x} + b) \mathbf{w} \mathbf{w}^T, \quad \mathsf{PSD}$$

Lipschitz continuity

Lipschitz function

Function F is called **Lipschitz** or **Lipschitz continuous** if there exists a constant L>0 such that $\forall \mathbf{x},\mathbf{y}\in\mathcal{C}^2$

$$|F(\mathbf{x}) - F(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}|| \tag{14}$$

- lacktriangle A L satisfying the above constraint is called a Lipschitz constant of the function.
- ▶ If L < 1 the function is a contraction.
- ▶ Function F is **gradient Lipschitz**, also called L-smooth, if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}^2$

$$\|\nabla F(\mathbf{x}) - \nabla F(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\| \tag{15}$$

Lipschitz functions can be easily upper bounded,

Properties Lipschitz functions

Upper bounds for Lipschitz functions

▶ If *F* is *L*-smooth, then the following inequality holds

$$F(\mathbf{x}) \le F(\mathbf{y}) + \nabla F(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}$$
(16)

the function can be upper-bounded by a quadratic function.

▶ If *F* is *L*-smooth, then the following inequality holds

$$\nabla_{\mathbf{x}}^{2} F(\mathbf{x}) \leq L \mathbf{I} \quad (\lambda_{\text{max}}(\nabla_{\mathbf{x}}^{2} F(\mathbf{x})) \leq L)$$
(17)

Convexity and smoothness in machine learning

Convex and smooth problems

- Smooth problem provides us with gradients for iterative methods.
- Convexity means the a solution of the problem is global.
- Convexity leads to several efficient algorithms.

ML approaches relying on convex problems

- ► Least square regression, Lasso.
- Support Vector Machines.
- ► Logistic and multinomial regression.

Local and global solutions

$$\min_{\mathbf{x} \in \mathcal{C}} F(\mathbf{x})$$

Local solution

For the optimization problem above, a feasible point $\mathbf{x}^\star \in \mathcal{C}$ is a local optimum if there exists R>0 such that

$$F(\mathbf{x}^*) \le F(\mathbf{x}) \quad \forall \mathbf{x} \in \{\mathbf{x} \in \mathcal{C}, \|\mathbf{x} - \mathbf{x}^*\| \le R\}$$

- ▶ If the problem is convex, all local optimum are global.
- For non-convex function, the optimum is global only if the equation is true for all R>0.

Convex

Nonconvex

First order optimality condition

Convex and differentiable function

For the following convex problem

$$\min_{\mathbf{x} \in \mathcal{C}} \quad F(\mathbf{x})$$

the feasible point $\mathbf{x}^\star \in \mathcal{C}$ is globally optimal if and only if

$$\nabla F(\mathbf{x}^{\star})^{\top}(\mathbf{y} - \mathbf{x}^{\star}) \ge 0 \quad \forall \mathbf{y} \in \mathcal{C}$$

- ► Any feasible direction from **x*** is aligned with an increasing gradient.
- If $\mathcal{C} = \mathbb{R}^n$, the condition is equivalent to

$$\nabla F(\mathbf{x}^{\star}) = 0$$

Second order optimality conditions

Convex function

Quad approx at optim.

Saddle point function

Twice differentiable function

For the following problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x})$$

the feasible point $\mathbf{x}^{\star} \in \mathbb{R}^n$ is locally optimal if and only if

$$\nabla F(\mathbf{x}^{\star}) = 0$$
 and $\nabla^2 F(\mathbf{x}^{\star}) \succeq 0$

- ▶ On general functions $\nabla F(\mathbf{x}^*) = 0$ is not sufficient (saddle points).
- Equivalent to the first order condition on convex functions.

Section

1. Introduction to optimization

1.2 Machine learning as an optimization problem

1.2.1 Empirical risk minimization	
1.2.2 Sparsity and variable selection	
1.2.3 Unsupervised learning	
1.3 Properties of optimization problems	17
1.3.1 Linear Algebra recap	
1.3.2 Optimization problem formulation	
1.3.3 Convexity	
1.3.4 Smoothness and constraints	
1.3.5 Characterizing a solution	
1.4 Conclusion	68
2. Smooth optimization : Gradient descent	72
3. Smooth Optimization: Quadratic problems	72
4. Non-smooth optimization: Proximal methods	72
5. Stochastic Gradient Descent	72
6. Standard formulation of constrained optimization problems	72
7. Coordinate descent	72
8. Newton and quasi-newton methods	72
9. Beyond convex optimization	72
	1.4.0 - Conclusion 52/57

Conclusion

Machine learning and optimization

- Learning is an optimization problem.
- ightharpoonup Design a new machine learning method \equiv design a new optimization problem.
- ► Convexity, smoothness lead to specific solver and guarantees.

Know your optimization problems

- ▶ If smooth and unconstrained → Gradient descent and variants.
- ightharpoonup If non-smooth ightharpoonup proximal, projected, conditional gradients.
- ightharpoonup If convex and/or constrained standard problems (LP,QP) ightarrow standard solvers.

Those are the next parts of the course.

Bibliography I

References books for the whole course.

Convex Optimization [Boyd and Vandenberghe, 2004]

- Available freely online: https://web.stanford.edu/~boyd/cvxbook/.
- Perfect introduction to convex optimization (the whole book).
- Convex sets (Ch. 2), Convex functions (Ch 3), Convex problems (Ch. 4).

Elements of statistical learning [Friedman et al., 2001]

- Freely available https://web.stanford.edu/~hastie/Papers/ESLII.pdf
- Perfect introduction to statistical learning and machine learning.
- ▶ Most of them are optimization problems!

Nonlinear Programming [Bertsekas, 1997]

- ▶ Reference optimization book, contains also most of the course.
- ▶ Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4,5).

Bibliography II

Other references

Convex analysis and monotone operator theory in Hilbert spaces [Bauschke et al., 2011]

- ▶ Awesome book with lot's of algorithms, and convergence proofs.
- ▶ All definitions (convexity, lower semi continuity) in specific chapters.
- ▶ All you need to know about proximal methods.

Numerical optimization [Nocedal and Wright, 2006]

- Classic introduction to numerical optimization.
- Very detailed unconstrained optimization, specific chapters for LP and QP.

Optimization for Machine Learning [Sra et al., 2012]

- Specific chapters for precise problems (non-convex, sparsity, interior points)
- For this course: Convex with sparsity (Ch. 2), Interior points (Ch. 3).

Linear Programming [Vanderbei et al., 2015]

Reference book of LP (Simplex, interior point)

References I

```
[Bauschke et al., 2011] Bauschke, H. H., Combettes, P. L., et al. (2011).
  Convex analysis and monotone operator theory in Hilbert spaces, volume 408.
  Springer.
[Bertsekas, 1997] Bertsekas, D. P. (1997).
  Nonlinear programming.
  Journal of the Operational Research Society, 48(3):334–334.
[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004).
  Convex optimization.
  Cambridge university press.
[Diamond and Boyd, 2016] Diamond, S. and Boyd, S. (2016).
  Cvxpy: A python-embedded modeling language for convex optimization.
  The Journal of Machine Learning Research, 17(1):2909–2913.
[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001).
  The elements of statistical learning, volume 1.
```

Springer series in statistics New York.

References II

```
[Grant and Boyd, 2014] Grant, M. and Boyd, S. (2014).
  CVX: Matlab software for disciplined convex programming, version 2.1.
  http://cvxr.com/cvx.
[Grant et al., 2006] Grant, M., Boyd, S., and Ye, Y. (2006).
  Disciplined convex programming.
  Springer.
[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006).
  Numerical optimization.
  Springer Science & Business Media.
[Sra et al., 2012] Sra, S., Nowozin, S., and Wright, S. J. (2012).
  Optimization for machine learning.
  Mit Press
[Vanderbei et al., 2015] Vanderbei, R. J. et al. (2015).
  Linear programming.
  Springer.
[Vapnik, 2013] Vapnik, V. (2013).
```

The nature of statistical learning theory.

Springer science & business media.