

Real World Repairs @ Netflix

Vinay Chella

Cassandra MVP, Cloud Data Architect

NETFLIX

Vinay Chella

Cloud Data Architect

Cassandra MVP

Cloud Database Engineering @ Netflix

Agenda

- What is Repair and Why?
- How do we Repair @ Netflix?
- Use cases
- Pain points
- Alternatives to Repair
- When to/ not to repair
- What is missing in C*

Why is Repair Important?

- Entropy is inevitable
- Inconsistent data might impact your business
- Data Resurrection

What is Repair

Row key: jack	Row key: jill	Row key: terry	Row key: misty
Row token: 5	Row token: 7	Row token: 10	Row token: 20
hash: 8DC0	hash: 5D1B	hash: 3P5U	hash: @G8X

Repair in Netflix world

Case 1

- ~300 TB cluster size
- ~1 TB per node
- SSDs
- 288 Nodes Multi Region Cluster
- Critical data, No TTLs

Case 2

- ~180 TB cluster size
- ~3.6 TB per node
- HDDs
- 48 Nodes Island cluster
- No TTLs, long lived

How do we Repair @ Netflix?

- Primary Range (-pr)
- Subrange (-st and -et)
- On every *node* in every *dc* sequentially
- Parallel (-par) & SEQUENTIAL

How do we Repair @ Netflix? Cont...

- More granular Repair
 - -Selective tables only
- On schedule basis
 - -Jenkins
- Repair progress tracking

Impacts of UnRepaired C*/ Use-cases

- Incorrect bookmark index
- Losing the ratings
- Recommendations impact
- Broken recently watched

Pain Points

- Over streaming
- Stream timeouts
- Stuck repairs
- Tracking/ resuming repair
- Compactions bottlenecks
- Disk I/O
- CPU usage
- Latencies/SLA
- Wide partitions

How do we live with it?

Well, we don't, we fix it.

Over streaming

- Subrange repair
 - -Techniques
 - -Algorithm

Subrange Repair

- Get subranges
 https://github.com/pauloricardomg/cassandra-list-subra
 nges
 - Thrift: describe_splits_ex
- Repair those ranges using https://github.com/BrianGallew/cassandra range repair

Subrange Repair

Regular Repair

- Size per Node 950 GB
 - Time to repair ~11 Hours
 - Primary Range
 - SERIAL
- Size per Node 550 GB
 - Time to repair ~24 Hours
 - Primary Range
 - SERIAL
 - Wide partitions

Subrange Repair

- Size per Node 950 GB
 - Time to repair ~2.5 Hours
 - Primary Range
 - Threads #: 5
 - Split size 64K
- Size per Node **550 GB**
 - Time to repair ~5.5 Hours
 - Primary Range
 - Threads # 10
 - Split size 32K
 - Wide partitions

To overcome stream timeouts

YAML Tunings

- streaming_socket_timeout_in_ms
- stream_throughput_outbound_megabits_per_sec
- inter_dc_stream_throughput_outbound_megabits_per_sec

To overcome resume issue

- Track it
 - -Record the progress
 - -Record the status
- Resume-ability
 - -Resume from failed or paused range

To fix stuck repairs

- Use Repair Tracking data
- Timeouts for long running repair
 - JMX notifications
- Self healable repair (Automate it !!)
 - Grep for repair logs
 - nodetool compactionstats
 - nodetool netstats
 - JMX: forceTerminateAllRepairSessions()

Compaction bottlenecks

- Why compactions?
 - -Validation phase
- Tune compaction settings
 - compaction_throughput_mb_per_sec

Disk I/O issues

• SSD

High CPU Usage?

- Throttled streaming
 - nodetool setstreamthroughput
- Throttling subrange repair
 - -Keysplit
 - -#threads

To minimize impacts on latencies

- Running Repairs during off-peak hours
- Switch to SERIAL repair
 - -Instead of PARALLEL
- If Subrange
 - -Reduce #threads
 - -Smaller subrange

Wide partition issues

Reduce the partition size

Other ways to Repair

Other ways to Repair: Tickler

- Row Tickler
- All Row Tickler

When to Repair

- Multi-Region clusters
- Low consistent read and writes
- Frequent node outages
- Low read-repair chance
- Flaky networks

When not to Repair

- Short TTIs
- Highly consistent read and writes
- High read repair chance settings in island clusters

What is missing in C*

- Metrics and insights
- Incremental Repair bug fixes
- CASSANDRA-10070 Automatic repair
 scheduling
- Mutation-based Repairs?

Photo Not Available

Q&A

