# IV

Фільтри і напрямленності

# Частина IV: Зміст

| 18 |      | прямленості                                        | 111 |
|----|------|----------------------------------------------------|-----|
|    |      | Частково упорядковані множини (нагадування)        |     |
|    |      | Напрямленості                                      |     |
|    |      | Границі напрямленості                              |     |
|    | 18.4 | Напрямленості та неперервність                     | 114 |
|    | 18.5 | Література                                         | 115 |
| 19 | Фі.  | льтри                                              | 117 |
|    |      | Фільтри                                            | 117 |
|    |      | Бази фільтрів                                      |     |
|    |      | Образи фільтрів і баз фільтрів                     |     |
|    |      | Фільтри, породжені базою                           |     |
|    |      | Література                                         |     |
| 20 | ம்   | льтри і збіжність                                  | 121 |
| 20 |      | Границі і граничні точки фільтрів                  |     |
|    |      | Границя функції по фільтру                         |     |
|    |      |                                                    |     |
|    | 20.5 | Література                                         | 122 |
| 21 | Ул   | ьтрафільтри                                        | 123 |
|    | 21.1 | Ультрафільтр як мажоранта                          | 123 |
|    | 21.2 | Властивості і критерій ультрафільтра               | 123 |
|    | 21.3 | Ультрафільтри, збіжність і компактність            | 124 |
|    | 21.4 | Література                                         | 125 |
| 22 | Зв   | 'язок між фільтрами і напрямленностями             | 127 |
|    |      | Відповідність між фільтрами і напрямленостями      |     |
|    |      | Границі і граничні точки фільтрів і напрямленостей |     |
|    |      | Універсальні напрямленності і ультрафільтри        |     |
|    |      | Література                                         |     |

# 18 Напрямленості

Як добре відомо, в основі усіх основних понять і конструкцій математичного аналізу (неперервності, диференційовністі, інтегрованісті, сумування рядів тощо) лежить концепція збіжності. В основному курсі функціонального аналізу ми показали, що за допомогою цієї концепції в топологічних просторах, що задовольняють першу аксіому зліченості, можна навіть задавати топологію.

Концепція збіжності містить в собі два поняття: послідовність і границю. Спочатку в математиці розглядалися лише послідовності дійсних чисел. Згодом теорію розповсюдили на послідовності точок в метричному просторі, і, нарешті, узагальнили для послідовності точок в довільному топологічному просторі.

Прагнення вийти за межі просторів, що задовольняють першу аксіому зліченості, в 1920-х роках привело до узагальнення поняття границі звичайних послідовностей на узагальнену послідовність (збіжність за Муром—Смітом) і появи теорії напрямленостей. В 1930-х роках французський математик А. Картан розробив загальну теорію збіжності, яка заснована на поняттях фільтра, ультрафільтра та їх границь. Ця теорія є універсальною. Вона заміняє теорію Мура—Сміта і суттєво спрощує загальну теорію збіжності.

Для того щоб глибше зрозуміти зміст цих теорій, доцільно детально їх розглянути та порівняти.

# §18.1 Частково упорядковані множини (нагадування)

Нагадаємо деякі означення із теорії множин.

**Означення 18.1.** Нехай A — довільна множина. Позначимо як  $A \times A$  сукупність усіх упорядкованих пар (a,b), де  $a,b \in A$ . Говорять, що в множині A задано **бінарне відношення**  $\varphi$ , якщо в  $A \times A$  виділено довільну підмножину  $R_{\varphi}$ . Елемент a перебуває у відношенні  $\varphi$  з елементом b, якщо пара (a,b), належить  $R_{\varphi}$ .

#### Приклад 18.1

Бінарним відношенням  $\epsilon$ , наприклад, тотожність. Множиною  $R_{\varphi}$  у цьому випадку  $\epsilon$  діагональ  $(a,a) \in A \times A$ .

**Означення 18.2.** Бінарне відношення, задане в множині A, називається **відношенням часткового передупорядкування**, якщо воно є рефлексивним і транзитивним, тобто

- 1.  $(a, a) \in R_{\varphi}$  рефлексивність;
- 2.  $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$  транзитивність.

**Означення 18.3.** Бінарне відношення, задане в множині A, називається **відношенням часткового упорядкування**, якщо воно є рефлексивним, транзитивним і антисиметричним, тобто

- 1.  $(a,a) \in R_{\varphi}$  рефлексивність;
- 2.  $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$  транзитивність.
- 3.  $(a,b),(b,a) \in R_{\varphi} \implies a=b$  антисиметричність.

**Означення 18.4.** Множина *A* із заданим на ній відношенням часткового упорядкування (передупорядкування) називається **частково упорядкованою** (передупорядкованою) множиною.

**Зауваження 18.1** — У частково упорядкованих множинах за традицією відношення xRy позначають як  $x \le y$  або  $y \ge x$ .

# §18.2 Напрямленості

Означення 18.5. Частково упорядкована множина S називається фільтрівною вправо, або напрямленням за зростанням, або просто напрямленою множиною, якщо

$$\forall s_1, s_2 \in S \quad \exists s \in S : \quad s \ge s_1, s_2.$$

# Приклад 18.2

Множина натуральних чисел із природним упорядкуванням є напрямленою.

### Приклад 18.3

Нехай x — фіксована точка топологічного простору X, а  $\Omega_x$  — сукупність усіх околів цієї точки.

Введемо в множині  $\Omega_x$  відношення упорядкування за оберненим включенням:

$$V \subset U \iff V > U$$
.

Оскільки

$$\forall U_1, U_2 \in \Omega \quad U_1 \cap U_2 \geq U_1, U_2,$$

то множина  $\Omega_x$  є *напрямленою* множиною усіх околів точки x в просторі X.

Розглянемо довільну множину X і деяку послідовність її елементів  $x_n$ . Послідовність  $x_n$  можна трактувати як відображення

$$f: \mathbb{N} \to X$$
,

де 
$$f(n) = x_n$$
.

Якщо замінити множину  $\mathbb N$  довільною напрямленою множиною S, отримаємо означення узагальненої послідовності, або напрямленості.

**Означення 18.6.** Будь-яке відображення напрямленої множини називається **напрямленістю**, або **узагальненою послідовністю**, або **сіттю**. До того ж, якщо  $f:S \to X$  — напрямленість, то напрямлена множина S називається областю визначеності напрямленості f, а множина f(S) — областю її значень.

Зауваження 18.2 — Будь-яка послідовність елементів простору X є напрямленістю в X з областю визначення  $\mathbb{N}$ . Для зручності значення  $f_s$  напрямленості  $f: S \to X$  на елементі  $s \in S$  часто позначають як  $x_s$ , а саму напрямленість f подають як множину  $\{x_s \mid s \in S\}$ .

18 Напрямленості 113

#### Приклад 18.4

Нехай  $\Omega_x$  — напрямлена множина усіх околів точки x простору X. Вибираючи по точці  $x_U$  з кожного околу  $U \subset \Omega_x$ , отримуємо напрямленість  $\{x_U \mid U \in \Omega_x\}$ .

Означення 18.7. Говорять, що напрямленість  $f: S \to X$  починаючи з деякого місця належить, або майже вся лежить в підмножині  $A \subset X$ , якщо існує  $s_0 \in S$ , таке що  $\forall s \geq s_0 \ x_s \in A$ .

**Означення 18.8.** Якщо  $\forall s \in A \ \exists t \geq s \colon f_t \in A$ , то говорять, що напрямленість  $f : S \to X \in \mathbf{vactoo}$  в підмножині  $A \subset X \ (\mathbf{vacto} \ \mathbf{буває} \ \mathbf{e} \ A)$ .

Зауваження 18.3 — Якщо напрямленість  $f:S\to X$  є частою в A, то вона не може майже вся лежати в доповненні  $X\setminus A$ . І навпаки, якщо напрямленість майже вся лежить в доповненні  $X\setminus A$ , то вона не може бути частою в A.

**Означення 18.9.** Точка  $x^*$  називається **граничною точкою** напрямленості, якщо ця напрямленість часто буває в будь-якому околі точки  $x^*$ .

# §18.3 Границі напрямленості

**Означення 18.10.** Напрямленість  $f: S \to X$  в топологічному просторі X називається **збіжною** до точки  $x_0 \in X$ , якщо вона майже вся лежить в будь-якому околі точки  $x_0$ , тобто якщо для довільного околу U цієї точки знайдеться елемент  $s_U \in S$ , такий що  $\forall s \geq s_U \ f_s \in U$ . Точка  $x_0 = \lim_S f_s$  називається **границею** напрямленості  $f: S \to X$ .

#### Приклад 18.5

Кожна збіжна послідовність в просторі X є збіжною напрямленістю в X, границя якої є границею послідовності.

#### Приклад 18.6

Нехай  $\{x_U \mid U \in \Omega_x\}$  — напрямленість в просторі X. Легко бачити, що ця напрямленість збігається до точки x. Дійсно, нехай  $U_0$  — довільний окіл точки x. Тоді  $\forall U \geq U_0$   $x \in U \subset U_0$ , тобто ця напрямленість майже вся лежить в довільному околі точки x.

Зауваження 18.4 — Напрямленість, як і послідовність, в загальних топологічних просторах може мати різні границі. В хаусдорфових просторах вона має одну границю.

**Означення 18.11.** Напрямленість  $g: T \to X$  називається **піднапрямленістю** напрямленості  $f: S \to X$ , якщо існує відображення  $h: T \to S$ , таке що  $g = f \circ h$  і  $\forall s_0 \in S \ \exists t_0 \in T : \forall t \geq t_0 \ h(t) \geq s_0$ .

Зауваження 18.5 — На відміну від означення звичайної підпослідовності, означення піднапрямленості допускає, щоб область визначення піднапрямленості не була частиною області визначення напрямленості.

**Означення 18.12.** Частково упорядкована множина  $X \in \mathbf{конфінальною}$  своїй підмножині A, якщо в X не існує жодного елемента, що є наступним за усіма елементами множини A.

### Приклад 18.7

Інтервал (0,1) є конфінальним множині  $\left\{\frac{n}{n+1}\middle|n\in\mathbb{N}\right\}$ .

Зауваження 18.6 — Якщо  $T \subset S$ , а h — відображення вкладення, то друга умова еквівалентна конфінальності T в S. І навпаки, для будь-якої конфінальної частини T з S і будь-якої напрямленості  $f: S \to X$  звуження f на T є піднапрямленістю напрямленості f.

### Теорема 18.1 (Бірхгофа)

Нехай A — деяка підмножина довільного топологічного простору X. Тоді  $x \in \overline{A}$  тоді і лише тоді, коли існує напрямленість в A, що збігається до точки x.

Доведення. **Необхідність.** Нехай  $x \in \overline{A}$  і  $\Omega_x$  — напрямлена множина усіх околів точки x. Оскільки

$$\forall U \in \Omega_x \quad A \cap U \neq \emptyset,$$

то, вибираючи по одній точці  $x_U x \in A \cap U$ , отримуємо напрямленість  $\{x_U \mid U \in \Omega_x\}$  в A, що збігається до точки x.

**Достатність.** Нехай  $\{x_s \mid s \in S\}$  — напрямленість в A, що збігається в X до точки x. Тоді за означенням границі напрямленості

$$\forall U \in \Omega_x \quad \exists s_0 \in S : \quad \forall s \ge s_0 \quad x_s \in U.$$

Отже,

$$A \cap U \neq \emptyset \implies x_0 \in \overline{A}.$$

# §18.4 Напрямленості та неперервність

Зауваження 18.7 — Нагадаємо, що в просторах із першою аксіомою зліченності неперервність відображення f в довільній точці  $x_0$  була еквівалентною умові, що з  $x_n \to x_0$  випливає  $f(x_n) \to f(x_0)$ . Перехід від послідовностей до напрямленостей дозволяє відмовитись від цієї умови.

# Теорема 18.2 (критерій неперервності)

Відображення  $f: X \to Y$  є неперервним в точці  $x_0$  тоді і лише тоді, коли для будь-якої напрямленості  $\{x_s \mid s \in S\}$ , що збігається до точки  $x_0 \in X$  напрямленість  $\{f(x_s) \mid s \in S\}$  збігається то точки  $f(x_0) \in Y$ .

18 Напрямленості 115

Доведення. **Необхідність.** Нехай  $f: X \to Y$  неперервна в точці  $x_0$  і  $\{x_s \mid s \in S\}$  — деяка напрямленість в X, що збігається до точки  $x_0$ . Нехай також  $V_0$  — довільний окіл точки  $f(x_0)$  в Y. Тоді достатньо перевірити, що напрямленість  $\{f(x_s) \mid s \in S\}$  майже вся лежить в  $V_0$ .

Справді, оскільки відображення f є неперервним в точці  $x_0$ , то існує окіл  $U_0$  точки  $x_0$ , такий що  $f(U_0) \subset V_0$ . Оскільки напрямленість  $\{x_s \mid s \in S\}$  збігається до  $x_0$ , то знайдеться індекс  $s_0 \in S$  такий, що при всіх  $s \geq s_0$   $x_s \in U_0$ . Отже, для всіх  $s \geq s_0$   $f(x_s) \in V_0$ , а це значить, що майже вся напрямленість  $\{f(x_s) \mid s \in S\}$  лежить в  $V_0$ .

**Достатність.** Припустимо, що умови теореми виконуються, але відображення f не є неперервним в точці  $x_0$ . Тоді існує такий окіл  $V_0$  точки  $f(x_0)$ , що в будь-якому околі U точки  $x_0$  знайдеться точка  $x_U$ , образ  $f(x_U)$  якої належить  $Y \setminus V_0$ .

Розглянемо напрямленість  $\{x_U \mid U \in \Omega_{x_0}\}$ , де  $\Omega_{x_0}$  — напрямлена множина усіх околів точки  $x_0$ . Очевидно, що ця напрямленість збігається до точки  $x_0$ .

Проте напрямленість  $\{f(x_U) \mid U \in \Omega_{x_0}\}$  не може збігатися до точки  $f(x_0)$ , оскільки в такому випадку вона майже вся лежала б в околі  $V_0$ . Отримане протиріччя доводить достатність.

# **§18.5** Література

- [1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 18–21).
- [2] **Александрян Р. А.,** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 91–98).
- [3] **Келли Дж.** Общая топология / Дж. Келли М.: Наука, 1966 (стр. 91–118).

# **19** Фільтри

Окрім збіжності напрямленостей, існує ще один вид узагальненої збіжності — збіжність фільтрів. Ця ідея базується на альтернативному означенні збіжної послідовності: послідовність  $x_n$  називається збіжною до точки  $x_0$ , якщо для будь-якого околу U цієї точки доповнення до прообразу  $f^{-1}(U)$  є скінченною підмножиною з  $\mathbb{N}$ , де  $f: \mathbb{N} \to X$  — відображення, що задає послідовність. Якщо множину  $\mathbb{N}$  замінити абстрактним простором E, в якому виділено сім'ю підмножин F, що має певні загальні властивості, то можна дати розумне означення узагальненої збіжності.

# §19.1 Фільтри

**Означення 19.1.** Сім'я підмножин  $\mathfrak{F}$  множини X називається фільтром на X, якшо:

- 1. Сім'я  $\mathfrak{F}$  непорожня.
- 2.  $\varnothing \notin \mathfrak{F}$ .
- 3. Якщо  $A, B \in \mathfrak{F}$ , то  $A \cap B \in \mathfrak{F}$ .
- 4. Якщо  $A \in \mathfrak{F}$ ,  $A \subset B \subset X$ , то  $B \in \mathfrak{F}$ .

# Наслідок 19.1

 $X \in \mathfrak{F}$ .

# Наслідок 19.2

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \in \mathfrak{F}.$$

# Наслідок 19.3

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \neq \varnothing.$$

#### Приклад 19.1

Система  $\Omega_x$  усіх околів точки x у топологічному просторі X є фільтром.

# §19.2 Бази фільтрів

**Означення 19.2.** Непорожня сім'я підмножин  $\mathfrak{D}$  множини X називається базою фільтра, якщо:

- 1.  $\varnothing \notin \mathfrak{D}$ ;
- 2.  $\forall A, B \in \mathfrak{D} \ \exists C \in \mathfrak{D} : C \subset A \cap B$ .

**Означення 19.3.** Нехай  $\mathfrak D$  — база фільтра. Фільтром, що **породжений** базою  $\mathfrak D$ , називається сім'я  $\mathfrak F$  усіх множин  $A\subset X$ , що містять як підмножину хоча б один елемент бази  $\mathfrak D$ .

Вправа 19.1. Довести, що фільтр, породжений базою, дійсно є фільтром.

Доведення. Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні, адже фільтр містить як підмножину свою непорожню базу, і порожня множина не є надмножиною ніякоїмножини окрім порожньої, а база її не містить. Перевіримо тепер другі дві аксіоми.

**Перетин:** якщо  $A, B \in \mathfrak{F}$  то  $\exists C, D \in \mathfrak{D}$  такі, що  $C \subset A$  і  $D \subset B$ , а тоді  $\exists E \in \mathfrak{D}$ :  $E \subset C \cap D$ , і тому  $E \subset A \cap B$  і, як наслідок,  $A \cap B \in \mathfrak{F}$ .

**Надмножина:** якщо  $A \in \mathfrak{F}$  то  $\exists B \in \mathfrak{D} \colon B \subset A$ , а тому  $B \subset C$  для усіх  $C \supset A$  і, як наслідок,  $C \in \mathfrak{F}$ .

#### Приклад 19.2

Якщо X — топологічний простір,  $x_0 \in X$ ,  $\mathfrak{D}$  — сукупність усіх відкритих множин, що містять  $x_0$ , то фільтр, породжений базою  $\mathfrak{D}$ , є фільтром  $\mathfrak{M}_{x_0}$ , що складається з усіх околів точки  $x_0$ .

**Означення 19.4.** Нехай  $\{x_n\}_{n=1}^{\infty}$  — послідовність елементів множини X. Тоді сім'я  $\mathfrak{D}_{\{x_n\}}$  "хвостів" послідовності  $\{x_n\}_{n=N}^{\infty}$  є базою фільтра. Фільтр  $\mathfrak{F}_{\{x_n\}}$ , породжений базою  $\mathfrak{D}_{\{x_n\}}$ , називається фільтром, **асоційованим** з послідовністю  $\{x_n\}_{n=1}^{\infty}$ .

# §19.3 Образи фільтрів і баз фільтрів

#### **Теорема 19.1**

Нехай X,Y — множини,  $f:X\to Y$  — функція,  $\mathfrak D$  — база фільтра в X. Тоді сім'я  $f(\mathfrak D)$  усіх множин вигляду  $f(A),\,A\in\mathfrak D$  є базою фільтра в Y.

Доведення. Виконання першої аксіоми бази фільтра є очевидним, адже образ непорожньої множини — непорожня множина. Нехай f(A), f(B) — довільні елементи сім'ї  $f(\mathfrak{D}), A, B \in D$ . За другою аксіомою існує таке  $C \in \mathfrak{D}$ , що  $C \subset A \cap B$ . Тоді  $f(C) \subset f(A) \cap f(B)$ . Отже друга аксіома виконується і для сім'ї  $f(\mathfrak{D})$ .

# Наслідок 19.4

Якщо  $\mathfrak{F}$  — фільтр на X, то  $f(\mathfrak{F})$  — база фільтра в Y.

**Означення 19.5.** Образом фільтра  $\mathfrak{F}$  при відображенні f називається фільтр  $f[\mathfrak{F}]$ , породжений базою  $f(\mathfrak{F})$ , тобто

$$A \in f[\mathfrak{F}] \iff f^{-1}(A) \in \mathfrak{F}.$$

19 Фільтри

### Теорема 19.2

Нехай  $\mathfrak{C} \subset 2^X$  — непорожня сім'я множин. Тоді аби існував фільтр  $\mathfrak{F} \supset \mathfrak{C}$  (тобто такий, що усі елементи сім'ї  $\mathfrak{C}$  є елементами фільтра  $\mathfrak{F}$ ) необхідно і достатньо, щоб  $\mathfrak{C}$  була центрованою.

Доведення. **Необхідність.** Якщо  $\mathfrak{F}$  — фільтр і  $\mathfrak{F} \supset \mathfrak{C}$ , то будь-який скінчений набір  $A_1, A_2, \ldots, A_n$  елементів сім'ї  $\mathfrak{C}$  буде складатися з елементів фільтра  $\mathfrak{F}$ . Отже,

$$\bigcap_{i=1}^{n} A_i \neq \varnothing.$$

**Достатність.** Нехай  $\mathfrak{C}$  — центрована сім'я. Тоді сім'я  $\mathfrak{D}$  усіх множин виду

$$\bigcap_{i=1}^{n} A_i, \quad n \in \mathbb{N}, \quad A_1, A_2, \dots, A_n \in \mathfrak{C}$$

буде базою фільтра. Як фільтр  $\mathfrak{F}$  треба взяти фільтр, породжений базою  $\mathfrak{D}$ .

# §19.4 Фільтри, породжені базою

Означення 19.6. Нехай  $\mathfrak{F}$  — фільтр на X. Сім'я множин  $\mathfrak{D}$  називається базою фільтра  $\mathfrak{F}$ , якщо  $\mathfrak{D}$  база фільтра і фільтр, породжений базою  $\mathfrak{D}$ , збігається з  $\mathfrak{F}$ .

# **Теорема 19.3** (критерій бази фільтра $\mathfrak{F}$ )

Для того щоб  $\mathfrak D$  була базою фільтра  $\mathfrak F$ , необхідно і достатнью, щоб виконувалися дві умови:

- 1.  $\mathfrak{D} \subset \mathfrak{F}$ ;
- 2.  $\forall A \in \mathfrak{F} \exists B \in \mathfrak{D} : B \subset A$ .

#### Вправа 19.2. Доведіть цю теорему.

Доведення. **Необхідність.** Без першої з цих умов  $\mathfrak{F}$  замалий щоб бути породженим базою  $\mathfrak{D}$  (не містить якоїсь із множин бази), а без другої — завеликий (містить якусь множину A, яка не  $\epsilon$  надмножиною жодної із множин бази).

**Достатність.** Зрозуміло, що за таких умов усі множини фільтра  $\mathfrak{F}$  будуть належати фільтру, породженому базою  $\mathfrak{D}$ . Відповідно, питання полягає у тому, щоб у породженому фільтрі не опинилося зайвих множин. Розглянемо якусь множинк A з нього. Вона є надмножиною якогось елемента B бази. З першої умови випливає, що фільтр  $\mathfrak{F}$  також містить B. Тоді він містить і множину A як надмножину B. Отже, породжений базою  $\mathfrak{D}$  фільтр не може бути ані більшим ані меншим від фільтра  $\mathfrak{F}$ , і теорема доведена.

Означення 19.7. Нехай F — фільтр на X і  $A \subset X$ . Слідом фільтра  $\mathfrak{F}$  на A називається сім'я підмножин  $\mathfrak{F}_A = \{A \cap B \mid B \in \mathfrak{F}\}.$ 

#### Теорема 19.4

Для того щоб слід  $\mathfrak{F}_A$  фільтра  $\mathfrak{F}$  був фільтром на A, необхідно і достатньо, щоб усі перетини  $A \cap B$ ,  $B \in \mathfrak{F}$  були непорожніми.

### Вправа 19.3. Доведіть цю теорему.

Доведення. **Необхідність.** Якщо  $A \cap B$  порожня для якогось  $B \in \mathfrak{F}$ , то  $\mathfrak{F}_A$  містить  $A \cap B = \emptyset$ , тобто точно не є фільтром, адже не задовольняє першу аксіому.

**Достатність.** Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні. Перевіримо другі дві аксіоми.

**Перетин.** Якщо  $B,C\in\mathfrak{F}_A$ , то  $\exists D,E\in\mathfrak{F}$ :  $B=D\cap A,\,C=E\cap A.$  Тоді  $B\cap C=(D\cap A)\cap (E\cap A)=(D\cap E)\cap A\in\mathfrak{F}.$ 

**Надмножина.** Якщо  $B \in \mathfrak{F}_A$ ,  $C \supset B$ ,  $C \subset A$ , то  $\exists D \in \mathfrak{F}$ :  $B = D \cap A$ . Тоді  $C \cup D \supset D$ , тобто  $C \cup D \in \mathfrak{F}$ , а тому  $(C \cup D) \cap A = (C \cap A) \cup (D \cap A) = C \cup B = C \in \mathfrak{F}_A$ .  $\square$ 

# Наслідок 19.5

Зокрема, якщо  $A \in \mathfrak{F}$ , то  $\mathfrak{F}_A$  — фільтр.

# §19.5 Література

- [1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 99–102).
- [2] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 481–484).

# 20 Фільтри і збіжність

# §20.1 Границі і граничні точки фільтрів

Означення 20.1. Нехай на множині X задані фільтри  $\mathfrak{F}_1$  і  $\mathfrak{F}_2$ . Говорять, що  $\mathfrak{F}_1$  мажорує  $\mathfrak{F}_2$ , якщо  $\mathfrak{F}_2 \subset \mathfrak{F}_1$ , тобто кожний елемент фільтра  $\mathfrak{F}_2$  є водночас і елементом фільтра  $\mathfrak{F}_1$ .

# Приклад 20.1

Нехай  $\{x_n\}_{n\in\mathbb{N}}$  — послідовність в X, а  $\{x_{n_k}\}_{k\in\mathbb{N}}$  — її підпослідовність. Тоді фільтр  $\mathfrak{F}_{\{x_{n_k}\}}$  асоційований з підпослідовністю, мажорує фільтр  $\mathfrak{F}_{\{x_n\}}$ , асоційований з самою послідовністю.

Дійсно, нехай  $A\in\mathfrak{F}_{\{x_n\}}$ . Тоді існує таке  $N\in\mathbb{N}$ , що  $\{x_n\}_{n=N}^\infty\subset A$ . Але тоді й  $\{x_{n_k}\}_{k=N}^\infty\subset A$ , тобто  $A\in\mathfrak{F}_{\{x_{n_k}\}}$ .

**Означення 20.2.** Нехай X — топологічний простір,  $\mathfrak{F}$  — фільтр на X. Точка  $x \in X$  називається **границею фільтра**  $\mathfrak{F}$  (цей факт позначається як  $x = \lim \mathfrak{F}$ ), якщо  $\mathfrak{F}$  мажорує фільтр околів точки x. Іншими словами,  $x = \lim \mathfrak{F}$ , якщо кожний окіл точки x належить фільтру  $\mathfrak{F}$ .

**Означення 20.3.** Точка  $x \in X$  називається **граничною точкою фільтра**  $\mathfrak{F}$ , якщо кожний окіл точки x перетинається з усіма елементами фільтра  $\mathfrak{F}$ . Множина усіх граничних точок фільтра називається LIM  $\mathfrak{F}$ .

#### Приклад 20.2

Нехай  $\{x_n\}_{n\in\mathbb{N}}$  — послідовність в топологічному просторі X. Тоді  $x=\lim\mathfrak{F}_{\{x_n\}}=\lim_{n\to\infty}x_n$ , а  $x\in\mathrm{LIM}\,\mathfrak{F}_{\{x_n\}}$  збігається з множиною граничних точок послідовності  $\{x_n\}_{n\in\mathbb{N}}$ .

#### Теорема 20.1

Нехай  $\mathfrak{F}$  — фільтр на топологічному просторі X,  $\mathfrak{D}$  — база фільтра  $\mathfrak{F}$ . Тоді

- 1.  $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \; \exists A \in \mathfrak{D} : A \subset U;$
- 2.  $x = \lim \mathfrak{F} \implies x \in \text{LIM }\mathfrak{F}$ . Якщо до того ж X хаусдорфів простір, то у фільтра  $\mathfrak{F}$  немає інших граничних точок. Зокрема, якщо у фільтра в хаусдорфовому просторі є границя, то ця границя є єдиною;
- 3. множина LIM  $\mathfrak{F}$  збігається з перетином замикань усіх елементів фільтра  $\mathfrak{F}$ .

# Доведення.

- 1.  $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \ U \in \mathfrak{F} \iff \forall U \in \mathfrak{F} \ \exists A \in \mathfrak{D} : A \subset U.$
- 2.  $x = \lim \mathfrak{F}, U \in \Omega_x \implies U \in \mathfrak{F} \implies \forall A \in \mathfrak{F} \ A \cap U \neq \emptyset \implies x \in \text{LIM }\mathfrak{F};$  $x \in \text{LIM }\mathfrak{F} \implies \forall U \in \mathfrak{F}, V \in \Omega_y \ U \cap V \neq \emptyset \implies x = y \text{ (простір хаусдорфів)}.$
- 3.  $x = \text{LIM } \mathfrak{F} \iff \forall A \in \mathfrak{F}, U \in \Omega_x \ A \cap U \neq \emptyset \iff \forall A \in \mathfrak{F} \ x \in \overline{A}.$

### Теорема 20.2

Нехай  $\mathfrak{F}_1$ ,  $\mathfrak{F}_2$  — фільтри на топологічному просторі X і  $\mathfrak{F}_1 \subset \mathfrak{F}_2$ . Тоді:

- 1.  $x = \lim \mathfrak{F}_1 \implies x = \lim \mathfrak{F}_2;$
- 2.  $x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$ ;
- 3.  $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$ .

Доведення.

- 1.  $\mathfrak{F}_1$  мажорує фільтр  $\mathfrak{M}_x$  околів точки  $x,\,\mathfrak{F}_1\subset\mathfrak{F}_2\implies \mathfrak{M}_x\subset\mathfrak{F}_2.$
- 2. Оскільки при збільшенні сім'ї множин її перетин зменшується, то

$$LIM \mathfrak{F}_2 = \bigcap_{A \in \mathfrak{F}_2} \overline{A} \subset \bigcap_{A \in \mathfrak{F}_1} \overline{A} = LIM \mathfrak{F}_1.$$

3.  $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$ .

# §20.2 Границя функції по фільтру

**Означення 20.4.** Нехай X — множина, Y — топологічний простір,  $\mathfrak{F}$  — фільтр на X. Точка  $y \in Y$  називається **границею функції**  $f: X \to Y$  по фільтру  $\mathfrak{F}$  (цей факт позначається як  $y = \lim_{\mathfrak{F}} f$ , якщо  $y = \lim_{\mathfrak{F}} f$ ]. Іншими словами,  $y = \lim_{\mathfrak{F}} f$ [ $\mathfrak{F}$ ], якщо для довільного околу U точки y існує такий елемент  $A \in \mathfrak{F}$ , що  $f(A) \subset U$ .

Означення 20.5. Точка  $y \in Y$  називається граничною точкою функції  $f: X \to Y$  по фільтру  $\mathfrak{F}$ , якщо  $y \in \text{LIM } f[\mathfrak{F}]$ , тобто якщо довільний окіл точки y перетинається з образами усіх елементів фільтра  $\mathfrak{F}$ .

# Приклад 20.3

Нехай X — топологічний простір,  $f:\mathbb{N}\to X$  і  $\mathfrak{F}$  — фільтр Фреше на  $\mathbb{N}$ . Тоді  $\lim_{\mathfrak{F}}f=\lim_{n\to\infty}f(n)$ .

#### Теорема 20.3

Нехай X і Y — топологічні простори,  $\mathfrak{F}$  — фільтр на  $X, x = \lim \mathfrak{F}$  і  $f: X \to Y$  — неперервна функція. Тоді  $f(x) = \lim_{\mathfrak{F}} f$ .

Доведення. Нехай U — довільний окіл точки f(x). Тоді існує окіл V точки X, для якого  $f(V) \subset U$ . Умова  $x = \lim \mathfrak{F}$  означає, що  $V \in \mathfrak{F}$ . Інакше кажучи, для довільного околу U точки f(x) ми знайшли шуканий елемент  $V \in \mathfrak{F}$ :  $f(V) \subset U$ .

# §20.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 484-488).

# 21 Ультрафільтри

# §21.1 Ультрафільтр як мажоранта

#### Лема 21.1

Нехай  $\mathfrak{M}$  — лінійно упорядкована непорожня сім'я фільтрів, заданих на множині X, тобто для довільни  $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$  або  $\mathfrak{F}_1 \subset \mathfrak{F}_2$ , або  $\mathfrak{F}_2 \subset \mathfrak{F}_1$ . Тоді об'єднання  $\mathfrak{F}$  усіх фільтрів сім'ї  $\mathfrak{M}$  також буде фільтром на X.

Доведення. Перевіримо виконання аксіом фільтра для об'єднання сім'ї множин **M**. Перші дві аксіоми є очевидними, а тому перевіримо останні дві.

**Перетин:** якщо  $A, B \in \mathfrak{F}$ , то знайдуться такі  $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$ , що  $A \in \mathfrak{F}_1, B \in \mathfrak{F}_2$ . За умовою, один з фільтрів  $\mathfrak{F}_1$  і  $\mathfrak{F}_2$  мажорує інший. Нехай, без обмеження загальності,  $\mathfrak{F}_1 \subset \mathfrak{F}_2$ . Тоді окрім множини B йому належить і множина A, адже  $A \in \mathfrak{F}_1 \subset \mathfrak{F}_2$ . Оскільки  $\mathfrak{F}_2$  — фільтр, то  $A \cap B \in \mathfrak{F}_2 \subset \mathfrak{F}$ , тобто сім'я  $\mathfrak{F}$  справді замкнена відносно (скінченного) перетину.

**Надмножина:** якщо  $A \in \mathfrak{F}$  і  $A \subset B \subset X$ , то знайдеться такий  $\mathfrak{F}_1 \in \mathfrak{M}$ , що  $A \in \mathfrak{F}_1$ , а тому  $B \in \mathfrak{F}_1$ , як надмножина елемента фільтра. Як наслідок,  $B \in \mathfrak{F}$  і сім'я  $\mathfrak{F}$  виявляється замкненою відносно взяття надмножини.

Означення 21.1. Ультрафільтром на X називається максимальний за включенням фільтр на X. Інакше кажучи, фільтр  $\mathfrak A$  на X називається ультрафільтром, якщо будь-який фільтр  $\mathfrak F$  на X, що мажорує  $\mathfrak A$ , збігається з  $\mathfrak A$ .

### Теорема 21.1

Для кожного фільтра  $\mathfrak F$  на X існує ультрафільтр, що його мажорує.

Доведення. Випливає з леми Цорна. Більш детально, необхідно розглянути частково упорядковану множину (сім'ю) фільтрів, що мажорують  $\mathfrak{F}$ . Лемма 21.1 показує, що довільний ланцюг (лінійно впорядкована підмножина) має верхню межу (також кажуть верхню грань або мажоранту).

Тоді лема Цорна стверджує, що у нашій частково упорядкованій множині є максимальний елемент. З одного боку зрозуміло, що він буде ультрафільтром, адже немає іншого фільтра, що його мажорує, а з іншого — що він буде мажорувати  $\mathfrak{F}$ , адже усі елементи нашої частково упорядкованої множини за побудовою мажорують  $\mathfrak{F}$ .

# §21.2 Властивості і критерій ультрафільтра

#### Лема 21.2

Нехай  $\mathfrak A$  — ультрафільтр,  $A\subset X$  і всі елементи ультрафільтра перетинаються з A. Тоді  $A\in \mathfrak A.$ 

<sup>&</sup>lt;sup>1</sup>для якого не існує більшого, але не обов'язково більший за кожен інший

Доведення. Додавши до сім'ї множин  $\mathfrak A$  як елемент множину A ми отримаємо центровану систему множин. Справді, для цього достатньо аби  $\mathfrak A$  була просто фільтром, а точніше замкненою відносно скінченного перетину. Тоді додавши у цей перетин, який є елементом  $\mathfrak A$ , ще й A можна просто скористатися умовою на непорожні перетини A із елементами  $\mathfrak A$ . Зрозуміло, що ці міркування працюють і для ультрафільтрів, адже кожен ультрафільтр є фільтром. Таким чином уся розширена система множин є центрованою.

За теорем. 19.2 звідси випливає, що знайдеться фільтр  $\mathfrak{F}$ , який містить усі елементи нашої центрованої системи. Але тоді  $\mathfrak{F} \supset \mathfrak{A}$ , звідки випливає, що  $\mathfrak{F} = \mathfrak{A}$ , адже  $\mathfrak{A}$  — ультрафільтр, і розширюватися уже нікуди. У той же час, за побудовою,  $A \in \mathfrak{F}$ , тобто  $A \in \mathfrak{A}$ .

Зауваження 21.1 — Якщо зняти умову того, що  $\mathfrak A$  — ультрафільтр, і сказати що він просто фільтр, то вийде, що його можна розширити до якогось  $\mathfrak A'$  щоб додати якийсь новий елемент A, за умови що цей A перетинається із усіма елеменами  $\mathfrak A$ .

### Теорема 21.2 (критерій ультрафільтра)

Для того, щоб фільтр  $\mathfrak A$  на X був ультрафільтром, необхідно і достатньо, щоб для довільної множини  $A\subset X$  або сама множина A, або її доповнення  $X\setminus A$  належало фільтру  $\mathfrak A$ .

Доведення. **Необхідність.** Нехай  $\mathfrak A$  — ультрафільтр, і  $X \setminus A \notin \mathfrak A$ . Тоді жодна множина  $B \in \mathfrak A$  не міститься цілком в  $X \setminus A$ , тобто будя-яка  $B \in \mathfrak A$  перетинається з A. Отже, за попередньою лемою,  $A \in \mathfrak A$ .

**Достатність.** Припустимо що  $\mathfrak{A}$  — не ультрафільтр. Тоді існує фільтр  $\mathfrak{F} \supset \mathfrak{A}$  і множина  $A \in \mathfrak{F} \setminus \mathfrak{A}$ . За побудовою,  $A \notin \mathfrak{A}$ . З іншого боку,  $X \setminus A$  не перетинається з A,  $A \in \mathfrak{F}$ , отже  $X \setminus A \notin \mathfrak{F}$ , а отже  $X \setminus A \notin \mathfrak{A} \subset \mathfrak{F}$ .

# Наслідок 21.1

Образ ультрафільтра є ультрафільтром.

Доведення. Нехай  $f: X \to Y$  і  $\mathfrak{A}$  — ультрафільтр на X. Розглянемо довільну множину  $A \subset Y$ . Тоді або  $f^{-1}(A)$  або  $f^{-1}(Y \setminus A) = Y \setminus f^{-1}(A)$  належить  $\mathfrak{A}$ , отже  $A \in f[\mathfrak{A}]$  або  $Y \setminus A \in f[\mathfrak{A}]$ .

# §21.3 Ультрафільтри, збіжність і компактність

#### Лема 21.3

Нехай  $\mathfrak A$  — ультрафільтр на хаусдорфовому топологічному просторі X і  $x\in \mathrm{LIM}(\mathfrak A).$  Тоді  $x=\lim \mathfrak A.$ 

Доведення. Нехай  $U \in \Omega_x$ . Тоді за означенням граничної точки окіл U перетинається зі всіма елементами ультрафільтра  $\mathfrak{A}$ . За лемм. 21.2  $U \subset \mathfrak{A}$ .

21 Ультрафільтри 125

### Теорема 21.3 (критерій компактності у термінах ультрафільтрів)

Для хаусдорфового топологічного простору X наступні умови еквівалентні:

- X компакт;
- $\bullet$  кожен ультрафільтр на X має граничну точку;
- $\bullet$  кожен ультрафільтр на X має границю.

Доведення.  $1 \implies 2$ . Фільтр  $\mathfrak{F}$  — центрована сім'я множин. Тим більше, центрованою буде сім'я замикань елементів фільтра. Отже, перетин LIM( $\mathfrak{F}$ ) цих замикань не є порожнім.

 $2 \implies 1$ . Нехай  $\mathfrak C$  — довільна центромана система замкнених підмножин простору X. За теорем. 19.2 існує фільтр  $\mathfrak F \supset \mathfrak C$ . Тоді

$$\bigcap_{A\in\mathfrak{C}}\overline{A}\supset\bigcap_{A\in\mathfrak{F}}\overline{A}=\mathrm{LIM}(\mathfrak{F})\neq\varnothing.$$

- $2 \implies 3$ . За умовою кожен ультрафільтр має граничну точку, а за лемм. 21.3 ця точка буде його границею.
- $3 \implies 2$ . Розглянемо довільний фільтр  $\mathfrak F$  на X і виберемо (теорем. 21.1) ультрафільтр  $\mathfrak A \supset \mathfrak F$ . За умовою ультрафільтр  $\mathfrak A$  має границю  $x \in X$ . Згідно твердження 3) теорем. 20.2 точка  $x \in \text{граничною точкою фільтра } \mathfrak F$ .

### Наслідок 21.2

Нехай  $\mathfrak A$  — ультрафільтр на E, X — топологічний простір і образ f(E) функції  $f: E \to X$  лежить в деякому компакті  $K \subset X$ . Тоді існує  $\lim_{\mathfrak A} f$ .

Доведення. Розглянемо f як функцію, що діє з E в K. Оскільки (виснов. 21.1)  $f[\mathfrak{A}]$  є ультрафільтром на компакті K, то існує  $\lim f[\mathfrak{A}]$ . Отже, за означенням границі функції за фільтром,  $\lim_{\mathfrak{A}} f = \lim f[\mathfrak{A}]$ .

# §21.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 484-490).

# 22 Зв'язок між фільтрами і напрямленностями

Фільтри і напрямленості в одній множині X приводять до еквівалентних теорій збіжності. З одного боку, як показано раніше, кожній напрямленості  $\{x_s \mid s \in S\}$  в множині X відповідає асоційований з нею фільтр в X. З іншого боку, має місце така теорема.

# §22.1 Відповідність між фільтрами і напрямленостями

# Теорема 22.1

Нехай  $\mathfrak{F}$  — довільний фільтр в множині X. Тоді в цій множині існує напрямленість  $\{x_s \mid s \in S\}$  така, що асоційований з нею фільтр збігається з фільтром  $\mathfrak{F}$ .

Доведення. Розглянемо множину усіх можливих пар s=(x,M), де  $M\in\mathfrak{F}$ , а  $x\in M$ . Уведемо в множині таких пар S частковий передпорядок, поклавши  $(x,M)\leq (y,N)$ , якщо  $M\supset N$ . Таким чином, S — напрямлена множина.

Задамо відображення  $f: S \to X$ , поклавши

$$f(s) = x, \quad \forall s = (x, M) \in S.$$

Нехай s = (x, M) — довільний елемент з S, а  $\hat{M}_s = \{f(t) \mid t \geq s\}$ . За означенням фільтра  $\hat{\mathfrak{F}}$ , асоційованого з напрямленістю  $f: S \to X$ , система підмножин  $\hat{M}_s$ , де s пробігає усі значення в множині S, утворює базу  $\hat{\beta}$  фільтра  $\hat{\mathfrak{F}}$ .

Покажемо, що фільтр  $\hat{\mathfrak{F}}$ , асоційований з побудованою напрямленістю  $f:S\to X$ , збігається з фільтром  $\mathfrak{F}$ , тобто

$$\hat{\mathfrak{F}} \leq \mathfrak{F}$$
 i  $\mathfrak{F} \leq \hat{\mathfrak{F}}$ .

1. Для того щоб довести, що  $\hat{\mathfrak{F}} \leq \mathfrak{F}$ , треба показати, що

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M \subset \hat{M}_s.$$

Насправді має місце більш сильний факт:

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M = \hat{M}_s.$$

Дійсно, нехай  $y \in \hat{M}_s$ , тобто

$$\exists t = (z, N) > (x, M) = s : \quad y = f(t),$$

тоді

$$y = z \in N \subset M \implies \hat{M}_s \subset M.$$

Тепер візьмемо довільну точку  $z \in M$  і покладемо  $t^* = (z, M)$ . Оскільки  $t^* \ge s = (x, M)$ , то  $f(t^*) = z \in \hat{M}_s$ , тобто  $M \subset \hat{M}_s$ . Таким чином,  $M = \hat{M}_s$ .

2. Покажемо, що має місце і обернене твердження:  $\mathfrak{F} \leq \hat{\mathfrak{F}}$ . Для цього пересвідчимось, що

$$\forall M \in \mathfrak{F} \quad \exists \hat{M}_s \in \hat{\beta} : \quad \hat{M}_s = M.$$

Нехай  $x^*$  — довільний елемент з M і  $s^* = (x^*, M)$ . Повторимо міркування, наведені вище.

Нехай  $s^* = (x^*, M)$  — довільний елемент з S, а  $y^* \in \hat{M}_{s^*}$ , тобто

$$\exists t^* = (z^*, N) \ge (x^*, M) = s^* : \quad y = f(t^*),$$

тоді

$$y^* = x^* \in N \subset M \implies \hat{M}_{s^*} \subset M.$$

Тепер візьмемо довільну точку  $z^* \in M$  і покладемо  $t^* = (z^*, M)$ . Оскільки  $t^* \geq s^* = (x, M)$ , то  $f(t^*) = z^* \in \hat{M}_{s^*}$ , тобто  $M \subset \hat{M}_{s^*}$ .

Таким чином,  $\mathfrak{F} = \hat{\mathfrak{F}}$ .

# §22.2 Границі і граничні точки фільтрів і напрямленостей

#### Теорема 22.2

Нехай  $\xi = \{x_s \mid s \in S\}$  — напрямленість в топологічному просторі X, а  $\mathfrak{F}$  — асоційований з нею фільтр. Тоді кожна границя (відповідно, гранична точка) напрямленості  $\xi$  є границею (відповідно, граничною точкою) фільтра  $\mathfrak{F}$ , і навпаки.

Доведення. **Необхідність.** Нехай  $x_0 = \lim_S x_s$ . Покажемо, що фільтр  $\mathfrak{F}$  мажорує фільтр  $\mathfrak{F}_{x_0}$  околів точки  $x_0$ , тобто  $x_0 = \lim \mathfrak{F}$ . Нехай  $U_0$  — довільний елемент  $\mathfrak{F}_{x_0}$ , тобто деякий окіл точки  $x_0$  в просторі X. Тоді

$$x_0 = \lim_{S} x_s \implies \exists s_0 \in S : M_{s_0} = \{x_s \mid s \ge s_0\} \subset U_0.$$

Оскільки  $M_{s_0}$  — елемент бази фільтра, асоційованого з напрямленістю  $\xi$ , то  $M_{s_0} \subset U_0 \implies U_0 \in \mathfrak{F}$ . Отже,

$$\mathfrak{F}\supset\mathfrak{F}_{x_0}\implies x_0=\lim\mathfrak{F}.$$

**Достатність.** Нехай  $x_0 = \lim \mathfrak{F}$ . Отже, будь-який окіл  $U_0$  точки  $x_0$  є елементом фільтра  $\mathfrak{F}$ . За означенням, множини  $M_s = \{x_t \mid t \geq s\}$  утворюють базу фільтра  $\mathfrak{F}$ , тому  $\exists M_{s_0} \subset U_0$ . Отже, для будь-якого околу  $U_0$  точки  $x_0$  існує  $s_0 \in S$ , такий що усі члени напрямленості  $\xi$  при  $s \geq s_0$  лежать в  $U_0$ , тобто  $x_0 = \lim_S x_s$ .

# §22.3 Універсальні напрямленності і ультрафільтри

**Означення 22.1.** Напрямленість  $\{x_s \mid s \in S\}$  в множині X називається **універсальною**, якщо для будь-якої підмножини  $M \subset X$  вона або майже вся лежить в M, або майже вся лежить в  $X \setminus M$ .

#### Теорема 22.3

Напрямленість в X  $\epsilon$  універсальною тоді і лише тоді, коли асоційований з нею фільтр  $\epsilon$  ультрафільтром.

Доведення. **Необхідність.** Нехай  $\xi = \{x_s \mid s \in S\}$  — універсальна напрямленість в X,  $\mathfrak{F}$  — асоційований з нею фільтр, а M — довільна підмножина з X. Покажемо, що або M, або  $X \setminus M$  належать фільтру  $\mathfrak{F}$ , звідки випливає, що  $\mathfrak{F}$  — ультрафільтр (теорем. 21.2).

Оскільки  $\xi = \{x_s \mid s \in S\}$  — універсальна напрямленість в X, то вона майже вся лежить або в M, або в  $X \setminus M$ , тобто існує індекс  $s_0 \in S$ , такий що множина  $M_{s_0} = \{x_s \mid s \geq s_0\}$  цілком міститься або в M, або в  $X \setminus M$ . Але оскільки  $M_{s_0}$  належить базі фільтра  $\mathfrak{F}$ , то або M, або  $X \setminus M$  містить  $M_{s_0}$ , тобто є елементом фільтра  $\mathfrak{F}$ .

**Достатність.** Нехай  $\mathfrak{F}$  — ультрафільтр, а M — довільна підмножина з X. Доведемо, що  $\xi = \{x_s \mid s \in S\}$  майже вся лежить або в M, або в  $X \setminus M$ . Оскільки або M, або  $X \setminus M$  є елементом фільтра  $\mathfrak{F}$ , то одна з цих множин повинна цілком містити деяку множину з бази фільтра  $\mathfrak{F}$  тобто деяку множину  $M_{s_0}$ . Це значить, що  $\xi = \{x_s \mid s \in S\}$  майже вся лежить або в M, або в  $X \setminus M$ . Отже,  $\xi$  — універсальна напрямленість в X.

# §22.4 Література

[1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян — М.: Высшая школа, 1979 (стр. 101–113).