#### Министерство науки и высшего образования Российской Федерации

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Институт информационных и вычислительных технологий

Кафедра математического и компьютерного моделирования

Отчёт по лабораторной работе №6 "Различие двух простых гипотез"

Студент: Симаков А.М. Преподаватель: Шевченко О.В.

#### 1 Введение

Пусть имеется совокупность наблюдений  $\xi_{=}(\xi_{1},...,\xi_{n})$ , относительно которой имеется два предположения (гипотезы):

$$H_0: \xi \sim p_0(x);$$
  
 $H_1: \xi \sim p_1(x);$ 

(если  $\xi$  - непрерывна, то  $p_0(x), p_1(x)$ - плотности, если дискретна - вероятности).

По  $\xi$  требуется принять одно из двух решений: или **верна**  $H_0$  (это решение обозначим 0) или **верна**  $H_1$  (решение 1). Ясно, что дело сводится к определению решающей функции  $\delta(x)$ , имеющей два значения 0 и 1, т.е. к определению разбиения  $\Gamma = (\Gamma_0, \Gamma_1)$  пространства X всех возможных значений x:

$$\delta(x) = \begin{cases} 0, & x \in \Gamma_0 \\ 1, & x \in \Gamma_1 \end{cases}$$
$$\Gamma_0 \cup \Gamma_1 = X, \qquad \Gamma_0 \cap \Gamma_1 = \emptyset$$

При использовании любой решающей функции  $\delta(x)$  возможны ошибки двух типов:

ошибка 1-го рода: принятие  $H_1$  при истинности  $H_0$ , ошибка 2-го рода: принятие  $H_0$  при истинности  $H_1$ .

Любая решающая функция характеризуется двумя условными вероятностями (1):

$$\alpha = P\{accept\_H_1|H_0\} = \int_{\Gamma_1} p_0(x)dx$$
$$\beta = P\{accept\_H_0|H_1\} = \int_{\Gamma_0} p_1(x)dx,$$

которые называются вероятностями ошибок 1-го и 2-го рода соответственно. Хотелось бы иметь  $\alpha$  и  $\beta$  близкими к нулю, но из (1) ясно, что, вообще говоря, если одна из них уменьшается, например,  $\alpha$  (за счет уменьшения  $\Gamma_1$ ), то другая,  $\beta$ , увеличивается (за счет увеличения  $\Gamma_0$ ;  $\Gamma_0 \cup \Gamma_1 = X$ ,  $\Gamma_0 \setminus \Gamma_1 = \emptyset$ ). Существуют различные подходы к определению оптимального правила.

#### 2 Подход Неймана-Пирсона

Оптимальным (в смысле Неймана-Пирсона) назовем такое правило, которое имеет заданную вероятность ошибки первого рода, а вероятность ошибки второго рода при этом минимальна. Формально, правило  $\delta(x)$  (соответственно разбиение  $\Gamma$ ) оптимально, если

$$\beta(\Gamma) = \min_{\Gamma'} \beta(\Gamma') : \alpha(\Gamma') \le \alpha_0$$

Оказывается, для оптимального правила область  $\Gamma_1$  такова (3):

$$\Gamma_1 = \left\{ x : \frac{p_1(x)}{p_0(x)} \ge h \right\},\,$$

где h определяется из условия (4)

$$\alpha(h) = \alpha_0,$$

Замечание. Приведенный результат есть частный случай фундаментальной леммы Неймана - Пирсона, справедливой при условии, что существует корень h уравнения (4). Это условие не является существенно ограничивающим: действительно, при изменении h от 0 до  $\infty$  область  $\Gamma_1$  уменьшается, и  $\alpha(h)$  уменьшается от 1 до 0. Можно, однако, привести примеры, когда  $\alpha(h)$  имеет скачки, и тогда (3) требует некоторого простого уточнения.

## 3 Пример 1. Различение гипотез о среднем нормальной совокупности

На вход канала связи подается сигнал S, который может принимать два значения: S=0 (сигнала нет),  $S=a\neq 0$  (сигнал есть).

В канале действует аддитивная случайная ошибка  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ . Результатом является  $x' = S + \varepsilon$ . Измерения повторяются n раз, так что на выходе имеются наблюдения  $(x_1, ..., x_n) \equiv x$ , по которым нужно решить, есть ли сигнал  $(H_1 : S = a)$  или нет  $(H_0 : S = 0)$ . Требуется построить решающее правило  $\delta(x)$ , имеющее заданную вероятность  $\alpha_0$  ошибки первого рода (вероятность ложной тревоги)

$$\alpha \equiv P\{accept\_H_1|H_0\} = \alpha_0$$

при минимальном значении вероятности  $\beta$  ошибки второго рода (вероятности пропуска). Считая ошибки независимыми, с учетом того, есть ли сигнал  $(H_1)$  или его нет  $(H_0)$ , имеем

$$p_1(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - a)^2}{2\sigma^2}\right), \quad p_0(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x_i^2}{2\sigma^2}\right)$$

В соответствии с (3), решение о наличии сигнала нужно принять (принять  $H_1$ ), если x попадает в  $\Gamma_1$ , где

$$\Gamma_{1} = \left\{ x : \ln \frac{p_{1}(x)}{p_{0}(x)} \ge \ln h_{1} \equiv h_{1} \right\} = \left\{ x : \frac{1}{2\sigma^{2}} \left( 2a \sum_{i=1}^{n} x_{i} - na^{2} \right) \ge h_{1} \right\}$$
$$= \left\{ x : \sum_{i=1}^{n} x_{i} \ge h_{2} \equiv \frac{h_{1}2\sigma^{2} + na^{2}}{2a} \right\}$$

Итак, если (5)

$$\sum_{i=1}^{n} x_i \ge h_2$$

то принимается  $H_1$ ; в противном случае принимается  $H_0$ . Порог  $h_2$  определяется из (4):

$$\alpha(h_2) = P\{accept\_H_1|H_0\} = P\left\{\sum_{i=1}^n x_i \ge h_2|H_0\right\} = \alpha_0$$

Если верна  $H_0$ , то  $\sum_{i=1}^n x_i \sim \mathcal{N}(0, n\sigma^2) \implies$  последнее условие принимает вид

$$\alpha(h_2) = 1 - \Phi\left(\frac{h_2}{\sqrt{n\sigma^2}}\right),\,$$

откуда (6)

$$h_2 = \sigma \sqrt{n}Q(1 - \alpha_0),$$

где  $\Phi(x)$  - функция нормального  $\mathcal{N}(0,1)$  распределения;  $Q(1-\alpha_0)$  - квантиль порядка  $(1-\alpha_0)$  того же распределения.

Определим вероятность  $\beta$  ошибки второго рода для процедуры (5) с порогом (6). Если верна  $H_1$ , то  $\sum_{i=1}^n x_i \sim \mathcal{N}(na, n\sigma^2) \implies$ 

$$\beta = P\{accept\_H_0|H_1\} = P\left\{\sum_{i=1}^n x_i < h_2|H_1\right\} = \Phi\left(\frac{h_2 - na}{\sigma\sqrt{n}}\right) = \Phi\left(Q - \frac{a}{\sigma}\sqrt{n}\right)$$

Положим, a=0.2,  $\sigma=1.0$  (т.е. ошибка  $\sigma$  в 5 раз больше сигнала a), n=500,  $\alpha=10^{-2}$ ; при этом  $h_2=1\cdot\sqrt{500}\cdot2.33=52$ ,  $\beta=\Phi(2.33-0.2\cdot22.4)=\Phi(-2.14)=1.6\cdot10^{-2}$ ; как видим, вероятности ошибок невелики: порядка  $10^{-2}$ 

Гистограммы, когда верны  $H_0$  и  $H_1$ :





Определим сумму наблюдений по каждой выборке и применим решающее правило с порогом  $h_2=52$ 

$$S_0=4.232<52\implies$$
 принимаем  $H_0$ 

$$S_1 = 99.171 \ge 52 \implies$$
 принимаем  $H_1$ 

Убедились, что в обоих случаях решающее правило дает правильное решение

#### 4 Задача 3. Бросание монеты

Петр утверждает, что умеет бросать монету так, что вероятность герба  $P(\Gamma)=p$ . Павел утверждает, что это невозможно и что  $P(\Gamma)=p_0=0.5$ 

- 1. Определить необходимое число бросаний и статистическую процедуру (Неймана-Пирсона) определения, кто из них прав. Обеспечить заданные вероятности  $\alpha$  и  $\beta$  ( $\alpha=\beta$ ) ошибок первого и второго рода. Смоделировать две выборки при  $p=p_0$  и  $p=p_1$ , применить к ним процедуру и выяснить, верные ли решения принимаются.
- 2. Построить последовательную процедуру разрешения спора. Определить среднее число наблюдений и функцию мощности, как функцию параметра  $p_1$ . Смоделировать процесс наблюдения и принятия решения в двух случаях (по одной реализации). Изобразить его графически.

Сравнить число бросаний для процедур 1 и 2.  $p=0.7, \alpha=\beta=0.05$ 

Пусть  $x \equiv (x_1, ..., x_n) : x_i \in \{0, 1\} \forall i \in [1, n] \cap \mathbb{N}$  - полученные результаты эксперимента с вероятностями  $P(x_i) = p^{x_i} (1-p)^{1-x_i}$  Запишем два варианта закона распределения наблюдений: если верна гипотеза  $H_0$ , то

$$P_0(x) = \prod_{i=1}^n P\left\{x_i | H_0\right\} = \prod_{i=1}^n p_0^{x_i} (1 - p_0)^{1 - x_i} = \left(\frac{p_0}{1 - p_0}\right)^{\sum_{i=1}^n x_i} (1 - p_0)^n$$

если верна гипотеза  $H_1$ , то

$$P_1(x) = \prod_{i=1}^n P\left\{x_i | H_1\right\} = \prod_{i=1}^n p_1^{x_i} (1 - p_1)^{1 - x_i} = \left(\frac{p_1}{1 - p_1}\right)^{\sum_{i=1}^n x_i} (1 - p_1)^n$$

Здесь  $\sum_{i=1}^{n} x_i$  - число выпадений герба.

#### Процедура Неймана-Пирсона

Вид решающего правила

Область принятия гипотезы  $H_1$ :

$$\Gamma_1 = \left\{ x : \frac{P_1(x)}{P_0(x)} \ge h \right\},\,$$

где  $h, n : \alpha = \beta = 0.05$ 

$$\Gamma_1 = \left\{ x : \frac{P_1(x)}{P_0(x)} \ge h \right\} = \left\{ x : \frac{\left(\frac{p_1}{1-p_1}\right)^{\sum_{i=1}^n x_i} (1-p_1)^n}{\left(\frac{p_0}{1-p_0}\right)^{\sum_{i=1}^n x_i} (1-p_0)^n} \ge h \right\} = \left\{ x : \sum_{i=1}^n x_i \ge h_1 \right\}$$

Здесь в  $h_1$  вошли все величины, кроме наблюдений (после логарифмирования и переноса)

Имеем

$$\begin{cases} \alpha(n,h) = P\{accept\_H_1|H_0\} = 0.05 \\ \beta(n,h) = P\{accept\_H_0|H_1\} = 0.05 \end{cases}$$

$$\alpha = P\{accept\_H_1|H_0\} = P\left\{\sum_{i=1}^n x_i \ge h_1|H_0\right\} = 1 - P\left\{\sum_{i=1}^n x_i < h_1|H_0\right\} \approx 1 - \Phi\left(\frac{h_1 - np_0}{\sqrt{np_0(1 - p_0)}}\right) = 0.05 \implies \frac{h_1 - np_0}{\sqrt{np_0(1 - p_0)}} = 1.65$$

Здесь  $\sum_{i=1}^{n} x_i$  - решающая статистика (количество успехов), так же учтено, что если верна  $H_0$ , то

$$\sum_{i=1}^{n} x_i \sim \mathcal{B}(n, p_0) \approx \mathcal{N}(np_0, np_0q_0)$$

Если же верна  $H_1$ , то

$$\sum_{i=1}^{n} x_i \sim \mathcal{B}(n, p_1) \approx \mathcal{N}(np_1, np_1q_1),$$

И

$$\beta = P\{accept\_H_0|H_1\} = P\left\{\sum_{i=1}^n x_i < h_1|H_1\right\} \approx \Phi\left(\frac{h_1 - np_1}{\sqrt{np_1(1 - p_1)}}\right) \implies \frac{h_1 - np_1}{\sqrt{np_1(1 - p_1)}} = -1.65$$

Получили систему

$$\begin{cases} \frac{h_1 - np_0}{\sqrt{np_0(1 - p_0)}} = 1.65\\ \frac{h_1 - np_1}{\sqrt{np_1(1 - p_1)}} = -1.65 \end{cases} \implies n = 53, \quad h_1 = 32.45$$

Таким образом, решающая процедуры выглядит так:

$$\sum_{i=1}^{53} x_i < 32.45 \implies H_0 = \{ \text{ Пётр не может } \}$$

$$\sum_{i=1}^{53} x_i \ge 32.45 \implies H_1 = \{ \text{ Пётр может } \}$$

Сгенерируем две выборки объема n=53 в соответствии с гипотезами  $H_0$  и  $H_1$ . Определим сумму наблюдений по каждой выборке и применим решающее правило.

| 🖬 Data: neim_pirs.STA 2v * 54c 🔠 🗖 |         |         |  |
|------------------------------------|---------|---------|--|
| NUMERIC<br>VALUES                  |         | •       |  |
| TALOLO                             | 1<br>HO | 2<br>H1 |  |
|                                    | 0,000   | 1,000   |  |
|                                    | 1,000   | 1,000   |  |
|                                    | 1,000   | 1,000   |  |
|                                    | 0,000   | 0,000   |  |
|                                    | 0,000   | 1,000   |  |
|                                    | 0,000   | 1,000   |  |
|                                    | 0,000   | 1,000   |  |
|                                    | 1,000   | 0,000   |  |
|                                    | 1,000   | 1,000   |  |
|                                    | 1,000   | 0,000   |  |
| SUM case 1-53                      | 26,000  | 34,000  |  |
| 1                                  |         | Þ       |  |

Если верна 
$$H_0$$
, то  $\sum_{i=1}^{53} x_i = 26 < 32.45$   
Если верна  $H_1$ , то  $\sum_{i=1}^{53} x_i = 34 \ge 32.45$ 

Результаты эксперимента подтверждают что в обоих случаях решающее правило дает правильный результат.

#### Последовательная процедура

$$H_0: P(\Gamma) = p_0 = 0.5$$
  
 $H_1: P(\Gamma) = p_1 = 0.7$ 

#### 1. Решающее правило

Условие продолжения наблюдений имеет вид:  $\ln B < \ln p < \ln A$ 

$$\ln p = \sum_{i=1}^{n} \ln \frac{p_1(x_i)}{p_0(x_i)} = \sum_{i=1}^{n} \left( x_i \ln \frac{p_1}{p_0} \frac{1 - p_0}{1 - p_1} + \ln \frac{1 - p_1}{1 - p_0} \right) = c_1 \sum_{i=1}^{n} x_i + nc_2$$

$$c_1 = \ln \frac{p_1}{p_0} \frac{1 - p_0}{1 - p_1} = \ln \frac{0.7}{0.3} = 0.85, \quad c_2 = \ln \frac{1 - p_1}{1 - p_0} = \ln \frac{0.3}{0.5} = -0.51$$

Тогда получаем следующее

$$\beta(n) \equiv \frac{1}{c_1} (\ln B - nc_2) < \sum_{i=1}^n x_i < \frac{1}{c_1} (\ln A - nc_2) \equiv \alpha(n)$$

2. Пороги

$$A \approx A' = \frac{1 - \beta}{\alpha} = 19, \quad B \approx B' = \frac{\beta}{1 - \alpha} = \frac{1}{19} \approx 0.053$$
$$\ln A = 2.94 \implies \alpha(n) = \frac{1}{0.85} (2.94 + 0.51n) = 3.46 + 0.59n$$
$$\ln B = -2.94 \implies \beta(n) = \frac{1}{0.85} (-2.94 + 0.51n) = -3.46 + 0.59n$$

Если для  $\sum_{i=1}^n x_i$  - числа выпадений герба за n бросков верно

$$-3.46 + 0.59n < \sum_{i=1}^{n} x_i < 3.46 + 0.59n,$$

то наблюдения продолжаются до момента нарушения хотя бы одного из неравенств. Тогда получаем

$$-3.46 + 0.59n \ge \sum_{i=1}^{n} x_i \implies$$
 принимаем  $H_0$   $3.46 + 0.59n \le \sum_{i=1}^{n} x_i \implies$  принимаем  $H_1$ 

3. Среднее число наблюдений

$$M(n|H_1) = \frac{(1-\beta)\ln A + \beta \ln B}{M(\tau|H_1)} = \frac{2.646}{0.085} \approx 32$$
$$M(\tau|H_1) = M\left(\ln\frac{p_1(x)}{p_0(x)}\right) = M(c_1x + c_2) = p_1c_1 + c_2 = 0.085$$

Аналогично

$$M(n|H_0) = \frac{\alpha \ln A + (1-\alpha) \ln B}{M(\tau|H_0)} = \frac{-2.646}{-0.085} \approx 32$$

#### 4. Моделирование

Сгенерируем две выборки не фиксированного объема n в соответствии с гипотезами  $H_0$  и  $H_1$ . Определим сумму наблюдений по каждой выборке и применим решающее правило.

В случае верности гипотезы  $H_0$ : n=74

| 37,250 | 39,000 | 44,170 |
|--------|--------|--------|
| 37,840 | 39,000 | 44,760 |
| 38,430 | 40,000 | 45,350 |
| 39,020 | 40,000 | 45,940 |
| 39,610 | 40,000 | 46,530 |
| 40,200 | 40,000 | 47,120 |
|        |        |        |

## График



Получили верный результат (верна гипотеза  $H_0$ )

В случае верности гипотезы  $H_1$ : n=67

| 33,120 | 39,000 | 40,040 |
|--------|--------|--------|
| 33,710 | 40,000 | 40,630 |
| 34,300 | 41,000 | 41,220 |
| 34,890 | 41,000 | 41,810 |
| 35,480 | 42,000 | 42,400 |
| 36,070 | 43,000 | 42,990 |
|        |        |        |

## График



Получили верный результат (верна гипотеза  $H_1$ )