```
In [1]: import numpy as np
        import pandas as pd
        import sklearn
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean_squared_error, r2_score
        import os
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import MinMaxScaler
        import random
        import warnings
        from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_scor
        from sklearn import metrics
        np.random.seed(34)
        warnings.filterwarnings('ignore')
In [2]: index_names = ['ENGINE', 'CYCLE']
        setting_names = ['SET1', 'SET2', 'SET3']
        sensor_names=[ "INLET_TEMP",
        "LPC_OUT_TEMP",
        "HPC_OUT_TEMP",
        "LPT_OUT_TEMP",
        "FAN_IN_PR",
        "BYPASS-PR",
        "HPC_OUT_PR",
        "FAN_RPM",
        "CORE RPM",
        "ENGINE_PR",
        "HPC_OUT",
        "FUEL_RATIO",
        "FAN_RPM_CORR",
        "CORE_RPM_CORR",
        "BYPASS RATIO",
        "FUEL_RATIO_BURNER",
        "ENTHALPY_BLEED",
        "FAN_SPEED_REQ",
        "CONV_FAN_SPEED",
        "HP_AIRFLOW",
        "LPC_AIRFLOW" ]
        col_names = index_names + setting_names + sensor_names
In [3]: data = pd.read_csv('CMaps\\train_FD001.txt',sep= " ",header=None,index_col=False,na
In [4]: pd.set_option('display.max_columns', None)
        df = data.copy()
        df
```

Out[4]:		ENGINE	CYCLE	SET1	SET2	SET3	INLET_TEMP	LPC_OUT_TEMP	HPC_OUT_TE
	0	1	1	-0.0007	-0.0004	100.0	518.67	641.82	158!
	1	1	2	0.0019	-0.0003	100.0	518.67	642.15	159
	2	1	3	-0.0043	0.0003	100.0	518.67	642.35	158 ⁻
	3	1	4	0.0007	0.0000	100.0	518.67	642.35	1587
	4	1	5	-0.0019	-0.0002	100.0	518.67	642.37	1587
	•••					•••			
	20626	100	196	-0.0004	-0.0003	100.0	518.67	643.49	159 ⁻
	20627	100	197	-0.0016	-0.0005	100.0	518.67	643.54	1604
	20628	100	198	0.0004	0.0000	100.0	518.67	643.42	1607
	20629	100	199	-0.0011	0.0003	100.0	518.67	643.23	160
	20630	100	200	-0.0032	-0.0005	100.0	518.67	643.85	1600
	20631 rd	ows × 26 (columns						
	4								>
In [5]:	df.sha	pe							
Out[5]:	(20631	, 26)							
In [6]:	df.inf	0()							

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 20631 entries, 0 to 20630 Data columns (total 26 columns):

```
Column
                       Non-Null Count Dtype
   -----
---
                       -----
    ENGINE
0
                       20631 non-null int64
1
    CYCLE
                       20631 non-null int64
2
    SET1
                       20631 non-null float64
3
    SET2
                       20631 non-null float64
4
    SET3
                       20631 non-null float64
5
                       20631 non-null float64
    INLET_TEMP
6
    LPC_OUT_TEMP
                       20631 non-null float64
7
    HPC_OUT_TEMP
                       20631 non-null float64
    LPT_OUT_TEMP
                       20631 non-null float64
9
    FAN IN PR
                       20631 non-null float64
    BYPASS-PR
                       20631 non-null float64
10
   HPC_OUT_PR
                       20631 non-null float64
11
12
    FAN_RPM
                       20631 non-null float64
13 CORE_RPM
                       20631 non-null float64
    ENGINE PR
                       20631 non-null float64
15 HPC_OUT
                       20631 non-null float64
                       20631 non-null float64
16
    FUEL RATIO
17
    FAN_RPM_CORR
                       20631 non-null float64
18 CORE_RPM_CORR
                       20631 non-null float64
19
    BYPASS RATIO
                       20631 non-null float64
    FUEL_RATIO_BURNER 20631 non-null float64
                       20631 non-null int64
21
    ENTHALPY_BLEED
22 FAN SPEED REQ
                       20631 non-null int64
23 CONV_FAN_SPEED
                       20631 non-null float64
24 HP_AIRFLOW
                       20631 non-null float64
25 LPC AIRFLOW
                       20631 non-null float64
```

dtypes: float64(22), int64(4)

memory usage: 4.1 MB

```
In [7]: df.loc[:,['ENGINE','CYCLE']].describe()
```

Out[7]: **ENGINE CYCLE**

	LINGINE	CICLL
count	20631.000000	20631.000000
mean	51.506568	108.807862
std	29.227633	68.880990
min	1.000000	1.000000
25%	26.000000	52.000000
50%	52.000000	104.000000
75%	77.000000	156.000000
max	100.000000	362.000000

```
df.loc[:,['SET1','SET2','SET3']].describe()
```

```
Out[8]:
                         SET1
                                        SET2
                                                 SET3
          count 20631.000000
                                20631.000000
                                              20631.0
                     -0.000009
                                    0.000002
                                                100.0
           mean
             std
                      0.002187
                                    0.000293
                                                  0.0
            min
                     -0.008700
                                    -0.000600
                                                100.0
           25%
                     -0.001500
                                    -0.000200
                                                100.0
            50%
                      0.000000
                                    0.000000
                                                100.0
            75%
                      0.001500
                                    0.000300
                                                100.0
            max
                      0.008700
                                    0.000600
                                                100.0
          df.loc[:,'INLET_TEMP':'LPC_AIRFLOW'].describe()
 In [9]:
 Out[9]:
                   INLET_TEMP LPC_OUT_TEMP HPC_OUT_TEMP LPT_OUT_TEMP
                                                                                                   BY
                                                                                     FAN IN PR
          count 2.063100e+04
                                   20631.000000
                                                    20631.000000
                                                                    20631.000000
                                                                                  2.063100e+04
                                                                                                2063
                                                                                                    2
                 5.186700e+02
                                     642.680934
                                                     1590.523119
                                                                     1408.933782
                                                                                 1.462000e+01
           mean
             std
                  6.537152e-11
                                       0.500053
                                                        6.131150
                                                                        9.000605
                                                                                   3.394700e-12
                 5.186700e+02
                                     641.210000
                                                     1571.040000
                                                                     1382.250000
                                                                                  1.462000e+01
                                                                                                    2
            min
                 5.186700e+02
                                                                                                    2
           25%
                                     642.325000
                                                     1586.260000
                                                                     1402.360000
                                                                                  1.462000e+01
                                                                                                    2
            50%
                 5.186700e+02
                                                                     1408.040000
                                                                                 1.462000e+01
                                     642.640000
                                                     1590.100000
           75%
                 5.186700e+02
                                     643.000000
                                                     1594.380000
                                                                     1414.555000
                                                                                 1.462000e+01
                                                                                                    2
                 5.186700e+02
                                     644.530000
                                                     1616.910000
                                                                     1441.490000
                                                                                  1.462000e+01
                                                                                                    2
                                                                                                   \triangleright
In [10]:
          unwanted=[]
          for i in df.select_dtypes(include=np.number):
              if df[i].nunique()==1:
                   unwanted.append(i)
          unwanted
Out[10]:
          ['SET3',
            'INLET_TEMP',
            'FAN_IN_PR',
            'ENGINE_PR',
            'FUEL_RATIO_BURNER',
            'FAN_SPEED_REQ',
            'CONV_FAN_SPEED']
          df.drop(columns=unwanted, inplace=True)
In [11]:
          print(df.shape)
```

df

(20631, 19)

Out[11]:

•		ENGINE	CYCLE	SET1	SET2	LPC_OUT_TEMP	HPC_OUT_TEMP	LPT_OUT_TEMP
	0	1	1	-0.0007	-0.0004	641.82	1589.70	1400.60
	1	1	2	0.0019	-0.0003	642.15	1591.82	1403.14
	2	1	3	-0.0043	0.0003	642.35	1587.99	1404.20
	3	1	4	0.0007	0.0000	642.35	1582.79	1401.87
	4	1	5	-0.0019	-0.0002	642.37	1582.85	1406.22
	•••		•••	•••	•••			
	20626	100	196	-0.0004	-0.0003	643.49	1597.98	1428.63
	20627	100	197	-0.0016	-0.0005	643.54	1604.50	1433.58
	20628	100	198	0.0004	0.0000	643.42	1602.46	1428.18
	20629	100	199	-0.0011	0.0003	643.23	1605.26	1426.53
	20630	100	200	-0.0032	-0.0005	643.85	1600.38	1432.14

20631 rows × 19 columns

```
In [12]: data_RUL = df.groupby(['ENGINE']).agg({'CYCLE':'max'})
   data_RUL.rename(columns={'CYCLE':'LIFE'},inplace=True)
   data_RUL.head()
```

Out[12]: LIFE

ENGINE

- **1** 192
- **2** 287
- **3** 179
- **4** 189
- **5** 269

```
In [13]: df_RUL=df.merge(data_RUL,how='left',on=['ENGINE'])
    df_RUL['RUL']=df_RUL['LIFE']-df_RUL['CYCLE']
    df_RUL.drop(['LIFE'],axis=1,inplace=True)
    df_RUL.drop(['CYCLE'],axis=1,inplace=True)
    df_RUL
```

ıt[13]:		ENGINE	SET1	SET2	LPC_OUT_TEMP	HPC_OUT_TEMP	LPT_OUT_TEMP	BYPAS:
	0	1	-0.0007	-0.0004	641.82	1589.70	1400.60	21.0
	1	1	0.0019	-0.0003	642.15	1591.82	1403.14	21.6
	2	1	-0.0043	0.0003	642.35	1587.99	1404.20	21.6
	3	1	0.0007	0.0000	642.35	1582.79	1401.87	21.6
	4	1	-0.0019	-0.0002	642.37	1582.85	1406.22	21.0
	•••		•••	•••				
	20626	100	-0.0004	-0.0003	643.49	1597.98	1428.63	21.0
	20627	100	-0.0016	-0.0005	643.54	1604.50	1433.58	21.0
	20628	100	0.0004	0.0000	643.42	1602.46	1428.18	21.0
	20629	100	-0.0011	0.0003	643.23	1605.26	1426.53	21.0
	20630	100	-0.0032	-0.0005	643.85	1600.38	1432.14	21.0
	20631 ra	nws × 19 c	columns					

 $20631 \text{ rows} \times 19 \text{ columns}$


```
plt.xticks(fontsize=10, rotation=45, ha='right')
plt.yticks(fontsize=10)
plt.title('Correlation Heatmap', fontsize=20)

# Show the heatmap
plt.show()
```



```
In [16]: correlations_with_RUL = corr['RUL'].drop('RUL')

# Calculate the absolute values of the correlations
absolute_correlations = correlations_with_RUL.abs()

# Sort the absolute correlations in descending order to identify the strongest corr
sorted_indices = absolute_correlations.sort_values(ascending=False).index

# Retrieve the original correlation values for the sorted indices
sorted_correlations = correlations_with_RUL.loc[sorted_indices]

# Print the sorted correlations with their original signs
print(sorted_correlations)
```

```
HPC_OUT
                         -0.696228
        LPT_OUT_TEMP
                         -0.678948
        FUEL RATIO
                          0.671983
        HPC_OUT_PR
                          0.657223
        BYPASS RATIO
                         -0.642667
                          0.635662
        LPC_AIRFLOW
        HP_AIRFLOW
                          0.629428
        LPC_OUT_TEMP
                         -0.606484
        ENTHALPY BLEED
                         -0.606154
        HPC_OUT_TEMP
                         -0.584520
        FAN_RPM
                         -0.563968
        FAN_RPM_CORR
                         -0.562569
                         -0.390102
        CORE RPM
        CORE_RPM_CORR
                         -0.306769
        BYPASS-PR
                         -0.128348
        ENGINE
                          0.078753
        SET1
                         -0.003198
        SET2
                         -0.001948
        Name: RUL, dtype: float64
In [17]: df_RUL.hist(bins=50, figsize=(20, 20))
Out[17]: array([[<Axes: title={'center': 'ENGINE'}>,
                  <Axes: title={'center': 'SET1'}>,
                  <Axes: title={'center': 'SET2'}>,
                  <Axes: title={'center': 'LPC_OUT_TEMP'}>],
                 [<Axes: title={'center': 'HPC_OUT_TEMP'}>,
                  <Axes: title={'center': 'LPT_OUT_TEMP'}>,
                  <Axes: title={'center': 'BYPASS-PR'}>,
                  <Axes: title={'center': 'HPC_OUT_PR'}>],
                 [<Axes: title={'center': 'FAN RPM'}>,
                  <Axes: title={'center': 'CORE_RPM'}>,
                  <Axes: title={'center': 'HPC_OUT'}>,
                  <Axes: title={'center': 'FUEL_RATIO'}>],
                 [<Axes: title={'center': 'FAN_RPM_CORR'}>,
                  <Axes: title={'center': 'CORE_RPM_CORR'}>,
                  <Axes: title={'center': 'BYPASS RATIO'}>,
                  <Axes: title={'center': 'ENTHALPY_BLEED'}>],
                 [<Axes: title={'center': 'HP_AIRFLOW'}>,
                  <Axes: title={'center': 'LPC_AIRFLOW'}>,
                  <Axes: title={'center': 'RUL'}>, <Axes: >]], dtype=object)
```



```
In [18]: labels={1:"DANGER",2:"NOT DANGER YET",3:"SAFE"}
         label=[]
         #--Transforming rul values to classes :
         for i in df_RUL['RUL']:
             if i<=69:
                 label.append(1)
             elif i>69 and i<=135:</pre>
                 label.append(2)
             else:
                 label.append(3)
         label=np.array(label)
         drop labels = ['ENGINE', 'SET1', 'SET2']
         df_train_test=df_RUL.drop(columns=drop_labels).copy()
         # Make a copy of the dataset to apply transformations
         df_transformed = df_train_test.copy()
         X_train, X_test, y_train, y_test=train_test_split(df_train_test,np.array(label), te
In [19]: #scaler = StandardScaler()
         scaler = MinMaxScaler()
         #Droping the target variable
         X_train.drop(columns=['RUL'], inplace=True)
         X_test.drop(columns=['RUL'], inplace=True)
         X_train_scaled=scaler.fit_transform(X_train)
         X_test_scaled=scaler.fit_transform(X_test)
In [20]: X_train_scaled_df = pd.DataFrame(X_train, columns=X_train.columns)
         X train scaled df = pd.DataFrame(X train scaled, columns=X train.columns)
         X_train_scaled_df.hist(bins=50, figsize=(20, 20))
Out[20]: array([[<Axes: title={'center': 'LPC_OUT_TEMP'}>,
                  <Axes: title={'center': 'HPC_OUT_TEMP'}>,
                  <Axes: title={'center': 'LPT OUT TEMP'}>,
                  <Axes: title={'center': 'BYPASS-PR'}>],
                 [<Axes: title={'center': 'HPC_OUT_PR'}>,
                  <Axes: title={'center': 'FAN_RPM'}>,
                  <Axes: title={'center': 'CORE_RPM'}>,
                  <Axes: title={'center': 'HPC_OUT'}>],
                 [<Axes: title={'center': 'FUEL RATIO'}>,
                  <Axes: title={'center': 'FAN_RPM_CORR'}>,
                  <Axes: title={'center': 'CORE_RPM_CORR'}>,
                  <Axes: title={'center': 'BYPASS RATIO'}>],
                 [<Axes: title={'center': 'ENTHALPY_BLEED'}>,
                  <Axes: title={'center': 'HP_AIRFLOW'}>,
                  <Axes: title={'center': 'LPC_AIRFLOW'}>, <Axes: >]], dtype=object)
```



```
# Measure the performance
print('SVM-linear')
print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train)
print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
print(classification_report(y_test,y_svc_test))
```


SVM-linear
Accuracy score of training 0.686
Error rate of training 0.181
Accuracy score of test 0.660
Error rate of test 0.168

	precision	recall	f1-score	support
1	0.80	0.88	0.84	2800
2	0.49	0.57	0.52	2637
3	0.71	0.53	0.61	2816
accuracy			0.66	8253
macro avg	0.67	0.66	0.66	8253
weighted avg	0.67	0.66	0.66	8253

```
In [23]: from sklearn.ensemble import RandomForestClassifier
    classifier_RF=RandomForestClassifier(n_estimators=10)
    classifier=classifier_RF
    classifier.fit(X_train_scaled,np.array(y_train))
    y_svc_train=classifier.predict(X_train_scaled)

y_svc_test=classifier.predict(X_test_scaled)
```


RandomForestClassifier
Accuracy score of training 0.989
Error rate of training 0.006
Accuracy score of test 0.633
Error rate of test 0.187

	precision	recall	f1-score	support
1	0.76	0.87	0.81	2800
2	0.47	0.54	0.50	2637
3	0.68	0.48	0.57	2816
accuracy			0.63	8253
macro avg	0.64	0.63	0.63	8253
weighted avg	0.64	0.63	0.63	8253

```
In [24]: from sklearn.naive_bayes import GaussianNB
         gnb = GaussianNB()
         classifier=gnb
         classifier.fit(X train scaled,np.array(y train))
         y_svc_train=classifier.predict(X_train_scaled)
         y_svc_test=classifier.predict(X_test_scaled)
         cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie
         disp.plot()
         plt.grid(False)
         plt.show()
         # Measure the performance
         print('GaussianNB')
         print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_trai
         print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
         print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
         print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
         print(classification_report(y_test,y_svc_test))
```


GaussianNB

Accuracy score of training 0.647

Error rate of training 0.191

Accuracy score of test 0.633

Error rate of test 0.184

```
precision recall f1-score support
          1
                           0.89
                                     0.80
                  0.73
                                               2800
          2
                  0.47
                           0.52
                                     0.50
                                               2637
          3
                  0.70
                           0.48
                                     0.57
                                               2816
                                     0.63
                                               8253
   accuracy
                  0.64
                           0.63
                                     0.62
                                               8253
  macro avg
weighted avg
                  0.64
                           0.63
                                     0.63
                                               8253
```

```
In [25]: from sklearn.neighbors import KNeighborsClassifier
         knn=KNeighborsClassifier(n_neighbors=100)
         classifier=knn
         classifier.fit(X_train_scaled,np.array(y_train))
         y_svc_train=classifier.predict(X_train_scaled)
         y_svc_test=classifier.predict(X_test_scaled)
         cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie
         disp.plot()
         plt.grid(False)
         plt.show()
         # Measure the performance
         print('KNeighborsClassifier')
         print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_trail
         print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
         print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
         print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
         print(classification_report(y_test,y_svc_test))
```


KNeighborsClassifier
Accuracy score of training 0.696
Error rate of training 0.187
Accuracy score of test 0.662
Error rate of test 0.174

	precision	recall	f1-score	support
1	0.85	0.84	0.84	2800
2	0.49	0.62	0.55	2637
3	0.70	0.52	0.59	2816
accuracy			0.66	8253
macro avg	0.68	0.66	0.66	8253
weighted avg	0.68	0.66	0.66	8253

```
In [26]: from sklearn.linear_model import LogisticRegression
    logistic_regression_model = LogisticRegression(max_iter=1000, random_state=42)
    classifier=logistic_regression_model
    classifier.fit(X_train_scaled,np.array(y_train))
    y_svc_train=classifier.predict(X_train_scaled)

    v_svc_test=classifier.predict(X_test_scaled)

cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifiedisp.plot()]
    plt.grid(False)
    plt.show()
```

```
# Measure the performance
print('LogisticRegression')
print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train)
print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
print(classification_report(y_test,y_svc_test))
```


LogisticRegression
Accuracy score of training 0.684
Error rate of training 0.179
Accuracy score of test 0.655
Error rate of test 0.170

	precision	recall	f1-score	support
1	0.77	0.89	0.82	2800
2	0.49	0.55	0.51	2637
3	0.72	0.52	0.61	2816
accuracy			0.66	8253
macro avg	0.66	0.65	0.65	8253
weighted avg	0.66	0.66	0.65	8253

```
In [27]: from sklearn.dummy import DummyClassifier
    stratified_clf = DummyClassifier(strategy='stratified', random_state=42)
    most_frequent_clf = DummyClassifier(strategy='most_frequent', random_state=42)
    uniform_clf = DummyClassifier(strategy='uniform', random_state=42)

baseline_classifiers = {
    'Stratified': stratified_clf,
```

```
'Most Frequent': most_frequent_clf,
            'Uniform': uniform_clf
        for name, baseline_clf in baseline_classifiers.items():
            baseline_clf.fit(X_train_scaled, y_train) # Note: Baseline classifiers do not
            y_baseline_pred_test = baseline_clf.predict(X_test_scaled)
            print(f"Evaluation of {name} Classifier:")
            print("Accuracy score of test: %.3f" % accuracy_score(y_test, y_baseline_pred_t
            print(classification_report(y_test, y_baseline_pred_test))
            print("-" * 80)
       Evaluation of Stratified Classifier:
       Accuracy score of test: 0.344
                    precision recall f1-score support
                 1
                        0.36
                                 0.34
                                          0.35
                                                    2800
                 2
                        0.34
                                 0.35
                                          0.34
                                                    2637
                 3
                        0.34
                                 0.34
                                          0.34
                                                   2816
                                          0.34
                                                   8253
          accuracy
                       0.34
                                          0.34
          macro avg
                                0.34
                                                   8253
       weighted avg
                       0.34
                                 0.34
                                          0.34
                                                   8253
       Evaluation of Most Frequent Classifier:
       Accuracy score of test: 0.341
                    precision recall f1-score support
                 1
                        0.00
                                 0.00
                                          0.00
                                                   2800
                 2
                       0.00
                                 0.00
                                          0.00
                                                   2637
                        0.34
                                 1.00
                                          0.51
                                                   2816
                                          0.34
                                                   8253
           accuracy
                      0.11
          macro avg
                                 0.33
                                         0.17
                                                   8253
                                                  8253
       weighted avg
                       0.12
                                 0.34
                                          0.17
       Evaluation of Uniform Classifier:
       Accuracy score of test: 0.329
                    precision recall f1-score support
                 1
                       0.33
                                 0.33
                                          0.33
                                                   2800
                 2
                        0.32
                                 0.33
                                          0.32
                                                   2637
                 3
                       0.33
                                 0.32
                                          0.33
                                                  2816
                                          0.33
                                                   8253
           accuracy
          macro avg
                       0.33
                                 0.33
                                          0.33
                                                   8253
       weighted avg
                       0.33
                                0.33
                                          0.33
                                                   8253
In [28]: # def update_rolling_mean(data, mask):
           for x, group in mask.groupby("ENGINE"):
                for x in X_train.columns:
                     data.loc[group.index[10:], x+"_rolling"] = data.loc[group.index, x].r
```

```
data.loc[group.index[:10], x+"_rolling"] = data.loc[group.index[:10],
# drop_labels = ['BYPASS-PR', 'SET1', 'SET2']
# df rolling=df RUL.drop(columns=drop labels).copy()
# update_rolling_mean(df_rolling, df_rolling)
# df_rolling
def update_rolling_mean(data):
   # Define a function to apply to each group
   def apply_rolling(group):
        for col in group.columns:
           if col != 'ENGINE' and col != 'RUL':
                # Apply rolling mean with a window of 10, min_periods=1 ensures we
                group[col + "_rolling"] = group[col].rolling(window=10, min_periods
        return group
   # Group by 'ENGINE' and apply the rolling function
   data = data.groupby('ENGINE').apply(apply_rolling)
   data.reset_index(inplace=True, drop=True)
   # Optional: drop original columns if you only want to keep the rolling features
   # for col in data.columns:
        if not col.endswith('_rolling') and col != 'ENGINE' and col != 'RUL' :
             data.drop(col, inplace=True, axis=1)
   return data
df_rolling = df_RUL.copy() # Assuming df_RUL is your initial DataFrame
df_rolling = update_rolling_mean(df_rolling)
df_rolling
```

Out[28]:

	ENGINE	SET1	SET2	LPC_OUT_TEMP	HPC_OUT_TEMP	LPT_OUT_TEMP	BYPAS F
0	1	-0.0007	-0.0004	641.82	1589.70	1400.60	21.0
1	1	0.0019	-0.0003	642.15	1591.82	1403.14	21.6
2	1	-0.0043	0.0003	642.35	1587.99	1404.20	21.6
3	1	0.0007	0.0000	642.35	1582.79	1401.87	21.6
4	1	-0.0019	-0.0002	642.37	1582.85	1406.22	21.6
•••							
20626	100	-0.0004	-0.0003	643.49	1597.98	1428.63	21.6
20627	100	-0.0016	-0.0005	643.54	1604.50	1433.58	21.6
20628	100	0.0004	0.0000	643.42	1602.46	1428.18	21.6
20629	100	-0.0011	0.0003	643.23	1605.26	1426.53	21.6
20630	100	-0.0032	-0.0005	643.85	1600.38	1432.14	21.6

20631 rows × 36 columns

```
In [29]: corr = df_rolling.corr()
    correlations_with_RUL = corr['RUL'].drop('RUL')
```

```
# Calculate the absolute values of the correlations
         absolute correlations = correlations with RUL.abs()
         # Sort the absolute correlations in descending order to identify the strongest corr
         sorted_indices = absolute_correlations.sort_values(ascending=False).index
         # Retrieve the original correlation values for the sorted indices
         sorted correlations = correlations with RUL.loc[sorted indices]
         features_to_drop = absolute_correlations[absolute_correlations < 0.1].index</pre>
         # Print the sorted correlations with their original signs
         print(sorted correlations)
         features_to_drop
       LPT_OUT_TEMP_rolling
                               -0.732868
       LPC AIRFLOW rolling
                                0.729701
       HPC_OUT_rolling
                               -0.728727
       ENTHALPY_BLEED_rolling -0.728268
       BYPASS RATIO_rolling -0.727228
       HPC_OUT_TEMP_rolling
                               -0.726007
       HP AIRFLOW rolling
                                0.723255
       LPC_OUT_TEMP_rolling
                               -0.721540
       HPC_OUT_PR_rolling
                               0.711189
       FUEL_RATIO_rolling
                               0.710306
       HPC_OUT
                                -0.696228
       LPT_OUT_TEMP
                               -0.678948
       FUEL RATIO
                                0.671983
       HPC OUT PR
                                0.657223
       BYPASS RATIO
                               -0.642667
       LPC_AIRFLOW
                               0.635662
       HP AIRFLOW
                                0.629428
       LPC_OUT_TEMP
                               -0.606484
       ENTHALPY_BLEED
                               -0.606154
                               -0.592877
       FAN RPM rolling
       FAN_RPM_CORR_rolling
                              -0.591497
       HPC_OUT_TEMP
                               -0.584520
       FAN RPM
                               -0.563968
       FAN RPM CORR
                               -0.562569
       CORE_RPM_rolling
                              -0.393039
       CORE RPM
                               -0.390102
       CORE_RPM_CORR
                               -0.306769
       CORE_RPM_CORR_rolling -0.305386
       BYPASS-PR_rolling
                               -0.301141
       BYPASS-PR
                                -0.128348
       ENGINE
                                0.078753
       SET2 rolling
                                -0.016361
       SET1_rolling
                                -0.012197
       SET1
                                -0.003198
       SET2
                                -0.001948
       Name: RUL, dtype: float64
Out[29]: Index(['ENGINE', 'SET1', 'SET2', 'SET1_rolling', 'SET2_rolling'], dtype='object')
In [30]: df_rolling.drop(columns=[ 'SET1', 'SET2', 'SET1_rolling', 'SET2_rolling', 'BYPASS-PR'
         X_train, X_test, y_train, y_test=train_test_split(df_rolling.drop(columns=['ENGINE'
```

```
df_rolling.iloc[-1,-14:]=df_rolling.iloc[-2,-14:]
df_rolling
```

Out[30]:

	ENGINE	LPC_OUT_TEMP	HPC_OUT_TEMP	LPT_OUT_TEMP	HPC_OUT_PR	FAN_RPM
0	1	641.82	1589.70	1400.60	554.36	2388.06
1	1	642.15	1591.82	1403.14	553.75	2388.04
2	1	642.35	1587.99	1404.20	554.26	2388.08
3	1	642.35	1582.79	1401.87	554.45	2388.11
4	1	642.37	1582.85	1406.22	554.00	2388.06
•••						
20626	100	643.49	1597.98	1428.63	551.43	2388.19
20627	100	643.54	1604.50	1433.58	550.86	2388.23
20628	100	643.42	1602.46	1428.18	550.94	2388.24
20629	100	643.23	1605.26	1426.53	550.68	2388.25
20630	100	643.85	1600.38	1432.14	550.79	2388.26

20631 rows × 30 columns

```
In [31]: X_train_scaled=scaler.fit_transform(X_train)
         X_test_scaled=scaler.fit_transform(X_test)
In [32]: classifier_SVC = SVC(kernel = 'linear', random_state = 42)
         classifier=classifier_SVC
         classifier.fit(X_train_scaled,np.array(y_train))
         y_svc_train=classifier.predict(X_train_scaled)
         y_svc_test=classifier.predict(X_test_scaled)
         cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie
         disp.plot()
         plt.grid(False)
         plt.show()
         # Measure the performance
         print('SVM-linear')
         print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train)
         print("Error rate of training %.3f" %mean absolute error(y train,y svc train))
         print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
         print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
         print(classification_report(y_test,y_svc_test))
```


SVM-linear
Accuracy score of training 0.691
Error rate of training 0.178
Accuracy score of test 0.681
Error rate of test 0.204

	precision	recall	f1-score	support
1	0.96	0.73	0.83	2800
2	0.52	0.53	0.52	2637
3	0.64	0.77	0.70	2816
accuracy			0.68	8253
macro avg	0.70	0.68	0.68	8253
weighted avg	0.71	0.68	0.69	8253

```
In [33]: from sklearn.svm import SVC
    classifier_SVC = SVC(kernel = 'poly',random_state = 42)
    classifier=classifier_SVC
    classifier.fit(X_train_scaled,np.array(y_train))
    y_svc_train=classifier.predict(X_train_scaled)

    v_svc_test=classifier.predict(X_test_scaled)

cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifiedisp.plot())
    plt.grid(False)
    plt.show()
```

```
# Measure the performance
print('SVM-Ploy')
print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train)
print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
print(classification_report(y_test,y_svc_test))
```


SVM-Ploy
Accuracy score of training 0.725
Error rate of training 0.172
Accuracy score of test 0.704
Error rate of test 0.196

	precision	recall	f1-score	support
1	0.96	0.76	0.85	2800
2	0.57	0.52	0.54	2637
3	0.64	0.82	0.72	2816
accuracy			0.70	8253
macro avg	0.72	0.70	0.70	8253
weighted avg	0.72	0.70	0.71	8253

```
In [34]: logistic_regression_model = LogisticRegression(max_iter=1000, random_state=42)
    classifier=logistic_regression_model
    classifier.fit(X_train_scaled,np.array(y_train))
    y_svc_train=classifier.predict(X_train_scaled)

y_svc_test=classifier.predict(X_test_scaled)
```

```
cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie disp.plot()
plt.grid(False)
plt.show()

# Measure the performance
print('LogisticRegression')
print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train)
print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
print(classification_report(y_test,y_svc_test))
```


LogisticRegression
Accuracy score of training 0.690
Error rate of training 0.174
Accuracy score of test 0.692
Error rate of test 0.190

		precision	recall	f1-score	support
	1	0.93	0.78	0.85	2800
	2	0.54	0.50	0.52	2637
	3	0.64	0.78	0.71	2816
accura	су			0.69	8253
macro a	avg	0.70	0.69	0.69	8253
weighted a	avg	0.71	0.69	0.69	8253

```
In [35]: classifier_RF=RandomForestClassifier(n_estimators=10)
         classifier=classifier_RF
         classifier.fit(X_train_scaled,np.array(y_train))
         y_svc_train=classifier.predict(X_train_scaled)
         y_svc_test=classifier.predict(X_test_scaled)
         cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie
         disp.plot()
         plt.grid(False)
         plt.show()
         # Measure the performance
         print('RandomForestClassifier')
         print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_trail
         print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
         print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
         print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
         print(classification_report(y_test,y_svc_test))
```


RandomForestClassifier

```
Accuracy score of training 0.993
Error rate of training 0.004
Accuracy score of test 0.678
Error rate of test 0.189
             precision
                         recall f1-score support
          1
                   0.86
                            0.82
                                      0.84
                                                2800
          2
                  0.53
                            0.51
                                      0.52
                                                2637
          3
                   0.65
                            0.70
                                      0.67
                                                2816
                                      0.68
                                                8253
   accuracy
                  0.68
                            0.67
                                      0.68
                                                8253
   macro avg
weighted avg
                  0.68
                            0.68
                                      0.68
                                                8253
```

```
In [36]: gnb = GaussianNB()
         classifier=gnb
         classifier.fit(X train scaled,np.array(y train))
         y_svc_train=classifier.predict(X_train_scaled)
         y_svc_test=classifier.predict(X_test_scaled)
         cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifie
         disp.plot()
         plt.grid(False)
         plt.show()
         # Measure the performance
         print('GaussianNB')
         print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_trail
         print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
         print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
         print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
         print(classification_report(y_test,y_svc_test))
```


GaussianNB

Accuracy score of training 0.638

Error rate of training 0.200

Accuracy score of test 0.645

Error rate of test 0.206

	precision	recall	f1-score	support
1	0.89	0.77	0.83	2800
2	0.46	0.47	0.47	2637
3	0.62	0.68	0.65	2816
accuracy			0.65	8253
macro avg	0.66	0.64	0.65	8253
weighted avg	0.66	0.65	0.65	8253

```
In [37]: knn=KNeighborsClassifier(n_neighbors=100)
    classifier=knn
    classifier.fit(X_train_scaled,np.array(y_train))
    y_svc_train=classifier.predict(X_train_scaled)

    y_svc_test=classifier.predict(X_test_scaled)

cm= confusion_matrix(y_test, y_svc_test, labels=classifier.classes_)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[labels[classifiedisp.plot()]
    plt.grid(False)
    plt.show()

# Measure the performance
```

```
print('KNeighborsClassifier')
print("Accuracy score of training %.3f" %metrics.accuracy_score(y_train, y_svc_train))
print("Error rate of training %.3f" %mean_absolute_error(y_train,y_svc_train))
print("Accuracy score of test %.3f" %metrics.accuracy_score(y_test, y_svc_test))
print("Error rate of test %.3f" %mean_absolute_error(y_test,y_svc_test))
print(classification_report(y_test,y_svc_test))
```


KNeighborsClassifier
Accuracy score of training 0.723
Error rate of training 0.172
Accuracy score of test 0.708
Error rate of test 0.200

	precision	recall	f1-score	support
1	0.96	0.76	0.85	2800
2	0.60	0.47	0.52	2637
3	0.63	0.88	0.73	2816
accuracy			0.71	8253
macro avg	0.73	0.70	0.70	8253
weighted avg	0.73	0.71	0.70	8253