

Cálculo en Varias Variables Doctorado en Matemáticas

Mg: Julián Uribe Castañeda

Universidad Nacional de Colombia

13 de marzo de 2024

Integrales dobles sobre rectángulos

Objetivo (sección).

Nuestro propósito en esta parte es encontrar formas de generalizar el concepto de integral definida de una función de una variable a los casos de funciones de 2 variables.

Observación (Integral cálculo de una variable).

(1) Sea $f: [a, b] \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ una función continua. La gráfica de f es el conjunto definido como

Gráfica
$$(f) = \{(x,y) \in \mathbb{R}^2 : y = f(x), x \in [a,b]\}$$

y geométricamente este conjunto luce como se muestra en la siguiente figura.

Además, sabemos de cálculo de una variable que $\int_a^b f(x)dx$ es el área bajo la gráfica de la función f y que se encuentra encima del eje x.

(2) Ahora supongamos que $f:[a,b]\times[c,d]\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ es una función continua definida como $(x,y)\mapsto f(x,y)=z$. Entonces la gráfica de f es el conjunto de puntos definido como:

Gráfica
$$(f) = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y), (x, y) \in [a, b] \times [c, d]\}.$$

Gráficamente este conjunto luce como:

Nota (representación geométrica de una integral).

Como en el caso de una variable, debe haber alguna clase de integral que representa al volumen bajo la gráfica de f que se encuentra encima del plano xy.

En este caso esta afirmación es cierta y para obtener una respuesta satisfactoria, analicemos primero el concepto de "integral iterada".

Observación (Integral iterada).

Sea $f:[a,b]\times[c,d]\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ una función continua, entonces:

- (1) Dado $(x_0, y_0) \in [a, b] \times [c, d]$ un punto fijo, entonces definimos las funciones $g : [a, b] \longrightarrow \mathbb{R}$ y $h : [c, d] \longrightarrow \mathbb{R}$ como:
- $(\checkmark) g(x) = f(x, y_0) \operatorname{con} x \in [a, b],$
- $(\checkmark) h(y) = f(x_0, y) \text{ con } y \in [c, d],$

son funciones continuas las cuales satisfacen que:

 $(\checkmark)\int\limits_a^b g(x)dx=\int\limits_a^b f(x,y_0)dx$ es el área que se encuentra debajo de la intersección entre la gráfica de la función f y el plano $y=y_0$ que se encuentra encima del plano xy.

(\checkmark) $\int_{c}^{d} h(y)dy = \int_{c}^{d} f(x_{0},y)dy$ es el área que se encuentra debajo de la intersección entre la gráfica de la función f y el plano $x = x_{0}$ que se encuentra encima del plano xy.

(2) Si denotamos por $A_1:[a,b]\longrightarrow \mathbb{R}$ y $A_2:[c,d]\longrightarrow \mathbb{R}$ las funciones definidas por:

$$(\checkmark) A_1(x_0) = \int_c^u f(x_0, y) dy$$
 para cada $x_0 \in [a, b]$.

$$(\checkmark) A_2(y_0) = \int_a^b f(x, y_0) dx$$
 para cada $y_0 \in [c, d]$.

Entonces surge una pregunta natural la cual es:

¿Cuál es la relación entre las integrales
$$\int_{a}^{b} A_{1}(x)dx = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx \quad y \quad \int_{c}^{d} A_{2}(y)dy = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy?$$

La respuesta a esta pregunta la dá el siguiente teorema.

Teorema (Fubini).

Supongamos que $f:[a,b]\times[c,d]\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ es una función continua, entonces

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy.$$

Nota (Volumen bajo la gráfica de f).

De hecho el volumen V bajo la gráfica de f que se encuentra encima del plano xy se puede calcular como:

$$V = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$$

En ocasiones denotamos el volumen V como $\iint_R f(x,y)dA$, donde $R = [a,b] \times [c,d]$. De esto

tenemos la siguiente igualdad:

$$\iint_{B} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy.$$

Nota (integrales iteradas).

Las integrales
$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$
 son llamadas las integrales dobles iteradas de f en el rectángulo $[a,b] \times [c,d]$.

Ejemplo (volumen bajo la gráfica de una función).

Encontrar el volumen bajo la gráfica de la función
$$f(x,y) = cos(x)sin(y)$$
 sobre el rectángulo $R = \left\{ (x,y) \in \mathbb{R}^2 : 0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{4} \right\} = \left[0, \frac{\pi}{2} \right] \times \left[0, \frac{\pi}{4} \right].$

Solución:

Volumen =
$$\iint_{R} f(x,y)dA = \int_{0}^{\infty} \int_{0}^{\infty} \cos(x)\sin(y)dydx$$
. Entonces para hallar esta integral doble, procedemos de la siguiente manera:

(\checkmark) Calculamos la integral $\int \cos(x)\sin(y)dy$. Esto lo hacemos integrando de manera natural

respecto a la variable y y considerando la variable x constante.

$$\int_{0}^{\pi/4} \cos(x)\sin(y)dy = \cos(x) \int_{0}^{\pi/4} \sin(y)dy = \cos(x)(-\cos(y)|_{y=0}^{y=\pi/4}) = \cos(x)\left(-\frac{\sqrt{2}}{2} + 1\right),$$

$$\int_{0}^{\pi/4} \cos(x)\sin(y)dy = \left(\frac{2-\sqrt{2}}{2}\right)\cos(x).$$

(\checkmark) Calculamos $\int_{0}^{\infty} \int_{0}^{\infty} cos(x)sin(y)dydx$ usando la parte anterior.

$$\int_{0}^{\pi/2} \int_{0}^{\pi/4} \cos(x) \sin(y) \, dy \, dx = \int_{0}^{\pi/2} \left(\frac{2 - \sqrt{2}}{2} \right) \cos(x) \, dx = \left(\frac{2 - \sqrt{2}}{2} \right) \int_{0}^{\pi/2} \cos(x) \, dx$$

$$\int_{0}^{\pi/2} \int_{0}^{\pi/4} \cos(x) \sin(y) \, dy \, dx = \left(\frac{2 - \sqrt{2}}{2} \right) \sin(x) \Big|_{x=0}^{x=\pi/2} = \frac{2 - \sqrt{2}}{2}.$$

Lo anterior muestra que el volumen pedido es $\frac{2-\sqrt{2}}{2}$.

Nota (ejemplo anterior).

Cabe resaltar que en el ejemplo anterior, un calculo similar demuestra que

Volumen =
$$\iint_{B} f(x,y) dA = \int_{0}^{\pi/4} \int_{0}^{\pi/2} \cos(x) \sin(y) dx dy = \frac{2-\sqrt{2}}{2}.$$

Ejemplo (volumen bajo la gráfica de una función).

Encontrar el volumen bajo la gráfica de la función $f(x,y) = 2x^2 + y^4 sin(\pi x)$ sobre el rectángulo $R = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, -1 \le y \le 2\} = [0,1] \times [-1,2]$.

Solución:

Volumen = $\iint\limits_{R} f(x,y) dA = \int\limits_{0}^{1} \int\limits_{-1}^{2} 2x^2 + y^4 sin(\pi x) dy dx$. Entonces para hallar esta integral doble, procedemos de la siguiente manera:

(\checkmark) Calculamos la integral $\int_{-1}^{2} 2x^2 + y^4 sin(\pi x) dy$. Esto lo hacemos integrando de manera natural respecto a la variable y y considerando la variable x constante.

$$\int_{-1}^{2} 2x^{2} + y^{4} \sin(\pi x) dy = 2x^{2} \left(y|_{y=-1}^{y=2} \right) + \sin(\pi x) \left(\left. \frac{y^{5}}{5} \right|_{y=-1}^{y=2} \right),$$

$$\int_{0}^{2} 2x^{2} + y^{4} \sin(\pi x) dy = 2x^{2} (2+1) + \sin(\pi x) \left(\frac{32}{5} + \frac{1}{5}\right) = 6x^{2} + \frac{33}{5} \sin(\pi x).$$

(
$$\checkmark$$
) Calculamos $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 2x^2 + y^4 \sin(\pi x) dy dx$ usando la parte anterior.

$$\int_{0}^{1} \int_{-1}^{2} 2x^{2} + y^{4} \sin(\pi x) dy dx = \int_{0}^{1} 6x^{2} + \frac{33}{5} \sin(\pi x) dx = 6\left(\frac{x^{3}}{3}\Big|_{x=0}^{x=1}\right) + \frac{33}{5}\left(-\frac{\cos(\pi x)}{\pi}\Big|_{x=0}^{x=1}\right)$$

$$\int_{0}^{1} \int_{-1}^{2} 2x^{2} + y^{4} \sin(\pi x) dy dx = 6\left(\frac{1}{3}\right) - \frac{33}{5\pi}(-1 - 1) = 2 + \frac{66}{5\pi}.$$

Lo anterior muestra que el volumen pedido es $2+\frac{66}{5\pi}.$

4 D N 4 A N N T N T N N O

Integrales dobles sobre regiones más generales del plano

Idea (Integrales dobles sobre regiones distintas a rectángulos).

Sea $f:D\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ una función continua y D un conjunto acotado. Entonces la gráfica de f sobre D consiste del conjunto descrito como

Gráfica
$$(f) = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y), (x, y) \in D\}$$

como se muestra en la siguiente figura.

De lo anterior surgen naturalmente las siguientes preguntas:

¿Cómo encontrar el volumen del sólido que se encuentra debajo de la gráfica de f y encima del plano xy?

¿Cómo se relaciona este volumen con el concepto de integral iterada?

Para resolver estas preguntas estudiamos algunos nuevos conceptos que nos ofrecen soluciones satisfactorias.

Definición (Regiones elementales en el plano).

(\checkmark) Decimos que un conjunto $D \subseteq \mathbb{R}^2$ es una región de tipo 1, si D se puede escribir como:

$$D = \{(x,y) \in \mathbb{R}^2 : a \le x \le b, \ r(x) \le y \le s(x)\},\$$

donde r y s son funciones continuas en [a,b] con $r(x) \le s(x)$ para todo $x \in [a,b]$.

(\checkmark) Decimos que un conjunto $D \subseteq \mathbb{R}^2$ es una región de tipo 2, si D se puede escribir como:

$$D = \{(x,y) \in \mathbb{R}^2 : c \le y \le d, \ \alpha(y) \le x \le \beta(y)\},\$$

donde α y β son funciones continuas en [c,d] con $\alpha(y) \le \beta(y)$ para todo $y \in [c,d]$.

(\checkmark) Decimos que un conjunto $D \subseteq \mathbb{R}^2$ es una región de tipo 3, si D es una región de tipo 1 y 2.

Nota (siguiente teorema).

El siguiente teorema nos dice como calcular el volumen del sólido que se encuentra debajo de la gráfica de una función definida en una región elemental y encima del plano xy.

Teorema.

Supongamos que $f: D \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ es una función continua sobre D, entonces:

(1) Si D es una región de tipo 1 descrita como $D=\{(x,y)\in\mathbb{R}^2: a\leq x\leq b,\ r(x)\leq y\leq s(x)\}$. Si denotamos el volumen debajo de la gráfica de f sobre D encima del plano xy como $\iint f(x,y)dA, \text{ entonces:}$

$$\iint\limits_{D} f(x,y)dA = \int\limits_{a}^{b} \int\limits_{r(x)}^{s(x)} f(x,y)dydx.$$

(2) Si D es una región de tipo 2 descrita como $D = \{(x,y) \in \mathbb{R}^2 : c \le y \le d, \alpha(y) \le x \le \beta(y)\}$. Si denotamos el volumen debajo de la gráfica de f sobre D encima del plano xy como $\int \int f(x,y) dA, \text{ entonces:}$

$$\iint\limits_{D} f(x,y)dA = \int\limits_{0}^{d} \int\limits_{a(y)}^{\beta(y)} f(x,y)dxdy.$$

Ejemplo (aplicación teorema previo).

Hallar
$$\iint_D 1-x-y \ dA$$
, donde $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1-x\}$.

Solución:

$$\iint_{D} 1 - x - y \ dA = \int_{0}^{1} \int_{0}^{1 - x} 1 - x - y \ dy dx.$$

Entonces para hallar la integral anterior, encontremos primero la integral interna $\int_{-x}^{1-x} 1-x-y \ dy$. De esta manera tenemos que:

$$\int_{0}^{1-x} 1-x-y \ dy = \int_{0}^{1-x} 1 \ dy-x \int_{0}^{1-x} 1 \ dy - \int_{0}^{1-x} y \ dy = \left(y|_{0}^{1-x}\right)-x\left(y|_{0}^{1-x}\right)-\left(\frac{y^{2}}{2}\Big|_{0}^{1-x}\right),$$

$$\int_{0}^{1-x} 1-x-y \ dy = (1-x)-x(1-x)-\frac{(1-x)^{2}}{2} = 1-2x+x^{2}-\frac{(1-x)^{2}}{2}.$$

De lo anterior, tenemos que:

$$\int_{0}^{1} \int_{0}^{1-x} 1 - x - y \, dy \, dx = \int_{0}^{1} 1 - 2x + x^{2} - \frac{(1-x)^{2}}{2} \, dx = (x|_{0}^{1}) - 2\left(\frac{x^{2}}{2}\Big|_{0}^{1}\right) + \left(\frac{x^{3}}{3}\Big|_{0}^{1}\right) - \frac{1}{2}\left(\frac{-(1-x)^{3}}{3}\Big|_{0}^{1}\right),$$

$$\int_{0}^{1} \int_{0}^{1-x} 1-x-y \ dy dx = (1)-2\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)+\frac{1}{6}(1)=1-1+\frac{1}{3}+\frac{1}{6}=\frac{1}{2}.$$

De esta manera tenemos como resultado:

$$\iint 1 - x - y \ dA = \int_{0}^{1} \int_{0}^{1 - x} 1 - x - y \ dy dx = \frac{1}{2}.$$

◆ロト ◆御 ト ◆ 連 ト ◆ 連 ・ り へ

Nota (ejemplo anterior).

Es fácil notar que la región D también se puede describir como $D = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1, \ 0 \le x \le 1 - y\}.$

$$D = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1, \ 0 \le x \le 1 - y\}.$$

Por tanto $\iint 1-x-y \ dA$ también la podemos calcular como:

$$\iint_{D} 1 - x - y \ dA = \int_{0}^{1} \int_{0}^{1 - y} 1 - x - y \ dx dy.$$

Ejemplo (aplicación teorema previo).

Hallar
$$\iint_D y \ dA$$
, donde D es la región acotada por la recta $x-y=0$ y la parábola $x=y^2-2$.

Solución:

Primero notemos que D se puede describir gráficamente como:

Además la D se describe analíticamente como:

$$D = \{(x, y) \in \mathbb{R}^2 : -1 \le y \le 2, \ y^2 - 2 \le x \le y\}.$$

De esta manera tenemos

$$\iint_{D} y \ dA = \int_{-1}^{2} \int_{y^{2}-2}^{y} y dx \ dy = \int_{-1}^{2} y \int_{y^{2}-2}^{y} 1 dx \ dy = \int_{-1}^{2} y (x|_{y^{2}-2}^{y}) \ dy = \int_{-1}^{2} y (y-y^{2}+2) \ dy =$$

$$= \int_{-1}^{2} y^{2} - y^{3} + 2y \ dy = \left(\frac{y^{3}}{3}\Big|_{-1}^{2}\right) - \left(\frac{y^{4}}{4}\Big|_{-1}^{2}\right) + 2\left(\frac{y^{2}}{2}\Big|_{-1}^{2}\right) = \left(\frac{8}{3} + \frac{1}{3}\right) - \left(\frac{16}{4} - \frac{1}{4}\right) + 2\left(\frac{4}{2} - \frac{1}{2}\right) =$$

$$= 3 - \frac{15}{4} + 3 = \frac{9}{4}.$$

Lo anterior demuestra que

$$\int \int y \ dA = \frac{9}{4}.$$

Nota (ejemplo anterior).

En el ejemplo anterior nos dimos cuenta que D es una región elemental de tipo 2. Además es fácil comprobar que D no es una región elemental de tipo 1 (¿por qué?), pero se puede describir como la unión de regiones elementales de tipo 1 como se muestra en la siguiente figura:

Más precisamente $D = A \cup B$, donde:

$$(\checkmark)$$
 $A = \{(x,y) \in \mathbb{R}^2 : -2 \le x \le -1, -\sqrt{2+x} \le y \le \sqrt{2+x} \}$

$$(\checkmark) B = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 2, \ x \le y \le \sqrt{2+x} \}.$$

De lo anterior, tenemos que:

$$\iint_{D} y \ dA = \iint_{A \cup B} y \ dA = \iint_{A} y \ dA + \iint_{B} y \ dA = \int_{-2}^{-1} \int_{-\sqrt{2+x}}^{\sqrt{2+x}} y \ dy \ dx + \int_{-1}^{2} \int_{-x}^{\sqrt{2+x}} y \ dy \ dx,$$

donde

$$(\checkmark) \int_{-2}^{-1} \int_{-2}^{\sqrt{2+x}} y \ dy dx = \int_{-2}^{-1} \left(\frac{y^2}{2} \Big|_{-\sqrt{2+x}}^{\sqrt{2+x}} \right) dx = \int_{-2}^{-1} \frac{1}{2} (2+x-2-x) \ dx = 0.$$

$$(\checkmark) \int_{-1}^{2} \int_{x}^{\sqrt{2}+x} y \, dy \, dx = \int_{-1}^{2} \left(\frac{y^{2}}{2} \Big|_{x}^{\sqrt{2}+x} \right) dx = \int_{-1}^{2} \frac{2+x-x^{2}}{2} dx = \int_{-1}^{2} 1 + \frac{x}{2} - \frac{x^{2}}{2} dx =$$

$$= (2+1) + \frac{4-1}{4} - \frac{(8+1)}{6} = 3 + \frac{3}{4} - \frac{3}{2} = \frac{12+3-6}{4} = \frac{9}{4}.$$

(
$$\checkmark$$
) $\iint_{A} y \ dA = \iint_{A} y \ dA = \iint_{A} y \ dA + \iint_{A} y \ dA = 0 + \frac{9}{4} = \frac{9}{4}$.

Lo anterior muestra que el calculo de $\iint_D y \ dA$ por medio de regiones elementales de tipo 1, coincide con el cálculo por regiones elementales de tipo 2.

Ejemplo (aplicación teorema previo).

Hallar la integral
$$\int_{1}^{2} \int_{0}^{\ln(x)} (x-1)\sqrt{1+e^{2y}} \ dy \ dx.$$

Solución:

Notamos inicialmente que la región de integración D se describe como:

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, \ 0 \le y \le \ln(x)\}.$$

Por otra parte si quisiéramos hacer esta integral como esta planteada, nos vemos obligados a resolver la integral indefinida $\int \sqrt{1+e^{2y}}\ dy$, la cual no se puede calcular (no se puede describir de forma elemental).

Por lo tanto nos vemos obligados a cambiar de método para resolver esta integral. En este proceso nos damos cuenta que la región D también se puede describir como:

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \ln(2), \ e^y \le x \le 2\}.$$

De esta manera la integral dada es igual a:

$$\int_{-\infty}^{2} \int_{-\infty}^{\ln(x)} (x-1)\sqrt{1+e^{2y}} \ dy \ dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\ln(x)} (x-1)\sqrt{1+e^{2y}} \ dA = \int_{-\infty}^{\ln(x)} \int_{-\infty}^{2} (x-1)\sqrt{1+e^{2y}} \ dx \ dy.$$

マロンス部とスヨとスヨと ヨーダ

27 / 32

$$\int_{0}^{\ln(2)} \int_{e^{y}}^{2} (x-1)\sqrt{1+e^{2y}} dx dy = \int_{0}^{\ln(2)} \sqrt{1+e^{2y}} \int_{e^{y}}^{2} (x-1) dx dy =$$

$$= \int_{0}^{\ln(2)} \sqrt{1+e^{2y}} \left[\left(\frac{x^{2}}{2} \Big|_{e^{y}}^{2} \right) - (x|_{e^{y}}^{2}) \right] dy = \int_{0}^{\ln(2)} \sqrt{1+e^{2y}} \left[\frac{(4-e^{2y})}{2} - (2-e^{y}) \right] dy =$$

$$\int_{0}^{\ln(2)} \sqrt{1+e^{2y}} \left[2 - \frac{e^{2y}}{2} - 2 + e^{y} \right] dy = \int_{0}^{\ln(2)} \sqrt{1+e^{2y}} \left[-\frac{e^{2y}}{2} + e^{y} \right] dy =$$

$$= -\frac{1}{2} \int_{0}^{\ln(2)} e^{2y} \sqrt{1+e^{2y}} dy + \int_{0}^{\ln(2)} e^{y} \sqrt{1+e^{2y}} dy.$$

Para terminar encontremos los valores de $\int_{0}^{m(z)} e^{2y} \sqrt{1 + e^{2y}} dy \ y \int_{0}^{m(z)} e^{y} \sqrt{1 + e^{2y}} dy.$

(\checkmark) Para la integral $\int e^{2y} \sqrt{1+e^{2y}} dy$ hacemos la sustitución $u=1+e^{2y}$, con lo cual obtenemos:

$$\int\limits_{0}^{\ln(2)} \mathrm{e}^{2y} \sqrt{1 + \mathrm{e}^{2y}} \, dy = \frac{1}{2} \int\limits_{2}^{5} \sqrt{u} \, du = \left. \frac{u^{3/2}}{3} \right|_{2}^{5} = \frac{5^{3/2} - 2^{3/2}}{3}.$$

(\checkmark) Para la integral $\int_{0}^{\infty} e^{y} \sqrt{1 + e^{2y}} dy$ hacemos la sustitución $u = e^{y}$ con lo cual obtenemos:

$$\int\limits_{0}^{\ln(2)} e^{y} \sqrt{1 + e^{2y}} \, dy = \int\limits_{0}^{2} \sqrt{1 + u^{2}} \, du$$

Para hacer esta integral, solucionamos primero la integral indefinida $\int \sqrt{1+u^2} \ du$ de la siguiente manera:

13 de marzo de 2024

$$\int \sqrt{1+u^2} \ du \ \underset{u=\tan\theta}{\overset{=}{=}} \ \int \sec^3\theta \ d\theta \ \underset{\text{ip or qu\'e?}}{\overset{=}{=}} \ \frac{\sec\theta \tan\theta + \ln(\sec\theta + \tan\theta)}{2} + C =$$

$$= \frac{\sqrt{1+u^2} \ u + \ln(\sqrt{1+u^2} + u)}{2} + C.$$

De esta manera:

$$\int_{1}^{2} \sqrt{1+u^2} \ du = \frac{2\sqrt{5} + \ln(2+\sqrt{5}) - \sqrt{2} - \ln(1+\sqrt{2})}{2}.$$

De esta forma concluimos que la integral pedida es:

$$\int_{-\infty}^{2} \int_{-\infty}^{\ln(x)} (x-1)\sqrt{1+e^{2y}} \ dy \ dx = -\frac{1}{2} \left(\frac{5^{3/2}-2^{3/2}}{3} \right) + \frac{2\sqrt{5} + \ln(2+\sqrt{5}) - \sqrt{2} - \ln(1+\sqrt{2})}{2}.$$

Problemas.

- (1) Evalué las siguientes integrales iteradas.
- (a) $\int \int \int 8x 2y \ dy \ dx.$
- (b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos(s^3) dt ds.$
- (2) Hallar los valores de las siguientes integrales dobles.

(a)
$$\iint_{D} \frac{y}{x^2 + 1} dA \operatorname{con} D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 4, \ 0 \le y \le \sqrt{x}\}.$$

(b)
$$\iint e^{-y^2} dA \operatorname{con} D = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 3, 0 \le x \le y\}.$$

(c)
$$\iint y\sqrt{x^2-y^2} \ dA \ \text{con} \ D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x\}.$$

- (3) Hallar los valores de las siguientes integrales dobles.
- (a) $\iint x\cos(y) dA$ donde D es la región acotada por las curvas y=0, $y=x^2$ y x=1.
- (b) $\iint_D xy \ dA$ donde D es la región acotada por la curva $y = \sqrt{1-x^2}$, el semiplano $x \ge 0$ y los ejes cartesianos.
- (4) Evalué las siguientes integrales invirtiendo el orden de integración.
- (a) $\int_{0}^{1} \int_{3y}^{3} e^{x^2} dx dy$.
- (b) $\int_{0}^{1} \int_{y^2}^{1} \sqrt{y} \sin(y) \ dy \ dx.$
- (c) $\int_{0}^{1} \int_{0}^{1} \sqrt{y^3 + 1} \ dy \ dx$.