THE FACULTY OF ARTS AND SCIENCE University of Toronto

FINAL EXAMINATIONS, APRIL/MAY 2008

MAT402H CLASSICAL PLANE GEOMETRIES AND THEIR TRANSFORMATIONS

Examiner: Professor A. Khovanskii

Total Marks: 100

Duration: 3 hours

NO AIDS ALLOWED.

1. [20 marks] Consider a triangle ABC. Let D be a middle of the side AB, and let E be a middle of the median CD. In what proportion a line AE divides the side CB? Hint: Put appropriate masses at the points A, B and C.

- 2. [20 marks] Take a circle S_0 and its diameter D. Take a chain of circles S_1, S_2, S_3, \ldots such that circle S_1 is tangent to S_0 and is tangent to the diameter D at the center O; the circle S_2 is tangent to S_0 , to D and to S_1 ; the circle S_3 is tangent to S_0 , to D and to S_2 and so on. Let A_1, A_2, \ldots be the sequence of points of tangency of the circles S_1 and S_2 ; the circles S_2 and S_3 and so on. Prove there exists a circle S_1 which contains all the points S_1 , S_2 , S_3 , S_3 , S_4 , S_4 , S_5 , and S_6 and S_7 , and S_8 , and so on.
- 3. [20 marks] Consider a regular triangle ABC. Find all points O for which the sum $O_{AB} + 2O_{BC} + 3O_{CA}$ is the smallest possible. Here O_{AB} , O_{BC} and O_{CA} are distances from point O to the sides AB, BC and CA respectively.
- 4. [20 marks] Assume that for four lines a, b, c, d passing though a point P the cross-ratio (a, b, c, d) equals -1. Prove: is the ray c bisects the angle between a and b, then d is perpendicular to c.
- 5. [20 marks] Prove converse of Desargues's theorem: if three points of intersections of the corresponding sides of two triangles ABC and A'B'C' belong to one line then the lines joining corresponding vertices of the triangles pass through one point.

Hint: Apply arguments we used to prove Desargues's theorem.