

Enhancing Swin Transformer With Semantic Attention For Explainable Prediction

Aneesh Rangnekar, Jue Jiang, Harini Veeraraghavan

July 21, 2024

Session Title: Task-Based Al

Motivation

- State-of-the-art foundation models in for 3D medical imaging
 - Swin UNETR
 - SMIT

are based on the Swin transformer backbone

- However, the underlying architecture
 - cannot directly visualize the specific areas of interest
 - within the image scans
- We facilitate **visualization** of the regions of interest by modifying the architecture, thereby enabling eXplainable AI

Swin UNETR

Image*

CLS

CLS

How do we enhance the [Swin] transformer?

How do we enhance the [Swin] transformer?

Foundation Model: SMART

[S]elf-distilled [M]asked [A]ttention guided masked image modeling with noise [R]egularized [T]eacher

^{*}built on SMIT

Foundation Model: SMART

10k 3D CT Scans:

- Lung Cancer
- Head and Neck
- Multi-organ Abdominal
- Kidney
- Liver
- Pancreas
- COVID-19

Immunotherapy Dataset

- Durable Clinical Benefit Prediction
- Tumor Segmentation

Step 1: Pretraining with Masked Image Modeling and Token Distillation Step 2: Fine-Tuning

Results

We compare SMART against two other approaches:

- AttMask
- SMIT

Pretext	Linear Probing			Fine-tuning		
Task	AP_{50}	AR_{50}	AUC	AP_{50}	AR_{50}	AUC
AttMask	44.9	54.0	0.570	56.0	68.5	0.660
SMIT	46.4	58.1	0.620	56.3	67.0	0.660
SMART	54.5	68.4	0.660	57.4	71.7	0.740

Durable Clinical Benefit Prediction with 100% data utilization

Prediction Attention Visualization post Fine-Tuning

Results

Durable Clinical Benefit Prediction with limited-data learning protocol

DSC: 0.78

Results

Tumor Segmentation		
AttMask	0.69 ± 0.21	
SMIT	0.76 ± 0.13	
SMART	0.77 ± 0.11	

AttMask

DSC: 0.85

SMART

Algorithm Segmentation

SMIT

Results

Additional Results for zero-shot localization on held-out TCIA dataset

Summary

- We introduced a semantic attention block that enables CLS token
 - Helps pretraining the network with informative token masking
 - Helps post fine-tuning XAI
- Further boosts fine-tuning performance under limited data
- Also applied to
 - LIDC dataset for tumor malignancy classification and segmentation
 - TCIA dataset for zero-shot tumor localization
 - Lung Radiomics and Radiogenomics dataset for tumor segmentation
 - on arXiv: 2310.01209

Questions?