## 6 Основы синтеза комбинационных цифровых устройств

Собираем схему КЦУ варианта NX на основе схем вариантов N и X.



Рисунок 6.1 Схема лабораторного макета варианта NX

Проводим эксперименты для заполнения таблицы истинности.



Рисунок 6.2 Работа КЦУ варианта NX при A=0 B=0



Рисунок 6.3 Работа КЦУ варианта NX при A=0 B=1



Рисунок 6.4 Работа КЦУ варианта NX при A=1 B=0



Рисунок 6.5 Работа КЦУ варианта NX при A=1 B=1

Таблица истинности КЦУ варианта NX

| A | В | U1 | U2 | U3 | U4 | U7 | <b>U11</b> |
|---|---|----|----|----|----|----|------------|
| 0 | 0 | 1  | 0  | 0  | 0  | 0  | 0          |
| 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1          |
| 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1          |
| 1 | 1 | 0  | 1  | 0  | 0  | 0  | 0          |

Желтым цветом отмечено конечное выражение.

Логическое выражение

X1=-----

Преобразуем его по правилам законов алгебры логики.

# Правила преобразования логических выражений (законы алгебры логики):

| Закон                  | Для И                                                                                    | Для ИЛИ                                            |  |  |
|------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| двойного отрицания     | $\overline{\overline{A}} = A$                                                            |                                                    |  |  |
| исключения третьего    | $A \cdot \overline{A} = 0$                                                               | $A + \overline{A} = 1$                             |  |  |
| исключения<br>констант | $\mathbf{A} \cdot 1 = \mathbf{A}; \ \mathbf{A} \cdot 0 = 0$                              | A + 0 = A; A + 1 = 1                               |  |  |
| повторения             | $A \cdot A = A$                                                                          | A + A = A                                          |  |  |
| поглощения             | $A \cdot (A + B) = A$                                                                    | $A + A \cdot B = A$                                |  |  |
| переместительный       | $A \cdot B = B \cdot A$                                                                  | A + B = B + A                                      |  |  |
| сочетательный          | $A \cdot (B \cdot C) = (A \cdot B) \cdot C$                                              | A + (B + C) = (A + B) + C                          |  |  |
| распределительный      | $A + B \cdot C = (A + B) \cdot (A + C)$                                                  | $A \cdot (B + C) = A \cdot B + A \cdot C$          |  |  |
| де Моргана             | $\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$ | $\overline{A+B} = \overline{A} \cdot \overline{B}$ |  |  |

#### ТУТ ЗАПИСАНЫ ПРЕОБРАЗОВАНИЯ ЛОГИЧЕСКОГО ВЫРАЖЕНИЯ

| После преобразований получае | M |
|------------------------------|---|
| X1=                          |   |

Проверим правильность «ручных» преобразований с помощью логического преобразователя.



Рисунок 6.7 Работа логического преобразователя

### Упрощенное выражение



Рисунок 6.8 Упрощение с помощью логического преобразователя

Построим схему в базисе 2И-НЕ. По формулам де Моргана:

Формулы де Моргана
$$\overline{A\cdot B}=\overline{A}+\overline{B}$$
 $\overline{A+B}=\overline{A}\cdot \overline{B}$ 

Рисунок 6.9 Формулы де Моргана

Источник: <a href="https://">https://</a>... (Дата посещения: 28.11.2020)

## ТУТ ЗАПИСАНЫ ПРЕОБРАЗОВАНИЯ ЛОГИЧЕСКОГО ВЫРАЖЕНИЯ



Рисунок 6.10 Изучение схемы в базисе 2И-НЕ

Схема по полученному на рис 6.8 логическому выражению:

