Quasi-Monte Carlo for Bayesian Optimal Experimental Design Problems Governed by PDEs

Vesa Kaarnioja (FU Berlin) and Claudia Schillings (FU Berlin) SIAM UQ – February 27, 2024

Table of contents

Part I: Quasi-Monte Carlo methods

Part II: Bayesian optimal experimental design

Part I: Quasi-Monte Carlo

methods

High-dimensional numerical integration

$$\int_{[0,1]^s} f(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} \approx \sum_{i=1}^n w_i f(\boldsymbol{t}_i)$$

Figure 1: Tensor product grid, sparse grid, Monte Carlo nodes (not QMC rules)

Figure 2: Sobol' points, lattice rule (examples of QMC rules)

Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature rules

$$\int_{[0,1]^s} f(\mathbf{y}) \, \mathrm{d}\mathbf{y} \approx \frac{1}{n} \sum_{i=1}^n f(\mathbf{t}_i),$$

where $(t_i)_{i=1}^n$ is an ensemble of *deterministic* nodes in $[0,1]^s$.

The nodes $(t_i)_{i=1}^n$ are NOT random!! Instead, they are deterministically chosen.

QMC methods exploit the smoothness and anisotropy of an integrand in order to achieve better-than-Monte Carlo rates.

Lattice rules

Rank-1 lattice rules

$$Q_{s,n}(f) = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{t}_i)$$

have the points

$$t_i = \operatorname{mod}\left(\frac{iz}{n}, 1\right), \quad i \in \{1, \dots, n\},$$

where the entire point set is determined by the generating vector $\mathbf{z} \in \mathbb{N}^s$, with all components coprime to n.

Lattice rule with z = (1,55) and n = 89 nodes in $[0,1]^2$

The quality of the lattice rule is determined by the choice of z.

Randomly shifted lattice rules

Shifted rank-1 lattice rules have points

$$\mathbf{t}_i = \operatorname{mod}\left(\frac{i\mathbf{z}}{n} + \mathbf{\Delta}, 1\right), \quad i \in \{1, \dots, n\}.$$

 $\Delta \in [0,1)^s$ is the *shift*

Use a number of random shifts for error estimation.

Lattice rule shifted by $\Delta = (0.1, 0.3)$.

Let ${\bf \Delta}^{(r)}$, $r=1,\ldots,R$, be independent random shifts drawn from $U([0,1]^s)$ and define

$$Q_{s,n}^{(r)}(f) := rac{1}{n} \sum_{i=1}^n f(\operatorname{mod}(oldsymbol{t}_i + oldsymbol{\Delta}^{(r)}, 1)).$$
 (QMC rule with 1 random shift)

Then

$$\overline{Q}_{s,n}(f) = \frac{1}{R} \sum_{r=1}^{R} Q_{s,n}^{(r)} f$$
 (QMC rule with R random shifts)

is an unbiased estimator of $I_s(f)$.

Let $f:[0,1]^s \to \mathbb{R}$ be sufficiently smooth.

Error bound (one random shift):

$$|I_s(f)-Q_{s,n}^{\Delta}(f)|\leq e_{s,n,\gamma}^{\Delta}(z)||f||_{\gamma}.$$

R.M.S. error bound (shift-averaged):

$$\sqrt{\mathbb{E}_{\Delta}[|I_{s}(f) - \overline{Q}_{s,n}(f)|^{2}]} \leq e_{s,n,\gamma}^{\mathrm{sh}}(\mathbf{z})||f||_{\gamma}.$$

We consider weighted Sobolev spaces with dominating mixed smoothness, equipped with norm

$$\|f\|_{\boldsymbol{\gamma}}^2 = \sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[0,1]^{|\mathfrak{u}|}} \left(\int_{[0,1]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|} f}{\partial \boldsymbol{y}_{\mathfrak{u}}} (\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}_{-\mathfrak{u}} \right)^2 \mathrm{d}\boldsymbol{y}_{\mathfrak{u}}$$

and (squared) worst case error

$$P(\boldsymbol{z}) := e_{\boldsymbol{s}, \boldsymbol{n}, \boldsymbol{\gamma}}^{\operatorname{sh}}(\boldsymbol{z})^2 = \frac{1}{n} \sum_{k=0}^{n-1} \sum_{\varnothing \neq \boldsymbol{u} \subseteq \{1:s\}} \gamma_{\boldsymbol{u}} \prod_{j \in \boldsymbol{u}} \omega \left(\left\{ \frac{kz_j}{n} \right\} \right)$$

where
$$\omega(x) = x^2 - x + \frac{1}{6}$$
.

CBC algorithm (Sloan, Kuo, Joe 2002)

The idea of the *component-by-component* (CBC) algorithm is to find a good generating vector $\mathbf{z} = (z_1, \dots, z_s)$ by proceeding as follows:

- 1. Set $z_1 = 1$;
- 2. With z_1 fixed, choose z_2 to minimize error criterion $P(z_1, z_2)$;
- With z₁ and z₂ fixed, choose z₃ to minimize error criterion P(z₁, z₂, z₃)
 :

Efficient implementation using FFT (QMC4PDE, QMCPy, etc.) if weights have certain structure (e.g., POD weights).

Theorem (CBC error bound)

The generating vector $\mathbf{z} \in \mathbb{N}^s$ constructed by the CBC algorithm, minimizing the squared shift-averaged worst-case error $[e^{\mathrm{sh}}_{s,n,\gamma}(\mathbf{z})]^2$ for the weighted unanchored Sobolev space in each step, satisfies

$$[e_{s,n,\gamma}^{\mathrm{sh}}(\mathbf{z})]^2 \leq \left(\frac{1}{\varphi(n)} \sum_{\varnothing \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}}\right)^{|\mathfrak{u}|}\right)^{1/\lambda} \quad \textit{for all } \lambda \in (1/2,1],$$

where $\zeta(x) := \sum_{k=1}^{\infty} k^{-x}$ denotes the Riemann zeta function for x > 1.

Remarks:

- Optimal rate of convergence $\mathcal{O}(n^{-1+\delta})$ in weighted Sobolev spaces, independently of s under an appropriate condition on the weights.
- Cost of algorithm for POD weights is $\mathcal{O}(s \, n \log n + s^2 \, n)$ using FFT.

Significance: Suppose that $f \in H_{s,\gamma}$ for all $\gamma = (\gamma_{\mathfrak{u}})_{\mathfrak{u} \subseteq \{1:s\}}$. Then for any given sequence of weights γ , we can use the CBC algorithm to obtain a generating vector satisfying the error bound

$$\sqrt{\mathbb{E}_{\mathbf{\Delta}}|I_{s}f - Q_{s,n}^{\mathbf{\Delta}}f|^{2}} \leq \left(\frac{1}{\varphi(n)} \sum_{\varnothing \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^{2})^{\lambda}}\right)^{|\mathfrak{u}|}\right)^{1/(2\lambda)} \|f\|_{s,\gamma} \tag{1}$$

for all $\lambda \in (1/2, 1]$. We can use the following strategy:

- For a given integrand f, estimate the norm $||f||_{s,\gamma}$.
- Find weights γ which *minimize* the error bound (1).
- Using the optimized weights γ as input, use the CBC algorithm to find a generating vector which satisfies the error bound (1).

Part II: Bayesian optimal

experimental design

Let $G: \Theta \times \Xi \to \mathbb{R}^k$ be a forward mapping depending on a true parameter $\theta \in \Theta$ and a design parameter $\xi \in \Xi$.

Measurement model:

$$\mathbf{y} = G(\boldsymbol{\theta}, \boldsymbol{\xi}) + \boldsymbol{\eta},$$

where $\mathbf{y} \in \mathbb{R}^k$ is the measurement data and $\mathbf{\eta} \in \mathbb{R}^k$ is Gaussian noise such that $\mathbf{\eta} \sim \mathcal{N}(0, \Gamma)$ with positive definite covariance matrix $\Gamma \in \mathbb{R}^{k \times k}$.

Goal in Bayesian optimal experimental design: Recover the design parameter ξ for the Bayesian inference of θ , which we model as a random variable endowed with prior distribution $\pi(\theta)$.

Example

Suppose we have 9 slots and 3 sensors. Before carrying out the experiment, which 3 slots do we expect to be the most informative for the recovery of the unknown parameter?

$$\rightarrow \binom{9}{3} = 84$$
 possible configurations

Left: 9 slots. Right: We have 84 possible ways to place 3 sensors into 9 slots.

How to rank the 84 different possibilities from most informative to least informative?

A measure of the information gain for a given design $\pmb{\xi}$ and data \pmb{y} is given by the Kullback–Leibler divergence

$$D_{\mathrm{KL}}(\pi(\cdot|\boldsymbol{y},\boldsymbol{\xi})||\pi(\cdot)) := \int_{\Theta} \log \left(\frac{\pi(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi})}{\pi(\boldsymbol{\theta})}\right) \pi(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi}) \,\mathrm{d}\boldsymbol{\theta}. \tag{2}$$

We wish to maximize the expected utility (2) over the design space Ξ with respect to the data y and model parameters θ :

$$\max_{\boldsymbol{\xi} \in \Xi} \underbrace{\int_{Y} \int_{\Theta} \log \left(\frac{\pi(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi})}{\pi(\boldsymbol{\theta})} \right) \pi(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi}) \pi(\boldsymbol{y}|\boldsymbol{\xi}) \, d\boldsymbol{\theta} \, d\boldsymbol{y}}_{=:EIG},$$

where $\pi(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi})$ corresponds to the posterior distribution of the parameter $\boldsymbol{\theta}$ and $\pi(\boldsymbol{y}|\boldsymbol{\xi}) = \int_{\Theta} \pi(\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{\xi})\pi(\boldsymbol{\theta})\,\mathrm{d}\boldsymbol{\theta}$ is the marginal distribution of the data \boldsymbol{y} .

The posterior is given by Bayes' theorem

$$\pi(\boldsymbol{\theta}|\mathbf{y},\boldsymbol{\xi}) = \frac{\pi(\mathbf{y}|\boldsymbol{\theta},\boldsymbol{\xi})\pi(\boldsymbol{\theta})}{\pi(\mathbf{y}|\boldsymbol{\xi})},$$

which means that the expected utility can be written as

EIG =
$$\int_{Y} \int_{\Theta} \log \left(\frac{\pi(\boldsymbol{\theta}|\mathbf{y}, \boldsymbol{\xi})}{\pi(\boldsymbol{\theta})} \right) \pi(\boldsymbol{\theta}|\mathbf{y}, \boldsymbol{\xi}) d\boldsymbol{\theta} \pi(\mathbf{y}|\boldsymbol{\xi}) d\mathbf{y}$$

= $\int_{\Theta} \left[\int_{Y} \log \left(\frac{\pi(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{\xi})}{\pi(\mathbf{y}|\boldsymbol{\xi})} \right) \pi(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{\xi}) d\mathbf{y} \right] \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$

Approaches taken in the literature:

- Double-loop Monte Carlo (Beck, Mansour, Espath, Long, Tempone)
- MCLA (Beck, Mansour, Espath, Long, Tempone)
- DLMCIS (Beck, Mansour, Espath, Long, Tempone)

Let us assume the following:

A1 The forward model $\mathbf{y} = \mathcal{G}(\mathbf{ heta}, \mathbf{\xi}) + \mathbf{\eta}$ satisfies

$$\|\partial_{\boldsymbol{\theta}}^{\boldsymbol{\nu}} G(\boldsymbol{\theta}, \boldsymbol{\xi})\| \leq C_0 |\boldsymbol{\nu}|! \boldsymbol{b}^{\boldsymbol{\nu}},$$

where $\boldsymbol{b}:=(b_j)_{j\geq 1}\in \ell^p$ are nonnegative real numbers for some $p\in (0,1)$ and $C_0\geq 1$ is independent of $\boldsymbol{\xi}\in \Xi$.

A2 $\Theta = [-\frac{1}{2}, \frac{1}{2}]^s$ and $\pi(\theta) = 1$ for $\theta \in \Theta$ and 0 otherwise.

A3 The noise covariance is $\Gamma = \sigma^2 I_k$, $0 < \sigma \le 1$.

Example

Model problem: Let $D \subset \mathbb{R}^d$, $d \in \{1,2,3\}$, be a nonempty, bounded, and convex Lipschitz domain and $z \in L^2(D)$. For each $\theta \in \Theta$, there exists a strong solution $u(\cdot,\theta) \in H^2(D) \cap H^1_0(D)$ to

$$\begin{cases} -\nabla \cdot (a(\mathbf{x}, \boldsymbol{\theta}) \nabla u(\mathbf{x}, \boldsymbol{\theta})) = z(\mathbf{x}), & \mathbf{x} \in D, \ \boldsymbol{\theta} \in \Theta, \\ u(\mathbf{x}, \boldsymbol{\theta}) = 0, & \mathbf{x} \in \partial D, \ \boldsymbol{\theta} \in \Theta, \end{cases}$$

where we assume that $\theta=(\theta_j)_{j\geq 1}$ i.i.d. uniformly distributed in [-1/2,1/2],

$$a(\mathbf{x}, \boldsymbol{\theta}) = a_0(\mathbf{x}) + \sum_{j>1} \theta_j \psi_j(\mathbf{x}), \quad \mathbf{x} \in D, \ \boldsymbol{\theta} \in [-1/2, 1/2]^{\mathbb{N}},$$

with $a_0 \in W^{1,\infty}(D)$ and $\psi_j \in W^{1,\infty}(D)$, $j \geq 1$, such that $\sum_{j\geq 1} \|\psi_j\|_{W^{1,\infty}(D)} < \infty, \ 0 < a_{\min} \leq a(\mathbf{x},\theta) \leq a_{\max} < \infty \text{ for all } \mathbf{x} \in D,$ $\theta \in [-1/2,1/2]^{\mathbb{N}}$, and $b_j := \|\psi_j\|_{L^\infty(D)}/a_{\min}$.

Then $G(\theta, \xi) := (u(x, \theta))_{x \in \xi}$, where $\xi = \{x_1, \dots, x_k\} \subset D$, satisfies A1.

If $heta \perp \eta$, then the likelihood is given by

$$\pi(\mathbf{y}|\mathbf{\theta}, \mathbf{\xi}) = C \mathrm{e}^{-\frac{1}{2\sigma^2} \|\mathbf{y} - G(\mathbf{\theta}, \mathbf{\xi})\|^2}, \quad C = \frac{1}{(2\pi\sigma^2)^{k/2}}.$$

Under these conditions, it is easy to see that

$$\begin{aligned} & \text{EIG} = \int_{Y} \int_{\Theta} \log \left(\frac{\pi(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{\xi})}{\pi(\boldsymbol{y}|\boldsymbol{\xi})} \right) \pi(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{\xi}) \pi(\boldsymbol{\theta}) \, d\boldsymbol{\theta} \, d\boldsymbol{y} \\ & = \log C - 1 - \int_{Y} \log \left(\int_{\Theta} C e^{-\frac{1}{2\sigma^{2}} \|\boldsymbol{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^{2}} \, d\boldsymbol{\theta} \right) \int_{\Theta} C e^{-\frac{1}{2\sigma^{2}} \|\boldsymbol{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^{2}} \, d\boldsymbol{\theta} \, d\boldsymbol{y}. \end{aligned}$$

Observations:

- The **inner integral** can be approximated *independently* of the dimension *s* using QMC.
- In general, the data dimension *k* affects the QMC cubature error bound of the **outer integral**.
- How to efficiently approximate the nested integrals?

Consider

$$\int_{Y} \log \left(\int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \|\boldsymbol{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^2} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \|\boldsymbol{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^2} \, \mathrm{d}\boldsymbol{\theta} \, \mathrm{d}\boldsymbol{y}.$$

• Parametric regularity of the integrand in

$$\int_{\Theta} C e^{-\frac{1}{2\sigma^2} \|\mathbf{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^2} d\boldsymbol{\theta}$$

is well-understood (as long as the parametric regularity of G can be quantified); straightforward modification of Herrmann–Keller–Schwab (2021).

 More generally, in many applications of UQ, we are interested in parametric integrals of quantities of the general form

$$f(G(\theta,\cdot)),$$
 (3)

where $f: \mathbb{R}^k \to \mathbb{R}$ is a (somewhat) smooth nonlinear quantity of interest[†], and

$$\|\partial_{\boldsymbol{\theta}}^{\boldsymbol{\nu}}G(\boldsymbol{\theta},\cdot)\| \leq C_0|\boldsymbol{\nu}|!\boldsymbol{b}^{\boldsymbol{\nu}}.$$

What can be said about the parametric regularity of (3)?

[†]E.g.,
$$f(x) = ||y - x||^2$$
 or $f(x) = e^{-\frac{1}{2\sigma^2}||y - x||^2}$.

Faà di Bruno's formula:

$$\partial_{m{ heta}}^{m{
u}}f(G(m{ heta},\cdot)) = \sum_{\substack{1 \leq |m{\lambda}| \leq |m{
u}| \\ m{\lambda} \in \mathbb{N}_0^k}} \partial_{m{x}}^{m{\lambda}}f(m{x}) igg|_{m{x} = G(m{ heta},\cdot)} \kappa_{m{
u},m{\lambda}}(m{ heta}), \quad m{
u}
eq m{0},$$

where the sequence $(\kappa_{\nu,\lambda})$ depends only on G via

$$\kappa_{\boldsymbol{\nu},\mathbf{0}} \equiv \delta_{\boldsymbol{\nu},\mathbf{0}},$$

 $\kappa_{\nu,\lambda} \equiv 0$ if $|\nu| < |\lambda|$ or $\lambda \not\geq 0$ (i.e., if λ contains negative entries),

$$\kappa_{\boldsymbol{\nu}+\boldsymbol{e}_j,\boldsymbol{\lambda}}(\boldsymbol{\theta}) = \sum_{\ell \in \text{supp}(\boldsymbol{\lambda})} \sum_{\boldsymbol{0} \leq \boldsymbol{m} < \boldsymbol{\nu}} \binom{\boldsymbol{\nu}}{\boldsymbol{m}} \partial^{\boldsymbol{m}+\boldsymbol{e}_j} [G(\boldsymbol{\theta},\cdot)]_{\ell} \kappa_{\boldsymbol{\nu}-\boldsymbol{m},\boldsymbol{\lambda}-\boldsymbol{e}_\ell}(\boldsymbol{\theta}) \quad \text{otherwise}.$$

Since $\|\partial_{\theta}^{\nu}G(\theta,\cdot)\| \leq C_0|\nu|!b^{\nu}$, we obtain the following *uniform* bound.

Lemma

For all $1 \leq |\lambda| \leq |\nu|$, there holds

$$|\kappa_{\nu,\lambda}(\boldsymbol{\theta})| \leq C_0^{|\lambda|} \frac{|\nu|!(|\nu|-1)!}{\lambda!(|\nu|-|\lambda|)!(|\lambda|-1)!} \boldsymbol{b}^{\nu}.$$

Proof.

By induction w.r.t. the order of the multi-index ν .

For the present problem, plugging the upper bound for $|\kappa_{\nu,\lambda}(\theta)|$ into the expression

$$\partial_{m{ heta}}^{m{
u}}f(G(m{ heta},\cdot)) = \sum_{\substack{1 \leq |m{\lambda}| \leq |m{
u}| \\ m{\lambda} \in \mathbb{N}_0^k}} \partial_{m{x}}^{m{\lambda}}f(m{x}) igg|_{m{x} = G(m{ heta},\cdot)} \kappa_{m{
u},m{\lambda}}(m{ heta}), \quad m{
u}
eq m{0},$$

and making some simple estimates yields altogether that

$$|\partial_{\boldsymbol{\theta}}^{\boldsymbol{\nu}}\mathrm{e}^{-\frac{1}{2\sigma^2}\|\boldsymbol{y}-\boldsymbol{G}(\boldsymbol{\theta},\cdot)\|^2}| \leq 3.82^k \cdot C_0^{|\boldsymbol{\nu}|} 2^{|\boldsymbol{\nu}|-1} \sigma^{-|\boldsymbol{\nu}|} |\boldsymbol{\nu}|! \boldsymbol{b}^{\boldsymbol{\nu}} \quad \text{for all } \boldsymbol{\nu} \neq \boldsymbol{0}.$$

Decomposing the high-dimensional integral

Suppose that $Y = \mathbb{R}^k$. Then

$$\begin{split} &\int_{\mathbb{R}^{k}} \log \left(\int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\widetilde{\boldsymbol{\theta}}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\widetilde{\boldsymbol{\theta}} \, \mathrm{d}\mathbf{y} \\ &= \int_{[-K,K]^{k}} \log \left(\int_{\Theta} C_{k,\sigma} \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\widetilde{\boldsymbol{\theta}}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\widetilde{\boldsymbol{\theta}} \, \mathrm{d}\mathbf{y} \\ &+ \int_{\mathbb{R}^{k} \setminus [-K,K]^{k}} \log \left(\int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\boldsymbol{\theta}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^{2}} \|\mathbf{y} - G(\widetilde{\boldsymbol{\theta}}, \boldsymbol{\xi})\|^{2}} \, \mathrm{d}\widetilde{\boldsymbol{\theta}} \, \mathrm{d}\mathbf{y} \\ &=: \mathcal{I}_{K} + \widetilde{\mathcal{I}}_{K}. \end{split}$$

For $K \gg 1$, there holds

$$\begin{split} |\widetilde{\mathcal{I}}_K| &\leq C^{1/2} \mathrm{e}^{\frac{\|\overline{G}\|^2}{4\sigma^2}} (4\pi\sigma^2)^{k/2} \\ &\quad - C^{1/2} \mathrm{e}^{\frac{\|\overline{G}\|^2}{4\sigma^2}} (\pi\sigma^2)^{k/2} \prod_{j=1}^k \left(\mathrm{erf} \left(\frac{\overline{G}_j + K}{2\sigma} \right) - \mathrm{erf} \left(\frac{\overline{G}_j - K}{2\sigma} \right) \right), \end{split}$$

 $\text{ where } \overline{G} := (\overline{G}_j)_{j=1}^k := G(\boldsymbol{\theta}^*, \boldsymbol{\xi}^*), \ (\boldsymbol{\theta}^*, \boldsymbol{\xi}^*) := \arg\max_{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in (\Theta, \Xi)} \lVert G(\boldsymbol{\theta}, \boldsymbol{\xi}) \rVert.$

$$\int_{[-\mathcal{K},\mathcal{K}]^k} \log \left(\int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \| \boldsymbol{y} - G(\boldsymbol{\theta},\boldsymbol{\xi}) \|^2} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \| \boldsymbol{y} - G(\boldsymbol{\theta},\boldsymbol{\xi}) \|^2} \, \mathrm{d}\boldsymbol{\theta} \, \mathrm{d}\boldsymbol{y}$$

QMC weights for the inner integral:

$$\gamma_{\mathfrak{u}} = \left(|\mathfrak{u}|! \prod_{j \in \mathfrak{u}} \frac{\beta_j}{\sqrt{2\zeta(2\lambda)/(2\pi^2)^{\lambda}}} \right)^{\frac{2}{1+\lambda}}, \quad \lambda = \begin{cases} \frac{p}{2-p} & \text{if } p \in (2/3,1), \\ \frac{1}{2-2\delta} & \text{if } p \in (0,2/3], \end{cases}$$

with $\beta_j:=\frac{2C_0}{\sigma}b_j$, $j\in\{1,\ldots,s\}$, and $\delta>0$ arbitrary, yields the QMC convergence rate

$$\mathcal{O}(\varphi(n)^{\max\{-1/p+1/2,-1+\delta\}})$$

independently of the dimension s with $\varphi(n)$ denoting the Euler totient function.

$$\int_{[-\mathcal{K},\mathcal{K}]^k} \log \left(\int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \| \boldsymbol{y} - G(\boldsymbol{\theta},\boldsymbol{\xi}) \|^2} \, \mathrm{d}\boldsymbol{\theta} \right) \int_{\Theta} C \mathrm{e}^{-\frac{1}{2\sigma^2} \| \boldsymbol{y} - G(\boldsymbol{\theta},\boldsymbol{\xi}) \|^2} \, \mathrm{d}\boldsymbol{\theta} \, \mathrm{d}\boldsymbol{y}$$

QMC weights for the outer integral:

$$\widetilde{\gamma}_{\mathfrak{u}} = \left(|\mathfrak{u}|! \prod_{j \in \mathfrak{u}} \frac{1.1^k k \sigma^{-1} \mathrm{e}^{\frac{1}{2\sigma^2} (k K^2 + 2\sqrt{k}KC + C^2)}}{\log(2) \sqrt{2\zeta(2\widetilde{\lambda})/(2\pi^2)^{\widetilde{\lambda}}}} \right)^{\frac{2}{1+\widetilde{\lambda}}}, \quad \widetilde{\lambda} = \frac{1}{2-2\widetilde{\delta}},$$

with $\widetilde{\delta} >$ 0 arbitrary, yields the QMC convergence rate

$$\mathcal{O}(\varphi(n)^{-1+\widetilde{\delta}})$$

with $\varphi(n)$ denoting the Euler totient function. Note that the implied coefficient depends on k.

The nested integral

Goal of computation:

$$\mathcal{I}_{\mathcal{K}}(f) = \int_{Y_{\mathcal{K}}} g \bigg(\int_{\Theta} f(\boldsymbol{\theta}, \boldsymbol{y}, \boldsymbol{\xi}) d\boldsymbol{\theta} \bigg) d\boldsymbol{y},$$

where $g(x) := x \log x$, $Y_K = [-K, K]^k$, and $f(\theta, y, \xi) := C \mathrm{e}^{-\frac{1}{2\sigma^2} \|y - G(\theta, \xi)\|^2}$.

Define a hierarchy of QMC cubature operators for the **outer integral**, i.e.,

$$I^{(1)}F := \int_{Y_K} F(\mathbf{y}) \, d\mathbf{y} \approx 2^{-\ell} \sum_{k=1}^{2^n} F(\mathbf{y}_k^{(\ell)}) =: Q_\ell^{(1)}F, \ \ell = \ell_0^{(1)}, \ell_0^{(1)} + 1, \ell_0^{(1)} + 2, \dots,$$

for a given function $F \in \widetilde{H}_{k,\widetilde{\gamma}}$, and likewise for the **inner integral**

$$I^{(2)}F := \int_{\Theta} F(\boldsymbol{\theta}) d\boldsymbol{\theta} \approx 2^{-\ell} \sum_{k=1}^{2^{\ell}} F(\boldsymbol{\theta}_{k}^{(\ell)}) =: Q_{\ell}^{(2)}F, \ \ell = \ell_{0}^{(2)}, \ell_{0}^{(2)} + 1, \ell_{0}^{(2)} + 2, \dots,$$

for a given function $F \in H_{s,\gamma}$.

Why full tensor product cubature is a bad idea

Approximating the integral

$$\mathcal{I}_{\mathcal{K}}(f) = \int_{Y_{\mathcal{K}}} g \bigg(\int_{\Theta} f(\boldsymbol{\theta}, \boldsymbol{y}, \boldsymbol{\xi}) d\boldsymbol{\theta} \bigg) d\boldsymbol{y},$$

by

$$\mathcal{I}_{K}(f) \approx Q_{\ell}^{(1)} g(Q_{\ell}^{(2)} f) \tag{4}$$

is inefficient. A hand-wavy argument would be as follows:

• Suppose that we have the approximation rates (recall $n=2^{\ell}$)

$$|I^{(1)}F - Q_{\ell}^{(1)}F| \simeq n^{-\alpha}$$
 and $|I^{(2)}F - Q_{\ell}^{(2)}F| \simeq n^{-\alpha}$.

- Evaluating (4) takes $N=n^2$ function calls, but the cubature accuracy will not be better than $\mathcal{O}(n^{-\alpha})=\mathcal{O}(N^{-\alpha/2})$
 - ightarrow the convergence rate is effectively halved! ("Curse of dimensionality")

Sparse tensor product cubature in the vein of Gilch, Griebel, Oettershagen (2022)

Define the difference cubature operator corresponding to the **outer integral**

$$\Delta_{\ell}^{(1)}F := \begin{cases} Q_{\ell}^{(1)}F - Q_{\ell-1}^{(1)}F & \text{if } \ell \ge 1, \\ Q_{0}^{(1)}F & \text{if } \ell = 0, \end{cases}$$

as well as the *generalized* difference cubature operators corresponding to the **inner integral**

$$\Delta_\ell^{(2)} F := egin{cases} g(Q_\ell^{(2)} F) - g(Q_{\ell-1}^{(2)} F) & ext{if } \ell \geq 1, \ g(Q_0^{(2)} F) & ext{if } \ell = 0. \end{cases}$$

Generalized sparse grid cubature operator:

$$\mathcal{Q}_{L,\varsigma}(f) := \sum_{\varsigma \ell_1 + \frac{\ell_2}{\varsigma} \leq L} \Delta_{\ell_1}^{(1)} \Delta_{\ell_2}^{(2)}(f) = \sum_{\ell_1 = 0}^{L/\varsigma} \Delta_{\ell_1}^{(1)} g(Q_{\varsigma L - \varsigma^2 \ell_1}^{(2)} f).$$

Sparse tensor product cubature

$$\mathcal{Q}_{L,\varsigma}(f) := \sum_{\varsigma \ell_1 + rac{\ell_2}{\varsigma} \leq L} \Delta_{\ell_1}^{(1)} \Delta_{\ell_2}^{(2)}(f) = \sum_{\ell_1 = 0}^{L/\varsigma} \Delta_{\ell_1}^{(1)} g(\mathcal{Q}_{\varsigma L - \varsigma^2 \ell_1}^{(2)} f).$$

Sparse grid error: Our **inner** and **outer** QMC cubatures have essentially linear convergence rates, i.e.,

$$|I^{(1)}f - Q_{\ell}^{(1)}f| \lesssim 2^{-(1-\delta)\ell}$$
 and $|I^{(2)}f - Q_{\ell}^{(2)}f| \lesssim 2^{-(1-\delta)\ell}$.

For an isotropic ($\varsigma=1$) sparse tensor product cubature operator, we obtain

$$\|\mathcal{I}_{K}(f) - \mathcal{Q}_{L,\varsigma}(f)\|_{\Delta} \lesssim 2^{-(1-\delta)L}(L+1)$$

under some additional technical assumptions.

Numerical experiment

Let $D = (0,1)^2$. We consider the elliptic PDE

$$\begin{cases} -\nabla \cdot (a(\mathbf{x}, \boldsymbol{\theta}) \nabla u(\mathbf{x}, \boldsymbol{\theta})) = 10x_1, & \mathbf{x} \in D, \ \boldsymbol{\theta} \in [-1/2, 1/2]^{100}, \\ u(\cdot, \boldsymbol{\theta})|_{\partial D} = 0, & \boldsymbol{\theta} \in [-1/2, 1/2]^{100}, \end{cases}$$

equipped with the parametric diffusion coefficient

$$a(\mathbf{x}, \boldsymbol{\theta}) = 1 + 0.1 \sum_{j=1}^{100} j^{-2} \theta_j \sin(\pi j x_1) \sin(\pi j x_2), \boldsymbol{\theta} \in [-1/2, 1/2]^{100}.$$

Numerical experiment

The goal is to find a design $\boldsymbol{\xi}^*$ from the set

$$\Xi = \{ (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in \Upsilon^3 \mid \mathbf{x}_i \neq \mathbf{x}_j \text{ for } i \neq j \},$$

where

$$\Upsilon = \{(0.25, 0.25), (0.25, 0.50), (0.25, 0.75), \\ (0.50, 0.25), (0.50, 0.50), (0.50, 0.75), \\ (0.75, 0.25), (0.75, 0.50), (0.75, 0.75)\},$$

maximizing the expected information gain subject to the observation operator

$$G(\theta, \xi) = (u(x, \theta))_{x \in \xi}, \quad \theta \in [-1/2, 1/2]^{100}, \ \xi \in \Xi.$$

Numerical experiment

Left: R.M.S. errors for the full tensor product (FTP) and sparse tensor product (STP) cubatures of the nested integral subject to affine and uniform parameterization of the input random field with R=8 random shifts. Right: the optimal design corresponding to the cubature rule with the largest number of points.

Conclusions and outlook

- QMC for DOE: sparse approach can recover almost the optimal rate.
- Related QMC analysis for PDE-constrained optimal control under uncertainty (including also the optimization process):

P. A. Guth, K., F. Y. Kuo, C. Schillings, and I. H. Sloan. *Parabolic PDE-Constrained Optimal Control Under Uncertainty With Entropic Risk Measure Using Quasi-Monte Carlo Integration*. To appear in *Numer. Math.*, 2024

Thank you for your attention!