The Flow of Association and Causation in Graphs

Brady Neal

causalcourse.com

https://www.youtube.com/watch?v=Go4EkHN_PcA&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=19&fbclid=IwAR1BJa8KnN94e8TyY-Am5_KziFDL3HMIyxZ-jv5s7dEcf_JzCvhmwbdSztE

Bayesian networks and causal graphs

The basic building blocks of graphs

The flow of association and causation

Brady Neal 2 / 35

Bayesian networks and causal graphs

The basic building blocks of graphs

The flow of association and causation

Graph terminology: not a graph

Brady Neal

Adjacent

Not Adjacent

Path

Path

Directed Path

Undirected Path

'A'로부터 Reach되는 모든 Node는 Descendant

Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG)

두 부모노드가 하나의 자식 노드를 공유하는데, 서로 연결됭있지 않은 상태

V struct

Bayesian networks and causal graph

The basic building blocks of graph

The flow of association and causation

Naively modeling the joint distribution

Statistical modeling (no causality): $P(x_1, x_2, ..., x_n) = P(x_1) \prod P(x_i \mid x_{i-1}, ..., x_1)$

$$P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2 \mid x_1) P(x_3 \mid x_2, x_1) P(x_4 \mid x_3, x_2, x_1)$$
 Chain rule

Bayesian network로 그리면 X4가 x3에만 영향을 받아서 계산됨

$\overline{x_1}$	x_2	x_3	$P(x_4 \mid x_3, x_2, x_1)$	
0	0	0	α_1	
0	0	1	α_2	07-1
0	1	0	α_3	
0	1	1	0.4	
1	0	0	$\alpha_5 \sim 2^{n-1}$ parameters	!
1	0	1	α_6	
1	1	0	α_7	
1	1	1	α_8	

Bayesian networks and causal graphs

8 / 35

Local Markov assumption

Given its parents in the DAG, a node X is independent of all of its non-descendants.

$$P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2 \mid x_1) P(x_3 \mid x_2, x_1) P(x_4 \mid x_3, x_2, x_1)$$

Local Markov assumption

Given its parents in the DAG, a node X is independent of all of its non-descendants.

$$P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2 \mid x_1) P(x_3 \mid x_2, x_1) P(x_4 \mid x_3)$$

$$P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2) P(x_3 \mid x_1) P(x_4 \mid x_3)$$

Question:

How will the factorization change now?

Bayesian network factorization

$$P(x_1,\ldots,x_n) = \prod_i P(x_i \mid pa_i)$$

local Markov assumption \implies Bayesian network factorization

local Markov assumption

Bayesian network factorization

See Chapter 3 of Koller & Friedman (2009) book for proofs

Minimality assumption

- 1. Given its parents in the DAG, a node X is independent of all its non-descendants (local Markov assumption).
- 2. Adjacent nodes in the DAG are dependent.

2번에 의해서 제외 (independent)

Permits distributions where $P(x, y) = P(x) P(y \mid x)$ and also where

$$P(x,y) = P(x) P(y)$$

Assumptions flowchart

What is a cause?

A variable X is said to be a cause of a variable Y if Y can change in response to changes in X.

Y가 X에 의해서 변화가 될 때

Causal edges assumption

In a directed graph, every parent is a direct cause of all its children.

Assumptions flowchart

DAG +

Two assumptions to give us flow of association and causation in graphs:

- 1. Markov Assumption
- 2. Causal Edges Assumption
 Minimality assumption은 2번과 동일

Bayesian networks and causal graph

The basic building blocks of graph

The flow of association and causation

Association이 어떻게 flow하는지

Graphical building blocks

Two nodes: (X_1) (X_2) or (X_1) (X_2)

Chain Fork Immorality $X_1 \longrightarrow X_2 \longrightarrow X_3$ $X_1 \longrightarrow X_3 \longrightarrow X_3 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_3 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_3 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow$

Chains and forks: independence

association

unblocked path

association

unblocked path

공통인 x2가 변하면, x1, x3가 같이 변하니까 (markov assumption; x2->x1, x2->x3) X1. x3 association

The basic building blocks of graphs

Chains and forks: independence

 X_1 X_2 X_3

association

X2가 conditioning되면 X3는 x2한테만 영향을 받으니까, X1, x3는 conditionally independent, not association

Proof of conditional independence in chains

Goal: show
$$P(x_1, x_3 \mid x_2) = P(x_1 \mid x_2) P(x_3 \mid x_2)$$

- 1. Bayesian network factorization: $P(x_1, x_2, x_3) = P(x_1) P(x_2|x_1) P(x_3|x_2)$
- 2. Apply Bayes' rule:

$$P(x_1, x_3 \mid x_2) = \frac{P(x_1) P(x_2 \mid x_1) P(x_3 \mid x_2)}{P(x_2)}$$

2. Conditioning

$$P(x_1, x_3 \mid x_2) = \frac{P(x_1, x_2)}{P(x_2)} P(x_3 \mid x_2)$$

= $P(x_1 \mid x_2) P(x_3 \mid x_2)$ Conditionally independent

Immoralities

blocked path

 $P(x_1, x_3) = \sum_{x_2} P(x_1, x_2, x_3)$ $= \sum_{x_2} P(x_1) P(x_3) P(x_2 \mid x_1, x_3)$ $= P(x_1) P(x_3) \sum_{x_2} P(x_2 \mid x_1, x_3)$ $= P(x_1) P(x_3)$

V structure는 영향이 흐르지 않는 다 (Immoralities) X1, x3 각각 x2의 원인일 뿐, dependent하지 않다.

Immoralities: conditioning on the collider

unblocked path

Example: good-looking men are jerks

$$X_1 = \begin{cases} 1 & \text{good-looking} \\ 0 & \text{otherwise} \end{cases} \qquad X_3 = \begin{cases} 1 & \text{kind} \\ 0 & \text{jerk} \end{cases}$$

$$X1 = 0$$
, $x2 = 0$

$$X1 = 1, x2 = 0$$

X1 = 1, x2 = 0 X1 = 0, x2 = **Frady Neal**

$$X_2 = X_1 \text{ AND } X_3 = \begin{cases} 1 & \text{in relationship} \\ 0 & \text{not in relationship} \end{cases}$$

26 / 35 The basic building blocks of graphs

로 정해져 있기 때문에, x1=1이면 x2=0 (dependent)

Good-looking men are jerks scatterplot

Groups by availability

Conditioning on descendants of colliders

Bayesian networks and causal graph

The basic building blocks of graph

The flow of association and causation

Blocked path definition

A path between nodes X and Y is blocked by a (potentially empty) conditioning set Z if either of the following is true:

- 1. Along the path, there is a chain $\cdots \to W \to \cdots$ or a fork $\cdots \leftarrow W \to \cdots$ where W is conditioned on $(W \in Z)$.
- 2. There is a collider W on the path that is not conditioned on $(W \notin Z)$ and none of its descendants are conditioned on $(de(W) \not\subseteq Z)$.

Unblocked path: a path that is not blocked

- 1. chain, Fork 에서 W가 condition되거나
- 2. V structure에서 W가 not-condition되거나

d-separation

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths between (any node in) X and (any node in) Y are blocked by Z.

Theorem: Given that P is Markov with respect to G,

$$X \perp \!\!\!\perp_G Y \mid Z \implies X \perp \!\!\!\perp_P Y \mid Z$$

local Markov assumption \iff global Markov assumption

Markov assumption

Brady Neal

The flow of association and causation

32 / 35

T랑 Y가 d-seperated인가? No, M1, M2로 Flow흐르니까

M1가 condition 되었을때, T랑 Y가 d-seperated인가?

No, w1, w2, w3로 흐르니까

M1, W2가 condition 되었을때, T랑 Y가 d-seperated인가?

Yes, Chain 도 막혀 (m1, m2) Fork도 막혀 (w1, w2, w3) V-structure는 원래 못가 (X1, X2, X3) 이제 flow가 안흐르니까 T, Y는 de-seperated

M1, W3가 condition 되었을때, T랑 Y가 d-seperated인가?

Yes, W2랑 동일

M1, W3가 condition 되었을때, T랑 Y가 d-seperated인가?

Yes, W2랑 동일

X2가 condition 되었을때, T랑 Y가 d-seperated인가?

No, X2가 condition되어서 flow흐르므로 T, Y는 not d-seperated

X1가 condition 되었을때, T랑 Y가 d-seperated인가?

Yes, X2가 흐르게 했던 것을 X1이 막아버림 (x2는 T의 영향을 못받음)

따라서, T랑 Y는 d-seperated

Brady Neal

X2때문에 V-structur<mark>e 기^{Brady Neal}</mark> Flow흘려서

The flow of association and causation

33 / 35

The flow of association and causation

