Théorie des graphes : vocabulaire et notions

Auteurs: Alexis MARIE, David MARCHÈS, Luca BANKOFSKI, Martial BROSTIN, Theo HELLER, Thomas MABILLE

1 Introduction

Dans le cadre de notre projet de fin d'études sur la génération d'un plan de navigation à partir d'une scène, nous avons été amenés à travailler sur des graphes routiers. Ce document se veut définir l'ensemble du vocabulaire et des notions nécessaires à sa compréhension.

Mots-clés: théorie des graphes, graphe orienté, graphe non-orienté, graphe pondéré, matrice adjacente, densité, connexité, graphe aléatoire.

2 Graphe non oriente

Un graphe non orienté est un couple G = (V,E) formé de deux ensembles.

- V: l'ensemble contenant les sommets de G;
- E: l'ensemble contenant les arêtes associées à une paire $\{u, v\} \in V^2$.

Graphiquement, une arête est un lien entre deux sommets. Cependant, elle ne possède pas d'orientation. C'est pour cette raison qu'elle se note à l'aide d'une paire.

Sur la Figure 1 ci-dessous, le graphe G se décompose de la manière suivante :

- V = {A, B, C, D};
- \triangleright E = {{A,B}, {A,C}, {C,B}, {C,D}}.

De plus, G contient Card(V) = 4 sommets et Card(E) = 4 arêtes.

Figure 1 - Représentation d'un graphe non orienté G.

On appelle chaîne une suite consécutive d'arêtes.

3 GRAPHE ORIENTE

Un graphe orienté est un couple G = (V,A) formé de deux ensembles.

- V: l'ensemble contenant les sommets de G;
- A: l'ensemble contenant les arcs associés à un couple $(u,v) \in V^2$.

Un arc $(u, v) \in V^2$ est une arête qui possède une direction de u vers v.

Sur la Figure 2 ci-dessous, le graphe G se décompose de la manière suivante :

- $V = \{A, B, C, D\};$
- \triangleright E = {(A,B), (B,C)}.

De plus, G contient Card(V) = 4 sommets et Card(A) = 2 arcs.

Figure 2 - Représentation d'un graphe orienté G.

On appelle chemin une suite consécutive d'arcs.

	Non orienté	Orienté
Notation	G = (V,E)	G = (V,A)
Lien	Arête	Arc
Suite	Chaîne	Chemin

Dans un souci de simplification, par la suite, lorsque nous parlerons d'un graphe en général sans savoir s'il est orienté ou non, nous utiliserons le terme d'arête.

4 GRAPHE PONDERE

On parle de graphe pondéré lorsque l'on associe un nombre appelé poids à chaque arête du graphe G. Il existe donc une fonction $w: V^2 \to R$ qui à chaque arête associe un poids réel.

Dans le cas d'un graphe représentant un réseau routier, celui-ci ne peut avoir de poids négatif. L'image de l'application se réduit donc à $w:V^2\to R_+$. Généralement, celle-ci représente une distance ou un temps.

Figure 3 - Représentation d'un graphe orienté pondéré.

Sur la figure Figure 3 ci-dessus, nous pouvons voir que le chemin A \rightarrow B \rightarrow D a un poids total de 10.

5 NOTION D'ADJACENTS

Dans un graphe non-orienté G = (V, E), un sommet $v \in V$ est dit adjacent à un autre sommet $u \in V$ s'il existe une paire $\{u, v\} \in E$. L'ensemble des adjacents de u est définit de la manière suivante :

$$adj(u) = \{v \in V \mid \{u, v\} \in E\}$$

A partir de là, nous pouvons construire la matrice d'adjacence $A\in M_n(R)$ d'un graphe G définie ainsi :

$$a_{i,j} = \begin{cases} 1 & si (u_i, u_j) \in E \\ 0 & sinon \end{cases}$$

Dans le cas d'un graphe pondéré, ses coefficients deviennent :

$$a_{i,j} = \begin{cases} w(u_i, u_j) & \text{si } (u_i, u_j) \in E \\ 0 & \text{sinon} \end{cases}$$

Nous pouvons alors représenter la matrice adjacente associée au graphe G comme illustré sur la Figure 4.

Figure 4 - Matrice adjacente.

Toute matrice adjacente associée à un graphe non-orienté se restreint à \mathbf{S}^n l'ensemble des matrices carrées symétriques.

Le degré d'un sommet $u \in V$ se définit comme le nombre d'arêtes reliant ce sommet. Il se note $\deg(u)$. Nous pouvons voir que $\deg(u) = Card(adj(u))$.

Dans un graphe orienté G = (V,A), on parle plutôt de prédécesseurs et de successeur de u. Ainsi :

$$pred(u) = \{v \in V \mid (v, u) \in A\}$$

$$succ(u) = \{v \in V \mid (u, v) \in A\}$$

Reprenons l'exemple de la Figure 3. Nous avons $G = (\{A, B, C, D\}, \{(A,B), (B,C)\}).$

u	pred(u)	succ(u)
Α	Ø	{B}
В	{A}	{D}
С	Ø	Ø
D	{B}	Ø

Dans le cas d'un graphe orienté, nous parlons de degré entrant d'un sommet $u \in V$ noté $d^-(u)$ et de degré sortant d'un sommet $u \in V$ noté $d^+(u)$. Nous observons que $d^-(u) = Card(pred(u))$ et que $d^+(u) = Card(succ(u))$. De plus, nous notons $\deg(u) = d^-(u) + d^+(u)$.

6 DENSITE D'UN GRAPHE

Pour un graphe G, nous pouvons associer un entier $D \in [0,1]$ appelé densité du graphe. Celui-ci représente le nombre d'arêtes présentes dans le graphe par rapport au nombre maximum d'arêtes qu'il peut contenir.

Dans un graphe non-orienté G = (V,E), si Card(V) = n, c'est-à-dire si le graphe contient n sommets, le nombre maximum d'arêtes est $\frac{n(n-1)}{2}$. On obtient donc :

$$D = \frac{2 \times Card(E)}{Card(V) * (Card(V) - 1)}$$

Dans un graphe orienté G=(V,A), si Card(V)=n, le nombre maximum d'arcs est n(n-1). On obtient donc :

$$D = \frac{Card(E)}{Card(V) * (Card(V) - 1)}$$

On parle de graphe complet lorsque D = 1.

7 GRAPHE CONNEXE

La notion de connexité dépend du type de graphe. Dans un premier temps, intéressonsnous au cas d'un graphe non-orienté.

Un graphe non-orienté G = (V,E) est connexe si pour tout sommet du graphe, il existe une chaîne entre u et v. De manière plus formelle :

$$\forall (u, v) \in V^2, \{u, v\} \in E$$

Autrement dit, le graphe est d'un seul tenant, comme illustré sur la Figure 5.

Figure 5 - Représentation d'un graphe non-orienté connexe.

Une composante connexe d'un graphe est un sous-graphe connexe maximal de ce graphe.

Figure 6 - Représentation d'un graphe non-orienté à trois composantes connexes.

On obtient alors les propriétés suivantes :

- Un graphe non-orienté connexe à n sommets possède au moins n-1 arêtes;
- Un graphe non-orienté connexe à n sommets ayant exactement n-1 arêtes est un arbre.

Intéressons-nous maintenant au cas d'un graphe orienté.

Un graphe orienté G = (V,A) est dit faiblement connexe si pour tout sommet du graphe, il existe une chaîne entre u et v. Autrement dit, le graphe associé G' non-orienté est connexe.

Figure 7 - Représentation d'un graphe orienté faiblement connexe.

De plus, nous pouvons voir sur la Figure 7 que le graphe a quatre composantes connexes :

Un graphe orienté G = (V,A) est dit fortement connexe si, pour tout sommet du graphe, il existe un chemin de u vers v. De manière plus formelle :

$$\forall (u, v) \in V^2, (u, v) \in A$$

Figure 8 - Représentation d'un graphe orienté fortement connexe.

8 GRAPHE ALEATOIRE

Un graphe aléatoire est un graphe généré par un processus aléatoire. C'est une notion qui a été introduite afin d'étudier à partir de quelle probabilité p un graphe avait une certaine propriété.

Le graphe généré dépend donc de deux paramètres :

- > n : le nombre de sommets souhaités ;
- > p: la probabilité d'avoir une arête entre deux sommets.