Conteúdo

Capítulo 1 M	ATEMÁTICA QUE VOCÊ DEVE SABER	_ Página 1
1.1	Resolvendo equações	1
Capítulo 2 Li	mites, Derivadas, Regras e seu Significado	Página 2.
2.1	Limites	2
	• Funções definidas por partes	4
	• Exercícios propostos	5
2.2	Derivadas	6
	Derivadas de Somas e Múltiplos Constantes	9
	Exercícios propostos	10
2.3	Derivadas de Funções Elementares	10
	• Logaritmos e expoentes	11
	• Funções trigonométricas	11
	• Exercícios propostos	11
2.4	As Regras do Produto, do Quociente e da Cadeia	
	• Composição de Funções e a Regra da Cadeia	
	• Exercícios propostos	15
2.5	Significado físico da Derivada	16
Capítulo 3 Ai	PLICAÇÕES DA DERIVADA	PÁGINA 17
CAPÍTIILO 4 IN	TOTAL OF A TO	PÁGINA 18

Capítulo 1

MATEMÁTICA QUE VOCÊ DEVE SABER

Esse material é um texto sobre Cálculo estruturado para preparar estudantes para usar Cálculo nas ciências agronômicas. O primeiro capítulo não tem Cálculo de verdade: ele está aqui porque muitos alunos dão um jeito de ingressar na universidade sem habilidades adequadas de álgebra, geometria e outros tópicos de matemática básica. Assumimos que você já está familiar com o conceito de **variáveis** como x e y que simbolizam números cujo valor é desconhecido.

1.1 Resolvendo equações

Uma equação é uma expressão com um sinal de igual. Por exemplo:

x = 3

é uma equação muito simples! Ela nos diz que o valor da variável x é o número 3. Há um número de regras para manipular equações. O que essas regras fazem é mudar uma equação para outra equação com o mesmo resultado. As coisas que podemos fazer com uma equação preservando o seu resultado incluem: (em desenvolvimento...)

Limites, Derivadas, Regras e seu Significado

Cursos tradicionais de cálculo começam com uma discussão formal detalhada sobre limites e continuidade. Este livro se afasta dessa tradição, com este capítulo introduzindo limites apenas de maneira informal para poder começar com cálculo. A agenda para este capítulo é fazer você entender uma definição operacional viável de limites; usar isso para dar a definição formal de uma derivada; desenvolver as regras para calcular derivadas; e terminar com uma discussão sobre o significado físico da derivada.

2.1 Limites

Suponha que nos seja dada uma definição de função como:

$$f(x) = \frac{x^2 - 4}{x + 2}.$$

Então, enquanto $x \neq -2$, podemos simplificar essa expressão da seguinte forma:

$$f(x) = \frac{x^2 - 4}{x + 2} = \frac{(x - 2)(x + 2)}{(x + 2)} = x - 2.$$

Assim, esta função é uma reta – enquanto tivermos $x \neq -2$. O que acontece quando x = -2? Tecnicamente falando, a função não existe. É aqui que a noção de um limite se torna útil. Se formos capazes de encontrar uma série de valores de x e observar para onde eles estão indo à medida que nos aproximamos de -2, todos parecem estar indo em direção a menos 4. A frase chave aqui é "parecem estar". Por agora, vamos examinar o comportamento de f(x) quando x se aproxima de -2.

Observe que esta tabela se aproxima pela direita (números maiores que x=-2) e pela esquerda (números menores que x=-2). Em uma função bem comportada, as aproximações pela esquerda e pela direita se dirigem para o mesmo lugar, mas existem funções onde isso não acontece. Chamamos isso de **limite lateral a direita** e **limite lateral a esquerda** que, por simplicidade chamaremos apenas de limites à esquerda e à direita. Se eles coincidem, seu valor comum é dito o **limite da função**. Como vimos, este é o caso ilustrado, assim o limite da função em x=-2 é -4.

À direita de −2		À esquerda de −2	
x	f(x)	x	f(x)
-1	-3	-3	-5
-1,5	-3, 5	-2, 5	-4, 5
-1, 75	-3, 75	-2, 25	-4, 25
-1,8	-3, 8	-2, 2	-4, 2
-1, 9	-3, 9	-2, 1	-4, 1
-1, 95	-3, 95	-2, 05	-4, 05
-1, 99	-3, 99	-2,01	-4, 01

Definição 2.1

Usamos os seguintes símbolos para os limites a direita e a esquerda e o limite de uma função f(x) em um ponto x = c:

$$\lim_{x \to c^+} f(x) \qquad \qquad \lim_{x \to c^-} f(x) \qquad \qquad \lim_{x \to c} f(x)$$

Exemplo 2.1

O que as informações tabeladas sobre $f(x) = \frac{x^2 - 4}{x + 2}$ sugerem é que:

$$\lim_{x \to -2^+} f(x) = -4$$

$$\lim_{x \to -2^-} f(x) = -4$$

$$\lim_{x \to -2^+} f(x) = -4 \qquad \qquad \lim_{x \to -2^-} f(x) = -4 \qquad \qquad \lim_{x \to -2} f(x) = -4$$

O problema com a função $f(x) = \frac{x^2 - 4}{x + 2}$ é que parece forçada. Veremos em breve que funções com esse tipo de estrutura implausível surgem naturalmente quando tentamos responder à simples pergunta: Qual é a reta tangente a uma função em um ponto? Esta é a questão central para este capítulo.

Antes de chegarmos lá, precisamos das regras práticas para calcular limites. Suponha que estamos tentando calcular L tal que:

$$\lim_{x\to c} f(x) = L.$$

Podemos seguir estas regras:

Se qualquer um dos limites laterais não existir, então L não existe.

Se os limites laterais existirem, mas não forem iguais, então L não existe.

Se os limites laterais existirem e forem iguais, então o limite da função é o valor comum dos limites à esquerda e à direita.

Se a função f(x) não tem problemas de domínio com o ponto c e é **contínua**, ou seja, que pode ser desenhada sem levantar o lápis, então podemos calcular o limite apenas substituindo x por c em f(x).

Se a função pode ser transformada em uma função bem comportada por um algoritmo que funciona em todos os lugares, exceto em x = c (como cancelar x + 2 em nosso exemplo), então substituir c na função modificada fornece o valor do limite.

Exemplo 2.2

Calcule:

$$\lim_{x \to 2} x^3 + x^2 + x + 1.$$

Solução: Polinômios são as funções mais bem comportadas possíveis; podemos sempre calcular seus limites apenas substituindo. Assim,

$$\lim_{x \to 2} x^3 + x^2 + x + 1 = 8 + 4 + 2 + 1 = 15.$$

Exemplo 2.3

Calcule:

$$\lim_{x\to 1}\frac{xe^x-e^x}{x-1}.$$

Solução: Esta função é como nosso exemplo original no sentido de que

$$\frac{xe^x - e^x}{x - 1} = \frac{e^x(x - 1)}{x - 1} = e^x.$$

que nos diz que

$$\lim_{x \to 1} \frac{xe^x - e^x}{x - 1} = e^1 = e.$$

Exemplo 2.4

Calcule:

$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 11x - 6}{x - 2}.$$

Solução: Se substituirmos x=2 no numerador da fração como um teste, obtemos 8-24+22-6=0. Assim, em x=2 teremos a indeterminação $\frac{0}{0}$. Por outro lado, o teorema de fatoração por raízes para polinomiais nos diz que x-2 é um fator de $x^3-6x^2+11x-6$. Assim, um pouco de trabalho nos dá que

$$\frac{x^3 - 6x^2 + 11x - 6}{x - 2} = \frac{(x - 3)(x - 2)(x - 1)}{x - 2} = (x - 3)(x - 1).$$

Assim, temos que:

$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 11x - 6}{x - 2} = (2 - 3)(2 - 1) = -1.$$

2.1.1 Funções definidas por partes

Às vezes é desejável ter funções que obedecem a regras diferentes para diferentes valores de x. Varejistas frequentemente oferecem descontos de preços em quantidade, por exemplo, com diferentes custos por unidade comprada para quantidades maiores e menores de unidades. Há uma notação para esse tipo de função, chamada **função definida por partes**. Suponha que f(x) é uma função que eleva ao quadrado números negativos mas adiciona um a números positivos e zero. Então diríamos:

$$f(x) = \begin{cases} x^2, & \text{se } x < 0 \\ x + 1, & \text{se } x \ge 0 \end{cases}$$

Se olharmos para o gráfico dessa função na figura ao lado, vemos que funções definidas por partes nos dão muito espaço para criar funções que não têm um limite em um ponto. Note que a desigualdade no ponto de mudança é denotada no gráfico usando um círculo preenchido para o ponto que faz parte da função e um círculo vazio para o ponto que não faz parte da função. Esse "salto" do círculo vazio para o círculo preenchido é um exemplo do que chamamos formalmente de **descontinuidade**.

Exemplo 2.5

Examine a seguinte função:

$$f(x) = \begin{cases} x^2 + 1, & \text{se } x < 1\\ 3x - 1, & \text{se } x \geqslant 1 \end{cases}$$

Qual é o valor de $\lim_{x\to 1} f(x)$?

Solução: À medida que nos aproximamos de 1 pela esquerda, o limite será determinado pela regra $x^2 + 1$, e assim o limite em 1 é 2, pela esquerda. À medida que nos aproximamos de 1 pela direita, o limite será determinado pela regra 3x - 1, que fará o limite ser 2. Como os limites à esquerda e à direita coincidem, o limite da função em x = 1 é 2.

Exemplo 2.6

Examine a função: $g(x) = \frac{1}{x-2}$. Qual é o valor de $\lim_{x\to 2} g(x)$?

Solução: Para esta função precisamos olhar para o gráfico, pelo menos até aprendermos mais:

À medida que nos aproximamos de 2 pela esquerda, o valor de q(x) é negativo. Mas, como estamos dividindo por números que estão se aproximando cada vez mais de zero, esses números ficam maiores em valor absoluto, e a função dispara em direção a -∞ (lê-se menos infinito). Isso significa que o limite não existe. Da mesma forma, o limite pela direita dispara em direção a +∞ e também não existe. Isso significa que o limite desejado também não existe.

2.1.2 Exercícios propostos

1 Para cada um dos seguintes limites, dê uma razão pela qual o limite não existe ou calcule seu valor.

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

b)
$$\lim_{x \to 1} \frac{x^2 - 16}{x + 4}$$

c)
$$\lim_{x \to -3} \frac{x^3 - 6x^2 + 11x - 6}{x + 3}$$

$$d) \lim_{x \to 0} \frac{e^x - 1}{e^x + 1}$$

e)
$$\lim_{x \to 1} \frac{2}{x^3 - 6x^2 + 11x - 6}$$

f)
$$\lim_{x\to 2} \sqrt{x-2}$$

2 Para cada um dos seguintes limites, dê uma razão pela qual o limite não existe ou calcule seu valor. Use as funções f(x), g(x), e h(x) que seguem.

$$f(x) = \begin{cases} x^3, & \text{se } x \le 1\\ -4x + 5, & \text{se } x > 1 \end{cases}$$

$$g(x) = \begin{cases} x^2 + 2, & \text{se } x < -1\\ 3 - x^2, & \text{se } x \ge -1 \end{cases}$$

$$g(x) = \begin{cases} 2x + 5, & \text{se } x \le 2\\ 9 - 2x, & \text{se } x > 2 \end{cases}$$

a)
$$\lim_{x \to 0} f(x)$$

d)
$$\lim_{x\to 1} g(x)$$

b)
$$\lim_{x\to 1} f(x)$$

a)
$$\lim_{x \to -1} f(x)$$
 d) $\lim_{x \to 1} g(x)$
b) $\lim_{x \to 1} f(x)$ e) $\lim_{x \to -2} h(x)$
c) $\lim_{x \to -1} g(x)$ f) $\lim_{x \to 2} h(x)$

c)
$$\lim_{x \to -1} g(x)$$

f)
$$\lim_{x\to 2} h(x)$$

3 Para quais valores de c a função:

$$f(x) = \begin{cases} x^2 - 1, & \text{se } x < c \\ 2x + 5, & \text{se } x \ge c \end{cases}$$

tem um limite em x = c?

4 Para quais valores de c a função:

$$g(x) = \begin{cases} x^2 + 7x + 1, & \text{se } x < c \\ x - 8, & \text{se } x \ge c \end{cases}$$

tem um limite em x = c?

5 Para quais valores de *c* a função:

$$h(x) = \begin{cases} x^2 + 4x, & \text{se } x < c \\ 3x - 2, & \text{se } x \ge c \end{cases}$$

tem um limite em x = c?

2.2 Derivadas

Nós mencionamos anteriormente que a questão central deste capítulo é: O que é a reta tangente a uma função em um ponto? Uma derivada é a inclinação dessa reta. Para calcular a derivada, precisamos usar o que aprendemos sobre limites na Seção 2.1. Então, o que é uma reta tangente?

Uma reta tangente é uma reta que toca uma curva em exatamente um ponto. O ponto é chamado de **ponto de tangência**. Se a curva tem uma forma complexa, então a reta tangente pode intersectar a curva em algum outro lugar também. Mas, em uma vizinhança do ponto de tangência, ela toca a curva apenas uma vez. A reta vermelha na figura abaixo mostra uma reta tangente a uma curva.

Uma reta secante é uma reta que passa por dois pontos em uma curva. A figura do meio acima mostra exemplos de várias retas secantes, todas as quais compartilham um ponto — o ponto de tangência na imagem à esquerda. Esta imagem nos ajuda a entender por que precisamos de limites para calcular inclinações de retas tangentes. As inclinações das retas secantes são todas calculadas com base nos dois pontos pelos quais elas passam. A inclinação da reta tangente é baseada em um único ponto, não sendo possível encontrá-la usando a fórmula de coeficiente angular para retas vista no Ensino Médio.

Se pensarmos na inclinação da reta tangente como o limite das inclinações de retas secantes de um ponto em movimento até o ponto de tangência, então o limite à medida que o ponto em movimento se aproxima do ponto de tangência será a inclinação da reta tangente. Suponha que o ponto de tangência seja (c, f(c)), e que examinemos a reta secante através desse ponto e um ponto "apenas um pouco" à direita, com a distância para a direita sendo h.

Então, o segundo ponto na reta secante é (c+h, f(c+h)), dando a situação mostrada na terceira figura. Se tomarmos o limite quando $h \to 0$, então esse limite deve ser a inclinação da reta tangente. Aplicando a fórmula para a inclinação de uma reta usando dois pontos, obtemos que a inclinação da reta tangente em f(x) no ponto x = c é:

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{c+h-c} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

Esta fórmula é a definição da derivada e temos uma maneira especial de denotá-la: f'(c).

Definição 2.2

A inclinação da reta tangente a uma função f no ponto (c, f(c)) é $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$.

No próximo exemplo, calculamos a inclinação de uma reta tangente e encontramos a fórmula para essa reta tangente.

Exemplo 2.7

Encontre a reta tangente a $f(x) = x^2$ no ponto (1, 1).

Solução: Para obter a fórmula para a reta precisamos de um ponto e uma inclinação. Para este problema temos c=1. Temos o ponto (1,1) na reta tangente, então tudo que precisamos calcular é a inclinação como mostrado ao lado.

Note que este limite é um que requer manipulação algébrica para ser resolvido. Não poderíamos apenas substituir h=0 porque isso resultaria em $\frac{0}{0}$. Todos os cálculos de inclinação resultam em limites que requerem manipulação algébrica — explicando a ênfase neste tipo de limite na seção anterior. Agora temos o ponto (1,1) e uma inclinação de m=2. A reta é portanto y-1=2(x-1) ou y=2x-1. Concluímos mencionando que o gráfico da função e sua reta tangente em c=1 é exatamente o gráfico exibido no início da seção com reta tangente em vermelho.

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h}$$

$$= \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{2h + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2+h)}{h}$$

$$= \lim_{h \to 0} 2 + h$$

$$= 2$$

Agora sabemos como encontrar as inclinações das retas tangentes em valores x = c específicos. Seria bom ter uma função geral para a derivada. Definimos a **derivada geral** de uma função da seguinte forma.

Proposição 2.1: (derivada geral)

A derivada geral (ou apenas derivada) de uma função f(x) é

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Exemplo 2.8

Calcule a derivada de $f(x) = \frac{1}{x}$.

Solução:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{(x+h)} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x}{x(x+h)} - \frac{x+h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{-h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}$$

Portanto, para
$$f(x) = \frac{1}{x}$$
, temos $f'(x) = -\frac{1}{x^2}$.

A quantidade $\frac{f(x+h)-f(x)}{h}$ é chamada de **quociente de diferença** para f(x). Podemos dizer que a derivada de uma função é o limite do quociente de diferença à medida que $h \to 0$.

Vamos conferir um exemplo mais simples, quando temos uma função constante:

Exemplo 2.9

Encontre a derivada de f(x) = c, onde c é uma constante real qualquer.

Solução: Como f(x) = c, para todo valor x, então temos

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0.$$

Este resultado é nossa primeira regra de propósito geral para derivadas, a regra da constante.

Proposição 2.2: (regra da constante)

Seja f(x) = c uma função tal que $c \in \mathbb{R}$ é uma constante. Então f'(x) = 0.

Regras são úteis quando queremos ir diretamente ao resultado sem as manipulações algébricas de limites. Vejamos mais uma regra que será muito usada:

Exemplo 2.10

Encontre a derivada de $f(x) = x^n$, onde $n \in \mathbb{N}$.

Solução: Usando a expansão do Binômio de Newton, usualmente vista no segundo ano do Ensino Médio, temos:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{(x^n + nx^{n-1}h + \frac{n(n-1)x^{n-2}h^2}{2} + \dots + h^n) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)x^{n-2}h^2}{2} + \dots + h^n}{h}$$

$$= \lim_{h \to 0} nx^{n-1} + \frac{n(n-1)x^{n-2}h^1}{2} + \dots + h^{n-1}$$

$$= nx^{n-1} + 0 + \dots + 0 = nx^{n-1}$$

Este resultado é nossa segunda regra de propósito geral para derivadas, a regra da potência.

Proposição 2.3: (regra da potência)

Se
$$f(x) = x^n$$
, então $f'(x) = nx^{n-1}$.

Nota:

Não se preocupe em entender o porquê das regras. Nosso foco principal é saber usá-las adequadamente!

2.2.1 Derivadas de Somas e Múltiplos Constantes

Se $\lim_{x\to c} f(x) = L$ e $\lim_{x\to c} g(x) = M$ existem, então

$$\lim_{x\to c} f(x) + g(x) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x) = L + M.$$

Da mesma forma, se $k \in \mathbb{R}$ é uma constante, então

$$\lim_{x \to c} k \cdot f(x) = k \cdot \lim_{x \to c} f(x) = k \cdot L.$$

Como as derivadas são baseadas em limites, obtemos duas regras muito úteis a partir desses fatos.

Proposição 2.4

A derivada de uma soma de funções é a soma das derivadas:

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Se k é uma constante, então

$$(k \cdot f(x))' = k \cdot f'(x)$$

Já temos uma regra de derivada para potências de x. Sabemos que um polinômio é uma soma de múltiplos constantes de potências de x. Isso significa que nossas duas novas regras se combinam com as regras de potência para nos permitir calcular a derivada de qualquer polinômio!

Exemplo 2.11

Se
$$f(x) = x^3 + 5x^2 + 7x + 2$$
, encontre $f'(x)$.

Solução: Usando as novas regras, a regra da potência, e lembrando que a derivada de uma constante é zero, obtemos o seguinte:

$$f'(x) = (x^3 + 5x^2 + 7x + 2)'$$

$$= (x^3)' + 5(x^2)' + 7(x^1) + 2'$$

$$= 3x^2 + 5 \cdot 2x + 7 \cdot 1x^0 + 0$$

$$= 3x^2 + 10x + 7x$$

e pronto!

Em geral, para calcular a derivada de um polinômio em forma padrão, tudo o que precisamos fazer é trazer o expoente de cada termo para frente, multiplicando-o pelo coeficiente existente (que pode ser uma fração ou mesmo um número irracional), e subtrair uma unidade do expoente.

Então:

$$(x^6 + 7x^2 + 4x - 4)' = 6x^5 + 14x + 4$$

$$(3x^5 + 14x^3 - 8x^2 + 6x + 7)' = 15x^4 + 42x^2 - 16x + 6$$

$$(3x^9 - 9x^8 - 2x^7 + x^5 + 4x^4 - 7x^3 + 7x)' = 27x^8 - 72x^7 - 14x^6 + 5x^4 + 16x^3 - 21x^2 + 7x^4 + 7x$$

$$(5x^2+7)'=10x$$

Com um pouco de prática, isso se torna um reflexo e, se não ficar natural, é porque você não treinou o suficiente.

2.2.2 Exercícios propostos

1 Usando a definição da derivada, encontre f'(c)para cada um dos seguintes pares de funções e constantes.

a)
$$f(x) = x, c = 4$$

b)
$$g(x) = 3x + 7, c = 1$$

c)
$$h(x) = x^2, c = -1$$

d)
$$q(x) = x^3, c = 2$$

2 Para as seguintes funções e valores x = c, encontre a reta tangente à função em x = c na forma de equação da reta.

a)
$$f(x) = x^2 - 1, c = 2$$

b)
$$g(x) = 2x^2 - 5x, c = 3$$

c)
$$h(x) = x^3 + x^2 + x + 1, c = -1$$

d)
$$g(x) = x^5 - 32, c = 2$$

3 Para $f(x) = x^2 + 1$, encontre as retas tangentes a f(x) para cada um dos seguintes valores $\{-2, -1, 0, 1, 2\}$ para x. Desenbe as retas tangentes e f(x) no mesmo plano cartesiano.

4 Para cada uma das seguintes funções, encontre a derivada por qualquer método.

a)
$$a(x) = 2$$

b)
$$b(x) = 115x - 234$$

c)
$$f(x) = 3x^2 - 5x + 7$$

d)
$$g(x) = 2x^3 + 3x^2 + 7x - 11$$

e) $h(x) = 5 - x + x^2 - x^3 + x^4$

e)
$$h(x) = 5 - x + x^2 - x^3 + x^4$$

f)
$$a(x) = (x+1)^3$$

- 5 Encontre a reta tangente a $y = \text{sen}(x) \text{ em } \frac{\pi}{2}$. (Dica: isso é um caso especial onde você não precisa da derivada para encontrar a reta tangente).
- 6 Para f(x) = ax + b com constantes a, b, encontre a reta tangente a f(x) em x = c. (Não, você não recebeu um valor real para c, esse é o exercício).
- 7 Para a função $f(x) = \sqrt{x}$ calcule a derivada usando a definição. Isso requer um truque algébrico, mas não é muito dificil.
- 8 Encontre uma função quadrática $f(x) = ax^2 +$ bx+c que tenha y=3x+2 como uma reta tangente. Demonstre que sua resposta está correta.

Derivadas de Funções Elementares

Esta seção é um catálogo das derivadas da biblioteca de funções. Já podemos calcular a derivada de funções polinomiais usando combinações de potências de x. Acontece que a regra para potências da forma x^n também se aplica para potências que não são números inteiros.

Proposição 2.5: (A regra geral de potência para derivadas)

Se $f(x) = x^r$ para qualquer número real r, então $f'(x) = rx^{r-1}$.

Exemplo 2.12

Encontre a derivada de $f(x) = \sqrt{x}$.

Solução:
$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$
.

Aplique a regra da potência e obtemos $f'(x) = \frac{1}{2} \cdot x^{\frac{1}{2}-1} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$

Neste ponto, apenas começamos e damos um monte de regras de derivadas. E difícil fazer bons exemplos até chegarmos à Seção 2.4, onde obtemos as regras para combinar funções de várias maneiras.

2.3.1 Logaritmos e expoentes

As regras para funções logarítmicas fornecem um sentido de por que ln(x) é chamado de logaritmo natural. Todas as outras funções logarítmicas têm regras de derivadas mais complexas baseadas em ln(x).

Proposição 2.6: (regras para logaritmos)

Se
$$f(x) = \ln(x)$$
, então $f'(x) = \frac{1}{x}$.

Se
$$f(x) = \log_b(x)$$
, então $f'(x) = \frac{1}{x \cdot \ln(b)}$.

A função exponencial $y = e^x$ tem a derivada mais simples imaginável:

Proposição 2.7: (regras para exponenciais)

Se
$$f(x) = e^x$$
, então $f'(x) = e^x$.

Se
$$f(x) = a^x$$
, então $f'(x) = \ln(a) \cdot a^x$.

Exemplo 2.13

Encontre a derivada de $f(x) = 3^x$.

Solução: $f'(x) = \ln(3) \cdot 3^x$.

2.3.2 Funções trigonométricas

As derivadas das funções trigonométricas, como as demais, devem ser memorizadas. Dentre as várias existentes, focaremos apenas em duas delas por questões de simplicidade:

Proposição 2.8: (regras para funções trigonométricas)

Se
$$f(x) = \sin x$$
, então $f'(x) = \cos x$.

Se
$$f(x) = \cos x$$
, então $f'(x) = -\sin x$.

2.3.3 Exercícios propostos

1 Encontre a derivada de cada uma das seguintes funções:

a)
$$f(x) = \sqrt[4]{x}$$

c)
$$h(x) = 4e^x$$

b)
$$g(x) = x^{3,1}$$

c)
$$h(x) = 4e^x$$

d) $r(x) = \sin x + \cos x$

2 Para quais valores de y = sen(x) tem uma reta tangente horizontal?

3 Suponha que você tome a derivada de y =sen(x) infinitas vezes. O que você obtém?

4 Encontre a reta tangente a cada uma das seguintes funções no ponto indicado.

a)
$$f(x) = \sqrt{x} \text{ em } x = 1$$

b)
$$g(x) = \text{sen}(x) \text{ em } x = \frac{\pi}{3}$$

c)
$$h(x) = \cos(x)$$
 em $x = \frac{\pi}{4}$

d)
$$r(x) = \ln(x) \text{ em } x = \ln(2)$$

2.4 As Regras do Produto, do Quociente e da Cadeia

Nesta seção aprenderemos as regras de derivadas que nos permitem lidar com funções construídas a partir de outras funções tanto por composição aritmética quanto funcional.

Nossa primeira regra nos permite tomar a derivada de um produto de duas funções. É, por isso, chamada de regra do produto.

Proposição 2.9: (regra do produto)

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x).$$

Exemplo 2.14

Encontre a derivada de $h(x) = x \cdot \text{sen}(x)$.

Solução: Aplique a regra do produto às funções f(x) = x e $g(x) = \sin(x)$:

$$h'(x) = (x)' \cdot \operatorname{sen}(x) + x \cdot (\operatorname{sen}(x))' = 1 \cdot \operatorname{sen}(x) + x \cdot \cos(x) = \operatorname{sen}(x) + x \cdot \cos(x).$$

Exemplo 2.15

Encontre a derivada de $r(x) = \ln(x) \cos(x)$.

Solução: Aplique a regra do produto às funções $f(x) = \ln(x)$ e $g(x) = \cos(x)$:

$$r'(x) = (\ln(x))' \cdot \cos(x) + \ln(x) \cdot (\cos(x))' = \frac{1}{x} \cdot \cos(x) + \ln(x) \cdot (-\sin(x)) = \frac{\cos(x)}{x} - \ln(x)\sin(x).$$

A próxima regra é a regra do quociente que é usada para lidar com a razão entre duas funções.

Proposição 2.10: (regra do quociente)

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}.$$

Exemplo 2.16

Encontre a derivada de $h(x) = \frac{2x+1}{x+5}$.

Solução: Aplique a regra do quociente às funções f(x) = 2x + 1 e g(x) = x + 5:

$$h(x) = \frac{(2x+1)'(x+5) - (2x+1)(x+5)'}{(x+5)^2}$$

$$= \frac{2(x+5) - (2x+1) \cdot 1}{(x+5)^2}$$

$$= \frac{2x+10-2x-1}{(x+5)^2}$$

$$= \frac{9}{(x+5)^2}$$

Em geral, não expandimos o denominador após usar a regra do quociente. É frequentemente mais fácil lidar com a forma fatorada a menos que uma simplificação melhor seja viável.

Exemplo 2.17

Encontre a derivada de $q(x) = \frac{x}{x^2 + 1}$.

Solução: Aplique a regra do quociente às funções $f(x) = x e g(x) = x^2 + 1$:

$$h(x) = \frac{(x)'(x^2 + 1) - x(x^2 + 1)'}{(x^2 + 1)^2}$$

$$= \frac{x^2 + 1 - x \cdot 2x}{(x^2 + 1)^2}$$

$$= \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2}$$

$$= \frac{1 - x^2}{(x^2 + 1)^2}$$

Exemplo 2.18

Encontre a derivada de $r(x) = \frac{e^x}{\operatorname{sen}(x)}$.

Solução: Aplique a regra do quociente às funções $f(x) = e^x$ e g(x) = sen (x):

$$h(x) = \frac{(e^x)'(\text{sen}(x)) - e^x(\text{sen}(x))'}{(\text{sen}(x))^2}$$
$$= \frac{e^x \text{sen}(x) - e^x \cos(x)}{\text{sen}^2(x)}$$
$$= \frac{e^x(\text{sen}(x) - \cos(x))}{\text{sen}^2(x)}$$

2.4.1 Composição de Funções e a Regra da Cadeia

A composição de duas funções resulta da aplicação de uma a outra. Se as funções são f(x) e g(x), então sua composição é escrita como f(g(x)). Vamos olhar alguns exemplos.

Exemplo 2.19

Se
$$f(x) = x + 7$$
 e $g(x) = x^2$, então

$$f(g(x)) = x^2 + 7$$

enquanto

$$g(f(x)) = (x+7)^2 = x^2 + 14x + 49.$$

Exemplo 2.20

Se
$$f(x) = \text{sen}(x) e g(x) = e^x$$
, então

$$f(g(x)) = \mathrm{sen}\,(e^x)$$

enquanto

$$g(f(x)) = e^{\operatorname{sen}(x)}.$$

A ordem em que duas funções são compostas importa bastante, pois como vimos, os resultados não são simétricos a menos de casos especiais. A **regra da cadeia** é usada para calcular a derivada de uma composição de funções.

Proposição 2.11: (regra da cadeia)

$$(f(g(x))' = f'(g(x)) \cdot g(x)'.$$

Na composição f(g(x)) chamamos f(x) de função externa ou função de fora e g(x) de função interna ou função de dentro. Assim, a regra da cadeia estabelece que "a derivada da composição é a derivada da função externa aplicada na interna e multiplicada pela derivada da função interna".

Exemplo 2.21

Calcule a derivada de $h(x) = e^{2x}$.

Solução: Aplique a regra da cadeia à composição para a qual a função externa é $f(x) = e^x$ e a função interna é g(x) = 2x. Para estas, $f'(x) = e^x$ e g'(x) = 2. Então:

$$h'(x) = e^{2x} \cdot 2 = 2e^{2x}.$$

Exemplo 2.22

Calcule a derivada de $q(x) = \text{sen } (x^2)$.

Solução: Aplique a regra da cadeia à composição para a qual a função externa é f(x) = sen(x) e a função interna é $g(x) = x^2$. Para estas, $f'(x) = \cos(x)$ e g'(x) = 2x. Então:

$$q'(x) = \cos(x^2) \cdot 2x = 2x \cos(x^2).$$

A regra da cadeia evita um monte de multiplicação em alguns casos. Tecnicamente, poderíamos fazer o seguinte exemplo sem a regra da cadeia, mas seria bem chato expandir um polinômio de grau alto.

Exemplo 2.23

Calcule a derivada de $r(x) = (x^2 + x + 1)^7$.

Solução: Aplique a regra da cadeia à composição para a qual a função externa é $f(x) = x^7$ e a função interna é $g(x) = x^2 + x + 1$. Para estas, $f'(x) = 7x^6$ e g'(x) = 2x + 1. Então:

$$r'(x) = 7(x^2 + x + 1)^6 (2x + 1).$$

Normalmente não multiplicamos em detalhe respostas como esta a menos que haja um bom motivo para olhar para a expressão expandida.

Exemplo 2.24

Calcule a derivada de $a(x) = \sqrt{e^x + 2}$.

Solução: Aplique a regra da cadeia à composição para a qual a função externa é $f(x) = \sqrt{x}$ e a função interna é $g(x) = e^x + 2$. Para estas, $f'(x) = \frac{1}{2\sqrt{x}}$ e $g'(x) = e^x$. Então:

$$r'(x) = \frac{1}{2\sqrt{e^x + 2}} \cdot e^x = \frac{e^x}{2\sqrt{e^x + 2}}.$$

Exemplo 2.25

Calcule a derivada de $b(x) = \ln(\cos(x))$.

Solução: Aplique a regra da cadeia à composição para a qual a função externa é $f(x) = \ln(x)$ e a função interna é $g(x) = \cos(x)$. Para estas, $f'(x) = \frac{1}{x} e g'(x) = -\sin(x)$. Então:

$$r'(x) = \frac{1}{\cos(x)} \cdot -\operatorname{sen}(x) = \frac{-\operatorname{sen}(x)}{\cos(x)} = -\operatorname{tg}(x).$$

Note como simplificar esta resposta requer uma das identidades trigonométricas mais simples.

Com a regra do produto, do quociente e especialmente a regra da cadeia, a variedade de funções para as quais podemos calcular a derivada é substancialmente ampliada. A prática é necessária para desenvolver um senso de quando e qual regra usar corretamente.

2.4.2 Exercícios propostos

- 1 Encontre a derivada de cada uma das seguintes funções com a regra do produto (talvez precise da regra da cadeia em algumas delas):
- a) $f(x) = x \cdot \cos(x)$
- b) $q(x) = \operatorname{sen}(x) \cdot \cos(x)$
- c) $h(x) = x^5(x+1)^6$
- $d) q(x) = x^3 e^{2x}$
- e) $r(x) = \cos(2x)e^{3x}$
- f) $s(x) = \text{sen}(ex) \cdot \cos(\pi x)$
- 2 Encontre as derivadas das seguintes funções com a regra do quociente.

- a) $f(x) = \frac{2x+1}{x^3+2}$ d) $q(x) = \frac{e^x}{1+e^x}$ b) $g(x) = \frac{\ln(x)}{1-x}$ e) $r(x) = \frac{x^2+1}{x^2+x+1}$ sen (x)
- c) $h(x) = \frac{(x+1)^3}{(x-1)^3}$ f) $s(x) = \frac{\sin(x)}{\cos(x) + 1}$

- 3 Encontre as derivadas das seguintes funções com a regra da cadeia.

- e) $r(x) = \left(\frac{1}{x} + 1\right)^4$
- g) $a(x) = \ln(x^3 + 2x^2 + 7x + 5)$
- h) $b(x) = \ln(e^x + 1)$
- 4 Encontre as derivadas das seguintes funções com a técnica mais apropriada.
- a) $f(x) = x \cdot \ln(\cos(x) + 1)$
- $b) g(x) = x \cdot 5x^2 + 1$

5 Usando a regra da cadeia quantas vezes forem necessárias, verifique a regra da cadeia tripla:

$$(f(q(h(x)))' = f'(q(h(x))) \cdot q(h(x))' \cdot h'(x).$$

- 6 Encontre a derivada de $f(x) = (\operatorname{sen}(\ln(x)))^5$.
- 7 Encontre a derivada de $g(x) = (\ln(e^x + 1))^3$.

2.5 Significado físico da Derivada

Até agora, passamos da definição baseada em limites de uma derivada para saber como calcular a derivada de um número bastante grande de funções diferentes. Agora, o que falta é a sua interpretação. O significado da derivada depende muito do contexto, mas há um princípio geral que cobre a maior parte do que a derivada significa.

Proposição 2.12: (significado da derivada)

Se f(x) mede uma quantidade, então f'(x) é a taxa na qual essa quantidade está mudando.

Temos usado a interpretação geométrica da derivada: é a inclinação da reta tangente a uma curva em um ponto. Uma reta y = ax + b representa algo que começa em b e adiciona mais a por unidade de x percorrida; uma reta tem uma taxa constante na qual a quantidade medida muda. Isso explica por que "f'(x) é a taxa de mudança de f(x)" e "f'(x) é a inclinação da tangente ao gráfico em x" são ideias equivalentes.

Neste ponto, para permitir uma série de maneiras inovadoras de usar a derivada, introduzimos uma nova notação que reconhece que a derivada é uma taxa de mudança.

Proposição 2.13: (Notação diferencial)

Dado que y = f(x), outra notação para a derivada é

$$\frac{dy}{dx} = f'(x).$$

Isso é lido como "a diferencial de y em relação a x". Os novos símbolos dy e dx são a diferencial de y e de x, respectivamente.

Essa noção da derivada como uma taxa de mudança leva a uma aplicação natural na Física. Precisaremos de mais uma definição.

Definição 2.3

A derivada da derivada de uma função y é chamada de segunda derivada e é denotado por

$$\frac{d^2y}{dx^2}=f''(x).$$

Capítulo 3

Aplicações da Derivada

Capítulo 4

INTEGRAIS