

United International University

Department of Computer Science and Engineering (CSE) Course Syllabus

1	Course Title	Data Str	ructure and Algorithms II Laboratory			
2	Course Code	CSE 221	CSE 2218			
3	Trimester and Year	Spring 2	Spring 2024			
4	Prerequisites		CSE 2216: Data Structure and Algorithms I Laboratory CSE 2213: Discrete Mathematics			
5	Credit Hours	1.0				
6	Section	A				
7	Class Schedule	Sunday	: 08:30 am - 11:00 am			
8	Classroom	Compu	ter Lab 19 (0727)			
9	Course Teacher Information	Md Shadman Aadeeb Lecturer, Department of CSE Email: shadman@cse.uiu.ac.bd Office Room: 719 (D)				
10	Textbook	Introduction to Algorithms (3rd edition) by Cormen, Leiserson, Rivest, and Stein				
11	Course Contents (Approved by UGC)	Laboratory works based on CSE 2217: Data Structure and Algorithms II				
12	Course Outcomes					
	(COs)	COs	Description			
			Implement correct algorithms to handle large datasets efficiently.			
		CO2	Analyze worst-case running times of algorithms using asymptotic analysis.			
		CO3 Describe different algorithm paradigms and explain what algorithmic design situations call for them. Rec				

		algorithms that employ these paradigms. Synthesize such algorithms. Derive and solve problems describing the performance of the algorithms.		
13	Teaching Method	Lecture, and Problem Solving		
14	Mapping of COs and Program outcomes			

COs	Program Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			С									
CO2		С										
CO3		-	С		-							

15 Lab Outline

Class	Topic	COs	Activities
Class 1	Introduction to C++	CO1	Lecture; Problem- Solving
Class 2	Standard Template Libraries (STL) of C++	CO1, CO3	Lecture; Problem- Solving
Class 3	Review of Recursive Function	CO1, CO3	Lecture; Problem- Solving
Class 4	Class Performance 1; Divide and Conquer: Max-Min Problem, Maximum Sum Subarray; Assignment 1	CO1, CO2, CO3	Exam; Lecture; Assignment
Class 5	Greedy Algorithms: Activity Selection Problem, Coin Change Problem, 0/1 & Fractional Knapsack; Assignment 2	CO2, CO3	Lecture; Assignment
Class 6	Class Performance 2; Dynamic Programming: Coin Change Problem	CO1, CO2, CO3	Exam; Lecture
Class 7	Dynamic Programming: 0/1 Knapsack Problem; Assignment 3	CO2, CO3	Lecture; Problem Solving; Assignment

Class 8	Disjoint Set Union; Minimum Spanning Tree: Kruskal's Algorithm	CO2, CO3	Lecture; Problem Solving
Class 9	Minimum Spanning Tree: Prim's Algorithm; Single Source Shortest Path: Dijkstra's Algorithm; Assignment 4	CO2, CO3	Lecture; Assignment
Class 10	Class Performance 3; Single Source Shortest Path: Bellman-Ford Algorithm; String Matching: Rabin-Karp Algorithm	CO1, CO2, CO3	Exam; Lecture
Class 11	Presentation	CO2, CO3	
Class 12	Final Exam	CO1, CO3	Exam

Appendix 1: Assessment Methods

Assessment Method	(%)
Attendance	10
Class Performance	30
(N-1 out of N)	
Presentation	10
Assignment	25
(N out of N)	
Final Exam	25

Appendix 2: Grading Policy

Letter	Marks	Grade	Letter	Marks	Grade
Grade	%	Point	Grade	%	Point
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

POs	Program Outcomes
PO1	An ability to apply knowledge of mathematics, science, and engineering
PO2	An ability to identify, formulate, and solve engineering problems
PO3	An ability to design a system, component, or process to meet desired needs within
	realistic constraints such as economic, environmental, social, political, ethical, health
	and safety, manufacturability, and sustainability
PO4	An ability to design and conduct experiments, as well as to analyze and interpret data
PO5	An ability to use the techniques, skills, and modern engineering tools necessary for
	engineering practice
PO6	The broad education necessary to understand the impact of engineering solutions in a
	global, economic, environmental, and societal context
PO7	A knowledge of contemporary issues
PO8	An understanding of professional and ethical responsibility
PO9	An ability to function on multidisciplinary teams
PO10	An ability to communicate effectively
PO11	Project Management and Finance
PO12	A recognition of the need for, and an ability to engage in life-long learning