

Introduction aux BDMM

Survol du cours

- Comprendre pourquoi les bases de données multimédias sont maintenant nécessaires
- Apprécier les concepts du multimédia dans une base de données
- Décrire des exemples de données multimédia ainsi que leurs métadonnées

Ex. Google street view

Bases de données multimédias

- Différentes interprétations
 - Fichier de texte
 - Ensemble de fichiers de texte
 - Un seul fichier d'enregistrements
 - Ensemble de fichiers d'enregistrements
 - Plusieurs sous bases de données indépendantes les unes des autres

Bases de données multimédias

- Changement technologique
 - Augmentation de la résolution
 - Capacité de stockage
 - Algorithmes de compression

Bases de données multimédias

- Nature des documents = nouveaux médias:
 - Images (collection d'images)
 - Audio (iTunes)
 - Vidéo (YouTube)
 - Données complexes: imagerie satellitaire, imagerie médicale, etc.

Internet

- Première BD MM
- Base de données (???) hétérogène et répartie
- Norme et standard pour le support du multimédia
- Bonne perspective pour l'avenir...

Solution

- Nouveaux outils adaptés à la réalité d'aujourd'hui
 - Web sémantique
 - Indexation par étiquetage (meta tags)
 - Indexation et recherche par contenu

Base de données

- Au sens strict, ensemble de données:
 - Fortement structurées;
 - Persistantes;
 - Structure définie dans un schéma;
 - Gérées par un système de gestion de bases de données (SGBD).

Système de gestion de base de données (SGBD)

- Logiciel spécialisé pour la gestion de base de données
- Fournit des fonctionnalités liées à la gestion des BD indépendamment du domaine d'application
 - Offre des mécanismes de stockage des données en mémoire secondaire pour en assurer la persistance
 - Offre des mécanismes d'accès à ces données, en sélection et en mise à jour (insertion, suppression, modification)
 - Garantit la performance de ces accès
 - Gère l'intégrité des données : intégrité sémantique, gestion de la concurrence, fiabilité et gestion des pannes, sécurité des données (ACIDL)

Paradigme - base de données

- Ensemble de concepts décrivant les données et leurs traitements;
- Un SGBD implémente généralement un paradigme de données spécifique;
- Les données stockées dans les BD gérées par le SGBD doivent se conformer à ce paradigme.

Paradigme - base de données

- Hiérarchique (années 1960)
- Réseau (1971)
- Relationnel (années 1980)
- Relationnel-objet (années 1990)
- Orienté-objet (1995)
- Entrepôt de données, le semi-structuré, l'associatif et l'EAV (entity-attribute-

Conception de BD relationelle

- Modèle conceptuel de données
- Modèle logique de données (normalisé)
- Schéma physique de la base de données
 - Bibliothèque nationale du Canada: http://www.collectionscanada.ca/9/1/p1-221-f.html

Conception de BD relationelle

- Succès du relationnel
- Premier paradigme qui permet l'indépendance entre les programmes et les données
- Outils de modélisation disponibles (silverrun, fabforce, Oracle Designer)

Représentation d'une relation

Outil SQL*plus d'Oracle

Création du schéma BD

```
SOL> CREATE TABLE Client
    (noClient
                   INTEGER PRIMARY KEY,
 3 nomClient VARCHAR(18),
 4 adresseClient VARCHAR(20),
 5 noTéléphone VARCHAR (15))
Table created.
SQL> CREATE TABLE Compte
    (noCompte
                   INTEGER PRIMARY KEY,
                 DECIMAL(10,2) CHECK (solde \geq= 0),
 3 solde
 4 dateOuverture DATE,
 5 noClient
                   INTEGER REFERENCES Client)
Table created.
SOL> CREATE TABLE Prêt
    (noPrêt
                   INTEGER PRIMARY KEY,
 3 montantPrêt DECIMAL(10,2),
 4 dateDébut DATE,
 5 tauxIntérêt
                   DECIMAL(8,2),
 6 fréquencePaiement INTEGER,
     noClient
                   INTEGER REFERENCES Client)
Table created.
```

Données et types de données

- Une donnée est une représentation d'un fait à l'aide d'un code binaire stocké dans la mémoire de l'ordinateur, selon un codage appelé type de données qui permet de l'interpréter.
- Des opérations particulières sont associées à chaque type de données pour les manipuler.
- Exemple: type téléphone: 10 chiffres; 5141002233; opérations possibles: affichage selon le format (XXX) XXX-XXXX, extraction du code régional, ...

Données simples et complexes

- Données simples
 - indécomposables du point de vue du système qui la manipule
- Données de type complexe, ou données complexes
 - composées de données simples/complexes
 - structurées ou semi-structurées
 - constructeurs de types (enregistrement, ensemble, tableau, etc.)

Données multimédias

- Types de base : texte, image, son, vidéo
- Types de base sont simples et nondécomposables du point de vue informatique
- Données multimédias peuvent combiner les types de base

Complexité relative

École de technologie supérieure

Département de génie logiciel et des TI

Sémantique des données

- En informatique de gestion
 - données fortement structurées (syntaxe complexe)
 - chaque donnée a une sémantique simple et explicite
- En multimédia
 - données ayant une syntaxe simple : suite de caractères (texte), suite de pixels (images), ...
 - mais sémantique complexe et implicite
 - problème non strictement informatique : deux individus interprètent différemment un texte, une photo, ...

Spécificité des données MM

- Spécificité fondamentales:
 - sémantique complexe, qui dépend de plus de qui interprète la donnée => difficultés d'interrogation
- Spécificités techniques (informatiques):
 - taille volumineuse de ces données => difficultés de stockage / de mise à jour
 - aspect temps-réel dans certains cas : bandes sonores, vidéos (implique la coordination de la bande son et du flux d'images)

Besoin du MM

- Définition commune de la sémantique
 - Pour échanger des données multimédias d'une manière automatique tous les intervenants doivent partager une définition commune des documents
- Normes de métadonnées multimédias

Métadonnées / Métainformation

En BD relationnelles classiques

 métadonnées = schéma de la BD = informations structurées sur la structure des données = dictionnaire de données

En MM

- métadonnées = données structurées sur les éléments individuels de la BD
- permettent de pallier, en partie, la difficulté d'associer un sens aux données
 MM
- peuvent être acquises automatiquement (difficile et risque d'erreur) ou générées manuellement (coût élevé)
- peuvent aussi impliquer une description technique (et non sémantique) des données MM : date de la prise de vue, paramètres techniques de la prise de vue
- peuvent concerner la structure de données MM complexes

Exemple de métadonnées

Code : 40484B

Nom: Reisling Trimbach

Région: Alsace

Année: 1996

Raisin: Reisling

Prix: 22.50

Bouteille: 75cl

Historique:texte de 91800 caractères.

Normes de métadonnées

- Normes qui ont le + de potentiel à influencer le monde du multimédia et de l'internet sont (voir l'annexe B du livre):
 - Moving Picture Experts Group (MPEG)
 - MPEG-7 (annotations)
 - MPEG-21 (interopérabilité)

Approche d'interrogation MM

- Introduction à la recherche textuelle, visuelle, audio et vidéo
 - Approche actuelle de BD = ABR (Attribute Based Retrieval)
 - Approche d'annotation avec du texte = TBR (Text Based Retrieval)
 - Approche d'interrogation avec le contenu = CBR (Content Based Retrieval)

Recherche d'information textuelle

- Web = énorme collection de documents
 - certains ne sont disponibles que dynamiquement : pages générées suite à la formulation d'une requête
 - aucun moteur de recherche n'indexe toutes les pages statiques du Web
 - présence de nombreux doublons ou quasidoublons : les moteurs doivent s'efforcer de les identifier
 - indexation non en temps-réel : des pages identifiées n'existent plus ou ont été modifiées

Recherche d'information textuelle

- Recherche basée sur le contenu limitée aux textes
- Recherche sur des documents images, audio, vidéo
 - recherche sur de la métainformation textuelle associée à ces éléments
 - métainformation extraite par l'indexeur
 - inclut possiblement de la métainformation incluse par le créateur de la page

Principe général

- Recherche d'information booléenne suivie d'un tri, car limite le nombre de documents retourné
 - en vectoriel, l'ajout d'un terme à la requête augmente la taille des résultats
 - en booléen, l'ajout d'un terme à la requête diminue la taille des résultats
- Nombre de documents parfois considérable, mais seuls les 1000 premiers sont accessibles (Google)
- Il est possible d'avoir des requêtes de trois mots ne retournant aucun résultat cependant : mathématiques ornithorynques vins (en date du 12/07/2004 sur Google)

Web multilingue

- Recherche d'information multilingue
- Généralement, langue de la requête = langue du document
- Mais certains mots existent dans plusieurs langues
 - avec le même sens : vins (français/catalan)
 - avec un sens différent : but (français) / but (anglais)
- Les moteurs détectent automatiquement la langue/les langues d'un document (modèles statistiques)
- Possibilité de spécifier explicitement la langue dans laquelle effectuer la recherche

Interrogation BDMM-SQL

SELECT wine_code FROM wine_list WHERE contains (note, 'apéritif') > 0

Interrogation BDMM-CBR

 Recherche par l'exemple (QBE: query by example = Content based retrieval)

Trouves-moi des images dans la vidéo

comme celle-ci?

Mode de recherche

- Linguistique Linguistique (LL)
 - Utilise les langages de recherche des bases de données ex.
 SQL
 - Recherches dans les métadonnées
- Visuelle Visuelle (VV)
 - CBR (Content based retrieval) utilise les caractéristiques physiques de l'image pour en trouver des semblables
- Visuelle Linguistique (VL)
 - Présente une image et fait la requête avec ses métadonnées
- Linguistique Visuelle (LV)
 - Utilise un index des attributs visuels

Exemples d'applications multimédias

- Entertainment systems Video on Demand, Audio on Demand, Digital Photo albums
- Public Protection
- Medical Information Systems
- Remote Sensing

Future and Emerging Technologies

(De Harald Kosh)

 Systèmes interconnectés personnels

Objectifs:

- Systèmes multimédias bout-en-bout.
- Station à station avec adaptation digitale
- Agents mobiles digitaux station à station

Reconnaissance et adaptation au contexte (De Harald Kosh)

- Context-Aware Multimedia Adaptation
 - Écoute le contenu et ses changements
 - S'adapte quand il y a un "évènement" détecté

Example:

Motion+texture detection

Increase resolution

Gestion de dossier radiologique

Remote Sensing (Gouv. Canada)

@ CCRS / CCT

Ressources Naturelles Canada

Agriculture Canada

- Classification des produits agricoles
- Évaluation de la condition des récoltes
- Caractéristiques de terrain
- Application des normes de production agricole

Ressources Naturelles Canada

