

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Thallium(I)

Equilibrium reactions	lgK at infinite dilution and $T = 298 K$	
	Baes and Mesmer, 1976	Brown and Ekberg, 2016
$TI^+ + H_2O \rightleftharpoons TIOH + H^+$	-13.21	
TI ⁺ + OH ⁻ ⇌ TIOH		0.64 ± 0.05
TI ⁺ + 2 OH ⁻ ⇌ TI(OH) ₂ ⁻		-0.7 ± 0.7
$\frac{1}{2} \operatorname{Tl}_2 O(s) + H^+ \rightleftharpoons \operatorname{Tl}^+ + \frac{1}{2} \operatorname{H}_2 O$		13.55 ± 0.20

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 335.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 817–826.

Distribution diagrams

These diagrams have been computed at two Tl(I) concentrations (1 mM = 1×10^{-3} mol L⁻¹ and 1 μ M = 1×10^{-6} mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Thallium(III)

Equilibrium reactions	lgK at infinite dilution and T = 298 K	
	Baes and Mesmer, 1976	Brown and Ekberg, 2016
$TI^{3+} + H_2O \rightleftharpoons TIOH^{2+} + H^+$	-0.62	-0.22 ± 0.19
$TI^{3+} + 2 H_2O \rightleftharpoons TI(OH)_2^+ + 2 H^+$	-1.57	
$TI^{3+} + 3 H_2O \rightleftharpoons TI(OH)_3 + 3 H^+$	-3.3	
$TI^{3+} + 4 H_2O \rightleftharpoons TI(OH)_4^- + 4 H^+$	-15.0	
$\frac{1}{2} \text{TI}_2 O_3(s) + 3 \text{ H}^+ \rightleftharpoons \text{TI}^{3+} + \frac{3}{2} \text{ H}_2 O$	-3.90	-3.90 ± 0.10

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 335.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 817–826.

Distribution diagrams

These diagrams have been computed at twoTl(III) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

