

The neutron

- Uncharged particle, mass close to that of proton
- Unstable as free particle; disintegrates into a proton, an electron and an antineutrino ($t_{1/2}$ =12 min)
- Do not interact with electrons
- Only nuclear interactions; complex cross sections
- Neutron attenuation similar to that for photons

UiO • Department of Physics University of Oslo

Neutron reactions

$$X + n \rightarrow b + Y$$

- (n,n) Elastic scattering
- (n,n') Inelastic scattering
- (n,p) Absorption
- (n,α) Absorption
- (n,f) Fission
- Thermalization of neutrons: Collisions with nuclear targets until in thermal equilibrium

Neutron moderation 1

• Elastic scattering against nucleus – energy of neutron after scattering:

• Hydrogen rich absorbers most effective

UiO : Department of Physics University of Oslo

Neutron moderation 2

• It may be shown that, after *n* interactions, the *average* neutron energy is:

$$T_{n} = T_{0} \left[\frac{A^{2} + I}{(A+I)^{2}} \right]^{n} \qquad \Rightarrow n = \frac{\ln \left(\frac{T_{n}}{T_{0}} \right)}{\ln \left[\frac{A^{2} + I}{(A+I)^{2}} \right]}$$

Table 12-1. Average number of collisions required to reduce a neutron's energy from 2 MeV to 0.025 eV by elastic scattering

Element	Atomic Weight	Number of Collisions
Hydrogen	1	27
Deuterium	2	31
Helium	4	48
Beryllium	9	92
Carbon	12	119
Uranium	238	2175

Low energies, $T_n < 500 \text{ keV}$

- "Potential" (1) and "resonance" (2) elastic scattering:
 - 1: Scattering on the nuclear 'surface'
 - 2: Neutron absorbed, but reemitted
 - For (1): virtually constant cross section
- At thermal energies, the neutron is captured and the compound nucleus deexcites via e.g. γ emission cross section $\sim 1/v_n$

Elastic scattering

- Potential elastic scattering
 - Discontinuities in neutron's potential energy curves due to the nuclear surface interaction (considered as reflections)
 - $\sim 4\pi R_A^2$
- Resonance scattering
 - Parts of the incident wave passing through the nuclear surface, resonance scattering occurs with large prob. only for specific wave-lengths

Thermal neutrons

• For neutrons in thermal equilibrium with surroundings:

• ²³⁵U has a high cross section for capture of thermal neutrons – gives fission

High energy neutrons, $T_n > 0.5 \text{ MeV}$

- Inelastic: $(n, n\gamma)$, threshold kinetic energy ~ 0.5 MeV
- Occurs at given energies: resonances
- Capture reacions: $(n, p), (n, \alpha)$
- Emission of more than one particle: $(n, np), (n, n\alpha)$ (threshold ~ 10 MeV)
- Complicated cross sections

Absorption

$$X + n \rightarrow b + Y$$

- (n,γ) , (n,b), (n,α) , (n,f).....
- Conservation of mass and kinetic energy $T_X + m_X c^2 + T_n + m_n c^2 = T_b + m_b c_2 + T_Y + m_Y c^2$
- The Q-value

$$Q = m_X c^2 + m_n c^2 - m_b c_2 - m_Y c^2$$

signifies if a reaction releases (exoergic) or needs energy (endoergic)

UiO : Department of Physics University of Oslo

Absorption

Neutron absorption (particle emission)
 X+n→C→b+Y

• Radiative capture $X+n\rightarrow Y^*\rightarrow Y+\gamma$

Reaction	Q (MeV)		Thermal Cross Section (b)
$^{3}\mathrm{He}(n,p)^{3}\mathrm{H}$		0.77	
$^6\text{Li}(n,\alpha)^3\text{H}$	4.64		940
$^{10}\mathrm{B}(n,\alpha)^7\mathrm{Li}$	2.78		3840
$^{14}N(n,p)^{14}C$		1.8	
$^{33}S(n,p)^{33}P$		0.75	
$^{35}Cl(n,p)^{35}S$		0.62	0.5
Reaction	Q (MeV)	Threshold (MeV)	Cross Section 14 MeV (b)
-	A		70.550.450.500
Reaction $^{12}\mathrm{C}(n,\alpha)^{9}\mathrm{Be}$	Q (MeV) -5.7	Threshold (MeV) 6.2	70.550.450.500
Reaction 12 C $(n,\alpha)^9$ Be 16 O $(n,p)^{16}$ N	Q (MeV) -5.7 -9.6	Threshold (MeV) 6.2 10.2	14 MeV (b)
Reaction $^{12}C(n,\alpha)^{9}$ Be $^{16}O(n,p)^{16}N$ $^{16}O(n,d)^{15}N$	Q (MeV) -5.7 -9.6 -9.9	Threshold (MeV) 6.2 10.2 10.5	70.550.450.500
Reaction $^{12}C(n, \alpha)^{9}Be$ $^{16}O(n, p)^{16}N$ $^{16}O(n, d)^{15}N$ $^{16}O(n, \alpha)^{13}C$	Q (MeV) -5.7 -9.6	Threshold (MeV) 6.2 10.2	0.04
Reaction $^{12}C(n,\alpha)^9$ Be $^{16}O(n,p)^{16}N$ $^{16}O(n,d)^{15}N$ $^{16}O(n,\alpha)^{13}C$ $^{32}S(n,p)^{32}P$	Q (MeV) -5.7 -9.6 -9.9	Threshold (MeV) 6.2 10.2 10.5	0.04 0.23
Reaction $^{12}C(n,\alpha)^9$ Be $^{16}O(n,p)^{16}N$ $^{16}O(n,d)^{15}N$ $^{16}O(n,\alpha)^{13}C$ $^{32}S(n,p)^{32}P$ $^{54}Fe(n,p)^{54}Mn$	Q (MeV) -5.7 -9.6 -9.9	Threshold (MeV) 6.2 10.2 10.5	0.04 0.23 0.35
Reaction $^{12}C(n,\alpha)^9$ Be $^{16}O(n,p)^{16}N$ $^{16}O(n,d)^{15}N$ $^{16}O(n,\alpha)^{13}C$ $^{32}S(n,p)^{32}P$	Q (MeV) -5.7 -9.6 -9.9	Threshold (MeV) 6.2 10.2 10.5	0.04 0.23

Neutron attenuation

• For a narrow neutron beam:

$$N = N_0 e^{-\mu x}$$

• μ is the attenuation coefficient:

$$\mu = \rho \frac{N_A}{A} \sigma$$

• Note: the cross section s may show extreme variations over small energy range

- If Q positive: $(\mu_{tr}/\rho) > (\mu/\rho)$

- If Q negative: $(\mu_{tr}/\rho) < (\mu/\rho)$

Theoretical dosimetry

KERMA factor F_n:

- $K_n = \Phi F_n = \Phi E_n (\mu_{tr}/\rho)_{tot}$
- At CPE: $D=K_n=\Phi F_n$

UiO : Department of Physics University of Oslo Oslo University Hospital

Important interactions in tissue

• 14 N(n,p) 13 C σ_{N} : 1.84 x 10 $^{-24}$ cm 2 /atom

• 1 H(n, γ) 2 H σ_{H} : 3.32 x 10 $^{-25}$ cm 2 /atom

• $N_H \sim 41 N_N$ in tissue...

γ+n mixed-field dosimetry

- (n,γ) always important
- (γ,n) important for energy ($\geq 10 \text{ MeV}$)
- Three categories of dosimeters
 - Neutron dosimeters (insensitive to $\gamma\text{-rays})$
 - γ -ray dosimeters (insensitive to neutrons)
 - n+ γ dosimeters (comparable sensitive to n and $\gamma)$

Paired dosimeters

- $Q_{n, \gamma} = AD_{\gamma} + BD_n$
- EX:
 - Tissue Equivalent (TE) ion chamber and TLD

UiO : Department of Physics University of Oslo

Neutron detectors

- •High cross section for the desired reaction
- High abundance of target nuclide
- •Principle:
 - (n, α) or (n,p) reaction
 - Fission reaction

BF₃ counter

- Ion chamber with BF₃ gas
 - 10 B+n→ ⁷Li+ α+2.792 MeV (6%)
 - ¹⁰B+n→^{7m}Li+ α+2.314 MeV (94 %)
 - → 7m Li+ γ +0.478 MeV

Neutron sources

- Nuclear fission reactors
 Neutron energies ~ 2 MeV
- Accelerators
 Protons on a thick Be target etc.
- Radioactive sources Be(α ,n) + ²³⁹Pu, ²⁴¹Am, ²²⁶Ra, ²¹⁰Po

Radioactive sources

- (α,n) reaction
- ²⁴¹AmBe: ⁹Be+⁴He→ ¹²C+n+5.7 MeV
 - T_{1/2}(²⁴¹Am)=460 y
- ²²⁶RaBe
 - $T_{\frac{1}{2}}(^{226}Ra)=1600 \text{ y}$
- ²³⁹PuBe
 - $T_{1/2}(^{239}Pu)=24000 y$

UiO : Department of Physics University of Oslo

Neutron sources: AmBe

Figur 4: Neutronspektrum från en AmBe-källa

Neutron generators: Accelerators

- Advantage
 - · Can be turned off
 - · One single energy
- Production in two stages
 - Acceleration
 - Neutron producing reaction
- Some common reaction:
 - $T(d,n)^4He$, Q=17.6 MeV \rightarrow E_n=14 MeV
 - D(d,n) 3 He , Q=3.3 MeV \rightarrow E $_n$ = 2.5 MeV
 - ⁷Li(d,n)⁸Be , Q=15 MeV
 - 9Be(d,n)10B, Q=4.4 MeV
 - $E_n > 100 \text{ MeV} \rightarrow \text{Spallation}$

UiO • Department of Physics University of Oslo

Nuclear reactors

- Power reactors and research reactors
- Neutron flux is very high $(10^{15} \text{ n/cm}^2\text{s})$
- Energy spectrum 1-7 MeV
- Fission by thermal neutron → Fission → fast neutrons → Slowing down → fission by thermal neutrons
- Research reactors: Neutrons can be extracted for research

