EECS 551 Discussion 5

Zongyu Li

University of Michigan October 1, 2021 Goal

Nearest neighbor

Subspace classifier

- Finish task-2-classify-subspace.ipynb.
- 2 Time-left questions.

Goa

Nearest neighbor
Subspace classifier

- 1 Intuitive, straight forward.
- 2 No assumption on the data, unlike the LDA classifier.
- Cons:
 - 1 $\mathcal{O}(n)$ for testing which means it depends on the number of test examples.
 - Outlier sensitivity.
 - 3 ...

Goal

Nearest neighbor

Subspace classifier

- Given data $X = [x_1, x_2, ..., x_n] \in \mathbb{F}^{d \times n}$. Each x_i is a column vector of length d.
- Idea: Extract features from X using SVD.
- But how is the feature of X related to SVD?

Example: Suppose you don't know the relationship between radius and perimeter of circles. You took some measurements (noisy):

Radius (cm)	0.9	2.0	3.0	4.0	5.0	6.1	7.0	7.9	9.1	10.0
Perimeter (cm)	6.5	10.4	18.6	23.9	31.6	39.3	43.8	50.9	56.6	62.8

Feature space

• Scatter plot:

EECS 551 Discussion 5

Goal

Nearest neighbor

Subspace classifier

• SVD:

$$X = \begin{bmatrix} 0.9 & 2.0 & \dots & 10.0 \\ 6.5 & 10.4 & \dots & 62.8 \end{bmatrix} = U\Sigma V',$$

where

$$U = \begin{bmatrix} -0.157 & -0.988 \\ -0.988 & 0.157 \end{bmatrix},$$
$$\Sigma = \begin{bmatrix} 125.1 & 0 \\ 0 & 0.5 \end{bmatrix}.$$

One can see 125.1 is the dominating singular value.

• Question: How is $\boldsymbol{u}_1 = [-0.157 \ -0.988]'$ related to 2π ?

Goal

Nearest neighbor

Subspace classifier

Feature space

- From this example, we can see features of X are strongly related to left singular vectors that correspond to leading singular values of X.
- Similarly, suppose that $\sigma_1, \sigma_2, ..., \sigma_k$ are the dominated singular values, then we can represent the feature space of X by $U_k \triangleq [u_1, u_2, ..., u_k]$.
- So the classifier can be designed by:
 - **1** Calculate U_k for each class using training data.
 - 2 For each test data, project onto the subspace formed by U_k for each class.
 - 3 Choose the nearest subspace and assign the corresponding label.

- **Todo:** Review lecture notes 3.62–3.67.
- Group work: Suppose that P is a projection matrix that maps vectors $x \in \mathbb{F}^N$ onto a subspace W.
 - **1** Prove or disprove: $\forall x, y \in \mathbb{F}^N$, $\|Px Py\|_2 \le \|x y\|_2$.
 - 2 If y = x + Px, solve for x in terms of y and Py.

Goal

Nearest neighbor

Subspace classifier

Nearest neighbor

Subspace classifier

noteboo

Open the notebook task-2-classify-subspace.ipynb. (submit to gradescope using template.)