Histopathologist Features Predictive of Diagnostic Concordance at Expert Level Amongst a Large International Sample of Pathologists Diagnosing Barrett's Dysplasia Using Digital Pathology

RUNNING HEAD: Quantitative model of Barrett's histopathology expert review

Authors: Myrtle J. van der Wel^{1,2*}, Helen G. Coleman^{3*}, Jacques JGHM Bergman², Marnix Jansen^{4,5,§}, Sybren L. Meijer^{1,§}, on behalf of the BOLERO working group[#]

Affiliations: ¹Amsterdam UMC, University of Amsterdam, Dept. of Pathology, Amsterdam, The Netherlands; ²Amsterdam UMC, University of Amsterdam, Dept. of Gastroenterology and Hepatology, Amsterdam, The Netherlands; ³Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK; ⁴University College London Hospitals NHS Trust, Dept. of Pathology, London, UK; ⁵UCL Cancer Institute, London, UK

Keywords: Barrett's oesophagus; Oesophageal neoplasms; Digital pathology; Health Services Research.

Disclosures: No conflicts of interest to declare

Author contributions: Study concept and design (MW, MJ, SM); acquisition of data (MW, MJ, SM); analysis and interpretation of data (MW, HC); drafting of the manuscript (MW, HC, MJ, SM); critical revision of the manuscript (MW, HC, JB, MJ, SM); study supervision (SM, MJ).

Sources of funding: Cancer Research UK and Dutch Cancer Society

§Corresponding authors:

Marnix Jansen

UCL Cancer Institute, room 234D 72 Huntley Str, London WC1E 6AG, United Kingdom Email: m.jansen@ucl.ac.uk

Sybren L. Meijer

Academic Medical Center
Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
Tel: +31 20 5665648; Fax: +31 20 6917033;

Email: s.l.meijer@amc.uva.nl

^{*}These first authors contributed equally

[§] Shared corresponding authors

[#] List of working group members appears at the end of this manuscript

Word Count: 4344

LIST OF ABBREVIATIONS

BO; Barrett's oesophagus BMI; body mass index CI; confidence interval CRF; case record form

OAC; oesophageal adenocarcinoma

HGD; high-grade dysplasia IHC; immunohistochemistry IMC; intramucosal carcinoma IND; indefinite for dysplasia IQR; interquartile range

K; kappa value

LGD; low-grade dysplasia

NDBO; non-dysplastic Barrett's oesophagus

OR; odd's ratio

WSI; whole slide imaging

ABSTRACT

Objective: Guidelines recommend expert pathology review of Barrett's oesophagus (BO) biopsies that reveal dysplasia, but there are no evidence-based standards to corroborate expert reviewer status. We investigated BO concordance rates and pathologist features predictive of diagnostic discordance amongst a large international cohort of gastrointestinal pathologists to develop a quantitative model of BO expert review.

Design: Pathologists (n=55) from over 20 countries assessed 55 digitised BO biopsies from across the diagnostic spectrum, before and after viewing matched p53 immunohistochemistry. Extensive demographic and clinical experience data were obtained via online questionnaire. We calculated discordance rates and applied multivariate regression analyses to identify predictors of concordance.

Results: We recorded over 6,000 individual case diagnoses. Of 2,805 H&E diagnoses, we found excellent concordance (>70%) for non-dysplastic Barrett's oesophagus (NDBO) and high-grade dysplasia (HGD), and intermediate concordance for low-grade dysplasia (LGD, 42%) and indefinite for dysplasia (IND, 23%). Major diagnostic errors (i.e. NDBO overinterpreted as LGD/HGD or vice versa) were found in 248 diagnoses (8.8%), which reduced to 8.3% after viewing p53 labelled slides. At least 5 years of professional experience was protective against major diagnostic error for H&E slide review (OR 0.48, 95%CI 0.31-0.74). Working in a district general hospital was associated with increased odds of major diagnostic error (OR 1.76, 95%CI 1.15-2.69), however this was neutralised when pathologists viewed p53 labelled slides, suggesting a beneficial impact of p53 immunohistochemistry for this group.

Conclusion: We have developed an evidence-based quantitative model of BO histopathology diagnosis at expert consensus level that will inform guideline development.

INTRODUCTION

Barrett's oesophagus (BO) is a premalignant condition, which predisposes to esophageal adenocarcinoma (OAC), with a reported annual conversion rate of 0.1 - 0.2%. ¹⁻³ BO is defined histopathologically as the replacement of normal stratified squamous epithelial lining of the distal oesophagus with columnar epithelium that can contain intestinal metaplasia. The implementation of formal surveillance strategies and widespread adoption of endoscopic treatment techniques, such as endoscopic resection and ablation for dysplastic BO, have led to a surge in diagnostic pathology workload. The goal of endoscopic surveillance and biopsy verification is objective risk stratification for patients according to their perceived progression risk to OAC.

Previous studies have revealed, however, that diagnostic reproducibility (interobserver agreement) amongst pathologists grading dysplastic BO biopsy material is moderate to poor, even amongst expert reviewers (Supplementary Table 1). 4-17 Previous work from our group has shown that central pathology review by a dedicated panel within the context of prospective intervention trials failed to confirm an initial diagnosis of low-grade dysplasia (LGD) in over three-quarters of cases submitted for panel review. On follow up, cases that had been downgraded to non-dysplastic BO (NDBO) revealed a nominal progression risk of about 0.5% per patient/year, whilst cases that had been confirmed LGD on central review showed a progression risk of about 10% per patient/year. These data clearly attest to the clinical return of dedicated pathology review. 18 19 International BO management guidelines now mandate histopathology review of all BO biopsy cases found to reveal dysplasia by an independent expert pathologist. 20 21 However, whilst major society quidelines have qualitatively defined an expert BO pathologist as 'a pathologist with a special interest in BO-related neoplasia who is recognised as an expert in this field by their peers', we lack firm evidence-based standards to corroborate expert reviewer status. ²¹⁻²⁶ This now represents an acute unmet need as these considerations also carry important medico-legal implications.

Recently, the US Food and Drug Administration has approved the use of whole slide imaging (WSI) for primary diagnostic use. ²⁷ The advantages of WSI are numerous and include simultaneous assessment by multiple pathologists, streamlined expert consultation, and digital image analysis. It is expected that digital pathology will rapidly gain widespread acceptance in the coming years, in particular in the context of distant case review. A number of large-scale diagnostic consensus studies have been performed, which have broadly suggested that the diagnostic discordance rate between pathologists using digital slide review is non-inferior to conventional glass slide diagnosis. ²⁸⁻³⁰ However, these studies generally examined a large number of diagnostic categories without focusing on a particular category of known diagnostic discordance such as Barrett's dysplasia. Establishing the validity of this new technology to BO histopathologic workup is therefore a clear priority.

Here we set out to develop quantitative standards of expert reviewer status for guideline development purposes using massive online digital pathology reporting. We define expert reviewer status as evidence of diagnostic concordance on a par with consensus within an expert review panel, acknowledging that, in lieu of an objective biomarker of progression risk, there will be diagnostic variation amongst expert pathologists. We collected extensive demographic information of participating pathologists to understand operator-dependent predictors of diagnostic variation.

METHODS

Ethical considerations

This study utilised anonymised archived formalin-fixed, paraffin embedded material and did not require approval from the relevant Institutional Ethics Committee under applicable local regulatory law ('Code of conduct', FEDERA).

Assessors

Sixty-five gastrointestinal pathologists worldwide were approached to join this study through either professional gastrointestinal pathology working groups or direct professional contacts. Fifty-nine pathologists responded positively to our enquiries and were recruited to this study of which 51 pathologists completed the entire case set of 55 H&E-stained and 55 matching p53 immunohistochemistry (IHC) labelled slides (110 slides total). These 51 pathologists are henceforth referred to as participating pathologists. Participating pathologists received emails detailing the study objectives and were provided with personal log-in credentials to the purpose-built online scoring environment described below. Lead study author (MvdW) provided assistance with participating pathologists' log-in queries, evaluated study progress, and chaired the panel consensus meeting.

Four BO pathologists (including two study authors, MJ and SM) with extensive experience in BO dysplasia assessment reviewed all slides as a reference pathologist panel. This group has successfully collaborated on previous BO intervention studies where patient outcome has been evaluated prospectively ^{18 19 31-37} as well as on the Amsterdam Barrett's Advisory Committee. ³¹ These pathologists are henceforth referred to as reference pathologists.

Slide selection and scanning

The lead study author selected a representative case-mix of 55 BO biopsy cases from across the diagnostic spectrum (Supplementary Table 2). Inclusion criteria were: diagnosis confirmed by a second gastrointestinal pathologist; documented clinical follow-up of at least one year available; and tissue block available. Per case, immunohistochemical staining for p53 was performed using a Ventana Benchmark XT autostainer (Ventana Medical Systems, Tucson, AZ). Antigen retrieval was performed with CC1 mild. P53 was detected with p53 Antibody (Mouse DO-7 + BP 53-12, Thermo Scientific) and the sections were incubated in a 1:500 dilution for 32 min at room temperature. Bound antibody was detected using the Biotin free Ultraview Universal DAB Detection Kit (Roche Diagnostics) and slides were counterstained with Hematoxylin (Roche Diagnostics). 38 One H&E slide and one consecutive section p53 IHC slide were digitised from each case using a scanner with a 20x microscope objective (Slide, Olympus, Tokyo, Japan). Scans were checked for focus and acuity by the study coordinator and re-scanned if necessary. Subsequently, slides were anonymised, randomised, renamed, and stored on a secure server. The 'Digital Slidebox 4.5' (https://dsb.amc.nl/dsb/login.php, Slidepath, Leica Microsystems, Dublin, Ireland) virtual slide viewing software was used to evaluate the digital slides during the study.

Electronic scoring environment

Template electronic Case Record Forms (CRFs) were custom built within a web-based software tool designed to capture clinical study data (OpenClinica v3.6, an open source CTMM TraiT project, LLC, Waltham, USA). One CRF consists of an extensive questionnaire documenting pathologist characteristics such as age, sex, host institution, and experience in reporting BO biopsies and digital pathology (full questionnaire details in **Supplementary Table 3**). The second CRF was built to record individual case diagnoses. Importantly, this second CRF consists of separate parts to record H&E and H&E plus p53 IHC slide diagnoses independently. The first part of the case diagnosis CRF contains a dynamic URL link to the scanned H&E slide and includes questions about the slide quality and diagnosis, and whether the assessor feels they require a p53 IHC slide. Importantly, the second part of the templated CRF that contains a dynamic link to the p53 IHC slide alongside the matching H&E slide, only opens after the study pathologist has completed assessment of the H&E-stained slide and saved their case diagnosis for this slide. This second part of the templated CRF, in addition to a dynamic link to the matching p53 IHC slide, again included corresponding slide assessment questions.

Digital case assessments

Reference and participating pathologists were asked to assess each case, according to the modified Vienna classification for gastrointestinal neoplasia. ^{39 40} Reference pathologists first assessed all cases individually and completed the questionnaire. An online consensus meeting was then convened after a two-month wash out period to discuss discrepancies and produce reference diagnoses for each of the 110 assessments (55 H&E-stained slides and 55 matching p53 IHC). The panel assessment was taken forward as the reference diagnosis without further discussion if reference panel members achieved a majority diagnosis (i.e. concordance between either 3 out of 4 or 4 out of 4 pathologists) on a case directly from their independent scoring. Group discussions were held between these four pathologists to review and discuss cases for which there was no majority diagnosis to mimic real-world practice. The discrepancies where a majority diagnosis had not been reached after individual slide review encompassed 21 cases based on H&E slide viewing, and 13 cases based on the p53 IHC slide. These cases were reviewed during the panel discussion (21 H&E slides reviewed without matching p53 IHC slide, and 13 cases with H&E-stained slide and matching p53 IHC) to arrive at a consensus diagnosis for all 110 assessments.

From the case assessments by the participating pathologists two p53 IHC case assessments were inadvertently left blank by individual participating pathologists (one each) after evaluating the case H&E slide. Results from the matching H&E slides were imputed as p53 case diagnosis in these cases, based on the H&E slide score, corresponding to 2 HGD diagnoses.

Statistical analysis

Characteristics of the four reference pathologists and the 51 participating pathologists were compared informally. We examined the overall concordance of the study pathologists compared to the consensus reference diagnosis per case. This process was conducted for each of the four individual members of the reference panel against the final consensus diagnosis of this panel, as well as for the overall sample of 51 pathologists against the consensus diagnosis. Per pathologist scores were not calculated, since we aimed to study the cohort behavior rather than the individual pathologist. Concordance was initially

compared based on four relevant diagnostic categories (NDBO, IND, LGD, HGD), and then compared based on three relevant diagnostic categories (NDBO, IND, LGD or HGD) to reflect the fact that HGD and LGD are now treated endoscopically in some settings. ³² We calculated 95% CIs for overall concordance and per diagnostic category. Since this cohort was strongly enriched for dysplasia, we did not use kappa statistics, since these are less reliable when cross tables are skewed.

To evaluate the severity of discordant interpretations across the cohort of participating pathologists, we then reclassified all discordant assessments as either major or minor discordances. Major overinterpretation is defined as NDBO reference diagnosis overinterpreted as either LGD or HGD, whereas, vice versa, major underinterpretation is LGD or HGD reference diagnosis underinterpreted as NDBO by the participating pathologist. These discordant interpretations would bear major consequences in clinical practice. All other discordant interpretations were classified as minor discordant interpretations. A tabular overview of interpretation classifications as major or minor is shown in **Supplementary Table 4**. Since both major overinterpretation and major underinterpretation can have negative implications for patient management, these were further combined for the purposes of some analyses, as indicated.

Unadjusted logistic regression analyses were then conducted to identify any pathologist characteristics that were associated with overall and major over or underinterpretation of BO cases, compared to the consensus diagnosis. Considering that age and professional experience are inextricably linked, we evaluated individual combinations of age and experience for odds of major over and underinterpretations, and combined these into three categories in whom similar odds ratios were observed (**Supplementary Table 5**). Forward selection of significant factors was used to create multivariable-adjusted logistic regression models of characteristics associated with misinterpretation. Although routine use of p53 immunohistochemistry was not associated with diagnostic errors, this was retained in multivariate models for p53 stained slides. All statistical analyses were performed using Stata version 14.2 (StataCorp., College Station, TX, USA).

RESULTS

Study design

This study is based on assessments of digitised slides to investigate diagnostic concordance of BO biopsies amongst a large and heterogeneous sample of gastrointestinal pathologists. We investigated rates and features predictive of diagnostic concordance amongst these pathologists, with a particular focus on the demographic characteristics of the pathologists, the impact of viewing p53 labelled slides alongside H&E-stained slides, and on features associated with major diagnostic discordance that would negatively impact upon patient stratification and treatment pathways. The purpose of this study was to build a quantitative model of expert BO pathologist review characteristics, and to provide practical recommendations that could minimize errors in the interpretation of BO biopsies in the routine setting.

The study flowchart is shown in **Figure 1A**. All pathologists first filled out a baseline questionnaire for detailed demographic and clinical experience data. Pathologists then

assessed the 110 digitised slides (55 H&E slides and matching p53 IHC) and recorded their answers on dedicated electronic CRFs. As detailed in the methods section, diagnostic entries were recorded after viewing the H&E-stained slide and again after the matched p53 IHC was revealed alongside the case H&E slide.

The entire study set was completed by fifty-five pathologists working in over 20 countries and 5 continents (**Figure 1B**). Of these fifty-five pathologists, 4 pathologists with extensive and published experience in BO dysplasia assessment were designated beforehand as reference pathologists. ^{18 19 32 41 42} In sum, with 55 pathologists reviewing 55 biopsy cases, each of which includes one H&E-stained slide and a matched p53 IHC, this generated a massive dataset of over 6,000 case diagnoses as input data for our Barrett's digital pathology (BOLERO) consensus study, one of the largest digital pathology consensus studies reported thus far. Case diagnoses were compared to reference diagnoses and we searched for pathologist demographic features that predict diagnostic consensus at expert level.

Patient characteristics of BO biopsy samples

Patient characteristics of the sample biopsies are shown in **Supplementary Table 2**. Of these patients, 94.5% was male (52/55). The median age at diagnosis was 65, the median BMI was 27, the median BO segment length was Circumferential (C) 4 cm, Maximum (M) 5 cm. Patients had a history of smoking in 63.6% of cases (35/55), a history of heartburn symptoms in 89% of cases (49/55), and used anti-reflux medication in 96.4% of cases (53/55).

Pathologist characteristics

Baseline characteristics of the pathologists taking part in the study are displayed in Table 1 and Supplementary table 6. Participating pathologists represented a heterogeneous sample comprising a wide range of ages, workplace settings (academic teaching, private and/or district general hospital settings) and years of professional experience. Just over 50% of participating pathologists reported dedicated fellowship experience, whilst the majority (72%) worked in a large laboratory with ≥10 pathologist colleagues. The most commonly reported guidelines to which pathologists adhered were North American, British, or Japanese, however a quarter of pathologists reported using other guidelines in their clinical practice. Two thirds of participating pathologists self-identified as expert gastrointestinal pathologists. Note that although pathologists were approached through international working groups, no effort was made to purposely recruit experts onto the study. Pathologists also reported on other parameters and working practices in their laboratories, such as typical numbers of BO cases reported per week, confidence and enjoyment in reporting BO, reporting of endoscopic resection specimens, frequency of adjunct p53 IHC use in BO reporting, participation in double-reporting, multi-disciplinary team meetings, and use of WSI, as well as typical interactions and perceptions of practices of their endoscopy colleagues (Table 1 and Supplementary table 6). Participating and reference pathologists were generally well matched for age ranges and professional experience although all four reference pathologists were male, whereas 22 of 51 (43.1%) participating pathologists in the larger cohort were female.

Case assessment overview

A total of 3,025 diagnoses were generated based on H&E-stained slide case review and another 3,025 diagnoses were recorded after viewing the matching p53 IHC slides for study cases (**Figure 2A and B**). The corresponding waterfall plots showing the ranked distribution of assessments reveal a gradual transition from NDBO examples with high interobserver concordance to HGD cases with similarly high interobserver concordance and diagnostic categories where concordance gradually transitions between these extremes. These plots also confirm that our case set includes representative biopsies from across the diagnostic spectrum of BO pathology. Relevant examples of study cases are shown in **Figure 2C**.

Concordance of reference pathologists vs. consensus diagnosis on H&E and p53 labelled slides

Consensus diagnoses were generated following panel review. The reference panel consensus diagnoses for the H&E-stained slide case review included 16 NDBO, 6 IND, 18 LGD, and 15 HGD case diagnoses. After the addition of matched p53 IHC and reference panel review a small number of cases were reclassified, including 1 NDBO diagnosis as LGD, 1 LGD diagnosis as NDBO, and 4 IND diagnoses as LGD, thus totaling 16 NDBO, 2 IND, 22 LGD and 15 HGD after p53 IHC slide review.

Individual consensus panel member diagnoses were then compared to the final consensus panel diagnosis to obtain concordance rates between the 4 reference pathologists. This revealed excellent diagnostic agreement when reporting NDBO, LGD and HGD on H&E-stained slides alone (84.4%, 65.3% and 78.3%, respectively), rising to 89.4% when LGD and HGD diagnoses were combined. After revealing the matching p53 IHC slide for the 55 cases, agreement further improved to 85.9% for ND, 72.7% for LGD, and 76.7% for HGD, rising to 91.9% when LGD and HGD were combined (**Supplementary Tables 7A and B**).

Concordance of participating pathologists vs. consensus diagnosis on H&E and p53 stained slides

The complete set of 5,610 case assessments recorded by the 51 participating pathologists was then compared to the reference panel diagnoses to obtain concordance rates and compare diagnostic agreement within and between categories. The diagnostic agreement between 51 participating pathologists for H&E-stained slide diagnoses is depicted in **Figure 3A-C** and **Supplementary Figure 1A**, while concordance percentages are shown in **Table 2A**. We found excellent concordance between the participating pathologists for NDBO reference diagnosis cases (643 of 816 diagnoses; 78.8%) and HGD reference diagnosis cases (544 of 765 diagnoses; 71.1%). As expected, there was moderate concordance for LGD reference diagnosis cases (382 of 918; 41.6%) and poor concordance for IND reference diagnosis cases (70 of 306; 22.9%). However, if dysplastic assessments were grouped (i.e. combining LGD and HGD reference diagnosis cases) then 77.5% (1,305 of 1,683) of cases were concordant. Major over or underinterpretation was found in 8.8% of assessments (248 of 2,805 diagnoses).

Addition of matched p53 IHC improved diagnostic concordance (Figure 3D-F and Supplementary Figure 1B) with small but clinically meaningful improvements seen in the diagnostic concordance between participating pathologists for NDBO reference diagnosis cases (83.8% v. 78.8% on H&E slide) and LGD/HGD combined reference diagnosis cases (79.3% v. 77.5% on H&E slide), Table 2B. In addition to this, p53 IHC also had a small but

beneficial impact on reducing the number of major over and underinterpretations (8.3%, 232 of 2,805 diagnoses), representing 0.5% fewer overall major misinterpretations compared to H&E-stained slide diagnosis alone.

Characteristics associated with concordance on H&E slides

This massive dataset was then interrogated to search for histopathologist predictors of over or underreporting and major diagnostic errors in univariate analysis. To this end all diagnostic discordances within our dataset (i.e. case diagnoses not matching reference diagnosis) were first reclassified as major or minor over or underinterpretation (see Methods and **Supplementary Table 4**). Factors associated with reduced odds of major diagnostic errors included: ≥5 years of experience commensurate with age (OR 0.65, 95%CI 0.45-0.93); working in an academic teaching hospital (OR 0.59, 95%CI 0.43-0.81); routinely double reporting indefinite for dysplasia cases (OR 0.70, 95%CI 0.52-0.94); working in a larger lab (≥10 versus <10 pathologists OR 0.72, 95%CI 0.54-0.96) and using digital pathology (OR 0.63; 95%CI 0.47-0.89). In contrast, working within a district general hospital (OR 1.72, 95%CI 1.30-2.26) or private hospital (OR 1.41, 95%CI 1.04-1.91), or not using major society guidelines (OR 1.43, 95%CI 1.06-1.94) were all associated with increased odds of major diagnostic errors (**Supplementary Tables 8A-C**).

Several factors were not associated with major diagnostic error, including pathologist sex. Participating in upper gastrointestinal multidisciplinary team meetings was not associated with reduced odds of major diagnostic error, although it was associated with reduced odds of overreporting. Notably, self-identifying as a Barrett's pathology expert, holding a dedicated fellowship, or reporting greater enjoyment or confidence in Barrett's reporting were not associated with significant odds of major over or underinterpretation (Supplementary Table 8A).

Reporting ≥20 cases per week was associated with reduced odds of over or underinterpretation of Barrett's dysplasia (OR 0.69, 95%CI 0.53-0.89), although this association was attenuated when investigating major diagnostic errors (**Supplementary Table 8B**).

Multivariate analyses before and after revealing matched p53 IHC

Multivariable models were then applied, including all factors associated with collective over and underinterpretation on H&E digital slide review in univariate analysis, as shown in **Table 3**. At least 5 years of experience commensurate with age was the strongest protective factor against major diagnostic error on H&E slide review (OR 0.48, 95%Cl 0.31-0.74). In contrast, working in a district general hospital was associated with increased odds of major diagnostic error (OR 1.76, 95%Cl 1.15-2.69), however this was neutralised if pathologists in these settings viewed cases with additional p53 IHC (OR 1.44, 95%Cl 0.92-2.28). As expected, routine use of p53 IHC was associated with reduced odds of major diagnostic error. Viewing 5-19 BO cases with p53 stained slides per week was associated with increased odds of major diagnostic errors, which was neutralised when viewing ≥20 cases per week. Most other results showed similar trends to those seen in univariate analysis, but these were no longer statistically significant (**Table 3**).

We have carried out the largest investigation of diagnostic concordance of BO biopsy reporting amongst gastrointestinal pathologists to date. Previous studies had been limited to a small number of expert pathologists, which meant findings were not necessarily generalizable to real-world settings. This work has revealed several novel findings. First, overall concordance for H&E digital slide review of NDBO and LGD/HGD as a combined outcome was excellent (exceeding 77%), although concordance for IND and LGD as a stand-alone diagnosis was lower (23-42%). These test characteristics replicate known glass slide test characteristics (Supplementary Table 1), suggesting that distant BO biopsy slide review is reproducible and safe. Second, the addition of adjunct p53 IHC resulted in small, but clinically meaningful improvements in concordance and a reduction from 8.8% to 8.3% in the prevalence of major misinterpretations of BO dysplasia for pathologists working at a general hospital, signifying that p53 IHC could serve as an extra protection against misdiagnoses for these pathologists working away from teaching hospitals. The limited impact of p53 addition could also be due to a lack of guidelines on staining interpretation. Lastly, multivariate analyses revealed several pathologist characteristics and working practices associated with the prevalence of misinterpretations. Reassuringly, pathologist experience commensurate with age was most protective against major over or underinterpretation, confirming the validity of our experimental strategy. Our multivariate demographic regression analyses also confirm that working within a teaching hospital environment protects against major diagnostic error. This provides supportive evidence for guideline statements that BO complicated by dysplasia is best managed within an expert center. 21-23 26

We found that the overall prevalence of major misinterpretations of dysplastic BO (NDBO classified as LGD/HGD, or vice versa) in this cohort enriched for IND/LGD/HGD cases was 8.8%, which was further reduced, if marginally, by the addition of p53 IHC (8.3%). Although this would suggest a limited impact of the implementation of p53 IHC, our data also reveals that major discordance was reduced by the addition of p53 IHC, specifically for those pathologists working away from teaching hospital settings. Acknowledging that any reduction in the prevalence of major misinterpretation of BO biopsy material is beneficial, these important data suggest that the impact of adjunct p53 IHC is dependent on context and is greatest outside expert center settings. Routine use of p53 IHC labelling is supported by several national guidelines, ^{21 23 26} and our study confirms that this is appropriate.

Taken together, our study for the first time provides an evidence-based quantitative model of BO histopathology diagnosis at expert consensus level. Our findings have several implications for clinical practice of pathology reporting in BO. Diagnostic concordance within a large group of pathologists with different levels of gastrointestinal pathology expertise was excellent for LGD and HGD combined. To implement routine external review of dysplastic BO biopsies, as mandated by several major society guidelines, requires regional teams of dedicated gastrointestinal pathologists. Our data reassuringly suggest that BO reporting on a par with expert consensus is not limited to a small league of experienced histopathologists and can be predicted from a small number of intuitive demographic predictors (experience, professional setting, use of p53 IHC). Combined with our observation that concordance rates for digital slide viewing were not inferior to conventional glass slide pathology review ^{18 19}, together these data suggest that distant digital review of problematic BO cases is safe to formally implement within current care delivery systems, provided quality benchmarks are met.

Our study has considerable strengths compared to previous interobserver variation studies of BO reporting. We have evaluated diagnostic concordance for dysplastic BO amongst the largest group of gastrointestinal pathologists worldwide. The heterogeneous mix of pathologists involved in this study also enabled novel investigations into pathologist-dependent predictors associated with diagnostic discordance. The online reporting strategy mimicked routine workflow and facilitated data collection and curation in a flexible manner. The case set was purposely enriched for dysplastic cases in order to attain sufficient statistical power in our downstream regression analyses.

This study also has limitations that are important to note. First, acknowledging that the diagnostic spectrum of BO represents a morphologic continuum, we aimed to include diagnostic categories from across the diagnostic spectrum, including arbitrary cases that straddle the transition from low-grade dysplasia to high-grade dysplasia, as well as indefinite for dysplasia cases. Our case-mix for this reason does not represent a cross-section of diagnostic biopsy cases encountered in daily practice, which would be heavily weighted towards the NDBO end of the spectrum. A second limitation is that while our heterogeneous global group of pathologists allowed us to interrogate associations of a host of operatordependent characteristics with diagnostic consensus (case volume, practice setting, diagnostic experience, etc.), this study feature may limit the generalizability of our findings within the national setting. Replication of our findings in samples of pathologists within particular geographic regions adhering to one diagnostic guideline will be required to determine whether the quantitative predictive features described here are similarly applicable in that setting. Given that the majority of pathologists participating in this study were based either in Europe or North America, greater representation from low to middle income settings would be particularly welcome. This could further enhance the value of this recursive exercise for teaching and registration purposes.

In conclusion, using this rich dataset of case assessments by a large, heterogeneous sample of gastrointestinal pathologists, we have evaluated diagnostic concordance for BO diagnosis using digital case review. Our results reveal quantitative predictors of diagnostic performance that will aid formulation of quality assurance criteria for guideline development and standard implementation of digital pathology in BO biopsy review.

REFERENCES

- 1. Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. *Journal of the National Cancer Institute* 2011;103(13):1049-57. doi: 10.1093/jnci/djr203
- 2. Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of adenocarcinoma among patients with Barrett's esophagus. *The New England journal of medicine* 2011;365(15):1375-83. doi: 10.1056/NEJMoa1103042
- 3. Yousef F, Cardwell C, Cantwell MM, et al. The incidence of esophageal cancer and high-grade dysplasia in Barrett's esophagus: a systematic review and meta-analysis. *Am J Epidemiol* 2008;168(3):237-49. doi: 10.1093/aje/kwn121 [published Online First: 2008/06/14]
- 4. Coco DP, Goldblum JR, Hornick JL, et al. Interobserver variability in the diagnosis of crypt dysplasia in Barrett esophagus. *The American journal of surgical pathology* 2011;35(1):45-54. doi: 10.1097/PAS.0b013e3181ffdd14

- 5. Horvath B, Singh P, Xie H, et al. Risk for esophageal neoplasia in Barrett's esophagus patients with mucosal changes indefinite for dysplasia. *Journal of gastroenterology and hepatology* 2015;30(2):262-7. doi: 10.1111/jgh.12696
- 6. Kaye PV, Haider SA, Ilyas M, et al. Barrett's dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 2009;54(6):699-712. doi: 10.1111/j.1365-2559.2009.03288.x
- 7. Kaye PV, Ilyas M, Soomro I, et al. Dysplasia in Barrett's oesophagus: p53 immunostaining is more reproducible than haematoxylin and eosin diagnosis and improves overall reliability, while grading is poorly reproducible. *Histopathology* 2016;69(3):431-40. doi: 10.1111/his.12956
- 8. Kerkhof M, van Dekken H, Steyerberg EW, et al. Grading of dysplasia in Barrett's oesophagus: substantial interobserver variation between general and gastrointestinal pathologists. *Histopathology* 2007;50(7):920-7. doi: 10.1111/j.1365-2559.2007.02706.x
- 9. Lim CH, Treanor D, Dixon MF, et al. Low-grade dysplasia in Barrett's esophagus has a high risk of progression. *Endoscopy* 2007;39(7):581-7. doi: 10.1055/s-2007-966592
- 10. Montgomery E, Bronner MP, Goldblum JR, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. *Human pathology* 2001;32(4):368-78. doi: 10.1053/hupa.2001.23510
- 11. Pech O, Vieth M, Schmitz D, et al. Conclusions from the histological diagnosis of low-grade intraepithelial neoplasia in Barrett's oesophagus. *Scandinavian journal of gastroenterology* 2007;42(6):682-8. doi: 10.1080/00365520601075803
- 12. Sanders DS, Grabsch H, Harrison R, et al. Comparing virtual with conventional microscopy for the consensus diagnosis of Barrett's neoplasia in the AspECT Barrett's chemoprevention trial pathology audit. *Histopathology* 2012;61(5):795-800. doi: 10.1111/j.1365-2559.2012.04288.x
- 13. Sangle NA, Taylor SL, Emond MJ, et al. Overdiagnosis of high-grade dysplasia in Barrett's esophagus: a multicenter, international study. *Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc* 2015;28(6):758-65. doi: 10.1038/modpathol.2015.2
- 14. Skacel M, Petras RE, Gramlich TL, et al. The diagnosis of low-grade dysplasia in Barrett's esophagus and its implications for disease progression. *The American journal of gastroenterology* 2000;95(12):3383-7. doi: 10.1111/j.1572-0241.2000.03348.x
- 15. Skacel M, Petras RE, Rybicki LA, et al. p53 expression in low grade dysplasia in Barrett's esophagus: correlation with interobserver agreement and disease progression. *The American journal of gastroenterology* 2002;97(10):2508-13. doi: 10.1111/j.1572-0241.2002.06032.x
- 16. Sonwalkar SA, Rotimi O, Scott N, et al. A study of indefinite for dysplasia in Barrett's oesophagus: reproducibility of diagnosis, clinical outcomes and predicting progression with AMACR (alpha-methylacyl-CoA-racemase). *Histopathology* 2010;56(7):900-7. doi: 10.1111/j.1365-2559.2010.03571.x
- 17. Wani S, Falk GW, Post J, et al. Risk factors for progression of low-grade dysplasia in patients with Barrett's esophagus. *Gastroenterology* 2011;141(4):1179-86, 86 e1. doi: 10.1053/j.gastro.2011.06.055
- 18. Curvers WL, ten Kate FJ, Krishnadath KK, et al. Low-grade dysplasia in Barrett's esophagus: overdiagnosed and underestimated. *The American journal of gastroenterology* 2010;105(7):1523-30. doi: 10.1038/ajg.2010.171
- 19. Duits LC, Phoa KN, Curvers WL, et al. Barrett's oesophagus patients with low-grade dysplasia can be accurately risk-stratified after histological review by an expert pathology panel. *Gut* 2014 doi: 10.1136/gutjnl-2014-307278
- 20. Sharma P, Katzka DA, Gupta N, et al. Quality indicators for the management of Barrett's esophagus, dysplasia, and esophageal adenocarcinoma: international consensus recommendations from the American Gastroenterological Association Symposium. *Gastroenterology* 2015;149(6):1599-606. doi: 10.1053/j.gastro.2015.08.007 [published Online First: 2015/08/25]

Online First: 2015/08/25]

- 21. Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. *Gut* 2014;63(1):7-42. doi: 10.1136/gutjnl-2013-305372
- 22. Shaheen NJ, Falk GW, Iyer PG, et al. ACG Clinical Guideline: Diagnosis and Management of Barrett's Esophagus. *The American journal of gastroenterology* 2016;111(1):30-50. doi: 10.1038/ajg.2015.322
- 23. Weusten B, Bisschops R, Coron E, et al. Endoscopic management of Barrett's esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. *Endoscopy* 2017;49(2):191-98. doi: 10.1055/s-0042-122140
- 24. Fock KM, Talley N, Goh KL, et al. Asia-Pacific consensus on the management of gastro-oesophageal reflux disease: an update focusing on refractory reflux disease and Barrett's oesophagus. *Gut* 2016;65(9):1402-15. doi: 10.1136/gutjnl-2016-311715
- 25. van der Wel MJ, Jansen M, Vieth M, et al. What Makes an Expert Barrett's Histopathologist? *Adv Exp Med Biol* 2016;908:137-59. doi: 10.1007/978-3-319-41388-4 8
- 26. Whiteman DC, Appleyard M, Bahin FF, et al. Australian clinical practice guidelines for the diagnosis and management of Barrett's Esophagus and Early Esophageal Adenocarcinoma. *Journal of gastroenterology and hepatology* 2015 doi: 10.1111/jgh.12913
- 27. Abels E, Pantanowitz L. Current State of the Regulatory Trajectory for Whole Slide Imaging Devices in the USA. *J Pathol Inform* 2017;8:23. doi: 10.4103/jpi.jpi 11 17
- 28. Snead DR, Tsang YW, Meskiri A, et al. Validation of digital pathology imaging for primary histopathological diagnosis. *Histopathology* 2016;68(7):1063-72. doi: 10.1111/his.12879 [published Online First: 2015/09/27]
- 29. Goacher E, Randell R, Williams B, et al. The Diagnostic Concordance of Whole Slide Imaging and Light Microscopy: A Systematic Review. *Arch Pathol Lab Med* 2017;141(1):151-61. doi: 10.5858/arpa.2016-0025-RA [published Online First: 2016/07/12]
- 30. Mukhopadhyay S, Feldman MD, Abels E, et al. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study). *The American journal of surgical pathology* 2018;42(1):39-52. doi: 10.1097/PAS.0000000000000948 [published Online First: 2017/09/30]
- 31. Offerhaus GJ, Correa P, van Eeden S, et al. Report of an Amsterdam working group on Barrett esophagus. *Virchows Archiv : an international journal of pathology* 2003;443(5):602-8. doi: 10.1007/s00428-003-0906-z
- 32. Phoa KN, van Vilsteren FG, Weusten BL, et al. Radiofrequency ablation vs endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial.

 JAMA: the journal of the American Medical Association 2014;311(12):1209-17. doi: 10.1001/jama.2014.2511
- 33. van Sandick JW, van Lanschot JJ, Kuiken BW, et al. Impact of endoscopic biopsy surveillance of Barrett's oesophagus on pathological stage and clinical outcome of Barrett's carcinoma. *Gut* 1998;43(2):216-22.
- 34. Phoa KN, Pouw RE, Bisschops R, et al. Multimodality endoscopic eradication for neoplastic Barrett oesophagus: results of an European multicentre study (EURO-II). *Gut* 2015 doi: 10.1136/gutjnl-2015-309298
- 35. van Vilsteren FG, Pouw RE, Seewald S, et al. Stepwise radical endoscopic resection versus radiofrequency ablation for Barrett's oesophagus with high-grade dysplasia or early cancer: a multicentre randomised trial. *Gut* 2011;60(6):765-73. doi: 10.1136/gut.2010.229310
- 36. Pouw RE, Gondrie JJ, Sondermeijer CM, et al. Eradication of Barrett esophagus with early neoplasia by radiofrequency ablation, with or without endoscopic resection. *Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract* 2008;12(10):1627-36; discussion 36-7. doi: 10.1007/s11605-008-0629-1
- 37. Duits LC, van der Wel MJ, Cotton CC, et al. Barrett's esophagus patients with confirmed and persistent low-grade dysplasia are at increased risk of neoplastic progression.

- Gastroenterology 2017 doi: 10.1053/j.gastro.2016.12.008 [published Online First: 21 Dec 2016]
- 38. van der Wel MJ, Duits LC, Pouw RE, et al. Improved diagnostic stratification of digitised Barrett's oesophagus biopsies by TP53 immunohistochemical staining. *Histopathology* 2018;72(6):1015-23. doi: 10.1111/his.13462 [published Online First: 2018 Feb 28]
- 39. Schlemper RJ, Kato Y, Stolte M. Diagnostic criteria for gastrointestinal carcinomas in Japan and Western countries: proposal for a new classification system of gastrointestinal epithelial neoplasia. *Journal of gastroenterology and hepatology* 2000;15 Suppl:G49-57.
- 40. Reid BJ, Haggitt RC, Rubin CE, et al. Observer variation in the diagnosis of dysplasia in Barrett's esophagus. *Human pathology* 1988;19(2):166-78.
- 41. Duits LC, van der Wel MJ, Cotton CC, et al. Patients With Barrett's Esophagus and Confirmed Persistent Low-Grade Dysplasia Are at Increased Risk for Progression to Neoplasia. *Gastroenterology* 2017;152(5):993-1001 e1. doi: 10.1053/j.gastro.2016.12.008
- 42. van der Wel MJ, Duits LC, Klaver E, et al. Development of benchmark quality criteria for assessing whole-endoscopy Barrett's esophagus biopsy cases. *United European gastroenterology journal* 2018;6(6):830-37. doi: 10.1177/2050640618764710 [published Online First: 2018/07/20]

ACKNOWLEDGEMENTS

We sincerely thank Joann Elmore and Gary Longdon for their helpful additions to our study protocol. We sincerely thank Alden van Putten, Rudy Scholten, Rene Breet and David de Koning (Open Clinica) for their help in building and maintaining the on-line study environment. We sincerely thank Onno de Boer, Eelco Roos, and Wim van Est for their help scanning of the slides.

BOLERO STUDY PARTICIPANTS (in alphabetical order)

- Dr. Junko Aida, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Dr. Rossana Baiocco, General Hospital of Desenzano del Garda, Desenzano, Italy
- Dr. Camille Boulagnon-Rombi, Université de Reims Champagne-Ardenne, Reims, France
- Dr. Iva Brcic, Medical University of Graz, Graz, Austria
- Dr. Lodewijk Brosens, University Medical Center Utrecht, Utrecht, the Netherlands
- Dr. Fátima Carneiro, IPATIMUP, Porto, Portugal
- Dr. Gieri Cathomas, Kantosspital Baselland, Liestal, Switzerland
- Dr. Denis Chatelain, CHU Amiens-Picardie, Amiens, France
- Dr. Allison Cluroe, Addenbrookes Hospital, Cambridge, United Kingdom
- Dr. Parag Dabir, Regional Hospital, Randers, Denmark
- Dr. Giovanni De Petris, Penrose Hospital, Colorado Springs, United States of America
- Dr. Michael Doukas, Erasmus Medical Center, Rotterdam, the Netherlands
- Dr. Hala El-Zimaity, Toronto General Hospital, Toronto, Canada
- Dr. Matteo Fassan, University of Padua, Padua, Italy
- Dr. Roberto Fiocca, University of Genova, Genova, Italy
- Dr. Jean-François Fléjou, Saint Antoine Hospital, Paris, France
- Dr. Alejandro García Varona, Hospital El Bierzo, Leon, Spain
- Dr. Elvira Gonzalez Obeso, Hospital Clinico Universitario, Valladolid, Spain
- Dr. Heike Grabsch, 1. Division of Pathology and Data Analytics, Leeds Institute of Medical
- Research at St James's, University of Leeds, Leeds, UK, 2. Department of Pathology, GROW

School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, NL

- Dr. Federica Grillo, University of Genova, Genova, Italy
- Dr. Barbara Gruber, Patologia Bariloche, San Carlos de Bariloche, Argentina
- Dr. Laura Guerra Pastrian, University Hospital La Paz, Madrid, Spain
- Dr. Anne Hoorens, University Hospital Gent, Gent, Belgium
- Dr. Marnix Jansen, University College Hospital, London, United Kingdom
- Dr. Katerina Kamaradova, Charles University Hospital, Hradec Kralove, Czech Republic
- Dr. Ryoji Kushima, Shiga University of Medical Science, Shiga, Japan
- Dr. Cord Langner, Medical University of Graz, Graz, Austria
- Dr. Rupert Langer, University of Bern, Bern, Switzerland
- Dr. Felix Lasitschka, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Dr. Ester Lörinc, University Hospital Lund and Malmö, Lund, Sweden
- Dr. Luca Mastracci, University of Genova, Genova, Italy
- Dr. Damian McManus, Belfast HSC Trust, Belfast, Northern Ireland
- Dr. Sybren Meijer, Academic Medical Center Amsterdam, the Netherlands
- Dr. Carmen Mendez, University Hospital La Paz, Madrid, Spain
- Dr. Anya Milne, Diakonessenhuis, Utrecht, the Netherlands
- Dr. Miriam Mitchison, University College Hospital London, United Kingdom
- Dr. Masoud Mireskandari, Jena University Hospital, Jena, Germany
- Dr. Elizabeth Montgomery, Johns Hopkins Medical Institute, Baltimore, United States of America
- Dr. Cian Muldoon, St. James's Hospital, Dublin, Ireland
- Dr. Maria O'Donovan, Cambridge Cancer Centre, Cambridge, United Kingdom
- Dr. Rob Odze, Brigham and Women's Hospital, Boston, United States of America
- Dr. Johan Offerhaus, University Medical Center Utrecht, the Netherlands
- Dr. Gabriel Olmedilla, University Hospital La Paz, Madrid, Spain
- Dr. John Pauli, The Prince Charles Hospital, Brisbane, Australia
- Dr. Rachel S. van der Post, Radboud university medical centre, Nijmegen, the Netherlands
- Dr. Bob Riddell, Mount Sinai Hospital, Toronto, Canada
- Dr. Ari Ristimaki, Haartman Institute, Helsinki, Finland
- Dr. Ana Rodriguez, University Hospital La Paz, Madrid, Spain
- Dr. Manual Rodriguez-Justo, University College Hospital, London, United Kingdom
- Dr. Shigeki Sekine, National Cancer Center Hospital, Tokyo, Japan
- Dr. Kees Seldenrijk, St. Antonius Hospital, Nieuwegein, the Netherlands
- Dr. Tulio Souza, Hospital Aliança, Salvador, Brazil
- Dr. Matt Stachler, Brigham and Women's Hospital, Boston, United States of America
- Dr. Michael Vieth, Klinikum Bayreuth, Bayreuth, Germany
- Dr. Vincenzo Villanacci, Spedali Civili di Brescia, Brescia, Italy
- Dr. Rhonda Yantiss, Weill Cornell Medical College, New York, United States of America

FIGURE LEGENDS

- Figure 1: Study design and study participants | A) Fifty-five representative BO biopsies with H&E slide and consecutive p53 IHC were collected and scanned for digital diagnostic review. Each pathologist on the study first completed a detailed demographic questionnaire (Supplementary Table 3). Pathologists then assessed 55 biopsy cases whereby diagnostic entries on H&E slide alone and after revealing matched p53 IHC were recorded separately allowing detailed insight into the added benefit of p53 IHC on diagnostic agreement. Reference diagnoses were established after consensus panel meeting. Within-group interobserver agreement was established for reference panel (n=4) and participating pathologists (N=51) and multivariate regression analyses were carried out to interrogate demographic predictors of diagnostic concordance, as detailed in the text. B) Map showing geographical dispersion of pathologists participating in the BOLERO study.
- Figure 2: Diagnostic variation across the study cohort | A) Waterfall plot showing the ranked distribution of case assessments (n=3,025) based on H&E slides alone for the entire cohort of pathologists. X-axis shows diagnostic concordance in percentages and y-axis shows ranked cases 1-55. Color coding as in B. B) Same visualisation for case assessments (n=3,025) after revealing matched p53 IHC slide. C) Four representative examples of the study set. Consensus diagnosis and cohort diagnoses are shown.
- Figure 3: Diagnostic variation per reference diagnoses | A-F) Waterfall plots showing the ranked distribution of case assessments by participating pathologists per diagnostic category, as indicated. Left column (A-C) shows diagnostic variation per reference diagnosis based on H&E slide review alone and right column (D-F) shows diagnostic variation per reference diagnosis after revealing matched p53 IHC. X-axis shows diagnostic concordance in percentages and y-axis shows ranked cases. Color coding as in Figure 2B. Diagnostic variation for indefinite for dysplasia cases is shown in Supplementary Figure 1.
- Supplementary Figure 1: Diagnostic variation for indefinite for dysplasia diagnoses before (A) and after (B) revealing matched p53 IHC labelling. X-axis shows diagnostic concordance in percentages and y-axis shows ranked cases. See text for details.

Table 1: Demographics of pathologists reporting in the BOLERO study

Characteristics	Participating pathologists n=51 (%)	Reference panel pathologists n=4 (%)
Pathologist specific characteristics		
Age, years		
30-39	13 (25.5)	1 (25.0)
40-49	17 (33.3)	1 (25.0)
50-59	14 (27.5)	1 (25.0)
60+	7 (13.7)	1 (25.0)
Gender	00 (70 0)	4 (400 0)
Male	29 (56.9)	4 (100.0)
Female	22 (43.1)	0 (0.0)
Experience, years	0 (4.7.7)	4 (0 = 0)
0-4	8 (15.7)	1 (25.0)
5-9	9 (17.7)	1 (25.0)
10-19	18 (35.3)	0 (0.0)
20+	16 (31.4)	2 (50.0)
Considered BE* expert?	24 (00.7)	4 (400 0)
Yes	34 (66.7)	4 (100.0)
No Don't know	8 (15.7)	0 (0.0)
Don't know	9 (17.7)	0 (0.0)
Confidence of assessment of BE biopsies 1 (very confident)	10 (19.6)	1 (25.0)
2	25 (49.0)	3 (75.0)
3	13 (25.5)	0 (0.0)
4	3 (5.9)	0 (0.0)
5 (not confident)	0 (0.0)	0 (0.0)
Fellowship undertaken in GI-pathology	28 (54.9)	2 (50.0)
Pathology/endoscopy practice	20 (04.0)	2 (30.0)
characteristics		
Work Setting (can be multiple settings)		
Academic teaching hospital	42 (82.4)	3 (75.0)
District general hospital	16 (31.4)	1 (25.0)
Private hospital	11 (21.6)	1 (25.0)
Mean number of BE cases assessed per	(= 115)	(====)
week	11 (21.6)	0 (0.0)
0-4	16 (31.4)	3 (75.0)
5-9	14 (27.5)	1 (25.0)
10-19	8 (15.7)	0 (0.0)
20+	2 (3.9)	0 (0.0)
Don't know	, ,	
Lab size, number of reporting pathologists		
<10	14 (27.4)	0 (0.0)
10+	37 (72.6)	4 (100.0)

Table 1 continued: Demographics of pathologists reporting in the BOLERO study

Characteristics	Participating pathologists n=51 (%)	Reference panel pathologists n=4 (%)
Pathology/endoscopy practice characteristics		
Guidelines adhered to:		
North American	23 (45.1)	2 (50.0)
British	10 (19.6)	2 (50.0)
Japanese	3 (5.9)	0 (0.0)
Australian	1 (2.0)	0 (0.0)
Other	14 (27.4)	0 (0.0)
p53 IHC staining routinely used?		
Always	1 (2.0)	1 (25.0)
Most times	11 (21.6)	1 (25.0)
Sometimes	32 (62.8)	2 (50.0)
Never	7 (13.7)	0 (0.0)
Digital pathology characteristics		
Use of whole slide imaging		
Yes	22 (43.1)	4 (100.0)
No	29 (56.9)	0

Table 2: Cross table comparing the 51 participating pathologists' diagnoses to the consensus derived reference diagnoses for 55 esophageal biopsy cases (a) on HE staining and (b) on HE and p53 IHC staining for 5,610 total case interpretations*

	Consensu s	Participating pathologists' individual diagnoses				9/	% Concordance (95% CI)			
	reference panel**	(preconsensus)			Under- interpretat ion	Over- interpretati on	Concorda nce			
a. Bef	ore addition	of p53 i	mmuno	histoch	emistry					
Diagnosis		ND	IND	LGD	HGD					
NDBO	816	643	93	71	9	/	21.2 (18.4-24.0)	78.8 (0.70-81.6)		
IND	306	59	70	110	67	19.2 (14.8-23.6)	57.8 (52.3-63.3)	22.9 (18.2-27.6)		
LGD	918	151	165	382	220	34.4 (31.3-37.5)	24.0 (21.2-26.8)	41.6 (38.4-44.8)		
HGD	765	17	45	159	544	28.9 (25.7-32.1)	/	71.1 (25.6-32.2)		
LGD or HGD	1683	168	210	13	05	22.5 (20.4-24.5)	/	77.5 (75.5-79.5)		
Total	2805									
Consensu Participating pathologists'										
iotai						%	Concordanc (95% CI)	е		
Total	Consensu	ind		diagno	ses	Under- interpretat ion		e Concorda nce		
	Consensu s reference	inc	dividual (precon	diagnos sensus	ses)	Under- interpretat	(95% CI) Over- interpretati	Concorda		
	Consensu s reference panel***	inc	dividual (precon	diagnos sensus	ses)	Under- interpretat	(95% CI) Over- interpretati	Concorda		
b. Aft	Consensu s reference panel***	inc f p53 im	dividual (precon	diagnos sensus stoche	ses) mistry	Under- interpretat ion	(95% CI) Over- interpretati	Concorda		
b. After Diagnosis NDBO	Consensus reference panel*** er addition of 816	f p53 im ND 684	munohi IND 74	istocher LGD 53	mistry HGD 5	Under- interpretat	(95% CI) Over- interpretati on	Concorda nce		
b. After Diagnosis NDBO	Consensus reference panel***	f p53 im ND 684 36	dividual (precon munohi IND 74 24 178	diagnos sensus stoches LGD 53	mistry HGD 5	Under- interpretat ion / 35.3	(95% CI) Over- interpretati on 16.2 (13.7-18.7) 41.2	83.8 (81.3-86.3) 23.5		
b. After Diagnosis NDBO	Consensus reference panel*** er addition of 816	f p53 im ND 684	munohi IND 74	istocher LGD 53	mistry HGD 5	Under- interpretat ion / 35.3 (26.0-44.6) 29.5	(95% CI) Over- interpretati on 16.2 (13.7-18.7) 41.2 (31.6-50.8) 24.5	83.8 (81.3-86.3) 23.5 (15.3-31.7) 46.0		
b. After Diagnosis NDBO	Consensus reference panel*** er addition of 816 102	f p53 im ND 684 36	dividual (precon munohi IND 74 24 178	sensus sensus stocher LGD 53 27 516	mistry HGD 5 15 275	Under- interpretat ion / 35.3 (26.0-44.6) 29.5 (26.8-32.2) 29.3	(95% CI) Over- interpretati on 16.2 (13.7-18.7) 41.2 (31.6-50.8) 24.5	83.8 (81.3-86.3) 23.5 (15.3-31.7) 46.0 (43.7-49.5) 70.7		

Table 2 Legend: *Overall concordance for 1639/2805 diagnoses (58.4%, 95%Cl 56.6-60.2%); increasing to 2018/2805 (71.9%, 95%Cl 70.2-73.6%) when LGD and HGD were combined, **Note consensus reference panel results are scaled x51 to allow for comparison versus the 51 participating pathologists. Results represent 5,610 diagnoses in 55 oesophageal biopsy cases. ***Overall concordance for 1765/2805 diagnoses (62.9%, 95% Cl61.1-64.7%); increasing to 2205/2805 (78.6%, 95%Cl 77.1-80.1%) when LGD and HGD were combined.

Table 3: Characteristics associated with odds of major over- or under-interpretation of Barrett's oesophagus with dysplasia in multivariable adjusted analysis

Table 3 Legend: *All characteristics factors mutually adjusted for each other, **Additional adjustment for p53 immunohistochemical staining in routine pathology practice

Supplementary Table 1: Overview concordance studies in Barrett's oesophagus

Author	Year	Journal	No of cases	No of review pathologists	No of rounds	Group discussion	Use of p53 IHC	Type of observer agreement	K* total	K* NDBO	K* LGD	K* HGD / IMC	K* IND
Coco (4)	2011	Am J Surg Pathol	Set 1: 40, Set 2: 63	6	1 per set	Yes (between sets)	No	Interobserver		Set 1: 0.57, Set 2: 0.50	Set 1: 0.31, Set 2: 0.40	Set 1: 0.67, Set 2: 0.72	Set 1: 0.018, Set 2: 0.014
Horvath (5)	2014	J Gastroent & Hep	85	6	1	No	No	Interobserver (Fleiss)	0.33	-	-	-	-
Kaye (6)	2009	Histopathol	186	5	2	Yes	Yes	Interobserver (weighted pairs)	Without p53 IHC*: 0.5-0.65 With p53 IHC*: 0.53-0.70				
Kaye (7)	2016	Histopathol	72	10	2	Yes (before sets)	Yes	Interobserver (weighted pairs)	Without p53 IHC: 0.47 With p53 IHC*: 0.55				
Kerkhof (8)	2007	Histopathol	793	11	1	Yes (in case of discrepancies)	No	Interobserver (unweighted)	0.25	0.27	-	0.58	
Lim (9)	2007	Endoscopy	88	5	1	No	No	Interobserver	0.48 (range 0.42- 0.70)	-	-	-	-
Montgomery (10)	2001	Human Path	250	12	2	Yes (between 2 sets)	No	Intraobserver / Interobserver	Intraobserver: 0.60 Interobserver: 0.43				

Supplementary Table 1 (cont'd): Overview concordance studies in Barrett's oesophagus

Author	Year	Journal	No of cases	No of review pathologists	No of rounds	Group discussion	Use of p53 IHC	Type of observer agreement	K* total	K*NDBO	K* LGD	K* HGD/ IMC	K* IND
Pech (11)	2007	Scand J Gastroenterol	50	2	1	No	No	Interobserver (unweighted)			0.69 (2 experts) 0.03 (2 experts vs general pathologists)		
Sanders (12)	2012	Histopathol	61	5	2	No	Yes	Interobserver	R1: 0.71 (Fleiss) R1 for subgroup: 0.60 (conventional microscopy) R2: 0.44 (digital microscopy)				
Sangle (13)	2015	Modern Path	437	3	2	No	Yes	Interobserver				0.77	
Skacel (14)	2000	AJG	100	3	1	No	Unknown	Interobserver (unweighted)			0.17 (mean)		
Skacel (15)	2002	AJG	16	3	1	No	Yes	Sensitivity / specificity			With p53 IHC*: sens itivity 100%, specificity 75%		
Sonwalkar (16)	2010	Histopathol	101	3	1	No	No	Interobserver (weighted)	0.35	0.73	0.29	0.43	0.18
Wani (17)	2011	Gastroenterol	88	2	1	No	No	Interobserver (unweighted)			0.14		

Supplementary Table 1 Legend: *representing interobserver agreement unless mentioned otherwise

Supplementary Table 2: Demographic and Clinical Characteristics of patient biopsies

Characteristics	Number of patients n=55 (%)
Male	52 (94.5)
Age, years (median, range)	65 (36-86)
BMI*, kg/m², median (IQR)	27 (3.9)
History of smoking	35 (63.6)
If so, mean number of pack years	14
Heart burn symptoms	49 (89.1)
Anti-reflux medication	53 (96.4)
Circumferential Barrett's extent, cm, median (IQR)	4 (7.8)
Length of Barrett's segment, cm, median (IQR)	5 (8)
Consensus diagnoses on H&E slide, before p53 IHC	
NDBO	16 (29.1)
IND	6 (10.9)
LGD	18 (32.7)
HGD	15 (27.3)
Consensus diagnosis, after p53 IHC	
NDBO	16 (29.1)
IND	2 (3.6)
LGD	22 (40.0)
HGD	15 (27.3)

Supplementary Table 3: Demographic questionnaire

Question	Answer options
Part 1: General demographic information	
Your age	30-39 / 40-49 / 50-59 / 60 or above
Your gender	Male / Female
Do you work in an academic teaching hospital?	Yes / No
Do you work in a district general hospital?	Yes / No
Do you work in a private practice?	Yes / No
Did you participate in a GI-pathology fellowship?	Yes / No
Part 2: Professional Experience	
Your practice size:	<10 pathologists / 10 pathologists or more
Years' experience in signing out Barrett's biopsy cases:	0-4 / 5-9 / 10-19 / 20 or more
Which guidelines do you adhere to in sign-out practice of Barrett's esophagus?	 North-American (ACG) Guidelines (Shaheen et al. AJG 2016) British (BSG) Guidelines (Fitzgerald et al. Gut 2013) Guidelines Japanese Society for Esophageal Diseases (Kuwano et al. Esophagus 2012) Cancer Council Australia Guidelines (Whiteman et al. JGH 2015) Other
Total no. of Barrett's biopsy cases reviewed per week (including local, referral, surveillance, and new diagnoses):	0-4 / 5-9 / 10-19 / 20-29 / 30-39 / 40 or more / don't know
Within your team of consultants, are you the designated local expert for complicated Barrett's biopsy cases?	Yes / No / don't know
Do you generally feel confident when signing out Barrett's dysplasia specimens?	Scale of 1-6, where 1=very confident and 6=not confident
Do you enjoy signing out Barrett's specimens?	Scale of 1-6 where 1=very much and 6=not at all
Do you also sign out endoscopic mucosal resection (EMR) specimens?	Yes / No
If Yes: On average, how many EMR specimens do you sign out on a weekly basis?	<1 / 1 / 2-5 / 6-10 / 11-20 / >20
Do you receive an endoscopy report with most esophageal biopsy series and/or EMR cases?	Yes / No
If Yes: Do you feel the endoscopy report generally provides you with enough information to answer the clinical request?	Yes / No
In your experience, do endoscopists in your institution generally adhere to the Seattle surveillance protocol (quadratic biopsies every 2	Always / Most of the time / Some of the time / Never

cm taken in separate containers)?	
Are target biopsies of nodules and other suspicious areas sent in separate containers?	Always / Most of the time / Some of the time / Never
Do you IHC label for p53 on Barrett's surveillance biopsies?	Always / Most of the time / Some of the time / Never
Are Barrett's dysplasia or indefinite for dysplasia cases routinely double reported?	Yes / No
Do you take part in regular upper gastrointestinal multidisciplinary meetings?	Yes / No
Part 3: Experience with digital pathology	
Does your laboratory make use of whole slide imaging (digital pathology)?	Yes / No / Don't know
•	Yes / No / Don't know Research purposes / External consultation and consensus panels / Digitalized laboratory / Other; namely*
imaging (digital pathology)?	Research purposes / External consultation and consensus panels / Digitalized laboratory /

Supplementary Table 3 Legend: *free text field

Supplementary Table 4: Overview of diagnostic errors classification

Participating pathologist diagnosis	Reference panel pathologists' diagnosis	Diagnostic class	Number of cases on HE staining / on HE and p53 IHC staining
LGD	NDBO	Major overinterpretation	151/153
HGD	NDBO	Major overinterpretation	17/21
IND	NDBO	Minor overinterpretation	59/36
LGD	IND	Minor overinterpretation	165/178
HGD	IND	Minor overinterpretation	45/38
HGD	LGD	Minor overinterpretation	159/165
NDBO	LGD	Major underinterpretation	71/53
NDBO	HGD	Major underinterpretation	9/5
NDBO	IND	Minor underinterpretation	93/74
IND	LGD	Minor underinterpretation	110/27
IND	HGD	Minor underinterpretation	67/15
LGD	HGD	Minor underinterpretation	220/275

Supplementary Table 5: Odds ratios for the association with major over or underinterpretation*

			Experience (yrs)					
		0-4	5-9	10-19	20+			
	30-40	Reference	1.40	1.24	N/A			
Age	41-50	1.04	0.69	0.47**	1.39			
(yrs)	51-60	N/A	0.57	0.64	0.86			
	60+	N/A	N/A	N/A	0.75			

Supplementary Table 5 Legend: *According to mutually adjusted regression models for age and experience. This information was used to generate three categories of age/experience combinations used in further multivariable-adjusted models: green; category 1: Pathologists with 0-4 years experience, regardless of age (Reference category), orange; category 2: Pathologists with disproportionately greater years of experience relative to age (combined OR 1.36, 95% CI 0.90-2.60), blue; category 3: Pathologists with experience commensurate with age (combined OR 0.65, 95% CI 0.45-0.93), **Significant result (OR 0.47, 95% CI 0.28-0.78). All other results not significant.

Supplementary Table 6: Demographics of pathologists reporting in the BOLERO study (continued).

Characteristics	Participating pathologists n=51 (%)	Reference panel pathologists n=4 (%)
Pathologist specific characteristics		
Enjoy signing out BE* cases? Very much (1) 2 3 4 5 Not at all (6)	22 (43.1) 17 (33.3) 9 (17.7) 3 (5.9) 0 (0.0) 0 (0.0)	1 (25.0) 3 (75.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Pathology/endoscopy practice characteristics		
Adherence of endoscopists to Seattle protocol Always Most times Sometimes Never	2 (3.9) 16 (31.4) 22 (43.1) 11 (21.6)	1 (25.0) 2 (50.0) 0 (0.0) 1 (25.0)
Suspicious biopsies in separate containers Always Most times Some times Never	15 (29.4) 27 (52.9) 9 (17.7) 0 (0.0)	3 (75.0) 1 (25.0) 0 (0.0) 0 (0.0)
Routine double reporting of IND**/LGD*** cases Yes No	39 (76.5) 12 (23.5)	3 (75.0) 1 (25.0)
Partake in upper GI multidisciplinary meetings Yes No	38 (74.5) 13 (25.5)	4 (100.0) 0
Digital pathology characteristics		
Type of whole slide imaging use Research External consultation Digitalised laboratory Other	10 (19.6) 6 (11.8) 2 (3.9) 4 (7.8)	2 (50.0) 1 (25.0) 1 (25.0) 0
Interested in whole slide imaging Very interested (1) 2 3 4 5 Not interested (6)	15 (29.4) 21 (41.2) 7 (13.7) 5 (9.8) 1 (2.0) 2 (3.9)	3 (75.0) 1 (25.0) 0 0
Do you think digital pathology can replace light microscopy in the future? Yes No	21 (41.2) 30 (58.8)	4 (100.0)

Supplementary Table 7: Cross table comparing the 4 reference pathologist diagnoses to the consensus-derived reference diagnoses for 55 esophageal biopsy cases (a) on HE staining and (b) on HE and p53 IHC staining for 440 total case interpretations*

	Consensu	Reference panel members' individual diagnoses				% Concordance			
	s reference panel**	(preconsensus)			Under- interpret	Over- interpret	Concorda nce		
a. Before	addition of p	53 imm	unohist	ochemi	stry				
Diagnosis		ND	IND	LGD	HGD				
NDBO	64	54	9	1	0	/	15.6 (6.7-24.5)	84.4 (75.5-93.3)	
IND	24	7	6	9	2	29.2 (10.0-48.4)	45.8 (24.7-66.9)	25 (6.7-43.3)	
LGD	72	3	10	47	12	18.0 (9.1-26.9)	16.7 (8.1-25.3)	65.3 (54.3-76.3)	
HGD	60	0	1	12	47	21.7 (11.3-32.1)	/	78.3 (67.9-88.7)	
LGD or HGD	132	3	11	1	18	10.6 (5.3-15.9)	/	89.4 (84.1-94.7)	
Total	220								
		Reference panel members'				% Concordance			
	Consensu					%	Concordance	e	
	Consensu s reference panel***	ind	ence pa dividual (precon	diagno	ses	Under- interpret	Over- interpret	Concorda nce	
b. After a	s reference	inc	dividual (precon	diagno: sensus	ses)	Under-	Over-	Concorda	
b. After a	s reference panel***	inc	dividual (precon	diagno: sensus	ses)	Under-	Over-	Concorda	
	s reference panel***	ind 3 immu	dividual (precon	diagnos sensus chemist	ses) ry	Under-	Over-	Concorda	
Diagnosis	s reference panel*** ddition of p5	inc 3 immu ND	dividual (precon nohisto	diagnos sensus chemist	ry HGD	Under-	Over- interpret	Concorda nce	
Diagnosis ND	s reference panel*** ddition of p5	3 immu ND 55	dividual (precon nohisto IND 6	chemist	ry HGD 0	Under-interpret /	Over- interpret 14.1 (5.6-22.6) 25	85.9 (77.4-94.4)	
Diagnosis ND IND	s reference panel*** ddition of p5	3 immu ND 55	nohisto	chemist LGD 3	ry HGD 0	Under- interpret / 25 (0-61.1) 12.5	14.1 (5.6-22.6) 25 (0-61.1) 14.8	85.9 (77.4-94.4) 50 (8.3-91.7) 72.7	
Diagnosis ND IND	s reference panel*** ddition of p5:	3 immul ND 55 2	nohisto IND 6 4	chemist LGD 3 1 64	HGD 0 1 13	Under- interpret / 25 (0-61.1) 12.5 (5.6-19.4) 23.3	14.1 (5.6-22.6) 25 (0-61.1) 14.8	85.9 (77.4-94.4) 50 (8.3-91.7) 72.7 (63.4-82.0) 76.7	

Supplementary Table 7 Legend: *Overall concordance for 154/220 diagnoses (70%, 95%CI 63.9-76.1%), increasing to 178/220 (80.9%, 95%CI 75.7-86.1%) when LGD and HGD were combined, **Note consensus reference panel results are scaled x4 to allow for comparison versus the four individual panel members, who contributed to the consensus reference panel, preconsensus results. Results represent 220 diagnoses in 55 oesophageal biopsy cases. ***Overall concordance for 169/220 diagnoses (76.8%, 95%CI 71.2-82.4%), increasing to 195/220 (88.6%, 95%CI 84.4-92.8%) when LGD and HGD were combined.

Supplementary table 8: (a) Individual pathologist features and odds of over or underreporting Barrett's dysplasia: unadjusted analysis

Variable	No. correct diagnoses	No. Over- reported diagnoses	Overreporting OR (95% CI)	No. Under- reported diagnoses	Underreporting OR (95% CI)	Over or Underreporting OR (95% CI)	No. Major over- or under-reported diagnoses	Major over- or Underreporting OR (95% CI)
Total numbers	n=1639	n=570		n=596			n=582	
Age, years								
30-39	393	159	1.00	163	1.00	1.00	86	1.00
40-49	576	182	0.78 (0.61-1.00)	177	0.74 (0.58-0.95)	0.76 (0.62-0.93)	70	0.56 (0.40-0.78)
50-59	452	138	0.75 (0.58-0.98)	180	0.96 (0.75-1.23)	0.86 (0.70-1.05)	62	0.63 (0.44-0.89)
60+	218	91	1.03 (0.76-1.40)	76	0.84 (0.61-1.16)	0.93 (0.73-1.20)	30	0.63 (0.40-0.98)
Experience, years								
0-4	249	123	1.00	68	1.00	1.00	46	1.00
5-9	268	98	0.74 (0.54-1.02)	129	1.76 (1.25-2.48)	1.10 (0.85-1.43)	56	1.13 (0.74-1.73)
10-19	609	204	0.68 (0.52-0.89)	177	1.06 (0.78-1.46)	0.82 (0.65-1.02)	63	0.56 (0.37-0.84)
20+	513	145	0.57 (0.43-0.76)	222	1.59 (1.16-2.16)	0.93 (0.74-1.18)	83	0.88 (0.59-1.29)
Age/experience combination								
0-4 years exp./All ages	249	123	1.00	68	1.00	1.00	46	1.00
Disproportionate more exp/age	274	77	0.57 (0.41-0.79)	144	1.92 (1.38-2.69)	1.05 (0.81-1.36)	69	1.36 (0.90-2.06)
Exp. commensurate with age	1116	370	0.67 (0.51-0.86)	384	1.26 (0.94-1.69)	0.88 (0.71-1.09)	133	0.65 (0.45-0.93)
Sex								
Male	936	333	1.00	326	1.00	1.00	145	1.00
Female	703	237	0.95 (0.78-1.15)	270	1.10 (0.91-1.33)	1.02 (0.88-1.19)	103	0.95 (0.72-1.24)
Fellowship								
No ·	750	284	1.00	231	1.00	1.00	102	1.00
Yes	889	286	0.85 (0.70-1.03)	365	1.33 (1.10-1.61)	1.07 (0.92-1.24)	146	1.21 (0.92-1.58)
Barrett's expert?								
No	257	108	1.00	75	1.00	1.00	36	1.00
Yes	1098	357	0.77 (0.60-1.00)	415	1.30 (0.98-1.72)	0.99 (0.80-1.22)	160	1.04 (0.71-1.53)
Don't Know	284	105	0.88 (0.64-1.21)	106	1.28 (0.91-1.80)	1.04 (0.80-1.35)	52	1.31 (0.83-2.06)
Confidence						. ,		
3/4 (moderate)	489	202	1.00	189	1.00	1.00	84	1.00
1/2 (very)	1150	368	0.78 (0.63-0.95)	407	0.92 (0.75-1.12)	0.84 (0.72-0.99)	164	0.83 (0.63-1.10)
Enjoy						. ,		
3/4 (moderate)	371	131	1.00	158	1.00	1.00	60	1.00
1/2 (very)	1268	439	0.98 (0.78-1.23)	438	0.81 (0.65-1.01)	0.89 (0.74-1.06)	188	0.92 (0.67-1.25)

Supplementary table 8: (b) Pathologist working practices and odds of over or underreporting Barrett's dysplasia: unadjusted analysis

Variable	No. correct	No. Over- reported	Overreporting OR (95% CI)	No. Under- reported	Underreporting OR (95% CI)	Over or Underreporting	No. Major over or under-reported	Major over or Underreporting
	diagnoses	diagnoses		diagnoses		OR (95% CI)	diagnoses	OR (95% CI)
Total numbers	n=1639	n=570		n=596			n=582	
Setting*								
Academic teaching hospital	1385	462	0.78 (0.61-1.01)	463	0.64 (0.50-0.81)	0.70 (0.58-0.86)	189	0.59 (0.43-0.81)
District general hospital	457	196	1.36 (1.11-1.66)	227	1.59 (1.31-1.94)	1.47 (1.25-1.73)	99	1.72 (1.30-2.26)
Private hospital	336	123	1.07 (0.85-1.35)	146	1.26 (1.01-1.57)	1.16 (0.97-1.39)	66	1.41 (1.04-1.91)
p53								
Never	227	81	1.00	77	1.00	1.00	43	1.00
Sometimes	379	134	0.99 (0.72-1.37)	147	1.14 (0.83-1.58)	1.07 (0.83-1.37)	59	0.82 (0.54-1.26)
Most times/always	1033	355	0.96 (0.73-1.28)	372	1.06 (0.80-1.41)	1.01 (0.81-1.27)	146	0.75 (0.52-1.08)
IND double report								
No .	377	151	1.00	132	1.00	1.00	74	1.00
Yes	1262	419	0.83 (0.67-1.03)	464	1.05 (0.84-1.32)	0.93 (0.78-1.11)	174	0.70 (0.52-0.94)
MDT								
No	410	179	1.00	126	1.00	1.00	66	1.00
Yes	1229	391	0.73 (0.59-0.90)	470	1.24 (0.99-1.56)	0.94 (0.79-1.12)	182	0.92 (0.68-1.25)
No. Barrett's cases/week								
0-4	341	160	1.00	104	1.00	1.00	53	1.00
5-9	502	198	0.84 (0.66-1.08)	180	1.18 (0.89-1.55)	0.97 (0.79-1.20)	85	1.09 (0.75-1.58)
10-19	442	123	0.59 (0.45-0.78)	205	1.52 (1.16-2.00)	0.96 (0.77-1.19)	68	0.99 (0.67-1.46)
20+	287	80	0.59 (0.44-0.81)	73	0.83 (0.60-1.17)	0.69 (0.53-0.89)	35	0.79 (0.50-1.24)
Don't know	67	9	0.29 (0.14-0.59)	34	1.66 (1.04-2.66)	0.83 (0.55-1.26)	7	0.67 (0.29-1.54)
Lab size								
<10	417	182	1.00	171	1.00	1.00	80	1.00
10+	1222	388	0.73 (0.59-0.90)	425	0.85 (0.69-1.05)	0.79 (0.66-0.93)	168	0.72 (0.54-0.96)
Guidelines								
N American	718	271	1.00	276	1.00	1.00	102	1.00
British	337	84	0.66 (0.50-0.87)	129	1.00 (0.78-1.27)	0.83 (0.68-1.02)	38	0.79 (0.54-1.18)
Japanese	98	56	1.51 (1.06-2.16)	11	0.29 (0.15-0.55)	0.90 (0.65-1.25)	9	0.65 (0.32-1.32)
Other	486	159	0.87 (0.69-1.09)	180	0.96 (0.77-1.20)	0.92 (0.77-1.09)	99	1.43 (1.06-1.94)

Supplementary Table 8b Legend: *Reference is not working within these settings. Some pathologists work in multiple settings.

Supplementary table 8: (c) Pathologist use and perceptions of whole slide imaging and odds of over or under-interpreting Barrett's dysplasia: unadjusted analysis

Variable	No. correct diagnoses	No. Over- reported diagnoses	Overreporting OR (95% CI)	No. Under- reported diagnoses	Underreporting OR (95% CI)	Over or Underreporting OR (95% CI)	No. Major over or under- reported diagnoses	Major over or Underreporting OR (95% CI)
Total numbers	n=1639	n=570		n=596			n=582	
Whole slide imaging (WSI)								
No	917	289	1.00	389	1.00	1.00	166	1.00
Yes	722	281	1.23 (1.02-1.49)	207	0.68 (0.56-0.82)	0.91 (0.79-1.06)	82	0.63 (0.47-0.83)
WSI use type								
No	917	289	1.00	389	1.00	1.00	166	1.00
Research/other	472	173	1.16 (0.94-1.45)	125	0.62 (0.50-0.79)	0.85 (0.72-1.02)	42	0.49 (0.34-0.70)
Clinical use	250	108	1.37 (1.06-1.78)	82	0.77 (0.59-1.02)	1.03 (0.83-1.27)	40	0.88 (0.61-1.28)
(consultation or lab)								
WSI Interest								
Moderate/no (3-6)	477	188	1.00	160	1.00	1.00	77	1.00
Very (1-2)	1162	382	0.83 (0.68-1.02)	436	1.12 (0.90-1.38)	0.97 (0.82-1.14)	171	0.91 (0.68-1.22)
WSI Future								
No	964	323	1.00	363	1.00	1.00	161	1.00
Yes	675	247	1.09 (0.90-1.32)	233	0.92 (0.76-1.11)	1.00 (0.86-1.16)	87	0.77 (0.58-1.02)

Figure 1

Figure 3

Figure 2

Supplementary Figure 1

