#### F12 - Grafalgoritmer

5DV149/5DV150 Datastrukturer och algoritmer Kapitel 17

Niclas Börlin niclas.borlin@cs.umu.se Anna Jonsson aj@cs.umu.se

2020-02-26 Wed

#### Innehåll

- Grafalgoritmer
  - Traversering
    - Djupet-först
    - ► Bredden-först
  - 2. Finna kortaste vägen
    - Från en nod till alla andra noder:
      - Dijkstras algoritm.
    - Från alla noder till alla andra noder:
      - ▶ Floyds algoritm.
  - 3. Konstruera ett (minsta) uppspännande träd
    - Prims algoritm.
    - Kruskal algoritm.

# 1. Traversering av grafer

#### Djupet-först-traversering

- Ansats:
  - 1. Starta i en utgångsnod.
  - 2. Besök dess grannar djupet-först rekursivt.
- ► Grafen kan innehålla cykler risk för oändlig loop.
  - Lösning: Håll reda på om noden är besökt eller ej.
  - Gör rekursivt anrop endast för icke besökta noder.
  - Motsvarar att undersöka en labyrint genom att markera de vägar man gått med färg.
- ► Endast de noder man kan nå från utgångsnoden kommer att besökas.

#### Algoritm för djupet-först-traversering av graf

```
Algorithm g=depthFirst(Node n, Graph g)
  input: A node n in a graph g to be traversed
n.visited ← true; // Mark the node as visited.
neighbourSet ← neighbours(n,g); // All neighbours
for each neighbour b in neighbourSet do
  if not isVisited(b,g) then
    // Visit unless visited
    q ← depthFirst(b,g);
```

#### Visualiseringssymboler

- Aktuell nod n markeras med röd ring.
- Ljusblå färg betyder besökt (visited) nod.
- Överstrukna noder i grannmängden N illustrerar noder redan behandlade i for-loopen.
- ▶ Vid rekursivt anrop läggs aktuell nod n och grannmängden N på en stack.
- Bågarna som motsvarar rekursiva anrop markeras med tjock blå linje.

 $\triangleright$   $n \leftarrow A$ . Markera n som besökt.



- $\triangleright$   $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.



- $\triangleright$   $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).



 $\triangleright$   $n \leftarrow E$ . Markera n som besökt.



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ I ej besökt  $\rightarrow$  anropa depthFirst(I,g).



▶  $n \leftarrow I$ . Markera n som besökt.



 $(n=E, \{I,F,A\})$ 

 $({\color{red} n}{=}{\sf A},~\{{\sf E},{\sf F},{\sf B}\})$ 

- ▶  $n \leftarrow I$ . Markera n som besökt.
- ► Grannar: {E,J,F}.



 $(n=E, \{I,F,A\})$ 

- ▶  $n \leftarrow I$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not E$ ,J,F}.



 $(n=E, \{I,F,A\})$  $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow I$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not E$ ,J,F}.
- ▶ J ej besökt  $\rightarrow$  anropa depthFirst(J,g).



$$(n=E, \{I,F,A\})$$
  
 $(n=A, \{E,F,B\})$ 

▶  $n \leftarrow J$ . Markera n som besökt.



 $(n=I, \{E,J,F\})$   $(n=E, \{I,F,A\})$  $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow J$ . Markera n som besökt.
- ► Grannar: {G,I}.



```
(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow$  J. Markera n som besökt.
- ► Grannar: {G,I}.
- ▶ G ej besökt  $\rightarrow$  anropa depthFirst(G,g).



 $(n=I, \{\cancel{E}, J, F\})$  $(n=E, \{I, F, A\})$ 

 $\triangleright$   $n \leftarrow$  G. Markera n som besökt.



```
(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow G$ . Markera n som besökt.
- ► Grannar: {C,K,J}.



 $(n=J, \{G,I\})$   $(n=I, \{E,J,F\})$   $(n=E, \{I,F,A\})$  $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow G$ . Markera n som besökt.
- ▶ Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).



```
(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

 $ightharpoonup n \leftarrow C$ . Markera n som besökt.



```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- $\triangleright$   $n \leftarrow$  C. Markera n som besökt.
- ► Grannar: {G,B}.



```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow C$ . Markera n som besökt.
- ► Grannar: {G,B}.
- ▶ G redan besökt  $\rightarrow$  Grannar: { $\mathcal{G}$ ,B}.



```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{\cancel{E},J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- $\triangleright$   $n \leftarrow$  C. Markera n som besökt.
- ► Grannar: {G,B}.
- ▶ G redan besökt  $\rightarrow$  Grannar: { $\mathcal{G}$ ,B}.
- ▶ B ej besökt  $\rightarrow$  anropa depthFirst(B,g).



```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{\cancel{E},J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

 $\triangleright$   $n \leftarrow B$ . Markera n som besökt.



```
(n=C, \{\emptyset,B\})

(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.



```
(n=C, \{ \emptyset, B \})

(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{ \emptyset, J,F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: { $\cancel{A}$ ,F,C}.



```
(n=C, \{ \emptyset, B \})

(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{ \emptyset, J,F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: {A,F,C}.
- ▶ F ej besökt  $\rightarrow$  anropa depthFirst(F,g).



```
(n=C, \{ \emptyset, B \})

(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{ \emptyset, J,F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

 $\triangleright$   $n \leftarrow$  F. Markera n som besökt.





- $\triangleright$   $n \leftarrow$  F. Markera n som besökt.
- ► Grannar: {B,A,E,I}.



```
(n=B, \{A,F,C\})
  (n=C, \{(S,B)\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow F$ . Markera n som besökt.
- ► Grannar: {B,A,E,I}.
- ▶ B besökt  $\rightarrow$  Grannar: { $\not B$ ,A,E,I}.



```
(n=B, \{A,F,C\})
  (n=C, \{(S,B)\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow F$ . Markera n som besökt.
- ► Grannar: {B,A,E,I}.
- ▶ B besökt  $\rightarrow$  Grannar: { $\not\boxtimes$ ,A,E,I}.
- ▶ A besökt  $\rightarrow$  Grannar: { $\not B$ , $\not A$ ,E,I}.



```
(n=B, \{A,F,C\})
  (n=C, \{(S,B)\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow F$ . Markera n som besökt.
- ► Grannar: {B,A,E,I}.
- ▶ B besökt  $\rightarrow$  Grannar: { $\not\boxtimes$ ,A,E,I}.
- ▶ A besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! A, E, I$ }.
- ▶ E besökt  $\rightarrow$  Grannar: { $\not\!\! E$ , $\not\!\! A$ , $\not\!\! E$ ,I}.



```
(n=B, \{A,F,C\})
  (n=C, \{(S,B)\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow F$ . Markera n som besökt.
- ► Grannar: {B,A,E,I}.
- ▶ B besökt  $\rightarrow$  Grannar: { $\cancel{B}$ ,A,E,I}.
- ▶ A besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! A, E, I$ }.
- ▶ E besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! A, \not\!\!\! E, I$ }.
- ▶ I besökt  $\rightarrow$  Grannar: { $\not\boxtimes$ , $\not\land$ , $\not\sqsubseteq$ , $\not\mid$ }.



```
(n=B, \{A, F, C\})
  (n=C, \{\emptyset, B\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow F$ . Markera n som besökt.
- ► Grannar: {B,A,E,I}.
- ▶ B besökt  $\rightarrow$  Grannar: { $\cancel{B}$ ,A,E,I}.
- ▶ A besökt  $\rightarrow$  Grannar: { $\not\!\!E$ , $\not\!\!A$ ,E,I}.
- ▶ E besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! A, \not\!\!\! E, I$ }.
- ▶ I besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! A, \not\!\!\! E, \!\!\! J$ }.
- Färdig med F, återvänd.



$$(n=B, \{A,F,C\})$$
  
 $(n=C, \{S,B\})$   
 $(n=G, \{C,K,J\})$   
 $(n=J, \{G,I\})$   
 $(n=I, \{E,J,F\})$   
 $(n=E, \{I,F,A\})$ 

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: {A,F,C}.
- ▶ F ej besökt  $\rightarrow$  anropa depthFirst(F,g).



```
(n=C, \{ \emptyset, B \})

(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{ \emptyset, J,F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: {A,F,C}.
- ▶ F ej besökt  $\rightarrow$  anropa depthFirst(F,g).
- ▶ F färdig  $\rightarrow$  Grannar: { $\cancel{A}$ , $\cancel{F}$ ,C}.



$$(n=C, \{\mathcal{S}, B\})$$

$$(n=G, \{C,K,J\})$$

$$(n=J, \{G,I\})$$

$$(n=I, \{E,J,F\})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: {A,F,C}.
- ▶ F ej besökt  $\rightarrow$  anropa depthFirst(F,g).
- ▶ F färdig  $\rightarrow$  Grannar: {A,F,C}.
- ▶ C besökt  $\rightarrow$  Grannar:  $\{A,F,C\}$ .





- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {A,F,C}.
- ▶ A redan besökt  $\rightarrow$  Grannar: {A,F,C}.
- ▶ F ej besökt  $\rightarrow$  anropa depthFirst(F,g).
- ▶ F färdig  $\rightarrow$  Grannar: {A,F,C}.
- ▶ C besökt  $\rightarrow$  Grannar:  $\{A,F,C\}$ .
- Färdig med B, återvänd.



$$(n=C, \{\emptyset,B\})$$

$$(n=G, \{C,K,J\})$$

$$(n=J, \{G,I\})$$

$$(n=I, \{E,J,F\})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- ▶  $n \leftarrow C$ . Markera n som besökt.
- ► Grannar: {G,B}.
- ▶ G redan besökt  $\rightarrow$  Grannar: { $\mathcal{G}$ ,B}.
- ▶ B ej besökt  $\rightarrow$  anropa depthFirst(B,g).



```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{\cancel{E},J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow C$ . Markera n som besökt.
- ► Grannar: {G,B}.
- ▶ G redan besökt  $\rightarrow$  Grannar: { $\mathcal{G}$ ,B}.
- ▶ B ej besökt  $\rightarrow$  anropa depthFirst(B,g).
- ▶ B färdig  $\rightarrow$  Grannar:  $\{\cancel{S},\cancel{B}\}$ .



$$(n=G, \{C,K,J\})$$
  
 $(n=J, \{G,I\})$   
 $(n=I, \{\cancel{E},J,F\})$   
 $(n=E, \{I,F,A\})$   
 $(n=A, \{E,F,B\})$ 

- $ightharpoonup n \leftarrow C$ . Markera n som besökt.
- ► Grannar: {G,B}.
- ▶ G redan besökt  $\rightarrow$  Grannar: { $\mathcal{G}$ ,B}.
- ▶ B ej besökt  $\rightarrow$  anropa depthFirst(B,g).
- ▶ B färdig  $\rightarrow$  Grannar:  $\{\emptyset, \cancel{B}\}$ .
- Färdig med C, återvänd.



$$(n=G, \{C,K,J\})$$
  
 $(n=J, \{G,I\})$   
 $(n=I, \{\cancel{E},J,F\})$   
 $(n=E, \{I,F,A\})$   
 $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow G$ . Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).



 $(n=J, \{G,I\})$   $(n=I, \{E,J,F\})$  $(n=E, \{I,F,A\})$ 

 $({\color{red} n}{=}A,~\{E,F,B\})$ 

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.



 $(n=J, \{G,I\})$   $(n=I, \{E,J,F\})$   $(n=E, \{I,F,A\})$  $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.
- ▶ K ej besökt  $\rightarrow$  anropa depthFirst(K,g).



$$(n=J, \{G,I\})$$
  
 $(n=I, \{E,J,F\})$   
 $(n=E, \{I,F,A\})$ 

 $\triangleright$   $n \leftarrow K$ . Markera n som besökt.



```
(n=G, \{ \cancel{\mathcal{L}}, K, J \})

(n=J, \{G,I\})

(n=I, \{ \cancel{\mathcal{E}}, J, F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- $\triangleright$   $n \leftarrow K$ . Markera n som besökt.
- ► Grannar: {G}.



```
(n=G, \{ \cancel{\mathcal{C}}, K, J \})

(n=J, \{G,I\})

(n=I, \{ \cancel{\mathcal{E}}, J, F \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- $\triangleright$   $n \leftarrow K$ . Markera n som besökt.
- ► Grannar: {G}.
- ▶ G besökt  $\rightarrow$  Grannar:  $\{\emptyset\}$ .



```
(n=G, \{ \cancel{\mathbb{C}}, \mathsf{K}, \mathsf{J} \})

(n=J, \{G,I\})

(n=I, \{ \cancel{\mathbb{E}}, \mathsf{J}, \mathsf{F} \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- $\triangleright$   $n \leftarrow K$ . Markera n som besökt.
- ► Grannar: {G}.
- ▶ G besökt  $\rightarrow$  Grannar:  $\{\emptyset\}$ .
- Färdig med K, återvänd.



```
(n=G, \{ \cancel{\mathbb{C}}, \mathsf{K}, \mathsf{J} \})

(n=J, \{G,I\})

(n=I, \{ \cancel{\mathbb{E}}, \mathsf{J}, \mathsf{F} \})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ► C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.
- ▶ K ej besökt  $\rightarrow$  anropa depthFirst(K,g).



 $(n=J, \{G,I\})$   $(n=I, \{E,J,F\})$  $(n=E, \{I,F,A\})$ 

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ► C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.
- ▶ K ej besökt  $\rightarrow$  anropa depthFirst(K,g).
- ▶ K färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.



 $(n=J, \{G,I\})$   $(n=I, \{E,J,F\})$  $(n=E, \{I,F,A\})$ 

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, K, J\}$ .
- ightharpoonup K ej besökt ightharpoonup anropa depthFirst(K,g).
- ▶ K färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.
- ▶ J besökt  $\rightarrow$  Grannar:  $\{\emptyset, K, J\}$ .



$$(n=J, \{G,I\})$$
  
 $(n=I, \{E,J,F\})$   
 $(n=E, \{I,F,A\})$   
 $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow$  G. Markera n som besökt.
- ► Grannar: {C,K,J}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, K, J\}$ .
- ▶ K ej besökt  $\rightarrow$  anropa depthFirst(K,g).
- ▶ K färdig  $\rightarrow$  Grannar: { $\emptyset$ ,K,J}.
- ▶ J besökt  $\rightarrow$  Grannar:  $\{\emptyset, K, J\}$ .
- Färdig med G, återvänd.



$$(n=J, \{G,I\})$$
  
 $(n=I, \{E,J,F\})$   
 $(n=E, \{I,F,A\})$ 

$$(n=A, \{E,F,B\})$$

- ▶  $n \leftarrow J$ . Markera n som besökt.
- ► Grannar: {G,I}.
- ▶ G ej besökt  $\rightarrow$  anropa depthFirst(G,g).



(*n*=I, {**Ĕ**,J,F})

 $({\color{red} n}{=}{\sf E},~\{{\sf I},{\sf F},{\sf A}\})$ 

 $({\color{red} n}{=}A,~\{E,F,B\})$ 

- ▶  $n \leftarrow$  J. Markera n som besökt.
- ► Grannar: {G,I}.
- ▶ G ej besökt  $\rightarrow$  anropa depthFirst(G,g).
- ▶ G färdig  $\rightarrow$  Grannar:  $\{\emptyset,I\}$ .



$$(n=I, \{ \not \sqsubseteq, J, F \})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- ▶  $n \leftarrow$  J. Markera n som besökt.
- ► Grannar: {G,I}.
- ▶ G ej besökt  $\rightarrow$  anropa depthFirst(G,g).
- ▶ G färdig  $\rightarrow$  Grannar:  $\{\emptyset,I\}$ .
- ▶ I besökt  $\rightarrow$  Grannar:  $\{\emptyset, \emptyset\}$ .



$$(n=1, \{\cancel{E}, J, F\})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- ▶  $n \leftarrow$  J. Markera n som besökt.
- ► Grannar: {G,I}.
- ▶ G ej besökt  $\rightarrow$  anropa depthFirst(G,g).
- ▶ G färdig  $\rightarrow$  Grannar:  $\{\emptyset,I\}$ .
- ▶ I besökt  $\rightarrow$  Grannar:  $\{\emptyset, J\}$ .
- Färdig med J, återvänd.



$$(n=1, \{ \not \sqsubseteq, J, F \})$$

$$(n=E, \{I,F,A\})$$

$$({\color{red} n}{=}A,~\{E,F,B\})$$

- ▶  $n \leftarrow 1$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not\! E$ ,J,F}.
- ▶ J ej besökt  $\rightarrow$  anropa depthFirst(J,g).



 $(n=E, \{I,F,A\})$  $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow I$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not\!\! E$ ,J,F}.
- ▶ J ej besökt  $\rightarrow$  anropa depthFirst(J,g).
- ▶ J färdig  $\rightarrow$  Grannar: { $\not\sqsubseteq$ , $\not\rfloor$ ,F}.



$$(n=E, \{I,F,A\})$$

- ▶  $n \leftarrow 1$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not E$ ,J,F}.
- ▶ J ej besökt  $\rightarrow$  anropa depthFirst(J,g).
- ▶ J färdig  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! J, F$ }.
- ▶ F besökt  $\rightarrow$  Grannar:  $\{\cancel{E},\cancel{J},\cancel{F}\}$



$$(n=E, \{I,F,A\})$$
  
 $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow 1$ . Markera n som besökt.
- ► Grannar: {E,J,F}.
- ▶ E redan besökt  $\rightarrow$  Grannar: { $\not\!\! E$ ,J,F}.
- ▶ J ej besökt  $\rightarrow$  anropa depthFirst(J,g).
- ▶ J färdig  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\! J, F$ }.
- ▶ F besökt  $\rightarrow$  Grannar:  $\{\cancel{E}, \cancel{J}, \cancel{F}\}$
- Färdig med I, återvänd.



$$(n=E, \{I,F,A\})$$
  
 $(n=A, \{E,F,B\})$ 

- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ l ej besökt  $\rightarrow$  anropa depthFirst(l,g).



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ I ej besökt  $\rightarrow$  anropa depthFirst(I,g).
- ▶ I färdig  $\rightarrow$  Grannar: {/,F,A}.



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ l ej besökt  $\rightarrow$  anropa depthFirst(l,g).
- ▶ I färdig  $\rightarrow$  Grannar: {/,F,A}.
- ▶ F besökt  $\rightarrow$  Grannar: {/, $\digamma$ ,A}



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ I ej besökt  $\rightarrow$  anropa depthFirst(I,g).
- ▶ I färdig  $\rightarrow$  Grannar: {/,F,A}.
- ▶ F besökt  $\rightarrow$  Grannar:  $\{I, F, A\}$
- ▶ A besökt  $\rightarrow$  Grannar:  $\{ I, F, A \}$ .



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {I,F,A}.
- ▶ I ej besökt  $\rightarrow$  anropa depthFirst(I,g).
- ▶ I färdig  $\rightarrow$  Grannar: {/,F,A}.
- ▶ F besökt  $\rightarrow$  Grannar: { $/, \not \vdash, A$ }
- ▶ A besökt  $\rightarrow$  Grannar:  $\{ I, F, A \}$ .
- Färdig med E, återvänd.



- $ightharpoonup n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar: { $\not$ E,F,B}.



- $ightharpoonup n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar: { $\not$ E,F,B}.
- ▶ F besökt  $\rightarrow$  Grannar: { $\not E$ , $\not F$ ,B}



- $ightharpoonup n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar: { $\not E$ ,F,B}.
- ▶ F besökt  $\rightarrow$  Grannar: { $\not\sqsubseteq$ , $\not\vdash$ ,B}
- ▶ B besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\!\! F, \not\!\!\! E}$ }.



- $ightharpoonup n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {E,F,B}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar: { $\not$ E,F,B}.
- ▶ F besökt  $\rightarrow$  Grannar: { $\not E$ , $\not F$ ,B}
- ▶ B besökt  $\rightarrow$  Grannar: { $\not\!\! E, \not\!\!\! F, \not\!\!\! E}$ }.
- Färdig med A, återvänd.



#### Klart!

Notera att vi fick ett uppspännande träd på samma gång.





Hur behöver algoritmen modifieras för att fungera på en riktad graf?

#### Algoritm för djupet-först-traversering av graf

```
Algorithm g=depthFirst(Node n, Graph g)
  input: A node n in a graph g to be traversed
n.visited ← true; // Mark the node as visited.
neighbourSet ← neighbours(n,g); // All neighbours
for each neighbour b in neighbourSet do
  if not isVisited(b,g) then
    // Visit unless visited
    q ← depthFirst(b,g);
```

 $\triangleright$   $n \leftarrow A$ . Markera n som besökt.



- $\triangleright$   $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.



- $\triangleright$   $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightarrow anropa depthFirst(C,g).



▶  $n \leftarrow C$ . Markera n som besökt.



 $(n=A, \{C,E,D\})$ 

- ▶  $n \leftarrow C$ . Markera n som besökt.
- ► Inga grannar.



 $(n=A, \{C,E,D\})$ 

- ▶  $n \leftarrow C$ . Markera n som besökt.
- ► Inga grannar.
- Färdig med C, återvänd.



 $(n=A, \{C,E,D\})$ 

- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,E,D}.



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig  $\rightarrow$  Grannar: { $\emptyset$ ,E,D}.
- ▶ E ej besökt  $\rightarrow$  anropa depthFirst(E,g).



 $\triangleright$   $n \leftarrow$  E. Markera n som besökt.



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.



- $\triangleright$   $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.
- ▶ B ej besökt  $\rightarrow$  anropa depthFirst(B,g)



▶  $n \leftarrow B$ . Markera n som besökt.



$$(n=E, \{B,C\})$$

$$(n=A, \{ \mathcal{C}, E, D \})$$

- $\triangleright$   $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {C}.



$$(n=E, \{B,C\})$$

 $(n=A, \{ \cancel{C}, E, D \})$ 

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {C}.
- ightharpoonup C besökt ightarrow Grannar:  $\{\not \mathbb{Z}\}$ .



$$(n=E, \{B,C\})$$

$$(n=A, \{ \cancel{C}, E, D \})$$

- ▶  $n \leftarrow B$ . Markera n som besökt.
- ► Grannar: {C}.
- ightharpoonup C besökt ightharpoonup Grannar:  $\{\not\mathbb{Z}\}$ .
- Färdig med B, återvänd.



$$(n=E, \{B,C\})$$

$$(n=A, \{ \cancel{C}, E, D \})$$

- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.
- ▶ B ej besökt  $\rightarrow$  rekursivt anrop depthFirst(B,g)



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.
- ▶ B ej besökt  $\rightarrow$  rekursivt anrop depthFirst(B,g)
- ▶ B färdig  $\rightarrow$  Grannar: { $\not B$ ,C}.



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.
- ▶ B ej besökt  $\rightarrow$  rekursivt anrop depthFirst(B,g)
- ▶ B färdig  $\rightarrow$  Grannar: { $\not B$ ,C}.
- ▶ C besökt  $\rightarrow$  Grannar:  $\{\cancel{B},\cancel{C}\}$ .



- ▶  $n \leftarrow E$ . Markera n som besökt.
- ► Grannar: {B,C}.
- ▶ B ej besökt  $\rightarrow$  rekursivt anrop depthFirst(B,g)
- ▶ B färdig  $\rightarrow$  Grannar: { $\not B$ ,C}.
- ▶ C besökt  $\rightarrow$  Grannar:  $\{\cancel{B},\cancel{C}\}$ .
- Färdig med E, återvänd.



- $\triangleright$   $n \leftarrow$  A. Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ E ej besökt  $\rightarrow$  rekursivt anrop depthFirst(E,g).



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- $\triangleright$  E ej besökt  $\rightarrow$  rekursivt anrop depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar:  $\{\emptyset, \cancel{E}, D\}$ .



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ E ej besökt  $\rightarrow$  rekursivt anrop depthFirst(E,g).
- ▶ E färdig  $\rightarrow$  Grannar:  $\{\emptyset, \cancel{E}, D\}$ .
- ▶ D ej besökt  $\rightarrow$  rekursivt anrop depthFirst(D,g).



▶  $n \leftarrow D$ . Markera n som besökt.



 $(n=A, \{\cancel{\mathbb{C}},\cancel{\mathbb{E}},D\})$ 

- $\triangleright$   $n \leftarrow D$ . Markera n som besökt.
- ► Grannar: {E}.



 $(n=A, \{\cancel{\mathbb{C}},\cancel{\mathbb{E}},D\})$ 

- ▶  $n \leftarrow D$ . Markera n som besökt.
- ► Grannar: {E}.
- ▶ E besökt  $\rightarrow$  Grannar:  $\{\cancel{E}\}$ .



 $(n=A, \{\cancel{\mathbb{C}},\cancel{\mathbb{E}},D\})$ 

- ▶  $n \leftarrow D$ . Markera n som besökt.
- ► Grannar: {E}.
- ightharpoonup E besökt ightharpoonup Grannar:  $\{ \not \! E \}$ .
- Färdig med D, återvänd.



 $(n=A, \{ \mathcal{L}, \mathcal{E}, D \})$ 

- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ E ej besökt  $\rightarrow$  rekursivt anrop depthFirst(E,g).
- ▶ E färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ D ej besökt  $\rightarrow$  rekursivt anrop depthFirst(D,g).



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ightharpoonup E ej besökt ightharpoonup rekursivt anrop depthFirst(E,g).
- ▶ E färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ D ej besökt  $\rightarrow$  rekursivt anrop depthFirst(D,g).
- ▶ D färdig  $\rightarrow$  Grannar:  $\{\emptyset, \cancel{E}, \cancel{D}\}$ .



- ▶  $n \leftarrow A$ . Markera n som besökt.
- ► Grannar: {C,E,D}.
- ightharpoonup C ej besökt ightharpoonup anropa depthFirst(C,g).
- ▶ C färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ E ej besökt  $\rightarrow$  rekursivt anrop depthFirst(E,g).
- ▶ E färdig → Grannar:  $\{\emptyset, E, D\}$ .
- ▶ D ej besökt  $\rightarrow$  rekursivt anrop depthFirst(D,g).
- ▶ D färdig  $\rightarrow$  Grannar:  $\{\emptyset, \cancel{E}, \cancel{D}\}$ .
- Färdig med A, återvänd.



#### Klar

Fick också uppspännande träd.



#### Bredden-först-traversering

- ► Man undersöker först noden, sedan dess grannar, grannarnas grannar, osv.
- ▶ Risk för oändlig loop markera om noden har setts.
- ► En kö hjälper oss hålla reda på grannarna.
- Endast noder till vilka det finns en väg från utgångsnoden kommer att besökas.

#### Algoritm, bredden-först-traversering av graf

```
Algorithm g=breadthFirst (Node n, Graph g)
  input: A node n in a graph g to be traversed
Queue q \leftarrow empty();
(n,q) \leftarrow \text{seen}(n,q) // \text{Mark the node as seen.}
q \leftarrow \text{enqueue}(n,q); // \text{Put node in queue.}
while not isempty(q) do
  p ← front(q); // Pick first node from queue
  q \leftarrow dequeue(q);
  neighbourSet \leftarrow neighbours (p,q);
  for each neighbour b in neighbourSet do
     if not isSeen(b,q) then
          (b,q) \leftarrow \text{seen}(b,q) // \text{Mark node as seen.}
          q \leftarrow \text{enqueue}(b,q); // \text{Put node in queue.}
```

#### Visualiseringssymboler

- Aktuell nod markeras med röd ring.
- Ljusblå färg betyder sedd (seen) nod.
- Noder i kön markeras med grönstreckad cirkel.
- Bågarna som motsvarar rekursiva anrop markeras med tjock blå linje.

 $\triangleright$  seen(A,g);



- $\triangleright$  seen(A,g);
- $ightharpoonup q = \{A\};$



- ightharpoonup seen(A,g);
- ightharpoonup  $q=\{A\};$
- $\blacktriangleright$  while not isempty(q)...



 $\blacktriangleright$  while not isempty(q)...



- $\blacktriangleright$  while not isempty(q)...
  - $p = A; q = \{\};$



- $\blacktriangleright$  while not isempty(q)...
  - $p = A; q = \{\};$
  - ightharpoonup neighbours={C,E,D}.



- $\blacktriangleright$  while not isempty(q)...
  - $p = A; q = \{\};$
  - $\triangleright$  neighbours={C,E,D}.
  - ▶ C not seen  $\rightarrow$  seen(C,g);  $q = \{C\}$ ;



- $\blacktriangleright$  while not isempty(q)...
  - ▶  $p = A; q = \{\};$
  - ightharpoonup neighbours={C,E,D}.
  - ▶ C not seen  $\rightarrow$  seen(C,g); q={C};
  - ▶ E not seen  $\rightarrow$  seen(E,g);  $q = \{C,E\}$ ;



- ightharpoonup while not isempty(q)...
  - $p = A; q = \{\};$
  - ▶ neighbours={C,E,D}.
  - ightharpoonup C not seen  $\rightarrow$  seen(C,g);  $q=\{C\}$ ;
  - ▶ E not seen  $\rightarrow$  seen(E,g);  $q = \{C,E\}$ ;
  - ▶ D not seen  $\rightarrow$  seen(D,g);  $q = \{C,E,D\}$ ;



• while not isempty(q)...



- $\triangleright$  while not isempty(q)...
  - ightharpoonup  $p=C; q=\{E,D\};$



- $\triangleright$  while not isempty(q)...
  - $p = C; q = \{E,D\};$
  - ► neighbours={}



 $\blacktriangleright$  while not isempty(q)...



- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$   $p=E; q=\{D\};$



- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$  p=E;  $q=\{D\}$ ;
  - ▶ neighbours={C,B}



- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$  p=E;  $q=\{D\}$ ;
  - ► neighbours={C,B}
  - C seen.



- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$  p=E;  $q=\{D\}$ ;
  - ► neighbours={C,B}
  - C seen.
  - ▶ B not seen  $\rightarrow$  seen(B,g);  $q = \{D,B\}$ ;



 $\blacktriangleright$  while not isempty(q)...



- $\blacktriangleright$  while not isempty(q)...
  - ▶  $p = D; q = \{B\};$



- $\blacktriangleright$  while not isempty(q)...
  - ▶  $p = D; q = \{B\};$
  - ▶ neighbours={E}



- $\blacktriangleright$  while not isempty(q)...
  - ▶  $p = D; q = \{B\};$
  - ► neighbours={E}
  - E seen.



 $\blacktriangleright$  while not isempty(q)...



- $\blacktriangleright$  while not isempty(q)...
  - ▶  $p = B; q = {};$



- $\blacktriangleright$  while not isempty(q)...
  - **▶** *p*=B; *q*={};
  - ▶ neighbours={C}



- $\triangleright$  while not isempty(q)...
  - **▶** *p*=B; *q*={};
  - ► neighbours={C}
  - C seen.



 $\blacktriangleright$  while not isempty(q)...



► Klar!



#### Bredden-först, djupet-först-traversering, tidskomplexitet

- ▶ Givet en graf med *n* noder och *m* bågar.
- ▶ Varje nod besöks exakt en gång O(n).
- För varje nod undersöker man alla bågar till grannarna.
- ► Kostnaden att hitta grannarna varierar:
  - Mängdorienterad specifikation:
    - $\triangleright$  O(m) per nod.
    - ► Totalt: O(mn) för alla bågar.
  - Navigeringsorienterade specifikation:
    - ightharpoonup O(grad(v)) per nod.
    - ► Totalt:  $O(\sum grad(v))) = O(m)$  för alla bågar.
- ► Total komplexitet:

```
Mängdorienterad O(n) + O(mn) = O(mn).
Navigeringsorienterad O(n) + O(m) = O(m+n).
```

# 2. Kortaste-vägen-algoritmer

#### Kortaste vägen

- Om grafen har lika vikt på alla bågar kan bredden-först-traversering användas för att beräkna kortaste vägen från en nod till alla andra noder.
- Krävs minimal modifiering av algoritmen:
  - Lägg till ett attribut avstånd (distance) till varje nod.
  - Avståndet från startnoden *n* till sig själv är 0.
  - ► Kostnaden att gå från en nod p till sin granne är 1.

#### Kortaste-vägen-algoritm vid lika vikt

```
Algorithm g=shortestPath(Node n, Graph g)
  input: A node n in a graph g to be traversed
Queue q \leftarrow empty();
(n,q) \leftarrow \text{seen}(n,q) // \text{Mark the node as seen.}
setDist(n,0) // Distance from n to n.
q \leftarrow \text{enqueue}(n,q);
while not isempty(q) do
  p ← front(q); // Pick first node from queue
  q \leftarrow dequeue(q);
  neighbourSet \leftarrow neighbours (p,q);
  for each neighbour b in neighbourSet do
     if not isSeen(b,q) then
          (b,q) \leftarrow \text{seen}(b,q) // \text{Mark node as seen.}
          // Compute distance to new node.
          setDist(b, qetDist(p) + 1)
          q \leftarrow \text{enqueue}(b,q); // \text{Put node in queue.}
```

#### Kortaste vägen vid lika vikt/kostnad

► Startnod = A.





#### Kortaste vägen-algoritmer

- ► Bredden-först-traversering ger oss längden på vägen från utgångsnoden till alla andra.
  - ► Kan även ge *vägen* om vi sparar den.
  - Om vikterna lika får vi kortaste vägen.
- För olika vikter ska vi titta på två algoritmer:
  - Floyd
    - Matrisorienterad
    - ► Alla-till-alla-avstånd
  - Dijkstra
    - Graforienterad
    - Använder prioritetskö
    - ► En-till-alla

#### Floyds shortest path

- Bygger på matrisrepresentation A av grafen.
- ▶ Vid starten innehåller A de direkta avstånden mellan noderna.
  - Avståndet till sig själv är 0.
  - ▶ Saknas båge används ∞.

|   | Α        | В        | C        | D        | Ε        | F        | G        | R        |
|---|----------|----------|----------|----------|----------|----------|----------|----------|
| Α | 0        | $\infty$ | 8        | 8        | 6        | 4        | 8        | 4        |
| В | $\infty$ | 0        | $\infty$ | 3        | $\infty$ | $\infty$ | 8        | 6        |
| C | 8        | $\infty$ | 0        | 5        | $\infty$ | 3        | 4        | $\infty$ |
| D | $\infty$ | 3        | 5        | 0        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| Ε | 6        | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 6        | $\infty$ |
| F | 4        | $\infty$ | 3        | $\infty$ | $\infty$ | 0        | $\infty$ | $\infty$ |
| G | $\infty$ | $\infty$ | 4        | 8        | 6        | $\infty$ | 0        | 8        |
| R | 4        | 6        | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0        |



## Floyds shortest path, algoritm

```
Algorithm floyd(Graph g)
  input: A graph q to find shortest path in
// Get matrix representation
A \leftarrow getMatrix(g)
n ← getNoOfNodes(g)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
        if A(i,j) > A(i,k) + A(k,j) then
            A(i,j) = A(i,k) + A(k,j)
```

- $\triangleright$  A(i,j) innehåller kortaste avståndet hittills mellan i och j.
- ightharpoonup A(i,k) + A(k,j) är avståndet mellan i och j via k.
- ▶ Vid slut innehåller A(i,j) kortaste avståndet mellan i och j via alla noder.

▶ Efter k=0 (vägar via A).

|   | Α        | В        | C                   | D        | Ε                | F                   | G        | R                   |
|---|----------|----------|---------------------|----------|------------------|---------------------|----------|---------------------|
| Α | 0        | $\infty$ | 8                   | $\infty$ | 6                | 4                   | $\infty$ | 4                   |
| В | $\infty$ | 0        | $\infty$            | 3        | $\infty$         | $\infty$            | $\infty$ | 6                   |
| C | 8        | $\infty$ | 0                   | 5        | ∞<br>14          | 3                   | 4        | ∞<br>12             |
| D | $\infty$ | 3        | 5                   | 0        | $\infty$         | $\infty$            | $\infty$ | $\infty$            |
| Ε | 6        | $\infty$ | ${	iny 14}$         | $\infty$ | 0                | $\frac{\infty}{10}$ | 6        | $\frac{\infty}{10}$ |
| F | 4        | $\infty$ | 3                   | $\infty$ | $_{10}^{\infty}$ | 0                   | $\infty$ | ∞<br>8              |
| G | 8        | $\infty$ | 4                   | 8        | 6                | $\infty$            | 0        | $\infty$            |
| R | 4        | 6        | $\frac{\infty}{12}$ | $\infty$ | $_{10}^{\infty}$ | ∞<br>8              | $\infty$ | 0                   |



▶ Efter k=1 (vägar via B).

|   | Α        | В        | C        | D        | Ε        | F        | G        | R        |
|---|----------|----------|----------|----------|----------|----------|----------|----------|
| Α | 0        | $\infty$ | 8        | $\infty$ | 6        | 4        | $\infty$ | 4        |
| В | $\infty$ | 0        | $\infty$ | 3        | $\infty$ | $\infty$ | 8        | 6        |
| C | 8        | $\infty$ | 0        | 5        | 14       | 3        | 4        | 12       |
| D | $\infty$ | 3        | 5        | 0        | $\infty$ | $\infty$ | $\infty$ | ∞<br>9   |
| Ε | 6        | $\infty$ | 14       | 8        | 0        | 10       | 6        | 10       |
| F | 4        | $\infty$ | 3        | 8        | 10       | 0        | 8        | 8        |
| G | $\infty$ | $\infty$ | 4        | $\infty$ | 6        | $\infty$ | 0        | $\infty$ |
| R | 4        | 6        | 12       | ∞<br>9   | 10       | 8        | $\infty$ | 0        |



► Efter *k*=2 (vägar via C).

|   | Α                   | В        | C        | D                   | Ε        | F        | G                   | R       |
|---|---------------------|----------|----------|---------------------|----------|----------|---------------------|---------|
| Α | 0                   | $\infty$ | 8        | $\frac{\infty}{13}$ | 6        | 4        | $\frac{\infty}{12}$ | 4       |
| В | $\infty$            | 0        | $\infty$ | 3                   | $\infty$ | $\infty$ | 8                   | 6       |
| C | 8                   | $\infty$ | 0        | 5                   | 14       | 3        | 4                   | 12      |
| D | $\frac{\infty}{13}$ | 3        | 5        | 0                   | ∞<br>19  | ∞<br>8   | ⊗<br>9              | 9       |
| Ε | 6                   | $\infty$ | 14       | $\frac{\infty}{19}$ | 0        | 10       | 6                   | 10      |
| F | 4                   | $\infty$ | 3        | ∞<br>8              | 10       | 0        | $\frac{\infty}{7}$  | 8       |
| G | ∞<br>12             | $\infty$ | 4        | ∞<br>9              | 6        | ∞<br>7   | 0                   | ∞<br>16 |
| R | 4                   | 6        | 12       | 9                   | 10       | 8        | $\frac{\infty}{16}$ | 0       |



▶ Efter k=3 (vägar via D).

|   | Α       | В                   | C      | D  | Ε       | F               | G                   | R  |
|---|---------|---------------------|--------|----|---------|-----------------|---------------------|----|
| Α | 0       | $\frac{\infty}{16}$ | 8      | 13 | 6       | 4               | 12                  | 4  |
| В | ∞<br>16 | 0                   | ∞<br>8 | 3  | ∞<br>22 | ${11 \atop 11}$ | $\frac{\infty}{12}$ | 6  |
| C | 8       | ∞<br>8              | 0      | 5  | 14      | 3               | 4                   | 12 |
| D | 13      | 3                   | 5      | 0  | 19      | 8               | 9                   | 9  |
| Ε | 6       | ∞<br>22             | 14     | 19 | 0       | 10              | 6                   | 10 |
| F | 4       | $^{\infty}_{11}$    | 3      | 8  | 10      | 0               | 7                   | 8  |
| G | 12      | $\frac{\infty}{12}$ | 4      | 9  | 6       | 7               | 0                   | 16 |
| R | 4       | 6                   | 12     | 9  | 10      | 8               | 16                  | 0  |



▶ Efter k=4 (vägar via E).

|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 16 | 8  | 13 | 6  | 4  | 12 | 4  |
| В | 16 | 0  | 8  | 3  | 22 | 11 | 12 | 6  |
| C | 8  | 8  | 0  | 5  | 14 | 3  | 4  | 12 |
| D | 13 | 3  | 5  | 0  | 19 | 8  | 9  | 9  |
| Ε | 6  | 22 | 14 | 19 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 12 | 12 | 4  | 9  | 6  | 7  | 0  | 16 |
| R | 4  | 6  | 12 | 9  | 10 | 8  | 16 | 0  |



► Efter *k*=5 (vägar via F).

|   | Α        | В        | C        | D        | Ε        | F  | G        | R        |
|---|----------|----------|----------|----------|----------|----|----------|----------|
| Α | 0        | 16<br>15 | 8<br>7   | 13<br>12 | 6        | 4  | 12<br>11 | 4        |
| В | 16<br>15 | 0        | 8        | 3        | 22<br>21 | 11 | 12       | 6        |
| C | 8<br>7   | 8        | 0        | 5        | 14<br>13 | 3  | 4        | 12<br>11 |
| D | 13<br>12 | 3        | 5        | 0        | 19<br>18 | 8  | 9        | 9        |
| Ε | 6        | 22<br>21 | 14<br>13 | 19<br>18 | 0        | 10 | 6        | 10       |
| F | 4        | 11       | 3        | 8        | 10       | 0  | 7        | 8        |
| G | 12<br>11 | 12       | 4        | 9        | 6        | 7  | 0        | 16<br>15 |
| R | 4        | 6        | 12<br>11 | 9        | 10       | 8  | 16<br>15 | 0        |



▶ Efter k=6 (vägar via G).

|   | Α  | В        | C        | D        | Ε        | F  | G  | R  |
|---|----|----------|----------|----------|----------|----|----|----|
| Α | 0  | 15       | 7        | 12       | 6        | 4  | 11 | 4  |
| В | 15 | 0        | 8        | 3        | 21<br>18 | 11 | 12 | 6  |
| C | 7  | 8        | 0        | 5        | 13<br>10 | 3  | 4  | 11 |
| D | 12 | 3        | 5        | 0        | 18<br>15 | 8  | 9  | 9  |
| Ε | 6  | 21<br>18 | 13<br>10 | 18<br>15 | 0        | 10 | 6  | 10 |
| F | 4  | 11       | 3        | 8        | 10       | 0  | 7  | 8  |
| G | 11 | 12       | 4        | 9        | 6        | 7  | 0  | 15 |
| R | 4  | 6        | 11       | 9        | 10       | 8  | 15 | 0  |



▶ Efter k=7 (vägar via R).

|   | Α        | В        | C  | D  | Ε        | F  | G  | R  |
|---|----------|----------|----|----|----------|----|----|----|
| Α | 0        | 15<br>10 | 7  | 12 | 6        | 4  | 11 | 4  |
| В | 15<br>10 | 0        | 8  | 3  | 18<br>16 | 11 | 12 | 6  |
| C | 7        | 8        | 0  | 5  | 10       | 3  | 4  | 11 |
| D | 12       | 3        | 5  | 0  | 15       | 8  | 9  | 9  |
| Ε | 6        | 18<br>16 | 10 | 15 | 0        | 10 | 6  | 10 |
| F | 4        | 11       | 3  | 8  | 10       | 0  | 7  | 8  |
| G | 11       | 12       | 4  | 9  | 6        | 7  | 0  | 15 |
| R | 4        | 6        | 11 | 9  | 10       | 8  | 15 | 0  |



# Floyds shortest path, klar!

|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |



## Floyd, komplexitet

**?** 

```
Algorithm floyd(Graph q)
  input: A graph g to find shortest path in
// Get matrix representation
A \leftarrow getMatrix(q)
n ← getNoOfNodes(g)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
        if A(i,j) > A(i,k) + A(k,j) then
            A(i,j) = A(i,k) + A(k,j)
```

### Floyd, komplexitet

- **▶** ?
- ► Trippel-loop:  $O(n^3)$

```
Algorithm floyd(Graph q)
  input: A graph g to find shortest path in
// Get matrix representation
A \leftarrow \text{getMatrix}(q)
n ← getNoOfNodes(g)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
        if A(i,j) > A(i,k) + A(k,j) then
             A(i,j) = A(i,k) + A(k,j)
```

- A innehåller kortaste avstånden men hur få tag på vägen?
- ▶ Modifiera algoritmen till att spara en föregångarmatris.

|   | Α  | В  | С  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |



## Floyds algoritm, modifierad

```
Algorithm floyd (Graph g)
A \leftarrow \text{getMatrix}(q)
n ← getNoOfNodes(g)
for i=1 to n
  for j=1 to n
    if i==j or A(i,j)==\inf then
        Path(i, j) = -1
    else
        Path (i, j) = i // We came to j from i
for k=1 to n
  for i=1 to n
    for j=1 to n
        if A(i,j) > A(i,k) + A(k,j) then
             // Remember new distance...
             A(i,j) = A(i,k) + A(k,j)
             // ...and how we came to j
             Path(i,j) = Path(k,j)
```





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Α | В | C | D | Ε | F | G | R |
|---|---|---|---|---|---|---|---|---|
| Α | - | R | F | С | Α | Α | С | Α |
| В | R | ı | D | В | Α | С | С | В |
| C | F | D | - | С | G | С | С | Α |
| D | F | D | D | - | G | С | С | В |
| Ε | Е | R | G | С | - | Α | Ε | Α |
| F | F | D | F | С | Α | - | С | Α |
| G | F | D | G | С | G | С | - | Α |
| R | R | R | F | В | Α | Α | С | - |



|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Ą | В | C | D | Ε | F | G | R |
|---|---|---|---|---|---|---|---|---|
| Α | - | R | F | С | Α | Α | С | Α |
| В | R | - | D | В | Α | С | С | В |
| C | F | D | - | С | G | С | С | Α |
| D | F | D | D | - | G | С | С | В |
| Ε | Е | R | G | С | - | Α | Ε | Α |
| F | F | D | F | С | Α | - | С | Α |
| G | F | D | G | С | G | С | - | Α |
| R | R | R | F | В | Α | Α | С | - |





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Ą | В  | C | D | E | F | G | R |
|---|---|----|---|---|---|---|---|---|
| Α | + | R  | F | 7 | A | Α | С | Α |
| В | R | -/ | D | В | Α | С | С | В |
| C | F | D  | - | С | G | С | С | Α |
| D | F | D  | D | - | G | С | С | В |
| Ε | Е | R  | G | С | - | Α | Ε | Α |
| F | F | D  | F | С | Α | - | С | Α |
| G | F | D  | G | С | G | С | - | Α |
| R | R | R  | F | В | Α | Α | С | - |





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Ą | В  | C | D | E | Ę      | G | R |
|---|---|----|---|---|---|--------|---|---|
| Α | - | R  | F | S | A | A      | С | Α |
| В | R | -/ | D | В | Α | ¢      | С | В |
| C | F | О  | 1 | С | G | $\sim$ | С | Α |
| D | F | D  | D | - | G | С      | С | В |
| Ε | Е | R  | G | С | - | Α      | Ε | Α |
| F | F | D  | F | С | Α | -      | С | Α |
| G | F | D  | G | С | G | С      | - | Α |
| R | R | R  | F | В | Α | Α      | С | - |



|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Α | В | C | D | Ε | F | G | R |
|---|---|---|---|---|---|---|---|---|
| Α | - | R | F | С | Α | Α | С | Α |
| В | R | ı | D | В | Α | С | С | В |
| C | F | D | - | С | G | С | С | Α |
| D | F | D | D | - | G | С | С | В |
| Ε | Е | R | G | С | - | Α | Ε | Α |
| F | F | D | F | С | Α | - | С | Α |
| G | F | D | G | С | G | С | - | Α |
| R | R | R | F | В | Α | Α | С | - |



|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Α | В | С | D | Ε | F | G | Ŗ |
|---|---|---|---|---|---|---|---|---|
| Α | - | R | F | С | Α | Α | С | A |
| В | R | 1 | D | В | Α | С | С | В |
| C | F | D | - | С | G | С | С | A |
| D | F | D | D | - | G | С | С | В |
| Ε | Е | R | G | С | - | Α | Ε | A |
| F | F | D | F | С | Α | - | С | A |
| G | F | D | G | С | G | С | - | Å |
| R | R | R | F | В | Α | Α | С | - |





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |

|   | Α | В | C | D | Ε | F | G | Ŗ        |   |
|---|---|---|---|---|---|---|---|----------|---|
| Α | - | R | F | С | Α | Α | С | <b>A</b> |   |
| В | R | - | B | В | Α | С | С | В        | ; |
| C | F | D | - | É | G | С | С | A        |   |
| D | F | D | D | - | B | С | С | В        | ; |
| Ε | Е | R | G | С | - | A | Ε | A        |   |
| F | F | D | F | С | Α | - | E | A        |   |
| G | F | D | G | С | G | С | - | Å        |   |
| R | R | R | F | В | Α | Α | С | -        |   |



|   | Α  | В  | C  | D  | Е  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |





|   | Α  | В  | С  | D  | Ε  | F  | G  | R   |
|---|----|----|----|----|----|----|----|-----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4   |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6   |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11  |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9   |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10  |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8   |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15) |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0   |





|   | Α  | В  | С  | D  | Ε  | F  | G  | R   |
|---|----|----|----|----|----|----|----|-----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4   |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6   |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11  |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9   |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10  |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8   |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15) |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0   |





|   | Α  | В  | C  | D  | Ε  | F  | G  | R  |
|---|----|----|----|----|----|----|----|----|
| Α | 0  | 10 | 7  | 12 | 6  | 4  | 11 | 4  |
| В | 10 | 0  | 8  | 3  | 16 | 11 | 12 | 6  |
| C | 7  | 8  | 0  | 5  | 10 | 3  | 4  | 11 |
| D | 12 | 3  | 5  | 0  | 15 | 8  | 9  | 9  |
| Ε | 6  | 16 | 10 | 15 | 0  | 10 | 6  | 10 |
| F | 4  | 11 | 3  | 8  | 10 | 0  | 7  | 8  |
| G | 11 | 12 | 4  | 9  | 6  | 7  | 0  | 15 |
| R | 4  | 6  | 11 | 9  | 10 | 8  | 15 | 0  |



### Dijkstras shortest path

- ▶ Söker kortaste vägen från en nod *n* till alla andra noder.
  - Använder en *prioritetskö* av obesökta noder.
- Fungerar enbart på grafer med positiva vikter.
- Låt varje nod ha följande attribut:
  - Seen Sann när vi hittat en väg till noden.
  - Distance Värdet på den kortaste vägen fram till noden.
    - Parent Referens till föregångaren längs vägen.

## Dijkstras shortest path, algoritm

```
Algorithm dijkstra (Node n, Graph g)
  input: A graph g to find shortest path from node n
n.seen \leftarrow true; n.distance \leftarrow 0; n.parent \leftarrow null;
Pqueue q \leftarrow empty(); q \leftarrow insert(n,q);
while not isempty(q)
  v \leftarrow inspect-first(q); q \leftarrow delete-first(q);
  vd ← v.distance;
  neighbourSet \leftarrow neighbours(v, g);
  for each w in heighbourSet do
     d \leftarrow vd + qetWeight(v, w);
     if not isSeen(w) then
       w.seen ← true;
       w.distance \leftarrow d;
       w.parent \leftarrow v;
       q \leftarrow insert(w,q);
     else if d < w.distance then
       w.distance \leftarrow d;
       w.parent \leftarrow v;
       q \leftarrow update(w,q)
```

## Dijkstras shortest path, visualisering

- Symboler:
  - Aktuell nod har röd ring.
  - Sedda noder är ljusblåa.
  - Noder i prioritetskön har grönstreckad ring.
- Prioritetskön presenteras sorterad.

- ▶ R.seen = true;
- ightharpoonup R.distance = 0;
- ightharpoonup R.parent = null;



- R.seen = true;
- ightharpoonup R.distance = 0;
- R.parent = null;
- Pqueue q = empty();



$$q = \{ \}$$

- R.seen = true;
- ightharpoonup R.distance = 0;
- R.parent = null;
- ightharpoonup Pqueue q = empty();



$$q = \{ R(T,0,-) \}$$

- ► R.seen = true;
- R.distance = 0;
- R.parent = null;
- ightharpoonup Pqueue q = empty();
- ightharpoonup q = insert(R(T,0,-),q);
- while not isempty(q)...



$$q = \{ R(T,0,-) \}$$

while not isempty(q)...



$$q = \{ R(T,0,-) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$



$$q = \{ \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$  v = R(T,0,-); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{A},\mathsf{B}\};$



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ▶ neighbourSet =  $\{A,B\}$ ;
  - A not seen



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ightharpoonup neighbourSet = {A,B};
  - A not seen
    - $d = v_d + getWeight(v,A) = 4;$
    - A.seen = true;
    - ightharpoonup A.distance = d;



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ightharpoonup neighbourSet = {A,B};
  - A not seen
    - $d = v_d + getWeight(v,A) = 4;$
    - A.seen = true;
    - ▶ A.distance = d;
    - A.parent = R;



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - neighbourSet = {A,B};
  - A not seen
    - $d = v_d + getWeight(v,A) = 4;$
    - A.seen = true;
    - ► A.distance = d;
    - ▶ A.parent = R;



$$q = \{ A(T,4,R) \}$$

- ▶ while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ▶ neighbourSet =  $\{A,B\}$ ;
  - B not seen



$$q = \{ A(T,4,R) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ▶ neighbourSet =  $\{A,B\}$ ;
  - B not seen
    - $d = v_d + getWeight(v,B) = 6;$
    - ▶ B.seen = true;
    - ▶ B.distance = d;
    - B.parent = R;



$$q = \{ A(T,4,R) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ightharpoonup neighbourSet = { $m A,B}$ ;
  - B not seen
    - $d = v_d + getWeight(v,B) = 6;$
    - ▶ B.seen = true;
    - ▶ B.distance = d;
    - ▶ B.parent = R;
    - ightharpoonup q = insert(B(T,6,R),q);



$$q = \{ A(T,4,R), B(T,6,R) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{R}(\mathsf{T},0,-); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 0;
  - ▶ neighbourSet =  $\{A,B\}$ ;



$$q = \{ A(T,4,R), B(T,6,R) \}$$

while not isempty(q)...



$$q = \{ A(T,4,R), B(T,6,R) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - ightharpoonup v = A(T,4,R); q = delete-first(q);



$$q = \{ B(T,6,R) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  v = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{E},\mathsf{R},\mathsf{F},\mathsf{C}\}; \\$



$$q = \{ B(T,6,R) \}$$

- while not isempty(q)...
  - $\vee$  v = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet =  $\{E,R,F,C\}$ ;
  - E not seen



$$q = \{ B(T,6,R) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{A}(\mathsf{T}, \mathsf{4}, \mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - neighbourSet = {E,R,F,C};
  - E not seen
    - $ightharpoonup d = v_d + getWeight(v,E) = 10;$
    - E.seen = true;
    - ▶ E.distance = d;
    - E.parent = A;



$$q = \{ B(T,6,R) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{A}(\mathsf{T}, \mathsf{4}, \mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - neighbourSet = {E,R,F,C};
  - E not seen
    - $d = v_d + getWeight(v,E) = 10;$
    - ► E.seen = true;
    - E.distance = d;
    - ► E.parent = A;



$$q = \{ B(T,6,R), E(T,10,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  v = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet =  $\{ \not E, R, F, C \}$ ;
  - R seen



$$q = \{ B(T,6,R), E(T,10,A) \}$$

- while not isempty(q)...
  - $\vee$  = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet =  $\{\cancel{E}, R, F, C\}$ ;
  - R seen
    - $d = v_d + getWeight(v,R) = 8;$
    - d not < R.distance</p>



$$q = \{ B(T,6,R), E(T,10,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  v = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet =  $\{\cancel{E}, \cancel{R}, F, C\}$ ;
  - F not seen



$$q = \{ B(T,6,R), E(T,10,A) \}$$

- while not isempty(q)...
  - $\vee$  = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet = { $\not E$ , $\not R$ ,F,C};
  - F not seen
    - $d = v_d + getWeight(v,F) = 8;$
    - ► F.seen = true;
    - ► F.distance = d;
    - ▶ F.parent = A;



$$q = \{ B(T,6,R), E(T,10,A) \}$$

- while not isempty(q)...
  - $\vee$  = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet = { $\not E$ , $\not R$ ,F,C};
  - F not seen
    - $d = v_d + getWeight(v,F) = 8;$
    - ► F.seen = true;
    - ► F.distance = d;
    - ► F.parent = A;



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{A}(\mathsf{T}, \mathsf{4}, \mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet = { $\not E$ , $\not F$ , $\not F$ ,C};
  - C not seen



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- while not isempty(q)...
  - $\vee$  = A(T,4,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet = { $\not E$ , $\not R$ , $\not F$ ,C};
  - C not seen

    - C.seen = true;
    - C.distance = d;
    - C.parent = A;



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{A}(\mathsf{T}, \mathsf{4}, \mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ▶ neighbourSet =  $\{\not E, \not R, \not F, C\}$ ;
  - C not seen
    - $d = v_d + getWeight(v,C) = 12;$
    - C.seen = true;
    - ightharpoonup C.distance = d;
    - C.parent = A;



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{A}(\mathsf{T}, \mathsf{4}, \mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 4;
  - ► neighbourSet = { $\not E$ , $\not F$ , $\not F$ , $\not C$ };



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

• while not isempty(q)...



$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - ightharpoonup v = B(T,6,R); q = delete-first(q);



$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{B}(\mathsf{T},6,\mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 6;
  - ▶ neighbourSet =  $\{D,R\}$ ;



$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  = B(T,6,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 6;
  - ▶ neighbourSet =  $\{D,R\}$ ;
  - D not seen



$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{B}(\mathsf{T},6,\mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 6;
  - neighbourSet = {D,R};
  - D not seen
    - $d = v_d + getWeight(v,D) = 9;$
    - D.seen = true;
    - ightharpoonup D.distance = d;
    - D.parent = B;



$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{B}(\mathsf{T},6,\mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 6;
  - neighbourSet = {D,R};
  - D not seen

    - D.seen = true;
    - ▶ D.distance = d;
    - ▶ D.parent = B;



$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{B}(\mathsf{T},6,\mathsf{R}); \ \mathbf{q} = \mathsf{delete\text{-}first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 6;
  - ▶ neighbourSet =  $\{D,R\}$ ;
  - R seen



$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  = B(T,6,R); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 6;
  - ▶ neighbourSet =  $\{D,R\}$ ;
  - R seen

    - d not < R.distance</p>



$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{B}(\mathsf{T},6,\mathsf{R}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 6;
  - ▶ neighbourSet =  $\{\cancel{D},\cancel{R}\}$ ;



$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

while not isempty(q)...



$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - ightharpoonup v = F(T,8,A); q = delete-first(q);



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{A},\mathsf{C}\};$



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - ▶ neighbourSet =  $\{A,C\}$ ;
  - A seen



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T}, \mathsf{8}, \mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - neighbourSet = {A,C};
  - A seen
    - $ightharpoonup d = v_d + getWeight(v,A) = 12;$
    - d not < A.distance</p>



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - ▶ neighbourSet =  $\{A,C\}$ ;
  - C seen



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - ▶ neighbourSet =  $\{A,C\}$ ;
  - C seen

    - d is < C.distance</p>



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 8;
  - ▶ neighbourSet =  $\{A,C\}$ ;
  - C seen

    - d is < C.distance
      </p>
      - ► C.distance = d;



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 8;
  - ▶ neighbourSet =  $\{A,C\}$ ;
  - C seen
    - $ightharpoonup d = v_d + getWeight(v,C) = 11;$
    - **▶ d is** < C.distance
      - ► C.distance = d;
      - ▶ C.parent = F;



$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 8;
  - ightharpoonup neighbourSet = { $\not$ A,C};
  - C seen
    - $ightharpoonup d = v_d + getWeight(v,C) = 11;$
    - ▶ d is < C.distance
      - ▶ C.distance = d;
      - ▶ C.parent = F;
      - ightharpoonup q = update(C,q);



$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{F}(\mathsf{T},8,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 8;
  - ▶ neighbourSet =  $\{\cancel{A},\cancel{C}\}$ ;



$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

while not isempty(q)...



$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - ightharpoonup v = D(T,9,B); q = delete-first(q);



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not isempty(q)...
  - $\vee$  v = D(T,9,B); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}.\mathsf{distance} = 9;$
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{B,C}\}; \\$



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\triangleright$  v = D(T,9,B); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}.\mathsf{distance} = 9;$
  - ▶ neighbourSet =  $\{B,C\}$ ;
  - B seen



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  = D(T,9,B); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 9;
  - neighbourSet = {B,C};
  - B seen

    - d not < B.distance</p>



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- ▶ while not isempty(q)...
  - $\vee$  v = D(T,9,B); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 9;
  - ▶ neighbourSet =  $\{ \mathbb{E}, \mathbb{C} \}$ ;
  - C seen



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not isempty(q)...
  - $\vee$  = D(T,9,B); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}.\mathsf{distance} = 9;$
  - ▶ neighbourSet =  $\{ \mathbb{E}, \mathbb{C} \}$ ;
  - C seen
    - $ightharpoonup d = v_d + getWeight(v,C) = 14;$
    - d not < C.distance</p>



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not isempty(q)...
  - $\triangleright$  v = D(T,9,B); q = delete-first(q);
  - $v_d = v$ .distance = 9;
  - ▶ neighbourSet =  $\{\cancel{B},\cancel{C}\}$ ;



$$q = \{ E(T,10,A), C(T,11,F) \}$$

• while not isempty(q)...



$$q = \{ E(T,10,A), C(T,11,F) \}$$

- $\triangleright$  while not isempty(q)...
  - ightharpoonup v = E(T,10,A); q = delete-first(q);



$$q = \{ C(T,11,F) \}$$

- while not isempty(q)...
  - $\vee$  = E(T,10,A); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 10;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{A},\mathsf{G}\};$



$$q = \{ C(T,11,F) \}$$

- ▶ while not isempty(q)...
  - $\vee$  = E(T,10,A); q = delete-first(q);
  - $\triangleright$   $v_d = v$ .distance = 10;
  - ▶ neighbourSet =  $\{A,G\}$ ;
  - A seen



$$q = \{ C(T,11,F) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\vee$  = E(T,10,A); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 10;
  - ▶ neighbourSet = {A,G};
  - A seen
    - $ightharpoonup d = v_d + getWeight(v,A) = 16;$
    - d not < A.distance</p>



$$q = \{ C(T,11,F) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{E}(\mathsf{T},10,\mathsf{A}); \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 10;
  - ▶ neighbourSet =  $\{A,G\}$ ;
  - G not seen



$$q = \{ C(T,11,F) \}$$

- ▶ while not isempty(q)...
  - $\mathbf{v} = \mathsf{E}(\mathsf{T},10,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 10;
  - ▶ neighbourSet =  $\{A,G\}$ ;
  - G not seen

    - G.seen = true;
    - G.distance = d;
    - ightharpoonup G.parent = E;



$$q = \{ C(T,11,F) \}$$

- ▶ while not isempty(q)...
  - $\mathbf{v} = \mathsf{E}(\mathsf{T},10,\mathsf{A}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 10;
  - ▶ neighbourSet =  $\{A,G\}$ ;
  - G not seen

    - ► G.seen = true;
    - ▶ G.distance = d;
    - ► G.parent = E;



$$q = \{ C(T,11,F), G(T,16,E) \}$$

- while not isempty(q)...
  - $\vee$  = E(T,10,A); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 10;
  - ▶ neighbourSet =  $\{A, \emptyset\}$ ;



$$q = \{ C(T,11,F), G(T,16,E) \}$$

while not isempty(q)...



$$q = \{ C(T,11,F), G(T,16,E) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = C(T,11,F); \mathbf{q} = \text{delete-first}(\mathbf{q});$



$$q = \{ G(T,16,E) \}$$

- $\blacktriangleright$  while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 11;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{A},\mathsf{F},\mathsf{G},\mathsf{D}\}; \\$



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A,F,G,D\}$ ;
  - A seen



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 11;
  - ightharpoonup neighbourSet = {A,F,G,D};
  - A seen

    - d not < A.distance</p>



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - F seen



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - F seen
    - $ightharpoonup d = v_d + getWeight(v,F) = 14;$
    - d not < F.distance</p>



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - G seen



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\vee$  = C(T,11,F); q = delete-first(q);
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - G seen

    - d is < G.distance</p>



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - ► G seen

    - ▶ *d* is < G.distance
      - ▶ G.distance = d;



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - G seen
    - $ightharpoonup d = v_d + getWeight(v,G) = 15;$
    - ▶ d is < G.distance
      - ▶ G.distance = d;
      - ▶ G.parent = C;



$$q = \{ G(T,16,E) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{\cancel{A}, \cancel{F}, G, D\}$ ;
  - G seen
    - $ightharpoonup d = v_d + getWeight(v,G) = 15;$
    - ▶ d is < G.distance
      - ▶ G.distance = d;
      - ► G.parent = C;
      - ightharpoonup q = update(G,q);



$$q = \{ G(T,15,C) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, F, G, D\}$ ;
  - D seen



$$q = \{ G(T,15,C) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 11;
  - ▶ neighbourSet =  $\{A, \not\vdash, G, D\}$ ;
  - D seen

    - d not < D.distance</p>



$$q = \{ G(T,15,C) \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{C}(\mathsf{T},11,\mathsf{F}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\triangleright$   $v_d = v$ .distance = 11;
  - ► neighbourSet =  $\{\cancel{A}, \cancel{F}, \cancel{G}, \cancel{D}\}$ ;



$$q = \{ G(T,15,C) \}$$

while not isempty(q)...



$$q = \{ G(T,15,C) \}$$

- $\triangleright$  while not isempty(q)...
  - ightharpoonup v = G(T,15,C); q = delete-first(q);



$$q = \{ \}$$

- while not isempty(q)...
  - $\vee$  = G(T,15,C); q = delete-first(q);
  - $\triangleright$   $v_d = v$ .distance = 15;
  - $\qquad \qquad \mathsf{neighbourSet} = \{\mathsf{E},\mathsf{C}\};$



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{G}(\mathsf{T},15,\mathsf{C}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\triangleright$   $v_d = v$ .distance = 15;
  - ▶ neighbourSet =  $\{E,C\}$ ;
  - E seen



$$q = \{ \}$$

- while not isempty(q)...
  - $\vee$  = G(T,15,C); q = delete-first(q);
  - $v_d = v$ .distance = 15;
  - neighbourSet = {E,C};
  - E seen

    - d not < E.distance</p>



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{G}(\mathsf{T},15,\mathsf{C}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $\triangleright$   $v_d = v$ .distance = 15;
  - ▶ neighbourSet =  $\{\not E, C\}$ ;
  - C seen



$$q = \{ \}$$

- while not isempty(q)...
  - $\vee$  = G(T,15,C); q = delete-first(q);
  - $\mathbf{v}_d = \mathbf{v}$ .distance = 15;
  - ▶ neighbourSet =  $\{ \not E, C \}$ ;
  - C seen
    - $ightharpoonup d = v_d + getWeight(v,C) = 19;$
    - d not < C.distance</p>



$$q = \{ \}$$

- while not isempty(q)...
  - $\mathbf{v} = \mathsf{G}(\mathsf{T},15,\mathsf{C}); \ \mathbf{q} = \mathsf{delete-first}(\mathbf{q});$
  - $v_d = v$ .distance = 15;
  - ▶ neighbourSet =  $\{\cancel{E},\cancel{C}\}$ ;



$$q = \{ \}$$

while not isempty(q)...



$$q = \{ \}$$

# Dijkstras shortest path, algoritm

```
Algorithm dijkstra (Node n, Graph g)
  input: A graph g to find shortest path from node n
n.seen \leftarrow true; n.distance \leftarrow 0; n.parent \leftarrow null;
Pqueue q \leftarrow empty(); q \leftarrow insert(n,q);
while not isempty(q)
  v \leftarrow inspect-first(q); q \leftarrow delete-first(q);
  vd ← v.distance;
  neighbourSet \leftarrow neighbours(v, g);
  for each w in heighbourSet do
     d \leftarrow vd + qetWeight(v, w);
     if not isSeen(w)
       w.seen ← true;
       w.distance \leftarrow d;
       w.parent \leftarrow v;
        q \leftarrow insert(w,q);
     else if d < w.distance</pre>
       w.distance \leftarrow d;
       w.parent \leftarrow v;
        q \leftarrow update(w,q)
```

## Dijkstras shortest path, komplexitet

- Vi sätter in varje nod i prioritetskön en gång.
  - ▶ Totalt  $n \cdot O(insert)$ .
- Vi tar ut varje nod ur prioritetskön en gång.
  - ▶ Totalt  $n \cdot O(\text{delete-first})$ .
- ▶ Vi kan behöva uppdatera element i prioritetskön.
  - Maximalt m gånger:  $m \cdot O(update)$ .
- Osorterad lista (via referens till noden):
  - $ightharpoonup nO(1) + nO(n) + mO(1) = O(n^2 + m).$
- Sorterad lista:
  - $ightharpoonup nO(n) + nO(1) + mO(n) = O(n^2 + mn).$
- ► Heap:
  - $\qquad \qquad nO(\log n) + nO(\log n) + mO(\log n) = O((n+m)\log n).$

## Komplexitet alla-till-alla: Floyd vs. Dijkstra

- Floyd:  $O(n^3)$ .
- ► Snabbaste Dijkstra:  $O((n+m)\log n)$  för en-till-alla.
  - ▶ Måste köras *n* gånger för att få alla-till-alla:
    - $O(n(n+m)\log n) = O(n^2\log n + mn\log n).$
    - För gles graf  $m \approx n$ :  $O(n^2 \log n)$ .
    - För tät graf  $m \approx n^2$ :  $O(n^3 \log n)$ .
- Djikstra snabbare på stora, glesa grafer.

# 3. Minsta uppspännande träd

# Uppspännande träd, oviktad graf

- Både bredden-först och djupet-först-traverseringarna gav oss uppspännande träd:
  - Djupet-först:



Bredden-först:



- ► Har träden minimal längd?
  - ► För oviktade grafer ja!
    - ▶ Längd = n-1.
  - Om varje kant har samma vikt är alla uppspännande träd minimala

# Uppspännande träd, viktad graf

- Hur hanterar man grafer med vikter?
  - Man söker ett uppspännande träd med minsta möjliga totala längd.
    - Det är alltså inte en kortaste-vägen-algoritm.
  - För navigeringsorienterad specifikation finns Prims algoritm.
  - För mängdorienterad specifikation finns Kruskals algoritm.



# Prims algoritm för minsta uppspännande träd (1)

- Utgå från godtycklig startnod.
- ▶ Bygg upp ett större och större träd som till slut spänner upp grafen eller en sammanhängande komponent av den.
- ▶ I varje steg, bygg på trädet med en båge med minimal vikt.

# Prims algoritm för minsta uppspännande träd (2)

- ▶ Välj godtycklig startnod *n* ur grafen. Låt *n* bli rot i trädet.
- Skapa en tom prioritetskö q.
- Upprepa:
  - ► Fas 0:
    - Markera *n* som stängd.
  - ► Fas 1: Lägg till nya bågar till prioritetskön:
    - För var och en av de öppna grannarna w till n:
      - ▶ Lägg bågen (n, w, d) i prioritetskön q.
  - ► Fas 2: Hitta bästa bågen att lägga till trädet:
    - Upprepa:
      - ▶ Ta första bågen (n, w, d) ur q.
      - ▶ Om destinationsnoden w är öppen:
        - ► Lägg till bågen (n, w, d) till trädet.
      - tills w öppen (lagt till en båge) eller q tom (klara).
  - Låt n = w. (Byt till den nya noden.) tills q är tom.

## Symboler

- Stängda noder färgas ljusblått.
- Aktuell nod ritas med röd cirkel.
- ▶ Bågar i prioritetskön ritas grönstreckade.

▶  $n \leftarrow C$ .



- ightharpoonup  $n \leftarrow C$ .
- Låt *n* blir rot i trädet.



- ightharpoonup  $n \leftarrow C$ .
- Låt *n* blir rot i trädet.
- ► Skapa en tom prioritetskö q.



- ightharpoonup  $n \leftarrow C$ .
- Låt *n* blir rot i trädet.
- ► Skapa en tom prioritetskö q.
- ► Upprepa:



- Upprepa:
  - Markera C som stängd.



- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:



$$q=\{ \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
    - ► Lägg (C,A,8) till *q*.



$$q = \{ (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
    - ► Lägg (C,F,3) till q.



$$q = \{ (C,F,3), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
    - ► Lägg (C,G,4) till q.



$$q = \{ (C,F,3), (C,G,4), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
    - ► Lägg (C,D,5) till *q*.



$$q = \{ (C,F,3), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:



$$q = \{ (C,F,3), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - Ta (n, w, d)=(C,F,3) från q.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - Ta (n, w, d)=(C,F,3) från q.
    - F ej stängd.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (C, F, 3) från q.
    - F ej stängd.
      - ▶ Lägg (C,F,3) till trädet.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - Ta (n, w, d)=(C,F,3) från q.
    - F ej stängd.
      - ▶ Lägg (C,F,3) till trädet.
  - tills F ej stängd eller q är tom.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - Ta (n, w, d)=(C,F,3) från q.
    - F ej stängd.
      - ▶ Lägg (C,F,3) till trädet.
  - tills F ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow F$ .



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera C som stängd.
  - För var och en av de icke-stängda grannarna {A,F,G,D} till C:
  - Upprepa:
    - Ta (n, w, d)=(C,F,3) från q.
    - F ej stängd.
      - ▶ Lägg (C,F,3) till trädet.
  - tills F ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow F$ .
- ▶ tills *q* är tom.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
    - ► Lägg (F,A,4) till q.



$$q = \{ (F,A,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:



$$q = \{ (F,A,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - Ta (n, w, d)=(F,A,4) från q.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - Ta (n, w, d)=(F,A,4) från q.
    - A ej stängd.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - Ta (n, w, d)=(F,A,4) från q.
    - A ej stängd.
      - ▶ Lägg (F,A,4) till trädet.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (F, A, 4) från q.
    - A ej stängd.
      - ▶ Lägg (F,A,4) till trädet.
  - tills A ej stängd eller q är tom.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (F, A, 4) från q.
    - A ej stängd.
      - ▶ Lägg (F,A,4) till trädet.
  - tills A ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow A$ .



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera F som stängd.
  - För var och en av de icke-stängda grannarna {A} till F:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (F, A, 4) från q.
    - A ej stängd.
      - ▶ Lägg (F,A,4) till trädet.
  - tills A ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow A$ .
- ▶ tills *q* är tom.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:



$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
    - ► Lägg (A,R,4) till *q*.



$$q = \{ (A,R,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
    - ► Lägg (A,E,6) till *q*.



$$q=\{ (A,R,4), (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:



$$q=\{ (A,R,4), (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - Ta (n, w, d)=(A,R,4) från q.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, R, 4) från q.
    - R ej stängd.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, R, 4) från q.
    - R ej stängd.
      - ▶ Lägg (A,R,4) till trädet.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, R, 4) från q.
    - R ej stängd.
      - ▶ Lägg (A,R,4) till trädet.
  - tills R ej stängd eller q är tom.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, R, 4) från q.
    - R ej stängd.
      - ▶ Lägg (A,R,4) till trädet.
  - tills R ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow R$ .



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera A som stängd.
  - För var och en av de icke-stängda grannarna {R,E} till A:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, R, 4) från q.
    - R ej stängd.
      - ▶ Lägg (A,R,4) till trädet.
  - tills R ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow R$ .
- ▶ tills *q* är tom.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.



$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:



$$q=\{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
    - ► Lägg (R,B,6) till q.



$$q = \{ (C,G,4), (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:



$$q = \{ (C,G,4), (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - Ta (n, w, d)=(C,G,4) från q.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (C, G, 4) från q.
    - G ej stängd.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - Ta (n, w, d)=(C,G,4) från q.
    - G ej stängd.
      - ▶ Lägg (C,G,4) till trädet.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - Ta (n, w, d)=(C,G,4) från q.
    - ▶ G ej stängd.
      - ▶ Lägg (C,G,4) till trädet.
  - tills G ej stängd eller q är tom.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - Ta (n, w, d)=(C,G,4) från q.
    - ▶ G ej stängd.
      - ▶ Lägg (C,G,4) till trädet.
  - tills G ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow G$ .



$$q=\{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera R som stängd.
  - För var och en av de icke-stängda grannarna {B} till R:
  - Upprepa:
    - Ta (n, w, d)=(C,G,4) från q.
    - ▶ G ej stängd.
      - ▶ Lägg (C,G,4) till trädet.
  - tills G ej stängd eller q är tom.
  - $ightharpoonup n \leftarrow G$ .
- ▶ tills *q* är tom.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.



$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:



$$q=\{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
    - ► Lägg (G,E,6) till *q*.



$$q=\{(C,D,5), (G,E,6), (R,B,6), (A,E,6), (C,A,8)\}$$

- Upprepa:
  - Markera G som stängd.
  - ▶ För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:



$$q=\{(C,D,5), (G,E,6), (R,B,6), (A,E,6), (C,A,8)\}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.
    - D ej stängd.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.
    - D ej stängd.
      - ▶ Lägg (C,D,5) till trädet.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.
    - D ej stängd.
      - ▶ Lägg (C,D,5) till trädet.
  - tills D ej stängd eller q är tom.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.
    - D ej stängd.
      - ▶ Lägg (C,D,5) till trädet.
  - tills D ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow D$ .



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera G som stängd.
  - För var och en av de icke-stängda grannarna {E} till G:
  - Upprepa:
    - Ta (n, w, d)=(C,D,5) från q.
    - D ej stängd.
      - ▶ Lägg (C,D,5) till trädet.
  - tills D ej stängd eller q är tom.
  - $\triangleright$   $n \leftarrow D$ .
- ▶ tills *q* är tom.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
    - ► Lägg (D,B,3) till q.



$$q = \{ (D,B,3), (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:



$$q=\{ (D,B,3), (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.
    - B ej stängd.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.
    - ▶ B ej stängd.
      - ▶ Lägg (D,B,3) till trädet.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.
    - B ej stängd.
      - ▶ Lägg (D,B,3) till trädet.
  - tills B ej stängd eller q är tom.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.
    - B ej stängd.
      - ▶ Lägg (D,B,3) till trädet.
  - tills B ej stängd eller q är tom.
  - **▶** *n* ← B.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera D som stängd.
  - För var och en av de icke-stängda grannarna {B} till D:
  - Upprepa:
    - Ta (n, w, d)=(D,B,3) från q.
    - B ej stängd.
      - ▶ Lägg (D,B,3) till trädet.
  - tills B ej stängd eller q är tom.
  - **▶** *n* ← B.
- ▶ tills *q* är tom.



$$q=\{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:



$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - Ta (n, w, d)=(G,E,6) från q.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (G, E, 6) från q.
    - E ej stängd.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (G, E, 6) från q.
    - E ej stängd.
      - ▶ Lägg (G,E,6) till trädet.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - Ta (n, w, d)=(G, E, 6) från q.
    - E ej stängd.
      - ▶ Lägg (G,E,6) till trädet.
  - tills E ej stängd eller q är tom.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - Ta (n, w, d)=(G, E, 6) från q.
    - E ej stängd.
      - ▶ Lägg (G,E,6) till trädet.
  - tills E ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow E$ .



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera B som stängd.
  - För var och en av de icke-stängda grannarna { } till B:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (G, E, 6) från q.
    - E ej stängd.
      - ▶ Lägg (G,E,6) till trädet.
  - tills E ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow E$ .
- ▶ tills *q* är tom.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:



$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - Ta (n, w, d)=(R,B,6) från q.



$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (R, B, 6) från q.
    - B stängd.



$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (R, B, 6) från q.
    - B stängd.
  - tills B ej stängd eller *q* är tom.



$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - Ta (n, w, d)=(A, E, 6) från q.



$$q = \{ (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, E, 6) från q.
    - E stängd.



$$q = \{ (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (A, E, 6) från q.
    - E stängd.
  - tills E ej stängd eller q är tom.



$$q = \{ (C,A,8) \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - Ta (n, w, d)=(C,A,8) från q.



$$q=\{ \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - Ta (n, w, d)=(C,A,8) från q.
    - A stängd.



- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
    - ightharpoonup Ta (n, w, d) = (C, A, 8) från q.
    - A stängd.
  - tills A ej stängd eller q är tom.



- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
  - tills A ej stängd eller q är tom.
  - ightharpoonup  $n \leftarrow A$ .



$$q=\{ \}$$

- Upprepa:
  - Markera E som stängd.
  - För var och en av de icke-stängda grannarna { } till E:
  - Upprepa:
  - tills A ej stängd eller q är tom.
  - $ightharpoonup n \leftarrow A$ .
- ▶ tills *q* är tom.



$$q=\{ \}$$

### Prims algoritm för minsta uppspännande träd

- ▶ Välj godtycklig startnod *n* ur grafen.
- Låt *n* bli rot i trädet.
- ► Skapa en tom prioritetskö q.
- Upprepa:
  - ► Markera *n* som stängd.
  - För var och en av de icke-stängda grannarna w till n:
    - $\blacktriangleright$  Lägg bågen (n, w, d) i prioritetskön q.
  - Upprepa:
    - ► Ta första bågen (n, w, d) ur q.
    - Om destinationsnoden w ej är stängd:
      - ▶ Lägg till bågen (n, w, d) till trädet.

tills w ej stängd eller q är tom.

ightharpoonup Låt n=w.

tills q är tom.

# Prims algoritm, komplexitet

- ▶ Man gör en traversering av grafen, dvs. O(m) + O(n).
- Sen tillkommer köoperationer:
  - För varje båge:
    - Sätt in ett element i kön.
    - ► Inspektera elementet.
    - Ta ut elementet.
  - ► Komplexitet: O(m) (lista) eller  $O(\log m)$  (heap).
- ► Totalt:  $O(n) + O(m^2)$  eller  $O(n) + O(m \log m)$ .

# Fråga

▶ Hur fungerar Prims algoritm på en icke sammanhängade graf?

- Utgå från en prioritetskö av alla bågar.
- ▶ I varje steg, plocka kortaste bågen från kön.
  - Fyra alternativ:
    - Bygg nytt träd.
    - Bygg ut ett träd.
    - Slå ihop två träd.
    - Ignorera bågen.
- Under algoritmens gång kan vi ha en skog.
- ► Till slut har vi bara ett träd.
- ▶ Vår beskrivning använder *färger* för att hålla i sär träden.

# Kruskals algoritm för minsta uppspännande träd, algoritm

- Låt alla noder sakna färg.
- ▶ Stoppa in alla bågarna i en prioritetskö q. Sortera efter vikt.
- Upprepa tills q är tom:
  - 0. Ta första bågen ur q.
  - 1. Om ingen av noderna är färgade:
    - Färglägg med ny färg (bilda nytt träd).
  - 2. Om endast en nod är färgad:
    - Färglägg den ofärgade noden (utöka trädet).
  - 3. Om bägge noderna har samma färg:
    - Ignorera bågen (den skulle skapa en cykel).
  - 4. Om noderna har olika färg
    - Välj en av färgerna och färga om det nya gemensamma trädet (slå ihop träden).

Upprepa tills kön är tom:



$$q = \{ (C,F,3), (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,F,3) ur kön.



$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,F,3) ur kön.
  - ► Ingen av (C,F) är färgade:



$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,F,3) ur kön.
  - ► Ingen av (C,F) är färgade:
    - Färglägg med ny färg.



$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

Upprepa tills kön är tom:



$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (B,D,3) ur kön.



 $q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$ 

- Upprepa tills kön är tom:
  - ► Ta första bågen (B,D,3) ur kön.
  - ► Ingen av (B,D) är färgade:



 $q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$ 

- Upprepa tills kön är tom:
  - ► Ta första bågen (B,D,3) ur kön.
  - ► Ingen av (B,D) är färgade:
    - Färglägg med ny färg.



$$q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

Upprepa tills kön är tom:



$$q=\{(C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,G,4) ur kön.



 $q=\{ (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$ 

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,G,4) ur kön.
  - C är färgad.



 $q=\{ (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$ 

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,G,4) ur kön.
  - C är färgad.
    - Färglägg med C:s färg.



 $q=\{(A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$ 

► Upprepa tills kön är tom:



$$q=\{(A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,F,4) ur kön.



$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,F,4) ur kön.
  - F är färgad.



$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,F,4) ur kön.
  - F är färgad.
    - Färglägg med F:s färg.



$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:



$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,R,4) ur kön.



$$q=\{(C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,R,4) ur kön.
  - A är färgad.



$$q=\{(C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,R,4) ur kön.
  - A är färgad.
    - Färglägg med A:s färg.



$$q=\{(C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

► Upprepa tills kön är tom:



$$q=\{ (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
  - ► Ta första bågen (C,D,5) ur kön.



$$q = \{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,D,5) ur kön.
  - C och D färgade med olika färg.



$$q=\{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (C,D,5) ur kön.
  - C och D färgade med olika färg.
    - Färglägg bägge graferna med C:s färg.



$$q=\{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:



$$q = \{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (E,G,6) ur kön.



$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (E,G,6) ur kön.
  - ► G är färgad.



$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (E,G,6) ur kön.
  - G är färgad.
    - Färglägg med G:s färg.



$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:



$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (B,R,6) ur kön.



$$q = \{ (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (B,R,6) ur kön.
  - ► Bägge färgade med samma färg.



$$q = \{ (A,E,6), (A,C,8) \}$$

- ▶ Upprepa tills kön är tom:
  - ► Ta första bågen (B,R,6) ur kön.
  - Bägge färgade med samma färg.
    - Ignorera bågen.



$$q = \{ (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:



$$q = \{ (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
  - ► Ta första bågen (A,E,6) ur kön.



$$q = \{ (A,C,8) \}$$

- ▶ Upprepa tills kön är tom:
  - ► Ta första bågen (A,E,6) ur kön.
  - ▶ Bägge färgade med samma färg.



$$q = \{ (A,C,8) \}$$

- Upprepa tills kön är tom:
  - ► Ta första bågen (A,E,6) ur kön.
  - Bägge färgade med samma färg.
    - Ignorera bågen.



$$q = \{ (A,C,8) \}$$

► Upprepa tills kön är tom:



$$q = \{ (A,C,8) \}$$

- ▶ Upprepa tills kön är tom:
  - ► Ta första bågen (A,C,8) ur kön.



- Upprepa tills kön är tom:
  - ► Ta första bågen (A,C,8) ur kön.
  - ► Bägge färgade med samma färg.



- Upprepa tills kön är tom:
  - ► Ta första bågen (A,C,8) ur kön.
  - Bägge färgade med samma färg.
    - Ignorera bågen.



▶ Upprepa tills kön är tom:



- Upprepa tills kön är tom:
- Klar!



#### Kruskals algoritm, komplexitet

- Bygg upp en prioritetskö utifrån en bågmängd.
  - $\triangleright$   $O(m \log m)$  om heap.
- ▶ Varje båge traverseras en gång: O(m):
  - Hanteringen av bågen kan delas in i fyra fall:
    - ▶ Ingen nod färgad: *O*(1).
    - ► En nod färgad: O(1).
    - ► Noderna samma färg: O(1).
    - Noderna olika färg:
      - ▶ Naiv lösning: O(n).
      - ▶ Effektiv lösning O(1).
- Total komplexitet:
  - $O(m \log m) + O(m) = O(m \log m) = O(m \log n).$

## Kruskals algoritm för minsta uppspännande träd, naiv

```
Algorithm Kruskal (Graph g)
nextColor \( 1; Pqueue q = empty();
for each node n in q
  n.color \leftarrow 0:
for each edge e in q
  q \leftarrow insert(q,e);
while not isempty(q) do
  e = (a,b) \leftarrow inspect-first(q); q \leftarrow delete-first(q);
  if a.color = b.color then
    if a.color = 0 then
      a.color ← nextColor
      b.color ← nextColor
      nextColor ← nextColor+1
    else
      // same color!=0, do nothing
  else // different color
    if a.color = 0 then // b colored
      b.color ← a.color
    elseif b.color = 0 then // a colored
      a.color ← b.color
    else // colored with different colors
      for each node n in q
        if n.color = b.color then
           n.color ← a.color
```

# "Omfärgning" av delgraf

- ► En naiv algoritm för omfärgning av ett träd/delgraf måste traversera "alla" noderna i delgrafen: O(n).
- ▶ Effektivare att definiera om *likhet* för färger.
- Använd ett fält *E* med *ekvivalenta* färger.

```
Algorithm Kruskal (Graph g)
nextColor \leftarrow 1; Pqueue q = empty(); E(0)=0;
for each node n in q
  n.color \leftarrow 0:
for each edge e in q
  q \leftarrow insert(q,e);
while not isempty(q) do
  e = (a,b) \leftarrow inspect-first(q); q \leftarrow delete-first(q);
  if E(a.color) = E(b.color) then
    if a.color = 0 then
      a.color ← nextColor
      b.color ← nextColor
      E(nextColor) ← nextColor
      nextColor ← nextColor+1
    else
      // same color!=0, do nothing
  else // different color
    if a.color = 0 then // b colored
      b.color ← a.color
    elseif b.color = 0 then // a colored
      a.color 

b.color
    else // colored with different colors
      E(a.color) \leftarrow min(E(a.color), E(b.color))
      E(b.color) \leftarrow min(E(a.color), E(b.color))
```

## Fråga

► Hur fungerar Kruskals algoritm på en icke sammanhängade graf?