H11: Kernefysik

2.b Fys A

Kevin Zhou

7. maj 2024

Minrui Kevin Zhou 2.b H11: Kernefysik

Opgave 1: Lungeundersøgelse

Ved en lungeundersøgelse inhaleres en gas, som indeholder isotopen ¹³³Xe.

a. Opstil reaktionsskemaet for henfaldet af 133 Xe.

Da 133 Xe har en forholdsvis kort halveringstid, skal en kilde med 133 Xe anvendes inden 10 dage efter produktionen. Ved produktionen af en kilde er aktiviteten af 133 Xe i kilden 740 MBq.

b. Bestem massen af den resterende mængde 133 Xe i kilden 10 dage efter produktionen.

Løsning:

a. Vi aflæser først på et henfladskort, at isotopen henfalder med β -henfald. Reaktionsskemaet for henfaldet af ¹³³Xe ses nedenfor.

$$^{133}_{54} \text{Xe} \rightarrow ^{133}_{55} \text{Cs} + ^{0}_{-1} \text{e} + \bar{\nu}$$

b. Fra Ptable slår vi halveringstiden op til at være

$$T_{\frac{1}{2}} = 4.53 \cdot 10^5 \text{ s}$$

Vi finder først antallet af kerner til start.

$$N_0 = \frac{A}{k}$$

$$= \frac{740 \text{ MBq} \cdot T_{\frac{1}{2}}}{\ln(2)}$$

$$= \frac{740 \cdot 10^6 \text{ Bq} \cdot 4,53 \cdot 10^5 \text{ s}}{\ln(2)}$$

$$= 4,836202316 \cdot 10^{14}$$

Vi finder nu antallet af kerner efter 10 dage. Imidlertid ser vi, at $10 d = 10 \cdot 24 \cdot 60^2 s = 864000 s$.

$$N(8,64 \cdot 10^{5} \text{ s}) = N_{0} \cdot \left(\frac{1}{2}\right)^{\frac{8,64 \cdot 10^{5} \text{ s}}{T_{\frac{1}{2}}}}$$
$$= N_{0} \cdot \left(\frac{1}{2}\right)^{\frac{8,64 \cdot 10^{5} \text{ s}}{4,53 \cdot 10^{5} \text{ s}}}$$
$$= 1,28930164 \cdot 10^{14}$$

Ved opslag på Ptable ved vi, at hvert enkelt atom har massen 132,905910722 u. Altså er massen af de resterende atomer

$$\begin{split} m_{\rm samlet} &= N \cdot m_{\rm atom} \\ &= 1,28930164 \cdot 10^{14} \cdot 132,905910722 \text{ u} \\ &= 1,28930164 \cdot 10^{14} \cdot 132,905910722 \text{ u} \cdot 1,6605 \cdot 10^{-24} \text{ g/u} \\ &\approx 2,85 \cdot 10^{-9} \text{ g} \\ &= 28,5 \text{ ng} \end{split}$$

Altså er massen af den resterende mængde ¹³³Xe i kilden 10 dage efter produktion 28,5 ng.

Opgave 2: Måling af stålpladers tykkelse

På stålvalseværket Dan Steel A/S i Frederiksværk kontrolleres de fremstillede stålpladers tykkelse ved hjælp af strålingen fra en radioaktiv kilde. Man bruger en 137 Cs-kilde, der ved installationen i 1992 havde aktiviteten 31,4 GBq.

a. Hvor længe varer det, før aktiviteten er faldet til 15,0 GBq.

Minrui Kevin Zhou 2.b H11: Kernefysik

Kilden udsender γ -strålinge. Når γ -strålingen passerer gennem stof, absorberes en del af strålingen. Tællehastigheden I(x) efter passage af stoftykkelsen x er

$$I(x) = I_0 \cdot \left(\frac{1}{2}\right)^{\frac{x}{x_{\frac{1}{2}}}}$$

hvor I_0 er tællehastigheden, når der ikke er nogen stålplade mellem kilde og detektor. Halveringstykkelsen for γ -strålingen i stål er $x_{\frac{1}{2}}=1{,}25$ cm.

b. Bestem I_0 når det oplyses, at for en stålplade med tykkelsen 2,3 cm måles tællehastigheden I til $3.57 \cdot 10^4 \text{ s}^{-1}$.

Løsning:

a. Aktiviteten aftager eksponentielt med tiden. Der gælder da

$$A(t) = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T_{\frac{1}{2}}}} \iff t = T_{\frac{1}{2}} \cdot \log_{\frac{1}{2}}\left(\frac{A(t)}{A_0}\right)$$

hvor $T_{\frac{1}{2}}$ er halveringstiden, A_0 er aktiviteten ved t=0 og A(t) er aktiviteten ved tiden t. Vi regner nu tiden ud.

$$\begin{split} t &= T_{\frac{1}{2}} \cdot \log_{\frac{1}{2}} \left(\frac{A(t)}{A_0} \right) \\ &= 30,\!06 \; \mathbf{y} \cdot \log_{\frac{1}{2}} \left(\frac{15,\!0 \; \mathrm{GBq}}{31,\!4 \; \mathrm{GBq}} \right) \\ &\approx 32,\!0 \; \mathbf{y} \end{split}$$

Altså varer det 32,0 år før aktiviteten er faldet til 15,0 GBq.

b. Fra udtrykket for tællehastigheden I(x) får vi, at

$$I(x) = I_0 \cdot \left(\frac{1}{2}\right)^{\frac{x}{x_{\frac{1}{2}}}} \iff I_0 = \frac{I(x)}{\left(\frac{1}{2}\right)^{\frac{x}{x_{\frac{1}{2}}}}}$$

Vi kan da nemt bestemme I_0 med de givne oplysninger:

$$I_0 = \frac{I(x)}{\left(\frac{1}{2}\right)^{\frac{x}{x}} \frac{1}{2}}$$
$$= \frac{3.57 \cdot 10^4 \text{ s}^{-1}}{\left(\frac{1}{2}\right)^{\frac{2.3 \text{ cm}}{1.25 \text{ cm}}}}$$
$$\approx 1.27 \cdot 10^5 \text{ s}^{-1}$$