# **UER** Modélisation

Régression logistique

Thomas Ferté

26/02/2022

Rappels



## Solution

$$VO2max_i = \beta_0 + \beta_1 age_i + \beta_2 sexe_i + \epsilon_i$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma_e^2)$$

# Ecrivez le modèle correspondant



## Solution

$$Logit(P(Dementia_i = 1)) = \beta_0 + \beta_1 age_i + \beta_2 sexe_i$$

Modèle statistique

### Intuition



Linéaire : 
$$f_{linear}(x) = \beta_0 + \beta_1 \times x = \eta(x)$$

Logistique : 
$$f_{logistic}(x) = P(Dementia = 1|x) = \frac{e^{\eta(x)}}{1 + e^{\eta(x)}}$$

## Logit - exercice

00000000

On définit la fonction logit telle que :  $Logit(x) = log(\frac{x}{1-x})$ 

Montrez que 
$$Logit(\frac{e^{\eta}}{1+e^{\eta}})=\eta$$

$$\mathsf{NB}: log(e^a) = a$$

## Logit - solution

On définit la fonction logit telle que :  $Logit(x) = log(\frac{x}{1-x})$ 

Montrez que  $Logit(\frac{e^{\eta}}{1+e^{\eta}}) = \eta$ 

$$\begin{aligned} Logit(\frac{e^{\eta}}{1+e^{\eta}}) &= log(\frac{\frac{e^{\eta}}{1+e^{\eta}}}{1-\frac{e^{\eta}}{1+e^{\eta}}}) \\ &= log(\frac{\frac{e^{\eta}}{1+e^{\eta}}}{\frac{1+e^{\eta}}{1+e^{\eta}}-\frac{e^{\eta}}{1+e^{\eta}}}) \\ &= log(\frac{\frac{e^{\eta}}{1+e^{\eta}}}{\frac{1}{1+e^{\eta}}}) \\ &= log(e^{\eta}) \\ &= \eta \end{aligned}$$

#### 2 spécifications équivalentes :

$$P(Y_i = 1 | X_i) = \frac{e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_\rho X_{ip}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_\rho X_{ip}}}$$

$$Logit(P(Y_i = 1|X_i)) = \beta_0 + \beta_1 X_{i1} + ... + \beta_p X_{ip}$$

000000000

## Spécification du modèle - exemple démence



2 spécifications équivalentes :

$$P(Cognition_i = d\'{e}mence|age_i) = \frac{e^{\beta_0 + \beta_1 age_i}}{1 + e^{\beta_0 + \beta_1 age_i}}$$
  
 $Logit(P(Cognition_i = d\'{e}mence|age_i)) = \beta_0 + \beta_1 age_i$ 

### Odd-ratio - exercice

A partir de l'expression suivante :

$$Logit(P(Y_i = 1|X_i)) = \beta_0 + \beta_1 X_i$$

Montrez que : 
$$RC = e^{\beta_1} = \frac{P(Y_i=1|X_i=1)/(1-P(Y_i=1|X_i=1))}{P(Y_i=1|X_i=0)/(1-P(Y_i=1|X_i=0))}$$

$$\mathsf{PS} : log(a) - log(b) = log(a/b)$$

### Odd-ratio - solution

A partir de  $Logit(P(Y_i = 1|X_i)) = \beta_0 + \beta_1 X_i$  on a :

$$Logit(P(Y_i = 1 | X_i = 0)) = \beta_0 + \beta_1 \times 0 = \beta_0$$

$$Logit(P(Y_i = 1 | X_i = 1)) = \beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1$$

En faisant une soustraction membre à membre on a :

$$\beta_{1} = Logit(P(Y_{i}|X_{i} = 1)) - Logit(P(Y_{i}|X_{i} = 0))$$

$$= log(\frac{P(Y_{i}|X_{i} = 1)}{1 - P(Y_{i}|X_{i} = 1)}) - log(\frac{P(Y_{i}|X_{i} = 0)}{1 - P(Y_{i}|X_{i} = 0)})$$

$$= log(\frac{P(Y_{i} = 1|X_{i} = 1)/(1 - P(Y_{i} = 1|X_{i} = 1))}{P(Y_{i} = 1|X_{i} = 0)/(1 - P(Y_{i} = 1|X_{i} = 0))})$$

On a bien : 
$$RC = e^{\beta_1} = \frac{P(Y_i=1|X_i=1)/(1-P(Y_i=1|X_i=1))}{P(Y_i=1|X_i=0)/(1-P(Y_i=1|X_i=0))}$$

## Odd-ratio - interprétation des coefficients

- $\beta_0$ : permet de calculer la probabilité chez les non-exposés égale à  $e^{\beta_0}/(1+e^{\beta_0})$
- $\bullet$   $e^{\beta_1}$  : correspond au rapport de côte entre les exposés et les non-exposés (variable binaire) ou bien pour l'augmentation d'une unité d'une variable quantitative.

# Spécification du modèle

# Cadre général

On retrouve une formulation proche du modèle de régression linéaire :

$$Logit(P(Y_i = 1|X_i)) = \beta_0 + \beta_1 X_{i1} + ... + \beta_p X_{ip}$$

Les variables catégorielles à plusieurs modalités sont codées sous la forme d'indicatrice.

#### Exemple:

La survenue de cancer du poumon en fonction du statut tabagique codé non fumeur, tabagisme actif, tabagisme passif sécrira :

 $Logit(P(Cancer_i = 1|X_i)) = \beta_0 + \beta_1 TabagismeActif_i + \beta_2 TabagismePassif_i$ 

 $e^{eta_1}$  s'interprète comme le rapport de cote du cancer du poumon des fumeurs actifs par rapport aux noms fumeurs.

 $e^{eta_2}$  s'interprète comme le rapport de cote du cancer du poumon des fumeurs passigs par rapport aux noms fumeurs.

### Modification d'effet

Les modifications d'effet s'écrivent comme dans un modèle linéaire

### Exemple:

La survenue de cancer du poumon dépend de la consommation en paquet-année avec un effet différent selon le sexe :

$$Logit(P(Cancer_i = 1|X_i)) = \beta_0 + \beta_1 Consommation_i + \beta_2 Homme_i + \beta_3 Consommation_i \times Homme_i$$

 $e^{eta_1}$  s'interprète comme le rapport de cote de l'augmentation de 1paquet-année chez les femmes sur le risque de cancer du poumon.

 $e^{\beta_1+\beta_3}$  s'interprète comme le rapport de cote de l'augmentation de 1 paquet-année chez les hommes sur le risque de cancer du poumon.

### Facteur de confusion et choix des variables

Comme pour le modèle linéaire, les variables explicatives d'un modèle sont :

- L'exposition d'intérêt
- Ses éventuels modificateurs d'effet.
- Les éventuels facteurs de confusion de la relation entre l'exposition et la maladie

Estimation du modèle et tests statistiques

# Vraisemblance et maximum de vraisemblance - intuition

On veut savoir quelle est la probabilité que le personnage de Sean Bean meurt dans un film. Pour cela on a répertorié tous les films dans lesquels il a joué et on a regardé s'il était ou non décédé.

| film_id | death |  |  |
|---------|-------|--|--|
| 1       | 0     |  |  |
| 2       | 0     |  |  |
| 3       | 0     |  |  |
| 4       | 0     |  |  |

Première méthode, on calcul simplement cette probabilité :

```
sum(df SeanBean$death == 1)/nrow(df SeanBean)
```

## [1] 0.31

# Vraisemblance et maximum de vraisemblance - intuition

La vraisemblance correspond à la probabilité d'observer une réalisation particulière de l'échantillon pour une valeur des paramètre donnée.

Ici, on considère que les données suivent une loi de Bernouilli (pile ou face) de paramètre  $\pi$ 

La vraisemblance pour un individu est  $\pi$  s'il a fait l'évenement et  $1-\pi$  s'il n'a pas fait l'événement. On peut donc la noter :

$$\mathcal{L}(\pi; y_i) = \pi^{y_i} \times (1 - \pi)^{1 - y_i}$$

La vraisemblance pour l'ensemble des individus est donc :

$$\mathcal{L}(\pi; y) = \mathcal{L}(\pi; y_1) \times ... \times \mathcal{L}(\pi; y_n) = \prod_{i=1}^n \mathcal{L}(\pi; y_n) = \prod_{i=1}^n \pi^{y_i} \times (1-\pi)^{1-y_i}$$

# Vraisemblance et maximum de vraisemblance - intuition

A partir de cela on peut faire un graphique montrant la vraisemblance en fonction de la valeur du paramètre  $\pi$ 



# Vraisemblance d'un modèle logistique - exemple démence

Même principe pour une régression logistique :

$$\mathcal{L}(\pi;y)=\prod_{i=1}^n\pi^{y_i} imes(1-\pi)^{1-y_i}$$
 avec  $\pi_i=rac{e^{eta_0+eta_1age_i}}{1+e^{eta_0+eta_1age_i}}$ 



### Intervalles de confiance

Les paramètres  $\hat{\beta}$  suivent une loi normale de variance  $\widehat{var}(\hat{\beta}_i)$  tel que l'intervalle de confiance au risque  $\alpha$  est défini tel que :

$$[\widehat{eta}_j \pm z_{lpha/2} \sqrt{\widehat{var}(\widehat{eta}_j)}]$$

## Tests statistiques

- Test global : Rapport de vraisemblance (+++), Wald, Score
- Apport d'une variable : Wald (+++), Rapport de vraisemblance. Score
- Apport d'un ensemble de variables : Rapport de vraisemblance (+++), Wald, Score

Soit  $\widehat{eta}_1$  l'estmateur du coefficient  $eta_1$  par le modèle et  $SE_{\widehat{eta}_1}$  sont erreur standard associée alors la statistique de test de wald est définie comme :

$$\mathit{Wald} = \frac{\widehat{eta}_1}{\mathit{SE}_{\widehat{eta}_1}}$$

et suit une loi du Chi-2 à 1 ddl.

# Tests statistiques - Log-vraisemblance (comparaison de modèle)

Soit m2 le modèle complet et m1 le modèle restreint, le rapport de vraisemblance est défini comme :

$$RV = 2 \times (loglik(m2) - loglik(m1))$$

Dans ce cas RV suit une loi du Ch-2 avec un ddl égal à la différence du nombre de paramètres ( $\beta$ ) entre les deux modèles.

# Tests statistiques - Score (un seul paramètre)

Soit  $\beta$  le paramètre de la régression logisitique à tester. Soit  $U(\beta)$ la dérivée première de la vraisemblance du modèle selon ce paramètre et  $I(\beta)$  l'opposée de l'espérance de la dérivée seconde de la vraisemblance de ce paramètre. Alors la statistique du score est définie telle que :

$$Score = \frac{U(\beta)^2}{I(\beta)}$$

et suit une loi du Chi-2 à 1 ddl

Hypothèses

# Hypothèses du modèle

- Log-linéarité : comme pour le modèle de régression linéaire, il faut vérifier la log-linéarité des  $\beta$  pour les variables quantitatives.
- Indépendance des individus

### Calibration - test Hosmer et Lemeshow

Compare la probabilité prédite et la proportion de réussite de l'outcome.

```
vec_proba \leftarrow runif(n = 1000, min = 0, max = 1)
vec_res <- rbinom(n = 1000, size = 1, prob = vec_proba)</pre>
hoslem <- generalhoslem::logitgof(vec res, vec proba)
hoslem
```

```
##
   Hosmer and Lemeshow test (binary model)
##
## data: vec_res, vec_proba
## X-squared = 8.7789, df = 8, p-value = 0.3613
```



## Performance - AUC



$$Se = rac{VP}{VP+FN}$$
 $FPR = 1 - Sp = 1 - rac{VN}{VN+FP}$ 

### Performance - AUPRC



$$Recall = Se = \frac{VP}{VP + FN}$$

$$Precision = VPP = \frac{VP}{VP+FP}$$

Exemple

On s'intéresse au lien entre l'IMC et le décès. Pour cela, on a recueilli des informations sur l'âge des patients (en dizaine d'années) et sur leur IMC et on a recueilli leur statut vital à 6 mois.

| age_10   | IMC      | deces |
|----------|----------|-------|
| 3.817345 | 15.66582 | 0     |
| 5.305204 | 25.67530 | 0     |
| 3.008899 | 20.75000 | 0     |
| 7.097567 | 20.15700 | 0     |
| 3.029397 | 36.77941 | 0     |
| 5.061613 | 28.78917 | 0     |

# Spécification du modèle - exercice

On s'intéresse au lien entre l'IMC et le décès. Pour cela, on a recueilli des informations sur l'âge des patients et sur leur IMC et on a recueilli leur statut vital à 6 mois.

Ecrivez le modèle correspondant

$$Logit(P(D\acute{e}c\grave{e}s_i = 1|IMC_i, Age_i)) = \beta_0 + \beta_1 Age_i + \beta_2 IMC_i$$

### Fit du modèle

```
fit <- glm(deces ~ age 10 + IMC, family = "binomial", data = df reg_log)
summarv(fit)
```

```
##
## Call:
## glm(formula = deces ~ age 10 + IMC, family = "binomial", data = df_reg_log)
##
## Deviance Residuals:
      Min
                10 Median
                                          Max
## -1.3360 -0.6111 -0.4039 -0.2525
                                       2 9473
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -6.410258   0.168402   -38.06   <2e-16 ***
## age_10
              0.227655 0.013283 17.14 <2e-16 ***
## TMC
               0.114327 0.004292 26.64 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 8649.4 on 9999 degrees of freedom
## Residual deviance: 7518.8 on 9997 degrees of freedom
## ATC: 7524 8
##
## Number of Fisher Scoring iterations: 5
```

## Hypothèses à vérifier - linéarité

```
library(mfp)
fp_reg log <- mfp::mfp(formula = deces ~ fp(age 10) + fp(IMC), family = "binomial", data = df_reg log)
glm reg log <- glm(fp reg log$formula, family = "binomial", data = df reg log)
summary(glm_reg_log)
##
## Call:
## glm(formula = fp_reg_log$formula, family = "binomial", data = df_reg_log)
##
## Deviance Residuals:
      Min
                10
                    Median
                                  30
                                          Max
## -1.4070 -0.5942 -0.4047 -0.2671
                                       2.8432
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 -4.933526
                             0.124435 -39.65 <2e-16 ***
## I((IMC/10)^2)
                                          27.74 <2e-16 ***
                    0.203714
                             0.007343
## I((age_10/10)^1) 2.300107
                             0.133485 17.23 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 8649.4 on 9999 degrees of freedom
##
## Residual deviance: 7498.5 on 9997 degrees of freedom
## ATC: 7504.5
```

```
hoslem test <- generalhoslem::logitgof(df reg log$deces, fitted(fp reg log))
cbind(hoslem_test$expected, hoslem_test$observed) %>%
  as.data.frame() %>%
  tibble::rownames to column(var = "group") %>%
 mutate(prop_theo = yhat1/(yhat0 + yhat1),
         prop obs = v1/(v0 + v1)) \%%
  ggplot(mapping = aes(x = prop theo, y = prop obs, label = group)) +
  geom point() +
 geom text(nudge y = +0.1) +
  geom function(fun = function(x) x, color = "red") +
  annotate(label = paste0("p-val HL test : ", round(hoslem_test$p.value, 3)),
          x = 0.5, y = 1, geom = "text") +
 labs(x = "Proportion théorique", v = "Proportion estimée") +
 lims(x=c(0.1), v=c(0.1))
```



### Performances ROC curve

```
roc_curve <- PRROC::roc.curve(scores.class0 = fitted(fp_reg_log),</pre>
                               weights.class0 = df_reg_log$deces, curve = TRUE)
plot(roc_curve, color = FALSE)
```



# Performances PR curve

```
pr_curve <- PRROC::pr.curve(scores.class0 = fitted(fp_reg_log),</pre>
                             weights.class0 = df_reg_log$deces, curve = TRUE)
plot(pr_curve, color = FALSE)
```



| term             | estimate | std.error | statistic | p.value | conf.low | conf.high |
|------------------|----------|-----------|-----------|---------|----------|-----------|
| (Intercept)      | -4.934   | 0.124     | -39.647   | 0       | -5.180   | -4.692    |
| I((IMC/10)^2)    | 0.204    | 0.007     | 27.741    | 0       | 0.189    | 0.218     |
| l((age_10/10)^1) | 2.300    | 0.133     | 17.231    | 0       | 2.040    | 2.563     |

### Prédiction

On peut se poser la question de la probabilité prédite par le modèle de faire un événement pour un individu de 28 ans avec un IMC à 18

```
df new <- data.frame(IMC = 18,
                     age_10 = 2.8
predict(glm_reg_log, df_new, type = "response")
```

```
##
## 0.02584476
```

Fin

Questions?