Introduction to Basic R: Statistical Analysis

Microbiome analysis course
Presented by
Trần Bùi Minh Trí
Nguyễn Thanh Trà
June 13 2024

Content

Introduction to statistics

Data in the nutshell

Descriptive statistics

Data distribution

Introduction to hypothesis in microbiome studies

Inferential statistics: Hypothesis testing and linear regression

1. Introduction to statistics

Iris dataset

4.6

5.0

> head(dt.iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa

3.1

3.9

1.3	0.2	setosa
1.5	0.2	setosa
1.4	0.2	setosa
1.7	0.4	setosa

-	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa

> str(dt.iris)

```
'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

> summary(dt.iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100	setosa :50
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300	versicolor:50
Median :5.800	Median :3.000	Median :4.350	Median :1.300	virginica :50
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199	
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800	
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500	

Iris dataset

Iris dataset

Microbiome dataset

Murine intestinal microbiome data (Jin et al. 2015) are generated from fecal and cecal stool of vitamin D receptor knockout (Vdr) and wild-type (WT) mice with 454 pyrosequencing. The whole data sets include 5 samples of Vdr mice and 3 samples of WT mice from both fecal and cecal locations. The overall purpose of this study is to explore whether VDR status regulates the composition and functions of the intestinal bacterial community at the genus level.

Microbiome dataset

```
> str(abund_table)
int [1:16, 1:248] 476 67 549 578 996 404 319 526 424 0 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:16] "5_15_drySt-28F" "20_12_CeSt-28F" "1_11_drySt-28F" "2_12_drySt-28F" ...
..$ : chr [1:248] "Tannerella" "Lactococcus" "Lactobacillus" "Lactobacillus::Lactococcus" ...
```

•	Tannerella	Lactococcus	Lactobacillus	Lactobacillus::Lactococcus	Parasutterella	Helicobacter	Prevotella	Bacteroides	Barnesiella
5_15_drySt-28F	476	326	94	1	1	89	121	273	į
20_12_CeSt-28F	67	737	597	12	0	0	7	34	
1_11_drySt-28F	549	2297	434	25	1	0	289	958	1
2_12_drySt-28F	578	548	719	5	4	13	99	377	7
3_13_drySt-28F	996	2378	322	17	2	24	335	526	
4_14_drySt-28F	404	471	205	1	0	32	143	200	1
7_22_drySt-28F	319	882	644	13	0	3	111	86	
8_23_drySt-28F	526	1973	2340	15	12	0	89	424	
9_24_drySt-28F	424	2308	1000	14	1	0	84	202	
.9_11_CeSt-28F	0	422	330	1	0	0	0	0	
21_13_CeSt-28F	6	173	639	0	0	0	1	5	(
22_14_CeSt-28F	20	580	633	3	0	0	3	20	(
23_15_CeSt-28F	37	4867	1819	25	2	0	10	31	
25_22_CeSt-28F	38	707	625	9	0	0	7	19	(
26_23_CeSt-28F	81	1404	1361	10	2	0	5	46	(
27_24_CeSt-28F	235	1913	365	13	0	0	25	122	

Microbiome dataset

```
grouping
               Location Group
                  Fecal Vdr-/-
5 15 drySt-28F
20 12 CeSt-28F
                  Cecal Vdr-/-
1_11_drySt-28F
                  Fecal Vdr-/-
2_12_drySt-28F
                  Fecal Vdr-/-
3_13_drySt-28F
                  Fecal Vdr-/-
4 14 drySt-28F
                  Fecal Vdr-/-
7 22 drySt-28F
                  Fecal
                            WT
8 23 drySt-28F
                  Fecal
                            WT
9_24_drySt-28F
                  Fecal WT
19 11 CeSt-28F
                  Cecal Vdr-/-
21 13 CeSt-28F
                  Cecal Vdr-/-
22 14 CeSt-28F
                  Cecal Vdr-/-
23 15 CeSt-28F
                  Cecal Vdr-/-
25 22 CeSt-28F
                  Cecal
                            WT
26 23 CeSt-28F
                  Cecal
                            WT
27 24 CeSt-28F
                  Cecal
                            WT
```

```
> table(grouping)
Group
Location Vdr-/- WT
Cecal 5 3
Fecal 5 3
```

2. Types of Variables

MEAN

$$\mu_x = \sum_{i=1}^{N} \frac{x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

> mean(dt.iris\$Sepal.Length)

[1] 5.843333

> mean(dt.iris\$Petal.Length)

[1] 3.758

flower feature distribution

MEAN

MEDIAN and QUARTILES

VARIANCE

Measure the dispersion of a set of data values.

```
S_{x}^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}
```

```
> tapply(dt.iris$Petal.Length, dt.iris$Species, function(x) {
+     variances <- var(x, na.rm=T)
+     return(variances)
+   })
     setosa versicolor virginica
0.03015918 0.22081633 0.30458776</pre>
```

```
> var_Petal_Length
[1] 3.116278
```

3. Descriptive statistics covariance

A measure of the joint variability of two variables

Covariance formula for population:

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{n}$$

· Covariance Formula for a sample:

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

Where,

- · Xi is the values of the X-variable
- Y_i is the values of the Y-variable
- X is the mean of the X-variable
- · Y is the mean of the Y-variable
- · n is the number of data points

Check normality of Petal Length in Iris dataset.

Simulate a normal distributed Petal.Length

```
dt.iris$sim Petal <- NA
   mean Petal Length <- mean(dt.iris$Petal.Length, na.rm=T)</pre>
    sd Petal Length <- sd(dt.iris$Petal.Length, na.rm=T)</pre>
   p values sw <- rep(0, 9)
   p values ks <- rep(0, 9)
  iteration <- 0
> while (any(p_values_sw < 0.8) | any(p_values_ks < 0.8)) {</pre>
      iteration <- iteration + 1
      cat(paste0("Number of iterations: ", iteration, "\n"))
      dt.iris$sim Petal <- rnorm(nrow(dt.iris),</pre>
                            mean = mean Petal Length,
                            sd = sd Petal Length)
      p values sw <- sapply(c("setosa", "versicolor", "virginica"), function(y) {</pre>
          shapiro.test( dt.iris[!is.na(dt.iris$sim Petal) & (dt.iris$Species == y), "sim Petal"])$p.value
        })
      p_values_ks <- sapply(c("setosa", "versicolor", "virginica"), function(y) {</pre>
          ks.test(dt.iris[!is.na(dt.iris$sim Petal) & ( dt.iris$Species == y), "sim Petal"], "pnorm",
                  mean = mean(dt.iris[dt.iris$Species == y, "sim_Petal"], na.rm = TRUE),
                  sd = sd(dt.iris[dt.iris$Species == y, "sim_Petal"], na.rm = TRUE))$p.value
      })
```

4. Data distribution Histogram normality check

Q-Q plot normality check

Statistical test normality check

```
> shapiro.test(dt.iris$Petal.Length)

Shapiro-Wilk normality test

data: dt.iris$Petal.Length
W = 0.87627, p-value = 7.412e-10
```

```
> shapiro.test(dt.iris$sim_Petal)

Shapiro-Wilk normality test

data: dt.iris$sim_Petal
W = 0.99593, p-value = 0.9549
```

5. Introduction to hypothesis in microbiome studies

-Ex 1: Hypothesis 1, in inflammatory bowel diseases (IBD) research, hypothesize dysbiosis is associated with the progression of the diseases.

-Ex 2: Hypothesize 2 that antibiotics and diet affect gut microbial community structure, antibiotic treatments affect the diversity of strains of gut bacteria.

Note: For the microbiome studies, the focus is on the hypotheses 1 and 2.

6. Inferential statistics

Parametric test Vs. Non-parametric test

	Parametric test	Non-parametric test
2 Numerical variable (Correlation)	Pearson method	Spearman method
1 Numerical variable 2 Categorical variable (Between groups)	Wilcoxon Rank Sum	
1 Numerical variable 2 Categorical variable (Within groups)	Paired t-test	Wilcoxon Signed Rank test
1 Numerical variable>2 Categorical variable	One-way ANOVA	Kruskal-Wallis test
2 Categorical variable -		Chi-squared test

6. Inferential statistics

When will we using parametric tests?

- -The data are normally distributed or can be transformed to be normally distributed (Logarithmic, square root, inverse, box-cox transformation and quantile normalization).
- -The variance of the population is the same for all groups being compared.
- -The data are independent and randomly sampled.
- -The dependent variable is continuous or at least ordinal.

Two-Sample Welch's t-Test

- Type of parametric statistical test
- Determine whether two groups of data are significantly different from each other
- Based on the t-distribution (probability distribution similar to the normal distribution)

Assumption: Distribution of two population follow a normal distribution.

Two-Sample Welch's t-Test

- > library(vegan)
- > H<-diversity(abund_table, "shannon")
- > df_H<-data.frame(sample=names(H),value=H,measure=rep("Shannon",length(H)))
- > df_G <-cbind(df_H, grouping)</pre>

```
Fecal G
                  value measure Location Group
         sample
1 5_15_drySt-28F 2.460729 Shannon Fecal Vdr-/-
3 1_11_drySt-28F 2.228023 Shannon Fecal Vdr-/-
4 2_12_drySt-28F 2.734405 Shannon Fecal Vdr-/-
5 3_13_drySt-28F 2.077282 Shannon
                                  Fecal Vdr-/-
6 4_14_drySt-28F 2.466830 Shannon
                                   Fecal Vdr-/-
7 7_22_drySt-28F 1.777171 Shannon
                                    Fecal
                                             WT
8 8_23_drySt-28F 1.999559 Shannon
                                   Fecal
9 9_24_drySt-28F 1.971996 Shannon
                                    Fecal
                                             WΤ
```


7. Hypothesis testing
Two-Sample Welch's t-Test with
microbiome dataset

```
fit_t <- t.test(value ~ Group, data=Fecal_G)</pre>
   fit_t
        Welch Two Sample t-test
data: value by Group
t = 3.5999, df = 5.9206, p-value = 0.01163
alternative hypothesis: true difference in means between group Vdr-/- and group WT is not equal to
95 percent confidence interval:
 0.1517841 0.8026392
sample estimates:
mean in group Vdr-/-
                         mean in group WT
```

1.916242

2.393454

Note: Assumption of t test and **Distribution** of data

Two-Sample Welch's t-Test with Iris dataset

```
ttest2 <- t.test(Sepal.Width ~ Species, data= dt.iris_species)</pre>
    ttest2
       Welch Two Sample t-test
data: Sepal.Width by Species
t = 9.455, df = 94.698, p-value = 2.484e-15
alternative hypothesis: true difference in means between group setosa and group versicol
or is not equal to 0
95 percent confidence interval:
0.5198348 0.7961652
sample estimates:
   mean in group setosa mean in group versicolor
                   3.428
                                            2.770
```


Analysis of variance (ANOVA) test

- Type of parametric statistical test
- Compare the mean three or more groups of data
- The null hypothesis of ANOVA is: all the means of compared groups are equal.

Assumption: Normality of the underlying data -> ANOVA is only used for comparing univariate analysis of alpha diversity measures

ANOVA test

- The formation of testing statistic is through using traditional partitioning of the sum of squares.
- The F-test is used for comparing the factors of the total deviation.

$$SS_{Total} = SS_{Treatments} + SS_{Error}$$

$$F = \frac{MS_{Treatments}}{MS_{Error}} = \frac{SS_{Treatments}/(K-1)}{SS_{Error}/(N-1)}$$

7. Hypothesis testing ANOVA test

```
summary(aov_fit, intercept=T)
           Df Sum Sq Mean Sq F value Pr(>F)
(Intercept)
            1 83450 83450 285.080 9.97e-10 ***
Group4
                1926
                        642 2.193
                                       0.142
Residuals
                3513
                         293
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   qf(0.95, 12, 3)
[1] 8.744641
```


NOTE: To proceed with the verification of using **ANOVA**, we must first test for homogeneity of variances: the Bartlett's test, and the Fligner-Killeen test.

To illustrate the test for **homogeneity of variances**, we use the Chao1 richness measures of Vdr and WT mouse data from both fecal and cecal locations.

The null hypothesis (H0) is that **all variances** in four groups are the **same**

Compare the Bartlett's **K-squared** with the value of **chi-square tables**, using the **same level of alpha** and **degrees of freedom**.

Bartlett test: Test for homogeneity of variances

```
> bartlett.test(value ~ Group4, df_CH_G4)

Bartlett test of homogeneity of variances

data: value by Group4

Bartlett's K-squared = 10.227, df = 3, p-value = 0.01673

> qchisq(0.95, 3)
[1] 7.814728
```

Fligner-Killeen test: Test for homoscedasticity

```
> df_CH_G4 <- select(df_CH_G, Group4, value)</pre>
```

> fligner.test(df_CH_G4, Group4)

Fligner-Killeen test of homogeneity of variances

```
data: df_CH_G4
Fligner-Killeen:med chi-squared = 20.572, df = 1, p-value = 5.742e-06
```

Chi-square test of independence

Chi-square test is used to determine whether or not there is a significant association between two categorical variables.

Assumption:

- The categories of the variables are mutually exclusive (1 subject fits into one and only one cell)
- The study groups must be independent
- Sample size is large enough: the expected frequency in each cell should be at least 5 in at least 80% of the cells

Example 1: A researcher wanted to know if the distribution of Candida is associated with body site

A data.frame. 5 × 5				
	absent	present	total	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
stool	100	70	170	
lung	100	200	300	
total	200	270	470	

 Δ data frame: 3 x 3

Chi-square test of independence

H0: There is not a relationship between the body site and the present of Candia

Ha: There is a relationship between the body site and the present of Candia

Chi-Square Test Statistic

$$\chi^2 = \sum rac{(Observed - Expected)^2}{Expected}$$

Expected Cell Value

$$E = rac{row \ total \ imes \ column \ total}{n}$$

Degree of freedom: (total column - 1) x (total row - 1)

Example 1: A researcher wanted to know if the distribution of Candida is associated with body site

A data.frame: 3×3

	absent	present	total
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
stool	100	70	170
lung	100	200	300
total	200	270	470

Chi-square test of independence

```
# Stool : absent - present
stool <- c(100, 70)
# Lung : absent - present
lung <- c(100, 200)

total <- stool + lung
data = as.data.frame(rbind(stool, lung, total))
data$row_total = rowSums(data)

colnames(data) = c('absent', 'present', 'total')
data
chisq.test(data[1:2, 1:2])</pre>
```

Example 1: A researcher wanted to know if the distribution of Candida is associated with body site

A data frame: 3×3

	absent	present	total
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
stool	100	70	170
lung	100	200	300
total	200	270	470

Pearson's Chi-squared test with Yates' continuity correction

```
data: data[1:2, 1:2]
X-squared = 27.808, df = 1, p-value = 1.339e-07
```

Fisher's exact test

Fisher's exact test is used to assess the association between two binary variables in a **contingency table**

Example 1: A researcher wanted to know if the distribution of Aspergillus is associated with body site

Assumption:

- The categories of the variables are mutually exclusive (1 subject fits into one and only one cell)
- The study groups must be independent
- **Sample size is small**: more than 20% of the cell are less than 5

	absent	present	total
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
stool	10	7	17
lung	4	3	7
total	14	10	24

Fisher's exact test

H0: There is not a relationship between the body site and the present of Aspergillus

Ha: There is a relationship between the body site and the present of Aspergillus

$$Pr(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

X = stool/absent

N: sample size

n: total of row 1

K: total of column 1

Example 1: A researcher wanted to know if the distribution of Aspergillus is associated with body site

	absent	present	total
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
stool	10	7	17
lung	4	3	7
total	14	10	24

Fisher's exact test

```
# Stool : absent - present
stool <- c(10, 7)
# Lung : absent - present
lung \leftarrow c(4, 3)
total <- stool + lung
data = as.data.frame(rbind(stool, lung, total))
data$row total = rowSums(data)
colnames(data) = c('absent', 'present', 'total')
data
chisq.test(data[1:2, 1:2])
fisher.test(data[1:2, 1:2])
```

	absent	present	total
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
stool	10	7	17
lung	4	3	7
total	14	10	24

Warning message in chisq.test(data[1:2, 1:2]):

1.068345

```
"Chi-squared approximation may be incorrect"

Pearson's Chi-squared test with Yates' continuity correction

data: data[1:2, 1:2]

X-squared = 1.4717e-31, df = 1, p-value = 1

Fisher's Exact Test for Count Data

data: data[1:2, 1:2]

p-value = 1

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:
    0.1175924 8.7547429

sample estimates:
    odds ratio
```

The Kruskal–Wallis test: compare more than 2 groups for a continuous or discrete variable.

Non-parametric test, it assumes no particular distribution of your data

Analogous to the one-way analysis of variance (ANOVA)

The null hypothesis (H0) is that the population medians are equal.

The alternative hypothesis (H1) is that the population medians are not equal, or that the population median differs from the population median of one of the other groups.

Kruskal-Wallis-Test

Is there a difference in the rank totals?

head(Data_Krukal,8)				
A data.frame: 8 × 2				
	value	Group		
	<dbl></dbl>	<fct></fct>		
5_15_drySt-28F	94.75000	Fecal.Vdr-/-		
20_12_CeSt-28F	59.80000	Cecal.Vdr-/-		
1_11_drySt-28F	77.00000	Fecal.Vdr-/-		
2_12_drySt-28F	103.27273	Fecal.Vdr-/-		
3_13_drySt-28F	85.66667	Fecal.Vdr-/-		
4_14_drySt-28F	55.14286	Fecal.Vdr-/-		
7_22_drySt-28F	62.75000	Fecal.WT		
8_23_drySt-28F	67.66667	Fecal.WT		

tail(Data_Krukal,8)					
A dat	a.frame: 8 ×	2			
	value	Group			
	<dbl></dbl>	<fct></fct>			
9_24_drySt-28F	80.50000	Fecal.WT			
19_11_CeSt-28F	52.16667	Cecal.Vdr-/-			
21_13_CeSt-28F	55.00000	Cecal.Vdr-/-			
22_14_CeSt-28F	59.00000	Cecal.Vdr-/-			
23_15_CeSt-28F	60.87500	Cecal.Vdr-/-			
25_22_CeSt-28F	51.00000	Cecal.WT			
26_23_CeSt-28F	112.85714	Cecal.WT			
27_24_CeSt-28F	78.05882	Cecal.WT			

histogram(~ value|Group, data=Data_Krukal, layout=c(2,2))

H0: the medians of each group are the same HA: at least one of the groups has a different median

```
# kruskal wallis test of richness
kruskal.test(value ~ Group, data = Data_Krukal)
```

Kruskal-Wallis rank sum test

data: value by Group
Kruskal-Wallis chi-squared = 5.2353, df = 3, p-value = 0.1554

The Kolmogorov Smirnov test (KS test or K-S test) is used to

- compare a sample distribution with a reference probability distribution
- compare two sample distributions

Null Hypothesis: The sample follows a specified distribution.

Alternative Hypothesis: The sample does not follow the specified distribution.

500 samples of K-S test statistic

$$D_n = \sup_{x} | F_n(x) - F(x) |$$

```
# Make this example reproducible
set.seed(0)
# Generate dataset of 100 values
# that follow a Standard Normal distribution
data <- rnorm(n=200, mean=0, sd=1)
# Perform Kolmogorov-Smirnov test
ks.test(data, 'pnorm')
        Asymptotic one-sample Kolmogorov-Smirnov test
data: data
D = 0.035916, p-value = 0.9587
alternative hypothesis: two-sided
```



```
# Make this example reproducible
set.seed(0)

# Generate dataset of 100 values
# that follow a Standard Normal distribution
data1 <- rnorm(n=50, mean=0, sd=1)
data2 <- rpois(n=50, lambda=5)

# Perform Kolmogorov-Smirnov test
ks.test(data1, data2)</pre>
```

Exact two-sample Kolmogorov-Smirnov test

data: data1 and data2
D = 0.94, p-value < 2.2e-16
alternative hypothesis: two-sided</pre>

Multiple comparisons

Recall that every time we will do a t-test with a significance level of 5%, where the null hypothesis is true, we run a 5% risk of committing a type I error.

Family-Wise Error Rate

$$1 - (1 - \alpha)^{\text{Number of tests}}$$

1 Test
$$1 - (1 - 0.05)^1 = 1 - (0.95)^1 = 0.05$$
 or 5%
2 Test $-1 - (1 - 0.05)^2 = 1 - (0.95)^2 = 0.10$ or 10%
3 Test $-1 - (1 - 0.05)^3 = 1 - (0.95)^3 = 0.14$ or 14%
4 Test $-1 - (1 - 0.05)^4 = 1 - (0.95)^4 = 0.19$ or 19%
5 Test $-1 - (1 - 0.05)^5 = 1 - (0.95)^5 = 0.23$ or 23%

https://fslab.org/blog/posts/q-value.html

Benjamini Hochberg Method

```
pvalues<-c(0.01,0.001, 0.05, 0.20, 0.15, 0.15)

fdrs<-p.adjust(pvalues, method="BH") # Benjamini-Hochberg
print(fdrs)

[1] 0.030 0.006 0.100 0.200 0.180 0.180</pre>
```

Correlation

- Determine the **association** between the two quantitative variables.

Correlation Coefficient
Shows Strength & Direction of Correlation

4. Correlation and linear regression Correlation

Correlation indicates association, not causation

Linear regression

- A supervised machine learning technique
- Establish a relationship between a dependent variable and one or more independent variables.
- Determine if there is a linear relationship between two or more variables and how strong that relationship is.

Linear regression

Linear Regression Equation

$$Y = a + bx$$

$$a = \frac{[(\Sigma y)(\Sigma x^2) - (\Sigma y)(\Sigma xy)]}{[n(\Sigma x^2) - (\Sigma x)^2]}$$
$$b = \frac{[n(\Sigma xy) - (\Sigma x)(\Sigma y)]}{[n(\Sigma x^2) - (\Sigma x)^2]}$$

Linear regression

```
Call:
lm(formula = Petal.Length ~ Petal.Width, data = dt.iris)
Residuals:
     Min
                   Median
                                        Max
-1.33542 -0.30347 -0.02955 0.25776 1.39453
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.08356
                       0.07297
                                 14.85
                                         <2e-16 ***
Petal.Width 2.22994
                       0.05140
                                 43.39
                                         <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4782 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
```


Multiple linear regression

One Predictor Model

$$Y = \beta_0 + \beta_1 x_1 + \varepsilon$$
Nonrandom or Systematic Component Component

Multiple Predictor Model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_q x_q + \varepsilon$$

Where

Y is the outcome value

 $x_{1...q}$ is the value of predictor variable

 β_0 is the intercept

 $\beta_{1...q}$ is the slope coefficient

 ε is the error aka residual

Multiple linear regression

summary(model2)

```
Call:
lm(formula = Petal.Length ~ Petal.Width + Sepal.Width, data = dt.iris)
Residuals:
    Min
                   Median
                                        Max
-1.33753 -0.29251 -0.00989 0.21447 1.24707
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.25816
                       0.31352
                                 7.203 2.84e-11 ***
Petal.Width 2.15561
                     0.05283 40.804 < 2e-16 ***
Sepal.Width -0.35503
                      0.09239 -3.843 0.00018 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4574 on 147 degrees of freedom
Multiple R-squared: 0.9338, Adjusted R-squared: 0.9329
F-statistic: 1036 on 2 and 147 DF, p-value: < 2.2e-16
```


Summary

Summary

Туре		Name	Function in R
Descriptive statistics		Variance	var()
		Covariance	cov()
		Correlation	cor()
	Parametric tests	T-test	t.test()
		ANOVA	aov()
	Non-parametric tests	Wilcoxon test	wilcox.test()
Inferential statistics		Kruskal-Wallis test	kruskal.test()
		Chi-squared test	chisq.test()
	Normality tests	Shapiro-Wilk Test	shapiro.test()
		Kolmogorov-Smirnov Test	ks.test()
Supervised machine learning		Linear Regression	lm()