Лекция 6: Непрекъснати функции

Непрекъснатостта на изображения е едно от най-важните понятия в математиката. Обърнете му дължимото внимание.

1 Непрекъснатост на функции

Дефиниция 1.1. Непрекосната функция

Нека $f: D \to \mathbb{R}$, $D \subset \mathbb{R}$. Казваме, че f е непрекъсната в $x_0 \in D$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че ако $x \in D$ и $|x - x_0| < \delta$, то $|f(x) - f(x_0)| < \varepsilon$. Функцията f се нарича непрекъсната, ако f е непрекъсната във всяка точка от дефиниционната си област, т.е. f е непрекъсната в x_0 за всяко $x_0 \in D$. Следният запис е формалната дефиниция:

$$(\forall x_0 \in D) \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon$$

Налице са следните две възможности:

I. x_0 е точка на сгъстяване на D. Тогава:

$$f$$
е непрекъсната в $x_{0}\iff\lim_{x\rightarrow x_{0}}f\left(x\right) =f\left(x_{0}\right)$

II. x_0 не е точка на сгъстяване на D. Това означава, че:

$$\neg (\forall U$$
 - околност на $x_0: (U \cap D) \setminus \{x_0\} \neq \emptyset) \equiv$
 $\equiv \exists U$ - околност на $x_0: (U \cap D) \setminus \{x_0\} = \emptyset$

С други думи, за някакво положително $\delta > 0$ е изпълнено, че $(x_0 - \delta, x_0 + \delta) \cap D = \{x_0\}$. Такива точки се наричат изолирани точки на D. В този случай всяка функция f е непрекъсната в x_0 . Наистина, ако $\delta > 0$ е такова, че $(x_0 - \delta, x_0 + \delta) \cap D = \{x_0\}$, каквото и да е $x \in D$ с $|x - x_0| < \delta$, то $x = x_0$ и следователно $|f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \varepsilon$, за произволно $\varepsilon > 0$.

Горната дефиниция за непрекъснатост е във формата на Коши. Еквивалентна дефиниция може да се изкаже и във формата на Хайне:

$$(\forall x_0 \in D) \ \forall \{x_n\}_{n=1}^{\infty} \subset D, \ x_n \xrightarrow[n \to \infty]{} x_0 : f(x_n) \xrightarrow[n \to \infty]{} f(x_0).$$

Еквивалентността на двете дефиниции следва от съответната еквивалентност за граници, когато x_0 е точка на сгъстяване на D, и от факта, че когато x_0 е изолирана точка на D, всяка редица $\{x_n\}_{n=1}^{\infty} \subset D$, $x_n \xrightarrow[n \to \infty]{} x_0$ може да съдържа най-много краен брой членове, различни от x_0 .

Да разгледаме свойствата на непрекъснатите функции, свързани с аритметичните действия.

Твърдение 1.2. Ако $f,g:D\to\mathbb{R},\ D\subset\mathbb{R},\ x_0\in D\ u\ f,g$ са непрекъснати в $x_0,\ mo$

- 1. f+g е непрекъсната в x_0 .
- 2. $f \cdot g$ е непрекъсната в x_0 .
- 3. Ако $g(x_0) \neq 0$, то x_0 принадлежи на дефиниционната област на $\frac{f}{g}$ и $\frac{f}{g}$ е непрекъсната в x_0 .

Доказателството на това твърдение е директно следствие от съответното твърдение за граници, когато x_0 е точка на сгъстяване на D, и заключението е тривиално, когато x_0 е изолирана точка на D. Наистина,

$$\lim_{x \to x_0} (f + g)(x) = f(x_0) + g(x_0) = (f + g)(x_0)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = f(x_0) \cdot g(x_0) = (f \cdot g)(x_0)$$

$$\lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{f(x_0)}{g(x_0)} = \left(\frac{f}{g}\right)(x_0)$$

Обърнете внимание, че в следващото твърдение (за композиция на непрекъснати функции) изкуственото предположение в съответното твърдение за граници изчезва.

Твърдение 1.3. Ако $f: D \to D_1$ и $g: D_1 \to \mathbb{R}$ за $D, D_1 \subset \mathbb{R}$, при това f е непрекъсната в $x_0 \in D$ и g е непрекъсната в $y_0 = f(x_0) \in D_1$, то $g \circ f$ е непрекъсната в x_0 .

Доказателство. Избираме произволна $\{x_n\}_{n=1}^{\infty}\subset D$ такава, че $x_n\xrightarrow[n\to\infty]{}x_0$. Понеже f е непрекъсната в x_0 , от дефиницията на Хайне следва, че $f(x_n)\xrightarrow[n\to\infty]{}f(x_0)$. Полагаме $y_n=f(x_n)$ за всяко $n\in\mathbb{N}$. Тогава за редицата $\{y_n\}_{n=1}^{\infty}\subset D_1$ е изпълнено $y_n\xrightarrow[n\to\infty]{}y_0=f(x_0)$. Тъй като g е непрекъсната в y_0 , от дефиницията във формата на Хайне получаваме $g(y_n)\xrightarrow[n\to\infty]{}g(y_0)$. Следователно:

$$g\left(f\left(x_{n}\right)\right) \xrightarrow[n \to \infty]{} g\left(f\left(x_{0}\right)\right) \iff \left(g \circ f\right)\left(x_{n}\right) \xrightarrow[n \to \infty]{} \left(g \circ f\right)\left(x_{0}\right).$$

Следствие 1.4. Композиция на непрекъснати функции е непрекъсната. Формално, ако $f: D \to D_1$ и $g: D_1 \to \mathbb{R}$ $(D, D_1 \subset \mathbb{R})$ са непрекъснати, то $g \circ f: D \to \mathbb{R}$ е непрекъсната.

Пример 1.5. Да се убедим, че голяма част от функциите, с които обикновено работим, са непрекъснати:

- 1. Всяка константна функция f(x) = c е непрекъсната.
- 2. Идентитетът f(x) = x е непрекъсната функция.
- 3. Всеки полином е непрекъсната функция, дефинирана върху цялата реална права. Това получаваме директно от първите два примера и от това, че произведение и сума на непрекъснати функции са непрекъснати.

- 4. Всички рационални функции (тоест $R(x) = \frac{P(x)}{Q(x)}$, където P и Q са полиноми) са непрекъснати. Да отбележим, че естествената дефиниционна област на R е множеството $\{x \in \mathbb{R}: Q(x) \neq 0\}$. Добре е да си дадете сметка, че например $f(x) = \frac{1}{x}$ е непрекъсната, защото нулата не принадлежи на дефиниционната и́ област. Друг е въпросът, че ако додефинираме тази функция в нулата по какъвто и да е начин, нулата ще бъде точка на прекъсване.
- 5. Експонентата $f_a:\mathbb{Q}\to\mathbb{R}$, зададена с $f_a(x)=a^x$, където a>0, е непрекъсната. Наистина, в края на миналата лекция доказахме, че $\lim_{x\to x_0}a^x=a^{x_0}$.
- 6. Синусът е непрекъсната функция, дефинирана върху цялата реална права.

Първо ще докажем, че $\lim_{x\to 0} \sin x = 0$. Използваме неравенството $0 < \sin x \le x$ за $x \in (0, \frac{\pi}{2})$, което изведохме при разглеждане на границата $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Разширяваме го, като използваме нечетността на $\sin x$, и прилагаме лемата за двамата полицаи:

$$0<\sin x \leq x \ \forall \, x \in \left(0,\frac{\pi}{2}\right) \Rightarrow \underbrace{-|x|}_{x \to 0} \leq \sin x \leq \underbrace{|x|}_{x \to 0} \forall \, x \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right).$$

Сега можем да докажем, че $\lim_{x\to x_0} \sin x = \sin x_0$. Наистина

$$\lim_{x \to x_0} \sin x = \sin x_0 + \lim_{x \to x_0} (\sin x - \sin x_0) = \sin x_0 + \lim_{x \to x_0} 2 \sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} = \sin x_0.$$

Използвахме, че произведение на две функции, едната от които клони към нула, а другата е ограничена, клони към нула.

7. Косинусът е непрекъсната функция, дефинирана върху цялата реална права. Наистина

$$\lim_{x \to x_0} \cos x = \lim_{x \to x_0} \sin \left(\frac{\pi}{2} - x \right) = \sin \left(\frac{\pi}{2} - x_0 \right) = \cos x_0.$$

2 Основни теореми за непрекъснати функции в компактен интервал

2.1 Теорема на Болцано

Теорема 2.1. Теорема на Болцано

Нека $f:[a,b]\to\mathbb{R}$ е непрекъсната $u\ f(a)\ f(b)<0$. Тогава съществува $x_0\in(a,b)$ с $f(x_0)=0$.

Ще изложим две доказателства, защото всяко от тях е поучително.

Доказателство. Без ограничение на общността (б.о.о.) нека f(a) < 0 и f(b) > 0. Разглеждаме множеството $A = \{x \in [a,b] : f(x) > 0\}$. Това множество е непразно, защото поне b със сигурност е негов елемент. При това A е ограничено. Следователно A притежава инфимум. Полагаме $x_0 = \inf A$.

$$\left. \begin{array}{l} f \text{ е непрекъсната в } a \\ f\left(a\right) < 0 \end{array} \right\} \Rightarrow \exists \, \delta_1 > 0 \, \forall \, x \in [a,a+\delta_1) : f\left(x\right) < 0 \Rightarrow x_0 \geq a+\delta_1 > a \\ f \text{ е непрекъсната в } b \\ f\left(b\right) > 0 \end{array} \right\} \Rightarrow \exists \, \delta_2 > 0 \, \forall \, x \in (b-\delta_2,b] : f\left(x\right) > 0 \Rightarrow x_0 \leq b-\delta_2 < b$$

Последователно допускаме, че $f(x_0) > 0$ и $f(x_0) < 0$ и достигаме до противоречие:

- Ако $f(x_0) > 0$, то съществува $\delta > 0$ такова, че $(x_0 \delta, x_0 + \delta) \subset (a, b)$ и f(x) > 0 за всяко $x \in (x_0 \delta, x_0 + \delta)$ (тъй като f е непрекъсната в x_0 , то в някаква околност на точката функцията не мени знака си). Следователно $(x_0 \delta, x_0 + \delta) \subset A$ и оттук x_0 не е долна граница на A, което е противоречие с допускането.
- Ако $f(x_0) < 0$, то съществува $\delta > 0$ такова, че $(x_0 \delta, x_0 + \delta) \subset (a, b)$ и f(x) < 0 за всяко $x \in (x_0 \delta, x_0 + \delta)$. Следователно за всяко $x \in [x_0, x_0 + \delta)$ е изпълнено $x \notin A$. Ясно е, че ако $x \in [a, x_0)$, то също $x \notin A$ (защото x_0 е долна граница за x_0). Така получихме, че $x_0 + \delta$ е долна граница на x_0 , която е по-голяма от $x_0 = \inf A$. Това е противоречие с дефиницията на инфимум.

След като
$$f(x_0) \ge 0$$
 и $f(x_0) < 0$, то остава $f(x_0) = 0$.

Доказателство. Второто доказателство може да бъде разглеждано и като алгоритъм за търсене на корен на f. Отново б.о.о. нека f(a) < 0 и f(b) > 0. Означаваме $a_0 \coloneqq a, b_0 \coloneqq b$.

В зависимост от
$$f\left(\frac{a_0+b_0}{2}\right)$$
 полагаме
$$\begin{cases} \text{ако } f\left(\frac{a_0+b_0}{2}\right)=0 \Rightarrow x_0 \coloneqq \frac{a_0+b_0}{2} \in (a,b) \\ \text{ако } f\left(\frac{a_0+b_0}{2}\right)<0 \Rightarrow a_1 \coloneqq \frac{a_0+b_0}{2}, \ b_1 \coloneqq b_0 \\ \text{ако } f\left(\frac{a_0+b_0}{2}\right)>0 \Rightarrow a_1 \coloneqq a_0, \ b_1 \coloneqq \frac{a_0+b_0}{2} \end{cases}$$

В първия случай сме намерили корен и алгоритъмът приключва успешно. Ако сме построили интервала $[a_n, b_n]$ с $f(a_n) < 0$, $f(b_n) > 0$ и $b_n - a_n = \frac{b-a}{2^n}$,

в зависимост от
$$f\left(\frac{a_n+b_n}{2}\right)$$
 полагаме
$$\begin{cases} \text{ако } f\left(\frac{a_n+b_n}{2}\right)=0 \Rightarrow x_0 \coloneqq \frac{a_n+b_n}{2} \in (a,b) \\ \text{ако } f\left(\frac{a_n+b_n}{2}\right)<0 \Rightarrow a_{n+1} \coloneqq \frac{a_n+b_n}{2}, \ b_{n+1} \coloneqq b_n \\ \text{ако } f\left(\frac{a_n+b_n}{2}\right)>0 \Rightarrow a_{n+1} \coloneqq a_n, \ b_{n+1} \coloneqq \frac{a_n+b_n}{2} \end{cases}$$

Отново в първия случай сме намерили корен и алгоритъмът е приключил успешно. В противен случай можем да продължим.

Ако не сме намерили корен за краен брой стъпки, построили сме редица от вложени един в друг интервали $[a_0,b_0]\supset [a_1,b_1]\supset \cdots \supset [a_n,b_n]\supset \cdots$ такива, че:

$$f\left(a_{n}\right)<0$$
 и $f\left(b_{n}\right)>0$ $\forall\,n\in\mathbb{N};$ в сила е $b_{n}-a_{n}=rac{b-a}{2^{n}}$ $\forall\,n\in\mathbb{N}$

Да забележим, че поради характера на построението:

$$\begin{cases} a = a_0 \le a_1 \le a_2 \le \dots \le a_n \le a_{n+1} \le \dots \\ b = b_0 \ge b_1 \ge b_2 \ge \dots \ge b_n \ge b_{n+1} \ge \dots \end{cases}$$

Сега, $\{a_n\}_{n=1}^{\infty}$ е ограничена $(a \leq a_n \leq b \ \forall n \in \mathbb{N})$ и растяща, следователно е сходяща - да означим $\lim_{n\to\infty}a_n=x_0$. Също така, $\{b_n\}_{n=1}^{\infty}$ е ограничена $(a \leq b_n \leq b \ \forall n \in \mathbb{N})$ и намаляваща, следователно е сходяща - ще покажем, че и $\lim_{n\to\infty}b_n=x_0$. Наистина,

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left[(b_n - a_n) + a_n \right] = \lim_{n \to \infty} \left[\frac{b - a}{2^n} + a_n \right] = 0 + x_0 = x_0$$

Остава да използваме, че f е непрекъсната в интервала (a, b):

$$\left. \begin{array}{l} a_n \xrightarrow[n \to \infty]{} x_0 \\ f\left(a_n\right) > 0 \\ f \text{ е непрекъсната в } x_0 \\ \end{array} \right\} \Rightarrow f\left(a_n\right) \xrightarrow[n \to \infty]{} f\left(x_0\right) \text{ и } f\left(x_0\right) \geq 0 \\ \left. \begin{array}{l} b_n \xrightarrow[n \to \infty]{} x_0 \\ f\left(b_n\right) < 0 \\ \end{array} \right\} \Rightarrow f\left(b_n\right) \xrightarrow[n \to \infty]{} f\left(x_0\right) \text{ и } f\left(x_0\right) \leq 0 \\ f \text{ е непрекъсната в } x_0 \\ \end{array} \right\}$$

От $f(x_0) \ge 0$ и $f(x_0) \le 0$ получаваме, че $f(x_0) = 0$. С това доказателството е завършено.

Следствие 2.2. (Теорема за междинните стойности)

Нека $f:[a,b] \to \mathbb{R}$ е непрекъсната. Ако $c \in \mathbb{R}$ е между f(a) и f(b) - това значи f(a) < c < f(b) или f(b) < c < f(a), то съществува такова $x_0 \in (a,b)$, че $f(x_0) = c$.

Доказателство. Разглеждаме функцията g(x) = f(x) - c. Тази функция е непрекъсната, дефинирана е в ограничения и затворен интервал [a,b] и за нея е в сила $g(a) \cdot g(b) < 0$. Прилагаме Теоремата на Болцано за g и получаваме $x_0 \in (a,b)$ с $0 = g(x_0) = f(x_0) - c$. \square

Пример 2.3. Да разгледаме функцията $f(x) = x^2$ в интервала [0,2]. Ако c=2, то c се намира между f(0)=0 и f(2)=4. Следователно, съществува $x_0\in(0,2):x_0^2=2$.

Дефиниция 2.4. Интервал

 $\Delta \subset \mathbb{R}$ наричаме интервал, ако от $x_1 \in \Delta, x_2 \in \Delta$ и $x_1 < x_2$ следва, че $[x_1, x_2] \subset \Delta$.

Следствие 2.5. Непрекъснат образ на интервал е интервал. Формално, нека $f: \Delta \to \mathbb{R}$ е непрекъсната и Δ е интервал. Тогава множеството от сойности на f

$$f\left(\Delta\right) = \left\{y \in \mathbb{R} : \exists \, x \in \Delta, \, y = f\left(x\right)\right\} = \left\{f\left(x\right) : x \in \Delta\right\}$$

е интервал.

Доказателство. Изхождаме от дефиницията за интервал. Ще вземем две точки $y_1, y_2 \in f(\Delta)$, които удовлетворяват $y_1 < y_2$. Искаме да покажем, че $[y_1, y_2] \subset f(\Delta)$, тоест искаме да покажем, че произволна точка $y \in [y_1, y_2]$ е елемент на $f(\Delta)$. От $y_1, y_2 \in f(\Delta)$ следва, че съществуват $x_1, x_2 \in \Delta$ такива, че $y_1 = f(x_1)$ и $y_2 = f(x_2)$. Тъй като не е възможно $x_1 = x_2$ и $y_1 < y_2$, възможни са само следните два случая:

- Ако $x_1 < x_2$, то $[x_1, x_2] \subset \Delta$, защото Δ е интервал. Тъй като $y_1 = f(x_1) < y < f(x_2) = y_2$ и f е непрекъсната в $[x_1, x_2]$, от теоремата за междинните стойности получаваме, че съществува $x_0 \in (x_1, x_2)$ с $f(x_0) = y$. Следователно $y \in f(\Delta)$.
- Ако $x_1 > x_2$, то $[x_2, x_1] \subset \Delta$, защото Δ е интервал. Тъй като $y_2 = f(x_2) > y > f(x_1) = y_1$ и f е непрекъсната в $[x_2, x_1]$, от теоремата за междинните стойности получаваме, че съществува $x_0 \in (x_2, x_1)$ с $f(x_0) = y$. Следователно $y \in f(\Delta)$.

Доказахме, че $[y_1, y_2] \subset f(\Delta)$, следователно $f(\Delta)$ е интервал.

2.2 Теорема на Вайерщрас

Теорема 2.6. Теорема на Вайершрас

Нека $f:[a,b] \to \mathbb{R}$ е непрекъсната. Тогава f е ограничена (т.е. f([a,b]) е ограничено множество от реални числа) и f има най-голяма стойност (т.е. съществува $x_{max} \in [a,b]$: $f(x_{max}) = \sup f([a,b]) = \sup \{f(x) : x \in [a,b]\}$) и най-малка стойност (т.е. съществува $x_{min} \in [a,b] : f(x_{min}) = \inf f([a,b]) = \inf \{f(x) : x \in [a,b]\}$).

Доказателство. Допускаме, че f([a,b]) не е ограничено, т.е.

$$\neg (\exists N \in \mathbb{N} \ \forall x \in [a, b] : |f(x)| \le N) \equiv \exists \forall N \in \mathbb{N} \ \exists x \in [a, b] : |f(x)| > N$$

Последователно даваме на N стойности $1, 2, 3, \ldots, n \ldots$ Така,

$$\begin{cases} \exists a \ N = 1 : \exists x_1 \in [a, b] , & |f(x_1)| > 1 \\ \exists a \ N = 2 : \exists x_2 \in [a, b] , & |f(x_2)| > 2 \\ \dots \\ \exists a \ N = n : \exists x_n \in [a, b] , & |f(x_n)| > n \\ \dots \end{cases}$$

Построили сме редица $\{x_n\}_{n=1}^{\infty}\subset [a,b]$, за която $|f(x_n)|>n$. Прилагаме Теоремата на Болцано-Вайерщрас към ограничената редица $\{x_n\}_{n=1}^{\infty}$ и получаваме нейна сходяща подредица. Нека това е $\{x_{n_k}\}_{k=1}^{\infty}\subset \{x_n\}_{n=1}^{\infty}$ с $x_{n_k}\xrightarrow[k\to\infty]{}x_0$. Сега:

$$x_0 \in [a, b]$$
 f е непрекъсната в x_0 $\Rightarrow f(x_{n_k}) \xrightarrow[k \to \infty]{} f(x_0)$

По построение обаче имаме, че $|f(x_{n_k})| > n_k \xrightarrow[k \to \infty]{} \infty$, което е в противоречие с горната граница. Следователно допускането ни е невярно и f([a,b]) е ограничено множество.

Да пристъпим към втората част на теоремата - достигане на най-голяма и най-малка стойност в ограничения и затворен дефиниционен интервал на f. С цел опростяване на записа въвеждаме означението:

$$\sup f\left([a,b]\right) \equiv \sup_{[a,b]} f \in \mathbb{R}$$

Ще построим "максимизираща редица". За произволно $n \in \mathbb{N}$ имаме:

$$\sup_{[a,b]} f - \frac{1}{n} < \sup_{[a,b]} f \Rightarrow \exists x_n \in [a,b] : f(x_n) > \sup_{[a,b]} f - \frac{1}{n}$$

Построихме редицата $\{x_n\}_{n=1}^{\infty} \subset [a,b]$, за която $f(x_n) > \sup_{[a,b]} f - \frac{1}{n}$. Съгласно Теоремата на Болцано-Вайерщрс (принцип за компактност) съществува нейна подредица $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ с $x_{n_k} \xrightarrow[k \to \infty]{} x_{max} \in [a,b]$. По построение:

$$\underbrace{\sup_{[a,b]} f - \frac{1}{n_k}}_{\text{k} \to \infty} < f(x_{n_k}) \le \sup_{[a,b]} f$$

$$\xrightarrow{k \to \infty} \sup_{[a,b]} f$$

От лемата за двамата полицаи получаваме, че

$$f(x_{n_k}) \xrightarrow[k\to\infty]{} \sup_{[a,b]} f$$
.

От друга страна, непрекъснатостта на f в точката $x_{max} \in [a,b]$ влече, че

$$f(x_{n_k}) \xrightarrow[k \to \infty]{} f(x_{max})$$
.

Следователно $f(x_{max}) = \sup_{[a,b]} f$ е най-голяма стойност за f.

Проверката за достигане на най-малка стойност е аналогична.

Следствие 2.7. *Нека* $f : [a,b] \to \mathbb{R}$ *е непрекъсната. Тогава* f ([a,b]) *е ограничен и затворен интервал.*

За доказателството е достатъчно да приложим второто следствие от Теоремата на Болцано и Теоремата на Вайерщрас.

2.3 Равномерна непрекъснатост. Теорема на Кантор

Дефиниция 2.8. Равномерна непрекъснатост

Нека $f:D\to\mathbb{R},\ D\subset\mathbb{R}.$ Казваме, че f е равномерно непрекъсната в D, ако е в сила:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \forall x' \in D, \ |x - x'| < \delta : |f(x) - f(x')| < \varepsilon$$

Добре е да осъзнаете разликата между дефиницията за равномерна непрекъснатост и дефиницията за непрекъснатост:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x' \in D, \ |x - x'| < \delta : |f(x) - f(x')| < \varepsilon$$

Разликата се състои в едно разместване. При равномерната непрекъснатост δ зависи само от ε , но не и от точката x, докато при непрекъснатостта δ може да зависи и от x. Равномерната непрекъснатост е по-силна от непрекъснатостта в смисъл, че равномерно непрекъсната функция винаги е непрекъсната, докато обратното не е задължително вярно (следващата теорема дава достатъчно условие, когато обратното е вярно). Грубо казано, равномерната непрекъснатост забранява "безкрайната стръмност" на функцията, но разгледайте внимателно втория пример.

Пример 2.9. Да разгледаме функцията $f(x) = x^2$.

(a) Функцията f е равномерно непрекъсната в множеството [-M,M] за произволно положително M>0.

В този случай имаме

$$|f(x) - f(x')| = |x^2 - x'^2| = |x - x'| |x + x'| \le 2M|x - x'|$$

и за произволно $\varepsilon > 0$ можем да намерим $\delta > 0$, която зависи само от ε . Наистина, ако сме фиксирали $\varepsilon > 0$, достатъчно е да положим $\delta := \frac{\varepsilon}{2M} > 0$ и да получим

$$|x - x'| < \delta = \frac{\varepsilon}{2M} \Rightarrow |f(x) - f(x')| \le 2M|x - x'| < 2M\delta = \varepsilon$$

(б) Функцията f не е равномерно непрекъсната в множеството $[0, +\infty)$.

Да допуснем, че за $\varepsilon = 1 > 0$ съществува $\delta > 0$ такова, че от $|x - x'| < \delta$ да следва $|f(x) - f(x')| < \varepsilon$. Ако $x \in [0, +\infty)$ е произволно, за точката $x' := x + \frac{\delta}{2}$ имаме, че $x' \in [0, +\infty)$ и при това $|x - x'| < \delta$. От друга страна:

$$|x'^2 - x^2| = \varkappa^2 + \delta x + \left(\frac{\delta}{2}\right)^2 - \varkappa^2 = \delta x + \left(\frac{\delta}{2}\right)^2 \xrightarrow[x \to +\infty]{} + \infty$$

Следователно за достатъчно големи x стойността |f(x) - f(x')| ще стане по-голяма от едно.

Пример 2.10. Да разгледаме функцията $f:[0,+\infty)\to\mathbb{R}, f(x)=\sqrt{x}$. Ще покажем, че f е равномерно непрекъсната в цялата си дефиниционна област.

За произволно $\varepsilon > 0$ избираме $\delta = \varepsilon^2 > 0$ (сетихме се да направим това, защото това δ върши работа в нулата, където функцията е "най-стръмна"). Разглеждаме следните два случая:

1. Ако поне едно от x и x' е в интервала $[\delta, +\infty)$, то

$$|f(x) - f(x')| = |\sqrt{x} - \sqrt{x'}| = \frac{|x - x'|}{\sqrt{x} + \sqrt{x'}}$$

и имаме

$$\sqrt{x} + \sqrt{x'} \ge \sqrt{\delta}$$
 и следователно $\frac{1}{\sqrt{x} + \sqrt{x'}} \le \frac{1}{\sqrt{\delta}}$

Оттук получаваме

$$|\sqrt{x} - \sqrt{x'}| = \frac{|x + x'|}{\sqrt{x} + \sqrt{x'}} \le \frac{|x - x'|}{\sqrt{\delta}} < \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta} = \varepsilon$$

Естествено, тук ползвахме, че $x, x' \in [0, +\infty)$ и $|x - x'| < \delta$ от дефиницията.

2. Ако $x, x' \in [0, \delta)$, то

$$|\sqrt{x} - \sqrt{x'}| < \sqrt{\delta} - 0 = \sqrt{\delta} = \varepsilon$$

Убедихме се, че и в двата случая изборът на $\delta=\varepsilon^2$ е подходящ за доказването на равномерната непрекъснатост на f.

Теорема 2.11. Теорема на Кантор

Ако $f:[a,b]\to\mathbb{R}$ е непрекъсната, то f е равномерно непрекъсната в [a,b].

Доказателство. Допускаме противното, тоест f не е равномерно непрекъсната в [a,b]:

$$\neg (\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in [a, b] \ \forall x' \in [a, b], \ |x - x'| < \delta : |f(x) - f(x')| < \varepsilon) \equiv \exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x \in [a, b] \ \exists x' \in [a, b], \ |x - x'| < \delta : |f(x) - f(x')| \ge \varepsilon_0$$

Последователно даваме стойности $1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots$ на $\delta.$ Имаме:

$$\begin{cases} \delta = 1 \Rightarrow \exists x_1, x_1' \in [a, b] : |x_1 - x_1'| < 1 \text{ in } |f(x_1) - f(x_1')| \ge \varepsilon_0 \\ \delta = \frac{1}{2} \Rightarrow \exists x_2, x_2' \in [a, b] : |x_2 - x_2'| < \frac{1}{2} \text{ in } |f(x_2) - f(x_2')| \ge \varepsilon_0 \\ \dots \\ \delta = \frac{1}{n} \Rightarrow \exists x_n, x_n' \in [a, b] : |x_n - x_n'| < \frac{1}{n} \text{ in } |f(x_n) - f(x_n')| \ge \varepsilon_0 \\ \dots \end{cases}$$

Получаваме редиците $\{x_n\}_{n=1}^{\infty} \subset [a,b]$ и $\{x_n'\}_{n=1}^{\infty} \subset [a,b]$ с

$$|x_n - x_n'| < \frac{1}{n} \, \forall \, n \in \mathbb{N} \, \, \mathsf{H} \, |f\left(x_n\right) - f\left(x_n'\right)| \, \geq \varepsilon_0 \, \, \forall \, n \in \mathbb{N}$$

Редицата $\{x_n\}_{n=1}^{\infty}$ е ограничена и според Теоремата на Болцано-Вайерщрас съществува нейна подредица $\{x_{n_k}\}_{k=1}^{\infty}$ с $x_{n_k} \xrightarrow[k \to \infty]{} x_0 \in [a,b]$. Да разгледаме подредицата $\{x'_{n_k}\}_{k=1}^{\infty}$ на $\{x'_n\}_{n=1}^{\infty}$ със същите индекси. Ще покажем, че тя е сходяща и има същата граница:

$$|x'_{n_k} - x_0| \le |x'_{n_k} - x_{n_k}| + |x_{n_k} - x_0| < \frac{1}{n_k} + |x_{n_k} - x_0| \xrightarrow[k \to \infty]{} 0$$

Следователно $x'_{n_k} \xrightarrow[k \to \infty]{} x_0$. Сега:

$$f$$
 е непрекъсната в $x_{0} \in [a,b] \Rightarrow \begin{cases} f\left(x_{n_{k}}\right) \xrightarrow[k \to \infty]{} f\left(x_{0}\right) \\ f\left(x_{n_{k}}'\right) \xrightarrow[k \to \infty]{} f\left(x_{0}\right) \end{cases}$

Получаваме, че $f(x_{n_k}) - f(x'_{n_k}) \xrightarrow[k \to \infty]{} f(x_0) - f(x_0) = 0$. По построение обаче имахме $|f(x_{n_k}) - f(x'_{n_k})| \ge \varepsilon_0$ за всяко $k \in \mathbb{N}$. Полученото противоречие завършва доказателството на теоремата.

ЗАДАЧА ЗА ОБМИСЛЯНЕ ВКЪЩИ:

Упражнение 2.12. Нека $f: \mathbb{R} \to \mathbb{R}$ е равномерно непрекъсната върху цялата реална права. Докажете, че f има линеен ръст, тоест съществуват константи C_1 и C_2 такива, че

$$|f(x)| \le C_1 + C_2 \cdot |x|$$

за всяко реално x.