CS11-737 Multilingual NLP

Text-to-Speech Synthesis

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University

Language Technologies Institute

Text-to-Speech Synthesis (TTS)

produce speech waveform from text input

Inverse problem of ASR

TTS Pipeline

TTS technologies

TTS Pipeline — Text Analysis

- Transform text into linguistic features:
 - text normalization:
 - ▶ 1989 -> nineteen eighty nine
 - ▶ Jan. 24 -> January twenty-fourth
 - homograph disambiguation:
 - do you live (/l ih v/) near a zoo with live (/l ay v/) animals?
 - Grapheme-to-phoneme conversion
 - speech -> s p iy ch
 - ToBI (Tones and Break Indices)
 - Phrase/word/syllable segmentation
 - Part-of-speech tagging

Text to Phoneme

Acoustic Model

- Transform a sequence of phonemes intro audio features
- Mel-scale Frequency Cepstral Coefficients (MFCC)
 - Tactron uses 80 channel MFCC, 50ms per frame, 12.5ms frame shifting.

Tacotron2

RNN based approach

Vocoder

 Transform acoustic features (mel-spectrogram) to speech waveform signals

Vocoder — WaveNet

autoregressive model with dilated causal convolution

WaveNet

End-to-end TTS

FastSpeech/FastSpeech2/2s

- Generate mel-spectrogram in parallel
- use variance adaptor to predict duration, pitch, energy
- FastSpeech2s: generating wave directly

(b) Variance adaptor

FastSpeech2/2s

.. Predictor ⊕

Energy **Energy Predictor** Pitch Pitch Predictor Duration **Duration Predictor**

(b) Variance adaptor length reg

the amplitude of STFT for each frame, discrete to 256 and map to embedding

predicts F₀ of each phoneme, map to 256 values in log-scale and embedding vector

predicts num. of mel frames of each phoneme

Montreal forced alignment (MFA) tool to construct groudtruth

FastSpeech2s

Model Setup

Hyperparameter	FastSpeech/FastSpeech 2/2s
Phoneme Embedding Dimension	256
Pre-net Layers	
Pre-net Hidden	
Encoder Layers	4
Encoder Hidden	256
Encoder Conv1D Kernel	9
Encoder Conv1D Filter Size	1024
Encoder Attention Heads	2
Mel-Spectrogram Decoder Layers	4
Mel-Spectrogram Decoder Hidden	256
Mel-Spectrogram Decoder Conv1D Kernel	9
Mel-Spectrogram Decoder Conv1D Filter Size	1024
Mel-Spectrogram Decoder Attention Headers	2
Encoder/Decoder Dropout	0.1
Variance Predictor Conv1D Kernel	3
Variance Predictor Conv1D Filter Size	256
Variance Predictor Dropout	0.5
Waveform Decoder Convolution Blocks	30
Waveform Decoder Dilated Conv1D Kernel size	3
Waveform Decoder Transposed Conv1D Filter Size	64
Waveform Decoder Skip Channlel Size	64
Batch Size	48/48/12
Total Number of Parameters	23M/27M/28M

Training FastSpeech2s

use loss from Parallel WaveGAN

Code Example

see python notebook

Summary

- Text preprocessing for TTS
- Acoustic model to generate acoustic features for each frame
- Vocoder to generate waveform
- FastSpeech2s: end-to-end tts

Language in 10

Code Walkthrough

• https://github.com/ming024/FastSpeech2