FYS2140 Kvantefysikk, Oblig $2\,$

 ${\rm Mitt} \ {\bf navn} \ {\rm og} \ {\bf gruppenummer}$

23. januar 2014

Obliger i FYS2140 merkes med navn og gruppenummer!

Denne obligen har oppgaver som tar for seg sort-legeme stråling, fotoelektrisk effekt, Comptonspredning og Bohrs atommodell. Oppgavene er tatt fra Kompendiet, og heter der Oppgave 2.2, 2.6, 2.10 og 3.4.

Oppgave 1 Anta at sola med radius 6.96×10^8 m stråler som et sort legeme. Av denne strålingen mottar vi $1370 \,\mathrm{W\,m^{-2}}$ her på jorda i en avstand av $1.5 \times 10^{11} \,\mathrm{m}$. Jorda har en radius på $6378 \,\mathrm{km}$.

- a) Beregn temperaturen til sola.
- b) Anta at atmosfæren rundt jorda reflekterer 30% av den innkommende stråling. Hvor mye energi fra solen absorberer den per sekund og per kvadratmeter?
- c) For å være i termisk likevekt må jorda emittere like mye energi som den absorberer via atmosfæren hvert sekund. Anta at den stråler som et sort legeme. Finn temperaturen. Hva betyr drivhuseffekten?

Oppgave 2 (Ligner på tidligere eksamensoppgave)

- a) Gjør kort rede for den fotoelektriske effekten, og skissér en eksperimentell oppstilling som kan observere og måle denne effekten, og som demonstrerer at lys har kvantisert energi.
- b) Den fotoelektriske arbeidsfunksjonen for kalium (K) er 2.0 eV. Anta at lys med en bølgelengde på 360 nm (1 nm = 10^{-9} m) faller på kaliumet. Finn stoppepotensialet for fotoelektronene, den kinetiske energien og hastigheten for de hurtigste av de emitterte elektronene.
- c) En uniform monokromatisk lysstråle med bølgelengde 400 nm faller på et materiale med arbeidsfunksjon på 2.0 eV, og med en intensitet på $3.0 \times 10^{-9} \text{ W m}^{-2}$. Anta at materialet reflekterer 50% av den innfallende stråle, og at 10% av de absorberte fotoner fører til et emittert elektron. Finn antall elektroner emittert per kvadratmeter og per sekund, den absorberte energi per kvadratmeter og per sekund, samt den kinetiske energi for fotoelektronene.

Oppgave 3 Et foton med bølgelengde $\lambda = 1.00 \times 10^{-11}$ m treffer et fritt elektron i ro. Fotonet blir spredt i en vinkel θ , og fÅër en bølgelengdeforandring gitt ved Comptons formel

$$\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta),$$

hvor Comptonbølgelengden er $\lambda_c=2.426\times 10^{-12}$ m. I denne oppgaven skal vi bare se på det som observeres i en vinkel $\theta=60^\circ$ (se figur 1). Energi og bevegelsesmengde beregningene skal uttrykkes ved enheten eV.

Figur 1: Comptonspredning i vinkel $\theta = 60^{\circ}$.

- a) Beregn energien og bevegelsesmengden til det innkommende fotonet.
- b) Finn bølgelengden, bevegelsesmengde og den kinetiske energien til det spredte fotonet.
- c) Finn den kinetiske energien, bevegelsesmengden og spredningsvinkelen for elektronet.

Oppgave 4

- a) Hvilke energier har lyskvant som faller i den synlige delen av spekteret, 4000 Å $\leq \lambda \leq$ 7000 Å?
- b) Oppgi noen spektrallinjer av atomært hydrogen og enkeltionisert helium som tilsvarer synlig lys.
- c) Finn størrelsesorden av effekten på disse dersom man tar hensyn til rekylen av atomet under emisjonen, og vis at denne effekten er langt mindre enn isotopeffekten, altså korreksjonen fra å bytte ut elektronmassen med redusert masse

$$\mu = \frac{m_e m_k}{(m_e + m_k)},$$

hvor m_e og m_k er massen til elektronet og kjernen.