الجال: المادة و تحولاتها.

الوحدة 4: قياس الناقلية: طريقة جديدة لقياس كمية المادة في المحاليل الشاردية

1-الحاليل المائية:

1-1- الخلائط و المحاليل المائية :

** الخليط هو مزيج من مادتين أو أكثر ، نعتبره غير متجانس إذا أمكن تمييز مكوناته بالعين المجردة ، و إذا تعذر ذلك نقول أنه متجانسا و نسميه حينئذ محلولا بحيث تكون لأجزاءه نفس الخواص .

** المحاليل عبارة عن مزيج من مذيب (solvant) و مذاب (soluté) أو أكثر ، و إذا كان المذيب هو الماء يسمى محلول مائي و يمكن تصنيفها من حيث الحالة الفيزيائية للمادة المذابة (غاز مثل HCl_) ، سائل مثل الكحول ، صلبة مثل ملح الطعام NaCl_) .

2-1- الجزيئات المستقطبة:

- ** إن الإستقطاب خاصية تمتاز بها جزيئات الماء و جزيئات أخرى سواءا كانت حالتها غازية أو سائلة .
- مثل : غاز HCl جزيئ مستقطب لأن كهروسلبية الكلور فيه أكبر من كهروسلبية الهيدروجين لذلك ينحل بشراهة في الماء فيمكننا من الحصول على محلول شاردي .

1-3-1 المحلول الشاردي و بنيته :

– المحاليل الشاردية هي محاليل ناتجة عن تفكك مركبات شاردية في الماء و هي محاليل ناقلة للتيار مثل محلول ملح الطعام .

$$NaCl \xrightarrow{H_2O} Na^+ + Cl^-$$

1–4– التركيز المولي :

 $(mol\ /L):$ و حدته $C_a=[x\]=rac{n}{V}:$ يعرف كمايلي و $C_a=[x\]=rac{n}{V}:$ و حدته $m=rac{V_s}{V_M}:$ و حدته $m=rac{V_s}{V_M}:$ و حدته $m=rac{V_s}{V_M}:$

- $\left(g/L
 ight)$: هو النسبة بين كتلة المادة المذابة و حجم المحلول $C_m=rac{m}{V}$ و حدته $\frac{C_m}{V}$
- . الكتلة المولية $M imes C_m = M imes C$ أو $M imes C_m = M imes C$ الكتلة المولية .
 - $[y] = \frac{n_y}{V}$: حيث [y] هو [y] هاردة [y] حيث : التركيز المولى لشوارد المحلول : التركيز المولى الماردة [y]
 - المعادلة الكيميائية $H_2SO_4 + 2H_2O = 2H_3O^+ + SO_4^{-2}$ الحادلة الإبتدائية n_0 / 0 0 الحالة النهائية 0 / $2n_0$ n_0

التفاعل تام
$$\frac{1}{N}$$
 د مثال $\frac{1}{N}$ د مثال $\frac{1}{N}$ د مثال $\frac{n_0}{N}$ د مثال $\frac{n_0}{N}$

- ** تمرين : نذيب في الشرطين النظاميين ml 500 من غاز الهيدروجين HCl في l 0,5 من الماء .
- أ- أكتب معادلة التفاعل الحادث و اشرح ماذا حدث . ب- أحسب التركيز المولى C للمحلول الناتج .

ج- استنتج التركيز المولي لشوارد المحلول . (بفرض أن الحجم لا يتغير خلال الإنحلال) .

** الحل:

. $H_3O^+,~Cl^-$ ينتج فعل الإستقطاب و ينتج HCl^- ; إن جزيئات غاز وينتج HCl^- ; إن بنات غاز المحادلة التفاعل الإستقطاب و ينتج

$$C = rac{0,0223}{0,5} :$$
 ومنه $n = rac{V_g}{V_M} \implies n = rac{0,5}{22,4} = 0,0223 \; mol \; :$ ب $C = rac{n}{V} :$ لدينا $C = rac{n}{V} :$ ب

$$C = 4.46 \times 10^{-2} mol / l \iff$$

$$\left[H_{3}O^{+}\right] = \left[Cl^{-}\right] = C = 4,46 \times 10^{-2} \, mol \, / \, l$$
 ج $-$ استنتاج التراكيز : من معادلة التفاعل نجد

2-النقل الكهربائي للمحاليل الشاردية :

1-2- التفسير المجهري للنقل الكهربائي :

** نقل المحاليل الشاردية للتيار الكهربائي راجع إلى الحركة المزدوجة و في الإتجاهين المتعاكسين للشوارد الموجبة (الكاتيونات) و السالبة (الأنيونات)

من خلال ملاحظتنا لبطاقة محلول فيزيولوجي (Sérum) عبارة عن محلول NaCl نجد

. t=0.9 g /l من الماء أي أن كل g 0.9 من NaCl في NaCl من الماء أي أن كل

U تعریف الناقلیة : عندما نطبق بین مسریی وعاء التحلیل الکهربائی توترا **

$$\left(\Omega
ight)$$
 بحيث R : مقاومة المحلول وحدتما $I=rac{U}{R}$

 $(S): G=rac{1}{R}: گیمهٔ مقلوب المقاومهٔ تدعی الناقلیهٔ <math>G$ بحیث $G=rac{1}{R}$ وحدهٔا**

منها S=h imes l و البعد بين الصفيحتين المسافة L .

3-2 دراسة العوامل المؤثرة على الناقلية محلول شاردي :

** تجارب : نحقق التركيب الموضح على الشكل و نغير في كل تجربة في قيم أحد المتغيرات و ندرس تغير الناقلية G في كل حالة ، و ذلك باستعمال محلول NaCl محضر تركيزه $10^{-2}mol/l$

أ- هندسة الخلية:

مساحة الجزء المغمور $\frac{S}{L}$ للمسريين : نثبت المسافة L=1 و درجة الحرارة **

و نغير في السطح S فنحصل على النتائج التالية :

 $G = a_1 imes S$ کلما زادت مساحة السطح المغمور G گلما زادت مساحة السطح المغمور G

** المسافة L بين المسريين : نثبت S بضبط العلو و نغير في قيم المسافة L و نسجل النتائج :

** تتناقص الناقلية G بتزايد المسافة L بين المسريين (تناسب عكسي)

 $G = a_2 imes rac{1}{L}$. $rac{1}{L}$ مع G تتناسب الناقلية **

L(Cm)	$\frac{1}{L}(Cm^{-1})$	$G = \frac{I}{U} \ (ms)$		
1	1	6,8		
2,0	0,5	3,7		
3,0	0,33	2,7		
4,0	0,25	1,7		

$\theta(C^0)$	$G = \frac{I}{U} \ (ms)$
2	5,0
17	7,2
53	15,2

V = C و نقيس V = C و نقيس المحلول في درجة حرارة مختلفة فنجد النتائج التائج التائج V = C

 ** تتزاید الناقلیة G بتزاید درجة حرارة المحلول (تناسب طردي)

المحلول	$G = \frac{I}{U} \ (ms)$
$(Na^+ + Cl^-)$	7,1
$(K^+ + Cl^-)$	8,7
$(Na^+ + OH^-)$	13,6

ج – طبیعة المحلول : نثبت S و θ و نقیس ناقلیة ثلاث محالیل فنجد :

** نلاحظ أن الناقلية تختلف باختلاف المحلول .

إذن قيمة الناقلية تتعلق بطبيعة المحلول .

د- التركيز المولي للمحلول: نثبت جميع المتغيرات و نقيس ناقلية محاليل ذات تراكيز مختلفة فنجد النتائج التالية:

$C \times 10^{-3} (mol / l)$								
$G = \frac{I}{U} \ (ms)$	1,5	2,9	4.1	5,5	7,1	8,4	9,6	11,0

 $G = a_3 \times C$: بحيث

: خلول شاردي خلول شاردي σ

تتناسب الناقلية G طردا مع مساحة الجزأ المغمور S و عكسا

: فنجد العلاقة $G=a imes rac{S}{L}$ ومنه ومنه المسافة بين المسريين المسريين

$$G = \sigma \times \frac{S}{L}$$

بحيث : σ : ثابت تناسب يدعى الناقلية النوعية للمحلول الشاردي وحدهما $S \ / m$ تزداد كلما زادت درجة الحرارة .

: λ_i الناقلية النوعية المولية الشاردية -5-2

الناقلية σ للمحاليل الشاردية تساهم فيها الشوارد الموجبة و السالبة معا و تتناسب كل منها مع تركيز شواردها

$$AB \rightarrow A^+ + B^-$$
 : مثال

$$\sigma=\lambda_{_{A^{\,+}}}igl[A^{\,+}\,igr]+\lambda_{_{B^{\,-}}}igl[B^{\,-}\,igr]$$
 : وجدنا أن الناقلية النوعية σ للمحلول تعطى بالعلاقة

I=5 mA و U=2,5 V التمرين الأول : خلية قياس الناقلية تتميز بمايلي m^2 التمرين الأول : خلية قياس الناقلية تتميز بمايلي m^2

أ– أحسب ناقلية جزء المحلول الشاردي المحصور بين المسريين . ب– استنتج الناقلية النوعية الموافقة .

$$G = \frac{1}{R} \implies G = \frac{5 \times 10^{-3}}{2.5} \implies G = 2 \times 10^{-3} s$$
 : G خساب الناقلية $G = \frac{1}{2.5} \implies G = \frac{5 \times 10^{-3}}{2.5} \implies G = \frac{5 \times 10^{-3}}{2.5}$

$$G = \sigma imes rac{S}{L} \Rightarrow \sigma = rac{G imes L}{S} \Rightarrow \sigma = rac{2 imes 10^{-3} imes 10^{-2}}{1} \Rightarrow \sigma = 0, 2 \ s \ / m$$
 : $\sigma = 0, 2 \ s \ / m$: $\sigma = 0, 2 \ s \ / m$

$$\underline{: G = a \times C}$$
 العلاقات $\underline{G} = \sum \lambda_i \left[X_i \right]$ العلاقات العل

الجدول التالي يبين قيم الناقلية النوعية σ لثلاثة محاليل من كلور الصوديوم لها حجوم مختلفة

$$NaCl \xrightarrow{H_2O} Na^+ + Cl^- : 2$$

 $C\ (mol\ /l\)$ 10^{-3} 2×10^{-3} 3×10^{-3} 3×10^{-3} $\sigma(s\ /m)$ 126×10^{-4} 250×10^{-4} 380×10^{-4} 380×10^{-4} $\sigma=\sum \lambda_i \left[X\ _i\ \right]$ λ_i

G=a imes C: نيناسب طردا مع $C imes 10^{-2}mol\ /l$ من أجل المحاليل الممددة $C imes 10^{-2}mol\ /l$ نجد أن $C imes 10^{-2}mol\ /l$

** النتيجة النهائية:

من خلال النشاط الأول للمصل الفيزيولوجي نأخذ ml منه و نمدده عشرة مرات إلى 100~ml بالماء المقطر و نقسيس ناقليتـــه نجدها G=10.9~ms ، و من خلال بيان الناقلية بدلالة التركيز :

- خد أن تركيز المحلول الممدد $C_1 = 15,6 \times 10^{-3} \, mol \, / l$: ما هو موضح في الشكل

 $M_{NaCl}=58,5$ g / mol : جيث t=C imes M ومنه تركيز المحلول الأم (المركز) C=10 $C_1=0,156$ mol / l (المركز) ومنه تركيز المحلول الأم (المركز) ومنه تركيز المحلول المركز) ومنه تركيز المحلول المركز) ومنه تركيز المحلول المركز (المركز) ومنه تركيز المركز (المركز) ومنه تركيز المركز (المركز) ومنه تركيز (المركز) ومنه تركيز

فنجد : t=9,13 و منه نستنتج صحة ما كتب على البطاقة

** من خلال قياس الناقلية تعرفنا على طريقة فيزيائية لحساب تركيز محلول و كمية مادته