Cohen-Macaulay type of endomorphism rings of abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

Essen Oberseminar - 23 May 2024.

Stefano Marseglia 23 May 2024 1/16

What do I do for a living?

Stefano Marseglia 23 May 2024

Abelian varieties: what are they?

Abelian varieties are connected projective group varieties.

Abelian varieties of dim. 1 are called **elliptic curves**.

Eg: over
$$\mathbb{R}, \ \dot{y^2} = x^3 - x + 1$$

We can add points:

$$P,Q \rightsquigarrow P \oplus Q$$

Equations are impractical in $\dim \geq 2$.

We need a better way to represent them...

Stefano Marseglia 23 May 2024 3 / 16

Abelian varieties over \mathbb{C} vs \mathbb{F}_q

- Let A/\mathbb{C} be an abelian variety of dimension g.
- Then $A(\mathbb{C})$ is a **torus**: $T := \mathbb{C}^g / \Lambda$, where $\Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}$.
- T admits a non-degenerate Riemann form \longleftrightarrow polarization.
- In fact, $A \mapsto A(\mathbb{C})$ induces an equivalence of categories:

$$\left\{ \text{abelian varieties } / \mathbb{C} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathbb{C}^g / \Lambda \text{ with } \Lambda \simeq \mathbb{Z}^{2g} \text{ admitting} \\ \text{a Riemann form} \end{matrix} \right\}.$$

- In char. p > 0 such an equivalence cannot exist: there are (supersingular) elliptic curves with quaternionic endomorphism algebras.
- Nevertheless, as we will see later, over a finite field \mathbb{F}_q , we obtain analogous results if we restrict ourselves to certain **subcategories** of AVs.
- WARNING: all morphisms, endomorphisms, isogenies, etc. are defined over \mathbb{F}_a .

Stefano Marseglia 23 May 2024 4 / 16

Isogeny classification over \mathbb{F}_q

- An **isogeny** $A \rightarrow B$ is a surjective morphism with finite kernel.
- ullet A/\mathbb{F}_q comes with a **Frobenius** endomorphism, that induces an action

Frob_A:
$$T_{\ell}A \rightarrow T_{\ell}A$$
 for any $\ell \neq p$,

where
$$T_{\ell}(A) = \varprojlim A[\ell^n] \simeq \mathbb{Z}_{\ell}^{2g}$$
.

- $h_A(x) := \text{char}(\text{Frob}_A)$ is a q-Weil polynomial.
- Honda-Tate theory:
 - $h_A(x)$ is *the* isogeny invariant

$$A \sim_{\mathbb{F}_a} B$$
 iff $h_A(x) = h_B(x)$,

- the association

isogeny class of
$$A \mapsto h_A(x)$$

allows us to enumerate all AVs up to isogeny.

Stefano Marseglia 23 May 2024 5 / 16

Endomorphism rings

- ullet End $_{\mathbb{F}_q}(A)$ is a free \mathbb{Z} -module of finite rank ...
- ... $\operatorname{End}_{\mathbb{F}_q}(A) \subset \operatorname{End}_{\mathbb{F}_q}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$.
- Denote by $\pi_A \in \operatorname{End}_{\mathbb{F}_a}(A)$ the Frobenius endomorphism of A.
- Tate: $h_A(x)$ is squarefree \iff End(A) is commutative. (We will assume this for the rest of the talk.)
- Set $K = \mathbb{Q}[x]/(h_A) = \mathbb{Q}[\pi]$. It is an étale \mathbb{Q} -algebra (i.e. a finite product of number fields).
- The association $\pi_A \mapsto \pi$ allows us to identify End(A) with a special kind of subring of K:
- $\mathbb{Z}[\pi, q/\pi] \subseteq \operatorname{End}_{\mathbb{F}_q}(A) \subseteq \mathcal{O}_K$ are orders in K(an **order** R in K is a subring $R \subset K$ such that $R \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$).
- Plan: study A by studying some comm. algebra properties of End(A).

Stefano Marseglia 23 May 2024 6 / 16

Orders and fractional ideals in étale Q-algebras

- Let R be an order in a étale \mathbb{Q} -algebra K.
- A fractional *R*-ideal is a sub-*R*-module $I \subset K$ such that $I \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$.
- Given fr. R-ideals I, J then

$$(I:J) = \{a \in K : aJ \subseteq I\}$$
 and $I^t = \{a \in K : \operatorname{Tr}_{K/\mathbb{Q}}(aI) \subseteq \mathbb{Z}\}$

are also fr. R-ideals.

- We have $(I:I)^t = I \cdot I^t$.
- A fr. R-ideal I is invertible if I(R:I) = R ...
- ... or, equivalently, $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules for every \mathfrak{p} maximal R-ideal. ($R_{\mathfrak{p}}$ is the completion of R at \mathfrak{p})
- If I is invertible, then (I:I) = R.

Stefano Marseglia 23 May 2024 7 / 16

Cohen-Macaulay type and Gorenstein orders

• Def: The (Cohen-Macaulay) type of R at a maximal ideal \mathfrak{p} is

$$\mathsf{type}_{\mathfrak{p}}(R) := \mathsf{dim}_{R/\mathfrak{p}} \frac{R^t}{\mathfrak{p}R^t}.$$

- Def: R is Gorenstein at p if $type_p(R) = 1$.
- Remark: these definitions coincides with the 'usual' ones.
- Ex: monogenic $\mathbb{Z}[\alpha]$ and maximal \mathcal{O}_K orders are Gorenstein. (also $\mathbb{Z}[\pi, q/\pi]$ for AVs).
- Ex: pick a prime $\ell \in \mathbb{Z}$. Then $\operatorname{type}_{\ell \mathcal{O}_K}(\mathbb{Z} + \ell \mathcal{O}_K) = \dim_{\mathbb{Q}} K 1$.

Stefano Marseglia 23 May 2024 8 / 16

Classification for orders of type ≤ 2

Theorem

Let $\mathfrak p$ be a maximal ideal of R, and I a fr. R-ideal with (I:I)=R.

- If $type_{\mathfrak{p}}(R) = 1$ (Gorenstein) then $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules.
- ② If $type_{\mathfrak{p}}(R) = 2$ then either $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ or $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^t$ as $R_{\mathfrak{p}}$ -modules.

Part 1 is contained (in a much more general form) in the "Ubiquity" paper by H. Bass.

Part 2 is new, and we give a proof.

Lemma

Let U, V, W be vectors spaces (over some field). Assume that dim $W \ge 2$, and let $m: U \otimes V \to W$ be a surjective map. Then:

- **1** ∃ $u \in U$ such that dim $(m(u \otimes V)) \ge 2$, or
- $\exists v \in V \text{ such that } \dim(m(U \otimes v)) \geq 2.$

Stefano Marseglia 23 May 2024 9 / 16

Proof of Part 2

- Put $U = I/\mathfrak{p}I$, $V = I^t/\mathfrak{p}I^t$ and $W = R^t/\mathfrak{p}R^t$.
- By assumption $R^t = I \cdot I^t$, so the map $m: U \otimes V \to W$ induced by multiplication $I \times I^t \to R^t$ is surjective.
- Moreover, dim W = 2 (because of the assumption on the type).
- By the Lemma:
 - $\exists x \in I \text{ such that } m((x+\mathfrak{p}I) \otimes V) = \frac{xI^t + \mathfrak{p}R^t}{\mathfrak{p}R^t} \text{ equals } W.$ By Nakayama's lemma: $I_{\mathfrak{p}}^t \simeq R_{\mathfrak{p}}^t \iff R_{\mathfrak{p}} \simeq I_{\mathfrak{p}},...$
 - ② ...or, $\exists y \in I^t$ such that $U \otimes m(U \otimes (y+\mathfrak{p})I^t) = W$ implying $I_{\mathfrak{p}}^t \simeq R_{\mathfrak{p}} \iff I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^t.$

Stefano Marseglia 23 May 2024 10 / 16

Back to AVs: Categorical equivalence(s)

Fix a squarefree characteristic poly h(x) of Frobenius π over \mathbb{F}_q . Put $K = \mathbb{Q}[x]/h = \mathbb{Q}[\pi]$.

Let \mathcal{I}_h be the corresponding isogeny class.

Theorem

Assume that q = p is prime or that \mathcal{I}_h is ordinary. Then there is an **equivalence** of categories

$$\left\{ \begin{array}{l} \mathscr{I}_h \text{ with } \mathbb{F}_q \text{--morphisms} \right\} \\ \updownarrow \\ \left\{ \text{fr. } \mathbb{Z}[\pi,q/\pi] \text{--ideals with linear morphisms} \right\} \end{array}$$

Moreover, if $A \mapsto I$ then $A^{\vee} \mapsto \overline{I}^t$, where $\overline{\cdot}$ is defined by $\overline{\pi} = q/\pi$ (the CM-involution).

References: Deligne, Howe, Centeleghe-Stix, Bergström-Karemaker-M.

Stefano Marseglia 23 May 2024

11 / 16

AVs: Isomorphism classes

 Stefano Marseglia
 23 May 2024
 12 / 16

AVs: Group of rational points

 Stefano Marseglia
 23 May 2024
 13 / 16

AVs: self-duality

Theorem (Springer-M.)

 \mathscr{I}_h and $K = \mathbb{Q}[\pi] = \mathbb{Q}[x]/h$ as before.

Let R be an order in K and \mathfrak{p} a maximal ideal of R (possibly but not necessarily above p). Assume:

$$R = \overline{R}$$
, $\mathfrak{p} = \overline{\mathfrak{p}}$, and $type_{\mathfrak{p}}(R) = 2$.

Then for every $A \in \mathcal{I}_h$ such that $\operatorname{End}(A) = R$ we have that $A \not= A^{\vee}$. In particular, such an A cannot be principally polarized nor a Jacobian.

Proof: Say that $A \mapsto I$. Hence $A^{\vee} \mapsto \overline{I}^t$.

By the Classification: either $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ or $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^t$.

In the first case: $\overline{I}_{\mathfrak{p}}^t = \overline{I}_{\overline{\mathfrak{p}}}^t \simeq R_{\mathfrak{p}}^t \not\simeq R_{\mathfrak{p}}^t$.

Similarly, in the second: $\overline{I}_{\mathfrak{p}}^t = \overline{I}_{\overline{\mathfrak{p}}}^t \simeq R_{\mathfrak{p}} \not\simeq R_{\mathfrak{p}}^t$

In both cases: $I \neq \overline{I}^t \iff A \neq A^{\vee}$.

Stefano Marseglia 23 May 2024

Some stats and refs

Be more precise in this slide

Soon on the LMFDB there will be tables of isomorphism classes of AVs/ \mathbb{F}_q . Over 615269 isogeny classes for $1 \le g \le 5$ and various q, we encountered

- 3.914.908 commutative endomorphism rings, of which:
- 72.6% satisfy R = R:
- 10.3% satisfy $R = \overline{R}$ and are non-Gorenstein;
- 7.4% satisfy $R = \overline{R}$, are non-Gorenstein and the Theorem applies.

Stefano Marseglia 23 May 2024 15 / 16

Thank you!

References:

- Cohen-Macaulay type of orders, generators and ideal classes https://arxiv.org/abs/2206.03758
- Abelian varieties over finite fields and their groups of rational points with Caleb Springer, https://arxiv.org/abs/2211.15280
- Magma package for étale Q-algebras https://github.com/stmar89/AlgEt (also in Magma 2-28.1)

Stefano Marseglia 23 May 2024 16 / 16