MATH 30, SPRING 2020: LECTURE ON DERIVS OF INVERSE FUNCTIONS

Say that g is the inverse function of f. By definition, this means g(f(x)) = x for **every** x in the domain of f. This means the two sides are equal as functions, so they have the same derivatives. The Chain Rule then says:

$$g'(f(x))f'(x) = 1.$$

I recommend not memorizing the formula. Just use the Chain Rule from scratch every time!

Example. By definition, $f(x) = \ln x$ ("the natural log") is the inverse of $g(y) = e^y$, and we know $g'(y) = e^y$. By differentiating both sides of g(f(x)) = x (which is valid for all x > 0), we get g'(f(x))f'(x) = 1. That is,

$$e^{\ln x} f'(x) = 1.$$

This shows that the derivative of $f(x) = \ln x$ is $f'(x) = \frac{1}{x}$.

Example. We already know the derivative of $f(x) = \sqrt{x}$ (we found it from the definition of the derivative, using limits). Here is another way:

Of course $g(y) = y^2$ is the inverse of $f(x) = \sqrt{x}$. ("Take the square root of x, then square it, and you get x back.") So g(f(x)) = x is true for all x > 0. Taking the derivative of both sides, we get g'(f(x))f'(x) = 1. But g'(y) = 2y, so we get $2f(x) \cdot f'(x) = 1$. That is,

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

Notice that this can be rewritten as $\frac{d}{dx}x^{1/2} = \frac{1}{2}x^{-1/2}$, which looks like the Power Rule!

The Generalized Power Rule. We only proved the Power Rule $\frac{d}{dx}x^n = nx^{n-1}$ when $n = 1, 2, 3, 4, \ldots$ In fact, the Power Rule is true when the power is *any* real number (fractions, negative numbers, etc.)! Here is why:

For any a, and x > 0, rewrite x^a as

$$x^a = (e^{\ln x})^a = e^{a \ln x}.$$

Now differentiate this using the Chain Rule (and the fact that $\frac{d}{dx} \ln x = \frac{1}{x}$) to get:

$$\frac{d}{dx}x^a = e^{a\ln x} \cdot \frac{a}{x} = x^a \cdot \frac{a}{x} = \frac{ax^a}{x} = ax^{a-1}.$$

We can similarly find the derivatives of a^x and its inverse, $\log_a x$:

Example. First, rewrite a^x as

$$a^x = (e^{\ln a})^x = e^{x \ln a}.$$

Now differentiate, using the Chain Rule:

$$\frac{d}{dx}a^x = (\ln a)e^{x\ln a} = (\ln a)a^x.$$

Example. The inverse of $g(y) = a^y$ is $f(x) = \log_a x$, and now we know

$$g'(y) = (\ln a)a^y.$$

Since f and g are inverses, we have g(f(x)) = x for all x > 0. Differentiating both sides, we get

$$g'(f(x)) \cdot f'(x) = 1$$
 for all $x > 0$.

That is,

$$(\ln a)a^{\log_a x} \cdot \frac{d}{dx}\log_a x = 1.$$

That is,

$$(\ln a)x \cdot \frac{d}{dx}\log_a x = 1,$$

which we can rewrite as

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}.$$

Example. The inverse of $g(y) = \tan y$ is $f(x) = \tan^{-1} x$ (sometimes written as $\arctan x$). We know $g'(y) = \sec^2 y$, so the Chain Rule gives $g'(f(x)) \cdot f'(x) = 1$ for all x. That is,

$$\sec^2(\tan^{-1} x) \cdot f'(x) = 1.$$

Here's the interesting part: Now use the trig identity $1 + \tan^2 \theta = \sec^2 \theta$. (It's the same as $\cos^2 \theta + \sin^2 \theta = 1$, after dividing by $\cos^2 \theta$.) Plug in $\theta = \tan^{-1} x$. Then

$$\sec^2(\tan^{-1}x) = 1 + (\tan(\tan^{-1}x))^2 = 1 + x^2.$$

So we finally get

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}.$$

You can do something similar to find:

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}.$$