1. The descents of painted bipartitions

As before, let $\star \in \{B, C, D, \widetilde{C}, C^*, D^*\}$ and let \mathcal{O} be a Young diagram that has \star -good parity. Put

(1.1)
$$l := l_{\star, \check{\mathcal{O}}} := \begin{cases} \frac{\mathbf{r}_{1}(\check{\mathcal{O}})}{2}; & \text{if } \star \in \{B, \widetilde{C}\}; \\ \frac{\mathbf{r}_{1}(\check{\mathcal{O}}) - 1}{2}, & \text{if } \star \in \{C, C^{*}\}; \\ \frac{\mathbf{r}_{1}(\check{\mathcal{O}}) + 1}{2}, & \text{if } \star \in \{D, D^{*}\}. \end{cases}$$

This is the length of the leading column of every element of $PBP_{\star}(\check{\mathcal{O}})$.

In various context, we use \emptyset to denote the empty set, the empty Young diagram or the painted Young diagram whose underlying Young diagram is empty. For every Young diagram i, its descent, which is denoted by $\nabla(j)$, is defined to be the Young diagram obtained from j by removing the first column. By convention, $\nabla(\emptyset) = \emptyset$.

In the rest of this section, we assume that $\check{\mathcal{O}} \neq \emptyset$, and write $\check{\mathcal{O}}'$ for its dual descent. Write \star' for the Howe dual of \star so that $\check{\mathcal{O}}'$ has \star' -good parity. Put

$$l':=l_{\star',\check{\mathcal{O}}'}$$

1.1. Naive descents of painted bipartitions. In this subsection, let $\tau = (i, \mathcal{P}) \times (j, \mathcal{Q}) \times \alpha$ be a painted bipartition such that $\star_{\tau} = \star$. Write \star' for the Howe dual of \star and put

(1.2)
$$\alpha' = \begin{cases} B^+, & \text{if } \alpha = \widetilde{C} \text{ and } \mathcal{P}_{\tau}(l_{\star,\check{\mathcal{O}}}, 1), 1) \neq c; \\ B^-, & \text{if } \alpha = \widetilde{C} \text{ and } \mathcal{P}_{\tau}(l_{\star,\check{\mathcal{O}}}, 1), 1) = c; \\ \star', & \text{if } \alpha \neq \widetilde{C}. \end{cases}$$

(1.3)
$$\alpha' = \begin{cases} B^+, & \text{if } \alpha = \widetilde{C} \text{ and } c \text{ does not occur in the leading column of } \tau; \\ B^-, & \text{if } \alpha = \widetilde{C} \text{ and } c \text{ occurs in the leading column of } \tau; \\ \star', & \text{if } \alpha \neq \widetilde{C}. \end{cases}$$

1

Lemma 1.1. If $\star \in \{B, C, C^*\}$, then there is a unique painted bipartition of the form $\tau' = (\iota', \mathcal{P}') \times (\jmath', \mathcal{Q}') \times \alpha'$ with the following properties:

- $(i', j') = (i, \nabla(j));$
- for all $(i, j) \in Box(i')$,

$$\mathcal{P}'(i,j) = \begin{cases} \bullet \text{ or } s, & \text{if } \mathcal{P}(i,j) \in \{\bullet, s\}; \\ \mathcal{P}(i,j), & \text{if } \mathcal{P}(i,j) \notin \{\bullet, s\}; \end{cases}$$

• for all $(i, j) \in Box(j')$,

$$Q'(i,j) = \begin{cases} \bullet \text{ or } s, & \text{if } Q(i,j+1) \in \{\bullet,s\}; \\ Q(i,j+1), & \text{if } Q(i,j+1) \notin \{\bullet,s\}. \end{cases}$$

Proof. First assume that the images of \mathcal{P} and \mathcal{Q} are both contained in $\{\bullet, s\}$. Then the image of \mathcal{P} is in fact contained in $\{\bullet\}$, and (\imath, \jmath) is right interlaced in the sense that

$$\mathbf{c}_1(j) \geqslant \mathbf{c}_1(i) \geqslant \mathbf{c}_2(j) \geqslant \mathbf{c}_2(i) \geqslant \mathbf{c}_3(j) \geqslant \mathbf{c}_3(i) \geqslant \cdots$$

Hence $(i', j') := (i, \nabla(j))$ is left interlaced in the sense that

$$\mathbf{c}_1(i') \geqslant \mathbf{c}_1(j') \geqslant \mathbf{c}_2(i') \geqslant \mathbf{c}_2(j') \geqslant \mathbf{c}_3(i') \geqslant \mathbf{c}_3(j') \geqslant \cdots$$

Then it is clear that there is unique painted bipartition of the form $\tau' = (i', \mathcal{P}') \times (j', \mathcal{Q}') \times \alpha'$ such that images of \mathcal{P}' and \mathcal{Q}' are both contained in $\{\bullet, s\}$. This proves the lemma in the special case when the images of \mathcal{P} and \mathcal{Q} are both contained in $\{\bullet, s\}$.

The proof of the lemma in the general case is easily reduced to this special case. \Box

Lemma 1.2. If $\star \in \{\widetilde{C}, D, D^*\}$, then there is a unique painted bipartition of the form $\tau' = (\iota', \mathcal{P}') \times (\jmath', \mathcal{Q}') \times \alpha'$ with the following properties:

- $(i', j') = (\nabla(i), j);$
- for all $(i, j) \in Box(i')$,

$$\mathcal{P}'(i,j) = \begin{cases} \bullet \text{ or } s, & \text{if } \mathcal{P}(i,j+1) \in \{\bullet,s\}; \\ \mathcal{P}(i,j+1), & \text{if } \mathcal{P}(i,j+1) \notin \{\bullet,s\}; \end{cases}$$

• for all $(i, j) \in Box(j')$,

$$Q'(i,j) = \begin{cases} \bullet \text{ or } s, & \text{if } \mathcal{P}(i,j) \in \{\bullet, s\}; \\ Q(i,j), & \text{if } Q(i,j) \notin \{\bullet, s\}. \end{cases}$$

Proof. The proof is similar to that of Lemma 1.1.

Definition 1.3. In the notation of Lemma 1.1 and 1.2, we call τ' the naive descent of τ , to be denoted by $\nabla_{\text{naive}}(\tau)$.

Example. If

$$\tau = \begin{bmatrix} \bullet & \bullet & \bullet & c \\ \bullet & s & c \end{bmatrix} \times \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & r & d \\ d & d \end{bmatrix} \times \widetilde{C},$$

then

$$\nabla_{\text{naive}}(\tau) = \begin{bmatrix} \bullet & \bullet & c \\ \bullet & c \end{bmatrix} \times \begin{bmatrix} \bullet & \bullet & s \\ \bullet & r & d \end{bmatrix} \times B^{-}.$$

1.2. Descents of painted bipartitions. Suppose that $\tau = (i, \mathcal{P}) \times (j, \mathcal{Q}) \times \alpha \in PBP_{\star}(\mathcal{O})$ and write

$$\tau'_{\text{naive}} = (i', \mathcal{P}'_{\text{naive}}) \times (j', \mathcal{Q}'_{\text{naive}}) \times \alpha'$$

for the naive descent of τ . This is clearly an element of $PBP_{\star'}(\check{\mathcal{O}}')$.

The following two lemmas are easily verified and we omit the proofs. We will give an example for each of them.

Lemma 1.4. Suppose that

$$\begin{cases} \alpha = B^+; \\ \mathbf{r}_2(\check{\mathcal{O}}) > 0; \\ \mathcal{Q}(l, 1) \in \{r, d\}. \end{cases}$$

Then there is a unique element in $PBP_{\star'}(\check{\mathcal{O}}')$ of the form

$$\tau' = (i', \mathcal{P}') \times (j', \mathcal{Q}') \times \alpha'$$

such that $Q' = Q'_{\text{naive}}$ and for all $(i, j) \in \text{Box}(i')$,

$$\mathcal{P}'(i,j) = \begin{cases} s, & \text{if } (i,j) = (l',1); \\ \mathcal{P}'_{\text{naive}}(i,j), & \text{otherwise.} \end{cases}$$

Example. If

$$\tau = \boxed{\begin{array}{c|c} \bullet & c \\ \hline c & \end{array}} \times \boxed{\begin{array}{c|c} \bullet & r \\ \hline r & d \end{array}} \times B^+,$$

then

Note that in this case, the nonzero row lengths of $\check{\mathcal{O}}$ are 4, 4, 4, 2, and l'=2.

Lemma 1.5. Suppose that

$$\begin{cases} \alpha = D; \\ \mathbf{r}_2(\check{\mathcal{O}}) = \mathbf{r}_3(\check{\mathcal{O}}) > 0; \\ \mathcal{P}(l'+1,1) = r; \\ \mathcal{P}(l'+1,2) = c; \\ \mathcal{P}(l,1) \in \{r,d\}. \end{cases}$$

Then there is a unique element in $PBP_{\star'}(\check{\mathcal{O}}')$ of the form

$$\tau' = (i', \mathcal{P}') \times (j', \mathcal{Q}') \times \alpha'$$

such that $Q' = Q'_{\text{naive}}$ and for all $(i, j) \in \text{Box}(i')$,

$$\mathcal{P}'(i,j) = \begin{cases} r, & \text{if } (i,j) = (l'+1,1); \\ \mathcal{P}'_{\text{naive}}(i,j), & \text{otherwise.} \end{cases}$$

Example. If

$$\tau = \begin{array}{|c|c|c|} \hline \bullet & \bullet \\ \hline \bullet & s \\ \hline \bullet & s \\ \hline r & c \\ \hline \end{array} \times \begin{array}{|c|c|c|} \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \end{array} \times D,$$

then

$$\tau'_{\text{naive}} = \boxed{ \bullet \atop \bullet \atop c} \times \boxed{ \bullet \atop \bullet \atop \bullet} \times C, \quad \text{and} \quad \tau' = \boxed{ \bullet \atop \bullet \atop \bullet} \times \boxed{ \bullet \atop \bullet} \times C.$$

Note that in this case, the nonzero row lengths of $\check{\mathcal{O}}$ are 7, 7, 7, 3, and l'=3.

Definition 1.6. We define the descent of τ to be

$$\nabla(\tau) := \begin{cases} \tau', & \text{if the condition of Lemma 1.4 or 1.5 holds;} \\ \nabla_{\text{naive}}(\tau), & \text{otherwise,} \end{cases}$$

which is an element of PBP*($\check{\mathcal{O}}'$). Here τ' is as in Lemmas 1.4 and 1.5.

In conclusion, we have defined the descent map

$$\nabla: \mathrm{PBP}_{\star}(\check{\mathcal{O}}) \to \mathrm{PBP}_{\star'}(\check{\mathcal{O}}').$$

The Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853

Email address: dmb14@cornell.edu

School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

 $Email\ address: {\tt hoxide@sjtu.edu.cn}$

Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou, 310058, China

 $Email\ address: {\tt sunbinyong@zju.edu.cn}$

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076

 $Email\ address : \verb|matzhucb@nus.edu.sg| \\$