

General information

Designation

Prunus avium

Typical uses

Furniture; turnery; decorative ware;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 3.69e3	-	7.21e3	USD/m^3

Physical properties

Density	550	_	670	ka/m^3
Bellotty	000		010	Kg/III O

Mechanical properties

Mechanical properties				
Young's modulus	* 1.36	-	1.52	GPa
Yield strength (elastic limit)	* 2.64	-	3.18	MPa
Tensile strength	* 4.4	-	5.3	MPa
Elongation	* 0.94	-	1.15	% strain
Compressive strength	* 5.36	-	6.55	MPa
Flexural modulus	1.24	-	1.38	GPa
Flexural strength (modulus of rupture)	* 4.4	-	5.3	MPa
Shear modulus	* 0.141	-	0.193	GPa
Shear strength	* 30.9	-	37.5	MPa
Rolling shear strength	* 1.14	-	3.41	MPa
Bulk modulus	* 0.7	-	0.78	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	* 3.85	-	4.7	HV
Hardness - Brinell	27	-	33	НВ
Hardness - Janka	* 3.85	-	4.7	kN

Cherry (prunus avium) (t)

BEDUPACK	
Fatigue strength at 10^7 cycles	* 1.32 - 1.59 MPa
Mechanical loss coefficient (tan delta)	* 0.02 - 0.026
Differential shrinkage (radial)	0.16 - 0.18 %
Differential shrinkage (tangential)	0.26 - 0.3 %
Radial shrinkage (green to oven-dry)	* 3.2 - 7 %
Tangential shrinkage (green to oven-dry)	* 6.8 - 11.5 %
Volumetric shrinkage (green to oven-dry)	* 11 - 18 %
Work to maximum strength	* 7.5 - 9.1 kJ/m^3
Impact & fracture properties	
Fracture toughness	* 0.429 - 0.524 MPa.m^0.5
Thermal properties	
Glass temperature	77 - 102 ℃
Maximum service temperature	120 - 140 ℃
Minimum service temperature	* -7323 ℃
Thermal conductivity	* 0.093 - 0.114 W/m.℃
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃
Thermal expansion coefficient	* 29 - 39.3 µstrain/℃
Electrical properties	
Electrical resistivity	* 2.1e14 - 7e14 µohm.cm
Dielectric constant (relative permittivity)	* 3.49 - 4.27
Dissipation factor (dielectric loss tangent)	* 0.047 - 0.057
Dielectric strength (dielectric breakdown)	* 1 - 2 MV/m
Magnetic properties	
Magnetic type	Non-magnetic
Optical properties	
Transparency	Opaque
Critical materials risk	
Contains >5wt% critical elements?	No
Durability	
Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable

Cherry (prunus avium) (t)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	- 12.8	MJ/kg	
-------------------------------------	------	--------	-------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	kg/kg	
-----------------------------------	-------	---	-------	-------	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 665	-	735	l/kg			
-------------	-------	---	-----	------	--	--	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.568	-	0.627	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0426	-	0.0471	kg/kg
Fine machining energy (per unit wt removed)	* 1.4	-	1.55	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	kg/kg
Grinding energy (per unit wt removed)	* 2.33	-	2.57	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.175	-	0.193	kg/kg

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

