PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

• Prior and Posterior Probability

Event: Each possible outcome of a variable is called an event.

Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects in the real world.

Prior probability: The prior probability of an event is probability computed before observing new information

Posterior Probability: The probability that is calculated after all evidence or information has been taken into account. It is a combination of prior probability and new information.

Conditional probability:

Conditional probability is a probability of occurring an event when another event has already happened.

Let's suppose, we want to calculate the event A when event B has already occurred, "the probability of A under the conditions of B", it can be written as:

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

Where $P(A \land B)$ = Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be given as:

$$P(B \mid A) = \frac{P(A \land B)}{P(A)}$$

It can be explained by using the below Venn diagram, where B is occurred event, so sample space will be reduced to set B, and now we can only calculate event A when event B is already occurred by dividing the probability of $P(A \land B)$ by P(B).

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Example:

In a class, there are 70% of the students who like English and 40% of the students who likes English and mathematics, and then what is the percent of students those who like English also like mathematics?

Solution:

Let, A is an event that a student likes Mathematics

B is an event where a student likes English.

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{0.4}{0.7} = 57\%$$

Hence, 57% of the students who like English also like Mathematics.