International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules
Country: HUN

Molekulák

Péter molekulákat elemző gépet épített. Minden molekula súlya egész szám. A gép elemzési tartománya [l,u], ahol l és u egész szám. A gép egy molekulahalmazt akkor és csak akkor tud elemezni. ha van olyan részhalmaza a molekuláknak, amelynek az összsúlya az elemzési tartományba esik.

Pontosabban van n molekula, melyek súlya w_0,\dots,w_{n-1} egész számok. Az elemzés sikeres, ha vannak olyan páronként különböző indexek $I=i_1,\dots,i_m$, hogy $l\leq w_{i_1}+\dots w_{i_m}\leq u$.

Tudjuk, hogy a távolság l és u között nagyobb vagy egyenlő, mint a legnehezebb és a legkönnyebb molekula súlyának különbsége. Tehát $u-l \geq w_{max}-w_{min}$, ahol $w_{max}=\max(w_0,\dots,w_{n-1})$ és $w_{min}=\min(w_0,\dots,w_{n-1})$.

Írj programot, amely megkeres egy olyan részhalmazt, amelynek összsúlya az elemzési tartományba esik, vagy jelzi, ha nincs ilyen!

Megvalósítás

Az alábbi metódust kell megvalósítanod:

- o int[] solve(int I, int u, int[] w)
 - I és u: az elemzési intervallum két végpontja,
 - w: a molekulák súlyai.
 - ha van megfelelő részhalmaz, akkor egy ilyen részhalmaz elemeinek tömbindexeit tartalmazó tömb legyen a kimenet. Több megoldás esetén bármelyik megadható.
 - ha nincs ilyen részhalmaz, akkor üres tömb legyen az eredmény!

A függvény C nyelven az alábbi:

- o int solve(int l, int u, int[] w, int n, int[] result)
 - o n: a w tömb elemei száma (azaz a molekulák száma),
 - o a többi paraméter megegyezik a fentivel.
 - \circ a result tömb első m elemébe helyezd a megoldás tömbindexeit és m legyen a függvény visszatérési értéke!
 - ha nincs ilyen részhalmaz, a visszatérési érték 0 legyen!

Használd a mintában megadott függvényt!

Példák

1. példa

solve(15, 17, [6, 8, 8, 7])

ltt 4 molekula van 6, 8, 8 és 7 súlyokkal. A gép 15 és 17 összsúly közötti részhalmazt tud elemezni.

Megjegyzendő, hogy $17-15\geq 8-6$. Az 1. és 3.molekula összsúlya $w_1+w_3=8+7=15$, tehát a függvény értéke [1, 3]. Másik lehetséges helyes válaszok [1, 2] ($w_1+w_2=8+8=16$) és [2, 3] ($w_2+w_3=8+7=15$).

2. példa

solve(14, 15, [5, 5, 6, 6])

Itt négy molekula van 5, 5, 6 és 6 súllyal, és olyan részhalmazt keresünk, amely összsúlya 14 vagy 15. Itt is igaz, hogy $15-14 \ge 6-5$.

Nincs olyan részhalmaz, amelynek összsúlya 14 és 15 közé esik, tehát üres tömb az eredmény.

3. péda

solve(10, 20, [15, 17, 16, 18])

ltt négy molekula van 15, 17, 16 és 18 súllyal, és 10 és 20 közötti összsúlyú részhalmazt keresünk.

Ismét igaz, hogy $20-10 \geq 18-15$.

Minden egyelemű halmaz megoldás: [0], [1], [2] és [3].

Részfeladatok

- 1. (9 pont): $n \leq 100$, $w_i \leq 100$, minden w_i egyforma.
- 2. (10 pont): $n \leq 100, w_i \leq 1000$, és $max(w_0,\ldots,w_{n-1}) min(w_0,\ldots,w_{n-1}) \leq 1$.
- 3. (12 pont): $n \leq 100$ és $w_i, u, l \leq 1000$.
- 4. (15 pont): $n \le 10\,000$ és $w_i, u, l \le 10\,000$.
- 5. (23 pont): $n \le 10\,000$ és $w_i, u, l \le 500\,000$
- 6. (31 pont): $n \leq 200\,000$ és $w_i, u, l < 2^{31}$.

Minta értékelő

A mintaértékelő az alábbi 2 sort olvassa:

- \circ 1. sor: n, l, u egészek.
- \circ 2 . sor: n darab egész szám: w_0, \ldots, w_{n-1} .