

SEA regression report summary

Sample ID 001e 70° 2

Details					
Software and regression log					
Software about	Semilab - Spectroscopic Ellipsometry Analyzer - SEA				
Software version	1.7.1				
Officially licensed to	MIT				
Operator	operator				
Date and time of regression	14-07-2021 14:18				
Comments					

Regression results

Measurement information							
Measurement file path	C:\Users\emmabat\ito	-si\001e	e.smdx				
Angle of Incidence	70°						
Regression details							
Regression 1 (EllipsoReflectance)							
Wavelength range	239.84 - 1698.83 nm						
Angle of Incidence	70°						
Fit to	<n>, <k></k></n>						
Angular Aperture	0°						
Fit algorithm	LMA						
Results							
Parameters	Value	Fitted	2 σ confidence limit	Unit			
Model							
AOI Shift	0			0			
Angular Aperture	0			0			
Phase 2 (ITO + void)							
Thickness	3.24	Х	0.16231	nm			
Depolarization coefficient	0.33333						
Concentration 1	0.5						
Concentration 2	0.5						
Phase 1 (ITO)							
Thickness	130.664	Х	0.25788	nm			
A (eV)	268.77642	Х	22.099	eV			
E0 (eV)	9.80015	Х	0.19401	eV			
C (eV)	39.49193	Х	4.17398	eV			
Eg (eV)	2.63904	Х	0.014828	eV			
E_p (eV)	0.89118	Х	0.010186	eV			
E_Γ (eV)	0			eV			
Eps_inf	0						
Derived parameters	Value						
Phase 2 (ITO + void)							
n @ 632.8 nm	1.4991						
k @ 632.8 nm	0						
Phase 1 (ITO)							
n @ 632.8 nm	2.056						
k @ 632.8 nm	0						
Substrate (si)							
n @ 632.8 nm	3.8811						
k @ 632.8 nm	0.0195						
Drude derived parameters	Value	Unit					
Phase 1 (ITO)							
Conductivity (S/m)	∞ ± NaN	S/m					
Resistivity (mΩ.cm)	0 ± NaN	mΩ.cm					
Resistance (Ω/sq)	0 ± NaN	Ω/sq					
N type dopant concentration (at/cm3)	1.44E+20 ± 3.2918E+		at/cm3				

P type dopant concentration (at/cm3)	2.1312E+20 ± 4.8719E+18	at/cm3		
N type dopant mobility (cm2/Vs)	∞ ± NaN	cm2/Vs		
P type dopant mobility (cm2/Vs)	∞ ± NaN	cm2/Vs		
Fit quality				
R^2	0.99649			
RMSE	0.05559			

Regression graphs

Phase 2 (ITO + void) - Dispersion graphs

Phase 1 (ITO) - Dispersion graphs

Substrate (si) - Dispersion graphs

Correlation coefficients										
	Ph2 - ITO + void - Thickness	Ph1 - ITO - Thickness	Ph1 - Tauc- Lorentz[1] - A (eV)	Ph1 - Tauc- Lorentz[1] - E0 (eV)	Ph1 - Tauc- Lorentz[1] - C (eV)	Ph1 - Tauc- Lorentz[1] - Eg (eV)	Ph1 - Drude[2] - E_p (eV)			
Ph2 - ITO + void - Thickness	1	-0.4188	-0.1092	0.0075	-0.1065	-0.0241	-0.1016			
Ph1 - ITO - Thickness		1	-0.0052	0.0226	0.0299	0.0063	-0.3049			
Ph1 - Tauc- Lorentz[1] - A (eV)			1	0.193	0.9727	0.8757	0.4595			
Ph1 - Tauc- Lorentz[1] - E0 (eV)				1	0.4113	-0.1832	0.4069			
Ph1 - Tauc- Lorentz[1] - C (eV)					1	0.7617	0.4996			
Ph1 - Tauc- Lorentz[1] - Eg (eV)						1	0.3071			
Ph1 - Drude[2] - E_p (eV)							1			