Discriminant Analysis

Tuesday, July 11, 2023 1:07 PM

Bivariate Normal Density - r= 0.0

Bivariate Normal

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim |Vormal| \left(\overline{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right)$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim |Vormal| \left(\overline{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \sum = \begin{bmatrix} Var(X_1) & (ov(X_1 X_2)) \\ (ov(X_2 X_1) & Var(X_2) \end{bmatrix} \right)$$

Multivariate Normal

$$X_1$$
 X_2
 X_2

Multi-variate X_1
 X_2
 X_3

Normal

 X_4
 X_4
 X_4
 X_4
 X_5
 X_6
 X_1
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4

$$\delta_{i}(\bar{x}) = x^{T} \sum_{i=1}^{-1} \mu_{i} - \frac{1}{2} \mu_{i}^{T} \sum_{i=1}^{-1} \mu_{i} + \log(P(C_{i}))$$

$$\downarrow_{i \times i} \downarrow_{i \times i}$$

Testing	1		ı	1
X1 X2XK	\mathcal{S}_{A}	$\int_{\mathcal{B}}$	fc	Prediction
	18.	19,	220	C

, - __ U		- , ,	- 15		1
A	A, B, _	18.	19,	220	C
A	Ć				
В					
B					
خ				\	
\mathcal{C}					

Gaussian NB: Consider/Assume all the features to be independent

Discomment: - Not necessarily all features independent