CSE232 Assignment 4

Nurseiit Abdimomyn – 20172001

- 1. a = 6, b = 2, c = 3. So, $6 \mid (2 * 3), 6 \nmid 2, 6 \nmid 3$.
- 2. Because 7 and 123 are coprime, we have by Euler's Theorem: $\phi(7) = 6$ and $123^{456} \equiv 123^{456 \mod \phi(7)} \pmod{7}$. So, $123^{456} \equiv 123^{456 \mod 6} \equiv 123^0 \equiv 1 \pmod{7}$.
- 3. It's sufficient to check for 6 congruent clasess.

For
$$n \equiv 0, 0^2 \mod 6 \equiv 0 \neq 2$$
. (mod 6)

For
$$n \equiv 1, 1^2 \mod 6 \equiv 1 \neq 2$$
. ($\mod 6$)

For
$$n \equiv 2, 2^2 \mod 6 \equiv 4 \neq 2$$
. ($\mod 6$)

For
$$n \equiv 3, 3^2 \mod 6 \equiv 3 \neq 2$$
. (mod 6)

For
$$n \equiv 4, 4^2 \mod 6 \equiv 4 \neq 2$$
. (mod 6)

For
$$n \equiv 5, 5^2 \mod 6 \equiv 1 \neq 2$$
. (mod 6)

4. The strongly connected components are:

$$\{i\}$$

$$\{a,b,c\}$$

$$\{d,e,g,h\}$$

- $\{f\}$
- 5. (a) Has an Euler path because it has exactly two vertices with odd degree. $\{d,f\}$
 - (b) Doesn't have Euler circuit not all vertices have even degree.
 - (c) It has a Hamilton Path as: $\{a,b,e,f,g,c,d\}$

- (d) By Dirac's Theorem we know that in a graph with $3 \le n$ vertices, if each vertex has $n/2 \le deg(v)$, then the graph has a Hamilton circuit. However, this theorem is not neccessary but it is sufficient. A quick manual check gives us that this graph doesn't have a Hamilton circuit.
- 6. We know that every graph that doesn't have a cycle of odd length is bipartite.

All trees are acyclic so we might say that they have a cycle of length 0 which is even.

Thus, all trees are bipartite.