データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ	構造と	アルゴリズム	(松井ク	ラス)講義日程と内容(予定)
2EP2、	2EP3	@23. 323		第2版 5月7日
日	付	曜日	講義回数	学習内容
4 月	10日	(水)	第1回	授業のガイダンス,アルゴリズムの基礎,時間計算量
	17日	(水)	第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)	第3回	アルゴリズムにおける基本概念(木,再帰)
5月	8日	(水)	第4回	データの探索
	15日	(水)	第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)	第6回	ソートアルゴリズム 2 (クイックソート,マージソート)
	29日	(水)		休講
	3 1 日	(金) 4限	第7回	ソートアルゴリズムのまとめ 2クラス合同小テスト (教室は23・221)
6月	5 日	(水)	第8回	グラフアルゴリズム 1 (グラフとそのデータ構造)
	12日	(水)	第9回	グラフアルゴリズム2(重み付きグラフ、最短経路探索)
	19日	(水)2EP2穴水		総合演習(2EP2)/アルゴリズム設計手法(2EP3)
	26□	(水)2EP3穴水	第11回	<u>アルゴリズム設計手法 (2EP2) / 総合演習 (2EP3)</u>
	28日	(金) 4限		アルゴリズム設計手法(2EP2)@23.320/総合演習(2EP3)
7月	3 日	(水)	第12回	総復習
	10日	(水)	第13回	達成度確認試験の過去問
	19日	(金) 4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)		休講
	3 1 日	(水)	第15回	試験の解答、総復習、自己点検

前回のおさらい

■ データの探索

- > 線形探索法
- ▶ 2分探索法
- > ハッシュ法
 - データの格納
 - 衝突
 - オープンアドレス法
 - チェイン法
 - データの探索

今回の内容

■ ソートアルゴリズム

- ➤ 選択ソート
- ▶ 挿入ソート
- > ヒープソート
 - ヒープ(データ構造)
 - ヒープへのデータ追加
 - ヒープからの最大値取り出し
 - ヒープソート

選択ソート

■ アルゴリズム

- ▶ 前提:n個のデータが入力されている
- ① 入力データから最大値を見つける
- ② 見つけた最大値のデータを対象から外す
- ③ 12の操作をn-1回繰り返す

■ 時間計算量

$$\sum_{i=1}^{n-1} i \times O(1) = O(1) \times \frac{n(n-1)}{2}$$
$$= O(n^2)$$

選択ソート(具体例)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

選択ソート(具体例)

挿入ソート

■ アルゴリズム

- ▶ 前提:n個のデータをソートの対象とする
- ① 最初のデータを左端に置く
- ② 次のデータは元のデータに合わせて昇順に並べる
- ③ 12の操作をn-1回繰り返す

■ 時間計算量

- ▶ 最良時間計算量:ソート済の場合 O(n)
- ▶ 最悪時間計算量:選択ソートと同じ O(n²)
- ➤ 平均時間計算量: O(n²)

挿入ソート(具体例)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

挿入ソート(具体例)

ヒープ

■ ヒープの定義

- ▶ 2分木で必ず左詰め
 - 性質1 2分木の最大のレベルをlmとすると、 $0 \le k \le lm-1$ を満たす 各レベルk には 2^k 個の節点が存在し、レベルlmに存在する葉はその レベルに左詰めされている.
- ▶ 親は子よりも必ず大きい
 - 性質2 各節点に保存されるデータは、その子に保存されるデータより大きい

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

ヒープ

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

K. I. T.

ヒープへのデータ構造の作成

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39	17	24	11	5	1	2	9		
0	1	2	3	4	5	6	7	8	9

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39	23	24	17	5	1	2	9	11	
0	1	2	3	4	5	6	7	8	9

K. I. T.

ヒープへのデータ構造の作成

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

ヒーブ

39	23	24	17	6	1	2	9	11	5
0	1	2	3	4	5	6	7	8	9

■ 方法

- ▶ 2分木の左詰めで追加
- ▶ 親と比べて親が小さければ位置を交換
- ▶ 親が大きければ終わり

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

39	23	24	17	6	1	2	9	11	5	31
0										

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

■ 方法

- ▶ 2分木の根の値(最大値)を取り出す
- ▶ 最後に追加したデータを根に移動する
- ▶ 根と根の子の大きい方を交換する
- ▶ 上記の操作を葉に向かって繰り返す(ヒープを保つ)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

	5	23	24	17	6	1	2	9	11	
•	0	1	2	3	4	5	6	7	8	9

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

ヒーブ

24	23	5	17	6	1	2	9	11	
0	1	2	3	4	5	6	7	8	9

K. I. T.

ヒープから最大値の取り出し

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39

ヒープ

ヒープソート

- アルゴリズム
 - ▶ 毎回最大値を取り出したものを順に並べる
- 時間計算量
 - ➤ 最悪時間計算量 2×n× log n = O(n log n)

第5週出席課題

【出席課題】学籍番号: クラス・番号: 氏名:

1. 以下の文章の①~⑦について、それぞれ正しい記号を下から選べ、正しい記号が複数存在する場合はすべて列挙せよ、ただし、②~⑦については、もっとも適切なものを1つだけ選ぶこと。

ソートとは、与えられたデータを決められた順番に並べるといる場合であるが、ソートのアカは、グラ

う操作であるが、ソートの入力は(①).

n 個のデータを格納しているヒープに対して、データを1 つ追加するのに必要な時間計算量は(②)であり、最大のデータを削除するのに必要な時間計算量は(③)である。

サイズがnのデータに対する挿入ソートの最良時間計算量は(④)であり、最悪時間計算量は(⑤)である。また、同じデータに対するヒープソートの最良時間計算量は(⑥)であり、最悪時間計算量は(⑦)である。

- ①:a. 整数でなければならない
 - b. 全順序関係が成り立たなければならない
 - c. 同じ値が存在してはいけない
 - d. 昇順に並んでいなければならない
- ②: a. $O(n^2)$ b. O(n) c. $O(\log n)$ d. O(1)
- \bigcirc a. $\mathcal{O}(n^2)$ b. $\mathcal{O}(n)$ c. $\mathcal{O}(\log n)$ d. $\mathcal{O}(1)$
- 4: a. $O(n^2)$ b. $O(n \log n)$ c. O(n) d. O(1)
- (5): a. $O(n^2)$ b. $O(n \log n)$ c. O(n) d. O(1)
- (6): a. $O(n^2)$ b. $O(n \log n)$ c. O(n) d. O(1)
- \bigcirc : a. $\mathcal{O}(n^2)$ b. $\mathcal{O}(n \log n)$ c. $\mathcal{O}(n)$ d. $\mathcal{O}(1)$