(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年2月15日 (15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

- (51) 国際特許分類7: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04
- (21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11/220864 1999 年8 月4 日 (04.08.1999)

- (71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA, Tatsuki) [JP/JP]; 〒191-0065 東京都日野市旭 が丘4丁目3番2号 帝人株式会社 東京研究センター 内 Tokyo (JP). 須藤正樹 (SUDOH, Masaki) [JP/JP]; 〒 475-0837 愛知県半田市有楽町7丁目106-1 ユートピ アタウン112D Aichi (JP). 横山朋典 (YOKOYAMA, のガイダンスノート」を参照。

Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中 西頭伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東 京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研 究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東 京都千代田区内幸町2丁目1番1号 帝人株式会社 知的 財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語

(54) Title: CYCLIC AMINE CCR3 ANTAGONISTS

(54) 発明の名称: 環状アミンCCR3拮抗剤

(57) Abstract: Drugs containing as the active ingredient cyclic amine derivatives represented by general formula (1), pharmaceutically acceptable acid addition salts thereof or pharmaceutically acceptable C1.6 alkyl adducts thereof. These drugs are efficacious in preventing and treating diseases in which CCR3 participates such as asthma and allergic rhinitis.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 商炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびク ローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症 、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、およ び好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸 潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不 全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対す る治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

10

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫, 現代医療, 1999, 31, 1297など参照)。例えば、サル 20 の喘息モデルにおいて抗接着分子(I CAM-1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された(例えば、Jose, P. J., et al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシンー2、RANTES(regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2(monocyte chemoattractant protein-2の略称)、MCP-3(

15

monocyte chemoattractant protein—3の略称)、MCP-4 (monocyte chemoatt ractant protein—4の略称) などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている (例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. eta l., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. eta l., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要 な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息 モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, 20 J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギー モデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657) 、マウスモデルにおいて 抗工オタキシン抗体が肺肉芽腫の形成を抑制すること (Ruth, J. H. et al., J. I mmunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モ デルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健 常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルとも に亢進していること (Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照) 、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(A 30 m. J. Respir. Cell Mol. Biol., 1997, 17, 683参照) などが報告されている。

20

25

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性間の腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR 3レセプターは好酸球のみならず好塩基球、Th 2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR 3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス 感染に起因するエイズ (AIDS:後天性免疫不全症候群)の治療薬もしくは予防薬としても有用であると考えられる(例えば、et al., Choe, H. et al., Cell, 19 96. 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035876; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W099553300; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同っのものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

5

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供するこ とである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン 誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容さ れ得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結 合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関 与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さら に研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

[式中、R はフェニル基、C₃-C₈シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 10 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、C₁~C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C,-C。アルキル基、C,-C。シクロアルキル基、C,-C。アルケニル基 、C,-C,アルコキシ基、C,-C,アルキルチオ基、C,-C,アルキレン基、C, 15 -C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C。 -C,アルカノイル基、C,-C,アルコキカルボニル基、C,-C,アルカノイルオ キシ基、C2-C2アルカノイルアミノ基、C2-C2N-アルキルカルバモイル基、 $C_4 - C_5 N - シクロアルキルカルバモイル基、<math>C_1 - C_5 アルキルスルホニル基、C$ 20 $_3$ -C $_8$ (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくは、ジ($C_1 - C_6$ アルキル)アミノ基で置換されていてもよく、これらのフェニル基、CューC。シク 25 ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁-C₆アルキル基、 もしくはC,-C。アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒ 30 ドロキシ基、またはフェニル基を表し、 R^2 における $C_1 - C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、 ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換 されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C ₆アルコキシ基、C₁-C₆アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 15 、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₂アルカノイル基、C₂-C₂アルコキシカルボニル 基、 $C_2 - C_3$ アルカノイルオキシ基、 $C_3 - C_3$ アルカノイルアミノ基、 $C_3 - C_3$ N 20 ーアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ -C。アルキル) アミノ基、ジ(C,-C。アルキル) アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 25 素を形成していてもよい。

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

30

いっしょになってC2-C5アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3 個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_6 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、

- 3 フェニルウレイド基、 $C_2 C_7$ アルカノイル基、 $C_2 C_7$ アルコキシカルボニル基、 $C_2 C_7$ アルカノイルオキシ基、 $C_2 C_7$ アルカノイルアミノ基、 $C_2 C_7$ N-アルキルカルバモイル基、 $C_1 C_6$ アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ($C_1 C_6$ アルキル)スルファモイル基、アミノ基、モノ($C_1 C_6$ アルキル)アミノ基、ジ($C_1 C_6$ アルキル)アミノ基、ベンジルアミノ基、
- C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、
- C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。]

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンな PCT/JP00/05260 どのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すな わち、上記式(I)で表される化合物はCCR3拮抗剤である。

発明を実施するための最良の形態

上記式(I)において、 R^1 はフェニル基、 C_3-C_8 シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子

- を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 10 上記R 「におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族復素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2 $-C_6$ アルケニル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_3 - C_5
- Pルキレン基、 C_2 $-C_4$ Pルキレンオキシ基、 C_1 $-C_3$ Pルキレンジオキシ基、フ エニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキカルボニル基、 C_2 $-C_{7}$ アルカノイルオキシ基、 $C_{2}-C_{7}$ アルカノイルアミノ基、 $C_{2}-C_{7}$ Nーアル キルカルバモイル基、 C_4-C_9 $N-シクロアルキルカルバモイル基、<math>C_1-C_6$ アル
- キルスルホニル基、 C_3-C_8 (アルコキシカルボニル)メチル基、N-フェニルカ20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1~ピロリジ ニルカルボニル基、式:-NH (C=O) Oーで表される2価基、式:-NH (C=S) O-で表される2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、も しくはジ (C,-C。アルキル) アミノ基で置換されていてもよい。
- R 1 における「 C_{s} $^{-}$ C_{s} 2 $^{$ 25 プチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基な どの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、 ^{シクロペンチル基、およびシクロヘキシル基などが挙げられる。}

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イ

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

5 R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{1} におけるフェニル基、 $C_{3}-C_{8}$ シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ヨウ素原子などを意味する。

 R^1 の置換基としての「 C_1-C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペプチル、n-ペンチル、n-ペプチル、n-ペンチル、n-

 R^1 の置換基としての「 C_3 - C_8 シクロアルキル基」とは、前記 R^1 における「 C_3 - C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2 - C_6 アルケニル基」とは、例えば、ビニル、アリル、1-プロペニル、2-ブテニル、3-ブテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2 - C_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および2-メチル-1-プロペニル基などが挙げられる。

15

20

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルチオ基」とは、前記 $C_1 - C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2 - C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルブタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルコキシカルボニル基」とは、前記 C_1 - C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

WO 01/10439 PCT/JP00/05260

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 アルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

10 R^1 の置換基としての「 C_4-C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3-C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルスルホニル基」とは、前記 $C_1 - C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが挙げられる。

20

25

30

 R^1 の置換基としての「モノ($C_1 - C_6$ アルキル)アミノ基」とは、前記 $C_1 - C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ($C_1 - C_6$ アルキル)アミノ基」とは、同一または異なった2つの前記 $C_1 - C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル-N-メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_3 - C_5$ アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、メチレンジオキシ基、

10

15

20

25

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C_1 - C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、N-プン原子、ヒドロキシ基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、 芸術物表際は、 すたりは C_4 アルカル

ル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。 上記式(I)において、 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アル

コキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1 C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1 C_6 アルキル基、もしくは C_1 C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでも R^2 は、水素原子を表す場合が特に好ましい。

上記式 (I) において、jは0-2の整数を表す。jは0である場合が特に好ましい。

30 上記式 (I) において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

WO 01/10439 PCT/JP00/05260 1 3

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが 2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の 3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2であ る場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジ ンを挙げることができる。

上記式(I)において、nは0または1を表す。

5

15

特に、kが1でmが2でnが0である場合の3ーアミドピロリジン、およびkが 2でmが2でnが1である場合の4-(アミドメチル)ピペリジンを特に好ましい 例として挙げることができる。

10 上記式(I)において、R3は水素原子、または(それぞれ同一または異なった任 意個のハロゲン原子、ヒドロキシ基、C,-C。アルキル基、もしくはC,-C。アル コキシ基によって置換されていてもよい1または2個のフェニル基)によって置換 されていてもよいC、一C。アルキル基を表す。

 R^3 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シク ロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと 同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基 が挙げられる。

R³におけるC₁-C₆アルキル基の置換基としてのフェニル基の置換基としてのハ ロゲン原子、C₁-C₆アルキル基、およびC₁-C₆アルコキシ基は、それぞれ、前 20 記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮 合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として 挙げることができる。

なかでも、R³は水素原子または無置換のC₁-C₆アルキル基である場合が特に好 ましい。

上記式(I)において、R⁴およびR⁵は、同一または異なって、水素原子、ヒド 25 ロキシ基、フェニル基、またはC₁-C₆アルキル基を表し、R⁴およびR⁵における C,-C,アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ 基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、C¸-C¸シ クロアルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、(任意個のハ ロゲン原子、ヒドロキシ基、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしく 30 はベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

ペンジルオキシ基、ペンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6 員環状炭化水素を形成していてもよい。

 R^4 および R^5 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 10 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイ

- 15 ルアミノ基、 C_2-C_7 N- アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。
- R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基 としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前 記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮 合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体 例として挙げることができる。

 R^4 、 R^5 およびその隣接炭素原子とからなる「3-6 員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。なかでも、水素原子と C_1-C_6 アルキル基を、 R^4 と R^4

25

5の特に好ましい例として挙げることができる。

上記式(I) において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(I)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと

15 同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

 $-C_6$ アルキルチオ基、 C_1 - C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2 - C_7 アルカノイル基、 C_2 - C_7 アルコキシカルボニル基、 C_2 - C_7 アルカノイルオキシ基、 C_2 - C_7 アルカノイル アミノ基、 C_2 - C_7 アルカルバモイル基、 C_1 - C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N- \mathcal{O} (C_1 - C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 - C_6 アルキル) アミノ基、 \mathcal{O} (C_1 - C_6 アルキル) アミノ基、ベンジルアミノ基、 \mathcal{O} (\mathcal{O} (\mathcal{O}) アミノ基、 \mathcal{O}) アミノ基、 \mathcal{O} (\mathcal{O}) アミノ基、 \mathcal{O}) アミノ基、もしくはビス (\mathcal{O}) アミノエルスルホニル) アミノ基により置換されていてもよい。

 R^6 における C_3-C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R 6 における「 C_3 - C_8 シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては、1 - シクロペンテニル基、1 - シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好ましい例として挙げることができる。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_1 - C_3$ アルキレンジオキシ基、 $C_2 - C_7$ アルカノイル基、 C_2 $- C_7$ アルコキシカルボニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シ

WO 01/10439 PCT/JP00/05260

17

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、

5 シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基など を挙げることができる。

10

15

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具 体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同 20 一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基 などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

さらに、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ

10

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

5

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable 1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd. No.	R ² (CH ₂) _i -	k	m	n	chirality	[.] R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1	С├-{	1	2	0	-	н	- CH ₂ -N- C-
2	CH_CH ₂ -	1	2	0	-	н	- CH ₂ -N-C-CH ₃
3	С⊢ СН₂-	1	2	.0	-	н,	- CH2-N-C-(N)
4	С├-{}СН₂-	1 .	2	0	- ·	н .	- CH ₂ -N-C-CF ₃
5	CHCH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
6	CH-CH ₂ -	1	2	0 :	S	н	- CH ₂ - N C-√ F ₃ C
7	CH-CH₂-	. 1	2	0	S	Н	- CH ₂ -N-C
8	CH-CH₂-	1	2	0	S	н .	-CH ₂ -N-C
	C⊢-CH₂-					н	-CH ₂ -N-CI
10	С⊢-СН₂-	1	2	0	S	н	-CH₂-N-C-
11	С⊢-{	1	2	0	S	н	- CH ₂ -N-C

Table 1.2

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
12	CI-CH ₂ -	1	2	0	S	н	- CH2- M C- OCH3
13	C⊢√ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
14	CH-CH ₂ -	1	2	0	S	н .	-CH ₂ -N-C-CH ₃
15	CH-2-	1	2	0	S .	н .	-CH2-N-C
16	CH2-	1	2	0.	S	. н	-CH2-N-C- O O O O O O O O O O O O O O O O O O
17	CH-CH₂-	1	2	0	S	Н	- CH ⁵ - M C - CI
18	C⊢(CH₂-	1	2	0	S	. н	-CH ₂ -N-C-CN
19	C⊢(CH ₂ -	1	2	0	S	н	-CH ₂ -NC
20	CH ₂ -	1	2	0	S .		-CH ₂ -N-C-CF ₃
21	CH-CH ₂ -	1	2	0	S	н .	-CH ₂ -NC- H C- F CF ₃
22	C├ - CH₂-	1	. 2	0	S	н	- CH ₂ -N C CF ₃

Table 1.3

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
23	C├ - CH₂-	1	2	0	S	Н	-CH ₂ -N-C-
24	С├─{	1	2	0	S	н	-CH ₂ -N-C
25	CH-CH ₂ -	1	2	0	S	н	-CH2-N-C
26	CHCH2-	1	2	0	S .	н	-CH ₂ -N-C
27	CH2-	1	2	0	S	. н	- CH ₂ -N-C
28	СН2-	1	2	0	S	Н	- CH ₂ - N C - NO ₂
29	C ⊢ CH ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 CF_3
30	CH-2-	1	2	0	R	H	- CH ₂ -N-C
31	CI⟨	1	2	0	R	Н	- CH2- N C - Br
32	CI—⟨¯¯) CH₂-	1	2	0	R	н	- CH ₂ -N-C-
33	С├-СН₂-	1	2	0	R	н	- CH ₂ -N-C- CI

Table 1.4

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	[°] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
. 34	CH√CH₂-	1	2	0	R	н	-CH ₂ -NC-OCH ₃
35	CH-{	1	2	0	R	н	-CH ₂ -N-C
36	CH-CH ₂ -	1	2	0	R _.	н	-CH2-N-C-OCH3
37	CH-2-	1	2	0	.R	н .	-CH ₂ -N-C-CF ₃
38	CH-CH ₂ -	1	2	0	R	H	- CH ₂ -N-C-CH ₃
39	С├ - СН ₂ -	1	2	0	R	H	- CH ₂ -N-C
40	CH-2-	1	2	0	R	Н	-CH ₂ -N C- OCH ₃
41	C├	1	2	0	R	н	- CH ₂ - N- CI
	CH2−						- CH ₂ -N-C-CN
43	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
44	С⊢-{СН₂-	1	2 .	0	R	н	-CH ₂ -N-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O

Table 1.5

Compd No.	. R ¹ (CH ₂)	k	m n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
45	с⊢С≻сн₂-	1	2 0	R	н	-CH ₂ -N-C-
46	С⊢√СН₂-	1	2 0	R	Н	- CH ₂ -N-C
47	С├─॔ СН₂-	1 :	2 0	R	н	- CH ₂ -N-C
48	CH-CH ₂ -	1 2	2 0	R	н	- CH ₂ -N-C
49	C├ - CH₂-	1 2	0	R	н	- CH ₂ -N C - O ₂ N
50	C├────────────────────────────────────	1 2	0	R	н	- CH ₂ -N-C-CF ₃
51	CH2-	1 2	0	R	н	- CH ₂ -N-C
52	C⊢—CH₂-	1 2	0	R	н	-CH ₂ -N-C-
53	C⊢√CH₂-	1 2	0	R	н	-CH ₂ -N-CI
54	CH-2-	1 2	0	R		-CH ₂ -N-C-
55	ССН2-	1 2	0	R	н	-CH₂-N-C- CI

Table 1.6

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
56	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-
57	C⊢√CH₂-	1	2.	0	R	н	-CH ₂ -N-C
- 58	C⊢√CH₂-	1	2	0	R	н.	- CH ₂ -N-C-CI
59 -	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C
60	C⊢———CH ₂ -	1	2	0	R	н	-CH ₂ -N C-
61	CH2−	1	2	0	R	н	O -CH ₂ -NC-CF ₃
62	CH-2-	1	2	0	R	.'	-CH ₂ -N C- H C- CH ₃
63	C├ ~ CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
64	C⊢√CH ₂ -	1	2	0	R	н	-CH ₂ -N-CH
65	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
66	C⊢-(□) CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-

Table 1.7

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) ,
67	CH-2-	1	2	0	R	Н	- CH ₂ - N- C-
68	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C
69	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
70	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
71	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C
72	C├─ \ CH ₂ -	1	.2	0	r. R	н	-CH ₂ -N-C
73	CH-CH₂-	1	2	0	R	н ′	- CH ₂ -N-C
74	С⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C- H C- CO ₂ CH ₃
75	CH-2-	1	2	0	R	н	$-CH_2-NC$ F_3C
76	CH-2-	1	2	0	R	н	- CH ₂ - N- C
77	C├ - CH₂-	1	2	0	R		- CH ₂ -N-C
							

Table 1.8

			•				
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
78	С⊢СН2-	1	2	0	R	н	-CH ₂ -N-C
79	CI-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
80	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
81	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CH ₃
82	CH-CH ₂ -	1	2	0	-	−CH ₃	-CH ₂ -N-C-CF ₃
83	CH-2-	1	2	0	R	Н, -	-CH ₂ -N-C-\(\sigma\)
84	CH-2-	1	2	0	R	н	-CH ₂ -N-CNO ₂
85	CH2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	C├────────────────────────────────────	1	. 2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	CI—CH ₂ -	1	2 .	0	S	н	-(CH ₂) ₂ -N-C

Table 1.9

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
89	C⊢√ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CI—CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
91	C⊢—CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	С├─{_}-СН₂-	1	2	0	S	H	~(CH ₂) ₂ -N-C-
93	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
94	C├ \	1	2	0	S	Н	-(CH ₂) ₂ -N-C-OCH ₃
95	CH_CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
96	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
97	СН-СН2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
98	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
99	С⊢-{_}СН₂-	1	2	0	S _.	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

Compd.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂)p
100	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-CN
101	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	с⊢√СН₂-	1	2	0	S	H	-(CH ₂) ₂ -N-CF ₃
103	С⊢СН2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	C├ - CH2-	1	2	0	S	н ,	-(CH ₂) ₂ -N-C-F ₃
105	C⊢ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	C⊢-€CH ₂ -	1	2	0	S	н .	-(CH ₂) ₂ -N-C
	C├					н	-(CH ₂) ₂ -N-C
108	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-O ₂ N
							-(CH ₂) ₂ -N-C-NO ₂
110	C	1	2	0	s	н	-(CH ₂) ₂ -N-C-NC ₂

Table 1.11

C 1	pl						
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
111	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
113	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
114	CH-2-	1	2	0	R	н	~(CH ₂) ₂ -N-C-
115	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	C├	1	2	0	R	Н	-(CH ₂) ₂ -N-C
117	CH ₂ -	1	2	.0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	C⊢√ CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
119	CH- (CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-C-CF ₃
120	С⊢-{}СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	C├ (1 :	2	0	R	Н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	C├ - CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
123	CI—(¯¯)-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C - CI
124	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
125	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
126	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
127	CHCH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
128	C	1	2	0	R	н	-(CH ₂) ₂ -N-C
129	CH2-	1	2	Ö	R	Н	-(CH ₂) ₂ -N-C-CF ₃
130	C	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCF ₃
131	C├ - CH ₂ -	1	2	0.	R .	н	-(CH ₂) ₂ -N-C-CF ₃
132	С⊢-{	1	2	0	R	н	$-(CH_2)_2 - N - C - O - F$ $-(CH_2)_2 - N - C - O - F$ O_2N

Table 1.13

Compd. No.	R (CH ₂);-		k r	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	CI—CH2-		1 2	2 0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	C	1	2	2 0	R	н	-(CH ₂) ₂ -N-C-(-NO ₂
135	CI-CH ₂ -	1	2	0	R	н .	-(CH ₂) ₂ -N-C
136	CH-CH ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C-
137	CH2~	1	2	0	R	н	~(CH ₂) ₂ − N· C − CI
138	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
139	СН-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
140	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
141	CHCH ₂ -	1	2	0	R	н	H ₃ CO O O -(CH ₂) ₂ -N C H ₃ CO H ₃ CO
142 (CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143 (CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

Table 1.14

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	۲	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
144	CICH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
146	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N C-CH ₂ CH ₃
148	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CN
149	CCH₂-	1	2 .	0	R	н	-(CH ₂) ₂ -N-C-
150	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
151	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	CHCH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C
154	СН-СН2-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C- H-C- F

Table 1.15

							•
Compd. No.	$: R^{1} \longrightarrow (CH_{2})_{i}$	k	m	ı n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-{	1	2	. 0	R	Н	-(CH ₂) ₂ -N-C
156	C├────────────────────────────────────	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H - CH ₃
159	C├ - CH ₂ -	1	2	0	R	H.	-(CH ₂) ₂ -N C
160	CH-CH ₂ -	. 1	2	0	R	н	-(CH ₂) ₂ -N-C
161	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -NC
	CI—CH₂-					н	-(CH ₂) ₂ -N-C-F
163	C├ ~ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
	CH-2-						-(CH ₂) ₂ -N-C-CF ₃
165	CHCH₂-	1 ;	2	0	R	н	O CH ₃ .

Table 1.16

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
166	CI-CH ₂ -	1	2	0	R	н	(S) P CF ₃ -CH ₃ CH ₃
167	CH-2-	1	2	0	R ·	н	(S) P -CH-N-C- H CH ₃
168	CH-CH ₂ -	1	2	0	R	H	(S) Q -CH-N-C
169	CH-CH ₂ -	1	2	0	R	н	(S) P C-CI -CH ₃ CH ₃
170	CH-CH ₂ -	1	2	0	R .	H	(S) P CF ₃ -CH-N-C F
171	CH-CH2-	1	2	. 0	R	н .	(S) -CH-N-C-CD-CI CH ₃
172	CHCH ₂ -	1	2	0	·R	H .	(S) 0 -CH+N-C-
173	CH-CH ₂ -	1	2	0	R	н	(S) Q NO₂. -CHN-C- NO₂. CH3
174	CH-CH2-	1	2	0	R	н	(A) PC-CF3 -CH-N-C-CF3 -CH3
175	CH-CH2-	1	2	0	R	н	(A) Br -C++N-C-
176	C├ - CH ₂ -	1	2	0	R	н	(F) O CI

Table 1.17

1 4070							
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)^{\frac{R^4}{15}}(CH_2)^{-G-R^6}$
177	CI⟨CH ₂ -	1	2	0	R	Н	(A) P CI -CHN-C-CI - CH3
178	CICH ₂ -	1	2	0	R	н	(F) PCF3 -CH-N-C-CF3 CH3 F
179	CH_CH ₂ -	1	2	0	R	н	(R) P -CH-N-C-CI CH ₃ CH
180	CH-CH ₂ -	1	2	0	R	Н	(F) O O O O O O O O O O O O O O O O O O O
181	CH-CH ₂ -	1	2	0	R	н	(A) P NO2 -CH-N-C- NO2 CH3
182	CH₂-	1	2	·0	R	Н	CH ₃ O CF ₃
183	CH-CH₂-	1	2	0	R	н	CH3 O Br
184	CH_CH ₂ -	1	2	0	R	Н	CH ₃ O CI - CH-N-C- - H CH ₃
185	CI— CH₂-	1	2	0	R	н	CH3 O CI -CH N-C CI CH3
186	C	1	2	0	R	н	CH ₃ O CF ₃ -CH _N C CH ₃ F
187	CH⊋-	1	2	0	R	н	CH3 O -CH N C-CI CH3

Table 1.18

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-($
188	CI-CH ₂ -	1	2	0	R	Н	CH3 P
189	CI-CH ₂ -	1	2	0	R	н	CH3 0 NO2 CH3
190	CI-CH ₂ -	1	2	0	R	н	CH ₂ CF ₃ CF ₃ CH ₂ CF ₃
191	CH2-	1	2	0	R	н	(F) PC-
192	CH2−	1	2	0	R	Н	(A) CH-N-C-
193	C⊢√CH₂-	1	2	0	R	н	(A) P -CH+N-C
194	CH2−	1	2	0	R	н	(F) P -CH+NC- CH ₂ F
195	CH-2-	1	2	0	R	н .	(F) P -CHN-C CI CH2-S
196	C ├── CH ₂ -	1	2	0	R·	н	(A) P -CHN-C- CH ₂ -S
197	C├ - CH ₂ -	1	2	0	R	н	(A) P NO 2 - CH+N-C- CH2- CH2- S
198	CH-€	1	2	0	R	. н	(A) P CF 1 CH 2 CF 1 CH 2 CF 1

Table 1.19

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
199	CI—CH ₂ -	1	2	0	R	Н	(S) P Br
200	С⊢ СН₂-	1	2	0	R	н	(S) P C
201	С⊢СН₂-	1	· 2	0	· R	н	(5) -CH-N-C
202	СН-СН2-	1	2	0	R	Н	CH ₂ -CF ₃
203	СН ₂ -	1	2	0	R	н	(S) P -C+N-C-C-CI CH ₂ -S
204	CHCH₂-	1	2	0	R	н	(S) P -CH-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
205	с⊢—СН₂-	1	2	0	R	н.	(S) P NO 2 CH2-C
206	CH-2-	1	2	0	R	Н	(O+2)2-\$-CH3
207	CH-2-	1	2	0	R	Н	(OH ₂) ₂ -\$-CH ₃
208	CHCH ₂ -	1	2	0	R .	н	(3) P C1 -C1+N-C C
209	C⊢-{}CH₂-	1	2	0	R	н	(OH ₂) ₂ -\$\frac{1}{2}CH ₃

Table 1.20

-							
Compd. No.	R1 (CH2);-	k	m	n	chirality	Ŕ³	一(CH ₂) p (CH ₂) q G−R ⁶
210	CI	1	2	0	R	Н	(S) P OF 3 -CH-NC- OF 5 (CH ₂) ₂ -S-CH ₂ F
211	CH ₂ -	1	2	0	R	н.	(CH ₂) ₂ -\$-CH ₃
212	CH-2-	1	2	0	R	н	(CH ₂) ₂ -5-CH ₃
213	C├ - CH ₂ -	1	2	0	R .	Н	(3) Q -CH-N-C H O NO ₂
214	CH-2-	1	2	0	- .	н	-(CH ₂) ₃ -c
215	CHCH ₂ -	1	2	0	• .	н .	-(CH ₂) ₃ -C
216	C├────────────────────────────────────	1	2	0	-	H	-(CH ₂) ₃ -C-S
217	CH2-	1	2	0	-	н	-(CH ₂) ₂ -C
218	CH2-	1	2	0	-	н	$-(CH_2)_2$ $-CH_3$ H_3C
							-(CH ₂) ₂ -C-C-C-CH ₃
220	CH-{-}-CH ₂ -	1	2 .	0 ,	-	Н .,	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	—(CH ₂) p 5 (CH ₂) q G−R ⁶
221	CH-CH ₂ -	1	2	0	-	Н	-(CH ₂) ₂ -C-
222	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-C-CI
223	C⊢-€CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-C-CCH ₂) ₃ CH ₃
224	С⊢(СН₂-	1	2	0	-	н	- CH ₂ - \$ - CH ₃
225	C├────────────────────────────────────	1	2	0	-	н	-(CH ⁵) ³ -C-V-
226	CH-CH2-	1	2	0	· - ·	н	-(CH ₂) ₃ - C-N-
227	C├ - CH ₂ -	1	2 .	0	-	н	-(CH ₂) ₃ -C-N-C1
228	C⊢√CH ₂ -	1	2	0	-	- H	-(CH ₂) ₃ -C. N-C-OCH ₃
229	СН-СН2-	1	2	0	-	н	СH ₃ О - CH ₂ -С-CH ₂ -С-N CH ₃ - CH ₃
230	C├────────────────────────────────────	1	2	0	-	н	$-CH_2 CH_2 - C \cdot N - F$
231	CHCH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-CH ₃

Table 1.22

lable	1.22						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
232	C├ ─ CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-N-(.
233	CHCH ₂ -	1	2	0	-	н	O -(CH ₂) ₃ - C-N-CH ₂ -
234	CH-2-	1	2	0	-	н	-(CH ₂) ₃ -C-NHCH ₃
235	C├ - CH ₂ -	1	2	0	-	н	- CH ₂ - CH- CH ₂ - C- N CH ₂ - C- CI
236	C├ - CH ₂ -	1	2	0	-	н	- CH ₂ -N-S-CH ₃
237	CH2-	1	2	0	·	н	- CH ₂ - N- C- O- CH ₂ -
238	CHZ-	1	2	0	-	H .	. – сн о с н Сн ₃
239	СН ₂ − ,	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
241	CI -CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH2− CH2−	1	2	0	S	Н	-CH ₂ -N-C-C-CF ₃

Table 1.23

Compo No.	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	k m r	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
243	C1 C1	1 2 0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1 2 0	S	Н .	-CH ₂ -N-C-CF ₃
245	F CH₂-	1 2 0	S	н	-CH ₂ -N-C-CF ₃
246	CI → CH₂-	1 2 0	S·	н	-CH ₂ -N-C-CF ₃
247	CICH ₂ -	1 2 0	S	н	-CH ₂ -N-C-CF ₃
248	H ₃ CQ ————————————————————————————————————	1 2 0	S _.	н .	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1 2 0	S	н	СH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
250	H ₃ C ————————————————————————————————————	1 2 0	S	н	-CH ₂ -N-C-CF ₃
251	F-(CH ₂ -	1 2 0	S .	н	-CH ₂ -N-C-CF ₃
252	H ₃ CO-CH ₂ -	1 2 0	S	H , _	-CH ₂ -N-C-CF ₃
253	H₃C-€ CH₂-	1 2 0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
254 	NO₂ CH2-	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N —CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C
257	CF ₃ —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-СH ₂ -N-С-СF ₃
259	Сн- сн₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	Н	-СH ₂ -N-С-СF ₃
262	Br CH ₂ -	1	2	0	S	н	-СH ₂ -N-С-СF ₃
263	Br,—CH ₂ -	1	2	0	S	_. H	-сн ₂ -N-с-СF ₃
264	OH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.25

. 45.0	1.20						
Compd.	R ¹ /(CH ₂)/	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
265	В	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	4c-c-h-€>-01≥	1	2 .	0	s	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	HO-CH ₂ -					Н	-CH ₂ -N-C-C-CF ₃
273	CN —CH ₂ —	· 1	2	0	S	н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
275	CN CH ₂ - NC CH ₂ - NC CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.26

rable	1.20						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
276	F-CH ₂ -	1	2	0	S	н	-CH₂-N-C
277	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H₃∞₂C-⟨¯)-CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F3CO-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280	F₃CQ . —CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-\(\bigc\)-OH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CF ₃
284	с⊢ССН	1	2	0	S	н	-CH ₂ -N-C-CF ₃
285	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.27

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
287	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
288	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R ·	н	-CH ₂ -N-C-
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	FCH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	CICH ₂ _	1.	2.	. 0	R	н	-CH ₂ -N-C-CF ₃
293	CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H ₃ CQ —CH ₂ -	1	2	0	R		-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	H ₃ C —CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.28

1 4010	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
298	H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H₃C-⟨}CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
301	O ₂ N CH ₂ -	1	2	0	R.	н .	-CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1,	2	0	R ·	н	-CH ₂ -N-C-CF ₃
303	CF ₃	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	Сн₃	1	2	0	R	H,	-CH ₂ -N-C-CF ₃
306	· CI CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
307	F ₃ C-\(\bigce\)-CH ₂ -	1	2	O.	R	н	-CH ₂ -N-C-CF ₃
308	Br —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
309	Br CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	CH₂-CH₂-	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
311	ВСН2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	O-CH2-	. 1	2	0	R	н	-CH ₂ -N-C
313	ОСН ₃ —СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314 (нес-с-Й-(2)—анъ	1	2	0	R	H	-CH ₂ -N-C-CF ₃
315	H ₂ C-9-0H ₂ -	i	2	0	R	H	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C ————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ⁵ -V-C-CL ³
318 ·	HO-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
319	CN CH₂-	1	2	0	R	н	-сн ₂ -N-с-С-С-С-С-

Table 1.30

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- \frac{G}{R^6}$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-\(\bigcup_\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
323		1	2	0	R	. н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{	1 .	2	0	R	н	-CH ₂ -N-C-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
326	F ₃ CQ —CH ₂ -	1	2	0	R	. н	-СH ₂ -N-С-СБ3
327	HO ₂ C————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -					н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ - CH ₃	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
330	CH-2-	0	3	1	•	н	- CH ₂ -N-C-

Table 1.31

Compd.	R ² /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
331	CH-2-	0	3	1	-	н	- CH2- N- C- CH3
332	СН-Д-СН₂-	0	.3	1	-	н	- СH ₂ -№ С — ОСН ₃
333	CHCH ₂ -	0	3	- 1	-	н	-CH ₂ -N-C-\(\big \)
334	CH_CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	С├────── СН2-	0	3	1		н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
336	CH_CH2-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C
338	CHCH ₂ -	0	3	1		н .	-CH ₂ -N-C-
339	CH2-	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	CH2-	0	3	1	S	н	- CH ₂ -N-C-CF ₃
341	C⊢√CH₂-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

. 45.0	–						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
342	CH-€	0	3	1	-	Н	CH3 O -CHN-C-
343	CH-CH2-	0	3	1	-	н	- CH N- C-
344	CH_CH ₂ -	0	3	1	•	. H	O - CH N- C- H H CH ₂ CH(CH ₃) ₂
345	CH2-	0	3	1	-	Н	-(CH ₂) ₃ -C-
346	CH-CH ₂ -	0	3	1	-	н	-(CH ₂) ₂ -C
347	с⊢ СН₂-	0 ·	3	1	-	Н	$-(CH_2)_2 - CH_3$ H_3C
348	CH-CH ₂ -	0	3	1		Н	O -(CH ₂) ₂ -C-CH ₃
349	CHCH2-	0	3	1	· •	н	- CH ₂ - \$ CH ₃
350	С-СН2-	0	3	1	-	Н	-CH ₂ -N-S-CH ₃
351	CH2-	0	3	1	-	Н	-CH ₂ -N-C-O-CH ₂ -
352	CH-2-	0	3	1		н	- CH O C N CI

Table 1.33

_							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
353	CH-CH2-	1	2	1	-	.H	- CH ₂ -N-C-
354	CH-CH2-	1	3	0	-	н	- CH ₂ - N- C-
355	С⊢СН₂-	1	3	0	-	н	- CH ₂ -N-C-CH ₃
356	CHCH ₂ -	1	3	0_	-	н	- CH ₂ -N-C-⟨¬»
357	CHCH ₂ -	1	3	0	-	н	-CH ₂ -N-C-
358	CH_CH ₂ -	1	3	0	,.	н	-CH2-N-C- CH3-N-C- CH3
359	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CH-2-	1	3	0	-	Н	-(CH ₂) ₂ -N-CNO ₂
361	C ├── CH ₂ -	1	3	-0	-	н	-(CH ₂) ₃ -C-
362	CH2⁻	1	3	0	-	н	-(CH ₂) ₃ -C
363	CHCH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - C-

Table 1.34

							•
Compd. .No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + G - R^6$
364	CH ₂ -	1	3	0	•	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
365	C⊢√CH₂-	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	CH-CH ₂ -	1	3	Ö	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
367	CHCH2-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CF-CH₂-	1	3	. 0	-	н	-(CH ₂) ₂ -C-
369	C⊢√CH₂-	1	3	0	. -	н	-(CH ₂) ₂ -C-CI
370	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -С-С-ССН ₂) ₃ СН ₃
371	CI—CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C
372 ·	CI—CH₂-	1	3	0	-	н	- CH ₂ - \$
373	C ├── CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	: C⊢√_CH ₂ -	1	3	0	- .	н	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

. 4516	1.00						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
375	С⊢(СН₂-	1	3	0		н	-(CH ₂) ₃ - C-N
376	С-СН2-	1	3	0	-	н	-(CH ₂) ₃ -C-N
377	С⊢√СН₂-	1	3	0	-	н	- CH ₂ - C- CH ₂ - C- N- CI CH ₃
378	CH2-	1	3	0	-	Н .	- CH ₂ - CH ₂ - C- N- F
379	CH	1	3	0		н	-(CH ₂) ₃ -C-CH ₃
380	CHCH2-	1	3	0	-	н	-(CH ₂) ₃ - C- N- CH ₂ -
381	C├ - CH ₂ -	1	3	0	-	н.	-CH ₂ -N-S-CH ₃
382	CH2-	1	3	0	-	н	-CH ₂ -N-C-O-CH ₂ -
383	C├ - CH ₂ -	1	3	0	-	н Н	- CH O C - N CI
384	CI-CH ₂ -	2	2	0	-	н	-CH₂-N-CCH3
385	C⊢—CH₂-	2	2	0	-	н	-CH ₂ -N-C

Table 1.3.6

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R ³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_q G - R^6$
386	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
387	CH ₂ -	2	2	0	-	н	-CH2-N-C-
388	—CH₂−	2	2	0	-	H	-CH ₂ -N-C-\(\sigma\)
389		2	2	0	-	. н	-CH ₂ -N-C
390	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	CH₂-	2	2.	0	-	н	-CH ₂ -N-C-CF ₃
392	- CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
393	CH₂-	2	2	0	-	н	-CH ₂ -N-C-✓
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
395	CH₂-	2	2	0	-	н	-CH ₂ -N-C
396	CH2-	2	2	0	-	Н -	-CH ₂ -N-C

Table 1.37

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
397	CH₂-	2	2	0		н	-CH ₂ -N-C-CI
398	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400	CH₂-	2	2	0		н	-(CH ₂) ₂ -N-C-NO ₂
401	. CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C- H
402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
403	CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	€ CH ₂ -	2	2	0	- ·	н	-(CH ₂) ₂ -N-C
405	€ CH ₂ -	2	2	0	-		-(CH ₂) ₂ -N-C-
406	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-C
407	CH₂-	2	2	0	. <u>.</u>		-(CH ₂) ₂ -N-CBr

Table 1.38

•							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ G $-R^6$
408	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
. 409	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410		2	2	0	-	Н	(S) P -CH-N-C- CH ₂ CH(CH ₃) _{2:}
411	. CH ₂ -	2	2	0	-	Н	(S) PCH-(CH ₃) ₂
412	◯ -CH₂-	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
413	CH₂-	2	2	0	-	H .	$\begin{array}{c} (S) & P \\ -CH - N - C - \\ -CH - CH_2 - CH_3 - CO_2 - CH_3 - CH_2 - CH_3 - CH_3 - CH_2 - CH_3 $
414	—CH₂-	2	2	0	-	H	(S) (CF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
415	—CH₂-	. 2	2	0	-	Н	(S) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
416	CH₂-	2	2	0	-	Н	$(S) \qquad Q \qquad QCF_3$ $-CH-N-C-Q$ $-CH_2CH(CH_3)_2$
417	CH₂-	2	2	0	-	H	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂ .
418	CH₂-	2	2	0	-	н	(S) −CH−N-C− H CH ₂ CH(CH ₃) ₂

Table 1.39

Compd. No.	R ¹ (CH ₂) _j -	,k 1	m n	chirality	['] R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
419.	CH₂-	2 ;	2 0	-	Н	(S) P -CH-N-C- Br CH ₂ CH(CH ₃) ₂
420	CH₂-	2 2	2 0	-	н .	(S) P -CH-N-C
421	—CH₂-	2 2	. 0	-	н	(S) CI -CH-N-C-C-CI CH ₂ CH(CH ₃) ₂
422	CH ₂ -	2 2	0	-	Н .	(A) P -CH-N-C-(CH ₂ CH(CH ₃) ₂
423		2 2	. 0	-	Н	(F) Q -CH-N-C- H CH ₂ CH(CH ₃) ₂
424	—CH₂-	2 2	. 0	-	н	(A) NO ₂ -CH-N-C
425	€CH2	2 2	0	-	н	(H) P. -CH-N-C- CH ₂ CH(CH ₃) ₂ -CO ₂ CH ₃
426	CH ₂ -	2 2	0	-	н	(F) O CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂-	2 2	0	-	н	(A) CF ₃ -CH-N-C-C+ H CH ₂ CH(CH ₃) ₂ F
428	CH₂⁻	2 2	0.		н	(<i>F</i>) -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	◯ -CH ₂ -	2 2	0	•	н	(A) P -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂),	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
430	CH ₂ -	2	2	. 0	-	Н	(A) CH -CH-N-C- H H CH2CH(CH3)2.
431	CH ₂ -	2	2	0	-	н	(H) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
432	—CH₂-	2	2	0	-	н .	(F) -CH-N-C-F CH ₂ CH(CH ₃) ₂
433	CH₂-	2	2	0	-	н	(A) C −CH−V−C H CH2CH(CH3)2
434	CH	1	3	1	-	Н	-CH ₂ -N-C-
435	CH2-	1	3	1	-	н	-CH ₂ -N-C-
436	CI—CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\)
437	CHCH2-	1	3	1	-	н	-сH ₂ -N-С-СО ₂ СН ₃
	C⊢√CH₂-						-CH ₂ -N-C-CF ₃
439	C├────────────────────────────────────	1	3	1	-	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
440	C⊢√CH₂-	1	3	1	-		CH2-N-C

Table 1.41

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
441	CH-2-	1	3	1	-	н	-CH ₂ -N-C
442	CH-CH2-	1	3	1	•	Н	-CH ₂ -N-C-C
443	C├ - CH ₂ -	1	3	1	-	н .	-CH ₂ -N-C
444	CH-CH2-	1	3	1	-	н	-CH ₂ -N-C-F
445	CH_CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-CI
446	CH-€	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	С⊢—СН₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
448	C├ - ⟨CH ₂ -	1	3	1		н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
449	C├ - CH ₂ -	1	3	1		H	-(CH ₂) ₂ -N-C
450	СН-СН2-	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	С⊢СН₂−	1	3	1	-	H _.	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

IUDIC	1.72					_	
Compd. No.	R ¹ (CH ₂) _j	k	m	n (chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
452	C⊢()—CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
453	C├ \	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	С⊢—СН2−	1	3	1	•	Н.	-(CH ₂) ₂ -N-C-C
455	C⊢√CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	CHCH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-F
457	CH ₂ -	1	3	1 .	-	Н	-(CH ₂) ₂ -N-C-CI
458	CH_CH ₂ -	2	2	1 .	-	н	- CH ₂ -N-C-
459	CHCH ₂ -	2	2	1	-	н .	- CH ₂ - N- C-
460	С⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
461	CH-CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
462	CH-2-	2	2	1		н	- CH ₂ -N-C

Table 1.43

...

rabic	1.70						•
Compd. No.	R ² (CH ₂) _i -	k	m	n	chirality	. R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	С├-{_}-СН₂-	2	2	1	-	н	- CH ₂ -N-C-
464	CH-CH ₂ -	2	2		-	н	- CH ₂ -N-C-OCH ₃
465	C ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N
466	CH-2-	2	2	1	-	. Н	-CH ₂ -N-C-NO ₂
467	CH-CH ₂ -	2	2 -	1	-	н	-CH ₂ -N-C-
468	CH(-)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\\ \text{N-CH3}\)2
469	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCH ₃
470	C├ - CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CN
471	C├ - CH ₂ -	2	2	1	-	H	- CH ₂ -N-C
472	C⊢√CH₂-	2	2	1	-	н	- CH ₂ -N-C-
473	с⊢СН₂-	2	2	1	-	н .	- CH ₂ -N-C-C-CH ₃

Table 1.44

· ub.c ·							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	. R³ .	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
474	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
475	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ - N C - CH(CH ₃) ₂
476	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	CH-√CH₂-	2	2	1		н	- CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
478	CH-√CH₂-	2	2	1	-	н	-CH₂-N C-() H₃C
479	CH-{	2	2	1	-	н	-CH ₂ -N-C-
480	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-O-Br
481	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
482	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N·C-S
							-CH ₂ -N-C
484	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} _{\overline{q}}^{\overline{q}}(CH_2)_{\overline{q}}G^{-}R^6$
485	CH-CH ₂ -	2	2	1		Н	- CH ₂ -N C-CF ₃
486	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CN
487	С⊢_СН₂-	2	2	1		н	-CH ₂ -N-C
488	C├─ ─ _CH ₂ -	2	2	1	-	H	- CH ₂ - N- C-
489	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C
490	CH-CH ₂ -	2	2	1	-	н∙	-CH2-N-C-
491	CH2-	ż	2	1	-	н	- CH ₂ -N-CF ₃
492	C├ - CH ₂ -	2	- 2	1	- · .	н	-CH ₂ -N-C-
493	С⊢СН₂-	2	2	1	· -	Н	- CH ₂ -N-C-CF ₃
494	CI—⟨CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
							- CH2- N C CF3

Table 1.46

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
496	C⊢√Ö-ĊH₂-	2	2	1	-	н	- CH ₂ - N C - F
497	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
498	CH-CH2-	2	2	1	- .	н	- CH ₂ -N-C
499	C├ - CH ₂ -	2	2	1	٠.	н	- CH ₂ - N- CH ₃ N(CH ₃) ₂
500	с⊢ СН₂-	2	2	1	-	н	-CH ₂ -N-C
501	CI-CH ₂ -	2	2	1		н · ·	-CH ₂ -N-C-NO ₂
502	· CI—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
503	CH-CH2-	2	2	1		н	-CH ₂ -N-C
504	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- OCH ₃
505	CH_CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-C-NO ₂ - CH ₂ -N-C-N-C-NO ₂
506	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-NO ₂

Table 1.47

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	Ė3	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
507	CH-CH ₂ -	2	2	1		н	- CH ₂ - N C
508	CI————————————————————————————————————	2	2	1	-	н .	-CH ₂ -N-C-S
509	CH-2-	2	2	1		н	- CH ₂ -N-C-S
510	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C - CH ₃ CH ₃
511	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-(CH ₃) ₃
512	CHCH ₂ -	2	2	1	•	н	- CH ₂ -N- C
513	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C- H
514	CH2-	2	2	1	-	н	- CH ₂ - N- C- C(CH ₃) ₃
515	CHCH ₂ -	2	2	1	-	H	- CH ₂ - N- С - СН ₂ ОН
	H ₂ N-CH ₂ -						
517	H ₂ N —CH ₂ –	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.48

rable	1.40	•					
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
518	NH ₂	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
519	C-N-CH2-	2	2	. 1	-	Н	-CH ₂ -N-C-CF ₃
520	C├ ~ _;}—CH₂-	2	2	1	-	—CH ₃	-CH ₂ -N-C-CF ₃
521	CH2-	2	2	1	<i>-</i>	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	СНСН2-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	CH-CH ₂ -	. 2	2	1	-	-(CH ₂) ₂ CH-	-CH2-N-C-
524	СН-СН2-	2	2	1	-	-CH ₂ CH-	-CH2-N-C-
525 _.	CI—CH₂-	2	. 2	1	-	н	-CH ₂ -N-COOO
526	с⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C-
527	C├ - CH₂-	2	2	1	-	Н .	-CH ₂ -N-C-\S
528	C├ ~ CH₂-	2	2	1	-	н	-CH ₂ -N-C-\S -CH ₂ -N-C-\S F ₃ C

Table 1.49

				•		
Compd. No.	R ¹ (CH ₂) _i -	k m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
529	С⊢СН2-	2 2	1	-	н	-CH ₂ -N-C-\0000000000000000000000000000000000
530	C├─ੑ_CH₂-	2 2	1	•	н	-CH ₂ -N-C
531	CH-CH ₂ -	2 2	1	-	н .	-CH ₂ -N-C-\S
532	C├ - CH₂-	2 2	1	-	н	-CH ₂ -N-C-CH ₃
533	CH-€ CH₂-	2 2	1	· -	н	-CH ₂ -N-C
534	C├ - CH₂-	2 2	1		н	-CH ₂ -N-C-VO NO ₂
535	C⊢-()- CH₂-	2 2	1	-	н	-CH ₂ -N-C-S
536	C ⊢ CH₂-	2 2	1		н	-CH ₂ -N-CN-C-N-CH ₃
537	C├──CH₂-	2 2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
	CI—⟨¯¯)— CH₂-				Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
539 d	CI—(CH₂-	2 2	1	•	н	-CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O H ₃ C -CH ₃ -N-C-O F ₃ C

Table 1.50

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_$
540	C├ ─ CH ₂ -	2	2	1.		н	-CH2-N-C-N-
541	CH-2-	2	2	1	- -	н	-CH ₂ -N-C-NO ₂
542	CH-CH ₂ -	2	2	1 .	•	н	-CH ₂ -N-C-CH ₂ CH ₃
543	CH-CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C-CH ₂ CH ₃
544	CH-€T-CH2-	2	2	1	-	н	-CH ₂ -N-C-
545	CH2⁻	2	2	1	· .	H	-CH ₂ -N-C-CI
546	СН-{	2	2	1	-	н	CH ₂ -N-C
547	CI—(CH₂-	2	2	1	-	. Н	-сн ₂ -N-С-СI
548	С⊢СТ}-СН₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-C-CI
549	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
550	CH-{	2	2 .	1	· -	Н	$-CH_2-N-C-$ O_2N CI

Table 1.51

. 45.0							
Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
551	с⊢—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂
553	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
555	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CI
556	C ⊢ CH₂-	2	2	1	~	н	-CH2-N-C-N-CH3
557	C⊢CH2-	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	·1	-	Н	CH3 O -CH N-C- H
559	C├ \ CH ₂ -	2	2	1	-	Н	-CHN C-CF3
560	CI—CH₂-	2	2	1	-	Н .	- CH N C - CN
561	CI—CH₂-	2	2	1	•	Н	CH ³

Table 1.52

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	₽³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
562	С⊢—СН₂-	2	2	1	-	н	-CHN-C-
563	CHCH_2-	2	2	1		н	-CHNC-CF3 -CHNC-C-CF3 -CH3 F3C
564	CH-CH ₂ -	2	2	1	-	н	-CHNC-CH3
565	CH-CH ₂ -	2	2	1	-	н	-CHNC-CH3
566	CI-CH ₂ -	2	2	1	-	н	-CH-NC-COCF3
567	CH√CH₂-	2	2	.1	-	н.	-CHNC-CF3
568	C├ - CH ₂ -	2	2	1	-	Н	-CHNC-CH3 CF3
569	CH-CH ₂ -	2	2	-1	-	н	-CHNC-CF3
570	CH-CH ₂ -	2	2	1	-	н	-CHNC-F IH CH3
571	CI—CH₂-	2	2 ·	1	. -	н .	-CHNC-CH3)2
572	CHCH ₂ -	2	2	1	-	н	CH ₃ He N CF ₃ -CH N C C

Table 1.53

rable	1.53						
Compd. No.	R1 (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p G -R ⁶
573	CH-CH2-	2	2	1	-	н	-CHNC-S
· 574	C├ - CH ₂ -	2	2	1	-	н	-CHNC-S H CH3
575	CH ₂ -	2	2.	1		н	-CH 12 C(CH3)3
576	CI-CH ₂ -	2	2	1	-	н	-CHNC-O IHOSCH3
577	^CH2-	2	2	1	-	н	-CH H C-()
578	CHCH ₂ -	2	ż	1	-	н	-CHNC-S
579 <u>,</u>	CH-CH ₂ -	2	2	_. 1	-	н	-CH N C N
580	CH ₂ -	2	2 .	1	-	н	-CHNC-CH3 CH3
581	CHCH ₂ -	2	2	1	-	н	-C+ 12 C- S CH3
582	-'}; CH-{	2	2	1	-	н	-CH N C S
583	C⊢(CH₂-	2	2	1	-	Н	-CH N CH3

Table 1.54

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
584	С⊢—СН₂-	2	2	1	-	н	- CH N C - C - C - C - C - C - C - C - C - C
585	C ├── CH ₂ -	2	2	1	-	н	-CHNCH
586	CH-2-	2	2	1	-	н	- CH N C- CI
587	CI-CH ₂ -	2	2	1	-	н	-CHNC
588	CH-2-	2	2	1		H	$-CH \underset{CH_3}{\overset{\circ}{\text{H}}} - C \longrightarrow NH_2$
589	CH-2-	2	2	1	÷	н	CH ₃ CH ₃ CH ₃
590	CH-CH ₂ -	2	2	1		н	- CH N C- CH(CH ₃) ₂ CH ₃
591	CH-CH ₂ -	2	2	1	-	н	-CH-N-C → N(CH ₃) ₂ H CH ₃
592	CH-CH ₂ -	2	2	1	-	Н	-СН N С СН3
593	С⊢—СН2-	2	2	1	-	н	- CH N C - CH2OH
594	CH	. 2	2	1	-	н	-сн ^з сн ³ - он

Table 1.55

. 45.0							
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	⁻ R ³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
595	CH-CH2-	2	2	1	-	н	-сн и с Н СН ³
596	CH2-	2	2	1	-	н	- СН3 СН3 СН3
597	CH-€-	2	2	1	•	н	- CH- N C - C-CH ₃
598	C⊢√ CH₂-	2	2	1	-	Н	-CHNC-O
599	CH-2-	2	2	1	<u>.</u> .	Н	-CH N-C-N
600	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C- H O Br
601	CH_CH ₂ -	2	2	1	-	н .	-CHNC-OCH3
602	CH₂-	2	2	1	-	н	-CHN C
603	CHCH ₂ -	2	2	1	<u>.</u>	н	-CH N C - NH ₂
604	CHCH ₂ -	2	2	1	-	н	-CH-N-C-() CH ₃ H
605	С⊢СН₂-	2	2	1	-	н	-CH-W-C-

Table 1.56

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
606	CI—Ć—CH₂-	2	2	1	-	н	-CH-M-C-_S
607	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-\S
608	CHCH ₂ -	2	2	1		Н	-CH-N-CCH3
609	CHCH2-	2	2	1	-	н	-CH-N-C
610	CI-CH ₂ -	2	2	1	-	н	-CH-N-CS CH3 O-CCH3
611	CH	2	2	1	<u>.</u>	н	CH3 H3C C(CH3)3
612	СН-СН ₂ -	2	2	1	-	н	-c++ N-c-+-
613	CHCH2-	2	2	1		н	CH ₃ F ₃ C
614	CHCH ₂ -	2	2	1	-	н	-CHNC-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
615	CH-CH ₂ -	2	2	1	-	H	-CH-W-CNH
616	CH-€CH2-	2	2	1	-	н	-CH-M-C-N

Table 1.57

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	.K3	-(CH ₂) p (CH₂)q G-R⁶
617	CH-2-	. 2	2	1	-	Н	-CHN-C-CF3
618	CH-CH2-	2	2	1	-	Н	-CHN C- H CH(CH ₃) ₂
619	CH-2-	2	2	1	-	н	-CH-N-C
620	CH ₂ -	2	2	1	•	Н	-CH N C - Br -CH(CH ₃) ₂
621	C⊢√CH₂-	2	2	1	-	н	O CI -CH N C- I H CH(CH ₃) ₂
622	С├-{	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂
623	CH-CH ₂ -	2	2	1	-	н	-CH N-C OCH3
624	CH ₂ -	2	2	1	-	н	- CH- N- C
625	CH-€	2	2	1	· -	н	- CH N C NH ₂ - CH(CH ₃) ₂
626	CH₂-	2	2	1		н	-CHN-C- H CH(CH ₃) ₂ CF ₃
627	C├ - ⟨}_CH₂-	2	2 .	1	-	н	OCH₂CH₃ -CH N C - OCH₂CH₃ -CH(CH₃)₂

Table 1.58

i abie							
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	Ŕ³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
628	C ⊢ CH₂-	2	2	-1	-	н	-CH N C CO₂CH3 -CH(CH3)2.
629	С⊢—СН ₂ -	2	2	1	-	н	OF CF ₃ -CH N C CF ₃ -CH(CH ₃) ₂
630	CH-CH ₂ -	. 2	2	1.	-	н	- CH-N-C
631	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
632	CH_CH ₂ -	2	2	1	· •	н	OF -CH N C H CH(CH ₃) ₂ CF ₃
633	CH-CH ₂ -	2	2	1	-	н	-CH-NC
634	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
635	.CH_CH2-	2	2	1		н	OHO CH(CH ₃) ₂ -CHN C-
636	C!	2	2	1	-	H	-CH N C- CH ₃ -CH(CH ₃) ₂
637	C⊢-{CH₂-	2	2	1	-	н	-CHNC-CF3 -CH(CH ₃) ₂
638	C├ - CH₂-	2	2	1		н	- СН N С С С С С С С С С С С С С С С С С

Table 1.59

	•						
Compd. No.	R ² (CH ₂) _i	k	m	n	chirality	ÎR3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
639	CH-CH ₂ -	2	2	1	•	Н	O - CH-N-C-\D-N(CH ₃) ₂ - H CH(CH ₃) ₂
640	CH-2-	2	2	1	-	н	O − C H N C −
641	С⊢—СН₂-	2	2	1	-	н	-CHNC-CO ₂ CH ₃ CH(CH ₃) ₂
642	CH-CH ₂ -	2	2	1	-	н	- CH(CH ³) ⁵
643	CH-CH ₂ -	2	2	1	-	Н .	CH N C CF ₃ CH(CH ₃) ₂
644	CH2-	2	2	1	-	Н	- СН- N С-
645	C⊢—CH₂-	2	2	1	-	Н	CH-N-C-NH ₂ -CH(CH ₃) ₂
646	CH₂-	2	2	1	-	н	- СН- N С- СН(СН ₃) ₂ - СН ₂ ОН
647	CH- ⟨ CH ₂ -	2	2	1	-	Н	- СН И С- СН(СН ³) ⁵
648	C├ - CH₂-	2	2	1	-	н	- СН N С — СН(СН ₃) ₂ СН(СН ₃) ₂
649	CH	2	2	1	-	н	- Сн. И с——— ОСН(СН ³) ⁵ СН(СН ³) ⁵
	No. 639 640 641 642 643 644 645 646	639 CI CH₂- 640 CI CH₂- 641 CI CH₂- 642 CI CH₂- 643 CI CH₂- 644 CI CH₂- 645 CI CH₂- 646 CI CH₂- 647 CI CH₂-	639 $C \mapsto CH_2 - 2$ 640 $C \mapsto CH_2 - 2$ 641 $C \mapsto CH_2 - 2$ 642 $C \mapsto CH_2 - 2$ 643 $C \mapsto CH_2 - 2$ 644 $C \mapsto CH_2 - 2$ 645 $C \mapsto CH_2 - 2$ 646 $C \mapsto CH_2 - 2$ 647 $C \mapsto CH_2 - 2$	639 $C \mapsto CH_2 - 2 = 2$ 640 $C \mapsto CH_2 - 2 = 2$ 641 $C \mapsto CH_2 - 2 = 2$ 642 $C \mapsto CH_2 - 2 = 2$ 643 $C \mapsto CH_2 - 2 = 2$ 644 $C \mapsto CH_2 - 2 = 2$ 645 $C \mapsto CH_2 - 2 = 2$ 646 $C \mapsto CH_2 - 2 = 2$ 647 $C \mapsto CH_2 - 2 = 2$ 648 $C \mapsto CH_2 - 2 = 2$	639 $C \vdash \bigcirc -CH_2 - 2 2 1$ 640 $C \vdash \bigcirc -CH_2 - 2 2 1$ 641 $C \vdash \bigcirc -CH_2 - 2 2 1$ 642 $C \vdash \bigcirc -CH_2 - 2 2 1$ 643 $C \vdash \bigcirc -CH_2 - 2 2 1$ 644 $C \vdash \bigcirc -CH_2 - 2 2 1$ 645 $C \vdash \bigcirc -CH_2 - 2 2 1$ 646 $C \vdash \bigcirc -CH_2 - 2 2 1$ 647 $C \vdash \bigcirc -CH_2 - 2 2 1$	639 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 640 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 641 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 642 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 643 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 644 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 645 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 646 $C \vdash \bigcirc -CH_2 - 2 2 1 -$ 647 $C \vdash \bigcirc -CH_2 - 2 2 1 -$	No. R^{2} ($-CH_{2}$ CH_{2} CH_{2}

Table 1.60

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
650	CI—⟨¯¯}-CH₂-	2	2	1	-	н	-CH-N-C
651	CHCH ₂ -	2	2	1	-	н	-CH-M-C
652	CHCH2-	2	2	1	-	н	-CH-N-C
653	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
654	CHCH ₂ -	2	2	1	-	Н	-C++N-C
655	C├─ੑCH₂-	. 2	2	1	-	н	-CHNC
656	CHCH2	2	2	1	-	H	-CH-N-C
657	C├─ \ CH ₂ -	2	2	1	·	Н	-CH-N-C- CH(CH ₃) ₂
658	CHCH ₂ -	2	2	1	-	H.	-CH-N-C- CH(CH ₃) ₂
659	CH-2-	2	2	1	-	н	-CH-N-C- S H CH(CH ₃) ₂ NO ₂
660	C├ ~ CH₂-	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂

Table 1.61

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	['] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
661	CHCH ₂ -	2	2	1	-	Н	-CH-N-C- S CH(CH ₃) ₂ OCH ₃
662	CH-CH2-	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
663	C(CH₂-	2	2	1	-	Н	- CHN-C- CH(CH ₃) ₂
664	CH-2-	2	2	1	-	н	CH(CH ₃) ₂ NO ₂
665	CH_CH ₂ -	2	2	1		н	-CH-N-C
666 , .	CH-2-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂ CH ₃
667	CH2-	2	2	1	-	Н	-CH-N-C- O CH (CH ₃) ₂
668	CH2-	2.	2	1	-	н	-CH-N-C
669	CH ₂ -	2	2	1 .	-	H	-CH+N-C-() H N CH(CH3)2 CH3
670	C├ - CH₂-	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂ Br
671	CH ₂ -	2	2	1		н	-CH-MC-ONO3

Table 1.62

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
672	С⊢(Сн₂-	2	2	1	-	Н	-CH-N-C-
673	СН-СН ₂ -	2	2	1	-	н	-CHNC-S
674	CH-CH2-	2	2	1	-	Н	-CH-N-C-S -CH(CH ₃) ₂
675 ·	.CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-S-CH ₃
676	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-N-C-N-CH(CH ₃) ₂ H
677	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C- H N-C- CH(CH ₃) ₂ CH ₃
678	CHCH ₂ -	2	2	1	-	н	-CH-N-C- H O CH(CH ₃) ₂
679	CH-€T-CH₂-	2	2	1	-	Н	-CH-N-C-SI CH(CH ₃) ₂
680	CH-2-	2	2	1	-	н	-CHN-C-S Br
681	C├ - CH ₂ -	2	2	i	-	H	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	CH2-	2	2	1	-	н	-CH-N-C- H C-(CH ₃) ₂ C(CH ₃) ₃

Table 1.63

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{P}_{R^5}}^{R^4}(CH_2)_{\overline{q}}G^-R^6$
683	CH2-	2	2	1	-	H	-CHN-C-S CH(CH ₃) ₂ SCH ₃
684	СН-СН2-	2	2	1	•	н	-CH-NC-(S) S-CH(CH3)2
685	CH2-	2	2	1	-	н	-CH-N-C- S S CH ₃
686	С├-{}СН₂-	2	2	1	•	н	-CH-N-C- H CH ₂ CH(CH ₃) ₂
687	CI—⟨CH2-	2 .	2	1	-	н	-CHN-C-
688	C├ - CH ₂ -	2	2	1	-	н	-CHN-C
689	CH-€-	2	2	1	-	Н ,	-CH N-C-
690	C⊢√CH ₂ -	2	2	1	-	Н	-CHNC-Br
691	C⊢√CH₂-	2	2	1	-	н	-CH N C- N(CH3)2
692	CH ₂ -	2	2	1	-	н	- CH W C - OCH3
693	CH2-	2	2	1	-	н	-CH N C - CF3
						•	

Table 1.64

	•						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ή³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
694	CI-CH ₂ -	2	2	1	-	н .	-CH W G- OCH5CH3
695	CI—CH₂-	2	. 2	1	-	. н	-CH N C - ∞2CH3
696	CHCH ₂ -	2	2	1	-	н	-CHNC-COCF3
697	CI-CH ₂ -	2	2	1	•	н	-CH-N-C
698	CHCH_2-	2	2	1	-	н	-CHN-C- N(CH ₃) ₂
699	CH-CH ₂ -	2	2	1	-	н	-сн и с — осн ³
700	CHCH2-	2	2	1	-	Н	-CHN-C
701	CHCH_2-	2	2	1	-	н	-CH V-C-C-CH ³
702	CH-CH ₂ -	2	2	1	-	н	-CH N-C-C-CL3
							-CH V-C- CH(CH3)2
704 ·	C⊢√CH₂-	2	2	1	-	Н	-CHN-C

Table 1.65

Compd. No.	R ¹ /(CH ₂)j-	k m	n	chirality	R³	$-(CH_2)_{p=5}^{R^4}$ $(CH_2)_q$ $G-R^6$
705	CH-2-	2 2	1	-	н.	-CHNC-S H3C
706	CI—(2 2	1	-	Н	-CHYC- STCH3
707	С⊢—СН₂-	2 2	1	-	н	-CHN-C
708	CH₂-	2 2	1	-	Н	-CHN-C-S Br
709	С⊢√СН₂-	2 2	1	- .	н	-CH-N-C-SSCH3
710	CH-2-	2 2	1	-	н .	-CH-N-C-S Br
711	С⊢Ст∠-	2 2 1	ı	-	н	-CH-N-C- CH3
712 (CH-€ CH₂-	2 2 1		-	н	-chyc-s
713 c	CH ₂ -	2 2 1		-	H	-CHN C- 1
					н	-CH-N-C-S
15 _{CI}	-{CH₂-	2 2 1			Н	-c+n-c-\$

Table 1.66

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
716	CH-CH ₂ -	2	2	1	-	н	-c+v-c-N
71.7	CH ₂ -	2	2	1	-	H [.]	-CHN-C- NO2
718	CI—CH₂-	2	2	1	- .	н	-chyc-N
719	CH-CH ₂ -	2	2	1	-	н	-CHN-C-
720	CH_CH ₂ -	2	2	1	· ·	н	-CHN-C-Q Br
721	CHCH_2	2	2	1	- ···;	н	-CH-N-C-\N
722	C├─ \ CH ₂ -	2	2 .	1	-	н	-сн-v-с С-Ссн₂он
723	C├ - CH ₂ -	2	2	1	-	Н	
724	CI—(CH ₂ -	2	2	.1	- 	H	-сн-у-с
725	CI—⟨CH₂-	2	2	1	-	H	-c+nc-0-c-0
726	C⊢√CH₂-	2	2	1	-	Н	-CHN-C-CH3

Table 1.67

Compd. No.	R (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
727	CI────────────────────────────────────	2	2	1	-	н	-c+n-c-()-cı
728	CI—CH2-	2	2	1	-	н ,	-CH-N-C
729	C├─ੑCH²-	2	2	1	-	н	-CHN-C
730	CHCH ₂ -	2	2	1	-	H	-c+-v-c
731	СН-СН2-	2	2	1	-	н	о : о с сн ₃
732	CH-CH ₂ -	.2	2	1	-	н	-CHN-C-CF3
733	C├ - CH₂-	2	2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	CH ₂ -	2	2	1	-	H	-CHNC-C-C-3
735	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C-C-3
736	CH-2-	2	2	1	-	H	-CH-N-C
737	CI—CH₂-	2	2	1	-	н	-CH-N-C

Table 1.68

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
738	CH2−	2	2	1	•	н	-CH-N C-CH3
739	. CH-CH ₂ -	2	2	1	-	н	-CH-N-C- NH
740	CH-CH2-	2	2	1	-	Н	-CH-N-C-YO NO2
741	CH-CH ₂ -	2	2	1	-	Н	-CHN-C-CS
742	CH-CH2-	2	2	1	-	H ,	-CHN-C-S
743	CCH2-	2	2	1	-	н	-CHNC-C
744	CHCH ₂ -	2	2	1	· ·	Н	-CHNC-CH3
745	CH-CH ₂ -	2	2	1 .	•	н	-CHN-C-(CH3)3
746	CH2-	2	2	1		н	-CH-N-C
747	CHCH ₂ -	2	2	1	-	н	-CHN-CS
748	C├ \ CH ₂ -	2	2	. 1	-	н	-chyc-Cs

Table 1.69

Compd No.	R ² (CH ₂) _j	k	m ——	n	chirality	ÏR³	$-(CH_2)_p + (CH_2)_q G - R^6$
749	С├-СН₂-	2	2	1		н	-CH-N-CCN
750	C├ ─ CH ₂ -	2	2	1		н .	-CH-N-CCO
751	CHCH ₂ -	2	2	1	-	н	-СH-N-С-СН3 СН2ОН
752	C├─────CH₂-	. 2	2	1	- ·	н	CH-N-C-CF ₃
753	CI-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH2OH
754	CH-CH₂-	2	2	1	-	. н	-CH-N-C- H CH2OH
755	CH2-	2	2	1	-	Н	-CH-M-C— H CH³OH
756	C⊢CH₂-	2	2	1	-	н	-CH-N-C-NO ₂ -CH-N-C-NO ₂ -CH ₂ OH
757	CH2-	2	2	1	•	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ OH
758	СН-СН2-	2	2	1	<u>-</u>	Н	-CH-N-C- CH ₂ OH
759	C⊢√ CH₂-					н	OCF ₃ -CH-N-C- H CH ₂ OH

Table 1.70

	•						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
760	CH-CH₂-	2	2	1	-	Н	CH-N-C-CF ₃ CH ₂ OH F
761	С⊢СН2-	2	2	1	-	н	CHNC-CF3 CH2OH
762	CH-CH ₂ -	2	2	1	-	Н	CF ₃ -CH-N-C-C CH ₂ OH
763	CHCH2-	2	.2	1	-	н	-C++N-C- H CH₂OH
764	CHCH ₂ -	2	2	1	-	, Н	CH ₃ P -C-N-C- CH ₃
765	CH2-	2	2	1	-	Н	CH ₃ CH ₃
766	C├ - CH ₂ -	2	2	1	-	Н	CH ₃ O CF ₃ -C-N-C-C
767	CH-2-	2	2	1	-	Ħ.	CH3 0 CH3
768	CI-CH ₂ -	2	2	1	-	н	CH ₃ O Br
769	C├ - ⟨CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ CH ₃ O CF ₃ CH ₃ O CF ₃
770	C ⊢ C H ₂ -	2	2	1	-	н	CH ₃ P CF ₃
	•						

Table 1.71

Compd. No.	R ² (CH ₂) _j	k m r	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^- R^6$
771	CI—CH₂-	2 2 1	-	н	CH ₃ CF ₃ -C-N-C-F -F -CH ₃
772	C├ - CH ₂ -	2 2 1	-	н	CH ₃ P -C-N-C-C-CF ₃
773	CH-2-	2 2 1	-	Н	CH3 P CH3 C(CH3)3
774	Ci—←CH₂-	2 2 1		н	CH ₃ O CH ₃ SCH ₃
775	CI-CH ₂ -	2 2 1	-	H	CH ₃ O CH ₃ -C-N-C-C-C CH ₃ C(CH ₃) ₃
776	CH	2 2 1	-	Н	CH3 0 CH3
777	CH2-	2 2 1	-	H	CH ₃ O CF ₃ -C-N-C- CH ₃
778	С⊢—СН₂-	2 2 1	-	н	CH ₃ O NO₂ -C-N-C-C-CI . CH ₃
779	CI—CH₂-	2 2 1	-	н	-CH3 CH2 CI
780	CI—{}_CH ₂ -	2 2 1	-	н	CH ₃ Q NO₂ CH ₃ CH ₃ CH ₃
781	C⊢√_CH₂-	2 2 1	-	Н	CH3 P

Table 1.72

Table							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
782	CICH ₂ -	2	2	1	-	н	-C-N-C
783	C⊢√Ç-CH₂-	2	2	1	- ,	Н	CH ₃ OCH ₂ CH ₃
784	CH2-	2	2	1.	-	н	СН ₃ О - С-N-С-СН ₂ СБ ₃
785	CH-2-	2	2	1	- -	Н	CH ₃ O OCH ₃ CH ₃ O OCH ₃
786	CH-CH ₂ -	2	2	1	-	н	-C-N-C
787	CH-CH ₂ -	2	2	1	- :	. н	H ₂ C—CH ₂
788	CH-CH ₂ -	2	2	1	-	н .	-C-N-C-CF ₃
789	CHCH ₂ -	2	2	1	-	Н	-C-N-C-CH3
790	CH-2-	2	2	1	-	Н	H ₂ C-CH ₂
791	CH-CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂ NO ₂ NO ₂ NO ₂ OCF ₃
792	CH2-	2	2	1	· .	н	H ₂ C-CH ₂

Table 1.73

	0						
Compd. No.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
793	CI—(2	2	1	-	н	CF ₃
794	CH-CH ₂ -	2	2	1	-	Н .	P CF ₃ -C-N-C-F H ₂ C-CH ₂ F
795	CH2-	2	2	1		н	-C-N-C-CF3 H ₂ C-CH ₂
796	CHCH ₂ -	2	2	1	-	н	H ₂ C—CH ₂ SCH ₃
797	C⊢√CH₂-	2	2	1	-	н	H ₂ C—CH ₂ C(CH ₃) ₃
798	CHCH ₂ -	2	2	1	-	н	HC CH2 CH3
799	CHCH ₂ -	2	2	1	-	. н	H ₂ C—CH ₂ CH ₃
800	CH2-	2	2	1	-	H.	NO ₂ .
801	CH-CH₂-			1		н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
802	С⊢√СН₂-	2	2	1	-	н .	P OCH3 H ₂ C-CH ₂ OCH ₂ CH ₃
803	С⊢√СН₂-	2	2	1	-	Н	-C-N-C-OCH ₂ CH ₃

Table 1.74

rable	1.7.4						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
804	C├ - CH₂-	2	2	1		н	-C-N-C-CH ₂ -CF ₃
805	CH-CH2-	2	2	1	-	н	H ₂ C—CH ₂ OCH ₃
806	С⊢(.) СН₂-	2	2	1	. -	н	H ₂ C-CH ₂
807	CH ₂ -	2	2 .	1	-	н	-CH-N-C
808	CHCH ₂ -	2	2	1	-	H	CH ₃ -CH-N-C
809	С⊢√СН2-	2	2	1	-	н	-CH-N-C
810	CH-CH ₂ -	2	2	. 1	· -	н.	(CH2)2- (L-NH2)
811	CHCH_2-	2	2	1	-	н	-CH-N-C-NH ₂ (CH ₂) ₂ -C-NH ₂
812	CHCH_2-	2	2	1	<u>.</u>	н	O C CH-N-C-S SCH ₃
813	CH-2-	. 2	2	1	-	н	-CHHC
814	CH-2-	2	2	1	-	H	-CH-N-C

Table 1.75

- able	1.7 5						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
815	CH2−	2	2	1	-	н	· -c+-wc
816	С⊢√СН₂-	2	2	1	-	н	-CH-N-C
817	C	2	2	1	-	н	CF3 -CH-N-C
818	CH_CH2-	2	2	1	-	н	-CH-N-C
819	CHCH2-	2	2	.1	-	н .	-CH-N-C
820	CHCH ₂ -	2	2	1	-	н	-CH-N-C
821	CI—CH₂-	2	2	1	-	· H	-CH-N-C
822	CHCH ₂ -	2	2	1	-	H	CH-N-C- CH ₂ OCH ₃
823	CI—CH₂-	2	2	1	-	н	-CH-V-C- H CH ⁵ OCH ³
824	CI—CH₂-	2	2	1	-	Н	-CH-N-C
825	C├ - ⟨¯}- CH ₂ -	2	2	1	-	н	CH ⁵ OCH ³

Table 1.76

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
826	с⊢(Сн₂-	2	2 .	1	-	н	-CH-N-C-CH3
827	CH2-	2	2	1	-	н	-CH-N-C-NH H CH₂OCH₃
828	C├ - CH ₂ -	2	2	1	-	н	$-CH-N-C-$ CH_{H} $CH_{2}OCH_{3}$
829	CH₂¯	Ż	2	1	-	. н	CF ₃ -CH-N-C-C-CF ₃ -CH ₂ OCH ₃ -CH ₂ OCH ₃ -CF ₃
830	CH-€ CH ₂ -	2	2	1	-	Н	CF ₃ -CH-N-C- H CH ₂ OCH ₃
831	С⊢ СН₂-	2	2	1	· <u>-</u>	н	-CH-N-C- CH₂OCH₃
832 .	С⊢С СН₂-	2	2	1	-	н	-CH-N-C- CH2OCH3
833	C	2	2	1		Н	-CH-N-C
834	CHCH ₂ -	2	2	1	-	н	-CH-N-C
835	CHCH2-	2	2	1	<u>-</u>	н	-CH-N-C- H CH2OCH3
836	C├ - ⟨□}- CH₂-	2	2	1	-	.н	-CH-N-C-CH3
	•						

Table 1.77

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
837	C	2	2	1	-	н	-CH-N-C-CF ₃
838	CH-€-CH₂-	2	2	1	· -	н	-CH-N-C-CH ₂ CH ₃ -CH ₂ OCH ₃
839	С⊢{Сн₂-	2	2	1	•	н	OCH ₃ -CH-N-C- OCH ₃ CH ₂ OCH ₃ OCH ₃
840	C├─ੑੑੑੑੑੑੑੑ ` CH₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH-CH ₂ -	2	2	1		н	-(CH ₂) ₂ - C-
842	CH2	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	C├ - CH₂- '	2	2	1	-	Н	-(CH ₂) ₂ -C-CH ₃ H ₃ C
844	CH-CH₂-	2	2	1	-	н	~(CH ₂) ₂ ~C~(CH ₃
845	С⊢—СН₂-	2	2	1	-	н	-(CH ₂) ₂ -C
846	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-C-C-CH ₃
847	CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C

Table 1.78

Compd. No.	R ¹ (CH ₂);	k	m	n ·	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
848	CH-CH ₂ -	2	2	1	-	н	-(СH ₂) ₂ -С- Н ₃ С
849	CH-CH2-	2	2	1		н	-(CH ₂) ₂ -C-OCH ₃
850	CH_CH ₂ -	2	2	1	-	н	- CH ₂ - Ş ← CH ₃
851	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- N- CF ₃
852	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-CF ₃
853	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-
854	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- N- CH ₃
855	CHCH ₂ -	2	2	1	· -	н .	-CH ₂ -N-C-N-C-H-CH ₃
856	CH-CH ₂ -	2	2	1 '	-	н	-CH ₂ -N-C-N-C-CH ₃
							-CH2-N-C-N-C-N-
858	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N-OCH ₃

Table 1.79

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_q$ $-(CH_2)_q$ $+(CH_2)_q$ $+(CH_2)_$
859	CH2-	2	2	1	-	Н	-CH2-N-C-N-CI
860	C├ - CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-CN
861	CH2-	2	2	1	-	. н	-CH ₂ -N-C-N-
862	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N- CH ₃
863	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	C├ \ CH ₂ -	2	2	· 1	-	H	-CH ⁵ -N-C-N-C-OCH ³ · · .
865	CH-€	2	2	1	-	Н	-CH ⁵ -N-2
866	С⊢—СН₂-	2	2	1	-* .		H i C
867	C⊢————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-S-CF ₃
						Н	-CH ₂ -N-S- H " CH ₂ CH ₃
869	CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

Table	1.00		_				
Compd.	R (CH ₂)-	k	m	п	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
870	CH₂-	2	2	1		н	- CH ₂ -N-S-CH ₃
871	CH-{	2	2	1	- -	н .	- CH ₂ -N-S-(CH ₂) ₃ CH ₃
872	CH√CH₂-	2	2	1	-	н	- CH ₂ -N-S-
873	C	2	2	1	-	н	- CH ₂ -N-C-O CH ₂
874	CH2−	2	2	1	<u>-</u>	н	- CH O C N CI
875	(CH₂-	2	2	1	• •	н	- CH ₂ -N-C-CF ₃
876	Br—CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
877	NC-(CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
	O ₂ N-CH ₂ -						- CH ₂ -N-C-CF ₃
879	O CH₂-	2	2	1	-	н	- CH ₂ -N-C- CF ₃
880	0 0 CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃

Table 1.81

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
881	Br CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
882	O-O-O-O-12-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
883	CI CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
884	н°с.ς-Й—∑—сн⁵-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
885	H ₃ C−\$ ← CH ₂ -	2	2	1	- ,	н	O CF ₃
886	F-CH ₂ -	2	2	1	.	Н	-CH ₂ -N-C-✓
887	F ₃ C-\(\bigcirc\)-CH ₂ -	2	2	ť	-	Н	- CH ₂ -N-C-CF ₃
888	HO-CH ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃
·889	CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
890	CH ₂ - CH ₂ -	2	2	1	-	н	- CH2- N- C- C-F3
891	CH_CH ₂ -	- 2	2	1		н	- CH ₂ -N-C-

Table 1.82

I able	1.0 2						
Compd.	R ¹ / _{R²} -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
892	H₃CO CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
894	HO CH ₃ CH ₂ - CH ₃	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	- -	н	-CH ₂ -N-C-CF ₃
896	CN CH₂-	2 ′	2	1	-	н	-CH ₂ -NCC-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	- .	Н	- CH ₂ -N C-CF ₃
898	HO ₂ C-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1		H	- CH ₂ -N-C-CF ₃
900	H ₃ ∞ ₂ C-√-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
901	○-CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
.902	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃

Table 1.83

Con	npd. R^{1} (CH ₂)– o. R^{2}	k m n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{L^5}$ $+ (CH_2)_q$ $+ G$
90	н₃со 3	2 2 1	-	Н	- CH ₂ -N-C-
904	4 CH ₂ -	2 2 1	-	н	- CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2 2 1	-	н	- CH ₂ -N-C-CF ₃
906	G (CH ₂) ₃ -	2 2 1	-	н .	- CH ₂ -N-C
907	CH(CH ₂) ₂ -	2 2 1	-	н	- CH ₂ -N-C-CF ₃
908	H C CH 2-	2 2 · · 1	-	н	- CH ₂ - N- C- CF ₃
909	. Н с	2 2 1	-	н	- CH ₂ -N-C-CF ₃
	CI CH₂-			н	- CH ₂ - N- C-
	CICH ₂ -			н	- CH ₂ -N-C-CF ₃
	Br CH ₂ -			Н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2 2 1	-	H'	O CF ₃

Table 1.84

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{D_5}$ $(CH_2)_q$ $G-R^6$
	OH2O-CH2-					Н	- CH ₂ - N- C-
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
916	. N CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
917	N—CH₂-	. 2	2	.1	· <u>-</u>	Н	- CH ₂ -N-CF ₃
918	H ₃ CO ₂ C·OH ₂	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃
922		2	2	1	-	н	-CH ₂ -N-C-CF ₃
923	CH-O-CH-	. 2	2	1	-	н	- CH ₂ -N-C-CF ₃
924	CH-CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.85

Compo	$\begin{array}{c} R^{1} \\ R^{2} \end{array} \rightarrow (CH_{2})_{\overline{I}}$	- k	c m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
925	H ₂ N+C	н ₂ - 2	2	1	<u>-</u>	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-C	H₂- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CO —CH ₂ -	. 2	2	1	;	H	-CH ₂ -N-C-CF ₃
928	F3CO-CH2	- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	н₃сѕ-{}сн₂	- 2	2	1	-	н	-CH _{2-N-} C-CF ₃
930	CH₃ −CH₂−	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
931	NC CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
932	CH_CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
933	Сн− сн-	2	2	1	-	Н	-CH_N-C-CF3
934	~N − CH ₂ −	2	2	1		н	- CH ₂ -N-C
935	O ₂ N CH ₂ -	2	2 -	1	•	Н	-CH2-N-C-CF3

Table 1.86

Table	1.00							
Compd.	R ¹	⊢(CH ₂) _i −	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
936		NO ₂	2	2	1	-	н	-CH ₂ -N-C-
937	(H ₃ C) ₂ N	ı—()—01₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
938	с⊢∢		2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	0₂Ŋ CI—⟨	→ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940		OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	, F₃Q C⊢(-CH ₂ -	2	2	1	-	Н.	-CH ₂ -N-C-CF ₃
942	с⊷	СН₂-	2	2	1	<u>.</u> .	Н	-CHNC-CF3 -CH(CH ₃) ₂ CF ₃
943	с⊷	CH2	1	4	0		н	-CH ₂ -N-C-CF ₃
944	с⊷	CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-CH ₃
945	с⊷	CH ₂ -	1	4	0	- ·	н	-CH ₂ -N-C-NO ₂
946	Cl─		1	4	0		н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.87

Comp	od. $R^2 \rightarrow (CH_2)_i$	- kmnc	hirality R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}$
947	с⊢(сн₂-	- 1 4 0	- н	-(CH ₂) ₂ -N-C
948	с⊢С}-сн₂-	1 4 0	- н	-(CH ⁵) ³ -C-N-CI
949	C⊢CH₂-	1 4 0	- н	-(CH ₂) ₃ -C-N-CH ₂ -
950	С⊢—СН₂-	0 4 1	- ^н	-CH ₂ -N-C-
951	CH2-	1 2 0	R H	-CH ₂ -N-C-C-CH ₃
952	CH ₂ -	1 2 0	R H	-CH ₂ -N-C
953	С├-{_}-СН₂-	1 2 0 F		-(CH ₂) ₂ -N-C-\ N(CH ₃) ₂
954	CH-€ CH2-	1 2 0 F	₹ н	H ² C-NH H C
955	CH-{\rightarrow} CH2-	1 2 0 F	В н	H ₃ C-NH
956	CH-€-CH₂-	1 2 0 R	н	-(CH ₂) ₂ -N-C- HO
957	CH-€ CH₂-	1 2 0 R	н	-сн ₂ -N-С-ОН

Table 1.88

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
958	С⊢—СН2-	1	2 . ·	0	R	н	-(CH ₂) ₂ -N-C-
959	· CICH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH√_CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
961	C├─ੑ_CH₂-	1	2	0	R	н	CH2-N-C
962	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) _Z -N-C-\ H-CH ₃
963	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) _Z -N-С-ОН
964	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H CO ₂ CH ₃
965	CH-(-)-CH ₂ -	1	2	0	Ŗ	н	-(CH ₂) _Z -N-C-_2CH ₃
966	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
967	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C-\ \ H
							-CH-N-C-NH

Table 1.89

Compd No.	R ¹ (CH ₂)	k m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R
969	C ├── CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C-NH
970	C├ - CH ₂ -	1 2 0	R	Н	-CH ₂ -N-C-\(\infty\) N(CH ₃) ₂
971	CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\).
972	CH-(-)-CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-NH ₂
973	CH-2-	1 2 0	R	Н	-(CH ₂) ₂ -N-C-NH ₂
974	С├-{_}-СН₂-	1,, 2 0	R	н	-CH ₂ -N-C
975	CH-CH ₂ -	1 2 0	Ŗ	Н .	-(CH ₂) ₂ -N-C-NH ₂
976	CH-CH₂-	1 2 0	R	н	-CH ₂ -N-C- NH
977	С⊢—СН₂-	1 2 0	R	Н	-(CH ₂) ₂ -N-C-NH
978	CH-2-	1 2 0	R	Н	-CH2-N-C- NH NH NH
979	CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C

Table 1.90

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
980	CI—{	1	2	0	R	· н	- CH ₂ -N-C-CH ₃
981	CI-CH ₂ -	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-
983	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
984	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C CH ₂ OH
985 [.]	CH-2-	1	2	0 .	R	н	-(CH ₂) ₂ -N-C-CH ₂ OH
986	CH-CH-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
987	CH-CH₂-	2 ,	2	1	-	н	-CH₂-N-C-CF3
988	CH-2-	1	4	0	-	н .	-CH ₂ -N-C- CF ₃
989	C⊢-CH₂-	1	4	0	-	н .	-CH ₂ -N-C-O-CH ₂
990	C	1	4	0	-	н	-CH2-N-C-

Table 1.91

Compd.	R ² (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
991	CH-CH ₂ -	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	C├───────────────────────	1	4	0	-	н	-(CH ₂) ₂ -C-\(\sigma\)-OCH ₃
993	CH-2-	1	. 4	0	-	н	$-(CH_2)_2$ $-C$ H_3
994	CHCH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-\bigs\bigs\bigs\bigs\bigs\bigs\bigs\bigs
995	CHCH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
996	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH2-	2	2	1	-	Н	-сн-n-с
998	CH2-	2	2	1	-	н	-CHN-CCF3 -CH2CH(CH3)2
999	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1000	CH-2-	2	2	1	-	н .	-CH-N-C- H H2CH(CH3)2
1001	C⊢-{CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂

Table 1.92

	•						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	[·] R³	$-(CH_2)_p + G^4 $
1002	с⊢С}-сн₂-	2	2	1	_	н	- CH N-C- () - CH N-C- () - CH2CH(CH3)2
1003	C⊢√CH₂-	. 2	2	1	<u>.</u> ·	Н	-снисности
1004	CI—CH₂-	2	2	1	-	н .	CH2CH(CH3)2 OCH3
1005	C⊢√CH₂-	2	·2	1	-	Н	-CHNC- H -CH2CH(CH3)2 OCH3
1006	CH-CH ₂ -	2	2	1	- '	Н	ОСН ₂ СН ₃ -СН №С
1007	CH-CH ₂ -	2	2	1	-	H	ОСН ₂ СН ₃ — СН N-С- — — ОСН ₂ СН ₃ — ОСН ₂ СН ₃
1008	C├ - CH ₂ -	2	2	1	-	Н	- CH-N-C- H C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1009	CH2-	2	2 ·	1	-	н .	CH ₂) ₂ -G-NH ₂
1010	C├ - CH₂-	2	2	1	-	н	- CH-N-C
1011	C	2	2	1	-	н	O OCH ₂ CH ₃ - CH ₁ CH ₂ CH ₃ - CH ₂ CH ₃
1012	C	2	2	1	-	н	-CH-N-C

Table 1.93

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1013	с⊢√СН₂-	2	2	1		. н	(CH ²) ² C ² -NH ² OCH ³
1014	CI—CH ₂ -	2	2	1	-	н	-CH-N-C
1015	CH-CH2-	2	2	1	-	Н	OCH2CH3
1016	CH ₂ −	2	2	0	-	Н	-CH ₂ -N-C
1017	CHCH ₂ -	2	2	0 ·	-	н	-CH ₂ -N-C-
1018	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C
1019	С⊢—СҢ₂-	2	2	1	-	н	-CH ₂ -N-C
1020	CH-CH2-	2	2	1	-	н .	-CH ₂ -N-C-OCH ₃
1021	С⊢_СН₂-	2	2	1		н	-CH ₂ -N-C-OCH ₂ CF ₃ -CH ₂ -N-C-OCH ₂ CF ₃
1022	С⊢СН₂-	2	2	1		н	(S) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1023	CI—CH₂-	2	2	1	-	н	(S) Q CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₃

Table 1.94

Compd. No.	R ² (CH ₂) _j -	.k	m	n	chirality	[°] R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} G - R^6$
1024	CH-CH ₂	2	2	1		Н	(S) OCH ₃ -CH-N-C
1025	CHCH ₂ -	2	2	1	-	Н	(S) P OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₃
1026	СН-СН2-	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH-N-C
1027	CH2-	2	2	1	-	H	(S) OCH ₂ CH ₃ -CH-N-C
1028	CH-€-CH2-	2	2	1	<u>.</u> ·	Н	(S) OCH ₂ CF ₃ -CH-N-C- CH-N-C- CH ₂ CF ₃
1029	CH2-	2	2	1 ·	·	н	(S) OCH ₂ CH ₃ -CH-N-C-
1030	C⊢√CH₂-	2	2	1		н	(S) POCF ₃ -CH-N-C
1031	C├ ─ _CH ₂ -	2	2	1		н	CH3 OCH3
1032	CH-√CH₂-	2	2	; 1 ,,	-	н	(H) OCH3
1033	с⊢√_сн₂-	2	2 .	1	-	н	(R) CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₃
1034		2				н	(F) OCH ₃ -CHN-C-OCH ₃ CH ₃ OCH ₃

Table 1.95

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1035	CH-CH2-	2	2	1	-	н	(R) Q OCH₂CH₃ -CH-N-C OCH₂CH₃ - H CH₃
1036	CH-2-	2	2	1	-	н	(A) OCH2CH3 -CH-N-C
1037	. С⊢-{}-СН₂-	2	2	1	-	н	(A) OCH ₂ CH ₃
1038	с⊢С сн₂-	2	2	1	-	н	(A) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CH-CH ₂ -	2	2	1.	-	н	(F) OCH ₂ CH ₃ -CH-N-C-C-CH ₃ CH ₃
1040	CH-2-	2	2	1		н	(A) OCF3 -CHN-C-CH3 CH3
1041	С⊢—СН₂-	2	2	1	-	H .	(F) OCH ₃ -CH-N-C-C
1042	С⊢—СН₂-	2	2	1	-	H	-CH ₂ -N-C
1043	CH-2-	2	2	1	-	н	$-CH_{2}-NC-H_{2}N$ $-CH_{2}-NC-H_{3}$ $-CH_{2}-NC-H_{2}N$
1044	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1045	C├ - CH ₂ -	2	2	1	-	н	H_2N OCH_3 $-CH_2-N-C$ H_2N

Table 1.96

•				_			
Compd.	R ¹ (CH ₂) _j	k	m	п	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1046	CH ₂ −	2	2	1		H.	-CH ₂ -N-C
1047	СН-СН2-	2	2	. 1		н	$-CH_2-N-C-$ H_2N CH_3 CH_3
. 1048	CH-CH ₂ -	2	2	1	-	Н.	$-CH_2-N-C$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$
1049	CH√CH₂-	2	2	1	-	H	$-CH_2-N-C-$ H_2N H_2N Br
1050	CH2-	2	2	1		H	(S) OCH ₃ CH-N-C
1051	CH ₂ -	2	2	1	-	H	(S) P CH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1052	CHCH ₂	2	2	1	-	Н	(S) Q OCH ₃ -CH-N-C
1053	CH_CH₂-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1054	CH-√CH ₂ -	2	2	1	-	H	(S) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	CH	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	CH ₂ -	2	2	1	•	н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Compd. No.	R ¹ (CH ₂) _j -	k	m	ก	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1057	С├-СН₂-	2	2	1	-	·H	(H) OCH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1058	с⊢—Сн₂-	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C- OCH ₃ -CH ₂ CH(CH ₃) ₂
1059	CHCH ₂ -	2	2	1	-	н	(S) OCF ₃ -CH-N-C
1060	CH-CH ₂ -	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1061	CH2-	2	2	1	-	н .	(R) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH-2-	2	2	1	-	н .	(S) Q OCH ₂ CH ₃ -CH-N-C- CH-N-CH ₂ CH ₂ CH ₂ CH ₃
1063	C├ - CH ₂ -	2	2	1	-	н	$(H) \qquad \bigcirc OCH_3$ $-CH_1 - C$ $\downarrow H$ $CH_2CH(CH_3)_2$
1064	CH ₂ -	2	2	1	-	н	(F) OCF ₃ -CH-N-C- - H H CH ₂ CH(CH ₃) ₂
1065	CH-2-	2	2	1	-	н	(R) \cap OCH ₃ \cap CH-N-C \cap CH ₂ CH(CH ₃) ₂ OCH ₃
1066	C⊢√ CH₂-	2	2	1	-	н	(R) CH ₂ CH ₃ -CH-N-C-C-CH ₂ CH ₃ -LH H CH ₂ CH(CH ₃) ₂
1067	CH-CH ₂ -	2 .	2	1	-	H ·	(F) Q OCH ₃ −CH-N-C− OCH ₃ CH ₂ CH(CH ₃) ₂ OCH ₃

Table 1.98

, abic ,	.0 0						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	. R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1068	C├ - CH ₂ -	2	2	1	-	н	(<i>H</i>) Q OCH₂CH₃ -CH+N-C- OCH₂CH₃ CH₂CH(CH₃)₂
1069	CH-{CH₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1070	СН-СН₂-	2	2	1	-	н	P S SC Ho -CH-N-C-() CH ₂ OCH ₂ -()
1071	CH-√CH₂-	2	2	1	-	н	O H O N O H CH ₂ OCH ₂ -
1072	CH-€	2	2	1	: -	н	OH ₂ O CH ₂ OC(CH ₃) ₃
1073	CH-€	2	2	1	-	н	-CH-NC-CO OH ₂ OCH ₂ CO
1074	CH-2-	2	2	1	-	н	-CH-NC-CH-OH3
1075	CH-CH2-	2	2	1	, -	н	OCF ₃
1076	CHCH ₂ -	2	2	1		н	OH ₂ O CH ₂
. 1077	CH ₂ -	2	2	1	-,	н	-CH-NC
1078	CI—CH ₂ -	2	2	1		н	-CH-N-C-

Table 1.99

					•		•
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	一(CH ₂) _p
1079	C⊢CH₂-	2	2	1	-	н	-CH-NC-CH3
1080	CH-CH ₂ -	2	2	1	-	, н	OCH ₂ CH ₃
1081	с-СН2-	2	2	1	-	Н	CH-N-C-CH3 OCH3 OCH3
1082	CI—CH ₂ —	2	2	1		Н	(S) P O
1083	CH-CH ₂ -	2	2	1	-	н	CH3 CH3
1084	CH-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-
1085	CH-2-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1086	C├ - CH ₂ -		•		R	н .	-CH ₂ -N-C-
1087	C	1	2	0	R	н	-CH ₂ -N-C-(N-C-(N-C-(N-C-(N-C-(N-C-(N-C-(N-C
1088	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-
1089	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.100

Compd.	R (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-GR^6$
1090	CH√2-	1	2	0	R	н	-CH ₂ -N-C
1091	C⊢√CH₂-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CH-CH₂-	1.	2	0	R	н	-CH ₂ CH ₂ -N-C-NO ₂
1093	CH-CH₂-	1	2	0	Я	н	$-CH_2CH_2-N-C$ H_2N
1094	CHCH2-	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H-N-H-H-N-H-N-H-N-H-N-H-N-H-N-H-N
1095	C├	i	2	0	R _.	H	-сн ₂ сн ₂ -N-с-СР
1096	СН2-	1	2	0	. R	н	-CH ₂ CH ₂ -N-C-N-H-H-F
1097	CHZ⁻	1	2	0	R	н	-CH2CH2-N-C-
1098	CH ₂ -	1	2	0	R	н,	-CH ₂ -N-C
1099	C├────────────────────────────────────	1	2	0	R	н	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1100	C⊢CH₂-	1	2	0	R	н	-CH ₂ -N-C-⟨-F

Table 1.101

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1101	C├ - CH₂-	. 1	2	0	R	н	-CH2-N-C- CH3
1102	CH-CH2-	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	Н₃С-СН₂-	1	2	0	R	н	-CH ₂ -N-C-⟨Sr -CH ₃
1104	H₃CCH₂-	1	2	0	R	н	-CH₂-N-CF
1105	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1106	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C CH_3
1107	H ₃ C-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C
	CH₃ N CH₂- CH₃					Н	-CH ₂ -N-C
1109	CH ₃ CH ₂ CH ₃	1	2	0	R	H	-CH ₂ -N-C
1110	CH ₃ N CH ₂ - CH ₃	· 1	2	0.	R	н	-CH ₂ -N-C
1111	CH₃ CH₂-	1	2	0	R ·	H .	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{3}-NC$

Table 1.102

.45.0							
							$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
1112	CH ₃ CH ₂ - CH ₃	1	2	0	R	H .	-CH ₂ -N-CNO ₂
1113	С├-{	2	2	1	-	Н	$-CH_2-N-C -CH_3$
1114	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1115	CH	2	2	1	-	н .	-CH ₂ -N-C
1116	CH	2	2	1	-	н	-CH ₂ -N-C
1117	CH2-	2	2	1	-	Н	-CH ₂ -N-CNO ₂
1118	H-C-(-)-CH2-	1	2	0	R	н	-CH ₂ -N-C
1119	H₃CS—(CH₂-	1	2	0	R		-CH ₂ -N-C-CF ₃
1120	H ₃ CQ —CH ₂ - OCH ₃	1	2	. 0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{3}-N+C$ $-CH_{4}-N+C$ $-CH_{5}-N+C$
1121	H ₃ C O ₂ N — CH ₂ - (H ₃ C) — CH ₂ - (H ₃ C) — CH ₂ - CH(CH ₃) ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1122	H ₃ C (H ₃ C) ₂ CH-CH ₂ -CH(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.103

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	['] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	С⊢—СН₂-	2	2	1	-	H	-CH-N-C
1126	СН-СН2-	2	2	1	-	н	OH2O CH2
1127	CH-CH ₂ -	2	2	1	-	н	-CHNC-NH CH2OCH2
1128	С⊢—СН₂-	2	2	1	-	н	-CH-N-C
1129	С├-{	.2	2	1	-	н	CH ₂ OCH ₂
1130	C├ \	2	2	1	-	н	OH ₂ O CH ₂
1131	C├ ~ _CH ₂ -	2	2	1	-	н .	-CH-N-C-
1132	C├ - CH ₂ -	2	2	1	-	. H	CF ₃
1133	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							•

Table 1.104

				_			
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1134	H ₃ CQ H ₃ CO—CH ₂ — H ₃ CO	1	2	0	R	н	-CH₂-N-C-CF₃
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	H _.	-СH ₂ -N-С-СF ₃
1142	CH₂-	1	2	0	R	Н√.	$-CH_{2}-NC-CF_{3}$ $-CH_{2}-NC-CF_{3}$ $-CH_{2}-NC-CF_{3}$ $-CH_{2}-NC-CF_{3}$
1143	OH2O-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1144	H ₃ CO CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1145	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1146	С-С+2О-С-С+2-	1	2	0	R	н	-CH ₂ -N-C
	#C-C-N-(-)→CH.E				R	н	-CH ₂ -N-C
	-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ − CH ₃	1	2	0	R .	н	CH ₂ -N-C
1150	CH₃ CH₃	1,	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH₃ CH₃ CH₃	1	2	0	R.	н .	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ N CH ₂ - CH ₃					Н.	H N
1153	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1154	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-Y-CH ₃ -CH ₂ -N-C-Y-CH ₃ F ₃ C

Table 1.106

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	. K3	$-(CH_2)_p$ $+ G^4$ $+ GH_2)_q$ $+ G-R^6$
1156	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н,	-CH ₂ -N-C-(CH ₃) ₃
1157	CH₃ CH₂- CH₃	1	2	Ó	R	н	-CH2-N-C-SSCH3
1158	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1159	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N\cdot C \longrightarrow OCH_3$ $+_2N OCH_3$
1160	CH₃ CH₃	1	2	0	R	н	$-CH_2-N-C \xrightarrow{Q} CH_3$ $+H_2N \xrightarrow{Br}$
1161	OH -CH ₂ -	1	2	0.	. R	н	-сн ₂ -N-с-СF ₃
	H ₃ CO—CH ₂ —CH ₂ —						-CH ₂ -N-C-⟨CF ₃
~	H ₃ CO-CH ₂ -						-CH ₂ -N-C-CF ₃
11,64	H ₃ C . H ₃ CO- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1166	H ₃ CO—CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.107

					·		
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality		$-(CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - G - R^6$
1167	CHCH ₂ -	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	Н	-сн ₂ -№ С-С-С-3
1169	H3 C- C- N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CH-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1172	CH—CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-N-H
1173	С⊢—СН₂-	1	2	. 0	R	н	-CH ₂ -N-C-N-C-N-CH ₃
1174	C├ - ⟨_}-CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C
1175	H₃C{}-CH₂-	1	2	0	R .	Н	-CH ₂ -N-C-C-Br
117 <u>6</u>	Н₃С-{СН₂-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1177	н₃с-{Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

Table 1.108

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1178	H ₃ C-\(\)_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1180	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H
1181	CH₃ CH₂− CH₃	. 1	2	0	R	Н	-CH ₂ -N-C- Br
1182	CH ₃ CH ₂ - CH ₃	1	2	0	. R	н	-CH ₂ -N-C-N-OH
1183	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1184	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N C$ H_2N
1185	CH ₃ CH ₂ − CH ₃						-CH ₂ -N-C-NO ₂
1186	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1187	C⊢√_CH₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CH ₃ :
1188	C⊢√¯>−CH₂−	2	2 ·	1	-	н	$-CH_{2}-N-C- \longrightarrow DH$ $-CH_{2}-N-C- \longrightarrow DH$ $+CH_{2}-N-C- \longrightarrow DH$

Table 1.109

Compd	R ¹					·~········	Ω4
No.	R ¹ (CH ₂)-	k		n	chirality	R³	—(CH ₂) p 5 (CH ₂) q G−R ⁶
1189	C├ - CH₂-	2	2	. 1	-	н	-CH2-N-C-N-CH3
1190	С├-{}-СН₂-	. 2	2	1	-	н	-CH ₂ -N-C
1191	CH₃ CH₂- CH₃	1	2	.0	R	н	-CH ₂ -N-C-CF ₃
1192	CH₃ N − CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-F
1193	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1194	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C- H F ₃ C
1195	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
	CH₃ CH₂- CH₃	1	2	0	R	Н .	-CH ₂ -N-C
1197	Сн₃			•		Н .	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃
199	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
					•		

Table 1.110

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1200	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
1201	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1204	H ₃ C-CH ₂ -	1	2	0	R	Н -	-CH ₂ -N-C
1205	H ₃ C-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1207	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-F ₃
1208	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	. Н	-CH ₂ -N-C-CI

Table 1.111

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{q$
1211	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CH	2	2	1	-	н	-CH ₂ -N-C
1214	CHCH ₂ -	2	2	1	-	H 	CH ₂ -N-C
1215	CH2-	2	2	1	. -	н	-CH2-N-C-CI
1216	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1218	CH-2-	1	2	0	R	н	-CH ₂ -N-C
1219	СН ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CI
1220	CH-2-	1	2	0	R ·	н	-CH ₂ -N-C-
1221	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.112

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1222	С⊢{_}СН₂-	1	· 2	0	R	н	-CH ₂ -N-C-N-CH ₃
1223	C├ - CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-
1224	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C- ← CH₃
1227	H ₃ C-CH ₂ -	1	2	0	R	Н	O CH₃ -CH₂-N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1229						н	$-CH_2-N$ C H_2N
1230	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-N-CH ₃
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.113

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1233	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C CF ₃
1234	CH ₃ N CH ₂ − CH ₃		2	0	R .	н	-CH ₂ -N-C
1235	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1236	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1237	CH ₃ CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
1238	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-N-CH3
1239	CH ₃ CH ₂ CH ₃	· 1	2	.0	R	Н	-CH ₂ -N-C-
1240	CH ₃ CH ₃	1	2	0 .	R	' н	-CH ₂ -N-C-√NO ₂
1241	с⊢С}–сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1242	С⊢—СН₂-	2	2	1	•	н	-CH ₂ -N-C-CH ₃
1243	ССН2-	2	2	1		Н	-CH ₂ -N-C-CI

Table 1.114

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1244	C├ \ _CH ₂ -	2	2	1	· .	н	-CH ₂ -N-C-
1245	C├ ─ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
1246	C├ - CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1247	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1248	CH-{	2	2	1	- Vo	Н	-CH ₂ -N-C-NO ₂
1249	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1251	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1252	C├ - ⟨	1	2	0	R	. н	-CH ₂ -N-C-⟨CH(CH ₃) ₂
1253	H₃C-⟨¯⟩-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1254	CH ₃ CH ₂ - CH ₃	1	2	O	R	н	-CH₂-N-C-(CH₃)₂

Table 1.115

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1255	CH-{	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1257	CH ₃ N CH ₂ − CH ₃	· 1	2	0	R	н	$-CH_2-N C \longrightarrow Br$ H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1259	CH ₃ CH ₂ - CH ₃	1	2	0	R .	Н	-CH ₂ -N-C-
1260	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1261	CH2-	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1262	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1263	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1264	С⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C
1265	H ₃ C-(CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O

Table 1.116

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1266	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-YO
1267	C├ \ CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-N-C-N-H-H-C-N-H-H-N-N-N-N-N-N-N-N-N
1268	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1269	C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1270	`C⊢—CH₂-	1	2	ó	R	н	-CH ₂ -N-C- HO
1271	C├ - CH₂-	1 · ·.	. 2	0	R	н	-CH ₂ -N-CF
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-H
	H ₃ CCH ₂ -					н	-CH ₂ -N-C- H ₃ CO
1274	H ₃ CCH ₂ -'	1	2	0	R _.	н	-CH ₂ -N-C- HO
1275	H ₃ CCH ₂ -	1	2	0	R	.	-CH ₂ -N-C-
	H ₃ C-(-)-CH ₂ -					Н	-CH ₂ -N-C-√NO ₂

Table 1.117

٠.٠

	Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³ ·	-(CH ₂) _p (CH ₂) _q G-R ⁶
•	1277	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-OCF ₃
	1278	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1279	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C
	1280	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C-
	1281	CH ₃ N CH ₂ − CH ₃	1	.2	0	R	н	-CH ₂ -N-C
	1282	С⊢СН₂−	2	2	1	-	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
	1283	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	1284	СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C
•	1285	С├────────────	2	2	1		н	-CH ₂ -N-C- HO
1	286 ^н з	Ç (N(O+2)30————O+2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1	287 _C	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

Compd. No.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1288	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH₃ N −CH₂− CH₃	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1290	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-NC- \longrightarrow CH_{3}$ $H_{2}N CH_{3}$
1291	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-\(\bigce_2\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N B_T
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C
1295	H ₃ C-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-(CH ₃) ₃
1296	H₃C⟨}-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1297	H ₃ C	1	2	0	R	Н	$-CH_2-N-C F_3C$
1298	H ₃ CO—CH ₂ -Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.119

							•
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}_{15}}^{4}(CH_2)_{\overline{q}}G-R^6$
1299	H ₃ CO ————————————————————————————————————	1	2	0	R	н	-CH₂-N-C
	OCH ₃					н	-CH ₂ -N-C
1301	OCH ₃ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ CO CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ CH ₂ O-CH ₂	1	2	0	R	. _. H	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H ₃ CCH ₂ Q H ₆ CO————————————————————————————————————					н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	0-√CH ₂ -						-CH ₂ -N-C-CF ₃
1309	H ₃ CO — — — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.120

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H ₃ CQ HO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1311	O O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂ -	1	, 2	0	R	н	-CH ₂ -N-C-CF ₃
1318	CHFCH_2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Вг—СН₂-	1	2	0	R	н.	-CH ₂ -N-C-CF ₃

Table 1.121

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\rho} + \frac{R^4}{R^5}(CH_2)_{\overline{q}} - G - R^6$
1321	CHCH2-	1	2	. 0	R	Н	-CH₂-N-C- Br -CI
1322	CH2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	C	1	2	0	R	н	-CH ₂ -N-C-C1
1324	СНСН2-	1	· 2	0	R	н	$-CH_2-N$ C HO
1325	CH_CH2-	1	2	0	R	н	-CH2-N-C
1326	CHCH2_	1	2	0	R	н	-CH ₂ -N-C HO
1327	CH2-	1	2	0	R	н	$-CH_2-N-C$ H_2N
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br H C-CI.
329	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
330	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CI
331	н₃с-{сн₂-	1	2	0	R .	н	-CH ₂ -N-C-CH ₃
							- -

Table 1.122

· ubic	1.122						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-NC H_2N$
	CH ₃ CH ₂ − CH ₃						-CH ₂ -N-C-Sr -CI
1336	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ CH ₃	1	2	O	R	Н	-CH ₂ -N-C-⟨ -CI
1338	CH_3 CH_2 CH_3	1	2	0	R .	н	-CH ₂ -N-C
1339	ČH₃						-CH ₂ -N-C
	CH ₃ CH ₂ − CH ₃						-CH ₂ -N-C-
1341	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
	C├ \ CH ₂ -						-CH ₂ -N-C-Sr

Table 1.123

					•		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$
1343	CH-2-	2	2	1		н	-cH2-N-C CH3
1344	CH_CH2-	2	2	1	-	н	-CH2-N-C
1345	CH-CH2-	2	2	1	-	н .	-CH ₂ -N-C- HO HO CH ₃
1346	СН-СН2-	2	2	1	-	Н	-CH ₂ -N-C-
1347	СНСН2-	1	2	0	R	н	-CH ₂ -N-C-S
.1348	H3CCH2-	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1349	CH ₃	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1350	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S-CH ₃
1351	C⊢√_CH₂-	1	2	0	R	H	- 04 ³ -H C-04 ³
	H ₃ C-\CH ₂ -						-013-H C-013
1353	CH ₃ CH₂− CH₃	1	2	0	R	Н	-CH2-11 C-CH3

Table 1.124

Compd. No.	R ¹ (CH ₂),-	k	m 	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1354	CH-{_}-CH₂-	2	2	1	-	н	, - CH ₂ -N C-CH ₃
1355	C├ - CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1356	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CN
1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1358	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
1359	CH ₃ CH ₂ - CH ₃	. 1	2	0	R	н	-сн ₂ -N-с-
1360	CH ₃ CH ₂ -	1	2	0	R	H	$-CH_{2} \stackrel{\text{N-C}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}}}}}}$
1361	H ₃ C-CH ₂ -				•		-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
1362	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	. н	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ - CH ₃	1	,2	0	Ŕ	Н .	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1364	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃

Table 1.125

Compd No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + G^4 + G^6$
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C- H ₃ C
1366	CH₃ CH₂− CH₃	1	2	0	R	H	-CH ₂ -N-C
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1368	CH-CH ₂ -	1	2	0	R		-CH ₂ -N-C
1369	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1370	СН-СН2-		2	0	R	н	-CH ₂ -N-C-S Br
1371	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1372	C⊢—CH₂-	1	2	0	R	Н	-CH2-N-C-
1373	H₃C-⟨CH₂-	1	2 -	0			-CH ₂ -N-C-CF ₃
	H ₃ C-()-CH ₂ -					н	CH ₂ -N-C
1375	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S Br

Table 1.126

Compd. No.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $+ (CH_2)_q$ $+ G$
1376	H ₃ C- ⟨ }-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	H	-CH2-NC-
	CH ₃ CH ₂						-CH ₂ -N-C-CI
1379	CH ₃ CH ₂ − CH ₃	1	2	0	R	· н	OCH₂CF₃ -CH₂-N-C- H F₃CCH₂O
1380	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-S Br
1381	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH ₃ CH ₂ − CH ₃	1	2	0	R	н .	-012-HC-
1383	CH-CH2-	2	: 2	1		н	-CH ₂ -N-C
	CHCH2-						-CH ₂ -N-C-SBr
1385	CH-{	2	2	1.	-	Н	-CH ₂ -N-C-
1386	CH-{-}-CH ₂ -	2	2	1	-	н	-CH2-NC-

Table 1.127

	Compd.	R ¹ (CH ₂) _j	k	: m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
٠	1387	CH³ CH³	1	2	0	R	н	-CH2-N-C
	1388	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		CH ₃ CH ₂ -					н	-CH ⁵ -H-C- 8 6
	1390	H ₃ C CH ₃ H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1391	H ₃ C ————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
	1392	CI H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1393 +	-1,5ССН₂СН₂-	1	2	0	R .	н .	-CH ₂ -N-C-CF ₃
	1394	O ₂ N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
		₂ C=CH - ⟨}-CH ₂ -						-CH ₂ -N-C-CF ₃
•	1396	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
-	1397	Br. CH ₂ -	1	2	0	R	н	CH ₂ -N-C

Table 1.128

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1398	CH-CH-CH-CH-	1	2		R	н	CF ₃
1399	CH—CH—CH—	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1400	с⊢СН-СН-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\N-N-H
1402	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1403	H ₃ C-CH ₂ -	1	2	0 	R	н	-CH₂-N-C-⟨_N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C- H H₃CS
1406	H ₃ C-CH ₂ -	1	2	0	R'	н	-CH₂-N-C H
1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R.	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.129

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1409	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1410	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
1411	CH-CH2-	1	2	0	R	н	H2-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -NH H ₃ C-C-NH
1413	CH₃ N CH₂- CH₃	* 1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C H ₃ -C-C-NH
1415	С⊢—СН2-	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	H ₃ C-CH ₂ -					н	$-CH_2-N-C-$ H_2N SCN H_2N
1417	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	с⊢С⊢сн₂-					н	$-CH_2-N-C$ H_2N SCN
1419	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N

Table 1.130

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1420	H₃C- \ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-SH
1422	C⊢-{	2	2	1		н	-CH ₂ -N-C-SH
1423	C├ ─ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	H	-CH2-N-C-
1425	CH ₃ CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-
1426	CH-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-
1427	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SBr H ₃ C-NH
1428	с⊢{_}-сн₂-	2	2	Ϊ	-	Н	-CH ₂ -N-C
1429	њссн₂о-С}-сн₂-	2	2	1	-	н	$-CH_{2}-NC-CI$ $-CH_{2}-NC-CI$ $-CH_{2}-NC-CI$
1430	O-{CH₂-	2	2	i	-	н	$-CH_2-NC-$ H_2N

Table 1.131

Compd No.	I. R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1431	ңссн₂о-{}-сн₂	- 2	2	1	_	н	-CH ₂ -N-C
1432	O-CH2-	2	2	1	-	н	-CH ₂ -N-C
1433	њссн₂о-⟨сн₂-	2	2	1	-	н	-CH2-NC
1434	н,ссн ₂о-{>-сн₂-	2	2	1	-	н	-CHZ-NCSI
1435	H ₃ CCH ₂ ————————————————————————————————————	. 2	2	1	-	Н	-CH ₂ -N-C-
1436	(H ₆ C) ₂ CH	2	2	1	-	н	-CH ₂ -N-C
1437	H ₃ C(CH ₂) ₂ O{-}-CH ₂ -	2	2	1	-	H,	-CH ₂ -N-C
1438	н ₃ ССН ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1439 (Hc)2CH-{\biggreenty}-CH2	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N H_2N
1440 H	¹ ,C(CH ₂) ₂ O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	2	1		н	-CH ₂ -N-C
1441 H	H ₃ CS{}-CH₂-	2 2	2 -	1	-	н	-CH ₂ -N-C-Br

Table 1.132

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1442	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-сн ₄ -мс-
1443	(њс)₂сн-СУ-ан-г	2	2	1	-	Н	-CH2-N-C
1444	н ₃ с(сн ₂) ₂ о-{} - сн ₂ -	2	2	1	-	н	-CH ₂ -N-C
1445	н₃ссн₂-√-сн₂-	2	2	1	-	, Н	-CH2-N-C
1446	(H ₂ C) ₂ CH ← CH ₂ -	2	2	1.	<u>-</u>	н	-CH2-NC
1447	н ₃ с(сн ₂) ₂ о{	2	2	i	-	Н	-O12-N-C
1448	H₃ÇS()—CH₂-	2	2	1	-	н .	-CH ₂ -NCSCH ₄
1449	H ₃ CCH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH-√-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
			_				

Table 1.133

Compo No.	$d. \begin{array}{c} \text{R}^{1} \\ \text{R}^{2} \end{array} \rightarrow (\text{CH}_{2})_{j} - \\ \\ \end{array}$		< m	ı n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1453	н,с(сң ₂) ₂ о-{}- о-	ł₂- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	њссн₂о-{_}сн	₂- 2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	О—СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-CH ₂	- 2	2	1	-	Н .	-CH ₂ -N-C-\ H ₂ N
1458	H ₃ CQ	2	2	1	-	н.	-CH ₂ -N-C
1459	(H ₃ C) ₂ N-√2-CH ₂ -	2	2	1	_ ·	H	-CH ₂ -N-C
1460	H ₃ CQ HO—————CH ₂ —					Н	-CH ₂ -N-C
1461	HO-CH ₂ -	2	2	1	-	н	-chz-hc-chz-och
1462	HO-CH ₂ -	2	2	1	- -		-CH2-N-C
1463	CH2-	2	1	1	-	н	-CH2-N-C-CF3

Table 1.134

					•		
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1464	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-OCF ₃
1465	C	2	1	1	-	н	-CH ₂ -N-C-\ F ₃ C
1466	CH-CH ₂ -	2	1	1	-	н	-CH₂-N-C-S
1467	СН2-	2	1	1	-	н	-CH ₂ -N-C-
1468	CH2-	2	1	-1		Н	-CH ₂ -N-C-
1469	С⊢—СН2-	2	. 1	1	-	н	-CH ₂ -N-C
1.470	С⊢—СН₂-	2	1	1		Н	-CH₂-N-C-CI
1471	с⊢Ср−сн₂∸	2	1	1	-	н	-CH2-N-CF
1472	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1473	Br S−CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	Br S CH ₂ - Ci CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.135

Comp	nd. R ² (CH ₂) _j		k m	ı n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{L_5} (CH_2)_{q} G - R^6$
	n						H2 (CH2/q-G-H3
1475	ch j	H _Z -	1 2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	- 1	2	0	. _. R	Н	-CH ₂ -N-C-CF ₃
1477	Br CJ-CH	1 1 ₂	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B. (3-04	1	2	0	R	н	. −CH ₂ −N-C− CF ₃
1479	H_3C CH_3 CH_3	- 1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1480	CH ₃	_ 1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1481	H ₃ C — CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
483	H ₃ C O CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
484	CF CF-CH2-	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
485	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.136

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\rho} \frac{R^4}{L_5} (CH_2)_{\overline{q}} G - R^6$
No.	R ²	_					R ⁵
1486	H₃C-{}-CH₂-	1	2	0	R ·	Н	-CH ₂ -N-C
1487	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CI
1488	н₃С-{_}Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1489	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\
1491	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C- H :
1492	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
1493	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-01-11c-10
1494	CH ₃ CH ₃ CH ₃	1	2	.0	R	Н	-CH2-N-C
1495	CH ₃ CH ₂ CH ₂ CH ₃ CH ₃	1	2	0	R	Ή	$-CH_{2}-N-C \longrightarrow N \\ H_{3}C$
1496	CH₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C H ₃ -CH ₃ -CH ₂ -N-C CH ₃ -CH ₂ -N-C CH ₃ -CH ₂ -N-C CH ₃ -CH ₃ -N-C CH ₃ -N-C CH ₃ -N-C CH ₃ -CH ₃ -N-C CH ₃ -N-

Table 1.137

Comp No.	od. R^{1} $(CH_{2})_{i}$	k	: m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2')_{\overline{q}} G - R^6$
1497	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1498	CH ₃ CH ₂ −	1	2	0	R	н	-CH2-N-C✓
1499	CH₃ CH₃	1	2	0	R	H .	-CH ₂ -N-C-√
1500	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-
1501	CH ₃ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-
	CH ₃ CH ₂ -					н.	-CH ₂ -N-C
1503	CH₃ CH₃ CH₃	1	2	0	R	Й	-CH ₂ -N-C-CH ₂
	H ₂ N-CH ₂ -				•	н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CH-2-	2	1 -	I	-	н	-CH ₂ -N-C
1507	CH-2-	2	1 1		-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$

Table 1.138

Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1508	C⊢-{CH₂-	2	1	1	-	н	-CH ₂ -N-C
1509	C	2	1	1	-	н	-CH ₂ -N-C-
1510	C⊢√CH₂-	2	1	1	· -	н	-CH ₂ -N-C-
1511	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-SBr
1512	C├ - CH ₂ -	2	1	1	-	н	$-CH_2-N+C-$ H_2N
1513	C├ - CH ₂ -	2	1	1	-	н	-CH2-N-C-
1514	(H ₃ CCH ₂) ₂ N-{-}-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-\ H ₂ N
	HQ ————————————————————————————————————					н	$-CH_2-N-C-$ H_2N
1516	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1 .	-	н	$-CH_2-N-C$ H_2N
1517	HQ . H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1518	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-H H ₂ N -CH ₂
							•

Table 1.139

Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1519	HQ H₃CO————————————————————————————————————	. 2	2	1		н.	-сн ₂ -м-с-м-сн ₂ -осн ₉
1520	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1521	н₃со-{	. 1	2	0	R	н	-CH ₂ -N-C-Br
1522 `	CH2-	1	2	0	R	н	-CH ₂ -N-C
1523	H₃CQ H₃CO—СН₂—	1	2 ·	0	R	н	-CH ₂ -N-C-
1524	H ₃ CQ HO—←CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1525	Br—CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-OCF ₃
1526 1	H₃CO-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
	CH ₂ -					н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
	H₃CQ H₃CO————————————————————————————————————					Н	-CH ₂ -N-C-
529 _.	H ₃ CQ HO————————————————————————————————————	1 :	2	0	R	н	-CH ₂ -N-C-

Table 1.140

-							
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $-G$ $-R^6$
1530	Br—√CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	CH₂-	1	2	0	R	H [*]	-CH ₂ -N-C-CF ₃
1533	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1534	H ₃ CQ HO—CH ₂ -	1	2	O	R	н	-CH₂-N-C-CF3
1535	Br—CH₂−	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO-{CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	O-CH2-					н .	-CH ₂ -N-C CF ₃
1538	H ₃ CO	1	2	0	R .	н	-CH₂-N-C-CF3
1539	H ₃ CQ HO- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1540	Br—CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{3}-N-C$ $-CH_{4}-N-C$ $-CH_{5}-N-C$

Table 1.141

Compo No.	d. R ¹	-(CH ₂) _j -	;	< n	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1541	н₃со⊸	СН2	- 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1542		_}_Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-F
1543						R	н	-CH ₂ -N-C
1544	но-√		1	2	0	R	н	-CH ₂ -N-C
1545	CLS	≻-СН2 -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO	CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-⟨CF ₃
547	н₃со—{	Br −CH ₂ − Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
548	н₃с-{) —сн₂−	1	2	0	R	н .	-CH ₂ -N-C - CH ₃ -CH ₃ -CH ₃ -CH ₃
549 ·	н₃с-{	}—СН ₂ –	1	2	0	R	н .	-CH ₂ -N-C
550	Н ₃ С—	⊢СН ₂ − ́	1	2	0	R ,	н	-042-H-C-H-CH3
551	Н₃С−⟨¯¯⟩	−Сн₂−	1 :	2	0	R	н	-CH2-11-C-

Table 1.142

Compd. No.	R ¹ (CH ₂) _j	k	m	n _.	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1552	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	Н	-0+2-12-C-CN
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ N N N N N
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1557	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-\STCH ₃ H ₃ C .
1558	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N-CH ₃ H ₃ C CH ₃
1559	H ₃ C-CH ₂ -	· 1	2	0	R	н .	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C- √ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√NO
1561	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-CH_3\\ -CH_3\\ CH_3$
1562	н₃С-{¯}-СН₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.143

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - C - R^6$
1563	H₃C-()-CH₂-	1	2	0	R	. н	-CH,-HC C
1564	H ₃ CCH ₂ -					н	-c+2-12-c-2
1565	CH₃ CH₃					н	-CH ₂ -N-C
1566	CH₃ CH₂-	`1	2	0	R	Н	$-CH_2-N$ O_2N OCH_3
1567	CH ₃ CH ₃ CH ₃					н	-CH2-NC
1568	CH ₃ CH ₂ -					н	-042-HC
1569	CH ₃	1	2	0	R	н	-CH2-N-CN-C
1570 H	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1571 F	H ₃ CS—CH ₂ -	2	2	1	-	н	-CH2-N-C-SCH
572 (_hc-{_}-α12	2 .	2	1	•	н	-CH ₂ -N-C-CF ₃
573 n,c	~~~#\$ ~ ~~~	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
1574	#°	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
1575	CH	2	2	1.	-	н	-CH ₂ -N-C-CF ₃
1576	N-C-{-}-CH₂-	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
1577	но(сн) *- Н с Сн *-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1578	н³с У-й-с-(У-сн²-	2	2	1	- ·	н	-CH ₂ -N-C-CF ₃
1579	CH3 P CH2-	2	2	1	-	н	-CH₂-N-C-CF3
1580	HC	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
1581	CH-{-}-CH ₂ -	2	2	1	-	.H	-CH ² -M _C -NH
1582	C	2	2	1	-	н .	-c+- L-c
1583	CHCH_2-	1	2.	0	R	Н	-CH ₂ -N-C- H ₂ N OCF ₃ -CH ₂ -N-C- H ₂ N OCF ₃
1584	CHCH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N

Table 1.145

Compd.	R ¹ (CH ₂) _j -	k			chirality	R³	
No.	R ²⁷ , 27				Criticality	H-	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1585	с⊢{_}сн₂-	1	2	0	·R	н	-CH ₂ -N-C
1586	СН-СН2-	·1	2	0	R	Н	-CH2-N-C-
1587	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1588	C├ ─ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1589	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1590	H₃C-{CH₂-	1	2	0	R	Н.	$-CH_2-NC$ H_2N OCF_3
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1592	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-_N=_CI
593	H₃C-⟨CH₂-	1 ;	2	0	R	Н	-CH ₂ -N-C-
594	CH ₃ CH ₂ - CH ₃	1 2	2 (0	R	н	-CH ₂ -N-C
595	CH ₃ CH ₂ CH ₃	1 2	? ()	R _.	н	-CH ₂ -N-C

Table 1.146

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1596	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
1597	CH ₃ CH ₃ −	1	2	0	R	н .	-сн ₂ -N-С-
1598	CH₃ CH₂− CH₃	1	2	0	R R	н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ - CH ₃	1	2	0	Ŕ	Н	-CH ₂ -N-C-CH ₃
1600	CH-CH ₂ -	2	2	1.	· -	н	$-CH_2-NC- CF_3$ H_2N
1601	CHCH_2-	2	2	1	~	н 	-CH ₂ -N-C
1602	CH	2	2	1	-	н	-CH ₂ -N-C-S
1603	CH_CH ₂ -					н .	-CH ₂ -N-C-\(\sigma\)
1604	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1605	C├ - CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CH ₃
1606	CHCH ₂ -	1	2	0	R	н .	-CH ₂ -N-C

Table 1.147

rable	1.147						
Compd.	R ¹ (CH ₂)	- k	m	n	chirality	. R³	-(CH ₂) p S (CH ₂) q G-R ⁶
1607	.н³с-{_}сн	2- 1	2	0	R	н	-CH ₂ -N-C
1608	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	с⊢(Сн₂-	- 2	2	1	-	н .	-CH ₂ -N-C-SCF ₃
1610	CF ₃ P	H ₂ - 2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1611	c+\c	_{H₂-} 2	2	1	-	н	-CH ₂ -N-C
1612	H2CO(CH37-MC-C	₁₄ - 2	2	1	-	H	-CH ₂ -N-C-CF ₃
1613	#°-{}#°-{}-	_{Կ-} 2	2	1	-	н	-CH2-N-C CF3
1614	F3CS—CH2	- 1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1615	F3CS-CH2	- 2	. 2	1	-	н	-CH₂-N-C-
1616	F₃CS-{CH₂	- 2	2	1	-	• н	-CH ₂ -N-C-
1617	F3C\$-{	- 2	2	1	•	. н	-CH ₂ -N-C-Br
1617	F ₃ CS-()-CH ₂ -	- 2	2	1	•	` н	-CH ₂ -N-C

Table 1.148

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1618	.HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO—CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO-CH ₂ -	1	2	0	Ŗ	н	−CH ₂ −N-C−← H
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃ F
1623	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	но-СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CCF ₃
1625	HO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1626	HO-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1628	H₃CS	1	2	0	R .	н	$-CH_{2}-N\cdot CF$ F $-CH_{2}-N\cdot CF$ F

Table 1.149

1629 H_3CS — CH_2 — 1 2 0 R H $-CH_2$ —1 1630 H_3C — CH_2 — 1 2 0 R H $-CH_2$ —1 1631 H_2NCH_2 — CH_2 — 1 2 0 R H $-CH_2$ — H_2 CI	R ⁴ (CH ₂) _q G-R ⁶
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P CF ₃
1631 H ₂ NCH ₂ —CH ₂ - 1 2 0 R H -CH ₂ -N H	
,cı	PC-CF3
1632 _{CF3} —CH ₂ — 1 2 0 R H —CH ₂ —N	CF ₃
н	CF ₃
1633 NC-CH ₂ - 1 2 0 R H -CH ₂ -N	CF ₃
1634 (ңс)₂сн√)—сн _г 1 2 0 R H —Сн ₂ —№ Н	CF ₃
1635 H₃C-CH₂- 1 2 0 R H -CH₂-N-C-	-C(CH ³) ³
	H ₃ C CH ₃
CH ₃ 1637 CH ₂ CH ₂ CH ₃ CH ₂ CH ₃	(CH ₂)₄CH ₃
1638 N-CH ₂ - 1 2 0 R H -CH ₂ -N-C-	О(СН²)³СН²
СH ₃ 1639 СH ₂ - 1 2 0 R . H -сH ₂ - N СН ₃	≻й-с-осн⁵сн³ 8

Table 1.150

	Rί					•	界 ⁴ .
No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1640	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HC-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CH ₃ CH ₂ - CH ₃						
	CH ₃						-CH ₂ -N-C-N
1643	CH₃ N CH₂- CH₃	1	2	0	Ř.	н	-CH ₂ -N-C-
	CH₃ NDCH₂- CH₃						-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1645	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1646	Br CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1647	H ₃ C(CH ₂) ₃ —(CH ₂ -	2	2	1	-	н	-сн ₂ -м-с-СF ₃
1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-CF ₃ ·
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	,1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.151

Comp No.	od. R^{1} (CH ₂)	k m n ch	irality R ³	-(CH ₂) p 5 (CH ₂) q G-R ¹
1651	H3C(CH2)3————————————————————————————————————	₂- 2 2 1	- н	-CH2-HC-
1652	н,с(СН,),—(- 2 2 1	- н	-CH ₂ -N-C
1653	н ₃ С(СН ₂) ₂ —СН ₂	- 2 2 1	. н	-CH2-N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2 2 1	н	-CH ₂ -N-C
1655 .	н ₅ С(СН ₂) ₃ —СН ₂ -	2 2 1 -	н	-CH2-NC
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2 2 1 -	н	-CH ₂ -N-C-
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2 2 1 -	н	-CH ₂ -N-C
1658	H ₃ C(CH ₂) ₂	2 2 1 -	.	-CH ₂ -N-C
659	CH2-	2 2 1 .	н	-CH ₂ -N-C-
660	Br-CH ₂ -	1 2 0 R	н	-CH ₂ -N-C- H H ₂ N
661	Br-CH ₂ -	1 2 0 R	Н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ OCF_{3} $-CH_{2}-N+C$ $H_{2}N$

Table 1.152

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{\overline{H}^4}(CH_2)_{\overline{q}}G-R^6$
1662	вСH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N F H_2N
1663	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1664	H ₃ CS—CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N CF_3
1665	H ₃ CS-CH ₂ -	2	2	1	~	н	$-CH_2-N - C - OCF_3$ $+ H_2N$
1666	H ₃ CS-CH ₂ -	2	2	1		H	-CH ₂ -N-C
1667	н₃ссн₂—Сн₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-CBr
1668	н ₃ ссн ₂ ————————————————————————————————————	2	2	1		·н	-CH ₂ -N-C
1669	н ₃ ссн ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1670	н₃ссн₂—⟨_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-\ H ₂ N
1671	н₃ссн ₂ — СН ₂ -	2	2	· 1	, -	н	$-CH_2-N-C$ H_2N O
1672	ңссн₂—√У-сн ₂ -	2	. 2	1	-	н	$-CH_{2}-N-C-$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CF_{3}$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

Table 1.153

Comp No.	$\frac{R^{1}}{R^{2}} - (CH_{2})_{j} -$	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
1673	ӊ₅ссн₂—(¯¯)—сн₂-	- 2	2	1	-	н	-CH ₂ -N-C-Br
1674	F—CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1675	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1676	F-CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2N
1677	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1678	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F—CH₂-		2	1	-	н	-CH ₂ -N-C
1680	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1681	. F⟨CH₂-	2	2	1	-	н	-CH ₂ -N-C
1682	F—()—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1683		2	2	1	-	н	-CH ₂ -N-CBr

Table 1.154

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1684	N C CH2-	2	2	1	-	н	-CH ₂ -N-C
1685	N C-√ -CH₂-	2	2	1	-	н	-CH ₂ -N-C
1686		2	2	1	-	н	-CH ₂ -N-C
1687	₩ ç-	2	2	1		н	-CH ₂ -N-C
1688	H CH2-	2	2	1	-	H .	-CH ₂ -N-C
1689	H C-CH²-	2	2	1	-	Н .	$-CH_2-N C- \bigcirc \longrightarrow OCF_3$ $+I_2N .$
1690		2	2	1	. <u>-</u>	_. H	$-CH_2-N-C-$ H_2N
1691	N+ 0 CH₂-	2	2	1	-	Н	-CH ₂ -N-C-Br
	CH ₃					Н	-CH ₂ -N-CBr
1693	H₃C- CH₂-	. 1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$
1694	CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.155

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
1695	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1696	-CH ₃	1	2	0	R	н	-CH ₂ -N-C
1697	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1698	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-OCF ₃
1699	H ₃ C-€H ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1700	CH ₃	1	2	.0	R .	. н	-CH ³ -M-C
1701	H ₂ C=CH-\	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
			2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₂ -		2	0		н	-CH ₂ -N-C
1704	HO-CH ₂ -	1	2	0	R	н	$-CH_2-NC-4$ H_2N
1705	CI CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C \longrightarrow CF_{3}$ $-CH_{2}-N\cdot C \longrightarrow CF_{3}$ $-CH_{2}-N\cdot C \longrightarrow H_{2}N$

Table 1.156

Compd No.	. R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{\overline{q}}$ $- G - R^6$
1706	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1707	н₃сѕ-{_}Сн₂-	1	2	0	R	н.	-CH ₂ -N-C
1708	н ₃ ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1709	(H ₆ C) ₂ CH-{}-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
1710	H ₃ C Br————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1712	H3CCH2Q HO—CH2	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO-CH ₂ -			0	R	н	-CH ₂ -N-C-CF ₃
1714	HQ . H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{3}-N+C-$ $-CH_{2}-N+C-$ $-CH_{3}-N+C-$ $-CH_{3}-N+C-$ $-CH_{4}-N+C-$ $-CH_{5}-N+C-$ $-CH_$

Table 1.157

Comp No.	od. R^1 $(CH_2)_j$	ı	'< п	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	H ₃ CO-()-CH ₂	_ 1	2	0	R	Н	-CH ₂ -N-C-C-CF ₃
·1718	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1719	€ N - CH2-	1	2	0	R	н	-CH ₂ -N-C
1720	H ₂ CO-C ^O H ₃ C-N-CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	н₃ссн ₂ ————сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1722	о-СH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1723	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ C-CH ₂ -					Н	-CH₂-N-C-
1725	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H3CCH2-CH2-					н	-CH ₂ -N-C
1727	CH₂-	1	2	0	R	н	-CH ₂ -N-C- ← F

Table 1.158

Compo No.	$\begin{array}{c c} R^{1} & CH_{2} \\ \hline \end{array}$	k	m	n,	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1728	CH₂-	1	2	0	R į	н	-CH ₂ -N-C
1729	H ₃ C-CH ₃	1	2	0	R	н	-СH ₂ -N-С-СF ₃
1730	H ₃ C	1	2	0	R	н	-СH ₂ -N-С-СF ₃
1731	H ₃ CO N OH ₂ -	1	2	0	R	н	-CH2-N-C- CF3
1732	HOCH2-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F ₃
1734	н₃СЅ-{}СН₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ H C-F F
1735	Н ₃ ССН ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C- H
	-CH ₂ -						-CH ₂ -N-C
1737	H₃C-СН₂-	1	2	0	R	н	-CH ₂ -N-C
1738	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- F

Ta	b	le	1.	1	5	9

Compo	d. R^2 $(CH_2)_j$	k	m	n	chirality	R³	-(CH ₂) - (CH ₂) - G-R ⁶
1739	(H ₆ C)₂CH-{}-OH 2	- 1	2	0	R	Н	-CH ₂ -N-C-←F
1740	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1741	H₃CS-(T)-CH₂-	1.	2	0	R	н	-CH ₂ -N-C-
1742	Н₃ССН ₂ ——СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1743	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1744	1130 - CH ₂ -				R	Н	-CH ₂ -N-C-
745	H ₃ C CH ₃ CH ₂ CH ₂	1	2	0	R	н	-CH ₂ -N-C-
746	(H ₀ C) ₂ CH-(-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
747	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
748	н₃ссн ₂ {	1	2	0	R	н	-CH ₂ -N-C-Br
749	CH ₃ -	1 ;	2 (0	R	Н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$

Table 1.160

Compd No.	I. H ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _{p 1/5} (CH ₂) _q G-R ⁶
1750	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1751	H₃CS-{\bigce}-CH₂-	1	2	0	·R	н	-CH ₂ -N-C
1752	њссн₂—Сн₂-	1	2	0	R.	н	-CH ₂ -N-C
1753	CH ₂ -	1	2	0	R	• н	-CH2-N-C-OCF3
1754	H ₃ C-CH ₂ -	1	2	0	R	H.	-CH ₂ -N-C-OCF ₃
1755	H ₃ C CH ₃ CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-OCF ₃
1756	(H ₂ C) ₂ CH- CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-C
	Br Br CH ₂ -				R	Н	-CH ₂ -N-C-⟨CF ₃
1758	Br Br CH ₂ -	1	2 _.	0	R	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-\CH ₂ -	1	2	0	R	н .	-04-hg-
1760	H ₃ C-\CH ₂ -	1	2	0	Я	н	-OH2-N-C-OCH3 CF2CHCIF

Tal	bl	е	1	.1	6	1
-----	----	---	---	----	---	---

	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
	1761	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ² - N-C-
	1762	CH ₃	1	2	0	R	н	-CH ₂ -N ₁ C-N ₂ C-N ₂ C-N ₃ C-N ₄ C-N ₂ C-N ₃ C-N ₄ C
	1763	CH₂-	2	2	0	•	н	-CH ₂ -N-C-OCH ₂ CH ₃
	1764	—> CH₂-	2	2	0	-	Н	-CH2CH2-N-C
	1765	CH ₂ -	2	2	0	- .	Н	(S) OCH ₂ CH ₃ -CH-N-C
	1766	CH₂-	· 2	2	0	-	Н	(A) OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
	1767	CH ₂ -	1	3	1	-	н	-CH ₂ -N-C
1	1768	СН ₂ -	1	3	1	-	н	-CH ₂ CH ₂ -N-C
1		CH ₃ CH ₂ - CH ₃				R	Н	-CH2-N-C- OCH3 C-CHCF20
1		CH ₃ CH ₂ -					н	-CH2-HC-N-C1
1	771	CH ₃ CH ₂ CH ₃	1 :	2 (o	R	н	-CH ₂ -N-C- (H ₃ C) ₃ C-CH-N-C H ₃ C

Table 1.162

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	·R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1772	CH ₃ CH ₃	1	2	0	R	н	-CHH-C
1773	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	H ₃ C H ₃ C H ₃ C
1774	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1775	HO-CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
1776	H ₃ CO—CH₂—	1	2	0	R	Н	-CH ₂ -N-C-
1777	CI—CH₂-	2	2	1	· -	н	-CH ₂ -N-C
1778	H ₃ C(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1779	CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1780	Br————————————————————————————————————				· <u>-</u>	н .	-CH ₂ -N-C
1781	HO-CH ₂ -	2	2	1	<u>:</u>	н	-CH ₂ -N-C
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$

Compd No.	R ¹ /(CH ₂	,) _j — 	k	m	n	chirality	. H3	-(CH ₂) _p
1783	NC-(:H ₂ -	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
1784	~ CH₂	-	2	2	1		н	-CH ₂ -N-C- H H ₂ N
1785	CH ₃ (CH ₂) ₂ —	-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1786	СН	5_	2	2	1	-	н	-CH ₂ -N-C
1787	СН ₃ (СН ₂) ₂ —	CH2-	1 1	2	0	R	н	-CH ₂ -N-C-\ H ₂ N
1788	H ₃ C-CH ₃	12- 1	2	2	1	•	H	-CH ₂ -N-C
1789	н₃со-{_}сі	H ₂ - 2	2	2	1 .	-	Н	-CH ₂ -N-C
1790	CH-{}CH ₂	- 1		2	0	S	Н	$-CH_2-N-C-$ H_2N
1791	CH-CH ₂			2		S	н	-CH ₂ -N-C
1792	СН ₃ Н ₃ С-СН ₂	- 2	2	2	1	•	н	-CH ₂ -N-C
1793	CH2-CH2-	. 2		2	1	-		-CH ₂ -N-C

Table 1.164

Compd.	R1 (CH2);-	k	m	n	chirality	. H3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
1794	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1795	O − CH₂−	2	2	1		н	$-CH_2-N-C - F$ H_2N
1796	Br⟨¯¯}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
1798	Н₃СО-СН₂-	2	2	1		H .	-CH ₂ -N-C-F
1799	H ₂ C=CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1800	NC-CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1801	CH₂−				-	н	-CH ₂ -N-C
1802	но————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1803	HO-√	1	2	0	R	н.	$-CH_2-N+C$ H_2N
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	٠	н	-CH ₂ -N-C

Table 1.165

Comp No.	d. $R^1 \rightarrow (CH_2)_i$	k	m	n	chirality	R³	-(CH ₂) p G -R [€] R ⁵
1805	B—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-
1806	H ₃ CO-()-CH ₂ -	- 1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1807	HO-CH ₂ -	1	2		R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1809	HO-{	1	2	0	R	н .	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{_}_CH2-	1	2	0	R	, Н	-CH ₂ -N-C-SCF ₃
1813	H3CCH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH ₃ H ₃ C−CH ₂ −	1	2	0 .	R	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	.B3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1816	(CH ₃) ₂ CH	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	BrCH2-	1	2	0	R .	н	-CH ₂ -N-C
1819	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1821	HQ	1	2	0	R	н	-CH ₂ -N-C
1822	HO{	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1823	CH ₂ -	1	2	0	R ,	н	-CH ₂ -N-C-OCHF ₂
1824	CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-OCHF ₂
1825	H ₃ CS€	1	2	0	R	н	OCHF ₂ -CH ₂ -N-C-OCHF ₂ -CH ₂ -N-C-OCHF ₂
1826	H₃CCH₂−€ CH₂−	1	2	0	R	н	-CH ₂ -N-C

Table 1.167

	_ 1						
Compo No.	$\frac{\text{d. } R^{1}}{R^{2}} - (CH_{2})_{j} -$	k	: m	n	chirality	H3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
1827	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1828	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1829	CH ₃ H ₃ C ← CH ₂ − H ₃ C	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1830	(CH ₃) ₂ CH-CH ₂ -	- 1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1831	B ← CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1832	H₃CO-⟨□}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ НО−СН ₂ −	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834	H ₃ CO− H ₃ CO− H ₂ −	1	2	0	R	н ;	-CH ₂ -N-C-(CH ₃) ₃
1835	HO-{	1	2	0 .	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1836	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃

Tab	le	1.1	168
-----	----	-----	-----

Compd.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
1838	H3CS-CH2-	1	2	0	['] R	н	-CH ₂ -N-C-(CH ₃) ₃
1839	H₃CCH2	1	2	0	R	. н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH2-	1	2	0	R ·	н	-CH ₂ -N-C-(CH ₃) ₃
1841	CH ₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1842	CH ₃ H ₃ C -CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
	H ₃ CCH ₂ -CH ₂ -					н	-CH ₂ -NC
1846	H ₃ C — CH ₂ —	1	2	0	R .	н	-CH ₂ -N-C-SCF ₃
	(CH _{3h3} C-CH ₂ -					н	-CH ₂ -N-C
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-

Table 1.169

Com No	pd. R^1 0. R^2 (CH ₂))i	k m	ח ר	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1849	e CH	l2 ⁻	1 2	0	R	Н	-CH ₂ -N-C-
1850	н ₃ ссн ₂ ———	CH ₂ - 1	2	0	R	н	-CH ₂ -N-C-
1851	H ₃ C-CH	_{l2} - 1	2	0	R	н	-CH2-NC-
1852		•			R	н	-CH ₂ -N-C-
1853	H₃CQ HO—CH₂	_ 1	. 2	0	R	н	- CH ₂ -N-C
1854	CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-
1855	н₃ССН ₂ —⟨СН	₂ - 1	2	0	R	н	-CH ₂ -N-C-
1856	сн ₃ н₃с-{_}сн ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-
1857	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Вг-€СН₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N Br
1859	H₃CO-()-CH₂-	.1	2	0	R	н	-CH ₂ -N-C

Table 1.1	1 1	υ
-----------	-----	---

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1860	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
1861	HQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1863	O-CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1864	H₃CS-(1	2	0	R	э . Н	-CH ₂ -N-C-\Br H ₂ N
1865	O—CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1866	CH ₃ H ₃ C — CH ₂ -	1	2	ó	R ·	н	$-CH_2-N-C-$ H_2N H_2N Br
1867	(CH ₃) ₂ C +	1	2	0	R	н	-CH ₂ -N-CBr
1868	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1869	Br—⟨CH₂−	1	2	0	R	H ·	$-CH_2-N-C \longrightarrow I$ $H_2 N$
1870	H₃CO-(Н	$-CH_2-NCC-$ H_2N

Table 1.171

	1							
Com No	pd. R ² (C	H ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1871	HO	⊢СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1872	H ₃ CO-)—CH2-	1	2	0	R	H	CH ₂ -N-C-
1873	но-(-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1874		·CH₂ -	. 1	2	0	R	Н	$-CH_2-N-C$ H_2N
1875		CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1876	H3CS-	-CH2-	1	2	0	R 	Н	-CH ₂ -N-C-
1877	н₃ссн₂—	≻−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-
1878	~	CH2−				R	Н	$-CH_2-N-C \longrightarrow H_2N$
1879	H ₃ C C-	'3 CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
1880	(CH ₃) ₂ C H-	-сн _г -	1	2	0	R	н	-CH ₂ -N-C-
1881	(CH ₃) ₃ C	-CH₂-	1	2	0	R	Н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $H_{2}N$

Table 1.172

Compd. No.	R1 (CH ₂)-	k	m	n	chirality	. B3	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^- R^6$
1882	Br- ⟨	1	2	0	R	Н	-CH ₂ -N-C NO ₂
1883	H₃CO-⟨¯¯⟩-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1884	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1886	HO-{	1	2	0	Ŗ	н	$-CH_2-N-C$ H_2N H_2N
1887	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1888	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1889	H₃CS-⟨}-CH ₂ -	1	2	0	R	Ħ _.	$-CH_2-N-C$ H_2N H_2N
1890	H ₂ CCH ₂ —CH ₂ -	. 1	2	0	Ř	Н	$-CH_2-NC$ H_2N
1891	O ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₂ -	.1	2	0	R .	H .	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $+CH_{2}-NC$ $H_{2}N$

Table 1.173

Com	pd. R ¹					chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1893	н₃с-{	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1894	(CH ₃) ₂ C H	-()—сн _г	- 1	2	0	R	н	-CH ₂ -N-C
1895	(CH₃)₃ C	СН2-	- 1	2	0	R	Н	$-CH_2-N$ H_2N O NO_2 O O
1896	но н₃со-{		1	2	0	R	н	-CH ₂ -N-C OCF ₃
1897	н₃с ѕ-{		1	2	0	R	н	-CH ₂ -N-C
1898	н₃ссн₂⟨		1	2	0	R	н	-CH ₂ -N-C
1899	(CH ₃) ₂ C H−{	сн _ұ _	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
1900	H ₃ CO HO-) —СН₂	1	2	0	R	Н	$-CH_2-N$ C H_2N C
1901	H ₃ C(CH ₂₎₂ —{	_ -сн _ұ -	1	2	0	R	н	-CH ₂ -N-C
1902		-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C OCF ₃
1903	(CH ₃) ₂ CH-√		2	2	1	-	н	-CH ₂ -N-C

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	H ₂ C(CH ₂) ₂	2	2	1	-	H	-CH ₂ -N-C
1905	CH-CH ⁵ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1906	CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1907	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1908	H ₃ CO-CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1910	Br⟨¯¯)CH ₂	2	2	1	-	н	-CH ₂ -N-C
1911	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
	HO-CH ₂ -				-	н	-CH ₂ -N-COCF ₃
1913	CH ₃	2	2	1	-	н	-CH ₂ -N-C
1914	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $-CH_$

_		01							
_	Compd. No.	R ² >-(CH ₂) _j —		k m	n n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
	1915	H3CCH2Q HO—	CH2-	_ 1	2	0	R	Н .	-CH ₂ -N-C
1	1916	H ₃ C) −Сн₂−	1	2	0	R	н	-CH ₂ -N-C
1	917	H₃CCH₂Q HO—		. 2	2	1	•	н	OCF ₃ -CH ₂ -N-C
1	918	H ₃ C	≻ -сн₂–	. 2	2	1	-	н	-CH ₂ -N-C
1	919	CI	NH ₂ CH ₂	2	2	1	-	Н	-CH ₂ -N-C
19	920	c	1H ₂ CH ₂	2	2	1	-	н	$-CH_2-N-C$ H_2N F
19	921	CI—	H₂ -CH ₂ –	1	2	0	R	Н	$-CH_2-N$ C H_2 H_2 O
19)22	CI—(S)	H ₂ ·CH ₂	2	2	1	-	Н	$-CH_2-N$ H_2N O
19	23	B	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
19	24 н	, co-{}	~CH ₂ ~	2	2	1	-	н	-CH ₂ -N-C
19:	25	F-{	H₂- 	2	2	1	-	Н	-CH ₂ -N-C-

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
1926	F—CH ₂ -	2	2	1	•	. Н	-CH ₂ -N-C-SCF ₃
1927	HO-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH ₂ -	2	2	1	-	. Н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CSCH ₂ -	2	2	1	· <u>-</u>	н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ CH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	O-√CH ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	CH _{3.}	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1934	H ₃ C ← CH ₂ − H ₃ C	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1935	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1936	H ₃ C-()-CH ₂ -	2	· 2	1		Н	-CH2-N-C-SCF3

Tab	le	1.	1	7	7	
-----	----	----	---	---	---	--

Compd. R_2 (CH ₂) k m n chirality R_3 (CH ₂) R_3								
1938 Br $-CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ 1939 $H_{3}CO - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{3}$ 1940 $F - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{3}$ 1941 $F - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ 1942 $HO - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ 1943 $O - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ 1944 $O - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{3}$ 1945 $H_{3}CS - CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{3}$ $-CH_{3}$ $-CH_{2}$ $-CH_{3}$	Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - R^6$
1939 $H_{2}CO \longrightarrow CH_{2}^{-} \ 2 \ 2 \ 1 \ - H $	1937	(CH ₃) ₂ CH————————————————————————————————————	- 2 [·]	2	1	-	н	-CH ₂ -N-C-SCF ₃
1940 F—CH ₂ — CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1941 F—CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1942 HO—CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1943 — CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1944 — CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1945 H ₃ CS—CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1946 H ₃ CCH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1946 H ₃ CCH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃ 1946 H ₃ CCH ₂ — CH ₂ — 2 2 1 — H — CH ₂ —N-C—CH ₃	1938	Br—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1941	1939	H₃CO-⟨CH₂-	2	2	1	-	Н	-CH ⁵ -N-C-CH ³
1942 $HO \longrightarrow CH_2 - 2$ 2 1 - $H \longrightarrow CH_2 - N^{-1}C \longrightarrow CH_3$ 1943 $O \longrightarrow CH_2 - 2$ 2 1 - $O \longrightarrow CH_3$ 1944 $O \longrightarrow CH_2 - 2$ 2 1 - $O \longrightarrow CH_3$ 1945 $O \longrightarrow CH_2 - 2$ 2 1 - $O \longrightarrow CH_3$ 1946 $O \longrightarrow CH_2 - 2$ 2 1 - $O \longrightarrow CH_3$ 1946 $O \longrightarrow CH_2 - CH_2 - 2$ 2 1 - $O \longrightarrow CH_3$	1940	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1943 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1941	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C- Br -CH ₃
1944 \longrightarrow CH ₂ - 2 2 1 - H \longrightarrow CH ₂ -N-C \longrightarrow CH ₃ 1945 \longrightarrow CH ₂ - CH ₂ - 2 2 1 - H \longrightarrow CH ₂ -N-C \longrightarrow CH ₃ 1946 \longrightarrow CH ₂ - CH ₂ - 2 2 1 - H \longrightarrow CH ₂ -N-C \longrightarrow CH ₃	1942	HO€	2	2	1	-	Н	-CH ₂ -N-C
1945 H_3CS — CH_2 — CH_2 — CH_2 — CH_3 — CH_2 — CH_2 — CH_3 — CH_3 — CH_2 — CH_3 — C	1943	OCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1946 H ₃ CCH ₂ —CH ₂ - 2 2 1 - H - CH ₂ -N-C-CH ₃	1944	CH ₂ -	2	2	1	- ,	н	-CH2-N-C
CH ₂ -IVC — CH ₃	1945	H₃CS-⟨}-CH₂-	2	2	1	-	Н	-CH2-N-C- CH3
1947 OCH ₂ - 2 2 1 - H -CH ₂ -N-C-CH ₃	946 +	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
	947	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1948	CH ₃	2	2	1		н	-CH2-N-C-Shr CH3
1949	H ₃ C ← CH ₂ − CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C -CH ₃
1951	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1952	BrCH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH₂-N-CS-F
1954	F-CH ₂ -	2	2	1		Н	- CH ₂ -N-C
1.955	F-CH ₂ -	2	2	1	-	н	-CH2-N-C- Br
1956	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨Sr
1957	CH₂-	2	2	1	-	н	-CH ₂ -N-C-⟨Sr H
1958	CH₂-	2	2	1	-	н	-CH ₂ -N-C

T	a	b	le	1	.1	7	9
•	~	•	• •	•			•

-							
Comp No.	od. R^2 $(CH_2)_j$	k	m	'n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R [€]
1959	H₃CS-⟨CH₂-	- 2	2	1	-	н	-CH ₂ -N-C
1960	н₃ссн₂—⟨Дрсн₂	- 2	2	1	-	Н	-CH ₂ -N-CBr
	CH ₂ -					н	-CH2-N-C-Shr H
	CH ₃ C-CH ₂ -					н	-CH ₂ -N-C Br
1963	H ₃ C CH ₂ -	2	2	1	• •	Н	-CH ₂ -N-C
1964	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C
1966	(CH ₃) ₂ CH-⟨	2	2	1	•	H	-CH ₂ -N-C
1967	Br—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1968	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1969	HO{	2	2	1	•	H	-CH ₂ -N-C

Table 1.180

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1970	O ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1971	-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1972	H ₃ CSCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1973	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	$-CH_2-NC-$ H_2N
1974	CH ₃ C-CH ₂	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N
1976	H ₃ C-CH ₂ -	2	2	. 1	· -	Н	-CH ₂ -N-C
1977	NC-CH₂-	2	2	1		Н	-CH ₂ -N-C
1978	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$
1980	O ← CH ₂ -	2	2	1	-	н	$-CH_2-N$ - C - H_2N - F

Ta	b	le	1.	1	R	1

Compd. R^{1} $(CH_{2})_{j}$ $+$ $+$ $+$ $ (CH_{2})_{p}$ $+$ $+$ $ (CH_{2})_{p}$ $+$ $+$ $ (CH_{2})_{p}$ $+$ $ (CH_{2})_{p}$ $+$ $(CH_{2})_{q}$ $+$ $(CH_{2})_{q}$ $+$ $(CH_{2})_{q}$ $+$ $(CH_{2})_{p}$ $+$ $(CH_{2})_{q}$ $+$ $(C$	<u></u> -
1982 NC-CH ₂ - 2 2 1 - H - CH ₂ -N-C-H _{H₂N}	-F
	-F
1983 (CH₃)₂CH-CH₂- 2 2 1 - H -CH₂-N-C-	•
H ₂ N	-F
1984 Br—CH ₂ - 2 2 1 - H —CH ₂ -N-C—H ₂ N	
1985 H₃CO—CH₂- 2 2 1 - H —CH₂-N-C—H H₂N	
1986 HO-CH ₂ - 2 2 1 - H -CH ₂ -N-C-H H ₂ N	
1987 CH ₂ - 2 2 1 - H -CH ₂ -N-C- H _{2N}	
1988 $-CH_2-$ 2 2 1 - H $-CH_2-N-C H_2N$	
1989 H_3CS — CH_2 — 2 2 1 - H $-CH_2$ — N - C H_2 N	
H ₂ N 1990 H ₃ CCH ₂ — CH ₂ - 2 2 1 - H	
1991 CH ₂ - 2 2 1 - H -CH ₂ -N-C- H ₂ N	

Ta	ы	le	1	.1	82

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - GR^6$
1992	CH ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1993	0 ₂ N-{CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-
1994	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1996	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
1997	H ₃ C — CH ₂ -		2	1	-	н	$-CH_2-NCC \longrightarrow H_2N$
1998	Br—CH ₂ -	2	,	1	-	Н .	-CH ₂ -N-C-
1999	Н₃СО-{СН₂-	2	2	1	-	н	-CH ₂ -N-C-
2000	F€	2	2	1	-	н	-CH ₂ -N-C-
2001	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2002	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-

Table 1.183

Compd. $\frac{1}{18} - (CH_2) - k$ m n chirality $\frac{1}{18} - (CH_2) - \frac{1}{18} + \frac{1}{18} +$	Comp	d. R¹	-(CH)_						 R⁴
2004 $H_{3}CS \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow CG$ 2005 $H_{3}CCH_{2} \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow CG$ 2006 $H_{3}C \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow CG$ 2007 $O_{2}N \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow CG$ 2008 $H_{3}C \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow CG$ 2009 $NC \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow NC \longrightarrow CG$ 2010 $(CH_{3})_{2}CH \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow NC \longrightarrow CG$ 2011 $H_{3}C \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow NC \longrightarrow CG$ 2012 $B \longrightarrow CH_{2}$ 2 2 1 - H $-CH_{2} \longrightarrow NC \longrightarrow CG$	No.	H ²	-(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R
2005 H_3CCH_2 CH_2 2 2 1 - H CH_2 CH_2 2 2 1 - H CH_2 CH_2 2 2 1 - H CH_2 CH_2 2 2 1 - CH ₂ CH_2 2 2 1 - CH ₂ CH_2 2 2 1 - CH ₂ CH_2 CH_2 2 2 1 - H CH_2 CH_2 CH_2 2 2 1 - H CH_2	2003	Q		2	2	1		н	-CH2-N-C-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2004	н₃сѕ⊸	сн₂-	2	. 2	1	-	Н	CH2-N-C
2007 O_2N ————————————————————————————————————	2005	Н₃ССН ₂	-СН₂-	2	2	1	-	Н	-CH ⁵ -N-C-
2008 $H_3C \longrightarrow CH_2 - 2$ 2 1 - H $CH_2 - N C$ 2009 $NC \longrightarrow CH_2 - 2$ 2 1 - H $-CH_2 - N C$ 2010 $(CH_3)_2CH \longrightarrow CH_2 - 2$ 2 1 - H $-CH_2 - N C$ 2011 $H_3C \longrightarrow CH_2 - 2$ 2 1 - H $-CH_2 - N C$ 2012 $BC \longrightarrow CH_2 - 2$ 2 1 - H $-CH_2 - N C$	2006	н₃с-{	CH ₃	2	2	1 .	-	н	-CH ₂ -N-C-
2009 NC—CH ₂ —CH ₂ — 2 2 1 - H 2010 (CH ₃) ₂ CH—CH ₂ — 2 2 1 - H 2011 H_3 C—CH ₂ —CH ₂ — 2 2 1 - H 2012 H_3 C—CH ₂ — 2 2 1 - H 2013 H_3 C—CH ₂ — 2 2 1 - H 2014 H_3 C—CH ₂ —N—CH ₂	2007	02N-{		2	2	1	-	н	-CH ₂ -N-C-CI
2010 $(CH_3)_2CH$ CH_2 2 2 1 - H CH_2 CH_3 2 2 1 - H CH_2 CH_3 2011 CH_3 CH_3 2 2 1 - H CH_2 CH_3 CH_3 CH_3 CH_3 CH_4 CH_2 2 2 1 - CH_2 CH_4 CH_5 CH	2008	. н₃с-{		2	2	1	-	н	-CH ₂ -N-C
2011 H_3C CH_2 2 2 1 - H CH_2 2 2 1 - CH_2 CH_2 2 2 1 - CH_2 CH_2 2 CH ₂ CH_2 2 2 1 - CH_2	2009	NC-{	CH2-	2	2	1	-	н Н	-CH ₂ -N-C-C
2012 Br CH ₂ - 2 2 1 - H P CH ₂ -N-C-CH	2010	(CH ₃)₂CH-	СН2-	2 .	2	1	• '	H	-CH2-N-C-C
	2011		CH ₃	2	2	1	-	н	-CH2-N-C-
2013 H ₃ CO—CH ₂ - 2 2 1 - H —CH ₂ -N-C-CI	2012	в{	CH ₂ −	2	2	1		н	-CH ₂ -N-C
	2013	н₃со-{_		2	2	1 .	-	н	-CH ₂ -N-C

Ta	Ы	ما	1	4	Ω	4
ıa	U	ıe		. 1	O	4

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ^o .	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2014	но-{_}Сн₂-	2	2	1	-	Н	-CH ₂ -N-C → G
2015	CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
2016	CH ₂ -	2	. 5	1	-	н	-CH2-N-C-Br
2017	H₃CS-(CH₂-	2	2	1	-	н	-CH ₂ -N-C
2018	H ₃ CCH ₂ —СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2019	O—CH₂-	2	2	1	-	н	-CH2-N-C- Br
2020	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH₂-N-CSPr
2022	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2023	NC-{	2	2	1	-	Н	-CH ₂ -N-C- Br
2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH2-H-C-

_				
Га	ble	1.	. 1	85

Compd No.	· R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2025	H ₃ C CH ₃ H ₃ C	2	2	1	-	Н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	H	-CH2-N-C
20 <u>2</u> 7	Br-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2028	H₃CO-{CH₂-	2	2	1		н	$-CH_2-N$ C H_2 N H_2 N
2029	. HO-{	2	2	1	. .	н	$-CH_2-N-C$ H_2N Br
2030	CH₂-	2	2	1	-	н ,	-CH ₂ -N-C Br
2031	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2032	O CH₂-				ż	H	$-CH_2-N-C \longrightarrow Br$ H_2N
2033	H ₃ C-CH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2034	O ₂ N-CH ₂ -	2	2	1 .	-	н	$-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $+I_{2}N$ $+I_{2}N$
2035	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C Br

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(СН ₂) _p + (СН ₂) _q G-R ⁶
2036	NC-CH2-	2	2	1	-	Н	-CH ₂ -N-C
2037	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2038	F-CH ₂ -	2	2	1	-	Н	$-CH_2-NC \longrightarrow Br$ H_2N
2039	H ₃ C-CH ₂ -	2	2	1	-		-CH₂-N-C- H CN
2040	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH-OH
2041	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CH-
2042	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-H ₃ C-CH ₃
2043	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CH ₃ CH ₃
	CH ₃ CH ₃					Н	-CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-CH ₃
2046	CH ₃ CH ₂ CH ₃	1	2	0	R	H	-CH ₂ -N-CH ₃

Table 1.187

Compo	$H = \frac{R^1}{R^2} - (CH_2)_i - \frac{R^1}{R^2}$	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
2047	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH ₇ -N-C-
2048	CH ₃	1	2	0 .	R	Н	-CH ₂ -N-C
2049	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C —N—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	OCH ₂ CH ₃	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2053	H ₂ CQ -CH ₂ -	2	2	1	-	. н	-CH ₂ -N-CF H H ₂ N
2054	H ₃ CO-CH ₂ -			1	. -	н	$-CH_2-N-C-$ H_2N
	H ₃ CQ CH ₂ - OH				•	н	$-CH_2-N-C$ H_2N
2056	CH ₂ -	2	2	1		Н	-CH ₂ -N-C
2057	H ₃ CO—CH ₂ -	2	2	1	· -	H	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$

Table 1.188

Compd.	R^1 $(CH_2)_i$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2058	H₃CQ OCH₃ CH₂-	2	2	1	-	Н	-CH ₂ -N-C
2059	○ -0- ○ -CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N
2060	H ₃ CO CH ₂ OC H ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2061	F_CH ₃	2	2	1	-	н	-CH ₂ -N-C
2062 -	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-V-F$
2063	H_3CO H_3CO CH_2	2	2	1	-	H	$-CH_2-N-C$ H_2N F
2064	Br CH ₂ -	2	2	1	-	Ħ ·	-CH ₂ -N-C
2065	H₃CCH₂Q H₃CCH₂O———————————————————————————————————	2	2	1	-	н	-CH _{2-N} -C
2066	OCH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C F$ H_2N
2067	(H3C)2CHCH2─ ()—CH2−	2	2	1	-	н	$-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{3}N$
2068	CI F—CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N F

Table 1.189

Compd No.	R^{1} (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2069	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2070	Br CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2071	H ₃ CO-СР ₂ - ОСН ₃	2	2	1	-	н	-CH ₂ -N-C
2072	(H ₃ C) ₂ CHO-СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2073	CH ₂ Q -CH ₂ -	2	2	1	-	н	$-CH_2-N-C- F$ H_2N
	H ₃ CO-{}-Q				- •. •	н	-CH ₂ -N-C
2075	H ₃ CO CH ₂ -	2	2	1 .	•	н	-CH ₂ -N-C-F H ₂ N
2076	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2077	CI CH ₂ - OH	2	2	1	-	н ,	$-CH_2-N-C$ H_2N
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.190

							· ·
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2080	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2081	CI HO—CH₂-	2	2	1	· -	н	$-CH_2-N-C$ H_2N
2082	OH H₃CO-⟨\$\rightarrow\$-CH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N
2083	HO————————————————————————————————————	1	2	. 0	R	н	-CH ₂ -N-C- H ₂ N
2084	H ₃ CO HO-CH ₂ - H ₃ CO	1	2	0	R	н	-CH ₂ -N-C
2085	OH -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow H_2N$
2086	CI -CH ₂ -	1	2	0	R	Н .	$-CH_2-N-C-$ H_2-N H_2-N
2087	(H ₃ C) ₂ N-\(\bigcup_{2}\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
2088	(H3CCH2)2N-\CH2-	1	2	0	R	н .	-CH ₂ -N-C
	F-CH ₂ -					Н	$-CH_{2}-N+C-$ $H_{2}N$ $H_{2}N$
2090	О-О-СН₂-	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_$

Table 1.191

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
2091	CICH2-	2	2	1		н	CH2 P
2092	CH-2-	2	2	1		н	(A) OCH2CH3
2093	CH ₂ -	2	2	1	-	н	(A) 0 -CH-N-C- H H CH ₂ CH ₂ SCH ₃
2094	CI—CH ₂ -	2	2	1	. •	н	(R O OCH ₂ CH ₃ -CH N C OCH ₂ CH ₃ -CH ₂ CH ₂ CH ₃
2095	CH-CH ₂ -	2	2	1	<u>-</u>	Н	(F) OCH ₂ CH ₃ -CHN-C-C
2096	C⊢—CH₂-	2	2	1	-	Н	(A O O CH ₂ CH ₃ -CH-NC- CH ₂ CH ₃ -CH ₂ CH ₂ CH ₃
2097	CH-(CH₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
2098	CI—CH₂-	2	2	1	-	Н	CH-N-C-CI
2099	CI	2	2	1	-	н	-CHN-C
2100	C⊢√CH₂-	2	2	1	-	Н	(R O OCH ₂ CH ₃ -CH N C OCH ₃ -CH ₂ CH ₃
2101	CI—(2	2	1	-	н	(A O OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ CH ₃

Table 1.192

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	-(CH ₂) _p
2102	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-COCH2-CH3
2103	CH-2-	2	2	1	-	н	- () Q OCH2CH3 - CH-N-C-
2104	CI—(2	2	1	-	H	() O OCH ₂ CH ₃ -C H-N-C-OCH ₃ CH ₂ CH ₂ -C-OCH ₃ O R
2105	H₃CQ OH CH₂-	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2106	H ₃ C · OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2107	Br CH ₂ -	2	2	1	· -	. н	-CH ₂ -N-C
2108	CH ₃ CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
2109	Br CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
	H ₃ CCH ₂ CH ₂ -					н	$-CH_2-N-C$ $+$ H_2N $+$ F
							-CH ₂ -N-C
2112	H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C

Table 1.193

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2113	H ₂ N CH ₂ -	. 2	2	. 1	-	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2115	CH2−	2	2	1		н .	(R) Q OCH ₂ CH ₃ -CH-N-C- H CH(CH ₃) ₂
2116	CH-{CH₂-	2	2	1,	-	н	(R) Q OCH ₂ CH ₃ -CH+N-C- S H H CH(CH ₃)CH ₂ CH ₃
2117	CI—(CH₂-	2	2	1	-	н	OCH ₂ CH ₃ CH ₂ -N _N H
2118	HO- HO- CH₂-	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2119	OH HO—CH₂-	1	2	0	R	H	-CH ₂ -N-C- H ₂ N
2120	Br-CH ₂ -		2	0	R	H	-CH ₂ -N-C- H ₂ N
2121	OCH ₃	1	2	0	R	н	-CH ₂ -N-C
2122	CH2−	1	2	0	R	н	-CH ₂ -N-C
2123	CH ₂ - NO ₂	1	2	0	,R·	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{3}-N-C$ $+_{3}N$ $-CF_{3}$ $-CH_{4}-N-C$ $+_{4}N$

Table 1.194

Compd.	R ¹ >-(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2124	O ₂ N .	1	2	0	R	H	-CH ₂ -N-C
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2126	O ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2127	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2128	H ₂ N H ₃ CO—CH ₂ -	1	2	0	R	·	-CH ₂ -N-C- H ₂ N
2129	H ₂ N H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
2130	O. V CH2-	2	2	1	-	, н	-CH ₂ -N-C
2131	CH ₃ N CH ₂ - CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2132	H ₂ N CI—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3 CF_3
2133	(H ₃ C) ₂ N CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.195

							
Compd No.	R^2 $(CH_2)_j$	k	m	n	chirality	R³	–(CH ₂) _p + (CH ₂) _q G−R ⁶
2135	(H ₃ C) ₂ N H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	. R	н	- CH ₂ -N-C- H
2137	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2138	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
2139	H ₃ C CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2140	O CH₂−	2	2	1	-	н 	-CH ₂ -N-C-F H ₂ N
2141	H ₂ N HO-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2142	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2143	Hin &- cH²-	2	2	1-	-	н	-CH ₂ -N-C
2144	H ₂ N CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
2145	H ₂ N HO—CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$

Table 1.196

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{1} (CH_2)_{q} G - R^6$
2146	CH ₂ -NH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2147	Q H₃C-C-NH H₃CO ← CH₂-	2	2	1	-	н	$-CH_2-N-C \xrightarrow{P} F$
2148	H ₃ C-C-NH HO-CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	$-CH_2-NC-4$ H_2N CF_3
2150	H ₃ C-C-NH CII—CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \underbrace{\begin{array}{c} CF_3 \\ H_2N \end{array}}$
2151	HMC-CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2152	H ₃ C·C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2153	H ₃ C-C−NH H ₃ C−CH ₂ −	1	2	0	R	н ,	$-CH_2-N-C H_2N$ CF_3
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$ CF_3
2155	H ₃ C-C-NH HO-CH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- -CH ₂ -N-C- -CH ₂ -N-C- H ₂ N -CH ₃ -N-C- H ₂ N
2156	HMC-CH ³	2	2	1	-	н	-CH ₂ -N-C

Table 1.197

Compd. No.	R' (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - CR^6$
2157	HO-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
2158	H ₃ C-NH	1	2	0	R	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2160	H ₃ C-NH HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
2161	CH2-	2	2	1	-	н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2164	CH3 CH3-	1	2	0	R	. н	-CH ₂ -N-C
2165	H N CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
2166	€ CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2167	S CH ₂ -	1	2	0	R	H	$-CH_{2}-N-C-$ $-CH_$
							

Table 1.198

Compd.	R ¹ (CH ₂) _j -					R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2168	C-OCH ₃ H ₃ C'N CH ₂ - H ₃ C' CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃
2169	H ₃ C-СН ₃ - СН ₃	1	2	0	R	Н	$-CH_2-N^*C \xrightarrow{C} CF_3$ H_2N
2170	Сі 2)—сн ₂ —	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2171	H ₃ C CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2172	F ₃ C CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2173	S—CH ₂ —CH ₃	i	2	0	R	Н	-CH ₂ -N-C- CF ₃
2174	H ₃ C CH ₃ Br S CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow H_2N$
2175	$H_3CO \longrightarrow CH_2 -$	1	2	0	R	н	$-CH_{2}-NC- \longrightarrow H_{2}N$
2176	H ₃ C'N - CH ₂ -	1	· 2	0		H	$-CH_2-N-C-$ H_2N H_2N
2177	H ₃ C OH N CH ₂ - CH ₂ OH	1	2	0	R	н	-CH ₂ -N-C
2178	H ₃ CO-CH ₂ -				R	н	$-CH_{2}-N\cdot C-$ $+_{2}N$

Table 1.199

	R ¹ (CH ₂) _j					R ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
2179	H ₃ C-Ç-N -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2180	C-(CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2182	H ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
2183	Ş-N CH₂-	1	2	0	R	· H	-CH ₂ -N-C
2184	S-N CH ₂ -	2	2	1	<u>.</u>	Н	-CH ₂ -N-C-F H ₂ N
2185	\$-N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2186	H CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2187	H ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2188	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2189	CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.200

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2190	H CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2192	S H CH ₂ -	2	2	1		н	$-CH_2-N-C-$ H_2N H_2N
2193	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194	H_2N H_3C CH_2	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2195	CH ₂ N CH ₂ -	2	2	1	-	Н	$-CH_2-NC- \bigcirc CF_3$ $+ H_2N.$
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
2197	H ₃ CO-VH	1	2	0	. R	Н	-CH ₂ -N-C
2198	H ₃ C-NH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	<i>,</i> 1	-	н .	-CH ₂ -N-C-CF ₃
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	- ·	н	$-CH_{2}-N-C$

Table 1.201

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
2202	S H CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-3
2203	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2204	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2205	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2206	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H ₂ N
2207	Ю-€ CH ₃	2	2	1.	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
	CH2−					н	-CH ₂ -N-C-CF ₃
2209	CH2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2210	CH ₂ −	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_$
2211	CH₂-	2	2	1	-	н	-CH ₂ -N-C

Table 1.202

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
2212	CH ₂ −CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
2213	H ₂ N CH ₂ -	2	2	1	-	. Н	-CH ₂ -N-C
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	- ,	н	-CH ₂ -N-C
2215	H ₃ C-HN CH-2-	1	2	0	R	Н	$-CH_2-N C CF_3$ H_2N
2216	СН ₃ N Н ₃ ССН ₂ — Н	1	2	0	. R	Н	$-CH_2-N-C-$ H_2N H_2N
2217	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$
2218	CHCH ₂ -	1	2	0	R	н	- CH₂- N- C-N- C-N- C-N- C-N- C-N- C-N- C-N-
2219	CH-CH ₂ -	1	2	0	R	н	-cH₂-H, CF3
	CHCH ₂ -					н	-CH ₂ -N-CF ₃ HN C-N-CH(CH ₃) ₂
2221	CH-{	1	2	0	R	н .	-CH2-N-C-N-C-H-C-H3
2222	H ₃ C CO ₂ CH ₃ H ₃ C CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃ -CH ₂ -N-C-N-CH ₃ -CH ₂ -N-C-N-CF ₃ -CH ₂ -N-C-N-CF ₃

Table 1.203

	1						
Compd. No.	R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - G - R^6$
2223	C	1	2	0	R	Н	-CH ₂ -N-C-N-N
2224	CHCH_2-	1	2	0	R	н	-CH ₂ -N-C-N
2225	C⊢√_CH₂−	1	2	0	R ,	. н	F3C P CH3 -CH2-N-C-N-N
2226	H ₃ C, CI N CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N$ H_2N CF_3
2227	C├ - CH ₂ -	1	2	0	R	н	-CH2-N C-N CH3)2
2228	CH_CH ₂ - ·	1 .	2	0	R	Н	-CH2-N, C-N-CF3
2229	CH₂-	1	2	0	R	Н	-CH ₂ -N-C
2230 ,	. CH ₃	1	2	0	R	н	CH ₂ -N-C-OCF ₃
	CH ₃ H ₃ CO—CH ₂ -					н	$-CH_2-N-C-$ H_2N H_2N
2232 _r	H ₃ CO—CH ₂ -	1	2	0 .	R	Н	-CH ₂ -N-C
2233	CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$

Table 1.204

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2234	CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2236	FCH ₂ -	1	2	0	R	H	$-CH_2-N$ C H_2 N
2237	CH ₂ -	1	2	0	R	Н	$-CH_2-NC H_2N$
2238	H ₃ CO CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 N
2239	CH ₂ - N CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
2240	CH₂⁻ CH₃ H	1	2	0	R	н	$-CH_2-N-C- \longrightarrow H_2N$
2241	H ₃ C N	1	2	0	R	н	$-CH_{2} \xrightarrow{N} C \xrightarrow{OCF_{3}}$ $+L_{2}N$
2242	CH ₂ -	1	. 2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
2243	(H ₃ Ç) ₂ N-⟨ CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2244	P H	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

Table 1.205

-able	1.205							
Compo No.	R ²	(CH ₂)j—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2245	H₃C N O	N_CH ₂	_ 1	2	0	R	Н	-CH ₂ -N-C
2246	H³CCH ⁵ ∕ W	CH ₂	_ 1	2	0	R	н	-CH ₂ -N-C
2247	н (н ₃ с)₂сн ^N	C Car	_ 1	2	0	R	н	-CH ₂ -N-C
2248	H ₂ N		1	. 2	0	R	н	-CH ₂ -N-C-OCF ₃
2249	H ₂ N H ₃ CO−√		. 1	2	0	R	н	$-CH_2-N-C$ H_2N
2250	H ₂ N HO-√	CH2	1	2	0	R	н	-CH ₂ -N-C
2251	H ₂ N H ₃ C	¯}—сн₂-	1	2	0	R	н	-CH ₂ -N-C
2252		CH ₂ - N H	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
2253	F	CH ₂ - N H		2		-	н	-CH ₂ -N-C
2254	•	CH₂- N H				-	н	-CH ₂ -N-C
2255	H ₃ C	CH ₂ - N H	2	2	1	-	н	$-CH_{2}-N+C$

Table 1.206

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G^-R^6$
2256	CH ₂ -					Н	-CH ₂ -N-C
2257	H ₃ CQ CH ₂ - N H	2	2	1	-	· Н	$-CH_2-N-C-4$ H_2N
2258	C├ ─ _CH ₂ -	1	2	0	R	Н	(S) O CI CH ₃ CH
2259	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C-CI CH ₃
2260	CICH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-N-C-N-CH3
2261	· CH2	1	2	0	R	Н	(S) P -CH-N-C-N- CH ₃
2262	H ₃ CS-CH ₂ -	1	2	0	Ŗ	Н	(S) P -CH-N-C-N- CH ₃
2263	CÍ CH2−CH2−	1	2	0	S	Н	(S) P -CH-N-C-CI CH ₃
2264	С⊢-{}СН₂-	1	. 2	0	S	н	(S) P -CH-N-C-CI CH ₃
2265	н₃сѕ-Сн₂-	1	2	0	S	н	I H ← CH ₃
2266	CI	1	2	0	S	н	(S) P -CH3 -CH3

Table 1.207

2267 CH_{2} 2 2 1 - H CH_{2} 2 2 1 - H CH_{3} 2 2 1 - CH ₂ 2 2 1 - H CH_{3} 2 2 1 - CH ₂ 2 2 1 - CH ₂ 2 2 1 - CH ₃ 2 2 1 - CH ₄ 2 2 2 1 - CH ₄ 2 2 2 1 - CH ₅ 2 2 2		1.207						
2268 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2269 $H_{3}CS \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2270 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2271 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2272 $H_{3}CS \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2273 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2274 $H_{3}CS \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2275 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2276 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2276 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2276 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2276 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\ CH_{3} \end{pmatrix}$ 2276 $C \leftarrow CH_{2}$ 2 2 1 - H $\begin{pmatrix} S \\ C \\$	Compd. No.	R ¹ (CH ₂) _j	· k	m	n	chirality	R³	-(CH ₂) - (CH ₂) - G-R ⁶
2269 $H_3CS \longrightarrow CH_2-$ 2 2 1 - H $(S) \cap CH_3-$ 2 2 1 - H $(S) \cap CH_3-$ 2 2 1 - $(S) \cap CH_3-$ 2	2267	CI CH ₂	_ 2	2	1	-	Н	(S) P CI
2270 CH_{2} 2 2 1 - H CH_{3} (S) CH_{3} (S) CH_{4} - CH ₂ - CH ₂ - 2 2 1 - H CH_{4} - CH ₄ - CH ₄ - CH ₄ - CH ₅ - CH ₂ - 2 2 1 - H CH_{4} - CH ₄	2268	CH_CH ₂	- 2	2	1	-	н	(S) P CI CH ₃
2271 CH_{2} 2 2 1 - H CH_{2} 2 2 1 - CH_{2} 3 - CH_{2} 4 - CH_{2} 3 - CH_{2} 4 - CH_{2} 3 - CH_{2} 4 - CH_{2} 4 - CH_{2} 4 - CH_{2} 4 - CH_{2} 6 - CH_{2} 5 - CH_{2} 6 - CH_{2} 6 - CH_{2} 7 - CH_{2} 6 - CH_{2} 7 - CH_{2} 7 - CH_{2} 7 - CH_{2} 7 - CH_{2} 8 - CH_{2} 9 -		_						CH ₃
2272 H_3CS — CH_2 — 2 2 1 - H CH_3 2273 CH_2 — 2 2 1 - CH_2 — 2 2 1 - CH_3 2274 H_3CS — CH_2 — 2 2 1 - CH_3 — CH_4 — CH_3 — CH_3 — CH_4								OF 13
2273 CH_{2} 2 2 1 - H (S) CH_{3} 2 2 1 - H (S) CH_{3} 2 2 1 - H (S) CH_{3} 2 2 1 - H (S) CH_{2} (S) CH_{2} (S)	2271	CH-2-	2	2	1	-	· н	(S) P -CH-N-C-N- CH ₃
2274 H_3CS CH_2 2 2 1 - H CH_2 2 2 1 - CH_2	2272	H3CS-()-CH2	- 2	2	1	-	н	(S) O O
2275 CH_{2} 2 2 1 - H CH_{2} 2 2 1 - CH_{2} 3 - CH_{2} 4 - CH_{2} 4 - CH_{2} 6 - CH_{2} 6 - CH_{2} 7 - CH_{2} 7 - CH_{2} 8 - CH_{2} 8 - CH_{2} 9 - CH_{2}	2273	CI—CH ₂ —	2	2	1	-	н	I H
2276 CH ₂ - 2 2 1 - H CH(CH ₃) ₂ (S) Q -CH-N-C-N-CH(CH ₃) ₂ CH(CH ₃) ₂	2274 ı	H₃CS-{\rightarrow}-CH2-	- 2	2	1	-	н	H _/ 3
СH(CH ₃) ₂	2275	CICH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C-N-C-N-C-N-CH(CH ₃) ₂
2277 H₃CS—(S) P -ÇH-N-C-N-(2276	CHCH ₂ -	2.	2	1	-	н	(S) P -CH-N-C-N- H H CH(CH ₃) ₂
CH(CH ₃) ₂	. 277 н	l₃CS—()—CH₂—	2	2	1	-	н	(S) P -CH-N-C-N- H H CH(CH ₃) ₂

Table 1.208

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2278	CICH ₂	1	2	0	R	н	(S) P CF ₃ -CH-N-C CH ₃ H ₂ N
2279	CH_CH2-	1	2	0	R	н	(S) PCF ₃ -CHN-CC CH ₃ H ₂ N
2280	CL_CH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2281	H₃CS-(1	2	0	S	H .	(S) O CF ₃ -CH-N-C- CF ₃ -CH ₃ H ₂ N
2282	CHCH ₂ -	2	2	1	-	н	$ \begin{array}{c c} (S) & \bigcirc \\ -CHN-C- \\ \downarrow & H \\ CH_3 & H_2N \end{array} $
2283	H₃CS-(2	2	1	-	н	(S) Q -CH-N-C-
2284	CI CI—CH₂-	2	2	1	-	н	$(S) \qquad \begin{array}{c} NH_2 \\ -CHN-C \\ I \qquad H \\ CH(CH_3)_2 \qquad CF_3 \end{array}$
2285	CI—(2	2	1	-	н	$(S) \qquad P \qquad P^{H_2}$ $-CHN-C-P$ $+ \qquad P$ $CH(CH_3)_2 \qquad CF_3$
2286	H₃CS-⟨CH₂-	2	2	1	-	Н	(S) PH2 -CH-N-C-CHCH3)2 CF3
2287	C├ - CH ₂ -	2	2	1	-	н	(S)
2288	H₃CS-CH₂-	2	2	1	-	H .	(S) P CI -CH-N-C CI (CH ₂) ₂ CONH ₂

Table 1.209

Compo No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	· k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q} + (C$
2289	CI CH ₂	_ 2	2	1	-	Н	(S)
2290	CICH ₂ -	_ 2	2	1	-	Н	(S) P CI -CH ₂ OH
2291	CH_CH2-	2	2	1	-	н	(S) P CI -CH-N-C CI CH ₂ OH
2292	H3CS-CH2	- 2	2	1		н	(S) CI CH-N-C-CI CH ₂ OH
2293	CH ₂ —CH ₂ —	2	2	1	-	н	(S) 0 -CH-NC-N- H H CH ₂ OH
2294	CH_CH ₂ -	2	2	. 1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2295	H₃CS-(CH₂-	- 2	2	1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2296	CI CH ₂ —CH ₂ —	1	2	0	R	н	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2297	H₃CS-CH₂-	1	2	O	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2298	CI—CH ₂ -	1	2	0	R	н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2299	H₃CS-{	1	2	0	R	н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.210

Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2300	CH2-CH2-	1	2	0	S	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	CI CI—CH₂-	1	2	0	S	Н	(S) O CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2302	CI_CH ₂ -	1	2	0	R	Н	(S) PH2 -CH-N-C-H-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH
2303	CH2-CH2-	1	2	0	R	Н	(S) PH2 -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2304	H₃CS-CH₂-	1	2	0	R	Н	(S) P NH ₂ -CH-N-C
2305	CI_CH ₂ -	1	2	0	S	Н	(S) PH2 -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	. H₃CS{	1	2	0	S	Н	(S) O NH2 - C H N- C - C H N- C
2307	CI—(1	2	0	R	н	(S) S S S S S S S S S
2308	H ₃ C _. S-CH ₂ -	1	2	0	R	Н .	(S) S -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
	CI—CH ₂ —					н	(S) S C C C C C C C C C
2310	.· CI—CH₂-	1	2	0	S	н	(S) S - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.211

Compo No.	d. R ¹ (CH	l ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}(CH_2)_{q}G-R^6$
2311	н₃сѕ-{¯¯	⊢CH ₂ –	1	2	0	S	н	(S) S CH-N-C-N-C CH ₂) ₂ SO ₂ CH ₃
2312	H3CS-	−CH ₂ −	1	2	0	R	н	(S) O CF ₃ -CHN-C-CH ₃ H ₂ N
2313	CI	CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C- CI
2314	H ₃ CS	-CH₂ -	1	2	0	S	н	(S) 0 -CH-N-C-N- H H H CH ₃
2315	CI⟨(CH ₂ − 2	2	2	1	-	H	(S) Q CI -CH-N-C-CI CH(CH ₃) ₂
2316	а — (CH ₂ - 1		2	0	S	н	(S) O NH ₂ -CH N C
2317	CI—C	_{H₂} – 2		2	1	-	н	(S) NH ₂ -CH-N-C-CH-CF ₃
2318	CICI	H ₂ - 1		2	0	R	н	(S) S - CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2319	CICI	₁₂ 2	:	2	1	-	н .	(S) S - CH-N-C-N- H H CH(CH ₃) ₂
2320	CHCH	lz 2	2	2	1	·• ·	н	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂
2321	H₃CS-{C	H ₂ 2	2	?	1	-	н	(S) S CH CH CH CH CH CH S S CH CH

Table 1.212

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2322	CICH ₂ -	2	2	1	•	Н	(S) S -CH-N-C-N-C H H CH(CH ₃) ₂
2323	H ₃ CS-()-CH ₂ -	2	2	1	-	Н	(S) S - CH N C N (S)
2324	CICH ₂ _	2	2	1	-	Н	(S) O CF ₃ -CH-N-C C CF ₃ CH ₃ H ₂ N
2325	CICH ₂ -	1	2	0	R	Н	(S) S -CH-N-C-N- H H H CH ₃
2326	C	1	2	0	R	Н	(S) S -CH-N-C-N- CH ₃
2327	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N- H H H CH ₃
2328	CICH ₂ -	1	2	0	S	Н	(S) S CH ₃
2329	CI—CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- CH ₃
2330	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) S -CH-N-C-N- H H H CH ₃
2331	CH-2-	1	2	0	S	н	(S) O CF ₃ -CH _N -C CF ₃ -CH ₃ H ₂ N
2332	C├ ~ CH ₂ -	1	2	0	R	н	$(S) \qquad \bigcap_{CH-N-C} CI$ $(CH_2)_2SO_2CH_3$

Table 1.213

Compo No.	$\begin{array}{c} \text{I.} & \text{R}^{1} \\ \text{R}^{2} \end{array} - (\text{CH}_{2})_{j} - \\ \end{array}$	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
2333	CHCH_2-	1	2	0	R	н	(S)
2334	н₃сѕ-{_}Сн₂-	- 1	2	0	S	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2335	CICH ₂ -	1	2	0	S	н	(S) O - CH N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2336	CHCH ₂ -	1	2	0	S	Н	(S) O - C H N C - N - (S) H H C H (CH ₂) ₂ SO ₂ C H ₃
2337	H₃CS-{CH ₂ -	1	2	0	S	Н	(S) P -CH-N-C-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2338	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N-C-N-C-N-C-CH-2 (CH ₂) ₂ CONH ₂
2339	C├─⟨_}-CH₂-	2	2	1	-	н	(S) O NH ₂ -CH-N-C- O H-C- O CH ₂) ₂ CONH ₂ CF ₃
2340	H₃CS-CH2-	2	2	1	-	н	(S) P NH2 - CHN-C- CH2 (CH2)2CONH2 CF3
2341	CI—CH₂-	2	2	1	•	н	(S) P NH ₂ -CH-N-C-CH ₂ CH ₂ OH CF ₃
2342	H3CS-{\bigce}-CH2-	2	2	1	-	н	(S) PH2 -CH-N-C- H CH ₂ OH CF ₃
2343	CH ₂ —CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI (CH ₂) ₂ CONH ₂

Table 1.214

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2344	C-CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-C-CI (CH ₂) ₂ CONH ₂
2345	C	2	2	1	-	н	(S) P -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2346	CL	2	2	1	•	Н	$(S) \qquad \bigcap_{C \\ C \\$
2347	CICH ₂ -	1	2	0	s	Н	(S) P -CH-N-C-N- CH ₃
2348	CH ₂ -	1	. 2	0	R	н	(S) CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2349	F— CH ₂ -	1	2	0	R ·	Н	(S) P CI -CH-N-C
2350	F—————————————————————————————————————	1	2	0	R	Н	(S) Q CI -CH-N-C
2351	CH ₂ -	1	2	0	R	н	$(S) \bigcap_{\substack{C \\ C \\ (CH_2)_2 \text{SO}_2 C \text{H}_3}} CI$
2352	CICH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N-C-N-CI - H H H
2353	CICH ₂ -	2	2	1	-	н	CH₃
2354	CI—CH₂-	1	2	0	R	н	(S) QCI -CH-N-C

Table 1.215

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
2355	CI CH2−CH2−	1	2	0	R	Н	(S) OC CI -CH-N-C- H (CH ₂) ₂ SO ₂ CH ₃
2356	CH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CH ₂ -	1	2	0	R	н	(S) Q -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CL————————————————————————————————————	.1	2	0	R	н	(S) O -CH-N-C-C-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CI—CH ₂ -	1	2	0	R	, H	(S) O -CH-N-C-(S) H S (CH ₂) ₂ SO ₂ CH ₃
2360	CH2-CH2-	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2361	CH ₂ -	1	2	0	R	н	(S) O -CH-N-C-N-C-CH (CH ₂) ₂ SO ₂ CH ₃
2362	CI - CH ₂ -					н	(S) O -CH-N-C-N- H H -OCH ₃ (CH ₂) ₂ SO ₂ CH ₃
	CL_CH ₂ -						(S) PCI -CH-N-C-CI CH ₃
2364	CI CH ₂ -	2	2	1		Н	(S) OCI CI CI CH3 CI CH3
2365	CICH _Z -	2	2	1	-	н	(S) O CI

Table 1.216

Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2366	CI_CH_CH_	2	2	1	•	Н	(S) 0 -CH-N-C CH ₃
2367	CI_CH ₂ -	2	2	1	-	н .	(S) O -CHN-C-(S) CH ₃
2368	CI_CH2-	2	2	1	-	н	(S) P -CHN-C-S CI CH ₃
2369	CI_CH2-	2	2	1	· -	н	(S) P OCH ₃
2370	CH2-CH2-	2	2	1	-	н	CH ₃ CH ₃ CI
2371	CICH ₂ -	2	2	1	+ +, * -	н	CI CH ₃ C
2372	CI CH ₂ -	2	2	1	-	н	(S) P C CI
2373	F—CH ₂ -	2	2	1	-	н	(S) P C CI
	CH ₂ -						CH ₃
2375	F-CH ₂ -	2 _.	2	1	-	Н	CH ₃
2376	F CH₂-	2	2	1	-	Н	CH3 CH3

Table 1.217

	n1						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
2377	F-CH ₂ -	. 2	2	1	-	н	(S) Q CI -CH-N-C-CI CH ₃
2378	CH₂-	2	2	1	-	Н	(S) CI CI
2379	CI—CH ₂ —	2 .	2	1	-	н	(S) P Br -CHN-C- CH ₃ H ₂ N
	CH2-CH2-					н	(S) 0 -CH-N-C- CH ₃ H ₂ N
2381	CH ₂ -	2	2	1	-	Н	CH ₃ HO
2382	CI CH₂−	. 2	2	1	-	н	(S) P -CH-N-C- CH ₃
2383	CH ₂ -	2	2	1		н	(S)
	CICI CH ₂ -					н	(S) P CI -CH-N-C- CI -CH ₂) ₂ SO ₂ CH ₃
2385	CI . CH₂-	1	2	0	R	н	(S) O CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
	CH ₂ −					H	(S) CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
387	CH ₂ -	1	2	0	R	н	(S) OCI -CH-N-C-CI -CH-2) ₂ SO ₂ CH ₃

Table 1.218

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2388	F-CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2389	CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C-CI H H (CH ₂) ₂ SO ₂ CH ₃
2390	CICH ₂ -	1	2	0	R	Н	(S) O NH ₂ -CH-N-C
2391	CL CH2-	1	2	0	R	н	(S) O NH ₂
2392	CI—CH ₂ -	1	2	0	R	н	(S) O NH ₂ -CH N C (CH ₂) ₂ SO ₂ CH ₃
2393	CI CI—CH₂-	1 ·	2	0	R	н	(S)
2394	CI—CH₂-	2	2	1	-	н	$(S) \qquad Q \qquad CI$ $-CH + N - C \longrightarrow CI$ $(CH_2)_2SCH_3$
2395	CI—CH₂-	2	2	1	-	н	(S) P CI -CH-N-C-CI -CH ₂ OCH ₂ Ph
2396	CI CI—CH₂-	2	2	1	-	н	(S) P CI -CH-N-C-CI (CH ₂) ₄ NH ₂
2397	CI CH2−	2	2	1	-	Н	(a) -C+++C
2398	CI—CH ₂ —	2	2	1		H	(S) CI -CH-N-C-C-CI -CH-N-C-C-CI -COC(CH ₃) ₃

Table 1.219

Compd. No.	R^1 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2399	CL CH ₂ —CH ₂ —	2	2	1	-	Н	(S) Q CI -CH-N-C-C-CI
2400	CL, CH ₂ -	2	2	1	-	н	(S) QC CI -C+++CC-CI H₂C OH
2401	CH_CH2-	. 2	2	1	-	н	(S) -CH-N-C-CI
2402	CH ₂ -	2	2	1	-	н	(S) Q CI -CH-N-C-C-CI CH ₂ OH
2403	F—CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₂ OH
2404	F CH₂-	2	2	1	-	н	(S) Q -CH-N-C-CI CH ₂ OH
2405	F—CH₂-	2	2	1	-	н	(S) P −CH-N-C-CI CH₂OH
	F_CH ₂ -					н	(S) CI CH ₂ OH
2407	CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI -CH ₂ OH
?408 н	3CSO ₂	2	2	1	-	н	(S) O CI −CH-N-C CI H CH ₂ OH
409 н	3CO2C-∕€}-CH2-	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₂ OH

Table 1.220

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2410	CICH ₂ -	2	2	1	-	н	(S) OC\ -CH+N+C- CH2OH
2411	CH_CH ₂ -	2	2	1	-	Н	(S) OCI CI -CH-N-C CI -CH ₂ OH
2412	CI—CH ₂ —	.2	2	1	-	н	(S) P -CH-N-C-(S) CH ₂ OH
2413	CI CI—CH₂-	2	2	. 1	-	Н	(S) P -CH-N-C-N-\-OCH3 CH2OH
2414	CL CH2-	2	2	1	-	н	(S) P -CHN-C-(S) -CH ₂ OH
- 2415	CL CH ₂ -	2	2	1	-	Н	(S) OC H ₃ -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2416	CI—CH2—CH2—	2	2	1	-	н	(S) S OCH ₃
	CICH ₂ -					н	(S) CH ₃ CH ₃
2418	CH ₂ -	2	2	1		н	(S) S -CH-N-C-N-CH ₃ CH ₃
2419	CL CH2-	2	2	1	-	• н	(S) S CH ₃ (S) CH ₃ (S) S CH ₃ (S) S CH ₃ (S) CH ₃ (S) S CH ₃ (S) CH ₃ (S) CH ₃ (S) S CH ₃ (S) CH ₃ (CH ₃
2420	CI—CH ₂ -	2	2	1	-	н	(S) S CH ₃ CH ₃

Table 1.221

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q}$
2421	CH2-CH2-	2	2	1	-	н	(S) S CH N C N C N C H
2422	CICH ₂ -	1	2	0	R	н	(S) S OCH ₃ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2423	CI CI—CH₂-	1	2	0	R	н	$(S) \qquad S$ $-CHNC-N-CH_3$ $(CH_2)_2SO_2CH_3$
2424	CI—CH ₂ -	1	2	0	R	н	(S) \$ CH ₃ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2425	CH_CH2-	1	2	0	R	н	(S) S -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2426	CICH₂-	1	2	0	R	н	(S) S CI CH H H CH ₂) ₂ SO ₂ CH ₃
2427	CI CH₂−	1	2	0	R	н	(S) S C C C C C C C C C C C C C
2428	CICH ₂ _	1	2	0	R	н	(S)

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレット に記載されているように、下記に示すいずれかの一般的な製造法を用いることによ り合成可能である。

(製造法1)

20

下記式(II)

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式([[[]

WO 01/10439 PCT/JP00/05260

242

$$\begin{array}{c} O \\ HO - C - (CH_2)_p - \frac{R^4}{CH_2} (CH_2)_q - G - R^6 \end{array}$$
 (III)

5

10

[式中、 R^4 、 R^5 、 R^6 、G、p、および q は、上記式(I)におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、 または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシープなどの脱水剤;ジシクロヘキシルカ ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ 15 ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 Nーヒドロキシサクシンイミド(HOSu)、Nーヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス (ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート (PyBOP)、2-(1H-ベンゾトリアゾール-1-1イル)-1,1,3,3-テトラメチルウロニウム ヘキサフ 20 ルオロホスフェート(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)-1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム テトラフルオロボレート(TNTU)、O-(N-サク シニミジル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレー 25 ト (TSTU)、プロモトリス (ピロリジノ) ホスホニウム ヘキサフルオロホス フェート (РуВгоР) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 索ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4 – ビニルピ 30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進

行させることができる。

(製造法2)

下記式 (IV)

5

で表されるアルキル化試薬1当量と、下記式 (V)

15

$$\begin{array}{c} (C H_{2})_{k} \\ H N \\ (C H_{2})_{m} \end{array} \longrightarrow \begin{array}{c} (C H_{2})_{n} - N - C - (C H_{2})_{p} - H \\ R^{3} \end{array} \longrightarrow \begin{array}{c} R^{4} \\ (C H_{2})_{q} - G - R^{6} \end{array} \qquad (V)$$

20 [式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法 1 と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原30 子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

244

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 $CH_2)_{j-1}$ —CHO (VI)

10

25

[式中、 R^1 および R^2 は、上記式(I) におけるそれぞれの定義と同じであり、jは 1 または 2 を表す。]

または、下記式 (VII)

 $R^{1}-CHO$ (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0. 1-10 当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、j、k、m、n、p、およびqは、上記 10 式(I)におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式 (IX)

$$HO-\dot{A}-R^6$$
 (IX)

15 [式中、R⁶は、上記式(I)におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^6 \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

10 [式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、j、k、m、n、p、および q は、上記式(I) におけるそれぞれの定義と同じであり、A はカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式(XII)

$$15 R6 - NH2 (XII)$$

30

[式中、 R^6 は、上記式 (I) における R^6 の定義と同じである。] で表されるアミン0. 1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供

25 した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

いずれの製造方法においても、反応温度は-7.8℃から+1.5.0℃、好ましくは0℃から1.0.0℃の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)の合成本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジンは以下のように合成した。

25

1) 3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩

4-クロロベンジルクロリド (4. 15g、25, 8 mmol) と *i*-Pr₂NE t (6.67g, 51.6 mmol)を、3-{(*tert*-プトキシカルボニル) アミノ} ピロリジン (4.81g、25.8 mmol)のDMF溶液(50mL30)に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去した。再結晶(CH₃CN、50mL)により目的とする3-{(*tert*-プトキシカルボ

25

30

ニル) アミノ} -1-(4-クロロベンジル) ピロリジン (6.43g、80%)を黄白色固体として得た:

 $^{1}\text{H-NMR}$ (CDCl $_{3}$, 300MH $_{2}$) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83

5 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8 %); ESI/MS m/e 3 1 1.0 (M++H、C₁₆H₂₄ClN₂O₂)

3-{(tert-ブトキシカルボニル) アミノ} -1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)のCH₃OH(80mL)溶液に1

M HCI-Et₂O (100mL) を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (4.939g、85%)を白色粉末として得た:
 ¹H-NMR (d₆-DMSO、300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(> 9 9%); ESI/MS m/e 2 1 1.0 (M++H、C₁₁H₁₆ClN₂)

光学活性(R) -3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸 塩と(S) -3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ 体と同じ¹H-NMRを示した。

(R) -3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩 (4.54g、16.0 mmol)、2M NaOH溶液 (80 mL)、および酢酸エチル (80 mL) の混合物を攪拌し、有機層を分離し、水層を酢酸エチル (80 mL × 2) で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン (3.35g、99%)を得た。

- (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R)-3-{N-(10tert-プトキシカルボニル)グリシル}アミノ-1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) <u>(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジンの</u>合成
- 15 $(R) - 3 - \{N - (tert - プトキシカルボニル) グリシル\} アミノー 1 - (R) - 3 - \{N - (tert - プトキシカルボニル) グリシル} アミノー 1 - (R) - 3 - (R) - (R)$ (4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル (60mL) 溶液に、4M HClジオキサン (38mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L) を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液を合わ 20 せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(Si〇。、 AcOEt/EtOH/Et₃N=90/5/5) により、(R) -3-(グリシル アミノ) -1- (4-クロロベンジル) ピロリジン (3.374g、86%) を得 $t: ^{1}H-NMR (CDC1_{3}, 270MHz) δ$ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル) アミノ] ピロリジン(化合物番号69)
 - 3, 4-ジフルオロベンゾイルクロリド(0.060mmol)のクロロホルム

[実施例1] エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を $10\,\text{mM}$ HEPES含有HBSS溶液に懸濁した ものに $1\,\text{mM}$ Fura $2\,\text{アセトキシメチルエステル}$ (同仁化学社製)を加え、 $3\,\text{7}$ ℃にて $3\,0\,\text{分間インキュベートした}$ 。これを $3\,4\,0\,\text{nm}$ と $3\,8\,0\,\text{nm}$ で励起し、

20 340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5 μ g/ml)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

30

10

抑制率 (%) = {1-(A-B) / (C-B)} × 100

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

合物は、 $10 \mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10 \mu M$ の濃度において20%-50%の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5
25、533、558、567、582、602、613、630、646、64
9、701、738、741、754、767、814、816、833、839
、873、902、909、945、1002、1159、1170、1258、
1315、1352、1357、1407、1417、1448、1472、15
04、1508、1531、1558、1562、1569、1661、1670
0、1686、1719、1751、1756、1769、1775、1783、1
797、1802、1803、1815、1834、1841、1846、188
3、1887、1889、1892、1913、1924、1928、1960、
2006、2013、2035、2052、2083、2113、2127、21
36、2189、2320、2321、2323、2327、2330、2334
5、2336、2338、2345、2394、2394、2398、2398、2
400、2400、2406、2406、2407、2407、2409、240

 10μ Mの濃度において 50% - 80% の阻害能を示した化合物:

化合物番号83、115、146、150、216、294、297、322、4 20 05, 440, 459, 461, 466, 482, 484, 487, 490, 49 2, 503, 526, 528, 550, 562, 570, 578, 620, 623 . 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 12 59, 1267, 1295, 1377, 1402, 1412, 1420, 1485 25 . 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1 $7\ 2\ 5\ ,\ 1\ 7\ 5\ 4\ ,\ 1\ 8\ 3\ 6\ ,\ 1\ 8\ 5\ 6\ ,\ 1\ 8\ 7\ 0\ ,\ 1\ 9\ 1\ 2\ ,\ 1\ 9\ 2\ 3\ ,\ 1\ 9\ 2$ 9, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 22 90.2291.2294.2297.2300.2301.2302.230730 . 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2 329, 2333, 2335, 2343, 2344, 2346, 2347, 234

329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

10μΜの濃度において>80%の阻害能を示した化合物:

5

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2

15 366、2367、2370、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- 20 [実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害能の測定</u> ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー(25mM HEPES、pH7.6、1mM Ca Cl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標25 識ヒトエオタキシン(アマシャム社製)を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25μL、標識リガンド溶液25μL、膜画分懸濁液50μLの順番に分注し撹拌後(反応溶液100μL)、25℃で90分インキュベートした。
- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

WO 01/10439 PCT/JP00/05260

253

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1 - (A-B) / (C-B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ 15 テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 - C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2 $-C_7$ アルカノイル基、 C_2 - C_7 アルコキカルボニル基、 C_2 - C_7 アルカノイルオ キシ基、C2-C7アルカノイルアミノ基、C2-C7N-アルキルカルバモイル基、 25 C_4-C_9 N-シクロアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、C $_3-C_8$ (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピベリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ ア 30 ルキル)アミノ基で置換されていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロ

アルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは R^2 はヒドロキシ基ではない。

´j は0-2の整数を表す。

10 kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

素を形成していてもよい。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ 20 ルバモイル基、メルカプト基、グアニジノ基、C3-C8シクロアルキル基、C1-C $_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニル 25 基、 C_2-C_7 アルカノイルオキシ基、 C_3-C_7 アルカノイルアミノ基、 C_3-C_7 -アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され 30 ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水

5

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベン 10 ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 - C_8$ シク ロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 15 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、C、 $C_1 - C_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 20 3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニ ル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 $-C_6$ アルキル)アミノ基、ジ(C_1 - C_6 アルキル)アミノ基、ベンジルアミノ基、 25 C_2-C_7 (アルコキシカルボニル) アミノ基、 C_1-C_6 (アルキルスルホニル) ア ミノ基、もしくは、ビス(C_1-C_6 アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任

 $C_1 - C_6 P$ ルキル)アミノ基、もしくはジ($C_1 - C_6 P$ ルキル)アミノ基によって置換されていてもよい。]

- 2. 上記式(I)においてk=1かつm=2である、請求項1記載のCCR3拮5 抗作用を有する薬剤。
 - 3. 上記式(I)においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 4. 上記式(I) においてk=1かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
 - 5. 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

15

- 6. 上記式 (I) においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 7. 上記式(I)で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。
 - 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

INTERNATIONAL SEARCH REPORT

International application No.

			incinational applicat	ion No.
A. CLA	SSIFICATION OF SUBJECT MATTER		PCT/JP0	0/05260
470 CO 413 According	761831/40, 4025, 445, 4468, 199, 4184, 427, 506, 433, 423, 4192, 4184, 211/56, 58, 26, 401/04, 06, 04, 405/06, 14, 417/06, 487/04, 495/06, 04, to International Patent Classification (IPC) or to both	4525, 4535, 454, 42 429, 53, A61P37/08, , 12, 14, 403/06, 1 , 513/04 th national classification an	2, 404, 4155, 42 29/00, 31/18, 2, 405/06, 12, d IPC	245, 5377, 45 11/08, 43/00 14, 409/12,
470 C07 413	documentation searched (classification system follow .C1 7 A61K31/40, 4025, 445, 4468, 9, 4184, 427, 506, 433, 423, 4192, 40207/14, 211/56, 53, 25, 401/04, 06, $\frac{1}{2}$, 417/06, 487/04, 495/05, 04, ation searched other than minimum documentation to	4525, 4535, 454, 42 29, 53, A61P37/08, 12, 14, 403/06, 1	2, 404, 4155, 42 29/00, 31/18,	11/08, 43/00
Electronic	data base consulted during the internal			
REG	ISTRY (STN), CA (STN), CAOLD (STN),	tame of data basc and, when	e practicable, search to	erms used)
	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the relevant	paccages B	
X A	WO, 99/25686, Al (TEIJIN LIMI 27 May, 1999 (27.05.99)	TED),	Pressuges Re	levant to claim No
	& EP, 1030840, A1 & AU, 991 & NO, 2000002486, A	3741, A		1-10 11
X A	EP, 217286, A1 (OKAMOTO SHOSUM 08 April, 1987 (08.04.87), Compound No.42 & JP, 63-022061, A & US, 4899 & AU, 8663051, A & CA, 1297	7040 -		1,5,7-10 2-4,6,11
X A	WO, 98/50534, A1 (SMITHKLINE B 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872 & BR, 9808502, A & ZA, 9803	EECHAM CORPORATI 885, A 843, A	:	1,2,5 3,4,6-11
	GB, 2106108, A (JOHN WYETH AND 07 April, 1983 (07.04.83) & US, 4443461, A	BROTHER LIMITED		1,5 2-4,6-11
	WO, 97/40051, A1 (TAKEDA CHEMIC 30 October, 1997 (30.10.97)	CAL INDUSTRIES,		1,5 -4,6-11
Special c	ocuments are listed in the continuation of Box C. legories of cited documents:	See patent family an	nex.	
considered considered considered considered cate date document cited to es special rea document means document than the pr	defining the general state of the art which is not a to be of particular relevance nument but published on or after the international filing which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other son (as specified) referring to an oral disclosure, use, exhibition or other published prior to the international filing date but later fority date claimed	"X" document of particular considered novel or car step when the document document of particular considered to involve a combined with one or a	e or theory underlying the relevance; the claimed in unot be considered to invot it is taken alone relevance; the claimed in- n inventive step when the love other such document	e invention cannot be obve an inventive vention cannot be obve an inventive vention cannot be a document is
	al completion of the international search ober, 2000 (31.10.00)	Date of mailing of the inter	national seasch	
te of the actu	, 2000 (31.10.00)	07 November,	2000 (07.11.	00)
31 Oct	ng address of the 1514	Authorized officer	2000 (07.11.	00)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	
X A	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A	1,2,7-11 3-6
	·.·	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/IP00/05260

			国际山极银行 1	-CI/JP0	0/05260	
429, 53, A61P	属する分野の分類(国際特許分類(I P C)) K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 40 37/08, 29/00, 31/18; 11/08, 43/00 // ,C07D207/ 4, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/0)4, 4155, 42 (14, 211/54	AF FORT ICIE IN	09, 4184, 427, 56 5, 12, 14, 403/0	06, 433, 423, 4192, 6, 12, 405/06, 12,	
B. 調査を	行った分野					
調査を行った	最小限資料(国際特許分類(IPC))	 				
Int. Cl 7 A611	K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 40	4, 4155, 42	45, 5377, 4545, 470	974184.427.50	06 433 423 4102	
	37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/ 4, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/0		, 58, 26, 401/04, 06	, 12, 14, 403/06	5, 12, 405/06, 12,	
	-, 113, 03, 11, 111, 00, 181, 04, 495, 06, 04, 513/0)4 				
最小限資料以	外の資料で調査を行った分野に含まれるもの					
	•		:			
	•			•		
国際調査で使り	用した電子データベース(データベースの名利	Le district				
REGIST	TRY (STN), CA (STN), CAOL	D (ST	N), CAPLU	S (STN)		
-						
C. 関連する	ると認められる文献					
引用文献の					関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、	その関連する箇所	の表示	請求の範囲の番号	
X	WO, 99/25686, A1 (TEIJIN LIMITED)	27.5月.	1999 (27. 05. 99	9)	1-10	
A	&EP, 1030840, A1 &AU, 9913741, A &N	NO, 20000	02486, A	•	11	
v	•					
X	EP, 217286, A1 (OKAMOTO SHOSUKE) 8	3.4月.19	87 (08. 04. 87)		1, 5, 7-10	
A	化合物No. 42参照				2-4, 6, 11	
	&JP, 63-022061, A &US, 4895842, A &	LAU, 8663	051, A &CA, 129	97633, A	, . ,	
х						
Â	WO, 98/50534, A1 (SMITHKLINE BEECH 12.11月.1998 (12.11.98)	IAM CORP	ORATION)	•	1, 2, 5	
'n					3, 4, 6-11	
	&EP, 991753, A1 &AU, 9872885, A &BR	, 980850	2, A &ZA, 98038	343, A		
x C欄の続き	にも文献が列挙されている。					
			パテントファミリ 	一に関する別	低を参照。 	
ド 引用文献の 「A」特に関連	Dカテゴリー Iのある文献ではなく、一般的技術水準を示す	_ 0	日の後に公表され	1た文献		
もの	のある文献ではなく、一般的技術水準を示す		際出願日又は優先	七日後に公表さ	れた文献であって	
「E」国際出願	日前の出願または特許であるが、国際出願日	0	1段とオルラ るもの)理解のために引用	りではなく、発 Bナスもの	明の原理又は理論	
以後に公	:表されたもの	「X」称	ドに関連のある文献	状であって、当	該文献のみで発明	
・レ」変元催土 日若しく	張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する	0,)新規性又は進歩性	上がないと考え	られるもの	
文献(理	由を付す)	Y LY	に関連のある文稿 ・の文献との 当ま	ぱであって、当 ***に b - てぬ	該文献と他の1以 明である組合せに	
「〇」口頭によ	る開示、使用、展示等に言及する文献	1	って進歩性がなり	R目にとつ(日 Vと考えられる	明である組合せにし	
「P」国際出題 —————	日前で、かつ優先権の主張の基礎となる出願	「&」 ≣	ーパテントファミ	リー文献		
際調査を完了	した日	国際部本	 報告の発送日	07.110	70	
	31. 10. 00	国际利益	報言の発送日	0 7.11.0		
際調査機関の	名称及びあて先	44.55				
日本国	名称及びめて元 特許庁(ISA/JP)	符計厅籍 	査官(権限のある 類本 供予ス	職員) / / / / / / / / / / / / / / / / / / /	4P 9638	
郵便番号100-8915						
東京都	千代田区段が関三丁目4番3号	電話番号	03-3581	-1101	内線 3492	

国際調査報告

国際出願番号 PCT/JP00/05260

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7. 4月. 1983 (07. 04. 83) &US, 4443461, A	1, 5 2-4, 6-11
X A	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30. 10月.1997(30.10.97) &JP, 10-226689, A &EP, 915888, A1 &CA, 2251625, A &AU, 9724048, A &ZA, 9703493, A &CN, 1223659, A	1, 5 2-4, 6-11
X A	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	1, 5 . 2-4, 6-11
PX ⁻ PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6
	- · · · · · · · · · · · · · · · · · · ·	
,		
	·	J

This Page Blank (uspto)