

Report No: CCIS15070059805

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 10.1" Android touch LCD Media Player

Model No.: DT101-AC4-720, 502-1019ATATM

FCC ID: 2AB6Z-DT101-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 23 Jul., 2015

Date of Test: 23 Jul., to 06 Sep., 2015

Date of report issued: 07 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Sep., 2015	Android player Main board with wireless
		module (FCC ID: 2AB6Z-1859ATMB) and
		same antenna were used by the device,
		only conducted emission and Radiated
		emission were re-tested.

Prepared by: Date: 07 Sep., 2015

Report Clerk

Reviewed by: Or Sep., 2015

Project Engineer

3 Contents

			Page
1	CO.	VER PAGE	
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	16
	6.7	Spurious Emission	
	6.7.		
	6.7.		
	6.8	FREQUENCY STABILITY	37
7	TES	ST SETUP PHOTO	38
8	EU.	T CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

	Ochicial Description (
	Product Name:	10.1" Android touch LCD Media Player
	Model No.:	DT101-AC4-720, 502-1019ATATM
	Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
	Operation mode:	Indoor used
	Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
	Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
	Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
	Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
	Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
(MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
	Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
	Antenna Type:	Omni-directional
	Antenna gain:	2.5 dBi
	AC Adapter:	MODEL: PS18C120K1500UD Input: AC 100-240V 50/60Hz 0.5A Output: DC 12V, 1500mA
	Remark:	Model No.: DT101-AC4-720, 502-1019ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model number for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1				
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	5220MHz			
48	5240MHz			
	Ba	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	
153	5765MHz	159	5795MHz	
157	157 5785MHz			
161	5805MHz			
165	5825MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802	2.11n20	802.11n	40		
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel	5240MHz				
	Band 4				
802.11a/802	2.11n20	802.11n	40		
Channel	Frequency	Channel	Frequency		
The lowest channel	5745MHz	The lowest channel	5755MHz		
The middle channel	5785MHz	The highest channel	5795MHz		
The highest channel	5825MHz				

Report No: CCIS15070059805

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150 kHz to 30 MHz			
	Class B			
Class / Severity:				
Receiver setup:	RBW=9 kHz, VBW=30 kHz	1	15.10	
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test procedure	* Decreases with the logarithm			
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm			
	AUX Equipment Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r — AC power	
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data

Frequenc

Site : CCIS Shielding Room
Condition : FCC PART15 B QP LISN LINE
EUT : 10.1" Android touch LCD Media Player
Model : DT101- AC4-720
Test Mode : 5G-WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark :

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>		
0.170	21.97	0.27	10.77	33.01	54.94	-21.93	Average	
0.190	44.53	0.28	10.76	55.57	64.02	-8.45	QP	
0.190	22.67	0.28	10.76	33.71	54.02	-20.31	Average	
0.226	42.83	0.27	10.75	53.85	62.61	-8.76	QP	
0.270	37.34	0.27	10.75	48.36	61.12	-12.76	QP	
0.270	19.41	0.27	10.75	30.43	51.12	-20.69	Average	
0.431	37.62	0.28	10.73	48.63	57.24	-8.61	QP	
0.435	24.42	0.28	10.73	35.43	47.15	-11.72	Average	
0.471	19.73	0.29	10.75	30.77	46.49	-15.72	Average	
0.481	34.87	0.29	10.75	45.91	56.32	-10.41	QP	
0.661	32.05	0.23	10.77	43.05	56.00	-12.95	QP	
0.747	16.84	0.23	10.79	27.86	46.00	-18.14	Average	
	Freq 0.170 0.190 0.190 0.226 0.270 0.270 0.431 0.435 0.471 0.481 0.661	Read Level MHz dBuV 0.170 21.97 0.190 44.53 0.190 22.67 0.226 42.83 0.270 37.34 0.270 19.41 0.431 37.62 0.435 24.42 0.471 19.73 0.481 34.87 0.661 32.05	Read LISN Level Factor MHz dBuV dB 0.170 21.97 0.27 0.190 44.53 0.28 0.190 22.67 0.28 0.266 42.83 0.27 0.270 37.34 0.27 0.270 19.41 0.27 0.431 37.62 0.28 0.435 24.42 0.28 0.471 19.73 0.29 0.481 34.87 0.29 0.661 32.05 0.23	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.170 21.97 0.27 10.77 33.01 0.190 44.53 0.28 10.76 55.57 0.190 22.67 0.28 10.76 33.71 0.226 42.83 0.27 10.75 53.85 0.270 37.34 0.27 10.75 48.36 0.270 19.41 0.27 10.75 30.43 0.431 37.62 0.28 10.73 48.63 0.435 24.42 0.28 10.73 48.63 0.435 24.42 0.28 10.73 35.43 0.471 19.73 0.29 10.75 30.77 0.481 34.87 0.29 10.75 45.91 0.661 32.05 0.23 10.77 43.05	Read LISN Cable Lovel Limit Line MHz dBuV dB dB dBuV dBuV 0.170 21.97 0.27 10.77 33.01 54.94 0.190 44.53 0.28 10.76 55.57 64.02 0.190 22.67 0.28 10.76 33.71 54.02 0.226 42.83 0.27 10.75 53.85 62.61 0.270 37.34 0.27 10.75 48.36 61.12 0.270 19.41 0.27 10.75 30.43 51.12 0.431 37.62 0.28 10.73 48.63 57.24 0.435 24.42 0.28 10.73 35.43 47.15 0.471 19.73 0.29 10.75 30.77 46.49 0.481 34.87 0.29 10.75 45.91 56.32 0.661 32.05 0.23 10.77 43.05 56.00	Read LISN Cable Limit Over Limit Freq Level Factor Loss Level Limit Limit MHz dBuV dB dB dBuV dBuV dB 0.170 21.97 0.27 10.77 33.01 54.94 -21.93 0.190 44.53 0.28 10.76 55.57 64.02 -8.45 0.190 22.67 0.28 10.76 55.57 64.02 -20.31 0.226 42.83 0.27 10.75 53.85 62.61 -8.76 0.270 37.34 0.27 10.75 53.85 62.61 -8.76 0.270 37.34 0.27 10.75 30.43 61.12 -12.76 0.270 19.41 0.27 10.75 30.43 51.12 -20.69 0.431 37.62 0.28 10.73 48.63 57.24 -8.61 0.435 24.42 0.28 10.73 35.43 47.15 -11.72 0.471 19.73 <t< td=""><td> Read LISN Cable Limit Over Line Limit Remark </td></t<>	Read LISN Cable Limit Over Line Limit Remark

Neutral:

Trace: 19

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN NEUTRAL

EUT : 10.1" Android touch LCD Media Player Model : DT101- AC4-720

Model : DT101- AC4-720 Test Mode : 5G-WIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

COMMIK		Read	LISN	Cable		Limit	Over	
	Freq				Level			Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>ab</u>	
1	0.274	26.27	0.26	10.74	37.27	60.98	-23.71	QP
2 3 4 5 6 7	0.274	18.16	0.26	10.74	29.16	50.98	-21.82	Average
3	0.296	18.62	0.26	10.74	29.62	50.37	-20.75	Average
4	0.339	25.10	0.26	10.73	36.09	59.22	-23.13	QP
5	0.360	16.74	0.25	10.73	27.72	48.74	-21.02	Average
6	0.731	17.96	0.18	10.78	28.92	46.00	-17.08	Average
7	0.751	25.22	0.19	10.79	36.20	56.00	-19.80	QP
8 9	1.043	21.84	0.22	10.88	32.94	56.00	-23.06	QP
9	1.054	15.04	0.22	10.88	26.14	46.00	-19.86	Average
10	1.908	4.87	0.29	10.95	16.11	46.00	-29.89	Average
11	5.535	18.33	0.27	10.83	29.43	60.00	-30.57	QP
12	9,603	18, 63	0.25	10.92	29, 80	60.00	-30.20	QΡ

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2009, KDB 789033						
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.4 Occupy Bandwidth

• •							
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)						
Test Method:	ANSI C63.10:2009 and KDB 789033						
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

Toot Doguiroment	FCC Port45 F Section 45 407 (a) (1) (ii) 8 (a) (2)						
Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10:2009, KDB 789033						
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.6 Band Edge

Test Requirement: Test Method: Receiver setup:	FCC Part15 E S ANSI C63.10:20		07 (b)					
	ANSI C63.10:20							
Receiver setup:		ANSI C63.10:2009 , KDB 789033						
·	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	0kHz Quasi-peak Value				
Limit:			_					
		Remark						
	Band	1		68.20	Peak Value			
	Dana	'		54.00	Average Value			
	Band	4		78.20	Peak Value			
	Remark:			54.00	Average Value			
	 Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm. 							
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A Amplifier							
Test Instruments:	Refer to section	5.6 for deta	ils	-				
Test mode:	Refer to section	5.3 for deta	ils					
Test results:	Passed							

Band 1:

	802.11a									
Test cl	hannel	Lowest			Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	36.25	32.07	9.13	40.06	37.39	68.20	-30.81	Horizontal		
5150.00	36.11	32.07	9.13	40.06	37.25	68.20	-30.95	Vertical		
	802.11a									
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	25.34	32.07	9.13	40.06	26.48	54.00	-27.52	Horizontal		
5150.00	25.02	32.07	9.13	40.06	26.16	54.00	-27.84	Vertical		
				802.11a						
Test cl	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.22	31.78	9.15	40.18	36.97	68.20	-31.23	Horizontal		
5350.00	36.15	31.78	9.15	40.18	36.90	68.20	-31.30	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	26.36	31.78	9.15	40.18	27.11	54.00	-26.89	Horizontal		
5350.00	26.25	31.78	9.15	40.18	27.00	54.00	-27.00	Vertical		

802.11n-HT20										
				002.1111-1120			_			
l est c	hannel		Lowest		Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	36.11	32.07	9.13	40.06	37.25	68.20	-30.95	Horizontal		
5150.00	36.25	32.07	9.13	40.06	37.39	68.20	-30.81	Vertical		
	802.11n-HT20									
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	26.18	32.07	9.13	40.06	27.32	54.00	-26.68	Horizontal		
5150.00	26.84	32.07	9.13	40.06	27.98	54.00	-26.02	Vertical		
			8	302.11n-HT20						
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.22	31.78	9.15	40.18	35.97	68.20	-32.23	Horizontal		
5350.00	35.26	31.78	9.15	40.18	36.01	68.20	-32.19	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	25.00	31.78	9.15	40.18	25.75	54.00	-28.25	Horizontal		
5350.00	25.36	31.78	9.15	40.18	26.11	54.00	-27.89	Vertical		

	802.11n-HT40									
Test cl	hannel	Lowest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	35.11	32.07	9.13	40.06	36.25	68.20	-31.95	Horizontal		
5150.00	35.06	32.07	9.13	40.06	36.20	68.20	-32.00	Vertical		
802.11n-HT40										
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	25.64	32.07	9.13	40.06	26.78	54.00	-27.22	Horizontal		
5150.00	25.33	32.07	9.13	40.06	26.47	54.00	-27.53	Vertical		
			8	302.11n-HT40						
Test cl	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.15	31.78	9.15	40.18	35.90	68.20	-32.30	Horizontal		
5350.00	35.22	31.78	9.15	40.18	35.97	68.20	-32.23	Vertical		
			8	02.11n-HT40						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	25.48	31.78	9.15	40.18	26.23	54.00	-27.77	Horizontal		
5350.00	25.36	31.78	9.15	40.18	26.11	54.00	-27.89	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test cl	hannel	Lowest			Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	38.26	32.27	9.30	40.54	39.29	78.20	-38.91	Horizontal		
5725.00	39.33	32.27	9.30	40.54	40.36	78.20	-37.84	Vertical		
	802.11a									
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.22	32.27	9.30	40.54	32.25	54.00	-21.75	Horizontal		
5725.00	31.63	32.27	9.30	40.54	32.66	54.00	-21.34	Vertical		
				802.11a						
Test cl	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.25	32.71	9.37	40.69	42.64	78.20	-35.56	Horizontal		
5850.00	41.36	32.71	9.37	40.69	42.75	78.20	-35.45	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.24	32.71	9.37	40.69	32.63	54.00	-21.37	Horizontal		
5850.00	31.82	32.71	9.37	40.69	33.21	54.00	-20.79	Vertical		

802.11n-HT20									
Test c	hannel		Lowest	002.1111-11120	La	vel		Peak	
		At		Dragon				ean	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.50	32.27	9.30	40.54	42.53	78.20	-35.67	Horizontal	
5725.00	41.53	32.27	9.30	40.54	42.56	78.20	-35.64	Vertical	
802.11n-HT20									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	31.98	32.27	9.30	40.54	33.01	54.00	-20.99	Horizontal	
5725.00	31.63	32.27	9.30	40.54	32.66	54.00	-21.34	Vertical	
			8	302.11n-HT20					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.15	32.71	9.37	40.69	42.54	78.20	-35.66	Horizontal	
5850.00	41.82	32.71	9.37	40.69	43.21	78.20	-34.99	Vertical	
			8	302.11n-HT20					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.26	32.71	9.37	40.69	32.65	54.00	-21.35	Horizontal	
5850.00	31.33	32.71	9.37	40.69	32.72	54.00	-21.28	Vertical	

802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.56	32.27	9.30	40.54	42.59	78.20	-35.61	Horizontal	
5725.00	41.36	32.27	9.30	40.54	42.39	78.20	-35.81	Vertical	
802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	31.29	32.27	9.30	40.54	32.32	54.00	-21.68	Horizontal	
5725.00	31.36	32.27	9.30	40.54	32.39	54.00	-21.61	Vertical	
			8	302.11n-HT40					
Test cl	hannel	Highest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.78	32.71	9.37	40.69	43.17	78.20	-35.03	Horizontal	
5850.00	41.36	32.71	9.37	40.69	42.75	78.20	-35.45	Vertical	
			8	302.11n-HT40					
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.58	32.71	9.37	40.69	32.97	54.00	-21.03	Horizontal	
5850.00	31.26	32.71	9.37	40.69	32.65	54.00	-21.35	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1 Restricted Band									
Test Requirement:	FCC Part15 E Section 15.407(b)								
Test Method:	ANSI C63.10: 2009								
Test Frequency Range:		Band 1: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz Band 4: 5.35 GHz to 5.46 GHz							
Test site:	Measurement [Distance: 3m							
Receiver setup:			_						
	Frequency Detector RBW VBW Remark								
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value				
Limit:		KIVIO	TIVITIZ	SIVII IZ	Average Value				
Littit.	Freque	ency	Limit (dBuV/	/m @3m)	Remark				
	Above 1		74.0	0	Peak Value				
	Above	GHZ	54.0	0	Average Value				
Test Procedure:	the ground to determine 8. The EUT wantenna, watower. 9. The antendative ground Both horizon make their 10. For each so case and to find the 11. The test-respecified Barries and to find the 12. If the emissisting of the EUT have 10dB	I at a 3 meter ne the position was set 3 met which was more managed in the position was set 3 met which was more measurements and very measurement of the rota tab maximum reasonable ma	camber. The n of the higher rers away from unted on the taried from one the maximun tical polarization. The example was turned ading. The was set to Path Maximum Here EUT in peatesting could loorted. Otherwid be re-tested.	table was rest radiation. In the interferop of a variation of a variation of the authors of the end one by one and then restaurant to the authors of the aut	rence-receiving able-height antenna our meters above he field strength. Intenna are set to higher to 4 rees to 360 degrees				
	EUT 3m Turn Table A	4m	Horn And Spectrum Analyzar						
Test Instruments:	Refer to section	5.6 for detai	ils						
Test mode:	Refer to section	5.3 for detai	ls						
Test results:	Passed								

Band 1:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.22	30.72	8.54	40.67	33.81	74.00	-40.19	Horizontal
4500.00	35.62	30.72	8.54	40.67	34.21	74.00	-39.79	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.36	30.72	8.54	40.67	23.95	54.00	-30.05	Horizontal
4500.00	25.45	30.72	8.54	40.67	24.04	54.00	-29.96	Vertical
Test cl	hannel		Highest		Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.88	31.99	9.16	40.23	37.80	74.00	-36.20	Horizontal
5460.00	36.25	31.99	9.16	40.23	37.17	74.00	-36.83	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	26.14	31.99	9.16	40.23	27.06	54.00	-26.94	Horizontal
5460.00	26.35	31.99	9.16	40.23	27.27	54.00	-26.73	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.55	30.72	8.54	40.67	34.14	74.00	-39.86	Horizontal
4500.00	35.62	30.72	8.54	40.67	34.21	74.00	-39.79	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.48	30.72	8.54	40.67	24.07	54.00	-29.93	Horizontal
4500.00	25.78	30.72	8.54	40.67	24.37	54.00	-29.63	Vertical
Test cl	hannel		Highest		Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.92	31.99	9.16	40.23	37.84	74.00	-36.16	Horizontal
5460.00	36.32	31.99	9.16	40.23	37.24	74.00	-36.76	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	26.81	31.99	9.16	40.23	27.73	54.00	-26.27	Horizontal
5460.00	26.35	31.99	9.16	40.23	27.27	54.00	-26.73	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.92	30.72	8.54	40.67	35.51	74.00	-38.49	Horizontal
4500.00	36.25	30.72	8.54	40.67	34.84	74.00	-39.16	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	26.44	30.72	8.54	40.67	25.03	54.00	-28.97	Horizontal
4500.00	26.02	30.72	8.54	40.67	24.61	54.00	-29.39	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
								Polarization Horizontal
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 5460.00 5460.00	(dBuV/m) 35.06	Factor (dB) 31.99	Loss (dB) 9.16	Factor (dB) 40.23	(dBuV/m) 35.98 37.00	(dBuV/m) 74.00	Limit (dB) -38.02 -37.00	Horizontal
(MHz) 5460.00 5460.00	(dBuV/m) 35.06 36.08	Factor (dB) 31.99	9.16 9.16	Factor (dB) 40.23	(dBuV/m) 35.98 37.00	(dBuV/m) 74.00 74.00	Limit (dB) -38.02 -37.00	Horizontal Vertical
(MHz) 5460.00 5460.00 Test cl	(dBuV/m) 35.06 36.08 hannel Read Level	31.99 31.99 Antenna	9.16 9.16 Highest Cable	Factor (dB) 40.23 40.23 Preamp	(dBuV/m) 35.98 37.00 Level	(dBuV/m) 74.00 74.00 vel Limit Line	Limit (dB) -38.02 -37.00 Av Over	Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test cl	hannel		Lowest		Le	Level Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.23	31.78	9.15	40.18	41.98	74.00	-32.02	Horizontal
5460.00	41.55	31.99	9.16	40.23	42.47	74.00	-31.53	Horizontal
5350.00	41.36	31.78	9.15	40.18	42.11	74.00	-31.89	Vertical
5460.00	41.02	31.99	9.16	40.23	41.94	74.00	-32.06	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	31.00	31.78	9.15	40.18	31.75	54.00	-22.25	Horizontal
5460.00	31.33	31.99	9.16	40.23	32.25	54.00	-21.75	Horizontal
5350.00	31.25	31.78	9.15	40.18	32.00	54.00	-22.00	Vertical
5460.00	31.64	31.99	9.16	40.23	32.56	54.00	-21.44	Vertical

802.11n-HT20

002.1111-111	20							
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.11	31.78	9.15	40.18	41.86	74.00	-32.14	Horizontal
5460.00	41.03	31.99	9.16	40.23	41.95	74.00	-32.05	Horizontal
5350.00	41.45	31.78	9.15	40.18	42.20	74.00	-31.80	Vertical
5460.00	41.64	31.99	9.16	40.23	42.56	74.00	-31.44	Vertical
Test c	hannel		Lowest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	31.55	31.78	9.15	40.18	32.30	54.00	-21.70	Horizontal
5460.00	31.62	31.99	9.16	40.23	32.54	54.00	-21.46	Horizontal
5350.00	31.02	31.78	9.15	40.18	31.77	54.00	-22.23	Vertical
5460.00	31.26	31.99	9.16	40.23	32.18	54.00	-21.82	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.22	31.78	9.15	40.18	41.97	74.00	-32.03	Horizontal
5460.00	41.15	31.99	9.16	40.23	42.07	74.00	-31.93	Horizontal
5350.00	41.84	31.78	9.15	40.18	42.59	74.00	-31.41	Vertical
5460.00	41.06	31.99	9.16	40.23	41.98	74.00	-32.02	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.11	31.78	9.15	40.18	32.86	54.00	-21.14	Horizontal
5460.00	32.16	31.99	9.16	40.23	33.08	54.00	-20.92	Horizontal
5350.00	32.09	31.78	9.15	40.18	32.84	54.00	-21.16	Vertical
5460.00	32.34	31.99	9.16	40.23	33.26	54.00	-20.74	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205							
Test Method:	ANSI C63.10:2009									
Test Frequency Range:	30MHz to 40GH	30MHz to 40GHz Measurement Distance: 3m								
Test site:	Measurement D	istance: 3m								
Receiver setup:										
	Frequency	Remark								
	30MHz-1GHz	Quasi-peak Value								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
Limit:										
	Freque	ncy	Limit (dBuV/	/m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-21	-	43.5		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHz	54.0)	Quasi-peak Value					
	Freque	ncv	Limit (dBn	n/MHz)	Remark					
			68.2	,	Peak Value					
	Above 1	GHz	54.0		Average Value					
		RP[dBm] + 95.2=								
Test Procedure:	the ground determine to determine the determine to determine the determine to determine the determine to determine the determin	at a 3 meter cathe position of the position of the as set 3 meters which was mountained and vertical polarit. Suspected emiss a table was turn eading. Serior system was an advertical polarit was turn eading. The analysis of the ed, then testing pould be reported.	mber. The sine highest research away from ted on the ted from one aximum valuations of the ted from 0 country as set to Part of the ted from 0 country as set to	table was readiation. the interference of a variation of a variation of the first the antennation of the an	s 10dB lower than the the peak values of ions that did not have g peak, quasi-peak or					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 10.1" Android touch LCD Media Player : DT101-AC4-720 : 5G-WIFI mode Condition

EUT

Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Viki REMARK :

THE THE									
	Frea		Antenna Factor						Remark
_	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1	47.492	38.18	13.41	0.59	29.84	22.34	40.00	-17.66	QP
1 2 3 4	197.200	46.90	10.57	1.38	28.85	30.00	43.50	-13.50	QP
3	281.995	49.94	12.70	1.72	28.48	35.88	46.00	-10.12	QP
4	420.580	44.04	15.47	2.18	28.82	32.87	46.00	-13.13	QP
	490.745	50.26	16.39	2.38	28.94	40.09	46.00	-5.91	QP
6	833.317	43.74	20.42	3.22	28.07	39.31	46.00	-6.69	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 10.1 Android touch LCD Media Player Condition

EUT

: DT101-AC4-720 Model Test mode : 5G-WIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	—dBu∜	$\overline{dB}/\overline{m}$		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	31.071	41.51	12.32	0.44	29.97	24.30	40.00	-15.70	QP
2	119.856	41.25	10.48	1.12	29.39	23.46	43.50	-20.04	QP
2 3 4	281.995	39.64	12.70	1.72	28.48	25.58	46.00	-20.42	QP
4	419.108	44.12	15.43	2.17	28.82	32.90	46.00	-13.10	QP
	490.745	44.46	16.39	2.38	28.94	34.29	46.00	-11.71	QP
6	633.907	38.93	18.58	2.74	28.83	31.42	46.00	-14.58	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	43.26	39.23	13.84	41.34	54.99	68.20	-13.21	Vertical			
10360.00	43.62	39.23	13.84	41.34	55.35	68.20	-12.85	Horizontal			
		802.11	a mode Lowe	est channe	I (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	31.22	39.23	13.84	41.34	42.95	54.00	-11.05	Vertical			
10360.00	31.04	39.23	13.84	41.34	42.77	54.00	-11.23	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	43.26	39.36	13.85	41.27	55.20	68.20	-13.00	Vertical			
10400.00	43.58	39.36	13.85	41.27	55.52	68.20	-12.68	Horizontal			
		802.11	a mode Midd	dle channel	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	33.27	39.36	13.85	41.27	45.21	54.00	-8.79	Vertical			
10400.00	33.64	39.36	13.85	41.27	45.58	54.00	-8.42	Horizontal			

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	42.01	39.56	13.90	41.06	54.41	68.20	-13.79	Vertical		
10480.00	42.16	39.56	13.90	41.06	54.56	68.20	-13.64	Horizontal		
		802.11a	a mode High	est channe	I (Average \	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	32.03	39.56	13.90	41.06	44.43	54.00	-9.57	Vertical		
10480.00	32.26	39.56	13.90	41.06	44.66	54.00	-9.34	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	43.28	39.23	13.84	41.34	55.01	68.20	-13.19	Vertical		
10360.00	43.87	39.23	13.84	41.34	55.60	68.20	-12.60	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	34.26	39.23	13.84	41.34	45.99	54.00	-8.01	Vertical		
10360.00	34.38	39.23	13.84	41.34	46.11	54.00	-7.89	Horizontal		

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	44.89	39.36	13.85	41.27	56.83	68.20	-11.37	Vertical			
10400.00	44.61	39.36	13.85	41.27	56.55	68.20	-11.65	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	33.58	39.36	13.85	41.27	45.52	54.00	-8.48	Vertical			
10400.00	33.61	39.36	13.85	41.27	45.55	54.00	-8.45	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	42.28	39.56	13.90	41.06	54.68	68.20	-13.52	Vertical			
10480.00	43.69	39.56	13.90	41.06	56.09	68.20	-12.11	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	30.15	39.56	13.90	41.06	42.55	54.00	-11.45	Vertical			
10480.00	31.97	39.56	13.90	41.06	44.37	54.00	-9.63	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	42.65	39.29	13.84	41.31	54.47	68.20	-13.73	Vertical		
10380.00	43.98	39.29	13.84	41.31	55.80	68.20	-12.40	Horizontal		
		802.11n	40 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	31.64	39.29	13.84	41.31	43.46	54.00	-10.54	Vertical		
10380.00	31.11	39.29	13.84	41.31	42.93	54.00	-11.07	Horizontal		

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	41.26	39.54	13.88	41.17	53.51	68.20	-14.69	Vertical			
10460.00	41.34	39.54	13.88	41.17	53.59	68.20	-14.61	Horizontal			
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	32.19	39.54	13.88	41.17	44.44	54.00	-9.56	Vertical			
10460.00	32.07	39.54	13.88	41.17	44.32	54.00	-9.68	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	42.60	40.25	13.82	40.75	55.92	68.20	-12.28	Vertical		
11490.00	42.36	40.25	13.82	40.75	55.68	68.20	-12.52	Horizontal		
		802.11	a mode Lowe	est channe	I (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	31.29	40.25	13.82	40.75	44.61	54.00	-9.39	Vertical		
11490.00	31.35	40.25	13.82	40.75	44.67	54.00	-9.33	Horizontal		

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.15	40.17	13.78	40.91	57.19	68.20	-11.01	Vertical		
11570.00	44.06	40.17	13.78	40.91	57.10	68.20	-11.10	Horizontal		
		802.11	a mode Mido	dle channe	l (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	30.06	40.17	13.78	40.91	43.10	54.00	-10.90	Vertical		
11570.00	31.95	40.17	13.78	40.91	44.99	54.00	-9.01	Horizontal		

		802.1°	1a mode Hig	hest chanr	nel (Peak Va	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	42.56	39.89	13.74	41.06	55.13	68.20	-13.07	Vertical
11650.00	43.17	39.89	13.74	41.06	55.74	68.20	-12.46	Horizontal
		802.11a	a mode High	est channe	l (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	32.56	39.89	13.74	41.06	45.13	54.00	-8.87	Vertical
11650.00	32.49	39.89	13.74	41.06	45.06	54.00	-8.94	Horizontal

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	44.16	40.25	13.82	40.75	57.48	68.20	-10.72	Vertical		
11490.00	44.84	40.25	13.82	40.75	58.16	68.20	-10.04	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	31.16	40.25	13.82	40.75	44.48	54.00	-9.52	Vertical		
11490.00	30.29	40.25	13.82	40.75	43.61	54.00	-10.39	Horizontal		

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.31	40.17	13.78	40.91	57.35	68.20	-10.85	Vertical		
11570.00	44.28	40.17	13.78	40.91	57.32	68.20	-10.88	Horizontal		
		802.11n	20 mode Mic	ddle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	31.26	40.17	13.78	40.91	44.30	54.00	-9.70	Vertical		
11570.00	31.34	40.17	13.78	40.91	44.38	54.00	-9.62	Horizontal		

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	41.65	39.89	13.74	41.06	54.22	68.20	-13.98	Vertical			
11650.00	41.32	39.89	13.74	41.06	53.89	68.20	-14.31	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	31.02	39.89	13.74	41.06	43.59	54.00	-10.41	Vertical			
11650.00	31.45	39.89	13.74	41.06	44.02	54.00	-9.98	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	40.12	40.26	13.83	40.77	53.44	68.20	-14.76	Vertical
11510.00	41.36	40.26	13.83	40.77	54.68	68.20	-13.52	Horizontal
802.11n40 mode Lowest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	28.46	40.26	13.83	40.77	41.78	54.00	-12.22	Vertical
11510.00	28.31	40.26	13.83	40.77	41.63	54.00	-12.37	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	40.06	40.08	13.77	40.95	52.96	68.20	-15.24	Vertical
11590.00	40.32	40.08	13.77	40.95	53.22	68.20	-14.98	Horizontal
802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	28.04	40.08	13.77	40.95	40.94	54.00	-13.06	Vertical
11590.00	28.36	40.08	13.77	40.95	41.26	54.00	-12.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				