定义 设 $A \in \mathcal{L}(V)$, A^* 是 A 的伴随算子,如果 $A \circ A^*$, 则称 A 是正规 (normal) 算子. 设 $A \in M_n(\mathbb{R})$, 如果 $AA^t = A^tA$, 则称 A 是正规矩阵.

 $\dot{\mathbf{L}}$ 由定理 2.1 和第二章定理 2.1 可知, \mathbf{A} 是正规算子当且仅当 \mathbf{A} 在某组单位正交基下的矩阵 是正规的.

引理 2.1 设 $A \in \mathbb{R}^{m \times n}$, 如果 $tr(AA^t) = 0$, 则 $A = O_{m \times n}$

引理 2.2 设 W 是 \mathcal{R} 上 n 维线性空间,n > 0, $\mathcal{A} \in \mathcal{L}(V)$, 则 W 有 1 维或 2 维不变子空间.

引理 2.3 设 $A \in M_n(\mathbb{R})$ 是正规的, 如果

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix}$$

,其中 $A_1 \in M_d(\mathbb{R}), A_2 \in \mathbb{R}^{d \times n - d}, A_3 \in M_{n - d}(\mathbb{R}), 0 < d < n$., 则 $A_2 = 0$

引理 2.4 设 $A \in \mathcal{L}(V)$ 正规, 如果 $U \subset V$ 是 A- 不变子空间, 则 U^{\perp} 也是

引理 2.5 设 $A \in \mathcal{L}(V)$ 正规,则存在 A— 不可分子空间 U_1, \dots, U_l 使得 (i) $V = U_1 \bigoplus \dots \bigoplus U_l$ (ii) $\forall i, j \in \{1, \dots\}$