# <u>Cpr E 489 (Spring 2020)</u> <u>Computer Networking and Data Communications</u>

Cpr E 489 -- D.Q. 1.1

## **Staff Information**

Instructor:

Daji Qiao (daji@iastate.edu), Associate Professor

Office: 313 Durham Center

Tel: (515) 294 2390

Office Hours: Email or by appointment

Teaching Assistant:

James Bonner (jabonner@iastate.edu), Graduate Student

Ruyin Zhao (ruyin@iastate.edu), Graduate Student

Ethan Shoemaker (ethshoe@iastate.edu), Senior Undergraduate Student

Office Hours: Email or by appointment

### **Course Information**

Lecture Time: TR 11:00 AM ~ 12:15 PM

Room: GILMAN 1652

Prerequisite: Cpr E 288 or Com S 327

Course Homepage: Canvas

Four lab sections:

**▶** T 2:10 ~ 4:00 PM (TA: Ethan)

→ T 4:10 ~ 6:00 PM (TA: Ethan)

→ W 1:10 ~ 3:00 PM (TA: James)

**▶** F 1:10 ~ 3:00 PM (TA: James)

Lab location: COOVER 2061

Cpr E 489 -- D.Q. 1.3

## **Textbook Information**

- No required textbook
- Recommended books:
  - ◆ A. Leon-Garcia and I. Widjaja, *Communication Networks: Fundamental Concepts and Key Architectures*, 2<sup>nd</sup> Edition, McGraw-Hill, 2004.
  - → J.F. Kurose and K.W. Ross, Computer Networking: A Top-Down Approach, 6<sup>th</sup> Edition, Pearson, 2012
  - W.R. Stevens, B. Fenner, and A.M. Rudoff, Unix Network Programming, Volume 1: The Sockets Networking API, 3<sup>rd</sup> Edition, Addison-Wesley, 2003

# **Lecture Coverage**

| Topics                                                                                                                                                          | Coverage |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Introduction to Computer Networking                                                                                                                             | 2        |
| Physical Layer    Digital transmission fundamentals    Line coding                                                                                              | 2        |
| Introduction to Sockets Programming                                                                                                                             | 1        |
| <ul> <li>Error Detection and Recovery</li> <li>Basic Error Detection Codes</li> <li>CRC (Cyclic Redundancy Check)</li> <li>Retransmission Strategies</li> </ul> | 7        |
| <ul> <li>Data Link Layer</li> <li>Framing</li> <li>MAC (Medium Access Control)</li> <li>LAN (Local Area Network)</li> <li>Ethernet</li> </ul>                   | 4        |

Cpr E 489 -- D.Q. 1.5

# **Lecture Coverage**

| Topics                                                                                     | Coverage  |
|--------------------------------------------------------------------------------------------|-----------|
| Network Layer  Naming, Addressing  ARP, RARP, DHCP, NAT, ICMP  Routing                     | 5         |
| Transport Layer  TCP Protocol  TCP Error Control  TCP Flow Control  TCP Congestion Control | 6         |
|                                                                                            | Total: 27 |

| Week | Lab Information (Tentative)                        |
|------|----------------------------------------------------|
| 1    | First Week; No Lab                                 |
| 2    | Lab #1: Network Utility Programs                   |
| 3    | Lab #2: TCP Sockets Programming                    |
| 4    | Lab #3: UDP Sockets Programming                    |
| 5    | Lab #4: Error Recovery with Go-Back-N ARQ Protocol |
| 6    | No Lab                                             |
| 7    | Midterm #1; No Lab                                 |
| 8    | Lab #5: Introduction to Geni                       |
| 9    | Lab #6: Static Routing with Geni                   |
| 10   | Spring Break; No Lab                               |
| 11   | Lab #7: Using CISCO IOS to Configure CISCO Routers |
| 12   | Lab #8: Using CISCO IOS to Configure OSPF Routing  |
| 13   | Midterm #2; No Lab                                 |
| 14   | Lab #9: Advanced Topic                             |
| 15   | Lab #10: TCP Congestion Control with Geni          |
| 16   | Dead Week; No Lab                                  |

## **Exam Information**

- All quizzes and exams are open-books/notes/references/assignments.
- Quizzes: random number, random time.
- Two midterm exams:
  - → 02/27 (Thu) @ GILMAN 1652
  - → 04/09 (Thu) @ GILMAN 1652
  - ➡ Midterm exams are non-comprehensive.
- Final exam:
  - → 05/04 (Mon) 9:45 ~ 11:45 AM @ GILMAN 1652
  - Final exam is comprehensive.

# **Grading Information**

|                      | Percentage  | Per Assignment |
|----------------------|-------------|----------------|
| Homework Assignments | 10%         | ~2%            |
| Lab Assignments      | 20%         | ~2%            |
| Quizzes              | 5%          | ~1%            |
| Midterm Exams        | 40%         | 20%            |
| Final Exam           | 25%         | 25%            |
|                      | Total: 100% |                |

Cpr E 489 -- D.Q. 1.9



























## **Circuit Switching in Telephone Networks**

- Circuit Switching "Reserve and Use"
  - ▶ Automated switches set up a physical circuit between two ends
  - ➡ All messages follow the same route (via the established circuit)



# Message Switching in Telegraph Networks

- Message Switching "Store and Forward"
  - Store-and-Forward Operation
  - Addressing, Routing, Forwarding



## Packet Switching in Computer Networks

- Packet Switching "Break and Route"
  - Break long messages into packets
  - Packets have maximum length
  - Network transfers packets using store-and-forward
  - Requires: Addressing, Framing, Routing, etc.
  - → Intelligence is at the edge of the network

Cpr E 489 -- D.Q. 1.13

#### **ARPANET**

- ARPANET was developed to provide a test bed for researching packetswitching networks
  - Developed in the late 1960s; it was the first major effort to interconnect computers across a Wide Area Network (WAN)
  - For Packet-Switching Research:
    - Packet = Header + Data
    - ARPANET = Packet Switches + 56 Kbps Leased Lines
    - Distributed Routing
    - Congestion Control
    - Flow Control
  - ARPANET led to many innovations:
    - The TCP/IP protocols as the basis for Internet
    - Several lasting applications such as Email, remote login, file transfer

## What did ARPANET look like?



Cpr E 489 -- D.Q. 1.15

# What did ARPANET look like?





ARPANET Birthday: Oct. 29, 1969