Inner Product: $u^T A v = \langle u, v \rangle$. A is symmetric and positive definite. Dot Product is an inner product with A = I. Notice that a symmetric positive definite matrix has all positive eigenvalues and positive determinant. It is linear in each argument.

Orthogonal Projection: We have the projecton $\pi(x)$ onto some subspace W. We want to minimize $||x-\pi(x)||^2$. By the orthogonality condition, we have $\langle x-\pi(x),b\rangle=0$. Since π is a linear map, we can write $\pi(x) = P_{\pi}x$ thus $\langle x - P_{\pi}x, b \rangle = 0 \implies \langle x - \lambda b, b \rangle = 0$. This results in $\lambda = \frac{\langle x, b \rangle}{\langle b, b \rangle}$. $\lambda = (B^T B)^{-1} B^T x$, $\pi(x) = B(B^TB)^{-1}B^Tx$. and $P = B(B^TB)^{-1}B^T$.

SVD: Decompose $A = U\Sigma V^T$. Notice $A^TA = V\Sigma U^TU\Sigma V^T = V\Sigma^2 V^T$. And $AA^T = U\Sigma V^TV\Sigma U^T = U\Sigma^2 U^T$. $U = \text{eigenvectors of } AA^T$. $V = \text{eigenvectors of } A^TA$. $\Sigma = \text{square root of eigenvalues of } A^TA$ in decending order. Notice that if A is $m \times n$ then U is $m \times m$, Σ is $m \times n$, and V is $n \times n$. A geometric intuition for SVD is that U is the ON basis of the column space of A, V is the ON basis of the row space of A, and Σ is the scaling factor. You can also Write $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ where r is the rank of A. Thus the SVD is a change of basis in the domain, then an independent scaling, and then a change of basis in the codomain.

Best Fit Line: With n points (x_i, y_i) , minimize $\sum_{i=1}^n (y_i - \theta_1 x_i - \theta_0)^2$. We can see that the best fit line is the orthogonal projection of (y_1, y_2, \dots, y_n) onto the subspace spanned by $(\vec{1}, \vec{x})$

the orthogonal projection of
$$(y_1, y_2, \dots, y_n)$$
 onto the subspace spanned by $(1, x)$
Reaching Line of best fit: for a 2 dimensional space, we can take the IPM of x_i as $\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}$. ie B^TB where $B = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$. Solve $B^TB\Theta = B^TY$ where $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$. Using Cramer's rule for matrix inverses, we can find Θ as: $\theta_0 = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i)(\sum x_iy_i)}{n \sum x_i^2 - (\sum x_i)^2}$ and $\theta_1 = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}$. In terms of IP it is $\theta_0 = \frac{\langle x, x \rangle \langle 1, y \rangle - \langle 1, x \rangle \langle x, y \rangle - \langle 1$

Differentiation Diff is a linear map. The gradient of a function is the vector of partial derivatives. $\nabla_x f =$ $\frac{\partial f}{\partial x_2}$... $\frac{\partial f}{\partial x_n}$. The directional derivative is $\nabla_x f \cdot v$ where v is the direction. The Jacobian is the matrix

of partial derivatives. $J_f = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$. When we consider the line of best fit the derivate of our function $||Ax - b||^2$ is $2(Ax - b)^T A$. Setting this to 0 gives us the equation $A^T Ax = A^T b$. Note that a jacobian

of f(x) = Ax is A.

Identities for Gradients: Short hand: $\frac{\partial}{\partial X}f = f_X$:

$$(f(X)^{T})_{X} = (f(X)_{X})^{T}$$

$$(\operatorname{tr} f(X))_{X} = \operatorname{tr} (f(X)_{X})$$

$$(\det f(X))_{X} = \det (f(X))\operatorname{tr} (f(X)^{-1}f(X)_{X})$$

$$(f(X)^{-1})_{X} = -f(X)^{-1}f(X)_{X}f(X)^{-1}$$

$$(a^{T}X^{-1}b)_{X} = -(X^{-1})^{T}ab^{T}(X^{-1})^{T}$$

$$(x^{T}a)_{x} = a^{T}$$

$$(a^{T}X)_{x} = a^{T}$$

$$(a^{T}Xb)_{X} = ab^{T}$$

$$(x^{t}Bx)_{x} = x^{T}(B + B^{T})$$

$$((x - As)^{T}W(x - As))_{s} = -2(x - As)^{T}WA$$

Chain Rule: f(g(x))' = f'(g(x))g'(x). We can use this for multivariable functions as well. $\Delta_x f(g(x)) = \Delta_{g(x)} f \cdot \Delta_x g$.

Backpropgation: $f_0 = x$ and $f_i = \sigma(A_{i-1}f_{i-1} + b_{i-1})$. We also have a loss function $L(\theta) = ||y - f_K(\theta, x)||^2$ which we want to minimize. We can use the chain rule to find the gradient of L with respect to θ . We have:

$$\Delta_{\theta} L = \Delta_{f_K} L \cdot \Delta_{\theta} f_K$$

$$= \Delta_{f_K} L \cdot \Delta_{f_{K-1}} f_K \cdot \Delta_{\theta} f_{K-1}$$

$$= \Delta_{f_K} L \cdot A_{K-1}^T \sigma' (A_{K-1} f_{K-2} + b_{K-1}) \Delta_{\theta} f_{K-1}$$

Example (Steps of tuning a weight). Simple steps to tune a weight in a neural network:

- 1. Initialize weights
- 2. Feed forward (compute the value of each neuron in the network)
- 3. Compute loss $(L(\theta) = ||y f_K(\theta, x)||^2)$
- 4. Backpropagate (compute the gradient of the loss with respect to each weight)
- 5. Update weights $(\theta = \theta \alpha \Delta_{\theta} L)$ where α is the learning rate
- 6. Repeat untill convergence