

RUS0300 - Algoritmos em Grafos Aula 00: Apresentação/Introdução

Professor Pablo Soares

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"

Sumário

- Apresentação
- Sobre o que é essa Disciplina??
 - Ementa
 - Objetivos da Disciplina
 - Referências
 - Avaliação
 - Conduta do Aluno em Sala de Aula
- Introdução

Quem sou eu?

- Pablo Luiz Braga Soares
 - Bacharel em Ciência da Computação UFERSA
 - Mestre em Ciência da Computação UERN/UFERSA
 - Doutor em Ciência da Computação Concluído UFC
 - Contato: pablo.soares@ufc.br
- Áreas de Interesse
 - Programação Linear/Não-Linear e Inteira
 - Algoritmo em Grafos
 - Heurísticas/Meta-Heurísticas
 - Redes Neurais Artificiais

Quem são vocês?

- Nomes... Já sei todos eu acho...
- Perfil...
- Interesses...
- Expectativas...
- Sugestões...
- Indicações...
 - -Livros
 - -Jogos
 - -Filmes
 - -Séries

Ementa

- Conceitos e definições de grafos
- Isomorfismo, conectividade, árvores, grafos direcionados e não-direcionados.
- Representação de grafos: matriz e listas de adjacências.
- Algoritmos de percurso em grafos.
- Ordenação topológica.
- Árvore geradora mínima
- Caminhos mínimos.
- Fluxo máximo e multifluxo

Objetivos da Disciplina

Objetivo

Introduzir algoritmos polinomiais eficientes para problemas em Grafos de grande aplicação em várias áreas da Computação/Engenharia de Software.

- GOLDBARG, E.; GOLDBARG,
 M. Grafos Conceitos,
 algoritmos e aplicações.
 Elsevier Acadêmico, 2012.
- DASGUPTA, S.;
 PAPADIMITRIOU, C.;
 VAZIRANI, U. Algoritmos.
 McGraw Hill, 2009.
- CORMEN, T.; LEISERSON, C.; RIVEST, R.; STEIN, C.
 Algoritmos - Teoria e Prática.
 3a edição, Editora Campus,
 2012.

Material/Livros

Datas/Avaliações

Provas

- 1. 02/04/2019 Terça
- 2. 07/05/2019 Terça
- 3. 13/06/2019 Quinta

Testes

- 1. ??/??/2019 Qualquer dia
- Lista de Exercícios em Sala
 - A QUALQUER MOMENTO
 - Individuais ou em Grupo
- Assiduidade às aulas
- Participação nas aulas

Média Final

$$M_F = \frac{P_1 + P_2 + P_3}{3}$$

Conduta do Aluno em Sala

Informes

- Tudo que o professor poderá ser cobrado, portanto preste ATENÇÃO;
- Celulares devem ser mantidos no modo silencioso
 - Os alunos podem atender o celular desde que o façam fora da sala
- Se o aluno tiver que se ausentar antes do final da aula será creditado falta
 - 75% de presença para aprovação

Introdução: Origem

• As Sete Pontes de Konigsberg

– É possível que uma pessoa faça um percurso na cidade de tal forma que inicie e volte a mesma posição passando por todas as pontes somente uma única vez?

Leonharrd Euler

Introdução: Origem

• As Sete Pontes de Konigsberg

Leonharrd Euler

As Sete Pontes de Konigsberg

- Existem duas respostas possíveis
 - Ou existe solução...
 - Basta mostrar uma solução....
 - Ou não existe solução
 - Pode-se enumerar todos os caminhos possíveis
 - Árvores de possibilidades
 - Ou de forma mais elegante
 - Mostrar através das características do grafo que não existe solução

As Sete Pontes de Konigsberg

- Aparentemente não existe solução;
 - -Partindo de A
 - Saída/Chegada
 - Valor múltiplo de 2
 - -No entanto temos

- grau(A) = grau(C) = grau(D) = 3;
- grau(B) = 5

As Sete Pontes de Konigsberg

- Foto de 29/07/2007
- A configuração das pontes está diferente
- Existe caminho que satisfaz o problema proposto?
- Quando existe tal ciclo, ele é classificado como ciclo Euleriano...

Água, Luz e Telefone

Introdução: Origem

- Dodecaedro: Sir William Hamilton
 - Viagem à volta do mundo

Introdução: Origem

- Diferentemente do problema de Euler (que não se repete aresta, e pode se repetir vértices), o problema de Hamilton não permite a repetição de vértices, e consequentemente também não se repetem arestas;
- Atualmente, o ciclo Hamiltoniano é utilizado na definição formal do problema do Caixeiro Viajante
 - Um dos mais importantes e complexos problemas já estudados na otimização combinatória;
- É interessante observar que os problemas de Euler e Hamilton encontraram aplicações práticas 100 anos mais tarde, na área de Pesquisa Operacional;

Aplicação do Ciclo Hamiltoniano

- Construir uma placa de circuito impresso
 - Inúmeros furos para o encaixe de seus componentes.
- Braço eletrônico
 - Algoritmo para encontrar a ordem perfuração dos buracos;

Aplicação do Ciclo Euleriano

- Entregar encomendas em todas as ruas de uma região de Russas
- Existe a possibilidade de encontrar uma rota sem repetir ruas inutilmente?
 - Minimizando assim o trajeto a ser percorrido...

Introdução: Origem

- Coloração de Mapas:
 - Menor quantidade de cores

- Francis Guthrie (1852) –Conjectura de 4 cores
- *Kempe* (1879)—"demonstrou"
- Heawood (1890) –mostrou que Kempe estava errado
 - Mostrou uma prova com 5 cores

Introdução: Grafos x Gráficos

Grafos

- Estrutura de abstração
- Representação de Problemas

Gráficos

 É a tentativa de se expressar visualmente dados ou valores numéricos

- Sociograma
 - -Relacionamento entre indivíduos

• Representação de Localidades

• Representação de Localidades

(1) Mapa do Rio Grande do Norte

(3) Ligação entre as cidades do Estado

(2) Localização das cidades

(4) Grafo associado

- Caminho mínimo
 - Exemplo:
 - Caminho mínimo entre Russas/CE e Mossoró/RN calculado pelo *Google Maps: Algoritmo de* Dijkstra

Química molecular

Redes de Computadores

- S.O
 - Entendendo os estados de processos/threads
- S.O
- Detecção de deadlock

- Teoria da Computação
 - Reconhecimento
 de textos de uma
 língua/linguagem
 - C++, Java,Português

RUS0300 - Algoritmos em Grafos Aula 00: Apresentação/Introdução

Professor Pablo Soares 2019.1

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"