Bayes Nets

With slides from Dan Klein and Stuart Russell

Today

- ➤ Bayes Nets
 - ➤ Bayesian reasoning (recap)
 - **≻**Representation
 - **≻**Inference

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D, W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

The Chain Rule: Inverse of Product Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

- Why is this true?
 - Recursive decomposition using product rule
 - $P(x1,x2,x3) = p(x3|x1,x2)^*p(x1,x2)$

$$= p(x3|x1,x2)*p(x2|x1)*p(x1)$$

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI, ML, DM equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

Example:
$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

$$P(+m|+s) =$$

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

• Example:
$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

$$P(+m|+s) =$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Exercise: Inference with Bayes' Rule

Given:

P(D	W)
\	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

W	Р
sun	
rain	

Solution: on board

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

Exercise: Bayes Ghost Localization

Setup:

- Prior distribution over ghost location: P(G) = uniform (on right)
- R = reading color measured at (1,1) = Yellow
- Sensor reading model: P(R | G)

P(red 4)	P(orange 4)	P(yellow 4)	P(green 4)
0.05	0.15	0.5	0.3

0.00

What is probability of ghost at (3,3)?

Hands-on Example: Ghost Localization

Setup:

- Prior distribution over ghost location: P(G) = uniform (on right)
- R = reading color measured at (1,1) = Yellow
- Sensor reading model: P(R | G)

P(red 4)	P(orange 4)	P(yellow 4)	P(green 4)
0.05	0.15	0.5	0.3

- What is probability of ghost at (3,3)?
 - Answer:

$$p(3,3|R) = p(R=yel|g=3,3)*p(g=3,3)$$

~ 0.5*0.11 (before normalization)

0.055

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying *modeling assumption*
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence

N fair, independent coin flips:

$P(X_1)$	
Н	0.5
Т	0.5

$P(X_2)$	
Н	0.5
Т	0.5

$$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \end{array} \right.$$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Which variables conditionally independent? T, U, R?

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Which variables conditionally independent? F, S, A?

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:
- P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, sensors are <u>conditionally independent</u>, given the ghost position

T: Top square is red

B: Bottom square is red

G: Ghost is in the top

Givens:

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	9 0	0.16
+t	-b	+g	0.24
+t	-b	- b	0.04
-t	+b	+g	0.04
-t	+b	-go	0.24
-t	-b	+g	0.06
-t	-b	-g	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, joint probability table is MUCH too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using only local distributions (conditional probabilities)
 - More generally: kind of a graphical model
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

 For now: imagine that arrows mean direct causation (in general, they don't!)

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

– Example:

P(+cavity, +catch, -toothache)

Variables:

– R: It rains

T: There is traffic

Model 2: rain causes traffic

Which model is better for a driving agent?

Probabilities in BNs (2)

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$

$$\rightarrow$$
 Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

$$P(+r, -t) =$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$P(+r, -t) =$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$P(+r, -t) = 1/4 * 1/4 = 1/16 (0.06)$$

CPT Comments

- CPT rows do <u>not</u> need to add up to one they are NOT NORMALIZED. (convenient for inference)
- Example requires 10 parameters rather than 2⁵— 1=31 for specifying the full joint distribution.
- Number of parameters in the CPT for a node is exponential in the number of parents (fan-in).

BNs = Causality?

Causal direction: rain causes traffic

P(T,R)

+r	+t	3/16
+r	†	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?
 "traffic causes rain"

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example Bayes' Net: Car

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

https://www.bayesserver.com/Live.aspx

BN Inference: Alarm Network

Variables

B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

– E: Earthquake!

Board

Example: Alarm Network with CPTs

- Each node has a conditional probability table (CPT) that gives the probability of each of its values given every possible combination of values for its parents (conditioning case).
 - Roots (sources) of the DAG that have no parents are given prior probabilities.

Bayes Net Inference

- Given known values for some evidence variables, determine the posterior probability of some query variables.
- Example: Given that John and Mary call, what is the probability that there is a Burglary?

Joint Distributions for Bayes Nets

A Bayesian Network implicitly defines a joint distribution.

$$P(x_1, x_2,...x_n) = \prod_{i=1}^{n} P(x_i | \text{Parents}(X_i))$$

Example

$$P(J \land M \land A \land \neg B \land \neg E)$$
= $P(J \mid A)P(M \mid A)P(A \mid \neg B \land \neg E)P(\neg B)P(\neg E)$
= $0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.00062$

- An <u>inefficient</u> approach to inference is:
 - − 1) Compute the joint distribution using this equation.
 - 2) Compute any desired conditional probability using the joint distribution.

Inference in Alarm Network

0.99

-a

-m

0.95

-a

Е	P(E)
+e	0.002
-e	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Inference Example

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
-e	0.998

	Α	Μ	P(M A)
	+a	+m	0.7
	+a	-m	0.3
)	-a	+m	0.01
	-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Inference Example (2)

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

E	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes Net Inference: Example

 Example: Given that John and Mary call (+j, +m), what is the probability that there is a Burglary (+b)?

$$P(+b | +j,+m) = ?$$

Inference by Enumeration

General case:

 $\begin{array}{lll} - & \text{Evidence variables: } E_1 \dots E_k = e_1 \dots e_k \\ - & \text{Query* variable: } Q \\ - & \text{Hidden variables: } H_1 \dots H_r \end{array} \right\} \begin{array}{l} X_1, X_2, \dots X_n \\ \text{ AII} \end{array}$

 Step 1: Select the entries consistent with the evidence

 Step 2: Sum out H to get joint of Query and evidence

variables

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$=P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Exact Inference: By Enumeration

 Only need the CPTs to construct all possible ways query could be true (and sum them):

$$P(+b, +j, +m) =$$

$$P(+b)P(+e)P(+a|+b, +e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(+e)P(-a|+b, +e)P(+j|-a)P(+m|-a) +$$

$$P(+b)P(-e)P(+a|+b, -e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(-e)P(-a|+b, -e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Inference by Enumeration: **Procedural Outline**

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
_r	nα	

D/D

1 (1	u)
+r	+t	0.8
+r	-t	0.2

D(T|D)

			_
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	
			•

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	-	0.9

- Any known values are selected
 - E.g. if we kno $L=+\ell$, the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(+\ell|T)$$

Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

– Computation for each entry: pointwise products $\ orall r,t$: $P(r,t)=P(r)\cdot P(t|r)$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

 $\operatorname{sum} R$

P(T)

+t	0.17
-t	0.83

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$P(L) = ?$$

 Inference by Enumeration

Variable Elimination

$$=\sum_t P(L|t)\sum_r P(r)P(t|r)$$
Join on r
Eliminate r
Join on t

Marginalizing Early! (aka VE)

0.1 0.9

P(T|R)

+t |0.8 +r -t 0.2 +r

P(L|T)

+t	+	0.3
+t	- -	0.7
-t	+	0.1
-t	-	0.9

Join R

D	1	D	T	7
1	╵	π,	1)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

\boldsymbol{D}	/ T	σ
P	(L)	$ I _{J}$

_			
	+t	7	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-	0.9

Sum out R

80.0	
.02	
.09	
.81	

P(T)

+t	0.17
-t	0.83

P(L|T)

+t	7	0.3
+t	-1	0.7
-t	+	0.1
-t	-1	0.9

Sum out T

P(T,L)

+t	+	0.051
+t	-	0.119
-t	+	0.083
-t	-	0.747

P(L)

+	0.134
-	0.866

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)	
0.1	
0.9	

$$P(T|R)$$
 $P(L|T)$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$

-	0.3
-	0.7
+	0.1
-	0.9
	-1

Eliminate all variables other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

$$P(L|+r)$$

+	0.26
-l	0.74

- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$/ \times \square = \square \times \frac{1}{Z}$$

Variable Elimination Ordering

• For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - Try to marginalize (eliminate) small factors first
- Does there always exist an ordering that only results in small factors?
 - No!

Finding Air France Flight 447

http://fivethirtyeight.com/features/how-statisticians-could-help-find-flight-370/

https://www.informs.org/ORMS-Today/Public-Articles/August-Volume-38-Number-4/In-Search-of-Air-

France-Flight-447

Complexity of Bayes Net Inference

- In general, the problem of Bayes Net inference is NP-hard (exponential in the size of the graph).
- For singly-connected networks or polytrees in which there are no undirected loops, there are linear-time algorithms based on belief propagation.
 - Each node sends local evidence messages to their children and parents.
 - Each node updates belief in each of its possible values based on incoming messages from it neighbors and propagates evidence on to its neighbors.
- There are approximations to inference for general networks based on loopy belief propagation that iteratively refines probabilities that converge to accurate values in the limit.