SC1015 Mini Project

DSF3
HUNG KUO-CHEN
JODI TAY SEOW XUAN
YANG XIAOYUE

Motivation

- Employee attrition: the turnover rate in various job roles
- High attrition rate brings about problems
 - Hard-to-replace employees leave → lower productivity and profits
 - High costs incurred in training and hiring new employees
- Aim: uncover reasons for an employee's resignation and recommend improvements made within IBM to retain its employees

IBM HR Attrition Dataset

- Used data from 1470 employees in IBM
 - 16.1% left IBM, 83.9% stayed in IBM
- Includes 34 independent variables based on an employee's profile
 - Each contributed to whether an employee decided to leave or stay

Cleaning the Data

- Dropped insignificant columns
 - EmployeeCount, Over18, StandardHours, EmployeeNumber
- Checked for missing values and duplicates
 - None found

Breakdown of Variables

Numeric

- 14 regular numeric variables
- 9 factor numeric variables
- A variety of data visualization methods: box plot, histogram plot, and violin plot

Categorical

- 6 categorical variables
- Categorical bar plot of each variable against attrition using GroupBy

Outliers (Box Plot)

Different variables have different degrees of outliers (close to none, moderate, and large)

Box plot with close to no outliers

Box plot with a moderate number of outliers

Box plot with a large number of outliers

Correlation Matrix

- Reclassify attrition as a numeric variable
- Plot the correlation matrix for attrition against all other numeric variables
- Interesting Findings:
 - MonthlyIncome and JobLevel (0.95)
 - TotalWorkingYears and JobLevel (0.78)
 - TotalWorkingYears and MonthlyIncome (0.77)

Random Forest

- Extract variables with relatively high correlation
- Accuracy of random forest: 84.5%
- Tune hyperparameters with random search
 - Random combinations of the hyperparameters are used to find the optimal solution for the built model

Logistic Regression

- Determine level of influence of categorical variables on attrition
- Convert each variable into numeric indicator variables with get_dummies
- Accuracy: 0.84 (train), 0.86 (test)
- Ineffective due to extremely low precision
 - The model only classifies 38% of employees that quit correctly

ì					
	OverTime	Gender	MaritalStatus	Department	EducationField
0	Yes	Female	Single	Sales	Life Sciences
1	No	Male	Married	Research & Development	Life Sciences
2	Yes	Male	Single	Research & Development	Other
3	Yes	Female	Married	Research & Development	Life Sciences
4	No	Male	Married	Research & Development	Medical
	***		***		
1465	No	Male	Married	Research & Development	Medical
1466	No	Male	Married	Research & Development	Medical
1467	Yes	Male	Married	Research & Development	Life Sciences
1468	No	Male	Married	Sales	Medical
1469	No	Male	Married	Research & Development	Medical

1470 rows x 5 columns

Neural Network

- Train a simple multilayer
 perceptron model by three
 numeric attributes which is
 highly related to attrition
- The loss of the model reduced strikingly after three epochs
- Accuracy:83.4% (train), 85.7% (test)

```
Epoch 1/3, Iteration 1/12, Loss: 641.4485
                                              Epoch 3/3, Iteration 1/12, Loss: 0.4801
 Epoch 1/3, Iteration 2/12, Loss: 2409.5425
                                              Epoch 3/3, Iteration 2/12, Loss: 0.4577
 Epoch
         Net(
                                                                                .3911
 Epoch
                                                                                4347
            (fc1): Linear(in features=3, out features=100, bias=True)
 Epoch
                                                                                4776
            (relu1): ReLU()
            (fc2): Linear(in features=100, out features=50, bias=True)
                                                                                ition
            (relu2): ReLU()
 384
           (fc3): Linear(in features=50, out features=2, bias=True)
 953
                   2362
  265
                   6644
                                                                       0
 Out loss function
criterion = nn.CrossEntropyLoss()
# Our optimizer
learning rate = 0.0001
optimizer = torch.optim.SGD(net.parameters(), lr=learning rate, nesteroy=True, momentum=0.9, dampening=0)
 Epoch 2/3, Iteration 8/12, Loss: 0.4349
 Epoch 2/3, Iteration 9/12, Loss: 0.4579
 Epoch 2/3, Iteration 10/12, Loss: 0.5028
 Epoch 2/3, Iteration 11/12, Loss: 0.4359
 Epoch 2/3, Iteration 12/12, Loss: 0.4241
```

Summary of Findings

Random Forest

Numeric variables that have relatively high correlation with attrition can be used to predict attrition

2. Logistic Regression

Not recommended using only categorical variables to predict attrition

3. Neural Network

The trained model can be implemented to predict attrition effectively

Data Driven Insights

- Low salary
- Low chance for career progression
- Lack of opportunities
- Long distance from residence

- Provide more salary incentives or other allowance
- Enhance effective employee assessments
- Open up spots for changes in senior management

Thank You

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**