Community Detection Lecture 1

E0: 259

What is a Community?

Intuitions:

- People who have similar sets of beliefs political, religious affiliations etc.
- People who interact with each other on a regular basis co-workers, students in a class, neighbors etc.
- People in the same professions lawyers, software developers, Professors etc.
- People who have the same tastes similar movie genres, similar kinds of books, similar types
 of food etc.

Brady et. al., PNAS 2017

Microscopic scale

- Protein interactions in cancerous rats
- Johnson et. al., 2006

Small Communities - Zachary Karate Club

- Social Network Analysis
- Zachary Karate Club
- 34 members
- Fight between owner and trainer
- Split into 2

Ecological Networks

- Most plant and animal species interact only with a few other species and form tight inter species communities
- Ref: https://blogs.cornell.edu/info2040/201 2/09/26/7720/

Planetary Scale - Online Social Network

- Online social network
- Planetary scale spans several billion people

Overlapping Communities

- Individuals have multiple identities religion, politics, professional etc.
- Networks associated with each of these could be different.

Time Varying Communities

Moreno, 1938

Intuitions to Definitions

- Represent as a graph
- A community is set of nodes:
 - That have mostly strong relationships or high edge weights
 - Most nodes in a community have an edge between them
 - Between communities there are few edges
 - They have low edge weights

How to Look for a Job? - Granovetter 1960

- You desperately need a job who do you reach out to?
 - Option 1: Close friends
 - Option 2: Distant acquaintances
- Intuition: Information in tightly knit communities percolate very fast (think gossip in your family)
- If you want to gather new information, you need to go outside your community
 - Weak links or long range dependencies allow you to gather more information

Triadic Closure

- Given this graph, which edges are more likely?
- A->D or A->E
- A->D: intuitively if you and another person have several friends in common, you two are also likely to be friends.
- Use such intuitions to develop formal definition of a community and design algorithms around them

Definitions of Community - Degree based

$$C \subset G$$

$$\delta_{int}(C) = \frac{number\ of\ intra\ custer\ edges\ in\ C}{\frac{n_c\big(n_c-1\big)}{2}}$$

$$\delta_{ext}(C) = \frac{number\ of\ inter\ cluster\ edges\ of\ C}{n_c\big(n-n_c\big)}$$

Objective: max
$$\sum_{C \in G} \left(\delta_{int}(C) - \delta_{ext}(C) \right)$$

Cut based Partition Definitions

$$\begin{split} G &= \left(\left. V, E \right), \ V = V_1 + \left. V_2, \right. \\ &cut \left(\left. V_1, \left. V_2 \right) \right. = \sum_{i \ \in \ V_1, \ j \ \in \ V_2} e_{ij}, \\ Ratio \ Cut: &Q &= \frac{cut \left(\left. V_1, \left. V_2 \right) \right.}{||V_1||} + \frac{cut \left(\left. V_1, \left. V_2 \right) \right.}{||V_2||} \end{split}$$

Normalized cut:
$$Q = \frac{cut(V_1, V_2)}{Vol(V_1)} + \frac{cut(V_1, V_2)}{Vol(V_2)}$$

Conductance:
$$Q = \frac{cut(V_1, V_2)}{min(Vol(V_1), Vol(V_2))}$$

Betweenness Centrality

 σ_{st} = number of shortest paths between node s and node t in a graph $\sigma_{st}(e)$ = number of shortest paths between node s and node t that pass through edge $e \in E$

Edge Betweenness Measure

$$C_B(e) = \sum \frac{\sigma_{st}(e)}{\sigma_{st}}$$

$$s \neq t$$

Intuitively removing max betweenness edges recursively should give good partitions

Modularity

Let P be set of partitions of G

Modularity
$$Q = \sum_{p \in P} (\# \text{ of edges in } p - \text{ expected } \# \text{ of edges in } p)$$

Erdos-Renyi Graph

- Random graph model that matches number of nodes and expected number of edges in the graph.
- G(n,p)
- Construct a graph with n nodes.
- Pick every pair of nodes and assign an edge with probability p

Configuration Model

- Ideally would like to preserve additional structural properties of the actual subgraph.
 - E.g. the node degrees are identical to the original graph.

Configuration Model

Consider a graph G = (V, E), let n = ||V|| and m = ||E||,

let δ_i be degree of node i

then in the configuration model, expected number of edges between node i and

node
$$j$$
 is $\delta_i \frac{\delta_j}{2m}$

Expected number of edges with configuration model:

$$\sum_{i \in V} \sum_{j \in V} \delta_i \frac{\delta_j}{2m} = \frac{1}{2m} \sum_{i \in V} \delta_i \sum_{j \in V} \delta_j = 2m$$

With the configuration model, number of nodes, degree of each node and total number of edges are all preserved

Modularity with Configuration Model

Let A be the adjacency matrix of the graph.
$$A_{ij} = \begin{cases} 1, & \text{if } i \text{ and } j \text{ have an edge} \\ 0, & \text{otherwise} \end{cases}$$

Modularity
$$Q = \sum_{p \in P} (\# \text{ of edges in } p - \text{ expected } \# \text{ of edges in } p)$$

Modularity
$$Q = \frac{1}{2m} \sum_{p \in P} \sum_{i \in p} \sum_{j \in p} \left(A_{ij} - \frac{\delta_i \delta_j}{2m} \right)$$