Full name: Tran Hai Nam ID: 11219279 Class: DSEB 63

Problem 2:

No	Color	Legs	Height	Smelly	Species
1	White	3	Short	Yes	M
2	Green	2	Tall	No	M
3	Green	3	Short	Yes	M
4	White	3	Short	Yes	M
5	Green	2	Short	No	Н
6	White	2	Tall	No	Н
7	White	2	Tall	No	Н
8	White	2	Short	Yes	Н

- Estimate conditional probabilities of each attributes {color, legs, height, smelly} for the species classes: {M, H} using the data given in the table.
- Using these probabilities estimate the probability values for the new instance -

(Color=Green, legs=2, Height=Tall, and Smelly=No).

Sol:

$$P(M) = 4/8 = 0.5, P(H) = 4/8 = 0.5$$

Color	M	Н
White	2/4	3/4
Green	2/4	1/4

Legs	M	Н
2	1/4	4/4
3	3/4	0/4

Height	M	Н
Tall	3/4	2/4
Short	1/4	2/4

Smelly	M	Н
Yes	3/4	1/4
No	1/4	3/4

New instance = (Color=Green, legs=2, Height=Tall, Smelly=No)

p(M| New Instance) = p(M) * p(Color = Green|M) * p(Legs = 2|M) *
p(Height = tall|M) * p(Smelly = no|M)

p(M| New Instance) =
$$0.5 * \frac{2}{4} * \frac{1}{4} * \frac{3}{4} * \frac{1}{4} = 0.0117$$

p(H| New Instance) = p(H) * p(Color = Green|H) * p(Legs = 2|H) * p(Height = tall|H) * p(Smelly = no|H)

p(H| New Instance) =
$$0.5 * \frac{1}{4} * \frac{4}{4} * \frac{2}{4} * \frac{3}{4} = 0.047$$

Since: p(H| New Instance) > p(M| New Instance)

⇒ Hence the new instance belongs to species H

Problem 3:

	Height	Weight	Foot size	
Person	(ft)	(lbs)	(inches)	
Male	6	180	12	
Male	5.92	190	11	
Male	5.58	170	12	
Male	5.92	165	10	
Female	5	100	6	
Female	5.5	150	8	
Female	5.42	130	7	
Female	5.75	150	9	

Based on the following data determine the gender of a person having height 6 ft., weight 130 lbs, and foot size 8 inch. (use Naive Bayes algorithm).

Sol:

$$P(Male) = 4/8 = 0.5$$

$$P(Female) = 4/8 = 0.5$$

Male:

Mean (Height) =
$$\frac{(6+5.92+5.58+5.92)}{4}$$
 = 5.855
Variance (Height) = $\frac{\sum_{i=1}^{n}(x_{i}-mean)^{2}}{n-1}$ = 0.035055

Sex	Mean	Variance	Mean	Variance	Mean(foot	Variance
	(height)	(height)	(weight)	(weight)	size)	(foot size)
Male	5.855	0.035033	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

$$P(H|M) = 1.5789$$
 $P(H|F) = 2.2346e^{-1}$ $P(W|M) = 5.9881e^{-6}$ $P(FS|M) = 1.3112e^{-3}$ $P(FS|F) = 2.8669e^{-1}$

Posterior (Male) =
$$\frac{P(M)*P(H|M)*P(W|M)*P(FS|M)}{Evidence}$$
$$= 0.5*1.5789*5.9881e^{-6}*1.3112e^{-3}$$
$$= 6.1984e^{-9}$$

Posterior (Female) =
$$\frac{P(F)*P(H|F)*P(W|F)*P(FS|F)}{Evidence}$$
$$= 0.5 * 2.2346e^{-1} * 1.6789e^{-2} * 2.8669e^{-1}$$
$$= 5.377e^{-4}$$

Since: Posterior (Female) > Posterior (Male)

⇒ New instance belong to Female group.