Pseudocode

- From algorithms to pseudocode
 - Pseudocode: a set of human-readable statements for delineating the steps of an algorithm
 - Pseudocode is not a program you can run, but provides more detail than an algorithm, easing the transition from idea to program code
 - Used to help brainstorm before you code
 - Easy to write and help determine logic of a problem
 - Non-technical team members can understand
- Pseudocode guidelines
 - Some keywords and style conventions are derived from programming languages
 - In pseudocode, you work with **variables**, which hold values that might change during program execution, and computations

Pseudocode Examples: Output

Python

Pseudocode

print("Game Over")

Display 'Game Over'

Pseudocode Examples: Retrieve Information

Python

Pseudocode

Name = input("Enter name:")

Prompt for nameOr

Get name

Pseudocode Examples: Calculations

Python

Pseudocode

avg = point / num_students

DIVIDE num_students by points

Pseudocode Examples: Assigning Variables

Python

Pseudocode

• cart_items = 0

SET cart_items to 0

Pseudocode Examples: IF Statements

Python

- if attendance == True:
 - attendance_points += 1
- Else:
 - print("You missed class")

Pseudocode

- IF attendance is True THEN
 - Add 1 to attendance_points
- Else
 - Display "You missed class"
- EndIf

Pseudocode Examples: IF Statements

Python: Sample restaurant rating code

- rating = int(input("Enter rating:"))
- if rating >= 7:
 - print("Great Work!")
- else:
 - print("Let's try again")

Pseudocode Examples: IF Statements

Pseudocode: Sample restaurant rating code

- PROMPT for rating
- Get the rating and make it a number
- IF rating is greater than or equal to 7
 - Display "Great Work!"
- Else
 - Display "Let's try again"
- EndiF

Pseudocode

- Pseudocode guidelines (continued)
 - Steps for writing pseudocode:
 - Write down the algorithm
 - Identify and name variables
 - Write statements that declare and initialize variables
 - Work through each step of the algorithm, writing detailed pseudocode steps
 - Identify computations and write them as mathematical expressions, using variables
 - Identify decision structures and write them in if..then and otherwise format
 - Identify repetition structures and write them using repeat x times or repeat until
 - Use indents for multiline decision and repetition structures
 - Use blank lines as whitespace to set off decision and repetition structures

Pseudocode Example

```
2 BEGIN
     NUMERIC nNum1, nNum2
     DISPLAY "ENTER THE FIRST NUMBER : "
     INPUT nNum1
     DISPLAY "ENTER THE SECOND NUMBER : "
     INPUT nNum2
     IF nNum1 > nNum2
      DISPLAY nNum1 + " is larger than "+ nNum2
     ELSE
     DISPLAY nNum2 + " is larger than " + nNum1
16 END
```

- 1. **BEGIN** is a marker that indicates the start of the program.
- 2. NUMERIC nNum1, nNum2 declares two variables, nNum1 and nNum2, as numeric data types.
- 3. DISPLAY "ENTER THE FIRST NUMBER: " prints the string "ENTER THE FIRST NUMBER:" to the screen.
- 4. INPUT nNum1 waits for the user to enter a value, which is then stored in the variable nNum1.
- 5. DISPLAY "ENTER THE SECOND NUMBER: " prints the string "ENTER THE SECOND NUMBER:" to the screen.
- 6. INPUT nNum2 waits for the user to enter a value, which is then stored in the variable nNum2.
- 7. IF nNum1 > nNum2 checks if the value stored in nNum1 is greater than the value stored in nNum2.
- 8. If nNum1 > nNum2 is true, then the next line is executed, DISPLAY nNum1 + " is larger than "+ nNum2 which will print the value of nNum1 and a string that says" is larger than " and value of nNum2.
- 9. If the value of nNum1 is not greater than nNum2, the next line is executed: DISPLAY nNum2 + " is larger than " + nNum1 which will print the value of nNum2 and a string that says " is larger than " and value of nNum1.
- 10. END is a marker that indicates the end of the program.

Pseudocode Example

1	
2	begin
3	numeric nNum1, nNum2, nSum
4	display "ENTER THE FIRST NUMBER : "
5	accept nNum1
6	display "ENTER THE SECOND NUMBER ; "
7	accept nNum2
8	compute nSum=nNum1+nNum2
9	display "SUM OF THESE NUMBER : " nSum
10	end
11	

- 1. **BEGIN** is a marker that indicates the start of the program.
- 2. NUMERIC nNum1, nNum2, nSum declares three variables, nNum1, nNum2 and nSum, as numeric data types.
- 3. DISPLAY "ENTER THE FIRST NUMBER: " prints the string "ENTER THE FIRST NUMBER:" to the screen.
- 4. ACCEPT nNum1 waits for the user to enter a value, which is then stored in the variable nNum1.
- 5. DISPLAY "ENTER THE SECOND NUMBER: " prints the string "ENTER THE SECOND NUMBER:" to the screen.
- 6. ACCEPT nNum2 waits for the user to enter a value, which is then stored in the variable nNum2.
- 7. COMPUTE nSum=nNum1+nNum2 calculates the sum of the two numbers stored in nNum1 and nNum2, and assigns the result to the variable nSum.
- 8. DISPLAY "SUM OF THESE NUMBER: " nSum prints the string "SUM OF THESE NUMBER:" and the value of the nSum variable.
- 9. END is a marker that indicates the end of the program.

- Flowchart basics
 - Flowchart: a diagram that represents the sequence and flow of steps in an algorithm
 - May be used instead of or along with pseudocode
 - Use a standard set of shapes that are connected by flowline arrows
- Drawing flowcharts
 - Flowcharts begin and end with a terminator shape
 - The first shape contains the word "Start"
 - Additional shapes are stacked vertically to indicate sequential program flow
 - Decision control structures use a diamond shape and branching arrows for decisions
 - Repetition control structures are represented using arrows that point upward to an earlier point in the sequence

Shape	Name	Purpose
	Terminator	Represents the start or end of the algorithm
	Process	Indicates a mathematical or logical operation
	Decision	Represents a decision point that branches to different sets of steps
	Data	Represents data input or output
	Connector	Indicates a connection between two separate sections of a flowchart

McMullen/Matthews/Parsons, Programming with Python, 1st Edition. © 2023 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- Flowchart tools
 - You can use diagramming software or an online diagramming app to create flowcharts
 - Apps allow you to drag and drop shapes, and typically to drag connecting arrows between shapes
 - Check your completed flowchart:
 - Each shape excluding the Start and End terminators should have at least one input and one output
 - All flow arrows should point in the correct direction to indicate the sequence of steps

Flowcharts: repetition control structures

Pseudocode/Flowchart Example

Shape	Name	Purpose
	Terminator	Represents the start or end of the algorithm
	Process	Indicates a mathematical or logical operation
	Decision	Represents a decision point that branches to different sets of steps
	Data	Represents data input or output
	Connector	Indicates a connection between two separate sections of a flowchart

Pseudocode/Flowchart Example

```
BEGIN
    NUMERIC nNum1, nNum2
    DISPLAY "ENTER THE FIRST NUMBER : "
     INPUT nNum1
    DISPLAY "ENTER THE SECOND NUMBER: "
    INPUT nNum2
    IF nNum1 > nNum2
      DISPLAY nNum1 + " is larger than "+ nNum2
    ELSE
     DISPLAY nNum2 + " is larger than " + nNum1
16 END
```


McMullen/Matthews/Parsons, Programming with Python, 1st Edition. © 2023 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.