Assignment

Eric Tao Math 240: Homework #5

October 13, 2022

Problem 5.1. Let $X \subset \mathbb{A}^n, Y \subset \mathbb{A}^m$ be algebraic sets, with $X \times Y \subseteq \mathbb{A}^{m+n}$

- (a) Show that the natural projections $\pi_1: X \times Y \to X$, and $\pi_1: X \times Y \to Y$ are regular morphisms.
- (b) Let $\psi_1: Z \to X, \psi_2: Z \to Y$ be regular maps. Show that there is a unique regular map $\psi: Z \to X \times Y$ such that $\pi_1 \circ \psi = \psi_1, \pi_2 \circ \psi = \psi_2$.
- (c) Let W be an affine variety such that there exists regular maps $p_1: W \to X, p_2: W \to Y$ and such that for every affine variety Z and pair of regular maps $\alpha_1: Z \to X, \alpha_2: Z \to Y$, there exists a unique regular function $\alpha: Z \to W$. Show that then $W \cong X \times Y$.

Solution. (a)

We may realize the natural projection π_1 by sending a point $(x_1,...,x_n,y_1,...,y_m) \to (x_1,...,x_n)$. In particular, $x_1,...,x_n \in k[x_1,....,x_n,y_1,...,y_m]$ are regular functions everywhere, so π_1 must be a regular morphism. We see that π_2 must be as well, where we send $(x_1,...,x_n,y_1,...,y_m) \to (y_1,....,y_m)$.

(b)

We can take $Z \subseteq \mathbb{A}^l$. Then, we can see that ψ_1, ψ_2 can be realized as regular functions $f_1, ..., f_n$ to X and $g_1, ..., g_m$ to Y. Construct the regular map ψ in the natural way, that sends $(z_1, ..., z_l) \to (f_1, ..., f_n, g_1, ..., g_m)$. By defintion then, we have that $\pi_1 \circ \psi = \psi_1, \pi_2 \circ \psi = \psi_2$. Now, suppose we have another regular map ψ' such that $\pi_1 \circ \psi' = \psi_1, \pi_2 \circ \psi' = \psi_2$. Since it is a regular morphism, we have regular functions $h_1, ..., h_{m+n}$ that send $(z_1, ..., z_l) \to (h_1, ..., h_{m+n})$. Since $\pi_1 \circ \psi' = \psi_1$, we have that by the action of π_1 as we saw in (a), that we have $\pi_1 \circ \psi'$ has the action of sending $(z_1, ..., z_l) \to (h_1, ..., h_n)$. But, since this has to agree with the action of π_1 , we have that $f_i = h_i$ for $1 \le i \le n$. Since they must agree on all of Z, they must be the same regular function. Repeating the same argument, we can see that $g_i = h_{n+i}$ for $1 \le i \le m$, and thus, $\psi = \psi'$.

(c)

Let $Z=X\times Y$, equipped with the natural projections as α_1,α_2 . By part (b), there exists then a regular map $p:W\to X\times Y$ such that $\alpha_1\circ p=p_1,\alpha_2\circ p=p_2$ as maps from $W\to X,Y$ respectively. But also, by hypothesis, W induces a map from $X\times Y$ such that $p_1\circ\alpha=\alpha_1,p_2\circ\alpha=\alpha_2$. Let $w\in W$. We may find the points $p_1(w)\in X,p_2(w)\in Y$, and, specifically, we have $(p_1(w),p_2(w))\in X\times Y$ such that $\alpha(p_1(w),p_2(w))=w$. Now, suppose $\alpha((x,y))=\alpha((x',y'))$. Then, traveling on p_1,p_2 , we have that $p_1(\alpha((x,y)))=p_1(\alpha((x',y')))$ and same with p_2 . But, because this commutes with the action of the natural projections, we have that x=x',y=y'. Then, we have that x=x',y=y'. Thus, we have that x=x', x=x',

Problem 5.2. Let $\phi_1: X_1 \to B, \phi_2: X_2 \to B$ be regular morphisms of projective varieties. Define the fiber product as:

$$X_1 \times_B X_2 = \{(x_1, x_2) \in X_1 \times X_2 : \phi_1(x_1) = \phi_2(x_2)\}$$

(a) Show that $X_1 \times_B X_2$ is a projective subvariety of $X_1 \times X_2$. Recall that if $X_1 \subseteq \mathbb{P}^{n_1}, X_2 \subseteq \mathbb{P}^{n_2}$, we consider $X_1 \times X_2 \subseteq \mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ that we showed as a projective variety.

(b) Show that $X_1 \times_B X_2$ satisfies the following universal property: given any projective variety Y and regular morphisms $\psi_1: Y \to X_1, \psi_2: Y \to X_2$ such that $\phi_1 \circ \psi_1 = \phi_2 \circ \psi_2$, there exists a unique regular morphism $\psi: Y \to X_1 \times_B X_2$ such that $\pi_1 \circ \psi = \psi_1, \pi_2 \circ \psi = \psi_2$, where π_1, π_2 represent the restriction of the projection maps $X_1 \times X_2 \to X_1, X_1 \times X_2 \to X_2$ respectively.

Solution. (a)

Suppose B has dimension d as a projective space. Since ϕ_1 , ϕ_2 are regular morphisms, we may describe them as the action of regular functions on projective varieties. In particular then, let $\phi_1 = F_i/G_i$, $0 \le i \le d$ where F_i, G_i have homogeneous degree n and $\phi_2 = F'_i/G'_i$ where F'_j/G'_j have homogeneous degree m. Consider the set of polynomials that are given by $F_iG'_i - F'_iG_i$. It should be clear that every point in the fiber product vanishes on each of these equations: let (x_1, x_2) be in the fiber product. Then, we have that $\phi_1(x_1) = \phi_2(x_2)$. In particular, on the d_0 -th component of B, we have that $F_{d_0}/G_{d_0}(x_1) = F'_{d_0}/G'_{d_0}(x_2)$. Since we know that G, G' does not vanish on an open subset of X_1, X_2 , we may take it to be non-0 on an open neighborhood around x_1, x_2 . So, if we multiply through to clear denominators, we find that we get $F_{d_0}G'_{d_0} - F'_{d_0}G_{d_0} = 0$. Since the choice of component of B was arbitrary, this works for all i, and so each of the polynomials vanish. Now, suppose we have a point (x_1, x_2) that vanishes on each of the polynomials $F_iG'_i - F'_iG_i$. Then, since F,G act only on x_1 , and F',G' act only on x_2 , we may describe this as $F_iG'_i - F'_iG_i(x_1, x_2) = F_i(x_1)G'_i(x_2) - F'_i(x_2)G_i(x_1) = 0$. Since the G, G' come from regular functions, we can find open neighborhoods around x_1, x_2 such that $G_i(x_1) \neq 0$ and $G_i(x_2)' \neq 0$. Then, rearranging, these must be the points such that $F_{d_0}/G_{d_0}(x_1) = F'_{d_0}/G'_{d_0}(x_2)$. But these are exactly the points in the fiber product. Thus, the fiber product is exactly the set of points that vanish on the set of polynomials that look like $F_iG'_i - F'_iG_i$, for $0 \le i \le d$. Further, since F has homogeneous degree m and G'_i has homogeneous degree $n, F_iG'_i$ has homogeneous degree mn and so does F'_iG_i . Then, their difference either has homogeneous degree mn or is the 0 polynomial. In particular, because ϕ_1, ϕ_2 are regular morphisms, at least one F_i, F'_i pair does not vanish for every point (x_1, x_2) . Then, at least one of these polynomials is non-identically 0. Thus, because we have found a system of equations in $x_1, ..., x_{n_1}$ and $x_1, ..., x_{n_2}$, homogeneous separately in each set of variables, by theorem 1.9 in Shafarevich, we have that the fiber product is a closed algebraic subvariety.

(b)

Here, we take the natural morphism, and take $\psi: Y \to X_1 \times X_2$ that sends $y \to (\psi_1(y), \psi_2(y))$. This is a morphism as ψ_1, ψ_2 are regular morphisms realized by regular functions, so we end up with ψ as a collection of regular functions. In particular, because we have that $\phi_1 \circ \psi_1 = \phi_2 \circ \psi_2$, for any $(x_1,x_2)\in\psi(Y)$, we have that $\phi_1(x_1)=\phi_2(x_2)$, since we have a $y\in Y$ such that $\psi_1(y)=x_1,\psi_2(y)=x_2$, and $\phi_1\psi_1(y) = \phi_2\psi_2(y) \implies \phi_1(x_1) = \phi_2(x_2)$. Then, ψ is naturally a regular morphism from $Y \to X_1 \times_B X_2$ as well. Further, by construction, this commutes with the natural projection maps π_1, π_2 to X_1, X_2 , respectively.

Problem 5.3. Let $A \in GL_{n+1}(k)$, that is, A is an invertible matrix of dimension n+1 with field elements as matrix elements.

matrix elements.

(a) Show that the function $\phi : \mathbb{P}^n \to \mathbb{P}^n$ given by $\phi(\begin{bmatrix} X_0 \\ \vdots \\ X_n \end{bmatrix}) = A(\begin{bmatrix} X_0 \\ \vdots \\ X_n \end{bmatrix})$ gives an isomorphism in \mathbb{P}^n ,

that is, it is a bijective morphism of projective varieties whose inverse is also a morphism of varieties.

(b) Let $P_0, ..., P_n, Q \in \mathbb{P}^n$ be n+2 points such that no n+1 of them lie in the same hyperplane. Show that there is an isomorphism of \mathbb{P}^n such that:

$$\phi(\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}) = P_0, \phi\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}) = P_1, \phi(\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}) = P_n, \phi(\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}) = Q$$

Solution. (a)

We look at the action of $A(\begin{vmatrix} X_0 \\ \vdots \\ X_n \end{vmatrix})$. This gives a set of linear equations that have the form: $Y_i = X_i$

 $\sum_{j=0}^{n} A_{ij} X_j$ where A_{ij} denotes the field element in the i-th row and j-th column. This is a homogeneous polynomial of degree 1, thus a regular function for each i. Further, we know that they may not all vanish simultaneously because since A is invertible, then it has trivial kernel equal to the origin, i.e. (0, ...0) for all n+1 coordinates. However, by the definition of a projective space, the origin is not a point of \mathbb{P}^n . Thus, on no point of \mathbb{P}^n does Y_i vanish for all i. Thus, ϕ is a morphism of varities. Further, since A is invertible, we

may define ϕ^{-1} in the natural way, that sends $\begin{pmatrix} X_0 \\ \vdots \\ X_n \end{pmatrix} \to A^{-1} \begin{pmatrix} X_0 \\ \vdots \\ X_n \end{pmatrix}$. It should be clear that due to linear

algebra, we have that $\phi^{-1} \circ \phi = A^{-1}A = I = AA^{-1} = \phi \circ \phi^{-1}$ and by the same arguments for A, A^{-1} is also defines an n+1 tuple of regular functions that do not simultaneously vanish. Thus, ϕ is an isomorphism of projective varieties.

(b)

Construct a matrix of the form $A = [P_0P_1...P_N]$, that is, a n+1 dimensional square matrix where the columns are the coordinates of the point P_i . This must be an invertible matrix since each of the columns must be linearly independent - if not, then we could find a hyperplane that contains all n+1 points. So,

define $\phi(\begin{bmatrix} X_0 \\ \vdots \\ X_n \end{bmatrix}) = A(\begin{bmatrix} X_0 \\ \vdots \\ X_n \end{bmatrix})$. Then, this is an isomorphism from part (a), that satisfies that $\phi(e_i) = P_i$,

where we denote e_i as a column vector with 1 in the i-th component and 0 else, where we index starting

from 0. So, we need only show that $\phi(\begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}) = Q$. Well, because the P_i span the space, not being contained

[1] in a hyperplane, there exists $k_i \in k$ such that $\Sigma_i k_i P_i = Q$. Now, consider $\phi(\begin{bmatrix} k_0 \\ k_2 \\ \vdots \\ k_n \end{bmatrix})$. By linearity, this must

equal ΣP_i , as $\begin{bmatrix} k_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ k_1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} k_0 \\ k_1 \\ \vdots \\ k_n \end{bmatrix}$. But, since we work in a projective space, for each k_i , we have $\begin{bmatrix} 0 \\ k_1 \\ \vdots \\ 0 \end{bmatrix} \sim \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$. Then, since ϕ must be well-defined on equivalence classes, we have that:

$$Q = \Sigma_i k_i P_i = \phi(\begin{bmatrix} k_0 \\ k_1 \\ \vdots \\ k_n \end{bmatrix}) = \phi(\begin{bmatrix} k_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}) + \dots + \phi(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ k_n \end{bmatrix}) = \phi(\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}) + \dots + \phi(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}) = \phi(\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix})$$

Problem 5.4. Recall that the Grassmannian of lines in \mathbb{P}^3 can be parametrized by the quadric of \mathbb{P}^5 with equation $Z_{01}Z_{23} - Z_{02}Z_{13} + Z_{03}Z_{12} = 0$. The line that contains the points $(p_0, ..., p_3), (q_0, ..., q_3)$ has coordinates $Z_{ij} = \begin{vmatrix} p_i & p_j \\ q_i & q_j \end{vmatrix}$.

Note that by a plane in \mathbb{P}^5 , we are referring to a linear subvariety of \mathbb{P}^5 of dimension 2.

- (a) Show that the set of lines that contain a fixed point gives a 2-dimensional plane in \mathbb{P}^5 contained in the Grassmanian. (Hint: the coordinates of such a point in the Grassmannian are linear combinations of the coordinates of the second point that determines the line).
- (b) Show that the set of lines contained in a fixed plane of \mathbb{P}^3 gives a 2-dimensional plane in \mathbb{P}^5 contained in the Grassmannian. (Hint: For points in a plane, one of the coordinates can be written as a linear combination of the other three).

Solution. (a)

First, we may fix a point $(p_0, ..., p_3)$, and consider varying over all $(q_0, ..., q_3)$. Then, the points within the Grassmannian have the form $Z_{ij} = \begin{vmatrix} p_i & p_j \\ q_i & q_j \end{vmatrix} = p_i q_j - q_i p_j$, that is, linear combinations of the coordinates of the second point. In particular then, because other than ensuring not all of the q_i are identically 0, this represents two free variables in each coordinate. In particular, we can view this as two independent vectors in each coordinate, and two independent vectors trace out a dimension 2 subspace.

(b)

From the hint, find a line in the fixed plane, and take two points on the line and call them $p = (p_0, ..., p_3)$, $q = (q_0, ..., q_3)$. Because they're in a plane, we may take, wlog, $p = (p_0, p_1, p_2, ap_0 + bp_1 + cp_2)$, $q = (q_0, ..., aq_0 + bq_1 + cq_2)$, where $a, b, c \in k$. Then, we have that the coordinates of the point in the Grassmannian look like:

$$Z_{01} = p_0 q_1 - q_0 p_1, \tag{1}$$

$$Z_{02} = p_0 q_2 - q_0 p_2, (2)$$

$$Z_{03} = p_0(aq_0 + bq_1 + cq_2) - q_0(ap_0 + bp_1 + cp_2) = bZ_{01} + cZ_{02},$$
(3)

$$Z_{12} = p_1 q_2 - q_1 p_2, (4)$$

$$Z_{13} = p_1(aq_0 + bq_1 + cq_2) - q_1(ap_0 + bp_1 + cp_2) = -aZ_{01} + cZ_{12},$$
(5)

$$Z_{23} = p_2(aq_0 + bq_1 + cq_2) - q_2(ap_0 + bp_1 + cp_2) = -aZ_{02} - bZ_{12}$$

$$\tag{6}$$

Since this is traced out by 3 independent coordinates and 3 dependent coordinates, linear combinations of the other 3, this corresponds to a 3-space in affine space, which corresponds to a plane in projective space.