На правах рукописи

димитриев григорий семенович

ИССЛЕДОВАНИЕ СПИНОВЫХ ВЗАИМОДЕЙСТВИЙ В РАЗБАВЛЕННОМ МАГНИТНОМ ПОЛУПРОВОДНИКЕ (Ga,Mn)As МЕТОДАМИ ГОРЯЧЕЙ ФОТОЛЮМИНЕСЦЕНЦИИ И НЕУПРУГОГО РАССЕЯНИЯ СВЕТА С ПЕРЕВОРОТОМ СПИНА

Специальность 01.04.10 – физика полупроводников

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

 $ext{Caнкт-}\Pi$ етербург 2018

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-техническом институте им. А. Ф. Иоффе Российской академии наук

Научный руководитель:

Сапета Виктор Федорович, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А. Ф. Иоффе Российской академии наук, ведущий научный сотрудник лаборатории Оптики Полупроводников.

Официальные оппоненты:

Шамирзаев Тимур Сезгирович, доктор физико-математических наук, доцент по специальности физика полупроводников, ФГБУН "Институт физики полупроводников им. А.В. Ржанова" СО РАН г. Новосибирск, ведущий научный сотрудник лаборатории молекулярно-лучевой эпитаксии соединений АЗВ5.

Дорохин Михаил Владимирович, доктор физико-математических наук по специальности физика полупроводников, ФГАОУВО "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" (ННГУ им. Н.И. Лобачевского), заведующий лабораторией спиновой и оптической электроники Научноисследовательского физико-технического института при ННГУ им. Н.И. Лобачевского.

Ведущая организация:

Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого"

Защита состоится «24» января 2019 г. в 10 часов 00 минут на заседании диссертационного совета Д 002.205.02 при Федеральном государственном бюджетном учреждении науки ФТИ им. А. Ф. Иоффе по адресу: 194021, Санкт-Петербург, ул. Политехническая, 26.

С диссертацией можно ознакомиться им. А. Ф. Иоффе и на сайте www.ioffe.ru. Автореферат разослан «__ » ____ 2018 г. Ученый секретарь диссертационного совета доктор физико-математических наук

Сорокин Л. М.

ΦТИ

библиотеке

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Спинтроника, или магнитоэлектроника, - область квантовой электроники, основанная на идее использования в качестве носителя информации спиновой степени свободы носителей заряда. Интерес заключается в создании устройств с более низким потреблением энергии, обладающих энергонезависимостью, меньшими размерами, высокой плотностью записи информации, значительным выигрышем в скорости работы [1].

Разбавленные Магнитные Полупроводники (РМП) обладают большим потенциалом для эффективного управления намагниченностью и спиновой инжекции. РМП активно развиваются с конца 1970-х годов, и исследования в этой области первоначально были сосредоточены на (II-VI) магнитных полупроводниках [2, 3], когда выяснилось, что небольшое включение магнитных примесей в немагнитный полупроводник может быть осуществлено без значительного ухудшения его оптических и электронных транспортных свойств, но с одновременным добавлением магнитных. В 1996 году была опубликована работа [4], в которой сообщалось о создании серии образцов (III-V) РМП (Ga,Mn)As, обладающих ферромагнетизмом с температурой Кюри T_C вплоть до 60 K, методом Низкотемпературной Молекулярно-Пучковой Эпитаксии (НТ МПЭ).

РМП (Ga,Mn)As рассматривается в настоящее время в качестве модельного материала для спиновой электроники, поскольку в (Ga,Mn)As наблюдаются такие спин-зависимые явления, как спиновая поляризация, магнитная анизотропия (MA), анизотропное магнитное сопротивление (AMC) [5], связанные с сильным спин-орбитальным взаимодействием в валентной зоне. Более того, сообщалось об управлении магнитными свойствами материала светом [6], электрическими полями [7, 8], эпитаксиальной [9, 10] деформацией, пикосекундными акустическими импульсами [11] и послеростовой литографией [12].

<u>Цель</u> данной работы заключается в исследовании спин-зависимых явлений в объемном РМП (Ga,Mn)As и структурах с квантовыми ямами (СКЯ) на его основе и определении параметров материала, важных для построения модели ферромагнетизма, методами горячей фотолю-

минесценции ($\Gamma\Phi\Pi$) и неупругого рассеяния света с переворотом спина (HPCПС) при воздействии внешним магнитным полем и деформацией.

Методология и методы исследования. Для исследования спиновых свойств полупроводниковых структур были использованы методы поляризованной фотолюминесценции (Φ Л) и неупругого рассеяния света с переворотом спина. Первый метод связан с исследованием спектров интенсивности и поляризации излучательной рекомбинации созданных светом неравновесных носителей заряда [13], второй метод связан с исследованием линий-спутников лазерной линии, которые возникают в результате изменения спинового состояния системы при неупругом вза-имодействии со светом [14, 15].

Научная новизна работы определяется тем, что в ней впервые:

- 1. Методом НРСПС исследованы уровни тонкой структуры нейтрального акцептора A_{Mn}^0 с полным угловым моментом F=1 и F=2 в объемном GaAs:Мn, в присутствии внешней одноосной деформации и внешнего магнитного поля.
- 2. Изучено комбинированное воздействие внешних магнитного поля и одноосной деформации на ориентацию вектора намагниченности в РМП (Ga,Mn)As.
- 3. Исследованы спектры $\Gamma\Phi\Pi$ и их поляризация в структурах с ферромагнитными квантовыми ямами (Φ M СКЯ) (Ga,Mn)As/AlAs.
- 4. Методом НРСПС исследована зависимость скорости поперечной релаксации спина иона Mn^{2+} от температуры и магнитного поля в РМП (Ga,Mn)As, а также перенормировка g-фактора иона Mn^{2+} при переходе из Парамагнитной (ПМ) в Ферромагнитную (ФМ) фазу.

Практическая значимость работы состоит в том, что

1. Получен эффективный g-фактор состояний мультиплета нейтрального акцептора A_{Mn}^0 с полным моментом F=2. Измерен деформационный потенциал константы p-d обменного взаимодействия между ионом Mn^{2+} и дыркой.

- 2. Показано, что внешними магнитными полями и деформацией можно управлять направлением намагниченности в ФМ РМП (Ga,Mn)As. Определены постоянные магнитной анизотропии и магнитострикции для объемного РМП (Ga,Mn)As, которые нужны для количественного определения параметров воздействия, необходимого для управления намагниченностью. Это может быть использовано при создании устройств чтения и записи, использующих направление намагниченности в качестве бита информации.
- 3. Показано, что при создании СКЯ на основе ФМ РМП (Ga,Mn)As ключевую роль в поляризации дырок играет не размерное квантование, т.е. ширина ямы, а внутренние случайные поля, возникающие в процессе низкотемпературного роста.
- 4. Получена величина времени поперечной релаксации спина иона Mn^{2+} в ФМ РМП (Ga,Mn)As при T=5K, и измерена её зависимость от температуры и магнитного поля. Получена температурная зависимость эффективного g-фактора иона Mn^{2+} в (Ga,Mn)As

Основные положения, выносимые на защиту:

- 1. В легированном GaAs:Мn константа p-d обменного взаимодействия между ионом Mn^{2+} и дыркой валентной зоны заметно уменьшается при приложении внешней одноосной сжимающей деформации.
- 2. В объемном ФМ РМП (Ga,Mn) As внешняя одноосная сжимающая деформация ориентирует вектор намагниченности вдоль оси приложенной деформации. Это открывает возможность для управления намагниченностью с помощью внешней деформации и магнитного поля.
- 3. Ферромагнетизм в структурах с квантовыми ямами РМП (Ga,Mn)As/AlAs в значительной степени обусловлен дырками, локализованными в примесной зоне акцептора Мп. Спиновая поляризация дырок, локализованных в примесной зоне, в двумерном РМП определяется преимущественно внутренними случайными полями, а не влиянием размерного квантования.

4. В объемном РМП (Ga,Mn) As при температурах ниже T_c измеренное время поперечной спиновой релаксации ионов Mn^{2+} T_2 определяется спиновой релаксацией дырок за счет спин-орбитального взаимодействия. При $T>T_c$ доминирует вклад от флуктуации спина в ансамбле дырок. Из-за взаимодействия со спиновой подсистемой дырок при переходе из ПМ в ФМ фазу происходит перенормировка эффективного g-фактора иона Mn^{2+} .

Апробация работы. Результаты работы докладывались на рабочих семинарах ФТИ им. А.Ф. Иоффе, на «15 Всероссийской молодежной конференции по физике полупроводников и наноэлектронике» (Санкт-Петербург, 2013), «Международной Зимней Школе по физике полупроводников» (Зеленогорск, 2015), международной конференции «Spin Physics, Spin Chemistry and Spin Technology» (Санкт-Петербург, 2015), «ХІІ Российской конференции по физике полупроводников» (Звенигород, 2015), ІІ Всероссийском научном форуме «Наука будущего — наука молодых» (Казань, 2016), Международной школе-семинаре «Экситоны в кристаллах и наноструктурах. К 120-летию со Дня Рождения Е.Ф. Гросса» (Санкт-Петербург, 2017).

<u>Личный вклад.</u> Автор диссертации выполнил экспериментальные измерения, представленные в данной диссертации, провел обработку и анализ данных, написал программный код для автоматизации установки и подключения оборудования, контролирующего параметры эксперимента. Автор активно участвовал в постановке задач и подготовке к печати всех опубликованных по теме диссертации работ.

<u>Публикации.</u> Основные результаты по теме диссертации изложены в 5 работах [A1-A5], все из которых изданы в журналах, рекомендованных BAK.

Структура и объем диссертации. Диссертация состоит из Введения, пяти глав, Заключения и списка литературы. Она содержит 121 страницу текста, включая 43 рисунка. Список цитируемой литературы содержит 105 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во Введении обоснована актуальность проведенных исследований, сформулирована цель, обозначены научная новизна и практическая значимость работы, перечислены основные положения, выносимые на защиту.

Первая глава, «Методика эксперимента», описывает методологию эксперимента. Параграфы 1.1 и 1.2 содержат краткое описание использованных оптических методов исследования, метода поляризованной фотолюминесценции и метода неупругого рассеяния света с переворотом спина, данные параграфы носят обзорный характер в рамках данной главы. Далее следует описание экспериментальной установки: приводится блок-схема, погрешности эксперимента, краткое описание результатов автоматизации установки, сделанной для получения экспериментальных данных. В конце в единой таблице приводится список всех исследованных образцов и их основных параметров.

Вторая глава, «Энергетическая структура одиночного акцептора Мп в GaAs:Мп» посвящена исследованию тонкой структуры одиночного нейтрального акцептора Мп в объемном легированном GaAs:Мп с концентрацией Мп $6\cdot 10^{17}~{\rm cm}^{-3}$. Нейтральный акцептор Мп является комплексом, состоящим из иона Mn^{2+} и дырки, связанных антиферромагнитным p-d обменным

Рис. 1: Спектр НРС акцептора Мп, полученный в поляризации (π,σ) при T=4K, B=0T и различных значениях деформании.

взаимодействием, величина которого задается константой A<0. Антиферромагнитное обменное взаимодействие между пятью электронами внутренней 3d-оболочки Mn со спином S=5/2 и дырки со спином J=3/2 приводит к расщеплению 24-кратно вырожденного состояния нейтрального акцептора Mn на 4 подуровня с величиной полного углового момента F=1,2,3,4.

Рис. 2: (а) Энергетические сдвиги линий НРС, измеренные в поляризации (π,σ) (символы 1, 3, 6) и (π,π) (символы 5), в зависимости от внешней деформации вдоль оси [111]. $T=4K,\ B=0T.$ (b) Зависимость от магнитного поля энергетических сдвигов линий НРСПС в поляризационной конфигурации (σ^+,σ^-) при $T=4K,\ P=4.8$ кбар. Экспериментальные данные показаны символами, кривые - результат теоретической аппроксимации.

В данной главе методом НРСПС было исследовано влияние внешней одноосной деформации, направленной вдоль оси [111], и внешнего магнитного поля, прикладываемого в геометрии Фарадея вдоль направления [1 $\bar{1}0$], на энергетическую структуру нейтрального акцептора Мп. Для этого резонансно возбуждалась полоса ФЛ экситонов, связанных с нейтральными акцепторами Мп (A_{Mn}^0X) , линией Ті-Sа лазера. В отсутствии внешних полей в спектре НРС наблюдались две линии, на энергии $\Delta_{F_1-F_1}=0.7$ мэВ и энергии $\Delta_{F_1-F_2}=4.4$ мэВ. Эти линии ранее наблюдались в работе [16], где авторы связывали линию $\Delta_{F_1-F_1}$ с переходами между подуровнями основного состояния F=1 с проекциями $m_F=0$ и $|m_F|=1$, а линию $\Delta_{F_1-F_2}$ с переходами между состояниями F=1 и F=2.

Приложение внешней одноосной деформации приводит к расщеплению широкой линии HPC $\Delta_{F_1-F_2}$ на три узких линии (см. рис. 1), зависимости энергетического сдвига каждой линии от приложенной деформации представлены на рис. 2(a). Это связано с расщеплением состояний нейтрального акцептора Мп под воздействием внешней деформации: основного состояния на два $(m_F=0,\pm 1)$, первого возбужденного

F=2 на три мультиплета ($m_F=0,\pm 1,\pm 2$).

Приложение внешнего магнитного поля приводит к снятию двукратного вырождения мультиплетов с ненулевой проекцией углового момента (см. рис. 2(b)). Линии 7 и 8 имеют g-фактор $g_d=2.02\pm0.02$ и связаны с переворотами спинов 3d-электронов во внутренней оболочке иона Mn^{2+} , линия 7 подробно исследована в работе, описанной в главе 5.

Энергетические сдвиги 1 и 2 линий могут быть описаны как $E_1=g_{F=1}\mu_B B$ и $E_2=2g_{F=1}\mu_B B$, при этом был экспериментально измерен g-фактор основного состояния: $g_{F=1}=2.74\pm0.03$. С уменьшением внешнего магнитного поля их энергетические сдвиги экстраполируются к одной и той же величине Δ_{F1-F1} . Происхождение этих линий связано с переходами между подуровнями нейтрального акцептора $\operatorname{Mn} F=1$: $F_1^0, F_1^{-1}, F_1^{+1}$.

Для объяснения линий 3, 4, 5 и 6 потребовалось теоретическое моделирование, в рамках которого было рассмотрено влияние на энергетические уровни нейтрального акцептора Мп внешней деформации и магнитного поля, и учитывалось наличие внутренних полей (результаты представлены на рис. 3).

Линия 1 при отсутствии магнитного поля соответствует пере-

Рис. 3: Теоретически рассчитанные уровни энергии нейтрального акцептора Мп (A_{Mn}^0) для мультиплетов с полным угловым моментом F=1 и F=2.

ходам $F_1^0 \to F_1^{\pm 1}$, при приложении магнитного поля переходу $F_1^{-1} \to F_1^0$. Линия 2: $F_1^{-1} \to F_1^{+1}$. Линия 3: $F=1 \to F=2$. Линия 6: $F_1^0 \to F=2$. Линия 4: $F_1^{+1} \to F=2$. Было показано, что линия 5 соответствует процессу с двойным переворотом спина и состоит из двух шагов: 1) перехода между мультиплетами основного состояния и затем из 2) перехода на мультиплет F=2.

В результате аппроксимации экспериментальных данных и при учете непосредственно измеренного значения $g_{F=1}=2.74$ для мультиплета

F=1 впервые получено значение $g_{F=2}=1.92$.

Экспериментальные результаты также свидетельствовали об уменьшении разницы по энергии между состояния F=1 и F=2. Поскольку в отсутствии внешней деформации величина A равна половине разницы по энергии между состояниями F=1 и F=2, это свидетельствует о монотонном уменьшении обменной константы A с увеличением внешней деформации. Аппроксимация экспериментальных данных позволила уточнить значение константы p-d обмена в отсутствии деформации A=2.6 мэB (по сравнению со значением 2.2 мэB [16], полученным без учета влияния локальной деформации) и получить значение деформационного потенциала константы p-d обменного взаимодействия Ap=0.2 эB.

Третья глава, «Влияние внешней одноосной деформации на магнитную анизотропию ферромагнитных пленок (Ga,Mn)As», посвящена исследованию влияния внешней одноосной деформации на магнитную анизотропию эпитаксиальных слоев (Ga,Mn)As.

Исследованы пленки РМП (Ga,Mn) As толщиной 600 и 800 нм методом НТ МПЭ с концентрацией Мп 4.3% (FM2) и 6% (FM7). Одноосная деформация прикладывалась вдоль [110] перпендикулярно магнитному полю ([001]). Спектры Краевой Фотолюминесценции (КФЛ) и ГФЛ получены при линейно поляризованном возбуждении линией НеNe лазера на энергии 1.96 эВ в геометрии Фарадея при T=2K. У РМП образцов не наблюдалось краевой ФЛ из-за большого числа дефектов - центров безызлучательной рекомбинации. Поэтому измерения поляризации ФЛ в магнитном поле были сделаны в точке ГФЛ с максимальной интенсивностью, при этом в заданном магнитном поле циркулярная поляризация не зависела от точки наблюдения во всем спектральном диапазоне ГФЛ. Это связано с тем, что время энергетической релаксации горячих электронов существенно меньше их спиновой релаксации, поэтому поляризация ГФЛ определяется исключительно спиновой поляризацией дырок.

Зависимость круговой поляризации $\Gamma\Phi\Pi$ FM2 образца от магнитного поля при разных значениях деформации показана на рис. 4(a). В

Рис. 4: (а) Зависимости поляризации ГФЛ от магнитного поля, измеренные на ФМ РМП образце (FM2) для трех различных значений деформаций. B_s - внешнее магнитное поле, соответствующее насыщению поляризационной кривой. (b) Зависимость $B_s^{2/3}$ от приложенной деформации для ферромагнитных РМП образцов (FM2) (кружки) и (FM7) (треугольники), измеренная при T=2K. Пунктирные и сплошные линии – результаты теоретической аппроксимации.

отличие от легированного случая в ФМ образце насыщение поляризации наступает уже в малых магнитных полях, а величина поляризации в насыщающем магнитном поле не превышает 0.2. Это значение согласуется с теоретическим расчетом для легированного образца для случая больших внутренних случайных полей и связано с большей плотностью ионов Mn, и, как следствие, большим возмущением кристаллической решетки GaAs в ФМ образцах. Внутренние случайные поля перемешивают состояния дырок с различным угловым моментом. С увеличением деформации наблюдается уменьшение степени поляризации в насыщении, обусловленное перемешиванием волновых функций дырок. При этом также происходит увеличение магнитного поля насыщения B_s , при котором поляризация выходит на плато, отмеченное штриховой линией на рис. 4(а). Также стоит отметить, что величина поля насыщения в РМП образце существенно ниже $(B_s \sim 0.2T)$, чем в случае одиночного акцептора $(B_s \sim 6T)$, что можно объяснить действием на дырку в РМП эффективного среднего обменного поля ансамбля магнитных ионов Mn^{2+} .

На рис. 4(b) построена зависимость магнитного поля насыщения от

приложенной деформации для ΦM образцов с x=4.3% и 6%. Видно, что несмотря на разную концентрацию Мп, в этих образцах зависимость величины $B_S^{2/3}$ от деформации ведет схожим образом, т.е. имеет два линейных участка с точкой перегиба в области $P_m=2$ кбар. Поведение вектора намагничености при этом можно объяснить следующим образом: при увеличении деформации и приближении к величине P_m направление вектора намагниченности приближается к направлению одноосной деформации, после достижения P_m вектор M ориентирован вдоль деформации. Если приложить внешнее магнитное поле В перпендикулярно плоскости образца, вектор намагниченности выйдет из плоскости образца и при определенном значении магнитного поля, достигнув угла θ_s с плоскостью, резко ориентируется вдоль направления В. В результате аппроксимации экспериментальных данных получены значения постоянных магнитной анизотропии ($\mathrm{C}_1{\approx}510~\mathrm{G}\cdot\mathrm{cm}^{-3},$ $C_2 \approx 100 \ \Im \cdot cm^{-3}, C_3 \approx -35 \ \Im \cdot cm^{-3})$ и магнитострикции ($\gamma_1 \approx 90 \ \Im \cdot \kappa$ бар $^{-1}$, $\gamma_2 \approx 690 \ \Im \cdot \kappa \text{бар}^{-1}$) для пленок (Ga,Mn)As.

Четвертая глава, «Влияние размерного квантования на спиновую поляризацию дырок в структурах с квантовыми ямами разбавленного магнитного полупроводника (Ga,Mn)As/AlAs», посвящена исследованию спиновой поляризации дырок в структурах с ферромагнитными квантовыми ямами (СКЯ) методом ГФЛ.

Все СКЯ РМП содержали 30 периодов $Ga_{1-x}Mn_xAs/AlAs$ с концентрацией Мп x=2.5% и x=4%, толщина квантовой ямы (слоя $Ga_{1-x}Mn_xAs$) менялась в диапазоне 5-10 нм, толщина барьера менялась в диапазоне 3-6 нм. Также был исследован объемный образец (Ga,Mn)As толщиной 1000 нм и с x=4%. Спектры ГФЛ получены при линейно поляризованном возбуждении линиями He-Ne (632.8 нм), Кг (676.4 нм) и Ar (488 нм) лазеров при T=5K во внешнем магнитном поле до 10 Т в геометриях Фарадея и Фойхта.

Чтобы явно показать влияние размерного квантования на циркулярную поляризацию $\Gamma\Phi\Pi$, на рис. 5(a) сравниваются случаи объемного РМП образца (FMB) и СКЯ РМП (FMQ1 и FMQ3) в геометрии Фарадея при T=5K. Из рисунка видно, что в геометрии Фарадея сте-

Рис. 5: (а) Зависимости степени циркулярной поляризации ГФЛ от внешнего магнитного поля, измеренные в геометрии Фарадея для объёмного РМП FMB (синие треугольники) и для образцов РМП СКЯ FMQ1 (красные квадраты) и FMQ3 (зеленые круги). T=5K. (b) Зависимости степени линейной поляризации ГФЛ от внешнего магнитного поля, измеренные в геометрии Фойгта для РМП образцов: FMB (синие треугольники) РМП и СКЯ FMQ1 (красные квадраты) и FMQ3 (зеленые квадраты).

пень циркулярной поляризации насыщается примерно на одном и том же уровне ~ 0.26 (полученном ранее в рамках теоретической работы [17] для случая больших внутренних случайных полей в легированном образце) и не зависит от размерного квантования, в частности, ширины КЯ. Важно отметить, что ρ_c не зависит от размерного квантования, потому что в геометрии Фарадея проекция углового момента акцептора на ось z (направление роста КЯ) совпадает с направлением магнитного поля. Таким образом, размерное квантование (а, значит, и ширина КЯ) не влияет на циркулярную поляризацию в геометрии Фарадея.

Другое поведение наблюдается для линейной поляризации $\Gamma\Phi\Pi$ в геометрии Фойхта, чтобы это продемонстрировать, на рис. 5(b) аналогичным образом сравниваются зависимости линейной поляризации $\Gamma\Phi\Pi$ для объемного (Ga,Mn)As FMB и CKЯ (Ga,Mn)As/AlAs FMQ1 и FMQ3, степень линейной поляризации $\Gamma\Phi\Pi$ в геометрии Фойхта в СКЯ FMQ1 в два раза меньше, чем в объемном образце FMB, и уменьшается с уменьшением ширины КЯ. В геометрии Фойхта, в отличие от случая геометрии Фарадея, размерное квантование в КЯ уменьшает степень линейной поляризации $\Phi\Pi$. Влияние размерного квантования проявля-

ется в значительном уменьшении ρ_l для РМП СКЯ FMQ1 и FMQ3.

Такое поведение циркулярной поляризации в геометрии Фарадея и линейной поляризации в геометрии Фойхта в легированных и РМП СКЯ может быть объяснено в модели, предполагающей, что дырки локализованы в примесной зоне в СКЯ РМП (Ga,Mn)As/AlAs. Использование данной модели оправдано в силу: 1) того, что если бы дырки заполняли валентную зону, можно было бы ожидать намного большие значения степени циркулярной поляризации $\Phi\Pi$ в геометрии Φ арадея и нулевую линейную поляризацию в геометрии Фойхта в силу значительной анизотропии g-фактора дырки при наличии размерного квантования. 2) Теоретическая модель, развитая для одиночного акцептора Мп в КЯ при учете внутренних случайных полей, удовлетворительно объясняет изменение степени поляризации насыщения при наличии квантования. Анализ поляризационных зависимостей, измеренных в геометриях Фарадея и Фойгта, приводит к выводу, что в нашем интервале ширин KS в магнитном поле поляризация $\Gamma\Phi\Pi$ определяется случайными деформационными или электрическими полями. Совокупность этих результатов можно объяснить в предположении, что дырки локализованы в примесной зоне.

Пятая глава, «Механизмы дефазировки спинов Mn в ферромагнитном (Ga,Mn)As», посвящена исследованию температурной зависимости времени поперечной спиновой релаксации иона Mn^{2+} и перенормировки его g-фактора в ферромагнитном (Ga,Mn)As в широком диапазоне температур методом НРСПС.

Для этого исследованы пленки РМП (Ga,Mn)As толщиной 500 нм с различной концентрацией Мn, парамагнитная при всех температурах с x=0.8% и ферромагнитные с $x=1\div 5\%$. Все исследованные образцы не подвергались отжигу.

Экспериментальные результаты получены методом НРСПС (см. рис. 6) при нерезонансном возбуждении линейно или циркулярно поляризованным светом в геометрии Фойгта или Фарадея, соответственно, линией Кг лазера на энергии 1.916 эВ. Во внешнем магнитном поле, приложенном в геометрии Фойгта, в спектрах НРСПС наблюдается сильно

поляризованная линия НРСПС на ионе Mn^{2+} . Линия обнаруживается в (σ,π) геометрии Фойгта и наклонной геометрии Фарадея (10-15° от нормали к плоскости образца) в скрещенной циркулярной поляризации (σ^+,σ^-) .

Зависимость энергетического сдвига линии НРСПС на ионе Mn^{2+} от магнитного поля для ФМ РМП образцов в ферромагнитной фазе экстраполируется к положительному смещению в геометрии Фойгта и отрицательному в наклонной геометрии Фарадея. С возрастанием температуры это смещение уменьшается и обращается в нуль при $T > T_C$. Наклон (иными словами, g-фактор) зависимости энергетичес

Рис. 6: Спектры неупругого рассеяния света с переворотом спина, измеренные при возбуждении Кг лазером на линии 1.916 эВ в геометрии Фойгта во внешнем магнитном поле B=5T.

фактор) зависимости энергетического сдвига линии $HPC\Pi C$ от магнитного поля в ΦM образцах также зависит от температуры.

Для определения влияния температуры на g-фактор была измерена зависимость энергетического сдвига линии НРСПС от магнитного поля в широком диапазоне температур, который охватывает ферромагнитную и парамагнитную фазы. На рис. 7(a) представлена температурная зависимость g-фактора иона Mn^{2+} , измеренная методом НРСПС в геометрии Фойгта для образца FM2. Переход в ФМ фазу сопровождается уменьшением g-фактора ионов Mn^{2+} на 5%.

Другой важной особенностью ΦM образцов является сильная зависимость от температуры ширины линии НРСПС (см. красный и фиолетовый спектры на рис. 6), которая увеличивается с ростом температуры. Зависимости ширины линии от температуры для ΦM РМП образцов с содержанием марганца $x=1\div 5\%$, измеренные при B=5 Т, показаны на рисунке 7(b). Также на рисунке показана зависимость ширины линии для разбавленного, но не ферромагнитного образца с x=0.8% (данная линия представлена также на рис. 6 зеленым цветом). Как видно

Рис. 7: (а) Температурная зависимость эффективного g-фактора иона Mn^{2+} в образце FM2 с концентрацией Mn x=4.3%. Геометрии Фойгта. (b) Температурная зависимость скорости поперечной спиновой релаксации иона Mn^{2+} для различных РМП образцов (Ga,Mn)As. Геометрия Фойгта, B=5T. Символы - экспериментальные данные, кривые - теоретическая аппроксимация.

из сравнения температурных зависимостей Φ М и ПМ РМП образцов, в ПМ РМП образце ширина линии не зависит от температуры в диапазоне $T=4\div 132K$. Напротив, в Φ М образцах ширина линии практически не меняется в диапазоне $T< T_c$ и сильно возрастает при $T>T_c$. Следует отметить, что в наименее легированном Φ М образце с x=1% ширина линии при высоких температурах стремится к насыщению, величина которого сравнима с шириной линии ПМ образца.

Исходя из того, что форма линии НРСПС описывается лоренцианом и не зависит от магнитного поля в диапазоне $B=2\div 5$ Т, как ниже, так и выше температуры Кюри T_C , можно заключить, что измеренная ширина линии НРСПС на ионе Mn^{2+} определяется исключительно однородным, а именно поперечным временем жизни подсистемы (T_2) спина Мп. Это дает возможность исследовать зависимость этого времени от температуры и влияние на него фазового перехода.

Также стоит отметить, что для РМП образца с минимальной исследованной концентрацией Мп (x=0.8%), который оставался ПМ во всем исследованном диапазоне температур, поперечное время релаксации не зависит от температуры при $T=4\div 132K$ и составляет $\tau_{Mn}\approx 5.5$ пс.

Сопоставление с теоретической моделью , рассматривающей

(Ga,Mn) Аѕ как две спиновые подсистемы ионов Mn^{2+} $(g_s=2.01)$ и дырок $(g_h=-1)$ (связанных р-d обменным взаимодействием, при наличии внешнего магнитного поля, а также учете спиновой диффузии дырок и спиновой релаксации дырок, связанной с сильным спин-орбитальным взаимодействием в валентной зоне GaAs), позволяет утверждать, что в скорость поперечной реласкации спина иона Mn^{2+} вносят вклад два механизма. Ниже T_c доминирует механизм, связанный с релаксацией спина Мп из-за наличия связи между магнитными подсистемами и релаксации спина дырок из-за сильного спин-орбитального взаимодействия в валентной зоне GaAs. Данный механизм обусловлен наличием среднего магнитного момента, т.е. доминирует в Φ M фазе, ниже T_c . Второй механизм доминирует выше T_c и связан со спиновыми флуктуациями ансамбля дырок, которые растут с температурой.

В Заключении обобщены основные результаты работы:

- 1. Методом резонансного НРСПС исследована энергетическая структура нейтрального акцептора A^0_{Mn} в объемном легированном GaAs:Мп в зависимости от внешней одноосной деформации и магнитного поля. В спектрах НРСПС идентифицированы линии, соответствующие переходам между мультиплетами основного (F=1) и первого возбужденного (F=2) состояний акцептора A^0_{Mn} .
- 2. Определены g-факторы основного и первого возбужденного уровней ней трального акцептора A^0_{Mn} в GaAs:Mn ($g_{F=1}=2.74,\,g_{F=2}=1.92$), величина деформационного потенциала константы p-d обменного взаимодействия между ионом Mn^{2+} и дыркой валентной зоны ($A_p=0.2$ эВ).
- 3. Методом поляризованной фотолюминесценции исследовано влияние внешней одноосной деформации на магнитную анизотропию эпитаксиальных слоев ФМ РМП (Ga,Mn)As. Зависимость магнитного поля насыщения от деформации демонстрирует два участка с разным углом наклона и точкой излома, в которой направление намагниченности ориентируется вдоль приложенной деформации. Внешняя одноосная деформация приводит также к перемешива-

- нию состояний дырок, связанных на акцепторах, и, как следствие, падению степени поляризации ГФЛ.
- 4. Определены постоянные магнитной анизотропии ($C_1 \approx 510 \ \Im \cdot \text{cm}^{-3}$, $C_2 \approx 100 \ \Im \cdot \text{cm}^{-3}$, $C_3 \approx -35 \ \Im \cdot \text{cm}^{-3}$) и магнитострикции ($\gamma_1 \approx 90 \ \Im \cdot \text{кбар}^{-1}$, $\gamma_2 \approx 690 \ \Im \cdot \text{кбар}^{-1}$) для пленок (G_a, M_n)As.
- 5. Наши результаты показывают, что контроль намагниченности в РМП (Ga,Mn)As может быть реализован за счет соответствующих внешней деформации и магнитных полей.
- 6. Методом поляризованной фотолюминесценции горячих электронов исследована зависимость спиновой поляризации дырок от внешнего магнитного поля в структурах с ферромагнитными квантовыми ямами (Ga,Mn)As/AlAs. Полученные результаты позволяют утверждать, что ферромагнетизм в СКЯ РМП (Ga,Mn)As/AlAs в значительной степени обусловлен дырками, локализованными в примесной зоне акцептора Мп. Сравнение данных для СКЯ с разной шириной ямы и объемного РМП образца позволяет сделать вывод, что спиновая поляризация дырок примесного уровня в двумерном РМП определяется преимущественно внутренними случайными полями, а не влиянием размерного квантования.
- 7. Методом НРСПС для ФМ РМП (Ga,Mn)As получена зависимость времени поперечной релаксации спина иона Mn^{2+} от температуры (в диапазоне $T=4\div 170K$ при $T_c=35\div 60K$ и $x=1\div 5\%$) и магнитного поля (при $B=2\div 5T$). При T=5K $\tau_{Mn}\sim 30$ пс. Также получена температурная зависимость эффективного g-фактора иона Mn^{2+} . Наблюдалось уменьшение g-фактора на $\sim 5\%$ при переходе из парамагнитной ($g_{Mn}^{\text{пм}}=2.01$) в ферромагнитную фазу, связанное с обменным взаимодействием двух спиновых подсистем, Мп и дырок.
- 8. Обнаружено, что в объемном РМП (Ga,Mn)As скорость поперечной релаксации спина иона Mn^{2+} в исследованном диапазоне температур характеризуется двумя режимами. При температурах ниже T_c время поперечной спиновой релаксации ионов

 Mn^{2+} T_2 определяется спиновой релаксацией дырок за счет спинорбитального взаимодействия. При $T>T_c$ доминирует вклад от флуктуации спина в ансамбле дырок.

Основные результаты диссертационной работы изложены в публикациях:

- [A1] Sapega V. F., Kraynov I. V., Sablina N. I, Dimitriev G. S., Averkiev N. S., Ploog K. H. Control of magnetic anisotropy by external fields in ferromagnetic (Ga,Mn)As // Solid State Communications.—2013.—Mar.— T. 157.— P. 34–37.
- [A2] Krainov I. V., Sapega V. F., Averkiev N. S., Dimitriev G. S., Ploog K. H., Lähderanta E. Manganese spin dephasing mechanisms in ferromagnetic (Ga,Mn)As // Physical Review B.— 2015.—Dec.— T. 92, no. 24.— P. 245201.
- [A3] Krainov I. V., Debus J., Averkiev N. S., Dimitriev G. S., Sapega V. F., Lähderanta E. Fine structure of the Mn acceptor in GaAs // Physical Review B.— 2016.—Jun.— T. 93, no. 23.— P. 235202.
- [A4] Димитриев Г. С., Сапега В. Ф., Аверкиев Н. С., Панайотти И. Е., Ploog К.Н. Влияние размерного квантования на спиновую поляризацию дырок в структурах с квантовыми ямами разбавленного магнитного полупроводника (Ga,Mn)As/AlAs // Физика твердого тела.— 2017.— Т. 59, № 11.— С. 2240.
- [A5] Димитриев Г. С., Крайнов И. В., Сапета В. Ф., Аверкиев Н. С., Debus J., Lähderanta Е. Энергетическая структура одиночного акцептора Мп в GaAs:Мп // Физика твердого тела.— 2018.— Т. 60, № 8.— С. 1556.

Список литературы

[1] Wolf S. A., Awschalom D. D., Buhrman R. A. et al. Spintronics: a spin-based electronics vision for the future // Science. — 2001. — T. 294, no. 5546. — P. 1488–1495.

- [2] Ramdas A. K. Raman scattering from magnetic excitations in diluted magnetic semiconductors (invited) // Journal of Applied Physics. — 1982. — nov. — T. 53, no. 11. — P. 7649–7653.
- [3] Furdyna J. K. Diluted magnetic semiconductors // Journal of Applied Physics. 1988. aug. T. 64, no. 4. P. R29—R64.
- [4] Ohno H., Shen A., Matsukura F. et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs // Applied Physics Letters. — 1996. — jul. — T. 69, no. 3. — P. 363–365.
- [5] Abolfath M., Jungwirth T., Brum J., MacDonald A. H. Theory of magnetic anisotropy in $III_{1-x}Mn_xV$ ferromagnets // Physical Review B. -2001. jan. T. 63, no. 5. P. 054418.
- [6] Oiwa A., Mitsumori Y., Moriya R. et al. Effect of Optical Spin Injection on Ferromagnetically Coupled Mn Spins in the III-V Magnetic Alloy Semiconductor (Ga,Mn)As // Physical Review Letters. — 2002. mar. — T. 88, no. 13. — P. 137202.
- [7] Chiba D., Sawicki M., Nishitani Y. et al. Magnetization vector manipulation by electric fields // Nature. — 2008. — sep. — T. 455, no. 7212. — P. 515–518.
- [8] Overby M., Chernyshov A., Rokhinson L. P. et al. GaMnAs-based hybrid multiferroic memory device // Applied Physics Letters. — 2008. — may. — T. 92, no. 19. — P. 192501.
- [9] Shen A., Ohno H., Matsukura F. et al. Epitaxy of (Ga, Mn)As, a new diluted magnetic semiconductor based on GaAs // Journal of Crystal Growth. — 1997. — may. — T. 175-176. — P. 1069–1074.
- [10] Welp U., Vlasko-Vlasov V. K., Liu X. et al. Magnetic Domain Structure and Magnetic Anisotropy in $Ga_{1-x}Mn_xAs$ // Physical Review Letters. 2003. apr. T. 90, no. 16. P. 167206.
- [11] Scherbakov A. V., Salasyuk A. S., Akimov A. V. et al. Coherent Magnetization Precession in Ferromagnetic (Ga,Mn)As Induced by

- Picosecond Acoustic Pulses // Physical Review Letters. 2010. sep. T. 105, no. 11. P. 117204.
- [12] Wenisch J., Gould C., Ebel L. et al. Control of Magnetic Anisotropy in (Ga,Mn)As by Lithography-Induced Strain Relaxation // Physical Review Letters. 2007. aug. T. 99, no. 7. P. 077201.
- [13] Захарченя Б. П., Майер Ф. Оптическая ориентация. Наука. Ленингр. отд-ние, 1989.
- [14] Geschwind S., Walstedt R. E., Romestain R. et al. The study of electron dynamics in n-type CdS by spin-flip Raman scattering // Philosophical Magazine B. — 1980. — dec. — T. 42, no. 6. — P. 961–977.
- [15] Debus J., Dunker D., Sapega V. F. et al. Spin-flip Raman scattering of the neutral and charged excitons confined in a CdTe/(Cd,Mg)Te quantum well // Physical Review B. — 2013. — may. — T. 87, no. 20. — P. 205316.
- [16] Sapega V. F., Ruf T., Cardona M. Spin-Flip Raman Study of Exchange Interactions in Bulk GaAs:Mn // Physica Status Solidi (b). 2001. aug. T. 226, no. 2. P. 339–356.
- [17] Аверкиев Н. С., Гуткин А. А., Осипов Е. Б., Рещиков М. А. Влияние обменного взаимодействия дырки с 3d-электронами на свойства глубокого акцептора Мп в арсениде галлия // Φ TT. 1988. Т. 30, № 3. С. 765—774.