Agda II: Dependent Types

Type Theory and Mechanized Reasoning Lecture 4

Introduction

Administrivia

- Assignment 1 will be released tomorrow (it will be short)
- Its possible to register for the course (we have 4 people!)

Objectives

- 1. Look at (play with) dependent types. Our goal is not to understand dependent types, but see what happens when we can use them.
- 2. Draw a connection to induction, and start looking at what this means for using Agda as a proof assistant.

Recap

```
f: (a:\mathbb{N}) \rightarrow \mathbb{N}
fx = x
```

```
f: (a:\mathbb{N}) \to \mathbb{N}
f x = x
```

The fundamental feature of Agda is that we can

- » name parameters
- » use those names elsewhere in the type.

```
named parameter

f: (a: N) \rightarrow N

f x = x
```

The fundamental feature of Agda is that we can

- » name parameters
- » use those names elsewhere in the type.

```
f: (a: N) \rightarrow N

f x = x
```

The fundamental feature of Agda is that we can

- » name parameters
- » use those names elsewhere in the type.

The named stands for the value that will be passed into the function.

Recall: Polymorphism

```
id : {a : Set} → a → a
id x = x
```

Recall: Polymorphism

```
id : \{a : Set\} \rightarrow a \rightarrow a
id x = x
```

We get polymorphism from this feature.

Recall: Polymorphism

```
id : {a : Set} → a → a
id x = x
```

We get polymorphism from this feature.

The type **a** refers to the one that will be passed in when **id** is called.

Recall: Types are First-Class

```
indexType : Set
indexType = N

mkType : N → Set
mkType 0 = N
mkType (suc _) = Bool
```

Types can be used anywhere we use values.

We get type synonyms from this feature.

Recall: Generalized Algebraic Data Types

```
data TypedBox : Set → Set where
  natBox : N → TypedBox N
  boolBox : Bool → TypedBox Bool
```

```
We get GADTs from this feature.

(no worries if you missed this on Monday)
```

Practice Problem

Let's look at the code...

Playing with Dependent Types

What's next?

The dependent part of dependent types is the fact that the output type can depend on the input value.

How can we use a value like a number or a list in a type?

First Element

```
head : {a : Set} → List a → Maybe a
head [] = nothing
head (x :: _) = just x
```

First Element

```
head : {a : Set} → List a → Maybe a
head [] = nothing
head (x :: _) = just x
```

head is tricky to implement in Agda because it's not naturally total.

First Element

```
head : {a : Set} → List a → Maybe a
head [] = nothing
head (x :: _) = just x
```

head is tricky to implement in Agda because it's not naturally total.

What do we do on an empty list?

Exception or Monad

```
head : {a : Set} → List a → Maybe a
head [] = nothing
head (x :: _) = just x
```

Usually you have two options:

- » Throw an exception
- » Work with Maybes or Results (as above)

Exception or Monad

```
head : {a : Set} → List a → Maybe a
head [] = nothing
head (x :: _) = just x
```

Usually you have two options:

- » Throw an exception
- » Work with Maybes or Results (as above)

What if the *types* forced us to use this function correctly?

demo

```
data NonEmpty : {a : Set} → List a → Set where
  hasFirst :
     {a : Set} →
     {x : a} →
     {xs : List a} →
     NonEmpty (x :: xs)
```

```
data NonEmpty : {a : Set} → List a → Set where
  hasFirst :
     {a : Set} →
     {x : a} →
     {xs : List a} →
     NonEmpty (x :: xs) named parameters appearing later
```

```
data NonEmpty : {a : Set} → List a → Set where
hasFirst :
    {a : Set} →
    {x : a} →
    {xs : List a} →
    NonEmpty (x :: xs) named parameters appearing later
```

NonEmpty has one constructor.

```
data NonEmpty : {a : Set} → List a → Set where
hasFirst :
    {a : Set} →
    {x : a} →
    {xs : List a} →
    NonEmpty (x :: xs) named parameters appearing later
```

NonEmpty has one constructor.

It is impossible to build something of type:

```
NonEmpty []
```

First Element (Again)

```
head : \{a : Set\} \rightarrow (l : List a) \rightarrow NonEmpty l \rightarrow a
head (x :: _) hasFirst = x
```

Our new version requires evidence which guarantees that the input is nonempty.

We can never accidentally call **head** on a nonempty list.

Totality of head

```
head : \{a : Set\} \rightarrow (l : List a) \rightarrow NonEmpty l \rightarrow a
head (x :: _) hasFirst = x
```

Totality of head

```
head : \{a : Set\} \rightarrow (l : List a) \rightarrow NonEmpty l \rightarrow a
head (x :: _) hasFirst = x
```

How does Agda know this function is total?

Totality of head

```
head : \{a : Set\} \rightarrow (l : List a) \rightarrow NonEmpty l \rightarrow a
head (x :: _) hasFirst = x
```

How does Agda know this function is total?

<u>Answer</u>: The **hasFirst** pattern enforces that [] is not a valid pattern for **l**. (strange)

Vectors

Vectors

Vectors are fixed-length lists.

They are a canonical example of a useful form of dependent types.

Let's do a demo.

Vectors vs. Lists

```
data Vec (a : Set) : N → Set where
  [] : Vec a 0
  _::_ : {n : N} → a → Vec a n → Vec a (suc n)

data List (a : Set) : Set where
  [] : List a
  _::_ : a -> List a -> List a
```

The only difference is the added dependency on a number.

Vectors vs. Lists

```
data Vec (a : Set) : N → Set where
  [] : Vec a 0
  _::_ : {n : N} → a → Vec a n → Vec a (suc n)

data List (a : Set) : Set where
  [] : List a
  _::_ : a -> List a -> List a
```

The only difference is the added dependency on a number.

Example: Adding Vectors

```
addVec: \{n : \mathbb{N}\} \rightarrow \text{Vec} \mathbb{N} \text{ } n \rightarrow \text{Vec} \mathbb{N} \text{ } n \rightarrow \text{Vec} \mathbb{N} \text{ } n addVec [] [] = [] addVec (x :: xs) (y :: ys) = (x + y) :: addVec xs ys
```

Again, how does Agda know this function is total?

<u>Answer</u>: The patterns for **n** influence the patterns for *both* of the following inputs.

Practice Problem

Implement a **head** function for vectors. What should the type of this function be?

Vector Lookup

The Idea

Since vectors are a fixed-length, we should never have to deal with out-of-bounds errors.

Can we implement a type which represents the possible indices of a vector?

demo

```
data Fin : N → Set where
  zero : {n : N} → Fin (suc n)
  suc : {n : N} → Fin n → Fin (suc n)

data Nat : Set where
  zero : Nat
  suc : Nat → Nat
```

```
data Fin : N → Set where
  zero : {n : N} → Fin (suc n)
  suc : {n : N} → Fin n → Fin (suc n)

data Nat : Set where
  zero : Nat
  suc : Nat → Nat
```

Like vectors, Fins are like Nats with additional number information in the types.

```
data Fin : N → Set where
  zero : {n : N} → Fin (suc n)
  suc : {n : N} → Fin n → Fin (suc n)

data Nat : Set where
  zero : Nat
  suc : Nat → Nat
```

Like vectors, Fins are like Nats with additional number information in the types.

```
data Fin : N → Set where
  zero : {n : N} → Fin (suc n)
  suc : {n : N} → Fin n → Fin (suc n)

data Nat : Set where
  zero : Nat
  suc : Nat → Nat
```

Like vectors, Fins are like Nats with additional number information in the types.

We can think of this information an upper bound.

The Picture

The № in the type tells you how many values there are:

Fin
$$n \approx \{x \in \mathbb{N} : x < n\}$$

demo

Vector Lookup

```
lookup : \{a : Set\} \rightarrow \{n : \mathbb{N}\} \rightarrow Vec \ a \ n \rightarrow Fin \ n \rightarrow a lookup (x :: \_) zero = x lookup (\_ :: xs) (suc \ i) = lookup \ xs \ i
```

What a satisfying function definition...

The "edge cases" are "handled" by the types.

Practice Problem

Write a function dec-nat which, given a \mathbb{N} n, constructs a Vec n of \mathbb{N} in decreasing order all the way to 0.

For a challenge, try increasing order.

Induction

What is NonEmpty?

```
data NonEmpty : {a : Set} → List a → Set where
  hasFirst :
     {a : Set} →
     {x : a} →
     {xs : List a} →
     NonEmpty (x :: xs)
```

Non-Emptiness is a property of Lists.

In logic-speak, it's a <u>predicate</u>.

What is NonEmpty?

```
data NonEmpty : {a : Set} → List a → Set where
hasFirst :
    {a : Set} →
    {x : a} →
    {xs : List a} →
    NonEmpty (x :: xs)
```

Non-Emptiness is a property of Lists.

In logic-speak, it's a <u>predicate</u>.

We said induction is a mathematical principle for proving that a property holds of all natural numbers.

We said induction is a mathematical principle for proving that a property holds of *all* natural numbers.

In Agda property of N's just something of type

Set

We said induction is a mathematical principle for proving that a property holds of all natural numbers.

In Agda property of N's just something of type

Set

Given $P: \mathbb{N} \to Set$, $(P:\emptyset)$ is the <u>statement</u> that the property holds of \emptyset .

Practice Problem

Write a data type which represents the predicate on natural numbers "n is nonzero".