Machine/Statistical Learning

Unsupervised learning Clustering: K-means, Mixture models and hierarchical approaches

Florent Chatelain, Olivier.JJ.Michel

Grenoble-INP, GIPSA-Lab

ENSTA, feb. 2020

Unsupervised classification

Assumptions

- $X \in \mathbb{R}^p$, $Y \in \{1, \dots, K\} \leftarrow K$ classes
- ▶ Training set $(x_1, ..., x_n)$ ← unknown outputs y_i

Example (p=2)

Unsupervised classification: Clustering

Objectives

- grouping $\underline{similar}$ data in the same cluster \leftarrow clustering
- For each x_i , $1 \le i \le n$, predict the class variable $Y_i \in \{1, ..., K\}$

Clustering limitations

Combinatorics problem

- ▶ Number of partitions into K classes for a sized n dataset : Stirling number of the 2nd kind S(n, K)
- Number of partitions for a sized n dataset : Bell number $B_n = \sum_{k=1}^n S(n,k)$

dataset size n	2	5	10	100	200
S(n,2) $(K=2 classes)$	1	15	511	6.3×10^{29}	8.0×10^{59}
S(n,4) $(K=4 classes)$	0	10	34105	6.7×10^{58}	1.1×10^{119}
B_n	2	52	115975	4.8×10^{115}	6.2×10^{275}

▶ Remember $\simeq 10^{80}$ atoms in the Universe...

Pb: Exhaustive search (brute-force) not possible in practice

 \square local search around initial solutions/values \rightarrow sub-optimal

Estimation problem and model selection

- ightharpoonup possible parameters are unknown \leftarrow estimation
- ▶ Number of classes K possibly unknown \leftarrow model selection

Mixture of distributions

- ▶ Data X_1, \ldots, X_n assumed to be i.i.d. with pdf f
- ightharpoonup f is modeled as a mixture of distributions

$$f(x) = \sum_{k=1}^{K} \pi_k \phi(x; \theta_k)$$

 $\blacktriangleright \pi_1, \ldots, \pi_k$ are the relative sizes $(\sum_{k=1}^K \pi_k = 1)$ of the classes :

$$\Pr\left(Y_i = k\right) = \pi_k$$

- density ϕ is the parametric shape of a class,
- ▶ parameters $\theta_1, \ldots, \theta_K$ are the *centroids* of the classes/clusters

Latent variable

 $Y \in \{1, \dots, K\}$ indicating the class of the r.v. X

- ▶ $Y \sim \text{discrete distribution s.t. } \Pr(Y_i = k) = \pi_k, \quad k = 1, \dots, K$
- ► $X|Y = k \sim \text{distribution with pdf } \phi(\cdot|\theta_k)$

Gaussian mixture model

- ▶ Class centroid : $\theta = (\mu \leftarrow \text{mean}, \Sigma \leftarrow \text{covariance matrix})$
- ▶ Density ϕ of a class: multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$ pdf

$$\phi(x; \mu, \Sigma) = (\det(2\pi\Sigma))^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

• Mixture density $f(x) = \sum_{k=1}^{K} \pi_k \phi(x; \mu_k, \Sigma_k)$

Example (p=2, K=5)

Mixture density f

n = 500 realizations

Cost based approximation: K-means

Pb: no simple expression of the Gaussian mixture parameter estimators

several approximations can be conducted to obtain a simple deterministic cost criterion

First approximation: euclidean distance

Replace the Mahalanobis distance in the Gaussian density by the simpler euclidean one

$$(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \to ||x - \mu_k||^2$$
, (i.e. $\Sigma_k = I_p$),

cluster centroid for the kth class reduces to $\theta_k = \mu_k \leftarrow$ mean vector

Cost based approximation: K-means (Cont'd)

- Pb: no straightforward expression of the Gaussian mixture parameter estimators
 - several approximations can be conducted to obtain a simple deterministic cost criterion

Second approximation: hard thresholding

Binarize the posterior probabilities: for each data point x_i ,

$$t_{i,k} \equiv \Pr(Y_i = k | x_i, \theta) = \begin{cases} 1 & \text{if } k = \arg\min_{1 \le l \le K} ||x_i - \mu_l||, \\ 0 & \text{otherwise.} \end{cases}$$

 $Csq: x_i$ belongs with certainty to the class whose centroid is the closest

- make hard thresholding clustering
- deterministic model

Cost criterion: K-means clustering

Notations

For a given clustering Y, let

- ▶ $n_k = \#\{i \mid Y_i = k\}$ is the size of the kth cluster,
- $\hat{\mu}_k = \frac{1}{n_k} \sum_{i|Y_i=k} x_i$ is the sample mean of the points assigned in the kth cluster

Under the previous approximations, maximizing the resulting "log-likelihood" reduces to the following optimization problem :

K-means cost criterion

Minimize
$$J(Y) = \sum_{k=1}^{K} \sum_{i=1}^{n} t_{i,k} ||x_i - \widehat{\mu}_k||^2,$$

$$= \sum_{k=1}^{K} \sum_{i|Y_i = k} ||x_i - \widehat{\mu}_k||^2,$$

I(Y) is the sum of within-cluster dispersions

Equivalent cost criterion

(negative) Sum of between-cluster dispersions

$$J(Y) = -\sum_{k=1}^{K} n_k ||\widehat{\mu}_k - m||^2 + \text{constant},$$

where $m = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the total mean.

- Minimizing the within-cluster dispersion \Leftrightarrow Maximizing the between-cluster dispersion
- General property of clustering algorithms

Proof: let $S_T = \sum_{j=1}^n (x_j - m)^T (x_j - m) = \sum_{k=1}^K \sum_{i|Y_i = k} ||x_i - m||^2$ be the total dispersion.

- ▶ Replace x_i by $x_i \widehat{\mu}_k + \widehat{\mu}_k$, and expand S_T
- Show that $S_T = J(Y) + \sum_{k=1}^K n_k \|\widehat{\mu}_k m\|^2$ (i.e. the cross product equals zero), and conclude by noting that S_T does not depend on Y

K-means : cost criterion optimization

Enlarged optimization problem

$$\min_{Y,\mu} J(Y,\mu) = \sum_{k=1}^{K} \sum_{i|Y_i = k} \underbrace{\|x_i - \mu_k\|^2}_{I_t},$$

 \triangleright J_K is the quadratic error for the kth cluster

Remarks

- ▶ For a given Y, $\min_{\mu} J(Y, \mu) = J(Y, \widehat{\mu}) \equiv J(Y)$
- ▶ For a given μ , exchanging $Y_i = k$ with $Y_i^* = l$ changes the two quadratic errors

$$\begin{bmatrix} J_k^{\star} &= J_k - ||x_i - \mu_k||^2, \\ J_l^{\star} &= J_l + ||x_i - \mu_l||^2, \end{bmatrix}$$

Thus $J(Y, \mu)$ is decreased if

$$J_l^{\star} - J_l \leq J_k - J_k^{\star}$$

$$\Leftrightarrow ||x_i - \mu_l||^2 \leq ||x_i - \mu_k||^2,$$

$$\Leftrightarrow x_i \text{ is closer} \quad \text{(euclidean distance) from the class } l \text{ center,}$$

K-means algorithm (LLoyd's algorithm)

- ▶ Require : *K* the number of clusters.
- ▶ Initialization : Set the centroid μ_k , $1 \le k \le K$, to a starting value $\mu_k^{(0)}$,
- ▶ For $t = 1 \rightarrow \dots$ until convergence (i.e. $\mu_k^{(t)} = \mu_k^{(t-1)}$)
 - 1. Assignment step: assign x_i to the class of the closest center

$$Y_i^{(t)} = \arg\min_{k=1,\dots,K} \left\| x_i - \mu_k^{(t-1)} \right\|^2, \quad \text{for } i = 1,\dots,n$$

2. **Update step**: update the centroids μ_k , for k = 1, ..., K

$$\mu_k^{(t)} = \arg\min_{\mu_k} \sum_{i|Y_i^{(t)} = k} ||x_i - \mu_k||^2 = \frac{1}{n_k^{(t)}} \sum_{i|Y_i^{(t)} = k} x_i,$$

i.e. $\mu_k^{(t)}$ is the sample mean of the kth cluster

Convergence of K-means algorithm

Convergence

- each step decreases the criterion,
- ▶ there is a (huge) finite number of partitions,
- the algorithm converges to a solution (in a finite number of steps)

But no guaranty of the solution optimality (depend on the initialization)...

Stopping criterion

K-means usually very fast for a small/moderate number of clusters K, but

- \triangleright running time increases with the number of clusters K
- \blacktriangleright in the worst case, can be very slow to converge even for K=2,

Thus, to shorten the computational time, the algorithm can be stopped when the cost criterion does not decrease significantly

Variants/Improvements of K-means algorithm

Initialization heuristics

- ► Forgy method
 - \triangleright pick randomly K observations from the dataset as initial centers,
 - ightharpoonup run K-means algorithm with these starting values
 - ▶ repeat these 2 steps several times and retain the best (cost sense) clustering
- ▶ lot of variants : Random partitions, k-means++, power init.
- may lower the computation time of one run,
- can give some guaranties that the solution is competitive w.r.t. to the optimal one.

Choice of the distance -see also later-

- ▶ Standard K-means based on the squared ℓ_2 (euclidean) distance.
- ▶ Other distance can be considered : e.g. using ℓ_1 distance yields the K-medians algorithm where the cluster centroid becomes the median

K-means initilization

Sensitivity to initialization/data geometry/number of classes

a) set of points $x_i \in \mathbb{R}^p$ (p=2) to classify, b) and c) two clusterings in K=2 classes with different initial centers, d) clustering in K=3 classes.

K-means

Prediction vs Clustering

- \blacktriangleright the points x_1, \ldots, x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ▶ Clustering : performance on *current* data is what matters

EM (Expectation-Maximization) algorithm

EM method is a general and important tool of statistical analysis :

- method for finding maximum likelihood (ML) or maximum a posteriori (MAP) estimates of parameters in statistical models, by maximizing iteratively the log-likelihood
- ightharpoonup introduction of unobserved latent variables Z to decompose the optimization problem in simpler sub-problems in an iterative way
- ► EM iteration alternates between performing an expectation (E) step, and a maximization (M) step

EM (Expectation-Maximization) principle

- \triangleright Z is a latent variable,
- Objective : maximize $\ell(\theta) = \log p(x|\theta)$

Sketch of EM algorithm

▶ E step: compute the expectation of the completed log-likelihood function evaluated using the current estimate for the parameter

$$\begin{split} Q\left(\theta, \theta^{(t-1)}\right) &= E_{Z|X, \theta^{(t-1)}} \left[\log p(x, z|\theta)\right], \\ &= \int p(z|x, \theta^{(t-1)}) \log p(x, z|\theta) dz \end{split}$$

▶ M step : compute parameters maximizing the expected log-likelihood

$$\theta^{(t)} = \arg\max_{\theta} Q\left(\theta, \theta^{(t-1)}\right),$$

 \triangleright Repeat until convergence of the $\theta^{(t)}$ sequence

Application of EM to mixture models: E step

Introducing the latent variables Y_i , or equivalently, the binary variables

$$z_{ik} = \begin{cases} 1 & \text{if } Y_i = k, \\ 0 & \text{otherwise,} \end{cases}$$

the likelihood completed with the r.v. z_{ik} reads

$$p(x_1, \dots, x_n, z | \theta) = \prod_{i=1}^n p(x_i, z | \theta) = \prod_{i=1}^n \prod_{k=1}^K \pi_k \phi(x_i | \theta_k)^{z_{ik}},$$

$$\Rightarrow \log p(x_1, \dots, x_n, z | \theta) = \sum_{i=1}^n \sum_{k=1}^K z_{ik} \log \left[\pi_k \phi(x_i | \theta_k) \right],$$

$$\Rightarrow Q\left(\theta, \theta^{(t-1)}\right) = \sum_{i=1}^n \sum_{k=1}^K \underbrace{E\left[z_{ik} | x_i, \theta^{(t-1)}\right]}_{t_{ik}^{(t-1)}} \log \left(\pi_k \phi(x_i | \theta_k)\right)$$

where
$$t_{ik}^{(t-1)} = \Pr\left(Y_i = k \mid x_i, \theta^{(t-1)}\right) = \frac{\pi_k^{(t-1)}\phi(x_i|\theta^{(t-1)})}{\sum_{k=1}^K \pi_k^{(t-1)}\phi(x_i|\theta^{(t-1)})}$$

Gaussian mixture models: M step

Find
$$\theta \equiv \theta^{(t)}$$
 maximizing $Q\left(\theta, \theta^{(t-1)}\right) = \sum_{i=1}^{n} \sum_{k=1}^{K} t_{ik}^{(t-1)} \log\left[\pi_k \phi(x_i | \theta_k)\right]$

▶ For any mixture model (i.e. $\forall \phi$) :

$$\pi_k^{(t)} = \frac{1}{n} \sum_{i=1}^n t_{ik}^{(t-1)}$$

▶ For a Gaussian mixture model $\theta = \{\mu_k, \Sigma_k\}$ and

$$\mu_k^{(t)} = \frac{\sum_{i=1}^n t_{ik}^{(t-1)} x_i}{\sum_{i=1}^n t_{ik}^{(t-1)}},$$

$$\Sigma_k^{(t)} = \frac{\sum_{i=1}^n t_{ik}^{(t-1)} \left(x_i - \mu_k^{(t)}\right) \left(x_i - \mu_k^{(t)}\right)^T}{\sum_{i=1}^n t_{ik}^{(t-1)}},$$

- empirical averages weighted by the posterior probability in $\theta^{(t-1)}$, $t_{ik}^{(t-1)} \equiv \Pr\left(Y_i = k \mid x_i, \theta^{(t-1)}\right)$
- soft-thresholding algorithm

EM algorithm for Gaussian mixture models

EM clustering

- Initialize $\pi_k^{(0)}, \, \mu_k^{(0)}, \, \Sigma_k^{(0)}, \, \text{for } k = 1, \dots, K$
- For $t = 1, \dots$ until convergence

(E) for
$$i = 1, ..., n, k = 1, ..., K$$
, compute $t_{ik}^{(t-1)} \equiv \Pr\left(Y_i = k \mid x_i, \theta^{(t-1)}\right)$

(M) for
$$k = 1, ..., K$$
, compute $\pi_k^{(t)}$, $\mu_k^{(t)}$, $\Sigma_k^{(t)}$

Prediction/Correction structure

- ► E step ⇔ prediction step
- ► M step ⇔ update/correction step

Convergence

- ▶ EM : convergence toward a local maximum of the log-likelihood
- on guaranty of convergence toward the optimal solution (depend on the initial values)..

Gaussian mixture model and EM algorithm

Prediction vs Clustering

- \blacktriangleright the points x_1, \ldots, x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ightharpoonup Clustering : performance on current data is what matters

Gaussian mixture model and EM algorithm

Estimation of the mixture density f

True density of the data points x_1, \ldots, x_n

Estimated density with EM (K = 3 classes)

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Clustering with EM (K = 2) and estimated 95% confidence regions

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Classification with K-means (K = 2)

Model selection : estimation of K

Minimization of a penalized log-likelihood criterion

$$C(K) = -\hat{l}(x; K) + \text{pen}(K, n)$$

▶ $\hat{l}(x;K) \equiv l(x;\hat{\theta}_K,K)$ with $\hat{\theta}_K$ the MLE of the model parameters with K classes (profile log-likelihood w.r.t K)

Trade-off between two terms to minimize

- $-\hat{l}(x;K)$: fidelity to the data (likelihood)
- ightharpoonup pen(K, n): low complexity of the model

Model selection: BIC criterion

Bayesian Information Criterion (BIC)

Asymptotic $(n \gg m_K)$ criterion for Bayesian models (i.e. with a prior on the model parameters)

$$pen(K, n) = \frac{1}{2}m_K \log(n)$$

- \triangleright n is the size of the data
- \triangleright m_K is the effective number of parameters for the K class model

Equivalent to minimize the following criterion

$$BIC(K) = -2\hat{l}(x; K) + m_K \log(n)$$

Model selection : estimation of K

Example of synthetic data generated according to a mixture of K=3 Gaussians

Model selection : estimation of K

Gaussian mixture :
$$m_K = \underbrace{K-1}_{\pi_1,\dots,\pi_{K-1}} + K \times \underbrace{p}_{\mu_k} + K \times \underbrace{\frac{p(p+1)}{2}}_{\Sigma_h}$$

BIC criterion w.r.t. K

$$\Rightarrow \hat{K} = 2 \text{ or } \hat{K} = 3 \text{ (true value } K = 3)$$

Dissimilarity measures

- Dissimilarity measures requires that
 - $d_{ii} = 0$
 - $d_{ij} \geq 0$
 - $d_{ij} = d_{ji}$
- ▶ Often $d_{ij} \le d_{ik} + d_{kj}$ is NOT satisfied $\forall (i, j, k) \in [1, ..., N]^3$

rk1: d may be sometimes required to be a true distance.

rk2: From similarity s_{ij} to distance or dissimilarity measure d_{ij} : use any decreasing function e.g.

$$d_{ij} = \max(s_{ij}) - s_{ij}$$

$$s_{ij} = \exp(-d_{ij})$$

rk3:

- Dissimilarity measure examples: Euclidean dist, Hamming dist (for categorical variable), Symetrized KL
- ▶ Similarity measure example : scalar product, spectral angle, ...

Generalizing KMEANS for alternate dissimilarity measures

Requires to generalize centroids to any dissimilarity measures: introduce Medoids for each cluster (of index k); denoting the class label by $y_i = f(x_i)$, $\forall k \in \{1, ..., K\}$

$$\operatorname{Med}_k = \arg\min_{x_j/y_j=k} \sum_{i/y_i=k} d(x_i, x_j)$$

rk1: The assignment step remains as in the case of centroids.

rk2: If N is large (more precisely if N_k is large, i.e. the number of points in cluster k), the computation of Med_k may become computationally demanding. Although l_2 norm is most popular, it does not apply for categorical data, where medoids must be introduced.

rk3: This generalization may be used in order to deal with Kernel trick methods (see Florent's lecture), allowing to deal with non convex clusters.

Kernelized Kmeans –Optionnal–

Let $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel such that $\exists \mathcal{H}$ an Hilbert space and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$, satisfying

$$\forall (x_i, x_j) \in \mathcal{X} \times \mathcal{X}, \kappa(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$$

► Expression the centroid in the KHS

$$c_k = \frac{1}{N_k} \sum_{f(x_i)=k} \Phi(x_i) \Leftrightarrow c_k = \arg\min_z \sum_{x/f(x)=k} ||\Phi(x) - z||^2$$

► Assignment step wrt

$$||\Phi(x) - c_k||^2 = \left\langle \Phi(x) - \frac{1}{N_k} \sum_{f(x_i) = k} \Phi(x_i), \Phi(x) - \frac{1}{N_k} \sum_{f(x_i) = k} \Phi(x_i) \right\rangle$$
$$= \kappa(x, x) - \frac{2}{N_k} \sum_{f(x_i) = k} \kappa(x, x_i) + \frac{1}{N_k^2} \sum_{f(x_i) = k} \sum_{f(x_j) = k} \kappa(x_i, x_j)$$

rk: Assignment does NOT request explicit knowledge of c_k rk: Usually, as ϕ is not known, the centroids c_k are NOT known

Kernelized Kmeans, cont'd

rk: Kernel Kmeans allows to tackle problems with non convex classes

rk: Kernel Kmeans has increased sensitivity to initial conditions (random initial labelling)

rk: Kernel expression requires some tuning parameter to be set.

Example

$$\kappa(x,y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$$

Evaluating clustering results

Unsupervised framework

- ⇒ no ground truth is available, (in general).
- if a probabilistic model is used (such as EM) : likelihood of the test set ?(does not really assess clustering discovered by the model)
- if Deterministic approach (such as Kmeans) :? \rightarrow how dense (or compact) are the identified clusters, how well separated they are?
 - ▶ For l₂ distances, compare within-cluster variance with between-cluster variance (remind that the sum is constant).
 - ► For more general dissimilarity measures, popular quality indices (among others) are
 - Davies Bouldin index
 - ▶ Silhouette index

Clustering Quality indices examples

Let C_k denote a cluster, $k \in [1, ..., K]$, and $N_k = |C_k|$, Med_k its medoid Davies Bouldin, DB

ightharpoonup Homogeneity T:

$$T_k = \frac{1}{N_k} \sum_{x \in C_k} d(x, \operatorname{Med}_k) \Rightarrow T = \frac{1}{K} \sum_{k=1}^K T_k$$

ightharpoonup Separability S:

$$S_{kl} = d(\operatorname{Med}_k, \operatorname{Med}_l) \Rightarrow S = \frac{2}{K(K-1)} \sum_{k=1}^{K} \sum_{l \neq k}^{K} S_{kl}$$

▶ DBindex :

$$D_k = \max_{k \neq l} \frac{T_k + T_l}{S_{kl}} \Rightarrow DB = \frac{1}{K} \sum_{k=1}^{K} D_k$$

Clustering Quality indices examples, cont'd

Silhouette index, S

S is relative to each observation point x_i , whose estimated label is $y_i = k$.

▶ Average distance to other observations from the same cluster

$$a(x_i) = \frac{1}{N_k - 1} \sum_{j \neq i, j/y_j = k} d(x_i, x_j)$$

 \blacktriangleright Minimal distance of x_i to the closest cluster

$$b(x_i) = \min_{j \neq i, j/y_j \neq k} \frac{1}{N_{y_j}} \sum_{l/y_l = y_j} d(x_i, x_l)$$

► Silouette

$$\mathcal{S}(x) = \frac{b(x) - a(x)}{max(a(x), b(x))} \Rightarrow \mathcal{S} = \frac{1}{N} \sum_{x} \mathcal{S}(x)$$

rk1: if $N_{u_i} = 1$, set $\mathcal{S}(x_i) = 0$

 $rk2: -1 \leq \mathcal{S}(x_i) \leq 1$

rk3: if $S(x_i) < 0$, x_i would be better labelled as a member of its neighboring cluster. $S(x_i) \simeq 0$ if x_i close to the border between clusters.

Clustering quality measure with expert (prior) knowledge

Assume that some labels are known (ground truth $\{y_i, i=1...N, \}$, $y_i \in \{1, ..., R\}$ is available): leads to compare two partitions, i.e. the estimated clustering $(\{f(x_i), i=1...N)\}, f(x_i) \in \{1, ..., K\})$ with the ground truth partition. Note that labels may take different values for these partitions.

1. RAND index

$$RI = \frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \delta(f(x_i) = f(x_j)) \delta(y_i = y_j) + \delta(f(x_i) \neq f(x_j)) \delta(y_i \neq y_j)$$

rk1: This is the proportion of observations pairs that are either from the same known class and have identical estimated labels, or belong to different classes and have different estimated labels.

 $rk2: 0 \le RI \le 1$

Clustering quality measure with expert knowledge, cont'd

2. Purity index \mathcal{P}

Assume a ground truth partition $\{C_k, k = 1, ..., K\}$. Let

$$p_{kl} \stackrel{def}{=} \frac{N_{kl}}{N_k} = \frac{\#(f(x_i) = k) \text{in } \mathcal{C}_l}{\#(f(x_i) = k)}$$

then

$$P_k \stackrel{def}{=} \max_l p_{kl}$$

$$\mathcal{P} \stackrel{def}{=} \sum_{n=1}^{K} \frac{N_k}{N} P_k$$

 $rk1: p_{kl}$ is the proportion of observations whose estimated label is k, that are in class C_l .

 $rk2: P_k$ is this latter proportion, for the class C_l which contains the more observations with label $f(x_i) = k \to \text{if } C_l$ matches with cluster k, then $P_k = 1$.

Clustering quality measure with expert knowledge, cont'd

3. (Normalized) Mutual information between two clusterings, (N)IM

Let
$$U = \{U_1, ..., U_R\}$$
 and $V = \{V_1, ..., V_K\}$

$$p_{UV}(i,j) \stackrel{def}{=} \mathbb{P}[x \in U_i, x \in V_j] = \frac{|U_i \cap V_j|}{N}$$

$$p_U(i) \stackrel{def}{=} \frac{|U_i|}{N}$$

then

$$IM(U,V) = \sum_{i=1}^{R} \sum_{i=1}^{K} P_{UV}(i,j) \log \frac{P_{UV}(i,j)}{P_{U}(i)P_{V}(j)}$$

or
$$NIM(U, V) = \frac{2IM(U, V)}{H(U) + H(V)}$$
, where $H(U) = -\sum_{i=1}^{R} P_U(i) \log P_U(i)$

Hierarchical approaches

Motivations

- Recursive approach to partition data at all possible scales, using multi-level hierarchical partitioning
 - ► Each labeling operation does not rely on a single operation, but on a sequence of conditional tests,
 - ► Each operation may use a single or a subset of variables (or characteristics) of the data whereas other methods give the same importance to all variables,
 - Allow that different variables are used in different locations in the observation space
 - Provide some insights on the relevance of variables for clustering, classification of prediction tasks
 - ▶ A hierarchical (unsupervised) clustering approach does not require the number of clusters *K* to be known in advance

${\bf Hierarchical\ clustering: Dendogram}$

A dendogram is a Tree

- whose root contains all observations
- ▶ with N leaves containing a single observation
- where two clusters with the same parents are merged at upper level into a single cluster
- where a cluster s split into two children at lower level.
- ► ⇒ Intermediate nodes contain the relevant information
- the length of a branch is proportional to the dissimilarity between the connected clusters
- ► Thresholding the dendogram at different levels issues different clustering ((1) or (2))

Dendogram Construction

Divisive, or "top-down"

- Start from root and divide into two cluster wrt a splitting stategy
 - Entropy (*)
 - Variance
 - Davies-Bouldin
 - Silhouette
 - ... see section on Clustering Quality indices

Agglomerative, or "bottom-up"

- At each iteration, find the closest cluster to each others and merge them.
- Iterate until all observations are in a single cluster.
- ⇒ requires to define closeness measure between clusters

Entropy estimation is difficult in general and uses pdf estimators. Alternate methods use length of quasi additive graphs...

Dendogram Construction, cont'd

Linkage functions: Mostly for agglomerative approaches, measure closeness/distance between clusters

- Requires a distance function d(.,.) on $\{\mathcal{X}\}$ is defined.
 - ► Single linkage

$$d_{single}(\mathcal{C}_k,\mathcal{C}_l) = \min_{x \in \mathcal{C}_k, x' \in \mathcal{C}_l} d(x,x')$$

Complete linkage

$$d_{complete}(C_k, C_l) = \max_{x \in C_k, x' \in C_l} d(x, x')$$

Average linkage

$$d_{average}(\mathcal{C}_k, \mathcal{C}_l) = \frac{1}{|\mathcal{C}_k|} \frac{1}{|\mathcal{C}_l|} \sum_{x \in \mathcal{C}_k} \sum_{x' \in \mathcal{C}_l} d(x, x')$$

Centroidal linkage

$$d_{centroidal}(\mathcal{C}_k, \mathcal{C}_l) = d(\frac{1}{|\mathcal{C}_k|} \sum_{x \in \mathcal{C}_k} x, \frac{1}{|\mathcal{C}_l|} \sum_{x' \in \mathcal{C}_l} x')$$

Dendogram Construction, cont'd

Choosing K

- ▶ By setting the height of the line or level in the dendogram
- \blacktriangleright By choosing K to get e.g. the best silhouette coefficient.

Computational cost

As the all set of pairwise distance (must)(*) be computed, computational cost goes like $\mathcal{O}(pN^2)$ if x has p features.

 \Rightarrow not well adapted to massive data

(*)