互联网超级云计算平台

方坤

谷歌资深软件工程师

题纲

- 计算的规模与极限
- 云计算平台设计挑战
- 谷歌云计算基础技术
- 谷歌云计算新技术

谷歌的云计算理念

- 满足搜索和数据分析的需要
 - -智能,迅速,规模
- 在现有云计算架构上提供公有服务
 - Gmail, Calendar, Picasa, Docs, Google Apps,...
 - App Engine
- 探索新的云计算技术
 - 云存储
 - 云计算
 - 任务调度
 - 节约能源

高性能计算的极端

应用	用户数	精确度	可靠度	数据量
科学计算	少	极高	低 中等	Tera
股市交易	大量	高	极高	Gega
基因排序	少	高	高	Tera Peta
搜索引擎	大量	中等 高	中等	Peta

Figure 2. Learning Curves for Confusable Disambiguation

Figure 2. Learning Curves for Confusable Disambiguation

题纲

- 计算的规模与极限
- 云计算平台设计挑战
- 谷歌云计算基础技术
- 谷歌云计算新技术

样本平台

- 计算机
 - 16GB DRAM; 160 GB SSD; 5 x 1TB disk
- 计算机机架 (Rack)
 - -40 计算机
 - 48 port Gigabit Ethernet switch
- 数据中心 (Warehouse)
 - 10,000 计算机 (250 racks)
 - 2K port Gigabit Ethernet switch

储存 --- 计算机单机

储存 --- 计算机机架

03/28/11

储存 --- 数据中心

03/28/11

设计挑战

- 节约能源
 - 硬件, 软件, 数据中心
 - 编码,压缩,传输数据
- 故障恢复
 - 硬件和软件出错
 - 等待运行较慢的机器
- 新程式设计模型
 - 并行计算
 - Flash (SSD); GPU

能源消耗全球增长趋势

能源消耗每30年增长一倍

能源消耗 地区增长趋势

亚太区能源消耗每6-8 年增长一倍

能源消耗 -- 油当量

0.2g Answering one Google query

20g Using a Laptop for one hour

75g Using a PC & monitor for one hour

173g One weekday newspaper (physical copy)

209g Producing a single glass of orange juice

280g Washing one load of laundry in an efficient machine

532g One beer

电源使用效率

平均电源使用效率 = 2.0

Google 电源使用效率 = 1.16

■ 电源分布和备用电源

■ 照明 Jugle

设计挑战

- 节约能源
 - 一硬件,软件,数据中心
 - -编码,压缩,传输数据
- 故障恢复
 - 硬件和软件出错
 - 等待运行较慢的机器
- 新程式设计模型
 - 并行计算
 - Flash (SSD); GPU

故障率

- 99.9% 正常运行时间 = 9 小时故障 / 年
- 10,000 计算机中心
 - -0.25 次断电
 - -3 次路由器故障
 - 1,000 计算机故障
 - -1,000s 硬盘故障
 - etc., etc., etc.

故障后快速修复

- 复制
- 定期检查
- 尽可能:
 - 松散的一致性
 - 近似的答案
 - 不完整的答案

设计挑战

- 节约能源
 - 一硬件,软件,数据中心
 - -编码,压缩,传输数据
- 故障恢复
 - 硬件和软件出错
 - 等待运行较慢的机器
- 新程式设计模型
 - 并行计算
 - Flash (SSD); GPU

题纲

- 计算的规模与极限
- 云计算平台设计挑战
- 谷歌云计算基础技术
- 谷歌云计算新技术

谷歌文件系统 (GFS)

MapReduce

GFS 和 Mapreduce 于 2004年发表,并成为开源 Hadoop 系统的基础,雅虎,微软和 Facebook 在各自的应用里均使用了 Hadoop 系统。

谷歌大表格 (Big Table)

• 内存管理

• 举例

- 行: 网页

- 列:网页具体信息

- 时间戳: 网页信息提取的时间

题纲

- 计算的规模与极限
- 云计算平台设计挑战
- 谷歌云计算基础技术
- 谷歌云计算新技术

赢在规模的例证

- 谷歌翻译
- 谷歌语音识别
- 趋势预测

流感趋势图

Explore flu trends - United States

We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses aggregated Google search data to estimate flu activity. Learn more »

总结

- 计算的规模与极限
- 云计算平台设计挑战
- 谷歌云计算基础技术
- 谷歌云计算新技术

感谢

- 感谢如下谷歌同事贡献:
 - Peter Norvig
 - Stuart Feldman
 - Edward Chang
 - Xuemei Gu
 - Hai Fang

谢谢!

