ММИ в алгебре

1. Пусть $n \in \mathbb{N}$. Докажите тождества:

(a)
$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

(b)
$$1 \times 1! + 2 \times 2! + \ldots + n \times n! = (n+1)! - 1$$
.

- 2. (неравенство Бернулли) Докажите, что при всех натуральных n и действительных x > -1 верно неравенство $(1+x)^n \geqslant 1+nx$.
- 3. Известно, что $x+\frac{1}{x}$ целое число. Докажите, что $x^n+\frac{1}{x^n}$ также является целым при любом $n\in\mathbb{N}$.
- 4. Докажите, что при любом $n \in \mathbb{N}$ верны неравенства:

(a)
$$\frac{1 \times 3 \times 5 \times \ldots \times (2n-1)}{2 \times 4 \times 6 \times \ldots \times 2n} \le \frac{1}{\sqrt{2n+1}};$$

(b)
$$1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} < 2$$
.

- 5. Пусть $x_1 = 1$ и $x_{n+1} = 2x_n + 1$. Найдите явную формулу для элементов последовательности $(x_n)_{n \in \mathbb{N}}$.
- 6. Докажите, что единицу можно представить в виде суммы $n \geq 3$ различных дробей вида $1/k, \, k \in \mathbb{N}$.
- 7. Докажите, что при всех целых чисел $x_1, x_2, ..., x_n$ произведение $(1+x_1^2)(1+x_2^2)...(1+x_n^2)$ представимо в виде суммы квадратов двух целых чисел.
- 8. (неравенство о средних) Докажите, что для неотрицательных действительных чисел x_1, x_2, \ldots, x_n верно неравенство $\sqrt[n]{x_1x_2\ldots x_n} \leq \frac{x_1+x_2+\ldots+x_n}{n}$.
- 9. Пусть $n \in \mathbb{N}$. Найдите явные формулы для сумм:

(a)
$$1+3+\ldots+(2n-1);$$

(b) $\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{n-1}{n!}.$