

Next-Generation MADOCA for The SPring-8 Control Framework

T. Matsumoto, Y. Furukawa, M. Ishii JASRI/SPring-8

Outline

- Introduction to MADOCA
- MADOCA II Messaging
- MADOCA II Applications
- Summary

Introduction to MADOCA

- Control Framework originally developed at SPring-8, Japan
- Adopted in several facilities for various control applications
 - SPring-8, SACLA, NewSUBARU, HiSOR
 - Accelerator, beamline and experimental station controls
- Successfully utilized since 1997

*Photos courtesy of RIKEN/JASRI

Introduction to MADOCA

- Control Framework originally developed at SPring-8, Japan
 - Message And Database Oriented Control Architecture
- Adopted in several facilities for various control applications
 - SPring-8, SACLA, NewSUBARU, HiSOR
 - Accelerator, beamline and experimental station controls
- Successfully utilized since 1997

*Photos courtesy of RIKEN/JASRI

- Based on a text command with S/V/O/C syntax
 - Subject, Verb, Object, Complement
 - Examples:
 - -<S>/put/sr_mag_ps_b/on
 - -<S>/get/sr_vac_ivg_19_ab3/pressure
 - Unique for object name to identify control equipment
 - <S> = 123_matumot_oprgui_opcon01 (example)
 - → from PID, user name, application name and host name
 - Replies are returned from the equipment

- Based on a text command with S/V/O/C syntax
 - Subject, Verb, Object, Complement
 - Examples:
 - -<S>/put/sr_mag_ps_b/on
 - -<S>/get/sr_vac_ivg_19_ab3/pressure
 - Unique for object name to identify control equipment
 - <S> = 123_matumot_oprgui_opcon01 (example)
 - → from PID, user name, application name and host name
 - Replies are returned from the equipment
 - sr_mag_ps_b/put/<S>/ok
 - sr_vac_ivg_19_abs/get/<S>/1.23E-09Pa

- Based on a text command with S/V/O/C syntax
 - Subject, Verb, Object, Complement
 - Examples:
 - -<S>/put/sr_mag_ps_b/on
 - -<S>/get/sr_vac_ivg_19_ab3/pressure
 - Unique for object name to identify control equipment
 - <S> = 123_matumot_oprgui_opcon01 (example)
 - → from PID, user name, application name and host name
 - Replies are returned from the equipment
 - sr_mag_ps_b/put/<S>/ok
 - sr_vac_ivg_19_abs/get/<S>/1.23E-09Pa
- Human-readable messages (abstracted)
 - -Do not include specific controls on each device

- Based on a text command with S/V/O/C syntax
 - Subject, Verb, Object, Complement
 - Examples:
 - -<S>/put/sr_mag_ps_b/on
 - -<S>/get/sr_vac_ivg_19_ab3/pressure
 - Unique for object name to identify control equipment
 - <S> = 123_matumot_oprgui_opcon01 (example)
 - → from PID, user name, application name and host name
 - Replies are returned from the equipment
 - sr_mag_ps_b/put/<S>/ok
 - sr_vac_ivg_19_abs/get/<S>/1.23E-09Pa
- Human-readable messages (abstracted)
 - -Do not include specific controls on each device
 - → These features are essential in our control system

- SVOC length ≤ 255 characters
 - Not suitable to transmit variable length-data
 - Waveform, Image data

- SVOC length ≤ 255 characters
 - Not suitable to transmit variable length-data
 - Waveform, Image data
- -Lack of controls on Windows
 - Used only for Linux, Solaris
 - Due to System V IPC, ONC/RPC

- SVOC length ≤ 255 characters
 - Not suitable to transmit variable length-data
 - Waveform, Image data
- -Lack of controls on Windows
 - Used only for Linux, Solaris
 - Due to System V IPC, ONC/RPC
 - -Synchronous communication in ONC/RPC
 - Need to wait to finish processing of each message

Next-Generation MADOCA, MADOCA II

- Keep messaging format of MADOCA
- Fix shortcomings in MADOCA

Next-Generation MADOCA, MADOCA II

- Keep messaging format of MADOCA
- Fix shortcomings in MADOCA
 - √ Messaging with ZeroMQ/MessagePack
 - ✓ Data logging with NoSQL (Cassandara, Redis)
 - → Refer M.Kago et al. on TUPPC08
 - "Development of a Scalable and Flexible Data Logging System Using NoSQL Databases"

GUI Operator WS GUI Message System V IPC Server Access Access Server Server ONC/RPC Equipment Manager Devices Devices Front-end computers (VME, µTCA, ···)

✓ Messaging with Variable-length data

S/V/O/C

✓Multi-OS

- Can be used for Linux, Solaris

✓Multi-languages

✓ Messaging with Variable-length data

S/V/O/C

✓Multi-OS

- Can be used for Linux, Solaris

✓Multi-languages

✓ Messaging with Variable-length data

S/V/O/C

Waveform, Image data etc. (if required)

✓Multi-OS

- Can be used for Linux, Solaris

✓Multi-languages

✓ Messaging with Variable-length data

S/V/O/C

Waveform, Image data etc. (if required)

✓Multi-OS

- Can be used for Linux, Solaris

√Multi-languages

✓ Messaging with Variable-length data

S/V/O/C

Waveform, Image data etc. (if required)

✓Multi-OS

- Can be used for Linux, Solaris and Windows

✓Multi-languages

✓ Messaging with Variable-length data

S/V/O/C

Waveform, Image data etc. (if required)

✓Multi-OS

- Can be used for Linux, Solaris and Windows

✓Multi-languages

MADOCA II has been written in C++
 Also applied to Python and LabVIEW so far

√Asynchronous communications

 No need to wait to finish processing of each message

√Asynchronous communications

- No need to wait to finish processing of each message
 - Message ID is assigned to each message to handle the relation between sending and reception

√Asynchronous communications

- No need to wait to finish processing of each message
 - Message ID is assigned to each message to handle the relation between sending and reception
- Distributed processing of control messages
 - Multiple Equipment Managers can help

Used for Serialization of Messaging data

✓ Message exchange among different computing environments

- byte-order procedures are managed

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

Array

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

Array [1.23, 4.56, 7.89, ...]

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

Array [1.23, 4.56, 7.89, ...]

Мар

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

```
Array [ 1.23, 4.56,7.89, ... ]

Map { "image_data_type" : "MONO", "image_data": [1,3,5,...] }
```

Used for Serialization of Messaging data

- ✓Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

```
Array [ 1.23, 4.56,7.89, ... ]
```

→ Waveform

```
Map { "image_data_type" : "MONO", "image_data": [1,3,5,...] }
```

Used for Serialization of Messaging data

- ✓ Message exchange among different computing environments
 - byte-order procedures are managed
- √Flexible data formats
 - → Applied to variable-length data, No size limit

```
Array [ 1.23, 4.56,7.89, ... ]
```

→ Waveform

Map { "image_data_type" : "MONO", "image_data": [1,3,5,…] }

→ Image

Case for Image:

Key	Data format	Value
image_data_type	string	"MONO", "RGB", "RGBA"
image_width	int32_t	
image_height	int32_t	
image_depth	int32_t	
image_num_type	string	"int32_t","uint16_t," "uint32_t","uint64_t," "int16_t", "int32_t","int64_t","float","double"
image_data	defined by [image_num_type]	→Array
image_pixel_order	string	"lefttop", "leftbottom"

Case for Image:

Key	Data format	Value
image_data_type	string	"MONO", "RGB", "RGBA"
image_width	int32_t	
image_height	int32_t	
image_depth	int32_t	
image_num_type	string	"int32_t","uint16_t," "uint32_t","uint64_t," "int16_t", "int32_t","int64_t","float","double"
image_data	defined by [image_num_type]	→Array
image_pixel_order	string	"lefttop", "leftbottom"

Key's can be flexibly added by users

MADOCA II Performance (1)

MADOCA II Performance (2)

- "Real-time Process control on Multi-core Processors"
 - MOPPC128 M. Ishii et al.

- RTT < 2ms
 - With binding processes into real-time class
 - → Real-time control

Since Sep. 2012

Since Sep. 2012

Since Sep. 2012

MADOCA II

VME for Insertion Device

Message
Server 2

Equipmer Equipment
Manager 2

Beamline
Front-end
computer

Since Sep. 2012

VME for Insertion Device Devices

Since Sep. 2012

Since Sep. 2012

Since Sep. 2012

VME for Insertion Device

Since Sep. 2012

Since Sep. 2012

ZeroMQ

Since Sep. 2012

Manager 2

Devices

Manager

Devices

Beamline

Front-end

computer

Since Sep. 2012

Devices

Devices

Front-end

computer

Since Sep. 2012

VME for

Since Sep. 2012

VME for

Device

Insertion

Since Sep. 2012

VME for

- "MADOCA II Interface with LabVIEW"
 - MOPPC129 Y. Furukawa et al.
 - Applied to Beam Position Monitor (BPM)
 - Waveform, 20k points/sec
 - Running on Windows
 - LabVIEW protocol for MADOCA II

Applied since Sep. 2013

- "MADOCA II Interface with LabVIEW"
 - MOPPC129 Y. Furukawa et al.
 - Applied to Beam Position Monitor (BPM)
 - Waveform, 20k points/sec
 - Running on Windows
 - LabVIEW protocol for MADOCA II

Applied since Sep. 2013

- "MADOCA II Interface with LabVIEW"
 - MOPPC129 Y. Furukawa et al.
 - Applied to Beam Position Monitor (BPM)
 - Waveform, 20k points/sec
 - Running on Windows
 - LabVIEW protocol for MADOCA II
- "Development of MicroTCA-based Image Processing System at SPring-8"
 - TUPPC088 A. Kiyomichi et al.

- "MADOCA II Interface with LabVIEW"
 - MOPPC129 Y. Furukawa et al.
 - Applied to Beam Position Monitor (BPM)
 - Waveform, 20k points/sec
 - Running on Windows
 - LabVIEW protocol for MADOCA II
- "Development of MicroTCA-based Image Processing System at SPring-8"
 - TUPPC088 A. Kiyomichi et al.

Applied since Sep. 2013

- "MADOCA II Interface with LabVIEW"
 - MOPPC129 Y. Furukawa et al.
 - Applied to Beam Position Monitor (BPM)
 - Waveform, 20k points/sec
 - Running on Windows
 - LabVIEW protocol for MADOCA II
- "Development of MicroTCA-based Image Processing System at SPring-8"
 - TUPPC088 A. Kiyomichi et al.
- Applied to two-dimensional synchrotron interferometer
 - Image data (VGA), up to 10 Hz

Summary

- New control framework, MADOCA II has been developed
 - Shortcomings in MADOCA are fixed
 - Flexibilities in the Messaging using ZeroMQ/MessagePack
 - Messaging with variable-length data
 - Asynchronous communications
 - Controls on Linux, Solaris and Windows
- Control systems with MADOCA II are implemented
 - Stabilities → confirmed in BL36XU beamline since Sep. 2012
 - BPM and two-dimensional interferometersSACLA experimental station controls
 - Since Sep. 2013
- Next step: utilize MADOCA II for various applications
 - Upgrade & Replacement of SPring-8 control systems
 - Apply MADOCA II into other facilities