Overview

Problem: Are two sets of observations drawn from the same distribution?

Contributions:

- We exhibit a family of L^p -based metrics which metrize the weak convergence.
- We derive linear-time, nonparametric, a.s consistent L^1 based two sample tests.
- We show L^1 geometry provides better power than its L^2 counterpart.
- We maximize a lower bound on the test power and learn distinguishing features between distributions.

Weak Convergence

Theorem: Let k a characteric and bounded kernel. For all $p \geq 1$,

$$d_{L^p,\mu}(\mathbf{P},\mathbf{Q}) \coloneqq \left(\int_{\mathbf{t}} |\mu_{\mathbf{P}}(t) - \mu_{\mathbf{Q}}(t)|^p d\Gamma(t)\right)^{1/p}$$

where $\mu_P(t) := \int_t k(x,t) dP(x)$ is a metric which metrize the weak convergence.

Sketch of proof:

- Integral Operator: $T_k: f \in L_2^{d\Gamma}(\mathbb{R}^d) \longrightarrow \int_{t \in \mathbb{R}^d} k(t, \cdot) f(t) dt$
- Unit Ball of $L^{d\Gamma}_{\infty}(\mathbb{R}^d)$: $B^{d\Gamma}_{\infty} \coloneqq \{ f : \sup |f(x)| \le 1 \Gamma \text{a.s} \}$
- IPM formulation: $d_{L^1,\mu}(P,Q) = \sup \{E_P(f(X)) E_Q(f(Y))\}$

Mean Embedding test

- Test $H_0: P = Q$ vs $H_1: P \neq Q$:
- Samples: $X := \{x_i\}_{i=1}^n \sim P$ and $Y := \{y_i\}_{i=1}^n \sim Q$
- Empirical ME: $\mu_X(T) := \frac{1}{n} \sum_{i=1}^n k_{\sigma}(x_i, T)$
- k_{σ} the Gaussian kernel of width σ
- Test locations: $\{T_i\}_{i=1}^J \sim \Gamma$
- Test statistic:

$$\left(\hat{d}_{\ell_p,\mu}(X,Y)\right)^p \coloneqq n^{\frac{p}{2}} \sum_{i=1}^J |\mu_X(T_i) - \mu_Y(T_i)|^p$$

$$- |\mu_P - \mu_O| - \mu_P - \mu_O$$

Test of level α : Compute $(\hat{d}_{\ell_p,\mu}(X,Y))^r$ and reject H_0 if $\left(\hat{d}_{\ell_p,\mu}(X,Y)\right)^{\rho} > \zeta_{\alpha,p} = 1 - \alpha$ quantile of the null distribution.

Why $\ell_1 \gg \ell_2$?

Definition: (Analytic kernel) *A positive definite kernel* k is analytic if for all $x \in \mathbb{R}^d$, the feature map $x \to \mathbf{k}(x,.)$ is an analytic function on \mathbb{R}^d .

Proposition: Let. $\delta > 0$. Under the alternative hypothesis H_1 , almost surely there exists $N \geq 1$, such that for all $n \geq N$, with a probability of $1 - \delta$:

Normalized Tests

Remark: Under H_0 , $\hat{d}_{\ell_1,\mu}(X,Y)$ converge to a sum of correlated Nakagami variables.

Normalized Mean Embedding (ME) Test:

$$L1-ME[X,Y] \coloneqq ||\sqrt{n} \boldsymbol{\Sigma}_n^{-\frac{1}{2}} \boldsymbol{S}_n||_1$$

- $S_n \coloneqq \frac{1}{n} \sum_{i=1}^n Z_X^i Z_Y^i$
- $\Sigma_n := \widehat{cov}(Z_X) + \widehat{cov}(Z_Y)$ $Z_X^i := (k_{\sigma}(x_i, T_1), ..., k_{\sigma}(x_i, T_J))$

Proposition: Under H_0 , L1-ME[X, Y] is a.s asymptotically distributed as a sum of J i.i.d Nakagami variables of parameter $m = \frac{1}{2}$ and $\varpi = \frac{1}{2}$.

Normalized Smooth Characteristic Function (SCF) Test:

L1-SCF[
$$X, Y$$
] := $||\sqrt{n} \Sigma_n^{-\frac{1}{2}} S_n||_1$

- $\mathbf{Z}_X^i := (\cos(x_i^T \mathbf{T_1}) f(x_i), \sin(x_i^T \mathbf{T_1}) f(x_i), \dots, \sin(x_i^T \mathbf{T_J}) f(x_i))$
- f is the inverse Fourier transform of k_{σ} .

Optimization Procedure

Regularized Statistic:

$$\text{L1-ME}[\textbf{\textit{X}},\textbf{\textit{Y}}]\coloneqq||\sqrt{n}\,(\textbf{\textit{\Sigma}}_n+\gamma_n)^{-1/2}\textbf{\textit{S}}_n||_1$$
 • $\gamma_n\longrightarrow 0$

Proposition: The test power $P(L1-ME[X,Y] > \epsilon)$ of the the L1-ME test satisfies $P(L1-ME[X,Y] > \epsilon) \ge L(\lambda_n)$ where $L(\lambda_n)$ is an increasing function of λ_n and goes to 1 when *n* goes to infinity.

• $\lambda_n := ||\sqrt{n} \Sigma^2 S||_1$ is the population counterpart of L1-ME[X,Y].

Optimization Procedure:

- Optimize $\{T_i\}_{i=1}^J$, $\sigma = argmax L(\lambda_n)$
- Estimation of λ_n on a separate training set.

Informative Features

Contour plot of L1-ME[X, Y] as a function of T_2 with J=2 and T_1 fixed.

- $P \sim N([0,0], I_2)$
- $\mathbf{Q} \sim N([0,1], \mathbf{I_2})$
- L1-ME[X,Y] detects the differences.

Test Power: Synthetic Problems

Test Power vs. Sample Size

Data	P	Q
GMD	$\mathcal{N}(0,I_d)$	$\mathcal{N}((1,0,,0)^T,I_d)$
GVD	$\mathcal{N}(0,I_d)$	$\mathcal{N}(0, diag(2,1,,1))$
Blobs	Mixture	of 16 Gaussians in \mathbb{R}^2

- L1-opt-ME, L1-opt-SCF: Proposed Methods
- L1-grid-ME, L1-grid-SCF: Random settings
- ME-full, SCF-full: Optimized ℓ_2 -based methods • MMD-quad, MMD-lin: Quadratic and linear-time MMD tests

Test Power vs. Dimension

Higgs Dataset

3. Plot of Type-II error for ℓ_1 and ℓ_2 based test. Optimized tests outperform their random versions.

Higgs Dataset: d = 4,

