

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

146



(a)

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>6</sup> :<br><br>C12N 15/12, A61K 38/17, C07K 14/47,<br>16/18, A61K 35/14                                                                                                                                                                                                            |  | A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (11) International Publication Number: <b>WO 99/38973</b><br><br>(43) International Publication Date: 5 August 1999 (05.08.99) |
| (21) International Application Number: PCT/US99/01642<br><br>(22) International Filing Date: 26 January 1999 (26.01.99)                                                                                                                                                                                                            |  | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,<br>BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,<br>GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,<br>MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,<br>TM, TR, TT, UA, UG, UZ, VN, YU, ZW. ARIPO patent<br>(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent<br>(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent<br>(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,<br>LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,<br>CM; GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                                                                                                |
| (30) Priority Data:<br><br>09/015,029 28 January 1998 (28.01.98) US<br>09/015,022 28 January 1998 (28.01.98) US<br>09/040,828 18 March 1998 (18.03.98) US<br>09/040,831 18 March 1998 (18.03.98) US<br>09/122,192 23 July 1998 (23.07.98) US<br>09/122,191 23 July 1998 (23.07.98) US<br>09/219,245 22 December 1998 (22.12.98) US |  | Published<br><i>Without international search report and to be republished upon receipt of that report.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |
| (71) Applicant: CORIXA CORPORATION [US/US]; Suite 200,<br>1124 Columbia Street, Seattle, WA 98104 (US).                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |
| (72) Inventors: REED, Steven, G.; 2843 - 122nd Place N.E.,<br>Bellevue, WA 98005 (US). LODES, Michael, J.; 9223 -<br>36th Avenue S.W., Seattle, WA 98126 (US). FRUDAKIS,<br>Tony, N.; P.O. Box 99232, Seattle, WA 99232-0232 (US).<br>MOHAMATH, Raodoh; 4205 South Morgan, Seattle, WA<br>98118 (US).                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |
| (74) Agents: MAKI, David, J. et al.; Seed and Berry LLP,<br>6300 Columbia Center, 701 Fifth Avenue, Seattle, WA<br>98104-7092 (US).                                                                                                                                                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |

(54) Title: COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE

## (57) Abstract

Compounds and methods for treating lung cancer are provided. The inventive compounds include polypeptides containing at least a portion of a lung tumor protein. Vaccines and pharmaceutical compositions for immunotherapy of lung cancer comprising such polypeptides, or polynucleotides encoding such polypeptides, are also provided, together with polynucleotides for preparing the inventive polypeptides.

**COMPOUNDS FOR THERAPY AND DIAGNOSIS  
OF LUNG CANCER AND METHODS FOR THEIR USE**

**5 TECHNICAL FIELD**

The present invention relates generally to compositions and methods for the treatment of lung cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in lung tumor tissue, together with polypeptides encoded by such nucleotide sequences. The inventive nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the treatment of lung cancer.

**BACKGROUND OF THE INVENTION**

Lung cancer is the primary cause of cancer death among both men and women in the U.S., with an estimated 172,000 new cases being reported in 1994. The five-year survival rate among all lung cancer patients, regardless of the stage of disease at diagnosis, is only 13%. This contrasts with a five-year survival rate of 46% among cases detected while the disease is still localized. However, only 16% of lung cancers are discovered before the disease has spread.

Early detection is difficult since clinical symptoms are often not seen until the disease has reached an advanced stage. Currently, diagnosis is aided by the use of chest x-rays, analysis of the type of cells contained in sputum and fiberoptic examination of the bronchial passages. Treatment regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. In spite of considerable research into therapies for the disease, lung cancer remains difficult to treat.

Accordingly, there remains a need in the art for improved vaccines, treatment methods and diagnostic techniques for lung cancer.

**SUMMARY OF THE INVENTION**

Briefly stated, the present invention provides compounds and methods for the therapy of lung cancer. In a first aspect, isolated polynucleotides encoding lung tumor polypeptides are provided, such polynucleotides comprising a nucleotide sequence selected

herein; and (b) detecting in the sample a protein or polypeptide that binds to the binding agent. In preferred embodiments, the binding agent is an antibody, most preferably a monoclonal antibody.

In related aspects, methods are provided for monitoring the progression of lung cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the polypeptides disclosed herein; (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent; (c) repeating steps (a) and (b); and comparing the amounts of polypeptide detected in steps (b) and (c).

Within related aspects, the present invention provides antibodies, preferably monoclonal antibodies, that bind to the inventive polypeptides, as well as diagnostic kits comprising such antibodies, and methods of using such antibodies to inhibit the development of lung cancer.

The present invention further provides methods for detecting lung cancer comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide that encodes one of the polypeptides disclosed herein; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In a preferred embodiment, at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181.

In a further aspect, the present invention provides a method for detecting lung cancer in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide that encodes one of the polypeptides disclosed herein; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. Preferably, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181. In related aspects, diagnostic kits comprising the above oligonucleotide probes or primers are provided.

- SEQ ID NO: 14 is the determined cDNA sequence for L355C1.cons  
SEQ ID NO: 15 is the determined cDNA sequence for L366C1.cons  
SEQ ID NO: 16 is the determined cDNA sequence for L163C1a  
SEQ ID NO: 17 is the determined cDNA sequence for LT86-1  
5 SEQ ID NO: 18 is the determined cDNA sequence for LT86-2  
SEQ ID NO: 19 is the determined cDNA sequence for LT86-3  
SEQ ID NO: 20 is the determined cDNA sequence for LT86-4  
SEQ ID NO: 21 is the determined cDNA sequence for LT86-5  
SEQ ID NO: 22 is the determined cDNA sequence for LT86-6  
10 SEQ ID NO: 23 is the determined cDNA sequence for LT86-7  
SEQ ID NO: 24 is the determined cDNA sequence for LT86-8  
SEQ ID NO: 25 is the determined cDNA sequence for LT86-9  
SEQ ID NO: 26 is the determined cDNA sequence for LT86-10  
SEQ ID NO: 27 is the determined cDNA sequence for LT86-11  
15 SEQ ID NO: 28 is the determined cDNA sequence for LT86-12  
SEQ ID NO: 29 is the determined cDNA sequence for LT86-13  
SEQ ID NO: 30 is the determined cDNA sequence for LT86-14  
SEQ ID NO: 31 is the determined cDNA sequence for LT86-15  
SEQ ID NO: 32 is the predicted amino acid sequence for LT86-1  
20 SEQ ID NO: 33 is the predicted amino acid sequence for LT86-2  
SEQ ID NO: 34 is the predicted amino acid sequence for LT86-3  
SEQ ID NO: 35 is the predicted amino acid sequence for LT86-4  
SEQ ID NO: 36 is the predicted amino acid sequence for LT86-5  
SEQ ID NO: 37 is the predicted amino acid sequence for LT86-6  
25 SEQ ID NO: 38 is the predicted amino acid sequence for LT86-7  
SEQ ID NO: 39 is the predicted amino acid sequence for LT86-8  
SEQ ID NO: 40 is the predicted amino acid sequence for LT86-9  
SEQ ID NO: 41 is the predicted amino acid sequence for LT86-10  
SEQ ID NO: 42 is the predicted amino acid sequence for LT86-11  
30 SEQ ID NO: 43 is the predicted amino acid sequence for LT86-12

- SEQ ID NO: 74 is the predicted amino acid sequence for LT86-21  
SEQ ID NO: 75 is the predicted amino acid sequence for LT86-22  
SEQ ID NO: 76 is the predicted amino acid sequence for LT86-26  
SEQ ID NO: 77 is the predicted amino acid sequence for LT86-27
- 5 SEQ ID NO: 78 is the determined extended cDNA sequence for L86S-12  
SEQ ID NO: 79 is the determined extended cDNA sequence for L86S-36  
SEQ ID NO: 80 is the determined extended cDNA sequence for L86S-46  
SEQ ID NO: 81 is the predicted extended amino acid sequence for L86S-12  
SEQ ID NO: 82 is the predicted extended amino acid sequence for L86S-36
- 10 SEQ ID NO: 83 is the predicted extended amino acid sequence for L86S-46  
SEQ ID NO: 84 is the determined 5'cDNA sequence for L86S-6  
SEQ ID NO: 85 is the determined 5'cDNA sequence for L86S-11  
SEQ ID NO: 86 is the determined 5'cDNA sequence for L86S-14  
SEQ ID NO: 87 is the determined 5'cDNA sequence for L86S-29
- 15 SEQ ID NO: 88 is the determined 5'cDNA sequence for L86S-34  
SEQ ID NO: 89 is the determined 5'cDNA sequence for L86S-39  
SEQ ID NO: 90 is the determined 5'cDNA sequence for L86S-47  
SEQ ID NO: 91 is the determined 5'cDNA sequence for L86S-49  
SEQ ID NO: 92 is the determined 5'cDNA sequence for L86S-51
- 20 SEQ ID NO: 93 is the predicted amino acid sequence for L86S-6  
SEQ ID NO: 94 is the predicted amino acid sequence for L86S-11  
SEQ ID NO: 95 is the predicted amino acid sequence for L86S-14  
SEQ ID NO: 96 is the predicted amino acid sequence for L86S-29  
SEQ ID NO: 97 is the predicted amino acid sequence for L86S-34
- 25 SEQ ID NO: 98 is the predicted amino acid sequence for L86S-39  
SEQ ID NO: 99 is the predicted amino acid sequence for L86S-47  
SEQ ID NO: 100 is the predicted amino acid sequence for L86S-49  
SEQ ID NO: 101 is the predicted amino acid sequence for L86S-51  
SEQ ID NO: 102 is the determined DNA sequence for SLT-T1
- 30 SEQ ID NO: 103 is the determined 5' cDNA sequence for SLT-T2

- SEQ ID NO: 134 is the determined cDNA sequence for PSLT-69  
SEQ ID NO: 135 is the determined cDNA sequence for PSLT-71  
SEQ ID NO: 136 is the determined cDNA sequence for PSLT-73  
SEQ ID NO: 137 is the determined cDNA sequence for PSLT-79  
5 SEQ ID NO: 138 is the determined cDNA sequence for PSLT-03  
SEQ ID NO: 139 is the determined cDNA sequence for PSLT-09  
SEQ ID NO: 140 is the determined cDNA sequence for PSLT-011  
SEQ ID NO: 141 is the determined cDNA sequence for PSLT-041  
SEQ ID NO: 142 is the determined cDNA sequence for PSLT-62  
10 SEQ ID NO: 143 is the determined cDNA sequence for PSLT-6  
SEQ ID NO: 144 is the determined cDNA sequence for PSLT-37  
SEQ ID NO: 145 is the determined cDNA sequence for PSLT-74  
SEQ ID NO: 146 is the determined cDNA sequence for PSLT-010  
SEQ ID NO: 147 is the determined cDNA sequence for PSLT-012  
15 SEQ ID NO: 148 is the determined cDNA sequence for PSLT-037  
SEQ ID NO: 149 is the determined 5' cDNA sequence for SAL-3  
SEQ ID NO: 150 is the determined 5' cDNA sequence for SAL-24  
SEQ ID NO: 151 is the determined 5' cDNA sequence for SAL-25  
SEQ ID NO: 152 is the determined 5' cDNA sequence for SAL-33  
20 SEQ ID NO: 153 is the determined 5' cDNA sequence for SAL-50  
SEQ ID NO: 154 is the determined 5' cDNA sequence for SAL-57  
SEQ ID NO: 155 is the determined 5' cDNA sequence for SAL-66  
SEQ ID NO: 156 is the determined 5' cDNA sequence for SAL-82  
SEQ ID NO: 157 is the determined 5' cDNA sequence for SAL-99  
25 SEQ ID NO: 158 is the determined 5' cDNA sequence for SAL-104  
SEQ ID NO: 159 is the determined 5' cDNA sequence for SAL-109  
SEQ ID NO: 160 is the determined 5' cDNA sequence for SAL-5  
SEQ ID NO: 161 is the determined 5' cDNA sequence for SAL-8  
SEQ ID NO: 162 is the determined 5' cDNA sequence for SAL-12  
30 SEQ ID NO: 163 is the determined 5' cDNA sequence for SAL-14

- SEQ ID NO: 194 is the predicted amino acid sequence for SAL-5  
SEQ ID NO: 195 is the predicted amino acid sequence for SAL-8  
SEQ ID NO: 196 is the predicted amino acid sequence for SAL-12  
SEQ ID NO: 197 is the predicted amino acid sequence for SAL-14  
5 SEQ ID NO: 198 is the predicted amino acid sequence for SAL-16  
SEQ ID NO: 199 is the predicted amino acid sequence for SAL-23  
SEQ ID NO: 200 is the predicted amino acid sequence for SAL-26  
SEQ ID NO: 201 is the predicted amino acid sequence for SAL-29  
SEQ ID NO: 202 is the predicted amino acid sequence for SAL-32  
10 SEQ ID NO: 203 is the predicted amino acid sequence for SAL-39  
SEQ ID NO: 204 is the predicted amino acid sequence for SAL-42  
SEQ ID NO: 205 is the predicted amino acid sequence for SAL-43  
SEQ ID NO: 206 is the predicted amino acid sequence for SAL-44  
SEQ ID NO: 207 is the predicted amino acid sequence for SAL-48  
15 SEQ ID NO: 208 is the predicted amino acid sequence for SAL-68  
SEQ ID NO: 209 is the predicted amino acid sequence for SAL-72  
SEQ ID NO: 210 is the predicted amino acid sequence for SAL-77  
SEQ ID NO: 211 is the predicted amino acid sequence for SAL-86  
SEQ ID NO: 212 is the predicted amino acid sequence for SAL-88  
20 SEQ ID NO: 213 is the predicted amino acid sequence for SAL-93  
SEQ ID NO: 214 is the predicted amino acid sequence for SAL-100  
SEQ ID NO: 215 is the predicted amino acid sequence for SAL-105  
SEQ ID NO: 216 is a second predicted amino acid sequence for SAL-50

25 DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the therapy of lung cancer. The compositions described herein include polypeptides, fusion proteins and polynucleotides. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

of the proteins described herein may be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide 5 may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, <sup>125</sup>I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of lung cancer 10 patients. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul, *Fundamental Immunology*, 3<sup>rd</sup> ed., Raven Press, 1993, pp. 243-247.

The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and 15 corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A 20 polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides.

25 A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the 30 above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide

SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Saitou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

libraries prepared from SCID mice with mouse anti-tumor sera, as described below in Example 4. Examples of cDNA sequences that may be isolated using this technique are provided in SEQ ID NO: 149-181.

A gene encoding a polypeptide described herein (or a portion thereof) may, 5 alternatively, be amplified from human genomic DNA, or from lung tumor cDNA, via polymerase chain reaction. For this approach, sequence-specific primers may be designed based on the nucleotide sequences provided herein and may be purchased or synthesized. An amplified portion of a specific nucleotide sequence may then be used to isolate the full length gene from a human genomic DNA library or from a lung tumor cDNA library, using well 10 known techniques, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989).

Once a DNA sequence encoding a polypeptide is obtained, the polypeptide may be produced recombinantly by inserting the DNA sequence into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors 15 known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide that encodes the recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian 20 cell line, such as COS or CHO cells. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof. Supernatants from suitable host/vector systems which secrete the recombinant polypeptide may be first concentrated using a commercially available filter. The concentrate may then be applied to a suitable purification matrix, such as an affinity matrix or 25 ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify the recombinant polypeptide.

Such techniques may also be used to prepare polypeptides comprising portions or variants of the native polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using 30 techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as

extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. *New Engl. J. Med.*, 336:86-91 (1997)).

Polypeptides that comprise an immunogenic portion of a lung tumor protein may generally be used for therapy of lung cancer, wherein the polypeptide stimulates the patient's own immune response to lung tumor cells. The present invention thus provides methods for using one or more of the compounds described herein (which may be polypeptides, polynucleotides or fusion proteins) for immunotherapy of lung cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with disease, or may be free of detectable disease. Accordingly, the compounds disclosed herein may be used to treat lung cancer or to inhibit the development of lung cancer. In a preferred embodiment, the compounds are administered

ordinary skill in the art. The DNA may also be "naked," as described, for example, in published PCT application WO 90/11092, and Ulmer et al., *Science* 259:1745-1749, 1993, reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported 5 into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (*e.g.*, intracutaneous, intramuscular, intravenous or subcutaneous), 10 intranasally (*e.g.*, by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that is effective to raise an immune response (cellular and/or humoral) against lung tumor cells in 15 a treated patient. A suitable immune response is at least 10-50% above the basal (*i.e.*, untreated) level. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1  $\mu$ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to 20 about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax 25 and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (*e.g.*, polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. 30 Patent Nos. 4,897,268 and 5,075,109.

(Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive immunotherapy.

5       The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells *in vitro*. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. These *in vitro* culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such  
10      as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B-cells, may be pulsed with immunoreactive polypeptides or transfected with a polynucleotide sequence(s), using standard techniques well  
15      known in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al. *Ibid*).

20       The polypeptides disclosed herein may also be employed to generate and/or isolate tumor-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ CTL clones may be isolated from the patient, expanded using standard  
25      tissue culture techniques, and returned to the patient.

30       Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate tumor reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al. (*Crit. Rev. Oncol. Hematol.*, 22(3), 213, 1996).

at least about 80%, and preferably at least about 90%) of the patients for which lung cancer would be indicated using the full length protein, and that indicate the absence of lung cancer in substantially all of those samples that would be negative when tested with full length protein. The representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human lung tumors.

The ability of a polypeptide prepared as described herein to generate antibodies capable of detecting primary or metastatic human lung tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic lung cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic lung tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human lung tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides capable of detecting primary or metastatic human lung tumors may be used as markers for diagnosing lung cancer or for monitoring disease progression in patients. In one embodiment, lung cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera, urine and/or lung secretions.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (*i.e.*, in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally

be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent).  
5 Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a  
10 well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the  
15 support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

20 In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody  
25 (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked.  
30 Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is

that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without lung cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for

5      lung cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible

10     cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to

15     minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for lung cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the

20     sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane

25     through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of lung cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected

30     to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody

of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate lung tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include <sup>90</sup>Y, <sup>123</sup>I, <sup>125</sup>I, <sup>131</sup>I, <sup>186</sup>Re, <sup>188</sup>Re, <sup>211</sup>At, and <sup>212</sup>Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diphtheria toxin, cholera toxin, gelonin, *Pseudomonas* exotoxin, *Shigella* toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (*e.g.*, covalently bonded) to a suitable monoclonal antibody either directly or indirectly (*e.g.*, via a linker group). A direct reaction

be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify lung tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a polynucleotide encoding a lung tumor protein of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a polynucleotide encoding a lung tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

The following Examples are offered by way of illustration and not by way of limitation.

### EXAMPLES

5

#### Example 1

##### PREPARATION OF LUNG TUMOR-SPECIFIC cDNA SEQUENCES USING DIFFERENTIAL DISPLAY RT-PCR

This example illustrates the preparation of cDNA molecules encoding lung  
10 tumor-specific polypeptides using a differential display screen.

Tissue samples were prepared from breast tumor and normal tissue of a patient with lung cancer that was confirmed by pathology after removal of samples from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)<sub>12</sub>AG (SEQ ID NO: 47) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer (SEQ ID NO: 48). Amplification conditions were standard buffer containing 1.5 mM MgCl<sub>2</sub>, 20 pmol of primer, 500 pmol dNTP and 1 unit of Taq DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94 °C denaturation for 30 seconds, 42 °C annealing for 1 minute and 72 °C extension for 30 seconds. Bands that were repeatedly observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into the pGEM-T vector (Promega, Madison, WI) and sequenced. The isolated 3' sequences are provided in SEQ ID NO: 1-16.

Comparison of these sequences to those in the public databases using the BLASTN program, revealed no significant homologies to the sequences provided in SEQ ID NO: 1-11. To the best of the inventors' knowledge, none of the isolated DNA sequences have previously been shown to be expressed at a greater level in human lung tumor tissue than in normal lung tissue.

aminopeptidase. Clone LT86-9 appears to contain two inserts, with the 5' sequence showing homology to the previously identified antisense sequence of interferon alpha-induced P27, and the 3' sequence being similar to LT86-6. Clone LT86-14 (SEQ ID NO: 30) was found to show some homology to the trithorax gene and has an "RGD" cell attachment sequence and a 5 beta-Lactamase A site which functions in hydrolysis of penicillin. Clones LT86-1, LT86-2, LT86-4, LT86-5 and LT86-10 (SEQ ID NOS: 17, 18; 20, 21 and 26, respectively) were found to show homology to previously identified genes. A subsequently determined extended cDNA sequence for LT86-4 is provided in SEQ ID NO: 66, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 67.

10 Subsequent studies led to the isolation of five additional clones, referred to as LT86-20, LT86-21, LT86-22, LT86-26 and LT86-27. The determined 5' cDNA sequences for LT86-20, LT86-22, LT86-26 and LT86-27 are provided in SEQ ID NO: 68 and 70-72, respectively, with the determined 3' cDNA sequences for LT86-21 being provided in SEQ ID NO: 69. The corresponding predicted amino acid sequences for LT86-20, LT86-21, LT86-15 22, LT86-26 and LT86-27 are provided in SEQ ID NO: 73-77, respectively. LT86-22 and LT86-27 were found to be highly similar to each other. Comparison of these sequences to those in the gene bank as described above, revealed no significant homologies to LT86-22 and LT86-27. LT86-20, LT86-21 and LT86-26 were found to show homology to previously identified genes.

predicted amino acid sequences are provided in SEQ ID NO: 93-101, respectively. L86S-30, L86S-39 and L86S-47 were found to be similar to each other. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to L86S-14. L86S-29 was found to show some homology to a previously identified EST. 5 L86S-6, L86S-11, L86S-34, L86S-39, L86S-47, L86S-49 and L86S-51 were found to show some homology to previously identified genes.

In further studies, a directional cDNA library was constructed using a Stratagene kit with a Lambda Zap Express vector. Total RNA for the library was isolated from two primary squamous lung tumors and poly A+ RNA was isolated using an oligo dT column. Antiserum was developed in normal mice using a pool of sera from three SCID mice implanted with human squamous lung carcinomas. Approximately 700,000 PFUs were screened from the unamplified library with *E. coli* absorbed mouse anti-SCID tumor serum. Positive plaques were identified as described above. Phage was purified and phagemid excised for 180 clones with inserts in a pBK-CMV vector for expression in prokaryotic or 10 eukaryotic cells. 15

The determined cDNA sequences for 23 of the isolated clones are provided in SEQ ID NO: 126-148. Comparison of these sequences with those in the public database as described above revealed no significant homologies to the sequences of SEQ ID NO: 139 and 143-148. The sequences of SEQ ID NO: 126-138 and 140-142 were found to show 20 homology previously identified human polynucleotide sequences.

tags (ESTs). The sequences of SEQ ID NO: 150, 155 and 159-181 were found to show homology to sequences previously identified in humans.

Example 6

## ISOLATION OF DNA SEQUENCES ENCODING LUNG TUMOR ANTIGENS

DNA sequences encoding antigens potentially involved in squamous cell lung  
5 tumor formation were isolated as follows.

A lung tumor directional cDNA expression library was constructed employing  
the Lambda ZAP Express expression system (Stratagene, La Jolla, CA). Total RNA for the  
library was taken from a pool of two human squamous epithelial lung carcinomas and poly  
A+ RNA was isolated using oligo-dT cellulose (Gibco BRL, Gaithersburg, MD). Phagemid  
10 were rescued at random and the cDNA sequences of isolated clones were determined.

The determined cDNA sequence for the clone SLT-T1 is provided in SEQ ID  
NO: 102, with the determined 5' cDNA sequences for the clones SLT-T2, SLT-T3, SLT-T5,  
SLT-T7, SLT-T9, SLT-T10, SLT-T11 and SLT-T12 being provided in SEQ ID NO: 103-  
110, respectively. The corresponding predicted amino acid sequence for SLT-T1, SLT-T2,  
15 SLT-T3, SLT-T10 and SLT-T12 are provided in SEQ ID NO: 111-115, respectively.  
Comparison of the sequences for SLT-T2, SLT-T3, SLT-T5, SLT-T7, SLT-T9 and SLT-T11  
with those in the public databases as described above, revealed no significant homologies.  
The sequences for SLT-T10 and SLT-T12 were found to show some homology to sequences  
previously identified in humans.

20 The sequence of SLT-T1 was determined to show some homology to a PAC  
clone of unknown protein function. The cDNA sequence of SLT-T1 (SEQ ID NO: 102) was  
found to contain a mutator (MUTT) domain. Such domains are known to function in removal  
of damaged guanine from DNA that can cause A to G transversions (see, for example, el-  
Deiry, W.S., 1997 *Curr. Opin. Oncol.* 9:79-87; Okamoto, K. et al. 1996 *Int. J. Cancer*  
25 65:437-41; Wu, C. et al. 1995 *Biochem. Biophys. Res. Commun.* 214:1239-45; Porter, D.W.  
et al. 1996 *Chem. Res. Toxicol.* 9:1375-81). SLT-T1 may thus be of use in the treatment, by  
gene therapy, of lung cancers caused by, or associated with, a disruption in DNA repair.

Example 7

## SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems Division 430A peptide synthesizer using Fmoc chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

9. A vaccine comprising the polypeptide of claim 2 and an immune response enhancer.

5 10. The vaccine of claim 9 wherein the immune response enhancer is an adjuvant.

11. A vaccine comprising the polynucleotide of claims 1 or 4 and an immune response enhancer.

10 12. The vaccine of claim 11 wherein the immune response enhancer is an adjuvant.

13. A pharmaceutical composition for the treatment of lung cancer comprising a polypeptide and a physiologically acceptable carrier, the polypeptide comprising an immunogenic portion of a lung protein or of a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a sequence selected from the group consisting of:

20 (a) sequences recited in SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181;

(b) sequences complementary to the sequences of SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181; and

(c) variants of the sequences of (a) and (b).

25 14. A vaccine for the treatment of lung cancer comprising a polypeptide and an immune response enhancer, said polypeptide comprising an immunogenic portion of a lung protein or of a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a sequence selected from the group consisting of:

30 (a) sequences recited in SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181;

21. A pharmaceutical composition comprising a fusion protein according to any one of claims 18-20 and a physiologically acceptable carrier.

5 22. A vaccine comprising a fusion protein according to any one of claims 18-20 and an immune response enhancer.

23. The vaccine of claim 22 wherein the immune response enhancer is an adjuvant.

10 24. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient an effective amount of the pharmaceutical composition of claim 21.

15 25. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient an effective amount of the vaccine of claim 22.

20 26. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient a polynucleotide under conditions such that the polynucleotide enters a cell of the patient and is expressed therein, the polynucleotide having a sequence selected from the group consisting of:

- (a) a sequence provided in SEQ ID NO: 102;
- (b) sequences complementary to a sequence of SEQ ID NO: 102; and
- (c) variants of the sequence of SEQ ID NO: 102.

25 27. A method for detecting lung cancer in a patient, comprising:  
(a) contacting a biological sample obtained from the patient with a binding agent which is capable of binding to a polypeptide, the polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NO: 1-31, 49-

- (a) sequences recited in SEQ ID NO: 1-11, 19, 22-25, 27-31, 51, 53, 55, 63, 70, 72, 79, 80, 86, 87, 89, 90, 102-107, 109, 139, 143-149, 151-154 and 156-158;
- (b) the complements of nucleotide sequences recited in SEQ ID NO: 1-11, 19, 22-25, 27-31, 51, 53, 55, 63, 70, 72, 79, 80, 86, 87, 89, 90, 102-107, 109, 139, 143-149, 151-154 and 156-158; and
- (c) variants of the sequences of (a) and (b).

32. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient a therapeutically effective amount of a monoclonal antibody according to claim 31.

33. The method of claim 32 wherein the monoclonal antibody is conjugated to a therapeutic agent.

34. A method for detecting lung cancer in a patient comprising:

- (a) obtaining a biological sample from the patient;
- (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotides is specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof; and
- (c) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting lung cancer.

35. The method of claim 34, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide comprising a sequence selected from SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181.

provided in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof.

44. A method for detecting lung cancer in a patient, comprising:
- 5           (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide probe specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said nucleotide sequences and variants thereof; and
- 10           (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting lung cancer in the patient.

45. The method of claim 44 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said nucleotide sequences and variants thereof.

46. A diagnostic kit comprising an oligonucleotide probe specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof.

47. The diagnostic kit of claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55,

pharmaceutically acceptable carrier.

55. A composition for the treatment of lung cancer in a patient, comprising T cells proliferated in the presence of a polynucleotide of claim 1, in combination with a  
5 pharmaceutically acceptable carrier.
56. A method for treating lung cancer in a patient, comprising the steps of:  
(a) incubating antigen presenting cells in the presence of at least one polypeptide of claim 2; and  
10 (b) administering to the patient the incubated antigen presenting cells.
57. A method for treating lung cancer in a patient, comprising the steps of:  
(a) incubating antigen presenting cells in the presence of at least one polynucleotide of claim 1; and  
15 (b) administering to the patient the incubated antigen presenting cells.
58. The method of claims 54 or 55 wherein the antigen presenting cells are selected from the group consisting of dendritic cells and macrophage cells.
- 20 59. A composition for the treatment of lung cancer in a patient, comprising antigen presenting cells incubated in the presence of a polypeptide of claim 2, in combination with a pharmaceutically acceptable carrier.
- 25 60. A composition for the treatment of lung cancer in a patient, comprising antigen presenting cells incubated in the presence of a polynucleotide of claim 1, in combination with a pharmaceutically acceptable carrier.

agccngccag gccattgaag ganaagcaaa gacgaagcga accatctctc tccattgtgg 120  
gggccaagta gtcgcantan ctttcagtcc cagttgcatt gggtaaaga gtcatacat 180  
actatgtgtt aggggtacag aagctttcc tcataggca tgagctctcc nagagttgac 240  
cttttgctn aacctggggt ttctgtgtt cataaagttn ggatatgtat ttttttcaa 300  
atggaaanaaa atccgtattt ggcaaaaaga ctccaggggg atgatactgt ctttgcact 360  
tacagtccaa angatnttcc ccaaagaata gacattttt cctctcatca cttctggatg 420  
caaaatctt tattttttc ctttctcgca ccnccccaga ccccttnag gttnaaccgc 480  
ttccccatctc cccattcca cacgatnttg aatngcann ncgttngtgg tcgggtcccn 540  
nccgaaaggg ntnttttatt cggggtnctg antnnnaac cnctnaggta aatccgcggg 600  
gcggccnngm gggtnnacc atgntgtggaa naactncccn ccgcgnttgg aatgccanag 660  
ccttgaant ttcttttgg tcgcccccn gagattc 697

<210> 4  
<211> 712  
<212> DNA  
<213> *Homo sapiens*

```

<400> 4
gtactcagac aaccaatagg tgggttgc anatctgaaa cacaaaaaga ttcttagctna 60
taatgttsaa tgggttgggg tttaaagtat cttgggtatgt tngatttagc agcgatnggc 120
cggttgcggg ggctcacgca tggatcccgac cactttggga ggccgaggca ggaggatcac 180
ctgaggttcag gagtttgaga ccagcctggc cgacatggtn aaacccctgc tctactanga 240
atacanaaat tagccccggc atagtggcgc gtgcctrtga cctcsgctac tttggggatt 300
ctcctgagga agaattgttt gaactcaggg aagtggargt ttgcagttag cttaaatcaa 360
gccactgca ctcccagcc gggktaacag agccamgact ctkgccgaaa aaaaaraama 420
cgacggagaa nmagrtctgt tattccatgg gaaattkgaa ttcccttcyt tkaaatatct 480
taaaatnggt cctccttwaaa aaagttcggc tggggcccgk tggctcacat ttkttaycc 540
cycccccttt tggggarggc caargggccgg kttgawtnnc ccttgagggg ccanaactcc 600
agnaaccrgn cccggggccar smwgwkstr armcccttc cyyccmaraa aawwcsmaaa 660
wttccsc cygsykggct ggkascktt myyyyyygmtm csyagctgc tt 712

```

<210> 5  
<211> 679  
<212> DNA  
<213> *Homo sapiens*

<400> 5  
gtactcagac cacctcacat gcagggnag aaacatggag tgtgcggcag catccctcctc 60  
acatccccttt gtgagcacgg ctgctccgga atactgacca tctgggctag caccaccaa 120  
cagagggttc tgcaaggatgt gctattttaa agcagctggg tgcaacttgt gaaaacggga 180  
atctngaagc agaacatgtn atcagcgatg gctgggattg gtggacagga ttgacaggag 240  
tatggaggc tctaccaggc ctgtctacag gacagcttca tcgaagggac atttttaac 300  
ctgttatttt anatnccaca tatntttttt aatgctnaag catacaggtt gaatttctgg 360  
atcgtaacta cttagtgactt ctgaggtta cagttngaat atgttctcn aggttatca 420  
agttntgtt ttgtatgtatng gtaatctaca cctctggaaag ctgtngaatg tgaaaaagat 480  
ncntncanct gaccagtttgg nagggcactc tctctggna agnaatccgn caaaaaaaaat 540  
tgtttchnagg gggcntgggg ggttaaaaaa aatgtttctn ttncntaaa aatgtttacc 600  
cnnctattga aaaaatgggg gtcgnggggg gcttnaaatc cccnантnt гааттnta 660  
tccggaanct tggtttcccc 679

<210> 6  
<211> 369  
<212> DNA  
<213> Homo sapiens

&lt;400&gt; 6

tcagtcagg catgggtcct ataagagaag tcactctgtg agtttccatg gaggaagaaa 60  
aagcttcatt tctttaccct gcagcaacag cggagggagg gagagccat cttcttgca 120  
aattcattaa ctgttgcgtt gaagggagca gcgtcnngaaa ctgttttagc acagtggag 180  
gaaaacaac agattcatct ccggaaacca aaggaaaggg tragtgggtt tttattagcc 240  
agctgtatcc tagatggtca atttccagtg gatgaataca ctttaactac gtttcttgc 300  
cttcctaccc nggcctgatc agctnggcac ttraatcatt ccgtnggggt wgctgnaca 360  
ctggactga 369

&lt;210&gt; 7

&lt;211&gt; 264

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 7

tgctggatra gggatggggc acgggaccac agatmgacet taactgcccc cacgttntcm 60  
aggaaaggat tacaggcgtg agccactgctg cccggcctct tctccacttt cataggttcc 120  
agtctctggt tcttctttct cagtttgtt tttttgttc tttaaatmatg gagatnagaa 180  
tgaacactac actcgaaatc aggaagccct gcctggcgcc tctgtcacct gtctagggc 240  
ttcttcac tgagtcatcc agca 264

&lt;210&gt; 8

&lt;211&gt; 280

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 8

acctaactg cccanaacan aactgttgta caagatttga ggatttaaca atatttcaca 60  
tgaaatattt cagacctacg ngagggttta aagacnaatt aaatgagcac cnctgtgcc 120  
accgcccna ttaagaatta gagcaagcag tgagggtgaag ctttgtcctt gcttttaaca 180  
tagaaagtga tccaaattca ccaaacttga cttnnngttt tgcaagtgtgg cctcctgatt 240  
ctagacnctg gcaaaacatt ttagggcaaa aaaaaaaaaa 280

&lt;210&gt; 9

&lt;211&gt; 449

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 9

tcgtcaactc caggatggct ttgaaaatna atggacacag atctctcctg ttttgatrat 60  
ntgcagtgtc natgactggc tttgcagttt attttgattc aggcaacaga tttttttttt 120  
ggttccctgt ctccccatggg cgtcatttca tgggtgcctc tgccttcccc cagatattct 180  
aagttcagga cacaagcttc tggcccatgc agagcagagg ccatgagggg tcacagcatg 240  
ggtacggag gaaacactgg gctnaccag atnctggact tgagtctgtc ctctgctgct 300  
tgctgcacag cttctgtcat ggtgctaaac ctgtgacactg cctcacaggc ttagagcatg 360  
cccgtagaag tactctnaac taaratgctt tccacaaaatg agatggtttc ataaaaactt 420  
caaataagagg gcctgggcaaa aaaaaaaaaa 449

&lt;210&gt; 10

&lt;211&gt; 538

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 10

ttttttttttt ttcccaaagg cctcaraaaca cttagtcttct aattccaagc agaaaagttac 60

atccgccggg atacatgccca cttgggttga taaatcaaaa tacagcatcc ttcagatccc 120  
tttgcgtgac aatacaatta tttgtatatg ttactttttt ttctgtttgg ctnaaagatt 180  
tgatatgagc tgaggaaaat gaagccntta ctgctatnag atctnatccc tttccaccac 240  
ctttcaggaa tnttggact gcayatattc agaattcccc nnagtgcctn gtgataaaaa 300  
tgtcttcaga gatggcagaa tatgtttctt ttggtacatg ttcattaaaa atatacacgt 360  
gctcaactt gtggatatgt atgtnttgc acgtacaca ggctgatcta gggaaagagat 420  
aaaacacac ttngaattta tttagccttc accnagacta anattctgaa attaagaatg 480  
tattccttgg tcaacaattt tcctcttctc tttagccctct tacattgtan tggactga 538

<210> 11  
<211> 543  
<212> DNA  
<213> Homo sapiens

<400> 11  
ttttttttt ttgcccacag ctgccatctt tgggtgatcaa ggccaacctt ctatggaat 60  
caaccctcgc catcccagca aatccctctt ctcccttctc atgggagtgc cttgtattca 120  
tcaggcatct gggacttgcat gtgggtntgg gatggaaat cagagcacct ngtctctst 180  
caccattctn tcacttatta gctctnacct tgggtnaata cctgccttag tgcnttaggt 240  
acaatatgaa tattgtctat ttctcaggaa ttgcaatgac nagtnnatna gtgcattgaga 300  
gggtaaaacc acagggtact ccgccttcc naagaatggaa gaatttttc tagaagccca 360  
natntgcttgc agagggtggc caccnagacg cnnaatctt ttttatttnc cactgaangc 420  
ctaagaggna attctgaact catcccnna tgacctctcc cgaatmagaa tattctggc 480  
acttaccata ttttcttgcct ctcttccact tacnaaactc ttttatttct taacnggacg 540  
aaa 543

<210> 12  
<211> 329  
<212> DNA  
<213> Homo sapiens

<400> 12  
cgatgacttg ggcagtggat gggccctctg ccagggtggca gggcacagct tagaccaaac 60  
ccttggcctc cccccccttcgc agstacctct gaccaagaag gaaacttagca agcttatgct 120  
ggcaagacca taggtgggt gctggaaatc ctcggggcccg gctggcaccc actcctggcg 180  
ctcaaggggag agacccactt gttcagatgc atrggcctca ggccgttcaa ggcrgtctta 240  
gagccacaga gtcaaataaaa aatcaatttt gagagaccac agcacctgct gctttgatcg 300  
tgatgttcaa ggcaagttgc aagtcatcg 329

<210> 13  
<211> 314  
<212> DNA  
<213> Homo sapiens

<400> 13  
cgatgacttg cacccggggag ctgtgacagt ggccttggaaag cagatggcag ccccgtaaag 60  
gcgggagtgg agaccaccaa accctccaaa cagagcaaca actagtacgc ggccagcagc 120  
tacctgagcc tgacgcccga gcagttggaaatc cccacagaa gctacagctg ccaggtaacg 180  
catgaaggga gcaccgtggaa gaagacagtgc gcccctacag aatgttcata ggttcccnac 240  
tctnacccca cccacggggag cctgganctg cangatcccc gggaaagggt ctctctcccc 300  
atcccaagtc atcg 314

<210> 14  
<211> 691  
<212> DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 14

cgattacttg cacaatgcan attagaaccc aaatgaaggg tacaacccag atcttctggc 60  
 ttccagttca gtgctgctgg gttttctta ctaaacaaa acaatkaaga gcataagaagg 120  
 gaagagaaga ataaaagtcta ttttggtctt tgtagcchc ggtaangaga atgtstcac 180  
 tctacnagaa aacccnaagt gaaccggct aatcaggacc gtgcttggga agggagcagg 240  
 ggcattaccc ttcacacca gaggttctt gccttctc tgcaggact cgargactat 300  
 gtgaagtggc tgggargggca tcactcgct tggttcatc gtrttctcat cataaactat 360  
 natttcttg gaaaaagata ctcttggaaag artccttgcc ttccctacag gaaatcaagt 420  
 ctaggacagt gatcttgccc ctgcttgcas tctccggccg ctgatctt csgscggc 480  
 tkatgtgsam cgctccctgg atrkactct tggggatc evaggaaggg gcytgcmagt 540  
 ccnwtnaatg amssgggccc ttaactccgg scrggtnamy ncttgsctsc rattttgggt 600  
 ycytcttcyt ttgscgggt tcktcnaaac cacttngttr aattccccgg sccgcctkgc 660  
 nggtycaacc wttttggaa mamcycggc c 691

&lt;210&gt; 15

&lt;211&gt; 355

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 15

acctgaactg tgggttgaag agtgatgtcc tgctgcctgg agctcaagtc actactgtg 60  
 accgtgccta tggccgacag ctattnctt ccatggatgt gactgagacc aatgtttct 120  
 tcyaccctcg gcttttaccc ttgacnaagt ctcccggtga ggtactacc gaaccaccag 180  
 cagttcgagc ctctnaagag cgtctaaagcg atggggatat atatttactg gagaatgggc 240  
 tcaacctctt cctctgggtg ggagcaagcg tccagcaggg tggttgcagc agcctttca 300  
 gcgtctccctc ttctcgtcag atcaccatgt gtttgcgtt cttgcctt caggt 355

&lt;210&gt; 16

&lt;211&gt; 522

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 16

tcaagtccagg gaggttggaaag acttcgaggc tcgtgggagc cgcttctcca agtctgtc 60  
 ttagagacag cgcgtctgg tgcagctan ggacgaactc ctccagcaag ctgcagacg 120  
 tttcttgaac aaaagtctg aagatgtgc ggcctcagag agcttctcc cctcggagg 180  
 tgcgtctct gacccctgtga ccctncgtcg aangatgtgc gtcggcccg cggAACGGAN 240  
 gtttcagaag cagcagaccc cctngcgctc cttgccttc ctcagctgcc tccctggccc 300  
 tggccccc tggactggagg aggctgtcc aattctgccc gccccatggaa aaagcgggct 360  
 tggactgcatt ggcgtgtat naaagcatgt ggtttacag tggtnagacn gctnatnaat 420  
 ttnatctnc tntgtataac ttcttatgtg acatcttctt tcccttgga aacactgcan 480  
 atttttaactg tggatgttgc tttttctngt gttactggac tg 522

&lt;210&gt; 17

&lt;211&gt; 317

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 17

gtgtcgcaa ttccgggtgg tgctaaagaaa aggaagaaga agtcttacac cactcccaag 60  
 aaggataagc accagagaaa gaaggttcag ccggccgtcc taaaatatta taaggtggat 120  
 gagaatggca aaatttagttg cttctgtcg aagtggccct ctgatgaatg tggtgctggg 180  
 gtgtttatgg caagtcactt tgacagacat tattgtggca aatgttgtt gacccactgt 240

ttcaactaac cagaagacaa gtaactgtat gagttaatta aagacatgaa ctaaaaaaaaaa 300  
aaaaaaaaaa actcgag 317

<210> 18  
<211> 392  
<212> DNA  
<213> *Homo sapiens*

<210> 19  
<211> 2624  
<212> DNA  
<213> *Homo sapiens*

acccaggaa tcctttgccc cagatgttat cattttagat gctcttatgc agcctaagaa 1980  
 aatccatct ctctggcccc aggggacaag ccaagctgt atgtacacac tcggtgttct 2040  
 attgacaata gaggcattta ttaccaagtg tgcacatcgctg agtccttaat cagctctgtt 2100  
 ccttttcca acaaagcttg tcttcctaag agcagacaga agtggagagc acccaagaat 2160  
 gagtgctggg cagcagaccc tgggggaggg ggcttgcstat cccagaaagc ccctaaaccc 2220  
 tttgtctc cattagccct ggggtgagga gagccagaca tgtaggagg ccagagcagt 2280  
 cagtcaggc atcttggaaa agaccttggaa ggaagcaaac cctgggttcc tttgtctcca 2340  
 gaatgtgaga gctccaagtt ggccccaaatc aggagggggag taatgtatgaa catacagacg 2400  
 gccacatctt gccaatcaag catcatctga tgaaaaagaa agcaatctt ggattacctg 2460  
 ggacacgtca gtctgggaga ggtggttgaa tcattgtgtt agggaatagt gtatctaattc 2520  
 tgtgttgc tgcgtgcctt gttgacctgg agagaatgaa acaaacaac acataaaca 2580  
 ataaagcaaa tgtaagatt aaaaaaaaaa aaaaaaaaaact cgag 2624

<210> 20  
 <211> 488  
 <212> DNA  
 <213> Homo sapiens

<400> 20  
 cttaaaccgc gcgctcgccg gctccagccc cgccgcggcc cacccttgc cttccggcg 60  
 gctccgcagg gtgagggtggc ttgaccctcg ggttgcggcc cgagcacac cgaggagggtg 120  
 gctggacagc tggaggatga acggagaagc cgactgcccc acagacctgg aaatggccgc 180  
 ccccaagggc caagaccgtt ggtcccagga agacatgtg actttgttgg aatgcatgaa 240  
 gaacaacctt ccatccaatg acagctccca gttaaaacc acccaaacac acatggaccg 300  
 gaaaaaagtt gcattgaaag acttttctgg agacatgtgc aagctcaat gggtcgagat 360  
 ctctaattgag gtgaggaagt tccgtacatt gacagaattt gatctcgata ctcaggaaca 420  
 tgtttaaaat ctttacaaag gaaaaaaatc aagaaacacc ccgacttccc cgagaaagcc 480  
 cctaaacc 488

<210> 21  
 <211> 391  
 <212> DNA  
 <213> Homo sapiens

<400> 21  
 atgaaattgt gttttctct ttgggatcaa tggtctcaga aattccagag aagaaagctg 60  
 tggcgattgc tgatgttttgg ggcaaaatcc ctcagacagt cctgtggcg tacactggaa 120  
 cccgaccatc gaatcttgcg aacaacacga tacttgtca gtggctaccc caaaacgatc 180  
 tgcttggtca cccaatgacc cgtgccttta tcacccatgc tagtcccat ggtttaatg 240  
 aaagcatatg caatggcggtt cccatggtga tgataccctt atttgggtat cagatggaca 300  
 atgcaaagcg cagggagact aaggagctg gagtgcacct gaatgttctg gagatgactt 360  
 ctgaagatct agaagatgt ctgaagagca g 391

<210> 22  
 <211> 1320  
 <212> DNA  
 <213> Homo sapiens

<400> 22  
 aatctgctgg gaattttcttg ggttgacagc tcttggatcc ctatttgaa cagtggttgt 60  
 gtcctggatt actttcaga aagaagtaat ctttttatg acagaacatg taataatgaa 120  
 gtggtcaaaa tgcagaggct aacatttagaa cacttgaatc agatggttgg aatcgagtac 180  
 atccttttgc atgctcaaga gcccattttt ttcatttc ggaagcaaca gcggcagtcc 240  
 cctgccccaaag ttatcccact agctgattac tatatcatttgc ctggagtgtat ctatcaggca 300  
 ccagacttgg gatcagttat aaactctaga gtgcttactg cagtgcatgg tattcagtca 360

gcttttgcg aagctatgtc atactgtcg tatcatcctt ccaaaggta ttgggtggcac 420  
 ttcggatc atgaagagca agataaaagtc agacctaag ccaaaggaa agaagaacca 480  
 agcttattt ttcagagaca acgtgtggat gctttacttt tagacccatc acaaaaattt 540  
 ccacccaaat ttgtcgact aaaggctgga gaaaaggcctg ttccagtggta tcaaacaag 600  
 aaagaggcag aacctatacc agaaaactgt aaacctgagg agaaggagac cacaagaat 660  
 gtacaacaga cagttagtgc taaaaggcccc cctgaaaaac ggatgagact tcagttagta 720  
 ctggacaaaa gagaaggcctg gaagactcct catgttagtt atcataccctc agtactgtgg 780  
 ctcttgagct ttgaagtact ttattgtAAC cttcttattt gtatggaatg cgcttatttt 840  
 ttgaaaggat attaggccgg atgtgggtggc tcacgcctgt aatcccagca ctttgggagg 900  
 ccatggcggg tggatcactt gaggtcagaa gttcaagaccc agcctgacca atatggtcaa 960  
 accccgtctc tactaaaaat acaaaaatta gccgggctgt gtggcgccgc cccatagtc 1020  
 cagctactcg ggaggcgtgag acaggagact tgcttgaacc cgggaggtgg aggttgcct 1080  
 gagctgatca tcctgctgtt gcactccagc ttggcgaaa gagcgagact ttgtctctat 1140  
 aaagaaggaa agatattattt cccatcatga ttcttgcata atatttgcata tattttttt 1200  
 gtaacccccc ctttcccggc cttgagcaac ctacacactc acatgtttaa tggtagatat 1260  
 gttttaaagc aagataaaagg tattttttt aaaaaaaaaaaa aaaaaaaaaaaa aaaaactcgag 1320

&lt;210&gt; 23

&lt;211&gt; 633

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 23

ctaagggcag tgaaggtgaa aaccctctca cggtcccagg gagggagaag gaaggcatgc 60  
 tgatgggggt taagccgggg gaggacgcat cggggcctgc tgaagacctt gtgagaagat 120  
 ctgagaaaga tactgcagct gttgtctcca gacagggcag ctccctgaac ctctttgaag 180  
 atgtcagat cacagaacca gaagctgagc cagagtccaa gtctgaaccg agacctccaa 240  
 tttctctcc gagggctccc cagaccagag ctgtcaagcc cccgacttcat cctgtgaagc 300  
 caatgaatgc cacggccacc aaggttgcata actgcagctt gggaaactgccc accatcatcg 360  
 gtgagaactt gaacaatgag gtcatgatga agaaatacag cccctcggac cctgcatttgc 420  
 catatgcgcac gctgaccac gatgagctga ttcaagctggt cctcaaaacag aaggaaacga 480  
 taagcaagaa ggagttccag gtccgcgagc tggaaagacta cattgacaac ctgctcgta 540  
 gggtcatggc agaaacccccc aatatccctcc gcatcccgac tcaggttggc aaaaaagcag 600  
 gaaagatgta aattagcaga aaaaaaaaaactc gag 633

&lt;210&gt; 24

&lt;211&gt; 1328

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 24

gtaaaacgctc tcgaaatttat ggcggcggtg gatatccgag acaatctgct gggaaatttct 60  
 tgggttgcaca gcttctggat cccttatttt aacagtggta gtgtccctggta ttacttttc 120  
 gaaagaagta atcctttta tgacagaaca tggataataatg aagtggtaaa aatgcagagg 180  
 ctaacattag aacacttgaa tcagatggtt ggaatcgagt acatccctt gcatgctcaa 240  
 gagcccatttc ttttcatcat tcggaagcaa cagcggcagt cccctgcccac agttatccca 300  
 ctatgtgatt actatatcat tgctggagtg atctatcagg caccagactt gggatcagtt 360  
 ataaactcta gagtgcttac tgcagtgcat ggtattcagt cagctttga tggatcgat 420  
 tcataactgtc gatatcatcc ttccaaagggtt tattgggtggc acttcaaaaga tcatgaagag 480  
 caagataaaag tcagacctaag agccaaaagg aaagaagaac caagctctat ttttcagaga 540  
 caacgtgtgg atgctttact tttagacccctc agacaaaaaaa tttccacccca aatttgcata 600  
 gtggatcaaa caaagaaaga ggcagaacccctt ataccagaaa ctgtaaacc tggaggagaag 660  
 gagaccacaa agaatgtaca acagacagtg agtgcataag gccccctgaa aaaacggatg 720  
 agacttcagt gaggactgga caaaagagaa gcctggaaaga ctccctcatgc tagttatcat 780  
 acctcgtac tggatcgatc tttagacccctc agacaaaaaaa tttccacccca aatttgcata 840

aatgcgctt attttttgaaaggatattggccggatgtggtggctcacgcctgtataatc 900  
ccagcaccttgggaggccatggcggttggatcacttgaggtcagaagttcaagaccagcc 960  
tgaccaatatggtaaaaccccggtctactaaaaatacaa aaatttagccggcgtggtgg 1020  
cgggcgccca tagtcccagctactcgggaggtcgagacag gagacttgtctgaacctggg 1080  
aggtggaggttgccctgagctgattatcatgctgtgcac tccagcttgg ggcacagagc 1140  
gagactttgtctaaaaaaag aagaaaagat attattccatcatgatttc ttgtgtataat 1200  
ttgtgatatgtcttctgtaa cctttccctcccgactttagcaaacctac acactcacat 1260  
gtttactggtagatatgtttaaaagcaaaa taaaggatttgtataaaaaaaa 1320  
aaactcgaaactcgaa 1328

<210> 25  
<211> 1758  
<212> DNA  
<213> *Homo sapiens*

<210> 26  
<211> 493  
<212> DNA  
<213> *Homo sapiens*

<400> 26  
gaggcgagcg gcagggcctg gtggcgagag cgccggctgtc actgcgcggc agcatccccag 60  
agctttccga gcccggacgagc cggccgtgcc gggcatcccc agcctcgcta ccctcgacgc 120

acacgtcgag ccccgacacag gcaagggtcc ggaacttagc ccaaagcacg tttccccctgg 180  
 cagcgcagga gacgcccggc cgcgccggc cgcacgcccc ccttcctcc tttgttccgg 240  
 gggtcggcgg ccgcctcctc gccagcgtcg ggatctcggc cccgggagggc gggccgtcgg 300  
 gcgcagccgc gaagattccg ttgaaactga cgcaagagccg agtgcagaag atctgggtgc 360  
 ccgtggacca caggccctcg ttgcccagat cctgtgggcc aaagctgacc aactcccccg 420  
 ccgtttcgt catggtgggc ctccccggc cggggcaaga cctacttctc cacgaaaagct 480  
 tactcgctgc ctc 493

<210> 27  
 <211> 1331  
 <212> DNA  
 <213> Homo sapiens

<400> 27  
 ggtggatatac cgagacaatc tgctggaaat ttcttgggtt gacagctttt ggatccctat 60  
 tttgaacagt ggttgttcc tggattactt ttcaaaaaaa agtaatccctt tttatgacag 120  
 aacatgtat aatgaagtgg tcaaaaatgca gaggctaaca tttagaacact tgaatcagat 180  
 ggttggaaatc gagtacatcc ttttgcattc tcaagagccc attttttca tcattcgaa 240  
 gcaacacgccc cagtccctcg cccaaaggat cccacttagct gattactata tcattgctgg 300  
 agtgatctat cagggcaccag acttgggatc agttataaaac tctagagtgc ttactgcagt 360  
 gcatggtatt cagtcagctt ttgatgaagc tatgtcatac tgcatac atccctccaa 420  
 agggtattgg tggcacttca aagatcatga agagcaagat aaagtcaagc ctaaagccaa 480  
 aaggaaagaa gaaccaagct ctatccatca gagacaacgt gtggatgctt tactttttaga 540  
 cctcagacaa aaatttccac cccaaatttgc gcaatggaaa cctggagaaa agccgttcc 600  
 agtggatcaa acaaagaaaag aggcagaacc tataccagaa actgtaaaac ctgaggagaa 660  
 ggagaccaca aagaatgtac aacagacagt gagtgctaaa ggccccctg aaaaacggat 720  
 gagacttcag tgagttactgg acaaaaagaga agcttggaaag actcctcatg ctatccatca 780  
 tacctcagta ctgtggctct tgagcttgc agtactttat tgtaacccctt ttatccatca 840  
 ggaatggcgt tatttttgc aaggatatta ggccggatgt ggtggcttcc acctgtataatc 900  
 ccagcactt gggaggccat ggccgggtggc tcacttggagg tcagaatgtt aagaccagcc 960  
 tgaccaatat ggtgaaaccc cgtctctact aaaaatacaat aaatttagccg ggcgtgggtgg 1020  
 cgggcgccccca tagtcccccgc tactcgggag gctgagacag gagacttgct tgaacccggg 1080  
 aggtggaggt tgccctgagc tgattatcat gctgttgcac tccagcttgg ggcacagagc 1140  
 gagactttgt ctcaaaaaaaaaaa gaagaaaaaga tattattccc atcatgatcc tttgtgaata 1200  
 tttgttatat gtcttctgtt acctttccctc tcccgactt gagcaaccta cacactcaca 1260  
 tttttactgg tagatatgtt taaaagcaaa ataaaggat tggataaaa aaaaaaaaaa 1320  
 aaaaactcga g 1331

<210> 28  
 <211> 1333  
 <212> DNA  
 <213> Homo sapiens

<400> 28  
 cggcggtgga tatccgagac aatctgtgg gaatttcttg ggttgcacgc tcttggatcc 60  
 ctatccatca cagttgtgt gtccctggatt acctttcaga aagaagtaat cctttttatg 120  
 acagaacatg taataatgaa gtggtaaaaa tgcaagggct aacatttagaa cacttgaatc 180  
 agatgggtgg aatcgagtac atcccttgc atgtcaaga gcccattttt ttcatttcattc 240  
 ggaagcaaca gcccggatcc cctggccaaag ttatccact agctgattac tataatcattg 300  
 ctggagttgtat ctatcaggca ccagacttgg gatcagttat aaactctaga gtgttactg 360  
 cagtgcatgg tattcagtca gctttgtat aagctatgtc atactgtcga tataatcattt 420  
 cccaaagggtt ttgtggcac ttcaaaagatc atgaagagca agataaagtc agacccaaag 480  
 cccaaaggaa agaagaacca agctctatcc ttcaagagaca acgtgtggat gctttacttt 540  
 tagacccatcg acaaaaatcc caacccaaat ttgtgcagct aaagccgtgg aaaaagccctg 600  
 ttccagtgga tcaaaacaaag aaagaggcag aacccatatacc agaaaactgtt aacactgtt 660

```

agaaggagac cacaagaat gtacaacaga cagttagtgc taaaggcccc cctgaaaaac 720
ggatgagact tcagtgagta ctggacaaa gagaagcctg gaagactcct catgctagtt 780
atccatcaccc agtactgtgg ctcttgagct ttgaagtact ttattgtAAC cttcttattt 840
gtatggaaatcgcttatccc ttgaaaggat attaggccgg atgtggtygc tcacgcctgt 900
aatcccaagca ctttgggagg ccatggcggg tggatcacctt gaggtcagaa gttcaagacc 960
agcctgacca atatggtaa accccgtctc tactaaaaat acaaaaaatta gccgggctg 1020
gtggcggcgc cccatagtcc cagctactcg ggaggctgag acaggajact tgcttgaacc 1080
cgggaggtgg aggttgccct gagctgatta tcatgtgtt gcactcagc ttgggcgaca 1140
gagcgagact ttgtctcaaa aaagaagaaa agatattatt cccatcatga tttcttgtga 1200
atatttgtga tatgtttct gtaacccccc ctctcccgga cttgagcaac ctacacactc 1260
acatgtttac tggtagatat gttaaaagg aaaataaagg tattttataaaaaaaaaaaaa 1320
aaaaaaaaactcgag 1333

```

<210> 29

<211> 813

<212> DNA

<213> Homo sapiens

<400> 29

<210> 30

<211> 1316

<212> DNA

<213> Homo sapiens

<400> 30

```

caggcgccca gtcatggccc adyogar-eqc acc3ccgtgt ggcccagtct caaggggtga 60
cagtccaatc atagaaaaga tggaaaaaaag qa3atgtgcc ctgtgccc3t aaggccacga 120
gtggagtcaa atatactttt caccatcagg aa3tatagtt gtc3catgaaa actgtttgc 180
gtattcatca ggactggtgg agt3gtgagac tcttgat3ta c3gtatacacaa tttagaaactt 240
t3gtatgtcaaa tctgtaaaaga aagagatctg gagaggaaga g3attgaaat gtcattctg 300
taacaaaagga ggc3ccaccg tggggtgtga tttatggttc t3gt3agaaga gttaccacta 360
t3gtctgtgc3 aaaaaggacc aagcaattct tca3agtgtat g3gaaac3catg gaacttacaa 420
attat3ttgc ccagaacatt ctccagaaca agaagaggcc actgaaa3tg3 ctgatgaccc 480
aagcatgaag aagaagagag gaaaaaaaaa acgc3c3tc3a tcaggccctc3 ctgcacagcc 540
aaaaaacgtat3 aaatgttagta acgc3aaaag acatatgaca gaagagcc3tc atggcacac 600
agatgcagct3 gtcaaatctc3 cttttcttaa gaaatgccag gaagcaggac t3cttactga 660
actat3ttgaa cacatactag3 aaaatatg3ga tt3cagttcat3 g3gaagacttg3 tgg3atgagac 720
tgcctcagag3 tcggactatg3 aagg3atcga3 gac3cttactg3 tttgactgtg3 gatt3tttaa 780
agacacacacta3 agaaaattcc3 aagaagtaat3 caagagtaaa3 gctt3gtgaat3 gggaaaga3ag3 840
gcaaaggcag3 atgaagcagc3 agctt3gaggc3 actt3gcagac3 ttacaacaaa3 gcttarac3c3 900

```

```

atttcaagaa aatggggacc tggactgctc aagtcttaca tcaggatccc tgctaccc 960
tgaggaccac cagaataaaatg tgcgttccttag gaaaactggta tggggcctcc atgttctcca 1020
aggatcgagg aagtcttcttgcgttccaccctg cccacccccag tcaagggcag caacaccaga 1080
gctttgtctca gccttaaatg gaatttttaga gctttcttctt gcttctgtca ctcctacaga 1140
tggccctcatc atggcttcca ctcaagtattataaactccat cagcatagag caaactcaac 1200
actgtgcatt gcacactgtt accatgggtt tatgtctcaact atccatatcac attgccaata 1260
tttagcacac ttaataaaatg ttgtcaaaaa cccaaaaaaaaaaaaaaaatccgag 1316

```

<210> 31

<211> 1355

<212> DNA

<213> Homo sapiens

<400> 31

cggcgggtgga tatccgagac aatctgtgg gaatttcttg ggttgacagc tcttggatcc 60  
ctatttgaa cagtggtagt gtcctggatt acttttcagå aagaagtaat cctttttatg 120  
acagaacatg taataatgaa gtggtaaaaa tgcgaggct aacattagaa cacttgaatc 180  
agatgggtgg aatcgagtac atccctttgc atgctcaaga gcccattctt ttcatcattc 240  
ggaagcaaca gcggcagtcc cctgcccag ttatcccact agctgattac tatatcattg 300  
ctggagtgtat ctatcaggca ccagacttgg gatcagttat aaactctaga gtgcctactg 360  
cagtgcatgg tattcagtca gcttttgcg aagctatgtc atactgtcga tatcatcattt 420  
ccaaagggtt ttgggtggcac ttcaaagatc atgaagagca agataaaagtc agacctaaag 480  
ccaaaagaa agaagaacca agctctattt ttcaagagaca acgtgtggat gctttacttt 540  
tagaccccttag acaaaaattt ccacccaaat ttgtgcagct aaaggcttggaa gaaaagctg 600  
ttccagttggta tcaaaacaaag aaagaggcag aacctataacc agaaaactgtt aacacctgagg 660  
agaaggagac cacaaagaat gtacaacaga cagtgagtgc taaaggcccc cctgaaaaaac 720  
ggatgagact tcagtggatc ctggacaaaaa gagaaggctg gaagactcct catgctagtt 780  
atcataccctc agtactgtgg ctcttgcgtt ttgaagttact ttattgttac cttcttattt 840  
gtatggaaatcgcttatttt ttgaaaggat attagccgg atgtggtggc tcacgcctgt 900  
aatccccagca cttttggaggccatggcgccc tggatcactt gaggtcagaa gttcaagacc 960  
agccctgacca atatggtaa acccccgtctc tactaaaaat acaaaaatta gccggggctg 1020  
gtggcgggccc cccatagtc cagctactcg ggaggctgag acaggagact tgcttgaacc 1080  
cgggaggtgg aggttgcctt gagctgatca tcatgctgtt gcactccagc ttggggcaca 1140  
gaacgagact ttgtctaaaaaaa aaaaagaagaa aagatattat tcccatcatg atttcttgt 1200  
aatattttgtt atatgtcttc tggttaacctt tcctctcccg gacttgaagc aacctcacac 1260  
actcacatgt ttactggtag atatgttttta aaagcaaaat aaaggttattt gtttttccaa 1320  
aaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaac tcgag 1355

<210> 32

<211> 80

<212> PRT

<213> Homo sapiens

<400> 32

Val Ser Arg Ile Arg Gly Gly Ala Lys Lys Arg Lys Lys Lys Ser Tyr  
1 5 10 15

Thr Thr Pro Lys Lys Asp Lys His Gln Arg Lys Lys Val Gln Pro Ala  
20 25 30

Val Leu Lys TYT Tyr Lys Val Asp Glu Asn Gly Lys Ile Ser Cys Leu  
                   35                          40                          45

Arg Arg Glu Cys Pro Ser Asp Glu Cys Gly Ala Gly Val Phe Met Ala  
50 55 60

Ser His Phe Asp Arg His Tyr Cys Gly Lys Cys Cys Leu Thr His Cys  
 65                   70                   75                   80

<210> 33  
<211> 130  
<212> PRT  
<213> *Homo sapiens*

<400> 33  
Glu Ile Ser Asn Glu Val Arg Lys Phe Arg Thr Leu Thr Glu Leu Ile  
1 5 10 15

Leu Asp Ala Gln Glu His Val Lys Asn Pro Tyr Lys Gly Lys Lys Leu  
..... 20 25 30

Lys Lys His Pro Asp Phe Pro Lys Lys Pro Leu Thr Pro Tyr Phe Arg  
 35 40 45

Phe Phe Met Glu Lys Arg Ala Lys Tyr Ala Lys Leu His Pro Gln Met  
50 55 60

.Ser Asn Leu Asp Leu Thr Lys Ile Leu Ser Lys Lys Tyr Lys Glu Leu  
65 70 75 80

Pro Glu Lys Lys Lys Met Lys Tyr Val Pro Asp Phe Gln Arg Arg Glu  
85 90 95

Thr Gly Val Arg Ala Lys Pro Gly Pro Ile Gln Gly Gly Ser Pro Pro  
100 105 110

Pro Tyr Pro Glu Cys Gln Glu Ser Asp Ile Pro Glu Lys Pro Gln Asp  
115 120 .. 125

Pro Pro  
130

<210> 34  
<211> 506  
<212> PRT  
<213> *Homo sapiens*

<400> 34  
Asn Ser Glu Lys Glu Ile Pro Val Leu Asn Glu Leu Pro Val Pro Met  
1 5 10 15

Val Ala Arg Tyr Ile Arg Ile Asn Pro Gln Ser Trp Phe Asp Asn Gly  
20 25 30

Ser Ile Cys Met Arg Met Glu Ile Leu Gly Cys Pro Leu Pro Asp Pro

35

40

45

Asn Asn Tyr Tyr His Arg Arg Asn Glu Met Thr Thr Thr Asp Asp Leu  
 50 55 60

Asp Phe Lys His His Asn Tyr Lys Glu Met Arg Gln Leu Met Lys Val  
 65 70 75 80

Val Asn Glu Met Cys Pro Asn Ile Thr Arg Ile Tyr Asn Ile Gly Lys  
 85 90 95

Ser His Gln Gly Leu Lys Leu Tyr Ala Val Glu Ile Ser Asp His Pro  
 100 105 110

Gly Glu His Glu Val Gly Glu Pro Glu Phe His Tyr Ile Ala Gly Ala  
 115 120 125

His Gly Asn Glu Val Leu Gly Arg Glu Leu Leu Leu Leu Leu His  
 130 135 140

Phe Leu Cys Gln Glu Tyr Ser Ala Gln Asn Ala Arg Ile Val Arg Leu  
 145 150 155 160

Val Glu Glu Thr Arg Ile His Ile Leu Pro Ser Leu Asn Pro Asp Gly  
 165 170 175

Tyr Glu Lys Ala Tyr Glu Gly Ser Glu Leu Gly Gly Trp Ser Leu  
 180 185 190

Gly Arg Trp Thr His Asp Gly Ile Asp Ile Asn Asn Asn Phe Pro Asp  
 195 200 205

---

Leu Asn Ser Leu Leu Trp Glu Ala Glu Asp Gln Gln Asn Ala Pro Arg  
 210 215 220

Lys Val Pro Asn His Tyr Ile Ala Ile Pro Glu Trp Phe Leu Ser Glu  
 225 230 235 240

Asn Ala Thr Val Ala Thr Glu Thr Arg Ala Val Ile Ala Trp Met Glu  
 245 250 255

Lys Ile Pro Phe Val Leu Gly Gly Asn Leu Gln Gly Gly Glu Leu Val  
 260 265 270

Val Ala Tyr Pro Tyr Asp Met Val Arg Ser Leu Trp Lys Thr Gln Glu  
 275 280 285

His Thr Pro Thr Pro Asp Asp His Val Phe Arg Trp Leu Ala Tyr Ser  
 290 295 300

Tyr Ala Ser Thr His Arg Leu Met Thr Asp Ala Arg Arg Arg Val Cys  
 305 310 315 320

His Thr Glu Asp Phe Gln Lys Glu Glu Gly Thr Val Asn Gly Ala Ser  
 325 330 335

Trp His Thr Val Ala Gly Ser Leu Asn Asp Phe Ser Tyr Leu His Thr  
 340 345 350

Asn Cys Phe Glu Leu Ser Ile Tyr Val Gly Cys Asp Lys Tyr Pro His  
 355 360 365

Glu Ser Glu Leu Pro Glu Glu Trp Glu Asn Asn Arg Glu Ser Leu Ile  
 370 375 380

Val Phe Met Glu Gln Val His Arg Gly Ile Lys Gly Ile Val Arg Asp  
 385 390 395 400

Leu Gln Gly Lys Gly Ile Ser Asn Ala Val Ile Ser Val Glu Gly Val  
 405 410 415

Asn His Asp Ile Arg Thr Ala Ser Asp Gly Asp Tyr Trp Arg Leu Leu  
 420 425 430

Asn Pro Gly Glu Tyr Val Val Thr Ala Lys Ala Glu Gly Phe Ile Thr  
 435 440 445

Ser Thr Lys Asn Cys Met Val Gly Tyr Asp Met Gly Ala Thr Arg Cys  
 450 455 460

Asp Phe Thr Leu Thr Lys Thr Asn Leu Ala Arg Ile Arg Glu Ile Met  
 465 470 475 480

Glu Thr Phe Gly Lys Gln Pro Val Ser Leu Pro Ser Arg Arg Leu Lys  
 485 490 495

Leu Arg Gly Arg Lys Arg Arg Gln Arg Gly  
 500 505

<210> 35

<211> 96

<212> PRT

<213> Homo sapiens

<400> 35

Met Asn Gly Glu Ala Asp Cys Pro Thr Asp Leu Glu Met Ala Ala Pro  
 1 5 10 15

Arg Gly Gln Asp Arg Trp Ser Gln Glu Asp Met Leu Thr Leu Leu Glu  
 20 25 30

Cys Met Lys Asn Asn Leu Pro Ser Asn Asp Ser Ser Gln Phe Lys Thr  
 35 40 45

Thr Gln Thr His Met Asp Arg Glu Lys Val Ala Leu Lys Asp Phe Ser  
 50 55 60

Gly Asp Met Cys Lys Leu Lys Trp Val Glu Ile Ser Asn Glu Val Arg  
 65 70 75 80

Lys Phe Arg Thr Leu Thr Glu Leu Ile Leu Asp Thr Gln Glu His Val  
                   85                  90                  95

<210> 36  
<211> 129  
<212> PRT  
<213> *Homo sapiens*

<400> 36  
Gly Ile Val Val Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu  
1 5 10 15

Lys Lys Ala Val Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr  
20 25 \* 30

Val Leu Trp Arg Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn  
35 40 45

Thr Ile Leu Val Gln Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro  
50 55 60

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Thr | Arg | Ala | Phe | Ile | Thr | His | Ala | Ser | Ser | His | Gly | Val | Asn | Glu |
| 65  |     |     |     |     | 70  |     |     |     |     |     | 75  |     |     |     | 80  |

Ser Ile Cys Asn Gly Val Pro Met Val Met Ile Pro Leu Phe Gly Asp  
85 90 95

Gln Met Asp Asn Ala Lys Arg Arg Glu Thr Lys Gly Ala Gly Val Thr  
100 105 110

Leu Asn Val Leu Glu Met Thr Ser Glu Asp Leu Glu Asp Ala Leu Lys  
115 120 125

Ser

<210> 37  
<211> 238  
<212> PRT  
<213> *Homo sapiens*

Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe  
20 25 30

Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr  
35 40 45

Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg Lys Gln Gln Arg Gln Ser  
 65                    70                    75                    80  
  
 Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr Tyr Ile Ile Ala Gly Val  
 85                    90                    95  
  
 Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val Ile Asn Ser Arg Val Leu  
 100                  105                  110  
  
 Thr Ala Val His Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr  
 115                  120                  125  
  
 Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His  
 130                  135                  140  
  
 Glu Glu Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro  
 145                  150                  155                  160  
  
 Ser Ser Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu  
 165                  170                  175  
  
 Arg Gln Lys Phe Pro Pro Lys Phe Val Gln Leu Lys Pro Gly Glu Lys  
 180                  185                  190  
  
 Pro Val Pro Val Asp Gln Thr Lys Lys Glu Ala Glu Pro Ile Pro Glu  
 195                  200                  205  
  
 Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys Asn Val Gln Gln Thr  
 210                  215                  220  
  
 Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met Arg Leu Gln  
 225                  230                  235  
  
 <210> 38  
 <211> 202  
 <212> PRT  
 <213> Homo sapiens  
  
 <400> 38  
 Lys Gly Ser Glu Gly Glu Asn Pro Leu Thr Val Pro Gly Arg Glu Lys  
 1                    5                    10                    15  
  
 Glu Gly Met Leu Met Gly Val Lys Pro Gly Glu Asp Ala Ser Gly Pro  
 20                  25                  30  
  
 Ala Glu Asp Leu Val Arg Arg Ser Glu Lys Asp Thr Ala Ala Val Val  
 35                  40                  45  
  
 Ser Arg Gln Gly Ser Ser Leu Asn Leu Phe Glu Asp Val Gln Ile Thr  
 50                  55                  60  
  
 Glu Pro Glu Ala Glu Pro Glu Ser Lys Ser Glu Pro Arg Pro Pro Ile  
 65                  70                  75                  80

Ser Ser Pro Arg Ala Pro Gln Thr Arg Ala Val Lys Pro Arg Leu His  
85 90 95

Pro Val Lys Pro Met Asn Ala Thr Ala Thr Lys Val Ala Asn Cys Ser  
100 105 110

Leu Gly Thr Ala Thr Ile Ile Gly Glu Asn Leu Asn Asn Glu Val Met  
115 120 125

Met Lys Lys Tyr Ser Pro Ser Asp Pro Ala Phe Ala Tyr Ala Gln Leu  
130 135 140

Thr His Asp Glu Leu Ile Gln Leu Val Leu Lys Gln Lys Glu Thr Ile  
145 150 155 160

Ser Lys Lys Glu Phe Gln Val Arg Glu Leu Glu Asp Tyr Ile Asp Asn  
                   165                   170                   175

Leu Leu Val Arg Val Met Glu Glu Thr Pro Asn Ile Leu Arg Ile Pro  
180 185 190

Thr Gln Val Gly Lys Lys Ala Gly Lys Met  
195 200

<210> 39  
<211> 243  
<212> PRT  
<213> *Homo sapiens*

<400> 39  
Val Asn Ala Leu Gly Ile Met Ala Ala Val Asp Ile Arg Asp Asn Leu  
1 5 10 15

Leu Gly Ile Ser Trp Val Asp Ser Ser Trp Ile Pro Ile Leu Asn Ser  
20 25 30

Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe Tyr Asp  
35 40 45

Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr Leu Glu  
50 55 60

His Leu Asn Gln Met Val Gly Ile Glu Tyr Ile Leu Leu His Ala Gln  
65 . . . . . 70 . . . . . 75 . . . . . 80

Glu Pro Ile Leu Phe Ile Ile Arg Lys Gln Gln Arg Gln Ser Pro Ala  
85 90 95

Gln Val Ile Pro Leu Ala Asp Tyr Tyr Ile Ile Ala Gly Val Ile Tyr  
100 105 110

Gln Ala Pro Asp Leu Gly Ser Val Ile Asn Ser Arg Val Leu Thr Ala  
115 120 125

Val His Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr Cys Arg  
 130 135 140  
 Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His Glu Glu  
 145 150 155 160  
 Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro Ser Ser  
 165 170 175  
 Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu Arg Gln  
 180 185 190  
 Lys Ile Ser Thr Gln Ile Cys Ala Val Asp Gln Thr Lys Lys Glu Ala  
 195 200 205  
 Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys  
 210 215 220  
 Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met  
 225 230 235 240  
 Arg Leu Gln

<210> 40  
<211> 245  
<212> PRT  
<213> Homo sapiens

<400> 40  
Ala Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp  
1 5 10 15  
Ser Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe  
20 25 30

Ser Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val  
35 40 45

Val Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly  
50 55 60

Ile Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile  
65 70 75 80

Arg Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp  
85 90 95

Tyr Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser  
100 105 110

Val Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala  
115 120 125

Phe Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr  
 130 135 140

Trp Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys  
 145 150 155 160

Ala Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val  
 165 170 175

Asp Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val  
 180 185 190

Gln Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys  
 195 200 205

Glu Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr  
 210 215 220

Thr Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys  
 225 230 235 240

Arg Met Arg Leu Gln  
 245

<210> 41  
 <211> 163  
 <212> PRT  
 <213> Homo sapiens

<400> 41  
 Gly Glu Arg Gln Gly Leu Val Ala Arg Ala Arg Leu Ser Leu Arg Pro  
 1 5 10 15

Ser Ile Pro Glu Leu Ser Glu Arg Thr Ser Arg Pro Cys Arg Ala Ser  
 20 25 30

Pro Ala Ser Leu Pro Ser Gln His Thr Ser Ser Pro Ala Gln Ala Arg  
 35 40 45

Val Arg Asn Leu Ala Gln Ser Thr Phe Pro Leu Ala Ala Gln Glu Thr  
 50 55 60

Pro Gly Arg Ala Pro Ala His Ala Pro Leu Ser Ser Phe Val Pro Gly  
 65 70 75 80

Val Gly Gly Arg Ser Pro Ala Ser Val Gly Ile Ser Ala Pro Gly Gly  
 85 90 95

Gly Pro Ser Gly Ala Ala Ala Lys Ile Pro Leu Glu Leu Thr Gln Ser  
 100 105 110

Arg Val Gln Lys Ile Trp Val Pro Val Asp His Arg Pro Ser Leu Pro  
 115 120 125

Arg Ser Cys Gly Pro Lys Leu Thr Asn Ser Pro Ala Val Phe Val Met

130

135

140

Val Gly Leu Pro Arg Pro Gly Gln Asp Leu Leu Leu His Glu Ser Leu  
 145                    150                    155                    160

Leu Ala Ala

&lt;210&gt; 42

&lt;211&gt; 243

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 42

Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser Ser  
 1                    5                    10                    15

Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu  
 20                    25                    30

Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys  
 35                    40                    45

Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile Glu  
 50                    55                    60

Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg Lys  
 65                    70                    75                    80

Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr Tyr  
 85                    90                    95

Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val Ile  
 100                    105                    110

Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe Asp  
 115                    120                    125

Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp Trp  
 130                    135                    140

His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala Lys  
 145                    150                    155                    160

Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp Ala  
 165                    170                    175

Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln Leu  
 180                    185                    190

Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu Ala  
 195                    200                    205

Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys  
 210                    215                    220

Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met  
 225                    230                    235                    240

Arg Leu Gln

<210> 43  
 <211> 244  
 <212> PRT  
 <213> Homo sapiens

<400> 43  
 Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser  
 1                    5                    10                    15

Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser  
 20                    25                    30

Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val  
 35                    40                    45

Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile  
 50                    55                    60

Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg  
 65                    70                    75                    80

Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr  
 85                    90                    95

Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val  
 100                  105                  110

Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe  
 115                  120                  125

Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp  
 130                  135                  140

Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala  
 145                  150                  155                  160

Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp  
 165                  170                  175

Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln  
 180                  185                  190

Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu  
 195                  200                  205

Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr  
 210                  215                  220

Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg  
 225 230 235 240

Met Arg Leu Gln

<210> 44  
 <211> 109  
 <212> PRT  
 <213> Homo sapiens

<400> 44  
 Glu Leu His Phe Ser Glu Phe Thr Ser Ala Val Ala Asp Met Lys Asn  
 1 5 10 15

Ser Val Ala Asp Arg Asp Asn Ser Pro Ser Ser Cys Ala Gly Leu Phe  
 20 25 30

Ile Ala Ser His Ile Gly Phe Asp Trp Pro Gly Val Trp Val His Leu  
 35 40 45

Asp Ile Ala Ala Pro Val His Ala Gly Glu Arg Ala Thr Gly Phe Gly  
 50 55 60

Val Ala Leu Leu Leu Ala Leu Phe Gly Arg Ala Ser Glu Asp Pro Leu  
 65 70 75 80

Leu Asn Leu Val Ser Pro Leu Asp Cys Glu Val Asp Ala Gln Glu Gly  
 85 90 95

Asp Asn Met Gly Arg Asp Ser Lys Arg Arg Arg Leu Val  
 100 105

<210> 45  
 <211> 324  
 <212> PRT  
 <213> Homo sapiens

<400> 45  
 Arg Arg Pro Val Met Ala Gln Glu Thr Ala Pro Pro Cys Gly Pro Val  
 1 5 10 15

Ser Arg Gly Asp Ser Pro Ile Ile Glu Lys Met Glu Lys Arg Thr Cys  
 20 25 30

Ala Leu Cys Pro Glu Gly His Glu Trp Ser Gln Ile Tyr Phe Ser Pro  
 35 40 45

Ser Gly Asn Ile Val Ala His Glu Asn Cys Leu Leu Tyr Ser Ser Gly  
 50 55 60

Leu Val Glu Cys Glu Thr Leu Asp Leu Arg Asn Thr Ile Arg Asn Phe  
 65 70 75 80

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| Asp Val Lys Ser Val Lys Glu Ile Trp Arg Gly Arg Arg Leu Lys     |     |     |     |
| 85                                                              | 90  | 95  |     |
| Cys Ser Phe Cys Asn Lys Gly Gly Ala Thr Val Gly Cys Asp Leu Trp |     |     |     |
| 100                                                             | 105 | 110 |     |
| Phe Cys Lys Lys Ser Tyr His Tyr Val Cys Ala Lys Lys Asp Gln Ala |     |     |     |
| 115                                                             | 120 | 125 |     |
| Ile Leu Gln Val Asp Gly Asn His Gly Thr Tyr Lys Leu Phe Cys Pro |     |     |     |
| 130                                                             | 135 | 140 |     |
| Glu His Ser Pro Glu Gln Glu Glu Ala Thr Glu Ser Ala Asp Asp Pro |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Ser Met Lys Lys Arg Gly Lys Asn Lys Arg Leu Ser Ser Gly Pro     |     |     |     |
| 165                                                             | 170 | 175 |     |
| Pro Ala Gln Pro Lys Thr Met Lys Cys Ser Asn Ala Lys Arg His Met |     |     |     |
| 180                                                             | 185 | 190 |     |
| Thr Glu Glu Pro His Gly His Thr Asp Ala Ala Val Lys Ser Pro Phe |     |     |     |
| 195                                                             | 200 | 205 |     |
| Leu Lys Lys Cys Gln Glu Ala Gly Leu Leu Thr Glu Leu Phe Glu His |     |     |     |
| 210                                                             | 215 | 220 |     |
| Ile Leu Glu Asn Met Asp Ser Val His Gly Arg Leu Val Asp Glu Thr |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Ala Ser Glu Ser Asp Tyr Glu Gly Ile Glu Thr Leu Leu Phe Asp Cys |     |     |     |
| 245                                                             | 250 | 255 |     |
| Gly Leu Phe Lys Asp Thr Leu Arg Lys Phe Gln Glu Val Ile Lys Ser |     |     |     |
| 260                                                             | 265 | 270 |     |
| Lys Ala Cys Glu Trp Glu Glu Arg Gln Arg Gln Met Lys Gln Gln Leu |     |     |     |
| 275                                                             | 280 | 285 |     |
| Glu Ala Leu Ala Asp Leu Gln Gln Ser Leu Cys Ser Phe Gln Glu Asn |     |     |     |
| 290                                                             | 295 | 300 |     |
| Gly Asp Leu Asp Cys Ser Ser Ser Thr Ser Gly Ser Leu Leu Pro Pro |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Glu Asp His Gln                                                 |     |     |     |

<210> 46  
<211> 244  
<212> PRT  
<213> *Homo sapiens*

<400> 46  
Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 1                                                               | 5   | 10  | 15  |
| Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser |     |     |     |
| 20                                                              |     | 25  | 30  |
| Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val |     |     |     |
| 35                                                              |     | 40  | 45  |
| Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile |     |     |     |
| 50                                                              |     | 55  | 60  |
| Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr |     |     |     |
| 85                                                              |     | 90  | 95  |
| Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val |     |     |     |
| 100                                                             |     | 105 | 110 |
| Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe |     |     |     |
| 115                                                             |     | 120 | 125 |
| Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp |     |     |     |
| 130                                                             |     | 135 | 140 |
| Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala |     |     |     |
| 145                                                             | 150 |     | 155 |
| 160                                                             |     |     |     |
| Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp |     |     |     |
| 165                                                             |     | 170 | 175 |
| Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln |     |     |     |
| 180                                                             |     | 185 | 190 |
| Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu |     |     |     |
| 195                                                             |     | 200 | 205 |
| Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr |     |     |     |
| 210                                                             |     | 215 | 220 |
| Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg |     |     |     |
| 225                                                             |     | 230 | 235 |
| 240                                                             |     |     |     |
| Met Arg Leu Gln                                                 |     |     |     |

<210> 47  
 <211> 14  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 47  
 tttttttttt ttag

<210> 48  
<211> 10  
<212> DNA  
<213> Homo sapiens

<400> 48  
cttcaacctc

10

<210> 49  
<211> 496  
<212> DNA  
<213> Homo sapiens

<400> 49  
gcaccatgtc ccgagcactt cggctccctcg cgcgctcgcg tccccctcgta cgggctccag 60  
ccgcaggctt agcttcggct cccggcttgg gtggcgcggc cgtgccctcg ttttggcctc 120  
cgaacgcggc tcgaatggca agccaaaatt ccttccggat agaatatgat acctttggtg 180  
aactaaagggt gccaaatgtat aagtattatg gcgcccagac cgtgagatct acgtgaact 240  
ttaagattgg aggtgtgaca gaacgcattgc caaccccagt tattaaagct tttggcatct 300  
tgaagcggc gggcgctgaa gtaaaccagg attatggct tgatccaaag attgctaattg 360  
caataatgaa ggccagcagat gaggttagctg aaggtaaatt aaatgatcat tttccctctcg 420  
tggtatggca gactggatca ggaactcaga caaatatgaa tgttaatgaa gtcatttagcc 480  
aatagagcaa ttgaaa 496

<210> 50  
<211> 499  
<212> DNA  
<213> Homo sapiens

<400> 50  
agaaaaagtc tatgtttgca gaaatacaga tccaagacaa agacaggatg ggcactgctg 60  
gaaaaggat taaatgcaaa gcagctgtgc ttggggagca gaagcaaccc ttctccattt 120  
aggaaataga agttggccca ccaaagacta aagaagttcg cattaagatt ttggccacag 180  
gaatctgtcg cacagatgac catgtgataa aaggaacaat ggtgtccaa tttccagtg 240  
ttgtgggaca tgaggcaact gggattttag agagcattgg agaaggagtg actacagtga 300  
aaccagggtga caaagtcatc cctctcttgc tgccacaatg tagagaatgc aatgtttgtc 360  
gcaacccaga tggcaacctt tgcatttagga gcatattac tggctgtgaa gtactggctg 420  
atggcaccac cagatttaca tgcaaggcg aaccagtcca ccacttcatg aacaccagta 480  
catttaccga gtacacagt 499

<210> 51  
<211> 887  
<212> DNA  
<213> Homo sapiens

<400> 51  
gagtctgagc agaaaggaaa agcagccttg gcagccacgt tagaggaata caaagccaca 60  
gtggccagtg accagataga gatgaatcg ctgaaggctc agctggagaa taaaagcag 120  
aaagtggcag agctgtattc tatccataac tctggagaca aatctgatat tcagcaccc 180  
ctggagagtgc tcaggctgga caaagaaaaa gcagagactt tggcttagtag cttgcaggaa 240  
gatctggctc atacccgaaa tcatgtccat cgattacagg atgcccattgc taaggtagag 300  
gatgaatacc gagccttcca agaagaagct aagaaaacaaa ttgaagatggaa gaatatgacg 360  
tttagaaaaat taagatcaga cctggatgaa aaagaaaacag aaaggagtga catgaaagaa 420  
accatcttgc aacttgaaga tgaagtagaa caacatcgta ctgtgaaact tcatgacaac 480  
ctcattatcc ctgatctaga gaatacagt aaaaaactcc aggaccaaaa gcacgacatg 540

gaaagagaaa taaagacact ccacagaaga cttcgggaag aatctgcgga atggcgccag 600  
 tticaggctg atctccagac tgcaatgtc attgcaatgc acattaaatc tgaagccaa 660  
 gaggagattt gtatctaaa gcgcggta catgaggctc aaaaaaaaaa tgagaaactc 720  
 acaaaaagaat tgagggaaat aaagtcaacgc aagcaagagg aggagcgagg cggtataca 780  
 attacatgaa tgccgttag agagatttg cagcctaag gcaggaaatg ggactgagta 840  
 gaaggccctc gacttcctca gagccaactc ctacagtaaa aaccctc 887

<210> 52  
<211> 491  
<212> DNA  
<213> Homo sapiens

<400> 52  
ggcacgagct ttccaaaaa tcatgctgct ccttctctta aagttcttac attttataga 60  
aaggaacctt tcactcttga ggcctactac agctctcctc aggatttgcctt cttccat 120  
cctgctatag ctcagtttc agttcagaaa gtcactcctc agtctgtatgg ctccagttca 180  
aaagtgaaag tcaaagttcg agtaaatgtc catggcattt tcagttgttc cagttcatct 240  
ttatggagg ttacaatgtc tgagggaaat gaggagccaa tggaaacaga tcagaatgca 300  
aaggaggaag agaagatgca agtggaccag gaggaccac atgttgaaga gcaacagcag 360  
cagacaccag gcagaaaata aggccatgtc tgaagaaatg gagaccttc aagctggatc 420  
caaggataaa aagatggacc aaccacccca agccaagaag gcaaaagtga agaccagtae 480  
tgtggacctg g 491

<210> 53  
<211> 787  
<212> DNA  
<213> Homo sapiens

<400> 53  
aagcagttga gtggcagaa aaaagaacctt cttcattaag gattaaaatg tataggccag 60  
cacgtgtaaac ttcaacttca agatttctga atccatatgt agtattttc attgtcg 120  
caggggttgtt gatcctggca gtcaccatag ctctacttgtt ttactttta gctttgtatc 180  
aaaaatctta ctttatagg agcagtttc aactcctaaa tggaaatataat aataagtcat 240  
taaattcacc agtacacacag gaatacagga ctttgagtgg aagaatttggaa tctctgatta 300  
ctaaacatt caaagaatca aattttaaatc atcagttcat cagagctcat gttgccaac 360  
tgaggcaaga tggtagtgtt gtggagccgg atgttgcattt gaaatttcaa ttcaactagaa 420  
ataacaatgg agcatcaatg aaaagcagaa ttgagttgtt tttacgacaa atgctgaata 480  
actctggaaa cctggaaata aacccttcaa ctgagataac atcacttact gaccaggctg 540  
cagcaaattt gcttattaaat gaatgtgggg ccggtccaga cctaataaca ttgtctgagc 600  
agagaatctc tgaggccact gaggctgagg agggaaatgtc gcccgtggca gtcgtctgc 660  
ggctcaataa tgccccaccac tgtggaggca gcctgatcaa taacatgtgg atcctgacag 720  
cagctcaactg cttcagaagc aactctaatc ctcgtgactg gattgccacg tctggatattt 780  
ccacaac 787

<210> 54  
<211> 386  
<212> DNA  
<213> Homo sapiens

<400> 54  
ggcatttca gtgtgtccag tgcatttttta gtggagggttc acaagtctga ggaaaatgt 60  
gagccaatgg aaacagatca gaatgttcaag gaggagaga agatgtcaatg ggaccaggag 120  
gaaccacatg ttgaagagca acagcagcag acaccagcag aaaataaggc agatgtcaatg 180  
gaaatggaga cctctcaagc tggatccaaatg gataaaaaaaa tggaccaacc accccaagcc 240  
aagaaggcaaa aagtgttcaagc cagttactgtt gacccgtggca tcgagaatca gctattatgg 300

cagatagaca gagagatgct caacttgtac attaaaaatg agggtaagat gatcatgcag 360  
gataaactgg agaaggagcg gaatga 386

<210> 55  
<211> 1462  
<212> DNA  
<213> Homo sapiens

<400> 55  
aagcagtgtga gtaggcagaa aaaagaacct cttcatthaag gattaaaatg tatagccag 60  
cacgtgtaaac ttgcacttca agatttctga atccatatgt agtatgttc attgtcgctcg 120  
caggggttagt gatccctggca gtcaccatag ctctacttgtt ttaactttttt gcttttgatc 180  
aaaaatctta cttttatagg agcagtttc aactcctaaa tggtgaatataat aatagtca 240  
taaattcacc agctacacag gaatacagga cttttagtgg aagaattgaa tctctgatta 300  
ctaaaaacatt caaagaatca aattttaaagaa atcagttcat cagagctcat gttgccaac 360  
tgaggcaaga tggtagtggt gtgagagcgg atgtgtcat gaaatttcaa ttcaactagaa 420  
ataacaatgg agcatcaatg aaaagcagaa ttgagtcgtt tttacgacaa atgctgaata 480  
actctggaaa cctggaaata aacccttcaa ctgagataac atcacttact gaccaggctg 540  
cagcaaatttgc ttatataat gaatgtgggg ccgggtccaga cctaataaca ttgtctgagc 600  
agagaatct tggaggcact gaggctgagg agggaaagctg gccgtggcaa gtcagtctgc 660  
ggctcaataa tgcccaccac tggggggca gcctgatcaa taacatgtgg atcctgacag 720  
cagctcaactg cttcagaagc aactctaatttccctgtactg gattgccacg tctggattttt 780  
ccacaacatt tcctaaacta agaatgagag taagaaatataat ttaattcat aacaattata 840  
aatctgcaac tcatgaaaat gacattgcac ttgtgagact tgagaacagt gtcacccat 900  
ccaaagatataat ccatagtgtg tggctcccaag ctgatccaa gaatattcca cctggctcta 960  
ctgcttatgt aacaggatgg ggcgctcaag aatatgtgg ccacacagttt ccagagctaa 1020  
ggcaaggaca ggtcagaata ataagtaatg atgtatgtaa tgcaccacat agttataatg 1080  
gagccatctt gtctgaaatg ctgtgtgcgt ggttacctca aggtggagtg gacgcacatgc 1140  
agggtgactc tggggccca ctgtacaag aagactcacg gcggctttgg tttattgtgg 1200  
ggatagtaag ctggggagat cagtgtggcc tggccgataa gccaggagtg tataactcgag 1260  
tgacagcata cattgactgg attaggcaac aaactggat ctgtgcaac aagtgcacatcc 1320  
ctgttgcacaa gtctgtatgc aggtgtgcct gtcattaaattt ccaaagctttt acattcaac 1380  
tgaaaaagaa actagaaaatg tccttaattt acatcttgc acataaaatg ggtttacaa 1440  
aaaaaaaaaaaaaaa aaaaaactcg ag 1462

<210> 56  
<211> 159  
<212> PRT  
<213> Homo sapiens

<400> 56  
Thr Met Tyr Arg Ala Leu Arg Leu Leu Ala Arg Ser Arg Pro Leu Val  
1 5 10 15

Arg Ala Pro Ala Ala Ala Leu Ala Ser Ala Pro Gly Leu Gly Gly Ala  
20 25 30

Ala Val Pro Ser Phe Trp Pro Pro Asn Ala Ala Arg Met Ala Ser Gln  
35 40 45

Asn Ser Phe Arg Ile Glu Tyr Asp Thr Phe Gly Glu Leu Lys Val Pro  
50 55 60

Asn Asp Lys Tyr Tyr Gly Ala Gln Thr Val Arg Ser Thr Met Asn Phe  
65 70 75 80

Lys Ile Gly Gly Val Thr Glu Arg Met Pro Thr Pro Val Ile Lys Ala  
85 90 95

Phe Gly Ile Leu Lys Arg Ala Ala Ala Glu Val Asn Gln Asp Tyr Gly  
100 105 110

Leu Asp Pro Lys Ile Ala Asn Ala Ile Met Lys Ala Ala Asp Glu Val  
115 120 125

Ala Glu Gly Lys Leu Asn Asp His Phe Pro Leu Val Val Trp Gln Thr  
130 135 140

Gly Ser Gly Thr Gln Thr Asn Met Asn Val Asn Glu Val Ile Ser  
145 150 155

<210> 57

<211> 165

<212> PRT

<213> Homo sapiens

<400> 57

Lys Lys Ser Met Phe Ala Glu Ile Gln Ile Gln Asp Lys Asp Arg Met  
1 5 10 15

Gly Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Leu Trp Glu  
20 25 30

Gln Lys Gln Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys  
35 40 45

Thr Lys Glu Val Arg Ile Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr  
50 55 60

Asp Asp His Val Ile Lys Gly Thr Met Val Ser Lys Phe Pro Val Ile  
65 70 75 80

Val Gly His Glu Ala Thr Gly Ile Val Glu Ser Ile Gly Glu Gly Val  
85 90 95

Thr Thr Val Lys Pro Gly Asp Lys Val Ile Pro Leu Phe Leu Pro Gln  
100 105 110

Cys Arg Glu Cys Asn Ala Cys Arg Asn Pro Asp Gly Asn Leu Cys Ile  
115 120 125

Arg Ser Asp Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg  
130 135 140

Phe Thr Cys Lys Gly Glu Pro Val His His Phe Met Asn Thr Ser Thr  
145 150 155 160

Phe Thr Glu Tyr Thr  
165

<210> 58  
<211> 259  
<212> PRT  
<213> Homo sapiens

<400> 58  
Glu Ser Glu Gln Lys Gly Lys Ala Ala Leu Ala Ala Thr Leu Glu Glu  
1 5 10 15  
Tyr Lys Ala Thr Val Ala Ser Asp Gln Ile Glu Met Asn Arg Leu Lys  
20 25 30  
Ala Gln Leu Glu Asn Glu Lys Gln Lys Val Ala Glu Leu Tyr Ser Ile  
35 40 45  
His Asn Ser Gly Asp Lys Ser Asp Ile Gln Asp Leu Leu Glu Ser Val  
50 55 60  
Arg Leu Asp Lys Glu Lys Ala Glu Thr Leu Ala Ser Ser Leu Gln Glu  
65 70 75 80  
Asp Leu Ala His Thr Arg Asn Asp Ala Asn Arg Leu Gln Asp Ala Ile  
85 90 95  
Ala Lys Val Glu Asp Glu Tyr Arg Ala Phe Gln Glu Glu Ala Lys Lys  
100 105 110  
Gln Ile Glu Asp Leu Asn Met Thr Leu Glu Lys Leu Arg Ser Asp Leu  
115 120 125  
Asp Glu Lys Glu Thr Glu Arg Ser Asp Met Lys Glu Thr Ile Phe Glu  
130 135 140  
Leu Glu Asp Glu Val Glu Gln His Arg Ala Val Lys Leu His Asp Asn  
145 150 155 160  
Leu Ile Ile Ser Asp Leu Glu Asn Thr Val Lys Lys Leu Gln Asp Gln  
165 170 175  
Lys His Asp Met Glu Arg Glu Ile Lys Thr Leu His Arg Arg Leu Arg  
180 185 190  
Glu Glu Ser Ala Glu Trp Arg Gln Phe Gln Ala Asp Leu Gln Thr Ala  
195 200 205  
Val Val Ile Ala Asn Asp Ile Lys Ser Glu Ala Gln Glu Glu Ile Gly  
210 215 220  
Asp Leu Lys Arg Arg Leu His Glu Ala Gln Glu Lys Asn Glu Lys Leu  
225 230 235 240  
Thr Lys Glu Leu Glu Glu Ile Lys Ser Arg Lys Gln Glu Glu Glu Arg  
245 250 255

Gly Gly Tyr

<210> 59

<211> 125

<212> PRT

<213> Homo sapiens

<400> 59

Gly Thr Ser Phe Ser Lys Asn His Ala Ala Pro Phe Ser Lys Val Leu  
1 5 10 15

Thr Phe Tyr Arg Lys Glu Pro Phe Thr Leu Glu Ala Tyr Tyr Ser Ser  
20 25 30

Pro Gln Asp Leu Pro Tyr Pro Asp Pro Ala Ile Ala Gln Phe Ser Val  
35 40 -- 45

Gln Lys Val Thr Pro Gln Ser Asp Gly Ser Ser Ser Lys Val Lys Val  
50 55 60

Lys Val Arg Val Asn Val His Gly Ile Phe Ser Val Ser Ser Ala Ser  
65 70 75 80

Leu Val Glu Val His Lys Ser Glu Glu Asn Glu Glu Pro Met Glu Thr  
85 90 95

Asp Gln Asn Ala Lys Glu Glu Lys Met Gln Val Asp Gln Glu Glu  
100 105 110

Pro His Val Glu Glu Gln Gln Gln Thr Pro Gly Arg  
115 120 125

<210> 60

<211> 246

<212> PRT

<213> Homo sapiens

<400> 60

Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro  
1 5 10 15

Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val  
20 25 30

Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr  
35 40 45

Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln  
50 55 60

Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile  
65 70 75 80

Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln  
85 90 95

Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val  
100 105 110

Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly  
115 120 125

Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn  
130 135 140

Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu  
145 150 155 160

Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly  
165 170 175

Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu  
180 185 190

Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn  
195 200 205

Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr  
210 215 220

Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala  
225 230 235 240

Thr Ser Gly Ile Ser Thr  
245

<210> 61  
<211> 128  
<212> PRT  
<213> Homo sapiens

<400> 61  
Gly Ile Phe Ser Val Ser Ser Ala Ser Leu Val Glu Val His Lys Ser  
1 5 10 15

Glu Glu Asn Glu Glu Pro Met Glu Thr Asp Gln Asn Ala Lys Glu Glu  
20 25 30

Glu Lys Met Gln Val Asp Gln Glu Glu Pro His Val Glu Glu Gln Gln  
35 40 45

Gln Gln Thr Pro Ala Glu Asn Lys Ala Glu Ser Glu Glu Met Glu Thr  
50 55 60

Ser Gln Ala Gly Ser Lys Asp Lys Lys Met Asp Gln Pro Pro Gln Ala  
65 70 75 80

Lys Lys Ala Lys Val Lys Thr Ser Thr Val Asp Leu Pro Ile Glu Asn

85

90

95

Gln Leu Leu Trp Gln Ile Asp Arg Glu Met Leu Asn Leu Tyr Ile Glu  
 100 105 110  
 Asn Glu Gly Lys Met Ile Met Gln Asp Lys Leu Glu Lys Glu Arg Asn  
 115 120 125

<210> 62  
 <211> 418  
 <212> PRT  
 <213> Homo sapiens

<400> 62  
 Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro  
 1 5 10 15

Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val  
 20 25 30

Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr  
 35 40 45

Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln  
 50 55 60

Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile  
 65 70 75 80

Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln  
 85 90 95

Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val  
 100 105 110

Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly  
 115 120 125

Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn  
 130 135 140

Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu  
 145 150 155 160

Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly  
 165 170 175

Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu  
 180 185 190

Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn  
 195 200 205

Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr

| 210                                                             | 215 | 220   |
|-----------------------------------------------------------------|-----|-------|
| Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala |     |       |
| 225                                                             | 230 | 235   |
| Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg |     |       |
|                                                                 | 245 | 250   |
|                                                                 |     | 255   |
| Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp |     |       |
|                                                                 | 260 | 265   |
|                                                                 |     | 270   |
| Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile |     |       |
|                                                                 | 275 | 280   |
|                                                                 |     | 285   |
| His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser |     |       |
|                                                                 | 290 | 295   |
|                                                                 |     | ← 300 |
| Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr |     |       |
|                                                                 | 305 | 310   |
|                                                                 |     | 315   |
|                                                                 |     | 320   |
| Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val |     |       |
|                                                                 | 325 | 330   |
|                                                                 |     | 335   |
| Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu |     |       |
|                                                                 | 340 | 345   |
|                                                                 |     | 350   |
| Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser |     |       |
|                                                                 | 355 | 360   |
|                                                                 |     | 365   |
| Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val |     |       |
|                                                                 | 370 | 375   |
|                                                                 |     | 380   |
| Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly |     |       |
|                                                                 | 385 | 390   |
|                                                                 |     | 395   |
|                                                                 |     | 400   |
| Val Tyr Thr Arg Val Thr Ala Tyr Ile Asp Trp Ile Arg Gln Gln Thr |     |       |
|                                                                 | 405 | 410   |
|                                                                 |     | 415   |

## Gly Ile

<210> 63  
<211> 776  
<212> DNA  
<213> *Homo sapiens*

<400> 63  
cacagatgg tatacaggaa tccatcttgc agtcagataa agccctca act gatagagaga 60  
aggcagttagc agtggatcg gccagaagg aggcaactga gaaggaacag gaactttaa 120  
aacagaatt acaggagcag ccagcaacag atggaggctc aagataagag tcgcaaggaa 180  
aactagccaa ctgaaggaga agctgcagat ggagagagaa cacctactga gagagcagat 240  
tatgtatgttgc gagcacacgc agaaggtcca aaatgattgg cttcatgaag gatTTAGAA 300  
gaagtatgag gagatgaatg cagagataag tcaattttaa cgtatgattt atactacaaa 360  
aaatgtatgtatcccttggta ttgcacgaac cttggacaac cttggccatg agctaactgc 420  
aatattgtct gctcctgtca aattaattgg tcatggtgta aaagggtgtga gctcaactt 480

taaaaagcat aagctccccct ttttaaggata ttatagattt tacatatatg ctttggacta 540  
 tttttgatct gtatgtttt cattttcatt cagcaagttt ttttttttt tcagagtctt 600  
 actctgttgc ccaggctgga gtacagtggt gcaatcttag ctcactgcaa cctctgcctc 660  
 ctgggttcaa gagattcacc tgcctcagcc ccctagtagc tggattata ggtgtacacc 720  
 accacaccca gctaattttt gtatTTTtag tagagatggg gtttcaactat gttggc 776

&lt;210&gt; 64

&lt;211&gt; 160

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 64

gcagcgctct cggttgcagt acccaactgga aggacttagg cgctcgctg gacaccgcaa 60  
 gcccctcagt agcctcggcc caagaggcct gctttccact cgctagcccc gccgggggtc 120  
 cgtgtcctgt ctcggtggcc ggaccgggc ccgagcucga 160

&lt;210&gt; 65

&lt;211&gt; 72

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 65

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ser | Ala | Met | Gly | Phe | Thr | Ala | Ala | Gly | Ile | Ala | Ser | Ser | Ser | Ile |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ala | Lys | Met | Met | Ser | Ala | Ala | Ala | Ile | Ala | Asn | Gly | Gly | Gly | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 30  |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ser | Gly | Ser | Leu | Val | Ala | Thr | Leu | Gln | Ser | Leu | Gly | Ala | Thr | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ser | Gly | Leu | Thr | Lys | Phe | Ile | Leu | Gly | Ser | Ile | Gly | Ser | Ala | Ile |
| 50  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ala | Val | Ile | Ala | Arg | Phe | Tyr |
| 65  |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |

&lt;210&gt; 66

&lt;211&gt; 2581

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 66

cttccaaccc gcgcgcggc gctccagccc cgccgcggcc cacccttgc cctccggcg 60  
 gctccgcagg gtgaggtggc tttgaccccg gttgccccgg ccagcacgac cgaggagggtg 120  
 gctggacagc tggaggatga acggagaagc cgactgcccc acagacatgg aaatggccgc 180  
 ccccaaaggc caagaccgtt ggtcccgaga agacatgctg actttgctgg aatgcatgaa 240  
 gaacaacctt ccatccaatg acagctcaa gttcaaaacc accgaatcac acatggactg 300  
 ggaaaaagta gcatttaaag actttctgg agacatgtgc aagctcaaat ggtggagat 360  
 ttctaatgag gtgaggaagt tccgtacatt gacagaattt atcctcgatg ctcaggaaca 420  
 tgtaaaaaat ctttacaag gaaaaaaact caagaaacac ccagacttcc caaagaagcc 480  
 cctgacccct tatttccgt ttttcatgga gaagcgggcc aagtatgcga aactccaccc 540  
 tgagatgagc aacctggacc taaccaagat tctgtccaag aaatacaagg agcttccgga 600  
 gaagaagaag atgaaatata ttcaaggactt ccagagagag aaacaggagt tcgagcggaa 660

cctggcccga ttcagggagg atcaccgcg cctaattccag aatgccaaaga aatcgacat 720  
 cccagagaag cccaaaaccc cccagcagct gtggtacacc cacgagaaga aggttatct 780  
 caaagtgcgg ccagatgccg ctacgaagga ggtgaaggac tccctgggg agcagtggc 840  
 tcagctctcg gacaaaaaga ggctgaaatg gattcataag gcccggagc agcggaaagga 900  
 gtacgaggag atcatgagag actatatcca gaagcaccca gagctgaaca tcagtgagga 960  
 gggtatcacc aagtccaccc tcaccaaggc cgaacgcccag ctcaaggaca agtttgacgg 1020  
 gcgaccacc aagccaccc cgaacagcta ctcgctgtac tgccgagagc tcattggccaa 1080  
 catgaaggac gtgcccagca cagagcgc ggtgctgtgc agccagcagt ggaagctgct 1140  
 gtcccagaag gagaaggacg cctatcacaa gaagtgtatc cagaaaaaga aagattacga 1200  
 ggtggagctg ctccgtttcc tcgagagcct gcctgaggag gagcagcagc gggtcttggg 1260  
 ggaagagaag atgctgaaca tcaacaagaa gcagggccacc agccccgcct ccaagaagcc 1320  
 agcccaaggaa gggggcaagg gcggctccga gaagcccaag cggccctgtg cggccatgtt 1380  
 catcttctcg gaggagaaac ggcggcagct gcaggaggag cggccctgagc tctccgagag 1440  
 cgagctgacc cgcctgctgg cccgaatgtg gaacgacccg tctgagaaga agaaggccaa 1500  
 gtacaaggcc cgagaggccg cgctcaaggc tcagtcggag aggaagccg gcggggagcg 1560  
 cgaggaacgg ggcaagctgc ccgagttccc caaaagagct gaggagatct ggcaacagag 1620  
 cgttatccgc gactacctgg cccgcttcaa gaatgaccgg gtgaaggccct tgaaagccat 1680  
 gaaaaatgacc tggaaaataaca tggaaaagaa ggagaaactg atgtggattt agaaggcagc 1740  
 cgaagaccaa aagcgatatg agagagagct gaggatgt cggccaccc cagctgctac 1800  
 aaattcttcc aagaagatga aattccaggg agaacccaaag aagcctccca tgaacgggta 1860  
 ccagaagttc tcccaggagc tgctgtccaa tggggagctg aaccacccgc cgcgtaaagg 1920  
 ggcgcattgtg gagatcgca gtcgctggca gcgcattctcc cagagccaga aggaggacta 1980  
 caaaagactg gcccggggc agcaaaagca gtacaaggtg cacctggacc tctgggtaa 2040  
 gagcctgtct ccccaaggacc gtgcagcata taaagagtac atctccaata aacgtaaagag 2100  
 catgaccaag ctgcgaggcc caaacccaa atccagccgg actactctgc agtccaaagtc 2160  
 ggagtccgag gaggatgt aagaggatga ggatgacccg gacgaggatg aagaagagga 2220  
 agatgtatg aatggggact cctctgaaga tggcgccgc acctctgtt ccagcagcga 2280  
 ggacgagagc gaggatgggg atgagaatga agaggatgc gaggacgaag acgacgacga 2340  
 ggatgacgat gaggatgaag ataatgatc cgagggcagc agtccagct cctccctt 2400  
 aggggactcc tcagactttg actccaaactg aggcttagcc ccaccccaagg ggagccagg 2460  
 agagcccaagg agctccccctc cccaaactgac cacctttgtt tctcccccattt gttctgtccc 2520  
 ttggcccccctt ggcctccccctt actttttttt tttttttaaa aaaaaaaaaaaa aaaaactcga 2580  
 g 2581

&lt;210&gt; 67

&lt;211&gt; 764

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 67

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Asn | Gly | Glu | Ala | Asp | Cys | Pro | Thr | Asp | Leu | Glu | Met | Ala | Ala | Pro |
| 1   |     |     |     |     |     |     |     |     |     |     |     | 10  |     |     | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Gly | Gln | Asp | Arg | Trp | Ser | Gln | Glu | Asp | Met | Leu | Thr | Leu | Leu | Glu |
|     |     |     |     |     |     |     |     |     |     |     |     | 20  |     | 25  | 30  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cys | Met | Lys | Asn | Asn | Leu | Pro | Ser | Asn | Asp | Ser | Ser | Lys | Phe | Lys | Thr |
|     |     |     |     |     |     |     |     |     |     |     |     | 35  |     | 40  | 45  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Thr | Glu | Ser | His | Met | Asp | Trp | Glu | Lys | Val | Ala | Phe | Lys | Asp | Phe | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     | 50  |     | 55  | 60  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Gly | Asp | Met | Cys | Lys | Leu | Lys | Trp | Val | Glu | Ile | Ser | Asn | Glu | Val | Arg |    |
|     |     |     |     |     |     |     |     |     |     |     |     | 65  |     | 70  | 75  | 80 |

Lys Phe Arg Thr Leu Thr Glu Leu Ile Leu Asp Ala Gln Glu His Val  
85 90 95

Lys Asn Pro Tyr Lys Gly Lys Lys Leu Lys Lys His Pro Asp Phe Pro  
100 105 110

Lys Lys Pro Leu Thr Pro Tyr Phe Arg Phe Phe Met Glu Lys Arg Ala  
115 120 125

Lys Tyr Ala Lys Leu His Pro Glu Met Ser Asn Leu Asp Leu Thr Lys  
130 135 140

Ile Leu Ser Lys Lys Tyr Lys Glu Leu Pro Glu Lys Lys Lys Met Lys  
145 150 155 160

Tyr Ile Gln Asp Phe Gln Arg Glu Lys Gln Glu Phe Glu Arg Asn Leu  
165 170 175

Ala Arg Phe Arg Glu Asp His Pro Asp Leu Ile Gln Asn Ala Lys Lys  
180 185 190

Ser Asp Ile Pro Glu Lys Pro Lys Thr Pro Gln Gln Leu Trp Tyr Thr  
195 200 205

His Glu Lys Lys Val Tyr Leu Lys Val Arg Pro Asp Ala Thr Thr Lys  
210 215 220

Glu Val Lys Asp Ser Leu Gly Lys Gln Trp Ser Gln Leu Ser Asp Lys  
225 230 235 240

Lys Arg Leu Lys Trp Ile His Lys Ala Leu Glu Gln Arg Lys Glu Tyr  
245 250 255

Glu Glu Ile Met Arg Asp Tyr Ile Gln Lys His Pro Glu Leu Asn Ile  
260 265 270

Ser Glu Glu Gly Ile Thr Lys Ser Thr Leu Thr Lys Ala Glu Arg Gln  
275 280 285

Leu Lys Asp Lys Phe Asp Gly Arg Pro Thr Lys Pro Pro Pro Asn Ser  
290 295 300

Tyr Ser Leu Tyr Cys Ala Glu Leu Met Ala Asn Met Lys Asp Val Pro  
305 310 315 320

Ser Thr Glu Arg Met Val Leu Cys Ser Gln Gln Trp Lys Leu Leu Ser  
325 330 335

Gln Lys Glu Lys Asp Ala Tyr His Lys Lys Cys Asp Gln Lys Lys  
340 345 350

Asp Tyr Glu Val Glu Leu Leu Arg Phe Leu Glu Ser Leu Pro Glu Glu  
355 360 365

Glu Gln Gln Arg Val Leu Gly Glu Glu Lys Met Leu Asn Ile Asn Lys

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 370                                                             | 375 | 380 |
| Lys Gln Ala Thr Ser Pro Ala Ser Lys Lys Pro Ala Gln Glu Gly Gly |     |     |
| 385                                                             | 390 | 395 |
| Lys Gly Gly Ser Glu Lys Pro Lys Arg Pro Val Ser Ala Met Phe Ile |     |     |
| 405                                                             | 410 | 415 |
| Phe Ser Glu Glu Lys Arg Arg Gln Leu Gln Glu Glu Arg Pro Glu Leu |     |     |
| 420                                                             | 425 | 430 |
| Ser Glu Ser Glu Leu Thr Arg Leu Leu Ala Arg Met Trp Asn Asp Leu |     |     |
| 435                                                             | 440 | 445 |
| Ser Glu Lys Lys Ala Lys Tyr Lys Ala Arg Glu Ala Ala Leu Lys     |     |     |
| 450                                                             | 455 | 460 |
| Ala Gln Ser Glu Arg Lys Pro Gly Gly Glu Arg Glu Glu Arg Gly Lys |     |     |
| 465                                                             | 470 | 475 |
| Leu Pro Glu Ser Pro Lys Arg Ala Glu Glu Ile Trp Gln Gln Ser Val |     |     |
| 485                                                             | 490 | 495 |
| Ile Gly Asp Tyr Leu Ala Arg Phe Lys Asn Asp Arg Val Lys Ala Leu |     |     |
| 500                                                             | 505 | 510 |
| Lys Ala Met Glu Met Thr Trp Asn Asn Met Glu Lys Lys Glu Lys Leu |     |     |
| 515                                                             | 520 | 525 |
| Met Trp Ile Lys Lys Ala Ala Glu Asp Gln Lys Arg Tyr Glu Arg Glu |     |     |
| 530                                                             | 535 | 540 |
| Leu Ser Glu Met Arg Ala Pro Pro Ala Ala Thr Asn Ser Ser Lys Lys |     |     |
| 545                                                             | 550 | 555 |
| Met Lys Phe Gln Gly Glu Pro Lys Lys Pro Pro Met Asn Gly Tyr Gln |     |     |
| 565                                                             | 570 | 575 |
| Lys Phe Ser Gln Glu Leu Leu Ser Asn Gly Glu Leu Asn His Leu Pro |     |     |
| 580                                                             | 585 | 590 |
| Leu Lys Glu Arg Met Val Glu Ile Gly Ser Arg Trp Gln Arg Ile Ser |     |     |
| 595                                                             | 600 | 605 |
| Gln Ser Gln Lys Glu His Tyr Lys Lys Leu Ala Glu Glu Gln Gln Lys |     |     |
| 610                                                             | 615 | 620 |
| Gln Tyr Lys Val His Leu Asp Leu Trp Val Lys Ser Leu Ser Pro Gln |     |     |
| 625                                                             | 630 | 635 |
| Asp Arg Ala Ala Tyr Lys Glu Tyr Ile Ser Asn Lys Arg Lys Ser Met |     |     |
| 645                                                             | 650 | 655 |
| Thr Lys Leu Arg Gly Pro Asn Pro Lys Ser Ser Arg Thr Thr Leu Gln |     |     |
| 660                                                             | 665 | 670 |

Ser Lys Ser Glu Ser Glu Glu Asp Asp Glu Glu Asp Asp Asp Glu  
 675 680 685  
 Asp Glu Asp Glu Glu Glu Asp Asp Glu Asn Gly Asp Ser Ser Glu  
 690 695 700  
 Asp Gly Gly Asp Ser Ser Glu Ser Ser Glu Asp Glu Ser Glu Asp  
 705 710 715 720  
 Gly Asp Glu Asn Glu Glu Asp Asp Glu Asp Glu Asp Asp Asp Glu Asp  
 725 730 735  
 Asp Asp Glu Asp Glu Asp Asn Glu Ser Glu Gly Ser Ser Ser Ser  
 740 745 750  
 Ser Ser Leu Gly Asp Ser Ser Asp Phe Asp Ser Asn  
 755 760

<210> 68  
 <211> 434  
 <212> DNA  
 <213> Homo sapiens

<400> 68  
 ctaagatgct ggatgctgaa gacatcgctg gaactgcccggccagatgag aaagccatta 60  
 tgacttatgt gtcttagtttc tatcatgcct tctctggagc ccagaaggca gaaacagcag 120  
 ccaatcgcat ctgcaaagtgt ttggcggtca atcaagagaa cgagcagtt atgaaagact 180  
 atgagaagct ggccagtgtat ctgttggagt ggatccgccc caccatccca tggctggaga 240  
 atcgggtgcc tgagaacaccc atgcattcca tgcagcagaa gctggaggac ttccgagact 300  
 atagacgcct gcacaaggccg cccaaagggtc aggagaagtgt ccagctggag atcaacttta 360  
 acacgctgca gaccataactg cggctcagca accggcctgc cttcatgccc tccgagggca 420  
 ggatggtctc ggat 434

<210> 69  
 <211> 244  
 <212> DNA  
 <213> Homo sapiens

<400> 69  
 aggcacgatg ctcgttgaga gtcattacca ctccttaatc tcaagtacgc agggacacaa 60  
 acactgcgga aggccgcagg gtcctctgcc tagaaaaacc agagacctt gttcaattgt 120  
 ttatgtgtc accttccctc cactattgtc ctgtgaccct gccaaatccc ctttgtgag 180  
 aaacacccaa gaatgtatcaa taaaaataaa attaatttag gaaaaaaaaaaa aaaaaaaaaact 240  
 cgag 244

<210> 70  
 <211> 437  
 <212> DNA  
 <213> Homo sapiens

<400> 70  
 ctgggacggg agcgtccagc gggactcgaa ccccagatgt gaaggcgttt ctggaaagtc 60  
 cttggccctt ggatccagcg tggccagcc cagagccgt gccgcacatc cttgcgtcct 120

```

ccaggcagtggaccccgcg agctgcacgt ccctggcac ggacaagtgt gaggcaactgt 180
tggggctgtg ccaggtgcgg ggtgggctgc cccctttctc agaaccttcc agcctgtgc 240
cgtggcccccc agggcggagt cttccctaagg ctgtgaggcc acccctgtcc tggcccccgt 300
tctcgcagca gcagaccttg cccgtatga gcggggaggc cttggctgg ctggccagg 360
ctggttccctt ggccatgggg gctgcaccc tcggggagcc agccaaggag gaccctatgc 420
tggcgcagga agccggg 437

```

<210> 71  
<211> 271  
<212> DNA  
<213> *Homo sapiens*

<210> 72  
<211> 290  
<212> DNA  
<213> *Homo sapiens*

<400> 72 ccgagcccta cccggaggtc tccagaatcc ccaccgtcag gggatgcaac ggctccctgt 60  
ctgggtccct ctctctgtgc gaggactcgg cccagggtc gggccccccc aaggccctta 120  
cggtggccga gggtcccagc tcctgccttc ggcggAACGT gatcagcgag agggagcgc 180  
ggaagcggat gtctttgagc ttttgagcgtc tgccggccct gctgccccag ttctatggcc 240  
ggcggggagga catggcctcg gtctttggaga tgtctgttgc aatttcgtcg 290

<210> 73  
<211> 144  
<212> PRT  
<213> *Homo sapiens*

<400> 73  
Lys Met Leu Asp Ala Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu  
1 5 10 15

Lys Ala Ile Met Thr Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly  
20 25 30

·Ala Gln Lys Ala Glu Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala  
35 40 45

Val Asn Gln Glu Asn Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala  
50 55 60

Ser Asp Leu Leu Glu Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn  
       65                      70                      75                      80

Arg Val Pro Glu Asn Thr Met His Ala Met Gln Gln Lys Leu Glu Asp  
85 90 95

Phe Arg Asp Tyr Arg Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys  
100 105 110

Cys Gln Leu Glu Ile Asn Phe Asn Thr Leu Gln Thr Lys Leu Arg Leu  
115 120 125

Ser Asn Arg Pro Ala Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp  
130 135 140

<210> 74  
<211> 64  
<212> PRT  
<213> Homo sapiens

<400> 74  
Gly Ser Met Leu Val Glu Ser His His His Ser Leu Ile Ser Ser Thr  
1 5 -- 10 15

Gln Gly His Lys His Cys Gly Arg Pro Gln Gly Pro Leu Pro Arg Lys  
20 25 30

Thr Arg Asp Leu Cys Ser Leu Val Tyr Val Leu Thr Phe Pro Pro Leu  
35 40 45

Leu Ser Cys Asp Pro Ala Lys Ser Pro Phe Val Arg Asn Thr Gln Glu  
50 55 60

<210> 75  
<211> 145  
<212> PRT  
<213> Homo sapiens

<400> 75  
Gly Thr Gly Ala Ser Ser Gly Thr Arg Thr Pro Asp Val Lys Ala Phe  
1 5 10 15

Leu Glu Ser Pro Trp Ser Leu Asp Pro Ala Ser Ala Ser Pro Glu Pro  
20 25 30

Val Pro His Ile Leu Ala Ser Ser Arg Gln Trp Asp Pro Ala Ser Cys  
35 40 45

Thr Ser Leu Gly Thr Asp Lys Cys Glu Ala Leu Leu Gly Leu Cys Gln  
50 55 60

Val Arg Gly Gly Leu Pro Pro Phe Ser Glu Pro Ser Ser Leu Val Pro  
65 70 75 80

Trp Pro Pro Gly Arg Ser Leu Pro Lys Ala Val Arg Pro Pro Leu Ser  
85 90 95

Trp Pro Pro Phe Ser Gln Gln Gln Thr Leu Pro Val Met Ser Gly Glu  
100 105 110

Ala Leu Gly Trp Leu Gly Gln Ala Gly Ser Leu Ala Met Gly Ala Ala  
115 120 125

Pro Leu Gly Glu Pro Ala Lys Glu Asp Pro Met Leu Ala Gln Glu Ala  
130 135 140

Gly  
145

<210> 76

<211> 69

<212> PRT

<213> Homo sapiens

<400> 76

Ala Glu Phe Cys Arg Pro Pro Ser Ser Glu Glu Glu Ser Ile Gly Ser  
1 5 10 15

Pro Glu Ile Glu Glu Met Ala Leu Phe Ser Ala Gln Ser Pro Tyr Ile  
20 25 30

Asn Pro Ile Ile Pro Phe Thr Gly Pro Ile Gln Gly Gly Leu Gln Glu  
35 40 45

Gly Leu Gln Val Thr Leu Gln Gly Thr Thr Glu Ser Phe Ala Gln Lys  
50 55 60

Phe Val Val Asn Phe  
65

<210> 77

<211> 96

<212> PRT

<213> Homo sapiens

<400> 77

Glu Pro Tyr Pro Glu Val Ser Arg Ile Pro Thr Val Arg Gly Cys Asn  
1 5 10 15

Gly Ser Leu Ser Gly Ala Leu Ser Cys Cys Glu Asp Ser Ala Gln Gly  
20 25 30

Ser Gly Pro Pro Lys Ala Pro Thr Val Ala Glu Gly Pro Ser Ser Cys  
35 40 45

Leu Arg Arg Asn Val Ile Ser Glu Arg Glu Arg Arg Lys Arg Met Ser  
50 55 60

Leu Ser Cys Glu Arg Leu Arg Ala Leu Leu Pro Gln Phe Asp Gly Arg  
65 70 75 80

Arg Glu Asp Met Ala Ser Val Leu Glu Met Ser Val Ala Ile Pro Ala

85

90

95

<210> 78  
<211> 2076  
<212> DNA  
<213> *Homo sapiens*

<210> 79  
<211> 2790  
<212> DNA  
<213> *Homo sapiens*

<400> 79  
aaggcgttga gtaggcagaa aaaagaacct cttcatthaag gattaaaatg tataggccag 60  
cacgtgtaac ttcgacttca agatttctga atccatatgt agtatgtttc attgtcgatcg 120  
caggggtagt gatcctggca gtcaccatag ctctacttgt ttactttta gcttttgatc 180  
aaaaatctta ctttataagg aacgatgtttc aactcctaaa tqttgaatat aatagtca 240

taaaattcacc agctacacag gaatacagga ctttgagtgg aagaattgaa tctctgatta 300  
 ctAAAACATT caaagaatca aatttaagaa atcagttcat cagagctcat gttccaaac 360  
 tgaggcaaga tggtagtggt gtgagagcgg atgttgcatt gaaatttcaa ttcaactagaa 420  
 ataacaatgg agcatcaatg aaaagcagaa ttgagtctgt ttacgacaa atgctgaata 480  
 actctgaaa cctggaaata aacccttcaa ctgagataac atcacttact gaccaggctg 540  
 cagcaaattt gcttattat gaatgtgggg ccggtccaga cctaataaca ttgtctgagc 600  
 agagaatcct tggaggcaact gaggctgagg agggaaagctg gccgtggcaa gtcagtctgc 660  
 ggctcaataa tgcccaccac tggagggca gcctgatcaa taacatgtgg atcctgacag 720  
 cagctcaactg cttcagaagc aactctaattc ctctgtactg gattgccacg tctgttattt 780  
 ccacaacatt tcctaaacta agaatggagag taagaaatat tttatttcat aacaattata 840  
 aatctgcaac tcatgaaaat gacattgcac ttgtgagact tgagaacagt gtcaccttta 900  
 ccaaagatat ccatagtgtg tggctccag ctgttaccca gaatattcca cctggctcta 960  
 ctgttatgt aacaggatgg ggctcaag aatatgtgg ccacacagtt ccagagctaa 1020  
 ggcaaggaca ggtcagaata ataagtaatg atgtatgtaa tgcaccacat agttataatg 1080  
 gagccatctt gtctggatgt ctgtgtctg gagtacctca aggtggagtg gacgcatgtc 1140  
 agggtaactc tggggccca ctgttacaaag aagactcaag ggcttgggg tttattgtgg 1200  
 ggatagaatg ctggggagat ctgtgtggc tgccggataa gccaggagtg tataactcgag 1260  
 tgacagccta ccttgactgg attaggcaac aaactggat ctgttcaac aagtgcattc 1320  
 ctgttgcata gtctgtatgc aggtgtgcct gtcttattt ccaaagcttt aratttcaac 1380  
 tgaaaaagaa actagaaaatg tccttattt acatcttgc acataaataat gyttaacaa 1440  
 acactgttta acctttttt attattaaag gttttctatt ttctccagag aactatatga 1500  
 atgttgcata gtactgtggc tggtaacag aagaaacaca ctaaactaat tacaaagtta 1560  
 acaatttcat tacagtgtg ctaaatgccc gtgtgagaa gaacaggaac ctggagcatg 1620  
 tatagtagag gaacctgcac aggtctgtg ggtcagaggg gtcttctctg ggtttcaactg 1680  
 aggatgagaa gtaagcaaac tggaaaca tgcaaggaa aaagtgtatg aataatattc 1740  
 aagacaaaaaa gaacagtatg aggcaagaga aatagtatgt attttaaaatt tttggttact 1800  
 caatatctt tacttagtat gagtcctaaa attttaaaatg tggaaactgtt gtactatacg 1860  
 tataacctaa ccttattt tctgttgc acataatggat gggaaatattt atcatcgga 1920  
 tcagcttattt aaggcaaaag ctaaaatagt tcactcctca actgagaccc aaagaattat 1980  
 agatattttt catgatgacc catgaaaaat atcactcatc tacataaagg agagactata 2040  
 tctattttt agagaagcta agaaatatac ctacacaaac ttgtcaggtt ctttacaact 2100  
 acatagatct tttaacaac aaaataataa tttaagaat gaaaattta atcatcgga 2160  
 agaacgtccc actacagact tcctatcact ggcagttata tttttgagcg taaaagggtc 2220  
 gtcaaacgct aaatctaagt aatgaattga aagttttaag agggggaa gttggtttgc 2280  
 aaaggaaaaag tttaatagc ttaatatcaa tagaatgatc ctgaagacag aaaaaacttt 2340  
 gtcactcttc ctctctcatt ttctttctt ctctctcccc ttctctatca catgcctccc 2400  
 cgaccaaaaatataatgtt aattttatcc actaaaatgtt aatggcatga aatctctgt 2460  
 agtctgaatc actaatattt ctgagttttt atgagctctt agtacagcta aagtttgcct 2520  
 atgcatgatc atctatgcgt cagacttcc tccttctaca agtacttcc ctgcattctgg 2580  
 gcatcaggac tgcctccatc atttgcgtt aacttctgtt atttctgtt gtaaaaattgt 2640  
 gcaaacacctt acaataaaagc catctacttt tagggaaagg gagttgaaaa tgcaaccaac 2700  
 tcttggcgaa ctgtacaaac aatcttgc tatactttt ttcataataaa ttcttttgc 2760  
 aatgaaaaaaa aaaaaaaaaaaa aaaactcgag 2790

<210> 80  
 <211> 1460  
 <212> DNA  
 <213> Homo sapiens

<400> 80  
 ctcaaaaggcag ttgagtaggc agaaaaaaaac acctttcat taaggattaa aatgtatagg 60  
 ccagcacgtg taacttcgac ttcaagattt ctgaatccat atgtatgtt ttttattgtc 120  
 gtcgcagggg tagtgcattt ggcagtcacc atagctctac ttgtttactt tttagttttt 180  
 gatcaaaaat ttacttttta taggagcgtt ttcaactcc taaatgttga atataatagt 240  
 cagttaaattt caccagctac acaggaatac aggacttgc gttggaaagat tgaatctctg 300

attactaaaa cattcaaaga atcaaattta agaaatcagt tcatacgagc tcatgttgcc 360  
 aaactgaggc aagatggtag tgggtgaga gcgatgttgc tcatgaaatt tcaattcaact 420  
 agaaaataaca atggagcatc aatgaaaagc agaattgagt ctgtttacg acaaatgctg 480  
 aataactctg gaaacctgga aataaaccct tcaactgaga taacatcaact tactgaccag 540  
 gctgcagcaa attggcttat taatgaatgt gggccggc cagacctaata aacattgtct 600  
 gagcagagaa tccttgaggc cactgaggct gaggagggaa gctggccgtg gcaagtca 660  
 ctgcggctca ataatgccc ccactgtggc ggcagcctga tcaataacat gtggatcctg 720  
 acagcagctc actgcttcag aagcaactct aatcctcgtg actggattgc cacgtctgg 780  
 attccacaa catttcctaa actaagaatg agagtaagaa atatttaat tcataacaat 840  
 tataaatctg caactcatga aaatgacatt gcacttgta gacttgagaa cagtgtcacc 900  
 tttaccaaag atatccatag tgggtgtctc ccagctgcta cccagaatat tccacctggc 960  
 tctactgctt atgtaacagg atggggcgct caagaatatg ctggccacac agtccagag 1020  
 ctaaggcaag gacaggtca aataataagt aatgatgtat gtaatgcacc acatagttat 1080  
 aatggagcca tcttgctgg aatgctgtgt gctggagtagt ctcaaggtgg agtggacgca 1140  
 tgcagggtg accctgggtgg cccactagta caagaagact cacggcggct ttggttatt 1200  
 gtggggatag taagctgggg agatcagtgt ggccctggcgg ataagccagg agtgtatact 1260  
 cgagtgacag cctaccttga ctggatttagg caacaaactg ggatctagtg caacaagtgc 1320  
 atccctgttg caaagtctgt atgcagggtgt gccrgrtctta aattccaaag ctttacattt 1380  
 caactgaaaa agaaaactaga aatgtcctaa tttAACATCTC tgttacataa atatggttt 1440  
 aaaaaaaaaa aaaaaaaaaa 1460

&lt;210&gt; 81

&lt;211&gt; 386

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

<400> 81  
 Met Phe Ala Glu Ile Gln Ile Gln Asp Lys Asp Arg Met Gly Thr Ala  
 1 5 10 15

Gly Lys Val Ile Lys Cys Lys Ala Ala Val Leu Trp Glu Gln Lys Gln  
 20 25 30

Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys Thr Lys Glu  
 35 40 45

Val Arg Ile Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr Asp Asp His  
 50 55 60

Val Ile Lys Gly Thr Met Val Ser Lys Phe Pro Val Ile Val Gly His  
 65 70 75 80

Glu Ala Thr Gly Ile Val Glu Ser Ile Gly Glu Gly Val Thr Thr Val  
 85 90 95

Lys Pro Gly Asp Lys Val Ile Pro Leu Phe Leu Pro Gln Cys Arg Glu  
 100 105 110

Cys Asn Ala Cys Arg Asn Pro Asp Gly Asn Leu Cys Ile Arg Ser Asp  
 115 120 125

Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg Phe Thr Cys  
 130 135 140

Lys Gly Lys Pro Val His His Phe Met Asn Thr Ser Thr Phe Thr Glu

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 145                                                             | 150 | 155 | 160 |
| Tyr Thr Val Val Asp Glu Ser Ser Val Ala Lys Ile Asp Asp Ala Ala |     |     |     |
| 165                                                             | 170 | 175 |     |
| Pro Pro Glu Lys Val Cys Leu Ile Gly Cys Gly Phe Ser Thr Gly Tyr |     |     |     |
| 180                                                             | 185 | 190 |     |
| Gly Ala Ala Val Lys Thr Gly Lys Val Lys Pro Gly Ser Thr Cys Val |     |     |     |
| 195                                                             | 200 | 205 |     |
| Val Phe Gly Leu Arg Gly Val Gly Leu Ser Val Ile Met Gly Cys Lys |     |     |     |
| 210                                                             | 215 | 220 |     |
| Ser Ala Gly Ala Ser Arg Ile Ile Gly Ile Asp Leu Asn Lys Asp Lys |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Phe Glu Lys Ala Met Ala Val Gly Ala Thr Glu Cys Ile Ser Pro Lys |     |     |     |
| 245                                                             | 250 | 255 |     |
| Asp Ser Thr Lys Pro Ile Ser Glu Val Leu Ser Glu Met Thr Gly Asn |     |     |     |
| 260                                                             | 265 | 270 |     |
| Asn Val Gly Tyr Thr Phe Glu Val Ile Gly His Leu Glu Thr Met Ile |     |     |     |
| 275                                                             | 280 | 285 |     |
| Asp Ala Leu Ala Ser Cys His Met Asn Tyr Gly Thr Ser Val Val Val |     |     |     |
| 290                                                             | 295 | 300 |     |
| Gly Val Pro Pro Ser Ala Lys Met Leu Thr Tyr Asp Pro Met Leu Leu |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Phe Thr Gly Arg Thr Trp Lys Gly Cys Val Phe Gly Gly Leu Lys Ser |     |     |     |
| 325                                                             | 330 | 335 |     |
| Arg Asp Asp Val Pro Lys Leu Val Thr Glu Phe Leu Ala Lys Lys Phe |     |     |     |
| 340                                                             | 345 | 350 |     |
| Asp Leu Asp Gln Leu Ile Thr His Val Leu Pro Phe Lys Lys Ile Ser |     |     |     |
| 355                                                             | 360 | 365 |     |
| Glu Gly Phe Glu Leu Leu Asn Ser Gly Gln Ser Ile Arg Thr Val Leu |     |     |     |
| 370                                                             | 375 | 380 |     |
| Thr Phe                                                         |     |     |     |
| 385                                                             |     |     |     |

<210> 82  
<211> 418  
<212> PRT  
<213> Homo sapiens

<400> 82  
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro

| 1                                                               | 5   | 10  | 15  |
|-----------------------------------------------------------------|-----|-----|-----|
| Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val |     |     |     |
| 20                                                              | 25  | 30  |     |
| Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr |     |     |     |
| 35                                                              | 40  | 45  |     |
| Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln |     |     |     |
| 50                                                              | 55  | 60  |     |
| Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln |     |     |     |
| 85                                                              | 90  |     | 95  |
| Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val |     |     |     |
| 100                                                             | 105 | 110 |     |
| Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly |     |     |     |
| 115                                                             | 120 | 125 |     |
| Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn |     |     |     |
| 130                                                             | 135 | 140 |     |
| Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly |     |     |     |
| 165                                                             | 170 | 175 |     |
| Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu |     |     |     |
| 180                                                             | 185 | 190 |     |
| Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn |     |     |     |
| 195                                                             | 200 | 205 |     |
| Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr |     |     |     |
| 210                                                             | 215 | 220 |     |
| Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg |     |     |     |
| 245                                                             | 250 | 255 |     |
| Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp |     |     |     |
| 260                                                             | 265 | 270 |     |
| Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile |     |     |     |
| 275                                                             | 280 | 285 |     |
| His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser |     |     |     |
| 290                                                             | 295 | 300 |     |

Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr  
 305 310 315 320  
 Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val  
 325 330 335  
 Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu  
 340 345 350  
 Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser  
 355 360 365  
 Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val  
 370 375 380  
 Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly  
 385 390 395 400  
 Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg Gln Gln Thr  
 405 410 415  
 Gly Ile

<210> 83  
 <211> 418  
 <212> PRT  
 <213> Homo sapiens

<400> 83  
 Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro  
 1 5 10 15  
 Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val  
 20 25 30  
 Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr  
 35 40 45  
 Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln  
 50 55 60  
 Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile  
 65 70 75 80  
 Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln  
 85 90 95  
 Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val  
 100 105 110  
 Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly  
 115 120 125

Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn  
 130 135 140  
 Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu  
 145 150 155 160  
 Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly  
 165 170 175  
 Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu  
 180 185 190  
 Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn  
 195 200 205  
 Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr  
 210 215 220  
 Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala  
 225 230 235 240  
 Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg  
 245 250 255  
 Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp  
 260 265 270  
 Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile  
 275 280 285  
 His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser  
 290 295 300  
 Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr  
 305 310 315 320  
 Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val  
 325 330 335  
 Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu  
 340 345 350  
 Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser  
 355 360 365  
 Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val  
 370 375 380  
 Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly  
 385 390 395 400  
 Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg Gln Gln Thr  
 405 410 415

## Gly Ile

&lt;210&gt; 84

&lt;211&gt; 489

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 84

aaaaggtaa gcttcatgt taccaggaac gaatgaacaa aggggaaagg cttaatcaag 60  
 atcagctgga tgccgttct aagtaccagg aagtcacaaa taatttggag tttgc当地 120  
 aattacagag gagtttcatg gcactaagtc aagatattca gaaaacaata aagaagacag 180  
 cacgtcgaa gcagcttatg agagaagaag ctgaacagaa acgtttaaa actgtacttg 240  
 agctacagta tggggatggaa aaatttggag atgatgaagt gcggactgac ctgaaacaag 300  
 gtttgaatgg agtgccaata ttgtccgaag aggagtgtc attgttggat gaattctata 360  
 agcttagata ccctgaacgg gacatgagct tgaggttcaa tgaacagat gaacatgcct 420  
 ccattcacct gtgggacctg ctggaaaggaa agggaaaacc tttatgttggaa accacctata 480  
 aagttctaa

489

&lt;210&gt; 85

&lt;211&gt; 304

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 85

gggacctgga ggaggccacg ctgcagcatg aagccacagc agccacccctg aggaagaagc 60  
 acgcggacag cgtggcccgag ctggggagc agatcgacaa cctgcagcgg gtgaagcaga 120  
 agctggagaa ggagaagagc gagatgaaga tggagatcgatg tggatcgatg 180  
 aggtcatctc caaatctaag ggaaacccctg agaagatgtg ccgcacactg gaggaccaag 240  
 tggatgtgatc gaagacccag gaggagaaac agcagcggct gatcaatgaa ctgactgcgc 300  
 agag

304

&lt;210&gt; 86

&lt;211&gt; 296

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 86

aaaaatccctt cctttgaatg ggaatctcca agcagttgaa ttgggcgaaa aaagaacctc 60  
 ttcccttaagg attaaaatgt ttagggcaac acgtgttact tccacttcca gatttctgaa 120  
 tccatatgtt gtatgtttcc ttgtccccc aggggttgcg atcctggcag tccccatagc 180  
 tctacttgtt tacttttag ctttgtatca aaaatcttac ttttattgaa gcaattttcc 240  
 actcccaat gttgaatata atagtcgtt taattcccccc gtttcacccgg gaattc 296

&lt;210&gt; 87

&lt;211&gt; 904

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 87

gtgtccagga aacgattcat gaacataaca agcttgctgc aaattcagat catctcatgc 60  
 agattcaaaa atgtgatgttgc ttcttgcgttcc acacccatccc agttggtaaa gacagcccttgc 120  
 tatctgtatcg ttctaaaaaa gagttgtccc cggttttaac cagtgaagtt catatgtttc 180  
 gtgcaggacg gcacatgttgc accaaatttga atattttatgtt acagcaacat tttgacttgg 240  
 cttcaactac tattacaaat attccatgtt aggaagaaca gcatgctaac acatctgcctt 300  
 attatgtatgtt ggagctactt catcacaag atgcacatgtt agatttccctg aaaagtgggtg 360

attcgcacatct aggtggcggc agtcgagaag gctcgttaa agaaaacaata acattaaagt 420  
 ggtgtacacc aaggacaaat aacatgaat tacactattg tactggagct tatcgattt 480  
 cacctgtaga tgtaaatagt agacccctt cctgccttac taattttttt ctaaatggtc 540  
 gttctgtttt attgaaacaa ccacgaaagt caggttctaa agtcattttt catatgctta 600  
 gtagccatgg aggagagatt ttttgacag tccttagcag ttctcgatcc attctagaag 660  
 atccacccccc aatttgtaa ggatgtggag gaagagttac agactaccgg attacagatt 720  
 ttggtaatt tatgagggga aaacagatta actccctttc tacacccccc atataaaatc 780  
 gatgaaagtc ttgaggtccc ttggaaaccg agccaaaaga tcagttaaaa aaacatacc 840  
 gttactggcc tatgatttca aaaaccacc acca atttttaaca tgcaagcgtt agttccgtt 900  
 acca 904

<210> 88  
 <211> 387  
 <212> DNA  
 <213> Homo sapiens

<400> 88  
 cgtctctccc ccagttgcc gttcacccgg agcgcgtcggg acttgcggat agtgggtgacg 60  
 gccccacat gtctgtggct ttcggcccc cgaggcagcg aggcaagggg gagatcactc 120  
 cccgcgtcgat tcagaagatg ttggatgaca ataaccatct tattcagtgt ataatggact 180  
 ctcagaataa aggaaagacc tcagagtgtt ctcagttatca gcagatgttg cacacaaaact 240  
 tggtagtaccc tgcataataa gcagatcttca atcaaaaatat gcagtctctt ttaccagcac 300  
 caccacaca gaatatgcct atgggtccctg gagggatgaa tcagagcggg cctccccac 360  
 ctccacgctc tcacaacatg ccttcaa 387

<210> 89  
 <211> 481  
 <212> DNA  
 <213> Homo sapiens

<400> 89  
 tggctttggc .cctgcgggtgc .tatagagcag .gctcttctag gttggcagtt gccatggaaat 60  
 ctggacccaa aatgttggcc cccgtttgcc ttggggaaaa taacaatgag cagctattgg 120  
 tgaaccagca agctatacag attcttggaaa agatttctca gccagtgggtg gtgggtggcca 180  
 ttgttaggact gtaccgtaca gggaaatctt acttggatgaa ccatctggca ggacagaatc 240  
 atggcttccc tctgggctcc acgggtcagt ctgaaaaccaa gggcatctgg atgtgggtg 300  
 tgccccaccc atccaagcca aaccacaccc tggcccttct ggacaccgaa ggtctggcg 360  
 atgtggaaaa gggtgaccct aagaatgact cctggatctt tgccctggct gtgctcctgt 420  
 gcagcacctt tgtctacaac agcatgagca ccatcaacca ccaggccctg gagcagctgc 480  
 a 481

<210> 90  
 <211> 491  
 <212> DNA  
 <213> Homo sapiens

<400> 90  
 tgaaaactgt tcttggaccc gcggtgctat agagcagggtt ggcagttgcc atggaaatctg 60  
 gacccaaaat gttggccccc gtttgcctgg tgaaaataa caatgagcag ctattggta 120  
 accagcaagc tatacagatt cttgaaaaga tttctcagcc agtgggtggg gtggccattg 180  
 taggactgtt ccgtacaggg aaatccact tgatgaaacca tctggcagga cagaatcatg 240  
 gttccctct gggctccacg gtgcagttctg aaaccaagggtt catctggatg tgggtgcgtgc 300  
 cccacccatc caagccaaac cacacccctgg tccttctggc caccgaaggtt ctgggcgtatg 360  
 tgaaaagggtt tgacccttaa aatgacttcc ggtatcttgc cctggctgtg ctctctgtca 420  
 gcaccccttgc ctacaacacgc atgagcacca tcaacccacca agccctggag cagctgcatt 480

491

atgtgacgga c  
 <210> 91  
 <211> 488  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 91  
 ttgcacagtc agccgcattct tctttgcgt cgccagccga gccacatcg tcagacacca 60  
 tggggaaaggtaa gaagggtcgga gtcaacggat ttggcgttat tggcgccctg gtcaccagg 120  
 ctgtttttaa ctctggtaaa gtggatattt tgccatcaa tgaccccttc attgaccta 180  
 actacatggt ttacatgttc caatatgatt ccacccatgg caaattccat ggcaccgtcg 240  
 aggctgagaa cgggaagctt gtcatcaatg gaaatcccatt caccatctt caggagcgg 300  
 atccctccaa aatcaagtgg ggcatgtct gcgcgtgacta cgtcgtggag tccactggcg 360  
 tcttcaccac catggagaag gctggggctc atttgcagg gggagccaaa agggteatca 420  
 tctctgcccc tctgctgatg cccatgttc gtcatgggtg tgaaccatga gaagtatgac 480  
 acagcctc 488  
  
 <210> 92  
 <211> 384  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 92  
 gagacttcgc cgcattttct tttgcgtcgc cagccgagcc acatcgctca gacaccatgg 60  
 gggagggtgaa ggtcgaggatc aacggatttg gtcgtattgg ggcgcggcaccaggctg 120  
 ctttttaactc tggtaaagtgt gatattgttgc ccatcaatga ccccttcattt gacctcaact 180  
 acatggttta catgttccaa tatgattcca cccatggcaa attccatggc accgtcgagg 240  
 ctgagaacgg gaagcttgc atcaatggaa atccatcac catcttccag gagcggatc 300  
 cctccaaaaat caagtgggc gatactggcg ctgagtaact cgtggagttc actggcgtct 360  
 tcaccaccat ggagaaggct gggg 384  
  
 <210> 93  
 <211> 162  
 <212> PRT  
 <213> Homo sapiens  
  
 <400> 93  
 Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg  
 1 5 10 15  
 Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr  
 20 25 30  
 Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu  
 35 40 45  
 Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln  
 50 55 60  
 Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu  
 65 70 75 80  
 Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp  
 85 90 95

Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu  
100 105 110

Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp Pro Glu Arg Asp Met  
115 120 125

Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp  
130 135 140

Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys  
145 150 155 160

Val Leu

<210> 94

<211> 100

<212> PRT

<213> Homo sapiens

<400> 94

Asp Leu Glu Glu Ala Thr Leu Gln His Glu Ala Thr Ala Ala Thr Leu  
1 5 10 15

Arg Lys Lys His Ala Asp Ser Val Ala Glu Leu Gly Glu Gln Ile Asp  
20 25 30

Asn Leu Gln Arg Val Lys Gln Lys Leu Glu Lys Glu Lys Ser Glu Met  
35 40 45

Lys Met Glu Ile Asp Asp Leu Ala Cys Asn Met Glu Val Ile Ser Lys  
50 55 60

Ser Lys Gly Asn Leu Glu Lys Met Cys Arg Thr Leu Glu Asp Gln Val  
65 70 75 80

Ser Glu Leu Lys Thr Gln Glu Glu Gln Gln Arg Leu Ile Asn Glu  
85 90 95

Leu Thr Ala Gln  
100

<210> 95

<211> 99

<212> PRT

<213> Homo sapiens

<400> 95

Lys Ile Leu Pro Leu Asn Gly Asn Leu Gln Ala Val Glu Leu Gly Glu  
1 5 10 15

Lys Arg Thr Ser Ser Leu Arg Ile Lys Met Phe Arg Ala Thr Arg Val  
20 25 30

Thr Ser Thr Ser Arg Phe Leu Asn Pro Tyr Val Val Cys Phe Leu Val  
 35 40 45

Leu Pro Gly Val Val Ile Leu Ala Val Pro Ile Ala Leu Leu Val Tyr  
 50 55 60

Phe Leu Ala Phe Asp Gln Lys Ser Tyr Phe Tyr Trp Ser Asn Phe Pro  
 65 70 75 80

Leu Pro Asn Val Glu Tyr Asn Ser Pro Phe Asn Ser Pro Ala Ser Pro  
 85 90 95

Gly Ile Pro

<210> 96

<211> 257

<212> PRT

<213> Homo sapiens

<400> 96

Val Gln Glu Thr Ile His Glu His Asn Lys Leu Ala Ala Asn Ser Asp  
 1 5 10 15

His Leu Met Gln Ile Gln Lys Cys Glu Leu Val Leu Ile His Thr Tyr  
 20 25 30

Pro Val Gly Glu Asp Ser Leu Val Ser Asp Arg Ser Lys Lys Glu Leu  
 35 40 45

Ser Pro Val Leu Thr Ser Glu Val His Ser Val Arg Ala Gly Arg His  
 50 55 60

Leu Ala Thr Lys Leu Asn Ile Leu Val Gln Gln His Phe Asp Leu Ala  
 65 70 75 80

Ser Thr Thr Ile Thr Asn Ile Pro Met Lys Glu Glu Gln His Ala Asn  
 85 90 95

Thr Ser Ala Asn Tyr Asp Val Glu Leu Leu His His Lys Asp Ala His  
 100 105 110

Val Asp Phe Leu Lys Ser Gly Asp Ser His Leu Gly Gly Ser Arg  
 115 120 125

Glu Gly Ser Phe Lys Glu Thr Ile Thr Leu Lys Trp Cys Thr Pro Arg  
 130 135 140

Thr Asn Asn Ile Glu Leu His Tyr Cys Thr Gly Ala Tyr Arg Ile Ser  
 145 150 155 160

Pro Val Asp Val Asn Ser Arg Pro Ser Ser Cys Leu Thr Asn Phe Leu  
 165 170 175

Leu Asn Gly Arg Ser Val Leu Leu Glu Gln Pro Arg Lys Ser Gly Ser  
180 185 190

Lys Val Ile Ser His Met Leu Ser Ser His Gly Gly Glu Ile Phe Leu  
195 200 205

His Val Leu Ser Ser Ser Arg Ser Ile Leu Glu Asp Pro Pro Ser Ile  
210 215 220

Ser Glu Gly Cys Gly Gly Arg Val Thr Asp Tyr Arg Ile Thr Asp Phe  
225 230 235 240

Gly Glu Phe Met Arg Gly Lys Gln Ile Asn Ser Phe Ser Thr Pro Gln  
245 250 255

Ile

<210> 97

<211> 128

<212> PRT

<213> Homo sapiens

<400> 97

Ser Leu Pro Gln Phe Ala Val His Pro Glu Arg Ser Gly Leu Ala Asp  
1 5 10 15

Ser Gly Asp Gly Gly Asn Met Ser Val Ala Phe Ala Ala Pro Arg Gln  
20 25 30

Arg Gly Lys Gly Glu Ile Thr Pro Ala Ala Ile Gln Lys Met Leu Asp  
35 40 45

Asp Asn Asn His Leu Ile Gln Cys Ile Met Asp Ser Gln Asn Lys Gly  
50 55 60

Lys Thr Ser Glu Cys Ser Gln Tyr Gln Gln Met Leu His Thr Asn Leu  
65 70 75 80

Val Tyr Leu Ala Thr Ile Ala Asp Ser Asn Gln Asn Met Gln Ser Leu  
85 90 95

Leu Pro Ala Pro Pro Thr Gln Asn Met Pro Met Gly Pro Gly Gly Met  
100 105 110

Asn Gln Ser Gly Pro Pro Pro Pro Arg Ser His Asn Met Pro Ser  
115 120 125

<210> 98

<211> 159

<212> PRT

<213> Homo sapiens

&lt;400&gt; 98

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Leu | Asp | Leu | Arg | Cys | Tyr | Arg | Ala | Gly | Ser | Ser | Arg | Leu | Ala | Val |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Met | Glu | Ser | Gly | Pro | Lys | Met | Leu | Ala | Pro | Val | Cys | Leu | Val | Glu |
|     |     |     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Asn | Asn | Glu | Gln | Leu | Leu | Val | Asn | Gln | Gln | Ala | Ile | Gln | Ile | Leu |
|     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Lys | Ile | Ser | Gln | Pro | Val | Val | Val | Val | Ala | Ile | Val | Gly | Leu | Tyr |
|     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Thr | Gly | Lys | Ser | Tyr | Leu | Met | Asn | His | Leu | Ala | Gly | Gln | Asn | His |
|     |     |     |     |     | 65  |     | 70  |     | 75  |     | 80  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Phe | Pro | Leu | Gly | Ser | Thr | Val | Gln | Ser | Glu | Thr | Lys | Gly | Ile | Trp |
|     |     |     |     |     |     | 85  |     |     | 90  |     | 95  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Trp | Cys | Val | Pro | His | Pro | Ser | Lys | Pro | Asn | His | Thr | Leu | Val | Leu |
|     |     |     |     |     | 100 |     |     | 105 |     | 110 |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Asp | Thr | Glu | Gly | Leu | Gly | Asp | Val | Glu | Lys | Gly | Asp | Pro | Lys | Asn |
|     |     |     |     |     | 115 |     |     | 120 |     | 125 |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Ser | Trp | Ile | Phe | Ala | Leu | Ala | Val | Leu | Leu | Cys | Ser | Thr | Phe | Val |
|     |     |     |     |     | 130 |     |     | 135 |     | 140 |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Tyr | Asn | Ser | Met | Ser | Thr | Ile | Asn | His | Gln | Ala | Leu | Glu | Gln | Leu |  |
|     |     |     |     |     | 145 |     | 150 |     | 155 |     |     |     |     |     |  |

&lt;210&gt; 99

&lt;211&gt; 147

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 99

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Glu | Ser | Gly | Pro | Lys | Met | Leu | Ala | Pro | Val | Cys | Leu | Val | Glu | Asn |
| 1   |     |     |     |     | 5   |     |     | 10  |     |     | 15  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Asn | Glu | Gln | Leu | Leu | Val | Asn | Gln | Gln | Ala | Ile | Gln | Ile | Leu | Glu |
|     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ile | Ser | Gln | Pro | Val | Val | Val | Ala | Ile | Val | Gly | Leu | Tyr | Arg |
|     |     |     |     |     | 35  |     | 40  |     | 45  |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Thr | Gly | Lys | Ser | Tyr | Leu | Met | Asn | His | Leu | Ala | Gly | Gln | Asn | His | Gly |
|     |     |     |     |     | 50  |     | 55  |     | 60  |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Pro | Leu | Gly | Ser | Thr | Val | Gln | Ser | Glu | Thr | Lys | Gly | Ile | Trp | Met |
| 65  |     |     |     |     | 70  |     |     | 75  |     | 80  |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Trp | Cys | Val | Pro | His | Pro | Ser | Lys | Pro | Asn | His | Thr | Leu | Val | Leu | Leu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

85

90

95

Asp Thr Glu Gly Leu Gly Asp Val Glu Lys Gly Asp Pro Lys Asn Asp  
 100 105 110

Ser Trp Ile Phe Ala Leu Ala Val Leu Leu Cys Ser Thr Phe Val Tyr  
 115 120 125

Asn Ser Met Ser Thr Ile Asn His Gln Ala Leu Glu Gln Leu His Tyr  
 130 135 140

Val Thr Asp  
 145

<210> 100  
 <211> 124  
 <212> PRT  
 <213> Homo sapiens

<400> 100  
 Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg  
 1 5 10 15

Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala  
 20 25 30

Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln  
 35 40 45

Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Glu Ala Glu Asn  
 50 55 60

Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg  
 65 70 75 80

Asp Pro Ser Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val  
 85 90 95

Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu  
 100 105 110

Gln Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro  
 115 120

<210> 101  
 <211> 127  
 <212> PRT  
 <213> Homo sapiens

<400> 101  
 Gln Ser Ala Ala Ser Ser Phe Ala Ser Pro Ala Glu Pro His Arg Ser  
 1 5 10 15

Asp Thr Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile  
 20 25 30

Gly Arg Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile  
 35 40 45

Val Ala Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met  
 50 55 60

Phe Gln Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Glu Ala  
 65 70 75 80

Glu Asn Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln  
 85 90 95

Glu Arg Asp Pro Ser Lys Ile Lys Trp Gly Asp Thr Gly Ala Glu Tyr  
 100 105 110

Val Val Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly  
 115 120 125

<210> 102  
 <211> 1225  
 <212> DNA  
 <213> Homo sapiens

<400> 102

```

atggccgcgc ggtcgctgac ggggggtggcg gcggcagagg gggccggcgc cctggccga 60
gcggagacgg cagccgtgac ggtggcagcg gcggccgcgg acctggcct gggggatga 120
ggccggccgcg gccccccgcg ggcggagccg ttagcggag aagctcccccc tcctgtctc 180
ccttggccga gcccggggcg cgccgcgcacg cgccgtcca gagcgggctc cccacccctc 240
gactcctgcg accccgaccg caccggaccg cggcccccga ggatgatgaa gctcaagtgc 300
aaccagaccc gcacctacga cggcgcacgg tacaagaagc gggccgcattt cctgtgtttc 360
cgccgcgaga gcgaggagga ggtgctactc gtgagcagta gtcgcctatcc agacagatgg 420
attgtccctg gaggaggcat ggagcccgag gaggagccaa gtgtggcagc agttcgtgaa 480
gtctgtgagg aggtggagt aaaaggaca ttgggaagat tagttgaaat ttttgagaac 540
caggagagga agcacaggac gtatgttat gtgtctattt tcactgaagt gcttggaaagac 600
ttggaaagatt cagttAACAT tggaAGGAAG aggaaatggt ttAAAATAGA agacGCCATA 660
aaagtgcgtc agtatcacaa acccggtcag gcatcatatt ttgaaacatt gagggcaaggc 720
tactcagcca acaaattggcac cccagtcgtg gccaccacat actcggtttc tgctcagagc 780
tcgtatgtcag gcatcagatg actgaagact tcctgttaaga gaaatggaaa ttggaaacta 840
gactgaagtg caaatcttcc ctctcaccct ggcttcccttcc acttctcaca ggccctctc 900
ttcaataaag gcatgggtggg cagcaaagaa agggtgtatt gataatgttg ctgtttggtg 960
ttaagtgtat gggctttttt ttctgtttttt attgagggtg ggggttgggt gtgtatTTG 1020
taagtacttt tttttttttt ttctgtttttt attttaatt tttttttttt attaaaatggat accagtatga 1140
aggccaaacag cttcccccgtg ctttggattc tgaagtgttc ctgtttgtct tatccctggcc 1200
ctggccagac gttttctttt attttaatt tttttttttt attaaaatggat accagtatga 1225
  
```

<210> 103  
 <211> 741  
 <212> DNA  
 <213> Homo sapiens

## SEQUENCE LISTING

<110> Corixa Corporation

<120> COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE

<130> 210121.447PC

<140> PCT

<141> 1999-01-28

<160> 216

<170> PatentIn Ver. 2.0

<210> 1

<211> 339

<212> DNA

<213> Homo sapiens

<400> 1

gtactcagac aggatagtca tcagttagca caaagcamat cctgtttcta tacttgttagt 60  
ttgcctcac tcagtggcat ratcattact atacagtgt aatgttrtt atgttagcata 120  
gatgtgggt ctctagccca cagctctsta cctttgtcta gcactcctgt cctcataacct 180  
ragtggcctg tccatcagca tgtttctcat ctactttgtct tgccagtc actgtggtcc 240  
tccccctgccc tcccccattat gtggcagagt ggaaccagct gtcctgagac ttgagttcaa 300  
catctggttc gccccatytgc atgtttgtgg tctgagttac 339

<210> 2

<211> 698

<212> DNA

<213> Homo sapiens

<400> 2

gtactcagac cacgactgca ttttctccac tgctgacggg tctaatacca gctgcttccc 60  
tttcttgag gcagagctng tgacccctgag aaagtgcaccc gtgaccatca tggggtagt 120  
gagctgctgc aagggtgtcat gggagctccc acactccatg cactttwaga tctgggactt 180  
gcaggcctca ractgccagg tggactctgc tccatTTGG tagccatagc gttgttgg 240  
ggacaactgc aagttggcgt tcttcgtaga agaaaaagaa tctgaaaaag atcctgtgg 300  
tgaatcgaaa gaacacggcc gattgacatc aaaaacgcgt ttcttagccc gggtgaccat 360  
tttcgaggaa atggttgggg actggctcc tcaaaggcac tttttggta tgttttgttt 420  
yaatcatgtk gacgctccaa tcttgragg gaatcgaang rantcnccnc caaaacatrc 480  
stttcagaaa ccttttgarc atcctctttt ttccgttcc cgmaargcc cyttccckg 540  
ggctttgaaa wyagcctsytggttctta aattaccart ccacnwgttg gaattccccg 600  
ggccccctgc cccgkttccaa ccaattttgg graaaacccc cncansccgt tkggantgcn 660  
acaacntggn nttttcntt tcgtgntccc ctngaacc 698

<210> 3

<211> 697

<212> DNA

<213> Homo sapiens

<400> 3

gtactcagac ccccaacctc gaacagccag aagacaggtt gtctcctggg ccttggacac 60

acctcttatt gaatttgaaa accata 446  
<210> 107  
<211> 467  
<212> DNA  
<213> Homo sapiens  
  
<400> 107  
ccggccgtgc cgtcgccttc ctgggattgg agtctcgagc tttcttcgtt cgttcggcgg 60  
cgggttcgtcg cccttctcgc gcctcggggc tgcgaggctg gggaaagggtt tggagggggc 120  
tgttgcgtcg cgcgttaag ttgcgcgtcg ggcggccatg tcggccggcg aggtcgagcg 180  
ccttagtgcg gagctgagcg gcgggaccgg agggatgag gaggaaagagt ggctctatgg 240  
cgatgaagat gaagttgaaa ggccagaaga agaaaatgcc agtgctaattt ctccatctgg 300  
aattgaagat gaaaactgtcg aaaatgggtt accaaaaccg aaagtgcactg agaccgaaga 360  
tgatagtgtat agtgacagcg atgatgtatg agatgtatgt catgtcaacta taggagacat 420  
taaaacggga gcaccacagt atgggagttt tggtacagca cctgtaa 467  
  
<210> 108  
<211> 491  
<212> DNA  
<213> Homo sapiens  
  
<400> 108  
gaaagataca acttccccaa cccaaacccg tttgtggagg acgacatgga taagaatgaa 60  
atcgccctcg ttgcgtaccg ttaccgcagg tggaagctt gatgtat tgaccttatt 120  
gtccgttgcg agcacgtatgg cgtcatgact ggagccaacg gggaaagtgtc cttcatcaac 180  
atcaagacac tcaatgatgtt ggattccagg cactgtatg gcgttgcgtg gcgtcagaag 240  
ctggactctc agcgaggggc tgcattgtcc acggagctga agaacaacag ctacaagtgg 300  
gcccgggttgcg cctgtgtgc tttgtggct ggatctgtgtt acctcaagct tggttatgtg 360  
tctcggtacc acgtgaaaga ctccctcacgc cacgtcatcc taggcaccca gcagttcaag 420  
cctaattgtat ttgccagcca gatcaacctg agcgtggaga atgcctgagg cattttacgc 480  
tgcgtcattt a 491  
  
<210> 109  
<211> 489  
<212> DNA  
<213> Homo sapiens  
  
<400> 109  
ctcagatagt actgaacccct ttatcaacta tgtttttca gtctgacaac caaggccggct 60  
actaagtgc taagggcag gtagtatata gtgtggataa gcaggacaaa ggggtgattc 120  
acatcccagg caggacagag caggagatca tgagatttca tcactcagga tggcttgcg 180  
tttattttat ttattttttt tttttttt agatggagtc tcactcttgc ccaggctgg 240  
gtgcagtggt gcgatcttgg tcactgcaa cctctgcctc ctgggttcaa gcaggcttcc 300  
tgcctcagcc tcccaagtag ctgggattac aggctccgc caccatgccc agccaatttt 360  
tgtacttttta gtagagatgg ggtttcacca tggatggccag gctggctcg aactccctgac 420  
ctcaggtgtat ccactcgctt cggcctccca aagtgcgtgg attataggca tgcgccacca 480  
tgcccgggc 489  
  
<210> 110  
<211> 391  
<212> DNA  
<213> Homo sapiens  
  
<400> 110

&lt;400&gt; 103

agaaacctca atcggattca gcaaaggaaat ggtgttatta tcactacata ccaaatgtta 60  
 atcaataact ggtagcaact ttcaagctt agggccaag agtttgttg ggactatgtc 120  
 atcctcgatg aagcacataa aataaaaacc tcatctacta agtcagaat atgtgctcg 180  
 gctattcctg caagtaatcg cctcctccctc acaggaaccc caatccagaa taatttacaa 240  
 gaactatggt ccctatttga ttttgcctgt caagggtccc tgctggaaac attaaaaact 300  
 ttttagatgg agtatgaaaa tcctattact agagcaagag agaaggatgc taccccgagga 360  
 gaaaaagct tggatttaa aatatctgaa aacttaatgg caatcataaa accctatccc 420  
 ctcaggagga ctaaagaaga cgtacagaag aaaaagtcaa gcaaccaga gcccagactt 480  
 aatgaaaaga atccagatgt tgatgcatt tgtgaaatgc cttcccttc caggagaaat 540  
 gattnaatta tttggatagc acttgcctt ttacaagaag aaatatacag gaaatttgc 600  
 tcttagatc atatcaagga gttgctaattg gagacgcgt caccttggc tgagctaggt 660  
 gtcttaaaga agctgtgtga tcatccctagg ctgctgtctg cacggcttg ttgtttgcta 720  
 aatcttggga cattctctgc t 741

&lt;210&gt; 104

&lt;211&gt; 321

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 104

ttgctctgcg tcataaaga caccaaactg ctgtgctata aaagttccaa ggaccagcag 60  
 cctcagatgg aactgccact ccaaggctgt aacattacgt acatccccaa agacagcaaa 120  
 aagaagaagc acggagctgaa gattactcg cagggcacgg acccgcttgc tctcgccgtc 180  
 cagagcaagg aacaggccga gcagtggctg aaggtgatca aagaaggcta cagtgggtgt 240  
 agtggccccc tgatttcaga gtgtccctt ccaccaagct ccccggtca caaggcagaa 300  
 ctggagaaga aactgtcttc a 321

&lt;210&gt; 105

&lt;211&gt; 389

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 105

cagcactggc cacactataa aattcagggtt cagaaaaaca ggttaagtca cagacagcaa 60  
 cgcttccagc atttattttc tttgcaccca tggcaattt gagaaaattt accttttagaa 120  
 cgaacctctgt taaaggtaca gacagtacaa tacttttat tcagaagggtt tctgcataaa 180  
 ggtgatagtc ttttgcattt atatattttt gtctcctgccc ttgtgtttctt ggaatgaatg 240  
 aaggtcatta tttagaagat aatctgggtt gtatttgcgt cgtcagattt aattttcattt 300  
 gcacatgcta cttaatgtct ttaccaata ataacaaagg gaaagaaaac caaatataaga 360  
 tgtataataa gaaaaagctg gcctataga 389

&lt;210&gt; 106

&lt;211&gt; 446

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 106

gccacattttgc cccgggtcat agtttaaaca ccaggctctg tgtcacatct ttttgggtgcc 60  
 acaagtatca cttccattgtt cagagagtaa tgtatttagtt ctgcaccaattt cattcttcac 120  
 ttttattttctt cccattttcat tagcattttat atcagctcaa gaagtttaagg tttagaaaattt 180  
 ttccacttca aattttcagt acagaatgt gctgtgtgtt tgacaagac tatttcatag 240  
 taagttagttt aatgtttttt ggcctctgtt ctccctgttgc tcagacccatg gaaggctttag 300  
 gattacttag ttgttctgtc tctgggtccca caggcagaat ttggccatc caaagactgg 360  
 ccaagtgccta aaaaaaggcc tgatttagcc ctgaaattca gtgaaattct gcctgaagaa 420

gcggagtccg ctggctgacc cgagcgctgg tctccgcccgg gaaccctggg gcatggagag 60  
 gtctgagtac ctccggcggcg ggcacgcgtg catcgccggag ccaggctgcc gctgtcccag 120  
 tggagttcca ggagcaccac ctgagtgagg tgcaaatat ggcatctgag gagaagctgg 180  
 agcaggtgtct gagttccatg aaggagaaca aagtggccat cattggaaag attcataaccc 240  
 cgatggagta taagggggag ctggccct atgatatgcg gctgaggcgt aagttggact 300  
 tatttccaa cgtaatccat gtgaagtcac ttccctgggta tatgactcgg cacaacaatc 360  
 tagacctggtagt gatcattcga gagcagacag a 391

&lt;210&gt; 111

&lt;211&gt; 172

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 111

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Met | Lys | Leu | Lys | Ser | Asn | Gln | Thr | Arg | Thr | Tyr | Asp | Gly | Asp | Gly |
| 1   |     |     |     |     |     |     |     | 10  |     |     |     |     | 15  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Lys | Lys | Arg | Ala | Ala | Cys | Leu | Cys | Phe | Arg | Ser | Glu | Ser | Glu | Glu |
|     |     |     |     |     |     |     |     | 25  |     |     |     | 30  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Glu | Val | Leu | Leu | Val | Ser | Ser | Arg | His | Pro | Asp | Arg | Trp | Ile | Val |  |
|     |     |     |     |     |     |     | 35  |     | 40  |     | 45  |     |     |     |  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Gly | Gly | Gly | Met | Glu | Pro | Glu | Glu | Glu | Pro | Ser | Val | Ala | Ala | Val |
|     |     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Arg | Glu | Val | Cys | Glu | Ala | Gly | Val | Lys | Gly | Thr | Leu | Gly | Arg | Leu |  |
|     |     |     |     | 65  |     |     | 70  |     | 75  |     |     | 80  |     |     |  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Gly | Ile | Phe | Glu | Asn | Gln | Glu | Arg | Lys | His | Arg | Thr | Tyr | Val | Tyr |
|     |     |     |     |     |     |     |     | 85  |     | 90  |     | 95  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Leu | Ile | Val | Thr | Glu | Val | Leu | Glu | Asp | Trp | Glu | Asp | Ser | Val | Asn |
|     |     |     |     |     | 100 |     |     | 105 |     |     |     | 110 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Gly | Arg | Lys | Arg | Glu | Trp | Phe | Lys | Ile | Glu | Asp | Ala | Ile | Lys | Val |
|     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Gln | Tyr | His | Lys | Pro | Val | Gln | Ala | Ser | Tyr | Phe | Glu | Thr | Leu | Arg |
|     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Gly | Tyr | Ser | Ala | Asn | Asn | Gly | Thr | Pro | Val | Val | Ala | Thr | Thr | Tyr |
|     |     |     |     | 145 |     |     | 150 |     |     | 155 |     | 160 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |  |  |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|
| Ser | Val | Ser | Ala | Gln | Ser | Ser | Met | Ser | Gly | Ile | Arg |  |  |  |  |
|     |     |     |     |     |     |     | 165 |     | 170 |     |     |  |  |  |  |

&lt;210&gt; 112

&lt;211&gt; 247

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 112

Arg Asn Leu Asn Arg Ile Gln Gln Arg Asn Gly Val Ile Ile Thr Thr

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 1                                                               | 5   | 10  | 15  |
| Tyr Gln Met Leu Ile Asn Asn Trp Gln Gln Leu Ser Ser Phe Arg Gly |     |     |     |
| 20                                                              |     | 25  | 30  |
| Gln Glu Phe Val Trp Asp Tyr Val Ile Leu Asp Glu Ala His Lys Ile |     |     |     |
| 35                                                              |     | 40  | 45  |
| Lys Thr Ser Ser Thr Lys Ser Ala Ile Cys Ala Arg Ala Ile Pro Ala |     |     |     |
| 50                                                              | 55  | 60  |     |
| Ser Asn Arg Leu Leu Leu Thr Gly Thr Pro Ile Gln Asn Asn Leu Gln |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Glu Leu Trp Ser Leu Phe Asp Phe Ala Cys Gln Gly Ser Leu Leu Gly |     |     |     |
| 85                                                              |     | 90  | 95  |
| Thr Leu Lys Thr Phe Lys Met Glu Tyr Glu Asn Pro Ile Thr Arg Ala |     |     |     |
| 100                                                             |     | 105 | 110 |
| Arg Glu Lys Asp Ala Thr Pro Gly Glu Lys Ala Leu Gly Phe Lys Ile |     |     |     |
| 115                                                             |     | 120 | 125 |
| Ser Glu Asn Leu Met Ala Ile Ile Lys Pro Tyr Phe Leu Arg Arg Thr |     |     |     |
| 130                                                             |     | 135 | 140 |
| Lys Glu Asp Val Gln Lys Lys Ser Ser Asn Pro Glu Ala Arg Leu     |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Asn Glu Lys Asn Pro Asp Val Asp Ala Ile Cys Glu Met Pro Ser Leu |     |     |     |
| 165                                                             |     | 170 | 175 |
| Ser Arg Arg Asn Asp Leu Ile Ile Trp Ile Arg Leu Val Pro Leu Gln |     |     |     |
| 180                                                             |     | 185 | 190 |
| Glu Glu Ile Tyr Arg Lys Phe Val Ser Leu Asp His Ile Lys Glu Leu |     |     |     |
| 195                                                             |     | 200 | 205 |
| Leu Met Glu Thr Arg Ser Pro Leu Ala Glu Leu Gly Val Leu Lys Lys |     |     |     |
| 210                                                             |     | 215 | 220 |
| Leu Cys Asp His Pro Arg Leu Leu Ser Ala Arg Ala Cys Cys Leu Leu |     |     |     |
| 225                                                             |     | 230 | 235 |
| Asn Leu Gly Thr Phe Ser Ala                                     |     |     |     |
| 245                                                             |     |     |     |

<210> 113  
<211> 107  
<212> PRT  
<213> Homo sapiens

<400> 113  
Leu Leu Cys Val Ile Lys Asp Thr Lys Leu Leu Cys Tyr Lys Ser Ser



145

150

155

<210> 115  
<211> 129  
<212> PRT  
<213> Homo sapiens

&lt;400&gt; 115

Gly Val Arg Trp Leu Thr Arg Ala Leu Val Ser Ala Gly Asn Pro Gly  
1 5 10 15

Ala Trp Arg Gly Leu Ser Thr Ser Ala Ala Ala His Ala Ala Ser Arg  
20 25 30

Ser Gln Ala Ala Ala Val Pro Val Glu Phe Gln Glu His His Leu Ser  
35 40 45

Glu Val Gln Asn Met Ala Ser Glu Glu Lys Leu Glu Gln Val Leu Ser  
50 55 60

Ser Met Lys Glu Asn Lys Val Ala Ile Ile Gly Lys Ile His Thr Pro  
65 70 75 80

Met Glu Tyr Lys Gly Glu Leu Ala Ser Tyr Asp Met Arg Leu Arg Arg  
85 90 95

Lys Leu Asp Leu Phe Ala Asn Val Ile His Val Lys Ser Leu Pro Gly  
100 105 110

Tyr Met Thr Arg His Asn Asn Leu Asp Leu Val Ile Ile Arg Glu Gln  
115 120 125

Thr

<210> 116  
<211> 550  
<212> DNA  
<213> Homo sapiens

&lt;400&gt; 116

gaattcggca ccagcctcag agccccccag cccggctacc acccccgtcg gaaaggtaac 60  
catctgcatt cctgccccgtc gggacacttgg ggacagtcca gcctccctgg cctcttagct 120  
tggctcacccg ctgccttagag ccaaggagct catccctaat gacccctcccg ccagcaactcc 180  
tgcctccaaa tccctgtgact cctccccggcc ccaggacgtt tccacccca ggcccagctc 240  
ggccagtcac ctctgccagc ttgctcccaa gccagcacct tccacggaca gcgtcgccct 300  
gaggagccccc ctgactctgt ccagtccctt caccacgtcc ttccagctgg gctccccacag 360  
caactctcaac ggagacctct ccgtgccccag ctccctacgtc agccctccacc tgccccccca 420  
ggtcagcagc tctgtgggtgt acggacgttc ccccggtatg gcatttgagt ctcatcccc 480  
tctccgggg tcatccgtct cttccctccct acccagcatc cctggggaa agccggccta 540  
ctcccttccac 550

&lt;210&gt; 117

&lt;211&gt; 154

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 117

ttctgaggga aagccgagt gagtggcgca cccggcggcg gtgacaatga gttttcttgg 60  
aggctttttt ggtcccattt gtgagattga ttttgccctt aatgatgggg aaaccaggaa 120  
aatggcagaa ataaaaactg aggatggcaa agta 154

&lt;210&gt; 118

&lt;211&gt; 449

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 118

gaattcggca ccagggcccg cagcccgagt gtcgcggcca tggcttcgccc gcagctctgc 60  
cgcgcgctgg tgcggcgca atgggtggcg gagggcgctgc gggcccccgcg cgctggcgag 120  
cctctgcacgc tgctggacgc ctccctggatc ctggcgaaagc tggggcgcgaa cgccgcacgc 180  
gagttcgagg agcgccacat cccggggcgcc gctttcttcg acatcgacca gtgcagcgac 240  
cgcacccgc cctacgacca catgctgccc gggcccgagc atttcgcgga gtacgcaggc 300  
cgccctggcg tgggcgcggc caccacgtc gtatctacg acgccagcgaa ccagggcctc 360  
tactccgccc cgccgcgtctg gtggatgttc cgccgccttcg gccaccacgc cgtgtcactg 420  
cttgcgtggcg gcctccgcca ctggctgcg 449

&lt;210&gt; 119

&lt;211&gt; 642

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 119

gaattcggca cgagcagtaa cccgaccgccc gctgggtttc gctggacacc atgaatcaca 60  
ctgtccaaac ctctttctct cctgtcaaca gtggccagcc ccccaactat gagatgctca 120  
aggaggagca cgaggtggct gtgctggggg cgccccacaa ccctgctccc ccgcacgtcca 180  
ccgtgatcca catccgcage gagacctccg tgcccgacca tgcgtctgg tccctgttca 240  
acaccctctt catgaaccccc tgctgcctgg gcttcatacg attcgcctac tccgtgaagt 300  
ctagggacag gaagatggtt ggacgtga cccggggccca ggcctatgcc tccaccgc 360  
agtgcctgaa catctggcc ctgattctgg gcatcctcat gaccattctg ctcatcgtrca 420  
tcccagtgt gatcttccag gcctatggat agatcaggag gcatcaactga ggccaggagc 480  
tctgcccattg acctgtatcc cacgtactcc aacttccatt cctcgccctg ccccccggagc 540  
cgagtccctgt atcagccctt tatcctaca cgctttcta caatggcatt caataaagtg 600  
cacgttttc tggtaaaaaaaa aaaaaaaaaa aaaaaactcg ag 642

&lt;210&gt; 120

&lt;211&gt; 603

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 120

gaattcggca cgagccacaa cagccactac gactgcattcc actggatcca cggccacccc 60  
gtcctccacc cccggaaacag ctccctcc caaagtgtcg accagcccg ccaccacacc 120  
catgtccacc atgtccacaa tccacaccc tcctactcca gagaccaccc acacccctcc 180  
agtgcgtacc accacagccca ccatgacaag ggcaccaat tccacggccca caccctcc 240  
caactctgggg acgaccggca tcctactga gctgaccaca acagccacta caactgcagc 300  
caactggatcc acggccaccc tgcctccac cccaggggacc acctggatcc tcacagagcc 360  
gagcactata gccaccgtga tggtgcac cgggtccacg gccaccgcct cctccactct 420  
ggaaacagct cacacccca aagtggtgac caccatggcc actatgc 480

ctccacggtt cccagcgtggtt ccaccgtggg gaccacccgc acccctgcag tgctccccag 540  
 cagcctgcca accttcagcg tgtccactgt gtcctcctca gtcctcacca ccctgagacc 600  
 cac 603

<210> 121  
 <211> 178  
 <212> PRT  
 <213> Homo sapiens

<400> 121

Ser Glu Pro Pro Ser Pro Ala Thr Thr Pro Cys Gly Lys Val Pro Ile  
 1 5 10 15

Cys Ile Pro Ala Arg Arg Asp Leu Val Asp Ser Pro Ala Ser Leu Ala  
 20 25 30

Ser Ser Leu Gly Ser Pro Leu Pro Arg Ala Lys Glu Leu Ile Leu Asn  
 35 40 45

Asp Leu Pro Ala Ser Thr Pro Ala Ser Lys Ser Cys Asp Ser Ser Pro  
 50 55 60

Pro Gln Asp Ala Ser Thr Pro Arg Pro Ser Ser Ala Ser His Leu Cys  
 65 70 75 80

Gln Leu Ala Ala Lys Pro Ala Pro Ser Thr Asp Ser Val Ala Leu Arg  
 85 90 95

Ser Pro Leu Thr Leu Ser Ser Pro Phe Thr Thr Ser Phe Ser Leu Gly  
 100 105 110

Ser His Ser Thr Leu Asn Gly Asp Leu Ser Val Pro Ser Ser Tyr Val  
 115 120 125

Ser Leu His Leu Ser Pro Gln Val Ser Ser Val Val Tyr Gly Arg  
 130 135 140

Ser Pro Val Met Ala Phe Glu Ser His Pro His Leu Arg Gly Ser Ser  
 145 150 155 160

Val Ser Ser Ser Leu Pro Ser Ile Pro Gly Gly Lys Pro Ala Tyr Ser  
 165 170 175

Phe His

<210> 122

<211> 36

<212> PRT

<213> Homo sapiens

<400> 122

Met Ser Phe Leu Gly Gly Phe Phe Gly Pro Ile Cys Glu Ile Asp Val  
 1 5 10 15

Ala Leu Asn Asp Gly Glu Thr Arg Lys Met Ala Glu Met Lys Thr Glu  
 20                    25                    30

Asp Gly Lys Val  
 35

<210> 123  
 <211> 136  
 <212> PRT  
 <213> Homo sapiens

<400> 123  
 Met Ala Ser Pro Gln Leu Cys Arg Ala Leu Val Ser Ala Gln Trp Val  
 1                5                10                15

Ala Glu Ala Leu Arg Ala Pro Arg Ala Gly Gln Pro Leu Gln Leu Leu  
 20                25                30

Asp Ala Ser Trp Tyr Leu Pro Lys Leu Gly Arg Asp Ala Arg Arg Glu  
 35                40                45

Phe Glu Glu Arg His Ile Pro Gly Ala Ala Phe Phe Asp Ile Asp Gln  
 50                55                60

Cys Ser Asp Arg Thr Ser Pro Tyr Asp His Met Leu Pro Gly Ala Glu  
 65                70                75                80

His Phe Ala Glu Tyr Ala Gly Arg Leu Gly Val Gly Ala Ala Thr His  
 85                90                95

Val Val Ile Tyr Asp Ala Ser Asp Gln Gly Leu Tyr Ser Ala Pro Arg  
 100                105                110

Val Trp Trp Met Phe Arg Ala Phe Gly His His Ala Val Ser Leu Leu  
 115                120                125

Asp Gly Gly Leu Arg His Trp Leu  
 130                135

<210> 124  
 <211> 133  
 <212> PRT  
 <213> Homo sapiens

<400> 124  
 Met Asn His Thr Val Gln Thr Phe Phe Ser Pro Val Asn Ser Gly Gln  
 1                5                10                15

Pro Pro Asn Tyr Glu Met Leu Lys Glu Glu His Glu Val Ala Val Leu  
 20                25                30

Gly Ala Pro His Asn Pro Ala Pro Pro Thr Ser Thr Val Ile His Ile  
 35                40                45

Arg Ser Glu Thr Ser Val Pro Asp His Val Val Trp Ser Leu Phe Asn  
 50                    55                    60

Thr Leu Phe Met Asn Pro Cys Cys Leu Gly Phe Ile Ala Phe Ala Tyr  
 65                    70                    75                    80

Ser Val Lys Ser Arg Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala  
 85                    90                    95

Gln Ala Tyr Ala Ser Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile  
 100                  105                  110

Leu Gly Ile Leu Met Thr Ile Leu Leu Ile Val Ile Pro Val Leu Ile  
 115                  120                  125

Phe Gln Ala Tyr Gly  
 130

<210> 125

<211> 195

<212> PRT

<213> Homo sapiens

<400> 125

Thr Thr Ala Thr Thr Ala Ser Thr Gly Ser Thr Ala Thr Pro Ser  
 1                  5                  10                  15

Ser Thr Pro Gly Thr Ala Pro Pro Pro Lys Val Leu Thr Ser Pro Ala  
 20                  25                  30

Thr Thr Pro Met Ser Thr Met Ser Thr Ile His Thr Ser Ser Thr Pro  
 35                  40                  45

Glu Thr Thr His Thr Ser Thr Val Leu Thr Thr Ala Thr Met Thr  
 50                  55                  60

Arg Ala Thr Asn Ser Thr Ala Thr Pro Ser Ser Thr Leu Gly Thr Thr  
 65                  70                  75                  80

Arg Ile Leu Thr Glu Leu Thr Thr Ala Thr Thr Thr Ala Ala Thr  
 85                  90                  95

Gly Ser Thr Ala Thr Leu Ser Ser Thr Pro Gly Thr Thr Trp Ile Leu  
 100                  105                  110

Thr Glu Pro Ser Thr Ile Ala Thr Val Met Val Pro Thr Gly Ser Thr  
 115                  120                  125

Ala Thr Ala Ser Ser Thr Leu Gly Thr Ala His Thr Pro Lys Val Val  
 130                  135                  140

Thr Thr Met Ala Thr Met Pro Thr Ala Thr Ala Ser Thr Val Pro Ser  
 145                  150                  155                  160

Ser Ser Thr Val Gly Thr Thr Arg Thr Pro Ala Val Leu Pro Ser Ser  
165 170 175

Leu Pro Thr Phe Ser Val Ser Thr Val Ser Ser Ser Val Leu Thr Thr  
180 185 190

Leu Arg Pro  
195

<210> 126  
<211> 509  
<212> DNA  
<213> homo sapien

<400> 126

|             |             |             |             |             |            |     |
|-------------|-------------|-------------|-------------|-------------|------------|-----|
| gaattcgcca  | cgagccaagt  | acccctctgg  | aatctgcag   | cctgcacatcg | agtacaccgt | 60  |
| atccctcggt  | gccataaaagg | gcaaccaaga  | gagccccaaa  | gccactggag  | tctttaccac | 120 |
| actgcaggct  | gggagctcta  | ttccacccctt | caacaccgag  | gtgactgaga  | ccaccattgt | 180 |
| gatcacatgg  | acgcctgctc  | caagaattgg  | tttaaagctg  | ggtgtacgac  | caagccaggg | 240 |
| aggagaggca  | ccacgagaag  | tgacttcaga  | ctcaggaagc  | atcggtgtgt  | ccggcttgac | 300 |
| tccaggagta  | gaatacgtct  | acaccatcca  | agtccctgaga | gatggacagg  | aaagagatgc | 360 |
| gccaatttgta | aacaaaagtgg | tgacaccatt  | gtctccacca  | acaaaacttgc | atctggaggc | 420 |
| aaaccctgtac | actggagtgc  | tcacagtctc  | ctggagagga  | gcaccacccc  | agacattact | 480 |
| qqqtatagaa  | ttaccacaaac | ccctacaaa   |             |             |            | 509 |

<210> 127

<211> 500  
<212> DNA  
<213> homo sapien

<400> 127

gaattcggca cgagccactg atgtccgggg agtcagccag gagcttgggg aaggaaagcg  
cgccccccgg gccggtcccg gagggctcga tccgcata cagcatgagg ttctgcccgt 60  
ttgctgagag gacgcgtcta gtcctgaagg ccaagggaat caggcatgaa gtcatccaata 120  
tcaacctgaa aaataaagcct gagtggttct ttaagaaaaa tcccttttgt ctggtgccag 180  
ttctggaaaa cagtccagggt cagctgatct acgagtcgc catcacctgt gagtacctgg 240  
atgaagcata cccagggaaag aagctttgc cggatgaccc ctatgagaaa gcttgcaga 300  
agatgatctt agaggtttt tctaagggtc catcccttgtt aggaagcttt attagaagcc 360  
aaaataaaga agactatgct ggcctaaaag aagaatttcg taaagaattt accaagctag 420  
aggaggtct qactaataaq 480  
aggaggtct qactaataaq 500

<210> 128

<211> 500

<212> DNA

<213> homo sapien

<400> 128

```

agctttcctc tgctgccgt cggtcacgct tggccccaa ggaggaaaaca gtgacagacc 60
tggagactgc agttcttat cttcacaca gtccttcac catgcctgga tcacttcctt 120
tgaatgcaga agtgtgctgg cccaaagatg tggaaattgt tgccttgag atctatttc 180
cttctcaata tggatcaa gcagagtgg aaaaatatga tggtagat gctggaaagt 240
ataccatgg ctggggccag gccaagatgg gtcctgcac agatagagaa gatattaact 300
ctctttgcat gactgtggtt cagaatctt tggagagaaa taaccttc tatgattgca 360

```

ttgggcggct ggaagttgga acagagacaa tcatcgacaa atcaaagtct gtgaagacta 420  
 atttgatgca gctgttgaa gagtctggga atacagatat agaaggaatc gacacaacta 480  
 atgcatgcta tggaggcaca 500

<210> 129  
 <211> 497  
 <212> DNA  
 <213> homo sapien

<400> 129  
 gaattcggca cgagcagagg tctccagagc cttctcttc ctgtcaaaa tggcaactct 60  
 taaggaaaaa ctcattgcac cagttcgga agaagaggca acagttccaa acaataagat 120  
 cactgttagt ggtgttggac aagttgttat ggcgtgtgct atcagcattc tggaaagtct 180  
 tctggctgat gaacctgctc ttgtggatgt ttttggagat aagcttaag gagaatgtat 240  
 ggatctcgag catggagct tatttttca gacacctaaa attgtggcag ataaagatta 300  
 ttctgtgacc gccaattcta agattgttgt ggtactgca ggagtccgtc agcaagaagg 360  
 ggagagtcgg ctcacatctgg tgcagagaaa tttaatgtc ttcaattca ttattcctca 420  
 gatgtcaag tacagtctg attgcatcat aattgtggtt tccaacccag tggacattct 480  
 tacgtatgtt acctgga 497

<210> 130  
 <211> 383  
 <212> DNA  
 <213> homo sapien

<400> 130  
 gaattcggca cgagggccgc ggctgccgac tgggtccccct gccgctgtcg ccaccatggc 60  
 tccgcaccgc cccgcggccc cgctgttttgcgctgtcc ctggcgtgtgcg 120  
 gctggccgtc cgcgccggcca ctgcgtcgcg gggggcgtcc cagggcgggg cgcccccagg 180  
 gcgggtgccc gaggcgcggc ccaacacgcat ggtggtgaa caccggactgt tcctcaaggc 240  
 agggaaaggag cctggcctgc agatctggcg tggagaaa gttcgatctg gtggcccggt 300  
 cccaccaacc ttatggaga cttcttcacg ggcgacgcct acgtcatcct gaagacagt 360  
 cagcttaaga acggaaaatc ttg 383

<210> 131  
 <211> 509  
 <212> DNA  
 <213> homo sapien

<400> 131  
 gaattcggca cgagagtca cgcacatcttc ttttgcgtcg ccagccgagc cacatcgctc 60  
 agacaccatg gggaaagggtga aggtcgagt caacggattt ggtcgatattt ggcgcctgtt 120  
 caccagggt gcttttaact ctggtaaaatg ggtattttttt gccatcaatg accccttcat 180  
 tgacctcaac tacatggttt acatgttcca atatgattcc acccatggca aattccatgg 240  
 caccgtcaag gctgagaacg ggaagcttgcg catcaatggaa aatccatca ccatcttcca 300  
 ggagcgagat ccctccaaaa tcaagtgggg cgtatgtggc gctgatgtacg tcgtggagtc 360  
 cactggccgt cttcaccacc atggagaagg ctggggctca tttgcaggggg ggagccaaaa 420  
 gggtcatcat ctctgccccctc tctgtgcacg ccccatgtt cgtatgggt gtgaaccatg 480  
 agaagtatga caacagcctc aagatcatc 509

<210> 132  
 <211> 357  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 132

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gaattcggca | cgagtaagaa | gaagcccta  | gaccacagct | ccacaccatg | gactggacct | 60  |
| ggaggatctt | cttcttggtg | gcagcagcaa | caggtgccca | ctcccaggtg | caactggtgc | 120 |
| aatctgggtc | tgagttgaag | aagcctgggg | cctcagtgaa | gttttcctgc | aaggcttctg | 180 |
| gacacatctt | cagtatctat | gtttgaatt  | gggtgcgaca | ggccccctgt | caaggccttg | 240 |
| agtggatggg | atggatcaa  | gtcgacactg | cgaacccaac | gtatgccag  | ggcttcacag | 300 |
| gacgatttgt | cttctccctg | gacacctctg | tcagcacggc | atatctgcag | atcagca    | 357 |

&lt;210&gt; 133

&lt;211&gt; 468

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 133

|             |            |             |            |             |            |     |
|-------------|------------|-------------|------------|-------------|------------|-----|
| gaattcggca  | cgaggcgccc | cgaaccgtcc  | tcctgctgct | ctcgccggcc  | ctggccctga | 60  |
| ccgagacctg  | ggccggctcc | caactccatga | gttatttoga | caccgcctatg | tcccgccccg | 120 |
| gcccggggga  | gccccgcttc | atctcagtgg  | gctacgtgga | cgacacgcag  | ttcgtgaggt | 180 |
| tcgacagcga  | cggcgcgagt | ccgagagagg  | agccgcgggc | gcccgtggata | gagcaggagg | 240 |
| ggccggagta  | ttgggaccgg | aacacacaga  | tcttcaagac | caacacacag  | actgaccgag | 300 |
| agagcctcgcg | gaacctgcgc | ggctactaca  | accagagcga | ggccgggtct  | cacaccctcc | 360 |
| agagcatgta  | cggctgcgac | gtggggccgg  | acggggcgct | cctccgcggg  | cataaccagt | 420 |
| acgcctacga  | cggcaaggat | tacatcgccc  | tgaacgagga | cctgcgcgt   |            | 468 |

&lt;210&gt; 134

&lt;211&gt; 214

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 134

|             |            |            |            |            |            |     |
|-------------|------------|------------|------------|------------|------------|-----|
| gaattcggca  | cgagctgcgt | cctgctgagc | tctgttctct | ccagcacctc | ccaacccact | 60  |
| atgcctgtt   | tctcttgcgc | caccagaac  | aagccaccat | gtctcgccag | tcaagtgtgt | 120 |
| ccttcggag   | cgggggcagt | cgtagttca  | gcaccgcctc | tgccatcacc | ccgtctgtct | 180 |
| cccgccaccag | cttcacaccc | gtgtcccggt | ccgg       |            |            | 214 |

&lt;210&gt; 135

&lt;211&gt; 355

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 135

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gaattcggca | cgaggtgaac | aggacccgtc | gccatgggcc | gtgtgatccg | tggacagagg | 60  |
| aaggccggcc | ggtctgtgtt | ccgcgcac   | gtgaagcacc | gtaaaggcgc | tgcgcgcctg | 120 |
| cgcgcgtgg  | atttcgctga | cgccacggc  | tacatcaagg | gcacgtctaa | ggacatcatc | 180 |
| cacgacccgg | gccgcggcgc | gcccctcgcc | aaggtggtct | tccggatcc  | gtatcggttt | 240 |
| aagaagcgg  | cggagctgtt | cattgcgcgc | gagggatcc  | acacggggca | gtttgtgtat | 300 |
| tgcggcaaga | aggcccagct | caacattggc | aatgtctcc  | ctgtgggcac | catgc      | 355 |

&lt;210&gt; 136

&lt;211&gt; 242

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 136

|            |            |            |             |            |            |     |
|------------|------------|------------|-------------|------------|------------|-----|
| gaattcggca | cgagccagct | cctaaccgcg | agtgtatccgc | cagcctccgc | ctcccgaggt | 60  |
| gcccggattt | cagacggagt | ctccttact  | cagtgcctaa  | tggtgccag  | gttgagtg   | 120 |

agtgggtgta tctcggtctcg ctacaacatc cacctcccag cagcctgcct tggcctccca 180  
 aagtggcgag attgcagctc tctgccccgc cgccacccct gtctgggaag tgaggatgct 240  
 gt 242

<210> 137  
 <211> 424  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 137

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| gaattcggca cgagcccaaga tcccggaggc cgacagcgcc cggcccaagat ccccacgcct | 60  |
| gccaggagca agccggagac cagccggccg ggcactccg actccggagca gtctctgtcc   | 120 |
| tccgaccgcga gccccggcgc ctttccggga cccctgcccc gcggggcagcg ctggcaacct | 180 |
| gcccggccatg gagaccccg cccagccgcg cgccacccgc agcggggcgc agggccagctc  | 240 |
| cactccgctg tcgccccaccgc acatccggc gctgcaggag aaggaggacc tgcaggagct  | 300 |
| caatgatcgc ttggcggtct atcatcgaccg tgcgtgcgtcg ctggaaacgg agaacgcagg | 360 |
| gctgcgcctt cgcatacccg agtctgaaga ggtggtcagc cgcgagggtgt ccggcatcaa  | 420 |
| ggcc                                                                | 424 |

&lt;210&gt; 138

<211> 448  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 138

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| gaattcggca cgagccctgtg ttccaggaggc cgaatcagaa atgtcatccct caggcacgc  | 60  |
| agacttacct gtcctactca ccgatttgaa gattcaatat actaagatct tcataaaacaa   | 120 |
| tgaatggcat gattcgttgta gttggcaagaa atttcctgtc tttaatccctg caactgagga | 180 |
| ggagctctgc caggttagaa aaggagataa ggaggatgtt gacaaggcag tgaaggccgc    | 240 |
| aagacaggct tttcagattt gatccccgtg gcgtactatg gatgtttccg agagggggcg    | 300 |
| actattatac aagtggctg atttaatcga aagagatctg ctgctgtgg ccgacaatgg      | 360 |
| agtcaatgaa tggtggaaaa ctctattcca atgcataatct gaatgatttgc gcaaggctgca | 420 |
| tcaaaaacatt gcgctactgt gcagggttg                                     | 448 |

&lt;210&gt; 139

<211> 510  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 139

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| gaattcggca cgagggtccg tgcagctcac ggagaagcga atggacaaaag tcggcaagta   | 60  |
| ccccaaaggag ctgcgcgaagt gctgcggagga cggcatgcgg gagaacccca tgaggttctc | 120 |
| gtgccagcgc cggaccgtt tcatccctt ggcgaggcgt gcaagaaggat cttccctggac    | 180 |
| tgctgcaact acatcacaga gctgcggcgg cagcacgcgc gggccagcca cctggcctgc    | 240 |
| caggagtaac ctggatgagg acatcattgc agaagagaac atcggtttcc gaagtggat     | 300 |
| cccagagagc tggctgtgg acgttgagga ctggaaagag ccacccaaaa atggaatctc     | 360 |
| tacgaagctc atgaatataat ttttggaaaga ctccatcacc acgtgggaga ttctggctgt  | 420 |
| gagcatgtcg gacaagaaaag ggatctgtgt ggcagacccc ttggcagggtca cagtaatgca | 480 |
| ggacttcttc atcgacccgtc ggctacccta                                    | 510 |

&lt;210&gt; 140

<211> 360  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 140

|                                   |                                  |     |
|-----------------------------------|----------------------------------|-----|
| gaattcggca cgagcggtaa ctaccccgcc  | tgcgcacagc tggcgctcc ttccccgtcc  | 60  |
| ctcacacacc ggcctcagcc cgcacccggca | gtagaagatg gtgaaagaaa caacttacta | 120 |
| cgtatgttttggggtcaaac ccaatgtac    | ttaggaagaa ttgaaaagg cttataggaa  | 180 |
| actggctttg aagtaccatc ctgataagaa  | cccaaatgaa ggagagaagt taaaacagat | 240 |
| ttctcaagct tacgaagttc tctctgatgc  | aaagaaaagg gaattatatg acaaaggagg | 300 |
| agaacaggca attaaagagg gtggagcagg  | tgccggtttt ggctccccca tggacatctt | 360 |

&lt;210&gt; 141

&lt;211&gt; 483

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 141

|                                    |                                   |     |
|------------------------------------|-----------------------------------|-----|
| gaattcggca cgagagcaga ggctgatctt   | tgctggaaaaa cagctggaag atgggctgca | 60  |
| ccctgtctga ctacaacatc cagaaagagt   | ccaccctgca cctgggtgctc cgtctcagag | 120 |
| gtgggatgca aatcttcgtg aagacactca   | ctggcaagac catcaccctt gaggtggagc  | 180 |
| ccagtgcac acatcgagaac gtcaaagcaa   | agatccagga caaggaaggc attcctctg   | 240 |
| accagcagag gttgatctt gccggaaagc    | agctggaaga tgggcgcacc ctgtctgact  | 300 |
| acaacatcca gaaagagttt accctgcacc   | ttgtgctccg tctcagaggt gggatgcaga  | 360 |
| tcttcgtaa gaccctgact ggttaagacca   | tcaccctgaa ggtggagccc agtgcacacca | 420 |
| tcgagaatgt caaggcaaaat ccaccaagata | aggaaggcat tcctcctgat cagcagaggt  | 480 |
| tga                                |                                   | 483 |

&lt;210&gt; 142

&lt;211&gt; 500

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 142

|                                   |                                    |     |
|-----------------------------------|------------------------------------|-----|
| gaattcggca cgaggcggcg acgaccgccc  | ggagcgtgtg cagcggcggc ggccgaagtg   | 60  |
| gccggcggc cccgtcccccg ccggcaccat  | gttcccttg tcactgctga agacggctca    | 120 |
| gaatcaccccc atgttggtgg agctaaaaaa | tggggagacg tacaatggac acctgggtgag  | 180 |
| ctgcgacaac tggatgaaca ttaacctgca  | agaagtcatc tgacacgtcca gggacggggaa | 240 |
| caagttctgg cggatgccc agtgcacat    | ccgcggcagc accatcaagt acctgcgcac   | 300 |
| ccccgacgag atcatcgaca ttgtcaagga  | ggaggtggtg gccaaggggcc gggccgcgg   | 360 |
| aggcctgcag cagcagaagc agcagaaaagg | ccgcggcatg ggccggcgtg gccgaggtgt   | 420 |
| gtttggcgc cggggccgag gtggatccc    | gggcacaggc agaagccagc cagagaagaa   | 480 |
| gcctggcaga caggcgggca             |                                    | 500 |

&lt;210&gt; 143

&lt;211&gt; 400

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 143

|                                  |                                              |     |
|----------------------------------|----------------------------------------------|-----|
| gaattcggca cgagctcggta           | tgtcagcagg cgtcccaacc cagcaggaac tggctcaatt  | 60  |
| ctcagaagaa agcgatcgcc cccgaggcag | gaaggccggc tccgggtgcag ggcgcgcgc             | 120 |
| ctgcgggctg cttcgccca             | gggtcgaccc gagggccagc gcaagcagcg gcaacaggag  | 180 |
| cgccaggagg acatgaggtt            | ctgcctgcag tcaagcaatt ggaatattca gacttcagac  | 240 |
| cagcatcaca gattataacc            | ccctgtaaat catctgcac ccagctccccca taaaagccca | 300 |
| gcctgaagga cccatggaca            | cgtaactcca gtgttctcaa caacatctta gatcaagttt  | 360 |
| gtttgcacaa catttgcac             | tacttggac aaagcaagaa                         | 400 |

&lt;210&gt; 144

&lt;211&gt; 243

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 144

gaattcggca cgagccagct cctaaccgcg agtgatccgc cagcctccgc ctccccaggt  
 gccccgattg cagacggagt ctcccttact cagtgctcaa tggtgcccag gctggagtgc  
 agtgggtgtga tctcggtctcg ctacaacatc cacctcccaag cagcctgcct tggcctccca  
 aagtgccgag attgcagcct ctgccccggc gtcaccccggt ctgggaagtg aggagcgttt  
 ctg

60  
120  
180  
240  
243

&lt;210&gt; 145

&lt;211&gt; 450

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 145

gaattcggca cgaggacagc aggaccgtgg aggccgcggc aggggtggca gtgggtggcgg  
 cggcggcggc ggcgggtggt gttacaaccc cagcagtggt ggctatgaac ccagaggtcg  
 tggagggtggc cgtggaggca gaggtggcat gggcggaaagt gaccgtggt gcttcaataa  
 atttgggtggc cctcggtggacc aaggatcacg tcatgactcc gaacaggata attcagacaa  
 caacaccatc tttgtgcaag gcctgggtga gaatgttaca attgagtctg tggctgatta  
 cttcaaggcag attggtattt ttaagacaaa caagaaaacg ggacagccca tgattaattt  
 gtacacagac agggaaaactg gcaagctgaa gggagaggca acggctcttt ttgatgaccc  
 acttcagct aaagcagcct attgactgg

60  
120  
180  
240  
300  
360  
420  
450

&lt;210&gt; 146

&lt;211&gt; 451

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 146

gaattcggca cgagccatcg agtcctcgcc tttcgacttt cagaaaaatg tctcgctgat  
 gcgggagatc gacgcgaaat accaagagat cctgaaggag ctagacgagt gctacgagcg  
 cttcagtcgc gagacagacg gggcgcagaa gcggcggatg ctgcactgtg tgcagcgcgc  
 gctgatccgc accaggagct gggcgcacgag aagatccaga tcgtgagcca gatggtggag  
 ctgggtggaga accgcacgcg gcagggtggac agccacgtgg agctttcga ggcgcagcag  
 gagctggcgc acacagcggg caacagcggc aaggctggc cggacaggcc caaaggcgcag  
 gcggcagcgc aggctgacaa gccaaacagc aagcgctcac ggccgcagcg caacaacagag  
 aaccgtgaga acgcgtccag caaccacgac c

60  
120  
180  
240  
300  
360  
420  
451

&lt;210&gt; 147

&lt;211&gt; 400

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 147

gaattcggca cgagctcgga tgtcagcagg cgtcccaacc cagcaggaac tggctcaatt  
 ctcagaagaa agcgatcgcc cccgaggcag gaaggccggc tccgggtgcag ggcgcgcgc  
 ctgcgggctg cttcggtggca gggtcgaccc gagggccagc gcaagcagcg gcaacaggag  
 cgcaggagg acatgaggtct ctcgtgcac tcaactt ggaatattca gacttcagac  
 cagcatcaca gattataacc ctccgtaaat catctgcattc ccagctccca tcaaaaagccca  
 gcctgaagga cccatggaca cgtgactcca gtgttctcaa caacatctt gatcaagttt  
 gtttgcacaa catttgcattc tacttggac aaagcaagaa

60  
120  
180  
240  
300  
360  
400

<210> 148  
 <211> 503  
 <212> DNA  
 <213> Homo sapien

&lt;400&gt; 148

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| aaaagaattc | ggcacgagcg | gcccgcgtca | tccccctctc | ccagcagatt | cccactggaa | 60  |
| attcggttta | tgaatcttat | tacaagcagg | tcatccggc  | atacacaggg | agggtggggg | 120 |
| cgagtgaagc | tgcgtttttt | ctaaagaagt | ctggcctctc | ggacattatc | tttgggaaga | 180 |
| tatgggactt | ggccgatcca | gaaggtaaag | gttcttggg  | caaacaggg  | ttctatgttg | 240 |
| cactgagact | ggtggcctgt | gcacagagt  | gccatgaagt | tacctgagc  | aatctgaatt | 300 |
| tgagcatgcc | accgcctaaa | tttacgaca  | ccagcagccc | tctgtggtc  | acaccgccc  | 360 |
| ctgcagaggc | ccactgggct | gtgagggtgg | aagaaaaggc | caaatttgat | gggatttttg | 420 |
| aaagctctt  | gcccatcaat | ggttgctct  | ctggagacaa | agtcaagcca | gtcctcatga | 480 |
| actcaaagct | gccttttgc  |            |            |            |            | 503 |

&lt;210&gt; 149

<211> 1061  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 149

|             |              |             |            |            |             |      |
|-------------|--------------|-------------|------------|------------|-------------|------|
| gaattcggca  | cgaggccttt   | tccagcaacc  | ccaaggtcca | ggtgaggcc  | atcgaagggg  | 60   |
| gagccctgca  | gaagctgctg   | gtcattctgg  | ccacggagca | gccgctca   | gcaaagaaga  | 120  |
| aggctctgtt  | tgcactgtgc   | tccctgtgc   | gccacttccc | ctatcccag  | cggcagttcc  | 180  |
| tgaagctcg   | ggggctgcag   | gtcctgagga  | ccctggtgca | ggagaaggc  | acggaggtgc  | 240  |
| tccgcgtgc   | cgtggtcaca   | ctgcttacg   | acctggtcac | ggagaagatg | ttcggcggagg | 300  |
| aggaggctga  | gctgaccag    | gagatgtccc  | cagagaagct | gcagcagtat | cggcaggtac  | 360  |
| accttctgcc  | aggcctgtgg   | gaacagggt   | gtgcgcagat | cacggccac  | cttctggcgc  | 420  |
| tgcccagca   | tgtgcccgt    | gagaaggtgc  | tgcagacact | ggcgctctc  | ctgaccacct  | 480  |
| gccgggaccg  | ctaccgtcag   | gaccccccagc | tcggcaggac | actggccagc | ctgcaggctg  | 540  |
| agtaccaggt  | gctggccagc   | ctggagctgc  | aggatggta  | ggacgaggc  | tacttccagg  | 600  |
| agctgctggg  | ctctgtcaac   | agcttgcgt   | aggagctgag | atgaggcccc | acaccagtac  | 660  |
| tggactggg   | tgccgctagt   | gaggctgagg  | ggtgcgcagc | tgggtggct  | tctcaggcag  | 720  |
| gaggacatct  | ttggcagtgt   | ggcttggcca  | ttaaatggaa | acctgaaggc | catccctttt  | 780  |
| ctgctgtgt   | tctgtgtaga   | ctgggcacag  | ccctgtggcc | ggggggtcag | gtgagtggtt  | 840  |
| gggtgtatggg | ctctgtgcac   | gtgcagggt   | cagcccagg  | catccaggaa | caggctccag  | 900  |
| ggcaggaacc  | ttggcccccagg | agtttcaagt  | ctctgtttct | taccaagcag | cagctctgt   | 960  |
| ctttggaaag  | tgccttaatt   | gtctgtgact  | tgtttctca  | tctgtcagga | gtgccattaa  | 1020 |
| aggagaaaaaa | tcacgtaaaaa  | aaaaaaaaaa  | aaaaactcga | g          |             | 1061 |

&lt;210&gt; 150

<211> 781  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 150

|            |            |            |            |              |            |     |
|------------|------------|------------|------------|--------------|------------|-----|
| gaattcggca | cgagaaatgg | cggcagggt  | cgaagcggca | gccgaagtgg   | cggcgacaga | 60  |
| acccaaaatg | gaggaagaga | gccccgcgc  | ctgcgtggc  | agcggcaacg   | gagctccggg | 120 |
| cccgaagggt | gaagaacgac | ctactcagaa | tgagaagagg | aaggagaaaa   | acataaaaag | 180 |
| aggaggcaat | cgttttgcac | catattccaa | cccaactaaa | agatacagag   | ccttcattac | 240 |
| aatatacct  | tttgcgtgt  | aatggcagtc | acttaaagac | ctgggtttaaag | aaaaagttgg | 300 |
| tgaggttaca | tacgtggac  | tcttaatgg  | cgttgcagg  | aagtcaagg    | gatgtgtgt  | 360 |
| tgttgaattc | aatgtggagg | agagcatgaa | aaaagctgt  | gaagttctaa   | acaagcatag | 420 |
| tctgagtgg  | aggccactga | aagtcaagg  | agatcctgt  | ggtgaacatg   | caaggagagc | 480 |

|             |            |              |            |             |             |     |
|-------------|------------|--------------|------------|-------------|-------------|-----|
| aatgcaaaaag | gctggaagac | tttggaaagcac | agtatttgta | gcaaaatctgg | attataaaagt | 540 |
| tggctggaag  | aaactgaagg | aagtatttag   | tatggctgg  | gtgggtggcc  | gagcagacat  | 600 |
| tctggaagat  | aaagatggga | aaagtcgtgg   | aataggcatt | gtgactttt   | aacagtcacat | 660 |
| tgaagctgtg  | caagcaatat | ctatgtttaa   | tggccagttg | ctgtttgata  | gaccgatgc   | 720 |
| cgtcaagatg  | gatgagaggg | cttttacccaa  | gggagacttt | tttccttcctg | aacgccacag  | 780 |
| <b>c</b>    |            |              |            |             |             | 781 |

<210> 151

<211> 3275

<212> DNA

<213> Homo sapien

<400> 151

|             |                 |            |             |             |               |      |
|-------------|-----------------|------------|-------------|-------------|---------------|------|
| ttaaagtggaa | tcctgcata       | ggagggagca | gacaccggag  | aaagaaaaac  | aagtgtgt      | 60   |
| gtttgagggaa | gcaagtggaa      | cctgcactcc | agcctgtggaa | gatgaaccta  | ggactgtgt     | 120  |
| tctgttatcc  | agtatgtgg       | ctgaccacag | gctcaaactg  | gaggattata  | aggatcgccc    | 180  |
| aaaaagtggaa | gagcatctt       | atccagacca | gttgaagct   | gttagagaaat | atgaagaagt    | 240  |
| gctacataat  | tttggatattt     | ccaaggagct | tcaaaaaacc  | ttttctgggt  | tgagctaga     | 300  |
| tctactaaaa  | gcgcaaaaaga     | aggcccagag | aaggagcac   | atgctaaaac  | ttgaggctga    | 360  |
| gaagaaaaag  | cttgcacta       | tacttcaagt | tcagtagtga  | ttgcagaact  | tgacacagga    | 420  |
| gcacgtacaa  | aaagacttca      | aagggggtt  | gaatggtgca  | gtgtat      | tttgc         | 480  |
| acttgcatac  | ctcattaagt      | tttcaaaact | gacctgcct   | gaaagaaaat  | gaaagtctgag   | 540  |
| acaaacactt  | gaagatcta       | ctgtctaaat | tgctgaactc  | aggctat     | ttt gaaagatcc | 600  |
| cagttcccaa  | aaatgccaag      | gaaaaggaag | taccactgga  | ggaagaaaat  | ctaatacaat    | 660  |
| cagagaaaaa  | aacacaatta      | tcgaagactg | aatctgtca   | agagtcagag  | tctctaatgg    | 720  |
| aatttgc     | ccca gccagagata | caaccacaag | agtttctttaa | cagacgctat  | atgacagaag    | 780  |
| tagattattc  | aaacaaacaa      | ggcgaagagc | aacccggga   | agcagattat  | gctagaaaac    | 840  |
| caaatactccc | aaaacgttgg      | gatatgctt  | ctgaaccaga  | ttgtcaagag  | aagaacacagg   | 900  |
| agtccctttaa | gtcctgggag      | gtttctggta | agcaccagga  | gttatccaag  | cctgcagtt     | 960  |
| ccttagaaca  | gagggaaacaa     | gacacctcaa | aactcaggc   | tactctgccc  | gaagagcaga    | 1020 |
| agaagcagga  | gatctccaa       | tccaagccat | ctcctagcca  | gttgaagcaa  | gatacaccta    | 1080 |
| aatccaaacg  | agggtatgtt      | caagaggaac | aaaagaaaaca | ggagacacca  | aagctgtggc    | 1140 |
| cagttcagct  | gcagaaaagaa     | caagatccaa | agaagcaa    | tccaaagtct  | tggacaccc     | 1200 |
| ccatgcagag  | cgaacagaac      | accaccaag  | catggaccac  | tcccatgtgt  | gaagaacacagg  | 1260 |
| attcaaaaca  | gccagagact      | ccaaaatctt | ggggaaaacaa | tgttgagat   | caaaaacact    | 1320 |
| ctttaacatc  | acagtccacag     | atttctccaa | agtccctgggg | agttagtaca  | gcaagcctca    | 1380 |
| taccaaata   | ccagctgctg      | cccaggaaat | tgaacacaga  | acccaaagat  | gtgcctaa      | 1440 |
| ctgtgcata   | gcctgttagt      | tcttctctt  | cccttccgaa  | ggatccagta  | ttgaggaaag    | 1500 |
| aaaaactgca  | ggatctgtat      | actcagattc | aaggactt    | taactttat   | caagagtctg    | 1560 |
| ttcttgactt  | tgacaaacct      | tcaagtgc   | ttccaa      | cg          | tc acacc      | 1620 |
| caggtagccc  | cgtagcatct      | aaagaacaaa | atctgtccag  | tcaaagtgtat | tttcttcaag    | 1680 |
| agccgttaca  | ggtat           | ttaaac     | gttaatgcac  | ctctgcctcc  | acgaaaagaa    | 1740 |
| aagaatcccc  | ttattcacct      | ggctacaatc | aaagtttac   | cacagcaat   | acacaaacac    | 1800 |
| caccccagt   | ccaaactgcca     | tctatacatg | tagaaca     | aaac        | tgtccattct    | 1860 |
| cagcaaatta  | tcatcctgat      | ggaactattc | aa          | gtaagcaa    | tggtagc       | 1920 |
| cagcacagac  | gaatgtgtt       | cccagaccta | ctcagccatt  | tgtcaat     | agc           | 1980 |
| ttagaggatg  | tactcgttgt      | gggagattaa | taacc       | aaattc      | ctatcggtcc    | 2040 |
| ataaaagg    | ttt             | tgatacttat | agaggactcc  | tttcaattt   | caatggaaat    | 2100 |
| tgctgttcc   | agcttagagag     | tattctggag | cac         | cttattt     | ccaaaggat     | 2160 |
| agtgttataa  | gcgaggaggg      | acatctgg   | gtccacg     | gac         | aaattcgaga    | 2220 |
| gtgattctt   | tcaggtgagc      | agcccagaa  | gagaca      | ac          | acc           | 2280 |
| ctggacaagg  | agactcccgt      | agcatgaccc | ctgtggat    | gt          | ccagtgaca     | 2340 |
| ccaccatact  | gccagtagac      | gttctacc   | cc          | ctt         | ctcag         | 2400 |
| cagccagaac  | ctcta           | atctg      | gccc        | ctt         | ggaa          | 2460 |
| ttctgaacaa  | tttaggagaa      | actttt     | gat         | ttt         | gat           | 2520 |

|            |             |             |            |             |             |      |
|------------|-------------|-------------|------------|-------------|-------------|------|
| atggcactta | cgtttcatt   | tttcacatgc  | taaagctggc | agtgaatgtg  | ccactgtatg  | 2580 |
| tcaacctcat | gaagaatgaa  | gaggcttgg   | catcagccta | tgccaatgt   | ggtgctccag  | 2640 |
| accatgaaac | tgcttagaat  | catgcaattc  | tccagctt   | ccagggagac  | cagatatgg   | 2700 |
| tacgtctgca | caggggagca  | atttatggaa  | gtagctggaa | atattctacg  | tttcaggct   | 2760 |
| atcttcttta | tcaagattga  | aagtcagtac  | agtattgaca | ataaaaggat  | ggtgttctaa  | 2820 |
| tttagtggat | tgaaggaaaa  | gtagctttt   | ccctcatgac | tgattggttt  | aggaaaatgt  | 2880 |
| tttttgttcc | agagggagga  | ggtccttact  | tttttgtttt | cttcttgag   | gtgaaaaatc  | 2940 |
| aagctgaatg | acaattagca  | ctaattctggc | actttataaa | ttgtgtatgt  | gcctcgctag  | 3000 |
| tcaagctgtg | aatgttatatt | gtttgcactt  | aatccttaac | tgtatataacg | ttcagcttac  | 3060 |
| taaactgact | gcctcaagt   | caggcaagtt  | acaatgcctt | gttgcctc    | aataaaaaaag | 3120 |
| ttacatgcaa | aaaaaaaaaa  | aaaaaaaaaa  | aaaaaaaaaa | aaaaaaaaaa  | aaaaaaaaaa  | 3180 |
| aaaaaaaaaa | aaaaaaaaaa  | aaaaaaaaaa  | aaaaaaaaaa | aaaaaaaaaa  | aaaaaaaaaa  | 3240 |
| aaaaaaaaaa | aaaaaaaaaa  | aaaaaaaaaa  | aaaaaaaaaa | aaaaaaaaaa  | aaaaaaaaaa  | 3275 |

&lt;210&gt; 152

&lt;211&gt; 2179

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 152

|             |             |             |             |             |              |             |      |
|-------------|-------------|-------------|-------------|-------------|--------------|-------------|------|
| gaattcggca  | ccaggcacta  | ttaaatgtga  | ggcagcctcc  | atctactaca  | acattttgtgc  | 60          |      |
| tgaatcaaat  | aaatcatctt  | ccacccttgg  | gatctacaat  | tgtatgact   | aaaacacccac  | 120         |      |
| ctgtacaacac | caacaggcaa  | accatcaatt  | taactaagtt  | tatccagact  | actgcaagca   | 180         |      |
| cacccccgtc  | agtctcagca  | ccaaacagtac | aaaatgccat  | gacctctgca  | ccttcaaaag   | 240         |      |
| accaagtta   | ctttaaagat  | ctactgaaaa  | ataatagtct  | taatgaactg  | atgaaaactaa  | 300         |      |
| agccacctgc  | taatattgt   | cagccagtag  | caacagcagc  | tactgtatgt  | agcaatggta   | 360         |      |
| cagtaaagaa  | agagtcttct  | aataaagaag  | gagctagaat  | gtggataaac  | gacatgaaga   | 420         |      |
| tgaggagttt  | ttccccaacc  | atgaaggttc  | ctgttgcataa | agaagatgt   | gaaccagagg   | 480         |      |
| aagaagatga  | agaagaaaatg | ggtcatgcag  | aaacctatgc  | agaatacatg  | ccaaataaaat  | 540         |      |
| taaaaaattgg | cctacgtcat  | ccagatgctg  | tagtggaaac  | cagcttta    | tccagtgtta   | 600         |      |
| ctccctcgt   | tgtttggta   | aaaacatcca  | tttctgagga  | aaccattgt   | aatggctggt   | 660         |      |
| tatcagcatt  | gcagcttgc   | gcaattacat  | atgcagccca  | gcaacatgaa  | accccttac    | 720         |      |
| ctaatggaga  | tcgtgttgc   | ttcttaatag  | gtgtatggtc  | cggtgttagga | aaaggaaagga  | 780         |      |
| cgatagcagg  | aatcatctat  | aaaaattatt  | ttttgtatgt  | aaaacggagca | ttgtggttt    | 840         |      |
| gtgtttcaaa  | tgacttaaag  | tatgtatgt   | aaagagattt  | aaggatatt   | ggagcaaaaa   | 900         |      |
| acattttgg   | tcattcgta   | aataagttt   | aatacggaaa  | aattttctcc  | aaacataatg   | 960         |      |
| ggagtgtgaa  | aaagggttt   | attttgcata  | cttactcttc  | acttattgg   | gaaaaggccagt | 1020        |      |
| ctggccggca  | gtataaaact  | aggtaaaac   | aacttctgca  | ttggtgcgt   | gatgacttcg   | 1080        |      |
| atggagtgtat | agtgtttgtat | gagtgtcata  | aagccaaaaaa | ttatgtctt   | gtgggttctt   | 1140        |      |
| caaagccaaac | caagacaggg  | ttagcagttt  | tagatgtca   | gaacaaattt  | ccaaaaggcca  | 1200        |      |
| gagttgttta  | tgcttagtgc  | actgggtctt  | ctgaaccacg  | caacatggcc  | tatgtgaacc   | 1260        |      |
| gtcttggcat  | atgggggtgag | ggtactccat  | ttagagaatt  | cagtgtat    | attcaagcag   | 1320        |      |
| tagaacggag  | aggagttgtt  | gcccattggaa | tagttgtat   | ggatatgtaa  | cttagaggaa   | 1380        |      |
| tgtacattgc  | tcgacaactg  | agctttactg  | gagtgtaccc  | caaaatttgc  | gaagtcttcc   | 1440        |      |
| tttctcagag  | ctacgtttaa  | atgtataaca  | aagctgtca   | gctgtgggtc  | attgccagag   | 1500        |      |
| agcgggttca  | gcaagctgca  | gatctgattt  | atgtctgagca | acgaatgtaa  | aagtccatgt   | 1560        |      |
| ggggtcgtt   | ctggctctgt  | caccagaggt  | tcttcaaata  | cttgcata    | gcatccaaag   | 1620        |      |
| ttaaaaagggt | tgtgcacta   | gctcgagagg  | aatcaagaa   | tggaaaatgt  | gttgcatttg   | 1680        |      |
| gtctgcagtc  | tacaggagaa  | gctagaacat  | tagaagctt   | ggaagagggc  | gggggagaat   | 1740        |      |
| tgaatgattt  | tgtttcaact  | gccaaagggt  | tggtgcagtc  | actcattgtaa | aaacattttc   | 1800        |      |
| ctgctccaga  | caggaaaaaa  | ctttatagtt  | tacttaggaat | cgatttgaca  | gctccaaagta  | 1860        |      |
| acaacagttc  | gccaagagat  | agtccctgt   | aagaaaataa  | aataaagaag  | cgaaaagggt   | 1920        |      |
| aagaaaataac | tcgagaagcc  | aaaaaaagcac | gaaaagttagg | tggccttact  | ggttagcgtt   | 1980        |      |
| ctgacgacag  | tggaaagtgaa | tctgtatgt   | ctgataatgt  | agaaagtgc   | tatgagagct   | 2040        |      |
| ctaaaaacat  | gagttctgga  | gatgtatgt   | gacg        | atttcaaccc  | attttttagat  | gagtctaaatg | 2100 |

aggatgatga aaatgatccc tggtaatta aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2160  
 aaaaaaaaaaa aaactcgag 2179

<210> 153  
 <211> 2109  
 <212> DNA  
 <213> Homo sapien

<400> 153  
 cagagagccc caggcatcga ggagaaggcg gcggagaatg gggccctggg gtcccccgag 60  
 agagaagaga aagtgttgcgaaatggggag ctgacacccc caaggaggaa ggagaaagcg 120  
 ctggagaatg gggagcttagtgcctccagag gcccgggaga aggtgttgcgtt gaatgggggc 180  
 ctgacacccc caaagagcga ggacaagggtt tcagagaatg gggccctggat attccccagg 240  
 aacacggaga ggccaccaga gactgggcct tggagagccc cagggccctg ggagaagacg 300  
 cccgagatgtt ggggtccagc ccccacgatc ggggagccag ccccaagac cttcttgag 360  
 agagccctg caccacggc agtggcttc tcccgaaacg gcggggagac agccccctggc 420  
 ccccttggcc cagcccccaa gaacgggacg ctggaaaccgg ggaccggagag gagagcccc 480  
 gagactgggg gggcgccgag agccccaggg gctggggagc tggaccccg gatgtgggggc 540  
 cgagccccag tgggcacggg gacggccccc ggcggccggc cggaaagcg cgtggacgca 600  
 aaggccggat gggtagacaa cacgaggccg cagccaccgc cggccaccgtt gccaaccgcca 660  
 ccggaggcac agccgaggag gctggagccg cggcccccga gagccaggccc ggagggtggcc 720  
 cccgagggag agcccggggc cccagacagc agggccggcg gagacacggc actcagcgaa 780  
 gacggggacc ccccaagcc ctagggaaag gggcccccggaga tgccacgact attcttggac 840  
 ttgggacccc ctcaggggaa cagcggcag atcaaagcca ggctctcccg gctctcgctg 900  
 ggcgtgccgc cgctcacgtt cacggccattt ccggggccgg gcccggccgg gccccccgtgg 960  
 gagggcgcgg acggccggggc ggctggccgg gaggccggcg gggcggggagc gccggggccgg 1020  
 gcgaggagg acggggaggaa cgaggacgag gacggaggagg aggacgagga ggcggccggcg 1080  
 ccggccggccgg ccggccggggcc gggggccccc gggaggccggc gagcagcccc ggtggccgtc 1140  
 gtggtagca ggcggccacgc ggacgcggcc cggccgtgtc gggggctgtc caagtctccg 1200  
 cggggggccg acgagccaga ggacagcgag ctggagagggaa agcgcagat ggtctcccttc 1260  
 cacggggacg tgaccgtcta cctcttcgac caggagacgc caaccaacga gctgagcgtc 1320  
 caggcccccc ccggggggga cacggaccccg tcaacgcctc cagcccccgg gacacccccc 1380  
 .caccggcca ccccccggaga tgggttcccc agcaacgcata gggctttgg aggcaatgg 1440  
 gagttggccg aggatttccc cctcttcccc cctccaggcc ccccgctgtt cttctcccg 1500  
 ttctccgtct cccctgcgtt ggagaccccg gggccaccccg cccggggccccc gacggccgg 1560  
 cccgcaggcc ccgtggagaa ttgatttcccc gaagaccccg acccgtgtca ccctcagaag 1620  
 aggggtttag aatggaatcc tctgtggatg acggggccac tgccacccacc gcagacggccg 1680  
 cctctgggaa ggcccccggag gctggccctt cccctccca ccccccattacc atgtgc当地 1740  
 cgggaggccc cggggcccccgg ccccccacgc ccccccacgtt gctccctgtt gccccctgac 1800  
 cccctcgagg ccaaatttggg caggaatccc cccggccctc catagagacgc cggcccccgtc 1860  
 ggaactgaac tgaactctt tgggcctggaa gcccctcgac acagcgagg tccctcctca 1920  
 cccactctg gcccaagacca gggggccgag gtttggggaa cccggacccc ccatttcgat 1980  
 tctccctttt ccctccccag cccggcccccgtt ggagggccctt ctggttcaaa ctttcgttgc 2040  
 gcattttac attatttaaa aaagacaaaaa acaactttt ggagggaaaaa aaaaaaaaaaaa 2100  
 aaactcgag 2109

<210> 154  
 <211> 1411  
 <212> DNA  
 <213> homo sapien

<400> 154  
 gaattcggca ccaggggaga tgagggatgtt cgtatgttccctt agcatggagt ctaccctttaa 60  
 ccagccagcc atgttagaga cgttatactc agatccacat taccgagccccc atttccccaa 120  
 cccaaagacctt gataaaaaata aggtgttata caaagtattt ccagaatcca agaaggcacc 180

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| gggcagtggt gcagtatttg agaggaacgg accacatgct                           | 240  |
| tttgggactc cagcctgcgc ctggacttcc caagtcacta tcccttcagg tttggcaacc     | 300  |
| aagtctgtac ccttggcatc ctggagaaca atccctgtgaa ctcagactt gtcgacagca     | 360  |
| gttgaatttgc atccgtttac agatggagca aatgcagtt cagaacggag ccattgtgtca    | 420  |
| ccatctgtct gctttcgctc cattactgcc cacccttagag ccagcacagt ggctcagcat    | 480  |
| cctgaacagt aacgagcatc tcctgaagga gaaggagctc ctcattgaca agcaaaggaa     | 540  |
| gcatatctct cagctggagc agaaagtgcg agagagtgaa ctgcattgtcc acagtgcct     | 600  |
| tttggccgc cctgccccct ttggggatgt ctgcttatttgg aggttacagg agttgcagcg    | 660  |
| agagaacact ttcttacggg cacagttgc acagaagaca gaaggcctga gcaaggagaa      | 720  |
| gatggagctt gaaaagaaaac tctctgcattc tgaagttgaa attcagctca tttagggagtc  | 780  |
| tctaaaagtgc acactacaga agcattcggg ggaggggaag aaacaggagg aaagggtca     | 840  |
| aggctgtat aacatatacata ataatttggaa aaagaaatgt cagaaggaat cagagcagaa   | 900  |
| ccgggagaag cagcagcgtt ttgaaacatttgg ggagcgttat ctagctgacc tgcccacccct | 960  |
| agaagaccat cagaaacaga cggagcagct taaggacgct gaattaaaga acacagaact     | 1020 |
| gcaagagaga gtggctgagc tggagactt gctggaggac acccaggca cctgcagaga       | 1080 |
| gaaggagggtt cagctggaaa gtctgagaca aagagaagca gacctctctt ctgcttagaca   | 1140 |
| tagtaatgc cctgtgtact tgggggaagg agggagttcg gttctgggtgc tctgttaact     | 1200 |
| cttgggtgtt caacagtgtt catttcaagt tttttttttttaaagatgtt ttgttttttgg     | 1260 |
| aattgaaatgt cacttatggc cgggtgtggt ggccacacc tttaatccca gcaacttggga    | 1320 |
| gtcagaggca ggctaatttc tgagtttccat gacagccagg gctatacaga gaaaccctgt    | 1380 |
| ctcaaacaaa aaaaaaaaaaaaaaaa aaaaactcga g                              | 1411 |

&lt;210&gt; 155

&lt;211&gt; 678

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 155

|                                                                        |     |
|------------------------------------------------------------------------|-----|
| ctggagtggaa gggagctagt ggttaaaggga gctgggtggag ggggtggcggc aggggttaagg | 60  |
| ggcaggggac accctctaga cggagagcgg gctccgaggt cctggctggc cctcggcgc       | 120 |
| cccgccccctg ttttggtccc acaatccctg gcaatgagaa gccagggtttt attggacaga    | 180 |
| gtcagttgtg ggggttcaqag ggtcagcaat caatcaatcc tccgaatcca gagatttaga     | 240 |
| cccaatcgatc cgtatttagga ctggaggggg gtcataatggg ttcgttggat agatgcacaa   | 300 |
| ggaacctgtc ttttggatgg ggggttcaaca tacagatgtt aggttacctgc aggaatttgc    | 360 |
| cccccttaggc acaggggggtt gtcttttacca ttttgcagac cagatccctgg ctgggagccc  | 420 |
| cgaggcattc ttcgtgttca atgctgtatgtt ctgctccgac ttcccttga gtgttatgtt     | 480 |
| ggaagccccac cgacgcccagc gtcacccctt cttaactccctt ggcactacgg ctaacaggac  | 540 |
| gcaatccctc aactacggct gcatcgttga gaatccacag acacacggagg tattgcacta     | 600 |
| tgtggagaaaa cccagcacat ttatcgttga catcatcaac tgcggcacctt accttttttc    | 660 |
| tcctgaagcc ttgaaggg                                                    | 678 |

&lt;210&gt; 156

&lt;211&gt; 2668

&lt;212&gt; DNA

&lt;213&gt; Homo sapien

&lt;400&gt; 156

|                                                                         |     |
|-------------------------------------------------------------------------|-----|
| gggaaggcgg ctgcgtgtt gggcgccccgg gggagctggaa gcccggagctg gagccggggc     | 60  |
| cggggccccgg gtcagcgctt gagccggag aagatggat gatcggtggac cgaagccagc       | 120 |
| tgcccgcccccc aggcgacccgt cggagcgcacaa cgaggccgcg ggccggccgag ggctgggtcg | 180 |
| cgcccatccct gaccctggca cgcaggccca cccggaaacctt gtcggcgagc tgcgggagcg    | 240 |
| cgctgcgcgc ggccggccccctt ctggggccggc gggacagcgg ggacggcaccg ggcgcgcgc   | 300 |
| ctttaatgtt ccagatgtt gaggagcgtt ccaacccatgtt gacatgtt gaaactcagca       | 360 |
| tcaagggtttt gtcggcgtt gtcgttgc tggggccgcag cctggatgtt gaccatgcacc       | 420 |
| ccttgcagca gttttttgtt gttgtatggagc actgcctcaa acatgggctg aaagttaaga     | 480 |

|                                                                        |      |
|------------------------------------------------------------------------|------|
| agagtttat tggccaaaat aaatcattct ttggtccttt ggagctggtg gagaaacttt       | 540  |
| gtccagaagc atcagatata gcgacttagtgc tccagaatctt aagacagctg              | 600  |
| tggaaagagg ccgagcgtgg ctatcttgc cactcatgc aaagaaaactg gcagattatc       | 660  |
| tgaaagtgtct tatagacaat aaacatcttgc taagcgagt ctatgcgc gaggctttaa       | 720  |
| tgatggagga agaagggttg gtatgttg gtctgttg gggactcaat gttctcgatg          | 780  |
| ccaatcttgc ttgaaagga gaagacttgg attctcagggt tgaggtaata gatccccccc      | 840  |
| tctaccttaa ggatgtgcag gatcttgc gttggcaagga gcatgaaaga attactgtatg      | 900  |
| tccttgatca aaaaaattat gtggaaagaaac ttaccggca cttgagctgc acagttgggg     | 960  |
| atcttcaaacc caagatagat ggcttggaaa agactaactc aaagcttcaa gaagagctt      | 1020 |
| cagctgcaac agaccgaatt tgctcaactc aagaagaaca gcagcagttt agagaacaaa      | 1080 |
| atgaattaat tcgagaaaga agtggaaaaga gtgttagat aacaaaacag gataccaaag      | 1140 |
| ttgagctggaa gacttacaag caaactcgcc aaggcttgc gtaaatgtac agtgcgtgt       | 1200 |
| ggaaggcagct aaaagaggag aagaaggcc ggttggactt gggaaaagaa ctggagttac      | 1260 |
| aaatttggat gaaaaccgaa atggaaatttgc caatggatggtt actggaaaag gacaccacg   | 1320 |
| agaaggcagga cacacttagt gcccctccgcc agcagctggaa agaagtcgaa gcgattatt    | 1380 |
| tacagatgtt tccacaaagct cagaatgcag agaggatgtt gcagcagaag aatggaaagcc    | 1440 |
| tcacatcttgc ttgaaaggaaa accaaccgaat ttatgtccag catggaaacaa atggaaagaaa | 1500 |
| ggttgcagca ctcggagcgg gcgaggcagg gggcttgagga ggggagccac aagctgcgc      | 1560 |
| aggagctggg cggggaggatc ggcgcctgc agctgcagct ctccctgc cggcggcaat        | 1620 |
| gctcaaggct ggagaaagaa ttgaaatcg aaaaagagca aagacaggctt ctccagcgcg      | 1680 |
| aattacagca cgagaaagac acttccttc tactcaggat ggagctgcaaa caagtggaaag     | 1740 |
| gactggaaa gggatgtcg gggatgtcg acggaaaggc agagctgcag aagatctgcg         | 1800 |
| aggagcagga acaaggccctc cgggatgttgc gctgcaccc cctgctcctg cagcgcgtgt     | 1860 |
| ttggaaatggat aaaaaggatg aaccaggcac tgaaggggcca cgcctggctg aaagatgcg    | 1920 |
| aaggcacaat ctgtaggcag tggatggagg agttctccat ttccctggaga aagcaccact     | 1980 |
| gcccggactt gggccacatc ttctgcacca cctgctccag caacggatgt gcccggccct      | 2040 |
| cctaccccaa gcccggatgttgc gttgtgcacca gctgcaccc cctgctcctg cagcgcgtgt   | 2100 |
| cctccacggc ctctgcaccc tccgtctca ggagcacaatc ctcacggaca gtggccaaacc     | 2160 |
| ctgtgggtct ccaggggctt gggaaatgtt ttcttccca agatgtatca aggaaagaat       | 2220 |
| caaatttctt gcccggatgttgc tggacttccaa gaagacagcg tgccggaaacc ggcagctctc | 2280 |
| acctttctgt gacttgcgttgc gatattactc ctctggatgg aaacttccat ttacttgg      | 2340 |
| tacatcacgg ctctggatgttca gatataactt catgattttg ctactatcat ttttactt     | 2400 |
| tcaatagaattttaacatattt tacagcgatggtt cagttctgtt agtgcgttgc tttctctcc   | 2460 |
| taccttcttctt ctaaaaacactt gattcatgc cagcgttgcac cacatggatgttgc         | 2520 |
| gtgccttctc tgcttcagac aagagatctg ccatttcattt cccttgcac tacatcat        | 2580 |
| tggccctgcataaaaaatcat ttatccat aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa        | 2640 |
| aaaaaaaaaaaa aaaaaaaaaa aactcgatgttgc                                  | 2668 |

&lt;210&gt; 157

&lt;211&gt; 2313

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 157

|                                                                                  |     |
|----------------------------------------------------------------------------------|-----|
| gaattcggca ccaggccggg cggggccctc agccatggcc ctgcgcacagg aactgctcaa               | 60  |
| gtccatctgg tacgccttta cccgcgtggc cgtggagaag agtggcaaaatcttcaatgc                 | 120 |
| ccagcttcaag gtgtgttccca acaacatgttgc cccggatgttgc cacatccccccatgc                | 180 |
| ggccctggag gaaacacttcc gagatgttgc tggatggatgttgc gggatgttgc agggatgttgc          | 240 |
| gccctacccca aacaaggatca ttctggatgttgc gggatgttgc gggatgttgc tttatgttgc           | 300 |
| ctttatgttgc ctgtgttgc gggatgttgc gggatgttgc tttatgttgc gggatgttgc tttatgttgc     | 360 |
| gaacatgttgc ctctccatcc aggtatgttgc cccgcctcttgc tggatggatgttgc tttatgttgc        | 420 |
| tgaggacaatc taccctcttgc tcatgttgc tttatgttgc gggatgttgc tttatgttgc tttatgttgc    | 480 |
| actcagcagc atgatgttgc aggtatgttgc gggatgttgc tttatgttgc tttatgttgc tttatgttgc    | 540 |
| ggccctggatgttgc gcccggatgttgc ccggggggctt cccggatgttgc tttatgttgc tttatgttgc     | 600 |
| ttccggccgc tggatggatgttgc gggatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc | 660 |

ctaccaggcg ctcacccaa gttgtctgaa gcagggctac ctgttggaa gaggcacct 720  
 gagaaggaac tggccgaac gctggttcca gctcagccc agctgcctct gctactttgg 780  
 gagtgaaagag tgcaaagaga aaaggggcat tatcccgctg gatgcacact gctgcgtgga 840  
 ggtgctgcca gaccgcgacg gaaagcgctg catgttctgt gtgaagacag ccacccgac 900  
 gtatgagatg agcgccctcag acacgcgcca gcccaggag tggacagctg ccacccagat 960  
 ggcgatccgg ctgcaggccg agggaaagac gtcctacac aaggacctga agcagaaacg 1020  
 ggcgagcag cggagcagc gggagcggcg cccggcgcc aaggaagagg agctgcgtcg 1080  
 gctgcagcag ctgcaggagg agaaggagcg gaagctgcag gagctggagc tgctgcagga 1140  
 ggcgcagcgg caggccgagc ggctgctgca ggaggaggag gaacggcgcc gtagccagca 1200  
 ccgcgagctg cagcaggcgc tcgagggcca actgcgcagc gcgagcagg cccggccctc 1260  
 catgcaggct gagatggagc tgaaggagga ggaggctgcc cggcagcggc agcgcataa 1320  
 ggagctggag gagatgcagc agcggttgca ggaggccctg caactagagg taaaagctcg 1380  
 gcgagatgaa gaatctgtgc gaatgcgtca gaccagactg ctggaaagagg aggaagagaa 1440  
 gctgaagcag ttgatgcagc tgaaggagga gcaggagcgc tacatcgaac gggcgagca 1500  
 ggagaagggaa gagctgcagc aggagatggc acagcagagc cgctccctgc agcaggccca 1560  
 gcagcagctg gaggagggtgc ggccagaaccg gcagaggctg gacgaggatg tggaggctgc 1620  
 ccagagaaaa ctgcgcagg ccagcacca cgtaaacac tggaaatgtcc agatgaaccc 1680  
 gctgatgcat ccaattgagc ctggagatcaa gcgtcccggtc acaagcagct ctttctcagg 1740  
 cttccagccc cttctgttgc cccaccgtga ctccctcccta aagcgcctga cccgctgggg 1800  
 atccccaggcc aacaggaccc ctcgcggccaa cagcaatgag cagcagaagt ccctcaatgg 1860  
 tggggatgag gtcctgccc cggctccac ccctcaggaa gataaactgg atccagcacc 1920  
 agaaaattag cctcttttag ccccttggc ttcccaatgt catatccacc aggacctggc 1980  
 cacagctggc ctgtgggtga tccagctt tactaggaga gggagctgag gtcctggc 2040  
 cagggggccca ggccctccaa ccataaacag tccaggatgg aacctgggtc acccttcata 2100  
 ccagctccaa gccccagacc atgggagctg tctggatgt tgatccttga gaacttggcc 2160  
 ctgtgctta gacccaagga cccgattctt gggcttagaa agagagaaca agcaagccgg 2220  
 ggctacctgc ccccgaggatgg ccaccaagtt gtggaaagcac atttctaaat aaaaactgt 2280  
 cttagaatga aaaaaaaaaa aaaaaaaactc gag 2313

&lt;210&gt; 158

&lt;211&gt; 2114

&lt;212&gt; DNA

&lt;213&gt; homo sapien

<400> 158

gaattcggca cgaggaagaa ctcgcctctg ttgagtgtaa gtagccaaac aataaccaag 60  
 gagaataaca gaaatgtcca tttggagcac tcagagcaga atcctggttc atcagcagg 120  
 gacacctcg cagcgcacca ggtgtttta ggagaaaact tgatagccac agccctttgt 180  
 ctttctggca gtgggtctca gtctgatTTT aaggatgtgg ccagcacagc aggagaggag 240  
 gggcacacaa gccttcggga gaggctccat ccagtcactc ggtctttaa ggcagggtgc 300  
 catactaaggc agcttgcctc caggaattgc tctgaagaga aatccccaca aacccctccatc 360  
 ctaaaaggaa gtaacagggc cacaagctt gattccgac ctgttagtgc tccagcaaatt 420  
 ggggttgaag gagtccgagt ggatcaggat gatgtcaag atagctttc cctgaagctt 480  
 ttcagaaca ttgcgttaca gactgacttt aagacagctg attcagaggt aaacacagat 540  
 caagatattt aaaagaattt ggataaaatg atgacagaga gaaccctgtt gaaagagcgt 600  
 taccaggagg tcctggacaa acagaggcaa gtggagaatc agctccaagt gcaattaaag 660  
 cagcttcagc aaaggagaga agagaaaatg aagaatcacc aggagatatt aaaggctatt 720  
 caggatgtga caataaaagcg ggaagaaaaca aagaagaaga tagagaaaaga gaagaaggag 780  
 tttttcagaaggcaggat tctgaaagct gaaatttgaga agctttgtga gaagggcaga 840  
 agagaggtgt gggaaatggc actggataga ctcaagaatc aggatggcga aataaatagg 900  
 aacattatgg aagagactga acggccctgg aaggcagaga tcttataact agagagccgg 960  
 aaagagttac tggactgaa actagaagaa gcagaaaaag aggcagaatt gcaccttact 1020  
 tacctcaagt caactcccc aacactggag acagttcggtt cccaaacagga gtggagacg 1080  
 agactgaatg gagttcgat aataaaaag aatgttcgtg accaatttaa tagtcatatc 1140  
 cagttgtga ggaacggagc caagctgagc agccttcctc aaatccctac tcccacttta 1200



&lt;400&gt; 161

|             |            |             |            |            |            |     |
|-------------|------------|-------------|------------|------------|------------|-----|
| gaattcggca  | cgagggcaga | ccaagatcct  | ggaggaggac | ctggaacaga | tcaagctgtc | 60  |
| ctttagagag  | cgaggccggg | agctgaccac  | tcaaggcag  | ctgatgcagg | aacgggcaga | 120 |
| ggaagggaag  | ggcccaagta | aagcacagcg  | cgggaccta  | gagcacatga | agctgatcct | 180 |
| gcgtgataag  | gagaaggagg | tggaaatgtca | gcaggagcat | atccatgaac | tccaggagct | 240 |
| caaagaccag  | ctggagcgc  | agctccagg   | cctgcacagg | aaggttagtg | agaccagcct | 300 |
| cctcctgtcc  | cagcgagac  | agggaaatagt | ggtcctgcag | cagcaactgc | aggaagccag | 360 |
| ggaacaaggg  | gagctgaagg | agcagtca    | tcaagactaa | ctggatgagg | cccagagagc | 420 |
| cctagccccag | ag         |             |            |            |            | 432 |

&lt;210&gt; 162

&lt;211&gt; 433

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 162

|             |             |             |             |             |            |     |
|-------------|-------------|-------------|-------------|-------------|------------|-----|
| gattcggcac  | gagccggagc  | tgggttgctc  | ctgctcccgt  | ctccaaagtcc | tggtacctcc | 60  |
| ttcaagctgg  | gagagggctc  | tagtcctgg   | ttctgaacac  | tctggggttc  | tcgggtgcag | 120 |
| gccgcacatga | gcaaaacggaa | ggcgccgcag  | gagactctca  | acggggaaat  | caccgacatg | 180 |
| ctcacagaac  | tgcacaaactt | tgagaagaac  | gtgagccaag  | ctatccacaa  | gtacaatgtc | 240 |
| tacagaaaag  | cagcatctgt  | tatagaaaaa  | tacccacacaa | aaataaagag  | tggagctgaa | 300 |
| gctaagaaaat | tgcctggagt  | aggaacaaaaa | attgctgaaa  | agattgtatg  | gttttagca  | 360 |
| actggaaaat  | tacgtaaaact | ggaaaagatt  | cggcaggatg  | atacgagttc  | atccatcaat | 420 |
| tccctgactc  | gag         |             |             |             |            | 433 |

&lt;210&gt; 163

&lt;211&gt; 432

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 163

|            |             |             |             |             |             |     |
|------------|-------------|-------------|-------------|-------------|-------------|-----|
| gaattcggca | ccagatgagg  | ccaacgggt   | gacggacacgc | gcgtacatgg  | gctccgagag  | 60  |
| cacctacagt | gagtgtgaga  | ccttcacgga  | cgaggacacc  | agcaccctgg  | tgcaccctga  | 120 |
| gctcaacct  | gaaggggacg  | cagacagtgc  | cggcggctcg  | gccgtccct   | ctgagtgccct | 180 |
| ggaccccatt | gaggagcccc  | accatgggtgc | cctgtctgc   | ctcccaaggca | ggcctcaccc  | 240 |
| ccatggccag | tctgtcatca  | cggtgatcgg  | gggcgaggag  | cactttgagg  | actacggtga  | 300 |
| aggcagttag | gccccagagac | cctatgcaac  | ggcagctgg   | gctgcagtga  | ccccgccttc  | 360 |
| ctcacgcccc | gtccgacaaaa | gcccgccttc  | agcaagaagg  | tggcaaggta  | ctcgaccagg  | 420 |
| tc         |             |             |             |             |             | 432 |

&lt;210&gt; 164

&lt;211&gt; 395

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 164

|             |             |             |            |             |              |     |
|-------------|-------------|-------------|------------|-------------|--------------|-----|
| gacacttggaa | tcatgggtga  | cgttaaaaaat | tttctgtatg | cctgggtgtgg | caaaaaggaaag | 60  |
| atgaccctat  | cctatgaaat  | tagagcagtg  | ggaaacaaaa | acaggcagaa  | attcatgtgt   | 120 |
| gaggttcagg  | tggaaaggta  | taattacact  | ggcatggaa  | attccaccaa  | taaaaaagat   | 180 |
| gcacaaagca  | atgtcgccag  | agactttgtt  | aactatttgg | ttcgaataaa  | tgaaataaaag  | 240 |
| agtgaagaag  | tccctagctt  | tggggtagca  | tctccgcccc | cacttactga  | tactcctgac   | 300 |
| actacagcaa  | atgtcgaaagg | catcttgg    | acatcgata  | tgactttgat  | aataaaatacc  | 360 |
| gttcctgaa   | aaaaaaaaaa  | aaaaaaaaac  | tcgag      |             |              | 395 |

<210> 165  
<211> 503  
<212> DNA  
<213> homo sapien

<400> 165

|             |             |            |            |             |            |     |
|-------------|-------------|------------|------------|-------------|------------|-----|
| gaattcggca  | ccaggaacgc  | tcggtgagag | gcggaggagc | ggttaactacc | ccggttgcgc | 60  |
| acagctggc   | gctccttccc  | gctccctcac | acaccggcct | cagccccac   | cgccagtaga | 120 |
| agatggtaa   | agaaaacaact | tactacgatg | ttttgggggt | caaaccata   | gctactcagg | 180 |
| aagaattgaa  | aaaggcttat  | aggaaactgg | ccttgaagta | ccatccgtat  | aagaacccaa | 240 |
| atgaaggaga  | gaagtttaaa  | cagatttctc | aagttacga  | agttctctct  | gatgcaaaga | 300 |
| aaagggaaatt | atatgacaaa  | ggaggagaac | aggcaattaa | agagggtgga  | gcaggtggcg | 360 |
| gttttggctc  | ccccatggac  | atcttgata  | tgtttttg   | aggaggagga  | aggatgcaga | 420 |
| gagaaaggag  | aggtaaaaat  | gttgtacatc | agctctcagt | aaccctagaa  | gacttatata | 480 |
| atggtgcaac  | aagaaaactg  | gct        |            |             |            | 503 |

<210> 166  
<211> 893  
<212> DNA  
<213> homo sapien

<400> 166

|              |             |             |            |             |             |     |
|--------------|-------------|-------------|------------|-------------|-------------|-----|
| gaattcggca   | cgagaggaac  | ttctcttgac  | gagaagagag | accaaggagg  | ccaagcaggg  | 60  |
| gctgggccag   | aggtgccaaac | atgggaaac   | tgaggctcg  | ctcggaaagg  | tgagagttag  | 120 |
| actacatctc   | aaaaaaaaaa  | aaaaaaaaaa  | aaaagaaaga | aaagaaaaga  | aaaaagaaaag | 180 |
| aacggaagta   | ttttagtta   | gttgtatgg   | gttatgagtc | tgttttctgt  | tacttataac  | 240 |
| aaaaacaaca   | acaaaaaaacg | ctgaaactgg  | gtatattata | aagaaaagga  | aaaaaagcag  | 300 |
| aaaaaaaaatca | ggaagaagag  | aaagggaaaag | aagacaaata | aatgaaaattt | atgtattaca  | 360 |
| gttctgaagg   | ctgagacatc  | ccaggtcaag  | gttccacact | tggcgaggc   | tttcttgctg  | 420 |
| gtggagactc   | tttggggagt  | cctgggacag  | tgcagaagga | tcacgcctcc  | ctaccgctcc  | 480 |
| aagcccagcc   | ctcagccatg  | gcatgggggg  | tggatcaggg | cattggcctc  | ctcgtggcca  | 540 |
| tcttccacaa   | gtactccggc  | aggggggtg   | acaagcacac | cctgagcaag  | aaggagctga  | 600 |
| aggagctgat   | ccagaaggag  | ctcaccattg  | gctcgaagct | gcaggatgct  | gaaattgcaa  | 660 |
| ggctgatgga   | agacttggac  | cggaacaagg  | accaggaggt | gaacttccag  | gagtatgtca  | 720 |
| ccttcctggg   | ggccttggt   | ttgatctaca  | atgaagccct | caaggcgtga  | aaataaaatag | 780 |
| ggaagatgga   | gacaccctct  | gggggtcctc  | tctgagtc当地 | atccagtgg   | gggtaattgt  | 840 |
| acaataaatt   | tttttggtc   | aaatttaaaa  | aaaaaaaaaa | aaaaaaactc  | gag         | 893 |

<210> 167  
<211> 549  
<212> DNA  
<213> homo sapien

<400> 167

|            |            |            |            |             |            |     |
|------------|------------|------------|------------|-------------|------------|-----|
| gaattcggca | cgagccaga  | tcccgaggc  | cgacagcgcc | cggcccgat   | ccccacgcct | 60  |
| gccaggagca | agccgagagc | cagccggccg | gcccactccg | actccgagca  | gtctctgtcc | 120 |
| tccgaccgg  | gccccggccc | tttccggga  | ccccctggcc | gccccggcgc  | ctgccaacct | 180 |
| gccggccatg | gagaccccg  | cccagggcg  | ccccaccccg | agccccggcgc | aggccagctc | 240 |
| cactccgctg | tcgcccaccc | gcatcccccg | gctcggagg  | aaggaggacc  | tgcaggagct | 300 |
| caatgatcgc | ttggcggtt  | acatcgaccg | tgtcgctcg  | ctggaaacgg  | agaacgcagg | 360 |
| gctcgccctt | cgcatcaccc | agtctgaaag | ggtggtcagc | cgccgggtgt  | ccggcatcaa | 420 |
| ggccgcctac | gaggccgagc | tcggggatgc | ccgcaagacc | cttgactcag  | tagccaagg  | 480 |
| gcccccccg  | ctgcagctgg | agctgagcaa | agtgcgtgaa | gagtttaagg  | agctgaaagc | 540 |
| gcgcataac  |            |            |            |             |            | 549 |

<210> 168  
<211> 547  
<212> DNA  
<213> homo sapien

<400> 168  
gaattcggca cgagatggcg gcaggggtcg aagcggcgcc ggaggtggcg ggcacggaga 60  
tcaaataatgga ggaagagagc ggcgcgccccg gcgtgcccgg cggcaacggg gctccggggcc 120  
ctaagggtga aggagaacga cctgctcaga atgagaagag gaaggagaaa aacataaaaaa 180  
gaggaggcaa tcgcgttttag ccatatgcca atccaaactaa aagatacaga gccttcattta 240  
caaacataacc ttttgatgtg aaatggcagt cacttaaaga cctgggttaaa gaaaaagttg 300  
gtgaggtaac atacgtggag ctcttaatgg acgctgaagg aaagtcaagg ggatgtgtcg 360  
ttgttgaatt caagatggaa gagagcatga aaaaagctgc ggaagtccta aacaagcata 420  
gtctgagcgg aagaccactg aaagtcaaag aagatcctga tggtaaacat gccaggagag 480  
caatgcaaaa ggcttggaa ctttggaaagca cagtatttgt agcaaatctg gattataaaag 540  
ttggctg 547

<210> 169  
<211> 547  
<212> DNA  
<213> homo sapien

<400> 169  
gaattcggca ccaggaggatcc gactgtgctc gctgctcagc gcccaccccg gaagatgagg 60  
ctggccgtgg gagccctgtc ggtctgcgcc gcctggggcc ttgttctggc tgccctgtat 120  
aaaactgtga gatgggtgtc agtgcggag catgaggccca ctaagtgcctt gatgtttccgc 180  
gaccatatga aaagcgtcat tccatccgtt ggtccctgtt ttgttctgtt gaagaaagcc 240  
tccttacccgtt attgcattcag ggccatttgcg gcaaacgaag cggatgtgtt gacactggat 300  
gcagggtttgg ttgtatgtgc ttacctggct cccaataacc tgaagcctgt ggtggcagag 360  
ttctatgggt caaaagaggg tccacagact ttctattatg ctgttctgtt ggtgaagaag 420  
gatagtggct tccagatggaa ccagttcga ggcagaagaat cctgcacac gggcttaggc 480  
aggctcgctg ggttggaaat ccccataggc ttactttact gtgacttacc tgagccacgt 540  
aaacctc 547

<210> 170  
<211> 838  
<212> DNA  
<213> homo sapien

<400> 170  
gaattcggca ccagaggagc tcggccctgcg ctgcgcacag atgtccgggg agtcagccag 60  
gagttgggg aaggaaagcg cgccccccggg gcccggccccc gagggtctcgat tccgcattata 120  
cagcatgagg ttctgcccgt ttgttctgtt gacgcgtctt gtcctgaagg ccaaggaaat 180  
caggcatgaa gtcataata tcaacccgtt aaataagccctt gatgtttctt ttaagaaaaa 240  
tccctttggc ttgttctgtt gtcctggaaat cagtcagggtt cagctgtatctt acgatgtcg 300  
catcacctgtt gatgttctgtt atgaagcata cccaggaaat aagctttgc cggatgaccc 360  
ctatgagaaa gtttgcaga agatgtatctt agatgtttt ttcataatgtc catccttggc 420  
aggaagctt attagaagcc aaaataaaga agactatgtat ggcctaaaag aagaatttcg 480  
taaagaattt accaagctatc aggaggatctt gactaataag aagacgaccc tctttgggtgg 540  
caattctatc tctatgattt attacccatc ctggccctgg tttgaacggc tggaaagcaat 600  
gaagttaaat gatgtgttag accacactcc aaaactgaaa ctgtggatgg cagccatgaa 660  
ggaagatccc acagtctca gcccgtttac tagtggaaa gactggcaag gtttccatgaa 720  
gctctactta cagaacacgccc ctgaggccctg tgactatggg ctctgaaggg ggccaggagtc 780  
agcaataaaag ctatgtctga tttttccctt cactaaaaaa aaaaaaaaaa aactcgag 838

<210> 171  
<211> 547  
<212> DNA  
<213> homo sapien

&lt;400&gt; 171

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| gaattcggca ccagcggat ttgggtcgca gttcttgttt gtggattgct gtgatcgta     | 60  |
| cggacaatg cagatcttcg tgaagactct gactggtaag accatcaccc tcgagggttga   | 120 |
| gcccagtgc accatcgaga atgtcaaggc aaagatccaa gataaggaag gcatccctcc    | 180 |
| tgaccagcag aggctgtatc ttgtctggaaa acagctggaa gatggcgca ccctgtctga   | 240 |
| ctacaacatc cagaaagagt ccacccctgca cctgggtgc cgtctcagag gtgggatgca   | 300 |
| aatcttcgtg aagacactca ctggcaagac catcaccctt gaggtcgagc ccagtgcac    | 360 |
| catcgagaac gtcaaagcaa agatccagga caaggaaggc attccctctg accagcagag   | 420 |
| gttgcatttt gccggaaagc agctggaaga tggggcgcacc ctgtctgact acaacatcca  | 480 |
| gaaagagtctt accctgcacc tgggtctccg tctcagaggtt gggatgcaga tcttcgtgaa | 540 |
| gaccctg                                                             | 547 |

&lt;210&gt; 172

<211> 608  
<212> DNA  
<213> homo sapien

&lt;400&gt; 172

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| gaattcggca ccagagactt ctccctctga ggcctgcgcac cccctccatc tcagccctgtc  | 60  |
| caccctcatac tacaatgggt ccctgccatg tcagtgcacac cctcaagggtt cactgagttc | 120 |
| tgagtgcaac cctcatgggt gtcagtgcct gtgcacggct ggagtgggtt ggcgcgcgtg    | 180 |
| tgacctctgt gcccctggct actatggctt tggccccaca ggctgtcaag ggcgttgcct    | 240 |
| gggctgcccgt gatcacacacag ggggtgagca ctgtgaaagg tgcattgtgt gtttccacgg | 300 |
| ggaccacacgg ctgccccatg ggggcacgtg cccggccctgt ccctgtccctg aaggccctgg | 360 |
| gagccaaacgg cactttgcata cttcttgcca ccaggatgaa tattccacagc agattgtgtg | 420 |
| ccactgcccgg gcaggctata cggggctgcg atgtgaagct tgcgtccctg ggcactttgg   | 480 |
| ggaccatca aggccaggtg gccggtgcca actgtgtgag tgcagtggaa acattgaccc     | 540 |
| aatggatcct_gatgcctgtg .accccccacac .ggggcaatgc ctgcgtgtt tacaccacac  | 600 |
| agagggtc                                                             | 608 |

&lt;210&gt; 173

<211> 543  
<212> DNA  
<213> homo sapien

&lt;400&gt; 173

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| gaattcggca ccagagatca tccggccagca gggtctggcc tcctacgact acgtgcgcgg  | 60  |
| ccgcctcactg gctgaggacc tggtcgaggc tcggatcatc tctctcgaga cctacaaccc  | 120 |
| gctccggag ggcacccaggaa gcctccgtga ggctctcgag gggagtcgg cctgggtgt    | 180 |
| cctctatggc acgggtccg tggctgtgt ctacctgccc gggtccaggc agacactgag     | 240 |
| catctaccag gctctcaaga aagggtgtgt gatgtcccgag gtggcccgcc tgctgtgt    | 300 |
| ggcacaggca ggcacaggct tcctgtgtt cccgggtgaag ggggaacggc tgactgtgt    | 360 |
| tgaagctgtg cggaaaggggcc tcgtggggcc cgaactgcac gaccgcctgc tctcggtgt  | 420 |
| gcggggcggtc accggctacc gtgaccctta caccgagcag accatctcgc tcttccaggc  | 480 |
| catgtaaagaag gaactgtatcc ctactgagga ggcctgcgg ctgtggatgc ccagctggcc | 540 |
| acc                                                                 | 543 |

&lt;210&gt; 174

<211> 548  
<212> DNA

&lt;213&gt; homo sapien

&lt;400&gt; 174

|            |            |            |            |             |            |     |
|------------|------------|------------|------------|-------------|------------|-----|
| gaattcggca | cgagaaatgg | cggcaggggt | cgaagcggcg | gcggagggtgg | cggcgacgga | 60  |
| gatcaaaatg | gaggaagaga | gcggcgcgcc | cggcgtcccg | agcggcaacg  | gggctccggg | 120 |
| ccctaagggt | gaaggagaac | gacctgctca | aatgagaag  | aggaaggaga  | aaaacataaa | 180 |
| aagaggaggc | aatcgctttg | agccatatgc | caatccaact | aaaagataca  | gagccttcat | 240 |
| tacaaacata | cctttgtatg | tgaaatggca | gtcacttaaa | gacctggta   | aagaaaaagt | 300 |
| tgttgaggta | acatacgtgg | agctcttaat | ggacgctgaa | gaaagtcaa   | ggggatgtgc | 360 |
| tgttgtgaa  | ttcaagatgg | aagagagcat | aaaaaaagct | gccaagatcc  | taaacaagca | 420 |
| tagtctgagc | ggaagaccac | tgaaagtcaa | agaagatcct | gatgtgaac   | atgccaggag | 480 |
| agcaatgc当地 | aaggtatgg  | ctacgactgg | tggatgggt  | atgggaccag  | gtggcccagg | 540 |
| aatgatta   |            |            |            |             |            | 548 |

&lt;210&gt; 175

&lt;211&gt; 604

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 175

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gaattcggca | ccagaggacc | tccaggacat | gttcatcg   | cataccatcg | aggagattga | 60  |
| ggcctgatc  | tcagccatg  | accagttca  | gtccaccctg | ccggacgccc | atagggagcg | 120 |
| cgaggccatc | ctggccatcc | acaaggaggc | ccagaggatc | gctgagagca | accacatcaa | 180 |
| gctgtccggc | agcaaccct  | acaccaccgt | caccccgca  | atcatcaact | ccaagtggga | 240 |
| gaaggtgcag | cagctgggc  | aaaacggga  | ccatgccc   | ctggaggagc | agagcaagca | 300 |
| gcagtccaa  | gagcacctgc | gccgcccagt | cgccagccag | gccaatgttg | tggggccctg | 360 |
| gatccagacc | aagatggagg | agatcggcg  | catctccatt | gagatgaacg | ggacccttgg | 420 |
| ggaccagctg | agccacctga | agcagtatga | acgcagcatc | gtggactaca | agcccaacct | 480 |
| ggacctgctg | gagcagcagc | accagcttat | ccaggaggcc | ctcatcttc  | acaacaagca | 540 |
| caccaactat | accatggagc | acatcccggt | ggctggag   | cagctgctca | ccaccattgc | 600 |
| ccgg       |            |            |            |            |            | 604 |

&lt;210&gt; 176

&lt;211&gt; 486

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 176

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gaattcggca | ccagccaagc | tcactattga | atccacgccc | ttcaatgtcg | cagagggaa  | 60  |
| ggaggttctt | ctactcgccc | acaacctgcc | ccagaatcg  | attgggtaca | gctggtacaa | 120 |
| aggcgaaga  | gtggatggca | acagtcta   | tgttaggat  | gtaataggaa | ctcaacaagc | 180 |
| taccccgagg | cccgatata  | gtggtcgaga | gacaatatac | cccaatgc   | ccctgtgtat | 240 |
| ccagaacgtc | acccagaatg | acacaggatt | ctataccct  | caagtataa  | agtcagatct | 300 |
| tgtgaatgaa | gaagcaacc  | gacagtcc   | tgtatacc   | gagctcccc  | agccctccat | 360 |
| ctccagcaac | aactccaa   | ccgtggagga | caaggatgt  | gtggccctca | cctgtgaacc | 420 |
| tgaggttcag | aacacaac   | acctgtgg   | gtaatgg    | cagagectcc | cggtcagtcc | 480 |
| caaggc     |            |            |            |            |            | 486 |

&lt;210&gt; 177

&lt;211&gt; 387

&lt;212&gt; DNA

&lt;213&gt; homo sapien

&lt;400&gt; 177

gaattcggca ccagggacag cagaccagac agtcacagca gccttgacaa aacgttccctg

60

gaactcaagc tcttctccac agaggaggac agagcagaca gcagagacca tggagtctcc  
 ctcggccctt ccccacagat ggtgcattttt ctggcagagg ctccctgtca cagcctca  
 tctaacccttc tggaaccgc ccaccactgc caagctcaact attgaatcca cgccgttcaa  
 tgtcgagag ggaaaggagg tgcttctact tgtccacaat ctgccccagc atcttttgg  
 ctacagctgg tacaaagggtg aaagagtggta tggcaaccgt caaattatacg gatatgtaat  
 aggaactcaa caagctaccc cagggcc

I20  
180  
240  
300  
360  
387

<210> 178  
 <211> 440  
 <212> DNA  
 <213> homo sapien

<400> 178

gaattcggca cgaggagaag cagaaaaaca aggaattttttag ccagactttta gaaaatgaga  
 aaaatacctt actgagtcag atatcaacaa aggatggtga actaaaaatg cttcaggagg  
 aagtaaccaa aatgaacctg ttaaatcagc aaatccaaga agaactctct agagttacca  
 aactaaagga gacagcagaa gaagagaaaag atgatttggta agagaggctt atgaatcaat  
 tagcagaact taatggaaagc attggaaattt actgtcagga tgtaacagat gcccaaataaa  
 aaaatgagct attggaaatct gaaatgaaaga accttaaaaaa gtgtgtgagt gaatttggaaag  
 aagaaaaagca gcagtttagtc aaggaaaaaaa ctaaggtggta atcagaaataa cgaaaggaaat  
 atttggagaa aatacaagg

60  
120  
180  
240  
300  
360  
420  
440

<210> 179  
 <211> 443  
 <212> DNA  
 <213> homo sapien

<100> 179

gaattcggca ccagcggggg gctacggcgg cggctacggc ggcgtctga ccgcgtccga  
 cgggctgtcg gcgggcaacg agaagctaac catgcagaac ctcaacgacc gcctggcctc  
 ctacctggac aagggtgcgcg ccctggaggc gcccaacggc gagctagagg tgaagatccg  
 cgactggta...cagaaggcagg...ggcctgg...-etc...cc...cgac...-tacagg...-actacacgac  
 catccaggac ctgcgggaca agattttgg tgccaccatt gagaactcca ggattgtcct  
 gcagatcgac aacgcccgtc tggctgcaga tgacttccga accaagtttg agacggaaaca  
 ggctctgcgc atgagcgtgg aggccgacat caacggcctg cgcagggtgc tggatgagct  
 gaccctggcc aggaccgacc tgg

60  
120  
180  
240  
300  
360  
420  
443

<210> 180  
 <211> 403  
 <212> DNA  
 <213> homo sapien

<400> 180

gaattcggca cgaggttatg agagtcact tcaatgttcc tatgaagaac aaccagataa  
 caaacaacca gaggattaag gctgctgtcc caagcatcaa attctgtttg gacaatggag  
 ccaagtcgtt agtcctttagt agccacctag gccggcctga tggtgtgccc atgcctgaca  
 agtactctt agagccagt gctgttagaac tcagatctct gctggccaag gatgttctgt  
 tcttgaagga ctgtgttaggc ccagaagtgg agaaaaggctg tgccaaaccca gctgctgggt  
 ctgtcatctt gctggagaac ctccgcttcc atgtggagga agaagggaaag ggaaaagatg  
 ctctggaa caaggttaaa gccgagccag ccaaaataga agc

60  
120  
180  
240  
300  
360  
403

<210> 181  
 <211> 493  
 <212> DNA  
 <213> homo sapien

&lt;400&gt; 181

|             |             |             |            |             |             |     |
|-------------|-------------|-------------|------------|-------------|-------------|-----|
| gaattcggca  | ccagcagagg  | tctccagagc  | cttctctctc | ctgtgaaaa   | tggcaactct  | 60  |
| taaggaaaaa  | ctcattgcac  | cagttcgga   | agaagaggca | acagttccaa  | acaataagat  | 120 |
| cactgttagt  | ggtgttggac  | aagttgttat  | ggcgtgtct  | atcagcattc  | tggaaaatgc  | 180 |
| tctggctgtat | gaacttgctc  | tttgtggatgt | tttggaaat  | aagcttaaag  | gagaaaatgt  | 240 |
| ggatctgcag  | catggagact  | tatttcttca  | gacacctaaa | atttgtggcag | ataaaagatta | 300 |
| ttctgtgacc  | gccaattcta  | agattgttagt | ggtaactgca | ggagtccgtc  | agcaagaagg  | 360 |
| ggagagtcgg  | ctcaatctgg  | tgcagagaaa  | tgttaatgtc | ttcaaattca  | ttattcctca  | 420 |
| gatcgtcaag  | tacagtccctg | attgcatcat  | aattgtggtt | tccaaacccag | tggacattct  | 480 |
| tacgtatgtt  | acc         |             |            |             |             | 493 |

&lt;210&gt; 182

&lt;211&gt; 209

&lt;212&gt; PRT

&lt;213&gt; homo sapien

&lt;400&gt; 182

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Phe | Ser | Ser | Asn | Pro | Lys | Val | Gln | Val | Glu | Ala | Ile | Glu | Gly | Gly |
| 1   |     |     |     |     |     | 5   |     |     | 10  |     |     |     |     | 15  |     |
| Ala | Leu | Gln | Lys | Leu | Leu | Val | Ile | Leu | Ala | Thr | Glu | Gln | Pro | Leu | Thr |
|     |     |     |     |     |     |     | 20  |     |     | 25  |     |     |     | 30  |     |
| Ala | Lys | Lys | Lys | Val | Leu | Phe | Ala | Leu | Cys | Ser | Leu | Leu | Arg | His | Phe |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |
| Pro | Tyr | Ala | Gln | Arg | Gln | Phe | Leu | Lys | Leu | Gly | Gly | Leu | Gln | Val | Leu |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |
| Arg | Thr | Leu | Val | Gln | Glu | Lys | Gly | Thr | Glu | Val | Leu | Ala | Val | Arg | Val |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     | 80  |     |
| Val | Thr | Leu | Leu | Tyr | Asp | Leu | Val | Thr | Glu | Lys | Met | Phe | Ala | Glu | Glu |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |
| Glu | Ala | Glu | Leu | Thr | Gln | Glu | Met | Ser | Pro | Glu | Lys | Leu | Gln | Gln | Tyr |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |
| Arg | Gln | Val | His | Leu | Leu | Pro | Gly | Leu | Trp | Glu | Gln | Gly | Trp | Cys | Glu |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |
| Ile | Thr | Ala | His | Leu | Leu | Ala | Leu | Pro | Glu | His | Asp | Ala | Arg | Glu | Lys |
|     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |
| Val | Leu | Gln | Thr | Leu | Gly | Val | Leu | Leu | Thr | Thr | Cys | Arg | Asp | Arg | Tyr |
|     |     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     | 160 |     |
| Arg | Gln | Asp | Pro | Gln | Leu | Gly | Arg | Thr | Leu | Ala | Ser | Leu | Gln | Ala | Glu |
|     |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |     |     |
| Tyr | Gln | Val | Leu | Ala | Ser | Leu | Glu | Leu | Gln | Asp | Gly | Glu | Asp | Glu | Gly |
|     |     |     |     |     |     | 180 |     |     | 185 |     |     | 190 |     |     |     |
| Tyr | Phe | Gln | Glu | Leu | Leu | Gly | Ser | Val | Asn | Ser | Leu | Leu | Lys | Glu | Leu |
|     |     |     |     |     |     | 195 |     |     | 200 |     |     | 205 |     |     |     |
| Arg |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

&lt;210&gt; 183

&lt;211&gt; 255

&lt;212&gt; PRT

&lt;213&gt; homo sapien

&lt;400&gt; 183

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ala | Ala | Gly | Val | Glu | Ala | Ala | Glu | Val | Ala | Ala | Thr | Glu | Pro |
| 1   |     |     |     |     |     | 5   |     |     | 10  |     |     |     | 15  |     |

Lys Met Glu Glu Glu Ser Gly Ala Pro Cys Val Pro Ser Gly Asn Gly  
 20 25 30  
 Ala Pro Gly Pro Lys Gly Glu Glu Arg Pro Thr Gln Asn Glu Lys Arg  
 35 40 45  
 Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr Ser  
 50 55 60  
 Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe Asp  
 65 70 75 80  
 Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly Glu  
 85 90 95  
 Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg Gly  
 100 105 110  
 Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala Ala  
 115 120 125  
 Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val Lys  
 130 135 140  
 Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala Gly  
 145 150 155 160  
 Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val Gly  
 165 170 175  
 Trp Lys Lys Leu Lys Glu Val Phe Ser Met Ala Gly Val Val Val Arg  
 180 185 190  
 Ala Asp Ile Leu Glu Asp Lys Asp Gly Lys Ser Arg Gly Ile Gly Ile  
 195 200 205  
 Val Thr Phe Glu Gln Ser Ile Glu Ala Val Gln Ala Ile Ser Met Phe  
 210 215 220  
 Asn Gly Gln Leu Leu Phe Asp Arg Pro Met His Val Lys Met Asp Glu  
 225 230 235 240  
 Arg Ala Leu Pro Lys Gly Asp Phe Phe Pro Pro Glu Arg His Ser  
 245 250 255

&lt;210&gt; 184

&lt;211&gt; 188

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 184

Leu Ser Gly Ser Cys Ile Arg Arg Glu Gln Thr Pro Glu Lys Glu Lys  
 1 5 10 15  
 Gln Val Val Leu Phe Glu Glu Ala Ser Trp Thr Cys Thr Pro Ala Cys  
 20 25 30  
 Gly Asp Glu Pro Arg Thr Val Ile Leu Leu Ser Ser Met Leu Ala Asp  
 35 40 45  
 His Arg Leu Lys Leu Glu Asp Tyr Lys Asp Arg Leu Lys Ser Gly Glu  
 50 55 60  
 His Leu Asn Pro Asp Gln Leu Glu Ala Val Glu Lys Tyr Glu Glu Val  
 65 70 75 80  
 Leu His Asn Leu Glu Phe Ala Lys Glu Leu Gln Lys Thr Phe Ser Gly  
 85 90 95  
 Leu Ser Leu Asp Leu Leu Lys Ala Gln Lys Lys Ala Gln Arg Arg Glu  
 100 105 110  
 His Met Leu Lys Leu Glu Ala Glu Lys Lys Lys Leu Arg Thr Ile Leu  
 115 120 125  
 Gln Val Gln Tyr Val Leu Gln Asn Leu Thr Gln Glu His Val Gln Lys  
 130 135 140

Asp Phe Lys Gly Gly Leu Asn Gly Ala Val Tyr Leu Pro Ser Lys Glu  
 145 150 155 160  
 Leu Asp Tyr Leu Ile Lys Phe Ser Lys Leu Thr Cys Pro Glu Arg Asn  
 165 170 175  
 Glu Ser Leu Arg Gln Thr Leu Glu Gly Ser Thr Val  
 180 185  
  
 <210> 185  
 <211> 746  
 <212> PRT  
 <213> Homo sapien  
  
 <400> 185  
 Asp Lys His Leu Lys Asp Leu Leu Ser Lys Leu Leu Asn Ser Gly Tyr  
 1 5 10 15  
 Phe Glu Ser Ile Pro Val Pro Lys Asn Ala Lys Glu Lys Glu Val Pro  
 20 25 30  
 Leu Glu Glu Glu Met Leu Ile Gln Ser Glu Lys Lys Thr Gln Leu Ser  
 35 40 45  
 Lys Thr Glu Ser Val Lys Glu Ser Glu Ser Leu Met Glu Phe Ala Gln  
 50 55 60  
 Pro Glu Ile Gln Pro Gln Glu Phe Leu Asn Arg Arg Tyr Met Thr Glu  
 65 70 75 80  
 Val Asp Tyr Ser Asn Lys Gln Gly Glu Glu Gln Pro Trp Glu Ala Asp  
 85 90 95  
 Tyr Ala Arg Lys Pro Asn Leu Pro Lys Arg Trp Asp Met Leu Thr Glu  
 100 105 110  
 Pro Asp Gly Gln Glu Lys Lys Gln Glu Ser Phe Lys Ser Trp Glu Ala  
 115 120 125  
 Ser Gly Lys His Gln Glu Val Ser Lys Pro Ala Val Ser Leu Glu Gln  
 130 135 140  
 Arg Lys Gln Asp Thr Ser Lys Leu Arg Ser Thr Leu Pro Glu Glu Gln  
 145 150 155 160  
 Lys Lys Gln Glu Ile Ser Lys Ser Lys Pro Ser Pro Ser Gln Trp Lys  
 165 170 175  
 Gln Asp Thr Pro Lys Ser Lys Ala Gly Tyr Val Gln Glu Glu Gln Lys  
 180 185 190  
 Lys Gln Glu Thr Pro Lys Leu Trp Pro Val Gln Leu Gln Lys Glu Gln  
 195 200 205  
 Asp Pro Lys Lys Gln Thr Pro Lys Ser Trp Thr Pro Ser Met Gln Ser  
 210 215 220  
 Glu Gln Asn Thr Thr Lys Ser Trp Thr Thr Pro Met Cys Glu Glu Gln  
 225 230 235 240  
 Asp Ser Lys Gln Pro Glu Thr Pro Lys Ser Trp Glu Asn Asn Val Glu  
 245 250 255  
 Ser Gln Lys His Ser Leu Thr Ser Gln Ser Gln Ile Ser Pro Lys Ser  
 260 265 270  
 Trp Gly Val Ala Thr Ala Ser Leu Ile Pro Asn Asp Gln Leu Leu Pro  
 275 280 285  
 Arg Lys Leu Asn Thr Glu Pro Lys Asp Val Pro Lys Pro Val His Gln  
 290 295 300  
 Pro Val Gly Ser Ser Ser Thr Leu Pro Lys Asp Pro Val Leu Arg Lys  
 305 310 315 320  
 Glu Lys Leu Gln Asp Leu Met Thr Gln Ile Gln Gly Thr Cys Asn Phe  
 325 330 335

Met Gln Glu Ser Val Leu Asp Phe Asp Lys Pro Ser Ser Ala Ile Pro  
                  340                       345                       350  
 Thr Ser Gln Pro Pro Ser Ala Thr Pro Gly Ser Pro Val Ala Ser Lys  
                  355                       360                       365  
 Glu Gln Asn Leu Ser Ser Gln Ser Asp Phe Leu Gln Glu Pro Leu Gln  
                  370                       375                       380  
 Val Phe Asn Val Asn Ala Pro Leu Pro Pro Arg Lys Glu Gln Glu Ile  
                  385                       390                       395                   400  
 Lys Glu Ser Pro Tyr Ser Pro Gly Tyr Asn Gln Ser Phe Thr Thr Ala  
                  405                       410                       415  
 Ser Thr Gln Thr Pro Pro Gln Cys Gln Leu Pro Ser Ile His Val Glu  
                  420                       425                       430  
 Gln Thr Val His Ser Gln Glu Thr Ala Ala Asn Tyr His Pro Asp Gly  
                  435                       440                       445  
 Thr Ile Gln Val Ser Asn Gly Ser Leu Ala Phe Tyr Pro Ala Gln Thr  
                  450                       455                       460  
 Asn Val Phe Pro Arg Pro Thr Gln Pro Phe Val Asn Ser Arg Gly Ser  
                  465                       470                       475                   480  
 Val Arg Gly Cys Thr Arg Gly Gly Arg Leu Ile Thr Asn Ser Tyr Arg  
                  485                       490                       495  
 Ser Pro Gly Gly Tyr Lys Gly Phe Asp Thr Tyr Arg Gly Leu Pro Ser  
                  500                       505                       510  
 Ile Ser Asn Gly Asn Tyr Ser Gln Leu Gln Phe Gln Ala Arg Glu Tyr  
                  515                       520                       525  
 Ser Gly Ala Pro Tyr Ser Gln Arg Asp Asn Phe Gln Gln Cys Tyr Lys  
                  530                       535                       540  
 Arg Gly Gly Thr Ser Gly Gly Pro Arg Ala Asn Ser Arg Ala Gly Trp  
                  545                       550                       555                   560  
 Ser Asp Ser Ser Gln Val Ser Ser Pro Glu Arg Asp Asn Glu Thr Phe  
                  565                       570                       575  
 Asn Ser Gly Asp Ser Gly Gln Gly Asp Ser Arg Ser Met Thr Pro Val  
                  580                       585                       590  
 Asp Val Pro Val Thr Asn Pro Ala Ala Thr Ile Leu Pro Val His Val  
                  595                       600                       605  
 Tyr Pro Leu Pro Gln Gln Met Arg Val Ala Phe Ser Ala Ala Arg Thr  
                  610                       615                       620  
 Ser Asn Leu Ala Pro Gly Thr Leu Asp Gln Pro Ile Val Phe Asp Leu  
                  625                       630                       635                   640  
 Leu Leu Asn Asn Leu Gly Glu Thr Phe Asp Leu Gln Leu Gly Arg Phe  
                  645                       650                       655  
 Asn Cys Pro Val Asn Gly Thr Tyr Val Phe Ile Phe His Met Leu Lys  
                  660                       665                       670  
 Leu Ala Val Asn Val Pro Leu Tyr Val Asn Leu Met Lys Asn Glu Glu  
                  675                       680                       685  
 Val Leu Val Ser Ala Tyr Ala Asn Asp Gly Ala Pro Asp His Glu Thr  
                  690                       695                       700  
 Ala Ser Asn His Ala Ile Leu Gln Leu Phe Gln Gly Asp Gln Ile Trp  
                  705                       710                       715                   720  
 Leu Arg Leu His Arg Gly Ala Ile Tyr Gly Ser Ser Trp Lys Tyr Ser  
                  725                       730                       735  
 Thr Phe Ser Gly Tyr Leu Leu Tyr Gln Asp  
                  740                       745

&lt;210&gt; 186

&lt;211&gt; 705

<212> PRT  
 <213> Homo sapien

&lt;400&gt; 186

Ala Leu Leu Asn Val Arg Gln Pro Pro Ser Thr Thr Thr Phe Val Leu  
 1 5 10 15  
 Asn Gln Ile Asn His Leu Pro Pro Leu Gly Ser Thr Ile Val Met Thr  
 20 25 30  
 Lys Thr Pro Pro Val Thr Thr Asn Arg Gln Thr Ile Thr Leu Thr Lys  
 35 40 45  
 Phe Ile Gln Thr Thr Ala Ser Thr Arg Pro Ser Val Ser Ala Pro Thr  
 50 55 60  
 Val Arg Asn Ala Met Thr Ser Ala Pro Ser Lys Asp Gln Val Gln Leu  
 65 70 75 80  
 Lys Asp Leu Leu Lys Asn Asn Ser Leu Asn Glu Leu Met Lys Leu Lys  
 85 90 95  
 Pro Pro Ala Asn Ile Ala Gln Pro Val Ala Thr Ala Ala Thr Asp Val  
 100 105 110  
 Ser Asn Gly Thr Val Lys Lys Glu Ser Ser Asn Lys Glu Gly Ala Arg  
 115 120 125  
 Met Trp Ile Asn Asp Met Lys Met Arg Ser Phe Ser Pro Thr Met Lys  
 130 135 140  
 Val Pro Val Val Lys Glu Asp Asp Glu Pro Glu Glu Asp Glu Glu  
 145 150 155 160  
 Glu Met Gly His Ala Glu Thr Tyr Ala Glu Tyr Met Pro Ile Lys Leu  
 165 170 175  
 Lys Ile Gly Leu Arg His Pro Asp Ala Val Val Glu Thr Ser Ser Leu  
 180 185 190  
 Ser Ser Val Thr Pro Pro Asp Val Trp Tyr Lys Thr Ser Ile Ser Glu  
 195 200 205  
 Glu Thr Ile Asp Asn Gly Trp Leu Ser Ala Leu Gln Leu Glu Ala Ile  
 210 215 220  
 Thr Tyr Ala Ala Gln Gln His Glu Thr Phe Leu Pro Asn Gly Asp Arg  
 225 230 235 240  
 Ala Gly Phe Leu Ile Gly Asp Gly Ala Gly Val Gly Lys Gly Arg Thr  
 245 250 255  
 Ile Ala Gly Ile Ile Tyr Glu Asn Tyr Leu Leu Ser Arg Lys Arg Ala  
 260 265 270  
 Leu Trp Phe Ser Val Ser Asn Asp Leu Lys Tyr Asp Ala Glu Arg Asp  
 275 280 285  
 Leu Arg Asp Ile Gly Ala Lys Asn Ile Leu Val His Ser Leu Asn Lys  
 290 295 300  
 Phe Lys Tyr Gly Lys Ile Ser Ser Lys His Asn Gly Ser Val Lys Lys  
 305 310 315 320  
 Gly Val Ile Phe Ala Thr Tyr Ser Ser Leu Ile Gly Glu Ser Gln Ser  
 325 330 335  
 Gly Gly Lys Tyr Lys Thr Arg Leu Lys Gln Leu Leu His Trp Cys Gly  
 340 345 350  
 Asp Asp Phe Asp Gly Val Ile Val Phe Asp Glu Cys His Lys Ala Lys  
 355 360 365  
 Asn Leu Cys Pro Val Gly Ser Ser Lys Pro Thr Lys Thr Gly Leu Ala  
 370 375 380  
 Val Leu Glu Leu Gln Asn Lys Leu Pro Lys Ala Arg Val Val Tyr Ala  
 385 390 395 400  
 Ser Ala Thr Gly Ala Ser Glu Pro Arg Asn Met Ala Tyr Met Asn Arg

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
|                                                                 | 405 | 410 | 415 |
| Leu Gly Ile Trp Gly Glu Gly Thr Pro Phe Arg Glu Phe Ser Asp Phe |     |     |     |
| 420                                                             | 425 | 430 |     |
| Ile Gln Ala Val Glu Arg Arg Gly Val Gly Ala Met Glu Ile Val Ala |     |     |     |
| 435                                                             | 440 | 445 |     |
| Met Asp Met Lys Leu Arg Gly Met Tyr Ile Ala Arg Gln Leu Ser Phe |     |     |     |
| 450                                                             | 455 | 460 |     |
| Thr Gly Val Thr Phe Lys Ile Glu Glu Val Leu Leu Ser Gln Ser Tyr |     |     |     |
| 465                                                             | 470 | 475 | 480 |
| Val Lys Met Tyr Asn Lys Ala Val Lys Leu Trp Val Ile Ala Arg Glu |     |     |     |
| 485                                                             | 490 | 495 |     |
| Arg Phe Gln Gln Ala Ala Asp Leu Ile Asp Ala Glu Gln Arg Met Lys |     |     |     |
| 500                                                             | 505 | 510 |     |
| Lys Ser Met Trp Gly Gln Phe Trp Ser Ala His Gln Arg Phe Phe Lys |     |     |     |
| 515                                                             | 520 | 525 |     |
| Tyr Leu Cys Ile Ala Ser Lys Val Lys Arg Val Val Gln Leu Ala Arg |     |     |     |
| 530                                                             | 535 | 540 |     |
| Glu Glu Ile Lys Asn Gly Lys Cys Val Val Ile Gly Leu Gln Ser Thr |     |     |     |
| 545                                                             | 550 | 555 | 560 |
| Gly Glu Ala Arg Thr Leu Glu Ala Leu Glu Glu Gly Gly Glu Leu     |     |     |     |
| 565                                                             | 570 | 575 |     |
| Asn Asp Phe Val Ser Thr Ala Lys Gly Val Leu Gln Ser Leu Ile Glu |     |     |     |
| 580                                                             | 585 | 590 |     |
| Lys His Phe Pro Ala Pro Asp Arg Lys Lys Leu Tyr Ser Leu Leu Gly |     |     |     |
| 595                                                             | 600 | 605 |     |
| Ile Asp Leu Thr Ala Pro Ser Asn Asn Ser Ser Pro Arg Asp Ser Pro |     |     |     |
| 610                                                             | 615 | 620 |     |
| Cys Lys Glu Asn Lys Ile Lys Lys Arg Lys Gly Glu Glu Ile Thr Arg |     |     |     |
| 625                                                             | 630 | 635 | 640 |
| Glu Ala Lys Lys Ala Arg Lys Val Gly Leu Thr Gly Ser Ser Ser     |     |     |     |
| 645                                                             | 650 | 655 |     |
| Asp Asp Ser Gly Ser Glu Ser Asp Ala Ser Asp Asn Glu Glu Ser Asp |     |     |     |
| 660                                                             | 665 | 670 |     |
| Tyr Glu Ser Ser Lys Asn Met Ser Ser Gly Asp Asp Asp Asp Phe Asn |     |     |     |
| 675                                                             | 680 | 685 |     |
| Pro Phe Leu Asp Glu Ser Asn Glu Asp Asp Glu Asn Asp Pro Trp Leu |     |     |     |
| 690                                                             | 695 | 700 |     |
| Ile                                                             |     |     |     |
| 705                                                             |     |     |     |

&lt;210&gt; 187

&lt;211&gt; 595

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 187

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Glu Ser Pro Arg His Arg Gly Glu Gly Gly Glu Trp Gly Pro Gly     |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Val Pro Arg Glu Arg Arg Glu Ser Ala Gly Glu Trp Gly Ala Asp Thr |    |    |    |
| 20                                                              | 25 | 30 |    |
| Pro Lys Glu Gly Glu Ser Ala Gly Glu Trp Gly Ala Glu Val Pro     |    |    |    |
| 35                                                              | 40 | 45 |    |
| Arg Gly Arg Gly Glu Gly Ala Gly Glu Trp Gly Pro Asp Thr Pro Lys |    |    |    |
| 50                                                              | 55 | 60 |    |
| Glu Arg Gly Gln Gly Val Arg Glu Trp Gly Pro Glu Ile Pro Gln Glu |    |    |    |

|     |     |     |     |
|-----|-----|-----|-----|
| 65  | 70  | 75  | 80  |
| His | Gly | Ala | Thr |
| Glu | Ald | Arg | Asp |
| Ala | Thr | Arg | Asp |
| Trp | Ala | Leu | Glu |
|     |     | Ser | Pro |
|     |     | Pro | Arg |
|     |     | Arg | Ala |
| 85  |     | 90  | 95  |
| Gly | Glu | Asp | Ala |
| Arg | Glu | Leu | Gly |
| Gly | Ser | Ser | Pro |
| His | Asp | Arg | Gly |
| Ala |     |     |     |
| 100 |     | 105 | 110 |
| Ser | Pro | Arg | Asp |
| Asp | Leu | Ser | Gly |
| Gly | Glu | Ser | Pro |
| Cys | Thr | Gln | Arg |
|     |     | Ser | Gly |
| 115 |     | 120 | 125 |
| Leu | Leu | Pro | Glu |
| Arg | Arg | Gly | Asp |
| Gly | Ser | Pro | Trp |
| Asp | Trp | Pro | Pro |
| Trp |     | Trp | Pro |
|     |     |     | Ser |
| 130 |     | 135 | 140 |
| Pro | Gln | Glu | Arg |
| Glu | Arg | Asp | Ala |
| Arg | Gly | Thr | Arg |
| Asp | Arg | Asp | Glu |
| 145 |     | 150 | 155 |
| 155 |     | 160 |     |
| Asp | Trp | Gly | Ala |
| Gly | Ala | Glu | Ser |
| Pro | Arg | Gly | Trp |
| Trp | Glu | Ala | Gly |
|     |     | Pro | Arg |
| 165 |     | 170 | 175 |
| Glu | Trp | Gly | Pro |
| Pro | Ser | Pro | Ser |
| Gly | His | Gly | Asp |
|     |     | Gly | Pro |
|     |     | Arg | Arg |
| 180 |     | 185 | 190 |
| Pro | Arg | Lys | Arg |
| Gly | Arg | Gly | Arg |
| Lys | Gly | Arg | Met |
| Gly | Arg | Gly | Arg |
| Gln | His | Glu |     |
| 195 |     | 200 | 205 |
| Ala | Ala | Ala | Thr |
| Ala | Ala | Ala | Ala |
| Thr | Ala | Ala | Thr |
| Ala | Ala | Ala | Ala |
| 210 |     | 215 | 220 |
| Glu | Glu | Ala | Gly |
| Ala | Ser | Ala | Pro |
| Glu | Ser | Gln | Ala |
|     |     | Gly | Gly |
| 225 |     | 230 | 235 |
| Pro | Arg | Gly | Pro |
| Arg | Gly | Arg | Arg |
| Gly | Pro | Arg | Gln |
| 245 |     | 250 | 255 |
| Arg | Gly | Arg | Gly |
| Arg | Arg | Gly | Gly |
| His | Gly | Arg | Arg |
| Arg | Gly | Arg | Gly |
| Arg | Arg | Gly | Pro |
| 260 |     | 265 | 270 |
| Thr | Gln | Arg | Arg |
| Gly | Arg | Gly | Pro |
| Pro | Pro | Gln | Ala |
| Gly | Glu | Arg | Glu |
|     |     | Gly | Pro |
| 275 |     | 280 | 285 |
| Asp | Ala | Thr | Thr |
| Ile | Leu | Gly | Leu |
| Gly | Thr | Pro | Ser |
|     |     | Gly | Gln |
| 290 |     | 295 | 300 |
| His | Ala | His | Ile |
| Ala | Ser | Gly | Pro |
| Gln | Ala | Leu | Ala |
|     |     | Gly | Ala |
| 305 |     | 310 | 315 |
| Ala | Ala | Ala | Ala |
| Ala | Ala | Ala | Ala |
| Ala | Ala | Ala | Ala |
| 325 |     | 330 | 335 |
| Gly | Gly | Gly | Gly |
| Gly | Gly | Gly | Arg |
| Gly | Gly | Gly | Gly |
| 340 |     | 345 | 350 |
| Ala | Gly | Gly | Gly |
| Gly | Gly | Gly | Gly |
| 355 |     | 360 | 365 |
| Ala | Gly | Gly | Gly |
| Gly | Gly | Gly | Gly |
| 370 |     | 375 | 380 |
| Pro | Arg | Glu | Gly |
| Arg | Gly | Ala | Ser |
| Gly | Ala | Ser | Pro |
|     |     | Gly | Ala |
| 385 |     | 390 | 395 |
| Arg | Arg | Gly | Pro |
| Gly | Arg | Pro | Pro |
| Arg | Arg | Ala | Ala |
| Gly | Ala | Ala | Gly |
| 395 |     | 400 |     |
| Ala | Ala | Ala | Ala |
| Ala | Ala | Ala | Gly |
| Ala | Ala | Ala | Gly |
| 405 |     | 410 | 415 |
| Gly | Leu | Leu | Pro |
| Leu | Pro | Arg | Gly |
| Gly | Arg | Asp | Arg |
| 420 |     | 425 | 430 |
| Arg | Leu | Pro | Leu |
| Gly | Arg | Arg | Arg |
| 435 |     | 440 | 445 |
| Ala | Asn | Gln | Arg |
| Ala | Glu | Arg | Pro |
| Gly | Pro | Pro | Arg |
|     |     | Gly | Gly |
| 450 |     | 455 | 460 |
| Pro | Val | Asn | Ala |
| Asn | Ala | Ser | Ser |
| 465 |     | 470 | 475 |
| Arg | Arg | Trp | Val |
| Gly | Gly | Val | Ser |
| Gly | Gly | Gly | Gln |
| Phe | Pro | Pro | Gln |
| 485 |     | 490 | 495 |
| Val | Gly | Gly | Arg |
| Gly | Phe | Pro | Pro |
| Phe | Pro | Pro | Pro |
| 495 |     | 500 |     |
| Pro | Pro | Pro | Ser |
| Arg | Arg | Arg | Arg |
| Pro | Pro | Pro | Pro |
| Pro | Pro | Pro | Pro |
| Ala | Val |     |     |
| 505 |     | 510 |     |

Arg Pro Gly Pro Arg Arg Pro Ala Arg Arg Pro Arg Gly Glu Leu Ile  
 515 520 525  
 Pro Arg Arg Pro Asp Pro Ala Ala Pro Ser Glu Glu Gly Leu Arg Met  
 530 535 540  
 Glu Ser Ser Val Asp Asp Gly Ala Thr Ala Thr Thr Ala Asp Ala Ala  
 545 550 555 560  
 Ser Gly Glu Ala Pro Glu Ala Gly Pro Ser Pro Ser His Ser Pro Thr  
 565 570 575  
 Met Cys Gln Thr Gly Gly Pro Gly Pro Pro Pro Gln Pro Pro Arg  
 580 585 590  
 Trp Leu Pro  
 595

<210> 188  
<211> 376  
<212> PRT  
<213> Homo sapien

<400> 188  
 Glu Met Arg Lys Phe Asp Val Pro Ser Met Glu Ser Thr Leu Asn Gln  
 1 5 10 15  
 Pro Ala Met Leu Glu Thr Leu Tyr Ser Asp Pro His Tyr Arg Ala His  
 20 25 30  
 Phe Pro Asn Pro Arg Pro Asp Thr Asn Lys Asp Val Tyr Lys Val Leu  
 35 40 45  
 Pro Glu Ser Lys Lys Ala Pro Gly Ser Gly Ala Val Phe Glu Arg Asn  
 50 55 60  
 Gly Pro His Ala Ser Ser Ser Gly Val Leu Pro Leu Gly Leu Gln Pro  
 65 70 75 80  
 Ala Pro Gly Leu Ser Lys Ser Leu Ser Ser Gln Val Trp Gln Pro Ser  
 85 90 95  
 Pro Asp Pro Trp His Pro Gly Glu Gln Ser Cys Glu Leu Ser Thr Cys  
 100 105 110  
 Arg Gln Gln Leu Glu Leu Ile Arg Leu Gln Met Glu Gln Met Gln Leu  
 115 120 125  
 Gln Asn Gly Ala Met Cys His His Pro Ala Ala Phe Ala Pro Leu Leu  
 130 135 140  
 Pro Thr Leu Glu Pro Ala Gln Trp Leu Ser Ile Leu Asn Ser Asn Glu  
 145 150 155 160  
 His Leu Leu Lys Glu Lys Glu Leu Leu Ile Asp Lys Gln Arg Lys His  
 165 170 175  
 Ile Ser Gln Leu Glu Gln Lys Val Arg Glu Ser Glu Leu Gln Val His  
 180 185 190  
 Ser Ala Leu Leu Gly Arg Pro Ala Pro Phe Gly Asp Val Cys Leu Leu  
 195 200 205  
 Arg Leu Gln Glu Leu Gln Arg Glu Asn Thr Phe Leu Arg Ala Gln Phe  
 210 215 220  
 Ala Gln Lys Thr Glu Ala Leu Ser Lys Glu Lys Met Glu Leu Glu Lys  
 225 230 235 240  
 Lys Leu Ser Ala Ser Glu Val Glu Ile Gln Leu Ile Arg Glu Ser Leu  
 245 250 255  
 Lys Val Thr Leu Gln Lys His Ser Glu Glu Gly Lys Lys Gln Glu Glu  
 260 265 270  
 Arg Val Lys Gly Arg Asp Lys His Ile Asn Asn Leu Lys Lys Lys Cys  
 275 280 285

Gln Lys Glu Ser Glu Gln Asn Arg Glu Lys Gln Gln Arg Ile Glu Thr  
 290 295 300  
 Leu Glu Arg Tyr Leu Ala Asp Leu Pro Thr Leu Glu Asp His Gln Lys  
 305 310 315 320  
 Gln Thr Glu Gln Leu Lys Asp Ala Glu Leu Lys Asn Thr Glu Leu Gln  
 325 330 335  
 Glu Arg Val Ala Glu Leu Glu Thr Leu Leu Glu Asp Thr Gln Ala Thr  
 340 345 350  
 Cys Arg Glu Lys Glu Val Gln Leu Glu Ser Leu Arg Gln Arg Glu Ala  
 355 360 365  
 Asp Leu Ser Ser Ala Arg His Arg  
 370 375

<210> 189  
<211> 160  
<212> PRT  
<213> Homo sapien

<400> 189  
 Met Leu Glu Ala His Arg Arg Gln Arg His Pro Phe Leu Leu Leu Gly  
 1 5 10 15  
 Thr Thr Ala Asn Arg Thr Gln Ser Leu Asn Tyr Gly Cys Ile Val Glu  
 20 25 30  
 Asn Pro Gln Thr His Glu Val Leu His Tyr Val Glu Lys Pro Ser Thr  
 35 40 45  
 Phe Ile Ser Asp Ile Ile Asn Cys Gly Ile Tyr Leu Phe Ser Pro Glu  
 50 55 60  
 Ala Leu Lys Pro Leu Arg Asp Val Phe Gln Arg Asn Gln Gln Asp Gly  
 65 70 75 80  
 Gln Leu Glu Asp Ser Pro Gly Leu Trp Pro Gly Ala Gly Thr Ile Arg  
 85 90 95  
 Leu Glu Gln Asp Val Phe Ser Ala Leu Ala Gly Gln Gly Gln Ile Tyr  
 100 105 110  
 Val His Leu Thr Asp Gly Ile Trp Ser Gln Ile Lys Ser Ala Gly Ser  
 115 120 125  
 Ala Leu Tyr Ala Ser Arg Leu Tyr Leu Ser Arg Tyr Gln Asp Thr His  
 130 135 140  
 Pro Glu Arg Leu Ala Lys His Thr Pro Gly Gly Pro Trp Ile Arg Gly  
 145 150 155 160

<210> 190  
<211> 146  
<212> PRT  
<213> Homo sapien

<400> 190  
 Met Asp Pro Arg Ala Ser Leu Leu Leu Gly Asn Val Tyr Ile His  
 1 5 10 15  
 Pro Thr Ala Lys Val Ala Pro Ser Ala Val Leu Gly Pro Asn Val Ser  
 20 25 30  
 Ile Gly Lys Gly Val Thr Val Gly Gly Val Arg Leu Arg Glu Ser  
 35 40 45  
 Ile Val Leu His Gly Ala Thr Leu Gln Glu His Thr Cys Val Leu His  
 50 55 60  
 Ser Ile Val Gly Trp Gly Ser Thr Val Gly Arg Trp Ala Arg Val Glu

|                                                                 |     |     |    |
|-----------------------------------------------------------------|-----|-----|----|
| 65                                                              | 70  | 75  | 80 |
| Gly Thr Pro Ser Asp Pro Asn Pro Asn Asp Pro Arg Ala Arg Met Asp |     |     |    |
| 85                                                              | 90  | 95  |    |
| Ser Glu Ser Leu Phe Lys Asp Gly Lys Leu Leu Pro Ala Ile Thr Ile |     |     |    |
| 100                                                             | 105 | 110 |    |
| Leu Gly Cys Arg Val Arg Ile Pro Ala Glu Val Leu Ile Leu Asn Ser |     |     |    |
| 115                                                             | 120 | 125 |    |
| Ile Val Leu Pro His Lys Glu Leu Ser Arg Ser Phe Thr Asn Gln Ile |     |     |    |
| 130                                                             | 135 | 140 |    |
| Ile Leu                                                         |     |     |    |
| 145                                                             |     |     |    |

<210> 191  
 <211> 704  
 <212> PRT  
 <213> Homo sapien

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 1                                                               | 5   | 10  | 15  |
| Glu Gly Gly Cys Ala Ala Gly Arg Gly Arg Glu Leu Glu Pro Glu Leu |     |     |     |
| 20                                                              | 25  | 30  |     |
| Glu Ile Val Asp Arg Ser Gln Leu Pro Gly Pro Gly Asp Leu Arg Ser |     |     |     |
| 35                                                              | 40  | 45  |     |
| Ala Thr Arg Pro Arg Ala Ala Gly Trp Ser Ala Pro Ile Leu Thr     |     |     |     |
| 50                                                              | 55  | 60  |     |
| Leu Ala Arg Arg Ala Thr Gly Asn Leu Ser Ala Ser Cys Gly Ser Ala |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Leu Arg Ala Ala Gly Leu Gly Gly Asp Ser Gly Asp Gly Thr         |     |     |     |
| 85                                                              | 90  | 95  |     |
| Ala Arg Ala Ala Ser Lys Cys Gln Met Met Glu Glu Arg Ala Asn Leu |     |     |     |
| 100                                                             | 105 | 110 |     |
| Met His Met Met Lys Leu Ser Ile Lys Val Leu Leu Gln Ser Ala Leu |     |     |     |
| 115                                                             | 120 | 125 |     |
| Ser Leu Gly Arg Ser Leu Asp Ala Asp His Ala Pro Leu Gln Gln Phe |     |     |     |
| 130                                                             | 135 | 140 |     |
| Phe Val Val Met Glu His Cys Leu Lys His Gly Leu Lys Val Lys Lys |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Ser Phe Ile Gly Gln Asn Lys Ser Phe Phe Gly Pro Leu Glu Leu Val |     |     |     |
| 165                                                             | 170 | 175 |     |
| Glu Lys Leu Cys Pro Glu Ala Ser Asp Ile Ala Thr Ser Val Arg Asn |     |     |     |
| 180                                                             | 185 | 190 |     |
| Leu Pro Glu Leu Lys Thr Ala Val Gly Arg Gly Arg Ala Trp Leu Tyr |     |     |     |
| 195                                                             | 200 | 205 |     |
| Leu Ala Leu Met Gln Lys Lys Leu Ala Asp Tyr Leu Lys Val Leu Ile |     |     |     |
| 210                                                             | 215 | 220 |     |
| Asp Asn Lys His Leu Leu Ser Glu Phe Tyr Glu Pro Glu Ala Leu Met |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Met Glu Glu Glu Gly Met Val Ile Val Gly Leu Leu Val Gly Leu Asn |     |     |     |
| 245                                                             | 250 | 255 |     |
| Val Leu Asp Ala Asn Leu Cys Leu Lys Gly Glu Asp Leu Asp Ser Gln |     |     |     |
| 260                                                             | 265 | 270 |     |
| Val Gly Val Ile Asp Phe Ser Leu Tyr Leu Lys Asp Val Gln Asp Leu |     |     |     |
| 275                                                             | 280 | 285 |     |
| Asp Gly Gly Lys Glu His Glu Arg Ile Thr Asp Val Leu Asp Gln Lys |     |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 290                                                             | 295 | 300 |
| Asn Tyr Val Glu Glu Leu Asn Arg His Leu Ser Cys Thr Val Gly Asp |     |     |
| 305                                                             | 310 | 315 |
| Leu Gln Thr Lys Ile Asp Gly Leu Glu Lys Thr Asn Ser Lys Leu Gln |     | 320 |
| 325                                                             | 330 | 335 |
| Glu Glu Leu Ser Ala Ala Thr Asp Arg Ile Cys Ser Leu Gln Glu Glu |     |     |
| 340                                                             | 345 | 350 |
| Gln Gln Leu Arg Glu Gln Asn Glu Leu Ile Arg Glu Arg Ser Glu     |     |     |
| 355                                                             | 360 | 365 |
| Lys Ser Val Glu Ile Thr Lys Gln Asp Thr Lys Val Glu Leu Glu Thr |     |     |
| 370                                                             | 375 | 380 |
| Tyr Lys Gln Thr Arg Gln Gly Leu Asp Glu Met Tyr Ser Asp Val Trp |     |     |
| 385                                                             | 390 | 395 |
| Lys Gln Leu Lys Glu Glu Lys Lys Val Arg Leu Glu Leu Glu Lys Glu |     | 400 |
| 405                                                             | 410 | 415 |
| Leu Glu Leu Gln Ile Gly Met Lys Thr Glu Met Glu Ile Ala Met Lys |     |     |
| 420                                                             | 425 | 430 |
| Leu Leu Glu Lys Asp Thr His Glu Lys Gln Asp Thr Leu Val Ala Leu |     |     |
| 435                                                             | 440 | 445 |
| Arg Gln Gln Leu Glu Glu Val Lys Ala Ile Asn Leu Gln Met Phe His |     |     |
| 450                                                             | 455 | 460 |
| Lys Ala Gln Asn Ala Glu Ser Ser Leu Gln Gln Lys Asn Glu Ala Ile |     |     |
| 465                                                             | 470 | 475 |
| Thr Ser Phe Glu Gly Lys Thr Asn Gln Val Met Ser Ser Met Lys Gln |     | 480 |
| 485                                                             | 490 | 495 |
| Met Glu Glu Arg Leu Gln His Ser Glu Arg Ala Arg Gln Gly Ala Glu |     |     |
| 500                                                             | 505 | 510 |
| Glu Arg Ser His Lys Leu Gln Gln Glu Leu Gly Gly Arg Ile Gly Ala |     |     |
| 515                                                             | 520 | 525 |
| Leu Gln Leu Gln Leu Ser Gln Leu His Glu Gln Cys Ser Ser Leu Glu |     |     |
| 530                                                             | 535 | 540 |
| Lys Glu Leu Lys Ser Glu Lys Glu Gln Arg Gln Ala Leu Gln Arg Glu |     |     |
| 545                                                             | 550 | 555 |
| Leu Gln His Glu Lys Asp Thr Ser Ser Leu Leu Arg Met Glu Leu Gln |     | 560 |
| 565                                                             | 570 | 575 |
| Gln Val Glu Gly Leu Lys Lys Glu Leu Arg Glu Leu Gln Asp Glu Lys |     |     |
| 580                                                             | 585 | 590 |
| Ala Glu Leu Gln Lys Ile Cys Glu Glu Gln Glu Gln Ala Leu Gln Glu |     |     |
| 595                                                             | 600 | 605 |
| Met Gly Leu His Leu Ser Gln Ser Lys Leu Lys Met Glu Asp Ile Lys |     |     |
| 610                                                             | 615 | 620 |
| Glu Val Asn Gln Ala Leu Lys Gly His Ala Trp Leu Lys Asp Asp Glu |     |     |
| 625                                                             | 630 | 635 |
| Ala Thr His Cys Arg Gln Cys Glu Lys Glu Phe Ser Ile Ser Arg Arg |     | 640 |
| 645                                                             | 650 | 655 |
| Lys His His Cys Arg Asn Cys Gly His Ile Phe Cys Asn Thr Cys Ser |     |     |
| 660                                                             | 665 | 670 |
| Ser Asn Glu Leu Ala Leu Pro Ser Tyr Pro Lys Pro Val Arg Val Cys |     |     |
| 675                                                             | 680 | 685 |
| Asp Ser Cys His Thr Leu Leu Leu Gln Arg Cys Ser Ser Thr Ala Ser |     |     |
| 690                                                             | 695 | 700 |

&lt;210&gt; 192

&lt;211&gt; 331

&lt;212&gt; PRT

100

&lt;213&gt; Homo sapien

&lt;400&gt; 192

Arg Ala Gly Ala Ser Ala Met Ala Leu Arg Lys Glu Leu Leu Lys Ser  
 1 5 10 15  
 Ile Trp Tyr Ala Phe Thr Ala Leu Asp Val Glu Lys Ser Gly Lys Val  
 20 25 30  
 Ser Lys Ser Gln Leu Lys Val Leu Ser His Asn Leu Tyr Thr Val Leu  
 35 40 45  
 His Ile Pro His Asp Pro Val Ala Leu Glu Glu His Phe Arg Asp Asp  
 50 55 60  
 Asp Asp Gly Pro Val Ser Ser Gln Gly Tyr Met Pro Tyr Leu Asn Lys  
 65 70 75 80  
 Tyr Ile Leu Asp Lys Val Glu Glu Gly Ala Phe Val Lys Glu His Phe  
 85 90 95  
 Asp Glu Leu Cys Trp Thr Leu Thr Ala Lys Lys Asn Tyr Arg Ala Asp  
 100 105 110  
 Ser Asn Gly Asn Ser Met Leu Ser Asn Gln Asp Ala Phe Arg Leu Trp  
 115 120 125  
 Cys Leu Phe Asn Phe Leu Ser Glu Asp Lys Tyr Pro Leu Ile Met Val  
 130 135 140  
 Pro Asp Glu Val Glu Tyr Leu Leu Lys Val Leu Ser Ser Met Ser  
 145 150 155 160  
 Leu Glu Val Ser Leu Gly Glu Leu Glu Glu Leu Leu Ala Gln Glu Ala  
 165 170 175  
 Gln Val Ala Gln Thr Thr Gly Gly Leu Ser Val Trp Gln Phe Leu Glu  
 180 185 190  
 Leu Phe Asn Ser Gly Arg Cys Leu Arg Gly Val Gly Arg Asp Thr Leu  
 195 200 205  
 Ser Met Ala Ile His Glu Val Tyr Gln Glu Leu Ile Gln Asp Val Leu  
 210 215 220  
 Lys Gln Gly Tyr Leu Trp Lys Arg Gly His Leu Arg Arg Asn Trp Ala  
 225 230 235 240  
 Glu Arg Trp Phe Gln Leu Gln Pro Ser Cys Leu Cys Tyr Phe Gly Ser  
 245 250 255  
 Glu Glu Cys Lys Glu Lys Arg Gly Ile Ile Pro Leu Asp Ala His Cys  
 260 265 270  
 Cys Val Glu Val Leu Pro Asp Arg Asp Gly Lys Arg Cys Met Phe Cys  
 275 280 285  
 Val Lys Thr Ala Thr Arg Thr Tyr Glu Met Ser Ala Ser Asp Thr Arg  
 290 295 300  
 Gln Arg Gln Glu Trp Thr Ala Ala Ile Gln Met Ala Ile Arg Leu Gln  
 305 310 315 320  
 Ala Glu Gly Lys Thr Ser Leu His Lys Asp Leu  
 325 330

&lt;210&gt; 193

&lt;211&gt; 475

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 193

Lys Asn Ser Pro Leu Leu Ser Val Ser Ser Gln Thr Ile Thr Lys Glu  
 1 5 10 15  
 Asn Asn Arg Asn Val His Leu Glu His Ser Glu Gln Asn Pro Gly Ser

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 20                                                              | 25  | 30  |
| Ser Ala Gly Asp Thr Ser Ala Ala His Gln Val Val Leu Gly Glu Asn |     |     |
| 35                                                              | 40  | 45  |
| Leu Ile Ala Thr Ala Leu Cys Leu Ser Gly Ser Gly Ser Gln Ser Asp |     |     |
| 50                                                              | 55  | 60  |
| Leu Lys Asp Val Ala Ser Thr Ala Gly Glu Glu Gly Asp Thr Ser Leu |     |     |
| 65                                                              | 70  | 75  |
| Arg Glu Ser Leu His Pro Val Thr Arg Ser Leu Lys Ala Gly Cys His |     |     |
| 85                                                              | 90  | 95  |
| Thr Lys Gln Leu Ala Ser Arg Asn Cys Ser Glu Glu Lys Ser Pro Gln |     |     |
| 100                                                             | 105 | 110 |
| Thr Ser Ile Leu Lys Glu Gly Asn Arg Asp Thr Ser Leu Asp Phe Arg |     |     |
| 115                                                             | 120 | 125 |
| Pro Val Val Ser Pro Ala Asn Gly Val Glu Gly Val Arg Val Asp Gln |     |     |
| 130                                                             | 135 | 140 |
| Asp Asp Asp Gln Asp Ser Ser Leu Lys Leu Ser Gln Asn Ile Ala     |     |     |
| 145                                                             | 150 | 155 |
| Val Gln Thr Asp Phe Lys Thr Ala Asp Ser Glu Val Asn Thr Asp Gln |     |     |
| 165                                                             | 170 | 175 |
| Asp Ile Glu Lys Asn Leu Asp Lys Met Met Thr Glu Arg Thr Leu Leu |     |     |
| 180                                                             | 185 | 190 |
| Lys Glu Arg Tyr Gln Glu Val Leu Asp Lys Gln Arg Gln Val Glu Asn |     |     |
| 195                                                             | 200 | 205 |
| Gln Leu Gln Val Gln Leu Lys Gln Leu Gln Gln Arg Arg Glu Glu Glu |     |     |
| 210                                                             | 215 | 220 |
| Met Lys Asn His Gln Glu Ile Leu Lys Ala Ile Gln Asp Val Thr Ile |     |     |
| 225                                                             | 230 | 235 |
| Lys Arg Glu Glu Thr Lys Lys Ile Glu Lys Glu Lys Glu Phe         |     |     |
| 245                                                             | 250 | 255 |
| Leu Gln Lys Glu Gln Asp Leu Lys Ala Glu Ile Glu Lys Leu Cys Glu |     |     |
| 260                                                             | 265 | 270 |
| Lys Gly Arg Arg Glu Val Trp Glu Met Glu Leu Asp Arg Leu Lys Asn |     |     |
| 275                                                             | 280 | 285 |
| Gln Asp Gly Glu Ile Asn Arg Asn Ile Met Glu Glu Thr Glu Arg Ala |     |     |
| 290                                                             | 295 | 300 |
| Trp Lys Ala Glu Ile Leu Ser Leu Glu Ser Arg Lys Glu Leu Leu Val |     |     |
| 305                                                             | 310 | 315 |
| Leu Lys Leu Glu Ala Glu Lys Glu Ala Glu Leu His Leu Thr Tyr     |     |     |
| 325                                                             | 330 | 335 |
| Leu Lys Ser Thr Pro Pro Thr Leu Glu Thr Val Arg Ser Lys Gln Glu |     |     |
| 340                                                             | 345 | 350 |
| Trp Glu Thr Arg Leu Asn Gly Val Arg Ile Met Lys Lys Asn Val Arg |     |     |
| 355                                                             | 360 | 365 |
| Asp Gln Phe Asn Ser His Ile Gln Leu Val Arg Asn Gly Ala Lys Leu |     |     |
| 370                                                             | 375 | 380 |
| Ser Ser Leu Pro Gln Ile Pro Thr Pro Thr Leu Pro Pro Pro Pro Ser |     |     |
| 385                                                             | 390 | 395 |
| Glu Thr Asp Phe Met Leu Gln Val Phe Gln Pro Ser Pro Ser Leu Ala |     |     |
| 405                                                             | 410 | 415 |
| Pro Arg Met Pro Phe Ser Ile Gly Gln Val Thr Met Pro Met Val Met |     |     |
| 420                                                             | 425 | 430 |
| Pro Ser Ala Asp Pro Arg Ser Leu Ser Phe Pro Ile Leu Asn Pro Ala |     |     |
| 435                                                             | 440 | 445 |
| Leu Ser Gln Pro Ser Gln Pro Ser Ser Pro Leu Pro Gly Ser His Gly |     |     |
| 450                                                             | 455 | 460 |

Arg Asn Ser Pro Gly Leu Gly Ser Leu Val Ser  
 465                          470                          475

<210> 194  
 <211> 241  
 <212> PRT  
 <213> Homo sapien

<400> 194

Met Ser Gly Glu Ser Ala Arg Ser Leu Gly Lys Gly Ser Ala Pro Pro  
 1                        5                        10                        15  
 Gly Pro Val Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys  
 20                        25                        30  
 Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys Ala Lys Gly Ile Arg  
 35                        40                        45  
 His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe  
 50                        55                        60  
 Lys Lys Asn Pro Phe Gly Leu Val Pro Val Leu Glu Asn Ser Gln Gly  
 65                        70                        75                        80  
 Gln Leu Ile Tyr Glu Ser Ala Ile Thr Cys Glu Tyr Leu Asp Glu Ala  
 85                        90                        95  
 Tyr Pro Gly Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys  
 100                      105                        110  
 Gln Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly  
 115                      120                        125  
 Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Ala Gly Leu Lys Glu  
 130                      135                        140  
 Glu Phe Arg Lys Glu Phe Thr Lys Leu Glu Val Leu Thr Asn Lys  
 145                      150                        155                        160  
 Lys Thr Thr Phe Phe Gly Gly Asn Ser Ile Ser Met Ile Asp Tyr Leu  
 165                      170                        175  
 Ile Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys  
 180                      185                        190  
 Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys Glu  
 195                      200                        205  
 Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly  
 210                      215                        220  
 Phe Leu Glu Leu Tyr Leu Gln Asn Ser Pro Glu Ala Cys Asp Tyr Gly  
 225                      230                        235                        240  
 Leu

<210> 195  
 <211> 138  
 <212> PRT  
 <213> Homo sapien

<400> 195

Gln Thr Lys Ile Leu Glu Glu Asp Leu Glu Gln Ile Lys Leu Ser Leu  
 1                        5                        10                        15  
 Arg Glu Arg Gly Arg Glu Leu Thr Thr Gln Arg Gln Leu Met Gln Glu  
 20                        25                        30  
 Arg Ala Glu Glu Gly Lys Gly Pro Ser Lys Ala Gln Arg Gly Ser Leu  
 35                        40                        45  
 Glu His Met Lys Leu Ile Leu Arg Asp Lys Glu Lys Glu Val Glu Cys

|                                                                 |                                         |     |
|-----------------------------------------------------------------|-----------------------------------------|-----|
| 50                                                              | 55                                      | 60  |
| Gln Gln Glu His Ile His                                         | Glu Leu Gln Glu Leu Lys Asp Gln Leu Glu |     |
| 65                                                              | 70                                      | 75  |
| Gln Gln Leu Gln Gly Leu His Arg Lys Val Gly Glu Thr Ser Leu Leu |                                         | 80  |
| 85                                                              | 90                                      | 95  |
| Leu Ser Gln Arg Glu Gln Glu Ile Val Val Leu Gln Gln Gln Leu Gln |                                         |     |
| 100                                                             | 105                                     | 110 |
| Glu Ala Arg Glu Gln Gly Glu Leu Lys Glu Gln Ser Leu Gln Ser Gln |                                         |     |
| 115                                                             | 120                                     | 125 |
| Leu Asp Glu Ala Gln Arg Ala Leu Ala Gln                         |                                         |     |
| 130                                                             | 135                                     |     |

&lt;210&gt; 196

&lt;211&gt; 102

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 196

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Met Ser Lys Arg Lys Ala Pro Gln Glu Thr Leu Asn Gly Gly Ile Thr |    |    |
| 1                                                               | 5  | 10 |
| Asp Met Leu Thr Glu Leu Ala Asn Phe Glu Lys Asn Val Ser Gln Ala |    | 15 |
| 20                                                              | 25 | 30 |
| Ile His Lys Tyr Asn Ala Tyr Arg Lys Ala Ala Ser Val Ile Ala Lys |    |    |
| 35                                                              | 40 | 45 |
| Tyr Pro His Lys Ile Lys Ser Gly Ala Glu Ala Lys Lys Leu Pro Gly |    |    |
| 50                                                              | 55 | 60 |
| Val Gly Thr Lys Ile Ala Glu Lys Ile Asp Glu Phe Leu Ala Thr Gly |    |    |
| 65                                                              | 70 | 75 |
| Lys Leu Arg Lys Leu Glu Lys Ile Arg Gln Asp Asp Thr Ser Ser Ser |    | 80 |
| 85                                                              | 90 | 95 |
| Ile Asn Phe Leu Thr Arg                                         |    |    |
| 100                                                             |    |    |

&lt;210&gt; 197

&lt;211&gt; 138

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 197

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Glu Ala Asn Glu Val Thr Asp Ser Ala Tyr Met Gly Ser Glu Ser Thr |     |     |
| 1                                                               | 5   | 10  |
| Tyr Ser Glu Cys Glu Thr Phe Thr Asp Glu Asp Thr Ser Thr Leu Val |     | 15  |
| 20                                                              | 25  | 30  |
| His Pro Glu Leu Gln Pro Glu Gly Asp Ala Asp Ser Ala Gly Gly Ser |     |     |
| 35                                                              | 40  | 45  |
| Ala Val Pro Ser Glu Cys Leu Asp Ala Met Glu Glu Pro Asp His Gly |     |     |
| 50                                                              | 55  | 60  |
| Ala Leu Leu Leu Pro Gly Arg Pro His Pro His Gly Gln Ser Val     |     |     |
| 65                                                              | 70  | 75  |
| Ile Thr Val Ile Gly Gly Glu Glu His Phe Glu Asp Tyr Gly Glu Gly |     | 80  |
| 85                                                              | 90  | 95  |
| Ser Glu Ala Glu Leu Ser Pro Glu Thr Leu Cys Asn Gly Gln Leu Gly |     |     |
| 100                                                             | 105 | 110 |
| Cys Ser Asp Pro Ala Phe Leu Thr Pro Ser Pro Thr Lys Arg Leu Ser |     |     |
| 115                                                             | 120 | 125 |

Ser Lys Lys Val Ala Arg Tyr Leu His Gln  
 130 135

<210> 198  
 <211> 100  
 <212> PRT  
 <213> Homo sapien

<400> 198

Met Gly Asp Val Lys Asn Phe Leu Tyr Ala Trp Cys Gly Lys Arg Lys  
 1 5 10 15

Met Thr Pro Ser Tyr Glu Ile Arg Ala Val Gly Asn Lys Asn Arg Gln  
 20 25 30

Lys Phe Met Cys Glu Val Gln Val Glu Gly Tyr Asn Tyr Thr Gly Met  
 35 40 45

Gly Asn Ser Thr Asn Lys Lys Asp Ala Gln Ser Asn Ala Ala Arg Asp  
 50 55 60

Phe Val Asn Tyr Leu Val Arg Ile Asn Glu Ile Lys Ser Glu Glu Val  
 65 70 75 80

Pro Ala Phe Gly Val Ala Ser Pro Pro Pro Leu Thr Asp Thr Pro Asp  
 85 90 95

Thr Thr Ala Asn  
 100

<210> 199  
 <211> 127  
 <212> PRT  
 <213> Homo sapien

<400> 199

Met Val Lys Glu Thr Thr Tyr Tyr Asp Val Leu Gly Val Lys Pro Asn  
 1 5 10 15

Ala Thr Gln Glu Glu Leu Lys Lys Ala Tyr Arg Lys Leu Ala Leu Lys  
 20 25 30

Tyr His Pro Asp Lys Asn Pro Asn Glu Gly Glu Lys Phe Lys Gln Ile  
 35 40 45

Ser Gln Ala Tyr Glu Val Leu Ser Asp Ala Lys Lys Arg Glu Leu Tyr  
 50 55 60

Asp Lys Gly Gly Glu Gln Ala Ile Lys Glu Gly Gly Ala Gly Gly  
 65 70 75 80

Phe Gly Ser Pro Met Asp Ile Phe Asp Met Phe Phe Gly Gly Gly  
 85 90 95

Arg Met Gln Arg Glu Arg Arg Gly Lys Asn Val Val His Gln Leu Ser  
 100 105 110

Val Thr Leu Glu Asp Leu Tyr Asn Gly Ala Thr Arg Lys Leu Ala  
 115 120 125

<210> 200  
 <211> 90  
 <212> PRT  
 <213> Homo sapien

<400> 200

Met Ala Cys Pro Leu Asp Gln Ala Ile Gly Leu Leu Val Ala Ile Phe  
 1 5 10 15

His Lys Tyr Ser Gly Arg Glu Gly Asp Lys His Thr Leu Ser Lys Lys  
20 25 30  
Glu Leu Lys Glu Leu Ile Gln Lys Glu Leu Thr Ile Gly Ser Lys Leu  
35 40 45  
Gln Asp Ala Glu Ile Ala Arg Leu Met Glu Asp Leu Asp Arg Asn Lys  
50 55 60  
Asp Gln Glu Val Asn Phe Gln Glu Tyr Val Thr Phe Leu Gly Ala Leu  
65 70 75 80  
Ala Leu Ile Tyr Asn Glu Ala Leu Lys Gly  
85 90

&lt;210&gt; 201

&lt;211&gt; 120

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 201

Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser Gly Ala Gln Ala  
1 5 10 15  
Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg Leu Gln Glu Lys  
20 25 30  
Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val Tyr Ile Asp Arg  
35 40 45  
Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg Leu Arg Ile Thr  
50 55 60  
Glu Ser Glu Glu Val Val Ser Arg Glu Val Ser Gly Ile Lys Ala Ala  
65 70 75 80  
Tyr Glu Ala Glu Leu Gly Asp Ala Arg Lys Thr Leu Asp Ser Val Ala  
85 90 95  
Lys Glu Arg Ala Arg Leu Gln Leu Glu Leu Ser Lys Val Arg Glu Glu  
100 105 110  
Phe Lys Glu Leu Lys Ala Arg Asn  
115 120

&lt;210&gt; 202

&lt;211&gt; 177

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 202

Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile  
1 5 10 15  
Lys Met Glu Glu Glu Ser Gly Ala Pro Gly Val Pro Ser Gly Asn Gly  
20 25 30  
Ala Pro Gly Pro Lys Gly Glu Gly Glu Arg Pro Ala Gln Asn Glu Lys  
35 40 45  
Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr  
50 55 60  
Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe  
65 70 75 80  
Asp Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly  
85 90 95  
Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg  
100 105 110  
Gly Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 115                                                             | 120 | 125 |
| Ala Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val |     |     |
| 130                                                             | 135 | 140 |
| Lys Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala |     |     |
| 145                                                             | 150 | 155 |
| Gly Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val |     |     |
| 165                                                             | 170 | 175 |
| Gly                                                             |     |     |

<210> 203  
<211> 164  
<212> PRT  
<213> Homo sapien

&lt;400&gt; 203

|                                                                 |     |       |     |
|-----------------------------------------------------------------|-----|-------|-----|
| Met Arg Leu Ala Val Gly Ala Leu Leu Val Cys Ala Val Leu Gly Leu |     |       |     |
| 1                                                               | 5   | -- 10 | 15  |
| Cys Leu Ala Val Pro Asp Lys Thr Val Arg Trp Cys Ala Val Ser Glu |     |       |     |
| 20                                                              | 25  | 30    |     |
| His Glu Ala Thr Lys Cys Gln Ser Phe Arg Asp His Met Lys Ser Val |     |       |     |
| 35                                                              | 40  | 45    |     |
| Ile Pro Ser Asp Gly Pro Ser Val Ala Cys Val Lys Lys Ala Ser Tyr |     |       |     |
| 50                                                              | 55  | 60    |     |
| Leu Asp Cys Ile Arg Ala Ile Ala Ala Asn Glu Ala Asp Ala Val Thr |     |       |     |
| 65                                                              | 70  | 75    | 80  |
| Leu Asp Ala Gly Leu Val Tyr Asp Ala Tyr Leu Ala Pro Asn Asn Leu |     |       |     |
| 85                                                              | 90  | 95    |     |
| Lys Pro Val Val Ala Glu Phe Tyr Gly Ser Lys Glu Asp Pro Gln Thr |     |       |     |
| 100                                                             | 105 | 110   |     |
| Phe Tyr Tyr Ala Val Ala Val Val Lys Lys Asp Ser Gly Phe Gln Met |     |       |     |
| 115                                                             | 120 | 125   |     |
| Asn Gln Leu Arg Gly Lys Lys Ser Cys His Thr Gly Leu Gly Arg Ser |     |       |     |
| 130                                                             | 135 | 140   |     |
| Ala Gly Trp Asn Ile Pro Ile Gly Leu Leu Tyr Cys Asp Leu Pro Glu |     |       |     |
| 145                                                             | 150 | 155   | 160 |
| Pro Arg Lys Pro                                                 |     |       |     |

<210> 204  
<211> 241  
<212> PRT  
<213> Homo sapien

&lt;400&gt; 204

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Met Ser Gly Glu Ser Ala Arg Ser Leu Gly Lys Gly Ser Ala Pro Pro |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Gly Pro Val Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys |    |    |    |
| 20                                                              | 25 | 30 |    |
| Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys Ala Lys Gly Ile Arg |    |    |    |
| 35                                                              | 40 | 45 |    |
| His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe |    |    |    |
| 50                                                              | 55 | 60 |    |
| Lys Lys Asn Pro Phe Gly Leu Val Pro Val Leu Glu Asn Ser Gln Gly |    |    |    |
| 65                                                              | 70 | 75 | 80 |

Gln Leu Ile Tyr Glu Ser Ala Ile Thr Cys Glu Tyr Leu Asp Glu Ala  
           85                         90                         95  
 Tyr Pro Gly Lys Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys  
           100                     105                         110  
 Gln Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly  
           115                     120                         125  
 Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Asp Gly Leu Lys Glu  
           130                     135                         140  
 Glu Phe Arg Lys Glu Phe Thr Lys Leu Glu Glu Val Leu Thr Asn Lys  
           145                     150                         155                     160  
 Lys Thr Thr Phe Phe Gly Gly Asn Ser Ile Ser Met Ile Asp Tyr Leu  
           165                     170                         175  
 Ile Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys  
           180                     185                         190  
 Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys Glu  
           195                     200                         205  
 Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly  
           210                     215                         220  
 Phe Leu Glu Leu Tyr Leu Gln Asn Ser Pro Glu Ala Cys Asp Tyr Gly  
           225                     230                         235                     240  
 Leu

&lt;210&gt; 205

&lt;211&gt; 160

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 205

Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu  
   1                         5                         10                         15  
 Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp  
   20                         25                         30  
 Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys  
   35                         40                         45  
 Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu  
   50                         55                         60  
 Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe  
   65                         70                         75                         80  
 Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser  
   85                         90                         95  
 Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile  
   100                         105                         110  
 Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp  
   115                         120                         125  
 Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His  
   130                         135                         140  
 Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu  
   145                         150                         155                     160

&lt;210&gt; 206

&lt;211&gt; 197

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 206

Thr Ser Pro Ser Glu Ala Cys Ala Pro Leu Leu Ile Ser Leu Ser Thr  
 1               5               10               15  
 Leu Ile Tyr Asn Gly Ala Leu Pro Cys Gln Cys Asn Pro Gln Gly Ser  
 20              25              30  
 Leu Ser Ser Glu Cys Asn Pro His Gly Gly Gln Cys Leu Cys Lys Pro  
 35              40              45  
 Gly Val Val Gly Arg Arg Cys Asp Leu Cys Ala Pro Gly Tyr Tyr Gly  
 50              55              60  
 Phe Gly Pro Thr Gly Cys Gln Gly Ala Cys Leu Gly Cys Arg Asp His  
 65              70              75              80  
 Thr Gly Gly Glu His Cys Glu Arg Cys Ile Ala Gly Phe His Gly Asp  
 85              90              95  
 Pro Arg Leu Pro Tyr Gly Gly Gln Cys Arg Pro Cys Pro Cys Pro Glu  
 100             105             110  
 Gly Pro Gly Ser Gln Arg His Phe Ala Thr Ser Cys His Gln Asp Glu  
 115             120             125  
 Tyr Ser Gln Gln Ile Val Cys His Cys Arg Ala Gly Tyr Thr Gly Leu  
 130             135             140  
 Arg Cys Glu Ala Cys Ala Pro Gly His Phe Gly Asp Pro Ser Arg Pro  
 145             150             155             160  
 Gly Gly Arg Cys Gln Leu Cys Glu Cys Ser Gly Asn Ile Asp Pro Met  
 165             170             175  
 Asp Pro Asp Ala Cys Asp Pro His Thr Gly Gln Cys Leu Arg Cys Leu  
 180             185             190  
 His His Thr Glu Gly  
 195

&lt;210&gt; 207

&lt;211&gt; 175

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 207

Ile Ile Arg Gln Gln Gly Leu Ala Ser Tyr Asp Tyr Val Arg Arg Arg  
 1               5               10               15  
 Leu Thr Ala Glu Asp Leu Phe Glu Ala Arg Ile Ile Ser Leu Glu Thr  
 20              25              30  
 Tyr Asn Leu Leu Arg Glu Gly Thr Arg Ser Leu Arg Glu Ala Leu Glu  
 35              40              45  
 Ala Glu Ser Ala Trp Cys Tyr Leu Tyr Gly Thr Gly Ser Val Ala Gly  
 50              55              60  
 Val Tyr Leu Pro Gly Ser Arg Gln Thr Leu Ser Ile Tyr Gln Ala Leu  
 65              70              75              80  
 Lys Lys Gly Leu Leu Ser Ala Glu Val Ala Arg Leu Leu Glu Ala  
 85              90              95  
 Gln Ala Ala Thr Gly Phe Leu Leu Asp Pro Val Lys Gly Glu Arg Leu  
 100             105             110  
 Thr Val Asp Glu Ala Val Arg Lys Gly Leu Val Gly Pro Glu Leu His  
 115             120             125  
 Asp Arg Leu Leu Ser Ala Glu Arg Ala Val Thr Gly Tyr Arg Asp Pro  
 130             135             140  
 Tyr Thr Glu Gln Thr Ile Ser Leu Phe Gln Ala Met Lys Lys Glu Leu  
 145             150             155             160  
 Ile Pro Thr Glu Glu Ala Leu Arg Leu Trp Met Pro Ser Trp Pro

109

165

170

175

<210> 208  
 <211> 177  
 <212> PRT  
 <213> Homo sapien

&lt;400&gt; 208

Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile  
 1 5 10 15  
 Lys Met Glu Glu Glu Ser Gly Ala Pro Gly Val Pro Ser Gly Asn Gly  
 20 25 30  
 Ala Pro Gly Pro Lys Gly Glu Gly Glu Arg Pro Ala Gln Asn Glu Lys  
 35 40 45  
 Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr  
 50 55 60  
 Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe  
 65 70 75 80  
 Asp Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly  
 85 90 95  
 Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg  
 100 105 110  
 Gly Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala  
 115 120 125  
 Ala Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val  
 130 135 140  
 Lys Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Val  
 145 150 155 160  
 Met Ala Thr Thr Gly Gly Met Gly Met Gly Pro Gly Gly Pro Gly Met  
 165 170 175  
 Ile

<210> 209  
 <211> 196  
 <212> PRT  
 <213> Homo sapien

&lt;400&gt; 209

Asp Leu Gln Asp Met Phe Ile Val His Thr Ile Glu Glu Ile Glu Gly  
 1 5 10 15  
 Leu Ile Ser Ala His Asp Gln Phe Lys Ser Thr Leu Pro Asp Ala Asp  
 20 25 30  
 Arg Glu Arg Glu Ala Ile Leu Ala Ile His Lys Glu Ala Gln Arg Ile  
 35 40 45  
 Ala Glu Ser Asn His Ile Lys Leu Ser Gly Ser Asn Pro Tyr Thr Thr  
 50 55 60  
 Val Thr Pro Gln Ile Ile Asn Ser Lys Trp Glu Lys Val Gln Gln Leu  
 65 70 75 80  
 Val Pro Lys Arg Asp His Ala Leu Leu Glu Glu Gln Ser Lys Gln Gln  
 85 90 95  
 Ser Asn Glu His Leu Arg Arg Gln Phe Ala Ser Gln Ala Asn Val Val  
 100 105 110  
 Gly Pro Trp Ile Gln Thr Lys Met Glu Glu Ile Gly Arg Ile Ser Ile  
 115 120 125

Glu Met Asn Gly Thr Leu Glu Asp Gln Leu Ser His Leu Lys Gln Tyr  
 130 135 140  
 Glu Arg Ser Ile Val Asp Tyr Lys Pro Asn Leu Asp Leu Leu Glu Gln  
 145 150 155 160  
 Gln His Gln Leu Ile Gln Ala Leu Ile Phe Asp Asn Lys His Thr  
 165 170 175  
 Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu Leu Thr  
 180 185 190  
 Thr Ile Ala Arg  
 195

<210> 210  
 <211> 156  
 <212> PRT  
 <213> Homo sapien

<400> 210  
 Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly Lys Glu  
 1 5 10 15  
 Val Leu Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly Tyr Ser  
 20 25 30  
 Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val Gly Tyr  
 35 40 45  
 Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser Gly Arg  
 50 55 60  
 Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val Thr Gln  
 65 70 75 80  
 Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp Leu Val  
 85 90 95  
 Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu Pro Lys  
 100 105 110  
 Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys Asp Ala  
 115 120 125  
 Val Ala Phe Thr Cys Glu Pro Glu Val Gln Asn Thr Thr Tyr Leu Trp  
 130 135 140  
 Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Lys  
 145 150 155

<210> 211  
 <211> 92  
 <212> PRT  
 <213> Homo sapien

<400> 211  
 Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln  
 1 5 10 15  
 Arg Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr  
 20 25 30  
 Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly  
 35 40 45  
 Lys Glu Val Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly  
 50 55 60  
 Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile  
 65 70 75 80  
 Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly

11.1

85

90

<210> 212  
 <211> 142  
 <212> PRT  
 <213> Homo sapien

<400> 212

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Lys | Gln | Lys | Asn | Lys | Glu | Phe | Ser | Gln | Thr | Leu | Glu | Asn | Glu | Lys |
| 1   |     |     |     |     |     |     | 5   |     |     | 10  |     |     |     |     | 15  |
| Asn | Thr | Leu | Leu | Ser | Gln | Ile | Ser | Thr | Lys | Asp | Gly | Glu | Leu | Lys | Met |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |     |
| Leu | Gln | Glu | Glu | Val | Thr | Lys | Met | Asn | Leu | Leu | Asn | Gln | Gln | Ile | Gln |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     |     |     | 45  |     |
| Glu | Glu | Leu | Ser | Arg | Val | Thr | Lys | Leu | Lys | Glu | Thr | Ala | Glu | Glu | Glu |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |
| Lys | Asp | Asp | Leu | Glu | Glu | Arg | Leu | Met | Asn | Gln | Leu | Ala | Glu | Leu | Asn |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |
| Gly | Ser | Ile | Gly | Asn | Tyr | Cys | Gln | Asp | Val | Thr | Asp | Ala | Gln | Ile | Lys |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |
| Asn | Glu | Leu | Leu | Glu | Ser | Glu | Met | Lys | Asn | Leu | Lys | Lys | Cys | Val | Ser |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |
| Glu | Leu | Glu | Glu | Lys | Gln | Gln | Leu | Val | Lys | Glu | Lys | Thr | Lys | Val |     |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |
| Glu | Ser | Glu | Ile | Arg | Lys | Glu | Tyr | Leu | Glu | Lys | Ile | Gln | Gly |     |     |
|     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |

<210> 213  
 <211> 142  
 <212> PRT  
 <213> Homo sapien

<400> 213

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Gly | Tyr | Gly | Gly | Gly | Tyr | Gly | Gly | Val | Leu | Thr | Ala | Ser | Asp | Gly |
| 1   |     |     |     |     |     |     |     |     | 5   |     | 10  |     |     |     | 15  |
| Leu | Leu | Ala | Gly | Asn | Glu | Lys | Leu | Thr | Met | Gln | Asn | Leu | Asn | Asp | Arg |
|     |     |     |     |     |     |     |     |     | 20  |     | 25  |     |     | 30  |     |
| Leu | Ala | Ser | Tyr | Leu | Asp | Lys | Val | Arg | Ala | Leu | Glu | Ala | Ala | Asn | Gly |
|     |     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |
| Glu | Leu | Glu | Val | Lys | Ile | Arg | Asp | Trp | Tyr | Gln | Lys | Gln | Gly | Pro | Gly |
|     |     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |
| Pro | Ser | Arg | Asp | Tyr | Ser | His | Tyr | Tyr | Thr | Ile | Gln | Asp | Leu | Arg |     |
|     |     |     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     | 80  |
| Asp | Lys | Ile | Leu | Gly | Ala | Thr | Ile | Glu | Asn | Ser | Arg | Ile | Val | Leu | Gln |
|     |     |     |     |     |     |     |     | 85  |     | 90  |     |     | 95  |     |     |
| Ile | Asp | Asn | Ala | Arg | Leu | Ala | Ala | Asp | Asp | Phe | Arg | Thr | Lys | Phe | Glu |
|     |     |     |     |     |     |     |     | 100 |     | 105 |     |     | 110 |     |     |
| Thr | Glu | Gln | Ala | Leu | Arg | Met | Ser | Val | Glu | Ala | Asp | Ile | Asn | Gly | Leu |
|     |     |     |     |     |     |     |     | 115 |     | 120 |     |     | 125 |     |     |
| Arg | Arg | Val | Leu | Asp | Glu | Leu | Thr | Leu | Ala | Arg | Thr | Asp | Leu |     |     |
|     |     |     |     |     |     |     |     | 130 |     | 135 |     |     | 140 |     |     |

<210> 214  
 <211> 129  
 <212> PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 214

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Met | Arg | Val | Asp | Phe | Asn | Val | Pro | Met | Lys | Asn | Asn | Gln | Ile | Thr |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     |     | 15  |     |
| Asn | Asn | Gln | Arg | Ile | Lys | Ala | Ala | Val | Pro | Ser | Ile | Lys | Phe | Cys | Leu |
|     |     |     |     | 20  |     |     |     |     | 25  |     |     |     |     | 30  |     |
| Asp | Asn | Gly | Ala | Lys | Ser | Val | Val | Leu | Met | Ser | His | Leu | Gly | Arg | Pro |
|     |     |     |     | 35  |     |     |     | 40  |     |     |     |     | 45  |     |     |
| Asp | Gly | Val | Pro | Met | Pro | Asp | Lys | Tyr | Ser | Leu | Glu | Pro | Val | Ala | Val |
|     |     |     |     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |
| Glu | Leu | Arg | Ser | Leu | Leu | Gly | Lys | Asp | Val | Leu | Phe | Leu | Lys | Asp | Cys |
|     |     |     |     | 65  |     |     |     | 70  |     |     | 75  |     | 80  |     |     |
| Val | Gly | Pro | Glu | Val | Glu | Lys | Ala | Cys | Ala | Asn | Pro | Ala | Ala | Gly | Ser |
|     |     |     |     | 85  |     |     |     | 90  |     |     |     | 95  |     |     |     |
| Val | Ile | Leu | Leu | Glu | Asn | Leu | Arg | Phe | His | Val | Glu | Glu | Gly | Lys |     |
|     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |     |
| Gly | Lys | Asp | Ala | Ser | Gly | Asn | Lys | Val | Lys | Ala | Glu | Pro | Ala | Lys | Ile |
|     |     |     |     | 115 |     |     |     | 120 |     |     |     | 125 |     |     |     |
| Glu |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

&lt;210&gt; 215

&lt;211&gt; 148

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 215

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ala | Thr | Leu | Lys | Glu | Lys | Leu | Ile | Ala | Pro | Val | Ala | Glu | Glu | Glu |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |
| Ala | Thr | Val | Pro | Asn | Asn | Lys | Ile | Thr | Val | Val | Gly | Val | Gly | Gln | Val |
|     |     |     |     |     | 20  |     |     |     | 25  |     |     |     | 30  |     |     |
| Gly | Met | Ala | Cys | Ala | Ile | Ser | Ile | Leu | Gly | Lys | Ser | Leu | Ala | Asp | Glu |
|     |     |     |     |     | 35  |     |     |     | 40  |     |     |     | 45  |     |     |
| Leu | Ala | Leu | Val | Asp | Val | Leu | Glu | Asp | Lys | Leu | Lys | Gly | Glu | Met | Met |
|     |     |     |     |     | 50  |     |     |     | 55  |     |     | 60  |     |     |     |
| Asp | Leu | Gln | His | Gly | Ser | Leu | Phe | Leu | Gln | Thr | Pro | Lys | Ile | Val | Ala |
|     |     |     |     |     | 65  |     |     |     | 70  |     |     | 75  |     | 80  |     |
| Asp | Lys | Asp | Tyr | Ser | Val | Thr | Ala | Asn | Ser | Lys | Ile | Val | Val | Thr |     |
|     |     |     |     |     | 85  |     |     |     | 90  |     |     | 95  |     |     |     |
| Ala | Gly | Val | Arg | Gln | Gln | Glu | Gly | Glu | Ser | Arg | Leu | Asn | Leu | Val | Gln |
|     |     |     |     |     | 100 |     |     |     | 105 |     |     | 110 |     |     |     |
| Arg | Asn | Val | Asn | Val | Phe | Lys | Phe | Ile | Ile | Pro | Gln | Ile | Val | Lys | Tyr |
|     |     |     |     |     | 115 |     |     |     | 120 |     |     | 125 |     |     |     |
| Ser | Pro | Asp | Cys | Ile | Ile | Ile | Val | Val | Ser | Asn | Pro | Val | Asp | Ile | Leu |
|     |     |     |     | 130 |     |     |     | 135 |     |     | 140 |     |     |     |     |
| Thr | Tyr | Val | Thr |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     | 145 |     |     |     |     |     |     |     |     |     |     |     |

&lt;210&gt; 216

&lt;211&gt; 527

&lt;212&gt; PRT

&lt;213&gt; Homo sapien

&lt;400&gt; 216

Gln Arg Ala Pro Gly Ile Glu Glu Lys Ala Ala Glu Asn Gly Ala Leu  
 1 5 10 15  
 Gly Ser Pro Glu Arg Glu Glu Lys Val Leu Glu Asn Gly Glu Leu Thr  
 20 25 30  
 Pro Pro Arg Arg Glu Glu Lys Ala Leu Glu Asn Gly Glu Leu Arg Ser  
 35 40 45  
 Pro Glu Ala Gly Glu Lys Val Leu Val Asn Gly Gly Leu Thr Pro Pro  
 50 55 60  
 Lys Ser Glu Asp Lys Val Ser Glu Asn Gly Gly Leu Arg Phe Pro Arg  
 65 70 75 80  
 Asn Thr Glu Arg Pro Pro Glu Thr Gly Pro Trp Arg Ala Pro Gly Pro  
 85 90 95  
 Trp Glu Lys Thr Pro Glu Ser Trp Gly Pro Ala Pro Thr Ile Gly Glu  
 100 105 110  
 Pro Ala Pro Glu Thr Ser Leu Glu Arg Ala Pro Ala Pro Ser Ala Val  
 115 120 125  
 Val Ser Ser Arg Asn Gly Gly Glu Thr Ala Pro Gly Pro Leu Gly Pro  
 130 135 140  
 Ala Pro Lys Asn Gly Thr Leu Glu Pro Gly Thr Glu Arg Arg Ala Pro  
 145 150 155 160  
 Glu Thr Gly Gly Ala Pro Arg Ala Pro Gly Ala Gly Arg Leu Asp Leu  
 165 170 175  
 Gly Ser Gly Gly Arg Ala Pro Val Gly Thr Gly Thr Ala Pro Gly Gly  
 180 185 190  
 Gly Pro Gly Ser Gly Val Asp Ala Lys Ala Gly Trp Val Asp Asn Thr  
 195 200 205  
 Arg Pro Gln Pro Pro Pro Pro Pro Leu Pro Pro Pro Pro Glu Ala Gln  
 210 215 220  
 Pro Arg Arg Leu Glu Pro Ala Pro Pro Arg Ala Arg Pro Glu Val Ala  
 225 230 235 240  
 Pro Glu Gly Glu Pro Gly Ala Pro Asp Ser Arg Ala Gly Gly Asp Thr  
 245 250 255  
 Ala Leu Ser Gly Asp Gly Asp Pro Pro Lys Pro Glu Arg Lys Gly Pro  
 260 265 270  
 Glu Met Pro Arg Leu Phe Leu Asp Leu Gly Pro Pro Gln Gly Asn Ser  
 275 280 285  
 Glu Gln Ile Lys Ala Arg Leu Ser Arg Leu Ser Leu Ala Leu Pro Pro  
 290 295 300  
 Leu Thr Leu Thr Pro Phe Pro Gly Pro Gly Pro Arg Arg Pro Pro Trp  
 305 310 315 320  
 Glu Gly Ala Asp Ala Gly Ala Ala Gly Gly Glu Ala Gly Gly Ala Gly  
 325 330 335  
 Ala Pro Gly Pro Ala Glu Glu Asp Gly Glu Asp Glu Asp Glu Asp Glu  
 340 345 350  
 Glu Glu Asp Glu Glu Ala Ala Pro Gly Ala Ala Ala Gly Pro Arg  
 355 360 365  
 Gly Pro Gly Arg Ala Arg Ala Ala Pro Val Pro Val Val Val Ser Ser  
 370 375 380  
 Ala Asp Ala Asp Ala Ala Arg Pro Leu Arg Gly Leu Leu Lys Ser Pro  
 385 390 395 400  
 Arg Gly Ala Asp Glu Pro Glu Asp Ser Glu Leu Glu Arg Lys Arg Lys  
 405 410 415  
 Met Val Ser Phe His Gly Asp Val Thr Val Tyr Leu Phe Asp Gln Glu  
 420 425 430  
 Thr Pro Thr Asn Glu Leu Ser Val Gln Ala Pro Pro Glu Gly Asp Thr

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 435                                                             | 440 | 445 |
| Asp Pro Ser Thr Pro Pro Ala Pro Pro Thr Pro Pro His Pro Ala Thr |     |     |
| 450                                                             | 455 | 460 |
| Pro Gly Asp Gly Phe Pro Ser Asn Asp Ser Gly Phe Gly Gly Ser Phe |     |     |
| 465                                                             | 470 | 475 |
| Glu Trp Ala Glu Asp Phe Pro Leu Leu Pro Pro Pro Gly Pro Pro Leu |     |     |
| 485                                                             | 490 | 495 |
| Cys Phe Ser Arg Phe Ser Val Ser Pro Ala Leu Glu Thr Pro Gly Pro |     |     |
| 500                                                             | 505 | 510 |
| Pro Ala Arg Ala Pro Asp Ala Arg Pro Ala Gly Pro Val Glu Asn     |     |     |
| 515                                                             | 520 | 525 |

# INTERNATIONAL SEARCH REPORT

Int'l. Search Application No.

PCT/US 99/01642

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC 6 C12N15/12 A61K38/17 C07K14/47 C07K16/18 A61K35/14

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C12Q A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                    | Relevant to claim No. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | WO 96 30389 A (MILLENIUM PHARMACEUTICALS, INC.; SHYJAN A.) 3 October 1996<br>see page 112 - page 127                                                                                                                                                                                                  | 1-60                  |
| A          | WO 96 02552 A (CYTOCLONYL PHARMACEUTICS, INC.; TORCZYNSKI R. ET AL.) 1 February 1996<br>see the whole document                                                                                                                                                                                        | 1-60                  |
| A          | YOU L ET AL.: "Identification of early growth response gene-1 (Egr-1) as a phorbol myristate-induced gene in lung cancer cells by differential mRNA display" AM. J. RESPIR. CELL MOL. BIOL., vol. 17, no. 5, November 1997, pages 617-624, XP002106654<br>see page 618, left-hand column, paragraph 3 | 1,2,4-7               |



Further documents are listed in the continuation of box C.



Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the international search

21 June 1999

Date of mailing of the international search report

22.10.1999

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Authorized officer

CUPIDO, M

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/01642

### Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:  
**Remark:** Although claims 16, 17, 24-26, 32, 33, 48-53 and 56-58 are directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the composition.
2.  Claims Nos.:  
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

### Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see FURTHER INFORMATION sheet

1.  As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

see FURTHER INFORMATION sheet, subject 1.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.  
 No protest accompanied the payment of additional search fees.

# INTERNATIONAL SEARCH REPORT

Information on patent family members

|                 |                       |
|-----------------|-----------------------|
| Int'l           | Serial Application No |
| PCT/US 99/01642 |                       |

| Patent document cited in search report | Publication date | Patent family member(s) |       | Publication date |
|----------------------------------------|------------------|-------------------------|-------|------------------|
| WO 9630389                             | A 03-10-1996     | US 5633161 A            |       | 27-05-1997       |
|                                        |                  | AU 708746 B             |       | 12-08-1999       |
|                                        |                  | AU 5437896 A            |       | 16-10-1996       |
|                                        |                  | CA 2216717 A            |       | 03-10-1996       |
|                                        |                  | EP 0817792 A            |       | 14-01-1998       |
|                                        |                  | US 5674739 A            |       | 07-10-1997       |
| -----                                  | -----            | -----                   | ----- | -----            |
| WO 9602552                             | A 01-02-1996     | US 5589579 A            |       | 31-12-1996       |
|                                        |                  | AU 700915 B             |       | 14-01-1999       |
|                                        |                  | AU 3359295 A            |       | 16-02-1996       |
|                                        |                  | BR 9508417 A            |       | 18-11-1997       |
|                                        |                  | CA 2195403 A            |       | 01-02-1996       |
|                                        |                  | EP 0804451 A            |       | 05-11-1997       |
|                                        |                  | JP 10503087 T           |       | 24-03-1998       |
|                                        |                  | US 5773579 A            |       | 30-06-1998       |
| -----                                  | -----            | -----                   | ----- | -----            |