Unit 2

???

2.1 Lecture 4: Substitution Reactions

4/5: • Association/dissociation reactions.

- \bullet Fairly related to organic S_N2 and S_N1 reactions, respectively.
- General form:

$$ML_6 + L' \Longrightarrow ML_5L' + L$$

- We investigate the position of the equilibrium with the three main characteristics that determine reactivity.
 - 1. Sterics.
 - Related to the metal coordination number.
 - \blacksquare C.N. > 6 is typically disfavored.
 - \blacksquare C.N. < 6 is possible.
 - The size of L' is also important: If $L' = PPh_3$ for example, this is hard to get to C.N. > 4.
 - 2. Ligand character
 - In nonpolar media, dissociation of charged groups (e.g., Cl⁻) will be disfavored. However, the opposite is true in polar media.
 - This is because of the issue of making charge/ionizing.
 - The match between M and L (e.g., hard/soft, electron rich/poor) is also important.
 - For example, Fe⁰ will bind CO strongly since Fe⁰ is electron rich and CO is a π acceptor.
 - However, Fe^{IV} will not (as a hard, electron-poor metal center).
 - 3. Electronic structure of the metal center (whether or not the metal is electronically saturated [has 18 electrons]).
 - − 18 e⁻: it will not want to coordinate an additional L'.
 - 20 e⁻: it will want to dissociate.
 - 16 e⁻: it can associate.
 - However, it may not want to given that 16 e⁻ square-planar complexes are fairly stable.
 - The associated state may be a transition state in a square-planar ligand substitution or otherwise not a ground state.
- Ligand substitution reactions terms: **Kinetic** and **thermodynamic**.
- Kinetic (considerations): Elements are inert (slow) or labile (fast).
- Thermodynamic (considerations): Which side of an equilibrium will be favored. Elements are stable or reactive.

Unit 2 (???)

- In ligand substitution reactions, there are two limiting regimes:
 - 1. Associative substitution.
 - See the related discussion in Labalme (2021).
 - This is the most general reaction type, even for coordinatively saturated complexes.
 - Rate law:

$$\frac{\mathrm{d}[\mathrm{ML}_5\mathrm{L}']}{\mathrm{d}t} = k_{\mathrm{obs}}[\mathrm{ML}_6][\mathrm{L}']$$

- 2. Dissociative mechanism.
 - See the related discussion in Labalme (2021).
 - There are many things that look dissociative that are associative (e.g., instead of forming a 5-coordinate species, you could just have a molecule of the solvent displace a ligand).
 - This mechanism is rare and hard to prove.
 - Rate law:

$$\frac{d[ML_5L']}{dt} = \frac{k_2k_1[ML_6][L]}{k_{-1}[L] + k_2[L']}$$

- Experimentally, we swamp the reaction with L' so that [L'] >>> than all other reagents. This makes it so that the rate is just $k_{\text{obs}}[\text{ML}_6]$, i.e., pseudo-first order conditions.
- Unfortunately, much like in orgo, very few cases are at these extremes and we can have hybrids called...
 - 3. Interchange mechanisms.
 - See the related discussion in Labalme (2021).
 - Within this category, we can have I_a (associative interchange) and I_d (dissociative interchange).
 - In the transition state, we have L' coming in and L leaving at the same time.
- Kinetics and rates of these mechanisms.
- Several categories (measure with water exchange rates; see Labalme (2021)):
 - I) Very fast.
 - Alkali metals (species that primarily engage in ionic bonding; little covalent character).
 - $-10^8 \,\mathrm{s}^{-1}$; close to the diffusion limit.
 - II) Fast.
 - Higher valent ions; often M³⁺ such as Al³⁺.
 - Higher charge \Rightarrow higher ligand affinity \Rightarrow slightly slower but still pretty fast.
 - $-10^3 10^8 \,\mathrm{s}^{-1}$.
 - III) Slower.
 - Getting into the transition metals: Fe³⁺, V³⁺, Ti³⁺.
 - d-orbital splitting + covalency \Rightarrow stronger bonding \Rightarrow slower exchange rate.
 - -10^{1} - 10^{4} s⁻¹.
 - IV) Inert.

$$-\ {\rm Co^{3+},\,Cr^{3+},\,Pt^{2+},\,and\,\,Fe^{2+}(L.S.)}.$$

- $-10^{-8} \cdot 10^{-4} \, \mathrm{s}^{-1}$.
- The overlap between the rates reflects the fact that there is no hard and fast cut off between categories.
- The identity of L' also influences rates.
 - Reaction rates increase with the ligand field strength of $\mathcal{L}'^{[1]}$.

 $^{^{1}}$ Goes over Table IX.1 from Labalme (2021).

Unit 2 (???)

- Characteristics of the metal that control the observed rates.
 - $\ \, {\rm Ranking \ L.S. \ metal \ centers \ (slowest \ to \ fastest): \ } {\rm Co^{III} < Cr^{III} < Mn^{III} < Fe^{III} < Ti^{III} < V^{III}.$
 - Considering the d counts, we have $d^6 < d^3 < d^4 < d^5 < d^1 < d^2$.
 - Now think of this in terms of the *d*-orbitals splitting diagram (Figure 1.7b).
 - \blacksquare As the antibonding orbitals get filled, σ bonds will weaken, promoting a faster exchange.
 - Full and half-full t_{2q} also provides stability.
- Thus, we list the following configurations as inert and labile (see the related discussion in Labalme (2021)):
 - Inert: d^3 , L.S. $d^{4,5,6}$, and square planar d^8 .
 - Labile: d^0 , d^1 , d^2 , H.S. $d^{4,5,6}$, d^7 , d^9 , d^{10} .
- Other important kinetic factors:
 - 1. Oxidation state.
 - As oxidation state increases, exchange rate decreases (becomes more inert).
 - 2. Size.
 - Smaller ions are more inert.
 - However, first row ions are almost always labile (because they more readily populate higher spin states).
 - 3. Chelate effect.
 - Reviews some info from Labalme (2021).
 - Chelating ligands form a ring or a **metallacycle** (this is why 4,5-membered ligands are stable; because 5,6-membered rings are favorable).
 - Binding of a chelating ligand is typically favored, primarily due to entropic reasons (effective concentration is secondary).
 - Example: Gives actual $\Delta G = \Delta H T\Delta S$ thermodynamic data for the formation reaction of $\text{Cu}(\text{MeNH}_2)_4^{2+}$ vs. $\text{Cu}(\text{en})_2^{2+}$ to emphasize the importance of entropy (see the related discussion in the notes on Chapter 10 in Labalme (2021)).
 - EDTA is a hexadentate ligand that is commonly used in biology to pull all metal centers out of solution.
 - For Fe³⁺ for example, $K_f = 10^{25} \,\mathrm{mol}^{-1}$. What is mol⁻¹ and why is it here?
 - Sidenophones and euterobactin are biology's own chelaters $(K_f = 10^{52} \, \text{mol}^{-1})$.
 - These chelaters involved because if bacteria are going to invade a host, they need to scavenge iron, but iron is pretty tightly regulated. Thus, there has been an arms race of molecules that can scavenge iron or prevent iron from being scavenged.
 - Chelation therapy: If exposed to a heavy metal, you will be given chelating agents that will bind to metal ions and cause them to be excreted from the body.
 - 4. Trans effect.
 - Reviews some info from Labalme (2021).
 - Helps predict the **regiochemistry** of where a given ligand will substitute.
 - Cis-platin reaction mechanism: cis-Pt(NH₃)₂(Cl)₂ \longrightarrow cis-Pt(NH₃)₂(H₂O)₂ in the body, which binds to DNA on the cis-water side, causing a kink, stopping transcription, and initiating apoptosis.
 - Cis-platin is quite toxic (people are trying to develop formulations that are less so), but highly effective at stopping cancer.
 - Can't have *trans* because it doesn't have the *cis*-water side. Thus, this synthesis mechanism doesn't work: $[PtCl_4]^{2-} \xrightarrow{2 \text{ NH}_3} trans-Pt(NH_3)_2Cl_2$.

Unit 2 (???)

■ Therefore, we synthesize it as follows.

$$\begin{array}{c} \text{K}_2\text{PtCl}_4 \xrightarrow{4 \text{ KI}} \text{PtI}_4{}^2 - \\ \xrightarrow{2 \text{ NH}_3} cis\text{-Pt}(\text{NH}_3)_2(\text{I})_2 \\ \\ \xrightarrow{1) \text{AgNO}_3} 2) \text{XS KCl} & cis\text{-Pt}(\text{NH}_3)_2(\text{Cl})_2 \end{array}$$

- Note that we start from tetrachloroplatinate because it is the most common form of platinum.
- Also note that XS stands for "excess."
- Trans-effect order listed.
- The trans-effect is kinetic; concerned with rates of exchange.
 - Stronger *trans*-directors **labelize** the ligands opposite them.
- The trans influence is thermodynamic.
 - It influences the ground state structure, causing lengthening of bonds *trans* to a strong-field ligand (think of this in terms of competition for electrons on the central atom; a strong-field ligand will attract more of these, making the other bond weaker).
- Note that intramolecular reactions (such as a second binding of a bidentate chelating ligand) are highly favored.