VHDL

What is VHDL?

 \underline{V} H I S C \rightarrow Very High Speed Integrated Circuit

Hardware

Description

<u>L</u>anguage

IEEE Standard 1076-1993

History of VHDL

- Designed by IBM, Texas Instruments, and Intermetrics as part of the DoD funded VHSIC program
- Standardized by the IEEE in 1987: IEEE 1076-1987
- Enhanced version of the language defined in 1993: IEEE 1076-1993
- Additional standardized packages provide definitions of data types and expressions of timing data
 - IEEE 1164 (data types)
 - IEEE 1076.3 (numeric)
 - IEEE 1076.4 (timing)

Usage

- Descriptions can be at different levels of abstraction
 - Switch level: model switching behavior of transistors
 - Register transfer level: model combinational and sequential logic components
 - Instruction set architecture level: functional behavior of a microprocessor
- Descriptions can used for
 - Simulation
 - Verification, performance evaluation
 - Synthesis
 - First step in hardware design

Why do we Describe Systems?

- Design Specification
 - unambiguous definition of components and interfaces in a large design
- Design Simulation
 - verify system/subsystem/chip performance prior to design implementation
- Design Synthesis
 - automated generation of a hardware design

Digital System Design Flow

Description for Manufacture

- Design flows operate at multiple levels of abstraction
- Need a uniform description to translate between levels
- Increasing costs of design and fabrication necessitate greater reliance on automation via CAD tools
 - \$5M \$100M to design new chips
 - Increasing time to market pressures

A Synthesis Design Flow

- Automation of design refinement steps
- Feedback for accurate simulation
- Example targets: ASICs, FPGAs

Basic VHDL Concepts

- Interfaces
- Modeling (Behavior, Dataflow, Structure)
- Test Benches
- Analysis, elaboration, simulation
- Synthesis

Test Benches

- Testing a design by simulation
- Use a test bench model
 - an architecture body that includes an instance of the design under test
 - applies sequences of test values to inputs
 - monitors values on output signals
 - either using simulator
 - or with a process that verifies correct operation

Test Bench

module main;

```
reg a, b, c;
wire sum, carry;
fulladder add(a,b,c,sum,carry);
initial
begin
 a = 0; b = 0; c = 0;
  #5
 a = 0; b = 1; c = 0;
  #5
 a = 1; b = 0; c = 1;
  #5
 a = 1; b = 1; c = 1;
  #5
end
```

endmodule

Basic Structure of a VHDL File

• Entity

- Entity declaration:
 interface to outside
 world; defines input
 and output signals
- Architecture: describes the entity, contains processes, components operating concurrently

Entity Declaration

```
entity NAME_OF_ENTITY is
    port (signal_names: mode type;
        signal_names: mode type;
        :
        signal_names: mode type);
end [NAME_OF_ENTITY];
```

MVL - 9			
Uninitialized	' U'	Weak 1	Ή′
Don't Care	\- '	Weak 0	`L'
Forcing 1	11′	Weak Unknown	`W′
Forcing 0	`0'	High Impedance	`Z′
Forcing Unknown	`X'		

- NAME OF ENTITY: user defined
- signal_names: list of signals (both input and output)
- mode: in, out, buffer, inout
- type: boolean, integer, character, std_logic

Architecture

• Behavioral Model:

```
architecture architecture_name of NAME_OF_ENTITY
  is
```

-- Declarations

• • • • •

.

begin

-- Statements

end architecture name;

Half Adder


```
library ieee;
use ieee.std_logic_1164.all;
entity half adder is
port(
           x,y: in std_logic;
           sum, carry: out std_logic);
end half_adder;
architecture myadd of half_adder is
          begin
                    sum \le x xor y;
                    carry \leq x and y;
end myadd;
```

Entity Examples ...

One Entity Many Descriptions

• A system (an *entity*) can be specified with different

Text-books

- 1. Digital System Design using VHDL by C.H. Roth.
- 2. Circuit Design with VHDL by Volnei A. Pedroni;