ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.4.1 Определение теплоты испарения жидкости

> Серебренников Даниил Группа Б02-826

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисленеи по поулченным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиса.

В работе используются: термостат, герметический сосуд, заполненный водой, отсчетный микроскоп.

1 Теоретическая часть

1.1 Условие равновесия фаз

Фазами вешества называются его однородные части, различающиеся по физическим свойствам, отедленные друг от друга границами раздела. Для равновесия между фазами необходимо, как механчиеское равновесие, так и тепловое. Этого, однако, недостаточно, так как масса одной фазы может изменяться за счет другой. Только при определенном соотношении между давлением и температурой вдоль кривой фазового равновесия, определяемой равенством химических потенциалов, может реализоваться стационарное состояние с постоянным отношением количеств молекул в первой и второй фазе. Если потенциалы выражены как функции от давления и температуры, то, обозначая равные друг другу температуры и давления обеих фаз через T и P, мы получим уравнение

$$\mu_1(P,T) = \mu_2(P,T).$$
 (1)

1.2 Введение в кинетику фазовых переходов

Переход метастабильной фазы в устойчивую совершается путем флуктуационного возникновения в однородной среде небольших скоплений новой фазы — зародышей. Энергетически невыгодный эффект появления поверхности раздела приводит, однако, к тому, что при недостаточно больших размерах зародыша он оказывается неустойчивым и снова исчезает. Поэтому вся теория справедлива лишь для метастабильных состояний, не слишком близких к границе абсолютной неустойчивости фазы.

Стоит отметить, что при чисто термодинамическом подходе может поставлена задача лишь о вычислении вероятности флуктуационного возникновения зародышей различного размера в среде, которая при этом рассматривается как равновесная. Последнее обстоятельство имеет принципиальное значение. Поскольку состояние метастабильной фазы в действительности не отвечает полному статистическому равновесию, то такое рассмотрение относится лишь к временам, малым по сравнению со временем образования критических зародышей, за которым следует фактический переход в новую фазу, т. е. разрушение метастабильного состояния. По этой же причине такие большие флуктуации вообще не входят в тот набор макроскопических состояний, которые отвечают рассматриваемому (метастабильному) макроскопическому состоянию.

1.3 Формула Клапейрона-Клаузиса

Продифференцируем обе части условия равновесия (1) по температуре. При этом, разумеется, надо помнить, что давление P – не независимая переменная, а функция

 $^{^{1}}$ По определению химический потенциал $\mu = \frac{U-TS+PV}{N}$.

температуры. Поэтому пишем:

$$\frac{\partial \mu_1}{\partial T} + \frac{\partial \mu_1}{\partial P} \frac{\partial P}{\partial T} = \frac{\partial \mu_2}{\partial T} + \frac{\partial \mu_2}{\partial P} \frac{\partial P}{\partial T},$$

и, поскольку $(\partial \mu/\partial T)_P = -s, (\partial \mu/\partial P)_T = v$, получаем

$$\frac{dP}{dT} = \frac{s_1 - s_2}{v_1 - v_2},\tag{2}$$

где s_1, s_2 и v_1, v_2 – молекулярные энтропии и объёмы обеих фаз.

В этой формуле разность $s_1 - s_2$ удобно выразить через теплоту перехода из одной фазы в другую. Подставляя $q = T(s_2 - s_1)$, находим формулу Клапейрона-Клаузиса

$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)}. (3)$$

Рассмотрим частный случай формулы (3), когда речь идёт о равновесии твердого или жидкого тела с его паром. Тогда эта формула определяет изменение давления насыщенного пара с температурой. Объём газа обычно значительно больше объёма конденсированного тела, содержащего столько же частиц. Поэтому мы можем пренебречь в (3) объёмом v_1 по сравнению с объёмом v_2 (мы считаем второй фазой газ), то есть принять $dP/dT = q/(Tv_2)$. Рассматривая газ как идеальный газ, выразим его объём через давление и температуру согласно формуле $v_2 = RT/P$; тогда

$$q = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d\ln P}{d(1/T)}.$$
 (4)

Отметим, что в интервалах температуры, в которых теплоту перехода можно считать постоянной, давление насыщенного пара меняется с температурой по экспоненциальному закону $\sim \exp{(-q/T)}$.

2 Модель эксперимента

В основе эксперимента лежит манометр с ртутью, одно колено которого откачено до вакуума, а второе полностью заполнено насыщенным паром. Определить давление насыщенного пара над жидкостью можно, измеряя разность высот столбов ртути в коленах манометра по формуле

$$P = \rho q \Delta h - P_{H_2O},\tag{5}$$

где Δh – разность высот столбов ртути; P_{H_2O} – давление воды. Для измерения используется отсчетный микроскоп. После проведения измерений при различных температурах в процессе нагревания и остывания резервуара с жидкостью, определим теплоту испарения воды L:=q по формуле (4), используя результаты анализа зависимости $\ln P$ от 1/T.

3 Экспериментальные данные

В таблице 1 приведены параметры установки и случайные ошибки измерения величин, определяемых в ходе эксперимента.

Таблица 1: Некоторые параметры установки и ошибки измерений.

	ρ , Γ/cm^3	Δh , mm	T, K	g , $\mathrm{m/c^2}$	P_{H_2O} , Πa
Величина	13,546	26,3	273	9,81	258
Погрешность	0,0	0,2	0,1	0	2
ε , %	0	0,8	0,04	0	0,8

Результаты измерений разности столбов ртути и расчетов давления насыщенного пара представлены в таблице 2.

Таблица 2: Результаты измерений.

$T,^{\circ}C$	<i>T</i> , K	Δh , mm	P , к Π а	$T^{-1} \cdot 10^3, \text{ K}^{-1}$	$\ln P$			
Нагревание								
20	293	16,2	1,895	3,413	7,547			
25	298	21,1	2,546	3,356	7,842			
30	303	33,1	4,140	3,300	8,329			
35	308	38,9	4,911	3,247	8,499			
40	313	51,9	6,639	3,195	8,801			
45	318	67,5	8,712	3,145	9,072			
50	323	87,7	11,396	3,096	9,341			
	Охлаждение							
25	298	22,7	2,759	3,356	7,922			
30	303	30,6	3,808	3,300	8,245			
35	308	47,2	6,014	3,247	8,702			
40	313	52,6	6,732	3,195	8,815			
45	318	68,2	8,805	3,145	9,083			
50	323	87,7	11,396	3,096	9,341			

Построим графики (рис. 1) зависимости P=P(T). Для этого проведем аппроксимированные экспоненты в компьютерной программме «OriginPro».

Рис. 1: R = R(T).

Для анализа полученных кривых рассмотрим наши экспериментальные точки в координатах $(1/T, \ln P)$ (рис. 2). Линейную аппроксимацию произведем методом наименьших квадратов без учета погрешности измеряемых величин в силу их малости.

Рис. 2: Зависимость $\ln P$ от 1/T.

Таблица 3: Результаты анализа прямых, представленных на рис. 2.

	$d\ln P/dT^{-1}$	$\sigma_{d\ln P/dT^{-1}}$	L, кДж/моль	σ_L , кДж/моль	ε_L , %
	-5,6	0,2	47,0	1,7	3,6
ĺ	-5,4	0,4	45,0	3,3	7,3

4 Обсуждение результатов

С точки зрения равновесной термодинамики, тепловой эффект реакции, протекающей при постоянном давлении, равен изменению энтальпии системы: $Q_P = \Delta H$. Для расчета теплового эффекта при конкретной температуре можно применить уравнение Кирхгофа в интегральной форме:

$$\Delta H_T^0 = \Delta H_{298}^0 + \int_{298}^T \Delta C_P \, dT. \tag{6}$$

Откуда изменение энтальпии (теплота испарения) при фазовом переходе воды из жидкого агрегатного состояния в газовое:

$$\Delta_f H_T^0 = \Delta_f H_{298}^0 - \Delta C_P (T - 298), \tag{7}$$

где $\Delta C_P = C_P^{(\mathbf{r})} - C_P^{(\mathbf{x})}$, причём $C_P^{(\mathbf{r})} = C_P^{(\mathbf{r})}(T) = a + bT + c'T^{-2}$. Приведем справочную таблицу 4.

Таблица 4: Термодинамические величины для воды.

	Вещество	$\Delta_f H^0_{298}, \ $ кДж/моль	Теплоёмкость, Дж∕моль∙К				Томнородурний
			Коэффициенты ур-я $C_P^0 = f(T)$			C^0	Температурный интервал, К
			a	$b \cdot 10^3$	$c' \cdot 10^{-5}$	$C_{P, 298}$	интервал, к
ĺ	$H_2O^{(r)}$	-241,84	30	10,71	0,33	33,56	298-2500
ĺ	$H_2O^{(\mathrm{m})}$	-285,84	-	-	-	75,31	298

Используя формулу (7) и таблицу 4 получим зависимость теплоты испарения воды от температуры:

$$L[Дж/моль] = 44000 - (45, 31 - 10, 71 \cdot 10^{-3} \cdot T/[T] - 0, 33 \cdot 10^{5} \cdot [T^{2}]/T^{2})(T/[T] - 298)$$
 (8)

Вычислим теплоту испарения по формуле (8) при $T=318~{\rm K}$: $L=43,173~{\rm кДж/моль}$. Но экспериментально полученный нами результат $L=(47,0\pm1,7)~{\rm кДж/моль}$ был рассчитан в предположении, что в диапазоне температур от 293 K до 323 K теплоту испарения можно считать постоянной. Расхождение численных расчетов лишь подтверждает сильную зависимость L=L(T), то есть формулу (8). В этом случае наш результат завышен на 9%, можно убедиться, что если мы рассчитаем L при $T=318~{\rm K}$ по приближенной формуле, но более точной в том смысле, что приращение температуры мало, то получим менее завышенный результат: $L\approx\frac{RT^2}{P}\frac{\Delta P}{\Delta T}=45,1~{\rm кДж/моль}$ (завышен на 4,5%). Стоит отметить, что при охлаждении мы получили большую погрешность измерений. Увеличение погрешности может быть связано с уменьшением количества экспериментальных точек и тепловой инерционностью ртути.

Для повышения точности результатов, во-первых, необходимо уменьшить диапазон температур, в пределах которого рассчитываем теплоту испарения для опредленной температуры, во-вторых, можно учесть влияния насыщенного пара ртути, увеличения конденсата воды, изменения плотности ртути при нагревании.

5 Выводы

- 1. Нагревательный метод опредления теплоты испарения оказывается более эффективным.
- 2. Сравним экспериментальное значение теплоты испарения с теоретическим, убедились в ложности утверждения, что теплоту парообразования можно считать постоянной в диапазоне температур от 293 K до 323 K.
- 3. Теплота испарения сильно зависит от температуры.