Lecture 1: The Lennard-Jones Potential

Devon Walker

2016-10-14

The Lennard-Jones Potential

The Lennard-Jones (LJ) potential is perhaps the most commonly used potential in molecular dynamics simulations. It is used to describe the attractive and repulsive forces between two atoms.

$$V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

 ϵ is a constant energy, while σ is a constant length, and they are both interaction-specific. We can remove these constants by using the dimensionless form of the potential.

$$V_{LJ}(r) = 4\left[\left(\frac{1}{r^{\star}}\right)^{12} - \left(\frac{1}{r^{\star}}\right)^{6}\right]$$

References

- Lennard-Jones Potential. (2015). In *Chemistry LibreTexts*. http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
- McGaughey, A. (2016) Dimensionless LJ Potential. https://acatar-cmu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f5159578-a214-4a69-8256-0570d7a76e0e

Dimensionless LJ

We can calculate the energy using the dimensionless form of the LJ potential for a given distance. We can see the results in Figure 1.

Figure 1: LJ potential for several nobel gases.

Parameters for noble gases

We can also look at the previously determined parameters and calculate the non-dimensionless form of the LJ potential. Table 1 shows LJ parameters for the self-interaction of several noble gases.

Table 1: LJ parameters for noble gases.

Compound	ϵ/k_B [K]	$\sigma \ [10^{-12} \ \mathrm{m}]$
Ne	35.60	274.9
Ar	119.8	340.5
Kr	171.0	360.0
Xe	221.0	410.0

References

• de With, G. (2013). Liquid-State Physical Chemistry: Fundamentals, Modeling, and Applications. Retrieved October 13, 2016, from http://onlinelibrary.wiley.com/book/10. 1002/9783527676750

LJ for Noble Gases

We pull the data from the previous table directly into our code and then calculate the potential for each noble gas. Figure 2 shows the potential for each gas over the specified distance range.

Figure 2: LJ potential for several nobel gases.