

Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: Tronc commun scientifique

Durée totale : 5h

🖾 Contenus du programme :

• La projection sur une droite, la projection orthogonale, la projection sur un axe.

- Théorème de Thalés : sens direct et sens réciproque.
- Conservation du coefficient de colinéarité de deux vecteurs.

Les capacités attendues :

• Traduire vectoriellement le théorème de Thalés.

Recommandations pédagogiques :

- On évitera toute construction théorique de la notion de projection.
- On rappellera le théorème de Thalés (sens directe et sens réciproque) puis on introuira, à partir d'activités, la propriété de la conservation du coefficient de colinéarité de deux vecteurs par la projection.

1. Projection sur une droite :

Définition 1

Soient (D) et (Δ) deux droites sécantes du plan \mathcal{P} . Soit M un point de \mathcal{P} .

La droite parallèle à (Δ) et issue de M coupe la droite (D) en un point M'. Le point M' est appelé projeté du point M sur la droite (D) parallèlement à la droite (Δ) . On écrit : p(M) = M'. p est appelée projection sur (D) parallèlement à (Δ) .

Exemple 1

On considère la figure suivante :

2. Projection orthogonale :

Définition 2

Soient (D) et (Δ) deux droites perpondiculaires du plan \mathcal{P} .

Le point M', projeté de M sur (D) parallèlement à (Δ) , est appelé projetè orthogonal du point M sur la droite (D).

Proposition 1

Soient (D) et (Δ) deux droites sécantes du plan.

Le projeté de tout point de la droite (D) est lui-même, par la projection sur (D) parallèlement à (Δ) .

3. Théorème de Thalès:

Proposition 2

Soient (D_1) et (D_2) deux droites sécantes en un point A.

Soient M et B deux points de la droite (D_1) , distincts de A.

Soient N et C deux points de la droite (D_2) , distincts de A.

Si les deux droites (MN) et (BC) sont parallèles, alors : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

Remarque : Le thoérème de Thalès est utilisé pour calculer des longueurs.

Exemple 2

Dans les trois cas suivants, on a : $\begin{cases} A, \ M, \ B \text{ sont align\'es} \\ A, \ N, \ C \text{ sont align\'es} \\ (MN)//(BC) \end{cases}$

On en déduit : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

Application 1

Soit ABC un triangle. Les droites (IJ) et (BC) sont parallèles telles que : AI = 13, AJ = 5, AC = 39 et AB = x. Déterminer la valeur du réel x.

4. Réciproque du théorème de Thalès :

Proposition 3

Soient (D_1) et (D_2) deux droites sécantes en un point A.

Soient M et B deux points de la droite (D_1) , distincts de A.

Soient N et C deux points de la droite (D_2) , distincts de A.

Si $\frac{AM}{AB} = \frac{AN}{AC}$ et si les points A, B, M et les points A, C, N sont dans le même ordre, alors les droites (MN) et (BC) sont parallèles.

Application 2

On considére la figure ci-contre tel que :

$$AB = 45$$
$$AC = 30$$

$$AD = 33$$

$$AE = 22$$

Montrer que : (BC)//(DE).

5. Théorème de Thalès par la projection :

Proposition 4

Soient (D) et (L) deux droites.

Soit (Δ) une droite non parallèle à (D) et non parallèle à (L).

Soient A, B, C des points de (L) tels que A et B soient distincts.

Si A', B', C' sont les projetés respectifs de A, B, C sur (D) parallèlement à (Δ) alors : $\frac{AC}{AB} = \frac{A'C'}{A'B'}$.

6. Conservation du coefficient de colinéarité de deux vecteurs :

Proposition 5

Soient (Δ) et (Δ') deux droites sécantes.

Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs colinéaires tels que $\overrightarrow{CD} = k\overrightarrow{AB}$.

Si A', B', C', D' sont les projetés respectifs des points A, B, C et D sur (Δ') parallèlement à la droite (Δ) , alors $\overrightarrow{C'D'} = \overrightarrow{kA'B'}$.

Remarque

On exprime cette propriété en disant que la projection conserve le coefficient decolinéarité de deux vecteurs.

Application 3

Soit \boldsymbol{ABC} un triangle, \boldsymbol{M} et \boldsymbol{N} les points définis par :

$$3\overrightarrow{AM} = \overrightarrow{AB}$$
 et $\overrightarrow{AN} + 2\overrightarrow{AB} = \overrightarrow{0}$

Soient M' et N' les projetés respectifs de M et N sur la droite (AC) parallèlement à la droite (BC). Montrer que : $\overrightarrow{MM'} = \frac{1}{3}\overrightarrow{BC}$ et $\overrightarrow{NN'} = -2\overrightarrow{BC}$