Observação

Se todos os subconjuntos próprios de um conjunto finito de vetores são LI, o fato não significa que o conjunto seja LI. De fato, se considerarmos no \mathbb{R}^2 os vetores e_1 = (1,0), e_2 = (0,1) e v = (4,5), verificaremos que cada um dos subconjuntos $\{e_1,e_2\}$, $\{e_1,v\}$, $\{e_2,v\}$, $\{e_1\}$, $\{e_2\}$ e $\{v\}$ é LI, enquanto o conjunto $\{e_1,e_2,v\}$ é LD.

V) Se $A = \{v_1, ..., v_n\} \subset V$ é LI e $B = \{v_1, ..., v_n, w\} \subset V$ é LD, então w é combinação linear de $v_1, ..., v_n$.

De fato:

Como B é LD, existem escalares a_1, \ldots, a_n , b, nem todos nulos, tais que:

$$a_1 v_1 + ... + a_n v_n + bw = 0.$$

Ora, se b = 0, então algum dos a_i não é zero na igualdade:

$$a_1 v_1 + ... + a_n v_n = 0$$

Porém esse fato contradiz a hipótese de que A é LI. Consequentemente, tem-se $b \neq 0$, e, portanto:

$$bw = -a_1 v_1 - ... - a_n v_n$$

o que implica:

$$\mathbf{w} = -\frac{a_1}{b} \mathbf{v}_1 - \dots - \frac{a_n}{b} \mathbf{v}_n$$

isto é, w é combinação linear de v₁, ..., v_n.

2.8 BASE E DIMENSÃO

2.8.1 Base de um Espaço Vetorial

Um conjunto $B = \{v_1, ..., v_n\} \subset V$ é uma base do espaço vetorial V se:

- I) BéLI;
- II) B gera V.

Exemplos:

1) $B = \{(1, 1), (-1, 0)\} \text{ \'e base de } \mathbb{R}^2.$

De fato:

I) Bé LI, pois a(1, 1) + b(-1, 0) = (0, 0) implica:

$$\begin{cases} a - b = 0 \\ a = 0 \end{cases}$$

e daí:

$$a = b = 0$$

II) B gera \mathbb{R}^2 , pois para todo $(x, y) \in \mathbb{R}^2$, tem-se:

$$(x, y) = y(1, 1) + (y - x)(-1, 0)$$

Realmente, a igualdade

$$(x, y) = a(1, 1) + b(-1, 0)$$

implica:

$$\begin{cases} a - b = x \\ a = y \end{cases}$$

donde:

$$a = y e b = y - x$$

Os vetores da base B estão representados na Figura 2.8.1. Em 2.7.2 já havíamos visto que dois vetores não-colineares são LI. Sendo eles do IR², irão gerar o próprio IR². Na verdade, quaisquer dois vetores não-colineares do IR² formam uma base desse espaço.

Figura 2.8.1

B = $\{(1,0),(0,1)\}$ é base de \mathbb{R}^2 , denominada base canônica.

De fato:

- I) B \in LI, pois a (1, 0) + b (0, 1) = (0, 0) implica a = b = 0;
- II) B gera \mathbb{R}^2 , pois todo vetor $(x,y) \in \mathbb{R}^2$ é tal que:

$$(x, y) = x(1, 0) + y(0, 1)$$

Consideremos os vetores $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1).$ No exemplo 3 de 2.7.1 deixamos claro que o conjunto $B = \{e_1, e_2, ..., e_n\}$ é LI em \mathbb{R}^n . Tendo em vista que todo vetor $v = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ pode ser escrito como combinação linear de $e_1, e_2, ..., e_n$, isto é:

$$v = x_1 e_1 + x_2 e_2 + ... + x_n e_n$$

conclui-se que B gera o ${\rm I\!R}^n$. Portanto, B é uma base de ${\rm I\!R}^n$. Essa base é conhecida como base canônica do ${\rm I\!R}^n$.

Consequentemente:

 $\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}\$ é a base canônica de \mathbb{R}^4 ;

 $\{(1,0,0),(0,1,0),(0,0,1)\}\$ é a base canônica de \mathbb{R}^3 ;

 $\{(1,0),(0,1)\}\$ é a base canônica de \mathbb{R}^2 ;

{1} é a base canônica de IR.

4)
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é a base canônica de M(2, 2).

De fato:

$$\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} + b \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} + c \begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix} + d \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$$

ou:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

e daí:

$$a = b = c = d = 0$$
.

Portanto, B é LI.

Por outro lado, B gera o espaço M(2, 2), pois qualquer

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2, 2)$$

pode ser escrito assim:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Logo, B é base de M(2, 2).

71

O conjunto $B = \{1, x, x^2, ..., x^n\}$ é uma base do espaço vetorial P_n .

De fato:

$$a_0 1 + a_1 x + a_2 x^2 + ... + a_n x^n = 0$$

implica $a_0 = a_1 = a_2 = ... = a_n = 0$ pela condição de identidade de polinômios. Portanto, B é LI.

Por outro lado, B gera o espaço vetorial P_n , pois qualquer polinômio $p \in P_n$ pode ser escrito assim:

$$p = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

que é uma combinação linear de 1, x, x², ..., xⁿ.

Logo, B é uma base de P_n . Essa é a base canônica de P_n e tem n+1 vetores.

- $B = \{(1, 2), (2, 4)\}$ não é base de \mathbb{R}^2 , pois B é LD (exercício a cargo do leitor).
- $B = \{(1,0), (0,1), (3,4)\}$ não é base de \mathbb{R}^2 , pois B é LD (exercício a cargo do leitor).
- $B = \{(2, -1)\}$ não é base de \mathbb{R}^2 . B é LI, mas não gera todo \mathbb{R}^2 , isto é, $[(2, -1)] \neq \mathbb{R}^2$. Esse conjunto gera uma reta que passa pela origem.
- $B = \{(1, 2, 1), (-1, -3, 0)\}$ não é base de \mathbb{R}^3 . B é LI, mas não gera todo \mathbb{R}^3 .

Observação

"Todo conjunto LI de um espaço vetorial V é base do subespaço por ele gerado." Por exemplo, o conjunto $B = \{(1,2,1), (-1,-3,0)\} \subset \mathbb{R}^3$ é LI e gera o subespaço $S = \{(x, y, z) \in \mathbb{R}^3 / 3x - y - z = 0\}$

Então, B é base de S, pois B é LI e gera S.

2.8.2 Teorema

Se $B = \{v_1, v_2, ..., v_n\}$ for uma base de um espaço vetorial V, então todo conjunto com mais de n vetores será linearmente dependente.

De fato:

Seja $B' = \{w_1, w_2, ..., w_m\}$ um conjunto qualquer de m vetores de V, com m > n. Pretende-se mostrar que B' é LD. Para tanto, basta mostrar que existem escalares $x_1, x_2, ..., x_n$ não todos nulos tais que

$$x_1 w_1 + x_2 w_2 + ... + x_m w_m = 0$$
 (1)

Como B é uma base de V, cada vetor w, pertencente a B' é uma combinação linear dos vetores de B, isto é, existem números $\alpha_i, \beta_i, \dots, \delta_i$ tais que:

$$w_m = \delta_1 v_1 + \delta_2 v_2 + ... + \delta_n v_n$$

Substituindo as relações (2) em (1), obtemos:

$$x_1 (\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n) +$$
 $+ x_2 (\beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n) +$
 $...$
 $+ x_m (\delta_1 v_1 + \delta_2 v_2 + ... + \delta_n v_n) = 0$

ou ordenando os termos convenientemente:

$$(\alpha_{1}x_{1} + \beta_{1}x_{2} + ... + \delta_{1}x_{m}) v_{1} +$$

$$+ (\alpha_{2}x_{1} + \beta_{2}x_{2} + ... + \delta_{2}x_{m}) v_{2} +$$

$$...$$

$$+ (\alpha_{n}x_{1} + \beta_{n}x_{2} + ... + \delta_{n}x_{m}) v_{n} = 0$$

Tendo em vista que $v_1, v_2, ..., v_n$ são LI, os coeficientes dessa combinação linear são nulos:

$$\begin{cases} \alpha_1 x_1 + \beta_1 x_2 + ... + \delta_1 x_m = 0 \\ \alpha_2 x_1 + \beta_2 x_2 + ... + \delta_2 x_m = 0 \\ \vdots & \vdots & \vdots \\ \alpha_n x_1 + \beta_n x_2 + ... + \delta_n x_m = 0 \end{cases}$$

Esse sistema linear homogêneo possui m variáveis $x_1, x_2, ..., x_m$ e n equações. Como m > n, existem soluções não-triviais, isto ϵ , existe $x_i \neq 0$. Logo, $B' = \{w_1, w_2, ..., w_m\}$ ϵ LD.

2.8.3 Corolário

Duas bases quaisquer de um espaço vetorial têm o mesmo número de vetores.

De fato:

Sejam $A = \{v_1, ..., v_n\}$ e $B = \{w_1, ..., w_m\}$ duas bases de um espaço vetorial V.

Como A é base e B é LI, pelo teorema anterior, $n \ge m$. Por outro lado, como B é base e A é LI, tem-se $n \le m$. Portanto, n = m.

Exemplos

- A base canônica do R³ tem três vetores. Logo, qualquer outra base do R³ terá também três vetores.
- A base canônica de M(2, 2) tem quatro vetores. Portanto, toda base de M(2, 2) terá quatro vetores.

2.8.4 Dimensão de um Espaço Vetorial

Seja V um espaço vetorial.

- Se V possui uma base com n vetores, então V tem dimensão n e anota-se dim V = n.
- Se V não possui base, dim V = 0.

Se V tem uma base com infinitos vetores, então a dimensão de V é infinita e anota-se dim $V=\infty$.

Exemplos

- dim $\mathbb{R}^2 = 2$, pois toda base do \mathbb{R}^2 tem dois vetores.
- 2) $\dim \mathbb{R}^n = n$.
- 3) $\dim M(2, 2) = 4$.
- 4) $\dim M(m, n) \approx m \times n$.
- 5) $\dim P_n = n + 1$.
- 6) $\dim \{0\} = 0$.

Observações

Seja V um espaço vetorial tal que dim V = n.

Se S é um subespaço de V, então dim S $\!\!\!\!\leq n.$ No caso de dim S = n, tem-se S = V.

Para permitir uma interpretação geométrica, consideremos o espaço tridimensional \mathbb{R}^3 (dim $\mathbb{R}^3 = 3$).

A dimensão de qualquer subespaço S do \mathbb{R}^3 só poderá ser 0, 1, 2 ou 3. Portanto, temos os seguintes casos:

- I) $\dim S = 0$, então $S = \{0\}$ é a origem.
- II) dim S = 1, então S é uma reta que passa pela origem.

- Espaços vetoriais
- 73

- III) dim S = 2, então S é um plano que passa pela origem.
- IV) dim'S = 3, então S é o próprio \mathbb{R}^3 .
- Seja V um espaço vetorial de dimensão n. Então, qualquer subconjunto de V com mais de n vetores é LD.
- 3) Sabemos que um conjunto B é base de um espaço vetorial V se B for LI e se B gera V. No entanto, se soubermos que dim V = n, para obtermos uma base de V basta que apenas uma das condições de base esteja satisfeita. A outra condição ocorre automaticamente. Assim:
 - I) Se dim V = n, qualquer subconjunto de V com n vetores LI é uma base de V.
 - II) Se dim V = n, qualquer subconjunto de V com n vetores geradores de V é uma base de V.

Exemplo

O conjunto $B = \{(2, 1), (-1, 3)\}$ é uma base do \mathbb{R}^2 .

De fato, como dim \mathbb{R}^2 = 2 e os dois vetores dados são LI (pois nenhum vetor é múltiplo escalar do outro), eles formam uma base do \mathbb{R}^2 .

2.8.5 Teorema

Seja V um espaço vetorial de dimensão n.

Qualquer conjunto de vetores LI em V é parte de uma base, isto é, pode ser completado até formar uma base de V.

A demonstração está baseada no Teorema 2.7.2 e no conceito de dimensão.

Deixaremos de demonstrar o teorema e daremos apenas um exemplo a título de ilustração.

Exemplo

Sejam os vetores $v_1 = (1, -1, 1, 2)$ e $v_2 = (-1, 1, -1, 0)$.

Completar o conjunto { v₁, v₂ } de modo a formar uma base do IR⁴.

Solução

Como dim \mathbb{R}^4 = 4, uma base terá quatro vetores LI. Portanto, faltam dois. Escolhemos um vetor $v_3 \in \mathbb{R}^4$ tal que v_3 $n\bar{a}o$ seja uma combinação linear de v_1 e v_2 , isto é, $v_3 \neq a_1v_1 + a_2v_2$ para todo $a_1, a_2 \in \mathbb{R}$. Dentre os infinitos vetores existentes, um deles é o vetor $v_3 = (1, 1, 0, 0)$, e o conjunto $\{v_1, v_2, v_3\}$ é LI (se v_3 fosse combinação linear de v_1 e v_2 esse conjunto seria LD de acordo com o Teorema 2.7.2).

Para completar, escolhemos um vetor v_4 que $n\tilde{ao}$ seja uma combinação linear de v_1 , v_2 e v_3 . Um deles é o vetor v_4 = (1,0,0,0), e o conjunto $\{v_1,v_2,v_3,v_4\}$ é LI. Logo,

$$\{(1,-1,1,2),(-1,1,-1,0),(1,1,0,0),(1,0,0,0)\}$$

é uma base de IR4.

2.8.6 Teorema

Seja $B = \{v_1, v_2, ..., v_n\}$ uma base de um espaço vetorial V. Então, todo vetor $v \in V$ se exprime de maneira única como combinação linear dos vetores de B.

De fato:

Tendo em vista que B é uma base de V, para v∈ V pode-se escrever:

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \tag{1}$$

Supondo que o vetor v pudesse ser expresso como outra combinação linear dos vetores da base, ter-se-ia:

$$v = b_1 v_1 + b_2 v_2 + ... + b_n v_n$$
 (2)

Subtraindo, membro a membro, a igualdade (2) da igualdade (1), vem:

$$0 = (a_1 - b_1) v_1 + (a_2 - b_2) v_2 + ... + (a_n - b_n) v_n$$

Tendo em vista que os vetores da base são LI:

$$a_1 - b_1 = 0$$
, $a_2 - b_2 = 0$, ..., $a_n - b_n = 0$

isto é:

$$a_1 = b_1, \ a_2 = b_2, ..., a_n = b_n$$

Os números $a_1, a_2, ..., a_n$ são, pois, univocamente determinados pelo vetor v e pela base $\{v_1, v_2, ..., v_n\}$.

2.8.7 Componentes de um Vetor

Seja $B = \{v_1, v_2, ..., v_n\}$ uma base de V. Tomemos $v \in V$ sendo:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

Os números $a_1, a_2, ..., a_n$ são chamados componentes ou coordenadas de v em relação à base B e se representa por:

$$v_B = (a_1, a_2, ..., a_n)$$

ou, com a notação matricial:

$$\mathbf{v}_B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

A n-upla $(a_1, a_2, ..., a_n)$ é chamada vetor-coordenada de v em relação à base B, e o vetor-coluna

é chamado matriz-coordenada de v em relação à base B.

Exemplo

No IR2, consideremos as bases

$$A = \{(1,0),(0,1)\}, B = \{(2,0),(1,3)\} \in C = \{(1,-3),(2,4)\}$$

Dado o vetor v = (8, 6), tem-se:

$$(8, 6) = 8(1,0) + 6(0, 1)$$

$$(8,6) = 3(2,0) + 2(1,3)$$

$$(8, 6) = 2(1, -3) + 3(2, 4)$$

Com a notação acima, escrevemos:

$$v_A = (8, 6)$$
 $v_B = (3, 2)$ $v_C = (2, 3)$

O gráfico da página seguinte mostra a representação do vetor v = (8,6) em relação às.bases A e B.

Observação

No decorrer do estudo de Álgebra Linear temos, às vezes, a necessidade de identificar rapidamente a dimensão de um espaço vetorial. E, uma vez conhecida a dimensão, obtém-se facilmente uma base desse espaço.