

# Sistemas Trifásicos

Rodriguez Sebastian, Barón Karla, y Cruz Héctor est.{sebastianc.rod2, karla.baron, y hector.cruz}@unimilitar.edu.co
Profesor: Clavijo Juan

Resumen—Se analizaron varios circuitos trifásicos en configuración de delta y estrella, con el fin de realizar las respectivas mediciones de potencia y factor de potencia correspondientes.

Palabras clave—Circuito trifásico, potencia, factor de potencia, circuito Delta, circuito estrella.

### I.Introducción

Los sistemas trifásicos se caracterizan por tener tres líneas de transmisión de corriente alterna, que transmiten y transfieren la energía simultáneamente. Es por esto que, la finalidad de esta práctica es analizar las diferentes maneras en que se pueden dar estos sistemas, como lo en forma delta o estrella. Con estos, se analiza la potencia de cada uno, calculandolo desde diferentes impedancias, tanto reales (resistivas), como complejas (resistivo e inductivo), para este último, se postula la forma de mejorar uno de sus parámetros como el factor de potencia.

### A. Marco teórico

### Circuito trifásico

Es un circuito que está formado por tres corrientes alternas monofásicas de igual frecuencia y amplitud (y por consiguiente valor eficaz), que presentan una diferencia de fase entre ellas de 120° eléctricos, y están dadas en un orden determinado. Cada una de las corrientes monofásicas que forman el sistema se designa con el nombre de fase [1].



Figura 1: Desfase del sistema trifásico

### fuente y carga trifásica

Las fuentes y las cargas trifásicas se pueden encontrar de dos formas, en delta o estrella.

**Estrella**: Las fuentes o las cargas tienen un nodo en común, el neutro, y tres salidas una por cada positivo de cada fuente o cada carga como se ve en la figura 2.



Figura 2: Conexión configuración estrella a la fuente trifásica

**Delta**: Las fuentes o las cargas están unidas entre sí de forma que se acoplan positivo con negativo entre ellas, creando un círculo cerrado en el que se crean 3 nodos los cuales son las salidas o las conexiones en las fuentes y las cargas respectivamente como se ve en la figura 3.



Figura 3: Conexión configuración delta la fuente trifásica

Sin importar si es estrella o delta, las fuentes generan tres líneas de alimentación, con igual voltaje, pero desfasadas 120° entre ellas, por lo que habrá un con fase 0°, otra con +120° y una tercera -120° (ó 240°) generando así la figura 1 ya mencionada.

Cuando las cargas son de igual magnitud, se entiende que están balanceadas. Una carga desbalanceada (cargas desiguales) impediría que las fases estuvieran separadas 120° entre ellas por lo que presenta fallos e impediría su correcto funcionamiento.[2]



A continuación se ve la conexión de una carga trifásica en **triángulo** a una red trifásica de tensión VLinea.

Según las definiciones de tensiones de fase y línea se tiene que  $V_{linea} = V_{fase}$  y por otro lado, la relación entre la corriente de

fase y de línea toma el valor de  $I_{linea} = \sqrt{3}I_{fase}[3]$ .



Fig. 4: Relación Voltajes Corrientes de Fase y de Línea en Delta.

A continuación se ve la conexión de una carga trifásica en **estrella** a una red trifásica de tensión V Línea.

Según las definiciones de tensiones de fase y línea se tiene que  $I_{linea}=I_{fase}$  y por otro lado, la relación entre la corriente de fase y de línea toma el valor de  $V_{linea}=\sqrt{3}V_{fase}[3]$ .



Fig. 5: Relación Voltajes Corrientes de Fase y de Línea en Estrella.

#### II.COMPETENCIAS A DESARROLLAR

Para recibir, la práctica cada grupo debe presentar primero preinforme, en donde deben aparecer los correspondientes análisis de las mediciones realizadas.

- Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.
  - Identifica los parámetros asociados a la problemática, sus variables de entrada y los resultados esperados.

- Formula y ejecuta el protocolo de experimentación.
- Analiza e interpreta los resultados obtenidos tras la experimentación.
- Concluye sobre los resultados obtenidos, aplicando juicios de ingeniería.
- 2. Habilidad para comunicarse efectivamente ante un rango de audiencias.
  - Presenta sus ideas en forma clara y concisa, utilizando un lenguaje apropiado al contexto.
  - Sustenta con dominio la solución planteada.
  - Redactar apropiadamente informes utilizando formatos estandarizados, referenciando, y utilizando reglas gramaticales y ortográficas.

### III.DESARROLLO DE LA PRÁCTICA

1. Diseñe un circuito trifásico resistivo en triángulo, para VL = 220V, IL = 15A, realice mediciones de corriente y voltaje tanto en la fuente como en la carga.

### **SOLUCIÓN:**

Para encontrar las impedancias del sistema trifásico balanceado se realiza la ley de ohm con el voltaje y la corriente de línea, entonces :

$$V_l = I_l * Z$$

Sí  $V_l = 220 V$  y  $I_l = 15 A$ , se transforma la corriente de línea a corriente de fase :

$$I_f = \frac{I_l}{\sqrt{3}} = \frac{15}{\sqrt{3}} = 8,66$$

Entonces:

$$Z = \frac{220V}{866.4} = 25,40 \Omega$$



Fig. 6: Resultados de la simulación en delta de impedancia resistiva. (Anexo 1)



Se mantiene la resistencia igual , es decir : $R=25,40\,\Omega$ , con esto, se determina la corriente del circuito ( $I_f=I_I$ ):

2. Evalúe la potencia en el circuito y determine el factor de potencia.

### **SOLUCIÓN:**

Para evaluar la potencia del circuito se evalúa en el tiempo, entonces :

$$V(t) = V_{m}Cos(wt + \theta v)$$
  
$$I(t) = I_{m}Cos(wt + \theta i)$$

Entonces se tiene:

$$P(t) = V(t) I(t)$$

$$P(t) = V_{m} Cos(wt + \theta v) I_{m} Cos(wt + \theta i)$$

Entonces la potencia instantánea queda:

$$P(t) = V_m I_m Cos(wt + \theta v) Cos(wt + \theta i)$$

Sí se simplifica por identidades trigonométricas queda:

$$P(t) = V_m I_m \frac{1}{2} \left( Cos \left( wt + \theta v - wt - \theta i \right) + Cos \left( wt + \theta v + 4 \right) \right)$$

$$P(t) = \frac{V_{mm}^{I} Cos (\theta v - \theta i)}{2} + \frac{V_{mm}^{I} Cos (2wt + \theta v + \theta i)}{2}$$

Como la segunda parte de la ecuación es dependiente del tiempo no representa un trabajo útil, a la expresión que queda se le llama Potencia Promedio (Activa), si analizamos esta potencia en una resistencia tenemos:



Fig. 7 Ángulo de la tensión y de la corriente en una resistencia

El ángulo de la tensión y de la corriente en una resistencia son iguales :

$$\theta v = \theta i$$

Entonces:

$$Cos(\theta v - \theta i) = 1$$

Por lo tanto, si el circuito es resistivo entonces el factor de potencia es igual a 1.

3. Cambie el circuito a estrella, manteniendo los mismos valores de R que usó en el punto 1 y realice nuevamente las mediciones correspondientes.

# **SOLUCIÓN:**

Para realizar el circuito en estrella sabemos que  $V_f = \frac{v_t}{\sqrt{3}}$ y como el voltaje de línea es 220 entonces :

$$V_f = \frac{220}{\sqrt{3}} = 127,01V$$

to, se determina la corriente del circuito ( $I_f = I_l$ 

$$I_f = \frac{127,01}{25,40} = 5.0 A$$



Fig. 8: Resultados de la simulación en estrella de impedancia resistiva. (Anexo 2)

Repita los puntos 1 a 3 para carga RL, VL = 220V IL = 12A, FP=0.7

PUNTO 1: Diseñe un circuito trifásico resistivo en triángulo, realice mediciones de corriente y voltaje tanto en la fuente como en la carga.

Para realizar el circuito en delta sabemos que  $V_f = V_l$  y para sacar la corriente determinamos :

$$I_f = \frac{I_l}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 6,92A$$

Para sacar la resistencia del circuito se realiza ley de ohm de la siguiente manera :

$$V_f = I_f R$$

Entonces la resistencia necesaria para mantener la corriente y el voltaje del circuito es :

$$R = \frac{V_f}{I_c} = \frac{220}{6,92} = 31,791\Omega$$

Ahora como se pide un circuito de tipo RL, se le coloca el ángulo del factor de potencia a la resistencia ya encontrada, por tanto :

$$Cos(\phi) = (0.7)$$
  
 $\phi = Cos^{-1}(0.7) = 45,57^{\circ}$ 

Entonces:

$$Z = 31,791 \angle 45,57$$



Pasándolo a polar queda:

$$Z = 22,25 + 22,70i$$

Sabiendo que la inductancia se despeja de  $\boldsymbol{Z}_l = j\boldsymbol{w}l$ entonces queda :

$$l = \frac{22,70}{2\pi * 60} = 60m H$$



Figura 9: Resultados de la simulación impedancia delta RL. (Anexo 3)

# PUNTO 2: Evalúe la potencia en el circuito y determine el factor de potencia.

El factor de potencia ya es dado en el anunciado, FP = 0.7, si se quiere evaluar la potencia del circuito entonces tenemos :

En el caso de la potencia activa como se demostró en el punto dos para una resistencia es 1, sin embargo para una inductancia esto cambia pues el voltaje está adelantado a la corriente 90°, entonces :

$$\theta_{v} - \theta_{i} = 90$$

$$Cos (\theta_{v} - \theta_{i}) = 0$$

Para la potencia reactiva se evalúa con la función seno, entonces para una resistencia la potencia reactiva queda :

$$\theta_{v} - \theta_{i} = 0$$

$$Sen (\theta_{v} - \theta_{i}) = 0$$

Pero para la inductancia se tiene :

$$\theta_v - \theta_i = 90$$
  
 $Sen(\theta_v - \theta_i) = 1$ 

Al usar las ecuaciones de las potencias para el circuito queda:

$$S = V_f I_f$$
  
 $S = (220)(6, 92) = 1522, 4 V_A$ 

$$P = S Cos (\varphi)$$
  
 $P = (1522, 4) (0.7) = 1065, 68 W$ 

$$Q = S Sen (\varphi)$$
  
 $Q = (1522, 4) Sen (45, 57) = 1087, 15V_{Ar}$ 

# PUNTO 3: Cambie el circuito a estrella, manteniendo los mismos valores de R que usó en el punto 1 y realice nuevamente las mediciones correspondientes.

Para realizar el circuito en estrella sabemos que  $V_f = \frac{V_l}{\sqrt{3}} y$  como el voltaje de línea es 220 entonces :

$$V_f = \frac{220}{\sqrt{3}} = 127,01V$$

Al mantener la impedancia igual (Z = 22, 25 + 22, 70i) entonces para sacar la corriente primero se hace realiza la magnitud de la impedancia, entonces :

$$R = \sqrt{22, 25^2 + 22, 70^2} = 31,78 \,\Omega$$

Ahora se determina la corriente del circuito  $(I_f = I_j)$ :

$$I_f = \frac{127,01}{31,78} = 3,99 A$$

Las potencias del circuito quedan:

$$S = V_f I_f$$
  
 $S = (127,01)(3,99) = 506,76 V_A$ 

$$P = S Cos(\varphi)$$
  
 $P = (506, 76)(0.7) = 354, 73 W$ 

$$Q = S Sen (\varphi)$$
  
 $Q = (506, 76) Sen (45, 57^{\circ}) = 361, 88V_{Am}$ 



Fig. 10: Resultado simulación circuito en estrella para RL. (Anexo 4)

# 5. Utilice condensadores para mejorar el FP a 0.9, analice sus resultados.

Para mejorar el factor de potencia primero debemos analizar la potencia reactiva que se tiene, como ya se analizó anteriormente tenemos :

### **PARA DELTA:**



$$Q = S Sen (\varphi)$$

$$Q = (1522, 4) Sen (45, 57^{\circ}) = 1087, 15V_{Ar}$$

$$Q_{T} = Q * 3 = 1087, 15V_{Ar} * 3 = 3261, 45V_{Ar}$$

Ahora determinamos la potencia reactiva con el factor de potencia que necesitamos, es decir FP = 0.9, entonces :

$$\theta = Cos^{-1}(0.9)$$
  
 $\theta = 25,84^{\circ}$ 

La potencia reactiva la podemos encontrar como :

$$Tng(\varphi) = \frac{Q_{Fp=0.9}}{P}$$

para la potencia activa, la podemos encontrar con los datos anteriores :

$$FP_{0.7} = \frac{P}{S}$$
(6, 92)(220)(0.7) = P = 1065, 68 W
$$P_{T} = P * 3 = 3197, 04 W$$

Entonces:

$$Q_{Fp=0.9} = 3197,04 W * Tng (25,84^{\circ}) = 1548,26 V_{Ar}$$

Ya teniendo la potencia que queremos podemos decir que :

$$Q_{Total} - Q_{capacitor} = Q_{factor de 0.9}$$

Entonces:

3261, 
$$45V_{Ar} - Q_{c} = 1548, 26V_{Ar}$$
  
 $Q_{c} = 1713, 19V_{Ar}$ 

Ahora sabiendo que  $Q_c = \frac{V_f^2}{X_c}$  y que  $X_c = \frac{1}{wc}$  entonces :

$$w = 60 (2\pi) = 376,99 \, rad/s$$
  
 $X_c = \frac{1}{376,99 \, c}$ 

$$Q_c = \frac{V_f^2}{\frac{1}{376.99 c}} = 376,99 C V_f^2$$

$$C = \frac{Q_c}{376,99V_f^2} = \frac{\frac{1713,19}{3}}{376,99(220^2)} = 31,29\mu F$$

Como el condensador no es comercial se escoge el condensador de  $33\mu F$  que si es comercial.



Fig. 11: Resultado simulación circuito en delta para RL con corrección de potencia. (Anexo 5)

### **PARA ESTRELLA:**

Se utiliza el mismo capacitor que para delta, es decir 33µF.



Fig. 12: Resultado simulación circuito en estrella para RL con corrección de potencia. (Anexo 6)

Con esto se puede entender la importancia de un factor de potencia cercano a 1 ya que lo ideal de los circuitos trifásicos es tener un FP = 1 y así tener el máximo trabajo posible.

También podemos concluir que la corrección del factor de potencia permite aumentar la eficiencia y la calidad de energía del mismo.

### I. CONCLUSIONES

- Para una configuración de fuente en estrella y carga en delta el voltaje de línea es igual al voltaje de fase, y de igual forma para la misma fuente, pero la carga en estrella la corriente de línea es igual a la corriente de fase.
- Cuando se conecta el capacitor en paralelo a la impedancia, se corrige el factor de potencia, esto de debe a la relación fasorial de las impedancias entre



- capacitancia e inductancia, pudiendo así con la capacitancia contrarrestar fasorialmente los efectos de la potencia reactiva en el sistema trifásico equilibrado.
- ➤ El análisis de potencia para corregir el factor de potencia se debe realizar con la potencia total.
- ➤ Al momento de analizar los circuitos en delta y en estrella se concluye que la configuración de la fuente es irrelevante para el cálculo del circuito.

#### REFERENCIAS

- Angarita, P., 2021. [online] Selectromecanicosu.wixsite.com. Available at: <a href="https://selectromecanicosu.wixsite.com/seuv/sistemas-trifasicos">https://selectromecanicosu.wixsite.com/seuv/sistemas-trifasicos</a> [Accessed 9 February 2021].
- [2] Naveda, A., 2021. Circuitos trifasicos equilibrados. [online Es.slideshare.net. Available at <a href="https://es.slideshare.net/anasaregna/circuitos-trifasicos-equilibrados">https://es.slideshare.net/anasaregna/circuitos-trifasicos-equilibrados</a> [Accessed 12 February 2021].
- [3] Blogger.com, blog de fravedsa https://ingenieriaelectricafravedsa.blogspot.com/2014/11/tensiones-corri entes-fase-linea.html#:~:text=La%20tensi%C3%B3n%20de%20fase%2 C%20V,los%20conductores%20de%20la%20instalaci%C3%B3n.
  [Accessed 12 February 2021].
- [4] J.R. Villaseñor, Circuitos electricos y aplicaciones digitales, Segundo edición, México, PEARSON EDUCATION, 2013.
- [5] C.K. Alexander, Fundamentos de circuitos eléctricos, Sexta edición, México, McGraw-Hill Interamericana, 2018.
- [6] M.A. Toledo Análisis de circuitos en ingeniería, Octava edición, México D.F, Editorial Mc Graw Hill, 2012.
- [7] Muhammad H. Rashid, Electrónica de potencia: circuitos, dispositivos y aplicaciones, Pearson Educación, Mexico, 2004.
- [8] P.D. Joaquin , Circuitos monofásicos y trifásicos, Edicions UPC, Cataluña, 1999.
- [9] Guru, Bhag S; Enriquez Brito, Javier; Hiziroglu, Hüseyin R., Máquinas eléctricas y transformadores, México: Oxford University Press, 2003.
- [10] Chapman, Stephen J., Electric Machinery and Power System Fundamentals, New York: McGraw-Hill, 2002.
- [11] Enríquez Harper, Gilberto. Accionamientos eléctricos. Editorial Limusa. México 2009.
- [12] Boldea, Ion. Electric machines: steady state, transients, and design with MATLAB. Boca Raton. CRC Press; Taylor Francis Gropu, 2009.
- [13] Guía de diseño de instalaciones eléctricas según normas internacionales IEC. Schneider Electric España, S.A Segunda Edición. ISBN 84-609-8658-6

- [14] P.W. Sauer,"A Power Systems Experiment in an Electric MachineryLaboratory Course", University of Illinois at Urbana-Champaign, IEEE, 2014.
- [15] E. Muljadi, D. Yildirim, T. Batan, and C. P. Butterfield, "Understanding the unbalanced-voltage problem in wind turbine generation," in Industry
- [16] Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, vol. 2, pp. 1359–1365 vol.2.



# **ANEXOS**

# ANEXO 1:



**ANEXO 2:** 





# **ANEXO 3:**





# ANEXO 4:





# ANEXO 5:



# ANEXO 6:



