	Drop in PSP
pow(a, n)	
pow (a, n, p)	
TC for recursive codes	
SC for recursive codes	

φi)	Given	a, n	find	n a	usirg	reculsion	M 7 D
		a	n		n O		
		2.	5	,	s = 32		
		3		3			
		5	3		- 01 s = 125		
		5		5	= 25		
Assumption: Given a, n calc & return a							
$A^{N} = A \times A^{N-1} \qquad pow(A,N) = pow(A,N-1) \times A$							
int pow(a, n) {							
	Base cas	ν:	if (n	1==1) {	return	a} // if (1	n==0) { return 13
						a	
	Main lo	gic					
Main logic 3							
$pow(a, 5) \rightarrow pow(a, 4) \rightarrow pow(a, 3) \rightarrow pow(a, 2) \rightarrow pow(a, 1)$							
pow(a, N) TC:O(N)							
					r		

$$\frac{N=13}{2} = \frac{N-1}{2} = \frac{6}{2}$$

Fast exponentiation

math.pau(a,n)

int pow(a, n) {							
int pow(a, n) { if (n == 1) {\frac{2}{5}} return a {\frac{3}{5}}							
ha = pow(a, n/z)							
if (N&1 ==1) ξ # N is odd							
if (N& 1 == 1) \(\xi \) # N is odd Main logic: return \(ha * ha * a \)							
else E							
else { return ha * ha }							
<u> </u>							
Q * × 1000							
1000 Q							

			9:53	- 10:08			
				10 0 0			
)	$\mathcal{L}_{\mathcal{O}}$	a	dry	lun			
			0				
	C. L. +	F. F.	.A. I	L	Tr.	. 0 . 1	ti.
	oupsul	ullon	method	for	ال (al cula	uon
				•			

TC for recursive codes using recursive solution N = (int sum (N) € 7C → f(N) if (N = = 1) \(\frac{2}{2}\) return 1\(\frac{3}{2}\) \(\frac{1}{2}\) \((N) = O(1) + \frac{1}{2}\) return sum (N-1) + N 1) Find recursive time equation 2) Find general solution after k substitution 3) Equate unknow ith bar condition and find TC f(N) = f(N-1) + 1 Recursive time equation 1(N) = f(N-1) + 1 f(N) = f(N-1) + 1 substitute N-3 N-1 f(N-1) = f(N-2) + 1 f(N) = (f(N-2)+1)+1 f(N) = f(N-1) + 1 f(N) = |f(N-2)| + 2NANZ f(N-2) = f(N-3)+1

$$f(N) = (f(N-3)+1)+2$$

 $f(N) = f(N-3)+3$

· · ·

$$f(N-R) = f(i)$$

$$N-R=1$$

$$R=N-1$$

int
$$pow(a, n)$$
 {

if $(n = 1)$ { return a }

TC $\rightarrow f(N)$

ha = $pow(a, n/2)$

if $(N \& 1 = 1)$ { # N is add

 $f(N) = O(1) + f(N/2)$

return ha * ha * a

else {

return ha * ha
}

$$f(N) = f(N/2) + 1$$
 $N \rightarrow N/2$
 $f(N) = f(N/2) + 1$
 $f(N) = f(N/2) + 1$
 $f(N/2) = f(N/4) + 1$

$$f(N) = (f(N)+1)+1 = f(N)+2$$

$$f(N) = f(N) + 2$$

$$f(N) = f(N/2) + 1$$

$$f(N) = f(N/2) + 1$$

$$f(N) = f(N/2) + 1$$

$$f(N) = f(\frac{N}{8}) + 3$$

$$\int f(N) = f(\frac{N}{2}) + 1$$

2)
$$f(N) = f(N) + 2$$

3)
$$f(N) = f(N) + 3$$

$$f(N) = f(N) + k$$

$$N=2^{k}$$

$$f(N) = 1 + f(N) + f(N)$$

$$ha = pow(a, n/2) \times pow(a, n/2)$$

return haxa

else E

l return a

3

$$f(N) = 2f(N) + 1$$

$$f(N) = 2f(N) + 1$$

$$f(\underline{N}) = 2f(\underline{N}) + 1$$

$$f(N) = 2 \left[2 f(N) + 1 \right] + 1$$

$$f(N) = 4f(N) + 3$$

$$f(N) = 2f(N) + 1$$

N - N/4

$$f\left(\frac{N}{4}\right) = 2f\left(\frac{N}{8}\right) + 1$$

$$f(N) = 2f(N) + (2-1)$$

$$f(N) = 4f(N) + (4-1)$$

$$f(N) = 8 + (N) + (8-1)$$

$$k=2$$
 $f(N) = 2^{k} f(\frac{N}{2^{k}}) + (2^{k}-1)$

$$= 2N-1$$

$$f(1) = O(1)$$

$$f(N) = O(N)$$

$$f(N) = 4f(N) + 1$$
 $f(1) = N$

Right side more than one secursive term substitution fails int fib(N) {

if (N <= 1) { seturn N} }

seturn fib(N-1) ± fib(N-2) for (i=0; i< N; i+r)

? Time equetron: f(N)= f(N-1)+f(N-2)+1

all stack
fib(4)
TC: O(2N)
$TC: O(2^N)$ SC: $O(2^N)$
\$ i /a
Size = 4

