

Weakly Supervised Object Localization with Progressive Domain Adaptation

Dong Li¹, Jia-Bin Huang², Yali Li¹, Shengjin Wang¹, Ming-Hsuan Yang³ ¹Tsinghua University, ²University of Illinois, Urbana-Champaign, ³University of California, Merced **CVPR**2016

mAP

22.4

24.6

26.4

27.7

31.6

23.4

19.5

23.0

20.5

26.2

Highlights

- > Weakly supervised learning of object detectors
- > State-of-the-art results on the PASCAL 2007, 2010, 2012 and ILSVRC 2013 datasets
- ➤ Code and models available:

http://bit.ly/wsl2016

Introduction

Problem setting: Training object detectors with image-level annotations

Key observation: Large gap between source domain and target task

Proposed Approach - progressive domain adaptation

I. Classification adaptation:

Goal: ImageNet single-label classification → multi-label classification

Proposed multi-label loss

- Softmax loss for binary classification of each class
- Summation of softmax losses over all classes

II. Detection adaptation:

Goal: multi-label classification → object detection

Experiments

Comparisons to the state-of-the-arts:

- OM: class-specific proposal mining ➤ VOC'07
- MIL: multiple instance learning
- FT: detector training

OM + FT-VGGNet

MIL + FT-VGGNet

OM + MIL+ FT-VGGNet

Methods

VOC'10, '12 and ILSVRC'13

Methods	VOC 2010	VOC 2012	ILSVRC 2013	
Cinbis et al. CVPR'14	18.5	_	_	
Wang et al. ECCV'14	-	_	6.0	
OM + MIL+ FT-AlexNet	23.3	21.7	7.7	
OM + MIL+ FT-VGGNet	34.6	32.6	10.8	

Error analysis:

