Let A be our  $\mathbb{R}$ -algebra and  $\sigma: \mathbb{C} \to \mathbb{C}$  complex conjugation. Then we have the pushout diagram:



We know  $A_{\mathbb{C}}^{\times}=t(\mathbb{C}^{\times}),\ s(\mathbb{R}^{\times})\subseteq A^{\times}$  and  $j(A^{\times})\subseteq t(\mathbb{C}^{\times}).$  We need  $A^{\times}\subseteq s(\mathbb{R}^{\times})$  as well.

If  $u \in A^{\times}$ , then  $j(u) = t(\lambda)$  for some  $\lambda \in \mathbb{C}^{\times}$ . Then

$$t(\lambda) = j(u) = \tilde{\sigma}(j(u)) = \tilde{\sigma}(t(\lambda)) = t(\sigma(\lambda)),$$

so  $\lambda = \sigma(\lambda)$  because t is injective. Hence  $\lambda = i(\mu)$  for some  $\mu \in \mathbb{R}^{\times}$  and  $j(u) = j(s(\mu))$ . And by injectivity again this implies  $u = s(\mu)$ .