2018-2019 秋季学期经济学双学位线性代数 B 期末试题解答

学院	_系	姓名	学号	分数	2019/01/20	
请注意	所有答	案和解答:	写在空白答题纸」	上,标明大 题 ·	号和小题号。	
一、填空题(本题共	10 个人	卜题,每小题	12分,满分 20分	〉。答案写在 《	答题纸上) 。	
(1)α,β都是3维列向量	${}^{\!\scriptscriptstyle \perp}_{\!\scriptscriptstyle \perp},lphaeta^{\scriptscriptstyle ext{T}}$ 相	\mathbf{I} 似于 $\begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$,则 $\beta^{T}\alpha = \underline{2}$	<u>2</u> .		
(2) A是3阶不可逆矩阵	车,它的	持征值互不	「相等,则r(A)=_	2		
(3) D 是R ^R 的子空间V	$=<\cos x$	x,sin x>上的	的求导映射, D ²的征	行列式= $-E_2$		
$(4)x^2 + 2x - 1$ 在基 $\frac{(x-1)}{x}$	$\frac{-1)^i}{i!}, i =$	= 0,1,2下的:	坐标是_(2,4,2) ^T _	_ .		
(5)若4为实对称矩阵,	$\alpha = (1,$	-1,2)与β=	=(1,1,a)分别是属	于特征值1与2	的特征向量,则	
$ A(\alpha+\beta) = \sqrt{14}$.					
(6)若A是3阶正交知	巨阵, a	$\alpha = (3,4,5)$	T是A的一个特定	征向量,则	$2A^2\alpha = \underline{(6,8,10)}$	T .
(7) 二次型 $(x_1, x_2, x_3) =$	$= (x_1 + x_2)$	2-x3)2的符	·号差为 <u>1</u> .			
(8)负定二次型f(x)=	$-5x^{2}-$	$6y^2 - pz^2 +$	4xy + 4xz的系数 _I	的取值范围是	$\frac{1}{2} p > 12/13$	
(9)线性空间V= R ⁺ ,数	数域 <i>F</i> =	· R ,加法与	数量乘法分别定义	义为 $a \oplus b = ab$	$b, \forall a, b \in \mathbf{R}^+,$	
$k \in a = a^k, \forall a \in \mathbf{R}^+, k$	∈ R. IE	数 c 在基 2 下	的坐标为x,则c在	基3下的坐标	是 $(\log_3 2)x$.	
(10) 线性空间 $\mathbf{R}[x]_5$ 的	以 $x = 1$	为二重根的]所有多项式构成	的子空间的维	t数是uuduux.	
二、选择题(本题共]	10 个小	题,每小题 2	2分,满分 20 分。	。每小题给出	的四个选项中,	只有一项
是符合题目要求的.答	案写在	答题纸上	0			
(1)设4为n阶实反对称	7矩阵,	则				[D]
(A) A的特征值都是非	╞实数 ;	(B)A	勺特征值都是实数	₹;		
(C) A^2 的特征值都是负	负数 ;	(D)A ² 的	的特征值都是非正	实数;		
(2)设4是正交矩阵,	则					[C]
(A)A的特征值是1;			(B)A的特征值是	-1;		
(C) 当/4=−1时,−1是	: 4的一1	个特征值;	(D)当 A =-1时,1	是 4的一个特	征值.	

- (3)*n*阶矩阵*A*与对角矩阵相似的充分必要条件是 [B] (A)*A* 有 n 个互不相同的特征值; (B)*A* 有 n 个线性无关的特征向量; (C)A 有 n 个互不相同的特征向量; (D)A 有 n 个两两正交的特征向量. (4)矩阵*A*和*B*相似的充分必要条件是 [B](A)存在可逆矩阵P和Q使得PAQ = B;(B)存在可逆矩阵P, 使得 P^{-1} AP = B; (C)存在可逆矩阵P,使得 $P^{T}AP = B$; (D)r(A) = r(B). (5)A是4阶实对称矩阵, $A^2 + A = 0$, r(A) = 3, 则A相似于 [D] (A) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; (B) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; (C) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; (D) $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (6)实二次型 [C] $f(x_1, x_2, L, x_n) = (x_1 + a_1x_2)^2 + (x_2 + a_2x_3)^2 + L + (x_n + a_nx_1)^2$ 正定的充分必要条件是 $(A)a_1a_2L \ a_n = (-1)^n; (B)a_1a_2L \ a_n = (-1)^{n-1};$ $(C)a_1a_2L \ a_n \neq (-1)^n; (D)a_1a_2L \ a_n \neq (-1)^{n-1}.$ (7)设4是正定矩阵,则
- (7)设A是正定矩阵,则 (A)|A+E|>1; (B)|A+E|<1; (C)|A+E|=1; (D)|A-E|<1.(8)在 $K[x]_3$ 中取基 $\prod_{1 \le j \le 3, j \ne i} \frac{x-j}{i-j}, i=1,2,3.$ p(x)=2x+1在这个基下的坐标是 [A]

(9)**R**[x]₃中的基1,x,x²到1,(x-2),(x-2)²的过渡矩阵P是

$$(A) \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -4 & 1 \end{pmatrix}; \qquad (B) \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix};$$
$$(C) \begin{pmatrix} 1 & -2 & -4 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (D) \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -4 \\ 0 & 0 & 1 \end{pmatrix}.$$

(10)设M是 $\mathbf{R}[x]_3$ 到 $\mathbf{R}[x]_4$ 线性映射Mp(x) = xp(x), D是 $\mathbf{R}[x]_4$ 到 $\mathbf{R}[x]_3$ 的线性映射Dp(x) = p'(x), 则DM在基 $1, x, x^2$ 下的矩阵是

[B]

$$(A) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}; \ (B) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}; \ (C) \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \ (D) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

三、计算题(本题共5个小题,每个小题10分,满分为50分)(解答写在答题纸上)

$$(1)$$
设 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & a \end{pmatrix}$ 可逆, $\alpha = \begin{pmatrix} 1 \\ b \\ 1 \end{pmatrix}$ 是 A^* 的属于特征值 λ 的特征向量, 求 a,b,λ .

解 A可逆, $|A| \neq 0$, $AA^* = |A|E$, $|AA^*| = |A||A^*| = |A|^3$, $|A^*| = |A|^2 \neq 0$,

 A^* 可逆,

 $\lambda \neq 0$ (1分).

 $A^*\alpha = \lambda \alpha, AA^*\alpha = \lambda A\alpha,$

$$A\alpha = \frac{|A|}{\lambda}\alpha(3\%).$$

$$\begin{cases} 3+b = \frac{|A|}{\lambda}, & (1) \\ 2+2b = \frac{|A|}{\lambda}b, & (2) & (1) \\ 1+a+b = \frac{|A|}{\lambda}. & (3) \end{cases}$$

$$a = 2(1分)$$
.

$$|A| = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -3 \\ 0 & 1 & -1 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -3 \\ 1 & -1 \end{vmatrix} = 4.$$

(1)代入(2)得 $2+2b=(3+b)b, b^2+b-2=0, (b+2)(b-1)=0, b=1$ 或b=-2.

b = 1 $\exists t$, $\lambda = 1$; b = -2 $\exists t$ $\lambda = 4$.

 $a = 2, b = 1, \lambda = 1; a = 2, b = -2, \lambda = 4.$

b(2分),

λ(2分)

$$(2) i A = \begin{pmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{pmatrix},$$

- (i)求A的特征值;
- (ii)k为何值时A可对角化?
- (iii)当A可对角化时求可逆矩阵P,使得 $P^{-1}AP$ 是对角矩阵.

$$\begin{aligned}
&\text{fix} \mid A - \lambda E \mid = \begin{vmatrix} 3 - \lambda & 2 & -2 \\ -k & -1 - \lambda & k \\ 4 & 2 & -3 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 2 & -2 \\ 0 & -1 - \lambda & k \\ 1 - \lambda & 2 & -3 - \lambda \end{vmatrix} \\
&= (1 - \lambda) \begin{vmatrix} 1 & 2 & -2 \\ 0 & -1 - \lambda & k \\ 1 & 2 & -3 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 & 2 & -2 \\ 0 & -1 - \lambda & k \\ 0 & 0 & -1 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda + 1)^2 = 0,
\end{aligned}$$

特征值: 3分

$$\lambda_1 = -1$$
代数重数=2, $A - \lambda_1 E = \begin{pmatrix} 4 & 2 & -2 \\ -k & 0 & k \\ 4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 2 & -2 \\ -k & 0 & k \\ 0 & 0 & 0 \end{pmatrix} = B$,

A 可对角化,必须且只需几何重数=3-r(B)=2,r(B)=1,

$$k = 0.(2分)$$

$$\begin{pmatrix} 4 & 2 & -2 \\ 0 & 0 & 0 \\ 4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \xi_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}. (2 \%)$$

$$\lambda_2 = 1, \begin{pmatrix} 2 & 2 & -2 \\ 0 & -2 & 0 \\ 4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. (1 \%)$$

$$P = \begin{pmatrix} -1 & 1 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix} (2 \%),$$

$$P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, A = P \begin{pmatrix} -1 & 0 & 5 & 0 \\ 0 & -1 & 0 \end{pmatrix} P^{-1}.$$

- (3)设3阶实对称矩阵A的各行元素之和为3,向量 $\alpha_1 = (-1,2,-1)^T$, $\alpha_2 = (0,-1,1)^T$ 都是齐次方程组AX = 0的解.
- (i)求A的特征值和特征向量;(4分)
- (ii)求正交矩阵Q和对角矩阵 Λ ,使得 $Q^{T}AQ = \Lambda$;(5分)
- (iii)求[A-(3/2)E]⁶.(1分)

解 (i)
$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \lambda_3 = 3, \alpha_3 = (1, 1, 1)^{\mathrm{T}} (2 分);$$

$$\lambda_1 = \lambda_2 = 0, \alpha_1 = (-1, 2, -1)^T, \alpha_2 = (0, -1, 1)^T (2 \%),$$

$$\gamma_3 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})^T, \beta_1 = (-1, 2, -1)^T, \gamma_1 = (-1/\sqrt{6}, 2/\sqrt{6}, -1/\sqrt{6})^T$$

$$\beta_2 = (0, -1, 1)^{\mathrm{T}} - \frac{-3}{6}(-1, 2, -1)^{\mathrm{T}} = (0, -1, 1)^{\mathrm{T}} + \frac{1}{2}(-1, 2, -1)^{\mathrm{T}}$$

=
$$(-\frac{1}{2}, 0, \frac{1}{2})^{\mathrm{T}} = \frac{1}{2}(-1, 0, 1)^{\mathrm{T}}, \gamma_2 = (-1/\sqrt{2}, 0, 1/\sqrt{2}).$$
 (4分)

(ii)
$$Q = \begin{pmatrix} -1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}, Q^{T}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$
 (15)

(iii)
$$Q^{T}AQ = Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}, A = Q \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} Q^{-1},$$

$$A - (3/2)E = Q \begin{pmatrix} -3/2 & 0 & 0 \\ 0 & -3/2 & 0 \\ 0 & 0 & 3/2 \end{pmatrix} Q^{-1},$$

$$[A-(3/2)E]^{6} = Q \begin{pmatrix} (3/2)^{6} & 0 & 0 \\ 0 & (3/2)^{6} & 0 \\ 0 & 0 & (3/2)^{6} \end{pmatrix} Q^{-1} = (3/2)^{6} Q E Q^{-1} = \frac{729}{64} E (1 \%) .$$

$$(4) i \Re f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3, [a]:$$

- (1)a满足什么条件时, $f(x_1,x_2,x_3)$ 是正定的;
- (2)a满足什么条件时, $f(x_1,x_2,x_3)$ 是负定的.

解一二次型的矩阵

$$(1)A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{pmatrix}, a > 0, (12)$$

$$\begin{vmatrix} a & 1 \\ 1 & a \end{vmatrix} = a^2 - 1 > 0, |a| > 1, (2\%)$$

$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{vmatrix} = \begin{vmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 0 & -1 - a & a + 1 \end{vmatrix} = (a+1) \begin{vmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 0 & -1 & 1 \end{vmatrix} = (a+1) \begin{vmatrix} a & 1 & 2 \\ 1 & a & a - 1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$=(a+1)[-2+a^2-a]=(a+1)^2(a-2)>0, a>2.(2\%)$$

$$,a^2-1>0,|a|>1,(2分)$$

$$a < 2 \Rightarrow a < -1.$$
(2分)

解二

$$\begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ -1 & 1 & \lambda - a \end{vmatrix} = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ 0 & 1 - \lambda + a & \lambda - a - 1 \end{vmatrix}$$

$$= (\lambda - a - 1) \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ 0 & -1 & 1 \end{vmatrix} = (\lambda - a - 1) \begin{vmatrix} \lambda - a & -2 & -1 \\ -1 & \lambda + 1 - a & 1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda - a - 1)[(\lambda - a)(\lambda + 1 - a) - 2] = (\lambda - a - 1)[\lambda^{2} + (1 - 2a)\lambda - a + a^{2} - 2]$$

$$= (\lambda - a - 1)[\lambda^{2} + (1 - 2a)\lambda + (a + 1)(a - 2)]$$

$$= (\lambda - a - 1)(\lambda - (a + 1))(\lambda - (a - 2)),$$

$$\lambda_1 = \lambda_2 = a + 1, \lambda_3 = a - 2,$$
 (6分)

f正定,最小特征值 > 0, a > 2;((2分))

f负定,最大特征值 < 0, a < −1.(2分)

(5)在
$$K^4$$
中, $V_1 = <\alpha_1, \alpha_2, \alpha_3 >, V_2 = <\beta_1, \beta_2, \beta_3 >, 其中,
 $\alpha_1 = (1,0,-1,0)^T, \alpha_2 = (0,0,1,-1)^T, \alpha_3 = (1,-1,0,0)^T,$
 $\beta_1 = (1,2,-1,2)^T, \beta_2 = (0,1,-1,0)^T, \beta_3 = (0,2,1,-1)^T.$
分别求 $V_1 + V_2, V_1 \cap V_2$ 的基和维数.

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & -1 & 0 & 2 & 0 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & -1 & 0 & 2 & 0 & -1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 0 & 1 & 2 & 1 & 2 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 0 & 0 & 4 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 0 & 0 & 4 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 1 \\
0 & 0 & -1 & 2 & 1 & 2 \\
0 & 0 & 0 & 4 & 0 & 2
\end{pmatrix}$$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & -1 & 2 & 1 & 2 \\ 0 & 0 & 0 & 4 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & -1 & 2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & -2 & -1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & -1/2 \\ 0 & 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \end{pmatrix}, (3\%)$$

$$r(V_1 + V_2) = 4$$
, α_1 , α_2 , α_3 , β_1 是 $V_1 + V_2$ 的一个基.(1分)
 $r(V_1 \cap V_2) = r(V_1) + r(V_2) - r(V_1 + V_2) = 3 + 3 - 4 = 2$ (2分).
 $\beta_2 = \alpha_1 - \alpha_3 \in V_1 \cap V_2$, $\beta_3 = (1/2)\alpha_1 + 2\alpha_2 - \alpha_3 + (1/2)\beta_1$,
 $\beta_3 - (1/2)\beta_1 = (1/2)\alpha_1 + 2\alpha_2 - \alpha_3 \in V_1 \cap V_2$, (2分)

 $\beta_2 = (0,1,-1,0)^{\mathrm{T}}, \beta_3 - (1/2)\beta_1 = (0,2,1,-1)^{\mathrm{T}} - (1/2)(1,2,-1,2)^{\mathrm{T}} = (-1/2,1,3/2,-2)^{\mathrm{T}}.$ $(0,1,-1,0)^{\mathrm{T}}, (-1/2,1,3/2,-2)^{\mathrm{T}} \neq V_1 \cap V_2$ 的基.

四、证明题(本题共2个小题,每小题5分,满分为10分)(解答写在答题纸上)

(1)证明n阶矩阵

$$\begin{pmatrix}
1 & \frac{1}{n} & L & \frac{1}{n} \\
\frac{1}{n} & 1 & L & \frac{1}{n} \\
M & M & M \\
\frac{1}{n} & \frac{1}{n} & L & 1
\end{pmatrix}$$

是一个正定矩阵.

证

$$A = \begin{pmatrix} 1 & \frac{1}{n} & L & \frac{1}{n} \\ \frac{1}{n} & 1 & L & \frac{1}{n} \\ M & M & M \\ \frac{1}{n} & \frac{1}{n} & L & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{n} & \frac{1}{n} & L & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & L & \frac{1}{n} \\ M & M & M \\ \frac{1}{n} & \frac{1}{n} & L & 1 \end{pmatrix} + (1 - \frac{1}{n})E_n = B_n + (1 - \frac{1}{n})E_n,$$

 B_n 的特征值是0((n-1)重),1(2分)

A的特征值是 $1 - \frac{1}{n}(n-1)$ 重), $2 - \frac{1}{n}$,(1分)

n个特征值都是正数,故A是正定矩阵(2分).

(2)设A是一个 $m \times n$ 矩阵,B是 $n \times m$ 矩阵,证明:如果 $\lambda_0 \neq 0$ 是AB的特征值,那么 $\lambda_0 \neq 0$ 也是BA的特征值.

证 $\lambda_0 \neq 0$ 是AB的特征值,存在m维非零向量 ξ , $AB\xi = \lambda_0 \xi$,(3分) 左乘B得

 $BAB\xi = B\lambda_0\xi, (BA)(B\xi) = \lambda_0(B\xi), \lambda_0 \neq 0, \xi \neq 0, \lambda_0\xi \neq 0, B\xi \neq 0$,否则将有 $\lambda_0\xi = AB\xi = A0 = 0, \lambda_0 = 0$,矛盾 $B\xi \neq 0$, (1分).并且 $(BA)(B\xi) = \lambda_0(B\xi)$,故 $\lambda_0 \not\in BA$ 的一个特征值. (1分)