S.-T. Yau College Student Mathematics Contests 2011

Analysis and Differential Equations

Team

9:00–12:00 am, July 9, 2011 (Please select 5 problems to solve)

- 1. Let $H^2(\Delta)$ be the space of holomorphic functions in the unit disk $\Delta = \{|z| < 1\}$ such that $\int_{\Delta} |f|^2 |dz|^2 < \infty$. Prove that $H^2(\Delta)$ is a Hilbert space and that for any r < 1, the map $T : H^2(\Delta) \to H^2(\Delta)$ given by Tf(z) := f(rz) is a compact operator.
- 2. For any continuous function f(z) of period 1, show that the equation

$$\frac{d\varphi}{dt} = 2\pi\varphi + f(t)$$

has a unique solution of period 1.

- **3.** Let h(x) be a C^{∞} function on the real line \mathbb{R} . Find a C^{∞} function u(x,y) on an open subset of \mathbb{R}^2 containing the x-axis such that $u_x + 2u_y = u^2$ and u(x,0) = h(x).
- **4.** Let $S = \{x \in \mathbb{R} \mid |x \frac{p}{q}| \le c/q^3$, for infinitely many relatively prime $p, q \in \mathbb{Z}, q > 0$, for a fixed $c > 1\}$, show that S is uncountable and its measure is zero.
- **5.** Let sl(n) denote the set of all $n \times n$ real matrices with trace equal to zero and let SL(n) be the set of all $n \times n$ real matrices with determinant equal to one. Let $\varphi(z)$ be a real analytic function defined in a neighborhood of z = 0 of the complex plane \mathbb{C} satisfying the conditions $\varphi(0) = 1$ and $\varphi'(0) = 1$.
- (a) If φ maps any near zero matrix in sl(n) into SL(n) for some $n \geq 3$, show that $\varphi(z) = \exp(z)$.
- (b) Is the conclusion of (a) still true in the case n=2? If it is true, prove it. If not, give a counterexample.
- **6.** Use mathematical analysis to show that:
- (a) e and π are irrational numbers;
- (b) e and π are also transcendental numbers.