

BUNDESREPUBLIK DEUTSCHLAND

Z 1. OG. 04

EB04110562

REC'D	01 OCT 2004
WIPO	PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 46 245.7

Anmeldetag: 06. Oktober 2003

Anmelder/Inhaber: Bayer CropScience GmbH,
65929 Frankfurt//DE

Bezeichnung: Verfahren zur Herstellung von Acylharnstoff-
derivaten, Salze dieser Acylharnstoffderivate
und deren Verwendung als Schädlingsbe-
kämpfungsmittel

IPC: C 07 D, A 61 K, A 01 N

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 26. August 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Agurks

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Beschreibung**5**

Verfahren zur Herstellung von Acylharnstoffderivaten, Salze dieser Acylharnstoffderivate und deren Verwendung als Schädlingsbekämpfungsmittel

Die Erfindung betrifft ein Verfahren zur Herstellung von Acylharnstoffderivaten, nach diesem Verfahren erhältliche Salze von Acylharnstoffderivaten, diese enthaltende Mittel sowie deren Verwendung als Schädlingsbekämpfungsmittel.

Insektizide Acylharnstoffderivate sind in der europäischen Patentanmeldung 02010910.4 vorgeschlagen.

15

Die Herstellung dieser Verbindungen erfolgt durch Umsetzung des entsprechenden Carbonsäureamids mit Oxalychlorid zum Isocyanat und dessen weitere Umsetzung mit einem Amin zum N-Acylharnstoffderivat. Die Bildung des Isocyanats ist nur durch Umsetzung des Amids mit Oxalychlorid, nicht mit Phosgen, möglich, was zu hohen Verfahrenskosten führt.

Aufgabe war es daher, eine neue vorteilhafte Synthese für Acylharnstoffderivate bereitzustellen.

Es wurde nun überraschend gefunden, daß die Umsetzung von 4-Haloalkylpyrrolidinidcarbonsäureamiden mit Carbamaten oder ähnlich reaktiven Verbindungen in einfacher Weise zu N-[4-Haloalkyl]-pyrrolidinidcarbonsäureamiden in sehr guten Ausbeuten und hoher Reinheit führt.

Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von N-Disubstituierten-N-[4-Haloalkyl]pyrrolidinidcarbonsäureamiden der Formel (I),

wobei

A CH oder N;
(C₁-C₆)-Haloalkyl;

H oder M;

M ein organisches oder anorganisches Kation;
(C₁-C₆)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₆)-Alkoxy, (C₃-C₆)-Cycloalkyl-
Alkenyloxy, (C₃-C₆)-Alkinyloxy, (C₃-C₆)-Cycloalkyl, (C₃-C₆)-Cycloalkyl-
(C₁-C₆)-alkyl, O-CH₂-(C₃-C₆)-Cycloalkyl, wobei die neun letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocycl, Aryloxy, Heterocyclxy, -CH₂-Aryl,
-O-CH₂-Aryl, -CH₂-Heterocycl, -O-CH₂-Heterocycl, wobei die acht letztgenannten Reste unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

Resten R⁶ substituiert sind;
(C₁-C₆)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₆)-Cycloalkyl, (C₃-C₆)-Cycloalkyl-(C₁-C₆)-alkyl, wobei die fünf letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocycl, -CH₂-Aryl, -CH₂-Heterocycl, wobei die vier letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

oder
R³ und R⁴ zusammen mit dem benachbarten N-Atom einen 3 - 8gliedrigen gesättigten, ungesättigten oder aromatischen heterocyclischen Ring der gegebenenfalls bis zu drei weitere Heteroatome aus der Gruppe N, S und O enthält und der unsubstituiert oder durch einen oder mehrere Reste (C₁-C₆)-Alkyl, (C₁-C₆)-Haloalkyl oder R⁵ substituiert ist;

25

25 Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von N-Disubstituierten-N-[4-Haloalkyl]pyrrolidinidcarbonsäureamiden der Formel (I),

R⁵ Halogen, (C_1 - C_8)-Alkoxy, (C_1 - C_8)-Haloalkoxy, $S(O)_n$ -(C_1 - C_6)-Alky, $S(O)$ -
(C_1 - C_6)-Haloalkyl, CN, $COO(C_1-C_6)$ -Alky, NO_2 , $N[(C_1-C_6)$ -Alky]₂.
Phenoxy, unsubstituiert oder substituiert durch einen oder mehrere
Reste aus der Gruppe (C_1 - C_6)-Alky, (C_1 - C_6)-Haloalkyl und Halogen;

R⁶ R^5 , (C_1 - C_6)-Alkoxy, (C_1 - C_6)-Haloalkyl;

m 0 oder 1, und
n 0, 1 oder 2
bedeutet,

10 indem man ein 4-Haloalkylpyr(m)idinylcarbonsäureamid der Formel (II),

warin A , R^1 , R^2 und m die unter der Formel (I) angegebenen Bedeutungen haben,

15 in Gegenwart einer Base mit einer Verbindung der Formel (III),

warin

20 X R^7 $-O-C(O)-Cl$ oder $-O-R^7$ bedeutet;
 (C_1-C_8) -Alkyl, (C_3-C_8)-Alkenyl, (C_3-C_8)-Alkinyl, (C_3-C_8)-Cycloalkyl, (C_3-C_8)-Cycloalkyl-(C_1-C_4)-Alkyl, Aryl, Heterocycl, Aryl-(C_1-C_4)-alkyl oder
Heterocycl-(C_1-C_4)-alkyl bedeutet, wobei die genannten Gruppen
unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe
Halogen, CN und NO_2 substituiert sind; und

R³, R⁴ die unter der Formel (I) angegebenen Bedeutungen haben,
umsetzt.

Das erfindungsgemäße Verfahren ermöglicht die Herstellung von
5 Acylaminstoffderivaten in einfacher Weise unter ökonomisch und ökologisch
vorteilhaften Bedingungen.

Die Ausgangsverbindungen der Formel (II), 4-Haloalkylpyr(m)idinylcarbonsäureamide,
sind bekannt und mit ihrer Herstellung beispielsweise in der WO-02/48111, der
deutschen Patentanmeldung 102 23 274.1 und der EP-A-0 580 374 beschrieben.
10 Verbindungen der Formel (III) lassen sich nach bekannten, dem Fachmann
geläufigen Methoden durch sukzessive Umsetzung von Phosgen oder anderen
Kohlensäurederivativen mit einer Verbindung HX und einer geeigneten
15 Stickstoffverbindung, beispielsweise einem sekundären Amin oder Hydroxylamin,
herstellen.

**Solche Verfahren sind beispielsweise ein Houben-Weyl, Methoden der Organischen
Chemie, Bd. E4 beschrieben.**
20 Carbamate der Formel (III) lassen sich beispielsweise aus Chlorameisensäureestern
oder Carbonaten durch Umsetzung mit geeigneten Stickstoffverbindungen,
beispielsweise Aminen oder Hydroxylaminen, herstellen.

Dieses Verfahren ist beispielsweise in Coll. Czech. Chem. Comm. 48, 3, 1983, 900-905 und EP-A 0 577 167 beschrieben.

Bevorzugt sind Verbindungen der Formel (III), bei denen

- X OR⁷ und
R⁷ unsubstituiertes oder durch ein oder mehrere Halogenatome,
vorzugsweise F und/oder Cl, substituiertes (C₁-C₈)-Alkyl oder (C₃-C₈)-
Alkaryl, Phenyl oder Benzyl, besonders bevorzugt CH₃, C₂H₅, t-C₃H₇,
-CH₂-CH=CH₂, -CH₂CF₃, CH₂-CF₂H, CCl₃, Phenyl oder Benzyl,
insbesondere CH₃ oder C₂H₅.

- 10 Das molare Verhältnis von Amid (II) zu Verbindung (III) beträgt im allgemeinen 1 : 1 -
1,1, bevorzugt 1 : 1 - 1,05 besonders bevorzugt ungefähr 1 : 1.

Als Base bevorzugt sind Hydride, Amide, Hydroxide und (C₁-C₈)-Alkoholate der
Alkali- und Erdalkalimetalle, Alkyllithiumverbindungen, Metallhydride, Carbonate und
Acetate der Alkali- und Erdalkalimetalle tertiäre Amine mit C₁-C₄-Alkylresten und
sterisch gehinderte Stickstoffbasen. Besonders bevorzugt sind Na(OCH₃), KO(CH₃),
Na(OC₂H₅), K(OC₂H₅), Na(O-t-C₄H₉), KO(t-C₄H₉), Na(O-n-C₅H₁₁),
KO(C₅H₁₁), K(O-i-C₅H₁₁), NaH, LiN(i-C₄H₉)₂ (LDA), NaOH, KOH, Na₂CO₃, K₂CO₃,
Na(O-C₅H₁₁), K(Acetat), Triethylamin, 1,5-Diazabicyclo[4.3.0]non-5-en (DBU). Ganz
besonders bevorzugt sind Na(OCH₃), KO(CH₃), Na(O-t-C₄H₉) und NaH.

Es können auch Gemische mehrerer Basen eingesetzt werden. Im allgemeinen
werden 1 bis 1,1, vorzugsweise 1 : 1,05 Äquivalente Base bezogen auf 1 Äquivalent
des Amids eingesetzt.

25 Das Verfahren wird im allgemeinen in einem Lösungsmittel durchgeführt. Bevorzugt
sind polare, aprotische Lösungsmittel, besonders bevorzugt N,N-Dimethylformamid
(DMF), N-Methylpyrrolidon (NMP), N,N-Dimethylacetamid, Dimethoxyethan, Sulfolan,
Tetrahydrofuran (THF), ganz besonders bevorzugt DMF und NMP.

30 Es können auch Lösungsmittelgemische eingesetzt werden.

Im allgemeinen verwendet man 1 - 20 Gewichtsäquivalente Lösungsmittel pro
Äquivalent Amid.

Die Reaktionstemperatur liegt im allgemeinen zwischen 0 und 100°C, bevorzugt
zwischen 30 und 75°C.

Die Reaktionsdauer beträgt im allgemeinen 1 bis 3 Stunden.

Die Aufarbeitung erfolgt nach bekannten, dem Fachmann geläufigen Methoden,
beispielsweise durch Filtration oder Extraktion, Waschen und Trocknung sowie
gegebenenfalls anschließende chromatographische Reinigung.

Für Amide der Formel (II) mit R² = H führt das Verfahren zunächst zu den
entsprechenden Salzen (R² = M), welche sich vorteilhaft in besonders hoher
Reinheit durch Filtration aus dem Reaktionsgemisch abtrennen lassen. Die weitere
Aufarbeitung kann nach bekannten, dem Fachmann geläufigen Methoden erfolgen,
beispielsweise wird das ausgefallene Produkt abfiltriert, gewaschen und getrocknet.
Verbindungen der Formel (I) mit R² = H können aus den Salzen der Formel (II) in
bekannter, dem Fachmann geläufiger Weise beispielsweise durch Umsetzung mit
Säuren, wie HCl, H₂SO₄, CH₃CO₂H und H₃PO₄, freigesetzt werden.

Die in den Formeln (I) bis (III) gebrauchten Begriffe werden im folgenden näher
erläutert.

25 Die Bezeichnung „Halogen“ bedeutet Fluor, Chlor, Brom und Iod, bevorzugt Fluor
und Chlor, besonders bevorzugt Fluor.

“(C₁-C₄)-Alky“ ist ein unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1, 2,
3 oder 4 Kohlenstoffatomen z. B. der Methyl-, Ethyl-, Isopropyl-, 1-Butyl-, 2-
Butyl-, Isobutyl- oder tert-Butyl-Rest.

30 Entsprechend ist unter einem Alkylrest mit einem größeren Bereich an
Kohlenstoffatomen ein unverzweigter oder verzweigter gesättigter
Kohlenwasserstoffrest zu verstehen, der eine Anzahl an Kohlenstoffatomen enthält,

- die dieser Bereichsangabe entspricht. Der Ausdruck "(C₁-C₈)-Alkyl" umfaßt demnach die vorgenannten Alkyreste, sowie z. B. den Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, Octyl- und tert.-Octyl-Rest.
- "(C₁-C₄)-Haloalkyl" ist eine bei "(C₁-C₄)-Alkyl" genannte Alkylgruppe, in der ein oder mehrere Wasserstoffatome durch die gleiche Anzahl gleicher oder verschiedener Halogenatome, bevorzugt Chlor oder Fluor, ersetzt sind, z. B. die Mono-, Di- oder Trifluormethylgruppe, die 1- oder 2-Fluorethyl-, die 2,2,2-Trifluoroethyl-, die Trichlormethyl- oder die 1,1,2,2-Tetrafluorethylgruppe.
- "Alkenyl" und "Alkinyl" mit einer vorangestellten Bereichsangabe von 5 Kohlenstoffatomen bedeuten einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit einer dieser Bereichsangabe entsprechenden Kohlenstoffatomzahl, der mindestens eine Mehrfachbindung beinhaltet, wobei sich diese an beliebiger Position des betreffenden ungesättigten Restes befinden kann. "(C₃-C₆)-Alkenyl" steht demnach z.B. für die Allyl-, 2-Methylpropenyl-, 1- oder 2-Butenyl-, Pentenyl-, 2-Methylpentenyl- oder Hexenyl-Gruppe.
- "(C₃-C₆)-Alkinyl" steht z.B. für die Propargyl-, 2-Methylpropinyl-, 2-Butinyl-, Pentinyl-, 2-Methylpentinyl- oder die Hexinyl-Gruppe.
- "(C₃-C₁₀)-Cycloalkyl" steht für monocyclische Alkylreste, wie den Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl-, Cyclooctyl-Rest, für bicyclische Alkylreste, wie den Norbornyl- oder Bicyclo[2.2.2]octyl-Rest, oder für kondensierte Systeme, wie den Decahydronaphthalin-Rest.
- Unter dem Ausdruck "(C₃-C₆)-Cycloalkyl-(C₁-C₄)-alkyl" ist beispielsweise der Cyclopropylmethyl-, Cyclopentylmethyl-, Cyclohexylmethyl-, Cyclohexylethyl- und Cyclohexylbutyl-Rest zu verstehen.
- "(C₁-C₄)-Alkoxy" und "(C₁-C₈)-Alkoxy" sind Ethergruppen, deren Kohlenwasserstoffreste die unter den Ausdrücken "(C₁-C₄)-Alkyl" und "(C₁-C₈)-Alkyl" angegebenen Bedeutungen haben.
- "(C₃-C₆)-Alkenyloxy", "(C₃-C₆)-Cycloalkoxy" und "(C₄-C₁₀)-Cycloalkenyl-Oxy" sind Ethergruppen, deren Kohlenwasserstoffreste die unter den Ausdrücken "(C₃-C₆)-Alkenyl", "(C₃-C₆)-Alkinyloxy", "(C₃-C₆)-Cycloalkoxy" und "(C₃-C₆)-Cycloalkenyl" und "(C₃-C₆)-Cycloalkyl" und "(C₃-C₆)-Cycloalkyl-Oxy" und "(C₄-C₁₀)-Cycloalkenyl-Oxy" sind unter den angegebenen Bedeutungen haben.

- Der Ausdruck "Heterocycl" steht vorzugsweise für einen cyclischen Rest, der vollständig gesättigt, teilweise ungesättigt oder vollständig ungesättigt bzw. aromatisch sein kann und der durch mindestens ein oder mehrere gleiche oder verschiedene Atome aus der Gruppe Stickstoff, Schwefel oder Sauerstoff unterbrochen sein kann, wobei jedoch nicht zwei Sauerstoffatome direkt benachbart sein dürfen und noch mindestens ein Kohlenstoffatom im Ring vorhanden sein muß, wie z.B. ein Rest von Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1,3,4-Oxadiazol, 1,3,4-Thiadiazol, 1,3,4-Triazol, 1,2,4-Oxadiazol, 1,2,4-Thiadiazol, 1,2,4-Triazol, 1,2,3-Triazol, 1,2,3,4-Tetraazol, Benzo[b]thiophen, 10 Benzofuran, Indol, Benzocyclobuten, Benzocyclofuran, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,4,5-Tetraazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, 1,8-Naphthyridin, 1,5-Naphthyridin, 1,6-Naphthyridin, 1,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin, 15 4H-Chinolizin, Piperidin, Pyrrolidin, Oxazolin, Tetrahydrofuran, Tetrahydropyran, Isoxazolidin oder Thiazolidin.
- Heterocycl bedeutet besonders bevorzugt ein gesättigtes, teilgesättigtes oder aromatisches Ringsystem mit 3 bis 6 Ringgliedern und 1 bis 4 Heteroatomen aus der Gruppe O, S und N, wobei mindestens ein Kohlenstoffatom im Ring vorhanden sein muß.
- Ganz besonders bevorzugt bedeutet Heterocycl ein Radikal des Pyridin, Pyrimidin, (1,2,4)-Oxadiazol, (1,3,4)-Oxadiazol, Pyrrol, Furan, Thiophen, Oxazol, Thiazol, Imidazol, Pyrazol, Isoxazol, 1,2,4-Triazol, Tetraazol, Pyrazin, Pyridazin, Oxazolin, Thiazolin, Tetrahydrofuran, Tetrahydropyran, Morpholin, Piperidin, Pyrrolizin, Pyrrolin, Pyrrolidin, Oxazolidin, Thiazolidin, Oxiran und Oxetan.
- A 30 Bevorzugt haben die Symbole und Indizes in den Formeln (I) bis (III) folgende Bedeutungen
- A Ist bevorzugt CH;

R¹ ist bevorzugt eine ein- oder mehrfach durch F und/oder Cl substituierte (C₁-C₄)-Alkygruppe, besonders bevorzugt CF₃, CHF₂ oder CF₂Cl;

insbesondere CF₃;

ist vorzugsweise M oder H;

ist vorzugsweise ein nicht oxidierbares anorganisches oder organisches Kation, besonders bevorzugt Li, Na, K, Cs, Ca²⁺/₂, N[(C₁-C₄)-Alkyl]₄, wie N(CH₃)₄, N(C₂H₅)₄, ganz besonders bevorzugt Na;

ist vorzugsweise (C₁-C₈)-Alkenyl, (C₃-C₈)-Alkinyl, (C₁-C₈)-Alkoxy, (C₃-C₈)-Alkenyloxy, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₈)-alkyl, O-CH₂(C₃-C₈)-Cycloalkyl, wobei die neun letzugenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclxy, Heterocyclxy, Heterocyclxy, Heterocyclxy, -O-CH₂Aryl, -O-CH₂Heterocyclxy, -O-CH₂Heterocyclxy, wobei die acht letzugenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

ist vorzugsweise (C₁-C₈)-Alkenyl, (C₃-C₈)-Alkinyl, (C₃-C₈)-Alkoxy, Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₈)-alkyl, wobei die fünf letzugenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclxy, -CH₂Aryl, -CH₂Heterocyclxy, Heterocyclxy, wobei die vier letzugenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

ist vorzugsweise Halogen, insbesondere F, Cl, (C₁-C₈)-Alkoxy, (C₁-C₈)-Haloalkoxy;

ist bevorzugt R⁵, (C₁-C₈)-Alkyl, (C₁-C₈)-Haloalkyl;

ist bevorzugt unsubstituiertes oder durch ein oder mehrere Halogenatome, vorzugsweise F und/oder Cl, substituiertes (C₁-C₈)-Alkyl oder (C₃-C₈)-Alkenyl, Phenyl oder Benzyl, besonders bevorzugt CH₃, C₂H₅, i-C₃H₇, -CH₂CH=CH₂, -CH₂CF₃, CH₂-CF₂H, CC_l₃, Phenyl oder Benzyl, insbesondere CH₃ oder C₂H₅;

Ist bevorzugt -O-R⁷

Ist bevorzugt 0, 1 oder 2;

Ist bevorzugt 0;

Die Verbindungen der Formel (I) sind teilweise bekannt und teilweise neu.

Gegenstand der Erfindung sind daher auch Verbindungen der Formel (I'), d.h. der Formeln (Ia), (Ib) und (Ic)

10 wobei R³, R⁴ und m die unter Formel (I) angegebenen Bedeutungen haben.

Ebenso Gegenstand der Erfindung sind Verbindungen der Formel (Ib),

wobei 15 R¹¹ (C₁-C₄)-Haloalkyl mit Ausnahme von CF₃, vorzugsweise CHF₂ oder CF₂Cl bedeutet; und A, R³, R⁴, m die unter Formel (I) angegebenen Bedeutungen haben.

Weiterhin Gegenstand der Erfindung sind Verbindungen der Formel (Ic),

20

10

Die Verbindungen der Formel (I) sind teilweise bekannt und teilweise neu.

Gegenstand der Erfindung sind daher auch Verbindungen der Formel (I'), d.h. der Formeln (Ia), (Ib) und (Ic)

10 wobei R³, R⁴ und m die unter Formel (I) angegebenen Bedeutungen haben.

Ebenso Gegenstand der Erfindung sind Verbindungen der Formel (Ib),

wobei 15 R¹¹ (C₁-C₄)-Haloalkyl mit Ausnahme von CF₃, vorzugsweise CHF₂ oder CF₂Cl bedeutet; und A, R³, R⁴, m die unter Formel (I) angegebenen Bedeutungen haben.

Weiterhin Gegenstand der Erfindung sind Verbindungen der Formel (Ic),

20

10

worin
M ein organisches oder anorganisches Kation, vorzugsweise Li, Na, K, Cs,
 Ca^{2+} , $\text{N}(\text{C}_1\text{-C}_4)\text{-Alkyl}$, wie $\text{N}(\text{CH}_3)_4$ oder $\text{N}(\text{C}_2\text{H}_5)_4$, ganz besonders
bevorzugt Na, K und Li bedeutet; und

$\text{A}, \text{R}^1, \text{R}^3, \text{R}^4$ und m die unter Formel (I) angegebenen Bedeutungen haben.

Bevorzogene Verbindungen der Formeln (Ia) - (Ic) sind solche bei denen die Symbole
und Indizes die für Formel (I) als bevorzugt angegebenen Bedeutungen haben.

„Insektizid“ bedeutet im folgenden, sofern aus dem Zusammenhang nicht anders
ersichtlich, eine Aktivität gegen schädliche Arthropoden, wie Insekten und
Spinnentiere, und Helminthen, wie Nematoden.

15 Die Verbindungen der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und
günstiger Wamblütotoxizität zur Bekämpfung von tierischen Schädlingen,
insbesondere Insekten, Spinnen und Helminthen, bevorzugt zur Bekämpfung
von Insekten und Spinnen, die in der Landwirtschaft, bei der Tierzucht, in
Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen.
Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne
Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acalypina z.B. *Acanthostria*, *Argas* spp., *Ornithodoros* spp.,
25 *Demanyssus gallinae*, *Eriophyes ribis*, *Phyllocoptes tritella oleivora*, *Boophilus* spp.,
Rhipicephalus spp., *Amblyomma* spp., *Hyalomma* spp., *Ixodes* spp., *Psoroptes* spp.,
30 *Bucculatrix thurberella*, *Phyllocoptes citrella*, *Agrotis* spp., *Euxoa* spp., *Feltia* spp.,
Earias insulana, *Heliothis* spp., *Laphyrgma exigua*, *Mamestra brassicae*, *Panolis*
flammea, *Prodenia litura*, *Spodoptera* spp., *Trichoplusia ni*, *Carpocapsa pomonella*,

Chorioptes spp., *Sarcopes* spp., *Tarsonemus* spp., *Bryobia praetiosa*, *Panonychus*
spp., *Tetranychus* spp., *Eotetranychus* spp., *Oligonychus* spp., *Eutetranychus* spp..
Aus der Ordnung der Isopoda z.B. *Oniscus asellus*, *Armadium vulgare*, *Porcellio*
scaber.

- | | |
|----|--|
| 5 | Aus der Ordnung der Diplopoda z.B. <i>Blaniulus guttulatus</i> . |
| | Aus der Ordnung der Chilopoda z.B. <i>Geophilus carpophagus</i> , <i>Scutigerida</i> spp.. |
| | Aus der Ordnung der Symphyla z.B. <i>Scutigerella immaculata</i> . |
| | Aus der Ordnung der Thysanura z.B. <i>Lepisma saccharina</i> . |
| | Aus der Ordnung der Orthoptera z.B. <i>Blatta orientalis</i> , <i>Periplaneta americana</i> , |
| 10 | <i>Leucophaea maderae</i> , <i>Blattella germanica</i> , <i>Acheta domesticus</i> , <i>Gryllotalpa</i> spp.,
<i>Locusta migratoria migratorioides</i> , <i>Melanoplus differentialis</i> , <i>Schistocerca gregaria</i> . |
| | Aus der Ordnung des Isoptera z.B. <i>Reticulitermes</i> spp.. |
| | Aus der Ordnung der Anoplura z.B. <i>Phyllocoptes vestatrix</i> , <i>Pemphigus</i> spp., <i>Pediculus</i>
<i>humanus corporis</i> , <i>Haematopinus</i> spp., <i>Linognathus</i> spp.. |
| 15 | Aus der Ordnung der Mallophaga z.B. <i>Trichodectes</i> spp., <i>Damalinea</i> spp.. |
| | Aus der Ordnung der Thysanoptera z.B. <i>Heterothrips femoralis</i> , <i>Thrips tabaci</i> . |
| | Aus der Ordnung der Heteroptera z.B. <i>Eurygaster</i> spp., <i>Dysdercus intermedius</i> , |
| | <i>Pliesma quadrata</i> , <i>Cimex lectularius</i> , <i>Rhodnius prolixus</i> , <i>Triatoma</i> spp.. |
| 20 | Aus der Ordnung der Homoptera z.B. <i>Aleurodes brassicae</i> , <i>Bemisia tabaci</i> ,
<i>Trialeurodes vaporariorum</i> , <i>Aphis</i> spp., <i>Brevicoryne brassicae</i> , <i>Cryptomyzus ribis</i> ,
<i>Dorais fabae</i> , <i>Dorais pomii</i> , <i>Eriosoma lanigerum</i> , <i>Hyalopeplus arundinis</i> ,
<i>Macrosteles avenae</i> , <i>Myzus</i> spp., <i>Phorodon humuli</i> , <i>Rhopalosiphum padi</i> ,
<i>Empoasca</i> spp., <i>Euscelus bilobatus</i> , <i>Nephrotettix cincticeps</i> , <i>Lecanium corni</i> ,
<i>Saissetia oleae</i> , <i>Laodelphax striatellus</i> , <i>Nilaparvata lugens</i> , <i>Acinidiella aurantii</i> ,
<i>Aspidiotus hederae</i> , <i>Pseudococcus</i> spp., <i>Psylla</i> spp.. |
| | Aus der Ordnung der Lepidoptera z.B. <i>Pectinophora gossypiella</i> , <i>Buprestis piniarius</i> ,
<i>Cheilotoma brumata</i> , <i>Lithocolletis blanchardella</i> , <i>Hyponomeuta padella</i> , <i>Plutella</i>
<i>maculipennis</i> , <i>Malacosoma neustria</i> , <i>Euproctis chrysorrhoea</i> , <i>Lymantria</i> spp., |
| 30 | <i>Bucculatrix thurberella</i> , <i>Phyllocoptes citrella</i> , <i>Agrotis</i> spp., <i>Euxoa</i> spp., <i>Feltia</i> spp.,
<i>Earias insulana</i> , <i>Heliothis</i> spp., <i>Laphyrgma exigua</i> , <i>Mamestra brassicae</i> , <i>Panolis</i> |

Pieris spp., *Chilo* spp., *Pyrausta nubilalis*, *Epeorus kuehniella*, *Galleria mellonella*,
Cacoecia podana, *Capua reticulana*, *Choristoneura fumiferana*, *Chysia ambigua*,
Hormona magnanima, *Tortrix viridana*.
 Aus der Ordnung der Coleoptera z.B. *Anobium punctatum*, *Rhizophagus dominica*,
5 *Bruchidius obtectus*, *Acanthoscelides obtectus*, *Hylotropes bajulus*, *Agelastica alni*,
Leptinotarsa decemlineata, *Phaedon cochleariae*, *Diabrotica* spp., *Psyloides*
chrysoccephala, *Epilachna varivestis*, *Abdita* spp., *Oryzaephilus surinamensis*,
Anthophorus spp., *Sitophilus* spp., *Otiorrhynchus sulcatus*, *Cosmopolites sordidus*,
Ceuthorrhynchus assimilis, *Hypera postica*, *Dermestes* spp., *Trogoderma*, *Anthrenus*
10 spp., *Attagenus* spp., *Lycus* spp., *Meligethes aeneus*, *Pinus* spp., *Niptus*
hololeucus, *Gibbium psylloides*, *Tribolium* spp., *Tenebrio molitor*, *Agriotes* spp.,
Conoderus spp., *Melolontha melolontha*, *Amphimallon solstitialis*, *Costelytra*
zealandica.

Aus der Ordnung der Hymenoptera z.B. *Diprion* spp., *Hoplocampa* spp., *Lasius* spp.,

15 *Monomorium pharaonis*, *Vespa* spp..

Aus der Ordnung der Diptera z.B. *Aedes* spp., *Culex* spp.,

Drosophila melanogaster, *Musca* spp., *Fannia* spp., *Calliphora erythrocephala*,
Lucilia spp., *Chrysomya* spp., *Cuterebra* spp., *Gastrophilus* spp., *Hypoboscidae* spp.,
Stomoxys spp., *Oestrus* spp., *Hypoderma* spp., *Tabanus* spp., *Tannia* spp., *Bibio*
hortulanus, *Oscinella frit*, *Phorbia* spp., *Pegomyia hyoscyami*, *Ceratitis capitata*,
Dacus oleae, *Tipula paludosa*.

Aus der Ordnung der Siphonaptera z.B. *Xenopsylla cheopsis*, *Ceratophyllus* spp..

Aus der Ordnung der Arachnida z.B. *Scorpio maurus*, *Latrodectus mactans*.

Aus der Klasse der Helmminthen z.B. *Haemonchus*, *Trichostrongylus*, *Ostertagia*,
25 *Cooperia*, *Chabertia*, *Strongyloides*, *Oesophagostomum*, *Hyostrongylus*,
Ancylostoma, *Ascaris* und *Heterakis* sowie *Fasciola*.
 Aus der Klasse der Gastropoda z.B. *Deroceras* spp., *Aiton* spp., *Lymnaea* spp.,
Gaiba spp., *Succinea* spp., *Biomphalaria* spp., *Bulinus* spp., *Oncomelania* spp..

Aus der Klasse der Bivalva z.B. *Dreissena* spp..

30 Weiterhin lassen sich Protozoen, wie *Elmeria*, bekämpfen.
 Zu den pflanzenparasitären Nematoden, die erfindungsgemäß bekämpft werden
 können, gehören beispielweise die wurzelparasitären Bodennematoden wie z.B.
 solche der Gattungen *Meloidogyne* (Wurzelpaltennematoden), wie *Meloidogyne*
Incognita, *Meloidogyne hapla* und *Meloidogyne javanica*), *Heterodera* und *Globodera*
 (zystenbildende Nematoden, wie *Globodera rostochiensis*, *Globodera pallida*,
Heterodera trifolii) sowie der Gattungen *Radopholus* wie *Radopholus similis*,
Pratylenchus wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.

- 5** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.
- 10** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.
- 15** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.
- 20** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.
- 25** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.
- 30** *Pratylenchus* wie *Pratylenchus neglectus*, *Pratylenchus penetrans* und
Pratylenchus curvifolius; *Tylenchulus* wie *Tylenchulus semipenetrans*,
Tylenchorhynchus, wie *Tylenchorhynchus dubius* und *Tylenchorhynchus claytoni*,
Rotylenchus wie *Rotylenchus robustus*, *Helicotylenchus* wie *Halicotylenchus*
multicinctus, *Belonoaimus* wie *Belonoaimus longicaudatus*, *Longidorus* wie
Longidorus elongatus, *Trichodorus* wie *Trichodorus primitivus* und *Xiphinema* wie
Xiphinema index.

- Frankliniella tritici, Kakothrips spp., Thrips oryzae, Thrips palmi, Thrips tabaci) oder
Weiße Fliege (Aleyrodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum,
Aleurodes proletella).
- 5 Die Erfindung betrifft auch Mittel, beispielsweise Schädlingsbekämpfungsmittel, vorzugsweise insektizide, akarizide und nematizide, besonders bevorzugt insektizide und akarizide Mittel, die eine oder mehrere Verbindungen der Formel (I') neben geeigneten Formulierungshilfsmitteln enthalten.

10 Zur Herstellung der erfundungsgemäßen Mittel gibt man den Wirkstoff und die weiteren Zusätze zusammen und bringt sie in eine geeignete Anwendungsform.

Die erfundungsgemäßen Mittel enthalten den oder die Wirkstoffe der Formel (I') im allgemeinen zu 1 bis 95 Gew.-%. Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher beispielsweise in Frage:

Spritzpulver (WP), emulgierte Konzentrate (EC), wässrige Lösungen (SL), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SE), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Körner.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

30 Die notwendigen Formulierungshilfsmittel, d.h. Träger- und/oder oberflächenaktive Stoffe, wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und beispielsweise beschrieben in: Watkins, "Handbook of

- Insecticide Dust Diluents and Gartlers", 2nd Ed., Darland Books, Caldwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964;
- 5 Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986.
- 10 Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettsäureketone, Alky- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium enthalten.
- 15 Emulgierte Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylo- oder auch höherstehenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-dodecylbenzol-sulfonat oder nichtionische Emulgatoren wie
- 20 Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fetalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxyethylensorbitester.
- 25 Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit, Pyrophyllit oder Diatomenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf

adsorptionsfähiges, granulierte Inertmaterial hergestellt werden oder durch Aufbringung von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinit oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtestens in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration üblicherweise etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen.

Bei emulgierbaren Konzentraten beträgt die Wirkstoffkonzentration etwa 5 bis 80 Gew.-%. Staubförmige Formulierungen enthalten meist 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstoffformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägersstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,0005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,001 und 5 kg/ha Wirkstoff.

Die erfindungsgemäßigen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsfomren in

- Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematziden, Fungiziden, Wachstumsregulierenden Stoffen oder Herbiziden vorliegen.
- Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinerverbindungen und durch Mikroorganismen hergestellte Stoffe.

Bevorzugte Mischungspartner sind:

- 10 In Spritzpulvern beträgt die Wirkstoffkonzentration üblicherweise etwa 10 bis 90 aus der Gruppe der Phosphorverbindungen
1. aus der Gruppe der Phosphorverbindungen
1. Acophate, Azamethiphos, Azinphos-methyl, Bromphos, Bromphos-ethyl, Cadusafos, Chlorethoxyphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Demeton, Demeton-S-methyl, Diclofenviphos, Diclofenviphos, Diclofenviphos, Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimsos, Famphur, Fenamiphos, Fenitrothion, Fenitrothion, Fenitrothion, Flupyrrozofos, Fonofos, Formothion, Fosthiazate, Heptenophos, Isazophos, Malathion, Methachlos, Methamidophos, Methidathion, Isothioate, Isoxathion, Malathion, Methachlos, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenitoate, Phorate, Phosalone, Phosfolan, Phosphocab (BAS-301), Phosmet, Phosphamidon, Phoxim, Pirimiphos, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Prothifos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tebupirimfos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Varmidothion;
- 20 2. aus der Gruppe der Carbamate
2. aus der Gruppe der Carbamate
- Alanycarb (OK-135), Adicarb, 2-sec.-Butylphenylmethylcarbamate (BFMC), Carbay, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, HCN-801, Isoprocarb, Methomyl, 5-Methyl-m-cumylbutyryl(methyl)carbamate, Oxamyl, Piemicarb, Propoxur, Thiocarb, Thiophanox, 1-Methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 5177), Triazamate;

- Dinobuton, Dinocap, Dinetofuran, Dicfenolan, Enamectin-Benzooate, Endosulfan, Ethiprole (Sulfethiprole), Ethofenprox, Etoxazole, Fenazaquin, Fenoxycarb, Fipronil, Fliazuron, Flonicamid, Flumite (Flufenzine, SZI-121), 2-Fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyldiphenylether (MTI 800), Granulose- und 5 Kempolyederviren, Fenpyroximate, Fenthioicarb, Flonicamid, Fluacrypyrim, Flubenzimine, Flucycloxuron, Flufenoxuron, Flufenprox, Fluproxyfen, Flufenzine, FM-C-F6028, Gamma-HCH, Halofenozide, Halofenprox, Hexaflumuron (DE_473), Hexythiazox, HOI-9004, Hydramethylnon (AC 217300), Lufenuron, Imidacloprid, Inodoxacarb, Kanemite (AKD-2023), M-020, Ivermectin, M-020, Methoxyfenozide, Milbemectin, MKI-245, NC-196, NC-510, Neemgard, Nidinofuran, Nitennpyram, 2-Nitromethyl-4,5-dihydro-6H-thiazin (DS 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), Novaluron, Noviflumuron, Pyriproxyfen (S-71639), NC-196, NC-1111, NNI-9768, OK-9701, OK-9601, OK-9602, Propargite, Pymetrozine, Pyridaben, Pyridaryl, Pyrimidifen, Pyriproxyfen, RYI-210, S-1283, S-1833, SB7242, SI-8601, Silafluofen, Siliomadine (CG-177), Spinosad, Spirodiclofen, Spiromesifen, SU-9118, Tebufenoizide, Tebufenpyrad, Teflubenzuron, Tefluthrin, Tetradifon, Tetrasul, Thiacloprid, Thiametoxam, Thiocyclam, Tolfenpyrad, Triazamate, Triflumuron, Verbutin, Vertalec (Mykotal), YI-5301,
- 20 aus der Gruppe der Zinnverbindungen
Amitraz, Chlordimeform;
- 20 aus der Gruppe der Amidine
Cyhexatin, Fenbutatinoxide;
- 20 Sonstige
Abamectin, ABG-9008, Acequinocyl, Azadirachtin, Acetamiprid, Anagrypha falciaria, AKD-1022, AKD-3088, AL-9811, ANS-118, Bacillus thuringiensis, Beauveria bassiana, Bensulipat, Bifenazate, Binapacyl, Bistfluron, BJL-932, Brompropylate, BTG-504, BTG-505, BTG-514, BTG-522, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlortenapyr, Chlorfliazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlortenzine, Chloproxyfen, Clothianidine, Chromafenoizide, A-184699, Cyclopropancarbonsäure-(2-naphthylmethyl)ester (R012-0470), CM-002X, DBI-3204, Cyromazin, Diacloben (Thiamethoxam), Diflubenzuron, N-(3,5-Dichlor-4-(1,1,2,3,3-hexafluor-1-propyl)oxy)phenylcarbamoyl)-2-chlorbenzcarboximidäureethylester, DDT, Dicofol, Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)-2,4-xylidine,
- 20 Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in C.D.S. Tomlin (Hrsg.), The Pesticide Manual, 12. Auflage, British Crop Protection Council, Farnham 2000 beschrieben sind.
- 25 Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.
- Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Gegenstand der Erfindung ist daher die Verwendung von Verbindungen der Formel (I) und deren Salzen zur Bekämpfung von tierischen Schädlingen, vorzugsweise schädlichen Arthropoden, wie Insekten und Spinnentieren und Helmminthen, wie Nematoden.

- 5 Weiterhin Gegenstand der Erfindung ist ein Verfahren zur Bekämpfung von Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung. Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise, beispielsweise durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion.
- 10 Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endo- und Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung. Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise, beispielsweise durch orale Anwendung in Form von beispielsweise 15 Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion.
- 15 Gegenstand der Erfindung ist daher auch die Verwendung von Verbindungen der Formel (I) oder eines ihrer Salze zur Herstellung eines Human- und/oder Tierarzneimittels, vorzugsweise eines Tierarzneimittels, insbesondere zur Kontrolle von Ekto- und/oder Endoparasiten.
- 20 Die Verbindungen der Formel (I) können demgemäß auch vorteilhaft in der Viehhaltung (z.B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die Verbindungen, gegebenenfalls in geeigneten Formulierungen und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, lässt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und
- 25 Die Verbindungen der Formel (I) können demgemäß auch vorteilhaft in der Viehhaltung (z.B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die Verbindungen, gegebenenfalls in geeigneten Formulierungen und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, lässt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und
- 30 30 Resistenzen gegenüber bestimmten Pflanzenschutzmitteln, Resistzenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten, wie bestimmten Insekten oder Mikroorganismen, wie Pilzen, Bakterien oder Viren. Andere besondere

dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und feststellen. Die Verbindungen können bei Rindern z.B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.

- 5 Neben den bisher genannten Applikationsverfahren zeigen die Wirkstoffe der Formel (I) eine hervorragende systemische Wirkung. Die Wirkstoffe können daher auch über Pflanzenteile, unterirdische wie oberirdische (Wurzel, Stengel, Blatt), in die Pflanzen eingebracht werden, wenn die Wirkstoffe in flüssiger oder fester Form in die direkte Umgebung der Pflanze appliziert werden (z.B. Granulat in der Erdapplikation, Applikation in gefüllten Reistfeldern).
- 10 Daneben sind die erfindungsgemäßen Wirkstoffe in besonderer Weise zu Behandlung von vegetativen und generativen Vermehrungsmaterial einsetzbar, wie z.B. von Saatgut von beispielsweise Getreide, Gemüse, Baumwolle, Reis, Zuckerrübe und anderen Kultur- und Zierpflanzen, von Zwiebeln, Stecklingen und Knollen weiterer vegetativ vermehrter Kultur- und Zierpflanzen. Die Behandlung hierfür kann vor der Saat bzw. dem Pflanzvorgang erfolgen (z.B. durch spezielle Techniken des Seedcoatings, durch Beitzung in flüssiger oder fester Form oder Seedboxtreatment), während des Saatvorgangs bzw. des Pflanzens oder nach dem Saat- bzw. Pflanzvorgang durch spezielle Applikationstechniken (z.B. Saatreihebehandlung). Die angewandte Wirkstoffmenge kann entsprechend der Anwendung in einem größeren Bereich schwanken. Im allgemeinen liegen die Aufwandmengen zwischen 1 g und 10 kg Wirkstoff pro Hektar Bodenfläche.
- 15 20 25 Die Verbindungen der Formel (I) können auch zur Bekämpfung von tierischen Schädlingen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistzenzen gegenüber bestimmten Pflanzenschutzmitteln, Resistzenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten, wie bestimmten Insekten oder Mikroorganismen, wie Pilzen, Bakterien oder Viren. Andere besondere

Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.

- 5 Bevorzugt ist die Anwendung in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zielpflanzen, z.B. von Getreide, wie Weizen, Gerste, Roggen, Hafser, Hirse, Reis, Maniok und Mais, oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbsen und anderen Gemüsesorten.

10 Bei der Anwendung in transgenen Kulturen, insbesondere mit Insektenresistenzen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadorganismen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Schädigungsspektrum, das bekämpft werden kann oder veränderte Aufwandmengen, die für die Applikation eingesetzt werden können.

Gegenstand der Erfindung ist deshalb auch die Verwendung von Verbindungen der Formel (I) zur Bekämpfung von tierischen Schädlingen in transgenen Kulturpflanzen.

Die Anwendung der erfindungsgemäßigen Verbindungen beinhaltet neben direkter Applikation auf die Schädlinge jede andere Applikation, bei der Verbindungen der Formel (I) auf die Schädlinge wirken. Solche indirekten Applikationen können beispielsweise in der Anwendung von Verbindungen liegen, die, beispielsweise im Boden, der Pflanze oder dem Schädling, zu Verbindungen der Formel (I) zerfallen oder abgebaut werden.

Neben lethaler Wirkung auf Schädlinge zeichnen sich die Verbindungen der Formel (I) oder deren Salze auch durch einen ausgeprägten Repellenteffekt aus.

Repellent im Sinne der Beschreibung ist ein Stoff oder Stoffgemisch, das abwehrend oder vertreibend auf andere Lebewesen, insbesondere Schädlinge und Lästlinge wirkt. Der Begriff umfaßt dabei auch Effekte wie den Antifeeding-Effekt, wobei die Nahrungsaufnahme gestört oder verhindert wird (fraßabweisender Effekt),

- 5 Unterdrückung der Elaiotage oder eine Beeinflussung der Populationsentwicklung.

Gegenstand der Erfindung ist daher auch die Verwendung von Verbindungen der Formel (I) zur Erzielung der genannten Effekte, insbesondere bei den in den biologischen Beispiele benannten Schädlingen.

- 10 Gegenstand der Erfindung ist auch ein Verfahren zur Abwehr oder zur Vertreibung von Schadorganismen, wobei man eine oder mehrere Verbindungen der Formel (I) an dem Ort aus bringt, von dem die Schadorganismen ferngehalten oder vertrieben werden sollen.

15 Ausbringen kann im Falle einer Pflanze beispielsweise eine Behandlung der Pflanze oder auch des Saatguts bedeuten.

Es ist, was die Beeinflussung von Populationen angeht, von Interesse, daß die Effekte auch hintereinander bei der Entwicklung einer Population beobachtet werden, wobei sie sich aufaddieren können. Hierbei kann der Einzeleffekt selbst nur einen Wirkungsgrad von deutlich unter 100% haben und insgesamt am Ende doch eine 100%ige Wirkung erreicht werden.

20 Außerdem zeichnen sich die Verbindungen der Formel (I) oder ihre Salze dadurch aus, daß man - will man die oben angeführten Effekte ausnutzen - zu einem früheren Zeitpunkt als bei einer direkten Bekämpfung üblich das Mittel appliziert. Der Effekt hält häufig lange Zeit an, so daß eine Wirkungsdauer von mehr als 2 Monaten erreicht wird.

25 30 Die Effekte treten bei Insekten, Spinnentieren und den anderen der oben genannten Schädlinge auf.

Die Erfindung wird durch die Beispiele näher erläutert, ohne sie dadurch einzuschränken.

5 Beispiele

A Chemische Beispiele

Allgemeine Arbeitsvorschrift

10 Ein Äquivalent Amid, ein Äquivalent Natrimumethanolat und ein Äquivalent der Verbindung der Formel (III) werden in NMP 1 - 3 Stunden auf 60 - 70°C erhitzt.

a) Herstellung von Verbindungen der Tabelle 1 und 2:

Es wird 10 gew.%ige Salzsäure langsam zugetrockt bis pH 5 erreicht ist. Das Reaktionsgemisch wird mit Wasser verdünnt und das Produkt mit Ethylacetat extrahiert.

Die organische Phase wird mit H₂O gewaschen, getrocknet und das Lösungsmittel im Vakuum entfernt.

b) Herstellung von Verbindungen der Tabelle 3:

Der entstandene Niederschlag wird abfiltriert und mit Methanol nachgewaschen.

Gemäß Allgemeiner Arbeitsvorschrift werden erhalten:

Tabelle 1:

Verbindungen der Formel (Iaa)

Verbindung	R ³
A-1	CH ₃ CH=CHCH ₂
A-2	CH ₂ C(CH ₃)CH ₂
A-3	CH ₂ =CH(CH ₃)CH
A-4	CH ₂ =CHCH ₂ CH ₂
A-5	CH ₃ CH=C(CH ₃)CH ₂
A-6	CH(CH ₃) ₂ HC=CH ₂
A-7	CH ₃ CH=CH(CH ₃)HC=CHCH ₃
A-8	CH ₂ HC=C(CH ₃) ₂
A-9	CH ₃ CH=CHCH ₂ CH ₂
A-10	CH ₂ =CHCH ₂ CH ₂ CH ₂
A-11	CHO=CHCH ₂
A-12	CH ₃ C≡CCH ₂
A-13	HC≡CCH(CH ₃)
A-14	CH ₃ C≡CCH(CH ₃)
A-15	cyclo-C ₃ H ₅
A-16	cyclo-C ₅ H ₉
A-17	cyclo-C ₆ H ₁₁
A-18	(cyclo-C ₃ H ₅)CH ₂
A-19	(cyclo-C ₅ H ₉)CH ₂
A-20	(cyclo-C ₆ H ₁₁)CH ₂
A-21	PhCH ₂
A-22	PhCH(CH ₃)
A-23	PhC(CH ₃) ₂
A-24	PhCH ₂ CH ₂
A-25	(2-F-Ph)CH ₂
A-26	(3-F-Ph)CH ₂
A-27	(4-F-Ph)CH ₂
A-28	(2-Cl-Ph)CH ₂
A-29	(3-Cl-Ph)CH ₂
A-30	(4-Cl-Ph)CH ₂

Verbindung	R ³	R ⁴
A-31	(2-CF ₃ -Ph)CH ₂	CH ₃
A-32	(3-CF ₃ -Ph)CH ₂	CH ₃
A-33	(4-CF ₃ -Ph)CH ₂	CH ₃
A-34	(2-CH ₃ O-Ph)CH ₂	CH ₃
A-35	(3-CH ₃ O-Ph)CH ₂	CH ₃
A-36	(4-CH ₃ O-Ph)CH ₂	CH ₃
A-37	CH ₃ O	CH ₃
A-38	CH ₃ CH ₂ O	CH ₃
A-39	n-C ₃ H ₇ O	CH ₃
A-40	Iso-C ₃ H ₇ O	CH ₃
A-41	CH ₂ =CHCH ₂ O	CH ₃
A-42	CH ₂ =C(CH ₃)CH ₂ O	CH ₃
A-43	CH ₂ =CHCH(CH ₃)O	CH ₃
A-44	CH ₂ =CHCH(CH ₃) ₂ O	CH ₃
A-45	CH ₂ =CHC(CH ₃) ₂ O	CH ₃
A-46	CH ₃ CH=CHCH ₂ O	CH ₃
A-47	HC≡CCH ₂ O	CH ₃
A-48	CH ₃ C≡CCH ₂ O	CH ₃
A-49	HC≡CCH(CH ₃)O	CH ₃
A-50	CH ₃ O ₂ CC(CH ₃)O	CH ₃
A-51	CH ₃ O ₂ CC(CH ₃) ₂ O	CH ₃
A-52	CH ₃ O ₂ CC ₂ O	CH ₃
A-53	PhCH ₂ O	CH ₃
A-54	PhO	CH ₃
A-55	Ph	CH ₃
A-56	2-F-Ph	CH ₃
A-57	3-F-Ph	CH ₃
A-58	4-F-Ph	CH ₃
A-59	2-Cl-Ph	CH ₃
A-60	3-Cl-Ph	CH ₃
A-61	4-Cl-Ph	CH ₃
A-62	2-Br-Ph	CH ₃
A-63	3-Br-Ph	CH ₃
A-64	4-Br-Ph	CH ₃
A-65	2-I-Ph	CH ₃
A-66	3-I-Ph	CH ₃
A-67	4-I-Ph	CH ₃
A-68	2-CF ₃ -Ph	CH ₃
A-69	3-CF ₃ -Ph	CH ₃
A-70	4-CF ₃ -Ph	CH ₃
A-71	2-CH ₃ -Ph	CH ₃
A-72	3-CH ₃ -Ph	CH ₃
A-73	4-CH ₃ -Ph	CH ₃

Verbindung	R ³	R ⁴
A-74	2-CH ₃ O-Ph	CH ₃
A-75	3-CH ₃ O-Ph	CH ₃
A-76	4-CH ₃ O-Ph	CH ₃
A-77	2-NO ₂ -Ph	CH ₃
A-78	3-NO ₂ -Ph	CH ₃
A-79	4-NO ₂ -Ph	CH ₃
A-80	2-CN-Ph	CH ₃
A-81	3-CN-Ph	CH ₃
A-82	4-CN-Ph	CH ₃
A-83	2-CO ₂ Me-Ph	CH ₃
A-84	3-CO ₂ Me-Ph	CH ₃
A-85	4-CO ₂ Me-Ph	CH ₃
A-86	2-CF ₃ O-Ph	CH ₃
A-87	3-CF ₃ O-Ph	CH ₃
A-88	4-CF ₃ O-Ph	CH ₃
A-89	4-CF ₃ CH ₂ O-Ph	CH ₃
A-90	4-(4-Cl-Ph)O-Ph	CH ₃
A-91	4-(4-CF ₃ -Ph)O-Ph	CH ₃
A-92	2,3-diCl-Ph	CH ₃
A-93	2,4-diCl-Ph	CH ₃
A-94	2,5-diCl-Ph	CH ₃
A-95	2,6-diCl-Ph	CH ₃
A-96	3,4-diCl-Ph	CH ₃
A-97	3,5-diCl-Ph	CH ₃
A-98	2-Pyridyl	CH ₃
A-99	3-Pyridyl	CH ₃
A-100	4-Pyridyl	CH ₃
A-101	2-Pyrimidyl	CH ₃
A-102	1-Pyridolyl	CH ₃
A-103	1-Pyrazolyl	CH ₃
A-104	3-Pyrazolyl	CH ₃
A-105	1,2,4-Triazol-1-yl	CH ₃
A-106	1,2,4-Triazol-3-yl	CH ₃
A-107	2-Furanyl	CH ₃
A-108	3-Furanyl	CH ₃
A-109	2-Phenyl	CH ₃
A-110	3-Phenyl	CH ₃
A-111	2-Triazolyl	CH ₃
A-112	1,3,4-Thiadiazol-2-yl	CH ₃
A-113	3-Isoxazolyl	CH ₃
A-114	CF ₃ CH ₂	CH ₃
A-115	CICH ₂ CH ₂	CH ₃
A-116	CICH ₂ CH ₂ CH ₂	CH ₃

Verbindung	R ³	R ⁴	Verbindung	R ³	R ⁴
A-117	CH ₃ OCH ₂ CH ₂	CH ₃	A-160	3-CH ₃ O-Ph	C ₂ H ₅
A-118	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₃	A-161	4-CH ₃ O-Ph	C ₂ H ₅
A-119	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₃	A-162	4-CF ₃ O-Ph	C ₂ H ₅
A-120	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₃	A-163	4-CF ₃ CH ₂ O-Ph	C ₂ H ₅
A-121	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₃	A-164	4-(4-ClPhO)-Ph	C ₂ H ₅
A-122	(CH ₃ O) ₂ CHCH ₂	CH ₃	A-165	4-(4-CF ₃ -PhO)-Ph	C ₂ H ₅
A-123	(CH ₃ O) ₂ C=CH ₂	CH ₃	A-166	2,3-dCl-Ph	C ₂ H ₅
A-124	(CH ₃ O ₂)C=CH(CH ₃) ₂	CH ₃	A-167	1-Pyrrolyl	C ₂ H ₅
A-125	CH ₃ O ₂ CC(CH ₃) ₂	CH ₃	A-168	1-Pyrazolyl	C ₂ H ₅
A-126	NCCCH ₂	CH ₃	A-169	1,2,4-Triazol-1-yl	C ₂ H ₅
A-127	NC(CH ₃)(iso-C ₃ H ₇)C	CH ₃	A-170	2-Thiazolyl	C ₂ H ₅
A-128	(1-pyrrolidinyl)CH ₂ CH ₂	C ₂ H ₅	A-171	1,3,4-Thiadiazol-2-yl	C ₂ H ₅
A-129	CH ₂ =CHCH ₂	C ₂ H ₅	A-172	CH ₃ O ₂ CCH ₂	C ₂ H ₅
A-130	CHC=CH ₂	C ₂ H ₅	A-173	CH ₃ O ₂ CCH(CH ₃)	n-C ₃ H ₇
A-131	CH ₃ C≡CCH ₂	C ₂ H ₅	A-174	NCCCH ₂	iso-C ₃ H ₇
A-132	(cyclo-C ₃ H ₅)CH ₂	C ₂ H ₅	A-175	CH ₂ =CHCH ₂	iso-C ₃ H ₇
A-133	PhCH ₂	C ₂ H ₅	A-176	HC≡CCH ₂	iso-C ₃ H ₇
A-134	PhCH ₂ CH ₂	C ₂ H ₅	A-177	CH ₃ O≡CCH ₂	iso-C ₃ H ₇
A-135	(2-Cl-Ph)CH ₂	C ₂ H ₅	A-178	(cyclo-C ₃ H ₅)CH ₂	iso-C ₃ H ₇
A-136	(3-Cl-Ph)CH ₂	C ₂ H ₅	A-179	PhCH ₂	iso-C ₃ H ₇
A-137	(4-Cl-Ph)CH ₂	C ₂ H ₅	A-180	PhCH ₂ CH ₂	iso-C ₃ H ₇
A-138	(2-CF ₃ -Ph)CH ₂	C ₂ H ₅	A-181	(2-Cl-Ph)CH ₂	iso-C ₃ H ₇
A-139	(3-CF ₃ -Ph)CH ₂	C ₂ H ₅	A-182	(3-Cl-Ph)CH ₂	iso-C ₃ H ₇
A-140	(4-CF ₃ -Ph)CH ₂	C ₂ H ₅	A-183	(4-Cl-Ph)CH ₂	iso-C ₃ H ₇
A-141	(2-CH ₃ O-Ph)CH ₂	C ₂ H ₅	A-184	(2-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
A-142	(3-CH ₃ O-Ph)CH ₂	C ₂ H ₅	A-185	(3-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
A-143	(4-CH ₃ O-Ph)CH ₂	C ₂ H ₅	A-186	(4-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
A-144	CH ₃ O	C ₂ H ₅	A-187	(2-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
A-145	CH ₃ CH ₂ O	C ₂ H ₅	A-188	(3-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
A-146	n-C ₃ H ₇ O	C ₂ H ₅	A-189	(4-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
A-147	iso-C ₃ H ₇ O	C ₂ H ₅	A-190	CH ₃ O	iso-C ₃ H ₇
A-148	CH ₂ =CHCH ₂ O	C ₂ H ₅	A-191	CH ₃ CH ₂ O	iso-C ₃ H ₇
A-149	HC≡CCH ₂ O	C ₂ H ₅	A-192	n-C ₃ H ₇ O	iso-C ₃ H ₇
A-150	PhCH ₂ O	C ₂ H ₅	A-193	iso-C ₃ H ₇ O	iso-C ₃ H ₇
A-151	PhO	C ₂ H ₅	A-194	CH ₂ =CHCH ₂ O	iso-C ₃ H ₇
A-152	Ph	C ₂ H ₅	A-195	HC≡CCH ₂ O	iso-C ₃ H ₇
A-153	2-Cl-Ph	C ₂ H ₅	A-196	PhCH ₂ O	iso-C ₃ H ₇
A-154	3-Cl-Ph	C ₂ H ₅	A-197	PhO	iso-C ₃ H ₇
A-155	4-Cl-Ph	C ₂ H ₅	A-198	Ph	iso-C ₃ H ₇
A-156	2-CF ₃ -Ph	C ₂ H ₅	A-199	2-Cl-Ph	iso-C ₃ H ₇
A-157	3-CF ₃ -Ph	C ₂ H ₅	A-200	3-Cl-Ph	iso-C ₃ H ₇
A-158	4-CF ₃ -Ph	C ₂ H ₅	A-201	4-Cl-Ph	iso-C ₃ H ₇
A-159	2-CH ₃ O-Ph	C ₂ H ₅	A-202	2-CF ₃ -Ph	iso-C ₃ H ₇

Verbindung	R ³	R ⁴	Verbindung	R ³	R ⁴
A-160	3-CH ₃ O-Ph	C ₂ H ₅	A-161	4-CH ₃ O-Ph	C ₂ H ₅
A-162	4-CF ₃ O-Ph	C ₂ H ₅	A-163	4-CF ₃ CH ₂ O-Ph	C ₂ H ₅
A-164	4-(4-ClPhO)-Ph	C ₂ H ₅	A-165	4-(4-CF ₃ -PhO)-Ph	C ₂ H ₅
A-166	2,3-dCl-Ph	C ₂ H ₅	A-167	1-Pyrrolyl	C ₂ H ₅
A-168	1-Pyrazolyl	C ₂ H ₅	A-169	1,2,4-Triazol-1-yl	C ₂ H ₅
A-170	2-Thiazolyl	C ₂ H ₅	A-171	1,3,4-Thiadiazol-2-yl	C ₂ H ₅
A-172	CH ₃ O ₂ CCH ₂	C ₂ H ₅	A-173	CH ₃ O ₂ CCH(CH ₃)	n-C ₃ H ₇
A-174	NCCCH ₂	C ₂ H ₅	A-175	CH ₂ =CHCH ₂	iso-C ₃ H ₇
A-176	HC≡CCH ₂	C ₂ H ₅	A-177	CH ₃ O≡CCH ₂	iso-C ₃ H ₇
A-178	(cyclo-C ₃ H ₅)CH ₂	C ₂ H ₅	A-179	PhCH ₂	iso-C ₃ H ₇
A-180	PhCH ₂ CH ₂	C ₂ H ₅	A-181	(2-Cl-Ph)CH ₂	iso-C ₃ H ₇
A-182	(3-Cl-Ph)CH ₂	C ₂ H ₅	A-183	(4-Cl-Ph)CH ₂	iso-C ₃ H ₇
A-184	(2-CF ₃ -Ph)CH ₂	C ₂ H ₅	A-185	(3-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
A-186	(4-CF ₃ -Ph)CH ₂	C ₂ H ₅	A-187	(2-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
A-188	(3-CH ₃ O-Ph)CH ₂	C ₂ H ₅	A-189	(4-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
A-190	CH ₃ O	C ₂ H ₅	A-191	CH ₃ CH ₂ O	iso-C ₃ H ₇
A-192	n-C ₃ H ₇ O	C ₂ H ₅	A-193	iso-C ₃ H ₇ O	iso-C ₃ H ₇
A-194	CH ₂ =CHCH ₂ O	C ₂ H ₅	A-195	HC≡CCH ₂ O	iso-C ₃ H ₇
A-196	PhCH ₂ O	C ₂ H ₅	A-197	PhO	iso-C ₃ H ₇
A-198	Ph	C ₂ H ₅	A-199	2-Cl-Ph	iso-C ₃ H ₇
A-200	3-Cl-Ph	C ₂ H ₅	A-201	4-Cl-Ph	iso-C ₃ H ₇
A-202	2-CF ₃ -Ph	C ₂ H ₅			

Verbindung	R ³	R ⁴
A-203	Iso-C ₃ H ₇	Iso-C ₃ H ₉
A-204	3-CF ₃ -Ph	Iso-C ₃ H ₇
A-205	4-CF ₃ -Ph	Iso-C ₃ H ₇
A-206	2-CH ₃ O-Ph	Iso-C ₃ H ₇
A-207	3-CH ₃ O-Ph	Iso-C ₃ H ₇
A-208	4-CH ₃ O-Ph	Iso-C ₃ H ₇
A-209	4-CF ₃ CH ₂ O-Ph	Iso-C ₃ H ₇
A-210	4-(4-Cl-PhO)-Ph	Iso-C ₃ H ₇
A-211	4-(4-CF ₃ PhO)-Ph	Iso-C ₃ H ₇
A-212	2,3-diCl-Ph	Iso-C ₃ H ₇
A-213	1-Pyrrolyl	Iso-C ₃ H ₇
A-214	1-Pyrazolyl	Iso-C ₃ H ₇
A-215	1,2,4-Triazol-1-yl	Iso-C ₃ H ₇
A-216	2-Thiazolyl	Iso-C ₃ H ₇
A-217	1,3,4-Triadiazol-2-yl	Iso-C ₃ H ₇
A-218	CF ₃ CH ₂	Iso-C ₃ H ₇
A-219	CICH ₂ CH ₂	Iso-C ₃ H ₇
A-220	CICH ₂ CH ₂ CH ₂	Iso-C ₃ H ₇
A-221	CH ₃ OCH ₂ CH ₂	Iso-C ₃ H ₇
A-222	CH ₃ CH ₂ OCH ₂ CH ₂	Iso-C ₃ H ₇
A-223	CH ₃ OCH ₂ CH ₂ CH ₂	Iso-C ₃ H ₇
A-224	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	Iso-C ₃ H ₇
A-225	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	Iso-C ₃ H ₇
A-226	(CH ₃ O) ₂ CHCH ₂	Iso-C ₃ H ₇
A-227	CH ₃ O ₂ CCH ₂	Iso-C ₃ H ₇
A-228	CH ₃ O ₂ C(CH ₃)	Iso-C ₃ H ₇
A-229	NCCCH ₂	Iso-C ₃ H ₇
A-230	NC(CH ₃)(Iso-C ₃ H ₇)	Iso-C ₃ H ₉
A-231	CH ₂ =CHCH ₂	Iso-C ₄ H ₉
A-232	CHCCH ₂	Iso-C ₄ H ₉
A-233	CH ₃ CCCH ₂	Iso-C ₄ H ₉
A-234	(cyclo-C ₃ H ₅)CH ₂	Iso-C ₄ H ₉
A-235	PhCH ₂	Iso-C ₄ H ₉
A-236	PhCH ₂ CH ₂	Iso-C ₄ H ₉
A-237	(2-Cl-Ph)CH ₂	Iso-C ₄ H ₉
A-238	(3-Cl-Ph)CH ₂	Iso-C ₄ H ₉
A-239	(4-Cl-Ph)CH ₂	Iso-C ₄ H ₉
A-240	(2-CF ₃ -Ph)CH ₂	Iso-C ₄ H ₉
A-241	(3-CF ₃ -Ph)CH ₂	Iso-C ₄ H ₉
A-242	(4-CF ₃ -Ph)CH ₂	Iso-C ₄ H ₉
A-243	(2-CH ₃ O-Ph)CH ₂	Iso-C ₄ H ₉
A-244	(3-CH ₃ O-Ph)CH ₂	Iso-C ₄ H ₉
A-245	(4-CH ₃ O-Ph)CH ₂	Iso-C ₄ H ₉

Verbindung	R ³	R ⁴
A-246	CH ₃ O	tert-C ₄ H ₉
A-247	CH ₃ CH ₂ O	tert-C ₄ H ₉
A-248	n-C ₃ H ₇ O	tert-C ₄ H ₉
A-249	Iso-C ₃ H ₇ O	tert-C ₄ H ₉
A-250	CH ₂ =CHCH ₂ O	tert-C ₄ H ₉
A-251	HC≡CCH ₂ O	tert-C ₄ H ₉
A-252	PhCH ₂ O	tert-C ₄ H ₉
A-253	PhO	tert-C ₄ H ₉
A-254	Ph	tert-C ₄ H ₉
A-255	2-Cl-Ph	tert-C ₄ H ₉
A-256	3-Cl-Ph	tert-C ₄ H ₉
A-257	4-Cl-Ph	tert-C ₄ H ₉
A-258	2-CF ₃ -Ph	tert-C ₄ H ₉
A-259	3-CF ₃ -Ph	tert-C ₄ H ₉
A-260	4-CF ₃ -Ph	tert-C ₄ H ₉
A-261	2-CH ₃ O-Ph	tert-C ₄ H ₉
A-262	3-CH ₃ O-Ph	tert-C ₄ H ₉
A-263	4-CH ₃ O-Ph	tert-C ₄ H ₉
A-264	4-CF ₃ O-Ph	tert-C ₄ H ₉
A-265	4-CF ₃ CH ₂ O-Ph	tert-C ₄ H ₉
A-266	4-(4-Cl-PhO)-Ph	tert-C ₄ H ₉
A-267	4-(4-CF ₃ PhO)-Ph	tert-C ₄ H ₉
A-268	2,3-diCl-Ph	tert-C ₄ H ₉
A-269	1-Pyrrolyl	tert-C ₄ H ₉
A-270	1-Pyrazolyl	tert-C ₄ H ₉
A-271	1,2,4-Triazol-1-yl	tert-C ₄ H ₉
A-272	2-Thiazolyl	tert-C ₄ H ₉
A-273	1,3,4-Thiadiazol-2-yl	tert-C ₄ H ₉
A-274	CH ₃ O ₂ CCH ₂	tert-C ₄ H ₉
A-275	CH ₃ O ₂ C(CH ₃)	tert-C ₄ H ₉
A-276	NCCCH ₂	CH ₂ =CHCH ₂
A-277	NC(CH ₃)(Iso-C ₃ H ₇)C	CH ₂ =CHCH ₂
A-278	CH ₂ =CHCH ₂	CH ₂ =CHCH ₂
A-279	HC≡CCH ₂	CH ₂ =CHCH ₂
A-280	CH ₃ CCCH ₂	CH ₂ =CHCH ₂
A-281	(cyclo-C ₃ H ₅)CH ₂	CH ₂ =CHCH ₂
A-282	PhCH ₂	CH ₂ =CHCH ₂
A-283	PhCH ₂ CH ₂	CH ₂ =CHCH ₂
A-284	(2-CF ₃ Ph)CH ₂	CH ₂ =CHCH ₂
A-285	(3-CF ₃ Ph)CH ₂	CH ₂ =CHCH ₂
A-286	(4-CF ₃ Ph)CH ₂	CH ₂ =CHCH ₂
A-287	(2-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-288	(3-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂

Verbindung	R ³	R ⁴
A-289	(4-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-290	(2-Ch ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-291	(3-Ch ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-292	(4-Ch ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-293	CH ₃ O	CH ₂ =CHCH ₂
A-294	CH ₃ CH ₂ O	CH ₂ =CHCH ₂
A-295	n-C ₃ H ₇ O	CH ₂ =CHCH ₂
A-296	iso-C ₃ H ₇ O	CH ₂ =CHCH ₂
A-297	CH ₂ =CHCH ₂ O	CH ₂ =CHCH ₂
A-298	CHCCH ₂ O	CH ₂ =CHCH ₂
A-299	PhCH ₂ O	CH ₂ =CHCH ₂
A-300	PhO	CH ₂ =CHCH ₂
A-301	Ph	CH ₂ =CHCH ₂
A-302	2-CI-Ph	CH ₂ =CHCH ₂
A-303	3-CI-Ph	CH ₂ =CHCH ₂
A-304	4-CI-Ph	CH ₂ =CHCH ₂
A-305	2-CF ₃ -Ph	CH ₂ =CHCH ₂
A-306	3-CF ₃ -Ph	CH ₂ =CHCH ₂
A-307	4-CF ₃ -Ph	CH ₂ =CHCH ₂
A-308	2-CH ₃ O-Ph	CH ₂ =CHCH ₂
A-309	3-CH ₃ O-Ph	CH ₂ =CHCH ₂
A-310	4-CH ₃ O-Ph	CH ₂ =CHCH ₂
A-311	4-CF ₃ O-Ph	CH ₂ =CHCH ₂
A-312	4-CF ₃ CH ₂ O-Ph	CH ₂ =CHCH ₂
A-313	4-(4-Cl-Ph)O-Ph	CH ₂ =CHCH ₂
A-314	4-(4-CF ₃ -Ph)O-Ph	CH ₂ =CHCH ₂
A-315	2,3-diCl-Ph	CH ₂ =CHCH ₂
A-316	1-Pyrrrolyl	CH ₂ =CHCH ₂
A-317	1-Pyrazolyl	CH ₂ =CHCH ₂
A-318	1,2,4-Triazol-1-yl	CH ₂ =CHCH ₂
A-319	2-Thiazolyl	CH ₂ =CHCH ₂
A-320	1,3,4-Triadiazol-2-yl	CH ₂ =CHCH ₂
A-321	CF ₃ CH ₂	CH ₂ =CHCH ₂
A-322	C(=O)CH ₂ CH ₂	CH ₂ =CHCH ₂
A-323	C(=O)CH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-324	CH ₃ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-325	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-326	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-327	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-328	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-329	(CH ₃ O) ₂ CHCH ₂	CH ₂ =CHCH ₂
A-330	CH ₃ O ₂ CCCH ₂	CH ₂ =CHCH ₂
A-331	CH ₃ O ₂ CC(CH ₃) ₂	CH ₂ =CHCH ₂

Verbindung	R ³	R ⁴
A-332	NCCH ₂	CH ₂ =CHCH ₂
A-333	NC(CH ₃) ₂ /iso-C ₃ H ₇)C	PhCH ₂
A-334	CH ₂ =CHCH ₂	PhCH ₂
A-335	HC≡CCH ₂	PhCH ₂
A-336	CH ₃ C≡CCH ₂	PhCH ₂
A-337	cyclo-(C ₃ H ₅)CH ₂	PhCH ₂
A-338	PhCH ₂ CH ₂	PhCH ₂
A-339	PhCH ₂ CH ₂ CH ₂	PhCH ₂
A-340	(2-O-Ph)CH ₂	PhCH ₂
A-341	(3-O-Ph)CH ₂	PhCH ₂
A-342	(4-O-Ph)CH ₂	PhCH ₂
A-343	(2-CF ₃ -Ph)CH ₂	PhCH ₂
A-344	(3-CF ₃ -Ph)CH ₂	PhCH ₂
A-345	(4-CF ₃ -Ph)CH ₂	PhCH ₂
A-346	(2-CH ₃ O-Ph)CH ₂	PhCH ₂
A-347	(3-CH ₃ O-Ph)CH ₂	PhCH ₂
A-348	(4-CH ₃ O-Ph)CH ₂	PhCH ₂
A-349	CH ₃ O	PhCH ₂
A-350	CH ₃ CH ₂ O	PhCH ₂
A-351	n-C ₃ H ₇ O	PhCH ₂
A-352	Iso-C ₃ H ₇ O	PhCH ₂
A-353	CH ₂ =CHCH ₂ O	PhCH ₂
A-354	CHOCH ₂ O	PhCH ₂
A-355	PhCH ₂ O	PhCH ₂
A-356	PhO	PhCH ₂
A-357	Ph	PhCH ₂
A-358	2-ClPh	PhCH ₂
A-359	3-ClPh	PhCH ₂
A-360	4-Cl-Ph	PhCH ₂
A-361	2-CF ₃ -Ph	PhCH ₂
A-362	3-CF ₃ -Ph	PhCH ₂
A-363	4-CF ₃ -Ph	PhCH ₂
A-364	2-CH ₃ O-Ph	PhCH ₂
A-365	3-CH ₃ O-Ph	PhCH ₂
A-366	4-CH ₃ O-Ph	PhCH ₂
A-367	4-CF ₃ O-Ph	PhCH ₂
A-368	4-F ₃ CH ₂ O-Ph	PhCH ₂
A-369	4-(4-Cl-Ph)O-Ph	PhCH ₂
A-370	4-(4-CF ₃ -Ph)O-Ph	PhCH ₂
A-371	2,3-diCl-Ph	PhCH ₂
A-372	1-Pyrrolyl	PhCH ₂
A-373	1-Pyrazolyl	PhCH ₂
A-374	1,2,4-Triazol-1-yl	PhCH ₂

Verbindung	R ³	R ⁴
A-375	2-Thiazolyl	PhCH ₂
A-376	1,3,4-Thiadiazol-2-yl	PhCH ₂
A-377	CF ₃ CH ₂	PhCH ₂
A-378	CICH ₂ CH ₂ H	PhCH ₂
A-379	CICH ₂ CH ₂ CH ₂ H	PhCH ₂
A-380	CH ₃ OCH ₂ CH ₂ H	PhCH ₂
A-381	CH ₃ CH ₂ OCH ₂ CH ₂ H	PhCH ₂
A-382	CH ₃ OCH ₂ CH ₂ CH ₂ H	PhCH ₂
A-383	C ₂ H ₅ OCH ₂ CH ₂ CH ₂ H	PhCH ₂
A-384	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂ H	PhCH ₂
A-385	(CH ₃ O) ₂ CHCH ₂ H	CH(C ₆ H ₅)CH ₂ CH ₂ CH ₂ H
A-386		CH ₂ CHBrCH ₂ CH ₂ H
A-387		CH ₂ CH(OH)CH ₂ CH ₂ H
A-388		CH ₂ CH=CHCH ₂ H
A-389		Ph
A-390		CH ₂ CH ₂ SCH ₂ CH ₂ H
A-391		CH ₃ SO ₂ OCH ₂ CH ₂ CH ₂ H
A-392		CH ₂ CH ₂ ONHCH ₂ CH ₂ CH ₂ H
A-393		CH ₂ CH ₂ OCH ₂ CH ₂ H
A-394		CH ₂ CH ₂ NHCH ₂ CH ₂ CH ₂ H
A-395		CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₂ CH ₂ H
A-396		N=CHCH ₂ CH ₂ H
A-397		

Tabelle 2

5 Verbindungen der Formel (Ibb)

R¹¹ = CHF₂ (Verbindungen B1 - B 397) bzw. CF₂Cl (Verbindungen C1 - C 397)

Verbindung	R ³	R ⁴	R ⁵	R ⁶
B-1 / C-1	CH ₃ CH=CHCH ₂	CH ₃	CH ₃	CH ₃
B-2 / C-2	CH ₂ -C(CH ₃)CH ₂	CH ₃	CH ₃	CH ₃
B-3 / C-3	CH ₂ -C(CH ₃) ₂	CH ₃	CH ₃	CH ₃
B-4 / C-4	CH ₂ -CH(CH ₂)CH ₂	CH ₃	CH ₃	CH ₃
B-5 / C-5	CH ₃ CH=C(CH ₃)CH ₂	CH ₃	CH ₃	CH ₃
B-6 / C-6	CH(C ₆ H ₅)HC=CHCH ₃	CH ₃	CH ₃	CH ₃
B-7 / C-7	C(CH ₃) ₂ HC=CH ₂	CH ₃	CH ₃	CH ₃
B-8 / C-8	CH ₂ HC=C(CH ₃) ₂	CH ₃	CH ₃	CH ₃
B-9 / C-9	CH ₃ CH=CHCH ₂ CH ₂ CH ₂	CH ₃	CH ₃	CH ₃
B-10 / C-10	CH ₂ =CHCH ₂ CH ₂ CH ₂	CH ₃	CH ₃	CH ₃
B-11 / C-11	CHC≡CCH ₂	CH ₃	CH ₃	CH ₃
B-12 / C-12	CH ₃ C≡CCH ₂	CH ₃	CH ₃	CH ₃
B-13 / C-13	HC=CCH(C ₆ H ₅)	CH ₃	CH ₃	CH ₃
B-14 / C-14	CH ₃ C≡CCH(CH ₃)	CH ₃	CH ₃	CH ₃
B-15 / C-15	cyclo-C ₃ H ₅	CH ₃	CH ₃	CH ₃
B-16 / C-16	cyclo-C ₅ H ₉	CH ₃	CH ₃	CH ₃
B-17 / C-17	cyclo-C ₆ H ₁₁	CH ₃	CH ₃	CH ₃
B-18 / C-18	(cyclo-C ₅ H ₉)CH ₂	CH ₃	CH ₃	CH ₃
B-19 / C-19	(cyclo-C ₅ H ₉)CH ₂	CH ₃	CH ₃	CH ₃
B-20 / C-20	(cyclo-C ₆ H ₁₁)CH ₂	CH ₃	CH ₃	CH ₃
B-21 / C-21	PhCH ₂	CH ₃	CH ₃	CH ₃
B-22 / C-22	PhCH(CH ₃)	CH ₃	CH ₃	CH ₃
B-23 / C-23	PhC(CH ₃) ₂	CH ₃	CH ₃	CH ₃
B-24 / C-24	PhCH ₂ CH ₂	CH ₃	CH ₃	CH ₃
B-25 / C-25	(2-F-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-26 / C-26	(3-F-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-27 / C-27	(4-F-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-28 / C-28	(2-C ₆ H ₅)CH ₂	CH ₃	CH ₃	CH ₃
B-29 / C-29	(3-C ₆ H ₅)CH ₂	CH ₃	CH ₃	CH ₃
B-30 / C-30	(4-C ₆ H ₅)CH ₂	CH ₃	CH ₃	CH ₃
B-31 / C-31	(2-C ₆ F ₅)CH ₂	CH ₃	CH ₃	CH ₃
B-32 / C-32	(3-C ₆ F ₅)PhCH ₂	CH ₃	CH ₃	CH ₃
B-33 / C-33	(4-C ₆ F ₅)PhCH ₂	CH ₃	CH ₃	CH ₃
B-34 / C-34	(2-CH ₃ O-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-35 / C-35	(3-CH ₃ O-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-36 / C-36	(4-CH ₃ O-Ph)CH ₂	CH ₃	CH ₃	CH ₃
B-37 / C-37	CH ₃ O	CH ₃	CH ₃	CH ₃
B-38 / C-38	CH ₃ CH ₂ O	CH ₃	CH ₃	CH ₃
B-39 / C-39	n-C ₃ H ₇ O	CH ₃	CH ₃	CH ₃
B-40 / C-40	iso-C ₃ H ₇ O	CH ₃	CH ₃	CH ₃
B-41 / C-41	CH ₂ =CHCH ₂ O	CH ₃	CH ₃	CH ₃
B-42 / C-42	CH ₂ =C(CH ₃)CH ₂ O	CH ₃	CH ₃	CH ₃
B-43 / C-43	CH ₂ =CHCH(C ₆ H ₅)O	CH ₃	CH ₃	CH ₃

Verbindung	R ¹	R ²	R ³
B-44 / C-44	CH ₂ =CHOH(CH ₃)O	CH ₃	3-CF ₃ O-Ph
B-45 / C-45	CH ₂ =CHO(CH ₃) ² O	CH ₃	4-CF ₃ O-Ph
B-46 / C-46	CH ₃ CH=OCH ₂ O	CH ₃	4-CF ₃ CH ₂ O-Ph
B-47 / C-47	HC=CCH ₂ O	CH ₃	4-(4-O-PhO)-Ph
B-48 / C-48	CH ₃ C≡CCH ₂ O	CH ₃	4-(4-O ₂ F-PhO)-Ph
B-49 / C-49	HC=CCH(CH ₃)O	CH ₃	B-91 / C-91
B-50 / C-50	CH ₃ O ₂ CCH(CH ₃)O	CH ₃	B-92 / C-92
B-51 / C-51	CH ₃ O ₂ CC(CH ₃) ² O	CH ₃	B-93 / C-93
B-52 / C-52	CH ₃ O ₂ CCH ₂ O	CH ₃	B-94 / C-94
B-53 / C-53	PhCH ₂ O	CH ₃	B-95 / C-95
B-54 / C-54	PhO	CH ₃	B-96 / C-96
B-55 / C-55	Ph	CH ₃	B-97 / C-97
B-56 / C-56	2-F-Ph	CH ₃	B-98 / C-98
B-57 / C-57	3-F-Ph	CH ₃	B-99 / C-99
B-58 / C-58	4-F-Ph	CH ₃	B-100 / C-100
B-59 / C-59	2-Cl-Ph	CH ₃	B-101 / C-101
B-60 / C-60	3-Cl-Ph	CH ₃	B-102 / C-102
B-61 / C-61	4-Cl-Ph	CH ₃	B-103 / C-103
B-62 / C-62	2-Br-Ph	CH ₃	B-104 / C-104
B-63 / C-63	3-Br-Ph	CH ₃	B-105 / C-105
B-64 / C-64	4-Br-Ph	CH ₃	B-106 / C-106
B-65 / C-65	2-I-Ph	CH ₃	B-107 / C-107
B-66 / C-66	3-I-Ph	CH ₃	B-108 / C-108
B-67 / C-67	4-I-Ph	CH ₃	B-109 / C-109
B-68 / C-68	2-CF ₃ -Ph	CH ₃	B-110 / C-110
B-69 / C-69	3-CF ₃ -Ph	CH ₃	B-111 / C-111
B-70 / C-70	4-CF ₃ -Ph	CH ₃	B-112 / C-112
B-71 / C-71	2-CH ₃ -Ph	CH ₃	B-113 / C-113
B-72 / C-72	3-CH ₃ -Ph	CH ₃	B-114 / C-114
B-73 / C-73	4-CH ₃ -Ph	CH ₃	B-115 / C-115
B-74 / C-74	2-CH ₃ O-Ph	CH ₃	B-116 / C-116
B-75 / C-75	3-CH ₃ O-Ph	CH ₃	B-117 / C-117
B-76 / C-76	4-CH ₃ O-Ph	CH ₃	B-118 / C-118
B-77 / C-77	2-NO ₂ -Ph	CH ₃	B-119 / C-119
B-78 / C-78	3-NO ₂ -Ph	CH ₃	B-120 / C-120
B-79 / C-79	4-NO ₂ -Ph	CH ₃	B-121 / C-121
B-80 / C-80	2-CN-Ph	CH ₃	B-122 / C-122
B-81 / C-81	3-CN-Ph	CH ₃	B-123 / C-123
B-82 / C-82	4-CN-Ph	CH ₃	B-124 / C-124
B-83 / C-83	2-CO ₂ Me-Ph	CH ₃	B-125 / C-125
B-84 / C-84	3-CO ₂ Me-Ph	CH ₃	B-126 / C-126
B-85 / C-85	4-CO ₂ Me-Ph	CH ₃	B-127 / C-127
B-86 / C-86	2-CF ₃ O-Ph	CH ₃	B-128 / C-128

Verbindung	R ¹	R ²	R ³
B-87 / C-87	3-CF ₃ O-Ph	CH ₃	CH ₃
B-88 / C-88	4-CF ₃ O-Ph	CH ₃	CH ₃
B-89 / C-89	4-CF ₃ CH ₂ O-Ph	CH ₃	CH ₃
B-90 / C-90	4-(4-O-PhO)-Ph	CH ₃	CH ₃
B-91 / C-91	4-(4-CF ₃ PhO)-Ph	CH ₃	CH ₃
B-92 / C-92	2,3-diCl-Ph	CH ₃	CH ₃
B-93 / C-93	2,4-diCl-Ph	CH ₃	CH ₃
B-94 / C-94	2,5-diCl-Ph	CH ₃	CH ₃
B-95 / C-95	2,6-diCl-Ph	CH ₃	CH ₃
B-96 / C-96	3,4-diCl-Ph	CH ₃	CH ₃
B-97 / C-97	3,5-diCl-Ph	CH ₃	CH ₃
B-98 / C-98	2-Pyridyl	CH ₃	CH ₃
B-99 / C-99	3-Pyridyl	CH ₃	CH ₃
B-100 / C-100	4-Pyridyl	CH ₃	CH ₃
B-101 / C-101	2-Pyrimidyl	CH ₃	CH ₃
B-102 / C-102	1-Pyrolyl	CH ₃	CH ₃
B-103 / C-103	1-Pyrazolyl	CH ₃	CH ₃
B-104 / C-104	3-Pyrazolyl	CH ₃	CH ₃
B-105 / C-105	1,2,4-Triazol-1-yl	CH ₃	CH ₃
B-106 / C-106	1,2,4-Triazol-3-yl	CH ₃	CH ₃
B-107 / C-107	2-Furanyl	CH ₃	CH ₃
B-108 / C-108	3-Furanyl	CH ₃	CH ₃
B-109 / C-109	2-Thienyl	CH ₃	CH ₃
B-110 / C-110	3-Thienyl	CH ₃	CH ₃
B-111 / C-111	2-Thiazolyl	CH ₃	CH ₃
B-112 / C-112	1,3,4-Triadiazol-2-yl	CH ₃	CH ₃
B-113 / C-113	3-Isoxazolyl	CH ₃	CH ₃
B-114 / C-114	CF ₃ CH ₂	CH ₃	CH ₃
B-115 / C-115	CICH ₂ CH ₂	CH ₃	CH ₃
B-116 / C-116	CICH ₂ CH ₂ CH ₂	CH ₃	CH ₃
B-117 / C-117	CH ₃ OCH ₂ CH ₂	CH ₃	CH ₃
B-118 / C-118	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₃	CH ₃
B-119 / C-119	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₃	CH ₃
B-120 / C-120	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₃	CH ₃
B-121 / C-121	nC ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₃	CH ₃
B-122 / C-122	(CH ₃ O) ₂ CHCH ₂	CH ₃	CH ₃
B-123 / C-123	(CH ₃ O) ₂ C-CH ₂	CH ₃	CH ₃
B-124 / C-124	(CH ₃ O ₂)C=CH(CH ₃)	CH ₃	CH ₃
B-125 / C-125	CH ₃ O ₂ CC(CH ₃) ₂	CH ₃	CH ₃
B-126 / C-126	NCCl ₂	CH ₃	CH ₃
B-127 / C-127	NC(CH ₃) ₂ (iso-C ₃ H ₇)C	CH ₃	CH ₃
B-128 / C-128	(i-pyrollidiny)CH ₂ CH ₂	C ₂ H ₅	C ₂ H ₅
B-129 / C-129	CH ₂ =CHCH ₂	C ₂ H ₅	C ₂ H ₅

Verbindung	R ³	R ⁴
B-130 / C-130	CH=C=CH ₂	C ₂ H ₅
B-131 / C-131	CH ₃ C≡CCH ₂	C ₂ H ₅
B-132 / C-132	(cyclo-C ₃ H ₅)CH ₂	C ₂ H ₅
B-133 / C-133	PnCH ₂	C ₂ H ₅
B-134 / C-134	PhCH ₂ CH ₂	C ₂ H ₅
B-135 / C-135	(2-Cl-Ph)CH ₂	C ₂ H ₅
B-136 / C-136	(3-Cl-Ph)CH ₂	C ₂ H ₅
B-137 / C-137	(4-Cl-Ph)CH ₂	C ₂ H ₅
B-138 / C-138	(2-CF ₃ -Ph)CH ₂	C ₂ H ₅
B-139 / C-139	(3-CF ₃ -Ph)CH ₂	C ₂ H ₅
B-140 / C-140	(4-CF ₃ -Ph)CH ₂	C ₂ H ₅
B-141 / C-141	(2-CH ₃ O-Ph)CH ₂	C ₂ H ₅
B-142 / C-142	(3-CH ₃ O-Ph)CH ₂	C ₂ H ₅
B-143 / C-143	(4-CH ₃ O-Ph)CH ₂	C ₂ H ₅
B-144 / C-144	CH ₃ O	C ₂ H ₅
B-145 / C-145	CH ₃ CH ₂ O	C ₂ H ₅
B-146 / C-146	n-C ₃ H ₇ O	C ₂ H ₅
B-147 / C-147	iso-C ₄ H ₉ O	C ₂ H ₅
B-148 / C-148	CH ₂ =CHCH ₂ O	C ₂ H ₅
B-149 / C-149	HC≡CCH ₂ O	C ₂ H ₅
B-150 / C-150	PhCH ₂ O	C ₂ H ₅
B-151 / C-151	PhO	C ₂ H ₅
B-152 / C-152	Ph	C ₂ H ₅
B-153 / C-153	2-Cl-Ph	C ₂ H ₅
B-154 / C-154	3-Cl-Ph	C ₂ H ₅
B-155 / C-155	4-Cl-Ph	C ₂ H ₅
B-156 / C-156	2-CF ₃ -Ph	C ₂ H ₅
B-157 / C-157	3-CF ₃ -Ph	C ₂ H ₅
B-158 / C-158	4-CF ₃ -Ph	C ₂ H ₅
B-159 / C-159	2-CH ₃ O-Ph	C ₂ H ₅
B-160 / C-160	3-CH ₃ O-Ph	C ₂ H ₅
B-161 / C-161	4-CH ₃ O-Ph	C ₂ H ₅
B-162 / C-162	4-CF ₃ O-Ph	C ₂ H ₅
B-163 / C-163	4-CF ₃ CH ₂ O-Ph	C ₂ H ₅
B-164 / C-164	4-(4-Cl-Ph)O-Ph	C ₂ H ₅
B-165 / C-165	4-(4-CF ₃ -PhO)-Ph	C ₂ H ₅
B-166 / C-166	2,3-diCl-Ph	C ₂ H ₅
B-167 / C-167	1-Pyrrrol	C ₂ H ₅
B-168 / C-168	1-Pyrazolyl	C ₂ H ₅
B-169 / C-169	1,2,4-Triazol-1-yl	C ₂ H ₅
B-170 / C-170	2-Thiazolyl	C ₂ H ₅
B-171 / C-171	1,3,4-Triadiazol-2-yl	C ₂ H ₅
B-172 / C-172	CH ₃ O ₂ CCH ₂	C ₂ H ₅

Verbindung	R ³	R ⁴
B-173 / C-173	CH ₃ O ₂ CCH(CH ₃)	C ₂ H ₅
B-174 / C-174	NCCCH ₂	n-C ₄ H ₇
B-175 / C-175	CH ₂ -CHCH ₂	iso-C ₃ H ₇
B-176 / C-176	HC≡CCH ₂	iso-C ₃ H ₇
B-177 / C-177	CH ₃ OOCCH ₂	iso-C ₃ H ₇
B-178 / C-178	(Cyclo-C ₃ H ₅)CH ₂	iso-C ₃ H ₇
B-179 / C-179	PhCH ₂	iso-C ₃ H ₇
B-180 / C-180	PhCH ₂ CH ₂	iso-C ₃ H ₇
B-181 / C-181	(2-Cl-Ph)CH ₂	iso-C ₃ H ₇
B-182 / C-182	(3-Cl-Ph)CH ₂	iso-C ₃ H ₇
B-183 / C-183	(4-Cl-Ph)CH ₂	iso-C ₃ H ₇
B-184 / C-184	(2-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
B-185 / C-185	(3-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
B-186 / C-186	(4-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
B-187 / C-187	(2-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
B-188 / C-188	(3-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
B-189 / C-189	(4-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
B-190 / C-190	CH ₃ O	iso-C ₃ H ₇
B-191 / C-191	CH ₃ CH ₂ O	iso-C ₃ H ₇
B-192 / C-192	n-C ₄ H ₉ O	iso-C ₃ H ₇
B-193 / C-193	iso-C ₄ H ₉ O	iso-C ₃ H ₇
B-194 / C-194	CH ₂ =CHCH ₂ O	iso-C ₃ H ₇
B-195 / C-195	HC≡CCH ₂ O	iso-C ₃ H ₇
B-196 / C-196	PhCH ₂ O	iso-C ₃ H ₇
B-197 / C-197	PhO	iso-C ₃ H ₇
B-198 / C-198	Ph	iso-C ₃ H ₇
B-199 / C-199	2-Cl-Ph	iso-C ₃ H ₇
B-200 / C-200	3-Cl-Ph	iso-C ₃ H ₇
B-201 / C-201	4-Cl-Ph	iso-C ₃ H ₇
B-202 / C-202	2-CF ₃ -Ph	iso-C ₃ H ₇
B-203 / C-203	3-CF ₃ -Ph	iso-C ₃ H ₇
B-204 / C-204	4-CF ₃ -Ph	iso-C ₃ H ₇
B-205 / C-205	2-CH ₃ O-Ph	iso-C ₃ H ₇
B-206 / C-206	3-CH ₃ O-Ph	iso-C ₃ H ₇
B-207 / C-207	4-CH ₃ O-Ph	iso-C ₃ H ₇
B-208 / C-208	4-CF ₃ O-Ph	iso-C ₃ H ₇
B-209 / C-209	4-CF ₃ CH ₂ O-Ph	iso-C ₃ H ₇
B-210 / C-210	4-(4-Cl-PhO)-Ph	iso-C ₃ H ₇
B-211 / C-211	4-(4-CF ₃ -PhO)-Ph	iso-C ₃ H ₇
B-212 / C-212	2,3-diCl-Ph	iso-C ₃ H ₇
B-213 / C-213	1-Pyrrrolyl	iso-C ₃ H ₇
B-214 / C-214	1-Pyrazolyl	iso-C ₃ H ₇
B-215 / C-215	1,2,4-Triazol-1-yl	iso-C ₃ H ₇

Verbindung	R ³	R ⁴
		Verbindung
B-216 / C-216	2-Thiazolyl	iso-C ₃ H ₇
B-217 / C-217	1,3,4-Thiadiazol-2-yl	iso-C ₃ H ₇
B-218 / C-218	CF ₃ CH ₂	iso-C ₃ H ₇
B-219 / C-219	C(CH ₂)CH ₂	iso-C ₃ H ₇
B-220 / C-220	C(CH ₂)CH ₂ CH ₂	iso-C ₃ H ₇
B-221 / C-221	CH ₃ OCH ₂ CH ₂	iso-C ₃ H ₇
B-222 / C-222	CH ₃ CH ₂ OCH ₂ CH ₂	iso-C ₃ H ₇
B-223 / C-223	CH ₃ OCH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
B-224 / C-224	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
B-225 / C-225	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
B-226 / C-226	(CH ₃ O) ₂ CHCH ₂	iso-C ₃ H ₇
B-227 / C-227	CH ₃ O ₂ CHCH ₂	iso-C ₃ H ₇
B-228 / C-228	CH ₃ O ₂ CCH(CH ₃)	iso-C ₃ H ₇
B-229 / C-229	NCCH ₂	iso-C ₃ H ₇
B-230 / C-230	NC(CH ₃)(iso-C ₃ H ₇)	tert-C ₄ H ₉
B-231 / C-231	CH=CHCH ₂	tert-C ₄ H ₉
B-232 / C-232	CH ₂ CCH ₂	tert-C ₄ H ₉
B-233 / C-233	CH ₃ CCCH ₂	tert-C ₄ H ₉
B-234 / C-234	(Cyclo-C ₃ H ₅)CH ₂	tert-C ₄ H ₉
B-235 / C-235	PhCH ₂	tert-C ₄ H ₉
B-236 / C-236	PhCH ₂ CH ₂	tert-C ₄ H ₉
B-237 / C-237	(2-Cl-Ph)CH ₂	tert-C ₄ H ₉
B-238 / C-238	(3-Cl-Ph)CH ₂	tert-C ₄ H ₉
B-239 / C-239	(4-Cl-Ph)CH ₂	tert-C ₄ H ₉
B-240 / C-240	(2-CF ₃ -Ph)CH ₂	tert-C ₄ H ₉
B-241 / C-241	(3-CF ₃ -Ph)CH ₂	tert-C ₄ H ₉
B-242 / C-242	(4-CF ₃ -Ph)CH ₂	tert-C ₄ H ₉
B-243 / C-243	(2-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
B-244 / C-244	(3-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
B-245 / C-245	(4-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
B-246 / C-246	CH ₃ O	tert-C ₄ H ₉
B-247 / C-247	CH ₃ CH ₂ O	tert-C ₄ H ₉
B-248 / C-248	n-C ₃ H ₉ O	tert-C ₄ H ₉
B-249 / C-249	iso-C ₃ H ₉ O	tert-C ₄ H ₉
B-250 / C-250	CH ₂ =CHCH ₂ O	tert-C ₄ H ₉
B-251 / C-251	HC≡CCH ₂ O	tert-C ₄ H ₉
B-252 / C-252	PhCH ₂ O	tert-C ₄ H ₉
B-253 / C-253	PhO	tert-C ₄ H ₉
B-254 / C-254	Ph	tert-C ₄ H ₉
B-255 / C-255	2-Cl-Ph	tert-C ₄ H ₉
B-256 / C-256	3-Cl-Ph	tert-C ₄ H ₉
B-257 / C-257	4-Cl-Ph	tert-C ₄ H ₉
B-258 / C-258	2-CF ₃ -Ph	tert-C ₄ H ₉

Verbindung	R ³	R ⁴
		Verbindung
B-259 / C-259	3-CF ₃ -Ph	tert-C ₄ H ₉
B-260 / C-260	4-CF ₃ -Ph	tert-C ₄ H ₉
B-261 / C-261	2-CH ₃ O-Ph	tert-C ₄ H ₉
B-262 / C-262	3-CH ₃ O-Ph	tert-C ₄ H ₉
B-263 / C-263	4-CH ₃ O-Ph	tert-C ₄ H ₉
B-264 / C-264	4-CF ₃ O-Ph	tert-C ₄ H ₉
B-265 / C-265	4-CF ₃ CH ₂ O-Ph	tert-C ₄ H ₉
B-266 / C-266	4-(4-C ₆ H ₅ O-Ph)-Ph	tert-C ₄ H ₉
B-267 / C-267	4-(4-CF ₃ PhO)-Ph	tert-C ₄ H ₉
B-268 / C-268	2,3-diCl-Ph	tert-C ₄ H ₉
B-269 / C-269	1-Pyrrolyl	tert-C ₄ H ₉
B-270 / C-270	1-Pyrazolyl	tert-C ₄ H ₉
B-271 / C-271	1,2,4-Triazol-1-yl	tert-C ₄ H ₉
B-272 / C-272	2-Thiazolyl	tert-C ₄ H ₉
B-273 / C-273	1,3,4-Thiadiazol-2-yl	tert-C ₄ H ₉
B-274 / C-274	CH ₃ O ₂ CCH ₂	tert-C ₄ H ₉
B-275 / C-275	CH ₃ O ₂ CCH(CH ₃)	tert-C ₄ H ₉
B-276 / C-276	NCCH ₂	tert-C ₄ H ₉
B-277 / C-277	NC(CH ₃)(iso-C ₃ H ₇)C	CH ₂ -CH ₂
B-278 / C-278	CH ₂ =CHCH ₂	CH ₂ -CH ₂
B-279 / C-279	HC≡CCH ₂	CH ₂ -CH ₂
B-280 / C-280	CH ₃ CCCH ₂	CH ₂ -CH ₂
B-281 / C-281	(Cyclo-C ₆ H ₅)CH ₂	CH ₂ -CH ₂
B-282 / C-282	PhCH ₂	CH ₂ -CH ₂
B-283 / C-283	PhCH ₂ CH ₂	CH ₂ -CH ₂
B-284 / C-284	(2-C ₆ H ₅)CH ₂	CH ₂ -CH ₂
B-285 / C-285	(3-C ₆ H ₅)CH ₂	CH ₂ -CH ₂
B-286 / C-286	(4-C ₆ H ₅)CH ₂	CH ₂ -CH ₂
B-287 / C-287	(2-CF ₃ Ph)CH ₂	CH ₂ -CH ₂
B-288 / C-288	(3-CF ₃ Ph)CH ₂	CH ₂ -CH ₂
B-289 / C-289	(4-CF ₃ Ph)CH ₂	CH ₂ -CH ₂
B-290 / C-290	(2-CH ₃ O-Ph)CH ₂	CH ₂ -CH ₂
B-291 / C-291	(3-CH ₃ O-Ph)CH ₂	CH ₂ -CH ₂
B-292 / C-292	(4-CH ₃ O-Ph)CH ₂	CH ₂ -CH ₂
B-293 / C-293	CH ₃ O	CH ₂ -CH ₂
B-294 / C-294	CH ₃ CH ₂ O	CH ₂ -CH ₂
B-295 / C-295	n-C ₃ H ₉ O	CH ₂ -CH ₂
B-296 / C-296	Iso-C ₃ H ₉ O	CH ₂ -CH ₂
B-297 / C-297	CH ₂ =CHCH ₂ O	CH ₂ -CH ₂
B-298 / C-298	CH ₃ COCH ₂ O	CH ₂ -CH ₂
B-299 / C-299	PhCH ₂ O	CH ₂ -CH ₂
B-300 / C-300	PhO	CH ₂ -CH ₂
B-301 / C-301	Ph	CH ₂ -CH ₂

Verbindung	R ³	R ⁴
B-302 / C-302	2-Cl-Ph	CH ₂ -CHCH ₂
B-303 / C-303	3-Cl-Ph	CH ₂ =CHCH ₂
B-304 / C-304	4-Cl-Ph	CH ₂ =CHCH ₂
B-305 / C-305	2-CF ₃ -Ph	CH ₂ =CHCH ₂
B-306 / C-306	3-CF ₃ -Ph	CH ₂ =CHCH ₂
B-307 / C-307	4-CF ₃ -Ph	CH ₂ =CHCH ₂
B-308 / C-308	2-CH ₃ O-Ph	CH ₂ =CHCH ₂
B-309 / C-309	3-CH ₃ O-Ph	CH ₂ =CHCH ₂
B-310 / C-310	4-CH ₃ O-Ph	CH ₂ =CHCH ₂
B-311 / C-311	4-CF ₃ O-Ph	CH ₂ =CHCH ₂
B-312 / C-312	4-CF ₃ CH ₂ O-Ph	CH ₂ =CHCH ₂
B-313 / C-313	4-(4-Cl-PhO)-Ph	CH ₂ =CHCH ₂
B-314 / C-314	4-(4-CF ₃ -PhO)-Ph	CH ₂ =CHCH ₂
B-315 / C-315	2,3-diCl-Ph	CH ₂ =CHCH ₂
B-316 / C-316	1-Pyromyl	CH ₂ =CHCH ₂
B-317 / C-317	1-Pyrazolyl	CH ₂ =CHCH ₂
B-318 / C-318	1,2,4-Triazol-1-yl	CH ₂ =CHCH ₂
B-319 / C-319	2-Thiazolyl	CH ₂ =CHCH ₂
B-320 / C-320	1,3,4-Thiadiazol-2-yl	CH ₂ =CHCH ₂
B-321 / C-321	C ₅ CH ₂	CH ₂ =CHCH ₂
B-322 / C-322	CICH ₂ CH ₂	CH ₂ =CHCH ₂
B-323 / C-323	CICH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
B-324 / C-324	CH ₃ OCH ₂ CH ₂	CH ₂ =CHCH ₂
B-325 / C-325	CH ₃ OCH ₂ OC ₂ H ₅ CH ₂	CH ₂ =CHCH ₂
B-326 / C-326	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
B-327 / C-327	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
B-328 / C-328	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
B-329 / C-329	(CH ₃ O) ₂ CHCH ₂	CH ₂ =CHCH ₂
B-330 / C-330	CH ₃ O ₂ CCH ₂	CH ₂ =CHCH ₂
B-331 / C-331	CH ₃ O ₂ C(CH ₃)	CH ₂ =CHCH ₂
B-332 / C-332	NCCH ₂	CH ₂ =CHCH ₂
B-333 / C-333	NC(CH ₃)(Iso-C ₃ H ₇)C	PhCH ₂
B-334 / C-334	CH ₂ =CHCH ₂	PhCH ₂
B-335 / C-335	HC≡CCH ₂	PhCH ₂
B-336 / C-336	CH ₃ O=CCH ₂	PhCH ₂
B-337 / C-337	(cyclo-C ₃ H ₅)CH ₂	PhCH ₂
B-338 / C-338	PhCH ₂	PhCH ₂
B-339 / C-339	PhCH ₂ OCH ₂	PhCH ₂
B-340 / C-340	(2-Cl-Ph)CH ₂	PhCH ₂
B-341 / C-341	(3-Cl-Ph)CH ₂	PhCH ₂
B-342 / C-342	(4-Cl-Ph)CH ₂	PhCH ₂
B-343 / C-343	(2-CF ₃ -Ph)CH ₂	PhCH ₂
B-344 / C-344	(3-CF ₃ -Ph)CH ₂	PhCH ₂

Verbindung	R ³	R ⁴
B-345 / C-345	(4-CF ₃ -Ph)CH ₂	PhCH ₂
B-346 / C-346	(2-CH ₃ O-Ph)CH ₂	PhCH ₂
B-347 / C-347	(3-CH ₃ O-Ph)CH ₂	PhCH ₂
B-348 / C-348	(4-CH ₃ O-Ph)CH ₂	PhCH ₂
B-349 / C-349	CH ₃ O	PhCH ₂
B-350 / C-350	CH ₃ CH ₂ O	PhCH ₂
B-351 / C-351	n-C ₃ H ₇ O	PhCH ₂
B-352 / C-352	Iso-C ₃ H ₇ O	PhCH ₂
B-353 / C-353	CH ₂ -CHCH ₂ O	PhCH ₂
B-354 / C-354	CHCCH ₂ O	PhCH ₂
B-355 / C-355	PhCH ₂ O	PhCH ₂
B-356 / C-356	PhO	PhCH ₂
B-357 / C-357	Ph	PhCH ₂
B-358 / C-358	2-Cl-Ph	PhCH ₂
B-359 / C-359	3-Cl-Ph	PhCH ₂
B-360 / C-360	4-Cl-Ph	PhCH ₂
B-361 / C-361	2-CF ₃ -Ph	PhCH ₂
B-362 / C-362	3-CF ₃ -Ph	PhCH ₂
B-363 / C-363	4-CF ₃ -Ph	PhCH ₂
B-364 / C-364	2-CH ₃ O-Ph	PhCH ₂
B-365 / C-365	3-CH ₃ O-Ph	PhCH ₂
B-366 / C-366	4-CH ₃ O-Ph	PhCH ₂
B-367 / C-367	4-CF ₃ O-Ph	PhCH ₂
B-368 / C-368	4-CF ₃ CH ₂ O-Ph	PhCH ₂
B-369 / C-369	4-(4-ClPhO)-Ph	PhCH ₂
B-370 / C-370	4-(4-CF ₃ -PhO)-Ph	PhCH ₂
B-371 / C-371	2,3-diCl-Ph	PhCH ₂
B-372 / C-372	1-Pyridyl	PhCH ₂
B-373 / C-373	1-Pyrazolyl	PhCH ₂
B-374 / C-374	1,2,4-Triazol-1-yl	PhCH ₂
B-375 / C-375	2-Triazolyl	PhCH ₂
B-376 / C-376	1,3,4-Triazolo-2-yl	PhCH ₂
B-377 / C-377	CF ₃ CH ₂	PhCH ₂
B-378 / C-378	CICH ₂ CH ₂	PhCH ₂
B-379 / C-379	CICH ₂ CH ₂ CH ₂	PhCH ₂
B-380 / C-380	CH ₃ OCH ₂ CH ₂	PhCH ₂
B-381 / C-381	CH ₃ CH ₂ OCH ₂ CH ₂	PhCH ₂
B-382 / C-382	CH ₃ OCH ₂ CH ₂ CH ₂	PhCH ₂
B-383 / C-383	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	PhCH ₂
B-384 / C-384	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	PhCH ₂
B-385 / C-385	(CH ₃ O) ₂ CHCH ₂	PhCH ₂
B-386 / C-386	CH(C ₃ H ₇)CH ₂ CH ₂ CH ₂	CH ₂ CHBrCH ₂ CH ₂
B-387 / C-387		CH ₂ CHBrCH ₂ CH ₂

Verbindung	R ³	R ⁴
B-388 / C-388	CH ₂ CH(OH)CH ₂ CH ₂	
	CH ₂ CH=CHCH ₂	
B-389 / C-389		Ph
B-390 / C-390	Ph	
B-391 / C-391	CH ₃ SO ₂ OCH ₂ CH ₂ CH ₂ CH ₂	H
B-392 / C-392	CH ₃ CH ₂ OCH ₂ CH ₂ CH ₂	CH ₂
B-393 / C-393	CH ₂ CH ₂ OCH ₂ CH ₂	CH ₂
B-394 / C-394	CH ₂ CH ₂ SCH ₂ CH ₂	CH ₂
B-395 / C-395	CH ₂ CH ₂ NHCH ₂ CH ₂	CH ₂
B-396 / C-396	CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₂	
B-397 / C-397	N=CHCH ₂ CH ₂	

Tabelle 3

5 Verbindungen der Formel (Ic)

M = Na (Verbindungen D-1-D-397) bzw. K (Verbindungen E-1-E-397)

Verbindung	R ³	R ⁴
D-1 / E-1	CH ₃ CH=CHCH ₂	CH ₃
D-2 / E-2	CH ₂ =C(CH ₃)CH ₂	CH ₃
D-3 / E-3	CH ₂ =CH(CH ₃)CH	CH ₃
D-4 / E-4	CH ₂ =CHCH ₂ CH ₂	CH ₃
D-5 / E-5	CH ₃ CH=C(CH ₃)CH ₂	CH ₃
D-6 / E-6	CH(CH ₃)HC=CHCH ₃	CH ₃
D-7 / E-7	C(CH ₃) ₂ HC=CH ₂	CH ₃
D-8 / E-8	CH ₂ HC=C(CH ₃) ₂	CH ₃
D-9 / E-9	CH ₃ CH=CHCH ₂ CH ₂	CH ₃
D-10 / E-10	CH ₂ =CHCH ₂ CH ₂ CH ₂	CH ₃
D-11 / E-11	CHC≡CCH ₂	CH ₃
D-12 / E-12	CH ₃ C≡CCH ₂	CH ₃
D-13 / E-13	HC≡CCH(CH ₃)	CH ₃
D-14 / E-14	CH ₃ C≡CCH(CH ₃)	CH ₃

Verbindung	R ³	R ⁴
D-15 / E-15	cyclo-C ₃ H ₅	CH ₃
D-16 / E-16	cyclo-C ₅ H ₉	CH ₃
D-17 / E-17	cyclo-C ₆ H ₁₁	CH ₃
D-18 / E-18	(cyclo-C ₃ H ₅)CH ₂	CH ₃
D-19 / E-19	(cyclo-C ₅ H ₉)CH ₂	CH ₃
D-20 / E-20	(cyclo-C ₆ H ₁₁)CH ₂	CH ₃
D-21 / E-21	PhCH ₂	CH ₃
D-22 / E-22	PhCH(CH ₃)	CH ₃
D-23 / E-23	Ph(C ₂ H ₅) ₂	CH ₃
D-24 / E-24	PhCH ₂ CH ₂	CH ₃
D-25 / E-25	(2-F-Ph)CH ₂	CH ₃
D-26 / E-26	(3-F-Ph)CH ₂	CH ₃
D-27 / E-27	(4-F-Ph)CH ₂	CH ₃
D-28 / E-28	(2-Cl-Ph)CH ₂	CH ₃
D-29 / E-29	(3-Cl-Ph)CH ₂	CH ₃
D-30 / E-30	(4-Cl-Ph)CH ₂	CH ₃
D-31 / E-31	(2-CF ₃ -Ph)CH ₂	CH ₃
D-32 / E-32	(3-CF ₃ -Ph)CH ₂	CH ₃
D-33 / E-33	(4-CF ₃ -Ph)CH ₂	CH ₃
D-34 / E-34	(2-CH ₃ O-Ph)CH ₂	CH ₃
D-35 / E-35	(3-CH ₃ O-Ph)CH ₂	CH ₃
D-36 / E-36	(4-CH ₃ O-Ph)CH ₂	CH ₃
D-37 / E-37	CH ₃ O	CH ₃
D-38 / E-38	CH ₃ CH ₂ O	CH ₃
D-39 / E-39	n-C ₃ H ₇ O	CH ₃
D-40 / E-40	Iso-C ₃ H ₇ O	CH ₃
D-41 / E-41	CH ₂ =CHCH ₂ O	CH ₃
D-42 / E-42	CH ₂ =C(CH ₃)CH ₂ O	CH ₃
D-43 / E-43	CH ₂ =CHCH(CH ₃)O	CH ₃
D-44 / E-44	CH ₂ =CHCH(CH ₃)O	CH ₃
D-45 / E-45	CH ₂ =CHC(CH ₃) ₂ O	CH ₃
D-46 / E-46	CH ₂ CH=CHCH ₂ O	CH ₃
D-47 / E-47	HC≡CCH ₂ O	CH ₃
D-48 / E-48	CH ₂ C≡CCH ₂ O	CH ₃
D-49 / E-49	HC≡CCH(CH ₃)O	CH ₃
D-50 / E-50	CH ₃ O ₂ CC(CH ₃)O	CH ₃
D-51 / E-51	CH ₃ O ₂ CC(CH ₃) ₂ O	CH ₃
D-52 / E-52	CH ₃ O ₂ CCCH ₂ O	CH ₃
D-53 / E-53	PhCH ₂ O	CH ₃
D-54 / E-54	PhO	CH ₃
D-55 / E-55	Ph	CH ₃
D-56 / E-56	2-F-Ph	CH ₃
D-57 / E-57	3-F-Ph	CH ₃

Verbindung	R ³	R ⁴
D-58 / E-58	4-F-Ph	CH ₃
D-59 / E-59	2-Cl-Ph	CH ₃
D-60 / E-60	3-Cl-Ph	CH ₃
D-61 / E-61	4-Cl-Ph	CH ₃
D-62 / E-62	2-Br-Ph	CH ₃
D-63 / E-63	3-Br-Ph	CH ₃
D-64 / E-64	4-Br-Ph	CH ₃
D-65 / E-65	2-I-Ph	CH ₃
D-66 / E-66	3-I-Ph	CH ₃
D-67 / E-67	4-I-Ph	CH ₃
D-68 / E-68	2-CF ₃ -Ph	CH ₃
D-69 / E-69	3-CF ₃ -Ph	CH ₃
D-70 / E-70	4-CF ₃ -Ph	CH ₃
D-71 / E-71	2-CH ₃ -Ph	CH ₃
D-72 / E-72	3-CH ₃ -Ph	CH ₃
D-73 / E-73	4-CH ₃ -Ph	CH ₃
D-74 / E-74	2-CH ₃ O-Ph	CH ₃
D-75 / E-75	3-CH ₃ O-Ph	CH ₃
D-76 / E-76	4-CH ₃ O-Ph	CH ₃
D-77 / E-77	2-NO ₂ -Ph	CH ₃
D-78 / E-78	3-NO ₂ -Ph	CH ₃
D-79 / E-79	4-NO ₂ -Ph	CH ₃
D-80 / E-80	2-CN-Ph	CH ₃
D-81 / E-81	3-CN-Ph	CH ₃
D-82 / E-82	4-CN-Ph	CH ₃
D-83 / E-83	2-CO ₂ Me-Ph	CH ₃
D-84 / E-84	3-CO ₂ Me-Ph	CH ₃
D-85 / E-85	4-CO ₂ Me-Ph	CH ₃
D-86 / E-86	2-CF ₃ O-Ph	CH ₃
D-87 / E-87	3-CF ₃ O-Ph	CH ₃
D-88 / E-88	4-CF ₃ O-Ph	CH ₃
D-89 / E-89	4-CF ₃ CH ₂ O-Ph	CH ₃
D-90 / E-90	4-(4-CHPhO)-Ph	CH ₃
D-91 / E-91	4-(4-CF ₃ PhO)-Ph	CH ₃
D-92 / E-92	2,3-diCl-Ph	CH ₃
D-93 / E-93	2,4-diCl-Ph	CH ₃
D-94 / E-94	2,5-diCl-Ph	CH ₃
D-95 / E-95	2,6-diCl-Ph	CH ₃
D-96 / E-96	3,4-diCl-Ph	CH ₃
D-97 / E-97	3,5-diCl-Ph	CH ₃
D-98 / E-98	2-Pyridyl	CH ₃
D-99 / E-99	3-Pyridyl	CH ₃
D-100 / E-100	4-Pyridyl	CH ₃

Verbindung	R ³	R ⁴
D-101 / E-101	2-Pyrimidyl	CH ₃
D-102 / E-102	1-Pyromol	CH ₃
D-103 / E-103	1-Pyrazolyl	CH ₃
D-104 / E-104	3-Pyrazolyl	CH ₃
D-105 / E-105	1,2,4-Triazol-1-yl	CH ₃
D-106 / E-106	1,2,4-Triazol-3-yl	CH ₃
D-107 / E-107	2-Furanyl	CH ₃
D-108 / E-108	3-Furanyl	CH ₃
D-109 / E-109	2-Thienyl	CH ₃
D-110 / E-110	3-Thienyl	CH ₃
D-111 / E-111	2-Thiazolyl	CH ₃
D-112 / E-112	1,3,4-Thiadiazol-2-yl	CH ₃
D-113 / E-113	3-Isoxazolyl	CH ₃
D-114 / E-114	CF ₃ CH ₂	CH ₃
D-115 / E-115	CICH ₂ CH ₂	CH ₃
D-116 / E-116	CICH ₂ CH ₂ CH ₂	CH ₃
D-117 / E-117	CH ₃ OCH ₂ CH ₂	CH ₃
D-118 / E-118	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₃
D-119 / E-119	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₃
D-120 / E-120	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₃
D-121 / E-121	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₃
D-122 / E-122	(CH ₃ O) ₂ CHCH ₂	CH ₃
D-123 / E-123	(CH ₃ O) ₂ C=CH ₂	CH ₃
D-124 / E-124	(CH ₃ O) ₂ C=CH(CH ₃)	CH ₃
D-125 / E-125	CH ₃ O ₂ CC(CH ₃) ₂	CH ₃
D-126 / E-126	NCCH ₂	CH ₃
D-127 / E-127	NC(CH ₃)(iso-C ₃ H ₇)C	CH ₃
D-128 / E-128	(1-pyridinyl)CH ₂ CH ₂	C ₂ H ₅
D-129 / E-129	CH ₂ =CHCH ₂	C ₂ H ₅
D-130 / E-130	CHC=CH ₂	C ₂ H ₅
D-131 / E-131	CH ₃ C≡CCH ₂	C ₂ H ₅
D-132 / E-132	cyclo-C ₃ H ₅)CH ₂	C ₂ H ₅
D-133 / E-133	PhCH ₂	C ₂ H ₅
D-134 / E-134	PhCH ₂ CH ₂	C ₂ H ₅
D-135 / E-135	(2-Cl-Ph)CH ₂	C ₂ H ₅
D-136 / E-136	(3-Cl-Ph)CH ₂	C ₂ H ₅
D-137 / E-137	(4-Cl-Ph)CH ₂	C ₂ H ₅
D-138 / E-138	(2-CF ₃ -Ph)CH ₂	C ₂ H ₅
D-139 / E-139	(3-CF ₃ -Ph)CH ₂	C ₂ H ₅
D-140 / E-140	(4-CF ₃ -Ph)CH ₂	C ₂ H ₅
D-141 / E-141	(2-CH ₃ O-Ph)CH ₂	C ₂ H ₅
D-142 / E-142	(3-CH ₃ O-Ph)CH ₂	C ₂ H ₅
D-143 / E-143	(4-CH ₃ O-Ph)CH ₂	C ₂ H ₅

Verbindung	R ³	R ⁴
D-144 / E-144	CH ₃ O	C ₂ H ₅
D-145 / E-145	CH ₃ CH ₂ O	C ₂ H ₅
D-146 / E-146	n-C ₃ H ₇ O	C ₂ H ₅
D-147 / E-147	iso-C ₃ H ₇ O	C ₂ H ₅
D-148 / E-148	CH ₂ =CHCH ₂ O	C ₂ H ₅
D-149 / E-149	HC=CCH ₂ O	C ₂ H ₅
D-150 / E-150	PhCH ₂ O	C ₂ H ₅
D-151 / E-151	PhO	C ₂ H ₅
D-152 / E-152	Ph	C ₂ H ₅
D-153 / E-153	2-Cl-Ph	C ₂ H ₅
D-154 / E-154	3-Cl-Ph	C ₂ H ₅
D-155 / E-155	4-Cl-Ph	C ₂ H ₅
D-156 / E-156	2-CF ₃ -Ph	C ₂ H ₅
D-157 / E-157	3-CF ₃ -Ph	C ₂ H ₅
D-158 / E-158	4-CF ₃ -Ph	C ₂ H ₅
D-159 / E-159	2-CH ₃ O-Ph	C ₂ H ₅
D-160 / E-160	3-CH ₃ O-Ph	C ₂ H ₅
D-161 / E-161	4-CH ₃ O-Ph	C ₂ H ₅
D-162 / E-162	4-CF ₃ O-Ph	C ₂ H ₅
D-163 / E-163	4-CF ₃ CH ₂ O-Ph	C ₂ H ₅
D-164 / E-164	4-(4-Cl-Ph)O-Ph	C ₂ H ₅
D-165 / E-165	4-(4-CF ₃ -Ph)O-Ph	C ₂ H ₅
D-166 / E-166	2,3-diO-Ph	C ₂ H ₅
D-167 / E-167	1-Pyrazolyl	C ₂ H ₅
D-168 / E-168	1-Pyrazoyl	C ₂ H ₅
D-169 / E-169	1,2,4-Triazol-1-yl	C ₂ H ₅
D-170 / E-170	2-Thiazolyl	C ₂ H ₅
D-171 / E-171	1,3,4-Thiadiazol-2-yl	C ₂ H ₅
D-172 / E-172	CH ₂ O ₂ CCH ₂	C ₂ H ₅
D-173 / E-173	CH ₃ O ₂ CCH(CH ₃)	n-C ₃ H ₇
D-174 / E-174	NCCH ₂	iso-C ₃ H ₇
D-175 / E-175	CH ₂ =CCH ₂	iso-C ₃ H ₇
D-176 / E-176	HC=CCH ₂	iso-C ₃ H ₇
D-177 / E-177	CH ₃ C≡CCH ₂	iso-C ₃ H ₇
D-178 / E-178	(cyclo-O ₃ H ₅)CH ₂	iso-C ₃ H ₇
D-179 / E-179	PhCH ₂	iso-C ₃ H ₇
D-180 / E-180	PhCH ₂ CH ₂	iso-C ₃ H ₇
D-181 / E-181	(2-Cl-Ph)CH ₂	iso-C ₃ H ₇
D-182 / E-182	(3-Cl-Ph)CH ₂	iso-C ₃ H ₇
D-183 / E-183	(4-Cl-Ph)CH ₂	iso-C ₃ H ₇
D-184 / E-184	(2-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
D-185 / E-185	(3-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇
D-186 / E-186	(4-CF ₃ -Ph)CH ₂	iso-C ₃ H ₇

Verbindung	R ³	R ⁴
D-187 / E-187	(2-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
D-188 / E-188	(3-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
D-189 / E-189	(4-CH ₃ O-Ph)CH ₂	iso-C ₃ H ₇
D-190 / E-190	CH ₃ O	iso-C ₃ H ₇
D-191 / E-191	CH ₃ CH ₂ O	iso-C ₃ H ₇
D-192 / E-192	n-C ₃ H ₇ O	iso-C ₃ H ₇
D-193 / E-193	iso-C ₃ H ₇ O	iso-C ₃ H ₇
D-194 / E-194	CH ₂ =CHCH ₂ O	iso-C ₃ H ₇
D-195 / E-195	HC≡CCH ₂ O	iso-C ₃ H ₇
D-196 / E-196	PhCH ₂ O	iso-C ₃ H ₇
D-197 / E-197	PhO	iso-C ₃ H ₇
D-198 / E-198	Ph	iso-C ₃ H ₇
D-199 / E-199	2-Cl-Ph	iso-C ₃ H ₇
D-200 / E-200	3-Cl-Ph	iso-C ₃ H ₇
D-201 / E-201	4-Cl-Ph	iso-C ₃ H ₇
D-202 / E-202	2-CF ₃ Ph	iso-C ₃ H ₇
D-203 / E-203	3-CF ₃ Ph	iso-C ₃ H ₇
D-204 / E-204	4-CF ₃ Ph	iso-C ₃ H ₇
D-205 / E-205	2-CH ₃ O-Ph	iso-C ₃ H ₇
D-206 / E-206	3-CH ₃ O-Ph	iso-C ₃ H ₇
D-207 / E-207	4-CH ₃ O-Ph	iso-C ₃ H ₇
D-208 / E-208	4-CF ₃ O-Ph	iso-C ₃ H ₇
D-209 / E-209	4-CF ₃ CH ₂ O-Ph	iso-C ₃ H ₇
D-210 / E-210	4-(4-Cl-Ph)O-Ph	iso-C ₃ H ₇
D-211 / E-211	4-(4-CF ₃ -Ph)O-Ph	iso-C ₃ H ₇
D-212 / E-212	2,3-diCl-Ph	iso-C ₃ H ₇
D-213 / E-213	1-Pyrrrolyl	iso-C ₃ H ₇
D-214 / E-214	1-Pyrazolyl	iso-C ₃ H ₇
D-215 / E-215	1,2,4-Triazol-1-yl	iso-C ₃ H ₇
D-216 / E-216	2-Thiazolyl	iso-C ₃ H ₇
D-217 / E-217	1,3,4-Thiadiazol-2-yl	iso-C ₃ H ₇
D-218 / E-218	CF ₃ CH ₂	iso-C ₃ H ₇
D-219 / E-219	CICH ₂ CH ₂	iso-C ₃ H ₇
D-220 / E-220	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
D-221 / E-221	CH ₃ OCH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
D-222 / E-222	CH ₃ OCH ₂ OCH ₂ CH ₂	iso-C ₃ H ₇
D-223 / E-223	CH ₃ OCH ₂ CH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
D-224 / E-224	C ₂ H ₅ OCH ₂ CH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
D-225 / E-225	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂ CH ₂	iso-C ₃ H ₇
D-226 / E-226	(CH ₃ O) ₂ CHCH ₂	iso-C ₃ H ₇
D-227 / E-227	CH ₃ O ₂ CCH ₂	iso-C ₃ H ₇
D-228 / E-228	CH ₃ O ₂ CCH(CH ₃)	iso-C ₃ H ₇
D-229 / E-229	NCH ₂	iso-C ₃ H ₇

Verbindung	R ³	R ⁴
D-230 / E-230	NC(CH ₃)(iso-C ₃ H ₇)	tert-C ₄ H ₉
D-231 / E-231	CH ₂ -CHCH ₂	tert-C ₄ H ₉
D-232 / E-232	CHCCCH ₂	tert-C ₄ H ₉
D-233 / E-233	CH ₃ CCCH ₂	tert-C ₄ H ₉
D-234 / E-234	(cyclo-C ₃ H ₅)CH ₂	tert-C ₄ H ₉
D-235 / E-235	PnCH ₂	tert-C ₄ H ₉
D-236 / E-236	PhCH ₂ CH ₂	tert-C ₄ H ₉
D-237 / E-237	(2-Cl-Ph)CH ₂	tert-C ₄ H ₉
D-238 / E-238	(3-Cl-Ph)CH ₂	tert-C ₄ H ₉
D-239 / E-239	(4-Cl-Ph)CH ₂	tert-C ₄ H ₉
D-240 / E-240	(2-CF ₃ Ph)CH ₂	tert-C ₄ H ₉
D-241 / E-241	(3-CF ₃ Ph)CH ₂	tert-C ₄ H ₉
D-242 / E-242	(4-CF ₃ Ph)CH ₂	tert-C ₄ H ₉
D-243 / E-243	(2-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
D-244 / E-244	(3-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
D-245 / E-245	(4-CH ₃ O-Ph)CH ₂	tert-C ₄ H ₉
D-246 / E-246	CH ₃ O	tert-C ₄ H ₉
D-247 / E-247	CH ₃ CH ₂ O	tert-C ₄ H ₉
D-248 / E-248	n-C ₄ H ₇ O	tert-C ₄ H ₉
D-249 / E-249	Iso-C ₄ H ₇ O	tert-C ₄ H ₉
D-250 / E-250	CH ₂ =CHCH ₂ O	tert-C ₄ H ₉
D-251 / E-251	HO=CCH ₂ O	tert-C ₄ H ₉
D-252 / E-252	PhCH ₂ O	tert-C ₄ H ₉
D-253 / E-253	PhO	tert-C ₄ H ₉
D-254 / E-254	Ph	tert-C ₄ H ₉
D-255 / E-255	2-Cl-Ph	tert-C ₄ H ₉
D-256 / E-256	3-Cl-Ph	tert-C ₄ H ₉
D-257 / E-257	4-Cl-Ph	tert-C ₄ H ₉
D-258 / E-258	2-CF ₃ Ph	tert-C ₄ H ₉
D-259 / E-259	3-CF ₃ Ph	tert-C ₄ H ₉
D-260 / E-260	4-CF ₃ Ph	tert-C ₄ H ₉
D-261 / E-261	2-CH ₃ O-Ph	tert-C ₄ H ₉
D-262 / E-262	3-CH ₃ O-Ph	tert-C ₄ H ₉
D-263 / E-263	4-CH ₃ O-Ph	tert-C ₄ H ₉
D-264 / E-264	4-CF ₃ O-Ph	tert-C ₄ H ₉
D-265 / E-265	4-CF ₃ CH ₂ O-Ph	tert-C ₄ H ₉
D-266 / E-266	4-(4-Cl-PhO)-Ph	tert-C ₄ H ₉
D-267 / E-267	4-(4-CF ₃ PhO)-Ph	tert-C ₄ H ₉
D-268 / E-268	2,3-diCl-Ph	tert-C ₄ H ₉
D-269 / E-269	1-Pyrrolyl	tert-C ₄ H ₉
D-270 / E-270	1-Pyrazolyl	tert-C ₄ H ₉
D-271 / E-271	1,2,4-Triazol-1-yl	tert-C ₄ H ₉
D-272 / E-272	2-Thiazolyl	tert-C ₄ H ₉

Verbindung	R ³	R ⁴
D-273 / E-273	1,3,4-Thiadiazol-2-yl	tert-C ₄ H ₉
D-274 / E-274	CH ₃ O ₂ CCH ₂	tert-C ₄ H ₉
D-275 / E-275	CH ₃ O ₂ CCH(CH ₃)	tert-C ₄ H ₉
D-276 / E-276	NCCH ₂	tert-C ₄ H ₉
D-277 / E-277	NC(CH ₃)(iso-C ₃ H ₇)C	CH ₂ =CHCH ₂
D-278 / E-278	CH ₂ =CHCH ₂	CH ₂ =CHCH ₂
D-279 / E-279	HC≡CCH ₂	CH ₂ =CHCH ₂
D-280 / E-280	CH ₃ CCCH ₂	CH ₂ =CHCH ₂
D-281 / E-281	(cyclo-C ₃ H ₅)CH ₂	CH ₂ =CHCH ₂
D-282 / E-282	PhCH ₂	CH ₂ =CHCH ₂
D-283 / E-283	PhCH ₂ CH ₂	CH ₂ =CHCH ₂
D-284 / E-284	(2-ClPh)CH ₂	CH ₂ =CHCH ₂
D-285 / E-285	(3-ClPh)CH ₂	CH ₂ =CHCH ₂
D-286 / E-286	(4-ClPh)CH ₂	CH ₂ =CHCH ₂
D-287 / E-287	(2-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
D-288 / E-288	(3-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
D-289 / E-289	(4-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
D-290 / E-290	(2-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
D-291 / E-291	(3-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
D-292 / E-292	(4-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
D-293 / E-293	CH ₃ O	CH ₂ =CHCH ₂
D-294 / E-294	CH ₃ CH ₂ O	CH ₂ =CHCH ₂
D-295 / E-295	n-C ₃ H ₇ O	CH ₂ =CHCH ₂
D-296 / E-296	Iso-C ₃ H ₇ O	CH ₂ =CHCH ₂
D-297 / E-297	CH ₂ =CHCH ₂ O	CH ₂ =CHCH ₂
D-298 / E-298	CHCCH ₂ O	CH ₂ =CHCH ₂
D-299 / E-299	PhCH ₂ O	CH ₂ =CHCH ₂
D-300 / E-300	PhO	CH ₂ =CHCH ₂
D-301 / E-301	Ph	CH ₂ =CHCH ₂
D-302 / E-302	2-Cl-Ph	CH ₂ =CHCH ₂
D-303 / E-303	3-Cl-Ph	CH ₂ =CHCH ₂
D-304 / E-304	4-Cl-Ph	CH ₂ =CHCH ₂
D-305 / E-305	2-CF ₃ -Ph	CH ₂ =CHCH ₂
D-306 / E-306	3-CF ₃ -Ph	CH ₂ =CHCH ₂
D-307 / E-307	4-CF ₃ -Ph	CH ₂ =CHCH ₂
D-308 / E-308	2-CH ₃ O-Ph	CH ₂ =CHCH ₂
D-309 / E-309	3-CH ₃ O-Ph	CH ₂ =CHCH ₂
D-310 / E-310	4-CH ₃ O-Ph	CH ₂ =CHCH ₂
D-311 / E-311	4-CF ₃ O-Ph	CH ₂ =CHCH ₂
D-312 / E-312	4-CF ₃ CH ₂ O-Ph	CH ₂ =CHCH ₂
D-313 / E-313	4-(4-Cl-PhO)-Ph	CH ₂ =CHCH ₂
D-314 / E-314	4-(4-CF ₃ PhO)-Ph	CH ₂ =CHCH ₂
D-315 / E-315	2,3-diCl-Ph	CH ₂ =CHCH ₂

Verbindung	R ³	R ⁴
D-316 / E-316	1-Pyrrolyl	CH ₂ -CH ₂ CH ₂
D-317 / E-317	1-Pyrazolyl	CH ₂ -CH ₂ CH ₂
D-318 / E-318	1,2,4-Triazol-1-yl	CH ₂ -CH ₂ CH ₂
D-319 / E-319	2-Thiazolyl	CH ₂ =CHCH ₂
D-320 / E-320	1,3,4-Thiadiazol-2-yl	CH ₂ =CHCH ₂
D-321 / E-321	CF ₃ CH ₂	CH ₂ =CHCH ₂
D-322 / E-322	C(CH ₃) ₂	CH ₂ =CHCH ₂
D-323 / E-323	C(CH ₃) ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
D-324 / E-324	CH ₃ OCH ₂ CH ₂	CH ₂ =CHCH ₂
D-325 / E-325	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₂ =CHCH ₂
D-326 / E-326	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
D-327 / E-327	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
D-328 / E-328	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
D-329 / E-329	(CH ₃) ₂ OCHCH ₂	CH ₂ =CHCH ₂
D-330 / E-330	CH ₃ O ₂ CCH ₂	CH ₂ =CHCH ₂
D-331 / E-331	CH ₃ O ₂ CCH(CH ₃)	CH ₂ =CHCH ₂
D-332 / E-332	NCCH ₂	PhCH ₂
D-333 / E-333	NC(CH ₃)(iso-C ₃ H ₇)C	PhCH ₂
D-334 / E-334	CH ₂ =CHCH ₂	PhCH ₂
D-335 / E-335	HC≡CCH ₂	PhCH ₂
D-336 / E-336	CH ₃ C≡CCH ₂	PhCH ₂
D-337 / E-337	(cyclo-C ₈ H ₉)CH ₂	PhCH ₂
D-338 / E-338	PhCH ₂	PhCH ₂
D-339 / E-339	PhCH ₂ CH ₂	PhCH ₂
D-340 / E-340	(2-ClPh)CH ₂	PhCH ₂
D-341 / E-341	(3-ClPh)CH ₂	PhCH ₂
D-342 / E-342	(4-ClPh)CH ₂	PhCH ₂
D-343 / E-343	(2-CF ₃ Ph)CH ₂	PhCH ₂
D-344 / E-344	(3-CF ₃ Ph)CH ₂	PhCH ₂
D-345 / E-345	(4-CF ₃ Ph)CH ₂	PhCH ₂
D-346 / E-346	(2-CH ₃ O-Ph)CH ₂	PhCH ₂
D-347 / E-347	(3-CH ₃ O-Ph)CH ₂	PhCH ₂
D-348 / E-348	(4-CH ₃ O-Ph)CH ₂	PhCH ₂
D-349 / E-349	CH ₃ O	PhCH ₂
D-350 / E-350	CH ₃ CH ₂ O	PhCH ₂
D-351 / E-351	n-C ₃ H ₉ O	PhCH ₂
D-352 / E-352	iso-C ₃ H ₉ O	PhCH ₂
D-353 / E-353	CH ₂ =CHCH ₂ O	PhCH ₂
D-354 / E-354	CHC(CH ₃) ₂ O	PhCH ₂
D-355 / E-355	PhCH ₂ O	PhCH ₂
D-356 / E-356	PhO	PhCH ₂
D-357 / E-357	Ph	PhCH ₂
D-358 / E-358	2-ClPh	PhCH ₂

Verbindung	R ³	R ⁴
D-359 / E-359	3-Cl-Ph	PhCH ₂
D-360 / E-360	4-Cl-Ph	PhCH ₂
D-361 / E-361	2-CF ₃ -Ph	PhCH ₂
D-362 / E-362	3-CF ₃ -Ph	PhCH ₂
D-363 / E-363	4-CF ₃ -Ph	PhCH ₂
D-364 / E-364	2-CH ₃ O-Ph	PhCH ₂
D-365 / E-365	3-CH ₃ O-Ph	PhCH ₂
D-366 / E-366	4-CH ₃ O-Ph	PhCH ₂
D-367 / E-367	4-CF ₃ O-Ph	PhCH ₂
D-368 / E-368	4-CF ₃ CH ₂ O-Ph	PhCH ₂
D-369 / E-369	4-(4-Cl-PhO)-Ph	PhCH ₂
D-370 / E-370	4-(4-CF ₃ -PhO)-Ph	PhCH ₂
D-371 / E-371	2,3-diCl-Ph	PhCH ₂
D-372 / E-372	1-Pyrrolyl	PhCH ₂
D-373 / E-373	1-Pyrazolyl	PhCH ₂
D-374 / E-374	1,2,4-Triazol-1-yl	PhCH ₂
D-375 / E-375	2-Thiazolyl	PhCH ₂
D-376 / E-376	1,3,4-Thiadiazol-2-yl	PhCH ₂
D-377 / E-377	CF ₃ CH ₂	PhCH ₂
D-378 / E-378	C(CH ₃) ₂ CH ₂	PhCH ₂
D-379 / E-379	C(CH ₃)CH ₂ CH ₂	PhCH ₂
D-380 / E-380	CH ₃ OCH ₂ CH ₂	PhCH ₂
D-381 / E-381	CH ₃ CH ₂ OCH ₂ CH ₂	PhCH ₂
D-382 / E-382	CH ₃ OCH ₂ CH ₂ CH ₂	PhCH ₂
D-383 / E-383	C ₂ H ₅ OCH ₂ CH ₂ CH ₂	PhCH ₂
D-384 / E-384	n-C ₄ H ₉ OCH ₂ CH ₂ CH ₂	PhCH ₂
D-385 / E-385	(CH ₃ O) ₂ CHCH ₂	PhCH ₂
D-386 / E-386	CH(CH ₃)CH ₂ CH ₂ CH ₂	PhCH ₂
D-387 / E-387	CH ₂ CHBiCH ₂ CH ₂	PhCH ₂
D-388 / E-388	CH ₂ OH(OH)CH ₂ CH ₂	PhCH ₂
D-389 / E-389	CH ₂ CH=CHCH ₂	PhCH ₂
D-390 / E-390	Ph	Ph
D-391 / E-391	CH ₃ SO ₂ OCH ₂ CH ₂ CH ₂ CH ₂	Ph
D-392 / E-392	CH ₂ CH ₂ OCH ₂ CH ₂	Ph
D-393 / E-393	CH ₂ CH ₂ SCH ₂ CH ₂	Ph
D-394 / E-394	CH ₂ CH ₂ NHCH ₂ CH ₂	Ph
D-395 / E-395	CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₂	Ph
D-396 / E-396	N=CHCH ₂ CH ₂	Ph
D-397 / E-397		Ph

B. Formulierungsbeispiele

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- 5 b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- 10 c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobensteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- 15

Beispiel 1

- a) Einkeimte Ackerbohnen-Samen (*Vicia faba*) mit Keimwurzeln werden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen und anschließend mit ca. 100 schwarzen Bohnenblattläusen (*Aphis fabae*) belegt. Pflanzen und Blattläuse werden dann für 5 Sekunden in eine wäßrige Lösung der zu prüfenden und formulierten Verbindung getaucht. Nach dem Abtropfen werden Pflanze und Tiere in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25°C, 40-60% RF). Nach 3 und 6 Tagen Lagerung wird die Wirkung der Verbindung auf die Blattläuse festgestellt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirken die erfundungsgemäßen Verbindungen eine 90-100%ige Mortalität der Blattläuse.
- 15

Beispiel 2

- a) Angekeimte Ackerbohnen-Samen (*Vicia faba*) mit Keimwurzeln werden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen. Vier Milliliter einer wäßrigen Lösung der zu prüfenden und formulierten Verbindung werden in das Braunglasfläschchen hineinpipettiert. Anschließend wird die Ackerbohne mit ca. 100 schwarzen Bohnenblattläusen (*Aphis fabae*) stark belegt. Pflanze und Blattläuse werden dann in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25°C, 40-60% RF). Nach 3 und 6 Tagen Lagerung wird die wurzelständische Wirkung der Verbindung auf die Blattläuse festgestellt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirken die erfundungsgemäßen Verbindungen eine 90-100%ige Mortalität der Blattläuse durch wurzelständische Wirksamkeit.
- 20 b) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff und einem Inerten Granulatträgermaterial wie Atapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Atapulgitgranulats, trocknet und vernischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.
- 25

C. Biologische Beispiele

Patentansprüche:

BCS 03-1027

- Verfahren zur Herstellung von N-Disubstituierten N'-[4-Haloalkyl]pyrimidinyliumcarbonylharnstoffen der Formel (I),

5 wobei

A CH oder N;

R1 (C1-C4)-Haloalkyl;

R2 H oder M;

ein organisches oder anorganisches Kation;
 (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C3-C8)-Alkinyl, (C3-C8)-Alkoxy, (C3-C8)-Alkenyloxy, (C3-C8)-Alkinyloxy, (C3-C8)-Cycloalkyl, (C3-C8)-Cycloalkyl-alkyl, O-CH2-(C3-C8)-Cycloalkyl, wobei die neun letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R5 substituiert sind, Aryl, Heterocycl, Aryloxy, Heterocycloxy, -CH2-Aryl, -O-CH2-Aryl, -CH2-Heterocycl, -O-CH2-Heterocycl, wobei die acht letztgenannten Reste unsubstituiert oder mit einem oder mehreren Resten R6 substituiert sind;

(C1-C8)-Alkyl, (C3-C8)-Alkenyl, (C3-C8)-Alkinyl, (C3-C8)-Cycloalkyl, (C3-C8)-Cycloalkyl-(C1-C8)-alkyl, wobei die fünf letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R5 substituiert sind, Aryl, Heterocycl, -CH2-Aryl, -CH2-Heterocycl, wobei die vier letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R6 substituiert sind;

oder
 R3 und R4 zusammen mit dem benachbarten N-Atom einen 3 - 8gliedrigen gesättigten, ungesättigten oder aromatischen heterocyclischen Ring der

gegebenenfalls bis zu drei weitere Heteroatome aus der Gruppe N, S und O enthält und der unsubstituiert oder durch einen oder mehrere Reste (C1-C8)-Alkyl, (C1-C8)-Haloalkyl oder R5 substituiert ist;

Halogen, (C1-C8)-Alkoxy, (C1-C8)-Haloalkoxy, S(O)n-(C1-C8)-Alkyl, S(O)n-(C1-C8)-Haloalkyl, CN, COO(C1-C8)-Alkyl, NO2, N(C1-C8)2, Phenoxy, unsubstituiert oder substituiert durch einen oder mehrere Reste aus der Gruppe (C1-C8)-Alkyl, (C1-C8)-Haloalkyl und Halogen; R5, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl;

mehrere Phenoxy, unsubstituiert oder substituiert durch einen oder mehrere Reste aus der Gruppe (C1-C8)-Alkyl, (C1-C8)-Haloalkyl und Halogen; R6, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl;

0 oder 1, und

0, 1 oder 2

bedeutet,

indem man ein 4-Haloalkylpyrimidinylcarbonsäureamid der Formel (II),

15 wobei A, R1, R2 und m die unter der Formel (I) angegebenen Bedeutungen haben,

In Gegenwart einer Base mit einer Verbindung der Formel (III),

wobei

X-CO—NR3R4 (III)

oder

unsubstituiertes oder durch ein oder mehrere Halogenatome, vorzugsweise F und/oder Cl, substituiertes (C1-C6)-Alkyl oder (C3-C6)-Alkenyl, Phenyl oder Benzyl, besonders bevorzugt CH3, C2H5, i-C3H7, -CH2-CH=CH2, -CH2-CF3, CH2-CF2H, CCl3, Phenyl oder Benzyl, insbesondere CH3 oder C2H5.

25

R^3, R^4 die unter der Formel (I) angegebenen Bedeutungen haben, umsetzt.

2. Verfahren nach Anspruch 1, wobei die Symbole und Indizes in der Formeln (I) folgende Bedeutungen haben:

5 A ist OH;

R¹ ist CF₃;
R² ist M oder H;

Ist Li, Na, K, Cs, Ca²⁺/₂, Ni(C₁-C₄)-Alkyl]₄, wie N(CH₃)₄, N(C₂H₅)₄; Ist (C₁-C₈)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₁-C₄)-Alkoxy, (C₃-C₆)-Alkenyloxy, (C₃-C₆)-Alkinyloxy, (C₃-C₈)-Cycloalkyl, (C₁-C₈)-alkyl, O-CH₂-(C₃-C₈)-Cycloalkyl, wobei die neun letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclyl, Aryloxy, Heterocyclyoxy, -CH₂-Aryl, -O-CH₂-Aryl, -CH₂-Heterocyclyl, -O-CH₂-Heterocyclyl, wobei die acht letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

Ist (C₁-C₈)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₆), (C₁-C₆)-alkyl, wobei die fünf letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclyl, -CH₂-Aryl, -CH₂-Heterocyclyl, wobei die vier letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

R⁵ ist Halogen, (C₁-C₆)-Alkoxy oder (C₁-C₃)-Haloalkoxy;

25 R⁶ ist R⁵, (C₁-C₆)-Alkyl, (C₁-C₆)-Haloalkyl;

m ist 0;

n ist 0, 1 oder 2.

3. Verfahren nach Anspruch 1 oder 2, wobei die Symbole in der Formel (II)

30 folgende Bedeutungen haben:
X ist O-R⁷ und

R^7 unsubstituiertes oder durch ein oder mehrere Halogenatome, vorzugsweise F und/oder Cl, substituiertes (C₁-C₆)-Alkyl oder (C₃-C₈)-Alkenyl, Phenyl oder Benzyl.

2. Verfahren nach Anspruch 1, wobei die Symbole und Indizes in der Formeln (I)

5 folgende Bedeutungen haben:
5 A ist OH;

R¹ ist CF₃;
R² ist M oder H;

Ist Li, Na, K, Cs, Ca²⁺/₂, Ni(C₁-C₄)-Alkyl]₄, wie N(CH₃)₄, N(C₂H₅)₄; Ist (C₁-C₈)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₁-C₄)-Alkoxy, (C₃-C₆)-Alkenyloxy, (C₃-C₆)-Alkinyloxy, (C₃-C₈)-Cycloalkyl, (C₁-C₈)-alkyl, O-CH₂-(C₃-C₈)-Cycloalkyl, wobei die neun letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclyl, Aryloxy, Heterocyclyoxy, -CH₂-Aryl, -O-CH₂-Aryl, -CH₂-Heterocyclyl, -O-CH₂-Heterocyclyl, wobei die acht letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

Ist (C₁-C₈)-Alkyl, (C₃-C₆)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₆), (C₁-C₆)-alkyl, wobei die fünf letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁵ substituiert sind, Aryl, Heterocyclyl, -CH₂-Aryl, -CH₂-Heterocyclyl, wobei die vier letztgenannten Gruppen unsubstituiert oder mit einem oder mehreren Resten R⁶ substituiert sind;

R⁵ ist Halogen, (C₁-C₆)-Alkoxy oder (C₁-C₃)-Haloalkoxy;

25 R⁶ ist R⁵, (C₁-C₆)-Alkyl, (C₁-C₆)-Haloalkyl;

m ist 0;

n ist 0, 1 oder 2.

(Ia)

5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, wobei das molare Verhältnis von Amid der Formel (II) zu Verbindung (III) 1 : 1 - 1,1 beträgt.

5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, wobei man 1 bis 1,1 Äquivalente (bezogen auf das Amid der Formel (III)) einer Base aus der Gruppe

10 der Hydroxide und (C₁-C₄)-Alkoholate der Alkali- und Erdalkalimetalle, Alkyllithiumverbindungen, Metallhydride, Carbonate und Acetate der Alkali- und Erdalkalimetalle, tertiären Amine mit C₁-C₄-Alkylresten und sterisch gehinderten Stickstoffbasen einsetzt.

5. Verbindungen der Formel (Ia),

(Ib)

5. Verbindungen der Formel (Ib),

wobei
R¹¹ (C₁-C₆)-Haloalkyl mit Ausnahme von CF₃, bedeutet; und

A, R³, R⁴, m die unter Formel (I) in Anspruch 1 angegebenen Bedeutungen haben.

8. Verbindung der Formel (Ic),

5 worin

M ein organisches oder anorganisches Kation bedeutet; und A, R¹, R³, R⁴ und m die unter Formel (I) in Anspruch 1 angegebenen Bedeutungen haben.

10 9. Mittel zur Bekämpfung von schädlichen Arthropoden und Helminthen, enthaltend eine wirksame Menge an mindestens einer Verbindung der Formel (Ia), (Ib) oder (Ic) gemäß Anspruch 6, 7 bzw. 8, zusammen mit für diese Anwendungen üblichen Zusatz- oder Hilfsstoffen.

15 10. Mittel nach Anspruch 9, enthaltend mindestens einen weiteren arthropodizieren und/oder helminthiziden Wirkstoff.

11. Verwendung einer Verbindung gemäß einem der Ansprüche 6 bis 8 oder eines Mittels gemäß Anspruch 9 oder 10 zur Bekämpfung von schädlichen Arthropoden und/oder Helminthen.

12. Verfahren zur Bekämpfung von schädlichen Arthropoden und/oder Helminthen, wobei man die Schädlinge direkt oder indirekt in Kontakt mit einer Verbindung gemäß einem der Ansprüche 6 bis 8 oder einem Mittel gemäß Anspruch 9 oder 10 bringt.

13. Saatgut, beschichtet mit oder enthaltend eine arthropodizid und/oder Helminthizid wirksame Menge einer Verbindung gemäß einem der Ansprüche 6 bis 8 oder eines Mittels gemäß Anspruch 9 oder 10.

5 14. Verwendung einer Verbindung gemäß einem der Ansprüche 6 bis 8 zur Herstellung eines Tierarzneimittels.

Verfahren zur Herstellung von Acylharnstoffderivaten, Salze dieser Acylharnstoffderivate und deren Verwendung als Schädlingsbekämpfungsmittel

Ein Verfahren zur Herstellung von Acylharnstoffderivaten der Formel (I),

wobei die Symbole und Indizes die in der Beschreibung angegebenen Bedeutungen haben,

bei dem man eine Verbindung der Formel (II),

warin die Symbole und Indizes die in der Beschreibung angegebenen Bedeutungen haben,

in Gegenwart einer Base mit einer Verbindung der Formel (III),

warin

X $-\text{N}(\text{C}_6\text{H}_5)_2$ oder $-\text{N}(\text{C}_6\text{H}_4\text{Cl})_2$ oder $-\text{O}-\text{R}^7$ bedeutet;

R^7 ($\text{C}_1\text{-C}_8$)-Alkyl, ($\text{C}_3\text{-C}_8$)-Alkenyl, ($\text{C}_3\text{-C}_8$)-Alkinyl, ($\text{C}_3\text{-C}_8$)-Cycloalkyl ($\text{C}_3\text{-C}_6$)-Cycloalkyl-($\text{C}_1\text{-C}_4$)-Alkyl, Aryl oder Heteracycl bedeutet, wobei die genannten Gruppen unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CN und NO_2 substituiert sind; und R^3, R^4 die unter der Formel (I) angegebenen Bedeutungen haben, umsetzt.

Die Verbindungen der Formel (I) sind teilweise neu und eignen sich zur Schädlingsbekämpfung.