1 Задачи

Трамвай

 $s_0; v_{max}-?$ Найдём зависимоть скорости от расстояния: за $\mathrm{d}t-dv=adt$. Так как $dt=\frac{ds}{v}$, то $vdv=(a_0-bs)ds$. Проинтегрируем и получим: $\int_0^v vdv=\int_0^s (a_0-bs)ds; \frac{v^2}{2}=a_0s-\frac{bs^2}{2};\ v=\sqrt{(2a_0-bs)s}.$ При $v=0;\ s_0=\frac{2a_0}{b}.\ v_{max}$ при $\frac{dv}{ds}=0$ $=>\frac{1}{2}\frac{2a_0-2bs}{\sqrt{2a_0s-bs^2}}=0.$ Тогда $s=\frac{a_0}{b}=\frac{s_0}{2}.$ Подставим его в v, которое будет $\max.\ v_{max}=\sqrt{2a_0\frac{a_0}{b}-b\frac{a_0^2}{b^2}}=\frac{a_0}{\sqrt{b}}$

Частица y=kx2

a-? Продифференцируем дважды уравнение траектории по времени: $y^{\cdot}=2kxx^{\cdot};\ y^{\cdot\cdot}=2k(x^{\cdot2}+xx^{\cdot\cdot}).$ В точке $\mathbf{x}=0$ величина $|x^{\cdot}|=v$: $a=(y^{\cdot\cdot})_{x=0}=2kv^2.$

Точка по окружности радиуса г a-? По усл: $\frac{dv}{dt}=\frac{-v2}{r};\ dt=\frac{ds}{v};\ \frac{dv}{v}=\frac{-ds}{r}.$ $\int_{v_0}^v \frac{dv}{v}=-\int_0^s \frac{ds}{r}> ln\frac{v}{v_0}=-\frac{s}{r}$ $=>v=v_0e^{-\frac{s}{r}}({\rm s/r}).$ В данном случае $|a_\tau|=a_n=>a=\sqrt{2}a_n=\sqrt{2}\frac{v^2}{r}=\sqrt{2}(v_0^2/r)e^{-2s/r}$

2 Задачи

Блок, нерастяжимая нить

 $a_1-?$ Выбираем положительное направление оси X вверх, тогда основное уравнение динамики в проеции: $\begin{cases} m_1a_{1x}=T-m_1g\\ m_2a_{2x}=T-m_2g \end{cases}$. Воспользуемся кинематической связью: $a_1=a_0+a',\ a_2=a_0-a'\ (a'$ - ускорение груза 1 относ блока). Решаем: $m_1(a_0+a')+m_1g=m_2(a_0-a')+m_2g;\ a'=\frac{(m_1-m_2)}{m_1+m_2}(g-a_0);\ a_1=a_0+a'=\frac{(m_1-m_2)}{2m_2a_0+(m_1-m_2)g} \end{cases}$

Брусок массы m1

 $t_0-?$ Основное уравнение динамики для бруска будет иметь вид: $m_1a_1=F_{tr},\ m_2a_2=F-F_{tr}.$ При росте F растёт F_{tr} и имеет предел $F_{trmax}=\mu m_1g$ и при его достижении доска начнёт выскальзывать: $a_2\geq a_1.\ (\alpha t-\mu m_1g)/m_2\geq \mu g$ (где равенство достиг при $t=t_0$), тогда $t_0=(m_1+m_2)\mu g/\alpha$

Наклонная плоскость

|a|-? F_{tr} тело бы начало скользить ввехр по плоскости. При добавлении F_{tr} направление движения не изменится, уменьшится а. Мы сможем определить направление F_{tr} действ на тело m_2 , когда узнаем направление а при отстутствии F_{tr} . 1) m_1g , $2)m_2gsin\alpha = \frac{3}{2}m_1g\frac{1}{2} = \frac{3}{4}m_1g < m_1g$ - тело m_2 движется вверх, F_{tr} направлена противоположно. m_1 : $m_1\overline{g} + \overline{T} = m_1\overline{a_1}; m_2: \overline{T} + m_2\overline{g} + F_{tr} =$ $m_2\overline{a_2}; \quad \overline{a_1}|_{x_1} = \overline{a_2}|_{x_2} =$ $\int m_1 a = m_1 g - T$ $\int m_2 a = T - m_2 g sin\alpha - \mu m_2 g cos\alpha$ $;(m_1 + m_2)a = m_1g - m_2g(sin\alpha + \mu cos\alpha);a = \frac{\frac{m_1}{m_2} - (sin\alpha + \mu cos\alpha)}{\frac{m_1}{m_2} + 1} \cdot g =$

3 Задачи

 $m_1 + m_2$

Две тележки

v-? Рассмотрим прыжок человека и импульс системы в от прыжка, до преземления невключительно. $(M+m)\overline{v_0}=M\overline{v}+m(\overline{u}+\overline{v})=(M+m)\overline{v}+m\overline{u};\ \overline{v}=\overline{v_0}-\frac{m}{m+M}\overline{u};\ (\overline{u}+\overline{v})=\overline{v_0}-\frac{m}{m+M}\overline{u};\ (\overline{u}+\overline{v})=\overline{v_0}-\frac{m}{m+M}\overline{u}+\overline{u}=\overline{v_0}+\frac{M}{m+M}\overline{u};\ Далее рассмотрим преземление человека на тележку из состояния полёта: <math>m(\overline{v_0}+\frac{M}{m+M}\overline{u})+M\overline{v_0}=(m+M)\overline{v'};\ (m+M)\overline{v_0}+\frac{mM}{m+M}\overline{u}=(m+M)\overline{v'};\ (\overline{v'}=\overline{v_0}+\frac{mM}{(m+M)^2}\overline{u}$

два человека

v-? Рассмотрим первый случай, когда один человек спрыгивает с тележки: $(m+M)\overline{v}+m(\overline{u}+\overline{v});\ \overline{v}=-\frac{m\overline{u}}{M+2m}\ (\overline{v}$ - скорость тележки после прыжка первого человека) Следующий случай, когда второй человек спрыгивает: $(m+M)(-\frac{m\overline{u}}{M+2m})=M\overline{v'}+m(\overline{u}+\overline{v'})=(m+M)\overline{v'}+m\overline{u}$ $(\overline{v'}$ - скорость тележки после прыжка второго человека). $(m+M)\overline{v'}=-m\overline{u}(\frac{m+M}{M+2m}+1)=-m\overline{u'}\frac{2M+3m}{(M+2m)};\ \overline{v'}=-\frac{m\overline{u}(2M+3m)}{(M+2m)(M+m)}$

шайбы*

T-? Рассмотрим ситуацию в ИСО: $T_1=T_2=m_1\frac{v_1^2}{r_1}=m_2\frac{v_2^2}{r_2}=a_{n1}=a_{n2}.$ $r_1+r_2=l;\ r_1m_1=r_2m_2\mid r_1=\frac{m_2}{m_1+m_2}l;\ r_2=\frac{m_1}{m_1+m_2}l$ Рассмотрим с-систему: $\overline{P_0}=0;\ m_1v_1=m_2v_2;\ \frac{v_1}{v_2}=\frac{m_2}{m_1}\mid v_1=v_c;\ v_c+v_2=v;\ v_1+v_2=v\mid v_1=\frac{m_2}{m_1+m_2}v;\ v_2=\frac{m_1}{m_1+m_2}v\mid T=\frac{m_2(m_1+m_2)}{(\frac{m_2}{m_1+m_2})l}=\frac{m_1m_2}{m_1+m_2}\frac{v^2}{l}.$ $R=\frac{v_2^2m_2}{T}=(\frac{m_1+m_2}{m_1})l$

Задачи

Космический

 $\Delta \alpha$ -? dm < 0 (масса ракеты уменьшается). $(m+dm)(\overline{v}+d\overline{v})-dm(\overline{u}+$ $\overline{v} + d\overline{v}) = m\overline{v}$ (\overline{u} - скорость газа относ корабля). После раскрытия скобок: $md\overline{v}-dm\overline{u}=0.$ $d\overline{v}=\frac{dm}{m}\overline{u}=>$ $dv=v_0d\alpha=-\frac{dm}{m}u.$ $v=const=v_0.$ $\int_0^{\Delta\alpha}d\alpha=-\frac{u}{v_0}\int_{m_0}^{m}\frac{dm}{m}.$ $\Delta\alpha=\frac{u}{v_0}ln(\frac{m_0}{m})$

Железнодорожная из бункера v(t) -? $d\overline{p} = \overline{F}dt$. $(m + dm)(\overline{v} + d\overline{v}$ $m\overline{v}=\overline{F}dt$). После раскрытия скобок

получим: $d(m\overline{v}) = \overline{F}dt$. $\Delta m\overline{v} = \overline{F}dt$. При t=0, v(0)=0. $m\overline{v} = \overline{F}t - > \overline{v} =$

$\frac{\overline{F}t}{m} = \frac{\overline{F}t}{m_0 + \mu t}$

5 Задачи

Шарик

 x_{max} -? E = const. $T_1 + (u_1)_{mg} +$ $(u_1)_{kx} = (u_2)_{mg} + (u_2)_{kx} + T_2$. $T_1 =$ $0; (u_1)_{kx} = 0; (u_2)_{mg} = 0; T_2 = 0.$ $mgx_m = \frac{kx_m^2}{2}. \ x_m = \frac{2mg}{k}$

Небольшое тело

 $A_F - ? \Delta E = A. F = -2m\overline{g}(1 - ay).$ $\Delta E = E_2 - E_1 = u_2 - u_1 = mgy = A_F.$ $\delta A_F = (\overline{F}; d\overline{r}) = F_y dy. \ F_y = 2mg(1 - ay). \ \int \delta A_F = \int_0^y 2mg(1 - ay) dy = 2mgy - mgay^2. \ mgy = 2mg - mgay^2. \ y = \frac{1}{a} \ (\text{весь пусть подъёма s} = y-0). \ A_F (1) = 2mg^{-1}$ 0). $A_F(\frac{1}{2a}) = 2mg\frac{1}{2a} - mga\frac{1}{4a^2} = \frac{mg}{a} - \frac{mg}{4a} = \frac{3}{4}\frac{mg}{2a}$. $\Delta u = mg\frac{1}{2a} = \frac{mg}{2a}$

Железнодорожная нагружена песком

v(t)-?до: m, \overline{v} . после: $(m + dm)(\overline{v} + d\overline{v})$ - тележка. $(-dm)\overline{v}$ - песок в ЛСО. $d\overline{p} = \overline{F}dt$. $(m+dm)(\overline{v}+d\overline{v})+(-dm)\overline{v}-m\overline{v}=\overline{F}dt.$ После раскрытия $md\overline{v} = \overline{F}dt. \ m(t)dv = Fdt. \ dv =$ $\frac{Fdt}{m(t)} = \frac{Fdt}{m_0 - \mu t} = \frac{F}{-\mu} \int_0^t d(\ln(m_0 - \mu t)).$ $v(t) = -\frac{F}{\mu} \ln(m_0 - \mu t)|_{m_0}^{m_0 - \mu t} = \frac{F}{\mu} \ln(m_0 - \mu t)|_{m_0}^{m_0$ $\frac{F}{\mu}ln(\frac{m_0}{m_0-\mu t})$

Три одинаковые

 $1)v-?2)A_K-?\ \phi=k\frac{q}{a}+k\frac{q}{a}=2k\frac{q}{a}.$ В поле конс. Кулоновской си- $2k\frac{q^2}{a}$. В ноле конс. Кулоновской снелы. $u_1=3k\frac{q^2}{a}$ (потенциальная). $u_1=\frac{1}{2}\sum_{i!=j}\phi_{ij}q_i=\frac{1}{2}2k\frac{q^2}{a}\cdot 3=3\frac{kq^2}{a}$. E-const. $E_1=E_2$. $`u_1=u_2+T_2;\ T_1=0`->3k\frac{q^2}{a}=3k\frac{q^2}{r}+\frac{mv^2}{2}\cdot 3$. $T_2=\frac{mv^2}{2}+\frac{mv^2}{2}+\frac{mv^2}{2}$. $mv^2=2kq^2(\frac{1}{a}-\frac{1}{r})$. $v=\sqrt{\frac{2kq^2(r-a)}{mra}}$. $A_K=\frac{u_1}{3}=\frac{kq^2}{a}$