01 Data Exploration und Validation

March 16, 2025

1 MLOps Project work: Datenexploration & Validierung

1.1 1. Introduction

In this notebook, we will focus on the data exploration and the data validation. This is a fundamental first step in the MLOps pipeline, as understanding our data and ensuring its quality influences all subsequent steps.

1.2 2. Objectives

In this notebook, we will show the following steps by using the sample dataset 'adult income':

- a structured approach to data exploration
- methods for data validation with Great Expectations
- methods to create a basic data profile
- the importance of data quality in the MLOps context

1.3 3. Theoretical foundations

1.3.1 3.1 Importance of data exploration in MLOps

Data exploration is crucial for several reasons:

1. Data understanding

- Erkennen von Mustern und Zusammenhängen
- Identifizierung von Ausreißern
- Verständnis der Datenverteilungen

2. Quality assurance

- Detecting data problems
- Checking for data completeness
- Identifying inconsistencies in the data

3. Business context

- Reviewing business requirements
- Identifying relevant features
- Understanding the domain

1.3.2 3.2 Systematic approach

For effective data exploration, we will use the following approach:

1. Very first analysis

- Overview of the data structure
- Checking the data types
- Identifying missing values

2. Detailed investigation

- Statistical key figures
- Distribution analyses
- Correlation analyses

3. Quality check

- Data validation
- Consistency checks
- Documentation of anomalies

1.4 4. Practical implementation

1.4.1 4.1 Importing necessary libraries

```
[2]: # import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import great_expectations as ge
#from great_expectations.dataset import PandasDataset

# outputs for plots
plt.rcParams['axes.formatter.use_locale'] = True
plt.style.use('seaborn-v0_8-darkgrid')
```

1.4.2 4.2 Datensatz laden

Dataset loaded successfully. Form: (48842, 15)

1.4.3 4.3 First data inspection

An initial data inspection is performed.

```
[14]: df.info()
df.dtypes

df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841

	Column Non-Null Count		nt Dty	ре				
0 age		48842 non-nu	ll int	 64				
•		48842 non-nu						
2 fnl		48842 non-nu						
	O	48842 non-nu						
	cational-num		•					
		48842 non-nu						
6 occ	upation	48842 non-nu	_					
		48842 non-nu	_					
8 rac	-	48842 non-nu	_					
9 gen	der	48842 non-nu	_					
10 cap	ital-gain	48842 non-nu	_					
11 cap	ital-loss	48842 non-nu	ll int	64				
12 hou	rs-per-week	48842 non-nu	ll int	64				
13 nat	ive-country	48842 non-nu	ll obj	ect				
14 inc	ome	48842 non-nu	ll obj	ect				
dtypes:	int64(6), obje	ct(9)						
memory u	sage: 5.6+ MB							
[14]: age	workclass fnl	rrat odna	ation	educatio	nol_num	m	arital-status	\
[14]: age 0 25		wgt educ 8802	11th	educatio	nai-num 7		Never-married	\
1 38	Private 89							
			S-grad c-acdm		9		ed-civ-spouse	
2 28 3 44	Local-gov 336 Private 160				12		ed-civ-spouse	
		323 Some-co	_		10		ed-civ-spouse	
4 18	? 103	3497 Some-co	trege		10		Never-married	
	occupation n	elationship	race	gender	capital	-gain	capital-loss	\
0 Machi	ine-op-inspct	_		Male	•	0	0	
	rming-fishing	Husband	White	Male		0	0	
	tective-serv	Husband	White	Male		0	0	
∠ Pro	, , , , , , , , , , , , , , , , , , ,	Husballu	WILLOC	Harc		U		
		Husband		Male		7688	0	
	ine-op-inspct		Black			-		
3 Machi 4	ine-op-inspct ?	Husband Own-child	Black White	Male		7688	0	
3 Machi 4 hours	ine-op-inspct ? s-per-week nati	Husband Own-child ve-country i	Black White	Male		7688	0	
3 Machi 4 hours	ine-op-inspct ? s-per-week nati 40 Uni	Husband Own-child	Black White Income <=50K	Male		7688	0	
3 Machi 4 hours	ine-op-inspct ? s-per-week nati 40 Uni 50 Uni	Husband Own-child ve-country i	Black White Income <=50K <=50K	Male		7688	0	
3 Machi 4 hours 0	ine-op-inspct ? s-per-week nati 40 Uni 50 Uni 40 Uni	Husband Own-child ve-country i ted-States ted-States	Black White Income <=50K	Male		7688	0	

1.4.4 4.4 Exploratory data analysis

Data columns (total 15 columns):

We will perform an exploratory data analysis and focus on categorical as well as numerical variables.

4.4.1 Analyze categorical variables Firstly, we take a look at the categorical variables by creating bar charts for each categorical variable. This section shows the process of exploring the

data step by step.

```
[15]: # identify categorical columns
      kategorische_spalten = df.select_dtypes(include=['object']).columns
      kategorische_spalten
[15]: Index(['workclass', 'education', 'marital-status', 'occupation',
             'relationship', 'race', 'gender', 'native-country', 'income'],
            dtype='object')
[18]: # Visualize distributions of categorical variables
      for col in df.columns:
        if len(df[col].unique()) <20 :</pre>
          plt.figure(figsize=(20,5))
          sns.countplot(x=col, data=df,width=0.5)
      plt.show()
      # too many distinct values in native-countries
      # to prevent overlapping of labels, native-countries is plotted separately
      country_counts = df['native-country'].value_counts()
      plt.figure(figsize=(20, 10))
      country_counts.plot(kind='barh')
      plt.title('Counts of Native Countries')
      plt.xlabel('Number of Individuals')
      plt.ylabel('Native Country')
      plt.xticks(rotation=45, ha='right') # Rotate 45 degrees, align right
      # or
      plt.xticks(rotation=90) # Rotate 90 degrees
      plt.tight_layout() # Important to adjust layout to prevent labels from being_
       \hookrightarrow cut off
      plt.show()
```


We are going to explore how the income is distributed across the variables.

```
[31]: # Group by race and income to calculate absolute frequencies
      income_distribution = df.groupby(["race", "income"]).size().unstack()
      # Convert to relative frequencies
      income_distribution = income_distribution.div(income_distribution.sum(axis=1),__
       ⇒axis=0)
      # Define colors: Light Blue for <=50K, Purple for >50K
      colors = ["#89CFF0", "#8A2BE2"]
      # Create stacked bar chart for income distribution by race
      fig, axes = plt.subplots(6, 1, figsize=(36, 100)) # 6 rows, 1 columns layout
      axes = axes.flatten() # Flatten axes for easy indexing
      # Define features to visualize
      features = ["race", "education", "occupation", "marital-status", "age", [

¬"workclass"]

      for i, feature in enumerate(features):
          feature_distribution = df.groupby([feature, "income"]).size().unstack()
          feature_distribution = feature_distribution.div(feature_distribution.
       ⇒sum(axis=1), axis=0)
          # Plot stacked bar chart
          feature_distribution.plot(kind="bar", stacked=True, color=colors,__
       →ax=axes[i])
```


4.4.2 Identify numerical variables Here, we will analyze the numerical variables by creating histograms for numerical variables and also a correlation matrix.

data.hist(figsize=(12, 10), bins=20)
plt.suptitle("Histograms of numerical variables")
plt.show()

Histograms of numerical variables

The dataset has 48842 entries with each entry represents a person surveyed. There are 15 columns/features and the target feature is income. It defines whether a person's annual year (income exceeds or not) based on census data.

Features types are: - Numerical features (6 features, int64): age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week - Categorical features (9 features, object(str)): workclass, education, marital-status, occupation, relationship, race, sex, native-country, income

There are no missing data or no null data in any of the dataset columns. However, there are unknown data in columns namely 'workclass' 'occupation' 'native-country' indicated by the symbol '?'. While occupation is further classified into workclass. For example, machine-op-inspection, farming-fishing, craft-repair etc are classified into private workclass.

Based on the data set, we discovered that duplicated columns convey the same information such as "education" and "educational-num". Both are in fact same information. Therefore, one column can dropped and the classification of educational levels can be further aggregated. Furthermore, some columns have unnecessary detail grade, for example race. The data column could be summarized into two main groups "white" and "non-white", as the race groups other than whites are already underrepresented in the dataset.

4.5.1 Create GX dataset

```
[17]: # Pandas DataFrame in Great Expectations Dataset umwandeln
    context = ge.get_context()
    data_source = context.data_sources.add_pandas(name = "my_pandas_datasource")
    data_asset = data_source.add_dataframe_asset(name = "my_dataframe_asset")
    batch_definition = data_asset.add_batch_definition_whole_dataframe(name = "my_batch_definition")
    batch = batch_definition.get_batch(batch_parameters={"dataframe": data})
```

```
[18]: df.shape
```

[18]: (48842, 15)

```
print(validation_results.success)
```

Calculating Metrics: 0%| | 0/1 [00:00<?, ?it/s]

True

4.5.2 Defining basic expectations Define basic expectations for the data set. This is divided into two parts:

- data type and structure expectations
- value range and distribution expectations

```
[20]: # data type and structure expectations

columnExist_expectation = ge.expectations.ExpectColumnToExist(column="income")
   validation_results = batch.validate(expect= columnExist_expectation)
   print(validation_results.success)
```

Calculating Metrics: 0%| | 0/2 [00:00<?, ?it/s]

True

Calculating Metrics: 0%| | 0/8 [00:00<?, ?it/s]

True

```
# print results
print(validation_resultsBetweenAge.success)
print(validation_resultsBetweenHoursPerWeek.success)
Calculating Metrics:
                       0%|
                                    | 0/2 [00:00<?, ?it/s]
```

Calculating Metrics: 0%1 | 0/2 [00:00<?, ?it/s]

True True

Secondly, the statistical expectations are checked.

```
[23]: # assuming start working age at 18 and retirement age of 80. Our dataset is \Box
      ⇔skewed towards younger employees.
      # The median should be around 30-40 years old.
      expectation_Median = ge.expectations.ExpectColumnMedianToBeBetween(
          column="age", min_value=30, max_value=40
      )
      validation_results = batch.validate(expect= expectation_Median)
      print(validation_results.success)
```

| 0/4 [00:00<?, ?it/s] Calculating Metrics: 0%1

True

[]: