Projekt: Wypełnianie dziur w obrazkach z wykorzystaniem MFA

Paweł Goliszewski 20 lutego 2020

1 Wprowadzenie

Poniższy dokument opisuje projekt dotyczący uzupełniania dziur w obrazach zbioru MNIST. Jest to zbiór ręcznie pisanych cyfr w skali szarości. Opis jak korzystać z kodu jest w pliku readme. Projekt powstał we współpracy z dr. Markiem Śmieją (Uniwersytet Jagielloński).

2 Opis modelu

Mamy zbiór danych (obrazków) X, gdzie punkt $x \in X$ może mieć nieznane wartości na pewnych współrzędnych. Taki brakujący punkt oznaczmy przez (x, J), gdzie $x \in R^D$ to pewien reprezentant, a $J \subset \{1, ..., D\}$ służy do oznaczenia, które współrzędne są brakujące. Każdy z obrazów ma wymiary 28x28 pikseli.

Do wytrenowania modelu wykorzystano 5000 próbek ze zbioru MNIST - w każdym wykonano dziurę o wymiarach 10x10 pikseli w pobliżu środka obrazu. Jako, że konwolucyjna sieć neuronowa nie przyjmie obrazka "z dziurą" lub fragmentu wypełnionego wartościami nan, to dokonujemy ściągnięcia dziury do punktu i wykonanie odpowiedniego przekształcenia o czym więcej w kolejnym rozdziale. Dodajemy także dodatkowe warstwy oznaczające pierwotne położenie punktów x oraz y. Jako, że w efekcie dostajemy współrzędne pikseli niecałkowite, to dokonujemy interpolacji liniowej na współrzędne całkowite. Tak przygotowany obrazek przepuszczamy przez 2 warstwy konwolucyjne (po każdej z nich dokonujemy batch normalization [1]) a następnie 2 warstwy liniowe, na których wyjściu dostaniemy parametry Gaussian Mixture Model.

Zformalizujmy nieco zapis. Celem jest estymacja rozkładu brakujących współrzędnych dla danego (x, J). Dokładniej, chcemy znaleźć gęstość $F_{x,J}$ zdefiniowaną na R^N , gdzie N = |J|, która mówi jakie jest prawdopodobieństwo poszczególnych wartości dla x_J .

W celu wypełnienia dziury posłużymy się parametrycznym modelem MFA (mixture of factor analyzers)[2] dla zdefiniowania rodziny gęstości rozkładów $F_{x,J}$:

$$F_{x,J} = \sum_{i=1}^{k} p_i N(m_i, \Sigma_i)$$

$$\tag{1}$$

Gdzie $N(m, \Sigma)$ oznacza rozkład normalny o średniej m i macierzy kowariancji Σ . W tym modelu $F_{x,J}$ jest mieszanką rozkładów gaussowskich, w której każdy Gauss ma średnią $m_i \in R^N$ oraz macierz kowariancji $\Sigma_i = A_i A_i^T + diag(d_i)$, gdzie $A_i \in R^{N \times L}$, oraz $d_i \in R$, D (diag(d_i) jest macierzą diagonalną z diagonalą d_i). Zatem do wyestymowania są parametry p_i , m_i , A_i , d_i . Te parametry bierzemy z wyjścia sieci neuronowej. Brakujące współrzędne wypełniamy średnią ważoną: $\frac{1}{k} \sum_{i=1}^k p_i m_i$. Więcej o tym w sekcji 4.

3 Ściąganie dziur do punktu

Jako, że sieć nie przyjmie brakujących współrzędnych, przed umieszczeniem obrazu w sieci dokonano odpowiedniego przekształcenia, które jest zobrazowane na rysunku 1. Przykładowo dla dolnego białego paska dokonujemy przekształcenia:

$$y_{new} = y \cdot \left(c \left| x - \frac{h_{bx} + h_{ex}}{2} \right| + d \right) \tag{2}$$

Gdzie:

$$d = \frac{h_{by} + h_{ey}}{2h_{bu}} \tag{3}$$

$$c = \frac{2 - 2d}{h_{ex} - h_{bx}} \tag{4}$$

Założenie jest takie, że przekształcamy współrzędną y przez przemnożenie jej o wartość zależną liniowo od współrzędnej x danego punktu.

Rysunek 1: Przekształcenie przed umieszczeniem w sieci. Zielone obszary nie zostają przekształcone. Na niebiesko zaznaczono dziurę. Białe obszary zostaną "rozciągnięte", tak aby zakryć dziurę. Przykładowo dolna pozycja czerwonego punktu zostanie przesunięta w górną, podobnie z szarym punktem.

4 Funkcja kosztu

Żeby sprawdzić, jak dobry rozkład znaleźliśmy definiujemy funkcję kosztu (ujemny log likelihood):

$$-\sum_{i=1}^{k} \log \left[N(m_i, A_i A_i^T + diag(d_i))(x_J) \right]$$
 (5)

gdzie x_J oznacza wzięcie współrzędnych J z x (prawdopodobieństwo danych współrzędnych mając dany rozkład). Tę funkcję minimalizujemy.

5 Przykładowe wyniki

Na rysunku 2 przedstawiono przykładowe wyniki dla dziury w stałym miejscu. Na rysunku 3 przedstawiono przykładowe wyniki dla dziury w losowym miejscu (w odległości nie większej niż 4 piksele od środka).

Rysunek 2: W górnym rzędzie przedstawiono oryginalne obrazy, a poniżej uzupełnienia.

Rysunek 3: W górnym rzędzie przedstawiono oryginalne obrazy, a poniżej uzupełnienia.

6 Wnioski

Model lepiej sobie radzi z dziurą w stałym miejscu. Zauważono większą stabilność uczenia po do dodaniu warstw batch normalization. Dla niestałego miejsca uzyskano uzupełnienia takie samo niezależnie od pozycji dziury - prawdopodobnie model pomija dane dotyczące pikseli. Podejrzewa się, że dobranie odpowiednich hiperparametrów polepszyłoby wyniki i dało ostrzejszy obraz, lecz wymaga to większej ilości prób oraz mocy obliczeniowej, co wykracza poza zakres projektu.

Literatura

- [1] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167v3 [cs.LG] https://arxiv.org/pdf/1502.03167v3 [dostep 20 lutego 2020]
- [2] Eitan Richardson, Yair Weiss, On GANs and GMMs https://papers.nips.cc/paper/7826-on-gans-and-gmms.pdf [dostep 20 lutego 2020]