- #1: 06/10/6
- Přednášející
- Literatura
- Co je diskrétní matematika
- Příklady úloh
- Pojmy
- #2: 06/10/13
- Binární relace
- Uspořádání
- Zobrazení, permutace a faktoriál
- #3: 06/10/20
- Zobrazení (pokračování)
- Kombinační číslo
- Binomická věta
- Multinomická věta
- #4: 06/10/27
- Multinomická věta (z minula)
- Odhady faktoriálů a kombinačních čísel
- Princip inkluze a exkluze
- #5: 06/11/03
- Princip inkluze a exkluze (pokračování)
- Úvod do teorie grafů
 - Definice. Graf G je uspořádaná dvojice (V, E), kde V je libovolná konečná množina (obecněji libovolná) a E⊆ (V nad 2)
 - V... vrcholy (vertices)
 - E... hrany (edges)
 - Př.: $G = \{\{a,b,c,d\} \{\{a,b\}, \{a,c\}, \{a,d\}, \{c,d\}\}\}$

Toto je jen znázorn ní grafu. Graf je n co jiného:).

- **Definice.** Úplný graf K_n (na n vrcholech): všechny možné hrany
 - $K_n = (V, (V \text{ nad } 2)), IVI = n$
- Definice. Kružnice

- $C_n = (\{v_1, ..., v_n\}, \{\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_n, v_{n-1}\}, \{v_n, v_1\}), n \ge 3$
- C₃ =
- C₄ =
- délka = počet vrcholů = počet hran
- #6: 06/11/10

• Úvod do teorie grafů (pokračování)

- Definice. Cesta
 - $\bullet \ \ P_n = \left(\ \left\{ v_0, \, ..., \, v_n \right\}, \left\{ \ \left\{ v_0, \, v_1 \right\}, \, \left\{ v_1, \, v_2 \right\}, \, ..., \left\{ v_n, \, v_{n-1} \right\} \right\} \right); \, n \geq 0$
 - délka = počet hran = počet vrcholů 1
- Definice. Úplný bipartitní graf K_{m e}
 - $V = \{v_1, \dots v_m, w_1, \dots w_e\}$
 - $E = \{ \{w_i, w_i\}; i=1...m, j=1...e \}$
 - $|E(K_{me})| = m \cdot e$
- Definice. Bipartitní graf
 - $V = \{v_1, \dots v_m, w_1, \dots w_e\} = V_1 \dot{U} V_2$
 - $E \subseteq \{ \{v, v'\}; v \in V_1, v' \in V_2 \}$ (je podmožinou odpovídajícího úplného grafu)
- Definice. Isomorfismus
 - Grafy s "přeznačením" vrcholů jsou isomorfní.
 - Formálně: $G \cong G' \Leftrightarrow \exists$ bijekce f mezi V(G) a V(G') taková, že ($\{x, y\} \in E(G) \Leftrightarrow \{f(x), f(y)\} \in E(G')$)
 - Zápis: G ≅ G'

- Pozn.: Isomorfismus je ekvivalence (RST).
- **Definice.** G je podgraf grafu G': (G ⊆ G')
 - V(G) ⊆ V(G') & E(G) ⊆ E(G') ∩ (V(G') nad 2)
- **Definice.** G je *indukovaný podgraf* grafu G': (G ⊆ G')
 - V(G) ⊆ V(G') & E(G) = E(G') ∩ (V(G') nad 2)

- Pozorování: Graf na n vrcholech má 2ⁿ indukovaných podgrafů (vybírám jen vrcholy, hrany se vyberou samy, neboli každá podmožina množiny V indukuje indukovaný podgraf).
- Definice. G je souvislý graf
 - $\forall x,y \in V(G) \exists v G cesta z x do y$

Příklad: (nesouvislý)

- Značení: $x \sim_G y \Leftrightarrow v G$ existuje cesta z x do y
 - x ~_G y je ekvivalence na V(G)
 - **Definice.** sled: v_0 , e_0 , v_1 , e_1 , ..., e_m , v_m , kde $e_i = \{v_{i+1}, v_i\}$ pro i = 1...m

Sle pacifický, p evzato z Encyklopedie Worldbook

- Důkaz transitivity
 - $x \sim_G y \& y \sim_G z \Rightarrow \exists \text{ sled } z x \text{ do } z \text{ (v G)}$
 - nejkratší sled z x do z je cestou ⇒ x ~_G z
- Definice. podgrafy indukované třídou ekvivalence ~ g se nazývají komponenty grafu G
 - Poznámka: Souvislý graf má tedy jednu komponentu (sebe sama).
 - Poznámka: G souvislý $\Leftrightarrow \forall x, y \in V(G) \exists \text{ sled z } x \text{ do } y$.
- Definice. vzdálenost x,y v G: d_G(x,y) = délka nejkratší cesty z x do y
 - Poznámka: d_G(x,y) má vlastnosti metriky:
 - $d_G(x,y) \ge 0$
 - $d_G(x,y) = 0 \Leftrightarrow x, y$
 - $d_G(x,y) = d_G(y,x)$
 - $d_G(a,c) \le d_G(a,b) + d_G(b,c)$
- **Definice.** y je soused x v G pokud $\{x,y\} \in E(G)$
- Definice. matice sousednosti
 - G = ({v1, ..., vn}, E)
 - $A_G = (A_{ij})_{i,j=1}^n$, kde $a_{ij} = (\{vi,vj\} \in E) ? 1 : 0$
 - (závisí na očíslování vrcholů)
- **Definice.** stupe $vrcholu \times v \times G : \deg_G(x) = počet hran obsahujících <math>x = počet sousedů x = součet příslušného řádku (sloupce) A_G$
- #7: 06/11/24

Skóre grafu

- Věta. Princip sudosti:
 - $\forall G = (V, E) : \sum_{v \in V} \deg_G(v) = 2|E|$
 - Důkaz: Vlevo každá hrana přispěje dvakrát.
 - Důsledek: ∀G: počet vrcholů lichého stupně je vždy sudý (jinak by ∑_{v∈ V} deg_G(v) nemohlo být sudé).
- **Definice.** $G = (\{v_1, ..., v_n\}, E)$: skóre grafu $G = D(G) = (\deg_G(v_1), ..., \deg_G(v_n))$, kde skóre jsou stejná, pokud se liší jen pořadím prvků.

3

• Příklad:

mají skóre (1,2,2,2,3), ale nejsou isomorfní.

- $\sum_{v \in V} \deg_G(v) = 10, |E(G)| = 5$
- Věta o skóre: $D = (d_1, ..., d_n), 0 \le d_1 \le ... \le d_n$

Verze z: 07/01/13 16:19:50

- \bullet D je skóre nějakého grafu \Leftrightarrow $D'=(d_1,\ldots,d_{n-d_n-1},d_{n-d_n}-1,\ldots,d_{n-1}-1)$ je skóre nějakého grafu
- Příklad použití: Je (1, 2, 3, 3, 3, 4, 4, 4) skóre grafu?
 - 12<u>3334</u>4 je skóre (nějakého grafu) ⇔
 - ⇔ 122223 je skóre ⇔
 - ⇔ 12111 je skóre ⇔ (zm na po adí)
 - ⇔ 11112 je skóre ⇔ 1100 je skóre ⇔ 0011 je skóre ⇔ 000 je skóre (tři nespojené vrcholy).
 - · Ano, je to tedy skóre.
- Důkaz:
 - implikace ⇐:
 - G' má skóre D'

- Přidáme nový vrchol v_n a spojíme ho hranou s vrcholy v_{n-dn}, ..., v_{n-1}, dostáváme graf se skóre D.
- implikace ⇒:
 - Mějme $G = (\{v_1, ..., v_n\}, E)$ se skóre D, označme $d = d_n = \deg v_n$
 - 1. případ: z v_n vedou hrany právě do vrcholů $v_{n-d}, \dots v_{n-1}$ (tj. do předchozích d vrcholů:
 - Odstraněním těchto hran a vrcholu v_n dostaneme graf se skóre G' (jako v první implikaci, ale pozpátku).
 - 2. případ (neplatí první případ):
 - Potom $\exists i < n-d \le j: \{v_i, v_i\} \in E, \{v_i, v_n\} \notin E: \{v_i, v_i\} \in E$

• Protože deg $v_i \le \deg v_i$ existuje v_k takový, že $\{v_i, v_k\} \in E, \{v_i, v_k\} \notin E$:

• Přidejme do E hrany $\{v_i, v_k\}, \{v_i, v_n\}$ a odeberme $\{v_i, v_n\}, \{v_i, v_k\}$, skóre zůstává D:

4

- Opakováním postupu dostaneme první případ.
- Grafy "jednotažky"
 - Uzavřený tah začíná a končí ve stejném vrcholu.

Diskrétní matematika

• Opakování: sled: $v_0, e_0, v_1, e_1, ..., e_m, v_m, \text{kde } e_i = \{v_{i+1}, v_i\} \text{ pro } i = 1...m$

• **Definice.** $v_0, e_0, v_1, e_1, ..., e_m, v_m$ kde $e_i = \{v_{i+1}, v_i\}$ pro $i = 1...m, e_i \neq e_i$ (pro $i \neq j$)

• **Definice.** v_0 , v_0 , v_0 , v_1 , v_1 , v_2 , v_3 , v_4 , v_5 , v_6 pro $i = 1 \dots m$, $v_6 \neq v_6$ (pro $i \neq j$), $v_0 = v_0$

• Alternativně: cesta: v_0 , e_0 , v_1 , e_1 , ..., e_m , v_m , kde $e_i = \{v_{i+1}, v_j\}$ pro i = 1...m, $e_i \neq e_j$ (pro $i \neq j$), $v_i = v_j$ (pro $i \neq j$)

- Definice. Graf G je eulerovský (Ize nakreslit jedním uzavřeným tahem), pokud existuje uzavřený tah, takový, že ∀e∈E ∃li: e = e_i & ∀v∈V ∃i: v = v_i
- Věta. G je eulerovský ⇔ G je souvislý a všechny stupně v G jsou sudé
 - Důkaz:
 - implikace ⇒:
 - Uzavřený eulerovský graf dává souvislost (mezi každými dvěma vrcholy existuje tah) i sudé stupn (při procházení sledu, projdu vrchol k-krát, připadá na něj tedy 2k hran k dovnitř a k ven, platí i pro "počáteční" = "koncový" vrchol)
 - implikace ←:
 - Pozorování: Všechny stupně sudé (ne nutně souvislý graf)⇒ každou hranou vede nějaký uzavřený tah
 - Důkaz: nejdelší tah danou hranou je uzavřený
 - Předpokládejme, že není uzavřený:
 - Chodíme v grafu, když se dostaneme do nějaké hrany, můžeme ho vždycky prodloužit (vede z ní "neprojitá" hrana).
 - G = (V, E) souvislý graf, všechny stupně sudé
 - Ukážeme sporem, že nejdelší uzavřený tah Tv G je eulerovský:
 - Nechť není eulerovský (nenakreslí celý graf), potom (ze souvislosti) existuje
 - e ∉E(T)
 - v ∈ V(T)

- (pokračování příště)
- #8: 06/12/01
- Grafy "jednotažky" (pokračování)
 - (Věta. G je eulerovský ⇔ G je souvislý a všechny stupně v G jsou sudé)
 - (Důkaz:)

- implikace ← (pokračování):
 - V grafu G' = (V, E-E(T)) jsou všechny stupně sudé, tedy hranou e vede uzavřený tah T' v G' (podle Pozorování).
 - Ve vrcholu v propojíme T, T' do jednoho uzavřeného tahu:

- Delší než T: Spor.
- Tedy T musel být eulerovský.

• Některé operace na grafech

Definice.

- G = (V, E) graf
- odebrání hrany e ∈ E
 - $G \to G e = (V, E \{e\})$
- p idání hrany e ∈ (V nad 2)-E
 - $G \rightarrow G + e = (V, EU\{e\})$
- odebrání vrcholu v ∈ V
 - $G \rightarrow G v = (V, \{e \in E: v \notin e\})$

- d lení hrany e = {x, y} ∈ E
 - $G \rightarrow G \% v = (V \cup \{z\}, z \notin V; (E-\{e\}) \cup \{\{x, z\}, \{y, z\}\})$
 - Definice. G'je d lení grafu G, pokud ho dostaneme z G postupným opakováním operace dělení hrany.
 - Ekvivaletně: G' dostaneme z G nahrazením hran cestami délek ≥ 1.

2-souvislost grafu

te se "dvousouvislost".

- **Definice.** Graf G = (V, E) je (vrcholově) 2-souvislý, pokud $|V| \ge 3$ a $\forall v \in V$: G v je souvislý.
 - Moje poznámka (dle skript): Obdobně k-souvislý, pokud odebráním libovolných nejvýše k-1 vrcholů získáme souvislý graf.
- Příklady:

- **Definice.** Graf G = (V, E) je hranov 2-souvislý, pokud G je souvislý a $\forall e \in E$: G-e.
- Pozorování. G 2-souvislý, pak:
 - a) G + e je 2-souvislý pro $\forall e \in (V \text{ nad 2})-E$
 - Dá se snadno vymyslet proč.

- b) G e je souvislý pro ∀e ∈ E
 - Důkaz:
 - $e = \{x, y\} \in E$
 - G-x je (z definice) souvislý $\Rightarrow y$ je v G-e v jedné komponentě s vrcholem $v \neq x$.
 - G-y je souvislý ⇒ y je v G-e v jedné komponentě s vrcholem v≠y.
 - Z předchozích dvou plyne, že všechny vrcholy jsou v jedné komponentě. Tedy G-e má jednu komponentu.
 - TODO: Takže vrcholově ⇒ hranově 2-souvislý
- c) G % e je 2-souvislý pro ∀e ∈ E
 - Důkaz:
 - G' = G%e (s přidaným vrcholem z)
 - G'-v je souvislý pro ∀v≠z
 - G-z = G-e je souvislý podle b)
- Definice. P idání ucha ke grafu
 - Přidání cesty mezi u, v, vnitřní vrcholy cesty jsou nové vrcholy (pokud {u, v} ∉E(G), může být uchem hrana {u, v}).

Alternativní ilustrace, p evzato z encyklopedie World Book 2004.

- Lemma o uších
 - ...nebo "o uchách"?
 - ullet G je 2-souvislý \Leftrightarrow G lze dostat z kružnice postupným přidáváním uší.
 - Důkaz:
 - implikace ←:
 - Přidání ucha lze složit z přidávání a dělená hran: nejdříve rozdělím hranu a pak přidám k původním koncovým vrcholům ucho (v tomhle pořadí to vždycky funguje).
 - implikace ⇒:
 - VG∃ kružnice: {x, y} = e∈E libovolná hrana
 - G-e souvislý ⇒ v G-e existuje cesta z x do y, a ta spolu s e tvoří kružnici. (Našli jsme tedy kružnici ve 2-souvislém grafu.)
 - Nechť G' je podgraf G, který vznikne z kružnice přidáváním uší. Stačí ukázat G'≠G ⇒ ke G' můžeme přidat další ucho s hranami z E(G).
 - Pokud V(G') = V(G): můžeme přidat libovolnou hranu e $\in E(G)$ E(G')
 - Pokud $V(G') \subset V(G)$: souvislost $G \Rightarrow$ existuje hrana $\{v, w\} \in E(G)$ mezi V(G') a V(G)-V(G')

- Nechť P je nejkratší cesta z w do V(G') v G-v, potom P+hrana {v,w} je ucho, které můžeme přidat ke G'.
- #9: 06/12/08

• 2-souvislost grafu

- $\bullet \ \ \, \text{Důsledek lemmatu o uších: } G \text{ 2-souvisl} \\ \not \Leftrightarrow G \text{ vznikne z } \text{K}_3 \text{ postupn} \\ \not \text{m přidáván} \\ \text{m a dělen} \\ \text{im hran.}$
 - Takhle je to ve skriptech.
 - Důkaz: z lemmatu o uších.
- Věta. Ve 2-souvislém grafu leží každé dva vrcholy na společné kružnici.
 - Důkaz:
 - Podle lemmatu o uších stačí dokázat, že věta platí pro G ⇒ věta platí pro G + ucho (skrytá indukce?)

- v, w dva vrcholy v G + ucho (x, y koncové body ucha).
- Nechť v∈ V(G), w∉ V(G) (ostatní případy zřejmé).
- Nechť C = společná kružnice pro v, x.
- 2 případy:

- Nechť P = Nejkratší cesta z y do V(C) v G-x.
- Okomentovat TODO
- Poznámka: V 2-souvislém grafu leží také libovolné dvě hrany na společné kružnici.

8

Stromy

- **Definice.** Strom je souvislý graf bez kružnice mající alespoň jeden vrchol.
 - Poznámka: Podle skript má každý graf aspoň jeden vrchol, pak je taková podmínka pro strom zbytečná.
- **Definice.** List je vrchol stupně 1.

List (p evzato z New Oxford American Dictionary)

- Tvrzení: Každý strom s alespoň dvěma vrcholy má alespoň dva listy.
 - Důkaz: Koncové vrcholy nejdelší cesty jsou listy.

To (íkají to i ve skriptech) neplatí pro nekone né stromy.

- Pozorování: $G \operatorname{graf}, v \in V(G)$ list, potom $G \operatorname{je} \operatorname{strom} \Leftrightarrow G \operatorname{-} v \operatorname{je} \operatorname{strom}$
 - Důkaz: G obsahuje kružnici ⇔ G-v obsahuje kružnici & G souvislý ⇔ G-v souvislý. (Je třeba si
 uvědomit význam definice listu.)
- Důsledek: G strom ⇔ z G dostaneme graf K₁ postupným odebíráním listů.
- Věta. Nechť G(V, E) je graf a IVI ≥ 1. Potom následující tvrzení jsou ekvivalentní ("NTJE"):
 - (1) G je strom (souvislý graf bez kružnice mající alespoň jeden vrchol)
 - (2) $\forall x, y \in V$ existuje právě jedna cesta z x do y
 - (3) G je souvislý, ale G-e není souvislý pro $\forall e \in E$
 - (4) G nemá kružnici, ale G+e má kružnici pro ∀e, které nejsou v G.
 - (5) G je souvislý a l VI = lEI + 1

Podle srkipt se tomu íká Euler v vzorec.

- Důkazy předchozích vět (stačí dokázat implikace 1-2-3-4-5-1, ale uděláme i nějaké navíc):
 - Důkaz 1⇒2
 - Souvislý \Rightarrow existuje cesta z x do y.
 - Bez kružnic ⇒ neexistují 2 cesty z x do y.
 - Nechť P, R jsou různé cesty z x do y
 - $P = x e_1 v_1 e_2 v_2 ... y$
 - $R = x e_1' v_1' e_2' v_2' \dots y$
 - Dejme tomu, že cesty se od sebe v určité chvíli rozejdou a pak zase sejdou (to se může stát i vícekrát). Tím se ale vytvoří kružnice. Spor.
 - (Rozepsáno formálně: kdo to má opisovat furt...)
 - Důkaz 2⇒3
 - Vede cesta mezi každými dvěma vrcholy ⇒ souvislost
 - $e = \{x, y\},$
 - G-e není souvislý, jinak by existovaly 2 cesty z x do y.
 - Důkaz 3⇒4

- Předpoklad 3, nechť má kružnici, spor s 3 (vynecháním libovolné hrany kružnice se neporuší souvislost), tedy nemá kružnici.
- Důkaz, že G+e má kružnici:
 - Souvislý, přidáme hranu e = {x, y}. Mezi {x, y} je cesta (která neobsahuje e). Hrana e a tato cesta tvoří dohromady kružnici.
- Důkaz 4⇒1
 - Bez kružnic Ok.
 - Chceme dokázat 4⇒souvislý:
 - mějme dva vrcholy $\{x, y\} \in V(G)$
 - a) {x, y} hrana Ok.
 - b) {x, y} ne hrana
 - G+e má kružnici (která nebyla v G) pro e = {x, y}, tedy nutně prochází hranou e, když ji umažeme, zbude z ní cesta mezi x a y.
- Důkaz 1⇒5
 - Máme strom (tedy souvislý). Z důsledku výše (G strom ⇔ z G dostaneme graf K₁ postupným odebíráním listů.) plyne, že IVI = IEI + 1. (Odebrání listu ⇒ odebrání hrany.)
- Důkaz 5⇒1
 - Souvislý a I M=IEI+1.
 - G nemá kružnici:
 - Pokud by měl kružnici, odebereme jednu její hranu a neporušíme souvislost, má-li stále ještě nějaké kružnice, opět mu odebereme hranu atd.
 - Dostaneme graf G = (V,E) souvislý bez kružnice (tedy strom) tedy I VI=IEI +1 ve sporu s
 tvrzením I VI=IEI+q
- #10: 06/12/15

• Minimální kostra grafu

- **Definice.** Kostra souvislého grafu G = (V, E) je libovolný strom T = (V, E), kde $E \subseteq E$.
 - Poznámka: Kostra vždy existuje: dokud v G existuje kružnice, odebíráme z G (jednu libovolnou) hranu kružnice, dostaneme tak kostru grafu.

- **Definice.** Graf s ohodnocenými hranami: G = (V, E) graf, $w: E \rightarrow \mathbb{R}^+$,
- Problém minimální kostry: Pro daný souvislý graf G = (V, E) graf, w: E→R⁺, nalézt minimální kostru, tj. kostru K = (V, E) takovou, že její váha w(K) = w(E) = ∑_{e∈E} w(e) je minimální.

- Kruskalův (hladový) algoritmus:
 - G = (V, E) souvislý, $w: E \rightarrow \mathbb{R}^+$
 - Předpokládejme, že $E = \{e_1, ..., e_m\}$, přičemž $w(e_1) \le w(e_2) \le ... \le w(e_m)$
 - 1. $E_0 = \emptyset$
 - 2. pro i = 1, 2, ..., m pokládáme $E_i =$
 - = $E_{i+1} \cup \{e_{i}\}$, pokud $(V, E_{i+1} \cup \{e_{i}\})$ neobsahuje kružnice
 - = E_{i-1} jinak
 - 3. (V, E_m) → výstup (min. kostra)
 - Výsledek je určitě strom, je ale minimální?
 - Věta. Kostra nalezená hladovým algoritmem je minimální.
 - Důkaz:

- Nechť (V, K) výsledná kostra, (V, L) jiná kostra.
- Chceme $w(L) \ge w(K)$.
- Indukcí podle $d = |K\Delta L|$, symetrická diference $K\Delta L = (K-L) \cup (L-K)$
 - 1. $d = 0 \Rightarrow K = L$, zjevně platí
 - 2. d > 0 a platí to pro d' < d
 - $K \neq L$ (i když |K| = |L|) $\Rightarrow \exists e \in L K$
 - Vezmeme hranu z L a přidáme do K:
 - (V, L {e}) má 2 komponenty (vzali jsme hranu ze stromu): V₁ a V₂.
 - (V, KU{e}) má (jedinou) kružnici C, přičemž e ∈ E(C).
 - ∃*e*' ∈ *E*(*C*):
 - e' ∩ V₁≠Ø
 - e' ∩ V₂≠Ø
 - e' ∈ K, e'∉L (není v L, protože jinak by v L byla kružnice, je tam přece také e), tedy e'
 = K I
 - (V, L') je kostra (zachovává se nám, že je to strom, přidáváme hrany a rušíme kružnice)
 - $' = (L-\{e\}) \cup \{e'\}$ je podobnější K než byla L, takže se nám víc hodí pro zbytek důkazu:
 - IL'∆KI < IL∆KI
 - $w(L') \ge w(K)$ (indukční předpoklad)
 - $w(L) \ge w(L')$
 - odpovídá $w(e) \ge w(e')$
 - Hladový algoritmus přece nezval hranu e, protože by vznikla kružnice C, tedy už byla vybrána hrana e', tedy w(e') ≤ w(e)
 - Z předchozích dvou nerovností plyne w(L) ≥ w(K)

• Jarníkův algoritmus na minimální kostru

- 1. V₀ = {v}, kde v je libovolný vrchol z V
- 2. pro i = 1, ..., n-1 nechť e, hrana minimální váhy vedoucí z V_{i-1} do V-V_{i-1}
 - $V_i = V_{i+1} \cup e_i$ (neboli přidáme koncový vrchol hrany, ten, který tam ještě není)
- 3. strom $(V, \{e_1, e_2, ..., e_{n-1}\}) \rightarrow \text{výstup}$

Rovinné grafy

- **Definice.** Oblouk je množina bodů $\{(x), x \in [0, 1]\}$, přičemž :[0, 1] $\rightarrow \mathbb{R}^2$ je prosté a spojité zobrazení.
- **Definice.** Graf G = (V, E) je rovinný, má li rovinné nakreslení: vrcholy odpovídají různým bodům v \mathbb{R}^2 a hrany obloukům spojujícím příslušné dvojice bodů tak, že mají-li dva oblouky společný bod, potom je tento bod pro oba oblouky koncový.
- Příklady:
 - K₄ je rovinný:

- C_n je rovinný.
- Libovolný strom je rovinný.
- Je známo, že rovinný graf lze nakreslit, tak, že hrany odpovídají úsečkám
 - Důkaz je těžký, nebudeme ho dělat. (Búú!:-(Já se tak těšil...)
- #11: 06/12/22

• Rovinné grafy (pokračování)

• **Definice.** Stěna rovinného nakreslení: libovolná maximální souvislá oblast množiny **R**² - *X*, kde *X* je množina bodů ležících na obloucích nakreslení (souvislost bereme intuitivně).

11

• Příklad:

má 4 stěny (vnitřní oblasti označené písmeny)

- Definice. Vždy jedna stěna je neomezená, a to vn jší st na. Ostatní jsou vnit ní st ny.
- **Definice.** Topologická kružnice je uzavřený "oblouk" (tj. (0) = (1))

Příklad:

•

- Jordanova věta o kružnici. Topologické kružnice rozděluje rovinu na právě 2 souvislé oblasti (vnitřek a vnějšek dané kružnice)
 - Důkaz je fakt těžký, nebudeme ho dělat:(.
- Věta. K₅ není rovinný.
 - Důkaz sporem:
 - $V = \{1, 2, 3, 4, 5\}$

- Oblouky 1, 2, 3 tvoří topologickou kružnici K, 4 leží uvnitř nebo vně. Kam potom s 5 (žádná stěna nemá na hranici všechny 4 vrcholy 1, 2, 3, 4).
- Věta. K_{3.3} není rovinný.
 - Důkaz sporem:
 - Vrcholy 1, 2, 3, 1', 2', 3'

- Kam s 3'?
- Pozorování: Graf G rovinný ⇔ každé dělení grafu G je rovinný graf.
 - Nové vrcholy nakreslím na oblouky.
 - Naopak taky platí: Dělení grafu je i ten graf samotný.
- Věta (Kuratowski). G je rovinný ⇔ G neobsahuje dělení K₅ ani K_{3.3}.
 - ⇒ je jasné, ale zpátky bez d kazu:(.
- Tvrzení (Eulerův vzorec): Graf G je souvislý, rovinný graf, IVI ≥ 1.
 - Nechť s = počet stěn nějakého rovinného nakreslení G. Potom IVI IEI + s = 2.
 - Tudíž počet stěn nezávisí na volbě nakreslení.
 - Důkaz: Indukcí podle IEI:
 - Nejdříve IEI = 0, graf má nutně jeden vrchol, aby splňoval podmínky: IVI = 1, s= 1, 1+0+1=2
 - I*E*l≥1
 - G neobsahuje kružnici:
 - Je to tedy strom: IVI = IEI + 1; IsI = 1 takže to vychází.
 - G obsahuje kružnici C:
 - e je libovolná hrana na C
 - nakreslení G-e splňuje Eulerův vzorec (z indukčního předpokladu)
 - Má o hranu a stěnu méně (odebráním e se 2 stěny spojí do jedné vně a uvnitř kružnice).

- Tedy i G splňuje Eulerův vzorec.
- Tvrzení: Graf G je rovinný, 2-souvislý. Potom hranice libovolné stěny v libovolném nakreslení G odpovídá kružnici v G.
 - Důkaz: z lemmatu o uších:
 - platí pro kružnici
 - přidání ucha se platnost neporuší
 - Nechť G (rovinný, 2-souvislý) = "G′ + ucho" a nechť tvrzení platí pro G′
 - Vezměme libovolné nakreslení G a ucho vyhoďme:

- Tvrzení platí G', opětovným dokreslením se jedna stěna ohraničená kružnicí rozdělí na dvě trakové stěny, ostatní stěny se nezmění.
- Tvrzení: G = (V, E) rovinný, IVI ≥ 3. Potom
 - (i) |E| ≤ 3|V| 6
 - Důkaz: Přidáváme hrany, dokud nedostaneme maximální rovinný graf, určitě dostaneme 2souvislý graf (to intuitivn jde).
 - Každá stěna ohraničená kružnicí, dokonce trojúhelníkem (jinak lze přidat nějakou "diagonálu")
 - (ii) G neobsahuje K₃ ⇒ IEI ≤ 2IVI 4
- #12: 07/01/05

Rovinné grafy (pokračování)

- Tvrzení: G = (V, E) rovinný, IVI ≥ 3. Potom (dokon ení z minula)
 - (i) IEI ≤ 3I VI 6
 - Důkaz: Přidáváme hrany, dokud nedostaneme maximální rovinný graf, určitě dostaneme 2-souvislý graf (to *intuitivn* jde).
 - Každá stěna ohraničená kružnicí, dokonce trojúhelníkem (jinak lze přidat nějakou "diagonálu")
 - Počet incidentních dvojic hrana-stěna = 3s (haždá stěna má tři hrany) = 2lEl (každá stěna je hranicí dvou stěn)
 - 3s = 2|F|
 - Eulerův vztah (krát 3): 31*E*1 = 31*V*1 + 3s 6
 - Tedy: IEI = 3I VI 6 pro každý maximální rovinný graf (tzv. rovinná triangulace).
 - (ii) G neobsahuje K₃ ⇒ IEI ≤ 2IVI 4
 - Důkaz: Obdobně přidáváme hrany, dokud nedostaneme maximální rovinný graf bez trojúhelníků.
 - (a) výsledný graf není 2-souvislý, potom je hvězdou (jeden bod spojený se všemi ostatními)
 - IEI = IVI 1 ≤ 2 IVI 4 (protože IVI ≥ 3 a 2IVI ≥ IVI + 3)
 - (b) výsledný graf je 2-souvislý, proto je každá stěna ohraničená kružnicí délky alespoň 4 (a nanejvýš 5, šestiúhelník mohu rozdělit na dva čtyřúhelníky)
 - Počet incidentních dvojic hrana-stěna = 2l El ≥ 4s, tedy 2s ≤ l El
 - Eulerův vztah (dvakrát): 21El = 21Vl + 2s 4
 - Tedy obecně l*E*l ≤ 2l*V*l-4.
- Důsledky:
 - 1. každý rovinný graf má vrchol stupně ≤ 5 (všechny vrcholy ≥ 6 ⇒ lEl ≥ 3l VI spor)
 - 2. K₅ ani K_{3.3} nejsou rovinné.
 - z (i): 10 (není) ≤ 3·5-6
 - z (ii): 9 (není) ≤ 2·6-4

• Barvení map a grafů

- Modelový problém: Chceme, aby na politické mapě měly sousední státy různé barvy.
- · Předpoklady:
 - 1. Pro to být sousedem nestačí jeden bod.
 - 2. Každý stát je souvislý.
- Problém čtyř barev: Stačí vždycky 4 barvy?

Diskrétní matematika

- 5 barev se dá jednoduše dokázat, 4 už těžko:(, několik známých matematiků se prý ztrapnilo špatným důkazem. Teď je to dokázáno pomocí počítače.
- Definice. Graf G = (V, E) Ize (ádn) obarvit k barvami, pokud existuje zobrazení b: V→{1, 2, ..., k} takové, že {x, y} ∈ E ⇒ b(x) ≠ b(y)
- Definice. Barevnost grafu G = χ(G) (chí) = min {k : G | ze obarvit k barvami}
- Příklady:
 - 1. $\chi(K_n) = n$
 - 2. $\chi(K_{m,n}) = 2, m, n \ge 1$
 - 3. $\chi(C_{2k}) = 2$
 - 4. $\chi(C_{2k+1}) = 3$
 - 5. $\chi(T)$ = 2; T je strom
- Vztah mezi barvením map a rovinných grafů (náznak)
 - Udělám si silnice mezi hlavními městy sousedních států (tak, aby se nekřížily). A mám z toho barvení rovinného grafu. A tohle funguje i zpátky.
- Problém čtyř barev (jinak): χ(G) ≤ 4 pro každý rovinný graf G?
- Věta o pěti barvách: χ(G) ≤ 5 pro každý rovinný graf G = (V, E)
 - Důkaz: indukcí podle IVI
 - Pro I M ≤ 5 platí.
 - IVI ≥ 6 a věta platí pro grafy s menším počtem vrcholů
 - G má vrchol stupně ≤ 5 (viz dříve tuto hodinu)
 - (a) deg x ≤ 4: obarvíme G-x 5 barvami (to jde z předpokladu), poté dobarvíme x barvou vrcholu, se kterým x nemá hranu
 - (b) deg x = 5: sousedi u₁, ... u₅
 - G rovinný ⇒ G neobsahuje K₅ ⇒ BÚNO {u₄, u₅} ∉ E
 Bez Újmy Na Obecnosti
 - V G-x ztotožníme u₄, u₅ (násobnost hran odstraníme), vyjde nám (intuitivně) rovinný graf
 - Podle indukčního předpokladu existuje obarvení tohoto menšího grafu b₀ pěti barvami, z toho vyrobíme obarvení G-x:
 - b(v) := $b_0(v)$ pro $v \neq u4$, u5
 - b(u4 = b(u5) := b(v)
 - Dobarvíme vrchol x barvou různou od b(u1), b(u2), b(u3), b(u4) = b(u5)
- #13: 07/01/12

· Grafy, počet koster

• Cauchy-Schwarzova nerovnost:

Viz poslední p ednáška z lineární algebry.

$$\bullet \ \, \sum_{i=1}^n x_i y_i \leq \sqrt{\sum_{i=1}^n x_i^2} \cdot \sqrt{\sum_{i=1}^n y_i^2} \text{ pro libovolná } \mathbf{x_j} \, \mathbf{y_j} \in \, \mathbf{R}$$

- Důkaz
 - $\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i y_j x_j y_i)^2 \ge 0$
 - $2\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_j^2 2(\sum_{i=1}^{n} x_i y_i)^2 \ge 0$
- Věta. Nechť G=(V,E) je graf na n vrcholech obsahující K2,2 (= C4). Potom IEI ≤ (n√n+2)/2.
 - Důkaz:
 - (n nad 2) \geq (# cest délky 2 v G) = $\sum_{v \in V} (\text{deg v nad 2}) = \sum_{v \in V} (\text{deg v})(\text{deg v 1})/2 \Rightarrow$
 - ⇒ ∀u, u' ∈V, u≠u': ∃ nejvýše jedna cesta délky 2 z u do u'

- $1/2 \sum_{v \in V} (\deg v 1)^2 \le \sum \deg v (\deg v 1) \le (n \text{ nad } 2)$
- $\sum_{v \in V} (\text{deg } v 1) \cdot 1$ $\leq \sqrt{(\sum_{v \in V} (\text{deg } v 1)^2) \cdot \sqrt{(\sum_{v \in V} 1^2)}}$
- 2|E|-n $\leq \sqrt{(\leq n^2)} \cdot \sqrt{(=n)}$
- $2|E|-n \le n\sqrt{n}$
- 2|E|≤ (n√n+n)/2
- **Věta.** (Cayleyho formule): $\forall n \ge 2$: Počet koster grafu K_n je n^{n-2} (stromů na $V = \{1, 2, ..., n\}$)
 - Příklady:
 - n = 2: $2^0 = 1$ kostra
 - $n = 3:3^1 = 3$ kostry (vyhození jedné hrany z trojúhelníku)
 - Důkaz (*n* ≥ 2):
 - Definice. Orientovaný graf (se smyčkami): G→ = (V, E→), kde V je libovolná konečná množina a
 E→ ⊆ V×V
 - Příklad:
 - $G \rightarrow = (\{a, b, c\}, \{(a,b), (b, b), (a, c), (c, a)\})$

- **Definice.** Kv tina je strom, v němž všechny hrany jsou zorientovány směrem od jediného vrcholu (kořene květiny).
- Pozorování 1: (# květin na {1, ..., n}) = n (# stromů na {1, ..., n})
 - Důkaz: Každý strom lze zorientovat n různými způsoby na květinu (odpovídajícími n různým volbám kořene).
- **Definice.** Záhon je graf, jehož všechny komponenty jsou květiny.
- Pozorování 2: Květina se vyhozením k hran změní na záhon k+1 květin.
 - Důkaz: Vyhození 1 hrany se květina rozpadne na 2 květiny atd. (Vyhodím druhou, jedna ze dvou kytek se taky rozpadne na dvě, mám tři, atd.)
- Pozorování 3: Přidáním orientované hrany do záhony dostaneme opět záhon právě, když přidaná hrana vede z libovolného vrcholu do kořene jiné komponenty.
 - Důkaz: (TODO obrázek). Kdyby byly komponenty stejné, vznikne kružnice. Kdyby nevedla do kořene, vznikly by dva "kořeny" a srazily by se dvě šipky na jednom vrcholu, takže ne květina.
- Vlastní důkaz formule:
 - Z grafu 1–2–3-...-n dostaneme květinu na {1, 2, ..., n} postupným přidáváním orientovaných hran právě, když přidávaná hrana vždy vede z nějaké komponenty do kořene jiné komponenty (květiny)
 - Na začátku mám jednovrcholové květiny: mám n(n-1) možností volby první hrany.
 - Máme n-1 komponent, vrcholů je stále stejně.
 - Následně máme n(n-2) možností (lze snadno rozmyslet, TODO obrázek).
 - Máme n-2 komponent, vrcholů je stále stejně.
 - ..
 - Až nakonec máme n·1 možností, jak zvolit (n-1). (n-minus-první) hranu.
 - Tedy máme nⁿ⁻¹ (n-1)! možností, jak zvolit první až (n-1). hranu. Stejná květina vyjde (n-1)!-krát, tedy květin je nⁿ⁻¹(n-1)!/(n-1)! = nⁿ⁻¹. Proto stromů je nⁿ⁻¹/n = nⁿ⁻².