Task-9

9a). Configure network topology and implement dynamic routing protocol RIP

Routing Information Protocol (RIP) is a **distance-vector routing protocol** used to enable routers in a network to dynamically share routing information. It's one of the simplest routing protocols and is typically used in smaller networks due to its limitations in scalability and performance.

Key Features of RIP

1. Distance-Vector Protocol:

• Relies on information from neighboring routers (vector = next hop and distance = hop count).

2. Periodic Updates:

Routing updates are sent every 30 seconds, even if there are no changes in the network.

3. Hop Count Metric:

• RIP uses hop count to measure distance. A lower hop count means a better route.

4. Maximum Hop Limit:

 Limits the maximum network size to 15 hops. Networks beyond 15 hops are considered unreachable.

5. Split Horizon and Poison Reverse:

- o Mechanisms used to prevent routing loops:
 - **Split Horizon**: A route learned on an interface is not advertised back on the same interface.
 - **Poison Reverse**: A route is advertised back with an infinite metric (hop count = 16) to indicate it is unreachable.

6. Simplicity:

• Easy to configure and understand, but lacks scalability for larger networks.

Configure Hosts

Assign IP addresses to hosts as per the diagram:

- **PC0**: IP 10.0.0.2, Gateway 10.0.0.1.
- **PC1**: IP 10.0.0.3, Gateway 10.0.0.1.
- PC2: IP 192.168.1.2, Gateway 192.168.1.1.
- **PC3**: IP 192.168.1.3, Gateway 192.168.1.1.

Network Overview

- Router1 (R1) connects:
 - 10.0.0.0 network on Fa0/0.
 - o **20.0.0.0 network** on Se2/0.
- Router2 (R2) connects:
 - 20.0.0.0 network on Se3/0.
 - o **192.168.1.0 network** on Fa0/0.

Configuration Steps

1. Configure Interfaces on R1

no auto-summary:

Auto-summarization is a feature that automatically summarizes routes at classful network boundaries. This means that when a routing protocol shares routes between routers, it automatically summarizes them based on their default classful boundaries (e.g., Class A, B, or C networks).

Example in RIP Configuration:

```
Router(config) # router rip
Router(config-router) # version 2
Router(config-router) # no auto-summary
```

In this configuration:

version 2 enables RIP version 2, which supports classless routing.
no auto-summary ensures that RIP does not summarize routes at classful boundaries.

2. Configure Interfaces on R2

Test the Configuration:

From PC0 (10.0.0.2), ping PC3 (192.168.1.3)

Command:

ping 192.168.1.3

```
PC0
                                                                                                                                                                                    Physical
                    Config Desktop Programming
                                                                          Attributes
     Command Prompt
                                                                                                                                                                                               Χ
    Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.1.3
    Pinging 192.168.1.3 with 32 bytes of data:
   Request timed out.
Reply from 192.168.1.3: bytes=32 time=1ms TTL=126
Reply from 192.168.1.3: bytes=32 time=1ms TTL=126
Reply from 192.168.1.3: bytes=32 time=1ms TTL=126
    Ping statistics for 192.168.1.3:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = lms, Average = lms
    C:\>ping 192.168.1.3
    Pinging 192.168.1.3 with 32 bytes of data:
    Reply from 192.168.1.3: bytes=32 time=1ms TTL=126 Reply from 192.168.1.3: bytes=32 time=13ms TTL=126 Reply from 192.168.1.3: bytes=32 time=1ms TTL=126 Reply from 192.168.1.3: bytes=32 time=1ms TTL=126
    Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
            Minimum = lms, Maximum = 13ms, Average = 4ms
    C:\>
```