Aritmética Modular

Ronald Mas, Angel Ramirez

14 de agosto de 2020

Contenido

- Teorema chino del resto
- 2 Los enteros módulo n
- Ejemplos

Teorema (Teorema chino del resto)

Sean $n_1, n_2, \cdots, n_k \in \mathbb{N}$, k números naturales con k > 1 tal que:

$$MCD(n_i, n_j) = 1, \ \forall i \neq j$$

 $y \ r_i \in \mathbb{Z}$, donde $i \le k$ son arbitrarios. Entonces existen enteros x_i , donde $1 \le i \le k$ tal que:

$$n_1x_1 + r_1 = n_2x_2 + r_2 = \dots = n_kx_k + r_k.$$
 (1)

Prueba:

Procedamos por inducción sobre k. Si k=2, se tiene $MCD(n_1,n_2)=1$ entonces existen $z_1,z_2\in\mathbb{Z}$ tal que $n_1z_1+n_2z_2=1$. Luego la ecuación $n_1x-n_2y=r_2-r_1$ tiene solución, la cuál es $(x_1,x_2)=(z_1(r_2-r_1),z_2(r_1-r_2))$. Supongamos que el resultado es cierto para $k\geq 2$, veamos para k+1.

Sean $n_1, n_2, \dots, n_{k+1} \in \mathbb{N}$ números primos relativos dos a dos y $r_1, r_2, \dots, r_{k+1} \in \mathbb{Z}$ elegidos arbitrariamente.

Continua la prueba

Por hipotesis de inducción, existen enteros $x_1, x_2, \cdots, x_k \in \mathbb{Z}$ que satisfacen la ecuación (1). Como los n_i con $1 \le i \le k$ son primos relativos dos a dos entonces $n_1 n_2 \cdots n_k$ y n_{k+1} son primos relativos también, es decir $MCD(n_1 n_2 \cdots n_k, n_{k+1}) = 1$, luego existen $X, Y \in \mathbb{Z}$ tal que $n_1 n_2 \cdots n_k X - n_{k+1} Y = r_{k+1} - n_1 x_1 - r_1$. Al considerar

Al considerar

$$X_j = \frac{n_1 n_2 \cdots n_k X}{n_j} + x_j \in \mathbb{Z} \ \forall 1 \leq j \leq k \ y \ X_{k+1} = Y,$$

se tiene $n_1X_1 + r_1 = n_2X_2 + r_2 = \cdots = n_{k+1}X_{k+1} + r_{k+1}$.

Los Enteros Módulo n

Sea $n \in \mathbb{Z}^+$, $n \ge 2$ se define la relación \equiv_n sobre \mathbb{Z} como:

$$a \equiv_n b$$
 si y sólo si $n \mid (a - b)$.

Es bien sabido que dicha relación es de equivalencia. Por tanto, la clase de a y el conjunto cociente son respectivamente:

$$\overline{a} = \{a + kn : k \in \mathbb{Z}\}$$
 y

$$\mathbb{Z}_n := \frac{\mathbb{Z}}{\equiv_n} = \{\overline{a}: a \in \mathbb{Z}\}$$

Proposición

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} \ y \ | \ \mathbb{Z}_n \mid = n.$$

Prueba: Si $x \in \mathbb{Z}_n$ entonces $x = \overline{a}$ con $a \in \mathbb{Z}$, luego por el algoritmo de la división existen $q, r \in \mathbb{Z}$ tal que a = qn + r, $0 \le r < n$, es decir existe $r \in \mathbb{Z}$, $0 \le r < n$ tal que $a \equiv_n r$ entonces $x = \overline{a} = \overline{r}$. Luego $x \in \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$, es decir:

$$\mathbb{Z}_n \subseteq \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}.$$

Por tanto

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}.$$

Por otro lado veamos que $\mid \mathbb{Z}_n \mid = n$, supongamos que existen $i,j \in \mathbb{Z}$ tal que $0 \leq i < j < n$ y $\bar{i} = \bar{j}$ entonces $j - i = n\alpha$, $\alpha \in \mathbb{Z}$ y como 0 < j y i < n se tiene que $0 < n\alpha < n$ entonces $0 < \alpha < 1$ con $\alpha \in \mathbb{Z}$, lo cuál es una contradicción.

Proposición

Sean $\overline{a}, \overline{a'}, \overline{b}, \overline{b'} \in \mathbb{Z}_n$. Si $\overline{a} = \overline{a'}$ y $\overline{b} = \overline{b'}$ entonces

$$\overline{a+b} = \overline{a'+b'} \ y \ \overline{ab} = \overline{a'b'}.$$

Prueba:

Como $\overline{a} = \overline{a'}$ y $\overline{b} = \overline{b'}$ entonces $n \mid (a - a')$ y $n \mid (b - b')$. Luego, como (a + b) - (a' + b') = (a - a') + (b - b') se tiene que $n \mid [(a + b) - (a' + b')]$, así $\overline{a + b} = \overline{a' + b'}$. Por otro lado, como ab - a'b' = (a - a')b + a'(b - b') se tiene que $n \mid (ab - a'b')$, así $\overline{ab} = \overline{a'b'}$.

Definición

En \mathbb{Z}_n definamos las operaciones:

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$
 y $\overline{a} \odot \overline{b} = \overline{ab}$

La proposición anterior nos garantiza la buena definición de estas operaciones. Por abuso de notación \oplus y \odot las denotamos por + y .

Teorema

Las operaciones en \mathbb{Z}_n satisfacen las siguientes propiedades:

1)
$$\overline{x} + (\overline{y} + \overline{z}) = (\overline{x} + \overline{y}) + \overline{z}, \ \forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_n$$
.

2)
$$\exists \overline{0} \in \mathbb{Z}_n : \overline{x} + \overline{0} = \overline{0} + \overline{x} = \overline{x}, \ \forall \overline{x} \in \mathbb{Z}_n.$$

3)
$$\forall \overline{x} \in \mathbb{Z}_n$$
, $\exists (-\overline{x}) \in \mathbb{Z}_n : \overline{x} + (-\overline{x}) = (-\overline{x}) + \overline{x} = \overline{0}$.

4)
$$\overline{x} + \overline{y} = \overline{y} + \overline{x}, \ \forall \overline{x}, \overline{y} \in \mathbb{Z}_n$$
.

5)
$$(\overline{x}\,\overline{y})\overline{z} = \overline{x}(\overline{y}\,\overline{z}), \ \forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_n.$$

6)
$$\exists \overline{1} \in \mathbb{Z}_n : \overline{x}\overline{1} = \overline{1}\overline{x} = \overline{x}, \ \forall \overline{x} \in \mathbb{Z}_n.$$

7)
$$\overline{x}\,\overline{y}=\overline{y}\,\overline{x},\ \forall \overline{x},\overline{y}\in\mathbb{Z}_n.$$

8)
$$\overline{x}(\overline{y} + \overline{z}) = \overline{x}\,\overline{y} + \overline{x}\,\overline{z}, \ \forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_n$$
.

Prueba:

2) $\overline{0}=\{0+kn:\ k\in\mathbb{Z}\}=\{kn:\ k\in\mathbb{Z}\}=\{0,\pm n,\pm 2n,\cdots\}$ y es claro que:

$$\overline{x}+\overline{0}=\overline{x+0}=\overline{x},\ \overline{0}+\overline{x}=\overline{0+x}=\overline{x},\ \forall \overline{x}\in\mathbb{Z}_n.$$

3)
$$\overline{x} + (-\overline{x}) = \overline{x + (-x)} = \overline{0}$$
 y $\overline{(-x)} + \overline{x} = \overline{(-x) + x} = \overline{0}$, $\forall \overline{x} \in \mathbb{Z}_n$.

8)
$$\overline{x}(\overline{y}+\overline{z}) = \overline{x}(\overline{y+z}) = \overline{x}(y+z) = \overline{x}\overline{y} + \overline{x}\overline{z} = \overline{x}\,\overline{y} + \overline{x}\,\overline{z}, \ \forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_n.$$

Proposición

En \mathbb{Z}_n se cumple que:

- 1) $Si \overline{x} \neq \overline{0} \ y \ \overline{y} \neq \overline{0}$ entonces $\overline{x} \ \overline{y} \neq \overline{0}$ si y sólo si n es primo.
- 2) Si n es un número primo, para cada $\overline{x} \in \mathbb{Z}_n \{0\}$, existe $\overline{y} \in \mathbb{Z}_n$ tal que $\overline{x} \overline{y} = \overline{y} \overline{x} = \overline{1}$.

Prueba:

2) Sea $\overline{x} \in \mathbb{Z}_n$ con $\overline{x} \neq \overline{0}$ entonces MCD(p,x) = 1, por tanto existen $r,s \in \mathbb{Z}$ tal que pr + xs = 1, luego $\overline{x}\,\overline{s} = \overline{1}$. Por lo tanto $\exists \overline{y} = \overline{s} \in \mathbb{Z}_n$ tal que $\overline{x}\,\overline{y} = \overline{1}$.

Continua prueba

- 1) \Rightarrow) Si $d \mid n$ entonces n = db con $b \in \mathbb{Z}$, así $\overline{db} = \overline{0}$ entonces $\overline{d} = \overline{0}$ o $\overline{b} = \overline{0}$, analicemos ambos casos:
 - Si $\overline{d} = \overline{0}$ entonces $n \mid d$, y como $d \mid n$ se tiene que $d = \pm n$.
 - Si $\overline{b} = \overline{0}$ entonces $n \mid b$, es decir $b = n\beta$ con $\beta \in \mathbb{Z}$, luego como n = db entonces $n = dn\beta$, así $1 = d\beta$, por ello $d = \pm 1$. Por tanto n es primo.
 - \Leftarrow) Si n es primo y $\overline{a}\,\overline{b}=\overline{0}$ en \mathbb{Z}_n entonces $n\mid ab$, luego $n\mid a$ o $n\mid b$, así se tiene que $\overline{a}=\overline{0}$ o $\overline{b}=\overline{0}$.

Observaciones:

• Por la parte 2) de la proposición anterior, se tiene que todo elemento dinstinto de $\overline{0}$ en \mathbb{Z}_p con p primo posee inverso multiplicativo, en particular decimos que \mathbb{Z}_p es un **cuerpo**.

Ejemplo 1:

Para n = 12, se tiene que en \mathbb{Z}_{12} la siguiente tabla:

Inverso aditivo	Inverso multiplicativo		
Ō	No tiene		
$\bar{1}1$	Ī		
<u>1</u> 0	No tiene		
9	No tiene		
8	No tiene		
7	5		
<u></u> 6	No tiene		
5	7		
4	No tiene		
3	No tiene		
2	No tiene		
$\bar{1}$	1 1		
	0 11 10 9 8		

Ejemplo 2:

Para n=13, se tiene que en \mathbb{Z}_{13} la siguiente tabla:

	مريناناه ممسمري	Invariantinii aativa
	Inverso aditivo	Inverso multiplicativo
0	Ō	No tiene
1	$\bar{1}2$	1
2	$\bar{1}1$	7
3	<u>1</u> 0	9
4	9	ī0 8
5	9 8 7	8
<u></u>	7	Ī1
7	<u> </u>	2
1 2 3 4 5 6 7 8 9	5	5
9	6 5 4 3 2	2 5 3 4 6
1 0	3	4
11	2	<u>-</u> -
1 2	Ī	1 2