Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

ОТЧЕТ О ПРАКТИКЕ

Студента <u>3</u> курса факультета <u>КНиИТ</u> направления 27.03.03 – Системный анализ и управление

<u>Черневского Алексея Дмитриевича</u>
фамилия, имя, отчество
кафедра системного анализа и автоматического управления кафедра

Тема практики:

«Решение задач по дисциплине

"Характеристики эргодических цепей Маркова с дискретным временем".»

Задание:

Определить регулярную цепь Маркова с дискретным временем и конечным числом состояний c $_{s}$, задав произвольную матрицу p вероятностей переходов за 1 шаг и началное распределение $^{p(0)}$.

1. Получить предельное распределение для заданной цепи Маркова.

Код программы:

```
1
     %начальное распределение
2
     P0 = [0.14 \ 0.174 \ 0.12 \ 0.273 \ 0.02 \ 0.093 \ 0.016 \ 0.164];
4
     %матрица вероятностей переходов
5
     P = [0.156 \ 0.135 \ 0.05 \ 0.346 \ 0.119 \ 0.045 \ 0.078 \ 0.071]
6
        0.094 0.271 0.156 0.023 0.096 0.175 0.065 0.12;
7
        0.225 0.075 0.25 0.05 0.05 0.1 0.15 0.1;
8
        0.076 0.097 0.065 0.234 0.312 0.156 0.023 0.037;
9
        0.12\ 0.2\ 0.352\ 0.123\ 0.065\ 0.063\ 0.032\ 0.045
10
        0.3 0.05 0.05 0.12 0.08 0.015 0.085 0.2;
11
        0.09 0.01 0.02 0.045 0.055 0.48 0.2 0.1;
        0.3 0.1 0.1 0.1 0.1 0.1 0.15 0.05;];
12
13
14
     %Создание единичной матрицы
15
     I = eye(8);
16
     %вычитаем из транспонированний матрицы вероятносей переходов единичную
     A = P' - I;
17
18
     %заполняем нижнуюю строку итоговой матрицы единицами
19
     A(8,:) = ones(1,8);
20
     %решаем СЛАУ
21
     b = [0; 0; 0; 0; 0; 0; 0; 1];
22
     pi = A \setminus b
```

Результат работы программы:

```
pi =

0.168623
0.119748
0.128001
0.145547
0.116425
0.127572
0.091753
0.102330
```

2. Вычислить n -е степени матрицы P при n=1,2...5

Код программы:

```
1 %Выводим n-ю степень матрицы на каждом шаге от 1 до 5
2 for n=1 : 5
3 n
4 Pn = P^n
end
```

```
n = 1
Pn =
Columns 1 through 7:
  0.156000 \quad 0.135000 \quad 0.050000 \quad 0.346000 \quad 0.119000 \quad 0.045000 \quad 0.078000
  0.094000 \quad 0.271000 \quad 0.156000 \quad 0.023000 \quad 0.096000 \quad 0.175000 \quad 0.065000
  0.225000 \quad 0.075000 \quad 0.250000 \quad 0.050000 \quad 0.050000 \quad 0.100000 \quad 0.150000
  0.076000 \quad 0.097000 \quad 0.065000 \quad 0.234000 \quad 0.312000 \quad 0.156000 \quad 0.023000
  0.120000 \quad 0.200000 \quad 0.352000 \quad 0.123000 \quad 0.065000 \quad 0.063000 \quad 0.032000
  0.300000 \quad 0.050000 \quad 0.050000 \quad 0.120000 \quad 0.080000 \quad 0.015000 \quad 0.085000
  0.090000 0.010000 0.020000 0.045000 0.055000 0.480000 0.200000
  0.300000 \quad 0.100000 \quad 0.100000 \quad 0.100000 \quad 0.100000 \quad 0.100000 \quad 0.150000
Column 8:
  0.071000
  0.120000
  0.100000
  0.037000
  0.045000
  0.200000
  0.100000
  0.050000
n = 2
Pn =
Columns 1 through 7:
  0.130672 \quad 0.128887 \quad 0.116648 \quad 0.171192 \quad 0.164701 \quad 0.142333 \quad 0.070284
  0.182856 \quad 0.140662 \quad 0.143313 \quad 0.099672 \quad 0.087993 \quad 0.122716 \quad 0.097823
  0.181700 \quad 0.100800 \quad 0.124300 \quad 0.138675 \quad 0.091575 \quad 0.142700 \quad 0.116175
  0.150793 \quad 0.138250 \quad 0.172176 \quad 0.148364 \quad 0.132339 \quad 0.100135 \quad 0.060759
  0.169148 \quad 0.129701 \quad 0.164365 \quad 0.113997 \quad 0.104981 \quad 0.119688 \quad 0.098574
  0.153620 \quad 0.107040 \quad 0.093710 \quad 0.170995 \quad 0.111515 \quad 0.112035 \quad 0.087745
  0.221500 \quad 0.067725 \quad 0.071345 \quad 0.126265 \quad 0.089685 \quad 0.131485 \quad 0.109265
  0.156800 \quad 0.116300 \quad 0.110300 \quad 0.170550 \quad 0.109250 \quad 0.141400 \quad 0.096400
Column 8:
  0.070783
  0.107465
  0.094075
  0.081584
  0.093246
  0.061840
  0.134730
  0.089000
```

```
n = 3
Pn =
Columns 1 through 7:
 0.161781 0.125761 0.140505 0.141648 0.120204 0.120132 0.082048
 0.169986 \quad 0.118681 \quad 0.123205 \quad 0.137690 \quad 0.105190 \quad 0.127810 \quad 0.096126
 0.168804 \quad 0.110640 \quad 0.115999 \quad 0.146875 \quad 0.113946 \quad 0.132961 \quad 0.094965
 0.162399 \quad 0.125368 \quad 0.142758 \quad 0.137867 \quad 0.114228 \quad 0.118504 \quad 0.087123
 0.169574 \quad 0.118660 \quad 0.131426 \quad 0.137438 \quad 0.107510 \quad 0.129579 \quad 0.096135
 0.141548 \quad 0.108328 \quad 0.111715 \quad 0.137606 \quad 0.113814 \quad 0.118699 \quad 0.076846
 0.167029 \quad 0.104931 \quad 0.101485 \quad 0.156509 \quad 0.111653 \quad 0.122194 \quad 0.091394
 Column 8:
 0.089189
 0.091540
 0.091540
 0.086141
 0.091409
 0.078741
 0.083656
 0.089715
n = 4
Pn =
Columns 1 through 7:
 0.164043 \quad 0.119986 \quad 0.130919 \quad 0.140851 \quad 0.113400 \quad 0.123112 \quad 0.088973
 0.162939 0.115251 0.121259 0.141680 0.112244 0.126057 0.089807
 0.163567 0.115260 0.122057 0.144518 0.114754 0.125381 0.088808
 0.162659 0.118235 0.128818 0.139277 0.111824 0.124437 0.089474
 0.165473 \quad 0.116321 \quad 0.124166 \quad 0.142374 \quad 0.112805 \quad 0.126982 \quad 0.091208
 0.147664 \quad 0.107532 \quad 0.116258 \quad 0.128828 \quad 0.104757 \quad 0.111676 \quad 0.078916
 0.154028 \quad 0.111498 \quad 0.115870 \quad 0.142778 \quad 0.114280 \quad 0.121545 \quad 0.083458
 0.163024 \quad 0.117450 \quad 0.125934 \quad 0.143018 \quad 0.114336 \quad 0.123585 \quad 0.087863
Column 8:
 0.087969
 0.088211
 0.088089
 0.087812
 0.089444
 0.079795
 0.083176
 0.087728
n = 5
Pn =
Columns 1 through 7:
 0.161971 0.116666 0.125454 0.140546 0.112442 0.123939 0.088555
 0.160135 \quad 0.114538 \quad 0.122080 \quad 0.140039 \quad 0.111862 \quad 0.122620 \quad 0.087148
 0.160601 0.115406 0.123314 0.141131 0.112905 0.122829 0.087187
 0.161204 \quad 0.115434 \quad 0.123990 \quad 0.139526 \quad 0.111528 \quad 0.123260 \quad 0.088121
 0.162179 \quad 0.115751 \quad 0.123541 \quad 0.141615 \quad 0.112939 \quad 0.124165 \quad 0.088429
 0.146207 0.105595 0.113613 0.127341 0.101966 0.111320 0.079506
 0.154072 \quad 0.111635 \quad 0.119634 \quad 0.135777 \quad 0.109433 \quad 0.117704 \quad 0.083082
```

```
0.160698 0.115853 0.124209 0.140491 0.112517 0.122798 0.087425

Column 8:

0.087370
0.086420
0.086523
0.087030
0.087457
0.078711
0.083142
0.086589
```

3. Проверить выполнение неравенств PN = NP = N.

Код программы:

```
1 for n=1:8
2 N(n,:)= npi';
3 end
4 N
5 A=N*P
6 B=P*N
```

```
N =
Columns 1 through 7:
  0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
  0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
  0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
  0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
Column 8:
 0.102330
 0.102330
 0.102330
  0.102330
  0.102330
  0.102330
  0.102330
  0.102330
```

```
Columns 1 through 7:
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 0.119748 0.128001 0.145547 0.116425 0.127572 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.151761 \quad 0.107773 \quad 0.115201 \quad 0.130992 \quad 0.104783 \quad 0.114815 \quad 0.082578
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 Column 8:
 0.102330
 0.102330
 0.102330
 0.102330
 0.102330
 0.092097
 0.102330
 0.102330
B =
Columns 1 through 7:
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623  0.119748  0.128001  0.145547  0.116425  0.127572  0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
 0.168623  0.119748  0.128001  0.145547  0.116425  0.127572  0.091753
 0.168623  0.119748  0.128001  0.145547  0.116425  0.127572  0.091753
 0.151761 \quad 0.107773 \quad 0.115201 \quad 0.130992 \quad 0.104783 \quad 0.114815 \quad 0.082578
 0.168623  0.119748  0.128001  0.145547  0.116425  0.127572  0.091753
 0.168623 \quad 0.119748 \quad 0.128001 \quad 0.145547 \quad 0.116425 \quad 0.127572 \quad 0.091753
Column 8:
 0.102330
 0.102330
 0.102330
 0.102330
 0.102330
 0.092097
 0.102330
 0.102330
```

4. Для произвольных начальных распределений p(0) и p'(0) вычислить значения векторов p(n) при n=1,2...5.

Код программы:

```
1 P1= [0.076 0.135 0.214 0.165 0.067 0.134 0.183 0.026];

2 pn=P0*P^5

3 pn1=P1*P^5
```

Результат работы программы:

```
pn =
Columns 1 through 7:
0.159481 0.114547 0.122774 0.138957 0.111147 0.121935 0.086911
Column 8:
0.086011
pn1 =
Columns 1 through 7:
0.157727 0.113419 0.121487 0.137862 0.110393 0.120565 0.085749
Column 8:
0.085056
```

5. Вычислить математическое ожидание доли времени, проведенного цепью в состоянии r за промежуток времени от 1 до n (при $n \to \infty$), $r\!=\!1,\!2...c_S$.

Код программы:

```
1 Ex=npi'
```

```
Ex =

Columns 1 through 7:

0.168623  0.119748  0.128001  0.145547  0.116425  0.127572  0.091753

Column 8:

0.102330
```

6. Вычислить значения элементов фундаментальной матрицы.

Код программы:

```
1 Sum=0;

2 for n=1:8

3 Sum += P^n - N;

4 end

5 Z=I+Sum
```

Результат работы программы:

```
Z =
 Columns 1 through 6:
    0.8991167
                   0.0084545 -0.0960143
                                                      0.1888067
                                                                       0.0286737 -0.1039159

      -0.0896198
      0.0623098
      0.2354866
      -0.0929165
      0.9022942
      -0.0955120

      -0.0323031
      -0.1720959
      -0.2092092
      -0.1066760
      -0.1209316
      0.7751241

      -0.1100527
      -0.2265990
      -0.2464213
      -0.1634038
      -0.1353564
      0.2978984

    0.0659079 \quad -0.0539965 \quad -0.0801845 \quad -0.0540298 \quad -0.0457764 \quad -0.0440304
 Columns 7 and 8:
  -0.0681695 -0.1568855
  -0.0437465 -0.0729780
   0.0587885 -0.1050800
  -0.1294151 -0.1854845
  -0.0702328 -0.1570397
  -0.0930952 -0.0889317
    1.0792838 -0.0900857
    0.0321168 0.8380056
```

7. Проверить выполнение свойств фундаментальной матрицы.

Код программы:

```
%Свойство 1 (P.*Z == Z.*P)
2
     one = P.*Z
3
     two = Z.*P
4
5
     %Свойство 2 (nu == Znu)
6
     nu=[1; 1; 1; 1; 1; 1; 1; 1]
7
     answer2 = Z*nu
8
9
     %Свойство 3 (npi == npi*Z)
10
     answer3 = npi*Z
11
12
     %Свойство 4 (I - Z == N - P * Z)
13
     one4 = I - Z
14
     two4 = N - P * Z
```

```
one =
Columns 1 through 6:
  1.4026e-01
               1.1414e-03 -4.8007e-03
                                        6.5327e-02
                                                     3.4122e-03
                                                                 -4.6762e-03
 -1.0496e-02
               3.0843e-01
                            2.6652e-04
                                        -4.9254e-03
                                                     -8.7862e-03
                                                                  1.9170e-03
  4.6152e-03
             -7.7222e-03
                            2.6846e-01
                                       -6.6490e-03
                                                    -5.9935e-03
                                                                 -3.7549e-03
 -1.2591e-02
             -2.5298e-03 -1.9254e-03
                                        2.4449e-01
                                                     5.5708e-02
                                                                 -6.0349e-03
                          8.2891e-02
-1.0460e-02
 -1.0754e-02
              1.2462e-02
                                       -1.1429e-02
                                                     5.8649e-02
                                                                 -6.0173e-03
 -9.6909e-03
             -8.6048e-03
                                       -1.2801e-02
                                                    -9.6745e-03
                                                                  1.1627e-02
 -9.9047e-03
              -2.2660e-03
                          -4.9284e-03
                                       -7.3532e-03
                                                    -7.4446e-03
                                                                  1.4299e-01
                                                                 -4.4030e-03
  1.9772e-02 -5.3997e-03 -8.0184e-03 -5.4030e-03 -4.5776e-03
Columns 7 and 8:
 -5.3172e-03 -1.1139e-02
 -2.8435e-03 -8.7574e-03
  8.8183e-03 -1.0508e-02
 -2.9765e-03 -6.8629e-03
 -2.2474e-03 -7.0668e-03
 -7.9131e-03 -1.7786e-02
  2.1586e-01 -9.0086e-03
  4.8175e-03 4.1900e-02
two =
Columns 1 through 6:
  1.4026e-01
               1.1414e-03 -4.8007e-03
                                        6.5327e-02
                                                     3.4122e-03
                                                                 -4.6762e-03
 -1.0496e-02 3.0843e-01 2.6652e-04 -4.9254e-03 -8.7862e-03
                                                                 1.9170e-03
  4.6152e-03 -7.7222e-03 2.6846e-01 -6.6490e-03 -5.9935e-03
                                                                 -3.7549e-03
 -1.2591e-02 -2.5298e-03 -1.9254e-03 2.4449e-01
                                                                 -6.0349e-03
                                                    5.5708e-02
 -1.0754e-02 1.2462e-02 8.2891e-02 -1.1429e-02
                                                    5.8649e-02
                                                                 -6.0173e-03
 -9.6909e-03 -8.6048e-03 -1.0460e-02 -1.2801e-02
                                                   -9.6745e-03
                                                                 1.1627e-02
 -9.9047e-03 -2.2660e-03 -4.9284e-03 -7.3532e-03 -7.4446e-03
                                                                  1.4299e-01
  1.9772e-02 -5.3997e-03 -8.0184e-03 -5.4030e-03 -4.5776e-03
                                                                 -4.4030e-03
Columns 7 and 8:
 -5.3172e-03 -1.1139e-02
 -2.8435e-03 -8.7574e-03
  8.8183e-03 -1.0508e-02
 -2.9765e-03 -6.8629e-03
 -2.2474e-03 -7.0668e-03
 -7.9131e-03 -1.7786e-02
  2.1586e-01 -9.0086e-03
              4.1900e-02
  4.8175e-03
nu =
  1
  1
  1
  1
  1
  1
  1
answer2 =
```

```
0.700066
   0.616714
   0.654681
  0.648432
  0.694770
  -0.048118
  0.405263
   0.658013
answer3 =
Columns 1 through 7:
   0.098845
              0.079720
                                     0.096296
                                                           0.083944
                         0.087066
                                                0.077038
                                                                      0.054217
 Column 8:
  -0.027782
one4 =
 Columns 1 through 6:
  0.1008833
              -0.0084545
                           0.0960143
                                      -0.1888067
                                                   -0.0286737
                                                                0.1039159
  0.1116620
              -0.1381096
                          -0.0017085
                                       0.2141485
                                                    0.0915232
                                                               -0.0109541
  -0.0205121
               0.1029626
                          -0.0738226
                                       0.1329799
                                                    0.1198706
                                                                0.0375495
  0.1656712
               0.0260805
                           0.0296216
                                       -0.0448380
                                                   -0.1785522
                                                                0.0386850
  0.0896198
              -0.0623098
                          -0.2354866
                                       0.0929165
                                                    0.0977058
                                                                0.0955120
  0.0323031
               0.1720959
                           0.2092092
                                       0.1066760
                                                    0.1209316
                                                                0.2248759
  0.1100527
               0.2265990
                           0.2464213
                                       0.1634038
                                                    0.1353564
                                                               -0.2978984
  -0.0659079
               0.0539965
                           0.0801845
                                       0.0540298
                                                    0.0457764
                                                                0.0440304
 Columns 7 and 8:
  0.0681695
               0.1568855
               0.0729780
  0.0437465
  -0.0587885
               0.1050800
  0.1294151
               0.1854845
  0.0702328
               0.1570397
  0.0930952
               0.0889317
  -0.0792838
               0.0900857
  -0.0321168
               0.1619944
two4 =
Columns 1 through 6:
                             1.0561e-01 -1.7742e-01
  1.1575e-01
                7.9440e-04
                                                      -1.9601e-02
                                                                     1.1394e-01
  1.2848e-01
               -1.2747e-01
                             9.3728e-03
                                           2.2724e-01
                                                        1.0196e-01
                                                                     5.6206e-04
  -4.5198e-03
              1.1302e-01 -6.3370e-02
                                          1.4536e-01
                                                        1.2974e-01
                                                                     4.8435e-02
                3.6120e-02
                             4.0065e-02 -3.2490e-02
                                                      -1.6871e-01
                                                                     4.9558e-02
  1.8165e-01
               -5.2965e-02
                            -2.2579e-01
                                           1.0443e-01
                                                        1.0688e-01
  1.0463e-01
                                                                     1.0565e-01
                                           1.4609e-02
                                                        4.7258e-02
                                                                     1.4422e-01
  -7.2847e-02
                9.6241e-02
                             1.2787e-01
                                                        1.4919e-01
                2.4074e-01
                                           1.8074e-01
                                                                     -2.8268e-01
  1.3172e-01
                             2.6125e-01
  -5.0025e-02
                6.3973e-02
                             9.0559e-02
                                           6.6305e-02
                                                        5.5563e-02
                                                                     5.4831e-02
 Columns 7 and 8:
   7.6214e-02
                1.7631e-01
  5.2849e-02
                9.3447e-02
  -5.0137e-02
                1.2510e-01
   1.3806e-01
                2.0550e-01
   7.8355e-02
                1.7654e-01
```

```
3.5835e-02 3.4510e-02
-6.7546e-02 1.1317e-01
-2.3524e-02 1.8196e-01
```

8. Сравнить математические ожидания величин $\widetilde{y}_r^{(n)}$, $r=1,2...c_S$, при начале эволюции цепи с вероятностью 1 из состояния v, $v=1,2...c_S$.

Код программы:

```
1 for n=1:8
2 Ey(n,:)=Z(n,:)-npi'
3 end
```

Результат работы программы:

```
Ey =
Columns 1 through 7:
  0.730494 -0.111294 -0.224015
                                0.043260 -0.087752 -0.231488 -0.159923
 -0.280285 1.018361 -0.126293 -0.359695 -0.207949 -0.116618 -0.135500
 -0.148111 -0.222711 0.945821 -0.278526 -0.236296 -0.165122 -0.032965
 -0.334294 -0.145829 -0.157623 0.899291 0.062127 -0.166257 -0.221169
 -0.258243 -0.057438 0.107485 -0.238463 0.785869 -0.223084 -0.161986
 -0.200926 -0.291844 -0.337210 -0.252223 -0.237357 0.647552 -0.184849
 -0.278676 -0.346347 -0.374422 -0.308950 -0.251782 0.170326 0.987530
 -0.102715 -0.173745 -0.208186 -0.199576 -0.162202 -0.171603 -0.059637
Column 8:
 -0.259216
 -0.175308
 -0.207410
 -0.287815
 -0.259370
 -0.191262
 -0.192416
  0.735676
```

9. Сравнить математические ожидания величин $\,\widetilde{y}_r^{(n)}\,,\,r\!=\!1,\!2...c_S\,,\,$ при произвольных начальных распределениях $\,p(0)\,$ и $\,p^{\,\prime}(0)\,$.

Код программы:

```
1 Ep=(P0-P1)*Z
```

Результат работы программы:

```
Ep =

Columns 1 through 6:

0.0679006  0.0874020 -0.0814478  0.1589793  0.0087211 -0.0888243

Columns 7 and 8:

-0.1934349  0.1194950
```

10. Вычислить значения элементов матрицы средних времен достижения. Код программы:

```
19 = ones(8,8);
     Vdg=eye(8);
2
3
4
     for n=1:8
       Vdg(n,n)=1/npi'(n);
5
     end
6
     Zdg=eye(8);
7
     for n=1:8
8
       Zdg(n,n)=Z(n,n);
9
     V=(I-Z+I9*Zdg)*Vdg
10
```

V =						
5.9304	9.4220	9.1326	5.8749	7.5028	6.8014	12.4656
9.7171 6.0058	8.3509	8.3807	8.6552	8.5469	5.9126	12.2109
8.9073	0.0000	0.000.	0.0002	0.0.00	0.0120	12:2100
5.2171 9.2167	10.3591	7.8124	8.0926	8.7855	6.2879	11.0885
6.3212	9.7170	8.6205	6.8707	6.2221	6.2967	13.1397
10.0024 5.8644	8.9730	6.5435	7.8114	8.5892	6.7364	12.4889
9.7193 5.6119	11.0190	10.1064	7.9943	8.8771	7.8387	12.8255
9.1314						
6.0251 9.1001	11.4257	10.3485	8.3357	8.9526	3.6924	10.8988
4.9473	9.9496	9.0150	7.5494	8.1484	6.3380	11.3786
9.7723						

11. Сравнить математическое ожидание случайных величин f_r при произвольных начальных распределениях p(0) и p'(0) .

Код программы:

```
1 Epf=(P0-P1)*(I-Z)*Vdg
```

Результат работы программы:

```
Epf =

Columns 1 through 7:

-0.014107 -0.395054 -0.088904 -0.341111 -0.469441 0.384002 0.297126

Column 8:

0.188854
```

12. Вычислить дисперсии времен первого достижения

Код программы:

V2 =						
21.097 52.176	82.610	61.427	41.302	47.795	34.815	132.966
19.422 51.187	79.164	60.674	42.926	48.637	33.690	129.932
19.705 51.864	83.078	60.957	43.472	48.506	34.005	129.535
19.957 50.297	81.753	59.787	43.403	44.426	34.916	130.728
20.381	82.338	56.308	44.892	49.415	34.684	131.505
51.480 12.102	67.257	47.515	32.224	35.964	23.341	113.787
39.141 17.122	77.123	56.859	39.585	44.495	24.387	123.931
47.259 19.777 50.972	82.735	61.770	43.442	48.430	34.247	130.852
30.912						