MIDTERM EXAM ____ FYS3120 ____

CANDIDATE 15137

1. A (BORING) LAGRANGIAN

A non-relativistic particle (no-potential) of mass m is moving in three dimensions. black!20gree

- 1.a.
- 1.b.
- 1.c.
- 1.d.
- 1.e.
- 1.f.
- ${\bf 1.g.}$ Consider a Lorentz transformation where the Lorentz transformation tensor is given as

$$L^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}.$$

Any particular Lorentz transformation must leave the line element $ds^2 = dx_\mu dx^\mu$ invariant,

$$g_{\mu\nu}dx'^{\mu}dx'^{\nu} = g_{\mu\nu}L^{\mu}_{\ \rho}L^{\mu}_{\ \rho}dx^{\rho}dx^{\sigma} = g_{\rho\sigma}dx^{\rho}dx^{\sigma}$$
$$g_{\mu\nu}L^{\mu}_{\ \rho}L^{\nu}_{\ \sigma} = g_{\rho\sigma}$$

To see if the Lorentz transformation in 1 is invariant is must statisfy this requirement

$$g_{\rho\sigma} = q_{\mu\nu} L^{\mu}_{\ \rho} L^{\nu}_{\ \sigma}$$

$$= g_{\mu\nu} (\delta^{\mu}_{\ \rho} + \omega^{\mu}_{\ \rho}) (\delta^{\nu}_{\ \sigma} + \omega^{\nu}_{\ \sigma})$$

$$= (\delta_{\nu\rho} + \omega_{\nu\rho}) (\delta^{\nu}_{\ \sigma} + \omega^{\nu}_{\ \sigma})$$

$$= \delta_{\nu\rho} \delta^{\nu}_{\ \sigma} + \delta_{\nu\rho} \omega^{\nu}_{\ \sigma} + \omega_{\nu\rho} \delta^{\nu}_{\ \sigma} + \omega_{\nu\rho} \omega^{\nu}_{\ \sigma}$$

$$= g_{\nu\rho} \delta^{\nu}_{\ \sigma} + g_{\nu\rho} \omega^{\nu}_{\ \sigma} + \omega_{\nu\rho} g^{\nu\gamma} g_{\gamma\sigma} + \omega^{2}_{\rho\sigma}$$

$$= \delta_{\rho\sigma} + \omega_{\rho\sigma} + \omega_{\sigma\rho} = g_{\rho\sigma} + g_{\nu\rho} (\omega^{\nu}_{\ \sigma} + \omega^{\nu}_{\sigma}),$$

which only works if ω_{ν}^{μ} is antisymmetric, that is if $\omega_{\nu}^{\mu} = -\omega_{\nu}^{\mu}$.

Date: March 28, 2017.

2 15137

1.h. A small Lorentz transformation between two reference frames changes the path $x^{\mu}(\tau)$ of a particle according to

(2)
$$\delta x^{\mu}(\tau) = x'^{\mu}(\tau) - x^{\mu}(\tau) = \omega^{\mu}_{\nu} x^{\nu}(\tau).$$

This corresponds to a perturbation in the Lagrangian.

The variation of the Lagrangian is

$$\delta L = \frac{\partial L}{\partial x^{\mu}} \delta x^{\mu} + \frac{\partial L}{\partial U^{\mu}} \delta U^{\mu}$$

inserting for $\delta x^{\mu} = \omega^{\mu}_{\ \nu} x^{\nu}$ from equation 2 and

$$\delta U^{\mu} = \delta \frac{dx^{\mu}}{dt} = \frac{d}{d\tau} (\delta x^{\mu}) = \omega^{\mu}_{\ \nu} U^{\nu}$$

yields

(3)
$$\delta L = \left(\frac{\partial L}{\partial x^{\mu}} x^{\nu} + \frac{\partial L}{\partial U^{\mu}} U^{\nu}\right) x^{\mu}_{\ \nu},$$

which is the change in the Lagrangian as a consequence of the change in path.

1.i. The Euler-Lagrange equations states

(4)
$$\frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} \right) = \frac{\partial L}{\partial x^{\mu}}.$$

Inserting 4 into 3 gives

(5)
$$\delta L = \left(\frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} x^{\nu}\right) + \frac{\partial L}{\partial U^{\mu}} \frac{d}{d\tau} x^{\nu}\right) \omega^{\mu}_{\ \nu}$$

using the product rule for derivation backwards gives

$$(6) \qquad \delta L = \frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} x^{\nu} \right) \omega^{\mu}_{\ \nu} = \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} x^{\nu} + \frac{\partial L}{\partial U^{\mu}} x^{\nu} \right) \omega^{\mu}_{\ \nu}$$

and finally "letting everything run it's course"

$$\begin{split} \delta L &= \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} x^{\nu} + \frac{\partial L}{\partial U^{\mu}} x^{\nu} \right) \omega^{\mu}_{\ \nu} \\ &= \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial U^{\mu}} x^{\nu} \omega^{\mu}_{\ \nu} - \frac{\delta L}{\delta U^{\mu}} x^{\nu} \omega^{\mu}_{\ \nu} \right) \\ &= \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial g^{\rho\mu} U_{\rho}} x^{\nu} \omega^{\mu}_{\ \nu} - \frac{\delta L}{\delta g^{\sigma\mu} U_{\sigma}} x^{\nu} \omega^{\mu}_{\nu} \right) \\ &= \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial U_{\rho}} x^{\nu} g_{\rho\mu} \omega^{\mu}_{\ \nu} - \frac{\delta L}{\delta U_{\sigma}} x^{\nu} g_{\sigma\mu} \omega^{\mu}_{\nu} \right) \\ &= \frac{1}{2} \frac{d}{d\tau} \left(\frac{\partial L}{\partial U_{\rho}} x^{\nu} \omega_{\rho\nu} - \frac{\delta L}{\delta U_{\sigma}} x^{\nu} \omega_{\nu\sigma} \right) \end{split}$$

changing indices back, writing μ instead of ρ, σ , and moving x^{ν} to the left of derivatives gives

$$\delta L = \frac{1}{2} \frac{d}{d\tau} \left(x^{\nu} \frac{\partial L}{\partial U_{\mu}} \omega_{\mu\nu} - x^{\nu} \frac{\delta L}{\delta U_{\mu}} \omega_{\nu\mu} \right).$$

Switch indices of first term inside the parenthesis¹, and one ends up with an alternative expression for δL ,

(7)
$$\delta L = \frac{1}{2} \omega_{\nu\mu} \frac{d}{d\tau} \left(x^{\mu} \frac{\delta L}{\delta U_{\nu}} - x^{\nu} \frac{\partial L}{\partial U_{\mu}} \right)$$

2. Relativistics

Two particles with mass m and a photon is sent out from a source at the same time and in the positive x-direction in rest frame S of the source. The massive particles are moving with constant velocity v_1 and $v_2 > v_1$ in this frame. Figure 1 shows a Minkowski space-time diagram of the two particles, the photon and the source in the rest frame of the source S and that of the slowest of the particles S'.

For an infinitesimal change in position coordinates we have

$$dx' = \gamma(dx - v_1 dt) = \gamma(u_2 - v_1) dt$$
$$dt' = \gamma(dt - \frac{v_1}{c^2} dx) = \gamma(1 - \frac{v_2 v_1}{c^2})$$

and from this follows that

(8)
$$v_2' = \frac{dx'}{dt'} = \frac{v_2 - v_1}{1 - \frac{v_2 v_1}{c^2}}$$

The difference in rapidity of the two massive particles in the two different rest frames are

(9)
$$S: \quad \Delta \chi = \tanh^{-1} \left(\frac{v_2}{c}\right) - \tanh^{-1} \left(\frac{v_1}{c}\right)$$

(10)
$$S': \quad \Delta \chi' = \tanh^{-1} \left(\frac{v_2'}{c} \right) - \tanh^{-1} \left(\frac{v_1'}{c} \right) = \tanh^{-1} \left(\frac{v_2'}{c} \right)$$

Rapidity differences should be unchanged by boosts no matter the reference frames, so

$$\tanh^{-1}\left(\frac{v_2}{c}\right) - \tanh^{-1}\left(\frac{v_1}{c}\right) = \tanh^{-1}\left(\frac{v_2'}{c}\right)$$
$$\tanh^{-1}\left(\frac{\frac{v_2}{c} - \frac{v_1}{c}}{1 - \frac{v_2v_1}{c^2}}\right) = \tanh^{-1}\left(\frac{v_2'}{c}\right)$$
$$\tanh^{-1}\left(\frac{1}{c}\frac{v_2 - v_1}{1 - \frac{v_2v_1}{c^2}}\right) = \tanh^{-1}\left(\frac{v_2'}{c}\right),$$

¹This is okay because if one were to move ∂U_{μ} up from underneath the dividing line the index μ would change to an upstairs variant. This is the same as saying $\sum_{i} \sum_{j} x^{i} \frac{\partial L}{\partial U_{j}} \omega_{ji} = \sum_{j} \sum_{i} x^{i} \frac{\partial L}{\partial U_{i}} \omega_{ij}$

4 15137

FIGURE 1. Minkowski space-time diagram of two massive particles (velocities v_1 and $v_2 > v_1$) and a photon (γ) sent out from a source at origin in rest frame S. Rest frame S' is that of particle 1.

inserting 8 gives

$$\tanh^{-1}\left(\frac{v_2'}{c}\right) = \tanh^{-1}\left(\frac{v_2'}{c}\right)$$

 $\chi = \chi'.$

In conclusion, the rapidity difference is the same in the two rest frames S and S.

3. FINDING THE SHORTEST WAY

The shortest path between two points on a sphere. At some contstant radius r, some small movement in some direction on the sphere is

$$(11) ds^2 = r^2 d\theta^2 + r^2 \sin^2 \theta \phi^2$$

inserting for $d\phi=(d\phi/d\theta)d\theta=\dot{\phi}d\theta$ gives

$$(12) ds = r\sqrt{1 + \sin^2\theta \dot{\phi}^2} d\theta$$

A path is given by

(13)
$$S = \int ds = r \int_{\theta_A}^{\theta_B} \sqrt{1 + \sin^2 \theta \dot{\phi}^2} d\theta$$

where the integrand $F(\theta, \phi, \dot{\phi}) = \sqrt{1 + \sin^2 \theta \dot{\phi}^2}$ does not depend explicitly on ϕ . This implies that $\partial F/\partial \dot{\phi}$ is constant, yielding

(14)
$$\frac{\partial F}{\partial \dot{\phi}} = \frac{2\sin^2\theta \dot{\phi}}{\sqrt{1 + \sin^2\theta \dot{\phi}^2}} = C' \to \frac{\sin^2\theta \dot{\phi}}{\sqrt{1 + \sin^2\theta \dot{\phi}^2}} = C$$

This can be rearranged

$$C^2 = \frac{\sin^4 \theta \dot{\phi}^2}{1 + \sin^2 \theta \dot{\theta}^2}$$

$$C^2 + C \sin^2 \theta \dot{\phi}^2 = \sin^4 \theta \dot{\phi}^2$$

$$C^2 = (\sin^4 \theta - C \sin^2 \theta) \dot{\phi}^2$$

$$\dot{\phi}^2 = \frac{C^2}{(\sin^4 \theta - C \sin^2 \theta)}$$

$$\dot{\phi} = \frac{C}{\sin \theta \sqrt{\sin^2 - C}}$$

INTEGRATE!!