```
In [1]: # import python libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt # visualizing data
        %matplotlib inline
        import seaborn as sns
In [2]: # import csv file
        df = pd.read csv('Diwali Sales Data.csv', encoding= 'unicode escape')
        df.shape
In [3]:
Out[3]: (11251, 15)
In [4]: df.head()
Out[4]:
                                                      Age
                                                           Age Marital_Status
            User_ID Cust_name Product_ID Gender
                                                                                        State
                                                                                                 Zone Occupation Product_Category Order
                                                    Group
         0 1002903
                                                                                                         Healthcare
                       Sanskriti
                                P00125942
                                                    26-35
                                                             28
                                                                                  Maharashtra
                                                                                               Western
                                                                                                                                Auto
         1 1000732
                          Kartik
                                 P00110942
                                                     26-35
                                                             35
                                                                            1 Andhra Pradesh Southern
                                                                                                              Govt
                                                                                                                                Auto
         2 1001990
                         Bindu
                                 P00118542
                                                     26-35
                                                             35
                                                                                 Uttar Pradesh
                                                                                                Central
                                                                                                         Automobile
                                                                                                                                Auto
         3 1001425
                         Sudevi
                                P00237842
                                                      0 - 17
                                                             16
                                                                                    Karnataka Southern Construction
                                                                                                                                Auto
                                                                                                              Food
         4 1000588
                                                             28
                                                                                      Gujarat Western
                                 P00057942
                                                     26-35
                           Joni
                                                                                                                                Auto
                                                                                                         Processing
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 11251 entries, 0 to 11250
       Data columns (total 15 columns):
            Column
                             Non-Null Count Dtype
            User ID
                             11251 non-null int64
        1
            Cust name
                             11251 non-null object
        2
            Product ID
                             11251 non-null object
                             11251 non-null object
        3
            Gender
        4
           Age Group
                             11251 non-null object
                             11251 non-null int64
            Age
        6
            Marital Status
                             11251 non-null int64
        7
                             11251 non-null object
            State
        8
            Zone
                             11251 non-null object
        9
            Occupation
                             11251 non-null object
           Product Category 11251 non-null object
        11 Orders
                             11251 non-null int64
        12 Amount
                             11239 non-null float64
        13 Status
                             0 non-null
                                             float64
        14 unnamed1
                              0 non-null
                                             float64
       dtypes: float64(3), int64(4), object(8)
       memory usage: 1.3+ MB
In [6]: #drop unrelated/blank columns
        df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
In [7]: #check for null values
        pd.isnull(df).sum()
```

```
Out[7]: User ID
         Cust name
                               0
         Product ID
         Gender
         Age Group
         Age
         Marital_Status
          State
          Zone
         Occupation
         Product Category
          Orders
                               0
          Amount
                             12
         dtype: int64
 In [8]: # drop null values
         df.dropna(inplace=True)
 In [9]: # change data type
         df['Amount'] = df['Amount'].astype('int')
In [10]: df['Amount'].dtypes
Out[10]: dtype('int32')
In [11]: df.columns
Out[11]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital Status', 'State', 'Zone', 'Occupation', 'Product Category',
                 'Orders', 'Amount'],
               dtype='object')
In [12]: #rename column
         df.rename(columns= {'Marital Status':'Shaadi'})
```

Out[12]:

:		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	Orders
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3
	3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	Auto	2
	4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	Auto	2
	•••				•••								
1	1246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	Chemical	Office	4
1	1247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	3
1	1248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	4
1	1249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Agriculture	Office	3
1	1250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	3

11239 rows × 13 columns

In [13]: # describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc) df.describe()

8/20/24, 10:08 PM Diwali_Sales_Analysis

\cap	11	+	Г	1	2	7
U	и	L	L	-	J	J

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [14]: # use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

Out[14]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75 %	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

```
In [15]: # plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [16]: # plotting a bar chart for gender vs total amount
sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)
```


From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

```
In [17]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [18]: # Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)
```

Out[18]: <Axes: xlabel='Age Group', ylabel='Amount'>

8/20/24, 10:08 PM Diwali_Sales_Analysis

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
In [19]: # total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```



```
In [20]: # total amount/sales from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```

8/20/24, 10:08 PM Diwali_Sales_Analysis

From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
In [21]: ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [22]: sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=Fals
    sns.set(rc={'figure.figsize':(6,5)})
    sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

Out[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

8/20/24, 10:08 PM Diwali_Sales_Analysis

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
In [23]: sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [24]: sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```


From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
In [25]:
          sns.set(rc={'figure.figsize':(20,5)})
           ax = sns.countplot(data = df, x = 'Product Category')
           for bars in ax.containers:
                ax.bar label(bars)
                                                                                                                  2655
                                                                  2490
           2500
                                                                                                  2087
           2000
                                                  1059
           1000
                                                                                                                                   520
            500
                                                                                                                           422
                                                                           386
                                                          352
                                                                                   356
                                                                                                                                           212
                                                                                           103
                                                                                                                                                           113
                                                                                                           96
                                           72
                                                                  Food Games & Topports Products Bookslectronics & GadgetSecor Clothing & ApparelBeauty Household itemsPet Care
                  Auto Hand & Power Tocstationery Tupperwafeotwear & ShoesFurniture
                                                                                                                                                          Office
                                                                                 Product_Category
          sales state = df.groupby(['Product Category'], as index=False)['Amount'].sum().sort values(by='Amount', ascending=False).head(
           sns.set(rc={'figure.figsize':(20,5)})
           sns.barplot(data = sales state, x = 'Product Category',y= 'Amount')
```

Out[26]: <Axes: xlabel='Product Category', ylabel='Amount'>

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

```
In [27]: sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
```

Out[27]: <Axes: xlabel='Product_ID', ylabel='Orders'>


```
In [28]: # top 10 most sold products (same thing as above)
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')
Out[28]: <Axes: xlabel='Product_ID'>
```


Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!