Theoretische Informatik 1 Übung Blatt 4

Aufgabe 4.1

```
a)
(q_1, abaab) \vdash (q_2, baab) \vdash (q_1, aab) \vdash (q_2, ab) \vdash (q_0, b) \vdash (q_2, \epsilon)
b)
(1) (q_0, wv) \vdash^* (q_0, v) \Leftrightarrow (|w|_a - |w|_b) \mod 3 = 0
(2) (q_0, wv) \vdash^* (q_1, v) \Leftrightarrow (|w|_a - |w|_b) \mod 3 = 1
(3) (q_0, wv) \vdash^* (q_2, v) \Leftrightarrow (|w|_a - |w|_b) \mod 3 = 2
IA) w = \epsilon
(1) (q_0, \epsilon v) \vdash^* (q_0, v) \Leftrightarrow (0 - 0) mod 3 = 0 (ist wahr)
(2) \underbrace{(q_0, \epsilon v) \vdash^* (q_1, v)}_{falsch} \Leftrightarrow \underbrace{(0 - 0) \ mod \ 3 = 0}_{falsch} (Äquivalenz ist wahr)
(3) (q_0, \epsilon v) \vdash^* (q_2, v) \Leftrightarrow (0 - 0) \mod 3 = 0 (Äquivalenz ist wahr)
```

IS:

IVor.: (1),(2),(3) gelten für w'.

IBeh.: (1),(2),(3) gelten für w mit $w=w'x \wedge x \in \{a,b\}$.

IBew.:

$$(1)(q_{0}, wv) \vdash^{*} (q_{0}, v) \Leftrightarrow (q_{0}, w'xv) \vdash^{*} (q_{0}, v) \Leftrightarrow (q_{0}, w'v) \vdash^{*} (q_{1}, v) \land x = b \\ \lor (q_{0}, w'v) \vdash^{*} (q_{2}, v) \land x = a \\ \Leftrightarrow (|w'|_{a} - |w'|_{b}) \ mod \ 3 = 1 \land x = b \\ \lor (|w'_{a} - |w'|_{b}) \ mod \ 3 = 2 \land x = a \\ \Leftrightarrow (|w|_{a} - |w|_{b}) \ mod \ 3 = 0 \\ (2)(q_{0}, wv) \vdash (q_{1}, wv) \Leftrightarrow (q_{0}, w'xv) \vdash^{*} (q_{1}, v) \Leftrightarrow (q_{0}, w'v) \vdash^{*} (q_{2}, v) \land x = b \\ \lor (q_{0}, w'v) \vdash^{*} (q_{0}, v) \land x = a \\ \Leftrightarrow (|w'_{a} - |w'_{b}) \ mod \ 3 = 2 \land x = b \\ \lor (|w'_{a} - |w'_{b}) \ mod \ 3 = 0 \land x = a \\ \Leftrightarrow (|w|_{a} - |w|_{b}) \ mod \ 3 = 1 \\ (3)(q_{0}, wv) \vdash (q_{2}, wv) \Leftrightarrow (q_{0}, w'xv) \vdash^{*} (q_{2}, v) \Leftrightarrow (q_{0}, w'v) \vdash^{*} (q_{1}, v) \land x = a \\ \Leftrightarrow (|w'_{a} - |w'_{b}) \ mod \ 3 = 0 \land x = b \\ \lor (|w'_{a} - |w'_{b}) \ mod \ 3 = 1 \land x = a \\ \Leftrightarrow (|w'_{a} - |w'_{b}) \ mod \ 3 = 1 \land x = a \\ \Leftrightarrow (|w'_{a} - |w'_{b}) \ mod \ 3 = 1 \land x = a \\ \Leftrightarrow (|w|_{a} - |w|_{b}) \ mod \ 3 = 2 \\ \text{q.e.d.}$$

Aufgabe 4.2

a) $A(L_1) = (\{S, q_0, q_1, q_2, q_3, F\}, \{0, 1\}, \delta, \{F\})$

Zustand : Beschreibung

S : Startzustand mit beliebigem Wort durch Schleifenübergang

 $\begin{array}{lll} q_0 & : & |u| \bmod 4 = 0 \\ q_1 & : & |u| \bmod 4 = 1 \\ q_2 & : & |u| \bmod 4 = 2 \\ q_3 & : & |u| \bmod 4 = 3 \\ \mathrm{F} & : & \mathrm{Endzustand} \end{array}$

b) $A(L_2) = (\{S, q_0, q_1, q_2, q_3, q_4, F\}, \{a, b, c\}, \delta, \{F\})$

Zustand: Beschreibung

S : Startzustand mit beliebigem Wort durch Schleifenübergang

 q_0 : Als Eingabe "a" in S bekommen q_1 : Als Eingabe "b" in q_0 bekommen

 q_2 : Als Eingabe "c" in q_1 bekommen,
und ist Zustand mit beliebigem Wort

durch Schleifenübergang

 q_3 : Als Eingabe "c" in q_2 bekommen q_4 : Als Eingabe "b" in q_3 bekommen

F : Als Eingabe "a" in q_4 bekommen, und beliebigem Wort

durch Schleifenübergang, zudem Endzustand

Aufgabe 4.3

Gegeben sei der NEA $A=(Q,\Sigma,\delta,S,F).$

Nun erweitern wir die Menge Q um einen neuen Zustand q_F . $Q \cup \{q_F\}$. Dann erweitern wir die Übergangsfunktion δ um einen ϵ -Übergang für jeden Endzustand zu dem Endzustand q_F , und definieren $F = \{q_F\}$.