Slide 20-Orthogonality II MAT2040 Linear Algebra

SSE, CUHK(SZ)

Definition 20.1 (**Direct sum**) If U and V are subspaces of a vector space W and each $\mathbf{w} \in W$ can be written uniquely as a sum $\mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$, then we say that W is a direct sum of U and V, and we write $W = U \oplus V$.

Theorem 20.2 (Direct sum of \mathbb{R}^n) If S is a subspace of \mathbb{R}^n , then

$$\mathbb{R}^n = S \oplus S^{\perp}$$

Proof. Skipped. See Steven's book P221 or the appendix.

Example 20.3 Let

$$U = \operatorname{Span} \left\{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right] \right\}, V = \operatorname{Span} \left\{ \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\}$$

be two subspaces of \mathbb{R}^3 .

It can be easily checked that $U^{\perp}=V$ and $V^{\perp}=U$. Thus

$$\mathbb{R}^3 = U \oplus V$$
.

Least Square Solution for the Linear System

Example 20.4 Solve the following linear system:

$$x + y = 3,$$
$$-2x + 3y = 1,$$
$$2x - y = 2$$

The augmented matrix reduced can be reduced into

$$\begin{bmatrix} 1 & 1 & 3 \\ -2 & 3 & 1 \\ 2 & -1 & 2 \end{bmatrix} \xrightarrow{elementary\ row\ operations} \begin{bmatrix} \boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & \boxed{1} \end{bmatrix}$$

The system is inconsistent, thus does not have a solution.

Question: How can we find a best approximation?

Given an inconsistent linear system $A\mathbf{x} = \mathbf{b} \ (A \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m)$, we can look at the vector $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is "closest" to \mathbf{b} in the sense of Euclidean length, i.e. find $\hat{\mathbf{x}}$ such that $\parallel A\hat{\mathbf{x}} - \mathbf{b} \parallel$ is the smallest.

Definition 20.5 (Residual) For a given linear system $A\mathbf{x} = \mathbf{b}$ $(A \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m)$, then for each $\mathbf{x} \in \mathbb{R}^n$, the residual is defined as

$$r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$$

Definition 20.6 (Least square solution) Given linear system $A\mathbf{x} = \mathbf{b}(A \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m)$, a vector $\hat{\mathbf{x}}(\mathbf{x} \in \mathbb{R}^n)$ that satisfies the minimum residual condition

$$\parallel r(\mathbf{\hat{x}}) \parallel = \min_{\mathbf{x}} \parallel r(\mathbf{x}) \parallel$$

is called the least square solution for $A\mathbf{x} = \mathbf{b}$.

Theorem 20.7 (Projection onto a Subspace) Let S be a subspace of \mathbb{R}^m , for each $\mathbf{b} \in \mathbb{R}^m$, there exists a unique $\mathbf{p} \in S$ such that (1) $\mathbf{b} - \mathbf{p} \in S^{\perp}$

(2)
$$\parallel \mathbf{b} - \mathbf{y} \parallel \geq \parallel \mathbf{b} - \mathbf{p} \parallel, \forall \mathbf{y} \in S$$
.

 ${\bf p}$ is called the projection of ${\bf b}$ on the subspace ${\cal S}$.

Figure: Projection of $\mathbf{b} \in \mathbb{R}^m$ onto subspace S.

Proof. Since $\mathbb{R}^m = S \oplus S^{\perp}$, each element $\mathbf{b} \in \mathbb{R}^m$ can be expressed uniquely as a sum

$$\mathbf{b} = \mathbf{p} + \mathbf{z}$$

where $\mathbf{p} \in S$ and $\mathbf{z} \in S^{\perp}$, thus $\mathbf{b} - \mathbf{p} \in S^{\perp}$. Then, for any $\mathbf{y} \in S$, we have

$$\| \mathbf{b} - \mathbf{y} \|^{2}$$

$$= \| \mathbf{b} - \mathbf{p} + \mathbf{p} - \mathbf{y} \|^{2}$$

$$= \| \mathbf{b} - \mathbf{p} \|^{2} + \| \mathbf{p} - \mathbf{y} \|^{2}$$

$$\geq \| \mathbf{b} - \mathbf{p} \|^{2}$$

since $\mathbf{b} - \mathbf{p} \in S^{\perp}$ and $\mathbf{p} - \mathbf{y} \in S$ ($\mathbf{p}, \mathbf{y} \in S$), where the Pythagorean's Law is used.

Remark 1:

If $\mathbf{b} \in S$, then the projection of \mathbf{p} onto S is just \mathbf{b} .

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (P

Remark 2: Let $A\mathbf{x} = \mathbf{b}$ $(A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m)$ is a linear system, then the residual $\mathbf{b} - A\mathbf{x}$ will reach its minimum when $\mathbf{x} = \hat{\mathbf{x}}$, where $\mathbf{A}\hat{\mathbf{x}}$ is the projection of \mathbf{b} onto Col(A) (the column space of A). Moreover, $\mathbf{b} - A\hat{\mathbf{x}} \perp A\hat{\mathbf{x}} - A\mathbf{y} \in Col(A)$ and $\|\mathbf{b} - A\mathbf{y}\|^2 = \|\mathbf{b} - A\hat{\mathbf{x}}\|^2 + \|A\hat{\mathbf{x}} - A\mathbf{y}\|^2 \geq \|\mathbf{b} - A\hat{\mathbf{x}}\|^2$

Figure: Projection of $\mathbf{b} \in V$ onto column space Col(A).

Theorem 20.8 (Normal equations for the linear system) Given the linear system $A\mathbf{x} = \mathbf{b}$ ($A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$), let the projection of \mathbf{b} onto the subspace Col(A) is \mathbf{p} , then there exists a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$, s.t.

$$\mathbf{p} = A\hat{\mathbf{x}} \in Col(A), \mathbf{b} - A\hat{\mathbf{x}} \in Col(A)^{\perp} = Null(A^{T})$$
 and

$$\parallel \mathbf{b} - A\mathbf{x} \parallel \geq \parallel \mathbf{b} - A\hat{\mathbf{x}} \parallel$$
 for any $\mathbf{x} \in \mathbb{R}^n$.

 $\mathbf{b} - A\hat{\mathbf{x}} \in Col(A)^{\perp} = Null(A^{T})$ gives the condition

$$A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0$$

i.e.,

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

which is called the **normal equation**, and it is a $n \times n$ linear system.

Remark

The normal equations may not have a unique solution, but the **projection** vector \mathbf{p} of \mathbf{b} onto Col(A) is unique, i.e., there are possible two vectors $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ satisfies $A\hat{\mathbf{x}} = A\hat{\mathbf{y}} = \mathbf{p}$.

Theorem 20.9 (Unique Solution Condition for the Normal Equations) If A is a $m \times n$ matrix of rank n, the normal equations

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

have a unique solution

$$\mathbf{\hat{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

and $\hat{\mathbf{x}}$ is the unique least square solution for the linear system $A\hat{\mathbf{x}} = \mathbf{b}$.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Proof. Only need to show that A^TA is nonsingular. Only need to show that the linear system $A^TA\mathbf{x} = \mathbf{0}$ has only a trivial solution. Suppose \mathbf{s} is the solution of $A^TA\mathbf{s} = \mathbf{0}$, then

$$A^T A \mathbf{s} = \mathbf{0}$$

Multiplying the above equation both sides from the left by \mathbf{s}^T , then one can reach

$$\mathbf{s}^T A^T A \mathbf{s} = 0$$

which means

$$(A\mathbf{s})^T A\mathbf{s} = \parallel A\mathbf{s} \parallel^2 = 0.$$

Thus

$$As = 0$$

Since the rank of A is n=the number of columns, the columns are linearly independent, thus the linear system $A\mathbf{s} = \mathbf{0}$ only has a trivial solution. Thus A^TA is nonsingular.

Therefore,

$$\mathbf{\hat{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

will be the unique solution for the normal equations. Consequently, $\hat{\mathbf{x}}$ is the unique least square solution for $A\mathbf{x} = \mathbf{b}$.

Then projection vector is given by $\mathbf{p} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b}$ where $P = A(A^TA)^{-1}A^T$ is called the **projection matrix**.

Definition 20.10 (Idempotent) Let A be a square matrix that satisfies $A = A^2$, then A is called an idempotent matrix.

Remark. The projection matrix $P = A(A^TA)^{-1}A^T$ is an idempotent matrix.

It can be easily checked that $P^2 = A(A^T A)^{-1} A^T A(A^T A)^{-1} A^T = A(A^T A)^{-1} A^T = P$

Example 20.11 Find the least square solution for the system:

$$x + y = 3,$$

$$-2x + 3y = 1,$$

$$2x - y = 2$$

where

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 3 \\ 2 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

The normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$ for this system are

$$\left[\begin{array}{ccc} 1 & -2 & 2 \\ 1 & 3 & -1 \end{array}\right] \left[\begin{array}{ccc} 1 & 1 \\ -2 & 3 \\ 2 & -1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{ccc} 1 & -2 & 2 \\ 1 & 3 & -1 \end{array}\right] \left[\begin{array}{c} 3 \\ 1 \\ 2 \end{array}\right].$$

It can be simplified as

$$\begin{bmatrix} 9 & -7 \\ -7 & 11 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Thus, the least square solution is

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} \frac{83}{50} \\ \frac{71}{50} \end{array}\right]$$

Applications of Least Square Solution

A collected data is usually trying to find a functional relation among variables. For example, the data may involve the temperature T_1, \dots, T_n of a liquid measured at times t_1, \dots, t_n respectively. If the temperature T can be represented by a function of time t, then one can use the function to predict the future temperature.

Applications of Least Square Solution

If the data set is as follows:

$$\begin{array}{c|ccccc} x & x_1 & \cdots & x_n \\ \hline y & y_1 & \cdots & y_n \end{array}$$

there are n data points, it is possible to find a polynomial of degree n-1 such that all the data satisfies the polynomial, such polynomial is called the **interpolation polynomial**. However, the data usually collected from the experiment involves experimental errors, it is **unreasonable** to require the function pass through all the points. In reality, finding a polynomial with lower-order degree is more reasonable and truer than the higher order polynomial passing all the points.

Applications of Least Square Solution: Example 1

Figure: Line fitting

As one example shown in the above figure, the collected data roughly follows a linear relation, it is not good to find the interpolation polynomial, which will have oscillations (**Runge's phenomenon**).

Applications of Least Square Solution: Example 1

Instead find the interpolation polynomial, we are trying to find a linear function

$$y = c_0 + c_1 x$$

that best fits the data in the least square sense.

Now if we require

$$y_i = c_0 + c_1 x_i, i = 1, \cdots, n$$

then we get a linear system of n equations and two unknowns.

Applications of Least Square Solution: Example 1

The matrix-vector form is

$$A\mathbf{c} = \mathbf{y}$$

where
$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

The above linear system may not have a solution. But we can find the least square solution $\hat{\mathbf{c}}$. The least square solution $\hat{\mathbf{c}} = [\hat{c}_0, \hat{c}_1]^T$ satisfies following property

$$|| r(\hat{\mathbf{c}}) ||^2 = \min_{\mathbf{c}} || r(\mathbf{c}) ||^2 = \min_{\mathbf{c}} || \mathbf{y} - A\mathbf{c} ||^2 = \min_{c_0, c_1} \sum_{i=1}^{n} (y_i - (c_0 + c_1 x_i))^2$$

4□ > 4□ > 4 = > 4 = > = 90

The normal equations

$$A^T A \hat{\mathbf{c}} = A^T \mathbf{y}$$

will provide the least square solution for $\hat{\mathbf{c}} = [\hat{c}_0, \hat{c}_1]^T$. And this gives the best linear fitting function in the sense of least square.

Example Find the best line fitting to the data using the least square method

In this case, the linear system is $A\mathbf{c} = \mathbf{y}$, where $A = \begin{bmatrix} 1 & 0 \\ 1 & 3 \\ 1 & 6 \end{bmatrix}$,

$$\mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}.$$

The normal equations $A^T A\hat{\mathbf{c}} = A^T \mathbf{y}$ simplify into

$$\left[\begin{array}{cc} 3 & 9 \\ 9 & 45 \end{array}\right] \left[\begin{array}{c} \hat{c}_0 \\ \hat{c}_1 \end{array}\right] = \left[\begin{array}{c} 10 \\ 42 \end{array}\right]$$

The solution is $\begin{bmatrix} \hat{c}_0 \\ \hat{c}_1 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} \\ \frac{2}{3} \end{bmatrix}$. Thus, the best fitted line in the sense of least square is

$$y = \frac{4}{3} + \frac{2}{3}x$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Appendix: Proof of Theorem 20.2

Theorem 20.2 (Direct sum of \mathbb{R}^n) If S is a subspace of \mathbb{R}^n , then

$$\mathbb{R}^n = S \oplus S^{\perp}$$

Recall: **Theorem 19.19**

If S is a subspace of \mathbb{R}^n , then $\dim S + \dim S^\perp = n$. Furthermore, if $\{\mathbf{u}_1, \cdots, \mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for S^\perp , then $\{\mathbf{u}_1, \cdots, \mathbf{u}_r, \mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

Proof. The result is trivial if $S = \{0\}$ or $S = \{\mathbb{R}^n\}$. From theorem 19.19, one can see that each vector $\mathbf{x} \in \mathbb{R}^n$ can be uniquely expressed in the form:

Appendix: Proof of Theorem 20.2

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r + \alpha_{r+1} \mathbf{u}_{r+1} + \dots + \alpha_n \mathbf{u}_n$$

where $\{\mathbf{u}_1,\cdots,\mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1},\cdots,\mathbf{u}_n\}$ is a basis for S^{\perp} . Let $\mathbf{u}=\alpha_1\mathbf{u}_1+\cdots+\alpha_r\mathbf{u}_r$ and $\mathbf{v}=\alpha_{r+1}\mathbf{u}_{r+1}+\cdots+\alpha_n\mathbf{u}_n$, then $\mathbf{u}\in S$ and $\mathbf{v}\in S^{\perp}$, $\mathbf{x}=\mathbf{u}+\mathbf{v}$. To show the uniqueness, suppose that \mathbf{x} can also be written as $\mathbf{x}=\mathbf{y}+\mathbf{z}$, where $y\in S$ and $z\in S^{\perp}$, then

$$\mathbf{u} + \mathbf{v} = \mathbf{y} + \mathbf{z}$$

and

$$\mathbf{u} - \mathbf{y} = \mathbf{z} - \mathbf{v}$$

LHS $\in S$ and RHS $\in S^{\perp}$ but $S \cap S^{\perp} = \{ \mathbf{0} \}$ Thus

$$\mathbf{u} = \mathbf{y}, \quad \mathbf{z} = \mathbf{v}$$