bjt_ce_amp.sqproj

Description

Shown in the figure is a common-emitter amplifier and its small-signal equivalent circuit. The midband gain of the circuit is given by $A_V = -g_m R_C$. The capacitors C_B and C_E influence the low cut-off frequency f_L whereas the device capacitances C_{π} and C_{μ} influence the high cut-off frequency f_H .

Exercise Set

- 1. For the given component values, calculate the bias current I_C and the midband gain A_V . Verify with simulation results.
- 2. Change C_B from $10 \,\mu F$ to $20 \,\mu F$, and observe its effect on f_L .
- 3. Change C_E from $15 \,\mu F$ to $30 \,\mu F$, and observe its effect on f_L .
- 4. The capacitance C_{μ} is directly proportional to the BJT parameter cjc (collector junction capacitance at zero bias) [1]. Increase the value of cjc by a factor of 2, and observe its effect on f_H .
- 5. Perform transient simulation with a $1\,\mathrm{m}V$ sinusoidal input with $f=1\,\mathrm{kHz}$ and observe the output voltage. Verify that the gain matches with that obtained by AC simulation. Repeat for $f=100\,\mathrm{Hz}$.
- 6. If only a part of R_E (say, 3 k out of 3.6 k) is bypassed, how will it affect I_C and A_V ? Verify with simulation.

References:

1. P. Antognetti and G. Massabrio, $Semiconductor\ device\ modeling\ with\ SPICE,$ McGraw-Hill: New York, 1988.