Durham University MATH1541 Statistics Exercise Sheet 12

Kamil Hepak Tutorial Group 4

Feb 2019

1 Q1

1.1 a)

 $\begin{aligned} c &= 2.120 \\ \text{Under} &\sim N, \, c = 1.960 \end{aligned}$

1.2 b)

 $\begin{aligned} c &= 1.895 \\ \text{Under} &\sim N, \, c = 1.645 \end{aligned}$

1.3 c)

 $t_{30},\,c=2.042$ $t_{40},\,c=2.021$ $t_{35},\,c\approx\frac{2.042+2.021}{2}=2.0315$ (Calculator gives 2.0301) Under $\sim N,\,c=1.960$

1.4 d)

 $P(T > 1.5) \approx 0.080$ Under $\sim N, P(T > 1.5) \approx 0.067$

1.5 e)

 $P(T > 1.5 \cap T < -1.5) \approx 0.16$ Under $\sim N$, $P(T > 1.5) \approx 0.134$

2 Q3

2.1 a)

 \bar{X} will have an approximately Normal distribution - that is to say, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. Because X has a distribution with mean μ and variance σ^2 , and $n \geq 10$, we can use the Central Limit Theorem to assume \bar{X} 's distribution.

2.2 b)

When the underlying distribution of X is Normal.

2.3 c)

Assuming $\sim N(0,1)$, since σ is known, c=1.960

2.4 d)

2.4.1 i)

Plot attached.

The normal quantile plot is not very linear - an incredibly "fat pen" would be necessary to encapsulate the data. The use of a t-distribution would probably not be fully appropriate in this scenario.

2.4.2 ii)

 $t_{12}, c = 2.179$

2.4.3 iii)

 $t_{12}, c = 0.695$