Class 1

- 1. Given is a set of n points on interval [1, 11] with:
 - (a) n = 500 points and we want to calculate their "average" of $\left\{\frac{1}{1+\frac{n}{50}}\right\}_{n=1}^{500} = \frac{1}{50} \sum_{n=0}^{500} \frac{1}{1+\frac{n}{50}} \approx 2.408837.$
 - (b) n = 5000 points and we want to calculate their "average" of $\left\{\frac{1}{1+\frac{n}{500}}\right\}_{n=1}^{5000} =$
 - $\frac{1}{500} \sum_{n=0}^{5000} \frac{1}{1 + \frac{n}{500}} \approx 2.398987.$
 - (c) n = 50000 points and we want to calculate their "average" of $\left\{\frac{1}{1+\frac{n}{5000}}\right\}_{n=1}^{50000} = \frac{1}{5000} \sum_{n=1}^{50000} \frac{1}{1+\frac{n}{5000}} \approx 2.397804$.
 - (d) The actual area is $\int_{1}^{11} \frac{1}{t} dt = \ln 11 \approx 2.397895.$

Area can by filled up with the red thin rectangles

To see a better the actual rectangles, we use essentially less points, $e.g.,\ n=10$

Rightpoint underestimate

2. t-time in hours, $s\left(t\right)$ –distance travelled in time t in $10\times km,\ v\left(t\right)=\sqrt{1+t}$ instantaneous velocity at time t

The distance $s\left(t\right)$ is antiderivative of the velocity $v\left(t\right)=\sqrt{1+t}$ and the area is the enumeration of the distance travelled from t=0 till t=10 hours. The "approximation" of the area is:

$$\frac{1}{500} \sum_{n=0}^{5000} \sqrt{1 + \frac{n}{500}} \approx 23.659 \text{ we have } s(t) \text{ is antiderivative of } v(t) = \sqrt{1+t} \to \text{ with knowing that at the start } s(0) = 0, \text{ and the antiderivative is } s(t) = \frac{2(t+1)\sqrt{t+1}}{3} + C \to s(0) = \frac{2}{3} + C = 0 \to C = -\frac{2}{3} \to s(t) = \frac{2(t+1)\sqrt{t+1}}{3} - \frac{2}{3} \to s = s(10) = \frac{22}{3}\sqrt{11} - \frac{2}{3} \approx 23.655km$$
 and the actual area is:
$$\int_{0}^{10} \sqrt{1+t} dt = \frac{22}{3}\sqrt{11} - \frac{2}{3} \approx 23.655.$$

3. Derivatives

x	\rightarrow	1
$\frac{x^{n+1}}{n+1}$	\rightarrow	x^n
$\ln x$	\rightarrow	$\frac{1}{x}$
e^x	\rightarrow	e^x
$\sin x$	\rightarrow	$\cos x$
$\cos x$	\rightarrow	$-\sin x$

Antiderivatives

1	\rightarrow	x + C
x^n	if $n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$\begin{bmatrix} \frac{1}{x} \\ e^x \end{bmatrix}$	\rightarrow	$\ln x + C$
e^x	\rightarrow	$e^x + C$
$\cos x$	\rightarrow	
$\sin x$	\rightarrow	

- 4. Symbolically we have:
 - (a) antiderivative, called **indefinite integral** of $f(x) \to \int f(x) dx = F(x) + C$, e.g., $\int \sqrt{1+t} dt = \frac{2}{3} (t+1)^{\frac{3}{2}} + C$
 - (b) The antiderivative with a specific (definite) value is called a **definite** integral, e.g.,
 - i. Since when we start, we have travelled no distance: $s(0) = 0 = F(0) + C = \frac{2}{3}(1)^{\frac{3}{2}} + C \rightarrow C = -\frac{2}{3}$ giving the definite distance function: $S(t) = \frac{2}{3}(t+1)^{\frac{3}{2}} \frac{2}{3}$.
 - ii. The total distance travelled is then $S = \int_{0}^{10} \sqrt{1+t} dt = \frac{22}{3} \sqrt{11} \frac{2}{3} \approx 23.655 km : S(0) = \frac{2}{3}, S(10) = \frac{22}{3} \sqrt{11}$ therefore S = S(10) S(0) = F(10) F(0).
 - (c) interval [a, b] with n equal subintervals, then $\Delta x = \frac{b-a}{n}$:
 - i. Left-point estimates: start at x = a,
 - A. e.g. on interval [1, 11] , with $n = 5000 \to \Delta x = \frac{11-1}{5000} = \frac{1}{500}$ start at x = 1;
 - B. All the other points are then Δx apart, i.e., the function is evaluated at $x_i = a + i\Delta x$, e.g. $x_i = 1 + \frac{i}{500}$;
 - C. that gives the left estimates: $\sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} f(a+i\Delta x) \Delta x,$ e.g., for $f(x) = \sqrt{x+1}$ we get $\frac{1}{500} \sum_{i=0}^{4999} \sqrt{1 + \frac{i}{500}} \approx 23.$
 - $653 < 23.655 \approx \int\limits_0^{10} \sqrt{x+t} dx$ is an underestimate, as the function $f(x) = \sqrt{x+1}$ is on interval [0,10] increasing.

ii. **Right-point estimates**: (try to think how to put this one together)