

Answer Keys and Solutions

1. (1)	2. (3)	3. (3)	4. (2)	5. (2)	6. (3)	7. (2)	8. (2)
(2)mathon	10. (1)athongo						
(1) Let a c	urve $y = f(x)$ pass thr	rough the point (2.1)	$(\log_a 2)^2$ and have sl	ope $\frac{2y}{1}$ for all po	ositive real value of x		
Therefore,	$y' = \frac{2y}{x' \ln x}$	matholigo	mathongo	$x \log_e x$	///. mathongo	/// mathongo	
$\Rightarrow \frac{dy}{y} = \frac{1}{x}$							
$\langle \ell n y =$	$2\ell n \ell nx + C$						
	$y= \left(\ \ell n2 ight)^2$						
$\Rightarrow c = 0$	$(ix)^2$ ///. mathongo						
$\Rightarrow y = (\ell i)$ $\Rightarrow f(e) = 0$	·						
$\frac{f(x)}{f(x)} = 1$	$+\int_0^x rac{(f(t))^2}{1+t^2}dt$						
Differentie	ting wet a						
$(1+x^2) f'(x$	$\frac{1}{\left(1+x^2\right)^2} = \frac{f^2(x)}{\left(1+x^2\right)} \Rightarrow$	$\frac{1}{2} \frac{dy}{dx} - \left(\frac{2x}{2}\right) \frac{1}{2} =$	1/// mathongo				
Put $-\frac{1}{u} =$		$y^2 dx $ $(1+x^2)y$					
9 ,							
$dx \perp \int \frac{dx}{x}$	$\left(\frac{2x}{1+x^2}\right)t=1,$ othoroo $\left(\frac{2x}{1+x^2}\right)t=1+x^2$						
		3					
Solution	$\sin -rac{\left(1+x^{2} ight) }{y}=x+rac{x^{2}}{3}$	+c mathongo					
Now $f(0)$: $\therefore c = -1$							
	$\frac{1}{3(1+x^2)} = f(x)$						
-	$-3(1+3^2)$						
	$\frac{3(1+3^2)}{3+3\times 3-3} = \frac{10}{13}$						
	go /// mathongo						
It is given $dp(t)$ 1		00					
$\frac{-dt}{dt} = \frac{1}{2}$ $2 dp(t)$	$\{p(t)-400\}, \ p(0)=1$.uu ///. mathonao					
$\frac{2 dp(t)}{p(t) - 400} =$ Integrating							
Integrating $\int_{0}^{p(t)} \frac{dp}{t}$							
$J100 \qquad p(t)$ $\Rightarrow (1n) p(t)$	$rac{(t)}{-400} = \int_0^t rac{1}{2} dt \ () -400)_{100}^{p(t)} = rac{t}{2}$						
1-2 p(t) -400 t						
/ mathon	$\frac{1}{300} = \frac{1}{2}$ $\frac{1}{400} = 300e^{\frac{t}{2}}$						
	$egin{array}{ll} p(t)=300e^{rac{t}{2}} & (\therefore p(t)) \end{array}$						
	$400 - 300e^{\frac{t}{2}}$						
III I I I I I I I I I I I I I I I I I							

Answer Keys and Solutions

Answer Keys and Solutions

