Gradient Boosting Algorithm

Initialize model with a constant value:

$$F_0(x) = \underset{\gamma}{argmin} \sum_{i=1}^n L(y_i, \gamma)$$

2. for m = 1 to M:

2-1. Compute residuals
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x)=F_{m-1}(x)}$$
 for $i=1,...,n$

2-2. Train regression tree with features x against r and create terminal node reasions R_{jm} for $j=1,...,J_m$

2-3. Compute
$$\gamma_{jm} = \underset{\gamma}{argmin} \sum_{x_i \in R_{jm}} L(y_i, F_{m-1}(x_i) + \gamma)$$
 for $j = 1,..., J_m$

2-4. Update the model:

$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} 1(x \in R_{jm})$$