Survival Data Analysis Parametric Models

Sandra Gardner, PhD
Dalla Lana School of Public Health
University of Toronto

Agenda

Basic Parametric Models

- Review: hazard & cumulative hazard functions; likelihood function
- Proportional hazards versus accelerated failure
- Exponential model
- Weibull model
- Log-Normal model
- Log-Logistic model
- Checking assumptions
- Gamma model
- Goodness of fit and residuals

Other Models

- Changepoint model (piecewise exponential model)
 - Reference: Matthews & Farewell 1982
- Gamel-Boag (cure fraction) model
 - Reference: Frankel & Longmate 2002
- Bayesian analysis

Probability density function

Random survival time T > 0

$$f(t) = h(t)S(t)$$

Hazard function

Specifies the instantaneous rate of failure at T=t

$$h(t) = \lim_{\Delta t \to 0^{+}} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$$

$$h(t) = \frac{f(t)}{S(t)}$$

See K&M Section 2.3

Cumulative hazard function

$$S(t) = P[T > t] = e^{-H(t)},$$

$$where H(t) = \int_{u=0}^{t} h(u)du.$$

$$Note H(t) = -\log S(t)$$

Likelihood

- Full likelihood for parametric models
- Assuming censoring is independent of failure and noninformative:

$$L \propto \prod_{i \in D}^{n} f(x_i) \prod_{i \in R} S(C_r)$$

$$L = \prod_{i=1}^{n} \Pr(t_i, \delta_i)$$

$$where T = \min(X, C_r)$$

$$and \Pr(t, \delta) = [f(t)]^{\delta} [S(t)]^{1-\delta}$$

Likelihood

$$L = \prod_{i=1}^{n} f(t_i)^{\delta_i} S(t_i)^{1-\delta_i} \qquad \text{K\&M 3.5.3}$$

$$= \prod_{i=1}^{n} \left[h(t_i) \exp\left[-\int_{0}^{t_i} h(s) ds\right]^{\delta_i} \left[\exp\left[-\int_{0}^{t_i} h(s) ds\right]^{1-\delta_i} \right]$$

$$= \prod_{i=1}^{n} \left[h(t_i) \right]^{\delta_i} \exp\left[-\int_{0}^{t_i} h(s) ds\right]$$

$$= \prod_{i=1}^{n} \left[h(t_i) \right]^{\delta_i} \exp\left[-H(t_i)\right]$$

Parametric Survival models

- Fully specified model with hazard rate a function of covariates (including intercept)
- Proportional Hazards (PH)
 - constant hazard ratios across time
 - Exponential, Weibull
- Accelerated Failure Models (AFT)
 - constant time ratios across survival percentiles
 - Exponential, Weibull, Log Normal, Log Logistic

PH versus AFT

$$e.g. \quad X \ is \ binary$$

$$HR = \frac{h_1(x=1,t)}{h_0(x=0,t)} = e^{-\beta}$$
 aft
$$TR = \frac{t_{50}(x=1,\beta)}{t_{50}(x=0,\beta)} = e^{\beta}$$

Exponential Model

PH versus AFT

$$h(t \mid X) = h_0(t) e^{-eta' X}$$
 PH $S(t \mid X) = S_0(t)^{e^{-eta' X}}$ $h(t \mid X) = h_0(e^{-eta' X}t) e^{-eta' X}$ AFT $S(t \mid X) = S_0(e^{-eta' X}t)$

Be careful of parameterization of models in texts and software.

Sample Weibull hazard plots - HR=1.5

Sample Weibull survival plots - TR=.67 (or AF=1.5)

Error distributions

$$f(\varepsilon) = \exp(\varepsilon - \exp(\varepsilon))$$

$$f(\varepsilon) = \frac{\exp(-\frac{\varepsilon^2}{2})}{\sqrt{2\pi}}$$

$$Y = \log T = X\beta + \sigma \varepsilon$$

$$f(\varepsilon) = \frac{e^{\varepsilon}}{\left(1 + e^{\varepsilon}\right)^2}$$

Be careful of parameterization of models in texts and software.

Error distributions

Exponential Model

- constant hazard functions
- both PH and AFT model
- underlying error function has an extreme value function with $\sigma=1$

$$S(t) = e^{-\lambda t}$$

$$h(t) = \lambda$$

$$Median = \frac{-\ln(.5)}{\lambda} = \frac{.69}{\lambda}$$

$$Mean = \frac{1}{\lambda}$$

Exponential Model

$$L(\lambda) = \prod_{i=1}^{n} [\lambda]^{\delta_i} \exp \left[-\lambda t_i\right]$$

$$l(\lambda) = \sum_{i=1}^{n} (\delta_i \log[\lambda] - \lambda t_i)$$

$$mle \quad \hat{\lambda} = \frac{\sum_{i=1}^{n} \delta_i}{\sum_{i=1}^{n} t_i}$$

Exponential hazard plots

Exponential cumulative hazard plots

February 1, 2017
CHL5209H

Exponential survival plots

Weibull

- monotone increasing or decreasing hazard functions
- both PH and AFT model
- Exponential model is special case $(\gamma=1)$

$$S(t) = e^{-\lambda t^{\gamma}}$$

$$h(t) = \gamma \lambda t^{\gamma - 1}$$

$$Median = \left(\frac{-\ln(.5)}{\lambda}\right)^{\frac{1}{\gamma}}$$

Weibull hazard plots - lambda=.3

February 1, 2017

Weibull cumulative hazard plots - lambda=.3

Weibull survival plots - lambda=.3

Weibull hazard plots - lambda=.6

February 1, 2017

Weibull cumulative hazard plots - lambda=.6

Weibull survival plots - lambda=.6

Log Normal

 hazard functions rise to a maximum then slowly decline, AFT model only

$$\begin{split} S(t) &= 1 - \Phi \left(\frac{\ln(t) - \mu}{\sigma} \right) \\ f(t) &= \frac{1}{t\sigma\sqrt{2\pi}} e^{\left(-\frac{1}{2}\left(\frac{\ln(t) - \mu}{\sigma}\right)^{2}\right)} \\ h(t) &= \frac{f(t)}{S(t)} \\ Median &= e^{\left(\sigma\Phi^{-1}(.5) + \mu\right)} = e^{\mu} \\ Mean &= e^{\left(\mu + 0.5\sigma^{2}\right)} \end{split}$$

Log normal hazard plots - u=0

Log normal cumulative hazard plots - u=0

Log normal survival plots - u=0

Log normal hazard plots - u=.5

Log normal cumulative hazard plots - u=.5

Log normal survival plots - u=.5

Log Logistic

hazard functions rise to a maximum then slowly decline or are monotone decreasing, AFT model only

$$S(t) = \frac{1}{1 + \alpha t^{\gamma}}$$

$$f(t) = \frac{\alpha \gamma t^{(\gamma - 1)}}{(1 + \alpha t^{\gamma})^{2}}$$

$$h(t) = \frac{f(t)}{S(t)} = \frac{\alpha \gamma t^{(\gamma - 1)}}{1 + \alpha t^{\gamma}}$$

$$Median = \left(\frac{1}{\alpha}\right)^{\frac{1}{\gamma}}$$

Log logistic hazard plots - alpha=1

February 1, 2017

Log logistic cumulative hazard plots - alpha=1

Log logistic survival plots - alpha=1

Log logistic hazard plots - alpha=2

February 1, 2017

Log logistic cumulative hazard plots - alpha=2

Log logistic survival plots - alpha=2

ebruary 1, 2017

Example Data Set

- Patients diagnosed with brain cancer are randomized to a treatment group versus placebo.
- N=222, with only 15 censored cases
- Mean age around 48 years and 64% male.
- Other covariates are available in data set.

Distribution age

Overall Survival

Estimated median=27.4 and mean=44.5

-logS(t) Plot

- Plot versus t
- If a straight line then exponential model $(H(t)=\lambda t)$

LifeTest: Overall Survival

log-logS(t) Plot

- Plot versus log(t)
- If a straight line then Weibull model
 - $-H(t)=\lambda t^{\gamma}$
 - $\log H(t) = \log(\lambda) + \gamma \log(t)$

LifeTest: Overall Survival

Probit Plot

- Plot $\Phi^{-1}(1-S(t))$ versus $\log(t)$
- If a straight line then Log Normal model
 - \circ S(t)=1- Φ ((log(t)-u)/ σ)

Probit(CDF) Plot

Logit Plot

- Plot $\log((1-S(t))/S(t))$ versus $\log(t)$
- Plot of odds of having the event by time t
- If a straight line then Log Logistic model
 - $S(t)=1/(1+\alpha t^{\gamma})$

Logit(CDF) Plot

Other options

- Non-parametric smoothing of hazard function
- Probability plots
- Likelihood ratio tests of nested models (Gamma)
- Check distribution of t or log(t) for the noncensored cases

Smoothed Hazard Function

Smoothed Hazard Function

(reduced range)

SAS Code (SAS 9.4 using ODS graphics)

Exponential Probability Plot

Weibull Probability Plot

Log Normal Probability Plot

Log Logistic Probability Plot

Gamma Model

- SAS fits the generalized 3-parameter model
- it can fit a Weibull (exponential) and log-normal model (test using likelihood ratio test)
- it can also fit a model with a U-shaped hazard function
- Survivor and hazard functions involve incomplete gamma functions

Events only (Proc Univariate):

Events only (Proc Univariate):

Note: CDF plots also available in Proc Univariate

Events only (Proc Univariate):

Note: different parameterization than Proc Lifetest.

Unadjusted model

Basic data summary

Variable	Sum

event 207 weeks 9426

Estimated rate: 207/9426=0.02196

ln(0.02196) = -3.8185

overall median 27.430 95% CI (23.14, 31.43)

mean 44.528 SE= 3.285

Exponential (Intercept only)

-2 Log Likelihood=662.275, AIC=664.275

Parameter	DF	Estimate	Standard Error	95% Con Lim		Chi- Square	Pr > ChiSq
Intercept	1	3.8185	0.0695	3.6823	3.9547	3018.22	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		
Weibull Scale	1	45.5348	3.1649	39.7357	52.1803		
Weibull Shape	0	1.0000	0.0000	1.0000	1.0000		

Lagrange Multiplier Statistics

Parameter	Chi-Square	Pr > ChiSq
Scale	0.6216	0.4304

```
\lambda = \exp(-3.8185) = 0.02196

S(t) = \exp(-\lambda t)

h(t) = \lambda

Median = -\ln(.5)/\lambda = 31.4

Mean = 1/\lambda = 45.5
```

Weibull(Intercept only)

-2 Log Likelihood=661.693 AIC=665.693

```
Standard 95% Confidence Chi-
                                       Limits
Parameter DF Estimate Error
                                                    Square Pr > ChiSq
Intercept 1 3.8321
                          0.0692 3.6965 3.9676 3069.48 <.0001
Scale 1 0.9608 0.0498 0.8679 1.0636 * 1/shape
Weibull Scale 1 46.1571 3.1925 40.3054 52.8583
Weibull Shape 1 1.0408 0.0540 0.9402 1.1522
                                                     * gamma
 \lambda = \exp(-1.0408 * 3.8321) = 0.0185
 v = 1.0408
 S(t) = \exp(-\lambda^* t^* )
 h(t) = v^*\lambda^*(t^{**}(v-1))
 Median = (-\ln(.5)/\lambda)**(1/y) = 32.3
 Using extreme value distribution:
 \mu = 3.8321
 \sigma = 0.9608
  S(t) = \exp(-\exp((\log(t) - 3.8321) / 0.9608))
```

Log Normal(Intercept only)

-2 Log Likelihood=608.002, AIC=612.002

```
Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.3653 0.0644 3.2389 3.4916 2726.77 <.0001
Scale 1 0.9553 0.0479 0.8659 1.0540
```

```
u = 3.3653

\sigma = 0.9553

S(t) = 1-\Phi((\ln(t)-u)/\sigma)

f(t) = 1/(\operatorname{sqrt}(2*\pi)*t*\sigma)*\exp(-1/2*((\ln(t)-u)/\sigma)**2)

h(t) = f(t)/S(t)

Median = \exp(u) = 28.9

Mean = \exp(u+0.5\sigma**2) = 45.7
```

Log Logistic (Intercept only)

-2 Log Likelihood=604.338, AIC=608.338

			Standard	95% Conf	fidence	Chi-	
Parameter	DF	Estimate	Error	Limi	its	Square	Pr > ChiSq
Intercept	1	3.3233	0.0625	3.2008	3.4458	2828.98	<.0001
Scale	1	0.5398	0.0315	0.4815	0.6052		

```
\alpha = \exp(-3.3233 / 0.5398) = 0.0021

\gamma = 1/0.5398 = 1.8525

S(t) = 1/(1+\alpha*t**\gamma)

f(t) = (\alpha*\gamma*t**(\gamma-1))/(1+\alpha*t**\gamma)**2

h(t) = f(t)/S(t)

Median = (1/\alpha)**(1/\gamma) = 27.8
```

Comparison of Survival Models

Gamma hazard (Allison LIFEHAZ macro)

Gamma model (Intercept only)

-2 Log Likelihood=600.334, AIC=606.334

```
Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.1407 0.1006 2.9434 3.3380 973.70 <.0001
Scale 1 0.9272 0.0479 0.8379 1.0259
Shape 1 -0.4929 0.1733 -0.8326 -0.1533
```

```
If shape parameter is 0 then log-normal model If shape parameter is 1 then Weibull model If shape =1 and scale=1 then exponential model If shape and scale are equal, then standard gamma distribution Likelihood ratio test: Gamma vs log normal chi-square = 608.001-600.334 = 7.667, p=0.006
```

Unadjusted model fit

Fitted hazard - generalized gamma

Comparison of Gamma model and Kaplan-Meier curve

Model Comparison

Model	-2logL	AIC	AICC	BIC
Exponential	662.3	664.3	664.3	667.7
Weibull	661.7	665.7	665.7	672.5
LogNormal	608.0	612.0	612.1	618.8
LogLogistic	604.3	608.3	608.4	615.1
Gamma	600.3	606.3	606.4	616.5

Akaike Information Criteria

- AIC= $-2\log(\text{Likelihood})+2(p+k)$ K&M 12.4.3
- k=1 (exponential)
- k=2 for Weibull, log logistic and log normal
- k=3 for generalized gamma
- In our example, AIC for gamma (606.3) is close to AIC for log-logistic (608.3).

$$AICC = AIC + \frac{2p(p+1)}{n-p-1}$$
 $BIC = -2\log L + p\log(n)$

Adjusted model

- Use preferred model building strategy to add covariates into the model (to be discussed further next month)
- Choosing two binary covariates for illustration
 - Treated (treat=1); not treated (treat=0)
 - Age <50 (age50=0) and age≥50 (age50=1)

Covariates: median survival

```
median treat=No : 23.57 (20.57, 28.00)
```

median treat=Yes: 31.50 (26.29, 37.00)

```
median age<50: 32.43 (27.14, 39.71)
```

median age>=50: 21.50 (19.00, 27.29)

LifeTest: Treatment group

LifeTest: Treatment group

LifeTest: Treatment group

Exponential (treatment)

Parameter	DF	Estimate	Standard Error	95% Con: Lim:		Chi- Square	Pr > ChiSq
Intercept	1	3.7220	0.0981	3.5298	3.9142	1440.73	<.0001
treat	1	0.1853	0.1390	-0.0871	0.4578	1.78	0.1825
Scale	0	1.0000	0.0000	1.0000	1.0000		
Weibull Shape	0	1.0000	0.0000	1.0000	1.0000		

```
HR = \exp(-beta) = \exp(-0.1853) = 0.83

TR = \exp(beta) = \exp(0.1853) = 1.20
```

Exponential (Hazard Ratio)

Note closed form solution for hazard ratio can be calculated from the summary data below (unadjusted for other covariates):

No treatment: 104/4300=0.0242 (note log(0.0242)=-3.722) and

Yes, treated: 103/5126=0.0201

HR: 0.0201/0.0242 = 0.8306

Log(HR): log(0.0201/0.0242) = -0.1856

TR: exp(0.1856) = 1.204

(output from proc means)

treat	Obs	Variable	Sum
No	112	event weeks	104 4300
Yes	110	event weeks	103 5126

LifeTest: Age group

LifeTest: Age group

LifeTest: Age group

Exponential/Weibull (age grouped)

```
Standard 95% Confidence
                                                  Chi-
Parameter
            DF Estimate
                          Error
                                      Limits
                                                  Square Pr > ChiSq
Intercept
             1 4.0394 0.0985 3.8463 4.2325 1680.64
                                                             < .0001
age50
             1 -0.5018
                          0.1390 - 0.7743 - 0.2293 13.03
                                                             0.0003
\lambda = \exp(-(4.0394 - 0.5018*age50))
                                     95% Confidence
                          Standard
                                                      Chi-
             DF Estimate
                                       Limits
                                                   Square Pr > ChiSq
Parameter
                           Error
              1 4.0569
                          0.0933
                                   3.8740 4.2397 1891.78
                                                             < .0001
Intercept
age50
              1 - 0.4927
                          0.1303 - 0.7480 - 0.2374
                                                    14.31
                                                             0.0002
              1 0.9356
                          0.0481 0.8459 1.0349
Scale
Weibull Shape 1
                 1.0688
                          0.0550
                                   0.9663 1.1822
\lambda = \exp(-1.0688 * (4.0569 - 0.4927*age50))
HR = \exp(-beta*1.0688) = 1.69
TR = exp(beta) = 0.61 AF = 1.64
```

Goodness of fit

- Sample plots
 - How well does model match Kaplan-Meier curves?
- Cox-Snell residuals
 - Log-log(SDF) or cumulative hazard of residuals is a straight line? $r_i = \hat{H}(T_i | Z_i)$

Other residuals: e.g. normal deviate residuals, see Nardi & Schemper

where \hat{H} is estimated from data and r_i distributed $\exp(1)$

SAS output :
$$-\log(S(\frac{\log t_i - x_i'b}{\sigma}))$$

Goodness of fit

- Martingale residuals
 - Klein & Moeschberger: "estimate of the excess number of deaths seen in the data, but not predicted by model"
 - δ_j -H(T_j|Z_j) i.e. δ_j -r_j
- Deviance residuals
 - Klein & Moeschberger: "more symmetric about o"
 - Transformed martingale residuals

Comparison of Exponential and Weibull Models-Age<50

Comparison of Exponential and Weibull Models-Age>=50

Cox-Snell Residuals-Exponential

Simulated Exponential Data

 To show what plots look like using randomly generated data from an exponential distribution

Exponential (treatment and age)

-2 Log Likelihood = 647.648

Parameter	DF	Estimate	Standard Error		fidence its	Chi- Square	Pr > ChiSq
Intercept	1	3.9439	0.1206	3.7075	4.1804	1069.08	<.0001
treat	1	0.1825	0.1390	-0.0900	0.4549	1.72	0.1893
age50	1	-0.5007	0.1390	-0.7732	-0.2283	12.98	0.0003
Scale	0	1.0000	0.0000	1.0000	1.0000		
Weibull Shape	0	1.0000	0.0000	1.0000	1.0000		

Cox-Snell Residuals - Exponential February 1, 2017 CHL5209H

Weibull(treatment and age)

-2 Log Likelihood = 645.784

Parameter	DF	Estimate	Standard Error		fidence uits	Chi- Square	Pr > ChiSq
Intercept	1	3.9622	0.1132	3.7403	4.1842	1224.33	<.0001
treat	1	0.1825	0.1294	-0.0711	0.4361	1.99	0.1585
age50	1	-0.4904	0.1296	-0.7444	-0.2363	14.31	0.0002
Scale	1	0.9308	0.0479	0.8415	1.0296		
Weibull Shape	1	1.0744	0.0553	0.9713	1.1884		

Cox-Snell Residuals - Weibull

Log Normal(treatment and age)

-2 Log Likelihood = 595.383

Parameter	DF	Estimate	Standard Error		ifidence nits	Chi- Square	Pr > ChiSq
Intercept	1	3.4768	0.1072	3.2667	3.6869	1051.87	<.0001
treat	1	0.1744	0.1253	-0.0711	0.4200	1.94	0.1639
age50	1	-0.4144	0.1254	-0.6602	-0.1686	10.92	0.0010
Scale	1	0.9288	0.0466	0.8418	1.0247		

Cox-Snell Residuals - LogNormal February 1, 2017 CHL5209H

Log Logistic(treatment and age)

-2 Log Likelihood = 589.891

Parameter	DF	Estimate	Standard Error		fidence	Chi- Square	Pr > ChiSq
Intercept	1	3.4289	0.1031	3.2268	3.6309	1105.96	<.0001
treat	1	0.2029	0.1200	-0.0323	0.4380	2.86	0.0909
age50	1	-0.4204	0.1200	-0.6555	-0.1852	12.28	0.0005
Scale	1	0.5198	0.0304	0.4635	0.5830		

Cox-Snell Residuals - LogLogistic

Residuals (SAS Code)

```
/* Cox-Snell */
proc lifereg data=sda.brain;
  model weeks*event(0)=treat age50/d=weibull;
  output out=wout cres=cres sres=sres p=predm std=stdm;
  title 'LifeReg: Treatment & Age groups - Weibull';
run;
proc lifetest data=wout plots=(ls) notable;
  * looking for evidence that cres is exponential using the -log(S(t)) plot;
  * note that censoring value is maintained from original data set;
  time cres*event(0):
  title1 'Cox-Snell Residuals - Weibull';
run;
 /* martingale and deviance*/
  lambda=exp(-(3.9439+0.1825*treat-0.5007*age50));
  sexp=exp(-lambda*weeks);
  xbexp=3.9439+0.1825*treat-0.5007*age50;
  chexp=-log(sexp);
  martexp=event-chexp;
  devexp=sign(martexp)*(-2*(martexp+event*log(event-martexp)))**1/2;
```

Martingale Residual Plots - Weibull Model

Martingale Residual Plots - Log Logistic Model

Deviance Residual Plots - Weibull Model

Deviance Residual Plots - Log Logistic Model

Model summaries

Time Ratios for Treatment - All Models

February 1, 2017

Survival: Treatment=Yes, Age>=50

Hazard: Treatment=Yes, Age>=50

February 1, 2017

Survival: Treatment=No, Age>=50

Hazard: Treatment=No, Age>=50

Exponential Summary

t (weeks)	Age>=50	<pre>Exponential S(t), Treatment=1</pre>	<pre>Exponential h(t), Treatment=1</pre>	Exponen Media Treatme	n, S(t),	<pre>xponential h(t), reatment=0</pre>
26	Yes	0.5004	0.0266	26.02	84 0.	4356	0.0320
52	Yes	0.2504	0.0266	26.02	84 0.	1898	0.0320
104	Yes	0.0627	0.0266	26.02	84 0.	0360	0.0320
	Exponentia	l Exponentia	1			Exponen	tial
t	Median,	Hazard	Exponer	ntial	Exponential	Media	n
(weeks)	Treatment=	0 Ratio(t)	beta(Trea	atment);	Time Ratio	Rati	0
26	21.6864	0.8332	0.18	325	1.2002	1.20	02
52	21.6864	0.8332	0.18	325	1.2002	1.20	02
104	21.6864	0.8332	0.18	325	1.2002	1.20	02

Weibull Summary

t (weeks)	Age>=50	Weibull S(t), Treatment= 1	<pre>Weibull h(t), Treatment= 1</pre>	Weibul Median, Treatment	l , Tr	eibull S(t), ceatment= 0	Weibull h(t), Treatment= 0
26	Yes	0.5203	0.0270	27.4720)	0.4516	0.0328
52	Yes	0.2526	0.0284	27.4720	O	0.1875	0.0346
104	Yes	0.0552	0.0299	27.4720	0	0.0295	0.0364
	Weibull	Weibull		V	Weibull	Weibull	
t	Median,	Hazard	Weibul	1	Time	Median	
(weeks)	Treatment=0	Ratio(t)	beta(Treat	ment);	Ratio	Ratio	
26	22.8892	0.8219	0.182	5	1.2002	1.2002	
52	22.8892	0.8219	0.182	5	1.2002	1.2002	
104	22.8892	0.8219	0.182	5	1.2002	1.2002	

Log Normal Summary

t (weeks)	I Age>=50	S(t), Treatment=	<pre>Log Normal h(t), Treatment= 1</pre>	Log Norma Median, Treatment	Treatme	h(t),
26	Yes	0.4909	0.0336	25.4521	0.416	6 0.0388
52	Yes	0.2209	0.0278	25.4521	0.169	3 0.0309
104	Yes	0.0648	0.0202	25.4521	0.044	3 0.0219
	Log Normal	Log Norma	ıl			Log Normal
t	Median,	Hazard		Normal	Log Normal	Median
(weeks)	Treatment=0) Ratio(t)	beta(Tre	eatment);	Time Ratio	Ratio
26	21.3788	0.8675	0.1	L744	1.1905	1.1905
52	21.3788	0.9013	0.1	L744	1.1905	1.1905
104	21.3788	0.9237	0.1	L744	1.1905	1.1905

```
beta=o*(probit(1-slnorm0) - probit(1-slnorm1));
   /* log normal scale and S(t) for each group */
TR=exp(beta)
```

Log Logistic Summary

+		Log Logistic	Log Logistic	_	gistic	_	_	Log Logistic
t		S(t),	h(t),		lian,		t),	h(t),
(weeks)	Age>=50	Treatment=1	Treatment=1	Treat	ment=1	Treat	ment=0	Treatment=0
26	Yes	0.4776	0.0387	2.4	8138	0	3822	0.0457
52	Yes	0.1941	0.0298		8138		1402	0.0318
104	Yes	0.0597	0.0174	24.	8138	0.	0412	0.0177
								Log Logistic
		Log					Log	Odds
	Log Logi:	stic Logist	ic		Lo	g	Logisti	S(t)/(1-S(t))
t	Median	, Hazar	d Log Log	jistic	Logi	stic	Median	,
(weeks)	Treatment	t=0 Ratio(t) beta(Trea	tment);	Time I	Ratio	Ratio	Treatment=1
26	20.257	0 0.845	7 0.20	129	1.2	249	1.2249	0.9141
52	20.257	0.937	3 0.20	129	1.2	249	1.2249	0.2409
104	20.257	0.980	7 0.20	129	1.2	249	1.2249	0.0635
	Log Logi:	stic						
	Odds						Log	
	S(t)/(1-t)	S(t) Log	Log Log	ristic	Log Log	istic	_	ic
t		Logisi			Alph		Alpha	
(weeks)	Treatment	-			Treatme		Ratio	
(weeks)	Treatmen	t-0 Odds N	acio ileaciile	:IIC—I	TTeachie.	110-0	Nacio	
26	0.618	7 1.47	75 0.00	21	0.00	31	1.477	5
52	0.163				0.00		1.477	
104	0.0430	0 1.47	75 0.00	<i>1</i> ∠ ⊥	0.00	3 T	1.477	J

Log logistic Odds Ratio (SAS Code)

```
hrllog=hllog1/hllog0;
if sllog1^=1 then odds1=sllog1/(1-sllog1);
if sllog0^=1 then odds0=sllog0/(1-sllog0);
oddsratio=odds1/odds0;
alpharatio=alpha0/alpha1;
beta_llog=log(oddsratio)*σ;
   /* log logistic scale; oddsratio=exp(beta_llog/σ) */
trllog=exp(beta_llog);
mrllog=mllog1/mllog0;
```

Odds of survival=Prob(alive)/Prob(died) Odds ratio (treated to not treated)= 1.47

Discussion

- Not limited to parametric models discussed today. For example:
 - Changepoint model (piecewise exponential model)
 - Gamel-Boag model (allows for a proportion of subjects to be long term survivors)
- Bayesian analysis

Changepoint model

- When the hazard rate is constant within in time periods and changes at known timepoint
- For example, brain cancer hazard rate is constant for the first year of follow up but hazard rate is reduced if patient survives at least one year.

$$S(t) = e^{-\lambda_1 t} \qquad t \le \tau$$
$$= e^{-\lambda_1 \tau} e^{-\lambda_2 (t - \tau)} \qquad t > \tau$$

SAS code to restructure data

```
data brain2(keep=id weeks event weeks2 event2 year1);
  set sda.brain;
  id=n;
  if weeks<=52
     then do;
                event2=event;
                  weeks2=weeks;
                  year1=1;
                  output;
          end:
     else do:
               event2=0;
                  weeks2=52;
                  year1=1;
                  output;
                  event2=event;
                  weeks2=weeks-52;
                  year1=0;
                  output;
          end;
run;
```

SAS code to fit the model

```
proc lifereg data=brain2;
  model weeks2*event2(0)=year1/d=exponential;
  title 'Piecewise Exponential';
run;

data brain3;
  do weeks=0 to 200 by 1; /* time frame */
  lambda1=exp(-(4.533-.9175)); * = 0.0269;
  lambda2=exp(-(4.533)); * = 0.0107;
  if weeks<=52
    then sexp=exp(-lambda1*weeks);
    else sexp=exp(-lambda1*52)*exp(-lambda2*(weeks-52));
  output;
  end;
run;</pre>
```

Changepoint model

Parameter	DF	Estimate	Standard Error	95% Co Lim	nfidence its	Chi- Square P	r > ChiSq
Intercept	1	4.5330	0.1796	4.1809	4.8850	636.98	<.0001
year1	1	-0.9175	0.1948	-1.2993	-0.5357	22.19	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		
Weibull Shape	0	1.0000	0.0000	1.0000	1.0000		

Survival: Changepoint model (Tau=52 weeks)

Gamel-Boag Model

- Allows for a proportion of subjects to be long term survivors.
- Events are modeled using log-normal model.

$$S(t \mid x) = p(x) + (1 - p(x))S_f(t \mid x)$$

$$p(x) = \frac{e^{x'\beta}}{1 + e^{x'\beta}}$$

$$\ln(t_i) = x_i \gamma + e_i \quad e_i \sim N(0, \sigma)$$

SAS code to fit log-normal model

SAS code to fit Gamel-Boag model

SAS output from Proc Lifereg

		Analysis of	Maximum Li	kelihood P	arameter	Estimates	
			Standard	95% Co	nfidence		
Parameter	DF	Estimate	Error	Lin	nita	Chi Canana	Day Chica
1 ar arricul	Dr	Estimate	EIIOI	LIII	IIIIS	Chi-Square	Pr > ChiSq
Intercept	1	3.5643	0.0875	3.3929		1660.94	<.0001
	1					_	
	1 1					_	
Intercept	1	3.5643	0.0875	3.3929	3.7357	1660.94	<.0001
Intercept	1 1 1	3.5643	0.0875	3.3929	3.7357	1660.94	<.0001

SAS output from Proc NLP (1)

	Optimization Results Parameter Estimates								
	r arameter Estimates								
						Gradient			
			Approx		Approx	Objective			
N	Parameter	Estimate	Std Err	t Value	Pr > t	Function			
1	int	3.564322	0.088055	40.478316	1.22822E-103	0.000000118			
2	Gamma (age 50)	-0.416088	0.126899	-3.278898	0.001212	-0.000000176			
3	sig	0.933454	0.047114	19.812805	9.793712E-51	0.000002754			

Value of Objective Function = -964.9427317

SAS output from Proc NLP (2)

	Optimization Results								
	Parameter Estimates								
						Gradient			
			Approx		Approx	Objective			
N	Parameter	Estimate	Std Err	t Value	Pr > t	Function			
1	intg	3.383333	0.090495	37.387072	1.546812E-96	-0.000003440			
2	gamma (Age50)	-0.241294	0.124095	-1.944430	0.053136	-0.000003444			
3	intb	-2.354737	0.397974	-5.916817	1.2664557E-8	-0.000000870			
4	beta (Age50)	-3.695206	5.265763	-0.701742	0.483592	-0.000000867			
5	sig	0.841890	0.048823	17.243571	1.534361E-42	-0.000007602			

Value of Objective Function = -959.5044921

Proportion cured each age group and OR:

p1	p0	or	lor
0.002	0.087	0.025	-3.695

Survival: Age>=50

Survival: Age<50

Bayesian analysis

- Gibbs sampling used for the location-scale models
- Can add priors for model parameters
- Can output posterior samples

```
proc lifereg data=sda.brain;
  model weeks*event(0)=age50/d=weibull;
  bayes WeibullShapePrior=gamma seed=1254 outpost=postweibull;
run;
```

Analysis of Ma	ıxim	um Likeli	hood Parar	meter Est:	imates	
Parameter	DF	Estimate	Standard Error	95% Con Lim		
Intercept age50 Scale Weibull Shape	1 1 1	4.0569 -0.4927 0.9356 1.0688	0.0933 0.1303 0.0481 0.0550	3.8740 -0.7480 0.8459 0.9663	4.2397 -0.2374 1.0349 1.1822	

		Poste	erior Summarie:	5		
			Standard	P	Percentiles	
Parameter	N	Mean	Deviation	25%	50%	75%
Intercept	10000	4.0594	0.0942	3.9950	4.0584	4.1222
age50	10000	-0.4922	0.1325	-0.5815	-0.4922	-0.4039
WeibShape	10000	1.0613	0.0545	1.0241	1.0605	1.0977
		Poste	erior Interval:	5		
Param	eter Alp	ha Equal	l-Tail Interva	L HPD	Interval	
Inter	cept 0.0	3.8	787 4.2463	3.8755	4.2407	
age50	0.0	50 -0.75	532 -0.230	7 -0.7571	-0.2368	
WeibS	hape 0.0	50 0.95	555 1.1703	0.9551	1.1695	

February 1, 2017 CHL5209H

Discussion: Why fit parametric models?

- Able to describe the hazard rate
- AF model alternative when hazard rates are non-proportional
- Easier and more convenient to predict outcome for a particular outcome (see Reid (1994) conversation with D.R. Cox)
- If underlying hazard function is correctly specified, then parametric models 'give more precise estimates' (K & M, p.373).
- Applications where parametric models are compared to Cox proportional hazard models:
 - Chapman et al (2006). Application of log-normal model which authors conclude has a 'major advantage over the Cox model'
 - Nardi and Schemper (2003). Authors 'compare Cox and parametric models in clinical settings'.
 - Carroll (2003). Author 'illustrates the practical benefits of a Weibull-based analysis'.

References

- Applied Survival Analysis, D.W. Hosmer, S. Lemeshow, S. May, Wiley 2008
- Survival Analysis: Techniques for Censored and Truncated Data, J.P.Klein, M.L. Moeschberger, Springer 1997
- Nardi, A. and Schemper, M. (2003), 'Comparing Cox and parametric models in clinical studies', Statistics in Medicine, 22, 3597 3610.
- J-A. W. Chapman, H.L.A Lickley, et al. "Ascertaining Prognosis for Breast Cancer in Node-Negative Patients with Innovative Survival Analysis." The Breast Journal 2006, 12(1):37–47.
- Moran J. L., Bersten, A.D. et al. (2008). Modelling survival in acute severe illness: Cox versus accelerated failure time models. Journal of Evaluation in Clinical Practice 14 83-93.
- Carroll, K. J. (2003). On the use and utility of the Weibull model in the analysis of survival data. Controlled Clinical Trials 24 682-701.
- Matthews, D. E. and Farewell, V. T. (1982). On testing for constant hazard against a changepoint alternative. Biometrics 38, 463-468.
- Frankel, P. and Longmate, J. (2002). Parametric models for accelerated and long-term survival: a comment on proportional hazards. Statistics in Medicine 21 3279-3289.
- Reid, N. (1994). A Conversation with Sir David Cox. Statistical Science 9(3) 439-455.
- Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall.