A Brief Introduction to IoT gateway

Contents

Introduction

Three sensing domain network

Common features of IoT gateway

Reference model of IoT gateway

Conclusion

Introduction

divided into three parts in IoT gateway

- Sensing domain, Network domain, Application domain
- Sensing domain
 - Interact and communicate 'things'
 - Consist of many things information and to realize information of physical target
 - Using Wireless sensor network(WSN), RFID, FieldBus, Barcode,
 Zigbee
 - Provide network domain with valuable
 - Obstacle: Low power, low cost, protocol lightweight

Network domain

- Evolved communication infrastructure
 - · PSTN, 2G, 3G, LTE, Satellite
- Main roles: to transfer the data collected from sensing domain to remote destination

Introduction

Application domain

- Take responsibility for Data processing and services
- Data from transmission layer is handled
- various services provide to user

Figure 1 Three domains of IoT architecture

Three sensing domain network

PAN Network

- Personal area network
- Interacted sensing devices around the person
- Used smart phone, laptop, customized device
- Acted as the IoT gateway, control signaling, and data transmitted the IoT gateway
- A wired connect using USB/Fire wire
- A wireless connect using IrDA, Bluetooth, Wireless USB, ZigBee
- IoT gateway usually registers in the backend servers

Three sensing domain network

Vehicle network

- Two type of vehicle communication
 - Inside a vehicle
 - From/to vehicle
- Vehicle IoT gateway collect information surrounding 'things'
 - road,rail,..etc
- Radio Frequency Identification technology
 - Improved vehicle logistics quality control, tracking
 - Dedicated Short Range Communication
 - The possibility of higher bit rates
 - Reduce the possibility of interference with other equipment
- Intelligent Transportation Systems
 - It will be improved vehicle safety service and traffic management

Three sensing domain network

Home network

- Constructed with sensor, micro actuators, information home appliances etc..
- Home IoT Gateway interconnected multiple smart devices together
 - Shared resources, information
 - Integrate several common network protocols
 - Supports the intercommunication among the equipment with different network protocols
 - Control in-home smart equipment
- Contact external networks
 - Need to access from IoT Gateway to 2G/3G/mobile communication network modules
 - Can be managed smart things everywhere

Common features of IoT gateway

Features of IoT gateway

- Bridging the communication between sensing domain and network domain
- It can be quite different from application to application
- Common form of IoT gateway

Figure 2 IoT gateways in the whole IoT infrastructure

Common features of IoT gateway

Features of IoT gateway

Multiple interfaces

- Connected to a IoT gateway through technologies
 - · Zigbee
 - · Bluetooth
 - Wifi
 - · CAN-Controller area network
- Can choice to connect to the public network
 - · Kind of PSTN, 2G/3G, LTE..etc
- Gateway should support depends on related application requirements, operation strategies and implement solutions

Protocol conversion

- IoT gateway need execute protocol conversion
- Need to communicated between different sensing domain protocol
 - Occur communicate sensing domain protocol to network domain protocol

Common features of IoT gateway

Features of IoT gateway

- Manageability
 - Managed IoT gateway by itself
 - Back-end IoT server provide information
 - Subscription
 - Authority
 - Status
 - · Mobility..etc
 - IoT gateway have abilities to manage 'smart thing'
 - Identify
 - Control
 - Diagnose
 - Configure
- IoT gateway goal: to bridge various sensing domain networks with public communication network or internet

Reference model of IoT gateway

Figure 3 Reference model of IoT gateway

Reference model of IoT gateway

- Service abstraction module
 - Address fragmentation of IoT applications
 - Several functions
 - Uniform interfaces for service providers to simply application development
 - IoT application developers do not need deep understanding of underlying technologies
 - · Enables underlying networks to use IoT optimization
- IoT Gateway system use short—distance wireless communication protocol
 - Zigbee, Bluetooth
- Adaption module
 - Focus on adaption the packet size of two different networks, address resolution
 - Eg. IPv6 packet transmit IEEE 802.15.4 networks

Reference model of IoT gateway

Protocol conversion & data forwarding module

- Interact with service abstraction module, adaption module, multi-interfaces module
- Analyzed and repackaged the sensing data
 - · Based on short-distance communication protocols
- Capsulated and send data based on telecommunication protocols
- Transfer data from one network to another network correctly

Application profile module and network profile module

- Provided contexts to Multi-Interfaces module
- Helped Multi-Interfaces module can decision to use network interface

Reference model of IoT gateway

- Application profile module
 - Provided application level information
 - Can watch the type and number of application currently running

Security and Management

- based on ICT system
- Security provide access control, data integrity, privacy protections
- Management provide management
 - Network
 - · power
 - · fault
 - · authority
 - · status
 - mobility

Conclusion

Conclusion

- IoT communication is quite different from the traditional human to human communication using internet infrastructure
- Prime problem
 - Integrated kinds of sensing networks and telecommunication networks and Internet
 - Using IoT gateway is key to solve intergration

