Universidade Estadual do Rio Grande do Sul

CONTADORES ASSÍNCRONOS E SÍNCRONOS

TÉCNICAS DIGITAIS

Giovani Fick e Larissa Justen

Guaíba, 11 de setembro de 2017

SUMÁRIO

1.	Introdução	3-4
2.	Assíncrono	4-8
2	2.1 Desenvolvimento do Contador	5
2	2.2 Ilustração do Contador	6
	2.3 Diagrama de Estados	
	2.4 Forma de Onda	
3.	Síncrono	9-13
3	3.1 Desenvolvimento do Contador	9
3	3.2 Ilustração do Contador	9
	3.3 Diagrama de Estados	
	3.4 Forma de Onda	
3	3.5 Tabela	12-13
4.	Conclusão	14
5.	Referências Bibliográficas	15

INTRODUÇÃO

Contadores Assíncronos e Síncronos são contadores digitais, utilizam de sinal digital que nada mais é que um sinal com valores discretos (descontínuos) no tempo e em amplitude. São separados dos circuitos lógicos sem sincronismo por possuírem um sincronismo externo, ou seja, usam um sinal de clock.

Os contadores são **Assíncronos** quando o sinal de clock é aplicado apenas ao primeiro estágio, ficando os demais sincronizados pelos estágios anteriores.

Usamos três estágios ou três flip-flops ligados de tal fora que a saía Q0 do menos significativo serve de clock para o segundo, e a saída Q1 serve de clock para Q2. Sabemos que os flip-flops ligados da forma indicada funcionam como divisores de frequência. Assim, o sinal de clock aplicado a Q0 tem sua frequência dividida por 2.

Contadores <u>Síncronos</u> tem um relógio interno, ao passo que os contadores Assíncronos não. Como resultado, todos os flip-flops em um contador Síncrono são conduzidos simultaneamente por um único impulso de relógio. O que difere do contador Assíncrono que o primeiro flip-flop é acionado por um impulso de clock externo, e saída do mesmo aciona o clock do próximo flip-flop, assim sucessivamente.

Cada FF é disparado pela transição negativa do sinal de clock de entrada, assim, todas as transições dos FFs ocorrem ao mesmo tempo.

ASSÍNCRONO

. Desenvolvimento do Contador

O contador Assíncrono tinha como objetivo decrementar o número dez(10) ao número dois(2), ou seja, 2^4 contagens com exclusão dos números 0000, 0001, 1011, 1100, 1101, 1111.

Para que esse objetivo fosse alcançado foi necessário a utilização de: 4 flip-flops JK FF; um clock de 1Hz com duty cicly de 50%; uma porta AND de 4 entradas; três portas NOT; um display de 7 segmentos; um VCC (tensão de corrente contínua). O clock do contador é conectado ao flip-flop menos significativo, e para os flip-flops que se seguem onde se encontra a entrada do clock é ligada a saída Q do flip-flop anterior.

Para que o contador começasse sempre do 10 utilizamos a saída da porta AND, onde se encontra ligada as saídas Qa, ~Qb, ~Qc, ~Qd, do menos significativo ao mais, significativo sucessivamente. A saída da porta AND está conectada ao Reset de a, Set de b, Reset de c, Set de d, onde

Reset - Q=0; ~Q=1

Set – Q=1; ~Q=0

Assim, os filp-flops começam em 1010 (10 em decimal).

Ilustração do Contador

Na Figura 1 abaixo, está ilustrado o Contador Assíncrono.

Figura 1

Diagrama de Estados

A Figura 2 representa o diagrama de estados do contador assíncrono, sendo ilustrada através do software Simulador de Autômatos.

Figura 2

Formas de Onda

As formas de onda estão ilustradas em duas imagens separadas, sendo a Figura 3 do 1010 ao 0111 e a Figura 4 do 0111 ao 0010.

Figura 3

Figura 4

SÍNCRONO

Desenvolvimento do Contador

Para o desenvolvimento do Contador síncrono foi utilizado 4 flip flops do modelo JK FF, um display de 7 segmentos, um clock e 8 portas lógicas para realizar e forçar os estados inválidos. No contador síncrono todos os clocks são ligados simultaneamente nos Flips Flops.

Para forçarmos os estados inválidos construímos a tabela de estado atual e próximo estado. Logo após, construímos o Mapa de Karnaugh para J e K de cada Flip Flop. Por fim, construímos as portas lógicas e ligamos de acordo com as condições em seus respectivos J K, assim, forçando os estados inválidos.

Como realizamos uma contagem de 0001 á 1100, houveram 4 estados inválidos, sendo eles 0000, 1101, 1110 e 1111. Logo abaixo está representado o diagrama de estados e na Figura 5 está ilustrado nosso contador síncrono.

Ilustração do Contador

Na Figura 5 abaixo, está ilustrado o Contador Síncrono.

Figura 5

Diagrama de Estados

A Figura 6 representa o diagrama de estados do contador síncrono, sendo ilustrada através do software Simulador de Autômatos.

Figura 6

Formas de Onda

As formas de onda estão ilustradas em duas imagens separadas, sendo a Figura 7 do 0001 ao 0101, a Figura 8 do 0101 ao 1010 e a Figura 9 do 1010 ao 1100.

Figura 7

Figura 8

Figura 9

Tabelas e Mapas Karnaugh

Α	В	С	D		Α	В	С	D
0	0	0	0	>>	0	0	0	1
0	0	0	1	>>	0	0	1	0
0	0	1	0	>>	0	0	1	1
0	0	1	1	>>	0	1	0	0
0	1	0	0	>>	0	1	0	1
0	1	0	1	>>	0	1	1	0
0	1	1	0	>>	0	1	1	1
0	1	1	1	>>	1	0	0	0
1	0	0	0	>>	1	0	0	1
1	0	0	1	>>	1	0	1	0
1	0	1	0	>>	1	0	1	1
1	0	1	1	>>	1	1	0	0
1	1	0	0	>>	0	0	0	1
1	1	0	1	>>	0	0	0	1
1	1	1	0	>>	0	0	0	1
1	1	1	1	>>	0	0	0	1

= **B.C.D**

= **C.D**

JA	C'D'	C'D	C D	C D'
A'B'	0	0	0	0
A'B	0	0	1	0
АВ	Х	Х	х	Х
A B'	Х	Х	Х	Х

KA	C'D'	C'D	C D	C D'
A'B'	Х	Х	Х	Х
A'B	Х	Х	Х	Х
A B	1	1	1	1
A B'	0	0	0	0

JB	C'D'	C'D	C D	C D'
A'B'	0	0	1	0
A'B	Х	Χ	Х	Х
A B	Х	Х	Х	Х
A B'	0	0	1	0

КВ	C'D'	C'D	C D	C D'
A'B'	Χ	Χ	Χ	Х
A'B	0	0	1	0
A B	1	1	1	1
A B'	Х	Х	Х	Х

=B

JC	C'D'	C'D	C D	C D'
A'B'	0	1	x	Х
A'B	0	1	Х	Х
АВ	0	0	Х	Х
A B'	0	1	Х	Х

= (A'.I	D)+((B'+	D)
---------	------	------	----

KC	C'D'	C'D	C D	C D'
A'B'	X	х	1	0
A'B	X	X	1	0
АВ	Х	Х	1	1
A B'	Х	Х	1	0

= D+(A.B)

JD	C'D'	C'D	C D	C D'	
A'B'	1	Х	Х	1	
A'B	1	Х	х	1	= 1
A B	1	Х	х	1	
A B'	1	Х	Х	1	

KD	C'D'	C'D	C D	C D'
A'B'	Х	1	1	Х
A'B	Х	1	1	Х
A B	Х	0	0	Х
A B'	Х	1	1	Х

=A'+B'

CONCLUSÃO

O desenvolvimento do presente trabalho nos possibilitou exercer a prática sobre a teoria do conteúdo oferecido em aula, Contadores Assíncronos e Síncronos. De modo geral, este trabalho foi muito importante para o nosso aprofundamento do tema, resultando assim numa melhor visualização e entendimento do conteúdo proposto.

REFERÊNCIAS BIBLIOGRÁFICAS

- Slides ministrados pela Professora Dr. Adriane Parraga.
- http://ptcomputador.com/Ferragens/computer-drives-storage/46712.html
- <a href="http://www.newtoncbraga.com.br/index.php?option=com_content&view=article&id=100:licao-9-os-contadores-digitais&catid=52:eletronica-digital<emid=57">http://www.newtoncbraga.com.br/index.php?option=com_content&view=article&id=100:licao-9-os-contadores-digitais&catid=52:eletronica-digital<emid=57