Pattern Recognition

Fundamentals

Objectives

- Overview of Pattern Recognition
- Programming vs Machine Learning
- Definition of Terms
- Setup and Tools

Pattern Recognition

- Method of analysis that applies machine learning to recognize patterns / regularities in data
- Data: Any form of input that can be objectively defined that characterizes an entity
- **Pattern:** a set of objective rules that govern how data is treated

 Your site needs to provide a set of recommended products based on past purchases

System:

- Classical Programming:
 - Requires the programmer to explicitly set rules
 - Customer recommendations can be unpredictable and variates from customer to customer
 - Each rule adds more time to the process

- Machine Learning:
 - Derives rules from the data itself
 - Adapts to the complexities in customer profiles
 - Trains models ahead of time, saving time towards prediction
- The output of a Machine Learning algorithm is a model

What is a Model?

- A trained algorithm that:
 - Use to identify patterns / rules in your data
 - Does not require explicitly setting such rules (since it is already derived)
- Inference: Application of a model to perform a prediction

$$f(x) = w_1 x_1 + w_2 x_2 + w_n x_n$$

Features and Weights

$$f(x) = w_1 x_1 + w_2 x_2 + w_n x_n$$

Features: Objective characteristics of your data

x₁: Is this product a hat? Yes = 1

$$f(x) = w_1 x_1 + w_2 x_2 + w_n x_n$$

Weights: How much does the feature affect the prediction?

w₁: Hats make up 80% of the purchases this customer has made

$$f(x) = (0.8 * 1) + w_2 x_2 ... + w_n x_n$$

Feature x_2 : Is this item from Brand Z

Weight w_2 : 2 / 8 items this person bought in the past were Brand Z (0.25)

$$f(x) = (0.8 * 1) + (0.25 * 1)$$

 $f(x) = 1.05$

Output: If > 1, then recommend the product

Common Terminologies

- Feature Vector: An array of numbers representing an entity
- Dimensionality: The size of the feature vector
- Algorithm: The algorithm (machine learning algorithm)
 used to create a model
- **Model:** The output of the algorithm representing a solution
- Weights: Numerical coefficient of dimensionality to come up with a solution (read model)

Categories of Machine Learning Algorithms

Supervised Unsupervised Reinforcement

Supervised

Learn by identifying patterns in data that's already been labeled

Supervised

Mathematical Representation

$$f(x) = mx + b$$

$$f(x) = y$$

y = { 1, 0 }

$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 ... w_nx_n$$

Mathematical Representation

Unsupervised

The machine has to uncover and create the labels itself

Unsupervised

Are these anomalies simple outliers or indicators of hardware failure?

Reinforcement Learning

 Learning through trial and error. Best when the desired outcome is known but the exact path to achieving it isn't.

Reinforcement Learning

Sub-category of machine learning

Machines that can play chess based on rules.

Machines that learn to play chess from analyzing past chess games played by humans.

Machines that can learn to play chess by playing against themselves.

Hardwarebased constraints on implementatio n

Complexity of problems it can solve

- Artificial Neural Network
 - Model that can be trained on raw data
 - Feature extraction is automatically performed

ImageNet Large Scale Visual Recognition Challenge: Identify 1000 classes of things across 1 million images

ImageNet Large Scale Visual Recognition Challenge: Identify 1000 classes of things across 1 million images

Demo

Inspiring Shows

Wizards of the modern Day

Two Primary Objectives

Represent anything as a multi-dimensional vector

Develop a Model based on data

Tools of the Trade

Setting up Python and Jupyter

- Download Python for your Operating System (<u>https://www.python.org/downloads/</u>)
- 2. Use **pip** to install jupyter
- 3. Run Jupyter notebook

Checking your Python Version

python --version

Creating an Environment (Windows)

py -m venv env

Creating an Environment (Mac / Linux)

python -m venv env

Allowing Execution (Windows)

Set-ExecutionPolicy Unrestricted -Scope Process

Activating an Environment (Windows)

env\Scripts\activate.ps1

Activating an Environment (Linux / Mac)

source env/bin/activate

Installing Jupyter

pip install jupyter

Running Jupyter

jupyter notebook .