Practical 1: Configure Routers for Syslog, NTP and SSH operation

Topology:

Addressing Table:

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	gig0/0	192.168.1.1	255.255.255.0	N/A
	Se0/1/0	10.1.1.1	255.255.255.252	N/A
R2	Se0/1/0	10.1.1.2	255.255.255.252	N/A
	Se0/1/1	10.2.2.2	255.255.255.252	N/A
R3	gig0/0	192.168.3.1	255.255.255.0	N/A
	Se0/1/0	10.2.2.1	255.255.255.252	N/A
PC-A	NIC	192.168.1.5	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.1.6	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.3.5	255.255.255.0	192.168.3.1

Objectives:

- Configure OSPF MD5 authentication.
- Configure NTP.
- Configure routers to log messages to the syslog server.
- Configure R3 to support SSH connections.

■ Configure Router with password

Step 1: Configure password for vty lines

Execute Command on all routers

R(config) # line vty 0 4

R(config-line) #password vtypa55

R(config-line) #login

Step 2: Configure secret on router

Execute Command on all routers

R(config) # enable secret enpa55

Step 3: Configure OSPF on routers

R1(config) #router ospf 1

R1(config-router) #network 192.168.1.0 0.0.0.255 area 0

R1(config-router) #network 10.1.1.0 0.0.0.3 area 0

R2(config) #router ospf 1

R2(config-router) #network 10.1.1.0 0.0.0.3 area 0

R2(config-router) #network 10.2.2.0 0.0.0.3 area 0

R3(config) #router ospf 1

R3(config-router) #network 192.168.3.0 0.0.0.255 area 0

R3(config-router) #network 10.2.2.0 0.0.0.3 area 0

Step 4: Test Connectivity

PC-A > ping 192.168.3.5

Successful

PC-B > ping 192.168.3.5

Successful

Part 1: Configure OSPF MD5 Authentication

Step 1: Test connectivity. All devices should be able to ping all other IP addresses.

Step 2: Configure OSPF MD5 authentication for all the routers in area 0.

R1(config)# router ospf 1

R1(config-router)# area 0 authentication message-digest

R2(config)# router ospf 1

R2(config-router)# area 0 authentication message-digest

R3(config)# router ospf 1

R3(config-router)# area 0 authentication message-digest

Step 3: Configure the MD5 key for all the routers in area 0. Configure an MD5 key on the serial interfaces on R1, R2 and R3. Use the password MD5pa55 for key 1.

R1(config)# interface s0/1/0

R1(config-if)# ip ospf message-digest-key 1 md5 MD5pa55

R2(config)# interface s0/1/0

R2(config-if)# ip ospf message-digest-key 1 md5 MD5pa55

R2(config-if)# interface s0/1/1

R2(config-if)# ip ospf message-digest-key 1 md5 MD5pa55

R3(config)# interface s0/1/0

R3(config-if)# ip ospf message-digest-key 1 md5 MD5pa55

Step 4: Verify configurations.

a. Verify the MD5 authentication configurations using the commands show ip ospf interface.

b. Verify end-to-end connectivity.

Output should be shown in all the routers:

R# show ip ospf interface

Message-digest Authentication Enabled

Youngest key ID is 1

Part 2: Configure NTP

Step 1: Enable NTP authentication on PC-A.

- a. On PC-A, click NTP under the Services tab to verify NTP service is enabled.
- b. To configure NTP authentication, click Enable under Authentication. Use key 1 and password NTPpa55

for authentication.

Step 2: Configure R1, R2, and R3 as NTP clients.

R1(config)# ntp server 192.168.1.5

R2(config)# ntp server 192.168.1.5

R3(config)# ntp server 192.168.1.5

Verify client configuration using the command show ntp status.

Step 3: Configure routers to update hardware clock. Configure R1, R2, and R3 to periodically update the hardware clock with the time learned from NTP.

R1(config)# ntp update-calendar

R2(config)# ntp update-calendar

R3(config)# ntp update-calendar

Verify that the hardware Clock was Updated

R# show clock

Step 4: Configure NTP authentication on the routers. Configure NTP authentication on R1, R2, and R3 using key 1 and password NTPpa55.

R1(config)# ntp authenticate

R1(config)# ntp trusted-key 1

R1(config)# ntp authentication-key 1 md5 NTPpa55

R2(config)# ntp authenticate

R2(config)# ntp trusted-key 1

R2(config)# ntp authentication-key 1 md5 NTPpa55

R3(config)# ntp authenticate

R3(config)# ntp trusted-key 1

R3(config)# ntp authentication-key 1 md5 NTPpa55

Step 5: Configure routers to timestamp log messages.

Execute commands on all routers

R1(config)# service timestamps log datetime msec

R2(config)# service timestamps log datetime msec

R3(config)# service timestamps log datetime msec

Part 3: Configure Routers to Log Messages to the Syslog Server

Step 1: Configure the routers to identify the remote host (Syslog Server) that will receive logging messages.

R1(config)# logging host 192.168.1.6

R2(config)# logging host 192.168.1.6

R3(config)# logging host 192.168.1.6

The router console will display a message that logging has started.

Step 2: Verify logging configuration.

Use the command

R# show logging

to verify logging has been enabled.

Step 3: Examine logs of the Syslog Server.

From the Services tab of the Syslog Server's dialogue box, select the Syslog services button. Observe the logging messages received from the routers.

Note: Log messages can be generated on the server by executing commands on the router. For example, entering and exiting global configuration mode will generate an informational configuration message. You may need to click a different service and then click Syslog again to refresh the message display.

Part 4: Configure R3 to Support SSH Connections

Step 1: Configure a domain name of consecurity.com on R3.

R3(config)# ip domain-name ccnasecurity.com

Step 2: Configure users for login to the SSH server on R3.

Create a user ID of SSHadmin with the highest possible privilege level and a secret password of sshpa55.

R3(config)# username SSHadmin privilege 15 secret sshpa55

Step 3: Configure the incoming vty lines on R3. Use the local user accounts for mandatory login and validation. Accept only SSH connections.

R3(config)# line vty 0 4

R3(config-line)# login local

R3(config-line)# transport input ssh

Step 4: Erase existing key pairs on R3. Any existing RSA key pairs should be erased on the router.

R3(config)# crypto key zeroize rsa

Note: If no keys exist, you might receive this message: % No Signature RSA Keys found in configuration.

Step 5: Generate the RSA encryption key pair for R3.

The router uses the RSA key pair for authentication and encryption of transmitted SSH data. Configure the RSA keys with a modulus of 1024. The default is 512, and the range is from 360 to 2048.

R3(config)# crypto key generate rsa

The name for the keys will be: R3.ccnasecurity.com

Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

Note: The command to generate RSA encryption key pairs for R3 in Packet Tracer differs from those used in the lab.

Step 6: Verify the SSH configuration.

Use the show ip ssh command to see the current settings. Verify that the authentication timeout and retries are at their default values of 120 and 3.

R3# show ip ssh

SSH enabled-version 1.99

Authentication time out: 120 secs; Authentication retries: 3

R#

STUD--Talks

Step 7: Configure SSH timeouts and authentication parameters.

The default SSH timeouts and authentication parameters can be altered to be more restrictive. Set the timeout to 90 seconds, the number of authentication retries to 2, and the version to 2.

R3(config)# ip ssh time-out 90

R3(config)# ip ssh authentication-retries 2

R3(config)# ip ssh version 2

Verify the SSH configuration

R3# show ip ssh

SSH enabled-version 2.0

Authentication time out: 90 secs; Authentication retries: 2

R#

Step 8: Attempt to connect to R3 via Telnet from PC-C.

Open the Desktop of PC-C. Select the Command Prompt icon. From PC-C, enter the command to connect to

R3 via Telnet.

PC> telnet 192.168.3.1

This connection should fail because R3 has been configured to accept only SSH connections on the virtual terminal lines.

Step 9: Connect to R3 using SSH on PC-C.

Open the Desktop of PC-C. Select the Command Prompt icon. From PC-C, enter the command to connect to R3 via SSH. When prompted for the password, enter the password configured for the administrator shpa55.

PC> ssh -1 SSHadmin 192.168.3.1

Password: sshpa55

STUD--Talks

Step 10: Connect to R3 using SSH on R2.

To troubleshoot and maintain R3, the administrator at the ISP must use SSH to access the router CLI. From the CLI of R2, enter the command to connect to R3 via SSH version 2 using the SSHadmin user account. When prompted for the password, enter the password configured for the administrator: ciscosshpa55.

R2# ssh -v 2 -l SSHadmin 10.2.2.1

Password: sshpa55

