

REAL MATRIX SPACE

Why

We can add and scale matrices, so the $m \times n$ matrices are a vector space over \mathbf{R} .

Definition

The matrix sum of two matrices $A, B \in \mathbf{R}^{m \times n}$ is the matrix $C \in \mathbf{R}^{m \times n}$ defined by $C_{ij} = A_{ij} + B_{ij}$. In other words, the matrix C is given by summing the entries of A and B "entry-wise". We denote the matrix sum by A + B.

For $\alpha \in \mathbf{R}$, the α -scaling of $A \in \mathbf{R}^{m \times n}$ is the matrix $C \in \mathbf{R}^{m \times n}$ defined by $C_{ij} = \alpha A_{ij}$. In other words, the matrix C is given by scaling the entries of A "entry-wise". We denote the α -scaled version of A by αA . These two definitions are justified by the following.

The matrix space (or matrix vector space) is the vector space $\mathbf{R}^{m \times n}$ in which addition is given by the matrix sums and scalar multiplication by entry-wise scaling. Sometimes we reference explicitly the $m \times n$ matrix space.

Subspaces of symmetric matrices

Consider the space of square matrices $\mathbf{R}^{n \times n}$. It is obvious that the subset of symmetric matrices is a subspace. Adding two symmetric matrices gives a symmetric matrix. Scaling a symmetric matrix by a real number gives a symmetric matrix. The matrix all of whose entries are 0 is symmetric.

