

Project Milestones

1η φάση

Ορισμός προβλήματος και Εξερεύνηση Δεδομένων

2η φάση

Εκπαίδευση/ Μάθηση αλγόριθμων (learning/training) και πρόβλεψη (prediction)

3η φάση

Αξιολόγηση αλγορίθμου (testing)

1η Φάση Ορισμός προβλήματος και Εξερεύνηση Δεδομένων Πρόβλημα πρόβλεψης (Regression)

Ανάλυση δεδομένων (10683x11)

Data Selection

Data Preprocessing

Data Transformation

Data Selection

Διαγραφή features τα οποία δεν είχαν κάτι να προσφέρουν

Αφαίρεση γραμμών που έλειπαν σημαντικά data

Ακολουθήσαμε 2 παραλλαγές

1 χωρίς την στήλη Route 1 κρατώντας την στήλη Route

Data Preprocessing

AIRLINE

DEP TIME

DATE OF JOURNEY

SOURCE KAI DESTINATION

DURATION

TOTAL STOPS

ADDITIONAL INFO

ROUTE

One Hot encodings

Airline

- 12 airlines
- Dummy
 Encoding
 (One Hot)

Source

- 5 Source Cities
- Dummy Encoding (One Hot)

Destination

- 6 Destination
 Cities
- Dummy
 Encoding
 (One Hot)

Cyclical Feature encoding

Date of Journey

- Month and Day
- Cyclical Month
- Cyclical Day (Of the week: Monday=0, Sunday=6)

Departure Time

- Changed from HH:MM to HH.MM
- Cyclical min: 00.00 max 23.59

Ordinal Encoding – Additional Info

8 διαφορετικές επιπρόσθετες πληροφορίες για κάθε πτήση

Αύξουσα σειρά σε σχέση με το πόσο προσδίδει στο κόστος του εισιτηρίου

- $0 \rightarrow \text{No food}$
- 1 → in-flight meal not included
- 2 → no check in baggage included
- 3 → red-eye flight
- 4 → 1 long layover
- 5 → 1 short layover
- 6 → 2 long layovers
- 7 → change airports
- 8 → business class

Route -TF-IDF

Αλλαγή μορφής

Duration

• Από μορφή 1h20m σε 80 λεπτά

Total Stops

 Από 1 stop, 2 stops, κτλ. τα μετατρέψαμε σε ένα ακέραιο μόνο

Εντοπισμός των Outliers

- Eντοπίστηκαν outlier στις στήλες "Duration", "Total_Stops" και "Price"
- Χρησιμοποιήσαμε την μέθοδο IQR διότι συγκριτικά με την MAD μπορούσε να βρει τα outliers πολύ πιο αποδοτικά

IQR vs MAD

Data Transformation

2 Τεχνικές που χρησιμοποιήσαμε

Backward Elimination

Forward Selection

2η Φάση: Εκπαίδευση/Μάθηση αλγόριθμων (learning/training) και πρόβλεψη (prediction)

Αλγόριθμοι που χρησιμοποιήσαμε

Linear Regressor

Polynomial Regressor Support Vector Regressor (SVR)

Random Forest Regressor

Lasso Regressor

Decision Tree Regressor

Gradient Boost Regressor

Light Gradient Boosting Machine (optimized library from Microsoft)

GridSearchCv

01

Δημιουργήσαμε ένα parameter grid για τον κάθε αλγόριθμο

02

Χρησιμοποιήσαμε GridSearchCv με cv=5 για να βρούμε τις καλύτερες παραμέτρους για κάθε αλγόριθμο. 03

Χρονοβόρα διαδικασία

Χωρίσαμε το dataset μας σε training (70%) και testing (30%)

Evaluation function

Αφού εκπαιδεύσαμε τους αλγόριθμους με τις κατάλληλες παραμέτρους (στο training set)

Πρόβλεψη με την χρήση κάθε αλγόριθμου

Χρησιμοποιήσαμε την evaluation function

1 - np.sqrt(np.square(np.log10(y_pred +1) - np.log10(y_true +1)).mean()

Η οποία δινόταν από την σελίδα του διαγωνισμού για να συγκρίνουμε τα αποτελέσματα μας.

3η Φάση: Αξιολόγηση αλγορίθμου (testing)

- Τα αποτελέσματα χωρίζονται σε αποτελέσματα με route και χωρίς.
- Διακρίνουμε επίσης την χρήση feature selection, σε SFS, SBS και χωρίς feature selection

Αποτελέσματα χωρίς την χρήση της στήλης Route

Καλύτερα αποτελέσματα: gradient boost regressor (0.93) & random forest χωρίς feature selection.

SFS & SBS στους περισσότερους αλγόριθμους έχουν παρόμοια αποτελέσματα.

O SBS υστερεί σε lasso, linear και polynomial regressors.

Αποτελέσματα χωρίς την χρήση της στήλης Route

Ο SBS χρησιμοποιεί περισσότερα features.

Προτίμηση SFS παρά SBS.

Χωρίς feature selection, έχουμε καλυτέρα γενικά αποτελέσματα.

Οι LGB και decision tree, ανεβαίνουν στα 0.92.

Αποτελέσματα με την χρήση της στήλης Route

- Δεν εκμεταλλεύονται όλοι οι αλγόριθμοι την έξτρα πληροφορία.
- Κάποιοι όμως το λαμβάνουν υπόψιν και φτάνουν στο 0.93.
- Με feature selection o linear & polynomial regressors έχουν χαμηλά scores.
- Ο συνδυασμός SBS/SFS και Route δίνει μέγιστο score 0.91 και ελάχιστο 0,51.

Αποτελέσματα με την χρήση της στήλης Route

- Χωρίς feature selection, καλύτερα γενικά αποτελέσματα.
- Oι Gradient Boost
 Regressor και Random
 Forest Regressor με scores
 0.93 εξακολουθούν να είναι
 οι καλύτεροι.
- Ο LGB φτάνει και αυτός στο 0.93 score.

Thank you!!!