Computer Networks

Dr. Ali Sayyed

Department of Computer Science

National University of Computer & Emerging Sciences

Network Layer *Routing Protocols*

What is Routing

- Routing is the process of path selection in any network.
- A computer network is made of many machines, called nodes, and paths or links that connect those nodes.
- Communication between two nodes in an interconnected network can take place through many different paths.
- Routing is the process of selecting the best path using some predetermined rules.

Routing Metrics and Costs

- **Hop count:** Hop count is defined as a metric that specifies the number of passes through internetworking devices.
- Delay: The delay values for all the links along the path is considered.
- Bandwidth: The capacity of the link.
- Load: Load refers to the degree to which the network resource such as a router or network link is busy.
- Reliability

Routing circuit-switched networks

- Many connections will need paths through more than one switch
- Need to find a route
 - Efficiency
 - Resilience
- A dedicated physical path, or circuit, is established and maintained between two nodes or locations for the duration of a connection
- Public telephone switches are a tree structure

Routing in Packet Switched Network

- However, Packet Switched Network require dynamic routing which allows changes in routes according to the network condition
- This is one of the complex and crucial aspect of packet switched networks
- Characteristics required
 - Correctness
 - Simplicity
 - Stability
 - Fairness
 - Efficiency
- Criteria for selection of route
 - Least cost in terms of hops count, delay, bandwidth etc

Routing Decision and Update Timing

- Place
 - Distributed
 - Made by each node
 - Nodes use local knowledge
 - Centralized
 - Collect info from all nodes
- Update timing
 - Fixed never updated
 - Adaptive regular updates

Routing Strategies

- Fixed
- Flooding
- Random
- Adaptive/Dynamic

Fixed Routing

- Single permanent route for each source to destination pair
- Determine routes using a least cost algorithm
- Route fixed, at least until a change in network topology
- Useful for
 - static networks where the network condition does not change often

CENTRAL ROUTING DIRECTORY

From Node

	1	2	3	4	5	6
1	_	1	5	2	4	5
2	2	_	5	2	4	5
3	4	3	1	5	3	5
4	4	4	5	_	4	5
5	4	4	5	5	1	5
6	4	4	5	5	6	_

Node	1	Directory

Destination	Next Node		
2	2		
3	4		
4	4		
5	4		
6	4		

Node 2 Directory

To Node

Destination	Next Node		
1	1		
3	3		
4	4		
5	4		
6	4		

Node 3 Directory

Destination	Next Node		
1	5		
2	5		
4	5		
5	5		
6	5		

Node 4 Directory

Destination	Next Node		
1	2		
2	2		
3	5		
5	5		
6	.5		

Node 5 Directory

Destination	Next Node		
1	4		
2	4		
3	3		
4	4		
6	6		

Node 6 Directory

Destination	Next Node		
1	5		
2	5		
3	5		
4	5		
5	5		

Flooding

- No network info required
- Packet sent by node to every neighbor
- Incoming packets retransmitted on every link
- Eventually a number of copies will arrive at destination
- Each packet is uniquely numbered (sequence number) so duplicates can be discarded
- Nodes can remember packets already forwarded to keep network load in bounds

Flooding Example

- Properties of Flooding
 - All possible routes are tried
 - Very robust
 - At least one packet will have taken minimum hop count route
 - Can be used to set up virtual circuit
 - All nodes are visited
 - Useful to distribute information (e.g. routing)
- Can we use flooding for making routing tables and then selecting best path?

Random Routing

- Random routing has the simplicity and robustness of flooding with far less traffic load.
- A node select only one outgoing path to forward the incoming packet
- Selection can be random or round robin (excluding the link on which the packet arrived)
- Can select outgoing path based on probability calculation
- No network info needed
- Route is typically not least cost nor minimum hop

Adaptive Routing

- Used by most of the packet switching networks
- Routing decisions change as conditions on the network change
 - Topology
 - Failure
 - Congestion
- Requires info about network
- Decisions more complex
- Tradeoff between quality of network info and overhead
- Improved performance

Distance-vector Routing

- For each destination, each node maintain the next hop of shortest path
- Routers using distance-vector protocol do not have knowledge of the entire path to a destination. Instead they maintains only neighbor states.
 - **Direction** (Next Hop) to which a packet should be forwarded.
 - Cost
 - Cost to reach a certain node, calculated using various route metrics.
 Examples are hop count, node delay, link quality and available bandwidth.
- Each node periodically send everything it know to neighbors
- Slow convergence for large Networks, however good for small networks
- e.g. Bellman-Ford algorithm

Bellman-Ford Algorithm Definitions

- The Bellman–Ford algorithm computes shortest paths from a source node to all of the other nodes in a network.
- 1. Each node calculates the distances between itself and all known nodes and stores this information as a table.
- 2. Each node sends its table to all neighboring nodes.
- 3. When a node receives distance tables from its neighbors, it calculates the shortest routes to all other nodes and updates its own table to reflect any changes.

- w(i, j) = link cost from node i to node j
 - w(i, i) = 0
 - $w(i, j) = \infty$ if the two nodes are not directly connected
 - $w(i, j) \ge 0$ if the two nodes are directly connected

- a) Idea is to share the information between neighbors.
- b) The node A does not know the distance about E, but node C does.
- c) If node C share it routing table with A, node A can also know how to reach node E.
- d) On the other hand, node C does not know how to reach node D, but node A does.

e) If node A share its routing table with C, then node C can also know

how to reach node D.

	Q	R	S	Т
0	∞	∞	∞	∞
0	2	4	∞	∞
0	2	4	4	7
0	2	4	2	7
0	2	4	2	7

Link-state routing

- Every node **maintain complete topology** database in the form of a man of
- Every node maintain complete topology database in the form of a map of connectivity to the network
- The map shows which nodes are connected to which other nodes.
- Each node then independently calculates the best path to every possible destination in the network.
- Every node inform all the nodes in a network of topology changes
- send info about your neighbors to everyone
- Each collection of best paths will then form each node's routing table.
- Better than Distance Vector for large Networks
- E.g. Dijkstra's algorithm

Link-state routing working

- Each router keeps track of its incident links and create a link state table
 - Whether the link is up or down
 - The cost on the link
- Each router broadcasts the link state table (Flooding)
 - To give every router a complete view of the graph
- Each router runs **Dijkstra's algorithm**
 - To compute the shortest paths
 - ... and construct the forwarding table

When to Flood

- Link or node failure/recovery or
- Configuration change like updated link metric
- Converges quickly, but can cause flood of updates

Periodically

- Typically (say) every 30 minutes
- Corrects for possible corruption of the links
- Limits the rate of updates, but also failure recovery

Dijkstra's Algorithm Definitions

- Iterative algorithm which find shortest paths from given source node to all nodes
- D(v): Cost from source node s to destination node v
- p(v): previous node along the least-cost path from source.
- N: set of nodes to which the least-cost path is found.
- s = source node
- w(i, j) = link cost from node i to node j
- L(n) = cost of least-cost path from node s to node n currently known
 - At termination, L(n) is cost of least-cost path from s to n

Dijkstra's Algorithm Method

- Step 1 [Initialization]
 - N = {s} Set of nodes so far incorporated consists of only source node
- Step 2 [Get Next Node]
 - Find neighboring node not in N with least-cost path from s
 - Incorporate node into N
- Step 3 [Update Least-Cost Paths]
 - L(n) = min[L(n), L(x) + w(x, n)]
 - If latter term is minimum, path from s to n is path from s to x plus x to
 n
- Algorithm terminates when all nodes have been added to N

Dijkstra's algorithm: Example

Source is node u.

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞

Dijkstra's algorithm: Example

0 u 2,u 5,u 1,u ∞	10 10000 0 10 10
	∞
1 ux 2,u 4,x 2,x	∞

Dijkstra's algorithm: Example

Source is node u.

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3,у			4,y
3	uxyv		3,у			4,y
4	uxyvw					4,y
5	uxyvwz					

Link-State Routing - Advantages

- Fast Network Convergence: It is the main advantage of the link-state routing protocol. Because of receiving an LSP, link-state routing protocols immediately flood the LSP out.
- **Topological Map:** Link-state routing uses a topological map for creating the network topology. Using the map, each router can separately determine the shortest path to every network.
- Event-driven Updates: After initial flooding of LSPs, the LSPs are sent only when there is a change in the topology and contain only the information regarding that change. The LSP contains only the information about the affected link. The link-state never sends periodic updates.

Link-State Routing - Disadvantages

- Memory Requirements The link-state routing protocol creates and maintains a database. The database required more memory than a distance vector protocol.
- Processing Requirements Link-state routing protocols also require more CPU processing because the algorithm requires more CPU time than distance-vector algorithms just like Bellman-Ford because link-state protocols build a complete map of the topology.
- **Bandwidth Requirements** The link-state routing protocol floods link-state packet during initial start-up and also at the event like network breakdown, and network topology changes, which affect the available bandwidth on a network. If the network is not stable it also creates issues on the bandwidth of the network.