Задача об инвестиционном портфеле

Оценка актива (акции)

Прирост стоимости

Актив 1: ~30%

Актив 2: ~30%

Что еще?

Оценка актива (акции). Риск

• Один из методов – дисперсия относительных суточных колебаний:

$$q_i = \frac{p_i}{p_{i-1}} - 1$$

День Цена			
1	59		
2	59,5192		
3	60,22153		
4	61,53436		

День	Чень Изменение		
1			
2	0,0088		
3	0,0118		
4	0,0218		

Оценка актива (акции). Риск

• Один из методов – дисперсия относительных суточных колебаний:

$$q_i = \frac{p_i}{p_{i-1}} - 1$$

Можно в процентах

День	Цена
1	59
2	59,5192
3	60,22153
4	61,53436

День	Изменение
1	
2	0,0088
3	0,0118
4	0,0218

Разброс приращений

- Сформируем «портфель»:
 - 100 ед. актива 2 (на сумму 5900 ден. ед.)
 - 79 ед. актива 3 (на сумму 5925 ден. ед.)

День	Цена	Изменение	
1	11825		
2	11919,58	0,007998	
3	11997,02	0,006497	
4	12015,1	0,001507	

Дисперсия суммы СВ

$$D[X + Y] = D[X] + D[Y] + 2cov(X, Y)$$

$$\operatorname{cov}(X,Y) = rac{1}{n} \sum_{t=1}^n \left(X_t - \overline{X} \right) \left(Y_t - \overline{Y} \right)$$

Формальная модель портфеля

- Пусть есть n различных активов, каждый из которых характеризуется приростом стоимости g_i и риском r_i (измеряемым дисперсией). Известна также попарная ковариация активов $cov_{i,i}$
- Тогда инвестиционный портфель описывается набором из n коэффициентов α_i , причем α_i показывает, какую долю в этом портфеле занимает соответствующий актив
 - Доходность портфеля: $\sum_n \alpha_i g_i$
 - Риск портфеля: $\sum_{1 \leq i \leq n} \alpha_i^2 r_i + 2 \sum_{1 \leq i < j \leq n} \alpha_i \alpha_j cov_{i,j}$

См. также портфельная теория Гарри Марковица (предложена в 50-х, удостоена Нобелевской премии в 1990).

Как это сделать в Python

Получение данных с сайта Финам

https://www.finam.ru/profile/moex-akcii/pllc-yandex-n-v/export/

МосБиржа акции	Yandex clA	→ ☆		
Интервал и периодичность	01.01.2017 # - 31.12.2017 #	1 день ▼		
Имя выходного файла	YNDX_170101_171231	.csv 🔻		
Имя контракта	YNDX			
Формат	даты ггггммдд ▼ времени	ЧЧММСС ▼		
Выдавать время	начала свечи окончания свечи	московское		
Разделитель	полей запятая (,) ▼ разрядов	нет ▼		
Формат записи в файл	TICKER, PER, DATE, TIME, CLOSE	▼		
Добавить заголовок файла				
Заполнять периоды без сделок				
	Получить файл			

Получение данных с сайта Финам. Формат файла

```
<TICKER>, <PER>, <DATE>, <TIME>, <CLOSE>
YNDX,D,20170103,000000,1241.0000000
YNDX,D,20170104,000000,1239.0000000
YNDX,D,20170105,0000000,1252.0000000
YNDX,D,20170106,0000000,1291.0000000
YNDX,D,20170109,0000000,1317.0000000
YNDX,D,20170110,0000000,1319.50000000
YNDX,D,20170111,0000000,1299.00000000
```

Загрузка в Python

```
prices_df = pd.read_csv('YNDX_170101_171231.csv')
```

	<ticker></ticker>	<per></per>	<date></date>	<time></time>	<close></close>
0	YNDX	D	20170103	0	1241.0
1	YNDX	D	20170104	0	1239.0
2	YNDX	D	20170105	0	1252.0
3	YNDX	D	20170106	0	1291.0
4	YNDX	D	20170109	0	1317.0

Загрузка в Python

```
prices_df = pd.read_csv('YNDX_170101_171231.csv')
```

	<ticker></ticker>	<per></per>	<date></date>	<time></time>	<close></close>
0	YNDX	D	20170103	0	1241.0
1	YNDX	D	20170104	0	1239.0
2	YNDX	D	20170105	0	1252.0
3	YNDX	D	20170106	0	1291.0
4	YNDX	D	20170109	0	1317.0

Загрузка в Python

```
prices_df = pd.read_csv('YNDX_170101_171231.csv')
prices = prices_df['<CLOSE>']
```

```
0
1241.0
1239.0
1252.0
3
1291.0
4
1317.0
```

Переход к относительным приращениям

```
prices_df = pd.read_csv('YNDX_170101_171231.csv')
prices = prices_df['<CLOSE>']
Dm = (df['<CLOSE>'].shift(-1)/df['<CLOSE>'] - 1).dropna()
```

```
D = Dm = 0 1241.0 0 -0.001612 1 1239.0 1 0.010492 2 1252.0 2 0.031150 3 0.020139 4 1317.0 4 0.001898
```

 $q_i = \frac{p_i}{p_{i-1}} - 1$

Вычисление матрицы ковариаций

```
stocks = [
    'portfolio data\\AFLT 160501 170510.txt',
    'portfolio data\\TRNFP 160501 170510.txt',
    'portfolio data\\ROSN 160501 170510.txt'
variations = []
for filename in stocks:
    df = pd.read csv(filename)
    variations.append((df['<CLOSE>'].shift(-1)/df['<CLOSE>'] - 1)
                          .dropna()
                          .values
                          .reshape(1, -1))
variations = np.concatenate(variations, axis=0)
C = np.cov(variations)
```

Решение задачи квадратичного программирования

Quadratic Programming

The function qp is an interface to coneqp for quadratic programs. It also provides the option of using the quadratic programming solver from MOSEK.

```
cvxopt.solvers.qp(P, q [, G, h [, A, b [, solver [, initvals ] ] ] ] )
```

Solves the pair of primal and dual convex quadratic programs

minimize
$$(1/2)x^TPx + q^Tx$$

subject to $Gx \leq h$
 $Ax = b$

Как это сделать в Octave

Загрузка в Octave

. . .

```
D = csvread("YNDX_170101_171231.csv");
```

```
0.0000e+000
             0.0000e+000
                          0.0000e+000
                                       0.0000e+000
                                                     0.0000e+000
0.0000e+000
            0.0000e+000
                          2.0170e+007
                                       0.0000e+000
                                                     1.2410e+003
            0.0000e+000
                          2.0170e+007
                                                     1.2390e+003
0.0000e+000
                                       0.0000e+000
0.0000e+000
             0.0000e+000
                          2.0170e+007
                                       0.0000e+000
                                                     1.2520e+003
```

Загрузка в Octave

```
D = csvread("YNDX_170101_171231.csv");
D = D(2:end, 5);

D =
1.2410e+003
1.2390e+003
1.2520e+003
```

Переход к относительным приращениям

Вычисление ковариации

```
Dm1 = ...
Dm2 = ...
c = cov(Dm1, Dm2);
```

Вычисление ковариации

```
data = {"AFLT 160501 170510.txt",
        "ALRS 160501 170510.txt",
        ...};
Dm = zeros(size(D,1)-2, size(data, 1));
for i = 1:size(Dm, 2)
 D = csvread(data{i});
 D = D(2:end, 5);
  Dm(:, i) = diff(D) ./ D(1:end-1));
endfor
H = cov(Dm);
```

Решение задачи квадратичного программирования

```
-- [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B)
Solve the quadratic program
      min 0.5 x'*H*x + x'*q
       X
subject to
     A*x = b
      1b <= x <= ub
     A_lb <= A_in*x <= A_ub
```