Master thesis Physical layer security

Authentication and ciphering using physical unclonable functions on FPGA

Oscar Van Slijpe

Supervisor: Dr. Pr. Jean-Michel Dricot

Co-supervisor: Dr. Pr. Dragomir Milojevic

Motivation

Own Security

Resistant to physical attack

Limited ressources

Table of content

PUF • Principles

Randomness

Key generation from random intrinsic properties

Unclonable

Due to unreachable manufacturing precision.

Usage

TRNG, key generation, identification, authentification

PUF • Classification

PUF • Examples • Arbiter

Delay based

One signal with 2 paths to a Latch

Configurable paths using MUXs

Response depend on the fastest path

Figure 1: Arbiter PUF

PUF • Metrics

Repartition between 0 and 1.

Ideally equal to **50%** to maximise the entropy.

Stability of the response over samples.

Ideally equal to 100%

Distance between the responses of different devices.

Ideally equal to 50%

Probability of each bit to be 1 over all devices

Ideally equal to **50%** for each bit.

PUF • Metrics

Method	APUF	FF- APUF	XOR- APUF	BST- APUF	RO-PUF	BST- ROPUF	M- ROPUF	TERC)-PUF	PDL- TERO- PUF	SRAM- PUF	RWC- SRAM- PUF	FF-PUF
Reliability	99.5%	90.2%	99.4%	99.9%	99.2%	99.9%	N/A	97.4%	98.2%	98.8%	98.2%	98.9%	99%
Uniformity	51.8%	N/A	50.7%	N/A	51.0%	46.7%	51.2%	N/A	N/A	N/A	N/A	55.4%	49.2%
Uniqueness	46.2%	38%	48.7%	49.1%	47.9%	48.6%	49.5%	48.5%	47.6%	49.3%	N/A	37.4%	N/A
Bit-aliasing	N/A	N/A	N/A	50.3%	51.0%	N/A	54.1%	N/A	N/A	N/A	N/A	46.9%	48.9%
Device	Artix-7	ASIC	Artix-7	Artix-7	Artix-7	Artix-7	Kintex- 7	Spartan -6	Cyclon- V	Spartan -3	Virtex- 7	Artix-7	Artix-7

Objectives

Completing existing studies

Artix-7 FPGA

Transcient Ring Effect Oscillator

Test over multiple devices

33 boards

Small footprint

Easily integrated into existing systems

Fully working demonstration

Error correction

Key hashing

Ciphering

Design • TERO Cells

Oscillation

- 2 signals **propagating**
- Output is toggled

Randomness

• Intrinsic defects affecting the signals propagation.

Stabilisation

• Signals catch up and cancel each other.

Observable results

 Number of oscillations before stabilisation

Figure 2: TERO cell

Design • Response generation

Cells Splitted in 2 arrays **Pairs** • Using **LSFR** function selection **Stabilisation** • Reference clock counter Comparison • Number of oscillations

Implementation • Artix-7 overview

LUT6

Look up tables with 6 inputs.

Slice

- Containing **4x** LUT6.
- Two types
 - Slice-L (logic)
 - Slice-M (additionnal memory features)

Control Logic Block

- 2 slices that can be directly connected
- Inter CLB routing block for global routing

Figure 4: Artix-7 CLB

Implementation • Constraints

9

No optimisation

DONT_TOUCH

Disable automatique optimisation

Slice location

LOC

Only Slice L

LUTs usage

BEL & RLOC

Same **placement** of LUTs in the CLBs

Pins usage

LOCK_PIN

Same **routing** in the CLBs

Implementation • Cells

Implementation • Features

BCH decoder

Error correction code

From previous Master Thesis

SHA-256

Key hashing

Open source | Padding block

Results

1 device

Oscillation

Equalities

Uniformity

Reliability

33 devices

Average uniformity

Average **reliability**

Uniqueness

Bit-aliasing

Results • 1 Device • Oscillations (0 \rightarrow 2 μ s)

- Immediate stabilisation
- 47/64 Cells have 0 oscillation

- Most stabilisation before **0.5**μs.
- 1/64 Cells has 0 oscillation

Results • 1 Device • Equalities (0 \rightarrow 2 μ s)

Equalities

TERO-4

• 96.9% of equalities

TERO-8

• < 1% of equalities

18

Results • 1 Device • Uniformity $(0 \rightarrow 2 \mu s)$

Intra-device uniformity

• Ideally equal to **50**%

TERO-4

• Constantly at **3**%

TERO-8

• Raises up to **53**%

Results • 1 Device • Reliability (0 \rightarrow 2 μ s)

Intra-device reliabiliy

• Ideally equal to 100%

TERO-4

• Constantly at **100**%

TERO-8

• Raises up to **97.7%**

Results • Acquisition time

Results • 33 Devices • Uniqueness

		rage rmity		rage bility	Uniqueness		
IDEAL	50%		10	0%	50%		
TERO-4 (1st device)	8.1% (3%)	×	99.8% (100%)		8.2%	×	
TERO-8 (1st device)	53.4% (53%)		97.6% (97.7%)		49.4%		

Results • 33 Devices • Bit-aliasing

Bit-aliasing

Ideally follows a binormal distribution around 50%

TERO-4

- Highly shifted toward **0**
- Not following a binormal

TERO-8

- Slightly shifted toward 1
- Binormal centered on **53.5**%

Figure 11: Bit-aliasing

Results • Error correction

PUF

- Full response
- 1023 bits

Pre-decoder

- Reduced response
- 171 first bits

Decoder

- ECC response
- 171 corrected bits

TERO-8	Size	Avr uniformity	Avr reliability	Uniqueness	Bit-aliasing
Full	1023	53.4%	97.6%	49.4%	53.5%
Reduced	171	53.4%	97.7%	49.9%	54.4%
ECC	171	53.5%	99.9%	49.9%	54.4%

Results • Comparison

Method	TERO-8 (This study)		XOR-	BST-	RO-PUF	BST-	RWC-	Flip- Flop	TERO	TERO	TERO		PDL-
	Raw	Ecc	APUF	APUF		ROPUF	SRAM	PUF				TERO	
Reliability	97.6%	99.9%	99.4%	99.9%	99.2%	99.9%	98.9%	99%	98.3%	99.9%	97.4%	98.2%	98.8%
Uniformity	53.4%	53.5%	50.7%	N/A	51.0%	46.8%	55.4%	49.2%	N/A	N/A	N/A	N/A	N/A
Uniqueness	49.4%	49.9%	48.7%	49.1%	47.9%	48.6%	37.4%	N/A	48%	46.7%	48.5%	47.6%	49.3%
Bit-aliasing	53.5%	54.4%	N/A	50.3%	51.0%	N/A	46.9%	48.7%	N/A	N/A	N/A	N/A	N/A
Device	Arti	ix-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7	Cyclon-II	Altera DE2	Spartan-	Spartan- V	Spartan-

Conclusion

Objectives

- ✓ 1 control logic block per cell
- ✓ SOTA performances over 33 devices
- Error correction to improve reliability
- Key hashing
- **X** Ciphering

Futur work

- Onboard ciphering
- Variability (temperature, voltage, ...)
- Larger cells

TERO-8

Questions

Questions?

Appendices • Response generation methods

Figure 12: Direct method

Figure 13: Comparison method

Appendices • Final oscillations

29

Appendices • Inter-device deviation

Appendices • LSFR cell occurency

TERO-8	Size	Uniformity	Reliability	Uniqueness	Bit-aliasing
Full	1023 bits	53.4%	97.6%	49.4%	53.5%
Reduced	171 bits	53.4%	97.6%	49.9%	54.4%

Figure 18: LSFR Cell occurency

Appendices • FPGA usage • Area

	LU	l T s	FFs			
	TERO-4	TERO-8	TERO-4	TERO-8		
TERO block	428 (11%)	684 (16%)	162 (5%)	162 (5%)		
BCH decoder	797 (20%)	797 (19%)	981 (29%)	981 (29%)		
SHA-256	895 (23%)	895 (21%)	950 (28%)	950 (28%)		
Control & UART	1792 (46%)	1792 (43%)	1308 (38%)	1308 (38%)		
Total	3912	4168	3401	3401		

Figure 19: Area usage

Appendices • FPGA usage • Power

Figure 20: Power usage