

IN THE U.S. PATENT AND TRADEMARK OFFICE

In repatent application of

Shuya Ogi

Serial No.:

Filed:

For:

Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

Prior to examination on the merits, please enter the following amendments:

In the Specification:

Please amend the following paragraphs and textual passages as follows (clean copies of the amended paragraphs and textual passages are attached as Appendix 1).

Please amend the paragraph on page 38, lines 9-14, as follows:

On the basis of the results of MTF measurement on arrays A - C, the present inventors prepared Table [1] 3 which shows the relationships between the resolving power variation index G and each of the average value and deviation of the center-line-average (CLA) roughness of the peripheral surface of the constituent rod lens.

Please amend the text on page 38, at line 16 as follows:

Table [1] <u>3</u>

Please amend the paragraph on page 40, at lines 11-14, as follows:

On the basis of the results of MTF measurements on arrays D and E, the present inventors prepared Table [2] 4 which shows the relationships between the resolving power variation index G and the variation in the diameter of the constituent rod lens.

nt application of
gi

o.: 09/964,735 Group Art Unit: 1772

September 28, 2001 Examiner: not known

ROD LENS ARRAY AND A PROCESS FOR PRODUCING THE SAME

isseioner of Patents

TECHNOLOGY

TECHNOLOGY