Lecture 8 Finding Shapes

COMP3204 & COMP6223 Computer Vision

How can we group points to find shapes?

Department of Electronics and Computer Science

Feature extraction by thresholding

Conclusion: we need shape!

Template Matching

- Intuitively simple
- Correlation and convolution
- Implementation via Fourier
- Relationship with matched filter, viz: optimality

template

accumulator space

Template matching in noisy images

Template matching in occluded images

Encore, Monsieur Fourier!

$$\mathbf{P} \otimes \mathbf{T} = F^{-1} \Big(F(\mathbf{P}) \times \Big(F(\mathbf{T}) \Big)^C \Big)$$
$$= \sum_{i \in \mathbf{P}} \sum_{j \in \mathbf{P}} \mathbf{P}_{i,j} \mathbf{T}_{i+n,j+m}$$

No sliding of templates here; cost is Fourier Transform plus multiplication

Applying template matching

Applying SIFT in ear biometrics

(a) detected SIFT points

(b) one feature

(c) same feature as (b) in a different ear

influence

Hough Transform

- Performance equivalent to template matching, but faster
- A line is points x,y gradient m intercept c $y = m \times x + c$
- and is points m,c gradient -x intercept y $c = -x \times m + y$

In maths it's the principle of duality

Applying the Hough transform for lines

Hough Transform for Lines ... problems

- *m,c* tend to infinity
- Change the parameterisation
- Use foot of normal $\rho = x \cos \theta + y \sin \theta$
- Gives polar HT for lines

Images and the accumulator space of the polar Hough transform

Applying the Hough transform

