Week 6: Assignment 6 - Question 3

Recursive Path Finding

Given an $n \times n$ binary Matrix A, where each entry is 0 or 1. A has a unique path of 1's from A[0][0] to A[n-1][n-1]. The path can go Right (R) Left (R) Down (D) or Up (U).

Write a C Program.to print the directions of this path.

<u>Note</u>: You can assume that there is exactly one correct path.

All 1's in A need not be in this unique path, there can be dead ends.

Input

The first line contains the dimension of the matrix n. Assume n < 100. The second line contains the contents of the matrix A, each row per line.

Output

The path of 1's in the Matrix.

Example

Input

Output

RDDDRRURRDDD

Explanation

The correct path of 1's from A[0][0] to A[5][5] is

 $A[0][0] \ Right \longrightarrow A[0][1] \ Down \longrightarrow A[1][1] \ Down \longrightarrow A[2][1] \ Down \longrightarrow A[3][1] \ Right \longrightarrow A[3][2] \ Right \longrightarrow A[3][3] \ Up \longrightarrow A[2][3] \ Right \longrightarrow A[2][4] \ Right \longrightarrow A[2][5] \ Down \longrightarrow A[3][5] \ Down \longrightarrow A[4][5] \ Down \longrightarrow A[5][5].$

000001

Note: The code for reading inputs etc is given to you, complete the code of the function

void findPath(int matrix[100][100], int n, int x, int y, char* path, int pathIndex);

Hint

Try all the paths LRDU one by one recursively [except the opposite of last direction taken]. If any of the recursive calls succeed, the function succeeds, return '1' immediately. If all of the recursive calls fail, the function fails, return 0.