Polecenia środowiska LATEX Metody składu i druku dokumentów

Częstochowa, 2016

- 1 tabulatory środowisko tabbing
 - wybrane polecenia
 - przykłady

- 💶 tabulatory środowisko tabbing
 - wybrane polecenia
 - przykłady
- 2 tabele
 - środowisko tabular
 - podstawowe instrukcje
 - przykłady
 - środowisko table
 - składnia
 - przykłady

- 📵 tabulatory środowisko tabbing
 - wybrane polecenia
 - przykłady
- 2 tabele
 - środowisko tabular
 - podstawowe instrukcje
 - przykłady
 - środowisko table
 - składnia
 - przykłady
- 3 tryb matematyczny
 - równania jednowierszowe
 - przykłady
 - odstępy
 - równania wielowierszowe

Środowisko *tabbing* służy do wyrównywania tekstu w kolumnach. Realizowane jest to poprzez ustawienia tabulatorów. Środowisko może być podzielone na strony.

Polecenia środowiska tabbing:

oznaczenie	opis
\=	ustawia tabulator
\>	przesuwa tekst do następnego tabulatora
\<	przesuwa tekst do poprzedniego tabulatora
\+	przestawia lewy margines o jeden tabulator do przodu
\-	przestawia lewy margines o jeden tabulator do przodu
\kill	pozwala ustawić tabulatory bez wyświetlania tekstu
\',	przenosi wszystko co zostało wpisane w bieżącej kolumnie
	do poprzedniej kolumny i wyrównuje do prawej
\'	przenosi tekst występujący po komendzie do prawej krawędzi
	ostatniej kolumny

```
\begin{tabbing}
Podstawowe \= zastosowanie \= tabulatorów \= \\
to \>ustawianie \>tekstu \> w odpowiednim \= miejscu\\
\>i \> wyrównanie \> do lewej \> strony
\end{tabbing}
```

```
Podstawowe zastosowanie tabulatorów
to
           ustawianie tekstu w odpowiednim miejscu
                       wyrównanie do lewej
                                                strony
```

```
\begin{tabbing}
\label{lem} $$\ \end{1em} = 
\label{lem} $$\ \end{1em} = 
\label{lem} $$ \ \end{1em} = \end{1em} + + + + 
//X
\< X \> X \> X \\
/< \< X \> X \> X \> X \\
\< \< \< X \> X \> X \> X \> X \\
X \- \\
X \> X \> X \\
\end{tabbing}
```



```
Przykład
```

```
\begin{tabbing}
Tabulatory \= można ustawić \= za pomocą tekstu,
który \= bedzie niewidoczny.\= \kill
Możliwe \>jest to dzięki \>
\>zastosowaniu polecenia\' \> \textbackslash kill\' \\
\end{tabbing}
```

```
Możliwe jest to dzięki
                         zastosowaniu polecenia
                                                               \kill
```

```
\begin{tabbing}
\hspace{0.15\textwidth} \= \hspace{0.15\textwidth} \=
\hspace{0.15}\textwidth} \= \hspace{0.15}\textwidth} \= \
zero \> jeden \> dwa \> trzy \> cztery\\
zero \'\> jeden\' \> dwa\' \> trzy \'\> cztery\'\\
zero \> jeden\'\> dwa \> trzy \> czte\'ry\\
\end{tabbing}
```

```
ieden
                        dwa
                                                 cztery
zero
                                     trzy
      jeden
                    dwa
                                trzy
                                           cztery
      ieden
                        dwa
                                     trzy
                                                 czte
zero
```

```
\begin{tabular}{kolumny}
zawartość
\end{tabular}
```

Parametr *kolumny* określa liczbę, wyrównanie i obramowanie kolumn w tabelach.

parametr	opis		
I	wyrównywanie zawartości kolumny do lewej		
С	wyśrodkowywanie zawartości kolumny		
r	wyrównywanie zawartości kolumny do prawej		
p{szer.}	wstawienie kolumny o określonej szerokości		
@{tekst}	wstawienie między kolumny zawartość parametru tekst		
	obramowanie pojedynczą linią		
	obramowanie podwójną linią		

```
\begin{tabular}{kolumny}
zawartość
\end{tabular}
```

W miejsce *zawartość* wprowadza się informacje, które mają zostać wyświetlone w tabeli wraz z odpowiednim formatowaniem.

parametr	opis		
&	oddzielenie komórek w wierszu		
\\	zakończenie wiersza		
\\[wartość]	wstawienie dodatkowego odstępu między wier-		
	szami		
\hline	wstawienie poziomej linii na całej szerokości ta-		
	beli		
\cline[ki - kj]	wstawienie poziomej linii od kolumny ki do ko-		
	lumny <i>kj</i>		

\multicolumn{kol}{format}{tekst}

Polecenie \multicolumn scala ze sobą określone komórki w wierszu.

parametr	opis
kol	liczba łączonych komórek
format	określa obramowanie i wyrównanie scalonej komórki
tekst	zawartość komórki

```
\begin{tabular}{ 1 c r }
    111 & 222 & 333 \\
    4 & 5 & 6 \\
    7 & 8 & 9 \\
\end{tabular}
```

```
111 222 333
4 5 6
7 8 9
```

```
\begin{tabular} {| 1 || c | r | }
111 & 222 & 333 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{tabular}
```

```
\begin{tabular} {| 1 | c | r | }
\hline
111 & 222 & 333 \\
\hline
4 & 5 & 6 \\
\hline
7 & 8 & 9 \\
\hline
```

111	222	333
4	5	6
7	8	9

Przykład

\end{tabular}

```
\begin{tabular} {| r @{.} 1 | c | }
\hline 111 & 222 & 333 \\
\hline 4 & 5 & 6 \\
\hline 7 & 8 & 9 \\
\hline
\end{tabular}
```

111.222	333
4.5	6
7.8	9

```
\begin{tabular}{|c|1|}
\hline Lp & opis\\
\hline 1 & Częstochowa jest położona nad rzeką Wartą,
w trzech mezoregionach fizycznogeograficznych.\\
\hline 2 & Częstochowa jest centralnym miastem aglomeracji
częstochowskiej, a także największym ośrodkiem gospodarczym,
kulturalnym i administracyjnym w subregionie północnym
województwa śląskiego.\\
\hline
\end{tabular}
```

Lp	opis
1	Częstochowa jest położona nad rzeką Wartą, w trzech mezoregionach
2	Częstochowa jest centralnym miastem aglomeracji częstochowskiej, a t

```
\begin{tabular}{|c|p{10cm}|}
\hline Lp & opis\\
\hline 1 & Częstochowa jest położona nad rzeką Wartą,
w trzech mezoregionach fizycznogeograficznych.\\
\hline 2 & Częstochowa jest centralnym miastem aglomeracji
częstochowskiej, a także największym ośrodkiem gospodarczym,
kulturalnym i administracyjnym w subregionie północnym
województwa śląskiego.\\
\hline
\end{tabular}
```

Lp	opis
1	Częstochowa jest położona nad rzeką Wartą, w trzech mezoregionach fi-
	zycznogeograficznych.
2	Częstochowa jest centralnym miastem aglomeracji częstochowskiej, a także
	największym ośrodkiem gospodarczym, kulturalnym i administracyjnym w
	subregionie północnym województwa śląskiego.

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Znaki} \\
hline \multicolumn{4}{|c|}{Liczby} &
\multicolumn{3}{1|}{Cyfry}\\
hline a & b & c & d & 1 & 2 & 3\\
cline{1-4} e & f & g & h & 4 & 5 & 6 \\
cline{5-7} i & j & k & 1 & 7 & 8 & 9 \\
hline
\end{tabular}
```

Znaki						
	Liczby Cyfry					
а	b	С	d	1	2	3
е	f	g	h	4	5	6
i	j	k	- 1	7	8	9

Dzięki środowisku *table* można odpowiednio umiejscowić tabele w tekście, opisać i odwołać się do niej.

```
\begin{table}[położenie]
  \begin{tabular}{kolumny}
    zawartość
  \end{tabular}
\caption[krótki opis]{opis tabeli}
\label{nazwa}
\end{table}
```

Parametr *położenie* oraz polecenia *caption* i *label* funkcjonują tak samo jak w przypadku środowiska *figure*.

```
\begin{table}[t]
\begin{center}
\begin{tabular} {| 1 | c | r | }
\hline 111 & 222 & 333 \\
\hline 4 & 5 & 6 \\
\hline 7 & 8 & 9 \\
\hline
\end{tabular}
\end{center}
\caption[Liczby]{Przykładowy opis tabeli.}
\label{tab:Liczby}
\end{table}
```

111	222	333
4	5	6
7	8	9

Tabela 1: Przykładowy opis tabeli.

Wpisywanie wzorów matematycznych wymaga zastosowania trybu matematycznego. W zależności od potrzeb można wybrać jedno z trzech środowisk.

środowisko	alternatywne oznaczenie
$\begin{math} \dots \end{math}$	\(\) lub \$ \$
$\begin{displaymath} \end{displaymath}$	\[\] lub \$\$ \$\$
$\begin{equation} \dots \setminus end\{equation\} \end{equation}$	

Środowiska *math* używa się chcąc wstawić równanie w bieżącym akapicie. *Displaymath* i *equation* wstawiają wzór matematyczny w osobnym akapicie.

Equation daje możliwość dodania etykiety, równanie jest numerowane.

Opór odcinka przewodnika o stałym przekroju poprzecznym wyraża się wzorem \$R=\rho\frac{1}{S}\$. Prawo Ohma w postaci różniczkowej można zapisać: \[dI=\frac{dU}{R}\frac{dU}{R}\]

Opór odcinka przewodnika o stałym przekroju poprzecznym wyraża się wzorem $R=
horac{l}{S}.$ Prawo Ohma w postaci różniczkowej można zapisać:

$$dI = \frac{dU}{R} \frac{dU}{R}$$

Droga w ruchu jednostajnie przyspieszonym \[s=\frac{at^{2}}{2}\]
natomiast czas
\begin{equation}
t=\sqrt{\frac{2s}{a}}
\end{equation}

Droga w ruchu jednostajnie przyspieszonym

$$s=\frac{at^2}{2}$$

natomiast czas

$$t = \sqrt{\frac{2s}{a}} \tag{1}$$

W trybie matematycznym wszelkie spacje są ignorowane. Dlatego wpisanie xy powoduje wyświetlenie xy. Jeśli niezbędne jest wprowadzenie odstępów w formule matematycznej można wykorzystać polecenia:

polecenie	zapis	wynik działania	szerokość
/!	\$x\! y\$	xy	ujemny
	\$x y\$	xy	brak odstępu
	\$x y\$	x y	mały
\;	\$x\; y\$	x y	duży
\	\$x\ y\$	x y	znak
\hghtharpoonup	$x\hspace{9pt} y$	x y	dowolny
	\$x y\$	x y	tabulator
	\$x\qquad y\$	x y	podwójny tabulator

Do wpisywania wielu równań służy środowisko align. Znaki sterujące rozmieszczeniem równań są podobne jak w przypadku środowiska tabular. skorzystanie z tego otoczenia wymaga dołączenia do preambuły pakietu amsmath.

```
Przykład
```

```
\begin{align}
wz1 & wz2 & wz3 & wz4 & wz5 & wz6 \\
wz7 & wz8 & wz9 & wz10 & wz11 & wz12 \\
wz13 & wz14 & wz15 & wz16 & wz17 & wz18
\end{align}
```

wz1wz2	wz3wz4	wz5wz6	(2)
<i>wz</i> 7 <i>wz</i> 8	wz9wz10	wz11wz12	(3)
40 44			(-)

 $w_{z}13w_{z}14$ wz15wz16wz17wz18 (4)

Czestochowa, 2016

```
\begin{align*}
wz1 & wz2 & wz3 & wz4 & wz5 & wz6 \\
wz7 & wz8 & wz9 & wz10 & wz11 & wz12 \\
wz13 & wz14 & wz15 & wz16 & wz17 & wz18
\end{align*}
```

wz1wz2	wz3wz4	<i>wz5wz</i> 6
<i>wz</i> 7 <i>wz</i> 8	wz9wz10	<i>wz</i> 11 <i>wz</i> 12
wz13wz14	wz15wz16	wz17wz18

```
\begin{align}
wz1 & wz2 & wz3 & wz4 & wz5 & wz6 \nonumber \\
wz7 & wz8 & wz9 & wz10 & wz11 & wz12 \\
wz13 & wz14 & wz15 & wz16 & wz17 & wz18 \nonumber
\end{align}
```

	wz5wz6	wz3wz4	wz1wz2
(5)	wz11wz12	wz9wz10	<i>wz</i> 7 <i>wz</i> 8
	wz17wz18	wz15wz16	wz13wz14

\begin{align}
(a)&u &= \arctan x & dv &= 1 \, dx
\\ du &= \frac{1}{1 + x^2}\ dx & v &= x.
\end{align}

$$(a)u = \operatorname{arctg} x \qquad \qquad dv = 1 \, dx \tag{6}$$

$$du = \frac{1}{1+x^2} dx \qquad v = x. \tag{7}$$

$$f(x) = (x + a)(x + b)$$
$$= x2 + (a + b)x + ab$$

Źródła

Wykład został przygotowany na podstawie:

- Nie za krótkie wprowadzenie do systemu LATEX.; T.Przechlewski, R. Kubiak, J. Gołdasz; 2007
- W miarę krótki i praktyczny kurs LATEX-a w π^e minut.; R. Kostecki; 2008
- Kurs LATEX.; A. Kuczyski, P. Barański; 2008
- http://pl.wikibooks.org/wiki/LaTeX/Tworzenie_dokumentu
- http://www.latex-kurs.x25.pl/paper/klasy_dokumentow
- http://oldwww.gust.org.pl/doc/cototex