m151.pep				1111111111	111111111	EKERGITILA	111
a151	MKQIRNIA:	IIAHVDHGK 10	TTLVDQLLRQ 20	SGTFRANQQV 30	DERVMDSNDL 40	EKERGITILA 50	60 60
m151.pep		70 INIVDTPGH	80 ADFGGEVERV	90 LGMVDCVVLL	100 VDAQEGPMPQ	TRFVTKKALA	120 LGL
a151	AIDYEGYH	 NIVDTPGH 70		LGMVDCVVLI 90	 .vdaqegpmp0 100		LGL 120
		20	140	150	160	170	180 ESN
m151.pep						LSGFAKLEETE 	
a151	KPIVVINK 1	IDKPSARPS .30	140	150	160	170	100
m151.pep	DANDER FOR	.90 CILKYTPAPS	200 GSADETLQL	210 DISOLDYDNY	220 TGRLGIGRIL	230 NGRIKPGQTV	240 AVMN
a151	DMRPLFD7			QISQLDYDNY 210	TGRLGIGRIL		AVMN 240
		250	260	270	280	290	300
m151.pep					1 2 1 2 1 1 1 1 1 1	ITDKDNPKGL	
a151	HDQQIAQ	GRINQLLGF 250	KGLERVPLEE 260	AEAGDIVIIS 270	Z80	ITDKDNPKGL	300
-151 non	TANDONT M	310 MDFMVNTSP	320 Lagtegkevt	330 SRQIRDRLQK	340 ELLTNVALRV	350 EDTADADVFR	360 VSGR
m151.pep	VDEPTLT	 MDFMVNTSP		1111111111	1111111111	 EDTADADVFR 350	1111
		310 370	390	390	400	410	420
m151.pep	GELHLTI	LLENMRREG				/PDDNQGAVME	
a151	GELHLTI	LLENMRREG 370	YELAVGKPR 380	VYRDIDGQK(390	EPYENLTVD 400	VPDDNQGAVME 410	420
w151 non	RRGELTN	430 IMESDGNGRI	440 RLEYHIPAR	450 GLIGFQGEFM	460 TLTRGVGLMS	470 HVFDDYAPVKI	480 PDMPG
m151.pep						HVFDDYAPVKI	PDMPG
4131	•	430	440	450	460	470 530	480 540
m151.pep	RHNGVL	490 VSQEQGEAV	500 AYALWNLEDR	510 GRMFVSPNDK	520 IYEGMIIGIH	SRDNDLVVNP	LKGKK
a151	RHNGVL		AYALWNLEDR 500	GRMFVSPNDK 510	IYEGMIIGIH 520		LKGKK 540
		E E O	560	570	580	590 RKRYLSELER	600
m151.pep					1	RKRYLSELER	11111
a151	LTNIRA	SGTDEAVRL 550	560	570	580	590	600
m151.pep	KLDX						
a151	KLDX						

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 619>: g152.seq

- 1 ATGAAAAaca aAACCaaagt ctgGGacttc cCcacccgcc ttTTCCactG
 51 GctgcttgCC gCATCCctgc CCTTTATGTG gtatagCGCA AAAGCCGGCG
 101 GcgataTGCT GcaatgGCAC ACGCGCGTCG GGCTGCTCGT CCTTTTCCTG

```
151 CTCGTATTCC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
    201 CTCccgTtTC GTCCGAGGTT GGGCAGGTAT ACGCGGCTAT CTGAAAAACG
    251 gCATTCCCGA ACAtateCAG CCCGGACACA ACCCCTTGGG CGCACTgatg
    301 gtcGTTGCGC TTTTGgccgc cgtcTCATTT CAagtcggcA CGGGGCTTTT
    351 Tgccgccaat gaaaacacct tcagcaCCAa cggctacctc aaccatttgg
    401 tttccgaaca tacgGGCAGC CTTATACGGA AAATCCACCT CAACTTTTTC
    451 AAGCTGCTCG CCGTTTTTTC CGCAGTCCAC ATCGCCGCCG TCGCCGCATA
         CCGCATATTC AAAAAGAAAA ACCTCGTCCG CCCGATGATA ACCGGCTTCA
    551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCCGGCAA AGCCGCGCTT
    601 GCCGCCGCAT TATCGGTTGC CGCGCTTGCC GCAGCCGCCA TCCTGCTCCT
     651 GTCCTGA
This corresponds to the amino acid sequence <SEQ ID 620; ORF 152.ng>:
         MKNKTKVWDF PTRLFHWLLA ASLPFMWYSA KAGGDMLQWH TRVGLLVLFL
g152.pep
         LVFRLCWGIW GSDTARFSRF VRGWAGIRGY LKNGIPEHIQ PGHNPLGALM
         VVALLAAVSF QVGTGLFAAN ENTFSTNGYL NHLVSEHTGS LIRKIHLNFF
      51
         KLLAVFSAVH IAAVAAYRIF KKKNLVRPMI TGFKYIEGKT SIRFAGKAAL
     101
         AAALSVAALA AAAILLLS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 621>:
m152.seq
         ATGAAAAACA AAACCAAAGT CTGGGACCTC CCCACCCGCC TTTTCCACTG
      51 GCTGCTTGCC GCGTCCCTGC CCTTTATGTG GTATAGCGCG AAAGCCGGCG
     101 GCGATATGCT GCAATGGCAC ACGCGCGTCG GGCTGTTCGT CCTTTTCCTG
     151 CTCGTATTTC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
          TTCCCGTTTC GTCCAAGGCT GGGCAGGCAT ACGCGGCTAT CTGAAAAACG
     251 GTATTCCCGA ACACATCCAG CCCGGACACA ACCCCTTGGG CGCACTGATG
     301 GTCGTTGCGC TTTTGGCCGC CGTGTCCTTC CAAGTCGGCA CCGGGCTTTT
     351 TGCCGCCGAT GAAAACACCT TCAGCACCAA CGGCTACCTC AACCATTTGG
     401 TTTCCGAACA TACGGGCAGC CTTATGCGGA AAATCCACCT CAACTTTTTC
          ARGETGETEG CEGTTTTTE TGCAATCCAC ATCGCCGCCG TCGCCGCATA
     501 CCGCGTATTC AAAAAGAAAA ACCTCATCCT CCCGATGATA ACCGGCTTCA
      451
      551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCAGGCAA AGCCGCGCTT
      601 GCCGCCGCAT TATCGGTTGC CTCGCTTGCC GCAGCCGCCA TCCTGCTCCT
      651 GTCCTGA
 This corresponds to the amino acid sequence <SEQ ID 622; ORF 152>:
 m152.pep
          MKNKTKVWDL PTRLFHWLLA ASLPFMWYSA KAGGDMLQWH TRVGLFVLFL
          LVFRLCWGIW GSDTARFSRF VQGWAGIRGY LKNGIPEHIQ PGHNPLGALM
       51
          VVALLAAVSF QVGTGLFAAD ENTFSTNGYL NHLVSEHTGS LMRKIHLNFF
          KLLAVFSAIH IAAVAAYRVF KKKNLILPMI TGFKYIEGKT SIRFAGKAAL
      101
      151
      201 AAALSVASLA AAAILLLS*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 152 shows 95.4% identity over a 218 aa overlap with a predicted ORF (ORF 152.ng)
  from N. gonorrhoeae:
  m152/g152
                                                   40
                                20
                                         30
              MKNKTKVWDLPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLFVLFLLVFRLCWGIW
  m152.pep
               MKNKTKVWDFPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLLVLFLLVFRLCWGIW
  g152
                                          30
                                20
                      10
                                                  100
                                80
                                          90
               GSDTARFSRFVQGWAGIRGYLKNGIPEHIQPGHNPLGALMVVALLAAVSFQVGTGLFAAD
               m152.pep
               GSDTARFSRFVRGWAGIRGYLKNGIPEHIQPGHNPLGALMVVALLAAVSFQVGTGLFAAN
  g152
                                                            110
                                                  100
                                          90
                                80
```

						180	
	130 ENTFSTNGYLNHLV	140	150	160 EGATUTAAVA	170 AVRVFKKKNI		
	ENTFSTNGYLNHLV ENTFSTNGYLNHLV	1111111111	. 1 1 1 1 1 1 1 1 1 1	111:11111	113:11111	-	٠
g152	ENTFSTNGYLNHLV 130	140	150	160	170	180	
m152.pep	190 TGFKYIEGKTSIRE	200 AGKAALAAAL	210 SVASLAAAAII	219 LLSX			
- "		 AGKAALAAAL	: SVAALAAAAII	TTSX			
". g152	190	200	210				
	g partial DNA se						:
50 10 15 20 25 30 35 40 45 50 55 66 67 This correspondant 2. p	1 ATGAAAACA 1 GCTGCTTGCC 1 GCGATATCC 1 CTCCCGTTTC 1 CTCCCGTTC 1 GTATTCCCGA 11 GTCGTTGCGC 11 TTTCCGAACA 12 AAACTGCTC 13 AAACTGCTC 14 AATACATCGA 15 GCCGCCGCAT 15 GCCGCCGCAT 16 GCCGCCGCAT 17 TCCTGA 18 GCCGCCGCAT 19 GCCGCCGCAT 19 GCCGCCGCAT 10 GCCGCCGCAT 10 GCCCCGCAT 10 GCCCCCGCAT 11 GCCCCCGCAT 11 GCCCCCGCAT 12 GCCCCCGCAT 13 GCCCCCGCAT 14 GCCCCCGCAT 15 GCCCCCGCAT 16 GCCCCCGCAT 17 GCCCCCGCAT 17 GCCCCCGCAT 18 GCCCCCCGCAT 18 GCCCCCCCAT 18 GCCCCCCCCAT 18 GCCCCCCCAT 18 GCCCCCCCCAT 18 GCCCCCCCCAT 18 GCCCCCCCCAT 18 GCCCCCCCCAT 18 GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCATCCCTAC GCATCGCTAC GCCATCTGCTAC GTCCGCGGAT ACACGTCCAAA TTTTGGCCGC GTAAACACCT TACGGGCAGC CCGTTTTTTC AAAAAGAAAA AGGCAAAACC TATCGGTTGC PTRLFHWLLA GSDTARFSRF QVGTGLFAAD IAXVAAYRVF	CCTTTATGTG ACGCGCTCG GGCATTTGG GGTCGGGTAT CCCGGACACA CCTGTCGTCC TCAGCACCAA CCTTATGCGGA ACCTCGTCCT TCAATCCGCT CGCGCTTGCC CGCGCTTGCC CCCCCTCGCCC CCCCCTCCCCCCCC	GTATAGCGC GGCTGTTTA GGCAGCGAT CAGAGAGTA ACCCCTTGG CAAGTCGGC AAATCCATC AAATCCATC CCCGATGAT TTGCCGGCAC GCAGCCGCC ACCGATGAT TTGCCGCAC CCCGATGAT TTGCCGCAC CCCCAC CCCCCC	T CCTTTTCC A CCGCCGT T ATGAAAA G CGCACTGP A CAGGGCTT C AACCATTT C AACCATTT C T CAACTTT A TCGCCGC A ACCGCT A ACC	LEG LCG LTG LTT LGG LTC LTC ATA CCT LEL ALM NFF	
m152/a152	94.0% identity	in 218 aa o	verlap			50	60
m152.p		10 WDLPTRLFHWI : WDFPTRLFHWI	LAASLPFMWY	SAKAGGDMLQ : SAKTGGDMLQ	1111111111	FLLVFRLCW	GIW
		10		30 90 1		110	120
m152.	pep GSDTARI	70 SRFVQGWAGII	80 RGYLKNGIPEH	TOPGHNPLGA	LMVVALLAAV	SFQVGTGLE	'AAD
a152	GSDTARI	: : ! SRFVRGWSGI 70	REYMKNGIPEH 80	MODERNATION	TIMA A WITHING	VSFQVGTGLE	TAAD 120
m152. _] a152			TGSLMRKIHLM	NFFKLLAVFSA	YAAVAAIHIA : YAAVXAIHVA	1111111	1111
		130 190	200	150 - 210 21	19	170	100
m152. a152	11111	EGKTSIRFAGK EGKTSIRFAGK	11111111111	:	11		
2202		190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 625>:

```
atggggtttg cttaCAgtat gacgtatatc gaggtCGGGa taccggaggc
    ggcatcogtc ctttCgctGC CCGAGATgat gcgcctgatG GTGTTtCagg
101 attATGGTTT TttggcCGAA GTGATGTTTG TGctgaCTTT cGGCGcgcCG
151 GTTCTGTTEC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
251 GGCAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTCT GGTGGCGTAT
301 ATCAAGCTCT CGTCTGTGGC AAAGGTTCGC TTCGGGCCGG CGTTTTATCT
351 GATGTTCGCG CTGTCGGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
401 AGCATTGGGT GTATTTCCAA ATCGGGCGGC TGACGGGGAA TAATGCGGTT
451 CAGACGGCAT CGGAAGGCAA AACCTGTTGC AGCCGCTGCC TGTATTTccg
501 cgacAGTgcc gaatccCCCT GCGGGGTGTg cgGCGcggaA CTgtacggcg
551 gacggccgaa aagtCTGAGt atttCgtCGG CGTTTCTgac ggcggcggTT
601 GTTTTGTATT TCCctgCcaa TATCctgccg attaTGAttt cgtccAATCc
651 tgccgccacg GAGGcCAACA CCATCTTTAG CGGCATCGCT TATATGTGGG
701 ACGAGGGGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
751 GTGCCGGTGC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGGCGGCACG
801 GTTCGCTTTG CCGGCGGGCG CAAAGAAATT GTCGCACCTC tacCGCATCA
851 CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
901 TTGATGTGTT CGTTCCacaC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
951 GGCAGTCTAT TTCTGCCTGG TCGTGATTTT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
1051 TTCAACGAAA CGGAAAAATA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 626; ORF 153.ng>: g153.pep

```
MGFAYSMTYI EVGIPEAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP
    VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY
    IKLSSVAKVR FGPAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRLTGNNAV
51
101
     QTASEGKTCC SRCLYFRDSA ESPCGVCGAE LYGGRPKSLS ISSAFLTAAV
201 VLYFPANILP IMISSNPAAT EANTIFSGIA YMWDEGDRLI AAVIFSASIL
    VPVLKIAAMS VLIAAARFAL PAGAKKLSHL YRITEAVGRW SMIDIFVIII
    LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDPRLL WDKRASDGIA
251
351 FNETEKYD*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 627>:

```
ATGGCGTTTG CTTACGGTAT GACGTATATC GAGGTCGGGA TACCGGGTGC
51 GGCATCCGTC CTTTCGCTGC CCGAGATGAT GCGCCTGATG GTGTTTCAGG
101 ATTATGGTTT TTTGGCCGAA GTGATGTTTG TGCTGACTTT CGGCGCGCCG
151 GTTCTGTTTC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
251 GACAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTTT GGTGGCGTAT
301 ATCAAGCTCT CGTCTGTGGC AGAGGTTCGC TTCGGGCCGG CGTTTTATCT
351 GATGTTCGCG CTGTCAGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
401 AGCATTGGGT GTATTTTCAA ATCGGGCGGC TGACGGGGGA TAATGCGGTT
451 CAGACGGCAT CGGAAGGTAA AACCTGTTGC AGCCGCTGCC TGTATTTCCG
501 CGACAGTGCC GAATCCCCCT GCGGCGTGTG CGGTGCGGAA CTGTACCGCC
551 GACGGCCGAA AAGTCTGAGT ATTTCGTCGG CGTTTCTGAC GGCGGCGGTT
601 ATTTTGTATT TCCCTGCCAA TATCCTGCCG ATTATGATTT CGTCCAATCC
     TGCCGCCACG GAGGTCAATA CCATCCTTAA CGGCATCGCT TATATGTGGG
701 ACGAGGCGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
751 GTGCCGGTAC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGTCCGCCCG
801 CTTCGCTTTG CCAACGGGTG CAAAGAAATT GTCGCACCTC TACCGCATCA
851 CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
901 TTGATGTGTT CGTTCCACAC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
951 GGCAGTCTAT TTCTGCCTGG TCGTGATTCT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
     TTCAATGAAA CGGAAAAACA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 628; ORF 153>: m153.pep

MAFAYGMTYI EVGIPGAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY

```
101 IKLSSVAEVR FGPAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRLTGDNAV
        QTASEGKTCC SRCLYFRDSA ESPCGVCGAE LYRRPKSLS ISSAFLTAAV
        ILYPPANILP IMISSNPAAT EVNTILNGIA YMWDEGDRLI AAVIFSASIL
    201
        VPVLKIAAMS VLIASARFAL PTGAKKLSHL YRITEAVGRW SMIDIFVIII
        LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDPRLL WDKRASDGIA
    301
    351 FNETEKHD*
m153 / g153 96.1% identity in 358 aa overlap
                                          40
                 10
                         20
                                  30
          MAFAYGMTYIEVGIPGAASVLSLPEMMRLMVFQDYGFLAEVMPVLTFGAPVLFLLLCLYV
m153.pep
           MGFAYSMTYIEVGIPEAASVLSLPEMMRLMVFQDYGFLABVMFVLTFGAPVLFLLLCLYV
a153
                                          40
                         20
                                  30
                                         100
                                                 110
                                                          120
                          80
           YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAEVRFGPAFYLMFA
m153.pep
           YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAKVRFGPAFYLMFA
g153
                                  90
                                         100
                                                 110
                          80
                 70
                                         160
                                                  170
                         140
                                 150
                 130
           LSVMLIRTSVSVPQHWVYFQIGRLTGDNAVQTASEGKTCCSRCLYFRDSAESPCGVCGAE
m153.pep
           $11114141414141414141414141444<del>1444</del>
           LSVMLIRTSVSVPQHWVYFQIGRLTGNNAVQTASEGKTCCSRCLYFRDSAESPCGVCGAE
g153
                                                  170
                                         160
                         140
                                 150
                 130
                                 210
                                          220
                         200
                 190
           LYRRPKSLSISSAFLTAAVILYFPANILPIMISSNPAATEVNTILNGIAYMWDEGDRLI
m153.pep
           LYGGRPKSLSISSAFLTAAVVLYFPANILPIMISSNPAATEANTIFSGIAYMWDEGDRLI
g153
                                 210
                                          220
                                                  230
                                                          240
                         200
                 190
                                                  290
                                          280
                 250
                         260
                                 270
           AAVIFSASILVPVLKIAAMSVLIASARFALPTGAKKLSHLYRITEAVGRWSMIDIFVIII
m153.pep
           AAVIFSASILVPVLKIAAMSVLIAAARFALPAGAKKLSHLYRITEAVGRWSMIDIFVIII
 g153
                                                  290
                                 270
                                          280
                 250
                                                          359
                                          340
                         320
                                 330
           LMCSFHTYAARVIPGSAAVYFCLVVILTMLSAYYFDPRLLWDKRASDGIAFNETEKHDX
 m153.pep
            LMCSFHTYAARVIPGSAAVYFCLVVILTMLSAYYFDPRLLWDKRASDGIAFNETEKYDX
 g153
                                          340
                                                  350
                 310
                         320
                                  330
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 629>:

```
a153.seq
         ATGGCGTTTG CTTACGGTAT GACGTATATC GAGGTCGGGA TACCGGGTGC
      1
         GGCATCCGTC CTTTCGCTGC CCGAGATGAT GCGCCTGATG GTGTTTCAGG
      51
         ATTATGGTTT TTTGGCCGAA GTGATGTTTG TGCTGACCTT CGGCGCGCCG
     101
     151 GTTCTGTTTC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
     201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
         GACAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTTT GGTGGCGTAT
     251
     301 ATCAAGCTCT CGTCTGTGGC AGAGGTTCGC TTCGGATCGG CGTTTTATCT
     351 GATGTTCGCG CTGTCGGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
     401 AGCATTGGGT GTATTTTCAA ATCGGGCGGC TGACGGGGGA TAATGCGGTT
          CAGACGGCAT CGGAAGGTAA AACCTGTTGC AGCCGCTGCC TGTATTTCCG
     451
     501 CGACAGTGCC GAATCCCCCT GCGGCGTGTG CGGTGCGGAA CTGTACCGCC
          GACGGCCGAA AAGTCTGAGT ATTTCGTCGG CGTTTCTGAC GGCGGCGGTT
     551
     601 ATTTTGTATT TCCCTGCCAA TATCCTGCCG ATTATGATTT CGTCCAATCC
          TGCCGCCACG GAGGTCAATA CCATCCTTAA CGGCATCGCT TATATGTGGG
     701 ACGAGGGCGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
          GTGCCGGTAC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGTCCGCCCG
     801 CTTCGCTTTG CCAACGGGTG CAAAGAAATT GTCGCACCTC TACCGCATCA
```

- 170° °

851 901 951 1001 1051	CCGAAGCGGT CGGCCGCTGC TTGATGTGTT CGTTCCACAC GGCAGTCTAT TTCTGCCTGC ATTTCGACCC GCGCCTGCTT TTCAATGAAA CGGAAAAACA	: TTATGCCGCG CGCGTCA : TCGTGATTCT GACGATG : TGGGACAAAC GCGCTTC A TGACTGA	TTC CGGGCAGTGC CTG TCCGCCTATT AGA CGGCATTGCT	
	s to the amino acid sequ	ence <seq 630;="" c<="" id="" td=""><td>ORF 153.a>:</td><td></td></seq>	ORF 153.a>:	
a153.pep 1 51 101 151 201 251 301 351	MAFAYGMTYI EVGIPGAAS' VLFLLLCLYV YAALIRKQA' IKLSSVAEVR FGSAFYLMF: QTASEGKTCC SRCLYFRDS. ILYFPANILP IMISSNPAA' VPVLKIAAMS VLIASARFA LMCSFHTYAA RVIPGSAAV FNETEKHD*	Y PALRLATRVM VRLROAL A LSYMLIRTSY SVPOHW A ESPCGVCGAE LYRRRPH T EVNTILNGIA YMWDEGI L PTGAKKLSHL YRITEAL Y FCLVVILTML SAYYFD	MYD VFFVSTLVAY VYFQ IGRLTGDNAV KSLS ISSAFLTAAV ORLI AAVIFSASIL VGRW SMIDIFVIII	
m153/a153 99	0.7% identity in 358 aa o	20 30		0
m153.pep	MARAVOMMUTEUCIDEA	ASVLSLPEMMRLMVFQDYG	FLAEVMFVLTFGAPVLFLLCLY	V !
a153		ASVLSLPEMMRLMVFQDYG 20 30	FUVEAWLATILECADATLTTTCTI	V 50
m153.pep a153			100 110 12 LVAYIKLSSVAEVRFGPAFYLMF	A I I
m153.pep			160 170 18 KTCCSRCLYFRDSAESFCGVCGF	AE II
m153.pep a153			NPAATEVNTILNGIAYMWDEGDR: 	11
m153.pep a153		11111111111111111	KLSHLYRITEAVGRWSMIDIFVI 	1.1
m153.pep a153			340 350 35 DPRLLWDKRASDGIAFNETEKHD	X I
	partial DNA sequence	was identified in N. go	onorrhoeae <seq 631<="" id="" td=""><td>>:</td></seq>	>:
g154.seq 1 ATGA	CTGACA ACAGCCCTCC TCCAA	CGGA CACGCTCAAG CACGC	GTCCG	
E1 (7)))	AACAAC accttcctCT CCGCCC TGCCGG CGGCTGGCTT TGGGTT	TCTG GCTGGTCCCG CTGAT	CGCGC	
151 CTCC	TTACCC TCTTGATGGA CAGCG	GGAA GGCATCGAAG TCAAC	AATAC	
201 CCTC	TATTGAGCA TCGATO	TCGG ACGCGTTACC CGAAT	CAAAC	
263 9000	CGACGA CCAAAAAGGC GTGGAA CCGGCC TCATCCGCAG CGATA	AGTTA CTGCCCAACT CAATG	CGGAC	
301 GTAT 351 TATC	CCGGCC TCATCCGCAG CGATA GACCAA AGCGGCGTAA CCGGT	TTGGG TACGCTGCTT TCGGG	TTCGT	

```
401 ACATCGCTTT TACACCCGGC AAAAGCGGCG AGGCAAAAGA CGTGTTCCAA
451 GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAgeg GGCTGCGCTT
     GARTTTGATT GGTAAAAACG AccgCATCCT CAACGTCAAC AGCCCTGTTT
     TGTATGAAAA CTTTATGGTC GGGCAAATCG AAAGCGCGCA TTTCGACCCG
     TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA
651 ACTGATTCAT TCCGCCAGCC GTTTTTGGCT GGAAAGCGGC ATCAATATCG
701 ARACCACAGG CAGCGGCATC ARACTCAATT CCGCCCCTCT GCCTGCCCTG
751 CTGTCAGGCG CGATTTCATT TGATTCGCCG ARAACCAAAA ACAGTAAAAA
801 CGTCAAAAGC GAGGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAATCG
     CCAACCTGCC TGACGACCGC TCGCTGTACT ACACCGCGTT TTTCAAACAA
851
901 TCCGTGCGCG GACTGACCGT CGGTTCGCCT GTCGAATACA AAGGGCtgaA
951 TGTeggCATG GTTTCCGATG TCCCTTATTT TGACCGCAAt gacagCCTGC
1001 ACCEPTIGA aaacggotgg aTTcccGtac gCATCCGCAT cgagccTTCC
1051 CGTTTGGAAA TCAATGCCGA CGAGCAAAGC AAAGAGCATT GGAAACAACA
1101 ATTCCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA
1151 ACCTGCTGAC CGGCGGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCC
1201 TCGCCCAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTCATCGC
1251 CACACGGGGC GGCGGTTTGG ATGACTTGCA GGTCAAATTG GCGGATTTGC
1301 TGGACaaatt CAACAATCTG CCATTggata aAACCGTTGC CGAATTGAAC
1351 GGCTCGCTCG CCGAACTCAA GTCCGCACTC AAATCCGCCA ATGCCGCCCT
1401 AAGCTCCATT GacaAACTGG TCGgcaaTCC GCAGACGCAA AACATCCCGA
1451 ACGAACTGAA CCAAACTCTG AAAGAGTTGC GCATAACCCT GCAAGGCGTA
1501 TCGcctCAAT CGCCTATCTa cgGAgacgta caAAATAcgc tgCaAAGTTT
1551 GGACAAAACC TTAAAagacg TtcaACCCGT CATTAACACT TTGAAAGAAa
1601 aaccCaaCgc actGATTTtc aacaACAGCA GCAAAGAccc tATCCCGAAA
1651 GGAAGCCGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 632; ORF 154.ng>: g154.pep

1 MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
51 VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD
61 VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSGEAKDVFQ
61 VQDIPPVTAI GQSGLRLNLI GKNDRILNVN SPVLYENFMV GQIESAHFDP
62 SDQSVHYTIF IQSPNDKLIH SASRFWLESG INIETTGSGI KLNSAPLPAL
63 SVRGLTVGSP VEYKGLNVGK SEDSFTLYDSR SEIANLPDDR SLYYTAFFKQ
64 SVRGLTVGSP VEYKGLNVGM VSDVPYFDRN DSHLLFENGW IPVRIRIEPS
65 RLEINADEQS KEHWKQQFQT ALNKGLTATI SSNNLLTGGK MIELNDQPSA
66 GSLAELKSAL KSANAALSSI DKLVGNPQTQ NIPNELNQTL KELRITLQGV
67 SPQSPIYGDV QNTIQSLDKT LKDVQPVINT LKEKPNALIF NNSSKDPIPK
68 SGS*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 633>:

ATGACTGACA ACAGCCCTCC TCCAAACGGA CACGCCCAAG CACGCGTCCG 51 CAAAAACAAC ACCTTCCTCT CTGCCGTCTG GCTGGTTCCG CTGATCGCGC 101 TGATTGCCGG CGGCTGGCTT TGGGTTAAGG AAATCCGCAA CAGGGGGCCT 151 GTGGTTACGC TCTTGATGGA CAGCGCGGAA GGCATTGAGG TCAACAATAC 201 GGTCATCAAA GTATTGAGCA TCGATGTCGG ACGCGTTACC CGAATCAAAC 251 TGCGCGACGA CCAAAAAGGC GTGGAAGTAA CCGCCCAACT CAATGCGGAC 301 GTATCCGGCC TCATCCGCAG CGATACCCAG TTTTGGGTGG TCAAGCCGCG TATCGACCAA AGCGGCGTAA CCGGTTTGGG TACGCTGCTT TCGGGTTCGT 351 401 ACATCGCCTT TACACCCGGC AAAAGCGACG AGGCAAAAGA CGTGTTCCAA GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAGCG GGCTGCGCTT GAATTTGATT GGTAAAAACG ACCGCATCCT CAACGTCAAC AGCCCTGTTT 501 551 TGTATGAAAA TTTTATGGTC GGGCAAGTCG AAAGCGCGCA TTTCGACCCG 601 TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA 651 ACTGATTCAT TCCGCCAGCC GTTTTTGGCT GGAAAGCGGC ATCAATATCG 701 AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG 751 CTGTCGGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA 801 CGTCAAAAGC GAAGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAGTCG 851 CCAACCTGCC TGACGACCGC TCGCTGTACT ACACCGCGTT TTTCAAACAA 901 TCCGTGCGCG GCCTGACCGT CGGTTCGCCC GTCGAGTACA AAGGGCTGAA 951 TGTCGGCGTG GTTTCCGACG TTCCTTATTT CGACCGCAAC GACAGCCTGC 1001 ACCTGTTTGA AAACGGCTGG ATACCCGTAC GCATCCGCAT TGAACCTTCC CGTTTGGAAA TCAATGCCGA CGAACAAGC AAAGAACATT GGAAACAACA 1101 ATTTCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA 1151 ACCTGCTGAC CGGAAGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCA

1201	TCACCTAAGC	TGCGACCGCA	TACCGTTTAT	GCAGGCGATA	CCGTTATCGC
	GACCCAGGGC	CCCCOTTCCC	ACGATTTGCA	GGTCAAATTG	GCGGATTTGC
1251	TGGACAAGTT	GGCGGTIIGG	COMMUNICATIN	ACACCCTTCC	CGAATTGAAC
1301	TGGACAAGTT	CGACAAACTG	CCITIMONIA	AGACGGIIGO	*MOCOCCCCT
1351	CCTTCCCTTC	CCGAGCTCAA	ATCCACACTC	AAATCTGCCA	AIGCCGCCCI
		GACAAACTGG	TCGGCAAACC	GCAGACACAA	AACATTCCGA
1401	AAGCTCCATC	CCAAACCCTG	***********	CCACAACCCT	GCAAGGCGTA
1451	ACGAACTGAA	CCAAACCCTG	AAAGAGIIGC	GCACAACCC	TOO BE SOUTH
1501	TCGCCGCAAT	CGCCTATCTA	CGGCGACGTA	CAAAATACGC	IGCMANGIII
	GG2G23330T	TTABAAGACG	TTCAACCCGT	GATTAATACT	TTGAAAGAAA
1551	GGACAAAACI	11770000000	BACACCACCA	CCANAGACCC	TATCCCGAAA
1601	AACCCAACGC	GCTGATTTTC	MACAGCAGCA	GCAPAGICOG	
1651	GGAAGCCGAT	AA			

This corresponds to the amino acid sequence <SEQ ID 634 ORF 154.a>:

.pep					
	MEDMEDDING	HAQARVRKNN	TFLSAVWLVP	LIALIAGGWL	MAKETKNEGE
1	MIDMOFFERO	GIEVNNTVIK	VISIDVGRVT	RIKLRDDOKG	VEVTAQLNAD
51	AALPTWD2VE	PWVVKPRIDQ	COMMON COTT T	CCCVIARTEG	KSDEAKDVFO
101	VSGLIRSDTQ	PWVVKPRIDQ	SCALCIGITIO	agattartid	
	TATIONTON	GOSGLRLNLI	GKNDRILNVN	SPVLYENFMV	GQVESAREDE
151	AODILLATUT	IQSPNDKLIH	CACDEWLESG	INIETTGSGI	KLNSAPLPAL
201	SDQSVHXTIF	TÖZEMDYDYU	SASKI II DESC	CONTRACT DODD	CI.VVTAFEKO
251	LSGAISFDSP	KTKNSKNVKS	EDSFTLYDSK	SEVANLIPOOR	BUILLING
	CITAL MICCO	VEVKGLNVGV	VSDVPYFDRN	DSLHLFENGW	IDAKTKTEAP
301	SVRGLIVGOF	KEHWKQQFQT	BINDCI TATT	CONNITITGSK	MIELNDOPSA
351	RLEINADEQS	KEHMKÖÖLÖL	ALMKGUIALL		DY DYMUNDIN
401	CDVI.PPHTVY	AGDTVIATQG	GGLDDLGAKL	YDPTDKADKP	PUDKIANDUM
	DERENCE III	KSANAALSSI	DKINGKPOTO	NIPHELNOTL	KELRTTLQGV
451	GSLAELKSTL	KSANAAUSSI	DADVORT Q- W	* ******** T T	MCCCKUDIDE
501	SPQSPIYGDV	QNTLQSLDKT	PKDAÖBATML	PKEKLNAUTE	MODORDETER
551	GSR*				

m154 / g154 97.8% identity in 553 aa overlap

						60
	10	20	30	40	50	
1.F.4 mon	MTDNSPPPNGHAQAF	VRKNNTFLSA	VWLVPLIAL:	IAGGWLWVKEI	RNRGPVVTLI	MUSAE
m154.pep					111111111	
	MTDNSPPPNGHAQAI	ייין וווווון וון וון וון א 22.1קידואואיש כתוכ	WI VPLIAL	IAGGWLWVKEI	RNRGPVVTL	LMDSAE
g154		(AKKTAIATI TION	30	40	50	60
	10	20	30			
				400	110	120
	70	80	90	100		
miss non	GIEVNNTVIKVLSI	DVGRVTRIKL	ODDQKGVEVT	'AQLNADVSGLI	RSDTQFWVV	KPKIDQ
m154.pep		111111111			. 1	11111
	GIEVNNTVIKVLSI	OVCRVTRIKIJ	RDDOKGVEVT	AOLNADVSGLI	RSDTQFWVV	KPRIDQ
g154		80	90	100	110	120
	70	80	20			
				160	170	180
	130	140	150			
m154.pep	SGVTGLGTLLSGSY	IAFTPGKSDE	AKDVFQVQDI	PPVTALGOSG		111111
mrsp-p		11111111				111111
-174	SGVTGLGTLLSGSY	IAFTPGKSGE	AKDVFQVQD1	[PPVTAIGQSG	LRLNLIGKNI	
g154	130	140	150	160	170	180
	130		-			
		200	210	220	230	240
	190	200	210 	namut.TUGAGR		TTGSGI
m154.pep	SPVLYENFMVGQVE	SAHPDPSDQS	VHITTFIQS	11111111111	111111111	111311
	SPATAENEMAGOAR	4111111111	111111111	1111111111	THE PROPERTY OF	mmacat
g154	SPVLYENFMVGQIE	SAHFDPSDQS	VHYTIFIQS	MUKTIH292	E MIDDOGIMIA	111000
9-01	190	200	210	220	230	240
	250	260	270	280	290	300
	KLNSAPLPALLSG	200	CANDINGEDS	FTI.VDSRSEVA	NLPDDRSLY	YTAFFKQ
m154.pep	KLNSAPLPALLSG	*125D25V1V1		11111111111	111111111	1111111
					VISQUUG'IN	YTAFFKO
g154	KLNSAPLPALLSG	AISFDSPKTKI	ISKNVKSEDS	FTLIDSRSELA	290	300
-	250	260	270	280	290	300
	310	320	330	340	350	360
		KGT.NVGVVSD	VPYFDRNDSI	HLFENGWIPV	RIRIEPSRLE	INADEQS
m154.pep		1111111111	1111111111	1111111111111		1111111
	SVRGLTVGSPVEY	111111111		.ut.rengwt PV	RTRIEPSRLE	INADEOS
g154		KGLNVGMVSD	VPIEDRNDSI	340	350	360
	310	320	330	. 340	330	
					410	420
	370	380	390	400	410	
m154.pep	KEHWKQQFQTALN	KGLTATISSN	NLLTGSKMI	ELNDQPSASPK	LRPHTVYAGI	TVIATQG
מים ייינית		111111111	11111:111		1111111111	
	KEHWKQQFQTALN	KGLTATISSN	NLLTGGKMI	ELNDOPSASPK	LRPHTVYAGI	TVIATRG
g154	KEHWKQQFQTALM					

	370	380	390	400	410	420
	430	440	450	460	470	480
m154.pep	GGTDDTÖAKTYDTTD	11::1111	11111111111	1111:1111	[:
g154	GGLDDLQVKLADLLD	KFNNLPLE 440	KTVAELNGSLA 450	A 60	470	480
	490	500	510	520	530	540
m154.pep	NIPNELNOTLKELRI NIPNELNOTLKELRI	1111111	!		1111111111	111111
g154	NIPNELNQI LKELKI	500	510	520	530	540
	550					
m154.pep	NSSSKDPIPKGSRX					
g154	NNSSKDPIPKGSRX 550					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 635>:

```
a154.seq
         ATGACTGACA ACAGCCCTCC TCCAAACGGA CACGCCCAAG CACGCGTCCG
         CAAAAACAAC ACCTTCCTCT CTGCCGTCTG GCTGGTTCCG CTGATCGCGC
         TGATTGCCGG CGGCTGGCTT TGGGTTAAGG AAATCCGCAA CAGGGGGCCT
    151 GTGGTTACGC TCTTGATGGA CAGCGCGGAA GGCATTGAGG TCAACAATAC
     201 GGTCATCAAA GTATTGAGCA TCGATGTCGG ACGCGTTACC CGAATCAAAC
         TGCGCGACGA CCAAAAAGGC GTGGAAGTAA CCGCCCAACT CAATGCGGAC
     301 GTATCCGGCC TCATCCGCAG CGATACCCAG TTTTGGGTGG TCAAGCCGCG
     351 TATCGACCAA AGCGGCGTAA CCGGTTTGGG TACGCTGCTT TCGGGTTCGT
     401 ACATCGCCTT TACACCCGGC AAAAGCGACG AGGCAAAAGA CGTGTTCCAA
     451 GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAGCG GGCTGCGCTT
     501 GAATTTGATT GGTAAAAACG ACCGCATCCT CAACGTCAAC AGCCCTGTTT
     551 TGTATGAAAA CTTTATGGTC GGGCAAGTCG AAAGCGCGCA TTTCGACCCG
          TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA
     651 ACTGATTCAT TCCGCCAGCC GTTTCTGGCT GGAAAGCGGC ATCAATATCG
     701 AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG
     751 CTGTCGGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA
     801 CGTCAAAAGC GAAGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAGTCG
     851 CCAACCTGCC TGATGACCGT TCGCTGTACT ACACCGCGTT TTTCAAACAA
     901 TCCGTGCGCG GACTGACCGT CGGTTCGCCT GTCGAGTACA AAGGGCTGAA
          TGTCGGCGTG GTTTCCGATG TTCCTTATTT CGACCGCAAC GACAGCCTGC
    1001 ACCTGTTTGA AAACGGCTGG ATTCCCGTAC GCATCCGTAT TGAGCCTTCC
    1051 CGTTTGGAAA TCAATGCCGA CGAACAAAGC AAAGAACATT GGAAACAACA
    1101 ATTTCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA
    1151 ACCTGCTGAC CGGCAGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCC
    1201 TCGCCCAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTTATCGC
    1251 GACCCAGGGC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC
     1301 TGGACAAGTT CGACAAACTG CCTTTAGATA AGACGGTTGC CGAATTGAAC
     1351 GGTTCGCTTG CCGAGCTCAA ATCCACACTC AAATCTGCCA ATGCCGCCCT
    1401 AAGCTCCATC GACAAACTGG TCGGCAAACC GCAGACACAA AACATTCCGA
    1451 ACGAACTGAA CCAAACCCTG AAAGAGTTGC GCACAACCCT GCAAGGCGTA
          TCGCCTCAAT CGCCTATCTA CGGCGACGTA CAAAATACGC TGCAAAGTTT
     1501
     1551 GGACAAAACC TTAAAAGACG TTCAACCCGT CATTAACACT TTGAAAGAAA
     1601 AACCCAACGC GCTGATTTTC AACAGCAGCA GCAAAGACCC TATCCCGAAA
     1651 GGAAGCCGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 636; ORF 154.a>: a154.pep

MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP 51 VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD 101 VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSDEAKDVFQ

151	VQDIPPVTAI	GQSGLRLNLI	GKNDRILN	VN SPVLYEN	FMV GQVESAL	HFDP	
201	SDOSVHYTTE	TOSPNDKLIH	SASRFWLE	SG INIETTG	SGI KLNSAPI	LPAL	
251	LSGAISFDSP SVRGLTVGSP	KIKNSKNVKS KIKNSKNVKS	VSDVPYFD	SK SEVANDE RN DSLHLFE	NGW IPVRIR	IEPS	
301 351	DIFINANTOS	KEHWKOOFOT	ALNKGLTA	TI SSNNLLT	GSK MIELND	QPSA	
401	COMIDDATAN	ACDTVIATOR	GGLDDLOV	KL ADLLDKF	DKL PLDKTV	AELN	
451	GSLAELKSTL SPQSPIYGDV	KSANAALSSI ONTLOSLDKI	DKLVGKPQ LKDVOPVT	TO NIPNELN	LIF NSSSKD	PIPK LQGV	
501 551	GSR*	Ou i ngonom.	2.01212				
m154/a154 10	0.0% identity	in 553 aa	overlan				
" m154/a154 10	-	10	20	30	40	50	60
m154.pep	MTDNSPPP	NGHAQARVRI	ONTFLSAV	LVPLIALIAG	GWLWVKEIRN	RGPVVTLLMD	III
a154	MTDNSPPE	NGHAQARVR	KNNTFLSAVV	LVPLIALIAC	GWLWVKEIRN	RGPVVTLLML	SAE
4134	••••	10	20	30	40	50	60
		70	80	90	100	110	120
m154.pep	GIEVNNTV	VIKVLSIDVG	RVTRIKLRDI	OQKGVEVTAQI	NADVSGLIRS	DTQFWVVKP	KTDÖ
-154	 GIRVNNTV	 TKVT.SIDVG	IIIIIIIIII RVTRIKLRDI	OOKGVEVTAQI	LNADVSGLIRS	DTQFWVVKP	RIDQ
a154	OIDVIII.	70	80	90	100	110	120
	. 1	130	140	150	160	170	180
m154.pep	SGVTGLG	TLLSGSYIAF	TPGKSDEAK	DVFQVQDIPP	VTAIGQSGLRI	NLIGKNDRI	LNVN
	1111111		 		VTAIGQSGLRI	LNLIGKNDRI:	LNVN
a154			140	150	160	170	180
		190	200	210	220	230	240
m154.pep	CDUT.VEN	EMVGOVESAH	FDPSDOSVH	YTIFIOSPND	KLIHSASRFWI	LESGINIETT	GSGI
-	1111111		111111111		 KLIHSASRFW	[GSGT
a154		FMVGQVESAH 190	FDPSDQSVR 200	210	220	230	240
				070	280	290	300
154 map	VI NGA PI.	250 Paltisgatse	260 DSPKTKNSK	270 NVKSEDSFTL	YDSRSEVANL		
m154.pep	1111111	11111111111	111111111	1111111111	111111111	111111111	1111
a154			DSPKTKNSK 260	NVKSEDSFTL 270	YDSRSEVANL 280	PDDRSLYYTA 290	300
		250	260				
		310	320	330	340 ENGWIPVRIR	350 TEPSRLETNA	360 DEOS
ml54.pep	1111111	THEFT			1111111111	1111111111	1111
a154	SVRGLTV	GSPVEYKGLI	VGVVSDVP	FORNDSLHLE	ENGWIPVRIR	IEPSRLEINA	DEQS 360
		310	320	330	340	350	360
		370	380	390	400	410	420
m154.pep	111111	11111111	11111111	111111111	OQPSASPKLRP		
a154	KEHWKQO	FQTALNKGL'	TATISSNNL	LTGSKMIELNI	OQPSASPKLRE	HTVYAGDTV	LATQG
		370	380	390	400	410	420
		430	440	450	460	470	480
m154.pep	GGLDDL	OAKTWOTTOK	FDKLPLDKT	VAELNGSLAE:	lkstlksana <i>i</i> 	/T221DKFAC	KPQTQ IIIII
a154	GGLDDL	OVKLADLLDK	FDKLPLDKT	VAELNGSLAE:	LKSTLKSANA	ALSSIDKLVG	KPQTQ
alla	33000	430	440	450	460	470	480
		490	500	510	520	530	540
m154.per	NIPNEL	NOTLKELRTT	LOGVSPOSP	IYGDVQNTLQ	SLDKTLKDVQ	PVINTLKEKP	NALIF
-164	 NTDNET	╎╎╎╎╎╎╎╎ ┅∩┰╏₭₽Ӏ₽┯Ͳ	111111111 1.0GVSP0SP	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		PVINTLKEKP	NALIF
a154	MILIATI	490	500	510	520	530	540

```
550
m154.pep NSSSKDPIPKGSRX
||||||||||||
a154 NSSSKDPIPKGSRX
550
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 637>:

```
g155.seq
          atGAAaatcg GtatcCCACG CGAGTCAtta tcCGGCGAAA cccgcgtagc
         ctgcAcgccc gCCACCGTTG CCctgctggg caAactAGGC TTTGAAACCG
         TTGtcgaAAG CGGTGCAggt TTGGCGGCAA GTTTggaCGA TGCCGCTTAC
      51
     101
    151 CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGCCTGCCC
         TTTAATTTAT AAGGTCAACG CGCCGTCCGA AGGCGAGCTG CCGCTGCTCA
     201
     251 AAGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
         TTGGTCGAGG CCTTGCGCGC CAAGAAAGTC AACGCGCTGG CGATGGACAT
         GGTTCCCCGC ATTTCCCGCG CTCAGGCCTT GGACGCTTTG TCTTCAATGG
     351
         CAAACATCAG CGGCTACCGC GCCGTGATTG AAGCCGCCAA CGCCTTCGGC
     451 CGTTTCTTCA CCGGTCAAAT CACTGCCGCC GGCAAAGTGC CGCCTGCGCA
     401
     501 GGTTTTGGTG ATTGGCGCCG GTGTGGCGGG TTTGGCGGCA ATCGGTACGG
     551 CAAATTCGCT CGGCGCAGTG GTGCGCGCGT TCGATACCCG CTTGGAAGTG
     601 GCGGAACAAA TCGAATCGAT GGGCGGTAAG TTCCTGAAAC TCGACTTCCT
     651 GCAAGAATCG GGCGGCAGCG GAGACGGCTA CGCCAAAGTG ATGAGCGACG
     701 AATTTATCGC CGCCGAAATG AAGCTCTTTG CCGAACAGGC GAAAGAAGTG
          GACATCATCA TCACCACCGC CGCCATTCCG GGCAAACCCG CTCCCAAGCT
     801 GATTACCAAA GAAATGGTGG AAAGCATGAA ATCCGGATCC GTCATCGTCG
     851 ATTTGGCGGC GACGGCCGC AACTGCGAAC TCACCCGACC GGGCGAATTG
     901 TCCGTAACCG GCAACGGCGT GAAAATCATC GGCTACACCG ACATGGCAAA
          CCGCCTTGCC GGACAGTCTT CCCAGCTTTA CGCCACCAAC TTGGTGAACC
    1001 TGACCAAGCT GTTAAGCCCG AACAAAGACG GCGAAATCAC GCTGGACTTC
     951
    1051 GAAGacgtGA TTATCCGCAA TATGACCGTT ACCCGcgacg gcgaaATCAC
          CTTCCCGCCT CCGccgaTTc aggtTTCcgc ccggccgCAG CAAAcgccgt
    1151 ctgaAAAagc cgcGCCTGCC GCCAagcccg AgccGaaacc tgttCCcctg
    1101
    1201 tggaAAAaac tcgCGCCCGC CGCcatcgCC GCCGTATTGG tgctgtgGgt
          eggCgeggte geaceegeag CATTCTTGAA CCACTTTATC GTCTTCGTCC
     1251
          TCGCCTGCGT CATCGCTAC CATGTCGTTT GgaacgTCAG CCACTCGCTG
     1301
          CACACACCGC TGAtgtcggt aaccaaCgcc atctccGGCA tcatggtcgt
     1351
     1401 eggCGCGCTG CTGCAAATCG GTCAGGGcaa cggcttcgtT TCgctGCTGT
          CGTTTGTTGC CATCCTGATT GCCGGCATCA ATATCTTCGG CGGCTTTGCG
     1451
     1501 GTTACACGGC GTATGCTGAA TATGTTTAAG AAAGGGTAA
```

This corresponds to the amino acid sequence <SEQ ID 638; ORF 155.ng>:

```
9155.pep
1 MKIGIPRESL SGETRVACTP ATVALLGKLG FETVVESGAG LAASLDDAAY
51 QTAGATVADK AAVWACPLIY KVNAPSEGEL PLLKEGQTIV SFLWPRQNEA
101 LVEALRAKKV NALAMDMVPR ISRAQALDAL SSMANISGYR AVIEAANAFG
151 RFFTGGITAA GKVPPAQVLV IGAGVAGLAA IGTANSLGAV VRAFDTRLEV
201 AEQIESMGGK FLKLDFLQES GGSGDGYAKV MSDEFIAAEM KLFAEQAKEV
251 DIIITTAAIP GKPAPKLITK EMVESMKSGS VIVDLAATGG NCELTRPGEL
301 SVTGNGVKII GYTDMANRLA GQSSQLYATN LVNLTKLLSP NKDGEITLDF
351 EDVIIRNMTV TRDGEITFPP PPIQVSARPQ QTPSEKAAPA AKPEPKPVPL
401 WKKLAFAAIA AVLVLWVGAV APAAFLNHFI VFVLACVIGY HVVWNVSHSL
451 HTPLMSVTNA ISGIMVVGAL LQIGQGNGFV SLLSFVAILI AGINIFGGFA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 639>:

```
m155.seq

1 ATGAAAATCG GTATCCCACG CGAGTCATTA TCCGGCGAAA CCCGCGTCGC
51 CTGTACGCCC GCCACCGTCG CCCTGCTGGG CAAACTGGGC TTTGAAACCG
101 TTGTCGAAAG CGGTGCAGGT TTGGCGGCAA GTTTGGACGA TGCCGCTTAC
151 CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGTCTGCCC
201 TTTGATTTAT AAGGTCAACG CGCCGTCCGA ACAGGAACTG CCGCTTTTGA
251 ACGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCCCCA AAACGAGGCT
```

301	TTGGTCGAAG	CCTTGCGCGC	CAAGAAAGTG	AACGCGCTGG	
351	GGTGCCCCGC	ATTTCGCGCG	CGCAGGCTTT	GGACGCTTTG	
401	CAAACATCAG	CGGCTACCGC	GCCGTAATTG	AAGCCGCCAA	
451	CGTTTCTTCA	CCGGTCAAAT	TACCGCCGCC	GGCAAAGTGC	
501	GGTTTTGGTG	ATTGGTGCAG	GTGTGGCAGG	TTTGGCGGCG	
551	CAAACTCGCT	CGGCGCAGTG	GTACGCGCGT		CTTGGAAGTG
601	GCGGAACAAA	TCGAATCGAT	GGGCGGCAAG		TCGACTTCCC
651	ACAAGAATCG				ATGAGCGACG
701	AATTTATCGC	AGCCGAGATG	AAGCTCTTTG		GAAAGAAGTG
751	GACATCATCA	TCACCACCGC	CGCCATTCCG		CGCCCAAGCT
801	GATTACCAAA	GAAATGGTGG	AAAGCATGAA	ATCCGGCTCC	GTCATCGTCG
851	ATTTGGCGGC	GGCGACGGGC	GGCAACTGCG	AACTCACCCG	CCCGGGCGAA
901	TTGTCCGTAA	CCGGCAACGG	CGTGAAAATC	ATCGGCTACA	CCGACATGGC
951	AAACCGCCTT	GCCGGACAGT	CTTCCCAGCT		AACTTGGTCA
1001	ACCTGACCAA	GCTGTTAAGC	CCGAACAAAG	ACGGCGAAAT	CACGTTGGAC
1051	TTTCCDDCDCC	TGATTATCCG	CAACATGACC	GTTACCCACG	ACGGCGAAAT
1101	CACCTTCCCG	CCTCCGCCGA	TTCAAGTTTC	CGCCCAGCCG	CAGCAAACGC
1151	CGTCTGAAAA	AGCCGTGCCT	GCCGCCAAGC	CCGAGCCAAA	ACCCGTTCCC
1201	CTGTGGAAAA	AACTCGCGCC			TGGTACTGTG
1251	GGTCGGCGCG		CAGCATTCCT		
1301	TTCTCGCCTG				CAGCCACTCG
1351	CTGCACACAC		GGTAACCAAC		GCATCATCGT
1401	CGTCGGCGCG		TCGGTCAGGG		
1451	TGTCGTTTGT				CGGCGGCTTT
1501	GCGGTAACAC	GGCGTATGCT	GAATATGTTT	AAGAAAGGGT	: AA

This corresponds to the amino acid sequence <SEQ ID 640; ORF 155>:

-					
m155.pep					
1	MKIGIPRESL	SGETRVACTP	ATVALLGKLG	FETVVESGAG	LAASLUDAAI
51	OTAGATVADK	AAVWVCPLIY	KVNAPSEQEL	PLLNEGQTIV	SFLWPRQNEA
101	T.VEAT.RAKKV	NALAMDMVPR	ISRAQALDAL	SSMANISGYR	AVIEAANAFG
151	DEFTCOTTAL	GKVPPAOVLV	IGAGVAGLAA	IGTANSLGAV	VRAFDTRLEV
	MELICOTION	ELKI DEBUES	GGSGDGYAKV	MSDEFIAAEM	KLFAEOAKEV
201	AEQIESMOGN	CANDOLL GEO	EMMEGMAGG	VIVDLAAATG	GNCELTRPGE
251	DITITTAALP	GREAPALITA	POCCOLAND	ALIMITARI I C	DNKDCETTI.D
301	LSVTGNGVKI	IGYTDMANKL	AGQSSQLIAT	NLVNLTKLLS	INVOCUTION
351	FEDVIIRNMT	VTHDGEITFP	PPPIQVSAQP	QQTPSEKAVP	AARPLPREVE
401	LWKKLAPAVI	AAVLVLWVGA	VAPAAFLNHF	IVFVLACVIG	YYVVWNVSHS
451	LHTPLMSVTN	AISGIIVVGA	LLQIGQGNGF	VSLLSFVAIL	<u>IAGINI</u> FGGF
501	AVTRRMLNMF				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 155 shows 97.9% identity over a 513 aa overlap with a predicted ORF (ORF 155.ng) from N. gonorrhoeae:

m155 / g155	97.9% identity	20	30	40	50	60
m155.pep	MKIGIPRESLSGET	11111111111		1111111111	111111111	11111
g155	MKIGIPRESLSGET	RVACTPATVA 20	30	40	50	60
	70	80	90	100	110	120
m155.pep	AAVWVCPLIYKVNA	111 11111	:1111111111	111111111	111111111	
g155	AAVWACPLIYKVNA 70	PSEGELPLLI 80	KEGQTIVSFLW 90	IPRQNEALVEA 100	110	120
	130	140	150	160	170	180
m155.pep	ISRAQALDALSSMA	11111111111	111111111111	[[]]]]		111111
g155	ISRAQALDALSSMA	NISGYRAVI	EAANAFGRFF	rgqitaagkvi	PAQVLVIGA	GVAGLAA

```
180
                                                     170
                                     150
                                             160
                    130
                            140
                                                              240
                                     210
                                             220
                                                      230
                            200
                    190
              IGTANSLGAVVRAFDTRLEVAEQIESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAEM
   m155.pep
              IGTANSLGAVVRAFDTRLEVAEQIESMGGKFLKLDFLQESGGSGDGYAKVMSDEFIAAEM
   q155
                                                      230
                                             220
                             200
                                     210
                    190
                                                      290
                                             280
                             260
                                     270
                    250
              KLFAEQAKEVDIIITTAAIPGKPAPKLITKEMVESMKSGSVIVDLAAATGGNCELTRPGE
   m155.pep
              KLFAEQAKEVDIIITTAAIPGKPAPKLITKEMVESMKSGSVIVDLAA-TGGNCELTRPGE
    q155
                                             280
                             260
                                     270
                    250
                                     330
                                             340
                             320
              LSVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
    m155.pep
               LSVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
    q155
                                              340
                                                       350
                              320
                                      330
                     310
                                                      410
                                                               420
                                              400
                                     390
                             380
                     370
               VTHDGEITFPPPPIQVSAQPQQTPSEKAVPAAKPEPKPVPLWKKLAPAVIAAVLVLWVGA
    m155.pep
               VTRDGEITFPPPPIQVSARPQQTPSEKAAPAAKPEPKPVPLWKKLAPAAIAAVLVLWVGA
    g155
                                               400
                                                       410
                              380
                                      390
                     370
             360
                                              460
                             440
                                      450
                     430
               VAPAAFLNHFIVFVLACVIGYYVVWNVSHSLHTPLMSVTNAISGIIVVGALLQIGQGNGF
    m155.pep
               VAPAAFLNHFIVFVLACVIGYHVVWNVSHSLHTPLMSVTNAISGIMVVGALLQIGQGNGF
    g155
                                               460
                                                       470
                                      450
                              440
             420
                      430
                                      510
                     490
                             500
               VSLLSFVAILIAGINIFGGFAVTRRMLNMFKKGX
    m155.pep
               VSLLSFVAILIAGINIFGGFAVTRRMLNMFKKGX
    q155
                              500
                      490
              480
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 641>:
    a155.seq
             ATGAAAATCG GTATCCCACG TGAGTCATTA TCCGGCGAAA CCCGCGTCGC
             CTGTACGCCC GCCACCGTCG CCCTGCTGGG CAAACTGGGC TTTGAAACCG
         51
             TTGTCGAAAG CGGCGCAGGT TTGGCGGCAA GTTTGGACGA TGCCGCTTAC
             CAAGCAGCAG GCGCAACCGT TGCCGACAAA GCAGCGGTTT GGGCATACCC
         151
             TTTAATTTAT AAGGTTAACG CGCCGTCCGA AGACGAGCTG CCGCTGCTCA
         201
             AAGAAGGACA GACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
             TTGGTCGAAG CCTTGCGCGC CAAGAAAGTG AACGCGCTGG CAATGGACAT
         301
```

GGTGCCCCGC ATTTCGCGCG CGCAGGCTTT GGACGNTTTG TCTTNGATGG CARACATCAG CGGCTACCGC GCCGTGATTG AAGCCGCCAA CGCCTTCGGC CGTTTNTTCA CCGGCCAAAT TACTGCCGCA GGCAAAGTGC CGCCCGCGCA GGTTTTGGTG ATTGGTGCAG GTGTGGCAGG TTTGGCGGCG ATCGGTACGG CAAACTCGCT CGGCGCAGTG GTACGCGTGT TCGATACCCG CCTG.AAGTG GCGGAACAAT TAGAATCGAT GGGCGGCAAG TTCCTGAAAC TCGACTTCCC GCAAGAATCG GGCGGCAGCG GCGACGGCTA CGCCAAAGTG ATGAGCGACG AATTTATCGC CGCCGAGATG AAGCTTTTTG CCGAGCAGGC GAAAGAAGTG GACATCATCA TCACCACCGC CGCCATTCCG GGCAAACCCG CGCCCAAGCN NNTNANCAAA GAAATGGTCG AAAGCATGAA ACCCGGCTCC GTCATCGTCG 851 ATTTGGCGGC GGCGACGGGC GGCAACTGCG AACTCACCAA ACAGGGCGAA TTGTTCGTAA CCGGCAACGG CGTGAAAATC ATCGGCTACA CCGACATGGC 951 AAACCGCCTT GCCGGACAGT CTTCGCAGCT TTACGCCACC AACTTGGTCA 1001 ACCTGACCAA GCTGTTAAGC CCGAACAAAG ACGGCGAAAT CACGCTGGAC TTCGAAGACG TGATTATCCG CAACATGACC GTTACCCGCG ACGGCGAAAT CACCTTCCCG CCTCCGCCGA TTCAAGTTTC CGCCCAACCG CAGCAAACGC

```
1201 CTGTGGAAAA AACTCGCGCC CGCCNTNATC GCCGCCGTGT TGGTACTGTG
              1251 GGTCGGCGCG GTCGCACCCG CAGCATTCCT GAACCACTTT ATCGTCTTCG
                        TCCTCGCCTG CGTCATCGGC TACTATGTCG TTTGGAACGT CAGCCACTCG
                         CTGCACACAC CGCTGATGTC GGTGACCAAC GCCATTTCCG GCATCATCGT
                         CGTCGGCGCG CTGCTGCAAA TCGGTCAGGG CAACGGCTTC GTTTCGCTGC
               1351
                         TGTCGTTTGT TGCCATCCTG ATTGCCAGCA TCAACATCTT CGGCGGCTTC
               1401
                        TTTGTAACGC GGCGGATGCT GAATATGTTT AGGAAAGGGT AA
               1451
               1501
This corresponds to the amino acid sequence <SEQ ID 642; ORF 155.a>:
        a155.pep
                         MKIGIPRESL SGETRVACTP ATVALLGKLG FETVVESGAG LAASLDDAAY
                         QAAGATVADK AAVWAYPLIY KVNAPSEDEL PLLKEGQTIV SFLWPRQNEA
                          LVEALRAKKV NALAMDMVPR ISRAQALDXL SXMANISGYR AVIEAANAFG
                         RXFTGQITAA GKVPPAQVLV IGAGVAGLAA IGTANSLGAV VRVFDTRLXV
                 101
                         AEQLESMGGK FLKLDFPQES GGSGDGYAKV MSDEFIAAEM KLFAEQAKEV
                 151
                  201
                          DIIITTAAIP GKPAPKXXXK EMVESMKPGS VIVDLAAATG GNCELTKQGE
                          LEVIGNGVKI IGYTDMANRL AGQSSQLYAT NLVNLTKLLS PNKDGEITLD
                  251
                 351 FEDVIIRNMT VTRDGEITFP PPPIQVSAQP QQTPSEKAAP AAKPEPKPVP
                  401 LWKKLAPAXI AAVLVLWVGA VAPAAFLNHF IVFVLACVIG YYVVWNVSHS
                          LHTPLMSVTN AISGIIVVGA LLQIGQGNGF VSLLSFVAIL IASINIFGGF
                  451
                          FVTRRMLNMF RKG*
                         95.3% identity in 513 aa overlap
 m155/a155
                                                                                               40
                                                                               30
                               MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQTAGATVADK
                                m155.pep
                                MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQAAGATVADK
          a155
                                                                                                                50
                                                                                               40
                                                                               30
                                                                                                                               120
                                                                                              100
                                                                                                               110
                                                                               90
                                                              80
                                AAVWVCPLIYKVNAPSEQELPLLNEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVPR
                                              70
                                 tin: anamai:ani:aniamainamainamainamain
          m155.pep
                                AAVWAYPLIYKVNAPSEDELPLLKEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVPR
           a155
                                                                                                               110
                                                                                              100
                                              70
                                                              RΛ
                                                                                                                                180
                                                                                              160
                                                             140
                                                                             150
                                 ISRAQALDALSSMANISGYRAVIEAANAFGRFFTGQITAAGKVPPAQVLVIGAGVAGLAA
                                 ម៉ាហីល ក អាមេយល់យល់ មម៉ែយប់យ៉េហីយអាមេយ
           m155.pep
                                 ISRAQALDXLSXMANISGYRAVIEAANAFGRXFTGQITAAGKVPPAQVLVIGAGVAGLAA
           a155
                                                                                                               170
                                                                                              160
                                                                              150
                                             130
                                                                                               220
                                                                                                                230
                                                                              210
                                 IGTANSLGAVVRAFDTRLEVAEQIESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAEM
                                  annung misummanannung manung
            m155.pep
                                 IGTANSLGAVVRVFDTRLXVAEQLESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAEM
            a155
                                                                                                                                 240
                                                                                                                230
                                                                                               220
                                                                               210
                                                              200
                                             190
                                                                                                                290
                                                                                               280
                                                                               270
                                                              260
                                  KLFAEQAKEVDIIITTAAIPGKPAPKLITKEMVESMKSGSVIVDLAAATGGNCELTRPGE
                                  m155.pep
                                  KLFAEQAKEVDIIITTAAIPGKPAPKXXXKEMVESMKPGSVIVDLAAATGGNCELTKQGE
            a155
                                                                                                280
                                                                                                                 290
                                                                               270
                                                              260
                                              250
                                                                                                                                  360
                                                                                                                 350
                                                                                                340
                                                                                330
                                                               320
                                  LSVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
                                   . ហាយពេលបាយពេលីមើយពេលិចិត្តបើបិច្ចិត្តបើបាយព
            m155.pep
                                  LFVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
             a155
                                                                                                                 350
                                                                                                340
                                                                                330
                                                               320
                                               310
                                                                                                                                  420
                                                                                                                  410
                                                                                                 400
                                                                                390
                                               370
                                   VTHDGEITFPPPPIQVSAQPQQTPSEKAVPAAKPEPKPVPLWKKLAPAVIAAVLVLWVGA
                                   HEIRIGHTER THE THE THE THEFT T
             m155.pep
                                   VTRDGEITFPPPPIQVSAQPQQTPSEKAAPAAKPEPKPVPLWKKLAPAXIAAVLVLWVGA
             a155
                                                                                                                  410
                                                                                                 400
                                                                                390
                                                               380
                                               370
```

155.pep		
m155.pep a155 WAPAAFINHEIVFLACVIGYTYVWNNSHSLHTPLMSVTNAISGIIVVGALLQIGOGNEF 430 440 450 450 460 470 480 480 490 500 510 WSLISFVAILIAGINITGGFAVTRMILMERKEX 111111111111111111111111111111111111		440 450 460 470 480
### ATTACTITICS CONTROLLED AND AND AND AND AND AND AND AND AND AN	,,	430 440 430 430 430 430 430 430 430 430
The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: ### APPLATED AND A SEQUENCE OF STATEGORY AND A SEQUENCE OF SEQ ID 643>: #### APPLATED AND A SEQUENCE WAS IDENTIFIED AND A SEQUENCE OF SEQ ID 643>: #### APPLATED AND A SEQUENCE WAS IDENTIFIED AND A SEQUENCE OF SEQ ID 643>: #### TITGISCAGE CATATGGTS CATATGGTS CATATGGG THE ANAGACAACC AGGGCAGACC AGGCAAACC AGGACAACCA AGGGCAGAC CACCCGTTT AAAGACAACC AGGACAACCA AGGCACACC AGGACAACCA AGGACAACCA AGGCACACC AGGCACACCA AGGACAACCA AGGCACACC AGGCACACCA TOTATGACC TITGACCT THE AGGCACACCA AGGCACACCA TOTATGACT THE AGGCACACCA AGGCACACCA TOTATGACT AGGCACACCA TOTATGACT THE AGACCACCACCA AGGCACACCA AGCCACACCA AGGCACACCA AGGC</seq>	m155.pep	
### ### ##############################	2155	VAPAAFINHFIVFVLACVIGYYVVWNVSHSLHIPLMSVINAISGIIVVSH
VSLLSFVAILIAGINIFIGEAVTRINLIMERKEX VSLLSFVAILIAGINIFIGEAVTRINLIMERKEX 490 500 510 The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: g156.seq 1 ATGACTTCG CCTATTGGTG CATTCTGATT GCCTGCCTAT TGCCGCCTTT TOTTGGGGGG TATGCCAAAA AAGCGGGGG ATTCCGGTTT AAGACAAACC 101 ACAACCCTGC CGTTTTCTG GCAATAGCG AAGCGCAAGC GCCCGGTGCC 102 CACGCGGCGC AGCAAAACGG TTTGAAGCC TTTGCCGCCGG 201 CGTTTTGACG GCACACCAA CGCCAATGCC AAGCCCAAGC GCGCAAGCA AACCGCAAGCA 201 CGTTTCACG GCACACCAA CGCCAATGCC AGCACAGCA ACCGTCAACA 201 CGCCCCCTG GCCTTTTT TCCCGCCT TGCCGCCTGC 101 ACACCCGCG AGCAAAACGG TTTGCACCCT TTGCCGCCGC 202 CGCCTTTCACCC TGCCTTAT CTGGTGCTAC 303 ATCCCAGCAC AAGCACCAT CCCCTCGCCT TTAT CTGGTGCTAC THIS COTTCSSOND to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: THE following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq 1 ATGACTTCG CCTATTGGTG TATTCTGATT GCCTGCCTAT TGCCGCCTTT 1 TGTGCGGGC TATGCCAAAA AAGCGGCTAT GCCTCCCTAT TGCCGCCTTT 1 TGTGCGGCG CGTTTTCTA GCCCACCCC AGCGCCACCCCCCCCCC</seq></seq></seq>	8133	
VSLLSFVALLIAGINIFIGEAVTRINLIMENKEX VSLLSFVALLIAGINIFIGEAVTRINLIMENKEX 490 500 510 The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: g156.seq 1 ATGACTTCG CCTATTGGTG CATTCTGATT GCCTGCTAT TGCCGCTTTT 101 ACATCCTGC CGGTTTTCTG GCARATAGCG AAGGCCAGGC GCCCGTGCC 101 ACATCCTGC CGTTTTCTG GCARATAGCG AAGGCCAGGC GCCCGTGCC 101 CACGCGGCG AGCAAAACGG TTTGAACC TTTGCAGCCGT TGCCGCCGC 201 CGTTTTGACG GCACACCCAA CGCCAATGCC GAGCAGGCAGGC GCCCGTGCC 201 CGTTTGACG GCACACCCAA CGCCAATGCC GAGCAGACG ACCGCAACACA 201 CGCTCCCGG ATTGTTCATC CTGTTCCGCC TGCCTTTAT CTGGTGCTAC 301 ATCCCAGACA AAGCACCAT CCCCTCGCT TTAC 302 ATGCCCCCTC GCCTTTAT CTGGTGCTAC 303 ATCCCACCCTC GGCACTGTTG TCCCGGCTGC TTAC This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: 4 ATGACTTCGC GCACATCCAAAAACGA TVNTLAGLFI LFRLAFINCY 1 IADRAALRSI MWAGGFACTV GLEVAAA* The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: 101 ACATCCGCC CGTTTTCTA GCCCACACCACACCACCCCTTT TGCCGCCTTT 102 ACATCCGCC CGCTTTTCA GCCCACACCACACCACCCCCCCCCC</seq></seq></seq>		400 500 510
The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: ATGACTITCS CCTATTGGTG CATTCGATT GCCGCCTAT TGCCGCTTTT ATGACTTCG CGGTTTTCTG GCACATAA AAGCGGGCGG ATTCCGGTTT AAGACAACC 101</seq>		
The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: 9156.seq 1</seq>	m155.pep	111111111111111111111111111111111111111
The following partial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">: g156.seq 1</seq>	a155	VSLLSFVAILIASINIFGGFFVTRRMLNMFRKGX
1 ATGACTATEG CCTATTGGTG CATTCTGATT GCCTCCTAT TGCCGCTGCC 101 ACCATCCTCG CGGTTTTCG GCACATACC AAGAGCAACC 101 ACCATCCTCG CGGTTTTCG GCACATACCG AAGAGCAGC CCCCGTGCC 101 CACGCCGCGC AGCAAAACGG TTTGCACCGT TGCCGCCGC 101 CGTTTGACG GCACAACGCAA CCGGCAATGC CGCACAACCA 102 CGTTGCACC AGCAAAACGG TTTTGACGC TTGCCGCCGC 101 ATCGCAGCAC AAGCACACTT CTGTTCCGCC TGCCCTTTAT CTGGTGCTAC 102 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 103 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 104 ATGACTATC AGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 105 ACCACCGC GGACTGTTT TCCCGCCTCC TGAC 106 ACAACCACCAC GGACTGTTT TCCCGCCTCC TGAC 107 ACAACCACCAC AGCACACCA AAGCACACT GCCCTACTAC AAGCACACC 108 ATGACTTCG CCTATTGGTG TATTCTGATC AAGCACACAC 109 ACAACCACCAC AGCACACCACA AAGCACCACCACCACCACCACCACCACCACCCAC	4100	490 500 510
1 ATGACTATICG CCTATTGGTG CATTCTGATT GCCTCCTAT TGCCGCTGTC 101 ACCATCCTCG CGGTTTTCG GCACATACC AAGAGCAACC 101 ACCATCCTCG CGGTTTTCG GCACATACCC AAGAGCAGC CGCCGTGCC 101 CGTTTTGACG GCACATACCC TTGCCACCGC CAGCCGACC CCCGCGTGCC 101 CGTTTGACG GCACATACCC TTGCCACCGC TTGCCGCGCG 101 CGTTGCACCGC CGCCACACCA CCGCAATCC CGGCACACCA ACCGTCACCA 102 ATCGCAGCAC AAGCACCATT GCCCTCGCT TTGCCGCCGC 103 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATCTGGGCGG GCGGATTGC 104 ATCGCAGCAC AAGCACCATT GCCCTCGCT TGCTGCGCGCG 105 CTGCACCGCT CGACTGTTG TCCCGCCTCC TTGAC 106 ACCATCCACCGC CGACTGTTG TCCCGCCTCC TTGAC 107 ACCACCGCAC CGGCTGTTT TCCCGCCTCC TTGAC 108 ATGACTTCG CTATTGGTG TATTCTGATC AACCACCACCACCACCACCACCACCACCACCACCACCA		
1 ATGACTATICG CCTATTGGTG CATTCTGATT GCCTCCTAT TGCCGCTGTC 101 ACCATCCTCG CGGTTTTCG GCACATACC AAGAGCAACC 101 ACCATCCTCG CGGTTTTCG GCACATACCC AAGAGCAGC CGCCGTGCC 101 CGTTTTGACG GCACATACCC TTGCCACCGC CAGCCGACC CCCGCGTGCC 101 CGTTTGACG GCACATACCC TTGCCACCGC TTGCCGCGCG 101 CGTTGCACCGC CGCCACACCA CCGCAATCC CGGCACACCA ACCGTCACCA 102 ATCGCAGCAC AAGCACCATT GCCCTCGCT TTGCCGCCGC 103 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATCTGGGCGG GCGGATTGC 104 ATCGCAGCAC AAGCACCATT GCCCTCGCT TGCTGCGCGCG 105 CTGCACCGCT CGACTGTTG TCCCGCCTCC TTGAC 106 ACCATCCACCGC CGACTGTTG TCCCGCCTCC TTGAC 107 ACCACCGCAC CGGCTGTTT TCCCGCCTCC TTGAC 108 ATGACTTCG CTATTGGTG TATTCTGATC AACCACCACCACCACCACCACCACCACCACCACCACCA		
1 ATGACTATEG CCTATTGGTG CATTCTGATT GCCTCCTAT TGCCGCTGCC 101 ACCATCCTCG CGGTTTTCG GCACATACC AAGAGCAACC 101 ACCATCCTCG CGGTTTTCG GCACATACCG AAGAGCAGC CCCCGTGCC 101 CACGCCGCGC AGCAAAACGG TTTGCACCGT TGCCGCCGC 101 CGTTTGACG GCACAACGCAA CCGGCAATGC CGCACAACCA 102 CGTTGCACC AGCAAAACGG TTTTGACGC TTGCCGCCGC 101 ATCGCAGCAC AAGCACACTT CTGTTCCGCC TGCCCTTTAT CTGGTGCTAC 102 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 103 ATCGCAGCAC AAGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 104 ATGACTATC AGCACCATT GCCCTCGCT ATTGGGCGG GCGGATTGC 105 ACCACCGC GGACTGTTT TCCCGCCTCC TGAC 106 ACAACCACCAC GGACTGTTT TCCCGCCTCC TGAC 107 ACAACCACCAC AGCACACCA AAGCACACT GCCCTACTAC AAGCACACC 108 ATGACTTCG CCTATTGGTG TATTCTGATC AAGCACACAC 109 ACAACCACCAC AGCACACCACA AAGCACCACCACCACCACCACCACCACCACCCAC	The following n	artial DNA sequence was identified in N. gonorrhoeae <seq 643="" id="">:</seq>
1 ATGACTTICG CCTATTGGTG CACATAGAS ANGCGGCGG ATTCCGGTT ANAGACAACC 101 ACAATCCTCG CGGTTTTCTG GCACATAGCC ANGCGCCACC CGCCCGTGCC 101 CACGCCGCGC ATGTCCAAAA ANGCGGCAACCC TTGCACCCT TGCCGCCCGCG 101 CACGCCGCGC ACCAGCAACCG CGCCAAGCC ACCGCCAACA 101 ATCGCAGCAA ANGCAGCATTC CTGTTCCGCC TCGCCTTAT CTGGTGCTAC 101 ATCGCAGCAA ANGCAGCATT GCGCTCGCTG ATTGGGCGC GCGGATTTGC 101 ATCGCAGCAA ANGCAGCATT GCGCTCGCT ATTGGGCGC GCGGATTTGC 102 ATCGCACCAC ANGCAGCATT GCGCTCGCT ATTGGGCGC GCGGATTTGC 103 ATCGCACCAC ANGCAGCAT TCGCCTCGCT ATTGGGCGC GCGGATTTGC 104 ACAATCCGCG ATGTTT TCGCGCCTCC TTGA 105 ATGACCACCA ANGCGGATT TCGCGCCTAT TGCGCCGTT TAAAGACAACC 105 ACAATCCGCG CACACCGCAACCACCACACACACACACACACACA		
TIGTICCEGCG TATGCCARAN AGCGGCCGA ATTCCGCTT 101 ACAATCCTCG CGGTTTTCTG GCACATACGC AGGCCACC CGCCCTGCC 151 CACGCCGCGC AGCAANACGG TTTGAAGCC TTGCACCCT TTGCCGCCGC 251 CGCTTGCGG ATGTCTATC CTGTTCCGC TCGCCTTATC CTGGTGCTAC 251 CGCTGCCGC GATGTTCATC CTGTTCCGCC TCGCCTTATC CTGGTGCTAC 351 CTGCACCCTC GGACTGTTTG TCGCGCTGC ATGTGGGCGG GCGGATTTGC 351 CTGCACCCTC GGACTGTTTG TCGCGGCTGC ATGTGGGCGG GCGGATTTGC This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: 1 MTFAYWCILI ACLIPLECAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQONGFEA FAFFAAAVLT AHATGNAGQA TVNTLAGLET LFRLAFIWCY 1 LADKAALRSL MWAGGFACTV GLEVAAA* The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: 1 ATGACTTTCG CCTATTGGTG TATTCTGATT GCCTGCCTATT TCCCGCCTTT 1 ACAATCCGCG CGCTATTGGTG TATTCTGATT TCCGGCCTTT AAAGACAACC 101 ACAATCCGCG CGGTTTTCTA CGGCACAGC AAGCGCAGC CGCCGGTCCC 151 CACGCCGCAC AGCAAAACGG TTTGAAGCC TTTGCACCGT TTGCGCCGCC 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCCTATT CTCGGTGCTAT 301 ATCCCCGACA AAGCCGCAACGC AAGCGCAATCG ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTAT CTCGGTGCTAT 301 ATCCCCGACA AAGCCGCTAT GCGCTCACTG ATCTGGCAG GCGGATTTGC This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: 1 MTFAYWCILI ACLLPLECAA YAKKAGGFFF KDNHNPRGFL AHTQGAAARA 101 LADKAAMRSL MWAGGFACTV GLEVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae 10 20 30 40 50 60 MTFAYWCILIACLLPLECAAYAKKAGGFFFKDNHNPRGFLAHTQGAAARAHAAQONGFEA 10 10 20 30 40 50 60 MTFAYWCILIACLLPLECAAYAKKAGGFFFKDNHNPRGFLAHTQGAAARAHAAQONGFEA 10 10 10 10 10 10 10 10 10 10 10 10 10 1</seq></seq></seq>		ATGACTITCG CCTATTGGTG CATTCTGATT GCCTGCCTAT TGCCGCTTTT
101 ACAATCCTCG CGGTTTTCTG GCACTAGGC TTGCACCGT TGCCGCCGC 201 CGTTTGACG GCACAGCAA CCGCAATGC CGGCAAGCA ACGCCACAC 201 CGTTTGACG GCACAGCAA CCGCAATGC CGGCAAGCA ACCGCTCACA 201 ATCGCAGCAA AACGACCATT GCGCTGCTG ATTGGGCGG GCGGATTTGC 301 ATCGCAGCAA AACGACCATT GCGCTGGCTG ATTGGGCGG GCGGATTTGC 302 ATCGCACCGT GGACTGTTT TCGCGGCTGC TTGA This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: MTFAYWCILI ACLLPLECAA YAKKAGGFFF KDNHNPRGFL AHTQGAAARA HAAQQNGFEA FAFFAAAVLT AHATGNAGQA TVNTLAGLET LFRLAFIWCY ATGACTTTCG CCTATTGGTG TATTCTGATT GCCTGCCTAT TGCCGCTTT</seq>		THE TOTAL THE TOTAL TOTA
CAGGCEGGE AGCAAAAGGG TTTTGAAGC ACCGTCAACA 201 CGTTTTGACG GCACAGGCA CCGGCAATCC CGGCAAAGCA ACCGTCAACA 201 ATCGCAGACA AAGCACATT GCCTCGCC TCGCCTTAT CTGGTGCTAC 301 ATCGCACACA CAGCACTT GCCCTGCTC TTGA This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KONHNPRGFL AHTQGAAARA 1 HAAQONGFEA FAFFAAAVLT AHATGNAGQA TVNTLAGLFI LFRLAFIWCY 101 TADKAALRSL MWAGGFACTV GLFVAAA* The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: 1 ATGGCTTTCG CCTATTGGTG TATTCTGATT GCCTGCTAT TGCCGCTTTT 1 TTGTGCGGCG TATGCCAAAA AAGCGGGCG ATCCGGTTT AAACACAACC 101 ACAATCCGC CGGTTTTCTA CGCGCACACGC AAGCGCACACG CGCCCGTGCC 151 CACGCCGCAC AGCAAAACG TTTTGCACCT TTGCACCCT TTGCCCGCCG 201 CGTTTGACG GCACACGCAA CCGGCAATGC ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCCC TCGCCTTTAT CTGCTGCCTAT 301 ATCCCCGACA AGCCACACGCAA CCGGCAATGC ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCCC TCGCCTTTAT CTGCTGCCTAT 301 ATCCCCGACA AGCCCACACGCAA CGCGCCACGC ACCGCATGG ACCATCAACA 251 CTGCACCGTC GGGCTGTTTG TCGCGGCTGC TTGA This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQONGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 TADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae 10 20 30 40 50 60 1156 PP MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 10 20 30 40 50 60 11 11 11 11 11 11 11 11 11 11 11 11 11</seq></seq></seq>		
251 CGCTTGCCGG ATTGTCATC CTGTTCCGC TGGCGGG GCGGATTGC 301 ATCGCAGCA AAGCAGCATT GCGCTGCTG ATGTGGGCGG GCGGATTTGC 315 CTGCACCGTC GGACTGTTTG TCGCGGCTGC TTGA This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: MTFAYWCILI ACLLPLECAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA</seq>		TITIGUACUSI IIGOCOCOCO
This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: MITERATURE ACLLPLECAA YAKKAGGERE KONHNPRGEL ANTOGAAARA </seq>		THE TOTAL CONCRECENT CONCRECTION OF CONCRECTION OF CONTRACT
This corresponds to the amino acid sequence <seq 156.ng="" 644;="" id="" orf="">: g156.pep 1</seq>	251	CGCTTGCCGG ATTGTTCATC CTGTTCCGCC TCGCCTTAT CTGGTCGTG
This corresponds to the amino acid sequence SEQ ID 644; ORF 150.IIg/. MTFAYWCILI ACLLPLECAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA HAAQONGFEA FAPFAAAVLT AHATGNAAQA TVNTLAGLFI LFRLAFIWCY LACACACCACACACACACACACACACACACACACACACA		
The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq atgacttice cctattegte tattcteat ecceptata aaccectat tatccectat taccectat aaccacacc aaccectacc aaccectacc aaccacacc accectat taccectat aaccacacc cectattee eccaptacacc eccaptaccacacac accectatate eccaptacacacc accectatate eccaptacacacc accectatate eccaptacacacc eccaptaccacacacacc accectatate eccaptacacacacc eccaptaccacacacacc accectatate eccaptacacacacc eccaptaccacacacacc eccaptaccacacacaccacaccacacaccacacacaccacacaccaca</seq>	351	CTGCACCGTC GGACTGTTTG TCGCGGCTGC TTG.
The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq atgacttice cctattegte tattcteat ecceptata aaccectat tatccectat taccectat aaccacacc aaccectacc aaccectacc aaccacacc accectat taccectat aaccacacc cectattee eccaptacacc eccaptaccacacac accectatate eccaptacacacc accectatate eccaptacacacc accectatate eccaptacacacc eccaptaccacacacacc accectatate eccaptacacacacc eccaptaccacacacacc accectatate eccaptacacacacc eccaptaccacacacacc eccaptaccacacacaccacaccacacaccacacacaccacacaccaca</seq>	This correspond	is to the amino acid sequence SDQ iD 644, old 19613
The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq 1</seq>		
The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq 1</seq>	_	MTFAYWCILI ACLLPLICAA TARRAGGIRI KOMMILAGLEI LERLAFIWCY
The following partial DNA sequence was identified in N. meningitidis <seq 645="" id="">: m156.seq 1</seq>	-	TADEANI PGI, MWAGGFACTV GLFVAAA*
TITGTGCGCG TATGCCAAAA AAGCGGCGG ATTCCGGTTT AAAGACAACC 101 ACAATCCGCG CGGTTTTCTA GCGCACACC AAGGCGAGC CGCCCGTGCC 151 CACGCCGCA AGCAAAACGG TTTTGAAGCC TTTGCCGCCGC 201 CGTTTTGACG GCACACGCAA CCGGCAATGC GGCCCAATCG ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAT 301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATGTGGGCAG GCGGATTTGC 351 CTGCACCGTC GGGCTGTTTG TCGCGGCT TTGA This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQONGFEA FAFFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 TADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae 10 20 30 40 50 60 MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 11111111111111111111111111111111111</seq>		
1 ATGACTTTCG CCTATTGGTG TATTCTGATT GCCGCCTAT TGCCGCTTTT 51 TTGTGCGGCG TATGCCAAAA AAGCGGCCG ATTCCGGTTT AAAGACAACC 101 ACAATCCGCG CGGTTTTCTA GCGCACACC AAGGCGAGC CGCCCGTGCC 151 CACGCCGCAC AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCG 201 CGTTTGACG GCACACGCAA CCGGCAATGC GGCGCAATGC ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAT 301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATGTGGGCAG GCGGATTTGC 351 CTGCACCGTC GGGCTGTTTG TCGCGGCT TTGA This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQONGFEA FAFFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 TADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae 10 20 30 40 50 60 10 20 30 40 50 60 11 MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQONGFEA 11 MTFAYWCILIACLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQONGFEA 11 MTFAYWCILIACLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQONGFEA 11 MTFAYWCILIACLPLFCAAYAKKAGGFRFKDNHNPRGFL</seq>	The following t	partial DNA sequence was identified in N. meningitidis <seq 645="" id="">:</seq>
THE ATGACTTICG CCTATTGGTG TATTCTGATT GCCTCTATT AAAGACAACC TTGGGGGG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC ACAATCCGCG CGGTTTTCTA GCGCACACGC AAGGCGCAGC CGCCCGTGCC CACACCAACACCAACCCAACCCAACCCAA		
TTGTGCGGCG TATGCCAAAA AAGCGGCGG ATTCCGGTTT AAAGACACC 101 ACAATCCGCC CGGTTTTCTA GCGCACACGC AAGGCGCAGC CGCCGTGCC 151 CACGCCGCAC AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCGC 201 CGTTTTGACG GCACACGCAA CCGGCAATCG GCGCAATCG ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAT 301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATCTGGGCAG GCGGATTGC 351 CTGCACCGTC GGGCTGTTTG TCGCGGCTGC TTGA This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: m156.pep 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 151 HAAQONGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 TADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 111111111111111111111111111111111111</seq>		THE COMMUNICATION OF THE PROPERTY OF THE PROPE
ACAATCCGCG CGGTTTCTA GCGCACACGC AAGGCCACCC CGCCGCGCC CACGCCACGC AGCACACGC AGCACACGC TTTTGCACCGT TTTGCACCGT TTTTGCACCGT TTTTTGCACCGT TTTTTTTTTT		THE TOTAL COLOR TO THE COLOR AND THE COLOR TO THE COLOR T
201 CGTTTTGACG GCACACGCAA CCGGCAATGC GGCGCATTGC ACACACACACACACACACACACACACACACACACACA		magage communica coccacacacac AAGGCGCAGC CGCCCG1GCC
251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTAT CTGGTGCTAT 301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATGTGGGCAG GCGGATTTGC 351 CTGCACCGTC GGGCTGTTTG TCGCGGCTGC TTGA This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: 1 MTFAYWCILL ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 IADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae 10 20 30 40 50 60 10 20 30 40 50 60 11 11 11 11 11 11 11 11 11 11 11 11 11</seq>	151	CACGCCGCAC AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCGC
This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: ***MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA** 1</seq>	201	CGTTTTGACG GCACACGCAA CCGGCAATGC GGCGCAATCG ACCATCATAT
This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: m156.pep 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 51 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 IADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 111111111111111111111111111111111111</seq>		CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTMT OFFICE
This corresponds to the amino acid sequence <seq 156="" 646;="" id="" orf="">: m156.pep 1</seq>	-	ATCGCCGACA AAGCCGCTAT GCGCGCTGC TTGA
m156.pep 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 51 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 IADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 111111111111111111111111111111111111		
m156.pep 1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 51 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 IADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 111111111111111111111111111111111111	This correspon	ids to the amino acid sequence <seq 156="" 646;="" id="" orf="">:</seq>
1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KONHNPRGFL ARTQGAARACT 51 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 101 IADKAAMRSL MWAGGFACTV GLFVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA 111111111111111111111111111111111111		
TARAQONGFEA FAPFAAAVLT AHATCHAAQS TINTLACLET LERLAGETHOS 101 IADKAAMRSL MWAGGFACTV GLEVAAA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		THE PROPERTY AND THE TOTAL VAKEAGGERF KONHUNCHUM AND QUARANTA
Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLIPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA	_	HAROONGEEA FAPEAAAVLT AHATGNAAQS TINTLACLEI LEKLAEIWCI
Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLIPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		IADKAAMRSL MWAGGFACTV GLEVAAA*
Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLIPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		
Homology with a predicted ORF from N. gonorrhoeae m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLIPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA	Computer anal	lysis of this amino acid sequence gave the following results.
m156 / g156 96.1% identity in 127 aa overlap 10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA	Homology wit	th a predicted ORF from N. gonorrhoeae
10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		
10 20 30 40 50 60 m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA	m156 / d	g156 96.1% identity in 127 aa overlap
m156.pep MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		22 40 50 60
q156 MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA		
q156 MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	m156.pe	p MTFAYWCILIACLLPLFCAAYAKKAGGFRFKUNNNPKGFLAATQGAAAAGUBBAQQAG
	g156	10 20 30 40 50 60

m156.pep

FAPFAAAVLTAHATGNAGQATVNTLAGLFILFRLAFIWCYIADKAALRSLMWAGGFACTV g156 100 110 120 90 80 **GLFVAAAX** m156.pep 11111111 GLFVAAAX g156

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 647>:

```
a156.seq
         ATGACTITCG CCTATTGGTG TATTCTGATT GCCTACCTAT TGCCGCTTTT
         TTGTGCGGCG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC
     51
     101 ACAATCCGCG CGATTTTCTG GCGCGCACGC AAGGCACAGC CGCCCGTGCC
         CACGCCGCG AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCAGCCGC
     151
     201 CGTTTTGACG GCACACGCAA CCGGCAATGC CGGACAAGCA ACCGTCAACA
     251 CGCTTGCCGG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAC
     301 ATCGCAGACA AAGCAGCATT ACGCTCGCTG ATGTGGGTGG GCGGATTTGT
     351 CTGCACCGTC GGGCTGTTTG TCGTGGCTGC TTGA
```

This corresponds to the amino acid sequence <SEQ ID 648; ORF 156.a>:

```
a156.pep
        MTFAYWCILI AYLLPLFCAA YAKKAGGFRF KDNHNPRDFL ARTQGTAARA
        HAAQQNGFEA FAPFAAAVLT AHATGNAGQA TVNTLAGLFI LFRLAFIWCY
     51
        IADKAALRSL MWVGGFVCTV GLFVVAA*
           90.6% identity in 127 aa overlap
m156/a156
                                             40
                                                               60 .
                                    30
                           20
           MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA
m156.pep
           MTFAYWCILIAYLLPLFCAAYAKKAGGFRFKDNHNPRDFLARTQGTAARAHAAQQNGFEA
a156
                                                      50
                                             40
                   10
                           20
                                             100
                                    90
                            80
                   70
            FAPFAAAVLTAHATGNAAQSTINTLACLFILFRLAFIWCYIADKAAMRSLMWAGGFACTV
m156.pep
            អាហាអាអោយលើវៈជា៤ អាហាយយោយលោវយល់វា
            FAPFAAAVLTAHATGNAGQATVNTLAGLFILFRLAFIWCYIADKAALRSLMWVGGFVCTV
a156
                                             100
                                     90
                   70
                            80
            GLFVAAAX
m156.pep
            1111:111
            GLFVVAAX
a156
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 649>: g157.seq

```
atgaggaacg aggAAAAACg cgccctgcgc cgcgaattgC gCgGgcggcg
51 ttcgcAAATg GGgcgagacg tGCGggCGGC GGCGgCgatA Aaaatcaacc
    gcctgctcaa aCGTtatatc AAGCGCggtc gGaAaatcgG CGTGTATTgg
    CCGATGGGCA AGGAATTGCG TTTGGGCGGC tTtgtcCGCG CGGCGCAAAA
151
201 ACGCGGCGCA AAactctatc tgccttATAT CGAACCGCAC ACGCGGCGGA
251 TGTGGTTTAC GCCGTATCCT GAACGCGGAA TGGAACGGGA ACGCAAGCGC
301 GGTAGGGCGA AGCTGCATGT CCCTCAGTTT GCAGGGCGCA AAATCCGCGT
    GCACGGTTTG TCGGTATTGC TCGTCCCGCT TGTCGGCATA GACCGCGAAG
351
401 GCTACCGTTT GGGGCAGGCA GGCGGCTATT ACGATGCGAC GCTTTCGGCG
451 ATGAAATACC GTTTGCAGGC GAAAACCGTG GGCGTGGGCT TTGCCTGCCA
501 GTTGGTGGAC AGGCTCCCAC GCGAGGCGCA CGACCTGCCG CTGGACGGTT
551 TTGTATCGGA AGCGGGGATA TTGTGTTTTT AG
```

This corresponds to the amino acid sequence <SEQ ID 650; ORF 157.ng>:

g157.pep MRNEEKRALR RELRGRRSQM GRDVRAAAAI KINRLLKRYI KRGRKIGVYW PMGKELRLGG FVRAAQKRGA KLYLPYIEPH TRRMWFTPYP ERGMERERKR 51 GRAKLHVPQF AGRKIRVHGL SVLLVPLVGI DREGYRLGQA GGYYDATLSA 101

151 MKYRLQAKTV GVGFACQLVD RLPREAHDLP LDGFVSEAGI LCF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 651>:

m157.seq ATGAGGAACG AGGAAAAACG CGCCCTGCGC CGCGAATTGC GCGGGCGGCG TTCGCAAATG GGGCGGGACG TGCGGGCGGC GGCAACGGTA AAAATCAACC 51 101 ACCTGCTCAA ACGTTATATT AAAAAAGGGC GGAAAATCGG CGTGTATTGG 151 CCGATGGGCA AGGAATTGCG TTTGGACGGC TTTGTCCGCG CGGCGCAAAA 201 ACGCGGTGCG GAACTCTACC TGCCTTATAT CGAACCGCGT TCGCGGCGGA 251 TGTGGTTTAC GCCGTATCCT GCCGATGGAG TAAAACAAGA ACGCAAGCGC 301 GGTAGGGCGA AGCTGCATGT CCCTCAGTTT GCAGGTCGGA AAAAGCGTGT 351 GCATGATTTG AACCTCCTGC TTGTGCCAGT GGTCGGTATG GACAGGCTGG 401 GCTACCGCTT GGGACAGGCA GGCGGCTATT ACGATGCGAC GCTTTCAGCG 451 ATGAAATACC GTTTGCAGGC AAAAACCGTG GGCGTGGGCT TTGCCTGCCA 501 GTTGGTGGAC AGGCTGCCGG TCGAGGCGCA CGACCGGTCT TTGGACGGTT 551 TTGTGTCGGA GGCGGGGATA TTGTGTTTTT AG

This corresponds to the amino acid sequence <SEQ ID 652; ORF 157>:

m157.pep MRNEEKRALR RELRGRRSQM GRDVRAAATV KINHLLKRYI KKGRKIGVYW PMGKELRLDG FVRAAQKRGA ELYLPYIEPR SRRMWFTPYP ADGVKQERKR 51 GRAKLHVPQF AGRKKRVHDL NLLLVPVVGM DRLGYRLGQA GGYYDATLSA 101 MKYRLQAKTV GVGFACQLVD RLPVEAHDRS LDGFVSEAGI LCF*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m157 / g157 88.1% identity in 193 aa overlap
```

m157 / g157	88.1% Identity	111 133 44	Overrup			
	10	20	30	40	50	60
m157.pep	MRNEEKRALRRELRG	RRSQMGRDV:	RAAATVKINH :: :	LLKRYIKKGRI 	KIGVYWPMGK 	ELRLDG
-167	MRNEEKRALRRELRG	RRSOMGRDV	RAAAAIKINR	LLKRYIKRGR	KIGVYWPMGK	ELRLGG
g157	10	20	30	40	50	60
	70	80	90	100	110	120
m157.pep	FVRAAQKRGAELYLP	YIEPRSRRM	WFTPYPADGV	KQERKRGRAK	LHVPQFAGRK	KRVHDL
mio/.pep		1111::111	111111 1:	::[]]]]	11111111111	1111
g157	FVRAAQKRGAKLYLP		WFTPYPERGM	IERERKRGRAK	THALGENCE	TKAUGT
•	70	80	90	100	110	120
						100
	130	140	150	160	170	180
m157.pep	NLLLVPVVGMDRLGY	RLGQAGGYY	DATLSAMKYF	LOAKTVGVGF	ACQLVDRLPV	EAHURS
		111111111	1111111111		11111111	1111
q157	SVLLVPLVGIDREGY	RLGQAGGYY	DATLSAMKY	ELQAKTVGVGF	ACQLVDRLPR	EAHDLP
gro.	130	140	150	160	170	180
	190					
m157.pep	LDGFVSEAGILCFX					
g157	LDGFVSEAGILCFX					
	190					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 653>:

ATGAGGAACG AGGAAAAACA CGCCTTGCGC CGAGAGTTGC GCCGCGCCCG 51 CGCGCAGATG GGGCATCAAG GGCGGTTGGC GGCGGGGCAA ACGATTAACC

```
101 GCCTGCTCAA ACGTTATATC AAGCGTGGTC GGAAAATCGG CGTGTATTGG
        151 CCGATGGGCA AGGAATTGCG TTTGGACGGC TTTGTCCGCG CGGCGCAAAA
        201 ACGCGGTGCA AAACTTTATC TGCCTTATAT CGAACCGCGT TCGCGGCGGA
         251 TGTGGTTTAC GCCGTATCCT GAAAGCGGAA TGGAACGGGA GCGCATACGG
         301 GGCAGGGCGA AGTTGAACGT GCCGCAGTTT GCAGGGCGCA AAATCCGCGT
             GCACGGTTTG TCGGTATTGC TCGTCCCGCT TGTCGGCATA GACCGCGAGG
         351
         401 GCTACCGCTT AGGACAGGCA GGCGGCTATT ACGATGCGAC GCTTGCGGCG
         451 ATGAAATACC GTTTGCAGGC AAAAACCGTG GGCGTGGGCT TTGCCTGCCA
         501 GTTTGTGGAC AGGCTGCCGC GCGAACCGCA CGATCTGCTG CTGGACGGTT
         551 TTGTGTCGGA GGCGGGGATA TTGTGCTTTT AG
This corresponds to the amino acid sequence <SEQ ID 654; ORF 157.a>:
    a157.pep
             MRNEEKHALR RELRRARAQM GHQGRLAAGQ TINRLLKRYI KRGRKIGVYW
             PMGKELRLDG FVRAAQKRGA KLYLPYIEPR SRRMWFTPYP ESGMERERIR
          51
             GRAKLNVPQF AGRKIRVHGL SVLLVPLVGI DREGYRLGQA GGYYDATLAA
         101
             MKYRLQAKTV GVGFACQFVD RLPREPHDLL LDGFVSEAGI LCF*
             82.4% identity in 193 aa overlap
m157/a157
                                                  40
                                                           50
                                 20
                        10
                MRNEEKRALRRELRGRRSQMGRDVRAAATVKINHLLKRYIKKGRKIGVYWPMGKELRLDG
     m157.pep
                 MRNEEKHALRRELRRARAQMGHQGRLAAGQTINRLLKRYIKRGRKIGVYWFMGKELRLDG
     a157
                                         30
                                                  40
                        10
                                 20
                                                  100
                                                          110
                                 80
                                          90
                 FVRAAQKRGAELYLPYIEPRSRRMWFTPYPADGVKQERKRGRAKLHVPQFAGRKKRVHDL
     m157.pep
                 FVRAAQKRGAKLYLPYIEPRSRRMWFTPYPESGMERERIRGRAKLNVPQFAGRKIRVHGL
     a157
                                                           110
                                                                    120
                                                  100
                                          90
                                 80
                        70
                                                                    180
                                                  160
                                                           170
                                         150
                                140
                 NLLLVPVVGMDRLGYRLGQAGGYYDATLSAMKYRLQAKTVGVGFACQLVDRLPVEAHDRS
     m157.pep
                 {\tt SVLLVPLVGIDREGYRLGQAGGYYDATLAAMKYRLQAKTVGVGFACQFVDRLPREPHDLL}
     a157
                                                           170
                                         150
                                                  160
                                140
                       130
                       190
                 LDGFVSEAGILCFX
     m157.pep
                 LDGFVSEAGILCFX
     a157
                       190
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 655>:

```
g158.seq
         ATGAAAACCA ATTCAGAAGA ACTGACCGTA TTTGTTCAAG TGGTGGAAAG
         CGGCAGCTTC AGCCGTGCGG CGgagcAGTT GGAGAtggCA AATTCTGCCG
     51
         TAAGCCGCAT CGTCAAACGG CTGGAGGAAA AGTTGGGCGT GAACCTGCtc
     101
     151 aACCGCACCA CGCGGCAACT CAATCTGACG GAAGAAGGCG CGCAATATTT
         CCGCCGCGC CAGAGAATCC TGCAAGAAAT GGCAGCGGCG GAAACCGAAA
     201
         TGCTGGCAGT GCACGAAGTA CCGCAAGGCG TGTTGCGCGT GGATTCCGCG
     251
     301 ATGCcgatgg TGCTGCATCT GCTGGCGCCG CTGGCAGCAA AATTCAACGA
     351 ACGCTATCCG CATATCcgaC TTTCGCTCGT TTCTTCCGAa ggctatatca
          atctGattGA Acgcaaagtc gAtatTGCCT TACGGGCCGG AGAATTGGAC
     451 GATTCCGGGC TGCGTGCACG CCATCTGTTT GACAGCCACT TCCGCGtagt
     501 cgccagtct gaatatttag caaaacacgg cacgccacaa tctgcagaag
     551 atcTTGCCAA CCATCAATGT TTAGGCTTCA CAGAACCCGG TTCTCTAAAT
     601 ACATGGGCGG TTTTAGAtgC GCAGGGAAAT CCCTATAAAA TTTCACCGCA
     651 CTTTACCGCC AGCAGCGGTG AAATCTTACG CTCGTTGTGC CTTTCAAGtt
          gCGGTATTGC TTGCTTATCA GATTTTTTGG TTGACAACGA CATCACTGAA
          GGAAAGTTAA TTCCcctatt cgCCGAACAA ACCTCCAATA AAACACACCC
```

m158.pep

g158

```
CTTTAATGCT GTTTATTACA GCGATAAAGC CGTCAACCTC CGCTTACGCG
          801
              TATTTTTGGA TTTTTTAGTG AAGGAACTGG GAAAAAATAT GAATAGAACG
          851
          901 AATACCAAAT AA
This corresponds to the amino acid sequence <SEQ ID 656; ORF 158.ng>:
     g158.pep
               MKTNSEELTV FVQVVESGSF SRAAEQLEMA NSAVSRIVKR LEEKLGVNLL
               NRTTRQLNLT EEGAQYFRRA QRILQEMAAA ETEMLAVHEV PQGVLRVDSA
           51
               MPMVLHLLAP LAAKFNERYP HIRLSLVSSE GYINLIERKV DIALRAGELD
          101
               DSGLRARHLF DSHFRVVASP EYLAKHGTPQ SAEDLANHQC LGFTEPGSLN
          151
          201 TWAVLDAQGN PYKISPHFTA SSGEILRSLC LSSCGIACLS DFLVDNDITE
               GKLIPLFAEQ TSNKTHPFNA VYYSDKAVNL RLRVFLDFLV KELGKNMNRT
          251
          301
               NTK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 657>:
     m158.seq
               ATGAAAACCA ATTCAGAAGA ACTGACCGTA TTTGTTCAAG TGGTGGAAAG
               CGGCAGCTTC AGCCGTGCGG CGGAGCAGTT GGCGATGGCA AATTCTGCCG
           51
          101 TAAGCCGCAT CGTCAAACGG CTGGAGGAAA AGTTGGGTGT GAACCTGCTC
               AACCGCACCA CGCGGCAACT CAGTCTGACG GAAGAAGGCG CGCAATATTT
           151
               CCGCCGCGC CAGAGAATCC TGCAAGAAAT GGCAGCGGCG GAAACCGAAA
           201
               TGCTGGCAGT GCACGAAATA CCGCAAGGCG TGTTGAGCGT GGATTCCGCG
           251
               ATGCCGATGG TGCTGCATCT GCTGGCGCCG CTGGCAGCAA AATTCAACGA
           301
               ACGCTATCCG CATATCCGAC TTTCGCTCGT TTCTTCCGAA GGCTATATCA
           351
               ATCTGATTGA ACGCAAAGTC GATATTGCCT TACGGGCCGG AGAATTGGAC
           401
               GATTCCGGGC TGCGTGCACG CCATCTGTTT GACAGCCGCT TCCGCGTAAT
           451
               CGCCAGTCCT GAATACCTGG CAAAACACGG CACGCCGCAA TCTACAGAAG
           501
               AGCTTGCCGG CCACCAATGT TTAGGCTTCA CCGAACCCGG TTCTCTAAAT
           551
           601 ACATGGGCGG TTTTAGATGC GCAGGGAAAT CCCTATAAGA TTTCACCGCA
           651 CTTTACCGCC AGCAGCGGTG AAATCTTACG CTCGTTGTGC CTTTCAGGTT
                GCGGTATTGT TTGCTTATCA GATTTTTTGG TTGACAACGA CATCGCTGAA
                GGAAAGTTAA TTCCCCTGCT CGCCGAACAA ACCTCCGATA AAACACACCC
           751
                CTTTAATGCT GTTTATTACA GCGATAAAGC CGTCAATCTC CGCTTACGCG
           851 TATTTTTGGA TTTTTTAGTG GAGGAACTGG GAAACAATCT CTGTGGATAA
 This corresponds to the amino acid sequence <SEQ ID 658; ORF 158>:
      m158.pep
                MKTNSEELTV FVQVVESGSF SRAAEQLAMA NSAVSRIVKR LEEKLGVNLL
                NRTTRQLSLT EEGAQYFRRA QRILQEMAAA ETEMLAVHEI PQGVLSVDSA
                MPMVLHLLAP LAAKFNERYP HIRLSLVSSE GYINLIERKV DIALRAGELD
           101
                DSGLRARHLF DSRFRVIASP EYLAKHGTPQ STEELAGHQC LGFTEPGSLN
                TWAVLDAQGN PYKISPHFTA SSGEILRSLC LSGCGIVCLS DFLVDNDIAE
           201
                GKLIPLLAEQ TSDKTHPFNA VYYSDKAVNL RLRVFLDFLV EELGNNLCG*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
       m158 / g158 94.3% identity in 297 aa overlap
                                                                    50
                                                30
                                                          40
                                      20
                    MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT
       m158.pep
                    սուսուսանուսում աստաստանանան
                    MKTNSEELTVFVQVVESGSFSRAAEQLEMANSAVSRIVKRLEEKLGVNLLNRTTRQLNLT
       g158
                                                          40
                                      20
                                                30
                            10
                                                         100
                                      80
                                                90
                            70
                    EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLSVDSAMPMVLHLLAPLAAKFNERYP
```

инининийнинининини ивининининин EEGAQYFRRAQRILQEMAAAETEMLAVHEVPQGVLRVDSAMPMVLHLLAPLAAKFNERYP

100

90

80

110

	130 140 150 160 170 180	
m158.pep	HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLRARHLFDSRFRVIASPEYLAKHGTPQ	
g158	HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLRARHLFDSHFRVVASPEYLAKHGTPQ	
	130 140 150 160 170 180	
	190 200 210 220 230 240	
150 non	STEEL ACHOCLGFTE PGSLNTWAVLDAOGNPYKISPHFTASSGEILRSLCLSGCGIVCLS	
m158.pep	1.7.11.11.11.11.11.11.11.11.11.11.11.11.	
g158	SAEDLANHQCLGFTEPGSLNTWAVLDAQGNPYKISPHFTASSGEILRSLCLSSCGIACLS	
	190 200 210 220 230 240	
	250 260 270 280 290 300	
	250 260 270 280 290 300 DFLVDNDIAEGKLIPLLAEQTSDKTHPFNAVYYSDKAVNLRLRVFLDFLVEELGNNLCGX	
m158.pep		
g158	DFLVDNDITEGKLIPLFAEQTSNKTHPFNAVYYSDKAVNLRLRVFLDFLVKELGKNMNRT	
9130	250 260 270 280 290 300	
g158	NTKX	
	TO 650 YOUR AND A STREET AND A STORY	
The following pa	artial DNA sequence was identified in N. meningitidis <seq 659="" id="">:</seq>	
a158.seq		
1	ATGARAACCA ATTCAGAAGA ACTGACCGTA TTTGTTCAAG TGGTGGAAAG CGGCAGCTTC AGCCGTGCGG CGGAGCAGTT GGCGATGGCA AATTCTGCCG	
51	TAAGCCGCAT CGTCAAACGG CTGGAGGAAA AGTTGGGTGT GAACCTGCTC	
101 151	ARCCCCACCA CGCGGCAACT CAGTCTGACG GAAGAAGGCG CGCAATATTT	
201	CCCCCCCCC CAGAGAATCC TGCAAGAAAT GGCAGCGGCG GAAACCGAAA	
251	TOTTGCCAGT GCACGAAATA CCGCAAGGCG TGTTGCGCGT GGATTCCGCG	
301	ATCCCCATGC TGCTGCATCT GCTGGCGCCG CTGGCAGCAA AATTCAACGA	
351	ACGCTATCCG CATATCCGAC TTTCGCTCGT TTCTTCCGAA GGCTATATCA	
401	ACCCARACTC GATATTGCCT TACGGGCCGG AGAATTGGAC GATTCCGGGC TGCGTGCACG CCATCTGTTT GACAGCCGCT TCCGCGTAAT	
451	CGCCAGTCCT GAATACCTGG CAAAACACGG CACGCCGCAA TCTACAGAAG	
501 551	AGCTTGCCGG CCACCAATGT TTAGGCTTCA CCGAACCCGG TTCTCTAAAT	
601	ACATGGGGG TTTTAGATGC GCAGGGAAAT CCCTATAAGA TTTCACCGCA	
651	COTTACCCCC ACCACCGGTG AAATCTTACG CTCGTTGTGC CTTTCAGGTT	
701	COCCUPATURE TRECTTATEA GATTTTTTGG TTGACAACGA CATCGCTGAA	
751	GGAAAGTTAA TTCCCCTGCT CGCCGAACAA ACCTCCAATA AAACGCACCC	
801	CTTTAATGCT GTTTATTACA GCGATAAAGC CGTCAACCTC CGCTTACGCG TATTTTTGGA TTTTTTAGTG GAGGAACTGG GAAACAATCT CTGTGGATAA	
851	TATTTTTGGA TTTTTTAGIG GAGGAACIGG GARACIENTOI GIGI	
emi .	s to the amino acid sequence <seq 158.a="" 660,="" id="" orf="">:</seq>	
This correspond	is to the annio acid sequence (BEQ ES 656) 612 25 556	
.170		
a158.pep	MKTNSEELTV FVQVVESGSF SRAAEQLAMA NSAVSRIVKR LEEKLGVNLL	
51	NEUTROLSIT FEGACYFRRA ORILOEMAAA ETEMLAVHEI PQGVLRVDSA	
101	MONGLULLAR LAAKENERYP HIRLSLYSSE GYINLIERKV DIALKAGELU	
151	DSGLRARHLF DSRFRVIASP EYLAKHGTPQ STEELAGHQC LGFTEPGSLN	
201	TWAVLDAQGN PYKISPHFTA SSGEILRSLC LSGCGIACLS DFLVDNDIAE GKLIPLLAEQ TSNKTHPFNA VYYSDKAVNL RLRVFLDFLV EELGNNLCG*	
251	GKLIPELAEQ TSNKTHPENA VIISDKAVND KBKVIBBID. BBBOOK	
450/-450	99.0% identity in 299 aa overlap	
m158/a158		
	10 20 30 40 50 60	
m158.pep	MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT	
2	1:1111111111111111111111111111111111111	
a158	MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVMLLMXTTRQLSL1	
	10 20 30 40 50 60	
	70 80 90 100 110 120	J
m158.pep	FFGAOYFRRAORILOFMAAAETEMLAVHEIPOGVLSVDSAMPMVLHLLAPLAAKFNERYP	,
mrse.pep		
a158	EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLRVDSAMPMVLHLLAPLAAKFNERYE	•
	70 80 90 100 110 120	J

		130	140	150	160	170	180
	m158.pep	HIRLSLVSSEGYIN	NLIERKVDIAI	RAGELDDSGL	RARHLFDSRE	RVIASPEYL	KHGTPQ
		111111111111111111111111111111111111111		11111111111	111111111111111111111111111111111111111		
	a158	HIRLSLVSSEGYIN	NLIERKVDIA!	LRAGELDDSGL	RARHLFDSRI	RVIASPEYL	KHGTPQ
		130	140	150	160	170	180
		190	200	210	220	230	240
	m158.pep	STEELAGHQCLGF			SPHFTASSGE	EILRSLCLSGO	CGIVCLS
	mrso.pep				1111111111	1111111111	111:111
- 155.5	a158	STEELAGHOCLGF	repgslntway	LDAQGNPYKI	SPHFTASSGE	EILRSLCLSG	CGIACLS
- '	4100	190	200	210	220	230	240
		250	260	270	280	290	300
	450	DFLVDNDIAEGKL					
	m158.pep	DEDVDNDIAEGKA	LILLILLI	:::::::::::::::		111111111	1111111
		DFLVDNDIAEGKL			ווווווווווו לם.דם.דומטומאתי	/	
	a158			270	280	290	300
		250	260	270	200	230	300

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 661>:

```
g160.seq
      1 ATGGACATTC tgGACAAact ggtcgatCTC GCccaATTGA CGGGCAGTGC
51 GGATGTGCAG TgcctTTTGG GCGGACAATG gcATGaaacc TTGCAACGCG
     101 AAGGGCTGGT ACACATTGTT ACGGCGGGCA GCGGTTATCT CTGCATCGAC
     151 GGCGAAACTT CCCCGCGTCC GGTCGGCACG GGCGATATTG TATTTTTCCC
     201 GCGCGGCTTG GGTCATGTGT TGAGCCACGA CGGAAAATAC GGAGAAAGTT
     251 TACAACCGGA CATACGACAA AACGGCACAT TTATGGTCAA ACAGTGCGGC
     301 AACGGGCTGG ATATGAGCCT GTTTTGCGCC CGTTTCCGCT ACGACACCCA
     351 CGCCGATTTG ATGAACGGGC TGCCGGAAAC CGTTTTTCTG AACATTGCCC
     401 ATCCAAGTTT GCAGTATGTG GTTTCAATGC TGCAACTGGA AAGCGAAAAA
     451 CCTTTGACGG GGACGGTTTC CGTGGTCAAC GCATTACCGT CCGTCCTGCT
     501 GGTGCTTATC CTGCGCGCCT ATCTCGAACA GGATAAGGAT GTCGAACTCT
     551 CGGGCGTATT GAAAGGTTGG CAGGACAAAC GTTTGGGACA TTTGATCCAA
     601 AAGGTGATAG ACAAACCGGA AGACGAATGG AATATTGACA AAATGGTTGC
     651 CGCCGCCAAT ATGTCGCGCG CGCAACTGAT GCGCCGCTTC AAAAGCCAAG
     701 TCGGACTCAG CCCGCACGCC TTTGTGAACC ATATCCGCCT GCAAAAAGGC
     751 GCATTGCTGC TGAAGAAAAC CCCGGATTCG GTTTTGGAGG TCGCGCTGTC
          GGTGGGCTTT CAGTCGGAAA CGCATTTCGG CAAGGCGTTC AAACGGCAAT
     851 ATCACGTTTC GCCGGGGCAA TACCGGAAAG AAGGCGGGCA AAAATAA
```

This corresponds to the amino acid sequence < SEQ ID 662; ORF 160.ng >:

```
g160.pep
      1 MDILDKLVDL AQLTGSADVQ CLLGGQWHET LQREGLVHIV TAGSGYLCID
      51 GETSPRPVGT GDIVFFPRGL GHVLSHDGKY GESLQPDIRQ NGTFMVKQCG
     101 NGLDMSLFCA RFRYDTHADL MNGLPETVFL NIAHPSLQYV VSMLQLESEK
     151 PLTGTVSVVN ALPSVLLVLI LRAYLEQDKD VELSGVLKGW QDKRLGHLIQ
         KVIDKPEDEW NIDKMVAAAN MSRAQLMRRF KSQVGLSPHA FVNHIRLQKG
     251 ALLLKKTPDS VLEVALSVGF QSETHFGKAF KRQYHVSPGQ YRKEGGQK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 663>: m160.

0.seq					
1	ATGGACATTC	TGGACAAACT	GGTCGATTTC	GCCCAATTGA	CGGGCAGTGT
51	GGATGTGCAG	TGCCTTTTGG	GCGGACAATG	GTCGGTACGG	CATGAAACCT
101	TGCAACGCGA	AGGATTGGTA	CACATTGTTA	CATCGGGCAG	CGGCTATCTC
151	TGCATCGACG	GCGAAACTTC	CCCGCGTCCG	GTCAGTACAG	GGGATATTGT
201	ATTTTTCCCG	CGCGGCTTGG	GTCATGTGTT	GAGCCACGAC	GGAAAATGCG
251	GAGAAAGTTT	ACAACCGGAT	ATGCGGCAGC	ACGGTGCGTT	TACGGTCAAG
301	CAGTGCGGCA	ACGGACAGGA	TATGAGCCTG	TTTTGCGCCC	GTTTCCGCTA
351	CGACACCCAC	GCCGATTTGA	TGAACGGGCT	GCCTGAAACC	GTTTTTCTGA
401	ACATTGCCCA	TCCGAGTTTA	CAGTATGTGG	TTTCAATGCT	GCAACTGGAA
451	AGCAAAAAAC	CTTTGACGGG	GACGGTTTCC	ATGGTCAACG	CATTGTCGTC

501 CGTCCTGCTG GTGCTTATCC TGCGCGCCTA TCTCGAACAG GATAAGGATG
551 TCGAACTCTC GGGCGTATTG AAAGGTTGGC AGGACAAACG TTTGGGACAT
601 TTAATCCAAA AGGTGATAGA CAAACCGGAA GACGAATGGA ATGTCGACAA
651 AATGGTGGCG GCTGCCAATA TGTCGCGCGC GCAACTGATG CGCCGTTTCA
701 AAAGCCGGGT CGGACTCAGC CCGCACGCCT TTGTGAACCA TATCCGCCTG
751 CAAAAAGGCG CGTTGCTGCT GAAAAAAAAC CCGGATTCGG TTTTGTCGGT
801 CGCACTGTCG GTAGGCTTTC AGTCGGAAAC GCACTTCGGC AAGGCGTTCA
851 AACGGCAATA TCACGTTTCG CCGGGTCAAT ACCGGAAAGA AGGCGGCAA

This corresponds to the amino acid sequence <SEQ ID 664; ORF 160>:

m160.pep

1 MDILDKLVDF AQLTGSVDVQ CLLGGQWSVR HETLQREGLV HIVTSGSGYL 51 CIDGETSPRP VSTGDIVFFP RGLGHVLSHD GKCGESLQPD MRQHGAFTVK

101 QCGNGQDMSL FCARFRYDTH ADLMNGLPET VFLNIAHPSL QYVVSMLQLE

151 SKKPLTGTVS MVNALSSVLL VLILRAYLEQ DKDVELSGVL KGWQDKRLGH 201 LIQKVIDKPE DEWNVDKMVA AANMSRAQLM RRFKSRVGLS PHAFVNHIRL

251 QKGALLLKKN PDSVLSVALS VGFQSETHFG KAFKRQYHVS PGQYRKEGGQ

301 K*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

m160	/	g160	93.4%	identity	in	301	aa	overlap
------	---	------	-------	----------	----	-----	----	---------

m160.pep g160	10 MDILDKLVDFAQLTG MDILDKLVDLAQLTG 10	1:11111111	11 111111	11111111:	111111111	1111
m160.pep	70 VSTGDIVFFPRGLGH !:	ETHILL 11	111111:11:1:	AFTVKQCGNG	111111111	
m160.pep	130 ADLMNGLPETVFLNI ADLMNGLPETVFLNI 120 130		1111111:111			11111
m160.pep	190 DKDVELSGVLKGWQI 		111111111111111111111111111111111111111	111111111	1111111111	:
m160.pep g160	250 PHAFVNHIRLQKGA PHAFVNHIRLQKGA 240 250	11111:11111		1111111111	411111111	
m160.pep	KX KX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 665>: a160.seq

1 ATGGACATTC TGGACAAACT GGTCGATTTC GCCCAATTGA CGGGCAGTGT 51 GGATGTGCAG TGCCTTTTGG GCGGACAATG GTCGGTACGG CATGAAACCT

101	TGCAACGCGA	AGGATTGGTA	CACATTGTTA	CATCGGGCAG	CGGCTATCTC	
151	TGCATCGACG	GCGAAACTTC	CCCGCGTCCG	GTCAGTACAG	GGGATATTGT	
201	ATTTTTCCCG	CGCGGCTTGG	GTCATGTGTT	GAGCCACGAC	GGAAAATGCG	
251	GAGAAAGTTT	ACAACCGGAT	ATGCGGCAGC TATGAGCCTG	ACGGTGCGTT	CTTTCCCCCTA	
301	CAGTGCGGCA	ACGGACAGGA	TGAACGGGCT	CCTGAAACC	GTTTCCGCTA	
351 401	A CAMPACCACA	TCCGAGTTTA	CAGTATGTGG	TTTCAATGCT	GCAACTGGAA	
451	ACCIDADADAC	CTTTGACGGG	GACGGTTTCC	ATGGTCAACG	CATTGTCGTC	:
501	CGTCCTGCTG	GTGCTTATCC	TGCGCGCCTA	TCTCGAACAG	GATAAGGATG	,
551	TCGAACTCTC	GGGCGTATTG	AAAGGTTGGC	AGGACAAACG	TTTGGGACAT	ı
601	TTAATCCAAA	AGGTGATAGA	CAAACCGGAA	GACGAATGGA	ATGTCGACAA	•
651	AATGGTGGCG	GCTGCCAATA	TGTCGCGCGC	GCAACTGATG	CGCCGTTTCA	.
701	AAAGCCGGGT	CGGACTCAGC	CCGCACGCCT	TTGTGAACCA	TATCCGCCTG	; •
751	CAAAAAGGCG	CGTTGCTGCT	GAAAAAAAAC	CCGGATTCGG	TTTTGTCGGT	
801	CGCACTGTCG	GTAGGCTTTC	AGTCGGAAAC	ACCCCAAACA	AAGGCGTTCA	
851		TCACGTTTCG	CCGGGTCAAT	ACCEGAMAGA	AGGCGGGCAA	,
901	AATAA					
This correspond	le to the amin	o acid segue	nce <seo t<="" td=""><td>D 666. ORF</td><td>160.a>:</td><td></td></seo>	D 666. ORF	160.a>:	
	is to me animi	o acid seque	wee ord i	D 000, OIG	100.4	
a160.pep	MOTTONTUDE	NOT TOSUDUO	CLLGGQWSVR	HETLOREGIA	HTVTSGSGYI	
1 51	WINTPRESSE	MOTIGOADAO	RGLGHVLSHD	GKCGESLOPD	MROHGAFTVK	
101	OCCNGODMST.	FCARFRYDTH	ADLMNGLPET	VFLNIAHPSL	OYVVSMLOLE	
151	OCGNGODUSE OCGNGODUSE	MUNALSSVLL	VLILRAYLEQ	DKDVELSGVL	KGWODKRLGH	ì
201	TIOKALDEE	DEWNYDKMVA	AANMSRAQLM	RRFKSRVGLS	PHAFVNHIRI	ı
251	OKGALLIKKN	PDSVLSVALS	VGFQSETHFG	KAFKRQYHVS	PGQYRKEGGC	2
301		-	-			
m160/a160	100.0% ide	ntity in 3	301 aa over	rlap		
,						
		10		0 40		60
m160.pep	WDILDKL	VDFAQLTGSVD	VQCLLGGQWSV	RHETLOREGLV	HIVTSGSGYLO	CIDGETSPRP
	111111		11111111111		1111111111	111111111
a160	MDILDKL		VQCLLGGQWSV			SIDGETSPRP 60
		10	20 3	30 40	50	60
		70	80 9	0 100	110	120
1 60	MOTOTA		HDGKCGESLQP			
m160.pep	421GD14	IIIIIIIIIII			1111111111	
a160	VSTGDIV	FFPRGLGHVLS	HDGKCGESLQP	DMROHGAFTVK	COCGNGODMSL	FCARFRYDTH
4.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		70	80 9	0 100	110	120
		70	80 9			
		130 1	.40 15	90 100 50 160	170	180
m160.pep	ADLMNGL	130 1 PETVFLNIAHP	.40 15	90 100 50 160 LESKKPLTGTVS) 170 Emvnalssvll	180 VLILRAYLEQ
m160.pep	ADLMNGL	130 1 PETVFLNIAHP	.40 15 PSLQYVVSMLQI	90 100 50 160 LESKKPLTGTVS) 170 SMVNALSSVLL	180 VLILRAYLEQ
m160.pep a160	adlmngl Adlmngl	130 1 PETVFLNIAHP	.40 15 PSLQYVVSMLQI 	00 100 50 160 LESKKPLTGTVS LESKKPLTGTVS	170 SMVNALSSVLLV 	180 VLILRAYLEQ VLILRAYLEQ
· ·	adlmngl Adlmngl	130 1 PETVFLNIAHP	.40 15 PSLQYVVSMLQI	00 100 50 160 LESKKPLTGTVS LESKKPLTGTVS	170 SMVNALSSVLLV 	180 VLILRAYLEQ
· ·	ADLMNGL ADLMNGL	130 1 PETVFLNIAHP PETVFLNIAHP 130 1	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 40 15	90 100 50 160 LESKKPLTGTVS LESKKPLTGTVS	170 SMVNALSSVLL SMVNALSSVLL 170	180 VLILRAYLEQ VLILRAYLEQ 180
a160	ADLMNGL ADLMNGL	130 1 .PETVFLNIAHP .PETVFLNIAHP 130 1	40 15 PSLQYVVSMLQI PSLQYVVSMLQI 40 15	00 100 00 160 LESKKPLTGTVS 11 LESKKPLTGTVS 00 160	170 SMVNALSSVLL SMVNALSSVLL 170	180 VLILRAYLEQ VLILRAYLEQ 180
· ·	ADLMNGL ADLMNGL	130 1 PETVFLNIAHP PETVFLNIAHP 130 1 190 2	.40 15 PSLQYVVSMLQI	00 100 00 160 LESKKPLTGTVS 11 LESKKPLTGTVS 00 160 10 220 PEDEWNVDKMVF	170 SMVNALSSVLL' SMVNALSSVLL') 170) 230 AAANMSRAQLM	180 VLILRAYLEQ VLILRAYLEQ 180 240 RRFKSRVGLS
a160 m160.pep	ADLMNGL	130 1 PETVFLNIAHP PETVFLNIAHP 130 1 190 2 GGVLKGWQDKRI	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 40 15	00 100 LESKKPLTGTVS LESKKPLTGTVS 50 160 10 220 PEDEWNVDKMVF	170 MMVNALSSVLLV 	180 VLILRAYLEQ IIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS
a160	ADLMNGL	130 1 PETVFLNIAHP IIIIIIIIII PETVFLNIAHP 130 1 190 2 GGVLKGWQDKRI	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI L40 15 200 21 LGHLIQKVIDKE	00 100 LESKKPLTGTVS LESKKPLTGTVS 50 160 10 220 PEDEWNVDKMVF	170 SMVNALSSVLL' SMVNALSSVLL' 170 230 AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIII
a160 m160.pep	ADLMNGL	130 1 PETVFLNIAHP PETVFLNIAHP 130 1 190 2 GGVLKGWQDKRI GGVLKGWQDKRI	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE	00 100 00 160 LESKKPLTGTVS LESKKPLTGTVS 00 160 10 220 PEDEWNVDKMVP PEDEWNVDKMVP 10 220	170 SMVNALSSVLLV SMVNALSSVLLV 170 230 AAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a160 m160.pep	ADLMNGL	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE	00 100 00 160 LESKKPLTGTVS LESKKPLTGTVS 00 160 10 220 PEDEWNVDKMVA PEDEWNVDKMVA 10 220 70 280	170 SMVNALSSVLLV SMVNALSSVLLV 0 230 AAANMSRAQLM AAANMSRAQLM 0 230	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a160 m160.pep	ADLMNGL	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 21 LGHLIQKVIDKE	00 100 00 160 LESKKPLTGTVS LESKKPLTGTVS 50 160 10 220 PEDEWNVDKMVA PEDEWNVDKMVA 10 220 70 280 LSVGFQSETHFO	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM CAAANMSRAQLM CAAANMSRAQLM CAAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m160.pep a160 m160.pep	ADLMNGL ADLMNGL DKDVELS DKDVELS	130 1 PETVFLNIAHP PETVFLNIAHP 30 1 190 2 GVLKGWQDKRI GVLKGWQDKRI 190 2 250 2 HIRLQKGALLL	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 21 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220	170 SMVNALSSVLLV SMVNALSSVLLV 0 230 AAANMSRAQLM AAANMSRAQLM 0 230 0 290 GKAFKRQYHVS	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a160 m160.pep a160	ADLMNGL ADLMNGL DKDVELS DKDVELS	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 0	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m160.pep a160 m160.pep	ADLMNGL ADLMNGL DKDVELS DKDVELS	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m160.pep a160 m160.pep	ADLMNGL ADLMNGL DKDVELS DKDVELS	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 0	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a160 m160.pep a160 m160.pep a160	ADLMNGL ADLMNGL DKDVELS DKDVELS PHAFVNE	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 0	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m160.pep a160 m160.pep	ADLMNGL ADLMNGL DKDVELS DKDVELS PHAFVNH PHAFVNH	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 0	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a160 m160.pep a160 m160.pep a160	ADLMNGL ADLMNGL DKDVELS DKDVELS PHAFVNE	130 1 PETVFLNIAHP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.40 15 PSLQYVVSMLQI PSLQYVVSMLQI 200 21 LGHLIQKVIDKE LGHLIQKVIDKE 200 23 KKNPDSVLSVAI	00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 00 220 0	170 SMVNALSSVLLV SMVNALSSVLLV CMVNALSSVLLV CAAANMSRAQLM AAANMSRAQLM	180 VLILRAYLEQ IIIIIIIIII VLILRAYLEQ 180 240 RRFKSRVGLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 667>:
```

```
g161.seq
          ATGGATACCG CAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
          GGCGGCCTGC TTCACCGTTA TGAACGTATT GATTAAAGAG GCATCGGCAA
      51
          AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
     151 ACCGTTACGC TCGGTGCTGC CGCCGTATTG CGGCGCGACA CCTTCCGCAC
          GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA
          TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGAC AACCGGCGTT
     251
     301 ACCCTGAGTT ACACCTCGTC GATTTTTttg GCGGTATTTT CCTTCCTGAT
     351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT
     401 TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
          CCGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA
     451
     501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG
     551 TGTTTTACCT TTCCGCAACC GGCGTGGCGA TGTCGTCggt ttgggcgacg
     601 Ctgaccggct ggCACAcccT GTCCTTTcca tcggcagttt ATCtgtCGGG
          CATCGGCGTG tccgcgCtgA TTGCCCAaCT GtcgatgAcg cGCGcctaca
     651
     701 aaGTCGGCGA CAAATTCACG GTTGCCTCGC tttcctaTAt gaccgtcGTC
     751 TTTTCCGCCC TGTCTGCCGC ATTTTTCTg ggcgaagagc ttttctggCA
801 GGAAATACTC GGTATGTGCA TCATTATcct CAGCGGCATT TTGAGCAGCA
          TCCGCCCCAT TGCCTTCAAA CAGCGGCTGC AAGCCCTCTT CCGCCAAAGA
     851
     901
          TAA
```

This corresponds to the amino acid sequence <SEQ ID 668; ORF 161.ng>:

```
9161.pep

1 MDTAKKDILG SGWMLVAAAC FTVMNVLIKE ASAKFALGSG ELVFWRMLFS

51 TVTLGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV

101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE

151 PAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSAT GVAMSSVWAT

201 LTGWHTLSFP SAVYLSGIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV

251 FSALSAAFFL GEELFWQEIL GMCIILSGI LSSIRPIAFK QRLQALFRQR
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 669>:

```
m161.seq
         ATGGATACCG CAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
         GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA
      51
     101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
     151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA mCTTCCGCAC
          GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGGCGA
     201
         TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACTGGCGTT
     251
          ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT
          TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT
     351
          TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
     451 ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA
          TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG
          TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCGTCGGT TTGGGCGACG
     551
          CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG
     601
     651 CATCGGCGTG TCCGCGCTGA TTGCCCCAACT GTCGATGACG CGCGCCTACA
     701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT
          TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GGCGAAGAGC TTTTCTGGCA
     751
          GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA
     801
          TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA
     851
     901
         TAA
```

This corresponds to the amino acid sequence <SEQ ID 670; ORF 161>:

```
m161.pep

1 MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS

51 TVALGAAAVL RRDXFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV
TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
```

```
TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT
LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
```

FSALSAAFFL GEELFWOEIL GMCIIILSGI LSSIRPTAFK ORLOSLFROR 251

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m161 / g161 97.0% identity in 300 aa overlap
                10
                        20
                               30
                                       40
                                               50
                                                       60
          MDTAKKDILGSGWMLVAAACFTIMNVLIKEASAKFALGSGELVFWRMLFSTVALGAAAVL
m161.pep
          q161
          MDTAKKDILGSGWMLVAAACFTVMNVLIKEASAKFALGSGELVFWRMLFSTVTLGAAAVL
                10
                        20
                               30
                                       40
                                               50
                                                       60
                70
                        80
                                90
                                       100
                                              110
                                                      120
          RRDXFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE
m161.pep
          g161
          RRDTFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLTTGVTLSYTSSIFLAVFSFLILKE
                               90
                                       100
                                              110
                                                      120
               130
                       140
                               150
                                       160
                                              170
                                                      180
m161.pep
          RISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG
          g161
          RISVYTQAVLLLGFAGVVLLLNPSFRSGQEPAALAGLAGGAMSGWAYLKVRELSLAGEPG
                       140
                               150
                                      160
                                              170
               190
                       200
                               210
                                       220
                                              230
                                                      240
          WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT
m161.pep
          g161
          WRVVFYLSATGVAMSSVWATLTGWHTLSFPSAVYLSGIGVSALIAQLSMTRAYKVGDKFT
               190
                       200
                                       220
                                                      240
               250
                       260
                               270
                                       280
                                              290
          VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPTAFKQRLQSLFRQR
m161.pep
          g161
          VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPIAFKQRLQALFRQR
               250
                       260
                               270
                                       280
                                                      300
m161.pep
          Х
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 671>: al61.seq

X

g161

ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC 1 51 GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA 101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA 151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA CCTTCCGCAC GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA 201 251 TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACCGGCGTT 301 ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT 351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA 401 ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA 451 501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG 551 TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCATCGGT TTGGGCGACG 601 CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG 651 CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG CGCGCCTACA 701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GCCGAAGAGC TTTTCTGGCA 751 801 GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA

m161.pep

a161

х

Х

851 TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA 901 TAA This corresponds to the amino acid sequence <SEQ ID 672; ORF 161.a>: al61.pep MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS TVALGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV 51 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE 101 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT 151 LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV 201 FSALSAAFFL AEELFWQEIL GMCIIILSGI LSSIRPTAFK QRLQSLFRQR 251 301 m161/a161 99.3% identity in 300 aa overlap 20 30 40 50 10 MDTAKKDILGSGWMLVAAACFTIMNVLIKEASAKFALGSGELVFWRMLFSTVALGAAAVL m161.pep MDTAKKDILGSGWMLVAAACFTIMNVLIKEASAKFALGSGELVFWRMLFSTVALGAAAVL a161 40 50 60 10 20 30 90 100 110 120 80 RRDXFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE m161.pep RRDTFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE a161 90 100 110 170 150 160 140 RISVYTOAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG m161.pep RISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG a161 160 170 180 130 140 150 230 240 200 210 220 190 WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT m161.pep WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT a161 230 240 220 190 200 210 270 280 260 VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPTAFKQRLQSLFRQR m161.pep VASLSYMTVVFSALSAAFFLAEELFWQEILGMCIIILSGILSSIRPTAFKQRLQSLFRQR a161 270 280 290 250 260

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 673>:

g163.seq

1 ATGGTTATTT TGACGACTTT GTTTTTTGTG TGTGTTTTGG TGGTATTGGT

51 TTTAACCGTG CCGGATCAGG TGCAGATGTG GCCAAAAGAAG

101 TCATTTTAC CGAGTTCAGC TGGTTTTATG TTTTAACGTT TTCCATTTTT

151 ctgGGTTTtc tgctGATACT CTCGGTCAGC GGTTTGGGAA ACATCAGGCT

201 AGGACGGAT GAAGATGTGC CGGAATTCGG CTTCCTGTCG TGGCTGGCGA

251 TGCTGTTTGC GGCCGGATG GGCGTGGCC TGATGTTTTT CGGCTGGCA

301 GAGCCGTTGA TGCATTATTT TTCGGACATT ACGGTCGGCG CGCCGGAACA

351 CAGGCAGCAG CAGGCATTGC TGCACACGGT GTTCCATTGG GGCGTTCACG

401 CCTGGTCGGT GTACGGTACG ATTGCATTGG CTTTGGCTTA TTTCGGTTTC

```
451 CGCTACAAAC TGCCGCTTGC CCTGCGTTCT TGTTTTTACC CCCTGTTGAA
501 AGAAAAAATT TCCGGAAGGT TCGGCGATGC CATTGATATT ATGGCGTTGC
551 TTGCTACTTT TTTCGGCATC ATCACCACAT TGGGGTTCGG GGCTTCGCAA
601 CTGGGCGCCG GATTGCAGGA AATGGGCTGG ATTGCCGAAA ACAGCTTCGG
651 CGTGCAGGTC TTGATTATCG CCGCCGTAAT GTCCCTCGCC GTCGTTTCGG
701 CAATATCCGG CGTGGGGAAG GGCGTGAAGG TGTTGAGCGA GTTGAACCTG
751 GGCCTTGCGT TTTTGCTGCT GTTTTTTGTT TTGGCGGCGG ACCCCACTGT
     TTACCTGTTG TCGGCATTCG GCGACAACAT AGGGAACTAC CTCGGAAATC
     TGGTGCGCCT CAGTTTGAAA ACTTATGCGT ACGAACGGGA ACACAAGCCG
851
     TGGTTTGAAT CTTGGACGGT GCTTTATTGG GCGTGGTGGT GTTCTTGGgc
     gcCGTTTGTG GGTTTGTTTA TCGCGCGCAT TTCAAAGGGG cgcaccatCc
     gcgagtttgt CTTCGGGGTT TTGCTCATCC CCGGCCTGTT CGGCGTTTTG
1001
     TGGTTTACCG TCTTCGGCAA TACGGCGATT TGGCTGAATG ACGGGGTTGC
1051
1101 GGGGGGAATG CTCGAAAAGA TGACCTCCTC TCCGGAAACG CTGCTTTTTA
1151 AATTCTTTAA TTACCTCCCC CTGCCCGAAC TGACGAGCAT CGTCAGCCTG
1201 CTGGTCATTT CCCTGTTTTT TGTAACTTCT GCCGACTCCG GGATTTATGT
1251 CCTGAACAAT ATTACCTCTC GGGACAAAGG CTTGAGCGCG CCACGGTGGC
1301 AGGCGGTTAT GTGGGGCGTG CTGatgtcTG CCGTTGCCGT TTTGCTGATG
     CGCTCGGGCG GACTCGGCAA CCTGCAGTCT ATGACCCTGA TTGTTTCCCT
1401 GCCGTTTGCC CTGCTGATGC TGATAATGTG TTTCAGCCTG TGGAAAGGCT
1451 TGAGTGCGGA TAAGAAATAT TTTGAGACCC GGGTCAACCC TACCAGTGTA
     TTTTGGACGG GCGGCAAGTG GAAAGAACGG CTGGTGCGGA TAATGAGCCA
1501
1551 GACGCAGGAG CAGGATATTT TAAAATTCCT CAAACATACC GCATCGCCCG
1601 CTATGCACGA GTTGCAACGG GAGCTTTCGG AAGAATACGG CTTGAGCGTC
1651 CGGGTCGATA AGATGTTTCA TCAGGACGAG CCCGCAATCG AGTTCGTCAT
1701 TCGGAAAGAG ACGATGCGCG ATTTTATGTA CGGGATTAAG TCTGTCGGGC
1751 AGGATGTATC CGACCAGTTG ATTAACGACG GCAAGCTGCC GCATATCCGG
1801 CACCAGACAA CTTACAAACC CTACGCTTAT TTTTTCGACG GGCGCGTCGG
1851 GTACGATGTG CAGTATATGA ACAAGGACGA GCTGATTGCC GACATTTTGA
1901 AAAACTACGA ACGTTATTTG ATGTTGTTGG ATGATGTCGG TCAGGAACTG
1951 ATGGCGCACG AGCAGGTGGA ATTGGCAGAG TAA
```

This corresponds to the amino acid sequence <SEQ ID 674; ORF 163.ng>:

```
9163.pep

1 MVILTTLFFV CVLVVLVLTV PDQVQMWLDR AKEVIFTEFS WFYVLTFSIF

51 LGFLLILSVS GLGNIRLGRD EDVPEFGFLS WLAMLFAAGM GVGLMFFGVA

101 EPLMHYFSDI TVGAPEHRQQ QALLHTVFHW GVHAWSVYGT IALALAYFGF

151 RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLAFFGI ITTLGFGASQ

201 LGAGLQEMGW IAENSFGVQV LIIAAVMSLA VVSAISGVGK GVKVLSELNL

251 GLAFLLLFFV LAADPTVYLL SAFGDNIGNY LGNLVRLSLK TYAYEREHKP

301 WFESWTVLYW AWWCSWAPFV GLFIARISKG RTIREFVFGV LLIPGLFGVL

351 WFTVFGNTAI WLNDGVAGGM LEKMTSSPET LLFKFFFNYLP LPELTSIVSL

401 LVISLFFVTS ADSGIYVLNN ITSRKGLSA PRWQAVMWGV LMSAVAVLLM

451 RSGGLGNLOS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FETRVNPTSV

501 FWTGGKWKER LVRIMSQTQE QDILKFLKHT ASPAMHELQR ELSEEYGLSV

501 HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL MLLDDVGQEL

651 MAHEQVELAE*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 675>:

```
m163.seq
         ATGGTTATTT TGACGACTTT GTTTTTTGTG TGTGTTTTGG TGGTATTGGT
      1
         TTTAACCGTG CCGGATCAGG TGCAGATGTG GCTCGATCGG GCAAAAGAAG
         TCATTTTAC CGAGTTCAGC TGGTTTTATG TTTTAACGTT TTCCATTTTT
     101
          CTGGGTTTCC TGCTGATACT CTCGGTCAGC AGTTTGGGAA ACATCAGGCT
     201 CGGACGGGAT GAAGATGTGC CGGAATTCGG CTTCCTGTCG TGGCTGGCGA
     251 TGCTGTTTGC GGCCGGGATG GGCGTGGGTC TGATGTTTTT CGGCGTGGCA
     301 GAGCCGTTGA TGCATTATTT TTCGGACATT ACGGCCGGCA CGCCGGAACA
     351 CAGGCAGCAG CAGGCATTGC TGCACACGGT GTTCCATTGG GGCGTTCACG
     401 CTTGGTCGGT GTACGGTACG ATTGCATTGG CTTTGGCTTA TTTCGGTTTC
     451 CGCTACAAGC TGCCGCTTGC CCTGCGTTCT TGTTTTTACC CCCTGTTGAA
          AGAAAAAATT TCCGGAAGGT TCGGCGATGC CATTGATATT ATGGCGTTGC
          TTGCTACTTT TTTCGGCATC ATCACCACAT TGGGGTTCGG GGCTTCGCAA
     551
          CTGGGCGCCG GATTGCAGGA AATGGGCTGG ATTGCCGAAA ACAGCTTCAG
```

651	CGTGCAGGTT	TTGATTATCG	CCGCCGTCAT	GTCCCTCGCC	
701		CGTGGGGAAG	GGCGTGAAGG	TGTTGAGCGA	
751		TTTTGCTGCT	GTTTTTTGTT	TTGGCGGCGG	GACCCACTGT
801	00000	TCGGCATTCG	GCGACAACAT	AGGGAACTAC	
851		CAGTTTTAAA	ACTTATGCGT	ACGAACGGGA	ACACAAGCCG
901		CTTGGACGGT	GCTTTATTGG	GCGTGGTGGT	GTTCTTGGGC
951		GGTTTGTTTA	TCGCGCGCAT	TTCAAAGGGG	CGCACCATCC
1001	GCGAGTTTGT	CTTCGGGGTT	TTGCTCATCC	CCGGCCTGTT	CGGCGTTTTG
1051	TGGTTTACCG	TCTTCGGCAA	TACGGCGATT	TGGCTGAATG	ACGGGGTTGC
1101	GGGGGGAATG	CTCGAAAAGA	TGACCTCCTC	TCCGGAAACG	CTGCTTTTTA
1151	AATTCTTTAA	TTACCTCCCC	CTGCCCGAAT	TGACGAGCAT	CGTCAGCCTG
1201	CTGGTCATTT	CTCTGTTTTT	TGTAACTTCT	GCCGATTCCG	GGATTTATGT
1251	CCTGAACAAT	ATTACCTCTC	GGGACAAAGG	• • • • • • • • • • • • • • • • • • • •	CCACGGTGGC
1301	AGGCGGTTAT	GTGGGGCGTG	CTGATGTCTG	CCGTTGCCGT	TTTGCTGATG
1351	CGCTCGGGCG	GACTCGGCAA	CCTGCAGTCT		TTGTTTCCCT
1401	GCCGTTTGCC	CTGCTGATGC	TGATAATGTG		TGGAAAGGCT
1451	TGAGTGCGGA	TAAGAAATAT	TTTGAGACCC		TACCAGTGTA
1501	TTTTGGACGG	GCGGCAAGTG	GAAAGAACGG		TAATGAGCCA
1551	GACGCAGGAG	CAGGATATTT		CAAACAGACT	
1601	CTATGCACGA	GTTGCAACGG	GAGCTTTCGG		CTTGAGCGTC
1651	CGGGTCGATA	AAATGTTTCA	TCGGGACGAG	-	AGTTCGTCAT
1701	TCGGAAAGAG	ACGATGCGCG			
1751	AGGATGTATC	CGACCAGTTG	ATTAACGACG		GCATATCCGG
1801	CATCAGACAA				GGCGCGTCGG
1851	GTACGATGTG		ACAAGGACGA		
1901	AAAACTACGA		ATGTTGTTGG		TCAGGAACTG
1951	ATGGCGCACG	AGCAGGTGGA	ATTGGCAGAG	TAA	

This corresponds to the amino acid sequence <SEQ ID 676; ORF 163>:

MVILTTLFFV	CVLVVLVLTV	PDQVQMWLDR	AKEVIFTEFS_	WFYVLTFSIF
LGFLLILSVS	SLGNIRLGRD	EDVPEFGFLS		GVGLMFFGVA
	TAGTPEHROO	QALLHTVFHW	GVHAWSVYGT	IALALAYFGF
			MALLATFFGI	ITTLGFGASQ
		_	VVSAISGVGK	GVKVLSELNL
				TYAYEREHKP
			RTIREFVFGV	LLIPGLFGVL
			LLEKEENYLP	LPELTSIVSL
				LMSAVAVLLM.
FWTGGKWKER			_	
RVDKMFHRDE	PAIEFVIRKE			
HOTTYKPYAY	FFDGRVGYDV	QYMNKDELIA	DILKNYERYL	WITDDAGGET
MAHEQVELAE	*			
	LGFLLILSVS EPLMHYFSDI RYKLPLALRS LGAGLQEMGW GLAFLLLFFV WFESWTVLYW WFTVFGNTAI LVISLFFVTS RSGGLGNLQS FWTGGKWKER RVDKMFHRDE HQTTYKPYAY	LGFLLILSVS SLGNIRLGRD EPLMHYFSDI TAGTPEHRQQ RYKLPLALRS CFYPLLKEKI LGAGLQEMGW IAENSFSVQV GLAFLLLFFV LAAGPTVYLL WFTVFGNTAI WLNDGVAGGM LVISLFFVTS ADSGIYVLNN RSGGLGNLQS MTLIVSLPFA FWTGGKWKER LVQIMSQTQE RVDKMFHRDE PAIEFVIRKE HQTTYKPYAY FFDGRVGYDV	LGFLLILSVS SLGNIRLGRD EDVPEFGFLS EPLMHYFSDI TAGTPEHRQQ QALLHTVFHW RYKLPLALRS CFYPLLKEKI SGRFGDAIDI LGAGLQEMGW IAENSFSVQV LIIAAVMSLA GLAFLLLFFV LAACPTVYLL SAFGDNIGNY WFTVFGNTAI WLNDGVAGGM LEKMTSSPET LVISLFFVTS ADSGIYVLNN ITSRDKGLSA RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL FWTGGKWKER LVQIMSQTQE QDILKFLKQT RVDKMFHRDE PAIEFVIRKE TMRDFMYGIK HQTTYKPYAY FFDGRVGYDV QYMNKDELIA	LGFLLILSVS SLGNIRLGRD EDVPEFGFLS WLAMLFAAGM EPLMHYFSDI TAGTPEHRQQ QALLHTVFHW GVHAWSVYGT RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLATFFGI LGAGLQEMGW IAENSFSVQV LIIAAVMSLA VVSAISGVGK GLAFLLLFFV LAAGPTVYLL SAFGDNIGNY LGNLVRLSFK WFTVFGNTAW WLNDGVAGGM LEKMTSSPET LLFKFFNYLP LVISLFFVTS ADSGIYVLNN ITSRDKGLSA PRWQAVMWGV RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FWTGGKWKER LVQIMSQTQE QDILKFLKQT ASPAMHELQR RVDKMFHRDE PAIEFVIRKE TMRDFMYGIK SVGQDVSDQL HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m163 / g163 98.6% identity in 660 aa overlap

_						
	10	20	30	40	50	60
m163.pep	MVILTTLFFVCVLV	VLVLTVPDQV	OMWLDRAKEV	IFTEFSWFYV	LTFSIFLGFL	LILSVS
g163	MVILTTLFFVCVLV	VLVLTVPDQV	OMWLDRAKEV	IFTEFSWFYV	LTFSIFLGFL	LILSVS
g105	10	20	30	40	50	60
	70	80	90	100	110	120
m163.pep	SLGNIRLGRDEDVE	EFGFLSWLAM	ILFAAGMGVGI	LMFFGVAEPLN	MHYFSDITAGT 	PEHRQQ
g163	GLGNIRLGRDEDVE	PEFGFLSWLAN	ilfaagmgvg		MYFSDITVG#	PEHRQQ
9200	70	80	90	100	110	120
	130	140	150	160	170	180

m163.pep	QALLHTVFHWGVHAW:			1111111111	11111111	11111
g163	QALLHTVFHWGVHAW 130	SVYGTIALAL 140	150	160	170	180
m163.pep	190 MALLATFFGIITTLG	111111111	1 1 1 1 1 1 1 1 1 1 1	:	111111111	1 1 1 3 3 1
g163	MALLATFFGIITTLG	FGASQLGAGI 200	QEMGWIAENS 210	SFGVQVLIIAF 220	VMSLAVVSA 230	ISGVGK 240
m163.pep	250 GVKVLSELNLGLAFI	260 LLFFVLAAG	270 PTVYLLSAFG	280 DNIGNYLGNLV	290 /RLSFKTYAY	300 EREHKP
g163	GVKVLSELNLGLAFI 250	LLFFVLAAD 260	PTVYLLSAFG	DNIGNYLGNLV 280	RLSLKTYAY 290	TEREHKP 300
m163.pep	310 WFESWTVLYWAWWCS	320 WAPFVGLFI	330 ARISKGRTIR	340 EFVFGVLLIP	350 GLFGVLWFT	360 VFGNTAI
g163	WFESWTVLYWAWWCS	WAPFVGLFI 320	 ARISKGRTIR 330	EFVFGVLLIP	GLFGVLWFT	VFGNTAI 360
	370 WLNDGVAGGMLEKM	380 rssperi.lek	390 FFNYLPLPEL	400 TSIVSLLVIS	410 LFFVTSADS	420 GIYVLNN
m163.pep g163		 SSPETLLFK	111111111		111111111	11111
	370 4 30	380 440	450	460	470	480
m163.pep	ITSRDKGLSAPRWQ TSRDKGLSAPRWQ					111111
g163	ITSRDKGLSAPRWQ 430	440	450	460	470	400
m163.pep	490 WKGLSADKKYFETR	111111111	111111111:	1111111111		1111111
g163	WKGLSADKKYFETR 490	VNPTSVFWT	GGKWKERLVR 510	IMSQTQEQDII 520	KFLKHTASI 530	PAMHELQR 540
m163.pep	550 ELSEEYGLSVRVD	560 MFHRDEPAI	570 EFVIRKETMR	580 DFMYGIKSVG	590 DVSDQLIN	600 GKLPHIR
g163	ELSEEYGLSVRVDF ELSEEYGLSVRVDF 550		11111111	111111111		, , , , , , , , ,
162	610 HQTTYKPYAYFFDO	620	630	640 KNYERYLMLL	650 DDVGQELMA	660 HEQVELAE
m163.pep g163		 GRVGYDVQYM	NKDELIADII	KNYERYLMLL,	11111111	
-	610	620	630	640	930	000
m163.pep	X I					
g163	х					D 677>.

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 677>:

a163.seq

¹ ATGGTTATTT TGACGACTTT GTTTTTTGTG TGTGTTTTGGT
51 TTTAACGTG CCGGATCAGG TGCAGATGTG GCTCGATCGG GCAAAAGAAG
101 TCATTTTTAC CGAGTTCAGC TGGTTTTATG TTTTAACGTT TTCCATTTTT 151 CTGGGTTTCC TGCTGATACT CTCGGTCAGC AGTTTGGGAA ACATCAGGCT

110

40

100

```
201 CGGACGGGAT GAAGATGTGC CGGAATTCGG CTTCCTGTCG TGGCTGGCGA
             TGCTGTTTGC GGCCGGGATG GGCGTGGGTC TGATGTTTTT CGGCGTGGCA
         251
              GAGCCGTTGA TGCATTATTT TTCGGACATT ACGGCCGGCA CGCCGGAACA
             CAGGCAGCAG CAGGCATTGC TGCACACGGT GTTCCATTGG GGCGTTCACG
         351
             CTTGGTCGGT GTACGGTACG ATTGCATTGG CTTTGGCTTA TTTCGGTTTC
         401
             CGCTACAAGC TGCCGCTTGC CCTGCGTTCT TGTTTTTACC CCCTGTTGAA
         451
              AGAAAAATT TCCGGAAGGT TCGGCGATGC CATTGATATT ATGGCGTTGC
         501
             TTGCTACTTT TTTCGGCATC ATCACCACAT TGGGGTTCGG GGCTTCGCAA
         551
              CTGGGCGCCG GATTGCAGGA AATAGGCTGG ATTGCCGAAA ACAGCTTCAG
              CGTGCAGGTT TTGATTATCG CCGCCGTCAT GTCCCTCGCC GTCGTTTCGG
         651
              CAATATCCGG CGTGGGGAAG GGTGTGAAGG TGTTGAGCGA GTTGAACCTG
         701
              GGTCTTGCGT TTTTGCTGCT GTTTTTTGTT TTGGCGGCGG GTCCCACTGT
         751
              TTACCTGTTG TCGGCATTCG GCGACAACAT AGGGAACTAC CTCGGAAATC
         801
              TGGTGCGCCT CAGTTTTAAA ACTTATGCGT ACGAACGGGA ACACAAGCCG
         851
              TGGTTTGAAT CTTGGACGGT GCTTTATTGG GCGTGGTGGT GTTCTTGGGC
         901
              GCCGTTTGTG GGTTTGTTTA TCGCGCGCAT TTCAAAGGGG CGCACCATCC
         951
              GCGAGTTTGT CTTCGGGGTT TTGCTCATCC CCGGCCTGTT CGGCGTTTTG
        1001
              TGGTTTACCG TCTTCGGCAA TACGGCGATT TGGCTGAATG ACGGGGTTGC
        1051
              GGGGGGAGTG CTCGAAAAGA TGACCTCCTC TCCGGAAACG CTGCTTTTTA
        1101
        1151 AATTCTTTAA TTACCTCCCC CTGCCCGAAT TGACGAGCAT CGTCAGCCTG
              CTGGTCATTT CTCTGTTTTT TGTAACTTCT GCCGATTCCG GGATTTATGT
        1201
              CCTGAACAAT ATTACCTCTC GGGACAAAGG CTTGAGCGCG CCACGGTGGC
        1251
              AGGCGGTTAT GTGGGGCGTG CTGATGTCTG CCGTTGCCGT TTTGCTGATG
              CGCTCGGGCG GACTCGGCAA CCTGCAGTCT ATGACCCTGA TTGTTTCCCT
        1351
              GCCGTTTGCC CTGCTGATGC TGATAATGTG TTTCAGCCTG TGGAAAGGAT
        1401
              TGAGTGCGGA TAAGAAATAT TTTGAGACCC GGGTTAACCC TACCAGTGTA
        1451
              TTTTGGACGG GCGGCAAGTG GAAAGAACGG CTGGTGCAGA TAATGAGCCA
        1501
              GACGCAGGAG CAGGATATTT TAAAATTCCT CAAACATACC GCATCGCCCG
        1551
        1601 CTATGCACGA GTTACAACGG GAGCTTTCGG AAGAATACGG CTTGAGCGTC
        1651 CGGGTCGATA AGATGTTTCA TCAGGACGAG CCCGCAATCG AGTTCGTCAT
              TCGGAAAGAG ACGATGCGCG ATTTTATGTA CGGGATTAAG TCTGTCGGGC
         1701
         1751 AGGATGTATC CGACCAGTTG ATTAACGACG GCAAGCTGCC GCATATCCGG
         1801 CATCAGACAA CTTACAAACC CTACGCTTAT TTTTTCGACG GGCGCGTCGG
         1851 GTACGATGTG CAGTATATGA ACAAGGACGA GCTGATTGCC GACATTTTGA
              AAAACTACGA ACGTTATTTG ATGTTGTTGG ATGATGTCGG TCAGGAACTG
         1901
         1951 ATGGCGCACG AGCAGGTGGA ATTGGCAGAG TAA
This corresponds to the amino acid sequence <SEQ ID 678; ORF 163.a>:
     a163.pep
              MVILTTLFFV CVLVVLVLTV PDQVQMWLDR AKEVIFTEFS WFYVLTFSIF
              LGFLLILSVS SLGNIRLGRD EDVPEFGFLS WLAMLFAAGM GVGLMFFGVA
           51
              EPLMHYFSDI TAGTPEHRQQ QALLHTVFHW GVHAWSVYGT IALALAYFGF
          101
          151 RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLATFFGI ITTLGFGASQ
          201 LGAGLQEIGW IAENSFSVQV LIIAAVMSLA VVSAISGVGK GVKVLSELNL
               GLAFLLLFFV LAAGPTVYLL SAFGDNIGNY LGNLVRLSFK TYAYEREHKP
          251
          301 WFESWTVLYW AWWCSWAPFV GLFIARISKG RTIREFVFGV LLIPGLFGVL
              WFTVFGNTAI WLNDGVAGGV LEKMTSSPET LLFKFFNYLP LPELTSIVSL
          351
               LVISLFFVTS ADSGIYVLNN ITSRDKGLSA PRWQAVMWGV LMSAVAVLLM
          401
          451 RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FETRVNPTSV
               FWTGGKWKER LVQIMSQTQE QDILKFLKHT ASPAMHELQR ELSEEYGLSV
               RVDKMFHQDE PAIEFVIRKE TMRDFMYGIK SVGQDVSDQL INDGKLPHIR
          551
               HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL MLLDDVGQEL
          601
          651 MAHEQVELAE *
              99.4% identity in 660 aa overlap
m163/a163
                          10
                                              30
                                                       40
                  MVILTTLFFVCVLVVLVLTVPDQVQMWLDRAKEVIFTEFSWFYVLTFSIFLGFLLILSVS
     m163.pep
                  MVILTTLFFVCVLVVLVLTVPDQVQMWLDRAKEVIFTEFSWFYVLTFSIFLGFLLILSVS
     a163
                                                                           60
```

20

80

10

m163.pep

30

90

SLGNIRLGRDEDVPEFGFLSWLAMLFAAGMGVGLMFFGVAEPLMHYFSDITAGTPEHRQQ

a163				 FFGVAEPLMF 100	HYFSDITAGTE	 PEHRQQ 120
m163.pep	130 QALLHTVFHWGVHAWS QALLHTVFHWGVHAWS 130		11111111111	11111111	111111111	11111
m163.pep	190 MALLATFFGIITTLG		11:11:11		111111111	11111
m163.pep	250 GVKVLSELNLGLAFL 			11111111	1111111111	11111
m163.pep a163	310 WFESWTVLYWAWWCS !!!!!!!!!!!!! WFESWTVLYWAWWCS 310	11111111	1111111111	1111111111		11111
m163.pep	370 WLNDGVAGGMLEKMI WLNDGVAGGVLEKMI 370		11:1111111	11111111	111111111	
m163.pep	430 ITSRDKGLSAPRWQI ITSRDKGLSAPRWQI 430		1111111111		11111111	11111
m163.pep	490 WKGLSADKKYFETR WKGLSADKKYFETR 490	111111111	111111111	1111111111	111111111	111111
m163.pep	550 ELSEEYGLSVRVDK ELSEEYGLSVRVDK 550	111:1111	111111111	111111111		111111
m163.pep	610 HQTTYKPYAYFFDG HQTTYKPYAYFFDG 610	620 GRVGYDVQYM	111111111	11111111	111111111	,,,,,,,,
m163.pep a163	x i x					

WO 99/57280

465

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 679>:

```
(partial)
g164.seq
          ..ATGAACACAT TTTTGAAAAA CAGCGAATAC GCGTATATCC TGAACGACTG
            CAAGGCGCGC TTCCTGTTCG CCTCGGCCGG CCTGTCAAAA GAATTGGCGG
            GCCTGAAGGC GCAAACGCCC GTCGAAAAAA TCATTTGGAC GGACAAAAGC
            CGGCCGGCCG GCGAAACGGC GGAAGGCGAT GCCTTTTTTG AAAACGTGCG
     151
            CCGCTTCCCC GAAAAACCCG ACTTGGGCCG CCAACCCCGG ATAAATGATT
     201
            TGGCACACAT CATCTACACC TCCGGCACGA CGGGGCATCC CAAAGGCGCG
     251
            CTAATCAGTT ACGCCAACCT GTTCGCCAAC CTGAACGGCA TCGAACGCAT
     301
            CTTtaaAATT TCCAAACGCG ACCGCTTTAT CGTTTTCctg ccgatgTTCC
     351
            ACAGCTTCAC GCTGACGGCT ATGGTGCTGC TGCCGATTTA TATGGCGTGT
     401
            TCGATTATTT TGGTCAAAtc cgttttCCCc ttttccaacG TTTTGAAACA
     451
            GGCCCTGCTC AAACGCGCAA CCGTGTTTTT GGGCGTACCC GCGATTTACA
     501
            CCGCGATGAG CAAGGCAAAA ATCCCTTGGT ATTTCAGATG GTTCAACCGC
     551
            ATCCGCCTGT TTATCAGCGG CGGCGCGCCT TTGGCGGAAC AAACCATCCT
     601
            CGATTTTAAA GCCAAGTTCC CCCGCGCCAA ATTGCTGGAA GGCTACGGAC
     651
            TGAGCGAAGC CTCGCCCGTC GTCGCCGTCA ATACGCCCGA ACGGCAAAAA
     701
            GCCCGCAGCG TCGGCATCCC CCTGCCCGGT TTGGAAGCCA AAGCCGTCGA
     751
            TGAAGAATTG GTCGAAGTGC CGCGCGGCGA AGTGGGCGAA CTGATCGTCA
     801
            GGGGCGGTTC GGTGATGCGG GGCTACCTCA ATATGCCTGC CGCCACCGAT
     851
            GAAACCATCG TCAACGGCTG GTTGAAAACG GGCGATTTCG TTACCATAGA
     901
            CGAGGACGGC TTTATCTTTA TCGTCGACCG CAAAAAAGAT TTGATTATTT
     951
            CCAAAGGTCA AAACGTCTAT CCGCGCGAGA TCGAAGAAGA AATCCACAAA
    1001
            CTCGATGCCG TCGAAGCCGC CGCCGTCATC GGCGTGAAAG ACCGTTATGC
     1051
             CGACGAGGAA ATCGTCGCCT TCGTCCAATT GAAGGAAGGT ATGGATTTGG
    1101
             GCGAGGACGA aatccgccgc caccTGCGTA CCGTGCTGGC AAATTTCAAA
     1151
             ATCCCCAAAC AGATCCACTT TAAAGACGGG CTGCCGCGCA ACGCTACGGG
     1201
            CAAAGTATTG AAACGGGTGC TGAAGGAGCA GTTTGAAGGA AACAAATGA
     1251
```

This corresponds to the amino acid sequence <SEQ ID 680; ORF 164.ng>:

```
g164.pep (partial)
          ...MNTFLKNSEY AYILNDCKAR FLFASAGLSK ELAGLKAQTP VEKIIWTDKS
           RPAGETAEGD AFFENVRRFP EKPDLGROPR INDLAHIIYT SGTTGHPKGA
            LISYANLFAN LNGIERIFKI SKRDRFIVFL PMFHSFTLTA MVLLPIYMAC
    101
            SIILVKSVFP FSNVLKQALL KRATVFLGVP AIYTAMSKAK IPWYFRWFNR
     151
            IRLFISGGAP LAEQTILDFK AKFPRAKLLE GYGLSEASPV VAVNTPERQK
     201
            ARSVGIPLPG LEAKAVDEEL VEVPRGEVGE LIVRGGSVMR GYLNMPAATD
     251
            ETIVNGWLKT GDFVTIDEDG FIFIVDRKKD LIISKGQNVY PREIEEEIHK
     301
            LDAVEAAAVI GVKDRYADEE IVAFVQLKEG MDLGEDEIRR HLRTVLANFK
     351
            IPKQIHFKDG LPRNATGKVL KRVLKEQFEG NK*
     401
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 681>:

```
m164.seq
         ATGAACCGGA CTTATGCCAA TTTCTACGAA ATGCTCGCCG CCGCCTGCCG
         CAAAAACGGA AACGGCACGG CAGTGTTCGA CGGCAAGGAA AAAACCGCCT
      51
     101 ACCGCGCGCT CAAGCAGGAG GCCGAAGCCG TCGCGGCGTA TCTGCAAAAT
     151 ATCGGCGTGA AGTTCGGCGA CACGGTCGCG CTGGCGGTTT CCAATTCCAC
     201 AGAATTTATT ACCGCCTATT TCGCCATCTC CGCCATCGGC GCGGTCGCCG
         TACCGATGAA CACATTTTTG AAAAACAGCG AATACGCGTA TATCCTGAAC
     301 GACTGCAAGG CGCGCTTCCT GTTCGCCTCG GCCGGCCTGT CAAAAGAATT
     351 GGCGGGCTTG AAGGCGCAAA CGCCCGTCGA AAAAATCATT TGGACGGACA
     401 AAAGCCGTCC GACCGGCGAA ACGGCGGAAG GCGATGCCTT TTTTGAAGAC
     451 GTGCGCCGCT TCCCCGAAAA ACCCGACTTG GGCCGCCAAC CCCGGATAAA
     501 TGATTTGGCA CACATCATCT ACACCTCCGG CACGACGGGG CATCCCAAAG
     551 GCGCGCTAAT CAGTTACGCC AACCTGTTCG CCAACCTGAA CGGCATCGAA
          CGCATCTTTA AAATTTCCAA GCGCGACCGC TTTATCGTTT TCCTGCCGAT
     651 GTTCCACAGC TTCACGCTGA CGGCTATGGT GCTGCTGCCG ATTTATATGG
     701 CGTGTTCGAT TATTTTGGTC AAATCCGTTT TTCCGTTTTC CAACGTTTTG
     751 AAACAGACAC TGCTCAAACG CGCGACCGTG TTTTTGGGCG TACCCGCGAT
          TTACACCGCG ATGAGCAAGG CGAAAATCCC TTGGTATTTC AGATGGTTCA
     801
     851 ACCGCATTCG CCTGTTTATC AGCGGCGGCG CGCCTTTGGC GGAACAAACC
     901 ATCCTCGATT TCAAAGCCAA GTTCCCCCGC GCCAAATTGC TGGAAGGCTA
```

951	CGGACTGAGC	GAAGCCTCTC	CCGTCGTCGC	CGTCAATACG	CCCGAGAGGC
1001	AAAAAGCCCG	CAGCGTCGGC	ATCCCCCTGC	CCGGTTTGGA	AGCCAAAGCC
1051	CTCCATGAAG	AATTGGTCGA	AGTGCCGCGC	GGCGAAGTGG	GCGAACTGAT
1101	CCTCACCCCC	GGTTCGGTGA	TGCGGGGCTA	CCTCAATATG	CCTGCCGCCA
1151	CCCATCAAAC	CATCGTCAAC	GGCTGGTTGA	AAACGGGCGA	TTTCGTTACC
1201	AMACACAAAC	ACCCCTTTAT	CTTTATCGTC	GACCGCAAAA	AAGATTTGAT
	MINGACGAAG	CCTCAAAATG	TCTATCCGCG	CGAGATTGAA	GAAGAAATCT
1251	ACABACTCCA	TECCETCEAA	GCCGCCGCCG	TCATCGGCGT	GAAAGACCGT
1301	MARCCCCACC	AGGAAATCGT	CGCCTTCGTC	CAATTGAAGG	AAGGTATGGA
1351 1401	TAIGCCGACG	AACGAAATCC	GCCGCCACCT	GCGTACCGTG	CTGGCAAATT
1451	TIIGGCCAG	CADACABATC	CACTTTAAAG	ACGGGCTGCC	GCGCAACGCT
	ACCCCCAAGG	TATTGAAACG	GGTGTTGAAG	GAGCAGTTTG	ACGGAAACAA
1501	ATGA	111113111100			
1551	WIGU				•

This corresponds to the amino acid sequence <SEQ ID 682; ORF 164>:

-					
.pep				·····	APAUA AVI ON
1	MNRTYANFYE	MLAAACRKNG	NGTAVFDGKE	KTAYRALKUE	ALAVAATLQN
51	TGVKFGDTVA	LAVSNSTEFI	TAYFAISAIG	AVAVPMNTFL	KNSEYAYILN
101	DOWNDET FAS	AGLSKELAGL	KAOTPVEKII	WTDKSRPTGE	TAEGDAFFED
	DCWWEDING	CDODDETNOIA	HITYTSCTTC	HPKGALISYA	NLFANLNGIE
151	VRREPERPUL	GROPKINDLA	TITIDOTTO	TVMNCETTIV	KEVEDESNVI.
201	RIFKISKRDR	FIVELPMENS	FTLTAMVLLE	TIMACSILLY	KSVFPFSNVL
251	KOTLLKRATV	FLGVPAIYTA	MSKAKIPWYF	RWFNRIRLET	SGGAPLAEQT
301	TLDFKAKFPR	AKLLEGYGLS	EASPVVAVNT	PERQKARSVG	IPLPGLEAKA
351	UDEEL VEVIDE	GEVGELIVEG	GSVMRGYLNM	PAATDETIVN	GWLKTGDFVT
	VDEEDVEVIII	DDVVDITTCV	COMMYPRETE	FETYKLDAVE	AAAVIGVKDR
401	IDEDGETEIA	DKKKDPITOK	GOMATEMENT	TANGUTOVOT	UEKUCI DENA
451	YADEEIVAFV	QLKEGMDLGE	NEIRKHLKTV	PUNEVIEWOI	HFKDGLPRNA
501	TCKVLKRVLK	EOFDGNK*			•

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m164 / g164 98.6% identity in 432 aa overlap

	60	70	80	90	100	110
m164.pep	GDTVALAVSN:	STEFITAYFA	ISAIGAVAV	PMNTFLKNSE 	YAYILNDCKAR	FLFASAGLSK
-1.64				MNTFLKNSE	YAYILNDCKAR	FLFASAGLSK
g164				1	0 20	30
	120	130	140	150	160	170
m164.pep	ELAGLKAQTP			SDAFFEDVRRF	PEKPDLGRQPR	
g164	ELAGLKAQTP	VEKIIWTDKS	RPAGETAE	GDAFFENVRRE	PEKPDLGROPR	INDLAHIIYT 90
	40	30				
164	180	190	200 UNGIERIF	210 KISKRDRFIVE	220 LPMFHSFTLTA	230 MVLLPIYMAC
m164.pep	111111111111	1111111111	11111111	11111111111		111111111
g164	SGTTGHPKGA 100			KISKRDRFIVE 20 13	FLPMFHSFTLTA) 150
	100	110	, -	20 -		
	240	250	260	270	280	290
m164.pep	SIILVKSVF	PFSNVLKQTLI	LKRATVFLG 		AKIPWYFRWFNE	
g164	SIILVKSVFI	FSNVLKQAL	LKRATVFLG	VPAIYTAMSK	AKIPWYFRWFNI	RIRLFISGGAP 210
	100	,				250
	300	310	320	330	340 OKARSVGIPLP	350 GLEAKAVDEEL
m164.pep	111111111			11111111111	11111111111	,,,,,,,,,,,,,,
g164	LAEQTILDF	KAKFPRAKLL 0 23	EGYGLSEAS	SPVVAVNTPER 240 2	OKARSVGIPLP	GLEAKAVDEEL 0 270
	22	J 23		-40 -2		
	360	370	380	390	400	410

```
VEVPRGEVGELIVRGGSVMRGYLNMPAATDETIVNGWLKTGDFVTIDEDGFIFIVDRKKD
    m164.pep
                 VEVPRGEVGELIVRGGSVMRGYLNMPAATDETIVNGWLKTGDFVTIDEDGFIFIVDRKKD
    q164
                                                                       330
                                                    310
                                                             320
                                 290
                        280
                                                                  470
                                               450
                                                         460
                                      440
                            430
                   420
                 LIISKGQNVYPREIEEEIYKLDAVEAAAVIGVKDRYADEEIVAFVQLKEGMDLGENEIRR
    m164.pep
                 LIISKGQNVYPREIEEEIHKLDAVEAAAVIGVKDRYADEEIVAFVQLKEGMDLGEDEIRR
     g164
                                                             380
                                          360
                                                    370
                                 350
                        340
                            490
                                      500
                                               510
                   480
                 HLRTVLANFKIPKQIHFKDGLPRNATGKVLKRVLKEQFDGNKX
     m164.pep
                 HLRTVLANFKIPKQIHFKDGLPRNATGKVLKRVLKEQFEGNKX
     q164
                                                    430
                                           420
                        400
                                 410
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 683>:
              ATGAACCGGA CTTATGCCAA TTTCTACGAA ATGCTGACCG CCGCCTGCCG
              CAAAAACGGC AACGGCACGG CAGTGTTCGA CGGCAAGGAA AAAACCGCCT
          51
          101 ACCGCGCGCT CAAGCAGGAA GCCGAAGCCG TTGCGGCGTA TCTGCAAAAT
         151 ATCGGCGTGA AGTTCGGCGA CACGGTCGCG CTGGCGGTTT CCAATTCCAC
              GGAATTTATT ACCGCCTATT TCGCCGTATC CGCCATCGGC GCGGTTGCCG
          251 TACCGATGAA CACATTTTTG AAAAACAGCG AATACGCGTA TATCCTGAAC
          301 GACTGCAAGG CGCGCTTCCT GTTCGCCTCG GCCGGCCTGT CAAAAGAATT
              GGCGGGCTTG AAGGCGCAAA CGCCCGTCGA AAAAATCATT TGGACGGGCC
          351
          401 AAAGCCGTCC GGACGGCGAA ATGGCGGAAG GCGATGCCTT TTTTGAAGAC
          451 GTGCGCCGCT TCCCCGAAAA ACCCGACTTG GGCCGCCAAC CCCGGATAAA
          501 TGATTTGGCA CACATCATCT ACACCTCCGG CACGACGGGG CATCCCAAAG
              GTGCGCTAAT CAGCTACGCC AACCTGTTCG CCAACCTGAA CGGCATCGAA
          551
              CGCATCTTTA AAATCTCCAA GCGCGACCGC TTTATCGTTT TCCTGCCGAT
          601
              GTTCCACAGC TTCACGCTGA CGGCTATGGT GCTGCTGCCG ATTTATATGG
              CGTGTTCGAT TATTTTGGTC AAATCCGTTT TCCCCTTTTC CAACGTTTTG
          701
          751 AAACAGGCAC TGCTCAAACG CGCGACCGTG TTTTTGGGCG TGCCCGCGAT
          801 TTACACCGCG ATGAGCAAGA CGAAAATCCC TTGGTATTTC AGATGGTTCA
          851 ACCGCATCCG CCTGTTTATC AGCGGCGGAG CACCTTTGGC GGAACAAACC
               ATCCTCGATT TCAAAGCCAA GTTCCCCCGC GCCAAATTGC TGGAAGGCTA
          951 CGGACTGAGC GAAGCCTCGC CCGTCGTCGC CGTCAATACG CCCGAGAGGC
         1001 AAAAAGCCCG CAGCGTCGGC ATCCCCCTGC CCGGTTTGGA AGTCAAAGCC
              GTCGATGAAG AATTGGTCGA AGTGCCGCGC GGCGAAGTGG GCGAACTGAT
         1051
               CGTCAGGGGC GGTTCGGTGA TGCGGGGCTA CCTCAATATG CCTGCCGCCA
         1101
               CCGATGAAAC CATCGTCAAC GGCTGGTTGA AAACGGGCGA TTTCGTTACC
         1151
         1201 ATAGACGAAG ACGCCTTTAT CTTTATCGTC GACCGCAAAA AAGATTTGAT
               TATTTCCAAA GGTCAAAATG TCTATCCGCG CGAAATCGAA GAAGAAATCT
         1251
         1301 ACAAACTCGA TGCCGTCGAA GCCGCCGCCG TCATCGGCGT GAAAGACCGT
               TATGCCGACG AGGAAATCGT CGCCTTCGTC CAATTGAAGG AAGGTATGGA
         1351
               TTTGGGCGAG AACGAAATCC GCCGCCACCT GCGTACCGTG CTGGCAAATT
         1401
               TCAAAATCCC CAAACAAATC CACTTTAAAG ACGGGCTGCC GCGCAACGCT
         1451
               ACGGGCAAGG TATTGAAACG GGTGTTGAAG GAGCAGTTTG ACGGAAACAA
         1501
          1551
 This corresponds to the amino acid sequence <SEQ ID 684; ORF 164.a>:
      a164.pep
               MNRTYANFYE MLTAACRKNG NGTAVFDGKE KTAYRALKQE AEAVAAYLQN
            51 IGVKFGDTVA LAVSNSTEFI TAYFAVSAIG AVAVPMNTFL KNSEYAYILN
           101 DCKARFLFAS AGLSKELAGL KAQTPVEKII WTGQSRPDGE MAEGDAFFED
               VRRFPEKPDL GRQPRINDLA HIIYTSGTTG HPKGALISYA NLFANLNGIE
           151
               RIFKISKRDR FIVFLPMFHS FTLTAMVLLP IYMACSIILV KSVFPFSNVL
           201
           251 KQALLKRATV FLGVPAIYTA MSKTKIPWYF RWFNRIRLFI SGGAPLAEQT
           301 ILDFKAKFPR AKLLEGYGLS EASPVVAVNT PERQKARSVG IPLPGLEVKA
               VDEELVEVPR GEVGELIVRG GSVMRGYLNM PAATDETIVN GWLKTGDFVT
```

IDEDGFIFIV DRKKDLIISK GQNVYPREIE EEIYKLDAVE AAAVIGVKDR

YADEEIVAFV QLKEGMDLGE NEIRRHLRTV LANFKIPKQI HFKDGLPRNA

351

401

501 TGKVLKRVLK EQFDGNK*

-- **** ·

m164/a164	98.3%	identity	in	517	aa	overlap
m164/2164	90.35	TOCHETCY		-		

		20	30	40	50	60
	10 MNRTYANFYEMLAAA	CRENGNOTAV	FDGKEKTAY	RALKOEAEAV	AAYLONIGVKI	FGDTVA
m164.pep					11111111	
a164	MNRTYANFYEMLTAA	CRKNGNGTAV	FDGKEKTAY	RALKOEALAV	AATLONIGAN	GOTAM
alu4 ,	10	20	30	40	50	60
					110	120
	70	80	90	100		
m164.pep	LAVSNSTEFITAYFA	ISAIGAVAVI	PMNTFLKNSE	INITENDUA	REDERSAGES.	111111
		IIIIIIIII IVAVASTASV	PMNTFLKNSE	YAYILNDCKA	RFLFASAGLS	KELAGL
a164	LAVSNSTEETTATEA	80.	90	100	110	120
	70	• • • • • • • • • • • • • • • • • • • •	-			
	130	140	150	160	170	180
m164.pep	KAQTPVEKIIWTDKS	RPTGETAEG	DAFFEDVRRF	PEKPDLGRQE	RINDLAHIIY	TSGTTG
		11 11 111		[TSGTTG
a164	KAQTPVEKIIWTGQS	SRPDGEMAEG	DAFFEDVKKF 150	160	170	180
	130	140	150	100		
	190	200	210	220	230	240
-164 non	UDVCAT TOVANT FAR	MINGTERTER	ISKRDRFIVE	LPMFHSFTL:	TAMVLLPIYMA	CSIILV
m164.pep			1111111111	1111111111	1 3 1 1 1	11111
a164	HPKGALISYANLFA	NLNGIERIFK	ISKRDRFIVE	TEMENSELT.	LWIATTELLINE	240
~~-	190	200	210	220	230	240
		0.60	270	280	290	300
	250 KSVFPFSNVLKQTL	260 t kdatuet.gu	PATYTAMSK	KIPWYFRWF	NRIRLFISGG!	APLAEQT
m164.pep		1111111111			11111111	
a164	KSVFPFSNVLKQAL	LKRATVFLGV	PAIYTAMSK'	CKIPWYFRWF	NKTKPE 12001	II THINK .
aloa	250	260	270	280	290	300
				240	350	360
	310	320	330	340		
m164.pep	ILDFKAKFPRAKLL	EGYGLSEASI	PVVAVNTPER	JARSVGIED IIIIIIIII		1111111
		POVOI SEASI	I I I I I I I I I I I I I I I I I I I	OKARSVGIPL	PGLEVKAVDE	ELVEVPR
a164	310	320	330	340	350	360
	310					400
	370	380	390	400	410	420
m164.pep	GEVGELIVRGGSVM	irgylnmpaa'	TDETIVNGWL	KTGDFVTIDE	DGETETADEK	VOTITION
				11111111111111111111111111111111111111	DGFTFTVDRK	KDLIISK
a164		ARGYLNMPAA 380	390	400	410	420
	370	360	370			
	430	440	450	460	470	480
m164.pep	CONTRACTOR	YKLDAVEAAA	VIGVKDRYAD	EEIVAFVQL	KEGMDLGENEI	RRHLRTV
MIO1.POP			1 1 1 4			111111
a164	GQNVYPREIEEEI	YKLDAVEAAA	VIGVKDRYAL	EEIVAFVQLI 460	EGMULGENEI 470	480
	430	440	450	460	4/0	400
	490	500	510			
	LANFKIPKQIHFK			FDGNKX		
m164.pep	11111111111111	1111111111	41111111	111111		
a164	LANFKIPKQIHFK	DGLPRNATG	CVLKRVLKEQ	FDGNKX		
4203	490	500	510			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 685>:

g165.seq

1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC

```
51 GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
101 TGATTGAACG CTTGGAAGAT gTGGCGTTGG AATCGTCAAA cGCGTGGAAC
151 AACGCCGgca CGGGGCATTC CGCGCTGTGC GAATTGAACT AtgcgccGCT
     GGGtgcggac ggcgtcatCA ATCCGGCGCg cgCCCTGAAT ATTGCCGAAC
251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCtgGTCGC GGAAGGCAAG
301 TTGGAagaCA ATTCCTTCAT CAATGCcgtg ccgcatatGT Ctttggtgat
     gAacgaagac cactgCCgtt acCTGCAAAA ACGCTATGAT GTGTTTAAAA
351
     CGCAGAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
401
     TCCGATTGGG CtccgCTGAT TATGCGCGGC CGGgacgaaA ACCAACCCGT
451
     CGCCGCCAAC TATTCCGCCG Aaggcacgga tgtcgATTTC GGACGGCTGA
     CGCGCCAGAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
551
601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
651 CAAAACCGCC GATACCCGCA ACCCAGACTG GCAGCTCACC CTCCGCACCC
701 GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CACTGACCCT GCTGCAAAAA
     TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTACCCG TGTCCGGCCT
751
801 GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
851 TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
     GACACACGCA ACGTAGACGG CAAACGACAC CTTATGTTCG GTCCTTACGC
901
951 AGGTTTCCGT TCCAACTTCC TCAAGCAAGG CTCGTTTATG GATTTGCCGC
     TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG
1051 AATATGCCGC TGACCAAATA CCTGCTGGGC gAaTTGCgtt aa
```

This corresponds to the amino acid sequence <SEQ ID 686; ORF 165.ng>:

```
9165.pep
1 MAEATDVULV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAD GVINPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCRYLQKRYD VFKTQKLFEN MEFSTDRNKI
151 SDWAPLIMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
201 NRHVEDIKRE SDGAWVLKTA DTRNPDWQLT LRTRFLFLGA GGGALTLLQK
251 SGIPEGKGYG GLPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
301 DTRNVDGRRH LMFGPYAGFR SNFLKQGSFM DLPLSIHMDN LYPMLRAGWA
351 NMPLTKYLLG ELR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 687>:

```
m165.seq (partial)
      1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
         GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
         TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
     101
     151 AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT
     201 GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC
     251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCTGGTCGC GGAAGGCAAG
     301 TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
     351 GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA
          CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
     401
          TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT
     451
     501 CGCCGCCAAC TACTCCGCCG AAGGTACGGA TGTCGATTTC GGACGGCTGA
     551 CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
     601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
     651 CAAAACCGCC GATACCCGCA ACCCCGACGG GCAGCTCACC CTCCGTACCC
     701 GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CGCTGACCCT GCTGCAAAAA
     751 TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTCCCCG TGTCCGGCCT
          GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
     851 TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
     901 GACACACGCA ACGTGGACGG CAAACGCCAC CTTATGTTCG GCCCTTACGC
     951 AGGCTTCCGT TCCAACTTCC TCAAGCAAGG CTCGCTTATG GATTTGCCGC
    1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGTGCGC CGGCTGGGCG
    1051 AATATGCCGC TGACCAAA...
```

This corresponds to the amino acid sequence <SEQ ID 688; ORF 165>:

```
m165.pep (partial)

1 MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTQKLFEN MEFSTDRNKI
151 SDWAPLMMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
```

201 NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLCAGWA 301 NMPLTK... 351

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m165 / g165 97.2% identity in 356 aa overlap
                                                      50
                                             40
                             20
                                     30
              MAEATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALC
   m165.pep
              MAEATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALC
   g165
                                             40
                                     30
                                                             120
                                             100
                                                     110
                                     90
                             80
                     70
              ELNYAPLGANGIIDPARALNIAEQFHVSRQFWATLVAEGKLEDNSFINAVPHMSLVMNED
   m165.pep
              ELNYAPLGADGVINPARALNIAEQFHVSRQFWATLVAEGKLEDNSFINAVPHMSLVMNED
   g165
                                                     110
                                             100
                                     90
                     70
                             80
                                             160
                            140
                                     150
                    130
              HCSYLQKRYDAFKTQKLFENMEFSTDRNKISDWAPLMMRGRDENQPVAANYSAEGTDVDF
   m165.pep
              អ ហើយ៖ ហើយបើយបើបាយបែបបាន ហើយបើបាយបែបប
              HCRYLQKRYDVFKTQKLFENMEFSTDRNKISDWAPLIMRGRDENQPVAANYSAEGTDVDF
   g165
                                                     170
                                             160
                                     150
                            140
                    130
                                                              240
                                                     230
                                             220
                            200
                                     210
                    190
              GRLTRQMVKYLQGKGVKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTLRTRFLFLGA
   m165.pep
              GRLTRQMVKYLQGKGVKTEFNRHVEDIKRESDGAWVLKTADTRNPDWQLTLRTRFLFLGA
   g165
                                                              240
                                                     230
                                     210
                             200
                    190
                                                     290
                                             280
                             260
                                     270
                    250
              GGGALTLLQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL
   m165.pep
               GGGALTLLQKSGIPEGKGYGGLPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL
    g165
                                                      290
                                             280
                                     270
                             260
                    250
                                             340
                             320
                                     330
                     310
               DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLCAGWANMPLTK
    m165.pep
               инининининининин кинининин инини
               DTRNVDGKRHLMFGPYAGFRSNFLKQGSFMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG
    g165
                                                      350
                                              340
                                     330
                     310
                             320
               ELRX
    q165
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 689>:
```

```
al65.seq
          ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
          GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
      51
          TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
     101
         AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT
     151
         GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC
     201
         AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGTTGGTCGC GGAAGGCAAG
     251
          TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
     301
          GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA
     351
          CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
     401
          TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT
     451
          CGCCGCCAAC TACTCCGCCG AAGGCACGGA TGTCGATTTC GGACGGCTGA
     501
          CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
```

601	AACCGCCACG	TCGAAGACAT	CAAACGCGAA	TCCGACGGCG	CGTGGGTG	CT	
651	CANARACCCCC	CATACCCGCA	ACCCCGACGG	GCAGCTCACC	CTCCGTAC	CC	
701	COMMOCHICHT	CCTCGGGGGG	GGCGGCGGCG	CGCTGACCCT	GCTGCAAA	AA	
751 751	TORCCONTICC	CCCDAGGCAA	AGGCTACGGT	GGCTTTCCCG	TGTCCGGC	CI	
801		AACAGCAACC	CCGAAACCGC	CGAACAACAC	AACGCCAA	AG	
		CCCTTCCTC	GGCGCGCCGC	CGATGTCCGT	CCCGCACC	TC	
851	03 0007	N CCTCCACCC	CAAACGCCAC	CTTATGTTCG	GCCCTTAC	.GC	
901	* CCCMMCCCCT	TOTALOTTO	TCAAGCAAGG	CTCACTTATG	GATTTGCC	.اواد	
951	mamaaaamaaa	TATCCACAAC	CTCTATCCTA	TGCTGCGCGC	CGGCTGGG	ice	
1001	mamccccc	ጥርእርርእልእጥል	CCTGCTGGGC	GAATTGCGTA	AAACCAAA	LGA.	
1051	3 0 3 0 C C FFF C	こことですっとしてではい	ТССАВТАСТА	CCCCGAGGCA	AACCCCCGA	ice	
1101 1151		これがこれてこれに	GGGCAACGCG	TTCAAATCAT	TAAAAAA	AC	
1201	maacaaaaaa	CCCCCCTCTT	GCAGTTTGGT	ACGGAGATT	TUGUACAC	.60	
1251	CONCCCOTTCC	CTCCCCCCAT	TGCTGGGCGC	GTCGCCGGGC	GCATCGAC	فاناد	
1301	AACMCCCCCC	CATCATCCGG	CTGATGCACC	AATGCTTCCC	; CGAACGC	300	
1351	a a composition of	* * * * * * * * * * * * * * * * * * *	GAAAGAGCTG	GTACCGGGTT	L VCCCCUT	JAA	
1401	CTTCAACGAA	AACCCCGAAA	GGGCGGATGA	AATTATCGC	C TATACCG	CGA	
1451	AAGTGTTGGA	TATTTAA					
This correspond	1_ 4_ 4ha amii	no acid seau	ence <seo l<="" td=""><td>D 690: ORI</td><td>7 165.a>:</td><td></td><td></td></seo>	D 690: ORI	7 165.a>:		
This correspond	is to the ann	no acid scqu	CHICC ADDQ	LD 070, 02.			
a165.pep				a rivi.TERLE	D VALESSN	AWN	
1	MAEATDVVLV	GGGIMSATLO	VLLRELEPSI	TAFOFHUSE	O FWATLVA	EGK	
51	NAGTGHSALC	ELNYAPLGAN PHMSLVMNEI	A CIIDLAKADI	N IMEGENIALIE	N MEFSTOR	NKI	
101	LEDNSFINAV	RDENQPVAA	NOSITOVKI	E CDITEOMVK	Y LOCKGVK	TEF	
151	SDWAPLMMRC	G RDENQPVAAR E SDGAWVLKT	N ISAEGIDVD	r toroff.ff.c	A GGGALTI	LOK	
201	NRHVEDIKRE	G SDGAWVLKTA	A DIKNEDGQL	n MYKAACUYS	V GAPPMSV	PHL	
251	SGIPEGKGY	GFPVSGLFF	K NONPETAEV	OMUTE.IG.IG M	N LYPMLRA	GWA	
301	DTRNVDGKRI	ELRKTKEER	SULPVÕGST	N NODDWELTT	A GORVOII	KKD	
351	NMPLTKYLLO	G ELRKTKEEK G TEIVAHADG	G INNIICNED F WOTTFILE	C DSTAVPLMI	R LMHOCEP	ERT	
401		L VPGYGIKLN	e Nucayuett 2 Mwnmawat	a vyakvi.ni*			
451	DOWEGRIKE	I. VPGYGIKUN	r Nervynett	U TIVILIANO.			
431	I DWDOMERE.						
m165/a165		ntity in 3					
		ntity in 3	56 aa ovei	alap		50	60
	99.7% ide	ntity in 3	36 aa ovei	clap	10	50	60 ALC
	99.7% ide	ntity in 3	20	clap 30 4	10 EDVALESSNA	WNNAGTGHS	ALC
m165/a165	99.7% ide	ntity in 3	20 TLGVLLKELEF	clap 30 4 SWEITLIERLE	10 :DVALESSN#	AWNNAGTGHS	ALC
m165/a165	99.7% ide	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA	20 TLGVLLKELEF TLGVLLKELEF	clap 30 4 SWEITLIERLE SWEITLIERLE	10 CDVALESSNA EDVALESSNA	AWNNAGTGHS AWNNAGTGHS	ALC ALC
m165/a165 m165.pep	99.7% ide	ntity in 3	20 TLGVLLKELEF	clap 30 SWEITLIERLE SWEITLIERLE	10 :DVALESSN#	AWNNAGTGHS	ALC
m165/a165 m165.pep	99.7% ide	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10	20 TLGVLLKELEF TLGVLLKELEF 20	clap 30 4 SWEITLIERLE 1 SWEITLIERLE 30 4	IO EDVALESSNA EDVALESSNA	AWNNAGTGHS AWNNAGTGHS 50	ALC ALC
m165/a165 m165.pep	99.7% ide MAEATD IIIIII MAEATD	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10	20 TLGVLLKELEF TLGVLLKELEF 20	Tlap 30 4 SWEITLIERLE SWEITLIERLE 30 4	IO EDVALESSNA EDVALESSNA 	AWNNAGTGHS AWNNAGTGHS 50	ALC III ALC 60
m165/a165 m165.pep	99.7% ide MAEATD MAEATD	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70	20 TLGVLLKELEF TLGVLLKELEF 20 80	30 4 SWEITLIERLE SWEITLIERLE 30 4	ODVALESSNA EDVALESSNA 	AWNNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM	ALC III ALC 60 120
m165/a165 m165.pep a165	99.7% ide MAEATD MAEATD	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LIGANGIIDPAR	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS	30 4 SWEITLIERLE SWEITLIERLE 30 4 90 10	OCUPATE SENTATION OF THE SENTATION OF TH	AWNINAGTGHS AWNINAGTGHS 50 110 NAVPHMSLVM	ALC III ALC 60 120 INED
m165/a165 m165.pep a165	99.7% ide MAEATD MAEATD	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 GGANGIIDPAR	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS	30 4 SWEITLIERLE SWEITLIERLE 30 6 SROFWATLVAEC	ODVALESSNA EDVALESSNA EDVALESSNA 40 GKLEDNSFII !!!!!!!!	AWNINAGTGHS AWNINAGTGHS 50 110 NAVPHMSLVM	ALC III ALC 60 120 INED
m165/a165 m165.pep a165 m165.pep	99.7% ide MAEATD MAEATD	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LIGANGIIDPAR	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS	30 4 SWEITLIERLE SWEITLIERLE 30 6 SRQFWATLVAEG	ODVALESSNA DVALESSNA DVALESSNA OO : GKLEDNSFII UIIIIII	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM	ALC 60 120 INED III
m165/a165 m165.pep a165 m165.pep	99.7% ide MAEATD MAEATD MAEATD CONTROL ELNYAP	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 GGANGIIDPAR PLGANGIIDPAR 70	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS	Slap 30 4 SWEITLIERLE 11111111111111111111111111111111111	DO EDVALESSNA	WMNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110	ALC III ALC 60 120 INED III INED 120
m165/a165 m165.pep a165 m165.pep	99.7% ide MAEATD MAEATD MAEATD CONTROL ELNYAP	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 GGANGIIDPAR PLGANGIIDPAR 70	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS	Slap 30 4 SWEITLIERLE 11111111111111111111111111111111111	DO EDVALESSNA	WMNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110	ALC III ALC 60 120 INED III INED 120
m165/a165 m165.pep a165 m165.pep	99.7% ide MAEATD MAEATD C ELNYAP ELNYAE	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LIGANGIIDPAF CLGANGIIDPAF 70 130 CKRYDAFKTOKN	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140	30 4 SWEITLIERLE 1111111111 SWEITLIERLE 30 6 SRQFWATLVAE 111111111111111111111111111111111111	DO EDVALESSNA 11111111111111111111111111111111111	WMNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI	ALC III ALC 60 120 INED 111 INED 120 180 OVDF
m165/a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD C ELNYAP ELNYAE	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LIGANGIIDPAF CLGANGIIDPAF 70 130 CKRYDAFKTOKN	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140	30 4 SWEITLIERLE 1111111111 SWEITLIERLE 30 6 SRQFWATLVAE 111111111111111111111111111111111111	DO EDVALESSNA 11111111111111111111111111111111111	WMNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI	ALC III ALC 60 120 INED 111 INED 120 180 OVDF
m165/a165 m165.pep a165 m165.pep	99.7% ide MAEATD MAEATD C ELNYAP ELNYAE	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LGANGIIDPAF LGANGIIDPAF 70 130 QKRYDAFKTQKI	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDR	Slap 30 4 SWEITLIERLE SWEITLIERLE 30 6 SROFWATLVAE SROFWATLVAE 90 1 SROFWATLVAE 90 1 SROFWATLVAE 110 1 SROFWATLVAE	DO EDVALESSNA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WMNAGTGHS AWNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI	ALC III ALC 60 120 INED III INED 120 180 DVDF
m165/a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD C ELNYAP ELNYAE	ntity in 3 10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LIGANGIIDPAF CLGANGIIDPAF 70 130 CKRYDAFKTOKN	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDR	Slap 30 4 SWEITLIERLE SWEITLIERLE 30 4 90 10 SRQFWATLVAE HILLIHI SRQFWATLVAE 90 1 150 1 NKISDWAPLMM	DO EDVALESSNA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WMNAGTGHS AWNNAGTGHS 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI	ALC III ALC 60 120 INED 111 INED 120 180 OVDF
m165/a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDRI	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 1(SRQFWATLVAE(90 1) 150 1 NKISDWAPLMM	DO EDVALESSNA O O O O O O O O O O O O O O O O O O O	WMNNAGTGHS WMNNAGTGHS NAVPHMSLVM NAVPHMSLVM 170 AANYSAEGTI AANYSAEGTI	ALC ALC 60 120 NED 1 NED 120 180 OVDF DVDF 180 240
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA 10 70 LGANGIIDPAF PLGANGIIDPAF 70 130 EKRYDAFKTQKI EKRYDAFKTQKI 130 190	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDR	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 10 SRQFWATLVAE 90 1 INKISDWAPLMM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DO COVALESSNA OF THE PROPERTY	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI AANYSAEGTI 170 230 QUITLRTRFL	ALC
m165/a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 140 LFENMEFSTDR	Slap 30 4 SWEITLIERLE SWEITLIERLE 30 1 SRQFWATLVAE SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 NKISDWAPLMM STON 1 NKISDWAPLMM 150 1 210 2 KRESDGAWVLK	DO EDVALESSNA 11111111111111111111111111111111111	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI AANYSAEGTI 230 QUITLRTRFL	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 140 LFENMEFSTDR	Slap 30 4 SWEITLIERLE SWEITLIERLE 30 1 SRQFWATLVAE SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 NKISDWAPLMM STON 1 NKISDWAPLMM 150 1 210 2 KRESDGAWVLK	DO EDVALESSNA 11111111111111111111111111111111111	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI AANYSAEGTI 230 QUITLRTRFL	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA 10 70 PLGANGIIDPAF 70 130 PKRYDAFKTQKI 130 190 PMVKYLQGKGV	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI 140 200 KTEFNRHVEDI	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 10 SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 SRQFWATLVAE 150 1 NKISDWAPLMM 1111111111 NKISDWAPLMM 150 1 210 2 KRESDGAWVLK 111111111 KRESDGAWVLK	DO EDVALESSNA O O O O O O O O O O O O O O O O O O O	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI AANYSAEGTI 230 QUITLRTRFL	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI LFENMEFSTDRI	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 10 SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 NKISDWAPLMM NKISDWAPLMM NKISDWAPLMM KRESDGAWVLK	DO EDVALESSNA 11111111111111111111111111111111111	WMNNAGTGHS WMNNAGTGHS 50 110 NAVPHMSLVM NAVPHMSLVM 110 170 AANYSAEGTI AANYSAEGTI 230 QUITLRTRFL QUITLRTRFL	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD IIIIII MAEATD ELNYAP IIIIIII HCSYLO GRLTRO GRLTRO	10 VVLVGGGIMSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI 140 200 KTEFNRHVEDI	30 4 SWEITLIERLE 10 SWEITLIERLE 30 6 90 10 GRQFWATLVAE 11 FRQFWATLVAE 90 1 150 1 NKISDWAPLMM NKISDWAPLMM 150 1 210 2 KRESDGAWVLK KRESDGAWVLK 210 2	DO EDVALESSNA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WMNNAGTGHS	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA 10 70 PLGANGIIDPAF PLGANGIIDPAF 70 130 PKRYDAFKTQKI PKRYDAFKTQKI PKRYDAFKTQKI 130 190 PMVKYLQGKGV 190 250 TULOKSGIPEG	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI LFENMEFSTDRI KTEFNRHVEDI	30 4 SWEITLIERLE 11111111111111111111111111111111111	DO EDVALESSNA DO DO EDVALESSNA	WMNNAGTGHS IIIIIIIIII WMNNAGTGHS 50 110 NAVPHMSLVM IIIIIIIIIII NAVPHMSLVM 110 170 AANYSAEGTI IIIIIIIIII AANYSAEGTI 170 230 QUTLRTRFL IIIIIIIIIIII CQLTLRTRFL 230 290 QASVGAPPMS	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA VVLVGGGIMSA 10 70 LGANGIIDPAF PLGANGIIDPAF 70 130 PKRYDAFKTQKI 130 190	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI LFENMEFSTDRI KTEFNRHVEDI 200 260 KKGYGGFPVSGI	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 10 SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 SRQFWATLVAE 111111111111111111111111111111111111	DO EDVALESSNA O O O O O O O O O O O O O O O O O O O	WINNAGTGHS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA VVLVGGGIMSA 10 70 LGANGIIDPAF PLGANGIIDPAF 70 130 PKRYDAFKTQKI 130 190	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI LFENMEFSTDRI KTEFNRHVEDI 200 260 KKGYGGFPVSGI	30 4 SWEITLIERLE SWEITLIERLE 30 6 90 10 SRQFWATLVAE 90 1 SRQFWATLVAE 90 1 SRQFWATLVAE 111111111111111111111111111111111111	DO EDVALESSNA O O O O O O O O O O O O O O O O O O O	WINNAGTGHS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ALC
m165/a165 m165.pep a165 m165.pep a165 m165.pep a165	99.7% ide MAEATD MAEATD CELNYAP ELNYAP HCSYLO	10 VVLVGGGIMSA VVLVGGGIMSA 10 70 PLGANGIIDPAF PLGANGIIDPAF 70 130 PKRYDAFKTQKI PKRYDAFKTQKI PKRYDAFKTQKI 130 190 PMVKYLQGKGV 190 250 TULOKSGIPEG	20 TLGVLLKELEF TLGVLLKELEF 20 80 RALNIAEQFHVS 80 140 LFENMEFSTDRI LFENMEFSTDRI LFENMEFSTDRI KTEFNRHVEDI 200 260 KKGYGGFPVSGI	30 4 SWEITLIERLE SWEITLIERLE 30 6 SWEITLIERLE 30 7 SWEITLIERLE 30 1 SRQFWATLVAE SRQFWATLVAE 90 1 150 1 NKISDWAPLMM NKISDWAPLMM 150 1 210 2 KRESDGAWVLK KRESDGAWVLK 210 2 270 2 JEFFRNSNPETAE	DO EDVALESSNA O O O O O O O O O O O O O O O O O O O	WINNAGTGHS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ALC

```
330
                                         340
                                                 350
                        320
                310
          DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLCAGWANMPLTK
m165.pep
          DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG
a165
                                         340
                                                 350
                        320
                                 330
                310
           ELRKTKEERFASLLEYYPEANPDDWELITAGQRVQIIKKDSEKGGVLQFGTEIVAHADGS
a165
                                         400
                                 390
                         380
                370
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 691>: g165-1.seq

```
1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
    GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
    TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
101
151 AACGCCGgca CGGGGCATTC CGCGCTGTGC GAATTGAACT AtgcgccGCT
201 GGGtgcggac ggcgtcatCA ATCCGGCGCg cgCCCTGAAT ATTGCCGAAC
251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCtggTCGC GGAAGGCAAG
301 TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
351 GAACGAAGAC CACTGCCGTT ACCTGCAAAA ACGCTATGAT GTGTTTAAAA
401 CGCAGAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
     TCCGATTGGG CtccgCTGAT TATGCGCGGC CGGGACGAAA ACCAACCCGT
451
     CGCCGCCAAC TATTCCGCCG AAGGCACGGA TGTCGATTTC GGACGGCTGA
501
     CGCGCCAGAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
     AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
     CANARCOGCO GATACCOGCA ACCOAGACTG GCAGCTCACC CTCCGCACCC
     GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CACTGACCCT GCTGCAAAAA
701
     TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTACCCG TGTCCGGCCT
751
801 GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
     TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
851
901 GACACACGCA ACGTAGACGG CAAACGACAC CTTATGTTCG GTCCTTACGC
951 AGGTTTCCGT TCCAACTTCC TCAAGCAAGG CTCGTTTATG GATTTGCCGC
1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG
1051 AATATGCCGC TGACCAAATA CCTGCTGGGC GAATTGCGTA AAACCAAAGA
1101 AGAACGCTtt gCCTCCCTGC TGgaatacta cccGaggcag acccGACGAc
1151 tggtactcat cacgcaggnc acGCGTcata tcattanata tgactCgaaa
1201 ctgcgcgtgc tgcagttgta cgagattgtg ccaCGCGacg ctcgctcgcg
1251 cattetggag cgtcgcggcg catcacgctn tgcgctgata tccgctgatg
1301 acactgetee gaGCGegeec gtettggaaa gtgtetga
```

This corresponds to the amino acid sequence <SEQ ID 692; ORF 165-1.ng>: g165-1.pep

```
1 MAEATDUVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTCHSALC ELNYAPIGAD GVINPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCRYLQKRYD VFKTQKLFEN MEFSTDRNKI
151 SDWAPLIMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
201 NRHVEDIKRE SDGAWULKTA DTRNPDWQLT LATFFLFLGA GGGGALTLQK
251 SGIPEGKGYG GLPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
261 DTRNVDGKRH LMFGPYAGFR SNFLKQGSFM DLPLSIHMDN LYPMLRAGWA
261 NMPLTKYLLG ELRKYKEERF ASLLEYYPRQ TRRLVLITQX TRHIIXYDSK
261 LRVLQLYEIV PRDARSRILE RRGASRXALI SADDTAPSAP VLESV*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 693>: m165-1.seq

```
1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
51 GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
    TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
151 AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT
201 GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC
    AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCTGGTCGC GGAAGGCAAG
    TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
    GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA
401 CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
    TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT
451
501 CGCCGCCAAC TACTCCGCCG AAGGTACGGA TGTCGATTTC GGACGGCTGA
     CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
551
601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
     CAAAACCGCC GATACCCGCA ACCCCGACGG GCAGCTCACC CTCCGTACCC
651
     GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CGCTGACCCT GCTGCAAAAA
701
     TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTCCCCG TGTCCGGCCT
751
     GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
```

```
851 TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
         GACACACGCA ACGTGGACGG CAAACGCCAC CTTATGTTCG GCCCTTACGC
    901
    951 AGGCTTCCGT TCCAACTTCC TCAAGCAAGG CTCGCTTATG GATTTGCCGC
   1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGTGCGC CGGCTGGGCG
   1051 AATATGCCGC TGACCAAATA CCTGCTGGGC GAATTGCGTA AAACCAAAGA
   1101 AGAACGCTTC GCCTCCCTGC TGGAATACTA CCCCGAGGCA AACCCCGACG
   1151 ACTGGGAACT CATCACCGCA GGGCAACGCG TCCAAATCAT TAAAAAAAGAC
          TCCGAAAAAG GCGGCGTGCT CCAGTTTGGT ACGGAGATTG TCGCCCACGC
    1201
          CGACGGCTCA CTCGCCGCAT TGCTGGGCGC GTCGCCGGGC GCATCGACCG
          CTGTGCCGCT GATGATCCGG CTGATGCACC AATGCTTCCC CGAGCGCGCC
    1251
    1351 CCGTCTTGGG AAGACCGTCT GAAAGAGCTG GTACCGGGTT ACGGCATCAA
    1401 GTTGAACGAA AACCCTGAAA GGGCGGATGA AATTATCGCC TATACCGCGA
    1451 AAGTATTGGA TATTTAA
This corresponds to the amino acid sequence <SEQ ID 694; ORF 165-1>:
       1 MAEATDUVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEQFHVSRQ FWATLVAEGK
      51
          LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTQKLFEN MEFSTDRNKI
     101
     151
```

m165-1.pep

SDWAPLMMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK 201 SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL 251 DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLCAGWA 301 NMPLTKYLLG ELRKTKEERF ASLLEYYPEA NPDDWELITA GQRVQIIKKD 351 SEKGGVLQFG TEIVAHADGS LAALLGASPG ASTAVPLMIR LMHQCFPERA 451 PSWEDRLKEL VPGYGIKLNE NPERADEIIA YTAKVLDI*

89.7% identity in 428 aa overlap m165-1/g165-1

	10	20	30	40	50	60
	··· THE	ATT.CVI.I.K	FLEPSWEITLIE	ERLEDVALES	SSNAWNNAGTG	HSALC
m165-1.pep						11111
g165-1	MAEATDVVLVGGGIMS	ATLGVLLK	ELEPSWEITLI	KTEDAYTE	PENMMMMGIC	1101100
g163-1	10	20	30	40	50	60
					-10	120
	70	80	90	100	110	
m165-1.pep	ELNYAPLGANGIIDPA	ARALNIAE	FHVSROFWATL'	VAEGKLEDN	SEINAVEHMSI	IIIIII Jamed
	ELNYAPEGANGIIDE	[]]]]]]	11111111111	11111111	[[]]]]]]]]	STANDED
g165-1	ELNYAPLGADGVINP	aralniae(FHVSROFWATL	VAEGKLEDN 100	110	120
3	70	80	90	100	110	
			150	160	170	180
	130	140	150			
m165-1.pep	HCSYLOKRYDAFKTO	KLFENMEF	STORNKISDWAP	LMMKGKDEN	LILLII UII	111111
	HCSYLQKKYDAFKIQ HCRYLQKRYDVFKTQ	[TTMPGRDEN	OPVAANYSAE	GTDVDF
g165-1		KLFENMER 140	150	160	170	180
	130	140	130	100		
	100	200	210	220	230	240
	190 GRLTRQMVKYLQGKG	ZUU VYTENDH	VEDIKRESDGAW	VLKTADTR	IPDGQLTLRTR	FLFLGA
m165-1.pep		1111111	11311111111			
	GRLTROMVKYLOGKG	VKTEFNRH	VEDIKRESDGAV	VLKTADTRI	PDWQLTLRTR	FLFLGA
g165-1	190	200	210	220	230	240
	150	200				
	250	260	270	280	290	300
m165-1.pep	COCK MI TOYCCT DE	GKGYGGFF	VSGLFFRNSNPI	etaeqhnak'	VYGQASVGAPE	MSVPHL
wres-r.beb			* 1 1 1 1 1 1 1 1 1 1 1 1			
q165-1	GGGALTLLQKSGIPE	GKGYGGLI	VSGLFFRNSNP	ETAEQHNAK	V I GONS VGAPE	MITTAL
9103-1	250	260	270	280	290	300
					252	360
	310	320	330	340	350	
m165-1.pep	DTRNVDGKRHLMFG	PYAGFRSNI	LKQGSLMDLPL	SIHMDNLYP	MLCAGWANMP	LITITIO
		[]]]]]		111111111	11 1111111	[
g165-1	DTRNVDGKRHLMFG	PYAGFRSNI	LKOGSFMDLPL	SIHMUNLYP	MLKAGWANGE: 350	360
3	310	320	330	340	220	300
				400	410	420
	370	380	390	400		
m165-1.pep	ELRKTKEERFASLL	EYYPEANP	DDWELLTAGORV	:	III: :	:
	- пининий	!!!!: :	111	TITTYVOC-E		
g165-1	ELRKTKEERFASLL	EYYPR-QT	RRLVLITQXTK-	400 4103-1	410	
	370	380	390	400	, 110	
		440	450	460	470	480
	430	440	430	100	•••	· -

474

LAALLGASPGASTAVPLMIRLMHQCFPERAPSWEDRLKELVPGYGIKLNENPERADEIIA m165-1.pep 111 ILERRGASRXALISADDTAPSAPVLESVX q165-1 430 440 420

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 695>: a165-1.seq

ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC 51 TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC 151 AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC 201 251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGTTGGTCGC GGAAGGCAAG TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA 351 CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT 501 CGCCGCCAAC TACTCCGCCG AAGGCACGGA TGTCGATTTC GGACGGCTGA CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
CAAAACCGCC GATACCCGCA ACCCCGACGG GCAGCTCACC CTCCGTACCC GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CGCTGACCCT GCTGCAAAAA 701 TCCGGCATCC CCGAAGGCAA AGGCTACGGT GGCTTTCCCG TGTCCGGCCT 751 GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG 801 TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC 901 GACACACGCA ACGTGGACGG CAAACGCCAC CTTATGTTCG GCCCTTACGC 951 AGGCTTCCGT TCCAACTTCC TCAAGCAAGG CTCACTTATG GATTTGCCGC 1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG 1051 AATATGCCGC TGACCAAATA CCTGCTGGGC GAATTGCGTA AAACCAAAGA 1101 AGAACGCTTC GCCTCCCTGC TGGAATACTA CCCCGAGGCA AACCCCGACG 1151 ACTGGGAACT CATCACCGCA GGGCAACGCG TTCAAATCAT TAAAAAAGAC 1201 TCCGAAAAAG GCGGCGTGTT GCAGTTTGGT ACGGAGATTG TCGCACACGC 1251 CGACGGCTCG CTCGCCGCAT TGCTGGGCGG GTCGCCGGGC GCATCGACCG 1301 CCGTGCCGCT GATGATCCGG CTGATGCACC AATGCTTCCC CGAACGCACC 1351 CCGTCTTGGG AAGGCCGTCT GAAAGAGCTG GTACCGGGTT ACGGCATCAA 1401 GTTGAACGAA AACCCCGAAA GGGCGGATGA AATTATCGCC TATACCGCGA 1451 AAGTGTTGGA TATTTAA

This corresponds to the amino acid sequence <SEQ ID 696; ORF 165-1.a>: a165-1.pep

MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEQFHVSRQ FWATLVAEGK 51 LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTQKLFEN MEFSTDRNKI 101 151 SDWAPLMMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF 201 NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLRAGWA NMPLTKYLLG ELRKTKEERF ASLLEYYPEA NPDDWELITA GQRVQIIKKD SEKGGVLQFG TEIVAHADGS LAALLGASPG ASTAVPLMIR LMHQCFPERT PSWEGRIKEL VPGYGIKINE NPERADEIIA YTAKVLDI*

99.4% identity in 488 aa overlap a165-1/m165-1

G103 1/2000	-					
	10	20	30	40	50	CHSALC
a165-1.pep	MAEATDVVLVGGGIM	111111111	111111111	31111111111	111111111	111111
m165-1	MAEATDVVLVGGGIN	SATLGVLLE 20	ELEPSWEITL 30	IERLEDVALE 40	SSNAWNNAGT. 50	GHSALC 60
			90	100	110	120
a165-1.pep	70 ELNYAPLGANGIID	80 PARALNIAE(PHVSRQFWAT	LVAEGKLEDN	SFINAVPHMS	LVMNED
				11111111111		LVMNED
m165-1	70	80	90	100	110	120
	130	140	150	160	170	180
-165 1 202	HCSYLQKRYDAFKT	OKLFENMEF:	STDRNKISDW <i>I</i>	APLMMRGRDE!	NQPVAANYSAI	EGTDVDF
a165-1.pep		11111111	111111	14 1 1 1 1 1 1 1 1 1	111111111	11111
m165-1	HCSYLQKRYDAFKT	QKLFENMEF.	STDRNKISDW/	APLMMRGRDE	NQPVAANYSA	PELDADE
M103 1	130	140	150	160	170	180
	190	200	210	220	230	240

a165-1.pep	GRLTRQMVKYLQGKGVKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTLRTRFLFLGA
a165-1.pep	250 260 270 280 290 300 GGGALTLLQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL
a165-1.pep	310 320 330 340 350 360 DTRNVDGKRHLMFGPYAGFRSNFLKOGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG
a165-1.pep	370 380 390 400 410 420 ELRKTKEERFASLLEYYPEANPDDWELITAGORVQIIKKDSEKGGVLQFGTEIVAHADGS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a165-1.pep m165-1	430 440 450 460 470 480 LAALLGASPGASTAVPLMIRLMHQCFPERTPSWEGRLKELVPGYGIKLNENPERADEIIA
a165-1.pep	489 YTAKVLDIX YTAKVLDIX
>gi 1736851 p33940] [Es to 490 resi identical t ACCESSION: Score = 4 Identities	YOJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKS INTERESTED ACCESSION Number gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gi 1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct of GE: ECOHU49_33 U00008 (490 aa) but contains 58 additional N-term resi Length = 548 58 bits (1167), Expect = e-128 c = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%)
	EATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 + TDV+L+GGGIMSATLG
=	NYAPLGANGIIDPARALNIAEQFHVSRQFWATLVAEGKLED-NSFINAVPHMSLVMNEDH 121 NY P A+G I +A+ I E F +5RQFWA V G L SFIN VPHMS V ED+ NYTPQNADGSISIEKAVAINEAFQISRQFWAHQVERGVLRTPRSFINTVPHMSFVWGEDN 149
Query: 122	CSYLQKRYDAFKTQKLFENMEFSTDRNKISDWAPLMMRGRDENQPVAANYSAEGTDVDFG 181
	VNFLRARYAALQQSSLFRGMRYSEDHAQIKEWAPLVMEGRDPQQKVAATRTEIGTDVNYG 2U9 BLTROMVKYLOGKG-VKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTXXXXXXXXXX 240
Sbjct: 210	+TRQ++ LQ K + + V +KR D W + AD +N Q EITRQLIASLQKKSNFSLQLSSEVRALKRNDDNTWTVTVADLKNGTAQ-NIRAKFVFIGA 268
=	XXXXXXXQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPH+ GGAALKLLQESGIPEAKDYAGFPVGGQFLVSENPDVVNHHLAKVYGKASVGAPPMSVPHI 328
Query: 301	DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG 360 DTR +DGKR ++FGP+A F + FLK GSL DL S N+ PM+ G N L KYL+ DTRVLDGKRVVLFGPFATFSTKFLKNGSLWDLMSSTTTSNVMPMMHVGLDNFDLVKYLVS 388
Query: 361	ELRKTKEERFASLLEYYPEANPDDWELITAGQRVQIIKKDSEKGGVLQFGTEIVXXXXXX 420
•	QVMLSEEDRFEALKEYYPQAKKEDWRLWQAGQRVQIIKRDAEKGGVLRLGTEVVSDQQGT 448 XXXXXXXXXXXXXXVPLMIRLMHQCFPERTPSWEGRLKELVPGYGIKLNENPERADEI 478

```
P+M+ L+ + F +R +P W+ LK +VP YG KLN + · +
Sbjct: 449 IAALLGASPGASTAAPIMLNLLEKVFGDRVSSPQWQATLKAIVPSYGRKLNGDVAATERE 508
Query: 479 IAYTAKVLDI 488
          + YT++VL +
Sbjct: 509 LQYTSEVLGL 518
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 697>:
     g204.seq
               atggcggcgg cggaaataaa acgcccctc gctgtcgatt tccagcacat
           51 agcgtccgtt ctgcacggcg gcatagccgc ttttgcctgc ctgatagggt
           101 tgcagggcgg aatgcgaaat caggtaatca gtcagtttgc cgccgtcttc
           151 ggcgatattg cccaccagtt tggcaaacaa ggtatggcac acgccgtttt
           201 ccgcccagcc cgaaggcgcg tcctttccgt cggtttccat acatttgccg
           251 acgacggett ccaagtegtt gggatgettt ccggtcagec ggacggegtt
           301 ttgttccggc aagcetttaa tcggataact gatttgtttt ttgccgtcgt
           351 tggttttgcc ttcgctactt tgtcccaaag ccaaaccggc aatcgccgta
           401 ttgtcgatgt atttgacttt gaaaaccggt ttcggcgcgc tttgtgccgc
           451 attttgcggc tgttccgccg tattttcgga tttgccgcag gcggcaagca
           501 gcaggcagcc gcccaacacg gcaaaaggta ttttcagcat tccgcactcc
                tgatggtttc aaaatgccgt ctgaaatgcc gtctgaaacg tggcaggcgg
           601 aggttcggac ggcattgggt ttatttcaac gggcggatgc cgaccgcatc
           651 gegtaettta tecaacaatt egegegette tittgegeget tittgegege
           701 ctgcctgcaa aatctcttcg atttgcgaag gattagaggt caatgcgttg
           751 tag
This corresponds to the amino acid sequence <SEQ ID 698; ORF 204.ng>:
      g204.pep
             1 MAAAEIKRPL AVDFQHIASV LHGGIAAFAC LIGLQGGMRN QVISQFAAVF
            51 GDIAHQFGKQ GMAHAVFRPA RRRVLSVGFH TFADDGFQVV GMLSGQPDGV
           101 LFRQAFNRIT DLFFAVVGFA FATLSQSQTG NRRIVDVFDF ENRFRRALCR
           151 ILRLFRRIFG FAAGGKQQAA AQHGKRYFQH SALLMVSKCR LKCRLKRGRR
           201 RFGRHWYYFN GRMPTASRTL SNNSRASLRA FCAPACKISS ICEGLEVNAL
           251 *
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 699>:
      m204.seq
             1 ATGGCGGCGG CGGAAATAAA ACGCCCCTTC GCTGTCGATT TCCAGCACAT
            51 AGCGTCCGTT CTGCACGGCG GCATAGCCGC TTTTGCCTGC CTGATAGGGT
           101 TGCAGGGCGG CATGCGAAAC TAGGTAATCC GTCAGTTTGC CGCCGTCTTC
           151 GGCGATATTG CCCACCAGTT TGGCAAACAA GGTATGGCAC ACGCCGTTTT
           201 CTGCCCAACC TGCCGGACTG TCCTTATCAT CGGTTTCCAT ACATTTGCCG
           251 CTGACGGCTT CCAAGTCGCC GGGATGCTTG CCGATCAGTC GGATAACATT
            301 TTGTTCCGGC AAGCCTTTAA TCGGATAACT GATTTGTTTT TTGCCGTCGT
            351 TGGTTTTGCC TTCGCTGCTT TGTCCCAAAT CCAAACCGGC AATCGCCGTA
            401 TTGTCGATAT ATATGACTTT GAAAACCGGT TTCGGCGCGC TTTGTACCGC
            451 GTTTTGCGGC TGTACCGCCG TATTTWCGGA TTTGCCGCaC GGCaArGCAG
            501 CAGGCAGCCG CCCAATACGG CAAAATAWGT WTTCAGCATT CCACAYTCCT
            551 GATGGTTTCA AAATGCCGTC TGAAACGCGG CAGGCGGAGG TTCGGACGGC
            601 ATCGGGTTCA TTTCAACGGG CGGATGCCGA CCGCATCGGT ACTTTGTCCA
            651 ATAATTCGCG TGCTTCTTTA CGCGCTTTCG CCGCGCCTGC CTGCAAAATC
            701 TCTTCGATTT GCGAAGGGTC GGCGGTCAGC TCGTTGTAG
 This corresponds to the amino acid sequence <SEQ ID 700; ORF 204>:
       m204.pep
              1 MAAAEIKRPF AVDFQHIASV LHGGIAAFAC LIGLQGGMRN *VIRQFAAVF
             51 GDIAHQFGKQ GMAHAVFCPT CRTVLIIGFH TFAADGFQVA GMLADQSDNI
            101 LFRQAFNRIT DLFFAVVGFA FAALSQIQTG NRRIVDIYDF ENRFRRALYR
            151 VLRLYRRIXG FAATAXQQAA AQYGKXXXQH STXLMVSKCR LKRGRRRFGR
201 HRVHFNGRMP TASGTLSNNS RASLRAFAAP ACKISSICEG SAVSSL*
  Computer analysis of this amino acid sequence gave the following results:
```

Homology with a predicted ORF from N. gonorrhoeae
ORF 204 shows 82.0% identity over a 250 aa overlap with a predicted ORF (ORF 204.ng) from N. gonorrhoeae: m204/g204

	10	20	30	40	50	60
	MAAAEIKRPFAVDFO	HIASVLHGG	IAAFACLIGL	OGGMRNXVIR	QFAAVFGDIA	HQFGKQ
m204.pep	111111111111111		1111111111	1111111111	11111111111	111111
	MAAAEIKRPLAVDF(HILLIIII	TAAFACLIGL	OGGMRNOVIS	OFAAVFGDIA	HOFGKO
g204	MAAAEIRRPHAVDE	20 20	30	40	50	60
	10	20	50			
	70	80	90	100	110	120
	GMAHAVFCPTCRTVI	TTCEUTENN		DOSDNILFRO	AFNRITDLF	AVVGFA
m204.pep			: :	1 ::		111111
		: <u> </u>	11111:111:		ין וווווווווווווו זק.זרוידים אים א	TANNOFA
g204	GMAHAVFRPARRRVI			GOSDGATEK	110	120
_	70	80	90	100	110	120
	130	140	150	160	170	180
m204.pep	FAALSQIQTGNRRI	VDIYDFENRE	RRALYRVLRL	YRRIXGFAA.	YOAAAQQXAT	3KXXXOH
mzor.pop	11.111 111111	11::111111	1111 1:111	:111 1111	:	H H
-204	FATLSQSQTGNRRI	VDVFDFENRE	RRALCRILRL	FRRIFGFAA	GKQQAAAQH(3KRYFQH
g204	130	140	150	160	170	180
	250					
	190	200	210			
	STXLMVSKCRLK		CHRVHFNGRMF	TASGTLSNN	SRASLRAFAA	PACKISS
m204.pep		1111111		111 11111	HILLIAN I	1111111
	: SALLMVSKCRLKCR	111111		יוון ווון איני מידים אידים	SPAST RAFCA	PACKISS
g204			210	220	230	240
	190	200	210	220	230	
	240					
m204.pep	ICEGSAVSSLX					
	[[]]					
g204	ICEGLEVNAL					
3-4-	250					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 701>:

· · · F ·		•			
04.seq					~~~~ ~~~ ~~
1	ATGGCGGCGG	CGGAAATAAA	ACGCCCCCTC	GCTGTCGATT	TCCAGCACAT
51	AGCGTCCGTT	CTGCACGGCG	GCATAGCCGC	TTTTGCCTGC	CTGATAGGGT
101	TGCAGGGCGG	AATGCGAAAT	CAGGTAATCC	GTCAGTTTGC	CGCCGTCTTC
151	GGCGATATTG	CCCACCAGTT	TGGCAAACAA	GGTATGGCAC	ACGCCGTTTG
201	CCGCCCAGCC	CGAAGGCGCG	CCCTTTCCGT	CGGTTTCCAT	ACATTTGCCG
251	ACGACGGCTT	CCAAGTCGTT	GGGATGCTTG	CCGGTCAGCC	GGACGACGTT
301	TTGTTCCGGC	AAGCCTTT		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
351				• • • • • • • • •	
401			• • • • • • • •	• • • • • • • • •	• • • • • • • • • •
451				• • • • • • • • • •	• • • • • • • • • • •
501			• • • • • • • • •	• • • • • • • • •	
551				AAGAG	GTTCGGACGG
601	CATTGGGTTT	ATTTCAACGG	GCGGATACCG	ACCGCATCAC	GTACTTTGCC
651		CGTGCTTCTT			GCCTGCAAAA
701	TCTCTTCGAT	TTGCGAAGGG	TCGGCGGTCA	GCTCGTTGTA	G

This corresponds to the amino acid sequence <SEQ ID 702; ORF 204.a>: a204.p

pep					
1	MAAAEIKRPL	AVDFQHIASV	LHGGIAAFAC	<u>LIG</u> LQGGMRN	QVIRQFAAVE
51	GDIAHQFGKQ	GMAHAVCRPA	RRRALSVGFH	TFADDGFQVV	GMLAGQPDDV
101	LFRQAF			• • • • • • • • • •	
151 201	HWVYFNGRIP	TASRTLPNNS	RASLRAFCAP	ACKISSICEG	KRFGR SAVSSL*

```
m204/a204 54.5% identity in 246 aa overlap
                MAAAEIKRPFAVDFQHIASVLHGGIAAFACLIGLQGGMRNXVIRQFAAVFGDIAHQFGKQ
     m204.pep
                 ининалининининининини
                MAAAEIKRPLAVDFQHIASVLHGGIAAFACLIGLQGGMRNQVIRQFAAVFGDIAHQFGKQ
     a204
                                         30
                                                  40
                                20
                                         90
                                                 100
                        70
                 GMAHAVFCPTCRTVLIIGFHTFAADGFQVAGMLADQSDNILFRQAFNRITDLFFAVVGFA
     m204.pep
                 mm 1: 1:1:0:000 mü:00 î 6::ui.u
                 GMAHAVCRPARRALSVGFHTFADDGFQVVGMLAGQPDDVLFRQAF-
     a204
                                                 100
                                80
                        70
                                                 160
                                                          170
                                                                   180
                                        150
                                140
                       130
                 FAALSQIQTGNRRIVDIYDFENRFRRALYRVLRLYRRIXGFAATAXQQAAAQYGKXXXQH
     m204.pep
     a204
                                                 220
                                        210
                       190
                                200
                 STXLMVSKCRLKRGRRRFGRHRVHFNGRMPTASGTLSNNSRASLRAFAAPACKISSICEG
     m204.pep
                            a204
                                                         140
                                                130
                               110
                                       120
     m204.pep
                 SAVSSLX
                 HHHHH
                 SAVSSLX
      a204
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 703>:
      g205.seq
                atgctgaaaa taccttttgc cgtgttgggc ggctgcctgc tgcttgccgc
             1
                ctgcggcaaa tccgaaaata cggcggaaca gccgcaaaat gcggcacaaa
            51
                gcgcgccgaa accggttttc aaagtcaaat acatcgacaa tacggcgatt
           101
           151 gccggtttgg ctttgggaca aagtagcgaa ggcaaaacca acgacggcaa
           201 aaaacaaatc agttatccga ttaaaggctt gccggaacaa aacgccgtcc
                ggctgaccgg aaagcatccc aacgacttgg aagccgtcgt cggcaaatgt
           251
           301 atggaaaccg acggaaagga cgcgccttcg ggctgggcgg aaaacggcgt
                gtgccatacc ttgtttgcca aactggtggg caatatcgcc gaagacggcg
           401 gcaaactgac tgattacctg atttcgcatt ccgccctgca accctatcag
           451 gcaggcaaaa gcggctatgc cgccgtgcag aacggacgct atgtgctgga
           501 aatcgacage gagggggggt tttattteeg cegeegecat tattga
 This corresponds to the amino acid sequence <SEQ ID 704; ORF 205.ng>:
      g205.pep
                MLKIPFAVLG GCLLLAACGK SENTAEQPQN AAQSAPKPVF KVKYIDNTAI
             1
                AGLALGQSSE GKTNDGKKQI SYPIKGLPEQ NAVRLTGKHP NDLEAVVGKC
            51
           101 METDGKDAPS GWAENGVCHT LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ
           151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 705>:
      m205.seq
                ATGCTGAAWA CWTYTTTTGC CGTATTGGGC GGCTGCCTGC TGCYTLGCCG
             51 tGCGGCAAAT CCGWAAATAC GGCGGTACAG CCGCAAAACG CGGTACAAAG
            101 CGCGCCGAAA CCGGTTTTCA AAGTCATATA TATCGACAAT ACGGCGATTG
            151 CCGGTTTGGA TTTGGGACAA AGCAGCGAAG GCAAAACCAA CGACGGCAAA
            201 AAACAAATCA GTTATCCGAT TAAAGGCTTG CCGGAACAAA ATGTTATCCG
            251 ACTGATCGGC AAGCATCCCG GCGACTTGGA AGCCGTCAGC GGCAAATGTA
            301 TGGAAACCGA TGATAAGGAC AGTCCGGCAG GTTGGGCAGA AAACGGCGTG
            351 TGCCATACCT TGTTTGCCAA ACTGGTGGGC AATATCGCCG AAGACGGCGG
            401 CAAACTGACG GATTACCTAG TTTCGCATGC CGCCCTGCAA CCCTATCAGG
            451 CAGGCAAAAG CGGCTATGCC GCCGTGCAGA ACGGACGCTA TGTGCTGGAA
            501 ATCGACAGCG AAGGGGCGTT TTATTTCCGC CGCCGCCATT ATTGA
```

```
This corresponds to the amino acid sequence <SEQ ID 706; ORF 205>:
       m205.pep
                 MLXTXFAVLG GCLLXCRCGK SXNTAVQPQN AVQSAPKPVF KVIYIDNTAI
                 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP GDLEAVSGKC
             51
            101 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL VSHAALQPYQ
            151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N. gonorrhoeae
ORF 205 shows 88.4% identity over a 181 aa overlap with a predicted ORF (ORF 205.ng)
   from N. gonorrhoeae:
        m205/g205
                                                                  50
                                                                           60
                                                        40
                                               30
                                     20
                            10
                    MLXTXFAVLGGCLLXCRCGKSXNTAVQPQNAVQSAPKPVFKVIYIDNTAIAGLDLGQSSE
        m205.pep
                                     111111111
                    MLKIPFAVLGGCLLLAACGKSENTAEQPQNAAQSAPKPVFKVKYIDNTAIAGLALGQSSE
        g205
                                                                  50
                            10
                                               30
                                                        40
                                                                           120
                                               90
                                                        100
                                                                 110
                            70
                                      80
                    GKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKCMETDDKDSPAGWAENGVCHT
        m205.pep
                     GKTNDGKKQISYPIKGLPEQNAVRLTGKHPNDLEAVVGKCMETDGKDAPSGWAENGVCHT
        g205
                                                                 110
                                                        100
                                      80
                                               90
                            70
                                                                 170
                                                                           180
                                                        160
                                     140
                                              150
                           130
                     LFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH
        m205.pep
                     LFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH
        g205
                                              150
                                                                 170
                                                        160
                           130
                                     140
                     YX
        m205.pep
        g205
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 707>:
                  (partial)
         a205.seq
                  TCCGAACCTC TTAAAGGCTT GCCGGAACAA AACGTCGTCC GGCTGACCGG
                  CAAGCATCCC AACGACTTGG AAGCCGTCGT CGGCAAATGT ATGGAAACCG
                  ACGGAAAGGG CGCGCCTTCG GGCTGGGCGG CAAACGGCGT GTGCCATACC
              151 TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG GCAAACTGAC
                  GGATTACCTG ATTTCGCATT CCGCCCTGCA ACCCTATCAG GCAGGCAAAA
              201
              251 GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA AATCGACAGC
              301 GAGGGGCGT TTTATTTCCG CCGCCGCCAT TATTGA
    This corresponds to the amino acid sequence <SEQ ID 708; ORF 205.a>:
                  (partial)
         a205.pep
                  SEPLKGLPEQ NVVRLTGKHP NDLEAVVGKC METDGKGAPS GWAANGVCHT
                  LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ AGKSGYAAVQ NGRYVLEIDS
              101 EGAFYFRRRH Y*
    m205/a205 88.3% identity in 111 aa overlap
                                                                   90
                                                                            100
                                                 70
                                       60
                              50
                      KVIYIDNTAIAGLDLGQSSEGKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKC
         m205.pep
                                                   1 1:111111111:11 1111:11111 111
                                                   SEPLKGLPEQNVVRLTGKHPNDLEAVVGKC
          a205
                                                                             30
                                                                   20
                                                          10
                                                130
                                                         140
                                                                   150
                                      120
                             110
                      METDDKDSPAGWAENGVCHTLFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQ
         m205.pep
```

```
METDGKGAPSGWAANGVCHTLFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQ
a205
                          60
                    50
             40
             170
        NGRYVLEIDSEGAFYFRRRHYX
m205.pep
        NGRYVLEIDSEGAFYFRRRHYX
a205
             100
                   110
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 709>: g205-1.seq (partial)

```
1 ATGCTGAAAA TACCTTTTGC CGTGTTGGGC GGCTGCCTGC TGCTTGCCGC
51 CTGCGGCAAA TCCGAAAATA CGGCGGAACA GCCGCAAAAT GCGGCACAAA
101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ACATCGACAA TACGGCGATT
151 GCCGGTTTGG CTTTGGGACA AAGTAGCGAA GGCAAAACCA ACGACGGCAA
201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA AACGCCGTCC
251 GGCTGACCGG AAAGCATCCC AACGACTTGG AAGCCGTCGT CGGCAAATGT
301 ATGGAAACCG ACGGAAAGGA CGCGCCTTCG GGCTGGGCGG AAAACGGCGT
351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG
401 GCAAACTGAC TGATTACCTG ATTTCGCATT CCGCCCTGCA ACCCTATCAG
451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA
501 AATCGACAGC GAGGGGGCGT TTTA
```

This corresponds to the amino acid sequence <SEQ ID 710; ORF 205-1.ng>: g205-1.pep (partial).

- 1 MLKIPFAVLG GCLLLAACGK SENTAEQPQN AAQSAPKPVF KVKYIDNTAI
- 51 AGLALGQSSE GKTNDGKKQI SYPIKGLPEQ NAVRLTGKHP NDLEAVVGKC
- 101 METDGKDAPS GWAENGVCHT LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ
- 151 AGKSGYAAVQ NGRYVLEIDS EGAF

-- 177

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 711>: m205-1.seq..

```
1 ATGCTGAAAA CATCTTTTGC CGTATTGGGC GGCTGCCTGC TGCTTGCCGC
 51 CTGCGGCAAA TCCGAAAATA CGGCGGAACA GCCGCAAAAC GCGGTACAAA
101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ATATCGACAA TACGGCGATT
151 GCCGGTTTGG ATTTGGGACA AAGCAGCGAA GGCAAAACCA ACGACGGCAA
201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA AATGTTATCC
251 GACTGATCGG CAAGCATCCC GGCGACTTGG AAGCCGTCAG CGGCAAATGT
301 ATGGAAACCG ATGATAAGGA CAGTCCGGCA GGTTGGGCAG AAAACGGCGT
351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG
401 GCAAACTGAC GGATTACCTA GTTTCGCATG CCGCCCTGCA ACCCTATCAG
451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA
501 AATCGACAGC GAAGGGGCGT TTTATTTCCG CCGCCGCCAT TATTGA
```

This corresponds to the amino acid sequence <SEQ ID 712; ORF 205-1>: m205-1.pep

- 1 MLKTSFAVLG GCLLLAACGK SENTAEQPQN AVQSAPKPVF KVKYIDNTAI
- 51 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP GDLEAVSGKC
- 101 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL VSHAALQPYQ
- 151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*

m205-1/g205-1 92.0% identity in 174 aa overlap

	10	20	30	40	50	60
g205-1.pep	MLKIPFAVLGGCI	111111111111111	1111111:11	. 1 1 1 1 1 1 1	11111111	111111
m205-1	MLKTSFAVLGGC	LLAACGKSENT	AEQPQNAVQ	SAPKPVFKVK	/IDNTAIAGLI	TRECESSE
	10	20	30	40	50	60
	70	80	90	100	110	120
g205-1.pep	GKTNDGKKQISY	PIKGLPEONAVE	RLTGKHPNDL	EAVVGKCMETI	ogkdapsgwai	ENGVCHT
g205-1.pep	1111111111111	!!!!!!!!!!::!		{]	
m205-1	GKTNDGKKQISY	PIKGLPEQNVII	RLIGKHPGDL	EAVSGKCMET	DDKDSPAGWAI	ENGVCHT

481

```
120
                                     90
                                             100
                                                      110
                   70
                                                      170
                                             160
                                    150
                           140
                 130
           LFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNGRYVLEIDSEGAF
g205-1.pep
           LFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH
m205-1
                                             160
                           140
                                    150
                  130
           YX.
m205-1
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 713>:
a205-1.seq (partial)
      1 CCTCTTAAAG GCTTGCCGGA ACAAAACGTC GTCCGGCTGA CCGGCAAGCA
     51 TCCCAACGAC TTGGAAGCCG TCGTCGGCAA ATGTATGGAA ACCGACGGAA
    101 AGGGCGCGCC TTCGGGCTGG GCGGCAAACG GCGTGTGCCA TACCTTGTTT
    151 GCCAAACTGG TGGGCAATAT CGCCGAAGAC GGCGGCAAAC TGACGGATTA
    201 CCTGATTTCG CATTCCGCCC TGCAACCCTA TCAGGCAGGC AAAAGCGGCT
    251 ATGCCGCCGT GCAGAACGGA CGCTATGTGC TGGAAATCGA CAGCGAGGGG
    301 GCGTTTTATT TCCGCCGCCG CCATTATTGA
This corresponds to the amino acid sequence <SEQ ID 714; ORF 205-1.a>:
a205-1.pep (partial)
      1 PLKGLPEQNV VRLTGKHPND LEAVVGKCME TDGKGAPSGW AANGVCHTLF
     51 AKLVGNIAED GGKLTDYLIS HSALQPYQAG KSGYAAVQNG RYVLEIDSEG
    101 AFYFRRRHY*
                  89.0% identity in 109 aa overlap
m205-1/a205-1
                                                      90
                                    70
                                             80
                 50
            {\tt KYIDNTAIAGLDLGQSSEGKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKCME}
m205-1.pep
                                       4:11144411:11 4441:1111 44111
                                        PLKGLPEONVVRLTGKHPNDLEAVVGKCME
a205-1
                                                       20
                                               10
                                                              160
                                            140
                                                     150
                                   130
                          120
                 110
            TDDKDSPAGWAENGVCHTLFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNG
m205-1.pep
            TDGKGAPSGWAANGVCHTLFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNG
a205-1
                                      60
                                               70
                                                        80
                    40
                             50
                 170
            RYVLEIDSEGAFYFRRRHYX
 m205-1.pep
             RYVLEIDSEGAFYFRRRHYX
 a205-1
                   100
                            110
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 715>:
      g206.seq
                atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct
             1
             51 cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac
            101 agacagteeg geaaateeaa geegteegea teageeacat eggeegeaca
                caaggetege aggaacteat getecacage eteggactea teggeacgee
            151
                ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca
            201
            251 tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc
            301 gecegegaca tggeggegge aageegeaaa ateecegaca geegeeteaa
                ggeeggegac ategtattet teaacacegg eggegeacae egetaeteae
            401 acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc
                 ggcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa
                ctaccttgga gcgcatacgt tttttacaga atga
 This corresponds to the amino acid sequence <SEQ ID 716; ORF 206.ng>:
       g206.pep
```

MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT

```
51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
                     101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
                     151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 717>:
           m206.seq
                                ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
                        51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
                      101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
                                CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
                      151
                      201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
                      251 TGATTCAATT CGTTTACAAr AACGCCCTCA ACGTCAAGCT GCCGCGCACC
                      301 GCCCGCGACA TGGCGGCGGC AAGCCGBAAA ATCCCCGACA GCCGCYTCAA
                      351 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
                       401 ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
                       451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
                       501 CTACCTCGGC GCACATACTT TTTTTACAGA ATGA
 This corresponds to the amino acid sequence <SEQ ID 718; ORF 206>:
            m206.pep..
                           1 MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
                         51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
                       101 ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
                       151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng)
  from N. gonorrhoeae:
             m206/g206
                                                                                                                         40
                                                                                                                                                                   60
                                                                               20
                                                                                                    30
                                                         10
                                        MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
             m206.pep
                                         11 | 11111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111
                                         MFSPDKTLFLCLGALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIGRTQGSQELMLHS
             g206
                                                                                                                                             50
                                                                                                                         40
                                                                                                    30
                                                          10
                                                                               20
                                                                                                                      100
                                                                               80
                                                                                                    90
                                         LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD
              m206.pep
                                         ուսանություն անականություն անականություն ան
                                         LGLIGTPYKWGGSSTATGFDCSGMIQLVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD
              g206
                                                                                                                       100
                                                                                80
                                                          70
```

150 160 140 130 LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX m206.pep IVFFNTGGAHRYSHVGLYIGNGEFIHAPGSGKTIKTEKLSTPFYAKNYLGAHTFFTE g206 160 140 150 130

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 719>:

```
a206.seq
         ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
       1
          CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
      51
     101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
         CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
          CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
          TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC
     251
     301 GCCCGCGACA TGGCGGCGGC AAGCCGCAAA ATCCCCGACA GCCGCCTTAA
     351 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
          ACGTCGGACT CTATATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
     401
          GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
     451
     501 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA
```

```
This corresponds to the amino acid sequence <SEQ ID 720; ORF 206.a>:
     a206.pep
              MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
              QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
           51
         101 ARDMAAASRK IPDSRLKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
          151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
m206/a206 99.4% identity in 177 aa overlap
                                                               50
                                                   . .40
                                   20
                         10
                 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
     m206.pep
                 រីពីពេលមេពេលមេពេលមើលពីលើពេលមេពេលបែល
                 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
     a206
                                   20
                                            30
                         10
                                                                        120
                                                     100
                                                              110
                                            90
                                   80
                         70
                  LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD
     m206.pep
                  LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD
     a206
                                                              110
                                                     100
                                            90
                         70
                                   80
                                            150
                                                     160
                                  140
                        130
                  LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX
     m206.pep
                  LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX
     a206
                                                               170
                                            150
                                                     160
                                  140
                         130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 721>:
      g209.seq
               atgctgcggc atttaggaaa cgacttcgcc ttgggcgcgt tgtttttcga
               tgctgcggtt gatgtgccac tgctgggcga tggtcaggag gttgttgacc
           51
               acccagtaga gaaccaaacc ggcagggaag aagaagaaca tgacggagaa
           101
           151 aaccaacggc atgattttca tcattttcgc ctgcatcggg tcggtcggcg
           201 gcgggttcag ataggtttgg gcgaacatcg ttgccgccat aatgatgggc
               aggatgtagt aggggtcggc gcggctgagg tcggtaatcc agcccagcca
           251
               aggtgcctgg cgcaattcta cggaggcgaa caatgcccag tacaagccga
           301
               tgaagacggg gatttgcaac agcataggca gacagccgcc cagcgggttg
           401 atttcctcgt cttcgaaaag ctgcatcatc gcttgctgtt gcgccatacg
               gtcgtcgccg tatttttctt tgatggtctg cagttcgggt gcggcggcac
           451
           501 gcattttcgc catcgaacgg taggaggcgt tggtcaatgg atacagtacg
           551 gctttgacga tgatggtcaa aacgacgatt gcccagcccc agttgccgat
               aatgttgtgc agttggttca ggagccagaa gagcggcgat gcgaaccagt
           601
           651 gtactttacc gtagtctttt gccagttgca ggttgtcggc gatgtttgcg
           701 ataacggatg tggtttgcgg accggcatac aggttgaccg ccattttcgg
           751 ttttggcccc cgggttggga tagcggttaa
 This corresponds to the amino acid sequence <SEQ ID 722; ORF 209.ng>:
      g209.pep
             1 MLRHLGNDFA LGALFFDAAV DVPLLGDGQE VVDHPVENQT GREEEEHDGE
            51 NQRHDFHHFR LHRVGRRRVQ IGLGEHRCRH NDGQDVVGVG AAEVGNPAQP
           101 RCLAQFYGGE QCPVQADEDG DLQQHRQTAA QRVDFLVFEK LHHRLLLRHT
                VVAVFFFDGL QFGCGGTHFR HRTVGGVGQW IQYGFDDDGQ NDDCPAPVAD
           151
           201 NVVQLVQEPE ERRCEPVYFT VVFCQLQVVG DVCDNGCGLR TGIQVDRHFR
           251 FWPPGWDSG*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 723>:
      m209.seq
                ATGCTGCGGC ATTTAGGAAA CGACTTCGCC TTGGGGCGTT GTTTTTCGAT
             1
                GCTGCGGTTG ATGTGCCATT GCTGGGCGAT GGTCAGGAGG TTGTTGACTA
            51
           101 CCCAGTACAA TACCAGACCG GCAGGGAAGA AGAAGAACAT GACGGAGAAA
           151 ACCAACGGCA TGATTTTCAT CATTTTCGCC TGCATCGGGT CGGTCGGCGG
                CGGGTTCAGA TAAGTTTGGG CGAACATCGT TGCCGCCATA ATGATGGGCA
            201
```

251 GGATGTAGTA GGGGTCGGCG CGGCTGAGGT CGGTAATCCA ACCCAGCCAA

```
301 GGTGCCTGGC GCAATTCTAC GGAGGCGAAC AATGCCCAAT ACAATCCGAT
351 GAAGACGGGG ATTTGCAACA GCATAGGCAG GCAGCCGCCC AGCGGGTTGA
401 TTTTCTCGTC TGTGTAAAGC TGCATCATCG CCTGTTGTTG CGCCATACGG
451 TCGTCGCCGT ATTTCTCTTT GATGGCTTGC AGTTTGGGTG CGGCGGCACG
501 CATTTTCGCC ATAGAGCGGT AAGAGGCGTT GGTCAATGGA TACAGTACGG
551 CTTTGACGAT GATGGTTAAA ACGATAATCG CCCAGCCCCA GTTGCCGATG
601 ATGTTGTGCA GTTGGTTCAG GAGCCAGAAG AGCGGGGAGG CGAACCAGTG
TACTTTGCCG TAGTCTTTGG CCAGTTGCAG GTTGTCGGCG ATGTTTGCGA
TGACGGATGT GGTCTGCGGG CCGCGTAGA GGTTGATGGA GGCTTCGGTT
TCGCGCCGTT TTGGATGGCG GCTAAAGGCA CGCTGACGCT GGTGCTGTAC
 801 AGCTTGTCGT TGCGGCGTTT GATGTCGATG TTGCACTCGC CTGCGGCGCA
 AACGCTTTGT CTGCCTTTAG GTTGGAGAAT CCAGGTGGAC ATGAAGTGGT
901 GTTCAATCAT GCCGAGCCAG CCGGTCGGGG TTTTGCGGAT GTATTCGGCC
 951 TCGGATTTGC CGGATTTGGC ATCGTCGTCC AAGTCGGAAA AGCTGACTTT
1001 TTGGAAGTTG CCTTCAGGGG TATAA
```

This corresponds to the amino acid sequence <SEQ ID 724; ORF 209>:

m209.pep

MLRHLGNDFA LGALFFDAAV DVPLLGDGQE VVDYPVQYQT GREEEEHDGE 51 NORHDFHHFR LHRVGRRRVQ ISLGEHRCRH NDGQDVVGVG AAEVGNPTQP 101 RCLAQFYGGE QCPIQSDEDG DLQQHRQAAA QRVDFLVCVK LHHRLLLRHT

151 VVAVFLFDGL QFGCGGTHFR HRAVRGVGQW IQYGFDDDG* NDNRPAPVAD 201 DVVQLVQEPE ERGGEPVYFA VVFGQLQVVG DVCDDGCGLR AGVEVDGGFG

251 FAPFWMAAKG TLTLVLYSLS LRRLMSMLHS PAAQTLCLPL GWRIQVDMKW

301 CSIMPSOPVG VLRMYSASDL PDLASSSKSE KLTFWKLPSG V*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 209 shows 88.5% identity over a 253 aa overlap with a predicted ORF (ORF 209.ng) from N. gonorrhoeae:

m209/g209

m209.pep	10 MLRHLGNDFALGALF MLRHLGNDFALGALF 10	1111111111	141111111:	11:	[
m209.pep	70 LHRVGRRRVQISLGE LHRVGRRRVQIGLGE 70	3111111111	1111111111	111:11111		1:1111
m209.pep g209	130 DLQQHRQAAAQRVDE : DLQQHRQTAAQRVDE 130	.11 11111	11111111111	1:1111111	11111111:1	11111
m209.pep	190 IQYGFDDDGXNDNRI IQYGFDDDGQNDDC: 190	111111:111	11111111	11111:11	11111111	:
m209.pep g209	250 AGVEVDGGFGF-AP : :: TGIQVDRHFRFWPP 250	1	270 TLVLYSLSLRI	280 RLMSMLHSPAF	290 AQTLCLPLGWF	299 RIQVDMK

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 725>: a209.seq

ATGCTGCGGC ATTTAGGAAA CGACTTCGCC TTGGGCGCGT TGTTTTTCGA

	51	TGCTGCGGTT	GATGTGCCAT	TGCTGGGCGA	TGGTCAGGAG	GTTGTTGATC	
	101	ACCCAGTACA	ATACCAGACC	GGCAGGGAAG	AAGAAGAACA	TGACGGAGAA	
	151	AACCAAAGGC	ATGATTTTCA	TCATTTTCGC	CTGCATCGGG	TCGGTCGGCG	
	201	GCGGGTTCAG	ATAGGTTTGG	GCGAACATCG	TTGCCGCCAT	AATGATGGGC	
	251	AGGATGTAGT	AGGGGTCGGC	GCGGCTGAGG	TCGGTAATCC	TACABTCCA	
	301	AGGTGCCTGG TGAAGACGGG	CGCAATTCTA	DCCAMA CCCA	CAATGCCCAA	CACCGGGTTG	
	351	ATTTTCTCGT	CECTCEAN	CTCCATCATC	CCTTCTTCCT	GCGCCATACG	
	401	GTCGTCGCCG	TATTOTAMAG	TCATCCCTTC	CAGTTTGGGC	GCGGCGGCAC	
	451 501	GCATTTTCGC	CATCCAACCC	TANGAGGGGT	TGGTCAATGG	ATACAGTACG	
nger -	551	GCTTTGACGA	TGATGGTTAA	AACGATAATC	GCCCAGCCCC	AGTTGCCGAT	
	601	GATGTTGTGC	AGTTGGTTCA	AAAGCCAAAA	GAGGGGGGAG	GCGAACCAGT	
	651	GTACTTTGCC	GTAGTCTTTG	GCCAGTTGCA	GGTTGTCGGC	GATGTTTGCG	
	701	ATAACGGATG	TGGTCTGTGG	GCCGGCGTAG	AGGTTGATGG	AGGCTTCGGT	
	751	TTCGCACCGT	TTTGGATAGC	GGCTAAAGGC	ACGCTGACGC	TGGTGCTGTA	
	801	CAGCTTGTCG	TTGCGGCGTT	TGATGTCGAT	ACGGCAGTCG	CCAGCGGCGC	
	851	AAACGCTTTG	TCCGCCTTTG	GGTTGGAGGA	TCCAGGTGGA	CATGAAGTGG	
	901	TGTTCAATCA	TGCCGAGCCA	GCCGGTCGGG	GTTTTGCGGA	TGTATTCGGC	
	951	CTCGGATTTG	CCGGATTTGG	CATCGTCGTC	CAAGTCGGAG	AAGCTGACTT	
	1001	TTTGGAAGTT	GCCTTCAGGG	GTATAA			
				CEO I	D 716, ODE	200 0>.	
This cor	respond	s to the amin	io acia seque	ence SEQ 1	D 720; OKT	203.0.	
a2	09.pep					CDEEEEUDCE	
	1	MLRHLGND <u>FA</u>	LGALFFDAAV	DVPLLGDGQE	VVDHPVQYQT	GREEEEHDGE	•
	51	NORHDFHHFR	LHRVGRRRVQ	IGLGEHRCRH	NDGQDVVGVG	HAEVGNEIQE	•
	101	RCLAQFYGGE	QCPIQSDEDG	DEGGHKGAAA	QRVDFLVCVK IQYGFDDDG*	TAVELEDANIE.) _
	151	VVAVELEDGL	PCCCEDUVEA	MKIVKGVGQW DVVFCOI.OVVC	DVCDNGCGLW	AGVEVDGGEG	
	201	DAAGTAGE	TITIVIYELS	: LRRIMSTROS	PAAQTLCPPI	GWRIOVDMKW	I
	251 301	CSIMPSOPUG	VLRMYSASDI	PDLASSSKSE	KLTFWKLPSG	, v*	
	201	CSIMISQUVO	V11011011001				
				2			
m200/a	209 95	6% identity	in 341 aa o	verlap			
m209/a	209 95	.6% identity	10	20 3	10 40		60
		•	10	20 3			
	209 95 209.pep	MLRHLGN	10 DFALGALFFDA	20 3 AVDVPLLGDGÇ	PEVVDYPVQYQY	GREEEEHDGEN	IQRHDFHHFR
m2	209.pep	MLRHLGN	10 DFALGALFFDA	20 3 AVDVPLLGDGÇ	PEVVDYPVQYQY	GREEEEHDGEN	IQRHDFHHFR
m2		MLRHLGN	10 DFALGALFFDA	20 3 AVDVPLLGDGQ AVDVPLLGDGQ	EVVDYPVQYQT	GREEEEHDGEN 	IQRHDFHHFR
m2	209.pep	MLRHLGN	10 DFALGALFFDA DFALGALFFDA	20 3 AVDVPLLGDGG LAVDVPLLGDGG 20 3	PEVVDYPVQYQT : PEVVDHPVQYQT 80 40	GREEEEHDGEN 	IQRHDFHHFR
m2	209.pep	MLRHLGN MLRHLGN	10 DFALGALFFDA DFALGALFFDA 10	20 3 LAVDVPLLGDGG LAVDVPLLGDGG 20 3	DEVVDYPVQYQT : EVVDHPVQYQT 0 40	GREEEEHDGEN 	IQRHDFHHFR
m2 a2	209.pep	MLRHLGN	10 DFALGALFFDA DFALGALFFDA 10 70 RVOISLGEHRO	20 3 LAVDVPLLGDGG 111111111111111111111111111111111	DEVVDYPVQYQT : DEVVDHPVQYQT 00 40 00 100 VGAAEVGNPTQI	GREEEHDGEN GREEEEHDGEN GREEEEHDGEN 50 110 PRCLAQFYGGE	QRHDFHHFR
m2 a2 m2	209.pep 209 209.pep	MLRHLGN	10 DFALGALFFDA DFALGALFFDA 10 70 RVQISLGEHRC	20 3 AVDVPLLGDGG 1111111111 AVDVPLLGDGG 20 3 80 9 CRHNDGQDVVGV	DEVVDYPVQYQT	GREEEHDGEN GREEEEHDGEN GREEEEHDGEN 50 110 PRCLAQFYGGE	IQRHDFHHFR
m2 a2 m2	209.pep	MLRHLGN	10 DFALGALFFDA DFALGALFFDA 10 70 RVQISLGEHRC :	20 3 AVDVPLLGDGG 1111111111 AVDVPLLGDGG 20 3 80 9 ERHNDGQDVVGV	EVVDYPVQYQT : EVVDHPVQYQT 100 40 100 40 GAAEVGNPTQT 	CGREEEHDGEN CHILLING CGREEEHDGEN CONTROL CONTR	IQRHDFHHFR
m2 a2 m2	209.pep 209 209.pep	MLRHLGN	10 DFALGALFFDA DFALGALFFDA 10 70 RVQISLGEHRC	20 3 AVDVPLLGDGG AVDVPLLGDGG 20 3 80 9 ERHNDGQDVVGV	DEVVDYPVQYQT	CGREEEHDGEN CHILLING CGREEEHDGEN CONTROL CONTR	IQRHDFHHFR
m2 a2 m2	209.pep 209 209.pep	MLRHLGN MLRHLGN LHRVGRR 	10 DFALGALFFDA	20 3 AVDVPLLGDGG		PRCLAQFYGGE	IQRHDFHHFR
m2 a2 m2	209.pep 209 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR	10 DFALGALFFDA	20 3 AVDVPLLGDGG		CGREEEHDGEN	IQRHDFHHFR
m2 a2 m2	209.pep 209 209.pep	MLRHLGN MLRHLGN LHRVGRR LHRVGRR	10 DFALGALFFDA	20 3 AVDVPLLGDGG AVDVPLLGDGG 20 3 80 9 RHNDGQDVVGV CRHNDGQDVVGV 80 9 L40 15 CVKLHHRLLLRI	EVVDYPVQYQT	CGREEEHDGEN	IQRHDFHHFR
m2 a2 m2 a2 m2	209.pep 209.pep 209.pep 209.pep	MLRHLGN MLRHLGN LHRVGRR LHRVGRR	10 DFALGALFFDA	20 3 AVDVPLLGDGG AVDVPLLGDGG 20 3 80 9 RHNDGQDVVGV CRHNDGQDVVGV 80 9 L40 15 CVKLHHRLLLRI	EVVDYPVQYQT	CGREEEHDGEN	IQRHDFHHFR
m2 a2 m2 a2 m2	209.pep 209 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR	10 DFALGALFFDA DFALGALFFDA 10 70 RVQISLGEHRO RVQIGLGEHRO 70 130 DAAAQRVDFLVO	20 3 AVDVPLLGDGC		CGREEEHDGEN	IQRHDFHHFR
m2 a2 m2 a2 m2	209.pep 209.pep 209.pep 209.pep	MLRHLGN MLRHLGN LHRVGRR LHRVGRR	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 PAAAQRVDFLVO 11 PAAAQRVDFLVO 130 130 130 130 130 130 130 130 130 130	20 3 AVDVPLLGDGG		**CREEEHDGEN**	IQRHDFHHFR
m2 a2 m2 a2 m.	209.pep 209.pep 209 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR DLQQHRQ	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 1 : RVQIGLGEHRO 70 130 AAAQRVDFLVO 1 PAAAQRVDFLVO 130 190	20 3 AVDVPLLGDGG		PREEEEHDGEN	IQRHDFHHFR QRHDFHHFR
m2 a2 m2 a2 m.	209.pep 209.pep 209.pep 209.pep	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 1 : RVQIGLGEHRO 70 130 130 190 AAAQRVDFLVO 130 190 190 DDGXNDNRPAP	20 3 AVDVPLLGDGG		GREEEHDGEN	IQRHDFHHFR
m2 a2 m2 a2 m3 a.2	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR DLQQHRQ DLQQHRQ	10 DFALGALFFDA 10 10 70 RVQISLGEHRO 70 110:111111 RVQIGLGEHRO 70 130 130 130 130 140AAQRVDFLVO 11111111 PAAAQRVDFLVO 130 190 200GXNDNRPAP	20 3 AVDVPLLGDGG		PRESENTE STATE OF THE PROPERTY	IQRHDFHHFR
m2 a2 m2 a2 m3 a.2	209.pep 209.pep 209 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR DLQQHRQ DLQQHRQ	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 130 PAAAQRVDFLVO 131 PAAAQRVDFLVO 130 190 DGGXNDNRPAP	20 3 AVDVPLLGDGG		CGREEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG RTAVRGVGQW : HRTVRGVGQW 80 VCDDGCGLR :
m2 a2 m2 a2 m3 a.2	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR DLQQHRQ DLQQHRQ	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 130 14AAQRVDFLVO 130 130 190 190 190 190 190 190 190 190 190 19	20 3 AVDVPLLGDGG		CGREEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG RTAVRGVGQW : HRTVRGVGQW 80 VCDDGCGLR :
m2 a2 m2 a2 m3 a.2	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN MLRHLGN LHRVGRR LHRVGRR DLQQHRQ DLQQHRQ	10 DFALGALFFDA	20 3 AVDVPLLGDGG		PRESENTATION OF THE PROPERTY O	IQRHDFHHFR
m2 a2 m2 a2 m2 a2 m2 a2	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 DAAAQRVDFLVO 131 190 DGGXNDNRPAP 11 DGGXNDNRPAP 190 250 GGGGFAPFWMA	20 3 AVDVPLLGDGG	EVVDYPVQYQT	PREEEEHDGEN	IQRHDFHHFR
m2 a2 m2 a2 m2 a2 m2 a2	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 130 130 140 130 130 130 130 130 130 130 130 130 13	20 3 AVDVPLLGDGG		PREEEEHDGEN	QRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG QCPIQSDEDG 20 HRTVRGVGQW DVCDDGCGLR DVCDNGCGLW GWRIQVDMKW
m2 a2 m2 a2 m. a. m. a.	209.pep 209.pep 209.pep 209.pep 209	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 130 130 140 130 130 130 130 130 130 130 130 130 13	20 3 AVDVPLLGDGG		PREEEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG ARAVRGVGQW HRTVRGVGQW DVCDDGCGLR DVCDNGCGLW GWRIQVDMKW
m2 a2 m2 a2 m. a. m. a.	209.pep 209.pep 209.pep 209.pep 209.pep 209.pep	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 PAAAQRVDFLVO 1310 190 DGXNDNRPAP 191 DGXNDNRPAP 190 250 GGFGFAPFWAA	20 3 AVDVPLLGDGG		PREEEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG ARAVRGVGQW HRTVRGVGQW DVCDDGCGLR DVCDNGCGLW GWRIQVDMKW
m2 a2 m2 a2 m. a. m. a.	209.pep 209.pep 209.pep 209.pep 209.pep 209.pep	MLRHLGN	10 DFALGALFFDA 11 DFALGALFFDA 10 70 RVQISLGEHRO 70 130 130 190 DGXNDNRPAP 1 DGXNDNRPAP 1 DGXNDNRPAP 190 250 GGFGFAPFWMA 1	20 3 AVDVPLLGDGG		PREEEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG ARAVRGVGQW HRTVRGVGQW DVCDDGCGLR DVCDNGCGLW GWRIQVDMKW
m2 a2 m2 a2 m2 a2 m2 a2 m3 a2 m4 a	209.pep 209.pep 209.pep 209.pep 209.pep 209.pep	MLRHLGN IIIIIII MLRHLGN LHRVGRR IIIIIIII LHRVGRR DLQQHRQ IIIIIIII DLQYGFDE AGVEVDO	10 DFALGALFFDA 10 10 70 RVQISLGEHRO 70 130 130 130 14 PAAAQRVDFLVO 130 190 190 190 190 190 250 190 250 190 250 190 250 310	20 3 AVDVPLLGDGG	EVVDYPVQYQT	PREEEEHDGEN	IQRHDFHHFR QRHDFHHFR QCPIQSDEDG QCPIQSDEDG ARAVRGVGQW HRTVRGVGQW DVCDDGCGLR DVCDNGCGLW GWRIQVDMKW

100

90

AFVVVQREVTFFGEDDVVAAVFVLFAQEQVFHDAGFGIEGFDKINPAVALAQTVELACLH

80

m211.pep

486

CSIMPSQPVGVLRMYSASDLPDLASSSKSEKLTFWKLPSGVX a209 330 320 310 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 727>: g211.seq atgttgcgga ttgctgctgc caatcagttg ggcggtcgaa atggtgcggc ggtgggaaac ggggtcgata agtttgggcg tggtgctgat aatcaggttg 1 51 agtttttgga aggaaacctg attgtagtcg gcgcgtccgg gcgtgccgct 101 gtaacggtag ccgtggcgca attcgagcgt gcgtttgttg tccttcagcg agaagttacc ttctttggcg aagatgatgt tgtcgccgcc gtttttgtcc 151 251 tgttcgcgca ggaacaggtt tttcatgatg ccggattcgg tgtcaaaggt ttcgacgaaa taaaccctgc cgttgcgctt gcccaagtta ttgaactcgc 351 cggcttccac caaagacaat tcctgcttct gcttcaaaat ttcggcatat tegeggetge geagetetge ceaeggtate acceaaaget geatgaegge 401 aatcaggatg gcaaacggca cggcaaactg catgacgggg cgtatccact 501 gtttcaacgc caatcegcag gatag This corresponds to the amino acid sequence <SEQ ID 728; ORF 211.ng>: g211.pep MLRIAAANQL GGRNGAAVGN GVDKFGRGAD NQVEFLEGNL IVVGASGRAA VTVAVAQFER AFVVLQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGVKG 101 FDEINPAVAL AQVIELAGFH QROFLLLLON FGIFAAAQLC PRYHPKLHDG 151 NODGKRHGKL HDGAYPLFQR QSAG* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 729>: m211.seq ATGTTGCGGG TTGCTGCTGC CAATCAGTTG GGCGGTCGGA ATGGTACGGC GGTGGGAAAC GGGGTCGATG AGTTTGGGCG TGGTGCTGAT AATCAGGTTG 101 AGTTTTTGGA AGGAAACCTG ATTGTAGTCG GCGCGTCCGG GCGTGCCGCT 151 GTAACGGTAG CCGTGGCGCA ATTCGAGCGT GCGTTTGTTG TCGTTCAGCG 201 AGAAGTTACC TTCTTTGGCG AAGATGATGT TGTCGCCGCC GTTTTTGTCC 251 TGTTCGCGCA GGAACAGGTT TTTCATGATG CCGGATTCGG TATCGAAGGT 301 TTCGACAAAA TAAACCCTGC CGTTGCGCTT GCCCAAACTG TTGAACTCGC 351 CTGCCTCCAC CAAAGACAAT TCCTGCTTCT GCTTCAGGAT TTCAGCGTAT 401 TCGCGGCTGC GTAGCTCTGC CCACGGTATC ACCCAAAGCT GCATGACGGC 451 AACCAAAACG GCAAACGGCA CGGCAAACTG CATCACCGGG CGTATCCATT 501 GTTTCAATGC CAATCCGCAG GATAG This corresponds to the amino acid sequence <SEQ ID 730; ORF 211>: m211.pep MLRVAAANQL GGRNGTAVGN GVDEFGRGAD NQVEFLEGNL IVVGASGRAA 1 VTVAVAQFER AFVVVQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGIEG 51 FDKINPAVAL AQTVELACLH QRQFLLLLQD FSVFAAAXLC PRYHPKLHDG 151 NONGKRHGKL HHRAYPLFQC QSAG* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 211 shows 89.1% identity over a 174 aa overlap with a predicted ORF (ORF 211.ng) from N. gonorrhoeae: m211/g211 50 40 30 MLRVAAANQLGGRNGTAVGNGVDEFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAQFER 10 m211.pep MLRIAAANQLGGRNGAAVGNGVDKFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAQFER g211 50 40 30 20 10 120

```
AFVVLQREVTFFGEDDVVAAVFVLFAQEQVFHDAGFGVKGFDEINPAVALAQVIELAGFH
    q211
                                                               110
                                                     100
                                             90
                         70
                                   B0
                                                               170
                                                      160
                                            150
                                  140
                        130
                 QRQFLLLLQDFSVFAAAXLCPRYHPKLHDGNQNGKRHGKLHHRAYPLFQCQSAGX
     m211.pep
                  mmma::m mmmmi:mm millim
                 QRQFLLLLQNFGIFAAAQLCPRYHPKLHDGNQDGKRHGKLHDGAYPLFQRQSAG
     g211
                                                      160
                                            150
                                  140
                        130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 731>:
     a211.seq
               ATGTTGCGGG TTGCTGCTGC CAATCAGTTG GGCGGTCGGA ATGGTACGGC
               GGTGGGAAAC GGGGTCGATG AGTTTGGGCG TGGTGCTGAT AATCAGGTTG
               AGTTTTTGGA AGGAAACCTG ATTGTAGTCG GCGCGTCCGG GCGTGCCGCT
           51
          101
               GTAACGGTAG CCGTGGCGCA ATTCGAGCGT GCGTTTGTTG TCGTTCAGCG
          201 AGAAGTTACT TTCTTTGGCG AAGATGATGT TGTCGCCGCC GTTTTTGTCC
251 TGTTCGCGCA GGAACAGGTT TTTCATGATG CCGGATTCGG TATCGAAGGT
301 TTCGACAAAA TAAACCCTGC CGTTGCGCTT GCCCAAACTG TTGAACCCGC
          151
               CTGCCTCCAC CAAAGACAAT TCCTGCTTCT GCTTCAGGAT TTCAGCGTAT
          351
          401 TCGCGGCTGC GTAGCTCTGC CCACGGTATC ACCCAAAGCT GCATGACGGC
          451 AACCAAAACG GCAAACGGCA CGGCAAACTG CATCACCGGG CGTATCCATT
          501 GTTTCAATGC CAATCCGCAG GATAG
This corresponds to the amino acid sequence <SEQ ID 732; ORF 211.a>:
     a211.pep
               MLRVAAANQL GGRNGTAVGN GVDEFGRGAD NQVEFLEGNL IVVGASGRAA
               VTVAVAQFER AFVVVQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGIEG
            51
               FDKINPAVAL AQTVEPACLH QRQFLLLLQD FSVFAAA*LC PRYHPKLHDG
          101
               NONGKRHGKL HHRAYPLFQC QSAG*
          151
m211/a211 99.4% identity in 174 aa overlap
                                                                            60
                                                                  50
                                                        40
                                              30
                           10
                  MLRVAAANQLGGRNGTAVGNGVDEFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAQFER
                   <u>ការាលីយ៉ាយយោយអាយ៉ាយលើយ៉ាយអាយយ៉ាយបើ</u>
      m211.pep
                  MLRVAAANQLGGRNGTAVGNGVDEFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAQFER
      a211
                                                                  50
                                              30
                           10
                                     20
                                                       100
                                              90
                                     80
                   AFVVVQREVTFFGEDDVVAAVFVLFAQEQVFHDAGFGIEGFDKINPAVALAQTVELACLH
                   m211.pep
                   AFVVVQREVTFFGEDDVVAAVFVLFAQEQVFHDAGFGIEGFDKINPAVALAQTVEPACLH
      a211
                                                       100
                                     80
                                               90
                           70
                                                       160
                                              150
                   QRQFLLLLQDFSVFAAAXLCPRYHPKLHDGNQNGKRHGKLHHRAYPLFQCQSAGX
      m211.pep
                   រីណីពេលីពេលពេលលេលលេល លោកពេលលេខ
                   QRQFLLLLQDFSVFAAAXLCPRYHPKLHDGNQNGKRHGKLHHRAYPLFQCQSAGX
       a211
                                                                 170
                                              150
                                    140
                          130
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 733>:
       g212.seq (partial)
             1 atggacaatc tcgtatggga cggcattccc gacatccgca cactcgacca
             51 aaccateege aaacaegeac accegeteaa cetgattgte tgeeteeceg
            101 ataatcagat tecegatttt caaaccgcac aagatgette ggacteggaa
            151 tgccgtctga agcaccgttt ggatcaggca acccagtgcc tccagttcga
            201 cagcatcaac ctcatcgaac acatcctgcc cgatgtccgc ttctggctgg
            251 ttcccccttc acgcacccgc cgcctgcacg aacacttcca ccacatttcc
```

tggcagaccg aagccatccc gcaaaccgaa agcaagtccg acaaaccctg 351 gtttgcactt ccacaaacat ccgaacggaa aaaaccggaa cacgtcctcg

488

```
401 tcatcggtgc aggcattgcc ggcgcatcga ccgcccacgc cttagcatca
         451 cacggcattt ccgttaccgt attggaagcc cgaaaagccg ctcaagccgc
         501 cageggeaac eggeaaggge tgetttacge caaaateteg eegeacgaca
         551 ccggacagac cgaactgctg cttgccggct acggctacac caaacgcctg
         601 cteggacaca tectgecega etcegacact tggggeggea acggeateat
         651 ccacctcaat tacagccgca ccgaacaaca acgcaatcac gaattgggtt
         701 tgcaaaaaca ccataaccac ctctaccgca gcatcacgtc tgcagaagcc
         751 gaaaaaateg eeggeateee getgaacaeg eectaegeeg aaccattatg
         801 cggactctac tggcaacacg gcgtatggct caatccgccc gcattcgtcc
         851 gcaccetcet cagccatceg etgategaac tatatgaaaa cacaacgtta
         901 accggcattt cccacgacgg agaaaagtgg attgcaagca cgccaaacgg
         951 cacatttacc gccacacaca tcatctactg caccggcgcg cacagcccct
        1001 geetgeega aaccaacete geegeeetae eeeteaggea aataegegga
        1051 caaaccggcc tcacaccgtc caccccgttt tccgaacaac tgcgttgcgc
        1101 cgtttcaggc gaaagctaca tcagcccgtc gtggcacgga ctgcactgct
        1151 acggcgcgag ttttattccc aacagcagca ataccggatg gaacgaagcc
        1201 gaagaagcct caaaccgcca agcattggca caccttaacc ccgcccttgc
         1251 cgaatcattg ttt...
This corresponds to the amino acid sequence <SEQ ID 734; ORF 212.ng>:
     g212.pep (partial)
           1 MDNLVWDGIP DIRTLDQTIR KHAHPLNLIV CLPDNQIPDF QTAQDASDSE
           51 CRLKHRLDQA TQCLQFDSIN LIEHILPDVR FWLVPPSRTR RLHEHFHHIS
          101 WQTEAIPQTE SKSDKPWFAL PQTSERKKPE HVLVIGAGIA GASTAHALAS
          151 HGISVTVLEA RKAAQAASGN RQGLLYAKIS PHDTGQTELL LAGYGYTKRL
          201 LGHILPDSDT WGGNGIIHLN YSRTEQQRNH ELGLQKHHNH LYRSITSAEA
          251 EKIAGIPLNT PYAEPLCGLY WOHGVWLNPP AFVRTLLSHP LIELYENTTL
          301 TGISHDGEKW IASTPNGTFT ATHILYCTGA HSPCLPETNL AALPLRQIRG
          351 QTGLTPSTPF SEQLRCAVSG ESYISPSWHG LHCYGASFIP NSSNTGWNEA
          401 EEASNRQALA HLNPALAESL F...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 735>:
     m212.seq
               ATGGACAATC TCGTATGGGA CGGCATTCCC GACATCCGCA CACTCGACCA
           51 AGCCATCCGC AAACACGCAC CCCCGCTCAA CCTGATTATC TGCCTCCCCG
          101 ATAATCAGAT TCCCGATTTT CAAACCGCAC AAGATGCTTC GGACGCGGAA
          151 TGCCGTCTGA AGCACCGTTT GGATCAGGCA ATGCAGTGCC TCCAGTTCGA
          201 CAGCATCAAC CTCATCGAAC ACATCCTGCC CGATGTCCGC TTCTGGCTGG
               TTCCCCCTTC ACGCACCCAC CACCTGCACG AACATTTCCA CCACATTTCC
          251
          301 TGGCAGACCG AAGCCATCCC GCAAACCGAA AGCAAGCCCG ACAAACCCTG
          351 GTTTGCACTT CCACAAACAT CCGAACGGCA AAAACCGGAA CACATCCTCG
           401 TTATCGGCGC GGGCATATCC GGCGCGGCAA CCGCCCACGC CTTAGCATCA
           451 CACGGCATTT CCGTTACCGT ATTGGAAGCC CGAAAAGCCG CCCAAGCCGC
           501 CAGCGGCAAC CGCCAAGGGC TGCTCTACGC CAAAATCTCG CCGCACGACA
           551 CCGAACAGAC CGAACTTTTG CTTGCCGGCT ACGGCTACAC CAAACGCCTG
           601 CTCGGACACA TCCTGCCCGA ATCCGAAACC TGGGGCGGCA ACGGCATCAT
           651 CCACCTCAAT TACAGCCGCA CCGAACAACA ACGCAATCAC GAATTGGGTT
           701 TGCAAAAACA CCATAACCAC CTCTACCGCA GCATCACATC TGCAGAAGCC
           751 GAAAAAATCG CCGGTATCCC ACTGTCCGTC CCATACGACC ACCCTTCATG
           801 CGGACTCTAC TGGCAACACG GCGTATGGCT CAATCCACCC GCATTCGTCC
           851 GCACCCTCCT CAACCATCCG CTCATTGGAC TACACGAAGA CACACCCTTG
           901 ACCGACATTT CCCACGACGG GGAAAAGTGG ATTGCAAGCA CGCCAAACGG
           951 CACATTTACC GCCACACACA TCATCTACTG CACCGGTGCG AACAGCCCCT
          1001 ACCTACCCGA AACCAACCTC GCCGCCCTGC CTCTCAGGCA AATACGCGGA
          1051 CAAACCGGCC TCACACCGTC CACCCCGTTT TCCGAACAAC TGCGTTGCGC
          1101 CGTTTCAGGC GAAAGCTACA TCAGCCCGTC GTGGCACGGA CTGCACTGCT
          1151 ACGGCGCGAG TTTTATTCCC AACAGCAGCC ATACCGGATG GAACGAAGCC
          1201 GAAGAAGCCT CAAACCGCCA AGCATTGGCA CACCTTAACC CCGCCCTTTC
          1251 CGAATCATTG TTTGCCGCCA ACCCAAACCC CCAAAAACAC CAAGGGCACG
          1301 CCGCCATACG CTGCGACAGC CCCGACCACC TTCCCCTAGT CGGCGCACTC
          1351 GGCGACATTG CCGCCATGCG GCAGACCTAC ACCAAACTCG CGCTGGACAA
          1401 AAACTACCGC ATCGACACCC CATGCCCATA CCTGCCTAAT GCCTACGTCA
```

1451 ACACCGCGCA CGGCACCCGC GGACTCGCCA CCGCCCCCAT CTGCGCCGCC

m212.pep

m212.pep

g212

		₹0.	,			
					•	
		- m - n-n-n - n		ማስተማ ተ የ	ACGCCT	
1501	GMCAWTGCAG CCCAAATCS	TA ACCCCI	ACCAT CATCCO	CGCC ATCG	TCAGAA	
1551	GGAAGGATCT AACCCCTT	AA				
1601	s to the amino acid seq	uence <s< td=""><td>EO ID 736;</td><td>ORF 212></td><td></td><td></td></s<>	EO ID 736;	ORF 212>		
m212.pep 1	MDNLVWDGIP DIRTLDQA	IR KHAPP	LNLII CLPDN(QIPDF QTAQ	DASDAE	
51	CRIKHRIDOA MOCLOFDS	IN LIEHI	LPDVR FWLVPI	PSRTH HLHE	HEHHIS	
101	WOTENT POTE SKPDKPWF	AL POTSE	ROKPE HILVIO	BAGIS GAAT	AHALAS	
151	HGISVTVLEA RKAAQAAS	GN ROGLL	YAKIS PHDTE	OTELL LAGY	GYTKKL	
201	LGHILPESET WGGNGIIH	LN YSRTE	QQRNH ELGLQ	KHHNH LIKS	HEDTDI.	
251	EKIAGIPLSV PYDHPSCG TDISHDGEKW IASTPNGT	LY WORGV	ACUCY MEDAL!	DETNI AALE	LROIRG	
301		CC ECALC	PSWHG LHCYG	ASFIP NSSE	ITGWNEA	
351	THE ACADOMIA HINDALSE	SL FAAND	NPOKH OGHAA	IRCDS PDHI	PLVGAL	
401 451	CDIAAMROTY TKLALDKN	YR IDTPC	PYLPN AYVNT	AHGTR GLAT	TAPICAA	
501	VVANOTYCI.P HPFXORLR	HA LHPNR	TIIRA IVRRK	DLTP*		
Computer analy	sis of this amino acid s	sequence	gave the foll	lowing resu	ılts:	
TY 1 vyith	a predicted ORF from	. N. gonoi	rrhoeae			
Homology with	s 92.9% identity over a	421 22 0	verlan with	nredicted	ORF (ORF	212.ng)
		. 4 21 aa 0	vonap wia.	. prodicte	 (-
from N. gonorri						
m212/g212	!					
	10	20	30	40	50	60
010 mon	MDNLVWDGIPDIRTLI	OATRKHA	PLNLIICLPDN	QIPDFQTAQ	DASDAECRLK	HRLDQA
m212.pep	11111111111111111	11:1111	11111:1111		1111:1111	11111
g212	MDNLVWDGIPDIRTLI	OTIRKHAL	IPLNLIVCLPDN	QIPDFQTAQ	DASDSECRLK	HRLDQA
3	10	20	30	40	50	60
			••	100	110	120
	70 MQCLQFDSINLIEHI	80	90	100 PUUTEWATE		
m212.pep	MQCLQFDSINLIEHI	TITITIII PRDAKEMP	VPPSKIAALAE	1111111111	111111111	HIIII
	TQCLQFDSINLIEHI	 1.DOVDFWI.		FHHISWOTE	AIPOTESKSD	KPWFAL
g212	TOCLOFDSINGIEMI.	80	90	100	110	120
	. ,0					
	130	140	150	160	170	180
m212.pep	POTSEROKPEHILVI	GAGISGAA	Tahalashgis'	VTVLEARKAA	QAASGNRQGI	LYAKIS
	111111.1111.111	1111:11:	11111111111	151511111	. 1 1 1 1 1 1 1 1 1 1 1	111111
g212	POTSERKKPEHVLVI	GAGIAGAS	TAHALASHGIS'	VTVLEARKAA	QAASGNRQG1 170	180
	130	140	150	160	1,70	100
		200	210	220	230	240
	190 PHDTEQTELLLAGYG	ZUU VTKRT.T.GH	TI.PESETWGGN			OKHHNH
m212.pep		11111111		111111111		
	PHDTGQTELLLAGYG	YTKRLLGH	ILPDSDTWGGN	GI IHLNYSR	reqornhelgi	JOKHHNH
g212	190	200	210	220	230	240
	250	260	270	280	290	300
m212.per	LYRSITSAEAEKIAG	IPLSVPYL	HPSCGLYWOHO	VWLNPPAFV	RTLLNHPLIG	PHEDIAP
		::	1	ייים אמימוג זווווו מיים אמימוג זווווו		ויויון ו ויידאיזיו.
g212	LYRSITSAEAEKIAC			WLNPPAFV. 280	290	300
	250	260	270	280	230	200

330 `

TDISHDGEKWIASTPNGTFTATHIIYCTGANSPYLPETNLAALPLRQIRGQTGLTPSTPF

SEQLRCAVSGESYISPSWHGLHCYGASFIPNSSHTGWNEAEEASNRQALAHLNPALSESL

```
SEQLRCAVSGESYISPSWHGLHCYGASFIPNSSNTGWNEAEEASNRQALAHLNPALAESL
       g212
                                                                   410
                                                         400
                                     380
                                               390
                           370
                                                                   470
                                                                             480
                                               450
                                                         460
                                     440
                           430
                    FAANPNPQKHQGHAAIRCDSPDHLPLVGALGDIAAMRQTYTKLALDKNYRIDTPCPYLPN
       m212.pep
                    F
       g212
-- "The following partial DNA sequence was identified in N. meningitidis <SEQ ID 737>:
        a212.seq
                  ATGGACAATC TCGCATGGAA CGGCATTCCC GACATCCGCA CACTCGACCA
                 AACCATCCGC AAACACGCAC ACCCGCTCAA CCTGATTGTC TGCCTCCCCG
              51
                 ATAATCAGAT TCCCAATTTT CAAACCGCAC AAGATGCTTC GGACGCGGAA
             101
                 TGCCGTCTGA AGCACCGTTT GGATCAGGCA ACCCAGTGCC TCCAGTTCGA
                 CAGCATCAAC CTGATTGAAC ACATCCTGCC CGATGTCCGC TTCTGGCTGG
             201
                  TTCCCCCTTC ACGCACCCGC CGCCTGCACG AACACTTCCA CCACATTTCC
                 TGGCAGACCG AAGCCATCCC GCAAACCGAA AGTAAGCCCG ACAAACCCTG
             301
                  GTTTGCACTT CCACAAACAT CCGAACGGCA AAAACCGGAA CACATCCTCG
             351
                 TTATCGGAGC GGGCATATCC GGCGCGGCAA CCGCCCACGC CTTAGCATCA
             401
                 TACGGCATTT CCGTTACCGT ATTGGAAGCC CGAAAAGCCG CCCAAGCCGC
             451
                  CAGCGGCAAC CGCCAAGGGC TGCTCTACGC CAAAATCTCG CCGCACGACA
             501
                 CCGAACAAC CGAACTGCTG CTTGCCGGCT ACGGCTACAC CAAACGCCTG
             551
                  CTCGGACATA TCCTGCCCGA ATCCGAAACC TGGGGCGGCA ACGGCATCAT
                  CCACCTCAAT TACAGCCGCA CCGAACAACA ACGCAATCAC GAATTGGGTT
             651
                  TGCAAAAACA CCATAACCAC CTCTACCGCA GCATCACGCA GGCAGAAGCC
             701
                  GAAAAAATCG CCGGCATCCC TCTGAACACG CCCTACGCCG AACCATTATG
             751
                  CGGACTGTTT TGGCAGTACG GCGTATGGCT CAATCCTCCC ACATTCGTCC
             801
                  GCGCCCTCCT CAGCCATCCG CTCATTGGAC TACACGAAGA CACACCGTTA
             851
             901 ACCGACATTT CCCACGACGG GGAAAAGTGG ATTGCAAGCA CGCCAAACGG
                  CACATTTACC GCCACACACA TCATCTACTG CACCGGTGCG AACAGCCCCT
                  ACCTACCCGA AACCAACCTC GCCACCCTGC CCCTCAGGCA AATACGCGGA
            1001
                  CAAACCGGCC TCACACCGTC CACCCCGTTT TCCGAACAAC TGCGTTGCGC
            1051
            1101 CGTTTCAGGC GAAAGCTACA TCAGCCCGTC GTGGCACGGA CTGCACTGCT
            1151 ACGGCGCGAG TTTTATTCCC AACAGCAGCC ATACCGGATG GAACGAAGCC
                  GAAGAAGCCT CAAACCGCCA AGCATTGGCA CACCTTAACC CCGCCCTTTC
            1201
                  CGAATCATTG TTTGCCGCCA ACCCAAACCC CCAAAAACAC CAAGGGCACG
            1251
                  CCGCCATACG CTGCGACAGC CCCGACCACC TTCCCCTAGT CGGCGCACTC
            1301
                  GGCGACATTG CCGCTATGCA ACAAACTTAC GCCAAACTCG CGCTGGACAA
            1351
                  AAACTATCGC ATCGATGCCC CCTGCCCGTA CCTGCCCAAT GCCTACGCCA
             1401
             1451 ACACCGCCCA CGGCACACGC GGGCTTGCCA CCGCCCCCAT CTGCGCCGCC
             1501 GCCGTTGCAG CCGAAATCCT AGGCTTGCCC CATCCCCTCT CAAAACGCCT
                  GCGCCACGCC CTACACCCCA ACCGCGCCAT CATCCGCGCC ATCGTCAGAA
             1551
                  GGAAGGATCT AACCCCTTAA
             1601
   This corresponds to the amino acid sequence <SEQ ID 738; ORF 212.a>:
         a212.pep
                   MDNLAWNGIP DIRTLDQTIR KHAHPLNLIV CLPDNQIPNF QTAQDASDAE
                   CRLKHRLDQA TQCLQFDSIN LIEHILPDVR FWLVPPSRTR RLHEHFHHIS
                   WQTEAIPQTE SKPDKPWFAL PQTSERQKPE HILVIGAGIS GAATAHALAS
              101
              151 YGISVTVLEA RKAAQAASGN RQGLLYAKIS PHDTEQTELL LAGYGYTKRL
                   LGHILPESET WGGNGIIHLN YSRTEQQRNH ELGLQKHHNH LYRSITQAEA
              201
                   EKIAGIPLNT PYAEPLCGLF WQYGVWLNPP TFVRALLSHP LIGLHEDTPL
              251
              301 TDISHDGEKW IASTPNGTFT ATHILYCTGA NSPYLPETNL ATLPLRQIRG
                   QTGLTPSTPF SEQLRCAVSG ESYISPSWHG LHCYGASFIP NSSHTGWNEA
              351
                   EEASNRQALA HLNPALSESL FAANPNPQKH QGHAAIRCDS PDHLPLVGAL
                   GDIAAMQQTY AKLALDKNYR IDAPCPYLPN AYANTAHGTR GLATAPICAA
              451
                   AVAAEILGLP HPLSKRLRHA LHPNRAIIRA IVRRKDLTP*
              501
    m212/a212 93.7% identity in 539 aa overlap
                                                      40
                                                               50
                                    20
                     MDNLVWDGIPDIRTLDQAIRKHAPPLNLIICLPDNQIPDFQTAQDASDAECRLKHRLDQA
         m212.pep
                     អាលៈ នេះអាយាយនេះយោ បាយនយោយនេះបើបើយោយយោយមិន
                     MDNLAWNGIPDIRTLDQTIRKHAHPLNLIVCLPDNQIPNFQTAQDASDAECRLKHRLDQA
          a212
```

-- **** -

	10	20	30	40	50	60
	70	80	90	100	110	120
m212.pep	MQCLQFDSINLIEHI	LPDVRFWLV	PPSRTHHLHE	HFHHISWQTE	AIPQTESKPI	KPWFAL
• •	TQCLQFDSINLIEH	I I I I I I I I I I I I I I I I I I I	::		IIIIIIIIIIIIII ATPOTESKPI	KPWFAL
a212	TQCLQFDSINLIEHI	80	90	100	110	120
			150	160	170	180
	130 PQTSERQKPEHILV	140 CAGISGAAT	IOU AHAI.ASHGIS	VTVLEARKAA		
m212.pep			111111:11		1111111	111111
a212	POTSEROKPEHILV	IGAGISGAAT	`AHALASYGIS	VTVLEARKAA	iQAASGNKQGI	PLINKTS
	130	140	150	160	170	180
	190	200	210	220	230	240
m212.pep	PHDTEQTELLLAGY	GYTKRLLGH1	LPESETWGG	GIIHLNYSR	reqornhelg:	LOKHHNH
		[[[[] [] [] [] [] []			PEOODNHEIG	TOKHHNH
a212	PHDTEQTELLLAGY	GYTKRLLGHI 200	210	220	230	240
	190	200	210			
	250	260	270	280	290	300
m212.pep	LYRSITSAEAEKIA	GIPLSVPYDI	HPSCGLYWQH	GVWLNPPAFV	RTLLNHPLIG	LHEDTPL
•		::	: : :	[: : hat.t.gudt.TG	LHEDTPI.
a212	LYRSITQAEAEKIA 250	GIPLNTPYAI 260	270	280	290	300
	250	200	2.0			
	310	320	330	340	350	360
m212.pep	TDISHDGEKWIAST	PNGTFTATH	IIYCTGANSP	YLPETNLAAL	PLRQIRGQTG	LTPSTPF
• •		111111111	1111111111			TTPSTPF
a212	TDISHDGEKWIAST	PNGTETATH 320	330	340	350	360
	310	320	330	0.20		
	370	380	390	400	410	420
m212.pep	SEQLRCAVSGESYI	SPSWHGLHC	YGASFIPNSS	HTGWNEAEEA	SNRQALAHLN	IPALSESL
-					LIIIIIIIIIII	PALSESL
a212	SEQLECAVSGESY 370	380	390	400	410	420
	3,0	300	•••			
	430	440	450	460	470	480
m212.pep	Faanpnpokhoghi	AAIRCDSPDH	LPLVGALGDI	AAMRQTYTKI	ALDKNYRID	LECEATEN
_				; XAVTOOMA <i>a</i>	ALDKNYRTD	APCPYLPN
a212	FAANPNPOKHOGHA 430	440	450	460	470	480
	430	110				
	490	500	510	520	530	540
m212.pep	AYVNTAHGTRGLA		AQIXGLPHPI	XORLRHALH	PNRTIIRAIV	RKKDLTPX
	[1:[[[]]]]]		: : : : :	CENTENTAL	IIIIIIIIIIIIII	RRKDLTPX
a212	AYANTAHGTRGLA'	TAPICAAAV# 500	AAEILGLPHPI 510	520	530	540
	430	500	010			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 739>: g214.seq

. seq					
1	atgatacaaa	agatatgtaa	gctatttgtt	ttaattgtaa	tttttgcaac
51	tteteeeget	tttgcccttc	aaagcgacag	cagacggccc	atccaaatcg
101	aagccgacca	aggttcgctc	gatcaagcca	accaaaggac	cacatttagc
151	ggcaatgtca	tcatcagaca	gggtacgctc	aacatttccg	cctcgtgtgt
201	caacqtcaca	cgcggcaggc	aaaggcggcg	aatccgtgag	ggcggaaggt
251	tcacccatcc	gcttcagcca	aacgttggac	gggggcaaag	ggacggtgcg
301	cogtcaggca	aacaacgtta	cctattcctc	cgcaggaagc	actgtcgttc
351	tgaccggcaa	tgccaaagtg	cagcgcggcg	gcgacgttgc	cgaaggtgcg
401	gtcattacct	acaacaccaa	aaccgaagtc	tataccatca	acggcagcac
451	gaaatcgggt	qcqaaatccg	cttccaaaac	cggcagggtc	agcgtcgtca
501				aaccccgatg	
551				ccgaaatgcc	
601	tattga			· -	

This corresponds to the amino acid sequence <SEQ ID 740; ORF 214.ng>:
g214.pep

```
1 MIQKICKLFV LIVIFATSPA FALOSDSRRP IQIEADOGSL DOANORTTFS
              GNVIIRQGTL NISASCVNVT RGRQRRRIRE GGRFARPLQP NVGRGQRDGA
         101 RSGKQRYLFL RRKHCRSDRQ CQSAARRRRC RRCGHYLQHQ NRSLYHQRQH
         151 EIGCEIRFQN RQGQRRHPAF KHTKNRITPM PSETETQFRR HLPTEMPRRD
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 741>:
     m214.seq (partial)
           1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
           51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
          101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
          151 GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT
          201 CAATGTTACA CGCGGCGGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
          251 CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
          301 GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
          351 AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGCC GAAGGTGCGG
          401 TGATTACATA CAACACCAAA ACCGAAGTCT ATACCATCAG CGGCAGCACA
          451 AAATT...
This corresponds to the amino acid sequence <SEQ ID 742; ORF 214>:
     m214.pep (partial)
           1 MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
           51 GNVVIRQGTL NISAARVNVT RGRQRRRIRE GGRFASPLQP DIGRRQRHGA
          101 RTGKORCLFI CROHRSLNR* COSTARRRCR RRCGDYIQHO NRSLYHOROH
          151 KI...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 214 shows 80.3% identity over a 152 aa overlap with a predicted ORF (ORF 214.ng)
from N. gonorrhoeae:
     m214/g214
                                                                50
                          10
                                   20
                                             30
                                                       40
                  \verb|MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL|
     m214.pep
                  MIQKICKLFVLIVIFATSPAFALQSDSRRPIQIEADQGSLDQANQRTTFSGNVIIRQGTL
     g214
                                             30
                                                      40
                                   20
                          10
                                                                         120
                                             90
                                                      100
                                   80
                  NISAARVNVTRGRQRRRIREGGRFASPLQPDIGRRQRHGARTGKQRCLFICRQHRSLNRX
     m214.pep
                  NISASCVNVTRGRQRRRIREGGRFARPLQPNVGRGQRDGARSGKQRYLFLRRKHCRSDRQ
     g214
                                                      100
                                             90
                          70
                                   80
                         130
                                   140
                  COSTARRRCRRRCGDYIQHQNRSLYHQRQHKI
     m214.pep
                  111:111 1111 1:1111111111111111
                  CQSAARRRCCRCGHYLQHQNRSLYHQRQHEIGCEIRFQNRQGQRRHPAFKHTKNRITPM
     g214
                                                      160
                                            150
                                   140
                  PSETETOFRRHLPTEMPRRDY
     g214
                         190
                                   200
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 743>:
      a214.seq
               ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
             1
            51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
           101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
           151 GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT
           201 CAATGTTACA CGCGGC.GGC AAAGGCGGCG AATCCGTGAG GGCGGAAGGT
           251 TCGCCAGTCC GCTTCAGCCA GACATTGGAC GGCGGCAAAG GCACGGTGCG
           301 CGGACAGGCA AACAACGTTG CTTATTCATC TGCAGGCAGC ACCGTAGTCT
```

493

```
351 TAACCGGTAA TGCCAAAGTA CAGCGCGGCG GCGATGTCGC CGAAGGTGCG
401 GTGATTACAT ACAACACCAA AACCGAAGTC TATACCATCA GCGGCAGCAC
451 AAAATCCGGC GCAAAATCCG CTTCCAAATC CGGCAGGGTC AGCGTCGTTA
501 TCCAGCCTTC GAGTACGCAA AAATCCGAAT AATCCCAATG CCGTCTGAAA
551. CATAAACCTG GTTCGGACGG CATTTGCCGA CCGAAATATT GAAGAGATAT
601
    TTATGA
```

This corresponds to the amino acid sequence <SEQ ID 744; ORF 214.a>:

```
a214.pep
            MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
            GNVVIRQGTL NISAARVNVT RGXQRRRIRE GGRFASPLQP DIGRRQRHGA
         51
        101 RTGKQRCLFI CRQHRSLNR* CQSTARRRCR RRCGDYIQHQ NRSLYHQRQH
        151 KIRRKIRFQI RQGQRRYPAF EYAKIRIIPM PSET*TWFGR HLPTEILKRY
m214/a214 99.3% identity in 152 aa overlap
                                                        50
                                       30
                                              . 40
                      10
               MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
    m214.pep
               MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
    a214
                                               40
                                       30
                                               100
                               80
                                       90
               NISAARVNVTRGRQRRRIREGGRFASPLQPDIGRRQRHGARTGKQRCLFICRQHRSLNRX
    m214.pep
                NISAARVNVTRGXQRRRIREGGRFASPLQPDIGRRQRHGARTGKQRCLFICRQHRSLNRX
    a214
                                               100
                      70
                               80
                                       90
                     130
                              140
                                      150
```

CQSTARRRCRRCGDYIQHQNRSLYHQRQHKIRRKIRFQIRQGQRRYPAFEYAKIRIIPM a214 170 150 140 130 **PSETXTWFGRHLPTEILKRYLX** a214 190

COSTARRRCRRCGDYIQHQNRSLYHQRQHKI

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 745>: g214-1.seq

```
1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATTGTAA TTTTTGCAAC
 51 TTCTCCCGCT TTTGCCCTTC AAAGCGACAG CAGACGGCCC ATCCAAATCG
101 AAGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGTAC CACATTTAGC
151 GGCAATGTCA TCATCAGACA GGGTACGCTC AACATTTCCG CCTCGCGCGT
201 CAACGTCACA CGCGGCGGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
251 CGCCCGTCCG CTTCAGCCAA ACGTTGGACG GGGGCAAAGG GACGGTGCGC
301 GGTCAGGCAA ACAACGTTAC CTATTCCTCC GCAGGAAGCA CCGTCGTTCT
351 GACCGGCAAT GCCAAAGTGC AGCGCGGCGG CGACGTTGCC GAAGGTGCGG
401 TCATTACCTA CAACACCAAA ACCGAAGTCT ATACCATCAA CGGCAGCACG
451 AAATCGGGTG CGAAATCCGC TTCCAAAACC GGCAGGGTCA GCGTCGTCAT
    CCAGCCTTCA AGCACACAAA AAACCGAATA A
```

This corresponds to the amino acid sequence <SEQ ID 746; ORF 214-1.ng>: g214-1.pep

- MIQKICKLFV LIVIFATSPA FALQSDSRRP IQIEADQGSL DQANQSTTFS GNVIIRQGTL NISASRVNVT RGGKGGESVR AEGSPVRFSQ TLDGGKGTVR
- 101 GQANNVTYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTINGST
- 151 KSGAKSASKT GRVSVVIQPS STQKTE*

m214.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 747>:

- 1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
- 51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
- 101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC 151 GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT

494

```
201 CAATGTTACA CGCGGCGGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
251 CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
    GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
301
351 AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGCC GAAGGTGCGG
401 TGATTACATA CAACACCAAA ACCGAAGTCT ATACCATCAG CGGCAGCACA
451 AAATCCGGCG CAAAATCCGC TTCCAAATCC GGCAGGGTCA GCGTCGTTAT
501 CCAGCCTTCG AGTACGCAAA AATCCGAATA A
```

This corresponds to the amino acid sequence <SEQ ID 748; ORF 214-1>: m214-1.pep

```
MIQKICKLEV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
   GNVVIRQGTL NISAARVNVT RGGKGGESVR AEGSPVRFSQ TLDGGKGTVR
51
```

GQANNVAYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTISGST 101

KSGAKSASKS GRVSVVIQPS STQKSE*

93.8% identity in 176 aa overlap m214-1/g214-1

```
40
                          20
                                  30
          {\tt MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL}
m214-1.pep
           ហំណាងការនេះនេះការការបន្ទាប់ការប្រជាជាការប្រជាជាការបន្ទាប់ការ
           MIQKICKLFVLIVIFATSPAFALQSDSRRPIQIEADQGSLDQANQSTTFSGNVIIRQGTL
g214-1
                                           40
                          20
                                  30
                 10
                                          100
                          80
                                  90
           NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
m214-1.pep
           NISASRVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVTYSSAGSTVVLTGN
g214-1
                                          100
                                                  110
                                   90
                                          160
                                                   170
                         140
                                  150
                 130
           AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
m214-1.pep
           AKVQRGGDVAEGAVITYNTKTEVYTINGSTKSGAKSASKTGRVSVVIQPSSTQKTEX
g214-1
                                  150
                                          160
                                                   170
                         140
                 130
```

g214-1/p38685

sp[P38685]YHBN_ECOLI 17.3 KD PROTEIN IN MURA-RPON INTERGENIC REGION PRECURSOR (ORF185) >gi|551336 (U12684) orf185 [Escherichia coli] >gi|606139 (U18997) ORF_o185 [Escherichia coli] >gi|1789592 (AE000399) orf, hypothetical protein [Escherichia coli] Length = 185 Score = 97.1 bits (238), Expect = 6e-20

Identities = 57/126 (45%), Positives = 74/126 (58%), Gaps = 3/126 (2%)

```
Query: 19 PAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTLNISAARVNVTR--GGKGG 76
```

PAFA+ D+ QPI IE+DQ SLD TF+GNV++ QGT+ I+A +V VTR G +G
Sbjct: 24 PAFAVTGDTDQPIHIESDQQSLDMQGNVVTFTGNVIVTQGTIKINADKVVVTRPGGEQGK 83

Query: 77 ESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGNAKVQRGGDVAEGAVIT 136 E + G P F Q D GK V G A+ + Y A VVLTGNA +Q+ Sbjct: 84 EVIDGYGKPATFYQMQDNGK-PVEGHASQMHYELAKDFVVLTGNAYLQQVDSNIKGDKIT 142

Query: 137 YNTKTE 142 Sbict: 143 YLVKEQ 148

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 749>:

```
1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
     GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT
     CAATGTTACA CGCGGCGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
    CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
     AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGCC GAAGGTGCGG
351
     TGATTACATA CAACACCAAA ACCGAAGTCT ATACCATCAG CGGCAGCACA
401
451 AAATCCGGCG CAAAATCCGC TTCCAAATCC GGCAGGGTCA GCGTCGTTAT
    CCAGCCTTCG AGTACGCAAA AATCCGAATA A
```

This corresponds to the amino acid sequence <SEQ ID 750; ORF 214-1.a>: a214-1.pep

1 MIQKICKLEV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS

495

```
51 GNVVIRQGTL NISAARVNVT RGGKGGESVR AEGSPVRFSQ TLDGGKGTVR
```

GQANNVAYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTISGST 101

151 KSGAKSASKS GRVSVVIQPS STQKSE*

```
a214-1/m214-1 100.0% identity in 176 aa overlap
```

```
10
          MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
 a214-1.pep
          MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
 m214-1
                        20
                               30
                                       40
                10
                                      100
                                             110
                        80
                               90
                70
          NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
 a214-1.pep
          NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
 m214-1
                                             110
                                      100
                               90
                70
                        80
                                      160
                               150
                       140
                130
          AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
 a214-1.pep
          AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
. m214-1
                               150
                                      160
                       140
                130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 751>:

```
g215.seq
         atgaaagtaa gatggcggta cggaattgcg ttcccattga tattggcggt
         tgccttgggc agcctgtcgg catggttggg ccgtatcagc gaagtcgaaa
      51
         tcgaggaagt caggctcaat cccgacgaac ctcaatacac aatggacggc
     101
     151 ttggacggaa ggcggtttga cgaacaggga tacttgaaag aacatttgag
     201 cgcgaaaggt gcgaaacagt ttcccgaaaa cagcgacatc cattttgatt
     251 cgccgcatct cgtgttcttc caagaaggca ggctgttgta cgaagtcggc
     301 agcgatgaag ccgtttacca taccgaaaac aaacaggttc tttttaaaaa
     351 caacgttgtg ctgaccaaaa ccgccgacgg caggcggcag gcgggtaaag
     401 togaaacega aaaactgcac gtogataceg aatetcaata tgcccaaace
     451 gatacgcctg tcagtttcca atatggcgcg tcgcacggtc aggcgggcgg
```

501 tatgacctac aaccacaaaa caggcatgtt gaacttctca tctaaagtga 551 aagccgcgat ttatgataca aaagatatgt aa

This corresponds to the amino acid sequence <SEQ ID 752; ORF 215.ng>:

g215.pep

MKVRWRYGIA FPLILAVALG SLSAWLGRIS EVEIEEVRLN PDEPQYTMDG 51 LDGRRFDEQG YLKEHLSAKG AKQFPENSDI HFDSPHLVFF QEGRLLYEVG

101 SDEAVYHTEN KQVLFKNNVV LTKTADGRRQ AGKVETEKLH VDTESQYAQT

151 DTPVSFQYGA SHGQAGGMTY NHKTGMLNFS SKVKAAIYDT KDM*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 753>: m215.seq (partial)

- .. AGCCTGTCGG CATGGTTGGG TCGTATCAGC GAAGTCGAGA TTGAAGAAGT 1 CAGGCTCAAT CCCGACGAAC CGCAATACAC AATGGACAGC TTGGACGGCA 51 GGCGGTTTGA CGAACAGGGA TACTTGAAAG AACATTTGAG CGCGAAGGGC 101 GCGAAACAGT TTCCGGAAAG CAGCGACATC CATTTTGATT CGCCGCATCT 151 CGTGTTCTTC CAAGAAGGCA GGTTGTTGTA CGAAGTCGGC AGCGACGAAG 201 CCGTTTACCA TACCGAAAAC AAACAGGTTC TTTTTAAAAA CAACGTTGTG 251 CTGACCAAAA CCGCCGACGG CAAACGGCAG GCGGGTAAAG TTGAAGCCGA 301 AAAGCTGCAC GTCGATACCG AATCTCAATA TGCCCAAACC GATACGCCTG 351 CAGTTTCCA ATATGGTGCA TCGCACGGTC AGGCGGGCGG CATGACTTAC 401 GACCACAWWA CAGGCATGTT GAACTTCTCA TCTAAAGTGA AAGCCACGAT 451 TTATGATACA AAAGATATGT AA
- This corresponds to the amino acid sequence <SEQ ID 754; ORF 215>:

m215.pep (partial)

..SLSAWLGRIS EVEIEEVRLN PDEPQYTMDS LDGRRFDEQG YLKEHLSAKG AKQFPESSDI HFDSPHLVFF QEGRLLYEVG SDEAVYHTEN KQVLFKNNVV 51 LTKTADGKRQ AGKVEAEKLH VDTESQYAQT DTPVSFQYGA SHGQAGGMTY 101

```
DHXTGMLNFS SKVKATIYDT KDM*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 215 shows 96.0% identity over a 173 aa overlap with a predicted ORF (ORF 215.ng)
from N. gonorrhoeae:
     m215/g215
                                                                       40
                                                              30
                                                    20
                                           10
                                    SLSAWLGRISEVEIEEVRLNPDEPQYTMDSLDGRRFDEQG
     m215.pep
                                    MKVRWRYGIAFPLILAVALGSLSAWLGRISEVEIEEVRLNPDEPQYTMDGLDGRRFDEQG
     g215
                                                                       60
                                                    40
                                           30
                                                              90
                                                                      100
                                  60
                                           70
                                                     80
                         50
                 YLKEHLSAKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV
     m215.pep
                 YLKEHLSAKGAKQFPENSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV
     g215
                                                             110
                                                    100
                                  80
                                           90
                         70
                                                    140
                                                             150
                                 120
                                          130
                        110
                 LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHXTGMLNFS
     m215.pep
                 LTKTADGRRQAGKVETEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYNHKTGMLNFS
     q215
                                                    160
                                                             170
                                 140
                                           150
                        130
                        170
                 SKVKATIYDTKDMX
     m215.pep
                  11111:1111111
                  SKVKAAIYDTKDM
     q215
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 755>:
     a215.seq
               ATGAAAGTAA GATGGCGGTA CGGAATTGCG TTCCCATTGA TATTGGCGGT
               TGCCTTGGGC AGCCTGTCGG CATGGTTGGG ACGCATCAGC GAAGTCGAGA
           51
               TTGAAGAAGT CAGGCTCAAT CCCGACGAAC CGCAATACAC AATGGACGGA
          101
               TTGGATGGCA GGCGGTTTGA CGAACAGGGA TACTTGAAAG AACATTTGAG
          151
               TTCGAAGGGC GCGAAACAGT TTCCCGAAAG CAGCGACATT CATTTCGACT
          201
               CACCGCATCT CGTGTTCTTC CAAGAAGGCA GGTTGTTGTA CGAAGTCGGC
          251
          301 AGCGATGAAG CCGTTTACCA TACCGAAAAC AAACAGGTTC TTTTTAAAAA
          351 CAACGTTGTG CTGACCAAAA CCGCCGACGG CAAACGGCAG GCGGGTAAAG
          401 TTGAAGCCGA AAAGCTGCAC GTCGATACCG AATCTCAATA TGCCCAAACC
               GATACGCCTG TCAGTTTCCA ATATGGTGCA TCGCACGGTC AGGCGGGCGG
          451
          501 CATGACTTAC GACCACAAAA CAGGCATGTT GAACTTCTCA TCTAAAGTGA
               AAGCCACGAT TTATGATACA AAAGATATGT AA
 This corresponds to the amino acid sequence <SEQ ID 756; ORF 215.a>:
      a215.pep
               MKVRWRYGIA FPLILAVALG SLSAWLGRIS EVEIEEVRLN PDEPQYTMDG
               LDGRRFDEQG YLKEHLSSKG AKQFPESSDI HFDSPHLVFF QEGRLLYEVG
            51
               SDEAVYHTEN KQVLFKNNVV LTKTADGKRQ AGKVEAEKLH VDTESQYAQT
               DTPVSFQYGA SHGQAGGMTY DHKTGMLNFS SKVKATIYDT KDM*
 m215/a215 98.3% identity in 173 aa overlap
                                                                         40
                                                      20
                                                               30
                                     SLSAWLGRISEVEIEEVRLNPDEPQYTMDSLDGRRFDEQG
      m215.pep
                                     MKVRWRYGIAFPLILAVALGSLSAWLGRISEVEIEEVRLNPDEPQYTMDGLDGRRFDEQG
      a215
                                             30
                                                      40
                                                               50
                                                                         60
                                   20
                          10
                                                                        100
                                             70
                          50
                                   60
```

YLKEHLSAKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV

m215.pep

497

```
YLKEHLSSKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV
    a215
                                                    100
                                                              110
                         70
                                            90
                                                    140
                                                              150
                                                                        160
                                 120
                                           130
                        110
                 LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHXTGMLNFS
    m215.pep
                 LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHKTGMLNFS
     a215
                                           150
                                                    160
                        130
                                 140
                        170
                 SKVKATIYDTKDMX
    m215.pep
                 SKVKATIYDTKDMX
     a215
                        190
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 757>:
     g216.seq (partial)
              ..atgatatcga tttcgagctc ggtacccagc gacgaaatca ccgccatcat
           1
                coccgcacte aaacgcaaag acattaccet cgtctgcate accgcccgcc
                ccgattcaac catggcgcgc catgccgata tccacatcac cgcatcggtt
          101
                tcgcaagaag cctgcccgtt ggggcttgcc ccgaccacca gcaccaccgc
          151
                cgttatggct ttgggcgacg cgttggcggt cgtcctgctg cgcgcccgcg
                cqttcacqcc cgacqacttc gccttgatcc accctgccgg cagcctcggc
          251
                aaacgcctgc ttttgcgcgt tgccgacatt atgcacaaag gcggcggcct
          301
                geoegeegte egacteggea egecettgaa aggageeate gteageatga
          351
                gcgagaaagg tttgggcatg tgggcgggaa cggacgggca aaggctgtct
          401
                gaaaggcctt tttactga
          451
This corresponds to the amino acid sequence <SEQ ID 758; ORF 216.ng>:
     g216.pep (partial)
              ..MISISSSVPS DEITAIIPAL KRKDITLVCI TARPDSTMAR HADIHITASV
           1
                 SQEACPLGLA PTTSTTAVMA LGDALAVVLL RARAFTPDDF ALIHPAGSLG
                 KRLLLRVADI MHKGGGLPAV RLGTPLKGAI VSMSEKGLGM WAGTDGQRLS
          101
          151
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 759>:
     m216.seq
              ATGGCAATGG CAGAAAACGG AAAATATCTC GACTGGGCAC GCGAAGTGTT
              GCACGCCGAA GCGGAAGGCT TGCGCGAAAT TGCAGCGGAA TTGBACAAAA
          101 ACTTCGTCCT TGCGGCAGAC GCGTTGTTGC ACTGCAAGGG CAGGGTCGTT
          151 ATCACGGGCA TGGTCAAGTC GGGACATATC GGGCGCAAAA TGGCGGCAAC
          201 TATGGCCTCG ACCGGCACGC CTGCGTTTTT CGTCCACCCT GCGGAAGCGG
          251 CACACGGCGA TTTGGGTATG ATTGTGGACA rCGACGTGGT CGTCGCGATT
          301 TCCAATTCCG GCGAAAGCGA CGAAATCGCC GCCATCATCC CCGCACTCAA
          351 ACGCAAAGAC ATCACGCTTG TCTGCATCAC CGCCCGCCCC GATTCAACCA
          401 TGGCGCGCCA TGCCGACATC CACATCACGG CGTCGGTTTC CAAAGAAGCC
          451 TGCCCGCTGG GGCTTGCCCC GACCACCAGC ACCACCGCCG TCATGGCTTT
          501 GGGCGATGCG TTGGCGGTCG TCCtGCTGCG CgcACGCGCG TTCACGCCCG
          551 ACGATTTCGC CTTGAGCCAT CCTGCCGGCA GCCTCGGCAA ACGCCTACTT
          601 TTGCGCGTTG CCGACATTAT GCACAAAGGC GGCGGCCTGC CTGCCGTCCG
          651 ACTCGGCACG CCCTTGAAAG AAGCCATCGT CAGCATGAGT GAAAAAGGGC
          701 TGGGCATGTT GGCGGTAACG GACGGGCAAG GCCGTCTGAA AGGCGTATTC
          751 ACCGACGGCG ATTTGCGCCG CCTGTTTCAA GAATGCGACA ATTTTACCGG
          801 TCTTTCGATA GACGAAGTCA TGCATACGCA TCCTAAAACC ATCTCCGCCG
          851 AACGTCTCGC CACCGAAGCC CTGAAAGTCA TGCAGGCAAA CCATGTGAAC
          901 GGGCTTCTGG TTACCGATGC AGATGGCGTG CTGATCGGCG CGCTGAATAT
          951 GCACGACCTG CTGGCGGCAC GGATTGTATA G
This corresponds to the amino acid sequence <SEQ ID 760; ORF 216>:
     m216.pep
```

MAMAENGKYL DWAREVLHAE AEGLREIAAE LXKNFVLAAD ALLHCKGRVV

498

```
51 ITGMVKSGHI GRKMAATMAS TGTPAFFVHP AEAAHGDLGM IVDXDVVVAI
         101 SNSGESDEIA AIIPALKRKO ITLVCITARP DSTMARHADI HITASVSKEA
         151 CPLGLAPTTS TTAVMALGDA LAVVLLRARA FTPDDFALSH PAGSLGKRLL
         201 LRVADIMHKG GGLPAVRLGT PLKEAIVSMS EKGLGMLAVT DGQGRLKGVF
              TDGDLRRLFQ ECDNFTGLSI DEVMHTHPKT ISAERLATEA LKVMQANHVN
             GLLVTDADGV LIGALNMHDL LAARIV*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 216 shows 91.8% identity over a 147 aa overlap with a predicted ORF (ORF 216.ng)
from N. gonorrhoeae:
     m216/g216
                                                         110
                                       90
                                               100
                   70
                 TMASTGTPAFFVHPAEAAHGDLGMIVDXDVVVAISNSGESDEIAAIIPALKRKDITLVCI
     m216.pep
                                              MISISSSVPSDEITAIIPALKRKDITLVCI
     q216
                                                               20
                                                      10
                                                         170
                                                                   180
                                               160
                                      150
                   130
                            140
                  TARPDSTMARHADIHITASVSKEACPLGLAPTTSTTAVMALGDALAVVLLRARAFTPDDF
     m216.pep
                  TARPDSTMARHADIHITASVSQEACPLGLAPTTSTTAVMALGDALAVVLLRARAFTPDDF
     g216
                                                      70
                                                                         90
                                             60
                         40
                                   50
                                                                   240
                                                220
                                                         230
                            200
                                      210
                   190
                  {	t ALSHPAGSLGKRLLLRVADIMHKGGGLPAVRLGTPLKEAIVSMSEKGLGMLAVTDGQGRL}
     m216.pep
                  ALIHPAGSLGKRLLLRVADIMHKGGGLPAVRLGTPLKGAIVSMSEKGLGMWAGTDGQRLS
     g216
                                                                         150
                                                     130
                                                               140
                                            120
                                  110
                         100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 761>:
     a216.seq
               ATGGCGATGG CAGGAAACGA AAAATATCTT GATTGGGCAC GCGAAGTGTT
            1
               GCACACCGAA GCGGAAGGCT TGCGCGAAAT TGCGGCGGAT TTGGACGAAA
           51
               ACTTCGCCCT TGCGGCGGAC GCGTTGTTGC ACTGCAAAGG CAGGGTCGTT
          101
          151 ATCACGGGCA TGGGCAAGTC GGGACATATC GGGCGCAAAA TGGCGGCAAC
               CATGGCCTCG ACCGGCACGC CCGCGTTTTT CGTCCACCCT GCGGAAGCGG
               CACACGGCGA TTTGGGCATG ATTGTGGACA ACGACGTGGT CGTCGCGATT
          251
               TCCAATTCCG GTGAAAGCGA CGAAATCGCC GCCATCATCC CCGCGCTCAA
           301
           351 ACGCAAAGAT ATCACGCTTG TCTGCATCAC CGCCCGCCCC GATTCAACCA
           401 TGGCGCGCCA TGCCGACATC CACATCACGG CGTCGGTTTC CAAAGAAGCC
               TGCCCGCTGG GGCTTGCCCC GACCACCAGC ACCACCGCCG TTATGGCTTT
           451
           501 GGGCGATGCG TTGGCGGTTG TCCTGCTGCG CGCCCGCGCG TTCACGCCCG
           551 ACGACTTCGC CTTGAGCCAC CCTGCCGGCA GCCTCGGCAA ACGCCTACTT
               TTGCGCGTTG CCGACATTAT GCACAAAGGC GGCGGCCTGC CTGCCGTCCG
           601
               ACTCGGCACG CCCTTGAAAG AAGCCATCGT CAGCATGAGT GAAAAAGGGC
           651
               TGGGCATGTT GGCGGTAACG GACGGGCAAG GCCGTCTGAA AGGCGTATTC
           701
           751 ACCGACGGCG ATTTGCGCCG CCTGTTTCAA GAATGCGACA ATTTTACCGG
               TCTTTCGATA GACGAAGTCA TGCATACGCA TCCTAAAACC ATCTCCGCCG
               AACGTCTCGC CACCGAAGCC CTGAAAGTCA TGCAGGCAAA CCATGTGAAC
           851
                GGGCTTCTGG TTACCGATGC AGATGGCGTG CTGATCGGCG CGCTGAATAT
               GCACGACCTT TTGGCGGCGC GGATTGTATA G
 This corresponds to the amino acid sequence <SEQ ID 762; ORF 216.a>:
      a216.pep
             1 MAMAGNEKYL DWAREVLHTE AEGLREIAAD LDENFALAAD ALLHCKGRVV
                ITGMGKSGHI GRKMAATMAS TGTPAFFVHP AEAAHGDLGM IVDNDVVVAI
            51
                SNSGESDEIA AIIPALKRKD ITLVCITARP DSTMARHADI HITASVSKEA
           101
                CPLGLAPTTS TTAVMALGDA LAVVLLRARA FTPDDFALSH PAGSLGKRLL
           151
                LRVADIMHKG GGLPAVRLGT PLKEAIVSMS EKGLGMLAVT DGQGRLKGVF
                TDGDLRRLFQ ECDNFTGLSI DEVMHTHPKT ISAERLATEA LKVMQANHVN
```

301 GLLVTDADGV LIGALNMHDL LAARIV*

m216	(/a216 97.2%	identity in 326	aa overlap				
111210)/a210	10	20	30	40	50	60
	m216.pep	MAMAENGKYLDWAI	REVLHAEAEGLE	EIAAELXKN	FVLAADALLH	CKGRVVITGM	VKSGHI
	IIIZIO.pep				1:11111111	111111111	11111
	a216	MAMAGNEKYLDWA	REVLHTEAEGLE	REIAADLDEN	IFALAADALLH	CKGRVVITGM	GKSGHI 60
		10	20	30	40	50	60
		70	80	90	100	110	120
- 555° -	016	GRKMAATMASTGT	PAFFVHPAEAAI	HGDLGMIVD	DVVVAISNSG	ESDEIAAIIP	ALKRKD
	m216.pep			11111111	3111111111	1111111111	11111
	a216	GRKMAATMASTGT	PAFFVHPAEAAI	HGDLGMIVD	NDVVVAISNSG	ESDEIAAIIF	ALKRKD
	2210	70	80	90	100	110	120
			•		1.60	170	180
		130 ITLVCITARPDST	140	150	160 ממשפתים איי		
	m216.pep	ITLVCITARPDST	MARHADIHITA	SVSKEACPLO	11111111111111111111111111111111111111	IIIIIIIIIIII	
		ITLVCITARPDST		TITITITE COLU	T.APTTSTTAV	MALGDALAV	/LLRARA
	a216	130	140	150	160	170	180
		130	110				
		190	200	210	220	230	240
	m216.pep	FTPDDFALSHPAG	SLGKRLLLRVA	DIMHKGGGL	PAVRLGTPLKI	EAIVSMSEKGI	LGMLAVT
			111111111111	111111111	1111111111	,,,,,,,,,,,	111111
	a216	FTPDDFALSHPAG	SLGKRLLLRVA	DIMHKGGGL	PAVRLGTPLKI	EAIVSMSEKG 230	240
		190	200	210	220	230	240
		250	260	270	280	290	300
		DGQGRLKGVFTDG	DLRRLFOECDN	FTGLSIDEV	MHTHPKTISA	ERLATEALKV	MOANHVN
	m216.pep			1111111111	111111111	11111111	111111
	a216	DGQGRLKGVFTDC	DLRRLFQECDN	FTGLSIDEV	MHTHPKTISA	ERLATEALKV	MOANHVN
	4210	250	260	270	280	290	300
		310	320				
	m216.pep	GLLVTDADGVLI	SALNMHDLLAAI	KTAX			
				IIII PTVY			
	a216	GLLVTDADGVLIC	320	VT AV			
		310	320				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 763>: g217.seq

```
atggcggatg acggtttgtt gcggcaactg tccgaaaaac ccagccaaag
 51 tgctctcttc ctgccatttg acccattcgt tttcgaggtt ttggactgcc
101 ttttggtcat cgggcccggc ttgaaacaat gtttcaagca aatcccggca
151 acgegecace cattegecga cegtegeagg ttgeegecat ateegggeaa
201 tatccgacag ggtttcgagg aaggcggcaa aacgtccgaa catggcggtt
251 tgattcacgt cggcatacca cgcgctgaca tcctgccaca tcgggttgcc
301 gccttcgggc agcatccagc ccaatatcat acggtctgcc gcctgcttcc
351 aggtaaacag ctgatccgtg ccgccgcgca tttctccgtc caatccccaa 401 tggacgttca aatcggcaac catatcgtgc aaaagcggca aatcgtcccc
451 ggtcagtccg aaacggcgca acacgggcgc ggtttccaaa agcgcgagca
501 ctttgccgac ttcaaaacgg ctttccagca agtcggacac gcactccaac
551 gcataaaaaa acggttgccg gcggctgatt ttcacgtccg aaacggaata
601 cggcaatgcc tgcgcgccgg gttgcgcctg tccgaacacg gcttccataa
651 aaggcgtata gggttcgata ttcggggtta a
```

This corresponds to the amino acid sequence <SEQ ID 764; ORF 217.ng>: g217.pep..

- 1 MADDGLLRQL SEKPSQSALF LPFDPFVFEV LDCLLVIGPG LKQCFKQIPA
- 51 TRHPFADRRR LPPYPGNIRQ GFEEGGKTSE HGGLIHVGIP RADILPHRVA
- 101 AFGQHPAQYH TVCRLLPGKQ LIRAAAHFSV QSPMDVQIGN HIVQKRQIVP
- 151 GQSETAQHGR GFQKREHFAD FKTAFQQVGH ALQRIKKRLP AADFHVRNGI

```
201 ROCLRAGLRL SEHGFHKRRI GFDIRG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 765>:
m217.seq
         ATGGCGGATG ACGGTGTGCG GCGGCAACTG TCCGGAAAAT TGCGCCAATT
      1
     51 CGGTTTCCGC CTrCCATTTG ACCCATTCGT TTTCAAGGTT TTGGACTGAC
    101 TTTTGGTCAT CGGCTTCAGC TTGGAACAAT GTTTCAAGCA AATCCCGGCA
    151 ACGCGCCACC CATTCGCCGA CCGTTGCGGG CTGCCGCCAT ATCCGTACAA
    201 TATCCGTCAG GGTTTCGAGG AAGGCGGCAA AACGTCCGAA CATGGCGGTT
         TGATTCACGT CGGCATACCA CGCGCTGACA TCCTGCCACA TCGGATTGCC
    301 GCCTTTGGGC AGCATCCAGC CCAATATCAT GCGTTCTACC GCCTGCTTCC
    351 AGGTGAACAG CTGATCCGTG CCGCCGCGCA TTTCTCCGTC CAAACCCCAG
     401 TGGACGTTCA AATCGGCAAC CATGTCGTGC AAAAGCGGTA AATCGTCCTC
     451 AGTCAGTCCG AAACGGCGCA ACACGGGCGC GGTTTCTAAA AGCACAAGCA
         CTTTATCGAC TTCAAATCGG CTTTCCAACA AGTCGAACAG GCATGACAAA
     501
     551 GCATGAAACA GCGGTTGGCG GCGGCTGATT TTCACGTCTG ACACGGAATA
     601 CGGCAATGCC TGCGCACCGG GCtGCGCCTG TCCGAACACG GCTTCGATAA
     651 AAGGCGTATA GGATTCGATA TTCGGGGTTA A
This corresponds to the amino acid sequence <SEQ ID 766; ORF 217>:
m217.pep
         MADDGVRRQL SGKLRQFGFR LPFDPFVFKV LDXLLVIGFS LEQCFKQIPA
      51 TRHPFADRCG LPPYPYNIRQ GFEEGGKTSE HGGLIHVGIP RADILPHRIA
     101 AFGQHPAQYH AFYRLLPGEQ LIRAAAHFSV QTPVDVQIGN HVVQKRXIVL
         SQSETAQHGR GFXKHKHFID FKSAFQQVEQ AXQSMKQRLA AADFHVXHGI
     201 RQCLRTGLRL SEHGFDKRRI GFDIRG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 217 shows 80.5% identity over a 226 aa overlap with a predicted ORF (ORF 217.ng)
from N. gonorrhoeae:
m217/g217
                                                         50
                                                                  60
                                       30
                                                40
                    10
                             20
            {\tt MADDGVRRQLSGKLRQFGFRLPFDPFVFKVLDXLLVIGFSLEQCFKQIPATRHPFADRCG}
m217.pep
            MADDGLLRQLSEKPSQSALFLPFDPFVFEVLDCLLVIGPGLKQCFKQIPATRHPFADRRR
g217
                                                40
                    10
                             20
                                       30
                                       90
                                               100
                                                        110
                              80
            LPPYPYNIRQGFEEGGKTSEHGGLIHVGIPRADILPHRIAAFGQHPAQYHAFYRLLPGEQ
 m217.pep
             LPPYPGNIRQGFEEGGKTSEHGGLIHVGIPRADILPHRVAAFGQHPAQYHTVCRLLPGKQ
 g217
                                                        110
                                               100
                    70
                              80
                                       90
                                                        170
                                      150
                                               160
                             140
             \verb|LiraaahfsvQtpvdvQignhvvQkrxivlsQsetaQhgrgfxkhkhfidfksafQQveQ|
 m217.pep
             LIRAAAHFSVQSPMDVQIGNHIVQKRQIVPGQSETAQHGRGFQKREHFADFKTAFQQVGH
 g217
                                               160
                                      150
                   130
                             140
                             200
                                      210
                                               220
                    190
             AXQSMKQRLAAADFHVXHGIRQCLRTGLRLSEHGFDKRRIGFDIRGX
 m217.pep
             ALORIKKRLPAADFHVRNGIRQCLRAGLRLSEHGFHKRRIGFDIRG
 g217
                    190
                             200
                                      210
                                               220
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 767>:
      a217.seq
               GTGGCGGATG ACGGTGTGCA GCGGCAACTG TCCGGAAAAT TGCGCCAATT
           51 CGGTTTCCGC CTGCCATTTG ACCCATTCGT TTTCGAGGCT TTGGACTGCC
```

101 TTTTGGTCAT CGCCTTCGAC TTGGAACAAT GTTTCAAGCA AATCCCGGCA
151 ACGCGCCACC CATTCGTCAA CCGTCGCAGG TTGCCGCCAT ATCCGTACAA

```
201 TATCCGTCAG GGTTTCGAGG AAGGCGGCAA AACGTCCGAA CAGGGCGGTT
251 TGGTTCACGT CGGCATACCA CGCGCTGACC CCCTGCCACA TCGGATTGCC
301 GCCTTCGGGC AGCATCCAGC CCAATATCAT GCGTTCTACC GCCTGCTTCC
351 AGGTGAACAG CTGATCCGTG CCGCCGCGCA TTTCTCCGTC CAAACCCCAG
401 CGGACGTTCA AATCGGCAAC CATGTCGTGC AAAAGCGGCA AATCGTCCTC
451 AGTCAGTCCG AAATGGCGCA ACACGGGCGC GGTTTCTAAA AGCACAAGCA
501 CTTTATCGAC TTCAAATCGG CTTTCCAACA AGTCGAACAG GCATGACAAA
551 GCATGAAACA GCGGTTGTCG GCGGCTGATT TTCACATCCG AAACGGAATA
601 CGGCAATGCC TGCGCGCCGG GCTGCGCCTG TCCGAACACG GCTTCGATAA
651 AAGGCGTATA GGATTCGATA TTCGGGGTTA A
```

This corresponds to the amino acid sequence <SEQ ID 768; ORF 217.a>:

a217.pep

VADDGVQRQL SGKLRQFGFR LPFDPFVFEA LDCLLVIAFD LEQCFKQIPA 51 TRHPFVNRRR LPPYPYNIRQ GFEEGGKTSE QGGLVHVGIP RADPLPHRIA

101 AFGQHPAQYH AFYRLLPGEQ LIRAAAHFSV QTPADVQIGN HVVQKRQIVL

151 SQSEMAQHGR GF*KHKHFID FKSAFQQVEQ A*QSMKQRLS AADFHIRNGI

201 RQCLRAGLRL SEHGFDKRRI GFDIRG*

```
m217/a217 90.3% identity in 226 aa overlap
```

//azi/ 90.	376 Identity III 2	20 44 010	niap.			
	10	20	30	40	50	60
m217.pep	MADDGVRRQLSGKL	RQFGFRLPFI	PFVFKVLDXI	LVIGFSLEQC	FKQIPATRHP	FADRCG
mz1pcp		[1111111111	111111::11 1	111:1:111	111111111	1::1
a217	VADDGVQRQLSGKL	ROFGFRLPFI	OPFVFEALDCI	LVIAFDLEQC	FKQIPATKHP	FANKKK
0211	10	20	30	40	50	60
	70	80	90	100	110	120
m217.pep	LPPYPYNIRQGFEE	GGKTSEHGGI	LIHVGIPRADI	(LPHRIAAFG()HPAQYHAFYF	LLPGEO
mil I pep		111111:11	1:1111111		[[]]]]]]]	11111
a217	LPPYPYNIRQGFEE	GGKTSEQGG	LVHVGI PRADI	PLPHRIAAFG(HPAQYHAFYF	ULLPGEO
421,	70	80	90	100	110	120
	130	140	150	160	170	180
m217.pep	LIRAAAHFSVQTPV	DVQIGNHVV	QKRXIVLSQS:	etaqhgrgfxi	KHKHFIDFKS/	AFQQVEQ
MCI / POP		THEFT	111 111111	1 11111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111
a217	LIRAAAHFSVQTPA	DVQIGNHVV	QKRQIVLSQS:	emaqhgrgfx1	KHKHFIDFKSI	AFQQVEQ
	130	140	150	160	170	180
	190	200	210	220		
m217.pep	AXQSMKQRLAAADE	HVXHGIRQC	LRTGLRLSEH	GFDKRRIGFD	IRGX	
	111111111111111	11::11111	11:111111	11111111111	1111	
a217	AXQSMKQRLSAADI	HIRNGIRQC	LRAGLRLSEH	GFDKRRIGFD	IRGX	
	190	200	210	220		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 769>:

```
g218.seq
      1 atggttgcgg tggatcctta tacggcaaaa gtggtcaaca ccatgccgcg
      51 caatcagggt tggtatcaca ctatggatga aatccacggc gatatgatgc
     101 tcggtgcggc aggcgattat cttttggaaa cggcagcttc actgaccatt
          attatggttg tcagcggctt gtacctttgg tgggcgaaac agcgcggcat
     151
     201 taaagcgatg ctgctgccgc caaaaagcag ggcgcgttct tggtggcgga
     251 atctgcacgg cgcgtttgga acttgggtgt cgttgatttt actgttgttc
     301 tgcctgtcgg gtattgcttg ggcaggtatt tggggcggca aattcgtgca
     351 ggcttggaat cagttcccgg ccggcaaatg gggtgtcgaa ccgaaccccg
     401 tttcaatcgt gccgacccac ggcgaggtat tgaatgacgg caaggttaag
          gaagtgccgt ggattttgga gcttatgcct atgcctgtct cagggacgac
     501 tgtgggtgaa aacggcatta accccaccga gcccaataac attggaaacc
     551 gtcgaccgtt tcgcgcggga aatcggtttc aaagggcgtt atcagttgaa
     601 tttgcccaaa ggcgaggacg gggtatggac tttgtcgcag gattctatga
     651 gttatga
```

This corresponds to the amino acid sequence <SEQ ID 770; ORF 218.ng>: g218.pep

1 MVAVDPYTAK VVNTMPRNQG WYHTMDEIHG DMMLGAAGDY LLETAASLTI

502

```
IMVVSGLYLW WAKQRGIKAM LLPPKSRARS WWRNLHGAFG TWVSLILLLF
         101 CLSGIAWAGI WGGKFVQAWN QPPAGKWGVE PNPVSIVPTH GEVLNDGKVK
         151 EVPWILELMP MPVSGTTVGE NGINPTEPNN IGNRRPFRAG NRFQRALSVE
         201 FAQRRGRGMD FVAGFYEL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 771>:
     m218.seq
              ATGGTCGCGG TCGATCCTTA TACGGCAAAA GTGGTCAGTA CCATGCCGCG
           51 CAATCAGGGT TGGTATTACA CGATGGATGA AATCCACAGC GATATGATGC
              TCGGTGCGGC AGGCGATTAT CTTTTGGAAA CGGCAGCTTC ACTGACCATT
          101
          151 ATTATGGTTG TCAGCGGCTT GTACCTTTGG TGGGTGAAAC GGCGCGGCAT
          201 CAAGGCGATG CTGCTGCCGT CAAAAGGCAr GGCGCGTTCT TGGTGGCGGA
          251 ATCTGCACGG CACGTTTGGA ACTTGGGTGT CGTTGATTTT GCTGTTGTTC
         301 TGCCTGTCGG GTATTGCTTG GGCGGGTATT TGGGGCGGCA AGTTCGTACA
          351 GGCTTGGAGT CAGTTCCCTG CCGGTAAATG GGGTGTCGAA CCGAACCCCG
              TTTCAGTCGT GCCGACCCAC GGCGAGGTAT TGAATGACGG CAAGGTTAAG
          451 GAAGTGCCGT GGGTTTTGGA GCTTACGCCT ATGCCTGTTT CAGGGACGaC
          501 yGtgGGCAAA GACGGCATTA ACCCTGACGA GCCGATGACA TTGGAAACCG
              TCGACCGCTT TGCGCGGnGA AATCGGTTTC AAAGGGCGTT ATCAGTTGAA
          601 TTTGCCCAAA GGCGAGGACG GCGTATGGAC TTTGTCGCAG GATTCTATGA
          651
This corresponds to the amino acid sequence <SEQ ID 772; ORF 218>:
     m218.pep
              MVAVDPYTAK VVSTMPRNQG WYYTMDEIHS DMMLGAAGDY LLETAASLTI
               IMVVSGLYLW WVKRRGIKAM LLPSKGXARS WWRNLHGTFG TWVSLILLLF
           51
          101 CLSGIAWAGI WGGKFVQAWS QFPAGKWGVE PNPVSVVPTH GEVLNDGKVK
          151 EVPWVLELTP MPVSGTTVGK DGINPDEPMT LETVDRFARX NRFQRALSVE
          201 FAORRGRRMD FVAGFYEL
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 218 shows 87.2% identity over a 218 aa overlap with a predicted ORF (ORF 218.ng)
from N. gonorrhoeae:
     m218/g218
                                                                50
                                   20
                                            30
                                                      40
                          10
                  MVAVDPYTAKVVSTMPRNQGWYYTMDEIHSDMMLGAAGDYLLETAASLTIIMVVSGLYLW
     m218.pep
                  MVAVDPYTAKVVNTMPRNQGWYHTMDEIHGDMMLGAAGDYLLETAASLTIIMVVSGLYLW
      g218
                                                      40
                                                                50
                                            30
                                   20
                          10
                                                    120
                                           110
                         90
                                 100
      70
                  WVKRRGIKAMLLPSKGXARSWWRNLHGTFGTWVSLILLLFCLSGIAWAGIWGGKFVQAWS
      m218.pep
```

WAKQRGIKAMLLPPKSRARSWWRNLHGAFGTWVSLILLLFCLSGIAWAGIWGGKFVQAWN g218 110 100 80 90 70 170 160 150 130 140 QFPAGKWGVEPNPVSVVPTHGEVLNDGKVKEVPWVLELTPMPVSGTTVGKDGINPDEPMT m218.pep QFPAGKWGVEPNPVSIVPTHGEVLNDGKVKEVPWILELMPMPVSGTTVGENGINPTEPNN q218 170 140 150 160 130 200 210 190 LETVDRFARXNRFQRALSVEFAQRRGRRMDFVAGFYEL m218.pep IGNRRPFRAGNRFQRALSVEFAQRRGRGMDFVAGFYEL g218 200 210 190

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 773>:

a218.seq						
a210.869 1	ATGGTCGCGG	TCGATCCTTA	TACGGCAAAA	GTGGTCAGTA	CCATGCCG	CG
51	CAATCAGGGT	TGGTATTACG	CGATGGATGA	AATCCACAGC	GATATGAT	'GC
101	TCGGTTCGAC	AGGTGATTAT	CTTTTGGAAA	CGGCTGCATC	GCTGACGA	TT
151	NTCNTCNTAN	TCAGCGGTTT	GTACCTTTGG	TGGGTGAAAC	GGCGCGGC	CAT
201	CARCCCCATG	CTGCTGCCGC	CAAAAGGCAG	GGCGCGTTCT	TGGTGGCG	GA
251	AMCMCCACCC	CGCGTTTGGA	ACTTGGGTGT	CGTTGATTTT	ACTGTTGT	TC
301	MCCCMCTCCC	GTATTGCTTG	GGCAGGTATT	TGGGGCGGCA	AGTTCGTC	CA
301	CCCTTCCACT	CAGTTCCCGG	CAGGCAAATG	GGGTGTCGAA	CCGAACCC	CTG
	MDMCACECCT	GCCGACCCAC	CCCCACCTAT	TGAATGACGG	CAAGGTT	AAG
. 401	CARCTCCCCT	GGGTTTTGGA	GCTTACGCCT	ATGCCTGTTT	CAGGGACO	SAC
451 501	GAAGIGCCG1	GACGGTATTA	ACCCTGACGA	GCCGATGACA	TTGGAAAC	CCG
• • •	TGTGGGCAAA	TGCGCGG.GA	AATCGGTTTC	AAAGGGCGTT	ATCAGCTO	SAA
551	TCGACCG111	GGCGAGGACG	GCGTATGGAC	TTTGTCGCAG	GATTCTAT	rga -
601 651	GTTA	GGCGAGGAOC	0002111			
927	GIIA		•			
This correspond	s to the amir	o acid seque	ence <seo i<="" th=""><th>D 774; ORF</th><th>218.a>:</th><th></th></seo>	D 774; ORF	218.a>:	
a218.pep	D to the think			•		
	MUNUOVTAV	VVSTMPRNQG	WYYAMDETHS	DMMLGSTGDY	LLETAAS!	LTI
1 51	TMTTCCIVIW	WVKRRGIKAM	I.I.PPKGRARS	WWRNLHGAFG	TWVSLIL	LLF
	TMITIGHTEM	WGGKFVQAWS	OFPACKWGVE	PNPVSVVPTH	GEVLNDG	KVK
101	CTRRITELED	MPVSGTTVGK	DCINPDEPMT	LETVORFARX	NRFORAL	SAE
151	FAQRRGRRMD		DOINIDLIN	22112111111		
201	FAQRRGRAMD	FVAGETED				
010/-010 0/	5.9% identity	in 218 as o	verlan			
m218/a218 95	-		30	40	50	60
	10) 20 KVVSTMPRNQGWY				
m218.pep	MAMAADEIIA	11111111111111	1:1111111111	1::1111111111	11111::11	1111
a218	MVAVDPYTA	KVVSTMPRNQGWY	YAMDEIHSDMML	GSTGDYLLETAAS	SLTIIMIISC	LYLW
4210	10		30	40	50	60
				• • • •	110	120
	71	D 80 MLLPSKGXARSWV	90	100		
m218.pep	WVKRRGIKA	MLLPSKGXARSW		111111111111	1111111111	
-010	MINDOCINAL	MLLPPKGRARSW	RNI.HGAFGTWVS	LILLECLSGIA	WAGIWGGKF	/QAWS
a218	7		90	100	110	120
	·	•				
	13	0 140	150	160	170	180
m218.pep	QFPAGKWGV	EPNPVSVVPTHG	EVLNDGKVKEVPW	VLELTPMPVSGT	IVGKDGINPI	DEPMT
	111111111	1111111111111			MICKECTAGE	
a218		EPNPVSVVPTHG	EVLNDGKVKEVPW 150	VLELTPMPVSGT 160	TVGKDGINPI 170	180
	13	0 140	150	160	170	100
	19	0 200	210			
m218.pep	LETVDRFAR	XNRFQRALSVEF	AQRRGRRMDFVA	FYEL		
	111111111	11111111111111111	111111111111	HH		
a218	LETVDRFAR	XNRFQRALSAEF.	aqrrgrrmdfva(FYEL		
	19	0 200	210			

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 775>:
     g219.seq
               atgacggcaa ggttaaggaa gtgccgtgga ttttggagct tatgcctatg
            1
               cctgtctcag ggacgactgt gggtgaaaac ggcattaacc ccaccgagcc
           51
               caataacatt ggaaaccgtc gaccgtttcg cgcgggaaat cggtttcaaa
          101
               gggcgttatc agttgaattt gcccaaaggc gaggacgggg tatggacttt
          151
          201 gtcgcaggat tctatgagtt atgacatgat cagcccgttt gccgaccgca
          251 cggtacatat cgaccagtac agcggcgaga ttettgccga catccgtttt
          301 gacgattaca accegttegg caaatttatg geggeaagea ttgegetgea
          351 tatggggact ttgggctggt ggagcgtgtt ggcgaacgtc gtgttctgcc
               ttgccgtgat ttttatcggc atcagcggct gcgtgatgtg gtggaaacgc
          401
          451 cgtccgtccg gcgtggcggg cattgttcct ccggcgcaaa aaatcaaact
          501 gcccgtctgg tgggcgatgg cattgccgct gctgttgatt gcactgcttt
          551 tcccgaccgc gctgcttgcc attgccgtga tttggctgtt ggataccttg
          601 ctgctgtcgc ggattcctgt gttgaggaaa tggtttaaat ga
This corresponds to the amino acid sequence <SEQ ID 776; ORF 219.ng>:
     g219.pep
               MTARLRKCRG FWSLCLCLSQ GRLWVKTALT PPSPITLETV DRFAREIGFK
            1
               GRYQLNLPKG EDGVWTLSQD SMSYDMISPF ADRTVHIDQY SGEILADIRF
           51
          101 DDYNPFGKFM AASIALHMGT LGWWSVLANV VFCLAVIFIG ISGCVMWWKR
          151 RPSGVAGIVP PAQKIKLPVW WAMALPLLLI ALLFPTALLA IAVIWLLDTL
          201 LLSRIPVLRK WFK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 777>:
     m219.seq
               ATGACGGCAA GGTTAAGGAA GTGCCGTGGG TTTTGGAGCT TACGCCTATG
           51 CCTGTTTCAG GGACGACYGt GGGCAAAGAC GGCATTAACC CTGACGAGCC
               GATGACATTG GAAACCGTCG ACCGCTTTGC GCGGNGAAAT CGGTTTCAAA
           101
           151 GGGCGTTATC AGTTGAATTT GCCCAAAGGC GAGGACGGCG TATGGACTTT
          201 GTCGCAGGAT TCTATGAGTT ACGACATGAT CAGCCCGTTT GCCGACCGCA
           251 CGGTACATAT CGACCAGTAC AGCGGCAAAA TCCTTGCCGA CATCCGTTTT
           301 GACGATTACA ACCCGTTCGG CAAATTTATG GCGGCAAGCA TTGCGCTGCA
           351 TATGGGGACT CTGGGCTGGT GGAGCGTGTT GGCGAACGTC TTGTTCTGCC
401 TTGCCGTCAT TTTTATCGGT ATCAGCGGCT GCGTGATGTG GTGGAAACGC
           451 CGTCCGACCG GAGCGGTGGG CATCGTTCCG CCGGCGCAGA AAGTCAAGCT
           501 GCCGGTTTGG TGGATGATGG CATTGCCGCT ATTGGCAATC GCACTGCTCT
           551 TCCCGACCTC ACTGCTTGCC ATTGCCGTGA TTTGGCTGTT GGATACGCTG
           601 CTGTTGTCGC GGATTCCTGT TTTGAGGAGA TGGTTTAAAT GA
 This corresponds to the amino acid sequence <SEQ ID 778; ORF 219>:
      m219.pep
             1 MTARLRKCRG FWSLRLCLFQ GRXWAKTALT LTSRXHWKPS TALRGEIGFK
                GRYQLNLPKG EDGVWTLSQD SMSYDMISPF ADRTVHIDQY SGKILADIRF
           101 DDYNPFGKFM AASIALHMGT LGWWSVLANV LFCLAVIFIG ISGCVMWWKR
           151 RPTGAVGIVP PAQKVKLPVW WMMALPLLAI ALLFPTSLLA IAVIWLLDTL
           201 LLSRIPVLRR WFK*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 219 shows 86.9% identity over a 213 aa overlap with a predicted ORF (ORF 219.ng)
 from N. gonorrhoeae:
      m219/g219
                                                         40
                                     20
                                               30
                   MTARLRKCRGFWSLRLCLFQGRXWAKTALTLTSRXHWKPSTALRGEIGFKGRYQLNLPKG
      m219.pep
                                                             : [[[[]]]]]]
                   MTARLRKCRGFWSLCLCLSQGRLWVKTALTPPSPITLETVDRFAREIGFKGRYQLNLPKG
      q219
                                                                   50
                                                                             60
                                     20
                                               30
                           10
                                               90
                                                        100
                   EDGVWTLSQDSMSYDMISPFADRTVHIDQYSGKILADIRFDDYNPFGKFMAASIALHMGT
      m219.pep
                    EDGVWTLSQDSMSYDMISPFADRTVHIDQYSGEILADIRFDDYNPFGKFMAASIALHMGT
      q219
```

	7	70 B	o 90	100	110	120
	13	30 14	0 150	160	170	180
m219.pep	111111111		1111111111	RPTGAVGIVPI		1 111111
g219	LGWWSVLAN	WVFCLAVIFI	GISGCVMWWKF	RPSGVAGIVP	PAQKIKLPVW 170	WAMALPLLLI 180
			-			
m219.pep	ALLFPTSL	LAIAVIWLLDT	LLLSRIPVLRI	RWFKX		
g219	: ALLFPTAL		 LLLSRIPVLRI			
-	1:	90 20	0 210	0		
The following pa	artial DNA se	quence was	identified in	n N. mening	itidis <seq< td=""><td>ID 779>:</td></seq<>	ID 779>:
a219.seq 1	ATCACCCCAA	GGTTAAGGAA	GTGCCGTGGG	TTTTGGAGCT	TACGCCTAT	G
51	CCTCTTTCAC	GGACGACTGT	GGGCAAAGAC	GGTATTAACC	CTGACGAGC	C:C
101	GATGACATTG GGGCGTTATC	GAAACCGTCG	ACCGTTTTGC	GCGG.GAAAT	TATEGACTT	A ጥ
151	GGGCGTTATC	AGCTGAATTT mcmamcactT	ACCACATGAT	CAGCCCGTTT	GCTGACCGC	Ä
201 251	PATACOTOCO	CGACCAGTAC	AGCGGCAAGA	TTCTTGCCGA	CATCCGTTT	r
301	CACCATTACA	ACCCGTTCGG	CAAATTTATG	GCGGCAAGCA	. TTGCGCTGC	:A
351	TATCCCCACT	TTGGGCTGGT	GGAGCGTGTT	GGCGAACGTT	TTGTTCTGC	C
401	TTGCCGTGAT	TTTTATCGGC	ATCAGCGGCT	GCGTGATGTG	GTGGAAACG	jC rm
451	CGTCCGTCCG	GCGCGGTGGG	CATGGTTCCG	CCGGCGCAAA	AAATCAAGC	, I
501	GCCCGTCTGG TCCCGACCGC	TGGGCAATGG	ATTCCCGTGA	TTTGGCTGATT	GGATACGCT	rG
551	CTGTTGTCGC	CCATTCCTTGCC	TTTGAGGAGA	TGGTTTAAAT	GA	. •
601						
This correspond	ls to the amin	o acid seque	ence <seq i<="" td=""><td>D 780; ORF</td><td>`219.a>:</td><td></td></seq>	D 780; ORF	`219.a>:	
a219.pep						
az19.pep	MTARLRKCRG	FWSLRLCLFQ	GRLWAKTVLT	LTSR*HWKPS	TVLRXEIGI	FK
51	CDVOLNILPKG	EDGVWTLSOD	SMSYDMISPE	ADRTVHIDQ	SGKILADI	RF.
101	DDYNPFGKFM	AASIALHMGT	LGWWSVLAN <u>V</u>	LFCLAVIFIC	ISGCVMWWI	KR
151	RPSGAVGMVP	PAOKIKLPVW	WAMAVPLLL]	ALLEPTALL	A IAVIWEED.	1.0
201	LLSRIPVLRR	WFK*				
m219/a219 94	4.8% identity			30 4	n 5	0 60
010 man	MTADI.DK	10 PRGEWSTRICT	FOGRXWAKTA	LTLTSRXHWKP	STALRGEIGF:	KGRYQLNLPKG
m219.pep	1111111	1 1 1 1 1 1 1 1 1 1	1111 1111:	1	:] {
a219	MTARLRK	CRGFWSLRLCI	FOGRLWAKTV	LTLTSRXHWKP	STVLRXEIGE	Kekiarung
		10	20	30 4	0 5	0 60
		70	80	90 10		
m219.pep	EDGVWTL	SQDSMSYDMIS	PFADRTVHID	QYSGKILADIR	FDDYNPFGKF	MAASIALHMGT
	1111111	1111111111			FULL MERCER	MAASIALHMGT
a219	EDGVWTL	SQDSMSYDMI: 70	80	90 10	0 11	0 120
						0 180
	_	130	140 1	50 16		WWMMALPLLAI
m219.pep		THEFT		1111:1111:1	11111:111	
a219	T.GWWSVL	ANVLFCLAVI	FIGISGCVMWW	KRRPSGAVGMV	PPAQKIKLPV	AMWWWAAPTPTT
8213	20111012			50 16	17	0 180
		190	200 2	10		
m219.pep	ALLFPTS	LLAIAVIWLL	DTLLLSRIPVI	RRWFKX		
mers.pep	111111:	1111111111	1111111111111	111111		
a219	ALLFPTA	LLAIAVIWLL	DTLLLSRIPVI	RRWFKX		
		190	200 2	210		

160

140

150

WO 99/57280

506

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 781>:

```
g221.seq
                 atgcacgacc acggcgccat ggatcgccgc ctccccgctt tcggaagtct
                 gatgcggcga gccgtaaatc adatcgacgc tgacggattt gaaccctgcc
             51
            101 tcacgggcgg catcgatgac ttctttggtt tcttcgtagc tttggatgcg
            151 gttgactgcc gcctgcactt tggggtcgaa atcctgaatg ccgacgctca
            201 tgcggttgaa gccgagtctg ccgagcatga ggacggtgtc gcggctgact
            251 ttgcgcgggt cgatttcgat ggaatattcg ccggacggta tcagttcgaa
            301 atgtttgcgg atcatgcgga agacacgttc gatctgttcg tcgctcaaaa
            351 aggtcggcgt gccgccgccg aagtgcagtt gggcaagctg gtgccgtccg
- 377
            401 ttcagatgtg gagcgagcag ttccatttct ttttcaagat attcgatgta
            451 ggtatcggcg cggcttttgt ctttggtgat gattttgttg cagccgcagt
            501 agtagcagat ggtgttgcaa aacggaatgt gaatgtaaag ggaaagcggt
            551 ttgtttaa
  This corresponds to the amino acid sequence <SEQ ID 782; ORF 221.ng>:
       g221.pep
                 MHDHGAMDRR LPAFGSLMRR AVNXIDADGF EPCLTGGIDD FFGFFVALDA
             51 VDCRLHFGVE ILNADAHAVE AESAEHEDGV AADFARVDFD GIFAGRYQFE
            101 MFADHAEDTF DLFVAQKGRR AAAEVQLGKL VPSVQMWSEQ FHFFFKIFDV
            151 GIGAAFVFGD DFVAAAVVAD GVAKRNVNVK GKRFV*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 783>:
        m221.seq
              1 ATGGYGGTTT TGATGCWCMG AAGTCTGGTG CGGCAGGCCG TAAATCAAAT
             51 CGACGCTGAC GGATTTGAAC CCCGCTTCGC GCGCCGCATC GATGACTTCT
                 TTGGTTTCTT CGTAACTTTG GATGCGGTTG ACCGCCGCCT GCACTTTGGG
            101
             151 GTCGAAATCC TGAATGCCGA TGCTCATGCG GTTGAAGCCG AGTCTGCCGA
            201 GCATGAGGAC GGTGTCGCGG CTGACTTTGC GCGGGTCGAT TTCGATGGAG
             251 TATTCGCCGG TGGGGATTAA CTCGAAATGT TTGCGTATCA TGCGGAAGAC
             301 ACGTTCGATC TGTTCGTCGC TCAAAAAGGt GCGTGCCCCG CCGAAGTGCA
             351 GTTGGGCAAG CTGGTGCCGT CCGTTCAGAT GTGGAGCGAG CAGTTCCATT
             401 TCTTTTCAA GATATTCGAT GTAGGCATCG GCGCGGCTTT TGTCTTTGGT
             451 GATGATTTTG TTGCAGCCGC AGTAGTAGCA GATGGTGTTG CAGAACGGAA
             501 TGTGAATGTA AAGGGAAAGC GGTTTGTTTA A
   This corresponds to the amino acid sequence <SEQ ID 784; ORF 221>:
        m221.pep
               1 MXVLMXRSLV RQAVNQIDAD GFEPRFARRI DDFFGFFVTL DAVDRRLHFG
              51 VEILNADAHA VEAESAEHED GVAADFARVD FDGVFAGGDX LEMFAYHAED
             101 TFDLFVAQKG ACPAEVQLGK LVPSVQMWSE QFHFFFKIFD VGIGAAFVFG
                 DDFVAAAVVA DGVAERNVNV KGKRFV*
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N. gonorrhoeae
   ORF 221 shows 87.6% identity over a 170 aa overlap with a predicted ORF (ORF 221.ng)
   from N. gonorrhoeae:
        m221/g221
                                                                 40
                                              20
                                                        30
                             {\tt MXVLMXRSLVRQAVNQIDADGFEPRFARRIDDFFGFFVTLDAVDRRLHFGVE}
         m221.pep
                                    MHDHGAMDRRLPAFGSLMRRAVNXIDADGFEPCLTGGIDDFFGFFVALDAVDCRLHFGVE
         g221
                                                                    50
                                                                             60
                                                30
                                                          40
                                       20
                             10
                                                        90
                                                                 100
                                     70
                                               80
                     ILNADAHAVEAESAEHEDGVAADFARVDFDGVFAGGDXLEMFAYHAEDTFDLFVAQKGA-
         m221.pep
                      ILNADAHAVEAESAEHEDGVAADFARVDFDGIFAGRYQFEMFADHAEDTFDLFVAQKGRR
         g221
                                                                   110
                                      80
                                                90
                                                        100
```

70

130

```
CPAEVQLGKLVPSVQMWSEQFHFFFKIFDVGIGAAFVFGDDFVAAAVVADGVAERNVNVK
       m221.pep
                     AAAEVQLGKLVPSVQMWSEQFHFFFKIFDVGIGAAFVFGDDFVAAAVVADGVAKRNVNVK
       g221
                                                     160
                                                              170
                          130
                                   140
                                            150
                   CKRFVX
       m221.pep
                    HHHH
                   GKRFVX
       g221
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 785>:
       a221.seq
                ATGGTGGTTT TGATGCTCCG AAGTCTGGTG CGGCAGGCCG TAAATCAAAT
                CGACGCTGAC GGATTTGAAC CCCGCTTCGC GCGCCGCATC GATGACTTCT
             51
                TTGGTTTCTT CGTAACTTTG GATGCGGTTG ACCGCCGCCT GCACTTTGGG
            101
            151 GTCGAAATCC TGAATGCCGA TGCTCATGCG GTTGAAGCCG AGTCTGCCGA
            201 GCATGAGGAC GGTGTCGCGG CTGACTTTGC GCGGGTCGAT TTCGATGGAG
            251 TATTCGCCGG TGGGGATTAA CTCGAAATGT TTGCGTATCA TGCGGAAGAC
            301 ACGTTCGATT TGGTCGTCGC TCAAAAAGGT CGGCGTGCCG CCGCCGAAGT
            351 GCAGTTGGGC AAGCTGGTGC CGTCCGTTCA GATGTGGAGC GAGCAGTTCC
            401 ATTTCTTTTT CAAGAAATTC GATGTAGGCA TCGGCGCGGC TTTTGTCTTT
                 GGTGATGATT TTGTTGCAGC CGCAGTAGTA GCAGATGGTG TTGCAGAACG
            451
                 GAATGTGAAT GTAAAGGGAA AGCGGTTTGT TTAA
   This corresponds to the amino acid sequence <SEQ ID 786; ORF 221.a>:
        a221.pep
                 MVVLMLRSLV RQAVNQIDAD GFEPRFARRI DDFFGFFVTL DAVDRRLHFG
                 VEILNADAHA VEAESAEHED GVAADFARVD FDGVFAGGD* LEMFAYHAED
             51
                 TFDLVVAQKG RRAAAEVQLG KLVPSVQMWS EQFHFFFKKF DVGIGAAFVF
            101
                 GDDFVAAAVV ADGVAERNVN VKGKRFV*
   m221/a221 95.5% identity in 177 aa overlap
                                                                50
                                                                          60
                                                       40
                                              30
                    MXVLMXRSLVRQAVNQIDADGFEPRFARRIDDFFGFFVTLDAVDRRLHFGVEILNADAHA
        m221.pep
                    MVVLMLRSLVRQAVNQIDADGFEPRFARRIDDFFGFFVTLDAVDRRLHFGVEILNADAHA
        a221
                                              30
                                                       40
                                                                50
                           10
                                     20
                                                                         119
                                     80
                                              90
                                                      100
                                                               110
                            70
                    VEAESAEHEDGVAADFARVDFDGVFAGGDXLEMFAYHAEDTFDLFVAQKGA-CPAEVQLG
        m221.pep
                    111111
                    veaesaehedgvaadfarvdfdgvfaggdxlemfayhaedtfdlvvaqkgrraaaevqlg
        a221
                                                               110
                                              90
                                                      100
                            70
                                                       160
                                     140
                                              150
                    KLVPSVQMWSEQFHFFFKIFDVGIGAAFVFGDDFVAAAVVADGVAERNVNVKGKRFVX
        m221.pep
                    KLVPSVQMWSEQFHFFFKKFDVGIGAAFVFGDDFVAAAVVADGVAERNVNVKGKRFVX
        a221
                                                                170
                                             150
                                                      160
                           130
                                    140
    The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 787>:
         g223.seq
                  atggaattca ggcaccaggt agtggtagtt ggtgtcgaac catttggtca
              51 tttcgatggc gaattggtct ttgttgccgc gcgccagttg gaagaattgt
             101 tocaaaggca ggttttggct atcgaagccg aaacgggcgg gaatcgcgcc
                  cgtggatact tgcaggtcga ggatgtgatg gtagaaagtg aaatcacgta
             151
                  cagcaacgta atcagcgtta ggagcagctt ggtgtttcca gtttttctcg
              251 cgcaggtett tggcaacgte gageagetet tgtteaetga tetetttgcg
              301 ccagtatttt tcttgggcga atttcaattc acggaaggcg ccgacacgcg
              351 ggaagcctga
    This corresponds to the amino acid sequence <SEQ ID 788; ORF 223.ng>:
```

g223.pep..

```
1 MEFRHQVVVV GVEPFGHFDG ELVFVAARQL EELFQRQVLA IEAETGGNRA
          51 RGYLQVEDVM VESEITYSNV ISVRSSLVFP VFLAQVFGNV EQLLFTDLFA
          101 PVFFLGEFQF TEGADTREA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 789>:
     m223.seq
              GTGGAATTCA GGCACCAAGT AGTGGTAGTT GGTGTCGAAC CATTTGGTCA
              TTTCGATAGC GAATTGGTCT TTGTTACCGC GCGCCAGTTG GAAGAATTGT
          51
              TCCAAAGACA GGTTTTGGCT GTCGAAGCCG AAGCGGGCGG GAATCGCGCC
          101
              GGTGGCGACT TGCAGGTCGA GGATGTGGTC GTAGAAAGTG AAATCsCTAC
          151
              GGCAACGAAA TCGGCGTTGG CAGCGACCTG GTGTTTCCAG TTTTTCTCGC
              GCAAGTCTTT AGCAACAGCC AGCAATTCTT GCTCGCTGAT TTCTTTGCGC
          251
              CAGTATTTT CTTGTGCGAA TTTCAATTCG CGGAAGGCGC CGACACGCGG
          301
          351 GAAGCCTGA
This corresponds to the amino acid sequence <SEQ ID 790; ORF 223>:
     m223.pep
              VEFRHQVVVV GVEPFGHFDS ELVFVTARQL EELFQRQVLA VEAEAGGNRA
               GGDLQVEDVV VESEIXYGNE IGVGSDLVFP VFLAQVFSNS QQFLLADFFA
          101 PVFFLCEFQF AEGADTREA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 223 shows 80.7% identity over a 119 aa overlap with a predicted ORF (ORF 223.ng)
from N. gonorrhoeae:
     m223/g223
                                                                          60
                                                                50
                                   20
                                             30
                                                      40
                         10
                  VEFRHQVVVVGVEPFGHFDSELVFVTARQLEELFQRQVLAVEAEAGGNRAGGDLQVEDVV
     m223.pep
                  MEFRHQVVVVGVEPFGHFDGELVFVAARQLEELFQRQVLAIEAETGGNRARGYLQVEDVM
     g223
                                                      40
                                                                50
                                   20
                                             30
                          10
                                                     100
                                             90
                                   80
                          70
                  VESEIXYGNEIGVGSDLVFPVFLAQVFSNSQQFLLADFFAPVFFLCEFQFAEGADTREAX
     m223.pep
                  VESEITYSNVISVRSSLVFPVFLAQVFGNVEQLLFTDLFAPVFFLGEFQFTEGADTREAX
      q223
                                                     100
                                   80
                                             90
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 791>:
      a223.seq
               GTGGAATTCA GGCACCAAGT AGTGGTAGTT GGTGTCGAAC CATTTGGTCA
               TTTCGATAGC GAATTGGTCT TTGTTACCGC GCGCCAGTTG GAAGAATTGT
               TCCAAAGATA GGTTTTGGCT GTCGAAGCCG AAGCGGGCGG GAATCGCGCC
          101
               GGTGGCGACT TGCAGGTCGA GGATGTGGTC GTAGAAAGTG AAATCGCCTA
           151
           201 CGGCAACGTA ATCGGCGTTG GCAGCGGCCT GGTGTTTCCA GTTTTTCTCG
               CGCAAGTCTT TAGCAACAGC CAGCAATTCT TGCTCGCTGA TTTCTTTGCG
           251
               CCAGTATTTT TCTTGTGCGA ATTTCAATTC GCGGAAGGCA CCGACACGCG
           301
           351 GGAAGCCTGA
 This corresponds to the amino acid sequence <SEQ ID 792; ORF 223.a>:
      a223.pep
               VEFRHQVVVV GVEPFGHFDS ELVFVTARQL EELFQR*VLA VEAEAGGNRA
               GGDLQVEDVV VESEIAYGNV IGVGSGLVFP VFLAQVFSNS QQFLLADFFA
            51
           101 PVFFLCEFQF AEGTDTREA*
 m223/a223 95.8% identity in 119 aa overlap
                                                  40
                                 20
                                         30
                  vefrhqvvvvgvepfghfdselvfvtarqleelfqrqvlaveaeaggnraggdlqvedvv
      m223.pep
                  սուսուսուսուսուսունում՝ աստատանան
                  VEFRHQVVVVGVEPFGHFDSELVFVTARQLEELFQRXVLAVEAEAGGNRAGGDLQVEDVV
      a223
                                                          50
                                                  40
                                 20
                                         30
                                          90
                                                 100
                                                         110
                  VESEIXYGNEIGVGSDLVFPVFLAQVFSNSQQFLLADFFAPVFFLCEFQFAEGADTREAX
      m223.pep
                  VESEIAYGNVIGVGSGLVFPVFLAQVFSNSQQFLLADFFAPVFFLCEFQFAEGTDTREAX
       a223
```

PCT/US99/09346

120

110

509

90

100

80

70

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 793>: g225.seq atggattett ttttcaaacc ggcagtttgg gcggttttgt ggctgatgtt tgccqtccgc cccgcccttg ccgacgagtt gaccaacctg ctcagcagcc 51 gcqagcagat tctcagacag tttgccgaag acgaacagcc cgttttaccc 101 gtcaaccgag cccccgcccg gcgggcgggc aatgccgacg aactcatcgg 151 201 cggcgcgatg gggcttaacg aacagcccgt tgtacgcgtc aaccgagccn 251 ccgcccggcg ggcgggcaat gccgacaaac tcatcggcag cgcgatgcgg 301 cttttgggta ttgcctaccg ctacggcggc acatcggtgt ctaccggttt 351 tgactgcagc ggattcatgc agcacatctt caaacgcgcc atgggcatca 401 acctgccgcg cacgtcggcg gaacaggcgc ggatgggcgc acccgttgcc 451 cgaagcgaat tgcagcccgg ggatatggtg tttttccgca cgctcggcgg 501 cageegeatt teccatgteg gaetttatat eggeaacaac egetteatee 551 acgcgccgcg cacggggaaa aatatcgaaa tcaccagcct gagccacaaa 601 tattggagcg gcaaatatgc gttcgcccgc cgggtcaaga aaaacgaccc 651 gtcacgcttt ctgaactga This corresponds to the amino acid sequence <SEQ ID 794; ORF 225.ng>: g225.pep MDSFFKPAVW AVLWLMFAVR PALADELTNL LSSREQILRQ FAEDEQPVLP 1 VNRAPARRAG NADELIGGAM GLNEQPVVRV NRAXARRAGN ADKLIGSAMR 101 LLGIAYRYGG TSVSTGFDCS GFMQHIFKRA MGINLPRTSA EQARMGAPVA 151 RSELOPGDMV FFRTLGGSRI SHVGLYIGNN RFIHAPRTGK NIEITSLSHK 201 YWSGKYAFAR RVKKNDPSRF LN* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 795>: m225.seg (partial) ..TTTTCAAACC CGGCAGTTTG GGCGGTTTTG TGGCTGAWGT TTGCCGTCCG CCCCGCCTT GCCGACGAGT TGACCAACCT GCTCAGCAGC CGCGAGCAGA 51 TTCTCAGACA GTTTGCCGAA GACGAACAGC CCGTTTTACC CATCAACCGA 101 GCCCCCGCCC GGCGGCGGG CAATGCCGAC GAACTCATCG GCAGCGCGAT 151 GGGGCTTAAC GAACAGCCCG TTTTACCCGT CAACCGAGTC CCCGCCCGGC 201 GGGCGGCAA TGCCGACGAA CTCATCGGCA ACGCGATGGG GCTTAACGAA 251 CAGCCCGTTT TACCCGTCAA CCGAGCCCCC GCCCGGCGGG CGGGCAATGC CGACGAACTC ATCGGCAACG CGATGGGACT TTTGGGTATT GCCTACCGCT 351 ACGGCGGCAC ATCGGTTTCT ACCGGTTTTG ACTGCAGCGG CTTCATGCAG 401 CACATCTTCA AACGCGCCAT GGGCATCAAC CTGCCGCGCA CGTCGGCAGA 451 ACAGGCACGG ATGGGTACGC CGGTTGCCCG AAGCGAATTG CAGCCCGGAG 501 ATATGGTGTT TTTCCGCACG CTCGGCGGCA GCCGCATTTC CCATGTCGGA 551 CTTTATATCG GCAACAACCG CTTCATCCAC GCGCCGCGA CGGGGAAAAA 601 TATCGAAATC ACCAGCCTGA GCCACAAATA TTGGAGCGGC AAATACGCGT 651 TCGCCCGCCG GGTCAAGAAA AACGACCCGT CCCGCTTTCT GAACTGA 701 This corresponds to the amino acid sequence <SEQ ID 796; ORF 225>: (partial) m225.pep ..FSNPAVWAVL WLXFAVRPAL ADELTNLLSS REQILRQFAE DEQPVLPINR APARRAGNAD ELIGSAMGLN EQPVLPVNRV PARRAGNADE LIGNAMGLNE 51 OPVLPVNRAP ARRAGNADEL IGNAMGLLGI AYRYGGTSVS TGFDCSGFMQ 101 HIFKRAMGIN LPRTSAEQAR MGTPVARSEL QPGDMVFFRT LGGSRISHVG 151 LYIGNNRFIH APRTGKNIEI TSLSHKYWSG KYAFARRVKK NDPSRFLN* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 225 shows 83.5% identity over a 248 aa overlap with a predicted ORF (ORF 225.ng) from N. gonorrhoeae: m225/g225 50 20 ${\tt FSNPAVWAVLWLXFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG}$ m225.pep MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG q225

PCT/US99/09346

	a225	 NADELIG		 	RAGNADXLIG 90	NAMGLNEQPV 100	 LPVNRVPARI 110	IIIII RAGNA 120
	m225.pep	90 DELIGNA	100 MGLNEQPVL	110 PVNRAPARRA	120 GNADELIGNA	130 MGLLGIAYRY	140 GGTSVSTGF	DCSGF
	a225	 DELIGNA			GNADELIGN/ 150		: GGTSISTGF: 170	
		150	160	170	180	190	200	
ç, -	m225.pep	MOHIFKE	11111111	1111111111	11111111	611 1111111		11111
	a225	70 80 90 90 100 110 1 25.pep DELIGNAMGLNEQPVLPVNRAPARRAGNAD	VARSELQPG 210	220	230	240		
		210	220		240	249 SRFLNX		
	m225.pep	111111	(111111111	11111111111	111111111	11111		
	a225	IMPRI			270	280		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 799>: g225-1.seq

```
1 atggattott ttttcaaacc ggcagtttgg gcggttttgt ggctgatgtt
51 tgccgtccgc cccgcccttg ccgacgagtt gaccaacctg ctcagcagcc
101 gcgagcagat tctcagacag tttgccgaag acgaacagcc cgttttaccc
151 gtcaaccgag cccccgcccg gcgggcgggc aatgccgacg aactcategg
201 cggcgcgatg gggcttaacg aacagcccgt tgtacgcgtc aaccgagccn
251 ecgeceggeg ggegggcaat geegacaaae teateggeag egegatgegg
301 cttttgggta ttgcctaccg ctacggcggc acatcggtgt ctaccggttt
351 tgactgcagc ggattcatgc agcacatett caaacgcgcc atgggcatca
401 acctgccgcg cacgtcggcg gaacaggcgc ggatgggcgc acccgttgcc
451 cgaagcgaat tgcagcccgg ggatatggtg tttttccgca cgctcggcgg
501 cageegeatt teccatgteg gaetttatat eggeaacaac egetteatee
551 acgcgccgcg cacggggaaa aatatcgaaa tcaccagcct gagccacaaa
601 tattggageg gcaaatatge gttegeeege egggteaaga aaaacgacee
651 gtcacgcttt ctgaactga
```

This corresponds to the amino acid sequence <SEQ ID 800; ORF 225-1.ng>: g225-1.pep

```
1 MDSFFKPAVW AVLWLMFAVR PALADELTNL LSSREQILRQ FAEDEQPVLP
51 VNRAPARRAG NADELIGGAM GLNEQPVVRV NRAXARRAGN ADKLIGSAMR
101 LLGIAYRYGG TSVSTGFDCS GFMQHIFKRA MGINLPRTSA EQARMGAPVA
151 RSELQPGDMV FFRTLGGSRI SHVGLYIGNN RFIHAPRTGK NIEITSLSHK
```

201 YWSGKYAFAR RVKKNDPSRF LN*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 801>: m225-1.seq

1				
ATGGATTCTT	TTTTCAAACC	GGCAGTTTGG	GCGGTTTTGT	GGCTGATGTT
TGCCGTCCGC	CCCGCCCTTG	CCGACGAGTT	GACCAACYTG	CTCAGCAGCC
GCGAGCAGAT	TCTCAGACAG	TTTGCCGAAG	ACGAACAGCC	CGTTTTACCC
ATCAACCGAG	CCCCCCCCC	GCGGGCGGC	AATGCCGACG	AACTCATCGG
CAGCGCGATG	GGGCTTAACG	AACAGCCCGT	TTTACCCGTC	AACCGAGTCC
CCGCCCGGCG	GGCGGGCAAT	GCCGACGAAC	TCATCGGCAA	CGCGATGGGG
CTTAACGAAC	AGCCCGTTTT	ACCCGTCAAC	CGAGCCCCCG	CCCGGCGGGC
GGGCAATGCC	GACGAACTCA	TCGGCAACGC	GATGGGACTT	TTGGGTATTG
CCTACCGCTA	CGGCGGCACA	TCGGTTTCTA	CCGGTTTTGA	CTGCAGCGGC
TTCATGCAGC	ACATCTTCAA	ACGCGCCATG	GGCATCAACC	TGCCGCGCAC
GTCGGCAGAA	CAGGCACGGA	TGGGTACGCC	GGTTGCCCGA	AGCGAATTGC
AGCCCGGAGA	TATGGTGTTT	TTCCGCACGC	TCGGCGGCAG	CCGCATTTCC
CATGTCGGAC	TTTATATCGG	CAACAACCGC	TTCATCCACG	CGCCGCGCAC
CCCCAAAAAT	ATCGARATCA	CCAGCCTGAG	CCACAAATAT	TGGAGCGGCA
3 3 7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ATCC/CCCCCC	CTCABCAAA	ACGACCCGTC	CCGCTTTCTG
		GICHMONN	,	
AACTGA				
	TGCCGTCCGC GCGAGCAGAT ATCAACCGAG CAGCGCGATG CCGCCCGGCG CTTAACGAAC GGGCAATGCC CCTACCGCTA TTCATGCAGC GTCGCCAGAA AGCCCGGAGA AGCCCGGAGA CATGTCGGAC	ATGGATTCTT TTTTCAAACC TGCCGTCCGC CCCGCCCTTG GGGAGCAGAT TCTCAGACAG ATCAACCGAG CCCCCCCCG CAGCGCGATG CCGCCCGCGG GGCGTAAACG CCTACCGACC GACGGAACTCA CCTACCGCTA CGGCGGCACA TTCATGCAGC ACATCTCAA GCCCGGCAGA TATGGTGTTC CATGTCGGAC TATGATGTGTGTC GGGGAAAAAAT ATCGAAATCA AATACGCGTT CGCCCCGCGGG	ATGGATTCTT TTTTCAAACC GGCAGTTTGG TGCCGTCCGC CCCGCCCTTG CCGACGAGTT GGGAGCAGAT TCTCAGACAG TTTGCCGAAG ATCAACCGAG CCCCCGCCCG GCGGGCGGGC CAGCGCGATG GGGCTTAACG CCTTAACGAAC AGCCCGTTT ACCCGTCAAC GGGCAATGCC GACGAACTCA TCGGCAACGC CCTACCGCTA CGGCGCACA TCGGTTTCTA TTCATGCAGC ACATCTCAA ACCGCCCATG GTCGGCAGAA CAGGCACGGA TGGGTACGC AGCCCGGAGA TATGGTGTTT TTCCGCACGC CATGTCGGCA TTTATATCGG CAACAACCGC GGGGAAAAAT ATCGAAATCA CCAGCCTGAG AATACGCGTT CGCCCCCGG GTCAAGAAAA	ATGGATTCTT TTTTCAAACC GGCAGTTTGG GCGGTTTGT TGCCGTCCGC CCGCCCTTG CCGACGAGTT GACCAACYTG GGGAGCAGAT TCTCAGACAG TTTGCCGAAG ACGAACAGCC ATCAACCGAG CCCCCCCG GCGGGCGGC AATGCCGACCG CCGCCCGGCGG GGCGTTAACGA AACAGCCCGT TTTACCCGTC CCTAACGAAC AGCCCGTTTT ACCCGTCAAC CGAGCCCCG GGCAATGCC GACGAACTCA TCGGCAACG GATGGGACT TCCATCCGCTA CGGCGGCACA TCGGTTTCTA CCGGTTTTGA TCCATGCAGC ACATCTTCAA ACGCCCATG GGCATCAACC GTCGGCAGAA CAGGCACGGA TGGGTACGCC GGTTCACCCG AGCCCCGGAGA TTTGATTCGG CAACAACCGC TCGGCGGCAG CATGTCGGAC TTTTATATCGG CAACAACCGC TTCATCCACG GGGGAAAAAT ATCGAAATCA CCAGCCTGAG CCACAAATAT AATACGCGTT CGCCCGCCGG GTCAAGAAAA ACGACCCGTC

```
This corresponds to the amino acid sequence <SEQ ID 802; ORF 217>:
m225-1.pep
           1 MDSFFKPAVW AVLWLMFAVR PALADBUTNL LSSREQILRQ FAEDEQPVLP
                INRAPARRAG NADELIGSAM GLNEQPVLPV NRVPARRAGN ADELIGNAMG
        101 LNEQPVLPVN RAPARRAGNA DELIGNAMGL LGIAYRYGGT SVSTGFDCSG
        151 FMOHIFKRAM GINLPRTSAE QARMGTPVAR SELQPGDMVF FRTLGGSRIS
        201 HVGLYIGNNR FIHAPRTGKN IEITSLSHKY WSGKYAFARR VKKNDPSRFL
        251 N*
                             84.9% identity in 251 aa overlap
m225-1/g225-1
                                                                                     40
                                                                     30
                                                    20
                      {\tt MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFABDEQPVLPINRAPARRAG}
m225-1.pep
                      ${\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \
                      MDSFFKPAVWAVLWLMFAVRPALADELTNILSSREQILRQFAEDEQPVLPVNRAPARRAG
q225-1
                                                                     30
                                                                                     40
                                   10
                                                    20
                                                                                                                     120
                                                                     90
                                                                                    100
                                                                                                    110
                      nadeligsamglneqpvlpvnrvparragnadelignamglneqpvlpvnraparragna
m225-1.pep
                                                                             111:1111111111: 1111 1111111
                       1111
                                                                           --LIGGAMGLNEQPVVRVNRAXARRAGNA
g225-1
                                                                                                 . 80
                                                                                    70
                                                                   150
                                                                                    160
                                                  140
                                  130
                      {\tt DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR}
 m225-1.pep
                       DKLIGSAMRLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGAPVAR
 g225-1
                                                                                                   140
                                                                  120
                                                 110
                                 100
                                                                                                     230
                                                   200
                                                                   210
                                                                                    220
                                  190
                       SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
 m225-1.pep
                       SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
 a225-1
                                                                                                   200
                                                                  180
                                                                                  190
                                                 170
                                 160
                                   250
                       VKKNDPSRFLNX
 m225-1.pep
                       1111111111111
                       VKKNDPSRFLNX
 g225-1
                                 220
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 803>:
  a225-1.seq
             1 ATGGATTCTT TTTTCAAACC GGCAGTTTGG GCGGTTTTGT GGCTGATGTT
                  TGCCGTCCGC CCCGCCCTTG CCGACGAGTT GACCAACCTG CTCAGCAGCC
            51
          101 GCGAGCAGAT TCTCAGACAG TTTGCCGAAG ACGAACAGCC CGTTTTACCC
          151 ATCAACCGAN CCCCCGCCCG GCGGGCGGGC AATGCCGACG AACTCATCGG
          201 CAGCGCGATG GGGCTTAACG AACAGCCCGT TTTACCCGTC AACCGANTCC
          251 CCGCCCGGCG GGCGGGCAAT GCCGACNAAC TCATCGGCAA CGCGATGGGG
           301 CTTAACGAAC AGCCCGTTTT ACCCGTCAAC CGAGTCCCCG CCCGGCGGGC
                  GGGCAATGCC GACGAACTCA TCGGCAACGC GATGGGGCTT AACGAACAGC
           401 CCGTTTTACC CGTCAACCGA GCCCCCGCCC GGCGGGCGGG CAATGCCGAC
                   GAACTCATCG GCAACGCGAT GGGACTTTTG GGTATTGCCT ACCGCTACGG
                   CGGCACATCG ATTTCTACCG GTTTTGACTG CAGCGGCTTC ATGCAGCACA
                   TCTTCAAACG CGCCATGGGC ATCAACCTGC CGCGCACGTC GGCAGAACAG
                   GCGCGGATGG GTACGCCGGT TGCCCGAAGC GAATTGCAGC CCGGGGATAT
           601
                   GGTGTNTTTC CGCACGCTCG GCGGCAGCCG CATTTCCCAT GTCGGACTTT
           701 ATATCGGCAA CAACCGCTTC ATCCACGCGC CGCGCACGGG GAAAAATATC
                   GAAATCACCA GCCTGAGCCA CAAATATTGG AGCGGCAAAT ACGCGTTCGC
           801 CCGCCGGGTC AAGAAAACG ACCCGTCCCG CTTTCTGAAC TGA
  This corresponds to the amino acid sequence <SEQ ID 804; ORF 225-1.a>:
  a225-1.pep
                 MDSFFKPAVW AVLWLMFAVR PALADELTNL LSSREQILRQ FAEDEQPVLP
                   INRXPARRAG NADELIGSAM GLNEQPVLPV NRXPARRAGN ADXLIGNAMG
             51
           101 LNEQPVLPVN RVPARRAGNA DELIGNAMGL NEQPVLPVNR APARRAGNAD
           151 ELIGNAMGLL GIAYRYGGTS ISTGFDCSGF MOHIFKRAMG INLPRTSAEQ
           201 ARMGTPVARS ELQPGDMVXF RTLGGSRISH VGLYIGNNRF IHAPRTGKNI
```

251 EITSLSHKYW SGKYAFARRV KKNDPSRFLN *

```
88.6% identity in 280 aa overlap
a225-1/m225-1
                                           40
                          20
                                  30
          MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRXPARRAG
a225-1.pep
           MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
m225-1
                                  30
                                                   50
                                           40
                          20
                                                  110
                                                           120
                          80
                                  90
                 70
           NADELIGSAMGLNEQPVLPVNRXPARRAGNADXLIGNAMGLNEQPVLPVNRVPARRAGNA
a225-1.pep
                                                 ------VLPVNRVPARRAGNA
          NADELIGSAMGLNEQP-
m225-1
                                                  س. .08
                 70
                                 150
                                          160
                         140
           DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF
a225-1.pep
           DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF
m225-1
                                                 140
                                         130
                100
                        110
                                 120
                                          220
                                                  230
                         200
                                  210
                 190
           MOHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVXFRTLGGSRISHVGLYIGNNRF
a225-1.pep
           MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF
m225-1
                                         190
                                                  200
                        170
                                 180
                160
                                  270
                                          280
                 250
                         260
           IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLNX
a225-1.pep
           IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLNX
m225-1
                                 240
                                         250
                220
                        230
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 805>:
     g226.seq
               ATGAGCGAAA TCCTCAGGCA GCCCAGCGTT CTGCTTTTCC TCACGCTTGC
            1
               CGTGTACGCG CTTGCGATTA TCGTGCGCAC GCGCACGGGC AATATCTTCT
           51
          101 GCAACCCCGT ACTCGTCAGC ACTATCGTGC TGATTGCCTA CCTGAAAATC
          151 CTCGGTATCG ATTATGCGGT GTACCACAAC GCCGCGCAAT TCATTGATTT
          201 TCGGCTGAAA cccGccgtCG TCGTGCTTGC CGTGCCGCTC TACCAAAACC
          251 GCCGTAAAAT CTTCAACCAG TGGCTGCCCG TCATCGTTTC GCAGCTTGCG
               GGCAGCGTTA cggGCATTGT tacggggATG TATTTTgccg cttggctcgg
          301
               geoggatace caatteteet tecegeeteg tetteaatat etgttattta
          351
          401 caccetetgg aateccaatt cacaccetgt atgegegggt tetecegeca
          451 tttctgttgc ctccgcctct cctgccgcgc ctcggcccgc atacattgcg
          501 ccggttcaca atacttccaa aaaaactacg gccgtttaag cccctcctcc
          551 cagttgtggt cettteteet Cegggeeteg ceceteeet ettataa
This corresponds to the amino acid sequence <SEQ ID 806; ORF 226.ng>:
     g226.pep
               MSEILROPSV LLFLTLAVYA LAIIVRTRTG NIFCNPVLVS TIVLIAYLKI
               LGIDYAVYHN AAQFIDFRLK PAVVVLAVPL YQNRRKIFNQ WLPVIVSQLA
           51
               GSVTGIVTGM YFAAWLGPDT QFSFPPRLQY LLFTPSGIPI HTLYARVLPP
          151 FLLPPPLLPR LGPHTLRRFT ILPKKLRPFK PLLPVVVLSP PGLAPPLL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 807>:
      m226.seq
               ATGAACGAAA TCCTCAGGCA GCCCAGCGTT CTGCTTTTCC TCACGCTTGC
            1
           51 CGTGTACGCG CTTGCGATTA TCGLGCGCAC GCGCACGGGC AATATCTTCT
               GCAACCCCGT ACTCGTCAGC ACTATCGTGC TGATTGCCTA CCTGAAAATC
          151 CTCGGTATCG ATTATGCGGT GTACCACAAC GCCGCGCAAT TCATTGATTT
               TTGGCTGAAA CCCGCCGTCG TCGTGCTTGC CGTGCCGCTC TACCAAAACC
          201
               GCCGTAAAAT CTTCAACCAG TGGCTGCCCG TCATCGTTTC ACAGCTTGCG
          251
          301 GGCAGCGTTA CGGGCATTGT TACAGGGATG TATTTTGCCA AATGGCTGGG
          351 CGCGGAACGC GAAGTCGTCC TCTCGCTCGC GTCCAAATCT GTTACCAACC
          401 CCATCGCTAT TGAAATCACC CGCTCCATCG GCGGCATTCC CGCCATTACC
```

451 GCCGCCACCG TCATCATTGC CGGTCTGGTC GGACAGATTG CCGGTTACAA

```
501 AATGCTGAAG AACACGGTCG TCATGCCCTC GTCCGTGGGT ATGTCGCTCG
              GCACGGCTTC GCACGCGATG GGGATTGCCG CCTCGCTCGA ACGCAGCCGC
         601 CGTATGGCGG CATACGCGGG GCTGGGGCTG ACGTTCAACG GCGTACTGAC
          651 CGCGCTGATT GCGCCGCTGC TCATCCCCGT TTTGGGATTT TGA
This corresponds to the amino acid sequence <SEQ ID 808; ORF 226>:
     m226.pep
              MNEILROPSV LLFLTLAVYA LAIIVRTRTG NIFCNPVLVS TIVLIAYLKI
           1
          51 LGIDYAVYHN AAQFIDFWLK PAVVVLAVPL YQNRRKIFNQ WLPVIVSQLA
          101 GSVTGIVTGM YFAKWLGAER EVVLSLASKS VTNPIAIEIT RSIGGIPAIT
          151 AATVIIAGLV GQIAGYKMLK NTVVMPSSVG MSLGTASHAM GIAASLERSR
          201 RMAAYAGLGL TFNGVLTALI APLLIPVLGF *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 226 shows 94.2% identity over a 121 aa overlap with a predicted ORF (ORF 226.ng)
from N. gonorrhoeae:
     m226/g226
                                                                          60
                                                                50
                                                       40
                                             30
                                   20
                          10
                  MNEILRQPSVLLFLTLAVYALAIIVRTRTGNIFCNPVLVSTIVLIAYLKILGIDYAVYHN
     m226.pep
                  MSEILRQPSVLLFLTLAVYALAIIVRTRTGNIFCNPVLVSTIVLIAYLKILGIDYAVYHN
     g226
                                                       40
                                             30
                                   20
                          10
                                                      100
                                    80
                                             90
                          70
                  AAQFIDFWLKPAVVVLAVPLYQNRRKIFNQWLPVIVSQLAGSVTGIVTGMYFAKWLGAER
      m226.pep
                  AAQFIDFRLKPAVVVLAVPLYQNRRKIFNQWLPVIVSQLAGSVTGIVTGMYFAAWLGPDT
      g226
                                                      100
                                                                110
                                                                         120
                                             90
                          70
                                    80
                                                      160
                                                                          180
                                             150
                                   140
                         130
                  EVVLSLASKSVTNPIAIEITRSIGGIPAITAATVIIAGLVGQIAGYKMLKNTVVMPSSVG
      m226.pep
                  QFSFPPRLQYLLFTPSGIPIHTLYARVLPPFLLPPPLLPRLGPHTLRRFTILPKKLRPFK
      q226
                                                      160
                                                                170
                                             150
                                   140
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 809>:
      a226.seq
                ATGAACGAAA TCCTCAGGCA GCCGAGCATC CTGCTTTTCC TCACGCTTGC
                CGTGTACGCG CTTGCGATTA TCGTGCGCAC GCGCACGGGT AATATCTTCT
            51
                GCAACCCCGT ACTCGTCAGC ACTATCGTGC TGATTGCCTA CCTGAAAATC
           101
           151 CTCGGTATCG ATTATGCGGT GTACCACAAC GCCGCGCAGT TTATCGATTT
           201 CTGGCTCAAG CCCGCCGTCG TCGTGCTTGC CGTGCCGCTC TACCAAAACC
                GCCGTAAAAT CTTCAACCAA TGGCTGCCCG TCATCGTTTC GCAGCTTGCG
           251
           301 GGCAGCGTTA CGGGCATTGT TACGGGGATG TATTTTGCCA AATGGCTGGG
           351 CGCGGAACGC GAAGTCGTCC TCTCGCTCGC GTCCAAATCT GTTACCAATC
                CTATCGCCAT CGAAATCACC CGCTCCATCG GCGGCATTCC CGCCATTACC
           401
                GCCGCCACCG TCATCATTGC CGGCCTGGTC GGACAGATTG CCGGTTACAA
           451
           501 AATGTTGAAA AACACGGTCG TTATGCCCTC ATCTGTCGGA ATGTCGCTCG
                GCACGGCTTC GCACGCGATG GGCATTGCCG CCTCGCTCGA ACGCAGCCGC
           551
                CGCATGGCGG CATACGCGGG GCTGGGGCTG ACGTTCAACG GCGTACTGAC
            601
                CGCGCTGATT GCGCCGCTGC TTATCCCCGT TTTGGGATTT TGA
            651
 This corresponds to the amino acid sequence <SEQ ID 810; ORF 226.a>:
       a226.pep
                MNEILROPSI LLFLTLAVYA LAIIVRTRTG NIFCNPVLVS TIVLIAYLKI
                LGIDYAVYHN AAQFIDFWLK PAVVVLAVPL YQNRRKIFNQ WLPVIVSQLA
             51
            101 GSVTGIVTGM YFAKWLGAER EVVLSLASKS VTNPIAIEIT RSIGGIPAIT
                AATVIIAGLV GQIAGYKMLK NTVVMPSSVG MSLGTASHAM GIAASLERSR
            201 RMAAYAGLGL TFNGVLTALI APLLIPVLGF *
  m226/a226 99.6% identity in 230 aa overlap
                                                                  50
                                                                            60
                                                         40
                                               30
                           10
```

m226.pep	MNEILRQPSVLLFL			111111111	1111111111	11111
	70	80	90	100	110	120
	AAQFIDFWLKPAVV	UT.AUDT.YONR	RKTFNOWLPV	IVSOLAGSVT	GIVTGMYFAK	WLGAER
m226.pep		1111111111		1111111111	1 1 1 1 1 1 1 1 1 1	11111
006	AAQFIDFWLKPAVV	VT.AVPI.YONR	RKIFNOWLPV	IVSQLAGSVT	GIVTGMYFAK	WLGAER
a226	70	80	90	100	110	120
	, 0				_	
	130	140	150	. 160	170	180
m226.pep	EVVLSLASKSVTNE	IAIEITRSIG	GIPAITAATV	'IIAGLVGQIA	GYKMLKNTV	MPSSVG
mzzo.pep		1111111111	11111111111	1111111111		111111
a226	EVVLSLASKSVTNE	IAIEITRSIG	GIPAITAATV	/IIAGLVGQI	GYKMLKNTV/	MPSSVG
4220	130	140	150	160	170	180
		•				
	190	200	210	220	230	
m226.pep	MSLGTASHAMGIA	ASLERSRRMAA	YAGLGLTFN	GVLTALIAPL	LIPVLGFX	
mzzo.pcp			1111111111	[[]][]]	
a226	MSLGTASHAMGIA!	SLERSRRMA	YAGLGLTFN	GVLTALIAPL	LIPVLGFX	
a220	190	200	210	220	230	
					•	
					ODO III	0115.

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 811>:

```
g227.seq
```

-- 1221

atgaacatca teegegeget ceteateate eteggetgee tegeegeegg

51 cgaaaccgcc gttttcctag caggcatcaa actgcccggc agcatcgtcg

101 gcatgggcgt gctgtttgcg cttttgcagg cgggttggct caaaacgtct

151 tggctgcaac agcttaccga cgcgctgatg gcaaacctga cgctgttcct 201 cgtgccgccc tgcgtggcgg tcatcagcta tttggatttg attgccgacg

251 attggttttc gatactggtt tccgcctccg ccagcacttt gtgcgtactg

301 ctggttacgg gcaaggttca ccgctggata cggagcatta tctga This corresponds to the amino acid sequence <SEQ ID 812; ORF 227.ng>:

g227.pep

1 MNIIRALLII LGCLAAGETA VFLAGIKLPG SIVGMGVLFA LLQAGWLKTS

51 WLQQLTDALM ANLTLFLVPP CVAVISYLDL IADDWFSILV SASASTLCVL

101 LVTGKVHRWI RSII*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 813>:

m227.seq (partial)

..ACGTCTTkGC TGCAACAGCT TACCGACGCG CTGATGTCGA ACCTGACGCT

GTtCCTCGTG CCgCC.TGCG TGGCGGTCAT CAGCTATTTG GATTTGATTG 51 CCGACGATTG GTTTTCGATA CTGGTTTCCG CCTCCGCCAG CACTTTGTGC

GTACTGCTGG TTACGGGCAA AGTCCACCGG TGGATACGGG GTATTATCCG 151

ATGA 201

This corresponds to the amino acid sequence <SEQ ID 814; ORF 227>:

(partial) m227.pep

..TSXLQQLTDA LMSNLTLFLV PPCVAVISYL DLIADDWFSI LVSASASTLC

VLLVTGKVHR WIRGIIR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 227 shows 95.5% identity over a 66 aa overlap with a predicted ORF (ORF 227.ng) from N. gonorrhoeae:

m227/g227

30 20 10 TSXLQQLTDALMSNLTLFLVPPCVAVISYL m227.pep 11 1111111111:111111111111111111 TAVFLAGIKLPGSIVGMGVLFALLQAGWLKTSWLQQLTDALMANLTLFLVPPCVAVISYL g227 70 50 40 60 40

```
DLIADDWFSILVSASASTLCVLLVTGKVHRWIRGIIRX
      m227.pep
                   DLIADDWFSILVSASASTLCVLLVTGKVHRWIRSIIX
       g227
                                     100
                                               110
                             90
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 815>:
       a227.seq
             1 ATGAACATCA TCCGCGCGCT CCTCATCATC CTCGGCTGCC TCGCCACCGG
             51 CGAAACCGCC GTTTTCCTAG CAGGCATCAA ACTGCCCGGC AGCATCGTCG
           101 GCATGGGCGT ACTGTTTGCG CTTTTGCAGG CGGGTTGGGT CAAAACGTCT
                TGGCTGCAAC AGCTTACCGA CGCGCTGATG GCGAATCTGA CGTTGTTTCT
           201 CGTGCCGCCC TGCGTGGCGG TCATCAGCTA TTTGGATTTG ATTGCCGACG
            251 ATTGGTTTTC GATACTGGTT TCCGCCTCCG CCAGCACTTT GTGCGTACTG
- 1271
            301 CTGGTTACAG GCAAGGTTCA CCGCTGGATA CGGAGCATTA TCTGA
  This corresponds to the amino acid sequence <SEQ ID 816; ORF 227.a>:
                MNIIRALLII LGCLATGETA VFLAGIKLPG SIVGMGVLFA LLQAGWVKTS
       a227.pep
                 WLQQLTDALM ANLTLFLVPP CVAVISYLDL IADDWFSILV SASASTLCVL
             51
                LVTGKVHRWI RSII*
  m227/a227 95.5% identity in 66 aa overlap
                                                        10
                                                 TSXLQQLTDALMSNLTLFLVPPCVAVISYL
       m227.pep
                                                 11 1111111111:1111111111111111111
                    TAVFLAGIKLPGSIVGMGVLFALLQAGWVKTSWLQQLTDALMANLTLFLVPPCVAVISYL
       a227
                                                                    70
                                                 50
                                       40
                              30
                    20
                                      50
                                               60
                            40
                    DLIADDWFSILVSASASTLCVLLVTGKVHRWIRGIIRX
       m227.pep
                    DLIADDWFSILVSASASTLCVLLVTGKVHRWIRSIIX
        a227
                                      100
                              90
                    80
```

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 817>:

```
m228.seq
```

- ATGAAAAAT TATTGATTGC CGCAATGATG GCGGCTGCCT TGGCAGCTTG
- 51 TTCGCAAGAA GCCAAACAGG AGGTTAAGGA AGCGGTTCAA GCCGTTGAGT
- 101 CCGATGTTAA AGACACTGCG GCTTCTGCCG CCGAGTCTGC CGCTTCTGCC
- 151 GTCGAAGAAG CGAAAGACCA AGTCAAAGAT GCTGCGGCTG ATGCAAAGGC
- 201 AAGTGCCGAG GAAGCTGTAA CTGAAGCCAA AGAAGCTGTA ACTGAAGCAG
- CTAAAGATAC TTTGAACAAA GCTGCCGACG CGACTCAGGA AGCGGCAGAC
- 301 AAAATGAAAG ATGCCGCCAA ATAA

This corresponds to the amino acid sequence <SEQ ID 818; ORF 228>: m228.pep

- MKKLLIAAMM AAALAACSQE AKQEVKEAVQ AVESDVKDTA ASAAESAASA
- VEEAKDQVKD AAADAKASAE EAVTEAKEAV TEAAKDTLNK AADATQEAAD 51
- 101 KMKDAAK*

Computer analysis of this amino acid sequence gave the following results:

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 819>:

a228.seq ATGAAAAAT TATTGATTGC CGCAATGATG GCGGCTGCCT TGGCAGCTTG 1 TTCGCAAGAA GCCAAACAGG AGGTTAAGGA AGCGGTTCAA GCCGTTGAGT 51

- 101 CCGATGTTAA AGACACTGCG GCTTCTGCCG CCGAGTCTGC CGCTTCTGCC 151 GTCGAAGAAG CGAAAGACCA AGTCAAAGAT GCTGCGGCTG ATGCAAAGGC
- 201 AAGTGCCGAG GAAGCTGTAA CTGAAGCCAA AGAAGCTGTA ACTGAAGCAG
- 251 CTARAGATAC TTTGAACAAA GCTGCCGACG CGACTCAGGA AGCGGCAGAC
- 301 AAAATGAAAG ATGCCGCCAA ATAA

This corresponds to the amino acid sequence <SEQ ID 820; ORF 228.a>:

```
a228.pep
                MKKLLIAAMM AAALAACSQE AKQEVKEAVQ AVESDVKDTA ASAAESAASA
                VEEAKDQVKD AAADAKASAE EAVTEAKEAV TEAAKDTLNK AADATQEAAD
            51
           101 KMKDAAK*
  m228/a228 100.0% identity in 107 aa overlap
                                                       40
                                              30
                           10
                   MKKLLIAAMMAAALAACSQEAKQEVKEAVQAVESDVKDTAASAAESAASAVEEAKDQVKD
      m228.pep
                   MKKLLIAAMMAAALAACSQEAKQEVKEAVQAVESDVKDTAASAAESAASAVEEAKDQVKD
       a228
                                                       40
                                    20
                                              30
__ Str. -
                                                      100
                                              90
                                    80
                           70
                   AAADAKASAEEAVTEAKEAVTEAAKDTLNKAADATQEAADKMKDAAKX
       m228.pep
                   AAADAKASAEEAVTEAKEAVTEAAKDTLNKAADATQEAADKMKDAAKX
       a228
                                                      100
                                    80
                                              90
                           70
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 821>:
       g229.seq
                 atggctgccg tatcgggcgg cggtgcggtc ttcctgataa tgcttccaca
             51 tattgcccgc gttcagcgtc agccgccagc gttcgcccaa gcgtcgggag
            101 aaatcggcat tgaagccgcc ggcgaaattg tatcggctgc cgcccaagag
            151 gttttgcccg acaaacggca cggtgccgaa cgagcgcgtt accgaacggt
            201 tttgatggcc gaacgacagg cgcaggttct gttcgctgaa atctttgtta
                 teccaataat geacgeegeg getgatgeeg eegtagagga aatgatgeee
            301 gcccgcattg atttcgcgcg acacgcccaa gccgtagcgc aaaccgtgtg
            351 ccttttgcgg caggetgtcg geggttttcg tccagettct gcccgcaaat
            401 tcaatcgttt tttcggacga agcgttgttt atagcggatt aacaaaaatc
            451 aggacaaggc ggcgggccgc aggcagtacg gatggtacgg aaccggttcg
                 551 caacccgtac cggtttttgt tcatccgcca tattgtgttg a
   This corresponds to the amino acid sequence <SEQ ID 822; ORF 229.ng>:
        g229.pep
                 MAAVSGGGAV FLIMLPHIAR VQRQPPAFAQ ASGEIGIEAA GEIVSAAAQE
             51 VLPDKRHGAE RARYRTVLMA ERQAQVLFAE IFVIPIMHAA ADAAVEEMMP
            101 ARIDFARHAQ AVAQTVCLLR QAVGGFRPAS ARKFNRFFGR SVVYSGLTKI
             151 RTRRRAAGST DGTEPVRPVL GRLREPFPLS RGGATRTGFC SSAILC*
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 823>:
        m229.seq (partial)
                 ..GCTCAAGCGT TGGGAGAAAT CGGCATTGAA GCCGCCGACG AAATTGTATC
              . 1
                   GGCTGCCGCC TAAGAGGTTT TGCTCGACAA ACGGCACGAT GCCGAACGAG
              51
                   CGCGTTACCG AACGGTTTTT ATAGCCGAAC GACAGGCGCA GGCTCTGTTC
             101
                   GCTGAAATCT TTGTTATCCC AATAATGCAC GCCGCCGCCG CTGATGCCGC
             151
                    CGTAGAGGAA ATGATGCCTG CCCGCATTGA TTTCGCGCGA CACGCCTAAG
             201
                    CCCTAGCGCA AACCGTGTGC CTTTTGCGGC AGGCTGTCGG CGGTTTTCGT
             251
                    CCAGCTTCTG CCCGCAAATT CAATCGTTTT TTCGGACGAA GCGTTGTTTA
             301
                    TAGCGGATTA ACAAAAATCA GGACAAGGCA ACGAAGCCGC AGACAGTACA
             351
                    AATAGTACGG AACCGATTCA CTTGGTGCTT CAGCACCTTA GAGAATCGTT
             401
                    CTCTTTTTG TTCATCCGCT ATATTGTGTT GA
             451
   This corresponds to the amino acid sequence <SEQ ID 824; ORF 229>:
                  (partial)
        m229.pep
                  ..AQALGEIGIE AADEIVSAAA XEVLLDKRHD AERARYRTVF IAERQAQALF
                    AEIFVIPIMH AAAADAAVEE MMPARIDFAR HAXALAQTVC LLRQAVGGFR
              51
                    PASARKFNRF FGRSVVYSGL TKIRTRQRSA DSTNSTEPIH LVLQHLRESR
             101
                    SLFCSSAILC *
```

Computer analysis of this amino acid sequence gave the following results:

```
Homology with a predicted ORF from N. gonorrhoeae
ORF 229 shows 80.5% identity over a 169 aa overlap with a predicted ORF (ORF 229.ng)
from N. gonorrhoeae:
    m229/g209
                                                                     30
                                                  10
                                                           20
                                           AQALGEIGIEAADEIVSAAAXEVLLDKRHDAE
     m229.pep
                                           THE THEFT THEFT THE THE
                 MAAVSGGGAVFLIMLPHIARVQRQPPAFAQASGEIGIEAAGEIVSAAAQEVLPDKRHGAE
     g229
                                                    40
                                                             50
                                           30
                        10
                                  20
                                                                     90
                                                  70
                                                           80
                                50.
                                         60
                       40
                 RARYRTVFIAERQAQALFAEIFVIPIMHAAAADAAVEEMMPARIDFARHAXALAQTVCLL
     m229.pep
                 RARYRTVLMAERQAQVLFAEIFVIPIMHAAA-DAAVEEMMPARIDFARHAQAVAQTVCLL
     a229
                                                             110
                                                    100
                                           90
                                  80
                                                           140
                      100
                               110
                                        120
                                                 130
                 RQAVGGFRPASARKFNRFFGRSVVYSGLTKIRTRQRSADSTNSTEPIHLVLQHLRE----
     m229.pep
                 RQAVGGFRPASARKFNRFFGRSVVYSGLTKIRTRRRAAGSTDGTEPVRPVLGRLREPFPL
     g229
                                                    160
                                                             170
                                           150
                                  140
               120
                        130
                              160
                     150
                 ----SRSLFCSSAILCX
     m229.pep
                      :|: |||||||
                 SRGGATRTGFCSSAILC
     g229
                         190
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 825>:
     a229.seq
               (partial)
               ATGGCTGTCG TATCGGGCGG CGGTGCGGTC TTCCTGATAA CGCTTCCACA
               TATTGCCCAC GTTCAGCGTC AGCCGCCA.. GTTCGCTCAA GCGTCGGGAG
           51
          101 AAATCGGCAT TGAAGCCGCC GACGAAATTG TATCGGCTGC CGCCTAAGAG
              GTTTTGCTCG ATAAACGGCA CGATGCCGAA TGAGCGCGTT ACTGAACGGT
          151
          201 TTTTATAGCC GAGCGACAGG CGCAGGCTCT GTTCGCTGAA ATCTTTGTTA
          251 TCCTAATAGT GCACGCCGCC GCCGCTGATG TCTCCGTAGA GGAAATGATG
               CCCGCCCGCA TTGATTTCGC GCGACACGCC CAAGCCGTAG CGCAAACCGT
          301
               GTGCCTTTTG CGGCAGGCTG TCGGCGGTTT TCGTCCAGCT TCTGCCTGCA
          351
               AATTCAATCG TTTTTTCGGA CGAAGCGTTG TTTATAGCGG ATTAACAAAA
          401
               ATCAGGACAA GGCGACGAAG CGCAGACAGT ACAGATAGTA CGGAACCGAT
          451
               TCACTTGGTG CTTCAGCACC TTAGAGAATC GTCTCTTTGA GCTAAGGCGA
          501
          551 GGCAACGCCG TACTGGTTTT TGTTCATCCA CTATA
 This corresponds to the amino acid sequence <SEQ ID 826; ORF 229.a>:
      a229.pep (partial)
               MAVVSGGGAV FLITLPHIAH VQRQPPXFAQ ASGEIGIEAA DEIVSAAA*E
               VLLDKRHDAE *ARY*TVFIA ERQAQALFAE IFVILIVHAA AADVSVEEMM
               PARIDFARHA QAVAQTVCLL RQAVGGFRPA SACKFNRFFG RSVVYSGLTK
           151 IRTRRRSADS TOSTEPIHLV LQHLRESSL* AKARQRRTGF CSSTI
 m229/a229 85.6% identity in 167 aa overlap
                                                                      30
                                                   10
                                                             20
                                            AQALGEIGIEAADEIVSAAAXEVLLDKRHDAE
      m229.pep
                                            MAVVSGGGAVFLITLPHIAHVQRQPPXFAQASGEIGIEAADEIVSAAAXEVLLDKRHDAE
      a229
                                                               50
                                   20
                                            30
                                                      40
                          10
                                                             80
                                                    70
                                           60
                  RARYRTVFIAERQAQALFAEIFVIPIMHAAAADAAVEEMMPARIDFARHAXALAQTVCLL
      m229.pep
                    XARYXTVFIAERQAQALFAEIFVILIVHAAAADVSVEEMMPARIDFARHAQAVAQTVCLL
      a229
                                                              110
```

90

```
140
                                       130
                       110
                               120
          RQAVGGFRPASARKFNRFFGRSVVYSGLTKIRTRQRSADSTNSTEPIHLVLQHLRES---
m229.pep
           RQAVGGFRPASACKFNRFFGRSVVYSGLTKIRTRRSADSTDSTEPIHLVLQHLRESSLX
a229
                                        160
                                150
                        140
                130
              150
                      160
             ---RSLFCSSAILCX
m229.pep
                1: 1111:1
           AKARQRRTGFCSSTI
a229
                190
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 827>:
```

```
g230.seq
         atgttccatt ccatcgaaaa atacagaaca cccgcccaag tcttattagg
     51 cetgattgca ttaacttttg teggettegg egteageaeg gttteecate
         cgggcgccga ctacatcgtc caagtgggcg acgaaaaaat cagcgagcac
     101
     151 tcaatcaaca acgccatgca gaacgagcag gcggacggcg gcagcccttg
     201 gegegacgeg gtgttccaat ceetgetgea acgegeetae etgaaacagg
     251 gcgcgaagct gatgggcatt tcggtttctt ccgaacaaat caagcagatg
     301 attgtggacg atcccaattt ccacgacgca aacggcaaat tcagtcacgc
     351 gcttttgagt caatacctgt cgcaacgcca tatgtctgaa gaccagtttg
          tcgaagaaat ccgcgatcag tttgccttgc agaatttggt aagcctcgtc
     451 caaaacggcg tattggtcgg cgacgcgcag gcggaacagc tgatcaggct
          gacgcaggtc aaccgcacca tccgttcgca cactttcaac cccgacgagt
     551 tcatcgccca agtcaaagcg tctgaagccg atttgcagaa attttataat
     601 gcgaacaaaa aagactatct gctgccgcag gcggtcaaat tggaatatgt
     651 cgccttgaat ctgaaggatt ttgcagacaa gcagaccgtc agtgaaacgg
          aagtgaaaaa tgcgtttgaa gagcgcgtgg cgcgtttgcc ggcacatgaa
     701
     751 gccaaacctt ctttcgagca ggaaaaagcc gccgtcgaaa acgaattgaa
     801 aatgaaaaag geggttgeeg aetteaacaa ggeaaaagaa aagetgggeg
     851 acgatgcgtt caatcatccc tectegettg ecgaageege caaaaacage
     901 ggtttgaaag tggaaaccca agaaacttgg ctgagcaggc aggacgcaca
     951 aatgtccggc atgcccgaaa acctaatcaa tgccgtattc agcgacgacg
          tattgaagaa aaaacacaat toogaagtgo tgaccatcaa cagogaaaco
    1001
          gcgtgggtcg tccgcgccaa agaagtccgc gaagaaaaaa acctactgtt
    1051
          tgaagaagcc aaagatgcgg tgcgtcaggc ctatatccgt accgaagccg
    1101
          ccaaactttt gaaaacaatg taa
    1151
```

This corresponds to the amino acid sequence <SEQ ID 828; ORF 230.ng>:

g230.pep MFHSIEKYRT PAQVLLGLIA LTFVGFGVST VSHPGADYIV QVGDEKISEH 51 SINNAMONEO ADGGSPWRDA VFOSLLORAY LKQGAKLMGI SVSSEQIKQM 101 IVDDPNFHDA NGKFSHALLS QYLSQRHMSE DQFVEEIRDQ FALQNLVSLV QNGVLVGDAQ AEQLIRLTQV NRTIRSHTFN PDEFIAQVKA SEADLQKFYN 201 ANKKDYLLPQ AVKLEYVALN LKDFADKQTV SETEVKNAFE ERVARLPAHE 251 AKPSFEQEKA AVENELKMKK AVADFNKAKE KLGDDAFNHP SSLAEAAKNS 301 GLKVETQETW LSRQDAQMSG MPENLINAVF SDDVLKKKHN SEVLTINSET

351 AWVVRAKEVR EEKNLLFEEA KDAVRQAYIR TEAAKLLKTM * The following partial DNA sequence was identified in N. meningitidis <SEQ ID 829>:

m230.seq (partial) 1 ATGTTCCATT CCATCGAAAA ATACAGAACG CCCGCCCAAG TCCTTTTGGG 51 CCTGATTGCA TTAACCTTCG TCGGCTTCGG GGTCAGCACG GTATCCCATC 101 CGGGTGCCGA CTACATCGTC CAAGTGGGCG ACGAAAAAAT CAGCGACCAC 151 TCCATCAACA ACGCCATACA GAACGAACAG GCGGACGGCG GCGGCCCTTC 201 GCC.GACGCG GTGTTCCAAT CCCTGCTGCA ACGCGCCTAC CTGAAACAGG 251 GCGCGAAGCT GATGGGCATT TCGGTTTCTT CCGAACAAAT CAAGCAAATT 301 ATCGTGGACG ATCCCAATTT CCACGACGCA AACGGCAAAT TCGACCACGC 351 GCTTTTAAAC CGCTACCTTT CCCAACGCCA TATGTCTGAA GACCAGTTTG 401 TCGAAGAAAT CCGCGATCAG TTTGCCTTGC AGAATTTGGT AAACCTCGTC -- 37717

451	CAAAACGGCG	TATTGGTCGG	CGACGCGCAG	GCGGAACAGC	TGATCAGGCT
501	GACACAGGTC	AACCGCACCA	TCCGTTCGCA	CACTTTCAAC	CCCGACGAGT
551	TCATCGCCCA	AGTCAAAGTG	TCTGAAGCCG	ATTTGCAGAA	TAATATTTA
601	CCCDACAAAA	AAGACTATCT	GCTGCCGCAG	GCGGTCAAAT	TGGAATATGT
	OCCUMENTAL AT	CTGAAGGATT	TTGCAGACAA	GCAGACCGTC	AGTGAAACGg
651	CGCCIIGAAI	TGCATTTGAA	GAGCGCGTGG	CGCGTTTGCC	GGCAAATGAA
701	AAGIGAAAAA	COMMERCES CCS	CCANANACCC	GCCGTCGAAA	ACGAATTGAA
751	GCCAAACCTT	CITICGAGCA	A CALLED A CO V	CCCANAGAA	AAATTGGGCG
801	AATGAAAAAG	GCGGTTGCCG	MCTICAACAA	CCGAAGCCGC	CAAAAACAGC
851	ACGATGC.GT	CAACCATCCT	TCYTCGCTTG	CCGAAGCCGC	CAAAAACAGC
901	GGTTTGAAAG	TCGAAACCCA	AGAAACTTGG	CIGAGIAGGC	AGGACGCGCA
951	AATGTCCGGT	ATGCCCGAAA	ACCTGATCAA	TGCCGTATIC	AGCGACGACG
1001	TATTGAAGAA	AAAACACAAT	TCCGAAGTGC	TGACCATCAA	CAGCGAAACC
1051	GCGTGGGTCG	TCCGCGCCAA	AGAAGTCCGC	GAAGAGAAAA	CCCTGCCGTT
1101	TGCCGAAGCC	AAAGACGCGG	TACGTCAGGC	TTATATCCGT	ACCGAAGCCG
1151	CCAAACTT				

This corresponds to the amino acid sequence <SEQ ID 830; ORF 230>:

m230.pep (partial)

1 MFHSIEKYRT PAQVLLGLIA LTFVGFGVST VSHPGADYIV QVGDEKISDH
51 SINNALQNEQ ADGGGPSPDA VFQSLLQRAY LKQGAKLMGI SVSSEQIKQI
101 IVDDPNFHDA NGKFDHALLN RYLSQRHMSE DQFVEEIRDQ FALQNLVNLV
151 QNGVLVGDAQ AEQLIRLTQV NRTIRSHTFN PDEFIAQVKV SEADLQKFYN
201 ANKKDYLLPQ AVKLEYVALN LKDFADKQTV SETEVKNAFE ERVARLPANE

251 AKPSFEQEKA AVENELKMKK AVADFNKAKE KLGDDAVNHP SSLAEAAKNS 301 GLKVETQETW LSRQDAQMSG MPENLINAVF SDDVLKKKHN SEVLTINSET

351 AWVVRAKEVR EEKTLPFAEA KDAVRQAYIR TEAAKL....

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 230 shows 95.9% identity over a 386 aa overlap with a predicted ORF (ORF 230.ng) from N. gonorrhoeae:

m230/g230

	10	20	30	40	50	60
m230.pep	MFHSIEKYRTPAQVL	LGLIALTFV	GFGVSTVSHP(GADYIVQVGDI	KISDHSINN	AIQNEQ
mas o . P o P		111111111	11111111	11111111111		1:1111
g230	MFHSIEKYRTPAQVL	LGLIALTFV	GFGVSTVSHP(GADYIVQVGDI	EKISEHSINN	AMONEO
5	10	20	30	40	50	60
						120
	70	80	90	100	110	
m230.pep	ADGGGPSPDAVFQSL	LQRAYLKQG	AKLMGISVSS	EOIKOIIADD	PNEHDANGKE	:1111:
		111111111	11111111111	11111:1111		- 1 1 1 7 .
g230	ADGGSPWRDAVFQSL		AKLMGISVSS	EQIKQMIVDD:	PNFHDANGK	120
-	70	80	90	100	110	120
					170	180
	130	140	150	160	170	_
m230.pep	RYLSORHMSEDOFVE	EIRDOFALO	NLVNLVONGV	LVGDAQAEQL	TKPIÖANKI:	INDITEN
	-: []]] [] [] [] [] [] [] [] [.111111111	111:111111			
g230	QYLSQRHMSEDQFVE			LVGDAQAEQL	170	180
	130	140	150	160	170	100
				220	230	240
	190	200	210			
m230.pep	PDEFIAQVKVSEADI	OKFYNANKI	(DALT LAND ANKT	TITITITE TELEVISION		
				HILLIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,,,,,,,
g230	PDEFIAQVKASEAD	LOKFYNANKI	CDAPTEGWAYT	220	230	240
	190	200	210	220	250	
		260	270	280	290	300
	250 ERVARLPANEAKPS:	260				AEAAKNS
m230.pep	ERVARLPANEAKPS.	E EQERAAVE	11111111111			
	[III IIIIII NAFNHPSSL	AEAAKNS
g230			NELKIIKKAVAI 270	280	290	300
	250	260	2/0	200	2,0	

```
360
                                                              350
                                                    340
                        310
                                 320
                                           330
                 GLKVETQETWLSRQDAQMSGMPENLINAVFSDDVLKKKHNSEVLTINSETAWVVRAKEVR
    m230.pep
                 ուսոնույլուցոնուսատուսատուսատուսատուսատուս
                 GLKVETQETWLSRQDAQMSGMPENLINAVFSDDVLKKKHNSEVLTINSETAWVVRAKEVR
    g230
                                                              350
                                                    340
                                 320
                                           330
                        310
                                 380
                        370
                 EEKTLPFAEAKDAVRQAYIRTEAAKL
    m230.pep
                 111:4 1 111111111111111111
                 EEKNLLFEEAKDAVRQAYIRTEAAKLLKTM
     g230
                                           390
                                 380
                        370
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 831>:
     a230.seq
              (partial)
              ATGTTCCATT CCATCGAAAA ATACAGAACG CCCGCCCAAG TCCTTTTGGG
              CCTGATTGCA TTAACCTTCG TCGGCTTCGG GGTCAGCACG GTATCCCATC
              CGGGTGCCGA CTACATCGTC CAAGTGGGCG ACGAAAAAAT CAGCGACCAC
          101
              TCCATCAACA ACGCCATACA GAACGAACAG GCGGACGGCG GCGGCCCTTC
          201 GCGCGACGCG GTGTTCCAAT CCCTGCTACA ACGCGCCTAC CTGAAACAGG
          251 GCGCGAAGCT GATGGGCATT TCGGTTTCTT CCGAACAAAT CAAGCAGATT
              ATCGTGGACG ATCCCAATTT CCACGACGCA AACGGCAAAT TCGACCACGC
          351 GCTTTTAAAC CGCTACCTTT CCCAACGTCA TATGTCTGAA GACCAGTTTG
              TCGAAGAAAT CCGCGATCAG TTTGCCTTGC AGAATTTGGT AAACCTCGTC
              CAAAACGGCG TATTGGTCGG CGACGCGCAG GCGGAACAGC TGATCAGGCT
          451
          501 GACGCAGGTC AACCGCACCA TCCGTTCGCA CACTTTCAAC CCCGACGAAT
              TCATCGCCCA AGTCAAAGTG TCTGAAGCCG ATTTGCAGAA GTTTTATAAC
          551
              GCAAACAAAA AAGACTACCT GCTTCCCAAA GCGGTCAAAT TGGAATATGT
          601
              CGCCTTGAAT CTGAAAGACT TTGCAGACAA ACAGACCGTC AGCGAAACAG
          651
          701 AAGTGAAAAA TGCGTTTGAA GAGCGCGTGG CGCGTTTGCC GGCAAATGAA
               GCCAAACCTT CTTTCGAGCA GGAAAAAGCC GCCGTCGAAA ACGAATTGAA
               AATGAAAAAG GCGGTTGCCG ACTTCAATAA GGCAAAAGAA AAGCTGGGCG
          801
          851 ATGACGCGTT CAACCATCCT TCCTCGCTTG CCGAAGCCGC CAAAAACAGC
          901 GGTTTGAAAG TCGAAACCCA AGAAACTTGG CTGAGCAGGC AGGATGCGCA
          951 AATGTCCGGT ATGCCCGAAA ACCTGATCAA TGCCGTATTC AGCGACGACG
               TATTGAAGAA AAAACACAAT TCCGAAGTGC TGACCATCAA CAGCGAAACC
         1001
         1051 GCGTGGGTCG TCCGCGCCAA AGAAGTCCGC GAAGAGAAAA CCCTGCCGTT
               TGCCGAAGCC AAAGACGCGG TACGTCAGGC TTATATCCGT ACCGAAGCCG
         1151 CCAAACTT
This corresponds to the amino acid sequence <SEQ ID 832; ORF 230.a>:
               (partial)
     a230.pep
               MFHSIEKYRT PAQVLLGLIA LTFVGFGVST VSHPGADYIV QVGDEKISDH
               SINNAIQNEQ ADGGGPSRDA VFQSLLQRAY LKQGAKLMGI SVSSEQIKQI
               IVDDPNFHDA NGKFDHALLN RYLSQRHMSE DQFVEEIRDQ FALQNLVNLV
          101
               QNGVLVGDAQ AEQLIRLTQV NRTIRSHTFN PDEFIAQVKV SEADLQKFYN
          151
               ANKKDYLLPK AVKLEYVALN LKDFADKQTV SETEVKNAFE ERVARLPANE
               AKPSFEQEKA AVENELKMKK AVADFNKAKE KLGDDAFNHP SSLAEAAKNS
          251
               GLKVETQETW LSRQDAQMSG MPENLINAVF SDDVLKKKHN SEVLTINSET
           351 AWVVRAKEVR EEKTLPFAEA KDAVRQAYIR TEAAKL
 m230/a230 99.2% identity in 386 aa overlap
                                    20
                                             30
                                                       40
                          10
                  MFHSIEKYRTPAQVLLGLIALTFVGFGVSTVSHPGADYIVQVGDEKISDHSINNAIQNEQ
      m230.pep
                  MFHSIEKYRTPAQVLLGLIALTFVGFGVSTVSHPGADYIVQVGDEKISDHSINNAIQNEQ
      a230
                                    20
                                             30
                                                       40
                          10
                                                                110
                                                      100
                                    80
                                              90
                   ADGGGPSPDAVFQSLLQRAYLKQGAKLMGISVSSEQIKQIIVDDPNFHDANGKFDHALLN
      m230.pep
                   ADGGGPSRDAVFQSLLQRAYLKQGAKLMGISVSSEQIKQIIVDDPNFHDANGKFDHALLN
      a230
                                                                         120
                                                      100
                                              90
                          70
                                    80
                                                                170
                                                                          180
                                                      160
                                             150
                         130
                                   140
```

m230.pep	RYLSQRHMSEDQFVEEI	RDOFALQNLV	NLVQNGVLVG	DAQAEQLIRL	TQVNRTIRSH,	TFN
m230.pep		1111111111	1111111111		.	111
a230	RYLSQRHMSEDQFVEEI	RDOFALONLV	NLVQNGVLV	DAQAEQLIRI	TQVNRTIRSH	TEN
4250		140	150	160	170	180
	190	200	210	220	230	240
m230.pep	PDEFIAQVKVSEADLQK	FYNANKKDYI	LPQAVKLEY	/ALNLKDFADI	(QTVSETEVK)	IAFE
M230.POP		11111111111	[11:111]			
a230	PDEFIAQVKVSEADLQK	FYNANKKDYI	LPKAVKLEY	/ALNLKDFADI	KQTVSETEVKN	IAFE
4250	190	200	210	220	230	240
	250	260	270		290	300
m230.pep	ERVARLPANEAKPSFEC	DEKAAVENELI	KMKKAVADFNI	Kakeklgddai	<i>I</i> NHPSSLAEA	KNS
MEGGIF		[[]]]	1111111111			
a230	ERVARLPANEAKPSFEC	ekaaveneli	KMKKAVADFNI	KAKEKLGDDAI	enhpsslaea <i>i</i>	AKNS
	250	260	270	280	290	300
	•					
	310	320	330	340	350	360
m230.pep	GLKVETQETWLSRQDAG		NAVFSDDVLK	KKHNSEVLTII	NSETAWVVRAI	KEVR
		[1111111111	1111111111		111111111	
a230	GLKVETQETWLSRQDA(NAVFSDDVLK	KKHNSEVLTI	NSETAWVVRA	KEVR
	310	320	330	340	350	360
	370	380 .				
m230.pep	EEKTLPFAEAKDAVRQ					
a230	EEKTLPFAEAKDAVRQ					
	370	380				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 833>: g230-1.seq

0-7.860	1				mamma mma cc
1	ATGTTCCATT	CCATCGAAAA	ATACAGAACA	CCCGCCCAAG	TCTTATTAGG
51	CCTGATTGCA	TTAACTTTTG	TCGGCTTCGG	CGTCAGCACG	GTTTCCCATC
101	CGGGCGCCGA	CTACATCGTC	CAAGTGGGCG	ACGAAAAAAT	CAGCGAGCAC
151	TCAATCAACA	ACGCCATGCA	GAACGAGCAG	GCGGACGGCG	GCAGCCCTTG
201	GCGCGACGCG	GTGTTCCAAT	CCCTGCTGCA	ACGCGCCTAC	CTGAAACAGG
251	GCGCGAAGCT	GATGGGCATT	TCGGTTTCTT	CCGAACAAAT	CAAGCAGATG
301	ATTGTGGACG		CCACGACGCA	AACGGCAAAT	TCAGTCACGC
351	GCTTTTGAGT	CANTACCTGT		TATGTCTGAA	
401	TCGAAGAAAT	CCGCGATCAG		AGAATTTGGT	
451	CAAAACGGCG	TATTGGTCGG	CGACGCGCAG	GCGGAACAGC	TGATCAGGCT
501	GACGCAGGTC	AACCGCACCA	TCCGTTCGCA	CACTTTCAAC	CCCGACGAGT
551	TCATCGCCCA	AGTCAAAGCG	TCTGAAGCCG	ATTTGCAGAA	ATTTTATAAT
601	GCGAACAAAA	AAGACTATCT	GCTGCCGCAG	GCGGTCAAAT	TGGAATATGT
651	CGCCTTGAAT	CTGAAGGATT	TTGCAGACAA	GCAGACCGTC	AGTGAAACGG
701	AAGTGAAAAA	TGCGTTTGAA	GAGCGCGTGG	CGCGTTTGCC	GGCACATGAA
751	GCCAAACCTT	CTTTCGAGCA	GGAAAAAGCC	GCCGTCGAAA	ACGAATTGAA
801	AATGAAAAAG	GCGGTTGCCG	ACTTCAACAA	GGCAAAAGAA	AAGCTGGGCG
851	ACGATGCGTT	CAATCATCCC	TCCTCGCTTG	CCGAAGCCGC	CAAAAACAGC
901	GGTTTGAAAG	TGGAAACCCA	AGAAACTTGG	CTGAGCAGGC	AGGACGCACA
951	AATGTCCGGC	ATGCCCGAAA	ACCTAATCAA	TGCCGTATTC	AGCGACGACG
1001	TATTGAAGAA	AAAACACAAT	TCCGAAGTGC	TGACCATCAA	CAGCGAAACC
1051	GCGTGGGTCG	TCCGCGCCAA	AGAAGTCCGC	GAAGAAAAAA	ACCTACTGTT
1101	TGAAGAAGCC	AAAGATGCGG	TGCGTCAGGC	CTATATCCGT	ACCGAAGCCG
1151	CCAAACTTGC	CGAAAACAAG	GCAAAAGAAG	TGCTTACCCA	ACTGAACGGC
1201	GGCAAGGCAG	TTGACGTGAA	ATGGTCGGAA	GTGTCCGTTT	TGGGCGCGCA
1251	GCAGGCAAGG	CAGTCCATGC	CGCCCGAGGC	TTATGCGGAA	CTGCTGAAAG
1301	CAAAACCGGC	AAACGGCAAA	CCCGCCTATG	TCAGACTGAC	CGGTCTGCCG
1351	GCACCCGTGA	TTGTCGAGGC	GCAGGCAGTC	ACGCCTCCGG	AGGATATTGC
1401	CGCACAGCTT	CCTCCTGCGA	AACAGGCTTT	GGCGCAACAG	CAGTCTGCCA
1451	ATACTTTCGA	CCTGCTGATC	CGCTATTTCA	ACGGAAAAAT	CAAACAGACT
1501	AAAGGAGCAC	AATCGGTTGA	CAACGGCGAT	GGTCAGTAA	

This corresponds to the amino acid sequence <SEQ ID 834; ORF 230-1.ng>: g230-1.pap

- -1.pep

 1 MFHSIEKYRT PAQVLLGLIA LTFVGFGVST VSHPGADYIV QVGDEKISEH
 51 SINNAMQNEQ ADGGSPWRDA VFQSLLQRAY LKQGAKLMGI SVSSEQIKQM
 101 IVDDPNFHDA NGKFSHALLS QYLSQRHMSE DQFVEEIRDQ FALQNLVSLV

```
151 QNGVLVGDAQ AEQLIRLTQV NRTIRSHTFN PDEFIAQVKA SEADLQKFYN
     ANKKDYLLPQ AVKLEYVALN LKDFADKQTV SETEVKNAFE ERVARLPAHE
    AKPSFEQEKA AVENELKMKK AVADFNKAKE KLGDDAFNHP SSLAEAAKNS
251
    GLKVETQETW LSRQDAQMSG MPENLINAVF SDDVLKKKHN SEVLTINSET
301
351 AWVVRAKEVR EEKNLLFEEA KDAVRQAYIR TEAAKLAENK AKEVLTQLNG
    GKAVDVKWSE VSVLGAQQAR QSMPPEAYAE LLKAKPANGK PAYVRLTGLP
451 APVIVEAQAV TPPEDIAAQL PPAKQALAQQ QSANTFOLLI RYFNGKIKQT
501 KGAQSVDNGD GQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 835>:

```
1 ATGTTCCATT CCATCGAAAA ATACAGAACG CCCGCCCAAG TCCTTTTGGG
     CCTGATTGCA TTAACCTTCG TCGGCTTCGG GGTCAGCACG GTATCCCATC
     CGGGTGCCGA CTACATCGTC CAAGTGGGCG ACGAAAAAAT CAGCGACCAC
101
     TCCATCAACA ACGCCATACA GAACGAACAG GCGGACGGCG GCGGCCCTTC
151
     GCGCGACGCG GTGTTCCAAT CCCTGCTGCA ACGCGCCTAC CTGAAACAGG
     GCGCGAAGCT GATGGGCATT TCGGTTTCTT CCGAACAAAT CAAGCAAATT
251
     ATCGTGGACG ATCCCAATTT CCACGACGCA AACGGCAAAT TCGACCACGC
301
     GCTTTTAAAC CGCTACCTTT CCCAACGCCA TATGTCTGAA GACCAGTTTG
351
401 TCGAAGAAAT CCGCGATCAG TTTGCCTTGC AGAATTTGGT AAACCTCGTC
     CAAAACGGCG TATTGGTCGG CGACGCGCAG GCGGAACAGC TGATCAGGCT
451
     GACACAGGTC AACCGCACCA TCCGTTCGCA CACTTTCAAC CCCGACGAGT
501
     TCATCGCCCA AGTCAAAGTG TCTGAAGCCG ATTTGCAGAA ATTTTATAAT
551
     GCGAACAAAA AAGACTATCT GCTGCCGCAG GCGGTCAAAT TGGAATATGT
651 CGCCTTGAAT CTGAAGGATT TTGCAGACAA GCAGACCGTC AGTGAAACGG
     AAGTGAAAA TGCATTTGAA GAGCGCGTGG CGCGTTTGCC GGCAAATGAA
     GCCAAACCTT CTTTCGAGCA GGAAAAAGCC GCCGTCGAAA ACGAATTGAA
     AATGAAAAAG GCGGTTGCCG ACTTCAACAA GGCAAAAGAA AAATTGGGCG
801
851 ACGATGCGTT CAACCATCCT TCCTCGCTTG CCGAAGCCGC CAAAAACAGC
     GGTTTGAAAG TCGAAACCCA AGAAACTTGG CTGAGTAGGC AGGACGCGCA
901
     AATGTCCGGT ATGCCCGAAA ACCTGATCAA TGCCGTATTC AGCGACGACG
951
     TATTGAAGAA AAAACACAAT TCCGAAGTGC TGACCATCAA CAGCGAAACC
1001
     GCGTGGGTCG TCCGCGCCAA AGAAGTCCGC GAAGAGAAAA CCCTGCCGTT
1051
     TGCCGAAGCC AAAGACGCGG TACGTCAGGC TTATATCCGT ACCGAAGCCG
1101
     CCAAACTTGC CGAAAACAAG GCAAAAGACG TGCTTACCCA ACTGAACGGC
1151
     GGCAAGGCTG TTGACGTGAA ATGGTCGGAA GTGTCCGTTT TGGGCGCACA
1201
     GCAGGCAAGG CAGTCCATGC CGCCCGAGGC TTATGCGGAA CTGCTGAAAG
1251
     CAAAACCGGC AAACGGCAAA CCCGCCTACG TCAGGCTGAT CGGTCTGCCG
1301
     GCACCCGTGA TTGTCGAAGT ACAGGCTGTA ACCCCGCCGG ATGATATCGC
1351
     CGCACAGCTT CCGCTTGCAA AACAGGCTTT GGCGCAACAG CAGTCTGCCA
     ATACTTTCGA CTTGTTGATA CGTTATTTCA ACGGCAAAAT CAAACAGACC
1451
     AAAGGAGCGC AATCGGTCGA CAACGGCGAC GGTCAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 836; ORF 230-1>:

```
m230-1.pep
       1 MFHSIEKYRT PAQVLLGLIA LTFVGFGVST VSHPGADYIV QVGDEKISDH
          SINNAIQNEQ ADGGGPSRDA VFQSLLQRAY LKQGAKLMGI SVSSEQIKQI
     51
    101 IVDDPNFHDA NGKFDHALLN RYLSQRHMSE DQFVEEIRDQ FALQNLVNLV
         ONGVLVGDAQ AEQLIRLTQV NRTIRSHTFN PDEFIAQVKV SEADLQKFYN
     201 ANKKDYLLPQ AVKLEYVALN LKDFADKQTV SETEVKNAFE ERVARLPANE
     251 AKPSFEQEKA AVENELKMKK AVADFNKAKE KLGDDAFNHP SSLAEAAKNS
     301 GLKVETQETW LSRQDAQMSG MPENLINAVF SDDVLKKKHN SEVLTINSET
     351 AWVVRAKEVR EEKTLPFAEA KDAVRQAYIR TEAAKLAENK AKDVLTQLNG
          GKAVDVKWSE VSVLGAQQAR QSMPPEAYAE LLKAKPANGK PAYVRLIGLP
     401
          APVIVEVQAV TPPDDIAAQL PLAKQALAQQ QSANTFDLLI RYFNGKIKQT
          KGAQSVDNGD GQ*
     501
```

m230-1/g230-1 96.3% identity in 512 as overlap

	10	20	30	40	50	60
m230-1.pep	MFHSIEKYRTPAQV					
	1111111111111111111					
g230-1	MFHSIEKYRTPAQV	LLGLIALTFV	/GFGVSTVSHP	GADYIVQVGD	EKISEHSINN	NAMQNEQ
3	10	20	30	40	50	60
	70	80	90	100	110	120
m230-1.pep	ADGGGPSRDAVFQS	LLQRAYLKQ	GAKLMGISVSS	EQIKQIIVD	PNFHDANGKI	FDHALLN
• •	1111:1 1111111					
q230-1	ADGGSPWRDAVFQS	LLQRAYLKQ	SAKLMGISVSS	EQIKQMIVDI	PNFHDANGKI	FSHALLS
3	70	80	90	100	110	120
	130	140	150	160	170	180
	RYLSORHMSEDOFV					
m230-1.pep	RYLSQRHMSEDQFV	FFTKDG&WP(รีนกงนกงดีมดิง	TAGNYOVER	TENT AND TO	TUSHIEN

	:11111111111111111111111111111111111111	11111111	111:111111	1111111111	1111111111	
g230-1	QYLSQRHMSEDQFVE	EIRDQFALC 140	NLVSLVQNGVI 150	LVGDAQAEQL 160	IRLIQVARII 170	180
	130	140	150	100	170	200
	190	200	210	220	230	240
m230-1.pep	PDEFIAQVKVSEADI	OKFYNANKI	DYLLPOAVKL	EYVALNLKDF	ADKQTVSETE	VKNAFE
10230 I.PCP		111111111		1111111111		111111
g230-1	PDEFIAQVKASEADI	OKFYNANKI	DYLLPQAVKL	EYVALNLKDF	adkqtvsete	VKNAFE
9250 1	190	200	210	220	230	240
	250	260	270	280	290	300
m230-1.pep	ERVARLPANEAKPS	PEQEKAAVE	NELKMKKAVAD:	fnkakeklgd	DAFNHPSSLA	EAAKNS
		111111111		1111111111	нитіні	111111
g230-1	ERVARLPAHEAKPSI		NELKMKKAVAD	FNKAKEKLGD	DAFNHPSSLA	EAAKNS
3	250	260	270	280	290	300
						260
	310	320	330	340	350	360
m230-1.pep	GLKVETQETWLSRQ	Daqmsgmpe!	NLINAVESDDV	LKKKHNSEVL	TINSETAWVV	RAKEVK
	111111111111111		111111111111	111111111	1111111111	111111
g230-1	GLKVETQETWLSRQ		NLINAVFSDDV	TKKKHNSEAT	TINSETAWVV	RAKEVR 360
	310	320	330	340	350	360
	370	380	390	400	410	420
	EEKTLPFAEAKDAV	プロリ プロリカルメン				
m230-1.pep	EEKTLPFAEAKDAV	NOAIIKIEA.	TITITITITI T	IIIIIIIII		
	EEKNLLFEEAKDAV	IIIIIIIIIIII	AKT DENKDKEV	T.TOT.NGGKAV	DVKWSEVSVI	GAOOAR
g230-1	370	380	390	400	410	420
	370	300	555	•••		
	430	440	450	460	470	480
m230-1.pep	OSMPPEAYAELLKA	KPANGKPAY	VRLIGLPAPVI	VEVQAVTPPI	DIAAQLPLA	KQALAQC
WESO-I-beb	- Î.H. 11111111111	111111111	111 1111111	11:11111:	:	
q230-1	QSMPPEAYAELLKA	KPANGKPAY	VRLTGLPAPVI	VEAQAVTPP	EDIAAQLPPAI	KQALAQQ
9230 1	430	440	450	460	470	480
	490	500	510			
m230-1.pep	QSANTFDLLIRYFN	GKIKQTKGA	QSVDNGDGQX			
	111111111111111111111111111111111111111	111111111	1111111111			
g230-1	QSANTFDLLIRYFN					
•	490	500	510			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 837>: a230-1.seq

```
1 ATGTTCCATT CCATCGAAAA ATACAGAACG CCCGCCCAAG TCCTTTTGGG
     CCTGATTGCA TTAACCTTCG TCGGCTTCGG GGTCAGCACG GTATCCCATC
     CGGGTGCCGA CTACATCGTC CAAGTGGGCG ACGAAAAAAT CAGCGACCAC
     TCCATCAACA ACGCCATACA GAACGAACAG GCGGACGGCG GCGGCCCTTC
151
201 GCGCGACGCG GTGTTCCAAT CCCTGCTACA ACGCGCCTAC CTGAAACAGG
251 GCGCGAAGCT GATGGGCATT TCGGTTTCTT CCGAACAAAT CAAGCAGATT
301 ATCGTGGACG ATCCCAATTT CCACGACGCA AACGGCAAAT TCGACCACGC
     GCTTTTAAAC CGCTACCTTT CCCAACGTCA TATGTCTGAA GACCAGTTTG
351
     TCGAAGAAAT CCGCGATCAG TTTGCCTTGC AGAATTTGGT AAACCTCGTC
401
     CAAAACGGCG TATTGGTCGG CGACGCGCAG GCGGAACAGC TGATCAGGCT
451
     GACGCAGGTC AACCGCACCA TCCGTTCGCA CACTTTCAAC CCCGACGAAT
501
     TCATCGCCCA AGTCAAAGTG TCTGAAGCCG ATTTGCAGAA GTTTTATAAC
551
     GCAAACAAAA AAGACTACCT GCTTCCCAAA GCGGTCAAAT TGGAATATGT
601
     CGCCTTGAAT CTGAAAGACT TTGCAGACAA ACAGACCGTC AGCGAAACAG
651
701 AAGTGAAAAA TGCGTTTGAA GAGCGCGTGG CGCGTTTGCC GGCAAATGAA
      GCCAAACCTT CTTTCGAGCA GGAAAAAGCC GCCGTCGAAA ACGAATTGAA
751
801 AATGAAAAG GCGGTTGCCG ACTTCAATAA GGCAAAAGAA AAGCTGGGCG
     ATGACGCGTT CAACCATCCT TCCTCGCTTG CCGAAGCCGC CAAAAACAGC
851
      GGTTTGAAAG TCGAAACCCA AGAAACTTGG CTGAGCAGGC AGGATGCGCA
901
     AATGTCCGGT ATGCCCGAAA ACCTGATCAA TGCCGTATTC AGCGACGACG
951
     TATTGAAGAA AAAACACAAT TCCGAAGTGC TGACCATCAA CAGCGAAACC
1001
      GCGTGGGTCG TCCGCGCCAA AGAAGTCCGC GAAGAGAAAA CCCTGCCGTT
1051
      TGCCGAAGCC AAAGACGCGG TACGTCAGGC TTATATCCGT ACCGAAGCCG
1101
      CCAAACTTGC CGAAAACAAG GCAAAAGACG TGCTTACCCA ACTGAACGGC
1151
      GGCAAGGCTG TTGACGTGAA ATGGTCGGAA GTGTCCGTTT TGGGCGCACA
1201
      GCAGGCAAGG CAGTCCATGC CGCCCGAGGC TTATGCGGAA CTGCTGAAAG
1251
      CAAAACCGGC AAACGGCAAA CCCGCCTACG TCAGGCTGAT CGGTCTGCCG
1301
      GCACCCGTGA TTGTCGAAGT ACAGGCTGTA ACCCCGCCGG ATGATATCGC
1351
      CGCACAGCTT CCGCTTGCAA AACAGGCTTT GGCGCAACAG CAGTCTGCCA
      ATACTTTCGA CTTGTTGATA CGTTATTTCA ACGGCAAAAT CAAACAGACC
      AAAGGAGCGC AATCGGTCGA CAACGGCGAC GGTCAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 838; ORF 230-1.a>: a230-1.pep

_				* ment/ce/tier	MERBERUALA	OVGDEKISDH
	1	MFHSIEKYRT	PAQVLLGLIA	LTEVGEGVSI	ASULGUDITA	Q1000m200m
		OTHER TONEO	ADGCCDCDDA	VFOSLLORAY	LKOGAKLMGI	2A22FÖTYÖT
	51	PINNATONES	MUGGGESKON	41 # 00 PIN (07	DOMINETED	V.TRV.TROLTER
	101	IVDDPNFHDA	NGKFDHALLN	RYLSQRHMSE	DOLAFOTANG	EUDSMAN
		ONGUL MCD3O	AEQLIRLTQV	NRTIRSHTEN	PDEFIAQVKV	SEADLQKFYN
	151	ONGATAGRAG	VEGRITUAL &		COMPLIANTER	COURDI DANE
	201	ANKKDYLLPK	AVKLEYVALN	LKDFADKQTV	SETEVENALE	PLANTENTO
		THE PROPERTY A	AVENELKMKK	AVADENKAKE	KLGDDAFNHP	SSLAEAAKNS
	251	AKPSTEQUA	MAENTINGEN	NAUDE CONTROL	CODIT VVVIII	CRUITTINGET
	301	GLKVETOETW	LSRQDAQMSG	MPENLINAVE	SDDAFKKKUM	SEADITHOUS
		ODATE STORY	EEKTLPFAEA	KUMUBUMANTE	TEAAKLAENK	AKDVLTQLNG
	351	AWVVRAKEVR	SEKILPIAGA	VDVAUGUTTU		DAVIDITOID
	401	CKAUDUKWSE	VSVLGAQQAR	QSMPPEAYAE	LLKAKPANGK	PAIVALIGUE
		GIGATOTANOS		DE RECRETACIO	OSANTFOLLI	RYFNGKIKOT
	451	APVIVEVQAV	TPPDDIAAQL	LPWV/Turner	X0::::	
		PCBOS.	VDNGD GQ*			
	501	COACO	ADVIOR OF			

a230-1/m230-1 99.8% identity in 512 aa overlap

a230-1/m230-	1 99.84 Identity		•			
	10	20	. 30	40	50	60
a230-1.pep	MFHSIEKYRTPAQVL	LGLIALTEVO	FGVSTVSHP	ADYIVOVGD	EKISDHSINN	AIQNEQ
	MFHSIEKYRTPAQVL MFHSIEKYRTPAQVL					11111
m230-1	MFHSIEKYRTPAQVL	20	30	40	50	60
	70	80	90	100	110	120
a230-1.pep		A OD N VI WOC	aklmgisvss1	EGIKGIIVDD	PNFHDANGKI	DHALLN
a230 1.pop			,,,,,,,,,,,			
m230-1	ADGGGPSRDAVFQSL	LQRAYLKQG 80	AKLMGISVSS: 90	100	110	120
	70	60	55			
	130	140	150	160	170	180
a230-1.pep	RYLSQRHMSEDQFVE	EIRDQFALQ	NLVNLVQNGV	LVGDAQAEQI	JRLTQVNKT.	INSHIEN
	RYLSQRHMSEDQFVE 		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	T.VGDAOAEOI	IRLTOVNRT	IRSHTFN
m230-1	RYLSQRHMSEDQFVE	140	150	160	170	180
	250					240
	190	200	210	220	230	
a230-1.pep	PDEFIAQVKVSEADI	QKFYNANKK	DATTAKWAKT	FIATINE	11111111111	1111111
	PDEFIAQVKVSEADI	OKFYNANKE	DYLLPQAVKI	EYVALNLKD	WDVGIADET	DAMMIT
m230~1	190	200	210	220	230	240
•			270	280	290	300
	250 ERVARLPANEAKPSI	260 EROEKAAVEI	IET.KMKKAVAI	FNKAKEKLG	DDAFNHPSSL	AEAAKNS
a230-1.pep					111111111	111111
m230-1	ERVARLPANEAKPS	feqekaavei	NELKMKKAVAI	DENKAKEKTO	DDAFNHPSSI 290	AEAAKNS 300
	250	260	270	280	290	300
	310	320	330	340 ·	350	360
a230-1.pep	CO CONTRACTOR OF COLOR	DAOMECMPE	NITNAVESDO	VLKKKHNSEV	LTINSETAW\	VRAKEVR
a230 1.pcp			,,,,,,,,,,		111111111	
m230-1	GLKVETQETWLSRQ	DAQMSGMPE	NLINAVESDD 330	VLKKKHNSEV 340	350	360
	310	320	330	510	•••	
	370	380	390	400	410	420
a230-1.pep	EEKTLPFAEAKDAV	ROAYIRTEA	aklaenkakd	VLTQLNGGK#	ADAKMSEA2.	VLGAQQAR
		 		VI.TOLNGGKA	VDVKWSEVS	VLGAQQAR
m230-1	EEKTLPFAEAKDAV	380	390	400	410	420
	5.0				.=0	480
	430	440	450	460	470 2001.PT	
a230-1.pep	QSMPPEAYAELLKA	KPANGKPAY	(AKPIGT5V5A	111111111		1111111
m230-1	QSMPPEAYAELLK/	KPANGKPAY	VRLIGLPAP	IVEVQAVTP	PDDIAAOLPL	WITHURSE
m230-1	430	440	450	460	470	480
			510			
	490 QSANTFDLLIRYFI	500	510 AOSVDNGDGO	(
a230-1.pep		111111111	111111111111			
m230-1	QSANTFDLLIRYF	NGKIKQTKG	AQSVDNGDGQ)	<		
	490	500	510			

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 839>:
     g231.seq
               atgtcaaaac gaaaatccat aaaccgtccg tatcaaaaac cggcggaact
            1
           51 gccgccgttg caaaataatc cgccatttta ccgtaaaaac cgccgcctga
          101 acttttttat cgcggcagac ggcggttgcg cgtctccgca aaaatgcagg
          151 gcgcgcggtt ttcagacggc atttgccgtt caaggccgtg cggtgtcttt
              accaaatgcc caaccattcg cccacggaat ccatccaatc cttattgccc
          251 ccgccgctcc tgcctgcccg gcggtacgcc cacggcgctt gcggattttt
          301 agetttecae aateetttge gtteeettte egeetgaatt tgagegtegg
          351 catagtoggc aaaatcogcc ttatcotgct gttotttagc ataactttta
          401 taatgccacg ccgccccgtc ctgcacctgc atcaggttca aatcggtttt
          451 gccggcggat acctgcgcca cttcgcgctg atagcggtcg gtttcaaaca
          501 cacgtacact gactttccta ccctccgccg ccgcgcgcag gttgtcgcgc
          551 gaacgtgtac cgtaagcctg tttcatctcc ggtgcgtcga tatacgccat
          601 ccgaatttta tgtttcgcgc cgtcgccgtc gatgacgtga agggtatcgc
          651 cgtcatagac tttggacacc gtgcctgtgt agctgtggcc ggatttcgcc
          701 gatgcccgtc ggcgaacggg cgcgtcgaaa cccacgtccc ctgcagtgcc
               gagtacgtcg agtacggcaa ccgccgtccg caccgcctca ctgtcatatc
               ccgtataacc caacgcgccc aaaagcgaca gggcgacggg aagccatttc
          851 atgatttttt taatctgcat atttttcaaa tgccgatgcc gtctgaacat
          901 ctctga
This corresponds to the amino acid sequence <SEQ ID 840; ORF 231.ng>:
     g231.pep
            1 MSKRKSINRP YQKPAELPPL QNNPPFYRKN RRLNFFIAAD GGCASPQKCR
           51 ARGFQTAFAV QGRAVSLPNA QPFAHGIHPI LIAPAAPACP AVRPRRLRIF
          101 SFPQSFAFPF RLNLSVGIVG KIRLILLFFS ITFIMPRRPV LHLHQVQIGF
          151 AGGYLRHFAL IAVGFKHTYT DFPTLRRAQ VVARTCTVSL FHLRCVDIRH
          201 PNFMFRAVAV DDVKGIAVID FGHRACVAVA GFRRCPSANG RVETHVPCSA
          251 EYVEYGNRRP HRLTVISRIT QRAQKRQGDG KPFHDFFNLH IFQMPMPSEH
          301 L*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 841>:
     m231.seq (partial)
            1 ATGTCAAAAC GAAAATCCAT AAACCGTCCG TATCAAAAAC CGGCGGAACT
            51 GCCGCCGTTG CAAAATAATC CGCCATTTTA CCGTAAAAAC CGCCGCCTGA
          101 ACTITITAT CGCGGCAGAC GGCGGTTGCG CGTCTCCGCA AAAATGCAGG
           151 GCGCGCGGTT TTCAGACGGC ATTTGCCGTT CAAAGCCGTG CGGTGTCTTT
           201 ACCAAATGCC CAACCATTCG GC....
 This corresponds to the amino acid sequence <SEQ ID 842; ORF 231>:
      m231.pep (partial)
             1 MSKRKSINRP YOKPAELPPL QNNPPFYRKN RRLNFFIAAD GGCASPOKCR
            51 ARGFQTAFAV QSRAVSLPNA QPFG.....
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 231 shows 98.6% identity over a 73 aa overlap with a predicted ORF (ORF 231.ng)
 from N. gonorrhoeae:
      m231/g231
                                                                  50
                                                                            60
                                              30
                                     20
                   MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFF1AADGGCASPQKCRARGFQTAFAV
      m231.pep
                   MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFFIAADGGCASPQKCRARGFQTAFAV
      g231
                                                                  50
                                                        40
                           10
                                     20
                                              30
                           70
                   OSRAVSLPNAQPFG
       m231.pep
                    1:1111111111:
                    QGRAVSLPNAQPFAHGIHPILIAPAAPACPAVRPRRLRIFSFPQSFAFPFRLNLSVGIVG
      g231
                                                                  110
                                                        100
                           70
                                               90
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 843>:

```
a231.seq (partial)
              ATGTCAAAAC GAAAATCCAT AAACCGTCCG TATCAAAAAC CGGCGGAACT
          51 GCCGCCGTTG CAAAATAATC CGCCATTTTA CCGTAAAAAC CGCCGCCTGA
         101 ACTITITAT CGNGGCAGAC GGCGGTTGCG CGTCTCCGCA AAAATGCAGG
         151 GCGCGCGGTT TTCAGACGGC ATTTGCCGTT CAAAGCCGTG CGGTGTCTTT
         201 ACCAAATGCC CAACCATTCG CCCACGGCAT CCATCCAATC CTTATTGCCC
         251 CCGCCGCTCC TGCCTGCCCG GCGGTACGCC CACGGCGCTT GCGGATTTTT
          301 AGCTTTCCAC AATCCTTTGC GTTCCCTTTC CGCCTGAATT TGAGCGTCGG
          351 CATAATCGGC AAAATCCGCC TTATCCTGCT GTTCTTTAGC ATAACTTTTA
          401 TAATGCCACG CCGCCCCGTC CTGCACCTGC ATCAGGTTCA AATCGGTTTT
          451 GCCGACAGAA ACCTGCGCCA CTTCGCGCTG GTAGCGGTCG GTGTCGAACA
              CGCGGACGCT GACTTTCCTG CCTTCCGCCG CCGCGCGCAG GTTGTCGCGC
          551 GAACGCGTGC CGTAAGCCTG TTTCATCTCC GGCGCGTCGA TATACGCCAT
          601 CCGGATTTTG TGTTTCGCGC CGTCGCCGTC GATAACGTGA AGGGTGTCGC
              CGTCATAGAC TTTGGACACC GTGCCTGTGT AGCGGTGGCC GGATTTCGCC
          651
              GATGCTCGGC GGCGGGCGGG CGCGTCGGAA CCCGCGTCCC CTGCCGCGCC
          701
          751 GAGTACGTCG AGTACGGCAA CCGCCGTCCG CACCGCCTCG CTGCCGTACC
              CCGTATAACC CAACGCACCC AAAAGCGACA AGGCGACGGG AAGCCATTTC
              ATGATTTTT TAATCTGCAT ATTTTTCAAA TGCCGATGCC GTCTGAACAT
          851
          901 ATC
This corresponds to the amino acid sequence <SEQ ID 844; ORF 217.a>:
     a231.pep
              (partial)
              MSKRKSINRP YOKPAELPPL ONNPPFYRKN RRLNFFIXAD GGCASPOKCR
              ARGEQTAFAV QSRAVSLPNA QPFAHGIHPI LIAPAAPACP AVRPRRLRIF
          101 SFPQSFAFPF RLNLSVGIIG KIRLILLFFS ITFIMPRRPV LHLHQVQIGF
          151 ADRNLRHFAL VAVGVEHADA DFPAFRRRAQ VVARTRAVSL FHLRRVDIRH
          201 PDFVFRAVAV DNVKGVAVID FGHRACVAVA GFRRCSAAGG RVGTRVPCRA
              EYVEYGNRRP HRLAAVPRIT QRTQKRQGDG KPFHDFFNLH IFQMPMPSEH
          251
          301 I
m231/a231 98.6% identity in 73 aa overlap
                                                                 50
                                             30
                                                       40
                                    20
                          10
                  MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFFIAADGGCASPQKCRARGFQTAFAV
     m231.pep
                  MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFFIXADGGCASPQKCRARGFQTAFAV
     a231
                                                                 50
                                                                           60
                                             30
                                                       40
                                    20
                          10
                          70
                  QSRAVSLPNAQPFG
     m231.pep
                  QSRAVSLPNAQPFAHGIHPILIAPAAPACPAVRPRRLRIFSFPQSFAFPFRLNLSVGIIG
     a231
                                    80
                                             90
                                                      100
                          70
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 845>:
g231-1.seq
      1 ATGTCAAAAC GAAAATCCAT AAACCGTCCG TATCAAAAAC CGGCGGAACT
         GCCGCCGTTG CAAAATAATC CGCCATTTTA CCGTAAAAAC CGCCGCCTGA
     101 ACTITITAT CGCGGCAGAC GGCGGTTGCG CGTCTCCGCA AAAATGCAGG
     151 GCGCGCGGTT TTCAGACGGC ATTTGCCGTT CAAGGCCGTG CGGTGTCTTT
     201 ACCARATGCC CARCCATTCG CCCACGGART CCATCCAATC CTTATTGCCC
```

This corresponds to the amino acid sequence <SEQ ID 846; ORF 231-1.ng>: g231-1.pep

- 1 MSKRKSINRP YQKPAELPPL QNNPPFYRKN RRLNFFIAAD GGCASPQKCR
- 51 ARGFQTAFAV QGRAVSLPNA QPFAHGIHPI LIAPAAPACP AVRPRRLRIF

```
101 SFPQSFAFPF RLNLSVGIVG KIRLILLFFS ITFIMPRRPV LHLHQVQIGF
151 AGGYLRHFAL IAVGFKHTYN EFRTLRRRAQ VVARTCTVSV FHLRCVDIRH
```

201 PNFMFRAVAV DDVKGIAVID FGHRACVAVA GFR

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 847>: m231-1.seq

```
1 ATGTCARAAC GARAATCCAT AAACCGTCCG TATCAAAAAC CGGCGGAACT
 51 GCCGCCGTTG CAAAATAATC CGCCATTTTA CCGTAAAAAC CGCCGCCTGA
101 ACTITITAT CGCGGCAGAC GGCGGTTGCG CGTCTCCGCA AAAATGCAGG
    GCGCGCGGTT TTCAGACGGC ATTTGCCGTT CAAAGCCGTG CGGTGTCTTT
151
201 ACCAPATECC CARCCATTCG CCCACGGCAT CCATCCAATC CTTATTGCCC
251 CCGCCGCTCC TGCCTGCTCG GCGGTACGCC CACGGCGCTT GCGGATTTTT
301 AGCTTTCCAC AATCCTTTGC GTTCCCTTTC CGCCTGAATT TGAGCGTCGG
351 CATAATCGGC AAAATCCGCC TTATCCTGCT GTTCTTTAGC ATAACTTTTA
401 TARTGCCACG CCGCCCCGTC CTGCACCTGC ATCAGGTTCA AATCGGTTTT
451 GCCGACAGAA ACCTGCGCCA CTTCGCGCTG GTAGCGGTCG GTATCGAACA
501 CGCGCACGCT GACTTTCCTG CCTTCCGCCG CCGCGCGCAG GTTGTCGCGC
551 GAACGCGTGC CGTAAGCCTG TTTCATCTCC GGCGCGTCGA TATACGCCAT
601 CCGGATTTTG TGTTTCGCGC CGTCGCCGTC GATAACGTGA AGGGTGTCGC
651 CGTCATAGAC TTTGGACACC GTGCCTGTGT AGCGGTGGCC GGATTTCGCC
701 GATGCTCGGC GGCGGGGGG CGCGTCGGAA CCCGCGTCCC CTGCCGCGCC
751 GAGTACGTCG AGTACGGCAA CCGCCGTCCG CACCGCCTCG CTGCCGTACC
801 CCGTATAACC CAACGCACCC AAAAGCGACA GGGCGACGGG AAGCCATTTC
851 ATGATTTTT TAATCTGCAT ATTTTTCAAA TGCCGATGCC GTCTGAACAT
901 ATCGGAATCG GATTTCAGAC GGCATCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 848; ORF 231-1>: m231-1.pep

```
1 MSKRKSINRP YQKPAELPPL QNNPPFYRKN RRLNFFIAAD GGCASPQKCR
```

51 ARGFQTAFAV QSRAVSLPNA QPFAHGIHPI LIAPAAPACS AVRPRRLRIF 101 SFPQSFAFFF RLNLSVGIIG KIRLILLFFS ITFIMPRRPV LHLHQVQIGF

ADRNIRHFAL VAVGIEHAHA DFPAFRRAQ VVARTRAVSL FHLRRVDIRH 201 PDFVFRAVAV DNVKGVAVID FGHRACVAVA GFRRCSAAGG RVGTRVPCRA

251 EYVEYGNRRP HRLAAVPRIT QRTQKRQGDG KPFHDFFNLH IFQMPMPSEH

301 IGIGFQTAS*

87.0% identity in 262 aa overlap g231-1/m231-1

•						
	10	20	30	40	50	60
g231-1.pep	MSKRKSINRPYQKPA	ELPPLQNNP:	PFYRKNRRLN 	FFIAADGGCA	SPQKCRARGE 	UTAFAV
m231-1	MSKRKSINRPYQKPA	ELPPLQNNP	PFYRKNRRLN	FFIAADGGCA	SPOKCRARGE	QTAFAV
11231 1	10	20	30	40	50	60
	70	80	90	100	110	120
	QGRAVSLPNAQPFAH				CENEDEDIMI	SVCTVC
g231-1.pep	QGRAVSLPNAQPFAH	GIHPILIAP	AAPACPAVKP	KKPKILSLEA	SERFFERDINE	111111
	1:1111111111111	11111111	11111 1111	1111111111	1111111111	111111
m231-1	QSRAVSLPNAQPFAH	GIHPILIAP	AAPACSAVRP	RRLRIFSFPQ	SFAFPFRLNL	SVGIIG
MZJI-I	70	80	90	100	110	120
	70	00				
			150	160	170	180
	130	140	150			
g231-1.pep	KIRLILLFFSITFIN	IPRRPVLHL H	QVQIGFAGGY	LRHFALIAVG	EKHTYNEFKI	LICROCAC
9 .		111111111	1111111	111111111111	:: :: : :	:11111
m231-1	KIRLILLFFSITFIN	PRRPVI.HLH	OVOIGEADRN	LRHFALVAVG	IEHAHADFPA	FRRRAQ
m231-1	130	140	150	160	170	180
	130	140	130	100	2.0	
			010	220	230	240
	190	200	210	220		
g231-1.pep	VVARTCTVSVFHLRO	CVDIRHPNEN	ifravavddvi	(GIAVIDFGH F	(ACVAVAGER)	CPSANG
3	11111:11:1111	111111:1:	111111111111111111111111111111111111111	:		1:1:1
m231-1	VVARTRAVSLEHLRI	RVDTRHPDFV	FRAVAVDNVE	KGVAVIDFGHE	RACVAVAGERI	RCSAAGG
M231-1	190	200	210	220	230	240
	190	200	2.10			
	250	260				
g231-1.pep	CVETHVPCSAEYVV	KGNRRPHR				
3 · · · · ·	1 1:111 1111	1111111				
m231-1	RVGTRVPCRAEYVE	YCNRRPHRI.	AAVPRITORTO	OKROGDGKPF	HDFFNLHIFQ	MPMPSEH
14521-1		260	270	280	290	300
	250	200	210	200	200	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 849>: a231-1.seq

- 1 ATGTCAAAAC GAAAATCCAT AAACCGTCCG TATCAAAAAC CGGCGGAACT
- 51 GCCGCCGTTG CAAAATAATC CGCCATTTTA CCGTAAAAAC CGCCGCCTGA
- 101 ACTITITAT CGCGGCAGAC GGCGGTTGCG CGTCTCCGCA AAAATGCAGG

```
151 GCGCGCGGTT TTCAGACGGC ATTTGCCGTT CAAAGCCGTG CGGTGTCTTT
     ACCARATGCC CARCCATTCG CCCACGGCAT CCATCCAATC CTTATTGCCC
201
     CCGCCGCTCC TGCCTGCCCG GCGGTACGCC CACGGCGCTT GCGGATTTTT
251
301 AGCTTTCCAC AATCCTTTGC GTTCCCTTTC CGCCTGAATT TGAGCGTCGG
     CATAATCGGC AAAATCCGCC TTATCCTGCT GTTCTTTAGC ATAACTTTTA
351
     TARTGCCACG CCGCCCCGTC CTGCACCTGC ATCAGGTTCA AATCGGTTTT
401
     GCCGACAGAA ACCTGCGCCA CTTCGCGCTG GTAGCGGTCG GTGTCGAACA
451
     CGCGGACGCT GACTTTCCTG CCTTCCGCCG CCGCGCGCAG GTTGTCGCGC
     GAACGCGTGC CGTAAGCCTG TTTCATCTCC GGCGCGTCGA TATACGCCAT
551
     CCGGATTTTG TGTTTCGCGC CGTCGCCGTC GATAACGTGA AGGGTGTCGC
601
     CGTCATAGAC TTTGGACACC GTGCCTGTGT AGCGGTGGCC GGATTTCGCC
651
     GATGCTCGGC GGCGGGCGGG CGCGTCGGAA CCCGCGTCCC CTGCCGCGCC
701
     GAGTACGTCG AGTACGGCAA CCGCCGTCCG CACCGCCTCG CTGCCGTACC
751
     CCGTATAACC CAACGCACCC AAAAGCGACA AGGCGACGGG AAGCCATTTC
801
     ATGATTTTT TAATCTGCAT ATTTTTCAAA TGCCGATGCC GTCTGAACAT
851
     ATCGGAATCG GATTTCAGAC GGCATCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 850; ORF 231-1.a>: a231-1.pep

```
MSKRKSINRP YQKPAELPPL QNNPPFYRKN RRLNFFIAAD GGCASPQKCR
ARGFQTAFAV QSRAVSLPNA QPFAHGIHPI LIAPAAPACP AVRPRRLRIF
```

- 51 SFPQSFAFPF RLNLSVGIIG KIRLILLFFS ITFIMPRRPV LHLHQVQIGF 101
- ADRNIRHFAL VAVGVEHADA DFPAFRRAQ VVARTRAVSL FHIRRVDIRH 151
- PDFVFRAVAV DNVKGVAVID FGHRACVAVA GFRRCSAAGG RVGTRVPCRA
- EYVEYGNRRP HRLAAVPRIT QRTQKRQGDG KPFHDFFNLH IFQMPMPSEH
- IGIGFQTAS* 301

-- ****

99.0% identity in 309 aa overlap a231-1/m231-1

```
40
                                              50
                       20
                               30
          {\tt MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFFIAADGGCASPQKCRARGFQTAFAV}
a231-1.pep
          MSKRKSINRPYQKPAELPPLQNNPPFYRKNRRLNFFIAADGGCASPQKCRARGFQTAFAV
m231-1
                               30
                                       40
                10
                               90
                                      100
          QSRAVSLPNAQPFAHGIHPILIAPAAPACPAVRPRRLRIFSFPQSFAFPFRLNLSVGIIG
a231-1.pep
          QSRAVSLPNAQPFAHGIHPILIAPAAPACSAVRPRRLRIFSFPQSFAFPFRLNLSVGIIG
m231-1
                                      100
                               90
                        80
                70
                                      160
                                              170
                               150
               130
                       140
          KIRLILLFFSITFIMPRRPVLHLHQVQIGFADRNLRHFALVAVGVEHADADFPAFRRRAQ
a231-1.pep
          KIRLILLFFSITFIMPRRPVLHLHQVQIGFADRNLRHFALVAVGIEHAHADFPAFRRRAQ
m231-1
                                      160
                       140
                               150
                                                      240
                                              230
                                       220
               190
                       200
                               210
          VVARTRAVSLFHLRRVDIRHPDFVFRAVAVDNVKGVAVIDFGHRACVAVAGFRRCSAAGG
a231-1.pep
          VVARTRAVSLFHLRRVDIRHPDFVFRAVAVDNVKGVAVIDFGHRACVAVAGFRRCSAAGG
m231-1
                                              230
                               210
                                       220
                       200
               190
                                              290
                               270
                                       280
          {\tt RVGTRVPCRAEYVEYGNRRPHRLAAVPRITQRTQKRQGDGKPFHDFFNLHIFQMPMPSEH}
a231-1.pep
          RVGTRVPCRAEYVEYGNRRPHRLAAVPRITQRTQKRQGDGKPFHDFFNLHIFQMPMPSEH
m231-1
                                       280
                                              290
                       260
                250
                310
          IGIGFQTASX
 a231-1.pep
           IGIGFQTASX
 m231-1
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 851>: g232.seg

- atgatgggca acagcotgat tgaatcoggt acgtttgtog coatcotgtt 1
- tggtcagatt ttgggaacgg cggttgccgg cgcgccgcct tatattgtcg
- 101 ggatactggt tttgctggtc gccgtcggag gaacggccgg cagcctgttt

```
151 atgccgtccg tacccgccaa ggctgccgat acccaaatcg agtggaatat .
         201 tgtccgtggt acaaaatccc tgctgcgtga aacggtgcgg cacaatcccg
         251 tttttaccqc cattatcqqc atctcgtggt tttggtttgt cggcgcggtt
         301 tataccacgc aactgccgac ctttacccaa atccatttgg gcggcaacga
          351 taatgttttt aacctgatgc ttgctttgtt ttccatcggt attgccgccg
          401 gttcggtact gtgtgccaag ttcggcaggg aacggctgat gttggcttgg
          451 gtaacggttg gtgcgttggg ttcgacggtt tgcggcctgg ttttggtgtg
          501 gctgacgcac ggacaccgtt ttgaagggct gaacggcatt ttttggtttt
          551 tatcgcaagg atgggcatac cccgtgatgg cggtgatgac gctgatcggc
          601 tttttcggcg gatttttctc cgttccgctc tatacctggc tgcaaaccgc
          651 cagcagegag acttteegeg eeegegeegt tgeegeeaac aatategtta
          701 acggeatett tatggtttcc gccgccgttt tgagcgcggt attgctgttt
          751 ttgtttgaca gcatttccct gctgtatctg attgtcgcct tgggcaatat
              tccgttggcg gtatttttga ttaagcgcga aaggcggttt ttaggcgcgg
          851 cggcaatcag gaaaaaacct tga
This corresponds to the amino acid sequence <SEQ ID 852; ORF 232.ng>:
     g232.pep
              MMGNSLIESG TFVAILFGQI LGTAVAGAPP YIVGILVLLV AVGGTAGSLF
           1
           51 MPSVPAKAAD TQIEWNIVRG TKSLLRETVR HNPVFTAIIG ISWFWFVGAV
          101 YTTOLPTFTQ IHLGGNDNVF NLMLALFSIG IAAGSVLCAK FGRERLMLAW
          151 VTVGALGSTV CGLVLVWLTH GHRFEGLNGI FWFLSQGWAY PVMAVMTLIG
          201 FFGGFFSVPL YTWLQTASSE TFRARAVAAN NIVNGIFMVS AAVLSAVLLF
              LFDSISLLYL IVALGNIPLA VFLIKRERRF LGAAAIRKKP *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 853>:
     m232.seq
               ATGATGGGCA ACAGCCTGAT TGAATCGGGT ACGTTTGTCG CCATCCTGTT
           51 CGGTCAGATT TTGGGAACGG CGGTGGCAGG TGTACCGCCT TATATTGTCG
          101 GGATACTGGT TTTGCTGGTC GCCGTCGGAG GCACGGTCGG CAGCCTGTTT
          151 ATGCCGTCCG TACCCGCCAA GGCTGCCGAT ACACAAATTG AGTGGAATAT
          201 TGTCCGTGGC ACAAAATCCC TGCTGCGTGA AACGGTGCGG CACAAGCCCG
          251 TTTTTACCGC CATTATCGGT ATTTCGTGGT TTTGGTTTGT CGGCGCGGTT
               TATACCACGC AACTGCCGAC CTTTACCCAA ATCCATCTGG GCGGCAACGA
          351 CAATGTTTC AACCTGATGC TTGCTCTGTT TTCCATCGGT ATTGCCGCCG
          401 GTTCGGTACT GTGTGCCAAG TTCAGCAKGG AACGCCTGAT GTTGGCTTGG
          451 GTAACGGTTG GTGCGTTGGG TTTGACGGTT TGCGGCTTGG TTTTGGTGTG
          501 GCTGACGCAC GGACACCGTT TTGAAGGGCT GAACGGCATT TTTTYGTTTT
          551 TATCGCAAGG ATGGGCATAT CCCGTGATGG CGGTGATGAC GCTGATCGGC
              TTTTTCGGCG GATTTTTCTC CGTTCCGCTC TATACCt (g) TG CAAACCGCCa
          651 TAGCGAGATT TCCGCGCCCG GCCGTTGCCG CCAACAATAT CGTTAACGGT
          701 ATTTTTATGG TTTCCGCTGC CGTTTTGAGC GCGGTGTTGC TGTTTTTGTT
          751 TGACAGCATT TCCTTGTTGT ATCTGATTGT CGCTTTGGGC AATATTCCGT
          801 TGTCGGTATT TTTGATTAAG CGCGAAAGGC GGTTTTTAGG CGCGGCGGCA
          851 ATCAGGAAAA AACCTTGA
This corresponds to the amino acid sequence <SEQ ID 854; ORF 232>:
     m232.pep
               MMGNSLIESG TFVAILFGQI LGTAVAGVPP YIVGILVLLV AVGGTVGSLF
            1
               MPSVPAKAAD TQIEWNIVRG TKSLLRETVR HKPVFTAIIG ISWFWFVGAV
           51
          101 YTTQLPTFTQ IHLGGNDNVF NLMLALFSIG IAAGSVLCAK FSXERLMLAW
               VTVGALGLTV CGLVLVWLTH GHRFEGLNGI FXFLSQGWAY PVMAVMTLIG
               FFGGFFSVPL YTVQTAIARF PRPAVAANNI VNGIFMVSAA VLSAVLLFLF
          251 DSISLLYLIV ALGNIPLSVF LIKRERRFLG AAAIRKKP*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 232 shows 94.1% identity over a 290 aa overlap with a predicted ORF (ORF 232.ng)
from N. gonorrhoeae:
     m232/g232
                                                        40
                                                                  50
                                                                            60
                                    20
                                              30
                          10
                  MMGNSLIESGTFVAILFGQILGTAVAGVPPYIVGILVLLVAVGGTVGSLFMPSVPAKAAD
      m232.pep
                   {\tt MMGNSLIESGTFVAILFGQILGTAVAGAPPYIVGILVLLVAVGGTAGSLFMPSVPAKAAD}
      g232
```


The following partial DNA sequence was identified in N. meningitidis <SEQ ID 855>:

```
a232.seq
         ATGTACGCTA AAAAAGGCGG TTTGGGACTG GTTAAAAGCC GCCGTTTCGC
         ACCTCTTTTC GCTACGCAGT TTCTCGGCGC GTTCAACGAC AATGTGTTCA
      51
         AAACCGCGCT GTTTGTGATG ATTGGGTTTT ACGGTTTGGG GCAAAACGGC
     151 TTCCTGCCTG CCGGACAGAT GTTGAACTTG GGCGCGTTGC TGTTTATTTT
     201 GCCGTATTTC CTGTTTTCCT CGCTGTCGGG GCAGTTGGGT AACAAATTCG
     251 ACAAGGCCGT TTTGGCGCGT TGGGCCAAGG TGCTGGAAAT GATCATTATG
         GCGGTGGCGG CATACGGGTT TTATATCCGG TCTGCCCCGC TGCTTTTGGC
     301
         GTGTCTGTTT TGCATGGGCG CGCAATCGAC GCTGTTCGGG CCGCTGAAAT
     401 ACGCCATCCT GCCCGATTAT CTCGACGACA AAGAGTTGAT GATGGGCAAC
          AGCCTGATTG AATCGGGTAC GTTTGTCGCC ATCCTGTTCG GTCAGATACT
     451
     501 GGGGACTGCG GTGGCAGGTG TACCGCCTTA TATTGTCGGG ATACTGGTTT
          TGCTGGTCGC CGTAGGAGGC ACGGTCGGCA GCCTGTTTAT GCCGTCCGTA
     601 CCCGCCAAGG CTGCCGATAC ACAAATTGAG TGGAATATTG TCCGGGGTAC
          AAAATCCCTG CTGCGTGAAA CGGTGCGGCA CAAGCCCGTT TTTACCGCCA
          TTATCGGTAT TTCGTGGTTT TGGTTTGTCG GCGCGGTTTA TACCACGCAA
     701
          CTGCCGACCT TTACCCAAAT CCATCTAGGC GGCAACGACA ATGTTTTCAA
     751
          CCTGATGCTT GCCCTGTTTT CCATCGGTAT TGCCGCCGGT TCGGTACTGT
     801
     851 GTGCCAAGTT CAGCAGGGAA CGGCTGAGGT TGGCTTGGGT AACGGTTGGT
     901 GCGTTGGGTT TGACGGTTTG CGGCTTGGTT TTGGTGTGGC TGACGCACGG
     951 ACACCGTTTT GAAGGGCTGA ACGGCATTTT TTGGTTTTTA TCGCAAGGAT
          GGGCATATCC CGTGATGGCG GTGATGACGC TGATCGGCTT TTTCGGCGGA
    1001
          TTTTTCTCCG TTCCGCTCTA TACCTGGCTG CAAACCGCCA GTAGCGAGAC
    1051
          TTTCCGCGCC CGCGCCGTTG CCGCCAACAA TATCGTTAAC GGTATTTTTA
    1101
          TGGTTTCCGC TGCCGTTTTG AGCGCGGTGT TGCTGTTTTT GTTTGACAGC
    1151
          ATTTCCTTGT TGTATCTGAT TGTCGCTTTG GGCAATATTC CGTTGTCGGT
    1201
          ATTTTTGATT AAGCGCGAAA GGCGGTTTTT AGGCGCGGCG GCAATCAGGA
    1251
    1301
          AAAAACCTTG A
```

This corresponds to the amino acid sequence <SEQ ID 856; ORF 232.a>:

a232.pep MYAKKGGLGL VKSRRFAPLF ATQFLGAFND NVFKTALFVM IGFYGLGQNG FLPAGOMLNL GALLFILPYF LFSSLSGQLG NKFDKAVLAR WAKVLEMIIM 51 AVAAYGFYIR SAPLLLACLF CMGAQSTLFG PLKYAILPDY LDDKELMMGN SLIESGTFVA ILFGQILGTA VAGVPPYIVG ILVLLVAVGG TVGSLFMPSV 151 PAKAADTQIE WNIVRGTKSL LRETVRHKPV FTAIIGISWF WFVGAVYTTQ 201 251 LPTFTQIHLG GNDNVFNLML ALFSIGIAAG SVLCAKFSRE RLRLAWVTVG WO 99/57280 PCT/US99/09346

```
301 ALGLTVCGLV LVWLTHGHRF EGLNGIFWFL SQGWAYPVMA VMTLIGFFGG
351 FFSVPLYTWL QTASSETFRA RAVAANNIVN GIFMVSAAVL SAVLLFLFDS
401 TSLLYLIVAL GNIPLSVFLI KRERRFLGAA AIRKKP*

m232/a232 95.9% identity in 290 aa overlap

10 20
```

MMGNSLIESGTFVAILFGQILGTAVAGVPP m232.pep ACLFCMGAQSTLFGPLKYAILPDYLDDKELMMGNSLIESGTFVAILFGQILGTAVAGVPP a232 60 - 70 YIVGILVLLVAVGGTVGSLFMPSVPAKAADTQIEWNIVRGTKSLLRETVRHKPVFTAIIG m232.pep YIVGILVLLVAVGGTVGSLFMPSVPAKAADTQIEWNIVRGTKSLLRETVRHKPVFTAIIG a232 ISWFWFVGAVYTTQLPTFTQIHLGGNDNVFNLMLALFSIGIAAGSVLCAKFSXERLMLAW m232.pep a232 ISWFWFVGAVYTTQLPTFTQIHLGGNDNVFNLMLALFSIGIAAGSVLCAKFSRERLRLAW VTVGALGLTVCGLVLVWLTHGHRFEGLNGIFXFLSQGWAYPVMAVMTLIGFFGGFFSVPL m232.pep a232 VTVGALGLTVCGLVLVWLTHGHRFEGLNGIFWFLSQGWAYPVMAVMTLIGFFGGFFSVPL YT-VQTAIARFPRP-AVAANNIVNGIFMVSAAVLSAVLLFLFDSISLLYLIVALGNIPLS m232.pep YTWLQTASSETFRARAVAANNIVNGIFMVSAAVLSAVLLFLFDSISLLYLIVALGNIPLS a232 VFLIKRERRFLGAAAIRKKPX m232.pep VFLIKRERRFLGAAAIRKKPX a232

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 857>: g233.seq

```
1 atgaaacgca aaaatatcgc gctgattccc gccgccggca tcggggtgcg
51 tttcggtgcg gacaaaccca agcaatatgt cgaaatcgga agcaaaaccg
101 ttttagaaca tgtacttggg atttttgaac ggcatgaggc cgtcgatttg
151 accgtcgttg tcgtctcgcc cgaagacacg tttgccgata aggttcagac
201 ggcatttcca caggttcggg tgtggaaaaa cggttgagaag acccgcgccg
251 aaactgtccg caacggtgtg gcaaaactgt tggaaaccgg tttggcggcg
301 gaaaccgaca atattctggt acacgatgce gcccgctgct gcctgccgtc
351 tgaagctctg gcgcggttga tagaacaggc ggcaacgcc gccgaaggcg
401 ggattttggc agttcccgtt gccgatacgc tcaagcgcgc agaaagcga
451 caaatcagtg caactgtcga ccgttcgggg ctttggcagg cgcaaacgcc
501 gcagctttt caagcgggtt tgctgcaccg cgcattggct gcggaaaact
551 tgggcggcat taccgatgaa gcgtccgccg tggaaaaact gggtgtgcgt
601 ccgctactga tacagggcga cgcgcgcaat ttgaaactga cgcagccgca
651 ggacgcatac atcgtcagc tgctgctca tgccgctcga
```

This corresponds to the amino acid sequence <SEQ ID 858; ORF 233.ng>: g233.pep

- 1 MKRKNIALIP AAGIGVRFGA DKPKOYVEIG SKTVLEHVLG IFERHEAVDL
 - 51 TVVVVSPEDT FADKVQTAFP QVRVWKNGGQ TRAETVRNGV AKLLETGLAA
 - 101 ETDNILVHDA ARCCLPSEAL ARLIEQAGNA AEGGILAVPV ADTLKRAESG

```
151 QISATVDRSG LWQAQTPQLF QAGLLHRALA AENLGGITDE ASAVEKLGVR
           201 PLLIQGDARN LKLTQPQDAY IVRLLLNAV*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 859>:
      m233.seq (partial)
             1 ATGAAGCGCA AAAATATCGC GCTGATTCCC GCCGCCGGCA TCGGGGCGCG
               TTTCGGTGCG GACAAACCCA AGCAATATGT CGAAATCGGA AGCAAAACCG
            51
               TTTTAGAACA TACGATTGGG ATTTTTGAAC GGCATGAGGC CGTCGATTTG
           101
               ACCGTCGTTG TCGTCTCGCC CGAAGACACG TTTGCCGATA AGGTTCAGAC
           151
           201 GGCATTTCCA CAGGTTCGGG TGTGGAAAAA CGGCGGACAG ACCCGCGCCG
           251 AAACCGTCCG CAACGGTGTG GCAAAACTGT TGGAAACCGG TTTGGCGGCG
           301 GAAACCGACA ATATTCTGGT ACACGATGCC GCGCGTTGCT GCCTGCCGTC
               TGAAGCTTTG ACGCGGTTGA TAGAACAGGC GGGCAACGCC GCCGAAGGCG
           401 GGATTTTGGC AATTCCCATT GCCGATACGC TCAAGTGCGC GGACGGTGGG
           451 AACATT....
 This corresponds to the amino acid sequence <SEQ ID 860; ORF 233>:
     m233.pep
               (partial)
               MKRKNIALIP AAGIGARFGA DKPKQYVEIG SKTVLEHTIG IFERHEAVDL
               TVVVVSPEDT FADKVQTAFP QVRVWKNGGQ TRAETVRNGV AKLLETGLAA
           101 ETDNILVHDA ARCCLPSEAL TRLIEQAGNA AEGGILAIPI ADTLKCADGG
          151 NI...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 233 shows 93.4% identity over a 152 aa overlap with a predicted ORF (ORF 233.ng)
from N. gonorrhoeae:
     m233/g233
                                   20
                                            30
                                                      40
     m233.pep
                  MKRKNIALIPAAGIGARFGADKPKQYVEIGSKTVLEHTIGIFERHEAVDLTVVVVSPEDT
                  g233
                  MKRKNIALIPAAGIGVRFGADKPKQYVEIGSKTVLEHVLGIFERHEAVDLTVVVVSPEDT
                         10
                                   20
                                            30
                                                      40
                                                                50
                                   80
                                            90
                                                     100
                                                               110
                                                                        120
                  {\tt FADKVQTAFPQVRVWKNGGQTRAETVRNGVAKLLETGLAAETDNILVHDAARCCLPSEAL}
     m233.pep
                  FADKVQTAFPQVRVWKNGGQTRAETVRNGVAKLLETGLAAETDNILVHDAARCCLPSEAL
     g233
                                   80
                                            90
                                                     100
                        130
                                  140
                                           150
                  TRLIEQAGNAAEGGILAIPIADTLKCADGGNI
     m233.pep
                  ARLIEQAGNAAEGGILAVPVADTLKRAESGQISATVDRSGLWQAQTPQLFQAGLLHRALA
                        130
                                  140
                                           150
                                                              170
                                                                        180
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 861>:
     a233.seq
              ATGAAGCGCA AAAATATCGC GCTGATTCCC GCCGCCGGCA TCGGGGCGCG
           1
              TTTCGGTGCG GACAAACCCA AGCAATATGT CGAAATCGGA AGCAAAACCG
           51
         101
              TTTTAGAACA TACGATTGGG ATTTTTGAAC GGCATGAGGC CGTCGATTTG
         151 ACCGTCGTTG TCGTCTCGCC CGAAGACACG TTTGCCGATA AGGTTCAGAC
         201 GGCATTTCCA CAGGTTCGGG TGTGGAAAAA CGGCGGACAG ACCCGCGCCG
              AAACTGTCCG CAACGGTGTG GCAAAATTGT TGGAAACCGG TTTGGCGGCG
              GAAACCGACA ATATTCTGGT ACACGATGCC GCGCGTTGCT GCCTGCCGTC
         301
              TGAAGCTTTG ACGCGGTTGA TAGAACAGGC GGGCAACGCT GCCGAAGGTG
              GGATTTTGGC AATTCCCGTT GCCGATACGC TCAAGTGCGC GGACGGTGGG
         401
         451
              AACATTAGTG CAACCGTCGA GCGGACGAGC CTTTGGCAGG CGCAAACGCC
              GCAGCTTTTC CGCGCCGGGC TGCTGCACCG CGCATTGGCT GCGGAAAACT
         501
              TGGACGCAT TACCGATGAA GCGTCCGCCG TGGAAAAATT GGGCATCCGC
         601 CCTTTGCTGG TGCAGGGCGA CGCGCGCAAT TTGAAACTGA CGCAGCCGCA
         651 GGACGCATAC ATCGTCAGGC TGCTGCTCGA TGCCGTCTGA
```

```
This corresponds to the amino acid sequence <SEQ ID 862; ORF 233.a>:
     a233.pep
              MKRKNIALIP AAGIGARFGA DKPKQYVEIG SKTVLEHTIG IFERHEAVDL
              TVVVVSPEDT FADKVQTAFP QVRVWKNGGQ TRAETVRNGV AKLLETGLAA
          51
              ETDNILVHDA ARCCLPSEAL TRLIEQAGNA AEGGILAIPV ADTLKCADGG
         101
         151 NISATVERTS LWQAQTPQLF RAGLLHRALA AENLDGITDE ASAVEKLGIR
         201 PLLVQGDARN LKLTQPQDAY IVRLLLDAV*
m233/a233 99.3% identity in 152 aa overlap
                                                     40
                                            30
                                                               50
                                                                         60
                         10
                                  '20
    m233.pep
                 MKRKNIALIPAAGIGARFGADKPKQYVEIGSKTVLEHTIGIFERHEAVDLTVVVVSPEDT
                 MKRKNIALIPAAGIGARFGADKPKQYVEIGSKTVLEHTIGIFERHEAVDLTVVVVSPEDT
     a233
                                                     40
                         10
                                  20
                                            30
                                . 80
                                            90
                                                    100
                                                              110
                 FADKVQTAFPQVRVWKNGGQTRAETVRNGVAKLLETGLAAETDNILVHDAARCCLPSEAL
    m233.pep
                 a233
                 FADKVQTAFPQVRVWKNGGQTRAETVRNGVAKLLETGLAAETDNILVHDAARCCLPSEAL
                         70
                                  80
                                            90
                                                    100
                                                              110
                        130
                                 140
                                           150
                 TRLIEQAGNAAEGGILAIPIADTLKCADGGNI
     m233.pep
                 \tt TRLIEQAGNAAEGGILAIPVADTLKCADGGNISATVERTSLWQAQTPQLFRAGLLHRALA
     a233
                                 140
                                           150
                                                    160
                                                              170
                        130
                 AENLDGITDEASAVEKLGIRPLLVQGDARNLKLTQPQDAYIVRLLLDAVX
     a233
                        190
                                 200
                                           210
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 863>:
     g234.seq
           1 atgaaaaccg tttccgccgc catcgctttt gccgccgctg ccgtttcact
              gaccggetgt gcgaccgagt cctcacgcag cctcgaggtt gcaaaagtcg
          101 cctcctgcaa tacgcaatat cacggtgttc gcaccccgat ttccgtcgga
         151 acattegaca acegetecag ettecaaaaa ggeattttet eegacagtga
         201 agaccgtctg ggcagccagg caaaaaccat cctggtaaca cacctgcaac
          251 aaaccaaccg cttcaacgta ctgaaccgca ccaaccttag cgcattgaaa
         301 caggaatccg gcatttccgg caaagcgcag aacctgaaag gcgcagatta
          351 tgtcgttacc ggcgatgtaa ccgaattcgg acgcagagat gtcggcgatc
          401 atcagctett eggeattttg ggtegeggea aategeaaat egeetatgea
          451 aaagtggete tgaatategt caacgteaat actteegaaa tegtetatte
          501 cacacagggc gcgggcgaat acgcactttc caaccgcgaa atcatcggtt
          551 teggeggeac tteeggetac gatgegaett tgaacggeaa agttttagae
          601 ttggcaatcc gcgaagccgt cgacaacttg gttcaggctg tcgacaacgg
          651 cgcatggcaa tccaaccgtt aa
This corresponds to the amino acid sequence <SEQ ID 864; ORF 234.ng>:
     g234.pep
              MKTVSAAIAF AAAAVSLTGC ATESSRSLEV AKVASCNTQY HGVRTPISVG
              TFDNRSSFQK GIFSDSEDRL GSQAKTILVT HLQQTNRFNV LNRTNLSALK
          101 QESGISGKAQ NLKGADYVVT GDVTEFGRRD VGDHQLFGIL GRGKSQIAYA
          151 KVALNIVNVN TSEIVYSTQG AGEYALSNRE IIGFGGTSGY DATLNGKVLD
          201 LAIREAVDNL VQAVDNGAWQ SNR+
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 865>:
     m234.seq (partial)
           1
              ...GGCGCGGGCG AATACGCACT TTCCAACCGt GAAATCATCG GTTTCGGCGG
           51
                 CACTTCCGGC TACGATGCGA CTTTGAACGG CAAAGTTTTA GACTTGGCAA
          101
                 TCCGCGAAGC .gTCAACAGC CTGGTTCAGG CTGTTGACAA CGGCGCATGG
                 CAACCCAACC GTTAA
This corresponds to the amino acid sequence <SEQ ID 866; ORF 234>:
```

```
(partial)
    m234.pep
              ..GAGEYALSNR EIIGFGGTSG YDATLNGKVL DLAIREAVNS LVQAVDNGAW
          51
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 234 shows 94.4% identity over a 54 aa overlap with a predicted ORF (ORF 234.ng)
from N. gonorrhoeae:
    m234/g234
                                                   10
                                                             20
                                            GAGEYALSNREIIGFGGTSGYDATLNGKVL
    m234.pep
                                            LGRGKSQIAYAKVALNIVNVNTSEIVYSTQGAGEYALSNREIIGFGGTSGYDATLNGKVL
    q234
                                                    180
                                                             190
                        150
                                 160
                                          170
                        40
                                 50
                DLAIREAVNSLVQAVDNGAWQPNRX
    m234.pep
                ],] | ] [ [ ] [ ] : : ! | ] | ] ] ] ] ] ] ] ] ]
                DLAIREAVDNLVQAVDNGAWQSNRX
    q234
                                 220
               200
                        210
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 867>:
    a234.seg (partial)
            1 AACCGCACCT ATTTGAACGC ATTAAAACAG GAATCCGGCA TTTCCGGCAA
           51 AGCGCATAAC CTGAAAGGCG CAAATTATGT CGNNACCGGC GATGTAACCG
          101 AATTCGGACG CANAGATGTC GGCGATCATC AGCTCTTCGG CATTTTGGGT
          151 CGCGGCAAAT CGCAAATCGC CTATGCAAAA GTGGCTCTGA ATATCGTCAA
          201 CGTCAATACT TCCGAAATCG TCTATTCCGC ACAGGGCGCG GGCGAATACG
          251 CACTTTCCAA CCGTGAAATC ATCGGTTTCG GCGGCACTTC CGGCTACGAT
          301 GCGACTTTGA ACGGCAAAGT TTTAGACTTG GCAATCCGCG AAGCCGTCAA
          351 CAGCCTGGTT CAGGCTGTTG ACAACGGCGC ATGGCAACCC AACCGTTAA
This corresponds to the amino acid sequence <SEQ ID 868; ORF 234.a>:
     a234.pep (partial)
            1 NRTYLNALKQ ESGISGKAHN LKGANYVXTG DVTEFGRXDV GDHQLFGILG
           51 RGKSQIAYAK VALNIVNVNT SEIVYSAQGA GEYALSNREI IGFGGTSGYD
          101 ATLNGKVLDL AIREAVNSLV QAVDNGAWQP NR*
m234/a234 100.0% identity in 54 aa overlap
                                                                            20
                                                         10
     30
     m234.pep
     GAGEYALSNREIIGFGGTSGYDATLNGKVL
     LGRGKSQIAYAKVALNIVNVNTSEIVYSAQGAGEYALSNREIIGFGGTSGYDATLNGKVL
                                                                     100
                                                8.0
                                                           90
                  50
                             60
                                       70
                           40
                                     50
                  DLAIREAVNSLVQAVDNGAWQPNRX
     m234.pep
                  a234
                  DLAIREAVNSLVQAVDNGAWQPNRX
                 110
                            120
                                      130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 869>: g235.seq

```
1 atgaaacctt tgattttagg gettgeegee gtgttggete tgtetgeetg
          51 ccaagttcga aaagctcccg acctcgacta cacgtcattc aaagaaagca
          101 aaccggcttc aattttggtg gttccgccgc tgaacgagtc gcctgatgtc
          151 aacggcactt gggggatget ggettegace geegegeega ttteegaage
          201 cggctattac gtctttcccg ccgcagtcgt ggaggaaacc ttcaaagaaa
         251 acggcttgac caatgccgcc gatattcacg ccgtccggcc ggaaaaactg
         301 catcaaattt teggeaatga tgeggttttg tacattaegg ttacegaata
         351 cggcacttca tatcaaattt tagacagcgt gacgaccgta tccgccaaag
         401 cacggctggt cgattcccgc aacgggaaag agttgtggtc gggttcggcc
         451 agcatccgcg aaggcagcaa caacagcaac agcggcctgt tgggggcttt
              ggtcggcgca gtggtcaatc agattgccaa cagcctgacc gaccgcggtt
         551
              atcaggtttc caaaaccgcc gcatacaacc tactgtcgcc ctattcccqc
         601 aacggtatct tgaaaggtcc gagattcgtc gaagagcagc ccaaataa
This corresponds to the amino acid sequence <SEO ID 870; ORF 235.ng>;
     g235.pep
              MKPLILGLAA VLALSACQVR KAPDLDYTSF KESKPASILV VPPLNESPDV
           1
          51 NGTWGMLAST AAPISEAGYY VFPAAVVEET FKENGLTNAA DIHAVRPEKL
         101 HQIFGNDAVL YITVTEYGTS YQILDSVTTV SAKARLVDSR NGKELWSGSA
         151 SIREGSNNSN SGLLGALVGA VVNQIANSLT DRGYQVSKTA AYNLLSPYSR
         201 NGILKGPRFV EEOPK*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 871>:
    m235.seq
           1 ATGAAACCTT TGATTTTAGG GCTTGCCGCC GTGTTGGCGC TGTCTGCCTG
              CCAAGTTCAA AAAGCGCCCG ATTTCGACTA CACGTCATTC AAGGAAAGCA
         101 AACCGGCTTC AATTTTGGTG GTTCCGCCGC TGAACGAATC GCCCGATGTC
         201 CGGCTATTAC GTCTTCCCCG CCGCAGTCGT GGAGGAAACC TTCAAACAAA
         251 ACGGCTTGAC CAATGCCGCC GATATTCACG CCGTCCGGCC GGAAAAACTG
              CATCAGATTT TCGGCAATGA TGCGGTTTTG TACATTACGG TTACCGAATA
         351 CGGCACTTCA TATCAAATTT TAGACAGCGT GACGACCGTA TCCGCCAAAG
         401 CACGGCTGGT CGATTCCCGC AACGGAAAAG AGTTGTGGTC GGGTTCGGCC
         451 AGCATCCGCG AAGGCAGCAA CAACAGCAAC AGCGGCCTGT TGGGGGCTTT
         501 GGTCAGCGCA GTGGTCAATC AGATTGCCAA CAGCCTGACC GACCGCGGTT
         551 ATCAGGTTTC CAAAACCGCC GCATACAACC TGCTGTCGCC CTATTCTCAC
         601 AACGGCATCT TGAAAGGTCC GAGATTCGTT GAAGAGCAGC CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 872; ORF 235>:
    m235.pep
              MKPLILGLAA VLALSACQVQ KAPDFDYTSF KESKPASILV VPPLNESPDV
          51 NGTWGVLAST AAPLSEAGYY VFPAAVVEET FKONGLTNAA DIHAVRPEKL
         101 HQIFGNDAVL YITVTEYGTS YQILDSVTTV SAKARLVDSR NGKELWSGSA
         151 SIREGSNNSN SGLLGALVSA VVNQIANSLT DRGYQVSKTA AYNLLSPYSH
         201 NGILKGPRFV EEOPK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 235 shows 96.7% identity over a 215 aa overlap with a predicted ORF (ORF 235.ng)
from N. gonorrhoeae:
    m235/g235
                        10
                                  20
                                           30
                                                     40
                                                                        60
    m235.pep
                 MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
                 g235
                 MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
                        10
                                  20
                                           30
                                                     40
                                                              50
                                  80
                                           90
                                                    100
    m235.pep
                 AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
                 g235
                 AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
                        70
                                  80
                                           90
                                                    100
                                                             110
                                                                       120
                       130
                                 140
                                          150
                                                    160
                                                             170
                                                                       180
```

m235.pep

537

YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT

mz33.pep	1011111111		SKNGKELWSGS	ASIREGSNNSN	SGLLGALVSAVVNQTANSLT	
g235		וווווון תוופמשמי		11111111111		
9235					SGLLGALVGAVVNQIANSLT	
	130	1	40 15	0 160	170 180	
•	100	_	00 00	_		
	190		00 21			
m235.pep	DRGYOVSKTAJ					
			1:111111111	111111		
g235	DRGYQVSKTA			VEEQPKX		
	190	2	00 21	0		
-	<u>.</u>					
The following partial DNA sequence was identified in N. meningitidis <seq 873="" id="">:</seq>						
a235.seq	•			U		
i	ATGAAACCTT TGA	ATTTTAGG	GCTTGCCGCC	GTGTTGGCGC	TGTCTGCCTG	
51	CCAAGTTCAA AAZ	AGCGCCCG	ATTTCGACTA	CACGTCATTC	AAGGAAAGCA	
101	AACCGGCTTC AAT	TTTGGTG	GTTCCGCCGC	TGAACGAATC	GCCCGATGTC	
151	AACGGAACAT GGC	GTGTACT	GGCTTCGACC	GCCGCGCCGC	TTTCCGAAGC	
201	CGGCTATTAC GTC	CTTCCCCG	CCGCAGTCGT	GGAGGAAACC	TTCAAACAAA	
251	ACGGCTTGAC CAR	ATGCCGCC	GATATTCACG	CCGTCCGGCC	GGAAAAACTG	
301	CATCAGATTT TCC	GCAATGA	TGCGGTTTTG	TACATTACGG	TTACCGAATA	
351	CGGCACTTCA TAT					
401	CACGGCTGGT CGA	TTCCCGC	AACGGAAAAG	AGTTGTGGTC	GGGTTCGGCC	
451	AGCATCCGCG AAG	GCAGCAA	CAACAGCAAC	AGCGGCCTGT	TGGGGGCTTT	
501	GGTCAGCGCA GTG	GTCAATC	AGATTGCCAA	CAGCCTGACC	GACCGCGGTT	
551	ATCAGGTTTC TAR	AACCGCC	GCATACAACC	TGCTGTCGCC	CTATTCTCAC	
601	AACGGCATCT TGA	AAGGTCC	GAGATTCGTC	GAAGAGCAGC	CCAAATAA	
This correspond	is to the amino ac	cid seque	nce <seo i<="" td=""><td>D 874: ORF</td><td>235.a>:</td></seo>	D 874: ORF	235.a>:	
a235.pep		*				
1	MKPLILGLAA VLA	LSACOVO	KAPNEDVTSE	KECKDVCIIV	VPDINESDOV	
51	NGTWGVLAST AAR	LSEAGYY	VEPAAVVEET	FKONGLTNAA	DIHAVDDEKI	
101	HQIFGNDAVL YIT	VTEYGTS	YOTIDSVTTV	CAKABINDA	NCKLIMSCOV	
151	SIREGSNNSN SGI	LGALVSA	VVNOTANSIT	DRGYOVSKTA	AVNI.I.SPVSH	
201	NGILKGPRFV EEC		***************************************	DROIGIONIN	ATTABAST 1511	
m235/a235 100.0% identity in 215 aa overlap						
111255762255	10.070 Idontity III		-		50 60	
m235.pep					50 60	
mz55.pep	MARLIEGIAAV	THISHCO	QKAPUFUITS.	FKESKPASILV	/PPLNESPDVNGTWGVLAST	
a235	MKDITICIAN	11111111 1000014.11				
azss	10		20 3			
	10	•	.0 31	0 40	50 60	
	70	9	30 9	0 100	110 120	
m235.pep					QIFGNDAVLYITVTEYGTS	
a235	AAPTSEAGYYV	τιιιιι	יייקארטאכנייטא יייקארטאכנייטא	וווווווווווווווווווווווווווווווו	QIFGNDAVLYITVTEYGTS	
4200	70		10 90		110 120	
	, •	,		100	110 120	
	130	14	0 150	160	170 180	
m235.pep					GLLGALVSAVVNQIANSLT	
	1111111111	1111111	1111111111	[
a235	YOILDSVTTVS	AKARLVDS	RNGKELWSGS	ASTREGSNNSNS	GLLGALVSAVVNQIANSLT	
	130	14			170 180	
	,,				1.0	
	190	20	0 210	D .		
m235.pep	DRGYQVSKTAA					
, - •	шшшш		1111111111			
a235	DRGYQVSKTAA	YNLLSPYS	HNGILKGPRF	VEEOPKX		
	190	20				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 875>: g236.seq

```
1 ATGGCGCGTT TCGCCTTCTC CGCCGACATT CTCCGCACAG CGTTTGCAGA
          51 CGGTTTCATA ACCTGCAACC GCGCCCACAT CGCGGGTGTA ATGCCAGCAG
         101 CGTTCGCATT TTTCGCCGTC GCTGGCTTTG GCGGCAACGG CAAGTTCATC
         151 ACCGACTITC ACTICTGCTT TAGACACCAG CAGGGCAAAG CGCAATTCTT
         201 CGCCCAAAGC ATTCAGATAG CCGGCCATTT CTTCCGGCGC GGTAATTTCG
          251 GCTTCCGCCT GCAAggacga accgacagTT TTGTcggcGC GCAAAGGCTC
          301 GAtageggeg gTTACTGCTT CGCGCGCTTC GCGGATTGCC GTCCATTTTT
         351 TCACCAGTTC GGCTTCGGCT TTTTCGTTGA TGGCCGGGAA CTCGTGCCAA
          401 GTATGGAAGA GGACGCTGTC TTCTTCGCCG CCGCCGATGA TGTCCCACGC
          451 TTCTTCGCCG GTGAAGCACA AAATCGGTGC AATCAAGAGA ACCAGGCTGC
          501 GCGTGATGTG GTACAGGGCG GTTTGCGCGC TGCGGCGGGC GCGGCTGTCG
          551 GCTTTGGTGG TGTAGAGGCG GTCTTTCAGG ATGTCGAGGT AGAACGCGCC
          601 CAAGTCTTCC GAGCAGAAAG AAACAATGTC TTTCACGGCG AAGTGGAAGG
          651 CATAGOGGG ATAGTAACOG COTGCCAAAC GCTCTTGCAG CCGCCGCGCC
          701 AATACCAAGG CGTAGCGGTC GATTTCCACC ATATCCGCCT GTTGCACGGC
          751 ATCTTCAATC GGATTAAAGT CGCTCAAATT GGCAAAcagG AAGCTCAAGG
          801 TATTGCGGAT GCGGCGGTAG CTTTCGGTAA CGCGTTTGAG GATTTCTTTG
          851 GAAatcgCCA ATtcgccgct gTAATCGGTG GATGCCGCCC ACAGGCGCAG
               GATGTCCGCG CCGAATTCGT TATAGACTTC CTGCGGCGCG ACGACGTTGC
          951 CGATGGATTT CGACATTTTG CGGCCGTTTT GGTCAACCAC GAAACCGTGG
         1001 GTCAGCAGCT GTTTATACGG TGCGCGTCCC ATGGATGA
This corresponds to the amino acid sequence <SEQ ID 876; ORF 236.ng>:
     q236.pep
               MARFAFSADI LRTAFADGFI TCNRAHIAGV MPAAFAFFAV AGFGGNGKFI
           51 TDFHFCFRHQ QGKAQFFAQS IQIAGHFFRR GNFGFRLQGR TDSFVGAQRL
          101 DSGGYCFARF ADCRPFFHQF GFGFFVDGRE LVPSMEEDAV FFAAADDVPR
          151 FFAGEAQNRC NQENQAARDV VQGGLRAAAG AAVGFGGVEA VFQDVEVERA
               QVFRAERNNV FHGEVEGIAR IVTACQTLLQ PPRQYQGVAV DFHHIRLLHG
          251 IFNRIKVAQI GKQEAQGIAD AAVAFGNAFE DFFGNRQFAA VIGGCRPQAQ
          301 DVRAEFVIDF LRRDDVADGF RHFAAVLVNH ETVGQQLFIR CASHG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 877>:
     m236.seq (partial)
            1 ..TTGCACGGAC GAACCGACGG TTTTGTCGGC GCGCAAAGGC TCGATGGCGG
                 CGGTTACCGC TTCGCGGGCT TCGCGGATTG CCGTCCATTT TTTCACCAGT
                 TCGGCTTCGG TTTTTTCGTT GATGGTCGGG AACTCGTGCC AAGTATGGAA
          101
                 GAGGACGCTG TCKTCTTCGC CGCCGCCGWT GAYGTCCCAC GCTTCTTCGC
          151
                 CGGTGAAGCA CAAAATCGGT GCAATCAAGA GAACCAAACT GCGTGTGATG
          201
                 TGATACAGGG CAGTTTGTGC GCTGCGGCGT GCATGGCTGT CTGCTTTGGT
          251
                 GGTGTAGAGG CGGTCTTTCA GGATGTCGAG GTAGAACGCA CCCAAGTCTT
          301
                 CCGAGCAGAA AGAAACATTG TCTTTTACGG CAAAGTGGAA kGCATAACGC
          351
                 GGATAGTAAT CGCCTGCCAG ACACTCTTGC AGCTGACGTG CCAATACCAC
          401
                 GGCGTAGCGG TCGATTTCCA CCATATCCGC CTGTTGCACG GCATCTTCAA
          451
                 TCGGATTAAA GTCGCTCAAG TTGGCAAACA AAAAGCTCAA GGTATTGCGG
          501
                 ATACGGCGGT AGCTTTCGGT TACGCGTTTG AGGATTTCTT TGGAAATCGC
          551
                 CAATTCGCCG CTGTAATCGG TAGATGCCGC CCACAGGCGC AGGATGTCTG
          601
                 CGCCGAATTC GTTATAAACC TCTTGCGGTG CAACGACGTT GCCGATGGAT
                 TTCGACATTT TTTTGCCTTC GCCGTCGACA ACGAAACCAT GGGTCAGCAG
          701
                 CTGTTTATAC GGCGCGCGAC CCATTGA
This corresponds to the amino acid sequence <SEQ ID 878; ORF 236>:
     m236.pep (partial)
            1 ...LHGRTDGFVG AQRLDGGGYR FAGFADCRPF FHQFGFGFFV DGRELVPSME
                 EDAVXFAAAX DVPRFFAGEA QNRCNQENQT ACDVIQGSLC AAACMAVCFG
                 GVEAVFQDVE VERTQVFRAE RNXVFYGKVE XITRIVIACQ TLLQLTCQYH
          101
                 GVAVDFHHIR LLHGIFNRIK VAQVGKQKAQ GIADTAVAFG YAFEDFFGNR
          151
                  QFAAVIGRCR PQAQDVCAEF VINLLRCNDV ADGFRHFFAF AVDNETMGQQ
          201
          251
                  LFIRRATH*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 236 shows 82.9% identity over a 258 aa overlap with a predicted ORF (ORF 236.ng)
from N. gonorrhoeae:
     m236/q236
```

```
10
                                                     20
                                                             30
                                      LHGRTDGFVGAORLDGGGYRFAGFADCRPF
   m236.pep
                                      FRHOOGKAQFFAQSIQIAGHFFRRGNFGFRLQGRTDSFVGAQRLDSGGYCFARFADCRPF
    g236
                                        90
                                               100
                                80
                                             70
                                                     80
                                                              90
                             50
                                     60
                     40
              FHQFGFGFFVDGRELVPSMEEDAVXFAAAXDVPRFFAGEAQNRCNQENQTACDVIQGSLC
    m236.pep
              FHOFGFGFFVDGRELVPSMEEDAVFFAAADDVPRFFAGEAQNRCNQENQAARDVVQGGLR
    g236
                                       150 "
                                               160
                               140
                       130
                                    120
                                            130
                    100
                            110
              AAACMAVCFGGVEAVFQDVEVERTQVFRAERNXVFYGKVEXITRIVIACQTLLQLTCQYH
    m236.pep
              AAAGAAVGFGGVEAVFQDVEVERAQVFRAERNNVFHGEVEGIARIVTACQTLLQPPRQYQ
    g236
                                       210
                                                220
                                                        230
               180
                       190
                               200
                            170
                                    180
                                            190
                                                     200
                    160
               GVAVDFHHIRLLHGIFNRIKVAQVGKQKAQGIADTAVAFGYAFEDFFGNRQFAAVIGRCR
    m236.pep
               GVAVDFHHIRLLHGIFNRIKVAQIGKQEAQGIADAAVAFGNAFEDFFGNRQFAAVIGGCR
    g236
                        250
                                260
                                        270
                                                280
               240
                                             250
                                    240
                            230
                    220
               POAODVCAEFVINLLRCNDVADGFRHFFAFAVDNETMGQQLFIRRATHX
    m236.pep
               PQAQDVRAEFVIDFLRRDDVADGFRHFAAVLVNHETVGQQLFIRCASHG
    q236
                               320
                                        330
                                                340
               300
                       310
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 879>:
    a236.seq
            ATGGCGCGTT TCGCCTTCTC CGCCGACATT CTCTGCACAG CGTTTGCAGA
         51 CGGTTTCATG GCCTGCAACC GCGCCCACAT CGCGGGTGTA GTGCCAGCAG
        101 CGTTCGCATT TTTCACCATC ACTGGCTTTA GCGGCAACGG CAAGTTCGCT
        201 CGCCCAAAGC ATTCAGATAG CCGGCCATTT CTTCCGGCGC GGTAATTTCG
        251 GCTTCGGCTT GCAAGGACGA ACCGACGGTT TTGTCGGCGC GCAAAGGCTC
        301 GATGGCGGCG GTTACCGCTT CGCGGGCTTC GCGGATTGCC GTCCATTTTT
        351 TCACCAGTTC GGCTTCGGCT TTTTCGTTGA TGGTCGGGAA CTCGTGCCAA
```

This corresponds to the amino acid sequence <SEQ ID 880; ORF 236.a>:

```
a236.pep

1 MARFAFSADI LCTAFADGFM ACNRAHIAGV VPAAFAFFTI TGFSGNGKFA
51 AYFHFCFRHQ QSKAQFFAQS IQIAGHFFRR GNFGFGLQGR TDGFVGAQRL
101 DGGGYRFAGF ADCRPFFHQF GFGFFVDGRE LVPSMEKHAV FCAAADDVPR
151 FFAGEAQNRC NQENQAARDV VQGGLRAAAG AAVGFGGIEA VFQDIEVERA
201 QVFRAERNHF FHGKVEGITR IKITGNAFLQ PPCQHQGIAV DFHHIRLHG
251 IFNRIEVAQV GKQKAQGIAD TAVAFGYALE DFFGNRQFAA VIGGCRPQAQ
301 DVRAELVIHF LRRDDVADGF RHFAPVLIHH ETMGQQLFVR RATH*
```

WO 99/57280

540

m236/a236 81.0% identity in 258 aa overlap

```
20
                                          10
                                                           30
                                   LHGRTDGFVGAQRLDGGGYRFAGFADCRPF
m236.pep
                                    1:111111111111111111111111111111
           FRHQQSKAQFFAQSIQIAGHFFRRGNFGFGLQGRTDGFVGAQRLDGGGYRFAGFADCRPF
a236
                     70
                             80
                                     90
                                             100
                                                     110
            60
                         50
                                  60
                                          70
                 40
           FHQFGFGFFVDGRELVPSMEEDAVXFAAAXDVPRFFAGEAQNRCNQENQTACDVIQGSLC
m236.pep
           {\tt FHQFGFGFFVDGRELVPSMEKHAVFCAAADDVPRFFAGEAQNRCNQENQAARDVVQGGLR}
a236
                                    150
                                                     170
                            140
                                             160
          - 120
                    130
                100
                         110
                                 120
                                         130
                                                  140
                                                          150
          AAACMAVCFGGVEAVFQDVEVERTQVFRAERNXVFYGKVEXITRIVIACQTLLQLTCQYH
m236.pep
           {\tt AAAGAAVGFGGIEAVFQDIEVERAQVFRAERNHFFHGKVEGITRIKITGNAFLQPPCQHQ}
a236
           180
                    190
                            200
                                    210
                160
                                 180
                                         190
                                                  200
                         170
          GVAVDFHHIRLHGIFNRIKVAQVGKQKAQGIADTAVAFGYAFEDFFGNRQFAAVIGRCR
m236.pep
           GIAVDFHHIRLLHGIFNRIEVAQVGKQKAQGIADTAVAFGYALEDFFGNRQFAAVIGGCR
a236
           240
                    250
                            260
                                    270
                                             280
                 220
                         230
                                 240
                                         250
           POAQDVCAEFVINLLRCNDVADGFRHFFAFAVDNETMGQQLFIRRATHX
m236.pep
           [[[[]]]]]
                                    POAQDVRAELVIHFLRRDDVADGFRHFAPVLIHHETMGQQLFVRRATHX
a236
                                    330
            300
                    310
                            320
                                             340
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 881>: q237.seq

```
atgcgggaca aggttggcgg taatatcgca ctccccgccc cacgaatatt
            1
           51
              cgattctaac atcggcaagc tgcggaaaaa ctttaagcat atcttggcgg
              acaagetegg teatacgege aggattgteg ataaattegt tateettace
              gccgaaaagc agcctgccgt ccgcgctgag gcggtaataa tccaaaatat
              ggcggttgtc gcatactgcc atattgttgc ggataagccc ttttgtgcgc
          201
          251
              gcqcccaaqq qttcqqtqqc aataataaaq qtqctgacqq caatcqcctt
          301
              gcgttccaaa ggccggaata tcgggttcaa accgacataa gtattgacgg
          351 catagaccac atttttacac tcgacgctgc cttcgggcgt gtaaaccagc
          401 caaccgtttt gatacggttc gatgcgcgtc atcggggatt gctcgaaaat
          451 ctgcgcgccg gcttcggcag cggcgctggc aacacccaac gtgtaattga
          501
              gcggatgaag atgcccggac aagggatcga actgtgcgcc ttggtacata
          551
               tegetgteaa getgetgttt caactegget ttateecaaa gttgataatg
          601
              actogcacog taatgccgtt gggcgtgttc atgccactgc tgcaactctt
          651 cccaatgctg cggacggacg gcaaccgtgg cataaccgcg ctgccaatcg
          701 caatcgatgg catgtttgcg gacgcgttcg tccaccagtt cgaccgcctg
          751 caaagactgt tgccaaaacc attgcgcctg ctccaagccg acctgttttt
          801 caatttcccc cataccgcag gcgtagtcgc tgataacctg cccgccactc
          851 ctgccggacg cgccgaagcc gatacgtgcg gcttccaaaa cgacggcttc
          901 atgtccgtgt tccgccagcg gcaatgcggt acacaaaccg ctcaaaccgc
          951 cgccgataat gcaggtttcg gctttcagac ggcattggag tttcggataa
         1001 acagtatgcg gattaaccga actaaaataa taagaaggca gatattcttg
         1051 aaaatcaggg cgaatcattg tgtttgcttt atcgggtata ttttcggacg
         1101 gaatgataca gactgtcggg ccatatcgtc caaacagaaa atcggttga
This corresponds to the amino acid sequence <SEO ID 882; ORF 237.ng>:
```

g237.pep

MRDKVGGNIA LPAPRIFDSN IGKLRKNFKH ILADKLGHTR RIVDKFVILT AEKQPAVRAE AVIIONMAVV AYCHIVADKP FCARAQGFGG NNKGADGNRL

```
101 AFQRPEYRVQ TDISIDGIDH IFTLDAAFGR VNOPTVLIRF DARHRGLLEN
          151 LRAGFGSGAG NTORVIERMK MPGOGIELCA LVHIAVKLLF QLGFIPKLIM
          201 TRTVMPLGVF MPLLQLFPML RTDGNRGITA LPIAIDGMFA DAFVHQFDRL
          251 QRLLPKPLRL LQADLFFNFP HTAGVVADNL PATPAGRAEA DTCGFONDGF
              MSVFRQRQCG TQTAQTAADN AGFGFQTALE FRINSMRINR TKIIRROIFL
          351 KIRANHCVCF IGYIFGRNDT DCRAISSKQK IG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 883>:
     m237.seq
              ATGCGGGACA AGGTTGGCGG TAATGTCGCA CTCCCCGCCC CACGAATATT
           51 CGATTTTGAC ATCGGCAAGC TGCGGAAAAA CTTTAAGCAT ATCTTGGCGG
          101 ACAAGCTCGG TCATaCGCTC AGGATTGTCG ATAAACTCGT TATCCTTACC
          151 GCCGAAAAGC AGTCTGCCGT CCGCGCTGAG GCGGTAATAA TCCAAAATAT
          201 GGCGGTTGTC GCATACTGCC ATATTGTTAC GGATAAGCCC TTTTGCGCGC
              GCCCCCAAGG GTTCGGTCGC AATAATAAAG GTGCTGACAG CAATCGCCTT
              GCGTTCCAAA GGCCGGAATA TCGGGTTCAA ACCTGCATAA GTATTGACAG
          351 CATAGACCAC ATTTTTGCAC TCGACGCTGC CTTCGGGCGT GTAAACCAGC
          401 CAACCGTTTT GATGCGGTTC GATGCACGTC ATCGGGGATT GCTCGAAAAT
          451 CTGCGCACCG GCTTCGGCAG CGGCACGAGC GATGCCCAAA GTGTAAGTGA
          501 GCGGATGCAG GTGTCCGGAT AAGGGGTCGA ATTGTGCCCC TTGGTACATA
          551 TCGCTGTCAA GCTGCTGTTT CAACTCGGCT TTATCCCAAA GTTGATAATG
              ACTCGCACCG TAATGCCGTT GGGCGTGTTC ATGCCACTGC TGCAACTCTT
          651 CCCAATGCTG CGGACGGACG GCAACCGTGG CATAACCGCG CTGCCAATCA
          701 CAATCGACGG CATGTTTGCG GACGCGTTCG TCCACCAGTT CGACCGCCTG
          751 CAAAGACTGT TGCCAAAACC ATTGCGCCTG CTCCAAGCCG ACCTGTTTTT
          801 CAATTTCCCC CATACCGCAG nCGTAATCGC TGATAACCTG CCCGCCACTC
          851
              CGTCCCGACG CGCCGAAACC GATACGCGCG GCTTCCAACA CAACCGTTTC
          901 ATGTCCCTGC TCCGCCAAGG GCAATGCAGT GCACAAACCA CCCAATCCGC
          951 CGCCGATGAT ACAGGTATCG GTTTTCAGAC GGCATTGAAG TTLCGGATAA
        1001 ACAGTATGAG GATTAACCGA ACTGAAATAA TAAGAAGGCA GATATTCTTG
        1051 AAAATCAGGG CGAATCATTG TGTTTGCTTT ATCAGGTGTA TTTTCGGACG
        1101 GAATGATACA GGCTGTCGGG CCATATCGTC CAWACAGAAA ATCGGTTGA
This corresponds to the amino acid sequence <SEO ID 884; ORF 237>:
    m237.pep
           1 MRDKVGGNVA LPAPRIFDFD IGKLRKNFKH ILADKLGHTL RIVDKLVILT
              AEKQSAVRAE AVIIQNMAVV AYCHIVTDKP FCARPQGFGR NNKGADSNRL
              AFQRPEYRVQ TCISIDSIDH IFALDAAFGR VNQPTVLMRF DARHRGLLEN
          151 LRTGFGSGTS DAQSVSERMQ VSGXGVELCP LVHIAVKLLF QLGFIPKLIM
          201 TRTVMPLGVF MPLLQLFPML RTDGNRGITA LPITIDGMFA DAFVHQFDRL
          251 QRLLPKPLRL LQADLFFNFP HTAXVIADNL PATPSRRAET DTRGFQHNRF
          301 MSLLRQGQCS AQTTQSAADD TGIGFQTALK FRINSMRINR TEIIRRQIFL
          351 KIRANHCVCF IRCIFGRNDT GCRAISSXOK IG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 237 shows 86.1% identity over a 382 aa overlap with a predicted ORF (ORF 237.ng)
from N. gonorrhoeae:
    m237/g237
                                   20
                                            30
                                                      40
                                                               50
    m237.pep
                 MRDKVGGNVALPAPRIFDFDIGKLRKNFKHILADKLGHTLRIVDKLVILTAEKQSAVRAE
                 g237
                 MRDKVGGNIALPAPRIFDSNIGKLRKNFKHILADKLGHTRRIVDKFVILTAEKQPAVRAE
                         10
                                   20
                                            30
                                                      40
                                                               50
                                   80
                                            90
                                                     100
                                                              110
    m237.pep
                 AVIIQNMAVVAYCHIVTDKPFCARPQGFGRNNKGADSNRLAFQRPEYRVQTCISIDSIDH
                 AVIIQNMAVVAYCHIVADKPFCARAQGFGGNNKGADGNRLAFQRPEYRVQTDISIDGIDH
    q237
                         70
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
                        130
                                  140
                                           150
                                                     160
    m237.pep
                 IFALDAAFGRVNQPTVLMRFDARHRGLLENLRTGFGSGTSDAQSVSERMQVSGXGVELCP
```

```
IFTLDAAFGRVNQPTVLIRFDARHRGLLENLRAGFGSGAGNTQRVIERMKMPGQGIELCA
g237
                              150
                                     160
                                             170
               130
                      140
                                                    180
               190
                      200
                              210
                                     220
                                             230
         LVHIAVKLLFQLGFIPKLIMTRTVMPLGVFMPLLQLFPMLRTDGNRGITALPITIDGMFA
m237.pep
          g237
         LVHIAVKLLFQLGFIPKLIMTRTVMPLGVFMPLLQLFPMLRTDGNRGITALPIAIDGMFA
               190
                      200
                              210
                                     220
                                             230
                                                    240
               250
                      260
                              270
                                     280
                                             290
                                                    300
         DAFVHOFDRLORLLPKPLRLLOADLFFNFPHTAXVIADNLPATPSRRAETDTRGFOHNRF
m237.pep
          DAFVHQFDRLQRLLPKPLRLLQADLFFNFPHTAGVVADNLPATPAGRAEADTCGFQNDGF
g237
                              270
                                     280
               250
                      260
                                             290
               310
                      320
                              330
                                     340
                                             350
         MSLLROGQCSAQTTQSAADDTGIGFQTALKFRINSMRINRTEIIRRQIFLKIRANHCVCF
m237.pep
          MSVFRQRQCGTQTAQTAADNAGFGFQTALEFRINSMRINRTKIIRRQIFLKIRANHCVCF
q237
               310
                      320
                              330
                                     340
                                             350
                                                    360
               370
                      380
          IRCIFGRNDTGCRAISSXOKIGX
m237.pep
            q237
          IGYIFGRNDTDCRAISSKQKIGX
               370
                      380
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 885>:

```
a237.seq
         ATGCGGGACA AGGTTGGCGG TAATGTCGCA CTCCCCGCCC CACGAATATT
      1
         CGATTTTGAC ATCGGCAAGC TGCGGAAAAA CTTTAAGCAT ATCTTGGCGG
     51
    101
         ACAAGCTCGG TCATACGCGC GGGATTGTCG ATAAACTCGT TATCCTTACC
         GCCGAAAAGC AGTCTGCCGT CCGCGCTGAG GCGGTAATAA TCCAAAATAT
    151
         GACGGTTGTC GCATACTGCC ATATTGTTGC GGATAAGCCC TTTTGCACGC
         GCGCCCAAGG GTTCTGTGGC AATAATAAAG GTGCTGACAG CAATCGCCTT
    251
    301
         GCGCTCCAAA GGCTTGAATA TCGGATTCAA ACCGGCATAA GTATTGACGG
         CGTACACCAG ATTTTTGCAT TCGACGCTGC CTTCGGGGGT GTAAACCAGC
    351
         CAACCGTTTT GATAAGGTTC AATGCGTATC ATGGGAGAAT GCTCAAAAAT
    451
         CTTCGTACCA GCTTCGGCAG CGGCGCGGGC GATGCCCAAC GTGTAATTGA
         GCGGATGGAG ATGCCCGGAC AAGGGATCGA ACTGTGCGCC TTGGTACATA
    501
    551
         TCGCTGTCAA GCTGCTGCTT CAGTTCAGTG TTATCCCAGA GTTGATAATG
    601
         AGTTGCACCG TAATATTTTT GGGCGTGCTC ATGCCATTGT TGCAATTCTT
    651
         CCCAATGCTG CGAACGGATG GCAACCGTGG CATAACCGCG CTGCCAATCG
         CAATCAATGG CATGTTTGCG GACGCGTTCG TCCACCAGTT CGACCGCCTG
    701
         CAAAGACTGT TGCCAAAACC ATTGCGCTTG CTCCAAACCG ACCTGTTTTT
    801 CAATTTCCTC CATACCGCAG GCGTAATCGC TGATAACCTG CCCGCCACTC
         CGTCCCGACG CGCCGAAACC GATACGCGCG GCTTCCAACA CAACCGTTTC
    901 ATGTCCCTGC TCCGCCAAGG GCAATGCAGT GCACAAACCA CTCAATCCGC
         CGCCGATGAT ACAGGTATCG GTTTTCAGAC GGCATTGAAG TTTCGGATAA
   1001
         ACAGTATGAG GATTAACCGA ACTGAAATAA TAAGAAGGCA GATATTCTTG
         AAAATCAGGG CGAATCATTG TGTTTGCTTT ATCGGGTATA TTTTCGGACG
   1101 GAATGATACA GGCTGTCGAG CCATATCGTC CAAACAGAAA ATCGGTTGA
```

This corresponds to the amino acid sequence <SEO ID 886; ORF 237.a>:

237.pep					
1	MRDKVGGNVA	LPAPRIFDFD	IGKLRKNFKH	ILADKLGHTR	GIVDKLVILT
51	AEKQSAVRAE	AVIIQNMTVV	AYCHIVADKP	FCTRAQGFCG	NNKGADSNRL
101	ALQRLEYRIQ	TGISIDGVHQ	IFAFDAAFGG	VNQPTVLIRF	NAYHGRMLKN
151	LRTSFGSGAG	DAQRVIERME	MPGQGIELCA	LVHIAVKLLL	QFSVIPELIM
201	SCTVIFLGVL	MPLLQFFPML	RTDGNRGITA	LPIAINGMFA	DAFVHQFDRL
251	QRLLPKPLRL	LQTDLFFNFL	HTAGVIADNL	PATPSRRAET	DTRGFQHNRF
301	MSLLRQGQCS	AQTTQSAADD	TGIGFQTALK	FRINSMRINR	TEIIRRQIFL
351	KIRANHCVCF	IGYIFGRNDT	GCRAISSKQK	IG*	

```
m237/a237 85.6% identity in 382 aa overlap
                     10
                             20
                                    30
                                             40
                                                     50
    m237.pep
              MRDKVGGNVALPAPRIFDFDIGKLRKNFKHILADKLGHTLRIVDKLVILTAEKOSAVRAE
               MRDKVGGNVALPAPRIFDFDIGKLRKNFKHILADKLGHTRGIVDKLVILTAEKQSAVRAE
    a237
                             20
                                    30
                                            40
                                                    50
                             80
                                    90
                                            100
              AVIIQNMAVVAYCHIVTDKPFCARPQGFGRNNKGADSNRLAFQRPEYRVQTCISIDSIDH
    m237.pep
              AVIIQNMTVVAYCHIVADKPFCTRAQGFCGNNKGADSNRLALQRLEYRIQTGISIDGVHQ
    a237
                     70
                             80
                                    90
                                            100
                                                    110
                    130
                            140
                                    150
                                            160
                                                    170
                                                           180
              IFALDAAFGRVNQPTVLMRFDARHRGLLENLRTGFGSGTSDAQSVSERMQVSGXGVELCP
    m237.pep
              a237
              IFAFDAAFGGVNQPTVLIRFNAYHGRMLKNLRTSFGSGAGDAQRVIERMEMPGOGIELCA
                    130
                            140
                                    150
                                            160
                                                    170
                                                           180
                    190
                            200
                                    210
                                            220
                                                    230
                                                           240
              LVHIAVKLLFQLGFIPKLIMTRTVMPLGVFMPLLQLFPMLRTDGNRGITALPITIDGMFA
    m237.pep
              a237
              LVHIAVKLLLQFSVIPELIMSCTVIFLGVLMPLLQFFPMLRTDGNRGITALPIAINGMFA
                    190
                            200
                                    210
                                            220
                                                    230
                                                           240
                            260
                                    270
                                            280
                                                    290
                                                           300
              {\tt DAFVHQFDRLQRLLPKPLRLLQADLFFNFPHTAXVIADNLPATPSRRAETDTRGFQHNRF}
    m237.pep
              a237
              DAFVHQFDRLQRLLPKPLRLLQTDLFFNFLHTAGVIADNLPATPSRRAETDTRGFQHNRF
                    250
                            260
                                    270
                                            280
                            320
                    310
                                    330
                                            340
                                                    350
                                                           360
              MSLLRQGQCSAQTTQSAADDTGIGFQTALKFRINSMRINRTEIIRRQIFLKIRANHCVCF
   m237.pep
              a237
              MSLLRQGQCSAQTTQSAADDTGIGFOTALKFRINSMRINRTEIIRROIFLKIRANHCVCF
                    310
                            320
                                    330
                                           340
                                                    350
                                                           360
                    370
   m237.pep
              IRCIFGRNDTGCRAISSXQKIGX
                 111111111111111
    a237
              IGYIFGRNDTGCRAISSKOKIGX
                    370
                            380
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 887>: q238.seq

atgaatttgc ctattcaaaa attcatgatg ctgttggcag cggcaatatc gatgetgeat atccccatta gteatgegaa eggtttggat gecegtttge gcgatgatat gcaggcaaaa cactacgaac cgggtggcaa ataccatctg tttggtaatg ctcgcggcag tgttaaaaat cgggtttgcg ccgtccaaac atttgatgca actgcggtcg gccccatact qcctattaca cacgaacgga caggatttga aggtgttatc ggctatgaaa cccatttttc aggacacgga cacgaagtac acagtccgtt cgataatcat gattcaaaaa gcacttctga tttcagcggc ggcgtagacg gcggttttac cgtttaccaa cttcatcgga cagggtcgga aatacatccc gcagacggat atgacgggcc tcaaggcggc ggttatccgg aaccacaagg ggcaagggat atatacagct accatatcaa aggaacttca accaaaacaa agataaacac tgttccgcaa gccccttttt cagaccgctg gctaaaagaa aatgccggtg ccgcttccgg ttttctcagc cgtgcggatg aagcaggaaa actgatatgg gaaaacgacc ccgataaaaa ttggcgggct aaccgtatgg atgatattcg cggcatcgtc caaggtgcgg ttaatccttt tttaacgggt tttcaagggg tagggattgg ggcaattaca gacagtgcgg taagcccggt cacagataca gccgctcagc agactctaca aggtattaat gatttaggaa atttaagtcc ggaagcacaa cttgccgccg

WO 99/57280

544

-- 1771

```
851 cgaqcctatt acaggacagt gcctttgcgg taaaagacgg catcaattcc
          901 gccagacaat gggctgatgc ccatccgaat ataacagcaa cagcccaaac
          951 tgcccttgcc gtagcagagg ccgcaggtac ggtttggcgc ggtaaaaaag
        1001 taqaacttaa cccgaccaaa tgggattggg ttaaaaaatac cggctataaa
        1051 aaacctgctg cccgccatat gcagactgta gatggggaga tggcaggggg
        1101 gaatagaccg cctaaatcta taacgtcgga aggaaaagct aatgctgcaa
        1151 cctatcctaa gttggttaat cagctaaatg agcaaaactt aaataacatt
        1201 gcggctcaag atccaagatt gagtctagct attcatgagg gtaaaaaaaa
        1251 ttttccaata ggaactgcaa cttatgaaga ggcagataga ctaggtaaaa
        1301 tttgggttgg tgagggtgca agacaaacta gtggaggcgg atggttaagt
        1351 agagatggca ctcgacaata tcggccacca acagaaaaaa aatcacaatt
         1401 tgcaactaca ggtattcaag caaattttga aacttatact attgattcaa
         1451 atgaaaaaag aaataaaatt aaaaatggac atttaaatat taggtaa
This corresponds to the amino acid sequence <SEQ ID 888; ORF 238.ng>:
     g238.pep
              MNLPIQKFMM LLAAAISMEH IPISHANGLD ARLRDDMQAK HYEPGGKYHL
           1
               FGNARGSVKN RVCAVQTFDA TAVGPILPIT HERTGFEGVI GYETHFSGHG
          101 HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP ADGYDGPQGG
          151 GYPEPOGARD IYSYHIKGTS TKTKINTVPQ APFSDRWLKE NAGAASGFLS
          201 RADEAGKLIW ENDPDKNWRA NRMDDIRGIV QGAVNPFLTG FQGVGIGAIT
          251 DSAVSPVTDT AAQQTLQGIN DLGNLSPEAQ LAAASLLQDS AFAVKDGINS
          301 ARQWADAHPN ITATAQTALA VAEAAGTVWR GKKVELNPTK WDWVKNTGYK
          351 KPAARHMQTV DGEMAGGNRP PKSITSEGKA NAATYPKLVN QLNEQNLNNI
          401 AAQDPRLSLA IHEGKKNFPI GTATYEEADR LGKIWVGEGA RQTSGGGWLS
          451 RDGTRQYRPP TEKKSQFATT GIQANFETYT IDSNEKRNKI KNGHLNIR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 889>:
     m238.seq
           1 ATGAATTTGC CTATTCAAAA ATTCATGATG CTGTTTGCAG CAGCAATATC
           51 GTTGCTGCAA ATCCCCATTA GTCATGCGAA CGGTTTGGAT GCCCGTTTGC
          101 GCGATGATAT GCAGGCAAAA CACTACGAAC CGGGTGGTAA ATACCATCTG
          151 TTTGGTAATG CTCGCGGCAG TGTTAAAAAG CGGGTTTACG CCGTCCAGAC
          201 ATTTGATGCA ACTGCGGTCA GTCCTGTACT GCCTATTACA CACGAACGGA
          251 CAGGGTTTGA AGGTGTTATC GGTTATGAAA CCCATTTTC AGGGCACGGA
          301 CATGAAGTAC ACAGTCCGTT CGATCATCAT GATTCAAAAA GCACTTCTGA
          351 TTTCAGCGGC GGTGTAGACG GCGGTTTTAC TGTTTACCAA CTTCATCGAA
          401 CAGGGTCGGA AATCCATCCG GAGGATGGAT ATGACGGGCC GCAAGGCAGC
          451 GATTATCCGC CCCCCGGAGG AGCAAGGGAT ATATACAGCT ATTATGTCAA
          501 AGGAACTTCA ACAAAAACAA AGACTAATAT TGTCCCTCAA GCCCCATTTT
          551 CAGACCGTTG GCTAAAAGAA AATGCCGGTG CCGCCTCTGG TTTTTTCAGC
          601 CGTGCGGATG AAGCAGGAAA ACTGATATGG GAAAGCGACC CCAATAAAAA
          651 TTGGTGGGCT AACCGTATGG ATGATGTTCG CGGCATCGTC CAAGGTGCGG
          701 TTAATCCTTT TTTAATGGGT TTTCAAGGAG TAGGGATTGG GGCAATTACA
          751 GACAGTGCAG TAAGCCCGGT CACAGATACA GCCGCGCAGC AGACTCTACA
          801 AGGTATTAAT GATTTAGGAA AATTAAGTCC GGAAGCACAA CTTGCTGCCG
          851 CGAGCCTATT ACAGGACAGT GCTTTTGCGG TAAAAGACGG TATCAACTCT
          901 GCCAAACAAT GGGCTGATGC CCATCCAAAT ATAACAGCTA CTGCCCAAAC
          951 TGCCCTTTCC GCAGCAGAGG CCGCAGGTAC GGTTTGGAGA GGTAAAAAAG
         1001 TAGAACTTAA CCCGACTAAA TGGGATTGGG TTAAAAATAC CGGTTATAAA
         1051 AAACCTGCTG CCCGCCATAT GCAGACTTTA GATGGGGAGA TGGCAGGTGG
         1101 GAATAAACCT ATTAAATCTT TACCAAACAG TGCCGCTGAA AAAAGAAAAC
         1151 AAAATTTTGA GAAGTTTAAT AGTAACTGGA GTTCAGCAAG TTTTGATTCA
         1201 GTGCACAAAA CACTAACTCC CAATGCACCT GGTATTTTAA GTCCTGATAA
         1251 AGTTAAAACT CGATACACTA GTTTAGATGG AAAAATTACA ATTATAAAAG
         1301 ATAACGAAAA CAACTATTTT AGAATCCATG ATAATTCACG AAAACAGTAT
         1351 CTTGATTCAA ATGGTAATGC TGTGAAAACC GGTAATTTAC AAGGTAAGCA
         1401 AGCAAAAGAT TATTTACAAC AACAAACTCA TATCAGGAAC TTAGACAAAT
         1451
This corresponds to the amino acid sequence <SEO ID 890; ORF 238>:
     m238.pep
               MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK HYEPGGKYHL
               FGNARGSVKK RVYAVQTFDA TAVSPVLPIT HERTGFEGVI GYETHFSGHG
          101 HEVHSPFDHH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP EDGYDGPQGS
```

151 DYPPPGGARD IYSYYVKGTS TKTKTNIVPQ APFSDRWLKE NAGAASGFFS
201 RADEAGKLIW ESDPNKNWWA NRMDDVRGIV QGAVNPFLMG FQGVGIGAIT
251 DSAVSPVTDT AAQQTLQGIN DLGKLSPEAQ LAAASLLQDS AFAVKDGINS
301 AKQWADAHPN ITATAQTALS AAEAAGTVWR GKKVELNPTK WDWVKNTGYK
351 KPAARHMQTL DGEMAGGNKP IKSLPNSAAE KRKQNFEKFN SNWSSASFDS
401 VHKTLTPNAP GILSPDKVKT RYTSLDGKIT IIKDNENNYF RIHDNSRKQY
451 LDSNGNAVKT GNLQGKQAKD YLQQQTHIRN LDK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 238 shows 86.0% identity over a 401 aa overlap with a predicted ORF (ORF 238.ng) from N. gonorrhoeae:

m238/g238

-226	10 MNLPIQKFMMLFAA	20	30	40	50	60
m238.pep						
g238	MNLPIQKFMMLLAA					
	10	20	30	40	50	60
	70	80 .	90	100	110	120
m238.pep	RVYAVQTFDATAVS					
g238	: RVCAVQTFDATAVG					
9230	7.0	80	90	100	110	120
				,		
m238.pep	130 GVDGGFTVYQLHRI	140 GSEIHPEDGY	150 DGPOGSDYPP	160 PGGARDIYSY	1.70 YVKGTSTKTI	180 מעענערט
250.pcp						
g238	GVDGGFTVYQLHRI					_
	130	140	150	160	170	180
	190	200	210	220	230	240
m238.pep	APFSDRWLKENAGA					
g238						
3200	190	200	210	220	230	240
	254					
m238.pep	250 FQGVGIGAITDSAV	260 ZSPVTDTAAOO	270 TLOGINDIGK	280 LSPEAOLAAA	290 SLLODSAFAV	300 XKDGTNS
	11111111111111					
g238	FQGVGIGAITDSAV					
	250	260	270	280	290	300
	310	320	330	340	350	360
m238.pep	AKQWADAHPNITAT					
g238	: ARQWADAHPNITAT					
3-00	310	320	330	340	350	360
	270	200			410	400
m238.pep	370 DGEMAGGNKPIKSI	380 JPNSAAEKRKO	390 NFEKFNSNWS	400 SASFDSVHKT	410 LTPNAPGILS	420 SPDKVKT
			:: : :: :			
g238	DGEMAGGNRPPKSI		-			EGKKNFP
	370	380	390	400	410	
	430	440	450	460	470	480
m238.pep	RYTSLDGKITIIKI	ONENNYFRIHD	NSRKQYLDSN	GNAVKTGNLQ	GKQAKDYLQ(QQTHIRN
g238	IGTATYEEADRLG	KIWVGEGAROT	SGGGWLSRDG	TROYRPPTEK	KSOFATTGIO	DANFETY
-	420 430	440	450	460	470	- ··

```
The following partial DNA sequence was identified in N. meningitidis <SEO ID 891>:
     a238.seq
              (partial)
              ATGAATTTGC CTATTCAAAA ATTCATGATG CTGTTTGCAG CAGCAATATC
           1
              GTTGCTGCAA ATCCCCATTA GTCATGCGAA CGGTTTGGAT GCCCGTTTGC
          101 GCGATGATAT GCAGGCAAAA CACTACGAAC CGGGTGGTAA ATACCATCTG
              TTTGGTAATG CTCGCGGCAG TGTTAAAAAT CGGGTTTACG CCGTCCAAAC
          201 ATTTGATGCA ACTGCGGTCG GCCCCATACT GCCTATTACA CACGAACGGA
          251 CAGGATTIGA AGGCATTATC GGTTATGAAA CCCATTTTTC AGGACATGGA
              CATGAAGTAC ACAGTCCGTT CGATAATCAT GATTCAAAAA GCACTTCTGA
          301
          351
              TTTCAGCGGC GGCGTAGACG GTGGTTTTAC CGTTTACCAA CTTCATCGGA
              CAGGGTCGGA AATCCATCCG GAGGATGGAT ATGACGGGCC GCAAGGCAGC
          401
          451 GATTATCCGC CCCCGGAGG AGCAAGGGAT ATATACAGCT ACTATGTCAA
          501 AGGAACTTCA ACAAAAACAA AGAGTAATAT TGTTCCCCGA GCCCCATTTT
              CAGACCGCTG GCTAAAAGAA AATGCCGGTG CCGCCTCTGG TTTTTTCAGC
          551
              CGTGCTGATG AAGCAGGAAA ACTGATATGG GAAAGCGACC CCAATAAAAA
          601
              TTGGTGGGCT AACCGTATGG ATGATATTCG CGGCATCGTC CAAGGTGCGG
          651
          701
              TTAATCCTTT TTTAATGGGT TTTCAAGGAG TAGGGATTGG GGCAATTACA
              GACAGTGCAG TAAGCCCGGT CACAGATACA GCCGCGCAGC AGACTCTACA
          751
         801 AGGTATTAAT CATTTAGGAA ATTTAAGTCC CGAAGCACAA CTTGCGGCTG
          851 CAACCGCATT ACAAGACAGT GCTTTTGCGG TAAAAGACGG TATCAATTCC
         901 GCCAGACAAT GGGCTGATGC CCATCCGAAT ATAACTGCAA CAGCCCAAAC
951 TGCCCTTGCC GTAGCAGAGG CCGCAACTAC GGTTTGGGGC GGTAAAAAAG
              TAGAACTTAA CCCGACCAAA TGGGATTGGG TTAAAAATAC CGGCTATAAA
              ACACCTGCTG TTCGCACCAT GCATACTTTG GATGGGGAAA TGGCCGGTGG
        1101
              GAATAGACCG CCTAAATCTA TAACGTCCAA CAGCAAAGCA GATGCTTCCA
        1151
              CACAA
This corresponds to the amino acid sequence <SEQ ID 892; ORF 238.a>:
     a238.pep
              (partial)
              MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK HYEPGGKYHL
              FGNARGSVKN RVYAVQTFDA TAVGPILPIT HERTGFEGII GYETHFSGHG
              HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP EDGYDGPQGS
         101
         151 DYPPPGGARD IYSYYVKGTS TKTKSNIVPR APFSDRWLKE NAGAASGFFS
              RADEAGKLIW ESDPNKNWWA NRMDDIRGIV QGAVNPFLMG FQGVGIGAIT
              DSAVSPVTDT AAQQTLQGIN HLGNLSPEAQ LAAATALQDS AFAVKDGINS
         251
         301 ARQWADAHPN ITATAQTALA VAEAATTVWG GKKVELNPTK WDWVKNTGYK
              TPAVRTMHTL DGEMAGGNRP PKSITSNSKA DASTQ
m238/a238 91.9% identity in 385 aa overlap
                         10
                                  20
                                            30
                                                     40
                                                               50
                                                                        60
                 MNLPIQKFMMLFAAAISLLQIPISHANGLDARLRDDMQAKHYEPGGKYHLFGNARGSVKK
    m238.pep
                 a238
                 MNLPIQKFMMLFAAAISLLQIPISHANGLDARLRDDMQAKHYEPGGKYHLFGNARGSVKN
                         10
                                  20
                                            30
                                                     40
                                                               50
                                                                        60
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                 RVYAVQTFDATAVSPVLPITHERTGFEGVIGYETHFSGHGHEVHSPFDHHDSKSTSDFSG
    m238.pep
                 a238
                 RVYAVQTFDATAVGPILPITHERTGFEGIIGYETHFSGHGHEVHSPFDNHDSKSTSDFSG
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                        130
                                 140
                                           150
                                                    160
                                                              170
    m238.pep
                 GVDGGFTVYQLHRTGSEIHPEDGYDGPQGSDYPPPGGARDIYSYYVKGTSTKTKTNIVPQ
                 a238
                 GVDGGFTVYQLHRTGSEIHPEDGYDGPQGSDYPPPGGARDIYSYYVKGTSTKTKSNIVPR
                                 140
                                           150
                                                    160
                                                              170
                                                                       180
                                 200
                                           210
                                                    220
                                                              230
    m238.pep
                 APFSDRWLKENAGAASGFFSRADEAGKLIWESDPNKNWWANRMDDVRGIVOGAVNPFLMG
                 a238
                 APFSDRWLKENAGAASGFFSRADEAGKLIWESDPNKNWWANRMDDIRGIVQGAVNPFLMG
                        190
                                 200
                                           210
                                                    220
                                                              230
                                                                       240
                                 260
                                           270
                                                    280
                                                              290
                                                                       300
    m238.pep
                 FQGVGIGAITDSAVSPVTDTAAQQTLQGINDLGKLSPEAQLAAASLLQDSAFAVKDGINS
```

WO 99/57280 PCT/US99/09346

547

	a238	FQGVGIG	AITDSAVSPVT	DTAAQQTLQG	: :INHLGNLSPEAC	LAAATALQDSA	
	m238.pep	AKQWADA	нритатаота	LSAAEAAGTV	340 WRGKKVELNPTK	WDWVKNTGYKKI	
	a238	ARQWADA	нриітатаота	LAVAEAATTV	WGGKKVELNPTK	WDWVKNTGYKTI	
			370	380	300 40	.0 410	410
•• sabi	m238.pep		NKPIKSLP-NS		390 40 KFNSNWSSASFE		419 GILSPDKVK
	a238		NRPPKSITSNS	• •			
						••	
	The following p	artial DNA s	sequence wa	s identified	in N. gonorri	hoeae <seq< td=""><td>ID 893>:</td></seq<>	ID 893>:
	g239.seq						
	1				c cggcggatgg		
	51 101				t tcgccaaacg g gcgatttcct		
	151				a ctggttttgc		
	201	-			a gcagaaagaa	_	
	251				t attattccgg		
	301				g ctcctcgccc		
	351				c cctgcccacg		
	401				g ccgcccagct		
	451				c ttcacaatgo		
	501				c gccctctttc		
	551				t caagetegeg		•
	601	atgeggattg	cctggaaggt	gegegtege	a ggatcctgcc	cccgctcgcg	
	651 701				c cagcttgcgg		
	751	aaccgctctt		gcgacaatg	g cycycacaat	ciggeggera	
	This correspond	-			ID 904, ODE	220 =~>	
	-	is to the anni	io acid sequi	ence SEQ	1D 894; UKF	239.ng/:	
	g239.pep 1	MEUUVATADN	DDMEST PPCD	DDDDDDDD	T RLLQPHLRII	TT OCDET BED	
	51				E IRFVHCRSDV		
	101				T IFRGGSGKSA		
	151				F RRHMTCGNTA		
	201				R VVSIGLSARC		
	251	NRSSP*	_				
	The following p	artial DNA s	sequence wa	s identified	in N. mening	itidis <seq i<="" td=""><td>D 895>:</td></seq>	D 895>:
	m239.seq		_		•	•	
	1	ATGCTCCACC	ATAAAGGTmy	kgcccgaaa	C CGGCkGATGG	AGGTTTTGTT	
	51				T TCGCCAAACG		
	101		-		G GCGATTTCCT		
	151				A CTGGTTTTGC		
	201				A GCAGAAGGAA		
	251				G ATTGTTCCGG		
	301 351				A CTTCTCGCCC		
	401				G CCGCCCACG		
	451				C TTCACAATGO		
	501				C GCCCTCTTTC		
	551				T CAAGCTCGCG		
	601				A GGATCCTGCC		
	651				C CAGCTTGCGG		
	701				G CGCGCGCAAT		
	751	አ አ ር ር ር ር ጥር ጥጥ					

751 AACCGCTCTT CACCATAA

This corresponds to the amino acid sequence <SEQ ID 896; ORF 239>:

```
m239.pep

1 MLHHKGXARN RXMEVLFFCR RPDRFVVRQT RLLQPHLRII LLQGDFLFFR
51 LIQSCEIEPV LVLLHHNGKS GNAHRKQQKE IQFVHCHSDV FLCDCSGIGP
101 AVRSATRKTA LLALGLAAIS ASPGFNALPT IFRGSSGKSA SLTAAQRGRG
151 ACCEYFLTNC FTMRSSNEWK AMTAKRPPSF RRHMTCGNTA PTSSSSRLIK
201 MRTAWKVRVA GSCPRSRVRT FCATICASLR VVSIGLSARC ATMARAIRRL
251 NRSSP*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 239 shows 93.7% identity over a 255 aa overlap with a predicted ORF (ORF 239.ng) from N. gonorrhoeae:

m239/g239

	10	20	30	40	50	60
m239.pep	MLHHKGXARNRXMEV	LFFCRRPDI	RFVVRQTRLLÇ 	PHLRIILLQC	DFLFFRLIQS	
g239	MFHHKGIARNRRMEV	LFFCRRPDI	RFVIRQTRLLC	IIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	: CEVEPV
J	10	20	30	40	50	60
	70	80	90	100	110	120
m239.pep	LVLLHHNGKSGNAHR			CSGIGPAVRS	ATRKTALLAI	GLAAIS
			<u> </u>		11111111111	
g239	LVLLHHNGKSGNAHRI					
	70	80	90	100	110	120
	100					
	130	140	150	160	1.70	180
m239.pep	ASPGFNALPTIFRGS:	SGKSASLTZ		YFLINCFIME	SSNEWKAMTA	KRPPSF
-000	111111111111111111111111111111111111111					
g239	ASPGFNALPTIFRGG:		_			
	130	140	150	160	170	180
	190	222	010			
-220	RRHMTCGNTAPTSSS	200	210	220	230	240
m239.pep	IIIIIIIIIIIIIIII	PRPIEMETA	AWKVRVAGSCE	RSRVRTFCAT	TCASLRVVSI	GLSARC
~220	RRHMTCGNTAPTSSS				11111111	
g239	190	200			CASLRVVSI	
	190	200	210	220	230	240
	250					
m239.pep	ATMARAIRRLNRSSP	·				
mass.pep		n. I				
g239	ATMARTIWRLNRSSP	 				
3237	250	n.				
	250					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 897>: a239.seq

sy.seq					
1	ATGCTCCACC	ATAAAGGTAT	TGCCCGAAAC	CGGCGGATGG	AGGTTTTGTT
51	TTTCTGCCGC	CGCCCTGATC	GCTTCGTGGT	TCGCCAAACG	CGCCTGTTGC
101	AGCCTCATTT	GCGCATAATC	CTGCTCCAAG	GCGATTTCCT	GTTTTTTCGC
151	CTTATCCAAA	GCTGTGAAGT	TGAGCCTGTA	CTGGTTTTGC	TGCATCACAA
201	CGGAAAAAGC	GGAAACGCAC	ACCGCAAGCA	GCAGAAGGAA	ATTCAATTTG
251	TTCATTGCCA	TTCAGACGTT	TTTCTCTGTG	ATTGTTCCGG	TATCGGACCG
301	GCAGTCCGCT	CCGCCACACG	CAAAACCGCA	CTTCTCGCCC	TCGGATTGGC
351	GGCAATTTCC	GCCTCACCCG	GCTTTAATGC	CCTGCCCGCG	ATTTTCAGGG
401	GCGGCTCGGG	CAAATCCGCT	TCCCTGACCG	CCGCCCAGCG	CGGCAGGGGC
451	GCGTGTTGCG	AATATTTTTT	GACAAACTGC	TTCACAATGC	GGTCTTCCAA
501	CGAATGGAAA	GCAATGACCG	CCAAACGTCC	GCCCTCTTTC	AGACGACACA
551	TGACCTGCGG	CAATACTGCC	CCTACTTCTT	CAAGCTCGCG	GTTAATAAAG
601	ATGCGGATTG	CCTGGAAGGT	GCGCGTCGCA	GGATCCTGCC	CCCGCTCGCG
651	AGTACGGACG	TTTTGTGCCA	CGATCTGCGC	CAGCTTGCGG	GTTGTATCGA
701	TTGGACTTTC	CGCCCGTTGC	GCAACAATGG	CGCGCGCAAT	CTGGCGGCTA
751	AACCGCTCTT	CACCATAA			

```
This corresponds to the amino acid sequence <SEQ ID 898; ORF 239.a>:
    a239.pep
              MLHHKGIARN RRMEVLFFCR RPDRFVVRQT RLLQPHLRII LLQGDFLFFR
              LIQSCEVEPV LVLLHHNGKS GNAHRKQQKE IQFVHCHSDV FLCDCSGIGP
          51
             AVRSATRKTA LLALGLAAIS ASPGFNALPA IFRGGSGKSA SLTAAQRGRG
         101
             ACCEYFLING FIMRSSNEWK AMTAKRPPSF RRHMTCGNTA PISSSSRLIK
             MRIAWKVRVA GSCPRSRVRT FCATICASLR VVSIGLSARC ATMARAIWRL
         201
             NRSSP*
m239/a239 97.3% identity in 255 aa overlap
                        10
                                 20
                                          30
                                                   40
                MLHHKGXARNRXMEVLFFCRRPDRFVVRQTRLLQPHLRIILLQGDFLFFRLIQSCEIEPV
    m239.pep
                 MLHHKGIARNRRMEVLFFCRRPDRFVVRQTRLLQPHLRIILLQGDFLFFRLIQSCEVEPV
    a239
                                 20
                                                   40
                        10
                                          30
                        70
                                 80
                                          90
                                                  100
                                                           110
                                                                     120
                LVLLHHNGKSGNAHRKQQKEIQFVHCHSDVFLCDCSGIGPAVRSATRKTALLALGLAAIS
    m239.pep
                 LVLLHHNGKSGNAHRKQQKEIQFVHCHSDVFLCDCSGIGPAVRSATRKTALLALGLAAIS
    a239
                        70
                                 80
                                          90
                                                  100
                       130
                                140
                                         150
                                                  160
                                                           170
                ASPGFNALPTIFRGSSGKSASLTAAQRGRGACCEYFLTNCFTMRSSNEWKAMTAKRPPSF
    m239.pep
                 {\tt ASPGFNALPAIFRGGSGKSASLTAAQRGRGACCEYFLTNCFTMRSSNEWKAMTAKRPPSF}
    a239
                       130
                                140
                                         150
                                                  160
                                                           170
                                200
                                         210
                                                  220
                                                            230
                 RRHMTCGNTAPTSSSSRLIKMRTAWKVRVAGSCPRSRVRTFCATICASLRVVSIGLSARC
    m239.pep
                 RRHMTCGNTAPTSSSSRLIKMRIAWKVRVAGSCPRSRVRTFCATICASLRVVSIGLSARC
    a239
                       190
                                200
                                         210
                                                  220
                                                           230
                       250
                 ATMARAIRRLNRSSPX
    m239.pep
                 111111 111111
                 ATMARAIWRLNRSSPX
     a239
                       250
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 899>:
    g240.seq
              atgatagaag tcatacattt cttcggcgcc gaaacgcgca gacagtttgc
             ttgtgccgac gttggacgat ttctgcataa tgccgcgcac atccaaagag
          51
         101
              gggtaaacat gggtatcatc gcgcacggga gacggtccga ttttataagg
              ctgcgtattc agccgttcgt tcaaatcggt tttgcccgca tccaatgcct
         151
         201 tegeaateae gaacggtttg attgeegaae caggttegat catateggtt
             acqqcacqqt tqcqccqctq ttcqctqtct qcccqqccqq qtctqttqqq
         301 atcgtaggcg ggcgtattgg ccaaggcgag gatttccccc gtgcgggcat
         351 ccaaaaccac caccettccg gcttttgcct gatggtattc gaccgccttg
         401
             ttcaactctt cataggccaa ggtctgaatc ctctgatcga gggaaaggat
              gatgtctttg ccgttttgcg gtgctttatt gcgcggggag tccaagctgt
             ccacaatatt gccctgccgg tcccgcaaaa caacttccgc gccgtcttcg
         501
         551 ccatacaggc tgtcttcaag cgaaagttcc aaaccttcct gacctttgcc
         601 gtcaatatcg gtaaatccga tgacgtgtgc aaacaggttg cccatcgggt
         651 aatggcgttt taa
This corresponds to the amino acid sequence <SEQ ID 900; ORF 240.ng>:
     g240.pep
```

- MIEVIHFFGA ETRRQFACAD VGRFLHNAAH IQRGVNMGII AHGRRSDFIR
 - 51 LRIQPFVQIG FARIQCLRNH ERFDCRTRFD HIGYGTVAPL FAVCPAGSVG
 - IVGGRIGQGE DFPRAGIQNH HRSGFCLMVF DRLVQLFIGQ GLNPLIEGKD
- DVFAVLRCFI ARGVQAVHNI ALPVPQNNFR AVFAIQAVFK RKFOTFLTFA

```
201 VNIGKSDDVC KQVAHRVMAF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 901>: m240. Beq

- 1 ATGATAGAAG TCATACATTT CTTCGGCACC GAAACGCGCA GACAGTTTGC
- 51 TTGTGCCGAC GTTGGACGAT TTCTGCATGA TGCCGCGCAC ATCCAAAGAG
- 101 GGGTAAACAT GGGTATCGCG CACGGGAGAC GGTCCGATTT TATAAGGCTG
- 151 CGTATTCAGC CGTTCGTTCA AATCGGTTTT GCCCGCATCC AATGCCTTCG
- 201 CAATCACAAA CGGTTTGATT GCCGAACCGG GTTCGATCAT ATCGGTTACG
- 251 GCACGGTTGC GCCGCTGTTC GCTGTCTGCC CGGCCGGGCC TGTTGGGATC
- 301 GTAGGCGGC GTATTGGCCA AGGCGAGGAT TTCCCCCGTG CGGGCATCCA
- 351 Araccaccac cottccogct tttgcctgat ggtattcgac coccttgttc
- 401 AACTCTTCAT AGGCCAAGGT CTGAATCCTC TGATCGAGGG AAAGGATGAT
- 451 GTCTTTGCCG TTTTTCGGGG CTTTAKTGCG CGGGGAGTCC AAGCTGTCCA
- 501 CAATATTGCC CTGCCGGTCC CGCAAAACGA CTTCCGCGCC GTCTTCGCCA
- 551 TGCAAGCTGT CTTCAAGCGA AAGTTCCAAA CCTTCCTGAC CTTTGCCGTC
- 601 AATATCGGTA AATCCGATGA CGTGTGCAAA CAGGTTGCCC ATCGGGTAAT
- 651 GGCGTTTTAA

This corresponds to the amino acid sequence <SEQ ID 902; ORF 240>:

- m240.pep
 - 1 MIEVIHFFGT ETRRQFACAD VGRFLHDAAH IQRGVNMGIA HGRRSDFIRL
 - 51 RIQPFVQIGF ARIQCLRNHK RFDCRTGFDH IGYGTVAPLF AVCPAGPVGI
 - 101 VGGRIGQGED FPRAGIQXHH RSGFCLMVFD RLVQLFIGQG LNPLIEGKDD
 - 151 VFAVFRGFXA RGVQAVHNIA LPVPQNDFRA VFAMQAVFKR KFQTFLTFAV
 - 201 NIGKSDDVCK QVAHRVMAF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 240 shows 94.5% identity over a 220 aa overlap with a predicted ORF (ORF 240.ng) from N. gonorrhoeae:

m240/g240

		10	20	30	40	50	59
m240.pep	MIEVI	HFFGTETRR	QFACADVGRF	LHDAAHIQRG	VNMGI-AHGR	RSDFIRLRIQ	PFVQIG
	11111		11111111111	11:111111	11111 1111		$\Pi\Pi\Pi\Pi$
g240	MIEVI	HFFGAETRR	QFACADVGRF	LHNAAHIORG	VNMGIIAHGR	RSDFIRLRIQ	PFVQIG
_		10	20	30	40	50	60
	60	70	80	90	100	110	119
m240.pep	FARIC	CLRNHKRFD	CRTGFDHIGY	GTVAPLFAVC	PAGPVGIVGG	RIGQGEDFPR	AGIQXH
	11111	:	111 111111		111 111111		$\Pi\Pi\Pi\Pi$
g240	FARIC	CLRNHERFD	CRTRFDHIGY	GTVAPLFAVC	PAGSVGIVGG	RIGOGEDFPR	AGIONH
		70	80	90	100	110	120
	120	130	140	150	160	170	179
m240.pep						170 QAVHNIALPV	
m240.pep							
m240.pep	HRSGE	CLMVFDRLV	QLFIGQGLMP	LIEGKDDVFA	VFRGFXARGV :		PONDFR
	HRSGE	CLMVFDRLV	QLFIGQGLMP	LIEGKDDVFA	VFRGFXARGV :	QAVHNIALPV	PONDFR
	HRSGE	CLMVFDRLV	QLFIGQGLNP QLFIGQGLNP	LIEGKDDVFA LIEGKDDVFA	VFRGFXARGV : VLRCFIARGV	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR
	HRSGE	CLMVFDRLV	QLFIGQGLNP QLFIGQGLNP	LIEGKDDVFA LIEGKDDVFA	VFRGFXARGV : VLRCFIARGV	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR
	HRSGE HRSGE	CLMVFDRLV CLMVFDRLV 130	QLFIGQGLNP QLFIGQGLNP 140	LIEGKDDVFA LIEGKDDVFA 150	VFRGFXARGV : VLRCFIARGV 160	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR
g240	HRSGE HRSGE	CLMVFDRLV CLMVFDRLV 130	QLFIGQGLNP QLFIGQGLNP 140	LIEGKDDVFA LIEGKDDVFA 150	VFRGFXARGV : VLRCFIARGV 160	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR
g240	HRSGE HRSGE 180 AVFAM :	CLMVFDRLV CLMVFDRLV 130 190 IQAVFKRKFQ	QLFIGQGLNP QLFIGQGLNP 140 200 TFLTFAVNIG	LIEGKDDVFA LIEGKDDVFA 150 210 EKSDDVCKQVA	VFRGFXARGV : VLRCFIARGV 160 220 HRVMAFX 	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR
g240 m240.pep	HRSGE HRSGE 180 AVFAM :	CLMVFDRLV CLMVFDRLV 130 190 IQAVFKRKFQ	QLFIGQGLNP QLFIGQGLNP 140 200 TFLTFAVNIG	LIEGKDDVFA LIEGKDDVFA 150	VFRGFXARGV : VLRCFIARGV 160 220 HRVMAFX 	'QAVHNIALPV QAVHNIALPV	PONDFR : PONNFR

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 903>: a240.seq

- 1 ATGATAGAAG TCATACATTT CTTCGGCACC GAAACGCGCA GACAGTTTGC
 - 51 TTGTGCCGAC GTTGGACGAT TTCTGCATGA TGCCGCGCAC ATCCAAAGAG
 - 101 GGGTAAACAT GGGTATCGCG CACGGGAGAC GGTCCGATTT TATAAGGCTG
 - 151 CGTATTCAGC CGTTCGTTCA AATCGGTTTT GCCCGCATCC AATGCCTTCG
 - 201 CAATCACAAA CGGTTTGATT GCCGAACCGG GTTCGATCAT ATCGGTTACG

```
251 GCACGGTTGC GCCGCTGTTC GCTGTCTGCC CGGCCGGGCC TGTTGGGATC
301 GTAGGCGGC GTATTGGCA AGGCGAGGAT TTCCCCCGTG CGGCATCCA
351 AAACCACCAC CGTTCCGGCT TTTGCCTGAT GGTATTCGAC CGCCTTGTTC
401 AACTCTTCAT AGGCCAAGGT CTGAATCCTC TGATCGAGGG AAAGGATGAT
451 GTCTTTGCCG TTTTTCGGGG CTTTATTGCG CGGGGAGTCC AAGCTGTCCA
501 CAATATTGCC CTGCCGGTCC CGCAAAACGA CTTCCGCGC GTCTTCGCCA
551 TGCAGGCTGT CTTCAAGCGA AAGTTCCAAA CCTTCCTGAC CTTTGCCGTC
601 AATATCGGTA AATCCGATGA CGTGTGCAA CAGGTTGCCC ATCGGGTAAT
651 GGCGTTTTAA

This corresponds to the amino acid sequence <SEQ ID 904; ORF 240.a>:
a240.pep

1 MIEVIHFFGT ETRRQFACAD VGRFLHDAAH IQRGVNMGIA HGRRSDFIRL
51 RIQPFVQIGF ARIQCLRNHK RFDCRTGFDH IGYGTVAPLF AVCPAGPVGI
101 VGGRIGQGED FPRAGIQNHH RSGFCLMVFD RLVQLFIGQG LNPLIEGKDD
151 VFAVFRGFIA RGVQAVHNIA LPVPQNDFRA VFAMQAVFKR KFQTFLTFAV
201 NIGKSDDVCK QVAHRVMAF*
```

m240/a240 99.1% identity in 219 aa overlap

	10	20	30	40	50	60
m240.pep	MIEVIHFFGTETRF	QFACADVGR	FLHDAAHIQRO	GVNMGIAHGRE	RSDFIRLRIQE	FVQIGF
	1111111111111	111111111	!		11111111111	411111
a240	MIEVIHFFGTETRF	RQFACADVGR	FLHDAAHIQRO	SVNMGIAHGRI	RSDFIRLRIQE	FVQIGF
	10	20	30	40	50	60
•						
	70	80	90	100	110	120
m240.pep	ARIQCLRNHKRFDO	RTGFDHIGY	GTVAPLFAVCI	PAGPVGIVGG	RIGQGEDFPRA	GIQXHH
			1111111111		[1114]1[1]	111 11
a240	ARIQCLRNHKRFDC	RTGFDHIGY	GTVAPLFAVCI	PAGPVGIVGG	RIGQGEDFPRA	GIQNHH
	70	80	90	100	110	120
	130	140	150	160	170	180
m240.pep	RSGFCLMVFDRLVQ	QLFIGQGLNP	LIEGKDDVFAV	/FRGFXARGV(DAVHNIALPVE	QNDFRA
			[[[]]	HIHI
a240	RSGFCLMVFDRLVC	LFIGQGLNP	LIEGKDDVFA	/FRGFIARGV(DAVHNIALPVE	QNDFRA
	130	140	150	160	170	180
		000				
0.40	190	200	210	220		
m240.pep	VFAMQAVFKRKFQT	FLTFAVNIG	KSDDVCKQVAI	RVMAFX		
		1111111111		111111		
a240	VFAMQAVFKRKFQT		_			
	190	200	210	220		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 905>: g241.seq

```
1 ATGATAGAAG TCATACATTT CTTCGGCACC GAAACGCGCA GACAGTTTGC
51 TTGTGCCGAC GTTGGACGAT TTCTGCATGA TGCCGCGCAC ATCCAAAGAG
101 GGGTAAACAT GGGTATCGCG CACGGGAGAC GGTCCGATTT TATAAGGCTG
151 CGTATTCAGC CGTTCGTTCA AATCGGTTTT GCCCGCATCC AATGCCTTCG
201 CAATCACAAA CGGTTTGATT GCCGAACCGG GTTCGATCAT ATCGGTTACG
251 GCACGGTTGC GCCGCTGTTC GCTGTTGGCC CGGCCGGGCC TGTTGGGATC
301 GTAGGCGGC GTATTGGCCA AGGCGAGGAT TTCCCCCGTG CGGGCATCCA
351 AACCCACCAC CGTTCCGGCT TTTGCCTGAT GGTATTCGAC CGCCTTGTTC
401 AACTCTTCAT AGGCCAAAGGT CTGAATCCTC TGATCGAGGG AAAGGATGAT
451 GTCTTTGCCG TTTTTCGGGG CTTTAAKTGCG CGGGGAGTCC AAGCTGTCCA
501 CAATATTGCC CTGCCGGTCC CGCAAAACGA CTTCCGCGCC GTCTTCGCCA
551 TGCAAGCTGT CTTCAAGCGA AAGTTCCAAA CCTTCCTGAC CTTTGCCGTC
601 AATATCGGTA AATCCGATGA CGTGTCCAA CAGGTTGCCC ATCGGGTAAT
651 GGCGTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 906; ORF 241.ng>: g241.pep

MPTRPTRAAN PPTPTTWLQT AYCPRPPYRP PSVQTHTPHE PASSTCAAKS

```
51 ANRRENSHNA QPTYLLHPSN KMPSETEQTL FRRHQIPPSC RQSVVVMTVR
              TVDMTVCDFL IGCIAHAFNR SFKADFHACQ RMVAVHHRLA VGNIGYTIDD
         101
         151 NIAGFRIVRF KHHTDLDFNR ERARIFNTDQ LRIMLTERIV GRKRHFDRIA
         201 GILTVQRLFH QRENAVVTAV QIRNRFFGFI QKLIVGIIHL IMQRNHGIFC
         251 NSHICPFRNS RLITGAF*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 907>:
     m241.seq (partial)
              ..CGGCAATCAG TGGTGGTGAT GACCGTGCGG GCCGTGGACA TGACCGTGTG
                CGATTTCCTC ATCGGATGCA TCGCGCACGC TTTCAACTGT AGCCTTAAAG
          51
                CGGATTTCA TGCCTGCCAA AGGATGGTTG CCGTCCACCA CCGCCTTGCC
          101
                GTCGGCAACA TCGGTTACAC GATAGACGAC AACATCGCCG GTTTCAGGAT
          151
                CGTCGGCTTC AAACATCATG CCGACTTCGA CTTCAACAGG GAACACGCCC
          201
                GCATCTTCGA TACGGACCAA CTCCGGATCC TGCTCGCCGA ACGCATCGTC
          251
                GGGCGACAGC GCCACATCGA CCGTATCGCC GGCATCCTTA CCGTGCAACG
          301
                CCTCTTCCAC CAAAGGGAAA ATGCCGTCGT AACCGCCGTG CAGATACGCA
          351
                ATCGGTTCTT CGGTTTTGTC CAAAAGCTGA TTGTTGGCAT CATACATCTC
          401
                ATAATGCAGC GAAACCACGG AATTTTTCAC GATAGCCATA TTTGTCCTTT
          451
                CAGGAACAGC AGATTAATTA CAGGCGCATT CTAA
          501
This corresponds to the amino acid sequence <SEQ ID 908; ORF 241>:
              (partial)
     m241.pep
               ..RQSVVVMTVR AVDMTVCDFL IGCIAHAFNC SLKADFHACQ RMVAVHHRLA
                VGNIGYTIDD NIAGFRIVGF KHHADFDFNR EHARIFDTDQ LRILLAERIV
           51
                GRORHIDRIA GILTVORLFH ORENAVVTAV QIRNRFFGFV OKLIVGIIHL
          101
                 IMORNHGIFH DSHICPFRNS RLITGAF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 241 shows 91.5% identity over a 177 aa overlap with a predicted ORF (ORF 241.ng)
from N. gonorrhoeae:
     m241/g241
                                                                         30
                                                      10
                                                               20
                                              ROSVVVMTVRAVDMTVCDFLIGCIAHAFNC
     m241.pep
                                              QPTYLLHPSNKMPSETEQTLFRRHQIPPSCRQSVVVMTVRTVDMTVCDFLIGCIAHAFNR
     a241
                                                     100
                                            90
                                   80
                                                               80
                                            60
                                                      70
                         40
                                   50
                  SLKADFHACQRMVAVHHRLAVGNIGYTIDDNIAGFRIVGFKHHADFDFNREHARIFDTDQ
     m241.pep
                  SFKADFHACQRMVAVHHRLAVGNIGYTIDDNIAGFRIVRFKHHTDLDFNRERARIFNTDQ
     g241
                                                     160
                                  140
                                           150
                        130
                                                     130
                                                              140
                        100
                                  110
                                           120
                  LRILLAERIVGRQRHIDRIAGILTVQRLFHQRENAVVTAVQIRNRFFGFVQKLIVGIIHL
     m241.pep
                  LRIMLTERIVGRKRHFDRIAGILTVORLFHQRENAVVTAVQIRNRFFGFIQKLIVGIIHL
      g241
                                           210
                                                     220
                                                              230
                        190
                                  200
                                  170
                        160
                  IMORNHGIFHDSHICPFRNSRLITGAFX
      m241.pep
                  IMORNHGIFCNSHICPFRNSRLITGAFX
      g241
                         250
                                  260
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 909>:
      a241.seq
               ATGCCAACAC GTCCAACTCG CGCCGCAAAG CATCCAACCC CGCCAACCTG
               GCTTCAGACG GCATACTGCC CTCGTCCGCC ATATCGTCCG CCGTCCGTGC
           51
               AAACGCATAC ACCGCATGAA CCGGCTTCCT CAACCTGCGC GGCAAAATCA
           101
           151 GCGAACCGAC GGGAAAATTT TCATAATGCC CAACCGACAT ACCTTCTCCA
           201 TCCATCAAAC AAAATGCCGT CTGAAATGGA ACAAACCCTT TTCAGACGGC
```

-- 100 °

```
ATCAGATACC TCCAAGCTGC CGGCAATCAG TGGTGGTGAT GACCGTGCGG
ACCGTGGACA TGACCGTGTG CGATTTCCTC ATCGGATGCA TCGCGCACAC
TTTCAACCGT AGCCTTAAAG CGGATTTCA TGCCTGCCAA AGGATGGTTG
CCGTCCACCA CCGCCTTACC GTCGGCAACA TCGGTTACAC GATAGACGAC
AACATCGCCG GTTTCAGGAT CGTCGGCTTC AAACATCATG CCGACTTCGA
CTTCAACAGG GAACACGCCC GCATCTTCAA TACGGACCAA CTCCGGATCC
TGCTCGCCGA ACGCATCGTC GGGCGAAACA CTCCGGATCC
GGCATCCTTA CCGTGCAACG CCTCTTCCAC CAAAAGGAAA ATGCCGTCGT
AACCGCCGTG CAGATACGCA ATCGGTTCTT CGGTTTTGTC CAAAAGCTGA
TTGTTGGCAT CATACATCTC ATAATGCAGC GAAACCACGG AATTCTTCAC
GATAGCCATA TTTGTCCTTT CAGGAACAGC AGATTAATTA CAGGCGCATT
CTAA
```

This corresponds to the amino acid sequence <SEQ ID 910; ORF 241.a>:

```
a241.pep

1 MPTRPTRAAK HPTPPTWLQT AYCPRPPYRP PSVQTHTPHE PASSTCAAKS
51 ANRRENFHNA QPTYLLHPSN KMPSEMEQTL FRRHQIPPSC RQSVVVMTVR
101 TVDMTVCDFL IGCIAHTFNR SLKADFHACQ RMVAVHHRLT VGNIGYTIDD
151 NIAGFRIVGF KHHADFDFNR EHARIFNTDQ LRILLAERIV GRKRHIDRIA
201 GILTVQRLFH QRENAVVTAV QIRNRFFGFV QKLIVGIIHL IMQRNHGILH
251 DSHICPFRNS RLITGAF*
```

m241/a241 96.0% identity in 177 aa overlap

				10	20	30
m241.pep			RQSV	VVMTVRAVDI	MTVCDFLIGCI	AHAFNC
• •			1111	111111:111		11:11
a241	OPTYLLHPSNKMPS	EMEQTLFRRE	IQIPPSCRQSV	VVMTVRTVD	MTVCDFLIGCI	AHTFNR
	70	80	90	100	110	120
	40	50	60	70	80	90
m241.pep	SLKADFHACQRMVA	WHHRLAVGN	GYTIDDNIAG	FRIVGFKHH	ADFDFNREHAR	RIFDTDQ
	111111111111111	1111111111		111111111		11:11
a241	SLKADFHACQRMVA	VHHRLTVGN	GYTIDDNIAG	FRIVGFKHH	ADFDFNREHAR	
	130	140	150	160	170	180
	100	110	120	130	140	150
m241.pep	LRILLAERIVGROF	RHIDRIAGIL	TVQRLFHQREN	IAVVTAVQIRI	NRFFGFVQKLI	VGIIHL
	111111111111111111111111111111111111111		[411111111	[$\Pi\Pi\Pi\Pi$
a241	LRILLAERIVGRKE	RHIDRIAGIL	CVQRLFHQREN	IAVVTAVQIR I	NRFFGFVQKLI	VGIIHL
	190	200	210	220	230	240
	160	170				
m241.pep	IMQRNHGIFHDSH)	CPFRNSRLI	rgafx			
	[[[[[[[[[[[[[[[[[[[[111111111	11111			
a241	IMQRNHGILHDSH:	CPFRNSRLI'	rgafx			
	250	260				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 911>: g241-1.seq

```
1 ATGATAGAAG TCATACATTT CTTCGGCACC GAAACGCGCA GACAGTTTGC
 51 TTGTGCCGAC GTTGGACGAT TTCTGCATGA TGCCGCGCAC ATCCAAAGAG
101 GGGTAAACAT GGGTATCGCG CACGGGAGAC GGTCCGATTT TATAAGGCTG
151 CGTATTCAGC CGTTCGTTCA AATCGGTTTT GCCCGCATCC AATGCCTTCG
201 CAATCACAAA CGGTTTGATT GCCGAACCGG GTTCGATCAT ATCGGTTACG
    GCACGGTTGC GCCGCTGTTC GCTGTCTGCC CGGCCGGGCC TGTTGGGATC
251
301 GTAGGCGGC GTATTGGCCA AGGCGAGGAT TTCCCCCGTG CGGGCATCCA
351 AFACCACCAC CGTTCCGGCT TTTGCCTGAT GGTATTCGAC CGCCTTGTTC
401 AACTCTTCAT AGGCCAAGGT CTGAATCCTC TGATCGAGGG AAAGGATGAT
451
    GTCTTTGCCG TTTTTCGGGG CTTTAKTGCG CGGGGAGTCC AAGCTGTCCA
    CAATATTGCC CTGCCGGTCC CGCAAAACGA CTTCCGCGCC GTCTTCGCCA
    TGCAAGCTGT CTTCAAGCGA AAGTTCCAAA CCTTCCTGAC CTTTGCCGTC
    AATATCGGTA AATCCGATGA CGTGTGCAAA CAGGTTGCCC ATCGGGTAAT
    GGCGTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 912; ORF 241-1.ng>:

q241-1.pep

- 122 ·

1 MPTRPTRAAN PPTPTTWLQT AYCPRPPYRP PSVQTHTPHE PASSTCAAKS

```
51 ANRRENSHNA QPTYLLHPSN KMPSETEQTL FRRHQIPPSC RQSVVVMTVR
         TVDMTVCDFL IGCIAHAFNR SFKADFHACQ RMVAVHHRLA VGNIGYTIDD
    101
    151 NIAGFRIVRF KHHTDLDFNR ERARIFNTDQ LRIMLTERIV GRKRHFDRIA
         GILTVQRLFH QRENAVVTAV QIRNRFFGFI QKLIVGIIHL IMQRNHGIFC
    251 NSHICPFRNS RLITGAF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 913>:
m241-1.seq
        ATGCCAACAC GTCCAACTCG CGCTGCAAAC CCTCCAACCC CGCCAACCTG
         GCTTCAGACG GCATACTGCC CTCGTCCGCC ATATCGTCCG CCGTCCGTGC
     51
         AAACGCGTAC ACCGCGTGAA CCGGCTTCCT CAACCTGCGC GGCAAAATCA
    101
         GCGAACCGAC GGGAAAATTC TCATAATGCC CAACCGACAT ACCTTCTCCA
     151
         TCCATCAAAC AAAATGCCGT CTGAAACGGA ACAAACCCTT TTCAGACGGC
     201
         ATCAGATACC TCCAAGCTGC CGGCAATCAG TGGTGGTGAT GACCGTGCGG
     251
         GCCGTGGACA TGACCGTGTG CGATTTCCTC ATCGGATGCA TCGCGCACGC
     301
         TTTCAACTGT AGCCTTAAAG CGGATTTTCA TGCCTGCCAA AGGATGGTTG
     351
         CCGTCCACCA CCGCCTTGCC GTCGGCAACA TCGGTTACAC GATAGACGAC
     401
        AACATCGCCG GTTTCAGGAT CGTCGGCTTC AAACATCATG CCGACTTCGA
CTTCAACAGG GAACACGCCC GCATCTTCGA TACGGACCAA CTCCGGATCC
     451
     501
         TGCTCGCCGA ACGCATCGTC GGGCGACAGC GCCACATCGA CCGTATCGCC
     551
         GGCATCCTTA CCGTGCAACG CCTCTTCCAC CAAAGGGAAA ATGCCGTCGT
     601
         AACCGCCGTG CAGATACGCA ATCGGTTCTT CGGTTTTGTC CAAAAGCTGA
     651
         TTGTTGGCAT CATACATCTC ATAATGCAGC GAAACCACGG AATTTTTCAC
     701
         GATAGCCATA TTTGTCCTTT CAGGAACAGC AGATTAATTA CAGGCGCATT
     751
     801
This corresponds to the amino acid sequence <SEQ ID 914; ORF 241-1>:
m241-1.pep
         MPTRPTRAAN PPTPPTWLQT AYCPRPPYRP PSVQTRTPRE PASSTCAAKS
         ANRRENSHNA QPTYLLHPSN KMPSETEQTL FRRHQIPPSC RQSVVVMTVR
      51
         AVDMTVCDFL IGCIAHAFNC SLKADFHACQ RMVAVHHRLA VGNIGYTIDD
     101
         NIAGFRIVGF KHHADFDFNR EHARIFDTDQ LRILLAERIV GRQRHIDRIA
         GILTVORLFH QRENAVVTAV QIRNRFFGFV QKLIVGIIHL IMQRNHGIFH
     201
         DSHICPFRNS RLITGAF*
                93.3% identity in 267 aa overlap
m241-1/g241-1
            MPTRPTRAANPPTPPTWLQTAYCPRPPYRPPSVQTRTPREPASSTCAAKSANRRENSHNA
m241-1.pep
            MPTRPTRAANPPTPTTWLQTAYCPRPPYRPPSVQTHTPHEPASSTCAAKSANRRENSHNA
g241
                    10
                             20
                                      30
                                                40
                             80
                                       90
                                               100
            QPTYLLHPSNKMPSETEQTLFRRHQIPPSCRQSVVVMTVRAVDMTVCDFLIGCIAHAFNC
m241-1.pep
            QPTYLLHPSNKMPSETEQTLFRRHQIPPSCRQSVVVMTVRTVDMTVCDFLIGCIAHAFNR
g241
                                       90
                                               100
                    70
                             80
                                                        110
                                                                  180
                                               160
                                                        170
                   130
                            140
                                      150
            SLKADFHACQRMVAVHHRLAVGNIGYTIDDNIAGFRIVGFKHHADFDFNREHARIFDTDQ
m241-1.pep
            {\tt SFKADFHACQRMVAVHRLAVGNIGYTIDDNIAGFRIVRFKHHTDLDFNRERARIFNTDQ}
g241
                            140
                                      210
                                               220
            LRILLAERIVGRORHIDRIAGILTVORLFHORENAVVTAVQIRNRFFGFVQKLIVGIIHL
m241-1.pep
             $[]:[:[:[]]]
q241
            LRIMLTERIVGRKRHFDRIAGILTVQRLFHQRENAVVTAVQIRNRFFGFIQKLIVGIIHL
                   190
                            200
                                      210
                                               220
                                                         230
                   250
                            260
            IMQRNHGIFHDSHICPFRNSRLITGAFX
m241-1.pep
             1111111111 : 111111111111111111
g241
            IMQRNHGIFCNSHICPFRNSRLITGAFX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 915>: a241-1.seq

- 1 ATGCCAACAC GTCCAACTCG CGCCGCAAAG CATCCAACCC CGCCAACCTG
- 51 GCTTCAGACG GCATACTGCC CTCGTCCGCC ATATCGTCCG CCGTCCGTGC

```
ARACGCATAC ACCGCATGAA CCGGCTTCCT CAACCTGCGC GGCAAAATCA
    GCGAACCGAC GGGAAAATTT TCATAATGCC CAACCGACAT ACCTTCTCCA
151
    TCCATCAAAC AAAATGCCGT CTGAAATGGA ACAAACCCTT TTCAGACGGC
201
    ATCAGATACC TCCAAGCTGC CGGCAATCAG TGGTGGTGAT GACCGTGCGG
251
    ACCGTGGACA TGACCGTGTG CGATTTCCTC ATCGGATGCA TCGCGCACAC
301
    TTTCAACCGT AGCCTTAAAG CGGATTTTCA TGCCTGCCAA AGGATGGTTG
351
    CCGTCCACCA CCGCCTTACC GTCGGCAACA TCGGTTACAC GATAGACGAC
401
    AACATCGCCG GTTTCAGGAT CGTCGGCTTC AAACATCATG CCGACTTCGA
451
    CTTCAACAGG GAACACGCCC GCATCTTCAA TACGGACCAA CTCCGGATCC
    TGCTCGCCGA ACGCATCGTC GGGCGAAAGC GCCACATCGA CCGTATCGCC
    GGCATCCTTA CCGTGCAACG CCTCTTCCAC CAAAGGGAAA ATGCCGTCGT
601
    AACCGCCGTG CAGATACGCA ATCGGTTCTT CGGTTTTGTC CAAAAGCTGA
651
    TTGTTGGCAT CATACATCTC ATAATGCAGC GAAACCACGG AATTCTTCAC
701
    GATAGCCATA TTTGTCCTTT CAGGAACAGC AGATTAATTA CAGGCGCATT
751
801 CTAA
```

This corresponds to the amino acid sequence <SEQ ID 916; ORF 241-1.a>: a241-1.pep

```
MPTRPTRAAK HPTPPTWLQT AYCPRPPYRP PSVQTHTPHE PASSTCAAKS
```

- ANRRENFHNA OPTYLLHPSN KMPSEMEQTL FRRHQIPPSC RQSVVVMTVR 51
- TVDMTVCDFL IGCIAHTFNR SLKADFHACQ RMVAVHHRLT VGNIGYTIDD 101
- NIAGFRIVGF KHHADFDFNR EHARIFNTDQ LRILLAERIV GRKRHIDRIA 151
- GILTVQRLFH QRENAVVTAV QIRNRFFGFV QKLIVGIIHL IMQRNHGILH 201
- DSHICPFRNS RLITGAF*

95.1% identity in 267 aa overlap m241-1/a241-1

IMORNHGILHDSHICPFRNSRLITGAFX

260

a241

```
20
                               30
                                      40
         MPTRPTRAANPPTPPTWLQTAYCPRPPYRPPSVQTRTPREPASSTCAAKSANRRENSHNA
m241-1.pep
          MPTRPTRAAKHPTPPTWLQTAYCPRPPYRPPSVQTHTPHEPASSTCAAKSANRRENFHNA
a241
                       20
                               30
                                      40
                       80
                               90
                70
         QPTYLLHPSNKMPSETEQTLFRRHQIPPSCRQSVVVMTVRAVDMTVCDFLIGCIAHAFNC
m241-1.pep
          QPTYLLHPSNKMPSEMEQTLFRRHQIPPSCRQSVVVMTVRTVDMTVCDFLIGCIAHTFNR
a241
                                      100
                               90
                70
                       80
                                      160
                                             170
               130
                       140
                              150
          SLKADFHACQRMVAVHHRLAVGNIGYTIDDNIAGFRIVGFKHHADFDFNREHARIFDTDQ
m241-1.pep
          a241
          SLKADFHACQRMVAVHHRLTVGNIGYTIDDNIAGFRIVGFKHHADFDFNREHARIFNTDQ
                              150
                                      160
               130
          LRILLAERIVGRORHIDRIAGILTVQRLFHQRENAVVTAVQIRNRFFGFVQKLIVGIIHL
m241-1.pep
          LRILLAERIVGRKRHIDRIAGILTVQRLFHQRENAVVTAVQIRNRFFGFVQKLIVGIIHL
a241
                                             230
                       200
                              210
                                      220
               190
               250
                       260
m241-1.pep
          IMQRNHGIFHDSHICPFRNSRLITGAFX
          11111111:1111111111111111111
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 917>: g242.seq

```
atgateggeg aacttgttgt tttgttegtg ategageact teaageaacg
51 cgctggcggg atcgccccga aagtcgctgc ccaatttgtc gatttcgtcg
101 agcaggaaca acgggtttct tacgcctgct tttgccatat tctgcaaaat
    cttgccgggc atagagccga tataggtacg gcggtgcccg cggatttcgc
151
    tttcgtcgcg cacgccgccc aaggccatac ggacatattt ccgccccgtt
201
251 gctttggcga tggattcgcc caaagaggtt ttgcccacgc ccggagggcc
301 gaccaaacac agaatcggac ctttgagctt gtccatacgt ttttggacgg
351 cgaggtattc caaaatccgt tctttgactt tttccaggcc gtagtggtcg
    gcatccagca ccagtccggc tttggcgatg tctttgctga cgcgggattt
    tttcttccac ggcagtccga gcagggtgtc gatgtagttg cgtacgacgg
```

WO 99/57280 PCT/US99/09346

```
501 tggattcggc agacatcggc ggcatcattt tgagtttttt cagttcggac
         551 aggcattttt cttccgcttc tttggtcata cccgcctttt tgatgcctgc
              ctccaaggca tccagttcgc cgttttcgtc ttcttcgccc aattctttgt
              gtatcgcttt aatctgttcg ttcagataat attcgcgttg ggatttttcc
         651
         701 atttggcgtt tgacgcgtcc gcgtatgcgt ttttcggcct gcataatgtc
         751 gagtteggat tecagetttg ceageaggaa ttecateegt ttgeegattt
         801 cgggaatctc caaaatctgt tggcgttgcg ccagtttcaa ctgcaaatgc
         851 gctgcgaccg tatcggttag
This corresponds to the amino acid sequence <SEQ ID 918; ORF 242.ng>:
     g242.pep
           1 MIGELVVLFV IEHFKQRAGG IAPKVAAQFV DFVEQEQRVS YACFCHILQN
          51 LAGHRADIGT AVPADFAFVA HAAQGHTDIF PPRCFGDGFA QRGFAHARRA
              DQTQNRTFEL VHTFLDGEVF QNPFFDFFQA VVVGIQHQSG FGDVFADAGF
         101
         151 FLPRQSEQGV DVVAYDGGFG RHRRHHFEFF QFGQAFFFRF FGHTRLFDAC
         201 LQGIQFAVFV FFAQFFVYRF NLFVQIIFAL GFFHLAFDAS AYAFFGLHNV
         251 EFGFQLCQQE FHPFADFGNL QNLLALRQFQ LQMRCDRIG*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 919>:
     m242.seq
              ATGATCGGCA AACTTGTTGT TTTGTTCGGG ATCGAGCACT TCGAGCAACG
          51 CGCTGGCGGG ATCGCCTCGG AAGTCGTTAC CCAATTTGTC GATTTCGTCG
         101 AGCAGGAACA AGGGGTTTTT CACGCCGGCT TTTGCCATAT TCTGCAAAAT
         151
              CTTACCGGGC ATAGAGCCGA TATAGGTGCG GCGGTGTCCC CTGATTTCGC
         201 TTTCGTCGCG CACGCCGCCC AAAGCCATGC GGACATATTT CCGCCCCGTT
         251 GCTTTGGCGA TGGATTCGCC CAAAGAGGTT TTGCCCACGC CCGGAGGGCC
         301 GACCAGGCAC AGAATCGGGC CTTTGAGTTT GTCCATACGT TTTTGGACGG
         351 CGAGGTATTC CAAAATCCGT TCTTTGACTT TTTCCAGGCC GTAGTGGTCG
         401 GCATCCAGCA CCAGTCCGGC TTTGGCGATG TCTTTGCTGA CGCGGGATTT
              TTTCTTCCAC GGCAGCTCGA GCAAAGTGTC GATGTAGTTG CGTACGACGG
         501 TGGATTCCGC AGACATCGGT GGCATCATTT TGAGCTTTTT CAGTTCGGAC
         551 AGGCATTTTT CTTCCGCTTC TTTGGTCATA CCCGCCTTTT TGATATCTGC
         601 TTCCAAGGCA TCCAGTTCGC CGTTTTCGTC TTCTTCGCCC AGTTCTTTGT
         651 GTATCGCTTT AATCTGTTCG TTCAGATAAT ATTCGCGCTG GGATTTTTCC
          701 ATTTGGCGTT TGACGCGTCC GCGTATGCGT TTTTCGGCCT GCATAATGTC
              GAGTTCGGAT TCCAGCTGTG CCAGCAGGAA TTCCATCCGT TTGCCGATTT
         801 CGGGAATTTC CAAAATCTGT TGGCGTTGCG CCAGTTTCAA CTGCAAATGC
          851 GCTGCGACCG TATCGGTTAG
This corresponds to the amino acid sequence <SEQ ID 920; ORF 242>:
     m242.pep
           1 MIGKLVVLFG IEHFEQRAGG IASEVVTQFV DFVEQEQGVF HAGFCHILQN
          51 LTGHRADIGA AVSPDFAFVA HAAQSHADIF PPRCFGDGFA QRGFAHARRA
         101 DQAQNRAFEF VHTFLDGEVF QNPFFDFFQA VVVGIQHQSG FGDVFADAGF
          151 FLPROLEOSV DVVAYDGGFR RHRWHHFELF OFGOAFFFRF FGHTRLFDIC
              FQGIQFAVFV FFAQFFVYRF NLFVQIIFAL GFFHLAFDAS AYAFFGLHNV
          251 EFGFQLCQQE FHPFADFGNF QNLLALRQFQ LQMRCDRIG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 242 shows 90.3% identity over a 289 aa overlap with a predicted ORF (ORF 242.ng)
from N. gonorrhoeae:
     m242/g24290.3% identity in 289 aa overlap
                                   20
                 MIGKLVVLFGIEHFEQRAGGIASEVVTQFVDFVEQEQGVFHAGFCHILQNLTGHRADIGA
     m242.pep
                  q242
                 MIGELVVLFVIEHFKQRAGGIAPKVAAQFVDFVEQEQRVSYACFCHILQNLAGHRADIGT
                         10
                                   20
                                            30
                                                      40
                                                                50
                                   80
                                            90
                                                     100
                                                               110
                                                                         120
                 {\tt AVSPDFAFVAHAAQSHADIFPPRCFGDGFAQRGFAHARRADQAQNRAFEFVHTFLDGEVF}
     m242.pep
                  g242
                  AVPADFAFVAHAAQGHTDIFPPRCFGDGFAQRGFAHARRADQTQNRTFELVHTFLDGEVF
                         70
                                   80
                                            90
                                                     100
```

m242.pep	QNPFFDFFQAVVVGIQHQSGFGDVFADAGFFLPRQLEQSVDVVAYDGGFRRHRWHHFELF	
g242	QNPFFDFFQAVVVGIQHQSGFGDVFADAGFFLPRQSEQGVDVVAYDGGFGRHRRHHFEFF 130 140 150 160 170 180	
	190 200 210 220 230 240	
m242.pep	QFGQAFFFRFFGHTRLFDICFQGIQFAVFVFFAQFFVYRFNLFVQIIFALGFFHLAFDAS	
g242	OFGQAFFFRFFGHTRLFDACLQGIQFAVFVFFAQFFVYRFNLFVQIIFALGFFHLAFDAS 190 200 210 220 230 240	
	250 260 270 280 290	
m242.pep	AYAFFGLHNVEFGFQLCQQEFHPFADFGNFQNLLALRQFQLQMRCDRIGX 	
g242	AYAFFGLHNVEFGFQLCQQEFHPFADFGNLQNLLALRQFQLQMRCDRIGX	
	250 260 270 280	
	artial DNA sequence was identified in N. meningitidis <seq 921="" id="">:</seq>	
a242.seq 1	ATGATCGGCG AACTTGTTGT TTTGCTCGGG ATCAAGCACT TCGAGCAACG	
51	CGCTGGCGGG ATCGCCCCGG AAGTCGCTAN CCAATTTGTC GATTTCGTCG	
101		
151	CTTACCGGGC ATGGAGCCGA TATAGGTGCG GCGGTGTCCC CGGATTTCGC	
201	TTTCGTCGCG CACGCCGCCC AAAGCCATGC GGACATATTT CCGCCCCGTT	
251	GCTTTGGCGA TGGATTCGCC CAAAGAGGTT TTGCCCACGC CTGGAGGGCC	
301	GACCAGGCAC AGAATCGGGC CTTTGAGTTT GTCCATACGT TTTTGGACGG	
351	CGAGGTATTC CAAAATCCGT TCTTTGACTT TTTCCAGGCC GTAGTGGTCG	
401		
451	TTTCTTCCAC GGCAGTTCGA GCAGGGTGTC GATGTAGTTG CGTACGACGG TGGATTCGGC AGACATCGGC GGCATCATTT TGAGCTTTTT CAGTTCGGAC	
501 551	AGGCATTTTT CTTCCGCTTC TTTGGTCATA CCCGCCTTTT TGATATCTGC	
601		
651	GTATCGCTTT AATCTGTTCG TTCAGATAAT ATTCGCGCTG GGATTTTTCC	
701		
751		
801		
851	GCTGCGACCG TATCGGTTAG	
This correspond	Is to the amino acid sequence <seq 242.a="" 922;="" id="" orf="">:</seq>	
a242.pep		
1	MIGELVULLG IKHFEQRAGG IAPEVAXQFV DFVEQEQWVF YAGFCHILQN	
51		
101		
151 201	FOGIQFAVFV FFAQFFVYRF NLFVQIIFAL GFFHLAFDAS AYAFFGLHNV	
251	EFGFQLCQQE FHPFADFGNF QNLLALRQFQ LQMRCDRIG*	
m242/a242 95	5.2% identity in 289 aa overlap	
	10 20 30 40 50 60	
m242.pep	MIGKLVVLFGIEHFEQRAGGIASEVVTQFVDFVEQEQGVFHAGFCHILQNLTGHRADIGA	4
		İ
a242	MIGELVVLLGIKHFEQRAGGIAPEVAXQFVDFVEQEQWVFYAGFCHILQNLTGHGADIGA 10 20 30 40 50 60	
	70 80 90 100 110 120	1
m242.pep	AVSPDFAFVAHAAQSHADIFPPRCFGDGFAQRGFAHARRADQAQNRAFEFVHTFLDGEVE	_
ws4s.beb	AVSEDIA: VARIAQSRADI: PERCEOGRA ANGERILARIO ANGERILARI	ĺ
a242	AVSPDFAFVAHAAOSHADIFPPRCFGDGFAORGFAHAWRADQAQNRAFEFVHTFLDGEVI	
2636	70 80 90 100 110 120	
	130 140 150 160 170 180	0
m242.pep	QNPFFDFFQAVVVGIQHQSGFGDVFADAGFFLPRQLEQSVDVVAYDGGFRRHRWHHFELI	F

a242	QNPFFDFFQAVVV	GIQHQSGFGD	/FADAGFFLP	RQFEQGVDVV	AYDGGFGRHRI	RHHFELF
	130	140	150	160	170	180
	190	200	210	220	230	240
m242.pep	QFGQAFFFRFFGH'	TRLFDICFQG:	iqfavfvffa(OFFVYRFNLF	VQIIFALGFF	ILAFDAS
		111111111	11111111111	111111111		111111
a242	QFGQAFFFRFFGH'	TRLFDICFQG:	[QFAVFVFFA(PETVYRENLE	VQIIFALGFF	HLAFDAS
	190	200	210	220	230	240
•	250	260	270	280	290	
m242.pep	AYAFFGLHNVEFG:	FQLCQQEFHP	Fadfgnfqnli	LALRQFQLQM	RCDRIGX	
	1111111111111		111111111	ПППППП	111111	
a242	AYAFFGLHNVEFG	FQLCQQEFHP	FADFGNFQNL)	LALRQFQLQM	RCDRIGX	
	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 923>:

q243.seq

- ATGGTaatcg tctGGTTGCc cgAGTTaccg CCGATGCCGG CGACGATGGG
- 51 CATCAGCGCG GCGAGTGCGA CGATTTTTC gatactgcCT TCAAACGCGC
- 101 CGATGACGCG GCTGGCGAGG AAGGCGGTGC AGAGGTTGAC GGCGAGCCAC
- 151 ATCCAGCGGT TTTTGACGGA ATCCAAGACG GGGGCGAACA GGTCTTCCTC
- 201 TTCCTGCAAA CCTGCCATGT TCAACATATC CGCTTCGGAT TCTTCGCGGA
- 251 TCACGTCCAC CATCTCGTCG ATGGTAATCC tgCCGATGAG CTTTTTGTTT
- 301 TCATCAACGA CGGGCGCGGT AACCAAGTCG TAG

This corresponds to the amino acid sequence <SEQ ID 924; ORF 243.ng>: g243.pep

- MVIVWLPELP PMPATMGISA ASATIFSILP SNAPMTRLAR KAVQRLTASH
- IQRFLTESKT GANRSSSSCK PAMFNISASD SSRITSTISS MVILPMSFLF
- 101 SSTTGAVTKS *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 925>:

m243.seq

- 1 ATGGTAATCG TCTGGTTGCC CGAGTTACCG CCTATGCCGG CGACGATGGG
- 51 CATCAGCGCG GYGAGTGCGA CGATTTTTTC GATGCTGCCT TCAAACGCGC
- 101 CGATAACACG GYTGGCGAGG AAGGCGGTGC AGAGGTTGAC GGCGAGCCAC
- 151 ATCCAGYGGT TTTTCACCGA ATCCCACACG GGGGCGAAYA GGTCTTCCTC
- 201 TTCCTGCAAA CCCGCCATAT TCAGCATATC CGCTTCCGAT TCTTCGCGGA 251 TCACGTCCAC CATCTCGTCG ATGGTAATCC TGCCGATGAG CTTTTTGTTT
- 301 TCATCGACGA CGGGCGCGGT AACCAAGTCG TAG

This corresponds to the amino acid sequence <SEO ID 926; ORF 243>:

m243.pep

- MVIVWLPELP PMPATMGISA XSATIFSMLP SNAPITRLAR KAVQRLTASH
- IQXFFTESHT GANRSSSSCK PAIFSISASD SSRITSTISS MVILPMSFLF 51
- 101 SSTTGAVTKS *

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 243 shows 92.7% identity over a 110 aa overlap with a predicted ORF (ORF 243.ng) from N. gonorrhoeae:

m243/g243

-- 177

m244.seq

90 100 110 80 70 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 927>: a243.seq ATGGTAATCG TCTGGTTGCC CGAGTTACCG CCTATGCCGG CGACGATGGG 1 CATCAGCGCG GCGAGTGCGA CGATTTTTC GATGCTGCCT TCAAACGCGC 51 101 CGATAACACG GCTGGCGAGG AAGGCGGTGC AGAGGTTGAC GGCGAGCCAC 151 ATCCAGCGGT TTTTGACGGA ATCCAAGACG GGGGCGAATA AGTCTTCCTC 201 TTCTTGCAAA CCCGCCATAT TCAACATATC CGCTTCGGAT TCTTCGCGGA TCACGTCCAC CATTTCGTCA ACGGTCACCC TGCCGATGAG CTTTTTGTTT 301 TCATCGACGA CGGGCGCGGT AACCAAGTCA TAG This corresponds to the amino acid sequence <SEQ ID 928; ORF 243.a>: a243.pep MVIVWLPELP PMPATMGISA ASATIFSMLP SNAPITRLAR KAVQRLTASH IQRFLTESKT GANKSSSSCK PAIFNISASD SSRITSTISS TVTLPMSFLF 101 SSTTGAVTKS * m243/a243 92.7% identity in 110 aa overlap 20 30 40 10 MVIVWLPELPPMPATMGISAXSATIFSMLPSNAPITRLARKAVQRLTASHIQXFFTESHT m243.pep MVIVWLPELPPMPATMGISAASATIFSMLPSNAPITRLARKAVQRLTASHIQRFLTESKT a243 20 30 40 100 70 80 90 110 GANRSSSSCKPAIFSISASDSSRITSTISSMVILPMSFLFSSTTGAVTKSX m243.pep GANKSSSSCKPAIFNISASDSSRITSTISSTVTLPMSFLFSSTTGAVTKSX a243 90 100 80 70 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 929>: g244.seq atgccgcctg aagcccggcc ggcgggttca gacggcattg ccgctttact 1 tcgatcggtt tatacgcaaa acgcgcttca ggaaataaat cagattattc 51 cccagacgcc ttcaggcttc cttccgtgcc accgtaacca tagccgggcg 101 151 caacacacgg tcggacaggg tataaccctt cttcatcaca ccaaccacgg 201 tattgggttc ctgctcactg gccaccgcct gcatcgcctg atggatattc 251 ggatcgagct tatcgcccgc tttaggattg atttccttga tttgcgtggc 301 atcaaacgcc ttctgcaact cattcaaagt catctgcaca cccattttca gcgcatcgaa attaccgctc tgatccaaaa gcgccatttc cagataatcc 351 ttgaccggca acatttccac ggcaaacttc tgtccggcga acttgtgcgt 401 451 atcggcaatt tcctgctggt ggcggcggcg caggttttgc tcgtttgcca 501 aagegegeag tigtiegtet ticaactgeg ettecagete ggeaateege 551 gcctgcaaat cctcataagc cggctcggcg gcagcctgtt cctgtacacc 601 gtccgcattt cctactgtct cgacggtttc caccgcctcc acattttcaa cegettette actgttttge tgetgtgtet gttegeteat ategtatece 701 tcaaaacaaa ttggaaatca aaatccggtt attacccgag caagataagg 751 acattttcaa gaaacttcaa gcaaaggcag gaaatttcac atccgccgcc 801 gaatacccta ccgcaaaaac catataaacg gtaa This corresponds to the amino acid sequence <SEQ ID 930; ORF 244.ng>: g244.pep MPPEARPAGS DGIAALLRSV YTQNALQEIN QIIPQTPSGF LPCHRNHSRA QHTVGQGITL LHHTNHGIGF LLTGHRLHRL MDIRIELIAR FRIDFLDLRG 51 IKRLLQLIQS HLHTHFQRIE ITALIQKRHF QIILDRQHFH GKLLSGELVR 101 IGNFLLVAAA QVLLVCQSAQ LFVFQLRFQL GNPRLQILIS RLGGSLFLYT VRISYCLDGF HRLHIFNRFF TVLLLCLFAH IVSLKTNWKS KSGYYPSKIR 201 251 TFSRNFKQRQ EISHPPPNTL PQKPYKR* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 931>:

	1	ATGCCGTCTG	AAGCCCGACA	GGCGGGTTCA	GACGGCATTG	CCGCTTTACT
	51	TCGATCGGTT	TATACGCAAA	ACGCGCTTCA	GGAAATAAAT	CAGATTATTC
1	01	CCCAGACGCC	TTCAGGCTTC	CTTCTGCGCC	ACCGTAACCA	TAGCCGGGCG
1	51	CAACACGCGG	TCGGACAGCG	TATAACCCTT	CTTCATCACA	CCCACCACGG
2	01	TATTCGGCTC	CTGTTCGCTT	GCCACCGCCT	GCATCGCCTG	ATGGATATTC
2	51	GGATCGAGCT	TATCGCCCGC	TTTAGGGTTG	ATTTCCTTGA	TTTGCGTAGC
3	01	ATCAAATGCT	TTCTGCAACT	CGTTCAAAGT	CATCTGCACG	CCCATTTTCA
3	51	GCGCATCGAA	ATTGCCGCTC	TGATCCAAAA	GCGCCATTTC	CAGATAATCC
4	01	TTGACCGGCA	GCATTTCCAC	GGCAAACTTC	TGTCCGGCGA	ACTTGTGCGT
4	51	ATCCGCAATT	TyCTGCTGGT	GGCGGCGGCG	CAGGTTTTGC	TCGTTTGCCA
5	01	AAGCGCGCTG	CTCGTCTTTC	AACTGCGTTT	CCAGCTCGGC	AATCCGCGCC
5	51	TGCAAATCCT	CATAAGCCGG	CTCTGCGGCA	GCCTGTTCCT	GCACACCGTC
6	01	CGCATTTCCT	ACTGTTTCGA	CGGTTTCCAC	CGCCTCCACA	TTTTCAACCG
6	51	CTTCTTCACT	GTTTTGCTGC	TGTGTCTGTT	CGCTCATATC	GTATCCCTTA
7	01	AAACAAATTG	GAAATCAAAA	TCCAGTTATT	ACCCGCGCAA	GATAAGGACA
7	51	TTTTCAAGAA	ACTTCAAkCA	AAAKCAGAGA	ATTTCAAATT	CATTTTCAAA
8	01	TCCCCTACCG	AAAAAATAAT	ATAGACGGTA	A	

This corresponds to the amino acid sequence <SEQ ID 932; ORF 244>:

m244.pep

- 1 MPSEARQAGS DGIAALLRSV YTQNALQEIN QIIPQTPSGF LLRHRNHSRA
- 51 QHAVGQRITL LHHTHHGIRL LFACHRLHRL MDIRIELIAR FRVDFLDLRS
- 101 IKCFLQLVQS HLHAHFQRIE IAALIQKRHF QIILDRQHFH GKLLSGELVR 151 IRNFLLVAAA QVLLVCQSAL LVFQLRFQLG NPRLQILISR LCGSLFLHTV 201 RISYCFDGFH RLHIFNRFFT VLLLCLFAHI VSLKTNWKSK SSYYPRKIRT
- 251 FSRNFXQXQR ISNSFSNPLP KKXYRR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 244 shows 86.3% identity over a 277 aa overlap with a predicted ORF (ORF 244.ng) from *N. gonorrhoeae:* M244/G244

	10	20	30	40	50	60
m244.pep	MPSEARQAGSDGIAA	LLRSVYTQN	VALQEINQIIP	QTPSGFLLRH	IRNHSRAQHAV	/GQRITL
	-11 111 11111111	111111111		1111111 1	11111111:1	111 111
g244	MPPEARPAGSDGIAA	LLRSVYTON	VALOEINOIIP	OTPSGFLPCH	IRNHSRAOHT	GOGITL
3	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m244.pep	LHHTHHGIRLLFACH	RLHRLMDIF	RIELIARFRVD	FLDLRSIKCE	LOLVOSHLH	HFORIE
	1111:111 :1:: 1	11111111	1:111111:1		111:1111:	
g244	LHHTNHGIGFLLTGH	RIHRIMOTE				
3	70	80	90	100	110	120
	, •	00	30	100	110	120
	130	140	150	160	170	180
m244.pep	IAALIOKRHFOIILD	ROHFHCKLI	SGELVETENE	LIVOAAAVLLT	VCOSAALLVE	OLRFOL
	1:11111111111					
q244	ITALIQKRHFQIILD					
9211	130	_		_		
	130	140	150	160	170	180
	190	200	210	220	230	240
m244.pep	GNPRLQILISRLCGS	LFLHTVRIS	SYCFDGFHRLH	IIFNRFFTVLI	LCLFAHIVSI	
		111:1111	:	1111111111		
g244	GNPRLQILISRLGGS	LFLYTVRIS	SYCLDGFHRLH	IFNRFFTVLI	LCLFAHIVSI	LKTNWKS
	190	200	210	220	230	240
	250	260	270			
m244.pep	KSSYYPRKIRTFSRN	FXQXQRIS	NSFSNPLPKKX	YRRX		
		1 1:11:	: :	1:11		
g244	KSGYYPSKIRTFSRN	FKOROEISI	HPPPNTLPOKE	YKRX		
_	250	260	270			

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 933>:
    a244.seq
             ATGCCGTCTG AAGCCCGACA GGCGGGTTCA GACGGCATTG CCGCTTTACT
           1
             TCGATCGGTT TATACGCAAA ACGCGCTTCA GGAAATAAAT CAGATTATTC
          51
         101
             CCCAGACGCC TTCAGGCTTC CTTCTGTGCC ACCGTAACCA TAGCCGGGCG
         151 CAACACGCGG TCGGACAGCG TATAACCCTT CTTCATCACG CCCACCACGG
         201 TATTGGGTTC CTGTTCGCTT GCCACCGCCT GCATCGCCTG ATGGATATTC
             GGATCGAGCT TATCGCCCGC TTTAGGATTG ATTTCCTTGA TTTGCGTAGC
         251
         301 ATCAAATGCT TTCTGCAACT CGTTCAAAGT CATCTGCACG CCCATTTTCA
             GCGCATCGAA ATTGCCGCTC TGATCCAAAA GCGCCATTTC CAGATAATCC
             TTGACCGGCA GCATTTCCAC GGCAAACTTC TGTCCGGCGA ACTTGTGCGT
         401
             ATCCGCAATT TCCTGCTGGT GGCGGCGGCG CAGGTTTTGC TCGTTTGCCA
         451
         501 AAGCGCGCAG CTGCTCGTCT TTCAACTGCG CTTCCAGCTC GGCAATCCGC
         551 GCCTGCAAAT CCTCATAAGC CGGCTCTGCG GCAGCCTGTT CCTGCACACC
         601 GTCCGCATTT CCTACTGTCT CGACGGTTTC CACCGCCTCC ACATTTCAA
             CCGCTTCTTC ACTGTTTTGC TGCTGTGTCT GTTCGCTCAT ATCGTATCCC
         651
             TTAAAACAAA TTGGAAATCA AAATCCAGTT ATTACCCGCG CAAGATAAGG
             ACATTTCAA GAAACTTCAA GCAAAGGCAG AGAATTCAA ATTCATTTTC
             AAATCCCCTA CCGAAAAAAT AATATAGACG GTAA
This corresponds to the amino acid sequence <SEQ ID 934; ORF 244.a>:
    a244.pep
             MPSEARQAGS DGIAALLRSV YTQNALQEIN QIIPQTPSGF LLCHRNHSRA
              QHAVGQRITL LHHAHHGIGF LFACHRLHRL MDIRIELIAR FRIDFLDLRS
          51
              IKCFLOLVOS HLHAHFORIE IAALIQKRHF QIILDROHFH GKLLSGELVR
         101
              IRNFLLVAAA QVLLVCQSAQ LLVFQLRFQL GNPRLQILIS RLCGSLFLHT
              VRISYCLDGF HRLHIFNRFF TVLLLCLFAH IVSLKTNWKS KSSYYPRKIR
              TFSRNFKQRQ RISNSFSNPL PKK*YRR*
         251
m244/a244 96.8% identity in 277 aa overlap
                                                   40
                MPSEARQAGSDGIAALLRSVYTQNALQEINQIIPQTPSGFLLRHRNHSRAQHAVGQRITL
    m244.pep
                 MPSEARQAGSDGIAALLRSVYTQNALQEINQIIPQTPSGFLLCHRNHSRAQHAVGQRITL
     a244
                                 20
                                          30
                                                   40
                                                            50
                        70
                                 80
                                          90
                                                  100
                                                           110
                LHHTHHGIRLLFACHRLHRLMDIRIELIARFRVDFLDLRSIKCFLQLVQSHLHAHFQRIE
    m244.pep
                 LHHAHHGIGFLFACHRLHRLMDIRIELIARFRIDFLDLRSIKCFLQLVQSHLHAHFQRIE
     a244
                        70
                                 80
                                          90
                                                  100
                                                           110
                                         150
                                                  160
                       130
                                140
                 IAALIQKRHFQIILDRQHFHGKLLSGELVRIRNFLLVAAAQVLLVCQSA-LLVFQLRFQL
    m244.pep
                 IAALIQKRHFQIILDRQHFHGKLLSGELVRIRNFLLVAAAQVLLVCQSAQLLVFQLRFQL
     a244
                                                  160
                                                           170
                       130
                                140
                                         150
                                                            230
                                                                    239
               180
                        190
                                 200
                                                   220
                                          210
                 GNPRLQILISRLCGSLFLHTVRISYCFDGFHRLHIFNRFFTVLLLCLFAHIVSLKTNWKS
    m244.pep
                 GNPRLQILISRLCGSLFLHTVRISYCLDGFHRLHIFNRFFTVLLLCLFAHIVSLKTNWKS
     a244
                       190
                                200
                                         210
                                                  220
               240
                        250
                                 260
                                          270
     m244.pep
                 KSSYYPRKIRTFSRNFXQXQRISNSFSNPLPKKXYRRX
                 a244
                 KSSYYPRKIRTFSRNFKQRQRISNSFSNPLPKKXYRRX
                       250
                                260
                                         270
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 935>: g244-1.seq

¹ atgccgcctg aagcccggcc ggcgggttca gacggcattg ccgctttact

```
51 togatoggtt tatacgcaaa acgcgcttca ggaaataaat cagattattc
    101 cccagacgcc ttcaggcttc cttccgtgcc accgtaacca tagccgggcg
         caacacagg teggacaggg tataaccett etteateaca ceaaccaegg
    151
    201 tattgggttc ctgctcactg gccaccgcct gcatcgcctg atggatattc
    251 ggatcgagct tatcgcccgc tttaggattg atttccttga tttgcgtggc
    301 atcaaacgcc ttetgcaact cattcaaagt catetgcaca cccattttca
    351 gcgcatcgaa attaccgctc tgatccaaaa gcgccatttc cagataatcc
    401 ttgaccggca acatttccac ggcaaacttc tgtccggcga acttgtgcgt
    451 atcggcaatt tcctgctggt ggcggcggcg caggttttgc tcgtttgcca
    501 aagcgcgcag ttgttcgtct ttcaactgcg cttccagctc ggcaatccgc
    551 gcctgcaaat cctcataagc cggctcggcg gcagcctgtt cctgtacacc
    601 gtccgcattt cctactgtct cgacggtttc caccgcctcc acattttcaa
    651 ccqcttcttc actgttttgc tgctgtgtct gttcgctcat atcgtatccc
    701 tcaaaacaaa ttggaaatca aaatccggtt attacccgag caagataagg
    751 acattttcaa gaaacttcaa gcaaaggcag gaaatttcac atccgccgcc
     801 gaatacccta ccgcaaaaac catataaacg gtaa
This corresponds to the amino acid sequence <SEQ ID 936; ORF 244-1.ng>:
g244-1.pep
      1 MPPEARPAGS DGIAALLRSV YTQNALQEIN QIIPQTPSGF LPCHRNHSRA
     51 QHTVGQGITL LHHTNHGIGF LLTGHRLHRL MDIRIELIAR FRIDFLDLRG
    101 IKRLLQLIQS HLHTHFQRIE ITALIQKRHF QIILDRQHFH GKLLSGELVR
     151 IGNFLLVAAA QVLLVCQSAQ LFVFQLRFQL GNPRLQILIS RLGGSLFLYT
         VRISYCLDGF HRLHIFNRFF TVLLLCLFAH IVSLKTNWKS KSGYYPSKIR
     251 TFSRNFKQRQ EISHPPPNTL PQKPYKR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 937>: m244-1.8eq

```
1 ATGCCGTCTG AAGCCCGACA GGCGGGTTCA GACGGCATTG CCGCTTTACT
51 TCGATCGGTT TATACGCAAA ACGCGCTTCA GGAAATAAAT CAGATTATTC
101 CCCAGACGCC TTCAGGCTTC CTTCTGCGCC ACCGTAACCA TAGCCGGGCG
151 CAACACGCGG TCGGACAGCG TATAACCCTT CTTCATCACA CCCACCACGG
201 TATTCGGCTC CTGTTCGCTT GCCACCGCCT GCATCGCCTG ATGGATATTC
251 GGATCGAGCT TATCGCCCGC TTTAGGGTTG ATTTCCTTGA TTTGCGTAGC
301 ATCAAATGCT TTCTGCAACT CGTTCAAAGT CATCTGCACG CCCATTTTCA
351 GCGCATCGAA ATTGCCGCTC TGATCCAAAA GCGCCATTTC CAGATAATCC
401 TTGACCGGCA GCATTTCCAC GGCAAACTTC TGTCCGGCGA ACTTGTGCGT
451 ATCCGCAATT TYCTGCTGGT GGCGGCGGCG CAGGTTTTGC TCGTTTGCCA
501 AAGCGCGCTG CTCGTCTTTC AACTGCGTTT CCAGCTCGGC AATCCGCGCC
551 TGCAAATCCT CATAAGCCGG CTCTGCGGCA GCCTGTTCCT GCACACCGTC
601 CGCATTTCCT ACTGTTTCGA CGGTTTCCAC CGCCTCCACA TTTTCAACCG
651 CTTCTTCACT GTTTTGCTGC TGTGTCTGTT CGCTCATATC GTATCCCTTA
701 AAACAAATTG GAAATCAAAA TCCAGTTATT ACCCGCGCAA GATAAGGACA
751 TTTTCAAGAA ACTTCAAKCA AAAKCAGAGA ATTTCAAATT CATTTTCAAA
801 TCCCCTACCG AAAAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 938; ORF 244-1>: m244-1.pep

- 1 MPSEARQAGS DGIAALLRSV YTQNALQEIN QIIPQTPSGF LLRHRNHSRA
- 51 QHAVGQRITL LHHTHHGIRL LFACHRLHRL MDIRIELIAR FRVDFLDLRS
- 101 IKCFLOLVQS HLHAHFQRIE IAALIQKRHF QIILDRQHFH GKLLSGELVR 151 IRNFLLVAAA QVLLVCQSAL LVFQLRFQLG NPRLQILISR LCGSLFLHTV
- 201 RISYCFDGFH RLHIFNRFFT VLLLCLFAHI VSLKTNWKSK SSYYPRKIRT
- 201 RISYCFDGFH RIHIFNRFFT VLLLCLFAHI
 251 FSRNFXQXQR ISNSFSNPLP KK*

m244-1/G244-1 86.3% identity in 277 aa overlap

	10	20	30 '	40	50	60
m244-1.pep	MPSEARQAGSDGI	AALLRSVYTQ	ALQEINQIII	POTPSGFLLRH	RNHSRAQHA\	/GQRITL
		11111111111	1111111111		111111111:	
g244-1	MPPEARPAGSDGI.	AALLRSVYTQ	ALQEINQIII	POTPSGFLPCH	RNHSRAQHT	/GQGITL
_	10	20	30	40	50	60
	70	80	90	100	1,10	120
m244-1.pep	LHHTHHGIRLLFA					
g244-1	LHHTNHGIGFLLT	GHRLHRLMDI	RIELIARFRII	OFLDLRGIKRI	LQLIQSHLH'	THFQRIE
-	70	80	90	100	110	120

		13	30	140 1			170 CD D I I VEOI E	180
	m244-1.pep	15111111	11111111	HFHGKLLSGEI	111 11111	11111111111	[] [:[]][111
	g244-1	ITALIQKRI	HFQIILDRQ	HFHGKLLSGEI	VRIGNFLLV	AAAQVLLVCQ	Saqlfvfqli 170	180
		1:	90	200 2	210		230	240
	m244-1.pep	11111111	1111 1111	LHTVRISYCFI	11111111111	1111111111	111111111	
	g244-1	GNPRLQIL	ISRLGGSLF	LYTVRISYCLI	OGFHRLHIFN 210	RFFTVLLLCL	FAHIVSLKTI 230	wks 240
		_	250	260	270			
17tt -	m244-1.pep	KSSYYPRK		QXQRISNSFS				
	g244-1	KSGYYPSK	IRTFSRNFK 250	QRQEISHPPPI 260		ex.		
				•				
		g partial E	NA sequ	ience was	identified	in N. men	ingitidis <	<seq 939="" id="">:</seq>
	a244-1.seq	CCTCTC AA	CCCCBCB	GGCGGGTTCA	GACGGCATT	G CCGCTTTA	СТ	
	51 TCG	TOGGTT TA	TACGCAAA	ACGCGCTTCA	GGAAATAAA	T CAGATTAT	TC	
	101 CCC	CACCCC TT	CAGGCTTC	CTTCTGTGCC	ACCGTAACC	A TAGCCGGG	CG	
	151 (200)	ACCCCC TO	GGACAGCG	TATAACCCTT	CTTCATCAC	G CCCACCAC	GG	*
	201 ምልጥባ	PEGETTO OT	GTTCGCTT	GCCACCGCCT	GCATCGCCT	G ATGGATAT	TC	
	251 GGM	CGAGCT TA	TCGCCCGC	TTTAGGATTG	ATTTCCTTC	SA TTTGCGTA	.GC	
	301 ATC	AATGCT TT	CTGCAACT	CGTTCAAAGT	CATCTGCAC	G CCCATTTT	CA	
	351 CCC	TATCGAA AT	TGCCGCTC	TGATCCAAAA	GCGCCATT	IC CAGATAAT	CC	
	401 TTG	ACCEGEA GO	ATTTCCAC	GGCAAACTTC	TGTCCGGC	GA ACTTGTGC	:GT	
	451 ATC	CCAATT TO	CTGCTGGT	GGCGGCGGCG	CAGGTTTT	C TCGTTTGC	CA	
	501 3300	CCCCCAG CT	GCTCGTCT	TTCAACTGCG	CTTCCAGC	C GGCAATCC	:GC	
	551 CCC	CCABAT CC	TCATAAGC	CGGCTCTGCG	GCAGCCTG:	IT CCTGCACA	CC	
	601 GTC	CCCATTT CC	TACTGTCT	CGACGGTTTC	CACCGCCT	CC ACATTTTC	:AA	
	651 CCG	CTTCTTC AC	TGTTTTGC	TGCTGTGTCT	GTTCGCTC	AT ATCGTATO	CC:	•
	701 TTA	דיף ממכסממ	GGAAATCA	AAATCCAGTT	ATTACCCG	CG CAAGATAA	NGG	
	751 ACA	TTTTCAA GA	AACTTCAA	GCAAAGGCAG	AGAATTTC	AA ATTCATTI	TC	
	801 AAA	TCCCCTA CC	GAAAAAAT	AA				
						_		_
	This correspo	ands to the	e amino a	acid seque	nce <sec< td=""><td>ID 940; C</td><td>)RF 244-1</td><td>1.a>:</td></sec<>	ID 940; C)RF 244-1	1.a>:
		mus to th	o minio .	.014 004 400				
	a244-1.pep				OTTROMPC	CE TICUDNU	207	
	1 MPS	EARQAGS DO	SIAALLRSV	YTQNALQEIN	QIIPQIPS	SE EDUDAMA	. מכי	
	51 QHA	VGQRITL L	HAHHGIGF	LFACHRLHRI	WDIKIEPI	WK EKIDEPDI	TID TID	
	101 IKC	FLQLVQS H	LHAHFORIE	IAALIQKRHE	. ÖIIPDKÖH	TH GKLLSGE	LVR	
	151 IRN	FLLVAAA Q	ILLVCQSAQ	LLVFQLRFQL	GNPRLQIL	12 KPCG2Pt;	LUI	
	201 VRI	SYCLDGF H	RLHI FNR <u>FF</u>	TVLLLCLFAH	IVSLKTNW	KS KSSTIPRI	VIK	
	251 TFS	RNFKQRQ R	ISNSFSNPL	PKK*				
	m244-1/a244-1	96.8%	identity	in 274 aa	overlap			
			10	20	30	40	50	60
		MDGESTA	10 ACGDGTAAT	20 LRSVYTQNAL(
	m244-1.pep	mramakQ/	HIIIIIIIIIII	THE THE TANKEN		111111 111	1111111111	1111
	-0441	MDGEVDU	ACCICTAT.	LRSVYTQNAL	DEINOITPOT	PSGFLLCHRN	HSRAOHAVGO	RITL
	a244-1	MESERING	10	20	30	40	50	60
			10		•			
			70	80	90	100	110	120
	m244-1.pep	т.нитинс	TRLLFACHR	LHRLMDIRIE	LIARFRVDFI	DLRSIKCFLQ	LVQSHLHAHI	FORIE
	mz44 1.pcp	111:111	1:11111	THEFT	11111111111	111111111111	1111111111	11111
	a244-1	LHHAHHG	IGFLFACHR	LHRLMDIRIE	LIARFRIDFI	DLRSIKCFLQ	LVQSHLHAHI	FORIE
	u2		70	80	90	100	110	120
			130	140	150	160	170	179
	m244-1.pep	IAALIQK	RHFQIILDR	QHFHGKLLSG	ELVRIRNFLI	LVAAAQVLLVC	OSA-LLVFO	PKEAT
		1111111	11111111111	îmmana.	1111111111			11111
	a244-1	IAALIQK	RHFQIILDF	QHFHGKLLSG	ELVRIRNFLI	LVAAAQVLLVC	:QSAQLLVFQ	LRFQL
			130	140	150	160	170	180
								222
		180	190	200	210	220	230	239
	m244-1.pep	GNPRLQI	LISRLCGSI	LFLHTVRISYC	FDGFHRLHI	NRFFTVLLLC	LFAHIVSLK	TNWKS
		1111111	1111111111	1111111111	:111111111	1111111111111	1111111111	
	a244-1	GNPRLQI		FLHTVRISYC				TNWKS
			190	200	210	220	230	240

m246.pep

g246

```
260
                                     270
             KSSYYPRKIRTFSRNFXQXQRISNSFSNPLPKKX
m244-1.pep
             KSSYYPRKIRTFSRNFKQRQRISNSFSNPLPKKX
a244-1
                   250
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 941>:
     g246 seq
               atgtacgggc ggaacggtag tactcaagcg gccgttgcct tcgttttcga
              ccagacacag cgtgcccgtt tcggcaacgg cgaagtttac gccgctcaag
           51
              ccgacatcgg cagtgctgta aatatcgcgc agggctttgc gggcgaatcc
          101
              qqtcagttgg tccacgtcgt ctgtaagcgg tgtgccgagg ttttggtgga
          151
              acagtteget gacetgttet ttggttttat ggattgeggg cateaegata
          201
          251 tgggtcggtt tttcgcctgc catttggacg ataaactcgc ccaagtcgct
              ttccaccgcc ttaatgcctt ttgcttcaag ataatggttc agctcgattt
          301
          351 cttcgctgac catggatttg cctttgacca tcagcttgcc gtttttggct
          401 qtqatqatgt cgtggataat ttggcaggct tcggcagggg tttccgccca
          451 gtgtactttc acgcccaact tagtcaggtt ttcttccaac tgctccagca
          501 gcgcgggtaa
This corresponds to the amino acid sequence <SEQ ID 942; ORF 246.ng>:
     g246.pep
            1 MYGRNGSTQA AVAFVFDQTQ RARFGNGEVY AAQADIGSAV NIAQGFAGES
               GOLVHVVCKR CAEVLVEQFA DLFFGFMDCG HHDMGRFFAC HLDDKLAQVA
           51
               FHRLNAFCFK IMVQLDFFAD HGFAFDHQLA VFGCDDVVDN LAGFGRGFRP
          101
          151 VYFHAQLSQV FFQLLQQRG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 943>:
     m246.seq
               (partial)
            1 ATGCACGGGC GGTACGGTGG TACTCAAGCG ACCGTTGCTT CGTTTTCCAC
           51 CAGACACAGC GTACCTGTTT CAGCAACGGC AAAGTTTACG CCACTCAAAC
          101 CGACATCGGC AGTGCTGTAA ATATCGCGCA GTGCTTTACG GGCGAAGCCG
          151 GTCAGTTGGT CTACATCGTC TGTCAGCGGC GTACCGAGGT TTTGGTGGAA
          201 CAGTTCGCTA ACCTGTTCTT TGGTTTTGTG GATAGCAGGC ATCACGATAT
               GGGTCGGTTT TTCGCCTGCC ATTTGGACGA TGAACTCGCC CAAGTCGCTT
          301 TCTACCGCTT TAATGCYTTT TGCTTCAAGA TAATGYTTCA GCTCGATTTC
          351 CTCGCTGACC ATCGATTTGC CTTTGACCAT CAGCTTGCCG TTTTTGGCTG
          401 TGATGATGTC GTGGATAATT TGGCAGGCTT CGGTCGGGGT TTCTGCCCG...
This corresponds to the amino acid sequence <SEQ ID 944; ORF 246>:
     m246.pep (partial)
               MHGRYGGTQA TVAFVFHQTQ RTCFSNGKVY ATQTDIGSAV NIAQCFTGEA
               GOLVYIVCOR RTEVLVEQFA NLFFGFVDSR HHDMGRFFAC HLDDELAQVA
          101 FYRFNAFCFK IMXQLDFLAD HRFAFDHQLA VFGCDDVVDN LAGFGRGFCP...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 246 shows 80.0% identity over a 150 aa overlap with a predicted ORF (ORF 246.ng)
from N. gonorrhoeae:
      m246/g246
                                                                 50
                          10
                                    20
                                              30
                                                        40
                  MHGRYGGTQATVAFVFHQTQRTCFSNGKVYATQTDIGSAVNIAQCFTGEAGQLVYIVCQR
      m246.pep
                   MYGRNGSTQAAVAFVFDQTQRARFGNGEVYAAQADIGSAVNIAQGFAGESGQLVHVVCKR
      g246
                                                                 50
                          10
                                    20
                                              30
                                                        40
                                    80
                                              90
                                                       100
```

RTEVLVEQFANLFFGFVDSRHHDMGRFFACHLDDELAQVAFYRFNAFCFKIMXQLDFLAD

```
120
                                                    100
                                                             110
                                           90
                         70
                                  80
                       130
                                 140
                                          150
    m246.pep
                 HRFAFDHQLAVFGCDDVVDNLAGFGRGFCP
                 HGFAFDHQLAVFGCDDVVDNLAGFGRGFRPVYFHAQLSQVFFQLLQQRGX
   a246
                                 140
                                          150
                                                    160
                        130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 945>:
     a246.seq
              (partial)
              ATGCACGGGC GGAACGGTGG TACTCAAGCG ACCGTTGCCT TCGTTTTCCA
          51 CCAGACACAG CGTACCTGTT TCAGCAACGG CGAAGTTCAC GCCACTCAAA
              CCGACATCGG CAGTGCTGTA AATATCGCGC AGTGCTTTAC GGGCGAAGCC
          151 GGTCAGTTGG TCTACGTCGT CCGTTAACGG TGTGCCGAGG TTTTGGTGGA
          201 ACAGTTCGCT AACCTGTTCT TTGGTTTTAT GGATTGCGGG CATCACGATA
          251 TGGGTCGGTT TTTCACCTGC CATTTGGACG ATGAACTCGC CCAAGTCGCT
          301 TTCCACCGCT TTAATGCCTT TTGCTTCAAG ATAATGGTTC AGCTCGATTT
              CCTCGCTGAC CATCGATTTG CCTTTGACCA TCAGCTTGCC GTTTTTGGCT
          351
              GTGATGATGT CGTGGATGAT TTCGCAGGCT TCGGCCGGTG TTTCCGCCCA
              GTGTACTTTT ACGCCCAACT TGGTCAGGTT TTCTTCCAGC TGCTCCAGCA
          451
          501
This corresponds to the amino acid sequence <SEQ ID 946; ORF 246.a>:
              (partial)
     a246.pep
              MHGRNGGTQA TVAFVFHQTQ RTCFSNGEVH ATQTDIGSAV NIAQCFTGEA
              GQLVYVVR*R CAEVLVEQFA NLFFGFMDCG HHDMGRFFTC HLDDELAQVA
              FHRFNAFCFK IMVQLDFLAD HRFAFDHQLA VFGCDDVVDD FAGFGRCFRP
          151 VYFYAQLGQV FFQLLQQ
m246/a246 88.0% identity in 150 aa overlap
                                  20
                                            30
                                                     40
                                                               50
                 MHGRYGGTQATVAFVFHQTQRTCFSNGKVYATQTDIGSAVNIAQCFTGEAGQLVYIVCQR
     m246.pep
                  MHGRNGGTQATVAFVFHQTQRTCFSNGEVHATQTDIGSAVNIAQCFTGEAGQLVYVVRXR
     a246
                                                               50
                                            30
                                                     40
                         10
                                                              110
                                                    100
                         70
                                   80
                                            90
                  RTEVLVEQFANLFFGFVDSRHHDMGRFFACHLDDELAQVAFYRFNAFCFKIMXQLDFLAD
     m246.pep
                   CAEVLVEQFANLFFGFMDCGHHDMGRFFTCHLDDELAQVAFHRFNAFCFKIMVQLDFLAD
     a246
                                                              110
                                                     100
                         70
                                   80
                                            90
                                  140
                                           150
                        130
                  HRFAFDHOLAVFGCDDVVDNLAGFGRGFCP
     m246.pep
                  HRFAFDHQLAVFGCDDVVDDFAGFGRCFRPVYFYAQLGQVFFQLLQQ
      a246
                                           150
                                                     160
                         130
                                  140
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 947>:
      g247.seq
               atgaaacgta aaatgctaaa cgtaccaaag ggcggttatg atggtatgaa
            1
               gggttttacc attgttgaat ttctggttgc gggcctgctc agtataattg
               tcctgatagc ggtcgtatcg agttacttta catcccggaa attaaatgat
          101
               qtqqcaaacg agcgtcttgc cattcaacag gatttgcgga atgcggcaac
          151
               attaattgtc cgcgatgcaa gaatggcggg gagcttcggt tgtttcaata
          201
               tgtccgagca tactaaagac gatattgttg attcaagtaa tcaaactcaa
          251
               tctaaccttg caaaacccgg tgccaaacaa gaaaatcccc ttttttcctt
          301
          351 aaaaaggagc ggcatggata aacaactgat tcccgttgct gaatccatag
          401 atattaaata toogggtttt atocagegee ttaacgeatt ggtttteeaa
               tacggtatcg atgatettga tgcgagtget gagactgttg tagtcagcag
          451
               ctgttccaaa atagcaaaac cgggtaagaa aatatctacc ttgcaagaag
          501
```

caaagagtgc attacagatt actaatgatg ataaacaaaa tggaaatatc

-- ***

```
601 accegteaga aacatgtggt caatgeetat geggteggea ggtttggeaa
              taatgaggaa agtttgttcc gcttccaatt ggatgataag ggcaagtggg
         651
              gtaatcctca gttgctcgtg aaaaaggtta aacgtatgga tgtgcggtat
              atttatgttt ccggttgtcc tgaagatgaa gatgccggca aagaggaaaa
         751
         801 attcagatat acgaataaat tcgacaaatc caaaaatgct gttacgcctg
         851 ccggggtgga ggttttattg gatagcggcc ttaatgccaa gattgccgct
         901 tetteagaca atagtattta tgettacegt ateaatgega caataegegg
         951 gggaaatgta tgcgcaaaca gaacactttg a
This corresponds to the amino acid sequence <SEQ ID 948; ORF 247.ng>:
    g247.pep
              MKRKMLNVPK GGYDGMKGFT IVEFLVAGLL SIIVLIAVVS SYFTSRKLND
              VANERLAIQQ DLRNAATLIV RDARMAGSFG CFNMSEHTKD DIVDSSNQTQ
          51
              SNLAKPGAKQ ENPLFSLKRS GMDKQLIPVA ESIDIKYPGF IQRLNALVFQ
          101
          151 YGIDDLDASA ETVVVSSCSK IAKPGKKIST LQEAKSALQI TNDDKQNGNI
          201 TROKHVVNAY AVGREGNNEE SLERFOLDDK GKWGNPOLLV KKVKRMDVRY
          251 IYVSGCPEDE DAGKEEKFRY TNKFDKSKNA VTPAGVEVLL DSGLNAKIAA
          301 SSDNSIYAYR INATIRGGNV CANRTL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 949>:
     m247.seq (partial)
              ATBAGACGTA AAATGCTAAA CGTWBYAYAA GGCAGTTATG ATGGTATGAA
           1
           51 AGGTTTTACC ATTATTGAAT TTTTGGTTGC GGGCCTGCTC AGTATGATTG
              TCCTGATGGC GGTCGGATCG AGTTACTTCA CATCCCGGAA ATTAAATGAT
          151 GCGGCAAACG AGCGTCTTGC CGCGCAACAG GATTTGCGGA ATGCGGCAAC
          201 ATTGATTGTC CGCGATGCGA GAATGGCAGG CGGCTTCGGT TGTTTCAATA
          251 TGTCCGAGCA TCCTGCAACT GATGTTATTC CCGATACGAC GCAACAAAAT
          301 TCTCCTTTTT CCTTAAAAAG GAACGGTATA GATAAACTTA TTCCCATAGC
          351 GGAATCTTCA AATATCAATT ATCAGAATTT TTTCCAGGTT GGTAGCGCAT
              TGATTTTCA ATACGGAATC GATGATGTTA ATGCAAGCAC CGCGACTACC
          451 GTCGTCAGCA GCTGTGCCGC AATATCGAAA CCGGGCAAGC AAATCCCTAC
          501 TTTAGAAGAT GCAAAAAAG AATTGAAGAT TCCGGATCAG GATAAGGAGC
          551 AAAATGGCAA TATAGCGCGT CAAAGGCATG TGGTCAATGC CTATGCGGTC
          601 GGCAGGATTG CCGATGAGGA AAGTTTGTTC CGCTTCCAAT TGGATGATAA
              GGGCAAGTGG GGTAATCCTC AGTTGC...
This corresponds to the amino acid sequence <SEQ ID 950; ORF 247>:
     m247.pep (partial)
              XRRKMLNVXX GSYDGMKGFT IIEFLVAGLL SMIVLMAVGS SYFTSRKLND
              AANERLAAQQ DLRNAATLIV RDARMAGGFG CFNMSEHPAT DVIPDTTQQN
          101 SPFSLKRNGI DKLIPIAESS NINYQNFFQV GSALIFQYGI DDVNASTATT
          151 VVSSCAAISK PGKQIPTLED AKKELKIPDQ DKEQNGNIAR QRHVVNAYAV
          201 GRIADEESLF RFQLDDKGKW GNPQL....
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 247 shows 69.3% identity over a 238 aa overlap with a predicted ORF (ORF 247.ng)
from N. gonorrhoeae:
     m247/g247
                                             30
                                                      40
                                                                50
                                                                          60
                          10
                                   20
                  XRRKMLNVXXGSYDGMKGFTI1EFLVAGLLSMIVLMAVGSSYFTSRKLNDAANERLAAQQ
     m247.pep
                   MKRKMLNVPKGGYDGMKGFTIVEFLVAGLLSIIVLIAVVSSYFTSRKLNDVANERLAIQQ
      q247
                                                      40
                                                                50
                                                                         60
                          10
                                             30
                                   80
                                             90
                  DLRNAATLIVRDARMAGGFGCFNMSEHPATDVI------PDTTQQNSPFSLKRN
      m247.pep
                  | : |:| ||||:
                  {\tt DLRNAATLIVRDARMAGSFGCFNMSEHTKDDIVDSSNQTQSNLAKPGAKQENPLFSLKRS}
      g247
                                                                         120
                                             90
                                                     100
                                                               110
                          70
                                   80
                                                        150
                                     130
                                               140
                  GIDK-LIPIAESSNINYQNFFQVGSALIFQYGIDDVNASTATTVVSSCAAISKPGKQIPT
      m247.pep
```

-- ****: "

g247	GMDKQLIPVAESIDIKYPGFIQRLNALVFQYGIDDLDASAETVVVSSCSKIAKPGKKIST
_	130 140 150 160 170 180
	170 180 190 200 210 220
m247.pep	LEDAKKELKIPDQDKEQNGNIARQRHVVNAYAVGRIAD-EESLFRFQLDDKGKWGNPQL :: : : :: : : :::
. g247	LQEAKSALQITNDDK-QNGNITRQKHVVNAYAVGRFGNNEESLFRFQLDDKGKWGNPQLL
<u>.</u> `	190 200 210 220 230
g247	VKKVKRMDVRYIYVSGCPEDEDAGKEEKFRYTNKFDKSKNAVTPAGVEVLLDSGLNAKIA
	240 250 260 270 280 290
The following p	partial DNA sequence was identified in N. meningitidis <seq 951="" id="">:</seq>
a247.seq	
1 51	
101	
151	
201	
251	
301	CAACATGTCC CTGTAAAACC CGGTGCCAAA CAAGAAAATC CCCTTTTTTC
351	
401	
451	
501 551	
601	
651	
701	
751	CATATGAAAG TGCGGTATAT CTATGTTTCC GACTGTCCTG AAGATGACGA
. 801	TGCCGGCAAA GAGGAAAAAT TCAAATATAC GGGTACATTC GACAGCTCCA
851	
901	
951	CGATGCGACA ATACGCGGGG GAAATGTATG CGCAAACAGA ACACTTTGA
_	ds to the amino acid sequence <seq 247.a="" 952;="" id="" orf="">:</seq>
a247.pep	
1	
51 101	
151	
201	
251	
301	
m247/a247 70	0.9% identity in 244 aa overlap
	10 20 30 40 50 60
m247.pep	XRRKMLNVXXGSYDGMKGFTIIEFLVAGLLSMIVLMAVGSSYFTSRKLNDAANERLAAQQ
	111111 1:111111111111111111111111111111
a247	${ t MRRKMLNVPKGNYDGMKGFTIIEFLVAGMLSMIVLMAVGSSYFTSRKLNDAANERLSAQQ}$
	10 20 30 40 50 60
	70 80 90 100
m247.pep	DLRNAATLIVRDARMAGGFGCFNMSEHPATDVIPDTTQQNSPFSLK-
a247	
0217	70 80 90 100 110 120
m247.pep	110 120 130 140 150 160RNGIDKLIPIAESSNINYQNFFQVGSALIFQYGIDDVNASTATTVVSSCAAISK
ws.r.beb	
a247	ANTNNTNNNTAKLIPIAESTDIKYPGFAQARPALIFQYGIDDLDASAETVVVSSCSKIAK
	130 140 150 160 170 180

```
200
                                                 210
                170
                        180
                                190
          PGKQIPTLEDAKKELKIPDQDKEQNGNIARQRHVVNAYAVGRIADEESLFRFQLDDKGKW
m247.pep
          PGKKISTLQEAKSALQITNDDK-QNGNITRQRHVVNAYAVGRIAGEEGLFRFQLDDKGKW
a247
                        200
                                 210
                                          220
          GNPQL
m247.pep
          11111
          GNPQLLVKKIRHMKVRYIYVSDCPEDDDAGKEEKFKYTGTFDSSTNAVTPAGVEVLLSXG
a247
                 250
                                 270
                                          280
                         260
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 953>: g247-1.seq (partial)

```
1 CCCGGTGCCA AACAAGAAAA TCCCCTTTTT TCCTTAAAAA GGAGCGGCAT
51 GGATAAACAA CTGATTCCCG TTGCTGAATC CATAGATATT AAATATCCGG
101 GTTTTATCCA GCGCCTTAAC GCATTGGTTT TCCAATACGG TATCGATGAT
151 CTTGATGCGA GTGCTGAGAC TGTTGTAGTC AGCAGCTGTT CCAAAATAGC
201 AAAACCGGGT AAGAAAATAT CTACCTTGCA AGAAGCAAAG AGTGCATTAC
251 AGATTACTAA TGATGATAAA CAAAATGGAA ATATCACCCG TCAGAAACAT
301 GTGGTCAATG CCTATGCGGT CGGCAGGTTT GGCAATAATG AGGAAAGTTT
351 GTTCCGCTTC CAATTGGATG ATAAGGGCAA GTGGGGTAAT CCTCAGTTGC
401 TCGTGAAAAA GGTTAAACGT ATGGATGTGC GGTATATTTA TGTTTCCGGT
451 TGTCCTGAAG ATGAAGATGC CGGCAAAGAG GAAAAATTCA GATATACGAA
501 TAAATTCGAC AAATCCAAAA ATGCTGTTAC GCCTGCCGGG GTGGAGGTTT
551 TATTGGATAG CGGCCTTAAT GCCAAGATTG CCGCTTCTTC AGACAATAGT
601 ATTTATGCTT ACCGTATCAA TGCGACAATA CGCGGGGGAA ATGTATGCGC
651 AAACAGAACA CTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 954; ORF 247-1.ng>: g247-1.pep (partial)

- 1 FGAKQENPLF SLKRSGMDKQ LIPVAESIDI KYPGFIQRLN ALVFQYGIDD 51 LDASAETVVV SSCSKIAKPG KKISTLQEAK SALQITNDDK QNGNITRQKH
- 101 VVNAYAVGRF GNNEESLFRF QLDDKGKWGN PQLLVKKVKR MDVRYIYVSG
- 151 CPEDEDAGKE EKFRYTNKFD KSKNAVTPAG VEVLLDSGLN AKIAASSDNS
- 201 IYAYRINATI RGGNVCANRT L*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 955>: m247-1.seq

```
1 ATGAGACGTA AAATGCTAAA CGTACCAAAA GGCAGTTATG ATGGTATGAA
51 AGGTTTTACC ATTATTGAAT TTTTGGTTGC GGGCCTGCTC AGTATGATTG
101 TCCTGATGGC GGTCGGATCG AGTTACTTCA CATCCCGGAA ATTAAATGAT
151 GCGGCAAACG AGCGTCTTGC CGCGCAACAG GATTTGCGGA ATGCGGCAAC
201 ATTGATTGTC CGCGATGCGA GAATGGCAGG CGGCTTCGGT TGTTTCAATA
251 TGTCCGAGCA TCCTGCAACT GATGTTATTC CCGATACGAC GCAACAAAAT
301 TCTCCTTTTT CCTTAAAAAG GAACGGTATA GATAAACTTA TTCCCATAGC
351 GGAATCTTCA AATATCAATT ATCAGAATTT TTTCCAGGTT GGTAGCGCAT
401 TGATTTTCA ATACGGAATC GATGATGTTA ATGCAAGCAC CGCGACTACC
451 GTCGTCAGCA GCTGTGCCGC AATATCGAAA CCGGGCAAGC AAATCCCTAC
501 TTTAGAAGAT GCAAAAAAG AATTGAAGAT TCCGGATCAG GATAAGGAGC
551 AAAATGGCAA TATAGCGCGT CAAAGGCATG TGGTCAATGC CTATGCGGTC
601 GGCAGGATTG CCGATGAGGA AGGTTTGTTC CGCTTCCAAT TGGATGATAA
    GGGCAAGTGG GGTAATCCTC AGTTGCTCGT GAAAAAGGTT AGACATATGA
701 AAGTGCGGTA TATCTATGTT TCCGGCTGTC CTGAAGATGA CGATGCCGGC
751 AAAGAGGAAA CATTCAAATA TACGGATAAA TTCGACAGCG CCCAAAATGC
    TGTTACGCCC GCCGGGTGG AGGTTTTATT GAGTAGCGGT ACTGATACCA
851 AGATTGCCGC TTCTTCAGAC AATCATATTT ATGCTTACCG TATCGATGCG
901 ACAATACGCG GGGGAAATGT ATGCGCAAAC AGAACACTTT GA
```

This corresponds to the amino acid sequence <SEQ ID 956; ORF 247-1>: m247-1.pep

- MRRKMLNVPK GSYDGMKGFT IIEFLVAGLL SMIVLMAVGS SYFTSRKLND
- 51 AANERLAAQQ DLRNAATLIV RDARMAGGFG CFNMSEHPAT DVIPDTTQQN
- 101 SPFSLKRNGI DKLIPIAESS NINYQNFFQV GSALIFQYGI DDVNASTATT
- 151 VVSSCAAISK PGKQIPTLED AKKELKIPDQ DKEQNGNIAR QRHVVNAYAV
- 201 GRIADEEGLF RFQLDDKGKW GNPQLLVKKV RHMKVRYIYV SGCPEDDDAG 251 KEETFKYTDK FDSAQNAVTP AGVEVLLSSG TDTKIAASSD NHIYAYRIDA
- 301 TIRGGNVCAN RTL*

-- 120

```
72.1% identity in 222 aa overlap
m247-1 / g247-1
                                                      110
                                             100
                           80
                                    90
            NAATLIVRDARMAGGFGCFNMSEHPATDVIPDTTQQNSPFSLKRNGIDK-LIPIAESSNI
m247-1.pep
                                         | : |:| |||||:|| |||:|| :|
PGAKQENPLFSLKRSGMDKQLIPVAESIDI
g247-1
                                                          20
                                                 10
                                                        170
                                                                 180
                                              160
                           140
                                    150
                  130
            NYQNFFQVGSALIFQYGIDDVNASTATTVVSSCAAISKPGKQIPTLEDAKKELKIPDQDK
m247-1.pep
             មាំ មាន ស្រាប់ មាន ស្រាប់              KYPGFIQRLNALVFQYGIDDLDASAETVVVSSCSKIAKPGKKISTLQEAKSALQITNDDK
g247-1
                                                 70
                                        60
                    40
                              50
                                               220
                                     210
             EQNGNIARQRHVVNAYAVGRIAD-EEGLFRFQLDDKGKWGNPQLLVKKVRHMKVRYIYVS
m247-1.pep
              -QNGNITRQKHVVNAYAVGRFGNNEESLFRFQLDDKGKWGNPQLLVKKVKRMDVRYIYVS
g247-1
                              110
                                     · 120
                                                 130
                    100
                                     270
                                               280
                            260
                   250
             GCPEDDDAGKEETFKYTDKFDSAQNAVTPAGVEVLLSSGTDTKIAASSDNHIYAYRIDAT
m247-1.pep
             GCPEDEDAGKEEKFRYTNKFDKSKNAVTPAGVEVLLDSGLNAKIAASSDNSIYAYRINAT
g247-1
                                        180
                                                 190
                              170
                    160
                   310
             IRGGNVCANRTLX
m247-1.pep
             111111111111111
             IRGGNVCANRTLX
g247-1
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 957>:
a247-1.seq (partial)
       1 AATAATACAG CTAAATTGAT TCCTATTGCT GAATCCACAG ATATTAAATA
      51 TCCGGGTTTT GCCCAGGCTC GTCCGGCATT GATTTTCCAA TACGGCATCG
     101 ATGATCTTGA TGCGAGTGCT GAGACTGTTG TAGTCAGCAG CTGTTCCAAA
     151 ATAGCAAAAC CGGGTAAGAA AATATCTACC TTGCAAGAAG CAAAGAGTGC
     201 ATTACAGATT ACTAATGATG ATAAACAAAA TGGAAATATC ACCCGTCAAA
     251 GGCATGTGGT CAATGCCTAT GCGGTCGGCA GGATTGCCGG TGAGGAAGGT
          TTGTTCCGCT TCCAATTGGA TGATAAGGGC AAGTGGGGTA ATCCTCAGTT
     301
     351 GCTCGTGAAA AAGATTAGAC ATATGAAAGT GCGGTATATC TATGTTTCCG
401 ACTGTCCTGA AGATGACGAT GCCGGCAAAG AGGAAAAATT CAAATATACG
          GGTACATTCG ACAGCTCCAC AAATGCTGTT ACGCCCGCCG GGGTGGAGGT
      451
          TTTATTGAGT AGCGGTACTG ATACCAAGAT TGCCGCTTCT TCAGACAATC
      501
      551 ATATTTATGC TTACCGTATC GATGCGACAA TACGCGGGGG AAATGTATGC
      601 GCAAACAGAA CACTTTGA
 This corresponds to the amino acid sequence <SEQ ID 958; ORF 247-1.a>:
 a247-1.pep (partial) ..
          NNTAKLIPIA ESTDIKYPGF AQARPALIFQ YGIDDLDASA ETVVVSSCSK
          IAKPGKKIST LQEAKSALQI TNDDKQNGNI TRQRHVVNAY AVGRIAGEEG
          LFRFQLDDKG KWGNPQLLVK KIRHMKVRYI YVSDCPEDDD AGKEEKFKYT
      101
      151 GTFDSSTNAV TPAGVEVLLS SGTDTKIAAS SDNHIYAYRI DATIRGGNVC
      201 ANRTL*
                   80.6% identity in 206 aa overlap
 m247-1 / a247-1
                                                  10
                                                            20
                                           NNTAKLIPIAESTDIKYPGFAQARPALIFQ
 a247-1.pep
                                           [: [][[][[]]::[:]:[:[:]:[:]:
              GFGCFNMSEHPATDVIPDTTQQNSPFSLKRNGIDKLIPIAESSNINYQNFFQVGSALIFQ
 m247-1
                                                    120
                                 100
                                           110
                                                  70
                                                                     89
              YGIDDLDASAETVVVSSCSKIAKPGKKISTLQEAKSALQITNDDK-QNGNITRQRHVVNA
 a247-1.pep
              YGIDDVNASTATTVVSSCAAISKPGKQIPTLEDAKKELKIPDQDKEQNGNIARQRHVVNA
 m247~1
                                                    180
                                           170
              140
                       150
                                 160
                                                  130
                               110
                                         120
              YAVGRIAGEEGLFRFQLDDKGKWGNPQLLVKKIRHMKVRYIYVSDCPEDDDAGKEEKFKY
 a247-1.pep
```

```
YAVGRIADEEGLFRFQLDDKGKWGNPQLLVKKVRHMKVRYIYVSGCPEDDDAGKEETFKY
m247-1
                                              240
                                     230
                    210
           200
                           170
                                    180
                                             190
                                                     200
                  160
         150
           TGTFDSSTNAVTPAGVEVLLSSGTDTKIAASSDNHIYAYRIDATIRGGNVCANRTLX
a247-1.pep
           TDKFDSAQNAVTPAGVEVLLSSGTDTKIAASSDNHIYAYRIDATIRGGNVCANRTLX:
m247-1
                                              300
                    270
                             280
                                     290
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 959>:
     g248.seq
               atgcgcaaac agaacacttt gacaggaatc ccgacttctg acggacagag
               ggggtccgca ctgtttatcg tgctgatggt gatgatagtc gtggcctttt
           51
               tggttgtaac tgccgcccag tcctacaata ccgaacagag gatcagtgcc
          101
          151 aacgaatcag acaggaaatt ggctttgtct ttagccgagg cggctttgcg
          201 ggagggcgaa tttcaggttt tggatttgga atatgctgcg gacagtaagg
               ttacgtttag cgaaaactgt gaaaaaggtc tgtgtaccgc agtgaatgtg
          251
               cggacaaata ataatggtag tgaagaggct tttggcaata tcgtggtgca
          351 aggcaagccc gccgttgagg cggtgaaacg ttcttgccct gcaaagtctg
          401 gcaaaaattc taccgacctg tgcattgaca ataaagggat ggaatataat
          451 aaaggegegg caggegteag caaaatgeeg egetatatta tegaatattt
          501 aggcgtgaag aacggacaaa atgtttatcg ggttactgcc aaggcttggg
          551 gtaagaatgc caataccgtg gtcgtccttc aatcttatgt aggcaataat
               gatgagcaat aa
This corresponds to the amino acid sequence <SEQ ID 960; ORF 248.ng>:
     g248.pep
               MRKQNTLTGI PTSDGQRGSA LFIVLMVMIV VAFLVVTAAQ SYNTEQRISA
               NESDRKLALS LAEAALREGE FQVLDLEYAA DSKVTFSENC EKGLCTAVNV
           51
               RTNNNGSEEA FGNIVVQGKP AVEAVKRSCP AKSGKNSTDL CIDNKGMEYN
          101
          151 KGAAGVSKMP RYIIEYLGVK NGQNVYRVTA KAWGKNANTV VVLQSYVGNN
          201 DEQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 961>:
     m248.seq (partial)
               ...GGGTTTGCAC TGTTAATCGT GCTGATGGTG ATRATCGTCG TGGCT.TywT
            1
                 gGwTGTAACT GCCGCGCAGT CTTACAATAC CGAGCAGCGk ATCAGTKCCA
           51
                 ACGAATCAGA CAGGAAATTG GCTWTGTCTT TGGCCGAGKC GKCTWTGCGG
          101
                 GAAGGCGAAC TTCAGGTTTT GGATTTGGAA TATGATACGG ACAGTAAGGT
          151
                 TACATTTAGC GAAAACTGTG GAAAAGGTCT GT8TGCCGCA GTGAATGTGC
          201
                 GGACAAATAA TGATAATGAA GAGGCTTTTG ACAATATCGT GGTGCAAGGC
          251
                 AAGCCCACCG TTGAGGCGGT GAAGCGTTCT TGCCCTGCAA ATTCTACCGA
          301
                  CCTGTGCATT GACAAGAAAG GGWTGGAATA TAAGAAAGGC ACGAGAAGCG
          351
                 TCAC.AAAAT GCCACGTTAT ATTATCGAAT ATTTGGGCGT GWAGAACGGA
          401
                  GAAAATGTTT ATCGGGTTAC TGCCAAGGCT TGGGGLAAGA ATGCCAATAC
          451
                  CGTGGTCGTC CTTCAATCTT ATGTAAGCAA TAATGATGAG TAA
          501
This corresponds to the amino acid sequence <SEQ ID 962; ORF 248>:
     m248.pep (partial)
                ..GFALLIVLMV XIVVAFXXVT AAQSYNTEQR ISXNESDRKL AXSLAEXXXR
                  EGELQVLDLE YDTDSKVTFS ENCGKGLXAA VNVRTNNDNE EAFDNIVVQG
                  KPTVEAVKRS CPANSTDLCI DKKGXEYKKG TRSVTKMPRY IIEYLGVXNG
           101
                  ENVYRVTAKA WGKNANTVVV LQSYVSNNDE *
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 248 shows 81.1% identity over a 185 aa overlap with a predicted ORF (ORF 248.ng)
 from N. gonorrhoeae:
      m248/g248
                                                     20
                                                               30
                                            10
                                    GFALLIVLMVXIVVAFXXVTAAOSYNTEQRISXNESDRKLAXS
      m248.pep
```

g248	MRKQNTLTGIPTS 10	DGQRGSALFI 20	IAVVIMVMIVV 30	FLVVTAAQSYNT 40	reorisanesi 50	ORKLALS 60
	50	60	70	80	90	100
m248.pep	LAEXXXREGELQ\	/LDLEYDTDSI		3LXAAVNVRTNI :	ND-NEEAFDNI	IVVQGKP
g248	LAEAALREGEFQ\	/LDLEYAADS	KVTFSENCEK	ELCTAVNVRTNI	NNGSEEAFGN:	
-	70	80	90	100	110	120
	110	120	130	140	150	
m248.pep	TVEAVKRSCPA-	NSTDLCI	DKKGXEYKKG'	rrsvtkmpryi: : :	[EYLGVXNGE]	NVYRVTA
g248	:	IIIIIII GKNSTDLCI	DNKGMEYNKG	AAGVSKMPRYI	IEYLGVKNGQI	NVYRVTA
J -	130	140	150	160	170	180
	160 170	. 180				
m248.pep	KAWGKNANTVVV	LOSYVSNNDE	x			
g248			ox			
9240	190	200	-			
mi - C-IIin a m	artial DNA sequer	oce was ide	ntified in N	meningitidi	is <seo id<="" td=""><td>963>:</td></seo>	963>:
a248. seq						
1	ATGCGCAAAC AGAA	CACTTT GAC	GGGAATC CC	GACTTCTG AC	GGACAGAG	
51	GGGGTTTGCA CTGT	TTATCG TGC	TGATGGT GA	TGATCGTC GT	GGCTTTTT	•
101	TGGTTGTAAC TGCC	GCGCAG TCT	TACAATA CC	CCCCCACC CA	CCTTTCCC	
151 201	GGAAGGCGAA CTTC	BARAII GGC BCCTTT TCC	ATTTGGA AT	ATGATACG GA	CAGTAAGG	
251	TTACATTTAG CGAA	AACTGT GGA	AAAGGTC TG	TGTACCGC AG	TGAATGTG	
301	CGGACAAATA ATGA	TAATGA AGA	GGCTTTT GA	CAATATCG TG	GTGCAAGG	
351	CAAGCCCACC GTTG	AGGCGG TGA	AGCGTTC TT	GCACTGCA AA	ATCTACAG	
401	GCCTGTGCAT TGAC	AATAAA GGG	ATGGAAT AT	AAGAAAGG CA	CGCAAAGC	
451	GTCAGCAAAA TGCC	ACGTTA TAT	TATCGAA TA	TTTGGGCG TG	AAGAACGG	
501	AGAAAATGTT TATC	GGGTTA CTG	CCAAGGC TI	GGGGTAAG AA	TGCCAATA	
551	CCGTGGTCGT CCTT	CAATCT TAI	GTAAGCA AI	'AATGATGA GI	'AA	
This correspond	ls to the amino aci	d sequence	<seo 9<="" id="" td=""><td>064: ORF 24</td><td>8.a>:</td><td></td></seo>	064: ORF 24	8.a>:	
_	is to the amino acr	a soquonoo	-02Q 12 3	, 014		
a248.pep	MRKQNTLTGI PTSD	GORGEA LET	VI.MVMTV V	TLVVTAAO SY	NTEORISA	
51		ALREGE LOV	LDLEYDT DS	KVTFSENC G	GLCTAVNV	
101	RTNNDNEEAF DNIV	VOGKPT VE	VKRSCTA KS	STGLCIDNK GN	1EYKKGTQS	
151	VSKMPRYIIE YLGV	KNGENV YR	TAKAWGK N	YY SQLVVVTM	'SNNDE*	
040/-040 00	9.4% identity in 18	20 aa overla	ın			
m248/a248 83	9.4% identity iii 16	ou aa uveria	ւթ 10	20	30	40
m248.pep		GFAL	LIVLMVXIVV	AFXXVTAAQSYI	TEQRISXNES	SDRKLAXS
		1113	:1111 111	н шін		
a248	MRKQNTLTGIPT		FIVLMVMIVV	aflvvtaaqsy1	NTEQRISANES 50	SDRKLALS 60
	10	20	30	40	50	80
	. 50	60	70	80	90	100
m248.pep	I.AEXXXREGEL(OVLDLEYDTD	SKVTFSENCG	KGLXAAVNVRTI	NNDNEEAFDN:	IVVQGKPT
	111 11111	11111111		111 : 11111	[][][]	1111111
a248	LAEAALREGEL(QVLDLEYDTD 80	SKVTFSENCG 90	KGLCTAVNVRT 100	NNDNEEAFDN. 110	120
	70	80	90	100		
	110	120	130	140	150	160
m248.pep	VEAVKRSCPAN	STDLCIDKKG	XEYKKGTRSV	TKMPRYLIEYL	GVXNGENVYR'	vtakawgk
	111111111:	11 :	111111111	:		リート・トートト
a248	VEAVKRSCTAK			SKMPRYIIEYL 160	GVKNGENVIK 170	180
	130	140	150	700	170	100
	170	180				
m248.pep						

-- 220 1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 965>: m248-1.seq ATGCGCAAAC AGAACACTTT GACGGGAATC CCGACTTCTG ACGGACAGAG GGGGTTTGCA CTGTTTATCG TGCTGATGGT GATGATCGTC GTGGCTTTTT 51 TGGTTGTAAC TGCCGCGCAG TCTTACAATA CCGAGCAGCG GATCAGTGCC 101 AACGAATCAG ACAGGAAATT GGCTTTGTCT TTGGCCGAGG CGGCTTTGCG 151 201 GGAAGGCGAA CTTCAGGTTT TGGATTTGGA ATATGATACG GACAGTAAGG 251 TTACATTTAG CGAAAACTGT GGAAAAGGTC TGTGTGCCGC AGTGAATGTG 301 CGGACAATA ATGATAATGA AGAGGCTTTT GACAATATCG TGGTGCAAGG CAAGCCCACC GTTGAGGCGG TGAAGCGTTC TTGCCCTGCA AATTCTACCG 351 401 ACCTGTGCAT TGACAAGAAA GGGATGGAAT ATAAGAAAGG CACGAGAAGC 451 GTCAGCAAAA TGCCACGTTA TATTATCGAA TATTTGGGCG TGAAGAACGG 501 AGAAAATGTT TATCGGGTTA CTGCCAAGGC TTGGGGTAAG AATGCCAATA CCGTGGTCGT CCTTCAATCT TATGTAAGCA ATAATGATGA GTAA This corresponds to the amino acid sequence <SEQ ID 966; ORF 248-1>: m248-1.pep MRKONTLTGI PTSDGQRGFA LFIVLMVMIV VAFLVVTAAQ SYNTEQRISA NESDRKLALS LAEAALREGE LOVLDLEYDT DSKVTFSENC GKGLCAAVNV 51 RTNNDNEEAF DNIVVQGKPT VEAVKRSCPA NSTDLCIDKK GMEYKKGTRS 101 VSKMPRYIIE YLGVKNGENV YRVTAKAWGK NANTVVVLQS YVSNNDE* 151 89.1% identity in 202 aa overlap m248-1/g248 30 40 10 20 MRKQNTLTGIPTSDGQRGFALFIVLMVMIVVAFLVVTAAQSYNTEQRISANESDRKLALS m248-1.pep MRKQNTLTGIPTSDGQRGSALFIVLMVMIVVAFLVVTAAQSYNTEQRISANESDRKLALS $\alpha 248$ 20 30 40 100 LAEAALREGELQVLDLEYDTDSKVTFSENCGKGLCAAVNVRTNND-NEEAFDNIVVQGKP m248-1.pep LAEAALREGEFOVLDLEYAADSKVTFSENCEKGLCTAVNVRTNNNGSEEAFGNIVVQGKP g248 110 120 80 90 100 70 140 150 160 120 130 TVEAVKRSCPA----NSTDLCIDKKGMEYKKGTRSVSKMPRYIIEYLGVKNGENVYRVTA m248-1.pep :11111111111 AVEAVKRSCPAKSGKNSTDLCIDNKGMEYNKGAAGVSKMPRYIIEYLGVKNGQNVYRVTA g248 160 170 140 150 130 180 KAWGKNANTVVVLQSYVSNNDEX m248-1.pep KAWGKNANTVVVLQSYVGNNDEQX q248 200 190 m248-1/a248 97.0% identity in 197 aa overlap 20 30 40 MRKQNTLTGIPTSDGQRGFALFIVLMVMIVVAFLVVTAAQSYNTEQRISANESDRKLALS m248-1.pep MRKQNTLTGIPTSDGQRGFALFIVLMVMIVVAFLVVTAAQSYNTEQRISANESDRKLALS a248 10 20 30 40 50 LAEAALREGELQVLDLEYDTDSKVTFSENCGKGLCAAVNVRTNNDNEEAFDNIVVQGKPT m248-1.pep LAEAALREGELQVLDLEYDTDSKVTFSENCGKGLCTAVNVRTNNDNEEAFDNIVVQGKPT a248

90

150

VEAVKRSCPANSTDLCIDKKGMEYKKGTRSVSKMPRYIIEYLGVKNGENVYRVTAKAWGK

70

m248-1.pep

a248

80 140 100

160

160

__ 100 =

190

```
NANTVVVLQSYVSNNDEX
m248-1.pep
           NANTVVVLQSYVSNNDEX
224R
                  190
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 967>:
g249.seq
          atgaagaata atgattgctt gcgcctgaaa aatccccagt ccggtatggc
      51 gttgatagaa gtcttggtcg ctatgctcgt tctgaccatc ggtattttgg
     101 cattgctgtc cgtacagttg cggacagtcg cttccgtcag ggaggcggaa
     151 acgcaaacca tcgtcagcca aatcacgcaa aacctgatgg aaggaatgtt
          gatgaatccg accattgatt tggacagcaa caagaaaaac tatagtcttt
     251 acatgggaaa acagacacta tcagctgtgg atggtgagtt tatgcttgat
     301 gccgagaaaa gtaaggcgca gttggcagag gaacaattga agagatttag
     351 tcatgagctg aaaaatgcct tgccggatgc ggtagctatt cattacgccg
     401 tetgeaagga ttegtegggt gaegegeega cattgteega cageggtget
     451 ttttcttcaa attgcgacaa taaggcaaac ggggatactt tgattaaagt
     501 attgtgggta aatgattcgg caggggattc ggatatttcc cgtacgaatc
     551 ttgaagtgag cggcgacaat atcgtatata cctatcaggc aagggtcgga
     601 ggtcgtgaat ga
This corresponds to the amino acid sequence <SEQ ID 968; ORF 249.ng>:
g249.pep
          MKNNDCLRLK NPQSGMALIE VLVAMLVLTI GILALLSVQL RTVASVREAE
      51 TQTIVSQITQ NLMEGMLMNP TIDLDSNKKN YSLYMGKQTL SAVDGEFMLD
     101 AEKSKAQLAE EQLKRFSHEL KNALPDAVAI HYAVCKDSSG DAPTLSDSGA
     151 FSSNCDNKAN GDTLIKVLWV NDSAGDSDIS RTNLEVSGDN IVYTYQARVG
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 969>:
m249.seg
          ATGAAGAATA ATGATTGCTT CCGCCTGAAA GATTCCCAGT CCGGTATGGC
      51 GCTGATAGAA GTCTTGGTTG CTATGCTCGT TCTGACCATC GGTATTTTGG
     101 CACTATTGTC TGTACAGTTG CGGACAGTCN NNNNNNNNN NNNNNNNNN
     151 NNNNNNNN NNNNNNNNN NNNNNNNN NNNTTGATGG AGGGAATGTT
     201 GATGAATCCG ACCATTGATT CGGACAGCAA CAAGAAAAAC TATAATCTTT
     251 ACATGGGAAA CCATACACTA TCAGCTGTGG ATGGCGATTT TGCGATTGAT
     301 GCCATGAAAA CTAAGGGGCA ATTGGCAGAG GCACAATTGA AGAGATTTAG
     351 TTATGAGCTG AAAAATGCCT TGCCGGATGC GGCAGCCATC CATTACGCCG
      401 TCTGCAAGGA TTCGTCGGGT AACGCGCCGA CATTGTCCGG CAATGCTTTT
      451 TCTTCAAATT GCGACAATAA GGCAAACGGG GATACTTTAA TTAAAGTATT
      501 GTGGGTAAAT GATTCGGCAG GGGATTCGGA TATTTCCCGT ACGAATCTTG
      551 AGGTGAGCGG CGACAATATC GTATATACTT ATCAGGCAAG GGTCGGAGGT
           CGGGAATGA
 This corresponds to the amino acid sequence <SEQ ID 970; ORF 249>:
 m249.pep
           MKNNDCFRLK DSQSGMALIE VLVAMLVLTI GILALLSVQL RTVXXXXXXX
       51 XXXXXXXXX XLMEGMLMNP TIDSDSNKKN YNLYMGNHTL SAVDGDFAID
      101 AMKTKGQLAE AQLKRFSYEL KNALPDAAAI HYAVCKDSSG NAPTLSGNAF
      151 SSNCDNKANG DTLIKVLWVN DSAGDSDISR TNLEVSGDNI VYTYQARVGG
      201
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 249 shows 81.3% identity over a 203 aa overlap with a predicted ORF (ORF 249.ng)
 from N. gonorrhoeae:
 m249/g249
                                                                        60
                                20
                                          30
              MKNNDCFRLKDSQSGMALIEVLVAMLVLTIGILALLSVQLRTVXXXXXXXXXXXXXXXXXX
 m249.pep
```

g249	MKNNDCLRLKNPQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ
•	10 20 30 40 50 60
	70 80 90 100 110 120
m249.pep	70 80 90 100 110 120 XLMEGMLMNPTIDSDSNKKNYNLYMGNHTLSAVDGDFAIDAMKTKGQLAEAQLKRFSYEL
m249.pep	
g249	NLMEGMLMNPTIDLDSNKKNYSLYMGKQTLSAVDGEFMLDAEKSKAQLAEEQLKRFSHEL
	70 80 90 100 110 120
	130 140 150 160 170 179
m249.pep	KNALPDAAAIHYAVCKDSSGNAPTLSGN-AFSSNCDNKANGDTLIKVLWVNDSAGDSDIS
m243.pcp	
g249	KNALPDAVAIHYAVCKDSSGDAPTLSDSGAFSSNCDNKANGDTLIKVLWVNDSAGDSDIS
	130 140 150 160 170 180
1	80 190 200 [.]
m249.pep	RTNLEVSGDNIVYTYQARVGGREX
g249	RTNLEVSGDNIVYTYQARVGGREX
	190 200
The following	g partial DNA sequence was identified in N. meningitidis <seq 971="" id="">:</seq>
a249.se	
a217.50	1 ATGAAGAATA ATGATTGCTT CCGCCTGAAA AACCCCCAGT CCGGTATGGC
5	GCTGATAGAA GTCTTGGTCG CTATGCTCGT TCTGACCATC GGTATTTTGG
10	1 CACTATTGTC TGTTCAGTTG CGGACAGTCG CTTCCGTCAG GGAGGCAGAG
. 15	ACGCAAACCA TCGTCAGTCA AATCACGCAA AACCTGATGG AAGGAATGTT
20	
25 30	
35	
40	
	ACTITITCTT CAAATTGCGA TGGTAGTGCA AATGGGGATA CTTTGATTAA
50	01 AGTATTGTGG GTAAATGATT CGGCAGGGGA TTCGGATATC GCCCGTACGA
55	
60	O1 GGAGGTCGGG AATGA
This correspo	onds to the amino acid sequence <seq 249.a="" 972;="" id="" orf="">:</seq>
a249.pe	
a249.pe	1 MKNNDCFRLK NPQSGMALIE V <u>LVAMLVLTI GILALLSV</u> QL RTVASVREAE
5	51 TOTIVSQITO NLMEGMLMNP TIDSDSNKKN YNLYMGNHHA LSVVDGDFQV
10	DAIKTKTQLA EAQLKRFSYE LKNALPDAAA IHYAVCKDSS GVAPTLSAGS
	TFSSNCDGSA NGDTLIKVLW VNDSAGDSDI ARTNLETNGN NIVYTYQARV
20	01 GGRE*
m249/a249	81.9% identity in 204 aa overlap
111247/42517	10 20 30 40 50 60
m249.pe	ep MKNNDCFRLKDSQSGMALIEVLVAMLVLTIGILALLSVQLRTVXXXXXXXXXXXXXXXXXXXXXXXXX
_	
a249	MKNNDCFRLKNPQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ 10 20 30 40 50 60
	10 20 30 40 50 60
	70 80 90 100 110 119
m249.p	ep XLMEGMLMNPTIDSDSNKKNYNLYMGNH-TLSAVDGDFAIDAMKTKGQLAEAQLKRFSYE
a249	NLMEGMLMNPTIDSDSNKKNYNLYMGNHHALSVVDGDFQVDAIKTKTQLAEAQLKRFSYE 70 80 90 100 110 120
	70 80 90 100 110 120
	120 130 140 150 160 170
m249.p	ep LKNALPDAAAIHYAVCKDSSGNAPTLS-GNAFSSNCDNKANGDTLIKVLWVNDSAGDSDI
_	
a249	LKNALPDAAAIHYAVCKDSSGVAPTLSAGSTFSSNCDGSANGDTLIKVLWVNDSAGDSDI 130 140 150 160 170 180
	130 140 150 160 170 180

```
190
                  180
                                       200
                   SRTNLEVSGDNIVYTYQARVGGREX
     m249.pep
                   ARTNLETNGNNIVYTYQARVGGREX
     a249
                          190
                                     200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 973>:
m249-1.seq
         ATGAAGAATA ATGATTGCTT CCGCCTGAAA GATTCCCAGT CCGGTATGGC
         GCTGATAGAA GTCTTGGTTG CTATGCTCGT TCTGACCATC GGTATTTTGG
     51
         CACTATTGTC TGTACAGTTG CGGACAGTCG CTTCCGTCAG GGAGGCGGAG
    101
         ACACAAACCA TCGTCAGCCA AATCACGCAA AACCTGATGG AGGGAATGTT
    151
         GATGAATCCG ACCATTGATT CGGACAGCAA CAAGAAAAAC TATAATCTTT
         ACATGGGAAA CCATACACTA TCAGCTGTGG ATGGCGATTT TGCGATTGAT
    251
         GCCATGAAAA CTAAGGGGCA ATTGGCAGAG GCACAATTGA AGAGATTTAG
    301
    351
         TTATGAGCTG AAAAATGCCT TGCCGGATGC GGCAGCCATC CATTACGCCG
         TCTGCAAGGA TTCGTCGGGT AACGCGCCGA CATTGTCCGG CAATGCTTTT
    401
         TCTTCAAATT GCGACAATAA GGCAAACGGG GATACTTTAA TTAAAGTATT
    451
         GTGGGTAAAT GATTCGGCAG GGGATTCGGA TATTTCCCGT ACGAATCTTG
    501
         AGGTGAGCGG CGACAATATC GTATATACTT ATCAGGCAAG GGTCGGAGGT
    551
    601
         CGGGAATGA
This corresponds to the amino acid sequence <SEQ ID 974; ORF 249-1>:
m249-1.pep
      1 MKNNDCFRLK DSQSGMALIE VLVAMLVLTI_GILALLSVQL RTVASVREAE
         TOTIVSQITQ NLMEGMLMNP TIDSDSNKKN YNLYMGNHTL SAVDGDFAID
     51
         AMKTKGQLAE AQLKRFSYEL KNALPDAAAI HYAVCKDSSG NAPTLSGNAF
    101
         SSNCDNKANG DTLIKVLWVN DSAGDSDISR TNLEVSGDNI VYTYQARVGG
     151
     201
         RE*
              90.1% identity in 203 aa overlap
m249-1/g249
                                               40
            MKNNDCFRLKDSQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ
m249-1.pep
            MKNNDCLRLKNPQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ
g249
                                      30
                                               40
                    10
                             80
                                      90
                                              100
                    70
            NLMEGMLMNPTIDSDSNKKNYNLYMGNHTLSAVDGDFAIDAMKTKGQLAEAQLKRFSYEL
m249-1.pep
            NLMEGMLMNPTIDLDSNKKNYSLYMGKQTLSAVDGEFMLDAEKSKAQLAEEQLKRFSHEL
g249
                                              100
                                                       110
                                                                 120
                    70
                             80
                                      90
                   130
                            140
                                      150
                                               160
                                                        170
                                                                 179
            KNALPDAAAIHYAVCKDSSGNAPTLSGN-AFSSNCDNKANGDTLIKVLWVNDSAGDSDIS
m249-1.pep
            KNALPDAVAIHYAVCKDSSGDAPTLSDSGAFSSNCDNKANGDTLIKVLWVNDSAGDSDIS
g249
                                              160
                                                       170
                   130
                            140
                                     150
          180
                    190
            RTNLEVSGDNIVYTYQARVGGREX
m249-1.pep
            11111111111111111111111111111111
            RTNLEVSGDNIVYTYQARVGGREX
g249
                   190
                            200
a249/ L36117
gi|643582 (L36117) prepilin leader sequence requires cleavage to be active (Pseudomonas
>gi|1161222 (L48934) involved in type 4 fimbrial biogenesis; contains pre-pilin like leader
sequence [Pseudomonas aeruginosa]
>qi|1246299 (L76605) reference L36117, L48934 [Pseudomonas aeruginosa] Length = 185
 Score = 50.4 bits (118), Expect = 9e-06
 Identities = 45/183 (24%), Positives = 84/183 (45%), Gaps = 26/183 (14%)
          QSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQNLMEGMLMNPTI 72
```

+ + NL+E M +P

QSG ++IEVLVA+L+++IG+L ++++Q +T+

QSGFSMIEVLVALLLISIGVLGMIAMQGKTIQYTADSVERNKAAMLGSNLLESMRASPKA 71

Query: 73 DSDSNKKNYNLYMGNHHALSVVDGDFQVDAIKTKTQLAEA---QLKRFSYELKNALPDAA 129

Sbjct: 12

```
+L ++ ++KN LP A
                                  A + T L +A
                             G
Sbjct: 72 LYDVKDQ-----MATQSDFFKAKGSAFPTAPSSCTPLPDAIKDRLGCWAEQVKNELPGAG 126
Query: 130 AI---HYAVCKDSSGVAPTLSAGSTFSSNCDGSANGDTL-IKVLWVNDSAGDSDIARTNL 185
                              +CDG G L I++ W + A ++
---PGDCDG--KGSMLEIRLAWRGKQGACVNAADSSA 172
              Y +C+ S
Sbjct: 127 DLLKSDYYICRSSK-----
Query: 186 ETN 188
         +T+
Sbjct: 173 DTS 175
             90.7% identity in 204 aa overlap
m249-1/a249
                                            40 . . . . . . . . 50
                           20
                                    30
           MKNNDCFRLKDSQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ
m249-1.pep
           MKNNDCFRLKNPQSGMALIEVLVAMLVLTIGILALLSVQLRTVASVREAETQTIVSQITQ
a249
                                            40
                  10
                           20
                                    30
                                            100
                                                     110
                  70
                           80
                                     90
           NLMEGMLMNPTIDSDSNKKNYNLYMGNH-TLSAVDGDFAIDAMKTKGQLAEAQLKRFSYE
m249-1.pep
           a249
                                    90
                                            100
                                                    110
                           80
                                     150
                                             160
                  130
           LKNALPDAAAIHYAVCKDSSGNAPTLS-GNAFSSNCDNKANGDTLIKVLWVNDSAGDSDI
m249-1.pep
            LKNALPDAAAIHYAVCKDSSGVAPTLSAGSTFSSNCDGSANGDTLIKVLWVNDSAGDSDI
a249
                                           160
                                                    170
                                                             180
                          140
                                   150
                 130
                            200
                   190
           180
           SRTNLEVSGDNIVYTYQARVGGREX
m249-1.pep
            :[[[[[:::::::]]]]]]]]]
a249
            ARTNLETNGNNIVYTYQARVGGREX
                  190
                           200
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 975>:
     g250.seq
            1 atgacgcaca cagcctctcc acgtgatgaa ttcatacgcg gcataaaaga
            51 aagttcgccc atgctgattg ggcttttgcc ttgggcattg atactcggta
          101 tgcagggcgg gcaaaaaggt atgggccggc tggaaatgct gctgatgacg
           151 gggatgaact ttgccggcgg ctccgaattt gccacggtca acctgtgggc
           201 ggaacctctg ccgatactgc ttatcgccac cataaccttt atgattaatt
          251 cgcggcatat cctgatgggg ggcggcgctt gccacgcaca tgaaagaaat
          301 accgctgaaa aaagccgcgc ccgcgctgtt ttttatgtgt ga
This corresponds to the amino acid sequence <SEQ ID 976; ORF 250.ng>:
      g250.pep
               MTHTASPRDE FIRGIKESSP MLIGLLPWAL ILGMQGGQKG MGRLEMLLMT
            51 GMNFAGGSEF ATVNLWAEPL PILLIATITF MINSRHILMG GGACHAHERN
           101 TAEKSRARAV FYV*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 977>:
      m250.seq
            1 ATGCACACCT TCCCCGCATA ACGAATTTAT ACGCGGCATC AAAGAAAGTT
            51 CGCCTATGCT GATTGGGCTG CTGCCTTGGG CATTAATACT CGGTATGCAG
           101 GGCGGACAAA AAGGCATGAG CTGGCTGGAA ATGTTGTTGA TGACCAGTAT
           151 GAACTTCGCC GGCGGCTCCG AGTTTGCCAC GGTCAACCTG TGGGC8GAAC
           201 CTCTGCCGAT ACTGCTTATC GCCACCGTAA CCTTTATGAT TAATTCTCGG
           251 CATATCCTGA T.GGGGGCGG CGCTTGCCCC GCACCTGAAA GGAaTACCGC
           301 TGAAAAAGC CGTGCCCGCA CTGTTTTTTA TGTGTGA
 This corresponds to the amino acid sequence <SEQ ID 978; ORF 250>:
      m250.pep
             1 MHTPSPHNEF IRGIKESSPM LIGLLPWALI LGMQGGQKGM SWLEMLLMTS
```

51 MNFAGGSEFA TVNLWAEPLP ILLIATVTFM INSRHILMGG GACPAPERNT

101 AEKSRARTVF YV*

A 200 F

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae ORF 250 shows 91.0% identity over a 111 aa overlap with a predicted ORF (ORF 250.ng) from N. gonorrhoeae: m250/g250 40 50 59 10 20 30 MHTPSPHNEFIRGIKESSPMLIGLLPWALILGMQGGQKGMSWLEMLLMTSMNFAGGSEF m250.pep MTHTASPRDEFIRGIKESSPMLIGLLPWALILGMQGGQKGMGRLEMLLMTGMNFAGGSEF g250 40 50 10 20 30 90 100 70 80 60 ATVNLWAEPLPILLIATVTFMINSRHILMGGGACPAPERNTAEKSRARTVFYVX m250.pep ATVNLWAEPLPILLIATITFMINSRHILMGGGACHAHERNTAEKSRARAVFYV g250 110 100 90 70 80 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 979>: a250.seq ATGACACACA TAAGCTCGCC CCGTAACGAA TTTATACGCG GCATCAAAGA 1 51 AAGTTCGCCC ATGCTGATCG GGCTTTTGCC TTGGGCATTA ATACTCGGTA TGCAGGGTGG ACAAAAAGGC ATGAGCTGGC TGGAAATGTT GTTGATGACC 101 GGTATGAACT TCGCCGGCGG CTCCGAGTTT GCCACGGTCA ACCTGTGGGC 151 GGAACCTCTG CCGATACTGC TTATCGCCAC CGTAACCTTT ATGATTAATT 251 CTCGGCATAT CCTGATGGGG G.CGGCACTT GCCCCGCACC TGAAAGAAAT 301 ACCGCTGAAA AAAGCCGTGC CCGCACTGTT TTTTATGTGT GA This corresponds to the amino acid sequence <SEQ ID 980; ORF 250.a>: 1 MTHISSPRNE FIRGIKESSP MLIGLLPWAL ILGMQGGQKG MSWLEMLLMT GMNFAGGSEF ATVNLWAEPL PILLIATVTF MINSRHILMG XGTCPAPERN 51 101 TAEKSRARTV FYV* m250/a250 94.6% identity in 111 aa overlap 50 30 40 20 10 59 m250.pep MHTPSPHNEFIRGIKESSPMLIGLLPWALILGMQGGQKGMSWLEMLLMTSMNFAGGSEF MTHISSPRNEFIRGIKESSPMLIGLLPWALILGMQGGQKGMSWLEMLLMTGMNFAGGSEF 50 30 40 10 60 90 100 80 70 ATVNLWAEPLPILLIATVTFMINSRHILMGGGACPAPERNTAEKSRARTVFYVX m250.pep ATVNLWAEPLPILLIATVTFMINSRHILMGXGTCPAPERNTAEKSRARTVFYVX a250 100 110 70 80 90 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 981>: g251.seq atgcctgacc caatagggat tcttttcgct gccgtcgggg ttgattttt 51 tgccgttgtt ttgagggggc gttttcaacg aataggcgcg gttggcatgt

101 tgataataat aatcctgatg gcggaggtcg gaaccaaaac ggtcgtaacc

WO 99/57280 PCT/US99/09346

```
151 gaggttgacg ctcaggttgt ggcggatttt ggcggtatcg aaggattttt
    201 tgaatgccgc ctgcaagagc ctgtggcttt ccccgtaaat cacgcggtcg
    251 gatttgtagt aggaagacgg cttgtcggca ctcgggcggc aatatttgtc
    301 cgaaccgtcg gcggaacagt gcgtctgctg aaaatgattg tccaaaccga
    351 tgccctgccg gtcgtaagag aggcgggcat aatccgccca agtgtcttta
    401 tcggcattgg tatagacata ttccaaaccg tagcggcttt tggtgtgcgt
    451 ctcgtcgtaa aacacgcccg taccgtattc cgcgcccacc tccgcaccgt
    501 tttcaccgtt ggtaatcagc ccgctgtatt tgcggccgcc cgcgtatttg
    551 ccgtagcctc ttatcgatcc gtatttttta ttttcatcaa aaaccgcctt
    601 ggtcaggaat gccggaaccg tcatatcgcg cgtgtcgaaa gtttgctgcg
    651 tgcgttcgag tatgccgccg atgtagtgcc gtttgttttc aaaacgaaaa
    701 cccgggcgga acagccacga ccggctttcg tatga
This corresponds to the amino acid sequence <SEQ ID 982; ORF 251.ng>:
g251.pep
         MPDPIGILFA AVGVDFFAVV LRGRFQRIGA VGMLIIILM AEVGTKTVVT
     51 EVDAQVVADF GGIEGFFECR LQEPVAFPVN HAVGFVVGRR LVGTRAAIFV
    101 RTVGGTVRLL KMIVQTDALP VVREAGIIRP SVFIGIGIDI FQTVAAFGVR
    151 LVVKHARTVF RAHLRTVFTV GNQPAVFAAA RVFAVASYRS VFFIFIKNRL
    201 GQECRNRHIA RVESLLRAFE YAADVVPFVF KTKTRAEQPR PAFV*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 983>:
m251.seg
      1 ATGCGTGCTG CGGTAGTCGT AGCGCAAGCC CGCGCCGACA TCCGCCCACC
     51 TGCCCAAACG GACATTGTCC CGAACTGCCG CGTAATAGCT TTTACCGTTG
    101 ATGCTGCGCG GCGTGCAGTC CGTATAAGTA TTGTTGCCCA AGCGGCAGAT
    151 TTGCCCCGTA ACGACATTTC CCCTGCCTAT GGTGACCCAA TAGGGGCTGG
    201 TTTCACTGCC GTTGGGGCTG ATTTTTTGC CGTTGTTTTG AGGGGGCGTG
    251 TTCGACGAAT AGGCGCGGTT GGCATGTTGA TAATAATAAT CCTGATGGCG
    301 GAGATTAGAG CCAAAGCGGT CAAACCCGAG ATTCACGCTC AGGTTGTGGC
    351 GGATTTTGGC GGTATCGAAG GATTTTTTGA ATGCCGCCTG CAAGAGCCTG
    401 TGGCTTTCCC CGTAAATCAC GCGATCGGAT TTGTAATAGG AAAACGGCTT
    451 GTCGGCACTC GGGCGGCAAT ATTTGTCCGA ACCGTCGGCA GAACAGTGCG
    501 TCTGCTGAAA ATGATTATCC AAACCGATGC CCTGCCGGTC GTAAGAGAGG
    551 CGGGCATAAT CCGCCCAAGT GTCTTTATCG GCATTGGTAT AGACATATTC
    601 CAAACCGTAG CGGCTTTTGG TGTGCGTCTC GTCGTAAAAC ACGCCCGTAC
    651 CGTATTCCGC GCCCACCAGC GCACCGTTTT CGCCGTTGGT AAACAGTCCG
     701 CCGTATTTGT GGTTGCCCGC GTATTTGCCG TTACCGGGCA AAGAACCCGC
    751 CTGTTTTTA TTTGCATCAA AAACCGCCTT GGTCAGGAAT GCCGGAACCG
    801 TCATATCGCG CGTGTCGAAA GTTTGTTGCG TGTGTTCGAG TATGCCGCCG
    851 ATGTAGTGCC GCTTATTCTC AAAACGAAAA CCCGGGCGGA ACAGCCACGA
    901 CCGGCTTTCG TATGA
This corresponds to the amino acid sequence <SEQ ID 984; ORF 251>:
m251.pep
         MRAAVVVAQA RADIRPPAQT DIVPNCRVIA FTVDAARRAV RISIVAQAAD
      51 LPRNDISPAY GDPIGAGFTA VGADFFAVVL RGRVRRIGAV GMLIIIILMA
    101 EIRAKAVKPE IHAQVVADFG GIEGFFECRL QEPVAFPVNH AIGFVIGKRL
     151 VGTRAAIFVR TVGRTVRLLK MIIQTDALPV VREAGIIRPS VFIGIGIDIF
    201 QTVAAFGVRL VVKHARTVFR AHQRTVFAVG KQSAVFVVAR VFAVTGQRTR
    251 LFFICIKNRL GOECRNRHIA RVESLLRVFE YAADVVPLIL KTKTRAEOPR
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 251 shows 85.2% identity over a 243 as overlap with a predicted ORF (ORF 251.ng)
from N. gonorrhoeae:
m251/g251
                    40
                              50
                                        60
                                                 70
                                                           80
                                                                     90
             TVDAARRAVRISIVAQAADLPRNDISPAYGDPIGAGFTAVGADFFAVVLRGRVRRIGAVG
m251.pep
                                           g251
                                         MPDPIGILFAAVGVDFFAVVLRGRFQRIGAVG
                                                10
                                                          20
                                                                    30
```

-- 500

```
140
                                                              150
                                            130
                                   120
                 100
                          110
           MLIIIILMAEIRAKAVKPEIHAQVVADFGGIEGFFECRLQEPVAFPVNHAIGFVIGKRLV
m251.pep
            MLIIIILMAEVGTKTVVTEVDAQVVADFGGIEGFFECRLQEPVAFPVNHAVGFVVGRRLV
g251
                                   60
                                            70
                                                     80
                                                              90
                          50
                                            190
                                                              210
                                   180
                          170
            GTRAAIFVRTVGRTVRLLKMIIQTDALPVVREAGIIRPSVFIGIGIDIFQTVAAFGVRLV
m251.pep
            GTRAAIFVRTVGGTVRLLKMIVQTDALPVVREAGIIRPSVFIGIGIDIFQTVAAFGVRLV
g251
                                                             150
                                . 120
                                           130
                                                    140
                         110
                100
                                                              270
                                            250
                                                     260
                          230
                                   240
                 220
            VKHARTVFRAHQRTVFAVGKQSAVFVVARVFAVTGQRTRLFFICIKNRLGQECRNRHIAR
m251.pep
            VKHARTVFRAHLRTVFTVGNQPAVFAAARVFAVASYRS-VFFIFIKNRLGQECRNRHIAR
g251
                         170
                                  180
                                           190
                                                     200
                                                              210
                160
                                   300
                          290
                 280
            VESLLRVFEYAADVVPLILKTKTRAEQPRPAFVX
m251.pep
            VESLLRAFEYAADVVPFVFKTKTRAEQPRPAFVX
g251
                 220
                          230
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 985>:
     a251.seq
              ATGCGTGCTG CGGTAGTCGT AGCGCAACCC CGCGCCGACA TCCGCCCACC
           1
              TGCCCAAACG GACATTGTCC CGAACTGCCG CGTAATAGCT TTTGCCGTTG
          51
              ATGCTGCGCG GCGTGCAGTC CGTATAAGTA TTGTTGCCCA AGCGGCAGAT
          101
              TTGCCCCGTA ACCACATTTC CCCTGCCTAT GCTGACCCAA TAGGGTTGGT
          151
              CCTTGCCGCC GTTGGGGTTG GCGGTTTTAG GGGGCGTTTT CGACGAATAG
          201
              GCGCGGTTGG CATGTTGATA ATAATAATCC TGATGGCGGA GATTAGAGTC
          251
          301 AAAGCGGTCA AAACCGAGAT TCACGCTCAG GTTGTGGCGG ATTTTGGCGG
              TATCGAAGGA TTTTTTGAAT GCCGCCTGCA AGAGCCTGTG GCTTTCCCCG
          351
              TAAATCACGC GGTCGGATTT GTAGTAGGAA AACGGCTTGT CGGCACTCGG
          401
              GCGGCAATAT TTGTCCGAAC CGTCGGCAGA ACAGTGCGTC TGCTGAAAAT
          451
              GATTGTCCAA ACCGATGCCC TGCCGGTCGT AAGAGAGGCG GGCATAATCC
          501
              ACCCAAGTGT CTTTATCGGC ATTGGTATAG ACATATTCCA AACCGTAGCG
          551
              GCTTTTGGTG TGCGTCTCGT CGTAAAACAC GCCCGTACCG TATTCCGCGC
          601
              CCACCAGCGC ACCGTTTCG CCGTTGGTAA ACAGACCGCC GTATTTGTGG
          651
              TCGCCCGCGT ATTTGCCGTT GCCTCTTATC GGTCCGTATT TTCTATTTTC
          701
              ATCAAAAACC GCCTTGGTCA GGAATGCCGG AACCGTCATA TCGCGCGTGT
          751
              CGAAAGTTTG TTGCGTGTGT TCGAGTATGC CGCCGATGTA GTGCCGTTTG
          801
              TTTTCAAAAC GAAAACCCGG GCGGAACAGC CACGATCGGC TTTCGTATGA
 This corresponds to the amino acid sequence <SEQ ID 986; ORF 251.a>:
      a251.pep
              MRAAVVVAQP RADIRPPAQT DIVPNCRVIA FAVDAARRAV RISIVAQAAD
            1
              LPRNHISPAY ADPIGLVLAA VGVGGFRGRF RRIGAVGMLI IIILMAEIRV
              KAVKTEIHAQ VVADFGGIEG FFECRLQEPV AFPVNHAVGF VVGKRLVGTR
          101
              AAIFVRTVGR TVRLLKMIVQ TDALPVVREA GIIHPSVFIG IGIDIFQTVA
               AFGVRLVVKH ARTVFRAHOR TVFAVGKQTA VFVVARVFAV ASYRSVFSIF
          201
               IKNRLGQECR NRHIARVESL LRVFEYAADV VPFVFKTKTR AEQPRSAFV*
 m251/a251 88.5% identity in 304 aa overlap
                                                    40
                                                             50
                         10
                                           30
                  MRAAVVVAQARADIRPPAQTDIVPNCRVIAFTVDAARRAVRISIVAQAADLPRNDISPAY
      m251.pep
                  MRAAVVVAQPRADIRPPAQTDIVPNCRVIAFAVDAARRAVRISIVAQAADLPRNHISPAY
      a251
                                                                      60
                                                             50
                                           30
                                                    40
                         10
                                  20
                                                   100
                                  80
                                           90
                  GDPIGAGFTAVGADFFAVVLRGRVRRIGAVGMLIIIILMAEIRAKAVKPEIHAQVVADFG
      m251.pep
                                  ::111: 1
```

WO 99/57280 PCT/US99/09346

580

```
ADPIGLVLAAVGVGGF----RGRFRRIGAVGMLIIIILMAEIRVKAVKTEIHAQVVADFG
a251
                                   90
                                          100
                           80
                                                       180
                                               170
                               150
                                       160
               130
                       140
          GIEGFFECRLQEPVAFPVNHAIGFVIGKRLVGTRAAIFVRTVGRTVRLLKMIIQTDALPV
m251.pep
          GIEGFFECRLQEPVAFPVNHAVGFVVGKRLVGTRAAIFVRTVGRTVRLLKMIVQTDALPV
                                          160
                   130
                          140
                                  150
                                       220
                                               230
                               210
                       200
                190
          VREAGIIRPSVFIGIGIDIFQTVAAFGVRLVVKHARTVFRAHQRTVFAVGKQSAVFVVAR
m251.pep
          VREAGIIHPSVFIGIGIDIFQTVAAFGVRLVVKHARTVFRAHQRTVFAVGKQTAVFVVAR
a251
                                          220
                           200
                                  210
           180
                   190
                                                       300
                        260
                               270
                                       280
                                               290
                250
          VFAVTGQRTRLFFICIKNRLGQECRNRHIARVESLLRVFEYAADVVPLILKTKTRAEQPR
m251.pep
          VFAVASYRS-VFSIFIKNRLGQECRNRHIARVESLLRVFEYAADVVPFVFKTKTRAEQPR
a251
                                   270
                                           280
           240
                    250
                           260
          PAFVX
m251.pep
           1111
          SAFVX
a251
            300
```

-- 500

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 987>: g253.seq

```
atgatcgaca gggaccgtat gttgcgggac acgttggaac gtgtgcgtgc
     ggggtcgttc tggttatggg tggtggtggc atcgatgatg tttaccgccg
 51
101 gattttcagg cacttatctt ctgatggaca atcaggggct gaatttcttt
151 ttagttttgg cgggagtgtt gggcatgaat acgctgatgc tggcagtatg
201 gttggcaacg ttgttcctgc gcgtgaaagt gggacggttt ttcagcagtc
     cggcgacgtg gtttcggggc aaaggccctg taaatcaggc ggtgttgcgg
301 ctgtatgcgg accagtggcg gcaaccttcg gtacgatgga aaataggcgc
351 aacggcgcac agettgtggc tetgcacget geteggaatg etggtgtegg
401 tattgctgct gcttttggtg cggcaatata cgttcaactg ggaaagcacg
451 ctgttgagca atgccgcttc ggtacgcgcg gtggaaatgt tggcatggct
501 gccgtcgaaa ctcggtttcc ctgtccccga tgcgcgggcg gtcatcgaag
     gtcgtctgaa cggcaatatt gccgatgcgc gggcttggtc ggggctgctg
551
601 gtcggcagta tcgtctgcta cggcatcctg ccgcgcctct tggcttgggt
651 agtgtgtaaa atccttttga aaacaagcga aaacggattg gatttggaaa
701 aaacctatta teaggeggte ateegeeget ggeagaacaa aateacegat
751 gcggatacgc gtcgggaaac cgtgtccgcc gtttcgccga aaatcgtctt
     qaacgatgcg ccgaaatggg cgctcatgct ggagaccgag tggcaggacg
851 gccaatggtt cgagggcagg ctggcgcagg aatggctgga taagggcgtt
901 gccgccaatc gggaacaggt tgccgcgctg gagacagagc tgaagcagaa
951 accggcgcaa ctgcttatcg gcgtacgcgc ccaaactgtg ccggaccggg
1001 gcgtgctgcg gcagattgtg cggctttcgg aagcggcgca gggcggcgcg
1051 gtggtgcagc ttttggcgga acaggggctt tcagacgacc tttcggaaaa
     gctggaacat tggcgtaacg cgctgaccga atgcggcgcg gcgtggcttg
1151 agcctgacag ggtggcgcag gaaggccgtt tgaaagacca ataa
```

This corresponds to the amino acid sequence <SEQ ID 988; ORF 253.ng>: 9253.pep

.pep					
1	MIDRDRMLRD	TLERVRAGSF	WLWVVVASMM	FTAGFSGTYL	LMDNQGLNF <u>F</u>
51	LVLAGVLGMN	TLMLAVWLAT	LFLRVKVGRF	FSSPATWFRG	KGPVNQAVLR
101	LYADOWROPS	VRWKIGATAH	SLWLCTLLGM	LVSVLLLLLV	ROYTFNWEST
151	LLSNAASVRA	VEMLAWLPSK	LGFPVPDARA	VIEGRLNGNI	ADARAWSGLL
201	VGSIVCYGIL	PRLLAWVVCK	ILLKTSENGL	DLEKTYYQAV	IRRWQNKITD
251	ADTRRETUSA	VSPKIVLNDA	PKWALMLETE	WODGOWFEGR	LAOEWLDKGV

```
301 AANREQVAAL ETELKQKPAQ LLIGVRAQTV PDRGVLRQIV RLSEAAQGGA
          351 VVQLLAEQGL SDDLSEKLEH WRNALTECGA AWLEPDRVAQ EGRLKDQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 989>:
     m253.seq
              ATGATTGACA GGAACCGTAT GCTGCGGGAG ACGTTGGAAC GTGTGCGTGC
           1
              GGGGTCGTTC TGGTTGTGGG TGGTGGCGGC GACGTTTGCA TTTTTTACCG
           51
          101 GTTTTCAGT CACTTATCTT CTAATGGACA ATCAGGGTCT GAATTTCTTT
          151 TTGGTTTTGG CGGGCGTGTT GGGCATGAAT ACGCTGATGC TGGCAGTATG
          201 GTTGGCAATG TTGTTCCTGC GTGTGAAAGT GGGGCGTTTT TTCAGCAGTC
          251 CGGCGACGTG GTTTCGGGGC AAAGACCCTG TAAATCAGGC GGTGTTGCGG
              CTGTATGCGG ACGAGTGGCG GCAACCTTCG GTACGTTGGA AAATAGGCGC
          351 AACGTCGCAC AGCCTGTGGC TCTGCACGCT GCTCGGAATG CTGGTGTCGG
          401 TATTGTTGCT GCTTTTGGTG CGGCAATATA CGTTCAACTG GGAAAGCACG
              CTGTTGAGCA ATGCCGCTTC GGTACGCGCG GTGGAAATGT TGGCATGGCT
          451
          501 GCCGTCGAAA CTCGGTTTCC CTGTCCCCGA TGCGCGGGCG GTCATCGAAG
              GCCGTCTGAA CGGCAATATT GCCGATGCGC GGGCTTGGTC GGGGCTGCTG
          551
              GTCGGCAGTA TCGCCTGCTA CGGCATCCTG CCGCGCCTGC TGGCTTGGGT
              AGTGTGTAAA ATCCTTTTGA AAACAAGCGA AAACGGATTG GATTTGGAAA
          651
          701 AGCCCTATTA TCAGGCGGTC ATCCGCCGCT GGCAGAACAA AATCACCGAT
          751 GCGGATACGC GTCGGGAAAC CGTGTCCGCC GTTTCACCGA AAATCATCTT
          801 GAACGATGCG CCGAAATGGG CGGTCATGCT GGAGACCGAG TGGCAGGACG
          851 GCGAATGGTT CGAGGGCAGG CTGGCGCAGG AATGGCTGGA TAAGGGCGTT
          901 GCCACCAATC GGGAACAGGT TGCCGCGCTG GAGACAGAGC TGAAGCAGAA
              ACCGGCGCAA CTGCTTATCG GCGTGCGCGC CCAAACTGTG CCGGACCGCG
         1001 GCGTGTTGCG GCAGATTGTC CGACTCTCGG AAGCGGCGCA GGGCGGCGCG
         1051 GTGGTGCAGC TTTTGGCGGA ACAGGGGCTT TCAGACGACC TTTCGGAAAA
         1101 GCTGGAACAT TGGCGTAACG CGCTGGCCGA ATGCGGCGCG GCGTGGCTTG
         1151 AGCCTGACAG GGCGGCGCAG GAAGGGCGTT TGAAAGACCA ATAA
This corresponds to the amino acid sequence <SEQ ID 990; ORF 253>:
     m253.pep
               MIDRNRMLRE TLERVRAGSF WLWVVAATFA FFTGFSVTYL LMDNQGLNFF
            1
               LVLAGVLGMN TLMLAVWLAM LFLRVKVGRF FSSPATWFRG KDPVNQAVLR
           51
               LYADEWRQPS VRWKIGATSH SLWLCTLLGM LVSVLLLLLV RQYTFNWEST
          151 LLSNAASVRA VEMLAWLPSK LGFPVPDARA VIEGRLNGNI ADARAWSGLL
          201 VGSIACYGIL PRLLAWVVCK ILLKTSENGL DLEKPYYQAV IRRWQNKITD
               ADTRRETVSA VSPKIILNDA PKWAVMLETE WQDGEWFEGR LAQEWLDKGV
               ATNREQVAAL ETELKQKPAQ LLIGVRAQTV PDRGVLRQIV RLSEAAQGGA
               VVQLLAEQGL SDDLSEKLEH WRNALAECGA AWLEPDRAAQ EGRLKDQ*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 253 shows 94.7% identity over a 397 aa overlap with a predicted ORF (ORF 253.ng)
 from N. gonorrhoeae:
      m253/g253
                                                                50
                                             30
                                                       40
                                   20
                  MIDRNRMLRETLERVRAGSFWLWVVAATFAFFTGFSVTYLLMDNQGLNFFLVLAGVLGMN
      m253.pep
                  MIDRDRMLRDTLERVRAGSFWLWVVVASMMFTAGFSGTYLLMDNQGLNFFLVLAGVLGMN
      g253
                                                                         60
                                    20
                                             30
                                                       40
                                                                50
                          10
                                             90
                                                     - 100
                                    80
                  TLMLAVWLAMLFLRVKVGRFFSSPATWFRGKDPVNQAVLRLYADEWRQPSVRWKIGATSH
      m253.pep
                   TLMLAVWLATLFLRVKVGRFFSSPATWFRGKGPVNQAVLRLYADQWRQPSVRWKIGATAH
      g253
                                                                         120
                                                      100
                                                               110
                          70
                                    80
                                             90
                                                      160
                                                               170
                                   140
                                            150
                   SLWLCTLLGMLVSVLLLLLVRQYTFNWESTLLSNAASVRAVEMLAWLPSKLGFPVPDARA
      m253.pep
                   SLWLCTLLGMLVSVLLLLLVRQYTFNWESTLLSNAASVRAVEMLAWLPSKLGFPVPDARA
      g253
                                                                         180
                                            150
                                                      160
                                   140
                         130
```

-- 170

```
240
                                     220
                                             230
                      200
                              210
               190
          VIEGRLNGNIADARAWSGLLVGSIACYGILPRLLAWVVCKILLKTSENGLDLEKPYYQAV
m253.pep
          VIEGRLNGNIADARAWSGLLVGSIVCYGILPRLLAWVVCKILLKTSENGLDLEKTYYQAV
q253
                              210
                                      220
                                             230
                                                     240
                       200
                              270
                                      280
                                             290
               250
                       260
          IRRWONKITDADTRRETVSAVSPKIILNDAPKWAVMLETEWQDGEWFEGRLAQEWLDKGV
m253.pep
          IRRWQNKITDADTRRETVSAVSPKIVLNDAPKWALMLETEWQDGQWFEGRLAQEWLDKGV
q253
               250
                              270 280
                                             290
                                                     300
                       260
                                      340
                              330
                       320
          ATNREOVAALETELKOKPAQLLIGVRAQTVPDRGVLRQIVRLSEAAQGGAVVQLLAEQGL
m253.pep
          AANREQVAALETELKQKPAQLLIGVRAQTVPDRGVLRQIVRLSEAAQGGAVVQLLAEQGL
g253
                                      340
                                             350
                                                     360
               310
                       320
                              330
                       380
                              390
               370
          SDDLSEKLEHWRNALAECGAAWLEPDRAAQEGRLKDQX
m253.pep
          SDDLSEKLEHWRNALTECGAAWLEPDRVAQEGRLKDQX
g253
                       380
               370
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 991>:

```
a253.seq
         ATGATCGACA GGAACCGTAT GCTGCGGGAG ACGTTGGAAC GTGTGCGTGC
         GGGGTCGTTC TGGTTGTGGG TGGCGGCGGC GACGTTTGCG TTTTTTACCG
     51
         GTTTTCAGT TACTTATCTT CTAATGGACA ATCAGGGTCT GAATTTCTTT
     101
         TTGGTTTTGG CGGGCGTGTT GGGCATGAAT ACGCTGATGC TGGCAGTATG
     151
     201 GTTGGCAATG TTGTTCCTGC GCGTGAAAGT GGGGCGTTTT TTCAGCAGTC
         CGGCGACGTG GTTTCGGGGC AAAGACCCTG TCAATCAGGC GGTGTTGCGG
     251
     301 CTGTATGCGG ACGAGTGGCG GCAACCTTCG GTACGTTGGA AAATAGGCGC
         AACGTCGCAC AGCCTGTGGC TCTGCACGCT GCTCGGAATG CTGGTGTCGG
     351
         TATTGTTGCT GCTTTTGGTG CGGCAATATA CGTTCAACTG GGAAAGCACG
     401
     451 CTGTTGGGCG ATTCGTCTTC GGTACGGCTG GTGGAAATGT TGGCATGGCT
     501 GCCTGCGAAA CTGGGTTTTC CCGTGCCTGA TGCGCGGGCG GTCATCGAAG
     551 GTCGTCTGAA CGGCAATATT GCCGATGCGC GGGCTTGGTC GGGGCTGCTG
     601 GTCGGCAGTA TCGCCTGCTA CGGCATCCTG CCGCGCCTCT TGGCTTGGGC
     651 GGTATGCAAA ATCCTTTTGA AAACAAGCGA AAACGGCTTG GATTTGGAAA
     701 AGCCCTATTA TCAGGCGGTC ATCCGCCGCT GGCAGAACAA AATCACCGAT
          GCGGATACGC GTCGGGAAAC CGTGTCCGCC GTTTCGCCGA AAATCGTCTT
     751
          GAACGATGCG CCGAAATGGG CGGTCATGCT GGAGACCGAA TGGCAGGACG
     801
     851 GCGAATGGTT CGAGGGCAGG CTGGCGCAGG AATGGCTGGA TAAGGGCGTT
     901 GCCGCCAATC GGGAACAGGT TGCCGCGCTG GAGACAGAGC TGAAGCAGAA
          ACCGGCGCAA CTGCTTATCG GCGTGCGCGC CCAAACTGTG CCCGACCGCG
     951
          GCGTGTTGCG GCAGATCGTC CGACTTTCGG AAGCGGCGCA GGGCGGCGCG
    1001
          GTGGTGCAGC TTTTGGCGGA ACAGGGGCTT TCAGACGACC TTTCGGAAAA
          GCTGGAACAT TGGCGTAACG CGCTGACCGA ATGCGGCGCG GCGTGGCTGG
    1101
          AACCCGACAG AGCGGCGCAG GAAGGCCGTC TGAAAACCAA CGACCGCACT
    1151
    1201
          TGA
```

This corresponds to the amino acid sequence <SEQ ID 992; ORF 253.a>: a253.pep

_					
3.pep			•		
1	MIDRNRMLRE	TLERVRAGSF	WLWVAAATFA	FFTGFSVTYL	<u>LMDNQGLNFF</u>
51	LVLAGVLGMN	TLMLAVWLAM	LFLRVKVGRF	FSSPATWFRG	KDPVNQAVLR
101	LYADEWRQPS	VRWKIGATSH	SLWLCTLLGM	LVSVLLLLLV	ROYTFNWEST
151	LLGDSSSVRL	VEMLAWLPAK	LGFPVPDARA	VIEGRLNGNI	ADARAWSG <u>LL</u>
201	VGSIACYGIL	PRLLAWAVCK	ILLKTSENGL	DLEKPYYQAV	IRRWQNKITD
251	ADTRRETVSA	VSPKIVLNDA	PKWAVMLETE	WQDGEWFEGR	LAQEWLDKGV
301	AANREQVAAL	ETELKQKPAQ	LLIGVRAQTV	PDRGVLRQIV	RLSEAAQGGA
351	VVQLLAEQGL	SDDLSEKLEH	WRNALTECGA	AWLEPDRAAQ	EGRLKTNDRT
401	*				•

m253/a253 97.2	% identity in 395 a	a overlap				
	10	20	30	40	50	60
m253.pep	MIDRNRMLRETLER	VRAGSFWLW	VVAATFAFFT G	FSVTYLLMDN	IQGLNFFLVL	AGVLGMN
	1111111111111111	111111111	1:111111111	1111111111	1111111111	111111
a253	MIDRNRMLRETLER					
	10	20	30	40	50	60
	70	80	90	100	110	120
m253.pep	TLMLAVWLAMLFLR					
	11111111111111					
a253	TLMLAVWLAMLFLR	VKVGRFFSS 80	PATWFRGKDPV 90	NQAVLKLIAL 100	EWRQPSVRWF 110	120
	70	80	90	100	110	120
	130	140	150	160	170	180
m253.pep	SLWLCTLLGMLVSV					
m255.pep						
a253	SLWLCTLLGMLVSV					
4200	130	140	150	160	170	180
	190	200	210	220	230	240
m253.pep	VIEGRLNGNIADAR	AWSGLLVGS	IACYGILPRLL	AWVVCKILL	CTSENGLDLE	KPYYQAV
	1811111111111111	111111111	14111111111	11:1111111		
a253	VIEGRLNGNIADAR					
	190	200	210	220	230	240
	252	0.50	070	000	200	300
	250 IRRWQNKITDADTR	260	270	280	290	
m253.pep	1	RETVSAVSP	TITINDAEVMU	AMPELEMODO	SEWFEGKLAQI	1111111
a253	IRRWQNKITDADTR			UNIETEWOD	FWFEGRIAO	EMI'DKCA
a233	250	260	270	280	290	300
		200				
	310	320	330	340	350	360
m253.pep	ATNREQVAALETEL					
	1:111111111111	111111111	111111111111	3111111111		111111
a253	AANREQVAALETEL					LLAEQGL
	310	320	330	340	350	360
0.50	370	380	390	KDOK		
m253.pep	SDDLSEKLEHWRNA					
a253						
8233	370	380	390	400		
	370	300	330	100		

- TON 1

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 993>: g254.seq

1 atgtatgcag gcgaacgctt caatacttac agccatttga gcggtttgat 51 totggoggog goaggtttga tgotgatgot gotgaaaacc ataggacacg 101 gggacggata ccgtatcttc agcgtatcgg tttacggcat cagccttctt 151 ctgctctatt tgagttcctc gctgtaccac ggaattgcag ccggaaaact 201 gaaaagcatt ttgaaaaaaa ccgaccactg catgatttat gtgctgattg 301 tggacggtat tttcactgtc ctggctgctg gcggctgcag gaatcgcaca 351 agaactcacc atcggacgga aaagcgaaaa acgtctgctg tctattgcga 401 tttatatcgt aatgggctgg atggtcttgg cggtaatgaa atccctgaca 451 gcctcactcc cgccggcagg actggcttgg ctggcggcag gcggtatgct 501 gtacagcgtc ggcatttact ggtttgtaaa cgatgaaaaa atccgacacg 551 ggcacggaat ctggcatctg ttcgtattgg gcggcagcat aacccaattt 601 gtcagcgtgt acggttatgt aatctga

This corresponds to the amino acid sequence <SEQ ID 994; ORF 254.ng>: g254.pep

1 MYAGERFNTY SHLSGLILAA AGLMLMLLKT IGHGDGYRIF SVSVYGISLL

```
51 LLYLSSSLYH GIAAGKLKSI LKKTDHCMIY VLIAGSYTPF ALVSLRNGPG
              WTVFSLSWLL AAAGIAQELT IGRKSEKRLL SIAIYIVMGW MVLAVMKSLT
         101
              ASLPPAGLAW LAAGGMLYSV GIYWFVNDEK IRHGHGIWHL FVLGGSITOF
         151
              VSVYGYVI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 995>:
               (partial)
     m254.seq
              ..GTATCGGTTT ACGGCATCAG CCTTCTTCTG CTCTATTTGA GTTCCTGGCT
                GTACCACGGA ATTGCAGCCG GAAAACTGAA AAGCATTTTG AAAAAAACCG
          51
                ACCACTGCAT GATTTATGTG CTGATTGCCG GAAGCTACAC ACCGTTTGCA
         101
                CTGGTTTCTT TGAGAAACGG GCCGGGCTGG ACGGTATTTT CACTGTCCTG
          151
                GCTGCTGGCG GCTGCAGGAA TCGCACAAGA ACTCACCATC GGACGGAAAA
         201
                GCGAAAAACG TCTGCTGTCT ATTGTGATTT ATGTCGTCAT GGGTTGGATG
         251
                GTCTTGGCGG TAATGAAATC CCTGACAGCC TCACTCCCGT CGGCAGGACT
          301
                GGCTTGGCTG GCGGCAGGCG GTATGCTGTA CAGTGTCGGC ATTTACTGGT
          351
                TTGTAAACGA TGAAAAAATC CGACACGGGC ACGGAATCTG GCATCTGTTC
          401
                GTATTGGGCG GCAGCATCAC CCAATTTGTC AGCGTGTACG GTTACGTAAT
          451
          501
This corresponds to the amino acid sequence <SEQ ID 996; ORF 254>:
                (partial)
     m254.pep
              ..VSVYGISLLL LYLSSWLYHG IAAGKLKSIL KKTDHCMIYV LIAGSYTPFA
           1
                LVSLRNGPGW TVFSLSWLLA AAGIAQELTI GRKSEKRLLS IVIYVVMGWM
                VLAVMKSLTA SLPSAGLAWL AAGGMLYSVG IYWFVNDEKI RHGHGIWHLF
          101
                VLGGSITQFV SVYGYVI*
          151
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 254 shows 97.6% identity over a 167 aa overlap with a predicted ORF (ORF 254.ng)
from N. gonorrhoeae:
     m254/g254
                                                     10
                                                               20
                                              VSVYGISLLLLYLSSWLYHGIAAGKLKSIL
     m254.pep
                                              4131344111111111 4444111111111
                  HLSGLILAAAGLMLMLLKTIGHGDGYRIFSVSVYGISLLLLYLSSSLYHGIAAGKLKSIL
     g254
                                                                       70
                                                     50
                        20
                                  30
                                           40
                                                     70
                                                               80
                                            60
                                   50
                  KKTDHCMIYVLIAGSYTPFALVSLRNGPGWTVFSLSWLLAAAGIAQELTIGRKSEKRLLS
     m254.pep
                  KKTDHCMIYVLIAGSYTPFALVSLRNGPGWTVFSLSWLLAAAGIAQELTIGRKSEKRLLS
      g254
                                                    110
                                                             120
                                          100
                                  90
                         80
                                                              140
                                                     130
                                           120
                         100
                                  110
                  IVIYVVMGWMVLAVMKSLTASLPSAGLAWLAAGGMLYSVGIYWFVNDEKIRHGHGIWHLF
      m254.pep
                  [:[::]:]]]
                  IAIYIVMGWMVLAVMKSLTASLPPAGLAWLAAGGMLYSVGIYWFVNDEKIRHGHGIWHLF
      q254
                                                             180
                                          160
                                                    170
                                 150
                        140
                         160
                  VLGGSITQFVSVYGYVIX
      m254.pep
                  111111111111111111111
                  VLGGSITQFVSVYGYVIX
      g254
                        200
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 997>:
      a254.seq
             1 ATGTATACAG GCGAACGCTT CAATACTTAC AGCCATTTGA GCGGTTTGAT
            51 TCTGGCGGCG GCAGGTTTGG CGCTGATGCT GCTGAAAACC ATAGGACACG
                GGGACGGCTA CCGTATCTTC AGCGTATCGG TTTACGGCAT CAGCCTTCTT
           101
                CTGCTCTATT TGAGTTCCTC GCTGTACCAC GGAATTGCAG CCGGAAAACT
           151
                 GAAAAGCATT TTGAAAAAAA CCGACCACTG CATGATTTAT GTGCTGATTG
                251
```

301 351 401 451 501 551 601	AGAACTCACC TTTATATCGT GCCTCACTCC GTACAGCGTC GGCACGGAAT	ATTGGACGGA AATGGGCTGG CGCCGGCAGG GGCATTTACT	AAAGCGAAAA ATGGTCTTGG ACTGGCTTGG GGTTTGTAAA TTCGTATTGG	GCGGCTGCAG ACGACTGCTG CGGTAATGAA CTGGCGGCAG CGATGAAAAA GCGGCAGCAT	TCTATTGCGA ATCCCTGACA GCGGTATGCT ATCCGACACG	
This corresponds	to the amino	acid sequence	<seq 998<="" id="" td=""><td>s; ORF 254.a></td><td>:</td><td></td></seq>	s; ORF 254.a>	:	
101 151	MYTGERFNTY LLYLSSSLYH WTVFSLSWLL ASLPPAGLAW VSVYGYVI*	GIAAGKLKSI AAAGIAOELT	LKKTDHCMIY IGRKSEKRLL	SIAIYIVMGW	ALVSLRNGPG MVLAVMKSLT	
m254/a254 97.	.6% identity in	167 aa overla	ap	10		20
30				10		20
m254.pep	LLYLSSWLYHG	IAAGKLKSIL		1111111111	[]]]	
	11111					
HLSGLILA	AGLALMLLKTI			LSSSLYHGIAA 40	GKLKSIL 50	60
70		20	30	40	30	O O
90		40	50	60	70	80
m254.nen	YVLIAGSYTPFA	LVSLRNGPGWI	VFSLSWLLAAA	GIAQELTIGRK	SEKRLLS	
		11111111111		нинин	1111111	
a254 KKTDHCMI	YVLIAGSYTPFA	ALVSLRNGPGW7 80	rveslswllaa <i>i</i> 90	AGIAQELTIGRK 100	SEKRLLS 110	120
130						
150		100	110	120	130	140
11111111	WMVLAVMKSLT/ : : 		11111	WFVNDEKIRHO	SHGIWHLF	
a254 IAIYIVMG	WMVLAVMKSLT				SHGIWHLF	180
190	;	140	150	160	170	180
m254.pep		160 TQFVSVYGYVI				
a254	VLGGSI	 TQFVSVYGYVI 200				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 999>:

```
g255.seq
              atggttggac aggaagcctt gcggggtcag ttcgtcgccg tgttcgctgc
              egegttgegt tacgetgtea aaacetgege egattteeae geetttgaeg
          51
              gcgttgatgc ccatcatcgc gtaggcgatt tcggcatcga ggcggtcgaa
         101
              aacgggttcg cccaaaccga cggggacgtt ggcggcttcg atatgcagtt
         151
         201 tegegeegae ggaatecaag gatttgegea cacegtecat atagtgttee
         251 agttcggcga tttggctttg gttggcggca aaaaaaggat tttgggaaat
              gtgttegetg cetteaaace ggatttttt ttegeegaet tgggtaacgt
         301
         351 aggoggtgat ttccgtgccg aatttttctt tcagccattt tttggcaacg
         401 gctccggcgg caacgcgggc tgcggtttcg cgggcggaac tcctgccgcc
              geoceggtag tegegegtae egtatttgtg ccaataggta tagteggegt
              gtccggggcg gaaggcggtg gcgatgtcgc cgtagtcttc gctgcgctgg
         501
              teggtgttgc ggattag
         551
This corresponds to the amino acid sequence <SEQ ID 1000; ORF 255.ng>:
     g255.pep
              MVGQEALRGQ FVAVFAAALR YAVKTCADFH AFDGVDAHHR VGDFGIEAVE
              NGFAQTDGDV GGFDMQFRAD GIQGFAHTVH IVFQFGDLAL VGGKKRILGN
           51
              VFAAFKPDFF FADLGNVGGD FRAEFFFQPF FGNGSGGNAG CGFAGGTPAA
          101
          151 APVVARTVFV PIGIVGVSGA EGGGDVAVVF AALVGVAD*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1001>:
     m255.seq
              GTGGTTGGAC AGGAAGCCTT GCGGGGTCAG TTCGTCGCCG TGTTCGCTGC
           51 CGCGTTGCGT TACGCTGTCA AAACCTGCGC CGATTTCCAC GCCTTTGACG
              GCGTTGATGC CCATCATCGC GTAGGCGATT TCGGCATCGA GGCGGTCAAA
          101
          151 AACAGGTTCG CCCAAGCCGA CAGGGACATT GGCTGCTTCG ATATGCAGCT
          201 TCGCGCCGAC GGAATCCAAG GATTTGCGCA CGCTGTCCAT ATAGTTTTCC
          251 AGCTCGGCAA TTTGGCTATG GTTGGCGGCA AAAAAAGGAT TTTGGGAAAT
          301 GTGTTCGCAG CCTTCAAACC GGATTTCTTT TTCGCCGACT TGGGTAACGT
          351 AGGCGGTGAT TTCCGTGCCG AATTTTTCTT TCAACCATTT TTTGGCAACG
          401 GCTCCGGCAG CAACGCGGGC GGCGGTTTCA CGGGCGGAGC TCCTGCCGCC
          451 GCCGCGGTAG TCGCGCGTGC CGTATTTGTG CCAATAGGTA TAGTCGGCGT
          501 GGCCGGGGCG GAAGCTGGTG GCGATGTTGC CGTAGTCTTT GCTGCGCTGG
          551 TCGGTATTGC GGATTAA
This corresponds to the amino acid sequence <SEQ ID 1002; ORF 255>:
     m255.pep
            1 VVGQEALRGQ FVAVFAAALR YAVKTCADFH AFDGVDAHHR VGDFGIEAVK
           51 NRFAQADRDI GCFDMQLRAD GIQGFAHAVH IVFQLGNLAM VGGKKRILGN
               VFAAFKPDFF FADLGNVGGD FRAEFFFQPF FGNGSGSNAG GGFTGGAPAA
          151 AAVVARAVFV PIGIVGVAGA EAGGDVAVVF AALVGÍAD*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 255 shows 88.8% identity over a 188 aa overlap with a predicted ORF (ORF 255.ng)
 from N. gonorrhoeae:
      m255/g255
                                                                          60
                                                                50
                                             30
                                                      40
                          10
                                   20
                  {\tt VVGQEALRGQFVAVFAAALRYAVKTCADFHAFDGVDAHHRVGDFGIEAVKNRFAQADRDI}
      m255.pep
                  {\tt MVGQEALRGQFVAVFAAALRYAVKTCADFHAFDGVDAHHRVGDFGIEAVENGFAQTDGDV}
      g255
                                                      40
                                             30
                          10
                                   20
                                             90
                                                     100
                                    80
                          70
                  GCFDMQLRADGIQGFAHAVHIVFQLGNLAMVGGKKRILGNVFAAFKPDFFFADLGNVGGD
      m255.pep
                   GGFDMQFRADGIQGFAHTVHIVFQFGDLALVGGKKRILGNVFAAFKPDFFFADLGNVGGD
      g255
                                                                         120
                          70
                                   80
                                             90
                                                     100
                                                               110
                                                     160
                                            150
                         130
                                   140
                   FRAEFFFQPFFGNGSGSNAGGGFTGGAPAAAAVVARAVFVPIGIVGVAGAEAGGDVAVVF
      m255.pep
                   FRAEFFFQPFFGNGSGGNAGCGFAGGTPAAAPVVARTVFVPIGIVGVSGAEGGGDVAVVF
      g255
```

```
170
                                                                       180
                                                    160
                        130
                                 140
                                          150
                       189
                 AALVGIADX
    m255.pep
                 11111:111
                 AALVGVADX
    g255
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1003>:
     a255.seq
              GTGGTTGGAC AGGAAGCCTT GCGGGGTGAG TTCGTCGCCG TGTTCGCTGC
              CGCGTTGCGT TACGCTGTCA AAACCTGCGC CGATTTCCAC GCCTTTGACG
          51
              GCGTTGATGC CCATCATGGC GTAGGCGATT TCGGCATCGA GGCGGTCGAA
          101
              TACGGGTTCG CCCAAGCCGA CGGGGACGTT GGCGGCTTCA ATATGCAGCT
         151
              TCGCGCCGAC GGAATCCAAG GATTTGCGCA CGCTGTCCAT ATAGTTTTCC
         201
              AGCTCGGCAA TTTGGCTATG GTTGGCGGCA AAAAAAGGAT TTTGGGAAAT
          251
              GTGTTCGCAG CCTTCAAACC GGATTTCTTT TTCGCCGACT TGGGTAACGT
          301
              AGGCGGTGAT TTCCGTGCCG AATTTTTCTT TCAACCATTT TTTGGCAACG
          351
              GCTCCGGCGG CAACGCGGGC GGCGGTTTCG CGGGCGGAAC TCCTGCCGCC
          401
              GCCCCGGTAG TCGCGCGTGC CGTATTTGTG CCAATAGGTA TAGTCGGCGT
          451
              GGCCGGGGCG GAAGCTGGTG GCGATGTTGC CGTAGTCTTT GCTGCGCTGG
          501
              TCGGTATTGC GGATTAA
          551
This corresponds to the amino acid sequence <SEQ ID 1004; ORF 255.a>:
     a255.pep
              VVGQEALRGE FVAVFAAALR YAVKTCADFH AFDGVDAHHG VGDFGIEAVE
              YGFAQADGDV GGFNMQLRAD GIQGFAHAVH IVFQLGNLAM VGGKKRILGN
           51
              VFAAFKPDFF FADLGNVGGD FRAEFFFQPF FGNGSGGNAG GGFAGGTPAA
          101
          151 APVVARAVFV PIGIVGVAGA EAGGDVAVVF AALVGIAD*
m255/a255 93.1% identity in 188 aa overlap
                                                               50
                                            30
                                                     40
                         10
                  VVGQEALRGQFVAVFAAALRYAVKTCADFHAFDGVDAHHRVGDFGIEAVKNRFAQADRDI
     m255.pep
                  VVGQEALRGEFVAVFAAALRYAVKTCADFHAFDGVDAHHGVGDFGIEAVEYGFAQADGDV
     a255
                                  20
                                            30
                                                     40
                         10
                                                              110
                                                                       120
                                            90
                                                    100
                         70
                                  80
                  GCFDMOLRADGIQGFAHAVHIVFQLGNLAMVGGKKRILGNVFAAFKPDFFFADLGNVGGD
     m255.pep
                  {\tt GGFNMQLRADGIQGFAHAVHIVFQLGNLAMVGGKKRILGNVFAAFKPDFFFADLGNVGGD}
     a255
                                                     100
                                                              110
                         70
                                   80
                                            90
                                                                        180
                                                     160
                                                              170
                        130
                                  140
                                           150
                  FRAEFFFQPFFGNGSGSNAGGGFTGGAPAAAAVVARAVFVPIGIVGVAGAEAGGDVÄVVF
     m255.pep
                  FRAEFFFQPFFGNGSGGNAGGGFAGGTPAAAPVVARAVFVPIGIVGVAGAEAGGDVAVVF
     a255
                                           150
                                                     160
                                  140
                        130
                        189
     m255.pep
                  AALVGIADX
                  111111111
     a255
                  AALVGIADX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1005>:
      g256.seq
               atgetegegg tacgeaateg gggttggcac ggcgcagteg tecatttecg
               cagctgcggc ggcgtagcga acaccgcccc ggtgttctac cacttgggtg
           51
               ataccgccga aatcgccttt gctttggaca cgctcaccgc gcgttaccgt
          101
               gaaatatacg ccgtcggcgt atcgctgggc ggcaacgcgc cggcaaaata
          151
               tttgggcgaa cagggcaaaa aggcattgcc gcacgcctcg gccgccgtat
          201
               ccgccccgt tgatgcagag gcggcaggca gccgcttcga cagcggcatc
          251
          301 acgcggetge tetacacgcg etactteete cgcacactga tacccaaage
```

g256

-- 200

```
acgttcgctc caaggttttc agacggcatt tgccgcaggg tgcaaaacac
         351
              tgggcgagtt tgacgaccgt ttcaccgcac cgctgcacgg ctttgccgac
              cggcacgact actaccgcca aacttcctgc aaaccgctgc tcaaacacgt
         451
              tgccaaaccg ctgctcctgc tcaatgccgc caacgacccc ttcctgccgc
         501
              ccgaagcct gccccgtgca gacgaagcgt ccgaagccgt taccctgttc
         551
              caacetqcae acggcgggca cgccggcttt gtcagcagca ccggcggcag
         601
              gctgcacctg caatggctgc cgcagaccgt cctgtcctat tttgacagct
         651
         701
              tccgcacaaa caggcgttaa
This corresponds to the amino acid sequence <SEQ ID 1006; ORF 256.ng>:
    g256.pep
              MLAVRNRGWH GAVVHFRSCG GVANTAPVFY HLGDTAEIAF ALDTLTARYR
              EIYAVGVSLG GNAPAKYLGE QGKKALPHAS AAVSAPVDAE AAGSRFDSGI
          51
              TRLLYTRYFL RTLIPKARSL QGFQTAFAAG CKTLGEFDDR FTAPLHGFAD
         101
              RHDYYRQTSC KPLLKHVAKP LLLLNAANDP FLPPEALPRA DEASEAVTLF
              QPAHGGHAGF VSSTGGRLHL QWLPQTVLSY FDSFRTNRR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1007>:
     m256.seq
              ATGCTTGCGG TACGCGATCG GGGTTGGCAC GGCGTAGTCG TCCATTTCCG
           1
          51 CAGCTGCGGC GGCATTGCCA ACACCGCTCC GGTGTTCTAC CA.CTtGGCG
         101 ATACCGCCGA AATCGCCTTT ACTTTGGACA CGTTCGCCGC GCGTTACCGT
              GAAALATACG CCGTCGGCGT ATCGCTGGGC GGCAACGCGC TGGCAAAATA
         151
              TTTGGGCGAA CAGGGCAAAA AGGCATTGCC GCAAGCCGCT GCCGTCATCT
          201
              CCGCCCCGT CGATGCAGAG GCGGCAGGCA GACGCTTCGA CAGCGGCATC
          251
          301 ACGCGGCTGC TCTACACGCG CTACTTCCTC CGCACCCTGA TACCCAAAGC
          351 AAAATCGCTC CAAGGTTTTC AGACGGCATT TGCCGCAGGG TGCAAAACAC
          401 TGGGCGAGTT TGACGACCGC TTCACCGCAC CGCTGCACGG CTTTGCCGAC
          451 CGGCACGACT ACTACCGCCA AACTTCCTGC AAACCGCTGC TCAAACACGT
          501 TGCCAAACCG CTGCTCCTGC TCAATGCCGT CAACGACCCC TTCCTGCCGC
              CCGAAGCCCT GCCCGCGCA GACGAAGTAT CCGAAGCCGT TACCCTGTTC
          551
              CAGCCGGCAT ATGGTGGTCA TGTCGGCTTT GTCAGCAGCA CCGGCGGCAG
          601
          651 GCTGCACCTG CAATGGCTGC CGCAGACCGT CCTGTCCTAT TTCGACAGCT
          701 TCCGCACAAA CAGGCGTTAA
This corresponds to the amino acid sequence <SEQ ID 1008; ORF 256>:
     m256.pep
              MLAVRDRGWH GVVVHFRSCG GIANTAPVFY XLGDTAEIAF TLDTFAARYR
           51 EIYAVGVSLG GNALAKYLGE QGKKALPQAA AVISAPVDAE AAGRRFDSGI
              TRLLYTRYFL RTLIPKAKSL QGFQTAFAAG CKTLGEFDDR FTAPLHGFAD
              RHDYYRQTSC KPLLKHVAKP LLLLNAVNDP FLPPEALPRA DEVSEAVTLF
              QPAYGGHVGF VSSTGGRLHL QWLPQTVLSY FDSFRTNRR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 256 shows 92.9% identity over a 239 aa overlap with a predicted ORF (ORF 256.ng)
from N. gonorrhoeae:
     m256/g256
                         10
                                   20
                                            30
                                                      40
                  MLAVRDRGWHGVVVHFRSCGGIANTAPVFYHLGDTAEIAFTLDTFAARYREIYAVGVSLG
     m256.pep
                  MLAVRNRGWHGAVVHFRSCGGVANTAPVFYHLGDTAEIAFALDTLTARYREIYAVGVSLG
     g256
                                                                         60
                                                               50
                         10
                                   20
                                            30
                                                      40
                                                                        120
                                            90
                                                     100
                                   80
                  GNALAKYLGEQGKKALPQAAAVISAPVDAEAAGRRFDSGITRLLYTRYFLRTLIPKAKSL
     m256.pep
                  GNAPAKYLGEQGKKALPHASAAVSAPVDAEAAGSRFDSGITRLLYTRYFLRTLIPKARSL
     g256
                          70
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
                                                              170
                                  140
                                           150
                                                     160
                         130
                  OGFOTAFAAGCKTLGEFDDRFTAPLHGFADRHDYYRQTSCKPLLKHVAKPLLLLNAVNDP
     m256.pep
```

QGFQTAFAAGCKTLGEFDDRFTAPLHGFADRHDYYRQTSCKPLLKHVAKPLLLLNAANDP

-150

g256	FLPPEALPRADEVSEAVTLFQPAYGGHVGFVSSTGGRLHLQWLPQTVLSYFDSF	
9230	190 200 210 220 230	
The following p	partial DNA sequence was identified in N. meningitidis <seq id<="" td=""><td>1009>:</td></seq>	1009>:
a256.seq		
1	ATGCTCGCGG TACGCGATCG GGGTTGGAAC GGCGTAGTCG TCCATTTCCG	
51	CACCTGCGC GGCGTAGCGA ACACCGCCC GGTGTTCTAC CACTTGGGCG	
101	ATACCCCCA AATTCCCTTT ACTTTGGACA CGCTCGCCGC GCGTTACCGT	
151	CANAMAMACG CCGTCGGCGT ATCGCTGGGC GGCAACGCGC TGGCAAAATA	
201	TTTGGGCGAA CAGGGCGAAA ACGCGCTGCC GCAAGCCGCC GCCGTCATCT	
251	CCGCACCCGT CGATGCAGAG GCGGCAGGCA ACCGCTTCGA CAGCGGCATC	
301	ACACGGCTGC TCTACACGCG CTACTTCCTC CGCACACTGA TACCCAAAGC	
351	ACGGTCGCTC CAAGGTTTTC AGACGGCATT TGCCGCAGGG TGCAAAACAC	
401	TGGGCGAGTT TGACGACCGT TTCACCGCAC CGCTGCACGG CTTTGCCGAT	
451	CGGCACGACT ACTACCGCCA AACTTCCTGC AAACCGCTGC TCAAACACGT	
501	TGCCAAACCG CTGCTCCTGC TCAATGCCGT CAACGACCCC TTCCTGCCGC	
551	CCGAAGCGCT GCCCCGCGCA GACGAAGTGT CCGAAGCCGT TACCCTGTTC CAGCCGACAC ACGGTGGTCA TGTCGGCTTT GTCGGCAGCA CCGGCGGCAG	
601	CAGCCGACAC ACGGTGGTCA TGTCGGCTTT GTCGGCACAC CCGGCGGCACAC GCTGCACCTG CAATGGTTGC CGCAGACCGT CCTGTCCTAT TTCGACAGCT	
651	TCCGCACAAA CAGGCGTTAA	
701	TCCGCACAAA CAGGCGIIAA	
This correspond	ds to the amino acid sequence <seq 1010;="" 256.a="" id="" orf="">:</seq>	
a256.pep	· · · · · · · · · · · · · · · · · · ·	
1	MLAVRDRGWN GVVVHFRSCG GVANTAPVFY HLGDTAEIAF TLDTLAARYR	
51	EIYAVGVSLG GNALAKYLGE QGENALPQAA AVISAPVDAE AAGNRFDSGI	
101	TRLLYTRYFL RTLIPKARSL QGFQTAFAAG CKTLGEFDDR FTAPLHGFAD	•
151	RHDYYRQTSC KPLLKHVAKP LLLLNAVNDP FLPPEALPRA DEVSEAVTLF	
201	QPTHGGHVGF VGSTGGRLHL QWLPQTVLSY FDSFRTNRR*	
m256/a256 95		
	5.4% identity in 239 aa overlap	
111250/4450	5.4% identity in 239 aa overlap	60
	10 20 30 40 50 MIAVRORGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIY	AVGVSLG
m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIY	AVGVSLG
	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYA	AVGVSLG AVGVSLG
m256.pep	10 20 30 40 50 MIAVRORGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIY	AVGVSLG
m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYA	AVGVSLG AVGVSLG
m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60
m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL
m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 PKAKSL
m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 PKAKSL
m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL : IPKARSL
m256.pep a256 m256.pep a256	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL IPKARSL 120 180
m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 PKAKSL IPKARSL 120 180 LNAVNDP
m256.pep a256 m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL IPKARSL 120 180 LNAVNDP
m256.pep a256 m256.pep a256	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL IPKARSL 120 180 LNAVNDP
m256.pep a256 m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG 60 120 IPKAKSL IPKARSL 120 180 LNAVNDP LNAVNDP 180
m256.pep a256 m256.pep a256 m256.pep a256	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG
m256.pep a256 m256.pep a256 m256.pep	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG AVGVSLG AVGVSLG
m256.pep a256 m256.pep a256 m256.pep a256	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG
m256.pep a256 m256.pep a256 m256.pep a256	10 20 30 40 50 MLAVRDRGWHGVVVHFRSCGGIANTAPVFYXLGDTAEIAFTLDTFAARYREIYI	AVGVSLG

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1011>: g256-1.seq

1 ATGATTTTGA CACCGCCGGA CACGCCCTTT TTCCTCCGCA ACGGCAATGC
51 CGACACGATT GCCGCCAAAT TCCTGCAACA CCCCGCACCC GCATACCGCC

- NO. -

590

```
101 GCGAGATGCT TCCCGACAGC ACGGGTAAAA CCAAAACCGC CTACGACTTT
         TCAGCAGGCG GCATTTCGCC CGATGCGCCG CTGGTCGTGC TGTTTCACGG
    201 TTTGGAAGGA AGCAGCCGCA GCCATTACGC GGTCGAACTG ATGCTCGCGG
    251 TACGCAATCG GGGTTGGCAC GGCGCAGTCG TCCATTTCCG CAGCTGCGGC
    301 GGCGTAGCGA ACACCGCCCC GGTGTTCTAC CACTTGGGTG ATACCGCCGA
    351 AATCGCCTTT GCTTTGGACA CGCTCACCGC GCGTTACCGT GAAATATACG
    401 CCGTCGGCGT ATCGCTGGGC GGCAACGCGC CGGCAAAATA TTTGGGCGAA
    451 CAGGGCAAAA AGGCATTGCC GCACGCCTCG GCCGCCGTAT CCGCCCCCGT
         TGATGCAGAG GCGGCAGGCA GCCGCTTCGA CAGCGGCATC ACGCGGCTGC
    501
    551 TCTACACGCG CTACTTCCTC CGCACACTGA TACCCAAAGC ACGTTCGCTC
         CAAGGTTTTC AGACGGCATT TGCCGCAGGG TGCAAAACAC TGGGCGAGTT
    601
    651 TGACGACCGT TTCACCGCAC CGCTGCACGG CTTTGCCGAC CGGCACGACT
    701 ACTACCGCCA AACTTCCTGC AAACCGCTGC TCAAACACGT TGCCAAACCG
    751 CTGCTCCTGC TCAATGCCGC CAACGACCCC TTCCTGCCGC CCGAAGCCCT
    801 GCCCCGTGCA GACGAAGCGT CCGAAGCCGT TACCCTGTTC CAACCTGCAC
    851 ACGGCGGGCA CGCCGGCTTT GTCAGCAGCA CCGGCGGCAG GCTGCACCTG
     901 CAATGGCTGC CGCAGACCGT CCTGTCCTAT TTTGACAGCT TCCGCACAAA
    951 CAGGCGTTAA
This corresponds to the amino acid sequence <SEQ ID 1012; ORF 256-1.ng>:
g256-1.pep
       1 MILTPPDTPF FLRNGNADTI AAKFLOHPAP AYRREMLPDS TGKTKTAYDF
      51 SAGGISPDAP LVVLFHGLEG SSRSHYAVEL MLAVRNRGWH GAVVHFRSCG
         GVANTAPVFY HLGDTAEIAF ALDTLTARYR EIYAVGVSLG GNAPAKYLGE
     151 QGKKALPHAS AAVSAPVDAE AAGSRFDSGI TRLLYTRYFL RTLIPKARSL
     201 QGFQTAFAAG CKTLGEFDDR FTAPLHGFAD RHDYYRQTSC KPLLKHVAKP
     251 LLLLNAANDP FLPPEALPRA DEASEAVTLF QPAHGGHAGF VSSTGGRLHL
     301 QWLPQTVLSY FDSFRTNRR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1013>:
       1 ATGATTTTAA CACCGCCGGA CACGCCCTTT TTCCTCCGCA ACGGCAATGC
         CGACACGATT GCCGCCAAAT TCCTGCAACG CCCCGCGCCC GCATACCGCC
      51
         GAGAGCTGCT TCCCGACAGC ACGGGTAAAA CCAAAGTCGC CTACGACTTT
     101
     151 TCAGACGGCA TTTCGCCCCA TGCGCCGCTG GTCGTGCTGT TTCACGGTTT
201 GGAAGGAAGC AGCCGCAGCC ATTACGCGGT CGAACTGATG CTTGCGGTAC
         GCGATCGGGG TTGGCACGGC GTAGTCGTCC ATTTCCGCAG CTGCGGCGGC
     251
     301 ATTGCCAACA CCGCTCCGGT GTTCTACCAC TTGGGCGATA CCGCCGAAAT
         CGCCTTTACT TTGGACACGT TCGCCGCGCG TTACCGTGAA ATATACGCCG
TCGGCGTATC GCTGGGCGGC AACGCGCTGG CAAAATATTT GGGCGAACAG
     351
     401
         GGCAAAAAGG CATTGCCGCA AGCCGCTGCC GTCATCTCCG CCCCCGTCGA
     451
     501
         TGCAGAGGCG GCAGGCAGAC GCTTCGACAG CGGCATCACG CGGCTGCTCT
     551 ACACGCGCTA CTTCCTCCGC ACCCTGATAC CCAAAGCAAA ATCGCTCCAA
          GGTTTTCAGA CGGCATTTGC CGCAGGGTGC AAAACACTGG GCGAGTTTGA
         CGACCGCTTC ACCGCACCGC TGCACGGCTT TGCCGACCGG CACGACTACT
     701 ACCGCCAAAC TTCCTGCAAA CCGCTGCTCA AACACGTTGC CAAACCGCTG
         CTCCTGCTCA ATGCCGTCAA CGACCCCTTC CTGCCGCCCG AAGCCCTGCC
     751
         CCGCGCAGAC GAAGTATCCG AAGCCGTTAC CCTGTTCCAG CCGGCATATG
     801
          GTGGTCATGT CGGCTTTGTC AGCAGCACCG GCGGCAGGCT GCACCTGCAA
          TGGCTGCCGC AGACCGTCCT GTCCTATTTC GACAGCTTCC GCACAAACAG
     951 GCGTTAA
This corresponds to the amino acid sequence <SEQ ID 1014; ORF 256-1>:
m256-1.pep
       1 MILTPPDTPF FLRNGNADTI AAKFLQRPAP AYRRELLPDS TGKTKVAYDF
      51 SDGISPDAPL VVLFHGLEGS SRSHYAVELM LAVRDRGWHG VVVHFRSCGG
     101 IANTAPVFYH LGDTAEIAFT LDTFAARYRE IYAVGVSLGG NALAKYLGEQ
     151 GKKALPQAAA VISAPVDAEA AGRRFDSGIT RLLYTRYFLR TLIPKAKSLQ
     201 GFQTAFAAGC KTLGEFDDRF TAPLHGFADR HDYYRQTSCK PLLKHVAKPL
     251 LLLNAVNDPF LPPEALPRAD EVSEAVTLFQ PAYGGHVGFV SSTGGRLHLQ
     301 WLPOTVLSYF DSFRTNRR*
m256-1/g256-1
                 93.1% identity in 319 aa overlap
                               20
                                         30
                                                   40
                     10
             MILTPPDTPFFLRNGNADTIAAKFLQRPAPAYRRELLPDSTGKTKVAYDFS-DGISPDAP
m256-1.pep
             MILTPPDTPFFLRNGNADTIAAKFLQHPAPAYRREMLPDSTGKTKTAYDFSAGGISPDAP
a256-1
                     10
                               20
                                         30
                                                   40
                                                             50
```

70

80

90

LVVLFHGLEGSSRSHYAVELMLAVRDRGWHGVVVHFRSCGGIANTAPVFYHLGDTAEIAF

100

110

```
LVVLFHGLEGSSRSHYAVELMLAVRNRGWHGAVVHFRSCGGVANTAPVFYHLGDTAEIAF
g256-1
                             80
                                      90
                   70
                                                         170
                                      150
                                               160
                   130
                             140
          120
            TLDTFAARYREIYAVGVSLGGNALAKYLGEQGKKALPQAAAVISAPVDAEAAGRRFDSGI
m256-1.pep
            ALDTLTARYREIYAVGVSLGGNAPAKYLGEQGKKALPHASAAVSAPVDAEAAGSRFDSGI
g256-1
                                                        170
                                     150
                                              160
                                      210
                                               220
                                                         230
                                                                 239
                             200
                   190
          180
            TRLLYTRYFLRTLIPKAKSLQGFQTAFAAGCKTLGEFDDRFTAPLHGFADRHDYYRQTSC
m256-1.pep
            {	t TRLLYTRYFLRTLIPKARSLQGFQTAFAAGCKTLGEFDDRFTAPLHGFADRHDYYRQTSC
g256-1
                                              220
                                     210
                   190
                            200
                                                         290
                                               280
                                      270
                    250
                             260
            KPLLKHVAKPLLLLNAVNDPFLPPEALPRADEVSEAVTLFQPAYGGHVGFVSSTGGRLHL
m256-1.pep
            KPLLKHVAKPLLLLNAANDPFLPPEALPRADEASEAVTLFQPAHGGHAGFVSSTGGRLHL
g256-1
                            260
                                     270
                                              280
                    310
          300
            QWLPQTVLSYFDSFRTNRRX
m256-1.pep
             111111111111111111111111
q256-1
            QWLPQTVLSYFDSFRTNRRX
                   310
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1015>:
a256-1.seq
         ATGATTTTGA CACCGCCGGA CACACCCTTT TTCCTCCGCA ACGGCAATGC
CGACACGATT GCCGCCAAAT TCCTGCAACG CTCCGCACCT GCATACCGCC
      51
         GCGAGCTGCT TCCCGACAGC ACGGGTAAAA CCAAAACCGC CTACGACTTT
     101
         TCAGACGGCA TTTCGCCCGA TGCGCCGCTG GTCGTGCTGT TTCACGGTTT
     151
         GGAGGGCGGC AGTGGCAGCC ATTACGCGGT CGAACTGATG CTCGCGGTAC
     201
         GCGATCGGGG TTGGAACGGC GTAGTCGTCC ATTTCCGCAG CTGCGGCGGC
     251
         GTAGCGAACA CCGCCCGGT GTTCTACCAC TTGGGCGATA CCGCCGAAAT
     301
         TGCCTTTACT TTGGACACGC TCGCCGCGCG TTACCGTGAA ATATACGCCG
     351
         TCGGCGTATC GCTGGGCGGC AACGCGCTGG CAAAATATTT GGGCGAACAG
     401
         GGCGAAAACG CGCTGCCGCA AGCCGCCGCC GTCATCTCCG CACCCGTCGA
     451
         TGCAGAGGCG GCAGGCAACC GCTTCGACAG CGGCATCACA CGGCTGCTCT
     501
         ACACGCGCTA CTTCCTCCGC ACACTGATAC CCAAAGCACG GTCGCTCCAA
     551
         GGTTTTCAGA CGGCATTTGC CGCAGGGTGC AAAACACTGG GCGAGTTTGA
     601
         CGACCGTTTC ACCGCACCGC TGCACGGCTT TGCCGATCGG CACGACTACT
     651
          ACCGCCAAAC TTCCTGCAAA CCGCTGCTCA AACACGTTGC CAAACCGCTG
     701
          CTCCTGCTCA ATGCCGTCAA CGACCCCTTC CTGCCGCCCG AAGCGCTGCC
          CCGCGCAGAC GAAGTGTCCG AAGCCGTTAC CCTGTTCCAG CCGACACACG
     B01
         GTGGTCATGT CGGCTTTGTC GGCAGCACCG GCGGCAGGCT GCACCTGCAA
     851
         TGGTTGCCGC AGACCGTCCT GTCCTATTTC GACAGCTTCC GCACAAACAG
     901
     951 GCGTTAA
This corresponds to the amino acid sequence <SEQ ID 1016; ORF 256-1.a>:
 a256-1.pep
         MILTPPDTPF FLRNGNADTI AAKFLORSAP AYRRELLPDS TGKTKTAYDF
SDGISPDAPL VVLFHGLEGG SGSHYAVELM LAVRDRGWNG VVVHFRSCGG
      51
          VANTAPVFYH LGDTAEIAFT LDTLAARYRE IYAVGVSLGG NALAKYLGEQ
          GENALPOAAA VISAPVDAEA AGNRFDSGIT RLLYTRYFLR TLIPKARSLQ
     151
          GFQTAFAAGC KTLGEFDDRF TAPLHGFADR HDYYRQTSCK PLLKHVAKPL
     201
          LLLNAVNDPF LPPEALPRAD EVSEAVTLFQ PTHGGHVGFV GSTGGRLHLQ
     251
          WLPQTVLSYF DSFRTNRR*
     301
                 95.6% identity in 318 aa overlap
 a256-1/m256-1
                              20
                                       30
             MILTPPDTPFFLRNGNADTIAAKFLQRSAPAYRRELLPDSTGKTKTAYDFSDGISPDAPL
 a256-1.pep
             MILTPPDTPFFLRNGNADTIAAKFLQRPAPAYRRELLPDSTGKTKVAYDFSDGISPDAPL
 m256-1
                              20
                                       30
                     10
                                       90
                                                100
                                                         110
                     70
                              80
             VVLFHGLEGGSGSHYAVELMLAVRDRGWNGVVVHFRSCGGVANTAPVFYHLGDTAEIAFT
 a256-1.pep
             [[]]]]]]]]]]]]
 m256-1
             VVLFHGLEGSSRSHYAVELMLAVRDRGWHGVVVHFRSCGGIANTAPVFYHLGDTAEIAFT
```

	70	80	90	100	110	120
	130	140	150	160	170	180
a256-1.pep	LDTLAARYREIYAV					111111
	:					TILLI TOSCIT
m256-1	130	140	150	160	170	180
	130	140	130	100	2.0	200
	190	200	210	220	230	240
a256-1.pep	RLLYTRYFLRTLIP	KARSLQGFQ	PAFAAGCKTL	GEFDDRFTAPI	LHGFADRHDYY	RQTSCK
	1111111111111111	11:111111	111111111			
m256-1	RLLYTRYFLRTLIF				LHGFADRHDY	ROTSCK
	190	200	210	220	230	240
					000	300
	250	260	270	280	290	
a256-1.pep	PLLKHVAKPLLLLN	AVNOPELPP	EALPRADEVS	EAVILIQPIE	GHVGE VGSI	
	111111111111111	11111111				CRINIC
m256-1	PLLKHVAKPLLLL		270	280	290	300
	250	260	270	200	230	500
	310	319				
a256-1.pep	WLPQTVLSYFDSF	RTNRRX				
	1111111111111111					
m256-1	WLPQTVLSYFDSF	RTNRRX				
	310					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1017>: g257.seq

```
atgggcaggc atttcgggcg cagacgtttt ctgacggctg ccgccgttgc
```

51 tgtggccggt gcggcggttt cttttttgcc gaatcctttt gccgccggcg

101 gcgaaaaacg caacatggat aaaaaacgcg atgaaaatgt gtttttctgg

aaaggtgtcg cgctgggttc cggcgcggag ctgcgcctgt tcggcgtgga

201 cgacagacag gcggcggatt tggtcaataa ggttttggcg gaagtggcgc 251 gtttggaaaa aatgttcagc ctttaccgtg aagacagcct gatcagccgt

301 ctgaaccgcg acggttatct gacttcgcct ccggcggatt ttttggaact

351 gttgagcctg gccgcgatat tcacgcgctg a

This corresponds to the amino acid sequence <SEQ ID 1018; ORF 257.ng>: g257.pep

1 MGRHFGRRRF LTAAAVAVAG AAVSFLPNPF AAGGEKRNMD KKRDENVFFW

51 KGVALGSGAE LRLFGVDDRQ AADLVNKVLA EVARLEKMFS LYREDSLISR 101 LNRDGYLTSP PADFLELLSL AAIFTR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1019>:

m257.seq

ATGGGCAGGC ATTTCGGGCG .CAGCGTTTT CTGACGGTTG CCGCCGTTGC

51 GGCGGGGAC. GCGGCGGTTT CTTTCCTGCC GAATCCTTTT GCCGCCGATG

101 ATGAAAAACG CAACGGGGAT GAAAAACGCA ATGAAAATGT GTTTTTCTGG

151 AAAGGTGTCG CACTGGGTTC CGGTGCGGa. CTCCGTCTGT TCGGTGTGGA 201 CGACAGGCGT GCGGCGGATT TGGTCAACAA GGTTTTGGCG GAAGTGGCGC

251 GTTTGGAAAA ATTGTTCAGC CTTTACCGTG AAGACAGCCT GATCAGCCGC

301 CTGAACAGGG ACGGTTATCT GACTTCGCCG TCGGCGGATT TTTTGGAACT

351 GKTGAGCCTG GCCGCGATAT TCACGCKCTG A

This corresponds to the amino acid sequence <SEQ ID 1020; ORF 257>:

m257.pep

MGRHFGXQRF LTVAAVAAGX AAVSFLPNPF AADDEKRNGD EKRNENVFFW 1

51 KGVALGSGAX LRLFGVDDRR AADLVNKVLA EVARLEKLFS LYREDSLISR

101 LNRDGYLTSP SADFLELXSL AAIFTX*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 257 shows 88.0% identity over a 125 aa overlap with a predicted ORF (ORF 257.ng) from N. gonorrhoeae:

m257/g257

** ****

m257.pep				EKRNGDEKRNEN	VFFWKGVALGSGAI	:
g257	MGRHFGRRRFL	TAAAVAVAGAAV 20	VSFLPNPFAAGGI 30	KRNMDKKRDEN 40	VFFWKGVALGSGAI 50 6	<u>.</u>
	70	80	90	100	110 120)
m257.pep	LRLFGVDDRRA	adlvnkvlaev	ARLEKLFSLYREI	OSLISRLNRDGY	LTSPSADFLELXS	ւ
g257	LRLFGVDDRQA 70	ADLVNKVLAEV 80	ARLEKMFSLYREI 90	DSLISRLNRDGY 100	LTSPPADFLELLS	
				L :		
m257.pep	AAIFTXX					
g257	AAIFTRX					
The following pa						:
• 1	ATGGGCAGGC	ATTTCGGGCG	CAGGCGTTTT	TTGACAGTTG	CCGCCGTTGC	
51	GGCGGCGGC (GCGGCGGTTT	CTTTCCTGCC	GAATCCTTTT	GCCGCCGATG	
101	ATGAAAAACG (CACTGGGTTC	CGGTGCGGAG	CTCCGTCTGT	TCGGTGTGGA	
201	CGACAGGCGT	GCGGCGGATT	TGGTCAACAA	GGTTTTGGC	GAAGTGGCGC	
251	GTTTGGAAAA	AATGTTCAGC	CTTTACCGTG	AAGACAGCCT	GATCAGCCGT	
301	CTGAACCGTG	ACGGTTATTT	GACTTCGCCG	CCGGCGGATT	TTTTGGAACT	
351	GTTGAGCCTG	GCCGTGATAT	TCACGCGCTG	A		
This corresponds	s to the amino a	cid sequence	<seq 102<="" id="" td=""><td>22; ORF 257.</td><td>a>:</td><td></td></seq>	22; ORF 257.	a>:	
a257.pep	MCDUECDDDE	TAGGGGGTT	AAVSELPNPE	AADDEKRNKI	EKRNENVFFW	
51	KGVALGSGAE	LRLFGVDDRR	AADLVNKVLA	EVARLEKMF:	LYREDSLISR	
101	LNRDGYLTSP					
		1051				
m257/a257 92				30	40	50
60		10	20	30	40	50
60 m257.pep						
MGRHFGXO	RFLTVAAVAAGXA	AVSFLPNPFA	ADDEKRNGDEK	RNENVFFWKG	VALGSGAX	
11011111 0112	111111	:	1111111111111		$\{\{\{1,1\},\{1\},\{1\},\{1\},\{1\},\{1\},\{1\},\{1\},\{1\},$	
11111111	[] [] [] [] [] [] [] []					
a257						
MCDUECDD			* DOCKDNEDER	oneniveemy <i>c</i>	VALGSGAE	
PIGKIT GKK	RFLTVAAVAAAGA				VALGSGAE 40	50
	RFLTVAAVAAAGA	AAVSFLPNPFA 10	ADDEKRNKDEK 20	RNENVFFWKG 30	VALGSGAE 40	50
60	RFLTVAAVAAAGA				40	- '
	RFLTVAAVAAAGA				VALGSGAE 40 100	50 110
60 120		10	20	30	40	- '
60 120 m257.pep		70	80	30 90	100	- '
60 120 m257.pep	RRAADLVNKVLAI	10 70 EVARLEKLFSI	20 80 YREDSLISRL	30 90 NRDGYLTSPSA	40 100 DFLELXSL	- '
60 120 m257.pep LRLFGVDD	RRAADLVNKVLAI	10 70 EVARLEKLFSI	20 80 YREDSLISRL	30 90 NRDGYLTSPSA	100	110
60 120 m257.pep LRLFGVDD	RRAADLVNKVLAI	10 70 EVARLEKLFSI	20 80 YREDSLISRL	30 90 NRDGYLTSPSA	40 100 DFLELXSL	110
60 120 m257.pep LRLFGVDD	RRAADLVNKVLAI	10 70 EVARLEKLFSI EVARLEKMFSI	20 80 LYREDSLISRLN 	30 90 NRDGYLTSPSA 	40 100 DFLELXSL	110
120 m257.pep LRLFGVDD a257 LRLFGVDD	RRAADLVNKVLAI	10 70 EVARLEKLFSI	20 80 YREDSLISRL	30 90 NRDGYLTSPSA	40 100 DFLELXSL	110
60 120 m257.pep LRLFGVDD	RRAADLVNKVLAI	10 70 EVARLEKLFSI EVARLEKMFSI	20 80 LYREDSLISRLN 	30 90 NRDGYLTSPSA 	40 100 DFLELXSL	110
120 m257.pep LRLFGVDD a257 LRLFGVDD	RRAADLVNKVLAF RRAADLVNKVLAF	10 70 EVARLEKLFSI EVARLEKMFSI	20 80 LYREDSLISRLN 	30 90 NRDGYLTSPSA 	40 100 DFLELXSL	110
120 m257.pep LRLFGVDD a257 LRLFGVDD	RRAADLVNKVLAI RRAADLVNKVLAI	10 70 EVARLEKLFSI 	20 80 LYREDSLISRLN 	30 90 NRDGYLTSPSA 	40 100 DFLELXSL	110

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1023>:
     g258.seq
               atgegeeget tectacegat egeageeata tgegeegteg teetgetgta
               cggattgacg gcggcgaccg gcagcaccag ttcgctggcg gattatttct
           51
               ggtggatagt ctcgttcagc gcaatgctgc tgctggtgtt gtccgccgtt
          101
               ttggcacgtt atgtcatatt gctgttgaaa gacaggcgca acggcgtgtt
          151
          201 cggttcgcag attgccaaac gcctttccgg gatgttcacg ctggtcgccg
          251 tactgcccgg cttgttcctg ttcggcattt ccgcgcagtt tatcaacggc
          301 acgattaatt cgtggttcgg caacgacacc cacgaagccc tcgaacgcag
          351 ccttaatttg agcaagtccg cactggattt ggcggcagac aatgccgtca
          401 gcaacgccgt tcccgtacag atagacctca tcggcaccgc ctccctgtcg
          451 ggcaatatgg gcagtgtgct ggaacactac gccggcagcg gttttgccca
               gettgeeetg tacaatgeeg caagegggaa aategaaaaa ageateaate
          501
          551 cgcaccaatt cgaccagccg cttcccgaca aagaacattg ggaacagatt
          601 cagcagaccg gttcggttcg gagtttggaa agcataggcg gcgtattgta
          651 cgcgcaggga tggttgtcgg caggtacgca caacgggcgc gattacgcgc
          701 tgttcttccg ccagccgatt cccgaaaatg tggcacagga tgccgttctg
          751 attgaaaagg cgcgggcgaa atatgccgaa ttgagttaca gcaaaaaagg
               tttgcagacc ttttttctgg taaccctgct gattgcctcg ctgctgtcga
          801
          851 ttttcttgc gctggtaatg gcactgtatt ttgcccgccg tttcgtcgaa
          901 cccattctgt cgcttgccga gggcgcaaag gcggtggcgc agggtgattt
          951 cagccagacg cgccccgtat tgcgcaacga cgagttcgga cgtttgacca
         1001 agctgttcaa ccatatgacc gagcagcttt ccatcgccaa agaagcagac
         1051 gaacgcaacc gccggcgcga ggaagccgcc cgtcactacc tcgagtgcgt
               gttggatggg ttgactaccg gtgtggtggt ctentacccc ctctcttgtt
          1101
          1151 gccgtaccgc ggtgttttcc acttgtcatt cctcccctct ttcttatttc
          1201 taa
This corresponds to the amino acid sequence <SEQ ID 1024; ORF 258.ng>:
      g258.pep
               MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVSFS AMLLLVLSAV
            51 LARYVILLLK DRRNGVFGSQ IAKRLSGMFT LVAVLPGLFL FGISAQFING
           101 TINSWEGNDT HEALERSLNL SKSALDLAAD NAVSNAVPVQ IDLIGTASLS
           151 GNMGSVLEHY AGSGFAQLAL YNAASGKIEK SINPHQFDQP LPDKEHWEQI
               QQTGSVRSLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPI PENVAQDAVL
           251 IEKARAKYAE LSYSKKGLQT FFLVTLLIAS LLSIFLALVM ALYFARRFVE
           301 PILSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT EQLSIAKEAD
           351 ERNRREEAA RHYLECVLDG LTTGVVVSYP LSCCRTAVFS TCHSSPLSYF*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1025>:
      m258.seq
             1 ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG TCCTGTTGTA
            51 CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG GATTATTTCT
           101 GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT GTCCGCCGTT
           151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG ACGGCGTATT
           201 CGGTTCGCAG ATTGCCAAAC GCCTTTCTGG GATGTTTACG CTGGTTGCCG
           251 TACTGCCCGG CGTGTTTCTG TTCGGCGTTT CCGCACAGTT CATCAACGGC
           301 ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC TTGAACGCAG
           351 CCTCAATTTG AGCAAGTCCG CATTGAATTT GGCGGCAGAC AACGCCCTCG
           401 GCAACGCCGT CCCCGTGCAG ATAGACCTCA TCGGCGCGGC TTCCCTGCCC
           451 GGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG GTTTTGCCCA
           501 GCTTGCCCTG TACAATGCCG CAAGCGGCAA AATCGAAAAA AGCATCAACC
           551 CGCACAAGCT CGATCAGCCG TTTCCAGGTA AGGCGCGTTG GGAAAAAATC
           601 CAACGGGCGG GTTCGGTCAG GGATTTGGAA AGCATAGGCG GCGTATTGTA
           651 CGCGCAGGGC TGGCTGTCGG CGGGTACGCA CAACGGGCGC GATTACGCCT
           701 TGTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA TGCCGTCTTA
           751 ATCGAAAAGG CAAGGGCGAA ATATGCTGAG TTGAGTTACA GCAAAAAAGG
                TTTGCAGACC TTTTTCCTGG CAACCCTGCT GATTGCCTCG CTGCTGTCGA
           851 TTTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG TTTCGTCGAA
           901 CCCGTCCTAT CGCTTGCCGA GGGGGCGAAG GCGGTGGCGC AAGGCGATTT
           951 CAGCCAGACG CGCCCCGTGT TGCGCAACGA CGAGTTCGGA CGCTTGACCA
```

```
1001 AGTTGTTCAA CCACATGACC GAGCAGCTTT CCATCGCCAA AGAAGCAGAC
1051 GAGCGCAACC GCCGGCGCGA GGAAGCCGCC AGGCATTATC TTGAATGCGT
1101 GTTGGAGGGG CTGACCACGG GCGTGGTGGT GTTTGACGAA CAAGGCTGTC
1151 TGAAAACSTT CAACAAAGCG GCGGAACAGA TTYTGGGGAT GCCGCTTACC
1201 CCCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT CGGCGCAGCA
1301 ACAAACCGGT CCATGTGAAA TATGCCGCGC CGGACGATGC CAAAATCCTG
1351 CTGGGCAAGG CAACCGTCCT GCCCGAAGAC AACGGCAACG GCGTGGTAAT
1401 GGTGATTGAC GACATCACCG TTTTGATACA CGCGCAAAAA GAAGCCGCGT
1451 GGGGCGAAGT GGCGAAGCGG CTGGCACACG AAATCCGCAA TCCGCTCACG
1501 CCCATCCAGC TTTCCGCCGA ACGG8TGGCG TKGAAATTGG GCGGGAAGCT
1551 GGATGAGCAG GATGCGCAAA TCCTGACGCG TTCGACCGAC ACCATCGTCA
1601 AACAGGTGGC GGCATTGAAG GAAATGGTCG AAGCATTCCG CAATTATGCG
1651 CGTTCCCCTT CGCTCAAATT GGAAAATCAG GATTTGAACG CCTTAATCGG
1701 CGATGTGTTG GCATTGTATG AAGCCGGTCC GTGCCGGTTT GCGGCGGACT
1751 TGCCGGCGAA CCGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1026; ORF 258>:

m258.pep

1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVAFS AMLLLVLSAV
51 LARYVILLK DRRDGVFGSQ IAKRLSGMFT LVAVLPGVFL FGVSAQFING
101 TINSWFGNDT HEALERSLNL SKSALNLAAD NALGNAVPVQ IDLIGAASKI
151 GDMGRVLEHY AGSGFAQLAL YNAASGKIEK SINPHKLDQP FPGKARWEKI
201 QRAGSVRDLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPV PKGVAEDAVL
251 IEKARAKYAE LSYSKKGLQT FFLATLLIAS LLSIFLALVM ALYFARRFVE
301 PVLSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT EQLSIAKEAD
351 ERNRRREEAA RHYLECVLEG LTTGVVVFDE QGCLKTFNKA AEQILGMPLT
401 PLWGSSRHGW HGVSAQQSLL AEVFAAIGAA AGTDKPVRVK YAAPDDAKIL
451 LGKATVLPED NGNGVVMVID DITVLHAQK EAAWGEVAKR LAHEIRNPLT
501 PIQLSAERXA XKLGGKLDEQ DAQILTRSTD TIVKQVAALK EMVEAFRNYA
551 RSPSLKLENQ DLNALIGDVL ALYEAGPCRF AADLPANR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 258 shows 90.9% identity over a 386 aa overlap with a predicted ORF (ORF 258.ng) from N. gonorrhoeae:

m258/g258

m258.pep	10 MRRFLPIAAICAVVI	20 LLYGLTAATG	30 STSSLADYFW	40 WIVAFSAMLL	50 LVLSAVLARY	VILTTK 60
g258	MRRFLPIAAICAVV	LLYGLTAATG	STSSLADYFW	WIVSFSAMLL		
	10	20	30	40	50	60
	70	80	90	100	110	120
m258.pep	DRRDGVFGSQIAKR	LSGMFTLVAV	LPGVFLFGVS.	AQFINGTINS	WFGNDTHEAL	ERSLNL
		1111111111	111:1111:1	1111111111	11111111111	11111
g258	DRRNGVFGSQIAKR	LSGMFTLVAV	LPGLFLFGIS	AOFINGTINS	WFGNDTHEAL	ERSLNL
3	70	80	90	100	110	120
	130	140	150	160	170	180
m258.pep	SKSALNLAADNALG	NAVPVQIDLI	GAASLPGDMG	RVLEHYAGSG	FAQLALYNAA	SGKIEK
		1111111111	1:111 1:11		111111111	111111
g258	SKSALDLAADNAVS	NAVPVQIDLI	GTASLSGNMG	SVLEHYAGSG	FAQLALYNAA	SGKIEK
	130	140	150	160	170	180
	190	200	210	220	230	240
m258.pep	SINPHKLDQPFPGK	ARWEKIQRAG	SVRDLESIGG	VLYAQGWLSA	GTHNGRDYAL	
	_ :: :	: : ::		1111111111		11111:
g258	SINPHOFDOPLPDK					
	190	200	210	220	230	240

.. m

```
270
                                        280
                                                290
                 250
                        260
           PKGVAEDAVLIEKARAKYAELSYSKKGLQTFFLATLLIASLLSIFLALVMALYFARRFVE
m258.pep
           PENVAQDAVLIEKARAKYAELSYSKKGLQTFFLVTLLIASLLSIFLALVMALYFARRFVE
 q258
                         260
                                270
                                        280
                                                290
                                                        300
                 250
                        320
                                330
                                        340
                 310
           PVLSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRRREEAA
 m258.pep
           PILSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRRREEAA
 g258
                         320
                                330 340
                                                350
                                                        360
                 370
                         380
                                390
                                        400
           \verb"RHYLECVLEGLTTGVVVFDEQGCLKTFNKAAEQILGMPLTPLWGSSRHGWHGVSAQQSLL"
 m258.pep
           RHYLECVLDGLTTGVVVSYPLSCCRTAVFSTCHSSPLSYFX
 g258
                 370
                         380
                                390
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1027>:

```
a258.seq
         ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG TCCTGTTGTA
         CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG GATTATTTCT
     51
         GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT GTCCGCCGTT
     151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG ACGGCGTATT
         CGGTTCGCAG ATTGCCAAAC GCCTTTCCGG GATGTTTACG CTGGTTGCCG
     251 TACTGCCCGG CGTGTTTCTG TTCGGCGTTT CCGCACAGTT TATCAACGGC
     301 ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC TTGAACGCAG
     351 CCTCAATTTG AGCAAGTCCG CATTGAATCT GGCGGCAGAC AACGCCCTTG
         GCAACGCCAT CCCCGTGCAG ATAGACCTCA TCGGCGCGGC TTCCCTGCCC
     401
     451 GGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG GTTTTGCCCA
     501 GCTTGCCCTG TACAATGCCG CAAGCGGCAA AATCGAAAAA AGCATCAACC
         CGCACAAGCT CGATCAGCCG TTTCCAGGTA AGGCGCGTTG GGAAAAAATC
     551
     601 CAACAGGCGG GTTCGGTCAG GGATTTGGAA AGCATAGGCG GCGTATTGTA
     651 CGCGCAGGGC TGGCTGTCGG CAGGTACGCA CAACGGGCGC GATTACGCCT
         TGTTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA TGCCGTCTTA
     701
         ATCGAAAAGG CAAGGGCGAA ATATGCTGAG TTGAGTTACA GCAAAAAAGG
         TTTGCAGACC TTTTTCCTGG CAACCCTGCT GATTGCCTCG CTGCTGTCGA
     801
     851 TTTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG TTTCGTCGAA
     901 CCCGTCCTAT CGCTTGCCGA GGGGGCGAAG GCGGTGGCGC AAGGCGATTT
     951 CAGCCAGACG CGCCCCGTGT TGCGCAACGA CGAGTTCGGA CGCTTGACCA
    1001 AGTTGTTCAA CCACATGACC GAGCAGCTTT CCATCGCCAA AGAAGCAGAC
    1051 GAGCGCAACC GCCGGCGCGA GGAAGCCGCC AGACATTATC TCGAATGCGT
         GTTGGAGGGG CTGACCACGG GCGTGGTGGT GTTTGACGAA CAAGGCTGTC
    1101
         TGAAAACCTT CAACAAAGCG GCGGAACAGA TTTTGGGGAT GCCGCTTACC
    1151
         CCCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT CGGCGCAGCA
    ACAAACCGGT CCATGTGAAA TATGCCGCGC CGGACGATGC CAAAATCCTG
    1351 CTGGGCAAGG CAACCGTCCT GCCCGAAGAC AACGGCAACG GCGTGGTAAT
    1401 GGTGATTGAC GACATCACCG TTTTGATACA CGCGCAAAAA GAAGCCGCGT
    1451 GGGGCGAAGT GGCAAAACGG CTGGCACACG AAATCCGCAA TCCGCTCACG
         CCCATCCAGC TTTCTGCCGA ACGCTGGCG TGGAAATTGG GCGGGAAGCT
    1551 GGACGAGCAG GACGCGCAAA TCCTGACACG TTCGACCGAC ACCATCATCA
    1601 AACAAGTGGC GGCATTAAAA GAAATGGTCG AGGCATTCCG CAATTACGCG
    1651 CGTTCCCCTT CGCTCAAATT GGAAAATCAG GATTTGAACG CCTTAATCGG
          CGATGTGTTG GCATTGTACG AAGCTGGTCC GTGCCGGTTT GCGGCGGAAC
    1701
         TTGCCGGCGA ACCGCTGATG ATGGCGGCGG ATACGACCGC CATGCGGCAG
    1751
    1801 GTGCTGCACA ATATTTTCAA AAATGCCGCC GAAGCGGCGG AAGAAGCCGA
         TGTGCCCGAA GTCAGGGTAA AATCGGAAGC GGGGCAGGAC GGACGGATTG
    1851
         TCCTGACAGT TTGCGACAAC GGCAAGGGGT TCGGCAGGGA AATGCTGCAC
    1901
    1951 AATGCCTTCG AGCCGTATGT AACGGACAAA CCGGCTGGAA CGGGATTGGG
    2001 ACTGCCCGTG GTGAAAAAA TCATTGAAGA ACACGGCGGC CGCATCAGCC
          TGAGCAATCA GGATGCGGGC GGCGCGTGTG TCAGAATCAT CTTGCCAAAA
    2051
    2101 ACGGTAGAAA CTTATGCGTA G
```

This corresponds to the amin	o acid sequence <	SEQ ID 1028;	ORF 258.a>:
------------------------------	-------------------	--------------	-------------

-	is to the allitho acid	seducince ~	EQ ID 102	6, OKI 236.	.a.	
a258.pep						
1	MRRFLPIAAI CAVVLI	LYGLT AATGS	rssla dyfww	IVAFS AMLL	LVLSAV	
51	LARYVILLLK DRRDGV					
101	TINSWFGNDT HEALER					
151	GDMGRVLEHY AGSGFA	AQLAL YNAAS	GKIEK SINPH	KLDQP FPGK	ARWEKI	
201	OOAGSVRDLE SIGGVI					
251	IEKARAKYAE LSYSKI					
301	PVLSLAEGAK AVAQGI					
351	ERNRRREEAA RHYLEO					
	PLWGSSRHGW HGVSA					
401	PLWGSSKAGW AGVSAG	MODEL MEVEN	MIGAA AGIDI	EVNVN IAAE.	TOMOT M	
451	LGKATVLPED NGNGV	AWAID DILAT	IHAQK EAAWC	SEVARK LAME	IKNELI	
501	PIQLSAERLA WKLGG					
551	RSPSLKLENQ DLNAL					
601	VLHNIFKNAA EAAEE	ADVPE VRVKS	EAGQD GRIVI	LTVCDN GKGF	GREMLH	
651	NAFEPYVTDK PAGTGI	LGLPV VKKII	EEHGG RISLS	SNQDAG GACV	RIILPK	
701	TVETYA*					
m258/a258 99	0.0% identity in 584	aa overlan				
111236/4236	•	20	30	40	50	60
	10					
m258.pep	MRRFLPIAAICAV					
	ППППППП	1111111111	111111111		11111111	
a258	MRRFLPIAAICAV					
	10	20	30	40	50	60
	70	80	90	100	110	120
m258.pep	DRRDGVFGSQIAKI	RLSGMFTLVAV	LPGVFLFGVS/	AQFINGTINSW	FGNDTHEAL	ERSLNL
mboo.pop		11111111111	1111111111		HEITHE	111111
a258	DRRDGVFGSQIAK	RISCMETIVAV	LPGVFLFGVS	AOFINGTINSW	FGNDTHEAL	ERSLNL
2250	70	80	90	100	110	120
	,,	00	50	200		
	130	140	150	160	170	180
	130					
m258.pep	SKSALNLAADNAL	GNAVPVQIDLI	GAASLPGDMG	RVLEHYAGSGE	AQLALINAA:	SGKIEK
	111111111111111111111111111111111111111					
a258	SKSALNLAADNAL	-				
	130	140	150	160	170	180
	190	200	210	220	230	240
m258.pep	SINPHKLDQPFPG	KARWEKIQRAG	SVRDLESIGG	VLYAQGWLSAG	THNGRDYAL	FFRQPV
	111111111111111111111111111111111111111	111111111111111	1111111111	шиінш	111111111	ШШ
a258	SINPHKLDQPFPG	KARWEKTOOAG	SVRDLESIGG	VLYAOGWLSAG	THNGRDYAL	FFROPV
2250	190	200	210	220	230	240
	250	200				
	250	260	270	280	290	300
	PKGVAEDAVLIEK					
m258.pep		AKAKIAELSIS	VVGPÖTEETV	111111111111	ILLIIII.	111111
	1111111111111	111111111111	1111111111]		111111
a258	PKGVAEDAVLIEK					
	250	260	270	280	290	300
	310	320	330	340	350	360
m258.pep	PVLSLAEGAKAVA	.QGDFSQTRPVI	RNDEFGRLTK	LFNHMTEQLS]	AKEADERNR	RREEAA
	1111111111111	11111111111	11111111111	1111111111	. 1 1 1 1 1 1 1 1 1 1	111111
a258	PVLSLAEGAKAVA	.QGDFSQTRPVI	RNDEFGRLTK	LFNHMTEQLS]	AKEADERNR	RREEAA
	310	320	330	340	350	360
	370	380	390	400	410	420
m258.pep	RHYLECVLEGLTT					
mz36.pep						
	1111111111111			11111111111111111111111111111111111111		111111
a258	RHYLECVLEGLTT					
	370	380	390	400	410	420
	430	440	450	460	470	480
m258.pep	AEVFAAIGAAAGT	'DKPVHVKYAAI	PDDAKILLGKA	TVLPEDNGNG	/VMVIDDITV	LIHAQK
- •	11111111111111					
a258	AEVFAAIGAAAGT	DKPVHVKYAA	PDDAKILLGKA	TVLPEDNGNG	/VMVIDDITV	LIHAQK

	430	440	450	460	470	480
	490	500	510	520	530	540
m258.pep	EAAWGEVAKRLAHE	IRNPLTPIQ:	LSAERXAXKLO	GKLDEQDAQ:	LTRSTDTIVE	(QVAALK
	[11]]]]]	1111111111	11111 111	111111111		111111
a258	EAAWGEVAKRLAHE	IRNPLTPIQ	LSAERLAWKLO	GKLDEQDAQ:	[LTRSTDTII	QVAALK
	-490	500	510	520	530	540
	550	560	570	580	589	
m258.pep	EMVEAFRNYARSPS	LKLENQDLN	ALIGDVLALY	EAGPCRFAADI	LPANRX	
	11111111111111	111111111			l	
-a258	EMVEAFRNYARSPS	LKLENQDLN	ALIGDVLALY	EAGPCRFAAEI	LAGEPLMMAAI	TTAMRQ
	550	560	570	580	590	600
a258	VLHNIFKNAAEAAE	EADVPEVRV	KSEAGODGRIV	/LTVCDNGKG	GREMLHNAFF	PYVTOK
2-55	610	620	630	640	650	660

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1029>: 9259.seq

```
1 atgatgatgc acgettetgt ccaaagtegt ttegeacega tactttatgt
51 tttgatttc tttgeeggtt ttttgacege gcaaatetgg tteaateaga
101 aageetatac tgaagagetg ceteegette tgteegeatt gteegeegte
151 gegetggtgt ggetggegtg ggegttegtg teggtgegtt caaaggetaa
201 ggeagaaaag ttetacegeg aaaaaatgat acagaaegaa ageatacace
251 cegteetgea egettettg caacaettgg aacacaagee gcaaatgete
301 geeetgetgg teaaaaacea eggeaaagge atggeggaae aggteaggtt
351 caaggeggaa gtgetgeeg acgacgaaga egegeaceg attgeegeeg
401 agttggeaaa aatggatatg ttegeattgg ggacggaege ggtegeeteg
451 ggegaaacet atgggegegt gttegeega attttegagt tgteggege
501 tttggaaagg egegegtea aagggataet gaaactgaeg geggaatata
551 aaaaacatet teggegatge etgeegtteg gaaaeeggegt tggatttggg
601 egegeteaat caggegttga gggaaatete gaaaeegeeg gaaaageeta
651 a
```

This corresponds to the amino acid sequence <SEQ ID 1030; ORF 259.ng>: g259.pep

- 1 MMMHASVQSR FAPILYVLIF FAGFLTAQIW FNQKAYTEEL PPLLSALSAV
- 51 ALVWLAWAFV SVRSKAKAEK FYREKMIQNE SIHPVLHASL QHLEHKPQML
- 101 ALLVKNHGKG MAEQVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS
- 151 GETYGRVFAD IFELSAALER RAFKGILKLT AEYKKHLRRC LPFGNGVGFG
- 201 RAQSGVEGNL ENAGKA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1031>:

- m259.seq (partial)
 - 1 ATGATGATGC ACGCTTCTGT CCAAAGCCGT TTCGCACCGA TACTTTATGT
 - 51 TTTGATTTTC TTTGCCGGTT TTTTGACCGC GCAAATCTGG TTCAATCAGA
 - 101 AAGCCTATAC TGAAGAGCTG CCTCCGCTTC TGTCCGCATT GTCCGCCGTC
 - 151 GCGCTGGTGT GGCTGGCGTG GGCGTTCGTG TCGGCGCGTT CAAAGGCCAA
 - 201 GGCGGAAAAG TTCTACCGCG AAAAAATGAT ACAGAACGAA AGCATACACC
 - 251 CCGTCBTGCA CGCCTCTTTG CAACACTTGG AACACAAGCC GCAAATACTC
 - 301 GCCCTGCTGG TCAAAAACCA CGGCAAAGGG ATGGCGGAAC AGGTCAGGTT
 - 351 CAAGGCGGAA GTGCTGCCCG ACGACGAAGA CGCGCGCACG ATTGCCGCCG
 - 401 AGTTGGCAAA AATGGATATG TTCGCATTGG GGACKGACGC GGTCGCCTCG
 - 451 GGCGAAACCT ATGGACGCGT GTTCGCCGAT ATTTTCGAGT TGTCGGmGGC
 - 501 TTTGGAAGGG CGCGCGTTCA AAGGAATGTT GAAACTGACG GCGGAATATA
 - 551 AA.AACATCT TCGGmGATGC CTGCCGTTCG GAAACGGCGT TGGAGTTGGG
 - 601 CGCACTCAAT CAGGCGTTGC AGGAGATTTC AAAAACATCC GG..

This corresponds to the amino acid sequence <SEQ ID 1032; ORF 259>: m259.pep (partial)

- 1 MMMHASVOSR FAPILYVLIF FAGFLTAQIW FNQKAYTEEL PPLLSALSAV
- 51 ALVWLAWAFV SARSKAKAEK FYREKMIQNE SIHPVXHASL QHLEHKPQIL
- 101 ALLVKNHGKG MAEQVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS

```
151 GETYGRVFAD IFELSXALEG RAFKGMLKLT AEYKXHLRRC LPFGNGVGVG
         201 RTQSGVAGDF KNIR..
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 259 shows 94.3% identity over a 212 aa overlap with a predicted ORF (ORF 259.ng)
from N. gonorrhoeae:
    m259/g259
                        10
                                 20
                                          30
                                                   40
                                                            50
                                                                     60
                mmmhasvqsrfapilyvliffagfltaqiwfnqkayteelppllsalsavalvwlawafv
    m259.pep
                MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV
    g259
                        10
                                 20
                                          30
                                                   40
                                                            50
                        70
                               . 80
                                          90
                                                  100
                SARSKAKAEKFYREKMIQNESIHPVXHASLQHLEHKPQILALLVKNHGKGMAEQVRFKAE
    m259.pep
                 SVRSKAKAEKFYREKMIQNESIHPVLHASLQHLEHKPQMLALLVKNHGKGMAEQVRFKAE
    g259
                        70
                                 80
                                          90
                                                  100
                                                           110
                       130
                                140
                                         150
                                                  160
                VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSXALEGRAFKGMLKLT
    m259.pep
                 VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSAALERRAFKGILKLT
    g259
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                       130
                       190
                                200
                AEYKKHLRRCLPFGNGVGVGRTQSGVAGDFKNIR
    m259.pep
                 AEYKKHLRRCLPFGNGVGFGRAQSGVEGNLENAGKAX
    g259
                       190
                                200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1033>:
              (partial)
     a259.seq
              ATGATGATGC ACGCTTCTGT CCAAAGCCGT TTCGCACCGA TACTTTATGT
              TTTGATTTTC TTTGCCGGTT TTTTGACCGC GCAAATCTGG TTCAATCAGA
         101 AAGCCTATAC TGAAGAGCTG CCTCCGCTTC TGTCCGCATT GTCCGCCGTC
         151 GCGCTGGTGT GGCTGGCGTG GGCGTTCGTG TCGGCGCGTT CAAAGGCTAA
         201 GGCGGAAAAG TTCTACCGCG AAAAAATGAT ACAGAACGAA AGCATACACC
         251 CCGTCCTGCA CGCTTCTTTG CAACACTTGG AACACAAGCC GCAAATGCTC
         301 GCCCTGCTGG TCAAAAACCA CGGCAAAGGG ATGGCGGAAC AGGTCAGGTT
         351
             CAAGGCGGAA GTGCTGCCCG ACGACGAAGA CGCGCGCACG ATTGCCGCCG
         401 AGTTGGCAAA AATGGATATG TTTGCATTGG GGACGGACGC GGTCGCCTCG
         451 GGCGAAACCT ATGGACGCGT GTTCGCCGAT ATTTTCGAGT TGTCGGCGGC
             TTTGGAAGGG CGCGCGTTCA AAGGAATGTT GAAACTGACG GCGGAATATA
         551
              AAAA.CATCT TCGGCGATGC CTGCCGTTCG GAAACGGCGT TGGAGTTGGG
             CGCGCTCAAT CAGGCGTTGC AGGAGATTTC AAAAACATCG GAAAAGTCCA
         601
         651
This corresponds to the amino acid sequence <SEQ ID 1034; ORF 259.a>:
     a259.pep
              (partial)
              MMMHASVOSR FAPILYVLIF FAGFLTAQIW FNOKAYTEEL PPLLSALSAV
              ALVWLAWAFV SARSKAKAEK FYREKMIQNE SIHPVLHASL QHLEHKPQML
         101 ALLVKNHGKG MAEOVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS
         151 GETYGRVFAD IFELSAALEG RAFKGMLKLT AEYKXHLRRC LPFGNGVGVG
         201 RAQSGVAGDF KNIGKVQ
m259/a259 98.1% identity in 213 aa overlap
                                 20
                                          30
                                                   40
                                                                      60
                 MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV
     m259.pep
```

MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV

a259

		•				
	10	20	30	40	50	60
	70	80	90	100	110	120
m259.pep	SARSKAKAEKFYRE	KMIQNESIHP	VXHASLQHLE	HKPQILALL\	KNHGKGMAEQ	VRFKAE
Will of the P	111111111111111		1 11111111	:	411111111	
a259	SARSKAKAEKFYRE	KMIONESIHP	VLHASLQHLE	HKPQMLALL\	KNHGKGMAEC	VRFKAE
a233	70	80	90	100	110	120
	130	140	150	160	170	180
m259.pep	VLPDDEDARTIAAE	LAKMDMFALG	TDAVASGETY	GRVFADIFEI	LSXALEGRAFK	GMLKLT
WCO21F-F	11111111111111111	1111111111	11111111111	1111111111		. 1 1 1 1 1 1
a259	VLPDDEDARTIAAE	LAKMDMFALG	TDAVASGETY	GRVFADIFE	LSAALEGRAFK	GMLKLT
a233	130	140	150	160	170	. 180
	190	200	210			
m259.pep	AEYKXHLRRCLPFG	NGVGVGRTQS	GVAGDFKNIR	L		
MEDSIFUE	111111111111111					
a259	AEYKXHLRRCLPFG	NGVGVGRAQS	GVAGDFKNIG	KVQ		
4200	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1035>: g259-1.seq

```
1 ATGATGATGC ACGCTTCTGT CCAAAGTCGT TTCGCACCGA TACTTTATGT
51 TTTGATTTTC TTTGCCGGTT TTTTGACCGC GCAAATCTGG TTCAATCAGA
101 AAGCCTATAC TGAAGAGCTG CCTCCGCTTC TGTCCGCATT GTCCGCCGTC
151 GCGCTGGTGT GGCTGGCGTG GGCGTTCGTG TCGGTGCGTT CAAAGGCTAA
201 GGCAGAAAG TTCTACCGCG AAAAAATGAT ACAGAACGAA AGCATACACC
251 CCGTCCTGCA CGCTTCTTTG CAACACTTGG AACACAAGCC GCAAATGCTC
301 GCCCTGCTGG TCAAAAACCA CGGCAAAGGC ATGGCGGAAC AGGTCAGGTT
351 CAAGGCGGAA GTGCTGCCCG ACGACGAAGA CGCGCGCACG ATTGCCGCCG
401 AGTTGGCAAA AATGGATATG TTCGCATTGG GGACGGACGC GGTCGCCTCG
451 GGCGAAACCT ATGGGCGCGT GTTCGCCGAT ATTTTCGAGT TGTCGGCGGC
501 TTTGGAA
```

This corresponds to the amino acid sequence <SEQ ID 1036; ORF 259-1.ng>: g259-1.pep

- 1 MMHASVQSR FAPILYVLIF FAGFLTAQIW FNQKAYTEEL PPLLSALSAV 51 ALVWLAWAFV SVRSKAKAEK FYREKMIQNE SIHPVLHASL QHLEHKPQML 101 ALLVKNHGKG MAEQVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS
- 151 GETYGRVFAD IFELSAALE

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1037>: m259-1.seq

-1.Se					
1		ACGCTTCTGT			
51		TTTGCCGGTT			
101		TGAAGAGCTG			
151		GGCTGGCGTG			
201	GGCGGAAAAG	TTCTACCGCG	AAAAAATGAT	ACAGAACGAA	AGCATACACC
251	CCGTCCTGCA	CGCCTCTTTG	CAACACTTGG	AACACAAGCC	GCAAATACTC
301	GCCCTGCTGG	TCAAAAACCA	CGGCAAAGGG	ATGGCGGAAC	AGGTCAGGTT
351	CAAGGCGGAA	GTGCTGCCCG	ACGACGAAGA	CGCGCGCACG	ATTGCCGCCG
401	AGTTGGCAAA	AATGGATATG	TTCGCATTGG	GGACGGACGC	GGTCGCCTCG
451	GGCGAAACCT	ATGGACGCGT	GTTCGCCGAT	ATTTTCGAGT	TGTCGGCGGC
501	TTTGGAAGGG	CGCGCGTTCA	AAGGAATGTT	GAAACTGACG	GCGGAATATA
551	AAAACATCTT	CGGCGATGCC	TGCCGTTCGG	AAACGGCGTT	GGAGTTGGGC
601	GCACTCAATC	AGGCGTTGCA	GGAGATTTCA	AAAACATCGG	AAAAGTCCAA
651	ACGGATATTT	TATTGA			

This corresponds to the amino acid sequence <SEQ ID 1038; ORF 259-1>: m259-1.pep

- 1 MMMHASVQSR FAPILYVLIF FAGFLTAQIW FNQKAYTEEL PPLLSALSAV 51 ALVWLAWAFV SARSKAKAEK FYREKMIQNE SIHPVLHASL QHLEHKPQIL
- 101 ALLVKNHGKG MAEQVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS 151 GETYGRVFAD IFELSAALEG RAFKGMLKLT AEYKNIFGDA CRSETALELG
- 201 ALNQALQEIS KTSEKSKRIF Y*

98.8% identity in 169 aa overlap g259-1/m259-1

```
50
                                   30
                                            40
                           20
                  10
           MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV
g259-1.pep
           mmhasvqsrfapilyvliffagfltaqiwfnqkayteelppllsalsavalvwlawafv
m259~1
                                   30
                           20
                                           100
                                   90
                           80
           SVRSKAKAEKFYREKMIQNESIHPVLHASLQHLEHKPQMLALLVKNHGKGMAEQVRFKAE
g259-1.pep
           SARSKAKAEKFYREKMIQNESIHPVLHASLQHLEHKPQILALLVKNHGKGMAEQVRFKAE
m259-1
                                           100
                                                    110
                                   90
                           80
                  70
                                           160
                                                   169 ...
                          140
                 130
           VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSAALE
q259-1.pep
            VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSAALEGRAFKGMLKLT
m259-1
                                           160
                                                    170
                          140
                 130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1039>:
a259-1.seq
         ATGATGATGC ACCCTTCTGT CCAAAGCCGT TTCGCACCGA TACTTTATGT
     51 TTTGATTTTC TTTGCCGGTT TTTTGACCGC GCAAATCTGG TTCAATCAGA
    101 AAGCCTATAC TGAAGAGCTG CCTCCGCTTC TGTCCGCATT GTCCGCCGTC
         GCGCTGGTGT GGCTGGCGTG GGCGTTCGTG TCGGCGCGTT CAAAGGCTAA
     151
     201 GGCGGAAAAG TTCTACCGCG AAAAAATGAT ACAGAACGAA AGCATACACC
     251 CCGTCCTGCA CGCTTCTTTG CAACACTTGG AACACAAGCC GCAAATGCTC
     301 GCCCTGCTGG TCAAAAACCA CGGCAAAGGG ATGGCGGAAC AGGTCAGGTT
     351 CAAGGCGGAA GTGCTGCCCG ACGACGAAGA CGCGCGCACG ATTGCCGCCG
     401 AGTTGGCAAA AATGGATATG TTTGCATTGG GGACGGACGC GGTCGCCTCG
         GGCGAAACCT ATGGACGCGT GTTCGCCGAT ATTTTCGAGT TGTCGGCGGC
     451
     501 TTTGGAAGGG CGCGCGTTCA AAGGAATGTT GAAACTGACG GCGGAATATA
     551 AAAACATCTT CGGCGATGCC TGCCGTTCGG AAACGGCGTT GGAGTTGGGC
     601 GCGCTCAATC AGGCGTTGCA GGAGATTTCA AAAACATCGG AAAAGTCCAA
     651 ACGGATATTT TATTGA
This corresponds to the amino acid sequence <SEQ ID 1040; ORF 259-1.a>:
a259-1.pep
         MMMHASVQSR FAPILYVLIF FAGFLTAQIW FNQKAYTEEL PPLLSALSAV
         ALVWLAWAFV SARSKAKAEK FYREKMIQNE SIHPVLHASL QHLEHKPQML
      51
         ALLVKNHGKG MAEQVRFKAE VLPDDEDART IAAELAKMDM FALGTDAVAS
     101
         GETYGRVFAD IFELSAALEG RAFKGMLKLT AEYKNIFGDA CRSETALELG
     201 ALNQALQEIS KTSEKSKRIF Y*
               99.5% identity in 221 aa overlap
 a259-1/m259-1
            MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV
 a259-1.pep
            MMMHASVQSRFAPILYVLIFFAGFLTAQIWFNQKAYTEELPPLLSALSAVALVWLAWAFV
 m259-1
                                    30
                            20
                   10
                                            100
                                                    110
                                    90
                            80
            SARSKAKAEKFYREKMIQNESIHPVLHASLQHLEHKPQMLALLVKNHGKGMAEQVRFKAE
 a259-1.pep
            SARSKAKAEKFYREKMIQNESIHPVLHASLQHLEHKPQILALLVKNHGKGMAEQVRFKAE
 m259-1
                                                     110
                            80
                                    90
                                            100
                   70
                           140
                                            160
                                                     170
            VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSAALEGRAFKGMLKLT
 a259-1.pep
             VLPDDEDARTIAAELAKMDMFALGTDAVASGETYGRVFADIFELSAALEGRAFKGMLKLT
 m259-1
                                            160
                                                     170
                                   150
                  130
                           140
                  190
                           200
                                    210
            AEYKNIFGDACRSETALELGALNQALQEISKTSEKSKRIFYX
 a259-1.pep
             AEYKNIFGDACRSETALELGALNQALQEISKTSEKSKRIFYX
 m259-1
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1041>: g260.seq

200

```
1 atgggtgcgg gtgtagtatt cgttgtcttt cagccgttct tcagcctgtt
            51 tcgagcgttg ttcgagggcg gagtcggtat agtcgaggga gcgcacgatg
            101 ccgctgaatg cgacttcttg tccgaggaat ttacccgtat ccggatcggt
                gatgttttta ttgattcggt aggtcagata acggcccggt tctttcaggc
            151
                ctttggtgta aaccctggcg cctttggtgt acagcagcct gccttccggg
            201
            251 cccgagagca ggcgcggcgc ggcagcggtt tctttgcggg aaacgatttg
            301 cgggtgctgc ataaagacgc ggtagaagtt gacatcgatg gcgggaatac
            351 cgtatccgga cacttcctta tccggactga ttttgacgac ggggatgccg
            401 tetgtetgtt ecaageegag gegeggtteg eegecaaegt agegeaaeae
                caatacetgg ceeggataaa teaggteggg attgtggatt tgateeeggt
            451
                 tegegececa caggggggga ccattgecac gggetgtaca ggtatttgec
- 170
                cgaaataccc cacagggtgt cgccctgttt ga
            551
  This corresponds to the amino acid sequence <SEQ ID 1042; ORF 260.ng>:
       g260.pep
                 MGAGVVFVVF QPFFSLFRAL FEGGVGIVEG AHDAAECDFL SEEFTRIRIG
              1
             51 DVFIDSVGQI TARFFQAFGV NPGAFGVQQP AFRAREQARR GSGFFAGNDL
            101 RVLHKDAVEV DIDGGNTVSG HFLIRTDFDD GDAVCLFQAE ARFAANVAQH
            151 QYLARINQVG IVDLIPVRAP QGGTIATGCT GICPKYPTGC RPV*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1043>:
       m260.seg
                 ATGGGTGCGG GTATGGTATT CGTTGTCTTT CGGCCGTTCT CCAGCCTGTT
              1
                 TCGAGCGTTG TTCGAGGACA GAGTCGGTAT AGTCGAGGGA GCGCACGATG
             51
                 CCGCTGAATG CGACTTCCTG CCCGAGGAAT TTACCCGTAT CCGGATCGGT
            101
            151 GATGTTTTA TTGATTCGGT AGGTCAGGTA GCGGCCCGGC TCTTTCAGGC
            201 CTTTGGTGTA AACCCTGGTG CCTTTGGTGT ACAGCAGCCT GCCTTCCGGG
            251 CCCGAGwrCA sGCGCGGyGC GGCAGCGGTT TCTTTGCGGG AAACGATTTG
            301 CGGATGCCGC ATAAAGATGC GGTAGAAGTT GACATCGATG GCGGGAATAC
                 CGTATCCGGA CACTTCCTTA TCCGGACTCA TTTTGACGAC GGGGATGCCG
            351
                 TCTGTCTGTT CCAAGCCGAG GCGCGGTTCG CCGTCAACGT GGCGCAACAC
                 CAATACCTGG TCCGGATAAA TCAGGTCGGG ATTGTGGATT TGATCCCGGT
            451
            501 TCGCGTyCCA CAG
   This corresponds to the amino acid sequence <SEQ ID 1044; ORF 260>:
        m260.pep
              1 MGAGMVFVVF RPFSSLFRAL FEDRVGIVEG AHDAAECDFL PEEFTRIRIG
                 DVFIDSVGQV AARLFQAFGV NPGAFGVQQP AFRARXXARX GSGFFAGNDL
             101 RMPHKDAVEV DIDGGNTVSG HFLIRTHFDD GDAVCLFQAE ARFAVNVAQH
             151 QYLVRINQVG IVDLIPVRVP Q
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N. gonorrhoeae
   ORF 260 shows 89.5% identity over a 171 aa overlap with a predicted ORF (ORF 260.ng)
   from N. gonorrhoeae:
        m260/g260
                                                                  50
                                                         40
                            10
                                      20
                                               30
                     MGAGMVFVVFRPFSSLFRALFEDRVGIVEGAHDAAECDFLPEEFTRIRIGDVFIDSVGQV
        m260.pep
                     MGAGVVFVVFQPFFSLFRALFEGGVGIVEGAHDAAECDFLSEEFTRIRIGDVFIDSVGQI
        g260
                                                                   50
                                                         40
                             10
                                      20
                                                30
                                                                           120
                                                        100
                                                                  110
                                                90
                                      80
                     AARLFQAFGVNPGAFGVQQPAFRARXXARXGSGFFAGNDLRMPHKDAVEVDIDGGNTVSG
         m260.pep
                     TARFFQAFGVNPGAFGVQQPAFRAREQARRGSGFFAGNDLRVLHKDAVEVDIDGGNTVSG
         q260
                                                                  110
                                                90
                                                        100
                                      в0
                             70
                                                                  170
                                               150
                                                        160
                                     140
                     HFLIRTHFDDGDAVCLFQAEARFAVNVAQHQYLVRINQVGIVDLIPVRVPQ
         m260.pep
                     {\tt HFLIRTDFDDGDAVCLFQAEARFAANVAQHQYLARINQVGIVDLIPVRAPQGGTIATGCT}
         q260
                                                        160
                                                                  170
                                                                           180
                                               150
                                     140
```

```
GICPKYPTGCRPV
g260
                     190
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1045>:

```
ATGGGTGCGG GTATGGTATT CGTTGTCTTT CGGCCGTTCT CCAGCCTGTT
    TCGAGCGTTG TTCGAGGACA GAGTCGGTAT AGTCGAGGGA GCGCACGATG
 51
    CCGCTGAATG CGACTTCCTG CCCGAGGAAT TTACCCGTAT CCGGATCGGT
101
151 GATGTTTTTA TTGATTCGGT AGGTCAGGTA GCGGCCCGGC TCTTTCAGGC
201 CTTTGGTGTA AACCCTGGTG CCTTTGGTGT ACAGCAGCCT GCCTTCCGGG
251 CCCGAGAGCA GGCGCGCGC GGCAGCGGTT TCTTTGCGGG AAACGATTTG
301 CGGGTGCCGC ATAAAGATGC GGTAGAAGTT GACATCGATG GCGGGAATAC
351 CGTATCCGGA CACTTCCTTA TCCGGACTCA TTTTGACGAC GGGGATGCCG
401 TCTGTCTGTT CCAAGCCGAG GCGCGGTTCG CCGTCAACGT GGCGCAACAC
451 CAATACCTGG TCCAGATAAA TCAGGTCGGG ATTGTGGATT TGATCCCGGT
    TCGCGTCCCA CAGGCGGCC. CCATTGCCAC GGGCTGTACA GGTATTTGCC
551 CGAAATGCCC CACAGGGTGT CGCCCTGTTT GA
```

This corresponds to the amino acid sequence <SEQ ID 1046; ORF 260.a>:

```
a260.pep
```

__ ****

- MGAGMVFVVF RPFSSLFRAL FEDRVGIVEG AHDAAECDFL PEEFTRIRIG
- DVFIDSVGQV AARLFQAFGV NPGAFGVQQP AFRAREQARR GSGFFAGNDL
- 101 RVPHKDAVEV DIDGGNTVSG HFLIRTHFDD GDAVCLFQAE ARFAVNVAQH
- 151 QYLVQINQVG IVDLIPVRVP QAAXIATGCT GICPKCPTGC RPV*

m260/a260 97.1% identity in 171 aa overlap

	10	20	30	40	50 .	60
m260.pep	MGAGMVFVVFRPFS	SLFRALFEDE				
• •	[4][[4][[1][[1][[1][[1][[1][[1][[1][[1][11111111111			1111111111	
a260	MGAGMVFVVFRPFSSLFRALFEDRVGIVEGAHDAAECDFLPEEFTRIRIGDVFIDSVGQV					
4555	10	20	30	40	50	60
	. 70	80	90	100	110	120
m260.pep	AARLFOAFGVNPGA	AFGVQQPAFRA	ARXXARXGSGI	FFAGNDLRMP	KDAVEVDIDO	GNTVSG
ME OU : POP	111111111111111111111111111111111111111		11 11 111	1111111111	[[]]]]]]	
a260	AARLFQAFGVNPG/	AFGVQQPAFRA	AREQARRGSG	FFAGNDLRVP	ikdavevdid(GNTVSG
4200	70	80	90	100	110	120
	130	140	150	160	170	

	130	140	130	100	170		
m260.pep	HFLIRTHFDDGDAVCLFQAEARFAVNVAQHQYLVRINQVGIVDLIPVRVPQ						
	111111111111111	1111111111		:	1111111		
a260	HFLIRTHFDDGDAV	CLFQAEARFA	/VNVAQHQYLV	/QINQVGIVDI	JIPVRVPQAAX	IATGCT	
	130	140	150	160	170	180	

GICPKCPTGCRPVX a260 190

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1047>: g261.seq

```
atggagettg ggcatategt attecttgtg etttgegege gtteagaegg
 1
    cctttttact ttccagacat tccgccagcc cgcgttcgcg caagatacag
51
    ctcgggcatt cgcggcagcc gccgacgata cccttgtagc aggtgtgggt
151 ctgttcgcgg atgtagtcca acacgcccat ttcgtccgcc aacgcccacg
201 tttgcgcctt ggtcaggtac atcagcggcg tgtggatttg aaaatcgtag
251 tccatcgcca gattaagggt aacgttcatg gatttgacga acacgccgcg
301 gcagtcggga tagcccgaaa aatcggtttc gcacacgccc gcgatgatgt
351
    gccggatacc ctgccctttg gcaaaaatgg cggcgtaaag caggaaaagc
    gcgttacgcc cgtccacaaa ggtattggga acgccgttgt cggcggtttc
    gatggcggcg gtttcgatgg cggcggtttc gtccatcagg gcgttgtgcg
451
501 taatctqccq catcaqqctc aaatcgagta cggtttgact gacacccaaa
551 tcctgcgcga tccactctgc gcgttccagc tcgacggcat ggcgttgccc
601 gtatcggaag gtgatggctt ggacgttttc gcgcccgtag gtttggattg
```

```
651 cctgaatcag gcaggtggtc gaatcctgac cgcccgagaa gatgaccaag
            701 gctttttggt ttga
  This corresponds to the amino acid sequence <SEQ ID 1048; ORF 261.ng>:
       g261.pep
                MELGHIVFLV LCARSDGLFT FQTFRQPAFA QDTARAFAAA ADDTLVAGVG
             51 LFADVVQHAH FVRQRPRLRL GQVHQRRVDL KIVVHRQIKG NVHGFDEHAA
            101 AVGIARKIGF AHARDDVPDT LPFGKNGGVK QEKRVTPVHK GIGNAVVGGF
            151 DGGGFDGGGF VHQGVVRNLP HQAQIEYGLT DTQILRDPLC AFQLDGMALP
            201 VSEGDGLDVF APVGLDCLNQ AGGRILTARE DDQGFLV*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1049>:
       m261.seq
                ATGGAGCTTG GGCATATCGT ATTCCTTATG GTTTGCGCGT GTTCAGACGG
                CCTTTTTACT TTCCAGATAT TCCGCCAGCC CGCGTTCGCG CAAGATACAG
             51
                CTCGGGCATT CGCGGCAGCC GCCGACGATG CCGTTATAGC AGGTGTGGGT
            101
            151 TTGCTCGCGG ATATAGTCCA GCACGCCCAT TTCGTCCGCC AACGCCCACG
            201 TTTGCGCCTT GGTCAGATAC ATCAGCGGCG TGTGGATTTG AAAATCATAG
            251 TCCATCGCCA AATTAAGGGT AACGTTCATC GATTTGACAA ACACGTCGCG
            301 GCAGTCGGGA TAGCCGGAGA AGTCGGTTTC GCACACGCCC GCGATGATGT
                GCCGTATCCC CTGCCCTTTG GCGTAAATCG CGGCATAGAG CAGGAAAAGC
            401 gCGTTGCGGC CGTCTACAAA GGTATTCGGA ACGCCGTTTT CGGCAGTTTC
            451 GATGGCGGCG GTGTCGTCCA TCAGGGCATT GTGCGTAATC TGCCGCATCA
            501 GGCTCAAGTC GAGTACGGTT TGTTTGACGC CCAAATCCTG CGCAATCCAG
            551 CGGGCACGTT CCAGCTCGAC GGCATGGCGT TGCCCGTATT GGAAAGTAAT
            601 GGCTTGGACG TTTTCGCGCC CGTAGGTTTG GATTGCCTGA ATCAGGCAGG
                TGGTCGAATC CTGACCGCCC GAAAAGATGA CCAAGGCTTG TTGGTTTGA
  This corresponds to the amino acid sequence <SEQ ID 1050; ORF 261>:
       m261.pep
                MELGHIVFLM VCACSDGLFT FQIFRQPAFA QDTARAFAAA ADDAVIAGVG
                LLADIVQHAH FVRQRPRLRL GQIHQRRVDL KIIVHRQIKG NVHRFDKHVA
            101 AVGIAGEVGF AHARDDVPYP LPFGVNRGIE QEKRVAAVYK GIRNAVFGSF
            151 DGGGVVHQGI VRNLPHQAQV EYGLFDAQIL RNPAGTFQLD GMALPVLESN
            201 GLDVFAPVGL DCLNQAGGRI LTARKDDQGL LV*
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 261 shows 79.7% identity over a 237 aa overlap with a predicted ORF (ORF 261.ng)
  from N. gonorrhoeae:
       m261/g261
                                                                          60
                                              30
                                                       40
                    MELGHIVFLMVCACSDGLFTFQIFRQPAFAQDTARAFAAAADDAVIAGVGLLADIVQHAH
        m261.pep
                    MELGHIVFLVLCARSDGLFTFQTFRQPAFAQDTARAFAAAADDTLVAGVGLFADVVQHAH
        g261
                                                       40
                                    20
                                              30
                                                                         120
                                              90
                                                      100
                                                               110
                                     80
                    FVRQRPRLRLGQIHQRRVDLKIIVHRQIKGNVHRFDKHVAAVGIAGEVGFAHARDDVPYP
        m261.pep
                    FVRQRPRLRLGQVHQRRVDLKIVVHRQIKGNVHGFDEHAAAVGIARKIGFAHARDDVPDT
        g261
                                              90
                                                      100
                                                               110
                                     80
                                                           160
                                    140
                                             150
                           130
                    LPFGVNRGIEQEKRVAAVYKGIRNAVFGSFDGGGV-----VHQGIVRNLPHQAQVEYGLF
        m261.pep
                                                         LPFGKNGGVKQEKRVTPVHKGIGNAVVGGFDGGGFDGGGFVHQGVVRNLPHQAQIEYGLT
        g261
                           130
                                    140
                                             150
                                                      160
                                                                170
                                                                         180
                               190
                                        200
                                                  210
                                                           220
                      180
                    {\tt DAQILRNPAGTFQLDGMALPVLESNGLDVFAPVGLDCLNQAGGRILTARKDDQGLLVX}
        m261.pep
                    DTQILRDPLCAFQLDGMALPVSEGDGLDVFAPVGLDCLNQAGGRILTAREDDQGFLVX
        g261
                                             210
                                                      220
                           190
                                    200
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1051>:
     a261.seq
              ATGGAGCTTG GGCATATCGT ATTCCTTATG GTTTGCGCGT GTTCAGACGG
              CCTTTTTACT TTCCAGATAT TCCGCCAGCC CGCGTTCGCG CAAGATACAG
          51
              CTCGGGCATT CGCGGCAGCC GCCGACGATG CCGTTATAGC AGGTGTGGGT
         101
              TTGCTCGCGG ATATAGTCCA GCGCGCCCAT TTCGTCCGCC AACGCCCAAG
         151
              TTTGCGCCTT GGTCAGATAC ATCAGCGGCG TGTGGATTTG AAAATCATAG
         201
              TCCATCGCCA GATTAAGGGT AACGTTCATG GATTTGACAA ACACGTCACG
         251
              GCAGTCGGGA TAGCCGGAGA AGTCGGTTTC GCACACGCCC GCGATGATGT
         351 GCCGTATCCC CTGCCCTTTG GCGTAAATCG CGGCATAGAG CAGGAAAAGC
              GCGTTGCGGC CGTCTACAAA GGTATTCGGA ACGCCGTTTT CGGCAGTTTC
         401
              GATGGCGGCG GTGTCGTCCA TCAGGGCATT GTGCGTAATC TGCCGCATCA
         451
              GGCTCAAGTC GAGTACGGTT TGTTTGACGC CCAAATCCTG CGCAATCCAG
         501
              CGGGCACGTT CCAGCTCGAC GGCATGGCGT TGCCCGTATT GGAAAGTAAT
         551
              GGCTTGGACG TTTTCGCGCC CGTAGGTTTG GATTGCCTGA ATCAGGCAGG
          601
          651 TGGTCGAATC CTGACCGCCC GAAAAGATGA CCAAGGCTTT TTGGTTTGA
This corresponds to the amino acid sequence <SEQ ID 1052; ORF 261.a>:
     a261.pep
              MELGHIVFLM VCACSDGLFT FQIFRQPAFA QDTARAFAAA ADDAVIAGVG
              LLADIVQRAH FVRQRPSLRL GQIHQRRVDL KIIVHRQIKG NVHGFDKHVT
           51
              AVGIAGEVGF AHARDDVPYP LPFGVNRGIE QEKRVAAVYK GIRNAVFGSF
          101
              DGGGVVHQGI VRNLPHQAQV EYGLFDAQIL RNPAGTFQLD GMALPVLESN
              GLDVFAPVGL DCLNQAGGRI LTARKDDQGF LV*
m261/a261 97.8% identity in 232 aa overlap
                                                              50
                                                     40
                                           30
                 MELGHIVFLMVCACSDGLFTFQIFRQPAFAQDTARAFAAAADDAVIAGVGLLADIVQHAH
     m261.pep
                 MELGHIVFLMVCACSDGLFTFQIFRQPAFAQDTARAFAAAADDAVIAGVGLLADIVQRAH
     a261
                                                     40
                                                              50
                                  20
                                           30
                         10
                                                    100
                                                             110
                                           90
                  FVRQRPRLRLGQIHQRRVDLKIIVHRQIKGNVHRFDKHVAAVGIAGEVGFAHARDDVPYP
     m261.pep
                  FVRQRPSLRLGQIHQRRVDLKIIVHRQIKGNVHGFDKHVTAVGIAGEVGFAHARDDVPYP
     a261
                                                             110
                                                    100
                                  80
                                           90
                                           150
                                                    160
                                 140
                  LPFGVNRGIEQEKRVAAVYKGIRNAVFGSFDGGGVVHQGIVRNLPHQAQVEYGLFDAQIL
      m261.pep
                  LPFGVNRGIEQEKRVAAVYKGIRNAVFGSFDGGGVVHQGIVRNLPHQAQVEYGLFDAQIL
      a261
                                                             170
                                                                       180
                                           150
                                                    160
                        130
                                 140
                                           210
                                                    220
                        190
                                  200
                  RNPAGTFQLDGMALPVLESNGLDVFAPVGLDCLNQAGGRILTARKDDQGLLVX
      m261.pep
                  RNPAGTFQLDGMALPVLESNGLDVFAPVGLDCLNQAGGRILTARKDDQGFLVX
      a261
                                                    220
                                                             230
                                  200
                                           210
                        190
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1053>:
      q263.seq
               atggcacgtt taaccgtaca caccetegaa accgeeceeg aagcegecaa
            1
               accgcgcgta gaggccgtac ccaaaaacaa cggctttatc cccaacctca
           101 tcggcgtatt ggcaaacgcc cccgaagctt tggcgtttta ccaagaagtc
           151 ggcaagetea acgeegecaa cageetgace geeggegaag tegaagtgat
           201 ccggatcatc gccgtccgca ccaaccaatg cagcttctgc gtggcagggc
           251 acaccaaact cgcaaccctg aaaaaactcc tgtccgagca atccctcaat
           301 gccgcccgcg ctttggcggc aggtaaatct gacgatgcca aactcggcgc
               gettgeegee tteacceaag cegtaatgge gaaaaaagge geagtateeg
           401 acgacgaact caacgccttc ctcgaagcgg gctacaaccg gcagcaggca
```

```
451 gtcgaagtcg taatgggcgt agccttggca actttgtgca actacgccaa
          501 caacctcgcc caaaccgaaa tcaaccccaa attgcaggca tacgcctaa
This corresponds to the amino acid sequence <SEQ ID 1054; ORF 263.ng>:
     q263.pep
            1 MARLTVHTLE TAPEAAKPRV EAVPKNNGFI PNLIGVLANA PEALAFYQEV
              GKLNAANSLT AGEVEVIRII AVRTNQCSFC VAGHTKLATL KKLLSEQSLN
           51
          101 AARALAAGKS DDAKLGALAA FTQAVMAKKG AVSDDELNAF LEAGYNRQQA
          151 VEVVMGVALA TLCNYANNLA QTEINPKLQA YA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1055>:
     m263.seq (partial)
               ..GCAGCAGGCG AATTTGACGA TGCCAAACTC GGCGCGCTCG CCGCCTTCAC
            1
                 CCAAGCCGTA ATGGCGAAAA AAGGCGCGGT ATCCGACGAG GAACTCAAAG
           51
                 CATTTTCGA TGCGGGCTAC AACCAGCAGC AGGCAGTCGA AGTCGTGATG
          101
                 GGCGT.ABYC TGGCAACCCT GTGCAACTAC GTCAACAACC TCGGACAAAC
          151
                 CGAAATCAAC CCCGAATTGC AGGCTTACGC CTGA
          201
This corresponds to the amino acid sequence <SEQ ID 1056; ORF 263>:
     m263.pep (partial)
               ..GCAGCAGGCG AATTTGACGA TGCCAAACTC GGCGCGCTCG CCGCCTTCAC
                 CCAAGCCGTA ATGGCGAAAA AAGGCGCGGT ATCCGACGAG GAACTCAAAG
           51
                 CATTTTTCGA TGCGGGCTAC AACCAGCAGC AGGCAGTCGA AGTCGTGATG
          101
                 GGCGT.AsyC TGGCAACCCT GTGCAACTAC GTCAACAACC TCGGACAAAC
          151
                 CGAAATCAAC CCCGAATTGC AGGCTTACGC CTGA
          201
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 263 shows 85.7% identity over a 77 aa overlap with a predicted ORF (ORF 263.ng)
from N. gonorrhoeae:
     m263/g263
                                                                            30
                                                        10
                                                AAGEFDDAKLGALAAFTQAVMAKKGAVSDE
     m263.pep
                                                QCSFCVAGHTKLATLKKLLSEQSLNAARALAAGKSDDAKLGALAAFTQAVMAKKGAVSDD
     g263
                                                            120
                                                                      130
                               90
                                        100
                                                  110
                      80
                                              60
                                                        70
                                    50
                   ELKAFFDAGYNQQQAVEVVMGVXLATLCNYVNNLGQTEINPELQAYAX
     m263.pep
                   ELNAFLEAGYNRQQAVEVVMGVALATLCNYANNLAQTEINPKLQAYAX
      g263
                                        160
                              150
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1057>:
      a263.seq
                ATGGCACGTT TAACCGTACA CACCCTCGAA ACCGCCCCCG AAGCCGCCAA
                AGCGCGCGTC GAGGCGGTAC TTCAAAACAA CGGCTTTATC CCCAACCTTA
           101 TCGGCGTATT ATCAAACGCC CCCGAAGCCT TGGCGTTTTA CCAAGAAGTC
           151 GGCAAGCTCA ACGCCGCCAA CAGCCTGACC GCCGGCGAAG TCGAAGTAAT
           201 CCAGATTATT GCCGCCCGCA CCAACCAATG CGGCTTCTGC GTGGCAGGGC
                ACACCAAACT CGCAACCCTG AAAAAACTCC TTTCCGAACA ATCCGTCAAA
           251
           301 GCCGCGCGC CTTTGGCGGC AGGCGAATTT GACGATGCTA AACTCGGCGC
           351 GCTCGCCGCC TTTACCCAAG CCGTAATGGC AAAAAAAGGC GCGGTATCCG
           401 ACGAGGAACT CAAAGCATTT TTTGATGCGG GCTACAACCA GCAGCAGGCA
                GTCGAAGTCG TGATGGGCGT AGCCTTGGCA ACTTTGTGCA ACTACGTCAA
           501 CAACCTCGGA CAAACCGAAA TCAACCCCGA ATTGCAGGCT TACGCCTGA
 This corresponds to the amino acid sequence <SEQ ID 1058; ORF 263.a>:
      a263.pep
             1 MARLTVHTLE TAPEAAKARV EAVLONNGFI PNLIGVLSNA PEALAFYQEV
                GKLNAANSLT AGEVEVIQII AARTNQCGFC VAGHTKLATL KKLLSEQSVK
           101 AARALAAGEF DDAKLGALAA FTQAVMAKKG AVSDEELKAF FDAGYNQQQA
                VEVVMGVALA TLCNYVNNLG QTEINPELQA YA*
```

```
m263/a263 97.4% identity in 77 aa overlap
                                                                  20
                                                        10
                                                AAGEFDDAKLGALAAFTQAVMAKKGAVSDE
       m263.pep
                                                111111111111111111111111111111111111
                   QCGFCVAGHTKLATLKKLLSEQSVKAARALAAGEFDDAKLGALAAFTQAVMAKKGAVSDE
       a263
                                                            120
                                                  110
                                         100
                                     50
                                               60
                           40
                   ELKAFFDAGYNQQQAVEVVMGXXLATLCNYVNNLGQTEINPELQAYAX
       m263.pep
                    ELKAFFDAGYNQQQAVEVVMGVALATLCNYVNNLGQTEINPELQAYAX
       a263
-- ****
                                                  170
                                       160
                               150
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1059>:
       g264.seq
                 ttgactttaa cccgaaaaac ccttttcctc ctcaccgccg cgttcggcac
              1
                 acactecett cagaeggeat cegeegaege agtggteaag ceggaaaaac
             51
                 tgcacgcctc cgccaaccgc agctacaaag tcgccgaatt cacgcaaacc
            151 ggcaacgcct cgtggtacgg cggcaggttt cacgggcgca aaacttccgg
            201 cggagaccgc tacgatatga acgcctttac cgccgcccac aaaaccctgc
            251 ccatececag ccatgtgcgc gtaaccaaca ccaaaaacgg caaaagcgtc
            301 atogtocgcg toaacgaccg cggccccttc cacggcaacc gcatcatcga
            351 egtatecaaa geegeegege aaaaattggg etttgteage caagggaegg
            401 cacacgtcaa aatcgaacaa atcgtcccgg gccaatccgc accggttgcc
            451 gaaaacaaag acatctttat cgacttgaaa tctttcggta cggaacacga
            501 agcacaagec tatetgaacc aageegeeca aaatttegee gettegteat
            551 caageeegaa eeteteggtt gaaaaaegee gttacgaata egttgtcaaa
            601 atgggcccgt ttgcctcgca ggaacgcgcc gccgaagccg aagcgcaggc
            651 acgcggtatg gttcgggcgg tactgacctc cggttga
  This corresponds to the amino acid sequence <SEQ ID 1060; ORF 264.ng>:
       g264.pep
                 LTLTRKTLFL LTAAFGTHSL QTASADAVVK PEKLHASANR SYKVAEFTQT
                 GNASWYGGRF HGRKTSGGDR YDMNAFTAAH KTLPIPSHVR VTNTKNGKSV
             51
             101 IVRVNDRGPF HGNRIIDVSK AAAQKLGFVS QGTAHVKIEQ IVPGQSAPVA
             151 ENKDIFIDLK SFGTEHEAQA YLNQAAQNFA ASSSSPNLSV EKRRYEYVVK
             201 MGPFASQERA AEAEAQARGM VRAVLTSG*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1061>:
        m264.seq
                 TTGACTTTAA CCCGAAAAAC CCTTTTCCTT CTCACCGCCG CATTCGGCAC
              1
              51 ACACTCCCTT CAGACGGCAT CCGCCGACGC AGTGGTCAAG GCAGAAAAAC
                 TGCACGCCTC CGCCAACCGC AGCTACAAAG TCGCCGGAAA ACGCTACACG
             101
                 CCGAAAAACC AAGTCGCCGA ATTCACGCAA ACCGGCAACG CCTCGTGGTA
             251 TGAACGCCTT TACCGCCGCC CACAAAACCC TGCCCATCCC CAGCTATGTG
             301 CGCGTAACCA ATACCAAAAA CGGCAAAAGC GTCATCGTCC GCGTCAACGA
             351 CCGCGGCCCC TTCCACGGCA ACCGCATCAT CGACGTATCC AAAGCCGCCG
             401 CGCAAAAATT GGGCTTTGTC AACCAAGGGA CGGCACACGT CAAAATCGAA
                  CARATCGTCC CGGGCCAATC CGCACCGGTT GCCGAAAACA AAGACATCTT
             451
             501 TATCGACTTG AAATCTTTCG GTACGGAACA CGAAGCACAA GCCTATCTGA
             551 ACCAAGCCGC CCAAAACTTC GCCGTTTCGT CATCGGGTAC GAACCTCTCG
             601 GTTGAAAAAC GCCGTTACGA ATACGTCGTC AAAATGGGAC CGTTTACCTC
             651 GCAGGAACGC GCCGCCGAAG CCGAAGCTCA GGCGCGCGGT ATGGTTCGGG
             701 CGGTATTGAC CGCCGGCTGA
   This corresponds to the amino acid sequence <SEQ ID 1062; ORF 264>:
        m264.pep
                  LTLTRKTLFL LTAAFGTHSL QTASADAVVK AEKLHASANR SYKVAGKRYT
               1
              51 PKNQVAEFTQ TGNASWYGGR FHGRKTSGGE RYDMNAFTAA HKTLPIPSYV
             101 RVTNTKNGKS VIVRVNDRGP FHGNRIIDVS KAAAQKLGFV NQGTAHVKIE
             151 QIVPGQSAPV AENKDIFIDL KSFGTEHEAQ AYLNQAAQNF AVSSSGTNLS
             201 VEKRRYEYVV KMGPFTSQER AAEAEAQARG MVRAVLTAG*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 264 shows 91.6% identity over a 239 aa overlap with a predicted ORF (ORF 264.ng) from N. gonorrhoeae: m264/g264 60 50 20 30 40 10 LTLTRKTLFLLTAAFGTHSLQTASADAVVKAEKLHASANRSYKVAGKRYTPKNQVAEFTQ m264.pep LTLTRKTLFLLTAAFGTHSLQTASADAVVKPEKLHASANRSYKVA-q264 20 30 40 10 90 100 110 120 80 70 TGNASWYGGRFHGRKTSGGERYDMNAFTAAHKTLPIPSYVRVTNTKNGKSVIVRVNDRGP m264.pep TGNASWYGGRFHGRKTSGGDRYDMNAFTAAHKTLPIPSHVRVTNTKNGKSVIVRVNDRGP g264 80 90 100 70 60 160 170 180 130 140 150 FHGNRIIDVSKAAAQKLGFVNQGTAHVKIEQIVPGQSAPVAENKDIFIDLKSFGTEHEAQ m264.pep FHGNRIIDVSKAAAQKLGFVSQGTAHVKIEQIVPGQSAPVAENKDIFIDLKSFGTEHEAQ q264 130 140 150 160 120 110 220 230 200 210 190 AYLNQAAQNFAVSSSGTNLSVEKRRYEYVVKMGPFTSQERAAEAEAQARGMVRAVLTAGX m264.pep AYLNQAAQNFAASSSSPNLSVEKRRYEYVVKMGPFASQERAAEAEAQARGMVRAVLTSGX g264 220 200 210 190 180 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1063>: a264.seq TTGACTTTAA CCCGAAAAAC CCTTTTCCTC CTCACCGCCG CATTCGGCAT ACATTCCTTT CAGACGGCAT CCGCCGACGC AGTGGTCAGG GCAGAAAAAC 51 TGCACGCCTC CGCCAACCGC AGCTACAAAG TCGCCGGAAA ACGCTACACG 101 CCGAAAAACC AAGTCGCCGA ATTCACGCAA ACCGGCAACG CCTCGTGGTA 151 TGAACGCCTT TACCGCCGCC CACAAAACCC TGCCCATCCC CAGCTATGTG 251 CGCGTAACCA ATACCAAAAA CGGCAAAAGC GTCATCGTCC GCGTCAACGA 301 CCGCGGCCCC TTCCACGGCA ACCGCATCAT CGACGTATCC AAAGCCGCCG 351 CGCAAAAATT GGGCTTTGTC AACCAAGGGA CGGCGCACGT CAAAATCGAA 401 CAAATCGTCC CGGGCCAATC CGCACCGGTT GCCGAAAACA AAGACATCTT 451 501 CATCGACTTG AAATCTTTCG GTACGGAACA CGAAGCACAA GCCTATCTGA 551 ACCAAGCCGC CCAAAACCTG GCTTCATCGG CATCAAACCC GAACCTCTCG GTTGAAAAAC GCCGTTACGA ATACGTCGTC AAAATGGGAC CGTTTGCCTC 601 651 GCAGGAACGC GCCGCCGAGG CCGAAGCTCA GGCGCGCGGT ATGGTTCGGG 701 CGGTATTAAC CGCCGGTTGA This corresponds to the amino acid sequence <SEQ ID 1064; ORF 264.a>: a264.pep LTLTRKTLFL LTAAFGIHSF QTASADAVVR AEKLHASANR SYKVAGKRYT PKNOVAEFTO TGNASWYGGR FHGRKTSGGE RYDMNAFTAA HKTLPIPSYV 51 RVTNTKNGKS VIVRVNDRGP FHGNRIIDVS KAAAQKLGFV NQGTAHVKIE QIVPGQSAPV AENKDIFIDL KSFGTEHEAQ AYLNQAAQNL ASSASNPNLS VEKRRYEYVV KMGPFASQER AAEAEAQARG MVRAVLTAG* m264/a264 96.2% identity in 239 aa overlap 30 40 20 10 LTLTRKTLFLLTAAFGTHSLQTASADAVVKAEKLHASANRSYKVAGKRYTPKNQVAEFTQ m264.pep

LTLTRKTLFLLTAAFGIHSFQTASADAVVRAEKLHASANRSYKVAGKRYTPKNQVAEFTQ

40

50

30

10

20

a264

m264.pep	70 TGNASWYGGRFHGR	80 KTSGGERYDM	90 INAFTAAHKTI 	100 PIPSYVRVTN	110 TKNGKSVIV 	120 RVNDRGP
a264	TGNASWYGGRFHGR 70	KTSGGERYDN 80	MAFTAAHKTI 90	LPIPSYVRVTN 100	TKNGKSVIV 110	RVNDRGP 120
	130	140	150	160	170	180
m264.pep	FHGNRIIDVSKAAA	11111111111			11111111	1111111
a264	FHGNRIIDVSKAAA 130	QKLGFVNQG1 140	TAHVKIEQIV 150	PGQSAPVAENK 160	DIFIDLKSF 170	GTEHEAQ 180
	190	200	210	220	230	240
m264.pep	AYLNQAAQNFAVSS	1: 111111	1111111111	11:1111111	11111111	1111111
a264	AYLNQAAQNLASSA 190	ASNPNLSVEKI 200	RRYEYVVKMG 210	PFASQERAAEA 220	EAQARGMVR 230	AVLTAGX 240

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1065>:

m265.seq

1 ATGTCGGTGA TTTTGCCGCC GACACGCGCC AACGCTGCTT TTTCGGCTTG 51 GGCGCGGCTG ATGATTTTGT CTTGTTTGTT GTGTTGGTGT GCGGCGTGTC 101 CGTGGTCGTC ATCGCCGTGT CCGTCGTGGT GGGCGAGCGC GGGGGCGGAA 151 ATGCTCAGCA GTGCGGTTGC GGCGGAGGTC AAGAGAAGGT GTTTGATGTT 201 CATAT.TTTT GCCTTTGTAA ATCGTGGGTT GGAAAATGTG GATATTAATA

251 AGGTATCAAA TAACCGTCAG CCGGCGGTCA ATACCGCCCG AACCATACCG 301 CGCGCCTGAG CTTCGGCTTC GGCGGCGCGT TCCTGCGAGG TAAACGGTCC

351 CATTTTGACG ACGTATTCGT AA

This corresponds to the amino acid sequence <SEQ ID 1066; ORF 265>:

m265.pep

MSVILPPTRA NAAFSAWARL MILSCLLCWC AACPWSSSPC PSWWASAGAE 1 MLSSAVAAEV KRRCLMFIXF AFVNRGLENV DINKVSNNRQ PAVNTARTIP

101 RAXASASAAR SCEVNGPILT TYS*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 265 shows 88.6% identity over a 123 aa overlap with a predicted ORF (ORF 265.ng) from N. gonorrhoeae:

m265/g265						
	10	20	30	40	50	60
m265.pep	MSVILPPTRAI	iaafsawarlmi	LSCLLCWCAAC	PWSSSPCPSWW	ASAGAEMLSS	AVAAEV
		:		1111111111		111111
g265	MSVILPPTRA()AAFSAWARLM]	LSCLPCWCAAC	PWSSSPCPSWW	ASAGAEMPNS	SAVAAAV
•	10	20	30	40	50	60
	70	80	90	100	110	120
m265.pep	KRRCLMFIXF	AFVNRGLENVD	INKVSNNRQPAV	NTARTIPRAXA	SASAARSCEV	MGPILT
mz os. pop	111111111	1:11:11:1 1		:111111111111	111111111111111111111111111111111111111	:111111
-265	VDDCIMET-F		INKVSNNROPEV	STARTIPRACA	SASAARSCE	ANGPILT
g265	7		90	100	110	
	,	5 60	90	100	110	
	mitov					
m265.pep	TYSX					
	1111					
g265	TYSX					
	120					

PCT/US99/09346 WO 99/57280

610

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1067>:
               ATGTCGGTGA TTTTGCCGCC GACACGCGCC AACGCTGCTT TTTCGGCTTG
           51 GGCGCGGCTG ATGATTTTGT CTTGTTTGCT GTGTTGGTGT GCGGCGTGTC
          101 CGTGGTCGTC ATCGCCGTGT CCGTCGTGGT GGGCGAGTGC GGGGGCGGAA
          151 ATGCCCATCA GTGCGGTTGC GGCGGCGGTC AAGAGAAGGC GTTTGAAGTT
               CATTTTTGCT CCTGCGAAGT ATCTGGT......GGTGT TTGAAGGACG
               TAAAGGCGGG ACATCAACCG GCGGTTAATA CCGCCCGAAC CATACCGCGC
          251
               GCCTGAGCTT CGGCCTCGGC GGCGCGTTCC TGCGAGGCAA ACGGTCCCAT
          351 TTTGACGACG TATTCGTAA
This corresponds to the amino acid sequence <SEQ ID 1068; ORF 265.a>:
     a265.pep
                MSVILPPTRA NAAFSAWARL MILSCLLCWC AACPWSSSPC PSWWASAGAE
                MPISAVAAAV KRRRLKFIFA PAKYLX..XC LKDVKAGHQP AVNTARTIPR
            51
               A*ASASAARS CEANGPILTT YS*
           101
m265/a265 79.7% identity in 123 aa overlap
                                                 40
                                        30
                 MSVILPPTRANAAFSAWARLMILSCLLCWCAACPWSSSPCPSWWASAGAEMLSSAVAAEV
     m265.pep
                 MSVILPPTRANAAFSAWARLMILSCLLCWCAACPWSSSPCPSWWASAGAEMPISAVAAAV
     a265
                                                         50
                                       30
                                                 40
                                20
                       10
                                                100
                                                        110
                                80
                 KRRCLMFIXFAFVNRGLENVDINKVSNNRQPAVNTARTIPRAXASASAARSCEVNGPILT
     m265.pep
                                  1:
                 111 1 11
                 KRRRLKFI---FAPAKYLXXCLKDVKAGHQPAVNTARTIPRAXASASAARSCEANGPILT
      a265
                                           90
                          70
                                   80
      m265.pep
                 TYSX
                 1111
                 TYSX
      a265
                 120
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1069>:
      g266.seg
               agttcagacg gcatcgccgc cgacaatgcc caaacagaaa gcccatcatg
            51 accgcatcca tgtacatcct tttggtcttg gcactcatct ttgccaacgc
           101 ccccttcctc acgaccagac tgttcggcgt ggccgcgctc aagcgcaaac
           151 atttcggaca ccacctgatc gagctggcgg caggtttcgc gctgaccgcc
           201 tetettgeet acatectega atecegtgeg ggageggtac acaateaggg
           251 ttgggagttt tacgccaccg tcgtctgcct gtacctcatt ttcgccttcc
           301 cgtgtttcgt gcggcggtat ttttggcaca cgcgcaacag ggaataa
 This corresponds to the amino acid sequence <SEQ ID 1070; ORF 266.ng>:
      g266.pep
             1 MOFRRHRRRQ CPNRKPIMTA SMYILLVLAL IFANAPFLTT RLFGVAALKR
            51 KHFGHHLIEL AAGFALTASL AYILESRAGA VHNQGWEFYA TVVCLYLIFA
           101 FPCFVRRYFW HTRNRE*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1071>:
      m266.seq
             1 ATGCCGTTCC GCAACGCGET CAGACGGCAT CGCCGCCGAC AACGCCTAAA
                CAGAAAGCCC ACCATGACCG CATCCATGTA CATCCTTTTG GTCTTGGCAC
           101 TCATCTTTGC CAACGCCCCC TTCCTCACGA CCAGACTGTT CGGCGTGGCC
           151 rCACTCAAGC GCAAACATTT CGGACACCAC ATGATCGAGC TGGCGGCAGG
           201 TTTCGCGCTG ACCGCCGTTC TTGCCTACAT CCTsGAATCC CGTGCAGGAT
           251 CGGTACACGA TCAGGGTTGG GAGTTTTATG CCACAGTCGT CTGCCTGTAC
```

301 CTGATTTTG CGTTTCCATG TTTTGTGTGG CGGTATTTTT GGCACACGCG

351 CAACAGGGAA TAG

This corresponds to the amino acid sequence <SEQ ID 1072; ORF 266>:

m266.pep MPFRNAFRRH RRRORLNRKP TMTASMYILL VLALIFANAP FLTTRLFGVA 51 XLKRKHFGHH MIELAAGFAL TAVLAYILES RAGSVHDQGW EFYATVVCLY 101 LIFAFPCFVW RYFWHTRNRE * Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 266 shows 92.1% identity over a 114 aa overlap with a predicted ORF (ORF 266.ng) from N. gonorrhoeae: m266/g266 30 40 10 20 MPFRNAFRRHRRRQRLNRKPTMTASMYILLVLALIFANAPFLTTRLFGVAXLKRKHFGHH m266.pep MOFRRHRRROCPNRKPIMTASMYILLVLALIFANAPFLTTRLFGVAALKRKHFGHH g266 30 40 10 90 100 80 70 MIELAAGFALTAVLAYILESRAGSVHDQGWEFYATVVCLYLIFAFPCFVWRYFWHTRNREX m266.pep LIELAAGFALTASLAYILESRAGAVHNQGWEFYATVVCLYLIFAFPCFVRRYFWHTRNREX q266 90 100 110 80 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1073>: a266.seq ATGCCGTTCC GCAATGCGTT CAGACGGCAT CGCCGCCGAC AATGCCCAAA CAGAAAGCCC GCCATGACCG CATCCATGTA CATCCTTTTG CTGCTTGCCT 51 TGATTTTTGC CAACGCCCCC TTCCTCACGA CCAAGCTGTT CGGCATCGTA 101 CCGCTCAAGC GCAAACATTT CGGACACCAC CTGATCGAGC TGGCGGCAGG 151 TTTCGCGCTG ACCGCCGTTC TTGCCTACAT CCTCGAATCC CGTGCGGGAG CGGTACACGA TCAGGGTTGG GAGTTTTACG CCACCGTCGT CTGCCTGTAC 251 CTGATTTTTG CGTTTCCCTG TTTCGTGTGG CGGTATTTTT GGCACACGCG 301 351 CAACAGGGAA TAG This corresponds to the amino acid sequence <SEQ ID 1074; ORF 266.a>: a266.pep MPFRNAFRRH RRRQCPNRKP AMTASMYILL LLALIFANAP FLTTKLFGIV PLKRKHFGHH LIELAAGFAL TAVLAYILES RAGAVHDQGW EFYATVVCLY LIFAFPCFVW RYFWHTRNRE * m266/a266 91.7% identity in 120 aa overlap 50 30 40 10 20 MPFRNAFRRHRRRQRLNRKPTMTASMYILLVLALIFANAPFLTTRLFGVAXLKRKHFGHH m266.pep MPFRNAFRRHRRRQCPNRKPAMTASMYILLLLALIFANAPFLTTKLFGIVPLKRKHFGHH a266 30 40 10 20 120 70 80 90 100 110 MIELAAGFALTAVLAYILESRAGSVHDQGWEFYATVVCLYLIFAFPCFVWRYFWHTRNRE m266.pep LIELAAGFALTAVLAYILESRAGAVHDQGWEFYATVVCLYLIFAFPCFVWRYFWHTRNRE a266 110 80 90 100 70 m266.pep Х a266 X

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1075>: g267.seg

```
1 atgcaagtcg ccttttttct cgccgtggta ttcaaaaata tgggtttcca
          51 caatcgcatc ggtcgggcag gcctcttcgc agaaaccgca gaagatgcac
         101 ttggtcaggt cgatgtcgta acgcttggtg cggcgggtgc cgtcttcgcg
         151 ttetteegat tegatgttga tegecattge eggacacace geetegeaca
         201 atttacacgc gatgcagcgt tcctctccgt tcggaaaacg gcgttgcgcg
         251 tgcagaccgc ggaaacgcac ggattgcggc gttttctctt cgggaaaata
         301 aattgtgtct ttgcgggcaa aaaagttttt gagcgttacg cccatgcctt
          351 tgaccagttc gccaagcaga aaggttttta ctaa
This corresponds to the amino acid sequence <SEQ ID 1076; ORF 267.ng>:
     g267.pep
              MQVAFFLAVV FKNMGFHNRI GRAGLFAETA EDALGQVDVV TLGAAGAVFA
              FFRFDVDRHC RTHRLAQFTR DAAFLSVRKT ALRVQTAETH GLRRFLFGKI
           51
              NCVFAGKKVF ERYAHAFDQF AKQKGFY*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1077>:
     m267.seq
              GTGCAAGTCG CCTTTTTCT CGCCGTGGTA TTCAAAAATA TGGGTTTCCA
               CAATCGCATC AGTCGGGCAT GCCTCTTCGC AGAAACCGCA GAAGATGCAC
           51
          101 TTGGTCAGGT CGATGTCGTA ACGCTTGGTG CGGCGCGTAC CGTCTTCACG
          151 TTCTTCCGAT TCGATGTTAA TCGCCATTGC CGGACACACT GCCTCACACA
          201 ACTTACACGC GATACACCGC TCTTCGCCGT TCGGATACCG CcGCTGCGCG
          251 TGCAGACCGC GGAAACGCAC GGATTGCGGC GTTTTCTCTT CGGGGAAATA
          301 AATTGTGTCT TTGCGGGCGA AAAAGTTTTT GAGCGTTACG CCCATACCTT
               TTACCAATTC GCCAAGCAGA AAGGTTTTTA CTAA
This corresponds to the amino acid sequence <SEQ ID 1078; ORF 267>:
     m267.pep
               VQVAFFLAVV FKNMGFHNRI SRACLFAETA EDALGQVDVV TLGAARTVFT
               FFRFDVNRHC RTHCLTQLTR DTPLFAVRIP PLRVQTAETH GLRRFLFGEI
          101 NCVFAGEKVF ERYAHTFYQF AKQKGFY*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 267 shows 82.7% identity over a 127 aa overlap with a predicted ORF (ORF 267.ng)
from N. gonorrhoeae:
     m267/g267
                                             30
                                                       40
                                    20
                          10
                  VQVAFFLAVVFKNMGFHNRISRACLFAETAEDALGQVDVVTLGAARTVFTFFRFDVNRHC
      m267.pep
                  MQVAFFLAVVFKNMGFHNRIGRAGLFAETAEDALGQVDVVTLGAAGAVFAFFRFDVDRHC
     q267
                                             30
                                                       40
                          10
                                             90
                                                      100
                                    80
                          70
                   RTHCLTQLTRDTPLFAVRIPPLRVQTAETHGLRRFLFGEINCVFAGEKVFERYAHTFYQF
      m267.pep
                   RTHRLAQFTRDAAFLSVRKTALRVQTAETHGLRRFLFGKINCVFAGKKVFERYAHAFDQF
      g267
                                                                110
                                                      100
                                             90
                                    80
                          70
                   AKQKGFYX
      m267.pep
                   \Pi\Pi\Pi\Pi\Pi
      g267
                   AKOKGFYX
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1079>:
      a267.seq
                GTGCAAGTCG CCTTTTTCT CGCCGTGGTA TTCAAAAATA TGGGTTTCCA
            51 CAATCGCATC GGTCGGGCAG GCTTCTTCGC AGAAACCGCA GAAGATGCAC
           101 TTGGTCAGGT CGATGTCGTA ACGCTTGGTG CGGCGCGTGC CGTCTTCGCG
           151 TTCTTCCGAT TCGATGTTGA TCGCCATTGC GGGGCAAACG GCTTCACACA
           201 ATTTACACGC GATGCAGCGT TCCTCGCCGT TTGGATAACG GCGTTGCGCG
           251 TGCAGACCGC GGAAACGCAC GGATTGCGGC GTTTTCTCTT CGGGAAAATA
           301 AATCGTGTCT TTGCGGGCAA AAAAGTTTTT GAGCGTTACG CCCATACCTT
```

351 TTACCAATTC GCCAAGCAGA AAGGTTTTTA CTAA

This corresponds to the amino acid sequence <SEQ ID 1080; ORF 267.a>:

```
a267.pep
              VQVAFFLAVV FKNMGFHNRI GRAGFFAETA EDALGQVDVV TLGAARAVFA
              FFRFDVDRHC GANGFTQFTR DAAFLAVWIT ALRVQTAETH GLRRFLFGKI
           51
         101 NRVFAGKKVF ERYAHTFYQF AKQKGFY*
m267/a267 82.7% identity in 127 aa overlap
                         10
                                  20
                                            30
                 VQVAFFLAVVFKNMGFHNRISRACLFAETAEDALGQVDVVTLGAARTVFTFFRFDVNRHC
     m267.pep
                 VQVAFFLAVVFKNMGFHNRIGRAGFFAETAEDALGQVDVVTLGAARAVFAFFRFDVDRHC
     a267
                                                      40
                                            30
                                  20
                                   80
                                            90
                                                     100
                         70
                 RTHCLTQLTRDTPLFAVRIPPLRVQTAETHGLRRFLFGEINCVFAGEKVFERYAHTFYQF
     m267.pep
                  GANGFTQFTRDAAFLAVWITALRVQTAETHGLRRFLFGKINRVFAGKKVFERYAHTFYQF
     a267
                                                                        120
                                            90
                                                    100
                                                              110
                  AKQKGFYX
     m267.pep
                  11111111
     a267
                  AKQKGFYX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1081>:
     G268.seq
               atgaaaaaaa atttacccgc actggcattg gcaagtatgc tgattttgtc
            1
               gggctgcgac cgtttgggaa taggcaaccc gttttccgga aaggaaattt
           51
          101 cctgcggaag cgaagagact aaagagattt tggtcaaact ggtccgcgac
          151 aatgtegaag gtgaaacegt caaaactttt gacgacgacg cattcaaaga
          201 ccaagcattt gccgatatcg gcatatcgca tatccgcaga atggtcgaac
               gtttgggcat aaccgtcgat gaagtccgaa ctaccgagaa aaccgacacg
          251
          301 tccagcaaac tcaaatgtga agccgcgtta aaactggacg tgcccgacga
          351 tgttgtcgat tatgccgtcg ccgccaacca atctataggc aacagccata
          401 agaaaacgcc cgactttttt gaaccctact accgcaaaga aggcgcgtat
          451 tatgtcaaaa ctatttctta cagcgtccag ccgacagacg acaaaagcaa
          501 aatctttgcc gaactcagtc aggcacacga tatcatccat ccgctcagcg
          551 agetggtgte tatggcactg attaaagage egttggacaa agegaaacaa
           601 aggaacgaaa aacttgaagc ggcagaagcc accgcgcagg aagcgaggga
           651 ggcagaagaa gcggcggcgc aggaggcatt gggtcgggag caggaagccg
           701 cccgcgtatc cgaatgggaa gaacgctaca agctgtcgcg cagcgagttc
           751 gagcagtttt ggaaaggatt gcctcaaact gtacagaata agctgcaagc
           801 ctcgcagaaa acatggaaaa gcggtatgga caagatctgt gccaacaatg
           851 cgaaagccga aggtgaaacg ccaaacggca taaaagtcag tgagttggcg
           901 tgtaaaacgg cagaaaccga agcacgcttg gaagagctgc acaaccgtaa
           951 aaaagccctt atcgacgaaa tggtcaggga agaggacaag aaagaactgc
          1001 caaagcggct ctga
 This corresponds to the amino acid sequence <SEQ ID 1082; ORF 268.ng>:
      m268.pep
               MKKNLPALAL ASMLILSGCD RLGIGNPFSG KEISCGSEET KEILVKLVRD
               NVEGETVKTF DDDAFKDQAF ADIGISHIRR MVERLGITVD EVRTTEKTDT
            51
               SSKLKCEAAL KLDVPDDVVD YAVAANQSIG NSHKKTPDFF EPYYRKEGAY
           151 YVKTISYSVQ PTDDKSKIFA ELSQAHDIIH PLSELVSMAL IKEPLDKAKQ
           201 RNEKLEAAEA TAQEAREAEE AAAQEALGRE QEAARVSEWE ERYKLSRSEF
           251 EQFWKGLPQT VQNKLQASQK TWKSGMDKIC ANNAKAEGET PNGIKVSELA
           301 CKTAETEARL EELHNRKKAL IDEMVREEDK KELPKRL*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1083>:
      m268.seq (partial)
               ..ATGGCACTGA TTAAAGAGCC GTTGGACAAA GTGAAACAAA GGAACGAAGA
```

m268.pep (51 101 Computer analysis	ACTTGAAGCG GCAGAAGAAG CGGCGGCGCA GGAGGCATTG GGTCGGAGC AGGAAGCCGC CCGCGTATCC GAATGGGAAG AACGCTACAA GCTGTCGCGC AG.CAGTTCG AGCAGTACTG GAAAGGATTG CCTCAAACCG TACAGAATAA GCTGCAACAT TCACAGAAAA CATGGAAAACGC CAAACGGCAT AAAATCTGTG CCAACAATGC GAAAGCGCA GGAAAACGGC GAAAACGGCA AAAATTCAGC GAACTGGCAT GCAAAACGGC GAAAACCGAA GCGCTTGG AAGAGCTGCA CAACCGTAAA AAAGCCCTTA TCGACGAAAT GGYCAGGGAA GCGGACAMGA AAGAACTGTC AAAGCGCTB TGA o the amino acid sequence <seq 1084;="" 268="" id="" orf="">: partial) .MALIKEPLDK VKQRNEELEA AEEAAAQEAL GREQEAARVS EWEERYKLSR XOFEOFWKGL POTVQNKLQP SQKTWKSGMD KICANNAKAE GKTPNGIKFS ELACKTAKTE ARLEELHNRK KALIDEMXRE ADXKELSKRL * s of this amino acid sequence gave the following results: predicted ORF from N. gonorrhoeae 6.0% identity over a 150 aa overlap with a predicted ORF (ORF 268.ng) eae:</seq>
111268/9200	
	10 20
m268.pep	MALIKEPLDKVKQRNEELEAAE : :
	SVQPTDDKSKIFAELSQAHDIIHPLSELVSMALIKEPLDKAKQRNEKLEAAEATAQEARE
g268	160 170 180 190 200 210
·	30 40 50 60 70 80
m268.pep	EAAAQEALGREQEAARVSEWEERYKLSRSQFEQFWKGLPQTVQNKLQPSQKTWKSGMD
g268	AEEAAAQEALGREQEAARVSEWEERYKLSRSEFEQFWKGLPQTVQNKLQASQKTWKSGMD
	220 230 240 250 260 270
m268.pep g268	90 100 110 120 130 140 KICANNAKAEGKTPNGIKFSELACKTAKTEARLEELHNRKKALIDEMXREADXKELSKRLX
	to the state of the top 1005%
The following pa	rtial DNA sequence was identified in N. meningitidis <seq 1085="" id="">:</seq>
a268.seq	
1	ATGGCACTGA TTAAAGAGCC GTTGGACAAA GCGAAACAAA GGAACGAAGA
51	ACTTGAAGCG GCAGAAGAAG CGGCGGCGCA GGAGGCATTG GGTCGGGAGC AGGAAGTCGA CCGCGTATCC GAATGGGAAG AACGCTACAA GCTGTCGCGC
101	AGGAAGTCGA CCGCGTATCC GAATGGGAAG AACGCTACAAACCG TACAGAATAA AGCGAGTTCG AGCAGTTCTG GAAAGGATTG CCTCAAACCG TACAGAATAA
151	AGCGAGTTCG AGCAGTTCTG GAAAGGATTG CCTCAAAGCC TACAGAAAA CATGGAAAAG CGGGATGGAT AAAATCTGTG
201	CCAACATGC GAAAGCTGAA GGTGAAACGC CAAACGGCAT AAAATTCAGC
251	GAACTGCCAT GCAAAACGGC GGAAACCGAA GCACGCTTGG AAGAGCTGCA
301	CAACCGTAAA AAAGCCCTTC TCGACGAAAT GGCCAGGGAA GCGGACAAGA
351	AAGAACTGCC AAAGCGGCTC TGA
401	AAGAACIGCC AAAGCGGCIC IGA
m:	to the amino acid sequence <seq 1086;="" 268.a="" id="" orf="">:</seq>
	to the ammo acid sequence (ob) is 1000, 012 2000
a268.pep	MALIKEPLDK AKQRNEELEA AEEAAAQEAL GREQEVDRVS EWEERYKLSR
1	TO THE PROPERTY OF THE PROPERT
51	ELACKTAETE ARLEELHNRK KALLDEMARE ADKKELPKRL *
101	DIMONIABLE ANDERDMANN IGHERSETTING INTRODUCTION
m268/a268 91	.4% identity in 140 aa overlap
m208/a208 91	10 20 30 40 50 60
m268.pep	MALIKEPI, DKYKORNEELEAAEEAAAQEALGREQEAARVSEWEERYKLSRXQFEQFWKGL
meoo.pep	141111111111111111111111111111111111111
a268	MALIKEPLDKAKQRNEELEAAEEAAAQEALGREQEVDRVSEWEERYKLSRSEFEQFWKGL

		•				
	10	20	30	40	50	60
•	70	80	90	100	110	120
m268.pep	POTVONKLOPSOKTW	KSGMDKICA	NNAKAEGKTP	NGIKFSELAC	CKTAKTEARLE	ELHNRK
	- 1111111111111111111111111111111111111	111111111	11111111:11	11111111111		$\Pi\Pi\Pi\Pi$
a268	POTVONKLQASQKTW	KSGMDKICA	NNAKAEGETP	NGIKFSELAC	CKTAETEARLE	ELHNRK
4200	70	80	90	100	110	120
	130	140				
m268.pep	KALIDEMXREADXKE	LSKRLX				
mboo. F-F	111:111 1111 11	1111				
a268	KALLDEMAREADKKE	LPKRLX				
4200	130	140			r.m.:	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1087>:

```
1 GTGCAATCCC GATATGATGG TTTGCATAAA TTTAAACATA TATGTTCCGC
 51 AGCTATGGCA CTGATTAAAG AGCCGTTGGA CAAAGTGAAA CAAAGGAACG
101 AAGAACTTGA AGCGGCAGAA GAAGCGGCGG CGCAGGAGGC ATTGGGTCGG
151 GAGCAGGAAG CCGCCCGCGT ATCCGAATGG GAAGAACGCT ACAAGCTGTC
201 GCGCAGCGAG TTCGAGCAGT TCTGGAAAGG ATTGCCTCAA ACCGTACAGA
251 ATAAGCTGCA AGCCTCACAG AAAACATGGA AAAGCGGGAT GGATAAAATC
301 TGTGCCAACA ATGCGAAAGC TGAAGGTAAA ACGCCAAACG GCATAAAATT
351 CAGCGAACTG GCATGCAAAA CGGCGAAAAC CGAAGCACGC TTGGAAGAGC
401 TGCACAACCG TAAAAAAGCC CTTATCGACG AAATGGCCAG GGAAGCGGAC
451 AAGAAAGAAC TGTCAAAGCG GCTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1088; ORF 268-1>: m268-1.pep

- 1 VQSRYDGLHK FKHICSAAMA LIKEPLDKVK QRNEELEAAE EAAAQEALGR 51 EQEAARVSEW EERYKLSRSE FEQFWKGLPQ TVQNKLQASQ KTWKSGMDKI
 - 101 CANNAKAEGK TPNGIKFSEL ACKTAKTEAR LEELHNRKKA LIDEMAREAD
 - 151 KKELSKRL*

-- 100 1

92 3% identity in 164 as overlap m268-1/a268

330

m265-1/g266	02.38 10	encicy in	101 00 010			
				10	20	30
m268-1.pep			VOSE	YDGLHKFKHI	CSAAMALIKE	PLDKVKQRNE
111208-1.pep				:1 :1 ::::		1111:1111
	VECT VVUVET	CACAUDEDUK	SKIEDELSOE	HDIIHPLSEL		
g268			170	180	190	200
	150	160	170	180	190	200
	40		50	60	70	80
m268-1.pep	ELEAAE	EAAA	OEALGREOEA	ARVSEWEERY	KLSRSEFEOF	WKGLPQTVQN
mzoo-1.pep	:11111			1111111111		
	*			ARVSEWEERY		
g268				240	250	260
	210	220	230	240	250	200
					420	140
	90	100	110	120	130	140
m268-1.pep	KLQASQKTWE	(SGMDKICAN)	iakaegktpn(SIKFSELACKT.	AKTEARLEEL	HNRKKALIDE
• -	11111111111					1111111111
q268	KLOASOKTWE	SGMDKICANN	NAKAEGETPNO	GIKVSELACKT	aetearleel	HNRKKALIDE
9200	270	280	290	300	310	320
	150	159				
m268-1.pep	MAREADKKEI	LSKRLX				
• •	1:31 11131	1 1111				
g268	MVREEDKKEI	LPKRLX				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1089>:

- 1 GTGCAATCCC GATATGATGG TTTGCATAAA TTTAAACATA TATGTTCCGC 51 AGCTATGGCA CTGATTAAAG AGCCGTTGGA CAAAGCGAAA CAAAGGAACG 101 ARGACTTGA AGCGGCAGAA GAAGCGGCGG CGCAGGAGGC ATTGGGTCGG
 151 GAGCAGGAAG TCGACCGCGT ATCCGAATGG GAAGAACGCT ACAAGCTGTC
- 201 GCGCAGCGAG TTCGAGCAGT TCTGGAAAGG ATTGCCTCAA ACCGTACAGA 251 ATAAGCTGCA AGCCTCACAG AAAACATGGA AAAGCGGGAT GGATAAAATC
- 301 TGTGCCAACA ATGCGAAAGC TGAAGGTGAA ACGCCAAACG GCATAAAATT
- 351 CAGCGAACTG GCATGCAAAA CGGCGGAAAC CGAAGCACGC TTGGAAGAGC

```
401 TGCACAACCG TAAAAAAGCC CTTCTCGACG AAATGGCCAG GGAAGCGGAC
        AAGAAAGAAC TGCCAAAGCG GCTCTGA
This corresponds to the amino acid sequence <SEQ ID 1090; ORF 268-1.a>:
a268-1.pep
        VQSRYDGLHK FKHICSAAMA LIKEPLDKAK QRNEELEAAE EAAAQEALGR
     51 EQEVDRVSEW EERYKLSRSE FEQFWKGLPQ TVQNKLQASQ KTWKSGMDKI
        CANNAKAEGE TPNGIKFSEL ACKTAETEAR LEELHNRKKA LLDEMAREAD
    101
    151 KKELPKRL*
               95.6% identity in 158 as overlap
a268-1/m268-1
                                                      50
                                             40
                  10
                           20
                                    30
           VQSRYDGLHKFKHICSAAMALIKEPLDKAKQRNEELEAAEEAAAQEALGREQEVDRVSEW
a268-1.pep
           VQSRYDGLHKFKHICSAAMALIKEPLDKVKQRNEELEAAEEAAAQEALGREQEAARVSEW
m268-1
                                             40
                                                      50
                           20
                  10
                                            100
                                                     110
                                                              120
                           80
           EERYKLSRSEFEQFWKGLPQTVQNKLQASQKTWKSGMDKICANNAKAEGETPNGIKFSEL
a268-1.pep
            mannanimandininimanananimanimani
           EERYKLSRSEFEQFWKGLPQTVQNKLQASQKTWKSGMDKICANNAKAEGKTPNGIKFSEL
m268-1
                                            100
                           80
                                    90
                   70.
                  130
                           140
                                   150
           ACKTAETEARLEELHNRKKALLDEMAREADKKELPKRLX
a268-1.pep
            ACKTAKTEARLEELHNRKKALIDEMAREADKKELSKRLX
m268-1
                  130
                           140
                                   150
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1091>:
     g269.seq
               atggtttggc gtgtgaattg cgcggcaacg gcggcgctga ttttttcgtc
            1
           51 cagcccttgg atttgggcgg tggtgtgggt gtggtcgcgg tcggcttttt
           101 cctgcaaacc ttgcgccagc cttgacgcgt ccagtgcgcc ggcgttggcg
           151 gtttcgccgt gggactttat ccggaacacg gcttcgccca aggtgtcggc
               qqctttgatg cacagtttta aaaccagggc tttggggcgg ttttctgcgc
           251 cgcccgttgc cattttgctg tccaatcgcg gggttaaaaa accgttgtcg
           301 tttaagtcgc cgtccgtcca agtcgatacg agcgcgcttc tttgcctttc
           351 attgcggtct tcgtaa
This corresponds to the amino acid sequence <SEQ ID 1092; ORF 269.ng>:
     g269.pep
               MVWRVNCAAT AALIFSSSPW IWAVVWVWSR SAFSCKPCAS LDASSAPALA
            51 VSPWDFIRNT ASPKVSAALM HSFKTRALGR FSAPPVAILL SNRGVKKPLS
           101 FKSPSVQVDT SALLCLSLRS S*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1093>:
      m269.seg
            1 ATGGTTTGGC GTGTGAATTG CGCGGCAACG GCGGTGCTGA TTTTTTCGTC
            51 CAGCCCTTGG ATTTGGGCGG CGGTGTGGGT GTGGTCTCGG TCGGCTTTGT
           101 CTTGCAAACC TTGCGCCACG TGCCCGCGTC CAGCGCCTGC GTTGATGGTT
           151 TCGCCGTGGG ACTTTATCCA AAACACGGCT TCGCCCAAGG TGTCGGCGGC
           201 TTTGATGCAC AGTTTTAAAA CCAGGGCTTT GGGGCGGTTT TCGTCGCCGC
           251 CTGTCGCCAT TTTGCTGTCC GAGCGCGGGG TTAAAAAGCC GTTGTCGTTT
           301 AAATTTTCGT CCGTCCAAGT CGATACGAGC GCGCTTCTCT GCCTTTCGTT
```

This corresponds to the amino acid sequence <SEQ ID 1094; ORF 269>: m269.pep

- MVWRVNCAAT AVLIFSSSPW IWAAVWVWSR SALSCKPCAT CPRPAPALMV
- SPWDFIQNTA SPKVSAALMH SFKTRALGRF SSPPVAILLS ERGVKKPLSF
- KFSSVQVDTS ALLCLSLRSS *

GCGGTCTTCG TAA

Computer analysis of this amino acid sequence gave the following results:

```
Homology with a predicted ORF from N. gonorrhoeae
ORF 269 shows 87.6% identity over a 121 aa overlap with a predicted ORF (ORF 269.ng)
from N. gonorrhoeae:
                MVWRVNCAATAVLIFSSSPWIWAAVWVWSRSALSCKPCATCP-RPAPALMVSPWDFIQNT
     m269.pep
                MVWRVNCAATAALIFSSSPWIWAVVWVWSRSAFSCKPCASLDASSAPALAVSPWDFIRNT
     g269
                ASPKVSAALMHSFKTRALGRFSSPPVAILLSERGVKKPLSFKFSSVQVDTSALLCLSLRS
     m269.pep
                aspkvsaalmhsfktralgrfsappvaillsnrgvkkplsfkspsvqvdtsallclslrs
     q269
                SX 121
     m269.pep
                11
                SX 122
     g269
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1095>:
     a269.seq
               ATGGTTTGGC GTGTGAATTG CGCGGCAACG GCGGTGCTGA TTTTTTCGTC
            1
               CAGCCCTTGG ATTTGGGCGG CGGTGTGGGT GTGGGCGCGG TCTGCTTTGT
           51
          101 CTTGGAGGTT TTGCGCCAGC GTGCCCGCGT CCAGCGCGCC GGCGTTGACG
               GTTTCGCCGT GGGACTTTAT CCAGAACACG GCTTCGCCCA AGGTGTCGGC
           151
               GGCTTTGATG CACAGTTTTA AAACCAGGGC TTTGGGGCGG TTTTCGTCGC
               CGCCTGTCGC CATTTTGCTG TCCGGGCGCG GGGTTAAAAA GCCGTTGTCG
           251
               TTTAAATTTT CGTCCGTCCA AGTCGATACG AGCGCGCTTC TCTGCCTTTC
           301
           351 GTTGTGGTCT TCGTAA
This corresponds to the amino acid sequence <SEQ ID 1096; ORF 269.a>:
     a269.pep
                MVWRVNCAAT AVLIFSSSPW IWAAVWVWAR SALSWRFCAS VPASSAPALT
                VSPWDFIQNT ASPKVSAALM HSFKTRALGR FSSPPVAILL SGRGVKKPLS
            51
           101 FKFSSVQVDT SALLCLSLWS S*
           90.1% identity in 121 aa overlap
 m269/a269
                                                          50
                                        30
                                                 40
                                20
                       10
                MVWRVNCAATAVLIFSSSPWIWAAVWVWSRSALSCKPCATCP-RPAPALMVSPWDFIQNT
      m269.pep
                 1111 1111111111
                MVWRVNCAATAVLIFSSSPWIWAAVWVWARSALSWRFCASVPASSAPALTVSPWDFIQNT
      a269
                                                 40
                                                         50
                                20
                       10
                                                         110
                                                                 119
                                         90
                        70
                                 80
                60
                 ASPKVSAALMHSFKTRALGRFSSPPVAILLSERGVKKPLSFKFSSVQVDTSALLCLSLRS
      m269.pep
                 пининения пинини пининий пинини г
                 ASPKVSAALMHSFKTRALGRFSSPPVAILLSGRGVKKPLSFKFSSVQVDTSALLCLSLWS
      a269
                                                100
                        70
                                80
                                        90
               120
      m269.pep
                 SX
                 11
      a269
                 SX
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1097>:
      g270.seq
               atgaataaaa accgcaaatt actgcttgcc gcactgctgc tgactgcctt
            51 tgccgccttc aagctcgttt tgttgcaatg gtggcaggcg cagcagccgc
           101 aagccgtggc ggcgcaatgc gatttgaccg agggttgcac gctgccggac
           151 ggaagccgtg tccgcgccgc cgccgtttca accaaaaaac cgtttgatat
               ttatatcgaa cacgcgcccg ccggcacgga acaggtcagc atcagcttca
           251 gtatgaaaaa tatggatatg ggtttcaacc gctatatgtt cgagcggcaa
           301 ccgtcgggga cttggcaggc agcacgcatc cgcctgcccg tctgtgtcga
           351 aggcaggcgc gattttacgg cggacattac aatcggcagc cggacatttc
           401 agacggcatt taccgccgaa taa
```

This corresponds to the amino acid sequence <SEQ ID 1098; ORF 270.ng>:

```
g270.pep
           1 MNKNRKLLLA ALLLTAFAAF KLVLLQWWQA QQPQAVAAQC DLTEGCTLPD
              GSRVRAAAVS TKKPFDIYIE HAPAGTEQVS ISFSMKNMDM GFNRYMFERQ
          51
         101 PSGTWQAARI RLPVCVEGRR DFTADITIGS RTFQTAFTAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1099>:
    m270.seq
              ATGAATAAAA ACCGTAAATT ACTGCTTGCC GCACTGCTGC TGATTGCCTT
          51 TGCCGCCGTC AAGCTCGTTT TGTTGCAATG GTGGCAGGCG Ca.CAGCCGC
         101 AAGCTGTGGC GGCGCAATGC GATTTGACCG AGGGTTGCAC GCTGCCGGAC
         151 GGAAGCCGCG TCCGCGCCGC CGCcGTTTCA ACCAAAAAAC CGTTTGATAT
         201 TTATATCGAA CACGCGCCCG CCGGCACGGA ACAGGTCAGC ATCAGCTTCA
         251 GTATGAAAAA TATGGATATG GGTTTCaACC GCTATATGTT CGAGCGGCAA
         301 CCGTCGGGGA CTTGGCAGGC AGTACGCATC CGCCTGCCCA TCTGTGTCGA
         351 AGGCAGGCGC GATTTTACGG CGGACATTAC AATCGGCAGT CGGACATTTC
         401 AGACGGCATT TACCGCCGAA TAA
This corresponds to the amino acid sequence <SEQ ID 1100; ORF 270>:
     m270.pep
           1 MNKNRKLLLA ALLLIAFAAV KLVLLQWWQA XQPQAVAAQC DLTEGCTLPD
          51 GSRVRAAAVS TKKPFDIYIE HAPAGTEQVS ISFSMKNMDM GFNRYMFERQ
          101 PSGTWQAVRI RLPICVEGRR DFTADITIGS RTFQTAFTAE *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 270 shows 96.4% identity over a 140 aa overlap with a predicted ORF (ORF 270.ng)
from N. gonorrhoeae:
     m270/g270
                                                              50
                                                                        60
                                           30
                                                     40
                                  20
                         10
                 MNKNRKLLLAALLLIAFAAVKLVLLQWWQAXQPQAVAAQCDLTEGCTLPDGSRVRAAAVS
     m270.pep
                  MNKNRKLLLAALLLTAFAAFKLVLLQWWQAQQPQAVAAQCDLTEGCTLPDGSRVRAAAVS
     g270
                                           30
                                                     40
                                                              50
                                                                        60
                                  20
                         10
                                                             110
                                            90
                                                    100
                                  80
                  TKKPFDIYIEHAPAGTEQVSISFSMKNMDMGFNRYMFERQPSGTWQAVRIRLPICVEGRR
     m270.pep
                  TKKPFDIYIEHAPAGTEQVSISFSMKNMDMGFNRYMFERQPSGTWQAARIRLPVCVEGRR
     g270
                                                             110
                                            90
                                                    100
                         70
                                   80
                        130
                  DFTADITIGSRTFQTAFTAEX
      m270.pep
                  DFTADITIGSRTFQTAFTAEX
      q270
                                  140
                        130
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1101>:
      a270.seq
                ATGAATAAAA ACCGTAAATT ACTGCTTGCC GCACTGCTGC TGATTGCCTT
                TGCCGCCGTC AAGCTCGTTT TGTTGCAATG GTGGCAGGCG CAGCAGCCGC
           101 AAGCTGTGGC GGCGCAATGC GATTTGACCG AGGGTTGCAC GCTGCCGGAC
           151 GGAAGCCGCG TCCGCGCCGC CGCCGTTTCA ACCAAAAAAC CGTTTGATAT
           201 TTATATCGAA CACGCGCCCG CCGGCACGGA ACAGGTCAGC ATCAGCTTCA
                GTATGAAAAA TATGGATATG GGTTTCAACC GCTATATGTT CGAGCGGCAA
           251
                CCGTCGGGGA CTTGGCAGGC AGTACGCATC CGCCTGCCCA TCTGTGTCGA
           301
                AGGCAGGCGC GATTTTACGG CGGACATTAC AATCGGCAGC CGGACATTTC
           401 AGACGGCATT TACCGCCGAA TAA
 This corresponds to the amino acid sequence <SEQ ID 1102; ORF 270.a>:
      a270.pep
```

MNKNRKLLLA ALLLIAFAAV KLVLLQWWQA QQPQAVAAQC DLTEGCTLPD GSRVRAAAVS TKKPFDIYIE HAPAGTEQVS ISFSMKNMDM GFNRYMFERQ

```
101 PSGTWQAVRI RLPICVEGRR DFTADITIGS RTFQTAFTAE *
```

```
m270/a270 99.3% identity in 140 aa overlap
                                         30
                                20
                       10
                MNKNRKLLLAALLLIAFAAVKLVLLQWWQAXQPQAVAAQCDLTEGCTLPDGSRVRAAAVS
     m270.pep
                 MNKNRKLLLAALLLIAFAAVKLVLLQWWQAQQPQAVAAQCDLTEGCTLPDGSRVRAAAVS
     a270
                                20
                                         30
                                                 40
                                                         110
                                                                  120
                                         90
                                                 100
                       70
                 TKKPFDIYIEHAPAGTEQVSISFSMKNMDMGFNRYMFERQPSGTWQAVRIRLPICVEGRR
     m270.pep
                 TKKPFDIYIEHAPAGTEQVSISFSMKNMDMGFNRYMFERQPSGTWQAVRIRLPICVEGRR
                                                 100
                                                         110
                                80
                       130
                 DFTADITIGSRTFQTAFTAEX
     m270.pep
                 1111111111111111111111111
                 DFTADITIGSRTFQTAFTAEX
     a270
                       130
                               140
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1103>:
     g271.seq
               atgttcagtt cgcggatggc gaggatttgg gcgacggggg taacgttgtg
               tatggtcagt ccgtgtccgg cgttgacgac caagcccaaa tcgccggcga
           51
               aatgcgcgcc gttttggatg cgctcgaact gcctgatttg ttcggcgtgg
          101
          151 ctttgtgcgt cggcatatgc gccggtgtgc agctcgacaa cgggcgcgcc
          201 gacatcacgg gcggcttgga tttgcctgtc gtcggcatcg ataaacaagg
               acacgcgtat gcccgcgtcg gtcaggattt tggcgaattc ggcgattttt
          251
               teetgttgeg ecaatacgte caaaccgeet teggtegtga ttteetgeeg
          301
               tttttcaggc acgatgcaca cgtcttccgg catcacttta agcgcgtttt
          351
          401 cgagcatttc ttccgtcaac gccatttcaa ggttcaggcg cgtgcggatg
          451 gcgtttttga cggcaaatac atccgcgtct ttgatgtggc ggcggtcttc
          501 gcgcaggtgc atggtaatca ggtctgcacc gtgcgtttcg gcaaccagtg
          551 ccgcctccac ggggctggga taa
This corresponds to the amino acid sequence <SEQ ID 1104; ORF 271.ng>:
      g271.pep
               MFSSRMARIW ATGVTLCMVS PCPALTTKPK SPAKCAPFWM RSNCLICSAW
               LCASAYAPVC SSTTGAPTSR AAWICLSSAS INKOTRMPAS VRILANSAIF
            51
               SCCANTSKPP SVVISCRFSG TMHTSSGITL SAFSSISSVN AISRFRRVRM
           151 AFLTANTSAS LMWRRSSRRC MVIRSAPCVS ATSAASTGLG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1105>:
      m271.seq
               AWGTTCAGTT CGCGGATGGC GAGGATTTGG GCGATGGGGG TAACGTTGTG
            1
            51 TATGGTCAGT CCGTGTCCGG CGTTGACGAC CAAGCCCAAA TCGCCGGCGA
           101 AATGCGCGCC GTTTTGGATG CGCTCGAACT GCCTGATTTG TTCGGCGTGG
           151 CTGCGCGCGT CGGCATACGC GCCTGTGTGC AGCTCGACAA CGGGCGCGCC
           201 GACATCACGG GCGGCTTGGA TTTGCCTGTC GTCGGCATCG ATAAACAAAG
           251 ACACGCGTAT GCCTGCGTCG GTCAGGATTT TGGTGAACCC GGCGATTTTT
           301 TCCTGTTGCG CCAATACGTC CAAACCGCCT TCGGTCGTGA TTTCCTGACG
           351 TTTTTCAGGC ACGATGCACA CGTCTTCCGG CATCACTTTC AAAGCGTTTT
           401 CCAACATTTC TTCCGTCAAC GCCATTTCAA GGTTCAGGCG CGTGCGGATG
           451 GCGTTTTTGA CGGCAAACAC GTCCGCGTCT TTGATGTGGC GGCGGTCTTC
           501 GCGCAGGTGC ATGGTAATCA AATCCGCACC GTGCGTTTCG GCAACCAGTG
                CCGCCTCCAC GGGGCTGGGA TAA
 This corresponds to the amino acid sequence <SEQ ID 1106; ORF 271>:
      m271.pep
                XFSSRMARIW AMGVTLCMVS PCPALTTKPK SPAKCAPFWM RSNCLICSAW
                LRASAYAPVC SSTTGAPTSR AAWICLSSAS INKDTRMPAS VRILVNPAIF
                SCCANTSKPP SVVISXRFSG TMHTSSGITF KAFSNISSVN AISRFRRVRM
           151 AFLTANTSAS LMWRRSSRRC MVIKSAPCVS ATSAASTGLG *
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 271 shows 95.2% identity over a 189 aa overlap with a predicted ORF (ORF 271.ng) from N. gonorrhoeae:

m271/g271

-- 50: 5

	10	20	30	40	50	60
m271.pep	XFSSRMARIWAMGV	TLCMVSPCPA	LTTKPKSPAK	CAPFWMRSNO	CLICSAWLRAS	SAYAPVC
	11111111111111	1111111111	111111111	111111111		
g271	MFSSRMARIWATGV	TLCMVSPCPA	LTTKPKSPAK	CAPFWMRSNO	CLICSAWLCAS	SAYAPVC
•	10	20	30	40	50	60
	70	80	90	100	110	120
m271.pep	SSTTGAPTSRAAWI	CLSSASINKI	TRMPASVRIL	VNPAIFSCC	NTSKPPSVV1	SXRFSG
	11111111111111111	1111111111	111111111	: [] [] [] [] []		
g271	SSTTGAPTSRAAWI	CLSSASINKI	TRMPASVRIL	ansaifscc <i>i</i>	NTSKPPSVVI	SCRFSG
-	70	80	90	100	110	120
	130	140	150	160	170	180
m271.pep	TMHTSSGITFKAFS	NISSVNAISF	FRRVRMAFLT	ANTSASLMWI	RRSSRRCMVII	KSAPCVS
	[[[]]::[]]	:1111111111	1111111111			:111111
g271	TMHTSSGITLSAFS		RFRRVRMAFLT			
	130	140	150	160	170	180
	190					
m271.pep	ATSAASTGLGX					
	11111111111				•	
g271	ATSAASTGLGX					
	190					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1107>: a271.seg

. seq					
1	ATGTTCAGTT	CGCGGATGGC	GAGGATTTGG	GCGATGGGGG	TAACGTTGTG
51	TATGGTCAGT	CCGTGTCCGG	CGTTGACGAC	CAAGCCCAAA	TCGCTGGCAA
101	AATGCGCGCC	GTTTTGGATG	CGCTCGAACT	GCCTGATTTG	TTCGGCGTGG
151	CTGCGCGCGT	CGGCATACGC	GCCTGTGTGC	AGCTCGACAA	CGGGCGCGCC
201	GACATCACGG	GCGGCTTGGA	TTTGCCTGTC	GTCGGCATCG	ATAAACAAGG
251	ACACGCGTAT	GCCCGCGTCG	GTCAGGATTT	TGGTGAATTC	GGCAATTTTG
301	TCTTGTTGCG	CCAATACGTC	CAAGCCGCCT	TCGGTCGTGA	TTTCCTGACG
351	TTTTTCCGGC	ACGATGCACA	CGTCTTCCGG	CATCACTTTA	AGCGCGTTTT
401	CGAGCATTTC	TTCCGTCAAC	GCCATTTCAA	GGTTCAGGCG	CGTGCGGATG
451	GCGTTTTTGA	CAGCAAACAC	GTCCGCGTCT	TTGATGTGGC	GGCGGTCTTC
501	GCGCAGGTGC	ATGGTAATCA	GGTCGGCACC	GTGCGTTTCG	GCAACCAGTG
551	CCGCCTCCAC	GGGGCTGGGA	TAA		

This corresponds to the amino acid sequence <SEQ ID 1108; ORF 271.a>:

a271.pep

- 1 MFSSRMARIW AMGVTLCMVS PCPALTTKPK SLAKCAPFWM RSNCLICSAW
- 51 LRASAYAPVC SSTTGAPTSR AAWICLSSAS INKDTRMPAS VRILVNSAIL
 101 SCCANTSKPP SVVIS*RFSG TMHTSSGITL SAFSSISSVN AISRFRRVRM
 151 AFLTANTSAS LMWRRSSRRC MVIRSAPCVS ATSAASTGLG *

m271/a271 96.3% identity in 189 aa overlap

	10	20	30	40	50	60
m271.pep	XFSSRMARIWAMGV	TLCMVSPCPA	LTTKPKSPAK	CAPFWMRSNC	LICSAWLRAS	AYAPVC
	1111111111111	111111111111	11111111 11	1311311111	11111111111	
a271	MFSSRMARIWAMGV	TLCMVSPCP#	LTTKPKSLAK	CAPFWMRSNC	LICSAWLRAS	AYAPVC
	10	20	30	40	50	60
	70	80	90	100	110	120
m271.pep	SSTTGAPTSRAAWI	CLSSASINKI	TRMPASVRIL	VNPAIFSCCA	NTSKPPSVVI	SXRFSG
	11111111111111	11111111111		11 11:1111	1111111111	
a271	SSTTGAPTSRAAWI	CLSSASINKI	TRMPASVRIL	VNSAILSCCA	NTSKPPSVVI	SXRFSG

-- *2:

621

```
100
                                                 110
                                                         120
                                 90
                 70
                         80
                                        160
                                                 170
                                150
                130
                        140
          TMHTSSGITFKAFSNISSVNAISRFRRVRMAFLTANTSASLMWRRSSRRCMVIKSAPCVS
m271.pep
          TMHTSSGITLSAFSSISSVNAISRFRRVRMAFLTANTSASLMWRRSSRRCMVIRSAPCVS
a271
                                        160
                                                 170
                        140
                                150
                130
                190
m271.pep
          ATSAASTGLGX
           HIHHHH
          ATSAASTGLGX
a271
                190
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1109>:
       1 atgactgcaa aggaagaact gttcgcatgg ctgcgccata tgaacaaaaa
          caaaggttcc gacctgtttg tgacgaccca tttcccgccc gctatgaagc
      51
     101 tggacggcaa aatcacccgc atcacggacg aaccgctgac ggcggaaaaa
     151 tgtatggaaa tcgccttttc gattatgagt gcgaagcagg cggaagaatt
     201 ttcatcgacc aacgagtgca atttcgccat cagcctgccg gacaccagcc
     251 gcttccgcgt caatgcgatg atacagcgcg gtgcgacggc gttggtattc
     301 cgcgcgatta ccagcaagat tcccaagttt gaaagcctga acctgccgcc
          ggccttgaag gatgttgcgc tgaaaaaacg cgggctggtt atttttgtcg
     401 geggeacegg etegggeaaa tegaettege tegeeteget tategaetae
     451 cgcaatgaaa attcgttcgg acacatcatc accatcgaag atccgatcga
     501 gtttgtccac gaacacaaaa actgcatcat tacccagcgc gaggtcggcg
     551 tggacacgga aaactggatg gcggcgttga aaaatacgct gcgtcaggcg
     601 ccggatgtga tccttatcgg cgaaatccgc gaccgtgaaa caatggacta
          egecategee trtgeegaaa eggggeattt gtgtatggeg aegetgeaeg
     701 ccaacagcac caatcaggcg ctcgaccgca tcatcaactt cttccccgag
     751 gageggegeg aacaattget gaeggatttg tegeteaace tteaggegtt
     801 tatttegeaa egeetegtte egegagaegg eggeaaggge agggtggegg
     851 cagtcgaggt gctgctcaat tcgcccctga tttcggagtt gattcacaac
     901 ggcaacatcc atgaaatcaa agaagtgatg aaaaaatcca ctaccctggg
     951 tatgcagacc ttcgaccaac acctttacca attgtatgaa aaaggcgaga
     1001 tttccttgca ggatgccttg aaaaatgccg attccgcaca tgatttgcgt
     1051 ttggcggtac agttgcgcag ccgcagggca caaagttccg accccgattt
     1101 ggaactgctc tga
 This corresponds to the amino acid sequence <SEQ ID 1110; ORF 272.ng>:
 g272.pep
       1 MTAKEELFAW LRHMNKNKGS DLFVTTHFPP AMKLDGKITR ITDEPLTAEK
       51 CMEIAFSIMS AKQAEEFSST NECNFAISLP DTSRFRVNAM IQRGATALVF
      101 RAITSKIPKF ESLNLPPALK DVALKKRGLV IFVGGTGSGK STSLASLIDY
      151 RNENSFGHII TIEDPIEFVH EHKNCIITQR EVGVDTENWM AALKNTLRQA
      201 PDVILIGEIR DRETMDYAIA FAETGHLCMA TLHANSTNQA LDRIINFFPE
      251 ERREQLITDL SLNLQAFISQ RLVPRDGGKG RVAAVEVLLN SPLISELIHN
      301 GNIHEIKEVM KKSTTLGMQT FDQHLYQLYE KGEISLQDAL KNADSAHDLR
      351 LAVQLRSRRA QSSDPDLELL*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1111>:
 m272.seq
           ATGACCGCAA AGGAAGAACT GTTCGCATGG CTGCGCCATA TGAWCCAAAA
        1
       51 CAAAGGTTCC GACCTGTTCG TGACAACCCA TTTCCCGCCC GCAATGAAGC
           TGGACGGCAA AATCACCCGC ATCACGGACG AACCGCTGAC GGCGGAAAAA
      101
           TGTATGGAAA TCGCCTTTTC GATTATGAGT GCGAAGCAGG CGGAAGAATT
      201 TTCATCGACC AACGAGTGCA ACTTCGCCAT CAGCCTGCCG GACACCAGCC
      251 GCTTCCGCGT CAATGCGATG ATACAGCGCG GCGCGACGGC GTTGGTATTC
      301 CGTACGATTA CCAGCAAGAT TCCCAAGTTT GAAAGCCTGA ACCTGCCGCC
      351 AGTCTTGAAG GATGTCGCGC TGAAAAAACG CGGGCTGGTT ATTTTTGTCG
      401 GCGGCACCGG CTCGGGTAAA TCGACTTCGC TTGCCTCGCT TATCGACTAC
           CGCAATGAAA ATTCGTTCGG ACACATCATC ACCATCGAAG ACCCGATCGA
```

501 GTTTGTCCAC GAACACAAAA ACTGCATCAT CACCCAGCGC GAGGTCGGCG

	551	TGGATACGGA	AAACTGGATG	GCGGCGTTGA	AAAACACGCT	GCGTCAGGCG
	601	CCTGATGTCA	TCCTTATCGG	CGAAATCCGT	GACCGCGAAA	CAATGGACTA
	651	CGCCATTGCC	TTTGCCGAAA	CGGGGCATTT	GTGTATGGCG	ACGCTGCACG
		CCAACAGCAC	CNATCAGGCA	CTCGACCGCA	TCATCAACTT	TTTCCCCGAG
	701	GAGCGGCGCG	CARICAGGCA	C1 CCC1CCCCC	TOTAL TOTAL	TTC ACCCCTT
	751					
	801	TATTTCGCAA	CGCCTCGTTC	CGCGAGACGG	CGGCAAGGGC	AGGGTGGCGG
	851	CAGTCGAGGT	GCTGCTCAAT	TCGCCCCtGA	TTTCGGAGTT	GATTCACAAC
	901	GGCAACATCC	ATGAAATCAA	AGAAGTGATG	AAAAAATCCA	CTACCCTGGG
	951	TATGCAGACC	TTCGATCAAC	ACCTTTACCA	ATTGTATGAA	AAAGGCGATA
	1001	TTTCCCTCCA	AGAAGCATTG	AAAAATGCCG	ATTCCGCACA	CGATTTGCGT
						GCCCCGATTT
• 178% ·	1051			CCGCCGCG	Chanozzyczi	000000
	1101	GGnACTGCTC		_		. ODE 272

This corresponds to the amino acid sequence <SEQ ID 1112; ORF 272>:

m272.pep

1 MTAKEELFAW LRHMXQNKGS DLFVTTHFPP AMKLDGKITR ITDEPLTAEK 51 CMEIAFSIMS AKQAEEFSST NECNFAISLP DTSRFRVNAM IQRGATALVF

101 RTITSKIPKF ESLNLPPVLK DVALKKRGLV IFVGGTGSGK STSLASLIDY

151 RNENSFGHII TIEDPIEFVH EHKNCIITQR EVGVDTENWM AALKNTLRQA

201 PDVILIGEIR DRETMDYAIA FAETGHLCMA TLHANSTNQA LDRIINFFPE 251 ERREQLLTDL SLNLQAFISQ RLVPRDGGKG RVAAVEVLLN SPLISELIHN

301 GNIHEIKEVM KKSTTLGMQT FDQHLYQLYE KGDISLQEAL KNADSAHDLR

351 LAVQLRSRRA QSXSPDLXLL *

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 272 shows 97.6% identity over a 370 aa overlap with a predicted ORF (ORF 272.ng) from N. gonorrhoeae:

m272/g272

		10	20	30	40	50	60
m272.pep					ITRITDEPLT	AEKCMEIAFS	IMS
	1111111						
g272	MTAKEEL			30	ITRITDEPLT	50	60
		10	20	30	40	30	00
		70	80	90	100	110	120
m272.pep	AKOAEEF	SSTNECNFAI	SLPDTSRFRV	NAMIQRGATA	LVFRTITSKI	PKFESLNLPP	VLK
ME 72. PCP	1111111	11111111111	111111111111		1111:1111	1111111111	:
g272	AKQAEEF	SSTNECNFAI	SLPDTSRFRV	NAMIQRGATA	LVFRAITSKI	PKFESLNLPF	PALK
9 - · -	-	70	80	90	100	110	120
		130	140	150	160	170	180
m272.pep	DVALKKR	GLVIFVGGT	SSGKSTSLASI	LIDYRNENSFO	HIITIEDPIE	FVHEHKNCII	TQR
		1111111111		[]]]]]]]		11)1111111	111
g272	DVALKKR		SSGKSTSLASI	LIDYRNENSFO	HIITIEDPIE	FVHEHKNC11	TQR
		130	140	150	160	170	180
					000	230	240
		190	200	210	220 (27 E2 E2 EECUT		
m272.pep				SETEDRETMU:	/AIAFAETGHI	TCMWITUWNS)	IIII
	1111111						
g272	EVGVDTE		200 LRQAPDVILIC	3E1RDRE1MD. 210	AIAFAETGHI 220	230	240
		190	200	210	220	250	210
		250	260	270	280	290	300
m272.pep	LDRIINE		LTDLSLNLQA	FISQRLVPRD	GGKGRVAAVE	/LLNSPLISE	LIHN
me.erpep	1111111		111111111	111111111	111111111	[[[[[[[[[[[[[[[[[[[[Ш
q272	LDRIIN	FFPEERREOL	LTDLSLNLQA	FISORLVPRD	GGKGRVAAVE	VLLNSPLISE:	LIHN
95.5		250	260	270	280	290	300
		310	320	330	340	350	360
m272.pep	GNIHEI	KEVMKKSTTL	GMQTFDQHLY	QLYEKGDISL	QEALKNADSA		
	111111	111111111	[11] [1] [1]	1111111111	1:11111111	11111111111	1111
q272	GNIHEI	KEVMKKSTTL	GMQTFDQHLY	QLYEKGEISL	QDALKNADSA	HDLRLAVQLR	SRRA
•		310	320	330	340	350	360

a272

370

```
m272.pep
                QSXSPDLXLLX
                11:111:111
                QSSDPDLELLX
    g272
                      370
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1113>:
    a272.seq
              ATGACCGCAA AGGAAGAACT GTTCGCATGG CTGCGCCATA TGAACAAAAA
              CAAAGGTTCC GACCTGTTCG TGACGACCCA TTTCCCGCCC GCAATGAAGC
          51
              TGGACGGCAA AATCACCCGC ATCACGGACG AACCGCTGAC GGCGGAAAAA
         101
              TGTATGGAAA TCGCCTTTTC GATTATGAGT GCGAAGCAGG CGGAAGAATT
         151
              TTCATCGACC AACGAGTGCA ACTTCGCCAT CAGTCTGCCG GACACCAGCC
         201
              GCTTCCGCGT CAATGCGATG ATACAGCGCG GTGCGACGGC GTTGGTATTC
         251
              CGTGCGATTA CCAGCAAGAT TCCCAAGTTT GAAAGCCTGA ACCTGCCGCC
         301
              GGTCTTGAAG GATGTCGCGC TGAAAAAACG CGGGCTGGTT ATTTTTGTCG
          351
              GCGGCACCGG CTCGGGCAAA TCGACTTCGC TTGCCTCGCT TATCGACTAC
          401
              CGCAATGAAA ATTCGTTCGG ACACATCATC ACCATCGAAG ACCCGATCGA
          451
              GTTTGTCCAC GAACACAAAA ACTGCATCAT CACCCAGCGC GAGGTCGGCG
          501
              TGGATACGGA AAACTGGATG GCGGCGTTGA AAAACACGCT GCGTCAGGCA
          551
              CCGGATGTGA TTCTGATCGG CGAAATCCGC GACCGCGAAA CAATGGACTA
          601
              CGCCATTGCT TTTGCCGAAA CGGGGCATTT GTGTATGGCG ACGCTGCACG
          651
              CCAACAGCAC CAATCAGGCA CTCGACCGCA TCATCAACTT TTTCCCCGAG
          701
              GAGCGGCGC AACAATTGCT GACGGATTTG TCGCTCAACC TTCAGGCATT
          751
              TATTTCGCAA CGCCTCGTTC CGCGAGACGG CGGCAAGGGC AGGGTGGCGG
          801
              CAGTCGAGGT GCTGCTCAAT TCGCCCCTGA TTTCGGAGTT GATTCACAAC
          851
              GGCAATATCC ATGAAATCAA AGAAGTGATG AAAAAATCCA CTACCCTGGG
          901
              TATGCAGACT TTCGACCAAC ACCTTTACCA ATTGTATGAA AAAGGCGAGA
          951
               TTTCCTTGCA GGATGCCTTG AAAAATGCCG ATTCCGCACA CGATTTGCGT
         1001
               TTGGCGGTAC AGTTGCGCAG CCGCCAGGCG CAAAGTTCCG GTCCCGATTT
         1051
               GGAACTGCTC TGA
         1101
This corresponds to the amino acid sequence <SEQ ID 1114; ORF 272.a>:
     a272.pep
               MTAKEELFAW LRHMNKNKGS DLFVTTHFPP AMKLDGKITR ITDEPLTAEK
            1
               CMEIAFSIMS AKQAEEFSST NECNFAISLP DTSRFRVNAM IQRGATALVF
           51
               RAITSKIPKF ESLNLPPVLK DVALKKRGLV IFVGGTGSGK STSLASLIDY
          101
               RNENSFGHII TIEDPIEFVH EHKNCIITQR EVGVDTENWM AALKNTLRQA
               PDVILIGEIR DRETMDYAIA FAETGHLCMA TLHANSTNQA LDRIINFFPE
          201
               ERREQLLTDL SLNLQAFISQ RLVPRDGGKG RVAAVEVLLN SPLISELIHN
          251
               GNIHEIKEVM KKSTTLGMQT FDQHLYQLYE KGEISLQDAL KNADSAHDLR
          301
          351 LAVQLRSRQA QSSGPDLELL *
m272/a272 97.6% identity in 370 aa overlap
                                      30
                                              40
               MTAKEELFAWLRHMXQNKGSDLFVTTHFPPAMKLDGKITRITDEPLTAEKCMEIAFSIMS
     m272.pep
               MTAKEELFAWLRHMNKNKGSDLFVTTHFPPAMKLDGKITRITDEPLTAEKCMEIAFSIMS
     a272
                                      30
                              20
                                                     110
                                             100
                      70
                              80
                                      90
                AKQAEEFSSTNECNFAISLPDTSRFRVNAMIQRGATALVFRTITSKIPKFESLNLPPVLK
     m272.pep
                AKQAEEFSSTNECNFAISLPDTSRFRVNAMIQRGATALVFRAITSKIPKFESLNLPPVLK
     a272
                              80
                                      90
                                             100
                                                     110
                                                             120
                             140
                                     150
                                             160
                DVALKKRGLVIFVGGTGSGKSTSLASLIDYRNENSFGHIITIEDPIEFVHEHKNCIITQR
     m272.pep
                .....
```

DVALKKRGLVIFVGGTGSGKSTSLASLIDYRNENSFGHIITIEDPIEFVHEHKNCIITQR

160

170

180

150

140

130

```
230
                                                             240
                                             220
                              200
                                      210
                      190
                 EVGVDTENWMAALKNTLRQAPDVILIGEIRDRETMDYAIAFAETGHLCMATLHANSTNQA
       m272.pep
                 EVGVDTENWMAALKNTLRQAPDVILIGEIRDRETMDYAIAFAETGHLCMATLHANSTNQA
       a272
                              200
                                      210
                      190
                                                     290
                                      270
                                             280
                              260
                 LDRIINFFPEERREQLLTDLSLNLQAFISQRLVPRDGGKGRVAAVEVLLNSPLISELIHN
       m272.pep
                 LDRIINFFPEERREQLLTDLSLNLQAFISQRLVPRDGGKGRVAAVEVLLNSPLISELIHN
       a272
                                              280
                                                     290
                                      270
                                              340
                                                     350
                              320
                                      330
                      310
-- ***
                 GNIHEIKEVMKKSTTLGMQTFDQHLYQLYEKGDISLQEALKNADSAHDLRLAVQLRSRRA
       m272.pep
                 GNIHEIKEVMKKSTTLGMQTFDQHLYQLYEKGEISLQDALKNADSAHDLRLAVQLRSRQA
       a272
                                      330
                              320
                      370
                 QSXSPDLXLLX
       m272.pep
                 11:111:111
                 QSSGPDLELLX
       a272
                      370
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1115>: g273.seq

```
atgagtette aggeggtatt tatatacece ceaageegta eegeacaata
```

- caacgaaaat caggaaaacg gcggtaaagc tcataaacag ggacaaagcg 51 gcaaacacac cgaccgccgt caggatatag gcgtattcga ggccggaact
- 101 151 ccattcaccg ttttcctgcc gtttcttgtc gcttttgaaa taaaggatga
- 201 tgccggcaag cagcgcggca gccgcgcccg acattggcat tgtgttcatt
- 251 gttgttcctt aacggttaaa aacccgcccg gccgtgcaac cgttttaagg
- 301 cgggaaattg caaaatttgt ttgcgggcgc gtgccgctga aatcaaggcg
- 351 gtttgagaag tgtttccnac gcgcccgccc tatgtgccga aatattattt
- 401 gregereace tgcaaaateg ccaagaacge getttgegga atttccaegt
- 451 tgcccacttg tttcatacgg cgtttgcctg ctttttgttt ttcaagcagt
- 501 tttttcttac gcgtaa

This corresponds to the amino acid sequence <SEQ ID 1116; ORF 273.ng>: q273.pep

- MSLQAVFIYP PSRTAQYNEN QENGGKAHKQ GQSGKHTDRR QDIGVFEAGT
- 51 PFTVFLPFLV AFEIKDDAGK QRGSRARHWH CVHCCSLTVK NPPGRATVLR
- 101 REIAKFVCGR VPLKSRRFEK CFXRARPMCR NIICRSPAKS PRTRFAEFPR
- 151 CPLVSYGVCL LFVFQAVFSY A*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1117>: m273.seq

- ATGAGTCTTC AGGCGGTATT TATATACCCM CCAAGCCGTA CCGCACAATA
- CAACGAAAAT CAGGAAAACG GCGGTAAAGC TCAYAAACAG GGACAAAGCG
- 101 GCAAACACGC CGACCGCTGT CAGGATATAG GCGTATTCAA GGCCGGAACT
- 151 CCATTCCCCG TTTTCCTGCC GCTTCTTGTC GCTTTTGAAA TAAAGGATGA
- 201 TGCCGGCAAG CAGCGCGGCA GCCGCGCCCG ACATTAGCAT TGTGTTCATT
- 251 GTTGTTCCTT AATGCTTAAA AACCCGCCTG TCCGTGCAAC CGTTTTAAGG
- 301 CGGCAAATTG CAAAATTTGT TTGCGGGCGC GTGCCCCTGA AATCAGGGCG GTTTGAGGGG TGTTCCCGAC GCGCCGCCCT GTGTGCCGGA GTTATTTGTC
- 401 GCTCACCTGC AAAATCGCCA AGAACGCGCT TTGCGGAATT TCCACATTGC
- 451 CCACTTGTTT CATACGGCGT TTACCTGCCT TTTGTkTwTC AAGCAGTTTT
- 501 TTCTTACGCG TAA

This corresponds to the amino acid sequence <SEQ ID 1118; ORF 273>: m273.pep

- MSLOAVFIYP PSRTAQYNEN QENGGKAHKQ GQSGKHADRC QDIGVFKAGT
- 51 PFPVFLPLLV AFEIKDDAGK QRGSRARH*H CVHCCSLMLK NPPVRATVLR
- 101 RQIAKFVCGR VPLKSGRFEG CSRRAALCAG VICRSPAKSP RTRFAEFPHC
- 151 PLVSYGVYLP FVXQAVFSYA *

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae ORF 273 shows 86.0% identity over a 171 aa overlap with a predicted ORF (ORF 273.ng) from N. gonorrhoeae: m273/g273 40 20 30 MSLQAVFIYPPSRTAQYNENQENGGKAHKQGQSGKHADRCQDIGVFKAGTPFPVFLPLLV m273.pep MSLQAVFIYPPSRTAQYNENQENGGKAHKQGQSGKHTDRRQDIGVFEAGTPFTVFLPFLV g273 40 30 20 90 100 110 RO AFEIKDDAGKQRGSRARHXHCVHCCSLMLKNPPVRATVLRRQIAKFVCGRVPLKSGRFEG m273.pep AFEIKDDAGKORGSRARHWHCVHCCSLTVKNPPGRATVLRREIAKFVCGRVPLKSRRFEK g273 80 90 100 110 70 170 130 140 150 160 CSRRA-ALCAGVICRSPAKSPRTRFAEFPHCPLVSYGVYLPFVXQAVFSYAX m273.pep CFXRARPMCRNIICRSPAKSPRTRFAEFPRCPLVSYGVCLLFVFQAVFSYAX g273 140 150 160 170 130 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1119>: a273.seq ATGAGTCTTC AGGCGGTATT TGTATACCCC CCAAGCCGTA CCGCACAATA 1 CAACGAAAAT CAGGAAAACG GCGGTAAAGC TCATAAACAG GGACAAAGCG 51 GCAAACACGC CGACCGCCGT CAGGATATAG GCGTATTCCA GACCGGAACT 101 CCATTCACCG TTTTCCTGCC GCTTTTTGTC GCTTTTGAAA TAAAGGATGA TGCCGGCAAG CAGCGCGCAA GCCGCGCCCG ACATTAGCAT AATGTTCATT GTTGTTCCTT AACGGTTAAA AACCCGCCCG TCCGTGCAAC CGTTTTTAAG 251 AGGCGGTAAA TCACAAAGTT TGTTGGCGGA CGTGCTCTCT TACAATCAGG 301 GCGGTTTAAG GGGCATGATG CACTGCCCCG TGTGCCGGAT ATTATTTGTC GCTCACCTGC AAAATTGCCA AGAACGCGCT TTGCGGGATT TCCACATTGC 401 CCACTTGTTT CATACGGCGT TTGCCTGCTT TTTGTTTTTC AAGCAGTTTT TTCTTACGCG TAA This corresponds to the amino acid sequence <SEQ ID 1120; ORF 273.a>: a273.pep MSLQAVFVYP PSRTAQYNEN QENGGKAHKQ GQSGKHADRR QDIGVFQTGT PFTVFLPLFV AFEIKDDAGK QRGSRARH*H NVHCCSLTVK NPPVRATVFK 51 RR*ITKFVGG RALLQSGRFK GHDALPRVPD IICRSPAKLP RTRFAGFPHC PLVSYGVCLL FVFQAVFSYA * 80.1% identity in 171 aa overlap m273/a273 20 40 MSLQAVFIYPPSRTAQYNENQENGGKAHKQGQSGKHADRCQDIGVFKAGTPFPVFLPLLV m273.pep អាធិបៈសមាធិបានអំពាជអាធាធិបានការប្រជាអាធិបាន MSLQAVFVYPPSRTAQYNENQENGGKAHKQGQSGKHADRRQDIGVFQTGTPFTVFLPLFV a273 10 20 30 90 100 80 AFEIKDDAGKQRGSRARHXHCVHCCSLMLKNPPVRATVL-RRQIAKFVCGRVPLKSGRFE m273.pep AFEIKDDAGKORGSRARHXHNVHCCSLTVKNPPVRATVFKRRXITKFVGGRALLQSGRFK a273 100 150 160 140 130 GCSRRAALCAGVICRSPAKSPRTRFAEFPHCPLVSYGVYLPFVXQAVFSYAX m273.pep GHDALPRV-PDIICRSPAKLPRTRFAGFPHCPLVSYGVCLLFVFQAVFSYAX a273 140 150 160

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1121>:
g274.seq
         ATGGCGGGGC CGATTTTTGT CGTCatCGCC AgcgTCGCTA TGTTTTTTGT
      1
     51 CGCGCAGCAG CACGCGACAG ATTTGGTTAC GGACGATTAT TATAAGGATG
    101 GCAAGCATAT CGACATCCAG CTTCATCGGG ATGAAGAAGC CGTCAGACGG
    151 CATATCGGGG TGCAGGTCCT CATTTCTCCC GATATGAATG CGGCAAAAGT
    201 GTTTGTCGGc ggCgagtTTG ACGGCAAACA GCCTTTGAAC CTGCTGCTGA
    251 TGCACCCGAC CCGCAAGGCG GACGATCAAA CCGTCGCCCT CAAGCCCGTC
     301 GGCAGCGCGC AGAACGGCAG GGCGGAATAT GAGGCGGTgt tcaaAACCCT
    351 TCCGCCGGCC AACCACTGGT ATGTGCGCGT GGAggacgCG GCAGGCGTGT
     401 GGCGCGTCGA GAACAAATGG ATTACCAGCC AGGGCAATGC GGTCGATTTG
     451 ACCCCGATGG ACAAACTTTT CAATAATGCA GGAAGCAAAT AA
This corresponds to the amino acid sequence <SEQ ID 1122; ORF 274.ng>:
g274.pep
         MAGPIFVVIA SVAMFFVAQQ HATDLVTDDY YKDGKHIDIQ LHRDEEAVRR
     51 HIGVQVLISP DMNAAKVFVG GEFDGKQPLN LLLMHPTRKA DDQTVALKPV
         GSAQNGRAEY EAVFKTLPPA NHWYVRVEDA AGVWRVENKW ITSQGNAVDL
         TPMDKLFNNA GSK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1123>:
m274.seq
         ATGGCGGGGC CGATTTTGT CGTCATCGCC AGCGTCGCTA TGTTTTTGT
         CGCGCAGCAG CACGCGACAG ATTTGGTTAC GGACGATTAT TATAAAGACG
      51
     101 GCAAACATAT CGACATCCAG CTTCATCGGG ATGAAGAAGC CGTCAGACGG
     151 CATATCGGGG TGCAGGTTCT CATTTCCCCC GATATGAATG CGGCAAAAGT
     201 GTTTGTCGGC GGCGAGTTTG ACGGCAAACA GCCTTTGAAC CTGCTGCTGA
     251 TGCACCCGAC CCGCAAGGCG GACGATCAAA CCGTCGCCCT CAAGCCCGTC
     301 GGCAGCGCG AGAACGGCAG GGCGGAATAT GAGGCGGTGT TCAAAACCCT
     351 TTCGCCGACC AACCACTGGT ATGTGCGCGT GGAGGACGCG GCAGGCGTGT
     401 GGCGCGTCGA GAACAAATGG ATTACCAGCC AAGGCAATGC GGTCGATTTG
     451 ACCCCGATGG ACAAGCTTTT CAATAATACT GAAAGCAAAT AA
This corresponds to the amino acid sequence <SEQ ID 1124; ORF 274>:
m274.pep
         MAGPIFVVIA SVAMFFVAQQ HATDLVTDDY YKDGKHIDIQ LHRDEEAVRR
      51 HIGVQVLISP DMNAAKVFVG GEFDGKQPLN LLLMHPTRKA DDQTVALKPV
     101 GSAQNGRAEY EAVFKTLSPT NHWYVRVEDA AGVWRVENKW ITSQGNAVDL
     151 TPMDKLFNNT ESK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 274 shows 97.5% identity over a 163 aa overlap with a predicted ORF (ORF 274.ng)
from N. gonorrhoeae:
     g274/m274
                  MAGPIFVVIASVAMFFVAQQHATDLVTDDYYKDGKHIDIQLHRDEEAVRRHIGVQVLISP
     q274.pep
                  MAGPIFVVIASVAMFFVAQQHATDLVTDDYYKDGKHIDIQLHRDEEAVRRHIGVQVLISP
     m274
                                            30
                                                      40
                                   20
                                                     100
                  {\tt DMNAAKVFVGGEFDGKQPLNLLLMHPTRKADDQTVALKPVGSAQNGRAEYEAVFKTLPPA}
     g274.pep
                  {\tt DMNAAKVFVGGEFDGKQPLNLLLMHPTRKADDQTVALKPVGSAQNGRAEYEAVFKTLSPT}
     m274
                                                              110
                         70
                                   80
                                                     100
                  NHWYVRVEDAAGVWRVENKWITSQGNAVDLTPMDKLFNNAGSKX
      g274.pep
```

NHWYVRVEDAAGVWRVENKWITSQGNAVDLTPMDKLFNNTESKX

150

140

130

m274

WO 99/57280 PCT/US99/09346

627

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1125>:
    a274.seq
               ATGGCGGGC CGATTTTTGT CGTCATCGCC AGCGTCGCTA TGTTTTTTGT
               CGCGCAGCAG CACGCGACAG ATTTGGTTAC GGACGATTAT TATAAAGACG
           51
               GCAAGCATAT CGACATCCAG CTTCATCGGG ATGAAGAAGC CGTCAGACGG
          101
               CATATCGGGG TGCAGGTTCT CATTTCCCCC GATATGAATG CGGCAAAAGT
          151
               GTTTGTCGGC GGCGAGTTTG ACGGCAAACA GCCTTTGAAC CTGCTGCTGA
          201
               TGCACCCGAC CCGCAAGGCG GACGATCAAA CCGTCGCCCT CAAGCCCGTC
          251
               GGCAGCGCG AGAACGGCAG GGCGGAATAT GAGGCGGTGT TCAAAACCCT
          301
          351
               TTCGCCGACC AACCACTGGT ATGTGCGCGT GGAGGACGCG GCAGGCGTGT
               GGCGCGTCGA GAACAATGG ATTACCAGCC AAGGCAATGC GGTCGATTTG
               ACCCCGATGG ACAAACTTTT CAATAATACT GAAAGCAAAT AA
          451
This corresponds to the amino acid sequence <SEQ ID 1126; ORF 274.a>:
     a274.pep
               MAGPIFVVIA SVAMFFVAQQ HATDLVTDDY YKDGKHIDIQ LHRDEEAVRR
               HIGVOVLISP DMNAAKVFVG GEFDGKQPLN LLLMHPTRKA DDQTVALKPV
           51
               GSAQNGRAEY EAVFKTLSPT NHWYVRVEDA AGVWRVENKW ITSQGNAVDL
               TPMDKLFNNT ESK*
```

m274/a274 100.0% identity in 163 aa overlap

```
10
                       20
                              30
                                      40
         MAGPIFVVIASVAMFFVAQQHATDLVTDDYYKDGKHIDIQLHRDEEAVRRHIGVQVLISP
m274.pep
         MAGPIFVVIASVAMFFVAQQHATDLVTDDYYKDGKHIDIQLHRDEEAVRRHIGVQVLISP
a274
               10
                       20
                              30
                                      40
                                             50
                       80
                              90
                                     100
                                            110
         DMNAAKVFVGGEFDGKQPLNLLLMHPTRKADDQTVALKPVGSAQNGRAEYEAVFKTLSPT
m274.pep
         DMNAAKVFVGGEFDGKQPLNLLLMHPTRKADDQTVALKPVGSAQNGRAEYEAVFKTLSPT
a274
                             150
               130
                      140
         NHWYVRVEDAAGVWRVENKWITSQGNAVDLTPMDKLFNNTESKX
m274.pep
          a274
         NHWYVRVEDAAGVWRVENKWITSQGNAVDLTPMDKLFNNTESKX
               130
                      140
                             150
                                     160
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1127>: 9276.seq

```
atgattttgc cgccatccat gacgatgatg cggtcggcgg attcgacggt
  1
    ggtcaggcgg tgggcgacga tgatgccggt gcggttttcc atcaggcgtt
51
101 cgagcqcttq ttggacgagg cgttcggatt cgttgtccaa tgcgctggtg
151 gcttcgtcca ataataatat cggcgcgtct ttcaaaatgg cgcgggcgat
201 ggcgacgcgt tgccgctgtc cgccggataa gttgctgccg ttcgatccga
    tgggctggtg cagtccgagc ggggatgcgt cgatcaggct ttgcaggttg
    gcggcttgga gggcggacag gacttcggct tcgcccgcgt cgggacggct
351 gtatcggacg ttttcaaaca gggtgtcgtc aaacaggaat acgtcttggg
401 agacgaggc gaattgggcg cgcaggcagt cgagtttgat gtcggcgatg
    tcgataccgt ctatgcagat gttgccggca gacggttcga caaagcgggg
501
    cagaaggttg acgacggtgg atttgccgct gccggaacgt ccgaccaggg
    cgacgcgttc gccttgtctg atgtcgaggt tgaagttgtc gagggctttg
     atgccgtctg aacggtattc gacatcgacg ttgcggaagc tgatgcgccc
651
    ttcgacacgc tgcggcgcga gcgtgccttt gtcctgttcg ggcggggtgt
701 cgagaaatgc acatacgccg tcggcggcga ggaacatcgt ctgcataggg
    atgctgatgt tggcaaggct tttgatgggg gcgtacattt gcagcatcgc
801 gacgatgaat gccataaatt cgccgatggt ggtgtag
```

This corresponds to the amino acid sequence <SEQ ID 1128; ORF 276.ng>: g276.pep

g276

190

200

210

220

230

```
1 MILPPSMTMM RSADSTVVRR WATMMPVRFS IRRSSACWTR RSDSLSNALV
        51 ASSNNNIGAS FKMARAMATR CRCPPDKLLP FDPMGWCSPS GDASIRLCRL
       101 AAWRADRTSA SPASGRLYRT FSNRVSSNRN TSWETRANWA RRQSSLMSAM
       151 SIPSMOMLPA DGSTKRGRRL TTVDLPLPER PTRATRSPCL MSRLKLSRAL
       201 MPSERYSTST LRKLMRPSTR CGASVPLSCS GGVSRNAHTP SAARNIVCIG
       251 MLMLARLLMG AYICSIATMN AINSPMVV*
  The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1129>:
  m276.seq
           ATGATTTTGC CGTCGTCCAT CACGATGATG CGGTCGGCCC CTTCGATGGT
        1
           GGTCAGGCGG TGGGCGACGA TGATGCCGGT GCGGTTTTCC ATCAGGCGTT
        51
           CGAGCGCCTG TTGGACGAGG CGTTCGGATT CGTTGTCTAA TGCGCTGGTG
---
       101
       151 GCTTCGTCCA ATAATAATAT CGGCGCGTCT TTCAAAATGG CGCGGGCAAT
       201 GGCGACGCGT TGCCGCTGTC CGCCGGATAA GTTGCTGCCG TTCGATCCGA
       251 TGGGCTGGTG CAGTCCGAGC GGGGAGCTGT CAATCAGGCT TTGCAGGTTG
           GCGGTTTGGA GGGCGAACAG GACTTCGGCT TCGCCCGCGT CGGGACGGCT
           GTATCGGACG TTTTCAAACA GGGTGTCGTC AAACAGGAAT ACGTCTTGGG
       401 AGACGAGGC GAATTGGGCG CGCAGGCAGT CGAGTTTGAT GTCGGCGATG
       451 TCGATACCGT CTATGCAGAT GTTGCCGGCA GACGGTTCGA CAAAGCGGGG
       501 CAGCAGGTTG ACGACGGTGG ATTTGCCGCT GCCGGAACGT CCGACCAGGG
       551 CGACGCGTTC GCCTTGTCTG ATGTCGAGGT TGAAGTTGTC GAGGGCTTTG
       601 ATGCCGTCTG AACGGTATTC GACATCGACG TTGCGGAAGC TGATGCGCCC
            TTCGACACGC TGCGGTGCGA GCGTGCCCTT GTCCTGTTCG GGCGGGGTGT
       701 CGAGAAATGC ACATACACCG TCGGCGGCGA GGAACATCGT CTGCATAGGG
       751 ATGCTGATGT TGGCAAGGCT TTTGATGGGG GCGTACATTT GCAGCATCGC
       801 GACGATGAAT GCCATAAATT CGCCGATGGT GGTGTAG
   This corresponds to the amino acid sequence <SEQ ID 1130; ORF 276>:
   m276.pep
         1 MILPSSITMM RSAPSMVVRR WATMMPVRFS IRRSSACWTR RSDSLSNALV
        51 ASSNNNIGAS FKMARAMATR CRCPPDKLLP FDPMGWCSPS GELSIRLCRL
            AVWRANRTSA SPASGRLYRT FSNRVSSNRN TSWETRANWA RRQSSLMSAM
       101
           SIPSMOMLPA DGSTKRGSRL TTVDLPLPER PTRATRSPCL MSRLKLSRAL
       201 MPSERYSTST LRKLMRPSTR CGASVPLSCS GGVSRNAHTP SAARNIVCIG
       251 MLMLARLLMG AYICSIATMN AINSPMVV*
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N.gonorrhoeae
   ORF 276 shows 96.8% identity over a 278 aa overlap with a predicted ORF (ORF 276.ng)
   from N. gonorrhoeae:
       m276/g276
                                    20
                                              30
                                                       40
                           10
                    MILPSSITMMRSAPSMVVRRWATMMPVRFSIRRSSACWTRRSDSLSNALVASSNNNIGAS
        m276.pep
                    MILPPSMTMMRSADSTVVRRWATMMPVRFSIRRSSACWTRRSDSLSNALVASSNNNIGAS
        g276
                                                                50
                                                                          60
                           10
                                                       40
                                                      100
                                                               110
                                                                         120
                                              90
                    FKMARAMATRCRCPPDKLLPFDPMGWCSPSGELSIRLCRLAVWRANRTSASPASGRLYRT
        m276.pep
                    FKMARAMATRCRCPPDKLLPFDPMGWCSPSGDASIRLCRLAAWRADRTSASPASGRLYRT
        q276
                                                                110
                           70
                                     80
                                              90
                                                      100
                                                                         120
                                                                170
                                                                         180
                                    140
                                             150
                                                      160
                    FSNRVSSNRNTSWETRANWARRQSSLMSAMSIPSMQMLPADGSTKRGSRLTTVDLPLPER
        m276.pep
                    FSNRVSSNRNTSWETRANWARRQSSLMSAMSIPSMQMLPADGSTKRGRRLTTVDLPLPER
        g276
                          130
                                    140
                                             150
                                                      160
                                                                170
                                                                         180
                                    200
                                             210
                                                      220
                                                                230
                    PTRATRSPCLMSRLKLSRALMPSERYSTSTLRKLMRPSTRCGASVPLSCSGGVSRNAHTP
        m276.pep
                    PTRATRSPCLMSRLKLSRALMPSERYSTSTLRKLMRPSTRCGASVPLSCSGGVSRNAHTP
```

```
250
                               260
                                        270
                SAARNIVCIGMLMLARLLMGAYICSIATMNAINSPMVVX
    m276.pep
                SAARNIVCIGMLMLARLLMGAYICSIATMNAINSPMVVX
    q276
                      250
                               260
                                        270
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1131>:
    a276.seq
              ATGATTTTGC CGTCGTCCAT TACGATGATG CGGTCGGCCC CTTCGATGGT
              GGTCAGGCGG TGGGCGACGA TGATGCCGGT GCGGTTTTCC ATCAGGCGTT
          51
              CGAGCGCCTG TTGGACGAGG CGTTCGGATT CGTTGTCCAA TGCGCTGGTG
         101
              GCTTCGTCCA ATAATAATAT CGGCGCGTCT TTCAAAATGG CGCGGGCAAT
         151
              GGCAACGCGT TGCCGCTGTC CGCCGGATAA GTTGCTGCCG TTCGATCCGA
         201
              TGGGCTGGTG CAGTCCGAGC GGTGATGCGT CGATCAGGCT TTGCAGGTTA
         251
              GCGGCTTGGA GGGCGGATAG GACTTCGGCT TCGCCCGCGT CGGGACGGCT
         301
              ATATCGGACG TTTTCAAACA GGGTGTCGTC AAACAGGAAT ACGTCTTGGG
         351
              AGACGAGGCC AAATTGGGCG CGCAGGCAGT CGAGTTTGAT GTCGGCGATG
         401
              TCGATACCGT CTATGCAGAT GTTGCCGGCA GACGGTTCGA CAAAGCGGGG
         451
              CAGCAGGTTG ACGACGGTGG ATTTGCCGCT GCCGGAACGT CCGACCAGGG
         501
              CGACGCGTTC GCCTTGTCTG ATGTCGAGGT TGAAGCCGTC GAGGGCTTTG
         551
              ATGCCGTCCG AACGGTATTC GACATCGACG TTGCGGAAGC TGATGCGCCC
         601
              TTCGACACGC TGCGGTGCGA GCGTGCCTTT GTCCTGTTCG GGCGGGGTGT
         651
              CGAGAAATGC ACATACGCCG TCGGCGGCGA GGAACATCGT CTGCATAGGG
         701
              ATGCTAATGT TGGCAAGGCT TTTGATGGGG GCGTACATTT GCAGCATCGC
         751
              GACGATGAAT GCCATAAATT CGCCGATGGT GGTGTAG
This corresponds to the amino acid sequence <SEQ ID 1132; ORF 276.a>:
    a276.pep
              MILPSSITMM RSAPSMVVRR WATMMPVRFS IRRSSACWTR RSDSLSNALV
           1
             ASSNNNIGAS FKMARAMATR CRCPPDKLLP FDPMGWCSPS GDASIRLCRL
          51
              AAWRADRTSA SPASGRLYRT FSNRVSSNRN TSWETRANWA RRQSSLMSAM
         101
              SIPSMOMLPA DGSTKRGSRL TTVDLPLPER PTRATRSPCL MSRLKPSRAL
         151
              MPSERYSTST LRKLMRPSTR CGASVPLSCS GGVSRNAHTP SAARNIVCIG
         201
         251
              MLMLARLLMG AYICSIATMN AINSPMVV*
m276/a276 98.2% identity in 278 aa overlap
                             20
                                     30
                                             40
               MILPSSITMMRSAPSMVVRRWATMMPVRFSIRRSSACWTRRSDSLSNALVASSNNNIGAS
    m276.pep
               a276
               MILPSSITMMRSAPSMVVRRWATMMPVRFSIRRSSACWTRRSDSLSNALVASSNNNIGAS
                             20
                                     30
                                             40
                     10
                     70
                             80
                                     90
                                            100
                                                    110
                                                            120
               FKMARAMATRCRCPPDKLLPFDPMGWCSPSGELSIRLCRLAVWRANRTSASPASGRLYRT
    m276.pep
               a276
               FKMARAMATRCRCPPDKLLPFDPMGWCSPSGDASIRLCRLAAWRADRTSASPASGRLYRT
                     70
                             80
                                     90
                                            100
                                                   110
                            140
                                    150
    m276.pep
               FSNRVSSNRNTSWETRANWARRQSSLMSAMSIPSMQMLPADGSTKRGSRLTTVDLPLPER
               a276
               FSNRVSSNRNTSWETRANWARRQSSLMSAMSIPSMQMLPADGSTKRGSRLTTVDLPLPER
                            140
                                    150
                                            160
                            200
                    190
                                    210
                                            220
               PTRATRSPCLMSRLKLSRALMPSERYSTSTLRKLMRPSTRCGASVPLSCSGGVSRNAHTP
    m276.pep
               a276
               PTRATRSPCLMSRLKPSRALMPSERYSTSTLRKLMRPSTRCGASVPLSCSGGVSRNAHTP
                            200
                    190
                                    210
                            260
                                    270
                                           279
               SAARNIVCIGMLMLARLLMGAYICSIATMNAINSPMVVX
    m276.pep
               a276
               SAARNIVCIGMLMLARLLMGAYICSIATMNAINSPMVVX
```

WO 99/57280 PCT/US99/09346

630

250 260 270

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1133>:
  g277.seq
              (partial)
             ..atggtacacg tcgccgtagc ttacggtatt gccgtccggc gtttttgccc
              aaacqaqqtc atagacgttt tccacgcctt gcaggtacat cgccaagcgt
        51
              tcgatgccgt aggtaatttc gccgagtacg ggcgtgcaat cgataccgcc
       101
              gacttgttgg aaataggtaa actgggttac ttccatgccg ttgagccaga
              cttcccagcc caaaccccac gcaccgaggg tggggttttc ccagtcgtct
       201
-- 500
              tcqacaaagc ggatgtcgtg gactttggga tcgatgccca attcgcgcag
       251
              ggagtcgaga tagaggtctt ggatattggc gggggcgggt ttgagggcga
       301
              cttggaattg gtaatagtgt tgcaggcggt tggggttgtc gccgtagcgg
       351
              ccgtctttgg ggcggcggct gggttggacg taggcggcaa accaaggctc
       401
              ggggccgagc gcgcgcaggc aggtggcggg atgggatgtg ccggcaccga
       451
              cttccatgtc gaagggttgg atgacggtgc agcctttgtc tgcccagaag
       501
              gtttgcagtt tgaagatgat ttgttggaag gtaagcatgg cttattgttc
       551
              gataaaataa aggttttatt ttactgtttc catagccgct tgaatagatt
       601
       651
              tatctcgaag acagcctga
  This corresponds to the amino acid sequence <SEQ ID 1134; ORF 277.ng>:
             (partial)
  g277.pep
            ..MVHVAVAYGI AVRRFCPNEV IDVFHALQVH RQAFDAVGNF AEYGRAIDTA
              DLLEIGKLGY FHAVEPDFPA QTPRTEGGVF PVVFDKADVV DFGIDAQFAQ
              GVEIEVLDIG GGGFEGDLEL VIVLQAVGVV AVAAVFGAAA GLDVGGKPRL
              GAERAOAGGG MGCAGTDFHV EGLDDGAAFV CPEGLOFEDD LLEGKHGLLF
       151
              DKIKVLFYCF HSRLNRFISK TA*
        201
   The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1135>:
  m277.seq
         1 ATGCCCCGCT TTGAGGACAA GCTCGTAGGC AGGCAGGGCG AGGGCGGCGT
            TTTCTTCGGC AAGCAGGCGT TTGGCTTGCG CTTCGTAGTC GTTGAACTGG
        101 CGCAGCAGCC AGTCGGCATC GCTGTATTCG AAGTTGTAGG TGGATTGCTC
       151 GACTTCGTTT TGGTGGTACA CGTCGCCGTA GGTGACGGTG TTGCCGTCGA
        201 GCGTTTTTGC CCAAACGAGG TCGTAGACGT TTTCTACACC TTGCAAGTAC
        251 ATCGCCAAGC GTTCGATGCC GTAGGTGATT TCGCCGAGTA CGGGCGTGCA
        301 GTCGATGCCG CCGACTTGTT GGAAATAGGT AAACTGGGTT ACTTCCATGC
        351 CGTTGAGCCA GACTTCCCAG CCCAAACCCC ACGCGCCGAG GGTGGGGTTT
        401 TCCCAGTCGT CTTCGACAAA GCGGATGTCG TGGACTTTGG GATCGATGCC
        451 CAATTCGCGC AGAGAGTCGA GATAGAGGTC TTGGATATTG GCGGGAGCGG
       501 GCTTGAGGGC GACTTGGAAT TGGTAATAGT GTTGCAGGCG GTTGGGGTTG
       551 TCGCCGTAGC GGCCGTCTTT GGGGCGGCGG CTGGGTTGGA CGTAGGCGGC
        651 TGCCGGCACC GACTTCCATG TCGAAGGGTT GGATGACGGT GCAGCCTTTG
        701 TCTGCCCAGA ATGTTTGCAG TTTGAAGATG ATTTGTTGGA AGGTAAGCAT
        751 GGCTTATGA
   This corresponds to the amino acid sequence <SEQ ID 1136; ORF 277>:
   m277.pep
            MPRFEDKLVG RQGEGGVFFG KQAFGLRFVV VELAQQPVGI AVFEVVGGLL
         51 DFVLVVHVAV GDGVAVERFC PNEVVDVFYT LQVHRQAFDA VGDFAEYGRA
        101 VDAADLLEIG KLGYFHAVEP DFPAQTPRAE GGVFPVVFDK ADVVDFGIDA
        151 QFAQRVEIEV LDIGGSGLEG DLELVIVLQA VGVVAVAAVF GAAAGLDVGG
        201 KPRLGAECAQ AGGGMGCAGT DFHVEGLDDG AAFVCPECLQ FEDDLLEGKH
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N.gonorrhoeae
   ORF 277 shows 90.0% identity over a 221 aa overlap with a predicted ORF (ORF 277.ng)
   from N. gonorrhoeae:
        g277/m277
                                                          10
                                                                    20
                                                                              30
```

10 20 30 MVHVAVAYGIAVRRFCPNEVIDVFHALOVH

g277.pep

```
:11111: 1:11:1111111:111::1111
                GLRFVVVELAQQPVGIAVFEVVGGLLDFVLVVHVAVGDGVAVERFCPNEVVDVFYTLQVH
     m277
                    30
                            40
                                     50
                                             60
                                                      70
                                50
                                        60
                                                 70
                RQAFDAVGNFAEYGRAIDTADLLEIGKLGYFHAVEPDFPAQTPRTEGGVFPVVFDKADVV
     g277.pep
                RQAFDAVGDFAEYGRAVDAADLLEIGKLGYFHAVEPDFPAQTPRAEGGVFPVVFDKADVV
     m277
                    90
                           100
                                    110
                                            120
                                                     130
                      100
                               110
                                       120
                                                130
                                                         140
                DFGIDAQFAQGVEIEVLDIGGGGFEGDLELVIVLQAVGVVAVAAVFGAAAGLDVGGKPRL
     q277.pep
                m277
                DFGIDAQFAQRVEIEVLDIGGSGLEGDLELVIVLQAVGVVAVAAVFGAAAGLDVGGKPRL
                           160
                                    170
                                            180
                                                     190
                                                              200
                      160
                               170
                                       180
                                                190
                                                        200
                GAERAQAGGMGCAGTDFHVEGLDDGAAFVCPEGLQFEDDLLEGKHGLL
     g277.pep
                GAECAQAGGMGCAGTDFHVEGLDDGAAFVCPECLQFEDDLLEGKHGLX
    m277
                  210
                           220 -
                                    230
                                            240
                                                     250
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1137>:
    a277.seq
              ATGCCCCGCT TTGAGGACAA GCTCGTAGGC AGGCAGGGCG AGGGCGGCGT
           1
              TTTCTTCGGC AAGCAGGCGT TTGGCTTGCG CTTCGTAGTC GTTGAACTGG
          51
              CGCAGCAGCC AATCGGCATC GCTGTATTCG AAGTTGTAGG TGGATTGTTC
         101
              GACTTCGTTT TGGTGGTACA CGTCGCCGTA AGTTACTGTA TTACCGTCCA
         151
              GCGTTTTTGC CCAAACGAGG TCATAGACGT TTTCCACGCC TTGCAGGTAC
         201
              ATCGCCAAGC GTTCGATGCC GTAGGTGATT TCGCCGAGTA CGGGGGTGCA
         251
         301
              GTCGATGCCG CCGACTTGTT GGAAATAGGT GAACTGGGTT ACTTCCATAC
              CGTTGAGCCA GACTTCCCAG CCCAAACCCC ACGCGCCGAG GGTGGGGTTT
         351
              TCCCAGTCGT CTTCGACAAA GCGGATGTCG TGCACTTTGG GGTCGATGCC
         401
              CAATTCGCGC AGGGAGTCGA GATAGAGGTC TTGGATATTG GCGGGAGCGG
         451
         501
              GCTTGAGGGC GACTTGGAAT TGGTAATAGT GTTGCAGGCG GTTGGGGTTG
              TCGCCGTAGC GACCGTCTTT GGGGCGGCGG CTGGGTTGGA CGTAGGCGGC
         551
              601
         651
              TGCCGGCACC GACTTCCATG TCGAAGGGTT GGATGACGGT GCAGCCTTTG
         701
              TCTGCCCAGA ATGTTTGCAG TTTGAAGATG ATTTGTTGGA AGGTAAGCAT
         751
              GGCTTATGA
This corresponds to the amino acid sequence <SEQ ID 1138; ORF 277.a>:
    a277.pep
              MPRFEDKLVG RQGEGGVFFG KQAFGLRFVV VELAQQPIGI AVFEVVGGLF
           1
              DFVLVVHVAV SYCITVQRFC PNEVIDVFHA LQVHRQAFDA VGDFAEYGGA
          51
         101
              VDAADLLEIG ELGYFHTVEP DFPAQTPRAE GGVFPVVFDK ADVVHFGVDA
              QFAQGVEIEV LDIGGSGLEG DLELVIVLQA VGVVAVATVF GAAAGLDVGG
         151
              KPRLGAECAQ TGGGMGCAGT DFHVEGLDDG AAFVCPECLQ FEDDLLEGKH
         201
         251
              GL*
m277/a277 92.5% identity in 252 aa overlap
                            20
                                    30
                                            40
                                                   50
              MPRFEDKLVGRQGEGGVFFGKQAFGLRFVVVELAQQPVGIAVFEVVGGLLDFVLVVHVAV
    m277.pep
              a277
              MPRFEDKLVGRQGEGGVFFGKQAFGLRFVVVELAQQPIGIAVFEVVGGLFDFVLVVHVAV
                    10
                            20
                                    30
                                           40
                    70
                            80
                                    90
                                           100
              GDGVAVERFCPNEVVDVFYTLQVHRQAFDAVGDFAEYGRAVDAADLLEIGKLGYFHAVEP
    m277.pep
                 SYCITVQRFCPNEVIDVFHALQVHRQAFDAVGDFAEYGGAVDAADLLEIGELGYFHTVEP
    a277
                    70
                                           100
                                                  110
                    130
                           140
                                   150
                                           160
                                                  170
                                                          180
```

```
DFPAQTPRAEGGVFPVVFDKADVVDFGIDAQFAQRVEIEVLDIGGSGLEGDLELVIVLQA
m277.pep
          DFPAQTPRAEGGVFPVVFDKADVVHFGVDAQFAQGVEIEVLDIGGSGLEGDLELVIVLQA
a277
                      140
               190
                      200
                              210
                                             230
         VGVVAVAAVFGAAAGLDVGGKPRLGAECAQAGGGMGCAGTDFHVEGLDDGAAFVCPECLQ
m277.pep
         a277
         VGVVAVATVFGAAAGLDVGGKPRLGAECAQTGGGMGCAGTDFHVEGLDDGAAFVCPECLO
               190
                      200
                             210
                                     220
                                             230
         FEDDLLEGKHGLX
m277.pep
         ******
         FEDDLLEGKHGLX
a277
               250
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEO ID 1139>: g278.seq (partial)

```
ttgcgtgcaa tcacgcccgg tgcgattttt tcgacagggg cggtcaaagt
 51
    tgtattaatc ggacctttgc cgtcgatagg ccgacccaat gcatcgacga
101 egegteegac caattegegt eegaceggea ettetaaaat aeggeeggta
151 caggtaaccg tgtcgccttc tttaatatgt tcgtactcgc ccaacactac
```

- 201 ggcaccgacg gagtcgcgct ccaggttcat cgccaagcct aaagtgttac
- 251 ccgggaattc gagcatctca ccttgcattg catctgacaa accatggatg
- 301 cgaacqatac cqtcaqttac cgaaatcacc qtaccacqqq tactcacttc
- 351 ggcatttaca gacagatttt cgatcttggc tttaatcaga tcgctaattt
- 401 cagcaggatt aagctgcatg aaaactctcc taattcgtca tagtcgtgta
- 451 caaagcactc agtttgcctt gtacagacaa atccaaaacc tgatcaccca
- 501 cttcaacttt ta...

This corresponds to the amino acid sequence <SEQ ID 1140; ORF 278.ng>; g278.pep (partial)

- 1 LRAITPGAIF STGAVKVVLI GPLPSIGRPN ASTTRPTNSR PTGTSKIRPV
- 51 QVTVSPSLIC SYSPNTTAPT ESRSRFIAKP KVLPGNSSIS PCIASDKPWM
- 101 RTIPSVTEIT VPRVLTSAFT DRFSILALIR SLISAGLSCM KTLLIRHSRV
- 151 QSTQFALYRQ IQNLITHFNF....

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1141>: m278.seg..

- 1 TTGCGCGCAA TCACGCCCGG TGCGATTTTT TCGATAGGGG CGGTCAAAGT
- 51 TGTATTAATC GGGCCTTTGC CGTCGATAGG CCGACCCAAT GCATCAACGA
- 101 CGCGTCCGAC CAGTTCGCGT CCGACCGGCA CTTCCAAGAT ACGACCGGTA
- 151 CAGGTAACCG TGTCGCCTTC TTTAATGTGT TCGTACTCGC CCAACACTAC
- 201 GGCGCCGACG GAGTCGCGCT CCAGGTTCAT CGCCAAGCCG AAAGTGTTAC
- 251 CCGGGAATTC GAGCATCTCA CCTTGCATTG CATCTGACAA ACCATGGATG
- 301 CGAACGATAC CGTCAGTTAC CGAAATTACC GTACCACAGG TACGCACTTC
- 351 GGCATTTACA GACAGATTTT CGATCTTGGC TTTAATCAAA TCGCTAATTT 401 CAGCAGGATT AAGCTGCATG AAAACTCTCC TAATTCGTCA TAGTCGTGTA
- 451 CAAGGCACTC AATTTGCCTT GTACAGACAA ATCCAAAACC TGATCACCCA
- 501 CTTCAACTTT TATGCCGCCA ATCAGCTCCG GTTCGATTTC GACAGAGATT
- TTCAGCTCGC TGTCGAAACG CTTATTCAGC ATTTGCACCA ACTCGCCGAC
- 601 CTGTTTGTCG GTCAACGGAT AGGCACTGTA AATGACGGCA GATTTGATAT
- 651 GGTTGAATGA

This corresponds to the amino acid sequence <SEQ ID 1142; ORF 278>: m278.pep

- LRAITPGAIF SIGAVKVVLI GPLPSIGRPN ASTTRPTSSR PTGTSKIRPV 1
- 51 QVTVSPSLMC SYSPNTTAPT ESRSRFIAKP KVLPGNSSIS PCIASDKPWM
- 101 RTIPSVTEIT VPQVRTSAFT DRFSILALIK SLISAGLSCM KTLLIRHSRV
- 151 QGTQFALYRQ IQNLITHFNF YAANQLRFDF DRDFQLAVET LIQHLHOLAD
- 201 LFVGQRIGTV NDGRFDMVE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 278 shows 95.9% identity over a 170 aa overlap with a predicted ORF (ORF 278.ng) from N. gonorrhoeae:

g278/m278

- Marie

	10	20	30	40	50	60
g278.pep	LRAITPGAIFSTG/	VKVVLIGPL	PSIGRPNASTT	RPTNSRPTG	SKIRPVQVT	VSPSLIC
• • •		1111111111	11111111111	111:11111	111111111	11111:1
m278	LRAITPGAIFSIG	VKVVLIGPL	PSIGRPNASTT	RPTSSRPTGT	SKIRPVQVT	VSPSLMC
	10	20	30	40	50	60
	70	80	90	100	110	120
g278.pep	SYSPNTTAPTESRS	RFIAKPKVL	PGNSSISPCIA	SDKPWMRTI	SVTEITVPR	VLTSAFT
· · ·	113111111111111	111111111	11111111111	1111111111		HHI
m278	SYSPNTTAPTESRS	RFIAKPKVL	PGNSSISPCIA	SDKPWMRTI	SVTEITVPO	VRTSAFT
	70	80	90	100	110	120
	130	140	150	160	170	
g278.pep	DRFSILALIRSLIS	BAGLSCMKTL	LIRHSRVQSTQ	FALYRQIQNI	LITHENE	
	111111111111111111111111111111111111111		[[]]]	1111111111		
m278	DRFSILALIKSLIS	SAGLSCMKTL	LIRHSRVQGTQ	FALYRQIQNI	LITHENFYAAL	NQLRFDF
	130	140	150	160	170	180
m278	DRDFQLAVETLIQ	LHQLADLFV	GQRIGTVNDGR	FDMVE*		
	190	200	210			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1143>:

a278.seq

.seq					
1	TTGCGCGCAA	TCACGCCCGG	TGCGATTTTT	TCGATAGGGG	CGGTCAAAGT
51	TGTATTAATC	GGGCCTTTGC	CGTCGATAGG	CCGACCCAAT	GCATCAACGA
101	CGCGTCCGAC	CAGTTCGCGT	CCGACCGGCA	CTTCCAAGAT	ACGACCGGTA
151	CAGGTAACCG	TGTCGCCTTC	TTTAATATGT	TCGTGCTCGC	CCAACACTAC
201	GGCGCCGACG	GAGTCGCGCT	CCAGGTTCAT	CGCCAAGCCG	AAAGTGTTAC
251	CCGGGAATTC	GAGCATCTCA	CCTTGCATTG	CATCTGACAA	ACCATGGATG
301	CGAACGATAC	CGTCAGTTAC	CGAAATCACC	GTACCACGGG	TACGCACTTC
351	GGCATTTACA	GACAGATTTT	CGATCTTGGC	TTTAATCAAA	TCGCTAATTT
401	CAGCAGGATT	AAGCTGCATG	AAAACTCTCC	TAATTCGTCA	TAGTCGTGTA
451	CAAGGCACTC	AATTTGCCTT	GTACAGACAA	ATCCAAAACC	TGATCACCCA
501	CTTCAACTTT	TATGCCGCCA	ATCAGCTCCG	GTTCGATTTC	GACAGAGATT
551	TTCAGCTCGC	TGTCGAAACG	CTTATTCAGC	ATTTGCGCCA	ACTCGCCGAC
601	CTGTTTGTCG	GTCAACGGAT	AGGCACTGTA	AATGACGGCA	GATTTGATAT
651	GGTTGAATGA				

This corresponds to the amino acid sequence <SEQ ID 1144; ORF 278.a>:

a278.pep

	1	LRAITPGAIF	SIGAVKVVLI	GPLPSIGRPN	ASTTRPTSSR	PTGTSKIRPV
5	1	QVTVSPSLIC	SCSPNTTAPT	ESRSRFIAKP	KVLPGNSSIS	PCIASDKPWM
10	1	RTIPSVTEIT	VPRVRTSAFT	DRFSILALIK	SLISAGLSCM	KTLLIRHSRV
15	1	QGTQFALYRQ	IQNLITHFNF	YAANQLRFDF	DRDFQLAVET	LIQHLRQLAD
20	1	LFVGQRIGTV	NDGRFDMVE*			

m278/a278 98.2% identity in 219 aa overlap

	10	20	30	40	50	60
m278.pep	LRAITPGAIFSIGA	VKVVLIGPLE	SIGRPNASTI	RPTSSRPTGT	SKIRPVQVTV	/SPSLMC
		11111111111	1111111111	пинин	11111111111	1:1111
a278	LRAITPGAIFSIG	VKVVLIGPLE	SIGRPNASTI	RPTSSRPTGT	SKIRPVQVTV	SPSLIC
	10	20	30	40	50	60
	70	80	90	100	110	120
m278.pep	SYSPNTTAPTESRS					
		1111111111	11111111111	31111111111	11111111:1	111111
a278	SCSPNTTAPTESRS	RFIAKPKVLE	GNSSISPCIA	SDKPWMRTIP	SVTEITVPR	RTSAFT
	70	80	90	100	110	120

```
170
                                          160
                                 150
                130
                         140
          DRFSILALIKSLISAGLSCMKTLLIRHSRVQGTQFALYRQIQNLITHFNFYAANQLRFDF
m278.pep
           пининичининининининининининининин
           DRFSILALIKSLISAGLSCMKTLLIRHSRVQGTQFALYRQIQNLITHFNFYAANQLRFDF
a278
                         140
                                          160
                130
                         200
                190
           DRDFQLAVETLIQHLHQLADLFVGQRIGTVNDGRFDMVEX
m278.pep
           DRDFQLAVETLIQHLRQLADLFVGQRIGTVNDGRFDMVEX
a278
                                 210
                190
                         200
```

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1145>:
g279.seq
         atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc
      1
      51 aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
     101 ccggcagcgg cagggcgcgt ttggctccgg cttctttggc ggcagccatg
     151 gtgcgtccga cggcggcggc gttgcctgca atcacgactt gtccgggcga
     201 gttgaagttg acggettega ceaettegee etgtgeggat teggeacaaa
     251 tetgeetgae etgtteatet tecaaaceea aaatggeege eattgegeet
     301 acgccttgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
     351 tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
     401 attcgccgag gctgtgtccg gcaacggcgg caggcgtttt gccgcccact
     451 tccaaatag
This corresponds to the amino acid sequence <SEQ ID 1146; ORF 279.ng>:
g279.pep
          MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
       1
          VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP
      51
     101 TPCGTADCIS SARRRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT
     151 SK*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1147>:
m279.seq
       1 ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC
      51 AAGTTTGTCG GCGGCGGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA
     101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG
     151 GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA
     201 GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA
     251 TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
     301 ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG
     351 TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
      401 ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
      451 TCTAAATAG
 This corresponds to the amino acid sequence <SEQ ID 1148; ORF 279>:
 m279.pep
       1 ITRICGCLIS TVFRASASLS AAGFIRLOWE GTDTGSGRAR LAPASLAAAM
       51 ARPTAAALPA ITICPGELKL TASTTSLWAA SAQMALTCSS SKPRIAAIAP
          TPCGTADCIS SARRRTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA
      151 SK*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N.gonorrhoeae
 ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng)
 from N. gonorrhoeae:
                                         30
                               20
              ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
 m279.pep
              MTRICGCLISTVLSVSASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMVRPTAAALPA
 q279
                                                   40
                                                             50
                                                                       60
                                         30
                      10
```

80

70

100

90

110

120

a279

m279.pep	TICPGELKLTAS		ALTCSSSKPRI	AAIAPTPCGTA	DCISSARRRTS	LTA
-070		TTSPCADSAOI	CLTCSSSKPKM	LAAIAPTPCGTA	DCISSARRRTS	LTA
g279	70	80	90	100	110	120
	130	140	150			
	SAKFNAPAATSAV		.GVLPPASKX			
	<u> </u>	11111111111				
g279	SAKSNASAATSAV					
_	130	140	150			
The following	partial DNA se	equence was	identified in	n N. meningi	tidis <seq i<="" td=""><td>D 1149>:</td></seq>	D 1149>:
a279.seq						
i	ATGACNONGA	TTTGCGGCTG	CTTGATTTCA	ACGGTTTNNA	GGGCTTCGGC	
51	GAGTTTGTCG	GCGGCGGGTT	TCATGAGGCT	GCAATGGGAA	GGTACNGACA	
101	CNGGCAGCGG	CAGGGCGCGT	TTGGCGCCGG	CTTCTTTGGC ATCACGACTT	GGCAAGCATA	
151	GCGCGCTCGA	NGCCCTTTCN N	CCACTTCATC	CTGTGCGGAT	TCGGCGCAAA	
201 251		CTCTTCATCT	TCCAAGCCGA	GAATCGCCGC	CATTGCGCCC	
301	ACCCCTTGCG	GTACGGCGGA	CTGCATCAGT	TCGGCGCGCA	NGCGCACGAG	
351	TTTGACCGCG	TCGGCAAAAT	CCAATGCGCC	GGCGGCAACN	AGTGCGGTGT	
401	ATTCGCCGAN	GCTGTGTCCG	GCAACGGCGG	CAGGCGTTTT	GCCGCCCGCT	
451						
		• •	OTO I	D 1160. OD	0.70 ->-	
This correspon	ds to the amin	o acid seque	nce <seq i<="" td=""><td>D 1150; ORI</td><td>F 279.a>:</td><td></td></seq>	D 1150; ORI	F 279.a>:	
This correspon	,					
a279.pep 1	MTYTCGCLTS	TVXRASASLS	AAGFMRLOWE	GTDTGSGRAR	LAPASLAASI	
a279.pep 1 51	MTXICGCLIS	TVXRASASLS	AAGFMRLQWE TASTTSSCAD	GTDTGSGRAR SAQICFTCSS	LAPASLAASI SKPRIAAIAP	
a279.pep 1 51 101	MTXICGCLIS ARSTAAALPA TPCGTADCIS	TVXRASASLS	AAGFMRLQWE TASTTSSCAD	GTDTGSGRAR SAQICFTCSS	LAPASLAASI	
a279.pep 1 51	MTXICGCLIS ARSTAAALPA TPCGTADCIS	TVXRASASLS	AAGFMRLQWE TASTTSSCAD	GTDTGSGRAR SAQICFTCSS	LAPASLAASI SKPRIAAIAP	
a279.pep 1 51 101 151	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE*	TVXRASASLS ITTCPGELKL SARXRTSLTA	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT	GTDTGSGRAR SAQICFTCSS	LAPASLAASI SKPRIAAIAP	
a279.pep 1 51 101 151	MTXICGCLIS ARSTAAALPA TPCGTADCIS	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov	AAGFMRLOWE TASTTSSCAD SAKSNAPAAT Verlap	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA	60
a279.pep 1 51 101 151 m279/a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 38.2% identity	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA	60
a279.pep 1 51 101 151	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS	AAGFMRLOWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLOW	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA	60 RPTAAALPA
a279.pep 1 51 101 151 m279/a279 &	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS	AAGFMRLOWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLOW	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :::1 LAPASLAASIA	60 RPTAAALPA RSTAAALPA
a279.pep 1 51 101 151 m279/a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT VERIAP 20 3 LSAAGFIRLQW	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA ::	60 RPTAAALPA
a279.pep 1 51 101 151 m279/a279 &	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA ::1 LAPASLAASIA	60 RPTAAALPA RSTAAALPA 60
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity ITRICGC : MTXICGC	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW LSAAGFMRLQW 20 3	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :: LAPASLAASIA 50	60 RPTAAALPA RSTAAALPA 60
a279.pep 1 51 101 151 m279/a279 &	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity ITRICGC : MTXICGC	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW LSAAGFMRLQW 20 3 80 9 AASAQMALTCS	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :: LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 RARRRTSLTA
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 38.2% identity TRICGC: MTXICGC:	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW LSAAGFMRLQW 20 3 80 9 AASAQMALTCS	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 SARRRTSLTA
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 38.2% identity TRICGC: MTXICGC:	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA : LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 SARRRTSLTA
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 38.2% identity TRICGC: MTXICGC:	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW LSAAGFMRLQW 20 3 80 9 AASAQMALTCS :: ADSAQICFTCS	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :: LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 SARRRTSLTA
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity ITRICGC ITRICGC ITRICGC ITRICGC ITRICGC ITRICGC ITRICGC ITRICGC ITRICGC	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW LKLTASTTSSC 70 130	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT Verlap 20 3 LSAAGFIRLQW 11 1 : 1 LSAAGFMRLQW 20 3 80 9 AASAQMALTCS 1 1: : 1 ADSAQICFTCS 80 9	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :: LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 SARRRTSLTA
a279.pep 1 51 101 151 m279/a279 8 m279.pep a279	MTXICGCLIS ARSTAAALPA TPCGTADCIS SE* 88.2% identity ITRICGC : MTXICGC	TVXRASASLS ITTCPGELKL SARXRTSLTA in 152 aa ov 10 LISTVFRASAS LISTVXRASAS 10 70 LKLTASTTSLW LKLTASTTSLW 1130 10 AATSAVYSPRI	AAGFMRLQWE TASTTSSCAD SAKSNAPAAT VERIAP 20 3 LSAAGFIRLQW LSAAGFMRLQW 20 3 80 9 AASAQMALTCS :: ADSAQICFTCS	GTDTGSGRAR SAQICFTCSS SAVYSPXLCP 0 40 EGTDTGSGRAR EGTDTGSGRAR 0 40 0 100 SSKPRIAAIAP SSKPRIAAIAP 0 100 PASKX	LAPASLAASI SKPRIAAIAP ATAAGVLPPA 50 LAPASLAAAMA :: LAPASLAASIA 50 110 TPCGTADCISS	60 RPTAAALPA RSTAAALPA 60 120 SARRRTSLTA

Expression of ORF 279

SAKSNAPAATSAVYSPXLCPATAAGVLPPASEX

130

The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. ORF 279 was cloned in pET and pGex vectors and expressed in E.coli as above-described. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 2A shows the results of affinity purification and Figure 2B shows the expression in E.coli. Purified GST-fusion protein was used to immunize mice whose sera were used for ELISA (positive result), FACS analysis (Figure 2C), western blot (Figure 2D). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in Figure 6. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al.

1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided herein.

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1151>:
q280.seq
      1 atgaaacacc tcaaacttac ccttattgcc gcattgctgg ccaccgccgc
      51 aactgeegea eccetteegg ttgtaaceag ttteageatt ttaggegaeg
     101 tagccaaaca aatcggcggt gagcgcgtag ccgtacaaag cctcgtcgga
     151 gccaaccaag atactcatgc ctatcacatg accagtggcg acattaaaaa
     201 aatccgcagt gcaaaactcg teetgetcaa eggettggga ettgaageeg
     251 ccgacateca acgegeegte aaacagagea aagtateeta tgeegaageg
     301 accaaaggca tccaacccct caaagccgaa gaagaaggcg gacaccatca
     351 cgaccaccat cacgaccacg atcatgacca cgaaggacac caccacgacc
     401 acggcgaata tgacccccac gtctggaacg accetgttct tatgtccgac
     451 tatgeccaaa acgtegetga aaccetgata aaggeegate eegaaggeaa
     501 agtttattat caacaacgct tgggcaacta ccaaatgcag cttaaaaaac
     551 tgcacagega cgcacaagec gcatttaatg ccgtccctgc cgccaaacgc
     601 aaagteetga eegggeacga egeattttee tacatgggea acegetacaa
     651 catcagette ategeceege aaggegtgag cagegaagee gageegteeg
     701 ccaaacaagt cgccgccatc atccggcaaa tcaaacgcga aggcatcaaa
     751 geogtattta cegaaaatat caaagacace egeatggttg acegeatege
     801 caaagaaacc ggcgtcaacg tcagcggcaa actgtattcc gacgcactcg
     851 gcaacgcgcc cgcagacacc tacatcggca tgtaccgcca caacgtcgaa
     901 gccttgacca acgcgatgaa gcaataa
This corresponds to the amino acid sequence <SEQ ID 1152; ORF 280.ng>:
g280.pep
          MKHLKLTLIA ALLATAATAA PLPVVTSFSI LGDVAKQIGG ERVAVQSLVG
       1
      51 ANQDTHAYHM TSGDIKKIRS AKLVLLNGLG LEAADIQRAV KQSKVSYAEA
     101 TKGIQPLKAE EEGGHHHDHH HDHDHDHEGH HHDHGEYDPH VWNDPVLMSD
     151 YAQNVAETLI KADPEGKVYY QQRLGNYQMQ LKKLHSDAQA AFNAVPAAKR
     201 KVLTGHDAFS YMGNRYNISF IAPQGVSSEA EPSAKQVAAI IRQIKREGIK
     251 AVFTENIKDT RMVDRIAKET GVNVSGKLYS DALGNAPADT YIGMYRHNVE
      301 ALTNAMKQ*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1153>:
m280.seq
      1 ATGAAACACC TCAAACTCAC CCTTATTGCC GCATTGCTGA CCGCCTCCGC
      51 AACTGCCGCC CCCCTGCCGG TTGTAACCAG CTTCAGCATT TTAGGCGACG
          TAGCCAAACA AATCGGCGGA GAGCGCGTAT CCATACAAAG TTTGGTCGGA
      151 GCCAACCAAG ATACGCACGC CTATCATATG ACCAGTGGCG ACATTAAAAA
      201 AATCCGCAGT GCAAAACTCG TCCTGCTCAA CGGCTTAGGA CTTGAAGCTG
      251 CCGATGTGCA ACGCGCCGTC AAACAAAGCA AAGTATCCTA TACCGAAGCG
      301 ACCAAAGGCA TCCAACCCCT CAAAGCCGAA GAAGAAGGCG GACACCATCA
      351 CGACCACGAT CATGACCACG AAGGACACCA CCATGACCAC GGCGAATATG
      401 ACCCGCACGT CTGGAACGAC CCCGTCCTTA TGTCCGCCTA TGCCCAAAAC
      451 GTTGCCAAAG CCCTGATAAA GGCCGATCCC GAAGGCAAAG TTTATTATCA
      501 ACAACGCTTG GGCAACTACC AAATGCAGCT CAAAAAACTG CACAGCGACG
      551 CACAAGCCGC ATTTAATGCC GTCCCTGCTG CCAAACGCAA AGTCCTGACC
      601 GGGCACGATG CCTTTTCCTA TATGGGCAAA CGTTACCATA TCGAATTCAT
      651 CGCCCCGCAA GGCGTGAGCA GCGAAGCCGA GCCTTCGGCC AAACAAGTCG
      701 CCGCCATCAT CCGACAAATC AAACGCGAAG GCATCAAAGC CGTCTTTACC
      751 GAAAACATCA AGGACACCCG TATGGTTGAC CGTATCGCCA AAGAAACCGG
      801 TGTCAACGTC AGCGGCAAAC TGTATTCCGA CGCACTCGGC AACGCGCCCG
      851 CAGACACCTA CATCGGAATG TACCGCCACA ACATCAAAGC CTTGACCAAC
      901 GCGATGAAGC AATAA
```

This corresponds to the amino acid sequence <SEQ ID 1154; ORF 280>: m280.pep

- MKHLKLTLIA ALLTASATAA PLPVVTSFSI LGDVAKQIGG ERVSIQSLVG
- 51 ANQDTHAYHM TSGDIKKIRS AKLVLLNGLG LEAADVQRAV KQSKVSYTEA 101 TKGIQPLKAE EEGGHHHDHD HDHEGHHHDH GEYDPHVWND PVLMSAYAQN
- 151 VAKALIKADP EGKVYYQQRL GNYQMQLKKL HSDAQAAFNA VPAAKRKVLT

```
201 GHDAFSYMGK RYHIEFIAPQ GVSSEAEPSA KQVAAIIRQI KREGIKAVFT
251 ENIKDTRMVD RIAKETGVNV SGKLYSDALG NAPADTYIGM YRHNIKALTN
```

301 AMKQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 280 shows 93.8% identity over a 308 aa overlap with a predicted ORF (ORF 280.ng) from N. gonorrhoeae:

m280/g280

```
30
                                       40 ...
                        20
                10
          MKHLKLTLIAALLTASATAAPLPVVTSFSILGDVAKQIGGERVSIQSLVGANQDTHAYHM
m280.pep
          MKHLKLTLIAALLATAATAAPLPVVTSFSILGDVAKQIGGERVAVQSLVGANQDTHAYHM
g280
                                                       60
                                        40
                                               50
                                30
                        20
                10
                                               110
                                                      119
                                       100
                                90
                70
                        80
          TSGDIKKIRSAKLVLLNGLGLEAADVQRAVKQSKVSYTEATKGIQPLKAEEEGGHHHDH-
m280.pep
          TSGDIKKIRSAKLVLLNGLGLEAADIQRAVKQSKVSYAEATKGIQPLKAEEEGGHHHDHH
g280
                                               110
                                       100
                        80
                                90
                70
                           140
                                  150
                                          160
                                                  170
           120
                   130
          ---DHDHEGHHHDHGEYDPHVWNDPVLMSAYAQNVAKALIKADPEGKVYYQQRLGNYQMQ
m280.pep
             HDHDHDHEGHHHDHGEYDPHVWNDPVLMSDYAQNVAETLI KADPEGKVYYQQRLGNYQMQ
g280
                                       160
                                               170
                               150
                        140
                130
                                          220
                                                  230
                                   210
                           200
           180
                   190
          LKKLHSDAQAAFNAVPAAKRKVLTGHDAFSYMGKRYHIEFIAPQGVSSEAEPSAKQVAAI
m280.pep
          LKKLHSDAQAAFNAVPAAKRKVLTGHDAFSYMGNRYNISFIAPQGVSSEAEPSAKQVAAI
g280
                                                       240
                                               230
                        200
                               210
                                       220
                190
                                          280
                                                  290
                           260
                                   270
           240
                   250
          IRQIKREGIKAVFTENIKDTRMVDRIAKETGVNVSGKLYSDALGNAPADTYIGMYRHNIK
m280.pep
          IRQIKREGIKAVFTENIKDTRMVDRIAKETGVNVSGKLYSDALGNAPADTYIGMYRHNVE
g280
                                       280
                                270
                        260
                250
           300
          ALTNAMKQX
m280.pep
           111111111
           ALTNAMKQX
q280
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1155>: a280.seq

```
ATGARACACC CCARACTCAC CCTTATCGCC GCATTGCTGA CCACTGCCGC
51 AACTGCCGCC CCCCTGCCGG TTGTAACCAG CTTCAGCATT TTAGGCGACG
101 TAGCCAAACA AATCGGCGGA GAGCGCGTAT CCATACAAAG TTTGGTCGGA
    GCCAACCAAG ATACGCACGC CTATCATATG ACCAGCGGCG ACATTAAAAA
151
    AATCCGCAGT GCAAAACTCG TCCTGATTAA CGGCTTAGGA CTTGAAGCTG
201
    CCGACATCCA ACGTGCCGTC AAACAGAGCA AAGTATCCTA TGCCGAAGCG
251
301 ACCAAAGGCA TCCAACCCCT CAAAGCCGAA GAAGAAGGCG GACACCATCA
    CGACCACGAT CATGACCACG ACCATGACCA CGAAGGACAC CACCACGACC
351
    ACGGCGAATA TGACCCCCAC GTCTGGAACG ACCCCGTCCT TATGTCCGCC
401
    TATGCCCAAA ACGTCGCCGA AGCCCTGATA AAGGCCGACC CCGAAGGCAA
451
501 AGTTTATTAT CAACAACGCT TGGGCAACTA CCAAATGCAG CTCAAAAAAC
    TGCACAGTGA CGCACAAGCC GCATTTAATG CCGTCCCTGC CGCCAAACGC
551
601 AAAGTCCTGA CCGGGCACGA TGCCTTTTCC TATATGGGCA AACGTTACCA
651 TATCGAATTC ATCGCCCCAC AAGGTGTGAG CAGCGAAGCC GAGCCTTCAG
701 CCAAACAAGT CGCCGCCATC ATCCGACAAA TCAAACGCGA AGGCATCAAA
    GCCGTATTTA CCGAAAATAT CAAAGACACC CGCATGGTTG ACCGCATCGC
```

WO 99/57280 PCT/US99/09346

638

CAAAGAAACC GGTGTCAACG TCAGCGGCAA ACTGTATTCC GACGCACTCG 801 GCAACGCACC CGCAGACACC TACATCGGCA TGTACCGCCA CAACATCAAA GCCTTAACCA ACGCGATGAA GCAATAA 901 This corresponds to the amino acid sequence <SEQ ID 1156; ORF 280.a>: a280.pep MKHPKLTLIA ALLTTAATAA PLPVVTSFSI LGDVAKQIGG ERVSIQSLVG ANQDTHAYHM TSGDIKKIRS AKLVLINGLG LEAADIQRAV KQSKVSYAEA 51 TKGIQPLKAE EEGGHHHDHD HDHDHDHEGH HHDHGEYDPH VWNDPVLMSA 101 YAQNVAEALI KADPEGKVYY QQRLGNYQMQ LKKLHSDAQA AFNAVPAAKR KVLTGHDAFS YMGKRYHIEF IAPQGVSSEA EPSAKQVAAI IRQIKREGIK 201 AVFTENIKDT RMVDRIAKET GVNVSGKLYS DALGNAPADT YIGMYRHNIK -- **** 251 301 ALTNAMKQ* m280/a280 96.4% identity in 308 aa overlap 30 20 10 MKHLKLTLIAALLTASATAAPLPVVTSFSILGDVAKQIGGERVSIQSLVGANQDTHAYHM m280.pep MKHPKLTLIAALLTTAATAAPLPVVTSFSILGDVAKQIGGERVSIQSLVGANQDTHAYHM a280 40 50 30 20 100 110 90 80 TSGDIKKIRSAKLVLLNGLGLEAADVQRAVKQSKVSYTEATKGIQPLKAEEEGGHHHDHD m280.pep TSGDIKKIRSAKLVLINGLGLEAADIQRAVKQSKVSYAEATKGIQPLKAEEEGGHHHDHD a280 110 90 100 80 70 160 170 150 140 130 HDH----EGHHHDHGEYDPHVWNDPVLMSAYAQNVAKALIKADPEGKVYYQQRLGNYQMQ m280.pep HDHDHDHEGHHHDHGEYDPHVWNDPVLMSAYAQNVAEALIKADPEGKVYYQQRLGNYQMQ a280 170 180 160 150 140 130 220 200 210 190 180 LKKLHSDAQAAFNAVPAAKRKVLTGHDAFSYMGKRYHIEFIAPQGVSSEAEPSAKQVAAI m280.pep LKKLHSDAQAAFNAVPAAKRKVLTGHDAFSYMGKRYHIEFIAPQGVSSEAEPSAKQVAAI a280 220 200 210 190 290 270 280 260 IROIKREGIKAVFTENIKDTRMVDRIAKETGVNVSGKLYSDALGNAPADTYIGMYRHNIK m280.pep ийнинининининининининининининин IRQIKREGIKAVFTENIKDTRMVDRIAKETGVNVSGKLYSDALGNAPADTYIGMYRHNIK a280 290 300 280 270 260 300 ALTNAMKQX m280.pep

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1157>: g281.seq

1 atgcactacy ccctcgcate cgtcttctge ctgtccctca gcgccgcace
51 cgtcggcgta ttcctcgtca tgcgccgtat gagcctgata ggcgacgcat
101 tgagccacge cgtcctgcce ggtgccgcg tcggctacat gtttgccggc
151 ttgagcctge ccgctatggg tgtgggcggg tttgccgccg gtatgctgat
201 ggcgctgctt gccggactcg tcagccgctt taccaccctg aaagaagatg
251 ccaactttge cgccttttac ctgagcagcc tcgccatcgg cgtaatcctc
301 atcagcaaaa acggcagcag cgtcgatta ctccacctc ttttcggatc
351 tgtgcttgcc gtcgatattc ccgcactgca actcatcgc gccgtctccg
401 gcctcacgct cattaccctt gccgtcatct accgcccct ggtgctagaa
451 agcatagacc cccttttcct caagtccgtc aacggcaaag gcgggctttg

||||||||| ALTNAMKQX

a280

```
501 gcacgtcatt ttcctcatcc tcgtcgttat gaacctcgta tccggcttcc
    551 aagetetegg cateetgatg teggteggaa ttatgatget geeegeeatt
     601 accgcccgtt tatgggcaag aaatatgggg acgctcattc tgttgtccgt
    651 ceteategee ettttttgeg gtttgategg getgeteatt teetaceaca
    701 tcgaaatccc ttccggcccc gccatcatcc tctgttgcag cgtcctttat
    751 ctttttccg tcatactcgg caaagaaggc ggcatcttgc ccaaatggtt
     801 caaaaaccac cgccaccaca ccacctga
This corresponds to the amino acid sequence <SEQ ID 1158; ORF 281.ng>:
g281.pep
         MHYALASVFC LSLSAAPVGV FLVMRRMSLI GDALSHAVLP GAAVGYMFAG
         LSLPAMGVGG FAAGMLMALL AGLVSRFTTL KEDANFAAFY LSSLAIGVIL
     51
         ISKNGSSVDL LHLLFGSVLA VDIPALQLIA AVSGLTLITL AVIYRPLVLE
     101
     151 SIDPLFLKSV NGKGGLWHVI FLILVVMNLV SGFQALGILM SVGIMMLPAI
     201 TARLWARNMG TLILLSVLIA LFCGLIGLLI SYHIEIPSGP AIILCCSVLY
         LFSVILGKEG GILPKWFKNH RHHTT*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1159>:
m281.seq (partial)
      1 ATGCGCTACG CCCTCGCATC CGTCTTCTGC CTGTCCCTCA GTGCCGCACC
         CGTCGGCGTA TTCCTCGTCA TGCGCCGTAT GAGCCTGATA GGCGACGCAT
     101 TGAGCCACGC CGTCCTGCCC GGTGCCGCCG TCGGCTACAT GTTTGCCGGC
     151 TTGAGCCTGC CCGCCATGGG TTTGGGCGGC GTAGCCGCAG GCATGCTGAT
     201 GGCACTGCTT GCCGGACTCG TCAGCCGCTT CACCACCCTG AAAGAAGATG
     251 CCAACTTTGC CGCCTTTAT CTCAGCAGCC TCGCCATCGG CGTAGTCCTC
     301 GTCAGCAAAA ACGGGAGCAG CGTCGATTTG CTCCACCTCC TTTTCGGCTC
     351 TGTACTTGCC GTCGATATTC CTGCCCTGCA GCTCATCGCC GCCGTCTCCA
     401 GCCTCACGCT CATTACCCTT GCCGTCATCT ACCGCCCGCT CGTACTCGAA
     451 AGCATCGACC CCCTGTTTCT CAAATCCGTC GGCGGCAAAG GCGGGCTTTG
     501 GCACGTCCTC TTTCTCGTCC TGGTCGTCAT GAACCTCGTA TCCGGCTTTC
     551 AAGCCCTCGG CACACTCATG TCCGTCGGAC TCATGATGCT GCCAGCCATT
     601 ACCGCCCGCC TGTGGGCGAA GCATATGGGC GCACTCATCC TCCTATCCGT
     651 TCTGACAGCC CTGCTGTGCG GCTTGAGCGG ACTGCTCATT TCCTACCACA
     701 TCGAAATTCC TTCCGGTCCC GCCATCATCC TCTGTTGCAG CGTCCTTTAT
     751 CTCTTTTCCG TCATACTCGG CAAAGAAGGC GGCATTCTGA CC...
This corresponds to the amino acid sequence <SEQ ID 1160; ORF 281>:
m281.pep (partial)
       1 MRYALASVFC LSLSAAPVGV FLVMRRMSLI GDALSHAVLP GAAVGYMFAG
       51 LSLPAMGLGG VAAGMLMALL AGLVSRFTTL KEDANFAAFY LSSLAIGVVL
     101 VSKNGSSVDL LHLLFGSVLA VDIPALQLIA AVSSLTLITL AVIYRPLVLE
     151 SIDPLFLKSV GGKGGLWHVL FLVLVVMNLV SGFQALGTLM SVGLMMLPAI
          TARLWAKHMG ALILLSVLTA LLCGLSGLLI SYHIEIPSGP AIILCCSVLY
          LFSVILGKEG GILT..
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N.gonorrhoeae
 ORF 281 shows 93.5% identity over a 263 aa overlap with a predicted ORF (ORF 281.ng)
 from N. gonorrhoeae:
 m281/g281
                                                  40
                               20
                                        30
              MRYALASVFCLSLSAAPVGVFLVMRRMSLIGDALSHAVLPGAAVGYMFAGLSLPAMGLGG
 m281.pep
              MHYALASVFCLSLSAAPVGVFLVMRRMSLIGDALSHAVLPGAAVGYMFAGLSLPAMGVGG
 g281
                                                            50
                                                  40
                               20
                                         30
                      10
                                                           110
                               80
                                         90
                                                 100
              vaagmlmallaglvsrfttlkedanfaafylsslaigvvlvskngssvdllhllfgsvla
 m281.pep
               FAAGMLMALLAGLVSRFTTLKEDANFAAFYLSSLAIGVILISKNGSSVDLLHLLFGSVLA
 q281
                                                 100
                                                           110
                               80
                                         90
                      70
                                                                     180
                                        150
                                                  160
                                                           170
                              140
                     130
              VDIPALQLIAAVSSLTLITLAVIYRPLVLESIDPLFLKSVGGKGGLWHVLFLVLVVMNLV
```

m281.pep

WO 99/57280 PCT/US99/09346

640

```
VDIPALQLIAAVSGLTLITLAVIYRPLVLESIDPLFLKSVNGKGGLWHVIFLILVVMNLV
g281
                                                               180
                                                      170
                                             160
                                    150
                  130
                           140
                                                      230
                                             220
                                    210
                           200
                  190
           SGFQALGTLMSVGLMMLPAITARLWAKHMGALILLSVLTALLCGLSGLLISYHIEIPSGP
m281.pep
           SGFQALGILMSVGIMMLPAITARLWARNMGTLILLSVLIALFCGLIGLLISYHIEIPSGP
g281
                                                      230
                                    210
                                             220
                           200
                  250
                           260
           AIILCCSVLYLFSVILGKEGGILT
m281.pep
            1111111111111111111111111111
            AIILCCSVLYLFSVILGKEGGILPKWFKNHRHHTTX
q281
                           260
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1161>:
     a281.seq
              ATGCGCTACG CCCTCGCATC CGTCTTCTGC CTGTCCCTCA GTGCCGCACC
              CGTCGGCGTA TTCCTCGTCA TGCGCCGTAT GAGCCTGATA GGCGACGCAT
          51
              TGAGCCACGC CGTCCTGCCC GGTGCCGCCG TCGGCTACAT GTTTGCCGGC
          101
              TTAAGCCTGC CCGCCATGGG TTTGGGCGGC GTAGCCGCAG GTATGCTGAT
         151
              GGCACTGCTT GCCGGACTCG TCAGCCGCTT CACCACCCTG AAAGAAGATG
          201
              CCAACTTTGC CGCCTTTTAT CTCAGCAGCC TCGCCATCGG TGTAGTCCTC
              GTCAGCAAAA ACGGCAGCAG CGTCGATTTG CTCCACCTCC TTTTCGGCTC
          251
          301
              CGTACTTGCC GTCGATATTC CTGCCCTGCA ACTCATCGCC GCCGTATCCA
          351
              CCCTCACACT GCTTACCCTT GCCGTCATCT ACCGCCCGCT CGTACTCGAA
          401
              AGCATCGACC CCCTGTTTCT CAAATCTGTC GGCGGCAAAG GCGGGCTTTG
          451
              GCACGTCCTC TTTCTCGTCC TGGTCGTCAT GAACCTCGTA TCCGGCTTTC
          501
          551 AAGCCCTCGG CACACTCATG TCCGTCGGAC TTATGATGCT GCCAGCCATT
              ACCGCCCGCC TATGGGCGAA GCACATGGGC GCACTCATCC TCCTATCCGT
          601
              TCTGACAGCC CTGCTGTGCG GCTTGAGCGG ACTGCTCATT TCCTACCACA
          651
              TCGAAATTCC TTCCGGTCCC GCCATCATCC TCTGTTGCAG CGTCCTTTAT
          701
              CTCTTTTCCG TCATACTCGG CAAAGAAGGC GGCATTCTGA CCAAATGGCT
          751
              CAAAAACCAC CGCCACCACA CCACCTGA
          801
 This corresponds to the amino acid sequence <SEQ ID 1162; ORF 281.a>:
      a281.pep
               MRYALASVFC LSLSAAPVGV FLVMRRMSLI GDALSHAVLP GAAVGYMFAG
            1
               LSLPAMGLGG VAAGMLMALL AGLVSRFTTL KEDANFAAFY LSSLAIGVVL
               VSKNGSSVDL LHLLFGSVLA VDIPALQLIA AVSTLTLLTL AVIYRPLVLE
               SIDPLFLKSV GGKGGLWHVL FLVLVVMNLV SGFQALGTLM SVGLMMLPAI
               TARLWAKHMG ALILLSVLTA LLCGLSGLLI SYHIEIPSGP AIILCCSVLY
          201
               LFSVILGKEG GILTKWLKNH RHHTT*
 m281/a281 99.2% identity in 264 aa overlap
                                  20
                                           30
                                                    40
                         10
                  MRYALASVFCLSLSAAPVGVFLVMRRMSLIGDALSHAVLPGAAVGYMFAGLSLPAMGLGG
      m281.pep
                  MRYALASVFCLSLSAAPVGVFLVMRRMSLIGDALSHAVLPGAAVGYMFAGLSLPAMGLGG
      a281
                         10
                                  20
                                           30
                                                            110
                                                   100
                                  80
                                           90
                  VAAGMLMALLAGLVSRFTTLKEDANFAAFYLSSLAIGVVLVSKNGSSVDLLHLLFGSVLA
      m281.pep
                  VAAGMLMALLAGLVSRFTTLKEDANFAAFYLSSLAIGVVLVSKNGSSVDLLHLLFGSVLA
       a281
                                                                      120
                                           90
                                                   100
                                                             110
                         70
                                  80
                                                                      180
                                           150
                                                    160
                                                             170
                                  140
                  VDIPALQLIAAVSSLTLITLAVIYRPLVLESIDPLFLKSVGGKGGLWHVLFLVLVVMNLV
       m281.pep
                  VDIPALQLIAAVSTLTLLTLAVIYRPLVLESIDPLFLKSVGGKGGLWHVLFLVLVVMNLV
       a281
                                                             170
                                                    160
                                  140
                                           150
                         130
```

WO 99/57280

641

```
230
                                                      240
                               210
                                      220
                       200
               190
          SGFQALGTLMSVGLMMLPAITARLWAKHMGALILLSVLTALLCGLSGLLISYHIEIPSGP
m281.pep
          SGFQALGTLMSVGLMMLPAITARLWAKHMGALILLSVLTALLCGLSGLLISYHIEIPSGP
a281
                                              230
                               210
                                      220
                       200
               190
               250
                       260
          AIILCCSVLYLFSVILGKEGGILT
m281.pep
          AIILCCSVLYLFSVILGKEGGILTKWLKNHRHHTTX
a281
                               270
                       260
               250
```

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1163>:
g282.seq
```

```
atgggattgg gtatggaaat cggcaagctg attgtggctc ttttggtgct
```

51 gatcaatccg tttagcgcgt tgtcgcttta ccttgacctg accaacggac

101 acagcacgaa ggagcgcagg aaggtcgcgc ggacggccgc cgtcgccgtg 151 tttgccgtga ttgcggtatt tgcgctgatc ggcggtgcgc tattgaaggt

201 tttgggcatc agcgtcggtt cgtttcaggt cggcggcggg attttggtgc

251 tgctgatcgc catttcgatg atgaacggca acgacaatcc cgccaagcag 301 aatctcggcg cgcagccgga aacggggcaa gcgcgccccg cccgcaatgc

351 aggggcgatt gccgtcgtgc ccatcgccat accgatcacc atcggtccgg

401 gcggtatttc gactgtgatt atttatgctt cggcagccaa aacgtacagc

451 gatatcgcgc tgattatcgc ggccggtttg gtggtcagtg cgatttgtta 501 tgccatttta atcgttgccg ggaaggtcag ccgcctgctg ggcgcgacgg

551 ggctgacgat tttaaaccgc attatgggta tgatgctggc ggcggtatcg

601 gtggagatta ttgtgtcggg actgaaaacg atattcccgc aactggcagg

651 ttga

This corresponds to the amino acid sequence <SEQ ID 1164; ORF 282.ng>:

g282.pep 1 MGLGMEIGKL IVALLVLINP FSALSLYLDL TNGHSTKERR KVARTAAVAV

51 FAVIAVFALI GGALLKVLGI SVGSFQVGGG ILVLLIAISM MNGNDNPAKQ

101 NLGAQPETGQ ARPARNAGAI AVVPIAIPIT IGPGGISTVI IYASAAKTYS 151 DIALIIAAGL VVSAICYAIL IVAGKVSRLL GATGLTILNR IMGMMLAAVS

201 VEIIVSGLKT IFPQLAG*

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1165>:

m282.seq 1 ATGGGATTGG GCATGGAAAT CGGCAAGCTG ATTGTGGCTT TTTTGGTGCT

51 GATTAATCCG TTTAGCGCGT TGTCGCTTTA CCTTGACCTG ACCAACGGGC

101 ACAGCACGAA GGAGCGCAGG AAGGTCGCGC GGACGGCCGC CGTTGCCGTG

151 TTTGCCGTGA TTGCGGTATT TGCGCTGATC GGCGGTACGC TGCTGAAGGT

201 TTTGGGCATC AGCGTCGGTT CGTTTCAGGT CGGCGGCGGG ATTTTGGTGC 251 TGCTGATCGC CATTTCGATG ATGAACGGCA ACGACAATCC CGCCAAGCAG

301 AATCTCGGCG CGCAGCCGGA AACGGGGCAG GCGCGCCCCG CCCGCAATGC

351 CGGAGCGATT GCCGTCGTGC CCATCGCCAT ACCGATCACC ATCGGCCCGG

401 GCGGTATTTC GACCGTGATT ATTTACGCTT CGGCGGCTAA AACATACGGC 451 GACATCGCGT TGATTATCGC GGCCGGTTTG GTGGTCAGTG CGATTTGTTA

501 TGCCATTTTA ATCGTTGCCG GGAAGGTCAG CCGCCTGCTG GGCGCGACGG

551 GGCTGACGAT TTTAAACCGC ATTATGGGTA TGATGCTGGC GGCGGTATCG

601 GTGGAGATTA TTGTGTCGGG ACTGAAAACG ATATTCCCGC AACTGGCAGG 651 TTGA

This corresponds to the amino acid sequence <SEQ ID 1166; ORF 282.ng>: m282.pep

MGLGMEIGKL IVAFLVLINP FSALSLYLDL TNGHSTKERR KVARTAAVAV

FAVIAVFALI GGTLLKVLGI SVGSFQVGGG ILVLLIAISM MNGNDNPAKQ 51

101 NLGAQPETGQ ARPARNAGAI AVVPIAIPIT IGPGGISTVI IYASAAKTYG 151 DIALIIAAGL VVSAICYAIL IVAGKVSRLL GATGLTILNR IMGMMLAAVS

201 VEIIVSGLKT IFPQLAG*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae ORF 282 shows 98.6 % identity over a 217 aa overlap with a predicted ORF (ORF 282.ng) from N. gonorrhoeae: m282/g282 50 40 30 20 MGLGMEIGKLIVAFLVLINPFSALSLYLDLTNGHSTKERRKVARTAAVAVFAVIAVFALI m282.pep MGLGMEIGKLIVALLVLINPFSALSLYLDLTNGHSTKERRKVARTAAVAVFAVIAVFALI 50 60 40 30 20 10 120 110 100 80 90 70

g282 - ee - ${\tt GGTLLKVLGISVGSFQVGGGILVLLIAISMMNGNDNPAKQNLGAQPETGQARPARNAGAI}$ m282.pep GGALLKVLGISVGSFQVGGGILVLLIAISMMNGNDNPAKQNLGAQPETGQARPARNAGAI g282 90 100 110 70 80 160 170 180 150 140 130 AVVPIAIPITIGPGGISTVIIYASAAKTYGDIALIIAAGLVVSAICYAILIVAGKVSRLL m282.pep AVVPIAIPITIGPGGISTVIIYASAAKTYSDIALIIAAGLVVSAICYAILIVAGKVSRLL g282 180 150 160 170 140 130 200 210 190 GATGLTILNRIMGMMLAAVSVEIIVSGLKTIFPQLAGX m282.pep GATGLTILNRIMGMMLAAVSVEIIVSGLKTIFPQLAGX q282

200 190 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1167>:

210

a282.seq ATGGGATTGG GCATGGAAAT CGGCAAGCTG ATTGTGGCTT TTTTGGTGCT 1 GATTAATCCG TTTAGCGCGT TGTCGCTTTA CCTTGACCTG ACCAACGGGC 101 ACAGCACGAA GGAGCGCAGG AAGGTCGCGC GGACGGCCGC CGTTGCCGTG 51 151 TTTGCCGTGA TTGCGGTATT TGCGCTGATC GGCGGTACGC TGCTGAAGGT TTTGGGCATC AGCGTCGGTT CGTTTCAGGT CGGCGGCGGA ATTTTGGTGT 201 TGCTGATTGC CATTTCGATG ATGAACGGCA ACGACAATCC CGCCAAGCAG 251 AATCTCGGCG CGCAGCCGGA AACGGGGCAG GTGCGCCCCG CCCGCAATGC CGGAGCGATT GCCGTCGTGC CCATCGCCAT ACCGATCACC ATCGGCCCGG 351 GCGGTATTTC GACCGTGATT ATTTACGCTT CGGCGGCTAA AACATACGGC 401 GACATCGCGT TGATTATCGC GGCCGGTTTG GTGGTCAGTG CGATTTGTTA 451 TGCCATTTTA ATCGTTGCCG GGAAGGTCAG CCGCCTGCTG GGTGCGACGG GGCTGACGAT TTTAAACCGT ATCATGGGTA TGATGCTGGC GGCGGTATCG GTGGAGATTA TTGTGTCGGG ACTGAAAATG ATATTCCCGC AACTGGCAGG 651 TTGA

This corresponds to the amino acid sequence <SEQ ID 1168; ORF 282.a>:

a282.pep

- MGLGMEIGKL IVAFLVLINP FSALSLYLDL TNGHSTKERR KVARTAAVAV FAVIAVFALI GGTLLKVLGI SVGSFQVGGG ILVLLIAISM MNGNDNPAKQ
- 51 NLGAQPETGQ VRPARNAGAI AVVPIAIPIT IGPGGISTVI IYASAAKTYG
- DIALIJAAGL VVSAICYAIL IVAGKVSRLL GATGLTILNR IMGMMLAAVS 151
- VEIIVSGLKM IFPQLAG*

m282/a282 99.1% identity in 217 aa overlap

ZI 0 Z 0 Z 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 /0 Identifies mi =	1,	F			
	10	20	30	40	50	60
m282.pep	MCI CMETCKI.TVAF	VITUPESAL	SLYLDLTNGH	STKERRKVAF	TAAVAVFAVI.	AVFALI
mzez.pep	1111111111111111	EL 14311111	THEFT		1111111111	11111
a282	MGLGMEIGKLIVAF	LVLINPFSAI	SLYLDLTNGH	STKERRKVAF	TAAVAVFAVI	AVFALI
a202	10	20	30	40	50	60

WO 99/57280

643

m282.pep	70 GGTLLKVLGISVGS GGTLLKVLGISVGS	FQVGGGILV	 LLIAISMMNGN		1111111:111	111111
	70	80	90	100	110	120
	130	140	150	160	170	180
m282.pep	AVVPIAIPITIGPG	1111111111	[[[]]]	1111111111	1111111111	.111111
a282	AVVPIAIPITIGPG	GISTVIIYA	SAAKTYGDIAL			
	130	140	150	160	170	180
	190	200	210		, cau	
m282.pep	GATGLTILNRIMGN	MLAAVSVEI 	IVSGLKTIFPC	∑LAGX 		
a282	GATGLTILNRIMGN	MLAAVSVEI	IVSGLKMIFPC	LAGX		
4202	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1169>:

```
g283.seq
```

- 375

```
atgaactttg ctttatccgt catcacattt accctcgcct ctttcctgcc
51 cgtcccgcct gccggaaccg ccgtctttac ttggaaagac ggcggcggca
```

- 101 acagetatte ggatgtgeeg aaacagette atecegacea gagecaaate
- 151 ctcaacctgc ggacgctcca aaccaaaccg gcggtcaagc ccaaacctgc
- 201 cgtcgatacg aatgcggaca gtgcgaagga aaacgaaaag gatatcgccg
- 251 agaaaaacgg gcagcttgag gaagaaaaga aaaaaattgc cgaaaccgaa
- 301 cggcagaaca aagaagaaaa ctgccggatt tcaaaaatga acctgaaggc 351 ggtgggaaac tcaaatgcga aaaacaagga tgatttgatc cgtaaataca
- 401 ataacgccgt aaacaaatac tgccgttaa

This corresponds to the amino acid sequence <SEQ ID 1170; ORF 283.ng>:

g283.pep

- MNFALSVITF TLASFLPVPP AGTAVFTWKD GGGNSYSDVP KQLHPDQSQI
- LNLRTLQTKP AVKPKPAVDT NADSAKENEK DIAEKNGQLE EEKKKIAETE
- 101 RONKEENCRI SKMNLKAVGN SNAKNKDDLI RKYNNAVNKY CR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1171>:

m283.seq

- ATGAACTTTG CTTTATCCGT CATTATGTTG ACCCTCGCCT CTTTCCTGCC 51 CGTCCCGCCT GCCGGAGCCG CCGTCTTTAC TTGGAAGGAC GGCGGCGGCA
- 101 ACAGCTATTC GGATGTACCG AAACAGCTTC ATCCCGACCA AAGCCAAATC
- 151 TTAAACCTGC GGACGCGCCA AACCAAACCG GCGGTCAAAC CCGCCCAAGC
- 201 CGACGCAGGG AAGCGCACAG ACGGCGCGGC ACAGGAAAAC AATCCCGACA
- 301 ACCGAACGGC AGAACAAAGA AGAAAACTGC CGGATTTCAA AAATGAACCT GAAGGCGGTG GGAAATTCAA ATGCAAAAAA CAAGGATGAT TTGATTCGGA
- 401 AATACAATAA CGCCGTAAAC AAATACTGCC GTTAA

This corresponds to the amino acid sequence <SEQ ID 1172; ORF 283>:

m283.pep

- MNFALSVIML TLASFLPVPP AGAAVFTWKD GGGNSYSDVP KQLHPDQSQI
- LNLRTROTKP AVKPAQADAG KRTDGAAQEN NPDTAEKNRQ LEEEKKRIAE
- 101 TERONKEENC RISKMNLKAV GNSNAKNKDD LIRKYNNAVN KYCR*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m283/q283 86.1% identity in 144 aa overlap 40 30 20 MNFALSVIMLTLASFLPVPPAGAAVFTWKDGGGNSYSDVPKQLHPDQSQILNLRTRQTKP m283.pep MNFALSVITFTLASFLPVPPAGTAVFTWKDGGGNSYSDVPKQLHPDQSQILNLRTLQTKP g283 40 10 20 30

```
100
                                                            110
                         70
                                  80
                                           90
                  AVKPAQADAGKRTDGAAQENNPDTAEKNRQLEEEKKRIAETERQNKEENCRISKMNLKAV
      m283.pep
                            1111 1:
                  AVKPKPA-VDTNAD-SAKENEKDIAEKNGQLEEEKKKIAETERQNKEENCRISKMNLKAV
      q283
                                             90
                                                     100
                                    80
                          70
                        130
                                 140
                  GNSNAKNKDDLIRKYNNAVNKYCRX
      m283.pep
                  15111111111111111111111111
                  GNSNAKNKDDLIRKYNNAVNKYCRX
      g283
-- 3727 "
                                   140
                          130
                  120
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1173>:
       a283.seq
               ATGAACTTTG CTTTATCCGT CATTATGTTG ACCCTCGCCT CTTTCCTGCC
             1
               CGTCCCGCCT GCCGGAGCCG CCGTCTTTAC TTGGAAGGAC GGCGGCGGCA
            51
           101 ACAGCTATTC GGATGTACCG AAACAGCTTC ATCCCGACCA AAGCCAAATC
               TTARACCTGC GGACGCGCCA AACCAAACCG GCGGTCAAAC CCGCCCAAGC
           151
           201 CGACGCAGGG AAGCGCACAG ACGGCGCGC ACAGGAAAAC AATCCCGACA
           ACCGAACGGC AGAACAAGA AGAAAACTGC CGGATTTCAA AAATGAACCT
                GAAAGCGGTG GGAAATTCAA ATGCAAAAAA CAAGGATGAT TTGATTCGGA
           351
           401 AATACAATAA CGCCGTAAAC AAATACTGCC GTTAA
  This corresponds to the amino acid sequence <SEQ ID 1174; ORF 283.a>:
       a283.pep
                MNFALSVIML TLASFLPVPP AGAAVFTWKD GGGNSYSDVP KQLHPDQSQI
                LNLRTRQTKP AVKPAQADAG KRTDGAAQEN NPDTAEKNRQ LEEEKKRIAE
            51
                TERONKEENC RISKMNLKAV GNSNAKNKDD LIRKYNNAVN KYCR*
                   100.0% identity in 144 aa overlap
       m283/a283
                                            30
                                                     40
                                   20
                          10
                   MNFALSVIMLTLASFLPVPPAGAAVFTWKDGGGNSYSDVPKQLHPDQSQILNLRTRQTKP
       m283.pep
                   MNFALSVIMLTLASFLPVPPAGAAVFTWKDGGGNSYSDVPKQLHPDQSQILNLRTRQTKP
       a283
                          10
                                   20
                                            30
                                                     40
                                                              50
                                                                      120
                                                             110
                                   80
                                            90
                                                    100
                   AVKPAQADAGKRTDGAAQENNPDTAEKNRQLEEEKKRIAETERQNKEENCRISKMNLKAV
       m283.pep
                   AVKPAQADAGKRTDGAAQENNPDTAEKNRQLEEEKKRIAETERQNKEENCRISKMNLKAV
       a283
                                                    100
                                                             110
                                   80
                                            90
                          70
                         130
                   GNSNAKNKDDLIRKYNNAVNKYCRX
       m283.pep
                   16111111111111111111111111111111
                   GNSNAKNKDDLIRKYNNAVNKYCRX
       a283
                         130
                                  140
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1175>: g284.seq.

```
atgccgtctg aaactcgaaa tcggtttcag acggcattgg tttacgcggc
    aggttggggc ttagcggtct ttgtaacggc attcgctttt gcctgcaaaa
51
101
    qaqtcqccgg ctttgcgttt gcctttgaag ccttcgccgg tttttttgaa
    actgtctttc ttaaagcctt ctttcttgaa accttcgccg cgcgttttgc
151
251 ttectatege eccageegee tttgeettte ggettgeege etgeggattt
301 gcgtttgcgg gccggctcca tgccttcgat ggtcagttcg ggcagtttgc
351 ggttaatgta tttttcgatt ttgtggactt tgacgtattc gttcacttcg
    gcaaacgtaa tcgcaatacc cgtgcggcct gcgcggccgg tgcgcccgat
401
451 geggtggacg tagtetteeg cetgtttegg caggtegtag tttatgacgt
```

```
501 gggtaatggt cggtacgtca ataccgcgtg cggcaacgtc ggtggcaacc

551 aaaattttgc agcggccttt acgcaaatcc gtcagcgtgc ggttgcgcca

601 gccctgcggc atatcgccgt gcaggcagtt ggcggcgaaa cctttttcgt

651 acaattcatc cgcgatgact tcggtcatcg ctttggtgga cgtgaaaatc

701 acacattggt cgatgttggc atcgcgcagg atgtggtcga gcaggcggtt

751 tttgtggcgc atatcgtcgc agtacaacaa ctgctcttcg attttgcctt

801 ggccgtccac gcgttcgact tcgataattt cagagtcttt ggtcagtttg

851 cgcgccagtt tgccgactgc gccgtcccaa gtggcggaga acaataa
```

This corresponds to the amino acid sequence <SEQ ID 1176; ORF 284.ng>:

```
g284.pep

1 MPSETRNRFQ TALVYAAGWG LAVFVTAFAF ACKRVAGFAF AFEAFAGFFE
51 TVFLKAFFLE TFAARFAAEA FFARFMIAAP AAGFPIAPAA FAFRLAACGF
101 AFAGRLHAFD GQFGQFAVNV FFDFVDFDVF VHFGKRNRNT RAACAAGAPD
151 AVDVVFRLFR QVVVYDVGNG RYVNTACGNV GGNQNFAAAF TQIRQRAVAP
201 ALRHIAVQAV GGETFFVQFI RDDFGHRFGG RENHTLVDVG IAQDVVEQAV
251 FVAHIVAVQQ LLFDFALAVH AFDFDNFRVF GQFARQFADC AVPSGGEQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1177>:

```
m284.seq.
      1 ATGCCGTCTG AAACTCGAAA TCGGTTTCAG ACGGCATTGG TTTATGCGGC
      51 AGGTTGGGGC TTAGCGGTCT TTGTAACGGC GTTCGCCTTT GCCTGCAAAA
     101 GAATCGCCGG CTTTGCGTTT GCCTTTGAAG CCTTCGCCGG TTTTTTTGAA
     151 ACCGTCTCTC TTAAAGCCTT CTTTCTTGAA ACCTTCGCCG CGCGTTTTGC
          CGCCGAAGCC TTCTTTGCTC GGTTTATGAT CGCCGCGCCA ACCGCCGGAT
     201 CGCCGAAGCC TTCTTTGCTC GGTTTATGAT CGCCGCGCCA ACCGCCGGAT
251 TTACGATCGC CCCAGCCGCC TTTGCCTTTC GGCTTGCCGC CTGCGGATTTT
     301 GCGTTTGCGG GTCGGTTCCA TGCCTTCGAT GGTCAGTTCG GGCAGTTTTC
     351 GGTTAATGTA TTTTTCGATT TTGTGGACTT TGACGTATTC GTTCACTTCG
          GCAAACGTAA TCGCAATACC CGTGCGGCCT GCGCGGCCGG TGCGCCCGAT
     451 GCGGTGGACG TAGTCTTCCG CCTGTTTCGG CAGGTCGTAG TTGATAACGT
     501 GGGTAATGGT CGGTACGTCG ATACCGCGTG CGGCAACATC GGTGGCAACC
     551 AAAATTTTGC AGCGGCCTTT ACGCAAATCC ATCAGCGTGC GGTTGCGCCA
     601 GCCTTGCGGC ATATCGCCGT GCAGGCAGTT TGCGGCGAAA CCTTTTTCGT
     651 ACAGTTCATC CGCAATGACT TCGGTCATGG CTTTGGTGGA CGTGAAAATC
     701 ACGCATTGAT CGATATTGGC ATCGCGCAAG ATATGATCGA GCAGGCGGTT
     751 TTTGTGGCGC ATATCGTCGC AGTACAGCAG TTGTTCTTCG ATTTTGCCTT
     801 GATCGTCCAC GCGTTCGACT TCGATGATTT CAGGGTCTTT GGTCAGTTTG
     851 CGCGCCAGTT TGCCGACCGC GCCGTCCCAA GTGGCGGAGA ACAACAAAGT
     901 CTGACGGTCG CTCGGCGTTG CTTCCACGAT GGTTTCGATG TCGTCGATAA
     951 AGCCCATATC CAACATACGG TCGGCTTCGT CCAAAATCAG CACTTCCAAA
    1001 CGTTCAAAAT CAACTTTGCC GCTTTGCATC AGGTCCATCA GACGGCCCGG
    1051 CGTGGCGACA ATCAGATCGA CCGGTTTGCT CAGGGCACGG GTTTGGTAGC
    1101 CGAAAGACGC GCCGCCGACG ATGCTGACGG TGCGGAACCA ACGCATATTT
          TTGGCATACG CCAGCGCGTT TTTCTCGACT TGAGCCGCCA GTTCGCGGGT
    1151
    1201 CGGGGTCAAC ACCAAAGCAC GCGGGCCTTT GCCCGGTTTT TCGCTGCGTT
    1251 TGGTCAGTTT TTGCAAAGTC GGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1178; ORF 284>:

```
m284.pep

1 MPSETRNRFQ TALVYAAGWG LAVFVTAFAF ACKRIAGFAF AFEAFAGFFE

101 AFAGRFHAFD GQFGQFSVNV FFDFVDFDVF VHFGKRNRNT RAACAAGAPD

151 AVDVVFRLFR QVVVDNVGNG RYVDTACGNI GGNQNFAAAF TQIHQRAVAP

201 ALRHIAVQAV CGETFFVQFI RNDFGHGFGG RENHALIDIG IAQDMIEQAV

251 FVAHIVAVQQ LFFDFALIVH AFDFDDFRVF GQFARQFADR AVPSGGEQQS

301 LTVARRCFHD GFDVVDKAHI QHTVGFVQNQ HFQTFKINFA ALHQVHQTAR

351 RGDNQIDRFA QGTGLVAERR AADDADGAEP THIFGIRQRV FLDLSRQFAG

401 RGQHQSTRAF ARFFAAFGQF LQSR*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m284/g284 92.3% identity in 298 aa overlap

... ***:

```
50
                                 30
                                         40
                 10
                         20
          MPSETRNRFQTALVYAAGWGLAVFVTAFAFACKRIAGFAFAFEAFAGFFETVSLKAFFLE
m284.pep
          MPSETRNRFQTALVYAAGWGLAVFVTAFAFACKRVAGFAFAFEAFAGFFETVFLKAFFLE
q284
                                                  50
                                         40
                                 30
                 10
                                         100
                                 90
                         80
                 70
          TFAARFAAEAFFARFMIAAPTAGFTIAPAAFAFRLAACGFAFAGRFHAFDGQFGQFSVNV
m284.pep
          TFAARFAAEAFFARFMIAAPAAGFPIAPAAFAFRLAACGFAFAGRLHAFDGQFGQFAVNV
q284
                                        100
                         80
                                 90
                                                         180
                                         160
                                                 170
                        140
                                150
                130
           FFDFVDFDVFVHFGKRNRNTRAACAAGAPDAVDVVFRLFRQVVVDNVGNGRYVDTACGNI
m284.pep
           FFDFVDFDVFVHFGKRNRNTRAACAAGAPDAVDVVFRLFRQVVVYDVGNGRYVNTACGNV
q284
                                                         180
                                         160
                                 150
                130
                         140
                                                         240
                                         220
                         200
                                 210
                190
           GGNQNFAAAFTQIHQRAVAPALRHIAVQAVCGETFFVQFIRNDFGHGFGGRENHALIDIG
m284.pep
           minumentumentum muuten uutuelee
           GGNONFAAAFTOIRORAVAPALRHIAVQAVGGETFFVQFIRDDFGHRFGGRENHTLVDVG
g284
                                         220
                                                 230
                                 210
                         200
                                                         300
                                 270
                                         280
                                                 290
                         260
           IAQDMIEQAVFVAHIVAVQQLFFDFALIVHAFDFDDFRVFGQFARQFADRAVPSGGEQQS
m284.pep
           {\tt IAQDVVEQAVFVAHIVAVQQLLFDFALAVHAFDFDNFRVFQQFARQFADCAVPSGGEQX}
q284
                                                 290
                                 270
                                         280
                         260
                 250
                                                          360
                         320
                                 330
                                         340
                                                 350
                 310
           \verb|LTVARRCFHDGFDVVDKAHIQHTVGFVQNQHFQTFKINFAALHQVHQTARRGDNQIDRFA|
m284.pep
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1179>:

```
a284.seg
         ATGCCGTCTG AAACTCGAAA TCGGTTTCAG ACGGCATTGG TTTATGCGGC
         AGGTTGGGGC TTAGCGGTCT TTGTAACGGC GTTCGCCTTT GCCTGCAAAA
      51
         GAATCGCCGG CTTTGCGTTT GCCTTTGAAG CCTTCGCCGG TTTTTTTTGAA
     101
         ACCGTCTCTC TTAAAGCCTT CTTTCTTGAA ACCTTCGCCG CGCGTTTTGC
     151
         CGCCGAAGCC TTCTTTGCTC GGTTTATGAT CGCCGCGCCA ACCGCCGGAT
     201
          TTACGATCGC CCCAGCCGCC TTTGCCTTTC GGCTTGCCGC CTGCGGATTT
     251
         GCGTTTGCGG GTCGGTTCCA TGCCTTCGAT GGTCAGTTCG GGCAGTTTTC
     301
          GGTTAATGTA TTTTTCGATT TTGTGGACTT TGACGTATTC GTTCACTTCG
          GCAAACGTAA TCGCAATACC CGTGCGGCCT GCGCGGCCGG TGCGCCCGAT
     401
          GCGGTGGACG TAGTCTTCCG CCTGTTTCGG CAGGTCGTAG TTGATAACGT
     451
          GGGTAATGGT CGGTACGTCG ATACCGCGTG CGGCAACGTC GGTGGCAACC
     501
     551 AAAATTTTGC AGCGGCCTTT GCGCAAATCC ATCAGCGTGC GGTTGCGCCA
          GCCTTGCGGC ATATCGCCGT GCAGGCAGTT GGCGGCGAAA CCTTTTTCGT
     601
         ACAATTCATC CGCGATGACT TCGGTCATGG CTTTGGTGGA CGTGAAAATC
     651
     701 ACGCATTGAT CGATGTCGGC ATCGCGCAAG ATATGATCGA GCAGGCGGTT
          TTTGTGGCGC ATATCGTCGC AGTACAGCAG TTGTTCTTCG ATTTTGCCTT
     751
          GGTCGTCCAC GCGTTCGACT TCGATGATTT CAGGGTCTTT GGTCAGTTTG
     801
          CGCGCCAGTT TGCCGACCGC GCCGTCCCAA GTGGCGGAGA ACAACAAAGT
     851
          CTGACGGTCT TCCGGCGTGG CTTCGACGAT GGTTTCGATG TCGTCGATAA
          AGCCCATATC CAACATACGG TCGGCTTCGT CCAAAATCAG CACTTCCAAG
     951
          CGGGCGAAAT CGACTTTGCC GCTTTGCATC AAGTCCATCA GACGGCCCGG
    1001
          CGTGGCGACA ATCAGATCGA CCGGTTTGCT CAGGGCGCGG GTTTGGTAGC
    1051
          CGAACGATGC ACCACCGACG ATGCTGACGG TACGGAACCA ACGCATATTT
    1101
          TTGGCATACG CCAGCGCGTT TTTCTCGACT TGAGCCGCCA ATTCGCGGGT
    1151
          CGGCGTCAAC ACCAACGCGC GCGGGCCTTT GCCCGGTTTT TCGCTGCGTT
    1201
          TGGTCAGTCG CTGCAAAGTC GGTAA
    1251
```

This corresponds to the amino acid sequence <SEQ ID 1180; ORF 284.a>: a284.pep

¹ MPSETRNRFQ TALVYAAGWG LAVFVTAFAF ACKRIAGFAF AFEAFAGFFE

- Mr. -

51 101 151 201 251 301 351 401	TVSLKAFFLE TFAARFAAEA FFARFMIAAP TAGFTIAPAA FAFRLAACGF AFAGRFHAFD GQFGQFSVNV FFDFVDFDVF VHFGKRNRNT RAACAAGAPD AVDVVFRLFR QVVVDNVGNG RYVDTACGNV GGNQNFAAAF AQTHQRAVAP ALRHIAVQAV GGETFFVQFI RDDFGHGFGG RENHALIDVG IAQDMIEQAV FVAHIVAVQQ LFFDFALVVH AFDFDDFRVF GQFARQFADR AVPSGGEQQS LTVFRRGFDD GFDVVDKAHI QHTVGFVQNQ HFQAGEIDFA ALHQVHQTAR RGDNQIDRFA QGAGLVAERC TTDDADGTEP THIFGIRQRV FLDLSRQFAG RRQHQRARAF ARFFAAFGQS LQSR*
m284/a284	94.8% identity in 424 aa overlap
m284.pep	10 20 30 40 50 60 MPSETRNRFQTALVYAAGWGLAVFVTAFAFACKRIAGFAFAFAAFAFFETVSLKAFFLE
a284	MPSETRNRFQTALVYAAGWGLAVFVTAFAFACKRIAGFAFAFEAFAGFFETVSLKAFFLE 10 20 30 40 50 60
m284.pep	70 80 90 100 110 120 TFAARFAAEAFFARFMIAAPTAGFTIAPAAFAFRLAACGFAFAGRFHAFDGQFGQFSVNV
a284	
m284.pep	130 140 150 160 170 180 FFDFVDFDVFVHFGKRNRNTRAACAAGAPDAVDVVFRLFRQVVVDNVGNGRYVDTACGNI
a284	
m284.pep	190 200 210 220 230 240 GGNQNFAAAFTQIHQRAVAPALRHIAVQAVCGETFFVQFIRNDFGHGFGGRENHALIDIG
m284.pep	250 260 270 280 290 300 IAQDMIEQAVFVAHIVAVQQLFFDFALIVHAFDFDDFRVFGQFARQFADRAVPSGGEQQS
	250 260 270 280 290 300
m284.pep	310 320 330 340 350 360 LTVARRCFHDGFDVVDKAHIQHTVGFVQNQHFQTFKINFAALHQVHQTARRGDNQIDRFA
a284	LTVFRRGFDDGFDVVDKAHIQHTVGFVQNQHFQAGEIDFAALHQVHQTARRGDNQIDRFA 310 320 330 340 350 360
m284.pep	370 380 390 400 410 420 QGTGLVAERRAADDADGAEPTHIFGIRQRVFLDLSRQFAGRGQHQSTRAFARFFAAFGQF
a284	QGAGLVAERCTTDDADGTEPTHIFGIRQRVFLDLSRQFAGRRQHQRARAFARFFAAFGQS 370 380 390 400 410 420
m284.pep	LQSRX
a284	 LQSRX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1181>: g285.seq

1 atgaccgata ccacaccgac agataccgat ccgaccgaaa acggcacgcg
51 caaaatgccg tctgaacacc gccccgccc gccggcaaaa aaacgccgcc
101 cgctgctgaa gctgtcggcg gcactgctgt ctgtcctgat tttggcagta

151 tgtttcctcg gctggatcgc cggtacggaa gcaggtttgc gcttcgggct gtaccaaatc ccgtcctggt tcggcgtaaa catttcctcc caaaacctca aaggcacact getegaegge ttegaeggeg acaactggte gatagaaace gagggggcag accttaaaat cagccgcttc cgcttcgcgt ggaaaccgtc 351 cgaactgatg cgccgcagcc tgcacatcac cgacatctcc gccggcgaca 401 tegecategt aaccaaaceg acteegeeta aagaagaacg eeegeeteaa 451 ggcctgcccg acagcataga cctgcccgcc gctgtctatc tcgaccgctt cgagacgggc aaaatcagca tgggcaaaac ctttgacaaa caaaccgtct 501 551 atctcgaacg cctcaacgcg gcataccgtt acgaccgtaa agggcaccgc 601 ctcgacctga aggccgccga cacgccgtgg agcagttcgt cggggtcagc 651 ctcggtcggc ttgaaaaaac cgtttgccct cgataccgcc atttacacca 701 aaggeggatt egaaggegaa accatacaca gtaeggegeg getgagegge 751 agcctgaagg atgtgcgcgc cgaactgacg atcgacggcg gcaatatccg 801 cctctcggga aaatccgtca tccacccgtt tgccgaatca ttggataaaa 851 cattggaaga agtactggtc aaaggattca acatcaatcc gtccgccttc 901 gtgccttccc tgcccgatgc cgggctgaat ttcgacctga ccgccatccc 951 gtcgttttca gacggcatcg cgctggaagg ctcgctcgat ttggaaaaca 1001 ccaaagccgg ctttgccgac cgcaacggca tccccgtccg tcaggttttg ggcggctttg tcatccggca ggacggcacg gtgcatatcg gcaatacgtc 1051 1101 egeogecetg eteggacggg geggeateag getgteggge aaaategaca 1151 ccgaaaaaga catccttgat ttaaatatag gcatcaactc cgtcggcgcg 1201 gaagacgtgc tgcaaaccgc gttcaaaggc aggttggacg gcagcatcgg categgegge acgaeegeet egeceaaaat etettggeaa eteggeaeeg 1301 gcacggcacg cacggacggc agcetececa tegcaagega eecegcaaac 1351 gaacagcgga aactggtgtt cgacaccgtc aacatctccg ccggggaagg 1401 cagcetgace gegeaagget atetegaget gtttaaagae egeetgetea 1451 agctggacat ccgttcccgc gcattcgacc cttcgcgcat cgatccgcaa 1501 tttccggcag gcaatatcaa cggttcgatt catcttgccg gtgaactggc 1551 aaaagagaaa tttacgggca aaatgcgttt tttgcccggt acgttcaacg 1601 gcgtgccgat tgccggcagc gccgacattg tttacgagtc ccgccacctt 1651 ccgcgcgccg ccgtcgattt gcggttgggg cggaacatcg tcaaaacaga 1701 cggcggcttc ggcaaaaaag gcgaccggct taacctcaat atcaccgcac 1751 ccgatttatc ccgtttcggt ttcggactcg cggggtcttt aaatgtacgc 1801 ggacacettt ccggcgattt ggacggcggc atccgaacet ttgaaaccga 1851 cctttccggc acggcgcgca acttacacat cggcaaagcg gcagacatcc 1901 gttcgctcga ttttaccctc aaaggctcac ccggcacaag ccgcccgatg 1951 cgcgccgata tcaagggcgg ccgcctttcc ctgtcgggcg gcgcggcggt 2001 tgtcgatacc gccggcctga cgctggaagg tacgggcgcg cagcaccgca 2051 tecgeacaea egeegeeatg aegetggaeg geaaacegtt caaactegat 2101 ttggacgctt caggcggcat caacagggaa cttacccgat ggaaaggcag 2151 categgcate etegacateg geggegeatt caaceteaag etgeaaaace gtatgacgct cgaagccggt gcggaacacg tggcggcaag tgcggcaaat 2201 tggcaggcaa tgggcggcag cctcaacctg caacactttt cttgggacag 2251 2301 gaaaaccggc atatcggcaa aaggcggcgc acgcggcctg cacatcgccg agttgcacaa tttcttcaaa ccgcccttcg aacacaatct ggttttaaac 2351 2401 ggcgactggg atgtcgccta cgggcacaac gcgcgcggct acctcaatat cagccggcaa agcggcgatg ccgtattgcc cggcgggcag gctttgggtt 2451 2501 tgaacgcatt ttccctgaaa acgcgctttc aaaacgaccg catcggaatc ctgcttgacg gcggcgcgcg tttcggacgg attaacgccg atttgggcat 2551 2601 cggcaacgcc ttcggcggca atatggcaaa tacaccgctc ggcggcagga 2651 ttacagcete cettecegae ttgggegeat tgaageeett tetgecegee 2701 gccgcgcaaa acattaccgg cagcctgaat gcctccgcgc aaatcggcgg acgggtaggc teteogtecg teaatgccgc cgtcaacggt agcagcaact 2751 2801 acgggaaaat caacggcaat atcaccgtcg ggcaaagccg ctccttcgat 2851 accgcacctt tgggcggcag gctcaacctg accgttgccg atgccgaagc 2901 attccqcaac ttcctaccgg tcggacaaac cgtcaaaggc agcctgaatg 2951 ccgccgtaac cctcggcggc agcatcgccg acccgcactt gggcggcagt 3001 atcaacggcg acaagctcta ttaccgcaac caaacccaag gcatcatctt 3051 ggacaacggc tcgctgcgtt cgcatattgc aggcaggaaa tgggtaatcg acagcctgaa attccggcac gaagggacgg cggaactctc cggcacggtc 3101 3151 agcatggaaa acagcgtgcc cgatgtcgat atcggcgcgg tgttcgacaa 3201 ataccgcatc ctgtcccgcc ccaaccgccg cctgacggtt tccggcaaca cccgcctgcg ctattcgccg caaaaaggca tatccgttac cggtatgatt 3251 3301 aaaactgatc aggggctgtt cggttcgcaa aaatcctcga tgccgtccgt cggcgacgat gtcgtcgtat tgggcgaagt caagaaagag gcggcggcat 3351 3401 cgctcccgt caatatgaac ctgactttag acctcaatga cggcatccgc

```
3451 ttctccggct acggcgcgga cgttaccata ggcggcaaac tgaccctgac
     cgcgcaaccg ggcggaaatg tgcgtggggt gggcacggtc cgcgtcatca
3551 aagggcgtta caaagcatac gggcaggatt tagacattac caaaggcaca
3601 gteteetttg teggeeeget caacgacece aacetgaaca teegegeega
3651 acgccgcctt tcccccgtcg gtgcgggcgt ggaaatattg ggcagcctca
3701 acagecegeg cattacgetg acggeaaacg aaccgatgag tgaaaaagac
3751 aageteteet ggeteateet caacegtgee ggeageggea geageggega
3801 caatgeegee etgteegeag eegeaggege getgettgee gggcaaatca
3851 acgaccgcat cgggctggtg gatgatttgg gctttaccag caagcgcagc
3901 cgcaacgcgc aaaccggcga actcaacccc gccgaacagg tgctgaccgt
3951 cggcaaacaa ctgaccggca aactctacat cggctacgaa tacggcatct
4001 ccagegegga acagteegte aaactgattt accggetgae cegegecata
4051 caggoggttg coogtatogg cagoogttog togggoggog agotgacata
4101 caccatacgt ttcgaccgcc tcttcggttc ggacaaaaaa gactccgcag
4151 gaaacggcaa agggaaataa
```

This corresponds to the amino acid sequence <SEQ ID 1182; ORF 285.ng>:

-- ****

```
g285.pep
          MTDTTPTDTD PTENGTRKMP SEHRPAPPAK KRRPLLKLSA ALLSVLILAV
          CFLGWIAGTE AGLRFGLYQI PSWFGVNISS QNLKGTLLDG FDGDNWSIET
          EGADLKISRF RFAWKPSELM RRSLHITDIS AGDIAIVTKP TPPKEERPPQ
          GLPDSIDLPA AVYLDRFETG KISMGKTFDK QTVYLERLNA AYRYDRKGHR
     151 GLPDSIDLPA AVYLDRFETG KISMGKTFDK QTVYLERLNA AYRYDRKGHR
201 LDLKAADTPW SSSSGSASVG LKKPFALDTA IYTKGGFEGE TIHSTARLSG
     251 SLKDVRAELT IDGGNIRLSG KSVIHPFAES LDKTLEEVLV KGFNINPSAF
     301 VPSLPDAGLN FDLTAIPSFS DGIALEGSLD LENTKAGFAD RNGIPVRQVL
          GGFVIRQDGT VHIGHTSAAL LGRGGIRLSG KIDTEKDILD LHIGHNSVGA
     401 EDVLQTAFKG RLDGSIGIGG TTASPKISWQ LGTGTARTDG SLPIASDPAN
     451 EQRKLVFDTV NISAGEGSLT AQGYLELFKD RLLKLDIRSR AFDPSRIDPQ-
          FPAGNINGSI HLAGELAKEK FTGKMRFLPG TFNGVPIAGS ADIVYESRHL
     501
          PRAAVDLRLG RNIVKTDGGF GKKGDRLNLN ITAPDLSRFG FGLAGSLNVR
     601 GHLSGDLDGG IRTFETDLSG TARNLHIGKA ADIRSLDFTL KGSPGTSRPM
     651 RADIKGGRLS LSGGAAVVDT AGLTLEGTGA QHRIRTHAAM TLDGKPFKLD
          LDASGGINRE LTRWKGSIGI LDIGGAFNLK LQNRMTLEAG AEHVAASAAN
     701
          WOAMGGSLNL QHFSWDRKTG ISAKGGARGL HIAELHNFFK PPFEHNLVLN
     751
     801 GDWDVAYGHN ARGYLNISRQ SGDAVLPGGQ ALGLNAFSLK TRFQNDRIGI
     851 LLDGGARFGR INADLGIGNA FGGNMANTPL GGRITASLPD LGALKPFLPA
          AAQNITGSLN ASAQIGGRVG SPSVNAAVNG SSNYGKINGN ITVGQSRSFD
          TAPLGGRINL TVADAEAFRN FLPVGQTVKG SINAAVTLGG SIADPHLGGS
     951
    1001 INGDKLYYRN QTQGIILDNG SLRSHIAGRK WVIDSLKFRH EGTAELSGTV
    1051 SMENSVPDVD IGAVFDKYRI LSRPNRRLTV SGNTRLRYSP QKGISVTGMI
    1101 KTDQGLFGSQ KSSMPSVGDD VVVLGEVKKE AAASLPVNMN LTLDLNDGIR
    1151 FSGYGADVTI GGKLTLTAQP GGNVRGVGTV RVIKGRYKAY GQDLDITKGT
    1201 VSFVGPLNDP NLNIRAERRL SPVGAGVEIL GSLNSPRITL TANEPMSEKD
          KLSWLILNRA GSGSSGDNAA LSAAAGALLA GQINDRIGLV DDLGFTSKRS
    1251
    1301 RNAQTGELNP AEQVLTVGKQ LTGKLYIGYE YGISSAEQSV KLIYRLTRAI
    1351 QAVARIGSRS SGGELTYTIR FDRLFGSDKK DSAGNGKGK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1183>:

```
m285.seq
         ATGACCGATA CCGCACCGAC AGATACCGAT CCGACCGAAA ACGGCACGCG
      1
          CAAAATGCCG TCTGAACACC GCCCTACCCC GCCGGCAAAA AAACGCCGCC
     101 CGTTGCTGAA GCTGTCGGCG GCACTGCTGT CTGTCCTGAT TTTGGCAGTA
     151 TGTTTCCTCG GCTGGCTCGC CGGTACGGAA GCAGGTTTGC GCTTCGGGCT
     201 GTACCAAATC CCGTCTTGGT TCGGCGTAAA CATTTCCTCC CAAAACCTCA
     251 AAGGCACGCT GCTCGACGGC TTCGACGGCG ACAACTGGTC GATAGAAACC
     301 GAGGGGGCAG ACCTTAAAAT CAGCCGCTTC CGCTTCGCGT GGAAACCGTC
     351 CGAACTGATG CGCCGCAGCC TGCACATTAC CGAAATTTCC GCCGGCGACA
     401 TCGCCATCGT TACCAAACCG ACTCCGCCTA AAGAAGAACG CCCGCCGCTC
     451 AGCCTTCCCG ACAGCATAGA CCTGCCTGCC GCCGTCTATC TCGACCGCTT
     501 CGAGACGGCC AAAATCAGCA TGGGCAAAGC CTTTGACAAA CAAACCGTCT
     551 ATCTCGAACG GCTGGATGCT TCATACCGTT ACGACCGCAA AGGACACCGC
     601 CTTGACCTGA AGGCCGCCGA CACGCCGTGG AGCAGTTCGT CGGGGGCGGC
     651 CTCGGTCGGC TTGAAAAAAC CGTTTGCCCT CGATACCGCC ATTTACACCA
     701 AAGGCGGACT CGAAGGCAAA ACCATACACA GTACGGCTCG GCTGAGCGGC
     751 AGCCTGAAGG ATGTGCGCGC CGAACTGGCG ATCGACGGCG GCAATATCCG
```

801 CCTCTCGGGA AAATCCGTCA TCCACCCGTT TGCCGAATCA TTGGATAAAA 851 CATTGGAAGA AGTACTGGTC AAAGGGTTCA ACATCAATCC GGCCGCCTTC GTGCCTTCCC TGCCCGATGC CGGACTGAAT TTCGACCTGA CCGCCATCCC GTCGTTTTCA GACGGCATCG CGCTGGAAGG TTCGCTCGAT TTGGAAAACA 1001 CCAAAGCCGG CTTTGCCGAC CGCAACGGCA TCCCCGTCCG TCAGGTTTTA 1051 GGCGGCTTTG TCATCCGGCA GGACGGCACG GTGCATATCG GCAATACGTC 1101 CGCCGCCCTG CTCGGACGGG GCGGCATCAG GCTGTCGGGC AAAATCGACA 1151 CCGAAAAAGA CATCCTCGAT TTAAATATAG GCATCAACTC CGTCGGCGCG 1201 GAAGACGTAC TGCAAACCGC GTTCAAAGGC AGGTTGGACG GCAGCATCGG 1251 CATCGGTGGC ACGACCGCCT CGCCCAAAAT CTCTTGGCAA CTCGGCATCG 1301 GCACGGCGCG CACGGACGGC AGCCTCGCCA TTGCAAGCGA CCCAGCAAAC GGACAGCGGA AACTGGTGCT CGACACCGTC AACATCGCEG CCGGGCAAGG 1401 CAGCCTGACC GCGCAAGGCT ATCTCGAGCT GTTTAAAGAC CGCCTGCTCA 1451 AGCTGGACAT CCGTTCCCGC GCATTCGACC CTTCGCGCAT CGATCCGCAA 1501 CTTCCGGCAG GCAATATCAA CGGCTCAATA AACCTTGCCG GCGAACTGGC 1551 AAAAGAGAAA TTCACAGGCA AAATGCGGTT TTTACCCGGC ACGTTCAACG 1601 GCGTACCGAT TGCCGGCAGT GCCGACATTG TTTACGAGTC CCGCCACCTT 1651 CCGCGTGCCG CCGTCGATTT GCGGCTGGGG CGGAACATTA TTAAAACAGA 1701 CGGCGGCTTC GGCAAAAAAG GCGACCGGCT TAACCTCAAT ATCACCGCAC 1751 CCGATTTATC CCGTTTCGGT TTCGGACTCG CGGGGTCTTT AAATGTACGC 1801 GGACACCTTT CCGGTGATTT GGACGGCGGC ATCCGAACCT TTGAAACCGA 1851 CCTTTCCGGC GCGGCGCGCA ACCTGCACAT CGGCAAGGCG GCAGACATCC GTTCGCTCGA TTTCACGCTC AAAGGTTCGC CCGACACAAG CCGCCCGATA 1951 CGCGCCGACA TCAAAGGCAG CCGCCTTTCG CTGTCGGGCG GAGCGGCGGT 2001 TGTCGATACC GCCGACCTGA TGCTGGACGG CACGGGCGTG CAGCACCGCA TCCGCACACA CGCCGCCATG ACGCTGGATG GCAAACCGTT CAAATTCGAT 2051 2101 TTGGACGCTT CAGGCGGCAT CAACAGGGAA CTTACCCGAT GGAAAGGCAG 2151 CATCGGCATC CTCGACATCG GCGGCGCATT CAACCTCAAG CTGCAAAACC 2201 GTATGACGCT CGAAGCCGGT GCGGAACGCG TGGCGGCAAG TGCGGCAAAT TGGCAGGCAA TGGGCGGCAG CCTCAACCTG CAACACTTTT CTTGGGATAA 2301 AAAAACCGGC ATATCGGCAA AAGGCGGCGC ACACGGTCTG CATATCGCCG 2351 AGTTGCACAA TTTCTTCAAA CCGCCCTTCG AACACAATCT GGTTTTAAAC 2401 GGCGACTGGG ATGTCGCCTA CGGGCGCAAC GCGCGCGGCT ACCTCAATAT CAGCCGGCAA AGCGGCGATG CCGTATTGCC CGGCGGGCAG GCTTTGGGTT 2451 2501 TGAACGCATT TTCCCTGAAA ACGCGCTTTC AAAACGACCG CATCGGAATC 2551 CTGCTTGACG GCGGCGCGC TTTCGGGCGG ATTAACGCCG ATTTGGGCAT 2601 CGCCAACGCC TTCGGCGGCA ATATGGCAAA TGCACCGCTC GGCGGCAGGA TTACCGCCTC CCTTCCCGAC TTGGGCGCAT TGAAGCCCTT TCTGCCCGCC 2701 GCCGCGCAAA ACATTACCGG CAGCCTGAAT GCCGCCGCGC AAATCGGCGG 2751 ACGGGTAGGC TCTCCGTCCG TCAATGCCGC CGTCAACGGC AGCAGCAACT 2801 ACGGGAAAAT CAACGGCAAC ATCACCGTCG GGCAAAGCCG CTCTTTCGAT 2851 ACCGCGCCTT TGGGCGGCAG GCTCAACCTG ACCGTTGCCG ATGCCGAAGT 2901 ATTCCGCAAC TTCCTACCGG TCGGACAAAC CGTCAAAGGC AGCCTGAATG 2951 CCGCCGTAAC CCTCGGCGGC AGCATCGCCG ATCCGCACTT GGGCGGCAGC 3001 ATCAACGGCG ACAAACTCTA TTACCGCAAC CAAACCCAAG GCATCATCTT 3051 GGACAACGGC TCGCTGCGTT CGCATATCGC GGGCAGGAAA TGGGTAATCG 3101 ACAGCCTGAA ATTCCGGCAC GAAGGGACGG CGGAACTCTC CGGTACGGTC 3151 GGTATGGAAA ACAGCGGACC CGATGTCGAT ATCGGCGCGG TGTTCGACAA ATACCGCATC CTGTCCCGCC CCAACCGCCG CCTGACGGTT TCCGGCAACA 3251 CCCGCCTGCG CTATTCGCCG CAAAAAGGCA TATCCGTTAC CGGGATGATT 3301 AAAACGGATC AGGGGCTGTT CGGTTCGCAA AAATCCTCGA TGCCGTCCGT 3351 CGGCGACGAT GTCGTCGTAT TAGGCGAAGT CAAAAAAGAG GCGGCGGCAC CGCTCCCCGT CAATATGAAC CTGACTTTAG ACCTCAATGA CGGCATCCGC 3401 TTCGCCGGCT ACGGCGCGGA CGTTACCATA GGCGGCAAAC TGACCCTGAC 3451 CGCCCAATCG GGCGGAAGCG TACGGGGCGT GGGCACGGTC CGCGTCATCA 3501 AAGGGCGTTA TAAGGCATAC GGGCAGGATT TGGACATTAC CAAAGGCACG 3551 GTCTCCTTTG TCGGCCCGCT CAACGATCCC AACCTCAACA TCCGCGCCGA 3601 3651 ACGCCGCCTT TCCCCCGTCG GTGCGGGCGT GGAAATATTG GGCAGCCTCA 3701 ACAGCCCGCG CATTACGCTG ACGGCAAACG AACCGATGAG TGAAAAAGAC 3751 AAGCTCTCTT GGCTCATCCT CAACCGCGCC GGCAGCGGCA GCAGCGGCGA CAATGCCGCC CTGTCTGCAG CCGCAGGTGC GCTGCTTGCC GGGCAAATCA 3801 3851 ACGACCGCAT CGGGCTGGTG GATGATTTGG GCTTTACCAG CAAGCGCAGC CGCAACGCGC AAACCGGCGA ACTCAACCCC GCCGAACAGG TGCTGACCGT 3901 3951 CGGCAAACAA CTGACCGGCA AACTCTACAT CGGCTACGAA TACAGCATCT CCAGCGCGGA ACAGTCCGTC AAACTGATTT ACCGGCTGAC CCGCGCCATA 4001 CAGGCGGTTG CCCGTATCGG CAGCCGTTCG TCGGGCGGCG AGCTGACATA 4101 CACCATACGT TTCGACCGCT TCTCCGGTTC GGACAAAAAA GACTCCGCCG 4151 GAAACGGCAA AGGAAAATAA

This corresponds to the amino acid sequence <SEQ ID 1184; ORF 285>:

- *TOT

m285.pep MTDTAPTDTD PTENGTRKMP SEHRPTPPAK KRRPLLKLSA ALLSVLILAV CFLGWLAGTE AGLRFGLYQI PSWFGVNISS QNLKGTLLDG FDGDNWSIET 51 101 EGADLKISRF RFAWKPSELM RRSLHITEIS AGDIAIVTKP TPPKEERPPL 151 SLPDSIDLPA AVYLDRFETG KISMGKAFDK QTVYLERLDA SYRYDRKGHR LDLKAADTPW SSSSGAASVG LKKPFALDTA IYTKGGLEGK TIHSTARLSG 251 SLKDVRAELA IDGGNIRLSG KSVIHPFAES LDKTLEEVLV KGFNINPAAF 301 VPSLPDAGLN FDLTAIPSFS DGIALEGSLD LENTKAGFÄD RNGIPVRQVL 351 GGFVIRQDGT VHIGHTSAAL LGRGGIRLSG KIDTEKDILD LHIGINSVGA 401 EDVLQTAFKG RLDGSIGIGG TTASPKISWQ LGIGTARTDG SLAIASDPAN 451 GQRKLVLDTV NIAAGQGSLT AQGYLELFKD RLLKLDIRSR AFDPSRIDPQ 501 LPAGNINGSI NLAGELAKEK FTGKMRFLPG TFNGVPIAGS ADIVYESRHL 551 PRAAVDLRLG RNIIKTDGGF GKKGDRLNLN ITAPDLSRFG FGLAGSLNVR 601 GHLSGDLDGG IRTFETDLSG AARNLHIGKA ADIRSLDFTL KGSPDTSRPI 651 RADIKGSRLS LSGGAAVVDT ADLMLDGTGV QHRIRTHAAM TLDGKPFKFD 701 LDASGGINRE LTRWKGSIGI LDIGGAFNLK LQNRMTLEAG AERVAASAAN 751 WQAMGGSLNL QHFSWDKKTG ISAKGGAHGL HIAELHNFFK PPFEHNLVLN 801 GDWDVAYGRN ARGYLNISRQ SGDAVLPGGQ ALGLNAFSLK TRFQNDRIGI 851 LLDGGARFGR INADLGIANA FGGNMANAPL GGRITASLPD LGALKPFLPA 901 AAQNITGSLN AAAQIGGRVG SPSVNAAVNG SSNYGKINGN ITVGQSRSFD TAPLGGRLNL TVADAEVFRN FLPVGQTVKG SLNAAVTLGG SIADPHLGGS 1001 INGDKLYYRN QTQGIILDNG SLRSHIAGRK WVIDSLKFRH EGTAELSGTV 1051 GMENSGPDVD IGAVFDKYRI LSRPNRRLTV SGNTRLRYSP QKGISVTGMI 1101 KTDQGLFGSQ KSSMPSVGDD VVVLGEVKKE AAAPLPVNMN LTLDLNDGIR 1151 FAGYGADVTI GGKLTLTAQS GGSVRGVGTV RVIKGRYKAY GQDLDITKGT 1201 VSFVGPLNDP NLNIRAERRL SPVGAGVEIL GSLNSPRITL TANEPMSEKD 1251 KLSWLILNRA GSGSSGDNAA LSAAAGALLA GQINDRIGLV DDLGFTSKRS RNAQTGELNP AEQVLTVGKQ LTGKLYIGYE YSISSAEQSV KLIYRLTRAI OAVARIGSRS SGGELTYTIR FDRFSGSDKK DSAGNGKGK*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m285/g285	96.5% identity	in 1389 aa	overlap			
	10	20	30	40	50	60
m285.pep	MTDTAPTDTDPTEN		PTPPAKKRRP	LLKLSAALLS	VLILAVCFLG	WLAGTE
M200.pop		1111111111	1:11111111	11111111111	1111111111	1:1111
g285	MTDTTPTDTDPTEN	STRKMPSEHR	PAPPAKKRRP	LLKLSAALLS	VLILAVCFLG	
3	10	20	30	40	50	60
	70	В0	90	100	110	120
m285.pep	AGLRFGLYQIPSWF	GVNISSQNLF	GTLLDGFDGD	NWSIETEGAD	LKISRFRFAW	
		:::::::::		1111111111	11111111	111111
g285	AGLRFGLYQIPSWF					
	70	80	90	100	110	120
			450	1.00	170	100
	130	140	150	160	170	180
m285.pep	RRSLHITEISAGDI	AIVTKPTPPI		SIDLPAAVYL	DREETGRISM	
		11111111		1111111111		11:11
g285	RRSLHITDISAGDI					180
	130	140	150	160	170	180
	100	200	210	220	230	240
	190	200				
m285.pep	QTVYLERLDASYRY	DKKGRKLDLI	VAMDIPWSSSS	TITITIO CHARG	LWPDIWIII	11:11:
005						
g285	QTVYLERLNAAIRI 190	200	210	220	230	240
	150	200	210	220	230	210
	250	260	270	280	290	300
m285.pep	TIHSTARLSGSLKD					
mzoo.pep	11110111110000110	VIG III DO	5		222.21102.	

g285		: VRAELTIDGGN 260	 IRLSGKSVIH 270		 LEEVLVKGFN 290	: INPSAF 300
m285.pep g285	310 VPSLPDAGLNFDLT VPSLPDAGLNFDLT		 EGSLDLENTK	 AGFADRNGII		 IRQDGT
m285.pep	310 370 VHIGNTSAALLGRO	320 380 GGIRLSGKIDTE	330 390 KDILDLNIGI	340 400 NSVGAEDVLO	350 410 TAFKGRLDG	360 420 SSIGIGG
g285	VHIGNTSAALLGRO	GGIRLSGKIDTE 380 440	KDILDLNIGI 390 450	NSVGAEDVLO 400 460	TAFKGRLDG 410 470	420 480
m285.pep	TTASPKISWQLGIO	STARTDGSLAIA	SDPANGQRKI	VLDTVNIAA	GOGSLTAOGY :	LELFKD
m285.pep g285	490 RLLKLDIRSRAFD RLLKLDIRSRAFD 490	11111111:1111	11111:111	111111111	1111111111	
m285.pep	550 ADIVYESRHLPRA !!!!!!!!!!! ADIVYESRHLPRA 550	111111111111111111111111111111111111111		[111111111	111111
m285.pep	610 GHLSGDLDGGIRT GHLSGDLDGGIRT 610	111111111111111111111111111111111111111	1111111111	1111111111	1111:111	:
m285.pep	670 LSGGAAVVDTADL LSGGAAVVDTAGL 670	1:111:111	1111111111	1111:1111	111111111	111111
m285.pep	730 LDIGGAFNLKLQN LDIGGAFNLKLQN 730	111111111111111111111111111111111111111	1111111111	11111111111	11:111111	1111:11
m285.pep	790 HIAELHNFFKPPE HIAELHNFFKPPE		: VAYGHNARGY	 LNISRQSGDA	 VLPGGQALG	LNAFSLK
m285.pep g285	790 850 TRFQNDRIGILLI TRFQNDRIGILLI		: LGIGNAFGGN	: MANTPLGGR	TASLPDLGA	 LKPFLPA
m285.pep	850 910 AAQNITGSLNAAA	860 920 AQIGGRVGSPSV	870 930 NAAVNGSSNY	880 940 GKINGNITVO	890 950 GQSRSFDTAF	900 960 LGGRLNL

			•				
			1111111111	1111111111			I I I I I I I I
	g285	AAQNITGSLNASAQ 910	IGGRVGSPSVI 920	NAAVNGSSN1 930	940	950	960
		070	980	990	1000	1010	1020
	m285.pep	970 TVADAEVFRNFLP\	COTUKCSINA	AVTI.GGSTAD	PHLGGSING	DKLYYRNQTQ	GIILDNG
	M20J.pep	TVADAEVERNELEN : TVADAEAFRNFLPN		1111111111		1111111111	111111
	g285	TVADAEAFRNFLP\	/GQTVKGSLNA 980	990	1000	1010	1020
			1010	1050	1060	1070	1080
More in	m285.pep	1030 SLRSHIAGRKWVII	1040 DSLKFRHEGTA	ELSGTVGMEN	SGPDVDIGA	VFDKYRILSR	PNRRLTV
	11203.pep			111111:111	11 11 11 1	1111331111	111111
	g285	SLRSHIAGRKWVII	DSLKFRHEGTA 1040	1050	1060	1070	1080
			****	1110	1120	1130	1140
	m285.pep	1090 SGNTRLRYSPQKG	1100 ISVTGMIKTDQ	GLEGSOKSSI	MPSVGDDVVV	LGEVKKEAAA	PLPVNMN
	m203.pep	SGNTRLRISPORG		11111111	111111111	111111111	111111
	g285	SGNTRLRYSPQKG 1090	1100	1110	1120	1130	1140
			4460	1170	1180	1190	1200
	205 non	1150 LTLDLNDGIRFAG	1160 YGADVTIGGKI	TTTAOSGGS	VRGVGTVRVI	KGRYKAYGQD	LDITKGT
	m285.pep		1111111111		11111111	1111111	111111
	g285	LTLDLNDGIRFSG	YGADVTIGGKI 1160	1170	1180	1190	1200
				1230	1240	1250	1260
	m285.pep	1210 VSFVGPLNDPNLN	1220 IRAERRLSPV	SAGVEILGSL	NSPRITLTAN	NEPMSEKDKLS	WLILNRA
	mzos.pep			1 1 1 1 1 1 1	111111111		
	g285	VSFVGPLNDPNLN 1210	1220	1230	1240	1250	1260
			1280	1290	1300	1310	1320
	m285.pep	1270 GSGSSGDNAALS	A ACAT.T.AGOT	NDRIGIVDDI	GFTSKRSRN	AQTGELNPAE(OVLTVGKQ
				111111111		1	
	g285	GSGSSGDNAALSA 1270	1280	1290	1300	1310	1320
		1220	1340	1350	1360	1370	1380
	m285.pep	1330 LTGKLYIGYEYS	TORNEOSVET.T	VRITERTOAL	ARIGSRSSG	GELTYTIRFD	RFSGSDKK
	M200.pop	LTGKLYIGYEYG		11111111111	11111111	111111111	1: [1111
	g285	LTGKLYIGYEYG.	1340	1350	1360	1370	1380
		1200					
	m285.pep	1390 DSAGNGKGKX					
	g285	DSAGNGKGKX					D 1105>
The	e following pa	rtial DNA sequer	nce was ider	ntified in N	. meningiti	dis <seq ii<="" td=""><td>אנו ט 1185>:</td></seq>	אנו ט 1185>:
	a285.seq 1	ATGACCGATA CCGC	ACCGAC AGAT	TACCGAT CC	GACCGAAA A	CGGCACGCG	
	6.1	CANAMPECCE TOTE	AACACC GCCC	CTACCCC GC	CGGCAAAA <i>F</i>	AACGCCGCC	
	101	CGCTGCTGAA GCTG	TCGGCG GCAG	CTGCTGT CT	GTTCTGAT 1	TTGGCAGTA	
	151	TGTTTCCTCG GCTG GTACCAAATC CCGT	GCTCGC CGG	CACGGAA GC	BETTIGE (בסטטטווטנים ממממי	
	201	AAGGCACGCT GCTC	CITEGT TUGG	SUGIAAA CA	AACTGGTC (ATAGAAACC	
	251	GAGGGGGCAG ACCT	מבר שטטטאט. מר המעעעהיי	CCGCTTC CG	CTTCGCGT	GAAACCGTC	
	301 351	CGAACTGATG CGCC	GCAGCC TGC	ACATTAC CG	AAATTTCC (CCGGCGACA	
	401	TOGGCATOGT TACC	CAAACCG ACT	CCGCCTA AA	GAAGAACG (CCCGCCGCTC	
	451	ACCOUNTCOOK ACAG	CATAGA CCT	GCCTGCC GC	CGTCTATC '	rcgaccgctt	
	501	CGAGACGGGC AAAA	ATCAGCA TGG	GCAAAGC CT	TTGACAAA (CAAACCGTCT	
	551	ATCTCGAACG GCTC	GATGCT TCA	TACCGTT AC	GACCGCAA	AGGACACCGC	
	601	CTCGACCTGA AGG	CTGCCGA CAC	GCCGTGG AG	CAGTTCGT	CGGGGTCAGC	

651 CTCGGTCGGC TTGAAAAAAC CGTTTGCCCT CGATACCGCC ATTTACACCA 701 AAGGCGGACT CGAAGGCAAA ACCATACACA GTACGGCTCG GCTGAGCGGC 751 AGCCTGAAGG ATGTGCGCGC CGAACTGGCG ATCGACGGCG GCAATATCCG 801 CCTCTCGGGA AAATCCGTCA TCCACCCGTT TGCCGAATCA TTGGATAAAA 851 CATTGGAAGA AGTACTGGTC AAAGGGTTCA ACATCAATCC GTCCGCCTTC 901 GTGCCTTCCC TGCCCGATGC CGGGCTGAAT TTCGACCTGA CCGCCATCCC 951 GTCGTTTTCA GACGGCATCG CGCTGGAAGG CTCGCTCGAT TTGGAAAACA 1001 CCAAAGCCGG CTTTGCCGAC CGCAACGGCA TCCCCGTCCG TCAGGTTTTA 1051 GGCAGCTTTG TCATCCGGCA GGACGGCACG GTGCATATCG GCAATACGTC
1101 CGTCGCCCTG CTCGGACGGG GCGGCATCAG GCTGTCGGGC AAAATCGACA 1151 CCGAAAAAGA CATCCTCGAT TTAAATATAG GCATCAACTC CGTCGGCGCG 1201 GAAGACGTAC TGCAAACCGC GTTCAAAGGC AGGTTGGACG GCAGCATCGG 1251 CATCGGTGGC ACGACCGCCT CGCCCAAAAT CTCTTGGCAA CTCGGCATCG
1301 GCACGGCGCG CACGGACGGC AGCCTCGCCA TTGCAAGCGA CCCCGCAAAC 1351 GGACAGCGGA AACTGGTGCT CGACACCGTC AACATCGCCG CCGGGCAAGG 1401 CAGCCTGACC GCGCAAGGCT ATCTCGAGCT GTTTAAAGAC CGCCTGCTCA 1451 AGCTGGACAT CCGTTCCCGC GCATTCGACC CTTCGCGCAT CGATCCGCAA 1501 CTTCCGGCAG GCAATATCAA CGGCTCAATA AACCTTGCCG GCGAACTGGC 1551 AAAAGAGAAA TTCACAGGCA AAATGCGGTT TTTACCCGGC ACGTTCAACG 1601 GCGTACCGAT TGCCGGCAGT GCCGACATTG TTTACGAGTC CCGCCACCTT 1651 CCGCGTGCCG CCGTCGATTT GCGGCTGGGG CGGAACATTA TTAAAACAGA 1701 CGGCGGCTTC GGCAAAAAG GCGACCGGCT TAACCTCAAT ATCACCGCAC 1751 CCGATTTATC CCGTTTCGGT TTCGGACTCG CGGGGTCTTT AAATGTACGC 1801 GGACACCTTT CCGGCGATTT GGACGGTGGC ATCCGAACCT TTGAAACCGA 1851 CCTTTCCGGC GCGGCGCGCA ACCTGCACAT CGGCAAGGCG GCAGACATCC 1901 GTTCGCTCGA TTTCACGCTC AAAGGTTCGC CCGACACAAG CCGCCCGATA 1951 CGCGCCGACA TCAAAGGCAG CCGCCTTTCG CTGTCGGGCG GAGCGGAGGT TGTCGATACC GCCGACCTGA TGCTGGACGG CACGGGCGTG CAGCACCGCA 2051 TCCGCACACA CGCCGCCATG ACGCTGGATG GCAAACCGTT CAAATTCGAT 2101 TTGGACGCTT CAGGCGGCAT CAACAGGGAA CTTACCCGAT GGAAAGGCAG 2151 CATCGGCATC CTCGACATCG GCGGCGCATT CAACCTCAAG CTGCAAAACC 2201 GTATGACGCT CGAAGCCGGT GCGGAACGCG TGGCGGCAAG TGCGGCAAAT 2251 TGGCAGGCAA TGGGCGGCAG CCTCAACCTG CAACACTTTT CTTGGGATAA 2301 AAAAACCGGC ATATCGGCAA AAGGCGGCGC ACACGGTCTG CATATCGCCG 2351 AGTTGCACAA TTTCTTCAAA CCGCCCTTCG AACACAATCT GGTTTTAAAC 2401 GGCGACTGGG ATGTCGCCTA CGGGCGAAAC GCGCGGGGT ACCTCAATAT 2451 CAGCCGGCAA AGCGGCGATG CCGTATTGCC CGGCGGGCAG GCTTTGGGTT 2501 TGAACGCATT TTCCCTGAAA ACGCGCTTTC AAAACGACCG TATCGGAATC 2551 CTGCTTGACG GCGGCGCGC TTTCGGGCGG ATTAACGCCG ATTTGGACAT 2601 CGGCAACGCC TTCGGCGGCA ATATGGCAAA TGCACCGCTC GGCGGCAGGA 2651 TTACCGCCTC CCTTCCCGAC TTGGGCACAT TGAAGCCCTT TCTGCCCGCC 2701 GCCGCGCAAA ACATTACCGG CAGCCTGAAT GCCGCCGCGC AAATCGGCGG 2751 ACGGGTCGGC TCTCCGTCCG TCAATGCCGC CGTCAACGGC AGCAGCAACT 2801 ACGGGAAAAT CAACGGCAAC ATCACCGTCG GGCAAAGCCG CTCTTTCGAT 2851 ACCGCGCCTT TGGGCGGCAG GCTCAACCTG ACCGTTGCCG ATGCCGAAGT 2901 ATTCCGCAAC TTCCTACCGG TCGGACAAAC CGTCAAAGGC AGCCTGAATG CCGCCGTAAC CCTCGGCGGC AGCATCGCCG ATCCGCACTT GGGCGGCAGC 3001 ATCAACGGCG ACAAACTCTA TTACCGCAAC CAAACCCAAG GCATCATCTT 3051 GGACAACGGC TCGCTGCGTT CGCATATCGC GGGCAGGAAA TGGGTAATCG 3101 ACAGCCTGAA ATTCCGGCAC GAAGGGACGG CGGAACTCTC CGGTACGGTC 3151 GGTATGGAAA ACAGCGGACC CGATGTCGAT ATCGGCGCGG TGTTCGACAA 3201 ATACCGCATC CTGTCCCGCC CCAACCGCCG CCTGACGGTT TCCGGCAACA 3251 CCCGCCTGCG CTATTCGCCG CAAAAAGGCA TATCCGTTAC CGGGATGATT 3301 AAAACGGATC AGGGGCTGTT CGGTTCGCAA AAATCCTCGA TGCCGTCCGT 3351 CGGCGACGAT GTCGTCGTAT TAGGCGAAGT CAAAAAAGAG GCGGCGGCAC 3401 CGCTCCCCGT CAATATGAAC CTGACTTTAG ACCTCAATGA CGGCATCCGC 3451 TTCGCCGGCT ACGGCGCGGA CGTTACCATA GGCGGCAAAC TGACCCTGAC CGCCCAATCG GGCGGAAGCG TGCGGGGCGT GGGCACGGTC CGCGTCATCA 3501 3551 AAGGGCGTTA TAAGGCATAC GGGCAGGATT TGGACATTAC CAAAGGCACG 3601 GTCTCCTTTG TCGGCCCGCT CAACGACCCC AACCTCAACA TCCGCGCCGA 3651 ACGCCGCCTT TCCCCCGTCG GTGCGGGCGT GGAAATATTG GGCAGCCTCA 3701 ACAGTCCGCG CATTACGCTG ACGGCAAACG AACCGATGAG TGAAAAAGAC 3751 AAGCTCTCCT GGCTCATCCT CAACCGCGCC GGCAGTGGCA GCAGCGGCGA 3801 CAATGCCGCC CTGTCCGCAG CCGCCGGCGC GCTGCTTGCC GGGCAAATCA 3851 ACGACCGCAT CGGGCTGGTG GATGATTTGG GCTTTACCAG CAAGCGCAGC 3901 CGCAACGCGC AAACCGGCGA ACTCAACCCC GCCGAACAGG TGCTGACCGT 3951 CGGCAAACAA CTGACCGGCA AACTCTACAT CGGCTACGAA TACAGCATCT

```
CCAGCGCGGA ACAGTCCGTC AAACTGATTT ACCGGCTGAC CCGCGCCATA
        4001
             CAGGCGGTTG CCCGTATCGG CAGCCGTTCG TCGGGCGGCG AGCTGACATA
        4051
             CACCATACGT TTCGACCGCT TCTCCGGTTC GGACAAAAA GACTCCGCCG
        4101
        4151 GAAACAGCAA AGGAAAATAA
This corresponds to the amino acid sequence <SEQ ID 1186; ORF 285.a>:
     a285.pep
             MTDTAPTDTD PTENGTRKMP SEHRPTPPAK KRRPLLKLSA ALLSVLILAV
              CFLGWLAGTE AGLRFGLYQI PSWFGVNISS QNLKGTLLDG FDGDNWSIET
          51
              EGADLKISRF RFAWKPSELM RRSLHITEIS AGDIAIVTKP TPPKEERPPL
              SLPDSIDLPA AVYLDRFETG KISMGKAFDK QTVYLERLDA SYRYDRKGHR
         151
             LDLKAADTPW SSSSGSASVG LKKPFALDTA IYTKGGLEGK TIHSTARLSG
         201
              SLKDVRAELA IDGGNIRLSG KSVIHPFAES LDKTLEEVLV KGFNINPSAF
         251
             VPSLPDAGLN FDLTAIPSFS DGIALEGSLD LENTKAGFAD RNGIPVRQVL
         301
              GSFVIRQDGT VHIGHTSVAL LGRGGIRLSG KIDTEKDILD LNIGINSVGA
         351
             EDVLOTAFKG RLDGSIGIGG TTASPKISWQ LGIGTARTDG SLAIASDPAN
         401
              GQRKLVLDTV NIAAGQGSLT AQGYLELFKD RLLKLDIRSR AFDPSRIDPQ
         451
              LPAGNINGSI NLAGELAKEK FTGKMRFLPG TFNGVPIAGS ADIVYESRHL
         501
              PRAAVDLRLG RNIIKTDGGF GKKGDRLNLN ITAPDLSRFG FGLAGSLNVR
         551
              GHLSGDLDGG IRTFETDLSG AARNLHIGKA ADIRSLDFTL KGSPDTSRPI
         601
              RADIKGSRLS LSGGAEVVDT ADLMLDGTGV QHRIRTHAAM TLDGKPFKFD
         651
              LDASGGINRE LTRWKGSIGI LDIGGAFNLK LQNRMTLEAG AERVAASAAN
         701
              WQAMGGSLNL QHFSWDKKTG ISAKGGAHGL HIAELHNFFK PPFEHNLVLN
         751
              GDWDVAYGRN ARGYLNISRQ SGDAVLPGGQ ALGLNAFSLK TRFQNDRIGI
              LLDGGARFGR INADLDIGNA FGGNMANAPL GGRITASLPD LGTLKPFLPA
         851
              AAQNITGSLN AAAQIGGRVG SPSVNAAVNG SSNYGKINGN ITVGQSRSFD
         901
              TAPLGGRLNL TVADAEVFRN FLPVGQTVKG SLNAAVTLGG SIADPHLGGS
         951
              INGDKLYYRN QTQGIILDNG SLRSHIAGRK WVIDSLKFRH EGTAELSGTV
        1001
              GMENSGPDVD IGAVFDKYRI LSRPNRRLTV SGNTRLRYSP QKGISVTGMI
        1051
              KTDQGLFGSQ KSSMPSVGDD VVVLGEVKKE AAAPLPVNMN LTLDLNDGIR
        1101
              FAGYGADVTI GGKLTLTAQS GGSVRGVGTV RVIKGRYKAY GQDLDITKGT
        1151
              VSFVGPLNDP NLNIRAERRL SPVGAGVEIL GSLNSPRITL TANEPMSEKD
        1201
              KLSWLILNRA GSGSSGDNAA LSAAAGALLA GQINDRIGLV DDLGFTSKRS
         1251
              RNAOTGELNP AEQVLTVGKQ LTGKLYIGYE YSISSAEQSV KLIYRLTRAI
         1301
              QAVARIGSRS SGGELTYTIR FDRFSGSDKK DSAGNSKGK*
        1351
                 99.4% identity in 1389 aa overlap
     m285/a285
                                                    40
                                                             50
                                 20
                                          30
                 MTDTAPTDTDPTENGTRKMPSEHRPTPPAKKRRPLLKLSAALLSVLILAVCFLGWLAGTE
     m285.pep
                 MTDTAPTDTDPTENGTRKMPSEHRPTPPAKKRRPLLKLSAALLSVLILAVCFLGWLAGTE
     a285
                                                    40
                                                             50
                        10
                                 20
                                          30
                                                   100
                                          90
                                 80
                 AGLRFGLYQIPSWFGVNISSQNLKGTLLDGFDGDNWSIETEGADLKISRFRFAWKPSELM
     m285.pep
                 AGLRFGLYQIPSWFGVNISSQNLKGTLLDGFDGDNWSIETEGADLKISRFRFAWKPSELM
     a285
                                                   100
                         70
                                 80
                                          90
                                                   160
                                                            170
                                          150
                       130
                                 140
                 {\tt RRSLHITEISAGDIAIVTKPTPPKEERPPLSLPDSIDLPAAVYLDRFETGKISMGKAFDK}
     m285.pep
                 RRSLHITEISAGDIAIVTKPTPPKEERPPLSLPDSIDLPAAVYLDRFETGKISMGKAFDK
     a285
                                                                     180
                                          150
                                                            170
                        130
                                 140
                                                                     240
                                 200
                                          210
                                                   220
                                                            230
                 QTVYLERLDASYRYDRKGHRLDLKAADTPWSSSSGAASVGLKKPFALDTAIYTKGGLEGK
     m285.pep
                 QTVYLERLDASYRYDRKGHRLDLKAADTPWSSSSGSASVGLKKPFALDTAIYTKGGLEGK
     a285
                                 200
                                          210
                                                   220
                                                            230
                                                                     240
                        190
                                 260
                 TIHSTARLSGSLKDVRAELAIDGGNIRLSGKSVIHPFAESLDKTLEEVLVKGFNINPAAF
     m285.pep
```

-- 500

a285	TIHSTARLSGSLKDVRAELAIDGGNIRLSGKSVIHPFAESLDKTLEEVLVKGFNINPSAF 250 260 270 280 290 300
m285.pep	310 320 330 340 350 360 VPSLPDAGLNFDLTAIPSFSDGIALEGSLDLENTKAGFADRNGIPVRQVLGGFVIRQDGT
m285.pep a285	370 380 390 400 410 420 VHIGNTSAALLGRGGIRLSGKIDTEKDILDLNIGINSVGAEDVLQTAFKGRLDGSIGIGG :
m285.pep	430 440 450 460 470 480 TTASPKISWQLGIGTARTDGSLAIASDPANGQRKLVLDTVNIAAGQGSLTAQGYLELFKD
m285.pep a285	490 500 510 520 530 540 RLLKLDIRSRAFDPSRIDPQLPAGNINGSINLAGELAKEKFTGKMRFLPGTFNGVPIAGS
m285.pep	550 560 570 580 590 600 ADIVYESRHLPRAAVDLRLGRNIIKTDGGFGKKGDRLNLNITAPDLSRFGFGLAGSLNVR
m285.pep	610 620 630 640 650 660 GHLSGDLDGGIRTFETDLSGAARNLHIGKAADIRSLDFTLKGSPDTSRPIRADIKGSRLS
m285.pep	670 680 690 700 710 720 LSGGAAVVDTADLMLDGTGVQHRIRTHAAMTLDGKPFKFDLDASGGINRELTRWKGSIGI
m285.pep	730 740 750 760 770 780 LDIGGAFNLKLQNRMTLEAGAERVAASAANWQAMGGSLNLQHFSWDKKTGISAKGGAHGL
m285.pep a285	790 800 810 820 830 840 HIAELHNFFKPPFEHNLVLNGDWDVAYGRNARGYLNISRQSGDAVLPGGQALGLNAFSLK
m285.pep a285	850 860 870 880 890 900 TRFONDRIGILLDGGARFGRINADLGIANAFGGNMANAPLGGRITASLPDLGALKPFLPA
m285.pep	910 920 930 940 950 960 AAQNITGSLNAAAQIGGRVGSPSVNAAVNGSSNYGKINGNITVGQSRSFDTAPLGGRLNI

-- *m: "

a285	AAQNITGSLNAAAQIGGRVGSPSVNAAVNGSSNYGKINGNITVGQSRSFDTAPLGGRLNL 910 920 930 940 950 960
m285.pep a285	970 980 990 1000 1010 1020 TVADAEVFRNFLPVGQTVKGSLNAAVTLGGSIADPHLGGSINGDKLYYRNQTQGIILDNG TVADAEVFRNFLPVGQTVKGSLNAAVTLGGSIADPHLGGSINGDKLYYRNQTQGIILDNG 970 980 990 1000 1010 1020
m285.pep	1030 1040 1050 1060 1070 1080 SLRSHIAGRKWVIDSLKFRHEGTAELSGTVGMENSGPDVDIGAVFDKYRILSRPNRRLTV
m285.pep a285	1090 1100 1110 1120 1130 1140 SGNTRLRYSPQKGISVTGMİKTDQGLFGSQKSSMPSVGDDVVVLGEVKKEAAAPLPVNMN [
m285.pep	1150 1160 1170 1180 1190 1200 LTLDLNDGIRFAGYGADVTIGGKLTLTAQSGGSVRGVGTVRVIKGRYKAYGQDLDITKGT
m285.pep a285	1210 1220 1230 1240 1250 1260 VSFVGPLNDPNLNIRAERRLSPVGAGVEILGSLNSPRITLTANEPMSEKDKLSWLILNRA
m285.pep a285	1270 1280 1290 1300 1310 1320 GSGSSGDNAALSAAAGALLAGQINDRIGLVDDLGFTSKRSRNAQTGELNPAEQVLTVGKQ
m285.pep	1330 1340 1350 1360 1370 1380 LTGKLYIGYEYSISSAEQSVKLIYRLTRAIQAVARIGSRSSGGELTYTIRFDRFSGSDKK
m285.pep	1390 DSAGNGKGKX : DSAGNSKGKX 1390

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1187>: g285-1.seq

1	CTGAAGCTGT	CGGCGGCACT	GCTGTCTGTC	CTGATTTTGG	CAGTATGTTT
51	CCTCGGCTGG	ATCGCCGGTA	CGGAAGCAGG	TTTGCGCTTC	GGGCTGTACC
101	AAATCCCGTC	CTGGTTCGGC	GTAAACATTT	CCTCCCAAAA	CCTCAAAGGC
151	ACACTGCTCG	ACGGCTTCGA	CGGCGACAAC	TGGTCGATAG	AAACCGAGGG
201	GGCAGACCTT	AAAATCAGCC	GCTTCCGCTT	CGCGTGGAAA	CCGTCCGAAC
251	TGATGCGCCG	CAGCCTGCAC	ATCACCGACA	TCTCCGCCGG	CGACATCGCC
301	ATCGTAACCA	AACCGACTCC	GCCTAAAGAA	GAACGCCCGC	CTCAAGGCCT
351	GCCCGACAGC	ATAGACCTGC	CCGCCGCCGT	CTATCTCGAC	CGCTTCGAGA
401	CGGGCAAAAT	CAGCATGGGC	AAAACCTTTG	ACAAACAAAC	CGTCTATCTC
451	GAACGCCTCA	ACGCGGCATA	CCGTTACGAC	CGTAAAGGGC	ACCGCCTCGA
501	CCTGAAGGCC	GCCGACACGC	CGTGGAGCAG	TTCGTCGGGG	TCAGCCTCGG

```
551 TCGGCTTGAA AAAACCGTTT GCCCTCGATA CCGCCATTTA CACCAAAGGC
     GGATTCGAAG GCGAAACCAT ACACAGTACG GCGCGGCTGA GCGGCAGCCT
     GARGGATGTG CGCGCCGAAC TGACGATCGA CGGCGGCAAT ATCCGCCTCT
651
     CGGGAAAATC CGTCATCCAC CCGTTTGCCG AATCATTGGA TAAAACATTG
701
     GAAGAAGTAC TGGTCAAAGG ATTCAACATC AATCCGTCCG CCTTCGTGCC
751
     TTCCCTGCCC GATGCCGGGC TGAATTTCGA CCTGACCGCC ATCCCGTCGT
801
     TTTCAGACGG CATCGCGCTG GAAGGCTCGC TCGATTTGGA AAACACCAAA
851
     GCCGGCTTTG CCGACCGCAA CGGCATCCCC GTCCGTCAGG TTTTGGGCGG
 901
     CTTTGTCATC CGGCAGGACG GCACGGTGCA TATCGGCAAT ACGTCCGCCG
     CCCTGCTCGG ACGGGGCGC ATCAGGCTGT CGGGCAAAAT CGACACCGAA
     ANAGACATCC TTGATTTANA TATAGGCATC NACTCCGTCG GCGCGGAAGA
1051
     CGTGCTGCAA ACCGCGTTCA AAGGCAGGTT GGACGGCAGC ATCGGCATCG
1101
     GCGGCACGAC CGCCTCGCCC ARATCTCTT GGCAACTCGG CACCGGCACG
1151
      GCACGCACGG ACGGCAGCCT CGCCATCGCA AGCGACCCCG CAAACGAACA
1201
      GCGGAAACTG GTGTTCGACA CCGTCAACAT CTCCGCCGGG GAAGGCAGCC
1251
      TGACCGCGCA AGGCTATCTC GAGCTGTTTA AAGACCGCCT GCTCAAGCTG
1301
      GACATCCGTT CCCGCGCATT CGACCCTTCG CGCATCGATC CGCAATTTCC
1351
     GGCAGGCGAT ALCAACGGTT CGATTCATCT TGCCGGTGAA CTGGCAAAAG
AGAAATTTAC GGGCAAAATG CGTTTTTTGC CCGGTACGTT CAACGGCGTG
1401
1451
      CCGATTGCCG GCAGCGCCGA CATTGTTTAC GAGTCCCGCC ACCTTCCGCG
1501
      CGCCGCCGTC GATTTGCGGT TGGGGCGGAA CATCGTCAAA ACAGACGGCG
1551
     GCTTCGGCAA AAAAGGCGAC CGGCTTAACC TCAATATCAC CGCACCCGAT
1601
      TTATCCCGTT TCGGTTTCGG ACTCGCGGGG TCTTTAAATG TACGCGGACA
      CCTTTCCGGC GATTTGGACG GCGGCATCCG AACCTTTGAA ACCGACCTTT
      CCGGCACGGC GCGCAACTTA CACATCGGCA AAGCGGCAGA CATCCGTTCG
1751
      CTCGATTTTA CCCTCAAAGG CTCACCCGGC ACAAGCCGCC CGATGCGCGC
1801
      CGATATCAAG GGCGGCCGCC TTTCCCTGTC GGGCGGCGCG GCGGTTGTCG
1851
      ATACCGCCGG CCTGACGCTG GAAGGTACGG GCGCGCAGCA CCGCATCCGC
1901
      ACACACGCCG CCATGACGCT GGACGGCAAA CCGTTCAAAC TCGATTTGGA
1951
      CGCTTCAGGC GGCATCAACA GGGAACTTAC CCGATGGAAA GGCAGCATCG
2001
      GCATCCTCGA CATCGGCGGC GCATTCAACC TCAAGCTGCA AAACCGTATG
2051
      ACGCTCGAAG CCGGTGCGGA ACACGTGGCG GCAAGTGCGG CAAATTGGCA
2101
      GGCAATGGGC GGCAGCCTCA ACCTGCAACA CTTTTCTTGG GACAGGAAAA
2151
2201 CCGGCATATC GGCAAAAGGC GGCGCACGCG GCCTGCACAT CGCCGAGTTG
      CACAATTTCT TCAAACCGCC CTTCGAACAC AATCTGGTTT TAAACGGCGA
2251
2301 CTGGGATGTC GCCTACGGGC ACAACGCGCG CGGCTACCTC AATATCAGCC
2351 GGCAAAGCGG CGATGCCGTA TTGCCCGGCG GGCAGGCTTT GGGTTTGAAC
      GCATTTTCCC TGAAAACGCG CTTTCAAAAC GACCGCATCG GAATCCTGCT
       TGACGGCGGC GCGCGTTTCG GACGGATTAA CGCCGATTTG GGCATCGGCA
 2451
      ACGCCTTCGG CGGCAATATG GCAAATACAC CGCTCGGCGG CAGGATTACA
 2501
      GCCTCCCTTC CCGACTTGGG CGCATTGAAG CCCTTTCTGC CCGCCGCCGC
 2551
      GCAAAACATT ACCGGCAGCC TGAATGCCTC CGCGCAAATC GGCGGACGGG
 2601
       TAGGCTCTCC GTCCGTCAAT GCCGCCGTCA ACGGTAGCAG CAACTACGGG
 2651
      AAAATCAACG GCAATATCAC CGTCGGGCAA AGCCGCTCCT TCGATACCGC
 2701
       ACCTTTGGGC GGCAGGCTCA ACCTGACCGT TGCCGATGCC GAAGCATTCC
 2751
 2801 GCAACTTCCT ACCGGTCGGA CAAACCGTCA AAGGCAGCCT GAATGCCGCC
       GTAACCCTCG GCGGCAGCAT CGCCGACCCG CACTTGGGCG GCAGTATCAA
 2851
       CGGCGACAAG CTCTATTACC GCAACCAAAC CCAAGGCATC ATCTTGGACA
 2901
       ACGGCTCGCT GCGTTCGCAT ATTGCAGGCA GGAAATGGGT AATCGACAGC
 3001 CTGAAATTCC GGCACGAAGG GACGGCGGAA CTCTCCGGCA CGGTCAGCAT
       GGANAACAGC GTGCCCGATG TCGATATCGG CGCGGTGTTC GACAAATACC
       GCATCCTGTC CCGCCCCAAC CGCCGCCTGA CGGTTTCCGG CAACACCCGC
 3101
       CTGCGCTATT CGCCGCAAAA AGGCATATCC GTTACCGGTA TGATTAAAAC
 3151
       TGATCAGGGG CTGTTCGGTT CGCAAAAATC CTCGATGCCG TCCGTCGGCG
 3201
       ACGATGTCGT CGTATTGGGC GAAGTCAAGA AAGAGGCGGC GGCATCGCTC
 3251
       CCCGTCAATA TGAACCTGAC TTTAGACCTC AATGACGGCA TCCGCTTCTC
 3301
 3351 CGGCTACGGC GCGGACGTTA CCATAGGCGG CAAACTGACC CTGACCGCGC
       AACCGGGCGG AAATGTGCGT GGGGTGGGCA CGGTCCGCGT CATCAAAGGG
 3401
       CGTTACAAAG CATACGGGCA GGATTTAGAC ATTACCAAAG GCACAGTCTC
 3451
       CTTTGTCGGC CCGCTCAACG ACCCCAACCT GAACATCCGC GCCGAACGCC
 3501
       GCCTTTCCCC CGTCGGTGCG GGCGTGGAAA TATTGGGCAG CCTCAACAGC
 3551
 3601 CCGCGCATTA CGCTGACGGC AAACGAACCG ATGAGTGAAA AAGACAAGCT
       CTCCTGGCTC ATCCTCAACC GTGCCGGCAG CGGCAGCAGC GGCGACAATG
 3651
 3701 CCGCCCTGTC CGCAGCCGCA GGCGCGCTGC TTGCCGGGCA AATCAACGAC
       CGCATCGGGC TGGTGGATGA TTTGGGCTTT ACCAGCAAGC GCAGCCGCAA
  3751
       CGCGCAAACC GGCGAACTCA ACCCCGCCGA ACAGGTGCTG ACCGTCGGCA
  3801
       AACAACTGAC CGGCAAACTC TACATCGGCT ACGAATACGG CATCTCCAGC
  3851
        GCGGAACAGT CCGTCAAACT GATTTACCGG CTGACCCGCG CCATACAGGC
  3901
        GGTTGCCCGT ATCGGCAGCC GTTCGTCGGG CGGCGAGCTG ACATACACCA
  3951
        TACGTTTCGA CCGCCTCTTC GGTTCGGACA AAAAAGACTC CGCAGGAAAC
  4001
  4051 GGCAAAGGGA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 1188; ORF 285-1.ng>: g285-1.pep

```
LKLSAALLSV LILAVCFLGW IAGTEAGLRF GLYQIPSWFG VNISSQNLKG
     TLLDGFDGDN WSIETEGADL KISRFRFAWK PSELMRRSLH ITDISAGDIA
101 IVTKPTPPKE ERPPQGLPDS IDLPAAVYLD RFETGKISMG KTFDKQTVYL
     ERLNAAYRYD RKGHRLDLKA ADTPWSSSSG SASVGLKKPF ALDTAIYTKG
     GFEGETIHST ARLSGSLKDV RAELTIDGGN IRLSGKSVIH PFAESLDKTL
     EEVLVKGFNI NPSAFVPSLP DAGLNFDLTA IPSFSDGIAL EGSLDLENTK
     AGFADRNGIP VRQVLGGFVI RQDGTVHIGN TSAALLGRGG IRLSGKIDTE
     KDILDLNIGI NSVGAEDVLQ TAFKGRLDGS IGIGGTTASP KISWQLGTGT
351
     ARTDGSLAIA SDPANEORKL VFDTVNISAG EGSLTAQGYL ELFKDRLLKL
401
     DIRSRAFDPS RIDPQFPAGD INGSIHLAGE LAKEKFTGKM RFLPGTFNGV
451
     PIAGSADIVY ESRHLPRAAV DLRLGRNIVK TDGGFGKKGD RLNLNITAPD
     LSRFGFGLAG SLNVRGHLSG DLDGGIRTFE TDLSGTARNL HIGKAADIRS
551
601 LDFTLKGSPG TSRPMRADIK GGRLSLSGGA AVVDTAGLTL EGTGAQHRIR-
     THAAMTLDGK PFKLDLDASG GINRELTRWK GSIGILDIGG AFNLKLQNRM
     TLEAGAEHVA ASAANWQAMG GSLNLQHFSW DRKTGISAKG GARGLHIAEL
701
     HNFFKPPFEH NLVLNGDWDV AYGHNARGYL NISRQSGDAV LPGGQALGLN
     AFSLKTRFON DRIGILLDGG ARFGRINADL GIGNAFGGNM ANTPLGGRIT
     ASLPDLGALK PFLPAAAQNI TGSLNASAQI GGRVGSPSVN AAVNGSSNYG
     KINGNITVGQ SRSFDTAPLG GRLNLTVADA EAFRNFLPVG QTVKGSLNAA
     VTLGGSIADP HLGGSINGDK LYYRNQTQGI ILDNGSLRSH IAGRKWVIDS
     LKFRHEGTAE LSGTVSMENS VPDVDIGAVF DKYRILSRPN RRLTVSGNTR
1001
     LRYSPOKGIS VTGMIKTDQG LFGSQKSSMP SVGDDVVVLG EVKKEAAASL
1051
     PVNMNLTLDL NDGIRFSGYG ADVTIGGKLT LTAQPGGNVR GVGTVRVIKG
1101
1151 RYKAYGQDLD ITKGTVSFVG PLNDPNLNIR AERRLSPVGA GVEILGSLNS
     PRITLTANEP MSEKDKLSWL ILNRAGSGSS GDNAALSAAA GALLAGQIND
1201
1251 RIGLVDDLGF TSKRSRNAQT GELNPAEQVL TVGKQLTGKL YIGYEYGISS
1301 AEQSVKLIYR LTRAIQAVAR IGSRSSGGEL TYTIRFDRLF GSDKKDSAGN
```

-- 1221

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1189>: m285-1.seq

```
1 CTGAAGCTGT CGGCGGCACT GCTGTCTGTC CTGATTTTGG CAGTATGTTT
 51 CCTCGGCTGG CTCGCCGGTA CGGAAGCAGG TTTGCGCTTC GGGCTGTACC
101 AAATCCCGTC TTGGTTCGGC GTAAACATTT CCTCCCAAAA CCTCAAAGGC
151 ACGCTGCTCG ACGGCTTCGA CGGCGACAAC TGGTCGATAG AAACCGAGGG
201 GGCAGACCTT AAAATCAGCC GCTTCCGCTT CGCGTGGAAA CCGTCCGAAC
251 TGATGCGCCG CAGCCTGCAC ATTACCGAAA TTTCCGCCGG CGACATCGCC
     ATCGTTACCA AACCGACTCC GCCTAAAGAA GAACGCCCGC CGCTCAGCCT
     TCCCGACAGC ATAGACCTGC CTGCCGCCGT CTATCTCGAC CGCTTCGAGA
351
     CGGGCAAAAT CAGCATGGGC AAAGCCTTTG ACAAACAAAC CGTCTATCTC
401
     GAACGGCTGG ATGCTTCATA CCGTTACGAC CGCAAAGGAC ACCGCCTTGA
451
     CCTGAAGGCC GCCGACACGC CGTGGAGCAG TTCGTCGGGG GCGGCCTCGG
501
     TCGGCTTGAA AAAACCGTTT GCCCTCGATA CCGCCATTTA CACCAAAGGC
551
     GGACTCGAAG GCAAAACCAT ACACAGTACG GCTCGGCTGA GCGGCAGCCT
 601
651 GAAGGATGTG CGCGCCGAAC TGGCGATCGA CGGCGGCAAT ATCCGCCTCT
     CGGGAAAATC CGTCATCCAC CCGTTTGCCG AATCATTGGA TAAAACATTG
701
     GAAGAAGTAC TGGTCAAAGG GTTCAACATC AATCCGGCCG CCTTCGTGCC
751
     TTCCCTGCCC GATGCCGGAC TGAATTTCGA CCTGACCGCC ATCCCGTCGT
801
     TTTCAGACGG CATCGCGCTG GAAGGTTCGC TCGATTTGGA AAACACCAAA
851
901 GCCGGCTTTG CCGACCGCAA CGGCATCCCC GTCCGTCAGG TTTTAGGCGG
 951 CTTTGTCATC CGGCAGGACG GCACGGTGCA TATCGGCAAT ACGTCCGCCG
1001 CCCTGCTCGG ACGGGGCGGC ATCAGGCTGT CGGGCAAAAT CGACACCGAA
1051 AAAGACATCC TCGATTTAAA TATAGGCATC AACTCCGTCG GCGCGGAAGA
1101 CGTACTGCAA ACCGCGTTCA AAGGCAGGTT GGACGGCAGC ATCGGCATCG
     GTGGCACGAC CGCCTCGCCC AAAATCTCTT GGCAACTCGG CATCGGCACG
1151
     GCGCGCACGG ACGGCAGCCT CGCCATTGCA AGCGACCCAG CAAACGGACA
1201
     GCGGAAACTG GTGCTCGACA CCGTCAACAT CGCCGCCGGG CAAGGCAGCC
1251
     TGACCGCGCA AGGCTATCTC GAGCTGTTTA AAGACCGCCT GCTCAAGCTG
1301
     GACATCCGTT CCCGCGCATT CGACCCTTCG CGCATCGATC CGCAACTTCC
1351
     GGCAGGCAAT ATCAACGGCT CAATAAACCT TGCCGGCGAA CTGGCAAAAG
1401
     AGAAATTCAC AGGCAAAATG CGGTTTTTAC CCGGCACGTT CAACGGCGTA
     CCGATTGCCG GCAGTGCCGA CATTGTTTAC GAGTCCCGCC ACCTTCCGCG
1501
     TGCCGCCGTC GATTTGCGGC TGGGGCGGAA CATTATTAAA ACAGACGGCG
1551
     GCTTCGGCAA AAAAGGCGAC CGGCTTAACC TCAATATCAC CGCACCCGAT
1601
1651 TTATCCCGTT TCGGTTTCGG ACTCGCGGGG TCTTTAAATG TACGCGGACA
1701 CCTTTCCGGT GATTTGGACG GCGGCATCCG AACCTTTGAA ACCGACCTTT
1751 CCGGCGCGC GCGCAACCTG CACATCGGCA AGGCGGCAGA CATCCGTTCG
1801 CTCGATTTCA CGCTCAAAGG TTCGCCCGAC ACAAGCCGCC CGATACGCGC
1851 CGACATCAAA GGCAGCCGCC TTTCGCTGTC GGGCGGAGCG GCGGTTGTCG
1901 ATACCGCCGA CCTGATGCTG GACGGCACGG GCGTGCAGCA CCGCATCCGC
      ACACACGCCG CCATGACGCT GGATGGCAAA CCGTTCAAAT TCGATTTGGA
1951
2001 CGCTTCAGGC GGCATCAACA GGGAACTTAC CCGATGGAAA GGCAGCATCG
2051 GCATCCTCGA CATCGGCGGC GCATTCAACC TCAAGCTGCA AAACCGTATG
2101 ACGCTCGAAG CCGGTGCGGA ACGCGTGGCG GCAAGTGCGG CAAATTGGCA
```

PCT/US99/09346

660

```
2151 GGCAATGGGC GGCAGCCTCA ACCTGCAACA CTTTTCTTGG GATAAAAAA
     CCGGCATATC GGCAAAAGGC GGCGCACACG GTCTGCATAT CGCCGAGTTG
     CACAATTCT TCAAACCGCC CTTCGAACAC AATCTGGTTT TAAACGGCGA
2251
     CTGGGATGTC GCCTACGGGC GCAACGCGCG CGGCTACCTC AATATCAGCC
2301
     GGCAAAGCGG CGATGCCGTA TTGCCCGGCG GGCAGGCTTT GGGTTTGAAC
2351
     GCATTTTCCC TGAAAACGCG CTTTCAAAAC GACCGCATCG GAATCCTGCT
2401
     TGACGGCGGC GCGCGTTTCG GGCGGATTAA CGCCGATTTG GGCATCGCCA
2451
     ACGCCTTCGG CGGCAATATG GCAAATGCAC CGCTCGGCGG CAGGATTACC
2501
     GCCTCCCTTC CCGACTTGGG CGCATTGAAG CCCTTTCTGC CCGCCGCCGC
2551
      GCAAAACATT ACCGGCAGCC TGAATGCCGC CGCGCAAATC GGCGGACGGG
      TAGGCTCTCC GTCCGTCAAT GCCGCCGTCA ACGGCAGCAG CAACTACGGG
     ARARTCAACG GCAACATCAC CGTCGGGCAA AGCCGCTCTT TCGATACCGC
2701
      GCCTTTGGGC GGCAGGCTCA ACCTGACCGT TGCCGATGCC GAAGTATTCG
2751
      GCAACTTCCT ACCGGTCGGA CAAACCGTCA AAGGCAGCCT GAATGCCGCC
2801
      GTAACCCTCG GCGGCAGCAT CGCCGATCCG CACTTGGGCG GCAGCATCAA
2851
      CGGCGACAAA CTCTATTACC GCAACCAAAC CCAAGGCATC ATCTTGGACA
2901
      ACGGCTCGCT GCGTTCGCAT ATCGCGGGCA GGAAATGGGT AATCGACAGC
2951
      CTGAAATTCC GGCACGAAGG GACGGCGGAA CTCTCCGGTA CGGTCGGTAT
3001
      GGAAAACAGC GGACCCGATG TCGATATCGG CGCGGTGTTC GACAAATACC
3051
      GCATCCTGTC CCGCCCCAAC CGCCGCCTGA CGGTTTCCGG CAACACCCCGC
3101
      CTGCGCTATT CGCCGCAAAA AGGCATATCC GTTACCGGGA TGATTAAAAC
3151
      GGATCAGGGG CTGTTCGGTT CGCAAAAATC CTCGATGCCG TCCGTCGGCG
3201
      ACGATGTCGT CGTATTAGGC GAAGTCAAAA AAGAGGCGGC GGCACCGCTC
3251
      CCCGTCAATA TGAACCTGAC TTTAGACCTC AATGACGGCA TCCGCTTCGC
3301
      CGGCTACGGC GCGGACGTTA CCATAGGCGG CAAACTGACC CTGACCGCCC
3351
      AATCGGGCGG AAGCGTACGG GGCGTGGGCA CGGTCCGCGT CATCAAAGGG
3401
      CGTTATAAGG CATACGGGCA GGATTTGGAC ATTACCAAAG GCACGGTCTC
3451
      CTTTGTCGGC CCGCTCAACG ATCCCAACCT CAACATCCGC GCCGAACGCC
3501
      GCCTTTCCCC CGTCGGTGCG GGCGTGGAAA TATTGGGCAG CCTCAACAGC
3551
      CCGCGCATTA CGCTGACGGC AAACGAACCG ATGAGTGAAA AAGACAAGCT
3601
      CTCTTGGCTC ATCCTCAACC GCGCCGGCAG CGGCAGCAGC GGCGACAATG
3651
      CCGCCCTGTC TGCAGCCGCA GGTGCGCTGC TTGCCGGGCA AATCAACGAC
3701
      CGCATCGGGC TGGTGGATGA TTTGGGCTTT ACCAGCAAGC GCAGCCGCAA
3751
      CGCGCAAACC GGCGAACTCA ACCCCGCCGA ACAGGTGCTG ACCGTCGGCA
3801
      AACAACTGAC CGGCAAACTC TACATCGGCT ACGAATACAG CATCTCCAGC
3851
      GCGGAACAGT CCGTCAAACT GATTTACCGG CTGACCCGCG CCATACAGGC
3901
      GGTTGCCCGT ATCGGCAGCC GTTCGTCGGG CGGCGAGCTG ACATACACCA
      TACGTTTCGA CCGCTTCTCC GGTTCGGACA AAAAAGACTC CGCCGGAAAC
      GGCAAAGGAA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 1190; ORF 285-1>:

```
LKLSAALLSV LILAVCFLGW LAGTEAGLRF GLYQIPSWFG VNISSQNLKG
     TLLDGFDGDN WSIETEGADL KISRFRFAWK PSELMRRSLH ITEISAGDIA
     IVTKPTPPKE ERPPLSLPDS IDLPAAVYLD RFETGKISMG KAFDKQTVYL
101
151 ERLDASYRYD RKGHRLDLKA ADTPWSSSSG AASVGLKKPF ALDTAIYTKG
     GLEGKTIHST ARLSGSLKDV RAELAIDGGN IRLSGKSVIH PFAESLDKTL
251 EEVLVKGFNI NPAAFVPSLP DAGLNFDLTA IPSFSDGIAL EGSLDLENTK
     AGFADRNGIP VRQVLGGFVI RQDGTVHIGN TSAALLGRGG IRLSGKIDTE
301
351 KDILDLNIGI NSVGAEDVLQ TAFKGRLDGS IGIGGTTASP KISWQLGIGT
     ARTDGSLAIA SDPANGQRKL VLDTVNIAAG QGSLTAQGYL ELFKDRLLKL
401
451 DIRSRAFDPS RIDPOLPAGN INGSINLAGE LAKEKFTGKM RFLPGTFNGV
     PIAGSADIVY ESRHLPRAAV DLRLGRNIIK TDGGFGKKGD RLNLNITAPD
501
     LSRFGFGLAG SLNVRGHLSG DLDGGIRTFE TDLSGAARNL HIGKAADIRS
551
     LDFTLKGSPD TSRPIRADIK GSRLSLSGGA AVVDTADLML DGTGVQHRIR
     THAAMTLDGK PFKFDLDASG GINRELTRWK GSIGILDIGG AFNLKLQNRM
     TLEAGAERVA ASAANWQAMG GSLNLQHFSW DKKTGISAKG GAHGLHIAEL
     HNFFKPPFEH NLVLNGDWDV AYGRNARGYL NISRQSGDAV LPGGQALGLN
751
     AFSLKTRFQN DRIGILLDGG ARFGRINADL GIANAFGGNM ANAPLGGRIT
801
     ASLPDLGALK PFLPAAAQNI TGSLNAAAQI GGRVGSPSVN AAVNGSSNYG
851
     KINGNITVGQ SRSFDTAPLG GRLNLTVADA EVFRNFLPVG QTVKGSLNAA
901
     VTLGGSIADP HLGGSINGDK LYYRNQTQGI ILDNGSLRSH IAGRKWVIDS
951
     LKFRHEGTAE LSGTVGMENS GPDVDIGAVF DKYRILSRPN RRLTVSGNTR
1001
     LRYSPOKGIS VTGMIKTDQG LFGSQKSSMP SVGDDVVVLG EVKKEAAAPL
1051
     PVNMNLTLDL NDGIRFAGYG ADVTIGGKLT LTAQSGGSVR GVGTVRVIKG
1101
     RYKAYGODLD ITKGTVSFVG PLNDPNLNIR AERRLSPVGA GVEILGSLNS
      PRITLTANEP MSEKDKLSWL ILNRAGSGSS GDNAALSAAA GALLAGQIND
      RIGLVDDLGF TSKRSRNAQT GELNPAEQVL TVGKQLTGKL YIGYEYSISS
     AEQSVKLIYR LTRAIQAVAR IGSRSSGGEL TYTIRFDRFS GSDKKDSAGN
1301
```

g285-1/m285-1 96.5% identity in 1354 aa overlap

				•			
	g285-1.pep	LKLSAALLSVLILAV	CFLGWIAGT	eaglrfgly01	PSWFGVNIS	SONLKGTLLD	GFDGDN
	-						111111
	m285-1	LKLSAALLSVLILAV	20	30	40	50	60
			80	90	100	110	120
	~295-1 nen	70 WSIETEGADLKISRF	PEAWKPSEL	MRRSLHITDIS	SAGDIAIVTK	PTPPKEERPP	QGLPDS
	g285-1.pep	WSIETEGADERISRE 		1 1 1 1 1 1 1 1 1 1			;;;;;;
	m285-1	WSIETEGADLKISRF 70	RFAWKPSEL 80	90	100	110	120
			4.40	150	160	170	180
15	≈205_1 non	130 IDLPAAVYLDRFETG	140 KISMGKTFD	150 KQTVYLERLN	AAYRYDRKGH	RLDLKAADTP	WSSSSG
•	°g285-1.pep		111111111111	111111111:	1:1111111	111111111	111111
	m285-1	IDLPAAVYLDRFETG	KISMGKAFD 140	KQTVYLEKLD 150	160	170	180
				010	000	220	240
	005 1	190 SASVGLKKPFALDTA	200 TYTKGGFEG	210 ETIHSTARLS	220 GSLKDVRAEL	230 TIDGGNIRLS	GKSVIH
	g285-1.pep		111111:11	:111111111	111111111	:	111111
	m285-1	AASVGLKKPFALDTA	IYTKGGLEG. 200	KTIHSTARLS	GSLKDVRAEL 220	AIDGGNIKUS 230	240
		190					200
	4	250 PFAESLDKTLEEVLV	260 KGENTNPSA	270 FVPSLPDAGL	280 NFDLTAIPSF	290 SDGIALEGSI	300 DLENTK
	g285-1.pep		11111111111	1111111111	1111111111		11111
	m285-1	PFAESLDKTLEEVL	KGFNINPAA 260	FVPSLPDAGL 270	NFDLTAIPSF 280	SDGIALEGSI 290	JDLENTK 300
		250	200				
		310 AGFADRNGIPVRQVI	320	330 AA2TKNTSAA	340 LLGRGGIRLS	350 GKIDTEKDII	360 DLNIGI
	g285-1.pep				1111111111	1111111111	
	m285-1	AGFADRNGI PVRQVI	GGFVIRQDO 320	AASTIGNTSAA 330	LLGRGGIRLS 340	GKIDTEKDII 350	LDLNIGI 360
		310	320	330			
		370 NSVGAEDVLQTAFK	380	390	400 OLGTGTARTI	410 GSTATASDE	420 ANEORKL
	g285-1.pep			1 1 1 1 1 1 1 1 1 1	111 111111		11 1111
	m285-1	NSVGAEDVLQTAFK(GRLDGSIGI	GTTASPKISW	QLGIGTARTI 400	OGSLAIASDPA 410	ANGQRKL 420
		370	380	390	400	410	420
		430	440	450	460	470	480
	g285-1.pep	VFDTVNISAGEGSL	t 1 1 1 1 1 1 1 1 1	11111111111	1 1 1 1 1 1 1 1 1 1	: :	11:111
	m285-1	VLDTVNI AAGQGSL	TAOGYLELF	KDRLLKLDIRS	SRAFDPSRID	PQLPAGNING	SINLAGE 480
		430	440	450	4 60	470	400
		490	500	510	520	530	540
	g285-1.pep	LAKEKFTGKMRFLP	THEFT	1111111111	111111111	11111:1111	1111111
	m285-1	LAKEKFTGKMRFLP	GTFNGVPIA	GSADIVYESR	HLPRAAVDLR	LGRNIIKTDG	GFGKKGD 540
		490	500	510	520	530	540
		550	560	570	580	590	600
	g285-1.pep	RLNLNITAPDLSRF	111111111	111111111	11111111	11:11!!!!	1111111
	m285-1	RLNLNITAPDLSRF	GFGLAGSLN	VRGHLSGDLD	GGIRTFETDL	SGAARNLHIG	KAADIRS
		550	560	570	580	590	600
		610	620	630	640	650	660
	g285-1.pep	LDFTLKGSPGTSRE	MRADIKGGR	LSLSGGAAVV	DTAGLTLEGT	GAQHRIRTHA	AMTLDGK
	m285-1	LDFTLKGSPDTSR	IRADIKGSP	LSLSGGAAVV	DTADLMLDGT	'GVQHRIRTHA	AMTLDGK
		610	620	630	640	650	660
		670	680	690	700	710	720
	g285-1.pep	PFKLDLDASGGINE	ELTRWKGS1	GILDIGGAFN	LKLQNRMTLE	AGAEHVAASA	aanwqamg
	m285-1	PFKFDLDASGGINE	RELTRWKGSI	GILDIGGAFN	LKLQNRMTLE	agaervaas <i>i</i>	LANWQAM G
		670	680	690	700	710	720
		730	740	750	760	770	780
	g285-1.pep	GSLNLQHFSWDRK	GISAKGGAF	RGLHIAELHNE	'FKPPFEHNLV	LNGDWDVAY(GHNARGYL :
	m285-1	GSLNLQHFSWDKK	rGISAKGGA	KGLHIAELHNE	FKPPFEHNLV	LNGDWDVAY	GRNARGYI
	_	_					

			•			
	730	740	750	760	770	780
	790	800	810	820	830	840
g285-1.pep	NISROSGDAVLPGGQA	LGLNAFSLKT	rfondrigi1	LDGGARFGR	INADLGIGNA	FGGNM
•		1111111111	PEONDRICI	I DOGRAFIE	: TNADLCTANA	FEGNM
m285-1	NISROSGDAVLPGGQA	800	810	820	830	840
	-				000	000
-20E 1 mon	850 ANTPLGGRITASLPDI	860 .GALKPFLPAJ	870 AAONITGSLN	880 ASAOIGGRVG	890 SPSVNAAVNO	900 SSNYG
g285-1.pep	- [1:11111111111111	11111111111		:	4111111111	11111
m285-1	ANAPLGGRITASLPDI	.GALKPFLPAJ 860	AAQNITGSLN 870	AAAQIGGRVG 880	SPSVNAAVNO .4.090	SSNYG 900
• *TO: **	850	860	670	800	.0 50 12.	300
	910	920	930	940	950	960
g285-1.pep	KINGNITVGQSRSFDT	'APLGGRLNL'	rvadaeafkni !!!!!!!:!!!	FLPVGQTVKG	SLNAAVTLGG	PITTI
m285-1	KINGNITVGQSRSFDT	APLGGRLNL	rvadaeverni	LPVGQTVKG	SLNAAVTLG	SIADP
	910	920	930	940	950	960
	970	980	990	1000	1010	1020
g285-1.pep	HLGGSINGDKLYYRN	TOGILLDNG	SLRSHIAGRK	WVIDSLKFRH	EGTAELSGTV	/SMENS
-205 1	HLGGSINGDKLYYRN	TOGITIDNG:	 SLRSHTAGRKI		EGTAELSGT	/: /GMENS
m285-1	970	980	990	1000	1010	1020
	1020	1040	1050	1060	1070	1080
g285-1.pep	1030 VPDVDIGAVFDKYRII					
9200 2.707	11111111111111111		111111111	{	1111111111	11111
m285-1	GPDVDIGAVFDKYRII	LSRPNRRLTV: 1040	SGNTRLRYSP 1050	QKGISVTGMI 1060	1070	2KSSMP 1080
	1030	1010	2000			
	1090 SVGDDVVVLGEVKKE	1100	1110 7 77 DI NIDGER	1120	1130	1140
g285-1.pep	SACODAAAFA			:	111111111	11:11
m285-1	SVGDDVVVLGEVKKE	AAAPLPVNMN	LTLDLNDGIR	FAGYGADVTI	GGKLTLTAQ	SGGSVR
	1090	1100	1110	1120	1130	1140
	1150	1160	1170	1180	1190	1200
g285-1.pep	GVGTVRVIKGRYKAY	GODLDITKGT'	VSFVGPLNDP	NLNIRAERRL	SPVGAGVEI	LGSLNS
m285-1	GVGTVRVIKGRYKAY	GQDLDITKGT	VSFVGPLNDP	NLNIRAERRI	SPVGAGVEI	LGSLNS
	1150	1160	1170	1180	1190	1200
	1210	1220	1230	1240	1250	1260
g285-1.pep	PRITLTANEPMSEKD	KLSWLILNRA	GSGSSGDNAA	LSAAAGALLA	GQINDRIGL	VDDLGF
m285-1	1210	1220	1230	1240	1250	1260
					1210	1220
~295_1 nen	1270 TSKRSRNAQTGELNP.	1280 AEOVI.TVGKO	1290 LTGKLYIGYE	1300 YGISSAEOSV	1310 KLIYRLTRA	1320 IOAVAR
g285-1.pep	411111111111111111111111111111111111111	11111111111	1111111111	1:1111111	144111441	11111
m285-1	TSKRSRNAQTGELNP.			YSISSAEQSV 1300	/KLIYRLTRA 1310	IQAVAR 1320
	1270	1280	1290	1300	1310	1320
	1330	1340	1350			
g285-1.pep	IGSRSSGGELTYTIR					
m285-1	IGSRSSGGELTYTIR	FDRFSGSDKK	DSAGNGKGKX	:		
	1330	1340	1350			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1191>: a285-1.seq

T.50					
1	CTGAAGCTGT	CGGCGGCACT	GCTGTCTGTT	CTGATTTTGG	CAGTATGTTT
51	CCTCGGCTGG	CTCGCCGGCA	CGGAAGCGGG	TTTGCGCTTC	GGGCTGTACC
101	AAATCCCGTC	TTGGTTCGGC	GTAAACATTT	CCTCCCAAAA	CCTCAAAGGC
151	ACGCTGCTCG	ACGGCTTCGA	CGGCGACAAC	TGGTCGATAG	AAACCGAGGG
201	GGCAGACCTT	AAAATCAGCC	GCTTCCGCTT	CGCGTGGAAA	CCGTCCGAAC
251	TGATGCGCCG	CAGCCTGCAC	ATTACCGAAA	TTTCCGCCGG	CGACATCGCC
301	ATCGTTACCA	AACCGACTCC	GCCTAAAGAA	GAACGCCCGC	CGCTCAGCCT
351	TCCCGACAGC	ATAGACCTGC	CTGCCGCCGT	CTATCTCGAC	CGCTTCGAGA
401	CGGGCAAAAT	CAGCATGGGC	AAAGCCTTTG	ACAAACAAAC	CGTCTATCTC
451	GAACGGCTGG	ATGCTTCATA	CCGTTACGAC	CGCAAAGGAC	ACCGCCTCGA

-- 555 -

```
501 CCTGAAGGCT GCCGACACGC CGTGGAGCAG TTCGTCGGGG TCAGCCTCGG
     TCGGCTTGAA AAAACCGTTT GCCCTCGATA CCGCCATTTA CACCAAAGGC
     GGACTCGAAG GCAAAACCAT ACACAGTACG GCTCGGCTGA GCGGCAGCCT
 601
     GAAGGATGTG CGCGCCGAAC TGGCGATCGA CGGCGGCAAT ATCCGCCTCT
 651
     CGGGAAAATC CGTCATCCAC CCGTTTGCCG AATCATTGGA TAAAACATTG
 701
     GAAGAAGTAC TGGTCAAAGG GTTCAACATC AATCCGTCCG CCTTCGTGCC
 751
     TTCCCTGCCC GATGCCGGGC TGAATTTCGA CCTGACCGCC ATCCCGTCGT
 801
     TTTCAGACGG CATCGCGCTG GAAGGCTCGC TCGATTTGGA AAACACCAAA
     GCCGGCTTTG CCGACCGCAA CGGCATCCCC GTCCGTCAGG TTTTAGGCAG
     CTTTGTCATC CGGCAGGACG GCACGGTGCA TATCGGCAAT ACGTCCGTCG
     CCCTGCTCGG ACGGGGCGGC ATCAGGCTGT CGGGCAAAAT CGACACCGAA
1001
1051 AAAGACATCC TCGATTTAAA TATAGGCATC AACTCCGTCG GCGCGGAAGA
     CGTACTGCAA ACCGCGTTCA AAGGCAGGTT GGACGGCAGC ATCGGCATCG
1101
     GTGGCACGAC CGCCTCGCCC AAAATCTCTT GGCAACTCGG CATCGGCACG
1151
     GCGCGCACGG ACGGCAGCCT CGCCATTGCA AGCGACCCCG CAAACGGACA
1201
     GCGGAAACTG GTGCTCGACA CCGTCAACAT CGCCGCCGGG CAAGGCAGCC
1251
     TGACCGCGCA AGGCTATCTC GAGCTGTTTA AAGACCGCCT GCTCAAGCTG
1301
     GACATCCGTT CCCGCGCATT CGACCCTTCG CGCATCGATC CGCAACTTCC
1351
     GGCAGGCAAT ATCAACGGCT CAATAAACCT TGCCGGCGAA CTGGCAAAAG
1401
     AGAAATTCAC AGGCAAAATG CGGTTTTTAC CCGGCACGTT CAACGGCGTA
      CCGATTGCCG GCAGTGCCGA CATTGTTTAC GAGTCCCGCC ACCTTCCGCG
     TGCCGCCGTC GATTTGCGGC TGGGGCGGAA CATTATTAAA ACAGACGGCG
1551
1601 GCTTCGGCAA AAAAGGCGAC CGGCTTAACC TCAATATCAC CGCACCCGAT
1651 TTATCCCGTT TCGGTTTCGG ACTCGCGGGG TCTTTAAATG TACGCGGACA
1701 CCTTTCCGGC GATTTGGACG GTGGCATCCG AACCTTTGAA ACCGACCTTT
      CCGGCGCGGC GCGCAACCTG CACATCGGCA AGGCGGCAGA CATCCGTTCG
1751
      CTCGATTTCA CGCTCAAAGG TTCGCCCGAC ACAAGCCGCC CGATACGCGC
1801
      CGACATCAAA GGCAGCCGCC TTTCGCTGTC GGGCGGAGCG GAGGTTGTCG
1851
1901 ATACCGCCGA CCTGATGCTG GACGGCACGG GCGTGCAGCA CCGCATCCGC
1951 ACACACGCCG CCATGACGCT GGATGGCAAA CCGTTCAAAT TCGATTTGGA
2001 CGCTTCAGGC GGCATCAACA GGGAACTTAC CCGATGGAAA GGCAGCATCG
      GCATCCTCGA CATCGGCGGC GCATTCAACC TCAAGCTGCA AAACCGTATG
2051
2101 ACGCTCGAAG CCGGTGCGGA ACGCGTGGCG GCAAGTGCGG CAAATTGGCA
      GGCAATGGGC GGCAGCCTCA ACCTGCAACA CTTTTCTTGG GATAAAAAAA
CCGGCATATC GGCAAAAGGC GGCGCACACG GTCTGCATAT CGCCGAGTTG
2201
      CACAATTTCT TCAAACCGCC CTTCGAACAC AATCTGGTTT TAAACGGCGA
2251
      CTGGGATGTC GCCTACGGGC GAAACGCGCG CGGCTACCTC AATATCAGCC
2301
      GGCAAAGCGG CGATGCCGTA TTGCCCGGCG GGCAGGCTTT GGGTTTGAAC
2351
      GCATTTCCC TGAAAACGCG CTTTCAAAAC GACCGTATCG GAATCCTGCT
2401
      TGACGGCGGC GCGCGTTTCG GGCGGATTAA CGCCGATTTG GACATCGGCA
2451
      ACGCCTTCGG CGGCAATATG GCAAATGCAC CGCTCGGCGG CAGGATTACC
2501
2551 GCCTCCCTTC CCGACTTGGG CACATTGAAG CCCTTTCTGC CCGCCGCCGC
      GCAAAACATT ACCGGCAGCC TGAATGCCGC CGCGCAAATC GGCGGACGGG
2601
      TCGGCTCTCC GTCCGTCAAT GCCGCCGTCA ACGGCAGCAG CAACTACGGG
2651
2701 AAAATCAACG GCAACATCAC CGTCGGGCAA AGCCGCTCTT TCGATACCGC
      GCCTTTGGGC GGCAGGCTCA ACCTGACCGT TGCCGATGCC GAAGTATTCC
2751
2801 GCAACTTCCT ACCGGTCGGA CAAACCGTCA AAGGCAGCCT GAATGCCGCC
      GTAACCCTCG GCGGCAGCAT CGCCGATCCG CACTTGGGCG GCAGCATCAA
2901 CGGCGACAAA CTCTATTACC GCAACCAAAC CCAAGGCATC ATCTTGGACA
2951 ACGGCTCGCT GCGTTCGCAT ATCGCGGGCA GGAAATGGGT AATCGACAGC
3001 CTGAAATTCC GGCACGAAGG GACGGCGGAA CTCTCCGGTA CGGTCGGTAT
 3051 GGAAAACAGC GGACCCGATG TCGATATCGG CGCGGTGTTC GACAAATACC
 3101 GCATCCTGTC CCGCCCCAAC CGCCGCCTGA CGGTTTCCGG CAACACCCGC
      CTGCGCTATT CGCCGCAAAA AGGCATATCC GTTACCGGGA TGATTAAAAC
 3151
 3201 GGATCAGGGG CTGTTCGGTT CGCAAAAATC CTCGATGCCG TCCGTCGGCG
      ACGATGTCGT CGTATTAGGC GAAGTCAAAA AAGAGGCGGC GGCACCGCTC
3251
      CCCGTCAATA TGAACCTGAC TTTAGACCTC AATGACGGCA TCCGCTTCGC
 3301
      CGGCTACGGC GCGGACGTTA CCATAGGCGG CAAACTGACC CTGACCGCCC
 3351
      AATCGGGCGG AAGCGTGCGG GGCGTGGGCA CGGTCCGCGT CATCAAAGGG
      CGTTATAAGG CATACGGGCA GGATTTGGAC ATTACCAAAG GCACGGTCTC
 3451
      CTTTGTCGGC CCGCTCAACG ACCCCAACCT CAACATCCGC GCCGAACGCC
 3501
      GCCTTTCCCC CGTCGGTGCG GGCGTGGAAA TATTGGGCAG CCTCAACAGT
 3551
      CCGCGCATTA CGCTGACGGC AAACGAACCG ATGAGTGAAA AAGACAAGCT
 3601
      CTCCTGGCTC ATCCTCAACC GCGCCGGCAG TGGCAGCAGC GGCGACAATG
 3651
      CCGCCCTGTC CGCAGCCGCC GGCGCGCTGC TTGCCGGGCA AATCAACGAC
 3701
      CGCATCGGGC TGGTGGATGA TTTGGGCTTT ACCAGCAAGC GCAGCCGCAA
 3751
      CGCGCAAACC GGCGAACTCA ACCCCGCCGA ACAGGTGCTG ACCGTCGGCA
AACAACTGAC CGGCAAACTC TACATCGGCT ACGAATACAG CATCTCCAGC
 3801
 3851
       GCGGAACAGT CCGTCAAACT GATTTACCGG CTGACCCGCG CCATACAGGC
       GGTTGCCCGT ATCGGCAGCC GTTCGTCGGG CGGCGAGCTG ACATACACCA
      TACGTTTCGA CCGCTTCTCC GGTTCGGACA AAAAAGACTC CGCCGGAAAC
 4051 AGCAAAGGAA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 1192; ORF 285-1.a>:

a285-1.pep	1					
1	LKLSAALLSV	LILAVCFLGW	LAGTEAGLRF	GLYQIPSWFG	VNISSQNLKG	
51	TLLDGFDGDN	WSIETEGADL	KISRFRFAWK	PSELMRRSLH	ITEISAGDIA	
101	IVTKPTPPKE	ERPPLSLPDS	IDLPAAVYLD	RFETGKISMG	KAFDKQTVYL	
151	ERLDASYRYD	RKGHRLDLKA	ADTPWSSSSG	SASVGLKKPF	ALDTAIYTKG	
201	GLEGKTIHST	ARLSGSLKDV	RAELAIDGGN	IRLSGKSVIH	PFAESLDKTL	
251	REVIVEGENI	NPSAFVPSLP	DAGLNFDLTA	IPSFSDGIAL	EGSLDLENTK	
301	AGFADRNGIP	VROVLGSFVI	RODGTVHIGN	TSVALLGRGG	IRLSGKIDTE	
351	KDILDLNIGI	NSVGAEDVLO	TAFKGRLDGS	IGIGGTTASP	KISWQLGIGT	
401	ARTDGSLAIA	SDPANGORKL	VLDTVNIAAG	QGSLTAQGYL	ELFKDRLLKL	
451	DIRGRAFDES	RIDPOLPAGN	INGSINLAGE	LAKEKFTGKM	RFLPGTFNGV	
501	DIACCADIVY	ESRHLPRAAV	DLRLGRNIIK	TDGGFGKKGD	RLNLNITAPD	
	LSREGEGLAG	SLNVRGHLSG	DLDGGIRTFE	TDLSGAARNL	HIGKAADIRS.	
601	I.DETI.KGSPD	TSRPIRADIK	GSRLSLSGGA	EVVDTADLML	DGTGVQHRIR	
651	THA AMTIDGK	PFKFDLDASG	GINRELTRWK	GSIGILDIGG	AFNLKLQNRM	
701	TLEAGAERVA	ASAANWOAMG	GSLNLQHFSW	DKKTGISAKG	GAHGLHIAEL	
751	HNEEKPPEEH	NLVLNGDWDV	AYGRNARGYL	NISRQSGDAV	LPGGQALGLN	
801	AFSLKTRFON	DRIGILLDGG	ARFGRINADL	DIGNAFGGNM	ANAPLGGRIT	
851	ASLPHIGHER	PFLPAAAONI	TGSLNAAAQI	GGRVGSPSVN	AAVNGSSNYG	
901	KINGNITUGO	SRSFDTAPLG	GRLNLTVADA	EVFRNFLPVG	QTVKGSLNAA	
951	VTLGGSTADE	HLGGSINGDK	LYYRNQTQGI	ILDNGSLRSH	IAGRKWVIDS	
1001	LKERHEGTAE	LSGTVGMENS	GPDVDIGAVE	DKYRILSRPN	RRLTVSGNTR	
1051	t.RYSPOKGIS	VTGMIKTDQG	LFGSQKSSMP	SVGDDVVVLG	EVKKEAAAPL	
1101	PUNMNITT.DI.	NDGIRFAGYG	ADVTIGGKLT	LTAOSGGSVR	GVGTVRVIKG	
1151	BAKMACODI'D	ITKGTVSFVG	PLNDPNLNIR	AERRLSPVGA	GVEILGSLNS	
1201	DRITT, TANEP	MSEKDKLSWL	ILNRAGSGSS	GDNAALSAAA	GALLAGQIND	
1251	RIGIVODIGE	TSKRSRNAOT	GELNPAEQVI	TVGKQLTGKL	YIGYEYSISS	
1301	AEOSVKLIYR	LTRAIQAVAR	IGSRSSGGEL	TYTIRFDRFS	GSDKKDSAGN	
1351	SKGK*					
a285-1/m28	85-1 99.	3% identity	in 1354 aa	overlap		
		10		10 40	50	60
a285-1.pe	LKLSAAL	LSVLILAVCFL	GWLAGTEAGLF	RFGLYQI PSWFG	VNISSQNLKGT L I	DGFDGDN
	1111111	1111111111111	1111111111	111111111111	1111111111111	
m285-1	LKLSAAL	LSVLILAVCFL	GWLAGTEAGLF	RFGLYQI PSWFG	VNISSQNLKGTLI	DGFDGDN
		10	20 3	30 40	50	60
		70		0 100		120
a285-1.pe	p WSIETEG	ADLKISRFRFA	WKPSELMRRSI	LHITEISAGDIA	IVTKPTPPKEERI	PPLSLPDS
	1111111	11111111111111	3		1111111111111111	1111111
m285-1	WSIETEG	ADLKISRFRFA	WKPSELMRRSI	LHITEISAGDIA	IVTKPTPPKEERI	PLSLPDS
		70	80 9	90 100	110	120
			40 15			180
a285-1.pe	p IDLPAAV	YLDRFETGKIS	MGKAFDKQTV	<i>(LERLDASYRYD</i>	RKGHRLDLKAADT	PWSSSSG
	1411111	111111111111		11111111111111	пинини	
m285-1	IDLPAAV	YLDRFETGKIS			RKGHRLDLKAADI	
		130 1	40 13	50 160	170	180
				10 220		240
a285-1.pe	p SASVGLK	KPFALDTAI YT	KGGLEGKTIH	STARLSGSLKDV	RAELAIDGGNIRI	LSGKSVIH
	:111111	1111111111	111111111	11111111111	11111111111	
m285-1	AASVGLK				RAELAIDGGNIR	
		190 2	:00 2:	10 220	230	240
		250 2		70 280		300
a285-1.pe	p PFAESLD	KTLEEVLVKG	'NINPSAFVPS	LPDAGLNFDLTA	IPSFSDGIALEG:	SLDLENTK
	111111	шиний	1111:11111		111111111111	111111
m285-1	PFAESLI				IPSFSDGIALEG	
		250 2	260 2	70 280	290	300
			_			
				30 340		360
a285-1.pe	p AGFADRI	IGI PVRQVLGSI	TVIRQDGTVHI	GNTSVALLGRGO	IRLSGKIDTEKD	ILDLNIGI
	1411111			1111:111111	11111111111	1111111
m285-1	AGFADRI				IRLSGKIDTEKD	ILDLNIGI
		310	320 3	30 340	350	360
			-			
				90 400		420
a285-1.pe					TARTDGSLAIASD	
	1111111	пини				
m285-1	NSVGAEI				PARTDGSLAIASD	
		370	380 3	90 400	410	420
				50 44		
		430	140 4	50 460	9 470	480

a285-1.pep	VLDTVNIAAGQGSLTA	QGYLELFKDR	LLKLDIRSRA	FDPSRIDPQL	PAGNINGSI	NLAGE
m285-1	VLDTVNIAAGQGSLTA	QGYLELFKDR 440	LLKLDIRSRA 450	FDPSRIDPQL	PAGNINGSII	NLAGE 480
	490	500	510	520	530	540
a285-1.pep	LAKEKFTGKMRFLPGT	FNGVPIAGSA	1111111111	11111111111	. 1 1 1 1 1 1 1 1 1 1 1	1111
m285-1	LAKEKFTGKMRFLPGT 490	FNGVPIAGSA 500	DIVYESRHLE 510	RAAVDLRLGF 520	WIIKTDGGF0 530	GKKGD 540
	550	560	570	580	590	600
"a285-1.pep	RLNLNITAPDLSRFGF	111111111111	11111111111	111111111		11111
m285-1	RLNLNITAPDLSRFGF 550	GLAGSLNVRG 560	570	580	590	600
a285-1.pep	610 LDFTLKGSPDTSRPIF	620	630 SGGĀEVVDTA	640	650 OHRIRTHAAM	660 TLDGK
m285-1		111111111111		11111111111		11111
M203-1	610	620	630	640	650	660
a285-1.pep	670 PFKFDLDASGGINREI	680 TRWKGSIGII	690 LDIGGAFNLKI	700 Lonrmtleaga	710 AERVAASAAN	720 WOAMG
m285-1		 TRWKGSIGII.	LDIGGAFNLKI	Lonrmt Leag?	aervaasaan	WQAMG
	670	680	690	700	710	720 780
a285-1.pep	730 GSLNLQHFSWDKKTG	740 SAKGGAHGLI	750 HIAELHNFFK	760 PPFEHNLVLNO	GDWDVAYGRN	ARGYL
m285-1	GSLNLQHFSWDKKTG	SAKGGAHGLI	HIAELHNFFKI 750	PPFEHNLVLNO 760	GDWDVAYGRN 770	ARGYL 780
	730 790	740 800	810	820	830	840
a285-1.pep	NISRQSGDAVLPGGQA	LGLNAFSLK	TREONDRIGI	LLDGGARFGR	INADLDIGNA	FGGNM
m285-1	NISRQSGDAVLPGGQ	ALGLNAFSLK'	rrfondrigi: 810	LLDGGARFGR	INADLGIANA 830	FGGNM 840
	850	860	870	880	890	900
a285-1.pep	ANAPLGGRITASLPD	LGTLKPFLPAI	1111111111	11111111111	11111111111	11111
m285-1	ANAPLGGRITASLPD	LGALKPFLPA 860	AAQNITGSLN 870	AAAQIGGRVG 880	SPSVNAAVNO 890	SSNYG 900
	910	920	930	940	950	960
a285-1.pep	KINGNITVGQSRSFD	1111111111	HILLIAM	пинини	1111111111	11111
m285-1	KINGNITVGQSRSFD 910	TAPLGGRLNL 920	TVADAEVFRN 930	FLPVGQTVKG 940	950	960
	970 HLGGSINGDKLYYRN	980	990	1000	1010	1020
a285-1.pep	HLGGSINGDKLYYRN	1111111111	1111111111	11111111111		
m285 -1	970	980	990	1000	1010	1020
a285-1.pep	1030 GPDVDIGAVFDKYRI	1040	1050 SGNTRLRYSP	1060 OKGISVTGMI	1070 KTDOGLFGS	1080 OKSSMP
m285-1		1111111111	1111111111	111111111111	.1114411111	
medd 1	1030	1040	1050	1060	1070	1080
a285-1.pep	1090 SVGDDVVVLGEVKKE	1100 AAAPLPVNMN	1110 LTLDLNDGIF	1120 FAGYGADVTI	1130 GGKLTLTAQ	1140 SGGSVR
m285-1		 AAAPLPVNMN	 LTLDLNDGIF			IIIIII SGGSVR
	1090	1100	1110	1120	1130	1140
a285-1.pep	1150 GVGTVRVIKGRYKAY	1160 GODLDITKGI	1170 VSFVGPLNDI	1180 PNLNIRAERRI	1190 LSPVGAGVEI	1200 LGSLNS
m285-1		GODLDITKGT 'GODLDITKGT	VSFVGPLND	NLNIRAERRI	LSPVGAGVEI	LGSLNS

WO 99/57280 PCT/US99/09346

666

	1150	1160	1170	1180	1190	1200
	1210	1220	1230	1240	1250	1260
a285-1.pep	PRITLTANEPMSEK	DKLSWLILN	RAGSGSSGDN	AALSAAAGAL	LAGQINDRIG	LVDDLGF
a205 1.pop	1111111111111111	111111111	1111111111	1111111111	1111111111	HILLIII
m285-1	PRITLTANEPMSEK	DKLSWLILN	RAGSGSSGDN	AALSAAAGAL	LAGQINDRIG	LVDDLGF
10203-1	1210	1220	1230	1240	1250	1260
	1270	1280	1290	1300	1310	1320
a285-1.pep	TSKRSRNAQTGELN	PAEQVLTVG	KQLTGKLYIG	YEYSISSAEQ	SVKLIYRLTR	AIQAVAR
a200 1.pcp		нини	111111111111	1111111111	HIHIIIII	HIHILI
m285-1	TSKRSRNAOTGELN	PAEOVLTVO	KOLTGKLYIG	YEYSISSAEQ	SVKLIYRLTR	AIQAVAR
10507-7	1270	1280	1290	1300	1310 🚈	1320
	1330	1340	1350			
a285-1.pep	IGSRSSGGELTYTI	RFDRFSGSD	KKDSAGNSKG	KX		
#200 -17-F	1111111111111111	1111111111	111111111111111	H		
m285-1	IGSRSSGGELTYTI	RFDRFSGSE	KKDSAGNGKG	KX		
	1330	1340	1350			
	1330	1340	1330			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1193>:

```
g286.seg
          atgcagaaca ccggtaccat gatgatcaaa ccgaccgccc tgctcctgcc
          ggetttattt ttettteege acgeataege geetgeegee gaeettteeg
      51
          aaaacaaggc ggcgggtttc gcattgttca aaagcaaaag ccccgacacc
     101
     151 gaatcagtca aattaaaacc caaattcccc gtccgcatcg acacgcagga
     201 cagtgaaatc aaagatatgg tcgaagaaca cctgccgctc atcacgcagc
     251 agcaggaaga ggttttggat aaggaacaga cgggattcct tgccgaagaa
     301 gcaccggaca acgttaaaac aatgctccgc agcaaaggct atttcagcag
     351 caaggtcagc ctgacggaaa aagacggagc ttatacggtg cacatcacac
     401 cgggcccgcg caccaaaatc gccaacgtcg gcgtcgccat cctcggcgac
          atcetttcag acggcaacct cgccgaatac taccgcaacg cgctggaaaa
     451
     501 ctggcagcag ccggtaggca gcgatttcga tcaggacagt tgggaaaaca
     551 gcaaaacttc cgtcctcggc gcggtaacgc gcaaaggcta cccgcttgcc
     601 aageteggea acaceeggge ggeegteaac eeegataceg eeaeegeega
     651 tttgaacgtc gtcgtggaca gcggccgccc cattgccttc ggcgactttg
     701 aaatcaccgg cacacagcgt taccccgaac aaaccgtctc cggcctggcg
     751 cgcttccaac cgggcacgcc ctacgacctc gacctgctgc tcgacttcca
     801 acaggegete gaacaaaacg ggeattatte eggegegtee gtacaageeg
851 acttegaceg ceteceaagg ggacegegte eeegteaaag teagegtaac
     901 cgaggtcaaa cgccacaaac tcgaaaccgg catccgcctc gattcggaat
     951 acggtttggg cggcaaaatc gcctacgact attacaacct cttcaacaaa
    1001 ggctatatcg gctcggtcgt ctgggatatg gacaaatacg aaaccacgct
    1051 tgccgccggc atcagccagc cgcgcaacta tcggggcaac tactggacaa
    1101 gcaacgtttc ctacaaccgt tcgaccaccc aaaacctcga aaaacgcgcc
    1151 ttctccggcg gcatctggta tgtgcgcgac cgcgcgggca tcgatgccag
    1201 gctgggggcg gaatttctcg cagaaggccg gaaaatcccc ggctcggatg
    1251 tcgatttggg caacagccac gccacgatgc tgaccgcctc ttggaaacgc
    1301 cagetgetca acaacgtget geacceegaa aacggeeatt acetegaegg
    1351 caaaatcggg acgactttgg gcacattcct gtcctccacc gcgctaatcc
1401 gcacctctgc ccgcgcaggt tatttcttca cgcccgaaaa caaaaaactc
    1451 ggcacgttca tcatacgcgg acaagcgggt tacaccgttg cacgcgacaa
           tgccgatgtc ccctcggggc tgatgttccg cagcggcggc gcgtcttccg
    1501
    1551 tgcgcggtta cgaacttga
```

This corresponds to the amino acid sequence <SEQ ID 1194; ORF 286.ng>:

correspond	o to the million	0 00.0 00.			
g286.pep					
1	MQNTGTMMIK	PTALLLPALF	FFPHAYAPA A	DLSENKAAGF	ALFKSKSPDT
51		VRIDTQDSEI			
101	APDNVKTMLR	SKGYFSSKVS	LTEKDGAYTV	HITPGPRTKI	ANVGVAILGD
151	ILSDGNLAEY	YRNALENWQQ	PVGSDFDQDS	WENSKTSVLG	AVTRKGYPLA
201		PDTATADLNV			
251	RFQPGTPYDL	DLLLDFQQAL	EQNGHYSGAS	VQADFDRLPR	GPRPRQSQRN
301		HPPRFGIRFG			
351	CRRHQPAAQL	SGQLLDKQRF	LQPFDHPKPR	KTRLLRRHLV	CARPRGHRCQ
401	AGGGISRRRP	ENPRLGCRFG	QQPRHDADRL	LETPAAQQRA	APRKRPLPRR

PCT/US99/09346 WO 99/57280

667

```
451 ONRDDFGHIP VLHRANPHLC PRRLFLHARK QKTRHVHHTR TSGLHRCTRQ
501 CRCPLGADVP QRRRVFRARL RT*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1195>:

. . .

```
ATGCACGACA CCCGTACCAT GATGATCAAA CCGACCGCCC TGCTCCTGCC
     GGCTTTATTT TTCTTTCCGC ACGCATACGC GCCTGCCGCC GACCTTTCCG
 51
101 AAAACAAGGC GGCGGGTTTC GCATTGTTCA AAAACAAAAG CCCCGACACC
151 GAATCAGTCA AATTAAAACC CAAATTCCCC GTCCTCATCG ACACGCAGGA
201 CAGTGAAATC AAAGATATGG TCGAAGAACA CCTGCCGCTC ATCACGCAGC 251 AGCAGGAAGA AGTATTGGAC AAGGAACAGA CGGGCTTCCT CGCCGAAGAA
301 GCGCCGGACA ACGTTAAAAC GATGCTCCGC AGCAAAGGCT ATTTCAGCAG
351 CAAAGTCAGC CTGACGGAAA AAGACGGAGC TTATACGGTA CACATCACAC
     CGGGCCCGCG CACCAAAATC GCCAACGTCG GCGTCGCCAT CCTCGGCGAC
 401
 451 ATCCTTTCAG ACGGCAACCT CGCCGAATAC TACCGCAACG CGCTGGAAAA
     CTGGCAGCAG CCGGTAGGCA GCGATTTCGA TCAGGACAGT TGGGAAAACA
 551 GCAAAACTTC CGTCCTCGGC GCGGTAACGC GCAAAGCCTA CCCGCTTGCC
     AAGCTCGGCA ATACGCAGGC GGCCGTCAAC CCCGATACCG CCACCGCCGA
651 TTTGAACGTC GTCGTGGACA GCGGCCGCCC CATCGCCTTC GGCGACTTTG
 701 AAATCACCGG CACACAGCGT TACCCCGAAC AAATCGTCTC CGGCCTTGCG
 751 CGTTTCCAGC CCGGTATGCC GTACGACCTC GACCTGCTGC TCGACTTCCA
 801 ACAGGCGCTC GAACAAAACG GGCATTATTC CGGCGCGTCC GTACAAGCCG
851 ACTTCGACCG CCTCCAAGGC GACCGCGTCC CCGTCAAAGT CAGCGTAACC
     GAGGTCAAAC GCCACAAACT CGAAACCGGC ATCCGCCTCG ATTCGGAATA
 901
951 CGGTTTGGGC GGCAAAATCG CCTACGACTA TTACAACCTC TTCAACAAAG
1001 GCTATATCGG TTCGGTCGTC TGGGATATGG ACAAATACGA AACCACGCTT
1051 GCCGCCGGCA TCAGCCAGCC GCGCAACTAT CGGGGCAACT ACTGGACAAG
1101 CAACGTTTCC TACAACCGTT CGACCACCCA AAACCTCGAA AAACGCGCCCT
     TCTCCGGCGG CGTCTGGTAT GTGCGCGACC GCGCGGGCAT CGATGCCAGG
1151
1201 CTGGGGGCGG AATTTCTCGC AGAAGGCCGG AAAATCCCCG GCTCGGCTGT
1251 CGATTTGGGC AACAGCCACG CCACGATGCT GACCGCCTCT TGGAAACGCC
1301 AGCTGCTCAA CAACGTGCTG CATCCCGAAA ACGGCCATTA CCTCGACGGC
1351 AAAATCGGTA CGACTTTGGG CACATTCCTG TCCTCCACCG CGCTGATCCG
1401 CACCTCTGCC CGTGCAGGTT ATTTCTTCAC GCCCGAAAAC AAAAAACTCG
1451 GCACGTTCAT CATACGCGGA CAAGCGGGTT ACACCGTTGC CCGCGACAAT
1501 GCCGACGTTC CTTCAGGGCT GATGTTCCGC AGCGGCGGCG CGTCTTCCGT
1551 GCGCGGTTAC GAACTCGACA GCATCGGACT TGCCGGCCCG AACGGATCGG
1601 TCCTGCCCGA ACGCGCCCTC CTGGTGGGCA GCCTGGAATA CCAACTGCCG
1651 TTTACGCGCA CCCTTTCCGG CGCGGTGTTC CACGATATGG GCGATGCCGC
     CGCCAATTTC AAACGTATGA AGCTGAAACA CGGTTCGGGA CTGGGCGTGC
1751 GCTGGTTCAG CCCGCTTGCG CCGTTTTCCT TCGACATCGC CTACGGGCAC
1801 AGCGATAAGA AAATCCGCTG GCACATCAGC TTGGGAACGC GCTTCTAA
```

This corresponds to the amino acid sequence <SEQ ID 1196; ORF 286>:

```
m286.pep
          MHDTRTMMIK PTALLLPALF FFPHAYAPAA DLSENKAAGF ALFKNKSPDT
      51 ESVKLKPKFP VLIDTQDSEI KDMVEEHLPL ITQQQEEVLD KEQTGFLAEE
     101 APDNVKTMLR SKGYFSSKVS LTEKDGAYTV HITPGPRTKI ANVGVAILGD
     151 ILSDGNLAEY YRNALENWQQ PVGSDFDQDS WENSKTSVLG AVTRKAYPLA
201 KLGNTQAAVN PDTATADLNV VVDSGRPIAF GDFEITGTQR YPEQIVSGLA
     251 RFQPGMPYDL DLLLDFQQAL EQNGHYSGAS VQADFDRLQG DRVPVKVSVT
           EVKRHKLETG IRLDSEYGLG GKIAYDYYNL FNKGYIGSVV WDMDKYETTL
     351 AAGISOPRNY RGNYWTSNVS YNRSTTQNLE KRAFSGGVWY VRDRAGIDAR
          LGAEFLAEGR KIPGSAVDLG NSHATMLTAS WKRQLLNNVL HPENGHYLDG
     401
     451 KIGTTLGTFL SSTALIRTSA RAGYFFTPEN KKLGTFIIRG QAGYTVARDN
          ADVPSGLMFR SGGASSVRGY ELDSIGLAGP NGSVLPERAL LVGSLEYOLP
     551
           FTRTLSGAVF HDMGDAAANF KRMKLKHGSG LGVRWFSPLA PFSFDIAYGH
          SDKKIRWHIS LGTRF*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m286.pep	MHDTRTMM					50 SPDTESVKLKE	60 KFP
						SPDTESVKLKE	III PKFP
g286		10	20	30	40	50	60
		70	80	90	100	110	120
m286.pep						MLRSKGYFSS	
						HILLIIIIII	
g286		EIKDMVEEH 70	80 Papilaõõer	APDKEÖLGET 80	AELAPUNVKI 100	MLRSKGYFSS 110	120
		70	80		. 4	110	120
	1	30	140	150	160	170	180
m286.pep	LTEKDGAY	TVHITPGPR	TKIANVGVAI			WQQPVGSDF[
•	11111111	шшш	1111111111				
g286					LAEYYRNALEN 160	WQQPVGSDFD 170	
	1	30	140	150	160	170	180
	1	90	200	210	220	230	240
m286.pep					LNVVVDSGR	PIAFGDFEIT	STQR
	11111111	1111111111	111111111111111111111111111111111111111	11111111111		1111111111111	HIL
g286						PIAFGDFEIT	
-	1	90	200	210	220	230	240
	2	50	260	270	280	290	299
m286.pep						RL-QGDRVPVE	
mzoo.pcp	1111 111	1111111	1111111111	1111111111		11:11	
g286	YPEQTVSG	LARFOPGTP	YDLDLLLDFO	QALEQNGHYS	egasvqadfdi	RLPRGPRPRQS	SQRN
	2	50	260	270	280	290	300
	300	310	320	330	340	350	359
m286.pep				YYNLFNKGY:	IGSVVWDMDK	YETTLAAGIS(QPRN
g286	RGQTPQTR	NRHPPRFGI	RFGRQNRLRI	LQPLQQRLYI	RLGRLGYGQI	RNHACRRHQPA	AAQL
3 		10	320	330	340	350	360

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1197>:

```
a286.seq
         ATGCACGACA CCCGTACCAT GATGATTAAA CCGACCGCCC TGCTCCTGCC
     51 GGCTTTATTT TTCTTTCCGC ACGCATACGC GCCTGCCGCC GACCTTTCCG
    101 AAAACAAGGC GGCGGGTTTC GCATTGTTCA AAAACAAAAG CCCCGACACC
    151 GAATCAGTTA AATTAAAACC CAAATTCCCC GTCCGCATCG ACACGCAGGA
    201 TAGTGAAATC AAAGATATGG TCGAAGAACA CCTGCCGCTC ATCACGCAGC
    251 AGCAGGAAGA AGTATTGGAC AAGGAACAGA CGGGCTTCCT CGCCGAAGAA
    301 GCACCGGACA ACGTTAAAAC AATGCTCCGC AGCAAAGGCT ATTTCAGCAG
    351 CAAAGTCAGC CTGACGGAAA AAGACGGAGC TTATACGGTA CACATCACAC
     401 CGGGCCCGCG CACCAAAATC GCCAACGTCG GCGTCGCCAT CCTCGGCGAC
     451 ATCCTTTCAG ACGGCAACCT CGCCGAATAC TACCGCAACG CGCTGGAAAA
    501 CTGGCAGCAG CCGGTAGGCA GTGATTTCGA TCAGGACAGT TGGGAAAACA
         GCAAAACTTC CGTCCTCGGC GCGGTAACGC GCAAAGCCTA CCCGCTTGCC
     551
     601 AAGCTCGGCA ACACCCGGGC GGCCGTCAAC CCCGATACCG CCACCGCCGA
     651 TTTGAACGTC GTCGTGGACA GCGGCCGCCC CATCGCCTTC GGCGACTTTG
     701 AAATTACCGG CACGCAGCGT TACCCCGAAC AAATCGTCTC CGGCTTGGCG
         CGCTTCCAAC CGGGCACGCC CTACGACCTC GACCTGCTGC TCGACTTCCA
     751
     801 ACAGGCGCTC GAACAAAACG GGCATTATTC CGGCGCGTCC GTACAAGCCG
     851 ACTTCGACCG CCTCCAAGGC GACCGCGTCC CCGTCAAAGT CAGCGTAACC
     901 GAGGTCAAAC GCCACAAGCT CGAAACCGGC ATCCGCCTCG ATTCGGAATA
          CGGTTTGGGC GGCAAAATCG CCTACGACTA TTACAACCTC TTCAACAAAG
    1001 GCTATATCGG TTCGGTCGTC TGGGATATGG ACAAATACGA AACCACGCTT
    1051 GCCGCCGGCA TCAGCCAGCC GCGCAACTAT CGGGGCAACT ACTGGACAAG
    1101 CAACGTTTCC TACAACCGTT CGACCACCCA AAACCTCGAA AAACGCGCCT
          TCTCCGGCGG CATCTGGTAT GTGCGCGACC GCGCGGGCAT CGATGCCAGG
    1151
    1201 CTGGGGGGG AGTTTCTCGC AGAAGGCCGG AAAATCCCCG GCTCGGATAT
    1251 CGATTTGGGC AACAGCCACG CCACGATGCT GACCGCCTCT TGGAAACGCC
    1301 AGCTGCTCAA CAACGTGCTG CATCCCGAAA ACGGCCATTA CCTCGACGGC
```

1351	AAAATCGGTA	CGACTTTGGG	CGCATTCCTG	TCCTCCACCG	CGCTGATCCG
1401	CACCTCTGCC	CGCGCAGGTT	ATTTCTTCAC	GCCCGAAAAC	AAAAAACTCG
1451	GCACGTTCAT	CATACGCGGA	CAAGCGGGTT	ACACCGTTGC	CCGCGACAAT
1501	GCCAACGTTC	CTTCAGGGCT	GATGTTCCGC	AGCGGCGGCG	CGTCTTCCGT
1551	GCGCGGTTAC	GAACTCGACA	GCATCGGGCT	TGCCGGCCCG	AACGGATCGG
1601	TCCTGCCCGA	ACGCGCCCTC	TTGGTGGGCA	GCCTGGAATA	CCAACTGCCG
1651	TTTACGCGCA	CCCTTTCCGG	CGCGGTGTTC	CACGATATGG	GCGACGCCGC
1701	CGCCAATTTC	AAACGTATGA	AGCTGAAACA	CGGTTCGGGA	CTGGGCGTGC
1751	GCTGGTTCAG	CCCGCTCGCG	CCGTTTTCCT	TCGACATCGC	CTACGGGCAC
1801	AGCGACAAGA	AAATCCGCTG	GCACATCAGC	TTGGGAACGC	GCTTCTAA

This c

corresponds	to the amin	o acid sequ	ence <seq< th=""><th>ID 1198; C</th><th>ORF 286.a></th><th>>:</th><th></th></seq<>	ID 1198; C	ORF 286.a>	>:	
a286.pep							
ī	MHDTRTMMIK	PTALLLPALE	FFPHAYAPA	a dlsenka <i>i</i>	GF ALFKNK	SPDT	
51		VRIDTQDSEI					
101	APDNVKTMLR	SKGYFSSKVS	LTEKDGAYT	V HITPGPRI	KI ANVGVA	ILGD	
151	TISDGNLAEY	YRNALENWQQ	PVGSDFDOD	S WENSKTSV	LG AVTRKA	YPLA	
201	KI.GNTRAAVN	PDTATADLNV	VVDSGRPIA	F GDFEITGT	OR YPEQIV	SGLA	
251	PEOPETRYDI.	DLLLDFQQAL	. EONGHYSGA	S VOADEDRI	OG DRVPVK	VSVT	
301	EAKBRKI'ELC	IRLDSEYGLO	GKTAYDYYN	L FNKGYIGS	SVV WDMDKY	ETTI.	
351	AACTEODDNY	RGNYWTSNVS	VNRSTTONI	E KRAFSGG	WY VRDRAG	TDAR	
		KIPGSDIDLO					
401		SSTALIRTSA					
451							
501	ANVPSGLMER	SGGASSVRGY	FIDSIGNAG	e remares	CAL DECEDI	IVUE	
551		HDMGDAAANE	KRMKLKHG5	G TGAKAE21	PLA PESEDI	AIGH	
601	SDKKIRWHIS	LGTRF*					
m286/a286	98.7% i	dentity in	615 aa ove	rlap			
		10		30	40	50	60
m286.pep		MIKPTALLLPA					
• •	1111111	111111111111		111111111	1111111111	1111111111	Ш
a286	MHDTRTM	MIKPTALLLPA	ALFFFPHAYAP	AADLSENKA	AGFALFKNKS	PDTESVKLKP	KFP
		10		30	40	50	60
		70	80	90 :	100	110	120
m286.pep	VIJIDTOD	SEIKDMVEEHI	LPLITOOOEEV	LDKEOTGFL	AEEAPDNVKT	MLRSKGYFSS	KVŞ
mzoo.pcp		11111111111					
a286		SEIKDMVEEHI					
a200	VILLETED	70					120
		, ,	•				
•		130	140 1	.50	160	170	180
200	T MEVOCA	YTVHITPGPRI					
m286.pep					THE TIMES AND THE		
005	1111111	11111111111	111111111111	1111111111		1111111111	
a286	1111111	 YTVHITPGPRI		 GDILSDGNL	AEYYRNALE N		QDS
a286	1111111	 YTVHITPGPRI		 GDILSDGNL	AEYYRNALE N		
a286	1111111			 GDILSDGNL 50	AEYYRNALEN 160		QDS 180
	 LTEKDGA				AEYYRNALEN 160 220	IIIIIIIIIIWQQPVGSDFD 170 230	QDS 180 240
a286 m286.pep	 LTEKDGA WENSKTS			 GDILSDGNL 50 10 VNPDTATAD	AEYYRNALEN 160 220 LNVVVDSGRP		QDS 180 240 TQR
	 LTEKDGA WENSKTS 	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		 GDILSDGNL 50 10 VNPDTATAD	AEYYRNALEN 160 220 LNVVVDSGRP 		QDS 180 240 TQR
	 LTEKDGA WENSKTS 			 GDILSDGNL 50 10 VNPDTATAD	AEYYRNALEN 160 220 LNVVVDSGRP LNVVVDSGRP		QDS 180 240 TQR III TQR
m286.pep	 LTEKDGA WENSKTS 			 GDILSDGNL 50 10 VNPDTATAD	AEYYRNALEN 160 220 LNVVVDSGRP 		QDS 180 240 TQR
m286.pep	 LTEKDGA WENSKTS 				AEYYRNALEN 160 220 LNVVVDSGRP LNVVVDSGRP 220	WQQPVGSDFD 170 230 LAFGDFEITG IAFGDFEITG 230	QDS 180 240 TQR III TQR 240
m286.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			IIIIIIIII GDILSDGNL 50 210 VNPDTATAD IIIIIIIII VNPDTATAD 110	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240
m286.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GDILSDGNL 50 10 VNPDTATAD IIIIIIII VNPDTATAD 10 270 PALEQNGHYS	AEYYRNALEN 160 220 LNVVVDSGRP LNVVVDSGRP 220 280 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR 111 TQR 240 300 SVT
m286.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GDILSDGNL 50 10 VNPDTATAD IIIIIIII VNPDTATAD 10 270 PALEQNGHYS	AEYYRNALEN 160 220 LNVVVDSGRP LNVVVDSGRP 220 280 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR 111 TQR 240 300 SVT
m286.pep	UTEKDGA WENSKTS UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GDILSDGNL 50 10 VNPDTATAD IIIIIIIII VNPDTATAD 10 270 PALEQNGHYS	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240 300 SVT
m286.pep a286 m286.pep	UTEKDGA WENSKTS UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU			GDILSDGNL 50 10 VNPDTATAD VNPDTATAD 11111111 VNPDTATAD 270 PALEQNGHYS 11111111	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR 1111111111 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240 300 SVT
m286.pep a286 m286.pep	UTEKDGA WENSKTS UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU			GDILSDGNL 50 10 VNPDTATAD VNPDTATAD 11111111 VNPDTATAD 270 PALEQNGHYS 11111111	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR 1111111111 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240 300 SVT III SVT
m286.pep a286 m286.pep	UTEKDGA WENSKTS UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU			GDILSDGNL 50 10 VNPDTATAD 1111111 VNPDTATAD 10 270 PALEQNGHYS 11111111 PALEQNGHYS	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR 1111111111 GASVQADFDR	WQQPVGSDFD 170 230 IAFGDFEITG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240 300 SVT III SVT
m286.pep a286 m286.pep	WENSKTS WENSKTS YPEQIVS			GDILSDGNL 50 10 VNPDTATAD 11 VNPDTATAD 10 270 PALEQNGHYS 1 PALEQNGHYS 770	AEYYRNALEN 160 220 LNVVVDSGRP IIIIIIIII LNVVVDSGRP 220 280 GASVQADFDR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR TQR 240 300 SVT SVT 300 360 360
m286.pep a286 m286.pep a286	UTEKDGA WENSKTS UNITED STATES WENSKTS WENSKTS WEQIVS UNITED STATES WENSKTS	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AEYYRNALEN 160 220 LNVVVDSGRP IIIIIIIII LNVVVDSGRP 220 280 GASVQADFDR IIIIIIIIIII GASVQADFDR 280 340 SVVWDMDKYE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR III TQR 240 300 SVT III SVT 300 360 RNY
m286.pep a286 m286.pep a286	WENSKTS WENSKTS YPEQIVS HILLI YPEQIVS EVKRHKI			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR 111111111 GASVQADFDR 280 340 SVVWDMDKYE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR TQR 240 300 SVT SVT 300 SVT
m286.pep a286 m286.pep a286 m286.pep	WENSKTS WENSKTS YPEQIVS HILLI YPEQIVS EVKRHKI			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AEYYRNALEN 160 220 LNVVVDSGRP 111111111 LNVVVDSGRP 220 280 GASVQADFDR 111111111 GASVQADFDR 280 340 SVVWDMDKYE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 180 240 TQR TQR 240 300 SVT SVT 300 SVT
m286.pep a286 m286.pep a286 m286.pep	WENSKTS WENSKTS YPEQIVS HILLI YPEQIVS EVKRHKI			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AEYYRNALEN 160 220 LNVVVDSGRP IIIIIIIILL 220 280 GASVQADFDR IIIIIIIIII GASVQADFDR 280 340 SVVWDMDKYE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 240 240 TQR TQR 240 300 SVT SVT SVT SVT SVT SVT SVT SVT
m286.pep a286 m286.pep a286 m286.pep	WENSKTS WENSKTS YPEQIVS HILLI YPEQIVS EVKRHKI			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AEYYRNALEN 160 220 LNVVVDSGRP IIIIIIIILL 220 280 GASVQADFDR IIIIIIIIII GASVQADFDR 280 340 SVVWDMDKYE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QDS 240 240 TQR TQR 240 300 SVT SVT SVT SVT SVT SVT SVT SVT

	m286.pep	RGNYWT	SNVSYNRSTT(ONLEKRAFSGO	VWYVRDRAG:	DARLGAEFLA	AEGRKIPGSAV	DLG
	a286	RGNYWT:	SNVSYNRSTT(ONLEKRAFSGO 380	SIWYVRDRAG: 390	DARLGAEFLA 400	EGRKIPGSDI 410	DLG 420
	m286.pep a286	111111		1111111111	11111111111	1:	470 RTSARAGYFFT RTSARAGYFFT 470	
· Fizzeri	m286.pep	111111	111111111	11111:1111	1111111111	[530 LAGPNGSVLPF LAGPNGSVLPF 530	
	m286.pep	111111			11111111111	1111111	590 SPLAPFSFDIA SPLAPFSFDIA 590	1111
	m286.pep	111111	610 WHISLGTRFX WHISLGTRFX 610					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1199>:

```
g287.seq
         atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
        ctgtgggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacgc
    101 cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
         ctgccgaaag aaaagaaaga tgaggaggca gcggggggtg cgccgcaagc
    151
    201 cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
     251 tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
     301 aaaaatgaag acgcgggggc gcaaaatgat atgccgcaaa atgccgccga
         atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
     351
     401 cccccqcqtc aaaccctqcc cctqcqaatq qcqqtaqcqa ttttqqaaqq
     451 acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
     501 gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattggatg
     551 aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
     601 attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
     651 tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
     701 cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
          gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
     751
     801 ggaageggte ageetgaegg ggeatteegg caatatette gegeeegaag
     851 ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
          tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
     901
     951 cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
    1001 gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
    1051 aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
          gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
    1101
    1151 cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
    1201 gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
    1251 cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
```

This corresponds to the amino acid sequence <SEQ ID 1200; ORF 287.ng>: g287.pep

1 MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV
51 LPKEKKDEEA AGGAPQADTQ DATAGEGSQD MAAVSAENTG NGGAATTDNP
101 KNEDAGAQND MPQNAAESAN QTGNNQPAGS SDSAPASNPA PANGGSDFGR

```
151 TNVGNSVVID GPSQNITLTH CKGDSCNGDN LLDEEAPSKS EFEKLSDEEK
201 IKRYKKDEQR ENFVGLVADR VKKDGTNKYI IFYTDKPPTR SARSRRSLPA
251 EIPLIPVNQA DTLIVDGEAV SLTGHSGNIF APEGNYRYLT YGAEKLPGGS
301 YALRVQGEPA KGEMLVGTAV YNGEVLHFHM ENGRPYPSGG RFAAKVDFGS
351 KSVDGIIDSG DDLHMGTQKF KAAIDGNGFK GTWTENGGGD VSGRFYGPAG
401 EEVAGKYSYR PTDAEKGGFG VFAGKKDRD*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1201>:

```
m287.seq
         ATGTTTAAAC GCAGCGTAAT CGCAATGGCT TGTATTTTTG CCCTTTCAGC
         CTGCGGGGGC GGCGGTGGCG GATCGCCCGA TGTCAAGTCG GCGGACACGC
      51
         TGTCAAAACC TGCCGCCCCT GTTGTTTCTG AAAAAGAGAC AGAGGCAAAG
     151 GAAGATGCGC CACAGGCAGG TTCTCAAGGA CAGGGCGCGC CATCCGCACA
     201 AGGCAGTCAA GATATGGCGG CGGTTTCGGA AGAAAATACA GGCAATGGCG
     251 GTGCGGTAAC AGCGGATAAT CCCAAAAATG AAGACGAGGT GGCACAAAAT
     301 GATATGCCGC AAAATGCCGC CGGTACAGAT AGTTCGACAC CGAATCACAC
     351 CCCGGATCCG AATATGCTTG CCGGAAATAT GGAAAATCAA GCAACGGATG
     401 CCGGGGAATC GTCTCAGCCG GCAAACCAAC CGGATATGGC AAATGCGGCG
     451 GACGGAATGC AGGGGGACGA TCCGTCGGCA GGCGGGCAAA ATGCCGGCAA
     501 TACGGCTGCC CAAGGTGCAA ATCAAGCCGG AAACAATCAA GCCGCCGGTT
         CTTCAGATCC CATCCCGCG TCAAACCCTG CACCTGCGAA TGGCGGTAGC
     551
         AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
     651 GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
     701 ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
     751 GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
          TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
     851 TTATCTTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
     901 GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
         TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
    1001 ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
    1051 GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
    1101 ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
          TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
    1151
    1201 TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
    1251 CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
    1301 ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
    1351 TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
    1401 CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
    1451 AAAAAGAGCA GGATTGA
```

This corresponds to the amino acid sequence <SEQ ID 1202; ORF 287>:

```
m287.pep

1 MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVSEKETEAK
51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
151 DGMQGDDPSA GGQNAGTNAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AALDGNGFKG TWTENGSGDV
451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m287/g287 70.1% identity in 499 aa overlap
```

- 555 -

```
70
                                        80
                                                 90
                                                        100
                                                                109
              50
                       60
               KEDAPQAGSQGQGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT
   m287.pep
                 AGGAPQADTQD--ATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAA--
   g287
                                         90
                                                 100
                                                         110
                      70
                                80
                      120
                                       140
                                                150
                              130
             110
               DSSTPNHTPDPNMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTA
   m287.pep
   g287
                                                210
                                                        220
                                                                 229
                              190
                                       200
                      180
               AQGANQAGNNQAAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDS
   m287.pep
                -ESANQTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDS
   g287
                                                   160
                                  140
                                          150
                         130
                                       260
                                                270
                                                         280
                      240
                               250
             230
               CSGNNFLDEEVQLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKP
   m287.pep
               CNGDNLLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTD
    g287
                                           210
                                                   220
                                  200
                 180
                          190
                                       320
                                                330
                                                         340
                               310
                      300
             290
               KPTSFARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGN1FAPEGNYRYLT
   m287.pep
                       KPPT----RSARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLT
    g287
                                               270
                                                        280
                              250
                                      260
                     240
                      360
                               370
                                       380
                                                390
                                                         400
                                                                 409
              350
               YGAEKLPGGSYALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGS
    m287.pep
               YGAEKLPGGSYALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGS
    g287
                                                        340
                                                                 350
                     300
                              310
                                       320
                                               330
                               430
                                        440
                                                450
              410
               KSVDGIIDSGDDLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYR
    m287.pep
               KSVDGIIDSGDDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYR
    g287
                                                        400
                                               390
                              370
                                       380
                      360
                       480
                              489
              470
                PTDAEKGGFGVFAGKKEODX
    m287.pep
                PTDAEKGGFGVFAGKKDRDX
    g287
                      420
                              430
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1203>:
    a287.seq
             ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
          1
             CTGTGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
         51
             TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
         101
             CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
         151
             CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
         201
             TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
         251
         301 GAAAATAAAG ACGAGGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
             TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
         351
             GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
         401
             AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
         451
             GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
         501
         551 CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
             CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
         601
             TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
         651
         701 AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
```

TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA

```
801 AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
         851 AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
         901 TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
             GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
        1001 ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
        1051 GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
        1101 ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
        1151 CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
        1201 GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
        1251 CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
        1301 GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
              TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
        1351
              CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
        1401
             AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
This corresponds to the amino acid sequence <SEQ ID 1204; ORF 287.a>:
    a287.pep
              MFKRSVIAMA CIVALSACGG GGGGSPDVKS ADTLSKPAAP VVTEDVGEEV
              LPKEKKDEEA VSGAPQADTQ DATAGKGGQD MAAVSAENTG NGGAATTDNP
          51
              ENKDEGPOND MPONAADTDS STPNHTPAPN MPTRDMGNQA PDAGESAOPA
         151 NQPDMANAAD GMQGDDPSAG ENAGNTADQA ANQAENNQVG GSQNPASSTN
              PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
         201 PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
251 SEFEKLSDEE KINKYKKDEQ RENFVGLVAD RVEKNGTNKY VIIYKDKSAS
          301 SSSARFRRSA RSRRSLPAEM PLIPVNQADT LIVDGEAVSL TGHSGNIFAP
         351 EGNYRYLTYG AEKLSGGSYA LSVQGEPAKG EMLAGTAVYN GEVLHFHMEN
              GRPSPSGGRF AAKVDFGSKS VDGIIDSGDD LHMGTQKFKA VIDGNGFKGT
          401
          451 WTENGGGDVS GRFYGPAGEE VAGKYSYRPT DAEKGGFGVF AGKKEQD*
                 77.2% identity in 501 aa overlap
     m287/a287
                                  20
                                           30
                                                    40
                                                                       49
                 MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSE----
                                                                   --KETEA
     m287.pep
                 MFKRSVIAMACIVALSACGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
     2287
                                                    40
                                                                       60
                                  20
                                           30
                        10
                                                     90
                                                              100
                                            80
                50
                 KEDAPQAGSQGQGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT
     m287.pep
                    VSGAPQADTQ--DATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADT
     a287
                                             90
                                                     100
                                                               110
                         70
                                    80
                                                    150
                                  130
                                           140
                         120
                110
                 DSSTPNHTPDPNMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTA
     m287.pep
                 DSSTPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAG-ENAGNTA
     a287
                                   140
                                            150
                                                     160
                                                               170
                 120
                                                                      229
                                  190
                                           200
                                                    210
                                                              220
                170
                         180
                 AQGANQAGNNQAAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDS
     m287.pep
                  DQAANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKV
     a287
                                                                230
                                                       220
                 180
                           190
                                    200
                                             210
                                                     270
                                           260
                                  250
                 CSGNNFLDEEVQLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKP
     m287.pep
                  1: :[[[[]: [[]]]]] :[[::][]] : ::[[[]]]] [:: :[]]
                 CD-RDFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKD
     a287
                                                                 290
                                              270
                                                        280
                   240
                            250
                                     260
                                                       330
                           300
                                    310
                                             320
                                                                340
                 KP--TSFARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRY
     m287.pep
                    KSASSSSARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRY
      a287
                            310
                                     320
                                              330
                                                        340
                   300
```

```
390
                                                   400
                  360
                          370
                                  380
          350
          LTYGAEKLPGGSYALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDF
m287.pep
          LTYGAEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDF
a287
                                           400
                                                   410
                                   390
                   370
                           380
           360
                                  440
                                          450
                  420
                          430
          410
          GSKSVDGIIDSGDDLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYS
m287.pep
          GSKSVDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYS
a287
                                   450
                                       460
                           440
                   430
                          489
          470
                  480
          YRPTDAEKGGFGVFAGKKEQDX
m287.pep
           111111111111111111111111
          YRPTDAEKGGFGVFAGKKEQDX
a287
                   490
           480
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1205>:

```
g288.seq
         atgcacaccg gacaggcggt aagccgggtt ctgtctcgga cagtcattcc
         tctaggcata ccgttgccgg tatgctcaag caacctaccc gaacgctcgg
     51
         cgggcagcgt cattgcgttc tgtttggtct tgctccgaat ggggtttggc
     101
     151 ctgccgcata ttgttaccaa atgcgcggtg cgcccttacc gcaccttttc
     201 accettgeet gtgctgccaa ageagecate ggeggttttg etttetgtte
     251 cactttccgt cgcgttaccg cgcccggccg ttaaccggca ttctaccctg
         cggagcccgg actttcctcc ccgtatgcct tacgcgatac gcggcgactg
     301
     351 totgcocgto cogtgtgegg cgcggattat aacacgaaac gcaaaaatgc
     401 cgtctgaaac ggtacaggtt tcagacggca tacagcctaa actacacacc
         ctgtttcagg ctggcttcga tgaagccgtc caagtcgccg tccaatacgg
     501 ctttgtggtt gccgacttcg tagcctgtac gcaagtcttt gatgcgtga
```

This corresponds to the amino acid sequence <SEQ ID 1206; ORF 288.ng>:

```
g288.pep
```

- MHTGQAVSRV LSRTVIPLGI PLPVCSSNLP ERSAGSVIAF CLVLLRMGFG LPHIVTKCAV RPYRTFSPLP VLPKQPSAVL LSVPLSVALP RPAVNRHSTL
- 51 101 RSPDFPPRMP YAIRGDCLPV PCAARIITRN AKMPSETVQV SDGIQPKLHT
- 151 LFQAGFDEAV QVAVQYGFVV ADFVACTQVF DA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1207>:

```
m288.seq
```

- ATGCACACCG GACAGGCGGT AAGCCGGGTT CTGTCTCGGA CAGTCATTCC TCTAGGCATA CCGTTACCGG TATGCTCAAG CAACCTACCC GAACGCTCGG
 - 101 CGGGCAGCGT CATTGCGTTC TGTTTGGTCT TGCTCCGAAT GGGGTTTGGC 151 CTGCCGCATA TTGTTACCAA ATGCGCGGTG CGCCCTTACC GCACCTTTTC
 - 201 ACCCTTACCT GTGCTGCCAA AGCAGCCATC GGCGGTTTTG CTTTCTGTTC CACTITCCGT CGCGTTACCG CGCCCGGCCG TTAACCGGCA TTCTACCCTG 251
 - 301 CGGAGCCCGG ACTTTCCTCC CCGTATGCCT TACGCGATAC GCGGCGACTG 351 TCTGCCCGTC CCGTGTGCGG CGCGGATTAT AACACGAAAC ACAAAAATGC
 - 401 CGTCTGAAAC GGTACAGGTT TCAGACGGCA TACAGCCTAA ACTACACGCC
 - 451 CTGTTTCAGG CTGGCTTCGA TGAAGCCGTC CAAGTCGCCA TCCAATACGG 501 CTTTGGTGTT GCCGACTTCG TAGCCTGTAC GCAAGTCTTT GATACGTGA

This corresponds to the amino acid sequence <SEQ ID 1208; ORF 288>: m288.pep

- MHTGQAVSRV LSRTVIPLGI PLPVCSSNLP ERSAGSVIAF CLVLLRMGFG LPHIVTKCAV RPYRTFSPLP VLPKQPSAVL LSVPLSVALP RPAVNRHSTL
- 51 RSPDFPPRMP YAIRGDCLPV PCAARIITRN TKMPSETVQV SDGIQPKLHA
- 151 LFQAGFDEAV QVAIQYGFGV ADFVACTQVF DT*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

```
m288/g288 97.8% identity in 181 aa overlap
                                                                    20
                                                                                     30
                                                                                                      40
                                                                                                                        50
                                                                                                                                         60
                                                  10
                                    MHTGQAVSRVLSRTVIPLGIPLPVCSSNLPERSAGSVIAFCLVLLRMGFGLPHIVTKCAV
             m288.pep
                                    11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)11(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(1)1(
                                    MHTGQAVSRVLSRTVIPLGIPLPVCSSNLPERSAGSVIAFCLVLLRMGFGLPHIVTKCAV
             g288
                                                                                                      40
                                                                                                                        50
                                                                    20
                                                                                     30
                                                  10
                                                                                     90
                                                                                                    100
                                                  70
                                                                    80
-- 1221
                                    RPYRTFSPLPVLPKQPSAVLLSVPLSVALPRPAVNRHSTLRSPDFPPRMPYAIRGDCLPV
             m288.pep
                                     RPYRTFSPLPVLPKQPSAVLLSVPLSVALPRPAVNRHSTLRSPDFPPRMPYAIRGDCLPV
              a288
                                                                                                     100
                                                                                                                      110
                                                                    80
                                                                                     90
                                                                                                                      170
                                                                                                                                        180
                                                                                                     160
                                                 130
                                                                  140
                                                                                   150
                                     PCAARIITRNTKMPSETVQVSDGIQPKLHALFQAGFDEAVQVAIQYGFGVADFVACTQVF
              m288.pep
                                     PCAARIITRNAKMPSETVQVSDGIQPKLHTLFQAGFDEAVQVAVQYGFVVADFVACTQVF
              g288
                                                                                                     160
                                                                                                                                        180
                                                                                    150
                                                 130
                                                                  140
                                     DTX
              m288.pep
                                     1:1
              q288
                                     DAX
     The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1209>:
              a288.seq
                                ATGCACACCG GACAGGCGGT AAGCCGGGTT CTGTCTCGGA CAGTCATTCC
                                TCTAGGCATA CCGTTGCCGG TATGCTCAAG CAACCTACCC GAACGCTCGG
                         51
                                CGGGCAGCGT CATTGCGTTC TGTTTGGTCT TGCTCCGAAT GGGGTTTGGC
                       101
                                CTGCCGCATA TTGTTACCAA ATGCGCGGTG CGCCCTTACC GCACCTTTTC
                       151
                       201 ACCCTTGCCT GTGCTGCCAA AGCAGCCATC GGCGGTTTTG CTTTCTGTTC
                                CACTITCCGT CGCGTTACCG CGCCCGGCCG TTAACCGGCA TTCTACCCTG
                        251
                                CGGAGCCCGG ACTTTCCTCC CCGTATGCCT TACGCGATAC GCGGCGACTG
                        301
                                TCTGCCCGTC CCGTGTGCGG CGCGGATTAT AACACGAAAC GCAAAAATGC
                        351
                                CGTCTGAAAC GGTACAGGTT TCAGACGGCA TACAGCCTAA ACTACACGCC
                        401
                                CTGTTTCAGG CTGGCTTCGA TAAAGCCGTC CAAGTCGCCG TCCAATACGG
                        451
                        501 CTTTGGTGTT GCCGACTTCG TAGCCTGTGC GCAAGTCTTT AATGCGTGA
      This corresponds to the amino acid sequence <SEQ ID 1210; ORF 288.a>:
               a288.pep
                                MHTGQAVSRV LSRTVIPLGI PLPVCSSNLP ERSAGSVIAF CLVLLRMGFG
                                LPHIVTKCAV RPYRTFSPLP VLPKQPSAVL LSVPLSVALP RPAVNRHSTL
                                RSPDFPPRMP YAIRGDCLPV PCAARIITRN AKMPSETVQV SDGIQPKLHA
                        101
                                LFQAGFDKAV QVAVQYGFGV ADFVACAQVF NA*
                        151
                                      97.2% identity in 181 aa overlap
               m288/a288
                                                                                                        40
                                                                                                                         50
                                                                                                                                           60
                                      MHTGQAVSRVLSRTVIPLGIPLPVCSSNLPERSAGSVIAFCLVLLRMGFGLPHIVTKCAV
               m288.pep
                                      MHTGQAVSRVLSRTVIPLGIPLPVCSSNLPERSAGSVIAFCLVLLRMGFGLPHIVTKCAV
                a288
                                                                      20
                                                                                       30
                                                                                                        40
                                                                                                                         50
                                                    10
                                                                      80
                                                                                                       100
                                                                                                                        110
                                                     70
                                      RPYRTFSPLPVLPKQPSAVLLSVPLSVALPRPAVNRHSTLRSPDFPPRMPYAIRGDCLPV
                m288.pep
                                       RPYRTFSPLPVLPKQPSAVLLSVPLSVALPRPAVNRHSTLRSPDFPPRMPYAIRGDCLPV
                a288
                                                                                                      100
                                                                                                                        110
                                                                                                                                         120
                                                     70
                                                                      80
                                                                                       90
                                                                                                       160
                                                                                                                        170
                                       PCAARIITRNTKMPSETVQVSDGIQPKLHALFQAGFDEAVQVAIQYGFGVADFVACTQVF
                m288.pep
```

```
PCAARIITRNAKMPSETVQVSDGIQPKLHALFQAGFDKAVQVAVQYGFGVADFVACAQVF
a288
                                                   160
                               140
                                         150
             DTX
m288.pep
             ::
             NAX
a288
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1211>:

```
g290.seq
         atggcaaaaa tgatgaaatg ggcggctgtt gcggcggtcg cggcggcagc
         ggtttggggc ggatggtctt atctgaagcc cgaaccgcag gctgcttata
         ttacggaagc ggtcaggcgc ggcgatatca gccggacggt ttccgcgacg
     101
         ggcgagattt cgccgtccaa cctggtatcg gtcggcgcgc aggcttcggg
         gcagattaaa aagetttatg tcaaactcgg gcaacaggtc aaaaagggcg
         atttgattgc ggaaatcaat tcgaccacgc agaccaacac gatcgatatg
         gaaaaatcca aattggaaac gtatcaggcg aagctggtgt ccgcacagat
     301
         tgcattgggc agcgcggaaa aaaaatataa gcgtcaggcg gcgttgtgga
     351
     401 aggatgatgc gacctctaaa gaagatttgg aaagcgcgca ggatgcgctt
     451 gccgccgcca aagccaatgt tgccgagttg aaggctttaa tcagacagag
     501 caaaatttcc atcaataccg ccgagtcgga tttgggctac acgcgcatta
     551 ccgcgacgat ggacggcacg gtggtggcga ttcccgtgga agaggggcag
     601 actgtgaacg cggcgcagtc tacgccgacg attgtccaat tggcgaatct
     651 ggatatgatg ttgaacaaaa tgcagattgc cgagggcgat attaccaagg
         tgaaggcggg gcaggatatt tcgtttacga ttttgtccga accggatacg
     701
     751 ccgattaagg cgaagctcga cagcgtcgac cccgggctga ccacgatgtc
     801 gtcgggcggc tacaacagca gtacggatac ggcttccaat gcggtctatt
          attatgcccg ttcgtttgtg ccgaatccgg acggcaaact cgccacgggg
     851
     901 atgacgacgc agaatacggt tgaaatcgac ggtgtgaaaa atgtgttgct
     951 tattccgtcg ctgaccgtga aaaatcgcgg cggcaaggcg ttcgtacgcg
    1001 tgttgggtgc ggacggcaag gcagtggaac gcgaaatccg gaccggtatg
    1051 aaagacagta tgaataccga agtgaaaagc gggttgaaag agggggacaa
    1101 agtggtcatc tccgaaataa ccgccgccga gcagcaggaa agcggcgaac
    1151 gcgccctagg cggcccgccg cgccgataa
```

This corresponds to the amino acid sequence <SEQ ID 1212; ORF 290.ng>:

```
g290.pep
         MAKMMKWAAV AAVAAAAVWG GWSYLKPEPQ AAYITEAVRR GDISRTVSAT
      1
          GEISPSNLVS VGAQASGQIK KLYVKLGQQV KKGDLIAEIN STTQTNTIDM
      51
     101 EKSKLETYQA KLVSAQIALG SAEKKYKRQA ALWKDDATSK EDLESAQDAL
     151 AAAKANVAEL KALIRQSKIS INTAESDLGY TRITATMDGT VVAIPVEEGQ
         TVNAAQSTPT IVQLANLDMM LNKMQIAEGD ITKVKAGQDI SFTILSEPDT
     251 PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV PNPDGKLATG
     301 MTTQNTVEID GVKNVLLIPS LTVKNRGGKA FVRVLGADGK AVEREIRTGM
     351 KDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP RR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1213>:

```
m290.seq (partial)
          ..GTATCGGTCG GCGCGCAGGC ATCGGGGCAG ATTAAGATAC TTTATGTCAA
            ACTCGGGCAA CAGGTTAAAA AGGGCGATTT GATTGCGGAA ATCAATTCGA
      51
            CCTCGCAGAC CAATACGCTC AATACGGAAA AATCCAAGTT GGAAACGTAT
     101
            CAGGCGAAGC TGGTGTCGGC ACAGATTGCA TTGGGCAGCG CGGAGAAGAA
     151
            ATATAAGCGT CAGGCGGCGT TATGGAAGGA AAACGCGACT TCCAAAGAGG
     201
            ATTTGGAAAG CGCGCAGGAT GCGTTTGCCG CCGCCAAAGC CAATGTTGCC
     251
            GAGCTGAAGG CTTTAATCAG ACAGAGCAAA ATTTCCATCA ATACCGCCGA
     301
            GTCGGAATTG GGCTACACGC GCATTACCGC AACGATGGAC GGCACGGTGG
     351
            TGGCGATTCT CGTGGAAGAG GGGCAGACTG TGAACGCGGC GCAGTCTACG
     401
            CCGACGATTG TCCAATTGGC GAATCTGGAT ATGATGTTGA ACAAAATGCA
     451
            GATTGCCGAG GGCGATATTA CCAAGGTGAA GGCGGGGCAG GATATTTCGT
     501
            TTACGATTTT GTCCGAACCG GATACGCCGA TTAAGGCGAA GCTCGACAGC
     551
            GTCGACCCCG GGCTGACCAC GATGTCGTCG GGCGGTTACA ACAGCAGTAC
     601
            GGATACGGCT TCCAATGCGG TCTACTATTA TGCCCGTTCG TTTGTGCCGA
```

701 751 801 851	ATCCGGACGG ATCGACGGCG TCGCGGCGGC CGGAACGCGA	TGAAAAATGT AAGGCGTTTG AATCCGGACC	GCTGATTATT TGCGCGTGTT GGTATGAGAG	CCGTCGCTGA GGGTGCGGAC ACAGTATGAA	CCGTGAAAAA GGCAAGGCGG TACCGAAGTA
901	AAAAGCGGGT	TGAAAGAGGG	GGACAAAGTG	GTCATCTCCG	AAATAACCGC
951	CGCCGAGCAA	CAGGAAAGCG	GCGAACGCGC	CCTAGGCGGC	CCGCCGCGCC
1001	GATAA				

This corresponds to the amino acid sequence <SEQ ID 1214; ORF 290>:

```
m290.pep (partial)
      1 ..VSVGAQASGQ IKILYVKLGQ QVKKGDLIAE INSTSQTNTL NTEKSKLETY
            QAKLVSAQIA LGSAEKKYKR QAALWKENAT SKEDLESAQD AFAAAKANVA
      51
            ELKALIROSK ISINTAESEL GYTRITATMD GTVVAILVEE GOTVNAAOST
     101
            PTIVQLANLD MMLNKMQIAE GDITKVKAGQ DISFTILSEP DTPIKAKLDS
     151
            VDPGLTTMSS GGYNSSTDTA SNAVYYYARS FVPNPDGKLA TGMTTQNTVE
     201
            IDGVKNVLII PSLTVKNRGG KAFVRVLGAD GKAAEREIRT GMRDSMNTEV
     251
            KSGLKEGDKV VISEITAAEQ QESGERALGG PPRR*
     301
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m290/g290 96.1% identity in 334 aa overlap

m290/g290	96.1% identi	ty in 334 aa	overlap			
				10	20	30
			VS	VGAQASGQIKI		
m290.pep						
	DONNYTTENU	RRGDISRTVSAT	rGETSPSNLVS	VGAOASGOIKE	(LYVKLGOOV)	KKGDLIAE
g290	30	40 50		70	80	
	30		,			
	40	50	60	70	80	90
m290.pep	TNSTSOTNTI	NTEKSKLETYO	AKLVSAQIALG	SAEKKYKRQA	ALWKENATSK	EDLESAQD
M230.POP	1111.1111.		1	1111111	[] [] : : ! !] [111111
g290	INSTTQTNTI	DMEKSKLETYQ	AKLVSAQIALG	Saekkykrqa/	ALWKDDATSK	EDLESAQD
3	90 1	.00 11	120	130	140	
	•				140	150
	100	110	120	130	140	
m290.pep	AFAAAKANVA	ELKALIROSKI	SINTAESELGY	TRITATMUGT	AANTTAEEGÖ	11111111
	1:	AELKALIRQSKI		. } የመን ተጥ እጥ M D ርጥነ	UNATEVERGO	TZOAANVT
g290			SINTAESDEGI 0 180	190	200	1414111201
	150	160 17	0 100	, 150	200	
	160	170	180	190	200	210
m290.pep	LINATIONTEE	MMINKMOIAEG	DITKVKAGODI	SFTILSEPDT	PIKAKLDSVD	PGLTTMSS
m290.pep	111111111				11111111111	11111111
g290	PTTVOLANL	OMMLNKMQIAEG	DITKVKAGQDI	SFTILSEPDT	PIKAKLDSVD	PGLTTMSS
gzoo		220 23		250	260	1
	22	230	240	250	260	270
m290.pep	GGYNSSTDT	ASNAVYYYARSF	VPNPDGKLATO	GMTTQNTVEID	GVKNVLIIPS	LTVKNRGG
-	[1][1][1][1]	1111111111111		111111111111	111111:111	11111111
g290		ASNAVYYYARSF			GOKNOTTIES	LTVKNRGG
	270	280 29	0 300	0 310	320	,
	••		300	310	320	330
	28	0 290 DGKAAEREIRTG				
m290.pep	KAFVRVLGA	:	1.11111111	11111111111		
- 000		DGKAVEREIRTO	HILLIIII KUUNUUTEVK	SGLKEGDKVVI	SEITAAEOOI	SGERALGG
g290		340 35			380)
	330	310 30	,,,	•		
m290.pep	PPRRX					
	11111					
g290	PPRRX					
•	390					

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1215>:
      a290.seq
               ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG CGGCGGCAGC
               GGTTTGGGGC GGATGGTCTT ATCTGAAGCC CGAGCCGCAG GCTGCTTATA
            51
           101 TTACGGAAAC GGTCAGGCGC GGCGACATCA GCCGGACGGT TTCTGCAACA
               GGGGAGATTT CGCCGTCCAA CCTGGTATCG GTCGGCGCGC AGGCATCGGG
               GCAGATTAAG AAACTTTATG TCAAACTCGG GCAACAGGTT AAAAAGGGCG
           201
           251 ATTTGATTGC GGAAATCAAT TCGACCTCGC AGACCAATAC GCTCAATACG
           301 GAAAAATCCA AATTGGAAAC GTATCAGGCG AAGCTGGTGT CGGCACAGAT
           351 TGCATTGGGC AGCGCGGAGA AGAAATATAA GCGTCAGGCG GCGTTGTGGA
           401 AGGATGATGC GACCGCTAAA GAAGATTTGG AAAGCGCACA GGATGCGCTT
           451 GCCGCCGCCA AAGCCAATGT TGCCGAGCTG AAGGCTCTAA TCAGACAGAG
-- 500
           501 CAAAATTTCC ATCAATACCG CCGAGTCGGA ATTGGGCTAC ACGCGCATTA
           551 CCGCAACGAT GGACGGCACG GTGGTGGCGA TTCTCGTGGA AGAGGGGCAG
           601 ACTGTGAACG CGGCGCAGTC TACGCCGACG ATTGTCCAAT TGGCGAATCT
           651 GGATATGATG TTGAACAAAA TGCAGATTGC CGAGGGCGAT ATTACCAAGG
           701 TGAAGGCGGG GCAGGATATT TCGTTTACGA TTTTGTCCGA ACCGGATACG
           751 CCGATTAAGG CGAAGCTCGA CAGCGTCGAC CCCGGGCTGA CCACGATGTC
           801 GTCGGGCGGC TACAACAGCA GTACGGATAC GGCTTCCAAT GCGGTCTACT
           851 ATTATGCCCG TTCGTTTGTG CCGAATCCGG ACGGCAAACT CGCCACGGGG
           901 ATGACGACGC AGAATACGGT TGAAATCGAC GGTGTGAAAA ATGTGCTGAT
                TATTCCGTCG CTGACCGTGA AAAATCGCGG CGGCAGGGCG TTTGTGCGCG
           951
          1001 TGTTGGGTGC AGACGGCAAG GCGGCGGAAC GCGAAATCCG GACCGGTATG
          1051 AGAGACAGTA TGAATACCGA AGTAAAAAGC GGGTTGAAAG AGGGGGACAA
          1101 AGTGGTCATC TCCGAAATAA CCGCCGCCGA GCAGCAGGAA AGCGGCGAAC
          1151 GCGCCCTAGG CGGCCGCCG CGCCGATAA
 This corresponds to the amino acid sequence <SEQ ID 1216; ORF 290.a>:
       a290.pep
                MAKMMKWAAV AAVAAAAVWG GWSYLKPEPQ AAYITETVRR GDISRTVSAT
                GEISPSNLVS VGAQASGQIK KLYVKLGQQV KKGDLIAEIN STSQTNTLNT
            51
           101 EKSKLETYQA KLVSAQIALG SAEKKYKRQA ALWKDDATAK EDLESAQDAL
           151 AAAKANVAEL KALIRQSKIS INTAESELGY TRITATMDGT VVAILVEEGQ
                TVNAAQSTPT IVQLANLDMM LNKMQIAEGD ITKVKAGQDI SFTILSEPDT
           251 PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV PNPDGKLATG
                MTTONTVEID GVKNVLIIPS LTVKNRGGRA FVRVLGADGK AAEREIRTGM
           301
           351 RDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP RR*
       m290/a290
                   98.2% identity in 334 aa overlap
                                                                20
                                                      10
                                               VSVGAQASGQIKILYVKLGQQVKKGDLIAE
       m290.pep
                                               PQAAYITETVRRGDISRTVSATGEISPSNLVSVGAQASGQIKKLYVKLGQQVKKGDLIAE
       a290
                                               60
                                      50
                             40
                                    50
                                              60
                   INSTSQTNTLNTEKSKLETYQAKLVSAQIALGSAEKKYKRQAALWKENATSKEDLESAQD
       m290.pep
                   {\tt INSTSQTNTLNTEKSKLETYQAKLVSAQIALGSAEKKYKRQAALWKDDATAKEDLESAQD}
       a290
                                     110
                                              120
                   90
                           100
                                            120
                                                               140
                          100
                                   110
                   AFAAAKANVAELKALIRQSKISINTAESELGYTRITATMDGTVVAILVEEGQTVNAAQST
       m290.pep
                   \verb|ALAAAKANVAELKALIRQSKISINTAESELGYTRITATMDGTVVAILVEEGQTVNAAQST|
       a290
                                                                 200
                                     170
                                              180
                                                        190
                   150
                           160
                                   170
                                            180
                                                      190
                   PTIVQLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDTPIKAKLDSVDPGLTTMSS
       m290.pep
                   PTIVOLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDTPIKAKLDSVDPGLTTMSS
       a290
                            220
                                     230
                                               240
                                                        250
                                                                 260
                   210
                                             240
                                                      250
                                                                260
                                                                         270
                          220
                                   230
```

```
GGYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLIIPSLTVKNRGG
     m290.pep
                GGYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLIIPSLTVKNRGG
     a290
                                                      320
               270
                       280
                               290
                                       300
                                              310
                                             310
                                                     320
                                                             330
                             290
                                     300
                     280
                KAFVRVLGADGKAAEREIRTGMRDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGG
     m290.pep
                RAFVRVLGADGKAAEREIRTGMRDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGG
      a290
                                              370
               330
                       340
                               350
                                       360
__ 100 =
                PPRRX
     m290.pep
                11111
      a290
                PPRRX
               390
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1217>:

```
q292.seq
          atgaaaacca agttaatcaa aatcttgacc ccctttaccg tcctgccgct
         gctggcttgc gggcaaacgc ccgtttccaa tgccaacgcc gaatccgccg
     51
          tcaaagccga atccgccggc aaatccgttg ccgcttcttt gaaagcgcgt
     101
     151 ttggaaaaaa cctattccgc ccaagatttg aaagtgttga gcgtcagcga
         aacaccggtc aaaggcattt acgaagtcgt cgtcagcggc aggcagatta
     201
         tctacaccga tgccgaaggc ggctatatgt tcgtcggcga actcatcaac
     251
     301 atcgacacgo gcaaaaacct gaccgaagaa cgcgccgccg atttgaacaa
     351 aatcgacttc gcctccctgc ctttggacaa agccatcaaa gaagtacgcg
     401 gcaacggcaa gctgaaagtc gccgtcttct ccgaccccga ttgtccgttc
         tgcaaacgct tggaacatga gtttgaaaaa atgaccgacg tgacggttta
     451
     501 cagetttatg atgeceattg eeggeetgea eecagatgee gegegeaagg
     551 cgcaaatctt atggtgtcag cccgaccgtg ccaaagcgtg gacggattgg
     601 atgcgtaaag gcaaattccc ggtcggcggc agcatctgcg acaatcccgt
     651 cgcggaaacc acttccttgg gcgaacagtt cggcttcaac ggcacgccga
     701 cccttcgtct tccccaacgg gcgcacccaa agcggttaca gcccgatgcc
     751 ccaactggag gaaatcatcc gcaaaaacca gcagtaaacc cgcaatga
```

This corresponds to the amino acid sequence <SEQ ID 1218; ORF 292.ng>:

```
9292.pep

1 MKTKLIKILT PFTVLPLLAC GQTPVSNANA ESAVKAESAG KSVAASLKAR
51 LEKTYSAQDL KVLSVSETPV KGIYEVVVSG RQIIYTDAEG GYMFVGELIN
101 IDTRKNLTEE RAADLNKIDF ASLPLDKAIK EVRGNGKLKV AVFSDPDCPF
151 CKRLEHEFEK MTDVTVYSFM MPIAGLHPDA ARKAQILWCQ PDRAKAWTDW
201 MRKGKFPVGG SICDNPVAET TSLGEQFGFN GTPTLRLPQR AHPKRLQPDA
251 PTGGNHPQKP AVNPQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1219>:

```
m292.seq
         ATGAAAACCA AGTTAATCAA AATCTTGACC CCCTTTACCG TCCTCCCGCT
         GCTGGCTTGC GGGCAAACGC CCGTTTCCAA TGCCAACGCC GAACCCGCCG
         TCAAAGCCGA GTCCGCCGGC AAATCCGTTG CCGCCTCTTT GAAAGCGCGT
     101
         TTGGAAAAA CCTATTCCGC CCAAGATTTG AAAGTGTTGA GCGTCAGCGA
     151
          AACACCGGTC AAAGGCATTT ACGAAGTCGT CGTCAGCGGC AGGCAGATTA
     201
         TCTACACCGA TGCCGAAGGC GGCTATATGT TCGTCGGCGA ACTCATCAAC
     251
     301 ATCGACACGC GCAAAAACCT GACCGAAGAA CGCGCCGCCG ATTTGAACAA
     351 AATCGACTTC GCCTCCCTGC CTTTGGACAA AGCCATCAAA GAAGTGCGCG
          GCAACGGCAA GCTGAAAGTC GCCGTCTTCT CCGACCCCGA TTGTCCGTTC
     401
          TGCAAACGCT TGGAACACGA GTTTGAAAAA ATGACCGACG TGACGGTTTA
     451
          CAGCTTTATG ATGCCCATTG CCGGCCTGCA CCCCGATGCC GCGCGCAAGG
          CGCAAATCTT ATGGTGTCAG CCCGACCGCG CCAAAGCGTG GACGGATTGG
     551
          ATGCGTAAAG GCAAATTCCC GGTCGGCGGC AGCATCTGCG ACAATCCCGT
     601
          CGCGGAAACC ACTTCCTTGG GCGAACAATT CGGCTTCAAC GGCACGCCGA
     651
          CCCTCGTCTT CCCCAACGGG CGCAGCCAAA GCGGCTACAG CCCGATGCCC
```

WO 99/57280

680

751 CAACTGGAGG AAATCATCCG CAAAAATCAA TAA

This corresponds to the amino acid sequence <SEQ ID 1220; ORF 292>:

m292.pep

- 1 MKTKLIKILT PFTVLPLLAC GQTPVSNANA EPAVKAESAG KSVAASLKAR
 51 LEKTYSAQDL KVLSVSETPV KGIYEVVVSG RQIIYTDAEG GYMFVGELIN
 101 IDTRKNLTEE RAADLNKIDF ASLPLDKAIK EVRGNGKLKV AVFSDPDCPF
- 151 CKRLEHEFEK MTDVTVYSFM MPIAGLHPDA ARKAQILWCQ PDRAKAWTDW
- 201 MRKGKFPVGG SICDNPVAET TSLGEQFGFN GTPTLVFPNG RSQSGYSPMP
- 251 QLEEIIRKNQ *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m292/g292 98.7% identity in 238 aa overlap

	•		_			
	10	20	30	40	50	60
m292.pep	MKTKLIKILTPFTVL	PLLACGQTE	VSNANAEPAV	KAESAGKSVA	ASLKARLEKT	YSAQDL
	[]]]]]]]]]]]	111111111			1111111111	111111
g292	MKTKLIKILTPFTVI 10	20	VSNANAESAV 30	40	50 50	13AQDL 60
	10			- +		
	70	80	90	100	110	120
m292.pep	KVLSVSETPVKGIYE				KNLTEERAAD	LNKIDF
-202					KNLTEERAAD	LNKIDE
g292	70	80	90	100	110 ·	120
	130	140	150	160	170	180
m292.pep	ASLPLDKAIKEVRGN	IIIIIIIIII	PDPDCPFCKKI	111111111		
g292	ASLPLDKAIKEVRGN	GKLKVAVE	SDPDCPFCKRI	EHEFEKMTDV		
9232	130	140	150	160	170	180
		000	010	200	220	240
-202	190 ARKAQILWCQPDRAF	200 מאשחשאפאי	210	220 NPVAETTSLG	230 EOFGFNGTPT	
m292.pep	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
g292	ARKAQILWCQPDRAF	AWT DWMRK				
•	190	200	210	220	230	240
	250	260				
m292.pep	RSOSGYSPMPQLEED					
g292	AHPKRLQPDAPTGG		PQX			
	250	260				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1221>:

.seq					
1	ATGAAAACCA	AGTTAATCAA	AATCTTGACC	CCCTTTACCG	TCCTCCCGCT
51	GCTGGCTTGC	GGGCAAACGC	CCGTTTCCAA	TGCCAACGCC	GAACCCGCCG
101	TCAAAGCCGA	GTCCGCCGGC	AAATCCGTTG	CCGCCTCTTT	GAAAGCGCGT
151	TTGGAAAAAA	CCTATTCCGC	CCAAGATTTG	AAAGTGTTGA	GCGTCAGCGA
201	AACACCGGTC	AAAGGCATTT	ACGAAGTCGT	CGTCAGCGGC	AGGCAGATTA
251	TCTACACCGA	TGCCGAAGGC	GGCTATATGT	TCGTCGGCGA	ACTCATCAAC
301	ATCGACACGC	GCAAAAACCT	GACCGAAGAA	CGCGCCGCCG	ATTTGAACAA
351	AATCGACTTC	GCCTCCCTGC	CTTTGGACAA	AGCCATCAAA	GAAGTGCGCG
401	GCAACGGCAA	GCTGAAAGTC	GCCGTCTTCT	CCGACCCCGA	TTGTCCGTTC
451	TGCAAACGCT	TGGAACACGA	GTTTGAAAAA	ATGACCGACG	TGACGGTTTA
501	CAGCTTTATG	ATGCCCATTG	CCGGCCTGCA	CCCCGATGCC	GCGCGCAAGG
551	CGCAAATCTT	ATGGTGTCAG	CCCGACCGCG	CCAAAGCGTG	GACGGATTGG
601	ATGCGTAAAG	GCAAATTCCC	GGTCGGCGGC	AGCATCTGCG	ACAATCCCGT
651	CGCGGAAACC	ACTTCCTTGG	GCGAACAATT	CGGCTTCAAC	GGCACGCCGA
701	CCCTCGTCTT	CCCCAACGGG	CGCAGCCAAA	GCGGCTACAG	CCCGATGCCC
751	CAACTGGAGG	AAATCATCCG	CAAAAATCAA	TAA	

a292.pep

159

This corresponds to the amino acid sequence <SEQ ID 1222; ORF 292.a>:

```
MKTKLIKILT PFTVLPLLAC GQTPVSNANA EPAVKAESAG KSVAASLKAR
        LEKTYSAQDL KVLSVSETPV KGIYEVVVSG RQIIYTDAEG GYMFVGELIN
     51
        IDTRKNLTEE RAADLNKIDF ASLPLDKAIK EVRGNGKLKV AVFSDPDCPF
    101
    151 CKRLEHEFEK MTDVTVYSFM MPIAGLHPDA ARKAQILWCQ PDRAKAWTDW
    201 MRKGKFPVGG SICDNPVAET TSLGEQFGFN GTPTLVFPNG RSQSGYSPMP
    251 QLEEIIRKNQ *
           100.0% identity in 260 aa overlap
m292/a292
                                  30
                                           40
                                                   50
                                                            60
           MKTKLIKILTPFTVLPLLACGQTPVSNANAEPAVKAESAGKSVAASLKARLEKTYSAQDL
m292.pep
           MKTKLIKILTPFTVLPLLACGQTPVSNANAEPAVKAESAGKSVAASLKARLEKTYSAQDL
a292
                 10
                          20
                                  30
                                          40
                                                   50
                                  90
                                          100
                                                  110
                          80
                  70
                                                           120
           KVLSVSETPVKGIYEVVVSGRQIIYTDAEGGYMFVGELINIDTRKNLTEERAADLNKIDF
m292.pep
           KVLSVSETPVKGIYEVVVSGRQIIYTDAEGGYMFVGELINIDTRKNLTEERAADLNKIDF
a292
                                  90
                                          100
                          80
                                                  110
                  70
                         140
                                 150
                                          160
                 130
           ASLPLDKAIKEVRGNGKLKVAVFSDPDCPFCKRLEHEFEKMTDVTVYSFMMPIAGLHPDA
m292.pep
           ASLPLDKAIKEVRGNGKLKVAVFSDPDCPFCKRLEHEFEKMTDVTVYSFMMPIAGLHPDA
a292
                                          160
                 130
                         140
                                  150
                                  210
                                          220
                                                  230
                 190
                         200
                                                           240
           ARKAQILWCQPDRAKAWTDWMRKGKFPVGGSICDNPVAETTSLGEQFGFNGTPTLVFPNG
m292.pep
           ARKAQILWCQPDRAKAWTDWMRKGKFPVGGSICDNPVAETTSLGEQFGFNGTPTLVFPNG
a292
                         200
                                  210
                                          220
                                                  230
                                                           240
                 190
                 250
           RSQSGYSPMPQLEEIIRKNQX
m292.pep
           11111111111111111111111
           RSQSGYSPMPQLEEIIRKNQX
a292
                 250
                         260
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1223>: g294.seq (partial)

```
atgcgtatta cctgtgcgcc gatgtcgctt ttgtcggcgg cagtctggtc
     ggttcgggct gtcagaacat catcgaaccg ctttcctgcg gcgttacgac
 51
101
     gatattcggc ttttcgacct acaatttttc cgaagcctgc cggcacgcct
151
      tggcatcggg tgcggcggtt caagtcgaat cggcggacgc gtggcgtgaa
201 gccgttgaaa aaaccttatc tggcgagggg ggcggaatgc agatgcaggc
     gcgcgtggac ggctttatcg cacaacatcg cggagcgggc gcgagaatcg
251
301 ccgaggcggt gcgggaagcg gtatgcggac atcgggggcg atagtgatac
351 aatccgtatc cgagtttcc ggttggagca tcgtatgagt atttatgccg
401 tcgcgcacat catccacctg tattgcgcca ccgcctttgt cggcggcgtg
      ttttttgaag tgctggtttt gtccgtcctg catacgggac gggtgtcgcg
451
501
      cgaggcgcgg cgcgaagtgg aaaaggcaat gtcttaccgc gccgtcaggg
      tgatgccgtt tgcggtcgga ctgctgttcg ccaggggaac tctagagtcg
601 actgcagcag catgccctc...
```

This corresponds to the amino acid sequence <SEQ ID 1224; ORF 294.ng>: g294.pep (partial)

- 1 MRITCAPMSL LSAAVWSVRA VRTSSNRFPA ALRRYSAFRP TIFPKPAGTP
 51 WHRVRRFKSN RRTRGVKPLK KPYLARGAEC RCRRAWTALS HNIAERARES
 101 PRRCGKRYAD IGGDSDTIRI RVFRLEHRMS IYAVAHIIHL YCATAFVGGV
 151 FFEVLVLSVL HTGRVSREAR REVEKAMSYR AVRVMPFAVG LLFARGTLES
- 201 TAAACP....

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1225>:

```
m294.seq
           ATGCGTATTA CCTGTGCGCC GATGTCGCTT TTGTCGGCGG CAGTCTGGTC
           GATTCGGGTT GTCAGAACAT CATCGAACCG CTTTCCTGCG GCGTTCCGAC
           GATATTCGGC TTTTCAACCT ACAATTTTC CGAAGCCTGC CGACACGCCT
       101
           TGGCATCGGG TGCGGCGGTT CAAGTCGAAT CGGCGGATGC GTGGCGGGAA
       151
           GCCGTTGAAA AAACCTTATC GTCCGAGGGG GGGGGGATGC AGATGCAGGC
       201
           GCGCGTGGAC GGCTTTATCG CACAACATCG CGGAGCGGGC GCGAGAATCG
       251
           CCGAGGCGGT GCGGGAAGCG GTATGCGGAT ATCGGGGGCG ATAGTGATAC
       301
           AATCCGTATC CGAGTTTTCC GTTTGGAGCA TCGTATGAGT ATTTATGCCG
       351
           TCGCGCACAT CGTTCATCTG TATTGCGCTA TTGCCTTTGT CGGCGGCGTG
       401
           TTTTTTGAAG TGCTGGTTTT GTCCGTCCTG CATACGGGAC GGGTGTCGCG
       451
           CGAGGCGCGG CGCGAAGTGG AAAAGGCAAT GTCTTACCGC GCCGTCAGGG
       501
           TGATGCCGTT TGTGGTCGGA CTGCTGTTCG CCAGCGGCAT CGTGATGGCG.
GCAAACCGCT ATCTTTCTAT ATTGGGCGAA CCGTTTGCCA CTTCCTTCGG
- FC:
       601
           TACGATGCTG ACGCTGAAAA TCCTGTTGGC GTTCAGCGTA TTGGCGCACT
       651
           TCGCCATCGC CGTCGTCAAA ATGGCGCGTT CCACACTGAC GGTCGGTTGG
       701
           TCGAAATACA TACACGCCGT CGTCTTTACC CATATGCTGC TGATTGTCTT
       751
           TTTGGCAAAA GCGATGTTTT ATATCAGCTG GTAA
  This corresponds to the amino acid sequence <SEQ ID 1226; ORF 294>:
  m294.pep
            MRITCAPMSL LSAAVWSIRV VRTSSNRFPA AFRRYSAFQP TIFPKPADTP
            WHRVRRFKSN RRMRGGKPLK KPYRPRGGGC RCRRAWTALS HNIAERARES
        51
            PRRCGKRYAD IGGDSDTIRI RVFRLEHRMS IYAVAHIVHL YCAIAFVGGV
       101
            FFEVLVLSVL HTGRVSREAR REVEKAMSYR AVRVMPFVVG LLFASGIVMA
       151
           ANRYLSILGE PFATSFGTML TLKILLAFSV LAHFAIAVVK MARSTLTVGW
       201
           SKYIHAVVET HMLLIVFLAK AMFYISW*
       251
   g294/m294 92.3% identity in 196 aa overlap
                                         30
                                20
               MRITCAPMSLLSAAVWSVRAVRTSSNRFPAALRRYSAFRPTIFPKPAGTPWHRVRRFKSN
   g294.pep
               MRITCAPMSLLSAAVWSIRVVRTSSNRFPAAFRRYSAFQPTIFPKPADTPWHRVRRFKSN
   m294
                                20
                                         30
                                                   40
                                                  100
                                                           110
                      70
                                80
                                         90
               RRTRGVKPLKKPYLARGAECRCRRAWTALSHNIAERARESPRRCGKRYADIGGDSDTIRI
   g294.pep
               RRMRGGKPLKKPYRPRGGGCRCRRAWTALSHNIAERARESPRRCGKRYADIGGDSDTIRI
   m294
                                                  100
                                                           110
                                                                    120
                      70
                                         90
                               140
                                        150
                      130
               RVFRLEHRMSIYAVAHIIHLYCATAFVGGVFFEVLVLSVLHTGRVSREARREVEKAMSYR
   g294.pep
               RVFRLEHRMSIYAVAHIVHLYCAIAFVGGVFFEVLVLSVLHTGRVSREARREVEKAMSYR
   m294
                                                           170
                     130
                               140
                                        150
                                                  160
                                                                     180
                               200
                      190
               AVRVMPFAVGLLFARGTLESTAAACP
   q294.pep
               AVRVMPFVVGLLFASGIVMAANRYLSILGEPFATSFGTMLTLKILLAFSVLAHFAIAVVK
   m294
                                                  220
                                                           230
                      190
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1227>:

		-		_	_
a294.seq					
1	ATGCGTATTA	CCTGTGCGCC	GATGTCGCTT	TTGTCGGCGG	CAGTCTGGTC
51	GATTCGGGCT	GTCAGAACAT	CATCGAACCG	CTTTCCTGCG	GCGTTCCGAC
101	GATATTCGGC	TTTTCGACCT	ACAATTTTTC	CGAAGCCTGC	CGGCACGCCT
151	TGGCATCGGG	TGCGGCGGTT	CAAGTCGAAT	CGGCGGACGC	GTGGCGGGAA
201	GCCGTTGAAA	AAAACTTATC	GTCCGAGGAG	GGCGGAATGC	AGATGCAGGC
251	GCGCGCGGAC	GGCTTTATCG	CACAACATCG	CGGAGCGGGC	GCGAGAATCG
301	CCGAGGCGGT	ACGGGAAGCG	GTATGCGGAC	ATCGGGGACG	ATAGTGATAC
351	AATCCGTATC	CGAGTTTTCC	GGTTGGAGTA	CCGTATGAGT	ATTTATGCCG
401	TCGCGCACAT	CGTCCACCTG	TATTGCGCCA	TCGCCTTTGT	CGGCGGCGTG
451	TTTTTTGAAG	TGCTGGTTTT	GTCCGTCCTG	CATACGGGAC	GGGTGTCGTG
501	CGAGGCGCGG	CGCGAAGTGG	AAAAGGCAAT	GTCTTACCGC	GCCGTCAGGG
551	TGATGCCGTT	TGTGGTCGGA	CTGCTGTTCG	CCAGCGGCAT	CGTGATGGCG
601	GCAAACCGCT	ATCTTTCTAT	ATTGGGCGAA	CCGTTTGCCA	CTTCCTTCGG
651	TACGATGCTG	ACGCTGAAAA	TCCTGTTGGC	GTTCAGCGTG	TTGGCGCACT

651

701

```
TCGCCATCGC CGTCGTCAAA ATGGCGCGTT CCACACTGAC CGTCGGCTGG
                TCGAAATACA TACACACCGT CGTCTTTACC CATATGCTGC TGATTGTCTT
           801 TTTGGCAAAA GCGATGTTTT ATATCAGCTG GTAA
  This corresponds to the amino acid sequence <SEQ ID 1228; ORF 294.a>:
                MRITCAPMSL LSAAVWSIRA VRTSSNRFPA AFRRYSAFRP TIFPKPAGTP
                WHRVRRFKSN RRTRGGKPLK KTYRPRRAEC RCRRARTALS HNIAERARES
            51
           101 PRRYGKRYAD IGDDSDTIRI RVFRLEYRMS IYAVAHIVHL YCAIAFVGGV
           151 FFEVLVLSVL HTGRVSCEAR REVEKAMSYR AVRVMPFVVG LLFASGIVMA
                ANRYLSILGE PFATSFGTML TLKILLAFSV LAHFAIAVVK MARSTLTVGW
           201
... Var. 1
            251 SKYIHTVVFT HMLLIVFLAK AMFYISW*
  m294/a294 94.9% identity in 277 aa overlap
                                                       40
                                              30
                                                                 50
                   MRITCAPMSLLSAAVWSIRVVRTSSNRFPAAFRRYSAFQPTIFPKPADTPWHRVRRFKSN
       m294.pep
                   MRITCAPMSLLSAAVWSIRAVRTSSNRFPAAFRRYSAFRPTIFPKPAGTPWHRVRRFKSN
       a294
                                                       40
                                                                 50
                                              30
                                    20
                                              90
                                                      100
                                                                110
                           70
                                     80
                   RRMRGGKPLKKPYRPRGGGCRCRRAWTALSHNIAERARESPRRCGKRYADIGGDSDTIRI
       m294.pep
                    RRTRGGKPLKKTYRPRRAECRCRRARTALSHNIAERARESPRRYGKRYADIGDDSDTIRI
       a294
                                              90
                                                      100
                                                                110
                           70
                                    80
                                             150
                                                      160
                                                                170
                                    140
                          130
                    RVFRLEHRMSIYAVAHIVHLYCAIAFVGGVFFEVLVLSVLHTGRVSREARREVEKAMSYR
       m294.pep
                    RVFRLEYRMSIYAVAHIVHLYCAIAFVGGVFFEVLVLSVLHTGRVSCEARREVEKAMSYR
       a294
                                                      160
                                                                170
                                                                          180
                                    140
                                             150
                          130
                                             210
                                                      220
                                                                230
                                                                          240
                          190
                                    200
                    AVRVMPFVVGLLFASGIVMAANRYLSILGEPFATSFGTMLTLKILLAFSVLAHFAIAVVK
       m294.pep
                    AVRVMPFVVGLLFASGIVMAANRYLSILGEPFATSFGTMLTLKILLAFSVLAHFAIAVVK
       a294
                                                                230
                          190
                                    200
                                             210
                                                       220
                          250
                                    260
                                             270
                    MARSTLTVGWSKYIHAVVFTHMLLIVFLAKAMFYISWX
       m294.pep
                    MARSTLTVGWSKYIHTVVFTHMLLIVFLAKAMFYISWX
       a294
                                    260
                                             270
                          250
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1229>:
  g295.seg
           atgctcggga tggcgcggca cgacggccag cagggcatcg ccgcgatatt
           gttgccacgc cgccagcagt ttttccgcct cgtcttcgcc ccgataaacg
       51
           egegtgetge egeacaegge aaceggeegg ceteegatge gtttttcaaa
       101
       151 ctgccccgcc agcgttttca tgtcttcaga cggcatcagg tcgtatttgg
       201 tattgccgca cacctgcacg gatgccgcgc ccaatttcgc caaccgcgcc
251 gcatccgcct ccgtctgcgc cagacagccc gtcagcgaag cggctgcggg
       301 acggatcagg cggcggactt tcagataacc gttcagcgat ttttccgaca
           gccgcgcatt cgccaaaaac agcggcacac ccgctcgccg gcattccttc
       351
       401 atcagattgg gccagatttc ggtttccatc aaaatgccga acatcgggcg
           gtgttcgcgc aaaaactgcc gtacccacgt ttttttgtca tacggaagat
       451
       ggggtcatct gcgtcatcag cagcggcgca tcgggaaaac gccgccgcaa ctcgcgtatc aagggctggg cggcacgcgt ttctccgacc gaaacggcgt
```

This corresponds to the amino acid sequence <SEQ ID 1230; ORF 295.ng>:

gtatccaaac cgcgccggta acgggattcg gatgcggctt gccgaaacgc

tegtecetat gegeceggta tgceggggca etteeggage gtttgtecaa

751 ataacgccgt atccatatcg gcgcaagcag ccacaataca tcataaagcc attggaacat ctttctattt cctgcaaaac aaatgccgtc cgaacggttc

ggacggcatt tcggcaacgg aatcaaatat cgtag

```
g295.pap
        MLGMARHDGQ QGIAAILLPR RQQFFRLVFA PINARAAAHG NRPASDAFFK
         LPRORFHVFR RHOVVFGIAA HLHGCRAOFR OPRRIRLRLR OTARORSGCG
     51
        TDQAADFQIT VQRFFRQPRI RQKQRHTRSP AFLHQIGPDF GFHQNAEHRA
    101
        VFAQKLPYPR FFVIRKIAAL RIGKQNLRGF PSRRGHLRHQ QRRIGKTPPQ
    151
    201 LAYOGLGGTR FSDRNGVYPN RAGNGIRMRL AETLVPMRPV CRGTSGAFVQ
    251 ITPYPYRRKQ PQYIIKPLEH LSISCKTNAV RTVRTAFRQR NQIS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1231>:
m295.seq
         ATGCTCGGGA TGGCGCGCA CGACGACCAG CAGCGCATCG CCGCGATATT
         GTTGCCACGC CGCCAGCAGT TTTTCCGCCT CGTCTTCACC CCGATAAACG
         CGCGTGCTGC CGCACACGGC AACCGGCCGG CCTCCGATGC GTTTTTCAAA
         CTGCCCCGCC AGCGTTTTCA TCTGTTCCGA CGGTATGATG TCGTATTTGG
    151
         TATTGCCGCA CACCTGCACG GATGCCGCGC CCAATTTCGC CAACCGCGCC
    201
         GCATCCGCCT CTGTCTGCGC CAGACACCCC GTCAGCGAAG CGGCGGCAGG
    251
         ACGGATCAGG CGGCGGACTT TCAGATAACC GTTCAACGAT TTTTCCGACA
    301
         GCCGCGCATT CGCCAAAAAC AGCGGCACAC CCGCGCGCCG GCATTCCCTC
    351
         ATCAGGTTGG GCCAGATTTC GGTTTCCATC AAAATGCCGA ACATCGGGCG
    401
         GTGTTCGCGC AAAAACTGCC GTACCCACGT TTTTTTGTCA TACGGAAGAT
    451
         AGCGGCATTG CGCATCGGGA AACAGAACTT GCGCGGGTTTC CCGCCCCGTC
    501
         GGGGTCATCT GCGTCATCAG CAGCGGCGCA TCGGGAAAAC GCCGCCGCAA
    551
         CTCGCGTATC AAGGACTGGG CGGCACGCGT TTCTCCGACC GAAACGGCGT
     601
         GTATCCAAAC CGCGCCGGTA ACGGGATTCG GATACGGCTT GCCGAAACGC
         TCGTCCCGAT GCGCCCGATA TGCCGGGGCA CTTCCGGAGC GTTTGTCCAA
    701
     751 ATAACGCCGT ATCCATATCG GCGCAAGCAG CCACAATACA TCATAAAGCC
        ATTGGAACAT CTTTCTATTT CCTGCAAAAC AAATGCCGTC TGAACGGTTC
     851 AGACGGCATT TCGGCAACGG AATCAAATAT CGTAG
This corresponds to the amino acid sequence <SEQ ID 1232; ORF 295>:
m295.pep
         MLGMARHDDO ORIAAILLPR ROOFFRLVFT PINARAAAHG NRPASDAFFK LPRORFHLFR RYDVVFGIAA HLHGCRAOFR QPRRIRLCLR QTPRQRSGGR
         TDQAADFQIT VQRFFRQPRI RQKQRHTRAP AFPHQVGPDF GFHQNAEHRA
     101
         VFAQKLPYPR FFVIRKIAAL RIGKONLRGF PPRRGHLRHQ QRRIGKTPPQ
     151
     201 LAYOGLGGTR FSDRNGVYPN RAGNGIRIRL AETLVPMRPI CRGTSGAFVQ
     251 ITPYPYRRKQ PQYIIKPLEH LSISCKTNAV XTVQTAFRQR NQIS*
           93.9% identity in 294 aa overlap
m295/g295
                                       30
                                                40
            {\tt MLGMARHDDQQRIAAILLPRRQQFFRLVFTPINARAAAHGNRPASDAFFKLPRQRFHLFR}
m295.pep
             MLGMARHDGQQGIAAILLPRRQQFFRLVFAPINARAAAHGNRPASDAFFKLPRQRFHVFR
g295
                             20
                                       30
                    10
                                                        110
                                       90
                                               100
                             80
             RYDVVFGIAAHLHGCRAQFRQPRRIRLCLRQTPRQRSGGRTDQAADFQITVQRFFRQPRI
m295.pep
            q295
                    70
                                       90
                                               100
                                                        110
             ROKORHTRAPAFPHOVGPDFGFHQNAEHRAVFAQKLPYPRFFVIRKIAALRIGKONLRGF
m295.pep
             namen aenamananinamanananani
             RQKQRHTRSPAFLHQIGPDFGFHQNAEHRAVFAQKLPYPRFFVIRKIAALRIGKQNLRGF
 q295
                                               160
                   130
                             140
                                      150
                                      210
                                               220
                   190
                             200
             PPRRGHLRHQQRRIGKTPPQLAYQGLGGTRFSDRNGVYPNRAGNGIRIRLAETLVPMRPI
m295.pep
             PSRRGHLRHQQRRIGKTPPQLAYQGLGGTRFSDRNGVYPNRAGNGIRMRLAETLVPMRPV
 q295
                                               220
                                                         230
                                      210
                   190
                                                         290
                                      270
                             260
                   250
             CRGTSGAFVQITPYPYRRKQPQYIIKPLEHLSISCKTNAVXTVQTAFRQRNQISX
 m295.pep
             CRGTSGAFVQITPYPYRRKQPQYIIKPLEHLSISCKTNAVRTVRTAFRQRNQIS
 g295
                                                         290
                                               280
                   250
                             260
                                      270
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1233>:
       a295.seq
                ATGCTCGGGA TGGCGCGGCA CGACGACCAG CAGGGCATCG CCGCGATATT
                GTTGCCACGC CGCCAGCAGT TTTTCCGCCT CGTCTTCACC CCGATAAACG
            51
                CGCGTGCTGC CGCACACGGC AACCTGCCGG TCTCCGATGC GTTTTTCAAA
           101
                CTGCCCCGCC AGCGTTTTCA TCTGTTCCGA CGGCATCAGG TCGTATTTGG
           151
                TATTGCCGCA CACCTGCACG GATGCCGCGC CCAATTTCGC CAACCGCGCC
           201
                GCATCCGCCT CCGTCTGTGC CAGACAGCCC GTCAGCGAAG CGGCGGCAGG
           251
                ACGGATCAGG CTGCGGACTT TCAGATAACC GTTTAGCGAT TTTTCCGACA
           301
                GCCGCGCATT CGCCAAAAAC AGCGGCACAC CCGTGCGCCG GCATTCCTTC
           351
                ATCAGATTGG GCCAGATTTC GGTTTCCATC AAAATGCCGA ACATCGGGCG
           401
                GTGTTCGCGC AAAAACTGCC GTACCCACGT TTTTTTGTCA TACGGAAGAT
__ 3121 7
           451
                501
                GGGGTCATCT GCGTCATCAG CAGCGGCGCA TCGGGGAAAAC GCTGCCGCAA
           551
                CTCGCGTATC AAAGGTTGGG CGGCACGCGT TTCCCCGACC GAAACGGCGT
           601
                GTATCCAAAC CGCGCCGGTA .ACGGGATTCG GATACGGCTT GCCGAAACGC
           651
                TCGCCCCGAT GCGCCCGATA TGCAGGGGCA CTTCCGGAGC GTTTGTCCAA
           701
                ATAACGCCGT ATCCATATCG GCGCAAGCAG CCACAATACA TCATAAAGCC
            751
                ATTGGAACAT CTTTCTATTT CCTGCAAAAC AAATGCCGTC CGAACGGTTC
           801
                GGACGGCATT TCGGCAACGG AATCAAATAT CGTAG
  This corresponds to the amino acid sequence <SEQ ID 1234; ORF 295.a>:
       a295.pep
                MLGMARHDDQ QGIAAILLPR RQQFFRLVFT PINARAAHG NLPVSDAFFK
                LPRORFHLFR RHQVVFGIAA HLHGCRAQFR QPRRIRLRLC QTARQRSGGR
             51
                TDQAADFQIT V*RFFRQPRI RQKQRHTRAP AFLHQIGPDF GFHQNAEHRA
            101
                VFAQKLPYPR FFVIRKIAAL CIRKONLRGF PSRRGHLRHQ QRRIGKTLPQ
            151
                LAYORLGGTR FPDRNGVYPN RAGNGIRIRL AETLAPMRPI CRGTSGAFVO
            201
                ITPYPYRRKQ PQYIIKPLEH LSISCKTNAV RTVRTAFRQR NQIS*
            251
             93.2% identity in 294 aa overlap
   m295/a295
                                           30
                                                    40
                                  20
                          10
                   {	t MLGMARHDDQQRIAAILLPRRQQFFRLVFTPINARAAAHGNRPASDAFFKLPRQRFHLFR}
       m295.pep
                   	t MLGMARHDDQQGIAAILLPRRQQFFRLVFTPINARAAAHGNLPVSDAFFKLPRQRFHLFR
       a295
                                                    40
                                                             50
                                                                      60
                                   20
                          10
                                           90
                                                   100
                                                            110
                   m295.pep
                   RHQVVFGIAAHLHGCRAQFRQPRRIRLRLCQTARQRSGGRTDQAADFQITVXRFFRQPRI
       a295
                                           90
                                                   100
                                                            110
                                                            170
                                                   160
                                          150
                         130
                                  140
                   RQKQRHTRAPAFPHQVGPDFGFHQNAEHRAVFAQKLPYPRFFVIRKIAALRIGKQNLRGF
       m295.pep
                   RQKQRHTRAPAFLHQIGPDFGFHQNAEHRAVFAQKLPYPRFFVIRKIAALCIRKQNLRGF
        a295
                                                            170
                                                                     180
                                           150
                                                   160
                         130
                                  140
                                                   220
                                                            230
                                  200
                                           210
                         190
                   PPRRGHLRHQQRRIGKTPPQLAYQGLGGTRFSDRNGVYPNRAGNGIRIRLAETLVPMRPI
        m295.pep
                   PSRRGHLRHQQRRIGKTLPQLAYQRLGGTRFPDRNGVYPNRAGNGIRIRLAETLAPMRPI
        a295
                                                            230
                                  200
                                           210
                                                   220
                         190
                                  260
                                           270
                                                   280
                   CRGTSGAFVQITPYPYRRKQPQYIIKPLEHLSISCKTNAVXTVQTAFRQRNQISX
        m295.pep
                    CRGTSGAFVQITPYPYRRKQPQYIIKPLEHLSISCKTNAVRTVRTAFRQRNQISX
        a295
                                  260
                                           270
                                                   280
                                                            290
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1235>: q297.seq

ATGGCTGTCT TCCCACTTTC GGCAAAACAT CGGAAATACG CGCTGCGCGC

```
686
```

```
51 GCTTGCCGTT TCGATTATTC TGGTGtcgGC GGCATACATT GCttcgacag
     aggggaccga gcgcgtcaga ccgcAGCGCG TggaacaaAA ACTGCCGCCG
101
     CTGTCtTGGg gcggcaacgg CGTtcagacg gcaTATTGGG TGCAGGAGGC
151
     GGTGCagccg ggggactcgC TGGCGGACGT GCTGGCGCGT TCGGGTATGG
201
     CGCGGGacga gattgCCcga ATcacGGAAA aataTggcgG CGAAGCCGAT
     TTGCGGCALL LGCGTGCCGA CCAGTCGGTT CATGTTTTGG TCGGCGGCGA
     CGGCAGTGCG CGCGAAGTGC AGTTTTLLAC CGACGAAGAC GGCGAGCGCA
     aTctGGTCGC TTTGGAAAAA AAAGGCGGCA TATGGCGGCG GTCGGCTTCT
     GATGCGGATA TGAAGGTTTT GCCGACACTG CGTTCGGTCG TGGTCAAAAC
451
501 GTCGGCGCG GGTTCGCTGG CGCGGGCGGA AGTGCCCGTC GAAATCCGCG
     AATCCTTAAG CGGGATTTTT GCCGGCCGCT TCAGCCTTGA CGGTTTGAAG
551
     GAAGGCGATG CCGTGCGCCT GCTTTACGAC AGCCTGTATT TCCACGGGCA
601
     GCAGGTGGCG GCGGGCGATA TTTTGGCGGC GGAAGTTGTC AAGGGCGGCA
651
     CAACCCATCA GGCGTTCTAT TACCGTTCGG ACAAGGAAGG CGGAGGGGGC
701
      GGCAATTATT ACGATGAAGA CGGCAGGGTG TTGCAGGAAA AAGGCGGCTT
751
      CAACATCGAG CCGCTGGTCT ATACGCGCAT TTCTTCGCCG TTCGGCTACC
801
     GTATGCACCC CATCCTGCAC ACATGGCGGC TGCACACGGG CATCGATTAT
GCCGCACCGC AGGGAACGCC GGTCAGGGCT TCCGCCGACG GCGTGATTAC
     CTTTAAAGGC CGGAAGGGCG GATACGGCAA CGCGGTGATG ATACGCCACG
     CCAACGGTGT GGAAACGCTG TACGCGCACT TGAGCGCGTT TTCGCAGGCA
1001
     CAAGGCAATG TGCGCGGCGG CGAGGTCATC GGTTTTGTCG GTTCGACAGG
1051
     GCGTTCGACC GGGCCGCACC TGCATTACGA GGCGCGCATC AACGGGCAGC
1101
     CCGTCAATCC TGTTTCGGTC GCATTGCCGA CACCCGAATT GACGCAGGCG
1151
     GACAAGGCGG CGTTTGCCGC GCAGAAACAG AAGGCGGACG CGCTGCTTGC
1201
1251 GCGCTTGCGC GGCATACCGG TTACCGTGTC GCAATCGGAT TGA
```

This corresponds to the amino acid sequence <SEQ ID 1236; ORF 297.ng>:

```
g297.pep
```

```
MAVFPLSAKH RKYALRALAV SIILVSAAYI ASTEGTERVR PQRVEQKLPP
    LSWGGNGVQT AYWVQEAVQP GDSLADVLAR SGMARDEIAR ITEKYGGEAD
51
    LRHLRADOSV HVLVGGDGSA REVOFFTDED GERNLVALEK KGGIWRRSAS
101
    DADMKVLPTL RSVVVKTSAR GSLARAEVPV EIRESLSGIF AGRFSLDGLK
151
    EGDAVRLLYD SLYFHGQQVA AGDILAAEVV KGGTTHQAFY YRSDKEGGGG
201
    GNYYDEDGRV LQEKGGFNIE PLVYTRISSP FGYRMHPILH TWRLHTGIDY
    AAPQGTPVRA SADGVITFKG RKGGYGNAVM IRHANGVETL YAHLSAFSQA
    QGNVRGGEVI GFVGSTGRST GPHLHYEARI NGQPVNPVSV ALPTPELTQA
    DKAAFAAQKQ KADALLARLR GIPVTVSQSD *
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1237>:

```
ATGGCTGTCT TCCCACTTTC GGCAAAACAT CGGAAATACG CGCTGCGTGC
     GCTTGCCGTT TCGATTATTT TGGTGTCGGC GGCATACATT GCTTCGACAG
     AGAGGACGGA GCGCGTCAGA CCGCAGCGCG TGGAACAAAA TCTGCCGCCG
101
     CTGTCTTGGG GCGGCAGCGG CGTTCAGACG GCATATTGGG TGCAGGAGGC
     GGTGCAGCCG GGCGACTCGC TGGCGGACGT GCTGGCGCGT TCGGGTATGG
201
     CGCGGGACGA GATTGCCCGA ATCACGGAAA AATATGGCGG CGAAGCCGAT
251
     TTGCGGCATT TGCGTGCCGA CCAGTCGGTT CATGTTTTGG TCGGCGGCGA
301
     CGGCGGCGCG CGCGAAGTGC AGTTTTTTAC CGACGAAGAC GGCGAGCGCA
351
     ATCTGGTCGC TTTGGAAAAG AAAGGCGGCA TATGGCGGCG GTCGGCTTCT
401
     GAGGCGGATA TGAAGGTTTT GCCGACGCTG CGTTCGGTCG TGGTCAAAAC
451
     GTCGGCGCG GGTTCGCTGG CGCGGGCGGA AGTGCCCGTC GAAATCCGCG
501
     AATCCTTAAG CGGGATTTTC GCCGGCCGCT TCAGCCTTGA CGGTTTGAAG
551
     GAAGGCGATG CCGTGCGCCT GATGTACGAC AGCCTGTATT TCCACGGGCA
 601
     GCAGGTGGCG GCGGGCGATA TTTTGGCGGC TGAAGTCGTT AAGGGCGGCA
 651
     CAAGGCATCA GGCGTTCTAT TACCGTTCGG ACAAGGAAGG CGGAGGGGGC
     GGCAATTATT ATGATGAAGA CGGCAAGGTG TTGCAGGAAA AAGGCGGCTT
 751
     CAACATCGAG CCGCTGGTCT ATACGCGCAT TTCTTCGCCG TTCGGCTACC
 801
     GTATGCACCC CATCCTGCAC ACATGGCGGC TGCACACGGG CATCGATTAT
 851
     GCCGCACCGC AGGGAACGCC GGTCAGGGCT TCCGCCGACG GCGTGATTAC
 901
     CTTTAAAGGC CGGAAGGGCG GATACGGCAA CGCGGTGATG ATACGCCACG
951
     CCAACGGTGT GGAAACGCTG TACGCGCACT TGAGCGCGTT TTCGCAGGCG
1001
     GAAGGCAATG TGCGCGGCGG CGAGGTCATC GGTTTTGTCG GTTCGACCGG
1051
     GCGTTCGACC GGGCCGCACC TGCATTACGA GGCGCGCATC AACGGGCAGC
1101
      CCGTCAATCC TGTTTCGGTC GCATTGCCGA CACCGGAATT GACGCAGGCG
1151
      GACAAGGCGG CGTTTGCCGC GCAGAAACAG AAGGCGGACG CGCTGCTTGC
     GCGCTTGCGC GGCATACCGG TTACCGTGTC GCAATCGGAT TGA
```

This corresponds to the amino acid sequence <SEQ ID 1238; ORF 297>: m297.pep

- MAVFPLSAKH RKYALRALAV SIILVSAAYI ASTERTERVR PORVEONLPP
- LSWGGSGVQT AYWVQEAVQP GDSLADVLAR SGMARDEIAR ITEKYGGEAD 101 LRHLRADQSV HVLVGGDGGA REVQFFTDED GERNLVALEK KGGIWRRSAS
- 151 EADMKVLPTL RSVVVKTSAR GSLARAEVPV EIRESLSGIF AGRFSLDGLK

```
EGDAVRLMYD SLYFHGQQVA AGDILAAEVV KGGTRHQAFY YRSDKEGGGG
        GNYYDEDGKV LQEKGGFNIE PLVYTRISSP FGYRMHPILH TWRLHTGIDY
    251
        AAPQGTPVRA SADGVITFKG RKGGYGNAVM IRHANGVETL YAHLSAFSQA
    301
        EGNVRGGEVI GFVGSTGRST GPHLHYEARI NGQPVNPVSV ALPTPELTQA
    351
        DKAAFAAQKQ KADALLARLR GIPVTVSQSD *
    401
         97.9% identity in 430 aa overlap
m297/g297
                                                 50
                                                         60
                         20
                                 30
                                         40
                 10
          MAVFPLSAKHRKYALRALAVSIILVSAAYIASTERTERVRPQRVEQNLPPLSWGGSGVQT
m297.pep
          MAVFPLSAKHRKYALRALAVSIILVSAAYIASTEGTERVRPQRVEQKLPPLSWGGNGVQT
g297
                                         40
                                                . 5,0,...
                         20
                                 30
                                        100
                                                        120
                         80
                                 90
          AYWVQEAVQPGDSLADVLARSGMARDEIARITEKYGGEADLRHLRADQSVHVLVGGDGGA
m297.pep
           AYWVQEAVQPGDSLADVLARSGMARDEIARITEKYGGEADLRHLRADQSVHVLVGGDGSA
g297
                                        100
                                                110
                                                        120
                 70
                130
                        140
                                150
                                        160
          REVQFFTDEDGERNLVALEKKGGIWRRSASEADMKVLPTLRSVVVKTSARGSLARAEVPV
m297.pep
           REVQFFTDEDGERNLVALEKKGGIWRRSASDADMKVLPTLRSVVVKTSARGSLARAEVPV
q297
                        140
                                150
                                        160
                                                 230
                                                         240
                190
                        200
                                210
                                        220
           EIRESLSGIFAGRFSLDGLKEGDAVRLMYDSLYFHGQQVAAGDILAAEVVKGGTRHQAFY
m297.pep
           EIRESLSGIFAGRFSLDGLKEGDAVRLLYDSLYFHGQQVAAGDILAAEVVKGGTTHQAFY
g297
                                        220
                                                230
                                                         240
                190
                        200
                                                         300
                        260
                                270
                250
           YRSDKEGGGGGNYYDEDGKVLQEKGGFNIEPLVYTRISSPFGYRMHPILHTWRLHTGIDY
m297.pep
           YRSDKEGGGGGNYYDEDGRVLQEKGGFNIEPLVYTRISSPFGYRMHPILHTWRLHTGIDY
g297
                                        280
                        260
                                 270
                250
                                                 350
                                                         360
                                        340
                         320
                                 330
           AAPQGTPVRASADGVITFKGRKGGYGNAVMIRHANGVETLYAHLSAFSQAEGNVRGGEVI
m297.pep
           AAPQGTPVRASADGVITFKGRKGGYGNAVMIRHANGVETLYAHLSAFSQAQGNVRGGEVI
g297
                                 330
                                         340
                                                 350
                                                         360
                310
                                                 410
                                                         420
                         380
                                 390
                                         400
                370
           GFVGSTGRSTGPHLHYEARINGQPVNPVSVALPTPELTQADKAAFAAQKQKADALLARLR
m297.pep
           GFVGSTGRSTGPHLHYEARINGQPVNPVSVALPTPELTQADKAAFAAQKQKADALLARLR
g297
                                                 410
                                 390
                                         400
                370
                         380
m297.pep
           GIPVTVSQSDX
           111111111111
g297
           GIPVTVSQSDX
                430
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1239>: a297.seq

.seq					
1	ATGGCTGTCT	TCCCACTTTC	GGCAAAACAT	CGGAAATACG	CGCTGCGCGC
51	GCTTGCCGTT	TCGATTATTT	TGGTGTCGGC	GGCATACATT	GCTTCGACAG
101	AGAGGACGGA	GCGCGTCAGA	CCGCAGCGCG	TGGAACAAAA	ACTGCCGCCG
151	CTGTCTTGGG	GCGGCAGCGG	TGTTCAGACG	GCATATTGGG	TGCAGGAGGC
201	GGTGCAGCCA	GGCGACTCGC	TGGCGGACGT	GCTGGCGCGT	TCGGGTATGG
251	CGCGGGACGA	AATTGCCCGA	ATAACGGAAA	AATATGGCGG	CGAAGCCGAT
301	TTGCGGCATT	TGCGTGCCGA	CCAGTCGGTT	CATGTTTTGG	TCGGCGGCGA
351	CGGCGGCGCG	CGCGAAGTGC	AGTTTTTTAC	CGACGAAGAC	GGCGAGCGCA
401	ATCTGGTCGC	TTTGGAAAAA	AAAGGCGGCA	TATGGCGGCG	GTCGGCTTCT
451	GAGGCGGATA	TGAAGGTTTT	GCCGACGCTG	CGTTCGGTCG	TGGTCAAAAC
501	GTCGGCGCGC	GGTTCGCTGG	CGCGGGCGGA	AGTGCCCGTC	GAAATTCGCG

```
551 AATCCTTAAG CGGGATTTTC GCCGGCCGCT TCAGCCTTGA TGGTTTGAAG
           601 GAAGGCGATG CCGTGCGCCT GATTTACGAC AGCCTGTATT TCCACGGGCA
           651 GCAGGTGGCG GCGGGCGATA TTCTGGCGGC GGAAGTCGTT AAGGGCGGCA
               CAAGGCATCA GGCGTTCTAT TACCGTTCGG ACAAGGAAGG AGGAGGGGGC
           701
           751 GGCAATTATT ACGATGAAGA CGGCAGGGTG TTGCAGGAAA AAGGCGGCTT
           801 CAACATCGAG CCACTGGTCT ATACGCGCAT TTCTTCGCCG TTCGGCTACC
           851 GTATGCACCC CATCCTGCAC ACTTGGCGGC TGCACACGGG CATCGATTAT
               GCCGCACCGC AGGGAACGCC GGTCAGGGCT TCCGCCGACG GCGTGATTAC
           901
               CTTTAAAGGC CGGAAGGGTG GCTACGGCAA CGCGGTGATG ATACGCCACG
           951
          1001 CCAACGGTGT GGAAACGCTG TATGCGCACT TGAGCGCGTT TTCTCAGGCA
               GAAGGCAATG TGCGCGGCGG CGAGGTCATC GGTTTTGTCG GTTCGACCGG
          1051
               GCGTTCGACG GGGCCGCACC TGCATTACGA GGCGCGCATC AATGGGCAGC
-- 100
          1101
               CCGTCAATCC TGTTTCGGTC GCATTGCCGA CACCCGAATT GACGCAGGCG
          1151
               GACAAGGCGG CGTTTGCCGC GCAGAAACAG AAGGCGGACG CGCTGCTTGC
          1201
          1251 GCGCTTGCGC GGCATACCGG TTACCGTGTC GCAATCGGAT TGA
  This corresponds to the amino acid sequence <SEQ ID 1240; ORF 297.a>:
      a297.pep
                MAVFPLSAKH RKYALRALAV SIILVSAAYI ASTERTERVR PQRVEQKLPP
               LSWGGSGVQT AYWVQEAVQP GDSLADVLAR SGMARDEIAR ITEKYGGEAD
               LRHLRADQSV HVLVGGDGGA REVQFFTDED GERNLVALEK KGGIWRRSAS
                EADMKVLPTL RSVVVKTSAR GSLARAEVPV EIRESLSGIF AGRFSLDGLK
           151
           201 EGDAVRLIYD SLYFHGQQVA AGDILAAEVV KGGTRHQAFY YRSDKEGGGG
               GNYYDEDGRV LQEKGGFNIE PLVYTRISSP FGYRMHPILH TWRLHTGIDY
           301 AAPQGTPVRA SADGVITFKG RKGGYGNAVM IRHANGVETL YAHLSAFSQA
               EGNVRGGEVI GFVGSTGRST GPHLHYEARI NGQPVNPVSV ALPTPELTQA
           351
           401 DKAAFAAQKQ KADALLARLR GIPVTVSQSD *
  m297/a297 99.3% identity in 430 aa overlap
                                                                      60
                                   20
                                           30
                                                    40
                         10
                   MAVFPLSAKHRKYALRALAVSIILVSAAYIASTERTERVRPQRVEQNLPPLSWGGSGVQT
       m297.pep
                   $1[[[]]]
                   MAVFPLSAKHRKYALRALAVSIILVSAAYIASTERTERVRPQRVEQKLPPLSWGGSGVQT
       a297
                                                    40
                                                             50
                                                                      60
                                  20
                                           30
                         10
                                            90
                                                   100
                                                            110
                                                                     120
                   AYWVQEAVQPGDSLADVLARSGMARDEIARITEKYGGEADLRHLRADQSVHVLVGGDGGA
       m297.pep
                   AYWVQEAVQPGDSLADVLARSGMARDEIARITEKYGGEADLRHLRADQSVHVLVGGDGGA
       a297
                                                            110
                                                   100
                                   80
                                            90
                                                                     180
                                                            170
                                                   160
                         130
                                  140
                                           150
                   REVOFFTDEDGERNLVALEKKGGIWRRSASEADMKVLPTLRSVVVKTSARGSLARAEVPV
       m297.pep
                   REVOFFTDEDGERNLVALEKKGGIWRRSASEADMKVLPTLRSVVVKTSARGSLARAEVPV
       a297
                                                            170
                                                                     180
                                                   160
                                           150
                         130
                                  140
                                                   220
                                                            230
                         190
                                  200
                                           210
                   EIRESLSGIFAGRFSLDGLKEGDAVRLMYDSLYFHGQQVAAGDILAAEVVKGGTRHQAFY
       m297.pep
                   EIRESLSGIFAGRFSLDGLKEGDAVRLIYDSLYFHGQQVAAGDILAAEVVKGGTRHQAFY
       a297
                                           210
                                                    220
                                  200
                         190
                                           270
                                                    280
                         250
                                  260
                   YRSDKEGGGGGNYYDEDGKVLQEKGGFNIEPLVYTRISSPFGYRMHPILHTWRLHTGIDY
       m297.pep
                   YRSDKEGGGGGNYYDEDGRVLQEKGGFNIEPLVYTRISSPFGYRMHPILHTWRLHTGIDY
       a297
                                                             290
                                           270
                                                    280
                         250
                                  260
                                                             350
                                                                      360
                                           330
                                                    340
                         310
                                  320
                   AAPOGTPVRASADGVITFKGRKGGYGNAVMIRHANGVETLYAHLSAFSQAEGNVRGGEVI
       m297.pep
                   AAPOGTPVRASADGVITFKGRKGGYGNAVMIRHANGVETLYAHLSAFSQAEGNVRGGEVI
       a297
```

330

320

310

340

350

```
390
                                        400
                                                410
                        380
          GFVGSTGRSTGPHLHYEARINGQPVNPVSVALPTPELTQADKAAFAAQKQKADALLARLR
m297.pep
          GFVGSTGRSTGPHLHYEARINGQPVNPVSVALPTPELTQADKAAFAAQKQKADALLARLR
a297
                        380
                                390
                                        400
                430
          GIPVTVSQSDX
m297.pep
          1111111111111
          GIPVTVSQSDX
a297
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1241>:

```
ATGAAAACT TTCTTTCCCT TTTCGCCTCC ATACTGATGT CTGCCCTGAT
     TGCCGTGTGG TTCAGCCAAA ACCCCATCAA CGCCTACTGG CAGCAGACCT
 51
101 ACCACCGCAA CAGCCCGCTC GAACCGCTTG CCGCCTACGG ATGGTGGCGG
151 AGCGGAGCGG CGTTGCAAGA AAACGCCTAC GCCCTTTCAG ACGGCATCAA
201 AACCTTCCTG TCCGGCGAAA cgcccccac ggCTCAAGAC GGCGGTTCGG
     CAGATATGCC GCCTGAAGCC GCCGCATCCG AAGCCGCCCC GCCGGCCGGC
251
     GGAACAGAAT GGAAACAAGG CACCGAAGCC GCCGCCGTCC GCAGCGGCGA
351 CAAAGTCTTT TTCGCCGGAG ATTCGCTGAT GCAGGGCGTT GCGCCTTTCG
401 TGCAAAAAG CCTGAAACAG CAATACGGCA TCGAATCCGC CAACCTCAGC
     AAACAAAGCA CGGGGCTTTC CTATCCCTCA TTCTTCGACT GGCCGAAAAC
451
     GATTGAAGAA ACCTTGAAAA AACATCCCGA AATCAGCGTA CTCGCCGTCT
     TCCTCGGCCC GAACGACCCG TGGGATTTCC CCGTCGGCAA ACGCTACCTC
551
601 AAATTCGCTT CCGACGAATG GGCGCAAGAA TACCTGAAAC GCGTCGACCG
     CATCCTTGAA GCCGCACACA CGCACCGCGT CCAAGTCGTC TGGCTCGGCA
     TCCCCTACAT GAAAAAAGTC AAGCTCGACG GTCAGATGCG CTACCTCGAC
751 AAACTGCTTT CGGAACACTT GAAAGGCAAA ATCATCCTGA TTCCCACCGC
801 GCAAACACTG AGCGGCGGGA AAGGCCGCTA CACCGATTCC GTCAACGTCA
851 ACGGCAAACC CGTCCGCTAC CGCAGTAAGG ACGGCATACA CTTTACCGCC
901 GAAGGACAAA AACTGCTGGC GGAAAAAATA ATGGAAAAAA TCGTTTTTGA
951 ACCGAGTACG CAACCATCAA GTACACAGCC ATGA
```

- 500

This corresponds to the amino acid sequence <SEQ ID 1242; ORF 298.ng>: g298.pep

```
1 MKNFLSLFAS ILMSALIAVW FSQNPINAYW QQTYHRNSPL EPLAAYGWWR
51 SGAALQENAY ALSDGIKTFL SGETPPTAQD GGSADMPPEA AASEAAPPAG
101 GTEWKQGTEA AAVRSGDKVF FAGDSLMQGV APFVQKSLKQ QYGIESANLS
151 KQSTGLSYPS FFDWPKTIEE TLKKHPEISV LAVFLGPNDP WDFPVGKRYL
201 KFASDEWAQE YLKRVDRILE AAHTHRVQVV WLGIPYMKKV KLDGQMRYLD
251 KLLSEHLKGK IILIPTAQTL SGGKGRYTDS VNVNGKPVRY RSKDGIHFTA
301 EGOKLLAEKI MEKIVFEPST QPSSTQP*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1243>: m298.seq

```
ATGAAAAACT TTCTTTCCCT TTTCTCCTCC ATACTGATGT CTGCCCTGAT
    TGCCGTGTGG TTCAGCCAAA ACCCCATCAA CGCCTACTGG CAGCAGACCT
 51
101 ACCACCGCAA CAGCCCGCTC GAACCGCTTG CCGCCTACGG ATGGTGGCGG
151 AGCGGTGCGG CGTTGCAAGA AAACGCCTAC GCCCTTTCAG ACGGCATCAA
201 AGCCTTCCTG TCCGGCGAAA CGCCGCCGAC GGCTCAAGAC GGCGGTTCGG
251 CAGATATGCC GTCTGAAGCC GCCGCATCCG AAGCCGTCCC TCAAACCGGT
301 GAAACAGAAT GGAAACAAGA CACCGAAGCC GCCGCCGTCC GCAGCGGCGA
351 CAAAGTCTTT TTTGTCGGCG ACTCGCTGAT GCAGGGCGTT GCCCCCTTCG
401 TGCAAAAAG CCTGAAACAG CAATACGGCA TCGAATCCGT CAACCTCAGC
451 AAACAAAGCA CGGGGCTGTC CTACCCCTCA TTCTTCGACT GGCCGAAAAC
501 GATTGAAGAA ACCCTGCAAA AACATCCCGA AATCAGCGTA CTCGCCGTCT
551 TCCTCGGACC GAACGACCCG TGGGATTTCC CCGTCGGCAA ACTCTATCTC
601 AAATTCGCTT CCGACGAATG GGCGCAAGAA TACCTGAAAC GTGTCGACCG
651 CATCCTTGAA GCCGCACACA CGCACCGCGT CCAAGTCGTC TGGCTCGGCA
701 TCCCCTACAT GAAAAAAGCC AAGCTCGACG GACAGATGCG CTACCTAGAC
751 AAACTGCTTT CGGAACATTT GAAAGGCAAA ATCATCCTGA TTCCCACCAC
801 GCACACCCTG AGCGGCGGGA AAGACCGCTA CACCGACTCC GTCAACGTCA
851 ACGGCAAACC CGTCCGCTAC CGCAGCAAGG ACGGCATACA CTTTACCGCC
901 GAAGGACAAA AACTGCTGGC GGCAAAAATA ATGGAAAAAA TCGTTTTTGA
951 ACCAAGTACG CAACCATCAA GTACACAGCC ATGA
```

a298

```
This corresponds to the amino acid sequence <SEQ ID 1244; ORF 298>:
  m298.pep
          MKNFLSLFSS ILMSALIAVW FSQNPINAYW QQTYHRNSPL EPLAAYGWWR
          SGAALQENAY ALSDGIKAFL SGETPPTAQD GGSADMPSEA AASEAVPQTG
       51
          ETEWKQDTEA AAVRSGDKVF FVGDSLMQGV APFVQKSLKQ QYGIESVNLS
      101
          KQSTGLSYPS FFDWPKTIEE TLQKHPEISV LAVFLGPNDP WDFPVGKLYL
          KFASDEWAQE YLKRVDRILE AAHTHRVQVV WLGIPYMKKA KLDGQMRYLD
      201
          KLLSEHLKGK IILIPTTHTL SGGKDRYTDS VNVNGKPVRY RSKDGIHFTA
      251
          EGOKLLAAKI MEKIVFEPST QPSSTQP*
      301
            94.8% identity in 327 aa overlap
__ m298/g298
                                                     50
                                             40
             MKNFLSLFSSILMSALIAVWFSQNPINAYWQQTYHRNSPLEPLAAYGWWRSGAALQENAY
  m298.pep
             MKNFLSLFASILMSALIAVWFSQNPINAYWQQTYHRNSPLEPLAAYGWWRSGAALQENAY
  g298
                            20
                                    30
                                            40
                                                     50
                    10
                                                    110
                                                            120
                                            100
                                    90
                    70
                            80
             ALSDGIKAFLSGETPPTAQDGGSADMPSEAAASEAVPQTGETEWKQDTEAAAVRSGDKVF
  m298.pep
             ALSDGIKTFLSGETPPTAQDGGSADMPPEAAASEAAPPAGGTEWKQGTEAAAVRSGDKVF
  q298
                                                            120
                            80
                                    90
                                            100
                                                    110
                                    150
                                            160
                           140
                   130
             FVGDSLMQGVAPFVQKSLKQQYGIESVNLSKQSTGLSYPSFFDWPKTIEETLQKHPEISV
  m298.pep
             FAGDSLMQGVAPFVQKSLKQQYGIESANLSKQSTGLSYPSFFDWPKTIEETLKKHPEISV
  g298
                                                            180
                                    150
                                            160
                   130
                           140
                                                    230
                                                             240
                           200
                                    210
                                            220
                   190
             LAVFLGPNDPWDFPVGKLYLKFASDEWAQEYLKRVDRILEAAHTHRVQVVWLGIPYMKKA
   m298.pep
             LAVFLGPNDPWDFPVGKRYLKFASDEWAQEYLKRVDRILEAAHTHRVQVVWLGIPYMKKV
   q298
                                                    230
                                            220
                           200
                                    210
                   190
                                                    290
                                                             300
                                    270
                                            280
                   250
                           260
             KLDGQMRYLDKLLSEHLKGKIILIPTTHTLSGGKDRYTDSVNVNGKPVRYRSKDGIHFTA
   m298.pep
             KLDGQMRYLDKLLSEHLKGKIILIPTAQTLSGGKGRYTDSVNVNGKPVRYRSKDGIHFTA
   g298
                                    270
                                            280
                                                    290
                            260
                   250
                   310
                            320
             EGQKLLAAKIMEKIVFEPSTQPSSTQPX
   m298.pep
              EGOKLLAEKIMEKIVFEPSTQPSSTQPX
   q298
                   310
                            320
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1245>:

.seq					
1	ATGAAAAACT	TTCTTTCCCT	TTTCGCCTCC	ATACTGATGT	CTGCCCTGAT
51	TGCCGTGTGG	TTCAGCCAAA	ACCCCATCAA	CGCCTACTGG	CAGCAGACCT
101	ACCACCGCAA	CAGCCCGCTC	GAACCGCTTG	CCGCCTACGG	ATGGTGGCGG
151	AGCGGTGCGG	CATTGCAAGA	AAACGCCTAC	GCCCTTTCAG	ACGGCATCAA
201	AGCCTTCCTG	TCCGGCGAAA	CGCCGCCGAC	GGCTCAAGAC	GGCGGTTCGG
251	CAGATATGCC	GTCTGAAGCC	GCCGCACCCG	AAACCGCCCC	TCAAACTGGC
301	GAAACAGAAT	GGAAACAAAA	CACCGAAGCC	GCCGCCGTCC	GAACAGGGGA
351	CAAAGTCTTT	TTCGCCGGCG	ACTCGCTGAT	GCAGGGCGTT	GCACCCTTCG
401	TGCAAAAAAG	CCTGAAACAG	CAATACGGCA	TCGAATCCGT	CAACCTCAGC
451	AAACAAAGCA	CGGGGCTGTC	CTACCCCTCA	TTCTTCGACT	GGCCGAAAAC
501	GATTGAAGAA	ACCCTGAAAA	AACATCCCGA	AATCAGCGTG	CTCGCCGTCT
551	TCCTCGGTCC	GAACGACCCG	TGGGATTTCC	CCGTTGGCAA	ACGCTACCTC
601	AAATTCGCTT	CCGACGAATG	GGCGCAAGAA	TACCTGAAAC	GCGTCGACCG
651	CATCCTTGAA	GCCGCACACA	CGCACTACGT	CCAAGTCGTC	TGGCTCGGCA
701	TCCCCTACAT	GAAAAAAGCC	AAGCTCGACG	GACAGATGCG	CTACCTAGAC

```
751 AAACTGCTTT CGGAATATTT GAAAGGCAAA ATCATCCTGA TTCCCACCGC
          801 GCACACCCTG AGCGGCGGGA AAGACCGCTA CACCGACTCC GTCAACGTCA
          851 ACGGCAAACC CGTCCGCTAC CGCAGCAAGG ACGGCATACA CTTTACCGCC
              GAAGGACAAA AACTGCTGGC GGCAAAAATA ATGGAAAAAA TCGTTTTTGA
              ACCAAGTACG CAACCATCAA GTACACAGCC ATGA
  This corresponds to the amino acid sequence <SEQ ID 1246; ORF 298.a>:
      a298.pep
               MKNFLSLFAS ILMSALIAVW FSQNPINAYW QQTYHRNSPL EPLAAYGWWR
               SGAALQENAY ALSDGIKAFL SGETPPTAQD GGSADMPSEA AAPETAPQTG
           51
               ETEWKONTEA AAVRTGDKVF FAGDSLMQGV APFVQKSLKQ QYGIESVNLS
           101
          151 KQSTGLSYPS FFDWPKTIEE TLKKHPEISV LAVFLGPNDP WDFPVGKRYL
... 500
           201 KFASDEWAQE YLKRVDRILE AAHTHYVQVV WLGIPYMKKA KLDGQMRYLD
           251 KLLSEYLKGK IILIPTAHTL SGGKDRYTDS VNVNGKPVRY RSKDGIHFTA
           301 EGQKLLAAKI MEKIVFEPST QPSSTQP*
  m298/a298 96.3% identity in 327 aa overlap
                                          30
                                                  40
                                                           50
                        10
                 MKNFLSLFSSILMSALIAVWFSQNPINAYWQQTYHRNSPLEPLAAYGWWRSGAALQENAY
      m298.pep
                  MKNFLSLFASILMSALIAVWFSQNPINAYWQQTYHRNSPLEPLAAYGWWRSGAALQENAY
      a298
                                         . 30
                                                  40
                                 20
                                                 100
                                                          110
                                                                   120
                                 80
                                          90
                  ALSDGIKAFLSGETPPTAQDGGSADMPSEAAASEAVPQTGETEWKQDTEAAAVRSGDKVF
      m298.pep
                  ALSDGIKAFLSGETPPTAQDGGSADMPSEAAAPETAPQTGETEWKQNTEAAAVRTGDKVF
       a298
                                                          110
                                          90
                                                 100
                         70
                                 80
                                                          170
                                                                   180
                                         150
                                                  160
                        130
                                140
                  FVGDSLMQGVAPFVQKSLKQQYGIESVNLSKQSTGLSYPSFFDWPKTIEETLQKHPEISV
      m298.pep
                  FAGDSLMQGVAPFVQKSLKQQYGIESVNLSKQSTGLSYPSFFDWPKTIEETLKKHPEISV
       a298
                                         150
                                                  160
                                                                   180
                        130
                                140
                                                  220
                                200
                                         210
                  LAVFLGPNDPWDFPVGKLYLKFASDEWAQEYLKRVDRILEAAHTHRVQVVWLGIPYMKKA
      m298.pep
                  LAVFLGPNDPWDFPVGKRYLKFASDEWAQEYLKRVDRILEAAHTHYVQVVWLGIPYMKKA
       a298
                        190
                                 200
                                         210
                                                  220
                                                          230
                        250
                                 260
                                         270
                                                  280
                                                          290
                                                                   300
                  \mathtt{KLDGQMRYLDKLLSEHLKGKIILIPTTHTLSGGKDRYTDSVNVNGKPVRYRSKDGIHFTA}
       m298.pep
                  KLDGQMRYLDKLLSEYLKGKIILIPTAHTLSGGKDRYTDSVNVNGKPVRYRSKDGIHFTA
       a298
                                 260
                                         270
                                                  280
                                                          290
                        250
                        310
                                 320
                  EGQKLLAAKIMEKIVFEPSTQPSSTQPX
       m298.pep
                  EGQKLLAAKIMEKIVFEPSTQPSSTQPX
       a298
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1247>: 9299.889

320

```
1 ATGARCCCA AACACTTCAT CGCATTTTCC GCCCTGTTCG CCGCCACGCA
51 GGCAGAAGCC CTGCCCGTCG CCTCCGTCAG CCCCGACACC GTTACCGTTT
101 CCCCGTCCGC CCCCTACACC GATACAAACG GGCTGCTGAC CGACTACGGC
151 AACGCCGCCG CCTCGCCTTG GATGAAAAAA CTCCGATCCG TCGCACAAGG
201 CAGCGGCGAG GCCTTCCGCA TCCTGCAAAAT CGGCGACTCG CATACCGCCG
251 GGCGCTTCTT TACCGACGC CTGCGCAAAC GCCTGCAAAA AACATGGGGC
301 GACGGCGGCA TAGGCTGGGT TTACCCACCC AACGTCAAAA GACAGGGAATA
451 GGCGGCCGTC CGTCACAGCG GCAACTGGCA AAGCTTCACC AGCAGGAACA
451 GGCGGCATGA CCCTGACCGC GTCTGACGGC AAAACCCGCA AACAGCGCGT
```

```
501 TTCCCTGTTT GCCAAACCGC TGCTCGCCGA ACAAACCCTG ACCGTCAACG
         GCAACACCGT CTCCGCCAAC GGCGGCGGCT GGCAGGTACT GGATACGGGC
    551
    601 GCGGCACTGC CCCTGGCCAT ACAGACCGAA ATGCCGTGGG ACATCGGCTT
    651 CATCAACATC GAAAATCCCG CCGGCGGCAT TACCGTTTCC GCGATGGGCA
    701 TCAACGGCGC ACAATTGACC CAGTGGTCGA AATGGCGTGC CGACCGTATG
    751 AACGACCTTG CCCAAACCGG CGCCGATTTG GTTATCCTTT CCTACGGCAC
    801 CAACGAAGCC TTCAACAACA ACATCGACAT TGCCGATACC GAACAAAAAT
         GGCTGGATAC CGTCCGCCAA ATCCGCGACA GCCTGCCCGC CGCCGGCATC
    851
    901 CTCATCATCG GCGCGCCCGA ATCCCTGAAA AACACGCTCG GCGTATGCGG
    951 CACGCGCCCC GTCCTCCTGA CCGAAGTCCA ACAGATGCAG CGGCGCGTCG
   1001 CCCGTCAGGG GCAGACGATG TTTTGGTCTT GGCAAAACGC AATGGGCGGC
   1051 ATATGCAGCA TGAAAAACTG GCTCAACCAA GGATGGGCCG CCAAAGACGG
   1101 CGTACACTTC TCCGCCCAAG GCTACCGGCG CGCGGCGGAA ATGCTTGCCG
   1151 ACAGCCTCGA AGAACTCGTC CGCGCCGCCG CAATCAGGCA ATAA
This corresponds to the amino acid sequence <SEQ ID 1248; ORF 299.ng>:
g299.pep
         MNPKHFIAFS ALFAATQAEA LPVASVSPDT VTVSPSAPYT DTNGLLTDYG
     51 NAAASPWMKK LRSVAQGSGE AFRILQIGDS HTAGDFFTDA LRKRLQKTWG
    101 DGGIGWYYPA NVKGQRMAAV RHSGNWQSFT SRNNTGDFPL GGILAQTGSG
         GGMTLTASDG KTGKQRVSLF AKPLLAEQTL TVNGNTVSAN GGGWQVLDTG
    201 AALPLAIQTE MPWDIGFINI ENPAGGITVS AMGINGAQLT QWSKWRADRM
         NDLAOTGADL VILSYGTNEA FNNNIDIADT EQKWLDTVRQ IRDSLPAAGI
    301 LIIGAPESLK NTLGVCGTRP VLLTEVQQMQ RRVARQGQTM FWSWQNAMGG
    351 ICSMKNWLNQ GWAAKDGVHF SAQGYRRAAE MLADSLEELV RAAAIRQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1249>:
m299.seg
         ATGAACCCCA AACACCTCAT CGCATTTTCC GCCCTATTCG CCGCCACGCA
      1
     51 GGCAGAAGCC CTACCTGTCG CCTCCGTCAG CCTCGACACC GTTACCGTTT
         CCCCGTCCGC CCCCTACACC GATACAAACG GGCTGCTGAC CGACTACGGC
    151 AACGCCTCCG CCTCGCCTTG GATGAAAAA CTCCAATCCG TCGCACAAGG
    201 CAGCGGCGAG ACCTTCCGTA TCCTGCAAAT CGGCGACTCG CATACCGCCG
    251 GCGACTTCTT TACCGACAGC CTGCGCAAAC GCCTGCAAAA AACTTGGGGC
    301 GACGGCGGCA TAGGCTGGGT TTACCCCGCC AACGTCAAAG GGCAGCGCAT
    351 GGCGGCCGTC CGGCACAACG GTAACTGGCA AAGCCTCACC AGCAGGAACA
     401 ACACCGGAGA CTTCCCGCTC GGCGGCATCC TCGCCCACAC CGGCAGCGGC
    451 GGCAGCATGA CCCTGACCGC ATCGGACGGC ATAGCAAGCA AGCAGCGCGT
         TTCCCTGTTT GCCAAACCCC TGCTTGCCGA ACAAACCCTG ACCGTCAACG
    551 GCAACACCGT CTCCGCCAAC GGCGGCGGCT GGCAGGTACT GGATACGGGC
     601 GCGGCACTGC CCCTGACCAT ACACACCGAA ATGCCGTGGG ACATCGGCTT
         CATCAACATC GAAAATCCCG CCGGCGGCAT TACCGTTTCC GCGATGGGCA
     701 TCAACGGCGC ACAATTAACC CAGTGGTCGA AATGGCGTGC CGACCGTATG
     751 AACGACCTCG CCCAAACCGG CGCCGATTTG GTTATCCTTT CCTACGGCAC
     801 CAACGAAGCT TTCAACAACA ACATCGACAT TGCCGACACC GAACAAAAAT
     851 GGCTGGATAC CGTCCGCCAA ATCCGCGACA GCCTGCCTGC CGCCGGCATC
     901 CTCATCATCG GCGCACCCGA ATCCCTGAAA AACACGCTCG GCGTATGCGG
    951 CACACGCCCC GTCCGCCTGA CCGAAGTCCA ACAGATGCAG CGGCGCGTCG
    1001 CCCGTCAGGG GCAGACGATG TTCTGGTCTT GGCAAAACGC CATGGGCGGC
    1051 ATATGCAGCA TGAAAAACTG GCTCAACCAA GGATGGGCCG CCAAAGACGG
    1101 CGTACACTTC TCCGCCAAAG GCTACCGGCG CGCGGCGGAA ATGCTCGCCG
    1151 ACAGCCTCGA AGAACTCGTC CGCTCCGCTG CAATCAGGCA ATAA
This corresponds to the amino acid sequence <SEQ ID 1250; ORF 299>:
m299.pep
         MNPKHLIAFS ALFAATQAEA LPVASVSLDT VTVSPSAPYT DTNGLLTDYG
         NASASPWMKK LOSVAGGSGE TFRILQIGDS HTAGDFFTDS LRKRLOKTWG
      51
     101 DGGIGWYYPA NYKGQRMAAV RHNGNWQSLT SRNNTGDFFL GGILAHTGSG
     151 GSMTLTASDG IASKQRVSLF AKPLLAEQTL TVNGNTVSAN GGGWQVLDTG
     201 AALPLTIHTE MPWDIGFINI ENPAGGITVS AMGINGAQLT QWSKWRADRM
     251 NDLAQTGADL VILSYGTNEA FNNNIDIADT EQKWLDTVRQ IRDSLPAAGI
     301 LIIGAPESLK NTLGVCGTRP VRLTEVQQMQ RRVARQGQTM FWSWQNAMGG
     351 ICSMKNWLNQ GWAAKDGVHF SAKGYRRAAE MLADSLEELV RSAAIRQ*
m299/g299 95.5% identity in 397 aa overlap
                                        30
                                                 40
                                                           50
            MNPKHLIAFSALFAATQAEALPVASVSLDTVTVSPSAPYTDTNGLLTDYGNASASPWMKK
m299.pep
```

g299	MNPKHFIAFSALFA 10	ATQAEALPV 20	ASVSPDTVTVS 30	PSAPYTDTNO 40	GLLTDYGNAAI 50	ASPWMKK 60
m299.pep	70 LQSVAQGSGETFRI : :	BO LQIGDSHTA	90 GDFFTDSLRKF	100 LQKTWGDGGI	110 GWVYPANVKO	120 GQRMAAV
g299	LRSVAQGSGEAFRI 70	LQIGDSHTA 80	GDFFTDALRKE 90	LOKTWGDGG	GWVYPANVKO 110	GORMAAV 120
m299.pep	130 RHNGNWQSLTSRNN : :	1111111111	: :	111111 :::	111111111111111111111111111111111111111	
 "g 299	RHSGNWQSFTSRNN 130	140 200	LAQTGSGGGMT 150 210	160 220	170 230	180 240
m299.pep	190 TVNGNTVSANGGGW TVNGNTVSANGGGW	QVLDTGAAL	PLTIHTEMPWE : :	GFINIENPA	AGGITVSAMG:	INGAQLT
9277	190 250	200 260	210 270	220 280	230 290	300
m299.pep g299	QWSKWRADRMNDLA QWSKWRADRMNDLA	ÎIIIIIIII	[]]]]]]]	1111111111	1111111111	1111111
-	250 310	260 320	270 330	340	290 350	300
m299.pep g299	LIIGAPESLKNTLG	 VCGTRPVLL				
	310 370 GWAAKDGVHFSAKG	320 380	330 390		350	360
m299.pep g299	GWAAKDGVHFSAQG 370	1111111111		1111		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1251>:

```
a299.seq
       1 ATGAACCCCA AACACCTCAT CGCATTTTCC GCCCTATTCG CCGCCACGCA
       51 GGCAGAAGCC CTACCTGTCG CCTCAGTCAG CCTCGACACC GTTACCGTTT
     101 CCCCGTCCGC CCCCTACACC GATACAAACG GGCTGCTGAC CGACTACGGC
151 AACGCCTCCG CCTCGCCTTG GATGAAAAAA CTCCAATCCG TCGCACAAGG
      201 CAGCGGCGAG ACCTTCCGTA TCCTGCAAAT CGGCGACTCG CATACCGCCG
      251 GCGACTTCTT TACCGACAGC CTGCGCAAAC GCCTACAAAA AACTTGGGGC
      301 GACGGCGCA TAGGCTGGGT TTACCCCGCC AACGTCAAAG GGCAGCGCAT
      351 GGCGGCCGTC CGGCACAACG GTAACTGGCA AAGCCTCACC AGCAGGAACA
      401 ACACCGGAGA CTTCCCGCTC GGCGGCATCC TCGCCCACAC CGGCAGCGGC
     451 GGCAGCATGA CCCTGACCGC ATCGGACGGC ATAGCAAGCA AGCAGCGCGT
501 TTCCCTGTTT GCCAAACCCC TGCTTGCCGA ACAAACCCTG ACCGTCAACG
      551 GCAACACCGT CTCCGCCAAC GGCGGCGGCT GGCAGGTACT GGATACGGGC
      601 GCGGCACTGC CCCTGACCAT ACACACCGAA ATGCCGTGGG ACATCGGCTT
     651 CATCAACATC GAAAATCCCG CCGGCGGCAT TACCGTTTCC GCGATGGGCA
701 TCAACGGCGC ACAATTAACC CAGTGGTCGA AATGGCGTGC CGACCGTATG
      751 AACGACCTTG CCCAAACCGG CGCCGATCTA GTCATCCTTG CCTACGGTAC
      801 CAACGAAGCC TTCGGCGACA ACATCGACAT TGCCGATACC GAACAGAAAT
      851 GGCTGGATAC CGTCCGCCAA ATCCGCGACA GCCTACCTGC CGCCGGCATC
      901 CTCATCATCG GCGCGCCCGA ATCCCTGAAA AACACGCTCG GCGTATGCGG
      951 CACACGCCCC GTCCGCCTGA CCGAAGTCCA ACAGATGCAG CGGCGCATCG
     1001 CCCGTCAGGG GCAGACGATG TTCTGGTCTT GGCAAAACGC GATGGGCGGC
     1051 GTTTGCAGCA TGAAAAACTG GCTCAACCAC GGATGGGCCG CCAAAGACGG
1101 CGTACACTTT TCCGCCAAAG GCTACCAACG GTCGGCGGAA ATGCTCGCCG
     1151 ACAGCCTCGA AGAACTCGTC CGCTCCGCTG CAATCAGGCA ATAA
```

This corresponds to the amino acid sequence <SEQ ID 1252; ORF 299.a>:

i nis correspond	is to the annin	o acid scque	ince /SEQ I	J 1232, OIG	277.00.	
a299.pep						
1	MNPKHLIAFS	<u>ALFAATQAEA</u>	LPVASVSLDT	VTVSPSAPYT	DTNGLLTDYG	
51	NASASPWMKK	LQSVAQGSGE	TFRILQIGDS	HTAGDFFTDS	LRKRLQKTWG	
101	DGGIGWVYPA	NVKGORMAAV	RHNGNWOSLT	SRNNTGDFPL	GGILAHTGSG	
151	GSMTLTASDG					
201	AALPLTIHTE	MOMOTORINI	FNDACCITUS	AMCINCACIT	UMCKMDVUDM	
	NDLAQTGADL	MENDIGETME	ECONTOINO	PURMI DAME	TDDCIDARCI	
251						
301	LIIGAPESLK					
351	VCSMKNWLNH	GWAAKDGVHF	SAKGYQRSAE	MLADSLEELV	RSAAIRQ*	
114.0						
m299/a299 98	3.0% identity	in 397 aa oy	erlan			
111277/0277	•		-	0 40	50	
						60
m299.pep		_			DTNGLLTDYGN	
					[
a299	MNPKHLIA	FSALFAATQA	EALPVASVSLD'	TVTVSPSAPYT:	DTNGLLTDYGN	ASASPWMKK
		10	20 3	0 40	50	60
		70	80 9	0 100	110	120
					DGGIGWVYPAN	
m299.pep						
					11111111111	
a299					DGGIGWVYPAN	
		70	80 9	0 100	110	120
			,			
	1	30 1	40 15	0 160	170	180
m299.pep	_			GGSMTLTASDG	IASKQRVSLFA	CPLLAEOTI.
mz 95. pep						
a299					IASKQRVSLFAH	
	1	.30 1	40 15	0 160	170	180
	1	.90 2	00 21	0 220	230	240
m299.pep	TVNGNTVS	ANGGGWQVLD	TGAALPLTIHT	EMPWDIGFINI:	ENPAGGITVSAN	4GINGAQLT
	11111111	11111111111	1111111111		[[[[[[[[[[[[[[[[[[[[шинін
a299	TUNCNTUS	ANGGGWOVI.D	TGAAT.PT.TTHT	EMPWOTGETNT	ENPAGGITVSAN	ACTNGAOLT
0233			00 21		230	240
	1	.50 2	00 21	0 220	230	240
	_					
	_		60 27		290	300
m299.pep					EQKWLDTVRQII	
	11111111	1111111111	11111:1111	11::1111111		[111][[[[
a299	OWSKWRAD	RMNDLAOTGA	DLVILAYGTNE	AFGDNIDIADT	EQKWLDTVRQI	RDSLPAAGI
	-		60 27		290	300
	_					200
	2	10 3	20 33	0 340	350	360
	_					
m299.pep					FWSWQNAMGGI	
a299	LIIGAPES	LKNTLGVCGT	RPVRLTEVQQM		FWSWQNAMGGV	
	3	110 3	20 33	0 340	350	360
	3	70 3	80 39	0		
m299.pep	-		AEMLADSLEEL	•		
web.				_		
			1111111111			
a299			AEMLADSLEEL			
	3	370 3	80 39	0		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1253>: g302.seq

. seq					
. 1	ATGCACTCAA	TATATTTTTT	TAAGGAGAAG	CAGATGAGTC	AAACCGACGC
51	GCGTCGTAGC	GGACGATTTT	TACGCACAGT	CGAATGGCTG	GGCAATATGT
101	TGCCGCACCC	GGTTACGCTT	TTTATTATTT	TCATTGTGTT	ATTGCTGATT
151	GCCTCTGCCG	TCGGTGCGTA	TTTCGGACTA	TCCGTCCCCG	ATCCGCGTCC
201	TGTTGGGGCG	AAAGGACGTG	CCGATGACGG	TTTGATTCAC	GTTGTCAGCC
251	TGCTCGATGC	CGACGGTTTG	ATCAAAATCC	TGACGCATAC	CGTTAAAAAT
301	TTCACCGGTT	TCGCGCCGTT	GGGAACGGTG	TTGGTTTCTT	TATTGGGCGT

WO 99/57280 PCT/US99/09346

695

```
351 GGGGATTGCG GAAAAATCGG GCTTGATTTC CGCATTAATG CGCTTATTGC
     401 TCACAAAATC CCCACGCAAA CTCACTACTT TTATGGTTGT TTTTACAGGG
     451 ATTTTATCCA ATACGGCTTC TGAATTGGGC TATGTCGTCC TAATCCCTTT
     501 GTCCGCCGTC ATCTTTCATT CGCTCGGCCG CCATCCGCTT GCCGGTTTGG
    551 CTGCGGCTTT CGCCGGCGTT TCGGGCGGTT ATTCGGCCAA TCTGTTCTTA
    601 GGCACAATCG ATCCGCTCTT GGCAGGCATC ACCCAACAGG CGGCGCAAAT
    651 CATCCATCCC GACTACGTCG TAGGCCCTGA AGCCAACTGG TTTTTTATGG
     701 CAGCCAGTAC GTTTGTGATT GCTTTGATTG GTTATTTTGT TACTGAAAAA
     751 ATCGTCGAAC CGCAATTGGG CCCTTATCAA TCAGATTTGT CACAAGAAGA
     801 AAAAGACATT CGGCATTCCA ATGAAATCAC GCCTTTGGAA TATAAAGGAT
     851 TAATTTGGGC AGGCGTGGTG TTTGTTGCCT TATCCGCCCT ATTGGCTTGG
    901 AGCATCGTCC CTGCCGACGG TATTTTGCGT CATCCTGAAA CAGGATTGGT
    951 TGCCGGTTCG CCGTTTTTAA AATCGATTGT TGTTTTTATT TTCTTGTTGT
    1001 TTGCGCTGCC GGGCATTGTT TATGGCCGGA TAACCCGAAG TTTGCGCGGC
    1051 GAACGGGAAG TCGTTAATGC GATGGCCGAA TCGATGAGTA CTTTGGGACT
    1101 TTATTTGGTC ATCATCTTTT TTGCCGCACA GTTTGTCGCA TTTTTTAATT
    1151 GGACGAATAT TGGGCAATAT ATTGCCGTTA AAGGGGCGGT GTTCTTAAAA
    1201 GAAGTCGGCT TGGGCGGCAG TGTGTTGTTT ATCGGTTTTA TTTTAATTTG
    1251 TGCTTTTATC AATCTGATGA TAGGCTCCGC CTCCGCGCAA TGGGCGGTAA
    1301 CTGCGCCGAT TTTCGTCCCT ATGCTGATGT TGGCCGGCTA CGCGCCCCAA
    1351 GTCATTCAAG CCGCTTACCG CATCGGTGAT TCCGTTACCA ATATTATTAC
    1401 GCCGATGATG AGTTATTTCG GGCTGATTAT GGCGACGGTA ATCAAATACA
    1451 AAAAAGATGC GGGCGTAGGC ACGCTGATTT CTATGATGTT GCCGTATTCC
    1501 GCTTTCTTCT TAATTGCATG GATCGCCTTA TTCTGCATTT GGGTATTTGT
    1551 TTTGGGTCTG CCCGTCGGTC CCGGCACACC CACATTCTAT CCGGTGCCTT
This corresponds to the amino acid sequence <SEQ ID 1254; ORF 302.ng>:
g302.pep
         MHSIYFFKEK QMSQTDARRS GRFLRTVEWL GNMLPHPVTL FIIFIVLLLI
      51 ASAVGAYFGL SVPDPRPVGA KGRADDGLIH VVSLLDADGL IKILTHTVKN
     101 FTGFAPLGTV LVSLLGVGIA EKSGLISALM RLLLTKSPRK LTTFMVVFTG
151 ILSNTASELG YVVLIPLSAV IFHSLGRHPL AGLAAAFAGV SGGYSANLFL
     201 GTIDPLLAGI TQQAAQIIHP DYVVGPEANW FFMAASTFVI ALIGYFVTEK
     251 IVEPOLGPYO SDLSOEEKDI RHSNEITPLE YKGLIWAGVV FVALSALLAW
     301 SIVPADGILR HPETGLVAGS PFLKSIVVFI FLLFALPGIV YGRITRSLRG
     351 EREVVNAMAE SMSTLGLYLV IIFFAAQFVA FFNWTNIGQY IAVKGAVFLK
     401 EVGLGGSVLF IGFILICAFI NLMIGSASAQ WAVTAPIFVP MLMLAGYAPQ
451 VIQAAYRIGD SVTNIITPMM SYFGLIMATV IKYKKDAGVG TLISMMLPYS
     501 AFFLIAWIAL FCIWVFVLGL PVGPGTPTFY PVP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1255>:
m302.seq
       1 ATGCACTCAA TATATTTTTT TAAGGAGAAG CAGATGAGTC AAACCGATAC
      51 GCAACGGGAC GGACGATTTT TACGCACAGT CGAATGGCTG GGCAATATGT
     101 TGCCGCATCC GGTTACGCTT TTTATTATTT TCATTGTGTT ATTGCTGATT
     151 GCCTCTGCCG TCGGTGCGTA TTTCGGACTA TCCGTCCCCG ATCCGCGCCC
     201 TGTTGGTGCG AAAGGACGTG CCGATGACGG TTTGATTTAC ATTGTCAGCC
          TGCTCAATGC CGACGGTTTT ATCAAAATCC TGACGCATAC CGTTAAAAAT
     301 TTCACCGGTT TCGCGCCGTT GGGAACGGTG TTGGTTTCTT TATTGGGCGT
     351 GGGGATTGCG GAAAAATCGG GCTTGATTTC CGCATTAATG CGCTTATTGC
     401 TCACAAAATC GCCACGCAAA CTCACTACTT TTATGGTTGT TTTTACAGGG
     451 ATTTTATCTA ATACCGCTTC TGAATTGGGC TATGTCGTCC TAATCCCTTT
     501 GTCCGCCATC ATCTTTCATT CCCTCGGCCG CCATCCGCTT GCCGGTCTGG
     551 CTGCGGCTTT CGCCGGCGTT TCGGGCGGTT ATTCGGCCAA TCTGTTCTTA
     601 AGCACAATCG ATCCGCTCTT GGCATGCATC ACCCATCAGG CGGCGGTCGT
     651 AGGCCCTGAA GCCAACTGGT TTTTTATGGT AGCCAGTACG TTTGTGATTG
     701 CTTTGATTGG TTATTTTGTT ACTGAAAAAA TCGTCGAACC GCAATTGGGC
     751 CCTTATCAAT CAGATTTGTC ACAAGAAGAA AAAGACATTC GGCATTCCAA
     801 TGAAATCACG CCTTTGGAAT ATAAAGGATT AATTTGGGCT GGCGTGGTGT
     851 TTGTTGCCTT ATCCGCCCTA TTGGCTTGGA GCATCGTCCC TGCCGACGGT
     901 ATTTTGCGTC ATCCTGAAAC AGGATTGGTT TCCGGTTCGC CGTTTTTAAA
     951 ATCGATTGTT GTTTTTATTT TCTTGTTGTT TGCACTGyCG GGCmTTGTTT
```

1001 ATGGmCGGGT AACCCGAAGT TTGCGCGGCG AACAGGAAGT CGTTAATGCG

WO 99/57280 PCT/US99/09346

696

```
1051 ATGGCCGAAT CGATGAGTAC TCTGGBGCTT TmTTTGBwCA kcATCTTTTT
1101
      TGCCGCACAG TTTGTCGCAT TTTTTAATTG GACGAATATT GGGCAATATA
      TTGCCGTTAA AGGGGCGACG TTCTTAAAAG AAGTCGGCTT GGGCGGCAGC
1151
     GTGTTGTTTA TCGGTTTTAT TTTAATTTGT GCTTTTATCA ATCTGATGAT
1201
      AGGCTCCGCC TCCGCGCAAT GGGCGGTAAC TGCGCCGATT TTCGTCCCTA
1251
      TGCTGATGTT GGCCGGCTAC GCGCCCGAAG TCATTCAAGC CGCTTACCGC
1301
1351 ATCGGTGATT CCGTTACCAA TATTATTACG CCGATGATGA GTTATTTCGG
1401 GCTGATTATG GCGACGGTGA TCAAATACAA AAAAGATGCG GGCGTGGGTA
1451 CGCTGATTTC TATGATGTTG CCGTATTCCG CTTTCTTCTT GATTGCGTGG
1501 ATTGCCTTAT TCTGCATTTG GGTATTTGTT TTGGGCCTGC CCGTCGGTCC
1551 CGGCGCGCCC ACATTCTATC CCGCACCTTA A
```

This corresponds to the amino acid sequence <SEQ ID 1256; ORF 302>: m302.pep

MHSIYFFKEK OMSOTDTORD GRFLRTVEWL GNMLPHPVTL FIIFIVLLLI 1 ASAVGAYFGL SVPDPRPVGA KGRADDGLIY IVSLLNADGF IKILTHTVKN 51 FTGFAPLGTV LVSLLGVGIA EKSGLISALM RLLLTKSPRK LTTFMVVFTG 101 151 ILSNTASELG YVVLIPLSAI IFHSLGRHPL AGLAAAFAGV SGGYSANLFL STIDPLLACI THOAAVVGPE ANWFFMVAST FVIALIGYFV TEKIVEPOLG 251 PYQSDLSQEE KDIRHSNEIT PLEYKGLIWA GVVFVALSAL LAWSIVPADG 301 ILRHPETGLV SGSPFLKSIV VFIFLLFALX GXVYGRVTRS LRGEQEVVNA MAESMSTLXL XLXXIFFAAQ FVAFFNWTNI GQYIAVKGAT FLKEVGLGGS 351 VLFIGFILIC AFINLMIGSA SAQWAVTAPI FVPMLMLAGY APEVIQAAYR 401 451 IGDSVTNIIT PMMSYFGLIM ATVIKYKKDA GVGTLISMML PYSAFFLIAW

501 IALFCIWVFV LGLPVGPGAP TFYPAP* Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 302 shows 94.0% identity over a 533 as overlap with a predicted ORF (ORF 302.ng) from N. gonorrhoeae: m302/g302

20 30 40 50 60 MHSIYFFKEKQMSQTDTQRDGRFLRTVEWLGNMLPHPVTLFIIFIVLLLIASAVGAYFGL m302.pep MHSTYFFKEKOMSOTDARRSGRFLRTVEWLGNMLPHPVTLF11F1VLLL1ASAVGAYFGL g302 10 20 40 100 70 80 90 110 120 SVPDPRPVGAKGRADDGLIYIVSLLNADGFIKILTHTVKNFTGFAPLGTVLVSLLGVGIA m302.pep SVPDPRPVGAKGRADDGLIHVVSLLDADGLIKILTHTVKNFTGFAPLGTVLVSLLGVGIA g302 70 80 90 100 110 120 140 150 130 160 170 180 EKSGLISALMRLLLTKSPRKLTTFMVVFTGILSNTASELGYVVLIPLSAIIFHSLGRHPL m302.pep g302 EKSGLISALMRLLLTKSPRKLTTFMVVFTGILSNTASELGYVVLIPLSAVIFHSLGRHPL 130 140 150 160 170 180 190 200 210 220 AGLAAAFAGVSGGYSANLFLSTIDPLLACITHQAA-----VVGPEANWFFMVASTFVI m302.pep g302 AGLAAAFAGVSGGYSANLFLGTIDPLLAGITQQAAQIIHPDYVVGPEANWFFMAASTFVI 190 200 210 220 230 240 250 260 270 ALIGYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNEITPLEYKGLIWAGVVFVALSALLAW m302.pep g302 ALIGYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNEITPLEYKGLIWAGVVFVALSALLAW 250 260 270 280 290 300 300 310 320 330 340 350

PCT/US99/09346 WO 99/57280

697

```
SIVPADGILRHPETGLVSGSPFLKSIVVFIFLLFALXGXVYGRVTRSLRGEQEVVNAMAE
m302.pep
         SIVPADGILRHPETGLVAGSPFLKSIVVFIFLLFALPGIVYGRITRSLRGEREVVNAMAE
g302
                              330
                                     340
                                             350
                                                    360
                      320
                                   390
                                           400
                    370
                           380
            360
         SMSTLXLXLXXIFFAAQFVAFFNWTNIGQYIAVKGATFLKEVGLGGSVLFIGFILICAFI
m302.pep
          SMSTLGLYLVIIFFAAQFVAFFNWTNIGQYIAVKGAVFLKEVGLGGSVLFIGFILICAFI
g302
                                     400
                              390
               370
                      380
                                   450
                                                  470
            420
                    430
                           440
                                          460
         NLMIGSASAOWAVTAPIFVPMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATV
m302.pep
          NLMIGSASAOWAVTAPIFVPMLMLAGYAPQVIQAAYRIGDSVTNIITPMMSYFGLIMATV
g302
               430
                      440
                             450
                                     460
                    490
                            500
                                   510
             480
         IKYKKDAGVGTLISMMLPYSAFFLIAWIALFCIWVFVLGLPVGPGAPTFYPAPX
m302.pep
          IKYKKDAGVGTLISMMLPYSAFFLIAWIALFCIWVFVLGLPVGPGTPTFYPVPX
g302
                      500
                              510
                                     520
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1257>:

```
a302.seq
          ATGCACTCAA TATATTTTT TAAGGAGAAG CAGATGAGTC AAACCGATAC
          GCAACGGGAC GGACGATTTT TACGCACAGT CGAATGGCTG GGCAATATGT
      51
          TGCCGCACCC GGTTACGCTT TTTATTATTT TCATTGTGTT ATTGCTGATT
     151 GCCTCTGCCG CCGGTGCGTA TTTCGGACTA TCCGTCCCCG ATCCGCGCCC
          TGTTGGTGCG AAAGGACGTG CCGATGACGG TTTGATTCAC GTTGTCAGCC
          TGCTCGATGC TGACGGTTTG ATCAAAATCC TGACGCATAC CGTTAAAAAT
     251
     301
          TTCACCGGTT TCGCGCCGTT GGGAACGGTG TTGGTTTCTT TATTGGGCGT
     351
          GGGGATTGCG GAAAAATCGG GCTTGATTTC CGCATTAATG CGCTTATTGC
     401 TCACAAAATC TCCACGCAAA CTCACTACTT TTATGGTTGT TTTTACAGGG
          ATTTTATCTA ATACCGCTTC TGAATTGGGC TATGTCGTCC TAATCCCTTT
     451
     501 GTCCGCCATC ATCTTTCATT CCCTCGGCCG CCATCCGCTT GCCGGTCTGG
     551 CTGCGGCTTT CGCCGGCGTT TCGGGCGGTT ATTCGGCCAA TCTGTTCTTA
     601 GGCACAATCG ATCCGCTCTT GGCAGGCATC ACCCAACAGG CGGCGCAAAT
          CATCCATCCC GACTACGTCG TAGGCCCTGA AGCCAACTGG TTTTTTATGG
     701 TAGCCAGTAC GTTTGTGATT GCTTTGATTG GTTATTTTGT TACTGAAAAA
     751 ATCGTCGAAC CGCAATTGGG CCCTTATCAA TCAGATTTGT CACAAGAAGA
     801 AAAAGACATT CGACATTCCA ATGAAATCAC GCCTTTGGAA TATAAAGGAT
          TAATTTGGGC TGGCGTGGTG TTTGTTGCCT TATCCGCCCT ATTGGCTTGG
     851
     901 AGCATCGTCC CTGCCGACGG TATTTTGCGT CATCCTGAAA CAGGATTGGT
     951 TTCCGGTTCG CCGTTTTTAA AATCAATTGT TGTTTTTATT TTCTTGTTGT
    1001 TTGCACTGCC GGGCATTGTT TATGGCCGGG TAACCCGAAG TTTGCGCGGC
1051 GAACAGGAAG TCGTTAATGC GATGGCCGAA TCGATGAGTA CTCTGGGGCT
    1101 TTATTTGGTC ATCATCTTTT TTGCCGCACA GTTTGTCGCA TTTTTTAATT
    1151 GGACGAATAT TGGGCAATAT ATTGCCGTTA AAGGGGCGAC GTTCTTAAAA
          GAAGTCGGCT TGGGCGGCAG CGTGTTGTTT ATCGGTTTTA TTTTAATTTG
    1251 TGCTTTTATC AATCTGATGA TAGGCTCCGC CTCCGCGCAA TGGGCGGTAA
    1301 CTGCGCCGAT TTTCGTCCCT ATGCTGATGT TGGCCGGCTA CGCGCCCGAA
    1351 GTCATTCAAG CCGCTTACCG CATCGGTGAT TCCGTTACCA ATATTATTAC
    1401 GCCGATGATG AGTTATTTCG GGCTGATTAT GGCGACGGTG ATCAAATACA
    1451 AAAAAGATGC GGGCGTGGGT ACGCTGATTT CTATGATGTT GCCGTATTCC
    1501 GCTTTCTTCT TGATTGCGTG GATTGCCTTA TTCTGCATTT GGGTATTTGT
    1551 TTTGGGCCTG CCCGTCGGTC CCGGCGCGCC CACATTCTAT CCCGCACCTT
    1601 AA
```

This corresponds to the amino acid sequence <SEQ ID 1258; ORF 302.a>: a302.pep

- MHSIYFFKEK OMSOTDTORD GRFLRTVEWL GNMLPHPVTL FIIFIVLLLI 1
 - ASAAGAYFGL SVPDPRPVGA KGRADDGLIH VVSLLDADGL IKILTHTVKN 51
- 101 FTGFAPLGTV LVSLLGVGIA EKSGLISALM RLLLTKSPRK LTTFMVVFTG

151 201		YVVLIPLSAI TOOAAQIIHP			
251	IVEPQLGPYQ	SDLSQEEKDI	RHSNEITPLE	YKGLIWAGVV	FVALSALLAW
301 351	EQEVVNAMAE	HPETGLVSGS SMSTLGLYLV	IIFFAAQFVA	FFNWTNIGQY	IAVKGATFLK
401 451	VIQAAYRIGD	IGFILICAFI SVTNIITPMM	SYFGLIMATV	IKYKKDAGVG	
501	A <u>FFLIAWIAL</u>	FCIWVFVLGL	PVGPGAPTFY	PAP*	

m302/a302	96.1%	identity	in 533 a	a overlap		•		
m302.r	pep				30 LRTVEWLGNM			
a302		MHSIYFF	 KEKQMSQT 10	DTQRDGRF 20		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		AGAYFGL AGAYFGL
					0.0	100	• • • •	
m302.p	pep				90 LLNADGFIKI : :			
a302					LLDADGLIKI 90			
			130	140	150	160	170	180
m302.p	pep				FMVVFTGILS			
a302		EKSGLIS			FMVVFTGILS 150			
m302.r	oep		190 AGVSGGYS	200 SANLFLSTI	210 DPLLACITHO	AAV	220 VGPEANWFFM	230 WASTFVI
a302		AGLAAAF	AGVSGGYS	SANLFLGTI		AAQIIHPDYV		
			190	200	210	220	230	240
m302.p	pep		TEKIVEP		260 SQEEKDIRHS 			
a302		ALIGYFV	TEKIVEP(250	QLGPYQSDI 260	SQEEKDIRHS 270	NEITPLEYKG 280	LIWAGVVFVA 290	ALSALLAW 300
m302.p	pep		ILRHPET		320 KSIVVFIFLL		_	
a302								
		360	, ;	370	380	390	400	410
m302.	pep	SMSTLXL			WTNIGQYIAV !!!!!!!!!!			
a302					WTNIGQYIAV 390			
m302.j	рер	420 NLMIGSA		430 APIFVPMLN	440 LAGYAPEVIO	450 AAYRIGDSVT	460 NIITPMMSYE	470 GLIMATV
a302	•				 LAGYAPEVIQ 450			
m302. ₁	202	480		490 ·	500	510	520	
a302.j	pep	1111111	 GVGTLIS	 MMLPYSAFE	FLIAWIALFCI FLIAWIALFCI			1
			490	500	510	520	530	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1259>:

```
g305.seq
           ATGGATTTTT TGATTGTCCT GAAAGCCCTG ATGATGGGCT TGGTAGAAGG
        1
           TTTTACCGAA TTTTTACCGA TTTCCAGCAC CGGACATTTG ATTGTGTTCG
       51
      101 GCAATCTGAT TGGTTTTCAC AGCAATCACA AGGTTTTTGA AATTGCCATC
      151 CAGCTCGGTG CGGTTTTGGC GGTAGTGTTT GAATACCGGC AGCGTTTCAG
      201 CAATGTGTTG CATGGCGTGG GAAAAGACCG GAAAGCCAAC CGTTTCGTCC
           TCAATCTTGC CATTGCTTTT ATACCTGCCG CCGTGATGGG GCTGTTGTTC
      251
      301 GACAAACAAA TCAAAGAGTA TCTGTTTAAC CCCTTGAGTG TTGCAGTCAT
      351 GCTGGTTTTG GGCGGTTTTT TTATTTTGTG GGTGGAGAAA CGCCAAAGCC
      401 GAGCAGAGCC TAAAATTGCC GATGTTGATG CATTGCGTCC GATTGATGCG
       451 TTGATGATCG GTGTTGCCCA AGTGTTTGCA CTGGTTCCGG GTACGTCCCG
-- 525
      501 TTCGGGCAGT ACGGTTATGG GCGGGATGCT TTGGGGAATC GAGCGGAAAA
           CGGCAACGGA GTTTTCATTT TTCTTGGCCG TTCCGATGAT GGTTGCAGCA
       551
       601 ACGGCTTATG ATGTCCTGAA ACATTACCGA TTTTTCACCC TGCATGATGT
      651 CGGTTTGATT TTGATAGGCT TTATTGCCGC TTTTGTTTCC GGTTTGGTAG
       701 CGGTTAAAGC ACTGCTGAAG TTTGTTTCCA AGAAAAACTA TATCCCGTTT
       751 GCCTATTACC GCATTGTTTT CGGCATTGTC ATCATAATAT TGTGGTTGTC
           GGGCTGGATA AGTTGGGAAT GA
  This corresponds to the amino acid sequence <SEQ ID 1260; ORF 305.ng>:
  q305.pep
           MDFLIVLKAL MMGLVEGFTE FLPISSTGHL IVFGNLIGFH SNHKVFEIAI
        1
           QLGAVLAVVF EYRQRFSNVL HGVGKDRKAN RFVLNLAIAF IPAAVMGLLF
        51
           DKQIKEYLFN PLSVAVMLVL GGFFILWVEK RQSRAEPKIA DVDALRPIDA
       101
       151 LMIGVAQVFA LVPGTSRSGS TVMGGMLWGI ERKTATEFSF FLAVPMMVAA
           TAYDVLKHYR FFTLHDVGLI LIGFIAAFVS GLVAVKALLK FVSKKNYIPF
       251 AYYRIVFGIV IIILWLSGWI SWE*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1261>:
  m305.seq
        1 Atggatttc tgattgtcct gaaagccctg atgatgggct tggtagaagg
        51 TTTTACCGAA TTTTTACCGA TTTCCAGCAC CGGACATTTG ATTGTGTTCG
           GCAATCTGAT TGGTTTTCAC AGCAATCACA AGGTTTTTGA AATTGCCATC
       101
           CAGCTCGGTG CAGTTTTGGC GGTAGTGTTT GAATACCGGC AACGTTTCAG
       151
       201 CAATGTGTTG CACGGCTTGG GAAAAGACCG GAAAGCCAAC CGCTTCGTCC
       251 TTAATCTTGC CATTGCTTTT ATACCTGCCG CCGTGATGGG GCTGTTGTTC
       301 GGCAWACAAA TCAAAGAGYA TCTGTTTAAC CCCTTGAGTG TTGCAGTCAT
       351 GCTGGTTYTG GrCGGTTTTT YTATTTTGTG GGTGGAGAAA CGCCAAAGCC
       401
           GAGCAGAGCC TAAAATTGCC GATGTTGATG CATTGCGTCC GATTGATGCC
       451 TTGATGATCG GCGTTGCCCA AGTGTTTGCA CTGGTTCCGG GTACGTCCCG
       501 TTCGGGCAGT ACGATTATGG GCGGGATGCT TTGGGGCATC GAACGGAAAA
       551 CTGCGACAGA ATTCTCGTTT TTCTTGGCTG TGCCGATGAT GGTTGCCGCA
       601 ACGGCTTATG ATGTCCTGAA ACATTACCGA TTTTTCACCC TGCATGATGT
       651 CGGTTTGATT CTGATAGGCT TTATTGCTGC CTTTGTTTCA GGCTTGGTAG
       701 CGGTAAAAGC GTTGCTGAGG TTTGTTTCGG GTAC...
  This corresponds to the amino acid sequence <SEQ ID 1262; ORF 305>:
             (partial)
  m305.pep
         1 MDFLIVLKAL MMGLVEGFTE FLPISSTGHL IVFGNLIGFH SNHKVFEIAI
           QLGAVLAVVF EYRQRFSNVL HGLGKDRKAN RFVLNLAIAF IPAAVMGLLF
       101 GXQIKEXLFN PLSVAVMLVL XGFXILWVEK RQSRAEPKIA DVDALRPIDA
       151 LMIGVAQVFA LVPGTSRSGS TIMGGMLWGI ERKTATEFSF FLAVPMMVAA
       201 TAYDVLKHYR FFTLHDVGLI LIGFIAAFVS GLVAVKALLR FVSG...
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 305 shows 96.7% identity over a 243 aa overlap with a predicted ORF (ORF 305.ng)
  from N. gonorrhoeae:
  g305/m305
                       10
                                 20
               MDFLIVLKALMMGLVEGFTEFLPISSTGHLIVFGNLIGFHSNHKVFEIAIQLGAVLAVVF
  g305.pep
               m305
               MDFLIVLKALMMGLVEGFTEFLPISSTGHLIVFGNLIGFHSNHKVFEIAIOLGAVLAVVF
                       10
                                20
                                          30
                                                    40
                                                              50
```

	70 80 90 100 110 120
g305.pep	EYRQRFSNVLHGVGKDRKANRFVLNLAIAFIPAAVMGLLFDKQIKEYLFNPLSVAVMLVL
m305	EYRORFSNVLHGLGKDRKANRFVLNLAIAFIPAAVMGLLFGXQIKEXLFNPLSVAVMLVL 70 80 90 100 110 120
	70 80 90 100 110 120
	130 140 150 160 170 180
g305.pep	GGFFILWVEKRQSRAEPKIADVDALRPIDALMIGVAQVFALVPGTSRSGSTVMGGMLWGI
 .,m305	XGFXILWVEKRQSRAEPKIADVDALRPIDALMIGVAQVFALVPGTSRSGSTIMGGMLWGI
	130 140 150 160 170 180
	190 200 210 220 230 240
~705 ~~~	ERKTATEFSFFLAVPMMVAATAYDVLKHYRFFTLHDVGLILIGFIAAFVSGLVAVKALLK
g305.pep	111111111111111111111111111111111111111
m305	ERKTATEFSFFLAVPMMVAATAYDVLKHYRFFTLHDVGLILIGFIAAFVSGLVAVKALLR
	190 200 210 220 230 240
	250 260 270
g305.pep	FVSKKNYIPFAYYRIVFGIVIIILWLSGWISWEX
-205	
m305	FVSG
The following	g partial DNA sequence was identified in N. meningitidis <seq 1263="" id="">:</seq>
a305.se	
	1 ATGGATTTTC TGATTGTCCT GAAAGCCCTG ATGATGGGCT TGGTAGAAGG
	1 TTTTACCGAA TTTTTACCGA TTTCCAGCAC CGGACATTTG ATTGTGTTCG
10	
15	
20	
25 30	
35	
	1 GAGCAGAGCC TAAAATTGTC GATGTTGATG CATTGCGTCC GATTGATGCG
45	
50	
55 60	
65	·
70	
75	1 GCCTATTACC GCATTGTTTT TGGTATTGCC ATCATTATAT TGTGGCTGTC
80	1 AGGCTGGATA AGTTGGGAAT GA
mi :	under the American and annuaries CEO ID 1264, ODE 205 and
	nds to the amino acid sequence <seq 1264;="" 305.a="" id="" orf="">:</seq>
a305.pe	P 1 MDFLIVLKAL MMGLVEGFTE FLPISSTGHL IVFGNLIDFH SNHKVFEITI
	1 QLGAVLAVVF EYRQRFSNVL HGVGKDRKAN RFVLNLAIAF IPAAVMGLLF
10	
15	
20	
25	1 AYYR <u>IVFGIA IIILWLSGWI S</u> WE*
m305/a305	96.3% identity in 243 aa overlap
111303/8303	· · · · · · · · · · · · · · · · · · ·
m305.pe	10 20 30 40 50 60 MDFLIVLKALMMGLVEGFTEFLPISSTGHLIVFGNLIGFHSNHKVFEIAIQLGAVLAVVF
a305	MDFLIVLKALMMGLVEGFTEFLPISSTGHLIVFGNLIDFHSNHKVFEITIQLGAVLAVVF
	10 20 30 40 50 60
	70 80 90 100 110 120
m305.pe	
a305	EYRQRFSNVLHGVGKDRKANRFVLNLAIAFIPAAVMGLLFGKQIKEYLFNPLSVAVMLVL

WO 99/57280 PCT/US99/09346

701

```
100
                                                       110
                                                               120
                       70
                                80
                                        90
                                       150
                                               160
                                                       170
                                                               180
                      130
                               140
                 XGFXILWVEKRQSRAEPKIADVDALRPIDALMIGVAQVFALVPGTSRSGSTIMGGMLWGI
      m305.pep
                  GGFFILWVEKRQSRAEPKIVDVDALRPIDALMIGVAQVFALVPGTSRSGSTIMGGMLWGI
      a305
                               140
                                       150
                                               160
                                                       170
                       130
                               200
                                               220
                                       210
                                                       230
                       190
                 ERKTATEFSFFLAVPMMVAATAYDVLKHYRFFTLHDVGLILIGFIAAFVSGLVAVKALLR
      m305.pep
                 ERKTATEFSFFLAVPMMVAATAYDVLKHYRFFTLHDVGLILIGFVAAFVSGLVAVKALLR
- Str
      a305
                                       210
                                               220
                                                       230
                       190
                               200
                 FVSG
      m305.pep
                 111
                 FVSKKNYIPFAYYRIVFGIAIIILWLSGWISWEX
      a305
                               260
                       250
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1265>:
```

```
g306.seq
         ATGTTTATGA ACAAATTTC CCAATCCGGA AAAGGTCTGT CCGGTTTCTT
      1
         CTTCGGTTTG ATACTGGCAA CGGTCATTAT TGCCGGTATT TTGCTTTATC
         TGAACCAGGG CGGTCAAAAT GCGTTCAAAA TCCCGGCTCC GTCGAAGCAG
     101
         CCTGCAGAAA CGGAAATCCT GAAACTGAAA AACCAGCCTA AGGAAGACAT
     151
         CCAACCTGAA CCGGCCGATC AAAACGCCTT GTCCGAACCG GATGTTGCGA
     201
         AAGAGGCAGA GCAGTCGGAT GCGGAAAAAG CTGCCGACAA GCAGCCCGTT
     251
         GCCGACAAAG CCGACGAGGT TGAAGAAAAG GCGGGCGAGC CGGAACGGGA
         AGAGCCGGAC GGACAGGCAG TGCGCAAGAA AGCACTGACT GAAGAGCGTG
     351
         AACAAACCGT CAGGGAAAAA GCGCAGAAGA AAGATGCCGA AACGGTTAAA
     401
          AAAAAAGCGG TAAAACCGTC TAAAGAAACA GAGAAAAAAG CTTCAAAAGA
     451
         AGAGAAAAAG GCGGCGAAAG AAAAAGTTGC ACCCAAACCG ACCCCGGAAC
     501
     551 AAATCCTCAA CAGCCGCAGT ATCGAAAAAG CGCGTAGTGC CGCTGCCAAA
     601 GAAGTGCAGA AAATGAAAAA CTTTGGGCAA GGCGGAAGCC AACGCATTAT
     651 CTGCAAATGG GCGCGTATGC CGAACCCCGG AGCGCGGAAG GGCAGCGTGC
         CAAACTGGCA ATCTTGGGCA TATCTTCCGA AGTGGTCGGC TATCAGGCGG
     701
          GACATAAAAC GCTTTACCGC GTGCAAAGCG GCAATATGTC CGCCGATGCG
     801
          GTGA
```

This corresponds to the amino acid sequence <SEQ ID 1266; ORF 306.ng>: g306.pep

1 MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LLYLNQGGQN AFKIPAPSKQ 51 PAETEILKLK NQPKEDIQPE PADQNALSEP DVAKEAEQSD AEKAADKQPV

51 PAETEILKLK NQPKEDIQPE PADQNALSEP DVAKEAEQSD AEKAADKQPV
101 ADKADEVEEK AGEPEREEPD GQAVRKKALT EEREQTVREK AQKKDAETVK

151 KKAVKPSKET EKKASKEEKK AAKEKVAPKP TPEQILNSRS IEKARSAAAK

201 EVQKMKNFGQ GGSQRIICKW ARMPNPGARK GSVPNWQSWA YLPKWSAIRR

251 DIKRFTACKA AICPPMR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1267>: m306.seq (partial)

```
..GGTTTGTTCT TCGGTTTGAT ACTGGCGACG GTCATTATTG CCGGTATTTT
 1
       GTTTTATCTG AACCAGAGCG GTCAAAATGC GTTCAAAATC CCGGCTTCGT
 51
       CGAAGCAGCC TGCAGAAACG GAAATCCTGA AACCGMAWAA CCAGCYTAAG
101
       GAAGACATCC AACCTGAWCC GGCCGATCAA AACGCCTTGT CCGAACCGGA
151
201
       TGCTGCGACA GAGGCAGAGC AGTCGGATGC GGAAAAwGCT GCCGACAAGC
       AGCCCGTTGC CGATAAAGCC GACGAGGTTG AAGAAAAGGC GGGCGAGCCG
251
       GAACGGGAAG AGCCGGACGG ACAGGCAGTG CGTAAGAAAG CGCTGACGGA
301
       AGAGCGTGAA CAAACCGTCA GGGAAAAAGC GCAGAAGAAA GATGCCGAAA
351
401
       CGGTTAAAAW ACAAGCGGTA AAACCGTCTA AAGAAACAGA GAAAAAAGCT
       TCAAAAGAAG AGAAAAAGGC GGCGAAGGAA AAAGTTGCAC CCAAACCAAC
451
       CCCGGAACAA ATCCTCAACA GCGGCAGCAT CGAAAAAGCG CGCAGTGCCG
501
       CCGCCAAAGA AGTGCAGAAA ATGAAAACGC CGACAAGGCG GAAGCAACGC
551
```

```
ATTATCTGCA AATGGGCGCG TATGCCGACC GTCAGAGCGC GGAAGGGCAG
            601
                   CGTGCCAAAC TGGCAATCTT GGGCATATCT TCCAAGGTGG TCGGTTATCA
            651
                   GGCGGGACAT AAAACGCTTT ACCGGGTGCA AAGCGGCAAT ATGTCTGCCG
            701
                   ATGCGGTGA
            751
   This corresponds to the amino acid sequence <SEQ ID 1268; ORF 306>:
                 (partial)
        m306.pep
                 ..GLFFGLILAT VIIAGILFYL NQSGQNAFKI PASSKQPAET EILKPXNQXK
                   EDIQPXPADQ NALSEPDAAT EAEQSDAEXA ADKQPVADKA DEVEEKAGEP
                   EREEPDGOAV RKKALTEERE QTVREKAQKK DAETVKXQAV KPSKETEKKA
            101
                   SKEEKKAAKE KVAPKPTPEQ ILNSGSIEKA RSAAAKEVQK MKTPTRRKOR
            151
                   IICKWARMPT VRARKGSVPN WQSWAYLPRW SVIRRDIKRF TGCKAAICLP
            201
__ *:::-
            251
                   MR*
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N. gonorrhoeae
   ORF 306 shows 88.9% identity over a 253 aa overlap with a predicted ORF (ORF 306.ng)
   from N. gonorrhoeae:
        m306/g306
                                        10
                                                  20
                                                           30
                                 GLFFGLILATVIIAGILFYLNQSGQNAFKIPASSKQPAETEILKPX
        m306.pep
                                 MFMNKFSQSGKGLSGFFFGLILATVIIAGILLYLNQGGQNAFKIPAPSKQPAETEILKLK
        q306
                                                       40
                                                                50
                                                                          60
                           10
                                     20
                                              30
                                        70
                                                  80
                                                           90
                                                                   100
                    NQXKEDIQPXPADQNALSEPDAATEAEQSDAEXAADKQPVADKADEVEEKAGEPEREEPD
        m306.pep
                    NOPKEDIOPEPADQNALSEPDVAKEAEQSDAEKAADKQPVADKADEVEEKAGEPEREEPD
        g306
                                                                110
                                                                         120
                                                      100
                            70
                                     80
                                              90
                                                          150
                                                                   160
                                        130
                                                 140
                              120
                    GQAVRKKALTEEREQTVREKAQKKDAETVKXQAVKPSKETEKKASKEEKKAAKEKVAPKP
        m306.pep
                    GOAVRKKALTEEREGTVREKAQKKDAETVKKKAVKPSKETEKKASKEEKKAAKEKVAPKP
        g306
                                                                170
                                             150
                                                      160
                           130
                                    140
                     170
                               180
                                        190
                                                  200
                                                           210
                                                                    220
                    TPEQILNSGSIEKARSAAAKEVQKMKTPTRR-KQRIICKWARMPTVRARKGSVPNWQSWA
        m306.pep
                    TPEOILNSRSIEKARSAAAKEVQKMKNFGQGGSQRIICKWARMPNPGARKGSVPNWQSWA
        g306
                                                                230
                                                                         240
                                             210
                                                      220
                           190
                                    200
                                240
                      230
                                         250
                    YLPRWSVIRRDIKRFTGCKAAICLPMRX
        m306.pep
                     YLPKWSAIRRDIKRFTACKAAICPPMRX
        g306
                           250
                                    260
    The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1269>:
        a306.seq
                 ATGTTTATGA ACAAATTTTC CCAATCCGGA AAAGGTCTGT CCGGTTTTTT
               1
                 CTTCGGTTTG ATACTGGCGA CGGTCATTAT TGCCGGTATT TTGTTTTATC
              51
             101 TGAACCAGAG CGGTCAAAAT GCGTTCAAAA TCCCGGTTCC GTCGAAGCAG
             151 CCTGCAGAAA CGGAAATCCT GAAACCGAAA AACCAGCCTA AGGAAGACAT
                 CCAACCTGAA CCGGCCGATC AAAACGCCTT GTCCGAACCG GATGCTGCGA
             201
             251 AAGAGGCAGA GCAGTCGGAT GCGGAAAAAG CTGCCGACAA GCAGCCCGTT
                 GCCGACAAAG CCGACGAGGT TGAGGAAAAG GCGGACGAGC CGGAGCGGGA
             301
             351
                 AAAGTCGGAC GGACAGGCAG TGCGCAAGAA AGCACTGACG GAAGAGCGTG
             401 AACAAACCGT CGGGGAAAAA GCGCAGAAGA AAGATGCCGA AACGGTTAAA
             451 AAACAAGCGG TAAAACCATC TAAAGAAACA GAGAAAAAAG CTTCAAAAGA
             501 AGAGAAAAG GCGGAGAAGG AAAAAGTTGC ACCCAAACCG ACCCCGGAAC
             551 AAATCCTCAA CAGCGGCAGC ATCGAAAAAG CGCGCAGTGC CGCTGCCAAA
```

```
601 GAAGTGCAGA AAATGAAAAC GCCGACAAGG CGGAAGCAAC GCATTATCTG
           651 CAAATGGGCG CGTATGCCGA CCGCCGGAGC GCGGAAGGGC AGCGTGCCAA
           701 ACTGGCAATC TTGGGCATAT CTTCCAAGGT GGTCGGTTAT CAGGCGGGAC
           751 ATAAAACGCT TTACCGGGTG CAAAGCGGCA ATATGTCTGC CGATGCGGTG
  This corresponds to the amino acid sequence <SEQ ID 1270; ORF 306.a>:
      a306.pep
               MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LFYLNQSGQN AFKIPVPSKQ
               PAETEILKPK NQPKEDIQPE PADQNALSEP DAAKEAEQSD AEKAADKQPV
            51
               ADKADEVEEK ADEPEREKSD GQAVRKKALT EEREQTVGEK AQKKDAETVK
           101
__ 900 =
           151 KQAVKPSKET EKKASKEEKK AEKEKVAPKP TPEQILNSGS IEKARSAAAK
               EVOKMKTPTR RKORIICKWA RMPTAGARKG SVPNWQSWAY LPRWSVIRRD
           251 IKRFTGCKAA ICLPMR*
  m306/a306 93.7% identity in 252 aa overlap
                                              20
                                                       30
                              GLFFGLILATVIIAGILFYLNQSGQNAFKIPASSKQPAETEILKPX
      m306.pep
                              MFMNKFSQSGKGLSGFFFGLILATVIIAGILFYLNQSGQNAFKIPVPSKQPAETEILKPK
      a306
                                  20
                                           30
                                                    40
                                                            50
                                                       90
                                              80
                                                               100
                    50
                             60
                                      70
                  NOXKEDIQPXPADQNALSEPDAATEAEQSDAEXAADKQPVADKADEVEEKAGEPEREEPD
      m306.pep
                  NOPKEDIQPEPADQNALSEPDAAKEAEQSDAEKAADKQPVADKADEVEEKADEPEREKSD
      a306
                         70
                                  RO
                                           90
                                                   100
                                                            110
                                             140
                                                      150
                            120
                                    130
                  GOAVRKKALTEEREQTVREKAQKKDAETVKXQAVKPSKETEKKASKEEKKAAKEKVAPKP
      m306.pep
                  a306
                  GQAVRKKALTEEREQTVGEKAQKKDAETVKKQAVKPSKETEKKASKEEKKAEKEKVAPKP
                        130
                                 140
                                          150
                                                   160
                                                            170
                   170
                            180
                                     190
                                             200
                                                      210
                  TPEQILNSGSIEKARSAAAKEVQKMKTPTRRKQRIICKWARMPTVRARKGSVPNWQSWAY
      m306.pep
                  TPEQILNSGSIEKARSAAAKEVQKMKTPTRRKQRIICKWARMPTAGARKGSVPNWQSWAY
      a306
                        190
                                 200
                                          210
                                                   220
                                                            230
                            240
                                     250
                   230
                  LPRWSVIRRDIKRFTGCKAAICLPMRX
      m306.pep
                  1111111111111111111111111111111111
                  LPRWSVIRRDIKRFTGCKAAICLPMRX
       a306
                        250
                                 260
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1271>: g307.seq

```
1 atgaaaacct tettcaaaac cetttegace gegteacteg egeteateet
51 egeageetge ggeggteaaa aagacageg geeegagee tetgeegeeg
101 eccettetge egataaegge geggggaaaa aagaaategt etteggeaeg
151 acegtgggeg actteggega tatggteaaa gaacaaatce aageegaget
201 ggagaaaaa ggetacaceg teaaattggt egaatttace gactatgtge
251 geeegaatet ggeattggeg gagggegagt tggacateaa egtetteeaa
301 cacaaaceet atettgaega ttteaaaaaa gaacacaace tggacateac
351 egaageette eaagtgeega eegegeett gggactgtat eegggeaaac
401 tgaaateget ggaagaagte aaagaeggea geacegtate egegeeaac
451 gaceegteea aettegeaeg egeettggtg atgetgaaeg aactgggttg
501 gateaaacte aaagaeggea teaateeget gacegeatee aaageegaca
551 tegeggaaaa eetgaaaaac ateaaaateg tegagettga ageegaaca
601 etgeegegea geegeeega egtggattt geegtegtea aeggeaacta
651 egecataage ageggeatga agetgaeega ageeetgtte eaagageega
```

```
701 gctttgccta tgtcaactgg tctgccgtca aaaccgccga caaagacagc
          751 caatggctta aagacgtaac cgaggcctat aactccgacg cgttcaaagc
          801 ctacgcgcac aaacgcttcg agggctacaa ataccctgcc gcatggaatg
          851 aaggcgcagc caaataa
This corresponds to the amino acid sequence <SEQ ID 1272; ORF 307.ng>:
     g307.pep
               MKTFFKTLST ASLALILAAC GGQKDSAPAA SAAAPSADNG AAKKEIVFGT
           51 TVGDFGDMVK EQIQAELEKK GYTVKLVEFT DYVRPNLALA EGELDINVFO
          101 HKPYLDDFKK EHNLDITEAF QVPTAPLGLY PGKLKSLEEV KDGSTVSAPN
          151 DPSNFARALV MLNELGWIKL KDGINPLTAS KADIAENLKN IKIVELEAAQ
          201 LPRSRADVDF AVVNGNYAIS SGMKLTEALF QEPSFAYVNW SAVKTADKDS
          251 QWLKDVTEAY NSDAFKAYAH KRFEGYKYPA AWNEGAAK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1273>:
     m307.seq (partial)
              ..CAATGGCTTA AAGACGTAAC CGAGGCCTAT AACTCCGACG CGTTCAAAGC
           1
                 CTACGCGCAC AAACGCTTCG AGGGCTACAA ATCCCCTGCC GCATGGAATG
           51
                 AAGGCGCAGC CAAATAA
          101
This corresponds to the amino acid sequence <SEQ ID 1274; ORF 307>:
     m307.pep (partial)
               ..QWLKDVTEAY NSDAFKAYAH KRFEGYKSPA AWNEGAAK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 307 shows 97.4% identity over a 38 aa overlap with a predicted ORF (ORF 307.ng)
from N. gonorrhoeae:
     m307/g307
                                                        10
                                                                  20
                                                                            30
                                                QWLKDVTEAYNSDAFKAYAHKRFEGYKSPA
     m307.pep
                                                SGMKLTEALFQEPSFAYVNWSAVKTADKDSQWLKDVTEAYNSDAFKAYAHKRFEGYKYPA
     g307
                                           250
                         230
                                   240
                                                      260
                                                                270
                         39
                  AWNEGAAKX
     m307.pep
                  11111111
                  AWNEGAAKX
     g307
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1275>:
     a307.seq
               ATGAAAACCT TCTTCAAAAC CCTTTCCGCC GCCGCACTCG CGCTCATCCT
           51 CGCCGCCTGC GGCGGTCAAA AAGATAGCGC GCCCGCCGCA TCCGCTTCTG
          101 CCGCCGCCGA CAACGGCGCG GCGAAAAAAG NAATCGTCTT CGGCACGACC
          151 GTCGGCGACT TCGGCGATAT GGTCAAAGAA CAAATCCAAC CCGAGCTGGA
          201 GAAAAAGGC TACACCGTCA AACTGGTCGA GTTTACCGAC TATGTGCGCC
          251 CGAATCTGGC ATTGGCTGAG GGCGAGTNGG ACATCAACGT CTTCCAACAC
          301 AAACCCTATC TTGACGACTT CAAAAAAGAA CACAATCTGG ACATCACCGA
          351 AGTCTTCCAA GTGCCGACCG CGCCTTTGGG ACTGTACCCG GGCAAGCTGA
          401 AATCGCTGGA AGAAGTCAAA GACGGCAGCA CCGTATCCGC GCCCAACGAC
          451 CCGTCCAACT TCGCCCGCGT CTTGGTGATG CTCGACGAAC TGGGTTGGAT
          501 CAAACTCAAA GANGGCATCA ATCCGCTGAC CGCATCCAAA GCGGACATTG
          551 CCGAAAACCT GAAAAACATC AAAATCGTCG AGCTTGAAGC CGCGCAACTG
          601 CCGCGTAGCC GCGCCGACGT GGATTTTGNC GTCGTCAACG GCAANTACGC
               CATAAGCAGC GGCATGAAGC TGACCGAAGC CCTGTTCCAA GAACCGAGCT
          701 TTGCCTATGT CAACTGGTCT GCCGTCAAAA CCGCCGACAA AGACAGCCAA
          751 TGGCTTAAAG ACGTAACCGA GGCCTATAAC TCCGACGCGT TCAAAGCCTA
          801 CGCGCACAAA CGCTTCGAGG GCTACAAATC CCCTGCCGCA TGGAATGAAG
          851 GCGCAGCCAA ATAA
This corresponds to the amino acid sequence <SEQ ID 1276; ORF 307.a>:
     a307.pep
```

MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA AKKXIVFGTT

WO 99/57280 PCT/US99/09346

```
51 VGDFGDMVKE QIQPELEKKG YTVKLVEFTD YVRPNLALAE GEXDINVFQH
             101 KPYLDDFKKE HNLDITEVFQ VPTAPLGLYP GKLKSLEEVK DGSTVSAPND
             151 PSNFARVLVM LDELGWIKLK XGINPLTASK ADIAENLKNI KIVELEAAQL
             201 PRSRADVDFX VVNGXYAISS GMKLTEALFQ EPSFAYVNWS AVKTADKDSQ
             251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
  m307/a307 100.0% identity in 38 aa overlap
                                                          10
                                                                    20
                                                  QWLKDVTEAYNSDAFKAYAHKRFEGYKSPA
        m307.pep
                                                  SGMKLTEALFQEPSFAYVNWSAVKTADKDSQWLKDVTEAYNSDAFKAYAHKRFEGYKSPA
        a307
... 100
                          230
                                      240
                                                250
                                                         260
                                                                  270
                    AWNEGAAKX
        m307.pep
                     111111111
        a307
                    AWNEGAAKX
                   280
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1277>:
        g308.seq
                 ATGTTAAATC GGGTATTTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
             51
                 TCCGTGTTTA TCGGATTTCT GTTTTTTCAC TATAATAGCC GGTTTGCCGT
             101 TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
             151 GGCATCAGCG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGAACT
             201 TTTGCGCGCG CAAGATGTCG AAACGCACCT TGTGGTATCG AAAGGCGCGG
             251 AGATGGCGCG CGCTTCGGAA ACGGATTATA CGAAAGACGA AGTATATGCC
                 TTGGCTGATT TCGTCCATCC GATCGGCAAT ATCGGGGCGT GCATTGCCAG
             351 CGGTACGTTT AAAACGGACG GGATGCTGGT CGCACCCTGT TCGATGCGGA
             401 CGCTTGCCTC TGTCGCGCAC GGCTTCGGCG ACAACCTCTT GACGCGTGCG
             451 GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
             501 AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAAGCGG GTAACGGAAA
             551 TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAGCCGCAG
             601 ACGGCGGACG ACATAGTGGC GCACAGTATC GCACACACGC TGTCGCTGTT
             651 CGGAATCGAT ACGCCGGATT TGGCGGAATG GCAGGGAATG GCGGATTAA
  This corresponds to the amino acid sequence <SEQ ID 1278; ORF 308.ng>:
        q308.pep
              1 MLNRVFYRIL GVADNLYPCL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII
             51 GISGASGFQY GVKALELLRA QDVETHLVVS KGAEMARASE TDYTKDEVYA
             101 LADFVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVAH GFGDNLLTRA
             151 ADVVLKERRR LVLMVRETPL NLAHLDNMKR VTEMGGVVFP PVPAMYRKPQ
             201 TADDIVAHSI AHTLSLFGID TPDLAEWQGM AD*
  The following partial DNA sequence was identified in N. meningitidis <SEO ID 1279>:
        m308.seg
                   (partial)
              1 ATGTTAAATC GGGTATTTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
                 TCCGCGTTTA TCGGATTTCT GTTTTTCAC TATAATAGCC GGTTTGCCGT
             101 TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
             151 GGCATCAGCG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGAACT
             201 TTTGCGCGCG CAAGATGTCG AAACGCACCT TGTGGTATCG AAAGGTGCGG
             251 AGATGGCGCG CGCTTCGGAA ACGGCTTATG CGAGAGACGA GGTATATGCC
             301 TTGGCGGACT TCGTGCATCC GATCGGCAAT ATCGGGGCGT GCATTGCCAG
             351 CGGTACGTTT AAAACGGATG GGATGCTGGT CGCCCCCTGT TCGATGCGGA
             401 CGCTTGCCTC TGTCGCGCAC GGCTTCGGCG ACAATCTGCT GACGCGTGCG
             451 GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
             501 AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAAGCGG GWAACGGAAA
             551 TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAACCGCAG
             601 ACGGCGGACG ACATAGTGGC GCACAGTGTT GCACACGCLT TGTCGCTGTT
             651 CGGAATCGAT ACGCCGGATT CGGCGGAATG GCArGGAATG gcG...
  This corresponds to the amino acid sequence <SEQ ID 1280; ORF 308>:
        m308.pep
                  (partial)
```

```
1 MLNRVFYRIL GVADNLYPRL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII
```

- 51 GISGASGFOY GVKALELLRA ODVETHLVVS KGAEMARASE TAYARDEVYA
- 101 LADFVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVAH GFGDNLLTRA
- 151 ADVVLKERRR LVLMVRETPL NLAHLDNMKR XTEMGGVVFP PVPAMYRKPO
- 201 TADDIVAHSV AHALSLFGID TPDSAEWQGM A..

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 308 shows 96.5% identity over a 231 aa overlap with a predicted ORF (ORF 308.ng) from N. gonorrhoeae:

m308/g308

```
30
                10
                       20
                                       40
         MLNRVFYRILGVADNLYPRLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
m308.pep
          MLNRVFYRILGVADNLYPCLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
g308
                       20
                               30
                                       40
                70
                       80
                               90
                                      100
                                              110
          GVKALELLRAQDVETHLVVSKGAEMARASETAYARDEVYALADFVHPIGNIGACIASGTF
m308.pep
          GVKALELLRAQDVETHLVVSKGAEMARASETDYTKDEVYALADFVHPIGNIGACIASGTF
g308
                               90
                                      100
                                             110
                70
                       80
               130
                       140
                              150
                                      160
                                              170
                                                     180
          KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR
m308.pep
          KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR
g308
               130
                       140
                              150
                                      160
                                              170
                                                     180
                       200
                              210
                                      220
               190
          XTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMA
m308.pep
           VTEMGGVVFPPVPAMYRKPOTADDIVAHSIAHTLSLFGIDTPDLAEWQGMADX
q308
               190
                       200
                              210
                                      220
                                              230
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1281>: a308.seq

```
ATGTTAAATC GGATATTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
 1
    TCCGTATTTA TCGGATTTCT GTTTTTTCAC TATAATAGCC GGTTTGCCGT
51
    TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
151 GGCATCAGTG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGANCT
201 TTTACGCGCG CAAGATATCG AAACGCACCT TGTGGTATCG AAAGGTGCGG
251 AGATGGCGCG CGCTTCGGAA ACGGNTTATG CGAGAGACGA NGTATATGCC
301
     TTGGCGGACT TNGTGCATCC GATCGGCAAT ATCGGGGCGT GCATTGCCAG
     CGGTACGTTT AAAACGGACG GGATGCTGGT CGCCCCCTGT TCGATGCGGA
351
     CGCTTGCCTC GGTCGTGCAC GGCTTCGGCG ACAACCTCTT GACGCGTGCG
     GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
451
    AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAANCGG GTAACGGAAA
501
     TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAACCGCAG
551
     ACGGCGGACG ACATAGTGGC GCACAGTGTT GCACACGCTT TGTCGCTGTT
601
    CGGAATCGAT ACGCCGGATT CGGCGGAATG GCAGGGAATG GCGGATTAA
```

This corresponds to the amino acid sequence <SEQ ID 1282; ORF 308.a>:

a308.pep

- MLNRIFYRIL GVADNLYPYL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII
- GISGASGFQY GVKALXLLRA QDIETHLVVS KGAEMARASE TXYARDXVYA 51
- LADXVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVVH GFGDNLLTRA
- 151 ADVVLKERRR LVLMVRETPL NLAHLDNMXR VTEMGGVVFP PVPAMYRKPQ
- TADDIVAHSV AHALSLFGID TPDSAEWOGM AD*

PCT/US99/09346 WO 99/57280

707

```
m308/a308 95.7% identity in 231 aa overlap
```

-- ****

```
30
                      20
         MLNRVFYRILGVADNLYPRLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
m308.pep
         MLNRIFYRILGVADNLYPYLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
a308
                              30
               10
                       20
                                            110
                              90
                                     100
               70
         GVKALELLRAQDVETHLVVSKGAEMARASETAYARDEVYALADFVHPIGNIGACIASGTF
m308.pep
         GVKALXLLRAQDIETHLVVSKGAEMARASETXYARDXVYALADXVHPIGNIGACIASGTF
a308
               70
                       80
                              90
                                     100
                                            110
                             150
                                     160
                      140
               130
          KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR
m308.pep
          KTDGMLVAPCSMRTLASVVHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMXR
a308
                                     160
                      140
                              150
               130
                                     220
                              210
                      200
          XTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMA
m308.pep
          VTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMADX
a308
                                             230
                                     220
               190
                      200
                              210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1283>: α308-1.seq

```
1 ATGTTAAATC GGGTATTTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
    TCCGTGTTTA TCGGATTTCT GTTTTTCAC TATAATAGCC GGTTTGCCGT
101 TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
    GGCATCAGCG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGAACT
201 TTTGCGCGCG CAAGATGTCG AAACGCACCT TGTGGTATCG AAAGGCGCGG
    AGATGGCGCG CGCTTCGGAA ACGGATTATA CGAAAGACGA AGTATATGCC
    TTGGCTGATT TCGTCCATCC GATCGGCAAT ATCGGGGCGT GCATTGCCAG
    CGGTACGTTT AAAACGGACG GGATGCTGGT CGCACCCTGT TCGATGCGGA
351
    CGCTTGCCTC TGTCGCGCAC GGCTTCGGCG ACAACCTCTT GACGCGTGCG
401
    GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
451
    AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAAGCGG GTAACGGAAA
501
    TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAGCCGCAG
    ACGGCGGACG ACATAGTGGC GCACAGTATC GCACACACGC TGTCGCTGTT
    CGGAATCGAT ACGCCGGATT TGGCGGAATG GCAGGGAATG GCGGATTAA
```

This corresponds to the amino acid sequence <SEQ ID 1284; ORF 308-1.ng>: g308-1.pep

```
1 MLNRVFYRIL GVADNLYPCL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII
```

- 51 GISGASGFQY GVKALELLRA QDVETHLVVS KGAEMARASE TDYTKDEVYA LADFVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVAH GFGDNLLTRA 101
- ADVVLKERRR LVLMVRETPL NLAHLDNMKR VTEMGGVVFP PVPAMYRKPQ
- 201 TADDIVAHSI AHTLSLFGID TPDLAEWQGM AD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1285>: m308-1.seq

```
1 ATGTTAAATC GGGTATTTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
    TCCGCGTTTA TCGGATTTCT GTTTTTCAC TATAATAGCC GGTTTGCCGT
51
101 TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
151 GGCATCAGCG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGAACT
201 TTTGCGCGCG CAAGATGTCG AAACGCACCT TGTGGTATCG AAAGGTGCGG
251 AGATGGCGCG CGCTTCGGAA ACGGCTTATG CGAGAGACGA GGTATATGCC
    TTGGCGGACT TCGTGCATCC GATCGGCAAT ATCGGGGCGT GCATTGCCAG
351 CGGTACGTTT AAAACGGATG GGATGCTGGT CGCCCCCTGT TCGATGCGGA
    CGCTTGCCTC TGTCGCGCAC GGCTTCGGCG ACAATCTGCT GACGCGTGCG
    GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
    AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAAGCGG GTAACGGAAA
    TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAACCGCAG
    ACGGCGGACG ACATAGTGGC GCACAGTGTT GCACACGCTT TGTCGCTGTT
    CGGAATCGAT ACGCCGGATT CGGCGGAATG GCAGGGAATG GCGGATTAA
```

This corresponds to the amino acid sequence <SEQ ID 1286; ORF 308-1>:

MLNRVFYRIL GVADNLYPRL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII

```
708
          GISGASGFOY GVKALELLRA QDVETHLVVS KGAEMARASE TAYARDEVYA
          LADFVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVAH GFGDNLLTRA
     101
         ADVVLKERRR LVLMVRETPL NLAHLDNMKR VTEMGGVVFP PVPAMYRKPQ
TADDIVAHSV AHALSLFGID TPDSAEWQGM AD*
     151
     201
                  97.0% identity in 232 as overlap
m308-1/q308-1
                               20
                                         30
             MLNRVFYRILGVADNLYPRLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
m308-1.pep
             MLNRVFYRILGVADNLYPCLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
g308-1
                     10
                               20
                                         30
                                                   40
                     70
                               80
                                         90
                                                  100
                                                            110
                                                                      120
             GVKALELLRAQDVETHLVVSKGAEMARASETAYARDEVYALADFVHPIGNIGACIASGTF
m308-1.pep
             GVKALELLRAQDVETHLVVSKGAEMARASETDYTKDEVYALADFVHPIGNIGACIASGTF
g308-1
                                                            110
                                         90
                                                  100
                                                                      120
                     70
                               80
                    130
                              140
                                        150
                                                  160
                                                            170
                                                                      180
             KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR
m308-1.pep
             14144141414141414444444444
             KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR
g308-1
                                                            170
                              140
                                        150
                                                  160
                              200
                                        210
                                                  220
                    190
             VTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMADX
m308-1.pep
             1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 | 1811 |
             VTEMGGVVFPPVPAMYRKPQTADDIVAHSIAHTLSLFGIDTPDLAEWQGMADX
g308-1
                    190
                              200
                                        210
                                                  220
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1287>:
a308-1.seq
       1 ATGTTAAATC GGATATTTTA TCGGATATTG GGTGTTGCCG ACAATTTGTA
      51 TCCGTATTTA TCGGATTTCT GTTTTTCAC TATAATAGCC GGTTTGCCGT
01 TGCAGGCGGT TTTATGGGAA AGGCGGATGA TGGTACGGCG TTTGATAATC
     101
     151 GGCATCAGTG GGGCGAGCGG TTTCCAATAC GGCGTGAAGG CTTTGGANCT
     201 TTTACGCGCG CAAGATATCG AAACGCACCT TGTGGTATCG AAAGGTGCGG
     251 AGATGGCGCG CGCTTCGGAA ACGGNTTATG CGAGAGACGA NGTATATGCC
     301 TTGGCGGACT TNGTGCATCC GATCGCCAAT ATCGGGGCGT GCATTGCCAG
     351 CGGTACGTTT AAAACGGACG GGATGCTGGT CGCCCCCTGT TCGATGCGGA
     401 CGCTTGCCTC GGTCGTGCAC GGCTTCGGCG ACAACCTCTT GACGCGTGCG
     451 GCGGATGTGG TTTTGAAGGA AAGGCGGCGG CTGGTGCTGA TGGTGCGCGA
     501 AACGCCGCTG AACCTTGCCC ATTTGGACAA TATGAANCGG GTAACGGAAA
     551 TGGGCGGCGT GGTGTTTCCC CCTGTTCCTG CGATGTACCG CAAACCGCAG
     601 ACGGCGGACG ACATAGTGGC GCACAGTGTT GCACACGCTT TGTCGCTGTT
651 CGGAATCGAT ACGCCGGATT CGGCGGAATG GCAGGGAATG GCGGATTAA
This corresponds to the amino acid sequence <SEQ ID 1288; ORF 308-1.a>:
a308-1.pep
       1 MLNRIFYRIL GVADNLYPYL SDFCFFTIIA GLPLQAVLWE RRMMVRRLII
          GISGASGFQY GVKALXLLRA QDIETHLVVS KGAEMARASE TXYARDXVYA
      51
          LADXVHPIGN IGACIASGTF KTDGMLVAPC SMRTLASVVH GFGDNLLTRA
     101
      151 ADVVLKERRR LVLMVRETPL NLAHLDNMXR VTEMGGVVFP PVPAMYRKPQ
          TADDIVAHSV AHALSLEGID TPDSAEWQGM AD*
a308-1/m308-1
                96.1% identity in 232 aa overlap
                               20
                                         30
                                                   40
             MLNRIFYRILGVADNLYPYLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
a308-1
              m308-1
             MLNRVFYRILGVADNLYPRLSDFCFFTIIAGLPLQAVLWERRMMVRRLIIGISGASGFQY
                     10
                               20
                                          30
                                                   40
                                                              50
                                80
                                          90
                                                   100
              GVKALXLLRAQDIETHLVVSKGAEMARASETXYARDXVYALADXVHPIGNIGACIASGTF
 a308-1
```

GVKALELLRAQDVETHLVVSKGAEMARASETAYARDEVYALADFVHPIGNIGACIASGTF

90

150 KTDGMLVAPCSMRTLASVVHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMXR

100

160

80

140

70

m308-1

a308-1

m308-1

709

KTDGMLVAPCSMRTLASVAHGFGDNLLTRAADVVLKERRRLVLMVRETPLNLAHLDNMKR

```
150
                                              160
                             140
                    130
                                     210
                                              220
                             200
              VTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMADX
  a308-1
              VTEMGGVVFPPVPAMYRKPQTADDIVAHSVAHALSLFGIDTPDSAEWQGMADX
  m308-1
                                     210
                    190
                             200
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1289>:
                  atgttcagtt tcggctgggc gtttgaccgc ccgcagtatg agttgggttc
              51 gctgtcgcct gttgcggcac ttgcgtgccg gcgcgctttg gggtgtttgg
             101 gtttggaaac gcaaatcaag tggccaaacg atttggtcgt cggacgcgac
             151 aaattgggcg gcattctgat tgaaacagtc agggcgggcg gtaaaacggt
             201 tgccqtggtc ggtatcggca tcaatttcgt gctgcccaag gaagtggaaa
                  acgccgcttc cgtgcagtcg ctgtttcaga cggcatcgcg gcggggcaat
                  geogatgoog cogtattgot ggaaacattg cttgcggaac tgggcgcggt
             301
             351 gttggaacaa tatgcggaag aagggttcgc gccattttta aatgagtatg
             401 aaacggccaa ccgcgaccac ggcaaggcgg tattgctgtt gcgcgacggc
             451 gaaaccgtgt gcgaaggcac ggttaaaggc gtggacggac gaggcgttct
             501 gcacttggaa acggcagaag gcgaacagac ggtcgtcagc ggcgaaatca
                  gcctgcggcc cgacaacagg tcggtttccg tgccgaagcg gccggattcg
                  gaacgttttt tgctgttgga aggcgggaac agccggctca agtgggcgtg
             601
             651 ggtggaaaac ggcacgttcg caaccgtggg cagcgcccg taccgcgatt
                  tgtcgccttt gggcgcggag tgggcggaaa aggcggatgg aaatgtccgc
             751 atcgtcggtt gcgccgtgtg cggagaatcc aaaaaggcac aagtgaagga
             801 acagetegee egaaaaateg agtggetgee gtetteegea caggetttgg
                  gcatacgcaa ccactaccgc caccccgaag aacacggttc cgaccgttgg
             901 ttcaacgcct tgggcagccg ccgcttcagc cgcaacgcct gcgtcgtcgt
             951 cagttgcggc acggcggtaa cggttgacgc gctcaccgat gacggacatt
            1001 atctcggcgg aaccatcatg cccggcttcc acctgatgaa agaatcgctc
            1051 gccgtccgaa ccgccaacct caaccgcccc gccggcaaac gttacccttt
            1101 cccgaccaca acgggcaacg ccgtcgcaag cggcatgatg gacgcggttt
            1151 gcggctcgat aatgatgatg cacggccgtt tgaaagaaaa aaacggcgcg
                  ggcaagcotg togatgtcat cattacoggc ggcggcgcgg cgaaagtcgc
            1201
            1251 cgaagccctg ccgcctgcat ttttggcgga aaataccgtg cgcgtggcgg
            1301 acaacetegt catecaeggg etgetgaace tgattgeege egaaggeggg
            1351 gaatcggaac acgcttaa
   This corresponds to the amino acid sequence <SEQ ID 1290; ORF 311.ng>:
        g311.pep
                  MFSFGWAFDR PQYELGSLSP VAALACRRAL GCLGLETQIK WPNDLVVGRD
              51 KLGGILIETV RAGGKTVAVV GIGINFVLPK EVENAASVQS LFQTASRRGN
                  ADAAVLLETL LAELGAVLEQ YAEEGFAPFL NEYETANRDH GKAVLLLRDG
             151 ETVCEGTVKG VDGRGVLHLE TAEGEQTVVS GEISLRPDNR SVSVPKRPDS
             201 ERFLLLEGGN SRLKWAWVEN GTFATVGSAP YRDLSPLGAE WAEKADGNVR
             251 IVGCAVCGES KKAQVKEQLA RKIEWLPSSA QALGIRNHYR HPEEHGSDRW
             301 FNALGSRRFS RNACVVVSCG TAVTVDALTD DGHYLGGTIM PGFHLMKESL
             351 AVRTANLNRP AGKRYPFPTT TGNAVASGMM DAVCGSIMMM HGRLKEKNGA
             401 GKPVDVIITG GGAAKVAEAL PPAFLAENTV RVADNLVIHG LLNLIAAEGG
             451 ESEHA*
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1291>:
        m311.seq (partial)
               1 ATGTTCAGTT TTGGCTGGGT GTTTGACCGG CCGCAGTATG AGTTGGGTTC
               51 GCTGTCGCCT GTTGCGGCAG TGGCGTGTCG GCGCGCCTTG TCGCGTTTAG
             101 GTTTGGATGT GCArATTAAG TGGCCCAATG ATTTGGTTGT CGGACGCGAC
             151 AAATTGGGCG GCATTCTGAT TGAAACGGTC AGGACGGGCG GCAAAACGGT
             201 TGCCGTGGTC GGTATCGGCA TCAATTTTGT CCTGCCCAAn GAAGTAGAAA
             251 ATGCCGCTTC CGTGCAATCG CTGTTTCAGA CGGCATCGCG GCGGGGCAAT
              301 GCCGATGCCG CCGTGCTGCT nnnnnnnnn nnnnnnnnn nnnnGGAAAT
              351 CAGCCTGCGG TCCGACNACA GGCCGGTTTC CGTGNCGAAG CGGCGGGATT
```

```
401 CGGAACGTTT TCTGCTGTTG GACGGCGGCA ACAGCCGGCT CAAGTGGGCG
           451 TGGGTGGAAA ACGGCACGTT CGCAACCGTC GGTAGCGCGC CGTACCGCGA
                TTTGTCGCCT TTGGGCGCGG AGTGGGCGGA AAAGGCGGAT GGAAATGTCC
                GCATCGTCGG TTGCGCTGTG TGCGGAGAAT TCAAAAAGGC ACAAGTGCAG
                GAACAGCTCG CCCGAAAAAT CGAGTGGCTG CCGTCTTCCG CACAGGCTTT
                GTTTGGCATA CGCAACCACT ACCGCCACCC CGAAGAACAC GGTTCCGACC
           651
                GCTGGTTCAA CGCCTTGGGC AGCCGCCGCT TCAGCCGCAA CGCyTGCGTC
           701
           751 GTCGTCAGTT GCGGCACGGC GGTAACGGTT GACGCGCTCA CCGATGACGG
           801 ACATTATCTC GGrgGAACCA TCATGCCCGG TTTCCACCTG ATGAAAGAAT
           851 CGCTCGCCGT CCGAACCGCC AACCTCAACC GGCACGCCGG TAAGCGTTAT
           901 CCTTTCCCGA CCACAACGGG CAATGCCGTC GCCAGCGGCA TGATGGATGC
__ 100 Y
           951 GGTTTGCGGC TCGGTTATGA TGATGCACGG GCGTTTGAAA GAAAAAACCG
           1001 GGGCGGCAA GCCTGTCGAT GTCATCATTA CCGGCGGCGG CGCGGCAAAA
           1051 GTTGCCGAAG CCCTGCCGCC TGCATTTTTG GCGGAAAATA CCGTGCGCGT
                GGCGGACAAC CTCGTCATTT ACGGGTTGTT GAACATGATT GCCGCCGAAG
           1101
                GCAGGGAATA TGAACAT....
           1151
  This corresponds to the amino acid sequence <SEQ ID 1292; ORF 311>:
       m311.pep
                 (partial)
                MFSFGWVFDR PQYELGSLSP VAAVACRRAL SRLGLDVQIK WPNDLVVGRD
               KLGGILIETV RTGGKTVAVV GIGINFVLPX EVENAASVQS LFQTASRRGN
                ADAAVLLXXX XXXXXEISLR SDXRPVSVXK RRDSERFLLL DGGNSRLKWA
            101
            151 WVENGTFATV GSAPYRDLSP LGAEWAEKAD GNVRIVGCAV CGEFKKAQVQ
            201 EQLARKIEWL PSSAQALFGI RNHYRHPEEH GSDRWFNALG SRRFSRNACV
            251 VVSCGTAVTV DALTDDGHYL GGTIMPGFHL MKESLAVRTA NLNRHAGKRY
            301 PFPTTTGNAV ASGMMDAVCG SVMMHGRLK EKTGAGKPVD VIITGGGAAK
            351 VAEALPPAFL AENTVRVADN LVIYGLLNMI AAEGREYEH....
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 311 shows 78.5% identity over a 455 aa overlap with a predicted ORF (ORF 311.ng)
  from N. gonorrhoeae:
       m311/g311
                                            30
                                                      40
                                                                        60
                   MFSFGWVFDRPQYELGSLSPVAAVACRRALSRLGLDVQIKWPNDLVVGRDKLGGILIETV
       m311.pep
                   MFSFGWAFDRPQYELGSLSPVAALACRRALGCLGLETQIKWPNDLVVGRDKLGGILIETV
       g311
                                                     40
                                                              50
                          10
                                   20
                                            30
                                            90
                                                     100
                   RTGGKTVAVVGIGINFVLPXEVENAASVQSLFQTASRRGNADAAVLLXXX-
       m311.pep
                   RAGGKTVAVVGIGINFVLPKEVENAASVQSLFQTASRRGNADAAVLLETLLAELGAVLEQ
       g311
                                   80
                                            90
                                                    100
                                                             110
                           70
                   ____XXXX
       m311.pep
                   YAEEGFAPFLNEYETANRDHGKAVLLLRDGETVCEGTVKGVDGRGVLHLETAEGEQTVVS
       g311
                          130
                                   140
                                            150
                                                     160
                                                              170
                                                                       180
                               130
                                        140
                                                 150
                                                          160
                      120
                   XEISLRSDXRPVSVXKRRDSERFLLLDGGNSRLKWAWVENGTFATVGSAPYRDLSPLGAE
       m311.pep
                    GEISLRPDNRSVSVPKRPDSERFLLLEGGNSRLKWAWVENGTFATVGSAPYRDLSPLGAE
       g311
                          190
                                   200
                                            210
                                                     220
                                                              230
                                                                       240
                               190
                                        200
                                                 210
                                                          220
                   WAEKADGNVRIVGCAVCGEFKKAQVQEQLARKIEWLPSSAQALFGIRNHYRHPEEHGSDR
       m311.pep
                    WAEKADGNVRIVGCAVCGESKKAQVKEQLARKIEWLPSSAQAL-GIRNHYRHPEEHGSDR
       g311
```

260

270

```
260
                                                   270
                                                            280
                                250
                    WFNALGSRRFSRNACVVVSCGTAVTVDALTDDGHYLGGTIMPGFHLMKESLAVRTANLNR
       m311.pep
                    WFNALGSRRFSRNACVVVSCGTAVTVDALTDDGHYLGGTIMPGFHLMKESLAVRTANLNR
       g311
                                     320
                                              330
                                                       340
                                                                 350
                           310
                  300
                                         320
                                                   330
                                                            340
                                                                      350
                       300
                                310
                    HAGKRYPFPTTTGNAVASGMMDAVCGSVMMMHGRLKEKTGAGKPVDVIITGGGAAKVAEA
       m311.pep
                     PAGKRYPFPTTTGNAVASGMMDAVCGSIMMMHGRLKEKNGAGKPVDVIITGGGAAKVAEA
       g311
-- 52: "
                           370
                                           390
                                                       400
                                                                 410
                  360
                                     380
                                                  389
                                370
                                         380
                       360
                    LPPAFLAENTVRVADNLVIYGLLNMIAAEGREYEH
       m311.pep
                    LPPAFLAENTVRVADNLVIHGLLNLIAAEGGESEHAX
       q311
                                              450
                           430
                                     440
                  420
  The following partial DNA sequence was identified in N. meningitidis <SEO ID 1293>:
       a311.seq
                 ATGTTCAGTT TTGGCTGGGT GTTTGACCGG CCGCAGTATG AGTTGGGTTC
              1
                 GCTGTCGCCT GTTGCGGCAG TGGCGTGCCG GCGCGCCTTG TCGCGTTTGG
             51
            101 GTTTGAAAAC GCAAATCAAG TGGCCAAACG ATTTGGTCGT CGGACGCGAC
            151 AAATTGGGCG GCATTCTGAT TGAAACGGTC AGGACGGGCG GCAAAACGGT
                 TGCCGTGGTC GGTATCGGCA TCAATTTCGT GCTGCCCAAG GAAGTGGAAA
            201
            251 ACGCCGCTTC CGTGCAATCG CTGTTTCAGA CGGCATCGCG GCGGGGAAAT
            301 GCCGATGCCG CCGTGTTGCT GGAAACGCTG TTGGCGGAAC TTGATGCGGT
            351 GTTGTTGCAA TATGCGCGGG ACGGATTTGC GCCTTTTGTG GCGGAATATC
            401 AGGCTGCCAA CCGCGACCAC GGCAAGGCGG TATTGCTGTT GCGCGACGGC
            451 GAAACCGTGT TCGAAGGCAC GGTTAAAGGC GTGGACGGAC AAGGCGTTCT
            501 GCACTTGGAA ACGGCAGAGG GCAAACAGAC GGTCGTCAGC GGCGAAATCA
            551 GCCTGCGGTC CGACGACAGG CCGGTTTCCG TGCCGAAGCG GCGGGATTCG
            601 GAACGTTTTC TGCTGTTGGA CGGCGGCAAC AGCCGGCTCA AGTGGGCGTG
            651 GGTGGAAAAC GGCACGTTCG CAACCGTCGG TAGCGCGCCG TACCGCGATT
            701 TGTCGCCTTT GGGCGCGGAG TGGGCGGAAA AGGTGGATGG AAATGTCCGC
            751 ATCGTCGGTT GCGCCGTGTG CGGAGAATTC AAAAAGGCAC AAGTGCAGGA
            801 ACAGCTCGCC CGAAAAATCG AGTGGCTGCC GTCTTCCGCA CAGGCTTTGG
            851 GCATACGCAA CCACTACCGC CACCCCGAAG AACACGGTTC CGACCGCTGG
             901 TTCAACGCCT TGGGCAGCCG CCGCTTCAGC CGCAACGCCT GCGTCGTCGT
                 CAGTTGCGGC ACGGCGGTAA CGGTTGACGC GCTCACCGAT GACGGACATT
             951
           1001 ATCTCGGGGG AACCATCATG CCCGGTTTCC ACCTGATGAA AGAATCGCTC
            1051 GCCGTCCGAA CCGCCAACCT CAACCGGCAC GCCGGTAAGC GTTATCCTTT
            1101 CCCGACCACA ACGGGCAATG CCGTCGCCAG CGGCATGATG GATGCGGTTT
            1151 GCGGCTCGGT TATGATGATG CACGGGCGTT TGAAAGAAAA AACCGGGGCG
            1201 GGCAAGCCTG TCGATGTCAT CATTACCGGC GGCGGCGCGG CAAAAGTTGC
            1251 CGAAGCCCTG CCGCCTGCAT TTTTGGCGGA AAATACCGTG CGCGTGGCGG
            1301 ACAACCTCGT CATTCACGGG CTGCTGAACC TGATTGCCGC CGAAGGCGGG
                 GAATCGGAAC ATACTTAA
            1351
   This corresponds to the amino acid sequence <SEQ ID 1294; ORF 311.a>:
        a311.pep
                 MFSFGWVFDR PQYELGSLSP VAAVACRRAL SRLGLKTQIK WPNDLVVGRD
                 KLGGILIETV RTGGKTVAVV GIGINFVLPK EVENAASVQS LFQTASRRGN
              51
                 ADAAVLLETL LAELDAVLLQ YARDGFAPFV AEYQAANRDH GKAVLLLRDG
             101
             151 ETVFEGTVKG VDGQGVLHLE TAEGKQTVVS GEISLRSDDR PVSVPKRRDS
                 ERFLLLDGGN SRLKWAWVEN GTFATVGSAP YRDLSPLGAE WAEKVDGNVR
             251 IVGCAVCGEF KKAQVQEQLA RKIEWLPSSA QALGIRNHYR HPEEHGSDRW
                 FNALGSRRFS RNACVVVSCG TAVTVDALTD DGHYLGGTIM PGFHLMKESL
             301
             351 AVRTANLNRH AGKRYPFPTT TGNAVASGMM DAVCGSVMMM HGRLKEKTGA
                 GKPVDVIITG GGAAKVAEAL PPAFLAENTV RVADNLVIHG LLNLIAAEGG
                 ESEHT*
```

m311/a311 81.3% identity in 455 aa overlap

	•		
	10 20	30 40	50 60
m311.pep	MFSFGWVFDRPQYELGSLSPVA	AVACRRALSRLGLDVQIKWP	NDLVVGRDKLGGILIETV
	111111111111111111111111111111111111111		
a311	MFSFGWVFDRPQYELGSLSPVA	AVACRRALSKLGLKTQIKWP 30 40	NDLVVGRDKLGGILIETV 50 60
	10 20	30 40	30 60
	. 70 80	90 100	110
m311.pep	RTGGKTVAVVGIGINFVLPXEV		
morr. pep	11111111111111111111111111111		11111 :
a311	RTGGKTVAVVGIGINFVLPKEV	ENAASVQSLFQTASRRGNAD	AAVLLETLLAELDAVLLQ
	70 80	90 100	110 120
m311.pep			
a311	YARDGFAPFVAEYQAANRDHGK	AVLLLRDGETVFEGTVKGVD	GOGVLHLETAEGKOTVVS
2711	130 140	150 160	170 180
	120 130	140 150	160 170
m311.pep	-EISLRSDXRPVSVXKRRDSER		
	GEISLRSDDRPVSVPKRRDSER		TITITION OF THE PROPERTY OF TH
a311	190 200	210 220	230 240
	190 200	210 220	230 240
	180 190	200 210	220 230
m311.pep	WAEKADGNVRIVGCAVCGEFKK		
	101:40000000000		
a311	WAEKVDGNVRIVGCAVCGEFKK	AQVQEQLARKIEWLPSSAQA 270 280	L-GIRNHYRHPEEHGSDR 290
•	250 260	270 280	290
	240 250	260 270	280 290
m311.pep	WFNALGSRRFSRNACVVVSCGT		GFHLMKESLAVRTANLNR
	1111111111111111111	1111111111111111111	111111111111111111
a311	WFNALGSRRFSRNACVVVSCGT		
	300 310 320	330 340	350
	300 310	320 330	340 350
m311.pep	300 310 HAGKRYPFPTTTGNAVASGMMD		
m311.pep			
a311	HAGKRYPFPTTTGNAVASGMMD		
	360 370 380	390 400	410
	360 370	380 389	
m311.pep	LPPAFLAENTVRVADNLVIYGL		
a311			
q311	420 430 440	450	
	120 110		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1295>: g311-1.seq

1	ATGACGGTTT	TGAAGCCTTC	GCATTGGCGG	GTGTTGGCGG	AGCTTGCCGA
51	CGGTTTGCCG	CAACACGTAT	CGCAATTGGC	GCGTGAGGCG	GACATGAAGC
101	CGCAGCAGCT	CAACGGTTTT	TGGCAGCAGA	TGCCGGCGCA	TATACGCGGG
151	CTGTTGCGCC	AACACGACGG	CTATTGGCGG	CTGGTGCGCC	CCTTGGCGGT
201	TTTCGATGCC	GAAGGTTTGC	GCGATCTGGG	GGAAAGGTCG	GGTTTTCAGA
251	CGGCATTGAA	GCACGAGTGC	GCGTCCAGCA	ACGACGAGAT	ACTGGAATTG
301	GCGCGGATTG	CGCCGGACAA	GGCGCACAAA	ACCATATGCG	TGACCCACCT
351	GCAAAGTAAG	GGCAGGGGGC	GGCAGGGGCG	GAAGTGGTCG	CACCGTTTGG
401	GCGAGTGCCT	GATGTTCAGT	TTCGGCTGGG	CGTTTGACCG	GCCGCAGTAT
451	GAGTTGGGTT	CGCTGTCGCC	TGTTGCGGCA	CTTGCGTGCC	GGCGCGCTTT
501	GGGGTGTTTG	GGTTTGGAAA	CGCAAATCAA	GTGGCCAAAC	GATTTGGTCG
551	TCGGACGCGA	CAAATTGGGC	GGCATTCTGA	TTGAAACAGT	CAGGGCGGC
601	GGTAAAACGG	TTGCCGTGGT	CGGTATCGGC	ATCAATTTCG	TGCTGCCCAA
651	GGAAGTGGAA	AACGCCGCTT	CCGTGCAGTC	GCTGTTTCAG	ACGGCATCGC
701	GGCGGGGCAA	TGCCGATGCC	GCCGTATTGC	TGGAAACATT	GCTTGCGGAA
751	CTGGGCGCGG	TGTTGGAACA	ATATGCGGAA	GAAGGGTTCG	CGCCATTTTT

WO 99/57280

713

```
801 AAATGAGTAT GAAACGGCCA ACCGCGACCA CGGCAAGGCG GTATTGCTGT
 851 TGCGCGACGG CGAAACCGTG TGCGAAGGCA CGGTTAAAGG CGTGGACGGA
 901 CGAGGCGTTC TGCACTTGGA AACGGCAGaa ggCGAACAGa cggtcGtcag
 951 cggcGaaaTC AGccTGCGGc CCGacaacag gtcggtttcc GTgccgaagc
1001 gGccggatTC GgaacgttTT tTGCTgttgg aaggcgggaa cagccggctc
1051 aAGTGGgcgt gGGTggAAAA Cggcacgttc gcaaccgtgg gcAGCGCgCC 1101 gtaCCGCGAT TTGTCGCCTT TGGGCGCGGAA GTGGGCGGAA AAGGCGGATG
1151 GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATC CAAAAAGGCA
1201 CAAGTGAAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC CGTCTTCCGC
1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA GAACACGGTT
1301 CCGACCGTTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG CCGCAACGCC
1351 TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG CGCTCACCGA
1401 TGACGGACAT TATCTCGGCG GAACCATCAT GCCCGGCTTC CACCTGATGA
1451 AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGCCC CGCCGGCAAA
1501 CGTTACCCTT TCCCGACCAC AACGGGCAAC GCCGTCGCAA GCGGCATGAT
1551 GGACGCGGTT TGCGGCTCGA TAATGATGAT GCACGGCCGT TTGAAAGAAA
1601 AAAACGGCGC GGGCAAGCCT GTCGATGTCA TCATTACCGG CGGCGGCGCG
1651 GCGAAAGTCG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG AAAATACCGT
1701 GCGCGTGGCG GACAACCTCG TCATCCACGG GCTGCTGAAC CTGATTGCCG
1751 CCGAAGGCGG GGAATCGGAA CACGCTTAA
```

-- 520

This corresponds to the amino acid sequence <SEQ ID 1296; ORF 311-1.ng>: g311-1.pep

```
1 MTVLKPSHWR VLAELADGLP QHVSQLAREA DMKPQQLNGF WQQMPAHIRG
 51 LLROHDGYWR LVRPLAVFDA EGLRDLGERS GFQTALKHEC ASSNDEILEL
101 ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS FGWAFDRPQY
151 ELGSLSPVAA LACRRALGCL GLETQIKWPN DLVVGRDKLG GILIETVRAG
201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA AVLLETLLAE
251 LGAVLEQYAE EGFAPFLNEY ETANRDHGKA VLLLRDGETV CEGTVKGVDG
    RGVLHLETAE GEQTVVSGEI SLRPDNRSVS VPKRPDSERF LLLEGGNSRL
351 KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KADGNVRIVG CAVCGESKKA
401 OVKEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA LGSRRFSRNA
    CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR TANLNRPAGK
451
501 RYPFPTTTGN AVASGMMDAV CGSIMMMHGR LKEKNGAGKP VDVIITGGGA
551 AKVAEALPPA FLAENTVRVA DNLVIHGLLN LIAAEGGESE HA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1297>:

```
1 ATGACGGTTT TGAAGCTTTC GCACTGGCGG GTGTTGGCGG AGCTTGCCGA
 51 CGGTTTGCCG CAACACGTCT CGCAACTGGC GCGTATGGCG GATATGAAGC
101 CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA CATACGCGGG
151 CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC CATTGGCGGT
201 TTTCGATGCC GAAGGTTTGC GCGAGCTGGG GGAAAGGTCG GGTTTTCAGA
251 CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT ACTGGAATTG
301 GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGCG TGACCCACCT
351 GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG CACCGTTTGG
401 GCGAGTGTCT GATGTTCAGT TTTGGCTGGG TGTTTGACCG GCCGCAGTAT
451 GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA GTGGCGTGTC GGCGCGCCTT
501 GTCGCGTTTA GGTTTGGATG TGCAGATTAA GTGGCCCAAT GATTTGGTTG
551 TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACGGT CAGGACGGGC
 601 GGCAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTTG TCCTGCCCAA
 651 GGAAGTAGAA AATGCCGCTT CCGTGCAATC GCTGTTTCAG ACGGCATCGC
701 GGCGGGGCAA TGCCGATGCC GCCGTGCTGC TGGAAACGCT GTTGGTGGAA
 751 CTGGACGCGG TGTTGTTGCA ATATGCGCGG GACGGATTTG CGCCTTTTGT
801 GGCGGAATAT CAGGCTGCCA ACCGCGACCA CGGCAAGGCG GTATTGCTGT
851 TGCGCGACGG CGAAACCGTG TTCGAAGGCA CGGTTAAAGG CGTGGACGGA
901 CAAGGCGTTT TGCACTTGGA AACGGCAGAG GGCAAACAGA CGGTCGTCAG
951 CGGCGAAATC AGCCTGCGGT CCGACGACAG GCCGGTTTCC GTGCCGAAGC
1001
     GGCGGGATTC GGAACGTTTT CTGCTGTTGG ACGGCGGCAA CAGCCGGCTC
1051 AAGTGGGCGT GGGTGGAAAA CGGCACGTTC GCAACCGTCG GTAGCGCGCC
1101 GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA AAGGCGGATG
1151 GAAATGTCCG CATCGTCGGT TGCGCTGTGT GCGGAGAATT CAAAAAGGCA
     CAAGTGCAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC CGTCTTCCGC
1201
1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA GAACACGGTT
     CCGACCGCTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG CCGCAACGCC
1301
     TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG CGCTCACCGA
1351
     TGACGGACAT TATCTCGGGG GAACCATCAT GCCCGGTTTC CACCTGATGA
1401
1451
     AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGGCA CGCCGGTAAG
1501
     CGTTATCCTT TCCCGACCAC AACGGGCAAT GCCGTCGCCA GCGGCATGAT
1551
     GGATGCGGTT TGCGGCTCGG TTATGATGAT GCACGGGCGT TTGAAAGAAA
1601 AAACCGGGGC GGGCAAGCCT GTCGATGTCA TCATTACCGG CGGCGCGCG
     GCAAAAGTTG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG AAAATACCGT
1651
```

1701 GCGCGTGGCG GACAACCTCG TCATTTACGG GTTGTTGAAC ATGATTGCCG

1751 CCGAAGGCAG GGAATATGAA CATATTTAA

This corresponds to the amino acid sequence <SEQ ID 1298; ORF 311-1>:

	m311-1	non	•		-		•		
**	10 15 20 25 30 35 40 45 50	1 M 51 I 51 E 51 E 51 E 51 I 51 I 51 E 51 E 51 E 51 E 51 E 51 E 51 E 51 E	LRQHDGYWR RIAPDKAHK LIGSLSPVAA KKTVAVVGIG DAVLLQYAR GVLHLETAE WAWVENGTF WOEQLARKI LVVVSCGTAV LYPFPTTTGN KVAEALPPA	LVRPLAVFD TICVTHLQS VACRRALSR INFVLPKEV DGFAPFVAE GKQTVVSGE ATVGSAPYR EWLPSSAQA TVDALTDDG AVASGMMDA FLAENTVRV	A EGLRELGE K GRGROGRK L GLDVQIKW Y QAANRONG I SLRSDDRF D LSPLGAEW L GIRNHYRH H YLGGTIMF V CGSVMMH A DNLVIYGI	RS GFQTALE WS HRLGECI IPN DLVVGRI FQ TASRRGN KA VLLLRDG VS VPKRRDS PAE KADGNVF IPE EHGSDRV PGF HLMKESI GR LKEKTGF LLN MIAAEGF	NGF WQQMPF HEC ASSNDE MFS FGWVFI IADA AVLET ETV FEGTVF EERF LLLDGG LIVG CAVCGE IFNA LGSRRE AVR TANLNE GKP VDVIIT	CILEL CRPQY CVRTG CVLLVE CGVDG CNSRL CFKKA CSRNA CSRNA CHAGK	
	m311-1/	/g311	1 93.	9% identit	y in 591 a	a overlap			
	m311-1.	.pep	11111	[] [[[[[[[[[[[[[[[[[[пини	1 11111111	H1111111111	IIRGLLRQHDGYI IIRGLLRQHDGYI	11
	m311-1.	pep	1111111	11111111111	нини	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1111111111	CAHKTICVTHLQ:	11
	m311-1.	. pep	GRGRQGR GRGRQGR	111111111	111111111111		1111:11111	SRLGLDVQIKW : :: GCLGLETQIKW	H
	m311-1.	.pep	DLVVGRD DLVVGRD	1111111111	1:11111111		1411141141	SLFQTASRRGNA 	H
	m311-1.	.pep	AVLLETL AVLLETL	1:11 111 Î	11::11111:	: 11::1111	1111111111	SETVFEGTVKGV SETVCEGTVKGV	П
	m311-1.	.pep	QGVLHLE : RGVLHLE	1111:1111	111111 1:1	1 111111 1	111111111111	SRLKWAWVENG SRLKWAWVENG	П
	m311-1	.pep	ATVGSAP ATVGSAP	11111111111	11111111111	нинин	111111111	ARKIEWLPSSAQ 	H
	m311-1	.pep	GIRNHYR GIRNHYR	1111111111	11111111111	11111111111	1111111111	DDGHYLGGTIMP DDGHYLGGTIMP	11
	m311-1	.pep	HLMKESL HLMKESL	111111111	1111111111	ШШШ	11111111111	MHGRLKEKTGAG : MHGRLKEKNGAG	Ĥ
				550	560	570	580	590	

WO 99/57280 PCT/US99/09346

715

VDVIITGGGAAKVAEALPPAFLAENTVRVADNLVIYGLLNMIAAEGREYEHIX

```
m311-1.pep
               VDVIITGGGAAKVAEALPPAFLAENTVRVADNLVIHGLLNLIAAEGGESEHAX
   a311-1
                      550
                                560
                                        570
                                                   580
   The following partial DNA sequence was identified in N. meningitidis <SEO ID 1299>:
   a311-1.seq
           ATGACGGTTT TGAAGCCTTC GCACTGGCGG GTGTTGGCGG AGCTTGCCGA
         1
         51 CGGTTTGCCG CAACACGTCT CGCAACTGGC GCGTATGGCG GATATGAAGC
            CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA CATACGCGGG
        101
            CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC CATTGGCGGT
        151
        201 TTTCGATGCC GAAGGTTTGC GCGAGCTGGG GGAAAGGTCG GGTTTTCAGA
- 120.5
            CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT ACTGGAATTG
        251
            GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGTG TGACCCACCT
        301
            GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG CACCGTTTGG
        351
            GCGAGTGTCT GATGTTCAGT TTTGGCTGGG TGTTTGACCG GCCGCAGTAT
        401
            GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA GTGGCGTGCC GGCGCGCCTT
        451
            GTCGCGTTTG GGTTTGAAAA CGCAAATCAA GTGGCCAAAC GATTTGGTCG
        501
            TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACGGT CAGGACGGGC
        551
            GGCAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTCG TGCTGCCCAA
        601
            GGAAGTGGAA AACGCCGCTT CCGTGCAATC GCTGTTTCAG ACGGCATCGC
        651
        701 GGCGGGGAAA TGCCGATGCC GCCGTGTTGC TGGAAACGCT GTTGGCGGAA
        751 CTTGATGCGG TGTTGTTGCA ATATGCGCGG GACGGATTTG CGCCTTTTGT
            GGCGGAATAT CAGGCTGCCA ACCGCGACCA CGGCAAGGCG GTATTGCTGT
        801
            TGCGCGACGG CGAAACCGTG TTCGAAGGCA CGGTTAAAGG CGTGGACGGA
        851
        901
            CAAGGCGTTC TGCACTTGGA AACGGCAGAG GGCAAACAGA CGGTCGTCAG
            CGGCGAAATC AGCCTGCGGT CCGACGACAG GCCGGTTTCC GTGCCGAAGC
        951
            GGCGGGATTC GGAACGTTTT CTGCTGTTGG ACGGCGGCAA CAGCCGGCTC
       1001
       1051 AAGTGGGCGT GGGTGGAAAA CGGCACGTTC GCAACCGTCG GTAGCGCGCC
            GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA AAGGTGGATG
       1101
            GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATT CAAAAAGGCA
       1151
            CAAGTGCAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC CGTCTTCCGC
       1201
      1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA GAACACGGTT
            CCGACCGCTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG CCGCAACGCC
TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG CGCTCACCGA
       1301
      1351
            TGACGGACAT TATCTCGGGG GAACCATCAT GCCCGGTTTC CACCTGATGA
       1401
       1451
            AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGGCA CGCCGGTAAG
       1501
            CGTTATCCTT TCCCGACCAC AACGGGCAAT GCCGTCGCCA GCGGCATGAT
            GGATGCGGTT TGCGGCTCGG TTATGATGAT GCACGGGCGT TTGAAAGAAA
       1551
           AAACCGGGGC GGGCAAGCCT GTCGATGTCA TCATTACCGG CGGCGGCGCG
       1601
       1651 GCAAAAGTTG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG AAAATACCGT
       1701 GCGCGTGGCG GACAACCTCG TCATTCACGG GCTGCTGAAC CTGATTGCCG
       1751 CCGAAGGCGG GGAATCGGAA CATACTTAA
   This corresponds to the amino acid sequence <SEQ ID 1300; ORF 311-1.a>:
   a311-1.pep
          1 MTVLKPSHWR VLAELADGLP QHVSQLARMA DMKPQQLNGF WQQMPAHIRG
         51 LLROHDGYWR LVRPLAVFDA EGLRELGERS GFOTALKHEC ASSNDEILEL
        101 ARIAPDKAHK TICVTHLOSK GRGRQGRKWS HRLGECLMFS FGWVFDRPOY
        151 ELGSLSPVAA VACRRALSRL GLKTQIKWPN DLVVGRDKLG GILIETVRTG
        201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA AVLLETLLAE
        251 LDAVLLQYAR DGFAPFVAEY QAANRDHGKA VLLLRDGETV FEGTVKGVDG
            QGVLHLETAE GKQTVVSGEI SLRSDDRPVS VPKRRDSERF LLLDGGNSRL
        301
        351
            KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KVDGNVRIVG CAVCGEFKKA
            QVQEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA LGSRRFSRNA
        401
            CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR TANLNRHAGK
        451
            RYPFPTTTGN AVASGMMDAV CGSVMMMHGR LKEKTGAGKP VDVIITGGGA
        551 AKVAEALPPA FLAENTVRVA DNLVIHGLLN LIAAEGGESE HT*
   a311-1/m311-1
                   98.5% identity in 591 aa overlap
                                 20
                       10
                                          30
                                                    40
                                                              50
   a311-1.pep
               {\tt MTVLKPSHWRVLAELADGLPQHVSQLARMADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR}
                m311-1
               MTVLKLSHWRVLAELADGLPQHVSQLARMADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR
                       10
                                 20
                                          30
                                          90
                                                   100
               LVRPLAVFDAEGLRELGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK
   a311-1.pep
                m311-1
               LVRPLAVFDAEGLRELGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK
                       70
                                 80
                                          90
                                                   100
                                                             110
```

PCT/US99/09346

716

			•			
	130	140	150	160	170	180
a311-1.pep	GRGRQGRKWSHRLG	ECLMFSFGW	VFDRPQYELGS	LSPVAAVACI	RRALSRLGLK'	TQIKWPN
m311-1	GRGRQGRKWSHRLG					-
	130	140	150	160	170	180
	190	200	210	220	230	240
a311-1.pep	DLVVGRDKLGGILI					
		11111111	1111111111	11111111		1111111
m311-1	DLVVGRDKLGGILI			LPKEVENAAS 220		
	190	200	210	220	230	240
	250	260	270	280	290	300
	AVLLETLLAELDAV					
a311-1.pep	AVEGET LEAGUE AV					
m311-1	AVLLETLLVELDAV					
111711-1	250	260	270	280	290	300
	230	200	2.0	200	250	
	310	320	330	340	350	360
a311-1.pep	QGVLHLETAEGKQT	VVSGEISLR	SDDRPVSVPKF	RDSERFLLLI	OGGNSRLKWA	WVENGTF
doll liper	THE STREET					
m311-1	OGVLHLETAEGKQT					
	310	320	330	340	350	. 360
	370	380	390	400	410	420
a311-1.pep	ATVGSAPYRDLSPL	•				
m311-1	ATVGSAPYRDLSPL					
	370	380	390	400	410	420
		440	450	460	470	400
	430 GIRNHYRHPEEHGS	440	450	460	470	480
a311-1.pep	11111111111111					
m311-1	GIRNHYRHPEEHGS					
m311-1	430	440	450	460	470	480
	130	110	150	400	470	100
	490	500	510	520	530	540
a311-1.pep	HLMKESLAVRTANL	NRHAGKRYP	FPTTTGNAVAS	GMMDAVCGS	/MMMHGRLKE	KTGAGKP
usil lipep						
m311-1	HLMKESLAVRTANL					
	490	500	510	520	530	540
	550	560	570	580	590	
a311-1.pep	VDVIITGGGAAKVA					
m311-1	VDVIITGGGAAKVA					
	550	560	570	580	590	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1301>: g312.seq

1 atgaGtatCc aatCcGgcga AATTTtagaa accgtCAAAA TGGTTGCCGA 51 ccggaATttt gAtgtccgCA CCATTAccat cggcaTTgaT ttgcacgact 101 gcatcagcac cgacatcgac gtgttaAACC AAAACATtta caaCAaaaTc 151 accacggtcg gcaaagactT GGTGGCAacg Gcgaaacacc tTTccgcCAA 201 ATACGGCGTG CCGATTGTGA ATCAGCGCAT TTCCGTTACG CCGAttgccc 251 AaatcGCGGC GGcgaccaAa gccgaCAGTT AtgtcAGCgt ggcgcAGact 301 tTGGACAAGG CAGCCAAAGC CATCGGCGTG TCCTTTATCG GcggCTTTTC 351 CGCGCTGGTG CAAAAAGGTA TGTCGCCTTC GGATGAGGTG TTGATCCGTT 401 CCGTTCCCGA AGCGATGAAA ACTACCGATA TCGTGTGCAG CTCCATCAAT 451 ATCGGCAGCA CGCGTGCCGG TATCAATATG GATGCGGTCA AGCTGGCAGG 501 CGAAACCATC AAACGCACGG CTGAAATCAC ACCCGAAGGT TTCGGCTGCG 551 CCAAAATCGT CGTGTTCTGC AACGCGGTGG AAGACAATCC GTTTATGGCG 601 GGTGCGTTCC ACGGCTCGGG CGAAGCGGAT GCTGTGATTA ATGTCGGCGT 651 ATCCGGTCCA GGCGTGGTCA AAGCCGCGCT GGAAAATTCG GACGCGGTCA 701 GCCTGACCGA GGTCGCCGAA GTCGTGAAGA AAACCGCTTT CAAAATCACC 751 CGCGTGGGCG AACTCATCGG TCGCGAAGCC TCAAAAATGC TGAATATCCC 801 GTTCGGCATT CTCGATTTGT CGCTGGCACC GACCCCCGCC GTCGGCGACT 851 CGGTGGCGCG CATTCTTGAA GAAATGGGCT TGAGCGTCTG CGGTACGCAC

WO 99/57280 PCT/US99/09346

717

901 GGCACAACAG CAGCTTTGGC ATTGCTGAAC GATGCCGTGA AAAAGGGCGG

```
951 CATGATGGCT TCCAGCGCGG TCGGCGGTTT GAGCGGCGCG TTTATCCCCG
            1001 TTTCCGAAGA CGAAGGTATG ATTGCCGCCG CCGAGGCAGG CGTGTTGACG
            1051 CTGGACAAAC TCGAAGCCAT GACCGCCGTC TGCTCCGTTG GTTTGGACAT
            1101 GATTGCCGTT CCCGGCGACA CGCCCGCGCA CACCATTTCC GGCATCATCG
            1151 CCGACGAAGC CGCCATCGGC ATGATCAACA GCAAAACCAC CGCCGTGCGC
            1201 ATTATTCCGG TAACGGGCAA AACCGTCGGC GACAGCGTCG AGTTCGGCGG
            1251 TCTGTTGGGC TACGCGCCTG TAATGCCGGC AAAAGAAGGT TCGTGCGAAG
            1301 TGTTCGTCAA CCGGGGCGGC AGGATTCCCG CACCGGTTCA ATCGATGAAA
            1351 AACTGA
This corresponds to the amino acid sequence <SEQ ID 1302; ORF 312.ng>:
                 MSIOSGEILE TVKMVADRNF DVRTITIGID LHDCISTDID VLNONIYNKI
                  TTVGKDLVAT AKHLSAKYGV PIVNQRISVT PIAQIAAATK ADSYVSVAQT
              51
             101 LDKAAKAIGV SFIGGFSALV QKGMSPSDEV LIRSVPEAMK TTDIVCSSIN
             151 IGSTRAGINM DAVKLAGETI KRTAEITPEG FGCAKIVVFC NAVEDNPFMA
             201 GAFHGSGEAD AVINVGVSGP GVVKAALENS DAVSLTEVAE VVKKTAFKIT
             251 RVGELIGREA SKMLNIPFGI LDLSLAPTPA VGDSVARILE EMGLSVCGTH
             301 GTTAALALLN DAVKKGGMMA SSAVGGLSGA FIPVSEDEGM IAAAEAGVLT
             351 LDKLEAMTAV CSVGLDMIAV PGDTPAHTIS GIIADEAAIG MINSKTTAVR
             401 IIPVTGKTVG DSVEFGGLLG YAPVMPAKEG SCEVFVNRGG RIPAPVOSMK
   The following partial DNA sequence was identified in N. meningitidis <SEO ID 1303>:
        m312.seq
               1 ATGAGTATCC AATCCGGCGA AATTTTAGAA ACCGTCAAAA TGGTTGCCGA
              51 CCAGAATTTT GATGTCCGCA CCATTACCAT CGGCATTGAT TTGCACGACT
             101 GCATCAGCAG CGATATCAAT GTGTTGAACC AAAATATTTA CAATAAAATT
             151 ACCACAGTCG GCAAAGACTT GGTCACTACG GCAAAATATC TGTCTGCCAA
             201 ATACGGCGTA CCGATTGTGA ATCAGCGCAT TTCCGTTACG CCGATTGCCC
             251 AAATCGCGGC GGCCACCCAT GCTGATTCTT ACGTCAGCGT GGCGCAAACT
             301 TTGGATAAAG CTGCCAAAGC CATCGGTGTG TCTTTTATCG GCGGTTTTTC
             351 CGCGTTGGTG CAAAAAGGGA TGTCGCCTTC GGATGAGGTG TTAATCCGCT
             401 CCATTCCCGA AGCGATGAAG ACTACCGATA TTGTGTGCwG CTCCATCAAT
             451 ATCGGCAGTA CGCGTGCCGG TATCAATATG GATGCGGTCA AGCTGGCGGG
             501 CGAAACCGTC AAACGCACGG CGGAAATCAC GCCCGAAGGT TTCGGCTGCG
             551 CTAAAATTGT CGTGTTCTGC AACGCGGTGG AAGACAACCC GTTTwTGGCG
             601 GGCGCGTTTC ATGGTTCGGG CGATGCCGTT ATCAATGTCG GCGTATCCGG
             651 CCCAGGTGTC GTAAAAGCCG CGTTGGAAAA TTCAGATGCA ACGACATTGA
             701 CCGAAGTTGC GGAAGTAGTG AAGAAAACTG CTTTCAAAAT TACCCGCGTG
             751 GGCGAACTCA TCGGCCGCGA AGCCTCAAAA ATGCTGAATA TCCCGTTTGG
                 TATTCTCGAC TTGTCGCCGA CCCCGCCCGT CGGCGACTCA GTGGCACGCA
             851 TTCTTGAAGA AATGGGCTTG AGCGTCTGCG GTACGCACGG CACAACAGCA
             901 GCTTTGGCAT TGCTGAACGA TGCCGTGAAA AAAGGCGGCA TGATGGCTTC
             951 CAGCGCGGTC GGGGGTTTGA GTGGCGCGTT TATCCCCGTT TCCGAAGACG
            1001 AAGGTATGAT yGmCgCcGCC GAAGCAGGCG TGCTGACGCT GGACAAACTC
            1051 GAAGCCATGA CCGCCGTTTG TTCGGTCGGC TTGGATATGA TTGCCGTTCC
            1101 CGGCGACACG CCCGCGCACA CCATTTCCGG CATCATTGCC GACGAAGCCG
            1151 CCATCGGCAt GATCAACAGC AAAACCACTG CCGTGCGCAT TATTCCGGTA
            1201 ACCGGTAAAA CCGTCGGCGA CACGGTCGAG TTCGGCGGCT TGTTGGGCTA
            1251 CGCGCCTGTG ATGCCGGTCA AAGAAGGTTC GTGCGAAGTA TTCGTCAACC
            1301 GAGGCGGCAG AATTCCGGCT CCGGTTCAAT CGATGAAAAA CTGA
   This corresponds to the amino acid sequence <SEQ ID 1304; ORF 312>:
        m312.pep
               1 MSIQSGEILE TVKMVADQNF DVRTITIGID LHDCISSDIN VLNQNIYNKI
              51 TTVGKDLVTT AKYLSAKYGV PIVNQRISVT PIAQIAAATH ADSYVSVAOT
             101 LDKAAKAIGV SFIGGFSALV QKGMSPSDEV LIRSIPEAMK TTDIVCXSIN
             151 IGSTRAGINM DAVKLAGETV KRTAEITPEG FGCAKIVVFC NAVEDNPFXA
             201 GAFHGSGDAV INVGVSGPGV VKAALENSDA TTLTEVAEVV KKTAFKITRV
             251 GELIGREASK MLNIPFGILD LSPTPPVGDS VARILEEMGL SVCGTHGTTA
             301 ALALLNDAVK KGGMMASSAV GGLSGAFIPV SEDEGMIXAA EAGVLTLDKL
             351 EAMTAVCSVG LDMIAVPGDT PAHTISGIIA DEAAIGMINS KTTAVRIIPV
             401 TGKTVGDTVE FGGLLGYAPV MPVKEGSCEV FVNRGGRIPA PVOSMKN*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 312 shows 95.6% identity over a 451 aa overlap with a predicted ORF (ORF 312.ng) from N. gonorrhoeae:

m312/g312

- spgg -

	10		20	30	40	50	60
m312.pep	MSIQSGEIL	ETVKMVAI	OONFDVRTIT	'IGIDLHDCI	SDINVLNON	IYNKITTVGI	COLVTT
g312	 MSIQSGEILI						
9010	10		20	30	40	50	60
		_					
m312.pep	7(AKYLSAKYG		80 ETOATPTAOTA	90 AATHADSYV	100 SVAOTIDKAA	110 Kataverta	120
morr.pcp	:			:			IIIIII
g312	AKHLSAKYG\	/PIVNQR	SVTPIAQIA	AATKADSYVS	SVAQTLDKAA	KAIGVSFIG	FSALV
	70)	80	90	100	110	120
	130)	140	150	160	170	180
m312.pep	QKGMSPSDE\						
g312	OKGMSPSDET						
9312	130		140	150	160	170	180
m312.pep	190 FGCAKIVVF		200 PYNGNEUGS	210	220	230 at.extenarm	ים מנויםים:
marz.pep	IIIIIIIII						
g312	FGCAKIVVF	CNAVEDNE	PFMAGAFHGS	GEADAVINVO	SVSGPGVVKA	ALENSDAVSI	
	190)	200	210	220	230	240
	240 2	250	260	270	280	290	
m312.pep	VVKKTAFKI	TRVGELIC	REASKMLNI	PFGILDLS	PTPPVGDSV	ARILEEMGLS	
	VVKKTAFKI7	RVGELIC	GREASKMLNI	PFGILDLS	PTPPVGDSV	ARILEEMGLS	
m312.pep	VVKKTAFKI	TRVGELIC TRVGELIC	GREASKMLNI	PFGILDLS	PTPPVGDSV	ARILEEMGLS	
	VVKKTAFKIT VVKKTAFKIT 250	TRVGELIC TRVGELIC	GREASKMLNI GREASKMLNI 260	PFGILDLS PFGILDLSL/ 270	PTPPVGDSV APTPAVGDSV 280	ARILEEMGLS ARILEEMGLS 290	VCGTH
g312	VVKKTAFKIT VVKKTAFKIT 250	TRVGELIC TRVGELIC)	GREASKMLNI GREASKMLNI 260 320	PFGILDLS PFGILDLSLA 270	PTPPVGDSV. APTPAVGDSV. 280	ARILEEMGLS ARILEEMGLS 290 350	IIIII SVCGTH 300
	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALL	TRVGELIC TRVGELIC 310 MDAVKKGC	GREASKMLNI GREASKMLNI 260 320 GMMASSAVGG	PFGILDLS PFGILDLSL/ 270 330 LSGAFIPVSI	PTPPVGDSV. APTPAVGDSV. 280	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE	SVCGTH 300
g312	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALLL	TRVGELIC TRVGELIC 310 JDAVKKGG	REASKMLNI REASKMLNI 260 320 RMASSAVGG	PFGILDLS PFGILDLSLA 270 330 LSGAFIPVSE LSGAFIPVSE	PTPPVGDSV. APTPAVGDSV. 280 340 EDEGMIXAAE.	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE	EAMTAV
g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALLL	TRVGELIC TRVGELIC 310 JDAVKKGG	GREASKMLNI GREASKMLNI 260 320 	PFGILDLS PFGILDLSL/ 270 330 LSGAFIPVSF	PTPPVGDSV. APTPAVGDSV. 280 340 EDEGMIXAAE.	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE	EVCGTH 300 BAMTAV
g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALLL	TRVGELIC TRVGELIC 310 JDAVKKGG	REASKMLNI REASKMLNI 260 320 RMASSAVGG	PFGILDLS PFGILDLSLA 270 330 LSGAFIPVSE LSGAFIPVSE	PTPPVGDSV. APTPAVGDSV. 280 340 EDEGMIXAAE.	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE	EAMTAV
g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALIM GTTAALALIM 310 360 CSVGLDMIAN	TRVGELIC TRVGELIC 310 DAVKKGG DAVKKGG	REASKMLNI	PFGILDLS PFGILDLSL/ 270 330 LSGAFIPVSI LSGAFIPVSI 330 390 AAIGMINSKT	PTPPVGDSV. APTPAVGDSV. 280 340 CDEGMIXAAE CDEGMIAAAE 340 400 TTAVRIIPVT	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE	EAMTAV 360 EGGLLG
g312 m312.pep g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALIM GTTAALALIM 310 360 CSVGLDMIAN	TRVGELIC TRVGELIC 310 IDAVKKGC IDAVKKGC 370 YPGDTPAH	REASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 EDEGMIXAAE. EDEGMIAAAE. 340 400 ETAVRIIPVT.	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE	EAMTAV 360 EGGLLG
g312 m312.pep g312	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALIM GTTAALALIM 310 360 CSVGLDMIAN	TRVGELIC TRVGELIC 310 310 IDAVKKGC IDAVKKGC 370 YPGDTPAH	REASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 EDEGMIXAAE. EDEGMIAAAE. 340 400 ETAVRIIPVT.	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE	EAMTAV 360 EGGLLG
g312 m312.pep g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALIM GTTAALALIM 310 360 CSVGLDMIAN CSVGLDMIAN 370	TRVGELIC TRVGELIC 310 IDAVKKGC IDAVKKGC 370 YPGDTPAH	REASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 DEGMIXAAE DEGMIAAAE 340 400 TTAVRIIPVT	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE :	EAMTAV EAMTAV EAMTAV 360 FGGLLG
g312 m312.pep g312 m312.pep g312	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALLM 310 360 CSVGLDMIAN CSVGLDMIAN 370	TRYGELIC TRYGELIC 310 SIDAVKKGC SIDAVKKGC) 370 YPGDTPAH YPGDTPAH)	GREASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 DEGMIXAAE DEGMIAAAE 340 400 TTAVRIIPVT	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE :	EAMTAV EAMTAV EAMTAV 360 FGGLLG
g312 m312.pep g312 m312.pep	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALIM GTTAALALIM 310 360 CSVGLDMIAN CSVGLDMIAN 370	TRVGELIC TRVGELIC 310 310 MDAVKKGC MDAVKKGC) 370 VPGDTPAH VPGDTPAH) 430 GSCEVFVN	REASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 DEGMIXAAE DEGMIAAAE 340 400 TTAVRIIPVT	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE :	EAMTAV EAMTAV EAMTAV 360 FGGLLG
g312 m312.pep g312 m312.pep g312	VVKKTAFKIT VVKKTAFKIT 250 300 GTTAALALLI GTTAALALLI 310 360 CSVGLDMIAN CSVGLDMIAN 370 420 YAPVMPVKEO	TRVGELIC TRVGELIC 310 310 IDAVKKGC IDAVKKGC) 370 VPGDTPAH VPGDTPAH) 430 GSCEVFVN GSCEVFVN	REASKMLNI	PFGILDLS	PTPPVGDSV. APTPAVGDSV. 280 340 DEGMIXAAE DEGMIAAAE 340 400 TTAVRIIPVT	ARILEEMGLS ARILEEMGLS 290 350 AGVLTLDKLE AGVLTLDKLE 350 410 GKTVGDTVEE :	EAMTAV STORM 300 EAMTAV STORM 360 FGGLLG STORM FGGLLG

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1305>: a312.seq

- 1 ATGAGTATCC AATCCGGCGA AATTTTAGAA ACCGTCAAAA TGGTTGCCGA 51 CCAGAATTTC GATGTCCGCA CCATTACCAT CGGCATTGAT TTGCACGACT
- 101 GCATCAGCAC CGACATCGAC GTGTTGAACC AAAATATTTA CAACAAAATT
- 151 ACCACGGTCG GCAAAGACTT GGTGGCGACA GCAAAATATC TGTCTGCCAA
- 201 ATACGGCGTG CCGATTGTGA ATCAGCGCAT TTCTGTCACG CCGATTGCCC
 251 AAATCGCGGC GGCCACCCAT GCTGATTCTT ACGTCAGCGT GGCGCAAACT

PCT/US99/09346 WO 99/57280

719

```
301 TTGGATAAGG CTGCCAAAGC CATCGGCGTG TCTTTTATTG GCGGCTTTTC
                CGCGCTGGTG CAAAAAGGTA TGTCGCCTTC TGACGAGGTG TTAATCCGTT
           351
           401 CCATTCCCGA AGCGATGAAG ACTACTGATA TCGTGTGCAG CTCCATCAAT
           451 ATCGGCAGTA CGCGCGCCGG TATCAATATG GACGCGGTCA GACTGGCGGG
                CGAAACCATC AAACGCACGG CTGAAATCAC ACTAGAAGGT TTCGGCTGCG
           551 CCAAAATCGT CGTGTTCTGC AACGCGGTGG AAGACAACCC GTTTATGGCG
            601 GGCGCGTTTC ACGGCTCAGG CGAAGCGGAT GCTGTGATTA ATGTCGGCGT
            651 ATCCGGCCCG GGTGTCGTAA AAGCCGCGTT GGAAAATTCG GATGCAACGA
            701
                CATTGACCGA AGTTGCCGAA GTTGTGAAGA AAACCGCCTT CAAAATTACC
           751 CGCGTGGGCG AACTCATCGG CCGCGAAGCC TCAAAAATGC TGAATATCCC
           801 GTTTGGTATT CTCGACTTGT CGCTGGCACC GACCCCTGCC GTCGGCGACT
           851 CGGTGGCGCG CATTCTTGAA GAAATGGGTT TGAGCGTCTG CGGTACGCAC
-- *:::::
           901
                GGCACAACAG CAGCTTTGGC ATTGCTGAAC GATGCCGTGA AAAAGGGCGG
           951 CATGATGGCT TCGAGCGCGG TTGGCGGTTT GAGTGGCGCG TTTATCCCCG
           1001 TTTCCGAAGA CGAAGGTATG ATTGCCGCCG CCGAAGCAGG CGTGCTGACG
          1051 TTGGATAAAC TCGAAGCGAT GACCGCCGTT TGTTCGGTCG GCTTGGATAT
1101 GATTGCCGTT CCCGGCGACA CACCCGCGCA CACCATTTCC GGCATCATTG
          1151 CCGACGAAGC CGCCATCGGC ATGATCAACA GCAAAACCAC TGCCGTGCGC
          1201 ATTATTCCGG TAACCGGTAA AACCGTCGGC GACAGCGTCG AGTTCGGCGG
          1251
                CCTGTTGGGC TACGCGCCTG TAATGCCGGT AAAAGAAGGC TCATGCGAAG
          1301 TGTTCGTCAA CCGGGGCGGC AGGATTCCCG CACCGGTTCA ATCGATGAAA
          1351 AACTGA
  This corresponds to the amino acid sequence <SEQ ID 1306; ORF 312.a>:
       a312.pep
                MSIOSGEILE TVKMVADQNF DVRTITIGID LHDCISTDID VLNONIYNKI
                TTVGKDLVAT AKYLSAKYGV PIVNQRISVT PIAQIAAATH ADSYVSVAQT
            51
           101 LDKAAKAIGV SFIGGFSALV QKGMSPSDEV LIRSIPEAMK TTDIVCSSIN
           151 IGSTRAGINM DAVRLAGETI KRTAEITLEG FGCAKIVVFC NAVEDNPFMA
201 GAFHGSGEAD AVINVGVSGP GVVKAALENS DATTLTEVAE VVKKTAFKIT
           251 RVGELIGREA SKMLNIPFGI LDLSLAPTPA VGDSVARILE EMGLSVCGTH
           301 GTTAALALLN DAVKKGGMMA SSAVGGLSGA FIPVSEDEGM IAAAEAGVLT
                LDKLEAMTAV CSVGLDMIAV PGDTPAHTIS GIIADEAAIG MINSKTTAVR
           351
           401
                IIPVTGKTVG DSVEFGGLLG YAPVMPVKEG SCEVFVNRGG RIPAPVQSMK
           451 N*
 m312/a312 96.7% identity in 451 aa overlap
                                             30
                                                       40
                   MSIOSGEILETVKMVADQNFDVRTITIGIDLHDCISSDINVLNQNIYNKITTVGKDLVTT
      m312.pep
                   MSIQSGEILETVKMVADQNFDVRTITIGIDLHDCISTDIDVLNQNIYNKITTVGKDLVAT
       a312
                          10
                                    20
                                             30
                                                       40
                           70
                                    80
                                             90
                                                      100
                                                               110
                                                                         120
      m312.pep
                   AKYLSAKYGVPIVNQRISVTPIAQIAAATHADSYVSVAQTLDKAAKAIGVSFIGGFSALV
                   a312
                   AKYLSAKYGVPIVNQRISVTPIAQIAAATHADSYVSVAQTLDKAAKAIGVSFIGGFSALV
                          70
                                    80
                                             90
                                                      100
                                                               110
                         130
                                   140
                                            150
                                                      160
                                                               170
                   QKGMSPSDEVLIRSIPEAMKTTDIVCXSINIGSTRAGINMDAVKLAGETVKRTAEITPEG
      m312.pep
                   QKGMSPSDEVLIRSIPEAMKTTDIVCSSINIGSTRAGINMDAVRLAGETIKRTAEITLEG
       a312
                         130
                                   140
                                            150
                                                      160
                                                               170
                                   200
                                              210
                                                        220
      m312.pep
                   FGCAKIVVFCNAVEDNPFXAGAFHGSG--DAVINVGVSGPGVVKAALENSDATTLTEVAE
                   FGCAKIVVFCNAVEDNPFMAGAFHGSGEADAVINVGVSGPGVVKAALENSDATTLTEVAE
       a312
                         190
                                   200
                                            210
                                                      220
                  240
                            250
                                     260
                                              270
                                                          280
                                                                   290
                   VVKKTAFKITRVGELIGREASKMLNIPFGILDLS--PTPPVGDSVARILEEMGLSVCGTH
      m312.pep
                   VVKKTAFKITRVGELIGREASKMLNIPFGILDLSLAPTPAVGDSVARILEEMGLSVCGTH
```

a312

WO 99/57280 PCT/US99/09346

720

				250		260	270	280	290	300
					_	200	222	2.0		
	212		300	31 עמחמוזה		320 זות פפת או	330 GGLSGAFIPVS	340		50 KI Banmair
	m312	.pep								
	a312						GGLSGAFIPVS			
	4,712			310		320	330	340	350	360
			360	37	-	380		400		10
	m312	.pep					DEAAIGMINSK			
				111111	1111	1111111	11111111111		111111:	
-• Maxin	a312		CSVGLD				DEAAIGMINSK			
				370		380	390	400	410	420
			420	43	0	440				
	m312	. pep		-			PVQSMKNX			
						_	1111111			
	a312						PVQSMKNX			
				430		440	450			
The C	11	.i	A TONEA				Godin W -		CEO 11	D 1200s
		ing paru	ai DNA	sequen	ce wa	as identi	fied in N. go	onorrnoeae	3 <2EQ 11	D 130/>:
g313.	_									
	1						aatcccggcg	-	-	
	51						gctgacgctc			
	101 151						cacgcgtgct			
	201						gtcgcactcg taagggcggc			
	251						ctcctgcaac			
	301						ggcttcaaag			
	351						ccttgccgca			
	401						tcgcaatcgc			
	451						ctgattaaag			
	501	caaaatcg						50000500	-5	
This						ence <s< td=""><td>SEQ ID 1308</td><td>8. ORE 313</td><td>3 na>.</td><td></td></s<>	SEQ ID 1308	8. ORE 313	3 na>.	
g313.		ponda to	uic aiii	no acia	sequ	iciico <	EQ 1D 1300	, OKC 31.	J.11g~.	
9313.	1	MDDDDTY	SG NDGE	פקועמיד	GKKI	. זיד. דמממ	LGDAAKGLVA	WI.I.ARWI.O	a p	
	_						KGVATALGVL			
	101						LFFMPHTSWI		_	
	151	LLRHKSNI								
The f	ollow	ing nartis	I DNA	seanen	ce wa	as identi	fied in N. m	oninaitidi e	<seo it<="" td=""><td>1300>-</td></seo>	1300>-
m313.		Pur	DI 12 L	boquom		45 IGO1111	1100 11111. 111	ciniginais	-brd II	1505
	1	ATGGACGA	CC CGCG	CACCTA	CGGZ	ATCGGGC	AATCCGGGGG	CAACCAATO	ЭT	
	51						GCTGACGCTC		-	
	101						CACGCGTGCT			
	151						GTCGCACTCG			
	201	CGGGCATA	TG TGGC	CGGTGT	TTTT	CGGATT	TAAAGGCGGC	AAAGGCGTC	3G	
	251	CAACGGCA	TT GGGC	GTGCTT	CTGC	CACTCT	CTCCCGCAAC	TGCCTTGGT	rc	
	301	TGCGCGTT	GA TTTC	GCTTGT	TATO	GCATTC	GGCTTCAAGG	TGTCCTCC	CT .	
	351	TGCCGCAT	TA ACCO	CCACAA	TCGC	CCGCACC	GGTCGCCGCA	TCCTTCTTT	ra a a	
	401	TGCCGCAC	GT CTCG	TGGGTT	TGGC	GCGACCG	TCGCCATTGC	TTTGCTGGT	rG	
	451	TTGTTCCC	CC ACAA	AAGTAA	TATO	CGTCAAG	CTGCTCGAAG	GCAGAGAAA	łG	
	501	CAAAATCO	GC GGCA	GCCGCT	GA					
This	corres	ponds to	the ami	no acid	sequ	ence <s< td=""><td>EQ ID 1310</td><td>); ORF 313</td><td>3>:</td><td></td></s<>	EQ ID 1310); ORF 313	3>:	
m313.		•			1-		(· ·	, • •		
		MDDPRTYC	SG NPGA	TNVLRS	GKK	CAAALTL	LGDAAKGLVA	VLLARVLO	∃ P	
	51	LGLSDSAI	AA VALA	ALVGHM	WPVE	FGFKGG	KGVATALGVL	LALSPATAI		
							SEEMPHUSWU			

101 CALIWLYMAF GFKVSSLAAL TATIAAPVAA SFFMPHVSWV WATVATALLV
151 LFRHKSNIVK LLEGRESKIG GSR*

Computer analysis of this amino acid sequence gave the following results:

721 Homology with a predicted ORF from N. gonorrhoeae ORF 313 shows 90.2% identity over a 173 aa overlap with a predicted ORF (ORF 313.ng) from N. gonorrhoeae: m313/g313 10 20 30 40 50 60 ${\tt MDDPRTYGSGNPGATNVLRSGKKKAAALTLLGDAAKGLVAVLLARVLQEPLGLSDSAIAA}$ m313.pep MDDPRTYGSGNPGATNVLRSGKKKAAALTLLGDAAKGLVAVLLARVLQEPLGLSDSAIAA q313 40. 20 30 70 80 90 100 110 VALAALVGHMWPVFFGFKGGKGVATALGVLLALSPATALVCALIWLVMAFGFKVSSLAAL m313.pep VALAALVGHMWPVFFGFKGGKGVATALGVLLALSPATALVCALIWLVMAFGFKVSSLAAL g313 70 80 90 100 110 120 130 140 160 150 170 TATIAAPVAASFFMPHVSWVWATVAIALLVLFRHKSNIVKLLEGRESKIGGSRX m313.pep VATTAAPLAALFFMPHTSWIFATLAIAILVLLRHKSNILNLIKGKESKIGEKRX g313 130 140 150 160 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1311>: a313.seq ATGGACGACC CGCGCACCTA CGGATCGGGC AATCCGGGGG CAACCAATGT 51 TTTACGCAGC GGCAAAAAA AGGCGGCCGC GCTGACGCTC TTGGGCGATG 101 CCGCCAAAGG TTTGGTTGCC GTTTTGCTTG CACGCGTGCT TCAAGAACCG CTCGGTTTAT CCGACAGCGC AATCGCGGCC GTCGCACTCG CCGCGCTGGT 151 201 CGGGCATATG TGGCCGGTGT TTTTCGGATT TAAAGGCGGC AAAGGCGTGG 251 CAACGGCATT GGGCGTGCTT CTGGCACTCT CTCCCACAAC TGCCTTGGTC 301 TGCGCGTTGA TTTGGCTTGT GATGGCATTC GGCTTCAAGG TGTCCTCCCT 351 TGCCGCATTA ACCGCCACAA TCGCCGCCC CCTTGCCGCA CTGTTTTTTA 401 TGCCGCATAC TTCTTGGATT TTCGCAACCC TCGCAATCGC CATATTGGTG 451 TTGCTCCGCC ATAAGAGCAA CATCCTCAAC CTGATTAAAG GCAAAGAAAG 501 CAAAATCGGC GAAAAACGCT GA This corresponds to the amino acid sequence <SEQ ID 1312; ORF 313.a>: 2313 non

asrs.beb					
1	MDDPRTYGSG	NPGATNVLRS	GKKKAAALTL	LGDAAKGLVA	VLLARVLQEP
51	LGLSDSAIAA	VALAALVGHM	WPVFFGFKGG	KGVATALGVL	LALSPTTALV

VATALGVL LALSPTTALV CALIWLVMAF GFKVSSLAAL TATIAAPLAA LFFMPHTSWI FATLAIAILV

LLRHKSNILN LIKGKESKIG EKR*

m313/a313 90.8% identity in 173 aa overlap

	10	20	30	40	50	60
m313.pep	MDDPRTYGSGNPGA	TNVLRSGKKK	(AAALTLLGD)	AAKGLVAVLLA	RVLQEPLGLS	DSAIAA
	11111111111111	1111111111	111111111	[411][[414]]	11111111111	111111
a313	MDDPRTYGSGNPGA	TNVLRSGKKK	CAAALTLLGD?	AAKGLVAVLLA	RVLQEPLGLS	DSAIAA
	10	20	30	40	50	60
	70	80	90	100	110	120
m313.pep	VALAALVGHMWPVF	FGFKGGKGVA	TALGVLLALS	SPATALVCALI	WLVMAFGFK	/SSLAAL
	11111111111111	11111111111	1111111111	11:1111111	111111111111	HIIII
a313	VALAALVGHMWPVF	FGFKGGKGVA	TALGVLLALS	SPTTALVCALI	WLVMAFGFK	SSLAAL
	70	80	90	100	110	120
	130	140	150	160	170	
m313.pep	TATIAAPVAASFFM	PHVSWVWATV	AIALLVLFR	KSNIVKLLEG	RESKIGGSRX	3
a313	TATIAAPLAALFFM	PHTSWIFATI	AIAILVLLR	KSNILNLIKG	KESKIGEKRX	3
	130	140	150	160	170	-

WO 99/57280 PCT/US99/09346

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1313>:
     g401.seq
               atgaaattac aacaattggc tgaagaaaaa atcggcgttc tgattgtgtt
           51 cacgetgett gtagteagtg teggtetgtt gattgaagtt gtgeeettgg
          101 cctttaccaa ggcggcaaca cagccggcgc cgggcgtgaa gccttacaat
              gccctgcagg ttgccggacg cgatatttac atccgtgagg gctgttacaa
          201 ctgccactct caaatgattc gtccgttccg tgcggaaacc gagcgttacg
          251 gtcattactc tgttgccgga gagtcggttt acgaccatcc gttccaatgg
          301 ggttccaaac gtaccggtcc tgatttggca cgtgtgggeg gccgctattc
          351 cgacgaatgg caccgcatcc acctgctgaa tccccgtgat gtcgtgcctg
          401 agtocaatat googgoatto cogtggottg cacgoaataa agtogatgto
              gatgcaaccg ttgccaacat gaaggctttg cgtaaagtag gtactcctta
          501 cagtgatgag gaaattgcga aagcgcctga ggctttggca aacaaatccg
          551 agctggatgc tgtagtcgcc tatctgcaag gattgggtct ggctttgaaa
          601 aacgtaaggt aa
This corresponds to the amino acid sequence <SEQ ID 1314; ORF 401.ng>:
     g401.pep
         1 MKLQQLAEEK IGVLIVFTLL VVSVGLLIEV VPLAFTKAAT QPAPGVKPYN
        51 ALQVAGRDIY IREGCYNCHS QMIRPFRAET ERYGHYSVAG ESVYDHPFQW
       101 GSKRTGPDLA RVGGRYSDEW HRIHLLNPRD VVPESNMPAF PWLARNKVDV
       151 DATVANMKAL RKVGTPYSDE EIAKAPEALA NKSELDAVVA YLQGLGLALK
       201 NVR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1315>:
     m401.seq
              ATGAAATTAC AACAATTGGC TGAAGAAAAA ATCGGCGTTC TGATTGTGTT
           51 CACGCTGCTT GTAGTCAGTG TCGGTCTGTT GATTGAAGTT GTGCCCTTGG
          101 CCTTTACCAA GGCGGCAACA CAGCCGGCGC CGGGCGTGAA GCCTTACAAT
          151 GCCCTGCAGG TTGCCGGACG CGATATTTAC ATCCGTGAGG GCTGTTACAA
          201 CTGCCACTCG CAAATGATTC GTCCGTTCCG TGCGGAAACC GAGCGTTACG
              GTCATTACTC TGTTGCCGGA GAGTCGGTTT ACGACCATCC GTTCCAATGG
          301 GGTTCCAAAC GTACCGGTCC TGATTTGGCA CGTGTGGGCG GTCGCTATTC
          351 CGACGAATGG CACCGTATCC ACCTGCTGAA TCCCCGTGAT GTCGTGCCTG
          401 AGTCCAATAT GCCGGCATTC CCGTGGCTTG CACGCAATAA AGTCGATGTC
          451 GATGCAACCG TTGCCAACAT GAAGGCTTTG CGTAAAGTAG GTACTCCTTA
          501 CAGTGATGAG GAAATTGCGA AAGCACCTGA GGCTTTGGCA AACAAATCCG
          551 AGCTGGATGC TGTAGTCGCC TATCTGCAAG GATTGGGTCT GGCTTTGAAA
          601 AACGTAAGGT AA
This corresponds to the amino acid sequence <SEO ID 1316; ORF 401>:
     m401.pep
            1 MKLQQLAEEK IGVLIVFTLL VVSVGLLIEV VPLAFTKAAT QPAPGVKPYN
           51 ALQVAGRDIY IREGCYNCHS QMIRPFRAET ERYGHYSVAG ESVYDHPFQW
          101 GSKRTGPDLA RVGGRYSDEW HRIHLLNPRD VVPESNMPAF PWLARNKVDV
          151 DATVANMKAL RKVGTPYSDE EIAKAPEALA NKSELDAVVA YLQGLGLALK
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 401 shows 100.0% identity over a 203 as overlap with a predicted ORF (ORF 401.ng)
from N. gonorrhoeae:
     m401/g401
                          10
                                    20
                                             30
                                                       40
                                                               . 50
                                                                           60
     m401.pep
                  MKLQQLAEEKIGVLIVFTLLVVSVGLLIEVVPLAFTKAATQPAPGVKPYNALQVAGRDIY
                  9401
                  MKLQQLAEEKIGVLIVFTLLVVSVGLLIEVVPLAFTKAATQPAPGVKPYNALQVAGRDIY
                         10
                                   20
                                             30
                                                       40
                                                                 50
                          70
                                   80
                                             90
                                                      100
                  IREGCYNCHSQMIRPFRAETERYGHYSVAGESVYDHPFQWGSKRTGPDLARVGGRYSDEW
     m401.pep
```

WO 99/57280 PCT/US99/09346

g401	 IREGCYNO	CHSQMIRPFRA	ETERYGHYSVA	GESVYDHPFQW	GSKRTGPDLARVGGRYSDEW
m401.pep	HRIHLLNI	PRDVVPESNMP	111111111111	VDATVANMKAL	RKVGTPYSDEEIAKAPEALA
. g401			AFPWLARNKVD 40 15		RKVGTPYSDEEIAKAPEALA 170 180
Tan		190 2 Waylqglgla	00 LKNVRX		
g401	NKSELDA\	/VAYLQGLGLA	111111		
The following p			•	n <i>N. mening</i>	itidis <seq 1317="" id="">:</seq>
a401.seq		-		_	TGATTGTGTT
51	CACGCTGCTT	GTAGTCAGTG	TCGGTCTGTT	GATTGAAGTT	GTGCCCTTGG
101 151					GCCTTACAAT GCTGTTACAA
201					GAGCGTTACG
251					GTTCCAATGG
301 351					GTCGCTATTC GTCGTGCCTG
401					AGTCGATGTC
451					GTACTCCTTA
501 551					AACAAATCCG GGCTTTGAAA
601	AACGTAAGGT		171101007410	oni roodici	COUTTOANA
This correspond	a ta tha amin	a aaid aaana	maa /SEO I	D 1219. OD	E 401 a>.
	s to the airin	o acid seque	ince /SEQ I	D 1316, OK	r 401.a/:
a401.pep		_	_		
	MKLQQLAEEK	IGVLIVFTLL	VVSVGLLIEV	VPLAFTKAAT	QPASGVKPYN
a401.pep 1 51 101	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW	VVSVGLLIEV QMIRPFRAET HRIHLLNPRD	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF	QPASGVKPYN ESVYDHPFQW PWLARNKVDV
a401.pep 1 51	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW	VVSVGLLIEV QMIRPFRAET HRIHLLNPRD	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF	QPASGVKPYN ESVYDHPFQW
a401.pep 1 51 101 151 201	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL	IGVLIVETLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF	QPASGVKPYN ESVYDHPFQW PWLARNKVDV
a401.pep 1 51 101 151 201 m401/a401 99	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR*	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK
a401.pep 1 51 101 151 201	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE	IGVLIVETLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVET	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY
a401.pep 1 51 101 151 201 m401/a401 99	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVFT	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK
a401.pep 1 51 101 151 201 m401/a401 99	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVFT	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA VERIAP 20 3 LLVVSVGLLIE	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY
a401.pep 1 51 101 151 201 m401/a401 99	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE	IGVLIVFTLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVFT !!!!!!!!! EKIGVLIVFT	VVSVGLLIEV OMIRPFRAET HRIHLINPRD EIAKAPEALA VERIAP 20 3 LLVVSVGLLIE LLVVSVGLLIE LLVVSVGLLIE 20 3	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60
a401.pep 1 51 101 151 201 m401/a401 99	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIII MKLQQLAE	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 111111111 EEKIGVLIVET 10 70 CHSQMIRPFRA	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE LLVVSVGLLIE LLVVSVGLLIE 20 3	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT 1 0 40 0 100 GESVYDHPFQW	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY 11
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE MKLQQLAE	IGVLIVETLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVET 111111111111111111111111111111111111	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA VEILAP 20 3 LLVVSVGLLIE LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT 1111111111111111111111111111111111	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY 111
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE MKLQQLAE	IGVLIVETLL IREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 10 70 CHSQMIRPFRAI 111111111111111111111111111111111111	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA VEILAP 20 3 LLVVSVGLLIE LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT 1111111111111111111111111111111111	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY 111
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIII IREGCYNO	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET !!!!!!!!! EEKIGVLIVET 10 70 CHSQMIRPFRAI !!!!!!!!!! EHSQMIRPFRAI 70	VVSVGLLIEV OMIRPFRAET HRIHLLNPRD EIAKAPEALA VETIAP 20 3 LLVVSVGLLIE LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA ETERYGHYSVA 80 9	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT 1111111111111111111111111111111111	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY 111 QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIIII MKLQQLAE IREGCYNC IIIIIIII IREGCYNC	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET !!!!!!!!! EEKIGVLIVET 10 70 CHSQMIRPFRAI !!!!!!!!! CHSQMIRPFRAI 70 30 1 PROVVPESNMP	VVSVGLLIEV OMIRPFRAET HRIHLINPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA ETERYGHYSVA 80 9	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 GESVYDHPFQW GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW GSKRTGPDLARVGGRYSDEW 110 120 . 170 180 RKVGTPYSDEEIAKAPEALA
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIII MKLQQLAE IREGCYNC IREGCYNC IREGCYNC IREGCYNC IREGCYNC IREGCYNC	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 11 EEKIGVLIVET 10 70 EHSQMIRPFRAI 11 11 11 11 11 11 1	VVSVGLLIEV QMIRPFRAET HRIHLINPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA ETERYGHYSVA 80 9 40 15 AFPWLARNKVD	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY III IIIIIIIIIIIIIIII QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE MKLQQLAE MKLQQLAE HRIHLLNE HRIHLLNE	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EKIGVLIVET !!!!!!!!! EKIGVLIVET 10 70 HSQMIRPFRAI !!!!!!!! chsqmirpfrai 70 30 1 PROVVPESNMP	VVSVGLLIEV QMIRPFRAET HRIHLINPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA ETERYGHYSVA 80 9 40 15 AFPWLARNKVD	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE MKLQQLAE MKLQQLAE IREGCYNC IREGCYNC HRIHLLNE HRIHLLNE	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 111111111 EEKIGVLIVET 10 70 CHSQMIRPFRAT 1111111111 CHSQMIRPFRAT 70 30 1 PROVVPESNMP 1111111111 PROVVPESNMP 11111111111 PROVVPESNMP	VVSVGLLIEV QMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE 11111111111111111111111111111111111	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep a401	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIII MKLQQLAE IREGCYNC IIIIIIII IREGCYNC HRIHLLNE IRIHLLNE HRIHLLNE	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 11 10 70 EHSQMIRPFRAT 111111111111111111111111111111111111	VVSVGLLIEV QMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE 11111111111111111111111111111111111	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE IIIIIII MKLQQLAE IREGCYNC IRE	IGVLIVETLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVET 111111111 EEKIGVLIVET 10 70 CHSQMIRPFRAT 1111111111 CHSQMIRPFRAT 70 30 1 PROVVPESNMP 1111111111 PROVVPESNMP 11111111111 PROVVPESNMP	VVSVGLLIEV QMIRPFRAET HRIHLLNPRD EIAKAPEALA Verlap 20 3 LLVVSVGLLIE 11111111111111111111111111111111111	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW
a401.pep 1 51 101 151 201 m401/a401 99 m401.pep a401 m401.pep a401	MKLQQLAEEK ALQVAGRDIY GSKRTGPDLA DATVANMKAL NVR* .5% identity MKLQQLAE INEGCYNC INITITIE INEGCYNC INITITIE INKSELDAY INKSELDAY INKSELDAY	IGVLIVFTLL TREGCYNCHS RVGGRYSDEW RKVGTPYSDE in 203 aa ov 10 EEKIGVLIVFT !!!!!!!!! EEKIGVLIVFT 10 70 CHSQMIRPFRA 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!! PRDVVPESNMP 11!!!!!!!	VVSVGLLIEV QMIRPFRAET HRIHLINPRD EIAKAPEALA VCTlap 20 3 LLVVSVGLLIE LLVVSVGLLIE 20 3 80 9 ETERYGHYSVA ETERYGHYSVA 80 9 40 15 AFPWLARNKVD AFPWLARNKVD 15 00 LKNVRX	VPLAFTKAAT ERYGHYSVAG VVPESNMPAF NKSELDAVVA 0 40 VVPLAFTKAAT VVPLAFTKAAT 0 40 0 100 GESVYDHPFQW 0 100 0 160 VDATVANMKAL	QPASGVKPYN ESVYDHPFQW PWLARNKVDV YLQGLGLALK 50 60 QPAPGVKPYNALQVAGRDIY QPASGVKPYNALQVAGRDIY 50 60 110 120 GSKRTGPDLARVGGRYSDEW

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1319>:
g402.seq
          ATGGATATGG TGAACACTAA Accgaatact agtgtgatta atatgctttc
         tttccttacc ggatTATTGA GCTTGGGTat agaagtCtTg tGGGTAAGGA
     101 TGttttcgTT CGCagcAcag tccgtgcctc aggCATTTTC atttattctt
     151 gcctGttttc tgACCGgtat cgccgtcggc gCgTATTTTG GCAAACGGAT
201 TTGCCGCAGC CGCTTTGTTG ATATTCCctT TATCGGGCAG TgcttcttgT
     251 GGGCGGGTAT TgccgaTttt ttgatTTTGG GTGCTGCGTG GTTGTTGACG
     301 GGTTTTTCCG gtttcGTCCA CCACGCCGGT AtttTCATTA CCCTgtctqc
     351 CGtcGTCAGG GGGTTGATTT TCCCACTTGT ACACCATgtg GGTACGGATG
     401 GCAACAATC CGGACGACAG GTTTCCAATG TTTATTTCGC CAACGTTGCC
     451 GGCAGTGCAT TGGGTCCGGT CCTTATCGGC TTTGTGATAC TTGATttgtt
     501 gTCCACCCAA CAGATTtacc tgctcatCTG TTTGATTTCT GCTGCtgtcc
     551 CTTTGTTTTG tacaCTGtTC CAAAAAAGTC TCCGACTGAA TGCAGTGTCG
     601 GTAGCAGTTT CCCTAATGTT CGGCATCCTC ATGTTCCTAC TGCCGGATTC
     651 TGTCTTTCAA AATATTGCTG GCCGTCCGGA TAGGTTGATT GAAAACAAAC
     701 ACGGCATTGT TGCGGTTTAC CATAGAGATG GTGATAAGGT TGTTTATGGG
     751 GCGAATGTAT ACGACGGCGC ATACAATACC GATATATTCA ATAGTGTCAA
     801 CGGCATCGAA CGTGCCTATC TGCTACCCTC CCTGAAGTCC GGCATACGCC
     851 GCATTTCGT CGTTGGATTG AGTACAGGTT CGTGGGCGCG CGTCTTGTCT
     901 GCCATTCCGG AAATGCAGTC GATGATCGTT GCGGAAATCA ATCCGGCATA
     951 CCGTAGCCTT ATCGCGGACG agccgcAAAT CGCACCGCTT TTGCAGGACA
    1001 AACGTGTTGA AATTGTATTG GATGACGGTA GGAAATGGCT GCGTCGCCAT
    1051 CCTGATGAAA AATTCGACCT GATTTTGATG AATTCGACTT GGTACTGGCG
    1101 TGCCTATTCC ACTAACCTGT TGAGTGCGGA ATTTTTAAAA CAGGTGCAAA
    1151 GCCACCTTAC CCCGGATGGT ATTGTAATGT TTAATACCAC GCACAGCCCG
    1201 CATGCTTTTG CTACCGCCGT ACACAGTATT CCCTATGCAT ACCGCTACGG
    1251 GCATATGGTA GTCGGCTCGG CAACCCCGGT AGTTTTCcct AATAAAGAAC
    1301 TGCTCaagca aCGCCTTTcc cgGTTGATTT GGCCGGAAAG CGGCAGgcac
   1351 GEATTTGACA GCAGCACCGT GGATGCTGCA GCACAAAAGG TTGECECECG
1401 TATGCTGATT CGGATGACGG AACCETCGGC TGGGGCGGAA GTCATTACTG
    1451 ACGATAATAT GATTGTAGAA TACAAATACG GCAGAGGGAT TTAA
This corresponds to the amino acid sequence <SEO ID 1320; ORF 402.ng>;
g402.pep
          MDMVNTKPNT SVINMLSFLT GLLSLGIEVL WVRMFSFAAQ SVPQAFSFIL
      51 ACFLTGIAVG AYFGKRICRS RFVDIPFIGQ CFLWAGIADF LILGAAWLLT
     101 GFSGFVHHAG IFITLSAVVR GLIFPLVHHV GTDGNKSGRO VSNVYFANVA
     151 GSALGPVLIG FVILDLLSTQ QIYLLICLIS AAVPLFCTLF QKSLRLNAVS
     201 VAVSLMFGIL MFLLPDSVFQ NIAGRPDRLI ENKHGIVAVY HRDGDKVVYG
251 ANVYDGAYNT DIFNSVNGIE RAYLLDGLKG CIRRITARY
         ANVYDGAYNT DIFNSVNGIE RAYLLPSLKS GIRRIFVVGL STGSWARVLS
     301 AIPEMQSMIV AEINPAYRSL IADEPQIAPL LQDKRVEIVL DDGRKWLRRH
     351 PDEKFDLILM NSTWYWRAYS TNLLSAEFLK QVQSHLTPDG IVMFNTTHSP
     401 HAFATAVHSI PYAYRYGHMV VGSATPVVFP NKELLKORLS RLIWPESGRH
     451 VFDSSTVDAA AQKVVSRMLI RMTEPSAGAE VITDDNMIVE YKYGRGI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1321>:
m402.seg
       1
          ATGGATATAG TGAACACTAA ACCGAATACT AGTTTGATTT ATATGCNTTC
      51 TTTCCTTAGC GGCTTATTGA GCTTGGGTAT AGAAGTCTTG TGGGTGAGGA
     101 TGTTTTCGTT CGCAGCACAG TCCGTGCCTC AGGCATTTTC ATTTACCCTT
     151 GCCTGTTTTC TGACCGGTAT CGCCGTCGGC GCGTATTTTG GCAAACGGAT
     201 TTGCCGCAGC CGCTTTGTTG ATATTCCCTT TATCGGGCAG TGCTTCTTGT
     251 GGGCGGGTAT TGCCGACTTT TTGATTTTGG GTGCTGCGTG GTTGTTGACG
     301 GGTTTTCCG GCTTCGTCCA CCACGCCGGT ATCTTCATTA CCCTGTCTGC
     351 CGTCGTCASA SGGTTGATTT TCCCGCTCGT ACACCATGTG GGTACGGATG
     401 GCAACAAATC CGGACGACAG GTTTCCAATG TTTATTTCGC CAMCGTTGCC
     451 GGCAGTGCAT TGGGTCCGGT CCTTATCGGC TTTGTGATAC TTGATTTCTT
     501 GTCCACCCAA CAGATTTACC TGCTCATCTG TWTGATTTCT GCTGCTGTCC
     551 CTTTGTTTTG TACACTGTTC CAAAAAAGTC TCCGACTGAA TGCAGTGTCG
     601 GTAGCAGTTT CCCTAATGTT CGGCATCCTC ATGTTCYTAC TGCCGGATTC
```

PCT/US99/09346 WO 99/57280

725


```
TGTCTTTCAA AATATTGCTG ACCGTCCGGA TAGGCTGATT GAAAACAAAC
     ACGGCATTGT TGCGGTTTAC CATAGAGATG GTGATAAGGT TGTTTATGGG
701
     GCGAATGTAT ACGACGCCC ATACAATACC GATGTATTCA ATAGTGTCAA
751
     CGGCATCGAA CGTGCCTATC TGCTACCCTC CCTGAAGTCT GGCATACGCC
     GCATTTTCGT CGTTGGACTG AGTACAGGTT CGTGGGCGCG CGTCTTGTCT
 851
     GCCATTCCGG AAATGCAGTC GATGATCGTT GCGGAAATCA ATCCGGCATA
901
     CCGTAGCCTT ATCGCGGACG AGCCGCAAAT CGCCCCGCTT TTGCAGGACA
951
     AACGTGTTGA AATTGTATTG GATGACGGTA GGAAATGGCT GCGTCGCCAT
1001
     CCTGATGAAA AATTCGACCT GATTTTGATG AATACGACTT GGTACTGGCG
1051
     TGCCTATTCC ACCAACCTGT TGAGTGCGGA ATTTTTAAAA CAGGTGCAAA
1101
     GCCACCTTAC CCCGGATGGT ATTGTAATGT TTAATACCAC GCACAGCCCG
1151
     CATGCTTTTG CTACCGCCGT ACACAGTATT CCCTATGCAT ACCGCTATGG
1201
     GCATATGGTA GTCGGCTCGG CAACCCCGGT AGTTTTCCCT AATAAAGAAC
1251
     TGCTCAAGCA ACGTCTCTCC CGGTTGATTT GGCCGGAAAG CGGCAGGCAC
1301
     GTATTTGACA GCAGCACCGT GGATGCTGCA GCACAAAAGG TTGTCTCTCG
1351
     TATGCTGATT CAGATGACGG AACCTTCGGC TGGGGCGGAA GTTATTACCG
1451 ACGATAATAT GATTGTAGAA TACAAATACG GCAGAGGGAT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 1322; ORF 402>:

m402.pep MDIVNTKPNT SLIYMXSFLS GLLSLGIEVL WVRMFSFAAQ SVPQAFSFTL ACFLTGIAVG AYFGKRICRS RFVDIPFIGQ CFLWAGIADF LILGAAWLLT 51 GFSGFVHHAG IFITLSAVVX XLIFPLVHHV GTDGNKSGRQ VSNVYFAXVA 101 GSALGPVLIG FVILDFLSTQ QIYLLICXIS AAVPLFCTLF QKSLRLNAVS VAVSLMFGIL MFLLPDSVFQ NIADRPDRLI ENKHGIVAVY HRDGDKVVYG 201 ANVYDGAYNT DVFNSVNGIE RAYLLPSLKS GIRRIFVVGL STGSWARVLS AIPEMQSMIV AEINPAYRSL IADEPQIAPL LQDKRVEIVL DDGRKWLRRH 351 PDEKFDLILM NTTWYWRAYS TNLLSAEFLK QVQSHLTPDG IVMFNTTHSP HAFATAVHSI PYAYRYGHMV VGSATPVVFP NKELLKQRLS RLIWPESGRH

VFDSSTVDAA AQKVVSRMLI QMTEPSAGAE VITDDNMIVE YKYGRGI* Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 402 shows 97.0% identity over a 497 aa overlap with a predicted ORF (ORF 402.ng) from N. gonorrhoeae: m402/g402

20 30 50 10 MDIVNTKPNTSLIYMXSFLSGLLSLGIEVLWVRMFSFAAQSVPQAFSFTLACFLTGIAVG m402.pep MDMVNTKPNTSVINMLSFLTGLLSLGIEVLWVRMFSFAAQSVPQAFSFILACFLTGIAVG g402 20 30 40 50 60 10 80 90 100 AYFGKRICRSRFVDIPFIGQCFLWAGIADFLÏLGAAWLLTGFSGFVHHAGIFITLSAVVX m402.pep AYFGKRICRSRFVDIPFIGQCFLWAGIADFLILGAAWLLTGFSGFVHHAGIFITLSAVVR g402 70 80 90 100 110 120 170 130 140 150 160 XLIFPLVHHVGTDGNKSGRQVSNVYFAXVAGSALGPVLIGFVILDFLSTQQIYLLICXIS m402.pep GLIFPLVHHVGTDGNKSGRQVSNVYFANVAGSALGPVLIGFVILDLLSTQQIYLLICLIS g402 130 140 150 160 170 200 210 220 230 240 190 AAVPLFCTLFQKSLRLNAVSVAVSLMFGILMFLLPDSVFQNIADRPDRLIENKHGIVAVY m402.pep g402 AAVPLFCTLFQKSLRLNAVSVAVSLMFGILMFLLPDSVFQNIAGRPDRLIENKHGIVAVY 200 210 230 190 220 240 260 270 280 290 300 HRDGDKVVYGANVYDGAYNTDVFNSVNGIERAYLLPSLKSGIRRIFVVGLSTGSWARVLS m402.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1323>: a402.seq

```
ATGGATATAG TGAACACTAA ACCGAATACT AGTTTGATTT ATATGCTTTC
     TTTCCTTAGC GGCTTATTGA GCTTGGGTAT AGAAGTCTTG TGGGTAAGGA
  51
      TGTTTTCGTT CGCAGCACAG TCCGTGCCTC AGGCATTTTC ATTTACTCTT
 101
     GCCTGTTTTC TGACCGGTAT CGCCGTCGGC GCGTATTTTG GCAAACGGAT
151
     TTGCCGCAGC CGCTTTGTTG ATATTCCCTT TATCGGGCAG TGCTTCTTGT
     GGGCGGGTAT TGCCGACTTT TTGATTTTGG GTGCTGCGTG GTTGTTGACG
 251
      GGTTTTTCCG GCTTCGTCCA CCACGCCGGT ATCTTCATTA CCCTGTCTGC
 301
     CGTCGTCAGA GGGTTGATTT TCCCGCTCGT ACACCATGTG GGTACGGATG
 351
     GCAACAAATC CGGACGACAG GTTTCCAATG TTTATTTCGC CAACGTTGCC
     GGCAGTGCAT TGGGTCCGGT CCTTATCGGC TTTGTGATAC TTGATTTCTT
 451
     GTCCACCCAA CAGATTTACC TGCTCATCTG TTTGATTTCT GCTGCTGTCC
 501
     CTTTGTTTTG TACACTGTTC CAAAAAAGTC TCCGACTGAA TGCAGTGTCG
 551
     GTAGCAGTTT CCCTAATGTT CGGCATCCTC ATGTTCCTAC TGCCGGATTC
 601
      TGTCTTTCAA AATATTGCTG ACCGTCCGGA TAGGCTGATT GAAAACAAAC
 651
     ACGGCATTGT TGCGGTTTAC CATAGAGATG GTGATAAGGT TGTTTATGGG
 701
      GCGAATGTAT ACGACGGCGC ATACAATACC GATGTATTCA ATAGTGTCAA
      CGGCATCGAA CGTGCCTATC TGCTACCCTC CCTGAAGTCT GGCATACGCC
 801
      GCATTTTCGT CGTTGGATTG AGTACAGGTT CGTGGGCGCG CGTCTTGTCT
 851
     GCCATTCCGG AAATGCAGTC GATGATCGTT GCGGAAATCA ATCCGGCATA
 901
      CCGTAGCCTT ATCGCGGACG AGCCGCAAAT CGCCCCGCTT TTGCAGGACA
     AACGTGTTGA AATTGTATTG GATGACGGTA GGAAATGGCT GCGTCGCCAT
1001
1051
      CCTGATGAAA AATTCGACCT GATTTTGATG AATACGACTT GGTACTGGCG
      TGCCTATTCC ACCAACCTGT TGAGTGCGGA ATTTTTAAAA CAGGTGCAAA
1101
      GCCACCTTAC CCCGGATGGT ATTGTAATGT TTAATACCAC GCACAGCCCG
      CATGCTTTTG CTACCGCCGT ACACAGTATT CCCTATGCAT ACCGCTATGG
1201
1251
      GCATATGGTA GTCGGCTCGG CAACCCCGGT AGTTTTCCCT AATAAAGAAC
     TGCTCAAGCA ACGTCTCTCC CGGTTGATTT GGCCGGAAAG CGGCAGGCAC
1301
      GTATTTGACA GCAGCACCGT GGATGCTGCA GCACAAAAGG TTGTCTCTCG
     TATGCTGATT CAGATGACGG AACCTTCGGC TGGTGCGGAA GTCATTACCG
     ACGATAATAT GATTGTAGAA TACAAATACG GCAGAGGGAT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 1324; ORF 402.a>: a402.pep

¹ MDIVNTKPNT SLIYMLSFLS GLLSLGIEVL WVRMFSFAAQ SVPQAFSFTL

51 101 151 201 251 301 351 401 451	ACFLTGIAVG AYFGKRICRS RFVDIPFIGQ CFLWAGIADF LILGAAWLLT GFSGFVHAG IFITLSAVVR GLIFFLVHHV GTDGNKSGRQ VSNVYFANVA GSALGPVLIG FVILDFLSTQ QIYLLICLIS AAVPLFCTLF QKSLRLNAVS VAVSLMFGIL MFLLPDSVFQ NIADPORLI ENKHGIVAVY HRDGDKVVYG ANVYDGAYNT DVFNSVNGIE RAYLLPSLKS GIRRIFVVGL STGSWARVLS AIPEMQSMIV AEINPAYRSL IADEFQIAPL LQDKRVEIVL DDGRKWLRRH PDEKFDLILM NTTWYWRAYS TNLLSAEFLK QVQSHLTPDG IVMFNTTHSP HAFATAVHSI PYAYRYGHMV VGSATPVVFP NKELLKQRLS RLIWPESGRH VFDSSTVDAA AQKVVSRMLI QMTEPSAGAE VITDDNMIVE YKYGRGI*	
m402/a402 99	0.0% identity in 497 aa overlap 10 20 30 40 50 60	
m402.pep	MDIVNTKPNTSLIYMXSFLSGLLSLGIEVLWVRMFSFAAQSVPQAFSFTLACFLTGIAVG	;
a402		;
	70 80 90 100 110 120	
m402.pep	AYFGKRICRSRFVDIPFIGQCFLWAGIADFLILGAAWLLTGFSGFVHHAGIFITLSAVVX	
a402		Ł
	70 80 90 100 110 120	j
	130 140 150 160 170 180	
m402.pep	XLIFPLVHHVGTDGNKSGRQVSNVYFAXVAGSALGPVLIGFVILDFLSTQQIYLLICXIS	
a402	GLIFPLVHHVGTDGNKSGRQVSNVYFANVAGSALGPVLIGFVILDFLSTQQIYLLICLIS 130 140 150 160 170 180	3
	190 200 210 220 230 240	
m402.pep	AAVPLFCTLFQKSLRLNAVSVAVSLMFGILMFLLPDSVFQNIADRPDRLIENKHGIVAVY	
a402	AAVPLFCTLFQKSLRLNAVSVAVSLMFGILMFLLPDSVFQNIADRPDRLIENKHGIVAVY	
	190 200 210 220 230 240	J
m402.pep	250 260 270 280 290 300 HRDGDKVVYGANVYDGAYNTDVFNSVNGIERAYLLPSLKSGIRRIFVVGLSTGSWARVLS	
a402	HRDGDKVVYGANVYDGAYNTDVFNSVNGIERAYLLPSLKSGIRRIFVVGLSTGSWARVLS 250 260 270 280 290 300	
	310 320 330 340 350 360	,
m402.pep	AIPEMQSMIVAEINPAYRSLIADEPQIAPLLQDKRVEIVLDDGRKWLRRHPDEKFDLILM	1
a402		
	310 320 330 340 350 360	
	370 380 390 400 410 420	
m402.pep	NTTWYWRAYSTNLLSAEFLKQVQSHLTPDGIVMFNTTHSPHAFATAVHSIPYAYRYGHMV	
a402	NTTWYWRAYSTNLLSAEFLKQVQSHLTPDGIVMFNTTHSPHAFATAVHSIPYAYRYGHMV 370 380 390 400 410 420	7
	430 440 450 460 470 480	
m402.pep	VGSATPVVFPNKELLKQRLSRLIWPESGRHVFDSSTVDAAAQKVVSRMLIQMTEPSAGAE	
a402	VGSATPVVFPNKELLKQRLSRLIWPESGRHVFDSSTVDAAAQKVVSRMLIQMTEPSAGAE 430 440 450 460 470 480	:
	490	
m402.pep	VITDDNMIVEYKYGRGIX	
a402	VITDDNMIVEYKYGRGIX 490	

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1325>: g406.seq
```

```
ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
 1
51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
101 TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
251 TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
301 GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
701 GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC GATATCCAAC
851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
951 AGGGCAACCT TGA
```

1000

This corresponds to the amino acid sequence <SEQ ID 1326; ORF 406>: g406.pep

```
1 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
301 SHEGYGYSDE AVRQHRQGQP *
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1327>: m406.seq

```
ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
101 TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
201 CACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
251 TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
301 GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
351 TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
401 CTCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
501 CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
801 AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
901 AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
951 AGGACAACCT TGA
```

This corresponds to the amino acid sequence <SEQ ID 1328; ORF 406>: m406.pep

MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK

51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT 101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN 151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN 201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA 251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN 301 SHEGYGYSDE VVRQHRQGQP *

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from N. gonorrhoeae: g406/m406

g406.pep	1:1111	1111111111	!		[[]]]]]	50 AAVKDMDLQAI AAVKDMDLQAI	
(11200		10	20	30	40	50	60
g406.pep	111111	[80 LTGGRYSIDAI LTGGRYSIDAI	1111111111		110 YETTAETTSG YETTAETTSG	1111
200		70	80	90	100	110	120
g406.pep	111111	 TLNAPALSRT	: QSDGSGSKSS:	 LGLNIGGMGD	 YRNETLTTNP	RDTAFLSHLV RDTAFLSHLV	 QTVF
		130	200	150 210	220	170 230	180 240
g406.pep	111111	VVSPANADTD	VFINIDVFGT	IRNRTEMHLY	naetlkaqtk 	LEYFAVDRTN LEYFAVDRTN	KKLL
		190	200	210	220	230	240
g406.pep	111111	111111111111111111111111111111111111111	1111111111	(11111111111111111111111111111111111111	1111111:111	290 NHTGNSAPSV NHTGNSAPSV 290	$\Pi\Pi$
g406.pep	111111	310 YSDEAVRQHR : YSDEVVRQHR 310	Ш				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1329>:

06.seq					
1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GGTAAACGCT
101	TCGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TGTACATTGC
201	AACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	CGTCCGTACC
301	GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CATCAGGCGG
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CCTGCACTCT
401	CGCGCACCCA	ATCAGACGGT	AGCGGAAGTA	AAAGCAGTCT	GGGCTTAAAT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	CTAACCCGCG

	·	
501	CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG	
551	GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC	
601	ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA	
651	TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA	
701	GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT	
751	GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA	
801	AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC	
851	CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC	
901	AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC GACATAGACA	
	AGGGCAACCT TGA	
951	AGGGCAACCI IGA	
. www		
This correspond	s to the amino acid sequence <seq 1330;="" 406.a="" id="" orf="">:</seq>	
a406.pep		
1	MOARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK	
51	DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT	
101	DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN	
151	IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN	
201	IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA	
251	AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN	
301	SHEGYGYSDE AVRRHRQGQP *	
301	PUDGIGION III.	
-406/2406	98.8% identity in 320 aa overlap	
m406/a406	90.0% Identity in 520 ad overlap	
	10 20 30 40 50	60
100	MOARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQAL	
m406.pep	MQAKEETPIESVIIESACGIIGIISACGGAKIAVEQEEVAASAKAAVADEDEQAE	
a406	MQARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQAL	
	10 20 30 40 50	60
		120
m406.pep	KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGI	
a406	KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGI	
	70 80 90 100 110 1	120
	130 140 150 160 170	180
m406.pep	LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQ	CVF
a406	LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQT	rvf
	130 140 150 160 170	180
	190 200 210 220 230	240
m406.pep	FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNK	KLL
a406	FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKI	
4100		240
	250 260 270 280 290 :	300
m406 non	IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIRPYGNHTGNSAPSVE	
m406.pep		
- 406	IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIQPYGNHMGNSAPSVE	
a406		
	250 260 270 280 290	300
	212	
	310 320	
m406.pep	SHEGYGYSDEVVRQHRQGQPX	
a406	SHEGYGYSDEAVRRHRQGQPX	
	310 320	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1331>: g501.seq

1 atggtcggac ggaccttgac cgcagatacc gacatatttg ttctgcttgc,
51 ggcaggcgga gatggcaaga tgcagcatca ctttgacggc agggttgcgt

```
101 tcgtcaaacg attcggacac caagccgctg tctcggtcga ggccgagggt
         151 cagetgggte atgtegtteg agecgatgga gaageegteg aagtattgea
         201 ggaattgttc cgccaatacc gcgttgctcg gcagctcgca catcataatc
         251 aggcgcaggc cgtttttgcc gcgttccaag ccgttttctt tcaatgcctt
         301 aaccactgct tcggcttcgc ccaaagtgcg gacgaacgga atcatgattt
         351 cgacgttggt cagacccatt tcgtcacgaa cgcgtttcaa ggctttgcat
         401 tecaaggega aacagtettt gaageteteg geaacataac gegeegeace
         451 acggaagece aacategggt tttetteatg eggttegtat acgetgeege
         501 cgaccaggtt ggcgtattcg ttggatttga agtcggacat acggacgatg
         551 gttttacgcg gataaaccga tgcggcaagc gttgccacgc cttcggcgat
             tttatcgacg tagaagtcga caggggatgc gtaaccggcg atgcggcgga
-- "21."
         651 taatttccgc tttcagttcg tcgtcttgtt tgtcaaattc caacaaggct
         701 ttcgggtgga tgccgatttg gcggttgatg ataaattcca tacgcgccaa
         751 gccgatgcct tcgctgggca gattggcgaa gctgaatgcg agttcgggat
         801 tgccgacgtt catcatgact ttgacgggtg cttttggcat attgtccaag
         851 gcgacatcgg taatttgtac gtccagcagg ccggcataga taaagccggt
         901 atogoottog goacaggata oggtaactto otgacogttt tocaagagtt
        951 cggtcgcatt gccgcagccg acgacggcag gaatacccag ttcgcgcgcg
        1001 atgatggcgg cgtggcaggt gcgtccgccg cggttggtca cgatggcgga
        1051 agcacgtttc atcacgggtt cccaatccgg atcggtcatg tcggtaacca
        1101 gtacgtcgcc ggcttcgacg gaatccatct cggaagcatc tttaatcaqq
        1151 cgcaccttgc cctgaccgac tttttgaccg atggcacgac cttcgcacaa
        1201 gacggttttt tcgccgttga tggcgtagcg gcgcaggttg cggctgcctt
        1251 cttcttggga tttgacggtt tcggggcggg cttgcaggat gtagagtttg
        1301 ccgtccaggc cgtcgcgtcc ccattcgata tccatcgggc ggccgtagtg
        1351 tttttcgatg gtcagcgcgt agtgtgccaa ctcggtgatt tcttcgtcgg
        1401 taatggagaa gcggttgcgg tcttcttcgg ggacttcgac gttggttacc
        1451 gatttgccgg cttcggcttt gtcggtgaaa atcattttga tgtgtttcga
        1501 acccatggtc ttgcgcagga tggcgggttt gcctgctttg agcgtgggtt
        1551 tgaacacata aaattcgtcc gggttgaccg cgccttgtac gacgttttcg
        1601 cccagaccgt aagaggaggt aacaaagacg acttggttgt agccggattc
        1651 ggtgtcgagg gtgaacatca cacctga
  This corresponds to the amino acid sequence <SEQ ID 1332; ORF 501.ng>:
       g501.pep
            MVGRTLTADT DIFVLLAAGG DGKMQHHFDG RVAFVKRFGH QAAVSVEAEG
            QLGHVVRADG EAVEVLQELF RQYRVARQLA HHNQAQAVFA AFQAVFFQCL
        101 NHCFGFAQSA DERNHDFDVG QTHFVTNAFQ GFAFQGETVF EALGNITRRT
        151 TEAQHRVFFM RFVYAAADQV GVFVGFEVGH TDDGFTRINR CGKRCHAFGD
        201 FIDVEVDRGC VTGDAADNFR FQFVVLFVKF QQGFRVDADL AVDDKFHTRQ
        251 ADAFAGQIGE AECEFGIADV HHDFDGCFWH IVQGDIGNLY VQQAGIDKAG
       301 IAFGTGYGNF LTVFQEFGRI AAADDGRNTQ FARDDGGVAG ASAAVGHDGG
        351 STFHHGFPIR IGHVGNQYVA GFDGIHLGSI FNQAHLALTD FLTDGTTFAO
        401 DGFFAVDGVA AQVAAAFFLG FDGFGAGLQD VEFAVQAVAS PFDIHRAAVV
       451 FFDGQRVVCQ LGDFFVGNGE AVAVFFGDFD VGYRFAGFGF VGENHFDVFR
501 THGLAQDGGF ACFERGFEHI KFVRVDRALY DVFAQTVRGG NKDDLVVAGF
        551 GVEGEHHT*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1333>:
        m501.seq
                 atggtcggac sggccttgac cgcagatgcc gacatatttg ttctgcttgc
             51 ggcaggcgga gatggcaagg tgcagcatca ctttgacggc agggttgcgt
             101 tcgtcaaacg attcggatac caagccgctg tcgcggtcga gaccgagggt
             151 cagttgggtc atgtcgttcg agccgatgga gaagccgtcg aagtattgca
             201 ggaattgttc cgccaatacc gcgttgctcg gcagctcgca catcataatc
            251 aggcgcaggc cgtttttgcc gcgttccaag ccgttttctt tcagggcttt
            301 gacaacggmt tcggcttcgc ccaaagtgcg gacgaacgga atcatgattt
            351 caacgttggy caaccccatt tcatcgcgga cgcgtttcaa ggctttgcat
            401 tccaaggcga aacagtcttt gaagttgtcg gcgacataac gcgccgcacc
            451 acggaagece aacategggt tttetteatg eggttegtat acgttgeege
            501 cgaccaggtt ggcgtattcg ttggatttga agtcggacat acggacgatg
            551 gttttacgcg gataaaccga tgcggccaat gtcgccacgc cttcggcgat
            601 tttategaeg tagaagtega caggggaege gtaaceggeg ataeggeggg
```

651 taatttccgc ttttaattcg tcgtcttgtt tgtcaaattc caacaargct

PCT/US99/09346 WO 99/57280

732

```
701
               ttggggtgga taccgatttg gcggttgatg ataaattcca tacgcgccaa
               gccgatgcct tcgctgggca ggttggcgaa gctgaatgcg agttcgggat
          751
               tgccgacgtt catcatgact tttacaggtg ctttaggcat attgtctaag
          801
               gcgacatcgg taatctgtac gtccaacaga ccggcataga taaagccggt
          901
               atcgccttcg gcacaggata cggtaacttc ttgaccgttt ttcagcaatt
               cggttgcatt gccgcagccg acaacggcag gaatgcccaa ttcacgcgcg
          951
         1001
               atgatggcgg cgtggcaggt acggccgccg cggttggtaa cgatggcaga
         1051
               agcacgtttc atcacgggtt cccaatccgg atcggtcatg tcggtaacga
               gtacgtcgcc ggcttcgacg gaatccatct cggaagcatc tttaatcagg
         1101
               cgcaccttgc cctgaccgac tttctgaccg atggcgcggc cttcgcataa
         1151
         1201 tacggttttg tcgccgttga tggcgaagcg gcgcaggttg cggttgccct
         1251 cttcttggga ttttacggtt tcgggacggg cttgcaggat gtagagtttg
               ccqtccaagc cgtcgcgtcc ccattcgata tccatcgggc ggccgtagtg
         1301
               tttttcgatg gtcagtgcgt aatgcgccaa ctcagtaatt tcttcgtcgg
         1401 taatggagaa geggttgegg tetteetegg ggacategae gttggttacg
         1451 gatttaccgg cttctgcttt gtcggtaaaa atcattttga tgtgttttga
         1501 acccatggtt ttacgcagga tggcgggctt gcccgytttg agcgtgggtt
               tgaacacatr aaattcgtcc gggttgaccg caccttgtac gacgttttcg
         1551
               cccagaccgt aagaggaggt aacaaagacg acytgatcgt akccggattc
               ggtgtcgagg gtgaacatca cacctga
This corresponds to the amino acid sequence <SEQ ID 1334; ORF 501>:
     m501.pep
               MVGXALTADA DIFVLLAAGG DGKVQHHFDG RVAFVKRFGY QAAVAVETEG
               QLGHVVRADG EAVEVLQELF RQYRVARQLA HHNQAQAVFA AFQAVFFQGF
           51
               DNGFGFAQSA DERNHDFNVG QPHFIADAFQ GFAFQGETVF EVVGDITRRT
          101
               TEAQHRVFFM RFVYVAADQV GVFVGFEVGH TDDGFTRINR CGQCRHAFGD
          201 FIDVEVDRGR VTGDTAGNFR FXFVVLFVKF QQXFGVDTDL AVDDKFHTRQ
          251
               ADAFAGQVGE AECEFGIADV HHDFYRCFRH IVXGDIGNLY VQQTGIDKAG
          301
               IAFGTGYGNF LTVFQQFGCI AAADNGRNAQ FTRDDGGVAG TAAAVGNDGR
               STFHHGFPIR IGHVGNEYVA GFDGIHLGSI FNQAHLALTD FLTDGAAFAX
          351
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 501 shows 86.2% identity over a 558 as overlap with a predicted ORF (ORF 501.ng) from N. gonorrhoeae:

YGFVAVDGEA AQVAVALFLG FYGFGTGLQD VEFAVQAVAS PFDIHRAAVV FFDGQCVMRQ LSNFFVGNGE AVAVFLGDID VGYGFTGFCF VGKNHFDVFX

THGFTQDGGL ARFERGFEHX KFVRVDRTLY DVFAQTVRGG NKDDLIVXGF

m501/g501

451

501

551 GVEGEHHT*

	g501	TDDGFTRIN	RCGKRCHAFGDF	THUEVIRGOVEG	DAADNFRFQFVVI	FUVEOOGED	man.
	3	19		210	220	230	
					220	230	240
		25	0 260	270	280	290	300
	m501.pep				FYRCFRHIVXGDI	GNI.VVOOTG	טטנ
		111111111	1111111:111			U. IIIIIII	IIIII
	g501	AVDDKFHTR	OADAFAGOIGEA	ECEFGIADVHHD	FDGCFWHIVQGDI	CNIVIONA	
	_	25		270	280	290	300
						250	300
		31	0 320	330	340	350	360
\$1.55 AV	m501.pep	IAFGTGYGN	FLTVFQQFGCIA		DGGVAGTAAAVG	NDGRSTFHHO	מזמקנ
		111111111		: : :		:	1111
	g501	IAFGTGYGN	FLTVFOEFGRIA	AADDGRNTOFARI	DGGVAGASAAVG	HDGGSTEIN	IIIII Eroto
	•	31		330	340	350	360
							300
		37	0 38.0	390	400	410	420
	m501.pep	IGHVGNEYV.	AGFDGIHLGSIF	NQAHLALTDFLTI	GAAFAXYGFVAV	DGEAAOVAVA	TELC
		1111111:11					
	g501	IGHVGNQYV	AGFDGIHLGSIFT	NOAHLALTDFLTI	GTTFAQDGFFAV	DGVAAOVAAA	TIII
		37		390	400	410	420
							-20
		43		450	460	470	480
	m501.pep	FYGFGTGLQI	DVEFAVQAVASPI	DIHRAAVVFFDO	QCVMRQLSNFFV	GNGEAVAVFL	GDID
		1 111:111			1 1: 11::111	11111111:	11:1
	g501	FDGFGAGLQ	DVEFAVQAVASPI	DIHRAAVVFFDG	ORVVCQLGDFFV	GNGEAVAVFF	GDFD
		430		450	460	470	480
		490		510	520	530	540
	m501.pep	VGYGFTGFC	FVGKNHFDVFXTI	IGFTQDGGLARFE	RGFEHXKFVRVD	RTLYDVFAQT	VRGG
		[[] [:][:	:: :	11111 111111	1:1111111	HH
	g501	VGYRFAGFGI	FVGENHFDVFRT	IGLAODGGFACFE	RGFEHIKFVRVD	RALYDVFAOT	VRGG
		490		510	520	530	540
		550					
	m501.pep	NKDDLIVXG	FGVEGEHHT				
			FGVEGEHHT				
	m501.pep	NKDDLIVXGI : NKDDLVVAGI	FGVEGEHHT FGVEGEHHT				
		NKDDLIVXGI	FGVEGEHHT FGVEGEHHT				
m	g501	NKDDLIVXGI : NKDDLVVAGI 550	FGVEGEHHT FGVEGEHHT)				
The i	g501 following pa	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq	FGVEGEHHT FGVEGEHHT)	entified in <i>N. n</i>	neningitidis <	SEQ ID 13	35>:
The f	g501 following pa	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial)	FGVEGEHHT GVEGEHHT 				
The f	g501 following pa	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial)	FGVEGEHHT GVEGEHHT 				
The f	g501 following pa a501.seq	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial) ATGGTCGGAC	FGVEGEHHT FGVEGEHHT Uence was ide	CGCAGATGCC	GACATATTTG	TTCTGCTT	GC
The f	g501 following pa a501.seq .1	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA	FGVEGEHHT FGVEGEHHT O Uence was ide GGGCCTTGAC GATGGCAAGG	CGCAGATGCC TGCAGCATCA	GACATATTTG CTTTGACGGC	TTCTGCTT(GC GT
The i	g501 following pa a501.seq 1 51 101	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG	FGVEGEHHT FGVEGEHHT O UENCE WAS IDE GGGCCTTGAC GATGGCAAGG ATTCGGATAC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG	GACATATTTG CTTTGACGGC TCGCGGTCGA	TTCTGCTTC AGGGTTGCC	GC GT GT
The f	g501 following pa a501.seq 1 51 101 151	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC	FGVEGEHHT FGVEGEHHT O UENCE WAS IDE GGGCCTTGAC GATGGCAAGG ATTCGGATAC ATGTCGTTCG	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCG	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC	GC GT GT
The f	g501 following pa a501.seq 1 51 101 151 201	NKDDLIVXGI : NKDDLVVAGE 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC	FGVEGEHHT FGVEGEHHT O UENCE WAS IDE GGGCCTTGAC GATGGCAAGG ATTCGGATAC ATGTCGTTCG CGCCAATACC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCG GCAGCTCGCA	TTCTGCTTCAGGGTTGCCAGGGGAAGTATTGCCATCATAA	GC GT GT CA IC
The f	g501 following pa a501.seq 1 51 101 151 201 251	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC	GGCCTTGAC GATGGCATAC ATGTCGTTCG CGCCAATACC CGTTTTTGCC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCG GCAGCTCGCA CCGTTTTCTT	TTCTGCTTCAGGGTTGCAGCCGAGGGAGTATTGCATCATAACTCAGGGCTTCAGGGCTTCAGGGCTTCAGGGCTTGCAGGCTTGCAGGCTTGCAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGCTTGAGGGGGGGG	GC GT GT CA IC
The f	g501 following pa a501.seq 1 51 101 151 201 251 301	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGGCT	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCG GCAGCTCGCA CCGTTTTCTT GACGAACGGA	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAAC TCAGGGCTC ATCATGATC	GC GT GT CA IC IT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGGCT CAACGTTGGT	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAAC TCAGGGCTC ATCATGATC GGCTTTGCC	GC GT GT CA CC IT IT
The i	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGGCT CAACGTTGGT TCCAAGGCGA	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCG CAACCCCATT AACAGTCTTT	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAAC TCAGGGCTC ATCATGATC GGCTTTGCC GCGCCGCAC	GC GT GT CA IC IT IT AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGT	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT	TTCTGCTTC AGGGTTGCC GACCGAGG AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC	GC GT GT CA IC IT IT AT CC
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATCG	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT	TTCTGCTTC AGGGTTGCC GACCGAGG AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC	GC GT GT CA IC IT IT AT CC GC
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG	GGCCTTGAC GATGGCAAGC ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATTCG GGCGTATTCG CAACCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCCCATT CAACACCCCATT CAACACCCA	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC	TTCTGCTTC AGGGTTGCC GACCGAGG AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC ACGGACGAC CTTCGGCGC	GC GT CA CC IT IT AT CC GC
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601	NKDDLIVXGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGCT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTTATCGACG	GGCCTTGAC GATGGCAAGC ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATCG GGCGTATTCG CGAACCCCATT AACAGTCTTT AACATCGGGT GGCGTATTCG GATAAACCGA TAGAAGTCGA	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC ACGGACGAC CTTCGGCGC	GC GT GT CA IT IT AT CC GC IG AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC GGAATTGTTC AGGCGCAGGC GACAACGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC	GGCCTTGAC GATGGCAAGC ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATCG GGCGTATTCG TGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGGT TAGAAGTCGA TTTTAATTCG	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTC	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC ACGGACGAC CTTCGGCGC ATACGGCGC	GC GT GT CA IT IT AT CC GC IG AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGCAGGC GACAACGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA	GGCCTTGAC GATGGCAATACC CGCTTTGCC CGCCAATACC CGTTTTTGCC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATCG GATAACCGATTCG TGGCTTCGC CAACCCCATT AACAGTCTTT AACATCGGGT TACAGTCTTT TACATCGGT TAGAAGTCGA TTTTAATTCG TACCGATTTG	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGGTTGATG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTCCA	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA TCAGGGCT ATCATGAT GGCTTTGCC GCGCCGCAC ACGTTGCCC ACGGACGAC ATACGGCGC ATACGGCGC TACGCGCCC TACGCGCCCCC TACGCGCCCCCCCCCC	GC GT GT CA IT IT AT CC GC IG AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGCAGGC GACAACGCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA GCCGATGCT	GGCCTTGAC GATGGCAATACC CGCTTTGCC CGCCAATACC CGTTTTTGCC CAACCCCATT AACATCGTTTA ACATCGGT GGCGTATTCG GATAACCGATTCG TAGAAGTCGT TAGAAGTCGA TAGAAGTCGA TAGAAGTCGA TTTTAATTCG TACCGATTTG TCGCTGGGCA	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGGTTGATG GCGTTGGAA	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTCCA GCTGAATGCG GCTGAATGCC	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA' TCAGGGCT' ATCATGAT' GGCTTTGCC GCGCCGCAC ACGTTGCCC ACGGACGAC ATACGGCGC ATACGCGCC TACGCGCC	GC GT GT CA IT IT AT CC GC GG AT GG AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGAGCCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA GCCGATGCCT TGCCGACGTT	GGCCTTGAC GATGGCAAGC ATTCGGATAC CGCCAATACC CGTTTTTGCC CGCCAATACC CGTTTTTGCC CAACCCCATT AACAGTCTTT AACATCGGT GGCGTATTCG GATAACCGA TTTAATTCG TACCGATTTG TCGCTGGCCA CATCCGATTTCGCCAACCCCATT CGCTATCGCCATTCGCCGCCACCCCATT CGCTTCGCCCACCCCATTCGCCCACCCCATTCCGCCCCACCCCCCCC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGTTTGATG GCGTTGATG GCGTTGGCGAA TTTACAGGTG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTC ATAAATTCCA GCTGAATGCG CTTTAGGCAT	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA' TCAGGGCT' ATCATGAT' GGCTTTGCC ACGTTGCCC ACGGACGA' CTTCGGCGC ATACGGCGC ATACGCGCC ATACGGCGC AGTTCGGCGCA AGTTCGGCGCA AGTTCGGCGCA AGTTCGGCGCA AGTTCGGCGCA AGTTCGGCGCA	GC GT GT CA IT IT AT CC GC IG AT AT AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGAGCCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA GCCGATGCCT TGCCGACGTT GCAACATCGG	GGCCTTGAC GATGGCAAGC ATTCGGATAC CGCCAATACC CGTTTTTGCC CGCCAATACC CGTTTTTGCC CAACCCCATT AACATCGGT AACATCGGT GGCGTATTCG GATAACCGA TTTAATTCG TACCGATTTG TCGCTGGCCA TTTTAATTCG TACCGATTTG TCGCTGGCCA TACCGGTTTGCC TACCGATTTG TCGCTGGCCA TTTTAATTCG TACCGATTTG TCGCTGGGCA CATCATGACT TAATTTGTAC	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGTTTGATG GCGTTGATG GGTTGGCGAA TTTACAGGTG GTCCAGCAGG	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGGCTTCGTAT AGTCGGACAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTC ATAAATTCCA GCTGAATGCG CTTTAGGCAT CCGGAGTAGA	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA' TCAGGGCT' ATCATGAT' GGCTTTGCC ACGTTGCCC ACGACGAC CTTCGGCGC ATACGGCGC ATACGCGCC ATACGCGCC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGCCCA	GC GT GT CA IT IT AT CC GC IG AT AT AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGAGCCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA GCCGATGCCT TGCCGACGTT GCAACATCGG ATCGCCTTCG	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGCCTCGC CAACCCCATT AACATCGTTT AACATCGGT GGCGTATTCG GATAACCGA TTTAATTCG TACCGATTTG TCGCTGGCCA TACCGGTTTTTAATTCG TACCGATTTG TCGCTGGCCA TTATTTGTAC CATCATGACT TAATTTGTAC GCACAGGATA	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGTTTGATG GCTTTGATG GTTTGCGAA TTTACAGGTG GTCCAGCAGG CGGTAACTTC	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTC ATAAATTCCA GCTGAATGCG CTTTAGGCAT CCGGAGTAGA TCGGCGTTGTAT TGACCGTTT	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA' TCAGGGCT' ATCATGAT' GGCTTTGCC ACGTTGCCC ACGTTGCCC ATACGGCGC ATACGGCGC ATACGCGCC ATACGCGCC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGCAC TTCAGCACC TTCAGCACC TTCAGCACC	GC GT GT CA IT IT AT CC GC IG AT AT AT AT AT AT AT AT AT AT AT AT AT
The f	g501 following pa a501.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851	NKDDLIVXGI : NKDDLVVAGI : NKDDLVVAGI 550 rtial DNA seq (partial) ATGGTCGGAC GGCAGGCGGA TCGTCAAACG CAGTTGGGTC AGGCGAGCCT CAACGTTGGT TCCAAGGCGA ACGGAAGCCC CGACCAGGTT GTTTTACGCG TTATCGACG TAATTTCCGC TTGGGGTGGA GCCGATGCCT TGCCGACGTT GCAACATCGG ATCGCCTTCG	GGCCTTGAC GATGGCAAGG ATTCGGATAC CGCCAATACC CGTTTTTGCC TCGCCTCGC CAACCCCATT AACATCGTTT AACATCGGT GGCGTATTCG GATAACCGA TTTAATTCG TACCGATTTG TCGCTGGCCA TACCGGTTTTTAATTCG TACCGATTTG TCGCTGGCCA TTATTTGTAC CATCATGACT TAATTTGTAC GCACAGGATA	CGCAGATGCC TGCAGCATCA CAAGCCGCTG AGCCGATGGA GCGTTGCTCG GCGTTCCAAG CCAAAGTGCG TCATCGCGGA GAAGTTGTCG TTTCTTCATG TTGGATTTGA TGCGGCCAAT CAGGGGACGC TCGTCTTGTT GCGTTTGATG GCTTTGATG GTTTGCGAA TTTACAGGTG GTCCAGCAGG CGGTAACTTC	GACATATTTG CTTTGACGGC TCGCGGTCGA GAAGCCGTCGCA CCGTTTTCTT GACGAACGGA CGCGTTTCAA GCGACATAAC CGGTTCGTAT AGTCGGACAT GTCGCCACGC GTAACCGGCG TGTCAAATTC ATAAATTCCA GCTGAATGCG CTTTAGGCAT	TTCTGCTTC AGGGTTGCC GACCGAGGC AAGTATTGC CATCATAA' TCAGGGCT' ATCATGAT' GGCTTTGCC ACGTTGCCC ACGTTGCCC ATACGGCGC ATACGGCGC ATACGCGCC ATACGCGCC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC AGTTCGGCGC TTCAGCAGCC TTCAGCAGCC AGTTGTCCAG	GC GT GT CA IT IT AT CC GC IG AT AT AT AT AT AT AT AT AT AT AT AT AT

•• Filter

		•			•
1001	ATGATGGCGG	CGTGGCAGGT	ACGTCCGCCC	CTGTTGGTCA	CGATGGCGGA
1051	AGCGCGTTTC	ATCACCGGTT	CCCAATCTGG	GTCGGTCATG	TCGGTAACCA
1101	GTACGTCGCC	GGCTTCGACG	GAATCCATCT	CGGAAGCATC	TTTAATCAGG
1151	CGTACCTTGC	CCTGACCGAC	TTTCTGACCG	ATGGCGCGGC	CTTCGCACAA
1201	GACGGTTTTT	TCGCCGTTGA	TAGAAAAGCG	GCGCAGGTTG	CGGCTGCCTT
1251	CTTCCTGGGA	TTTGACGGTT	TCGGGACGGG	CTTGCAGGAT	GTAGAGTTTG
1301	CCGTCCAAGC	CGTCGCGTCC	CCATTCGATG	TCCATCGGGC	GGCCGTAGTG
1351	TTTTTCGATG	GTCAGTGCGT	AATGCGCCAA	CTCGGTGATT	TCTTCGTCGG
1401	TAATGGAGAA	GCGGTTGCGG	TCTTCTTCGG	GGACATCGAC	GTTGGTTACC
1451				ATCATTTTGA	
1501	GCCCATGGTT	TTGCGCAGGA	TGGCAGGTTT	GCCTGCTTTC	AGCGTGGGTT
1551	TGAACACATA	GAATTCGTCG	GGATTGACTG	CGCCTTGTAC	GACGTTTTCG
1601	CCCAGACCGT	AGGATGAAGT	GACAAAGACG	ACTTGGTCGT	AACCGGATTC
1651	GGTATCGAGG	GTGAACATCA	С		
		•			
responds	to the amino	acid sequence	<seq 133<="" id="" td=""><td>86; ORF 501.a</td><td>⊳:</td></seq>	86; ORF 501.a	⊳ :
01.pep					
3	MUCDALTADA	DIFVILLARGE	DGKVOHHEDG	RVAFVKREGY	OAAVAVETEG

This corre a50

> 1 MVGRALTADA DIFVLLAAGG DGKVQHHFDG RVAFVKRFGY QAAVAVETEG 51 QLGHVVRADG EAVEVLQELF RQYRVARQLA HHNQAQAVFA AFQAVFFQGF 101 DNGFGFAQSA DERNHDFNVG QPHFIADAFQ GFAFQGETVF EVVGDITRT 151 TEAQHRVFFM RFVYVAADQV GVFVGFEVGH TDDGFTRINR CGQCRHAFGD
> 201 FIDVEVDRGR VTGDTAGNFR F*FVVLFVKF QQGFGVDTDL AVDDKFHTRQ
> 251 ADAFAGQVGE AECEFGIADV HHDFYRCFRH VVQSNIGNLY VQQAGVDEAG
> 301 IAFGTGYGNF LTVFQQFGCI AAADNGRNTQ FARDDGGVAG TSAPVGHDGG
> 351 SAFHHRFPIW VGHVGNQYVA GFDGIHLGSI FNQAYLALTD FLTDGAAFAQ 401 DGFFAVDRKA AQVAAAFFLG FDGFGTGLQD VEFAVQAVAS PFDVHRAAVV 451 FFDGQCVMRQ LGDFFVGNGE AVAVFFGDID VGYRFAGFCF VGKNHFDVF* 501 AHGFAQDGRF ACFQRGFEHI EFVGIDCALY DVFAQTVG*S DKDDLVVTGF

551 GIEGEHH

m501/a501 90.3% identity in 557 aa overlap

	10	20	30	40	50	60
m501.pep	MVGXALTADADIFVI	LAAGGDGKV	OHHFOGRVAFT	VKRFGYQAAV.	AVETEGQLGH	VVRADG
	111 (1111)			1111111111	F1 E F1 1 1 1 F1	111111
a501	MVGRALTADADIFVI					
a301	10	20	30	40	50	60
	10		•	•••	• •	
	70	80	90	100	110	120
	EAVEVLQELFRQYR					
m501.pep	EMARAPORDER MOLE	AKQDARRNQ	HQAVEAREQA	VEEQGEDINGE.	TITLITIES	LILLI
a501	EAVEVLQELFRQYR					120
	70	80	90	100	110	120
	130	140	150	160	170	180
m501.pep	QPHFIADAFQGFAF(
a501	QPHFIADAFQGFAF(GETVFEVVG	DITRRTTEAQ	HRVFFMRFVY	VAADQVGVFV	GFEVGH
	130	140	150	160	170	180
	190	200	210	220	230	240
m501.pep	TDDGFTRINRCGQCI	RHAFGDFIDV	EVDRGRVTGD	TAGNEREXEV	VLFVKFOOXF	GVDTDL
moor.pcp						111111
a501	TDDGFTRINRCGOC					
a301	190	200	210	220	230	240
	190	200	210	220	230	. 240
						200
	250	260	270	280	290	300
m501.pep	AVDDKFHTRQADAF					
	11111111111111					
a501	AVDDKFHTRQADAF				NIGNLYVQQA	
	250	260	270	280	290	300
	310	320	330	340	350	360
m501.pep	IAFGTGYGNFLTVF	OOFGCIAAAD	NGRNAOFTRD	DGGVAGTAAA	VGNDGRSTFH	HGFPIR
a501	IAFGTGYGNFLTVF					
9201	310	320	330	340	350	360
	310	320	330	240	330	260

```
370
                       380
                               390
                                       400
                                               410
                                                       420
          IGHVGNEYVAGFDGIHLGSIFNQAHLALTDFLTDGAAFAXYGFVAVDGEAAQVAVALFLG
m501.pep
          VGHVGNQYVAGFDGIHLGSIFNQAYLALTDFLTDGAAFAQDGFFAVDRKAAQVAAAFFLG
a501
                       380
                               390
                                       400
                                               410
                               450
                       440
                                       460
          FYGFGTGLQDVEFAVQAVASPFDIHRAAVVFFDGQCVMRQLSNFFVGNGEAVAVFLGDID
m501.pep
          FDGFGTGLQDVEFAVQAVASPFDVHRAAVVFFDGQCVMRQLGDFFVGNGEAVAVFFGDID
a501
                       440
                               450
                                       460
                                               470
                430
                                       520
                490
                       500
                               510
                                               530
                                                       540
          VGYGFTGFCFVGKNHFDVFXTHGFTQDGGLARFERGFEHXKFVRVDRTLYDVFAQTVRGG
m501.pep
          VGYRFAGFCFVGKNHFDVFXAHGFAQDGRFACFQRGFEHIEFVGIDCALYDVFAQTVGXS
a501
                                       520
                       500
                               510
                550
          NKDDLIVXGFGVEGEHHTX
m501.pep
          :1111:1:111:11111
          DKDDLVVTGFGIEGEHH
a501
                550
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1337>: g502.seq

```
atgatgaaac cgcacaacct gttccaattc ctcgccgttt gctccctgac
1
```

- egtegeegte getteegeae aggegggege ggtggaegeg etcaageaat 51
- 101 tcaacaacga tgccgacggt atcagcggca gcttcaccca aaccgtccaa
- 151 agcaaaaaga aaacccaaac cgcgcacggc acgttcaaaa tectgcgccc
- gggcctcttc aaatgggaat acactttgcc ctacagacag actattgtcg 201
- gcgacggtca aaccgtttgg ctctacgatg ttgatttggc acaagtgacc 251
- 301 aagtcgtccc aagaccaggc catcggcggc agccccgccg ccatcctgtc
- 351 qaacaaaacc gccctcgaaa gcagttacac gctgaaagag gacggttcgt
- 401 ccaacggcat cgattatgtg cggggcaacg cccaaacgca acaacgccgg
- 451 ctaccaatac atccgcatcg gcttcaaagg cggcaacctc gccgccatgc
- 501 aqcttaa

This corresponds to the amino acid sequence <SEQ ID 1338; ORF 502.ng>: g502.pep

- MMKPHNLFQF LAVCSLTVAV ASAQAGAVDA LKQFNNDADG ISGSFTQTVQ
- SKKKTQTAHG TFKILRPGLF KWEYTLPYRQ TIVGDGQTVW LYDVDLAQVT
- KSSQDQAIGG SPAAILSNKT ALESSYTLKE DGSSNGIDYV RGNAQTQQRR
- LPIHPHRLQR RQPRRHAA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1339>: m502.seg

- 1 atgatgaaac cgcacaacct gttccaattc ctcgccgttt gctccctgac
- cgtcgccgtc gcttccgcac aggcgggcgc ggtagacgcg cttaagcaat
- 101 tcaacaacga tgccgacggt atcagcggca gcttcaccca amccgtccaa
- 151 wgcaaaaaga aaacccaaac cgcgcacggc acgttcaaaa tcctgcgacc
- 201 gggccttttc aaatgggaat acaccaaact t.acaggcaa accatcgtcg 251
- gcgacggtca aacygtttgg ctmtacgatg tygatctggc acaagtgacc
- 301 aagtcgtccc aagaccaggc cataggcgsc agccccgccg ccatcctgtc
- 351 gaacaaarcc gccctcgaaa gcagctacac gctgaaagag gacggttcgt 401 ccaacggcat cgattatgtg ggcaacgccc aaacgcaaca acgccggcta
- ccaatacatc cgcatcggct tcaaaggcgg caacctcgcc gccatgcagc 451
- 501

This corresponds to the amino acid sequence <SEQ ID 1340; ORF 502.ng>: m502.pep

- MMKPHNLFQF LAVCSLTVAV ASAQAGAVDA LKQFNNDADG ISGSFTQXVQ 1
- XKKKTQTAHG TFKILRPGLF KWEYTKLYRQ TIVGDGQTVW LYDVDLAQVT
- 101 KSSQDQAIGX SPAAILSNKX ALESSYTLKE DGSSNGIDYV GNAQTQQRRL
- 151 PIHPHRLORR OPRRHAAX

WO 99/57280 PCT/US99/09346

736 Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 502 shows 95.8% identity over a 168 aa overlap with a predicted ORF (ORF 502.ng) from N. gonorrhoeae: m502/g502 10 20 30 40 50 60 MMKPHNLFQFLAVCSLTVAVASAQAGAVDALKQFNNDADGISGSFTQXVQXKKKTQTAHG m502.pep MMKPHNLFQFLAVCSLTVAVASAQAGAVDALKQFNNDADGISGSFTQTVQSKKKTQTAHG g502 10 20 30 40 60 80 90 100 110 120 m502.pep TFKILRPGLFKWEYTKLYRQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGXSPAAILSNKX TFKILRPGLFKWEYTLPYRQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGGSPAAILSNKT q502 70 80 90 100 110 120 130 140 150 160 ALESSYTLKEDGSSNGIDYV-GNAQTQQRRLPIHPHRLQRRQPRRHAA m502.pep ALESSYTLKEDGSSNGIDYVRGNAQTQQRRLPIHPHRLQRRQPRRHAA q502 140 150 The following partial DNA sequence was identified in N. meningitidis <SEO ID 1341>: a502.seq ATGATGAAAC CGCACAACCT GTTCCAATTC CTCGCCGTTT GCTCCCTGAC 51 CGTCTCCGTC GCTTCCGCAC AGGCGGGCGC GGTGGACGCG CTCAAGCAAT TCAACAACGA TGCCGACGGT ATCAGCGGCA GCTTCACCCA AACCGTCCAA 101 AGCAAAAAGA AAACCCAAAC CGCGCACGGC ACGTTCAAAA TCCTGCGCCC GGGCCTCTTT AAATGGGAAT ACACTTCGCC TTACAAACAG ACTATTGTCG 201 251 GCGACGGTCA AACCGTTTGG CTCTACGATG TCGATTTGGC ACAAGTGACC 301 AAGTCGTCCC AAGACCAGGC CATAGGCGGC AGCCCCGCCG CCATCCTGTC

351 GAACAAAACC GCCCTCGAAA GCAGCTACAC GCTGAAAGAG GACGGTTCGT CCAACGCAT CGATTATGTG GGCAACGCCC AAACGCAACA ACGCCGGCTA 401 451 CCAATACATC CGCATCGGCT TCAAAGGCGG CAACCTCGCC GCCATGCAGC 501 TTAA

This corresponds to the amino acid sequence <SEQ ID 1342; 502 217.a>:

a502.pep

MMKPHNLFQF LAVCSLTVSV ASAQAGAVDA LKQFNNDADG ISGSFTQTVO SKKKTQTAHG TFKILRPGLF KWEYTSPYKQ TIVGDGQTVW LYDVDLAQVT 51

KSSQDQAIGG SPAAILSNKT ALESSYTLKE DGSSNGIDYV GNAOTOORRL

151 PIHPHRLORR OPRRHAA*

130

m502/a502 95.2% identity in 167 aa overlap

	10	20	30	40	50	60
m502.pep	MMKPHNLFQFLAVC	SLTVAVASAÇ)AGAVDALKQE	NNDADGISGS	FTQXVQXKK	KTOTAHG
	11111111111111					ПІШ
a502	MMKPHNLFQFLAVC	SLTVSVASAÇ)AGAVDALKQE	NNDADGISGS	FTQTVQSKK	CTOTAHG
	10	20	30	40	50	60
	70	80	90	100	110	120
m502.pep	TFKILRPGLFKWEY	TKLYRQTIVO	DGQTVWLYDV	DLAOVTKSSC		
	11111111111111		HÜHHU			
a502	TFKILRPGLFKWEY'	rspykotivo	DGQTVWLYDV	DLAQVTKSSC	DOAIGGSPA	AILSNKT
	70	80	90	100	110	120
	130	140	150	160		
m502.pep	ALESSYTLKEDGSSI	NGIDYVGNAÇ	TQQRRLPIHE	HRLQRROPRE	HAAX	
			11111111111		1111	
a502	ALESSYTLKEDGSSI	NGIDYVGNAC	TOORRLPIHE	HRLORROPRE	YAAH	

150

160

m502-1.pep

g502-1

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1343>:
  g502-1.seq
         1 ATGATGAAAC cgcaCaacct gttccaaTTc CTCGCCGTTT GCTCCCTGAC
            CGTCGCCGTC GCTTCCGCAC AGGCGGGCGC GGTGGACGCG CTCAAGCAAT
        51
            TCAACAACGA TGCCGACGGT ATCAGCGGCA GCTTCACCCA AACCGTCCAA
       101
       151 AGCAAAAGA AAACCCAAAC CGCGCACGGC ACGTTCAAAA TCCTGCGCCC
            GGGCCTCTTC AAATGGGAAT ACACTTTGCC CTACAGACAG ACTATTGTCG
       201
            GCGACGGTCA AACCGTTTGG CTCTACGATG TTGATTTGGC ACAAGTGACC
       251
- 120
       301 AAGTCGTCCC AAGACCAGGC CATCGGCGGC AGCCCCGCCG CCATCCTGTC
            GAACAAAACC GCCCTCGAAA GCAGTTACAC GCTGAAAGAG GACGGTTCGT
       351
            CCAACGCAT CGATTATGTG CGGGCAACGC CCAAACGCAA CAACGCCGGC
       401
            TACCAATACA TCCGCATCGG CTTCAAAGGC GGCAACCTCG CCGCCATGCA
            GCTTAAAGAC AGCTTCGGCA ACCAAACCTC CATCAGTTTC GGCGGTTTGA
       501
       551 ATACCAATCC CCAACTCTCG CGCGGCGCGT TCAAGTTTAC CCCGCCCAAA
        601 GGCGTGGACG TGTTGAGCAA CTGA
   This corresponds to the amino acid sequence <SEQ ID 1344; ORF 502-1.ng>:
   g502-1.pep
         1 MMKPHNLFQF LAVCSLTVAV ASAQAGAVDA LKQFNNDADG ISGSFTQTVQ
        51 SKKKTQTAHG TFKILRPGLF KWEYTLPYRQ TIVGDGQTVW LYDVDLAQVT
       101 KSSQDQAIGG SPAAILSNKT ALESSYTLKE DGSSNGIDYV RATPKRNNAG
       151 YQYIRIGFKG GNLAAMQLKD SFGNQTSISF GGLNTNPQLS RGAFKFTPPK
       201 GVDVLSN*
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1345>:
   m502-1.seq
         1 ATGATGAAAC CGCACAACCT GTTCCAATTC CTCGCCGTTT GCTCCCTGAC
            CGTCGCCGTC GCTTCCGCAC AGGCGGGCGC GGTAGACGCG CTTAAGCAAT
        51
       101 TCAACAACGA TGCCGACGGT ATCAGCGGCA GCTTCACCCA AACCGTCCAA
        151 AGCAAAAGA AAACCCAAAC CGCGCACGGC ACGTTCAAAA TCCTGCGACC
        201 GGGCCTTTTC AAATGGGAAT ACACCAAACC TTACAGGCAA ACCATCGTCG
        251 GCGACGGTCA AACCGTTTGG CTCTACGATG TTGATCTGGC ACAAGTGACC
        301 AAGTCGTCCC AAGACCAGGC CATAGGCGGC AGCCCCGCCG CCATCCTGTC
        351 GAACAAAACC GCCCTCGAAA GCAGCTACAC GCTGAAAGAG GACGGTTCGT
            CCAACGCAT CGATTATGTG CTGGCAACGC CCAAACGCAA CAACGCCGGC
        451 TACCAATACA TCCGCATCGG CTTCAAAGGC GGCAACCTCG CCGCCATGCA
        501 GCTTAAAGAC AGCTTCGGCA ACCAAACCTC CATCAGTTTC GGCGGTTTGA
        551 ATACCAATCC CCAACTCTCG CGCGGCGCGT TCAAGTTTAC CCCGCCCAAA
        601 GGCGTGGACG TGTTGAGCAA CTGA
   This corresponds to the amino acid sequence <SEQ ID 1346; ORF 502-1>:
   m502-1.pep
            MMKPHNLFQF LAVCSLTVAV ASAQAGAVDA LKQFNNDADG ISGSFTQTVQ
            SKKKTQTAHG TFKILRPGLF KWEYTKPYRQ TIVGDGQTVW LYDVDLAQVT
         51
            KSSQDQAIGG SPAAILSNKT ALESSYTLKE DGSSNGIDYV LATPKRNNAG
        101
            YQYIRIGFKG GNLAAMQLKD SFGNQTSISF GGLNTNPQLS RGAFKFTPPK
        151
        201 GVDVLSN*
                   99.0% identity in 207 aa overlap
   m502-1/q502-1
                                          30
                                                   40
               MMKPHNLFQFLAVCSLTVAVASAQAGAVDALKQFNNDADGISGSFTQTVQSKKKTQTAHG
   m502-1.pep
                q502-1
                MMKPHNLFQFLAVCSLTVAVASAQAGAVDALKQFNNDADGI SGSFTQTVQSKKKTQTAHG
                                20
                                          30
                                                   40
                       70
                                80
                                          90
                                                  100
                                                            110
                                                                     120
                TFKILRPGLFKWEYTKPYRQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGGSPAAILSNKT
   m502-1.pep
                q502-1
                TFKILRPGLFKWEYTLPYRQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGGSPAAILSNKT
                       70
                                80
                                          90
                                                  100
                                                            110
                               140
                                         150
```

ALESSYTLKEDGSSNGIDYVLATPKRNNAGYQYIRIGFKGGNLAAMQLKDSFGNQTSISF

ALESSYTLKEDGSSNGIDYVRATPKRNNAGYQYIRIGFKGGNLAAMQLKDSFGNQTSISF

160

170

150

140

```
190
                                200
              GGLNTNPQLSRGAFKFTPPKGVDVLSNX
m502-1.pep
              11111111111111111111111111111111111
              GGLNTNPQLSRGAFKFTPPKGVDVLSNX
g502-1
                     190
                                200
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1347>: a502-1.seg

```
ATGATGAAAC CGCACAACCT GTTCCAATTC CTCGCCGTTT GCTCCCTGAC
 1
    CGTCTCCGTC GCTTCCGCAC AGGCGGGCGC GGTGGACGCG CTCAAGCAAT
 51
    TCAACAACGA TGCCGACGGT ATCAGCGGCA GCTTCACCCA AACCGTCCAA
101
    AGCAAAAGA AAACCCAAAC CGCGCACGGC ACGTTCAAAA TCCTGCGCCC
151
    GGGCCTCTTT AAATGGGAAT ACACTTCGCC TTACAAACAG ACTATTGTCG
201
    GCGACGGTCA AACCGTTTGG CTCTACGATG TCGATTTGGC ACAAGTGACC
251
    AAGTCGTCCC AAGACCAGGC CATAGGCGGC AGCCCCGCCG CCATCCTGTC
     GAACAAAACC GCCCTCGAAA GCAGCTACAC GCTGAAAGAG GACGGTTCGT
351
    CCAACGCAT CGATTATGTG CTGGCAACGC.CCAAACGCAA CAACGCCGGC
    TACCAATACA TCCGCATCGG CTTCAAAGGC GGCAACCTCG CCGCCATGCA
451
501 GCTTAAAGAC AGCTTCGGCA ATCAAACCTC CATCAGTTTC GGCGGTTTGA
551 ATACCAATCC CCAACTCTCG CGCGGCGCGT TCAAGTTTAC CCCGCCCAAA
601 GGCGTGGACG TGTTGAGCAA CTGA
```

This corresponds to the amino acid sequence <SEQ ID 1348; ORF 502-1.a>:

a502-1.pep

- MMKPHNLFQF LAVCSLTVSV ASAQAGAVDA LKQFNNDADG ISGSFTQTVQ SKKKTQTAHG TFKILRPGLF KWEYTSPYKQ TIVGDGQTVW LYDVDLAQVT 51
- KSSQDQAIGG SPAAILSNKT ALESSYTLKE DGSSNGIDYV LATPKRNNAG 101
- YOYIRIGFKG GNLAAMQLKD SFGNQTSISF GGLNTNPQLS RGAFKFTPPK 151
- GVDVLSN* 201

98.6% identity in 207 aa overlap a502-1/m502-1

```
20
                                30
                                        40
                10
          MMKPHNLFQFLAVCSLTVSVASAQAGAVDALKQFNNDADGISGSFTQTVQSKKKTQTAHG
a502-1.pep
          MMKPHNLFQFLAVCSLTVAVASAQAGAVDALKQFNNDADGISGSFTQTVQSKKKTQTAHG
m502-1
                10
                        20
                                30
                                        40
                                90
                                        100
          TFKILRPGLFKWEYTSPYKQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGGSPAAILSNKT
a502-1.pep
          TFKILRPGLFKWEYTKPYRQTIVGDGQTVWLYDVDLAQVTKSSQDQAIGGSPAAILSNKT
m502 - 1
                70
                         80
                                90
                                        100
                                150
                                        160
                        140
                130
          ALESSYTLKEDGSSNGIDYVLATPKRNNAGYQYIRIGFKGGNLAAMQLKDSFGNQTSISF
a502-1.pep
          ALESSYTLKEDGSSNGIDYVLATPKRNNAGYQYIRIGFKGGNLAAMQLKDSFGNQTSISF
m502-1
                                150
                                        160
                                                170
                        140
                130
                190
                        200
          GGLNTNPQLSRGAFKFTPPKGVDVLSNX
a502-1.pep
          1111111111111111111111111111111111
m502-1
          GGLNTNPQLSRGAFKFTPPKGVDVLSNX
                190
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1349>: g503.seq

- 1 atotococco cotcogocato gotaatcatt ttottocato coocttogat
 - 51 ttcggcatcg agctgttcgg ggaagggcgt gtccaaaatc cattggcgga
 - 101 tttctttgcc gacgcgtgcc agttcggaaa cgtcttcgac atccaatttt
 - 151 gccagagcgg cggaaatgcg ttcgttcaga ccgttgtgtg cgagaaatgc
 - gcggtag

This corresponds to the amino acid sequence <SEQ ID 1350; ORF 503.ng>: g503.pep

- MSAPSASVII LFHAASISAS SCSGKGVSKI HWRISLPTRA SSETSSTSNF
- ARAAEMRSFR PLCARNAR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1351>:

```
m503.seq
               atgtccgcac cgccggcatc ggcaaccatt ttgttccatg ccgcttcgat
            1
              ttcggcatcg agctgttcgg ggaaaggcgt atccaaaatc cattggcgga
           51
          101 tttctttgcc gacgcgtgcc agttcggcaa cgtcttcgac atccaatttt
               gccagtgcgg cggaaatgcg ttcgctcaga ccgttgtgtg cgaggaatgc
          151
          201 gcggtag
This corresponds to the amino acid sequence <SEQ ID 1352; ORF 503>:
               MSAPPASATI LFHAASISAS SCSGKGVSKI HWRISLPTRA SSATSSTSNF
               ASAAEMRSLR PLCARNAR*
           51
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 503 shows 91.2% identity over a 68 aa overlap with a predicted ORF (ORF 503.ng)
from N. gonorrhoeae:
     m503/g503
                                             30
                                                       40
                                                                 50
                          10
                                   20
                  MSAPPASATILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLR
     m503.pep
                  MSAPSASVIILFHAASISASSCSGKGVSKIHWRISLPTRASSETSSTSNFARAAEMRSFR
     q503
                                             30
                                                       40
                         69
                  PLCARNAR
     m503.pep
                  11111111
                  PLCARNAR
     q503
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1353>:
     a503.seq
               ATGTCCGCGC CGCCGGCATC GGCAACCATT TTGTTCCATG CCGCTTCGAT
               TTCGGCATCG AGCTGTTCGG GGAAGGGCGT GTCCAAAATC CATTGGCGGA
           51
               TTTCTTTGCC GACGCGTGCC AGTTCGGCAA CGTCTTCGAC ATCTAATTTT
          101
               GCCAGTGCGG CGGAAATGCG TTCGCTCAGA CCGTTGTGTG CGAGGAATGC
          151
              GCGGTAG
          201
This corresponds to the amino acid sequence <SEQ ID 1354; ORF 503.a>:
      a503.pep
               MSAPPASATI LFHAASISAS SCSGKGVSKI HWRISLPTRA SSATSSTSNF
               ASAAEMRSLR PLCARNAR*
           100.0% identity in 68 aa overlap
m503/a503
                                                        40
                                                                  50
                          10
                                    20
                                              30
                  MSAPPASATILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLR
      m503.pep
                   MSAPPASATILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLR
      a503
                                    20
                                              30
                                                        40
                                                                 50
                          10
                          69
                   PLCARNARX
      m503.pep
                   11111111
      a503
                   PLCARNARX
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1355>:
 g503-1.seq
       1 ATGGCGCGGT CGTTGTACAG GGAGGCGAAA ACGTGGCGCA TCGCTTTTTT
      51 AACGTTATCC AAGCCATTGA TATTCAGGAA GGTTTCCTGT TGGCCGGCAA
     101 ATGATGCGTC GGGCAGGTCT TCGGCGGTTG CGGAAGAGCG TACGGCAACG
     151 GAAATGTCCG CGCCGTCGGC ATCGGTAATC ATTTTGTTCC ATGCCGCTTC
     201 GATTTCGGCA TCGAGCTGTT CGGGGAAGGG CGTGTCCAAA ATCCATTGGC
```

251 GGATTTCTTT GCCGACGCGT GCCAGTTCGG AAACGTCTTC GACATCCAAT 301 TTTGCCAGAG CGGCGGAAAT GCGTTCGTTC AGACCGTTGT GTGCGAGAAA

351 TGCGCGGTAG

This corresponds to the amino acid sequence <SEQ ID 1356; ORF 214.ng>: g503-1.pep 1 MARSLYREAK TWRIAFLTLS KPLIFRKVSC WPANDASGRS SAVAEERTAT 51 EMSAPSASVI ILFHAASISA SSCSGKGVSK IHWRISLPTR ASSETSSTSN FARAMEMRSE RPLCARNAR* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1357>: m503-1.seq 1 ATGGCACGGT CGTTATACAG GGAAGCGAAT ACATGGTGCA TCGCTTCTTT AACGTTATCC AAGCCGTTGA TGTTCAAGAA GGTTTCCTGT TGTCCAGCGA ATGATGCGTC CGGCAGGTCT TCGGCAGTTG CGGAAGAACG TACGGCAACG 51 101 -- 500 GAAATGTCCG CACCGCCGGC ATCGGCAACC ATTTTGTTCC ATGCCGCTTC 151 201 GATTTCGGCA TCGAGCTGTT CGGGGAAAGG CGTATCCAAA ATCCATTGGC 251 GGATTTCTTT GCCGACGCGT GCCAGTTCGG CAACGTCTTC GACATCCAAT 301 TTTGCCAGTG CGGCGGAAAT GCGTTCGCTC AGACCGTTGT GTGCGAGGAA 351 TGCGCGGTAG This corresponds to the amino acid sequence <SEQ ID 1358; ORF 503-1>: m503-1.pep 1 MARSLYREAN TWCIASLTLS KPLMFKKVSC CPANDASGRS SAVAEERTAT 51 EMSAPPASAT ILFHAASISA SSCSGKGVSK IHWRISLPTR ASSATSSTSN 101 FASAAEMRSL RPLCARNAR* g503-1 / m503-1 89.9% identity in 119 aa overlap MARSLYREAKTWRIAFLTLSKPLIFRKVSCWPANDASGRSSAVAEERTATEMSAPSASVI q503-1.pep MARSLYREANTWCIASLTLSKPLMFKKVSCCPANDASGRSSAVAEERTATEMSAPPASAT m503~1 30 40 10 20 80 90 100 ILFHAASISASSCSGKGVSKIHWRISLPTRASSETSSTSNFARAAEMRSFRPLCARNARX g503-1.pep ILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLRPLCARNARX m503-1 80 90 100 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1359>: a503-1.seq 1 ATGGCGCGGT CGTTGTACAG GGAGGCGAAT ACATGGCGCA TCGCTTCTTT 51 AACGTTTTCC AAGCCGTTGA TATTCAGGAA GGTTTCCTGT TGGCCGGCAA 101 ATGATGCGTC GGGCAGGTCT TCGGCGGTTG CGGAAGAGCG TACGGCAACG 151 GARATGTCCG CGCCGCCGGC ATCGGCAACC ATTTTGTTCC ATGCCGCTTC 201 GATTTCGGCA TCGAGCTGTT CGGGGAAGGG CGTGTCCAAA ATCCATTGGC 251 GGATTTCTTT GCCGACGCGT GCCAGTTCGG CAACGTCTTC GACATCTAAT 301 TTTGCCAGTG CGGCGGAAAT GCGTTCGCTC AGACCGTTGT GTGCGAGGAA 351 TGCGCGGTAG This corresponds to the amino acid sequence <SEQ ID 1360; ORF 503-1.a>: a503-1.pep 1 MARSLYREAN TWRIASLTFS KPLIFRKVSC WPANDASGRS SAVAEERTAT EMSAPPASAT ILFHAASISA SSCSGKGVSK IHWRISLPTR ASSATSSTSN 51 101 FASAAEMRSL RPLCARNAR* a503-1 / m503-1 95.8% identity in 119 aa overlap 20 30 40 a503-1.pep MARSLYREANTWRIASLTFSKPLIFRKVSCWPANDASGRSSAVAEERTATEMSAPPASAT m503-1 MARSLYREANTWCIASLTLSKPLMFKKVSCCPANDASGRSSAVAEERTATEMSAPPASAT 20 30 40 10 80 90 100 ILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLRPLCARNARX a503-1.pep

ILFHAASISASSCSGKGVSKIHWRISLPTRASSATSSTSNFASAAEMRSLRPLCARNARX

100

90

m503-1

70

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1361>:
     g504.seq
               atqttggttc aggacttgcc ttttgaagtc aaactgaaaa aattccatat
            1
              cgatttttac aatacgggta tgccgcgcga ttttgccagc gatattgaag
           51
          101 taacggacaa ggcaaccggt gagaaactcg agcgcaccat ccgcgtgaac
          151 catcetttga cettgeacgg catcacgatt tatcaggega gttttgeega
               cggcggttcg gatttgacat tcaaggcgtg gaatttgagg gatgcttcgc
          201
          251 gcgaacctgt cgtgttgaag gcaacctcca tacaccagtt tccgttggaa
          301 atcggcaaac acaaatatcg tcttgagttc gatcagttca cttctatgaa
          351 tgtggaggac atgagcgagg gtgcggaacg ggaaaaaaagc ctgaaatcca
          401 ctctgaacga tgtccgcgcc gttactcagg aaggtaaaaa atacaccaat
          451 atcggccctt ccatcgtgta ccgcatccgt gatgcggcag ggcaggcggt
          501 cgaatataaa aactatatgc tgccgatttt gcaggacaaa gattattttt
               ggctgaccgg cacgcgcagc ggcttgcagc agcaataccg ctggctgcgt
          551
          601 atccccttgg acaagcagtt gaaagcggac acctttatgg cattgcgtga
          651 gtttttgaaa gatggggaag ggcgcaaacg tctggttgcc gacgcaacca
          701 aagacgcacc tgccgaaatc cgcgaacaat tcatgctggc tgcggaaaac
          751 acgctgaata tctttgcgca aaaaggctat ttgggattgg acgaatttat
          801 tacgtccaat atcccgaaag ggcagcagga taagatgcag ggctatttct
          851 acgaaatgct ttacggcgtg atgaacgctg ctttggatga aaccatacgc
          901 cggtacggct tgcccgaatg gcagcaggat gaagcgcgga accgtttcct
          951 gctgcacagt atggatgcct atacggggct gacggaatat cccgcgccta
         1001 tgctgctcca gcttgacggg ttttccgagg tgcgttcctc aggtttgcag
         1051 atgacccgtt cgccgggtgc gcttttggtc tatctcggct cggtattgtt
               ggttttgggt acagtattta tgttttatgt gcccaaaaaa cgggcgtggg
         1101
               tattgttttc aaacdgcaaa atccgttttg ctatgtcttc ggcccgcagc
         1201 gaacgggatt tgcagaagga atttccaaaa cacgtcgaga gcctgcaacg
         1251 gctcggcaag gacttgaatc atgactga
This corresponds to the amino acid sequence <SEQ ID 1362; ORF 504.ng>:
     g504.pep
               MLVQDLPFEV KLKKFHIDFY NTGMPRDFAS DIEVTDKATG EKLERTIRVN
           51 HPLTLHGITI YQASFADGGS DLTFKAWNLR DASREPVVLK ATSIHQFPLE
          101 IGKHKYRLEF DQFTSMNVED MSEGAEREKS LKSTLNDVRA VTQEGKKYTN
               IGPSIVYRIR DAAGQAVEYK NYMLPILQDK DYFWLTGTRS GLQQQYRWLR
          201 IPLDKQLKAD TFMALREFLK DGEGRKRLVA DATKDAPAEI REQFMLAAEN
          251 TLNIFAQKGY LGLDEFITSN IPKGQQDKMQ GYFYEMLYGV MNAALDETIR
          301 RYGLPEWQQD EARNRFLLHS MDAYTGLTEY PAPMLLQLDG FSEVRSSGLQ
          351 MTRSPGALLV YLGSVLLVLG TVFMFYVPKK RAWVLFSNKI RFAMSSARSE
          401 RDLQKEFPKH VESLQRLGKD LNHD*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1363>:
     m504.seq..
            1 atattggttc aggacttgcc ttttgaagtc aaactgaaaa aattccatat
               cgatttttac aatacgggta tgccgcgtga tttcgccagc gatattgaag
           51
               tgacggacaa ggcaaccggt gagaaactcg agcgcaccat ccgcgtgaac
          151 catcettiga cettgeacgg catcacgatt tatcaggega gttttgeega
          201 cggcqqttcq gatttgacat tcaaggcgtg gaatttgggt gatgcttcgc
          251 gcgagcctgt cgtgttgaag gcaacatcca tacaccagtt tccgttggaa
          301 attggcaaac acaaatatcg tcttgagttc gatcagttca cttctatgaa
          351 tgtggaggac atgagcgagg gcgcggaacg ggaaaaaagc ctgaaatcca
               cgctgmmcga tgtccgcgcc gttactcagg aaggtaaaaa atacaccaat
          401
          451 atcggccctt ccattgttta ccgtatccgt gatgcggcag ggcaggcggt
          501 cqaatataaa aactatatgc tgccggtttt gcaggaacag gattattttt
           551 ggattaccgg cacgcgcagc ggcttgcagc agcaataccg ctggctgcgt
           601 atccccttgg acaagcagtt gaaagcggac acctttatgg cattgcgtga
           651 gtttttgaaa gatggggaag ggcgcaaacg tctggttgcc gacgcaacca
               aaggegeace tgeegaaate egegaacaat teatgetgge tgeggaaaac
           701
           751 acgctgaaca tctttgcaca aaaaggctat ttgggattgg acgaatttat
           801 tacgtccaat atcccgaaag agcagcagga taagatgcag ggctatttct
           851 acqaaatqct ttacqqcqtq atqaacqctg ctttgqatqa aaccatacqc
           901 cggtacggct tgcccgaatg gcagcaggat gaagcgcgga atcgtttcct
           951 gctgcacagt atggatgcgt acacgggttt gaccgaatat cccgcgccta
          1001 tgctgctgca acttgatggg ttttccgagg tgcgttcgtc gggtttgcag
```

```
atgacccgtt ccccgggtgc gcttttggtc tatctcggct cggtgctgtt
1101 ggtattgggt acggtattga tgttttatgt gcgcgaaaaa cgggcgtggg
1151 tattgtttc agacggcaaa atccgttttg ccatgtcttc ggcccgcagc
1201 gaacgggatt tgcagaagga atttccaaaa cacgtcgaga gtctgcaacg
1251 gctcggcaag gacttgaatc atga
```

This corresponds to the amino acid sequence <SEQ ID 1364; ORF 504>:

m504.pep..

1 ILVQDLPFEV KLKKFHIDFY NTCMPRDFAS DIEVTDKATG EKLERTIRVN
51 HPLTLHGITI YQASFADGGS DLTFKAWNLG DASREPVVLK ATSIHQFPLE
101 IGKHKYRLEF DQFTSMNVED MSEGAEREKS LKSTLXDVRA VTQEGKKYTN
151 IGPSIVYRIR DAAGQAVEYK NYMLPVLQEQ DYFWITGTRS GLQQQYRWLR
201 IPLDKQLKAD TFMALREFLK DGEGRKRLVA DATKGAPAEI REQFMLAAEN
251 TLNIFAQKGY LGLDEFITSN IPKEQQDKMQ GYFYEMLYGV MNAALDETIR
301 RYGLPEWQQD EARNRFLLHS MDAYTGLTEY PAPMLLQLDG FSEVRSSGLQ
351 MTRSPGALLV YLGSVLLVLG TVLMFYVREK RAWVLFSDGK IRFAMSSARS
401 ERDLQKEFPK HVESLQRLGK DLNHD*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 504 shows 96.7% identity over a 425 as overlap with a predicted ORF (ORF 504.ng) from N. gonorrhoeae:

m504/g504

	10	20	30	40	50	60
m504.pep	ILVQDLPFEVKLKKF					
	:		1111111111			
g504	MLVQDLPFEVKLKKF					
	10	20	30	40	50	60
	70	80	90	100	110	120
m504.pep	YOASFADGGSDLTFK					SWNARD
	WOLDER DOCUMENT	NAME OF STREET				
g504	YQASFADGGSDLTFK 70	BO 80	90	100	110	120
	70	80	90	100	110	120
	130	140	150	160	170	180
m504.pep	MSEGAEREKSLKSTL					
moo4.pcp	1111111111111111	11111111				
g504	MSEGAEREKSLKSTL	NDVRAVTOEG		. <i>.</i>		
300.	130	140	150	160	170	180
	190	200	210	220	230	240
m504.pep	DYFWITGTRSGLQQQ	YRWLRIPLDK	QLKADTFMAL	REFLKDGEGF	KRLVADATK	GAPAEI
		1111111111	1111111111	[]][]]	i	$\Pi\Pi\Pi$
g504	DYFWLTGTRSGLQQQ	YRWLRIPLDK	QLKADTFMAL	REFLKDGEGF	KRLVADATK	DAPAEI
	190	200	210	220	230	240
	250	260	270	280	290	300
m504.pep	REOFMLAAENTLNIF					LDETIR
g504	REQFMLAAENTLNIF		_			
	250	260	270	280	290	300
	310	320	330	340	350	360
mE04 non	RYGLPEWQQDEARNR					
m504.pep		1111111111	IIIIIIIII		(33GLQM1K3	
g504	RYGLPEWQQDEARNR	IIIIIIIIIIII			IIIIIIIIII	
9504	310	320	330	340	350	360
	310	320	330	240	330	360
	370	380	390	400	410	420
m504.pep	YLGSVLLVLGTVLMF					
						IIIIII
	111111111111111111111111111111111111111				111111111	11111

g504

YLGSVLLVLGTVFMFYVPKKRAWVLFSN-KIRFAMSSARSERDLQKEFPKHVESLORLGK

```
DIMHD
     m504.pep
                  11111
                 DLNHD
     g504
                420
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1365>:
     a504.seq
              ATATTGGTTC AGGACTTGCC TTTTGAAGTC AAACTGAAAA AATTCCATAT
              CGATTTTTAC AATACGGGTA TGCCGCGCGA TTTTGCCAGT GATATTGAAG
           51
              TAACGGATAA GGCAACCGGT GAGAAACTCG AGCGCACCAT CCGCGTGAAC
          101
              CATCCTTTGA CCTTGCACGG CATCACGATT TATCAGGCGA GTTTTGCCGA
          151
              CGGCGGTTCG GATTTGACAT TCAAGGCGTG GAATTTGGGT GATGCTTCGC
          201
          251 GCGAGCCTGT CGTGTTGAAG GCAACATCCA TACACCAGTT TCCGTTGGAA
          301 ATTGGCAAAC ACAAATATCG TCTTGAGTTC GATCAGTTTA CTTCTATGAA
          351 TGTGGAGGAC ATGAGCGAGG GCGCGGAACG GGAAAAAAGC CTGAAATCCA
              CGCTGAACGA TGTCCGCGCC GTTACTCAGG AAGGTAAAAA ATACACCAAT
          401
          451 ATCGGCCCTT CCATTGTTTA CCGTATCCGT GATGCGGCAG GGCAGGCGGT
              CGAATATAAA AACTATATGC TGCCGGTTTT GCAGGAACAG GATTATTTTT
              GGATTACCGG CACGCGCAGC GGCTTGCAGC AGCAATACCG CTGGCTGCGT
          551
          601 ATCCCCTTGG ACAAGCAGTT GAAAGCGGAC ACCTTTATGG CATTGCGTGA
          651 GTTTTTGAAA GATGGGGAAG GGCGCAAACG TCTGGTTGCC GACGCAACCA
          701 AAGGCGCACC TGCCGAAATC CGCGAACAAT TCATGCTGGC TGCGGAAAAC
              ACGCTGAACA TCTTTGCACA AAAAGGCTAT TTGGGATTGG ACGAATTTAT
          751
              TACGTCCAAT ATCCCGAAAG AGCAGCAGGA TAAGATGCAG GGCTATTTCT
          801
          851 ACGAAATGCT TTACGGCGTG ATGAACGCTG CTTTGGATGA AACCATACGC
          901 CGGTACGCT TGCCCGAATG GCAGCAGGAT GAAGCGCGGA ATCGTTTCCT
              GCTGCACAGT ATGGATGCGT ACACGGGTTT GACCGAATAT CCCGCGCCTA
         1001 TGCTGCTGCA ACTTGATGGG TTTTCCGAGG TGCGTTCGTC GGGTTTGCAG
         1051 ATGACCCGTT CCCCGGGTGC GCTTTTGGTC TATCTCGGCT CGGTGCTGTT
               GGTATTGGGT ACGGTATTGA TGTTTTATGT GCGCGAAAAA CGGGCGTGGG
         1101
               TATTGTTTTC AGACGGCAAA ATCCGTTTTG CCATGTCTTC GGCCCGCAGC
         1151
               GAACGGGATT TGCAGAAGGA ATTTCCAAAA CACGTCGAGA GTCTGCAACG
         1201
               GCTCGGCAAG GACTTGAATC ATGACTGA
         1251
This corresponds to the amino acid sequence <SEQ ID 1366; ORF 504.a>:
     a504.pep
               ILVODLPFEV KLKKFHIDFY NTGMPRDFAS DIEVTDKATG EKLERTIRVN
              HPLTLHGITI YQASFADGGS DLTFKAWNLG DASREPVVLK ATSIHQFPLE
           51
          101 IGKHKYRLEF DQFTSMNVED MSEGAEREKS LKSTLNDVRA VTQEGKKYTN
              IGPSIVYRIR DAAGQAVEYK NYMLPVLQEQ DYFWITGTRS GLQQQYRWLR
          151
               IPLDKQLKAD TFMALREFLK DGEGRKRLVA DATKGAPAEI REQFMLAAEN
          201
               TLNIFAQKGY LGLDEFITSN IPKEQQDKMQ GYFYEMLYGV MNAALDETIR
          251
               RYGLPEWQQD EARNRFLLHS MDAYTGLTEY PAPMLLQLDG FSEVRSSGLQ
               MTRSPGALLV YLGSVLLVLG TVLMFYVREK RAWVLFSDGK IRFAMSSARS
          351
          401 ERDLQKEFPK HVESLQRLGK DLNHD*
m504/a504 99.8% identity in 425 aa overlap
                                   20
                          10
                                             30
                  ILVQDLPFEVKLKKFHIDFYNTGMPRDFASDIEVTDKATGEKLERTIRVNHPLTLHGITI
     m504.pep
                  ILVODLPFEVKLKKFHIDFYNTGMPRDFASDIEVTDKATGEKLERTIRVNHPLTLHGITI
     a504
                          10
                                   20
                                             30
                                                       40
                                                                50
                                   80
                                             90
                                                      100
                                                               110
                  YQASFADGGSDLTFKAWNLGDASREPVVLKATSIHQFPLEIGKHKYRLEFDQFTSMNVED
     m504.pep
                  a504
                  YQASFADGGSDLTFKAWNLGDASREPVVLKATSIHQFPLEIGKHKYRLEFDQFTSMNVED
                          70
                                   80
                                             90
                                                     100
                                                               110
                                                                         120
                                  140
                                            150
                                                      160
                                                               170
     m504.pep
                  MSEGAEREKSLKSTLXDVRAVTQEGKKYTNIGPSIVYRIRDAAGQAVEYKNYMLPVLQEQ
```

	a504		KSLKSTLND					
		1		200	210	220		240
	m504.pep	DYFWITGT	RSGLQQQYR'	WLRIPLDKQI 	KADTEMALKE		LVADATKGAP	
	a504	DYFWITGT	RSGLQQQYR	WLRIPLDKQI	KADTFMALRE	FLKDGEGRKR	LVADATKGAP	AEI
	4501			200	210	220	230	240
		2	50	260	270	280	290	300
- *cc*	m504.pep				TSNIPKEQQI	KMQGYFYEMI	YGVMNAALDE'	TIR
	Moo1.pcp	11111111	1111111111	11111111111	31111111111	111111111111		111
	a504	REOFMLAA	ENTLNIFAQ	KGYLGLDEFI	TSNI PKEQQI)KMQGYFYEMI	YGVMNAALDE	TIR
		2	50	260	270	280	290	300
				200	330	340	350	360
		3		320			SGLQMTRSPGA	
	m504.pep	RYGLPEWQ		THILLIA	TELEVENOR			111
	504	IIIIIII	CUEVENEEL	THEFT THEFT.	TEYPAPMLL	,,,,,,,,,,,	GLOMTRSPGA	
	a504		10	320	330	340	350	360
		J						
			70	380	390	400		420
	m504.pep	YLGSVLLV	LGTVLMFYV	REKRAWVLF			EFPKHVESLQR	
		4111111	111111111	111111111	<i>.</i>			
	a504						EFPKHVESLQR	420
		3	70	380	390	400	410	420
	m504.pep	DLNHDX						
		111111						
	a504	DLNHDX						

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1367>: g505.seq

```
1 atqtttcgtt tacaattcag gctgtttccc cctttgcgaa ccgccatgca
51 catcotgttg accgccctgc tcaaatgcct ctccctgctg tcgctttcct
101 gtctgcacac gctgggaaac cggctcggac atctggcgtt ttacctttta
151 aaggaagace gegegegeat egtegecaat atgeggeagg egggtttgaa
201 ccccgacacg cagacggtca aagccgtttt tgcggaaacg gcaaaatgcg
251 gtttggaact tgcccccgcg tttttcaaaa aaccggaaga catcgaaaca
301 atgttcaaag cggtacacgg ctgggaacac gtgcagcagg ctttggacaa
351 gggcgaaggg ctgctgttca tcacgccgca catcggcagc tacgatttgg
401 geggacgeta cateagecag cagetteegt tecacetgae egecatgtae
451 aagccgccga aaatcaaagc gatagacaaa atcatgcagg cgggcagggt
501 gegeggeaaa ggeaaaaceg egeceacegg catacaaggg gteaaacaaa
551 tcatcaagge cetgegegeg ggegaggeaa ceateateet geeegaceae
601 gtcccttctc cgcaggaagg cggcggcgtg tgggcggatt ttttcggcaa
651 acctgcatac accatgacac tggcggcaaa attggcacac gtcaaaggcg
701 tgaaaaccct gtttttctgc tgcgaacgcc tgcccgacgg acaaggcttc
751 gtgttgcaca tccgccccgt ccaaggggaa ttgaacggca acaaagccca
801 cgatqccqcc gtgttcaacc gcaataccga atattggata cgccgttttc
851 cgacgcagta tctgtttatg tacaaccgct ataaaacgcc gtaa
```

This corresponds to the amino acid sequence <SEQ ID 1368; ORF 505.ng>: g505.pep

1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL SLSCLHTLGN RLGHLAFYLL

- 51 KEDRARIVAN MRQAGLNPDT QTVKAVFAET AKCGLELAPA FFKKPEDIET
- 101 MFKAVHGWEH VQQALDKGEG LLFITPHIGS YDLGGRYISQ QLPFHLTAMY
- 151 KPPKIKAIDK IMQAGRVRGK GKTAPTGIQG VKQIIKALRA GEATIILPDH
- 201 VPSPQEGGGV WADFFGKPAY TMTLAAKLAH VKGVKTLFFC CERLPDGQGF
- 251 VLHIRPVQGE LNGNKAHDAA VFNRNTEYWI RRFPTQYLFM YNRYKTP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1369>:

```
m505.seq (partial)
           1 GGCATGTTTC GTTTACAATT CAGGCTGTTT CCCCCTTTGC GAACCGCCAT
          51 GCACATCCTG TTGACCGCCC TGCTCAAATG CCTCTCCCTG CTGCCGCTTT
          101 CCTGTCTGCA CACGCTGGGA AACCGGCTCG GACATCTGGC GTTTTACCTT
         151 TTAAAGGAAG ACCGCGCGCG CATCGTCGCC AATATGCGGC AGGCGGGTTT
          201 GAACCCCGAC CCCAAAACGG TCAAAGCCGT TTTTGCGGAA ACGGCAAAAG
          251 GCGGTTTGGA ACTTGCCCCC GCGTTTTTCA GAAAACCGGA AGACATAGAA
          301 ACAATGTTCA AAGCGGTACA CGGCTGGGAA CATGTGCAGC AGGCTTTGGA
          351 CAAACACGAA GGGCTGCTAT TCATCACGCC GCACATCGGC AGCTACGATT
          401 TGGGCGGACG CTACATCAGC CAGCAGCTTC CGTTCCCGCT GACCGCCATG
          451 TACAAACCGC CGAAAATCAA AGCGATAGAC AAAATCATGC AGGCGGGCAG
          501 GGTTCGCGGC AAAGGAAAAA CCGCGCCTAC CAGCATACAA GGGGTCAAAC
          551 AAATCATCAA AGCCCTGCGT TCGGGCGAGC AACCATCGTC CTGCCCGACC
          601 ACGTCCCCTC CCCTCAAGAA GGCGGGGAAG GCGTATGGGT GGATTTCTTC
          651 GGCAAACCTG CCTATACCAT GACGCTGGCG GCAArATTGG CACACGTCAA
          701 AGGCGTGAAA ACCCTGTTTT TCTGCTGCGA ACGCCTGCCT GGCGGACAAG
          751 GTTTCGATTT GCACATCCGC CCCGTCCAAG GGGAATTGAA CGGCGACAAA
          801 GCCCATGATG CCGCCGTGTT CAACCGCAAT GCCGAATATT GGATACGCCG
          851 TTTTCCGACG CAtATC....
This corresponds to the amino acid sequence <SEQ ID 1370; ORF 505>:
     m505.pep (partial)
           1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL
```

- 51 KEDRARIVAN MRQAGLNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET
- 101 MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ QLPFPLTAMY
- 151 KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS GEATIVLPDH
- 201 VPSPQEGGEG VWVDFFGKPA YTMTLAAXLA HVKGVKTLFF CCERLPGGQG
- 251 FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTHI...

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 505 shows 93.7% identity over a 287 aa overlap with a predicted ORF (ORF 505.ng) from N. gonorrhoeae:

m505/g505

m505.pep	MFRLQ	10 FRLFPPLRT	20 AMHILLTALI	30 KCLSLLPLSC	40 LHTLGNRLGH	50 LAFYLLKEDR	60 CARIVAN
g505	HIIII MERIA	 :TRI.FPPI.RT	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	KCLSLLSLSC	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		IIIIIII ARTVAN
9303	111 1120	10	20	30	40	50	60
		70	80	90	100	110	120
m505.pep			AVFAETAKGO	LELAPAFFRK	PEDIETMFKA	VHGWEHVQQA	
	11111	,,,,		1111111111		<u> </u>	
g505	MRQAG	-		LELAPAFFKK			
		70	80	90	100	110	120
		•••				100	
		130	140	150	160	170	180
m505.pep	LLFIT	PHIGSYDLG	GRYISQQLPE	PLTAMYKPPK	IKAIDKIMQA	GRVRGKGKTA	LPTSIQG
	11111	111111111	111111111	1111111		111111111	:
g505	PPLII			HLTAMYKPPK			
		130	140	150	160	170	180
		190	200	210	220	230	240
m505.pep	VYOTT			QEGGEGVWVD			
mooo.pep	_	1111:111		_	1111111111		IIIIIII
g505				QEGG-GVWAD			VKTLEF
9000		190	200	210	220	230	
		250	260	270	280	289	
m505.pep	CCERI	PGGQGFDLH	IRPVQGELNO	DKAHDAAVFN	RNAEYWIRRF	'PTHI	
	11111	1 1111 11	1111111111	:1111111111	11:111111	11:	
g505				GNKAHDAAVFN	RNTEYWIRRF	PTQYLFMYNE	YKTP
	240	250	260	270	280	290	

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1371>:
      a505.seq
                ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA CCGCCATGCA
                CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG CCGCTTTCCT
            51
                GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT TTACCTTTTA
            101
                AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGTCAGG CAGGCATGAA
            151
                TCCCGACCCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG GCAAAAGGCG
            201
                GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA CATAGAAACA
            251
                ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG CTTTGGACAA
            301
                ACACGAAGGG CTGCTATTCA TCACGCCGCA CATCGGCAGC TACGATTTGG
-- 1:01
            351
                GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCCGCTGAC CGCCATGTAC
            401
                AAACCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG CGGGCAGGGT
            451
                TCGCGGCAAA GGAAAAACCG CGCCTACCAG CATACAAGGG GTCAAACAAA
            501
                TCATCAAAGC CCTGCGTTCG GGCGAAGCAA CCATCGTCCT GCCCGACCAC
            551
                GTCCCCTCCC CTCAAGAAGG CGGGGAAGGC GTATGGGTGG ATTTCTTCGG
            601
                CAAACCTGCC TATACCATGA CGCTGGCGGC AAAATTGGCA CACGTCAAAG
            651
                GCGTGAAAAC CCTGTTTTTC TGCTGCGAAC GCCTGCCTGG CGGACAAGGT
            701
                 TTCGATTTGC ACATCCGCCC CGTCCAAGGG GAATTGAACG GCGACAAAGC
            751
                 CCATGATGCC GCCGTGTTCA ACCGCAATGC CGAATATTGG ATACGCCGTT
            801
                 TTCCGACGCA GTATCTGTTT ATGTACAACC GCTACAAAAT GCCGTAA
  This corresponds to the amino acid sequence <SEQ ID 1372; ORF 505.a>:
       a505.pep
                 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL
              1
                KEDRARIVAN MRQAGMNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET
             51
                MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ QLPFPLTAMY
            101
                 KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS GEATIVLPDH
                 VPSPQEGGEG VWVDFFGKPA YTMTLAAKLA HVKGVKTLFF CCERLPGGQG
                FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTQYLF MYNRYKMP*
            251
  m505/a505 99.0% identity in 287 aa overlap
                                20
                                        30
                                                40
                        10
                 MFRLQFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAN
       m505.pep
                 MFRLQFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAN
       a505
                                20
                                        30
                                                40
                                                        50
                                        90
                                               100
                                                       110
                                                               120
                                80
                 MROAGLNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG
       m505.pep
                 MRQAGMNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG
       a505
                                               100
                                80
                        70
                               140
                                       150
                                               160
                 LLFITPHIGSYDLGGRYISQQLPFPLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTSIQG
       m505.pep
                  a505
                  LLFITPHIGSYDLGGRYISQQLPFPLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTSIQG
                               140
                                       150
                                               160
                                                       170
                                                               180
                               200
                                       210
                                               220
                  VKQIIKALRSGEATIVLPDHVPSPQEGGEGVWVDFFGKPAYTMTLAAXLAHVKGVKTLFF
       m505.pep
                  VKQIIKALRSGEATIVLPDHVPSPQEGGEGVWVDFFGKPAYTMTLAAKLAHVKGVKTLFF
       a505
                       190
                               200
                                       210
                                               220
                                                       230
                                                               240
                       250
                               260
                                       270
                                               280
                  CCERLPGGQGFDLHIRPVQGELNGDKAHDAAVFNRNAEYWIRRFPTHI
       m505.pep
                  a505
                  CCERLPGGQGFDLHIRPVQGELNGDKAHDAAVFNRNAEYWIRRFPTQYLFMYNRYKMPX
                       250
                               260
                                       270
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1373>:

				•			
m505-1.sec	I						
1	ATGTTTCGTT	TACAATTCAG	GCTGTTTCCC	CCTTTGCC	SAA CCGCCA	TGCA	
51	CATCCTGTTG	ACCGCCCTGC	TCAAATGCCT	CTCCCTGC	TG CCGCTT	TCCT	
101	GTCTGCACAC	GCTGGGAAAC	CGGCTCGGAC	ATCTGGCC	TT TTACCT	TTTA	
151	AAGGAAGACC	GCGCGCGCAT	CGTCGCCAAT	ATGCGGC	GG CGGGTT	TGAA	
201	CCCCGACCCC	AAAACGGTCA	AAGCCGTTTT	TGCGGAAA	CG GCAAAA	GGCG	
251	GTTTGGAACT	TGCCCCCGCG	TTTTTCAGAA	AACCGGA	AGA CATAGA	AACA	
301	ATGTTCAAAG	CGGTACACGG	CTGGGAACAT	GTGCAGC	AGG CTTTGG	ACAA	
351	ACACGAAGGG	CTGCTATTCA	TCACGCCGCA	CATCGGC	AGC TACGAT	TTGG	
401	GCGGACGCTA	CATCAGCCAG	CAGCTTCCGT	TCCCGCTC	AC CGCCAT	GTAC	
451	ANACCGCCGA	AAATCAAAGC	GATAGACAAA	ATCATGC	AGG CGGGCA	GGGT	
501	TCCCCCCAAA	GGAAAAACCG	CGCCTACCAG	CATACAA	igg GTCAAA	CAAA	
551	TONTONANGO	CCTGCGTTCG	GGCGAAGCAA	CCATCGT	CCT GCCCGA	CCAC	
601	CTCCCCTCCC	CTCAAGAAGG	CGGGGAAGGC	GTATGGG:	rgg atttct	TCGG	
651	CARACCTGCC	TATACCATGA	CGCTGGCGGC	AAAATTG	CA CACGTO	AAAG	
701	CCCTCDDDA	CCTGTTTTTC	TGCTGCGAAC	GCCTGCC	rgg cggaca	AGGT	
751 751	TTCCATTTCC	ACATCCGCCC	CGTCCAAGGG	GAATTGA	ACG GCGACA	AAGC	
	CONTONTOC	GCCGTGTTCA	ACCGCAATGC	CGAATAT	rgg ATACGC	CGTT	
801	CCAIGAIGCC	GTATCTGTTT	ATGTACAACC	GCTACAA	AAT GCCGTA	А	
851	TICCGACGCA	GIAICIGIII	71101110110				
			:4	naa /CE	O ID 127	4. ODE 50	5_1>
This corr	esponds to	the amino	acia seque	nce ~Se	Q ID 137.	+, OICI 30	5-1-
m505-1.pe	~						
ĩ	MERIOFRIFE	PLRTAMHILL	TALLKCLSLI	PLSCLHT	LGN RLGHLA	FYLL	
51	KEDRARTVAN	MROAGLNPDP	KTVKAVFAET	' AKGGLEL	APA FFRKPE	DIET	
101	MFKAVHGWEH	VQQALDKHEG	LLFITPHIGS	YDLGGRY	ISQ QLPFPL	YMAT	
151	KPPKIKAIDK	IMQAGRVRGK	GKTAPTSIQ	: VKQIIKA	LRS GEATIV	LPDH	
201	VPSPORGGEG	: VWVDFFGKPA	YTMTLAAKL	A HVKGVKT	LFF CCERLE	PGGQG	
251	FDLHIRPVQG	ELNGDKAHDA	AVFNRNAEYV	IRRFPTQ	YLF MYNRYK	MP*	
m505-1/q5	05 94.3% 1	dentity in	298 aa over	clap			
		10	20 3	30	40	50	60
m505-1.pe	n MFRLOFF	RLFPPLRTAMHI	LLTALLKCLSI	LLPLSCLHT	LGNRLGHLAI	YLLKEDRARI	VAN
	• 1111111				*		HI
g505	MERLOFE	RLFPPLRTAMH]	LLTALLKCLSI	LISLSCLHT	LGNRLGHLAI	YLLKEDRARI	VAN
9303		10		30	40	50	60
		70			100	110	120
m505-1.pe	m MROAGIA	JPDPKTVKAVF	AETAKGGLELA	PAFFRKPED	IETMPKAVHO	WEHVQQALD	CHEG
505-I.pc		:	11111 11111	1111:1111	111111111111111111111111111111111111111	11111111111	- 11
g505	MPOAGTA	PDTQTVKAVF	RTAKCGLELA	PAFFKKPED	IETMFKAVHO	WEHVQQALDE	KGEG
9505	intonom	70			100	110	120
		,,		-			
		130	140 1	50	160	170	180
m505-1.pe	n I.I.EITDI	HIGSYDLGGRY				VRGKGKTAPTS	SIQG
шэоэ-т.ре	111111	11111111111	1111111 111	11111111	1111111111	111111111111111111111111111111111111111	:111
-505	11111	HIGSYDLGGRY:	TSOOT.PEHT.TA		TDKIMOAGR	VRGKGKTAPTO	IOG
g505	DDFILE			50	160	170	180
	•	130	-				
		190	200 . 2	10	220	230	240
-505 1 -	WOTTE	ALRSGEATIVL					TLFF
m505-1.pe	sp vkQlik	: :		111.1111	111111111	11111111111	1111
-505		: : ALRAGEATIIL		TITITION OF THE	KPAYTMTLA	AKLAHVKGVK	TLFF
g505	VKQIIK			210	220	230	
		190	200	210			
		250	260 2	70	280	290	299
	00001	GGQGFDLHIRP	MUCEL MCDKYR TOCKLYCDKYR	TO A VIENDO I			
m505-1.p	ep CCERLP		11111111111	11111111			11
	111111	DGQGFVLHIRP		יו פון וווווון ווון ווון ווון ווון ווון	·	OVI.PMYNPYK	TPX
g505				270	280	290	••••
	240	250	260	270	280	230	
			n 200 aa	erlan			
m505-1/a	5U5 99.7%	identity i	11 230 gg OV	errah			
		10	20	30	40	50	60
		10 RLFPPLRTAMH	20				
m505-1.p	ep MFRLQF	KPEAFREKLWH	11111111111			AAAGGAMULE	1111
	111111		111111111			ל	 TWANT
a505	MFRLQF	RLFPPLRTAMH				FYLLKEDRAR 50	1 VAN
		10	20	30	40	30	60
				00	100	110	120
		70	80	90	100	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1375>: g506.seq

```
ATGGCGGTAT TTGATGAAGT CGGGCGCATC GCCCATGGCT GCGGCGGTGT
  1
     TGTCAAACAA AGCCTGTTTC TGCGCGTCGT TCATCAGGTT GAACAAGGCG
 51
101 CGCGGTTGGC TGAAGTAGTC GTCATCGTCT TGGCGGTAGT CCCAGTGTGC
151 CGCGTCGCCG TTGATTTTCA AAGGCGGTTC GGCGAAGTCG GGTTGTTGCT
201 GCCATTGGCC GAAGCTGTTG GGTTCGTAGT GCGGCAGGCT GCCGTAGTTG
     CCGTCGGCGC GGCCTTGTCC GTCGCGCTGG TTGCTGTGAA CAGGGCAACG
301 CGGACGATTG ACGGGGATTT GGCGGAAGTT CACACCCAAG CGGTAACGTT
351 GCGCGTCGGC GTAATTGAAC AAACGGGCTT GCAACATTTT ATCCGGGCTC
     GCGCCGATAC CGGGAACGAG GTTGCTCGGT GCGAAGGCGG ATTGTTCCAC
451 ATCGGCGAAG AAGTTTTCGG GATTGCGGTT CAACTCGAAT TCGCCCACTT
501 CAATCAGCGG ATAGTCTTTT TTCGGCCAAA CTTTGGTCAA GTCAAACGGA
     TGATAAGGCA CTTTTTCGGC ATCGGCTTCA GGCATGACTT GGATGTACAT
601 CGTCCATTTC GGGAACTCGC CGCGCTCGAT GGCTTCGTAC AGGTCGCGCT
651 GATGGCTTTC GCGGTCGTCG GCGATGATTT TTGCAGCTTC TTCGTTGGTC
701 AGGTTTTTAA TCCCTTGCTG GCTGCGGAAA TGGAATTTCA CCCAAAAACG
751 TTCGCCCGCT TCGTTCCAGA AGCTGTAGGT ATGCGAACCG AAGCCGTGCA
     TATGGCGGTA GCTGGCGGGA ATACCGCGGT CGCTCATCAC GATGGTAACT
     TGGTGCAGGG CTTCGGGCAG CAGCGTCCAG AAGTCCCAGT TGTTTGTGGC
901 GGAACGCATA TTGGTGCGCG GATCGCGTTT GACGGCTTTG TTCAGGTCGG
951 GGAATTTGCG CGGGTCGCGC AGGAAGAACA CGGGCGTGTT GTTGCCGACC
1001 ACATCCCAGT TGCCTTCTTC GGTATAGAAT TTCAACGCAA AACCGCGGAT
1051 GTCGCGTTCC GCATCGGCTG CGCCGCGCTC GCCTGCCACG GTGGTGAAAC
1101 GGGCGAACAT CTCGGTTTTT TTGCCGACTT CGCTGAAAAT TTTGGCGCGG
1151 GTGTATTTGG TGATGTCGTG TGTTACGGTA AACGTACCGA ACGCGCCCGA
1201 ACCTTTGGCG TGCATACGGC GTTCGGGGAT GACTTCGCGC ACGAAGTCGG
1251 CGAGTTTTC ATTCAGCCAC AAATCTTGCG TCAGCAGGGG GCCGCGCGGG
1301 CCGGCGGTCA GGCTGTTTTG ATTGTCGGCA ACGGGCGCGC CGTTGTTCAT
1351 GGTCAGATGG GTTACGGGGC ATTTGGAGGT AGTCATCGCT CTTGTTCCTT
1401 TTCTCAGGTT GGTCAAATGG GGGGCAAACG GCTTACAGTA CGATTTGGCG
     GAAAGCGTAT TCGTAACCGG TTTCTTGATT GTAATAAATT TCTTGAATCG
1451
     ACATTTTATT TTCCTTTTGC AAAAACTATG GATGCGATTA TACGCCAAGA
1551 TTTTCGTTAT TAA
```

This corresponds to the amino acid sequence <SEQ ID 1376; ORF 506.ng>: g506.pep

- 1 MAVFDEVGRI AHGCGGVVKQ SLFLRVVHQV EQGARLAE<u>VV VIVLAVVPVC</u>
- 51 RVAVDFORRF GEVGLLLPLA EAVGFVVRQA AVVAVGAALS VALVAVNRAT
- 101 RTIDGDLAEV HTOAVTLRVG VIEOTGLOHF IRARADTGNE VARCEGGLFH
- 151 IGEEVFGIAV QLEFAHFNQR IVFFRPNFGQ VKRMIRHFFG IGFRHDLDVH

```
201 RPFRELAALD GFVQVALMAF_AVVGDDFCSF FVGQVFNPLL AAEMEFHPKT
    251 FARFVPEAVG MRTEAVHMAV AGGNTAVAHH DGNLVQGFGQ QRPEVPVVCG
    301 GTHIGARIAF DGFVQVGEFA RVAQEEHGRV VADHIPVAFF GIEFQRKTAD
    351 VAFRIGCAAL ACHGGETGEH LGFFADFAEN FGAGVFGDVV CYGKRTERAR
    401 TFGVHTAFGD DFAHEVGEFF IQPQILRQQG AARAGGQAVL IVGNGRAVVH
    451 GQMGYGAFGG SHRSCSFSQV GQMGGKRLTV RFGGKRIRNR FLDCNKFLES
     501 TFYFPFAKTM DAIIRQDFRY *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1377>:
m506.seq
      1 ATGGCGGTAT TTGATGAAGT CGGGCGCGTC GCCCATTGCG GCGGCGGTGT
         TGCCGAACAA TGCCTGTTTC TGCGCGTCGT TCATCAGGTT GAACAGGGCG
      51
         CGCGGTTGGC TGAAATAGTC GTCATCGTCT TGGCGGTAGT CCCAGTGTGC
    151 CGCGTCGCCG TTGATTTTCA AAGGCGGTTC GGCGAALCG9 GGTTGTTGCT
    201 GCCATTGGCC GAAGCTGTYG GGTTCGTAGT GCGGCAGGCT GCCGYAGTTG
     251 CCGTCGGCGC GGCCTTGCCC GTyGCGsTgr TTgCTGTgAA CA8GGCAACG
    301 CGGACGATTG ACGGGAATTT GGCGGAAGTT TACGCCCAAA CGGTAGCGTT
         GTGCGTCGGC GTAATTGAAC AAACGCGCTT GCAGCATTTT ATCTsGGCTG
     351
     401 GCGCCGACAC CGGGAACGAG GTTGCTCGGT GCGAAGGCGG ATTGTTCCAC
     451 ATCGGCGAAG AAGTTTTCGG GATTGCGGTT CTCAAACGGA TGATAAGGTA
    501 CTTTTTCCGC GTCTGCTTCA GGCATGACTT GGATGTACAT CGTCCATTTC
     551 GGAAACTCGC CGCGTTCGAT GGCTTCsTAT AAGTCGCGCT GATGGCTTTC
     601 GCGGTCGTCG GCGATGATTT TGGCGGCTTC TTCGTTGGTC AGGTTTTTAA
         TGCCTTGTTG GGTGCGGAAA TGGAATTTCA CCCAAAAACG CTCGCCTGCT
     651
     701 TCGTTCCAGA AGCTGTAGGT ATGCGAACCG AAGCCGTGCA TATGGCGGTA
     751 GCCGGCGGG ATGCCGCGGT CGCTCATCAC GATGGTAACT TGGTGCAGTG
     801 CTTCGGGCAG CAGCGTCCAG AAGTCCCAGT TGTTTGTGGC AGAGCGCATA
     851 TTGGTGCGCG GGTCGCGTTT GACGGCTTTG TTCAGGTCGG GGAACTTACG
     901 CGGGTCGCGC AGGAAGAACA CGGGCGTGTT GTTGCCGACC ACATCCCAGT
         TGCCTTCTTC GGTATAAAAT TTCAAGGCAA AACCGCGGAT GTCGCGTTCT
    1001 GCATCGGCTG CGCCGCGTTC GCCTGCCACG GTGGTGAAAC GGGCGAACAT
    1051 CTCGGTTTTT TTGCCGACTT CGCTGAAGAT TCCTTTGGCG TGCATACGGC
    1101 GTTCGGGGAT GACTTCGCGC ACGAAGTCGG CGAGTTTTTC AGTCATCGCT
    1151 CTTGTTCCTT TTCTCAGGTT GGTCAAATGG GGGTAAACGG CTTACAGTAC
    1201 GATTTGGCGG AAAGCGTATT CGTAACCGGT TTCTTGATTG CAATAAATTT
    1251 CTTGAATCGA CATTTTATTT CCCTTTTGTA AAAACTATGG ATGCGACTAT
    1301 ACGCCAAGAT TTTCGCTATT AA
This corresponds to the amino acid sequence <SEQ ID 1378; ORF 506>:
m506.pep
         MAVFDEVGRV AHCGGGVAEQ CLFLRVVHQV EQGARLAEIV VIVLAVVPVC
      51 RVAVDFORRF GESGLLLPLA EAVGFVVRQA AXVAVGAALP VAXXAVNXAT
     101 RTIDGNLAEV YAQTVALCVG VIEQTRLQHF IXAGADTGNE VARCEGGLFH
     151 IGEEVFGIAV QLEFAHFNQR IVFFRPNFGQ VKRMIRYFFR VCFRHDLDVH
     201 RPFRKLAAFD GFXXVALMAF AVVGDDFGGF FVGQVFNALL GAEMEFHPKT
     251 LACFVPEAVG MRTEAVHMAV AGGDAAVAHH DGNLVQCFGQ QRPEVPVVCG
     301 RAHIGARVAF DGFVQVGELT RVAQEEHGRV VADHIPVAFF GIKFQGKTAD
     351 VAFCIGCAAF ACHGGETGEH LGFFADFAED FGAGVFGDVV RYGKRTERAR
     401 TFGVHTAFGD DFAHEVGEFF IQPQILRQOR AARTGGQAVL IVGNRRAVVH
     451 GQMGYRAFGG SHRSCSFSQV GQMGGKRLTV RFGGKRIRNR FLDCNKFLES
     501 TFYFPFVKTM DATIRODFRY *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 506 shows 89.2% identity over a 520 aa overlap with a predicted ORF (ORF 506.ng)
from N. gonorrhoeae:
m506/g506
                              20
                     10
                                        30
                                                  40
                                                            50
            MAVFDEVGRVAHCGGGVAEQCLFLRVVHQVEQGARLAEIVVIVLAVVPVCRVAVDFQRRF
m506.pep
             MAVFDEVGRIAHGCGGVVKQSLFLRVVHQVEQGARLAEVVVIVLAVVPVCRVAVDFQRRF
9506
                    10
                              20
                                        30
                                                  40
                                                           50
```

WO 99/57280 PCT/US99/09346

750

		70	80	90	100	110	120
m506.pep						LAEVYAQTVAL 	
g506						AEVHTQAVTI	
_		70	80	90	100	110	120
	1	30	140	150	160	170	180
m506.pep						NORIVFFRPN	
~506	VIEOTGIO	ון	GMEVARCEGO	 			IIII
g506		30	140	150	160	170	180
•• ***					222	220	040
m506.pep			200 DVHRPFRKLA	210 AFDGFXXVAL	220 MAFAVVGDDI	230 FGGFFVGQVFN	240 JALL
moov.pcp						:	
g506				_	MAFAVVGDDI 220	CSFFVGQVFN	
	1	90	200	210	220	230	240
		50	260	270	280	290	300
m506.pep						CFGQQRPEVPV 	
g506						IIIIIIIIII FGQQRPEVPV	
30	2	50	260	270	280	290	300
	3	10	320	330	340	350	360
m506.pep						KTADVAFCIGO	
-506							
g506		AFDGF VQVG	320	330	340	350	360
	_		•••			444	
m506.pep		70 EHLGFFADE	380 AEDFGAGVFO	390 DVVRYGKRTE	400 RARTFGVHT	410 AFGDDFAHEVO	420 SEFF
oo t pop							
g506						AFGDDFAHEVG	
	3	70	380	390	400	410	420
		30	440	450	460	470	480
m506.pep						FSQVGQMGGKF 	
g506						i i i i i i i i i i i i i Psqvgqmggkt	
5		30	440	450	460	470	480
	4	90	500	510	520		
m506.pep	RFGGKRIR	NRFLDCNKF	LESTFYFPFV	/KTMDATIRQI	FRY		
~506				: \KTMDAIIROI			
g506		90	165171777 500	510	520		
en . c . i			• •				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1379>: a506.seq

seq					
1	ATGGCGGTAT	TTGATGAAGT	CGGGCGCGTC	GCCCATTGCG	GCGGCGGTGT
51	TGCCGAACAA	TGCCTGTTTC	TGCGCGTCGT	TCATCAGGTT	GAACAGGGCG
101	CGCGGTTGGC	TGAAATAGTC	GTCATCGTCT	TGGCGGTAGT	CCCAGTGCGC
151	CGCGTCGCCG	TTGATTTTCA	AAGGCGGTTC	GGCGAAGTCG	GGCTGCTGCT
201	GCCATTGGCC	GAAGCTGTTG	GGTTCGTAGT	GCGGCAGGCT	GCCGTAGTTG
251	CCGTCGGCGC	GTCCTTGTCC	GTCGCGCTGG	TTGCTGTGAA	CAGGGCAACG
301	CGGACGGTTG	ACAGGGATTT	GGCGGAAGTT	CACGCCCAAG	CGGTAGCGTT
351	GCGCGTCGGC	GTAATTGAAC	AAACGCGCCT	GCAACATTTT	ATCTGGGCTG
401	GCGCCGACAC	CGGGAACGAG	GTTGCTCGGT	GCGAAGGCGG	ATTGTTCCAC
451	ATCGGCGAAG	AAGTTTTCGG	GATTGCGGTT	CAACTCGAAT	TCGCCCACTT
501	CAATCAGCGG	ATAGTCTTTT	TTCGGCCAAA	CTTTGGTCAA	GTCAAACGGA
551	TGATACGGCA	CTTTTTCCGC	ATCGGCTTCA	GGCATGACTT	GGATGTACAT
601	CGTCCATTTC	GGAAACTCGC	CGCGCTCGAT	GGCTTCGTAC	ACCTOCOCCO

				•			
	651	GATGGCTTTC	ACGGTCGTCG	GCGATGATTT	TGGCGGCTTC	TTCGTTGGTC	
	701	AGGTTTTTAA	TECCTTETTE	GGTGCGGAAA	TGGAATTTCA	CCCAAAAACG	
	751	CTCGCCTGCT	TCGTTCCAGA	AGCTGTAGGT	ATGCGAACCG	AAGCCGTGCA	
	801	TATGGCGGTA	CCCCCCCCCCC	ATGCCGCGGT	CGCTCATCAC	GATGGTAACT	
	851	TGGTGCAGTG	CTTCGGGCAG	CAGCGTCCAG	AAGTCCCAGT	TGTTTGTGGC	
		AGAGCGCATA	TTCCTCCCC	CCTCCCCTTT	GACGGCTTTG	TTCAGGTCGG	
	901	GGAACTTACG	CCCCTCCCCC	ACCAACAACA	CCCCCCTCTT	CTTCCCCACC	
	951	ACATCCCAGT	MCCCMMCMMC	CCTATACAACA	TTCNACCCAN	AACCCCCCAT	
	1001	GTCGCGTTCT	COMMCCCCTC	CCCCCCCTTC	CCCTCCCACC	CTCCTCAAAC	
	1051	GTCGCGTTCT	CMCCCMMMMM	THE COCCA CHA	CCCTCCAACAT	TTTGGCGCGG	
	1101	GGGCGAACAT	CTCGGTTTTT	COMMACCOMA	A A CCETA CCCT	ACGCGCCCGA	
	1151	GTGTATTTGG	TGATGTCGTG	CGTTACGGTA	AACGIACCGA	ACGCGCCCGA	
· Silver	1201	ACCTTTGGCG	TGCATACGGC	GTTCGGGGAT	GACTTCGCGC	ACGAAGTCGG	
	1251	CGAGTTTTTC	ATTCAGCCAC	AAATCCTGCG	CCAGCAGAGG	GCCGCGAGGA	
	1301	CCGGCGGTCA	GGCTGTTTTG	ATTGTCGGCA	ACAGGCGCGC	CGTTGTTCAT	
	1351	GGTCAGATGG	GTTACAGGGC	ATTTGGAGGT	ANTCATCGCT	CTTGTTCCTT	
	1401	TTCTCAGGTT	GGTCAAAT.G	GGGGTAAACG	GCTTACAGTA	CGATTTGGCG	
	1451	GAAAGCGTAT	TCGTAACCGG	TTTCTTGATT	GCAATAAATT	TCTTGAATCG	
	1501	ACATTTTATT	TCCCTTTTGT	AAAAACTATG	GATGCGACTA	TACGCCAAGA	
	1551	TTTTCGCTAT	TAA				
This co	recoond	s to the amin	o acid seque	nce <seo i<="" td=""><td>D 1380: ORI</td><td>F 506.a>:</td><td></td></seo>	D 1380: ORI	F 506.a>:	
		5 to the minin	0 400-0-1				
а	506.pep		NUCCCCUNEO	CI EI DUVUOU	EOCADI NETU	VIVLAVVPVR	
	1	MAVEDEVGRV	AHCGGGVAEQ	CTLTKAAUÖA	PUUNUCACIO	VIVIAVVEVA	
	51	RVAVDFQRRF	GEVGLLLPLA	EAVGEVVROA	AVVAVGASLS	VALVAVNRAT	
	101	RTVDRDLAEV	HAQAVALRVG	VIEGIRLOHE	IWAGADIGNE	VARCEGGLFH	
	151	IGEEVFGIAV	QLEFAHFNQR	IVEERPREGO	VKRMIRHFFR	IGFRHDLDVH	
	201	RPFRKLAALD	GFVQVALMAF	<u>TVV</u> GDDFGGF	FVGQVFNALL	GAEMEFHPKT	
	251	LACFVPEAVG	MRTEAVHMAV	AGGDAAVAHH	DGNLVQCFGQ	QRPEVPVVCG	
	301	RAHIGARVAF	DGFVQVGELT	RVAQEEHGRV	VADHIPVAFF	GIELQRKTAD	
	351	VAFCIGCAAF	ACHGGETGEH	LGFFADFAED	FGAGVFGDVV	RYGKRTERAR	
	401	TFGVHTAFGD	DFAHEVGEFF	IQPQILRQQR	AARTGGQAVL	IVGNRRAVVH	
	451				RFGGKRIRNR	FLDCNKFLES	
	501	TFYFPFVKTM	DATIRQDFRY	*			
	501	TFYFPFVKTM	DATIRQDFRY	*			
m506/:						,	
m506/s		.8% identity	in 520 aa ov	erlap	0 40	. 50	60
	a506 94	.8% identity	in 520 aa ov	verlap 20 3			60
		.8% identity	in 520 aa ov 10 GRVAHCGGGVA	v erlap 20 3 EQCLFLRVVHQ	VEQGARLAEIV	VIVLAVVPVCRV	AVDFQRRF
n	a506 94 a506.pep	.8% identity	in 520 aa ov 10 GRVAHCGGGVA	v erlap 20 3 EQCLFLRVVHQ	VEQGARLAEIV	VIVLAVVPVCRV	/AVDFQRRF
n	a506 94	.8% identity	in 520 aa ov 10 grvahcgggva grvahcgggva	v erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ	VEQGARLAEIV VEQGARLAEIV	VIVLAVVPVCR\ VIVLAVVPVRR\	/AVDFQRRF
n	a506 94 a506.pep	.8% identity	in 520 aa ov 10 GRVAHCGGGVA !!!!!!!!! GRVAHCGGGVA	v erlap 20 3 EQCLFLRVVHQ	VEQGARLAEIV VEQGARLAEIV	VIVLAVVPVCR\ VIVLAVVPVRR\	/AVDFQRRF
n	a506 94 a506.pep	.8% identity	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA	verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3	VEQGARLAEIV VEQGARLAEIV 0 40	VIVLAVVPVCRV VIVLAVVPVRRV 50	/AVDFQRRF /AVDFQRRF 60
n	a506 94 a506.pep	.8% identity MAVFDEVO HILLIII MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10	verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3	VEQGARLAEIV VEQGARLAEIV 0 40	VIVLAVVPVCR\	/AVDFQRRF AVDFQRRF 60
n	a506 94 a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR	verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVY	VAVDFQRRF
n a	a506 94 a506.pep a506	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL	in 520 aa ov 10 GRVAHCGGGVA 1111111111111111111111111111111111	Verlap 20 3 EQCLFLRVVHQ IIIIIIIIII EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT	VIVLAVVPVCRV	/AVDFQRRF
n a	a506 94 a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR	Verlap 20 3 EQCLFLRVVHQ IIIIIIIIII EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL III IIIIIII	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYX : : :	VAVDFQRRF
n a	a506 94 a506.pep a506	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR	Verlap 20 3 EQCLFLRVVHQ IIIIIIIIII EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL III IIIIIII	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYX : : :	/AVDFQRRF
n a	a506 94 a506.pep a506	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL	in 520 aa ov 10 GRVAHCGGGVA 11111111111 GRVAHCGGGVA 10 70 PLAEAVGFVVR 11111111111 PLAEAVGFVVR 70	Verlap 20 3 EQCLFIRVVHQ !!!!!!!!!! EQCLFIRVVHQ 20 3 80 9 QAAXVAVGAAL !!!!!!!!! QAAVVAVGASL 80 9	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVY/ : : : RTVDRDLAEVH/	VAVDFQRRF
n a n	a506 94 a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL	in 520 aa ov 10 GRVAHCGGGVA 1111111111111111111111111111111111	Verlap 20 3 EQCLFIRVVHQ EQCLFIRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVHV 110	VAVDFQRRF
n a n	a506 94 a506.pep a506	.8% identity MAVFDEVO MAVFDEVO GESGLLL GEVGLLL	in 520 aa ov 10 GRVAHCGGGVA 111111111111111110 70 PLAEAVGFVVR 11111111111111111111111111111111111	Verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 CHIGGEEVFGIAV	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVHV 110 170 QLEFAHFNQRIV	VAVDFQRRF VAVDFQRRF 60 120 AQTVALCVG : AQAVALRVG 120 180 VFFRPNFGQ
n a	a506 94 a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL	in 520 aa ov 10 GRVAHCGGGVA 11111111111111110 70 PLAEAVGFVVR 11111111111111111111111111111111111	Verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVH 110 170 QLEFAHFNQRIV	/AVDFQRRF
n a	a506 94 a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL VIEQTRL IIIIIII	in 520 aa ov 10 GRVAHCGGGVA 1111111111111111111111111111111111	Verlap 20 3 EQCLFIRVVHQ EQCLFIRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVHV 110 170 QLEFAHFNQRIV	VAVDFQRRF
n a	a506 94 a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL VIEQTRL IIIIIII	in 520 aa ov 10 GRVAHCGGGVA 1111111111111111111111111111111111	Verlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVHV 110 170 QLEFAHFNQRIV	/AVDFQRRF
n a	a506 94 a506.pep a506.pep a506.pep	MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 1 PLAEAVGFVVR 70 130 1 QHFIXAGADTG QHFIXAGADTG	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVH 110 170 QLEFAHFNQRIV	/AVDFQRRF /AVDFQRRF 60 120 AQTVALCVG 1: AQAVALRVG 120 180 //FFRPNFGQ //FFRPNFGQ 180
n a a	a506 94 a506.pep a506.pep a506	MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG QHFIWAGADTG 130 1	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 40 15	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV HIGGEVFGIAV 0 160 0 220	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYI : : : RTVDRDLAEVHI 110 170 QLEFAHFNQRIV QLEFAHFNQRIV 170 230	/AVDFQRRF /AVDFQRRF 60 120 AQTVALCVG AQAVALRVG 120 180 /FFRPNFGQ /FFRPNFGQ 180 240
n a a	a506 94 a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL IIIIIII GEVGLLL VIEQTRL IIIIIII VIEQTRL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG 130 110 190 2 FFRVCFRHDLD	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 1500 21	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV HIGEEVFGIAV 0 160 0 220 CDGFXXVALMAF	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYI : : : RTVDRDLAEVHI 110 170 QLEFAHFNQRIV CLEFAHFNQRIV 170 230 AVVGDDFGGFFF	/AVDFQRRF /AVDFQRRF /AVDFQRRF /AQTVALCVG /AQAVALRVG /AQAVALRVG /FFRPNFGQ /FFRPNFGQ /FFRPNFGQ /FRPNFGQ /FRPNFGQ
n a a	a506 94 a506.pep a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL VIEQTRL IVIEQTRL VIEQTRL VIEQTRL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG QHFIWAGADTG 130 1 190 2 FFRVCFRHDLD	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 00 21 VHRPFRKLAAF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV HIGEEVFGIAV 0 160 0 220 DGFXXVALMAF	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVY : : RTVDRDLAEVH 110 170 QLEFAHFNQRIV QLEFAHFNQRIV 170 230 PAVVGDDFGGFF:	VAVDFQRRF
n a a	a506 94 a506.pep a506.pep a506	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL II IIII GEVGLLL VIEQTRL IVIEQTRL VIEQTRL VIEQTRL	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG QHFIWAGADTG 130 1 190 2 FFRVCFRHDLD : FFRIGFRHDLD	/erlap 20 3 EQCLFIRVVHQ EQCLFIRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF NEVARCEGLF 40 15 VHRPFRKLAAF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV HIGEEVFGIAV 0 160 0 220 DGFXXVALMAF	VIVLAVVPVCRV VIVLAVVPVRRV RTIDGNLAEVYI : RTVDRDLAEVHI 110 170 QLEFAHFNQRIV QLEFAHFNQRIV 170 230 AVVGDDFGGFF	VAVDFQRRF
n a a	a506 94 a506.pep a506.pep a506.pep a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL IIIIIII GEVGLLL VIEQTRL VIEQTRL VIEQTRL VIEQTRL VIEQTRL VIEQTRL VKRMIRY IIIIIII VKRMIRY	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG QHFIWAGADTG 130 1 190 2 FFRVCFRHDLD : FFRIGFRHDLD	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 00 21 VHRPFRKLAAF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV HIGEEVFGIAV 0 160 0 220 DGFXXVALMAF	VIVLAVVPVCRV VIVLAVVPVRRV RTIDGNLAEVYI : RTVDRDLAEVHI 110 170 QLEFAHFNQRIV QLEFAHFNQRIV 170 230 AVVGDDFGGFF	VAVDFQRRF
n a a	a506 94 a506.pep a506.pep a506.pep a506.pep	MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 10 HILL QHFIXAGADTG 190 2 FFRVCFRHDLE FFRIGFRHDLE 190 2	Verlap 20	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV HIGEEVFGIAV 0 160 0 220 DGGFXXVALMAF DGGFVQVALMAF 0 220	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYN : : : RTVDRDLAEVHN 110 170 QLEFAHFNQRIV QLEFAHFNQRIV 170 230 PAVVGDDFGGFF : TVVGDDFGGFF	VAVDFQRRF
n a a a	a506 94 a506.pep a506.pep a506 a506.pep a506	MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR PLAEAVGFVVR 70 130 130 1 QHFIXAGADTG QHFIWAGADTG 130 1190 2 FFRVCFRHDLE FFRIGFRHDLE 190 2 250 2	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 40 15 VHRPFRKLAAF VHRPFRKLAAF	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGEEVFGIAV HIGEEVFGIAV 0 160 0 220 DGGFXXVALMAF DGFVQVALMAF 0 220	VIVLAVVPVCRV VIVLAVVPVRRV VIVLAVVPVRRV RTIDGNLAEVYN 110 170 QLEFAHFNQRIV QLEFAHFNQRIV AVVGDDFGGFF TVVGDDFGGFF TVVGDDFGGFF	/AVDFQRRF
n a a a	a506 94 a506.pep a506.pep a506.pep a506.pep	MAVFDEVO	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 70 PLAEAVGFVVR PLAEAVGFVVR 70 130 1 QHFIXAGADTG QHFIWAGADTG FFRUCFRHDLD FFRIGFRHDLE 190 2 PKTLACFVPEA	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF 40 15 OO 21 VHRPFRKLAAF VHRPFRKLAAF VHRPFRKLAAL	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT	VIVLAVVPVCRV VIVLAVVPVRRV 50 110 RTIDGNLAEVYV : : : RTVDRDLAEVHV 110 170 QLEFAHFNQRIV QLEFAHFNQRIV : TVVGDDFGGFF 230 290 IDGNLVQCFGQQ	/AVDFQRRF
n e e	a506 94 a506.pep a506.pep a506 a506.pep a506 a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL IIIIIII GEVGLLL VIEQTRL VIEQTRL VIEQTRL VKRMIRY IIIIIII VKRMIRY IIIIIII GAEMEFH	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 10 70 PLAEAVGFVVR 70 130 130 130 131 190 2 FFRVCFRHDLE FFRIGFRHDLE 190 2 PKTLACFVPEA	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF NEVARCEGGLF 60 27 VHRPFRKLAAI	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV 0 160 0 220 DGFXXVALMAF DGFVQVALMAF 0 220 0 280 UVAGGDAAVAHH	VIVLAVVPVCRV VIVLAVVPVRRV VIVLAVVPVRRV RTIDGNLAEVYI RTVDRDLAEVHI QLEFAHFNQRIV CQLEFAHFNQRIV CAVVGDDFGGFF CTVVGDDFGGFF COLOR	/AVDFQRRF
n e e	a506 94 a506.pep a506.pep a506 a506.pep a506	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL IIIIIII GEVGLLL VIEQTRL VIEQTRL VIEQTRL VKRMIRY IIIIIII VKRMIRH GAEMEFH	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 70 PLAEAVGFVVR PLAEAVGFVVR 70 130 130 10 HFIXAGADTG QHFIXAGADTG 130 190 2 FFRVCFRHDLE : FFRIGFRHDLE 190 2 PKTLACFVPEA	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF 40 15 NEVARCEGGLF 40 15 VHRPFRKLAAF VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI 00 21 VHRPFRKLAAI	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV 0 160 CDGFXXVALMAF DGFVQVALMAF 0 220 VAGGDAAVAHH	VIVLAVVPVCRV VIVLAVVPVRRV VIVLAVVPVRRV RTIDGNLAEVYI RTVDRDLAEVHI QLEFAHFNQRIV CQLEFAHFNQRIV CAVVGDDFGGFF TVVGDDFGGFF CAVVGCTGQQ	/AVDFQRRF
n e e	a506 94 a506.pep a506.pep a506 a506.pep a506 a506.pep	.8% identity MAVFDEVO IIIIIII MAVFDEVO GESGLLL IIIIIII GEVGLLL VIEQTRL VIEQTRL VIEQTRL VKRMIRY IIIIIII VKRMIRH GAEMEFH	in 520 aa ov 10 GRVAHCGGGVA GRVAHCGGGVA 70 PLAEAVGFVVR PLAEAVGFVVR 70 130 130 10 HFIXAGADTG QHFIXAGADTG 130 190 2 FFRVCFRHDLE : FFRIGFRHDLE 190 2 PKTLACFVPEA	/erlap 20 3 EQCLFLRVVHQ EQCLFLRVVHQ 20 3 80 9 QAAXVAVGAAL QAAVVAVGASL 80 9 40 15 NEVARCEGGLF NEVARCEGGLF NEVARCEGGLF 60 27 VHRPFRKLAAI	VEQGARLAEIV VEQGARLAEIV 0 40 0 100 PVAXXAVNXAT SVALVAVNRAT 0 100 0 160 HIGGEVFGIAV 0 160 CDGFXXVALMAF DGFVQVALMAF 0 220 VAGGDAAVAHH	VIVLAVVPVCRV VIVLAVVPVRRV VIVLAVVPVRRV RTIDGNLAEVYI RTVDRDLAEVHI QLEFAHFNQRIV CQLEFAHFNQRIV CAVVGDDFGGFF TVVGDDFGGFF COMMITTED OF SERVICE OF SE	/AVDFQRRF

WO 99/57280

752

			310	320	330	340	350	360
	m506.pep	RAHIGAR	VAFDGFVQVG	ELTRVAQEE	IGRVVADHI P	/AFFGIKFQGF	CTADVAFCIGO	AAF
		HIIIII	11111111111				11111111111	111
	a506	RAHIGAR	VAFDGFVQVG	ELTRVAQEE I	igrvvadhi p	/AffgielQri		
			310	320	330	340	350	360
			370	380	390	400	410	420
	m506.pep	ACHGGET	GEHLGFFADI	PAEDFGAGVF	GDVVRYGKRTI	erart fgvht <i>i</i>	AFGDDFAHEVO	EFF
		1111111	111111111					111
	a506	ACHGGET	GEHLGFFADE	PAEDFGAGVF	DVVRYGKRTI	erartfgvht <i>i</i>	AFGDDFAHEVO	EFF
			370	380	390	400	410	420
· Sec								
			430	440	450	460	470	480
	m506.pep	IQPQILR	QQRAARTGG	AVLIVGNRRA	AVVHGQMGYR	afggshrscs i	SQVGQMGGKF	tTV
	• •	1111111	HIHHH		[] [[[[[[[[[[[[[[[[[[1111 11111		Ш
	a506	IQPQILR	QQRAARTGG	QAVLIVGNRR/	AVVHGQMGYR	afggxhrscsi	FSQVGQXGGKF	LTV
			430	440	450	460	470	480
			490	500	510	520		
	m506.pep	RFGGKRI	RNRFLDCNKI	LESTFYFPF	VKTMDATIRQ	DFRYX		
		1111111	111111111		1111111111	11111		
	a506	RFGGKRI	RNRFLDCNKI	FLESTFYFPF	VKTMDATIRQ	DFRYX		
			490	500	510	520		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1381>:

```
q507.seq
      1 ATGCTCTTGC CGGCTTTGCA ACAAGGCGGC GGCTTCCTGA GCGGCGGCGG
     51 TTTCGGCCTC GTCGGGCAGG TTCAGGGCTT GGTTTTCCTG CTTCAGACGG
     101 CCTTTGCGCT CTTCGTGCTT GGCAACGGTT TGTTCGGCAT GGGCAAGCTG
     151 CTGCTGCTTC AACGCCAGTT CGCGGCGGAT GCGGTTTGCC TCGTCCTGCT
     201 GGGTTTGGAA GGCAGCGTTG AGCGTGGCTT GGACTTCTTC CAATTCGGGC
     251 AGACGCTCTT CGTGTTCGGC AACCTGCATC GCCCATTCCG CCAATTCGGT
     301 TTGCTTTTCT TCGACCTGCA ACTCGTTTTC CTCAAGCTGC ACGCGGATTT
     351 GCTGCTGCTC CTGCCGGATG CGTTGCAACT GCGCCTGCGC TGCCTGCTTG
     401 TCGCGTTCGA TGCGTTGGTG CAGGTTTTGC CGGTGGCGGA TTTGTTCTTC
     451 CAAACGGGCA ATCTGCTCGC GCAACACGCC GCGTTTGTTG CTCAATTCGT
     501 GTACTGCCTG CTGCTGCGAC TGTTCGGCAG TCTGCAAGGC GTGTACTTCG
     551 TTATTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1382; ORF 507.ng>: g507.pep

1 MLLPALQQGG GFLSGGGFGL VGQVQGLVFL LQTAFALFVL GNGLFGMGKL

51 LLLQRQFAAD AVCLVLLGLE GSVERGLDFF QFGQTLFVFG NLHRPFRQFG

101 LLFFDLQLVF LKLHADLLLL LPDALQLRLR CLLVAFDALV QVLPVADLFF

151 QTGNLLAQHA AFVAQFVYCL LLRLFGSLQG VYFVI*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1383>: m507.seq

1 ATGCTCTTGC TGACTTTGCA ACAAGGCGGC TGCTTCCTGC GCGGCGGCGG 51 TTTCGGCTTC GTCGGGCAGG TTTAAGGCTT GGTTTTCCTG TTTCAGACGA 101 CCTTTGCGCT CTTCGTGCTT GGCAATCGTT TGTTCGGCAT GGGCAAGCTG 151 CTGCTGCTTC AACGCCAGTT CGCGGCGGAT GCGGTTTGCC TCGTCCTGCT 201 GGGTTTGGAA GGCGGCGTTG AGCGTGGCTT GGGCTTCTTC CAATTCGGGC 251 AGACGCTCCT CGTGTTCGGC AACCTGCATC GCCCATTCCG CCAGCTCGGT 301 TTGTTTTCT TCGACCTGCA ACTCGTTTTC TTCAAGCTGC ACGCGGATTT

351 GCTGCTGCTC TTGATGAATG CGTTGTAACT GCGCCTGCGC TGCCTGCTTG

401 TCGCGTTCGA TGCGTTGGTG CAGGTTTTGC TGATGGCGGA TTTGTTCTTC 451 CAAACGGGCA ATCTGCTCGC GCAACACGCC GCGCTTGTTG CTCAATTCAT

501 GCACTGCCTG CTGCTGCGAC TGTTCGGCAG TCTGCAAGGC GTGTACTTCG

551 TCGTTTAA

This corresponds to the amino acid sequence <SEQ ID 1384; ORF 507>: m507.pep

1 MLLLTLOOGG CFLRGGGFGF VGQVXGLVFL FQTTFALFVL GNRLFGMGKL

51 LLLQRQFAAD AVCLVLLGLE GGVERGLGFF QFGQTLLVFG NLHRPFRQLG

LFFFDLQLVF FKLHADLLLL LMNALXLRLR CLLVAFDALV QVLLMADLFF QTGNLLAQHA ALVAQFMHCL LLRLFGSLQG VYFVV* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 507 shows 87.0% identity over a 185 aa overlap with a predicted ORF (ORF 507.ng) from N. gonorrhoeae: m507/g507 30 40 20 $\verb|MLLLTLQQGGCFLRGGGFGFVGQVXGLVFLFQTTFALFVLGNRLFGMGKLLLLQRQFAAD|$ m507.pep MLLPALQQGGGFLSGGGFGLVGQVQGLVFLLQTAFALFVLGNGLFGMGKLLLLLQRQFAAD g507 30 40 50 60 10 20 90 100 110 120 70 80 AVCLVLLGLEGGVERGLGFFQFGQTLLVFGNLHRPFRQLGLFFFDLQLVFFKLHADLLLL m507.pep AVCLVLLGLEGSVERGLDFFQFGQTLFVFGNLHRPFRQFGLLFFDLQLVFLKLHADLLLL g507 80 90 100 110 70 140 150 160 170 130 $\verb|LMNALXLRLRCLLVAFDALVQVLLMADLFFQTGNLLAQHAALVAQFMHCLLLRLFGSLQG|$ m507.pep LPDALQLRLRCLLVAFDALVQVLPVADLFFQTGNLLAQHAAFVAQFVYCLLLRLFGSLQG a507 150 160 170 .180 130 140 VYFVV m507.pep 1111: VYFVI q507 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1385>: a507.seq ATGCTCTTGC TGGCTTTGCA ACAAGGCGGC AGCTTCCTGC GCGGCGGCGG TTTCGGCTTC GTCAGGCAGA TTCAGGGCTT GGTTTTCCTG TTTCAGACGA 51 CCTTTGCGCT CTTCGTGCTT GGCAACGGTT TGTTCGGCAT GGGCAAGCTG 101 CTGCTGCTTC AACGCCAGTT CGCGGCGGAT GCGGTTTGCC TCGTCCTGCT 151 GGGTTTGGAA GGCGGCATTG AGTGTGGCTT GGGTTTCTTC CAATTCGGGC 201 AGACGCTCTT CGTGTTCGGC AACCTGCATC GCCCATTCCG CCAATTCGGT 251 TTGCTTTTCT TCCGCCTGCA ACTCGTTTTC TTCAAGCTGC ACGCGGATTT 301 GCTGCTGCTC CTGATGGATG CGCTGCATCT GCGCCTGCGC CGCCTGCTTG 351 TCGCGTTCGA TGCGTTGGTG CAGGTTTTGC TGATGGCGGA TTTGTTCTTC 401 CAAACGGGCA ATCTGTTCGC GCAACACGCC GCGTTTGTTG CCCAATTCGT 451 GCACCGCCTG CTGCTGCGAC TGTTCGGCAG TCTGCAAGGC GTGTACTTCG 501 551 TCGTTTAA This corresponds to the amino acid sequence <SEQ ID 1386; ORF 507.a>: a507.pep MLLLALQQGG SFLRGGGFGF VRQIQGLVFL FQTTFALFVL GNGLFGMGKL LLLQRQFAAD AVCLVLLGLE GGIECGLGFF QFGQTLFVFG NLHRPFRQFG 51 LLFFRLQLVF FKLHADLLLL LMDALHLRLR RLLVAFDALV QVLLMADLFF OTGNLFAQHA AFVAQFVHRL LLRLFGSLQG VYFVV* m507/a507 89.7% identity in 185 aa overlap 20 30 40 MLLLTLOOGGCFLRGGGFGFVGQVXGLVFLFQTTFALFVLGNRLFGMGKLLLLQRQFAAD m507.pep a507 $\verb|MLLLALQQGGSFLRGGGFGFVRQIQGLVFLFQTTFALFVLGNGLFGMGKLLLLQRQFAAD|$ 10 20 30 40 50 60 70 90 100 120 80 110

PCT/US99/09346 WO 99/57280

754

```
{\tt AVCLVLLGLEGGVERGLGFFQFGQTLLVFGNLHRPFRQLGLFFFDLQLVFFKLHADLLLL}
m507.pep
          AVCLVLLGLEGGIECGLGFFQFGQTLFVFGNLHRPFRQFGLLFFRLQLVFFKLHADLLLL
a507
                       80
                               90
                                      100
                              150
               130
                       140
                                      160
                                             170
                                                     180
          LMNALXLRLRCLLVAFDALVQVLLMADLFFQTGNLLAQHAALVAQFMHCLLLRLFGSLQG
m507.pep
          LMDALHLRLRRLLVAFDALVQVLLMADLFFQTGNLFAQHAAFVAQFVHRLLLRLFGSLQG
               130
                       140
                              150
                                      160
                                             170
m507.pep
          VYFVVX
          VYFVVX
a507
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1387>:

```
g508.seq
         ATGGTAGCGT TTGGCGTTGA TCAGGGCCTC CTGCTGCTGC AACAGGGCGG
      1
     51 TTTGGGTGGC GGCCTGAAGC TGCGGCAGCT TGGTTTGCAG GGTTTGTACG
    101 CGGGCGTATT GCTCCCTGCC CTGTTCCTGA ATCTGCGCGA GTTTTTCCTG
    151 CACGGCGATG TATTCTTCGT CCAGCGTGTG TACGGTTTCG GTCAACTCGT
    201 CGAGCTTGAT GTGCTGCTCG TCGTTTTGGA ACTCGGTTTC ATAGGCGAGG
    251 GCAAGCTCTT GCCGGCGTTC CTGCCAGTCC AGGGTTTGCT GTTCGAGCCG
         GGCGATTTGC TGCCGGTAGT TTTGTTTTTG CGGGTTGAGT TTGTGGACGG
    351 CGACTTCGGC AAGCCCGTAT TGGCGGTTGG CTTCCAACAG GGCAAGCTGC
     401 GCCTGTTTCA GACGGCCTTG CTGCTCTTGG CGGCTGTGCG CGGTGGTTTG
     451 CTGCTGGTGT TCGAGTTCGG CGGCGGCTTC CTGCAAAGTA GCGATGTCGT
     501 CTGA
```

This corresponds to the amino acid sequence <SEQ ID 1388; ORF 508.ng>: q508.pep

- MVAFGVDQGL LLLQQGGLGG GLKLRQLGLQ GLYAGVLLPA LFLNLREFFL
 - 51 HGDVFFVQRV YGFGQLVELD VLLVVLELGF IGEGKLLPAF LPVQGLLFEP
 - GDLLPVVLFL RVEFVDGDFG KPVLAVGFQQ GKLRLFQTAL LLLAAVRGGL
 - LLVFEFGGGF LQSSDVV

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1389>: m508.seg

- ATGGTAGCGT TTGGCGTTGA TCAGGGCTTC CTGCTGCTGC AACAAGGCGG 1 51 TTTGGGTGGC GGCCTGAAGC TGCGGCAGCT TGGTTTGCAG GGTTTGCACT
 - 101 TTAGCGTATT GCTCCCTGCC CTGTTCCTGA ATCTGCGCGA GTTTCTCTTG
 - 151 CACAACAATA TATTCTTCGT CCAAGGTCTG TACGGCTTCG CTTAATTCTT
 - 201 CAAGCTTGAT GTGCTGCTCG TCGTTTTGGA ACTCGGTTTC ATAGGCGAGG
- GCAAGCTCTT GCTGGCGTTC CTGCCAGTCG AGGGTTTGCT GTTCAAGCTG
- 301 GGCGATTTGC TGCCGGTAGT TTTGTTTTTG CTGGTTGAGT TTGTGGACGG
- 351 CGACTTCGGC AAGCCCGTAT TGGCGGTTGG CTTCCAACAG GGCAAGCTGC
- 401 GCCTGTTTCA GACGGCCTTG CTGCTCTTGG CGGCTGTGCG CGGTGGTTTG 451 CTGCTGGTGT TCGAGTTCGG CGGCGGCTTC CTGCAAGGTA ACGATGTCGT

This corresponds to the amino acid sequence <SEQ ID 1390; ORF 508.ng>: m508.pep

- MVAFGVDQGF LLLQQGGLGG GLKLRQLGLQ GLHFSVLLPA LFLNLREFLL 1
- 51 HNNIFFVOGL YGFAXFFKLD VLLVVLELGF IGEGKLLLAF LPVEGLLFKL
- 101 GDLLPVVLFL LVEFVDGDFG KPVLAVGFQQ GKLRLFQTAL LLLAAVRGGL
- 151 <u>LLV</u>FEFGGGF LQGNDVV*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 508 shows 86.8% identity over a 167 as overlap with a predicted ORF (ORF 508.ng) from N. gonorrhoeae: m508/g508

	10	20	30	40	50	60
m508.pep	MVAFGVDQGFLLL	OOGGLGGGLKI	rolgloglhfs	SVLLPALFLNI	REFLLHNNIFF	TVQGL
	: MVAFGVDQGLLLL		:::	:	: : : :	11:
g508		20 20	30	40	50	60
	10	20	30	40	30	00
	70	80	90	100	110	120
m508.pep	YGFAXFFKLDVLL	VVLELGFIGEG	KLLLAFLPVE	SLLFKLGDLLF	VVLFLLVEFVI	GDFG
ccc.p-p	::::	11111111111	111 11111:	:	11111 11111	
g508	YGFGQLVELDVLL					
• 14.	70	80	90	100	110	120
	120	140	150	160		
	130 KPVLAVGFQQGKL	140			vv	
m508.pep					11	
g508	KPVLAVGFQQGKL	RLFOTALLLL	AVRGGLLLVF	EFGGGFLQSSI	VV	
9500	130	140	150	160		
The following	g partial DNA so	equence was	s identified i	n <i>N. mening</i>	gitidis <seq< td=""><td>ID 1391>:</td></seq<>	ID 1391>:
a508.se	ea					
	1 ATGGTAGCGT	TTGGCGTTGA	TCAGGGCTTC	CTGCTGCTG	CAACAGGGCG	G
9	51 TTTGGGTGGC	GGCCTGAAGC	TGCGGCAGCT	TGGTTTGCA	G GGTTTGTAC	G G
	01 CGGGCGTATT 51 TACGACAATA	GTTCCCTACC	CTGCTCCTGA	ATCTGCGCG	A GTTTCTCCT	G m
_		TATTCTTCGT	TCCTTTTCCA	ACTCGCTTT	C ATAGGCGAG	e G
	01 CGAGCTTGAT 51 GCAAGCTCTT	GTGCTGCTCG	CTGCCAATCG	AAGGTTTGT	T GTTCAAGCT	G [.]
	01 GGCAATTTGC	TGTTGGTAGT	TTTGTTTTTG	CTGGTTGAG	C TTGTGGACG	G
	51 CGACTTCGGC	AAGCCCGTAT	TGGCGGTTGG	CTTCCAACA	G GGCAAGCTG	С
	O1 GCCTGTTTCA	GACGACCTTG	CTGCTCTTGG	CGGCTGTGC	G CGGCGGTTT	G
4:	51 CTGCTGGTGT	TCGAGTTCGG	CGGCGGCTTC	CTGCAAAAT	G GCGATGTCG	T
50	01 CTGA					
671	onds to the amin	o noid seam	nce <ceo i<="" td=""><td>D 1302- OF</td><td>₽₽ 508 a>·</td><td></td></ceo>	D 1302- OF	₽₽ 508 a>·	
		o acid seque		D 1392, OI	d 500.a.	
a508.p	ep	TITOOCCICC	CI KI BOI CI C	GI.VACVI.FP	T_LLLNLREFL	τ.
	1 MVAFGVDQGF 51 YDNIFFVQTL	VGFAOLFELD	VILLVVIELGE	TGEGKLLLA	F LPIEGLLFK	L
	01 GNLLLVVLFL	LVELVDGDFG	KPVLAVGFOO	GKLRLFOTT	L LLLAAVRGG	Ē
	51 LLVFEFGGGF	LQNGDVV*		•		_
_						
m508/a508	88.6% identity	in 167 aa o	verlap			
		10	20 . 3		0 50	
m508.p	ep MVAFGVD	QGFLLLQQGGL	GGGLKLRQLGI	LOGLHFSVLLP	ALFLNLREFLI	HNNIFFVQGL
	111111		IIIIIIIIIIII	: : :	: : TLLLNLREFLI	VINITERVOTE
a508	MVAFGVD	OGFLLLLQQGGL 10			0 50	
		10	20 .	, o	0 00	
		70		90 10		
m508.p	ep YGFAXFF	KLDVLLVVLEI	.GFIGEGKLLL	AFLPVEGLLFK	LGDLLPVVLFI	LVEFVDGDFG
_	1111 :1	:1111111111	1111111111	[[]]:[[]]	пан шп	111:11111
a508	YGFAQLF				LGNLLLVVLFI	
		70	80	90 10	00 110	120
		130 1	140 15	50 16	50	
m508.p			ALLLLAAVRG			
11.000 i	1111111	111111111111	1:111111111	1111111111	1111::1111	
a508			TLLLLAAVRG			
		130	140 1	50 16	50	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1393>: g509.seq

```
756
```

```
1 atggtcgctg tatgtgatga acgggctgta cagcggacgt tggtggccca
          51 attcgcgcaa caaggcggct tgtttttgct cttcgttcag gctgttgtag
         101 tettecaage etgegtgttg gaaaageteg geaaceacat eggegtgttt
              geotgegtgt tggcgcaggt cgageggcat catgtggaag ccgaacaegg
         201 acacggaacg gatgaggtct gccaaacggc cttcggcaag caggcggctg
         251 ccgttgtcga taagggaacg ttgcaatttt ttcaaatcat cgagaaattt
         301 ttgggccgaa gcataaggct cgagaaagcc gaatttgcag cccatgccca
         351 aaccgagcga gcgcgctttg cccatagcgc gcgccataat gtaggcaatg
         401 gcgcggcggt aaggttette ggtgcgggcg atttettegt caggcgagag
         451 ggctgccagt gccattacgt cgtcgttgac tttgacgcgg cggatggaaa
         501 gcggcagttc gcggtaaagt ttgtcgagtt cgctgcggta aaaacggaac
         551 acggcatcgg cgtggcggcg gaaggcaaag cgcagggttt cgccagaaac
         601 aaacggattg ccgtcgcggt cgccgccgat ccagccgccg attttaagga
         651 tattcggaac gcggacatcg ggataggccg tctgaaagtc gtgttccatc
         701 ttgcggtaga gtttgggcag ggcttcaaaa aagctcatcg ggaagatgga
         751 cacgccgttg ttgatttcgt cgttgacgct gagtttgtgg cggcgcgttt
         801 cgctggtctg ccacaagccc agaagcacgg tgtcgatttc gcggcgcagc
         851 cgtgccagcg cgtcggcatt ggtgcagcgt tcgcgttgcg gcagcagcgc
         901 gcggatgcgg cggttgaaat tcaaaacggt ttggcgttgc acttcggtcg
         951 ggtgcgcggt caaaacggcg gtaacggacg tattgtccaa ctgccgctgc
        1001 accgatttgc cgtcggcttt ccccgctttg agcctgcgga cggtttccgt
        1051 caggetgeet tetgetgegt tgtggeegge atettegtgg atttggegge
        1101 ggcgttcgtg gtgcacgtct tcggcgatat tcagaatctg ggcgaacagc
        1151 ccgcaggcaa gcgtcagatc gtaggtctgc cgttcgtcca attgcggcaa
        1201 tactttttca atcaatgccg cgctgtcgtc ggaagtggac aagagtttga
        1251 ccgtttcgac aaccaacggc gaggcttctt cgtgcaggag gttgaacagg
        1301 gactgtttca aaaattccgc gtccgccgcc aaagccgcgt ccttcggatt
        1351 gttcaggata tgcagttgca tgattttcct ctcattgccg taaatactgt
        1401 aaatgtacct caaatgccgc atccgtgcca aaccgttcac actttaacca
        1451 ctcatgtccc gaaatgccgt ctgaagttga acgccgcccg acggcggcgt
        1501 tacaatcgcc cgcaactgtt tttttccgaa catcatcatg accgcgaccg
        1551 aacacgacaa cgacgacgca ctcctgctgc ggtacagccg ccacatcctc
        1601 ttggacgaaa tcggcatcga agggcagcag aagctttccg ccgcgcatat
        1651 tttggtcgtc ggctgcggcg gattgggcgc cgccgcccct gccctatctc
        1701 gccgcctcgg gggtcggcac gctga
This corresponds to the amino acid sequence <SEQ ID 1394; ORF 509.ng>:
     g509.pep
              MVAVCDERAV QRTLVAQFAQ QGGLFLLFVQ AVVVFQACVL EKLGNHIGVF
          51 ACVLAQVERH HVEAEHGHGT DEVCQTAFGK QAAAVVDKGT LQFFQIIEKF
          101 LGRSIRLEKA EFAAHAQTER ARFAHSARHN VGNGAAVRFF GAGDFFVRRE
          151 GCQCHYVVVD FDAADGKRQF AVKFVEFAAV KTEHGIGVAA EGKAQGFARN
          201 KRIAVAVAAD PAADFKDIRN ADIGIGRLKV VFHLAVEFGQ GFKKAHREDG
          251 HAVVDFVVDA EFVAARFAGL PQAQKHGVDF AAQPCQRVGI GAAFALRQQR
          301 ADAAVEIQNG LALHFGRVRG QNGGNGRIVQ LPLHRFAVGF PRFEPADGFR
          351 QAAFCCVVAG IFVDLAAAFV VHVFGDIQNL GEQPAGKRQI VGLPFVQLRQ
          401 YFFNQCRAVV GSGQEFDRFD NQRRGFFVQE VEQGLFQKFR VRRQSRVLRI
          451 VQDMQLHDFP LIAVNTVNVP QMPHPCQTVH TLTTHVPKCR LKLNAARRRR
          501 YNRPQLFFSE HHHDRDRTRQ RRRTPAAVQP PHPLGRNRHR RAAEAFRRAY
          551 FGRRLRRIGR RRPCPISPPR GSAR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1395>:
     m509.seq
               ATGGTCGCTG TATGTGATAA ACGGGCTGTA CAGAGGACGT TGATGGCTCA
           51 ATTCGCGCAA CAGGGCGGTT TGTTTTTGCT CTTCGTTCAG GCGGTTGTAG
               TCTTCCAAGC CTGCGTGTTG GAAAAGCTCG GCAACCACAT CGGCGTGTTT
          151 GCCTGCGTGT TGGCGCAAGT CGAGCGGCAT CATGTGAAAG CCGAACACGG
          201 ATACGGAACG GATGAGGTCT GCCAAACGGC CTTCGGCAAG CAGACGGCTG
          251 CCGTTGTCGA TAAGGGAACG TTGCAATTTT TTCAAATCAT CCAGAAACTC
          301 TTGTGCCGAA GCATAAGGCT CGAGAAAGCC GAATTTGCAG CCCATACCCA
          351 AACCGAGCGC GCGCGCTTTG CCCATAGCGC GCGCCATAAT GTAGGCGATG
          401 GCGCGGCGGT AGGGTTCTTC GGCGCGGCG ATTTCTTCGT CGGGCGATTT
          451 GTCGGACAAC GCCGTTACAT CGCCGTTGAC TTTGACGCGG CGGATGGAGA
```

501 GCGGCAGTTC GCGGTAGAGT TTGTCGAGTT CGCCGCGATA GAAGCGGAAC

- 500

```
551 ACGGCATCGG CGTGGCGGCG GAAGGCAAAG CGCAGGGTTT CGGCAGAAAC
 601 AAACGGATTG CCGTCGCGGT CGCCGCCGAT CCAGCCGCCG ATTTTGAGGA
 651 TGTCCGGAAC GCGGACGCCG GGATAGGCCG TCTGAAAGTC GTGTTCCATC
 701 TTGCGGTAGA GCTTGGGCAG GGCTTCGAAA AAGCTCATCG GGAAGATGGA
 751 CACGCCGTTG TTGATTTCGT CGTTGACGCT GAGTTTGTGG CGGCGCGTTT
 801 CGCTGGTCTG CCACAAGCCC AGCAGGATAG TGTCGATTLC GCGGCGCAGC
 851 CGTGCCAGCG CGTCGGCATT GGTGCAGCGT TCGCGTTGCG GCAACAGTGC
 901 GCGGATGCGG CGGTTGAAGC TTAAGACGGT TTGGCGTTGC ACTTCGGTCG
 951 GGTGCGCGGT CAAAACGGCG GTAACGGACG TATTGTCCAA CTGCCGCTGC
1001 ACCGATTTGC CGTCGGCTTT CCCCGCTTTG AGCCTGCGGA CGGTTTCCGT
1051 CAGGCTGCCT TCCGCGCCGC CGCGTCCGGC TTCTTCGTGG ATTTGGCGGC
1101 GGCGTTCGTG GTGCACGTCT TCGGCGATGT TCAAAATCTG GGCGAACAGG
1151 CCGCAGGCCA AGGTTAAATC GTGGGTTTGT TGTTCGTCCA ATTGCGGCAA
1201 TACTTTTCA ATCAATGCCG CGCTGTCGTC GGAAGTGGAC AAGAGTTTGA
1251 CTGTTTCGAC AACCAACGGC GAGGCTTCTT CGTGCAGGAG GTTGAACAGG
1301 GATTGTTTCA GAAATTCCGC GTCCGCCGCC AAAGCCGCGT CCTTTGGATT
1351 GTTCAGAATA TGCAGTTGCA TGATTTTTCT CTCTCGTCTG CCGTAAATAT
1401 TGTAAATGTA CCCCAAATGC CGCATCCGTG CCAAACCGTT CACACTTTAA
1451 CCGCCCGTGT CCCGAAATGC CGTCTGAAGT TGAACGCCGC CCGACGGCAG
1501 CGTTACAATC GCCCGCAACT GTTTTTTCC GAACATCATC ATGACCACGA
1551 CCGAACACGA CAACGACGAT GCATTCCTGC TGCGGTACAG CCGCCACATC
1601 CTCTTGGACG AAATCGGCAT CGAAGGGCAG CAGAAACTTT CCGCCGCGCA
1651 TATTTTGGTC GTCGGCTGCG GCGGTTTGGG TGCCGCCGCA CT.GCCCTAC
1701 CTTGCCGCTT CGGGTGTCGG CACGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1396; ORF 509>:

```
m509.pep

1 MVAVCDKRAV QRTLMAQFAQ QGGLFLLFVQ AVVVFQACVL EKLGNHIGVF
51 ACVLAQVERH HVKAEHGYGT DEVCQTAFGK QTAAVVDKGT LQFFQIIQKL
101 LCRSTRLEKA EFAAHTQTER ARFAHSARHN VGDGAAVGFF GAGDFFVGRF
151 VGQRRYIAVD FDAADGERQF AVEFVEFAAI EAEHGIGVAA EGKAQGFGRN
201 KRIAVAVAAD PAADFEDVRN ADAGIGRLKV VFHLAVELGQ GFEKAHREDG
251 HAVVDFVVDA EFVARRFAGL PQAQQDSVDF AAQPCQRVGI GAAFALRQQC
301 ADAAVEAXDG LALHFGRVRG QNGGNGRIVQ LPLHRFAVGF PRFEPADGFR
351 QAAFRAAASG FFVDLAAAFV VHVFGDVQNL GEQAAGQGXI VGLLFVQLRQ
401 YFFNQCRAVV GSGQEFDCFD NQRRGFFVQE VEQGLFQKFR VRRQSRVLWI
451 VQNMQLHDFS LSSAVNIVNV PQMPHPCQTV HTLTARVPKC RLKLNAARRQ
501 RYNRPQLFFS EHHHDHDRTR QRRCIPAAVQ PPHPLGRNRH RRAAETFRRA
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 509 shows 87.8% identity over a 575 aa overlap with a predicted ORF (ORF 509.ng) from N. gonorrhoeae:

m509/g509

m509.pep	10 MVAVCDKRAVQRTLI	20 MAOFAOOGGL	30 FLLFVOAVVV	40 FOACVLEKLG	50 NHIGVFACVI	60 AOVERH
moor.pep		:	11111111111		[[]][][][][][][][][][][][][][][][][][][]	
g509	MVAVCDERAVQRTL	VAQFAQQGGL	FLLFVQAVV	FQACVLEKLG	nhigvfacvi	LAQVERH
	10	20	30	40	50	60
	70	80	90	100	110	120
m509.pep	HVKAEHGYGTDEVC	QTAFGKQTAA	VVDKGTLQF	QIIQKLLCRS	IRLEKAEFAJ	AHTQTER
				: :		:
g509	HVEAEHGHGTDEVC	QTAFGKQAAA	VVDKGTLQF	FQIIEKFLGRS	IRLEKAEFAJ	AHAQTER
	70	80	90	100	110	120
	130	140	150	160	170	180
m509.pep	ARFAHSARHNVGDG	aavgffgage	FFVGRFVGQ	RRYIAVDFDAA	DGERQFAVE	FVEFAAI
	_	[]]		: ::	[]:[][]:	:
g509	ARFAHSARHNVGNG	AAVRFFGAGI	FFVRREGCQ	CHYVVVDFDAA	DGKRQFAVK	FVEFAAV
	130	140	150	160	170	180

		1	190 2	00 21	.0 22	0 2	230	240
	m509.pep			RNKRIAVAVAA				
		::		шшшш		111 11111	111111111	:11
	g509			RNKRIAVAVAA				_
		3	190 2	00 21	.0 22	0 2	230	240
		-	250 2	60 27	0 28	^ -		200
	E O O D O D			DAEFVAARFAG				300
	m509.pep			111111111111				
· Neum	g509			DAEFVAARFAG				
•• ••••	5			60 27				300
				20 33				360
	m509.pep			RGONGGNGRIV				
•								::
	g509	_	-	RGQNGGNGRIV 20 33			_	
		3	310 3	20 33	0 34	0 3	150	360
		3	370 3	80 39	0 40	0 4	10	420
	m509.pep			NLGEQAAGQGX				
				HHÎ H:				
	g509			NLGEOPAGKRO				
		3	370 3	80 39	0 40	0 4	10	420
				40 45			170	480
	m509.pep			FRVRRQSRVLW				
	g509			FRVRRQSRVLR 40 45			470	QTV
		•	130 4	40 43	46	U	470	
		4	190 5	00 51	.0 52	0 5	30	540
	m509.pep			00 51 RQRYNRPQLFF				540 INRH
	m509.pep	HTLTARVI	KCRLKLNAAR	RQRYNRPQLFF	SEHHHDHDRT	RQRRCIPAA		NRH
	m509.pep	HTLTARVI ::	PKCRLKLNAAR		SEHHHDHDRT	RQRRCIPAA	VQPPHPLGR	NRH
		HTLTARVI ::	PKCRLKLNAAR 	RQRYNRPQLFF : RRRYNRPQLFF	SEHHHDHDRT : SEHHHDRDRT	RQRRCIPAA	VQPPHPLGR	NRH
		HTLTARVI :: HTLTTHVI 480	PKCRLKLNAAR PKCRLKLNAAR 490	RQRYNRPQLFF : RRRYNRPQLFF 500 5	SEHHHDHDRT : SEHHHDRDRT 10 5	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
	g509	HTLTARVE :: HTLTTHVE 480	PKCRLKLNAAR PKCRLKLNAAR 490 5	RQRYNRPQLFF : RRRYNRPQLFF 500 5	SEHHHDHDRT: : SEHHHDRDRT: 10 5:	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
·		HTLTARVI :: HTLTTHVI 480 ERRAAETFI	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF	SEHHHDHDRT	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
·	g509 m509.pep	HTLTARVE : : HTLTTHVE 480 ERRAAETFF	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF :	SEHHHDHDRTI : SEHHHDRDRTI 10 5: ODERVSAR	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
	g509	HTLTARVE : : HTLTTHVE 480 ERRAAETFF	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF :	SEHHHDHDRTI : SEHHHDRDRTI 10 5: ODERVSAR	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
·	g509 m509.pep	HTLTARVI :: HTLTTHVI 480 ERRAAETFF : RRAAEAFF	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF :	SEHHHDHDRTI : SEHHHDRDRTI 10 5: CO PLRVSAR PRGSAR	RQRRCIPAA RQRRRTPAA	VQPPHPLGR VQPPHPLGR	NRH
The	g509 m509.pep g509	HTLTARVI : : HTLTTHVI 480 ERRAAETFF : : RRAAEAFF	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5	SEHHHDHDRTI : SEHHHDRDRTI 10 5. CO PLRVSAR PRGSAR	RQRRCIPAP RQRRRTPAP 20	VQPPHPLGR VQPPHPLGR 530	NRH NRH
The	g509 m509.pep g509 following p	HTLTARVI :: HTLTTHVI 480 ERRAAETFF : RRAAEAFF	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5	SEHHHDHDRTI : SEHHHDRDRTI 10 5. CO PLRVSAR PRGSAR	RQRRCIPAP RQRRRTPAP 20	VQPPHPLGR VQPPHPLGR 530	NRH
The	g509 m509.pep g509	HTLTARVE : : HTLTTHVE 480 ERRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR RRAYFGRRLRR 550 equence was	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5 s identified i	SEHHHDHDRTI : SEHHHDRDRTI 10 5. 10 PLRVSAR PRGSAR 170 In N. mening	RQRRCIPAP RQRRRTPAP 20 gitidis <si< td=""><td>LVQPPHPLGR LVQPPHPLGR 530 EQ ID 139</td><td>NRH</td></si<>	LVQPPHPLGR LVQPPHPLGR 530 EQ ID 139	NRH
The	g509 m509.pep g509 following p a509.seq	HTLTARVE : : HTLTTHVE 480 ERRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA	PKCRLKLNAAR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5 s identified i	SEHHHDHDRTI : SEHHHDRDRTI 10 5. 10 PLRVSAR PRGSAR 170 IN N. mening CAGTGGACG CTTCGTTGA	RQRRCIPAP	EQ ID 139	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101	HTLTARVE : : HTLTTHVE 480 ERRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC	PKCRLKLNAAR PKCRLKLNAAR 490 550	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCT GAAAAGCTCC	SEHHHDHDRTI : SEHHHDRDRTI 10 5. 10 PLRVSAR PRGSAR 170 IN N. mening CAGTGGACG CTTCGTTGAG GCAACCACA	RQRRCIPAP	EQ ID 139	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR RRAYFGRRLRR 550 equence Wa: TATGTGATGA CAGGCGGCT CTGCGTGTTG TGGCGCAGGT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTGCT GAAAAGCTCC CGAGCGGCAT	SEHHHDHDRT SEHHHDRDRT 10 5. 10 PERVSAR PERGSAR 170 IN N. mening CAGTGGACG CTTCGTTGAN GCAACCACA	RORRCIPAA	EQ ID 139 TTCA STAG	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR RRAYFGRRLRR 550 equence Wa: TATGTGATGA CAGGGCGGCT CTGCGTGTTG TGGCGCAGGT GATGAGGTCT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTGCT GAAAAGCTCG CGAGCGGCAT GCCAAACGGC	SEHHHDHDRTI : SEHHHDRDRTI 10 5. OPERVSAR PRGSAR 70 IN N. mening CCTTCGTTGAN GCAACCACA CCATGTGGAAG CCTTCGTTGAN CCATGTGGAAG CCTTCGGCAA	RORRCIPAA	EQ ID 139 CTCA CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG CSTAG	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR RRAYFGRRLRR 550 equence Wa: TATGTGATGA CAGGGCGGCT CTGCGTGTTG GATGAGGTCT TAAGGGAATG	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCA GCCAAACGGC TTGCAATTTT TTGCAATTTT	SEHHHDHDRTI : SEHHHDRDRTI 10 5: OULRVSAR PRGSAR 70 IN N. mening CAGTGGACG CTTCGTTGA GGCAACCACA CATGTGGAA CTTCGGCAA CTTCAAATCA	RORRCIPAA	EQ ID 139 TTCA STAG STAG SCTCG SCTCG SCTCG SCTCG SCTCC	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201	HTLTARVE : : HTLTTHVE 480 ERRARETFE : RRAREAFE 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TTGTGCCGAA	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RRAYFGRRLRR RRAYFGRRLRR 550 equence Wa: TATGTGATGA CAGGGCGGCT CTGCGTGTTG CTGCGTGTTG GATGAGGTCT TAAGGGAATG GCATAAGGCT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCA GCAAACGCC CGAGCGCAT GCCAAACGGC TTGCAATTT CGAGAAAGCCC	SEHHHDHDRTI : SEHHHDRDRTI 10 5: PERVSAR PERGSAR 70 IN N. mening CAGTGGACG GCAACCACA CATGTGGAA CATTCGGCAA CTTCGGCAA TTCAAATCA GAATTGCA	RORRCIPAR	EQ ID 139 TTCA STAG STAG STAG STAG STAG STAG STAT ACGG SCTG ATTC CCCA	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301	HTLTARVE : : HTLTTHVE 480 ERAAETFE : : RRAAEAFE 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TTGTGCCGAA AACCGAGCGC GCGCGACGCT GCGCGACGCT	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RAYFGRRLRR RRAYFGRRLRR 550 equence Was TATGTGATGA CAGGGCGGCT CTGCGTGTTG GGCGCAGGCT TAAGGGATG GCATAAGGCT GCATAAGGCT GCGCGCTTTG AGGGTTCTTC	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTGCT GAAAAGGTCG CGAGCGGCAT GCCAAACGGC TTGCCAAACGGC CCCATAGCGC GGCGCGGCCG	SEHHHDHDRTI : SEHHHDRDRTI 10 5: OPERVSAR PERGSAR 170 IN N. mening CAGTGGACG CATTCGTTGA GCAACCACA CATTCGGAA CATTCGCAA CATTCGAATCA TATCAAATCA GGAATTTGCA GGGCCATAA GGGTTTCTTCG	RORRCIPAR	EQ ID 139 TCA STAG STAG STTT CCG CCTCA STAG STTT CCG CCTG ATTC	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301 351 401 451	HTLTARVE : : HTLTTHVE 480 ERRARETFE : : RRAREAFE 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TTGTGCCGAA AACCGAGCGC GCGCGACGCT GTCGGACAAC	PKCRLKLNAAR PKCRLKLNAAR 490 550 5 RAYFGRRLRR RAYFGRRLRR 550 equence Was TATGTGATGA CAGGGCGGCT CTGCGTGTTG GGCGCAGGT TAAGGGATG GATAAGGTT GCCATCACAT AGGGTTCTTC GCCATCACAT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 60 57 FGCRRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCT GAAAAGGTCG CGAAACGGCAT TGCAATTT CGAGAAAGGC CCCATAGGGC GGCGCGGGCG GGCGCGGGCG CGCCGTTGAC	SEHHHDHDRTI : SEHHHDRDRTI 10 5: OLRVSAR PRESSAR 170 IN N. mening CAGTGGACG CATTCGTTGA GCAACCACA CATTCGAATCA TTCAAATCA CGATTTGCA CGATTTCCC CGATTTCCC CGATTTCCC CGATTTCCC CGATTTCCC CTTTCGCCC CTTTGACCCC	RORRCIPAM	EQ ID 139 TTCA STAG STTT CCGG CCTCA STTT CCGG CTCA STTT CCGG CTTC CTCA STTT CCGG CTTC CCA CATG CTTT CAGA	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301 351 401 451 501	HTLTARVE : : HTLTTHVE 480 ERRARETFE : : RRAREAFE 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTGTCGA TTGTCCGA TTGTCCGA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCGACGTT GTCGGACAAC GCGGCAGTTC	PKCRLKLNAAR PKCRLKLNAAR 490 550 5RAYFGRRLRR RAYFGRRLRR 550 equence Was TATGTGATGA CAGGGCGGCT CTGCGTGTTG GATGAGGATT TAAGGGAATT TAAGGGATT GCATAAGGCT GCGCGCTTTG AGGGTTCTTC GCCATCACAT GCGGTAGAGT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCT GAAAAGGTCG CGAGCGGCAT GCCAAACGGC TTGCAATTT CGAGAAAGGC CCCATAGCGC GGCGCGGGCG GGCGCGGGCG CGCCGTTGAC TTGTCGAGTT	SEHHHDHDRTT SEHHHDRDRTT 10 5. 10 5. 10 5. 10 PERSSAR PERGSAR 170 10 N. mening 10 CAGTGGACG 10 CATTCGTTGA 10 CATTCGAATCA 10 CAGTGGAA 10 CATTCGAATCA 10 CATTCGAATCA 10 CAGTGGAA 10 CATTCGCAC 10 CATTCGCAC 10 CATTTCGCAC 10 CATTCGCAC 10 CA	RORRCIPAM	EQ ID 139 TCA TTCA TTCA TTCA TTCA TTC TCGG TTC TTC	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301 351 401 451 501 551	HTLTARVE : : HTLTTHVE 480 ERRARETFE : : RRAREAFE 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TTGTCCGAA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCGACGGT GTCGGACAAC GCGGCACGGT ATGGCCAAC GCGGCACGGT GTCGGACAAC GCGGCACGGT ACGGCATCGG	PKCRLKLNAAR PKCRLKLNAAR 490 550 5RAYFGRRLRR RRAYFGRRLRR 550 equence Was TATGTGATGA CAGGGCGGCT TGCGTGTTG GATGAGGTTT TAAGGGAAT GCATAAGGCT GCATAAGGCT GCGCGCTTTG AGGGTTCTTC GCCATCACAT GCCGTAGAGT CGTGCGGCGCC	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRRPCPISF 560 5 S identified i ACGGACTGTA TGTTTTTGCT GAAAAGGTCG CCAAACGGC TTGCAATTGT CGAGAAAGGC CCCATAGGGC GGCGCGGGCG GGCGCGGGCG TTGTCGAGTT CGAGAAAGGC CCCATAGGGC CCCATAGGGC CGCGTTGAC TTGTCGAGTT GAAGGCAAAA	SEHHHDHDRTT SEHHHDRDRTT 10 5. 10 5. 10 5. 10 PERVSAR PERGSAR 170 A CAGTGGACG CTTCGTTGA GCAACCACA TTCAAATCA TTCAAATCA GGATTTGCA GGGCCATAA GGGTTTCTTCG TTTGACGCG TTTGACGCG CTTTGACGCGT CGCACGGTT CGCACAGGTT	RORRCIPAM	EQ ID 139 TTCA STAG STTT CCGG CTCA STTT CCGG CTCA STTC CCA STTC CATG STTC CATG STAG ST	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301 451 401 451 501 551 601	HTLTARVE : : HTLTTHVE 480 RRAAETFE : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCGACGGT GTCGGACAAC GCGCAGTCG ACGGCATCG GAACGGATTG ACGGCATCGG GAACGGATTG	PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR FRAYFGRRLRR FRAYFGRRLRR TATGTGATGA CAGGGCGGCT TAGGGGATGT GATGAGGTTTT TAAGGGAATG GCATAAGGCT GCGCATCATCA GCGCTACACAT GCGCTAGAGT CCGTGGCGGCG CCGTCGCGGT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTGCT GAAAAGCTCG CGAGCGGCAT GCCAAACGCC CTGCAATTT CGAGAAAGCC CCCATAGCGC CGCCGTTGAC TTGTCGAGTT GAAGGCAAAA CGCCGCCGAT	SEHHHDHDRTI : SEHHHDRDRTI 10 5. ODERVSAR PRGSAR TO IN N. mening CAGTGGACG CATTCGTTGACG CATTCGGAA CATTCGAATCACGATTCAAATCACGCGCAAAGTTTTTCACGCAAGTTTTTCACGCAAGTTTTTACACGCGGTTCGCCACAGGTTCCCAGCCCCCCCC	RORRCIPAR	EQ ID 139 ECTCA STAG STAG STAG STAG STAG STAG STAG STA	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 251 301 351 401 451 501 551 601 651	HTLTARVE : : HTLTTHVE 480 RRAAETFE : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCGACGGT GTCGGACAAC GCGCAGTCG ACGGCATTG ACGGCATTG ACGGCATTG TGTCCGGAAC TGTCCGGAAC	PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR FRAYFGRRLRR FRAYFGRRLRR TATGTGATGA CAGGGCGGCT TGGCGCAGTT GGCGCAGGT GCATAAGGCT TAAGGGAATG GCATAAGGCT GCGCATCACAT GCGCTACACAT GCGCTAGAGT CCGTGCGGCG CCGTCGCGGT GCGGACATCG	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTGCT GAAAAGCTCG CGAGCGGCAT GCCAAACGCC CTGCAATTT CGAGAAAGCC CCCATAGCGC CGCCGTTGAC TTGTCGAGTT GAAGGCAAAA CGCCGCCGAT GCAACGCC CGCCGTTGAC CGCCGCGAT GGAAGGCAAAA CGCCGCCGAT GGAAGGCAAAA	SEHHHDHDRTI : SEHHHDRDRTI : SEHHHDRDRTI	RORRCIPAR	EQ ID 139 ECTCA STAG STAG STAG STAG STAG STAG STAG STA	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 251 301 351 401 451 501 551 601 651 701	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TGTGCCGAA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCATCG ACGGCATCG ACGGCATCG ACGGCATCG GCACCGCATCG GCACCGCACC	PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKRAYFGRRLRR RRAYFGRRLRR TRAYFGRRLRR TATGTGATGA CAGGGCGGCT TGGCGCAGGTT GCGTATGG GCATAAGGCTT GCGTATGG GCATCACAT GCGGTAGAGT GCGTAGAGT GCGTAGGCGG GCGGCACATCG GCTTGGGCAG	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRPCPISF 560 5 Sidentified i ACGGACTGTA TGTTTTTGCA GAAAAGCTCC CGAGCGGCAT GCCAAACGGC CTTGCAATTT CGAGAAAGCC CCCGTTGAC TTGTCGAGTA CGCGCGCGTGAC GGATAGGCCAA CGCGCCGTTGAC GGATAGGCCAA CGCGCCGTTGAC GGATAGGCCAA CGCGCCGTTAACGC GGATAGCCCG GGCTTCAAAA	SEHHHDHDRTI : SEHHHDRDRTI 10 5: OURVSAR PRESAR 70 IN N. mening CAGTGGACG CTTCGTTGA CAGTGGAAC CTTCAATCA CAGTGGAAC CTTCAATCA CGCACCACA CGCACCACA CTTTGACGCG CTTTGACGCG CTCGCAAGGTT CCCAGCGCC CCCACAGGTT CCCACGCCCC CTCTGAAAGTT CCCAGCCCCC CTCTGAAAGTT AAGCTCATC	RORRCIPAM	EQ ID 139 TCA TTCA TCCA TC	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 251 301 351 401 451 501 551 601 651	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TGTGCCGAA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCATCG ACGGCATCG ACGGCATCG ACGGCATCG TGTCCGGAAC TGCGGAAC TGCGGAAC TGCCGCAAC TGCGCATCG TGCCGCAAC TGCCGCATCG CACGCCTTG	PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKCRLKLNAAR PKRAYFGRRLRR RRAYFGRRLRR TRAYFGRRLRR TATGTGATGA CAGGGCGGCT TGGCGCGGTT GGCGCAGGT GCATAAGGTT TAAGGGAATG GCATAAGGT GCGTACACAT GCGGTAGAGT CGTGCGGGT CCGTCGCGGT GCGGCACATCG GCTTGGGCAG TTGATTTCGT	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRPCPISF 560 5 Sidentified i ACGGACTGTA TGTTTTTGCA GAAAAGCTC CCAAAACGGC TTGCAATTT CGAGAAAGCC CCCATAGCGC TTGTCGAGT GAAGGCAAA CGCGCGCGTTGAC GGATAGCGC GGGTTGAAA CGCCGCCGAT GGATAGCCC GGGTTGAAAA CGCTGCACC GGCTTCAAAA CGCTTGACGC	SEHHHDHDRTI : SEHHHDRDRTI 10 5: OURVSAR PRESAR 70 IN N. mening CAGTGGACG CTTCGTTGA CAGTGGAAC CTTCAATCA CAGTGGAAC CTTCAATCA CGCACGAC CTTTGACGCG CTCGCAAGGTT CCAGCAGGTT CCAGCCGCC CGCACGGCC CGCACGCCC CGCACGCCC CGCCCC CGCACGCCC CGCCCC CGCACGCCC GCACGCCC CGCACGCC CGCCC CGCACGCC CGCCC GCCC GCCC GCCC CGCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCC CGCC CGCC CGCCC CGCC C	RORRCIPAM	EQ ID 139 TCA TTCA TCCA TC	NRH
The	g509 m509.pep g509 following p a509.seq 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	HTLTARVE : : HTLTTHVE 480 RRAAETFF : RRAAEAFF 540 artial DNA s ATGGTCGCTG ATTCGCGCAA TCTTCCAAGC GCCTGCGTGT ATACGGAACG CCGTTGTCGA TGTGCCGAA AACCGAGCGC GCGCGACGGT GTCGGACAAC GCGCATCG ACGGCATCG ACGGCATCG ACGGCATCG GCACCGCATCG GCACCGCACC	PKCRLKLNAAR	RQRYNRPQLFF : RRRYNRPQLFF 500 5 FGCRRTCPTLF : IGRRPCPISF 560 5 s identified i ACGGACTGTA TGTTTTTCTC GAAAAGCTC CGAGCGCAT GCCAAACGGC TTGCAATTTT CGAGAAAGCC CCCATAGCGC GGCGCGGGCG CGCCGTTGAC TTGTCGACTT GAAGCCAAA CGCCGCCGAT GGATAGCCC GGCTTCAAAA CGCCGCCGAT CGATAGCCC GGCTTCAAAA CGTTGACGCT AGCAGGATAGC CGTTGACGCT AGCAGGATAGC AGCAGGATAGC CGTTGACGCT AGCAGGATAGC AGCAGATAGC AGCAGGATAGC AGCAGGATAGC AGCAGGATAGC AGCAGGATAGC AGCAGGAT	SEHHHDHDRTI : SEHHHDRDRTI : SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHBRUSAR SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHHDRDRTI SEHHBRUSAR SEHBRUSAR SEHHBRUSAR SEHHBRUSAR SEHBRUSAR SEHBRUSAR SEHBRUSAR SEHBRUSAR SEHBRUSAR SEHBRUSAR SEHBRUSAR	RORRCIPAM	EQ ID 139 TCA STAG STAG STAG STAG STAG STAG STAT SAGA SAAC SAAC SAAC SAAC SAAC SAAC SAAC	NRH

			•			
901	GCGGATGCGG (CGGTTGAAAT	TCAAGACGGT	CTGGCGTTGC	ACTTCGGTCG	
951	GGTGCGCGGT					
1001	ACCGATTTGC					
1051	CAGGCTGCCT '					
1101	GGCGTTCGTG (GTGCACGTCT	TCGGCGATGT	TCAAAATCTG	GGCGAACAGG	
1151	CCGCAGGCCA	AGGTTAAATC	GTGGGTTTGT	TGTTCGTCCA	ATTGCGGCAA	
1201	TACTTTTTCA A					
	CCGTTTCGAC					
1251						
1301	GATTGTTTCA (
1351	GTTCAGAATA					
1401	AAATGTACCT (CAAATGCCGC	ATCCGTGCCA	AACCGTTCAC	ACTTTAACCG	
1451	CCCGTGTCCC	GAAATGCCGT	CTGAAGTTGA	ACGCCGCCCG	ACGGCAGCGT	
1501	TACAATCGCC					
	AACACGACAA					
1551						
1601	TTGGACGAAA '					
1651	TTTGGTCGTC (GGCTGCGGCG	GTTTGGGTGC	CGCCG.CCCT	GCCCTATCTC	
1701	GCCGCTTCCG	GCATCGGCAC	GCTGA			
This correspond	la to the amina	acid cemie	nce <seo ii<="" td=""><td>1308- ART</td><td>500 a>.</td><td></td></seo>	1308- ART	500 a>.	
-	וצ נט נווף מווווווכ	acia scque	ncc ord n	J 1370, OIG	307.00.	
a509.pep						
1	MVAVCDERTV (QWTLMAQFAQ	QGGLFLLFVE	AVVVFQACVL	EKLGNHIGVF	
51	ACVLAQVERH I					
101	LCRŚIRLEKA					
. 151	VGQRHHIAVD 1				-	
201	ERIAVAVAAD					
251	HAVVDFVVDA 1	EFVAARFAGL	PQAQQDSVDF	AAQPCQRVGI	GTAFALROOR	
301	ADAAVEIQDG :	LALHFGRVRG	ONGGNGRIVO	LPLHRFAVGF	PRFEPADGFR	
351	QAAFRAAASG					
	YFFNOCRAVV (
401						
451	VQNMQLHDFS :					
501	YNRPQLFXSE I	HHHDHDRTRQ	RRCIPAAVQP	PHPLGRNWHR	RAAETFRRAY	
	ECDDIDDECC I	RXPCPISPLP	ASAR*			
551	FORKLINGC		I LUI II V			
551	FGREAKINGC I		ribrii.			
	3.0% identity i	n 575 aa ov	erlap			
	3.0% identity i	n 575 aa ov		0 40	50	60
m509/a509 93	3.0% identity i	n 575 aa ov	erlap 20 30			
	3.0% identity i	n 575 aa ov 10 2 avqrtlmaqf <i>i</i>	erlap 20 30 AQQGGLFLLFVQ	QAVVVFQACVLI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93	3.0% identity i MVAVCDKR	n 575 aa ov 10 2 avortlmaoff	erlap 20 30 AQQGGLFLLFV(QAVVVFQACVLI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93	3.0% identity i MVAVCDKRI MVAVCDER'	n 575 aa ov 10 2 avortlmagfa : tvowtlmagfa	erlap 20 30 AQQGGLFLLFV(AQQGGLFLLFV	QAVVVFQACVLI :	EKLGNHIGVFA EKLGNHIGVFA	CVLAQVERH
m509/a509 93	3.0% identity i MVAVCDKRI MVAVCDER'	n 575 aa ov 10 2 avortlmagfa : tvowtlmagfa	erlap 20 30 AQQGGLFLLFV(QAVVVFQACVLI : EAVVVFQACVLI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93	3.0% identity i	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA	erlap 20 30 AQQGGLFLLFV(QAVVVFQACVLI : EAVVVFQACVLI	EKLGNHIGVFA EKLGNHIGVFA 50	CVLAQVERH CVLAQVERH 60
m509/a509 93	3.0% identity i MVAVCDKRI MVAVCDER	n 575 aa ov 10 2 avQRTLMAQF; : rvQwTLMAQF; 10 2	erlap 20 30 AQQGGLFLLFV 111111111111111111111111111111111	QAVVVFQACVLI : EAVVVFQACVLI 0 40	EKLGNHIGVFA EKLGNHIGVFA 50	CVLAQVERH
m509/a509 93	3.0% identity i MVAVCDKRI MVAVCDER	n 575 aa ov 10 2 avQRTLMAQF; : rvQwTLMAQF; 10 2	erlap 20 30 AQQGGLFLLFV(QAVVVFQACVLI : EAVVVFQACVLI 0 40	EKLGNHIGVFA EKLGNHIGVFA 50	CVLAQVERH
m509/a509 93 m509.pep a509	3.0% identity i	n 575 aa ov 10 2 avQRTLMAQF; : rvQwTLMAQF; 10 2 70 8 GTDEVCQTAFO	erlap 20 30 AQQGGLFLLFV AQQGGLFLLFV 20 30 BO 90 GKQTAAVVDKG	QAVVVFQACVLI : :	EKLGNHIGVFA EKLGNHIGVFA 50 110 LCRSIRLEKAE	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep	MVAVCDERMAN HVKAEHGYO	n 575 aa ov 10 2 avQRTLMAQF; : rvQwTLMAQF; 10 2 70 6 GTDEVCQTAFC	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA EKLGNHIGVFA 50 110 LCRSIRLEKAE	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER
m509/a509 93 m509.pep a509	MVAVCDERS	n 575 aa ov 10 2 AVQRTLMAQF; : TVQWTLMAQF; 10 2 70 6 GTDEVCQTAFC	erlap 20 30 AQQGGLFLLFV AQQGGLFLLFV 20 30 GKQTAAVVDKG	QAVVVFQACVLI : : :AVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA EKLGNHIGVFA 50 110 LCRSIRLEKAE 	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER
m509/a509 93 m509.pep a509 m509.pep	MVAVCDERS	n 575 aa ov 10 2 AVQRTLMAQF; : TVQWTLMAQF; 10 2 70 6 GTDEVCQTAFC	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : : :AVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA EKLGNHIGVFA 50 110 LCRSIRLEKAE	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER
m509/a509 93 m509.pep a509 m509.pep	MVAVCDKRI MVAVCDER! MVAVCDER! HVKAEHGY! HVEAEHGY!	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFC GTDEVCQTAFC	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDERE HVKAEHGY	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFO 70 8 GTDEVCQTAFO 70 8	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : EAVVVFQACVLI 0 40 C 100 FLQFFQIIQKLI 0 100 160	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep	MVAVCDKRI	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVG	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI 0 100 0 160 FVGQRRYIAVDI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDER MVAVCDER MVAVCDER HVKAEHGY HVEAEHGY ARFAHSAR	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVG	erlap 20 30 AQQGGLFLLFV(AQQGGLFLLFV(20 30 60 90 GKQTAAVVDKG(: GKQAAAVVDKG(40 150 FFGAGDFFVGR(QAVVVFQACVLI : EAVVVFQACVLI 0 40 TLQFFQIIQKLI MLQFFQIIEKFI 0 100 TFQGQRRYIAVD	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDER MVAVCDER MVAVCDER HVKAEHGY HVEAEHGY ARFAHSAR	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVG	erlap 20 30 AQQGGLFLLFV(AQQGGLFLLFV(20 30 60 90 GKQTAAVVDKG(: GKQAAAVVDKG(40 150 FFGAGDFFVGR(QAVVVFQACVLI : EAVVVFQACVLI 0 40 TLQFFQIIQKLI MLQFFQIIEKFI 0 100 TFQGQRRYIAVD	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDKRI	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI 0 100 FVGQRRYIAVDI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDKRI	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI	erlap 20 30 AQQGGLFLLFV(AQQGGLFLLFV(20 30 60 90 GKQTAAVVDKG(: GKQAAAVVDKG(40 150 FFGAGDFFVGR(QAVVVFQACVLI : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI 0 100 FVGQRRYIAVDI	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS 1	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC GTDEVCQTAFC 70 8 30 14 HNVGDGAAVG HNVGNGATVG	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : EAVVVFQACVLI 0 40 0 100 FLQFFQIIQKLI MLQFFQIIEKFI 0 100 0 160 FVGQRRYIAVDI :: FVGQRHHIAVDI 0 160	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI VEFVEFATV 180
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDER! MVAVCDER! MVAVCDER! HVKAEHGY! HVEAEHGY! ARFAHSAR! IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :AVVVFQACVLI D 40 D 100 FLOFFQIIQKLI	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI 180 240
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS 1 EAEHGIGS	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : :AVVVFQACVLI D 40 100	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS 1 EAEHGIGSV : :	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFC 70 6 HILLIIIII GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :AVVVFQACVLI D 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI 180 VEFVEFATV 180 240 FHLAVELGQ
m509/a509 93 m509.pep a509 m509.pep a509	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS 1 EAEHGIGSV : :	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFC 70 6 HILLIIIII GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI	erlap 20 30 AQQGGLFLLFV0 111111111111111111111111111111111111	QAVVVFQACVLI : :AVVVFQACVLI D 40 0 100 FLQFFQIIQKLI	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI 180 VEFVEFATV 180 240 FHLAVELGQ
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS EAEHGIGV KTEHGIGV	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFC 70 6 HILLIIIII GTDEVCQTAFC 70 6 HNVGDGAAVGI : : HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI : AAEGKTQGFGI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYS HVEAEHGYS ARFAHSARS ARFAHSARS EAEHGIGV KTEHGIGV	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 6 GTDEVCQTAFC 70 6 HILLIIIII GTDEVCQTAFC 70 6 HNVGDGAAVGI : : HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI : AAEGKTQGFGI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :AVVVFQACVLI D 40 100	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI 180 VEFVEFATV 180 240 FHLAVELGQ
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep	MVAVCDERS MVAVCDERS MVAVCDERS HVKAEHGYO : HVEAEHGYO ARFAHSARS ARFAHSARS EAEHGIGV : : KTEHGIGV 1	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 HNVGDGAAVGA HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14 HNVGNGATVGA 30 14	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI:	EKLGNHIGVFA	CVLAQVERH
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDER MVAVCDER MVAVCDER HVKAEHGY HVEAEHGY 1 ARFAHSAR ARFAHSAR KTEHGIGV 1 2	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 GTDEVCQTAFC 70 8 HNVGDGAAVGB HNVGNGATVGB 30 14 HNVGNGATVGB 30 14 90 20 AAEGKAQGFGB AAEGKTQGFGB	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI VEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 300
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep	MVAVCDKRI MVAVCDER MVAVCDER MVAVCDER HVKAEHGY HVEAEHGY ARFAHSARI ARFAHSARI KTEHGIGV 1 2 GFEKAHRE	n 575 aa ov 10 2 AVQRTLMAQFA : IVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGA HNVGNGATVGI 30 14 HNVGNGATVGI 30 14 HNVGNGATVGI 30 20 AAEGKAQGFGI AAEGKTQGFGI 90 20 DGHAVVDFVVI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 VEFVEFAAI 180 VEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 300 AAFALROOC
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDER! MVAVCDER! HVKAEHGYO : HVEAEHGYO ARFAHSARI ARFAHSARI KTEHGIGV. 1 2 GFEKAHRE :	n 575 aa ov 10 2 AVQRTLMAQFA : FVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI AAEGKTQGFGI 90 20 DGHAVVDFVVI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI SEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 AAFALRQQC :
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDER! MVAVCDER! HVKAEHGYO : HVEAEHGYO ARFAHSARI ARFAHSARI KTEHGIGV. 1 2 GFEKAHRE :	n 575 aa ov 10 2 AVQRTLMAQFA : FVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI AAEGKTQGFGI 90 20 DGHAVVDFVVI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI SEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 AAFALRQQC :
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDKRI MVAVCDERI MVAVCDERI HVKAEHGYO : HVEAEHGYO ARFAHSARI ARFAHSARI KTEHGIGV. 1 2 GFEKAHRE : GFKKAHRK	n 575 aa ov 10 2 AVQRTLMAQFA : IVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGA HNVGDGAAVGB HNVGDGAVGGT HNVGNGATUGI HNVGNGATUGI HNVGNGATUGI HNVGNGATUGI S 0 20 AAEGKAQGFGI AAEGKTQGFGI 90 20 50 20 DGHAVVDFVVI DGHAVVDFVVI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI VEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 AAFALRQQC : TAFALRQQR
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDKRI MVAVCDERI MVAVCDERI HVKAEHGYO : HVEAEHGYO ARFAHSARI ARFAHSARI KTEHGIGV. 1 2 GFEKAHRE : GFKKAHRK	n 575 aa ov 10 2 AVQRTLMAQFA : IVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGA HNVGDGAAVGB HNVGDGAVGGT HNVGNGATUGI HNVGNGATUGI HNVGNGATUGI HNVGNGATUGI S 0 20 AAEGKAQGFGI AAEGKTQGFGI 90 20 50 20 DGHAVVDFVVI DGHAVVDFVVI	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI : :	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI SEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 AAFALRQQC :
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509 m509.pep a509	MVAVCDKRI MVAVCDER' MVAVCDER' HVKAEHGY' : HVEAEHGY' ARFAHSARI ARFAHSARI 1 EAEHGIGV. 1 CFEKAHRE : GFKKAHRK 2	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI AAEGKTQGFGI DGHAVVDFVVI DGHAVVDFVVI 50 20	erlap 20	QAVVVFQACVLI:	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI SEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 AAFALRQQC : TAFALRQQR 300
m509/a509 93 m509.pep a509 m509.pep a509 m509.pep a509 m509.pep	MVAVCDKRI MVAVCDER' MVAVCDER' HVKAEHGY' : HVEAEHGY' ARFAHSARI ARFAHSARI 1 EAEHGIGV. 1 CFEKAHRE : GFKKAHRK 2	n 575 aa ov 10 2 AVQRTLMAQFA : TVQWTLMAQFA 10 2 70 8 GTDEVCQTAFC 70 8 30 14 HNVGDGAAVGI HNVGNGATVGI 30 14 90 20 AAEGKAQGFGI AAEGKTQGFGI DGHAVVDFVVI DGHAVVDFVVI 50 20	erlap 20 30 AQQGGLFLLFV0	QAVVVFQACVLI:	EKLGNHIGVFA	CVLAQVERH CVLAQVERH 60 120 FAAHTQTER FAAHTQTER 120 180 VEFVEFAAI VEFVEFATV 180 240 FHLAVELGQ FHLAVELGQ 240 300 AAFALRQQC : TAFALRQQR

```
ADAAVEAXDGLALHFGRVRGQNGGNGRIVQLPLHRFAVGFPRFEPADGFRQAAFRAAASG
m509.pep
          ADAAVEIQDGLALHFGRVRGQNGGNGRIVQLPLHRFAVGFPRFEPADGFRQAAFRAAASG
a509
                                             350
                                      340
               310
                       320
                              330
                                      400
                                             410
                                                     420
                              390
               370
                       380
          FFVDLAAAFVVHVFGDVQNLGEQAAGQGXIVGLLFVQLRQYFFNQCRAVVGSGQEFDCFD
m509.pep
          FFVDLAAAFVVHVFGDVQNLGEQAAGQGXIVGLLFVQLRQYFFNQCRAVVGSGQEFDRFD
a509
                                      400
                       380
                              390
               370
                              450
                                      460
                       440
               430
          NQRRGFFVQEVEQGLFQKFRVRRQSRVLWIVQNMQLHDFSLSSAVNIVNVPQMPHPCQTV
m509.pep
          NQRRGFFVQEVEQGLFQKFRVRRQSRVLWIVQNMQLHDFSLI-AVNTVNVPQMPHPCQTV
a509
                              450
                                      460
               430
                       440
               490
                              510
                       500
          HTLTARVPKCRLKLNAARRQRYNRPQLFFSEHHHDHDRTRQRRCIPAAVQPPHPLGRNRH
m509.pep
          HTLTARVPKCRLKLNAARRQRYNRPQLFXSEHHHDHDRTRQRRCIPAAVQPPHPLGRNWH
a509
                               510
                                       520
                                              530
                       500
                490
        480
                              570
                       560
               550
          RRAAETFRRAYFGRRLRRFGCRRTXPTLPLRVSARX
m509.pep
          RRAAETFRRAYFGRRLRRFGCRXPCPISPLPASARX
a509
                550
                        560
                               570
        540
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1399>:

```
g510.seq
               atgccttcgc ggacaccgca gggaaaaagg ggttattcct gccccaagcg
              ggatagtgcc ttttggcagg cgttgtccat atcggttatt ttacgcgcaa
           51
               aatcgccgat tgccaaatcg ccgccgttca gggaggtttt caataggtcg
          151 tggacgacgt tgagcgcggc cataatgacg atttttcgc tgtccgcgac
              geggeegect tegeggatgg etteggettt geegttgage atteegactg
          201
          251 cctgcaacag tgtgtctttt tcttctgccg gcgtgttgac agtcagccgg
          301 ggcgtgcatg acttcgatgt agacttgttc gatgttcatc ctttaatcct
          351 tattgctgcg tttcctgccg ttgggggagg cgcgctgcca gtgcgctga
This corresponds to the amino acid sequence <SEQ ID 1400; ORF 510.ng>:
     g510.pep
               MPSRTPQGKR GYSCPKRDSA FWQALSISVI LRAKSPIAKS PPFREVFNRS
              WTTLSAAIMT IFSLSATRPP SRMASALPLS IPTACNSVSF SSAGVLTVSR
               GVHDFDVDLF DVHPLILIAA FPAVGGGALP VR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1401>:

m510.seq

ATGCCTTCGC GGACACCGCA GGGNAAAAGG GGTTATTCCT GCGCCAAGCG GGATAGTGCT TTTTGGCAGG CGTTGTCCAT ATCGGCTATT TTACGCGCAA 101 AATCGCCGAT TGCCAAATCG CCGCCGTTCA GGGAGGTTTT CAACAGGTCG TGGACGACGT TGAGCGCGGC CATAATGACG ATTTTTTCGC TGTCCGCGAC GCGTCCGCCT TCGCGGATGG CTTCGGCTTT GCCGTTGAGC ATTCCGACTG 201 251 CCTGCAACAG TGTGTCTTTT TCTTCTGCCG GCGTGTTGAC GGTCAGCCGG 301 GGCGTGCAWG ACTTCsAtGT GGACTTGTTC GATGTTCATC CTTTAATCCT 351 TATTGCTGCG TTTCCTGCCA TTGGGGGAGG CGCGCTGCCA GTGCGCTGA

This corresponds to the amino acid sequence <SEQ ID 1402; ORF 510>:

- m510.pep MPSRTPOGKR GYSCAKRDSA FWQALSISAI LRAKSPIAKS PPFREVFNRS WTTLSAAIMT IFSLSATRPP SRMASALPLS IPTACNSVSF SSAGVLTVSR
 - GVXDFXVDLF DVHPLILIAA FPAIGGGALP VR*

Computer analysis of this amino acid sequence gave the following results:

```
Homology with a predicted ORF from N. gonorrhoeae
 ORF 510 shows 96.2% identity over a 132 aa overlap with a predicted ORF (ORF 510.ng)
 from N. gonorrhoeae:
      m510/g510
                                                    40
                                                             50
                                  20
                                           30
                         10
                  MPSRTPQGKRGYSCAKRDSAFWQALSISAILRAKSPIAKSPPFREVFNRSWTTLSAAIMT
      m510.pep
                  MPSRTPQGKRGYSCPKRDSAFWQALSISVILRAKSPIAKSPPFREVFNRSWTTLSAAIMT
      g510
                                           30
                                                    40
                                                             50
-- 500
                                                   100
                                                             110
                                                                      120
                                           90
                         70
                                  80
                  IFSLSATRPPSRMASALPLSIPTACNSVSFSSAGVLTVSRGVXDFXVDLFDVHPLILIAA
      m510.pep
                  IFSLSATRPPSRMASALPLSIPTACNSVSFSSAGVLTVSRGVHDFDVDLFDVHPLILIAA
      q510
                                                    100
                                                             110
                                                                      120
                                           90
                         70
                                  80
                        130
                  FPAIGGGALPVRX
      m510.pep
                  111:1111111111
                  FPAVGGGALPVRX
      q510
                        130
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1403>:
      a510.seq
               ATGCCTTCGC GGACACCGCA GGGAAAAAGG GGTTATTCCT GCGCCAAGCG
               GGATAGTGCT TTTTGGCAGG CGTTGTCCAT ATCGGCTATT TTACGCGCAA
            51
               AATCGCCGAT TGCCAAATCG CCGCCGTTCA GGGAGGTTTT CAACAGGTCG
           101
               TGGACGACGT TGAGCGCGGC CATAATGACG ATTTTTTCGC TGTCCGCGAC
               GCGTCCGCCT TCGCGGATGG CTTCGGCTTT GCCGTTGAGC ATTCCGACTG
           201
           251 CCTGCAACAG TGTGTCTTTT TCTTCTGCCG GCGTGTTGAC GGTCAGCCGG
               G.CGTGCATG ACTTCGATGT GGACTTGTTC GATGTTCATC CTTTAATCCT
           301
                TATTGCTGCG TTTCCTGCCG TTGGGGGAGG CGCGCTGCCA GTGCGCTGA
  This corresponds to the amino acid sequence <SEQ ID 1404; ORF 510.a>:
       a510.pep
                MPSRTPQGKR GYSCAKRDSA FWQALSISAI LRAKSPIAKS PPFREVFNRS
                WTTLSAAIMT IFSLSATRPP SRMASALPLS IPTACNSVSF SSAGVLTVSR
            51
               XVHDFDVDLF DVHPLILIAA FPAVGGGALP_VR*
           101
  m510/a510 97.0% identity in 132 aa overlap
                                   20
                                            30
                                                     40
                                                              50
                   MPSRTPQGKRGYSCAKRDSAFWQALSISAILRAKSPIAKSPPFREVFNRSWTTLSAAIMT
       m510.pep
                   MPSRTPQGKRGYSCAKRDSAFWQALSISAILRAKSPIAKSPPFREVFNRSWTTLSAAIMT
       a510
                                                     40
                          10
                                   20
                                            30
                                                    100
                                   80
                                            90
                                                             110
                   IFSLSATRPPSRMASALPLSIPTACNSVSFSSAGVLTVSRGVXDFXVDLFDVHPLILIAA
       m510.pep
                   IFSLSATRPPSRMASALPLSIPTACNSVSFSSAGVLTVSRXVHDFDVDLFDVHPLILIAA
       a510
                                                                      120
                                                    100
                                                             110
                          70
                                   80
                                            90
                         130
                   FPAIGGGALPVRX
       m510.pep
                   111:1111111111
                   FPAVGGGALPVRX
       a510
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1405>: g512.seq

atgaaagtgc ttgttttagg tgcgggtgtt gccggcgtat cctccgtgtg

```
51 gtatctggca gaggccggac atgaagtaac ggtcatcgac cgcaccgagg
         101 gtgtggcgat ggaaaccagt tttgccaatg caggccagct ttcttacggc
         151 tataccacge cttgggetge acceggtatt ccgaccaaag cactgaaacg
              qctqtttaaa agccatccgc ctttactgtt ccgccctgac ggcggcctgt
         251 atcaaatcga atggctgtgg cggatgctgc aaaactgcac ggcaacgcgc
         301 tatcaaatca ataaagagcg catggtcagg atttccgaat acagccgtga
         351 aatgttccgc cgttttgaag cgcaaaccga catgaatttt gagggacgca
         401 aaaaagggac gttgcagatt ttccgccaaa ccgaagaagt cgaagcggca
         451 aaacaagaca ttgccgtttt ggaacgctac ggcgtgccgt accgccgtct
          501 gaagcccgaa gaatgcgcag aattcgagcc tgcgctggca cgcgttaccg
              ccaaaattgt cggcggtctg cacctgcctg cggatgcgac cggcgactgc
          601 cgcctcttca ccgaaaacct gtacaaattg tgtcaagaga agggggtacg
          651 gttctacttc aaccaaacca tcagecgcat cgaecacaac gggctgcgca
         701 tcaaagccgt tgaaacgaaa cagggcggtt tgaaacagat gccgttgtct
         751 gcgcgctcgg ctgcttcagc aggactgtgt tggcgcagtt ggatctcaat
          801 ctgcccattt atcccgtcaa aggctattcc ttga
This corresponds to the amino acid sequence <SEQ ID 1406; ORF 512.ng>:
     g512.pep
              MKVLVLGAGV AGVSSVWYLA EAGHEVTVID RTEGVAMETS FANAGQLSYG
              YTTPWAAPGI PTKALKRLFK SHPPLLFRPD GGLYQIEWLW RMLQNCTATR
           51
          101 YQINKERMVR ISEYSREMFR RFEAQTDMNF EGRKKGTLQI FRQTEEVEAA
          151 KQDIAVLERY GVPYRRLKPE ECAEFEPALA RVTAKIVGGL HLPADATGDC
          201 RLFTENLYKL CQEKGVRFYF NQTISRIDHN GLRIKAVETK QGGLKQMPLS
          251 ARSAASAGLC WRSWISICPF IPSKAIP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1407>:
     m512.seq (partial)
              ...GTTTTGGAAC GCTACGGCGT GCCGTACCGC CGTCTGAAAC CCGAAGAATG
           1
                 TGCAGAATTT GAGCCTGCGC TGGCACGCGT TACCGCCAAA ATTGCCGGCG
           51
                 GCCTGCACCT GCCTGCAGAT GCGACCGGCG ACTGGCGCCT CTTCACTGAA
          101
                AACCTATACA AATTGTGTCA GGAAAAGGGC GTACGGTTTC ATTTCAACCA
          151
                 AAACATCAGC CGCATCGACC ACAACGGGCT GCGCATCAAA ACCGTTGAAA
          201
                 CCAAACAGGG CGGTTTGAAG CAGATGCCGT TGTCTGCGCG CTCGGTTGCT
          251
                 TCAGCAGGAC GGTTTTGGCG CAGTTGGATC TCAATCTGCC CATTTATCCC
          301
                 GTCAAAGGCT ATTCCTTGA
          351
This corresponds to the amino acid sequence <SEQ ID 1408; ORF 512>:
                (partial)
     m512.pep
               ..VLERYGVPYR RLKPEECAEF EPALARVTAK IAGGLHLPAD ATGDWRLFTE
            1
                 NLYKLCOEKG VRFHFNONIS RIDHNGLRIK TVETKQGGLK QMPLSARSVA
                 SAGRFWRSWI SICPFIPSKA IP*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 512 shows 93.4% identity over a 122 aa overlap with a predicted ORF (ORF 512.ng)
from N. gonorrhoeae:
     m512/g512
                                                                 20
                                               VLERYGVPYRRLKPEECAEFEPALARVTAK
     m512.pep
                                               TDMNFEGRKKGTLOIFROTEEVEAAKQDIAVLERYGVPYRRLKPEECAEFEPALARVTAK
     g512
                              140
                                       150
                                                 160
                                                           170
                                                                     180
                    130
                                    50
                                             60
                                                       70
                  IAGGLHLPADATGDWRLFTENLYKLCQEKGVRFHFNQNISRIDHNGLRIKTVETKQGGLK
     m512.pep
                  IVGGLHLPADATGDCRLFTENLYKLCQEKGVRFYFNQTISRIDHNGLRIKAVETKQGGLK
     g512
                              200
                                       210
                                                 220
                    190
                                   110
                                            120
                         100
                  QMPLSARSVASAGRFWRSWISICPFIPSKAIP
     m512.pep
```

g512

-- ****

763

270 260 250

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1409>:
```

```
a512.seq
         ATGAAAGTGC TTGTTTTAGG TGCTGGTGTT GCCGGCGTAT CTTCCGCGTG
      1
         GTATCTGGCA GAGGCAGGAC ATGAAGTAAC GGTCATCGAC CGCGCCGAGG
     51
    101 GCGTGGCGAT GGAAACCAGT TTTGCCAACG CAGGCCAGCT TTCTTACGGC
    151 TATACCACGC CTTGGGCTGC ACCCGGTATT CCGACCAAAG CACTGAAATG
    201 GCTGTTTAAA AGCCATCCGC CTTTGCTGTT TCGCCCCGAC GGCAGCCTGT
    251 ATCAAATCGA ATGGCTGTGG CAGATGCTGC AACACTGCAC GGCAGCGCGC
    301 TATCAAATCA ATAAAGAGCG CATGGTCAGG ATGTCCGAAT ACAGCCGTGA
    351 AATGTTCCGC CGTTTTGAAG CGCAAACCGG CATGAATTTT GAGGGACGCA
    401 AAAAAGGGAC GTTGCAGATT TTCCGCCAAA CCAAAGAAGT CGAAGCGGCA
    451 AAACAAGACA TTGCCGTTTT GGAACGCTAC GGCGTGCCGT ACCGCCGTCT
    501 GAAGCCCGAA GAATGCGCAG AATTCGAGCC TGCGCTGGCA CGCGTTACCG
    551 CCAAAATTGC CGGCGGCCTG CACCTGCCCG CAGACGCGAC CGGCGACTGC
    601 CGCCTCTTCA CTGAAAACCT GTACAAATTG TGTCAGGAAA AGGGCGTACG
    651 GTTTCATTTC AACCAAACCA TCAGCCGCAT CGACCACAAC GGGCTGCGCA
    701 TCAAAACCGT TGAAACGAAA CAGGGCGGTT TGAAGCAGAT GCCGTTGTCT
    751 GCGCGCTCGG CTGCTTCAGC AGGACGGTTT TGGCGCAAGT GGATCTCAAT
    801 CTGCCGATTT ATCCCGTCAA AGGCTATTCC TTGA
```

This corresponds to the amino acid sequence <SEQ ID 1410; ORF 512.a>:

```
a512.pep
         MKVLVLGAGV AGVSSAWYLA EAGHEVTVID RAEGVAMETS FANAGQLSYG
         YTTPWAAPGI PTKALKWLFK SHPPLLFRPD GSLYQIEWLW QMLQHCTAAR
     51
```

YQINKERMVR MSEYSREMFR RFEAQTGMNF EGRKKGTLQI FRQTKEVEAA 151 KQDIAVLERY GVPYRRLKPE ECAEFEPALA RVTAKIAGGL HLPADATGDC

201 RLFTENLYKL CQEKGVRFHF NQTISRIDHN GLRIKTVETK QGGLKQMPLS

251 ARSAASAGRF WRKWISICRF IPSKAIP*

m512/a512 95.9% identity in 122 aa overlap

	, ,						
					10	20	30
m512.pep				VLERYG	/PYRRLKPEE	CAEFEPALAF	VTAK
	•			111111	[1111]	1111111111	
a512	TGMNFEGRKK	GTLQIFR(TKEVEAAK	DIAVLERYG	/PYRRLKPEE	CAEFEPALAF	₹VTAK
	130	140	150	160	170	180	
	40		50	60	70	80	90
m512.pep	IAGGLHLPAD	ATGDWRL	FTENLYKLC	QEKGVRFHFN(ONISRIDHNG	LRIKTVETKO	QGGLK
	1111111111	1111 11	11111111	1111111111	1:11111111	1111111111	1111
a512	IAGGLHLPAD	ATGDCRL	FTENLYKLC	QEKGVRFHFN(OTISRIDHNO	LRIKTVETKO	QGGLK
	190	200	210	220	230	240	
	100		110	120			
m512.pep	QMPLSARSVA	SAGREWR	SWISICPFI	PSKAIPX			
• •	111111111:1	1111111	:111111	1111111			
a512	QMPLSARSAA	SAGREWR	KWISICRFI	PSKAIPX			
	250	260	270				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1411>: q513.seq

```
ATGGGTTCCG CGCCGAACGC CGCCGCCGCC GCCGAAGTGA AACACCCTGT
51 TTCGCAAGGT ATGATTCAAA TGCTGGGCGT GTTTGTCGAT ACCATCATCG
101 TTTGTTCTTG CACCGCCTTC ATCATCTTGA TTTACCAACA GCCTTATGGC
151 GATTTGAGCG GTGCGGCGCT GACGCAGGCG GCGATTGTCA GCCAAGTGGG
201 GCAATGGGGC GCGGGTTTCC TCGCCGTCAT CCTGTTTATG TTTGCCTTTT
251 CCACCGTTAT CGGCAACTAT GCCTATGCCG AGTCCAACGT CCAATTCATC
301 AAAAGCCATT GGCTGATTAC CGCCGTTTTC CGTATGCTGG TTTTGGCGTG
351 GGTCTATTTC GGCGCGGTTG CCAATGTGCC TTTGGTCTGG GATATGGCGG
401 ATATGCCGAT GGGCATCATG GCGTGGATCA ACCTCGTCGC CATCCTGCTG
451 CTCTCGCCat TGGCGTTTAT GCTGCTGCGC GATTACACCG CCAAGCTGAA
```

```
AATGGGCAAA GACCCCGAGT TCAAACTTTC CGAACATCCG GGCCTGAAAC
           GCCGCATCAA ATCCGATGTT TGGTAA
 This corresponds to the amino acid sequence <SEQ ID 1412; ORF 513.ng>:
 g513.pep
           MGSAPNAAAA AEVKHPVSQG MIQMLGVFVD TIIVCSCTAF IILIYQQPYG
       51 DLSGAALTQA AIVSQVGQWG AGFLAVILFM FAFSTVIGNY AYAESNVQFI
      101 KSHWLITAVF RMLVLAWVYF GAVANVPLVW DMADMAMGIM AWINLVAILL
           LSPLAFMLLR DYTAKLKMGK DPEFKLSEHP GLKRRIKSDV W*
      151
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1413>:
m513.seq
           ATGGGTTCCG CGCCGAACGC CGCCGCCGCC GCCGAAGTGA AACACCCTGT
        1
           TTCGCAAGGT ATGATTCAAA TGCTGGGCGT GTTTGTCGAT ACCATCATCG
       51
      101 TTTGTTCTTG CACCGCCTTC ATCATCTTGA TTTACCAACA GCCTTATGGC
      151 GATTTGAGCG GTGCGGCGCT GACGCAGGCG GCGATTGTCA GCCAAGTGGG
           GCAATGGGGC GCGGGTTTCC TCGCCGTCAT CCTGTTTATG TTTGCCTTTT
      251 CCACCGTTAT CGGCAACTAT GCCTATGCCG AGTCCAACGT CCAATTCATC
      301 AAAAGCCATT GGCTGATTAC CGCCGTTTTC CGTATGCTGG TTTTGGCGTG
           GGTCTATTTC GGCGCGGTTG CCAATGTGCC TTTGGTCTGG GATATGGCGG
      351
      401 ATATGGCGAT GGGCATCATG GCGTGGATCA ACCTCGTCGC CATCCTGCTG
      451 CTCTCGCCat TGGCGTTTAT GCTGCTGCGC GATTACACCG CCAAGCTGAA
      501 AATGGGCAAA GACCCCGAGT TCAAACTTTC CGAACATCCG GGCCTGAAAC
      551 GCCGCATCAA ATCCGATGTT TGGTAA
  This corresponds to the amino acid sequence <SEQ ID 1414; ORF 513>:
  m513.pep
        1 MGSAPNAAAA AEVKHPVSQG MIQMLGVFVD TIIVCSCTAF IILIYQQPYG
       51 DLSGAALTQA AIVSQVGQWG AGFLAVILFM FAFSTVIGNY AYAESNVQFI
           KSHWLITAVF RMLVLAWVYF GAVANVPLVW DMADMAMGIM AWINLVAILL
           LSPLAFMLLR DYTAKLKMGK DPEFKLSEHP GLKRRIKSDV W*
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 513 shows 99.5% identity over a 191 aa overlap with a predicted ORF (ORF 513.ng)
  from N. gonorrhoeae:
  m513/g513
                               20
                                         30
                                                  40
                                                            50
                                                                     60
              MGSAPNAAAAAEVKHPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQA
  m513.pep
              MGSAPNAAAAEVKHPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQA
  g513
                                                            50
                                                                     60
                      10
                               20
                                         30
                                                  40
                      70
                                80
                                         90
                                                 100
                                                           110
                                                                    120
              AIVSQVGOWGAGFLAVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYF
  m513.pep
               AIVSQVGQWGAGFLAVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYF
  q513
                      70
                               80
                                         90
                                                 100
                                                           110
                                                                    120
                                                 160
                                                           170
                     130
                               140
                                        150
              GAVANVPLVWDMADMAMGIMAWINLVAILLLSPLAFMXLRDYTAKLKMGKDPEFKLSEHP
  m513.pep
               GAVANVPLVWDMADMAMGIMAWINLVAILLLSPLAFMLLRDYTAKLKMGKDPEFKLSEHP
  g513
                               140
                                        150
                                                 160
                                                           170
                                                                    180
                     130
                     190
  m513.pep
               GLKRRIKSDVW
               11111111111
  q513
               GLKRRIKSDVW
                     190
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1415>: a513.seq

m513.pep

- Victor

```
1 ATGAACGAGA ACTTTACCGA ATGGCTGCAC GGCTGGGTCG GCGCCATCAA
              CGATCCGATG TGGTCATACT TGGTTTATNT GCTTTTGGGT ACGGGGCTTT
         101 TCTTCACCGT AACCACGGC TTTGTCCAAT TCCGCCTGTT CGGGCGCAGC
         151 ATCAAAGAAA TGCTCGGCGG CCGCAAACAG GGGGACGACC CTCACGGCAT
         201 CACGCCGTTT CAGGCATTTG TAACCGGCCT TGCCAGCCGC GTGGGCGTGG
              GCANTATCGC GGGCGTGGCC ATCGCCATCA AAGTCGGCGG ACCGGGCGCG
              GTGTTTTGGA TGTGGGTAAC CGCCTTAATC GGTATGAGTT CGGCGTTTGT
         301
              CGAATCTTCG CTGGCGCAGC TCTTTAAAGT CCGCGACTAC GACAACCACC
         401 ATTTCCGGGG CGGCCCTGCC TACTACATCA CTCAAGGGCT GGGGCAGAAA
              TGGCTGGGCG TGTTGTTCGC CCTGAGCCTG ATTTTCTGTT TCGGCTTTGT
         451
              GTTTGAAGCG GTTCAGACCA ATACCATTGC CGATACCGTC AAAGCGGCGT
         501
              GGGGTTGGGA GCCTCATTAT GTCGGCGTCG CCCTGGTGAT TTTAACCGCG
         601 CCGATTATCT TCGGCGGCAT CAGGCGCATA TCTAAAGCGG CGGAAATCGT
              CGTCCCCCTG ATGGCGGTTT TGTACCTCTT TATCGCGCTT TTCATCATTT
         651
              TGACCAATAT TCCGATGATT CCGGACGTGT TCGGTCAGAT TTTTTCGGGC
         701
         751 GCGTTCAAAT TCGACGCGGC AGCAGGCGGC TTACTCGGCG GTCTGATTTC
              GCAAACGATG ATGATGGGCA TCAAACGCGG CCTGTATTCC AACGAGGCGG
         801
         851 GTATGGGTTC CGCGCCGAAC GCCGCCGCCG CCGCCGAAGT GAAACACCCT
         901 GTTTCGCAAG GTATGATTCA AATGCTGGGC GTGTTTGTCG ATACCATCAT
         951 CGTTTGTTCT TGCACCGCCT TCATCATCTT GATTTACCAA CAGCCTTACG
              GCGATTTGAG CGGTGCGGCG CTGACGCAGG CGGCGATTGT CAGCCAAGTG
        1051 GGGCAATGGG GCGCGGGCTT CCTCGCCGTC ATCCTGTTTA TGTTTGCCTT
        1101 TTCCACCGTT ATCGGCAACT ATGCCTATGC CGAGTCCAAC GTCCAATTCA
              TCAAAAGCCA TTGGCTGATT ACCGCCGTTT TCCGTATGCT GGTTTTGGCG
        1151
              TGGGTCTATT TCGGCGCGGT TGCCAATGTG CCTTTGGTCT GGGATATGGC
        1201
        1251 GGATATGGCG ATGGGCATTA TGGCGTGGAT CAACCTTGTC GCCATCCTGC
        1301 TGCTCTCGCC CTTGGCGTTT ATGCTGCTGC GCGATTACAC CGCCAAGCTG
        1351 AAAATGGGCA AAGACCCCGA GTTCAAACTT TCCGAACATC CGGGCCTGAA
        1401 ACGCCGTATC AAATCCGACG TTTGGTAA
This corresponds to the amino acid sequence <SEQ ID 1416; ORF 513.a>:
    a513.pep
              MNENFTEWLH GWVGAINDPM WSYLVYXLLG TGLFFTVTTG FVQFRLFGRS
              IKEMLGGRKQ GDDPHGITPF QAFVTGLASR VGVGNIAGVA IAIKVGGPGA
          51
              VFWMWVTALI GMSSAFVESS LAQLFKVRDY DNHHFRGGPA YYITQGLGOK
              WLGVLFALSL IFCFGFVFEA VQTNTIADTV KAAWGWEPHY VGVALVILTA
         151
              PIIFGGIRRI SKAAEIVVPL MAVLYLFIAL FIILTNIPMI PDVFGQIFSG
         201
              AFKFDAAAGG LLGGLISQTM MMGIKRGLYS NEAGMGSAPN AAAAAEVKHP
         251
              VSQGMIQMLG VFVDTIIVCS CTAFIILIYQ QPYGDLSGAA LTQAAIVSQV
         301
              GOWGAGFLAV ILFMFAFSTV IGNYAYAESN VQFIKSHWLI TAVFRMLVLA
              WVYFGAVANV PLVWDMADMA MGIMAWINLV AILLLSPLAF MLLRDYTAKL
              KMGKDPEFKL SEHPGLKRRI KSDVW*
m513/a513 100.0% identity in 191 aa overlap
                                                               20
                                                     10
                                              MGSAPNAAAAEVKHPVSQGMIQMLGVFVD
    m513.pep
                                              DAAAGGLLGGLISQTMMMGIKRGLYSNEAGMGSAPNAAAAAEVKHPVSQGMIQMLGVFVD
     a513
                                       280
                                                290
                                                          300
                              270
                                  50
                                            60
                                                     70
                         40
                 TIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFLAVILFMFAFSTVIGNY
     m513.pep
                 TIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFLAVILFMFAFSTVIGNY
     a513
                    320
                             330
                                       340
                                                350
                                           120
                                                    130
                 AYAESNVOFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMADMAMGIMAWINLVAILL
     m513.pep
                 AYAESNVQFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMADMAMGIMAWINLVAILL
     a513
                    380
                              390
                                       400
                                                410
                                                          420
                        160
                                 170
                                           180
```

LSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX

WO 99/57280 PCT/US99/09346

460

766

LSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX

a513

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1417>: g515.seq atggttcaaa tacaggttgt gcgcgccgcc ggcgttgccc gtggtctgca ttccgagttt gcgcgcgctg taactgccga ggaaatagcc ttcgacaatg 101 ccgttttgaa tcacgaagcg cggcgcggtg gcaacacctt ccgcatcaaa 151 atagctgctg cggaaagagc gggggatgtg cggttcttcg cgcaggttga 201 ggaaatcggg caggactttt ttgccgatgc tgtcgatcag gaaactgctt 251 tggcggtaga gcgcgccgcc ggagagtgtg ccgacgaggt gtccgatcag 301 cccgcccgaa acggtggtat cgaagaggac ggggtagctg cctgtcggga tgctgcggct gccgagtcgg cgcaaagtgc ggcgggcggc ggtttgaccg 351 401 atggtttegg ggctgtccat atccggatgg cggcaggcgg aatcgtacca 451 gtagtcgcgc tgcattccgt tttcgtcggc ggcgacgacg ctgcaggaaa 501 tgctgtggtg cgtgctttgc cggtgtgcgg caaaaccgtg ggtgttgccg 551 taaacgtatt ggtactgtcc ggtttgcacc gccgcgcctt cggagttttc 601 gatgcggctg tccgtgtcca acgctgcctg ttcgcattgt tttgccaagc cgacggcggc ttccgtatcc aaatcccatt cgtggtaaag gtcggggtcg 701 ccgatgtgtt gcgccatcaa ctcggggtcg gcaagtccgg cgcaaccgtc 751 ttcggcggtg tggcgggcga tgtcggcggc ggcgcggacg gtgtcgcgca 801 gggcttgttc ggagaagtcg gcggtgccgg cgcggccttt gcgtttgccg 851 acgtaaacgg taatgtccag cgatttgtcc tgctggaact cgatttgttc 901 gatttcgccc aagcgcacgc tgacgctttg tccgagcgat tcgctgaagt 951 cggcttcggc ggcggtcgcg cccgctgctt ttgccaagtc gagcgtgcgg 1001 cggcagaggt cgaggagttc ggaagcggtg tggttgaaca gcataacaat 1051 ctttcttggt ggagcgttgt ggcattttaa This corresponds to the amino acid sequence <SEQ ID 1418; ORF 515.ng>: g515.pep 1 MVOIOVVRAA GVARGLHSEF ARAVTAEEIA FDNAVLNHEA RRGGNTFRIK 51 IAAAERAGDV RFFAQVEEIG ODFFADAVDO ETALAVERAA GECADEVSDO 101 PARNGGIEED GVAACRDAAA AESAQSAAGG GLTDGFGAVH IRMAAGGIVP 151 VVALHSVFVG GDDAAGNAVV RALPVCGKTV GVAVNVLVLS GLHRRAFGVF DAAVRVQRCL FALFCQADGG FRIQIPFVVK VGVADVLRHQ LGVGKSGATV 251 FGGVAGDVGG GADGVAQGLF GEVGGAGAAF AFADVNGNVQ RFVLLELDLF 301 DFAQAHADAL SERFAEVGFG GGRARCFCQV ERAAAEVEEF GSGVVEQHNN 351 LSWWSVVAF* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1419>: m515.seq (partial) 1 ..GGAAAGAGCG GGGGATGTGC GTTCTTCGCG CAGGTTGAGG AAATCGGGCA GGACTTTTCT GCCGATGCTG TCGATCAGGA AACTGCTTTG GCGGTAGAGC 101 GCGCCGCCGG AGAGTGCGCC GACGAGGTGT CCGATAAGAC CGCCCGAAAC GGTGGTATCG AAGAGGACGG GGTAGCTGCC TGTCGGGATG CTGCGGCTGC CGAGTCGGCG CAAAGTGCGG CGGGCGGCGG TTTGACCGAT GGTTTCGGGG 201 CTGTCCATAT CCGGATGGCG GCAGGCGGAA TCGTACCAGT AGTCGCGCTG 251 CATGCCGTTT TCGTCGGCGG CAACGACGCT GCAGGAAATG CTGTGGTGCG 351 TGCCTTGCCG GTGTGCGGCA AAACCGTGGG TGTTGCCGTA AACGTATTGG TAATGGCCGG TTTGCACCGC CGCGCCTTCG GAGTTTTCGA TGCGCTCATC 401 CTCGTTCAGG GCGGCTTGTT CGCATTGTTT TGCCAAGCCG ACGGCGGCTK 451 501 CCGTATCCAA ATCCCATTCG TGGTAAAGGT CGGGGTCGCC GATGTGTTTT GCCATCAGAC AGGCATCGGC AAGTCCGGCG CAACCGTCTT CGGCGGTGTG 551 GCGGGCGATG TCGATGGCGG CTTTGACGGT GTCTTGCAGG GCTTTTTCGG 651 AGAAGTCGGC AGTACTGGCG CGGCCTTTGC GTTTGCCGAC GTAAACGGTA 701 ATGTCCAGCG ACTTGTCCTG CTGGAACTCG ATTTGTTBGA TTTBGCCCAG 751 CCGCACGCTG ACGCTTTGTC CCAATGATTC GCTGAAATCG GCTTCGGCGG 801 CGGTTGCGCC CGTCGCTTTT GCCAAGTCGA GCGTGCGGCG GCAGAGGTCG 851 AGGAGTTCGG AAGCGGTGTG GTTGAACAGC ATAGAAATCT TTCTTGATGA 901 TGCTTTGCGG CATTTTAA This corresponds to the amino acid sequence <SEQ ID 1420; ORF 515>: m515.pep (partial)

```
1 ..GKSGGCAFFA QVEEIGQDFS ADAVDQETAL AVERAAGECA DEVSDKTARN
51
      GGIEEDGVAA CRDAAAAESA QSAAGGGLTD GFGAVHIRMA AGGIVPVVAL
      HAVFVGGNDA AGNAVVRALP VCGKTVGVAV NVLVMAGLHR RAFGVFDALI
101
      LVQGGLFALF CQADGGXRIQ IPFVVKVGVA DVFCHQTGIG KSGATVFGGV
151
       AGDVDGGFDG VLQGFFGEVG STGAAFAFAD VNGNVQRLVL LELDLXDXAQ
201
       PHADALSQXF AEIGFGGGCA RRFCQVERAA AEVEEFGSGV VEQHRNLSXX
251
       CFAAF*
301
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 515 shows 85.9% identity over a 304 aa overlap with a predicted ORF (ORF 515.ng) from N. gonorrhoeae:

m515/g515

m515.pep				.	20 VEEIGQDFSA	30 DAVDQETALA
g515	AEEIAFDNAV	LNHEARRGGN 40		:: RAGDVRFFAQ 60	 VEEIGQDFFA 70	IIIIIIIIIIIIII DAVDQETALA 80
m515.pep g515	40 VERAAGECAD VERAAGECAD 90	:	ШШШШ	шшші	ШШШ	1111111111
m515.pep g515	100 GGIVPVVALH GGIVPVVALH 150	: :	120 GNAVVRALPV GNAVVRALPV	ШШШ	140 VLVMAGLHRR :: VLVLSGLHRR 190	
m515.pep g515	160 VQGGLFALFC VQRCLFALFC 210	11111 1111		1: 1:	11111111111	111 11 111
m515.pep g515	11:11111:	:	$\Pi\Pi\Pi\Pi:\Pi\Pi$	$\Pi\Pi + \Pi \bar{\Pi}$	260 PHADALSQXFA : WHADALSERFA 310	1:11111 11
m515.pep g515	280 RFCQVERAAA CFCQVERAAA 330	ШШШШ	ШШ	:		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1421>: a515.seq

oro.seq					
1	ATGGTTCAAA	TAAAGGTTGT	GCGCGCCGCC	GGCGTTGCCC	GTGGTCTGCA
51	TTCCGAGTTT	GCGCGCGCTG	TAACTGCTGA	GGAAATAGCC	TTCGACAATG
101	CCGTTTTGAA	TCACGAAGCG	CGGTGCGGTG	GCAACGCCTT	CCGCATCAAA
151	ATAGCTGCTG	CGGAAAGAGC	GGGGGATGTG	CGGTTCTTCG	CGCAGGTTGA
201	GGAAATCGGG	CAGGACTTTT	TTGCCGATGC	TGTCGATCAG	GAAACTGCTT
251	TGGCGGTAGA	GCGCTCCGCC	GGAGAGTGCG	CCGACGAGGT	GTCCGATAAG
301	ACCGCCCGAA	ACGGTGGTAT	CGAAGAGGAC	GGGGTAGTTG	CCTGTCGGGA
351	TGCTGCGGCT	GCCGAGTCGG	CGCAAAGTGC	GGCGGGCGGC	GGTTTGACCG
401	ATGGTTTCGG	GGCTGTCCAT	ATCCGGATGG	CGGCAGGCGG	AATCGTACCA
451	GTAGTCGCGC	TGCATGCCGT	TTTCGTCGGC	GGCAACGACG	CTGCAGGAAA
501	TGCTGTGGTG	CGTGCTTTGC	CGGTGTGCGG	CAAAACCGTA	GGTGTTGCCG

768

```
551 TAAACGTATT GGTAATGGCC GGTTTGCACC GCCGCGCCTT CGGAGTTTTC
         601 GATGCGCTCA TCCTCGTTCA GGGCGGCTTG TTCGCATTGT TTTGCCAAGC
         651 CGACGGCGGC TTCCGTATCC AAATCCCATT CGTGGTAAAG GTCGGGGTCG
         701 CCGATGTGTT GCGCCATCAA CTCGGGGTCG GCAAGTCCGG CGCAACCGTC
         751 TTCGGCGGTG TGGCGGGCGA TGTCNNNNGC GGCGCGGACG GTGTCGCGCA
         801 GGGCTTGTTC GGAGAAATCG GCGGTGCCGG CGCGGCCTTT GCGTTTGCCG
         851 ACGTAAACGG TAATGTCCAG CGACTTGTCC TGCTGAAACT CGATTTGTTC
         901 GATTTCGCCC AGCCGCACGC TGACGCTTTG TCCCAATGAT TCGCTGAAAT
         951 CGGCTTCGGC GGCGGTTGCG CCCGTCGCTT TTGCCAAGTC GAGCGTGCGG
        1001 CGGCAGAGGT CGAGGAGTTC GGAAGCGGTG TGGTTGAACA GCATAGAAAT
        1051 CTTTCTTGAT GATGCTTTGC GGCATTTTAA
This corresponds to the amino acid sequence <SEQ ID 1422; ORF 515.a>:
    a515.pep
             MVQIKVVRAA GVARGLHSEF ARAVTAEEIA FDNAVLNHEA RCGGNAFRIK
          51 IAAAERAGDV RFFAQVEEIG QDFFADAVDQ ETALAVERSA GECADEVSDK
         101 TARNGGIEED GVVACRDAAA AESAQSAAGG GLTDGFGAVH IRMAAGGIVP
             VVALHAVFVG GNDAAGNAVV RALPVCGKTV GVAVNVLVMA GLHRRAFGVF
         151
             DALILVQGGL FALFCQADGG FRIQIPFVVK VGVADVLRHQ LGVGKSGATV
         201
         251 FGGVAGDVXX GADGVAQGLF GEIGGAGAAF AFADVNGNVQ RLVLLKLDLF
         301 DFAQPHADAL SQ*FAEIGFG GGCARRFCQV ERAAAEVEEF GSGVVEQHRN
             LS**CFAAF*
         351
m515/a515 92.1% identity in 304 aa overlap
                                                         20
                                                10
                                         GKSGGCAFFAQVEEIGQDFSADAVDQETALA
    m515.pep
                                          AEEIAFDNAVLNHEARCGGNAFRIKIAAAERAGDVRFFAQVEEIGQDFFADAVDQETALA
    a515
                                    50
                                             60
                                                      70
                            40
                                                 70
                               50
                                        60
                VERAAGECADEVSDKTARNGGIEEDGVAACRDAAAAESAQSAAGGGLTDGFGAVHIRMAA
    m515.pep
                VERSAGECADEVSDKTARNGGIEEDGVVACRDAAAAESAQSAAGGGLTDGFGAVHIRMAA
     a515
                                                     130
                                            120
                          100
                                   110
                                                         140
                                                                  150
                                                130
                                       120
                     100
                              110
                GGIVPVVALHAVFVGGNDAAGNAVVRALPVCGKTVGVAVNVLVMAGLHRRAFGVFDALIL
    m515.pep
                GGIVPVVALHAVFVGGNDAAGNAVVRALPVCGKTVGVAVNVLVMAGLHRRAFGVFDALIL
     a515
                                                     190
                                                              200
                           160
                                   170
                                            180
                  150
                                                190
                              170
                                       180
                {\tt VQGGLFALFCQADGGXRIQIPFVVKVGVADVFCHQTGIGKSGATVFGGVAGDVDGGFDGV}
     m515.pep
                VQGGLFALFCQADGGFRIQIPFVVKVGVADVLRHQLGVGKSGATVFGGVAGDVXXGADGV
     a515
                           220
                                    230
                                            240
                                                     250
                  210
                                                250
                                                         260
                                                                  270
                      220
                              230
                                       240
                LQGFFGEVGSTGAAFAFADVNGNVQRLVLLELDLXDXAQPHADALSQXFAEIGFGGGCAR
     m515.pep
                 AQGLFGEIGGAGAAFAFADVNGNVQRLVLLKLDLFDFAQPHADALSQXFAEIGFGGGCAR
     a515
                  270
                           280
                                    290
                                             300
                                                     310
                                                              320
                      280
                              290
                RFCQVERAAAEVEEFGSGVVEQHRNLSXXCFAAFX
     m515.pep
                 RFCQVERAAAEVEEFGSGVVEQHRNLSXXCFAAFX
     a515
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1423>: q515-1.seq

350

340

¹ ATGGTTCAAA TACAGGTTGT GCGCGCCGCC GGCGTTGCCC GTGGTCTGCA

```
769
```

```
51 TTCCGAGTTT GCGCGCGCTG TAACTGCCGA GGAAATAGCC TTCGACAATG
    101 CCGTTTTGAA TCACGAAGCG CGGCGCGGTG GCAACACCTT CCGCATCAAA
         ATAGCTGCTG CGGAAAGAGC GGGGGATGTG CGGTTCTTCG CGCAGGTTGA
    151
    201 GGAAATCGGG CAGGACTTTT TTGCCGATGC TGTCGATCAG GAAACTGCTT
         TGGCGGTAGA GCGCGCCGCC GGAGAGTGTG CCGACGAGGT GTCCGATCAG
    251
    301 CCCGCCCGAA ACGGTGGTAT CGAAGAGGAC GGGGTAGCTG CCTGTCGGGA
         TGCTGCGGCT GCCGAGTCGG CGCAAAGTGC GGCGGGCGGC GGTTTGACCG
    351
    401 ATGGTTTCGG GGCTGTCCAT ATCCGGATGG CGGCAGGCGG AATCGTACCA
         GTAGTCGCGC TGCATTCCGT TTTCGTCGGC GGCAACGACG CTGCAGGAAA
    451
         TGCTGTGGTG CGTGCTTTGC CGGTGTGCGG CAAAACCGTG GGTGTTGCCG
    501
         TARACGTATT GGTAGTGTCC GGTTTGCACC GCCGCGCCTT CGGAGTTTTC
         GATGCGGCTG TCCGTGTCCA ACGCTGCCTG TTCGCATTGT TTTGCCAAGC
         CGACGGCGGC TTCCGTATCC AAATCCCATT CGTGGTAAAG GTCGGGGTCG
     651
         CCGATGTGTT GCGCCATCAA CTCGGGGTCG GCAAGTCCGG CGCAACCGTC
    701
         TTCGGCGGTG TGGCGGGCGA TGTCGGCGGC GGCGCGGACG GTGTCGCGCA
    751
         GGGCTTGTTC GGAGAAGTCG GCGGTGCCGG CGCGGCCTTT GCGTTTGCCG
    801
    851 ACGTAAACGG TAATGTCCAG CGATTTGTCC TGCTGGAACT CGATTTGTTC
    901 GATTTCGCCC AAGCGCACGC TGACGCTTTG TCCGAGCGAT TCGCTGAAGT
    951 CGGCTTCGGC GGCGGTCGCG CCCGCTGCTT TTGCCAAGTC GAGCGTGCGG
         CGGCAGAGGT CGAGGAGTTC GGAAGCGGTG TGGTTGAACA GCATAACAAT
         CTTTCTTGGT GGAGCGTTGT GGCATTTTAA
This corresponds to the amino acid sequence <SEQ ID 1424; ORF 515-1.ng>:
g515-1.pep
       1 MVQIQVVRAA GVARGLHSEF ARAVTAEEIA FDNAVLNHEA RRGGNTFRIK
         IAAAERAGDV RFFAQVEEIG QDFFADAVDQ ETALAVERAA GECADEVSDQ
      51
     101 PARNGGIEED GVAACRDAAA AESAQSAAGG GLTDGFGAVH IRMAAGGIVP
         VVALHSVFVG GNDAAGNAVV RALPVCGKTV GVAVNVLVVS GLHRRAFGVF
         DAAVRVQRCL FALFCQADGG FRIQIPFVVK VGVADVLRHQ LGVGKSGATV
         FGGVAGDVGG GADGVAQGLF GEVGGAGAAF AFADVNGNVQ RFVLLELDLF
         DFAQAHADAL SERFAEVGFG GGRARCFCQV ERAAAEVEEF GSGVVEQHNN
     351 LSWWSVVAF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1425>:
m515-1.seq
       1 ATGGTTCAAA TACAGGTTGT GCGCGCCGCC GGCGTTGCCC GTGGTCTGCA
         TACCGAGTTT GCGCGCGCTG TAACTGCTGA GGAAATAGCC TTCGACAATG
         CCGTTTTGAA TCACGAAGCG CGGTGCGGTG GCAACGCCTT CCGCATCAAA
         ATAGCTGCTG CGGAAAGAGC GGGGGATGTG CGGTTCTTCG CGCAGGTTGA
     201 GGAAATCGGG CAGGACTTTT TTGCCGATGC TGTCGATCAG GAAACTGCTT
         TGGCGGTAGA GCGCGCCGCC GGAGAGTGCG CCGACGAGGT GTCCGATAAG
     251
     301 ACCGCCCGAA ACGGTGGTAT CGAAGAGGAC GGGGTAGCTG CCTGTCGGGA
         TGCTGCGGCT GCCGAGTCGG CGCAAAGTGC GGCGGGCGGC GGTTTGACCG
     351
     401 ATGGTTTCGG GGCTGTCCAT ATCCGGATGG CGGCAGGCGG AATCGTACCA
         GTAGTCGCGC TGCATGCCGT TTTCGTCGGC GGCAACGACG CTGCAGGAAA
TGCTGTGGTG CGTGCCTTGC CGGTGTGCGG CAAAACCGTG GGTGTTGCCG
     451
     501
          TARACGTATT GGTAATGGCC GGTTTGCACC GCCGCGCCTT CGGAGTTTTC
         GATGCGCTCA TCCTCGTTCA GGGCGGCTTG TTCGCATTGT TTTGCCAAGC
     651 CGACGGCGGC TTCCGTATCC AAATCCCATT CGTGGTAAAG GTCGGGGTCG
          CCGATGTGTT TTGCCATCAG ACAGGCATCG GCAAGTCCGG CGCAACCGTC
     701
          TTCGGCGGTG TGGCGGGCGA TGTCGATGGC GGCTTTGACG GTGTCTTGCA
         GGGCTTTTTC GGAGAAGTCG GCAGTACTGG CGCGGCCTTT GCGTTTGCCG
         ACGTAAACGG TAATGTCCAG CGACTTGTCC TGCTGGAACT CGATTTGTTC
          GATTTCGCCC AGCCGCACGC TGACGCTTTG TCCCAATGA
This corresponds to the amino acid sequence <SEQ ID 1426; ORF 515-1>:
m515-1.pep
          MVQIQVVRAA GVARGLHTEF ARAVTAEEIA FDNAVLNHEA RCGGNAFRIK
          IAAAERAGDV RFFAQVEEIG QDFFADAVDQ ETALAVERAA GECADEVSDK
      51
          TARNGGIEED GVAACRDAAA AESAQSAAGG GLTDGFGAVH IRMAAGGIVP
     101
          VVALHAVFVG GNDAAGNAVV RALPVCGKTV GVAVNVLVMA GLHRRAFGVF
     151
          DALILVQGGL FALFCQADGG FRIQIPFVVK VGVADVFCHQ TGIGKSGATV
     201
          FGGVAGDVDG GFDGVLQGFF GEVGSTGAAF AFADVNGNVQ RLVLLELDLF
     251
     301 DFAOPHADAL SO*
                 91.7% identity in 312 aa overlap
m515-1/g515-1
                               20
                                         30
                                                   40
             MVQIQVVRAAGVARGLHSEFARAVTAEEIAFDNAVLNHEARRGGNTFRIKIAAAERAGDV
g515-1.pep
             MVQIQVVRAAGVARGLHTEFARAVTAEEIAFDNAVLNHEARCGGNAFRIKIAAAERAGDV
m515-1
```

20

10

30

770

```
80
                                     90
                                             100
                   70
           RFFAQVEEIGQDFFADAVDQETALAVERAAGECADEVSDQPARNGGIEEDGVAACRDAAA
g515-1.pep
            RFFAQVEEIGQDFFADAVDQETALAVERAAGECADEVSDKTARNGGIEEDGVAACRDAAA
m515-1
                                             100
                            80
                                     90
                                                      110
                   70
                                             160
                  130
                                                      170
           AESAQSAAGGGLTDGFGAVHIRMAAGGIVPVVALHSVFVGGNDAAGNAVVRALPVCGKTV
g515-1.pep
            AESAQSAAGGGLTDGFGAVHIRMAAGGIVPVVALHAVFVGGNDAAGNAVVRALPVCGKTV
m515-1
                          140
                                    150
                  130
                                    210
                                             220
                  190
                           200
            GVAVNVLVVSGLHRRAFGVFDAAVRVQRCLFALFCQADGGFRIQIPFVVKVGVADVLRHQ
g515-1.pep
            GVAVNVLVMAGLHRRAFGVFDALILVQGGLFALFCQADGGFRIQIPFVVKVGVADVFCHQ
m515-1
                           200
                                    210
                                             220
                                                      230
                  190
                                    270
                  250
                           260
           LGVGKSGATVFGGVAGDVGGGADGVAQGLFGEVGGAGAAFAFADVNGNVQRFVLLELDLF
g515-1.pep
            TGIGKSGATVFGGVAGDVDGGFDGVLQGFFGEVGSTGAAFAFADVNGNVQRLVLLELDLF
m515-1
                                             280
                                                      290
                           260
                                    270
                                                               300
                  250
                                                      350
                                    330
                                             340
                                                               360
                           320
                  310
            DFAQAHADALSERFAEVGFGGGRARCFCQVERAAAEVEEFGSGVVEQHNNLSWWSVVAFX
g515-1.pep
            1111 1111111:
m515-1
            DFAQPHADALSQX
                  310
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1427>:
      1 ATGGTTCAAA TAAAGGTTGT GCGCGCCGCC GGCGTTGCCC GTGGTCTGCA
         TTCCGAGTTT GCGCGCGCTG TAACTGCTGA GGAAATAGCC TTCGACAATG
         CCGTTTTGAA TCACGAAGCG CGGTGCGGTG GCAACGCCTT CCGCATCAAA
    101
         ATAGCTGCTG CGGAAAGAGC GGGGGATGTG CGGTTCTTCG CGCAGGTTGA
    151
        GGAAATCGGG CAGGACTTTT TTGCCGATGC TGTCGATCAG GAAACTGCTT
    201
         TGGCGGTAGA GCGCTCCGCC GGAGAGTGCG CCGACGAGGT GTCCGATAAG
    251
        ACCGCCCGAA ACGGTGGTAT CGAAGAGGAC GGGGTAGTTG CCTGTCGGGA
    301
         TGCTGCGGCT GCCGAGTCGG CGCAAAGTGC GGCGGGCGGC GGTTTGACCG
    351
        ATGGTTTCGG GGCTGTCCAT ATCCGGATGG CGGCAGGCGG AATCGTACCA
    401
         GTAGTCGCGC TGCATGCCGT TTTCGTCGGC GGCAACGACG CTGCAGGAAA
    451
         TGCTGTGGTG CGTGCTTTGC CGGTGTGCGG CAAAACCGTA GGTGTTGCCG
    501
         TAAACGTATT GGTAATGGCC GGTTTGCACC GCCGCGCCTT CGGAGTTTTC
         GATGCGCTCA TCCTCGTTCA GGGCGGCTTG TTCGCATTGT TTTGCCAAGC
    601
         CGACGGCGGC TTCCGTATCC AAATCCCATT CGTGGTAAAG GTCGGGGTCG
    651
         CCGATGTGTT GCGCCATCAA CTCGGGGTCG GCAAGTCCGG CGCAACCGTC
    701
         TTCGGCGGTG TGGCGGGCGA TGTCGGCGGC GGCGCGGACG GTGTCGCGCA
    751
         GGGCTTGTTC GGAGAAATCG GCGGTGCCGG CGCGGCCTTT GCGTTTGCCG
    801
        ACGTAAACGG TAATGTCCAG CGACTTGTCC TGCTGAAACT CGATTTGTTC
    851
        GATTTCGCCC AGCCGCACGC TGACGCTTTG TCCCAATGA
This corresponds to the amino acid sequence <SEQ ID 1428; ORF 515-1.a>:
a515-1.pep
         MVOIKVVRAA GVARGLHSEF ARAVTAEEIA FDNAVLNHEA RCGGNAFRIK
         IAAAERAGDV RFFAQVEEIG QDFFADAVDQ ETALAVERSA GECADEVSDK
     51
         TARNGGIEED GVVACRDAAA AESAQSAAGG GLTDGFGAVH IRMAAGGIVP
    101
         VVALHAVFVG GNDAAGNAVV RALPVCGKTV GVAVNVLVMA GLHRRAFGVF
    151
         DALILVQGGL FALFCQADGG FRIQIPFVVK VGVADVLRHQ LGVGKSGATV
    201
         FGGVAGDVGG GADGVAQGLF GEIGGAGAAF AFADVNGNVQ RLVLLKLDLF
     301 DFAQPHADAL SQ*
                94.9% identity in 312 aa overlap
m515-1/a515-1
                                     30
                                              40
            MVQIKVVRAAGVARGLHSEFARAVTAEEIAFDNAVLNHEARCGGNAFRIKIAAAERAGDV
a515-1.pep
            m515-1
            MVQIQVVRAAGVARGLHTEFARAVTAEEIAFDNAVLNHEARCGGNAFRIKIAAAERAGDV
                   10
                            20
                                     30
                                              40
                                                       50
                                                                60
```

80

a515-1.pep

90

RFFAQVEEIGQDFFADAVDQETALAVERSAGECADEVSDKTARNGGIEEDGVVACRDAAA

771

```
RFFAQVEEIGODFFADAVDQETALAVERAAGECADEVSDKTARNGGIEEDGVAACRDAAA
        m515-1
                                                                                                               80
                                                                                                                                                90
                                                                                                                                                                              100
                                                                                                                                                                              160
                                                                                                                                             150
                                                                                                                                                                                                               170
                                                                                                                                                                                                                                                180
                                                                           130
                                                                                                            140
                                                   AESAQSAAGGGLTDGFGAVHIRMAAGGIVPVVALHAVFVGGNDAAGNAVVRALPVCGKTV
         a515-1.pep
                                                    ининивининининининининининининини
                                                   AESAQSAAGGGLTDGFGAVHIRMAAGGIVPVVALHAVFVGGNDAAGNAVVRALPVCGKTV
        m515-1
                                                                                                                                             150
                                                                                                            140
                                                                           130
                                                                                                                                                                              220
                                                                                                                                             210
                                                                           190
                                                                                                            200
                                                   GVAVNVLVMAGLHRRAFGVFDALILVQGGLFALFCQADGGFRIQIPFVVKVGVADVLRHQ
         a515-1.pep
                                                    пиничиний принципиний принципи
___m515-1
                                                    GVAVNVLVMAGLHRRAFGVFDALILVQGGLFALFCQADGGFRIQIPFVVKVGVADVFCHQ
                                                                                                                                             210
                                                                                                                                                                              220
                                                                                                                                                                                                               230
                                                                                                                                             270
                                                                           250
                                                                                                            260
                                                   LGVGKSGATVFGGVAGDVGGGADGVAQGLFGEIGGAGAAFAFADVNGNVQRLVLLKLDLF
         a515-1.pep
                                                       TGIGKSGATVFGGVAGDVDGGFDGVLQGFFGEVGSTGAAFAFADVNGNVQRLVLLELDLF
         m515-1
                                                                                                                                             270
                                                                                                                                                                              280
                                                                                                            260
                                                                            310
                                                     DFAQPHADALSQX
         a515-1.pep
                                                     DFAQPHADALSQX
         m515-1
                                                                           310
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1429>: q516.веq

```
atgttgttcc gtaaaacgac cgccgccgtt ttggcggcaa ccttgatact
    gaacggctgt acgatgatgt tgcgggggat gaacaacccg gtcagccaaa
 51
101
    caatcacccg caaacacgtt gacaaagacc aaatccgcgc cttcggtgtg
151 gttgccgaag acaatgccca attggaaaag ggcagcctgg tgatgatggg
201 cgggaaatac tggttcgccg tcaatcccga agattcggcg aagctgacgg
251 gccttttgaa ggccgggttg gacaagccct tccaaatagt tgaggatacc
    ccgagctatg cccgccacca agccctgccg gtcaaattcg aagcgcccgg
351 cagccagaat ttcagtaccg gaggtctttg cctgcgctat gataccggca
401 gacctgacga catcgccaag ctgaaacagc ttgagtttaa agcggtcaaa
451 ctcgacaatc ggaccattta cacgcgctgc gtatccgcca aaggcaaata
501 ctacgccacg ccgcaaaaac tgaacgccga ttatcatttt gagcaaagtg
551 tgcccgccga tatttattat acggttactg aaaaacatac cgacaaatcc
601 aagctqtttg gaaatatctt atatacgccc cccttgttga tattggatgc
651 ggcggccgcg gtgctggtct tgcctatggc tctgattgca gccgcgaatt
701 cctcagacaa atga
```

This corresponds to the amino acid sequence <SEQ ID 1430; ORF 516.ng>: g516.pep

- 1 MLFRKTTAAV LAATLILIGC TMMLRGMINP VSQTITRKHV DKDQIRAFGV
- 51 VAEDNAQLEK GSLVMMGGKY WFAVNPEDSA KLTGLLKAGL DKPFQIVEDT
- 101 PSYARHQALP VKFEAPGSQN FSTGGLCLRY DTGRPDDIAK LKQLEFKAVK
- 151 LDNRTIYTRC VSAKGKYYAT PQKLNADYHF EQSVPADIYY TVTEKHTDKS
- 201 KLFGNILYTP PLLILDAAAA VLVLPMALIA AANSSDK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1431>: m516.seq

1	ATGTTGTTCC	GTAAAACGAC	CGCCGCCGTT	TTGGCGGCAA	CCTTGATGCT
51	GAACGGCTGT	ACGTTGATGT	TGTGGGGAAT	GAACAACCCG	GTCAGCGAAA
101	CAATCACCCG	CAAACACGTT	GACAAAGACC	AAATCCGCGC	CTTCGGTGTG
151	GTTGCCGAAG	ACAATGCCCA	ATTGGAAAAG	GGCAGCCTGG	TGATGATGGG
201	CGGAAAATAC	TGGTTCGTCG	TCAATCCCGA	AGATTCGGCG	AAGCTGACGG
251	GCATTTTGAA	GGCAGGGCTG	GACAAACCCT	TCCAAATAGT	TGAGGATACC
301	CCGAGCTATG	CTCGCCACCA	AGCCCTGCCG	GTCAAACTCG	AATCGCCTGG
351	CAGCCAGAAT	TTCAGTACCG	AAGGCCTTTG	CCTGCGCTAC	GATACCGACA
401	AGCCTGCCGA	CATCGCCAAG	CTGAAACAGC	TCGGGTTTGA	AGCGGTCAAA
451	CTCGACAATC	GGACCATTTA	CACGCGCTGC	GTATCCGCCA	AAGGCAAATA

```
501 CTACGCCACA CCGCAAAAAC TGAACGCCGA TTACCATTTT GAGCAAAGTG
         551 TGCCTGCCGA TATTTATTAC ACGGTTACTG AAGAACATAC CGACAAATCC
         601 AAGCTGTTTG CAAATATCTT ATATACGCCC CCCTTTTTGA TACTGGATGC
         651 GGCGGCGCG GTACTGGCCT TGCCTGCGGC GGCTCTGGGT GCGGTCGTGG
         701 ATGCCGCCCG CAAATGA
This corresponds to the amino acid sequence <SEQ ID 1432; ORF 516>:
    m516.pep
             MLFRKTTAAV LAATLMLNGC TLMLWGMNNP VSETITRKHV DKDQIRAFGV
             VAEDNAQLEK GSLVMMGGKY WFVVNPEDSA KLTGILKAGL DKPFQIVEDT
          51
         101 PSYARHQALP VKLESPGSQN FSTEGLCLRY DTDKPADIAK LKQLGFEAVK
         151 LDNRTIYTRC VSAKGKYYAT PQKLNADYHF EQSVPADIYY TVTEEHTDKS
         201 KLFANILYTP PFLILDAAGA VLALPAAALG AVVDAARK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 516 shows 90.0% identity over a 231 aa overlap with a predicted ORF (ORF 516.ng)
from N. gonorrhoeae:
     m516/g516
                                                                      60
                                                    40
                                 20
                        10
                 MLFRKTTAAVLAATLMLNGCTLMLWGMNNPVSETITRKHVDKDQIRAFGVVAEDNAQLEK
     m516.pep
                 MLFRKTTAAVLAATLILNGCTMMLRGMNNPVSQTITRKHVDKDQIRAFGVVAEDNAQLEK
     a516
                                                    40
                                                             50
                                 20
                                          30
                        10
                                                   100
                                                            110
                                 80
                                          90
                        70
                 GSLVMMGGKYWFVVNPEDSAKLTGILKAGLDKPFQIVEDTPSYARHQALPVKLESPGSON
     m516.pep
                 GSLVMMGGKYWFAVNPEDSAKLTGLLKAGLDKPFQIVEDTPSYARHQALPVKFEAPGSQN
     g516
                                                            110
                                                   100
                                          90
                        70
                                  80
                                                   160
                                                            170
                                                                     180
                                 140
                                          150
                        130
                 FSTEGLCLRYDTDKPADIAKLKQLGFEAVKLDNRTIYTRCVSAKGKYYATPQKLNADYHF
     m516.pep
                 FSTGGLCLRYDTGRPDDIAKLKQLEFKAVKLDNRTIYTRCVSAKGKYYATPQKLNADYHF
     g516
                                                   160
                                                            170
                                 140
                                          150
                        130
                                          210
                                                   220
                                                            230
                                 200
                        190
                 EOSVPADIYYTVTEEHTDKSKLFANILYTPPFLILDAAGAVLALPAAALGAVVDAARK
     m516.pep
                 EQSVPADIYYTVTEKHTDKSKLFGNILYTPPLLILDAAAAVLVLPMALIAAANSSDK
     q516
                                                            230
                                 200
                                          210
                       190
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1433>:
     a516.seq
              ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGGCAA CCTTGATGTT
            1
              GAACGGCTGT ACGGTAATGA TGTGGGGTAT GAACAGCCCG TTCAGCGAAA
              CGACCGCCCG CAAACACGTT GACAAGGACC AAATCCGCGC CTTCGGTGTG
          101
              GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG TGATGATGGG
          151
              CGGGAAATAC TGGTTCGTCG TCAATCCTGA AGATTCGGCG AAGCTGACGG
          201
              GCATTTTGAA GGCCGGGTTG GACAAGCAGT TTCAAATGGT TGAGCCCAAC
          251
              CCGCGCTTTG CCTACCAAGC CCTGCCGGTC AAACTCGAAT CGCCCGCCAG
          301
              CCAGAATTTC AGTACCGAAG GCCTTTGCCT GCGCTACGAT ACCGACAGAC
          351
          401 CTGCCGACAT CGCCAAGCTG AAACAGCTTG AGTTTGAAGC GGTCGAACTC
              GACAATCGGA CCATTTACAC GCGCTGCGTC TCCGCCAAAG GCAAATACTA
          451
               CGCCACACCG CAAAAACTGA ACGCCGATTA TCATTTTGAG CAAAGTGTGC
          501
```

This corresponds to the amino acid sequence <SEQ ID 1434; ORF 516.a>: a516.pep

551

601

651

CCTCAGACAA ATGA

CTGCCGATAT TTATTACACG GTTACGAAAA AACATACCGA CAAATCCAAG

TTGTTTGAAA ATATTGCATA TACGCCCACC ACGTTGATAC TGGATGCGGT

GGGCGCGGTG CTGGCCTTGC CTGTCGCGGC GTTGATTGCA GCCACGAATT

```
MLFRKTTAAV LAATLMLNGC TVMMWGMNSP FSETTARKHV DKDQIRAFGV
              VAEDNAQLEK GSLVMMGGKY WFVVNPEDSA KLTGILKAGL DKQFQMVEPN
          51
             PRFAYQALPV KLESPASQNF STEGLCLRYD TDRPADIAKL KQLEFEAVEL
         101
         151 DNRTIYTRCV SAKGKYYATP QKLNADYHFE QSVPADIYYT VTKKHTDKSK
         201 LFENIAYTPT TLILDAVGAV LALPVAALIA ATNSSDK*
m516/a516 86.1% identity in 238 aa overlap
                                          30
                                                    40
                                                             50
                        10
                 MLFRKTTAAVLAATLMLNGCTLMLWGMNNPVSETITRKHVDKDQIRAFGVVAEDNAQLEK
     m516.pep
                 MLFRKTTAAVLAATLMLNGCTVMMWGMNSPFSETTARKHVDKDQIRAFGVVAEDNAQLEK
     a516
                        10
                                 20
                                          30
                                                    40
                                                             50
                                                   100
                                 80
                                          90
                 GSLVMMGGKYWFVVNPEDSAKLTGILKAGLDKPFQIVEDTPSYARHQALPVKLESPGSON
     m516.pep
                 GSLVMMGGKYWFVVNPEDSAKLTGILKAGLDKQFQMVEPNPRFA-YQALPVKLESPASON
     a516
                                 80
                                          90
                                                   100
                                                             110
                                 140
                                         150
                                                   160
                 FSTEGLCLRYDTDKPADIAKLKQLGFEAVKLDNRTIYTRCVSAKGKYYATPQKLNADYHF
     m516.pep
                 FSTEGLCLRYDTDRPADIAKLKQLEFEAVELDNRTIYTRCVSAKGKYYATPQKLNADYHF
     a516
                                 140
                                          150
                                                   160
                                                             170
                                                   220
                                                            230
                                                                    239
                       190
                                 200
                                          210
                 EOSVPADIYYTVTEEHTDKSKLFANILYTPPFLILDAAGAVLALPAAALGAVVDAARKX
     m516.pep
                 EOSVPADIYYTVTKKHTDKSKLFENIAYTPTTLILDAVGAVLALPVAALIAATNSSDKX
     a516
                                 200
                                                    220
                                                             230
               180
                        190
                                          210
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1435>:
     g517.seq
              atgcatcggg tttcagacgg cattggagtg tcagtcgtgt tctgccgatt
          51 cgtaggette gacgattttt tgcaccagag gatgeeggae aacgtetteg
         101 ccggtgaagg tatggaaata cagtcctgcc acgccgtgca gtttctcacg
         151 tgcgtctttc aatcccgatt tgatgttttt gggcaggtcg atttggctgg
         201 tqtcqccqqt aatgacggct ttcgcgccga agccgatgcg ggtcaggaac
         251 attttcattt gttcgggcgt ggtgttttgc gcttcgtcga ggatgatgta
         301 tgcgccgttg agcgtcctgc cgcgcatata ggcgagcggg gcgatttcaa
         351 tcaggccttt ttcaatcagc ttggttacac ggtcaaagcc catcaggtca
         401 tagagggcat cataaagcgg acggaggtag gggtcgactt tttgggtcag
         451 gtctccgggc aggaagccca gtttctcacc ggcttcgacg gcaggccgaa
         501
This corresponds to the amino acid sequence <SEQ ID 1436; ORF 517.ng>:
     g517.pep
              MHRVSDGIGV SVVFCRFVGF DDFLHQRMPD NVFAGEGMEI QSCHAVQFLT
              CVFOSRFDVF GOVDLAGVAG NDGFRAEADA GOEHFHLFGR GVLRFVEDDV
           51
          101 CAVERPAAHI GERGDFNQAF FNQLGYTVKA HQVIEGIIKR TEVGVDFLGQ
              VSGQEAQFLT GFDGRPN*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1437>:
     m517.seq
              ATGCATCGGG TTTCAGACGG CATTGGAATG TCAGTCGTGT TCTGCCGATT
           1
           51 CGTAGGCTTC GACGATTTTT TGCACCAAAG GATGCCGGAC AACGTCTTCG
          101 CCGGTAAAGG TGTGGAAATA CAGCCCTTCC ACGTTGTGCA GTTTCTCACG
          151 CGCATCTTTT AATCCCGATT TGATGTTTTT GGGCAGGTCG ATTTGGCTGG
          201 TGTCGCCGGT AATGACGGCT TTCGCGCCGA AGCCGATGCG GGTCAGGAAC
          251 ATTTCATTT GTTCGGGCGT GGTGTTTTGC GCTTCGTCGA GGATGATGTA
          301 TGCGCCGTTG AGCGTCCTGC CGCGCATATA GGCGAGCGGG GCGATTTCAA
          351 TCAGGCCTTT TTCAATCAGC TTGGTTACAC GGTCAAAGCC CATCAGGTCA
          401 TAGAGGGCAT CATAAAGCGG ACGAAGGTAG GGATCGACTT TCTGGGTCAG
```

```
451 GTCTCCGGGC AGGAAGCCCA GTTTCTCGCC GGCTTCGACG GCTGGGCGCA
This corresponds to the amino acid sequence <SEQ ID 1438; ORF 517>:
     m517.pep
              MHRVSDGIGM SVVFCRFVGF DDFLHQRMPD NVFAGKGVEI QPFHVVQFLT
              RIFXSRFDVF GQVDLAGVAG NDGFRAEADA GQEHFHLFGR GVLRFVEDDV
              CAVERPAAHI GERGDFNQAF FNQLGYTVKA HQVIEGIIKR TKVGIDFLGQ
          151 VSGQEAQFLA GFDGWAH*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 517 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF 517.ng)
from N. gonorrhoeae:
     m517/q517
                         10
                                   20
                                                       40
                                                                 50
                                                                           60
                  MHRVSDGIGMSVVFCRFVGFDDFLHQRMPDNVFAGKGVEIQPFHVVQFLTRIFXSRFDVF
     m517.pep
                  MHRVSDGIGVSVVFCRFVGFDDFLHQRMPDNVFAGEGMEIQSCHAVQFLTCVFQSRFDVF
     g517
                                                                 50
                                   20
                                             30
                                                       40
                         10
                                   80
                                             90
                                                      100
                                                                110
                          70
                  GQVDLAGVAGNDGFRAEADAGQEHFHLFGRGVLRFVEDDVCAVERPAAHIGERGDFNQAF
     m517.pep
                  GOVDLAGVAGNDGFRAEADAGQEHFHLFGRGVLRFVEDDVCAVERPAAHIGERGDFNQAF
     g517
                                   80
                                             90
                                                      100
                                                                110
                          70
                         130
                                  140
                                            150
                                                      160
                  FNOLGYTVKAHQVIEGIIKRTKVGIDFLGQVSGQEAQFLAGFDGWAH
     m517.pep
                  FNQLGYTVKAHQVIEGIIKRTEVGVDFLGQVSGQEAQFLTGFDGRPN
     g517
                                            150
                                                      160
                                  140
                         130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1439>:
a517.seq
        ATGCATCGGG TTTCAGACGG CATTGGAATG TCAGTCGTGT TCTGCCGATT
        CGTAGGCTTC GACGATTTTT TGCACCAAAG GATGCCGGAC AACGTCTTCG
     51
        CCGGTAAAGG TGTGGAAATA CAGCCCTTCC ACGCCGTGCA GTTTCTCACG
    101
        CGCATCTTTT AATCCCGATT TGATGTTTTT GGGCAGGTCG ATTTGGCTGG
    151
        TGTCGCCGGT AATGACGGCT TTCGCGCCGA AGCCGATGCG GGTCAGGAAC
        ATTTCATTT GTTCGGGCGT GGTGTTTTGC GCTTCGTCGA GGATGATGTA
    251
        TGCGCCGTTG AGCGTCCTGC CGCGCATATA GGCGAGCGGG GCAATCTCAA
        TCAGACCTTT TTCAATCAGC TTGGTGACAC GGTCGAAGCC CATCAGGTCA
    351
        TAGAGGGCAT CATAAAGCGG ACGAAGGTAG GGATCGACTT TCTGGGTCAG
    401
        GTCACCGGGC AGAAAACCCA GTTTCTCGCC GGCTTCGACG GCAGGCCGCA
    451
This corresponds to the amino acid sequence <SEQ ID 1440; ORF 517.a>:
a517.pep
         MHRVSDGIGM SVVFCRFVGF DDFLHQRMPD NVFAGKGVEI QPFHAVQFLT
        RIF*SRFDVF GOVDLAGVAG NDGFRAEADA GQEHFHLFGR GVLRFVEDDV
     51
        CAVERPAAHI GERGNLNOTF FNOLGDTVEA HQVIEGIIKR TKVGIDFLGQ
    101
        VTGQKTQFLA GFDGRPH*
           93.4% identity in 167 aa overlap
m517/a517
                                    30
                           20
                                             40
           MHRVSDGIGMSVVFCRFVGFDDFLHQRMPDNVFAGKGVEIQPFHVVQFLTRIFXSRFDVF
m517.pep
           MHRVSDGIGMSVVFCRFVGFDDFLHQRMPDNVFAGKGVEIQPFHAVQFLTRIFXSRFDVF
a517
                                    30
                  10
                           20
                                            40
                                                     50
                           80
                                    90
                                            100
           GQVDLAGVAGNDGFRAEADAGQEHFHLFGRGVLRFVEDDVCAVERPAAHIGERGDFNQAF
m517.pep
```

GQVDLAGVAGNDGFRAEADAGQEHFHLFGRGVLRFVEDDVCAVERPAAHIGERGNLNQTF

a517

775

```
100
                                                110
                                 90
                 70
                         80
                                                        120
                        140
                                150
                                        160
                130
          FNQLGYTVKAHQVIEGIIKRTKVGIDFLGQVSGQEAQFLAGFDGWAHX
m517.pep
          FNQLGDTVEAHQVIEGIIKRTKVGIDFLGQVTGQKTQFLAGFDGRPHX
a517
                130
                        140
                                150
                                        160
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1441>:
       g518.seq
                 atgacqtttt cggcggcaaa gctcaacatt tcggcactga tgttgtgtct
             51 ttcggcagga atgaccgttt tactttccgc ttttttactg ctccgaccgg
            101 aaggcagcat cttattcaac cattttttca gcataaatat tctgacccga
            151 agagcggcat ctccacgggc aaccgtgttc agactgcatc aggcggtacg
            201 attccacaag atgccgaaaa ccataagcaa aatgcgtaga aactacgccg
            251 tocquatcac googcotoot ogggoggoaa ogottoatta taacagattg
            301 ccccttaaaa aatcagaccc tgcttttgtg gcggagtctg aaatttga
  This corresponds to the amino acid sequence <SEQ ID 1442; ORF 518.ng>:
       g518.pep
                 MTFSAAKLNI SALMLCLSAG MTVLLSAFLL LRPEGSILFN HFFSINILTR
                 RAASPRATVF RLHQAVRFHK MPKTISKMRR NYAVRITPPP RAATLHYNRL
            101 PLKKSDPAFV AESEI*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1443>:
       m518.seq
                 ATGACGTTTT CGGCGGCAAA GCTCAACATT TCGGCACGGA TGTTGTGTCT
             51 TTCGGCAGGA ATGACCGTTT TACTTTCCGC TTTTTTACTG CTCCGACCGG
                 AAGGCAGCAT CTTATTCAAC CATTTTTCA GCATAAATAT TCTGACCCGA
            151 AGAGCGGCAT CTCCACAGGC AACCGTGTTC AGACGGCATC AGGCGCGGTT
            201 TGCAAGATGC CGTACCATAA ACAAAAGGCG TAGAAACTAC GCCGTCCGAA
            251 TCACGCCGCC CTCGCG.GCG GCAACGCGTC ATTATAACAG ATTGCCCTCC
            301 GCGGCAGGCT TAGTGCGGCG GGAGCGCCGC CGTTGCGCAG TAATATTGTC
            351 TAACGGGAGG AAAAAATCAG ACCCTGCTTT TGTGGCAGAG TCTGAAATTT
            401 GA
  This corresponds to the amino acid sequence <SEQ ID 1444; ORF 518>:
       m518.pep
                 MTFSAAKLNI SARMLCLSAG MTVLLSAFLL LRPEGSILFN HFFSINILTR
                 RAASPOATVF RRHOARFARC RTINKRRRNY AVRITPPSXA ATRHYNRLPS
            101 AAGLVRRERR RCAVILSNGR KKSDPAFVAE SEI*
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 518 shows 74.1% identity over a 135 as overlap with a predicted ORF (ORF 518.ng)
  from N. gonorrhoeae:
       m518/g518
                    MTFSAAKLNISARMLCLSAGMTVLLSAFLLLRPEGSILFNHFFSINILTRRAASPQATVF
       m518.pep
                    g518
                    MTFSAAKLNISALMLCLSAGMTVLLSAFLLLRPEGSILFNHFFSINILTRRAASPRATVF
                            10
                                     20
                                               30
                                                        40
                                                                            60
                             70
                                       80
                                                 90
                                                         100
                                                                   110
                    RRHQA-RFARC-RTINKRRRNYAVRITPPSXAATRHYNRLPSAAGLVRRERRRCAVILSN
       m518.pep
                    a518
                    RLHOAVRFHKMPKTISKMRRNYAVRITPPPRAATLHYNRLPL-------
                            70
                                     80
                                               90
                                                       100
                   120
                             130
       m518.pep
                    GRKKSDPAFVAESEI
```

11111111111111

--KKSDPAFVAESEI 110

q518

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1445>:
a518.seq
        ATGACGTTTT CGGCGGCAAA GCTCAACATT TCGGCACGGA TGTTGTGTCT
        TTCGGCAGGA ATGACCGTTT TACTTTCCGC TTTTTTACTG CTCCGACCGG
     51
        AAGGCAGCAT CTTATTCAAC CATTTTTCA GCATAAATAT TCTAACCCGA
    101
    151 AGAGCGGCAT CTCCACGGGC AACCGTGTTC AGACGGCATC AGGCGGTACG
    201 ATTCCGCAAG ATGCCGACCA TAAACAAAAG GCGTAGAAAC TACGCCGTCC
        GAATCACGCC GTCCTCG.CG GCGGCAACGC GTCATTATAA CAGATTGCCC
    251
    301 TCC.....
         351
        TTTGA
    401
This corresponds to the amino acid sequence <SEQ ID 1446; ORF 518.a>:
a518.pep
        MTFSAAKLNI SARMLCLSAG MTVLLSAFLL LRPEGSILFN HFFSINILTR
        RAASPRATVF RRHQAVRFRK MPTINKRRRN YAVRITPSSX AATRHYNRLP
     51
        S..... . . . . . . . . . . KKSDPAFVA ESEI*
    101
           79.9% identity in 134 aa overlap
m518/a518
                                    30
                                             40
                           20
                  10
           MTFSAAKLNISARMLCLSAGMTVLLSAFLLLRPEGSILFNHFFSINILTRRAASPQATVF
m518.pep
           a518
           MTFSAAKLNISARMLCLSAGMTVLLSAFLLLRPEGSILFNHFFSINILTRRAASPRATVF
                  10
                           20
                                    30
                                             40
                                                      50
                            80
                                     90
                                             100
                                                      110
                                                              119
           RRHQA-RFARCRTINKRRRNYAVRITPPSXAATRHYNRLPSAAGLVRRERRRCAVILSNG
m518.pep
           HILL II: 114111411111111 11411111111
           RRHOAVRFRKMPTINKRRRNYAVRITPSSXAATRHYNRLPS-
a518
                  70
                  130
           RKKSDPAFVAESEIX
m518.pep
            a518
           -KKSDPAFVAESEIX
                 110
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1447>:
     g519.seq
               atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
            1
           51 atcettiqte qtcatccccc aqcaqqaaqt ccacqttqtc qaaaqqctcq
               ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
          101
          151 atcgaccgcg tcgcctaccg ccattcgctg aaagaaatcc ctttagacgt
          201 acccagccag gtctgcatca cgcgcgataa tacgcaattg actgttgacg
          251 gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
          301 agcaactaca ttatggcaat tacccagett geccaaacga egetgegtte
          351 cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
               tcaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
          451
               gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
          501 cettegegea atgeaggeac aaattacege egaacgegaa aaacgegeee
          551 gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
          601 ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
          651 ggtcaatgcg tccaatgccg agaaaatcgc ccgcatcaac cgcgccaaag
               gcqaaqcqqa atccctgcgc cttgttgccq aagccaatqc cqaagccaac
          751
               cgtcaaattg ccgccgccct tcaaacccaa agcggggcgg atgcggtcaa
          801 tctgaagatt gcgggacaat acgttaccgc gttcaaaaat cttgccaaag
          851 aagacaatac geggattaag eeegecaagg ttgeegaaat egggaaceet
          901 aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
          951 a
This corresponds to the amino acid sequence <SEQ ID 1448; ORF 519.ng>:
     g519.pep
               MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
```

IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS

777

```
101 SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
            151 VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
            201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
            251 RQIAAALQTQ SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
            301 NFRRHEKFSP EAKTAK*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1449>:
       m519.seq (partial)
                ..TCCGTTATCG GGCGTATGGA GTTGGACAAA ACGTTTGAAG AACGCGACGA
                   AATCAACAGT ACTGTTGTTG CGGCTTTGGA CGAGGCGGCC GGGGCTTGGG
             51
                   GTGTGAAGGT TTTGCGTTAT GAGATTAAAG ACTTGGTTCC GCCGCAAGAA
            101
                   ATCCTTCGCT CAATGCAGGC GCAAATTACT GCCGAACGCG AAAAAACGCGC
-- 500
                   CCGTATCGCC GAATCCGAAG GTCGTAAAAT CGAACAAATC AACCTTGCCA
            201
                   GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
            251
                   GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
            301
                   AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
            351
                   TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
            401
                   AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
            451
                   AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
            501
                   TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
            551
  This corresponds to the amino acid sequence <SEQ ID 1450; ORF 519>:
                   (partial)
       m519.pep
                  ..SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
                    ILRSMQAQIT AEREKRARIA ESEGRKIEQI NLASGQREAE IQQSEGEAQA
                    AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
            101
                    NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
```

ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng) from N. gonorrhoeae:

m519/g519

			CUTCOMS	10	20 EINSTVVAAL	30 DEAA
m519.pep			1111111	111111111		1111
g519	YFQVTDPKLASYGSS			LDKTFEERD	EINSTVVSAL	DEAA
	90 100	110	120	130	140	
	40	50	60	70	80	90
m519.pep	GAWGVKVLRYEIKDL		QITAEREKR!	RIAESEGRK	IEQINLASGO	REAE
	GAWGVKVLRYEIKDL					HIII
g519	GAWGVKVLRYEIKDL	VPPQEILRAMQ/ 170	180	190	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	150 100	2.0				
	100	110	120	130	140	150
m519.pep	IQQSEGEAQAAVNAS	NAEKIARINRA	KGEAESLRLV	<u>AEANAEAIRO</u>	IAAALQTQGG	ADAV
				 AEANAEANRO	TAAALOTOSO	BADAV
g519	IQQSEGEAQAAVNAS	230	240	250	260	
	210 220					
	160	170	180	190	200	
m519.pep	NLKIAEQYVAAFNNI			SAGMKIIDSS :::	KTAK 	
			: : : :	1 -		
g519	270 280	290	300	310		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1451>: a519.seq

- ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA 51 ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
- 101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT 151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT

```
201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
        GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
        AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
    301
        CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
        TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
    401
        GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
    451
        CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
    501
        GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
    551
        GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
        GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
        GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
        CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
    751
        TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG
    801
        AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
    851
    901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 1452; ORF 519.a>:
a519.pep
         MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
         IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
     51
        SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
    101
        VKVLRYEIKD LVPPQEILRS MOAQITAERE KRARIAESEG RKIEQINLAS
    151
        GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
    201
        RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
    251
    301 ISAGMKIIDS SKTAK*
           99.5% identity in 199 aa overlap
m519/a519
                                       SVIGRMELDKTFEERDEINSTVVAALDEAA
m519.pep
                                       YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
a519
                     100
                              110
                                       120
                                                130
             90
                   40
                            50
                                     60
                                              70
           GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
m519.pep
            GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
a519
                                       180
                              170
                                                190
            150
                     160
                  100
                           110
                                    120
                                             130
                                                      140
           IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
m519.pep
           IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
a519
                    220
                             230
                                     240
                  160
                           170
                                    180
                                             190
           NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
m519.pep
            a519
            NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
            270
                     280
                              290
                                        300
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1453>: g519-1.seq

```
1 ATGGAATTTT TCATTATCTT GTTGGCAGCC GTCGCCGTTT TCGGCTTCAA
 51 ATCCTTTGTC GTCATCCCCC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
201 ACCCAGCCAG GTCTGCATCA CGCGCGATAA TACGCAATTG ACTGTTGACG
251
    GCATCATCTA TTTCCAAGTA ACCGATCCCA AACTCGCCTC ATACGGTTCG
301 AGCAACTACA TTATGGCAAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
351
    CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
    TCAACAGTAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG GGCTTGGGGT
401
451 GTGAAAGTCC TCCGTTACGA AATCAAGGAT TTGGTTCCGC CGCAAGAAAT
501 CCTTCGCGCA ATGCAGGCAC AAATTACCGC CGAACGCGAA AAACGCGCCC
551 GTATTGCCGA ATCCGAAGGC CGTAAAATCG AACAAATCAA CCTTGCCAGT
601 GGTCAGCGTG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
    GGTCAATGCG TCCAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
651
701 GCGAAGCGGA ATCCCTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
    CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGGGGGG ATGCGGTCAA
```

WO 99/57280 PCT/US99/09346

779

```
801 TCTGAAGATT GCGGAACAAT ACGTAGCCGC GTTCAACAAT CTTGCCAAAG
     851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
     901 ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 1454; ORF 519-1.ng>:
g519-1.pap
        MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
        IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
      51
         SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
    101
    151 VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
    201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
    251
         RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
    301 ISAGMKIIDS SKTAK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1455>:
m519-1.seq
      1 ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
     51 ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
         GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
    101
    151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
    201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
         GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
    251
    301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
         CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
    351
    401
         TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGT
    451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
    501
         CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
    551 GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
    601
         GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
         GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
    701 GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
    751 CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
    801
         TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
         AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
    901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 1456; ORF 519-1>:
m519-1.
         MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGINILIPF
      1
     51
         IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
    101 SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
         VKVLRYEIKD LVPPOEILRS MOAOITAERE KRARIAESEG RKIEOINLAS
    201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
    251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
    301 ISAGMKIIDS SKTAK*
m519-1/g519-1 99.0% identity in 315 aa overlap
                             20
                                      30
                                               40
            MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
q519-1.pep
            MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
m519-1
                   10
                            20
                                      30
                                               40
                                                        50
                             80
                                      90
                                              100
g519-1.pep
            KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
            m519-1
            KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
                   70
                            80
                                      90
                                              100
                  130
                            140
                                     150
                                              160
                                                       170
                                                                 180
g519-1.pep
            {\tt RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE}
            m519-1
            RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
```

130

g519-1.pep

140

150

210

KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR

160

220

170

WO 99/57280 PCT/US99/09346

	VON DAN DOEGDVAEA	TAU A COODER		03 3 1813 01/3 <i>1</i>			
m519-1	KRARIAESEGRKIEQ	INLASGQREA 200	EIQQSEGEA 210	QAAVNASNAI 220	EKTARINRAKG 230	EAESLR 240	
	170	200		220	230	240	
	250	260	270	280	290	300	
g519-1.pep	LVAEANAEAIRQIAA						
m519-1							
M519-1	250	260	270	280	290	300	
	310	_					
g519-1.pep	ISAGMKIIDSSKTAK						
m̃519-1	ISAGMKIIDSSKTAK	•					
	310						
					_		
The followi	ng partial DNA s	sequence '	was iden	tified in N	. meningit	idis <seq< td=""><td>ID 1457>:</td></seq<>	ID 1457>:
a519-1.seq				**********			
	GGAATTTT TCATTAT(CCTTTGTT GTCATCC)						
	CGTTTCCA TCGCGCC						
	CGACCGCG TCGCCTAC						
	CCAGCCAG GTCTGCAT TTCCATCTA TTTCCAAC						
	CAACTACA TTATGGC						
	TTATCGGG CGTATGG						
	AACAGCAC CGTCGTC						
	GAAGGTTT TGCGTTAT TTCGCTCA ATGCAGG						
	ATCGCCGA ATCCGAAG						
601 GG	TCAGCGCG AAGCCGA	AAT CCAACA	ATCC GAAG	GCGAGG CTC	AGGCTGC		
	TCAATGCG TCAAATGC						
	GAAGCGGA ATCCTTGG TCAAATTG CCGCCGCG						
	TGAAGATT GCGGAACA						
851 AA	AGCAATAC GCTGATTA	ATG CCCGCC	AATG TTGC	CGACAT CGG	CAGCCTG		
901 AT	TTCTGCCG GTATGAA	AAT TATCGA	CAGC AGCA	AAACCG CCA	AATAA		
This				opa m 1	450. ODE	510.1	
	onds to the amir	io aciu sei	quence <	acd in i	458; OKF	319-1.a>:	
a519-1.pep. 1 ME	FFIILLAA VVVFGFKS	SFV VIPOOE	VHVV ERLG	RFHRAL TAG	INTI.TPF		
_	RVAYRHSL KEIPLDVI						
	YIMAITQL AQTTLRS\						
	VLRYEIKD LVPPQEII REAEIQQS EGEAQAA\						
	IAAALQTQ GGADAVNI						
	AGMKIIDS SKTAK*	~					
-F10 1/-F10							
mory-1/asry-	1 99.0% identi	tty in 315	aa overi	ap			
	10	20		40	50	60	
a 519-1.pep	MBFFIILLAAVVVFGF	KSFVVIPQQ	EVHVVERLG	RFHRALTAGL	NILIPFIDRV	AYRHSL	
m519-1	: : MEFFIILLVAVAVFGE						
m319-1	10	20	30	REDRALITAGE 40	20 MITTALIDKA	47KHSL 60	
2510 1 555	70	80	90	100	110	120	
a519-1.pep	KEIPLDVPSQVCITRE	HIIIIIIIIIIII		LASYGSSNYI	MAITQLAQTTI	LRSVIG	
m519-1	KEIPLDVPSQVCITRE	NTQLTVDGI:	YFQVTDPK	Lasygssnyi	MAITOLAOTT	LRSVIG	
	70	80	90	100	110	120	
	130	140	150	160	174	100	
a519-1.pep	RMELDKTFEERDEINS	TVVSALDEA	AGAWGVKVL	160 RYEIKDLVPP	170 OEILRSMOAO	180 TAERE	
				[][][]	13 1 1 1 1 1 1 1 1 1		
m519-1	RMELDKTFEERDEINS	TVVAALDEA <i>i</i>	AGAWGVKVL:	RYEIKDLVPP	QEILRSMQAQ:	TAERE	
	130	140	150	160	170	180	
	190	200	210	220	230	240	
a519-1.pep	KRARIAESEGRKIEQI	NLASGOREAL	EIQQSEGEA	DAAVNASNAE	KIARINRAKG	EARSTR	
				111111111111111111111111111111111111111			

m519-1	KRARIAESEGRKIEQ	INLASGQ	REAEIQQSEGEA	Qaavnasna	EKIARINRAK	GEAESLR
	190	200	210	220	230	240
	250	260	270	280	290	300
a519-1.pep	LVAEANAEAIRQIAA	ALQTQGG:	ADAVNLKIAEQY	Vaafnnlak	esntlimpan [,]	/ADIGSL
			!!!!!!!!!!!!!	111111111	1113111111	
m519-1	LVAEANAEAIRQIAA	ALQTQGG	ADAVNLKIAEQY	Vaapnnlak	ESNTLIMPANT	/ADIGSL
	250	260	270	280	290	300
	310					
a519-1.pep	ISAGMKIIDSSKTAK	K				
		1				
ີ ກິ519-1	ISAGMKIIDSSKTAK	K				
	310					

Expression of ORF 519

The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. ORF 519 was cloned in pET and pGex vectors and expressed in E.coli as above described. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification, and Figure 4B shows the expression in E.coli. Purified Nis-fusion protein was used to immunize mice whose sera were used for ELISA (positive result), FACS analysis (Figure 4C), western blot (Figure 1E), and a bactericidal assay (Figure 4D). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 8. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby as provided herein.

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1459>:

```
g520.seq
           1 atgcctgcgc ttctttcaat acgtcgggca aacgcgctgc ctttttcgcg
           51 cattteggaa aggatgaagt tgetggtgcc gttaataatg ceggegatgg
          101 atttaateet gtttgeegee aaacettege geaeggettt gatgattggg
          151 ataccgcccg ctactgccgc ttcaaattgg acgatgacgt tttgttttc
          201 cgccagcggg aagatttcgt tgccgtattc ggcgagcagt tttttgttgg
          251 cggtaacgat gtgtttgccg ttttcaatgg ctttcaacac cgcttctttg
          301 gcaatgcccg tgccgccgaa caattcgacc aagacatcga cgtctttacg
         351 cgcgaacagt tcgaacggat cttttgacaa gggcgggcga cgggccgatt
          401 ttggcgggct ttttcttcgc ttaagtcgca catggcagaa atacggattt
          451 cgcgccccaa gcggcgggaa atttcctctg cgttgtcccg caacacggca
          501 gccgcaccgc cgccgaccgt acctaagcct aaaagaccga tgtttactgg
              cttcattgtg tctccttgta agccgactga aatgtaaata ttga
This corresponds to the amino acid sequence <SEQ ID 1460; ORF 520.ng>:
    g520.pep
           1 MPALLSIRRA NALPFSRISE RMKLLVPLIM PAMDLILFAA KPSRTALMIG
           51 IPPATAASNW TMTFCFSASG KISLPYSASS FLLAVTMCLP FSMAFNTASL
          101 AMPVPPNNST KTSTSLRANS SNGSFDKGGR RADFGGLFLR LSRTWQKYGF
          151 RAPSGGKFPL RCPATRQPHR RRPYLSLKDR CLLASLCLLV SRLKCKY*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1461>:
     m520.seq
           1 ATGCCTGCGC TTCTTTCAGT ACATCG.GCA AACGCGCTGC CTTTTTCGCG
           51 CATTTCGGrk AGGATGAAGT TGCTGGTGCC GTTAATAATG CCGGCGATGG
          101 ATTTAATCCT GTTTGCCGCC AAACCTTCGC GCAGGGCTTT GATGATTGGG
          151 ATACCGCCCG CTACTGCCGC TTCAAATTGG ACGATGACGT TTTGTTTTTC
              CGCCAGCGGG AAGATTTCGT TGCCGTATTC GGCGAGCAGT TTTTTGTTGG
          251 CGGTAACGAT GTGTTTGCCG TTTTCAATGG CTTTCAACAC CGCATCTTTG
```

```
GCAATGCCGG TACCGCCGAA CAATTCGACG ACGACATCGA CGTCTTCACG
          351 TGCGACCAGT TCGAACGGAT CTTTGACAAA GGCTGc.CGG ACGGGCAGGT
          401 TTGTCGGGCT TTTTCTTCAC TCAAATCGCA CACGGCAGAA ATACGGATTT
          451 CGCGCCCCAA GCGACGGGAA ATTTCCTCCG CGTTGTC8CG CAACACGGCA
          501 GCCGTACCGC CGCCGACCGT ACCCAAACCT AAAAGACCGA TGTTTACTGG
          551 CTTCATTGTG TCTCCTTGTA AGCCGACTGA AATGTAAATA TTGA
This corresponds to the amino acid sequence SEO ID 1462: ORF 520>:
     m520.pep
           1 MPALLSVHXA NALPFSRISX RMKLLVPLIM PAMDLILFAA KPSRRALMIG
          51 IPPATAASNW TMTFCFSASG KISLPYSASS FLLAVTMCLP FSMAFNTASL
              AMPVPPNNST TTSTSSRATS SNGSLTKAXR TGRFVGLFLH SNRTROKYGF
              RAPSDGKFPP RCXATRQPYR RRPYPNLKDR CLLASLCLLV SRLKCKY*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 520 shows 87.3% identity over a 197 aa overlap with a predicted ORF (ORF 520.ng)
from N. gonorrhoeae:
     m520/g520
                         .10
                                  20
                                            30
                                                     40
                                                               50
                 MPALLSVHRANALPFSRISXRMKLLVPLIMPAMDLILFAAKPSRRALMIGIPPATAASNW
     m520.pep
                 MPALLSIRRANALPFSRISERMKLLVPLIMPAMDLILFAAKPSRTALMIGIPPATAASNW
     g520
                                  20
                                            30
                                                     40
                                                               50
                                  80
                                            90
                                                    100
                                                              110
                 TMTFCFSASGKISLPYSASSFLLAVTMCLPFSMAFNTASLAMPVPPNNSTTTSTSSRATS
     m520.pep
                 TMTFCFSASGKISLPYSASSFLLAVTMCLPFSMAFNTASLAMPVPPNNSTKTSTSLRANS
     g520
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                        130
                                 140
                                           150
                                                    160
                                                              170
                 SNGSLTKAARTGRFVGLFLHSNRTRQKYGFRAPSDGKFPPRCXATRQPYRRRPYPNLKDR
     m520.pep
                 {\tt SNGSFDKGGRRADFGGLFLRLSRTWQKYGFRAPSGGKFPLRCPATRQPHRRRPYLSLKDR}
     g520
                                 140
                                           150
                                                    160
                                                              170
                        190
                 CLLASLCLLVSRLKCKY
     m520.pep
                 1111111111111111
     g520
                 CLUASICILIVSRUKCKY
                        190
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1463>:
     a520.seq
              ATGCCTGCGC TTCTTTCAGT ACATCGG.CA AACGCGCTGC CTTTTTCGCG
              CATTTCGGAG AGGATGAAGT TGCTGGTGCC GTTAATAATG CCGGCGATGG
          51
              ATTTAATCCT GTTTGCCGCC AAACCTTCGC GCAGGGCTTT GATGATTGGG
         151 ATACCGCCCG CTACTGCCGC TTCAAATTGG ACGATGACGT TTTGTTTTTC
         201
              CGCCAGCGGG AAGATTTCGT TGCCGTATTC GGCGAGCAGT TTTTTGTTGG
              CGGTAACGAT GTGTTTGCCG TTTTCAATGG CTTTCAACAC CGCATCTTTG
         251
         301
              GCAATGCCGG TACCGCCGAA CAATTCGACG ACGACATCGA CGTCTTCACG
              TGCGACCAGT TCGAACGGAT CTTTGACAAA GGCTG..CGG ACGGGCAGGT
         351
         401
              TTGTCGGGCT TTTTCTTCAC TCAAATCGCA CACGGCAGAA ATACGGATTT
              CGCGCCCCAA GCGACGGGAA ATTTCCTCCG CGTTGTCCCG CAACACGGCA
         451
         501
              GCCGTACCGC CGCCGACCGT ACCCAAACCT AAAAGACCGA TGTTTACTGG
              CTTCATTGTG TCTCCTTGTA AGCCGACTGA AATGTAAATA TTGA
This corresponds to the amino acid sequence <SEQ ID 1464; ORF 520.a>:
     a520.pep
              MPALLSVHRX NALPFSRISE RMKLLVPLIM PAMDLILFAA KPSRRALMIG
             IPPATAASNW TMTFCFSASG KISLPYSASS FLLAVTMCLP FSMAFNTASL
          51
         101 AMPVPPNNST TTSTSSRATS SNGSLTKAXR TGRFVGLFLH SNRTRQKYGF
```

151 RAPSDGKFPP RCPATRQPYR RRPYPNLKDR CLLASLCLLV SRLKCKY*

m520/a520 98.0% identity in 197 aa overlap

		10	20	30	40	50	60
	m520.pep	MPALLSVHXANALP	FSRISXRMKI	LLVPLIMPAMI	DLILFAAKPS	RALMIGIPPA	
			11111 1111	1			111111
	a520	MPALLSVHRXNALP	FSRISERMKI	LLVPLIMPAMI	DLILFAAKPSI	RALMIGIPPA	TAASNW
		10	20	30	40	50	60
		70	80	90	100	110	120
. 100	m520.pep	TMTFCFSASGKISL	PYSASSFLLA	NTMCLPFSM#	YFNTASLAMPY	/PPNNSTTTST	SSRATS
			[]]]]]]	11111111111			111111
	a520	TMTFCFSASGKISL	PYSASSFLLA	VTMCLPFSMA	FNTASLAMP	PPNNSTTTST	SSRATS
		70	80	90	100	110	120
		130	140.	150	160	170	180
	m520.pep	SNGSLTKAXRTGRF	VGLFLHSNRT	ROKYGFRAPS	DGKFPPRCX <i>P</i>	TRQPYRRRPY	PNLKDR
						11111111111	111111
	a520	SNGSLTKAXRTGRF				TRQPYRRRPY	PNLKDR
		130	140	150	160	170	180
		190					
	m520.pep	CLLASLCLLVSRLK	~vvv				
	m520.pep	CELASICILIVSKIK	CKIA				
	- 500		CEAA				
	a520	CLLASLCLLVSRLK	CKIX				
		190					

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1465>: g520-1.seq

```
1 ATGAAGTTGC TGGTGCCGTT AATAATGCCG GCGATGGATT TAATCCTGTT
 51 TGCCGCCAAA CCTTCGCGCA GGGCTTTGAT GATTGGGATA CCGCCCGCTA
101 CTGCCGCTTC AAATTGGACG ATGACGTTTT GTTTTTCCGC CAGCGGGAAG
151 ATTTCGTTGC CGTATTCGGC GAGCAGTTTT TTGTTGGCGG TAACGATGTG
201 TTTGCCGTTT TCAATGGCTT TCAACACCGC TTCTTTGGCA ATGCCCGTGC
251 CGCCGAACAA TTCGACGACG ACATCGACGT CTTTACGCGC GACCAGTtCG
301 AACGGATCTT TGACAAAGGC GGCGGACGGG CAGATTTGGC GGGCTTTTTC
351 TTCGCTTAAG TCGCACATGG CAGAAATACG GATTTCGCGC CCCAAGCGGC
401 GGGAAATTTC CTCTGCGTTG TCCCGCAACA CGGCAGCCGC ACCGCCGCCG
451 ACCGTACCTA AGCCTAAAAG ACCGATGTTT ACTGGCTTCA TTGTGTCTCC
501 TTGTAAGCCG ACTGAAATGT AA
```

This corresponds to the amino acid sequence <SEQ ID 1466; ORF 520-1.ng>: g520-1.pep

- 1 MKLLVPLIMP AMDLILFAAK PSRRALMIGI PPATAASNWT MTFCFSASGK 51 ISLPYSASSF LLAVTMCLPF SMAFNTASLA MPVPPNNSTT TSTSLRATSS
- 101 NGSLTKAADG QIWRAFSSLK SHMAEIRISR PKRREISSAL SRNTAAAPPP
- 151 TVPKPKRPMF TGFIVSPCKP TEM*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 1467>: m520-1.seq

1 ATGAAGTTGC TGGTGCCGTT AATAATGCCG GCGATGGATT TAATCCTGTT 51 TGCCGCCAAA CCTTCGCGCA GGGCTTTGAT GATTGGGATA CCGCCCGCTA 101 CTGCCGCTTC AAATTGGACG ATGACGTTTT GTTTTTCCGC CAGCGGGAAG 151 ATTTCGTTGC CGTATTCGGC GAGCAGTTTT TTGTTGGCGG TAACGATGTG 201 TTTGCCGTTT TCAATGGCTT TCAACACCGC ATCTTTGGCA ATGCCGGTAC 251 CGCCGAACAA TTCGACGACG ACATCGACGT CTTCACGTGC GACCAGTTCG 301 AACGGATCTT TGACAAAGGC TGCGGACGGG CAGGTTTGTC GGGCTTTTTC 351 TTCACTCAAA TCGCACACGG CAGAAATACG GATTTCGCGC CCCAAGCGAC 401 GGGAAATTTC CTCCGCGTTG TCCCGCAACA CGGCAGCCGT ACCGCCGCCG 451 ACCGTACCCA AACCTAAAAG ACCGATGTTT ACTGGCTTCA TTGTGTCTCC 501 TTGTAAGCCG ACTGAAATGT AA

This corresponds to the amino acid sequence <SEQ ID 1468; ORF 520-1>: m520-1.pep

- 1 MKLLVPLIMP AMDLILFAAK PSRRALMIGI PPATAASNWT MTFCFSASGK
 - 51 ISLPYSASSF LLAVTMCLPF SMAFNTASLA MPVPPNNSTT TSTSSRATSS

PCT/US99/09346 WO 99/57280

784

```
101 NGSLTKAADG QVCRAFSSLK SHTAEIRISR PKRREISSAL SRNTAAVPPP
```

151 TVPKPKRPMF TGFIVSPCKP TEM*

```
q520-1/m520-1
                97.1% identity in 173 aa overlap
```

30				•		
	10	20	30	40	50	60
g520-1.pep	MKLLVPLIMPAMDL:	LEAAKPSRE	ALMIGIPPAT	AASNWTMTFO	FSASGKISLE	YSASSF
	11111111111111111		1111111111	11111111111	нинин	111111
m520-1	MKLLVPLIMPAMDL:	LFAAKPSRE	ALMIGIPPAT	AASNWTMTFO	FSASGKISLE	YSASSF
	10	20	30	40	50	60
	70	80	90	100	110	120
. g520-1.pep	LLAVTMCLPFSMAF	NTASLAMPVE	PNNSTTTSTS	LRATSSNGSI	TKAADGQIWF	AFSSLK
	111111111111111111111111111111111111111	1111111111	1111111111	111111111	111111111111111111111111111111111111111	111111
m520-1	LLAVTMCLPFSMAF	TASLAMPVE	PNNSTTTSTS	SRATSSNGSI	TKAADGQVCF	AFSSLK
	70	80	90	100	110	120
	130	140	150	160	170	
g520-1.pep	SHMAEIRISRPKRR	EISSALSRNT	AAAPPPTVPK	PKRPMFTGF1	VSPCKPTEMX	:
	11 111111111111	11111111111	11:1111111	1111111111	11111111111	
m520-1	SHTAEIRISRPKRR	EISSALSRNT	AAVPPPTVPK	PKRPMFTGFI	VSPCKPTEMX	:
	130	140	150	160	170	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1469>:

- 1 ATGAAGTTGC TGGTGCCGTT AATAATGCCG GCGATGGATT TAATCCTGTT
 - 51 TGCCGCCAAA CCTTCGCGCA GGGCTTTGAT GATTGGGATA CCGCCCGCTA 101 CTGCCGCTTC AAATTGGACG ATGACGTTTT GTTTTTCCGC CAGCGGGAAG
 - 151 ATTTCGTTGC CGTATTCGGC GAGCAGTTTT TTGTTGGCGG TAACGATGTG
 - 201 TTTGCCGTTT TCAATGGCTT TCAACACCGC ATCTTTGGCA ATGCCGGTAC
 251 CGCCGAACAA TTCGACGACG ACATCGACGT CTTCACGTGC GACCAGTTCG

 - 301 ACCGATCTT TGACAAAGGC TGCGGACGGG CAGGTTTGTC GGCCTTTTTC
 351 TTCACTCAAA TCGCACACGG CAGAAATACG GATTTCGCGC CCCAAGCGAC
 - 401 GGGAAATTTC CTCCGCGTTG TCCCGCAACA CGGCAGCCGT ACCGCCGCCG
 - 451 ACCGTACCCA AACCTAAAAG ACCGATGTTT ACTGGCTTCA TTGTGTCTCC
 - 501 TTGTAAGCCG ACTGAAATGT AA

This corresponds to the amino acid sequence <SEQ ID 1470; ORF 520-1.a>: a520-1.pep

- 1 MKLLVPLIMP AMDLILFAAK PSRRALMIGI PPATAASNWT MTFCFSASGK 51 ISLPYSASSF LLAVTMCLPF SMAFNTASLA MPVPPNNSTT TSTSSRATSS
- 101 NGSLTKAADG QVCRAFSSLK SHTAEIRISR PKRREISSAL SRNTAAVPPP
- 151 TVPKPKRPMF TGFIVSPCKP TEM*

m520-1/a520-1 100.0% identity in 173 aa overlap

	10	20	30	40	50	60
a520-1.pep	MKLLVPLIMPAMDL:	ILFAAKPSRR	ALMIGIPPAT	'AASNWTMTFC	FSASGKISLF	YSASSF
	11111111111111					
m520-1	MKLLVPLIMPAMDL:				FSASGKISLE	
	10	20	30	40	50	60
	70	80	90	100	110	120
a520-1.pep	LLAVIMCLPFSMAF					
auzu-1.pep					-	
F00 1						
m520-1	LLAVTMCLPFSMAF					
	70	80	90	100	110	120
	130	140	150	160	170	
a520-1.pep	SHTAEIRISRPKRR	EISSALSRNT	AAVPPPTVPK	PKRPMFTGFI	VSPCKPTEMX	3
• •	111111111111111111111111111111111111111	[11]]]	11111111111	111111111111		
m520-1	SHTAEIRISRPKRR					
	130	140	150	160	170	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1471>: g521.seq

- 1 ATGAAATCAA AACTCCCCTT AATCCTAATC AACCTTTCCC TGATTTCAAG
- 51 CCCATTGGGT GCGAATGCGG CCAAAATCTA TACCTGCACA ATCAACGGAG
- 101 AAACCGTTTA CACCACCAAG CCGTCTAAAA GCTGCCACTC AACCGATTTG

785

```
151 CCCCCAATCG GCAACTACAG CAGCGAACGC TATATCCTGC CCCAAACTCC
```

- 201 CGAACCGGCA CCATCACCGT CAAACGGCGG ACAGGCTGTC AAATATAAAG
- 251 CCCCGGTCAA AACAGTATCC AAGCCGGCAA AATCCAATAC GCCGCCTCAA
- 301 CAAGCACCTG TAAATAACAG CAGACGCTCC ATTCTcgaag caGaattaag
- 351 cAatgaacgc aaagccctGa ctGaAGCCCA AAAAATGTTA TCACAagcac
- 401 gtCtGGCAAA AGGCGgcaAC AtcaaCCatc aaaAaatcaa cgcattgtaa
- 451 AGCAATGTTt tggacAGACA GCAAAATaTC Caagcactgc aaaGAgAATt
- 501 GGGACGTATG TAA

This corresponds to the amino acid sequence <SEQ ID 1472; ORF 521.ng>: g521n.pep

- 1 MKSKLPLILI NLSLISSPLG ANAAKIYTCT INGETVYTTK PSKSCHSTDL
- 51 PPIGNYSSER YILPQTPEPA PSPSNGGQAV KYKAPVKTVS KPAKSNTPPQ
- 101 QAPVNNSRRS ILEAELSNER KALTEAQKML SQARLAKGGN INHQKINAL*
- 151 SNVLDRQQNI QALQRELGRM *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1473>:

m521.seq

- 1 ATGAAATCAA AACTCCTCTT AATCCTAATC AACTTTTCCC TGATTTCAAG
- 51 CCCATTGGGT GCGAATGCGG CCAAAATCTA BACCTGCACA ATCAACGGAG
- 101 AAACCGTTTA CACCABCAAG CCGTCCAAAA GCTGCCACTC AACCGATTTG 151 CCCCCAATCG GCAACTACAG CAGCGAACGC TATATCCCGC CCCAAACGCC
- 201 CGAACCGGTA TCATCACCGT CAAACGGCGG ACWGGTTGTC AAATATAAAG
- 251 CCCCGGTCAA AACAGTATCC AAGCCGGCAA AATCCATTAC GCCGCCGCCG
- 301 CAACAAGCAC CCTCAAACAA CAGCAGACGC TCCATTCTCG AAACAGAATT
- 351 GAGCAACGAA CGCAAAGCAT TGGTTGAAGC CCAAAAAATG TTATCACAAG
- 401 CACGTCTGGC AAAGGGCGGC AACATCAACC ATCAAGAAAT AAATGCATTA 451 CAAAGCAATG TATTGGACAG GCAGCAAAAT ATTCAAGCCC TGCAAAGGGA
- 501 ACTGGGGCGT ATGTAA

This corresponds to the amino acid sequence <SEQ ID 1474; ORF 521>:

m521.pep

- 1 MKSKLLLILI NFSLISSPLG ANAAKIXTCT INGETVYTXK PSKSCHSTDL
- 51 PPIGNYSSER YIPPQTPEPV SSPSNGGXVV KYKAPVKTVS KPAKSXTPPP
- 101 QQAPSNNSRR SILETELSNE RKALVEAQKM LSQARLAKGG NINHQEINAL
- 151 QSNVLDRQQN IQALQRELGR M*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 521 shows 90.6% identity over a 171 aa overlap with a predicted ORF (ORF 521.ng) from N. gonorrhoeae:

m521/g521

	10	20	30	40	50	60
m521.pep	MKSKLLLILIN	SLISSPLGANAA	KIXTCTINGE	TVYTXKPSKS	CHSTDLPPIG	NYSSER
		:	11	1111:11111	111111111	
g521	MKSKLPLILINI	SLISSPLGANAA	KIYTCTINGE	TVYTTKPSKS	CHSTDLPPIG	NYSSER
	10	20	30	40	50	60
	70	80	90	100	110	120
m521.pep	YIPPQTPEPVS	SPSNGGXVVKYKA	PVKTVSKPAK	SXTPPPQQAP	SNNSRRSILE	TELSNE
			111111111	1 111 1111	_ [] [] [] [] [] [:
q521	YILPOTPEPAP	FPSNGGQAVKYKA	PVKTVSKPAK	SNTPP-QQAP	VNNSRRSILE	AELSNE
-	70	80	90	100	110	
	130	140	150	160	170	
m521.pep	RKALVEAQKML	SQARLAKGGNINH	QEINALQSNV	LDRQQNIQAL	QRELGRMX	
	1111:111111	[1:1111 111	11111111111	11111111	
g521	RKALTEAQKML	SQARLAKGGNINH	QKINALXSNV	/LDRQQNIQAL	QRELGRMX	
-	120 130	140	150	160	170	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1475>: a521.seq

ATGAAATCAA AACTCCCCTT AATCCTAATC AACTTTTCCC TGATTTCAAG

PCT/US99/09346 WO 99/57280

```
786
```

```
51 CCCATTGGGT GCGAATGCGG CCAAAATCTA CACCTGCACA ATCAACGGAG
101 AAACCGTTTA CACCACCAAG CCGTCCAAAA GCTGCCTCTC AACCGATTTG
151 CCCCCAATCG GCAACTACAG CAGCGAACGC TATATCCCGC CCCAAACATC
201 CGAACCGACA CCATCACCGT CAAACGGCGG ACAGGCTGTC AAATATAAAG
251 CCCCGGTCAA AACAGTATCC AAGCCGGCAA AATCCAATAC GCCGCCGCCG
301 CAACAAGCAC CCTCAAACAA CAGCAGACGC TCCATTCTCG AAACAGAATT
351 GAGCAACGAA CGCAAAGCAT TGGTTGAAGC CCAAAAAATG TTATCACAAG
401 CACGTCTGGC AAAAGGCGGC AACATCAACC ATCAAGAAAT CAACGCATTG
451 CAAAGCAATG TATTGGACAG GCAGCAAAAT ATCCAAGCAC TGCAAAGAGA
501 ATTGGGACGT ATGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1476; ORF 521.a>:

a521.pep

- MKSKLPLILI NFSLISSPLG ANAAKIYTCT INGETVYTTK PSKSCLSTDL
- 51 PPIGNYSSER YIPPQTSEPT PSPSNGGQAV KYKAPVKTVS KPAKSNTPPP
- QOAPSNNSRR SILETELSNE RKALVEAQKM LSQARLAKGG NINHQEINAL 101
- 151 QSVLDRQQN IQALQRELGR M*

m521/a521 94.2% identity in 171 aa overlap

	, 0,						
	10	20	30	40	50	60	
m521.pep	MKSKLLLILINFSI	ISSPLGANAAI	KIXTCTINGE	TVYTXKPSKS	CHSTDLPPIG	NYSSER	
	[[[]]] [] [] [] [] [] [] []	1111111111	[] [[] []		1 11111111	111111	
a521	MKSKLPLILINFSI	ISSPLGANAAI	KIYTCTINGE	TVYTTKPSKS	CLSTDLPPIG	NYSSER	
	10	20	30	40	50	60	
	70	80	90	100	110	120	
m521.pep	YIPPQTPEPVSSPS	NGGXVVKYKA	PVKTVSKPAK	SXTPPPQQAE	SNNSRRSILE	TELSNE	
		11111: 1111	[[[]]]	т инин	пинийн	111111	
a521	YIPPQTSEPTPSPS	NGGQAVKYKA	PVKTVSKPAK	SNTPPPQQAE	SNNSRRSILE	TELSNE	
	70	80	90	100	110	120	
	130	140	150	160	170		
m521.pep	RKALVEAQKMLSQARLAKGGNINHQEINALQSNVLDRQQNIQALQRELGRMX						
	111111111111111	1111111111	[]]]	11111111111	1111111		
a521	RKALVEAQKMLSQA	RLAKGGNINH	QEINALQSNV	LDRQQNIQAI	QRELGRMX		
•	130	140	150	160	170		

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1477>: g522.seg

```
1 atgactgage egaaacaega aacgeegaeg gaagageagg ttgeegegeg
```

- 51 caaaaaagca aaagccaaaa tccgcaccat ccgcatttgg gcgtgggtca
- 101 ttttggcgtt getegettea accgecetge teteceaatg egegatgtee
- 151 aaaccgcagg caaaacagaa aattgtcgag tcttgcatga aaaatattcc
- 201 gtttgctgaa aaatggcaga acgatttgaa agcgcgcggc ttggatgcgg
- 251 acaatacccg tctcgccgtc gactactgca aatgtatgtg ggagcagcct
- 301 ttggacggat tgagcgagaa acagatcagc tccttcggca aactcggtgc
- 351 acaagaacag cttgacctgc tcggcggcgc aaacgcgttt gaaactcgag
- 401 acaaacaatg tgtcgcggat ttgaaagccg attga

This corresponds to the amino acid sequence <SEO ID 1478; ORF 522.ng>: g522.pep

- 1 MTEPKHETPT EEQVAARKKA KAKIRTIRIW AWVILALLAS TALLSQCAMS
- 51 KPQAKQKIVE SCMKNIPFAE KWQNDLKARG LDADNTRLAV DYCKCMWEQP
- 101 LDGLSEKQIS SFGKLGAQEQ LDLLGGANAF ETRDKQCVAD LKAD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1479>: m522.seq

- 1 ATGACTGAGC CGAAACACGA AATGCTGACG AAAGAGCAGG TTGCCGCGCG
- 51 CAAAAAAGCA AAAGCCAAAA TCCGCACCAT CCGCATTTGG GCGTGGGTCA
- 101 TTTTGGCGTT GCTCGCTTTA ACCGCCCTGC TCTCCCAATG CGCGATGTCC
- 151 AAACCGCAGG CAAAACAGAA AATTGTCGAG TCTTGCGTGA AGAATATTCC 201 GTTTGCCGAA AAATGGCAAA ACGATTTGCG GGCCCGCGGT TTAGATTCAA
- 251 ACAATACCCG CCTCGCCGTC GACTACTGCA AATGTATGTG GGAGCAGCCT

WO 99/57280 PCT/US99/09346

```
301 TTGGACAGAT TGAGCGAGAA ACAGATTAGA TCCTTCGGCA AACTCGGCGC
     351 ACAAGAACAG CTTGACCTGC TCGGCGGCGC AAATGCCTTT GAAGCACGTG
     401 ACAAGCAGTG TGTTGCCGAT TTGAAATCAG AATAA
This corresponds to the amino acid sequence <SEQ ID 1480; ORF 522>:
m522.pep
         MTEPKHEMLT KEQVAARKKA KAKIRTIRIW AWVILALLAL TALLSQCAMS
     51 KPOAKOKIVE SCVKNIPFAE KWONDLRARG LDSNNTRLAV DYCKCMWEOP
    101 LDRLSEKQIR SFGKLGAQEQ LDLLGGANAF EARDKQCVAD LKSE*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 522 shows 91.0% identity over a 144 aa overlap with a predicted ORF (ORF 522.ng)
from N. gonorrhoeae:
m522/q522
                            20
                                      30
                   10
                                               40
                                                        50
                                                                 60
            MTEPKHEMLTKEQVAARKKAKAKIRTIRIWAWVILALLALTALLSQCAMSKPQAKOKIVE
m522.pep
            MTEPKHETPTEEQVAARKKAKAKIRTIRIWAWVILALLASTALLSQCAMSKPQAKQKIVE
q522
                                      30
                   10
                            20
                                               40
                                                        50
                   70
                            80
                                      90
                                              100
                                                       110
                                                                120
            SCVKNIPFAEKWONDLRARGLDSNNTRLAVDYCKCMWEOPLDRLSEKQIRSFGKLGAOEO
m522.pep
            SCMKNIPFAEKWQNDLKARGLDADNTRLAVDYCKCMWEQPLDGLSEKQISSFGKLGAQEQ
g522
                   70
                            80
                                      90
                                              100
                                                       110
                  130
                           140
            LDLLGGANAFEARDKOCVADLKSEX
m522.pep
            q522
            LDLLGGANAFETRDKQCVADLKAD
                  130
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1481>:
     a522.seq
              ATGACTGAGC CGAAACACGA AATGCCGACG GAAGAGCAGG TTGCCGCGCG
          51
              CAAAAAAGCA AAAGCCAAAA TCCGCACCAT CCGCATTTGG GCATGGGTCA
             TTTTGGCGTT GCTCGCTTCA ACCGCCCTGC TCTCCCAATG CGCGATGTCC
         101
         151 AAACCGCAGG CAAAACAGAA AATTGTCGAG TCTTGCGTGA AGAATATTCC
         201 GTTTGCCGAA AAATGGCAAA ACGATTTGCG GGCCCGCGGT TTAGATTCAA
             ACAATACCCG CCTTACCGTC GACTACTGCA AATGTATGTG GGAGCAGCCT
         251
             TTGGACAGAT TGAGCGAGAA ACAGATTAGT TCCTTCGGCA AACTCGGCGC
         351 ACAAGAACAG CTTGACCTGC TCGGCGGCGC AAATGCCTTT GAAACGCGAG
         401 ACAAGCAGTG TGTTGCCGAT TTGAAATCAG AATAA
This corresponds to the amino acid sequence <SEQ ID 1482; ORF 522.a>:
     a522.pep
           1
             MTEPKHEMPT EEQVAARKKA KAKIRTIRIW AWVILALLAS TALLSQCAMS
             KPQAKQKIVE SCVKNIPFAE KWQNDLRARG LDSNNTRLTV DYCKCMWEQP
             LDRLSEKQIS SFGKLGAQEQ LDLLGGANAF ETRDKQCVAD LKSE*
         101
m522/a522 95.8% identity in 144 aa overlap
                                 20
                                          30
                                                   40
                {\tt MTEPKHEMLTKEQVAARKKAKAKIRTIRIWAWVILALLALTALLSQCAMSKPQAKQKIVE}
    m522.pep
                 MTEPKHEMPTEEQVAARKKAKAKIRTIRIWAWVILALLASTALLSQCAMSKPQAKQKIVE
     a522
                        10
                                 20
                                          30
                                                   40
                        70
                                 80
                                                  100
                                                            110
                                                                     120
                SCVKNIPFAEKWQNDLRARGLDSNNTRLAVDYCKCMWEQPLDRLSEKQIRSFGKLGAQEQ
    m522.pep
                 a522
                SCVKNIPFAEKWONDLRARGLDSNNTRLTVDYCKCMWEQPLDRLSEKQISSFGKLGAQEQ
                        70
                                 80
                                          90
                                                  100
                                                            110
                                                                     120
```

```
140
                          130
                   LDLLGGANAFEARDKQCVADLKSEX
       m522.pep
                    LDLLGGANAFETRDKQCVADLKSEX
       a522
                          130
                                   140
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1483>:
__g523.seq
           atgactgtat ggtttgttgc cgctgttgcc gtcttaatca tcgaattatt
        1
       51 gacgggaacg gtttatcttt tggttgtcag cgcggctttg gcgggttcgg
      101 gcattgccta cgggctgact ggcagcacgc ctgccgccgt cttgaccgcc
      151 gcactgcttt ccgcgctggg catttggttc gtacatgcca aaaccgccgt
           gggaaaagtt gaaacggatt catatcagga tttggatacc ggaaaatatg
           ccgaaatcct ccgatacaca ggcggcaacc gttacgaagt tttttatcgc
      301 ggtacgcact ggcaggcgca aaatacgggg caggaagtgt ttgaaccggg
      351 aacgcgcgcc ctcatcgtcc gcaaagaagg taaccttctt atcatcgcaa
       401 accettaa
  This corresponds to the amino acid sequence <SEQ ID 1484; ORF 523.ng>:
  q523.pep
        1 MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT GSTPAAVLTA
        51 ALLSALGIWF VHAKTAVGKV ETDSYQDLDT GKYAEILRYT GGNRYEVFYR
       101 GTHWQAQNTG QEVFEPGTRA LIVRKEGNLL IIANP*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1485>:
            (partial)
  m523.seg
            ..GCCGTCTTAA TCATCGAATT ATTGACGGGA ACGGTTTATC TTTTGGTTGT
             NAGCGCGGCT TTGGCGGGTT CGGGCATTGC TTACGGGCTG ACCGGCAGTA
        51
             CGCCTGCCGC CGTCTTGACC GnCGCTCTGC TTTCCGCGCT GGGTATTTnG
       101
             TTCGTACACG CCAAAACCGC CGTTAGAAAA GTTGAAACGG ATTCATATCA
       151
             GGATTTGGAT GCCGGACAAT ATGTCGAAAT CCTCCGACAC ACAGGCGGCA
       201
             ACCGTTACGA AGTTTTTTAT CGCGGTACGC ACTGGCAGGC TCAAAATACG
       251
             GGGCAAGAAG AGCTTGAACC AGGAACTCGC GCCCTCATTG TCCGCAAGGA
       301
             AGGCAACCTT CTTATTATCA CACACCCTTAA
       351
  This corresponds to the amino acid sequence <SEQ ID 1486; ORF 523>:
  m523.pep
            (partial)
            ..AVLIIELLTG TVYLLVVSAA LAGSGIAYGL TGSTPAAVLT XALLSALGIX
              FVHAKTAVRK VETDSYODLD AGOYVEILRH TGGNRYEVFY RGTHWQAQNT
        51
              GQEELEPGTR ALIVRKEGNL LIITHP*
       101
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF523 shows 91.3% identity over a 126 aa overlap with a predicted ORF (ORF 523.ng)
  from N. gonorrhoeae:
  m523/g523
                               10
                                        20
                                                  30
                                                            40
                                                                     50
                       AVLIIELLTGTVYLLVVSAALAGSGIAYGLTGSTPAAVLTXALLSALGIXF
  m523.pep
                       MTVWFVAAVAVLIIELLTGTVYLLVVSAALAGSGIAYGLTGSTPAAVLTAALLSALGIWF
  q523
                                20
                                         30
                                                   40
                                                             50
                      10
                                                                      60
                               70
                                         80
  m523.pep
               VHAKTAVRKVETDSYQDLDAGQYVEILRHTGGNRYEVFYRGTHWQAQNTGQEELEPGTRA
```

VHAKTAVGKVETDSYQDLDTGKYAEILRYTGGNRYEVFYRGTHWQAQNTGQEVFEPGTRA

100

110

90

120 m523.pep LIVRKEGNLLIITHP ||||||||::|

70

80

q523

789

```
LIVRKEGNLLIIANPX
 g523
                    130
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1487>:
      a523.seq
                ATGACTGTAT GGTTTGTTGC CGCTGTTGCC GTCTTAATCA TCGAATTATT
                GACGGGAACG GTTTATCTTT TGGTTGTCAG CGCGGCTTTG GCGGGTTCGG
            51
                GCATTGCTTA CGGGCTGACC GGCAGCACGC CTGCCGCCGT CTTGACCGCC
           101
                GCTCTGCTTT CCGCGCTGGG TATTTGGTTC GTACACGCCA AAACCGCCGT
           151
           201 GGGAAAAGTT GAAACGGATT CATATCAGGA TTTGGATGCC GGGCAATATG
           251 CCGAAATCCT CCGGCACGCA GGCGGCAACC GTTACGAAGT TTTTTATCGC
.. *****
                GGTACGCACT GGCAGGCTCA AAATACGGGG CAAGAAGAGC TTGAACCAGG
           301
               AACGCGCGCC CTAATCGTCC GCAAGGAAGG CAACCTTCTT ATCATCGCAA
           351
              AACCTTAA
 This corresponds to the amino acid sequence <SEQ ID 1488; ORF 523.a>:
      a523.pep
                MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT GSTPAAVLTA
                ALLSALGIWF VHAKTAVGKV ETDSYQDLDA GQYAEILRHA GGNRYEVFYR
            51
                GTHWQAQNTG QEELEPGTRA LIVRKEGNLL IIAKP*
 m523/a523 94.4% identity in 126 aa overlap
                                            20
                                                      30
                                                                40
                           AVLIIELLTGTVYLLVVSAALAGSGIAYGLTGSTPAAVLTXALLSALGIXF
      m523.pep
                            MTVWFVAAVAVLIIELLTGTVYLLVVSAALAGSGIAYGLTGSTPAAVLTAALLSALGIWF
      a523
                                                                 50 .
                                    20
                                              30
                                                       40
                          10
                                                               100
                                   70
                                             80
                                                      90
                                                                        110
                   VHAKTAVRKVETDSYQDLDAGQYVEILRHTGGNRYEVFYRGTHWQAQNTGQEELEPGTRA
      m523.pep
                   VHAKTAVGKVETDSYQDLDAGQYAEILRHAGGNRYEVFYRGTHWQAQNTGQEELEPGTRA
       a523
                                              90
                                                      100
                                    80
                           70
                         120
                   LIVRKEGNLLIITHPX
       m523.pep
                   LIVRKEGNLLIIAKPX
       a523
                          130
  The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1489>:
       g525.seq
                atgaagtacg teeggttatt ttteetegge aeggeacteg eeggeactea
                ageggegget geegaaatgg tteaaatega aggeggeage tacegeeege
            101 tttatctgaa aaaagatacc ggcctgatta aagtcaaacc gttcaaactg
            151 gataaatatc ccgttaccaa tgccgagttt gccgaatttg tcaacagcca
            201 cccccaatgg caaaaaggca ggatcggttc caaacaggca gaacccgctt
            251 acctgaagca ttggatgaaa aacggcagcc gcagctatgc gccgaaggcg
            301 ggcgaattga aacagccggt taccaatatt tcctggtttg ccgccaacgc
            351 ctattgcgcc gcacaaggca aacgcctgcc gaccatcgac gaatgggaat
            401 ttgccggact tgcttccgcc acgcagaaaa aacggctcaa acgaacccgg
            451 ctacaaccgc actattctcg attggtatgc cgacggcgga cggaaaggcc
            501 tgcacgatgt cggcaaagca ccgcccgaac tactggggtg tttatgatat
            551 gcacgggctg a
```

This corresponds to the amino acid sequence <SEQ ID 1490; ORF 525.ng>: g525.pep

- MKYVRLFFLG TALAGTQAAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL
- 51 DKYPVTNAEF AEFVNSHPQW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA
- GELKOPVTNI SWFAANAYCA AQGKRLPTID EWEFAGLASA TQKKRLKRTR
- LQPHYSRLVC RRRTERPARC RQSTARTTGV FMICTG *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1491>:

```
m525.seq
           1 ATGAAGTATG TCCGGTTATT TTWCCTCGGC GCGGCACTCG cCrrcactca
          51 Arcggcggct gccgaaatgg ttcaaatcga aggcggcagc taccgcccrc
             TTTATCTGAA AAAAGATACC GGCCTGATTA AAGTCAAACC GTTCAAACTG
         101
         151 GATAAATATC CCGTTACCAA TGCCGAGTTT GCCGAATTTG TCAACAGCCA
         201 CCCCCAATGG CAAAAAGGCA GGATCGGTTC CAAACAGGCA GAACCCGCTT
         251 ACCTGAAGCA TTGGATGAAA AACGGCAGCC GCAGCTATGC GCCGAAGGCG
         301 GGCGAATTAA AACAACCGGT AACCAATGTT TCCTGGwTTG CCGCCAACGC
         351 CTATTGCGCC GCACAAGGCA AACGCCTGCC GACCATTGAC GAATGGGAAT
         401 TTGCCGGACT TGCTTCCGCC ACGCAGAAAA A.CGGCTCAA ACGAACCCGG
         451 CTACAACCGC ACTATTCTCG ATTGGTATGC CGACGGCGGA CGGAAAGGCC
         501 TGCACGATGT CGGCA.AAGG CCGCCCGAAC TACTGGGGCG TTTATGATAT
         551 GCACGGGCTG A
This corresponds to the amino acid sequence <SEQ ID 1492; ORF 525>:
    m525.pep
              MKYVRLFXLG AALAXTOXAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL
          51 DKYPVTNAEF AEFVNSHPQW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA
         101 GELKOPVTNV SWXAANAYCA AQGKRLPTID EWEFAGLASA TQKXRLKRTR
         151 LQPHYSRLVC RRRTERPARC RXKAARTTGA FMICTG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 525 shows 94.1% identity over a 186 as overlap with a predicted ORF (ORF 525.ng)
from N. gonorrhoeae:
    m525/g525
                        10
                                 20
                                                     40
                                                              50
                 MKYVRLFXLGAALAXTQXAAAEMVQIEGGSYRPLYLKKDTGLIKVKPFKLDKYPVTNAEF
     m525.pep
                 MKYVRLFFLGTALAGTQAAAAEMVQIEGGSYRPLYLKKDTGLIKVKPFKLDKYPVTNAEF
     g525
                        10
                                  20
                                           30
                                                     40
                                                              50
                                                                        60
                        70
                                  80
                                           90
                                                    100
                                                             110
                 AEFVNSHPQWQKGRIGSKQAEPAYLKHWMKNGSRSYAPKAGELKQPVTNVSWXAANAYCA
     m525.pep
                 AEFVNSHPQWQKGRIGSKQAEPAYLKHWMKNGSRSYAPKAGELKQPVTNISWFAANAYCA
     g525
                        70
                                  0'8
                                           90
                                                    100
                       130
                                 140
                                          150
                                                    160
                                                             170
     m525.pep
                 AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA
                 AQGKRLPTIDEWEFAGLASATQKKRLKRTRLQPHYSRLVCRRRTERPARCRQSTARTTGV
     g525
                                 140
                                          150
                                                    160
                                                             170
     m525.pep
                 FMICTGX
                 1111111
     g525
                 FMICTGX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1493>:
     a525.seq
              ATGAAGTTTA CCCGGTTACT CTTTCTCTGT GCGGCACTCG CCGGCACTCA
           1
          51 AGCGGCAGCT GCCGAAATGG TTCAAATCGA AGGCGGCAGC TACCGCCCGC
         101 TTTATCTGAA AAAAGATACC GGCCTGATTA AAGTCAAACC GTTCAAACTG
          151 GATAAATATC CCGTTACCAA TGCCGAGTTT GCCGAATTTG TCAACAGCCA
         201 CCCCCAATGG CAAAAAGGCA GGATCGGTTC CAAACAGGCA GAACCCGCTT
         251 ACCTGAAGCA TTGGATGAAA AACGGCAGCC GCAGCTATGC GCCGAAGGCG
              GGCGATTTAA AACAACCGGT AACCAATGTT TCCTGGTTCG CCGCCAACGC
         351 CTATTGCGCC GCACAAGGCA AACGCCTGCC GACCATTGAC GAATGGGAAT
          401 TTGCCGGACT TGCCTCCGCC ACGCAG.AAA AACGGCTCAA ACGAACCCGG
          451 CTACAACCGC ACTATTCTCG ACTGGTATGC GGATGGCGAC CGGAAAGACC
              TGCACGATGT CGGCAAAG.G TCGCCCGAAC TACTGGGGCG TTTATGATAT
```

551 GCACGGTCTG A

PCT/US99/09346 WO 99/57280

791

This corresponds to the amino acid sequence <SEQ ID 1494; ORF 525.a>: a525.pep

MKFTRLLFLC AALAGTQAAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL

51 DKYPVTNAEF AEFVNSHPQW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA 101 GDLKQPVTNV SWFAANAYCA AQGKRLPTID EWEFAGLASA TQXKRLKRTR

151 LQPHYSRLVC GWRPERPARC RQXVARTTGA FMICTV*

m525/a525 90.8% identity in 185 aa overlap

MKYVRLFXLGAALAXTQXAAAEMVQIEGGSYRPLYLKKDTGLIKVKPFKLDKYPVTNAEF		,		20.	30	40	50	
			10	20				60
### ##################################	- neer	m525.pep	MKYVRLFXLGAALAX	(TQXAAAEM)	QIEGGSYRPL	YLKKDTGLIK	WKPFKLDKY:	PVTNAEF
### 10 20 30 40 50 60 ##################################			11::11: 1 1111	11 111111	1111111111	1111111111	111111111	111111
### 10 20 30 40 50 60 ##################################		2525	MKETRI.I.FI.CAAI.AC	TOAAAAEM	OTEGGSYRPL	YLKKDTGLIK	VKPFKLDKY	PVTNAEF
TO 80 90 100 110 120 m525.pep AEFVNSHPQWQKGRIGSKQAEPAYLKHWKNGSRSYAPKAGELKQPVTNVSWXAANAYCA		a323						
### ##################################			10	20	50	10	30	00
### ##################################								
a525 AEFVNSHPQWQKGRIGSKQAEPAYLKHWMKNGSRSYAPKAGDLKQPVTNVSWFAANAYCA 70 80 90 100 110 120 130 140 150 160 170 180 AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA								
### ##################################		m525.pep	AEFVNSHPQWQKGR]	GSKQAEPAY	LKHWMKNGSR	Syapkagelk	(QPVTNVSWX	AANAYCA
70 80 90 100 110 120 130 140 150 160 170 180 m525.pep AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA			1111111111111111		1111111111	11111111:11	11111111	111111
70 80 90 100 110 120 130 140 150 160 170 180 m525.pep AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA		a525	AFFVNSHPOWOKGR)	GSKOAEPAY	LKHWMKNGSR	SYAPKAGDLE	OPVTNVSWF	AANAYCA
### ##################################		4525						
m525.pep AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA			, 0	00		200		120
m525.pep AQGKRLPTIDEWEFAGLASATQKXRLKRTRLQPHYSRLVCRRRTERPARCRXKAARTTGA			120	140	150	1.00	170	100
### ##################################								
a525 AQGKRLPTIDEWEFAGLASATQXKRLKRTRLQPHYSRLVCGWRPERPARCRQXVARTTGA 130 140 150 160 170 180 m525.pep FMICTGX		m525.pep	AQGKRLPTIDEWEF	\GLASATQKX	KRLKRTRLQPH	YSRLVCRRRI	ERPARCRXK	AARTTGA
130 140 150 160 170 180 m525.pep FMICTGX			1111111111111			111111 1	1111111	:
130 140 150 160 170 180 m525.pep FMICTGX		a525	AOGKRLPTIDEWEFA	GLASATOXE	RLKRTRLQPH	YSRLVCGWRE	ERPARCROX	VARTTGA
m525.pep FMICTGX		4020						
11111			130					200
11111							•	
11111								
		m525.pep	FMICTGX					
a525 FMICTVX			11111					
		a525	FMICTVX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1495>: a525-1.seq

```
1 ATGAAGTACG TCCGGTTATT TTTCCTCGGC ACGGCACTCG CCGGCACTCA
51 AGCGGCGGCT GCCGAAATGG TTCAAATCGA AGGCGGCAGC TACCGCCCGC
101 TTTATCTGAA AAAAGATACC GGCCTGATTA AAGTCAAACC GTTCAAACTG
151 GATAAATATC CCGTTACCAA TGCCGAGTTT GCCGAATTTG TCAACAGCCA
201 CCCCCAATGG CAAAAAGGCA GGATCGGTTC CAAACAGGCA GAACCCGCTT
251 ACCTGAAGCA TTGGATGAAA AACGGCAGCC GCAGCTATGC GCCGAAGGCG
301 GGCGAATTGA AACAGCCGGT TACCAATATT TCCTGGTTTG CCGCCAACGC
351 CTATTGCGCC GCACAAGGCA AACGCCTGCC GACCATCGAC GAATGGGAAT
401 TTGCCGGACT TGCTTCCGCC ACGCAGAAAA ACGGCTCAAA CGAACCCGGC
451 TACAACCGCA CTATTCTCGA TTGGTATGCC GACGGCGGAC GGAAAGGCCT
501 GCACGATGTC GGCAAAGACC GCCCGAACTA CTGGGGTGTT TATGATATGC
551 ACGGGCTGAT TTGGGAATGG ACGGAAGATT TCAACAGCAG CCTGCTTTCT
601 TCCGGCAATG CCAACGCGCA AATGTTTTGC AGCGGCGCAT CTGTCGGGGC
651 GAGCGACTCG TCCAACTATG CCGCCTTCCT CCGCTACGGC ATCCGCACCA
701 GCCTGCAATC CAAATACGTC CTGCACAACT TGGGCTTCCG CTGCGCAAGC
751 CGATAA
```

This corresponds to the amino acid sequence <SEQ ID 1496; ORF 525-1.ng>: g525-1.pep

- 1 MKYVRLFFLG TALAGTQAAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL 51 DKYPVTNAEF AEFVNSHPQW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA
- 101 GELKQPVTNI SWFAANAYCA AQGKRLPTID EWEFAGLASA TQKNGSNEPG
- 151 YNRTILDWYA DGGRKGLHDV GKDRPNYWGV YDMHGLIWEW TEDFNSSLLS
- 201 SGNANAQMFC SGASVGASDS SNYAAFLRYG IRTSLQSKYV LHNLGFRCAS

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1497>: m525-1.seq

- 1 ATGAAGTATG TCCGGTTATT TTTCCTCGGC GCGGCACTCG CCGGCACTCA
- 51 AGCGGCGGCT GCCGAAATGG TTCAAATCGA AGGCGGCAGC TACCGCCCGC
- 101 TTTATCTGAA AAAAGATACC GGCCTGATTA AAGTCAAACC GTTCAAACTG

WO 99/57280 PCT/US99/09346

792

```
151 GATAAATATC CCGTTACCAA TGCCGAGTTT GCCGAATTTG TCAACAGCCA
201 CCCCCAATGG CAAAAAGGCA GGATCGGTTC CAAACAGGCA GAACCCGCTT
251 ACCTGAAGCA TTGGATGAAA AACGGCAGCC GCAGCTATGC GCCGAAGGCG
301 GGCGAATTAA AACAACCGGT AACCAATGTT TCCTGGTTTG CCGCCAACGC
351 CTATTGCGCC GCACAAGGCA AACGCCTGCC GACCATTGAC GAATGGGAAT
401
    TTGCCGGACT TGCTTCCGCC ACGCAGAAAA ACGGCTCAAA CGAACCCGGC
    TACAACCGCA CTATTCTCGA TTGGTATGCC GACGGCGGAC GGAAAGGCCT
451
    GCACGATGTC GGCAAAGGCC GCCCGAACTA CTGGGGCGTT TATGATATGC
501
551 ACGGGCTGAT TTGGGAATGG ACGGAAGATT TCAACAGCAG CCTGCTTTCT
    TCCGGCAATG CCAACGCGCA AATGTTTTGC AGCGGCGCGT CTATCGGGTC
601
    GAGCGACTCG TCCAACTATG CCGCCTTCCT CCGCTACGGC ATCCGTACCA
    GCCTGCAATC CAAATATGTC TTGCACAACT TGGGCTTCCG TTGCACAAGC
```

This corresponds to the amino acid sequence <SEQ ID 1498; ORF 525-1>: m525-1.pep

```
1 MKYVRLFFLG AALAGTQAAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL
51 DKYPVTNAEF AEFVNSHPOW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA
101 GELKQPVTNV SWFAANAYCA AQGRRLPTID EWEFAGLASA TQKNGSNEPG
151 YNRTILDWYA DGGRKGLHDV GKGRPNYWGV YDMHGLIWEW TEDFNSSLLS
201 SGNANAQMFC SGASIGSSDS SNYAAFLRYG IRTSLQSKYV LHNLGFRCTS
```

g525-1 YDMHGLIWEWTEDFNSSLLSSGNANAQMFCSGASVGASDSSNYAAFLRYGIRTS 190 200 210 220 230 250

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1499>: a525-1.seq

```
1 ATGAAGTTTA CCCGGTTACT CTTTCTCTGT GCGGCACTCG CCGGCACTCA
 51 AGCGGCAGCT GCCGAAATGG TTCAAATCGA AGGCGGCAGC TACCGCCCGC
101
    TTTATCTGAA AAAAGATACC GGCCTGATTA AAGTCAAACC GTTCAAACTG
    GATAAATATC CCGTTACCAA TGCCGAGTTT GCCGAATTTG TCAACAGCCA
201 CCCCCAATGG CAAAAAGGCA GGATCGGTTC CAAACAGGCA GAACCCGCTT
251 ACCTGAAGCA TTGGATGAAA AACGGCAGCC GCAGCTATGC GCCGAAGGCG
    GGCGATTTAA AACAACCGGT AACCAATGTT TCCTGGTTCG CCGCCAACGC
301
351 CTATTGCGCC GCACAAGGCA AACGCCTGCC GACCATTGAC GAATGGGAAT
    TTGCCGGACT TGCCTCCGCC ACGCAGAAAA ACGGCTCAAA CGAACCCGGC
401
    TACAACCGCA CTATTCTCGA CTGGTATGCG GATGGCGACC GGAAAGACCT
451
    GCACGATGTC GGCAAAGGTC GCCCGAACTA CTGGGGCGTT TATGATATGC
501
551 ACGGTCTGAT TTGGGAATGG ACGGAAGATT TCAACAGCAG CCTGCTTTCT
601
    TCCGGCAATG CCAACGCGCA AATGTTTTGC AGCGGCGCGT CTATCGGGTC
651
    GAGCGACTCG TCCAACTATG CCGCCTTCCT CCGCTACGGC ATCCGCACCA
701
    GCCTGCAATC CAAATATGTC TTGCACAACT TGGGCTTCCG TTGCACAAGC
751
    CGATAA
```

PCT/US99/09346 WO 99/57280

793

```
This corresponds to the amino acid sequence <SEQ ID 1500; ORF 525-1.a>:
a525-1.pep
        MKFTRLLFLC AALAGTQAAA AEMVQIEGGS YRPLYLKKDT GLIKVKPFKL
      1
        DKYPVTNAEF AEFVNSHPQW QKGRIGSKQA EPAYLKHWMK NGSRSYAPKA
     51
        GDLKOPVINV SWFAANAYCA AQGKRLPTID EWEFAGLASA TQKNGSNEPG
    101
        YNRTILDWYA DGDRKDLHDV GKGRPNYWGV YDMHGLIWEW TEDFNSSLLS
        SGNANAQMFC SGASIGSSDS SNYAAFLRYG IRTSLQSKYV LHNLGFRCTS
    201
    251 R*
m525-1/a525-1
             97.2% identity in 251 aa overlap
           MKYVRLFFLGAALAGTQAAAAEMVQIEGGSYRPLYLKKDTGLIKVKPFKLDKYPVTNAEF
m525-1.pep
           a525-1
           MKFTRLLFLCAALAGTQAAAAEMVQIEGGSYRPLYLKKDTGLIKVKPFKLDKYPVTNAEF
                  10
                          20
                                   30
                                            40
                           80
                                   90
                                           100
           AEFVNSHPQWQKGRIGSKQAEPAYLKHWMKNGSRSYAPKAGELKQPVTNVSWFAANAYCA
m525-1.pep
           a525-1
           AEFVNSHPQWQKGRIGSKQAEPAYLKHWMKNGSRSYAPKAGDLKQPVTNVSWFAANAYCA
                           80
                                   90
                                           100
                                                   110
                          140
                                           160
                 130
                                  150
                                                   170
           AQGKRLPTIDEWEFAGLASATQKNGSNEPGYNRTILDWYADGGRKGLHDVGKGRPNYWGV
m525-1.pep
           AQGKRLPTIDEWEFAGLASATQKNGSNEPGYNRTILDWYADGDRKDLHDVGKGRPNYWGV
a525-1
                                           160
                 130
                          140
                                  150
                                                            180
                 190
                          200
                                  210
                                           220
                                                   230
                                                            240
           YDMHGLIWEWTEDFNSSLLSSGNANAQMFCSGASIGSSDSSNYAAFLRYGIRTSLQSKYV
m525-1.pep
           a525-1
           YDMHGLIWEWTEDFNSSLLSSGNANAQMFCSGASIGSSDSSNYAAFLRYGIRTSLQSKYV
                 190
                          200
                                  210
                                           220
                                                   230
                 250
           LHNLGFRCTSRX
m525-1.pep
           13111111111111
a525-1
           LHNLGFRCTSRX
                 250
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1501>:
     g527.seg
              atggttttac cagtctcctt ttttcagcct gtccagttgg cggcggtcgc
              gcttggtcgg tctgccgtcg ggatgggcgg aagtgatgcg gctgaattgg
           51
          101
              togagotgtt tgcactotto cotcaatgot googttttog ogtottotto
          151 atacagaagc cgcgcctcgg gtgccgggcg gcgttggtgg ttcaaacctt
          201 taaccttgat tttatgggga agggaattga gcgtcaggtc gataatatcg
          251 ccgatgtcta tggttttact gtttttgact ttcgagccgt ttacttgaac
          301 cctacccagt tcgatatgct tttgcgcaag ggaacgggtc ttgaaaaaac
          351 gtgccgccca aagccatttg tccagccgca tggcggaaga atcgtgcttg
              tettteatac gattttgttt gaaataattg aatttgttte gagtttagea
          451 taa
This corresponds to the amino acid sequence <SEQ ID 1502; ORF 527.ng>:
     g527.pep
              MVLPVSFFQP VQLAAVALGR SAVGMGGSDA AELVELFALF POCCRFRVFF
              IQKPRLGCRA ALVVQTFNLD FMGKGIERQV DNIADVYGFT VFDFRAVYLN
           51
              PTQFDMLLRK GTGLEKTCRP KPFVQPHGGR IVLVFHTILF EIIEFVSSLA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1503>: m527.seq

- ATGGTTTTAC CAGTCTCCTT TTTTCAGCCT GTCCAGTTGG CGGCGGTCGC
- 51 GCTTGGTCGG TCTGCCGTCG GGATAGGCGG AAGTGATGCG GCTGAATTGG
- 101 TCGAGCTGTT TGCGCTCTTC CCTCAATGTT GCCGTTwTCG CGTCCTCTTC
- 151 ATACAGAAGC CGCGCYTCGG ATGCCGGGCG GCGTTGGTGG TTCAAACCTT

```
201 TAACCKTGAT TTTATAGGGA AGGG.AATTK AGCKTCAGTY GrTwATATCG
          251 CSGATGTMTA TGGTTTTACT GTTTTTGACC TTCGAGCCGT TTACTTGAAC
          301 CCTACCCAGT TCGATGTGCT TTTGCGCAAG GGAACGGGTC TTGAAAAAAC
          351 GTGCCGCCCA AAGCCATTTG TCCAGCCGCA TGGCGGAAGA ATCGTGCTTG
          401 TCTTTCATAC GATTTTGTTT GAAATAATTG AATTTGTTTC GAGTTTAGCA
          451 TAA
This corresponds to the amino acid sequence <SEQ ID 1504; ORF 527>:
     m527pep
           1 MVLPVSFFQP VQLAAVALGR SAVGIGGSDA AELVELFALF PQCCRXRVLF
              IQKPRXGCRA ALVVQTFNXD FIGKXNXASV XXIADVYGFT VFDLRAVYLN
             PTQFDVLLRK GTGLEKTCRP KPFVQPHGGR IVLVFHTILF EIIEFVSSLA
          101
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 527 shows 90.0% identity over a 150 as overlap with a predicted ORF (ORF 527.ng)
from N. gonorrhoeae:
     m527/q527
                         10
                                  20
                                           30
                                                     40
                 MVLPVSFFQPVQLAAVALGRSAVGIGGSDAAELVELFALFPQCCRXRVLFIQKPRXGCRA
     m527.pep
                 q527
                 MVLPVSFFQPVQLAAVALGRSAVGMGGSDAAELVELFALFPQCCRFRVFFIQKPRLGCRA
                         10
                                  20
                                           30
                                                     40
                                                              50
                         70
                                  80
                                           90
                                                   100
                                                             110
                 {\tt ALVVQTFNXDFIGKXNXASVXXIADVYGFTVFDLRAVYLNPTQFDVLLRKGTGLEKTCRP}
     m527.pep
                 ALVVQTFNLDFMGKGIERQVDNIADVYGFTVFDFRAVYLNPTQFDMLLRKGTGLEKTCRP
     g527
                         70
                                  RΩ
                                           90
                                                   100
                        130
                                 140
                 KPFVQPHGGRIVLVFHTILFEIIEFVSSLA
     m527.pep
                 KPFVQPHGGRIVLVFHTILFEIIEFVSSLA
     g527
                        130
                                 140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1505>:
     a527.seg
              ATGGTTTTAC CAGTCTCCTT TTTTCAGCCT GTCCAGTTGG CGGCGGTCGC
          51 GCTTGGTCGG TCTGCCGTCG GGATAGGCGG AAGTGATGCG GCTGAATTGG
         101 TCGAGCTGTT TGCGCTCTTC CCTCAATGTT GCCGTTTTCG CGTCCTCTTC
         151 ATACAGAAGC CGCGCCTCGG ATGCCGGGCG GCGTTGGTGG TTCAAACCTT
         201
              TAACCTTGAT TTTATAGGGA AGGGAATTGA GCGTCAGGTC GATAATATCG
         251 CCGATGTCTA TGGTTTTACT GTTTTTGACC TTCGAGCCGT TTACTTGAAC
         301 CCTACCCAGT TCGATGTGCT TTTGCGCAAG GGAACGGGTC TTGAAAAAAC
              GTGCCGCCCA AAGCCATTTG TCCAGCCGCA TGGCGGAAGA ATCGTGCTTG
         351
              TCTTTCATAC GATTTTGTTT GAAATAATTG AATTTGTTTC GAGTTTAGCA
         401
         451 TAA
This corresponds to the amino acid sequence <SEQ ID 1506; ORF 527.a>:
     a527.pep
              MVLPVSFFQP VQLAAVALGR SAVGIGGSDA AELVELFALF PQCCRFRVLF
              IQKPRLGCRA ALVVQTFNLD FIGKGIERQV DNIADVYGFT VFDLRAVYLN
         101
              PTQFDVLLRK GTGLEKTCRP KPFVQPHGGR IVLVFHTILF EIIEFVSSLA
m527/a527 93.3% identity in 150 aa overlap
                                           30
                                                    40
                                                              50
    m527.pep
                 {\tt MVLPVSFFQPVQLAAVALGRSAVGIGGSDAAELVELFALFPQCCRXRVLFIQKPRXGCRA}
                 a527
                 MVLPVSFFQPVQLAAVALGRSAVGIGGSDAAELVELFALFPQCCRFRVLFIQKPRLGCRA
                        10
                                 20
                                           30
                                                    40
                                                             50
```

		70	80	90	100	110	120
	m527.pep	ALVVQT FNXDE	TIGKXNXASV	KXIADVYGFTV	FDLRAVYLNP	TQFDVLLRK	STGLEKTCRP
		- 111111111 11	111 :1	11111111	1111111111	111111111	
	a527	ALVVQTFNLDE	TIGKGIERQVI	NIADVYGFTV	'FDLRAVYLNP	TQFDVLLRK	STGLEKTCRP
		70	80	90	100	110	120
		130	140	150			
	m527.pep	KPFVQPHGGRIVLVFHTILFEIIEFVSSLAX					
		1111111111111	1111111111	11111111111			
	a527	KPFVQPHGGR]	VLVFHTILFE	EIIEFVSSLAX			
** 200m		130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1507>:

```
q528.seq
           atggaaattc gggtaataaa atatacggca acggctgcgt tgtttgcatt
      51 tacggttgca ggctgccggc tggcggggtg gtatgagtgt ttgtccttgt
     101 ccggctggtg taagccgaga aaacctgccg ccatcgattt ttgggatatt
     151 ggcggcgaga gtccgctgtc tttagaggac tacgagatac cgctttcaga
     201 cggcaatcgt tccgtcaggg caaacgaata tgaatccgcg caaaaatctt
251 acttttatag gaaaataggg aagtttgaag cctgcgggtt ggattggcgt
     301 acgcgtgacg gcaaaccttt ggttgagagg ttcaaacagg aaggtttcga
     351 ctgtttggaa aagcaggggt tgcggcgcaa cggcctgtcc gagcgcgtcc
```

This corresponds to the amino acid sequence <SEQ ID 1508; ORF 528.ng>: q528.pep

- MEIRVIKYTA TAALFAFTVA GCRLAGWYEC LSLSGWCKPR KPAAIDFWDI
- 51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG KFEACGLDWR
- 101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1509>:

m528.seq (partial)

401 gatggtaa

- 1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT
- 51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT TCGTCCCTCA
- 101 CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT TTGGGATATT
- 151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGGAC TACGAGATAC CGCTTTCAGA 201 CGGCAATAGT TCCGTCAGGG CAAACGAATA TGAATCCGCA CAACAATCTT
- 251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG C.TGCGGGCT GGATTGGCGT
- 301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG GAGGATTTGA
- 351 CTGCTTGGAA AAG....

This corresponds to the amino acid sequence <SEQ ID 1510; ORF 528>:

m528.pep (partial)

- MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR KPAAIDFWDI
- GGESPPSLGD YEIPLSDGNS SVRANEYESA QQSYFYRKIG KFEXCGLDWR
- 101 TRDGKPLIET FKQGGFDCLE K....

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 528 shows 89.3% identity over a 121 as overlap with a predicted ORF (ORF 528.ng) from N. gonorrhoeae:

m528/g528

	10	20	30	40	50	60
m528.pep	MEIRAIKYTAMAAL	LAFTVAGCRI	AGWYECSSL	GWCKPRKPAA	IDFWDIGGES	PPSLGD
		:111111111		:11111111111	1111111111	Π Π Π
g528	MEIRVIKYTATAAL	Faftvagcri	AGWYECLSLS	SGWCKPRKPAA	IDFWDIGGES	SPLSLED
	10	20	30	40	50	60
	70	80	90	100	110	120
m528.pep	YEIPLSDGNSSVRA	NEYESAQQSY	(FYRKIGKFE)	CGLDWRTRDG	KPLIETFKQ	GFDCLE
		111111111111		11111111111	111:1 111	111111
g528	YEIPLSDGNRSVRA	NEYESAQKSY	FYRKIGKFE!	ACGLDWRTRDG	KPLVERFKQE	GFDCLE
	70	80	90	100	110	120

```
m528.pep
                 K
     q528
                 KOGLRRNGLSERVRW
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1511>:
             ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT
          51
              TACGGTTGCA GGCTGCCGGT TGGCAGGTTG GTATGAGTGT TCGTCCCTGT
         101 CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT TTGGGATATT
         151 GGCGGCGAGA GTCCTCCGTC TTTAGAGGAC TACGAGATAC CGCTTTCAGA
         201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA CAACAATCTT
         251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT GGATTGGCGT
         301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG AAGGTTTTGA
         351 TTGTTTGAAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC GAGCGCGTCC
         401 GATGGTAA
This corresponds to the amino acid sequence <SEQ ID 1512; ORF 528.a>:
     a528.pep
              MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLSGWCKPR KPAAIDFWDI
              GGESPPSLED YEIPLSDGNR SVRANEYESA QQSYFYRKIG KFEACGLDWR
          51
             TRDGKPLIET FKQEGFDCLK KQGLRRNGLS ERVRW*
m528/a528 95.0% identity in 121 aa overlap
                                          30
                                                    40
    m528.pep
                 MEIRAIKYTAMAALLAFTVAGCRLAGWYECSSLTGWCKPRKPAAIDFWDIGGESPPSLGD
                 a528
                 MEIRAIKYTAMAALLAFTVAGCRLAGWYECSSLSGWCKPRKPAAIDFWDIGGESPPSLED
                                 20
                                          30
                                                    40
                                                             50
                        70
                                 80
                                          90
                                                   100
                                                            110
                 YEIPLSDGNSSVRANEYESAQQSYFYRKIGKFEXCGLDWRTRDGKPLIETFKQGGFDCLE
    m528.pep
                 YEIPLSDGNRSVRANEYESAQQSYFYRKIGKFEACGLDWRTRDGKPLIETFKQEGFDCLK
     a528
                        70
                                 80
                                          90
                                                   100
                                                            110
    m528.pep
                K
    a528
                KQGLRRNGLSERVRWX
                       130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1513>: g528-1.seq

1 ATGGAAATTC GGGTAATAAA ATATACGGCA ACGGCTGCGT TGTTTGCATT
51 TACGGTTGCA GGCTGCCGGC TGGCGGGTG GTATGAGTGT TCGTCCTTGT
101 CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT TTGGGATATT
151 GGCGGCAGA GTCCGCTGTC TTTAGAGGAC TACGAGATAC CGCTTTCAGA
152 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCG CAAAAATCTT
153 ACTTTTATAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT GGATTGGCGT
154 ACGCGTGACG GCAAACCTTT GGTTGAGAGG TTCAAACAGG AAGGTTTCGA
155 CTGTTTGGAA AAGCAGGGGT TGCGGCGCAA CGGCCTGTCC GAGCGCGTCC

This corresponds to the amino acid sequence <SEQ ID 1514; ORF 528-1.ng>: g528-1.pep

- 1 MEIRVIKYTA TAALFAFTVA GCRLAGWYEC SSLSGWCKPR KPAAIDFWDI
- 51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG KFEACGLDWR
- 101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1515>: m528-1.8eg

1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT

```
TACGGTTGCA GGCTGCCGGC TGGCGGGTG GTATGAGTGT TCGTCCCTCA
101 CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT TTGGGATATT
151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGAC TACGAGATAC CGCTTTCAGA
201 CGGCAATCGT TCCGTCAGGG CAAACCGATA TGAATCCGCA CAACAATCTT
251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGCT GGATTGGCGT
301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG GAGGATTTGA
351 CTGCTTGGAA AAGCAGGGGT TGCGGCCCAA CGGTCTGTCC GAGCGCGTCC
401 GATGGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1516; ORF 528-1>: m528-1.pep..

- 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR KPAAIDFWDI
 - 51 GGESPPSLGD YEIPLSDGNR SVRANEYESA QQSYFYRKIG KFEACGLDWR
 - 101 TRDGKPLIET FKQGGFDCLE KQGLRRNGLS ERVRW*

g528-1/m528-1 92.6% identity in 135 aa overlap

	10	20	30	40	50	60
g528-1.pep	MEIRVIKYTATAALFA	TVAGCR	LAGWYECSSLS	SWCKPRKPA	IDFWDIGGES	PLSLED
gone reper	1111:11111 111:1	111111	111111111111111111111111111111111111111	1111111111	11111111111	11111
m528~1	MEIRAIKYTAMAALLA!	TVACCE	T.AGWYECSST.TO	WCKDBKDD	TOFWOTGGES	PPSTGD
11120-1	••••					
	10	20	30	40	50	60
	70	80	90	100	110	120
g528-1.pep	YEIPLSDGNRSVRANE!	ESAOKS	YFYRKIGKFEA(CGLDWRTRDG	KPLVERFKQ	EGFDCLE
gold liper	11111111111111111	1111:1			111:1-111	11111
	[]]]]]]]]		1111111111			
m528-1	YEIPLSDGNRSVRANE	(ESAQQS	YFYRKIGKFEA(CGLDWRTRDC	KPLIETFKOO	GFDCLE
	70	80	90	100	110	120
	130					
g528-1.pep	KQGLRRNGLSERVRWX					
	111111111111111					
m528-1	KOGLRRNGLSERVRWX					
111020 1	· -					
	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1517>: a528-1.seq

- 1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT
- 51 TACGGTTGCA GGCTGCCGGT TGGCAGGTTG GTATGAGTGT TCGTCCCTGT
- 101 CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT TTGGGATATT
- 151 GGCGGCGAGA GTCCTCCGTC TTTAGAGGAC TACGAGATAC CGCTTTCAGA
- 201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA CAACAATCTT
- 251 ACTITTACAG GAAAATAGGG AAGTITGAAG CCTGCGGGTT GGATTGGCGT 301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG AAGGTTTTGA
- 351 TTGTTTGAAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC GAGCGCGTCC
- 401 GATGGTAA

This corresponds to the amino acid sequence <SEQ ID 1518; ORF 528-1.a>: a528-1.pep

- 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLSGWCKPR KPAAIDFWDI
- 51 GGESPPSLED YEIPLSDGNR SVRANEYESA QQSYFYRKIG KFEACGLDWR
- 101 TRDGKPLIET FKQEGFDCLK KQGLRRNGLS ERVRW*

a528-1/m528-1 97.0% identity in 135 aa overlap

	10	20	30	40	50	60
a528-1.pep	METRATKYTAMAA					
como Elpop	11111111111111	111111111111	111111111:	1111111111	[]]	1111
m528-1	MEIRAIKYTAMAA	LLAFTVAGCRL	AGWYECSSLT	GWCKPRKPAA	IDFWDIGGES	SPPSLGD
	10	20	30	40	50	60
	70	80	90	100	110	120
a528-1.pep	YEIPLSDGNRSVR	ANEYESAQQSY	FYRKIGKFEA	CGLDWRTRDG	KPLIETFKQ	EGFDCLK
	- 111111111111111111	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111111	11111111111	1111111111	111111:
m528-1	YEIPLSDGNRSVR	ANEYESAQQSY	FYRKIGKFEA	CGLDWRTRDG	KPLIETFKQ	GFDCLE
	70	80	90	100	110	120
	130					

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1519>:
  g529.seq (partial)
         1 atgacccata tcaaacccgt cattgccgcg ctcgcactca tcgggcttgc
        51 egectgetee ggeageaaaa eegaacagee caagetegae taccaaagee
       101 ggtcgcaccg cctgatcaaa ctcgaagtcc cgcctgattt gaacaacccc
       151 gaccaaggca acctctaccg cctgcctgcc ggttcgggag ccgtccgcgc
       201 cggggatttg gaaaaacgcc gcacacccgc cgtccaacag ccagcggatg
-- ---
       251 ccggaagtat tgaaaagcgt caaaggcgtc cgcttcgagc ggcgacggca
       301 gccaacgcct ggcttgtcgt tgacggcaaa tcccccgccg aaatctccgc
       351 cgctttctg.
  This corresponds to the amino acid sequence <SEQ ID 1520; ORF 529.ng>:
  g529.pep (partial)
         1 MTHIKPVIAA LALIGLAACS GSKTEQPKLD YQSRSHRLIK LEVPPDLNNP
        51 DQGNLYRLPA GSGAVRAGDL EKRRTPAVQQ PADAGSIEKR QRRPLRAATA
       101 ANAWLVVDGK SPAEISAAF..
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1521>:
  m529.seq
        1 ATGACCCATA TCAAACCCGT CATTGCCGCG CTCGCACTCA TCGGGCTTGC
        51 CGCCTGCTCC GGCAGCAAAA CCGAACAGCC CAAGCTCGAC TACCAAAGCC
       101 GGTCGCACCG CCTGATCAAA CTTGAAGTCC CACCTGATTT GAACAACCCC
       151 GACCAAGGCA ACCTCTACCG CCTGCCTGCC GGTTCGGGCG CCGTCCGCGC
       201 CAGCGATTTG GAAAAACGCC GCACACCCGC CGTCCAACAG CCTGCCGATG
      251 CCGAAGTATT GAAAAGCGTC AAAGGTGTCC GCCTCGAGCG CGACGGCAGC
      301 CAACGCTGGC TCGTTGTCGA CGGCAAGTCT CCTGCCGAAA TCTGGCCGCT
      351 CCTGAAAGCC TTTTGGCAGG AAAACGGCTT CGACATCAAA TCCGAAGAAC
       401 CCGCCATCGG ACAAATGGAA ACCGAGTGGG CGGAAAACCG CGCCAAAATC
       451 CCCCAAGACA GCTTGCGCCG CCTCTTCGAC AAAGTCGGCT TGGGCGGCAT
       501 CTACTCCACC GGCGAGCGCG ACAAATTCAT CGTCCGTATC GAACAGGGCA
      551 AAAACGGCGT TTCCGACATC TTCTTCGCCC ACAAAGCCAT GAAAGAAGTG
      601 TACGGCGGCA AAGACAAAGA CACGACCGTA TGGCAGCCCT CCCCGTCCGA
      651 TCCCAACCTC GAAGCCGCTT TCCTGACGCG CTTTATGCAA TATTTGGGCG
       701 TTGACGGACA GCAGGCGGAA AACGCATCGG CAAAAAAACC TACCCTTCCC
       751 GCCGCCAACG AAATGGCGCG TATCGAAGGC AAAAGCCTGA TTGTCTTTGG
      801 CGACTACGGC AGAAACTGGC GGCGCACCGT GCTCGCCCTC GACCGCATCG
      851 GGCTGACCGT CGTCGGTCAA AACACCGAAC GCCACGCCTT CCTGGTTCAA
      901 AAAGCCCCGA ACGAAAGCAA TGCAGTTACC GAACAAAAAC CCGGCCTGTT
      951 CAAACGCCTG CTGGGCAAAG GCAAAGCGGA GAAACCTGCC GAACAGCCGG
     1001 AACTGATTGT CTATGCAGAA CCTGTCGCCA ACGGCTCGCG CATCGTCCTG
     1051 CTCAACAAAG ACGGCAGCGC ATATGCCGGC AAAGACGCAT CCGCATTATT
     1101 GGGCAAACTC CATTCCGAAC TGCGTTAA
 This corresponds to the amino acid sequence <SEQ ID 1522; ORF 529>:
 m529.pep
        1
           MTHIKPVIAA LALIGLAACS GSKTEQPKLD YQSRSHRLIK LEVPPDLNNP
       51 DQGNLYRLPA GSGAVRASDL EKRRTPAVQQ PADAEVLKSV KGVRLERDGS
           QRWLVVDGKS PAEIWPLLKA FWQENGFDIK SEEPAIGQME TEWAENRAKI
      151 PQDSLRRLFD KVGLGGIYST GERDKFIVRI EQGKNGVSDI FFAHKAMKEV
      201 YGGKDKDTTV WQPSPSDPNL EAAFLTRFMQ YLGVDGQQAE NASAKKPTLP
      251 AANEMARIEG KSLIVFGDYG RNWRRTVLAL DRIGLTVVGQ NTERHAFLVQ
      301 KAPNESNAVT EQKPGLFKRL LGKGKAEKPA EQPELIVYAE PVANGSRIVL
      351 LNKDGSAYAG KDASALLGKL HSELR*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 529 shows 83.5% identity over a 115 aa overlap with a predicted ORF (ORF 529.ng)
 from N. gonorrhoeae:
 g529/m529
                                20
                                          30
                                                    40
                                                                         60
              {\tt MTHIKPVIAALALIGLAACSGSKTEQPKLDYQSRSHRLIKLEVPPDLNNPDQGNLYRLPA}
 g529.pep
```

			1		[11]]]]]]	1 I I
m529 M	THIKPVIAALAI	IGLAACSGSK	EQPKLDYQSR	HRLIKLEVPP	DLNNPDQGNLYR	iii LPA
	10	20	30	40	50	60
	70	80	90	100	110	120
g529.pep G	SGAVRAGDLEK	RTPAVQQPADA	GSIEKRORRPI	LRAATAANAWL	/VDGKSPAEISA	AFX
m529 G	: GAMPASDLEKE		EVLKSVKGVRI	LER-DGSORWIA	 /VDGKSPAEIWP:	772
111529 G	70	80	90	100	110	PTV
1995	_				GIYSTGERDKF	IVR
120	130	140	150	160	170	
The following p	artial DNA s	equence was	identified in	n N. meningi	tidis <seo ii<="" td=""><td>O 1523>:</td></seo>	O 1523>:
a529.seq						
1		TCAAACCCGT				
51	CGCCTGCTCC	GGCAGCAAAA	CCGAACAGCC	CAAGCTCGAC	TACCAAAGCC	
101		CCTGATCAAA				
151						
201		GAAAAACGCC				
251 301		GAAAAGCGTC TCGTTGTCGA				
351						
401		ACAAATGGAA				
451						
501		GGCGAGCGCG	ACAAATTCAT	CGTCCGTATC	GAACAGGGCA	
551					GAAAGAAGTG	
601	TACGGCGGCA					
651	TCCCAACCTC					
701						
751	GCCGCCAACG	AAATGGCGCG	TATCGAAGGC	AAAAGCCTGA	TTGTCTTTGG	
801	CGACTACGGC	AGAAACTGGC	GGCGCACCGC	GCTCGCCCTC	GACCGCATCG	
851						
901						
951	CAAACGCCTG	CTGGGCAAAG	GCAAAGCGGA	GAAACCTGCC	GAACAGCCGG	
1001						
1051				AAAGACGCAT	CCGCATTATT	
1101	GGGCAAACTC	CATTCCGAAC	TGCGTTAA			
This correspond	s to the amin	o acid segue	nce <sfo ii<="" td=""><td>1524: ORE</td><td>7 520 25.</td><td></td></sfo>	1524: ORE	7 520 25.	
a529.pep	s to the amin	o acia boquo	nee are	J 1524, OIG	J2J.W.	
a529.pep 1	MTHIKPVIAA	T.AT.TGT.AACS	CSKTEOPKIN	VOCDCUDITE	TEUDDOL MAD	
51						
101						
151				_		
201				-		
251	AANEMARIEG					
301	Kapnesnavt	EQKPGLFKRL	LGKGKAEKPA	EQPELIVYAE	PVANGSRIVL	
351	LNKDGSAYAG			_		
			_			
m529/a529 99	.2% identity	in 375 aa ov	erlap			
			:0 30		50	60
m529.pep	MTHIKPVI	AALALIGLAAC	SGSKTEQPKLI	YQSRSHRLIKI	LEVPPDLNNPDQ	SNLYRLPA
	1111111	11111111111	111111111111	[111]		[11][[1]
a529	MTHIKPVI			_	EVPPDLNNPDQ(SNLYRLPA
		10 2	90 30	40	50	60
		70 E	10 90	100	110	100
m529.pep	CSCVIDVO				110 RWLVVDGKSPAI	120 מאוזסטור
or > . beb						
a529						
	COUNTRO		0 90	-	110	120
				. 100	***	120
	1	.30 14	0 150	160	170	180

PCT/US99/09346 WO 99/57280

800

	m529.pep	FWQENG	FDIKSEEPAI	GOMETEWAEN	RAKIPQDSLR	RLFDKVGLGG:	YSTGERDKF	IVRI
		111111		[[]]]]]		[]]]]	1111
	a529	FWQENG!			_	RLFDTVGLGG:		
			130	140	150	160	170	180
			190	200	210	220	230	240
	m529.pep	_			_	DPNLEAAFLTI		
						1111111111		1111
	a529	EQGKNG			_	DPNLEAAFLTI	-	
			190	200	210	220	230	240
			250	260	270	- 280	290	300
. Neum	500 -	MACARR				· 280 VLALDRIGLT'		
	m529.pep					:	_	
	- 500					ALALDRIGLT'		
	a529	MAGAM	250	260	270	280	290	300
			250	200	270	200	230	300
			310	320	330	340	350	360
	m529.pep	KAPNESI			EKPAEOPELI	VYAEPVANGS	RIVLLNKDGS	
	m323.pcp				.	1111111111		
	a529	KAPNESI	NAVTEOKPGL	FKRLLGKGKA	EKPAEQPELI	VYAEPVANGS	RIVLLNKDGS	AYAG
	~~~		310	320	330	340	350	360
			370					
	m529.pep	KDASAL	LGKLHSELRX					
		-111111	1111111111					
	a529	KDASAL:	LGKLHSELRX					
			370					
				•				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1525>: g530.seq

atgagtgcga gcgcggcaat gacgggtttg atatgggtca tcgtgtcatc

51 ctgtgtgatg gatattaaag tgtttgtcat gttatgccgt ccgaacggtt

101 cagacggcat ggctatattt aaagttgtcc tgaggctttc agggcggcgc

151 ggacttttgc ctgtccgcct tccgtcagcg gaacgagcgg caggcgcacg

201 tgcggtccgc atccgcccaa ggcggatacc gcccatttcg gtgcggcggg 251 actgggttcg cagaacatgg tgtcgtaaat cggaatcagc cggtcgttga

This corresponds to the amino acid sequence <SEQ ID 1526; ORF 530.ng>:

g530.pep

MSASAAMTGL IWVIVSSCVM DIKVFVMLCR PNGSDGMAIF KVVLRLSGRR

51 GLLPVRLPSA ERAAGARAVR IRPRRIPPIS VRRDWVRRTW CRKSESAGR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1527>: m530.seq

wTGAGTGCGA GCGCGGCAAT GACGGGTYTG ATATGGGTCA TCGTGTCATC 1

STGTGTGATG GATATTAAAG TGTYTGTTGC GWTATGCCGT CCGAACGGTT

101 CGGACGGCAT GGMTATATTT AAAGTTGTCC TGAGGCTTTC AGGGCGGCGC

151 GGACTRTTGC WTGTCCGTTT YCCGTCAGCG GAACGAGCGG CAGGCGGACG 201 TGCGGTTCGC ATCTGCCCAg GGCGGATACC GCCCATTTCG GTGCGGCGGG 251 GCTGGGTTCG CAGAACATGG TGTCGTAAAT CGGAATCAGT CGGTCGTTGA

This corresponds to the amino acid sequence <SEQ ID 1528; ORF 530>:

- XSASAAMTGL IWVIVSSCVM DIKVXVAXCR PNGSDGMXIF KVVLRLSGRR
- GLLXVRFPSA ERAAGGRAVR ICPGRIPPIS VRRGWVRRTW CRKSESVGR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 530 shows 88.8% identity over a 98 aa overlap with a predicted ORF (ORF 530.ng) from N. gonorrhoeae:

m530/q530

XSASAAMTGLIWVIVSSCVMDIKVXVAXCRPNGSDGMXIFKVVLRLSGRRGLLXVRFPSA m530.pep 

```
MSASAAMTGLIWVIVSSCVMDIKVFVMLCRPNGSDGMAIFKVVLRLSGRRGLLPVRLPSA
     q530
                                   20
                                            30
                                                      40
                 ERAAGGRAVRICPGRIPPISVRRGWVRRTWCRKSESVGR
     m530.pep
                  ERAAGARAVRIRPRRIPPISVRRDWVRRTWCRKSESAGR
     g530
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1529>:
     a530.seq
              ATGAGTGCGA GCGCGGCAAT GACGGGTTTG ATATGGGTCA TCGTGTCATC
            1
              CTGTGTGATG GATATTAAAG TGTTTGTTGC GTTATGCCGT CCGAACGGTT
           51
              CGGACGCAT GGCTATATTT AAAGTTGTCC TGAGGCTTTC AGGGCGGCGC
          101
              GGACTTTTGC CTGTCCGCCT TCCGTCAGCG GAACGAGCGG CAGGCGGACG
          151
              TGCGGTTCGC ATCTGCCCAG GGCGGATACC GCCCATTTCG GTGCGGCGGG
          201
              GCTGGGTTCG CAGAACATGG TGTCGTAAAT CGGAATCAGC CGGTCGTTGA
          251
This corresponds to the amino acid sequence <SEQ ID 1530; ORF 530.a>:
     a530.pep
              MSASAAMTGL IWVIVSSCVM DIKVFVALCR PNGSDGMAIF KVVLRLSGRR
           51 GLLPVRLPSA ERAAGGRAVR ICPGRIPPIS VRRGWVRRTW CRKSESAGR*
m530/a530 93.9% identity in 98 aa overlap
                                   20
                         10
                                             30
                                                      40
                                                                50
                                                                          60
                 XSASAAMTGLIWVIVSSCVMDIKVXVAXCRPNGSDGMXIFKVVLRLSGRRGLLXVRFPSA
     m530.pep
                   MSASAAMTGLIWVIVSSCVMDIKVFVALCRPNGSDGMAIFKVVLRLSGRRGLLPVRLPSA
     a530
                                   20
                                             30
                                                      40
                                                                50
                                                                          60
                         10
                                   80
                                             90
                         70
     m530.pep
                 ERAAGGRAVRICPGRIPPISVRRGWVRRTWCRKSESVGRX
                  188188181818181818181818181818181818
     a530
                  ERAAGGRAVRICPGRIPPISVRRGWVRRTWCRKSESAGRX
                         70
                                   80
                                             90
                                                     100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1531>:
g531.seq
         ATGACCGCCC TACTCGTCAT CCTCGCCCTC GCCCTGATAG CCGTCGGCAC
      1
     51 GGCAGGCATC GTCTATCCCG CCCTGCCCGG CTTGGCATTG ATGTTTGCCG
     101 GAACATGGCT GCTTGCCTAT GCCGGCGGCT ATCAAATCTA CGGCGCAGGC
     151 ATCTTGTGGA CGGTCGGACT CATCAGCCTT GGCGGCATAC TGGCGGACTA
     201 TATGGCAGGC ATGTTGGGGG TAAAATACAC TGGGGCAGGC AAACTCGCCG
         TCCGAGGTGC ATTGGCCGGC AGCATCATCG GCATATTTTT CTCCCTTCCC
     301 GGACTAATAC TCGGCCCCTT TATCGGCGCG GCGGCAGGCG AACTGATCGA
     351 TCGGCGCAAT ATGCTTCAGG CAGGTAAAGC GGGCTTGGGT ACGCTGTTGG
     401 GGCTTGTCGT CGGCACGGCG TTCAAAATCG GCTGCGCCGT ATCCATCTTG
     451 TTTATCCTGT TGGTGAAATA CATCGCATAC CTGTTTTAA
This corresponds to the amino acid sequence <SEO ID 1532; ORF 531.ng>:
g531.pep
      1 MTALLVILAL ALIAVGTAGI VYPALPGLAL MFAGTWLLAY AGGYQIYGAG
          ILWTVGLISL GGILADYMAG MLGVKYTGAG KLAVRGALAG SIIGIFFSLP
      51
     101
          GLILGPFIGA AAGELIDRRN MLQAGKAGLG TLLGLVVGTA FKIGCAVSIL
         FILLVKYIAY LF
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1533>:
m531.seq
         ATGACCGTAC TGACCGTCAT CCTCGCCCTC GCCCTGATAG CCGTCGGCAC
      51 GGCGGGCATC GTTTaCCCCG CCCTGCCCGG ATTGGCATTG ATGTTTGCCG
     101 GAACATGGCT GCTTGCCTAT GCCGGCGGCT ACCAAATCTA CGGCGCGGGC
     151 GTTTTGTGGA CGGTCGGACT CATCAGCCTT GCCGGCATAC TGGCGGACTA
     201 TGTGGCAGGC ATATGGGGGA CAAAATATAC CGGAGCGGGC AAGCTCGCCG
     251 TTCGCGGCGC ATTGGCCGGC AGCATCATCG GCATATTTTT CTCCCTTCCC
         GGACTAATAC TCGGTCCCTT TATCGGCGCG GCGGCAGGCG AACTGATCGA
```

```
351 ACGGCGCAAT ATGCTTCAGG CAGGTAAAGC GGGCTTGGGT ACGCTGTTGG
    401 GGCTTGTCGT CGGCACGGCG TTCAAAATCG GCTGCGCnGT ATCCATCTTG
    451 TTTATCCTGT TGGTGAaATA CATCGCCTAC CTGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 1534; ORF 531>:
m531.pep
         MTVLTVILAL ALIAVGTAGI VYPALPGLAL MFAGTWLLAY AGGYQIYGAG
     51 VLWTVGLISL AGILADYVAG IWGTKYTGAG KLAVRGALAG SIIGIFFSLP
    101 GLILGPFIGA AAGELIERRN MLQAGKAGLG TLLGLVVGTA FKIGCAVSIL
    151 FILLVKYIAY LF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 531 shows 94.4% identity over a 162 aa overlap with a predicted ORF (ORF 531.ng)
from N. gonorrhoeae:
m531/g531
                                      30
                                                                  60
                             20
                   10
            MTVLTVILALALIAVGTAGIVYPALPGLALMFAGTWLLAYAGGYQIYGAGVLWTVGLISL
m531.pep
            MTALLVILALALIAVGTAGIVYPALPGLALMFAGTWLLAYAGGYQIYGAGILWTVGLISL
q531
                                               40
                                                        50
                                      30
                            20
                   70
                             80
                                      90
                                              100
                                                       110
                                                                 120
            AGILADYVAGIWGTKYTGAGKLAVRGALAGSIIGIFFSLPGLILGPFIGAAAGELIERRN
m531.pep
            GGILADYMAGMLGVKYTGAGKLAVRGALAGSIIGIFFSLPGLILGPFIGAAAGELIDRRN
g531
                             80
                                      90
                                              100
                                                       110
                                                                 120
                   70
                                     150
                  130
                            140
            MLQAGKAGLGTLLGLVVGTAFKIGCAVSILFILLVKYIAYLF
m531.pep
            MLQAGKAGLGTLLGLVVGTAFKIGCAVSILFILLVKYIAYLF
g531
                                              160
                            140
                                     150
                  130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1535>:
     a531.seq
              ATGACCGCCT TGCTCGTCAT CCTCGCCCTC GCCCTGATAG CCGCCGGTAC
           1
              GGCGGGCATC GTTTACCCCG CCCTGCCCGG ATTGGCATTG ATGTTTGCCG
          51
              GAACCTGGCT GCTCGCCTAC TCCGGCGGCT ACCAAATCTA CGGCGCGGGC
         101
              GTTTTGTGGA CGGTCGGACT CATCAGCCTT GCCGGCATAC TGGCGGACTA
         151
              TGTGGCAGGC ATATGGGGGA CAAAATATAC CGGAGCGGGC AAGCTCGCCG
         201
              TTCGCGGCGC ATTGGCCGGC AGCATCATCG GCATATTTTT CTCCCTTCCC
         251
              GGACTAATAC TCGGTCCCTT TATCGGCGCG GCGGCAGGCG AACTGATCGA
         301
         351 ACGGCGCAAT ATGCTTCAGG CAGGTAAAGC GGGCTTGGGT ACGCTGTTGG
              GGCTTATCGT CGGTACGGCG TTCAAAATCG GCTGCGCCGT ATCCATCTTG
              TTTATCCTGT TGGTGAAATA CATCGCCTAC CTGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 1536; ORF 531.a>:
     a531.pep
              MTALLVILAL ALIAAGTAGI VYPALPGLAL MFAGTWLLAY SGGYQIYGAG
              VLWTVGLISL AGILADYVAG IWGTKYTGAG KLAVRGALAG SIIGIFFSLP
          51
              GLILGPFIGA AAGELIERRN MLQAGKAGLG TLLGLIVGTA FKIGCAVSIL
         101
              FILLVKYIAY LF*
         151
m531/a531 96.9% identity in 162 aa overlap
                                           30
                                                    40
                 MTVLTVILALALIAVGTAGIVYPALPGLALMFAGTWLLAYAGGYQIYGAGVLWTVGLISL
     m531.pep
                 MTALLVILALALIAAGTAGIVYPALPGLALMFAGTWLLAYSGGYQIYGAGVLWTVGLISL
     a531
                        10
                                  20
                                           30
                                                    40
                                                              50
                                                                       60
                                                             110
                                                                      120
                 AGILADYVAGIWGTKYTGAGKLAVRGALAGSIIGIFFSLPGLILGPFIGAAAGELIERRN
     m531.pep
```

PCT/US99/09346

```
a531
         AGILADYVAGIWGTKYTGAGKLAVRGALAGSIIGIFFSLPGLILGPFIGAAAGELIERRN
              70
                     80
                           90
                                 100
                                        110
                                               120
             130
                    140
                                 160
                           150
        MLQAGKAGLGTLLGLVVGTAFKIGCAVSILFILLVKYIAYLFX
m531.pep
         MLQAGKAGLGTLLGLIVGTAFKIGCAVSILFILLVKYIAYLFX
a531
```

```
130
                                   140
                                            150
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1537>:
g532.seq (partial)
 1 atggctgaaa caatgaaaaa acaggcggat tcgcctgatt tggtgtacgg
51 tttggaagac aggccgccgt tcggtaatgc gctcttgagc gcggttaccc
101 atcttttggc gattttcgtg ccgatgatta cgcccgcgct gattgtgggc
151 ggcgcgctgg aattgccggt ggagatgacg gcgtatctgg tgtcgatggc
    gatggttgcg tcgggtgtcg gcacttattt gcaggtcaac cgcttcgggt
251 cggtcggctc ggggatgctg tccatccagc gttaccgtca tgattgcgct
301 cggcgcgggg atgaaagagg gcggtttgag ...
This corresponds to the amino acid sequence <SEQ ID 1538; ORF 532.ng>:
g532.pep (partial)
      1 MAETMKKQAD SPDLVYGLED RPPFGNALLS AVTHLLAIFV PMITPALIVG
     51 GALELPVEMT AYLVSMAMVA SGVGTYLQVN RFGSVGSGML SIQRYRHDCA
     101 RRGDERGRFE ...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1539>:
m532.seg
         ATGAGCGGTC AGTTGGGCAA AGGTGCGGAT GCGCCTGATT TGGTGTACGG
      1
         TTTGGAAGAC AGGCCGCCGT TCGGTAATGC GCTCTTGAGC GCGGTTACCC
     51
     101 ATCTTTGGC GATTTTTGTG CCGATGATTA CGCCCGCGCT GATTGTGGGC
    151 GGCGCGCTGG AATTGCCGGT GGAGATGACG GCGTATCTCG TGTCGATGGC
     201 GATGGTTGCG TCGGGTGTCG GCACTTATTT GCAGGTCAAC CGCTTCGGGC
     251 CGGTCGGTTC GGGGATGCTG TCCATCCAGT CGGTGAATTT TTCGTTCGTT
     301 ACCGTGATGA TTGCGCTGGG CGCGGGGATG AAAGAGGGCG GTTTGACTAA
     351 GGATGCGATG ATTTCGACGC TCTTGGGCGT ATCGTTTGTC GGCGCGTTTT
     401 TGGTGTGTTT CTCGGCGTGG CTTCTGCCGT ATTTGAAAAA AGTGATTACG
    451 CCGACGGTCA GCGGCGTGGT CGTGATGCTC ATTGGTTTGA GTTTGGTACA
     501 CGTCGGCATT ACCGATTTCG GCGGCGGCTT CGGCGCGAAG GCGGACGGCA
     551 CGTTCGGCTC GATGGAAAAC TTGGGGCTGG CATCGCTGGT GTTGCTGATT
     601 GTGTTGGTGT TCAACTGCAT GAAAAACCCG CTGTTGCGCA TGAGCGGCAT
         TGCGGTCGGG CTGATTGCCG GCTATATCGT CGCGCTGTTT TTGGGCAAGG
     701 TGGATTTTC CGCGCTGCAA AACCTGCCGC TGGTTACGCT GCCCGTACCG
     751 TTTAAATACG GTTTTGCTTT CGACTGGCAC GCGTTTATTG TGGCGGGCGC
     801 GATTTTCTTG TTGAGCGTGT TTGAGGCGGT CGGCGATTTA ACCGCGACGG
     851 CAATGGTGTC CGACCAGCCG ATTGAAGGCG AGGAATACAC CAAACGCCTG
     901 CGCGGCGGCG TGTTGGCTGA CGGCTTGGTG TCGGTGATTG CGACGGCTTT
    951 GGGTTCGCTG CCGCTGACGA CGTTTGCGCA AAACAACGGC GTGATTCAGA
    1001 TGACCGGCGT GGCTTCGCGC CATGTGGGCA AATATATTGC CGTGATTTTG
    1051 GTGCTGTTGG GTCTGTTCCC CGTTGTCGGT CGCGCGTTTA CGACGATTCC
    1101 GAGTCCGGTG TTGGGCGGCG CGATGGTTTT GATGTTCGGC TTAATTGCGA
    1151 TTGCGGGCGT GCGGATTTTG GTCAGTCACG GCATCCGCAG GCGCGAAGCG
    1201 GTGATTGCGG CAACGTCGGT CGGTTTGGGC TTGGGTGTCG CGTTTGAGCC
    1251 GGAAGTGTTT AAAAACCTGC CCGTCTTGTT CCAAAACTCT ATTTCCGCCG
    1301 GCGGCATTAC GGCAGTCTTG CTGAATTTGG TCTTGCCCGA AGATAAAACC
    1351 GAGGCGGCGG TCAAGTTTGA TACCGACCAC TTGGAACACT GA
This corresponds to the amino acid sequence <SEQ ID 1540; ORF 532>:
```

m532.pep

- 1 MSGQLGKGAD APDLVYGLED RPPFGNALLS AVTHLLAIFV PMITPALIVG
- 51 GALELPVEMT AYLVSMAMVA SGVGTYLQVN RFGPVGSGML SIQSVNFSFV
- TVMIALGAGM KEGGLTKDAM ISTLLGVSFV GAFLVCFSAW LLPYLKKVIT
- 151 PTVSGVVVML IGLSLVHVGI TDFGGGFGAK ADGTFGSMEN LGLASLVLLI

```
201 VLVFNCMKNP LLRMSGIAVG LIAGYIVALF LGKVDFSALQ NLPLVTLPVP
      FKYGFAFDWH AFIVAGAIFL LSVFEAVGDL TATAMVSDQP IEGEEYTKRL
     RGGVLADGLV SVIATALGSL PLTTFAQNNG VIQMTGVASR HVGKYIAVIL
301 RGGVLADGLV SVIATALGSL PLTTFAQNNG VIQMTGVASR HVGKYIAVIL
351 VLLGLFPVVG RAFTTIPSPV LGGAMVLMFG LIAIAGVRIL VSHGIRRREA
```

401 VIAATSVGLG LGVAFEPEVF KNLPVLFQNS ISAGGITAVL LNLVLPEDKT

451 EAAVKFDTDH LEH*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF532 shows 91.4% identity over a 93 aa overlap with a predicted ORF (ORF 532.ng) from N. gonorrhoeae:

q532/m532

```
20
                                 30
                                         40
                                                 50
                                                         60
                 10
          MAETMKKQADSPDLVYGLEDRPPFGNALLSAVTHLLAIFVPMITPALIVGGALELPVEMT
g532.pep
          {\tt MSGQLGKGADAPDLVYGLEDRPPFGNALLSAVTHLLAIFVPMITPALIVGGALELPVEMT}
m532
                 10
                                 30
                                         40
                 70
                         80
                                 90
                                        100 .
          AYLVSMAMVASGVGTYLOVNRFGSVGSGMLSIQRYRHDCARRGDERGRFEX
g532.pep
          AYLVSMAMVASGVGTYLQVNRFGPVGSGMLSIQSVNFSFVTVMIALGAGMKEGGLTKDAM
m532
                         80
                                 90
                                        100
                 70
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1541>: a532.seq

```
ATGAGCGGTC AGTTGGGCAA AGGTGCGGAT GCGCCTGATT TGGTGTACGG
     TTTGGAGGAT AGGCCGCCGT TCGGTAATGC GCTCTTGAGC GCGGTTACCC
 51
101 ATCTTTTGGC GATTTTTGTG CCGATGATTA CGCCCGCGCT GATTGTGGGC
151 GGCGCGCTGG AATTGCCGGT GGAGATGACG GCGTATCTCG TGTCGATGGC
201 GATGGTTGCG TCGGGTGTCG GCACTTATTT GCAGGTCAAC CGCTTCGGGC
251 CGGTCGGTTC GGGGATGCTG TCCATCCAGT CGGTGAATTT CTCGTTCGTT
301 ACCGTCATGA TTGCGCTCGG CGCGGGGATG AAAGAGGGCG GTTTGACTAA
351 GGATGCGATG ATTTCGACGC TCTTGGGCGT ATCGTTTGTC GGCGCGTTTT
401
     TGGTGTGTTT TTCGGCGTGG CTTCTGCCGT ATTTGAAAAA AGTGATTACG
451
     CCGACGGTCA GCGGTGTGGT GGTGATGCTG ATCGGCTTGA GTTTGGTACA
     CGTCGGTATT ACCGATTTCG GCGGCGGCTT CGGCGCAAAG GCGGACGGCA
     CGTTCGGCTC GATGGAAAAC TTGGGGCTGG CATCGCTGGT GCTGCTGATT
551
     GTGCTGGTGT TCAATTGCAT GAAAAACCCG CTGCTGCGGA TGAGCGGCAT
601
     TGCGGTCGGT CTGATTGCCG GCTATATCGT CGCGCTGTTT TTGGGCAAGG
651
     TGGATTTTTC GGCACTGCAA AACCTGCCGC TGGTTACGCT GCCCGTACCG
701
     TTTAAATATG GTTTTGCTTT TGACTGGCAC GCATTTATTG TGGCGGGTGC
751
801 GATTTTCTTG TTGAGCGTGT TTGAGGCGGT CGGCGATTTG ACGGCGACGG
851 CAATGGTGTC CGACCAGCCG ATTGAAGGCG AGGAATACAC CAAACGCTTG
901 CGCGGCGGC TGTTGGCGGA CGGCTTGGTG TCGGTGATTG CGACGGCTTT
951 GGGTTCGCTG CCGCTGACGA CGTTTGCACA AAACAACGGC GTGATTCAGA
1001 TGACCGGCGT GGCTTCGCGC CATGTGGGCA AATATATTGC CGTGATTTTG
1051 GTGCTGTTGG GTCTGTTCCC CGTTGTCGGA CGCGCGTTTA CGACGATTCC
1101 GAGTCCGGTG TTGGGCGGCG CGATGGTTTT GATGTTCGGC TTGATTGCGA
1151
     TTGCGGGCGT GCGGATTTTG GTCAGCCACG GCATCCGCAG GCGCGAAGCG
     GTAATTGCGG CAACGTCGGT CGGTTTGGGC TTGGGTGTCG CGTTTGAGCC
     GGAAGTGTTT AAAAACCTGC CCGTCTTGTT CCAAAACTCT ATTTCCGCCG
     GCGGCATTAC GGCAGTCTTG CTGAATTTGG TCTTGCCCGA AGATAAAACC
     GAGGCGGCGG TCAAGTTTGA TACCGACCAC TTGGAACACT GA
```

This corresponds to the amino acid sequence <SEQ ID 1542; ORF 532.a>: a532.pep

- MSGQLGKGAD APDLVYGLED RPPFGNALLS AVTHLLAIFV PMITPALIVG
- GALELPVEMT AYLVSMAMVA SGVGTYLQVN RFGPVGSGML SIQSVNFSFV

101	TVMIALGAGM	KEGGLTKDAM	ISTLLGVSFV	GAFLVCFSAW	LLPYLKKVIT
151	PTVSGVVVML	IGLSLVHVGI	TDFGGGFGAK	ADGTFGSMEN	LGLASLVLLI
201	VLVFNCMKNP	LLRMSGIAVG	LIAGYIVALF	LGKVDFSALQ	NLPLVTLPVP
251	FKYGFAFDWH	AFIVAGAIFL	LSVFEAVGDL	TATAMVSDQP	IEGEEYTKRL
301	RGGVLADGLV	SVIATALGSL	PLTTFAQNNG	VIQMTGVASR	HVGKYIAVIL
351	VLLGLFPVVG	RAFTTIPSPV	LGGAMVLMFG	LIAIAGVRIL	VSHGIRRREA
401	VIAATSVGLG	LGVAFEPEVF	KNLPVLFQNS	ISAGGITAVL	LNLVLPEDKT
451	EAAVKFDTDH	LEH*			•

_____m5

532/a532	100.09	% ident	ity in 46	3 aa overl	ар			
			10	20	30	40	50	60
m532.pe	D M	SGQLGKG.	<b>ADAPDLVYG</b>	LEDRPPFGNA	LLSAVTHLLA	IFVPMITPAI	LIVGGALELPV	EMT
	· I	HĨIHI	111111111	11111111111	11111111111	1111111111		111
a532	M	SGQLGKG.	ADAPDLVYG	LEDRPPFGNA	LLSAVTHLL	IFVPMITPAI	LIVGGALELPV	EMT
			10	20	30	40	50	60
				•				
			70	80	90	100	110	120
m532.pe							SAGMKEGGLTK	
a532	A			-	-		SAGMKEGGLTK	
			70	80	90	100	110	120
						160	170	• • • •
	_		30	140	150	160	170	180
m532.pe							WGITDFGGGF	
- 5 3 3							RVGITDFGGGF	
a532	1		r vgar dvcr 30	140	150	160		180
		1	30	140	130	100	170	160
		1	90	200	210	220	230	240
m532.pe	n A	_					/ALFLGKVDFS	
moor.pc							11111111111	_
a532							ALFLGKVDFS	
2552				200	210	220		240
			50	260	270	280	290	300
m532.pe							DOPIEGEEYT	
							:	
a532	N						SDOPIEGEEYT	
		2	50	260	270	280	290	300
						240	250	
	_		10	320	330	340	350	360
m532.pe							AVILVLLGLFP	
a532								
a332	А		LVSVIATAL 10	320	330	340	350	360
		3	10	320	330	340	330	360
		3	70	380	390	400	410	420
m532.pe	R a	_					/GLGLGVAFEP	
		1111111	1111111111	111111111	шшшш			111
a532							GLGLGVAFER	
		3	70	380	390	400	410	420
		-	30	440	450	460		
m532.pe					EDKTEAAVKFI			
	-							
a532	K	_			EDKTEAAVKFI			
		4	30	440	450	460		

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1543>: g535.seq

1 atgecettte cegtttteag acaantattt gettngteet tgetacggtt 51 ttttgccgta ggtcggattc tcgaatccga catttccaac agcggttttt 101 cggaaacgat aaacgcgtca aatgtttttt ttgtcggata cgaatatccg 151 gcctgcattt caaatttaca tcgcttccaa tttcgcaaac ttggtatcca 201 gttctttcac gccctgtttg ccgaagttga tggtcagtcg ggcggattcg 251 cctttgtctg cggcatcgat aatcacgccg gtgccgaatt tggcgtgacg 301 gacgttttgt ccgatgcgga agcctgcgta ggtttgcggc tgtttgaagt

WO 99/57280 PCT/US99/09346

806

```
351 catcgatgat tttgtcccgt tgtacggtgg tttggcgcgt gttgccqtaq
401 ctgtcgaagg cgggtttttt gacggacagg tagtgcaata cttctggcgg
451 gatttcttcg acgaagcggg atgcgatgcc gaattgggtt tgtccgtgca
501 gcatgcgttg ctgtgccatg gtgatgtaga ggcgtttgcg ggcgcqqqtq
551 atggcgacgt acatgaggcg gcgttcttct tcgaggccgc cgcgctcggc
601 aaggeteatt tegetgggga aacgeeette ttecataceg gtgaggaaga
    cggcgttgaa ttccaagcct ttggcggcgt ggacggtcat cagttggacg
701 gctttttcgc ctgcccctgc ttggttttcg ccggattcga gggcggcgtt
751 gctcaagaag gcgaggatgg ggaaggcggg atcgtctga
    MPFPVFRQXF AXSLLRFFAV GRILESDISN SGFSETINAS NVFFVGYEYP
```

This corresponds to the amino acid sequence <SEQ ID 1544; ORF 535.ng>:

q535.pep 51 ACISNLHRFO FRKLGIOFFH ALFAEVDGOS GGFAFVCGID NHAGAEFGVT 101 DVLSDAEACV GLRLFEVIDD FVPLYGGLAR VAVAVEGGFF DGQVVQYFWR 151 DFFDEAGCDA ELGLSVQHAL LCHGDVEAFA GAGDGDVHEA AFFFEAAALG 201 KAHFAGETPL FHTGEEDGVE FQAFGGVDGH QLDGFFACPC LVFAGFEGGV AQEGEDGEGG IV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1545>:

m535.seq aTGCCCTTtC CCGTTTTCAG ACGGCCTTTT GCTTTGTCCT TACTtACGTT TTTTGCCGTA AGTCAGATTC TTGTATCCGA CATTTCCAAC AGCGGTGTTT 101 CGGAAACAAT AGACGCGTCA AATGTTTTTG TCGGATACGA ATATCCGACC 151 TACATTTCAA ATTTACATCT CTTCCAATTT CGCAAACTTG GTGTCCAACT 201 CTTTCACGCC CTGTTTGCCG AAATTGATGG TCAGTCGGGC GGATTCGCCT 251 TTATCTGCGG CATCGATAAT CACGCCGGTG CCGAATTTGG CGTGGCGGAC GTTTTGTCCG ATACGGAAAC CTGCGTAGGT TTGGGGCTGT TTGTAGTCGT 351 CGATGATTTT ATCTTTGGAT GCGGCGGTTT GGCGCGTGTT GCCGTAACTG 401 TCGTAGGCAG GCTTTTTGAC GGACAGGTAG TGCAATACTT CGGGTGGGAT 451 CTCTTCGACG AAGCGGGAGA CGATGCCGAA TTGGGTTTGT CCGTGCAGCA 501 TGCGTTGTTG CGCCATGGTG ATGTAGAGGC GTTTGCGGGC GCGGGTGATG GCGACGTACA TGAGGCGGCG TTCTTCTTCG AGGCCGCCGC GTTCGGCAAG 601 GCTCATTTCG CTGGGGAAGC GGCCTTCTTC CATGCCGGTG AGGAAGACGG 651 CGTTAAATTC CAAGCCTTTG GCGGCGTGGA CGGTCATGAG TTGGACGGCC 701 TTTTCGCCTG CGCCTGCCTG GTTTTCACCG GATTCGAGGG CGGCATTGCT 751 TAGGAAGGCG AGAATGGGGA AGGCGGGGTC GTCTGA

This corresponds to the amino acid sequence <SEO ID 1546; ORF 535>:

m535.pep

1 MPFPVFRRPF ALSLLTFFAV SQILVSDISN SGVSETIDAS NVFVGYEYPT 51 YISNLHLFQF RKLGVQLFHA LFAEIDGQSG GFAFICGIDN HAGAEFGVAD 101 VLSDTETCVG LGLFVVVDDF IFGCGGLARV AVTVVGRLFD GQVVQYFGWD LFDEAGDDAE LGLSVQHALL RHGDVEAFAG AGDGDVHEAA FFFEAAAFGK AHFAGEAAFF HAGEEDGVKF QAFGGVDGHE LDGLFACACL VFTGFEGGIA 251 XEGENGEGGV V*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 535 shows 80.9% identity over a 262 as overlap with a predicted ORF (ORF 535.ng) from N. gonorrhoeae:

m535/g535



	m535.pep	120 130 140 150 160 170 1 FIFGCGGLARVAVTVVGRLFDGQVVQYFGWDLFDEAGDDAELGLSVQHALLRHGDVEA  :       :  :	
	g535	FVPLYGGLARVAVAVEGGFFDGQVVQYFWRDFFDEAGCDAELGLSVQHALLCHGDVEA	
	m535.pep	GAGDGDVHEAAFFFEAAAFGKAHFAGEAAFFHAGEEDGVKFQAFGGVDGHELDGLFAC	ı
▲ Matern	g535		PC 40
	m535.pep	240	
	g535	LVFAGFEGGVAQEGEDGEGGIV 250 260	
The		partial DNA sequence was identified in N. meningitidis <seq 1547<="" id="" td=""><td>&gt;:</td></seq>	>:
	a535.seq	(partial) TTCAGACGGC CTTTTGCCTT GTCCTTGCTA CAGTTTTTTG CCATAGGTCG	
	51		
	101 151		
	201		
	251		
	301 351	GAAACCTGCG TAGGTTTGGG GCTGTTTGTA GTCGTCGATG ATTTTGTCTT TGGGCGCGGC GGTTTGGCGC GTGTTGCCAT AGCGGTCGTA GGCGGGTTTT	
	401		
	451		
	501		
	551 601		
	651		
	701 751	GCTTGGTTTT CGCCGGATTC GAGAGCAGCA TTGCTTAGGA AAGCGAGGAT GGGGAAGGCG GGGTCGTCTG A	
This	correspond	ls to the amino acid sequence <seq 1548;="" 535.a="" id="" orf="">:</seq>	
2.11.0	•	(partial)	
	1	FRRPFALSLL QFFAIGRILE SDISNSGFSE TIDASNIFVG YEYPACISNL	
	51		
	101 151		
	201 251	EAAFFHAGEE YGVKFQAFGG VHGHELYGFF ARACLVFAGF ESSIA*ESED	
m53	5/a535 88	8.7% identity in 256 aa overlap	
			60
	m535.pep	MPFPVFRRPFALSLLTFFAVSQILVSDISNSGVSETIDASNVFVGYEYPTYISNLHLF	
	a535	FRRPFALSLLQFFAIGRILESDISNSGFSETIDASNIFVGYEYPACISNLHRF 10 20 30 40 50	
	m535.pep	70 80 90 100 110 1 RKLGVQLFHALFAEIDGQSGGFAFICGIDNHAGAEFGVADVLSDTETCVGLGLFVVVD	
	a535	RKLGVQLFHALFAEIDGQSGGFAFICGIDNHAGAEFGVADVLSDTETCVGLGLFVVVD 60 70 80 90 100 110	
	m535.pep	IFGCGGLARVAVTVVGRLFDGQVVQYFGWDLFDEAGDDAELGLSVQHALLRHGDVEAF	11
	a535	VFGRGGLARVAIAVVGGFFDGQVVQYFGRDFFDEAGDDAELGLSVQHALLRHGDVEAF 120 130 140 150 160 170	AG

WO 99/57280

808

```
200
                                210
                                        220
                190
          agdgdvheaafffeaaafgkahfageaaffhageedgvkfqafggvdgheldglfacacl
m535.pep
          AGDGDVHQAAFFFEAAAFGKAHFAGEAAFFHAGEEYGVKFQAFGGVHGHELYGFFARACL
a535
                            200
                                    210
                                            220
                    190
                250
                        260
          VFTGFEGGIAXEGENGEGGVVX
m535.pep
          [1:]:[::[]]:::[][]:
          VFAGFESSIAXESEDGEGGVVX
a535
                    250
            240
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1549>: q537.seq

```
.1 atgaaatccc tttttatttg gctgcttcta ttgggctcgg cggcaggcgt
     tttctaccat acccaaaacc aatccctgcc cgcgggcgaa cttgtctatc
101 cqtccgcacc gcaaatcagg gacggcggcg atgcgctgca ctacctcaac
151 cgcatccgca cacaaatcgg tttgcacgcg ctggcacacg cgccggtttt
201 ggaaaattcc gcccgcaggc acgcacgcta tctcacgctc aatcccgaag
251 acggacacgg cgaacaccat cccgacaatc cgcactacac cgcacaaaag
301 ctgaccgaac gcacacgcct tgccgggtat ctctacaacg gcgtgcatga
351 aaacatcagc acggaagagg aagccgccga atcgtccgac agcgacatcc
401 gcacgcagca acgccaagtg gacgctttga tgagcgcaat ctaccaccgc
451 ctttcgctgc ttgaccgcca taccgacgaa gcaggtgcgg catttgtgcg
501 cgaaaacggc aaaaccgtcc tcgtattcaa tcagggcaac ggcagcttcg
551 agcgcgcctg tgcaaaagga aggcggcagc cggaagcagg acggaaatat
     taccgcaacg cttgccacaa cggtgcggcc gtttatgctg acgaagccat
651 gcccgtaacg gaattgettt ataccgccta tccggttggc ggcggcgcgc
701 tgccttattt ttacggggaa cgtcccgacc ccgtgccgga atatgaaatc
751 acaggeaate etgecageat tgatttttcc gaggeggcag gcaaaattgc
801 gatgaaaagt ttcaagctgt atcagggtaa aaacgaaatc cgccccgtca
851 gggttttaac cgccggcaac gaccctaacg gcaggctgac cgcgcaccaa
901 ttcgcccttt tcccgctcaa acctttggaa tacggcacgc tttatacggc
951 ggtattcgac tatgtccgca acggacggca cgcgcaggcg aaatggcagt
1001 ttagaacccg aaaacccgat tacccttatt ttgaggtaaa cggcggcgag
1051 acacttgcgg ttagaaaagg cgaaaaatat ttcatccact ggcgcggacg
1101 ctggtgtctg gaagcgtgta cccgttatac ctaccggcgg cagttcggca
1151 acagcetgte catacteegg cacgaagegg geggeattgt etteagegte
1201 agcqqaatqq cqqqaagccq catcaggctt actccggaag acagcccgga
1251 acgcggtgta accctttatt tgcaggattg a
```

This corresponds to the amino acid sequence <SEQ ID 1550; ORF 537.ng>: g537.pep

```
1 MKSLFIWLLL LGSAAGVFYH TQNQSLPAGE LVYPSAPQIR DGGDALHYLN
```

- 51 RIRTOIGLHA LAHAPVLENS ARRHARYLTL NPEDGHGEHH PDNPHYTAQK
- 101 LTERTRLAGY LYNGVHENIS TEEEAAESSD SDIRTQORQV DALMSAIYHR
- 151 LSLLDRHTDE AGAAFVRENG KTVLVFNQGN GSFERACAKG RRQPEAGRKY
- 201 YRNACHNGAA VYADEAMPVT ELLYTAYPVG GGALPYFYGE RPDPVPEYEI
- 251 TGNPASIDFS EAAGKIAMKS FKLYQGKNEI RPVRVLTAGN DPNGRLTAHQ
- 301 FALFPLKPLE YGTLYTAVFD YVRNGRHAQA KWQFRTRKPD YPYFEVNGGE
- 351 TLAVRKGEKY FIHWRGRWCL EACTRYTYRR QFGNSLSILR HEAGGIVFSV
- 401 SGMAGSRIRL TPEDSPERGV TLYLQD *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1551>: m537.seq (partial)

- 1 ATGAAATCCC TTTTTATTCG GCTGCTCCTG TTGGGTTCGG CGGCAGGCGT
- 51 TTTCTACCAT ACCCAAAmCC AATCCCTGCC CGCGGGCGAA CTTGTCTATC
- 101 CGTCCGCACC GCAAATCAGG GACGGCGGCG ATGCGCTGCA CTACCTCAAC
- 151 CGCATCCGAG CCCAAATCGG TTTGCACAAG CTGGCACACG CGCCGGTTTT
- GGAAAACTCC GCCCGCAGGC ACGCAAGCTA CCTCACGCTC AATCCCGAAG 251 ACGGACACGG CGAACACCAT CCCGACAATC CGCACTACAC CGCACAAAAG

```
301 CTGACCGAAC GCACACGCCT TGCCGGGTAT CTCTACAACG GCGTGCATGA
            351 AAACATCAGC ACGGAAGAAG AAGCCGCCGA ATCGTCCGAC AGCGACATCC
            401 GCACGCAGCA ACGCCAAGTG GACGGATTAA TGAGCGCAAT CTACCACCGC
                CTTTCCCTAC TTGACCGCCA TACGGATGAG TCAGGAGCGG CATT...
  This corresponds to the amino acid sequence <SEQ ID 1552; ORF 537>:
       m537.pep (partial)
                MKSLFIRLLL LGSAAGVFYH TQXQSLPAGE LVYPSAPQIR DGGDALHYLN
             51 RIRAQIGLHK LAHAPVLENS ARRHASYLTL NPEDGHGEHH PDNPHYTAOK
            101 LTERTRLAGY LYNGVHENIS TEEEAAESSD SDIRTQQRQV DGLMSAIYHR
            151 LSLLDRHTDE SGAA...
- Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 537 shows 95.7% identity over a 164 aa overlap with a predicted ORF (ORF 537.ng)
  from N. gonorrhoeae:
       m537/g537
                           10
                                     20
                                              30
                                                        40
                                                                 50
                   MKSLFIRLLLLGSAAGVFYHTQXQSLPAGELVYPSAPQIRDGGDALHYLNRIRAQIGLHK
       m537.pep
                   MKSLFIWLLLLGSAAGVFYHTQNQSLPAGELVYPSAPQIRDGGDALHYLNRIRTQIGLHA
       g537
                                    20
                           10
                                              30
                                                       40
                                                                 50
                           70
                                     80
                                              90
                                                       100
                   LAHAPVLENSARRHASYLTLNPEDGHGEHHPDNPHYTAQKLTERTRLAGYLYNGVHENIS
       m537.pep
                   LAHAPVLENSARRHARYLTLNPEDGHGEHHPDNPHYTAQKLTERTRLAGYLYNGVHENIS
       a537
                                                      100
                           70
                                     80
                                              90
                                                                110
                                                                         120
                          130
                                   140
                                             150
                                                       160
                   TEEEAAESSDSDIRTQQRQVDGLMSAIYHRLSLLDRHTDESGAA
       m537.pep
                   TEEEAAESSDSDIRTQQRQVDALMSAIYHRLSLLDRHTDEAGAAFVRENGKTVLVFNQGN
       g537
                                   140
                                             150
                                                      160
                          130
                   GSFERACAKGRRQPEAGRKYYRNACHNGAAVYADEAMPVTELLYTAYPVGGGALPYFYGE
       g537
                          190
                                   200
                                             210
                                                       220
                                                                230
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1553>:
       a537.seq
                ATGAAATCCC TTTTTATTCG GCTGCTCCTG TTGGGTTCGG CGGCCGGCGT
             1
                TTTCTATCAT ACCCAAAACC AATCCCTGCC CGCGGGCGAA CTTGTCTATC
             51
            101 CGTCCGCACC GCAAATCAGG GACGGCGGCG ATGCGCTGCA CTACCTCAAC
            151 CGCATCCGCG CCCAAATCGG TTTGCACAAG CTGGCACACG CGCCGGTTTT
                GGAAAATTCC GCCCGCAGGC ACGCACGCTA TCTCACGCTC AATCCCGAAG
                ACGGACACGG CGAACACCAT CCCGACAATC CGCACTACAC CGCACAAAAG
            301 CTGACCGAAC GCACACGCCT TGCCGGGTAT CTCTACAACG GCGTGCATGA
            351 AAACATCAGC ACGGAAGAGG AAGCCGCCGA ATCGTCCGAC AGCGACATCC
            401 GCACGCAGCA ACGCCAAGTG GACGGATTAA TGAGCGCAAT CTACCACCGC
                CTTTCCCTAC TTGACCGCCA TACGGATGAG GCAGGAGCGG CATTTGTGCG
            451
            501 CGAAAACGGT AAAACCGTTC TCGTATTCAA TCAGGGCAAC GGCAGGTTTG
            551 AGCGGCATTG CGCCCAAGGC AGAAATCAGC CGGAAGCAGG ACGGAAATAT
                TACCGCAACG CCTGCCATAA CGGTGCGGTC GTGTACACCG ACGAAGCCAT
            601
            651
                GCCCGCACAG GAGCTGCTCT ATACAGCCTA TCCCGTCGGC AACGGCGCAC
            701 TGCCTTATTT CCACGGCGAG CGTCCAGACC CCGTGCCGGA ATATGAAATC
            751 ACGGGCAATC CTGCCAGCAT TGATTTTTCC GAGGCGGCAG GCAAAATTAC
                GATGAAAAGT TTCAAGCTGT ATCAGGGTAA AAACGAAATC CGCCCCGTCA
            801
            851 GGGTTTTAAC CGCCGGCAAC GACCCCAACG GCAGGCTGAC CGCGTACCAA
            901 TTCGCGCTTT TCCCGCTCAA GCCTTTGGAA TACGGTACGC TTTATACGGC
            951 GGTATTCGAC TATGTCCGCA ACGGACGGCG CGCGCAGGCG AAATGGCAGT
           1001
                TTAGAACCCG AAAACCCGAT TACCCTTATT TTGAGGTAAA CGGCGGCGAG
           1051 ACACTTGCGG TTAGAAAAGG CGAAAAATAT TTCATCCACT GGCGCGGACG
           1101 CTGGTGTTTG GAAGCGTGTA CCCGTTATAC CTACCGGCAG CGACCCGGCA
```

WO 99/57280 PCT/US99/09346

810

```
1151 GCCGCCTGTC CATAGGAAGG CACAAGGCGG GCGGCATCGT CTTCAGCGTT
                GACGGAATGG CGGGCAGCCG CATCACGCTT GCACCGGAAG GAGAAACGGA
           1251 ACGAGGCGTA ACCCTTTATT TACAGGATTG A
  This corresponds to the amino acid sequence <SEQ ID 1554; ORF 537.a>:
       a537.pep
                MKSLFIRLLL LGSAAGVFYH TQNQSLPAGE LVYPSAPQIR DGGDALHYLN
                RIRAQIGLHK LAHAPVLENS ARRHARYLTL NPEDGHGEHH PDNPHYTAQK
             51
                LTERTRLAGY LYNGVHENIS TEEEAAESSD SDIRTQQRQV DGLMSAIYHR
            101
            151 LSLLDRHTDE AGAAFVRENG KTVLVFNQGN GRFERHCAQG RNQPEAGRKY
            201 YRNACHNGAV VYTDEAMPAQ ELLYTAYPVG NGALPYFHGE RPDPVPEYEI
- 1757
                TGNPASIDFS EAAGKITMKS FKLYQGKNEI RPVRVLTAGN DPNGRLTAYQ
            251
            301 FALFPLKPLE YGTLYTAVFD YVRNGRRAQA KWQFRTRKPD YPYFEVNGGE
                TLAVRKGEKY FIHWRGRWCL EACTRYTYRQ RPGSRLSIGR HKAGGIVFSV
            401 DGMAGSRITL APEGETERGV TLYLOD*
  m537/a537 98.2% identity in 164 aa overlap
                                              30
                                                       40
                                                                 50
                   MKSLFIRLLLLGSAAGVFYHTQXQSLPAGELVYPSAPQIRDGGDALHYLNRIRAQIGLHK
       m537.pep
                   MKSLFIRLLLLGSAAGVFYHTQNQSLPAGELVYPSAPQIRDGGDALHYLNRIRAQIGLHK
       a537
                                     20
                                              30
                                                       40
                                                                 50
                           70
                                     80
                                              90
                                                      100
                                                                110
                                                                          120
                   LAHAPVLENSARRHASYLTLNPEDGHGEHHPDNPHYTAQKLTERTRLAGYLYNGVHENIS
       m537.pep
                    LAHAPVLENSARRHARYLTLNPEDGHGEHHPDNPHYTAQKLTERTRLAGYLYNGVHENIS
       a537
                                              90
                                                      100
                           70
                                     RN
                                                                110
                                                                          120
                                    140
                                             150
                          130
                   TEEEAAESSDSDIRTQQRQVDGLMSAIYHRLSLLDRHTDESGAA
       m537.pep
                   TEEEAAESSDSDIRTQQRQVDGLMSAIYHRLSLLDRHTDEAGAAFVRENGKTVLVFNQGN
       a537
                          130
                                    140
                                             150
                                                      160
                                                                170
                   GRFERHCAQGRNQPEAGRKYYRNACHNGAVVYTDEAMPAQELLYTAYPVGNGALPYFHGE
       a537
                          190
                                    200
                                             210
                                                       220
                                                                230
                                                                          240
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1555>:
       g538.seq
                atgtcaggta gaacaggacg gaacagtgcc actcaggcgc aaccggaacg
              1
                 cgtcatgctg gtgggcgtaa tgttggataa agatgatacg ggcagcaatg
             51
            101 ccgcccgtct gaacggtttt cagacggcat tggcggaagc cgtcgagctg
            151 gtcaaagcgg cgggcggcga ttccgtacgc gtggagactg ccaaacgcga
            201 ccgcccgcac actgcgctgt ttgtcggcac gggcaaggcg gcggagctgt
            251 cqqaaqcagt tgccgcagac ggcattgatt tggtcgtatt caaccacgaa
            301
                 cttactccca cgcaggaacg caatttggaa aaaatcctcc aatgccgcgt
            351
                 attggacaga gtggggctga ttctggcgat tttcgcccgc cgcgcccgca
            401
                 cgcaggaagg caggctgcaa gtcgagttgg cgcaattgag ccatttggcg
                 ggacgcttga tacgcggtta cggacatttg caaagccagc gcggcggtat
            451
            501 cggcatgaaa gggccgggcg aaaccaaact ggaaaccgac cgccgattaa
            551 ccgcccatcg gatcaacgcc ttgaaaaaaa agcttgccaa cctcaaaaaa
            601 cagcgcgccc tgcgccgcaa gtcccgcgag tcgggcagaa tcaaaacgtt
            651 tgcgctggtc ggctatacca atgtcggcaa atccagcctg ttcaaccggc
                 tgaccaagtc gggcatatat gcgaaagacc agcttttcgc cactctcgac
            701
            751 acgacggcgc ggcggctgta catcagtccc gcatgcagca ttatcctgac
            801 cgataccgtc ggattcgtca gcgatctgcc gcacaaactg atttccgcct
            851 tttccgccac cttgqaaqaa accqtqcaaq ccqatqtqct qctqcacqtc
            901 gtcgatgctg ccgcccggaa cagcgggcag cagattgaag acgtggaaaa
```

cgtactgcaa gaaatccatg cccacgatat tccgtgcatc aaggtgtaca acaaaaccga cctgctgccg tctgaagaac aaaacacggg catatggcgc

1051 gacgctgcgg gaaaaattgc cgccgtccgc atttccgttg ctgaaaatac

951

```
This corresponds to the amino acid sequence <SEQ ID 1556; ORF 538.ng>:
        9538.pep
            MSGRTGRNSA TQAQPERVML VGVMLDKDDT GSNAARLNGF QTALAEAVEL
            VKAAGGDSVR VETAKRDRPH TALFVGTGKA AELSEAVAAD GIDLVVFNHE
         51
        101 LTPTQERNLE KILQCRVLDR VGLILAIFAR RARTQEGRLQ VELAQLSHLA
        151 GRLIRGYGHL QSQRGGIGMK GPGETKLETD RRLTAHRINA LKKQLANLKK
        201 QRALRRKSRE SGRIKTFALV GYTNVGKSSL FNRLTKSGIY AKDOLFATLD
        251 TTARRLYISP ACSILLTDTV GFVSDLPHKL ISAFSATLEE TVQADVLLHV
        301 VDAAARNSGQ QIEDVENVLQ EIHAHDIPCI KVYNKTDLLP SEEQNTGIWR
        351 DAAGKIAAVR ISVAENTGID ALREAIAEYC AAAPNTDETE MP*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1557>:
        m538.seq
                 ATGACAGGCA GAACAGGCGG CAACGGCAGT ACCCAAGCGC AACCCGAACG
              1
                 CGTCATGCTG GTGGGCGTAA TGTTGGACAA AGATGGTACG GGCAGTAGTG
              51
             101
                 CCGCCCGTCT GAACGGTTTT CAGACGGCAT TGGCGGAAGC TGTCGAGCTG
                 GTCAAAGCGG CGGGCGGCGA TTCCGTGCGC GTGGAGACTG CCAAACGCGA
             151
            201 CCGTCCGCAC ACCGCGCTGT TTGTCGGCAC GGGCAAGGCG GCGGAGCTGT
                 CAGAAGCAGT TGCCGCAGAC GGCATCGATT TGGTCGTATT CAACCACGAA
            301 CTCACGCCCA CGCAGGAACG CAACCTTGAA AAAGAACTSA AATGCCGCGT
            351 ATTGGACAGG GTAGGGCTGA TTCTGGCGAT TTTCGCTCGC CGCGCCCGCA
                 CGCAGGAAGG CAGGCTGCAA GTCGAGTTGG CGCAATTGAG CCATTTGGCG
            401
            451
                 GGACGCTTGA TACGCGGTTA CGGCCATCTG CAGAGCCAGC GCGGCGGTAT
            501 CGGCATGAAA GGCCCCGGCG AAACCAAACT GGAAACCGAC CGCCGATTGA
                 TCGCCCATCG GATCAATGCC TTGATAAAAC AGCTTGCCAA CCTCAAAAAA
            551
                 CAGCGCGCCC TGCGCCGCAA GTCnCGCGAA TCGGGCACAA TCAAAACGTT
                 TGCGCTGGTC GGCTATACAA ATGTCGGAAA ATCCAGCCTG TTCAACCGGC
            651
                 TGACAAAGTC GGGCATATAT GCAAAGGACA AGCTTAGTCC CGAATGCAGC
            701
                 ATTATCCTGA CCGATACCGT CGGATTCGTn AGCGATCTGC CGCACAAACT
            801 GATTTCCGCC TTTTCgCC.A CGCTGGAAGA AACCGCGCAA GCCGATGTGC
            851 TGCTGCACGT CGTCGATGCC GCCGCTCCGA ACAGCGGACA GCAGATTGAA
                 GACGTGGAAA ACGTACTGCA AGAAATCCAT GCCGGCGATA TTCCGTGCAT
            951 CAAGGTGTAC AACAAAACCG ACCTGCTGCC GTCTGAAGAA CAAAACACGG
           1001 GCATATGGCG CGACGCTGCG GGAAAAATTG CCGCCGTCCG CATTTCCGTT
                 GCTGAAAATA CCGGTATAGA CGCACTGCGC GAAGCCATTG CCGAGTCTTG
                 TGCCGCCGCA CCAAACACAG ACGAAACCGA AATGCCATGA
           1101
  This corresponds to the amino acid sequence <SEQ ID 1558; ORF 538>:
       m538.pep
                 MTGRTGGNGS TQAQPERVML VGVMLDKDGT GSSAARLNGF QTALAEAVEL
                 VKAAGGDSVR VETAKRDRPH TALFVGTGKA AELSEAVAAD GIDLVVFNHE
             51
            101 LTPTQERNLE KELKCRVLDR VGLILAIFAR RARTQEGRLO VELAOLSHLA
            151 GRLIRGYGHL OSORGGIGMK GPGETKLETD RRLIAHRINA LIKOLANLKK
                 ORALRRKSRE SGTIKTFALV GYTNVGKSSL FNRLTKSGIY AKDKLSPECS
            251 IILTDTVGFV SDLPHKLISA FSXTLEETAQ ADVLLHVVDA AAPNSGQQIE
            301 DVENVLQEIH AGDIPCIKVY NKTDLLPSEE QNTGIWRDAA GKIAAVRISV
                AENTGIDALR EAIAESCAAA PNTDETEMP*
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 538 shows 92.1% identity over a 392 aa overlap with a predicted ORF (ORF 538.ng)
  from N. gonorrhoeae:
       m538/g538
                            10
                                     20
                                               30
                                                         40
                    MTGRTGGNGSTQAQPERVMLVGVMLDKDGTGSSAARLNGFQTALAEAVELVKAAGGDSVR
       m538.pep
                    {\tt MSGRTGRNSATQAQPERVMLVGVMLDKDDTGSNAARLNGFQTALAEAVELVKAAGGDSVR}
       g538
                            10
                                     20
                                               30
                                                         40
                                                                   50
                                                                            60
                            70
                                     80
                                               90
                                                        100
                                                                  110
       m538.pep
                    VETAKRDRPHTALFVGTGKAAELSEAVAADGIDLVVFNHELTPTQERNLEKELKCRVLDR
                    VETAKRDRPHTALFVGTGKAAELSEAVAADGIDLVVFNHELTPTQERNLEKILQCRVLDR
       g538
```

```
70
                                  80
                                           90
                                                   100
                                                            110
                                                                      120
                        130
                                 140
                                          150
                                                   160
                                                            170
                                                                     180
                 VGLILAIFARRARTQEGRLQVELAQLSHLAGRLIRGYGHLQSQRGGIGMKGPGETKLETD
     m538.pep
                 VGLILAIFARRARTQEGRLQVELAQLSHLAGRLIRGYGHLQSQRGGIGMKGPGETKLETD
     q538
                                 140
                                          150
                                                   160
                                                            170
                        190
                                 200
                                          210
                                                   220
                                                            230
                 RRLIAHRINALIKQLANLKKQRALRRKSRESGTIKTFALVGYTNVGKSSLFNRLTKSGIY
     m538.pep
                 RRLTAHRINALKKQLANLKKQRALRRKSRESGRIKTFALVGYTNVGKSSLFNRLTKSGIY
     g538
                        190
                                200
                                          210
                                                   220
                                                            230
                                                                     240
                                   250
                                            260
                                                     270
                                                               280
                 AKDKL-----SPECSIILTDTVGFVSDLPHKLISAFSXTLEETAQADVLLHV
     m538.pep
                 111:1
                                 AKDQLFATLDTTARRLYISPACSIILTDTVGFVSDLPHKLISAFSATLEETVQADVLLHV
     g538
                       250
                                260
                                         270
                                                   280
                                                            290
                 290
                          300
                                   310
                                            320
                                                     330
                                                              340
                 VDAAAPNSGQQIEDVENVLQEIHAGDIPCIKVYNKTDLLPSEEQNTGIWRDAAGKIAAVR
     m538.pep
                 VDAAARNSGQQIEDVENVLQEIHAHDIPCIKVYNKTDLLPSEEQNTGIWRDAAGKIAAVR
     g538
                       310
                                320
                                         330
                                                  340
                                                            350
                                                                     360
                          360
                                   370
                                            380
     m538.pep
                 ISVAENTGIDALREAIAESCAAAPNTDETEMPX
                 ISVAENTGIDALREAIAEYCAAAPNTDETEMPX
     g538
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1559>:
     a538.seq
              ATGACAGGCA GAACAGGCCG CAACGGCAGT ACCCAAGCGC AACCCGAACG
              CGTCATGCTG GTGGGCGTAA TGTTGGACAA AGATGGTACG GGCAGCAGTG
          51
              CCACCCGTCT GAACGGTTTT CAGACGGCAT TGGCGGAAGC TGTCGAGCTG
              GTCAAAGCGG CGGGCGGCGA TTCCGTGCGC GTGGAGACTG CCAAACGCGA
              CCGTCCGCAC ACCGCGCTGT TTGTCGGCAC GGGCAAGGCG GCGGAGCTGT
         201
         251 CGGAAGCAGT TGCCGCAGAC GGCATCGATT TGGTCGTATT CAACCACGAA
         301 CTTACGCCCA CGCAGGAACG CAATTTGGAA AAAATCCTCC AATGCCGCGT
         351 ATTGGACAGA GTGGGGCTGA TTCTGGCGAT TTTCGCCCGC CGCGCCCGCA
              CGCAGGAAGG CAGGCTGCAA GTCGAGTTGG CACAATTGAG CCATTTGGCG
         401
         451 GGACGCTTGA TACGCGGTTA CGGCCATCTG CAGAGCCAGC GCGGCGGTAT
         501 CGGCATGAAA GGCCCCGGCG AAACCAAACT GGAAACCGAC CGCCGATTGA
         551 TCGCCCATCG GATCAATGCC TTGAAAAAAC AGCTTGCCAA CCTCAAAAAA
              CAGCGCGCCC TGCGCCGCAA GTCCCGCGAA TCGGGCACAA TCAAAACGTT
         601
         651 TGCGCTGGTC GGCTATACCA ATGTCGGCAA ATCCAGTCTG TTCAACCGGC
         701 TGACCAAGTC GGGCATATAT GCGAAAGACC AGCTTTTCGC CACACTCGAC
         751 ACGACGCCC GGCGCTGTA CATCAGTCCC GAATGCAGCA TTATCCTGAC
             CGATACCGTC GGATTCGTCA GCGATCTGCC GCACAAACTG ATTTCCGCCT
             TTTCCGCCAC GCTGGAAGAA ACCGCGCAAG CCGATGTGCT GCTGCACGTC
         851
         901 GTCGATGCCG CCGCTCCGAA CAGCGGACAG CAGATTGAAG ACGTGGAAAA
         951 CGTACTGCAA GAAATCCATG CCGGCGATAT TCCGTGCATC AAGGTGTACA
             ACAAAACCGA CCTGCTGCCG TCTGAAGAAC AAAACACGGG CATATGGCGC
        1001
             GACGCTGCGG GAAAAATTGC CGCCGTCCGC ATTTCCGTTG CTGAAAATAC
        1051
        1101 CGGTATAGAC GCACTGCGCG AAGCCATTGC CGAGTATTGT GCCGCCGCAC
        1151 CAAACACAGA CGAAACCGAA ATGCCATGA
This corresponds to the amino acid sequence <SEQ ID 1560; ORF 538.a>:
    a538.pep
             MTGRTGRNGS TQAQPERVML VGVMLDKDGT GSSATRLNGF QTALAEAVEL
          51 VKAAGGDSVR VETAKRDRPH TALFVGTGKA AELSEAVAAD GIDLVVFNHE
         101 LTPTQERNLE KILQCRVLDR VGLILAIFAR RARTQEGRLQ VELAQLSHLA
```

151 GRLIRGYGHL QSQRGGIGMK GPGETKLETD RRLIAHRINA LKKQLANLKK

```
201 ORALRRKSRE SGTIKTFALV GYTNVGKSSL FNRLTKSGIY AKDQLFATLD
              TTARRLYISP ECSIILTDTV GFVSDLPHKL ISAFSATLEE TAQADVLLHV
              VDAAAPNSGQ QIEDVENVLQ EIHAGDIPCI KVYNKTDLLP SEEQNTGIWR
          301
          351 DAAGKIAAVR ISVAENTGID ALREAIAEYC AAAPNTDETE MP*
  m538/a538 94.6% identity in 392 aa overlap
                               20
                       10
                                       30
                                               40
                                                       50
                                                                60
                MTGRTGGNGSTQAQPERVMLVGVMLDKDGTGSSAARLNGFQTALAEAVELVKAAGGDSVR
      m538.pep
                 MTGRTGRNGSTQAQPERVMLVGVMLDKDGTGSSATRLNGFQTALAEAVELVKAAGGDSVR
      a538
                                              40
                       10
                               20
                                       30
                                                       50
37,000
                       70
                               80
                                       90
                                              100
                                                      110
                                                               120
                 VETAKRDRPHTALFVGTGKAAELSEAVAADGIDLVVFNHELTPTQERNLEKELKCRVLDR
      m538.pep
                 VETAKRDRPHTALFVGTGKAAELSEAVAADGIDLVVFNHELTPTQERNLEKILQCRVLDR
      a538
                               80
                                       90
                                              100
                       70
                                                      110
                                      150
                                              160
                      130
                              140
                                                      170
                                                               180
                 VGLILAIFARRARTQEGRLQVELAQLSHLAGRLIRGYGHLQSQRGGIGMKGPGETKLETD
      m538.pep
                 VGLILAIFARRARTQEGRLQVELAQLSHLAGRLIRGYGHLQSQRGGIGMKGPGETKLETD
      a538
                              140
                                      150
                                             160
                      130
                                      210
                                              220
                 RRLIAHRINALIKQLANLKKQRALRRKSRESGTIKTFALVGYTNVGKSSLFNRLTKSGIY
      m538.pep
                 RRLIAHRINALKKQLANLKKQRALRRKSRESGTIKTFALVGYTNVGKSSLFNRLTKSGIY
      a538
                              200
                                      210
                                              220
                                                      230
                      190
                                 250
                                         260
                                                 270
                                                         280
                 AKDKL-----SPECSIILTDTVGFVSDLPHKLISAFSXTLEETAOADVLLHV
      m538.pep
                               AKDOLFATLDTTARRLYISPECSIILTDTVGFVSDLPHKLISAFSATLEETAQADVLLHV
      a538
                      250
                              260
                                      270
                                              280
                                                      290
                                                               300
                 290
                         300
                                 310
                                         320
                                                 330
                                                         340
                 VDAAAPNSGOOIEDVENVLQEIHAGDIPCIKVYNKTDLLPSEEQNTGIWRDAAGKIAAVR
      m538.pep
                 VDAAAPNSGQQIEDVENVLQEIHAGDIPCIKVYNKTDLLPSEEQNTGIWRDAAGKIAAVR
     . a538
                              320
                                      330
                                              340
                                                      350
                      310
                 350
                         360
                                 370
                 ISVAENTGIDALREAIAESCAAAPNTDETEMPX
      m538.pep
                 ISVAENTGIDALREAIAEYCAAAPNTDETEMPX
      a538
                      370
                              380
                                      390
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1561>: q539.seq

```
1
     atggaggatc tgcaggaaat cgggttcgat gtcgccgccg taaaggtagg
     teggeagege gaacateate gtetgeatea tacceagtee ggeaaeggea
51
     aggoggacga tgtattgttt gcgttctttt tggttggcgg cttcgatttt
     ttgcgcgtca tagggtgcgg cggtgtagcc tgtctgccgg attttcaaca
     gaatgtcgga gaggcggatt ttgccgtcgt cccagacgac gcggcagcgg
     tgcgtgctgt aattgaggtc gatgcggacg atgccgtctg tgcgcaaaag
251
     ctgctgttcg atcagccaga cgcaggcggc gcaggtaatg ccgctgagca
301
351
     tcagcactgc ttcgtgcgtg ccattatggg tttccacaaa gtcggattgg
401
     acttcgggca ggtcgtacag gcggatttgg tcgaggattt cttggggcgg
     cagtteggtt tttttegegt eggeggtgeg tegtttgtaa taactgeeca
451
     agcoggaato gatgatgott tgtgcgactg cotgacagco gacgcagcag
501
     gtttcgcggt cttcgccttc gtagcggacg gtcagatgca ggttttcggg
551
     aacgtccagc ccgcagtgga aacaggtttt tttcatggca tttcqgtttc
```

WO 99/57280 PCT/US99/09346

814

651 gtctgtgttt ggtgcggcgg cacaatactc ggcaatggct tcgcgcagtg

```
701 cgtctatacc ggtattttca gcaacggaaa tgcggacggc ggcaattttt
             751 cccgcagcgt cgcgccatat gcccgtgttt tgttcttcag acggcagcag
             801 gtcggttttg ttgtacacct tgatgcacgg aatatcgtgg gcatggattt
             851 cttgcagtac gttttccacg tcttcaatct gctgcccgct gttccgggcg
             901 gcaqcatcga cgacgtgcag cagcacatcg gcttgcacgg tttcttccaa
             951 qqtqqcggaa aaggcggaaa tcagtttgtg cggcagatcg ctgacgaatc
            1001 cgacggtatc ggtcaggata atgctgcatg cgggactgat gtacagccgc
            1051 egegeegteg tgtegagagt ggegaaaage tggtettteg catatatgee
            1101 cgacttggtc agccggttga acaggctgga tttgccgaca ttggtatag
This corresponds to the amino acid sequence <SEQ ID 1562; ORF 539.ng>:
        g539.pep
               1 MEDLOEIGFD VAAVKVGRQR EHHRLHHTQS GNGKADDVLF AFFLVGGFDF
                 LRVIGCGGVA CLPDFQQNVG EADFAVVPDD AAAVRAVIEV DADDAVCAQK
             101 LLFDQPDAGG AGNAAEHQHC FVRAIMGFHK VGLDFGQVVQ ADLVEDFLGR
             151 OFGFFRVGGA SFVITAQAGI DDALCDCLTA DAAGFAVFAF VADGQMQVFG
             201 NVOPAVETGF FHGISVSSVF GAAAQYSAMA SRSASIPVFS ATEMRTAAIF
             251 PAASRHMPVF CSSDGSRSVL LYTLMHGISW AWISCSTFST SSICCPLFRA
             301 AASTTCSSTS ACTVSSKVAE KAEISLCGRS LTNPTVSVRI MLHAGLMYSR
             351 RAVVSRVAKS WSFAYMPDLV SRLNRLDLPT LV*
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1563>:
        m539.seq
                   (partial)
                 ATGGAGGATT TGCAGGAAAT CGGGTTCGAT GTCGCCGCCG TAAAGGTAGG
              51 TCGGCAGCGC GAACATCATC GTCTGCATCA TCCCCAGCCC GGCAACGGCG
             101 AGGCGGACGA TGTATTGTTT GCGTTCTTTT TGGTTGGCGG CTTCGATTTT
             151 TTGCGCGTCA TAGGGTGCGG CGGTGTAGCC TATCTGCCTG ATTTTCAACA
             201 GAATGTCGGA AAGGCGGATT TTGCCGTCGT CCCAGACGAC GCGGCaGCgG
             251 TGCGTGCTGT AATTGAGGTC GATGCGGACG ATGCCGTCTG TACGCAAAAG
                 CTGCTGTTCG ATCAGCCAGA CGCAGGCGGC GCAGGTGATG CCGCCGAGCA
             351 TTAAAACCGC CTCGCGCGTG CCGCCGTGGG TTTCCACAAA GTCGGACTGG
             401 ACTTCGGGCA GGTCGTACAG GCGGATTTGG TCGAGGATTT CTTGGGGCGG
             451 CAGCTCGGTT TTTTGCGCGT CGGCGGTGCG TTGTTTGTAA TAACTGCCCA
             501 AGCCCGCGTC AATAATGCTT TGTGCGACCG CCTGACAGCC GGCGCaCAGG
             551 GTTTCGCGGT CTTCGTTTTC GTAACGGACA GTCAGGTGGA GGTGTTCGGG
             601 AACATCCAGA CCGCAGTGGA AACAGGTTTT TTTCATGGCA TTTCGGTTTC
             651 GTCTGTGTTT GGTGCGGCGG CACAAGACTC GGCAATGGCT TCGCGCAGTG
             701 CGTCTATACC GGTATTTTCA GCAACGGAAA TGCGGACGGC GGCAATTTTT
             751 CCCGCAGCGT CGCGCCATAT GCCCGTGTTT TGTTCTTCAG ACGGCAGCAG
             801 GTCGGTTTTG TTGTACACCT TGATGCACGG AATATCGCCG GCATGGATTT
             851 CTTGCAGTAC GTTTTCCACG TCTTCAATCT GCTGTCCGCT GTTCGGAGCG
             901 GCGGCATCGA CGACGTGCAG CAGCACATCG GCTTGCGCGG TTTCTTCCAG
             951 CGTGGcG.AA AAGGCGGAAA TCAGTTTGTG CGGCAGATCG CTNACGAATC
            1001 CGACGGTATC GGTCAGGATA ATGCTGCATT CGGGAC...
   This corresponds to the amino acid sequence <SEQ ID 1564; ORF 539>:
        m539.pep
                   (partial)
               1 MEDLOEIGFD VAAVKVGROR EHHRLHHPOP GNGEADDVLF AFFLVGGFDF
              51 LRVIGCGGVA YLPDFQQNVG KADFAVVPDD AAAVRAVIEV DADDAVCTQK
             101 LLFDQPDAGG AGDAAEH*NR LARAAVGFHK VGLDFGQVVQ ADLVEDFLGR
             151 QLGFLRVGGA LFVITAQARV NNALCDRLTA GAQGFAVFVF VTDSQVEVFG
             201 NIQTAVETGF FHGISVSSVF GAAAQDSAMA SRSASIPVFS ATEMRTAAIF
             251 PAASRHMPVF CSSDGSRSVL LYTLMHGISP AWISCSTFST SSICCPLFGA
             301 AASTTCSSTS ACAVSSSVAX KAEISLCGRS LTNPTVSVRI MLHSG....
   Computer analysis of this amino acid sequence gave the following results:
   Homology with a predicted ORF from N. gonorrhoeae
   ORF 539 shows 89% identity over a 345 as overlap with a predicted ORF (ORF 539.ng) from
   N. gonorrhoeae:
        m539/g539
                                                          40
                                                                    50
                             10
                                      20
                                                30
                                                                              60
                     MEDLQEIGFDVAAVKVGRQREHHRLHHPQPGNGEADDVLFAFFLVGGFDFLRVIGCGGVA
        m539.pep
                     MEDLQEIGFDVAAVKVGRQREHHRLHHTQSGNGKADDVLFAFFLVGGFDFLRVIGCGGVA
        g539
```

60

WO 99/57280

815

10	20	30	40	

	10					
	70	80	90	100	110	120
m539.pep	YLPDFQQNVGKADF.			_	_	
	[[[]]]]					
g539	CLPDFQQNVGEADF.				_	_
	70	80	90	100	110	120
	130	140	150	160	170	180
m539.pep	LARAAVGFHKVGLD		_		_	
	::   :         FVRAIMGFHKVGLD	. <b></b>				
g539	130	EGQVVQADEV 140	150	160	170	180
	130	140	130	700	170	190
	190	200	210	220	230	240
m539.pep	GAOGFAVEVEVTDS					
mooy.pep	[     : :::::::::::::::::::::::::::::::	-			_	
q539	DAAGFAVFAFVADG					
guus	190	200	210	220	230	240
	250	260	270	280	290	300
m539.pep	ATEMRTAAIFPAAS	RHMPVFCSSD	GSRSVLLYTI	MHGISPAWIS	CSTFSTSSIC	CCPLFGA
	111111111111111111	1111111111	111111111111	111111 1111	111111111111111	
g539	ATEMRTAAIFPAAS	RHMPVFCSSD	GSRSVLLYTI			
-	250	260	270	280	290	300
	310	320	330	340		
m539.pep	AASTTCSSTSACAV					
					•	
g539	AASTTCSSTSACTV					
	310	320	330	340	350	360

- Sear

g539

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1565>:

WSFAYMPDLVSRLNRLDLPTLV 370

```
a539.seq
         ATGGAGGATT TGCAGGAAAT CGGGTTCGAT GTCGCCGCCG TAAAGGTAGG
      1
         TCGGCAGCGC GAACATCATC GTCTGCATCA TCCCCAGCCC GGCAACGGCG
     51
     101 AGGCGGACGA TGTATTGTTT GCGTTCTTTT TGGTTGGCGG CTTCGATTTT
     151 TTGCGCGTCA TAGGGTGCGG CGGTGTAGCC TATCTGCCTG ATTTTCAACA
     201 GAATGTCGGA AAGGCGGATT TTGCCGTCGT CCCAGACGAC GCGGCAGCGG
     251 TGCGTGCTGT AATTGAGGTC GATGCGGACG ATGCCGTCTG TACGCAAAAG
     301 CTGCTGTTCG ATCAGCCAGA CGCAGGCGGC GCAGGTGATG CCGCCGAGCA
     351 TTAAAACCGC CTCGCGCGTG CCGCCGTGGG TTTCCACAAA GTCGGACTGG
     401 ACTTCGGGCA GGTCGTACAG GCGGATTTGG TCGAGGATTT CTTGGGGCCG
     451 CAGCTCGGTT TTTTGCGCGT CGGCGGTGCG TTGTTTGTAA TAACTGCCCA
     501 AGCCCGCGTC AATAATGCTT TGTGCGACTG CCTGACAACC GGCGCAGCAG
     551 GTTTCGCGGT CTTCGTTTTC GTAACGGACG GTCAGATGCA GGTTTTCGGG
     601 AACGTCCAGC CCGCAGTGGA AACAGGTTTT TTTCATGGCA TTTCGGTTTC
     651 GTCTGTGTTT GGTGCGGCGG CACAATACTC GGCAATGGCT TCGCGCAGTG
     701 CGTCTATACC GGTATTTTCA GCAACGGAAA TGCGGACGGC GGCAATTTTT
     751 CCCGCAGCGT CGCGCCATAT GCCCGTGTTT TGTTCTTCAG ACGGCAGCAG
     801 GTCGGTTTTG TTGTACACCT TGATGCACGG AATATCGCCG GCATGGATTT
     851 CTTGCAGTAC GTTTTCCACG TCTTCAATCT GCTGTCCGCT GTTCGGAGCG
     901 GCGGCATCGA CGACGTGCAG CAGCACATCG GCTTGCGCGG TTTCTTCCAG
     951 CGTGGCGGAA AAGGCGGAAA TCAGTTTGTG CGGCAGATCG CTGACGAATC
         CGACGGTATC GGTCAGGATA ATGCTGCATT CGGGACTGAT GTACAGCCGC
    1001
         CGCGCCGTCG TGTCGAGTGT GGCGAAAAGC TGGTCTTTCG CATATATGCC
    1051
    1101 CGACTTGGTC AGCCGGTTGA ACAGACTGGA TTTGCCGACA TTGGTATAG
```

This corresponds to the amino acid sequence <SEQ ID 1566; ORF 539.a>: a539.pep

¹ MEDLQEIGFD VAAVKVGRQR EHHRLHHPQP GNGEADDVLF AFFLVGGFDF

E 1	TRUTCOCCUR	WY DDECOMING	V1001101000		
	<u>LRVI</u> GCGGVA				
101	LLFDQPDAGG	AGDAAEH*NR	LARAAVGFHK	VGLDFGQVVQ	ADLVEDFLGR
151	QLGFLRVGGA	LFVITAQARV	NNALCDCLTT	GAAGFAVFVF	VTDGQMQVFG
201	NVQPAVETGF	FHGISVSSVF	GAAAQYSAMA	SRSASIPVFS	ATEMRTAAIF
251	PAASRHMPVF	CSSDGSRSVL	LYTLMHGISP	AWISCSTFST	SSICCPLFGA
301	AASTTCSSTS	ACAVSSSVAE	KAEISLCGRS	LTNPTVSVRI	MLHSGLMYSR
351	RAVVSSVAKS	WSFAYMPDLV	SRLNRLDLPT	LV*	

## m539/a539 97.1% identity in 345 aa overlap

111.5.5	DIAJJJ DI	.1 /6 lucility in 54.	-				
		10	20	30	40	50	60
- Vitter	m539.pep	MEDLQEIGFDVAA	VKVGRQREHHE	RLHHPQPGNGE	ADDVLFAFF	LVGGFDFLRV	IGCGGVA
** ****		111111111111	11111111111		111111111	нинин	1111111
	a539	MEDLQEIGFDVAA	VKVGRQREHH	RLHHPQPGNGE	ADDVLFAFF	LVGGFDFLRV	IGCGGVA
		10	20	30	40	50	60
							•••
		70	80	90	100	110	120
	m539.pep	YLPDFQQNVGKAD	FAVVPDDAAAV	/RAVIEVDADD	AVCTOKLLF	OPDAGGAGDA	AAEHXNR
		1111111111111	111111111111	1111111111	1111111111		
	a539	YLPDFQQNVGKAD	FAVVPDDAAAV	/RAVIEVDADD	AVCTOKLLF	OPDAGGAGD	AEHXNR
		70	80	90	100	110	120
		130	140	150	160	170	180
	m539.pep	LARAAVGFHKVGL	DFGQVVQADLV	/EDFLGRQLGF	LRVGGALFV		
	• •	######################################	шінін	шшіш	111111111		11 11:
	a539	LARAAVGFHKVGL	DFGOVVOADLV	EDFLGROLGF	LRVGGALFV	TAOARVNNAT	CDCLTT
		130	140	150	160	170	180
						2.0	100
		190	200	210	220	230	240
	m539.pep	GAQGFAVFVFVTD	SQVEVFGNIQT	AVETGFFHGI	SVSSVFGAA		
		11 1111111111	:1::1111:1	1111111111			111111
	a539	GAAGFAVFVFVTD	GOMOVEGNVOE	AVETGFFHGI	SVSSVFGAA	OYSAMASRS	STPVFS
		190	200	210	220	230	240
							2.0
		250	260	270	280	290	300
	m539.pep	ATEMRTAAIFPAA	SRHMPVFCSSD	GSRSVLLYTL	MHGISPAWIS		
		11111111111111					
	a539	ATEMRTAAI FPAA	SRHMPVFCSSC	GSRSVLLYTI	MHGTSPAWTS	CSTESTSSIC	רסז.קכם
		250	260	270	280	290	300
						230	500
		310	320	330	340		
	m539.pep	AASTTCSSTSACA	VSSSVAXKAEI			iG.	
						-	
	a539	AASTTCSSTSACA					ISSVAKS
		310	320	330	340	350	360
						550	300
	a539	WSFAYMPDLVSRL	NRLDLPTLVX				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1567>: g540.seq

1 atgccgccct cccgacgcgg caacggggtg ttttatcaaa acggcaaact

380

- 51 tgccaatgcg gtttccgctt gccgattgcc aaaccggcaa acctttcccg
- 101 tgccggtgcc gaacccgatg ccgtctgaac cttcagacgg catcgggtgt
- 151 ttatttgtcc actcggacgg gtgcaggttc gtattgtgtc gattcgtcgc
- 201 cgtaatacag cacgccgagt ttgacgggga tgcgtccctg cgatttgcgg 251 tgggcgttgg aatcgcgcaa ggaatacgcg cagccgcagt attcctgctg 301 gtagaagttt tcgcgtttgc tgatttcaat catacgcgcg ccgccgccgc

- 351 Ctttgcgcca gttgaagtcc caataggcca catcatcgta aggcgcggcg 401 gcacggtgtc cgcagtcgtt gatttgcgcc atatttttcc agcgtga
- This corresponds to the amino acid sequence <SEQ ID 1568; ORF 540.ng>: g540.pep
  - MPPSRRGNGV FYQNGKLANA VSACRLPNRQ TFPVPVPNPM PSEPSDGIGC

WO 99/57280 PCT/US99/09346

817

```
51 LFVHSDGCRF VLCRFVAVIQ HAEFDGDASL RFAVGVGIAQ GIRAAAVFLL
          101 VEVFAFADFN HTRAAAAFAP VEVPIGHIIV RRGGTVSAVV DLRHIFPA *
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1569>:
     m540.seq (partial)
              ..CCGAACCCGA TGCCGTCTGA ACCTTCAGAC GGCATCGGGT GTTTATTTGT
            1
                 CCACCCGGAT GGGGGCAGGT TCGTATTGTG TCGATTCGTC GCCGTAATAC
           51
                 AGCACGCCGA GTTTGATGGG GATTCTGCCC TGTGATTTGC GGTGGGCATT
          101
                 GGAATCCCTC AGGGAATAGG CACAACCGCA ATATTCCTGC TGGTAGAAGT
          151
                 TTTCACGTTT GCTGATTTCA ATCATGCGCG CGCTGCCGCC GCCTTTGCGC
          201
          251
                 CAGTTGAAAT CCCAATACAC CACATCATCG TAAGGCGCGG CGGCGCGGTG
                 TCCGCAGTCG TTGATTTGCG CCATATTTTT CCAGCGTGA
          301
This corresponds to the amino acid sequence <SEQ ID 1570; ORF 540>:
                (partial)
     m540.pep
               ..PNPMPSEPSD GIGCLFVHPD GGRFVLCRFV AVIQHAEFDG DSAL*FAVGI
                 GIPQGIGTTA IFLLVEVFTF ADFNHARAAA AFAPVEIPIH HIIVRRGGAV
           51
                 SAVVDLRHIF PA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 540 shows 85.7% identity over a 112 aa overlap with a predicted ORF (ORF 540.ng)
from N. gonorrhoeae:
     m540/g540
                                                       10
                                                                 20
                                               PNPMPSEPSDGIGCLFVHPDGGRFVLCRFV
     m540.pep
                                                GNGVFYQNGKLANAVSACRLPNRQTFPVPVPNPMPSEPSDGIGCLFVHSDGCRFVLCRFV
     g540
                    10
                             20
                                       30
                                                 40
                                                           50
                                                                     60
                          40
                                   50
                                             60
                                                       70
                                                                 80
                  AVIQHAEFDGDSALXFAVGIGIPQGIGTTAIFLLVEVFTFADFNHARAAAAFAPVEIPIH
     m540.pep
                  AVIQHAEFDGDASLRFAVGVGIAQGIRAAAVFLLVEVFAFADFNHTRAAAAFAPVEVPIG
     q540
                    70
                             80
                                       90
                                                100
                                                          110
                                                                    120
                         100
                                   110
                  HIIVRRGGAVSAVVDLRHIFPAX
     m540.pep
                  q540
                  HIIVRRGGTVSAVVDLRHIFPAX
                  130
                            140
    L' estremita' N-terminale di meningococco e' assente perche' interviene la
     fine del contig
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1571>:
     a540.seq
              ATGCCGTCCT CCCGACGCGG CAACGGGGTG TTTTATCAAA ACGGCAAACT
           51
              TGCCAATGCG GTTTCCGATT GCAGATTGCC AAACCGGCAA ACCTTTCCCG
          101 TGCCGATGCC GAACCCGATG CCGTCTGAAC CTTCAGACGG CATCGGGTGT
          151 TTATTTGTCC ACCCGGATGG GTGCAGGTTC GTATTGTGTC GATTCGTCGC
         201 CGTAATACAG CACGCCGAGT TTGATGGGGA TTCTGCCCTG TGATTTGCGG
251 TGGGCGTTGG AATCCCTCAG GGAATAGGCA CAACCGCAAT ATTCCTGCTG
          301 GTAGAAGTTT TCACGTTTGC TGATTTCAAT CATACGCGCG CTGCCGCCGC
          351 CTTTGCGCCA GTTGAAATCC CAATACACCA CATCATCGTA AGGCGCGGCG
          401 GCGCGGCGC CGCAGTCGTT AATCTGGTTC ATGTTTTTCC A
```

This corresponds to the amino acid sequence <SEQ ID 1572; ORF 540.a>:

a540.pep (partial)

- 1 MPSSRRGNGV FYQNGKLANA VSDCRLPNRQ TFPVPMPNPM PSEPSDGIGC
- 51 LFVHPDGCRF VLCRFVAVIQ HAEFDGDSAL *FAVGVGIPQ GIGTTAIFLL
- 101 VEFTFADFN HTRAAAAFAP VEIPIHHIIV RRGGAAAAVV NLVHVFP

m:	540/a540	92.8%	didentity in 1	11 aa over	lap				
	m540.	nen				PNPMPS	10 EPSDGIGCL	20 FVHPDGGR	30 FVLCRFV
	mo40.	рср					111111111		
	a540		GNGVFYQNGKI 10	ANAVSDCRLI 20	NRQTFP\ 30	/PMPNPMPS: 40	EPSDGIGCL 50	FVHPDGCR 6	
	m540.	pep	40 AVIQHAEFDGI	50 SALXFAVGIO	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	60 TTAIFLLVE	70 VFTFADFNH	80 Araaaafa	90 PVEIPIH
			111111111111						
. Reco	a540		AVIQHAEFDGD 70	80	90	100	110	12 12	
	. 540		100 HIIVRRGGAVS	110	18.V				
	m540.	pep							
•	a540		HIIVRRGGAAA 130						
Th	e follow	ing narti	al DNA sequ	ence was id	lentified	lin N. gor	orrhoeae	<seo id<="" td=""><td>1573&gt;</td></seo>	1573>
***	g542.		ur Drur sequ					2242	1010.
	1	atgccga	aat ggtcgcgc						
	51 101	cagcgcg	gct gtcagccg ggt gcggctga	gt tgacttg	gtg tgo	gccgccg tagcgtc	togaacgog toottoogo	g c	
	151	gtttgcc	ccd ccdccddc	tc gatgeco	tct gaa	accgtgt	cccacaaat	c	
	201	cgacago	agc cgcaacac	gt ccgccto	gcg gcg	gcaatgtt	tcgcccaaa	t	
	251	gcccctt	tgg gacggttt	gc aggcagg	atg cco	gccaagcc	gcgcaggtt	t	
TL	301	gggggca.	aat cccatato the amino ac	ct gaccggt	ccg cgg	gtaa .TD 1574.	ODE 542	na>.	
11	ns corres	•	the amino at	du sequenc	c ~srQ	10 1374,	OKI J42	.11g~.	
			RRC SVLSLMFS	AA VSRLTWO	APP SNA	AFRVRLK	SSDGIASAS	A	
	51	VCPAAGS	MPS ETVSHKSD	SS RNTSASE	RNV SPI	CPFGTVC	RODAAKPRR	F	
		GGKSHIL							
Th			al DNA sequ	ence was ic	lentified	in N. mei	ningitidis	<seq id<="" td=""><td>1575&gt;:</td></seq>	1575>:
	m542.	-	*** CCMCCCC	'AB ACCCCC	mcc ac		CACMCAMCM	m	
			AAT GGTCGCGC TCT GTCAGCCG						
			GGT GCGGCTGA						
	151	GTTTGCC	CCG CCGCCGGC	CC GATGCC	TCT GA	ACCGTGT	CCCACAAGT	С	
			AGC CGCAACAC						
			TGG GACGGCTT				GCGCAGGTT	С	
ТЪ			AAT CCCATATO the amino ac				ODE 5/2	<b>`.</b>	
11.	m542.		the amino at	ord sequence	c ~orc	1370,	OKT J42		
	111342.	MPKWSRI	RRC SVLSLMFS	AS VSRLTWO	CAPS ANZ	AAFRVRLK	SSDGIASAS	А	
	51	VCPAAGP	MPS ETVSHKS	SS RNTSASE	CAME RPI	NAPLGRNV	SPKCPFGTA	F	
			RRF GGKSHILT						
			of this amino				wing resu	lts:	
			redicted ORF						
			.7% identity	over a 111 a	aa overl	ap with a	predicted	ORF (OR	F 542.ng)
fro	om <i>N. go:</i> m542/		ie:						
		J							
	m542.	pep	MPKWSRIRRCS	VLSLMFSAS					
	g542		MPEWERTERC						
	y342		MPKWSRIRRCS	VLSLMFSAAV 20	SKLIWC	APPSNAAFR 30	VRLKSSDG1 40	ASASAVCP. 50	AAGSMPS 60
				20					00
	F 40		70	80		90	100	110	
	m542.	pep	ETVSHKSDSSF	MTSASXRNVS	PKCPFG	LAFKQUAAK	PKRFGGK\$H	LLTGSRX	

WO 99/57280 PCT/US99/09346

819

```
g542
                   ETVSHKSDSSRNTSASRRNVSPKCPFGTVCRQDAAKPRRFGGKSHILTGSRX
                           70
                                    80
                                             90
                                                     100
                                                              110
  The following partial DNA sequence was identified in N. meningitidis <SEO ID 1577>:
       a542.seq
                ATGCCGAAAT GGTCGCGCAT ACGGCGTTGC AGCGTCCTTT CGCTGATGTT
                CAGCGTGTCT GCCAGCCGGT TGACTTGATG TGCGCCGCCG GCAAACGCGG
            51
                CATTCAGGAT GCGGCTGAAG TCTTCAGACG GCATAGCGTC TGCTTCCGCC
           101
           151 GTTTGCCCCG CCGCCGGCCC GATGCCGTCT GAAACCGTGT CCCACAAGTC
           201 CGACAGCAGC CGCAACACGT CCGCCTCGCG GCGCAATGTT TCGCCCAAAT
-- 700
           251 GCCCCTTTGG GACGGCTTC AGGCAGGATG CCGCCAAGCC GCGCAGGTTC
           301 GGGGGCAAAT CCCATATCCT GACCGGTTCG CGGTAA
  This corresponds to the amino acid sequence <SEQ ID 1578; ORF 542.a>:
       a542.pep
                MPKWSRIRRC SVLSLMFSVS ASRLT*CAPP ANAAFRMRLK SSDGIASASA
                VCPAAGPMPS ETVSHKSDSS RNTSASRRNV SPKCPFGTAF RQDAAKPRRF
            51
                GGKSHILTGS R*
           101
  m542/a542 94.6% identity in 111 aa overlap
                          10
                                   20
                                            30
                                                      40
                   MPKWSRIRRCSVLSLMFSASVSRLTWCAPSANAAFRVRLKSSDGIASASAVCPAAGPMPS
       m542.pep
                   MPKWSRIRRCSVLSLMFSVSASRLTXCAPPANAAFRMRLKSSDGIASASAVCPAAGPMPS
       a542
                          10
                                   20
                                            30
                                                      40
                          70
                                   80
                                            90
                                                     100
                   ETVSHKSDSSRNTSASXRNVSPKCPFGTAFRQDAAKPRRFGGKSHILTGSRX
       m542.pep
                   ETVSHKSDSSRNTSASRRNVSPKCPFGTAFRQDAAKPRRFGGKSHILTGSRX
       a542
                          70
                                   80
                                            90
                                                     100
                                                              110
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1579>:
      q543.seq
         1 atggtttgtc ggttatttgc cgccgttttt ggctttcaac tcggcaatca
        51 gcccgtcgat gcctttggct ttgatgattt cgccgaattq gttqcqqtac
       101 acggtaacca ggctcgtgcc ttcgatggcg acgttgtagg tacggtattt
            accaccactt tagtaggtag taaagtccat attgacgggc ttctgaccgg
            ggatgccgac ttcggcacgg acgacgattt ccttgccgcc cttattgacg
       251 atgggattgt ctttgacgtt gacggtcgcg tttttgaatt tcagcatcgt
       301 gccggaatag gtgcggatca gcagggtttg aaattctttg gccaacgctt
       351 gtttttgcgc gtcggacgcg gtacgccaag ggttgccgac cgccaatgcg
       401 gtcatacgtt ggaaatcgaa atagggaacc gcataggctt cggcttttgg
       451 gcgtgcagaa gccgcgtcgc cgcttttgag gatggtcaaa acctgtgtgg
       501 cgttttggcg gatttgtccc actgcgtcgg ccggggaggc aaatgccatg
       551 ccgatgctca aaataccgat gcccaatgcg ctgatgaagg aggattttt
       601 cacgatgtct ttcctgaaaa tggatgtgta tgtttattct gcggcttttt
       651 ccgcattgcc gccctcagcg tttttctcgg cgaagctggt catgaattta
       701 ccgatcaggt tttccagaac cattgcagaa ctggttacgg agatggtgtc
       751 gccggcagca aggttttccg tatcgccgcc ctgctgcagc ccgatgtact
       801 gttcgcccaa aagtcccgaa gtcaggattt gcgcggaaac gtcactgctg
       851 aactgatact tgccgtccaa atcaaggcgc accctcgcct gataggattt
       901 cgggtcaagc ccgatagcgc cgacgcgccc gaccaatacg cctgcggatt
       951 tgacggggc attgaccttc aaaccgccga tgtcgccgaa atcggcataa
      1051 gaaagcgaga aaggcaaccg ccgccgcgcc gatcaagacg aacagtccga
      1101 cccaaaattc caatatgttc tttttcatta a
  This corresponds to the amino acid sequence <SEQ ID 1580; ORF 543.ng>:
      g543.pep
```

1 MVCRLFAAVF GFQLGNQPVD AFGFDDFAEL VAVHGNQARA FDGDVVGTVF

```
51 AAALVGGKVH IDGLLTGDAD FGTDDDFLAA LIDDGIVFDV DGRVFEFQHR
101 AGIGADQQGL KFFGQRLFLR VGRGTPRVAD RQCGHTLEIE IGNRIGFGFW
151 ACRSRVAAFE DGQNLCGVLA DLSHCVGRGG KCHADAQNTD AQCADEGGFF
201 HDVFPENGCV CLFCGFFRIA ALSVFLGEAG HEFTDQVFQN HCRTGYGDGV
251 AGSKVFRIAA LLQPDVLFAQ KSRSQDLRGN VTAELILAVQ IKAHPRLIGF
301 RVKPDSADAP DQYACGFDGG IDLQTADVAE IGINGVSFVR TAERRAARHA
351 ESEKGNRRRA DQDEQSDPKF QYVLFH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1581>: m543.seq

```
1 ATGGTTTGTC GGTTATTTGC CGCCGTTTTT GGCTTTCAAC TCGGCAATCA
   51 GTCCGTCCAC GCCTTTCGCT TTGATAATTT CGCCGAATTG GTTGCGGTAC
  101 ACGGTAACCA GGCTCGCGCC TTCGATGGCG ACGTTGTAGG TACGGTATTT
  151 ACCGCCGCTT TGGTAGGTGG TGAAGTCCAT GTTGACGGGT TTTTGCCCGG
  201 GTACGCCGAC TTCGGCGCGG ACGATGATTT CTTTGCCGCC TTTATTGACG
  251 ATGGGATTGT CTTTGACGTT GACGTTGGCG TTTTTTAATT TCAGCATCGT
  301 GCCGGAATAG GTGCGGATCA GCAGGGTTTG AAATTCTTTG GCCAACGCTT
  351 GTTTTTGCGC GTCGGACGCG GTGCGCCAAG GGTTGCCGAC CGCCAATGCG
  401 GTCATACGTT GGAAATCGAA ATAGGGAATC GCATAGGCTT CGGCTTTTTG
  451 GCGAGCGGTG TTGGCATCGC CGTTTTTTAA GATGCTCAAT ACTTGAGTGG
  501 CGTTTTGACG GATTTGGCTT ACCGCGTCGG CAGGGGCGGC AAATGCCATG
  551 CCGATGCTCA AAATACCGAT GCCCAATGCG CTGATGAGGG AGGATTTTTT
  601 CATGATTAAG TGTCCTAGTT TGAATATGAT GGCATACGTT TATTCGGCGG
  651 CTTTTCCGC ATTGCCGCCG TCGGCATTTT TCTCGGCAAA ACTCGTCATG
  701 AATTTGCCGA TAAGGTTTTC CAGAACCATT GCAGAACTGG TTACGGAGAT
  751 GGTGTCGCCG GCAGCAAGGT TTTCCGTGTC GCCGCCCTGC TGCAGCCCGA
  801 TGTACTGCTC GCCCAAAAGT CCCGAAGTCA GGATTTGCGC GGAAACGTCG
  851 CTGCTGAACT GATACTTGCC GTCCAAATCG AGGCGCACCC TCGCCTGATA
  901 GGATTTCGGG TCAAGTCCGA TAGCGCCGAC GCGCCCGACC AATACGCCTG
  951 CGGATTTGAC GGGGGCATTG ACCTTCAAAC CGCCGATGTC GCCGAAATCG
1001 GCATAAACGG CGTAAGTTTT GTCCGAACCG CCGAACGCCG CACCGCCGGC
1051 CACGCGGAAA GCGAGAAAGG CAACCGCCGC CGCGCCAATC AGGACGAACA
1101 GTCCGACCCA AAATTCCAAT ATGTTCTTCT TCATTAA
```

This corresponds to the amino acid sequence <SEQ ID 1582; ORF 543>: m543.pep

- 1 MVCRLFAAVF GFQLGNQSVH AFRFDNFAEL VAVHGNQARA FDGDVVGTVF
- 51 TAALVGGEVH VDGFLPGYAD FGADDDFFAA FIDDGIVFDV DVGVFXFQHR
- 101 AGIGADQQGL KFFGQRLFLR VGRGAPRVAD RQCGHTLEIE IGNRIGFGFL
- 151 ASGVGIAVFX DAQYLSGVLT DLAYRVGRGG KCHADAQNTD AQCADEGGFF
- 201 HDXVSXFEYD GIRLFGGFFR IAAVGIFLGK TRHEFADKVF QNHCRTGYGD
- 251 GVAGSKVFRV AALLQPDVLL AQKSRSQDLR GNVAAELILA VQIEAHPRLI
- 301 GFRVKSDSAD APDQYACGFD GGIDLQTADV AEIGINGVSF VRTAERRTAG
- 351 HAESEKGNRR RANQDEQSDP KFQYVLLH*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 543 shows 84.2% identity over a 379 as overlap with a predicted ORF (ORF 543.ng) from N. gonorrhoeae:

m543/g543

	10	20	30	40	50	60
m543.pep	MVCRLFAAVFGFQL	GNQSVHAFRF	DNFAELVAVH	IGNQARAFDGD	VVGTVFTAAL	VGGEVH
			1:1111111	11111111111		111:11
g543	MVCRLFAAVFGFQL	GNQPVDAFGF	DDFAELVAVE	IGNQARAFDGD	VVGTVFAAAL	VGGKVH
	10	20	30	40	50	60
	70	80	90	100	110	120
m543.pep	VDGFLPGYADFGAD			FXFQHRAGIG	ADQQGLKFFG	QRLFLR
	-:[ :     :	111:11:11		1 11111111	[[]]]	111111
g543	IDGLLTGDADFGTD	DDFLAALIDD	GIVFDVDGRV	FEFOHRAGIG	ADQQGLKFFG	QRLFLR
	70	80	90	100	110	120
	130	140	150	160	170	180

```
VGRGAPRVADRQCGHTLEIEIGNRIGFGFLASGVGIAVFXDAQYLSGVLTDLAYRVGRGG
     m543.pep
                 -:|:| |:| | ||:||:: |||||
     q543
                 VGRGTPRVADRQCGHTLEIEIGNRIGFGFWACRSRVAAFEDGQNLCGVLADLSHCVGRGG
                                          150
                       130
                                140
                                                   160
                                                            170
                       190
                                 200
                                          210
                                                    220
                                                             230
                                                                      239
                 {\tt KCHADAQNTDAQCADEGGFFHDXVSXFEYDG-IRLFGGFFRIAAVGIFLGKTRHEFADKV}
     m543.pep
                 KCHADAONTDAOCADEGGFFHDV---FPENGCVCLFCGFFRIAALSVFLGEAGHEFTDOV
     a543
                       190
                                             210
                                                      220
                                                               230
                        250
                                 260
                                           270
                                                    280
               240
                                                              290
                                                                      299
                 FONHCRTGYGDGVAGSKVFRVAALLQPDVLLAQKSRSQDLRGNVAAELILAVQIEAHPRL
    m543.pep
                 FONHCRTGYGDGVAGSKVFRIAALLQPDVLFAQKSRSQDLRGNVTAELILAVQIKAHPRL
    g543
                 240
                          250
                                  . 260
                                            270
                                                      280
                                                               290
               300
                        310
                                 320
                                           330
                                                    340
                 IGFRVKSDSADAPDQYACGFDGGIDLQTADVAEIGINGVSFVRTAERRTAGHAESEKGNR
    m543.pep
                 IGFRVKPDSADAPDQYACGFDGGIDLQTADVAEIGINGVSFVRTAERRAARHAESEKGNR
    g543
                 300
                          310
                                   320
                                            330
                                                      340
                        370
                 RRANQDEQSDPKFQYVLLHX
    m543.pep
                 q543
                 RRADODEOSDPKFOYVLFHX
                 360
                          370
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1583>:
    a543.seq
              ATGGCTTATG GATTACTTGC TGCCGTTTNT AGCCTTCAAC TCGNCAATCA
          51
              GTCCGTCCAC GCCTTTCGCT TTGATAATTT CGCCGAATTG GTTGCGGTAC
         101 ACGGTAACCA GGCTCGCGCC TTCGATGGCG ACGTTGTAGG TACGGTATTT
             ACCGCCGCTT TGGTAGGTGG TGAAGTCCAT GTTGACGGGT TTTTGCCCGG
         151
         201 NNACGCCGAC TTCGGCGCGG ACGATGATTT CTTTGCCGCC TTTATTGACG
         251 ATNGGATTGT CTTTGACGTT GACGTTGGCG TTTTTTAATT TCAGCATCGT
         301 GCCGGAATAG GTGCGGATCA GCAGGGTTTG AAATTCTTTG GCCAACGCTT
              GTTTTTGCGC GTCGGACGCG GTGCGCCAAG GGTTGCCGAC CGCCAATGCG
         351
         401 GTCATACGTT GGAAATCGAA ATAGGGAATC GCATAGGCTT CGGCTTTTTG
         451 GCGGGCGGTG TTGGCATCAC CGCTTTTTAA GATGCTCAAT ACTTGAGTGG
         501 CGTTTTGACG GATTTGGTTT ACCGCGTCGG CAGGGGCGGC AAATGCCATG
         551 CCGATGCTCA AAATACCGAT GCCCAATGCG CTGATGAAGG AGGATTTTTT
              CATGATTAAG TGTCCTAGTT TGAATATGAT GGCATACGTT TATTCGGCGG
         601
         651 CTTTTTCCGC ATTGCCGCCG TCGGCATTTT TCTCGGCAAA ACTCGTCATG
             AATTTGCCGA TAAGGTTTTC CAGAACCATT GCAGAACTGG TTACGGAGAT
              GGTGTCGCCG GCAGCAAGGT TTTCCGTGTC GCCGCCCTGC TGCAGCCCGA
         751
         801
              TGTACTGCTC GCCCAAAAGT CCCGAAGTCA GGATTTGCGC GGAAACGTCG
              CTGCTGAACT GATACTTGCC GTCCAAATCG AGGCGCACCC TCGCCTGATA
         851
         901
              GGATTTCGGG TCAAGTCCGA TAGCGCCGAC GCGCCCGACC AATACGCCTG
              CGGATTTGAC GGGGGCATTG ACCTTCAAAC CGCCGATGTC GCCGAAATCG
         951
        1001
              GCATAAACGG CGTAAGTTTT GTCCGAACCG CCGAACGCCG CACCGCCGGC
              CACGCGGAAA GCGAGAAAGG CAACCGCCGC CGCGCCAATC AGGACGAACA
        1051
              GTCCGACCCA AAATTCCAAT ATGTTCTTTT TCATTAA
This corresponds to the amino acid sequence <SEQ ID 1584; ORF 543.a>:
    a543.pep
              MAYGLLAAVX SLQLXNQSVH AFRFDNFAEL VAVHGNQARA FDGDVVGTVF
          51
              TAALVGGEVH VDGFLPGXAD FGADDDFFAA FIDDXIVFDV DVGVF*FOHR
         101 AGIGADQQGL KFFGQRLFLR VGRGAPRVAD RQCGHTLEIE IGNRIGFGFL
         151 AGGVGITAF* DAQYLSGVLT DLVYRVGRGG KCHADAONTD AOCADEGGFF
         201 HD*VS*FEYD GIRLFGGFFR IAAVGIFLGK TRHEFADKVF QNHCRTGYGD
         251 GVAGSKVFRV AALLQPDVLL AQKSRSQDLR GNVAAELILA VQIEAHPRLI
         301 GFRVKSDSAD APDQYACGFD GGIDLQTADV AEIGINGVSF VRTAERRTAG
```

WO 99/57280 PCT/US99/09346

822

# 351 HAESEKGNRR RANQDEQSDP KFQYVLFH*

m543	3/a543 96.0%	6 identity in 378 a	a overlap				
		10	20	30	40	50	60
	m543.pep	MVCRLFAAVFGFQLG	-		-		
		1: 1:111 ::11					
	a543	MAYGLLAAVXSLQLX			-		
		10	20	30	40	50	60
		70	80	90	100	110	120
	m543.pep	VDGFLPGYADFGADD					
- Protection	mo to top						
	a543	VDGFLPGXADFGADD	DFFAAFIDDX	IVFDVDVGV	FXFQHRAGIG	ADQQGLKFFG	QRLFLR
		70	80	90	100	110	120
		130	140	150	160	170	180
	m543.pep	VGRGAPRVADRQCGH					
	a543						
	a343	130	140	150	160	170	180
		200		200	100	1.0	100
		190	200	210	220	230	240
	m543.pep	KCHADAQNTDAQCAD					
	a543	KCHADAQNTDAQCAD					
		190	200	210	220	230	240
		250	260	270	280	290	200
	m543.pep	QNHCRTGYGDGVAGS					300
	mo45.pep						
	a543	ONHCRTGYGDGVAGS					
		250	260	270	280	290	300
		310	320	330	340	350	360
	m543.pep	GFRVKSDSADAPDQY					
	a543						
	a343	310	320	330	340	ERRTAGHAES 350	260 360
		310	320	330	540	330	300
•		370	379				
	m543.pep	RANQDEQSDPKFQYV	LLHX				
		111111111111111111					
	a543	RANQDEQSDPKFQYV	LFHX				
		370					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1585>: g544.seq

- 1 atgaaaaaa tactcaccgc cgccgccgtc gcactgatcg gcatcctcct
- 51 cgccaccgtc ctcatccccg acagtaaaac cgcgcccgcc ttctccctgc
- 101 ccgacctgca cggaaaaacc gtttccaacg ccgacctgca aggcaaagtc
- 151 accetgatta atttttggtt teeeteetgt eegggttgtg tgagegaaat
- 201 gcccaaagtc accaaaacgg caaacgacta caaaaataaa gatttccaag
- 251 tcctcgccgt tgcccagccc atcgatccga tagaaagcgt ccgccaatac
- 301 gtcaaagact acggactgcc gtttaccgtc atttatgatg cggacaaagc
- 351 cgtcggacag gcattcggca cacaggttta tccgacttcc gtccttatcg
- 401 gcaaaaaagg cgaaatcctc aaaacttatg tcggcgaacc cgatttcggc
- 451 aaactctacc aagaaatcga taccgcgctg gcgcaatag

This corresponds to the amino acid sequence <SEQ ID 1586; ORF 544.ng>: g544.pep

- 1 MKKILTAAAV ALIGILLATV LIPDSKTAPA FSLPDLHGKT VSNADLOGKV
- 51 TLINFWFPSC PGCVSEMPKV TKTANDYKNK DFQVLAVAQP IDPIESVRQY
- 101 VKDYGLPFTV IYDADKAVGQ AFGTQVYPTS VLIGKKGEIL KTYVGEPDFG

WO 99/57280 PCT/US99/09346

823

151 KLYQEIDTAL AQ*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1587>:

m544.seq

- 1 ATGAWAAAA TACTCACCGC CGCCGTCGTC GCACTGATCG GCATCCTCCT
- 51 TGCCATCGTC CTCmTCCCCG ACAGCAAAAC CGCGCCCGCC TTCTCCmTGC
- 101 CCGACCTGCA CGGAAAAACC GTTTCCAACG CCGACCTGCA AGGCAAAGTA
- 151 ACCCTGATTA ATTTTTGGTT TCCCTCCTGT CCGGGTTGTG TGAGCGAWAT
- 201 GCCCAAAATC ATTAAAACGG CAAATGACTA TAAAAWCAAA AACTTCCAAG
- 251 TACTTGCCGT CGCCCAGCCC ATCGATCCGA TAGAAAGCGT CCGCCAATAT
- 301 GTCAAAGACT ACGGTTTGCC GTTTACCGTC ATGTATGATG CGGACAAAGC
- 351 TGTCGGACAG GCGTTCGGCA CACAGGTTTA TCCGACTTCC GTECTTATCG
- 401 GCAAATAAGG CGAAATCTTC AAAACCTACG TCGGCGAACC CGATTTCGGC
- 451 AAACTCTACC AAGAAATCGA TACGCGCGTG GCGCAATAG

This corresponds to the amino acid sequence <SEQ ID 1588; ORF 544>:

m544.pep

- 1 MXKILTAAVV ALIGILLAIV LXPDSKTAPA FSXPDLHGKT VSNADLQGKV
- 51 TLINFWFPSC PGCVSXMPKI IKTANDYKXK NFQVLAVAQP IDPIESVRQY
- 101 VKDYGLPFTV MYDADKAVGQ AFGTQVYPTS VLIGK*GEIF KTYVGEPDFG
- 151 KLYQEIDTRV AQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 544 shows 90.7% identity over a 162 as overlap with a predicted ORF (ORF 544.ng) from N. gonorrhoeae:

m544/g544

	10	20	30	40	50	60
m544.pep	MXKILTAAVVALIG	ILLAIVLXPD	SKTAPAFSXF	DLHGKTVSNA	DLQGKVTLIN	FWFPSC
•		1111 11 11	11111111111	111111111	1111111111	111111
g544	MKKILTAAAVALIG	ILLATVLIPD	SKTAPAFSLP	DLHGKTVSNA	DLQGKVTLIN	FWFPSC
	10	20	30	40	50	60
	70	80	90	100	110	120
m544.pep	PGCVSXMPKIIKTA					
ms44.pcp	:					
g544	PGCVSEMPKVTKTA	NDYKNKDFQV	LAVAQPIDPI	ESVRQYVKDY	GLPFTVIYDA	DKAVGQ
	70	80	90	100	110	120
	130	140	150	160		
m544.pep	AFGTQVYPTSVLIG	KXGEIFKTYV	GEPDFGKLYC	EIDTRVAQX		
		1 111:111	11111111111	1111:111		
g544	AFGTQVYPTSVLIG	KKGEILKTYV	GEPDFGKLYC	EIDTALAOX		
-	130	140	150	160		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1589>:

a544.seq

- 1 ATGAAAAAA TACTCACCGC CGCCGTCGTC GCACTGATCG GCATCCTCCT
- 51 TGCCATCGTC CTCATCCCCG ACAGCAAAAC CGCGCCCGCT TTCTCCCTGT
- 101 CCGANCTGCA CGGAAAAANC GTTTNCAACG CCGACCTGCA AGGCNAAGTT
  151 ANCCTGATTA ANTTTTGGTT TCCCTCCTGT CCGGGTTGTG TGAGCGAAAT
- 201 GNCCANAATC ATTAAAACGG CAAATGACTA TAAAAACAAA AACTTCCAAG
- 251 TCCTTGCCGT CGCCCAGCCC ATCGATCCGA TAGAAAGCGT CCGCCAATAT
- 301 GTCAAAGACT ACGGTTTGCC GTTTACCGTC ATGTATGATG CGGACAAAGC
- 351 TGTCGGACAG GCGTTCGGCA CACAGGTTTA TCCGACTTCC GTCCTTATCG
- 401 GCAAAAAGG CGAAATCCTC AAAACTTATG TCGGCGAACC CGATTTCGGC
- 451 AAACTCTACC AAGAAATCGA TACCGCGCTG GCACAATAG

This corresponds to the amino acid sequence <SEQ ID 1590; ORF 544.a>:

a544.pep

- 1 MKKILTAAVV ALIGILLAIV LIPDSKTAPA FSLSXLHGKX VXNADLQGXV
- 51 XLIXFWFPSC PGCVSEMXXI IKTANDYKNK NFQVLAVAQP IDPIESVRQY
- 101 VKDYGLPFTV MYDADKAVGQ AFGTQVYPTS VLIGKKGEIL KTYVGEPDFG

```
151 KLYQEIDTAL AQ*
```

```
m544/a544 88.9% identity in 162 aa overlap
```

```
10
                                   30
                                           40
                                                    50
           MXKILTAAVVALIGILLAIVLXPDSKTAPAFSXPDLHGKTVSNADLQGKVTLINFWFPSC
m544.pep
           1 111111111111111111111111111111111111
                                       - 11:1:1 1:11:1 1:11 1:11
           MKKILTAAVVALIGILLAIVLIPDSKTAPAFSLSXLHGKXVXNADLQGXVXLIXFWFPSC
a544
                          20
                                   30
                                           40
                                                    50
                          80
                                   90
                                          100
                                                   110
                                                            120
           PGCVSXMPKIIKTANDYKXKNFQVLAVAQPIDPIESVRQYVKDYGLPFTVMYDADKAVGO
m544.pep
           a544
           PGCVSEMXXIIKTANDYKNKNFQVLAVAQPIDPIESVRQYVKDYGLPFTVMYDADKAVGQ
                          80
                                   90
                                          100
                                                   110
                         140
                 130
                                  150
           AFGTQVYPTSVLIGKXGEIFKTYVGEPDFGKLYQEIDTRVAQX
m544.pep
           AFGTQVYPTSVLIGKKGEILKTYVGEPDFGKLYQEIDTALAQX
a544
                 130
                         140
                                 150
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1591>: g547.seq

- 1 atgttcgtag ataacggatt taataaaacg gtagcgagtt ttgcccaaat
- 51 cqtcqaaact ttcgacgtat tcttctttag gaacgattqc qcctttttta
- 101 cgcagatgaa acagcggtgc ggttgggtct gctcgttggt atatctcgtt
- 151 gatatattta caagatgcgg cttcgagatt ccgaaccgct cctttaaaga
- 201 gcttgggctt ttgatacaga taagtctgtc ggaacgtttt aggactaatg
- 251 ccgaagtcga gatggatgcc cattacttcc ccttactcag aaaatattta
- 301 aaatttataa tgttacatat agttacaaat attagagttt tttgtgtgtg
- 351 cgtcaaggaa ttgttgacaa ttttagttaa aaatttgtct ccaaacggaa
- 401 aaaagcggtt tgttttttgt tgttaa

This corresponds to the amino acid sequence <SEQ ID 1592; ORF 547.ng>:

g547.pep

- 1 MFVDNGFNKT VASFAQIVET FDVFFFRNDC AFFTQMKQRC GWVCSLVYLV
- 51 DIFTROGFEI PNRSFKELGL LIQISLSERF RTNAEVEMDA HYFPLLRKYL
- 101 KFIMLHIVTN IRVFCVCVKE LLTILVKNLS PNGKKRFVFC C*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1593>: m547.seq

- 1 ATGTTCGTAG ATAACGGATT TAATAAAACG GTAGCGAGTT TTGCCCAAAT
- 51 CGTCGAAACT TTCGACGTAT TCTTCTTTAG GAACGATTGC GCCTTTTTTA
- 101 CGCAGATGAA ACAGCGGTGC GGTTGGGTCT GCTCGTTGGT ATATCTCGTT
- 151 GATATCTTTC CAAGATGCGG ATTCGAGATT CCGAACCGCT CCTTTAAAGA
- 201 GCTTGGGCTT TTGATACAGA TAAGTCTGTC GGAACGTTTT AGGACTAATG
- 251 CCGAAGTCGA GATGGATGCT CATTACTTCC CCTTACTCAG AAAATATTTA
- 301 AAATTTATAA TGTTACATAT ATTTACAAAT ATTAAAGTTT TTTWTTGTGT
- 351 GTGCGTCAAG GAATTGTTGA CAATTTTAGT TAAAAATTTG TCTCCAAACG
- 401 GAAAAAGCG GTTTGTTTTT TGTTGTTAA

This corresponds to the amino acid sequence <SEQ ID 1594; ORF 547>: m547.pep

- 1 MFVDNGFNKT VASFAQIVET FDVFFFRNDC AFFTOMKORC GWVCSLVYLV
- 51 DIFPROGFEI PNRSFKELGL LIQISLSERF RTNAEVEMDA HYFPLLRKYL
- 101 KFIMLHIFTN IKVFXCVCVK ELLTILVKNL SPNGKKRFVF CC*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 547 shows 97.2% identity over a 142 as overlap with a predicted ORF (ORF 547.ng) from N. gonorrhoeae:

m547/g547

			023			
		10	20 30	40	50	60
m547.pep	MFVDNGF				WVCSLVYLVD	
g547					WVCSLVYLVD	
•		10	20 30	40	50	60
			BO 90		110	120
m547.pep					KFIMLHIFTNI	
g547	PNRSFREI		REKINAEVEMDI BO 90		KFIMLHIVTNII 110	RVF-CVCVK
• Titler		,,	<b>5</b> 0		110	
	1	130 14	40			
m547.pep		KNLSPNGKKRF	VFCCX			
ms I. Ipop		1111111111				
g547		KNLSPNGKKRF				
<b>J</b>	120	130	140			
The following p	artial DNA s	equence was	s identified in	n N. meningi	tidis <seq i<="" td=""><td>D 1595&gt;:</td></seq>	D 1595>:
a547.seq		-				
1			TAATAAAACG			
51			TCTTCTTTAG			
101			GGTTGGGTCT			
151			CTTCGAGATT TAAGTCTGTC			
201 251	CCGNACTCGA	CATACATACT	CATTACTTCC	CCTTACTCAG	ATTTATAAAAA	
301			ATTTACAAAT			
351			CAATTTTAGT			
This correspond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>D 1596; ORI</td><td>₹ 547.a&gt;:</td><td></td></seq>	D 1596; ORI	₹ 547.a>:	
a547.pep						
1			FDVFFFRNNC			
51			LIQISLSERF	RTNAEVEIDA	HYFPLLRKYL	
101	KFIMLHIFTN	IKVFXCVCVK	FITTLTTA			
m547/a547 97	60% identity	in 127 as ox	rerian			
11134//434/ 9/	.076 Identity		20 3	0 40	50	60
m547.pep	MEVINGE				GWVCSLVYLVD:	
dad., tem					11111111111	
a547					GWVCSLVYLVD:	
		10	20 3	0 40	50	60
			80 9		110	120
m547.pep					KFIMLHIFTNI	
a547						
4747	FNRSERE		80 9		110	120
		· ·				120
	:	130 1	40			
m547.pep		KNLSPNGKKRF	VFCCX			
* * * *	1111111					
a547	ELLTILV					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1597>: q548.seq

- 1 atgttttccg taccgcgttc ctttttgccg ggcgttttcg tacttgccgc
- 51 gcttgccgcc tgcaaacctc aagacaacag tgcggcgcaa gccgcttctt
- 101 caagtgcatc cgcgccggct gcggaaaatg cggcaaagcc gcaaacgcgc
- 151 ggtacggata tgcgtaagga agacatcggc ggcgatttca cactgaccga
- 201 cggcgaaggc aagcetttca gcctgagcga tttgaaaggc aaggtcgtga
- 251 ttctgtcttt cggctttacg cactgtcccg atgtctgccc gacagggctt

m548.pep

g548

```
301 ttgacgtaca gcgacacttt gaagcagttg ggcgggcagg ctaaggacgt
         gaaagtggtg ttcgtcagca tcgatccgga acgcgacacg cctgaaatca
          toggcaagta tgccaaacag ttcaatccgg actttatcgg tctgacggca
     451 acgggcggcc aaaacctgcc ggtcatcaag cagcaatacc gcgtggtttc
     501 tgccaaaatc aatcaaaaag acgacagcga aaactatttg gtcgaccact
     551 cttccggtgc gtatcttatc gataaaaacg gtgaggttgc cattttctcq
     601 ccttacggaa gcgagccgga aacgattgct gccgatgtaa ggaccctgct
     651 ctga
This corresponds to the amino acid sequence <SEQ ID 1598; ORF 548,ng>:
     g548.pep
       1 MFSVPRSFLP GVFVLAALAA CKPQDNSAAQ AASSSASAPA AENAAKPQTR
      51 GTDMRKEDIG GDFTLTDGEG KPFSLSDLKG KVVILSFGFT HCPDVCPTGL
     101 LTYSDTLKQL GGQAKDVKVV FVSIDPERDT PEIIGKYAKQ FNPDFIGLTA
     151 TGGQNLPVIK QQYRVVSAKI NQKDDSENYL VDHSSGAYLI DKNGEVAIFS
     201 PYGSEPETIA ADVRTLL*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1599>:
     m548.seq
              ATGTTTTCCG TACCGCGTTC CTTTTTGCCG GGCGTTTTCG TACTTGCCGC
           1
           51 GCTTGCCGCC TGCAAACCTC AAGACAACAG TGCGGCGCAA GTCGCTTCTT
          101 CAAGTGCATC CGCGTCGGCT GCGGAAAATG CGGCAAAGCA AnACACGCGC
          151 GGTACGGATA TGCGTAAGGA AGACATCGGC GGCGATTTCA CGCTGACCGA
              CGGCGAAGGC AAGCCTTTCA ACCTGAGCGA TTTGAAAGGC AAGGTCGTGA
          251 TTCTGTCTTT CGGCTTTACG CACTGTCCCG ATGTCTGCCC GACAGAGCTT
          301 TTGACGTACA GCGACACGTT GAAGCAGTTG GGCGGGCAGG CTAAGGACGT
          351 GAAAGTGGTG TTCGTCAGCA TCGATCCGGA ACGCGACACG CCTGAAATCA
          401 TCGGCAAGTA TGCCAAACAG TTCAATCCGG ACTTTATCGS TCTGACGGCA
          451 ACGGGCGGCC AAAACCTGCC GGTCATCAAG CAGCAATACC GCGTGGTTTC
              TGCCAAAGTC AATCAAAAmG ACGACAGCGA AAACTATTTG GTCGACCACT
          551 CTTCCGGTGC GTATCTCATC GACAAAAACG GTGAGGTTGC CATTTTCTCG
          601 CCTTACGGAA GCGAGCCGGA AACGATTGCT GCCGATGTAA GGACCCTGCT
          651 CTGA
This corresponds to the amino acid sequence <SEQ ID 1600; ORF 548>:
     m548.pep
       1 MFSVPRSFLP GVFVLAALAA CKPQDNSAAQ VASSSASASA AENAAKOXTR
      51 GTDMRKEDIG GDFTLTDGEG KPFNLSDLKG KVVILSFGFT HCPDVCPTEL
     101 LTYSDTLKQL GGQAKDVKVV FVSIDPERDT PEIIGKYAKQ FNPDFIXLTA
         TGGQNLPVIK QQYRVVSAKV NQXDDSENYL VDHSSGAYLI DKNGEVAIFS
     201 PYGSEPETIA ADVRTLL*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 548 shows 95.9% identity over a 217 aa overlap with a predicted ORF (ORF 548.ng)
from N. gonorrhoeae:
     m548/g548
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                 MFSVPRSFLPGVFVLAALAACKPQDNSAAQVASSSASAAAENAAKQXTRGTDMRKEDIG
     m548.pep
                 q548
                 MFSVPRSFLPGVFVLAALAACKPQDNSAAQAASSSASAPAAENAAKPQTRGTDMRKEDIG
                         10
                                  20
                                            30
                                                      40
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
                 GDFTLTDGEGKPFNLSDLKGKVVILSFGFTHCPDVCPTELLTYSDTLKQLGGQAKDVKVV
     m548.pep
                 GDFTLTDGEGKPFSLSDLKGKVVILSFGFTHCPDVCPTGLLTYSDTLKQLGGQAKDVKVV
     g548
                         70
                                  80
                                            90
                                                     100
                                                              110
```

140

130

150

150

 ${\tt FVSIDPERDTPEIIGKYAKQFNPDFIXLTATGGQNLPVIKQQYRVVSAKVNQXDDSENYL}$ 

160

160

170

170

827

200

190

```
VDHSSGAYLIDKNGEVAIFSPYGSEPETIAADVRTLLX
    m548.pep
                VDHSSGAYLIDKNGEVAIFSPYGSEPETIAADVRTLLX
    g548
                               200
                      190
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1601>:
    a548.seq
             ATGTTTTCCG TACCGCGTTC CTTTTTGCCG GGCGTTTTCG TACTTGCCGC
             GCTTGCCGCC TGCAAACCTC AAGACAACAG TGCGGCGCAA GTCGCTTCTT
          51
             CAAGTGCATC CGCGTCGGCT GCGGAAAATG CGGCAAAGCC GCAAACGCGC
         101
         151 GGTACGGATA TGCGTAAGGA AGACATCGGC GGCGATTTCA CGCTGACCGA
         201 CGGCGAAGGC AAGCCTTTCA ACCTGAGCGA TTTGAAAGGC AAGGTCGTGA
             TTCTGTCTTT CGGCTTTACG CACTGTCCCG ATGTCTGCCC GACAGAGCTT
         251
             TTGACGTACA GCGACACGTT GAAGCAGTTG GGCGGGCAGG CTAAGGACGT
         301
             GAAAGTGGTG TTCGTCAGCA TCGATCCGGA ACGCGACACG CCTGAAATCA
             TCGGCAAGTA TGCCAAACAG TTCAATCCGG ACTTTATCGG TCTGACGGCA
         401
             ACGGGCGACC AAAACCTGCC GGTCATCAAG CAGCAATACC GCGTGGTTTC
         451
             TGCCAAAGTC AATCAAAAAG ACGACAGCGA AAACTATTTG GTCGACCACT
         501
             CTTCCGGTGC GTATCTCATC GACAAAAACG GTGAGGTTGC CATTTTCTCG
             CCTTACGGAA GCGAGCCGGA AACGATTGCT GCCGATGTAA GGACCCTGCT
         651
             CTGA
This corresponds to the amino acid sequence <SEQ ID 1602; ORF 548.a>:
    a548.pep
             MFSVPRSFLP GVFVLAALAA CKPQDNSAAQ VASSSASASA AENAAKPQTR
             GTDMRKEDIG GDFTLTDGEG KPFNLSDLKG KVVILSFGFT HCPDVCPTEL
          51
             LTYSDTLKQL GGQAKDVKVV FVSIDPERDT PEIIGKYAKQ FNPDFIGLTA
             TGDQNLPVIK QQYRVVSAKV NQKDDSENYL VDHSSGAYLI DKNGEVAIFS
         201 PYGSEPETIA ADVRTLL*
m548/a548 97.7% identity in 217 aa overlap
                                                            50
                                20
                                         30
                                                   40
                        10
                MFSVPRSFLPGVFVLAALAACKPQDNSAAQVASSSASAAAENAAKQXTRGTDMRKEDIG
     m548.pep
                 MFSVPRSFLPGVFVLAALAACKPQDNSAAQVASSSASAAAENAAKPQTRGTDMRKEDIG
     a548
                                                   40
                        10
                                 20
                                          30
                                                  100
                                                           110
                                 80
                                          90
                        70
                 GDFTLTDGEGKPFNLSDLKGKVVILSFGFTHCPDVCPTELLTYSDTLKQLGGQAKDVKVV
     m548.pep
                 GDFTLTDGEGKPFNLSDLKGKVVILSFGFTHCPDVCPTELLTYSDTLKQLGGQAKDVKVV
     a548
                                 80
                                                           110
                                                                    120
                        70
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                       130
                 FVSIDPERDTPEIIGKYAKQFNPDFIXLTATGGQNLPVIKQQYRVVSAKVNQXDDSENYL
     m548.pep
                 FVSIDPERDTPEIIGKYAKQFNPDFIGLTATGDQNLPVIKQQYRVVSAKVNQKDDSENYL
     a548
                                                           170
                                                                    180
                       130
                                140
                                         150
                                                  160
                       190
                                200
                                         210
                 VDHSSGAYLIDKNGEVAIFSPYGSEPETIAADVRTLLX
     m548.pep
                 VDHSSGAYLIDKNGEVAIFSPYGSEPETIAADVRTLLX
     a548
                       190
                                200
                                         210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1603>: g550.seq

- 1 atgataacgg acaggtttca tctctttcat tttccagtat ctttcattta
- 51 tcaatctgac aacaaaatgc cgcctgaaaa cagttcagac ggcattttaa
- 101 ccacaaacqq cttacagctt ccattcgccc aacttggcag cgtaagcttc

```
151 caaatctgca atcggacggg ttgccacgcc gctttccatc gctgctttgg
     201 cggcagccgt agcgacgcga ggcagcaggc gggaatcgaa cggagtagga
     251 atcaggtatt ccgcgccgaa ttcgaatttc ttaccgtaag cggcaaccac
     301 ttetteggtt aettetteca tegecaaate tgecaaagea tacacgeagg
          cgcgtttcat ttcttcgttg atggtggttg cgccgacatc caacgcgccc
     401 cggaagatga acgggaagca caatacgttg ttcacttggt tcgggaagtc
     451 ggagcggccg gtaccgataa ccacgtccgg acgggtttct ttcgccagcg
     501 gcggcaggat ttccggattc gggttggcca tggcgaacac gatgggtttt
     551 tcgttcatcg tgttcaacat ttcaggcgtc agcaggtttg cgccggagag
     601 gcccaagaag atgtctttgc ctttaaccgc atcggcaagt acgcgccggc
     651 cqttgtcttc aacggcgtag aattttttgg attcgtccat.gcggtctttg
     701 tottogoggg tttggtaaat cacgcotttg gagttgcaaa cggttacgtt
     751 ttcacgtttc aagcccaaat ccagcagttg gttcaggcag gcaatcgcgg
     801 eggeacetge geeggageac accaaagteg ettettegat tttacggeeg
     851 gtataacgca gggcgttcaa tacggcggcg gcggtaatga tggccgtgcc
     901 gtgctggtca tcatgaaata cggggatttt gcagcgtttg cgtaa
This corresponds to the amino acid sequence <SEQ ID 1604; ORF 550.ng>:
     g550.pep
            1 MITDRFHLFH FPVSFIYQSD NKMPPENSSD GILTTNGLQL PFAQLGSVSF
           51 QICNRTGCHA AFHRCFGGSR SDARQQAGIE RSRNQVFRAE FEFLTVSGNH
          101 FFGYFFHRQI CQSIHAGAFH FFVDGGCADI QRAPEDEREA QYVVHLVREV
          151 GAAGTDNHVR TGFFRQRRQD FRIRVGHGEH DGFFVHRVQH FRRQOVCAGE
          201 AQEDVFAFNR IGKYAPAVVF NGVEFFGFVH AVFVFAGLVN HAFGVANGYV
          251 FTFQAQIQQL VQAGNRGGTC AGAHQSRFFD FTAGITQGVQ YGGGGNDGRA
          301 VLVIMKYGDF AAFA*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1605>:
     m550.seq (partial)
              ..GACGGCATCG GCAAGCACGC GCTGGCCGTT GTCTTCAATG GCGTAGAACT
           1
                 GTTTGGACTC GTCCATACGG TCTTTGTCTT CGCGGGTTTG GTAAATCACG
           51
                 CCTTTGGAGT CGCAAACGGT CACGTTTTCG CGTTTCAAGC CCAAATCCAG
          101
          151
                CAATTGGWTC AAGCAGGCAA TCGCGGCCGC ACCTGCGCCG GAACACACCA
                AAGTCGCTTC TTCGATTTTA CGGCCGGTAA AACGCAKGGC GTTCAATACG
                GCGGCGGCGG TAATGATGGC CGTGCCGTGC TGGTCGTCGT GGAATACGGG
          251
                GATTTTGCAG CGTTTGCGTA A
          301
This corresponds to the amino acid sequence <SEQ ID 1606; ORF 550>:
     m550.pep (partial)
      1 ..DGIGKHALAV VFNGVELFGL VHTVFVFAGL VNHAFGVANG HVFAFQAQIQ
            QLXQAGNRGR TCAGTHQSRF FDFTAGKTXG VQYGGGGNDG RAVLVVVEYG
     101
            DFAAFA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 550 shows % identity over a ___ aa overlap with a predicted ORF (ORF 550.ng)
from N. gonorrhoeae:
     m550/g550
                                                    10
                                                              20
     m550.pep
                                             DGIGKHALAVVFNGVELFGLVHTVFVFAGLVN
                                               DGFFVHRVQHFRRQQVCAGEAQEDVFAFNRIGKYAPAVVFNGVEFFGFVHAVFVFAGLVN
     g550
                        190
                                  200
                                            210
                                                     220
                                                               230
                                                                         240
                        40
                                 50
                                           60
                                                     70
                 {\tt HAFGVANGHVFAFQAQIQQLXQAGNRGRTCAGTHQSRFFDFTAGKTXGVQYGGGGNDGRA}
     m550.pep
                  g550
                 HAFGVANGYVFTFQAQIQQLVQAGNRGGTCAGAHQSRFFDFTAGITQGVQYGGGGNDGRA
                        250
                                  260
                                           270
                                                     280
                      100
                 VLVVVEYGDFAAFAX
     m550.pep
                 111:::11111111
     g550
                 VLVIMKYGDFAAFAX
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1607>:
       a550.seq
                 CTATATCAAT CTGACAGCAA AATGCCGCCT GAAAACAGTT CAGACGGCAT
                TTTAACCGCA AACGGCTTAC AGCTTCCATT CGCTCAGCTT GGCAGCGTAA
                GCTTCCAAAT CTGCAATCGG ACGGGTTGCC ACGCCGCTTT CCATCGCTGC
                TTTGGCGGCA GCCGTAGCAA CGCGCGGCAG CAGGCGGGAA TCGAACGGAG
            201 TCGGAATCAG GTATTCCGCG CCGAATTCAA ATTTCTTACC GTAAGCGGCA
            251 ACCACTTCTT CGGTTACCTC TTCCATCGCC AAATCCGCCA AAGCATACAC
            301 GCAGGCGCGT TTCATTTCTT CGTTGATGGT CGTCGCGCCG ACATCCAACG
- S'Com
                CACCGCGGAA GATGAACGGG AAGCACAATA CATTGTTCAC TTGGTTCGGG
            351
            401 AAGTCGGAGC GGCCGGTACC GATAACCACG TCCGGACGGG TTTCTTTCGC
                CAGCGGCGC AGGATTTCCG GATTCGGGTT GGCCATAGCG AACACGATGG
            451
                GTTTTCGTT CATGGTGTTC AGTATTTCAG GCGTCAGCAG GTTCGCGCCG
            501
                GAGAGGCCCA AGAAGATGTC TTTGCCTTTG ACGGCATCGG CAAGCACGCG
            601 CTGGCCGTTG TCTTCAATGG CGTAGAACTG TTTGGACTCG TCCATACGGT
            651 CTTTGTCTTC GCGGGTTTGG TAAATCACGC CTTTGGAGTC GCAAACGGTC
            701 ACGTTTCGC GTTTCAAGCC CAAATCCAGC AATTGGTTCA AGCAGGCAAT
            751 CGCGGCCGCA CCTGCGCCGG AACACACCAA AGTCGCTTCT TCGATTTTAC
            801 GGCCGGTAAA ACGCAGGGCG TTCAATACGG CAGCGGCGGT AATGATGGCC
            851 GTGCCGTGCT GGTCGTCGTG GAATACGGGG ATTTTGCAGC GTTTGCGTAA
  This corresponds to the amino acid sequence <SEQ ID 1608; ORF 550.a>:
       a550.pep
                LYQSDSKMPP ENSSDGILTA NGLQLPFAQL GSVSFQICNR TGCHAAFHRC
             51 FGGSRSNARQ QAGIERSRNQ VFRAEFKFLT VSGNHFFGYL FHRQIRQSIH
            101 AGAFHFFVDG RRADIQRTAE DEREAQYIVH LVREVGAAGT DNHVRTGFFR
                QRRQDFRIRV GHSEHDGFFV HGVQYFRRQQ VRAGEAQEDV FAFDGIGKHA
                LAVVFNGVEL FGLVHTVFVF AGLVNHAFGV ANGHVFAFQA QIQQLVQAGN
            251 RGRTCAGTHQ SRFFDFTAGK TQGVQYGSGG NDGRAVLVVV EYGDFAAFA*
  m550/a550 97.2% identity in 106 aa overlap
                                                                  20
                                                         10
                                                 DGIGKHALAVVFNGVELFGLVHTVFVFAGL
       m550.pep
                                                 EHDGFFVHGVQYFRRQQVRAGEAQEDVFAFDGIGKHALAVVFNGVELFGLVHTVFVFAGL
       a550
                                 180
                                           190
                                                     200
                                                              210
                       170
                                               60
       m550.pep
                    VNHAFGVANGHVFAFQAQIQQLXQAGNRGRTCAGTHQSRFFDFTAGKTXGVQYGGGGNDG
                    VNHAFGVANGHVFAFQAQIQQLVQAGNRGRTCAGTHQSRFFDFTAGKTQGVQYGSGGNDG
       a550
                          100
                    RAVLVVVEYGDFAAFAX
       m550.pep
                    1111111111111111111
                    RAVLVVVEYGDFAAFAX
       a550
                        290
                                 300
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1609>:
            1 atgaagetga aaacettgtt attgeeette geegeactgg cattgtgtge
           51 caacgcattt geogeoooge ceggegaege gtegttggea egttggetgg
```

```
atacgcagaa tttcgaccgg gatatagaaa aaaatatgat tgaaggcttt
151 aatgccggat ttaaaccgta tgcggacaaa gcccttgccg aaatgccgga
201 agcgaaaaaa gatcaggcgg cagaagcctt taatcgttat cgtgagaatg
251 ttttgaaaga tttgattacg cccgaagtga aacaggctgt ccqcaatacc
301 ttattgaaga atgcccgtga aatatacacg caagaagaaa ttgacggcat
    gattgccttt tacggttcgc ctgtcggtca gtccgtcgtt gccaaaaatc
351
401 cgcgcttaat caagaaatcg atgagtgaaa tagcggtatc ttggactgca
```

WO 99/57280 PCT/US99/09346

830

451 ttgtcaggga aaatcgcgcg acatcatctg cccgagttta cggaagagtt

501 acggcgcatc atctgcggcg gtatagtgga ttaa

This corresponds to the amino acid sequence <SEQ ID 1610; ORF552.ng>: g552.pep

- 1 MKLKTLLLPF AALALCANAF AAPPGDASLA RWLDTONFDR DIEKNMIEGF
- 51 NAGFKPYADK ALAEMPEAKK DQAAEAFNRY RENVLKDLIT PEVKQAVRNT
- 101 LLKNAREIYT QEEIDGMIAF YGSPVGQSVV AKNPRLIKKS MSEIAVSWTA
- 151 LSGKIARHHL PEFTEELRRI ICGGIVD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1611>: m552.seq (partial)

..ATTAAACTGA AAACCTTGTT ATTGCCCTTC GCCACGCTGG CATTGTGCAC 1 CAATGCTTTT GCCGCCCCGC CCAGCGACGC GTCGTTGGCG CGTTGGCTGG 51 ATACGCAGAA TTTTGACCGG GATATAGAAA AAAATATGAT TGAGGGCTTT 101 AATGCCGGAT TTAAACCGTA TGCGGACAAA GCCCTTGCCG AAATGCCGGA 151 201 AGCGAAAAAA GATCAGGCGG CAGAAGCCTT TAACCGTTAT CGTGAGAATG TTTTGAAAGA TTTGATTACG CCCGAAGTGA AACAGGCTGT CCGCAATACT 251 TTATTGAAGA ATGCCCGTGA GATATACACG CAAGAAGAAA TTGACGGCAT 301 GATTGCCTTT TACGGTTCGC CTGTCGGTCA GTCCGTCGTT GCCAAAAATC 351 CGCGCTTAAT CAAGAAATCG ATGAGTGAAA TAGCGGTATC TTGGACTGCA 401 TTGTCAGGGA AAATCGCGCA ACATCATCTG CCCGAGTTTA CGGAAGAGTT 451 501 GCGGCGCATC ATCTGCGGCG GTAAAAATCC CGATGCGGGC TGTAAACAAG CCGGACAGGT TGGGAAAAGG CATCAGAAAT AA 551

This corresponds to the amino acid sequence <SEQ ID 1612; ORF 552>:

m552.pep (partial)

- 1 .. IKLKTLLLPF ATLALCTNAF AAPPSDASLA RWLDTQNFDR DIEKNMIEGF
- 51 NAGFKPYADK ALAEMPEAKK DQAAEAFNRY RENVLKDLIT PEVKQAVRNT
- 101 LLKNAREIYT QEEIDGMIAF YGSPVGQSVV AKNPRLIKKS MSEIAVSWTA
- 151 LSGKIAQHHL PEFTEELRRI ICGGKNPDAG CKQAGQVGKR HQK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 552 shows 97.1% identity over a 174 as overlap with a predicted ORF (ORF 552.ng) from N. gonorrhoeae:

m552/g552

m552.pep	10 IKLKTLLLPFATLA	20 LCTNAFAAPI	30 PSDASLARWLD	40 TQNFDRDIEK	50 NMIEGFNAGF	60 KPYADK
g552	:         :   MKLKTLLLPFAALA					
	10	20	30	40	50	60
	70	80	90	100	110	120
m552.pep	ALAEMPEAKKDQAA	EAFNRYREN	LKDLITPEVK	QAVRNTLLKN	AREIYTQEEI	DGMIAF
~==0	AL NEWDEN YKDON A	[]]]]]]]				DOMENT
g552	ALAEMPEAKKDQAA 70	BO 80	90 11110011	QAVRNILLAN 100	110	120
	70	80	90	100	110	120
	130	140	150	160	170	180
m552.pep	YGSPVGQSVVAKNP	RLIKKSMSE:	IAVSWTALSGK	IAQHHLPEFT	EELRRIICGO	KNPDAG
		11111111		11:11111	111111111	•
g552	YGSPVGQSVVAKNP	RLIKKSMSE:	AVSWTALSGK	IARHHLPEFT	EELRRIICGO	IVDX
	130	140	150	160	170	
	190					
m552.pep	CKQAGQVGKRHQKX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1613>: a552.seq

- 1 ATTAAACTGA AAACCTTGTT ATTGCCCTTC GCCACGCTGG CATTGTGCAC
- 51 CAATGCTTTT GCCGCCCCGC CCAGCGACGC GTCGTTGGCG CGTTGGCTGG
- 101 ATACGCAGAA TTTTGACCGG GATATAGAAA AAAATATGAT TGAGGGCTTT
  151 AATGCCGGAT TTAAACCGTA TGCGGACAAA GCCCTTGCCG AAATGCCGGA

```
201 AGCGAAAAA GATCAGGCGG CAGAAGCCTT TAACCGTTAT CGTGAGAATG
251 TTTTGAAAGA TTTGATTACG CCCGAAGTGA AACAGGCTGT CCGCAATACT
301 TTATTGAAGA ATGCCCGTGA GATATACACG CAAGAAGAAA TTGACGGCAT
351 GATTGCCTTT TACGGTTCGC CTGTCGGTCA GTCCGTCGTT GCCAAAAATC
401 CGCGCTTAAT CAAGAAATCG ATGAGTGAAA TAGCGGTATC TTGGACTGCA
451 TTGTCAGGGA AAATCGCGCA ACATCATCTG CCCGAGTTTA CGGAAGAGTT
501
     GCGGCGCATC ATCTGCGGCG GTAAAAATCC CGATGCGGGC TGTAAACAAG
551 CCGGACAGGT TGGGAAAAGG CATCAGAAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 1614; ORF 552.a>:

```
a552.pep
```

- IKLKTLLLPF ATLALCTNAF AAPPSDASLA RWLDTONFDR DIEKNMIEGF NAGFKPYADK ALAEMPEAKK DQAAEAFNRY RENVLKDLIT PEVKQAVRNT 51
- 101 LLKNAREIYT QEEIDGMIAF YGSPVGQSVV AKNPRLIKKS MSEIAVSWTA
- 151 LSGKIAQHHL PEFTEELRRI ICGGKNPDAG CKQAGQVGKR HQK*

### m552/a552 100.0% identity in 193 aa overlan

02/2002 10	0.0% identity in 193	aa overia	þ			
	10	20	30	40	50	60
m552.pep	IKLKTLLLPFATLAL	CTNAFAAP	PSDASLARWLD'	<b>FONFORDIE</b>	NMIEGFNAGE	KPYADK
	11111111111111	11111111	11111111111	111111111		
a552	IKLKTLLLPFATLAL	CTNAFAAP:	PSDASLARWLD'	TONFORDIE	NMIEGFNAGE	KPYADK
	10	20	30	40	50	60
	70	80	90	100	110	120
m552.pep	ALAEMPEAKKDQAAE	AFNRYREN	<b>VLKDLITPEVK</b> (	QAVRNTLLKN	NAREIYTQEEI	DGMIAF
	11   1   1   1   1   1   1   1   1   1	1111111				
a552	ALAEMPEAKKDQAAE	AFNRYREN	VLKDLITPEVK(	QAVRNTLLKN	NAREIYTQEEI	DGMIAF
	70	80	90	100	110	120
	130	140	150	160	170	180
m552.pep	YGSPVGQSVVAKNPR		IAVSWTALSGK:	[aqhhlpef]	TEELRRIICGG	KNPDAG
	11111111111111111		11111111	144111111	[1][][][][]	HHHH
a552	YGSPVGQSVVAKNPR				EELRRIICGG	KNPDAG
	130	140	150	160	170	180
	190					
m552.pep	CKQAGQVGKRHQKX					
- 550						
a552	CKQAGQVGKRHQKX					
	190					

The following partial DNA sequence was identified in N. meningitidis <SEO ID 1615>: m552-1.seq

```
1 TTGAATATTA AACTGAAAAC CTTGTTATTG CCCTTCGCCA CGCTGGCATT
51 GTGCACCAAT GCTTTTGCCG CCCCGCCCAG CGACGCGTCG TTGGCGCGTT
101 GGCTGGATAC GCAGAATTTT GACCGGGATA TAGAAAAAA TATGATTGAG
151 GGCTTTAATG CCGGATTTAA ACCGTATGCG GACAAAGCCC TTGCCGAAAT
201 GCCGGAAGCG AAAAAAGATC AGGCGGCAGA AGCCTTTAAC CGTTATCGTG
251 AGAATGTTTT GAAAGATTTG ATTACGCCCG AAGTGAAACA GGCTGTCCGC
301 AATACTTTAT TGAAGAATGC CCGTGAGATA TACACGCAAG AAGAAATTGA
351 CGGCATGATT GCCTTTTACG GTTCGCCTGT CGGTCAGTCC GTCGTTGCCA
401 AAAATCCGCG CTTAATCAAG AAATCGATGA GTGAAATAGC GGTATCTTGG
451 ACTGCATTGT CAGGGAAAAT CGCGCAACAT CATCTGCCCG AGTTTACGGA
501 AGAGTTGCGG CGCATCATCT GCGGCGGTAA AAATCCCGAT GCGGGCTGTA
551 AACAAGCCGG ACAGGTTGGG AAAAGGCATC AGAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 1616; ORF 552-1>: m552-1.pap

- 1 LNIKLKTLLL PFATLALCTN AFAAPPSDAS LARWLDTQNF DRDIEKNMIE 51 GFNAGFKPYA DKALAEMPEA KKDQAAEAFN RYRENVLKDL ITPEVKQAVR
- 101 NTLLKNAREI YTQEEIDGMI AFYGSPVGQS VVAKNPRLIK KSMSEIAVSW
- 151 TALSGKIAQH HLPEFTEELR RIICGGKNPD AGCKQAGQVG KRHQK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1617>: a552-1.seq

WO 99/57280 PCT/US99/09346

832

```
1 TTGAATATTA AACTGAAAAC CTTGTTATTG CCCTTCGCCA CGCTGGCATT
51 GTGCACCAAT GCTTTTGCCG CCCCGCCCAG CGACGCGTCG TTGGCGCGTT
101 GGCTGGATAC GCAGAATTTT GACCGGGATA TAGAAAAAA TATGATTGAG
151 GGCTTTAATG CCGGATTTAA ACCGTATGCG GACAAAGCCC TTGCCGAAAT
201 GCCGGAAGCG AAAAAAGATC AGGCGGCAGA AGCCTTTAAC CGTTATCGTG
251 AGAATGTTTT GAAAGATTTG ATTACGCCCG AAGTGAAACA GGCTGTCCGC
301 AATACTTTAT TGAAGAATGC CCGTGAGATA TACACGCAAG AAGAAATTGA
351 CGGCATGATT GCCTTTTACG GTTCGCCTGT CGGTCAGTCC GTCGTTGCCA
```

401 AAAATCCGCG CTTAATCAAG AAATCGATGA GTGAAATAGC GGTATCTTGG

451 ACTGCATTGT CAGGGAAAAT CGCGCAACAT CATCTGCCCG AGTTTACGGA 501 AGAGTTGCGG CGCATCATCT GCGGCGGTAA AAATCCCGAT GCGGGCTGTA

551 AACAAGCCGG ACAGGTTGGG AAAAGGCATC AGAAATAA

This corresponds to the amino acid sequence <SEQ ID 1618; ORF 552-1.a>: a552-1.pep

```
1 LNIKLKTLLL PFATLALCTN AFAAPPSDAS LARWLDTQNF DRDIEKNMIE
   GFNAGFKPYA DKALAEMPEA KKDQAAEAFN RYRENVLKDL ITPEVKQAVR
51
```

- 101 NTLLKNAREI YTQEEIDGMI AFYGSPVGQS VVAKNPRLIK KSMSEIAVSW
- TALSGKIAQH HLPEFTEELR RIICGGKNPD AGCKQAGQVG KRHQK* 151

a552-1/m552-1 100.0% identity in 195 aa overlap

	10	20	30	40	50	60
a552-1.pep	LNIKLKTLLLPFA	TLALCTNAFA?	APPSDASLARW	LDTQNFDRDI	EKNMIEGFN#	GFKPYA
	11111111111111	11111111111	1111111111	1111111111	11111111111	111111
m552-1	LNIKLKTLLLPFA	TLALCTNAFA	APPSDASLARW	LDTQNFDRDI	EKNMIEGFN#	GFKPYA
	10	20	30	40	50	60
	70	80	90	100	110	120
a552-1.pep	DKALAEMPEAKKD	QAAEAFNRYRE	ENVLKDLITPE	VKQAVRNTLI	KNAREIYTQ	EIDGMI
	111111111111111	H		11111111111	1111111111	111111
m552-1	DKALAEMPEAKKD	Qaaeafnryre	ENVLKDLITPE	VKQAVRNTLI	KNAREI YTQI	EEIDGMI
	70	80	90	100	110	120
	130	140	150	160	170	180
a552-1.pep	AFYGSPVGQSVVA	KNPRLIKKSMS	SEIAVSWTALS	GKIAQHHLPE	FTEELRRIIC	GGKNPD
		11111111111		11111111111	13111111111	HHHH
m552-1	AFYGSPVGQSVVA	KNPRLIKKSMS	EIAVSWTALS	GKIAQHHLPE	FTEELRRIIC	GGKNPD
	130	140	150	160	170	180

190 AGCKQAGQVGKRHQKX a552-1.pep 1111111111111111 m552-1 **AGCKQAGQVGKRHQKX** 

190

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1619>: g553.seq

1 atggattatc tgcaaaacct gtctttgggc ttgacaaaaa agctgcccgt 51 tatactgcaa acagaagtag cggagtgtgg cttggcatgt ctagcggctg 101 tggccggatt ttatggtttc tatacggatt tgcgcgcact gcgttcaaaa 151 tactgtctgt cacttaaggg tgagaatttg gcagatattg ttcgttttgc 201 tgatgatatg gggctgacgg gacgggcgtt gaggctggat ttagacgaat 251 tgggcagttt gcgcctgccc tgtattctac attgggattt gaatcatttt 301 gtggtgctgg aatcggtatc ttcggacggg gctgccgtca tggatccggc 351 ttcgggacga cgcaaagtca agacggagga aatatcgcgc aagtttacgg 401 gaattgcttt ggaactgtgg ccaaacacgc gtttcgaggc aggggaagaa

451 aagcaggaaa toogcatoot accoatgttg cgcgggattt otgggotggg 501 geggacattg tttcagettt tggetttgge ageageaatg gaagtgtttg

551 ctttttaca aaacgtcagc ttcaagatcg gacgtggtga atcgcttgcg

601 ttaatcggac gatcgggctg cggtaaatcg acacttttgg atattttaag 651 cggcaatcta cctcccgaat caggcaaagt catgataaat gggcacgaca

701 tttacagett accgccacct tttattccgc aatttgagtg cgatggtcaa

751 ggcaggacga tgttttatag tggattaaat ttaaaccggt ag

This corresponds to the amino acid sequence <SEQ ID 1620; ORF 553.ng>: q553.pep

WO 99/57280 PCT/US99/09346

833

```
1 MDYLONLSLG LTKKLPVILQ TEVAECGLAC LAAVAGFYGF YTDLRALRSK
        51 YCLSLKGENL ADIVRFADDM GLTGRALRLD LDELGSLRLP CILHWDLNHF
       101 VVLESVSSDG AAVMDPASGR RKVKTEEISR KFTGIALELW PNTRFEAGEE
       151 KQEIRILPML RGISGLGRTL FQLLALAAAM EVFAFLQNVS FKIGRGESLA
       201 LIGRSGCGKS TLLDILSGNL PPESGKVMIN GHDIYSLPPP FIPQFECDGQ
       251 GRTMFYSGLN LNR*
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1621>:
       m553.seq (partial)
         1 ATGGATTATT TATCAAGACT GTCCTTTGGA TTTAACAAAA AGCTACCTGT
        51 CATTCTGCAA ACAGAAGTTG CTGAATGTGG TTTAGCATGC CTGACATCCA
       101 TCTTGTCCTA TTATGGCTTT CACACTGATT TAAGAACGTT ACGCCAAAAA
- 1707---
       151 TACACCCTGT CATTAAAGGG CGCAAATCTT GCAGACATCA TGAGATTTGG
       201 CAATGAAATG AATTTAACGC CACGAGCTTT GCGTTTAGAG TTAGATGAGC
            TGTCAAATTT ACAACTACCC TGCATTCTCC ATTGGAACTT AAACCATTTT
       301 GTTGTACTTT GTTCCATTTC CAAAGACAGT ATCGTCATTA TGGACCCTGC
       351 TGTCGGTATG CGAAAAATCA AAATGGACGA AGTTTCACAA AAATTCACAG
       401 GGATTGCCCT AGAATTATTC CCCAATACCC ATTTTGAAGA GAAAAAAGAA
       451 ACAAAGAAAA TCAAAATATT ATCTCTATTA AGGGGGGG.T CAGGCTTAAA
       501 ACGCTCTTTA ATTCAAATGC TTATATTAGC TATTTCTTTG GAAGTCTTTG
       551 CATTG...
  This corresponds to the amino acid sequence <SEQ ID 1622; ORF 553>:
       m553.pep
                  (partial)
         1 MDYLSRLSFG FNKKLPVILQ TEVAECGLAC LTSILSYYGF HTDLRTLRQK
        51 YTLSLKGANL ADIMRFGNEM NLTPRALRLE LDELSNLQLP CILHWNLNHF
       101 VVLCSISKDS IVIMDPAVGM RKIKMDEVSQ KFTGIALELF PNTHFEEKKE
       151 TKKIKILSLL RGXSGLKRSL IQMLILAISL EVFAL...
  Computer analysis of this amino acid sequence gave the following results:
  Homology with a predicted ORF from N. gonorrhoeae
  ORF 553 shows 65.5% identity over a 185 aa overlap with a predicted ORF (ORF 553.ng)
  from N. gonorrhoeae:
       m553/g553
                           10
                                     20
                                              30
                                                        40
                                                                 50
                                                                           60
                   MDYLONLSLGLTKKLPVILQTEVAECGLACLAAVAGFYGFYTDLRALRSKYCLSLKGENL
       q553.pep
                    MDYLSRLSFGFNKKLPVILQTEVAECGLACLTSILSYYGFHTDLRTLRQKYTLSLKGANL
       m553
                                     20
                                              30
                           10
                                                       40
                                                                 50
                                                                           60
                           70
                                     80
                                              90
                                                       100
                                                                110
                                                                          120
                    ADIVRFADDMGLTGRALRLDLDELGSLRLPCILHWDLNHFVVLESVSSDGAAVMDPASGR
       q553.pep
                    ADIMRFGNEMNLTPRALRLELDELSNLQLPCILHWNLNHFVVLCSISKDSIVIMDPAVGM
       m553
                           70
                                     80
                                              90
                                                       100
                                                                110
                                                                          120
                          130
                                    140
                                             150
                                                       160
                                                                170
                                                                          180
                   RKVKTEEISRKFTGIALELWPNTRFEAGEEKQEIRILPMLRGISGLGRTLFQLLALAAAM
       g553.pep
                    RKIKMDEVSQKFTGIALELFPNTHFEEKKETKKIKILSLLRGXSGLKRSLIQMLILAISL
       m553
                                    140
                          130
                                             150
                                                       160
                                                                170
                                                                          180
                                    200
                                             210
                                                       220
                    EVFAFLQNVSFKIGRGESLALIGRSGCGKSTLLDILSGNLPPESGKVMINGHDIYSLPPP
       g553.pep
                    ||||:
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1623>:
       a553.seq
                 ATGCCCCATC TGCAAAACCT GTCTTTGGGC TTAAAGAAAA AGCTGCCTGT
             51 TATCCTGCAA ACAGAAATAT CAGAATGCGG CTTGGCATGT CTGGCGGCTG
            101
                 TGGCGGGATT TCATGGTTTC CATACGAATT TACGCGCACT GCGTTCAAAA
```

151

PCT/US99/09346 WO 99/57280

834

This corresponds to the amino acid sequence <SEQ ID 1624; ORF 553.a>:

MPHLQNLSLG LKKKLPVILQ TEISECGLAC LAAVAGFHGF HTNLRALRSK

51 Y

m553/a553 62.7% identity in 51 aa overlap

MDYLSRLSFGFNKKLPVILQTEVAECGLACLTSILSYYGFHTDLRTLRQKYTLSLKGANL MPHLQNLSLGLKKKLPVILQTEISECGLACLAAVAGFHGFHTNLRALRSKY a553 10 20 30 40 80 90 100 120 ADIMRFGNEMNLTPRALRLELDELSNLQLPCILHWNLNHFVVLCSISKDSIVIMDPAVGM m553.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1625>: g554.seq..

```
1 atgacagcac ataaaatcct gcccgtcctt cttcccatca tcttaggcgt
 51 ttctcacgca acggctgcat cgcccgcgcc caacagaccg acggtacacg
101 ccqccccac qctccaaaca cccgaaaccc tcacggcggc acacatcgtt
151 atcgaccttc aaagcaggca gactttatcc gccaaaaaca ccaatacccc
201 tgtcgaaccg gcggcactaa cccaactgat gaccgcatat ttggttttca
251 aaaacatgaa atcgggaaat atccaatctg aagaaaactt aaaaataccc
     qaatccgcat gggcttcaga aggaagcaga atgtttgtac gtcccggcga
351 tacggtcagc accgacaaac tcttaaaagg catgattgcc ctatgcgcaa
401 acgatgccgc cctaaccctt gccgaccggc tgggcaacgg ctcgattgaa
451 aattttgtgc aacaaatgaa caaagaagcc cgacgcttgg gcatgaagaa
501 caccgtattc aaaaacccga caggcttggg tagagaagga caggtttcca
551 ccgccaaaga cctctccctg ctgtctgaag cattgatgcg cgactttccg
     gaatattacc cgctgttttc catcaaatcg ttcaagtttg aaaacataga
651 acaaaacaac cgcaatatcc ttttatatag ggacaacaat gtaaacggcc
701 tqaaaqccqq qcacacagaa agcqqcqqct acaaccttqc cqtqtcatac
751 teeggeaacg geaggeacat cettgteate acaetaggtt eggaategge
801 ggaaacccgc gcatcggaca acagcaagct gctgaaccgg gcattgcagg
851 ccttcgatac gcccaaaata tatccgaaag gcaaaaccgt tgcccaaatc
901 caaatttccg gaggcagcaa aaaaaccgtc cgcgcaggct tcctcaaaga
951 agcctacate actetgecae ataaagaage gaaaatggea gaacagattt
1001 tggaaaccat acagccgatt cccgcccgg taaaaaaagg gcagatttta
1051 ggaaaaatca aaatcaggca aaacggacat accattgccg aaaaagaaat
1101 cgtcgcactg gaaaacgtag aaaaaagaag ccggtggcaa aggctttgga
1151 cgcgtctgac agggcagtaa
```

This corresponds to the amino acid sequence <SEO ID 1626; ORF 554.ng>: g554.pep..

- 1 MTAHKILPVL LPIILGVSHA TAASPAPNRP TVHAAPTLQT PETLTAAHIV
- 51 IDLOSROTLS AKNITTPVEP AALTQLMTAY LVFKNMKSGN IQSEENLKIP
- 101 ESAWASEGSR MFVRPGDTVS TDKLLKGMIA LCANDAALTL ADRLGNGSIE
- 151 NFVOOMNKEA RRLGMKNTVF KNPTGLGREG OVSTAKDLSL LSEALMRDFP
- 201 EYYPLFSIKS FKFENIEQNN RNILLYRDNN VNGLKAGHTE SGGYNLAVSY
- 251 SGNGRHILVI TLGSESAETR ASDNSKLLNR ALQAFDTPKI YPKGKTVAQI
- 301 QISGGSKKTV RAGFLKEAYI TLPHKEAKMA EQILETIQPI PAPVKKGQIL
- 351 GKIKIRONGH TIAEKEIVAL ENVEKRSRWO RLWTRLTGQ*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1627>: m554.seq..

- 1 ATGACAGCAC ATAAAATCCT GCCCGTCCTG CTTTCCATCA TCTTAGGCGT
- 51 TTCTCACGCA ACGGCTGCAT CGCCCGCGCC CAACAGACCG ACGGTACACG
- 101 CCGCCCCAC GTTCCAAACA CCCGAAACCC TCACAGCGGC ACACATCGTT
- 151 ATCGACCTTC AAAGCAAACA GATTTTATCC GCCAAAAACA TCAATACCCC
- 201 TGTTGAACCG GCGGCACTAA CCCAACTGAT GACCGCATAT CTGGTTTTCA 251 AAAACATGAA ATCGGGCAAT ATCCAATCTG AAGAAAACTT AAAAATACCC

```
301 GAATCCGCAT GGGCTTCAGA AGGAAGCAGA ATGTTTGTAC GTCCCGGCGA
 351 TACGGTCAGC ACCGACAAAC TCTTAAAAGG CATGATTGCA CTATCCGCAA
 401 ACGATGCCGC CCTAACCCTT GCCGGCCGGC TGGGCAACGG CTCGATTGAA
451 AATTTTGTGC AACAAATGAA CAAAGAAGCC CGACGCTTGG GCATGAAGAA
501 CACTGTATTC AAAAACCCGA CAGGCTTGAG TAGAGAAGGA CAGGTTTCCA
551 CCGCCAAAGA CCTCGCCCTG CTGTCTGAAG CATTGATGCG CGACTTTCCG
601 GAATATTACC CGCTGTTTTC CATCAAATCT TTCAAATTCA AAAATATAGA
 651 ACAAAACAAC CGCAATATCC TTTTATATAG GGACAACAAT GTAAACGGTC
 701 TGAAAGCCGG ACACACAGAA AGCGGCGGCT ACAACCTTGC CGTGTCATAC
 751 TCCGGCAACG GCAGGCACAT CCTTGTCATC ACATTGGGTT CGGAATCGGC
 801 GGAAACACGC GCATCAGACA ACAGCAAGCT GCTGAACTGG GCATTGCAGG
851 CCTTCGATAC GCCCAAAATA TATCCGAAAG GCAAAACCGT TGCCCAAATC
901 CAAATTTCCG GAGGCAGCAA AAAAACCGTC CGCGCAGGCT TCCTCAAAGA
951 AGCCTACATC ACTCTGCCAC ATAAGGAAGC GAAAATGGCA GAACAAATTC
1001 TAGAAACCAT ACAGCCGATT CCCGCCCCAG TAAAAAAAGG GCAAATTTTA
1051 GGAAAAATCA AAATCAGACA AAACGGATAC ACCATTGCCG AAAAAGAAAT
1101 CGTCGCACTG GAAAATGTAA AAAAAAGAAG CCGGTGGCAA AGGCTTTGGG
1151 CGTGTCTGAC AGGGCAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1628; ORF 554>: m554.pep..

- 1 MTAHKILPVL LSIILGVSHA TAASPAPNRP TVHAAPTFQT PETLTAAHIV
- 51 IDLOSKQILS AKNINTPVEP AALTQLMTAY LVFKNMKSGN IQSEENLKIP
- 101 ESAWASEGSR MFVRPGDTVS TDKLLKGMIA LSANDAALTL AGRLGNGSIE
- 151 NFVQQMNKEA RRLGMKNTVF KNPTGLSREG QVSTAKDLAL LSEALMRDFP
- 201 EYYPLFSIKS FKFKNIEQNN RNILLYRDNN VNGLKAGHTE SGGYNLAVSY
- 251 SGNGRHILVI TLGSESAETR ASDNSKLLNW ALQAFDTPKI YPKGKTVAQI
- 301 QISGGSKKTV RAGFLKEAYI TLPHKEAKMA EQILETIQPI PAPVKKGQIL
- 351 GKIKIRQNGY TIAEKEIVAL ENVKKRSRWQ RLWACLTGQ*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 554 shows 96.1% identity over a 389 as overlap with a predicted ORF (ORF 554.ng) from N. gonorrhoeae:

m554/g554

	10	20	30	40	50	60
m554.pep	MTAHKILPVLLSIII	GVSHATAA!	SPAPNRPTVHA	APTFOTPETL'	<b>TAAHIVIDL</b>	OSKOILS
					[	:
g554	MTAHKILPVLLPIII			<del>-</del>		QSRQTLS
	10	20	30	40	50	60
	70	80	90	100	110	120
m554.pep	AKNINTPVEPAALTO	LMTAYLVF	KNMKSGNIQSE	ENLKIPESAW	ASEGSRMFV.	RPGDTVS
	311 111111111111	11111111	шшшш	111111111		
g554	AKNTNTPVEPAALTO	•	_			
	70	80	90	100	110	120
	130	140	150	160	170	180
m554.pep	TDKLLKGMIALSANI	DAALTLAGRI	LGNGSIENFVC	OMNKEARRLG	MKNTVFKNP	IGLSREG
			rian nu man	111111111		!  :
g554	TDKLLKGMIALCANI			QMNKEARRLGI	MKNTVFKNP	TGLGREG
	130	140	150	160	170	180
	190	200	210	220	230	240
m554.pep	OVSTAKDLALLSEAL	MRDFPEYY	PLFSIKSFKFK	NIEQNNRNIL	LYRDNNVNG	LKAGHTE
g55 <b>4</b>	QVSTAKDLSLLSEAL			NIEQNNRNIL	LYRDNNVNG:	LKAGHTE
	190	200	210	220	230	240
	250	260	270	280	290	300
m554.pep	SGGYNLAVSYSGNGR	HILVITLGS	SESAETRASDN	isklinwalqai	FDTPKIYPK	GKTVAQI

```
SGGYNLAVSYSGNGRHILVITLGSESAETRASDNSKLLNRALQAFDTPKIYPKGKTVAQI
  g554
                               260
                                        270
                                                 280
                                                           290
                                                                    300
                     310
                               320
                                        330
                                                 340
                                                           350
                                                                    360
               OISGGSKKTVRAGFLKEAYITLPHKEAKMAEQILETIQPIPAPVKKGQILGKIKIRQNGY
  m554.pep
               QISGGSKKTVRAGFLKEAYITLPHKEAKMAEQILETIQPIPAPVKKGQILGKIKIRQNGH
  a554
                              320
                                        330
                                                 340
                     310
                                                          350
                                                                    360
                     370
                               380
                                        390
               TIAEKEIVALENVKKRSRWQRLWACLTGQX
___m554.pep
               TIAEKEIVALENVEKRSRWORLWTRLTGOX
  q554
                     370
                              380
                                        390
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1629>:
       a554.seq
                ATGACAGCAC ATAAAATCCT GCCCGTCCTG CTTTCCATCA TCTTAGGCGT
              1
                TTCTCACGCA ACGGCTGCAT CGCCCGCGCC CAACAGACCG ACGGCACACG
             51
                CCGCCCCAC GTTCCAAACA CCCGAAACCC TCACAGCGGC ACACATCGTT
            101
            151 ATCGACCTTC AAAGCAAACA GATTTTATCC GCCAAAAACA TCAATACCCC
                TGTCGAACCG GCGGCACTAA CCCAACTGAT GACCGCATAT CTGGTTTTCA
                AAAACATGAA ATCGGGAAAT ATCCGATCTG AAGAAAACTT AAAAATACCC
            251
            301
                GAATCCGCAT GGGCTTCAGA AGGAAGCAGA ATGTTTGTAC GTCCCGGCGA
                TACGGTCAGC ACCGACAAAC TCTTAAAAGG CATGATTGCA CTATCCGCAA
            351
            401 ACGATGCCGC CCTAACCCTT GCCGGCCGGC TGGGCAACGG CTCGATTGAA
            451 AATTTGTGC AACAAATGAA CAAAGAAGCC CGACGCTTGG GCATGAAGAA
                CACTGTATTC AAAAATCCGA CAGGCTTGAG TAGAGAAGGA CAGGTTTCCA
            501
            551 CCGCCAAAGA CCTCGCCCAG CTGTCTGAAG CATTGATGCG CGACTTTCCG
                GAATATTACC CGCTGTTTTC CATCAAATCT TTCAAATTCA AAAATATAGA
                GCAAAACAAC CGCAATATCC TTTTATATAG GGACAACAAT GTAAACGGTC
            651
            701
                TGAAAGCCGG ACACACAGAA AGCGGCGGCT ACAACCTTGC CGTGTCATAC
            751
                TCCGGCAACG GCAGGCACAT CCTTGTCATC ACATTGGGTT CGGAATCGGC
            801 GGAAACACGC GCATCAGACA ACAGCAAGCT GCTGAACTGG GCATTGCAAG
                CCTTCGATAC GCCCAAAATA TATCCGAAAG GCAAAACCGT TGCCCAAATC
            851
            901 CAAATTTCCG GAGGCAGCAA AAAAACCGTC CGCGCAGGCT TCCTCAAAGA
            951 AGCCTACATC ACTCTGCCAC ATAAGGAAGC GAAAATGGCA GAACAAATTC
                TAGAAACCAT ACAGCCGATT CCCGCCCCAG TAAAAAAAGG GCAAATTTTA
           1001
           1051
                GGAAAAATCA AAATCAGACA AAACGGATAC ACCATTGCCG AAAAAGAAAT
           1101 CGTCGCACTG GAAAATGTAA AAAAAAGAAG CCGGTGGCAA AGGCTTTGGG
           1151 CGTGTCTGAC AGGGCAGTAA
  This corresponds to the amino acid sequence <SEQ ID 1630; ORF 554.a>:
       a554.pep
                MTAHKILPVL LSIILGVSHA TAASPAPNRP TAHAAPTFQT PETLTAAHIV
                IDLQSKQILS AKNINTPVEP AALTQLMTAY LVFKNMKSGN IRSEENLKIP
             51
            101 ESAWASEGSR MFVRPGDTVS TDKLLKGMIA LSANDAALTL AGRLGNGSIE
            151 NFVQQMNKEA RRLGMKNTVF KNPTGLSREG QVSTAKDLAQ LSEALMRDFP
                EYYPLFSIKS FKFKNIEQNN RNILLYRDNN VNGLKAGHTE SGGYNLAVSY
            201
            251 SGNGRHILVI TLGSESAETR ASDNSKLLNW ALQAFDTPKI YPKGKTVAQI
                QISGGSKKTV RAGFLKEAYI TLPHKEAKMA EQILETIQPI PAPVKKGQIL
            351 GKIKIRQNGY TIAEKEIVAL ENVKKRSRWQ RLWACLTGQ*
  m554/a554 99.2% identity in 389 aa overlap
                           10
                                    20
                                             30
                                                       40
                                                                50
       m554.pep
                   MTAHKILPVLLSIILGVSHATAASPAPNRPTVHAAPTFQTPETLTAAHIVIDLOSKOILS
                   MTAHKILPVLLSIILGVSHATAASPAPNRPTAHAAPTFQTPETLTAAHIVIDLQSKQILS
       a554
                           10
                                    20
                                             30
                                                       40
                                                                50
                                    80
                                             90
                                                      100
                                                               110
                   AKNINTPVEPAALTQLMTAYLVFKNMKSGNIQSEENLKIPESAWASEGSRMFVRPGDTVS
       m554.pep
                   a554
                   AKNINTPVEPAALTQLMTAYLVFKNMKSGNIRSEENLKIPESAWASEGSRMFVRPGDTVS
```

		7	0	80	90	100	110	120
		13	0	140	150	160	170	180
	m554.pep	TDKLLKGMI.	alsanda <i>i</i>	ALTLAGRLGNO	GSIENFVQQM	NKEARRLGMKN	NTVFKNPTGLS	REG
			11111111	HHHHH		[] [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	11111111111	111
	a554				GSIENFVQQM	NKEARRLGMKN	NTVFKNPTGLS	REG
		13	0	140	150	160 .	170	180
		19	0	200	210	220	230	240
	m554.pep	QVSTAKDLA	LLSEALME	RDFPEYYPLFS	SIKSFKFKNI	EQNNRNILLYF	RDNNVNGLKAG	
	• •	111111111	1111111		[][][][][][][][][][][][][][][][][][][][]	Шини		111
1700m	a554	QVSTAKDLA	QLSEALMF	RDFPEYYPLFS	SIKSFKFKNI	EQNNRNILLYF	NDNNVNGLKAG	HTE
		19	0	200	210	220	230	240
		25		260	270	280	290	300
	m554.pep	SGGYNLAVS	YSGNGRHI	LVITLGSESA	aetrasdnski	LINWALQAFDI	PKIYPKGKTV	'AQI
						[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]	111111111111	$\Pi\Pi$
	a554						PKIYPKGKTV	IQA
		25	0	260	270	280	290	300
		24	•					
	. 554	310		320	330	340		360
	m554.pep	QISGGSKKI	VRAGELKE	AIITLPHKEA	KWAEQILET!	OPTPAPVKKG	QILGKIKIRQ	NGY
	a554	OTECCERRA	11111111111111111111111111111111111111				1111111111	111
	a554	310		320	330	340	QILGKIKIRQ	
		311	J	320	330	340	350	360
		370	<b>1</b>	380	390			
	m554.pep	-	-	RWORLWACLT				
				1111111111				
	a554			RWORLWACL				
		370		380	390			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1631>: g556.seq..

- 1 atggacaata agaccaaact gcgcttgggc ggcctgattt tactgaccac
- 51 cgccgtttta agcctcatta tcgtattgat tgtcgattcc tggccgcttg
- 101 ccatcctgct tgccgccgtc atcgtcgccg ccgctgcggg cggctttgtt
- 151 tggacatccc gccgacagca acgccagttt atcgaacgtc tgaaaaaatt
- 201 cgacatcgat cccgaaaaaag gcagaatcaa cgaggcaaac ctgcgccgta
- 251 tgtaccacag cggcggacaa caccagaaag atgcgattac cctgatctgc
- 301 ctgtcgcaaa aatgttcggt ggacgaggcg cacgctatgt tcaaaaaacg
- 351 cccgacacgt caggaaatca atcaaatggc ggcaaaacag tcgcgcggtc
- 401 agaaacgtcc gcaccgttaa

This corresponds to the amino acid sequence <SEQ ID 1632; ORF 556.ng>: g556.pep.

- 1 MDNKTKLRLG GLILLTTAVL SLIIVLIVDS WPLAILLAAV IVAAAAGGFV 51 WTSRRQQRQF IERLKKFDID PEKGRINEAN LRRMYHSGGQ HQKDAITLIC
- 101 LSQKCSVDEA HAMFKKRPTR QEINQMAAKQ SRGQKRPHR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1633>: m556.seq..

- 1 ATGGACAATA AGACCAAACT GCGCTTGGGC GGCCTGATTT TACTGACCAC
- 51 CGCCGTTTTA AGCCTCATTA TCGTATTGAT TGTCGATTCC TGGCCGCTTG
  101 CCATCCTGCT TGCAGCCGTC ATTGTCGCTG CCGCTGCGGG CGGTTTTGTT
- 151 TGGACATCCC GCCGACAGCA ACGCCAGTTT ATCGAACGCC TGAAAAAATT
- 201 CGACATCGAT CCCGAAAAAG GCAGAATCAA CGAGGCAAAC CTGCGCCGTA
- 251 TGTACCACAG CGGCGGACAA CACCAGAAAG ATGCGATTAC CCTGATCTGC
- 301 CTGTCGCAAA AATGTTCGGT GGACGAGGCG CACGCTATGT TCAAAAAACG
- 351 CCCGACACGT CAGGAAATCA ATCAAATGGC GGCAAAACAG TCGCGCGGTC
- 401 AGAAACGTCC GCACCGTTAA

This corresponds to the amino acid sequence <SEQ ID 1634; ORF 556>: m556.pep..

- 1 MDNKTKLRLG GLILLTTAVL SLIIVLIVDS WPLAILLAAV IVAAAAGGFV 51 WTSRRQQRQF IERLKKFDID PEKGRINEAN LRRMYHSGGQ HQKDAITLIC

101 LSQKCSVDEA HAMFKKRPTR QEINQMAAKQ SRGQKRPHR* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 556 shows 100.0% identity over a 139 aa overlap with a predicted ORF (ORF 556.ng) from N. gonorrhoeae:

m556/g556

	10	20	30	40	50	60
m556.pep	MDNKTKLRLGGLIL	LTTAVLSLI:	IVLIVDSWPLA)	(LLAAVIVA)	AAGGFVWTSF	ROOROF
Ferm	11111111111111	[ [ ] [ ] [ ] [ ] [ ] [ ]	11111111111	[]]]]		
g556	MDNKTKLRLGGLIL	LTTAVLSLI:	IVLIVDSWPLA]	LLAAVIVA	AAGGFVWTSF	ROOROF
	10	20	30	40	50	60
	70	80	90	100	110	120
m556.pep	IERLKKFDIDPEKG	RINEANLRR	MYHSGGQHQKDA	AITLICLSQF	CSVDEAHAME	KKRPTR
		111111111	14111111111		111111111	111111
g556	IERLKKFDIDPEKG	RINEANLRR	<b>MYHSGGQHQKD</b>	ITLICLSQF	CSVDEAHAME	KKRPTR
	70	80	90	100	110	120
	130	140				
m556.pep	QEINQMAAKQSRGQ	KRPHRX				
	11111111111111	11111				
g556	QEINQMAAKQSRGQ1	KRPHRX				
	130	140				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1635>:

a556.seq

1	ATGGACAATA	AGACCAAACT	GCGCTTGGGC	GGCCTGATTT	TACTGACCAC
51	CGCCGTTTTA	AGCCTCATTA	TCGTATTGAT	TGTCGATTCC	TGGCCGCTTG
101	CCATCCTGCT	TGCCGCCGTC	ATCGTCGCCG	CCGCTGCGGG	CGGCTTTGTT
151	TGGACATCCC	GCCGACAGCA	ACGCCAGTTT	ATCGAACGTC	TGAAAAAATT
201	CGACATCGAT	CCCGAAAAAG	GCAGAATCAA	CGAGGCAAAC	CTGCGCCGTA
251	TGTACCACAG	CGGCGGACAA	CACCAAAAAG	ATGCGATTAC	CCTGATCTGC
301	CTGTCGCAAA	AATGTTCGGT	GGACGAGGCG	CACGCTATGT	TCAAAAAACG
351	CCCGACACGT	CAGGAAATCA	ATCAAATGGC	GGCAAAACAG	TCGCGCGGTC
401	AGAAACGTCC	GCACCGTTAA			

This corresponds to the amino acid sequence <SEQ ID 1636; ORF 556.a>:

a556.pep

- 1 MDNKTKLRLG GLILLTTAVL SLIIVLIVDS WPLAILLAAV IVAAAAGGFV
  51 WTSRRQQRQF IERLKKFDID PEKGRINEAN LRRMYHSGGQ HQKDAITLIC
  101 LSQKCSVDEA HAMFKKRPTR QEINQMAAKQ SRGQKRPHR*

#### m556/a556 100.0% identity in 139 aa overlap

	10	20	30	40	50	60
m556.pep	MDNKTKLRLGGLIL	LTTAVLSLII	VLIVDSWPLA	ILLAAVIVAA	AAGGFVWTSR	ROOROF
		1111111111			11111111111	
a556	MDNKTKLRLGGLIL		VLIVDSWPLA	ILLAAVIVAA	AAGGFVWTSR	ROOROF
	10	20	30	40	50	60
	70	80	90	100	110	120
m556.pep	IERLKKFDIDPEKG	RINEANLRRM	YHSGGQHQKD	AITLICLSON	CSVDEAHAMF	
	111111111111111111111111111111111111111	1111111111	1111111111		1111111111	
a556	IERLKKFDIDPEKG:	RINEANLRRM	YHSGGQHQKD	AITLICLSOK	CSVDEAHAMF	KKRPTR
	70	80	90	100	110	120
	130	140				
m556.pep	QEINQMAAKQSRGQ	KRPHRX				
		11111				
a556	QEINQMAAKQSRGQ	KRPHRX				
	130	140				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1637>:

```
q557.sea
          atgaacaaaa tatteettae tgeegeagee ttggtgetgg gegegtgegg
          tttccacctg aaaggtgcag acggcatttc tccgccgctg acctaccgga
      51
          gctggcacat cgaaggcgga caggcattgc aatttccttt ggaaaccgcg
          ctgtatcagg cttcgggcag ggtggacgat gctgccggcg cgcagatgac
     151
     201 cctgcgtata gacagcgttt cccaaaacaa ggaaacctat accgttaccc
     251 gtgcggcagt catcaacgaa tatcttttga tattgacggt tgaagcgcag
     301 gtattgaaac gcggcgagcc ggtcggcaaa ccgatgaccg tgtccgtccg
     351 ccgcattttg gattatgccg acaacgaaat tttgggcaaa caggaagaag
     401 aagaaaccct gtgggcggaa atgcggcagg atgttgccga acagattgtc
     451 cgccgcctga cctttctgaa ggcggaatga
 This corresponds to the amino acid sequence <SEQ ID 1638; ORF 557.ng>:
g557.pep..
          MNKIFLTAAA LVLGACGFHL KGADGISPPL TYRSWHIEGG QALQFPLETA
       1
          LYQASGRVDD AAGAQMTLRI DSVSQNKETY TVTRAAVINE YLLILTVEAQ
      51
     101 VLKRGEPVGK PMTVSVRRIL DYADNEILGK QEEEETLWAE MRQDVAEQIV
     151 RRLTFLKAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1639>:
m557.seq..
       1 ATGAACAAAC TGTTTCTTAC TGCCGCAGTG CTGATGCTGG GCGCGTGCGG
      51 TTTCCACCTG AAAGGTGCAG ACGGCATTTC TCCGCCGCTG ACCTACCGGA
     101 GCTGGCACAT CGAAGGCGGA CAGGCATTGC GGTTTCCTTT GGAAACCGCG
     151 CTGTATCAGG CTTCGGGCAG GGTGGACGAT GCTGCCGGCG CGCAGATGAC
         CCTGCGTATA GACAGCGTTT CCCAAAACAA GGAAACCTAC ACCGTTACCC
     201
         GTGCGGCAGT CATCAACGAA TATCTTTTGA TATTGACGGT TGAAGCGCAG
     251
     301 GTATTGAAAC GCGGCGAGCC GGTCGGTAAA CCGATGACCG TGTCCGTCCG
     351 CCGCGTCCTT GCTTATGCCG ACAACGAGAT CTTGGGCAAA CAGGAAGAGG
     401 AAGCGGCATT GTGGGCGGAA ATGCGGCAGG ATGCCGCCGA ACAGATTGTC
     451 CGCCGCCTGA CCTTTCTGAA GGCGGAATGA
This corresponds to the amino acid sequence <SEQ ID 1640; ORF 557>:
m557.pep..
       1 MNKLFLTAAV LMLGACGFHL KGADGISPPL TYRSWHIEGG QALRFPLETA
      51 LYQASGRVDD AAGAQMTLRI DSVSQNKETY TVTRAAVINE YLLILTVEAQ
     101
         VLKRGEPVGK PMTVSVRRVL AYADNEILGK QEEEAALWAE MRQDAAEQIV
         RRLTFLKAE*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 557 shows 94.3% identity over a 159 aa overlap with a predicted ORF (ORF 557.ng)
from N. gonorrhoeae:
m557/g557
                    10
                              20
                                       30
                                                                    60
            {	t MNKLFLTAAVLMLGACGFHLKGADGISPPLTYRSWHIEGGQALRFPLETALYQASGRVDD
m557.pep
            g557
            MNKIFLTAAALVLGACGFHLKGADGISPPLTYRSWHIEGGQALQFPLETALYQASGRVDD
                    10
                             20
                                       30
                                                40
                                                          50
                                                                    60
                    70
                             В0
                                       90
                                               100
m557.pep
            AAGAQMTLRIDSVSQNKETYTVTRAAVINEYLLILTVEAQVLKRGEPVGKPMTVSVRRVL
            g557
            AAGAQMTLRIDSVSQNKETYTVTRAAVINEYLLILTVEAQVLKRGEPVGKPMTVSVRRIL
                    70
                             80
                                       90
                                               100
                                                         110
                   130
                            140
                                      150
m557.pep
            AYADNEILGKQEEEAALWAEMRQDAAEQIVRRLTFLKAEX
             q557
            DYADNEILGKQEEEETLWAEMRQDVAEQIVRRLTFLKAEX
                   130
                            140
                                      150
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1641>:

```
a557.seq
              ATGAACAAAC TGTTTCTTAC TGCCGCAGTG CTGATGCTGG GCGCGTGCGG
          51 TTTCCACCTG AAAGGTGCAG ACGGCATTTC TCCGCCGCTG ACCTACCGGA
         101 GCTGGCACAT CGAAGGCGGA CAGGCATTGC AGTTTCCTTT GGAAACCGCG
         151 CTGTATCAGG CTTCGGGTAG GGTGGACGAT GCTGCCGGCG CGCAGATGAC
         201 CCTGCGTATA GACAGCGTTT CCCAAAACAA GGAAACCTAC ACCGTTACCC
         251 GTGCGGCAGT CATCAACGAA TATCTTTTGA TATTGACGGT TGAAGCGCAG
              GTATTGAAAC GCGGCGAGCC GGTCGGCAAA CCGATGACCG TGTCCGTCCG
             CCGCGTCCTT GCTTATGCCG ACAACGAGAT CTTGGGCAAA CAGGAAGAGG
         351
         401 AAGCGGCATT GTGGGCGGAA ATGCGGCAGG ATGCCGCCGA ACAGATTGTC
         451 CGCCGCCTGA CCTTTCTGAA GGCGGAATGA
This corresponds to the amino acid sequence <SEQ ID 1642; ORF 557.a>:
    a557.pep
             MNKLFLTAAV LMLGACGFHL KGADGISPPL TYRSWHIEGG QALOFPLETA
             LYQASGRVDD AAGAQMTLRI DSVSQNKETY TVTRAAVINE YLLILTVEAQ
          51
         101
             VLKRGEPVGK PMTVSVRRVL AYADNEILGK QEEEAALWAE MRQDAAEQIV
         151 RRLTFLKAE*
m557/a557 99.4% identity in 159 aa overlap
                        10
                                 20
                                          30
                                                   40
                                                            50
    m557.pep
                MNKLFLTAAVLMLGACGFHLKGADGISPPLTYRSWHIEGGQALRFPLETALYQASGRVDD
                a557
                MNKLFLTAAVLMLGACGFHLKGADGISPPLTYRSWHIEGGQALQFPLETALYQASGRVDD
                        10
                                 20
                                          30
                                                   40
                                                            50
                                          90
                                                  100
                {\tt AAGAQMTLRIDSVSQNKETYTVTRAAVINEYLLILTVEAQVLKRGEPVGKPMTVSVRRVL}
    m557.pep
                AAGAQMTLRIDSVSQNKETYTVTRAAVINEYLLILTVEAQVLKRGEPVGKPMTVSVRRVL
    a557
                        70
                                 80
                                          90
                                                  100
                                                                    120
                       130
                                140
                                         150
                AYADNEILGKQEEEAALWAEMRQDAAEQIVRRLTFLKAEX
    m557.pep
                a557
                AYADNEILGKQEEEAALWAEMRQDAAEQIVRRLTFLKAEX
                       130
                                140
                                         150
                                                  160
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1643>: g558.seq..

- 1 ATGGATGCTT GTTTTTTCGT CATTCCCGCA CAGGCGGGAA TTCGGAGATT
- 51 CGGGATTGTT TTCAAACGTT CGGGTCGGAT TCTTGCCGGT GCGGGAATGA
- 101 TGCCCTTATA TACTTTCTCC GAGCTTTATA TGCTTCAACA GGGGACGGCA
- 151 CATCAAGCAC CGCACTGCGT GTTGCCCGAA CGAGGCTGCC CTCCGATTAG
- 201 ATTCTATCGC TATAAACAGA CGGGTTTCAA CCGAAAAGGA ATGGGGATAA
- 251 AGTCCATTTC CGACACCTCT CGGGCGATGC CGTCTGAAAA CCAATCTCCA
- 301 CTTTCAGACG GCATTGTTTA G

This corresponds to the amino acid sequence <SEQ ID 1644; ORF 558.ng>: g558.pep..

- 1 MDACFFVIPA QAGIRRFGIV FKRSGRILAG AGMMPLYTFS ELYMLQQGTA
- 51 HQAPHCVLPE RGCPPIRFYR YKQTGFNRKG MGIKSISDTS RAMPSENQSP
- 101 LSDGIV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1645>: m558.seq..

- 1 ATGAATGCTT GTTTTTTCGT CATTCCCACA CAGGCGGGAA TTCGGAGATT
- 51 CGGGATTGTT TTCAAACGTT CGGGTCGGAT TCTTGCCGGT GCAGGAATGA
- 101 TGCCCTTATA TACTTTCTCC GAGCTTTATA TGTTTCAACA GGGGACGGCA
- 151 CATCAAGCAC CGCACTGCGT GTTGCCCGAA CGAGACTACC CTCCGATTAG
- 201 ATTCTATCGC CATAAACAGA CGGGTTTCAA CCGAAAAGGA ATGGGGATAA
  251 AGTCCATTTC CGACATCTST CGGGCGATGC CGTCTGAAAA CCAATCTCCA
- 301 CTTTCAGACG GCATTGTTTA G

This corresponds to the amino acid sequence <SEQ ID 1646; ORF 558>:

```
m558.pep..
         MNACFFVIPT QAGIRRFGIV FKRSGRILAG AGMMPLYTFS ELYMFQQGTA
      51 HQAPHCVLPE RDYPPIRFYR HKQTGFNRKG MGIKSISDIX RAMPSENQSP
     101 LSDGIV*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 558 shows 92.5% identity over a 106 aa overlap with a predicted ORF (ORF 558.ng)
from N. gonorrhoeae:
m558/g558
                    10
                             20
                                      30
                                               40
                                                         50
            MNACFFVIPTQAGIRRFGIVFKRSGRILAGAGMMPLYTFSELYMFQQGTAHQAPHCVLPE
m558.pep
            MDACFFVIPAQAGIRRFGIVFKRSGRILAGAGMMPLYTFSELYMLQQGTAHQAPHCVLPE
q558
                             20
                                      30
                   10
                                               40
                    70
                             80
                                      90
                                              100
            RDYPPIRFYRHKQTGFNRKGMGIKSISDIXRAMPSENQSPLSDGIVX
m558.pep
               g558
            RGCPPIRFYRYKQTGFNRKGMGIKSISDTSRAMPSENQSPLSDGIVX
                    70
                             80
                                              100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1647>:
     a558.seq
              ATGAATGCTT GTTTTTCGT CATTCCCACA CAGGCGGGAA TTCGGAGATT
           1
          51
              CGGGATTGTT TTCAAACGTT CGGGTCGGAT TCTTGCCGGT GCGGGAATGA
          101
              TGCCCTTATA TATAGTGGAT TAAATTTAAA TCAGGACAAG GCGACGAAGC
         151
              CGCAGACAGT ACAAATAGTA CGGCAAGGCG AGGCAACGCC GTACTGGTTT
         201 AAATTTAATC CACTATACTT TCTCCGAGCT TTATATGTTT CAACAGAGGA
         251 CGGCACATCA AGCACCGCAC TGCGTGTTGC CCGAACGAGA CTGCCCTCCG
         301 ATTAGATTCT ATCGCTATAA ACAGACGGGT TTCAACCGAA AAGGAATGGG
         351 AATGAAGTCC GTTTCCGACA CCTCTCGGGC GATGCCGTCT GAAAACCAAT
         401 CTCCACTTTC AGACGGCATT GTTTAG
This corresponds to the amino acid sequence <SEQ ID 1648; ORF 558.a>:
     a558.pep
              MNACFFVIPT QAGIRRFGIV FKRSGRILAG AGMMPLYIVD *I*IRTRRRS
              RRQYK*YGKA RQRRTGLNLI HYTFSELYMF QQRTAHQAPH CVLPERDCPP
              IRFYRYKQTG FNRKGMGMKS VSDTSRAMPS ENQSPLSDGI V*
m558/a558 70.2% identity in 141 aa overlap
                        10
                                 20
                                          30
    m558.pep
                 MNACFFVIPTQAGIRRFGIVFKRSGRILAGAGMMPLY-
                 MNACFFVIPTQAGIRRFGIVFKRSGRILAGAGMMPLYIVDXIXIRTRRRSRRQYKXYGKA
     a558
                                 20
                                          30
                             40
                                      50
                                               60
                                                        70
    m558.pep
                      -----tfselymfqqgtahqaphcvlperdyppirfyrhkqtgfnrkgmgiks
                            RQRRTGLNLIHYTFSELYMFQQRTAHQAPHCVLPERDCPPIRFYRYKQTGFNRKGMGMKS
     a558
                        70
                                 80
                                          90
                                                   100
                                                            110
                                                                     120
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1649>: g560.seq

140

atgctcatca tccgcaacct gatttactgg ctgatactct gttccagcct

100

ISDIXRAMPSENQSPLSDGIVX :11 1144114141414141

VSDTSRAMPSENQSPLSDGIVX 130

90

m558.pep

a558

```
51 gattttcctc tttcccttta tgctgctcgc ctcgcctttc cgggacgggg
          cgcacaagat ggcgcggtc tgggtcggca tcctcaactg gtcgctcaaa
     151 cacategteg ggeteaaata eegeateate ggegeggaac acatteegga
     201 ccgccctcc gtcatctgcg ccaaacacca aagcggctgg gaaacgctcg
     251 cgctccaaga gatttttccg ccgcaggttt acgttgccaa gcgcgagttg
     301 ttcaaaatcc cctttttcgg ctggggcttg aaactggtca aaaccatagg
     351 catagacege aacaacegee gegaagecaa egaacagete ataaaacagg
     401 gtttggcgcg caaaaacgaa ggttattgga ttaccatttt ccccgaaggc
     451 acgcgccttg cgcccggaaa acgcggcaaa tacaaactcg gcggcgcgcg
     501 catggcgaaa atgtttgaga tggacatcgt ccccgtcgcc ctcaacagcg
     551 gcgaattttg gccgaaaaat tcctttctga aatatccggg ggaaatcacc
     601 gtcatcatct gtccgaccat cccgcacgca agcggcagcg aagccgaatt
     651 gatggaaaaa tgcgaacacc tcattgaaac gcaacaaccg cttatttccg
     701 gcgcaggccc gtttgccgcc gaaatgccgt ctgaaaccgc atga
This corresponds to the amino acid sequence <SEO ID 1650; ORF 560.ng>:
g560.pep..
      1 MLIIRNLIYW LILCSSLIFL FPFMLLASPF RDGAHKMARV WVGILNWSLK
      51 HIVGLKYRII GAEHIPDRPS VICAKHQSGW ETLALQEIFP PQVYVAKREL
     101 FKIPFFGWGL KLVKTIGIDR NNRREANEQL IKQGLARKNE GYWITIFPEG
     151 TRLAPGKRGK YKLGGARMAK MFEMDIVPVA LNSGEFWPKN SFLKYPGEIT
     201 VIICPTIPHA SGSEAELMEK CEHLIETQQP LISGAGPFAA EMPSET*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1651>:
m560.seq
      1 ATGCTCATCA TCCGCAACCT GATTTACTGG CTGATACTCT GTTCCACCCT
     51 GATTTCCTC TTTCCCTTTA TGCTGCTCGC CTCGCCTTTC CGGGACGGGG
    101 CGCACAAGAT GGCGCGGGTC TGGGTCGGCA TTCTCAACTG GTCGCTCAAA
     151 CACATCGTCG GGCTCAAATA CCGCATCATC GGCGCGGAAA ACATCCCCGA
    201 CCGCCCCGCC GTCATCTGCG CCAAACACCA AAGCGGCTGG GAAACGCTCG
    251 CCCTTCAGGA CATTTTCCG CCGCAGGTTT ACGTTGCCAA ACGCGAGTTG
    301 TTCAAAATCC CCTTTTTCGG CTGGGGCTTG AAACTGGTCA AAACCATAGG
    351 CATAGACCGC AACAACCGCC GCGAAGCCAA CGAGCAGCTC ATAAAACAGG
         GGTTGGTGCG CAAAAACGAA GGCTATTGGA TTACCATTTT CCCCGAAGGC
     451 ACGCGCCTTG CGCCCGGAAA ACGCGGCAAA TACAAACTCG GCGGCGCGCG
    501 CATGGCGAAA ATGTTTGAGA TGGACATCGT CCCCGTCGCC CTCAACAGCG
    551 GCGAATTTG GCCGAAAAAC TCCTTTCTGA AATATCCGGG GGAAATCACC
    601 GTCGTCATCT GTCCGACCAT CCCGCACGCA AGCGGCAGCG AAGCCGAATT
    651 GATGGAAAAA TGCGAACATC TCATCGAAAC GCAACAACCG CTTATTTCCG
    701 GCGCAGGCCC GTTTGCCGCC AAAATGCCGT CTGAAACCGC ATGA
This corresponds to the amino acid sequence <SEQ ID 1652; ORF 560>:
m560.pep
         MLIIRNLIYW LILCSTLIFL FPFMLLASPF RDGAHKMARV WVGILNWSLK
     51
         HIVGLKYRII GAENIPDRPA VICAKHQSGW ETLALQDIFP PQVYVAKREL
    101 FKIPFFGWGL KLVKTIGIDR NNRREANEQL IKQGLVRKNE GYWITIFPEG
    151 TRLAPGKRGK YKLGGARMAK MFEMDIVPVA LNSGEFWPKN SFLKYPGEIT
    201 VVICPTIPHA SGSEAELMEK CEHLIETQQP LISGAGPFAA KMPSETA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 560 shows 97.2% identity over a 246 aa overlap with a predicted ORF (ORF 560.ng)
from N. gonorrhoeae:
m560/g560
                                                 40
m560.pep
            MLIIRNLIYWLILCSTLIFLFPFMLLASPFRDGAHKMARVWVGILNWSLKHIVGLKYRII
            g560
            MLIIRNLIYWLILCSSLIFLFPFMLLASPFRDGAHKMARVWVGILNWSLKHIVGLKYRII
                    10
                              20
                                       30
                                                 40
                                                          50
                              80
                                       90
                                                100
                                                         110
m560.pep
            GAENIPDRPAVICAKHQSGWETLALQDIFPPQVYVAKRELFKIPFFGWGLKLVKTIGIDR
            g560
            GAEHIPDRPSVICAKHQSGWETLALQEIFPPQVYVAKRELFKIPFFGWGLKLVKTIGIDR
```

			843			
	70	80	90	100	110	120
m560.pep	130 NNRREANEQLIK	140	150	160	170	180
msev.pep			[][]]		1111111111	111111
g560	NNRREANEQLIK	QGLARKNEGYW 140	ITIFPEGTRL/ 150	APGKRGKYKL	GGARMAKMFEI 170	MDIVPVA
					170	180
m560.pep	190 LNSGEFWPKNSF	200 LKYPGEITVVI	210 CPTIPHASGSI	220 EAELMEKCEHI	230 LIETOOPLIS	240 SAGPFAA
g560		111111111:1	!	ШПППП.	111111111	[
9300	190	200	210	220	230	3AGPFAA 240
m560.pep	KMPSETAX		•			
g560	:           EMPSETX					
The followin	g partial DNA s	sequence was	s identified	in <i>N. menin</i>	gitidis <se< td=""><td>Q ID 1653&gt;:</td></se<>	Q ID 1653>:
a560.s		mcccca a ccm	CAMMMA OMO		· ·	
!	1 ATGCTCATCA 51 GATTTTCCTC	TCCGCAACCT TTTCCCTTTA	TGCTGCTCGC	CTGATACT	CT GTTCCAC	CCT
	01 CGCACAAGAT	GGCGCGGGTC	TGGGTCAAA	A TCCTCAAC	TO CUAGACUC	3GG 448
	51 CACATCGTCG	GGCTCAAATA	CCGCATCATO	GGCGCGGA	AA ACATCCC	CGA
	01 CCGCCCCGCC	GTCATCTGCG	CCAAACACCA	AAGCGGCT	GG GAAACGC	rcg
	51 CCCTTCAGGA	CATTTTTCCG	CCGCAGGTTT	ACGTTGCC	AA ACGCGAGT	ſŦĠ
	01 TTCAAAATCC 51 CATAGACCGC	CCTTTTTCGG	CTGGGGCTTC	AAACTGGT	CA AAACCATA	4GG
	01 GGTTGGCGCG	AACAACCGCC CAAAAACGAA	GCGAAGCCAA	A CGAGCAGC:	TO ATAAAACA	AGG CCC
	51 ACACGCCTTG	CGCCCGGAAA	ACGCGGCAAA	TACABACT	CC GCGCGCCCC	3GC
	D1 CATGGCGAAA	ATGTTTGAGA	TGGACATCGT	CCCCGTCGC	CC CTCAACAC	GCG
	51 GCGAATTTTG	GCCGAAAAAC	TCCTTTCTGA	AATATCCG	G GGAAATC	ACC
	01 GTCGTCATCT	GTCCGACCAT	CCCGCACGCA	AGCGGCAG	CG AAGCCGA	\TT
	51 GATGGGAAAA D1 GCGCAGGCCC	TGCGAACACC GTTTGCCGCC	TCATCGAAAC	GCAGCAGC	CG CTCATTTC	CG
70	JI GCGCAGGCCC	GITTGCCGCC	AAAATGCCGT	CIGAAACCC	SC ATGA	
	onds to the amin	o acid seque	nce <seq 1<="" td=""><td>D 1654; O</td><td>RF 560.a&gt;:</td><td></td></seq>	D 1654; O	RF 560.a>:	
a560.pe		ITICOMITEI	EDEMITAGE			
	1 MLIIRNLIYW 51 HIVGLKYRII	LILCSTLIFL GAENIPDRPA	VICAKHOSCU	RDGAHKMAH	RV WVKILNLS	ELK
	01 FKIPFFGWGL	KLVKTIGIDR	NNRREANEOL	. TKOGLARKN	F FOVIVARE	EC EL
	1 TRLAPGKRGK	YKLGGARMAK	MFEMDIVPVA	LNSGEFWP	ON SFLKYPGE	IT
20	01 VVICPTIPHA	SGSEAELMGK	CEHLIETQQE	LISGAGPFA	A KMPSETA*	,
m560/a560	98.4% identity	in 247 aa ov	erlap			
	-			10 4	10 5	60
m560.pe	p MLIIRNL	IYWLILCSTLIE	FLFPFMLLASF	FRDGAHKMAF	RVWVGILNWSI	KHIVGLKYRII
	111111	[		1111111111	111 111 11	11111111111
a560	MLIIRNL:					KHIVGLKYRII
		10 2	20 3	0 4	10 5	60
				0 10		.0 120
m560.pe		RPAVICAKHOS	WETLALQDIF	PPQVYVAKRE	LFKIPFFGWG	LKLVKTIGIDR
	111111	[			1111111111	THURST
a560	GAENIPDE					LKLVKTIGIDR
		70 8	30 9	0 10	10 11	.0 120
	1	L30 14	10 15	0 16	50 17	0 100
m560.pe	P NNRREANE	EQLIKQGLVRKN	EGYWITIFPE	GTRLAPGKRG	KYKLGGARMA	KMFEMDTUPVA
-	1111111		111111111	1111111111	111111111	HILLIAM
a560	NNRREANE	EQLIKQGLARKN	EGYWITIFPE	GTRLAPGKRG	KYKLGGARMA	KMFEMDIVPVA

```
130
                                140
                                        150
                                                 160
                                                         170
                                                                  180
                        190
                                200
                                        210
                                                 220
                                                         230
                 LNSGEFWPKNSFLKYPGEITVVICPTIPHASGSEAELMEKCEHLIETQQPLISGAGPFAA
      m560.pep
                 LNSGEFWPKNSFLKYPGEITVVICPTIPHASGSEAELMGKCEHLIETQQPLISGAGPFAA
      a560
                       190
                                200
                                        210
                                                 220
                                                         230
      m560.pep
                 KMPSETAX
                 11111111
- -
      a560
                 KMPSETAX
                                               . . /#4
```

The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 1655>: m561.seq.

```
ATGATACTGC CAGCCCGTTT TTCAGACGGC ATCAGCCTTT CCCTGCGCCT
      GAAACTCCTG ACCGGACTGT GGGTCGGGTT GGCGGCATTG TCTGTCGTTT
  51
      TGACACTGCT GCTCTCTTG CGTCTGGAAA ACGCGGCCTC CGTCATCGAA
 101
      GAGGCGGGCA ACTTGAGAAT GCAGGCATAC CGTCTGGCAT ACATGGCGGG
 201 TGAAGGCTCG CCCCGTGCGC AAATTGACAA TCAGGTTGCC GAATTTGAAA
      AAAGTTTAAA ACGCATTGCC CAAAGCGATG CCATCCATCC GCTGATTCCT
 301 TCGGACACCC CTCTTGCTTA TGATTTGATA CAATCCATGC TGATTATAGA
 351 TTGGCAGGCA CACATCCTCC CCCCGCTCCA GTCCTACCGG CGACCGACTC
 401 AGGTCGATCT CTACCGCTTT GCCGGAAACA TCGAACTGTT TTTGCAGGCA
      TTGGAAAATG CCAACGAAAA AAACACATGG TGGCTCAGGC GTTTTCAATG
 501 GGCAATTATG TTGATGACGC TGGTGTCGTC TGTACTGATG CTGTTTTGGC
 551 ACCAGATTTG GGTTATCCGG CCGCTGCAGG CGTTAAGGGA AGGTGCGGAA
      CGCATCGGAC GGAGGTGTTT CGATATTCCG GTTCCCGAAG GCGGTACGCC
 601
 651 GGAATTCAAA CAGGTCGGGC GTTGTTTCAA TCAAATGGGC GGCAGGTTGA
 701 AAATTTTATA TGATGATTTG GAAGGACAAG TCGCCGAGCA GACACGCAGT
 751 CTCGAAAAAC AAAATCAAAA CCTGACCCTG CTGTACCAAA CTACACGGGA
     CCTGCACCAA TCCTACATAC CGCAACAGGC TGCAGAACAT TTTCTAAACC
 851 GTATCCTGCC CGCCGTAGGA GCAGATTCCG GCAGAGTTTG TTTGGACGGC
     GGATCCGATG TTTATGTTTC CATTCATCAT GCGGATTGCG GCACAGCAGC
 951
     TTCGGATTTG GGGAAGTACC ATGAGGAAAT CTTCCCCATT GAGTACCAGA
     ACGAAACATT GGGCAGGCTG TTGCTCAGCT TTCCAAACGG CATTTCTCTT
1051 GATGAAGACG ACCGCATCCT GCTTCAAACA CTAGGCAGGC AATTGGGCGT
1101 ATCGCTTGCC GGCGCAAAAC AGGAGGAAGA AAAACGCCTG CTTGCAGTAT
1151
     TGCAGGAACG CAACCTGATT GCGCAAGGAT TACATGACAG CATCGCACAA
1201
     GCATTAACGT TCCTAAACCT ACAGGTACAG ATGCTGGAAA CCGCCTTTGC
1251 CGAAAACAAA CGGGAGGAAG CCGCAGAAAA CATCAGCTTT ATCAAAACAG
1301 GCGTGCAGGA ATGTTATGAA GATGTCCGCG AACTGCTGCT CAACTTCCGT
1351
     ACCAAAATCA GCAATAAAGA ATTTCCCGAA GCCGTTGCCG ACCTATTCGC
1401 CCGCTTTACG CAACAAACCG GGATAACGGT CGAAACCGCC TGGGAAAACG
1451 GTTCGTTCCT GCCGCCTCAG GAAGCGCAGC TCCAAATGAT TTTTATCCTG
1501 CAGGAAAGCC TGTCCAACAT CCGCAAACAC GCCCGCGCCA CCCATGTAAA
     ATTCACCCTT TCCGAACACG GCGGACGCTT TACCATGACC ATCCAAGACA
1601 ACGGACAAGG TTTCGACACG GAGAAAATAG GAGAACCCAC GGGCAGCCAT
1651 GTCGGACTGC ACATCATGCA GGAGCGTGCC AAACGCATCC ATGCCGTTTT
1701 AGAAATCCGT TCCCAAGCTC AACAGGGAAC CACCGTCTCA TTGACGGTTG
1751 CATCTGAAGA AAGCTTGAAA TGA
```

### This corresponds to the amino acid sequence <SEQ ID 1656; ORF 561>: m561.pep

-		-	•	•	
pep					
1				SVVLTLLLSL	
51				EFEKSLKRIA	
101				RPTQVDLYRF	
151	LENANEKNTW	WLRRFQWAIM	LMTLVSSVLM	LFWHQIWVIR	PLOALREGAE
201	RIGRRCFDIP	VPEGGTPEFK	QVGRCFNQMG	GRLKILYDDL	EGQVAEQTRS
251	LEKQNQNLTL	LYQTTRDLHQ	SYIPQQAAEH	FLNRILPAVG	ADSGRVCLDG
301	GSDVYVSIHH	ADCGTAASDL	GKYHEEIFPI	EYQNETLGRL	LLSFPNGISL
351	DEDDRILLQT	LGRQLGVSLA	GAKQEEEKRL	LAVLQERNLI	AQGLHDSIAO
401	ALTFLNLQVQ	MLETAFAENK	REEAAENISF	IKTGVQECYE	DVRELLLNFR
451	TKISNKEFPE	AVADLFARFT	OOTGITVETA	WENGSFLPPO	EAGLOMITET.

501 QESLSNIRKH ARATHVKFTL SEHGGRFTMT IQDNGQGFDT EKIGEPTGSH

551 VGLHIMQERA KRIHAVLEIR SQAQQGTTVS LTVASEESLK *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m561/g561
                   89.7% identity in 223 aa overlap
                                     20
                                              30
                                                        40
                                                                 50
                    MILPARFSDGISLSLRLKLLTGLWVGLAALSVVLTLLLSLRLENAASVIEEAGNLRMQAY
       m561.pep
                    - 1750
        g561
                    MILPTRFSDGIPLSLRLKLLTGLWVGLAALSVVLTLLLSFRLENAASVIEEAGNLKMOAY
                                              30
                                                       40
                                                                 50
                                                      100
                                                                110
                    RLAYMAGEGSPRAQIDNQVAEFEKSLKRIAQSDAIHPLIPSDTPLAYDLIQSMLIIDWQA
       m561.pep
                    g561
                    RLAYMAGEGSPRAQIDNQIAEFEKSLKRISQSDAIHPLIPSDNPLAYDLIQSMLIIDWQA
                                              90
                                                      100
                                                                110
                          130
                                    140
                                             150
                                                      160
                                                                170
                                                                         180
                    HILPPLQSYRRPTQVDLYRFAGNIELFLQALENANEKNTWWLRRFQWAIMLMTLVSSVLM
       m561.pep
                    NILPPLQAYRRPTQIELYRFAGNIELFLQALENAGEKNTWWLRRFQWVIMLMTLVSSVLM
       g561
                          130
                                    140
                                             150
                                                      160
                                                               170
                                                                         180
                          190
                                    200
                                             210
                                                      220
                                                               230
                                                                         240
                   LFWHQIWVIRPLQALREGAERIGRRCFDIPVPEGGTPEFKQVGRCFNQMGGRLKILYDDL
       m561.pep
                    1: :: 1
                   LFWHQIWVIRPLQALREGAERIGQRHFDIPVPEDVRPNSNRSGGVSTKWRSGX
       q561
                          190
                                    200
                                             210
                                                      220
                                                               230
                          250
                                    260
                                             270
                                                      280
                                                               290
                                                                         300
                   {\tt EGQVAEQTRSLEKQNQNLTLLYQTTRDLHQSYIPQQAAEHFLNRILPAVGADSGRVCLDG}
       m561.pep
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1657>:
       a561.seq
                ATGATACTGC CAGCCCGTTT TTCAGACGGC ATCAGCCTTT CCCTGCGCCT
              1
                 GAAACTCCTG ACCGGACTGT GGGTCGGGTT GGCGGCATTG TCTGTCGTTT
             51
                TGACACTGCT GCTCTCTTG CGTCTGGAAA ACGCGGCCTC CGTCATCGAA
            101
                GAGGCGGCA ACTTGAGAAT GCAGGCATAC CGTCTGGCAT ACATGGCGGG
                TGAAGGCTCG CCCCGTGCGC AAATTGACAA TCAGGTTGCC GAATTTGAAA
            201
                AAAGTTTAAA ACGCATTGCC CAAAGCGATG CCATCCATCC GCTGATTCCT
            251
            301
                TCGGACACCC CTCTTGCTTA TGATTTGATA CAATCCATGC TGATTATAGA
            351
                TTGGCAGGCA CACATCCTCC CCCCGCTCCA GTCCTACCGG CGACCGACTC
                AGGTCGATCT CTACCGCTTT GCCGGAAACA TCGAACTGTT TTTGCAGGCA
            401
                TTGGAAAATG CCAACGAAAA AAACACATGG TGGCTCAGGC GTTTTCAATG
            451
                GGCAATTATG TTGATGACGC TGGTGTCGTC TGTACTGATG CTGTTTTGGC
            501
                ACCAGATTTG GGTTATCCGG CCGCTGCAGG CGTTAAGGGA AGGTGCGGAA
            551
                CGCATCGGAC GGAGGTGTTT CGATATTCCG GTTCCCGAAG GCGGTACGCC
            601
                GGAATTCAAA CAGGTCGGGC GTTGTTTCAA TCAAATGGGC GGCAGGTTGA
            651
            701 AAATTTTATA TGATGATTTG GAAGGACAAG TCGCCGAGCA GACACGCAGT
                CTCGAAAAAC AAAATCAAAA CCTGACCCTG CTGTACCAAA CTACACGGGA
            801
                TCTGCACCAA TCCTACATAC CGCAACAGGC TGCAGAACAT TTTCTAAACC
                GTATCCTGCC CGCCGTAGGA GCAGATTCCG GCAGAGTTTG TTTGGACGGC
            901
                GGATCCGATG TTTATGTTTC CATTCATCAT GCGGATTGCG GCACAGCAGC
                TTCGGATTTG GGGAAGTACC ATGAGGAAAT CTTCCCCATT GAGTACCAGA
            951
           1001 ACGAAACATT GGGCAGGCTG TTGCTCAGCT TTCCAAACGG CATTTCTCTT
                GATGAAGACG ACCGCATCCT GCTTCAAACA CTAGGCAGGC AATTGGGCGT
           1051
                ATCGCTTGCC GGCGCAAAAC AGGAGGAAGA AAAACGCCTG CTTGCAGTAT
           1151 TGCAGGAACG CAACCTGATT GCGCAAGGAT TACATGACAG CATCGCACAA
           1201 GCATTAACGT TCCTAAACCT ACAGGTACAG ATGCTGGAAA CCGCCTTTGC
           1251 CGAAAACAAA CGGGAGGAAG CCGCAGAAAA CATCGGCTTC ATCAAAACAG
                GCGTGCAGGA ATGTTATGAA GATGTCCGCG AACTGCTGCT CAACTTCCGT
           1351 ACCAAAATCA GTAATAAAGA ATTTCCCGAA GCCGTTGCCG ACCTATTCTC
```

	•	
1401	GCGCTTTACG CAACAGACCG GCACGACTGT CGAAACCGCT TG	GGAAAACG
1451	GCACGCACCT GCCTACACAG GACGAGCAGC TCCAAATGAT TT	TCATCCTG
1501	CAAGAAAGCT TGTCCAACAT CCGAAAACAT GCCCACGCCA CC	
1551	ATTCAGACTG CTCAAACAGG ATGGAAGTTT TACAATGACC AT	
1601	ACGGACAGGG TTTTGACACG GAAAACATTG GAGAACCATC GG	CAGCCAT
1651	GTCGGACTGC ATATCATGCA GGAGCGTGCC AAACGCATCC ATG	
1701	AGAAATCCGT TCCCAAGCTC AACAGGGAAC CACCGTCTCA TTO	
1751	CATCTGAAGA AAGCTTGAAA TGA	SACGGITG
1/31	CATCIGAAGA AAGCIIGAAA IGA	,
m:	a to the amine said common CEO TO 1650, ODE 50	-1 -
This correspond	s to the amino acid sequence <seq 1658;="" 56<="" id="" orf="" td=""><td>o1.a&gt;:</td></seq>	o1.a>:
a561.pep		
1	MILPARFSDG ISLSLRLKLL TGLWVGLAAL SVVLTLLISL RLI	ENAASVIE
51	EAGNLRMQAY RLAYMAGEGS PRAQIDNQVA EFEKSLKRIA QSI	DAIHPLIP
101	SDTPLAYDLI QSMLIIDWQA HILPPLQSYR RPTQVDLYRF AGI	
151	LENANEKNTW WLRRFQWAIM LMTLVSSVLM LFWHQIWVIR PLO	
201	RIGRRCFDIP VPEGGTPEFK QVGRCFNQMG GRLKILYDDL EGG	
251	LEKONONLTL LYOTTRDLHQ SYIPQQAAEH FLNRILPAVG ADS	
301	GSDVYVSIHH ADCGTAASDL GKYHEEIFPI EYQNETLGRL LLS	
351	DEDDRILLQT LGRQLGVSLA GAKQEEEKRL LAVLQERNLI AQO	
401	ALTFLNLQVQ MLETAFAENK REEAAENIGF IKTGVQECYE DVI	_
	TKISNKEFPE AVADLESRET QQTGTTVETA WENGTHLPTO DEG	
451		
501	QESLSNIRKH AHATHIKFRL LKQDGSFTMT IQDNGQGFDT EN	IGEPSGSH
551	VGLHIMQERA KRIHAVLEIR SQAQQGTTVS LTVASEESLK *	
m561/a561	96.9% identity in 590 aa overlap	
	10 20 20 40	
5.63	10 20 30 40	50 60
m561.pep	MILPARFSDGISLSLRLKLLTGLWVGLAALSVVLTLLLSLRLEN	
a561	MILPARFSDGISLSLRLKLLTGLWVGLAALSVVLTLLLSLRLEN	
	10 20 30 40	50 60
	70 80 90 100	110 120
m561.pep	RLAYMAGEGSPRAQIDNQVAEFEKSLKRIAQSDAIHPLIPSDTI	
a561	RLAYMAGEGSPRAQIDNQVAEFEKSLKRIAQSDAIHPLIPSDTI	PLAYDLIQSMLIIDWQA
	70 80 90 100	110 120
	130 140 150 160	170 180
m561.pep	HILPPLQSYRRPTQVDLYRFAGNIELFLQALENANEKNTWWLRF	RFQWAIMLMTLVSSVLM
a561	HILPPLQSYRRPTQVDLYRFAGNIELFLQALENANEKNTWWLR	RFOWAIMLMTLVSSVLM
	130 140 150 160	170 180
	190 200 210 220	230 240
m561.pep	LFWHQIWVIRPLQALREGAERIGRRCFDIPVPEGGTPEFKQVG	
mo oz vpop		
a561	LFWHQIWVIRPLQALREGAERIGRRCFDIPVPEGGTPEFKOVG	
4501	190 200 210 220	230 240
	150 200 210 220	250 240
	250 260 270 280	200 200
- 5.61		290 300
m561.pep	EGQVAEQTRSLEKQNQNLTLLYQTTRDLHQSYIPQQAAEHFLNI	RILPAVGADSGRVCLDG
a561	EGQVAEQTRSLEKQNQNLTLLYQTTRDLHQSYIPQQAAEHFLNF	
	250 260 270 280	290 300
	310 320 330 340	350 360
m561.pep	GSDVYVSIHHADCGTAASDLGKYHEEIFPIEYQNETLGRLLLSI	FPNGISLDEDDRILLOT
a561	GSDVYVSIHHADCGTAASDLGKYHEEIFPIEYQNETLGRLLLSI	PNGISLDEDDRILLOT
	310 320 330 340	350 360
	555 540	220 200
	370 380 390 400	410 420
m561.pep	LGRQLGVSLAGAKQEEEKRLLAVLQERNLIAQGLHDSIAQALTI	TINI,OVOMI.ETA EARLY
a561	LGRQLGVSLAGAKQEEEKRLLAVLQERNLIAQGLHDSIAQALTI	
2201	TOWARD A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF	PAPAAGADE TALAENK

	370	380	390	400	410	420
	430	440	450	460	470	480
m561.pep	REEAAENISFI	KTGVQECYED	VRELLLNFRT	Kisnkefpea	VADLFARFT(	QTGITVETA
	111111111111111111111111111111111111111	1111111111	1111111111	1111111111	11111:111	HII HIII
a561	REEAAENIGFI	KTGVQECYED	VRELLLNFRT	Kisnkefpea	VADLFSRFT(	QTGTTVETA
	430	440	450	4 60	470	480
	490	500	510	520	530	540
m561.pep	wengsflppqe	AQLQMIFILQ	ESLSNIRKHA	RATHVKFTLS	EHGGRFTMT	QDNGQGFDT
	1111: 11 1:	- 111111111		:   :	:: 1 11111	
. sam a561	WENGTHLPTQ	EQLQMIFILQ	ESLSNIRKHA	HATHIKFRLL	KQDGSFTMTI	QDNGQGFDT
	490	500	510	520	530	540
	550	560	570	580	590	
m561.pep	EKIGEPTGSHV	GLHIMQERAK	RIHAVLEIRS	QAQQGTTVSL	TVASEESLK	<b>C</b>
	1:1111:1111	111111111111111111111111111111111111	1111111111	1111111111	11111111111	
a561	ENIGEPSGSHV	GLHIMQERAK	RIHAVLEIRS	QAQQGTTVSL	TVASEESLKX	<b>K</b>
	550	560	570	580	590	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1659>: g562.seq.

```
1 atggcaagec egtegagtet geettteaat tegggcaaga ecaaacegae
51 ggcttttgcc gcgccggttt tggtcggaat catgttttcc acgccgctgc
101
    qqqcqcqqcq caggtctttq tqqcqcacgt cggtaacggt ttqqtcqttq
    gtcagtgcgt ggatggtggt cattgcgcct ttgacgatgc cgacgctttc
151
201 gctcaacact ttggcaaccg gcgagaggca gttggtggtg caggaagcgt
251 tggaaacgac ggtcatgtcg gcggtcagga cgctgtcgtt cacgccgtac
301 acgacggttg catcgacatc gtcgccgccc ggtgcggaaa tgaggacttt
351 tttcgcgccg ctttcgaggt ggattttggc tttttctttg ctggtgaacg
401 cgccggtgca ttccatgacc aaatcgacac cgagttcttt ccacggcagt
451 tcggcagggt tgcgggtcga gaagaagggg attttgtcgc cgttgacgat
501
    gaggttgccg ccgtcgtggg atacgtcggc ttcaaagcgt ccgtgtacgg
551 tqtcqaattt ggtcagatgg gcgttggttt caaggctgcc gctggcgttg
601 acggcgacga tttggagttg gtcttga
```

#### This corresponds to the amino acid sequence <SEQ ID 1660; ORF 562.ng>: g562.pep

- MASPSSLPFN SGKTKPTAFA APVLVGIMFS TPLRARRRSL WRTSVTVWSL
- VSAWMVVIAP LTMPTLSLNT LATGERQLVV QEALETTVMS AVRTLSFTPY
- 101 TTVASTSSPP GAEMRTFFAP LSRWILAFSL LVNAPVHSMT KSTPSSFHGS
  - SAGLRVEKKG ILSPLTMRLP PSWDTSASKR PCTVSNLVRW ALVSRLPLAL
- 201 TATIWSWS*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1661>:

m562.seq

- 1 ATGGCAAGCC CGTCGAGCCT GCCTTTCAAT TCGGGCAGTA CCAAACCGAC 51 GGCTTTTGCC GCGCCGGTTT TGGTCGGAAT CATGTTTTCC ACGCCGCTGC
- 101 GGGCGCGGCG CAGGTCTTTG TGGCGCACGT CGGTAACGGT TTGGTCGTTG
- 151 GTCAGCGCGT GGATGGTGGT CATCGCGCCT TTGACGATGC CGACGCTTTC
- 201 GCTCAACACT TTGGCAACCG GCGAGAGGCA GTTGGTGGTG CAGGAAGCGT 251 TGGAAACGAC GGTCATGTCG GCGGTCAGGA CGCTGTCGTT CACGCCGTAC
- 301 ACGACGGTTG CATCGACATC GTCGCCGCCC GGTGCGGAAA TGAGGACTTT
- 351 TTTCGCGCCG CTTTCGAGGT GGATTTTGGC TTTTTCTTTG CTGGTGAACG
- CGCCGGTGCA TTCCATGACC AAATCGACAC CGAGTTCTTT CCACGGCAGT
- 451 TCGGCAGGGT TGCGGGTCGA GAAGAAGGGG ATTTTGTCGC CGTTGACGAT
- GAGGTTGCCG CCGTCGTGGG ATACGTCGGC TTCAAAGCGT CCGTGCACGG
- TGTCGAATTT GGTCAGATGG GCGTTGGTTT CAAGGCTGCC GCTGGCGTTG 551
- 601 ACGGCGACGA GTTGGAGTTG GTCTTGA

#### This corresponds to the amino acid sequence <SEQ ID 1662; ORF 562>: m562.pep

- MASPSSLPFN SGSTKPTAFA APVLVGIMFS TPLRARRRSL WRTSVTVWSL
- VSAWMVVIAP LTMPTLSLNT LATGERQLVV QEALETTVMS AVRTLSFTPY

10

20

- 101 TTVASTSSPP GAEMRTFFAP LSRWILAFSL LVNAPVHSMT KSTPSSFHGS 151 SAGLRVEKKG ILSPLTMRLP PSWDTSASKR PCTVSNLVRW ALVSRLPLAL
- 201 TATSWSWS*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

	m562/g562	99.0% identity in 208 aa overlap
** Statemen	m562.pep	10 20 30 40 50 60 MASPSSLPFNSGSTKPTAFAAPVLVGIMFSTPLRARRSLWRTSVTVWSLVSAWMVVIAP
	g562	
	m562.pep	70 80 90 100 110 120 LTMPTLSLNTLATGERQLVVQEALETTVMSAVRTLSFTPYTTVASTSSPPGAEMRTFFAP
	g562	
	m562.pep	130 140 150 160 170 180 LSRWILAFSLLVNAPVHSMTKSTPSSFHGSSAGLRVEKKGILSPLTMRLPPSWDTSASKR
	g562	!
	m562.pep	190 200 209 PCTVSNLVRWALVSRLPLALTATSWSWSX
	g562	
The	following page 4562.seg	artial DNA sequence was identified in N. meningitidis <seq 1663="" id="">:</seq>
	•	AMCCCAACCC CCMCCACMMM CMCMMMCAAM MCCCCCACMA CONAACCCAC
	1	ATGGCAAGCC CGTCGAGTTT GTCTTTCAAT TCGGGCAGTA CCAAACCGAC
	51	GGCTTTTGCC GCGCCAGTTT TGGTCGGAAT CATGTTTTCC ACGCCGCTGC
	101 151	GGGCGCGCG CAGGTCTTTG TGGCGCACGT CGGTAACGGT TTGGTCGTTG GTCAGCGCGT GGATGGTGGT CATCGCGCCT TTGACGATGC CGACGCTTTC
	201	GCTCAACACT TTGGCAACCG GCGAGAGGCA GTTGGTGGTG CAGGAAGCGT
	201 251	
	301	TGGAAACGAC GGTCATGTCG GCGGTCAGGA TGCTGTCGTT CACGCCGTAC
	351	ACGACGGTTG CATCGACATC GTCGCCGCCC GGTGCGGAAA TGAGGACTTT TTTCGCGCCG CTTTCCAGAT GAACTTTGGC TTTTTCTTTG CTGGTGAACG
	401	CGCCGGTGCA TTCCATGACC AAATCGACAC CGAGTTCTTT CCACGGCAGT
	451	TCGGCAGGT TGCGGGTCNA GAAGAANGGG ATTTTGTCGC CGTTGACGAT
	501	GAGGTTGCCG CCGTCGTGGG ATACGTCGGC TTCAAAGCGT CCGTGCACGG
	551	TGTCGAATTT GGTGAGGTGG GCGTTGGTTT CAAGGCTGCC GCTGGCGTTG
	601	ACGCCACGA TITGGAGTTG GTCTTGA
This	correspond	s to the amino acid sequence <seq 1664;="" 562.a="" id="" orf="">:</seq>
	a562.pep	
	1	MASPSSLSFN SGSTKPTAFA APVLVGIMFS TPLRARRRSL WRTSVTVWSL
	51	VSAWMVVIAP LTMPTLSLNT LATGERQLVV QEALETTVMS AVRMLSFTPY
	101	TTVASTSSPP GAEMRTFFAP LSR*TLAFSL LVNAPVHSMT KSTPSSFHGS
	151	SAGLRVXKXG ILSPLTMRLP PSWDTSASKR PCTVSNLVRW ALVSRLPLAL
	201	TATIWSWS*
	m562/a562	96.6% identity in 208 aa overlap
		10 20 30 40 50 60
	m562.pep	MASPSSLPFNSGSTKPTAFAAPVLVGIMFSTPLRARRRSLWRTSVTVWSLVSAWMVVIAP
	a562	

MASPSSLSFNSGSTKPTAFAAPVLVGIMFSTPLRARRRSLWRTSVTVWSLVSAWMVVIAP

40

30

	70	80	90	100	110	120
m562.pep	LTMPTLSLNTLAT	GERQLVVQEA	LETTVMSAVR:	rlsftpyttv:	ASTSSPPGAE	MRTFFAP
				HIHHH	[1][[][[][[][[][[][[][[][[][[][[][[][[][	1111111
a562	LTMPTLSLNTLAT				ASTSSPPGAE	MRTFFAP
	70	80	90	100	110	120
	130	140	150	160	170	180
m562.pep	LSRWILAFSLLVN	APVHSMTKSTI	PSSFHGSSAGI	LRVEKKGILS	PLTMRLPPSW	DTSASKR
			[[[]]]	111 1 1111		111111
a562	LSRXTLAFSLLVN		PSSFHGSSAGI	RVXKXGILS	PLTMRLPPSWI	DTSASKR
	130	140	150	160	170	180
*icem				/84		
	190	200	209			
m562.pep	PCTVSNLVRWALVS	SRLPLALTATS	Swswsx			
		1111111111	11111			
a562	PCTVSNLVRWALVS		WSWSX			
	190	200				

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1665>: 9563.seq

```
ATGAACAAAA CCCTCTATCG TGTGATTTTC AACCGCAAAC GCGGTGCTGT
  51 GGTAGCTGTT GCCGAAACCA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
 101
      GTGGTTCGGG CAGCGTTTAT GTGAAATCCG TTTCTTTCAT TCCTACTCAT
 151 TCCAAAGCCT TTTGTTTTTC TGCATTAGGC TTTTCTTTAT GTTTGGCTTT
 201 GGGTACGGTC AATATTGCTT TTGCTGACGG CATTATTACT GATAAAGCTG
 251 CTCCTAAAAC CCAACAAGCC ACGATTCTGC AAACAGGTAA CGGCATACCG
 301 CAAGTCAATA TTCAAACCCC tACTTCGGCa ggGGTTTCTG TTAATCAATA
 351 TGCCCAGTTT GATGTGGGTA ATCGCGGGGC GATTTTAAAC AACAGTCGCA
 401 GCAACACCCA AACACAGCTA GGCGGTTGGA TTCAAGGCAA TCCTTGGTTG
 451 ACAAGGGGCG AAGCACGTGT GGTTGTAAAC CAAATCAACA GCAGCCATCC
 501 TTCACAACTG AATGGCTATA TTGAAGTGGG TGGACGACGT GCAGAAGTCG
 551 TTATTGCCAA TCCGGCAGGG ATTGCAGTCA ATGGTGGTGG TTTTATCAAT
 601 GCTTCCCGTG CCACTTTGAC GACAGGCCAA CCGCAATATC AAGCAGGAGA
 651 CTTTAGCGGC TTTAAGATAA GGCAAGGCAA TGCTGTAATC GCCGGACACG
 701 GTTTGGATGC CCGTGATACC GATTTCACAC GTATTCTTTT GTATGCCAAC
 751 AAAATCACCT TGATCAGTAC GGCCGAACAA GCAGGCATTC GTAATCAAGG
 801 GCAGTTGTTT GCTTCTTCCG GTAATGTGGC GATTGATGCA AATGGCCGTT
 851 TGGTCAATAG TGGCACGATG GCTGCCGCCA ATGTGCAAGA TATGAATAAT
 901 ACAGCGGAAC ACAAAGTCAA TATCCGCAGT CAAGCCTTTG AAAACAGCGG
 951 TACGGCGGTA TCGCAACAAG GCACTCAAAT TCACAGTCAA TCGATTCAAA
1001 ACACTGGCAA ATTATTGTCG GCAGGAACAG AGGATTTAGC CGTTTCAGGC
      AGCCTGAACA ATCAAAATGG CGAAATAGCG ACCAATCAAC AACTGATTAT
1051
1101
     TCACGATGGT CAGCAATCTA CCGTTGTCAT TGATAATACG AATGGCACGA
1151 TACAATCAGG CCGTGATGTT GCCATTCAGG CAAAATCGTT ATCCAACAAC
      GGCACACTTG CCGCTGATAA TAAACTGGAT ATTGCGTTAC AAGATGATTT
1251
      TTATGTAGAA CGCAAGATCG TGGCGGGCAA TGAATTGTCG CTCAGTACAC
      GAGGCAGCCT GAAAAATTCA CATACCTTGC AAGCAGGAAA ACGCATTCGG
1301
      ATTAAAGCAA ATAACCTTGA TAATGCAGTA CAAGGCAACA TTCAATCCGG
1401 CGGTACGACA GACATTGGCA CGCAGCACAA TTTAACCAAT AGAGGCTTGA
     TTGACGGACA ACAAACCAAA ATCCAAGCCG GGCAAATGAA TAATATCGGT
1451
1501 ACAGGTCGGA TTTATGGCGA CAATATCGCT ATTGCGGCTA CCCGCTTAGA
1551 CAATCAAGAT GAAAACGGTA CAGGTGCCGC CATTGCGGCA CGCGAAAACC
1601
     TGAATTTAGG CATTGAACAA TTAAATAACC GTGAAAACAG TCTGATTTAC
     AGCGGTAACG ATATGGCGGT TGGCGGCGCA TTAGATACCA ATGACCAAGC
1701
      CACAGGCAAA GCCCAAAGGA TACACAATGC CGGCGCAATC ATTGAAGCTG
1751
     CAGGCAAAAT GCGTTTAGGT GTAGAAAAGC TGCACAATAC CAATGAGCAT
1801 TTGAAAACGC AGTTGGTAGA AACAGGGCGC GAGCGTATTG TTGATTACGA
1851 AGCATTTGGA CGACACGAAT TATTGCGAGA AGGCACGCAA CATGAATTAG
1901 GCTGGTTTGT CTACAACAAT GAATCAGACC ACTTACGCAC CCCTGATGGA
1951 GTGGCGCATG AAAATTGGCA TAAATACGAT TATGAAAAAG TAACGCAAGA
2001 AACTCAAGTA ACCGGAACTG CGCCTGCTAA AATCATTGCA GGTAGCGATT
2051 TGATTATTGA TAGCAAAGCA GTCTTCAACA GCGACAGCCG AATCATTGCC
```

-- *******

2101 GGCGGCCAAT TGCTTGTGCA AACAGAAAAA GACGGTTTGC ATAACGAGCA 2151 AACCTTTGGC GAGAAGAAAG TCTTCAGCGA AAATGGTAAG TTGCACAACT 2201 ACTGGCGTGC GCGTCGTAAA GGACATGATG AAACAGGGCA TCGTGAACAA 2251 AATTATACTT TGCCGGAGGA AATCACACGC GACATTTCAC TGGGTTCATT 2301 TGCCTATGAA TCGCATAGCA AAGCATTAAG CCGTCATGCG CCCAGCCAAG 2351 GCACTGAGTT GCCACAAAGT AACCGGGATA ATATCCGTAC TGCGAAAAGC 2401 AACGGTATTT CGCTACCCTA TACGCCCAAT TCTTTTACCC CATTACCCGG 2451 CAGCAGCTTA TACATTATCA ATCCTGCCAA TAAAGGCTAT CTTGTTGAAA 2501 CCGATCCACG CTTTGCCAAC TACCGTCAAT GGTTGGGTAG TGACTATATG 2551 CTGGGCAGCC TCAAACTAGA CCCAAACAAT TTACATAAAC GTTTGGGTGA 2601 TGGTTATTAC GAGCAACGTT TAATCAATGA ACAAATCGCA GAGCTGACAG 2651 GGCATCGTCG TTTAGACGGT TATCAAAACG ACGAAGAACA ATTTAAAGCC 2701 TTAATGGATA ATGGCGCGAC TGCGGCACGT TCGATGAATC TCAGCGTTGG 2751 CATTGCATTA AGTGCCGAGC AAGCAGCGCA ACTGACCAGC GATATTGTTT 2801 GGTTGGTACA AAAAGAAGTT AAACTTCCTG ATGGCGGCAC ACAAACCGTA 2851 TTGATGCCAC AGGTTTATGT ACGCGTTAAA AATGGCGGCA TAGACGGTAA 2901 AGGTGCATTG TTGTCAGGCA GCAATACACA AATCAATGTT TCAGGCAGCC 2951 TGAAAAACTC AGGCACGATT GCAGGGCGCA ATGCGCTTAT TATCAATACC 3001 GATACGCTAG ACAATATCGG TGGGCGTATT CATGCGCAAA AATCAGCGGT 3051 TACGGCCACA CAAGACATCA ATAATATTGG CGGCATTCTT TCTGCCGAAC 3101 AGACATTATT GCTCAATGCG GGTAACAACA TCAACAACCA AAGCACGGCC 3151 AAGAGCAGTC AAAATGCACA AGGTAGCAGC ACCTACCTAG ACCGAATGGC 3201 AGGTATTTAT ATCACAGGCA AAGAAAAAGG TGTTTTAGCA GCGCAGGCAG 3251 GCAAAGACAT CAACATCATT GCCGGTCAAA TCAGCAATCA ATCAGATCAA 3301 GGGCAAACCC GGCTGCAGGC AGGACGCGAC ATTAACCTGG ATACGGTACA 3351 AACCGGCAAA TATCAAGAAA TCCATTTTGA TGCCGATAAC CATACCATCC 3401 GAGGTTCAAC GAACGAAGTC GGCAGCAGCA TTCAAACAAA AGGCGATGTT 3451 ACCCTATTGT CAGGGAATAA TCTCAATGCC AAAGCTGCCG AAGTCGGCAG 3501 CGCAAAAGGC ACACTTGCCG TGTATGCTAA AAATGACATT ACTATCAGCT 3551 CAGGCATCCA TGCCGGCCAA GTTGATGATG CGTCCAAACA TACAGGCAGA 3601 AGCGGCGGCG GTAATAAATT AGTCATTACC GATAAAGCCC AAAGTCATCA 3651 CGAAACTGCT CAAAGCAGCA CCTTTGAAGG CAAGCAAGTT GTATTGCAGG 3701 CAGGAAACGA TGCCAACATC CTTGGCAGTA ATGTTATTTC CGATAATGGC 3751 ACCCGGATTC AAGCAGGCAA TCATGTTCGC ATTGGTACAA CCCAAACTCA 3801 AAGCCAAAGC GAAACCTATC ATCAAACCCA AAAATCAGGA TTGATGAGTG 3851 CAGGTATCGG CTTCACTATT GGCAGCAAGA CAAACACACA AGAAAACCAA 3901 TCCCAAAGCA ACGAACATAC AGGCAGTACC GTAGGCAGCC TGAAAGGCGA 3951 TACCACCATT GTTGCAAGCA AACACTACGA ACAAACCGGC AGCAACGTTT 4001 CCAGCCCTGA GGGCAACAAC CTTATCAGCA CGCAAAGTAT GGATATTGGC 4051 GCAGCACAAA ACCAATTAAA CAGCAAAACC ACCCAAACCT ACGAACAAAA 4101 AGGCTTAACG GTGGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA 4151 GCGATTGCCG TAGCACACAA AGCAGCAAAC AAGTCGGACA AAGCAAAAAC 4201 GACCGCGTTA ATGCCATGGC GGCTGCCAAT GCAGGTTGGC AGGCCTATCA AACAGGCAAA GGCGCACAAA ACTTAGCCAA TGGTACAACC AATGCCAAAC 4301 AAGTCAGCAT CTCCATAACC TACGGCGAAC AGCAAAACCG ACAAACCACC 4351 CAAGTTCAAG CCAATCAAGC CCAAGCGAGT CAAATTCAAG CAGGCGGCAA 4401 AACTACCCTT TATTGCCGAA GGTGCGGCGA ACAATCCAAT ATCAACATCA 4451 CAGGCTCAGG TGTTTCAGGC AGAGCAGGAA CCGGCCTGAT TGCCGATAAG 4501 CAAATCCATC TGCAATCAGC CGAGCAAAGC AATACCGAAC GCAGCCAAAA 4551 CAAATCAGCA GGCTGGAACG CAGGTGCTGC CGTATCATTC GGACAAGGAG GCTGGTCATT AGGCGTTGCC GCAGGCGGCA ATGTCGGCAA AGGCTACGGC 4651 TATGGCGATA GCGTAACCCA CCGCCATAGC CATATTGGCG ACAAAGGCAG 4701 CCAAACCCTT ATCCAAAGTG GTGGCGATAC CATCATCAAA GGCGCGCAAG 4751 TACGCGGCAA AGGCGTACAA GTCAATGCCA AAAACCTAAG CATTCAAAGT 4801 GTACAAGATA GAGAAACTTA TCAAAGCAAA CAACAAAACG CCGGTGCACA 4851 AGTTACCGTA GGTTATGGCT TCAGTGCCAG TGGCGATTAC AGCCAAAGCA 4901 AAATCCGAGC CGACCATGCT TCGGTAACCG AGCAAAGCGG TATTTATGCC 4951 GGAGAAGACG GCTATCAAAT CAAGGTCGGA AACCATACAG GCCTCAAAGG 5001 CGGCATCATC ACCAGCAGCC AAAGCGCAAA AGACAAGGGT AAAAACCGAT 5051 TCAGCACAGG CACACTCGCC GGCAGTGATA TTCAAAATTA CAGCCAATAC 5101 GAAGGAAAAA GTTTTGGATT GGGTGCCAGC GTTGCCGTAA GCGGCAAAAC 5151 ACTGGGACAG GGCGCAAAAA ATAAACCTCA AGACAAACAC CTGACAAGCA

WO 99/57280 PCT/US99/09346

851

```
5201 TAGCCGATAA AAACGGCGCA AGTTCATCAG TAGGGTACGG CAGCGACAGC
       5251 GACAGTCAAA GCAGCATCAC AAAAAGCGGC ATCAATACCC CCAAAAACAT
       5301 TCAAATCACA GACGAAGCCG CACAAATCAG GCTGACAGGC AAAATAGCGG
       5351 CACAAACCAA AGCCGATATT GATACAAACG TAACCACAGA CACCGCCGAA
       5401 CGACATTCGG GCAGCCTGAA AAACATATTT GACAAAGATA GAGTGCAAAG
       5451 TGAACTGGAT TTACAAAgaA CCGTCAGCCA AGATTTTAGT AAAAATGTTC
       5501 AACAAACCAA TACCGAGATT AACCAACATT TAGACAAACT CAAAGCAGAC
       5551 AAAGAAGCAG CCGAAACAGC AGCAGCCGAG GCATTAGCCA ATGGCGATAT
       5601 GGAAACTGCC AAACGCAAAG CCCATGAAGC TCAAGATGCG GCAGCAAAAG
       5651 CAGATAATTG GCAACAAGGC AAAGTCATTC TCAACATGTT AGCCTCAGGT
       5701 TTAGCTGAGC CGACCCAAAG CGGAGCgggc ATCGCTGCGG CTACCGCATC
- 120,000
       5751 GCCagaCGTA TCGTATGCGA TTGGACAGCA CTTTAAagaT TTAGCCGGTC
       5801 AAAACGCGAA TGGCAAACTA ACCGCCAGTC AagaAACCGC TCACGTTCTT
       5851 GCCCACGCGG TATTAGGAGC AGCGGTTGCC GCAGCATGAG GCAACAATGC
       5901 CCCGGCAGGA GCATTGGGTG CGGGCGGGTC ggAagcggCC GCCCCAATCA
       5951 TCGGCAAATG GCTGTACGGC AAAGGAGACG gcggcagccT GAATgcggag
       6001 gaaaAAGaqa CCGTTTCGGC GATTACAAGG ATGCTGggta cGgctGCCGG
       6051 AGCAGCTGAG GGAAACTCGT CCGCCGATGC TGTGTGGGGT TGTTTTCaaa
       6101 cggctTCaga TTTCGCTTCC TCTTTTTCAT ATCCTATAAA CATGTGA
   This corresponds to the amino acid sequence <SEQ ID 1666; ORF 563.ng>:
   q563.pep..
          1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSGSGSVY VKSVSFIPTH
         51 SKAFCFSALG FSLCLALGTV NIAFADGIIT DKAAPKTQQA TILQTGNGIP
        101 OVNIOTPTSA GVSVNQYAQF DVGNRGAILN NSRSNTQTQL GGWIQGNPWL
        151 TRGEARVVVN QINSSHPSQL NGYIEVGGRR AEVVIANPAG IAVNGGGFIN
        201 ASRATLTTGO POYQAGDFSG FKIRQGNAVI AGHGLDARDT DFTRILLYAN
        251 KITLISTAEQ AGIRNQGQLF ASSGNVAIDA NGRLVNSGTM AAANVQDMNN
        301 TAEHKVNIRS QAFENSGTAV SQQGTQIHSQ SIQNTGKLLS AGTEDLAVSG
        351 SLNNQNGEIA TNQQLIIHDG QQSTVVIDNT NGTIQSGRDV AIQAKSLSNN
        401 GTLAADNKLD IALQDDFYVE RKIVAGNELS LSTRGSLKNS HTLQAGKRIR
        451 IKANNLDNAV QGNIQSGGTT DIGTQHNLTN RGLIDGQQTK IQAGQMNNIG
        501 TGRIYGDNIA IAATRLDNQD ENGTGAAIAA RENLNLGIEQ LNNRENSLIY
        551 SGNDMAVGGA LDTNDQATGK AQRIHNAGAI IEAAGKMRLG VEKLHNTNEH
        601 LKTQLVETGR ERIVDYEAFG RHELLREGTQ HELGWFVYNN ESDHLRTPDG
        651 VAHENWHKYD YEKVTQETQV TGTAPAKIIA GSDLIIDSKA VFNSDSRIIA
        701 GGOLLVOTEK DGLHNEQTFG EKKVFSENGK LHNYWRARRK GHDETGHREQ
        751 NYTLPEEITR DISLGSFAYE SHSKALSRHA PSQGTELPQS NRDNIRTAKS
        801 NGISLPYTPN SFTPLPGSSL YIINPANKGY LVETDPRFAN YRQWLGSDYM
        851 LGSLKLDPNN LHKRLGDGYY EQRLINEQIA ELTGHRRLDG YQNDEEQFKA
        901 LMDNGATAAR SMNLSVGIAL SAEQAAQLTS DIVWLVQKEV KLPDGGTQTV
        951 LMPQVYVRVK NGGIDGKGAL LSGSNTQINV SGSLKNSGTI AGRNALIINT
       1001 DTLDNIGGRI HAQKSAVTAT QDINNIGGIL SAEQTLLLNA GNNINNQSTA
       1051 KSSQNAQGSS TYLDRMAGIY ITGKEKGVLA AQAGKDINII AGQISNQSDQ
       1101 GOTRLOAGRD INLDTVOTGK YQEIHFDADN HTIRGSTNEV GSSIOTKGDV
       1151 TLLSGNNLNA KAAEVGSAKG TLAVYAKNDI TISSGIHAGQ VDDASKHTGR
       1201 SGGGNKLVIT DKAQSHHETA QSSTFEGKQV VLQAGNDANI LGSNVISDNG
       1251 TRIQAGNHVR IGTTQTQSQS ETYHQTQKSG LMSAGIGFTI GSKTNTQENQ
       1301 SQSNEHTGST VGSLKGDTTI VASKHYEQTG SNVSSPEGNN LISTQSMDIG
1351 AAQNQLNSKT TQTYEQKGLT VGIQFARYRF GTTSDCRSTQ SSKQVGQSKN
       1401 DRVNAMAAAN AGWQAYQTGK GAQNLANGTT NAKQVSISIT YGEQQNRQTT
       1451 QVQANQAQAS QIQAGGKTTL YCRRCGEQSN INITGSGVSG RAGTGLIADK
       1501 QIHLQSAEQS NTERSQNKSA GWNAGAAVSF GQGGWSLGVA AGGNVGKGYG
       1551 YGDSVTHRHS HIGDKGSQTL IQSGGDTIIK GAQVRGKGVQ VNAKNLSIQS
       1601 VODRETYOSK QONAGAQVTV GYGFSASGDY SOSKIRADHA SVTEQSGIYA
1651 GEDGYQIKVG NHTGLKGGII TSSQSAKDKG KNRFSTGTLA GSDIQNYSQY
       1701 EGKSFGLGAS VAVSGKTLGQ GAKNKPQDKH LTSIADKNGA SSSVGYGSDS
       1751 DSQSSITKSG INTPKNIQIT DEAAQIRLTG KIAAQTKADI DTNVTTDTAE
       1801 RHSGSLKNIF DKDRVQSELD LQRTVSQDFS KNVQQTNTEI NQHLDKLKAD
       1851 KEAAETAAAE ALANGDMETA KRKAHEAQDA AAKADNWQQG KVILNMLASG
       1901 LAEPTQSGAG IAAATASPDV SYAIGQHFKD LAGQNANGKL TASQETAHVL
             AHAVLGAAVA AAXGNNAPAG ALGAGGSEAA APIIGKWLYG KGDGGSLNAE
```

2001 EKETVSAITR MLGTAAGAAE GNSSADAVWG CFQTASDFAS SFSYPINM*

-- 100

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 1667>: m563.seq..

1 ATGAATAAAA CTCTCTATCG TGTAATTTTC AACCGCAAAC GTGGGGCTGT 51 GGTAGCCGTT GCTGAAACTA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA 101 GTGATTCAGG CAGCGCTCAT GTGAAATCTG TTCCTTTTGG TACTACTCAT 151 GCACCTGTTT GTCGTTCAAA TATCTTTTCT TTTTCTTTAT TGGGCTTTTC TTTATGTTTG GCTGTAGGTA CGGCCAATAT TGCTTTTGCT GATGGCATTA 251 TTGCTGATAA AGCTGCTCCT AAAACTCAAC AAGCCACGAT TCTGCAAACA 301 GGTAACGGCA TACCGCAAGT CAATATTCAA ACCCCTACTT CGGCAGGGGT 351 TTCTGTTAAT CAATACGCCC AGTTTGATGT GGGTAATCGC GGGGCGATTT 401 TAAACAACAG CCGCAGCAAC ACCCAAACAC AGCTAGGCGG TTGGATTCAA 451 GGTAATCCTT GGTTGGCAAG GGGCGAAGCA CGTGTGGTTG TAAACCAAAT 501 CAACAGCAGC CATTCTTCAC AAATGAATGG CTATATTGAA GTGGGCGGAC 551 GACGTGCAGA AGTCGTTATT GCCAATCCGG CAGGGATTGC AGTCAATGGT 601 GGTGGTTTTA TCAATGCTTC CCGTGCCACT TTGACGACAG GCCAACCGCA 651 ATATCAAGCA GGAGACCTTA GCGGCTTTAA GATAAGGCAA GGCAATGTTG 701 TAATCGCCGG ACACGGTTTG GATGCCCGTG ATACCGATTT CACACGTATT 751 CTCAGTTATC ATTCCAAAAT TGATGCACCC GTATGGGGAC AAGATGTTCG 801 TGTCGTCGCG GGACAAAACG ATGTGGTCGC AACAGGTAAT GCACATTCGC 851 CTATTCTCAA TAATGCTGCT GCCAATACGT CAAACAATAC AGCCAACAAC 901 GGCACACATA TCCCTTTATT TGCGATTGAT ACAGGCAAAT TAGGAGGTAT 951 GTATGCCAAC AAAATCACCT TGATCAGTAC GGCCGAGCAA GCAGGCATTC 1001 GTAATCAAGG GCAGTTGTTT GCTTCTTCCG GTAATGTGGC GATTGATGCA 1051 AATGGCCGTT TAGTCAATAG TGGCACGATG GCTGCCGCCA ATGCGAAAGA 1101 TACGGATAAT ACAGCGGAAC ACAAAGTCAA TATCCGCAGT CAGGGCGTTG 1151 AAAACAGCGG TACGGCGGTA TCGCAACAAG GCACTCAAAT TCACAGTCAG TCGATTCAAA ACACTGGCAC ATTATTGTCC TCAGGCGAAA TATTGATTCA 1251 CAATTCGGGC AGCCTGAAAA ATGAAACATC AGGCACCATT GAAGCCGCTC 1301 GTTTGGCTAT TGATACCGAC ACACTTAATA ATCAAGGCAA ACTCTCTCAA 1351 ACAGGTTCAC AAAAACTCCA TATTGATGCA CAAGGCAAAA TGGATAACCG 1401 TGGCCGCATG GGTTTACAAG ATACCGCACC AACCGCGTCA AATGGTTCAA 1451 GCAATCAAAC CGGCAATAGT TACAATGCAT CTTTCCATTC ATCCACTACC 1501 ACACCAACAA CGGCAACAGG TACGGGTACT GCAACCGTTT CTATATCAAA 1551 CATAACTGCG CCTACCTTTG CTGATGGGAC AATTCGCACT CATGGTGCAC 1601 TGGATAATTC AGGCAGTATT ATTGCCAATG GTCAAACAGA TGTTAGTGCG 1651 CAACAAGGTT TAAATAATGC AGGACAAATA GACATTCATC AGTTAAATGC 1701 AAAAGGTTCG GCGTTTGACA ATCACAATGG AACAATTATC AGTGATGCGG 1751 TCCACATTCA AGCCGGCAGC CTGAATAATC AAAATGGCAA CATCACAACA 1801 CGCCAACAGT TAGAGATTGA AACCGATCAA CTGGATAACG CTCATGGCAA GTTATTATCA GCAGAAATAG CGGATTTAGC CGTTTCAGGC AGCCTGAACA 1901 ATCAAAATGG CGAAATAGCG ACCAATCAAC AACTGATTAT TCACGATGGT 1951 CAGCAATCTA CCGCTGTCAT TGATAATACG AATGGCACGA TACAATCAGG 2001 CCGTGATGTT GCTATTCAGG CAAAATCGTT ATCCAACAAC GGCACACTTG 2051 CCGCTGATAA TAAACTGGAT ATTGCGTTAC AAGATGATTT TTATGTAGAA 2101 CGCAATATCG TGGCGGGCAA TGAATTGTCG CTCAGTACAC GAGGCAGCCT 2151 GAAAAATTCA CATACTTTGC AAGCAGGAAA ACGCATTCGG ATTAAAGCAA 2201 ATAACCTTGA TAATGCAGCA CAAGGCAACA TTCAATCCGG CGGTACGACA 2251 GACATTGGCA CGCAGCACAA TTTAACCAAT AGAGGCTTGA TTGACGGACA 2301 ACAAACCAAA ATCCAAGCCG GGCAAATGAA TAATATCGGT ACAGGTCGGA 2351 TTTATGGCGA CAATATCGCT ATTGCGGCTA CCCGCTTAGA CAATCAAGAT 2401 GAAAACGGTA CAGGTGCCGC CATTGCGGCA CGTGAAAACC TGAATTTAGG 2451 CATCGGACAA TTAAACAACC GTGAAAACAG TCTGATTTAC AGCGGTAACG 2501 ATATGCCGT TGGCGGCGCA TTAGATACCA ATGGCCAAGC CACAGGCAAA GCCCAAAGGA TACACAATGC CGGCGCAACC ATTGAAGCTG CAGGCAAAAT 2601 GCGTTTAGGT GTAGAAAAGC TGCACAATAC CAATGAGCAT TTGAAAACGC 2651 AGTTGGTAGA AACAGGGCGC GAGCATATTG TTGATTACGA AGCATTTGGA 2701 CGACACGAAT TATTGCGAGA AGGCACGCAA CATGAATTAG GCTGGTCTGT 2751 CTATAACGAT GAATCAGACC ACTTACGCAC CCCTGATGGA GCGGCGCATG 2801 AAAATTGGCA TAAATACGAT TATGAAAAAG TCACCCAAAA AACCCAAGTT 2851 ACCCAAACTG CGCCAGCCAA AATCATTCA GGTAATGATT TAACCATTGA 2901 TGGTAAAGAA GTATTTAATA CCGATAGCCA AATCATTGCT GGTGGCAATC 2951 TCATTGTACA AACAGAAAAA GACGGTTTGC ATAACGAGCA AACCTTTGGC

3001 GAAAAGAAAG TATTCAGTGA AAATGGCAAA TTACACAGCT ATTGGCGTGA 3051 GAAACATAAA GGACGAGACT CAACGGGACA TAGCGAACAA AATTACACTT 3101 TGCCGGAGGA AATCACACGC AACATTTCAC TGGGTTCATT TGCCTATGAA 3151 TCGCATCGCA AAGCATTAAG CCATCATGCG CCCAGCCAAG GCACTGAGTT 3201 GCCGCAAAGC AACGGTATTT CGCTACCCTA TACGTCCAAT TCTTTTACCC 3251 CATTACCCAG CAGCAGCTTA TACATTATCA ATCCTGTCAA TAAAGGCTAT 3301 CTTGTTGAAA CCGATCCACG CTTTGCCAAC TACCGTCAAT GGTTGGGTAG 3351 TGACTATATG CTGGACAGCC TCAAACTAGA CCCAAACAAT TTACATAAAC 3401 GTTTGGGTGA TGGTTATTAC GAGCAACGTT TAATCAATGA ACAAATCGCA 3451 GAGCTGACAG GGCATCGTCG TTTAGACGGT TATCAAAACG ACGAAGAACA 3501 ATTTAAAGCC TTAATGGATA ATGGCGCGAC TGCGGCACGT TCGATGAATC 3551 TCAGCGTTGG CATTGCATTA AGTGCCGAGC AAGTAGCGCA ACTGACCAGC 3601 GATATTGTTT GGTTGGTACA AAAAGAAGTT AAGCTTCCTG ATGGCGGCAC 3651 ACAAACCGTA TTGGTGCCAC AGGTTTATGT ACGCGTTAAA AATGGCGACA 3701 TAGACGGTAA AGGTGCATTG TTGTCAGGCA GCAATACACA AATCAATGTT 3751 TCAGGCAGCC TGAAAAACTC AGGCACGATT GCAGGGCGCA ATGCGCTTAT 3801 TATCAATACC GATACGCTAG ACAATATCGG TGGGCGTATT CATGCGCAAA 3851 AATCAGCGGT TACGGCCACA CAAGACATCA ATAATATTGG CGGCATGCTT 3901 TCTGCCGAAC AGACATTATT GCTCAACGCA GGCAACAACA TCAACAGCCA 3951 AAGCACCACC GCCAGCAGTC AAAATACACA AGGCAGCAGC ACCTACCTAG 4001 ACCGAATGGC AGGTATTTAT ATCACAGGCA AAGAAAAAGG TGTTTTAGCA 4051 GCGCAGGCAG GAAAAGACAT CAACATCATT GCCGGTCAAA TCAGCAATCA 4101 ATCAGAGCAA GGGCAAACCC GGCTGCAAGC AGGGCGCGAC ATTAACCTAG 4151 ATACGGTACA AACCAGCAAA CATCAAGCAA CCCATTTTGA TGCCGATAAC 4201 CATGTTATTC GCGGTTCAAC GAACGAAGTC GGCAGCAGCA TTCAAACAAA 4251 AGGCGATGTT ACCCTATTGT CAGGGAATAA CCTCAATGCC AAAGCTGCCG 4301 AAGTCAGCAG CGCAAACGGT ACACTCGCTG TGTCTGCCAA AAATGACATC 4351 AACATCAGCG CAGGCATCAA CACGACCCAT GTTGATGATG CGTCCAAACA 4401 CACAGGCAGA AGCGGTGGTG GCAATAAATT AGTCATTACC GATAAAGCCC 4451 AAAGTCATCA CGAAACCGCC CAAAGCAGCA CCTTTGAAGG CAAGCAAGTT 4501 GTATTGCAGG CAGGAAACGA TGCCAACATC CTTGGCAGCA ATGTTATTTC 4551 CGATAATGGC ACCCAGATTC AAGCAGGCAA TCATGTTCGC ATTGGTACAA 4601 CCCAAACTCA AAGCCAAAGC GAAACCTATC ATCAAACCCA GAAATCAGGA 4651 TTGATGAGTG CAGGTATCGG CTTCACTATT GGCAGCAAGA CAAACACACA 4701 AGAAAACCAA TCCCAAAGCA ACGAACATAC AGGCAGTACC GTAGGCAGCT 4751 TGAAAGGCGA TACCACCATT GTTGCAGGCA AACACTACGA ACAAATCGGC 4801 AGTACCGTTT CCAGCCCGGA AGGCAACAAT ACCATCTATG CCCAAAGCAT 4851 AGACATTCAA GCGGCACACA ACAAATTAAA CAGTAATACC ACCCAAACCT 4901 ATGAACAAAA AGGCCTAACG GTGGCATTCA GTTCGCCCGT TACCGATTTG GCACAACAAG CGATTGCCGT AGCACAAAGC AGCAAACAAG TCGGACAAAG 5001 CAAAAACGAC CGCGTTAATG CCATGGCGGC TGCCAATGCA GGCTGGCAAG 5051 CCTATCAAAC AGGTAAGAGT GCACAAAACT TAGCCAATGG TACAACCAAT 5101 GCCAAACAAG TCAGCATCTC CATAACCTAC GGCGAACAGC AAAACCGACA 5151 AACCACCCAA GTTCAAGCCA ATCAAGCCCA AGCGAGTCAA ATTCAAGCAG 5201 GTGGTAAAAC CACATTAATC GCCACAGGCG CAGCAGAACA ATCCAATATC 5251 AACATCGCAG GCTCAGATGT TGCCGGCAAA GCAGGCACAA TCCTGATTGC 5301 CGATAACGAC ATCACACTCC AATCAGCCGA GCAAAGCAAT ACCGAACGCG 5351 GCCAAAACAA ATCGGCAGGC TGGAACGCAG GTGCTGCCGT ATCATTCGGA 5401 CAAGGAGGCT GGTCATTAGG CGTTACCGCA GGCGGCAATG TCGGCAAAGG 5451 CTACGGCAAT GGCGACAGCA TCACCCACCG CCATAGCCAT ATCGGCGACA 5501 AAGGCAGCCA AACCCTTATC CAAAGCGGTG GCGACACTAC CATCAAAGGC 5551 GCGCAAGTAC GCGGCAAAGG CGTACAAGTC AATGCCAAAA ACCTAAGTAT TCAAAGCGTA CAAGATAGAG AAACCTATCA AAGCAAACAA CAAAACGCCA 5651 GTGCACAAGT TACCGTAGGT TATGGCTTCA GTGCCGGTGG CGATTACAGC 5701 CAAAGCAAAA TCCGAGCCGA CCATGTTTCA GTAACCGAGC AAAGCGGTAT 5751 TTATGCCGGA GAAGACGGCT ATCAAATCAA GGTCGGAAAC CATACAGACC 5801 TCAAAGGCGG CATCATCACC AGTACCCAAA GCGCAGAAGA CAAGGGTAAA 5851 AACCGCTTTC AGACGGCCAC CCTCACCCAT AGCGACATCA AAAACCACAG 5901 CCAATACAAA GGCGAAAGTT TTGGATTGGG CGCAAGTGCG TCCATAAGCG 5951 GCAAAACACT GGGACAGGGC GCACAAAATA AACCTCAAAA CAAACACCTG 6001 ACAAGCGTAG CCGATAAAAA CAGCGCAAGT TCATCAGTGG GTTATGGCAG 6051 CGACAGCGAC AGTCAAAAGCA GCATCACAAA AAGCGGCATC AACACCCGCA

```
6101 ACATTCAAAT CACCGACGAA GCCGCACAAA TCCGGCTGAC AGGCAAAACA
6151 GCGGCACAAA CCAAAGCCGA TATTGATACA AACGTAACCA CAGACACCGC
6201 CGAACGACAT TCGGGCAGCT TGAAGAACAC CTTCAACAAA GAAGCGGTGC
6251 AAAGTGAACT GGATTTACAA AGAACCGTCA GCCAAGATTT TAGTAAAAAT
6301 GTTCAACAAG CCAATACCGA GATTAACCAA CATTTAGACA AACTCAAAGC
6351 AGACAAAGAA GCAGCCGAAA CAGCAGCAGC CGAGGCATTA GCCAATGGCG
6401 ATATGGAAAC TGCCAAACGC AAAGCCCATG AAGCTCAAGA TGCGGCAGCA
6451 AAAGCAGATA ATTGGCAACA AGGCAAAGTC ATTCTCAACA TGTTAGCCTC
6501 AGGTTTAGCT GCGCCGACCC AAAGCGGAGC GGGCATCGCT GCGGCTACCG
6551 CATCGCCAGC CGTATCGTAT GCGATTGGAC AGCACTTTAA AGATTTAGCC
6601 GGTCAAAACG CGAATGGTAA ACTAACCGCC AGTCAAGAAA CCGCACACGT
6651 TCTTGCCCAC GCGGTATTAG GAGCAGCGGT TGCCGCAGTA GGAGACAACA
6701 ATGCTCTAGC AGGAGCATTG AGTGCGGGCG GGTCGGAAGC GGCTGCGCCT
6751 TACATCAGCA AATGGTTATA CGGCAAAGAA AAAGGAAGCG ACTTAACGGC
6801 GGAAGAGAA GAGACTGTAA CAGCGATTAC AAATGTATTG GGTACGGCTA
6851 CGGGTGCGGC AGTCGGCAAC AGCGCAACAG ATGCAGCGCA AGGCAGCCTG
6901 AATGCGCAAA GTGCGGTGGA GAATAATGAT ACTGTAGAGC AAGTGAAATT
6951 TGCTCTTAGG CACCCTAGAA TTGCTATTGC AATTGGATCT GTACATAAAG
7001 ATCCTGGCTC TACATTAGAG CCTAATATTT CAACAATTGC TTCAACTTTT
7051 CAATTAAATT TATTTCCTAA TAGTGAATTT GGTGGTGAAG GTGGAGTTGG
7101 CAATGCATTC AGGCACGTTT TATGGCAAGC AACCATCACA CGAGAATTTG
7151 GCAAAGATAT TGCTGTTAAA GTAGGAAATA GTCATGAAAG TGGGGAAAAA
7201 ATTAATTATT CTATAAGACG TAATCTTTCA TTAGATAAAG CAGATGAAAT
7251 GATTGATCAA CTAAATAACG AAATAGGAAG AGAAATAGCA TTAAATACCA
7301 ATAGGTTAAA CACAAAAGAG TTAGTTGGAT TAATTCTGGA AACTTATAAA
7351 AATAATGGTT TTTATCAAGC AGAAAGAAAC AGTAATGGAA ATTATGATGT
7401 TGTAAGAAAA AGATTATCTG AAAAAGATTA CCAGAATACA AGCAATATAT
7451 TGATTCACTT AGATAATACT GGTGCCGGAT TTAAAATTCA GCAGAGGAGA
7501 AAACAAATCA GAGCACAAAT TTCAGCCAGA CAATGGAGAA GATAA
```

This corresponds to the amino acid sequence <SEQ ID 1668; ORF 563>: m563.pep..

1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSDSGSAH VKSVPFGTTH 51 APVCRSNIFS FSLLGFSLCL AVGTANIAFA DGIIADKAAP KTQQATILQT 101 GNGIPOVNIQ TPTSAGVSVN QYAQFDVGNR GAILNNSRSN TOTOLGGWIO 151 GNPWLARGEA RVVVNQINSS HSSQMNGYIE VGGRRAEVVI ANPAGIAVNG 201 GGFINASRAT LTTGQPQYQA GDLSGFKIRQ GNVVIAGHGL DARDTDFTRI 251 LSYHSKIDAP VWGQDVRVVA GQNDVVATGN AHSPILNNAA ANTSNNTANN 301 GTHIPLFAID TGKLGGMYAN KITLISTAEQ AGIRNQGQLF ASSGNVAIDA 351 NGRLVNSGTM AAANAKDTDN TAEHKVNIRS QGVENSGTAV SQQGTQIHSQ 401 SIQNTGTLLS SGEILIHNSG SLKNETSGTI EAARLAIDTD TLNNQGKLSQ TGSQKLHIDA QGKMDNRGRM GLQDTAPTAS NGSSNOTGNS YNASFHSSTT 501 TPTTATGTGT ATVSISNITA PTFADGTIRT HGALDNSGSI IANGQTDVSA 551 QQGLNNAGQI DIHQLNAKGS AFDNHNGTII SDAVHIQAGS LNNQNGNITT 601 RQQLEIETDQ LDNAHGKLLS AEIADLAVSG SLNNQNGEIA TNQQLIIHDG 651 QQSTAVIDNT NGTIQSGRDV AIQAKSLSNN GTLAADNKLD IALQDDFYVE 701 RNIVAGNELS LSTRGSLKNS HTLQAGKRIR IKANNLDNAA OGNIOSGGTT 751 DIGTOHNLTN RGLIDGOOTK IQAGQMNNIG TGRIYGDNIA IAATRLDNQD 801 ENGTGAAIAA RENLNLGIGQ LNNRENSLIY SGNDMAVGGA LDTNGOATGK 851 AQRIHNAGAT IEAAGKMRLG VEKLHNTNEH LKTQLVETGR EHIVDYEAFG 901 RHELLREGTQ HELGWSVYND ESDHLRTPDG AAHENWHKYD YEKVTQKTQV 951 TOTAPAKIIS GNDLTIDGKE VFNTDSQIIA GGNLIVQTEK DGLHNEQTFG 1001 EKKVFSENGK LHSYWREKHK GRDSTGHSEQ NYTLPEEITR NISLGSFAYE 1051 SHRKALSHHA PSQGTELPQS NGISLPYTSN SFTPLPSSSL YIINPVNKGY 1101 LVETDPRFAN YRQWLGSDYM LDSLKLDPNN LHKRLGDGYY EQRLINEQIA 1151 ELTGHRRLDG YQNDEEQFKA LMDNGATAAR SMNLSVGIAL SAEQVAQLTS 1201 DIVWLVQKEV KLPDGGTQTV LVPQVYVRVK NGDIDGKGAL LSGSNTQINV 1251 SGSLKNSGTI AGRNALIINT DTLDNIGGRI HAQKSAVTAT QDINNIGGML 1301 SAEQTLLLNA GNNINSQSTT ASSQNTQGSS TYLDRMAGIY ITGKEKGVLA 1351 AQAGKDINII AGQISNQSEQ GQTRLQAGRD INLDTVQTSK HQATHFDADN 1401 HVIRGSTNEV GSSIQTKGDV TLLSGNNLNA KAAEVSSANG TLAVSAKNDI 1451 NISAGINTTH VDDASKHTGR SGGGNKLVIT DKAQSHHETA QSSTFEGKQV 1501 VLQAGNDANI LGSNVISDNG TQIQAGNHVR IGTTQTQSQS ETYHQTQKSG

```
1551 LMSAGIGFTI GSKTNTQENQ SQSNEHTGST VGSLKGDTTI VAGKHYEQIG
         STVSSPEGNN TIYAQSIDIQ AAHNKLNSNT TQTYEQKGLT VAFSSPVTDL
         AQQAIAVAQS SKQVGQSKND RVNAMAAANA GWQAYQTGKS AQNLANGTTN
    1701 AKQVSISITY GEQQNRQTTQ VQANQAQASQ IQAGGKTTLI ATGAAEQSNI
    1751 NIAGSDVAGK AGTILIADND ITLQSAEQSN TERGQNKSAG WNAGAAVSFG
    1801 QGGWSLGVTA GGNVGKGYGN GDSITHRHSH IGDKGSQTLI QSGGDTTIKG
    1851 AQVRGKGVQV NAKNLSIQSV QDRETYQSKQ QNASAQVTVG YGFSAGGDYS
    1901 QSKIRADHVS VTEQSGIYAG EDGYQIKVGN HTDLKGGIIT STQSAEDKGK
    1951 NRFQTATLTH SDIKNHSQYK GESFGLGASA SISGKTLGQG AQNKPQNKHL
    2001 TSVADKNSAS SSVGYGSDSD SQSSITKSGI NTRNIQITDE AAQIRLTGKT
    2051 AAQTKADIDT NVTTDTAERH SGSLKNTFNK EAVQSELDLQ RTVSODFSKN
    2101 VQQANTEINQ HLDKLKADKE AAETAAAEAL ANGDMETAKR KAHEAQDAAA
    2151 KADNWQQGKV ILNMLASGLA APTQSGAGIA AATASPAVSY AIGQHFKDLA
    2201 GQNANGKLTA SQETAHVLAH AVLGAAVAAV GDNNALAGAL SAGGSEAAAP
    2251 YISKWLYGKE KGSDLTAEEK ETVTAITNVL GTATGAAVGN SATDAAQGSL
    2301 NAQSAVENND TVEQVKFALR HPRIAIAIGS VHKDPGSTLE PNISTIASTF
         QLNLFPNSEF GGEGGVGNAF RHVLWQATIT REFGKDIAVK VGNSHESGEK
    2401 INYSIRRNLS LDKADEMIDQ LNNEIGREIA LNTNRLNTKE LVGLILETYK
    2451 NNGFYQAERN SNGNYDVVRK RLSEKDYQNT SNILIHLDNT GAGFKIQQRR
    2501 KQIRAQISAR OWRR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 563 shows 79.1% identity over a 2316 aa overlap with a predicted ORF (ORF 563.ng)
from N. gonorrhoeae:
m563/g563
                            20
                                     30
                                                       50
            MNKTLYRVIFNRKRGAVVAVAETTKREGKSCADSGSGSVYVKSVSFIPTH----SKAFC
g563.pep
            m563.pep
            MNKTLYRVIFNRKRGAVVAVAETTKREGKSCADSDSGSAHVKSVPFGTTHAPVCRSNIFS
                   10
                            20
                                     30
                                              40
                                                       50
                                                                60
              60
                        70
                                 80
                                          90
                                                  100
                                                           110
            FSALGFSLCLALGTVNIAFADGIITDKAAPKTQQATILQTGNGIPQVNIQTPTSAGVSVN
g563.pep
            m563.pep
            FSLLGFSLCLAVGTANIAFADGIIADKAAPKTQQATILQTGNGIPQVNIQTPTSAGVSVN
                   70
                            80
                                     90
                                             100
                                                      110
             120
                       130
                                140
                                         150
                                                  160
                                                           170
g563.pep
            QYAQFDVGNRGAILNNSRSNTQTQLGGWIQGNPWLTRGEARVVVNQINSSHPSQLNGYIE
            QYAQFDVGNRGAILMNSRSNTQTQLGGWIQGNPWLARGEARVVVNQINSSHSSQMNGYIE
m563.pep
                  130
                           140
                                    150
                                             160
                                                      170
                                                               180
                      190
                               200
                                        210
                                                  220
            VGGRRAEVVIANPAGIAVNGGGFINASRATLTTGQPQYQAGDFSGFKIRQGNAVIAGHGL
g563.pep
            VGGRRAEVVIANPAGIAVNGGGFINASRATLTTGQPQYQAGDLSGFKIRQGNVVIAGHGL
m563.pep
                                    210
                                             220
                                                      230
                                                               240
             240
g563.pep
           DARDTDFTRIL-
            111111111
m563.pep
           DARDTDFTRILSYHSKIDAPVWGQDVRVVAGQNDVVATGNAHSPILNNAAANTSNNTANN
                  250
                           260
                                    270
                                             280
                                                               300
                           250
                                    260
                                             270
                                                      280
g563.pep
                       ---LYANKITLISTAEQAGIRNQGQLFASSGNVAIDANGRLVNSGTM
                          m563.pep
           GTHIPLFAIDTGKLGGMYANKITLISTAEQAGIRNQGQLFASSGNVAIDANGRLVNSGTM
                  310
                          320
                                    330
                                             340
                                                      350
```

g563.pep	300 AAANVQDMNNTAEHI	310 KVNIRSQAF	320 ENSGTAVSQQO	330 STQIHSQSIQI	340 NTGKLLSAGT	
	:: :		111111111111			
m563.pep	AAANAKDTDNTAEHI 370	380	390	400 400	410	420
g563.pep						
m563.pep	SLKNETSGTIEAAI 430	RLAIDTDTL 440	NNQGKLSQTGS 450	SQKLHIDAQGI 460	MDNRGRMGL( 470	ODTAPTAS 480
g563.pep						
m563.pep	NGSSNQTGNSYNAS 490	SFHSSTTTP 500	TTATGTGTATV 510	/SISNITAPTE 520	FADGTIRTHGA 530	ALDNSGSI 540
g563.pep						
m563.pep	IANGQTDVSAQQGI					
	550	560	570	580	590	600
g563.pep			350 EDLAVSGSLNN	360 ONGELATNOC	370	380 TWO TWO
				1111111111	1111111111	:
m563.pep	RQQLEIETDQLDNAF 610	620	630	640	650	AVIDNT 660
g563.pep	390 NGTIQSGRDVAIQAK					
m563.pep	NGTIQSGRDVAIQAK				, ,	
.550	450	460	470	480	490	500
g563.pep	HTLQAGKRIRIKANN	:	losggftdigt 	QHNLTNRGLI	DGQQTKIQAG	OMNNIG
m563.pep	HTLQAGKRIRIKANN 730	ILDNAAQGN: 740	IQSGGTTDIGT 750	QHNLTNRGLI 760	DGQQTKIQAG 770	QMINNIG 780
g563.pep	510 TGRIYGDNIAIAATR	520 LDNQDENG	530 FGAAIAARENL	540 NLGIEQLNNR	550 ENSLIYSGND	560 MAVGGA
m563.pep	TODAY CONTRACT	IIIIIIIIII			1111111111	
moos.pep	790	800	810	820	830	840
g563.pep	570 LDTNDQATGKAQRIH	580	590	600	610	620 DVENES
				1111111111	1111111:11	111111
m563.pep	LDTNGQATGKAQRI 850	HNAGATIE	AAGKMRLGVEK 870	LHNTNEHLKT 880	QLVETGREHI 890	VDYEAFG 900
g563.pep	630 RHELLREGTQHELGW	640 FVYNNESDI	650 HLRTPDGVAHE	660 NWHKYDYEKV	670 TQETQVTGTA	680 PAKIIA
m563.pep		:    SVYNDESDI	:    HLRTPDGAAHE	NMHKADAEKA	:        TQKTQVTQTA	: PAKIIS
	910	920	930	940	950	960
	690	700	710	720	730	740

g563.pep	GSDLIIDSKAVFN:	:     :           :	: [: [ ] [ ] [ ] [ ]		1111111111	:111 ::1
m563.pep	GNDLTIDGKEVFN 970	PDSQIIAGGN 980	LIVOTEKDGI 990	LHNEOTFGEKK 1000	VFSENGKLHS 1010	SYWREKHK 1020
	750	760	770	780	790	800
g563.pep	GHDETGHREQNYTI	LPEEITRDIS	LGSFAYESHS	KALSRHAPSO	GTELPOSNRI	ONIRTAKS
m563.pep	GRDSTGHSEQNYTI	PEEITRNIS	LGSFAYESHF	:       	IIIIIIIII GTELPQSN	•
**********						
g563.pep	810 NGISLPYTPNSFTI	820 PLPGSSLYII	830 NPANKGYLVE	840 ETDPRFANYRO	850 WLGSDYMLGS	860 SLKLDPNN
m563.pep	 -GISLPYTSNSFTE	:	11:111111		11111111111	1111111
505.pcp	1080	1090	1100	1110	1120	1130
	870	880	890	900	910	920
g563.pep	LHKRLGDGYYEQRI	INEQIAELT	GHRRLDGYQN	DEEQFKALMD	NGATAARSMN	LSVGIAL
m563.pep	LHKRLGDGYYEQRI	 INEQIAELT				 LSVGIAL
	1140	1150	1160	1170	1180	1190
	930	940	950	960	970	980
g563.pep	SAEQAAQLTSDIVW	LVQKEVKLP	DGGTQTVLMP 	QVYVRVKNGG:	IDGKGALLSG	SNTQINV
m563.pep	SAEQVAQLTSDIVW	LVQKEVKLP	DGGTQTVLVP	QVYVRVKNGD:	IDGKGALLSG	SNTQINV
	1200	1210	1220	1230	1240	1250
g563.pep	990 SGSLKNSGTIAGRN	1000	1010	1020	1030	1040
	_	11111111	111111111	11111111111	11111:1111	HHHH
m563.pep	SGSLKNSGTIAGRN 1260	ALIINTDTLI 1270	DNIGGRIHAQ 1280	KSAVTATQDIN 1290	INIGGMLSAE 1300	OTLLLNA
						1310
g563.pep	1050 GNNINNQSTAKSSQ	1060 NAQGSSTYLI	1070 DRMAGIYITG	1080 KEKGVLAAOAC	1090 KDINITAGO	1100 ISNOSDO
m563.pep	_	1:111111	11111111	111111111		11111:1
moos.pep	GNNINSQSTTASSQ 1320	1330	1340	KEKGVLAAQAC 1350	1360	ISNQSEQ 1370
	1110	1120	1130	1140	1150	1160
g563.pep	GQTRLQAGRDINLD	TVQTGKYQE:	HFDADNHTI:	rgstnevgss1	OTKGDVTLL	SGNNLNA
m563.pep		: :  TVQTSKHQAT	  HFDADNHVI		OTKGDVTLL	 SGNNLNA
	1380	1390		1,410	1420	1430
	1170	1180	1190	1200	1210	1220
g563.pep	KAAEVGSAKGTLAV	YAKNDITISS 	GIHAGQVDD	ASKHTGRSGGG	NKLVITDKA	OSHHETA
m563.pep	KAAEVSSANGTLAV	SAKNDINIS <i>I</i>	AGINTTHVDD	askhtgrsggg	NKLVITDKA	SHHETA
	1440	1450	1460	1470	1480	1490
g563.pep	1230	1240	1250	1260	1270	1280
	QSSTFEGKQVVLQA	!	1111111:1			111111
m563.pep	QSSTFEGKQVVLQA	ENDANILGSN 1510	VISDNGTQI	QAGNHVRIGTT 1530	QTQSQSETY	IQTOKSG
					1540	1550
g563.pep	1290 LMSAGIGFTIGSKT	1300 NTQENQSQSN	1310 EHTGSTVGSI	1320 LKGDTTIVASK	1330 HYEOTGSNVS	1340 SSPEGNN
	11111111111111	ШШП	ШШП			

m563.pep	LMSAGIGFTIGSKTN 1560	TQENQSQSNI 1570	EHTGSTVGSLX 1580	GDTTIVAGKI 1590	HYEQIGSTVS 1600	SPEGNN 1610
g563.pep	1350 LISTQSMDIGAAQNQ   :  :     : : TIYAQSIDIQAAHNK 1620	111:1111	[]]]]]	:: :	:	111111
g563.pep	1410 DRVNAMAAANAGWQA	11111:131		1111111111	1450 QNRQTTQVQA 	ШШ
g563.pep	1470 QIQAGGKTTLYCRRC          QIQAGGKTTLIATG	1480 GEQSNINITO	1490 GSGVSGRAGTG	1500 LIADKQIHL(	1510 QSAEQSNTER          LQSAEQSNTE	: [[[]]
g563.pep	1530 GWNAGAAVSFGQGGW            GWNAGAAVSFGQGGW	1540 SLGVAAGGNV     :     SLGVTAGGNV	1550 /GKGYGYGDSV           : /GKGYGNGDSI	1560 THRHSHIGDY          THRHSHIGDY	 KGSQTLIQSG	111-11
g563.pep	1790 1800  1590  GAQVRGKGVQVNAKN:                 GAQVRGKGVQVNAKN:	1111111111	:	1111111111	H: []] [H	
g563.pep	1850 1860  1650  SVTEQSGIYAGEDGYO                  SVTEQSGIYAGEDGYO		[	1:1111111:	:1:11: 111	: :
g563.pep	1910 1920 1710 EGKSFGLGASVAVSG::::::::::::::::::::::::::::::::	1930 1720 KTLGQGAKNI	1940 1730 CPQDKHLTSIA	1950 1740 DKNGASSSVG	1960 1750 GYGSDSDSQS	1760 SITKSG
m563.pep	KGESFGLGASASISC 1970 1980  1770  INTPKNIQITDEAAQ	1990 1780 IRLTGKIAAQ	2000 1790 TKADIDTNVT	2010 1800 TDTAERHSGS	2020 1810 SLKNIFDKDRY	1820 VQSELD
m563.pep	:         INT-RNIQITDEAAQ: 2030 2040 1830 LQRTVSQDFSKNVQQ:	IRLTGKTAA( 2050 1840	TKADIDTNVT 2060 1850	TDTAERHSGS 2070 1860	SLKNTFNKEAV 2080 1870	VQSELD 1880
m563.pep		:		111111111111111111111111111111111111111		11111
g563.pep	AAKADNWQQGKVILM           AAKADNWQQGKVILM 2150 2160	MLASGLAEPT	QSGAGIAAAT	ASPDVSYAIG	QHFKDLAGQI	NANGKL

```
1950
                          1960
                                  1970
                                          1980
                                                   1990
             TASQETAHVLAHAVLGAAVAAAXGNNAPAGALGAGGSEAAAPIIGKWLYGKGDGGSLNAE
  g563.pep
             TASQETAHVLAHAVLGAAVAAVGDNNALAGALSAGGSEAAAPYISKWLYGKEKGSDLTAE
  m563.pep
           2210
                   2220
                            2230
                                    2240
                                            2250
                                                    2260
                          2020
                                  2030
                                          2040
                  2010
             EKETVSAITRMLGTAAGAAEGNSSADAVWGCFQTASDFASSFSYPINMX
  g563.pep
             EKETVTAITNVLGTATGAAVGNSATDAAQGSLNAQSAVENNDTVEQVKFALRHPRIATAI
-- = m563.pep
           2270
                   2280
                         2290 2300
                                            2310
              GSVHKDPGSTLEPNISTIASTFQLNLFPNSEFGGEGGVGNAFRHVLWQATITREFGKDIA
  m563.pep
                   2330
                           2340
                                 2350
                                           2360
                                                   2370
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1669>: m564.seq

```
ATGAACCGCA CCCTGTACAA AGTTGTATTT AACAAACATC GAAACTGCAT
  51
     GATAGCCGTT GCTGAAAATG CCAAACGCGA GGGCAAAAAC ACAGCCGACA
     CCCAAGCTGT AGGTATTTTG CCAAATGATA TTGCGGGCTT TGCGGGTTTT
101
     ATCCATTCTA TCTCTGTTAT CTCATTCTCC CTTTCATTAC TGCTCGGTTC
 151
201 TGCCCTTATC CTGACTTCTT CTTCTGCTAC TGCCCAAGGT ATCGTTGCCG
     ACAAATCCGC ACCTGCACAG CAACAGCCTA CCATCCTGCA AACAGGTAAC
301 GGCATACCGC AAGTCAATAT TCAAACCCCT ACTTCGGCAG GGGTTTCTGT
     TAATCAATAC GCCCAGTTTG ATGTGGGTAA TCGCGGGGCG ATTTTAAACA
 351
 401 ACAGTCGCAG CAACACCCAA ACACAGCTAG GCGGTTGGAT TCAAGGCAAT
     CCTTGGTTGG CAAGGGGCGA AGCACGTGTG GTTGTAAACC AAATCAACAG
 451
501 CAGCCATTCT TCACAACTGA ATGGCTATAT TGAAGTGGGC GGACGACGTG
 551
     CAGAAGTCGT TATTGCCAAT CCGGCAGGGA TTGCAGTCAA TGGTGGTGGT
     TTTATCAATG CTTCCCGTGC CACTTTGACG ACAGCCCAAC CGCAATATCA
 601
 651 AGCAGGAGAC CTTAGCGGCT TTAAGATAAG GCAAGGCAAT GTTGTAATCG
701 CCGGACACGG TTTGGATGCA CGTGATACCG ATTACACACG TATTCTCAGT
     TATCATTCCA AAATTGATGC ACCCGTATGG GGACAAGATG TTCGTGTCGT
751
     CGCGGGACAA AACGATGTGG CCGCAACAGG TGATGCACAT TCGCCTATTC
     TCAATAATGC TGCTGCCAAT ACGTCAAACA ATACAGCCAA CAACGGCACA
851
 901 CATATCCCTT TATTTGCGAT TGATACAGGC AAATTAGGAG GTATGTATGC
951 CAACAAAATC ACCTTGATCA GTACGGTCGA GCAAGCAGGC ATTCGTAATC
1001
     AAGGGCAATG GTTTGCCTCA GCCGGCAATG TGGCAGTGAA TGCTGAGGGT
1051 AAACTGGTCA ACACGGGCAT GATTGCAGCG ACGGGAGAAA ATCATGCGGT
     TTCACTTCAT GCCCGCAATG TTCATAATAG CGGTACGGTT GCCTCACAGG
1151
     ATGATGCCAA TATTCACAGC CAGACGCTGG ACAATTCAGG TACGGTCTTA
     TCCTCAGGTC GATTGACTGT TCGTAATTTA GGCCGTCTGA AAAACCAAAA
1201
1251 CAACGGTACG ATCCAGGCTG CCCGCTTAGA TATGTCAACA GGTGGTTTGG
1301 ATAACACAGG TAATATTACT CAAACAGGTT CACAAGCATT GGATTTGGTA
     TCTGCCGGCA AATTCGATAA CAGTGGCAAG ATTGGTGTAA GTGACGTTCC
1401 ACAGACCGGT TTGAATCCCA ATCCATCAGT CATACCACAG ATTCCGAGTA
1451 CTGCAACAGG TTCAGGCAGC AGCACTGTCT CGGTATCTAA GCCTGGTTCA
1501 AACAATCCCG TTTCACCTAC AGCACCTGCA AAAAACTACG CCGTAGGACG
     CATTCAAACA ACAGGAGCAT TTGACAATGC AGGATCAATT AATGCGGGTG
1601 GGCAAATTGA CATTGCCGCC CAAAACGGTT TGGGAAATTC GGGTAGTCTG
1651 AATGCGGCTA AACTACGAGT ATCAGGCGAT TCATTTAACA ATACGGTAAA
1701 AGGCAAACTC CAGGCACACG ATCTGGCTGT TAACACTCAA ACTGCTAAAA
1751 ACAGCGGTCA CTTATTAACT CAAACCGGCA AGATTGATAA CCGTGAACTG
1801 CATAATGCCG GAGAAATTGC CGCCAACAAT CTGACACTCA TTCATTCGGG
     CCGCTTGAGC AATGATAAAA AAGGCAATAT TCGAGCTGCA CATTTACAGC
1901 TTGATACCGC CGGTTTACAT AATGCAGGTA ACATTCTTGC CGATAGTGGA
1951 ACCGTTACCA CCAAGAATAA TCTTCGCAAT ACAGGAAAAG TTTCTGTTGC
2001 ACGACTGAAT ACCGAAGGTC AGACTCTAGA TAATACGCGC GGACGTATAG
2051 AGGCTGAAAC GGTTAACATC CAAAGTCAGC AACTGACTAA CCAAAGCGGC
2101
     CATATTACTG CTACCGAACA ACTGACTATC AATAGTCGAA ATGTAGACAA
2151
     CCAAAACGGC AAACTCCTAT CTGCAAACCA AGCACAATTA GCTGTTTCAG
2201 ACGGCCTATA CAACCAACAT GGTGAAATTG CCACCAACCG GCAGTTGTCT
```

2251 ATTCACGATA AAAATCAAAA CACTTTGGCG TTAAACAATG CGGATGGCAC 2301 GATTCAATCT GCCGGTAATG TATCGCTACA AGCCAAATCA CTCGCCAACA ATGGCACATT AACAGCCGGT AACAAACTGG ATATTGCTTT GACGGACGAT 2401 TTCGTCGTAG AGCGCGACCT CACTGCAGGC AAACAATTAA ATCTAAGCAT 2451 AAAAGGCCGT CTGAAAAATA CCCATACCCT ACAAGCAGGC CATACGCTCA 2501 AACTCAATGC CGGCAATATA GATAACCAAG TTACAGGCAA AATTATTGGT 2551 GGAGAACAAA CGGACATCAC ATCCGAACAG CATGTTGACA ACAGGGGCTT 2601 GATCAACAGC GACGGTTTGA CCCACATCGG TGCAGGTCAA ACCCTGACCA 2651 ACACCGGGAC AGGCAAAATC TATGGCAACC ATATTGCCCT GGACGCGCAA 2701 ATACTGCTTA ACCGGGAAGA AACGACGGAA GGCAGTACCA AAGCGGGGGC
2751 AATAGCTGCA AGGAAACGTT TGGATATTGG AGCGAAAGAG ATTCATAACC 2801 AAGAAGGTGC CCTACTATCC AGCGAAGGTA TTTTTGCCGT AGGTAATCGA 2851 CTGGATGAAC AACATCATGC GGCAGGCATG GCCGATACCT TTGTTAATGG CAGTGCCGGT TTGGAAGTAC AAGGTGATGC ATTGATGTCC GTTCGGAATA 2901 2951 TGCAGAATAT CAATAATCAC TTTAAAACAG AGACATACTT AGCCAAAGCG 3001 GAAAAGCAAG TCCGCGACTA CACCGTACTG GGGCAAAATA CCTACTATCA 3051 GGCGGGAAAA GACGGTTTAT TCGACAACTC GCAAGGACAA AAAGACCAAA 3101 CTACTGCTAC GTTCCATTTA AAAAATGGTT CTCGTATTGA GGCCAACCAA 3151 TGGCATGTCC GAGACTACCA CATCGAGACT TATAAAGAAC GCATCATCGA 3201 AAACCGGCCG GCACACATTA CTGTGGGCGG TGATTTGACT GCCTCAGGTC 3251 AAAATTGGCT GAACAAAGAC AGCCGGATTG TAGTAGGCGG GCGTATTATC 3301 ACTGATGATT TAAACCAGAA AGAAATTACC AATCAAAGTA CAACAGGCAA 3351 AGGTCGCACA GATGCTGTCG GCACACAGTG GGATTCAGTT ACAAAAAAG 3401 GATGGTACAG CGGTAGAAAA AGACAACGCC GTACTGAAAG AAACCATACT 3451 CCTTACCATG ATACCCAACT ATTTACCCAC GACTTCGACA CGCCTGTATC
3501 CGTCATCCAA CAGAATGCCG CCTCCCCTTC CTTTCAACCC GCCGCATCTG 3551 CAATCAAACT GATTGACGGA GTATCCACGG CAGCCGTCAA TGGTCAGCGC 3601 ATCCATACCG GTAATGTGGT CTCGTTAAAT AACGCTACTG TTACTCTGCC TAACAGCAGC CTCTATACCA CCCATCCTGA CAATAAAGGC TGGTTGGTTG 3651 3701 AAACCGATCC TCAATTTGCA GACTACCGCC GCTGGTTGGG CAGCGACTAC 3751 ATGTTGCAAC AACTGCAATT GGACACCAAT CATCTACACA AACGGCTTGG 3801 CGACGGCTAC TACGAACAAA AACTTGTTAA TGAACAAATC CATCAGTTAA 3851 CAGGCTACCG CCGACTCGAC GGCTACAGGA GTGATGAAGA ACAATTCAAA 3901 GCTCTGATGG ACAACGGCCT TACTGCTGCC AAAACATTCG GTCTCACCCC 3951 AGGTATCGCC TTGAGTGCAG AGCAAGTTGC CCGCTTAACT TCAGATATCG 4001 TTTGGATGGA AAATCAAACC GTCACCCTGT CTGACGGTTC GACTCAAACC 4051 GTACTGGTTC CTAAAGTCTA TGCCCTGGCG CGCAAAGGTG ATCTCAATAC 4101 CTCCGGTGGC CTGATTAGTG CCGAACAAGT CTTACTTAAA CTGCAAAACG 4151 GCAACCTGAC TAACAGCGGT ACCATTGCGG GGCGACAGGC CGTACTCATC 4201 CAGGCACGGA ATATTAACAG CAACGGTAAC ATTCAAGCCG ACCAAATCGG 4251 CTTAAAAGCT GAAAAAGTA TCAATATCGA CGGCGGCAG GTACAAGCAG 4301 GCAGACTGCT GACTGCCCAA GCGCAAAATA TCAACCTTAA CGGTACAACC 4351 CAAACTTCCG GTAATGAACG TAACGGCAAT ACCGCCATCG ATCGTATGGC CGGCATTAAC GTGGTCGGAA GCCATACTGA ACAAGTAGAT AACAGAACTT 4451 CAGACGGCAT CCTATCCCTG CATGCCAGCA ACGATATCAA CCTCAATGCG 4501 GCCACCGTCT CTAACCAAGT TAAAGACGGC ACTACCCAAA TTACCGCCGG 4551 CAATAATCTC AACCTCGGCA CCATCCGTAC CGAACATCGC GAAGCCTATG 4601 GTACATTAGA TGACGAGAAC CATCGCCATG TCCGCCAAAG TACCGAAGTC 4651 GGCAGCAGTA TCCGCACGCA AAACGGCGCA CTGCTTAGAG CCGGTAACGA 4701 CTTAAAAATC CGCCAAGGCG AACTGGAGGC CGAAGAAGGC AAAACCGTCC 4751 TTGCCGCAGG ACGTGATGTC ACTATCAGCG AAGGACGCCA AATAACCGAA 4801 CTGGATACCT CGGTAAGCGG AAAAAGCAAA GGCATCCTTT CCAGTACCAA 4851 AACACACGAC CGCTACCGCT TCAGTCATGA TGAAGCAGTC GGCAGCAACA 4901 TCGGCGGCGG CAAAATGATT GTTGCAGCCG GGCAGGATAT CAATGTACGC 4951 GGCAGCAACC TTATTTCTGA TAAGGGCATT GTTTTAAAAG CAGGACACGA 5001 CATCGATATT TCTACTGCCC ATAATCGCTA TACCGGCAAT GAATACCACG 5051 AGAGCAAAAA ATCAGGCGTC ATGGGTACTG GCGGATTGGG CTTTACTATC 5101 GGTAACCGGA AAACTACCGA TGACACTGAT CGTACCAATA TTGTCCATAC 5151 AGGCAGCATT ATAGGCAGCC TGAATGGAGA CACCGTTACA GTTGCAGGAA 5201 ACCGCTACCG ACAAACCGGC AGTACCGTCT CCAGCCCCGA GGGGCGCAAT 5251 ACCGTCACAG CCAAAAGCAT AGATGTAGAG TTCGCAAACA ACCGGTATGC 5301 CACTGACTAC GCCCATACCC AGGAACAAAA AGGCCTTACC GTCGCCCTCA 5351 ATGTCCCGGT TGTCCAAGCT GCACAAAACT TCATACAAGC AGCCCAAAAT 5401 GTGGGCAAAA GTAAAAATAA ACGCGTTAAT GCCATGGCTG CAGCCAATGC TGCATGGCAG AGTTATCAAG CAACCCAACA AATGCAACAA TTTGCTCCAA 5501 GCAGCAGTGC GGGACAAGGT CAAAACAACA ATCAAAGCCC CAGTATCAGT

__ See

5551 GTGTCCATTA CCTACGGCGA ACAGAAAGT CGTAACGAGC AAAAAAGACA TTACACCGAA GCGGCAGCAA GTCAAATTAT CGGCAAAGGG CAAACCACAC TTGCGGCAAC AGGAAGTGGG GAGCAGTCCA ATATCAATAT TACAGGTTCC 5701 GATGTCATCG GCCATGCAGG TACTGCCCTC ATTGCCGACA ACCATATCAG 5801 GTGGTTGGAA TGCAGGCGTA GCCGTCAAAA TAGGCAACGG CATCAGGTTT 5851 GGAATTACCG CCGGAGGAAA TATCGGTAAA GGTAAAGAGC AAGGGGGAAG 5901 TACTACCCAC CGCCACACCC ATGTCGGCAG CACAACCGGC AAAACTACCA 5951 TCCGAAGCGG CGGGGATACC ACCCTCAAAG GTGTGCAGCT CATCGGCAAA 6001 GGCATACAGG CAGATACGCG CAACCTGCAT ATAGAAAGTG TTCAAGATAC 6051 TGAAACCTAT CAGAGCAAAC AGCAAAACGG CAATGTCCAA GTTACTGTCG 6101 GTTACGGATT CAGTGCAAGC GGCAGTTACC GCCAAAGCAA AGTCAAAGCA 6151 GACCATGCCT CCGTAACCGG GCAAAGCGGT ATTTATGCCG GAGAAGACGG 6201 CTATCAAATC AAAGTCAGAG ACAACACAGA CCTCAAGGGC GGTATCATCA CGTCTAGCCA AAGCGCAGAA GATAAGGGCA AAAACCTTTT TCAGACGGCC 6251 6301 ACCCTTACTG CCAGCGACAT TCAAAACCAC AGCCGCTACG AAGGCAGAAG 6351 CTTCGGCATA GGCGGCAGTT TCGACCTGAA CGGCGGCTGG GACGGCACGG TTACCGACAA ACAAGGCAGG CCTACCGACA GGATAAGCCC GGCAGCCGGC 6401 6451 TACGGCAGCG ACGGAGACAG CAAAAACAGC ACCACCCGCA GCGGCGTCAA 6501 CACCCACAAC ATACACATCA CCGACGAAGC GGGACAACTT GCCCGAACAG 6551 GCAGGACTGC AAAAGAAACC GAAGCGCGTA TCTACACCGG CATCGACACC 6601 GAAACTGCGG ATCAACACTC AGGCCATCTG AAAAACAGCT TCGACAAAGA 6651 CGCGGTCGCC AAAGAGATCA ACCTGCAAAG GGAAGTAACG AAGGAGTTCG 6701 GCAGAAACGC CGCCCAAGCC GTAGCGGCCG TTGCCGACAA ACTCGGCAAT 6751 ACCCAAAGTT ACGAACGGTA TCAGGAAGCC CGAACCCTGC TGGAGGCCGA 6801 ACTGCAAAAC ACGGACAGCG AAGCCGAAAA AGCCGCCTTC CGCGCATCCC TCGGCCAAGT AAACGCCTAT CTTGCCGAAA ACCAAAGCCG CTACGACACC 6901 TGGAAAGAAG GCGGCATAGG CAGGAGCATA CTGCACGGGG CGGCAGGCGG 6951 ACTGACGACC GGCAGCCTCG GCGGCATACT GGCCGGCGGC GGCACTTCCC 7001 TTGCCGCACC GTATTTGGAC AAAGCGGCGG AAAACCTCGG TCCGGCGGGC 7051 AAAGCGGCGG TCAACGCACT GGGCGGTGCG GCCATCGGCT ATGCAACTGG 7101 TGGTAGTGGT GGTGCTGTGG TGGGTGCGAA TGTAGATTGG AACAATAGGC 7151 AGCTGCATCC GAAAGAAATG GCGTTGGCCG ACAAATATGC CGAAGCCCTC 7201 AAGCGCGAAG TTGAAAAACG CGAAGGCAGA AAAATCAGCA GCCAAGAAGC 7251 GGCAATGAGA ATCCGCAGGC AGATACTGCG TTGGGTGGAC AAAGGTTCCC 7301 AAGACGGCTA TACCGACCAA AGCGTCATAT CCCTTATCGG AATGAAAGGC 7351 GAAGACAAAG CCTTGGGTTA TACTTGGGAC TACCGCGACT ACGGCGCAAG 7401 AAATCCGCAA ACCTACAACG ATCCGAAGCT GTTTGAGGAA TACCGCCGAC 7451 AGGACAAACC CGAATACCGC AACCTGACCT GGCTGCACAG CGGGACGAAA 7501 GACACCAAAA TCAGGCAGGG AGAGCGGAAA AACGAAGAGT TTGCACTGAA 7551 CGTTGCCGAA GGACTGACGA GCCTTGTCAA CCCCAATCCG AGGATAAAAG 7601 TCCCGATTCT TGCAGGCATC CGCAACCTGA AAAACATCAA GCCGACAGTT ACCGGCAGCG ATCCCTTATT GGCGGGTGCG GGGAATATCC GTATCCCTGC 7651 7701 AAACGGCAAT GTTGCGAAGG GGGACAGGAT TCCGGATACG GCATTGGCTA 7751 GCAAGGGAAT CAAACATAAA GATCGTAAAG ATCAACTGGA GAAAAAATAA

## This corresponds to the amino acid sequence <SEQ ID 1670; ORF 564>: m564.pep

MNRTLYKVVF NKHRNCMIAV AENAKREGKN TADTQAVGIL PNDIAGFAGF 51 IHSISVISFS LSLLLGSALI LTSSSATAQG IVADKSAPAQ QQPTILQTGN 101 GIPQVNIQTP TSAGVSVNQY AQFDVGNRGA ILNNSRSNTQ TQLGGWIQGN 151 PWLARGEARV VVNQINSSHS SQLNGYIEVG GRRAEVVIAN PAGIAVNGGG 201 FINASRATLT TAQPQYQAGD LSGFKIRQGN VVIAGHGLDA RDTDYTRILS 251 YHSKIDAPVW GQDVRVVAGQ NDVAATGDAH SPILNNAAAN TSNNTANNGT 301 HIPLFAIDTG KLGGMYANKI TLISTVEQAG IRNQGQWFAS AGNVAVNAEG 351 KLVNTGMIAA TGENHAVSLH ARNVHNSGTV ASQDDANIHS QTLDNSGTVL SSGRLTVRNL GRLKNQNNGT IQAARLDMST GGLDNTGNIT QTGSQALDLV 401 SAGKFDNSGK IGVSDVPQTG LNPNPSVIPQ IPSTATGSGS STVSVSKPGS 451 501 NNPVSPTAPA KNYAVGRIQT TGAFDNAGSI NAGGQIDIAA QNGLGNSGSL 551 NAAKLRVSGD SFNNTVKGKL QAHDLAVNTQ TAKNSGHLLT QTGKIDNREL 601 HNAGEIAANN LTLIHSGRLS NDKKGNIRAA HLQLDTAGLH NAGNILADSG 651 TVTTKNNLRN TGKVSVARLN TEGQTLDNTR GRIEAETVNI QSQQLTNQSG 701 HITATEQLTI NSRNVDNQNG KLLSANQAQL AVSDGLYNQH GEIATNRQLS 751 IHDKNONTLA LNNADGTIQS AGNVSLQAKS LANNGTLTAG NKLDIALTDD 801 FVVERDLTAG KQLNLSIKGR LKNTHTLQAG HTLKLNAGNI DNQVTGKIIG GEQTDITSEQ HVDNRGLINS DGLTHIGAGQ TLTNTGTGKI YGNHIALDAQ ---

901 ILLNREETTE GSTKAGAIAA RKRLDIGAKE IHNQEGALLS SEGIFAVGNR LDEQHHAAGM ADTFVNGSAG LEVQGDALMS VRNMQNINNH FKTETYLAKA 951 1001 EKQVRDYTVL GQNTYYQAGK DGLFDNSQGQ KDQTTATFHL KNGSRIEANO 1051 WHVRDYHIET YKERIIENRP AHITVGGDLT ASGQNWLNKD SRIVVGGRII 1101 TDDLNQKEIT NQSTTGKGRT DAVGTQWDSV TKKGWYSGRK RQRRTERNHT PYHDTQLFTH DFDTPVSVIQ QNAASPSFQP AASAIKLIDG VSTAAVNGQR IHTGNVVSLN NATVTLPNSS LYTTHPDNKG WLVETDPQFA DYRRWLGSDY 1151 1201 1251 MLQQLQLDTN HLHKRLGDGY YEQKLVNEQI HQLTGYRRLD GYRSDEEQFK 1301 ALMONGLTAA KTFGLTPGIA LSAEQVARLT SDIVWMENQT VTLSDGSTQT VLVPKVYALA RKGDLNTSGG LISAEQVLLK LQNGNLTNSG TIAGRQAVLI 1351 QARNINSNGN IQADQIGLKA EKSINIDGGQ VQAGRLLTAQ AQNINLNGTT 1401 QTSGNERNGN TAIDRMAGIN VVGSHTEQVD NRTSDGILSL HASNDINLNA 1451 1501 ATVSNQVKDG TTQITAGNNL NLGTIRTEHR EAYGTLDDEN HRHVRQSTEV GSSIRTQNGA LLRAGNDLKI RQGELEAEEG KTVLAAGRDV TISEGRQITE 1551 1601 LDTSVSGKSK GILSSTKTHD RYRFSHDEAV GSNIGGGKMI VAAGQDINVR 1651 GSNLISDKGI VLKAGHDIDI STAHNRYTGN EYHESKKSGV MGTGGLGFTI GNRKTTDDTD RTNIVHTGSI İGSLNGDTVT VAGNRYRQTG STVSSPEGRN 1701 TVTAKSIDVE FANNRYATDY AHTQEQKGLT VALNVPVVQA AQNFIQAAQN 1751 1801 VGKSKNKRVN AMAAANAAWQ SYQATQQMQQ FAPSSSAGQG QNNNQSPSIS 1851 VSITYGEQKS RNEQKRHYTE AAASQIIGKG QTTLAATGSG EQSNINITGS 1901 DVIGHAGTAL IADNHIRLQS AKQDGSEQSK NKSSGWNAGV AVKIGNGIRF GITAGGNIGK GKEQGGSTTH RHTHVGSTTG KTTIRSGGDT TLKGVQLIGK 1951 2001 GIQADTRNLH IESVQDTETY QSKQQNGNVQ VTVGYGFSAS GSYRQSKVKA 2051 DHASVTGQSG IYAGEDGYQI KVRDNTDLKG GIITSSQSAE DKGKNLFQTA TLTASDIQNH SRYEGRSFGI GGSFDLNGGW DGTVTDKQGR PTDRISPAAG 2101 YGSDGDSKNS TTRSGVNTHN IHITDEAGQL ARTGRTAKET EARIYTGIDT 2151 2201 ETADQHSGHL KNSFDKDAVA KEINLQREVT KEFGRNAAQA VAAVADKLGN 2251 TQSYERYQEA RTLLEAELQN TDSEAEKAAF RASLGQVNAY LAENQSRYDT 2301 WKEGGIGRSI LHGAAGGLTT GSLGGILAGG GTSLAAPYLD KAAENLGPAG KAAVNALGGA AIGYATGGSG GAVVGANVDW NNRQLHPKEM ALADKYAEAL 2401 KREVEKREGR KISSQEAAMR IRRQILRWVD KGSQDGYTDQ SVISLIGMKG 2451 EDKALGYTWD YRDYGARNPQ TYNDPKLFEE YRRQDKPEYR NLTWLHSGTK 2501 DTKIRQGERK NEEFALNVAE GLTSLVNPNP RIKVPILAGI RNLKNIKPTV 2551 TGSDPLLAGA GNIRIPANGN VAKGDRIPDT ALASKGIKHK DRKDQLEKK*

# Computer analysis of this amino acid sequence gave the following results: Homology with fha

```
m564/fha
ID
     FHAB BORPE
                    STANDARD;
                                   PRT; 3591 AA.
AC.
     P12255:
     01-OCT-1989 (REL. 12, CREATED)
01-FEB-1996 (REL. 33, LAST SEQUENCE UPDATE)
DT
DT
     01-FEB-1996 (REL. 33, LAST ANNOTATION UPDATE)
     FILAMENTOUS HEMAGGLUTININ. . . .
SCORES
            Init1: 190 Initn: 524 Opt: 594
                             21.7% identity in 2427 aa overlap
Smith-Waterman score: 866;
                    10
                              20
                                        30
                                                  40
            MNRTLYKVVFNKHRNCMIAVAENAKREGKNTADTQAVGILPNDIAGFAGFIHSISVISFS
m564
       .pep
             MNTNLYRLVFSHVRGMLVPVSEHCTV-G-NTFCGRTRG---QARSGARATSLSVAPNALA
fhab_borpe
                    10
                              20
                                          30
                                                                 50
                               80
                                         90
                                                  100
                                                            110
            {\tt LSLLLG-SALILTSSSATAQGIVADKSAPAQQQPTILQTGNGIPQVNIQTPTSAGVSVNQ}
m564
             :1:1: ::1 1:: | | | | | | |
                                      - | | | :|| :|| | :| :|| | :|:|:|| | ::
fhab_borpe
             WALMLACTGLPLVTH---AQGLV----P-QGQTQVLQGGNKVPVVNIADPNSGGVSHNK
                         70
                                            80
                                                      90
          120
                    130
                              140
                                        150
                                                  160
                                                            170
      .pep YAQFDVGNRGAILNNSRSNTQTQLGGWIQGNPWLARGEARVVVNQINSSHSSQLNGYIEV
m564
             : [1:1:1 1:::11: :: :::11 : 11 1:1 :1 ::: ::::: 1:1 1 :11
            FQQFNVANPGVVFNNGLTDGVSRIGGALTKNPNLTR-QASAILAEVTDTSPSRLAGTLEV
fhab borpe
             110
                       120
                                 130
                                           140
                                                      150
```

m564 .pep	1: 1:::[[]]	GIAVNGGGFIN	ASRATLTTAQPQ	QAGDLSGFKIR(	1:1:1
fhab_borpe	YGKGADLIIANPN	IGISVNGLSTLN. .80 19	<b>ASNLTLTTGRPS</b> \	/NGGRI-GLDVQC 210	GTVTIERGGVN 220
m564 .pep	ARDTDYTRILSYH	SKIDAPVW	27( GQDVRVVAG(  :  :	NDVAATGDAHSE	
fhab_borpe	ATGLGYFDVVARL	VKLOGAVSSKO 240 2	GKPLADIAVVAGA	NRYDHATRRATE 270	:::: PIAAGARG 280
m564 .pep	300 NTANNGTHIPLFA	310 : IDTGKLGGMYAN	320 330 NKITLISTVEQAG	340 IRNOGOWFASAG	NVAVNAEGKI.V
fhab_borpe	AAAGAYA	IDGTAAGAMYGI	KHITLVSSDSGLG	: :  : ::  : VRQLGS-LSSPS 320	:: ::: ::: AITVSSQGEIA 330
m564 .pep	360 NTGMIAATGENHA	VSLHARNVHNS	STVASODDANIHS	400 QTLDNSGTVLSS	410 GRLTVRNLGRL
fhab_borpe	LGDATVQRGP	LSLKGAGVVSAG	:   ! SKLASGGGAV 360	:: :: :  : -NVAGGGAVKIA 370	:: ::    SASSVGNL 380
m564 .pep	420 KNQNNGTIQAARL	DMSTGGLDNTGN	140 450 NITOTGSQALDLV	SAGKEDNSGKIG	VSDVPOTGLNP
fhab_borpe	AVQGGGKVQATLL	NAGGI	: :    ::  LLVSGRQAVQLG 410	: ::::::::::::::::::::::::::::::::::::	::  : GGALKADKLSA 430
m564 .pep		<b>TGSGSSTVSVSK</b>	500 51 PGSNNPVSPTAP	AKNYAVGRIOTT	530 GAFD-NAGSIN
fhab_borpe	TRRVDVDGKQAVA	II:II:: : LGSASSNALSVR D 460	I: AGGALKA 4		:   : GKQAVTLGSVA 490
m564 .pep		SNSGSLNAAKLR	55 560 VSGDSF	NNTVKGI	70 579 KLQAHDLAVNT
fhab_borpe	:   ::::  ::  SDGALSVSAGGNLI 500	RANELVSSAQLE	VRGQREVALDDA.	::: :   SSARGMTVVAAG2 30 540	ALAARNLOSKG
	90 590 QTAKNSGHLLTQTO	KIDNRELHN	AGEIAANNLTLI	HSGRLSNDKKGN	630 IRAAHLQLDTA
fhab_borpe	AIGVQGGEAVSVAN 560	: ::   : : NANSDAELRVRG 570	RGQVDLHDLSAAI	::: : :: :    RGADISGEGRVN] 90 600	: :  : GRARSDSDVK 610
m564 .pep	640 650 GLHNAGNILADSGT	660 VTTKNNLRNTG	670 KVSVARLNTEGO	680 L'IDNTRGRIEAET	690 VNIQSQQLTN
fhab_borpe	:   :       -VSAHGALSIDSMI 620			: :   : /TVSGGG <i>-:</i> 550	NVNLGDVQ 660
m564 .pep	700 710 QSGHITATEQLTIN	720 ISRNVDNQNGKL	730 LSAN <u>Q</u> AQLAVSDO	740 SLYNQHGEIATNE	750 QLSIHDKNQN
fhab_borpe	SDGQVRATSAGAMT	1:1	1 1:11:: 1	1 1	

m564	.pep	760 TLALNNADG	TIQSAGNVSI	QAKSLANNG:	790 TLTAGNKLDI	ALTDDFVVER	810 DLTAGKQL-NLS :   :   :
fhab_bo	orpe	RLDG	A-HAGGQLRV 720	SSDGQAALG:	SLAAKGELTV	SAARAATVA- 750	:   :   :  ELKSLDNIS 760
m564	.pep	:   : ::	HTLQAGHTLK	LNA-GNIDN(	:11: :	QTDITSEQHV	870 DNRGLINSDGLT :   ::: :
fhab_bc	rpe	VTGGERVSV 770	QSVNSASRVA 780	ISAHGALD 790	VGKVSA	KSGIGLE 800	-GWGAVGADSL- 810
m564		1: :::	NTGTGKIYGN :  : :	: 1:11	NREETTEGS	TKAGAIAARK	930 RLDI-GAKEIHN : :  :: :
fhab_bc	rpe	820	830	840	)	850	SIDVRGGSTV 860
	.pep	::1 :::	:: 1: 1	EQHHAAGMAI :: ::	TFVNGSAGL ::  :	::: 1:::	RNMQNINNHFKT
fhab_bc	rpe .	870	880	890	900	910	RGALALDGGAGV 920
m564	.pep	111	QVRDYTVL ::::	GQNTYYQAGK : I : I	DGLFDNSQG : : I	QKDQTTATFHI	0 1050 LKNGSRIEANQ-  ::: ::
fhab_bo	rpe	ALQSAKASG 930	FLHVQGGEHL 940	DLGTLAAVGA 950	VDVNG	TGDVRVAKLV: 960	SDAGADLQAGRS 970
		WHVRDYH : I	IETYKERIIE : : :	NRPAHITVGG	DLTASGONW	LNKDSRIVVG  : :  : :	1100 GRIITDDLNQKE : :: :
fhab_bo		980	990 1	000 1	.010	1020	ALELSGQGV 1030
m564	.pep	ITNOSTTCK	GRTDAVGTQW	DSVTKKGWY-	-SGRKRORR	1150 TERNHTPYHDT :	COLFTHDFDTPV
fhab_bo	rpe	TVDRASASRI 1040	ARIDSTGSVG 1050		AASPRRARR 1070	ALR	:      QDFFTPG 1080
m564	.pep	1170 SVIQQNI	1180 AASPSFQPAA :: :	SAIKLIDGVS	TAAVNGORI	1210 HTGNVVSLNNA	1220 ATVTLPNSSLYT
fhab_bo	rpe	SVVVRAQGN 1090	VTVGRGDPHQ 1100	GVLAQGDIIM 1110	DAKGGTL 112	LLRNDALTENO 0 1130	STVTISADSAVL
m564	.pep	1230 THPDNKGWLV	1240 /ETD-PQFAD :: :!	YRRWLGSDYM	1260 LQQLQLDTNI	HLHKRLGDGYY	1280 EQKLVNEQIHQ
fhab_bo	rpe			KGKPAVŠVKV	AKKLFLN	GTLRAVNDN 180	NETMSGRQIDV 1190
m564	.pep	1290 LTGYRRLDGY	1300 KRSDEEQFKA: :  :	1310 LMDNGLTAAK	1320 TFGLTPG-I	0 1330 ALSAEQVARLT	SDIVWMENQTV
fhab_bo				RKDESVVSDA 1220	ALVADGGPIV 1230	VVEAGELVSHA 1240	:   : : AGGIGNGRNK 1250

m564 .pep	1350 1360 1370 1380 1390 1400 TLSDGSTQTVLVPKVYALARKGDLNTSGGLISAEQVLLKLQNGNLTNSGTIAGRQAVLIQ : ::  :   :  : :: : : : : : : : : : : :
m564 .pep	1410 1420 1430 1440 1450 ARNINSNGNIQADQIGLKAEKSINIDGGQVQAGRLLTAQAQNINLNGTT  :  ::  ::       ::       ::  : :: :: ::
m564 pep fhab_borpe	11:1:::::::::::::::::::::::::::::::::::
m564 pep	: 1::::1::::   :::   :::     ::: :::     ::: :     ::: :     ::: :     ::: :     ::: :     ::: :     ::: :     ::: :     ::: :   ::: :     ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   ::: :   :::
m564 .pep	
m564 .pep fhab_borpe 1	
m564 .pep	1670 16 1680 1690 1700 1710  VLKAGHDIDISTAHNRYTGNEYHESKKSGVMGTGGLGFTIGNRKTTDDTDRTNIV ::      :::      ::: ::  : ' :     TMAAGHDATLKAPHLRNTGQVVAGHDIHIINSAKLENTGRVDARNDIALDVADFTN 1600 1610 1620 1630 1640 1650
m564 .pep	
m564 .pep	::    :     ::::  :: :     :: :
m564 .pep	1840 1850 1860 1870 1880 1890  FAPSSSAGQGQNNNQSPSISVSITYGEQKSRNEQKRHYTEAAASQIIGKGQTTLAATGSG :::: :: :: :: : : : : : : : : : : : :
m564 .pep	1900 1910 1920 1930 1940 1950 EQSNINITGSDVIGHAGTALIADNHIRLQSAKQDGSEQSKNKSSGWNAGVAVKIGNGIRF ::::::::::::::::::::::::::::::::::::

```
1960
                                1970
                                         1980
                                                  1990
                                                          2000
                 GITAGGNIGKGKEQGGSTTHRHTHVGSTTGKTTIRSGGDTTLKGVQLIGKGIQADTRNLH
     m564
            .pep
                      GKDLYLNAGARKDE----HRHL----LNEGVIQAGGHGHIGG----
      fhab borpe
                                                              ---DVDNRSV-
                  1870
                                1880
                                             1890
                       2020
                                2030
                                         2040
                                                  2050
                 IESVQDTETYQSKQQNGNVQVTVGYGFSASGSYRQSKVKA----DHASVTGQSGIYAGE
     m564
                  VRTVSAMEYFKTPLPVSLTALDNRAGLSPATWNFQSTYELLDYLLDQNRYEYIWGLYPTY
     fhab borpe
                          1920
                                   1930
                                            1940
                                                    1950
                  2070
                           2080
                                    2090
                                             2100
                                                      2110
     m564
                 DGYQIKVRDNTDLKGGIITSSQSAEDKGKNLFQTATLTASDIQNHS--RYEGRSFGIGGS
            .pep
                   111:: :1
                 TEWSVNTLKNLDL-GYQAKPAPTAPPMPKA-----PELDLRGHTLESAEGRKI-FGEY
     fhab borpe
                 1970
                           1980
                                 1990
                                                   2000
                    2130
                                 2140
                                          2150
                                                   2160
                 FDLNGGWDGT-----VTDKQGRPTDRISPAAGYGSDGDSKNSTTRSGVNTHNIHITDEAG
     m564
            .pep
                   lefore on tellin by a continuous
                 KKLQGEYEKAKMAVQAVEAYGEATRRVHDQLG-----QRYGKALGGMDAETKEVDGIIQ
     fhab borpe
                2020
                         2030
                                  2040
                                                2050
                                                          2060
               2180
                        2190
                                 2200
                                          2210
                                                   2220
            .pep QLARTGRTAKETEARIYTGIDTETADQHSGHLKNSFDKDAVAKEINLQREVTKEFGRNAA
     m564
                     :11 ::: :
                 EFAADLRTVYAKQADQAT-IDAET-DKVAQRYKSQID--AVRLQAIQPGRVT--LAKALS
     fhab borpe
                     2080
                               2090
                                         2100
                                                    2110
                                                               2120
               2240
                        2250
                                 2260
                                           2270
                                                    2280
                                                             2290
                 QAVAAVADKLGNTQSYERYQEARTLLE-AELQNTDSEAEKAAFRASLGQVNAYL-----
     m564
            .pep
                         1 1:1 1::
                 AALGADWRALGHSQLMQRWKDFKAGKRGAEIAFYPKEQTVLAAGAGLTLSNGAIHNGENA
     fhab borpe
                  2130
                           2140 -
                                   2150
                                             2160
                                                      2170
                     2300
                              2310
                                       2320
                                                2330
                                                         2340
     m564
                AENQSRYDTWKEGGIGRSILHGAAGGLTTGSLGGILAGGGTSLAAPYLDKAAENLGPAGK
                 1:1::1: 1 1::::1: :1
     fhab borpe
                AQNRGRPEGLKIGAHSATSVSGSFDALRDVGLEKRLDIDDALAAVLVNPHIFTRIGAAQT
                 2190
                           2200
                                    2210
                                             2220
                                                     2230
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1671>:
     g565.seq
             atggacagca cattgtctaa aacgtgttgc gtttcgtgca tattgttgag
          51 cgtaaccacc accattttcg cccgtcccag accggcggct tccaatactt
         101 ccctgcgttt cgcatcgccg aacgacaccg gctcgcctgc acttctggct
         151 acctgcacge gtgcgatgte caagtcgage gcgaaatacg gaatatecte
             tttgggcgaa gacgcgtccg accgtctgcc cgcccctgcc gaagccgaca
         251 atcagcacat gatcagactt gctcatcgct tccaccaaca tgctgtgcag
         301 atcgagcgac ttcatgtccc agcttga
This corresponds to the amino acid sequence <SEQ ID 1672; ORF 565.ng>:
    g565.pep
             MDSTLSKTCC VSCILLSVTT TIFARPRPAA SNTSLRFASP NDTGSPALLA
           1
             TCTRAMSKSS AKYGISSLGE DASDRLPAPA EADNQHMIRL AHRFHQHAVQ
             IERLHVPA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1673>:
    m565.seg
            ATGGACAGCA CATTGTCTAA AACGTGTTGC GTTTCGTGCA TATTGTTGAG
          1
          51 CGTAACCACC ACCATTTTCG CCCGTCCCAG ACCGGCGGCT TCCAATACTT
         101 CCCTGCGTTT CGCATCGCCG AACGACACCG GTTCGCCCGC ACTTCTGGCA
         151 ACCTGCACCC GCGCAATGTC CAAGTCGAGC GCGAAATACG GAATATCCTC
         201 TTGGGCAAGG ACGCGTCCGA CCGTCTGCCC GCCCCTGCCG AAGCCGACAA
```

251	TCAGCACATG	GTCGGACTTG	CTCATGGTTT	CTACCAGCAT	ACTGTGCAGA
301	TCGAGCGACT	TCATGTCCCA	GCTTGACTTG	ACCAAACGCC	CGACCAGCGC
351	ATCGCTGCCG	CCCAAGAGGA	AGGGCGCGAT	AATCATCGAC	AGCAGAACCG
401	CCGCCGTCGC	CGCCTGTTCC	CATTCTGGCG	AAACCATATC	AAGCTGCCCG
451	GCAATGGCCA	GCATCACGAA	GCCGAACTCG	CCGCCCTGCG	CGAGATACAA
501	AGCCGTTTTG	AGGCTGTCGC	CGACCGAATG	TTTCATTTTG	AAGGCAATGG
551	CAAACACAAC	CAGTGCCTTC	AACACCAGCA	GCATTGCCAA	CAGCATCAAT
601	ACCTGCCGCC	AGCCGCCGAT	CAATGCCTGA		

This corresponds to the amino acid sequence <SEQ ID 1674; ORF 565>:

m565.pep

- 1 MDSTLSKTCC VSCILLSVTT TIFARPRPAA SNTSLRFASP NDTGSPALLA
- 51 TCTRAMSKSS AKYGISSWAR TRPTVCPPLP KPTISTWSDL LMVSTSILCR
- 101 SSDFMSQLDL TKRPTSASLP PKRKGAIIID SRTAAVAACS HSGETISSCP
- 151 AMASITKPNS PPCARYKAVL RLSPTECFIL KAMANTTSAF NTSSIANSIN
- 201 TCRQPPINA*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m565/g565 100.0% identity in 67 aa overlap
```

	10	20	30	40	50	60
m565.pep	MDSTLSKTCCVSCI	LLSVTTTIFA	RPRPAASNTS	ELRFASPNDTG	SPALLATCTE	LAMSKSS
	1111111111111	1111111111	11111111111		1111111111	111111
g565	MDSTLSKTCCVSCI	LLSVTTTIFA	RPRPAASNTS	ELRFASPNDTG	SPALLATCTE	AMSKSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m565.pep	AKYGISSWARTRPT	VCPPLPKPTI	STWSDLLMVS	STSILCRSSDF	MSQLDLTKRE	TSASLP
g565	AKYGISSLGEDASDI	RLPAPAEADN	QHMIRLAHRE	HQHAVQIERL	HVPAX	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1675>: a565.seq

ATGGACAGCA CATTGTCTAA AACGTGTTGC GTTTCGTGCA TATTGTTGAG 1 CGTAACCACC ACCATTTCG CCCGTCCCAG ACCGGCGGCT TCCAATACTT 51 101 CCCTGCGTTT CGCATCGCCG AACGACACCG GTTCGCCCGC ACTTCTGGCA 151 ACCTGCACCC GCGCAATGTC CAAGTCGAGC GCGAAATACG GAATATCCTC 201 TTGGGCAAGG ACGCGTCCGA CCGTCTGCCC GCCCCTGCCG AAGCCGACAA
251 TCAGCACATG GTCGGACTTG CTCATGGTTT CTACCAGCAT ACTGTGCAGA TCAGCACATG GTCGGACTTG CTCATGGTTT CTACCAGCAT ACTGTGCAGA TCGAGCGACT TCATGTCCCA GCTTGACTTG ACCAAACGCC CGACCAGTGC 351 ATCGCTGCCG CCCAAGAGGA AGGGCGCGAT AATCATCGAC AGCAGAACCG CCGCCGTCGC CGCCTGTTCC CATTCTAGCG AAACCATATC AAGCTGCCCG 401 451 GCAATGGCCA GCATCACGAA GCCGAACTCG CCGCCCTGCG CGAGATACAA 501 AGCCGTTTTG AGGCTGTCGC CGACCGAATG TTTCATTTTG AAGGCAATGG 551 CAAACACAAC CAGTGCCTTC AACACCAGCA GCATTGCCAA CAGCATCAAT

This corresponds to the amino acid sequence <SEQ ID 1676; ORF 565.a>:

a 565.pep

1 MDSTLSKTCC VSCILLSVTT TIFARPRPAA SNTSLRFASP NDTGSPALLA

51 TCTTDAMSYSS AVYCISSMAP TERTVCPRIN KOTTLSTVASPI ASVETTAL CO

- 51 TCTRAMSKSS AKYGISSWAR TRPTVCPPLP KPTISTWSDL LMVSTSILCR
- 101 SSDFMSQLDL TKRPTSASLP PKRKGAIIID SRTAAVAACS HSSETISSCP
- 151 AMASITKPNS PPCARYKAVL RLSPTECFIL KAMANTTSAF NTSSIANSIN
- 201 TCRQPPINA*

m565/a565 99.5% identity in 209 aa overlap

601 ACCTGCCGCC AGCCGCCGAT TAATGCCTGA

	a565	MDSTLSKTCCVSCILLSVTTTIFARPRPAASNTSLRFASPNDTGSPALLATCTR					
		10	20	30	40	50	60
		70	80	90	100	110	120
	m565.pep	AKYGISSWARTRP	TVCPPLPKPT	ISTWSDLLMV	STSILCRSSDE		PTSASLP
		11111111111111	1111111111	1111111111			
	a565	AKYGISSWARTRP	TVCPPLPKPT:	ISTWSDLLMV	STSILCRSSDE	MSOLDLTKR	TSASLP
		70	80	90	100	110	120
		130	140	150	160	170	180
	m565.pep	PKRKGAIIIDSRT	<b>AAVAACSHSG</b> I	ETISSCPAMA:	SITKPNSPPCA	RYKAVLRLSI	PTECFIL
*7200					14 14 44 1 1 1 1 1	11111111111	111111
	a565	PKRKGAIIIDSRT/	aavaacshssi	ETISSCPAMA:	SITKPNSPPCA	RYKAVLRLSE	TECFIL
		130	140	150	160	170	180
		190	200	210			
	m565.pep	KAMANTTSAFNTS	SIANSINTCRO	QPPINAX			
				111111			
	a565	KAMANTTSAFNTS	SIANSINTCRO	QPPINAX			
		190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1677>: g566.seq..

- 1 atgccgtctg aacaatatct tttcagacgg cattttgtat gggggttaac
  - 51 ggttgttcag cccgagtacg tcctgcatat cgtacaaacc cgttttgccg
  - 101 tttacccaaa ctgcggcgcg gacggcaccg gcggcaaagg tcatgcggct
  - 151 gccggctttg tgggtgattt ccacgcgttc gccgtcggtg gcgaagaggg 201 cggtgtggtc gccgactatg tcgcctgcgc ggacggtggc aaagccgatg
  - 251 gtggaaggat cgcgcggacc agtgtggcct tcgcggccgt aaacggcgca
  - 301 ttgtttgagg tcgcggccga gcgcgcggc gatgacttcg cccattcgta 351 a

This corresponds to the amino acid sequence <SEQ ID 1678; ORF 566.ng>:

g566.pep..

1 MPSEQYLFRR HFVWGLTVVQ PEYVLHIVQT RFAVYPNCGA DGTGGKGHAA

51 AGFVGDFHAF AVGGEEGGVV ADYVACADGG KADGGRIART SVAFAAVNGA 101 LFEVAAERAG DDFAHS*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1679>: m566.seq..

- 1 ATGCCGTCTG AACAATATCT TTTCAGACGG CATTTTGTAT GGGGGTTAAC 51 GGTTGTTCAG CCCGAGTACG TCCTGCATAT CGTACAAACC CGTTTTGCCG
- 51 GGTTGTTCAG CCCGAGTACG TCCTGCATAT CGTACAAACC CGTTTTGCCG
  101 TTGACCCAAA CTGCGGCGC GACGGCACCG GCGGCAAAGG TCATGCGGCT
- 151 GCTGGCCTTG TGGGTGATTT CCACGCGCTC GCCGTCGGTG GCGAAGAGGG
- 201 CGGTGTGGTC GCCGACGATG TCGCCTGCGC GGACGGTGGC AAAGCCGATG
- 251 GTCGACGGAT CGCGCGGACC GGTGTGGCCT TCGCGGCCGT AAACGGCGCA
- 301 TTGTTTGAGG TCTCTGCCGA GCGCGCCGGC GATGACTTCG CCCATGCGTA

351 A

This corresponds to the amino acid sequence <SEQ ID 1680; ORF 566>:

- 1 MPSEQYLFRR HFVWGLTVVQ PEYVLHIVQT RFAVDPNCGA DGTGGKGHAA
- 51 AGLVGDFHAL AVGGEEGGVV ADDVACADGG KADGRRIART GVAFAAVNGA

101 LFEVSAERAG DDFAHA*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m566/g566 93.1% identity in 116 aa overlap

10 20 30 40 50 60 m566.pep MPSEQYLFRRHFVWGLTVVQPEYVLHIVQTRFAVDPNCGADGTGGKGHAAAGLVGDFHAL

```
MPSEQYLFRRHFVWGLTVVQPEYVLHIVQTRFAVYPNCGADGTGGKGHAAAGFVGDFHAF
     g566
                                   20
                                            30
                                                               50
                         70
                                   80
                                                    100
                                                              110
                  AVGGEEGGVVADDVACADGGKADGRRIARTGVAFAAVNGALFEVSAERAGDDFAHAX
     m566.pep
                  AVGGEEGGVVADYVACADGGKADGGRIARTSVAFAAVNGALFEVAAERAGDDFAHSX
     q566
                         70
                                  80
                                            90
                                                              110
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1681>:
     a566.seq
               ATGCCGTCTG AACAATATCT TTTCAGACGG CATTTTGTAT GGGGGTTAAC
           1
              GGTTGTTCAG CCCGAGTACG TCCTGCATAT CGTACAAACC CGTTTTACCG
           51
              TTTACCCAAA CTGCGGCGC GACGGCGCCG GCGGCAAAGG TCATGCGGCT
          101
              GCTTGCCTTG TGGGTGATTT CCACGCGCTC GCCGTCGGTG GCGAAGAGGG
          151
              CGGTGTGGTC GCCGACGATG .TCGCCCGCGC GGACGGTGGC AAAGCCGATG
              GTGGACGGAT CGCGCGGGCC GGTGTGGCCT TCGCGGCCGT AAACGGCGCA
          251
              TTGTTTGAGG TCTCTGCCGA GCGCCCGGC GATGACTTCG CCCATGCGTA
          301
          351
This corresponds to the amino acid sequence <SEQ ID 1682; ORF 566.a>:
     a566.pep
            1
              MPSEQYLFRR HFVWGLTVVQ PEYVLHIVQT RFTVYPNCGA DGAGGKGHAA
              ACLVGDFHAL AVGGEEGGVV ADDVARADGG KADGGRIARA GVAFAAVNGA
           51
          101
              LFEVSAERAG DDFAHA*
     m566/a566
                 94.0% identity in 116 aa overlap
                                  20
                                            30
                                                     40
                                                               50
                 MPSEQYLFRRHFVWGLTVVQPEYVLHIVQTRFAVDPNCGADGTGGKGHAAAGLVGDFHAL
     m566.pep
                 MPSEQYLFRRHFVWGLTVVQPEYVLHIVQTRFTVYPNCGADGAGGKGHAAACLVGDFHAL
     a566
                         10
                                  20
                                            30
                                                     40
                                                                        60
                         70
                                  80
                                            90
                                                    100
                 AVGGEEGGVVADDVACADGGKADGRRIARTGVAFAAVNGALFEVSAERAGDDFAHAX
     m566.pep
                 AVGGEEGGVVADDVARADGGKADGGRIARAGVAFAAVNGALFEVSAERAGDDFAHAX
     a566
                         70
                                  80
                                            90
                                                    100
                                                              110
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1683>:
   g567.seq..
              atgcgacgac gggcagcggc atcgacaagg cgggtttgca gtccggcgtt
          51 tatcaggtct tattgggcga tgcggacgtg cagtcggcgg cggtacgcag
              caaagagggc ggatacggcg tgttgggtgc gaacgcgcgc gcttgccggc
         101
         151 gcggaaatcg agctggtgca ggaaatcgcc cgggaagtgc gtttgaaaaa
         201 cgcgctcaag gcagtggcgg aagattacga ctttatcctg atcgactgtc
         251 cgccttcgct gacgctgttg acgcttaacg gcttggtggc ggcgggcggc
              gtgattgtgc cgatgttgtg cgaatattac gcgctggaag ggatttccga
         301
         351 tttgattgcg accgtgcgca aaatccgtca ggcggtcaat cccgatttgg
         401 acatcacggg catcgtgcgt acgatgtacg acagccgcag caggctggtt
         451
              gccgaagtca gcgaacagtt gcgcagccat ttcggggatt tgctttttga
              aaccgccatc ccgcgcaata tccgccttgc ggaagcgccg agccacggta
         501
              tgccggtgat ggcttacgac gcgcaggcaa agggtgccaa ggcgtatctt
         551
              gccttggcgg acgaactggc ggcgagggtg tcggggaaat ag
This corresponds to the amino acid sequence <SEQ ID 1684; ORF 567.ng>:
    g567.pep
              MRRRAAASTR RVCSPAFIRS YWAMRTCSRR RYAAKRADTA CWVRTRALAG
              AEIELVQEIA REVRLKNALK AVAEDYDFIL IDCPPSLTLL TLNGLVAAGG
              VIVPMLCEYY ALEGISDLIA TVRKIRQAVN PDLDITGIVR TMYDSRSRLV
         151 AEVSEQLRSH FGDLLFETAI PRNIRLAEAP SHGMPVMAYD AQAKGAKAYL
         201 ALADELAARV SGK*
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1685>: m567.seq...

1 ATGAGTGCGA ACATCCTTGC CATCGCCAAT CAGAAGGGCG GTGTGGGCAA
```

51 AACGACGACG ACGGTAAATT TGGCGGCTTC GCTGGCATCG CGCGGCAAAC 101 GCGTGCTGGT GGTCGATTTG GATCCGCAGG GCAATGCGAC GACGGGCAGC GGCATCGACA AGGCGGGTTT GCAGTCCGGC GTTTATCAGG TCTTATTGGG 151 201 CGATGCGGAC GTGCAGTCGG CGGCGGTACG CAGCAAAGAG GGCGGATACG 251 CTGTGTTGGG TGCGAACCGC GCGCTGGCCG GCGCGGAAAT CGAACTGGTG CAGGAAATCG CCCGGGAAGT GCGTTTGAAA AACGCGCTCA AGGCAGTGGA 301 AGAAGATTAC GACTTTATCC TGATCGACTG CCCGCCTTCG CTGACGCTGT 351 TGACGCTTAA CGGGCTGGTG GCGGCGGCC GCGTGATTGT GCCGATGTTG 401 TGCGAATATT ACGCGCTGGA AGGGATTTCC GATTTGATTG CGACCGTGCG 451 CAAAATCCGT CAGGCGGTCA ATCCCGATTT GGACATCACG GGCATCGTGC 501 GCACGATGTA CGACAGCCGC AGCAGGCTGG TTGCCGAAGT CAGCGAACAG 551 TTGCGCAGCC ATTTCGGGGA TTTGCTTTTT GAAACCGTCA TCCCGCGCAA 601 TATCCGCCTT GCGGAAGCGC CGAGCCACGG TATGCCGGTG ATGGCTTACG 651 701 ACGCGCAGGC AAAGGGTACC AAGGCGTATC TTGCCTTGGC GGACGAGCTG 751 GCGGCGAGGG TGTCGGGGAA ATAG

This corresponds to the amino acid sequence <SEQ ID 1686; ORF 567>: m567.pep..

1 MSANILAIAN QKGGVGKTTT TVNLAASLAS RGKRVLVVDL DPQGNATTGS 51 GIDKAGLQSG VYQVLLGDAD VQSAAVRSKE GGYAVLGANR ALAGAEIELV

101 QEIAREVRLK NALKAVEEDY DFILIDCPPS LTLLTLNGLV AAGGVIVPML

151 CEYYALEGIS DLIATVRKIR QAVNPDLDIT GIVRTMYDSR SRLVAEVSEQ

201 LRSHFGDLLF ETVIPRNIRL AEAPSHGMPV MAYDAQAKGT KAYLALADEL

251 AARVSGK*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
98.2% identity in 168 aa overlap
m567/g567
                          80
                                  90
                                         100
                                                 110
                                                         119
          GVYQVLLGDADVQSAAVRSKEGGYAVLGANRALAGAEIELVQEIAREVRLKNALKAVEED
m567.pep
                                   AFIRSYWAMRTCSRRRYAAKRADTACWVRTRALAGAEIELVQEIAREVRLKNALKAVAED
g567
             20
                     30
                             40
                                     50
                                             60
                 130
                         140
                                 150
                                         160
                                                 170
                                                         179
          YDFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDI
m567.pep
          q567
          YDFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDI
                     90
                            100
                                    110
                                            120
                                                    130
         180
                         200
                                 210
                                         220
          TGIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETVIPRNIRLAEAPSHGMPVMAYDAQAKG
m567.pep
          TGIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETAIPRNIRLAEAPSHGMPVMAYDAQAKG
g567
            140
                    150
                            160
                                    170
          240
                  250
          TKAYLALADELAARVSGKX
m567.pep
          q567
          AKAYLALADELAARVSGKX
          200
                  210
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1687>: a567.seq

- 1 ATGAGTGCGA ACATCCTTGC CATCGCCAAT CAGAAGGGCG GTGTGGGCAA
- 51 AACGACGACG ACGGTAAATT TGGCGGCTTC GCTGGCATCG CGCGGCAAAC
  101 GCGTGCTGGT GGTCGATTTG GATCCGCAGG GCAATGCGAC GACGGGCAGC
- 151 GGCATCGACA AGGCGAGTTT GCAGTCCGGC GTTTATCAGG TCTTATTGGG
- 201 CGATGCGGAC GTGAAATCGG CGGCGGTACG CAGCAAAGAG GGCGGATACG

```
GCGTGTTGGG TGCGAACCGC GCGCTGGCCG GCGCGGAAAT CGAGCTGGTG
         251
         301
             CAGGAAATCG CCCGGGAAGT GCGTTTGAAA AACGCGCTCA AGGCAGTGGC
         351 GGAAGATTAC GACTTTATCC TGATCGACTG CCCGCCTTCG CTGACGCTGT
         401 TGACGCTTAA CGGCTTGGTG GCGGCAGGCG GCGTGATTGT GCCGATGTTG
         451
             TGCGAATATT ACGCGCTGGA AGGGATTTCC GATTTGATTG CGACCGTGCG
             CAAAATCCGT CAGGCGGTCA ATCCCGATTT GGATATCACG GGCATCGTGC
         501
             GTACGATGTA CGACAGCCGC AGCAGGCTAG TTGCCGAAGT CAGCGAACAG
         551
             TTGCGCAGCC ATTTCGGGGA TTTGCTGTTT GAAACCGTCA TCCCGCGCAA
         601
             TATCCGCCTT GCGGAAGCGC CGAGCCACGG TATGCCGGTG ATGGCTTATG
         651
             ATGCGCAGGC AAAGGGTGCC AAGGCGTATC TTGCCTTGGC GGACGAGCTG
         701
         751 ATGGCGAGGG TGTCGGGGAA ATAG
This corresponds to the amino acid sequence <SEQ ID 1688; ORF 567.a>:
    a567.pep
             MSANILAIAN QKGGVGKTTT TVNLAASLAS RGKRVLVVDL DPOGNATTGS
             GIDKASLQSG VYQVLLGDAD VKSAAVRSKE GGYGVLGANR ALAGAEIELV
             QEIAREVRLK NALKAVAEDY DFILIDCPPS LTLLTLNGLV AAGGVIVPML
        101
             CEYYALEGIS DLIATVRKIR QAVNPDLDIT GIVRTMYDSR SRLVAEVSEO
         201 LRSHFGDLLF ETVIPRNIRL AEAPSHGMPV MAYDAQAKGA KAYLALADEL
        251
             MARVSGK*
    m567/a567
                97.7% identity in 257 aa overlap
                                20
                                        30
                                                 40
                                                          50
                MSANILAIANQKGGVGKTTTTVNLAASLASRGKRVLVVDLDPQGNATTGSGIDKAGLOSG
    m567.pep
                a567
                MSANILAIANQKGGVGKTTTTVNLAASLASRGKRVLVVDLDPQGNATTGSGIDKASLQSG
                       10
                                20
                                        30
                                                 40
                                                          50
                                                                   60
                                80
                                        90
                                                100
                VYQVLLGDADVQSAAVRSKEGGYAVLGANRALAGAEIELVQEIAREVRLKNALKAVEEDY
    m567.pep
                a567
                VYQVLLGDADVKSAAVRSKEGGYGVLGANRALAGAEIELVQEIAREVRLKNALKAVAEDY
                               80
                                        90
                                                100
                                                         110
                                                                  120
                               140
                                                160
                                       150
                                                         170
    m567.pep
                DFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDIT
                a567
                DFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDIT
                              140
                                       150
                                                160
                                                         170
                      190
                              200
                                       210
                                                220
                                                         230
               GIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETVIPRNIRLAEAPSHGMPVMAYDAQAKGT
    m567.pep
                a567
               GIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETVIPRNIRLAEAPSHGMPVMAYDAQAKGA
                      190
                              200
                                       210
                                                220
                                                         230
                                                                  240
                      250
               KAYLALADELAARVSGKX
    m567.pep
               a567
               KAYLALADELMARVSGKX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1689>: g568.seq

250

```
atgetcaggg teagaceggt attatttgee gteaaggett cegeetete
gatacettge agaatetgee gattaaageg ttegeggetg eccaatattt
teaggegeat attgtttee tgeaggegge gtacetgtt ttgeaaagee
tgtaaaaaca geeeateag gaacgaaact tegtettegg ggegaegeea
gttteggtt gaaaaggeaa acaeggteag atattgeaeg eccagtttgg
egeaatgett eaceatatt teeaaegegt ecaageegeg ttgtgteee
cgcaatgetg ggagaaaaeg tttttegee eaaeggeegt tgeegteeat
attataegeg gagaaaaeg ggatggeggt gtgtteeaaa atggtetgeg
```

```
401 tgctgctctt catatctgcc tttcgcggtt cggcgttcaa atgccgtctg
```

451 aacgccgcgc cgtga

This corresponds to the amino acid sequence <SEQ ID 1690; ORF 568.ng>:

g568.pep

- 1 MLRVRPVLFA VKASASSIPC RICRLKRSRL PNIFRRILFS CRRRTCFCKA
- 51 CKNSPIRNET SSSGRRQFSV EKANTVRYCT PSLAOCFTIF SNASKPRLCP
- 101 IIRGRKRFFA QRPLPSIITA MCLGMAVCSK MVCVLLFISA FRGSAFKCRL
- 151 NAAP*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1691>:

m568.seq

1	ATGCTCAGGG	TCAGGCCGGT	ATTGTTTGCC	GTCAACGCTT	CCGCCTCTTC
51	GATGCCTTGC	AGAATCTGCC	GGTTGAAGCG	TTCGCGGCTG	CCCAATATCT
101	TCAGGCGCAT	ATTGTTTTCG	TGCAGGCGGC	GTACCTGTTT	TTGCAAAGCC
151	TGTAAAAACA	GCCCCATCAG	GAACGAAACT	TCGTCTTCGG	GGCGGCGCCA
201	GTTTTCGGTT	GAAAAGGCAA	ACACGGTCAG	ATATTGCACA	CCCAGTTTGG
251	CGCAATGCTT	CACCATATTT	TCCAATGCGT	CCAAACCGCG	TTTGTGTCCC
301	ATTATGCGCG	GGAGGAAACG	TTTTTTCGCC	CAACGGCCGT	TGCCGTCCAT
351	AATCACGGCG	ATATGCTTGG	GAATGGCGGT	GTGTTCCAAA	ACGGCCTGCG
401	TGCTGCTTTT	CATGTCTGCC	TTTCGCGGTT	CGGCATTCAA	ATGCCGTCTG
451	AACGCCGAAC	CGTGCAGGTT	AAATTGCCAT	CAAATCTTCT	TCTTTGGCAG
501	TCAGGAGTTT	GTCGGCTTCG	GTAATGTATT	TGTCGGTCAG	TTTTTGAACC
551	GCTTCTTCGC	CGCGACGTGC	CTCGTCTTCG	GAAATTTCTT	TGTCTTTGAG
601	GAGTTTTTTG	ATGTGGTCGT	TGGCATCGCG	GCGCACGTTG	CGGATAGAGA
651	CGCGGCCTTC	TTCCGCTTCG	CCGCGTACGA	CTTTAATCAG	GTCTTTGCGG
701	CGTTCCTCGG	TCAGCATGGG	CATCGGCACG	CGGATCAGGT	CGCCGACAGC
751	TGCCGGGTTC	AGTCCCAAGT	TTGA		

This corresponds to the amino acid sequence <SEQ ID 1692; ORF 568>:

m568.pep..

m568.pep

- 1 MLRVRPVLFA VNASASSMPC RICRLKRSRL PNIFRRILFS CRRRTCFCKA 51 CKNSPIRNET SSSGRRQFSV EKANTVRYCT PSLAQCFTIF SNASKPRLCP
- 101 IMRGRKRFFA QRPLPSIITA ICLGMAVCSK TACVLLFMSA FRGSAFKCRL
- 151 NAEPCRLNCH QIFFFGSQEF VGFGNVFVGQ FLNRFFAATC LVFGNFFVFE
- 201 EFFDVVVGIA AHVADRDAAF FRFAAYDFNQ VFAAFLGQHG HRHADQVADS 251 CRVQSQV*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m568/g568 94.8% identity in 154 aa overlap

	10 .	20	30	40	50	60
m568.pep	MLRVRPVLFAVNAS	ASSMPCRICR	LKRSRLPNIE	RRILFSCRRR	TCFCKACKNS	SPIRNET
	11111111111111	:	11111111111		1111111111	
g568	MLRVRPVLFAVKAS	ASSIPCRICR	LKRSRLPNIE	RRILFSCRRR	TCFCKACKNS	SPIRNET
	10	20	30	40	50	60
	70	80	90	100	110	120
m568.pep	SSSGRRQFSVEKAN'	<b>CVRYCTPSLA</b>	QCFTIFSNAS			
	1113111111111	1111111111	1111111111	111111111111111111111111111111111111111	1111111111	
g568	SSSGRRQFSVEKAN'	<b>CVRYCTPSLA</b>	QCFTIFSNAS	SKPRLCPIIRG	RKRFFAQRPI	LPSIITA
	70	80	90	100	. 110	120

	11111111111111					
g568	SSSGRRQFSVEKAI	NTVRYCTPSLI	aqcftifsna.	SKPRLCPIIR	GRKRFFAQRPI	LPSIITA
	. 70	80	. 90	100	. 110	120
	130	140	150	160	170	180
m568.pep	ICLGMAVCSKTAC	VLLFMSAFRG:	SAFKCRLNAE	PCRLNCHQIF:	FFGSQEFVGF	SNVFVGO
	1: 1111111111:				<del>-</del>	-
g568	MCLGMAVCSKMVC	VLLFISAFRG:	SAFKCRLNAA	PX		
	130	140	150			
	190	200	210	220	230	240

 ${\tt FLNRFFAATCLVFGNFFVFEEFFDVVVGIAAHVADRDAAFFRFAAYDFNQVFAAFLGQHG}$ 

```
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1693>:
     a568.seq
              ATGCTCAGGG TCAGGCCGGT ATTGTTTGCC GTCAAGGCTT CCGCCTCTTC
           1
          51
              GATGCCCTTC AGGATTTGAC GGTTGAAGCG TTCGCGGCTG CCCAGTATTT
              TCAGGCGCAT ATTGTTTTCG TGCAGGCGGC GTACCTGTTT TTGCAAAGCC
         101
         151
              TGTAAAAACA GCCCCATCAG GAACGAAACT TCGTCTTCGG GGCGGCGCCA
              GTTTTCGGTT GAAAAGGCAA ACACGGTCAG ATATTGCACA CCCAGTTTGG
         201
         251
              CGCAATGCTT CACCATATTT TCCAATGCGT CCAAACCGCG TTTGTGTCCC
              ATTATGCGCG GGAGGAAACG TTTTTTCGCC CAACGGCCGT TGCCGTCCAT
         301
             AATCACGGCG ATATGCTTGG GAATGGCGGT GTGTTCCAAA ACGGCCTGCG
         351
              TGCTGCTTTT CATGTCTGCC TTTCGCGGTT CGGCATTCAA ATGCCGTCTG
         401
              AACGCCGAAC CGTGCAGGTT AAATTGCCAT CAAATCTTCT TCTTTGGCAG
         451
         501
              TCAGGAGTTT GTCGGCTTCG GTAATGTATT TGTCGGTCAG TTTTTGAACC
         551
              GCTTCTTCGC CGCGACGTGC CTCGTCTTCG GAAATTTCTT TGTCTTTGAG
         601
              GAGTTTTTTG ATGTGGTCGT TGGCATCGCG GCGCACGTTG CGGATGGAGA
             CGCGGCCTTC TTCCGCTTCG.CCGCGTACGA CTTTAATCAG GTCTTTGCGG
         651
         701
              CGTTCCTCGG TCAGCATGGG CATCGGCACG CGGATCAGGT CGCCGACAGC
              TGCCGGGTTC AGTCCCAAGT TTGA
This corresponds to the amino acid sequence <SEQ ID 1694; ORF 568.a>:
    a568.pep
              MLRVRPVLFA VKASASSMPF RI*RLKRSRL PSIFRRILFS CRRRTCFCKA
              CKNSPIRNET SSSGRRQFSV EKANTVRYCT PSLAQCFTIF SNASKPRLCP
          51
              IMRGRKRFFA QRPLPSIITA ICLGMAVCSK TACVLLFMSA FRGSAFKCRL
         101
             NAEPCRLNCH QIFFFGSQEF VGFGNVFVGQ FLNRFFAATC LVFGNFFVFE
         151
              EFFDVVVGIA AHVADGDAAF FRFAAYDFNQ VFAAFLGQHG HRHADQVADS
         201
         251
              CRVQSQV*
                98.1% identity in 257 aa overlap
    m568/a568
                                                    40
                MLRVRPVLFAVNASASSMPCRICRLKRSRLPNIFRRILFSCRRRTCFCKACKNSPIRNET
    m568.pep
                 a568
                MLRVRPVLFAVKASASSMPFRIXRLKRSRLPSIFRRILFSCRRRTCFCKACKNSPIRNET
                        10
                                 20
                                          30
                                                   40
                                                             50
                                                                      60
                        70
                                 80
                                          90
                                                  100
                                                            110
                                                                     120
    m568.pep
                SSSGRRQFSVEKANTVRYCTPSLAQCFTIFSNASKPRLCPIMRGRKRFFAQRPLPSIITA
                a568
                SSSGRRQFSVEKANTVRYCTPSLAQCFTIFSNASKPRLCPIMRGRKRFFAQRPLPSIITA
                        70
                                 80
                                          90
                                                  100
                                                            110
                                                                     120
                                140
                                         150
                                                  160
                                                            170
    m568.pep
                ICLGMAVCSKTACVLLFMSAFRGSAFKCRLNAEPCRLNCHQIFFFGSQEFVGFGNVFVGQ
                 a568
                {\tt ICLGMAVCSKTACVLLFMSAFRGSAFKCRLNAEPCRLNCHQIFFFGSQEFVGFGNVFVGQ}
                       130
                                140
                                         150
                                                  160
                                                            170
                                                                     180
                       190
                                200
                                         210
                                                  220
                                                            230
                                                                     240
                FLNRFFAATCLVFGNFFVFEEFFDVVVGIAAHVADRDAAFFRFAAYDFNQVFAAFLGQHG
    m568.pep
                FLNRFFAATCLVFGNFFVFEEFFDVVVGIAAHVADGDAAFFRFAAYDFNQVFAAFLGQHG
    a568
                       190
                                200
                                         210
                                                  220
                                                            230
                       250
    m568.pep
                HRHADOVADSCRVQSQVX
                111111111111111111111
    a568
                HRHADQVADSCRVQSQVX
                       250
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1695>: 9569.seq..

- 1 atgctgaaac aacgggtaat aaccgctatg tggctgctgc cgctgatgct
- 51 gggcatgctg ttttacgcgc cgcaatggct gtgggctgca ttttgcgggc
- 101 tgattgccct gaccgccttg tgggagtatg cccgtatggc cggtttgtgc

```
151 aaaaccgaaa ccaaccatta cctcgccgca accttggttt tcggcgtagt
         251 tggcattttg gctcgccgtt atgcctttgt ggttgagatt caaatggagg
    301 ctcaacggcg gttggcaggt ttatgccgtc ggctggcttt tgctcatgcc
    351 gttttggttc gcgctcgtat ccctggcgcc cgcatcccga tga
This corresponds to the amino acid sequence <SEQ ID 1696; ORF 569.ng>:
g569.pep
         MLKQRVITAM WLLPLMLGML FYAPQWLWAA FCGLIALTAL WEYARMAGLC
         KTETNHYLAA TLVFGVVAYA GGWMLPNLVW YVVLAFWLAV MPLWLRFKWR
     51
    101 LNGGWQVYAV GWLLLMPFWF ALVSLAPASR *
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1697>:
m569.seq..
      1 ATGCTGAAAC AACGGGTAAT AACCGCCATG TGGCTGCTGC CGCTGATGCT
        GGGCATGCTG TTTTACGCGC CGCAATGGTT GTGGGCTGCA TTTTGCGGAC
     51
        TGATTGCCCT GATTGCCTTG TGGGAATATG CCCGTATGGG CGGTTTGTGC
    101
    151 AAAATTAAAA CCAACCATTA CCTCGCCGCA ACCTTGGTTT TCGGCGTGGT
    201
        251 TGGCATTTTG GCTCGCCGTT ATGCCTTTAT GGTTGAGATT CAAATGGAGG
    301 CTCAACGGCG GTTGGCAGGT TTATGCCGTC GGCTGGCTTC TGGTCATGCC
        GTTTTGGTTC GCGCTCGTAT CCCTGCGCCC GCATCCCGAT GATGCCCTGC
    351
    401 CGCTGCTCGC CGTGATGGGT TTGGTGTGGG TTGCCGATAT TTGCGCGTAT
    451 TTCAGCGGCA AGGCGTTCGG CAAACACAAA ATCGCGCCGG CAATCAGCCC
    501 CGGCAAAAGC TGGGAAGGTG CAATCGGCGG CGCGGTTTGC GTGGCAGTGT
    551 ACATGACCGC CGTACGAAGT GCCGGCTGGC TGGCATTCGA TACAGGCTGG
        TTCGATACCG TGTTAATCGG TTTGGTGCTG ACCGTTGTCA GCGTATGCGG
    601
    651 CGACCTTTTG GAAAGCTGGC TCAAGCGCGC GGCAGGCATC AAAGACAGCA
        GCAAGCTGCT GCCCGGACAC GGCGGCGTGT TCGACCGTAC CGACAGCCTG
    701
        ATTGCCGTTA TCAGCGTCTA TGCAGCGATG ATGTCGGTTT TAAATTGA
This corresponds to the amino acid sequence <SEQ ID 1698; ORF 569>:
m569.pep..
        MLKQRVITAM WLLPLMIGML FYAPQWLWAA FCGLIALIAL WEYARMGGLC
KIKTNHYLAA TLVFGVVAYA GGWMLPNLUW YVVLAFWLAV MPLWLRFKWR
      1
     51
    101
        LNGGWQVYAV GWLLVMPFWF ALVSLRPHPD DALPLLAVMG LVWVADICAY
        FSGKAFGKHK IAPAISPGKS WEGAIGGAVC VAVYMTAVRS AGWLAFDTGW
    201 FDTVLIGLVL TVVSVCGDLL ESWLKRAAGI KDSSKLLPGH GGVFDRTDSL
    251 IAVISVYAAM MSVLN*
          95.3% identity in 127 aa overlap
                            20
                                     30
                                              40
m569.pep
           MLKQRVITAMWLLPLMLGMLFYAPQWLWAAFCGLIALIALWEYARMGGLCKIKTNHYLAA
            MLKQRVITAMWLLPLMLGMLFYAPQWLWAAFCGLIALTALWEYARMAGLCKTETNHYLAA
q569
                   10
                            20
                                     30
                                              40
                                                       50
                            80
                                     90
                                             100
                                                      110
           TLVFGVVAYAGGWMLPNLVWYVVLAFWLAVMPLWLRFKWRLNGGWQVYAVGWLLVMPFWP
m569.pep
            TLVFGVVAYAGGWMLPNLVWYVVLAFWLAVMPLWLRFKWRLNGGWQVYAVGWLLLMPFWF
g569
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1699>: a569.seq

90

150

ALVSLRPHPDDALPLLAVMGLVWVADICAYFSGKAFGKHKIAPAISPGKSWEGAIGGAVC

100

160

110

170

120

70

130

11111 1

ALVSLAPASRX 130

m569.pep

g569

80

140

- 1 ATGCTGAAAC AACGGGTGAT AACCGCCATG TGGCTGCTGC CGCTGATGCT
- 51 GGGCATGCTG TTTTACGCGC CGCAATGGTT GTGGGCTGCA TTTTGCGGAC
- 101 TGATTGCCCT GATTGCCTTG TGGGAATATG CCCGTATGGG CGGTTTGTGC

```
151 AAAATTAAAA CCAACCATTA CCTCGCCGCA ACCTTGGTTT TCGGCGTGGT
             201
         251
             TGGCATTTTG GCTCGCCGTT ATGCCTTTAT GGTTGAGATT CAAATGGAGG
             CTCAACGGCG GTTGGCAGGT TTATGCCGTC GGCTGGCTTC TGGTCATGCC
         301
             GTTTTGGTTC GCGCTCGTAT CCCTGCGCCC GCATCCCGAT GATGCCCTGC
         351
         401
             CGCTGCTCGC CGTGATGGGT TTGGTGTGGG TTGCCGATAT TTGCGCGTAT
         451
             TTCAGCGGCA AGGCGTTCGG CAAACACAAA ATCGCACCGG CAATCAGCCC
             CGGCAAAAGC TGGGAAGGTG CAATCGGCGG CGCGGTTTGC GTGGCCGTGT
         501
         551
             ACATGACCGC CGTACGAAGT GCCGGCTGGC TGGCATTCGA TACAGGCTGG
         601
             TTCGATACCG TGTTAATCGG TTTGGTGTTG ACCGTTGTCA GCGTATGCGG
             CGACCTTTTG GAAAGCTGGC TCAAGCGCGC GGCAGGCATC AAAGACAGCA
         651
             GCAACCTGCT GCCCGGACAC GGCGGCGTGT TCGACCGEAC CGACAGCCTG
         701
         751 ATTGCCGTTA TCAGCGTCTA TGCAGCGATG ATGTCGGTTT TAAATTGA
This corresponds to the amino acid sequence <SEQ ID 1700; ORF 569.a>:
    a569.pep
             MLKORVITAM WLLPLMLGML FYAPOWLWAA FCGLIALIAL WEYARMGGLC
             KIKTNHYLAA TLVFGVVAYA GGWMLPNLVW YVVLAFWLAV MPLWLRFKWR
         51
             LNGGWQVYAV GWLLVMPFWF ALVSLRPHPD DALPLLAVMG LVWVADICAY
        101
         151
             FSGKAFGKHK IAPAISPGKS WEGAIGGAVC VAVYMTAVRS AGWLAFDTGW
             FDTVLIGLVL TVVSVCGDLL ESWLKRAAGI KDSSNLLPGH GGVFDRTDSL
        201
         251
             IAVISVYAAM MSVLN*
    m569/a569
                99.6% identity in 265 aa overlap
                               20
                                        30
                                                 40
                                                         50
                                                                  60
               MLKQRVITAMWLLPLMLGMLFYAPQWLWAAFCGLIALIALWEYARMGGLCKIKTNHYLAA
    m569.pep
                MLKQRVITAMWLLPLMLGMLFYAPQWLWAAFCGLIALIALWEYARMGGLCKIKTNHYLAA
    a569
                      10
                               20
                                        30
                                                 40
                                                         50
                                                                  60
                               80
                                        90
                                                100
                                                        110
                                                                 120
                TLVFGVVAYAGGWMLPNLVWYVVLAFWLAVMPLWLRFKWRLNGGWQVYAVGWLLVMPFWF
    m569.pep
                TLVFGVVAYAGGWMLPNLVWYVVLAFWLAVMPLWLRFKWRLNGGWQVYAVGWLLVMPFWF
    a569
                      70
                               80
                                        90
                                                100
                                                        110
                     130
                              140
                                       150
                                                .160
                                                        170
               ALVSLRPHPDDALPLLAVMGLVWVADICAYFSGKAFGKHKIAPAISPGKSWEGAIGGAVC
    m569.pep
                a569
               ALVSLRPHPDDALPLLAVMGLVWVADICAYFSGKAFGKHKIAPAISPGKSWEGAIGGAVC
                     130
                              140
                                       150
                                                160
                                                        170
                     190
                              200
                                       210
                                                220
                                                        230
                                                                 240
               VAVYMTAVRSAGWLAFDTGWFDTVLIGLVLTVVSVCGDLLESWLKRAAGIKDSSKLLPGH
    m569.pep
               a569
               VAVYMTAVRSAGWLAFDTGWFDTVLIGLVLTVVSVCGDLLESWLKRAAGIKDSSNLLPGH
                      190
                              200
                                       210
                                               220
                                                        230
                                                                 240
                      250
               GGVFDRTDSLIAVISVYAAMMSVLNX
    m569.pep
                a569
               GGVFDRTDSLIAVISVYAAMMSVLNX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1701>: g570.seq..

260

```
atgatecgtt tgacecgeg gtttgeegee geetgateg gtttatgetg
tcaceacagge gegeacgeeg acacetteea aaaaategge tttateaaca
ccgagegeat ctacetegaa tecaageagg egegeacacat ccaaaaacg
tcgaaeggeg aatttgeaaa ggegegegeaa eggeggeaaa ettaaggaeg
cgaaggettg gatttggaaa ggeagetege eggeggeaaa ettaaggaeg
caaaaaagge geaageegaa gaaaaatgge gegggetggt egaageegtt
cgcaaaaaaa aggegeagtt tgaagaagae tacaacetee geegeaaega
sgagtttgee teeeteeage aaaaegeeaa eggegteate gteaaaatgg
```

250

```
401 ccaaacagga aggttacgat gtcattttgc aggacgtgat ttacgtcaac
        451 acccaatacg acgttaccga cagcgtcatt aaagaaatga acgcccgctg
   This corresponds to the amino acid sequence <SEQ ID 1702; ORF 570.ng>:
   g570.pep.
            MIRLTRAFAA ALIGLCCTTG AHADTFQKIG FINTERIYLE SKQARNIQKT
         51 LDGEFSARQD ELQKLQREGL DLERQLAGGK LKDAKKAQAE EKWRGLVEAF
        101 RKKQAQFEED YNLRRNEEFA SLQQNANRVI VKIAKQEGYD VILQDVIYVN
        151 TOYDVTDSVI KEMNAR*
-- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1703>:
   m570.seq.
           ATGACCCGTT TGACCCGCGC GTTTGCCGCG GCTCTGATCG GTTTGTGCTG
            CACCGCAGGC GCGCACGCCG ACACCTTCCA AAAAATCGGC TTTATCAACA
         51
       101 CCGAGCGCAT CTACCTCGAA TCCAAGCAGG CGCGCAAGAT TCAAAAAACG
       151 CTGGACAGCG AATTTTCCGC TCGTCAGGAC GAATTGCAAA AACTGCAACG
       201 CGAAGGTCTG GATTTGGAAA GGCAGCTTGC CGAAGGCAAA CTCAGAAACG
       251 CAAAAAAGGC GCAAGCCGAA GAAAAATGGC GCGGGCTGGT CGCAGCGTTC
       301 CGCAAAAAC AGGCGCAGTT TGAAGAAGAC TACAACCTCC GCCGCAACGA
       351 AGAGTTTGCC TCCCTCCAGC AAAACGCCAA CCGCGTCATC GTCAAAATCG
       401 CCAAACAGGA AGGTTACGAT GTCATTTTGC AGAACGTGAT TTACGTCAAC
       451 ACCCAATACG ACGTTACCGA CAGCGTCATT AAAGAAATGA ACGCCCGCTG
       501 A
   This corresponds to the amino acid sequence <SEQ ID 1704; ORF 570>:
   m570.pep
            MTRLTRAFAA ALIGLCCTAG AHADTFQKIG FINTERIYLE SKQARKIQKT
            LDSEFSARQD ELQKLQREGL DLERQLAEGK LRNAKKAQAE EKWRGLVAAF
        51
       101 RKKQAQFEED YNLRRNEEFA SLQQNANRVI VKIAKQEGYD VILONVIYVN
       151 TOYDVTDSVI KEMNAR*
   m570/g570 94.6% identity in 166 aa overlap
                               20
                                        30
               MTRLTRAFAAALIGLCCTAGAHADTFQKIGFINTERIYLESKQARKIQKTLDSEFSAROD
   m570.pep
               MIRLTRAFAAALIGLCCTTGAHADTFQKIGFINTERIYLESKQARNIQKTLDGEFSARQD
   g570
                      10
                               20
                                        30
                                                 40
                                                          50
                                        90
                                                100
               ELQKLQREGLDLERQLAEGKLRNAKKAQAEEKWRGLVAAFRKKQAQFEEDYNLRRNEEFA
   m570.pep
               q570
               ELQKLQREGLDLERQLAGGKLKDAKKAQAEEKWRGLVEAFRKKQAQFEEDYNLRRNEBFA
                               80
                                                100
                                                         110
                                                                  120
                     130
                              140
                                       150
                                                160
   m570.pep
               SLQQNANRVIVKIAKQEGYDVILQNVIYVNTQYDVTDSVIKEMNARX
               g570
               SLQQNANRVIVKIAKQEGYDVILQDVIYVNTQYDVTDSVIKEMNARX
                     130
                              140
                                       150
                                                160
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1705>: a570.seq

```
1 ATGACCCGTT TGACCCGCGC GTTTGCCGCG GCTCTGATCG GTTTGTGCTG
51 CACCGCAGGC GCGCACGCCG ACACCTTCCA AAAAATCGGC TTTATCAACA
101 CCGAGCGCAT CTACCTCGAA TCCAAGCAGG CGCGCAAGAT TCAAAAAACG
151 CTGGACAGCG AATTTCCGC CCGCCAGGAC GAATTGCAAA AACTGCAACG
201 CGAAGGTCTG GATTTGGAAA GGCAGCTTGC CGAAGGCAAA CTCAAAGACG
251 CAAAAAAGGC GCAAGCCGAA GAAAAATGGT GCGGGCTGGT CGCAGCGTTC
301 CGCAAAAAAC AGGCGCAGTT TGAAGAAGAC TACAACCTCC GCCGCAACGA
351 AGAGTTTGCC TCCCTCCAGC AAAACGCCAA CCGCGTCATC GTCAAAATCG
401 CCAAACAGGA AGGTTACGAT GTCATTTTGC AGGACGTGAT TTACGTCAAC
451 ACCCAATACG ACGTTACCGA CAGCGTCATT AAAGAAATGA ACGCCCGCTG
```

501 A

```
This corresponds to the amino acid sequence <SEQ ID 1706; ORF 570.a>:
```

```
a570.pep
```

-- *****

- MTRLTRAFAA ALIGLCCTAG AHADTFQKIG FINTERIYLE SKQARKIOKT
- 51 LDSEFSARQD ELQKLQREGL DLERQLAEGK LKDAKKAQAE EKWCGLVAAF
- 101 RKKQAQFEED YNLRRNEEFA SLQQNANRVI VKIAKQEGYD VILQDVIYVN
- 151 TQYDVTDSVI KEMNAR*

m570/a570 97.6% identity in 166 aa overlap

	10	20	30	40	50	60
m570.pep	MTRLTRAFAAALIG	LCCTAGAHAD	TFQKIGFINT	ERIYLESKQ!	ARKIQKTLDS	EFSAROD
	1111111111111	11111111111	1111111111		1111111111	HHIÏE
a570	MTRLTRAFAAALIG	LCCTAGAHAD	TFQKIGFINT	ERIYLESKQ!	RKIQKTLDSI	FSAROD
	10	20	30	40	50	60
	70	80	90	100	110	120
m570.pep	ELQKLQREGLDLER					
ms.c.pcp					ANTEREDINE	KANEEFA
a570	ELQKLQREGLDLER			GLVAAFRKK	AOFEEDYNLE	
	70	80	90	100	110	120
	130	140	150	160		
m570.pep	SLQQNANRVIVKIA	KQEGYDVILO	NVIYVNTOYD		IARX	
		1111111111			111	
a570	SLQQNANRVIVKIA	KQEGYDVILQ	DVIYVNTOYD	VTDSVIKEMN	IARX	
	130	140	150	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1707>: g571.seq (partial)

- - atgcgcgttt tccgagtaaa ccgatttgtt gttaccgttt tcggcggcgg 51 tataggttet geegteecac acgetgeetg egteggeaaa caggeteagg
  - 101 cggacggtgc gtgcgtcttt cgcaccgggc atcgggaaga gcagctcggc
  - 151 ggagacgttg gcttttttgt tgccgccgta gctgattttt tcgccgtatt
  - 201 cgtcatacac tttcgggccg agcgtgccgc tttcgtagcc gcgcaccgaa
  - 251 cccaggccgc cgccgtagaa gttttcaaag aaggggattt ctttggttct
  - 301 gccgtagecg cccgcaatgc cgacttcgcc gccgagcatc agcgtgaagg
  - 351 ttttgct...

This corresponds to the amino acid sequence <SEQ ID 1708; ORF 571.ng>: g571.pep (partial)

- 1 MRVFRVNRFV VTVFGGGIGS AVPHAACVGK QAQADGACVF RTGHREEQLG
- 51 GDVGFFVAAV ADFFAVFVIH FRAERAAFVA AHRTQAAAVE VFKEGDFFGS
- 101 AVAARNADFA AEHOREGFA...

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1709>: m571.seq

- 1 ATGGGTATTG CCGGCGCCGT AAATGTTTTG AACCCTGCCG CCGGTCGCGG
- 51 AACTGCTGTT GTCGTCGTAG GTTTTGCCGT CCCACACGCT GCCTGCGTCG
- 101 GCAAACAGGC TCAGGCGGAC GGTGCGCGCG TCTTTCGCGC CGGGCATCGG
- 151 GAAGAGCAGC TCGGCGGAGA CGTTGGCTTT TTTGTTGCCG CCGTAGCTGA 201 TTTTTCGCC GTATTCGTCA TAGACTTTCG GACCGAGCGT GCCGCTTTCG
- 251 TATCCGCGCA CCGAACCCAG GCCGCCGCCG TAGAAGTTTT CAAAGAAGGG
- 301 GATTTCTTTG GTTCTGCCGT AGCCGCCCGC AATGCCGACT TCGCCGCCGA
- 351 GCATCAGCGT GAAGGTTTTG CTCAGGGGGA AGAACCAGGT TTGGTTGTGG
- GTGGCGGAGT AGTATTGCAG TTTGCTGCCA GGCAGGGCGA TTTCGGCGTT 451 CACGCCCGTC AGGTAGCCGC GCGTCGGCCA TAA

#### This corresponds to the amino acid sequence <SEQ ID 1710; ORF 571>: m571.pep

- 1 MGIAGAVNVL NPAAGRGTAV VVVGFAVPHA ACVGKQAQAD GARVFRAGHR
- 51 EEQLGGDVGF FVAAVADFFA VFVIDFRTER AAFVSAHRTQ AAAVEVFKEG
- DFFGSAVAAR NADFAAEHQR EGFAQGEEPG LVVGGGVVLQ FAARQGDFGV
- 151 HARQVAARRP *

m571/g571 93.1% identity in 102 aa overlap

878

```
40
              MGIAGAVNVLNPAAGRGTAVVVVGFAVPHAACVGKQAQADGARVFRAGHREEQLGGDVGF
   m571.pep
                                MRVFRVNRFVVTVFGGGIGSAVPHAACVGKQAQADGACVFRTGHREEQLGGDVGF
   g571
                                         30
                                                 40
                    70
                            80
                                     90
                                            100
                                                    110
   m571.pep
              FVAAVADFFAVFVIDFRTERAAFVSAHRTQAAAVEVFKEGDFFGSAVAARNADFAAEHQR
              __ v<sub>ini</sub>g571
              FVAAVADFFAVFVIHFRAERAAFVAAHRTQAAAVEVFKEGDFFGSAVAARNADFAAEHQR
                        70
                60
                                80
                                        90
                                                100
                           140
                   130
                                    150
                                            160
              EGFAQGEEPGLVVGGGVVLQFAARQGDFGVHARQVAARRPX
   m571.pep
              IIII
   g571
              EGFA
              119
   The following partial DNA sequence was identified in N. meningitidis <SEO ID 1711>:
        a571.seq
                 ATGGGTATTG CCGGCGCCGT AAATGTTTTG AACCCTGCCG CCGGTCGCGG
                 AACTGCTGTT GTCGTCGTAG GTTTTGCCGT CCCACACGCT GCCTGCGTCG
             51
                 GCAAACAGGC TCAGGCGGAC GGTGCGCGCG TCTTTCGCGC CGGGCATCGG
            101
            151 GAAGAGCAGC TCGGCGGAGA CGTTGGCTTT TTTGTTGCCG CCGTAGCTGA
                TTTTTTCGCC GTATTCGTCA TACACTTTCG GACCGAGCGT GCCGCTTTCG
            201
            251
                 TATCCGCGCA CCGAACCCAG GCCGCCGCCG TAGAAGTTTT CAAAGAAGGG
            301 GATTTCTTTG GTTCTGCCGT AGCCGCCCGC AATGCCGACT TCGCCGCCGA
            351 GCATCAGCGT GAAGGTTTTG CTTAAGGGGA AGAACCAGGT TTGGTTGTGG
            401 GTGGCGGAGT AGTATTGCAG TTTGCTGCCG GGCAGGGCGA TTTCGGCGTT
            451 CACGCCCGTC AGGTAGCCGC GCGTCGGCCA TAA
   This corresponds to the amino acid sequence <SEQ ID 1712; ORF 571.a>:
       a571.pep
                MGIAGAVNVL NPAAGRGTAV VVVGFAVPHA ACVGKQAQAD GARVFRAGHR
             51
                EEQLGGDVGF FVAAVADFFA VFVIHFRTER AAFVSAHRTQ AAAVEVFKEG
                 DFFGSAVAAR NADFAAEHQR EGFA*GEEPG LVVGGGVVLQ FAAGQGDFGV
            101
            151
                HARQVAARRP *
                   98.1% identity in 160 aa overlap
       m571/a571
                                    20
                                             30
                                                       40
       m571.pep
                   MGIAGAVNVLNPAAGRGTAVVVVGFAVPHAACVGKQAQADGARVFRAGHREEOLGGDVGF
                   a571
                   MGIAGAVNVLNPAAGRGTAVVVVGFAVPHAACVGKQAQADGARVFRAGHREEQLGGDVGF
                                    20
                                             30
                                                      40
                                                                50
                           70
                                    80
                                             90
                                                     100
                                                               110
                                                                        120
                   FVAAVADFFAVFVIDFRTERAAFVSAHRTQAAAVEVFKEGDFFGSAVAARNADFAAEHQR
       m571.pep
                   a571
                   FVAAVADFFAVFVIHFRTERAAFVSAHRTQAAAVEVFKEGDFFGSAVAARNADFAAEHQR
                           70
                                    80
                                             90
                                                     100
                                                               110
                                                                        120
                          130
                                   140
                                            150
                   EGFAQGEEPGLVVGGGVVLQFAARQGDFGVHARQVAARRPX
       m571.pep
                   a571
                   EGFAXGEEPGLVVGGGVVLQFAAGQGDFGVHARQVAARRPX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1713>: g572.seq..

150

160

140

130

```
1 atgtgcgcca tcgtcggggc ggcggggctg ccttccgcgc tcgcagcggc
     gcaaaaaggc aaaaccattt atctggcaaa caaagaaacg ctggtggttt
 51
101
    ccggcgcgtt gtttatggaa accgcccgcg caaacggcgc ggcagtgttg
151 cccgtcgaca gcgaacacaa cgccattttc caagttttgc cgcgcgatta
201 cacagaccgt ctgaacgaac acggcatcga ttcgattatc ctgaccgctt
251 ccggcggccc gtttttaaca accgatttaa gcacgttcga cagcattacg
301 cccgagcagg cggtcaaaca ccccaattgg cgtatggggc gcaaaatctc
351 cgtcgattca gccactatgg caaacaaggg cttggaactg attgaaqcqc
401 attggctgtt caactgtccg cccgacaaac tcgaagtcgt catccatccc
451 caatccgtga tacacagtat ggtgcgctac cgcgacggct ccgtgctggc
501 gcaactgggc aatcccgata tgcgaacgcc catcgcctat tgtttgggct
551 tgcccgagcg catcgattcg ggtgtcggca aactcgattt cggcgcattg
601 teegegetga cettecaaaa geeegaette ggeegettee eetgeetgaa
651 gttcgcctat gaaaccataa acgcaggcgg agccgcgccc tgcgtattga
701 acgccgccaa cgaaaccgcc gtcgccgcct ttttggacgg acagattaag
751 tttaccgaca ttgccaaaac cgtcgcccac tgtcttgcac aagacttttc
801 aaacggcatg ggcgatatag aaggactgtt ggcgcaagat gcccggacac
851 gcgcacaagc gcgggcattt atcggcacac tgcgctga
 1 MCAIVGAAGL PSALAAAQKG KTIYLANKET LVVSGALFME TARANGAAVL
51 PVDSEHNAIF QVLPRDYTDR LNEHGIDSII LTASGGPFLT TDLSTFDSIT
101 PEOAVKHPNW RMGRKISVDS ATMANKGLEL IEAHWLFNCP PDKLEVVIHP
```

This corresponds to the amino acid sequence <SEQ ID 1714; ORF 572.ng>: g572.pep..

151 QSVIHSMVRY RDGSVLAQLG NPDMRTPIAY CLGLPERIDS GVGKLDFGAL

201 SALTFOKPDF GRFPCLKFAY ETINAGGAAP CVLNAANETA VAAFLDGQIK

The following partial DNA sequence was identified in N. meningitidis <SEO ID 1715>: m572.seq..

```
1 ATGTGCGCCA TCGTCGGGGC GGTGGGGCTG CCTTCCGCGC TCGCAGCGGC
 51 GCAAAAAGGC AAAACCATTT ATCTGGCAAA CAAAGAAACG CTGGTGGTTT
101 CCGGCGCGTT GTTTATGGAA ACCGCCCGTG CAAACGGCGC GGCAGTGCTG
151 CCCGTCGACA GCGAACACAA CGCCGTTTTC CAAGTTTTGC CGCGCGATTA
201 CGCCGGCCGT CTGAACGAAC ACGGCATCGC TTCGATTATC CTGACCGCTT
251 CCGGCGGCCC GTTTCTGACC GCCGATTTAA ACACGTTCGA CCGCATTACG
301 CCCGCCCAAG CGGTCAAACA CCCCAATTGG CGTATGGGAC GCAAAATCTC
351 CGTCGATTCC GCCACCATGA TGAACAAAGG TTTGGAGCTG ATTGAAGCGC
401 ATTGGCTGTT CAACTGTCCG CCCGACAAAC TCGAAGTCGT CATCCATCCG
451 CAATCCGTGA TACACAGCAT GGTGCGCTAC CGCGACGGCT CCGTGCTGGC
501 GCAACTGGGC AATCCCGATA TGCGAACGCC CATCGCTTAT TGTTTGGGTT
551 TGCCCGAGCG CATCGATTCG GGTGTCGGCG ACCTGGATTT CGACGCATTG
601 TCCGCGCTGA CCTTCCAAAA GCCCGACTTT GACCGCTTCC CCTGCCTGAG
651 GCTCGCCTAT GAAGCCATGA ACGCAGGCGG AGCCGCGCCC TGCGTATTGA
701 ACGCCGCCAA CGAAGCCGCC GTCGCCGCCT TTTTGGACGG ACAGATTAAG
751 TTTACCGACA TTGCCAAAAC CGTCGCCCAC TGTCTTGCAC AAGACTTTTC
801 AGACGGCATA GGCGATATAG GGGGGCTCTT GGCGCAAGAT GCCCGGACAC
851 GCGCACAAGC GCGAGCATTT ATCGGCACAC TGCGCTGA
```

This corresponds to the amino acid sequence <SEO ID 1716; ORF 572>: m572.pep..

```
1 MCAIVGAVGL PSALAAAQKG KTIYLANKET LVVSGALFME TARANGAAVL
51 PVDSEHNAVF QVLPRDYAGR LNEHGIASII LTASGGPFLT ADLNTFDRIT
```

101 PAQAVKHPNW RMGRKISVDS ATMMNKGLEL IEAHWLFNCP PDKLEVVIHP 151 QSVIHSMVRY RDGSVLAQLG NPDMRTPIAY CLGLPERIDS GVGDLDFDAL

201 SALTFQKPDF DRFPCLRLAY EAMNAGGAAP CVLNAANEAA VAAFLDGQIK

251 FTDIAKTVAH CLAQDFSDGI GDIGGLLAQD ARTRAQARAF IGTLR*

m572/g572 92.9% identity in 295 aa overlap

```
20
                             30
                                     40
m572.pep
         MCAIVGAVGLPSALAAAQKGKTIYLANKETLVVSGALFMETARANGAAVLPVDSEHNAVF
         g572
         MCAIVGAAGLPSALAAAQKGKTIYLANKETLVVSGALFMETARANGAAVLPVDSEHNAIF
                      20
               10
                             30
                                     40
                                    100
         QVLPRDYAGRINEHGIASIILTASGGPFLTADLNTFDRITPAQAVKHPNWRMGRKISVDS
m572.pep
         q572
         QVLPRDYTDRINEHGIDSIILTASGGPFLTTDLSTFDSITPEQAVKHPNWRMGRKISVDS
```

			•			
	70	80	90	100	110	120
	130	140	150	160	170	180
m572.pep	ATMMNKGLELIEA	HWLFNCPPDK	LEVVIHPQSV:	IHSMVRYRDGS	SVLAQLGNPD	ARTPIAY
	111 11111111	111111111	111111111			
g572	ATMANKGLELIEA	HWLFNCPPDK	LEVVIHPOSV	IHSMVRYRDGS	SVLAOLGNPD	MRTPIAY
307-	130	140	150	160	170	180
					2.0	100
	190	200	210	220	230	240
m572.pep	CLGLPERIDSGVG					
mo va . pep				: :       : :		
				• • • • • • •	, , , , , , , , , , , , , , , , , , ,	
g572	CLGLPERIDSGVG		-			
	190	200	210	220	230~	240
	250	260	270	280	290	
						_
m572.pep	VAAFLDGQIKFTD:	IAKTVAHCLA	DFSDGIGDI	GGLLAQDARTI	CAQARAFIGTI	RX
				-		
g572	VAAFLDGOIKFTD:	IAKTVAHCLA	DDFSNGMGDI	EGLLAODARTE	CAOARAFIGTI	RX
3	250	260	270	280	290	
	-55					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1717>:

```
a572.seq
       1 ATGTGCGCCA TCGTCGGGGC GGTGGGGCTG CCTTCCGCGC TCGCAGCGGC
       51 GCAAAAAGGC AAAACCATTT ATCTGGCGAA CAAAGAGACG CTGGTGGTTT
     101 CCGGCGCGTT GTTTATGGAA ACCGCCCGTG CAAACGGCGC GGCAGTGCTG
     151 CCCGTCGACA GCGAACACAA CGCCGTTTTC CAAGTTTTGC CGCGCGATTA
     201 CACAGGTCGC CTGAACGAAC ACGGCATCGC TTCGATTATC CTGACCGCTT
     251 CCGGCGGCCC GTTTCTGACC GCCGATTTAA ACACGTTCGA CAGCATTACG
     301 CCCGACCAAG CGGTCAAACA CCCCAATTGG CGTATGGGAC GCAAAATCTC
351 CGTCGATTCC GCCACCATGA TGAACAAAGG TTTGGAGCTG ATTGAAGCGC
      401 ATTGGCTGTT CAACTGTCCG CCCGACAAAC TCGAAGTCGT CATCCATCCG
     451 CAATCTGTGA TACACAGCAT GGTGCGCTAC CGCGACGGCT CCGTGTTGGC
501 GCAACTGGGC AATCCCGATA TGCGAACGCC TATCGCTTAT TGTTTGGGTT
     551 TGCCCGAGCG CATCGATTCG GGTGTCGGCG ACCTGGATTT CGACGCATTG
     601 TCCGCGCTGA CCTTCCAAAA GCCCGACTTT GACCGCTTCC CCTGCCTGAA
     651 GCTCGCCTAT GAAGCCATGA ACGCAGGCGG AGCCGCGCCC TGCGTATTGA
701 ACGCCGCCAA CGAAGCCGCC GTCGCCGCCT TTTTGGACGG ACAGATTAAG
      751 TTTACCGACA TTGCCAAAAC CGTCGCCCAT TGTCTTTCAC AAGACTTTTC
     801 AGACGGCATA GGCGACATAG GGGGGCTCTT GGCGCAAGAT GCCCGGACAC
     851 GCGCACAAGC GCGGGCATTT ATCGGCACAC TGCGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1718; ORF 572.a>:

a572.pep					
1	MCAIVGAVGL	PSALAAAQKG	KTIYLANKET	LVVSGALFME	TARANGAAVL
51	PVDSEHNAVF	QVLPRDYTGR	LNEHGIASII	LTASGGPFLT	ADLNTFDSIT
101	PDQAVKHPNW	RMGRKISVDS	ATMMNKGLEL	IEAHWLFNCP	PDKLEVVIHP
151	QSVIHSMVRY	RDGSVLAQLG	NPDMRTPIAY	CLGLPERIDS	GVGDLDFDAL
201	SALTFQKPDF	DRFPCLKLAY	EAMNAGGAAP	CVLNAANEAA	VAAFLDGQIK
251	FTDIAKTVAH	CLSQDFSDGI	GDIGGLLAQD	ARTRAQARAF	IGTLR*
m572/a572	98.3% ic	dentity in 2	295 aa overl	lap	

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	270 dd	Overlap			
	10	20	30	40	50	60
m572.pep	MCAIVGAVGLPSAL	AAAQKGKTIY:	LANKETLVVS	GALFMETARA	NGAAVLPVDS	SEHNAVF
	11111111111111111		1111111111	шшш	1111111111	111111
a572	MCAIVGAVGLPSAL					
	10	20	30	40	50	60
	70	80	90	100	110	120
m572.pep	QVLPRDYAGRLNEH	GIASIILTAS(	<b>GGPFLTADL</b> N	TFDRITPAQA	VKHPNWRMGE	KISVDS
		111111111	[[]]	111 111 11	11111111111	
a572	QVLPRDYTGRLNEH	GIASIILTAS	GGPFLTADLN	TFDSITPDQA	VKHPNWRMGR	KISVDS
	70	80	90	100	110	120

```
130
                             140
                                             160
                                     150
                                                    170
                                                            180
                ATMMNKGLELIEAHWLFNCPPDKLEVVIHPQSVIHSMVRYRDGSVLAOLGNPDMRTPIAY
      m572.pep
                a572
                ATMMNKGLELIEAHWLFNCPPDKLEVVIHPQSVIHSMVRYRDGSVLAQLGNPDMRTPIAY
                      130
                             140
                                     150
                                             160
                                                    170
                             200
                      190
                                     210
                                             220
                                                    230
                CLGLPERIDSGVGDLDFDALSALTFQKPDFDRFPCLRLAYEAMNAGGAAPCVLNAANEAA
      m572.pep
                a572
                CLGLPERIDSGVGDLDFDALSALTFQKPDFDRFPCLKLAYEAMNAGGAAPCVLNAANEAA
                              200
                                     210
                                             220
                                                    230
- 5000
                             260
                                     270
                                             280
                                                    290
      m572.pep
                VAAFLDGQIKFTDIAKTVAHCLAQDFSDGIGDIGGLLAQDARTRAQARAFIGTLRX
                a572
                VAAFLDGQIKFTDIAKTVAHCLSQDFSDGIGDIGGLLAQDARTRAQARAFIGTLRX
                      250
                             260
                                     270
                                             280
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1719>: g573.seq..

```
1 atgccctgtt tgtgccgcct taatcgcaat atcggcagtt tccaaatcac
      gaateteace gaccataatg atgteegggt cetgacgeag gaaagactte
 101 aaagcagegg caaaagtcag accetgetta teattgacgt taacetgatt
 151 gatgcccggc aggttaatct cggcagggtc ttccgccgtt gcaatattta
      ccgactccgt attcaaaata ttcaaacagg tatagagcga caccgtctta
 201
 251 cccgaacccg tcggaccggt taccagcacc atcccgtaag gacggtgaat
 301 cgcttccaac aacaattttt tctggaacgg ctcaaaaccg agctggtcga
 351 tgttcaaaga cgcggcatcg gaattcaaaa tccgcatcac gaccttttcg
 401 ccaaacagcg teggeaatgt getgacaegg aaategacag gettgeegee
 451 cttttgaaag gtcagctgca tcctaccgtc ctgcggtatc cgtttttcgg
 501 aaatgtccaa acgcgacatt accttaatcc gggaagcaag ctgcccctt
 551 accgcaatgg geggctgaac cacctegegg agetgeeegt ccacaeggaa
 601 acggatacgc gcattgtgtt cgtaaaactc gaaatggatg tcggatgccc
 651 cgctacgcaa ggcatccgac aaagttttat ggataaacct cggaacaggg
 701 cogtettetg cetectegte gtegatatac agggtgtgge ttteetette
 751 ctcttgcccc tccccaaget cctgaageag cgatgtegaa cgcgaaccca
 801 cccaatcgag caaacccgcc aactggtcat cctcgacaat gaccaactca
 851 accgcaatcc ctgcggcaga aaccgttttc tgaatttgcg gcatctgggt
901 cggatcggaa accgcaaaaa atactttgtc gcccccacgg aaaaccggca
951 cacagtggaa ctccaccatc tgctcctccg tcaacacccc catcagcacc
1001 ctgtggcgcg gataatgacg caaatcaaga atcgaataac tgaacaccct
1051 cgcaatcaat gccgcaagcg acttgggcga aatgacaccq tctqa
```

This corresponds to the amino acid sequence <SEQ ID 1720; ORF 573.ng>: g573.pep..

```
1 MPCLCRLNRN IGSFQITNLT DHNDVRVLTQ ERLQSSGKSQ TLLIIDVNLI
51 DARQVNLGRV FRRCNIYRLR IQNIQTGIER HRLTRTRTG YQHHPVRTVN
101 RFQQQFFLER LKTELVDVQR RGIGIQNPHH DLFAKQRRQC ADTEIDRLAA
151 LLKGQLHPTV LRYPFFGNVQ TRHYLNPGSK LPPYRNGRLN HLAELPVHTE
201 TDTRIVFVKL EMDVGCPATQ GIRQSFMDKP RNRAVFCLLV VDIQGVAFLF
251 LLPPKLLKQ RCRTRTHPIE QTRQLVILDN DQLNRNPCGR NRFLNLRHLG
301 RIGNRKKYFV APTENRHTVE LHHLLLRQHP HQHPVARIMT QIKNRITEHP
351 RNQCRKRLGR NDTV*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1721>: m573.seq..

```
1 ATGCCCTGTT TGTGCCGCCT TAATCGCAAT ATCGGCAGTT TCCAAATCAC
51 GAATCTCACC GACCATAATG ATGTCCGGGT CCTGACGCAG GAAAGACTTC
101 AAAGCAGCGG CAAAAGTCAG GCCCTGCTTA TCATTGACGT TAACCTGATT
151 GATGCCCGGC AGGTTAATCT CGGCAGGGTC TTCCGCCGTT GCAATATTTA
201 CCGCACCCG TACCAAAATA TTCAAAACAG TATACAGCGA CACCGTCTTA
251 CCCGAACCCG TCGGACCGGT TACCAGCACC ATCCCGTAGG GACGGTGAAT
301 CGCTACCAAC 8Caw_TTTTT TCTGAAACG CTCAAAAACCG AGCCGTTCGA
401 CCAAACAGGG TCGGCAATCG GAATTCAAAA TCCGCATCAC GACCTTTTCCG
401 CCAAACAGGG TCGGCAATCT GCTGACACGG AAATCGACAG GCTTGCCCGCC
451 CTTTTGAAAG GTCAGCTGCA TCCTGCCGTC CTGCCGTATC CGTTTTTCGG
501 AAATGTCCAA ACGCGACATT ACCTTAATCC GTGAAGCAAG CTGCCCCCTT
```

```
551 ACCGCAATGG GCGGCTGAAC CACCTCGCGG AGCTGCCCGT CCACACGGAA
        ACGGATACGG GCATTGTGTT CGTAAAACTC GAAATGGATG TCCGATGCCC
        CGCTGCGCAA GGCATCCGAC AAAGTCTTAT GGATAAACCT CGGAACAGGG
    651
        CCGTCTTCTG CCTCCTCGTT GTCGATATAC AGGGTGTGGC TTTCCTCTTC
    701
         CTCCTGCCCC TCCCCAAGCT CCTGAAGCAG CGATGTCGAA CGCGAACCCA
        CCCAATCGAG CAAACCCGCC AACTGGTCAT CCTCGACAAT GACCAACTCA
    801
    851 ACCTCAATCC CTGCGGCAGA AACGGTTTTC TGAATTTGCG GCATCTGTGT
         CGGATCGGAA ACCGCAAAAA ATACTTTGTC GCCCCGACGG AAAACCGGCA
    901
         CACAGTGGAA CTCCACCATC TGCTCCTCCG TCAACACCCC CATCAGCACC
        CTGTGGCGCG GATAATGACG CAAATCAAGA ATCGAATAAC TGAACACCCT
   1001
   1051 CGCAATCAAT GCCGCAAGCG ACTTGGGCGA AATGACACCG TCTGA
This corresponds to the amino acid sequence <SEO ID 1722; ORF 573>:
m573.pep.
        MPCLCRLNRN IGSFQITNLT DHNDVRVLTQ ERLQSSGKSQ ALLIIDVNLI
        DARQVNLGRV FRRCNIYRLR IQNIQTGIER HRLTRTRRTG YQHHPVGTVN
     51
        RYOHXFFLKR LKTELVDVQR RGIGIQNPHH DLFAKORROC ADTEIDRLAA
    101
    151 LLKGQLHPAV LRYPFFGNVQ TRHYLNP*SK LPPYRNGRLN HLAELPVHTE
        TDTGIVFVKL EMDVRCPAAQ GIRQSLMDKP RNRAVFCLLV VDIQGVAFLF
    251 LLPLPKLLKQ RCRTRTHPIE QTRQLVILDN DQLNLNPCGR NGFLNLRHLC
        RIGNRKKYFV APTENRHTVE LHHLLLRQHP HQHPVARIMT QIKNRITEHP
    301
        RNQCRKRLGR NDTV*
    351
m573/g573
          95.9% identity in 364 aa overlap
                                    30
                                            40
           MPCLCRLNRNIGSFQITNLTDHNDVRVLTQERLQSSGKSQALLIIDVNLIDARQVNLGRV
m573.pep
           MPCLCRLNRNIGSFQITNLTDHNDVRVLTQERLQSSGKSQTLLIIDVNLIDAROVNLGRV
a573
                           20
                  10
                                    30
                                            40
                                    90
                                                    110
                                                             120
m573.pep
           FRRCNIYRLRIQNIQTGIERHRLTRTRRTGYQHHPVGTVNRYQHXFFLKRLKTELVDVQR
           g573
           FRRCNIYRLRIQNIQTGIERHRLTRTRRTGYQHHPVRTVNRFQQQFFLERLKTELVDVQR
                           80
                                    90
                  70
                                           100
                                                    110
                                                             120
                 130
                          140
                                   150
                                           160
                                                    170
           RGIGIQNPHHDLFAKQRRQCADTEIDRLAALLKGQLHPAVLRYPFFGNVQTRHYLNPXSK
m573.pep
           RGIGIQNPHHDLFAKQRRQCADTEIDRLAALLKGQLHPTVLRYPFFGNVQTRHYLNPGSK
q573
                 130
                          140
                                   150
                                           160
                                                    170
                                                             180
                 190
                          200
                                   210
                                           220
                                                    230
                                                             240
m573.pep
           LPPYRNGRLNHLAELPVHTETDTGIVFVKLEMDVRCPAAOGIROSLMDKPRNRAVFCLLV
           a573
           LPPYRNGRLNHLAELPVHTETDTRIVFVKLEMDVGCPATQGIRQSFMDKPRNRAVFCLLV
                 190
                          200
                                   210
                                                    230
                                                             240
                                   270
                 250
                          260
                                           280
                                                    290
                                                             300
           VDIQGVAFLFLLPLPKLLKQRCRTRTHPIEQTRQLVILDNDQLNLNPCGRNGFLNLRHLC
m573.pep
           g573
           VDIQGVAFLFLLPLPKLLKQRCRTRTHPIEQTRQLVILDNDQLNRNPCGRNRFLNLRHLG
                          260
                 250
                                   270
                                           280
                                                    290
                                                             300
                          320
                                   330
                                           340
           RIGNRKKYFVAPTENRHTVELHHLLLRQHPHQHPVARIMTQIKNRITEHPRNQCRKRLGR
m573.pep
           g573
           RIGNRKKYFVAPTENRHTVELHHLLLRQHPHQHPVARIMTQIKNRITEHPRNQCRKRLGR
                 310
                          320
                                   330
m573.pep
           NDTVX
           11111
g573
           NDTVX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1723>:

```
a573.seq
              ATGCCCTGTT TGTGCCGCCT TAATCGCAAT ATCGGCAGTT TCCAAATCAC
           1
              GAATCTCACC GACCATAATG ATGTCCGGGT CCTGACGCAG GAAAGACTTC
         101
              AAAGCAGCGG CAAAAGTCAG ACCCTGCTTA TCATTGACGT TAACCTGATT
              GATGCCCGGC AGGTTAATCT CGGCAGGGTC TTCCGCCGTT GCAATATTTA
         151
              CCGACTCCGT ATTCAAAATA TTCAAACAGG TATAGAGCGA CACCGTCTTA
         201
              CCCGAACCCG TCGGACCGGT TACCAGCACC ATCCCGTAGG GACGGTGAAT
              CGCTTCCAAC AACAATTTTT TCTGAAACGG CTCAAAACCG AGCTGGTCGA
         301
         351
              TGTTCAAAGA CGCGGCATCG GAATTCAAAA TCCGCATCAC GACCTTTTCG
              CCAAACAGCG TCGGCAATGT GCTGACACGG AAATCGACAG GCTTGCCGCC
         401
              CTTTTGAAAG GTCAGCTGCA TCCTGCCGTC CTGCGGTATC CGTTTTTCGG
         451
              AAATGTCCAA ACGCGACATT ACCTTAATCC GGGAAGCAAG CTGCCCCCTT
         501
              ACCGCAATGG GCGGCTGAAC CACCTCGCGG AGCTGCCCGT CCACACGGAA
         551
             ACGGATACGG GCATTGTGTT CGTAAAACTC GAAATGGATG TCCGATGCCC
              CGCTGCGCAA GGCATCCGAC AAAGTCTTAT GGATAAACCT CGGAACAGGG
         651
         701
              CCGTCTTCTG CCTCCTCGTT GTCGATATAC AGGGTGTGGC TTTCCTCTTC
              CTCCTGCCCC TCCCCAAGCT CCTGAAGCAG CGATGTCGAA CGCGAACCCA
         751
              CCCAATCGAG CAAACCCGCC AACTGGTCAT CCTCGACAAT GACCAACTCA
         801
              ACCTCAATCC CTGCGGCAGA AACGGTTTTC TGAATTTGCG GCATCTGTGT
         851
         901
              CGGATCGGAA ACCGCAAAAA ATACTTTGTC GCCCCGACGG AAAACCGGCA
             CACAGTGGAA CTCCACCATC TGCTCCTCCG TCAACACCCC CATCAGCACC
         951
             CTGTGGCGCG GATAATGACG CAAATCAAGA ATCGAATAAC TGAACACCCT
        1001
             CGCAATCAAT GCCGCAAGCG ACTTGGGCGA AATGACACCG TCTGA
This corresponds to the amino acid sequence <SEQ ID 1724; ORF 573.a>:
    a573.pep
             MPCLCRLNRN IGSFQITNLT DHNDVRVLTQ ERLQSSGKSQ TLLIIDVNLI
          51
              DARQVNLGRV FRRCNIYRLR IQNIQTGIER HRLTRTRTG YQHHPVGTVN
              RFQQQFFLKR LKTELVDVQR RGIGIQNPHH DLFAKORRQC ADTEIDRLAA
         101
         151
             LLKGQLHPAV LRYPFFGNVQ TRHYLNPGSK LPPYRNGRLN HLAELPVHTE
             TDTGIVFVKL EMDVRCPAAQ GIRQSLMDKP RNRAVFCLLV VDIQGVAFLF
         201
             LLPLPKLLKQ RCRTRTHPIE QTRQLVILDN DQLNLNPCGR NGFLNLRHLC
         251
             RIGNRKKYFV APTENRHTVE LHHLLLRQHP HQHPVARIMT QIKNRITEHP
         301
         351
             RNOCRKRLGR NDTV*
    m573/a573
                98.6% identity in 364 aa overlap
                                                   40
    m573.pep
                MPCLCRLNRNIGSFQITNLTDHNDVRVLTQERLQSSGKSQALLIIDVNLIDARQVNLGRV
                a573
                MPCLCRLNRNIGSFQITNLTDHNDVRVLTQERLQSSGKSQTLLIIDVNLIDARQVNLGRV
                       10
                                 20
                                          30
                                                   40
                                                            50
                                                                     60
                       70
                                 80
                                          90
                                                  100
                                                           110
                                                                    120
                FRRCNIYRLRIQNIQTGIERHRLTRTRRTGYQHHPVGTVNRYQHXFFLKRLKTELVDVQR
    m573.pep
                a573
                FRRCNIYRLRIQNIQTGIERHRLTRTRRTGYQHHPVGTVNRFQQQFFLKRLKTELVDVOR
                       70
                                          90
                                                  100
                                                           110
                                                                    120
                                         150
                                                  160
                                                           170
                RGIGIQNPHHDLFAKQRRQCADTEIDRLAALLKGQLHPAVLRYPFFGNVQTRHYLNPXSK
    m573.pep
                RGIGIQNPHHDLFAKQRRQCADTEIDRLAALLKGQLHPAVLRYPFFGNVQTRHYLNPGSK
    a573
                       130
                                140
                                         150
                                                  160
                                                                    180
                       190
                                200
                                         210
                                                  220
                                                           230
                                                                    240
                LPPYRNGRLNHLAELPVHTETDTGIVFVKLEMDVRCPAAQGIRQSLMDKPRNRAVFCLLV
    m573.pep
                LPPYRNGRLNHLAELPVHTETDTGIVFVKLEMDVRCPAAQGIRQSLMDKPRNRAVFCLLV
    a573
                       190
                                200
                                                  220
                                                                    240
                       250
                                260
                                         270
                                                  280
                                                           290
                                                                    300
                VDIQGVAFLFLLPLPKLLKQRCRTRTHPIEQTRQLVILDNDQLNLNPCGRNGFLNLRHLC
    m573.pep
                VDIQGVAFLFLLPLPKLLKQRCRTRTHPIEQTRQLVILDNDQLNLNPCGRNGFLNLRHLC
    a573
                      250
                                260
                                         270
```

-- 1000

884

```
330
                310
                        320
                                        340
                                                350
m573.pep
          RIGNRKKYFVAPTENRHTVELHHLLLRQHPHQHPVARIMTQIKNRITEHPRNOCRKRLGR
          a573
          RIGNRKKYFVAPTENRHTVELHHLLLRQHPHQHPVARIMTQIKNRITEHPRNOCRKRLGR
                        320
                                330
                                        340
                                                350
m573.pep
          NDTVX
          \mathbf{H}
a573
          NDTVX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1725>: 9574.889

```
atgctgccga atctgccaaa cagccttaag aaagccgata tggacaacga
      attgtggatt atcctgctgc cgattatcct tttgcccgtc ttcttcacga
 101 tgggctggtt tgccgcccgc gtggatatga aaaccgtatt gaagcaggca
 151 aaaagcatcc cttcgggatt ttataaaagc ctggacgctt tggtcgaceg
 201 caacageggg egegeggeaa gggagttgge ggaagtegte gaeggeegge
 251 cgcaatcgta tgatttgaac cttaccctcg gcaaacttta ccgtcagcgc
 301 ggcgaaaacg acaaagccat caacatacac cggacaatgc tcgattctcc
 351 cgatacggtc ggcgaaaagc gcgcgcgcgt cctgtttgaa ttggcgcaaa
 401 actaccaaag cgcgggtttg gtcgatcgtg ccgaacagat ttttttgggg
 451 ctgcaagacg gtgaaatggc gcgtgaagcc agacagcacc tgctcaatat
 501 ctaccagcag gacagggatt gggaaaaagc ggttgaaacc gcccaacttc
 551 ttagtcacga cgaacagaca tatcagtttg agattgcaca gttttattgc
 601 gaacttgccc aagccgcgct gttcaagtcc aatttcgatg ccgcgcgttt
 651 caatgtcggc aaggcactcg aagccaacaa aaaatgcacc cgcgccaaca
 701 tgattttggg cgacattgaa caccgacaag gcaatttccc tgccgccgtc
 751 gaagectatg ccgccatcga gcagcaaaac catgcatact tgagcatggt
 801 cggcgagaag ctttacgaag cctatgccgc gcagggaaaa cctgaagaag
 851 gettgaaccg tetgacagga tatatgcaga egtttecega acttgacetg
 901 atcaatgtcg tgtacgagaa atccctgctg cttaagggcg agaaagaagc
 951 cgcgcaaacc gccgtcgagc ttgtccgccg caagcccgac cttaacggcg
1001 tgtaccgcct gctcggtttg aaactcagcg atttggatcc ggcttggaaa
1051 gccgatgccg acatgatgcg ttcggttatc ggacggcagc tccagcgcag
1101 cgtgatgtac cgttgccgca actgccactt caaatcccaa gtctttttct
1151 ggcactgtcc cgcctgcaac aaatggcaga cgtttacgcc gaataaaatc
1201 gaagtttaa
```

This corresponds to the amino acid sequence <SEQ ID 1726; ORF 574.ng>: g574.pep..

```
1 MLPNLPNSLK KADMDNELWI ILLPIILLPV FFTMGWFAAR VDMKTVLKQA
51 KSIPSGFYKS LDALVDRNSG RAARELAEVV DGRPQSYDLN LTIGKLYRQR
101 GENDKAINIH RTMLDSPDTV GEKRARVLFE LAQNYQSAGL VDRAEQIFLG
151 LQDGEMAREA RQHLLNIYQQ DRDWEKAVET AQLLSHDEQT YQFEIAQFYC
201 ELAQAALFKS NFDAARFNVG KALEANKKCT RANMILGDIE HRQGWFPAAV
251 EAYAAIEQQN HAYLSMVGEK LYEAYAAQGK PEEGLNRLTG YMQTFPELDL
301 INVVYEKSLL LKGEKEAAQT AVELVRRKPD LNGVYRLLGL KLSDLDPAWK
401 EV*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1727>: m574.seq...

```
1 ATGCGCCCGA ATCTACCAAA CAGCCTTAAG AAAGCCGATA TGGACAACGA
 51 ATTGTGGATT ATCCTGCTGC CGATTATCCT TTTGCCCGTC TTCTTCGCGA
101
    TGGGCTGGTT TGCCGCCCGC GTGGATATGA AAACCGTATT GAAGCAGGCA
151 AAAAGCATCC CTTCGGGATT TTATAAAAGC TTGGACGCTT TGGTCGACCG
201 CAACAGCGGG CGCGCGGCAA GGGAGTTGGC GGAAGTCGTC GACGGCCGGC
251 CGCAATCGTA TGATTTGAAC CTCACCCTCG GCAAACTTTA CCGCCAGCGT
301 GGCGAAAACG ACAAAGCCAT CAACATACAC CGGACAATGC TCGATTCTCC
351
    CGATACGGTC GGCGAAAAGC GCGCGCGCGT CCTGTTTGAA TTGGCGCAAA
401 ACTACCAAAG TGCGGGGTTG GTCGATCGTG CCGAACAGAT TTTTTTGGGG
451 CTGCAAGACG GTAAAATGGC GCGTGAAGCC AGACAGCACC TGCTCAATAT
501
    CTACCAACAG GACAGGGATT GGGAAAAAGC GGTTGAAACC GCCCGGCTGC
551 TCAGCCATGA CGATCAGACC TATCAGTTTG AAATCGCCCA GTTTTATTGC
601 GAACTTGCCC AAGCCGCGCT GTTCAAGTCC AATTTCGATG TCGCGCGTTT
```

PCT/US99/09346

```
651 CANTGTCGGC AAGGCACTCG AAGCCAACAA AAAATGCACC CGCGCCAACA
        TGATTTTGGG CGACATCGAA CACCGACAAG GCAATTTCCC TGCCGCCGTC
        GAAGCCTATG CCGCCATCGA GCAGCAAAAC CATGCATACT TGAGCATGGT
    801 CGGCGAGAAG CTTTACGAAG CCTATGCCGC GCAGGGAAAA CCTGAAGAAG
    851 GCTTGAACCG TCTGACAGGA TATATGCAGA CGTTTCCCGA ACTTGACCTG
    901 ATCANTGTCG TGTACGAGAA ATCCCTGCTG CTTAAGTGCG AGAAAGAAGC
    951 CGCGCAAACC GCCGTCGAGC TTGTCCGCCG CAAGCCCGAC CTTAACGGCG
        TGTACCGCCT GCTCGGTTTG AAACTCAGCG ATATGAATCC GGCTTGGAAA
   1001
   1051 GCCGATGCCG ACATGATGCG TTCGGTTATC GGACGGCAGC TACAGCGCAG
   1101 CGTGATGTAC CGTTGCCGCA ACTGCCACTT CAAATCCCAA GTCTTTTTCT
        GGCACTGCCC CGCCTGCAAC AAATGGCAGA CGTTTACCCC GAATAAAATC
   1151
   1201 GAAGTTTAA
This corresponds to the amino acid sequence <SEQ ID 1728; ORF 574>:
m574.pep..
        MRPNLPNSLK KADMDNELWI ILLPIILLPV FFAMGWFAAR VDMKTVLKQA
        KSIPSGFYKS LDALVDRNSG RAARELAEVV DGRPQSYDLN LTLGKLYRQR
        GENDKAINIH RTMLDSPDTV GEKRARVLFE LAQNYQSAGL VDRAEQIFLG
    101
    151 LQDGKMAREA RQHLLNIYQQ DRDWEKAVET ARLLSHDDQT YQFEIAQFYC
    201 ELAQAALFKS NFDVARFNVG KALEANKKCT RANMILGDIE HRQGNFPAAV
        EAYAAIEQQN HAYLSMVGEK LYEAYAAQGK PEEGLNRLTG YMQTFPELDL
    301 INVVYEKSLL LKCEKEAAQT AVELVRRKPD LNGVYRLLGL KLSDMNPAWK
    351 ADADMMRSVI GRQLQRSVMY RCRNCHFKSQ VFFWHCPACN KWQTFTPNKI
    401 EV*
m573/g573 97.8% identity in 402 aa overlap
                          20
                                   30
                                           40
                                                    50
                  10
           MRPNLPNSLKKADMDNELWIILLPIILLPVFFAMGWFAARVDMKTVLKQAKSIPSGFYKS
m574.pep
           MLPNLPNSLKKADMDNELWIILLPIILLPVFFTMGWFAARVDMKTVLKQAKSIPSGFYKS
q574
                          80
                                   90
                                          100
           LDALVDRNSGRAARELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINIHRTMLDSPDTV
m574.pep
           LDALVDRNSGRAARELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINIHRTMLDSPDTV
g574
                                   90
                                          100
                                                   110
                  70
                          80
                          140
                                  150
                                          160
                                                   170
                 130
                                                           180
           GEKRARVLFELAONYOSAGLVDRAEQIFLGLQDGKMAREARQHLLNIYQQDRDWEKAVET
m574.pep
           GEKRARVLFELAQNYQSAGLVDRAEQIFLGLQDGEMAREARQHLLNIYQQDRDWEKAVET
q574
                          140
                                  150
                                          160
                 130
                          200
                                  210
                                          220
           ARLLSHDDQTYQFEIAQFYCELAQAALFKSNFDVARFNVGKALEANKKCTRANMILGDIE
m574.pep
           AQLLSHDEQTYQFEIAQFYCELAQAALFKSNFDAARFNVGKALEANKKCTRANMILGDIE
g574
                 190
                         200
                                  210
                                          220
                                                   230
                          260
                                  270
                                                   290
                 250
                                          280
                                                            300
           HROGNFPAAVEAYAAIEQQNHAYLSMVGEKLYEAYAAQGKPEEGLNRLTGYMQTFPELDL
m574.pep
           HRQGNFPAAVEAYAAIEQQNHAYLSMVGEKLYEAYAAQGKPEEGLNRLTGYMQTFPELDL
g574
                          260
                                  270
                 250
                                          280
                                                   290
                                                           300
                          320
                                  330
                                           340
           INVVYEKSLLLKCEKEAAQTAVELVRRKPDLNGVYRLLGLKLSDMNPAWKADADMMRSVI
m574.pep
           INVVYEKSLLLKGEKEAAQTAVELVRRKPDLNGVYRLLGLKLSDLDPAWKADADMMRSVI
g574
                 310
                          320
                                  330
                                           340
                                                   350
                                                           360
                 370
                          380
                                  390
           GRQLQRSVMYRCRNCHFKSQVFFWHCPACNKWQTFTPNKIEVX
m574.pep
```

GRQLQRSVMYRCRNCHFKSQVFFWHCPACNKWQTFTPNKIEVX 380

370

390

g574

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1729>:
                 ATGCGCCCGA ATCTGCCAAA CAGCCTTGAG AAAGCCGATA TGGACAATGA
              51
                 ATTGTGGATT ATCCTGCTGC CGATTATCCT TTTGCCCGTT TTCTTCGCGA
                 TGGGCTGGTT TGCCGCCCGC GTGGATATGA AGACTGTATT AAAGCAGGCA
             101
                 AAAAGCATAC CGTCGGGATT TTATAAAAGT CTGGATGCCT TGGTTGACCG
             201
                 CAACAGCGGG CGCGCGCAA GGGAGTTGGC GGAAGTCGTC GACGGCCGGC
                 CGCAATCGTA TGATTTGAAC CTCACCCTCG GCAAACTTTA CCGCCAGCGT
             251
                 GGCGAAAACG ACAAAGCCAT CAATATGCAC CAAACATTGC TTGACTCTCC
             301
                 CGATACAACC GGAGCCAAGC GCGCGCGCGT CCTGTTTGAA TTGGCGCAAA
... 1700-
             351
                 ACTACCAAAG TGCGGGGTTG GTCGATCGTG CCGAACAGAT TTTTTTGGGG
             401
                 CTGCAAGACG GTGAAATGGC GCGTGAAGCC AGACAGCACC TGCTCAATAT
             451
                 CTACCAACAG GACAGGGATT GGGAAAAAGC GGTTGAAACC GCCCGGCTGC
             501
                 TCAGCCATGA CGATCAGACC TATCAGTTTG AAATCGCCCA GTTTTATTGC
             551
                 GAACTTGCCC AAGCCGCGCT GTTCAAGTCC AATTTCGATG CCGCGCGTTT
             601
                 CAATGTCGGC AAGGCACTCG AAGCCAACAA AAAATGCACC CGCGCCAACA
             651
             701
                 TGATTTTGGG CGACATCGAA CACCGACAAG GCAATTTCCC TGCCGCCGTC
                 GAAGCCTATG CCGCCATCGA GCAGCAAAAC CATGCATACT TGAGTATGGT
             751
                 CGGCGAGAAG CTTTACGAAG CCTATGCCGC GCAGGGAAAA CCTGAAGAAG
            801
                 GCTTGAACCG TCTGACAGGA TATATGCAGA CGTTTCCCGA ACTTGACCTG
            851
                 ATCAATGTCG TGTACGAGAA ATCCCTGCTG CTTAAGTGCG AGAAAGAAGC
            901
            951
                 CGCGCAAACC GCCGTCGAGC TTGTCCGCCG CAAGCCCGAC CTCAACGGCG
                 TGTACCGCCT GCTTGGTTTG AAACTCAGCG ATTTGGATCC GGCTTGGAAA
            1001
                 GCCGATGCCG ATATGATGCG TTCGGTTATC GGACGCCAGC TACAGCGCAG
            1051
                 CGTGATGTAC CGGTGCCGAA ACTGCCACTT CAAATCACAA GTCTTTTTCT
            1101
                 GGCATTGTCC TGCCTGCAAC AAATGGCAGA CGTTTACGCC AAACAAAATC
            1151
            1201
                 GAAGTTTAA
   This corresponds to the amino acid sequence <SEQ ID 1730; ORF 574.a>:
        a574.pep
                 MRPNLPNSLE KADMDNELWI ILLPIILLPV FFAMGWFAAR VDMKTVLKQA
                 KSIPSGFYKS LDALVDRNSG RAARELAEVV DGRPQSYDLN LTLGKLYROR
             51
                 GENDKAINMH QTLLDSPDTT GAKRARVLFE LAQNYQSAGL VDRAEQIFLG
            101
                 LODGEMAREA ROHLLNIYOO DRDWEKAVET ARLLSHDDQT YQFEIAQFYC
            151
            201 ELAQAALFKS NFDAARFNVG KALEANKKCT RANMILGDIE HRQGNFPAAV
                 EAYAAIEQQN HAYLSMVGEK LYEAYAAQGK PEEGLNRLTG YMQTFPELDL
            251
                 INVVYEKSLL LKCEKEAAQT AVELVRRKPD LNGVYRLLGL KLSDLDPAWK
            301
                 ADADMMRSVI GRQLQRSVMY RCRNCHFKSQ VFFWHCPACN KWQTFTPNKI
            351
            401
        m574/a574
                    97.5% identity in 402 aa overlap
                                     20
                                              30
                                                        40
                                                                 50
                                                                          60
                    MRPNLPNSLKKADMDNELWIILLPIILLPVFFAMGWFAARVDMKTVLKQAKSIPSGFYKS
        m574.pep
                    a574
                    MRPNLPNSLEKADMDNELWIILLPIILLPVFFAMGWFAARVDMKTVLKOAKSIPSGFYKS
                            10
                                     20
                                              30
                                                        40
                                                                          60
                                              90
                                                      100
                                                                110
                                                                         120
                    {\tt LDALVDRNSGRAARELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINIHRTMLDSPDTV}
        m574.pep
                    LDALVDRNSGRAARELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINMHQTLLDSPDTT
        a574
                            70
                                                      100
                                                                110
                                                                         120
                                             150
                                                      160
                                                                170
                    {\tt GEKRARVLFELAQNYQSAGLVDRAEQIFLGLQDGKMAREARQHLLNIYQQDRDWEKAVET}
        m574.pep
                    a574
                    GAKRARVLFELAQNYQSAGLVDRAEQIFLGLQDGEMAREARQHLLNIYQQDRDWEKAVET
                                    140
                                             150
                                                      160
                           190
                                    200
                                             210
                                                      220
                                                                230
                    ARLLSHDDQTYQFEIAQFYCELAQAALFKSNFDVARFNVGKALEANKKCTRANMILGDIE
        m574.pep
                    a574
                    ARLLSHDDQTYQFEIAQFYCELAQAALFKSNFDAARFNVGKALEANKKCTRANMILGDIE
```

		190	200	210	220	230	240
		250	260	270	280	290	300
	m574.pep	HRQGNFPAAVI	EAYAAIEQQNH	IAYLSMVGEKL	YEAYAAQGKPI	EEGLNRLTGY	MOTFPELDL
		[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	11111111111	11111111111	111111111111	111111111	JÜHLIH.
	a574	HRQGNFPAAVI	EAYAAIEQQNH	<b>IAYLSMVGEKL</b>	YEAYAAQGKPI	EEGLNRLTGY	MOTFPELDL
		250	260	270	280	290	300
		310	320	330	340	350	360
	m574.pep	INVVYEKSLLI	LKCEKEAAQTA	VELVRRKPDL	NGVYRLLGLKI	LSDMNPAWKA	DADMMRSVI
		1111111111		11111111111	111111111111	111::11[11	111111111
To:-	a574	INVVYEKSLLI	KCEKEAAQTA	VELVRRKPDL	NGVYRLLGLKI	LSDLDPAWKA	DADMMRSVI
		310	320	330	340	350	360
		370	380	390	400		
	m574.pep	GRQLQRSVMYF	RCRNCHFKSQV	FFWHCPACNK	WQTFTPNKIEV	/X	
		[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	пинин	1111111111	111111111111	11	
	a574	GRQLQRSVMYF	RCRNCHFKSQV	FFWHCPACNK	WQTFTPNKIEV	/X	
		370	380	390	400		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1731>: g575.seq (partial)

```
..atgccgtgcc tccgccggca agcagcaagg tgtacgaacc gccgaacaga
 51
       cogtoaaaca gtoogottto ggtttottot toggoagaaa cotgttogac
101
       aggttcggca acgggttcgg cggcaacttc actggctgtt tccgcaacag
       gttcggaaac ggtgttaccg gtttcgtcgg tcggcgtgtc gatggcagaa
151
201
       gcggcggctt cttggggggg cggattcggc agcggtttcc gatgcggcag
       tatttgcagc gggtacaggt ccgggttggc gttctgtcgc cgaagccgga
251
       gtttcggaca ctgcgggttt gggttcgggt cgaacggccg gtttttccgc
301
       ttttgcttcg ggcgcggcaa cttttgcttc aggtttttca accggttttt
351
401
       cgacaggttt ctctatcggt ttctccacag ttgcctgttt ggacggttca
       gacggcatgg atgcagtttc ggctttgggt ttcgccgttt gcggtttggg
451
       ttgttccgct ttgatttttt tgggtgctgc cgctttgatc ctgttcagat
501
      tcggaatgtg a*
551
```

This corresponds to the amino acid sequence <SEQ ID 1732; ORF 575.ng>:

g575.pep (partial)

- 1 .MPCLERQAAR CTNRRTDRQT VRFRFLLRQK PVRQVRQRVR RQLHWLFPQQ
  51 VRKRCYRFRR SACRWQKRRL LGGADSAAVS DAAVFAAGTG PGWRSVAEAG
  101 VSDTAGLGSG RTAGFSAFAS GAATFASGFS TGFSTGFSIG FSTVACLDGS
- 151 DGMDAVSALG FAVCGLGCSA LIFLGAAALI LFRFGM*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1733>: m575.8eq...

```
ATGGTTTCGG GCGAGGAAGC CTTCAGGAAG CCTGCCAGTC CGGAGGGTGA
 51 GGCAGGTTTT GCGGAAGCTG TTTCTTCTGT GCCGATATGG TTGTTTGAGG
 101 GCAGGTTGTC GGAGAAATCG GTATCGACGG TTTCCGGTTT GTTTTCGGCA
 151 GTTTGGGCGA CAGATTCCGG TTCGGGCGTG TCGATGACGA TTTCGACAGG
 201 GTTGTACGGG TTGAAGGTCT CGGGCTCGTA CACGCTGTCT GTGGATTCGA
     TGGCGTTCCA ATCGGCATCC GCGCGTTTTT GGGTTTCTTC ATCCTGCGTA
 251
 301 AGTGCGCCGG ATAAAATGCC GTTTTGCGCG GCTGCCAGGC TGTCGAAATC
 351
     CAAGTCGATG CGGTTGGAAG GCGTATCGGT TTCGACATCG AACGTTTGTT
 401
     TTGCCGATAA CTCTTCTTCA GATTCCCCAT CTAAGGCAAG TGTGTCGTTT
 451 ACATCGTTTT TCGGAGCGGG TTCGGGCGTT GCCGGAGTTT CGACTTCGGC
     AAAGGTGATT TCTATGCCGT CGTCTGCCGC GTCGTCAAGG TCAGGCTCTT
 501
 551
     CCTCAGGGAC GGATTCTTCG GTACGGCGCG CGCGTTTGGA TTGGGCAAGG
     CGCAAAAGCA GCAGCAGGGC GATTAATGCC GCGCCTCCGC CGGCAAGCAG
     CAAGGTGTAC GAACCGCCGA ACAGACCGTC AAACAGTCCG CTTTCGGTTT
 651
 701 CTTCTTCGGC AGAAACCTGT TCGACAGGTT CGGAAACGGC GTTACCGGTT
 751
     TCGTCGGTCG GCGTGTCGAT GGCAGAAGCG GCGGCTTCTT GGGGGGCGGA
     TTCGGCAGCG GTTTCCGATG CGGCAGTATT TGCAGCGGGT ACAGGTTCGG
 851 GTCGAACGGC CGGTTTTTCC GCTTTTGCTT CGGGCGCGGC AACTTTTGCT
 901 TCAGGTTTTT CAACCGGTTT CTCTACCGTT GCCTGTTTGG ACGGTTCGGA
951 CGGCATGGAT GCGGTTTCGG CTTTGGGTTT CGCCGTTTGC GGTTTGGGTT
1001 GTTCCGCTTT GATCCTGTTC AGATTCGGAA TGTGA
```

```
This corresponds to the amino acid sequence <SEQ ID 1734; ORF 575>:
m575.pep
        MVSGEEAFRK PASPEGEAGF AEAVSSVPIW LFEGRLSEKS VSTVSGLFSA
     51 VWATDSGSGV SMTISTGLYG LKVSGSYTLS VDSMAFQSAS ARFWVSSSCV
    101 SAPDKMPFCA AARLSKSKSM RLEGVSVSTS NVCFADNSSS DSPSKASVSF
    151 TSFFGAGSGV AGVSTSAKVI SMPSSAASSR SGSSSGTDSS VRRARLDWAR
    201 RKSSSRAINA APPPASSKVY EPPNRPSNSP LSVSSSAETC STGSETALPV
    251 SSVGVSMAEA AASWGADSAA VSDAAVFAAG TGSGRTAGFS AFASGAATFA
    301 SGFSTGFSTV ACLDGSDGMD AVSALGFAVC GLGCSALILF RFGM*
m575/g575
          70.2% identity in 114 aa overlap
                                     270
              240
                       250
                                260
                                                 280
           SSAETCSTGSETALPVSSVGVSMAEAAASWGADSAAVSDAAVPAAGTG------
m575.pep
                                      LHWLFPQQVRKRCYRFRRSACRWQKRRLLGGADSAAVSDAAVFAAGTGPGWRSVAEAGVS
q575
                       60
               50
                                  70 . 80
                                     309
                    290
                             300
                                              310
                                                       320
           -----SGRTAGFSAFASGAATFASGFSTGFST-----VACLDGSDGMDAVSALGFA
           DTAGLGSGRTAGFSAFASGAATFASGFSTGFSTGFSTGFSTVACLDGSDGMDAVSALGFA
a575
                        120
                                130 140 150
                110
                          340
          330
           VCGLGCSALI-----LFRFGMX
m575.pep
            1111111111
           VCGLGCSALIFLGAAALILFRFGMX
q575
                170
                        180
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1735>:
            1 ATGGTTTCGG GCGAGGAAGC CTTCAGGAAG CCTGCCAGTC CGGAGGGTGA
               GGCAGGTTTT GCGGAAGCTG TTTCTTCTGT GCCGATATGG TTGTTTGAGG
          101 GCAGGTTGTC GGAGAAATCG GTATCGACGG TTTCCGGTTT GTTTTCGGCA
          151 GTTTGGGCGA CAGATTCCGG TTCGGGCGTG TCGATGACGA TTTCGACAGG
          201 GTTGTACGGG TTGAAGGTCT CGGGCTCGTA CACGCTGTCT GTGGATTCGA
          251 TGGCGTTCCA ATCGGCATCC GCGCGTTTTT GGGTTTCTTC ATCCTGCGTA
          301 AGTGCGCCGG ATAAAATGCC GTTTTGCGCG GCTGCCAGGC TGTCGAAATC
          351 CAAGTCGATG CGGTTGGAAG GCGTATCGGT TTCGACATCG AACGTTTGTT
          401 TTGCCGACAA CTCTTCTTCA GATTCCCCAT CTAAGGCAAG TGTGTCGTTT
          451 ACATCGTTTT TCGGAGCGGG TTCGGGCGTT GCCGGAGTTT CGACTTCGGC
          501 AAAGGTGATT TCTATGCCGT CGTCTGCCGC GTCGTCAAGG TCAGGCTCTT
          551 CCTCAGGGAC GGATTCTTCG GTACGGCGCG CGCGTTTGGA TTGGGCAAGG
          601 CGCAAAAGCA GCAGCAGGGC GATCAATGCC GCGCCTCCGC CGGCAAGCAG
          651 CAAGGTGTAC GAACCGCCGA ACAGTCCGCT TTCGGTTTCT TCTTCGGCAG
          701 AAACCTGTTC GACAGGTTCG GAAACGGCGT TACCGGTTTC GTCGGTCGGC
          751 GTGTCGATGG CAGAAGCGGC GGCTTCTTGG GGGGCGGATT CGGCAGCGGT
              TTCCGATGCG GCAGTATTTG CAGCGGGTAC AGGTTCGGGT CGAACGGCCG
          851 GTTTTCCGC TTTTGCTTCG GGCGCGGCAA CTTTTGCTTC AGGTTTTTCA
          901 ACCGGTTTCT CTACCGTTGC CTGTTTGGAC GGTTCGGACG GCATGGATGC
          951 GGTTTCGGCT TTGGGTTTCG CCGTTTGCGG TTTGGGTTGT TCCGCTTTGA
         1001 TCCTGTTCAG ATTCGGAATG TGA
This corresponds to the amino acid sequence <SEQ ID 1736; ORF 575.a>:
     a575.pep
            1 MVSGEEAFRK PASPEGEAGF AEAVSSVPIW LFEGRLSEKS VSTVSGLFSA
           51 VWATDSGSGV SMTISTGLYG LKVSGSYTLS VDSMAFQSAS ARFWVSSSCV
          101 SAPDKMPFCA AARLSKSKSM RLEGVSVSTS NVCFADNSSS DSPSKASVSF
          151 TSFFGAGSGV AGVSTSAKVI SMPSSAASSR SGSSSGTDSS VRRARLDWAR
          201 RKSSSRAINA APPPASSKVY EPPNSPLSVS SSAETCSTGS ETALPVSSVG
          251 VSMAEAAASW GADSAAVSDA AVFAAGTGSG RTAGFSAFAS GAATFASGFS
```

301 TGFSTVACLD GSDGMDAVSA LGFAVCGLGC SALILFRFGM *

APAKOPDOVD IKKVN*

```
m575/a575
                   98.8% identity in 344 aa overlap
                           10
                                                      40
                                                               50
                                                                        60
                   MVSGEEAFRKPASPEGEAGFAEAVSSVPIWLFEGRLSEKSVSTVSGLFSAVWATDSGSGV
       m575.pep
                    a575
                   MVSGEEAFRKPASPEGEAGFAEAVSSVPIWLFEGRLSEKSVSTVSGLFSAVWATDSGSGV
                                    20
                                             30
                                                      40
                                                               50
                           70
                                    80
                                             90
                                                     100
                   SMTISTGLYGLKVSGSYTLSVDSMAFQSASARFWVSSSCVSAPDKMPFCAAARLSKSKSM
       m575.pep
                    SMTISTGLYGLKVSGSYTLSVDSMAFQSASARFWVSSSCVSAPDKMPFCAAARLSKSKSM
-- fister
       a575
                           70
                                    80
                                             90
                                                     100
                          130
                                   140
                                            150
                                                     160
                                                              170
                                                                       180
                   RLEGVSVSTSNVCFADNSSSDSPSKASVSFTSFFGAGSGVAGVSTSAKVISMPSSAASSR
       m575.pep
                   a575
                   RLEGVSVSTSNVCFADNSSSDSPSKASVSFTSFFGAGSGVAGVSTSAKVISMPSSAASSR
                          130
                                   140
                                            150
                                                     1.60
                                                              170
                                                                       180
                                   200
                         190
                                            210
                                                     220
                                                              230
                                                                       240
       m575.pep
                   SGSSSGTDSSVRRARLDWARRKSSSRAINAAPPPASSKVYEPPNRPSNSPLSVSSSAETC
                   111111111111
                   SGSSSGTDSSVRRARLDWARRKSSSRAINAAPPPASSKVYEPPN-
       a575
                                                               -SPLSVSSSAETC
                                   200
                                            210
                                                     220
                                                                 230
                          250
                                   260
                                            270
                                                     280
                                                              290
                   STGSETALPVSSVGVSMAEAAASWGADSAAVSDAAVFAAGTGSGRTAGFSAFASGAATFA
       m575.pep
                   ************************************
                   STGSETALPVSSVGVSMAEAAASWGADSAAVSDAAVFAAGTGSGRTAGFSAFASGAATFA
       a575
                             250
                                      260
                                               270
                                                        280
                          310
                                   320
                                            330
                                                     340
       m575.pep
                   SGFSTGFSTVACLDGSDGMDAVSALGFAVCGLGCSALILFRFGMX
                   a575
                   SGFSTGFSTVACLDGSDGMDAVSALGFAVCGLGCSALILFRFGMX
                    300
                             310
                                      320
                                               330
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1737>:
       g576.seq..(partial)
                ..atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc
                  ggaaatcgat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg
             51
            101
                  gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa
            151
                  ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc
                  gaaggccaac aaagaaaaag gcgaagcctt cctgaaggaa aatgccgccg
            201
            251
                  aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa
            301
                  cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata
            351
                  cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg
                  gcggcccggc caccttccct ttgagccaag tgattccggg ttggaccgaa
            401
            451
                  ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc
            501
                  caaccttgcc taccgcgaac agggtgcggg cgaaaaaatc ggtccgaacg
                  ccactttggt atttgacgtg aaactggtca aaatcggcgc acccgaaaac
            551
            601
                  gcgcccgcca agcagccgga tcaagtcgac atcaaaaaag taaattaa
  This corresponds to the amino acid sequence <SEQ ID 1738; ORF 576.ng>:
       g576.pep..(partial)
               ..MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEOAOEVMMK
                  FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
             51
            101
                  QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1739>: m576.seq.. (partial)

GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN

^{1 ..}ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA

```
51
       GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
101
       CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
151
       GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
201
       AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
251
       TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
301
       CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
       CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
351
401
       TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
       GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
451
       AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
501
       GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
551
       AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
601
       САТСАААААА GTAAATTAA
651
```

This corresponds to the amino acid sequence <SEQ ID 1740; ORF 576>:

```
m576.pep.. (partial)
```

- 1 ..MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
- 51 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG 101 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
- 151 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
- 201 KIGAPENAPA KQPAQVDIKK VN*

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

m576/g576 97.2% identity in 215 aa overlap

```
10
                       20
                               30
                                      40
                                              50.
          MQQASYAMGVDIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQ
m576.pep
               g576
               MGVDIGRSLKOMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQ
                     10
                            20
                                    30
                                            40
                                                   50
                               90
                                     100
                                             110
          EQQAKAVEKHKADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIV
m576.pep
          g576
          EQQAKAVEKHKADAKANKEKGEAFLKENAAEDGVKTTASGLQYKITKQGEGKQPTKDDIV
                     70
                            80
                                           100
               130
                      140
                              150
                                     160
                                             170
          TVEYEGRLIDGTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYRE
m576.pep
          TVEYEGRLIDGTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYRE
g576
             120
                    130
                            140
                                           160
                                   150
               190
                      200
                              210
          QGAGDKIGPNATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
m576.pep
          α576
          OGAGEKIGPNATLVFDVKLVKIGAPENAPAKOPDOVDIKKVNX
                    190
             180
                            200
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1741>: a576.seq

```
ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
    ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
    CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
101
151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
    GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
201
251 CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
301
    GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
    AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
351
401
    TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
451
    CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
501
    CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
    TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
```

```
601 GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
            651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
            701
                GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
            751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
            801
                CATCAAAAAA GTAAATTAA
   This corresponds to the amino acid sequence <SEQ ID 1742; ORF 576.a>:
       a576.pep
                MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
                MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
             51
                AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
            101
-- *::::
                LOYKITKOGE GKOPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSO
                VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
            201
                KIGAPENAPA KQPAQVDIKK VN*
            251
                   99.5% identity in 222 aa overlap
       m576/a576
                                                    10
                                                             20
       m576.pep
                                             MQQASYAMGVDIGRSLKQMKEQGAEIDLKV
                                             a576
                   CGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGVDIGRSLKQMKEQGAEIDLKV
                                           50
                                                    60
                                                                      80
                          40
                                   50
                                           60
                                                    70
                                                             80
                                                                      90
       m576.pep
                   FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
                   a576
                   FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
                          90
                                  100
                                          110
                                                   120
                                                            130.
                                  110
                                          120
                                                   130
                                                            140
                                                                     150
                   KDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLIDGTVFDSSKANGGPVTFPLSQ
       m576.pep
                   a576
                   KDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLIDGTVFDSSKANGGPVTFPLSQ
                         150
                                  160
                                          170
                                                   180
                                                            190
                                                                     200
                                  170
                                          180
                                                   190
                   VIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPNATLVFDVKLVKIGAPENAPA
       m576.pep
                   a 576
                   VILGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPNATLVFDVKLVKIGAPENAPA
                         210
                                  220
                                          230
                                                   240
                         220
       m576.pep
                   KOPAOVDIKKVNX
                   KQPAQVDIKKVNX
                         270
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1743>: q576-1.seq

```
1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
    ACTITCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
    CTGCCGCCGC TTCTGCCGCG CAGGGCGACA CCTCTTCAAT CGGCAGCACG
101
    ATGCAGCAGG CAAGCTATGC AATGGGCGTG GACATCGGAC GCTCCCTGAA
151
201 ACABATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGATG
    CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
251
    GCCCAGGAAG TGATGATGAA ATTCCTGCAG GAGCAGCAGG CTAAAGCCGT
301
351
    AGAAAAACAC AAGGCGGATG CGAAGGCCAA CAAAGAAAAA GGCGAAGCCT
401
    TCCTGAAGGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGT
    CTGCAGTACA AAATCACCAA ACAGGGTGAA GGCAAACAGC CGACAAAAGA
451
    CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACCGTAT
501
551
    TCGACAGCAG CAAAGCCAAC GGCGGCCCGG CCACCTTCCC TTTGAGCCAA
    GTGATTCCGG GTTGGACCGA AGGCGTACGG CTTCTGAAAG AAGGCGGCGA
601
    AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
651
    GCGAAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC
701
751
    AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA
801
    CATCAAAAAA GTAAATTAA
```

```
This corresponds to the amino acid sequence <SEQ ID 1744; ORF 576-1.ng>:
   g576-1.pep
          1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASAA QGDTSSIGST
            MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTDAMQAVYD GKEIKMTEEQ
         51
            AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
        101
            LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPATFPLSQ
        151
            VIPGWTEGVR LLKEGGEATF YIPSNLAYRE QGAGEKIGPN ATLVFDVKLV
        251 KIGAPENAPA KOPDOVDIKK VN*
   The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1745>:
   m576-1.seq
            ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
-- 2:---
            ACTITCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
         51
            CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
        101
        151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
            GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
            CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
        301 GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
        351 AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
        401 TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
        451 CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
        501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
        551 TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
        601 GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
        651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
        701 GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
        751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
            CATCAAAAAA GTAAATTAA
   This corresponds to the amino acid sequence <SEQ ID 1746; ORF 576-1>:
   m576-1.pep
          1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
         51
            MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
        101
            AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
        151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
            VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
        251 KIGAPENAPA KQPAQVDIKK VN*
   g576-1/m576-1
                   97.8% identity in 272 aa overlap
                               20
                                        30
                                                 40
                                                           50
               MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASAAQGDTSSIGSTMQQASYAMGV
   g576-1.pep
               m576-1
               MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
                      10
                               20
                                        30
                                                 40
                                                100
   g576-1.pep
               DIGRSLKOMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
               DIGRSLKOMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
   m576-1
                      70
                               80
                                        90
                                                 100
                                                         110
                                                                  120
                     130
                              140
                                       150
                                                 160
               KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
   a576-1.pep
               m576-1
               KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
                     130
                              140
                                       150
                     190
                              200
                                       210
   g576-1.pep
               GTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYREQGAGEKIGPN
               m576-1
               GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
                     190
                              200
                                       210
                                                 220
                                                         230
                     250
                              260
               ATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX
   g576-1.pep
               m576-1
               ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1747>: a576-1.seq

250

260

1	ATGAACACCA	TTTTCAAAAT	CAGCGCACTG	ACCCTTTCCG	CCGCTTTGGC
51	ACTTTCCGCC	TGCGGCAAAA	AAGAAGCCGC	CCCCGCATCT	GCATCCGAAC
101	CTGCCGCCGC	TTCTTCCGCG	CAGGGCGACA	CCTCTTCGAT	CGGCAGCACG
151	ATGCAGCAGG	CAAGCTATGC	GATGGGCGTG	GACATCGGAC	GCTCCCTGAA
201	GCAAATGAAG	GAACAGGGCG	CGGAAATCGA	TTTGAAAGTC	TTTACCGAAG
251	CCATGCAGGC	AGTGTATGAC	GGCAAAGAAA	TCAAAATGAC	CGAAGAGCAG
301	GCTCAGGAAG	TCATGATGAA	ATTCCTTCAG	GAACAACAGG	CTAAAGCCGT
351	AGAAAAACAC	AAGGCGGACG	CGAAGGCCAA	TAAAGAAAAA	GGCGAAGCCT
401	TTCTGAAAGA	AAATGCCGCC	AAAGACGGCG	TGAAGACCAC	TGCTTCCGGC
451	CTGCAATACA	AAATCACCAA	ACAGGGCGAA	GGCAAACAGC	CGACCAAAGA
501	CGACATCGTT	ACCGTGGAAT	ACGAAGGCCG	CCTGATTGAC	GGTACGGTAT
551	TCGACAGCAG	CAAAGCCAAC	GGCGGCCCGG	TCACCTTCCC	TTTGAGCCAA
601	GTGATTCTGG	GTTGGACCGA	AGGCGTACAG	CTTCTGAAAG	AAGGCGGCGA
651	AGCCACGTTC	TACATCCCGT	CCAACCTTGC	CTACCGCGAA	CAGGGTGCGG
701	GCGACAAAAT	CGGCCCGAAC	GCCACTTTGG	TATTTGATGT	GAAACTGGTC
751	AAAATCGGCG	CACCCGAAAA	CGCGCCCGCC	AAGCAGCCGG	CTCAAGTCGA
801	CATCAAAAAA	GTAAATTAA			

This corresponds to the amino acid sequence <SEQ ID 1748; ORF 576-1.a>: a576-1.pap

```
1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51 MQQASYAMGV DIGRSLKOMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
201 VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
```

a576-1/m576-1 99.6% identity in 272 aa overlap

251 KIGAPENAPA KQPAQVDIKK VN*

45.0 5,				•		
	10	20	30	40	50	60
a576-1.pep	MNTIFKISALTLSAA	LALSACGKK	EAAPASASEP.	aaassaqgdt	SSIGSTMQQA	SYAMGV
	11111111111111111	1111111111	11111111111	1111111111	11111111111	111111
m576-1	MNTIFKISALTLSAA	LALSACGKK	EAAPASASEP.	aaassaqgdt	SSIGSTMQQA	SYAMGV
	10	20	30	40	50	60
	70	80	90	100	110	120
a576-1.pep	DIGRSLKOMKEQGAE					
m576-1	DIGRSLKQMKEQGAE					
	70	80	90	100	110	120
	130	140	150	160	170	180
a576-1.pep	KADAKANKEKGEAFI		-			
m576-1	KADAKANKEKGEAFI					
	130	140	150	160	170	180
	100	200	210	220	230	240
.E76 1	190 GTVFDSSKANGGPVT					240
a576-1.pep						
m576-1	GTVFDSSKANGGPVT					
M370-1	190	200	210	220	230	240
	130	200	210	220	230	210
	250	260	270 .			
a576-1.pep	ATLVFDVKLVKIGAF		OVDIKKVNX			
	11111111111111111	_	_			
m576-1	ATLVFDVKLVKIGAF					
_	250	260	270			

### Expression of ORF 576

The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. ORF 576 was cloned in pET and pGex vectors and expressed in E.coli as above described. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification and Figure 3B shows the expression in E.coli. Purified His-fusion protein was used to immunize mice, whose sera were used for ELISA (positive result), FACS analysis (Figure 3C), western blot (Figure 3D). These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The

hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in Figure 7. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1749>:
```

```
g577.seq..

1 atggaaagga gcggtgtatt tggtaaaatt gtcggcaatc gcatactccg
51 tatgccgtcc gaacacgctg ccgcattcta tccgaaaccg tgcaaatcgt
101 ttaaactaac gcaatcttgg ttcagagtgc gaagctgtcc gtgcggcgtt
151 tttatttacg gagcaaacat gaaacttatc tataccgtca tcaaaatcat
201 tatcctgctg ctcttcctgc tgcttgccgt cattaatatg gatgccgtta
251 ccttttccta tcttccgggg cagagtgtca atctgccgct gattgtcgta
301 ttgttcggcg cgtttgtcgt cggcatcgtg ttcggaatgt ttgccctgtt
```

351 cgggcggctg ctgtccttgc gcggcgaaaa cagccgcctg cgtgcggaag 401 tgaagaaaag tgcgcgcttg agcggacaga aattgactgc accgccgata

451 caaaatgctg ccgaatctgc caaacagcct taa

This corresponds to the amino acid sequence <SEQ ID 1750; ORF 577.ng>: g577.pep

```
1 MERSGVFGKI VGNRILRMPS EHAAAFYPKP CKSFKLTQSW FRVRSCPCGV
51 FIYGANMKLI YTVIKIIILL LFLLLAVINM DAVTFSYLPG QSVNLPLIVV
```

101 LFGAFVVGIV FGMFALFGRL LSLRGENSRL RAEVKKSARL SGQKLTAPPI

151 QNAAESAKQP *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1751>:

```
m577.seq..

1 ATGGAAAGGA ACGGTGTATT TGGTAAAATT GTCGGCAATC GCATACTCCG
51 TATGTCGTCC GAACACGCTG CCGCATCCTA TCCGAAACCG TGCAAATCGT
101 TTAAACTAGC GCAATCTTGG TTCAGAGTGC GAAGCTGTCT GGGCGGCGTT
151 TTTATTTACG GAGCAACACT GAAACTTATC TATACCGTCA TCAAAATCAT
201 TATCCTGCTG CTCTTCCTGC TGCTTGCCGT CATTAATACG GATGCCGTTA
251 CCTTTTCCTA CCTGCCGGGG CAAAAATTCG ATTTGCCGCT GATTGTCGTA
301 TTGTTCGGCG CATTTGTAGT CGGTATTATT TTTGGAATGT TGCCTTGTT
351 CGGACGGTTG TTGTCGTTAC GTGGCGGAAA CGGCAGGTTG CGTGCCGAAG
401 TAAAGAAAAA TGCGCGTTTG ACGGGGAAGG AGCTGACCGC ACCACCGGCG
451 CAAAATGCGC CCGAATCTAC CAAACAGCCT TAA
```

This corresponds to the amino acid sequence <SEQ ID 1752; ORF 577>: m577.pep..

1 MERNGVFGKI VGNRILRMSS EHAAASYPKP CKSFKLAQSW FRVRSCLGGV 51 FIYGANMKLI YTVIKIIILL LFLLLAVINT DAVTFSYLPG QKFDLPLIVV

101 LFGAFVVGII FGMFALFGRL LSLRGENGRL RAEVKKNARL TGKELTAPPA

151 QNAPESTKOP *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m577/g577
          88.1% identity in 160 aa overlap
          MERNGVFGKIVGNRILRMSSEHAAASYPKPCKSFKLAQSWFRVRSCLGGVFIYGANMKLI
m577.pep
           g577
          MERSGVFGKIVGNRILRMPSEHAAAFYPKPCKSFKLTQSWFRVRSCPCGVFIYGANMKLI
                 10
                          20
                                           40
                                  30
                                                   50
                  70
                          80
                                  90
                                          100
                                                  110
          YTVIKIIILLLFLLLAVINTDAVTFSYLPGQKFDLPLIVVLFGAFVVGIIFGMFALFGRL
m577.pep
```

			•			
				111111111111111111111111111111111111111		
g577				GQSVNLPLIVV		
	7	70 1	30 9	0 100	110	120
	1.	30 14	10 15	0 160		
-577		-		O 160 AQNAPESTKQP:	v	
m577.pep				AQNAPESIKQP.		
_533				IONAAESAKOP:		
g577			10 15		^	•
	1,		10 13	0 160		
The following pa	ortial DNA se	auence wa	identified i	n N maninai	tidie <seo< td=""><td>ID 1753&gt;.</td></seo<>	ID 1753>.
Titlem .	aitiai DIAA se	quence was	i identifica i	u w. meningi	mais SEQ	11/33/.
a577.seq			MCCM3333mm	CTCCCC333TC	~~~ m> ~m~~	
1	ATGGAAAGGA A					
51	TATGTCGTCC (					
101	TTAAACTAGC (					
151	TTTATTTACG (					
201	TATCCTGCTG (					
251	CCTTTTCCTA					
301	TTGTTCGGCG (					
351	CGGACGGTTG T					
401	TAAAGAAAAA 7				ACCACCGGCG	
451	CAAAATGCGC (	CGAATCTGC	CAAACAGCCT	TGA		
/D1 1	- 4- 41	مرتم منام	naa KREO I	D 1754. ODI	. F77 ->.	
This corresponds	s to the amino	acid seque	ince <2EQ I	D 1734; OKI	3//.a>:	
a577.pep						
1	MERNGVFGKI V					
51	FIYGANMKLI Y					
101	LFGAFVVGIV E		LSLRGENGRL	RAEVKKNARL	TGKELTAPPA	•
151	QNAPESAKQP '					
500 / 500	00 10 11					
m577/a577	98.1% 106	entity in 1	l60 aa over	Tab		•
	1	.0 2	20 3	0 40	50	60
m577.pep	_		-	PCKSFKLAQSWI	* -	
də47.beb						
a577				PCKSFKLAQSW:		
a377			20 3		RVRSCEGGVE 50	
	•	.0	20 3	0 40	50	60
	-	0 8	30 9	0 100	110	120
m577.pep				GQKFDLPLIVV		
ms / / .pep						
a577				GOKFDLPLIVV		
4377			30 9		110	120
	•	- '	,	. 100	110	120
	13	10 14	10 15	0 160		
m577.pep				AQNAPESTKQP	K	
- E77	TOTOCENCE	7 77 77 77 77 77 77 77 77 77 77 77 77 7			•	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1755>: g578.seq..

LSLRGENGRLRAEVKKNARLTGKELTAPPAQNAPESAKQPX

150

160

140

- 1 atgggaaagc tcgacatcgg gatattgttt gccgatttct tcaaagattt
- 51 cgcgccacag ttcggtggtt tccaaaacgt tggctttgcc tacggagcag

130 .

- 101 actititing the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of
- 151 geggattteg etttegetgt attteatggt gttgtageet tegtgttege
- 201 cgttttccaa aacacggatg ccgcgcggtt cgccgaaata aatatcgccg
- 251 gtaagttege geacaateaa aatateeaaa eeggeaaega ttteaggett
- 301 gagcgtggag gcgttggcta a

a577

This corresponds to the amino acid sequence <SEQ ID 1756; ORF 578.ng>: g578.pep

- 1 MGKLDIGILF ADFFKDFAPQ FGGFQNVGFA YGADFFAAFL GGLEGHVGDA
- 51 ADFAFAVFHG VVAFVFAVFQ NTDAARFAEI NIAGKFAHNQ NIQTGNDFRL

```
101 ERGGVG*
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1757>: m578.889...
```

- 1 ATGGGAAAGC TCGACATCAG GGTACTCTTT GCCGATTTCT TCAAAGATTT
  51 CGCGCCACAA TTCGGTGGTT TCCAAAACGT TGGCTTTGCC TACGGAACAG
  101 ACTTTTTGC TGCGTTTTTG GGCCGATTGC AAGGCAACAT GGGCAATACG
  151 GCGGATTCG CTTTCGCTGT ATTTCATGGT GTTGTAGCCT TCGCGTTCGC
  151 GTGAGTTCGC GCACAATCAA AATATCCAAA CCGGCAACGA TTTCAGGCTT
  151 GTGAGTTCGC GCACAATCAA AATATCCAAA CCGGCAACGA TTTCAGGCTT
- This corresponds to the amino acid sequence <SEQ ID 1758; ORF 578>: m578.pep..
  - 1 MGKLDIRVLF ADFFKDFAPQ FGGFQNVGFA YGTDFFAAFL GGLEGNMGNT
  - 51 ADFAFAVFHG VVAFAFAVFQ NADAARFAEI DVAGEFAHNQ NIQTGNDFRL
  - 101 QRGGVG*

m578/g578 87.7% identity in 106 aa overlap

20 50 MGKLDIRVLFADFFKDFAPQFGGFQNVGFAYGTDFFAAFLGGLEGNMGNTADFAFAVFHG m578.pep g578 MGKLDIGILFADFFKDFAPQFGGFQNVGFAYGADFFAAFLGGLEGHVGDAADFAFAVFHG 10 20 30 40 70 80 90 VVAFAFAVFQNADAARFAEIDVAGEFAHNQNIQTGNDFRLQRGGVGX m578.pep VVAFVFAVFONTDAARFAEINIAGKFAHNQNIQTGNDFRLERGGVGX q578 70 BO. 90 100

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1759>:

a578.seq

- 1 ATGGGAAAGC TCGACATCAG GGTATTCTTT GCCGATTTCT TCAAAGATTT
- 51 CGCGCCACAA TTCGGTGGTT TCCAAAACGT TGGCTTTGCC TACGGAGCAG
- 101 ACTITITGC TGCGTTTTTG GGCGGATTGG AAGGCGACGT GGGCAATACG
- 151 GCGGATTTCG CTTTCGCTGT ATTTCATGGT GTTGTAGCCT TCGCGTTCGC
- 201 CGTTTTCCAG AACACGGATG CCGCGGGTT CGCCGAAATA AATATCGCCG 251 GTGAGTTCGC GCACAATCAA AATATCCAAA CCCGCAACGA TTTCAGACTT
- 301 GAGCGTGGAG GCGTTGGCTA G

This corresponds to the amino acid sequence <SEQ ID 1760; ORF 578.a>:

a578.pep

- 1 MGKLDIRVFF ADFFKDFAPQ FGGFQNVGFA YGADFFAAFL GGLEGDVGNT
- 51 ADFAFAVFHG VVAFAFAVFQ NTDAARFAEI NIAGEFAHNQ NIQTRNDFRL
- 101 ERGGVG*

m578/a578 91.5% identity in 106 aa overlap

20 30 40 MGKLDIRVLFADFFKDFAPQFGGFQNVGFAYGTDFFAAFLGGLEGNMGNTADFAFAVFHG m578.pep a578 MGKLDIRVFFADFFKDFAPQFGGFQNVGFAYGADFFAAFLGGLEGDVGNTADFAFAVFHG 10 20 30 40 80 90 m578.pep VVAFAFAVFQNADAARFAEIDVAGEFAHNQNIQTGNDFRLQRGGVGX a578 VVAFAFAVFQNTDAARFAEINIAGEFAHNQNIQTRNDFRLERGGVGX 70 RO 90 100

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1761>: g579. seq. .

1 ATGAGGGCGG CGATGACGCG CGCGCAGGTC GATGCCACGC TGATTAGTTT

```
TTTGTGTAAT GTTGCCAATA TCGGCTTATT GATTTTGGTG ATTATTGCCG
CATTGGACG GTTGGGCGTT TCCACAACAT CCGTAACCGC CTTAATCGGC
GGCGCGGGTT TGGCGGTGGC GTTGTCCTTA AAAGACCAGC TGTCCAATTT
TGCCGCCGGC GCGCTGATTA TCCTGTTCCG CCCGTTCAAA GTCGGCGACT
TTATCCGTGT CGGCGGTTTT GAAGGATATG TCCGGGAAAT CAAAATGGTG
CAGACTTCTT TGCGGACGAC CGACAACGAA GAAGTCGTGC TGCCCAACAG
CGTGGTGATG GGCAACAGCA TCGTCAACCG TTCCAGCCTG CCGCTTTGCC
GGCCCCAACAG GATAGTCGGC GTCGATTACA ACTGCGATTT GAAAGTGGCG
AAAGAGGCGG TGTTGAAAGC CGCCCCGAA CACCCCTTGA GGCTTCAAAA
TCGAAATCAC ATTATGGGCT TGGGCAAACG AAGCAACCG CTGGACGCTG
CAATGCGACT TGAACGAACA AGTGGTCGAA AACCTCCGCA AAGTCAATAT
CAACATCCCG TTCCCGCAAC GCGACATACA CATCATCAAT TCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1762; ORF 579.ng>:

- 1 MRAAMTRAQV DATLISFLCN VANIGLLILV IIAALGRLGV STTSVTALIG
  51 GAGLAVALSL KDQLSNFAAG ALIILFRPFK VGDFIRVGGF EGYVREIKMV
- 101 QTSLRTTDNE EVVLPNSVVM GNSIVNRSSL PLCRAQVIVG VDYNCDLKVA
- 151 KEAVLKAAAE HPLSVQNEER QPAAYITALG DNAIEITLWA WANEADRWTL
- 201 OCDLNEOVVE NLRKVNINIP FPORDIHIIN S*

The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 1763>: m579.seq..

1 ATGAGGGCGG CGATGACGCG CGCGCAGGTC GATGCCACGC TGATTAGTTT
51 TTTGTGTAAT GTTGCCAATA TCGGCTTATT GATTTTGGTG ATTATTGCCG
101 CATTGGGCAG ATTGGGCGTT TCCACAACAT CCGTAACCGC CTTAATCGGC
151 GGCGCGGGTT TGGCGGTGGC GTTGTCCCTG AAAGACCAGC TGTCCAATTT
201 TGCCGCCGGC GCACTGATTA TCCTGTTCCG CCCGTTCAAA GTCGGCGATT
251 TTATCCGCGT CGGCGGTTTT GAAGGATATG TCCGAGAGAT TAAAATGGTG
301 CAGACTTCTT TGCGGACGAC CGACAACGAA GAAGTCGTGC CCGCTGTGCC
401 GCGCCCAAGT GATAGTCGGC GTCGAATACA ACTGCGATTT GAAAGTGGCG
401 GCGCCCAAGT GATAGTCGGC GTCGATTACA ACTGCGATTT GAAAGTGGCG
501 CGAAGAGCGG CAGGCTGCCG CCTACATCAC CGCCTTGGA GCGTTCAAAA
501 CGAAGACGC CAGGCTGCCG CTTACATCAC CGCCTTGGC GACAATGCCA
501 CGAAGACCG TGTTGAAAGC GCGCAAACG AAGCAGACCG CTGGACGCTG
601 CAATGCGACT TGAACGAACA AGTGGTCGAA AACCTCCGCA AAGTCAATAT
651 CAACATCCCG TTCCCGCAAC GCGACATACA CATCATCAAT TCTTAA

This corresponds to the amino acid sequence <SEQ ID 1764; ORF 579>: m579.pep..

- 1 MRAAMTRAQV DATLISFLCN VANIGLLILV IIAALGRIGV STTSVTALIG
  51 GAGLAVALSL KDQLSNFAAG ALIILFRPFK VGDFIRVGGF EGYVREIKMV
- 101 QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA
- 151 KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL
- 201 QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m579/g579	98.7% identity	in 231 aa	overlap			
	10	20	30	40	50	60
m579.pep	MRAAMTRAQVDAT	LISFLCNVAN	IGLLILVIIA	ALGRLGVSTTS	VTALIGGAGI	LAVALSL
	111111111111	111111111	11111111111		1111111111	1111111
g579	MRAAMTRAQVDAT	LISFLCNVAN	IGLLILVIIA	ALGRLGVSTTS	VTALIGGAG	LAVALSL
	10	20	30	40	50	60
	70	80	90	100	110	120
m579.pep	KDQLSNFAAGALI	ILFRPFKVGD	FIRVGGFEGYV	/REIKMVQTSL	RTTDNEEVVI	LPNSVVM
		111111111	1111111111		$\mathbf{H}_{\mathbf{H}}$	
g579	KDQLSNFAAGALI	ILFRPFKVGD	FIRVGGFEGYV	/REIKMVQTSL	RTTDNEEVVI	PNSVVM
	70	80	90	100	110	120

m579.pep	130 140 150 160 170 GNSIVNRSTLPLCRAQVIVGVDYNCDLKVAKEAVLKAAVEHPLSVQNEERQAAA:	180
g579		11111
	130 140 150 160 170	180
m579.pep	190 200 210 220 230 DNAIEITLWAWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX	
g579	DNAIEITLWAWANEADRWTLQCDLNEQVVENLRKVNINIPFFQRDIHIINSX 190 200 210 220 230	
The following r	partial DNA sequence was identified in N. meningitidis <seq 1<="" id="" td=""><td>765~.</td></seq>	765~.
a579.seg	I TO THE SECOND THE PROPERTY OF A 1D I	1057.
i		
51	TTTGTGTAAT GTTGCCAATA TCGGCTTATT GATTTTGGTG ATTATTGCCG	
101		
151 201		
251	TITLE TOTAL COUNTY OF COOKIE	
301	CAGACTTCTT TGCGGACGAC CGACAACGAA GAAGTCGTGC TGCCCAACAG	
351	CGTGGTGATG GGCAACAGCA TCGTCAACCG TTCCACACTG CCGCTGTGCC	
401	GCGCCCAAGT GATAGTCGGC GTCGATTACA ACTGCGATTT GAAAGTGGCG	
451	AAAGAGGCGG TGTTGAAAGC CGCCGTCGAA CACCCCTTGA GCGTTCAAAA	
501	CGAAGAGCGG CAGGCCGCCG CCTACATCAC CGCCTTGGGC GACAATGCCA	
551	TCGAAATCAC ATTATGGGCT TGGGCAAACG AAGCAGACCG CTGGACGCTG	
601		
651	CAACATCCCG TTCCCGCAAC GCGACATACA CATCATCAAT TCTTAA	
This correspond	ds to the amino acid sequence <seq 1766;="" 579.a="" id="" orf="">:</seq>	
a579.pep		
1		
51	GAGLAVALSL KDQLSNFAAG ALIILFRPFK VGDFIRVGGF EGYVREIKMV	
101	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAOVIVG VDYNCDLKVA	
151	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTI.	
151 201	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*	
151	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  100.0% identity in 231 aa overlap	
151 201 m579/a579	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  100.0% identity in 231 aa overlap  10 20 30 40 50	60
151 201	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50 MRAAMTRAQVDATLISFLCNVANIGLLIVIIAALGRLGVSTTSVTALIGGAGLA	JAT.ST.
151 201 m579/a579 m579.pep	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50 MRAAMTRAQVDATLISFLCNVANIGLLLVIIAALGRLGVSTTSVTALIGGAGLA	VALSL
151 201 m579/a579	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50 MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL       VALSL
151 201 m579/a579 m579.pep	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50 MRAAMTRAQVDATLISFLCNVANIGLLLVIIAALGRLGVSTTSVTALIGGAGLA	VALSL
151 201 m579/a579 m579.pep	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLIVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL       VALSL   60
151 201 m579/a579 m579.pep	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL        VALSL   60
151 201 m579/a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA' 111111111111111111111111111111111111	VALSL
151 201 m579/a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL
151 201 m579/a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL
151 201 m579/a579 m579.pep a579	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL         VALSL
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTDNE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VALSL             VALSL   60   120   SSVVM             SSVVM   120
151 201 m579/a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL         VALSL        60  120
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAY	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLA'	VALSL         VALSL        60  120
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLIVIIAALGRLGVSTTSVTALIGGAGLAY 111111111111111111111111111111111111	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLIVIIAALGRLGVSTTSVTALIGGAGLAY	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG
151 201 m579/a579 m579.pep a579 m579.pep a579 m579.pep	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAY	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG
151 201 m579/a579 m579.pep a579 m579.pep a579	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLIVIIAALGRLGVSTTSVTALIGGAGLAY	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG
151 201 m579/a579 m579.pep a579 m579.pep a579 m579.pep	QTSLRTTONE EVVLPNSVVM GNSIVNRSTL PLCRAQVIVG VDYNCDLKVA KEAVLKAAVE HPLSVQNEER QAAAYITALG DNAIEITLWA WANEADRWTL QCDLNEQVVE NLRKVNINIP FPQRDIHIIN S*  10 20 30 40 50  MRAAMTRAQVDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAY	VALSL             VALSL     60  120   SVVM           ISVVM   120  180   TALG

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1767>: g579-1.seq

```
1 ATGGACTICA AACAATITGA TITTITACAC CIGATCAGIG TITCCGGITG
 51
    GGGGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
101 CGCTGCTTAT TTTCTTGGTC GGGAAATGGG CGGCGAAACG CATTGTCGCC
151 GTAATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
201 TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
251 CCGCATTGGG ACGGTTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
301 GGCGGCGCG GTTTGGCGGT GGCGTTGTCC TTAAAAGACC AGCTGTCCAA
351 TTTTGCCGCC GGCGCGCTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
401 ACTITATCCG TGTCGGCGGT TTTGAAGGAT ATGTCCGGGA AATCAAAATG
451 GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
501
    CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCAGC CTGCCGCTTT
    GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
    GCGAAAGAGG CGGTGTTGAA AGCCGCCGCC GAACACCCCT TGAGCGTTCA
651 AAACGAAGAG CGGCAGCCCG CCGCCTACAT CACCGCCTTG GGCGACAATG
    CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
701
    CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
801 TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1768; ORF 008.ng>: g579-1.pep

```
1 MDFKQFDFLH LISVSGWGHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA
```

- VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRIG VSTTSVTALI GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM
- VOTSLRTTDN EEVVLPNSVV MGNSIVNRSS LPLCRAOVIV GVDYNCDLKV
- 201 AKEAVLKAAA EHPLSVONEE ROPAAYITAL GDNAIEITLW AWANEADRWT
- 251 LOCDLNEQVV ENLRKVNINI PFPQRDIHII NS*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 1769>: m579-1.seq

```
1 ATGGACTICA AACAATITGA TITTITACAC CIGATCAGIG TITCCGGITG
51 GGAGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
101 CGCTGCTTAT TTTTTTGGTC GGAAAATGGG CGGCGAAACG CATTGTCGCT
151 GTGATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
201 TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
251 CCGCATTGGG CAGATTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
301 GGCGGCGCG GTTTGGCGGT GGCGTTGTCC CTGAAAGACC AGCTGTCCAA
351 TTTTGCCGCC GGCGCACTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
401 ATTTTATCCG CGTCGGCGGT TTTGAAGGAT ATGTCCGAGA GATTAAAATG
451 GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
501 CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCACA CTGCCGCTGT
551 GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
601 GCGAAAGAGG CGGTGTTGAA AGCCGCCGTC GAACACCCCT TGAGCGTTCA
651 AAACGAAGAG CGGCAGGCTG CCGCCTACAT CACCGCCTTG GGCGACAATG
701 CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
751 CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
801 TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1770; ORF 579-1>: m579-1.pep

```
1 MDFKQFDFLH LISVSGWEHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA
```

- 51 VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRLG VSTTSVTALI
- 101 GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM
- 151 VQTSLRTTDN EEVVLPNSVV MGNSIVNRST LPLCRAQVIV GVDYNCDLKV
- 201 AKEAVLKAAV EHPLSVONEE ROAAAYITAL GDNAIEITLW AWANEADRWT
- 251 LOCDLNEQVV ENLRKVNINI PFPORDIHII NS*

m579-1/g579-1 98.6% identity in 282 aa overlap

	10	20	30	40	50	60
m579-1.pep	MDFKQFDFLHLISV	SGWEHLAEKA	Wafglnlaaa	LLI FLVGKW	<b>LAKRIVAVMR</b> I	AAMTRAQ
	1111111111111	111-111111	1111111111	11111111111		шші
g579-1	MDFKQFDFLHLISV	SGWGHLAEKA	WAFGLNLAAA	LLIFLVGKW	AKRIVAVMR	AMTRAO
	10	20	30	40	50	60
	70	80	90	100	110	120
m579-1.pep	VDATLISFLCNVAN:	<b>IGLLILVIIA</b>	ALGRLGVSTT	SVTALIGGA	GLAVALSLKD(	DLSNFAA
	11111111111111		1111111111	11111111111	ШШШ	шш
g579-1	VDATLISFLCNVAN	GLLILVIIA	ALGRLGVSTT	SVTALIGGAC	LAVALSLKD	LSNFAA
	70 ·	80	90	100	110	120
	130	140	150	160	170	180
m579-1.pep	GALIILFRPFKVGD	FIRVGGFEGY	VREIKMVQTS	LRTTDNEEV	LPNSVVMGNS	IVNRST

```
g579-1
           GALIILFRPFKVGDFIRVGGFEGYVREIKMVQTSLRTTDNEEVVLPNSVVMGNSIVNRSS
                 130
                          140
                                   150
                                           160
                 190
                          200
                                   210
                                           220
                                                    230
           LPLCRAQVIVGVDYNCDLKVAKEAVLKAAVEHPLSVQNEERQAAAYITALGDNAIEITLW
m579-1.pep
           LPLCRAQVIVGVDYNCDLKVAKEAVLKAAAEHPLSVQNEERQPAAYITALGDNAIEITLW
g579-1
                 190
                          200
                                  210
                                           220
                 250
                          260
                                   270
           AWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX
m579-1.pep
           AWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX
q579-1
                          260
                 250
                                  270
                                           280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1771>:
a579-1.seq
      1 ATGGACTICA AACAATTIGA TITTITACAC CIGATAAGIG CITCCGGCTG
        GGAGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
     51
        CGCTGCTTAT TTTTTTGGTC GGAAAATGGG CGGCGAAACG CATTGTCGCC
    101
        GTGATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
    151
    201 TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
        CCGCATTGGG CAGATTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
        GGCGGCGCG GTTTGGCGGT GGCGTTGTCC TTGAAAGACC AGCTGTCCAA
    351
        TTTTGCCGCC GGCGCGCTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
    401 ATTTTATCCG CGTCGGCGGT TTTGAAGGAT ATGTCCGAGA GATTAAAATG
        GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
    451
    501 CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCACA CTGCCGCTGT
        GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
    551
        GCGAAAGAGG CGGTGTTGAA AGCCGCCGTC GAACACCCCT TGAGCGTTCA
    601
        AAACGAAGAG CGGCAGGCCG CCGCCTACAT CACCGCCTTG GGCGACAATG
    651
        CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
    701
        CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
    751
    801 TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
This corresponds to the amino acid sequence <SEQ ID 1772; ORF 579-1.a>:
a579-1.pep
      1 MDFKQFDFLH LISASGWEHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA
        VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRLG VSTTSVTALI
     51
    101
        GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM
        VQTSLRTTDN EEVVLPNSVV MGNSIVNRST LPLCRAQVIV GVDYNCDLKV
    151
    201
        AKEAVLKAAV EHPLSVQNEE RQAAAYITAL GDNAIEITLW AWANEADRWT
    251 LQCDLNEQVV ENLRKVNINI PFPQRDIHII NS*
a579-1/m579-1
              99.6% identity in 282 aa overlap
                          20
                                   30
                                            40
           MDFKQFDFLHLISASGWEHLAEKAWAFGLNLAAALLIFLVGKWAAKRIVAVMRAAMTRAO
a579-1.pep
           m579-1
           MDFKQFDFLHLISVSGWEHLAEKAWAFGLNLAAALLIFLVGKWAAKRIVAVMRAAMTRAQ
                  10
                          20
                                   30
                                            40
                          80
                                   90
                                           100
a579-1.pep
           VDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAVALSLKDQLSNFAA
           m579-1
           VDATLISFLCNVANIGLLILVIIAALGRLGVSTTSVTALIGGAGLAVALSLKDQLSNFAA
                          80
                                           100
                                                    110
                 130
                          140
                                  150
                                           160
                                                    170
                                                            180
           GALIILFRPFKVGDFIRVGGFEGYVREIKMVQTSLRTTDNEEVVLPNSVVMGNSIVNRST
a579-1.pep
           m579~1
           GALIILFRPFKVGDFIRVGGFEGYVREIKMVQTSLRTTDNEEVVLPNSVVMGNSIVNRST
                 130
                          140
                                  150
                                           160
                                                    170
                          200
                                  210
a579-1.pep
           LPLCRAQVIVGVDYNCDLKVAKEAVLKAAVEHPLSVQNEERQAAAYITALGDNAIEITLW
           m579-1
           LPLCRAQVIVGVDYNCDLKVAKEAVLKAAVEHPLSVQNEERQAAAYITALGDNAIEITLW
                 190
                          200
                                  210
                                           220
                                                    230
                                   270
                 250
                          260
                                           280
```

AWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX

a579-1.pep

```
m579-1
            AWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX
                  250
                           260
                                    270
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1773>:
         atggattcgc ccaaggtcgg gtgcgggtgg atggttttgc cgatgtctgc
     51 cgcgtcgcag cccatttcga tggcaaggca gacttcgccg atcatgtcgc
    101 caccettegg acceacaate ceecegeega teategegee egttteggea
    151 togaaaatca gottggtaaa googttgtog caacogttgg caatogcacg
    201 accggaagcc gcccatggga agttggcttt.ggtaattttg cggcctgatg
    251 ctttggcaga caattcggtt tcaccgaccc atgccacttc gggggaagtg
    301 tag
This corresponds to the amino acid sequence <SEO ID 1774; ORF 580.ng>:
g580.pep..
      1 MDSPKVGCGW MVLPMSAASQ PISMARQTSP IMSPPFGPTM PPPMMRPVSA
        SKISLVKPLS QPLAIARPEA AHGKLALVIL RPDALADNSV SPTHATSGEV
     51
    101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1775>:
m580.seq.
      1 ATGGATTCGC CCAAGGTCGG GTGCGGGTGG ATGGTTTTGC CGATGTCTGC
     51 CGCGTCGCAG CCCATTTCGA TGGCAAGGCA GACTTCGCCG ATCATATCGC
    101 CACCGTTCGG ACCGACAATG CCGCCGCCGA TGATGCGGCC GGTTTCGGCA
    151 TCAAAAATCA GCTTGGTAAA GCCGTTGTCG CAACCGTTGG CAATCGCACG
    201 GCCGGAAGCC GCCCACGGGA AGTTGGCTTT GGTGATTTTG CGGCCGGAGG
    251 CTTTGGCGGA CAGTTCGGTT TCGCCCACCC ACGCCACTTC GGGGGAAGTG
    301 TAG
This corresponds to the amino acid sequence <SEQ ID 1776; ORF 580>:
m580.pep..
      1
        MDSPKVGCGW MVLPMSAASQ PISMARQTSP IISPPFGPTM PPPMMRPVSA
        SKISLVKPLS QPLAIARPEA AHGKLALVIL RPEALADSSV SPTHATSGEV
     51
    101
m580/g580
          97.0% identity in 100 aa overlap
                            20
                                     30
                                              40
           MDSPKVGCGWMVLPMSAASQPISMARQTSPIISPPFGPTMPPPMMRPVSASKISLVKPLS
m580.pep
            9580
           MDSPKVGCGWMVLPMSAASQPISMARQTSPIMSPPFGPTMPPPMMRPVSASKISLVKPLS
                  10
                            20
                                    30
                                              40
                                                       50
                  70
                            80
                                     90
m580.pep
           QPLAIARPEAAHGKLALVILRPEALADSSVSPTHATSGEVX
           9580
           QPLAIARPEAAHGKLALVILRPDALADNSVSPTHATSGEVX
                  70
                            80
                                     90
                                             100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1777>:
     a580.seq
               ATGGATTCGC CCAAGGTCGG GTGCGGGTGG ATGGTTTTGC CGATGTCTGC
           51 CGCGTCGCAG CCCATTTCGA TGGCAAGGCA GACTTCGCCG ATCATGTCGC
          101 CACCGTTCGG ACCGACAATG CCGCCGCCGA TGATGCGGCC GGTTTCAGCA
          151 TCAAAAATCA GCTTGGTGAA ACCATTGTCG CAACCGTTGG CAATCGCACG
               GCCGGAAGCA GCCCATGGGA AGTTGGCTTT GGTGATTTTG CGGCCGGAGG
          251
              CTTTGGCAGA CAATTCGGTT TCGCCCACCC ATGCCACTTC AGGAGAAGTG
          301 TAA
This corresponds to the amino acid sequence <SEQ ID 1778; ORF 580.a>:
     a580.pep
               MDSPKVGCGW MVLPMSAASQ PISMARQTSP IMSPPFGPTM PPPMMRPVSA
```

SKISLVKPLS QPLAIARPEA AHGKLALVIL RPEALADNSV SPTHATSGEV

902

```
101 *
        m580/a580
                     98.0% identity in 100 aa overlap
                             10
                                        20
                                                            40
                     MDSPKVGCGWMVLPMSAASQPISMARQTSPIISPPFGPTMPPPMMRPVSASKISLVKPLS
        m580.pep
                     MDSPKVGCGWMVLPMSAASQPISMARQTSPIMSPPFGPTMPPPMMRPVSASKISLVKPLS
        a580
                                       20
                                                  30
                                                            40
                                                                      50
                                                                                60
                             70
                                       80
                                                  90
an Post
                     QPLAIARPEAAHGKLALVILRPEALADSSVSPTHATSGEVX
        m580.pep
                     QPLAIARPEAAHGKLALVILRPEALADNSVSPTHATSGEVX
        a580
                             70
                                       80
                                                 90
                                                           100
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1779>:
  g581.seq..
        1 atgcacttcg cccagcttgt gggtcaaacc ggtatagaac aaaatacgtt
        51 ctgtcgtcgt ggttttaccc gcatcgatat gggcggaaat accgatgttg
           cggtacaggc tgatcggggt cttacgagcc attttattag cctttcaaaa
       151 ttagaaacgg aagtgagaga atgctttgtt ggcttcagcc atacggtgta
       201 cttcttcacg ttttttcaac gcaccgccac ggccttcgga cgcatcaatc
       251 aactcgcctg ccaaacgcag atccatggat ttctcaccac gtttgcgggc
       301 cgcgtcgcga acccaacgca ttgccaaagc cagacggcgt ga
  This corresponds to the amino acid sequence <SEQ ID 1780; ORF 581.ng>:
  g581.pep..
        1 MHFAQLVGQT GIEQNTFCRR GFTRIDMGGN TDVAVQADRG LTSHFISLSK
        51 LETEVRECFV GFSHTVYFFT FFQRTATAFG RINQLACQTQ IHGFLTTFAG
       101 RVANPTHCQS QTA*
  The following partial DNA sequence was identified in N. meningitidis <SEO ID 1781>:
  m581.seg.
        1 ATGCACTTCG CCCAGCTTGT GGGTCAAACC GGTATAGAAC AAAATACGTT
        51 CTGTCGTCGT GGTTTTACCC GCGTCAATAT GGGCGGAAAT ACCGATGTTA
      101 CGGTACAGGC TGATCGGGGT CTTACGAGCC ATTTTATTAG CCTTTCAAAA
       151
           TTAGAAACGG AAGTGAGAGA ATGCTTTGTT GGCTTCAGCC ATACGGTGTA
       201 CTTCTTCACG TTTTTTCAAC GCACCGCCAC GGCCTTCGGA CGCATCAATC
       251 AATTCGCCTG CCAAACGCAG GTCCATGGAT TTCTCACCAC GTTTGCGGGC
           CGCATCGCGA ACCCAGCGCA TTGCCAAAGC CAAACGGCGT GA
  This corresponds to the amino acid sequence <SEQ ID 1782; ORF 581>:
  m581.pep..
        1 MHFAQLVGQT GIEQNTFCRR GFTRVNMGGN TDVTVQADRG LTSHFISLSK
       51 LETEVRECFV GFSHTVYFFT FFQRTATAFG RINQFACQTQ VHGFLTTFAG
      101 RIANPAHCQS QTA*
  m581 / g581 93.8% identity in 113 aa overlap
                              20
                                       30
                                                                  60
  m581.pep
              MHFAQLVGQTGIEQNTFCRRGFTRVNMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV
              g581
              MHFAQLVGQTGIEQNTFCRRGFTRIDMGGNTDVAVQADRGLTSHFISLSKLETEVRECFV
                     10
                              20
                                       30
                                                40
                                                         50
                              80
                                       90
                                               100
              GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX
  m581.pep
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1783>:

100

110

90

```
a581.seq
                ATGCACTTCG CCCAGCTTGT GGGTCAAACC GGTATAGAAC AAAATACGTT
                CTGTCGTCGT GGTTTTACCC GCATCGATAT GGGCGGAAAT ACCGATGTTA
             51
                CGGTACAGGC TGATCGGGGT CTTACGAGCC ATTTTATTAG CCTTTCAAAA
            101
            151 TTAGAAACGG AAGTGAGAGA ATGCTTTGTT GGCTTCAGCC ATACGGTGTA
            201 CTTCTTCACG TTTTTTCAAC GCACCGCCAC GGCCTTCGGA CGCATCAATC
                AATTCGCCTG CCAAACGCAG GTCCATGGAT TTCTCACCAC GTTTGCGGGC
            251
                CGCATCGCGA ACCCAGCGCA TTGCCAAAGC CAAACGGCGT GA
            301
  This corresponds to the amino acid sequence <SEQ ID 1784; ORF 581.a>:
       a581.pep
- Figure
                MHFAQLVGQT GIEQNTFCRR GFTRIDMGGN TDVTVQADRG LTSHFISLSK
                LETEVRECFV GFSHTVYFFT FFQRTATAFG RINGFACOTO VHGFLTTFAG
             51
                RINPAHCOS OTA*
            101
                   98.2% identity in 113 aa overlap
       m581/a581
                                                      40
                                                               50
       m581.pep
                   MHFAQLVGQTGIEQNTFCRRGFTRVNMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV
                   a581
                   MHFAQLVGQTGIEQNTFCRRGFTRIDMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV
                                             30
                                                      40
                                                               50
                                                                        60
                                    80
                                             90
                                                     100
                                                              110
                   GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX
       m581.pep
                   GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX
       a581
                          70
                                    80
                                             90
                                                     100
                                                              110
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1785>: g582.seq..

```
1 atgegetata ttettttgac aggaetgttg cegaeggeat cegettttgg
 51 agagaccgcg ctgcaatgcg ccgctttgac ggacaatgtt acgcgtttgg
151
     gaagggcagg agtcgaaagc cgtactcaat ctgacggaaa ccgtccgcag
201 cagcttggat aagggcgagg cggtcattgt tgttgaaaaa ggcggggatg
251 cgcttcctgc cgacagtgcg ggcgaaaccg ccgatatcta tacgcctttg
301 agcctgatgt acgacttgga caaaaacgat ttgcgcgggc tgttgggcgt
351
     acgcgaacac aatccgatgt accttatgcc gttttggtat aacaattcgc
     ccaactatge eccgagtteg ecgacgegeg gtacgactgt acaggaaaaa
401
451 ttcggacage agaaacgtgc ggaaaccaaa ttgcaggttt cgttcaaaag
501 caaaattgcc gaaaatttgt ttaaaacccg cgcggatctg tggttcggct
551 acacccaaag atccgattgg cagatttaca accaaggcag gaaatccgcg
601 ccgttccgca atacggatta caaacctgaa attttcctga cccagcctgt
651
     gaaggeggat ttgccgttcg geggcagget gegtatgete ggtgegggtt
701 ttgtccacca gtccaacgga cagagccgtc ccgaatcgcg ttcgtggaac
751 aggatttatg ccatggcagg catggaatgg ggcaaattga cggtgattcc
801
     gcgcgtgtgg gtgcgtgcgt tcgatcagag cggcgataaa aacgacaatc
851 ccgatattgc cgactatatg gggtatggcg acgtgaagct gcagtaccgc
901 ctgaacgaca ggcagaatgt gtattccgta ttgcgctaca accccaaaac
951
     gggctacggc gcgattgaag ccgcctacac gtttccgatt aagggcaaac
     tcaaaggcgt ggtacgcgga ttccacggtt acggcgagag cctgatcgac
1001
1051
     tacaaccaca agcagaacgg tatcggtatc gggttgatgt tcaacgactg
1101
     ggacggcatc tga
```

This corresponds to the amino acid sequence <SEQ ID 1786; ORF 582.ng>: g582.pep ...

```
1 MRYILLTGLL PTASAFGETA LQCAALTDNV TRLACYDRIF AAQLPSSAGQ
51 EGQESKAVLN LTETVRSSLD KGEAVIVVEK GGDALPADSA GETADIYTPL
101 SLMYDLDKND LRGLLGVREH NPMYLMPFWY NNSPNYAPSS PTRGTTVQEK
151 FGQQKRAETK LQVSFKSKIA ENLFKTRADL WFGYTQRSDW QIYNQGRKSA
201 PFRNTDYKPE IFLTQPVKAD LPFGRLRML GAGFVHQSNG QSRPESRSWN
251 RIYAMAGMEW GKLTVIPRVW VRAFDQSGDK NDNPDIADYM GYGDVKLQYR
301 LNDRQNVYSV LRYNPKTGYG AIEAAYTFPI KGKLKGVVRG FHGYGESLID
351 YNHKQNGIGI GLMFNDWDGI *
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1787>:
         ATGCGCTATA TTCTTTTGAC AGGACTGTTG CCGATGGCAT CCGCTTTTGG
         AGAGACCGCG CTGCAATGCG CCGCTTTGAC GGACAATGTT ACGCGTTTGG
      51
     101
         GAAGGGCAGG AGTCGAAAGC CGTACTCAAT CTGACGGAAA CCGTCCGCAG
     151
         CAGCCTGGAT AAGGGCGAGG CGGTCATTGT TGTTGAAAAA GGCGGGGATG
     201
         CGCTTCCTGC CGACAGTGCG GGCGAAACCG CCGACATCTA TACGCCTTTG
     251
         AGCCTGATGT ACGACTTGGA CAAAAACGAT TTGCGCGGGC TGTTGGGCGT
     301
         ACGCGAACAC AATCCGATGT ACCTTATGCC GCTCTGGTAC AACAATTCGC
     351
         CCAACTATGC CCCGGGTTCG CCGACGCGCG GTACGACTGT ACAGGAAAA
     401
         TTCGGACAGC AGAAACGTGC GGAAACCAAA TTGCAGGTTT CGTTCAAAAG
     451
     501
         CAAAATTGCC GAAGATTTGT TTAAAACCCG CGCGGATCTG TGGTTCGGCT
         ACACCCAAAG ATCCGATTGG CAGATTTACA ACCAAGGCAG GAAATCCGCG
     551
         CCGTTCCGCA ATACGGATTA CAAACCTGAA ATTTTCCTGA CCCAGCCTGT
     601
     651
         GAAGGCGGAT TTGCCGTTCG GCGGCAGGCT GCGTATGCTC GGTGCGGGTT
         TTGTCCACCA GTCCAACGGA CAGAGCCGTC CCGAATCGCG TTCGTGGAAC
     701
         AGGATTTACG CCATGGCAGG CATGGAATGG GGCAAATTGA CGGTGATTCC
     751
         GCGCGTGTGG GTGCGTGCGT TCGATCAGAG CGGCGATAAA AACGACAATC
     801
         CCGATATTGC CGACTATATG GGGTATGGCG ACGTGAAGCT GCAGTACCGC
     851
     901
         CTGAACGACA GGCAGAATGT GTATTCCGTA TTGCGCTACA ACCCCAAAAC
         GGGCTACGGC GCGATTGAAG CCGCCTACAC GTTTCCGATT AAGGGCAAAC
    951
    1001 TCAAAGGCGT GGTACGCGGA TTCCACGGTT ACGGCGAGAG CCTGATCGAC
         TACAACCACA AGCAGAACGG TATCGGTATC GGGTTGATGT TCAACGACTT
    1051
   1101
         GGACGGCATC TGA
This corresponds to the amino acid sequence <SEQ ID 1788; ORF 582>:
m582.pep
         MRYILLTGLL PMASAFGETA LQCAALTDNV TRLACYDRIF AAOLPSSAGO
         EGQESKAVLN LITETVRSSLD KGEAVIVVEK GGDALPADSA GETADIYTPL
     51
         SLMYDLDKND LRGLLGVREH NPMYLMPLWY NNSPNYAPGS PTRGTTVQEK
    101
         FGQQKRAETK LQVSFKSKIA EDLFKTRADL WFGYTQRSDW QIYNQGRKSA
    151
         PFRNTDYKPE IFLTQPVKAD LPFGGRLRML GAGFVHQSNG OSRPESRSWN
         RIYAMAGMEW GKLTVIPRVW VRAFDQSGDK NDNPDIADYM GYGDVKLQYR
    251
         LNDRQNVYSV LRYNPKTGYG AIEAAYTFPI KGKLKGVVRG FHGYGESLID
    301
    351 YNHKQNGIGI GLMFNDLDGI *
m582 / g582 98.6% identity in 370 aa overlap
                            20
                                     30
                                             40
                                                      50
                                                               60
            MRYILLTGLLPMASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
m582.pep
            MRYILLTGLLPTASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
9582
                                             40
                                                      50
                                                               60
                            80
                                    90
                                             100
            LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH
m582.pep
            q582
            LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH
                   70
                            80
                                    90
                                             100
                                                     110
                  130
                           140
                                    150
                                            160
                                                     170
                                                              180
           NPMYLMPLWYNNSPNYAPGSPTRGTTVQEKFGQQKRAETKLQVSFKSKIAEDLFKTRADL
m582.pep
            q582
           NPMYLMPFWYNNSPNYAPSSPTRGTTVQEKFGQQKRAETKLQVSFKSKIAENLFKTRADL
                 130
                          140
                                    150
                                            160
                                                     170
                                                              180
                  190
                          200
                                    210
                                            220
m582.pep
           WFGYTQRSDWQIYNQGRKSAPFRNTDYKPEIFLTQPVKADLPFGGRLRMLGAGFVHOSNG
            g582
            wfgytqrsdwqiynqgrksapfrntdykpeifltqpvkadlpfggrlrmlgagfvhqsng
                 190
                          200
                                    210
                                            220
                                                              240
                          260
                                    270
                                            280
                                                     290
                                                              300
           QSRPESRSWNRIYAMAGMEWGKLTVIPRVWVRAFDQSGDKNDNPDIADYMGYGDVKLQYR
m582.pep
           q582
           QSRPESRSWNRIYAMAGMEWGKLTVIPRVWVRAFDQSGDKNDNPDIADYMGYGDVKLQYR
                 250
                          260
                                   270
                                            280
                                                     290
                 310
                          320
                                   330
                                            340
                                                     350
```

```
LNDRONVYSVLRYNPKTGYGAIEAAYTFPIKGKLKGVVRGFHGYGESLIDYNHKONGIGI
  m582.pep
              g582
             LNDRQNVYSVLRYNPKTGYGAIEAAYTFPIKGKLKGVVRGFHGYGESLIDYNHKQNGIGI
                   310
                           320
                                    330
                                            340
                                                    350
                                                            360
                   370
             GLMFNDLDGIX
   m582.pep
             11111 11111
   q582
             GLMFNDWDGIX
                   370
-- 1/20
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1789>:
                ATGCGCTATA TTCTTTTGAC AGGACTGTTG CCGATGGCAT CCGCTTTTGG
              1
                AGAGACCGCG CTGCAATGCG CCGCTTTGAC GGACAATGTT ACGCGTTTGG
             51
                101
                GAAGGCAGG AGTCGAAAGC CGTACTCAAT CTGACGGAAA CCGTCCGCAG
            151
            201
                CAGCCTGGAT AAGGGCGAGG CGGTCATTGT TGTTGAAAAA GGCGGGGATG
            251 CGCTTCCTGC CGACAGTGCG GGCGAAACCG CCGACATCTA TACGCCTTTG
            301 AGCCTGATGT ACGACTTGGA CAAAAACGAT TTGCGCGGGC TGTTGGGCGT
            351 ACGCGAACAC AATCCGATGT ACCTTATGCC GCTCTGGTAC AACAATTCGC
            401
                CCAACTATGC CCCGGGTTCG CCGACGCGCG GTACGACTGT ACAGGAAAAA
                TTCGGACAGC AGAAACGTGC GGAAACCAAA TTGCAGGTTT CGTTCAAAAG
            451
                CAAAATTGCC GAAGATTTGT TTAAAACCCG CGCGGATCTG TGGTTCGGCT
                ACACCCAAAG ATCCGATTGG CAGATTTACA ACCAAGGCAG GAAATCCGCG
            551
            601 CCGTTCCGCA ATACGGATTA CAAACCTGAA ATTTTCCTGA CCCAGCCTGT
            651 GAAGGCGGAT TTGCCGTTCG GCGGCAGGCT GCGTATGCTC GGTGCGGGTT
            701 TTGTCCACCA GTCCAACGGA CAGAGCCGTC CCGAATCGCG TTCGTGGAAC
            751 AGGATTTACG CCATGGCAGG CATGGAATGG GGCAAATTGA CGGTGATTCC
            801 GCGCGTGTGG GTGCGTGCGT TCGATCAGAG CGGCGATAAA AACGACAATC
                CCGATATTGC CGACTATATG GGGTATGGCG ACGTGAAGCT GCAGTACCGC
            851
                CTGAACGACA GGCAGAATGT GTATTCCGTA TTGCGCTACA ATCCCAAAAC
            901
                GGGCTACGGC GCGATTGAAG CCGCCTACAC GTTTCCGATT AAGGGCAAAC
            951
                TCAAAGGCGT GGTACGCGGA TTCCACGGTT ACGGCGAGAG CCTGATCGAC
           1001
                TACAACCACA AGCAGAACGG TATCGGTATC GGGTTGATGT TCAACGACTT
           1101 GGACGGCATC TGA
  This corresponds to the amino acid sequence <SEQ ID 1790; ORF 582.a>:
       a582.pep
                MRYILLTGLL PMASAFGETA LQCAALTDNV TRLACYDRIF AAQLPSSAGQ
                EGQESKAVLN LTETVRSSLD KGEAVIVVEK GGDALPADSA GETADIYTPL
                SLMYDLDKND LRGLLGVREH NPMYLMPLWY NNSPNYAPGS PTRGTTVQEK
            151
                FGQQKRAETK LQVSFKSKIA EDLFKTRADL WFGYTQRSDW QIYNQGRKSA
            201 PFRNTDYKPE IFLTQPVKAD LPFGGRLRML GAGFVHQSNG QSRPESRSWN
            251
                RIYAMAGMEW GKLTVIPRVW VRAFDQSGDK NDNPDIADYM GYGDVKLQYR
            301
                LNDRQNVYSV LRYNPKTGYG AIEAAYTFPI KGKLKGVVRG FHGYGESLID
                YNHKQNGIGI GLMFNDLDGI *
            351
       m582/a582
                   100.0% identity in 370 aa overlap
                           10
                                    20
                                             30
                                                       40
                   MRYILLTGLLPMASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
       m582.pep
                   MRYILLTGLLPMASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
       a582
                           10
                                    20
                                             30
                                                       40
                                                                50
                           70
                                    80
                                             90
                                                      100
                   LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH
       m582.pep
                   LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH
       a582
                           70
                                    80
                                             90
                                                     100
                                                               110
                                                                        120
                          130
                                   140
                                            150
                                                      160
                                                               170
                                                                        180
```

m582.pep	NPMYLME	PLWYNNSPNYA	APGSPTRGTT	/QEKFGQQKR/	AETKLQVSFKS	SKIAEDLFKT	RADL
a582	NPMYLME	LWYNNSPNYA	APGSPTRGTTV	OEKFGOOKRA	AETKI OVSEKS	SKIAEDLFKT	
		130	140	150	160	170	180
		190	200	210	220	230 .	240
m582.pep	WFGYTOF	RSDWQIYNQGF	KSAPFRNTDY	KPEIFLTQPV	/KADLPFGGRI	LRMLGAGFVH	SNG
	1111111			11111111111			HH
a582	WFGYTQF		KSAPFRNTDY	KPEIFLTQP	/KADLPFGGRI	LRMLGAGFVH	SNG
		190	200	210	220	230	240
		250	260		280	290	300
m582.pep						ADYMGYGDVKI	LQYR
		1111111111					1111
a582	QSRPESE	SWNRIYAMAG				DYMGYGDVKI	
		250	260	270	280	290	300
		310	320	330	240		
-500	TAIDDONG				340	350	360
m582.pep		130LKINPKI				LIDYNHKQNG	
a582						 LIDYNHKQNG	
a302	THOUGHY		320	330	340	350	360
		310	320	330	340	330	360
		370					
m582.pep	GLMFNDL						
	1111111						
a582	GLMFNDL						
		370					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1791>: g583.seq..

```
atgataattg accaaagcca aatatttacc catcttgcct tctgtgcctt
ttgcgggatt ggagccgtaa ctgccggcaa tcgactgcat aatcggatgt
101 ataatgccgc cgccgcgcgc ggtattggaa ggggtaacgg gagccagcag
151 cagttcggaa agagcggaac tgtaaccgat gcccagcgtt tttcttccaac
201 aaacggcgat aaacaaatat ccgatacgca tccccagccc tgttttggag
251 aaaccgcgcg aaatcataac tgcgatggca atcagccaaa tcaacggatt
301 ggcgaacgca ctcaacgcat cgctcatcgc cgcgcccggt ttgtcggcgg
351 ttacgccggt tactgcgac aacccgacgg caataatcga cagcgcgcc
401 aacggcataa ccttgccgat aatggcggca atcacaccga caaacatagc
451 cagcagcgtc caagcctgag gcttgaccc gtcgggtacg ggcagtgcca
501 aaaccagggc gcacaatact gcggcaatgg cgaggggtat cggtttgaaa
cccaatttca tcatattgac ctccgtaaaa aagaccgtcc cgaaaaatcg
601 qaaaaataa
```

This corresponds to the amino acid sequence <SEQ ID 1792; ORF 583.ng>: g583.pep..

- 1 MIIDQSQIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSQQ
- 51 QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
- 101 GERTORIAHR RARFVGGYAG YCDQPDGNNR QRAQRHNLAD NGGNHTDKHS
- 151 QQRPSLRLDP VGYGQCQNQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
- 201 EK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1793>: m583.seq..

- 1 ATGATAGTTG ACCAAAGCCA AATATTTACC CATCTTGCCT TCTGTGCCTT
  51 TTGCGGGATT GGAGCCGTAA CTGCCGGCAA TCGACTGCAT AATCGGATGT
  101 ATAATGCCGC CGCCGCGCG GGTATTGGAA GGGGTAACGG GAGCCAGCAG
  151 CAGTTCGGAA AGAGCGAGAC TGTAACCGAT GCCCAGCGTT TTTCTTCCAA
  201 AAACGGCGAT AAACAAATAT CCGATACGCA TCCCCAGCCC TGTTTTGAGC
- 251 AAACCGCGCG AAATCATAAC TGCGATGGCA ATCAGCCAAA TCAACGGATT 301 GGCGAACGCA CTCAACGCAT CGCTCATCGC CGCGCCCGGT TTGTCGGCGG
- 351 TTACGCCGGT TACTGCGACC AACCCGACGG CAATAATCGA CAGCGCGCCC
- 401 AACGGCATGG CCTTGCCGAT AATGGCGGCA ATCACACCGA CAAACATGGC
- 451 CAGCAGCGTC CAAGCCTGAG GCTTGACCCC GTCGGGTACG GGCAGTGCCA
- 501 AAACCAGGGC GCACAATACT GCGGCAATGG CGAGGGGTAT CGGTTTGAAA

```
551 CCCAATTTCA TCATATTGAC CTCCGTAAAA AAGACCGTCC CGAAAAATCG
          GAAAAATAA
  This corresponds to the amino acid sequence <SEQ ID 1794; ORF 583>:
  m583.pep..
        1 MIVDQSQIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSQQ
          QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
      101 GERTORIAHR RARFVGGYAG YCDQPDGNNR QRAQRHGLAD NGGNHTDKHG
          OORPSLRLDP VGYGQCONQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
      151
      201
          EK*
-- m583 / g583
               98.5% identity in 202 aa overlap
                                     30
                            20
                                             40
                                                      50
             MIVDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD
  m583.pep
             MIIDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD
  q583
                            20
                                     30
                    10
                                             40
                                                      50
                                                              120
             AORFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRARFVGGYAG
  m583.pep
             AQRFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRARFVGGYAG
  q583
                            80
                                     90
                    70
                                             100
                                                             120
                   130
                            140
                                    150
                                             160
                                                     170
             YCDQPDGNNRQRAQRHGLADNGGNHTDKHGQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
  m583.pep
             YCDQPDGNNRQRAQRHNLADNGGNHTDKHSQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
  q583
                   130
                            140
                                    150
                                            160
                                                     170
                                                             180
                   190
                            200
             RFETQFHHIDLRKKDRPEKSEKX
  m583.pep
             g583
             RFETOPHHIDLRKKDRPEKSEKX
                   190
                           200
  The following partial DNA sequence was identified in N. meningitidis <SEO ID 1795>:
       a583.seq
                 ATGATAGTTG ACCAAAGCCA AATATTTACC CATCTTGCCT TCTGTGCCTT
              1
                TTGCGGGATT GGAGCCGTAA CTGCCGGCAA TCGACTGCAT AATCGGATGT
             51
                ATAATGCCGC CGCCGCGCG GGTATTGGAA GGGGTAACGG GAGCCAGCAG
            101
                CAGTTCGGAA AGAGCGAGAC TGTAACCGAT GCCCAGCGTT TTTCTTCCAA
            151
            201 AAACGGCGAT AAACAAATAT CCGATACGCA TCCCCAGCCC TGTTTTGAGC
            251 AAACCGCGCG AAATCATAAC TGCGATGGCA ATCAGCCAAA TCAACGGATT
                GGCGAACGCA CTCAACGCAT CGCTCATCGC CGCACCCGGT TTGTCGGCGG
            301
                TTACGCCGGT TACTGCGACC AACCCGACGG CAATAATCGA CAGCGCACCC
            351
            401 AACGGCATGG CCTTGCCGAT AATGGCGGCA ATCACACCGA TAAACATGGC
                 CAGCAGCGTC CAAGCCTGAG GCTTGACCCC GTCGGGTACG GGCAGTGCCA
            451
            501
                AAACCAAGGC GCACAATACT GCGGCAATGG CGAGGGGTAT CGGTTTGAAA
            551
                CCCAATTTCA TCATATTGAC CTCCGTAAAA AAGACCGTCC CGAAAAATCG
            601 GAAAAATAA
  This corresponds to the amino acid sequence <SEQ ID 1796; ORF 583.a>:
       a583.pep
                MIVDQSQIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSOO
                QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
                GERTQRIAHR RTRFVGGYAG YCDQPDGNNR QRTQRHGLAD NGGNHTDKHG
                QQRPSLRLDP VGYGQCQNQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
            151
            201
                EK*
       m583/a583
                    99.0% identity in 202 aa overlap
                                     20
                                              30
                                                        40
                                                                 50
                   MIVDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD
       m583.pep
```

```
a583
          MIVDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD
                        20
                                30
                                        40
                70
                        80
                                90
                                       100
                                               110
          AQRFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRARFVGGYAG
m583.pep
          AQRFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRTRFVGGYAG
a583
                70
                        80
                                90
                                       100
                130
                        140
                               150
                                       160
                                               170
          YCDQPDGNNRQRAQRHGLADNGGNHTDKHGQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
m583.pep
          YCDQPDGNNRQRTQRHGLADNGGNHTDKHGQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
a583
                130
                       140
                               150
                                       160
                                               170
               190
          RFETQFHHIDLRKKDRPEKSEKX
m583.pep
          a583
          RFETQFHHIDLRKKDRPEKSEKX
               190
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1797>: g584.seq..

```
1 atgctgcgtt ctattttggc ggcttccctg ctggcggtat cttttccggc
     ggcggctgag gcattgaatt acaatattgt cgaattttcc gaatcggcgg
 51
101
    gtatcgaggt ggctcaggat acaatgtccg cgcgtttcca ggtggcggcg
151 gaaggacggg acaaaaatgc cgtcaatgcc gagtttgtta aaaaattcaa
    caatttcacc agaaaatcga aaaatggtag ctttaaaacc gaattggtat
251 egegeagtge gatgeegege tatcaatata ecaaeggeag aegeatteaa
301 acaggctggg aggagcgtgc ggaatttaag gcggagggca gggattttga
351 tgctttaaac cgttttattg ctgatgttca gacggatgct tcgcttgaag
401 ataccgattt cagcgtgtcg cgcgaacgcc gaaacgaggt catcgatcag
451 gtcagcaagg atgccgtttt gcgtttcaag gcgcgtgccg aaaaactggc
501 gggcgttctg ggtgcgtccg gttataaaat cgtcaaattg aattttgggc
551 aaatcggcag ccatattgcg ggcgatgggg ctgttcgggc aaaaatgctg
601
    cgcgcgatgc cgatggcggc aagcgtcaat atgaagggta cggattcagc
651 cgcaccgggt gtggaggaaa tcagcatcag catcaatggg acggttcagt
701 tctaa
```

This corresponds to the amino acid sequence <SEQ ID 1798; ORF 584.ng>: g584.pep Length...

```
1 MLRSILAASL LAVSFPAAAE ALNYNIVEFS ESAGIEVAQD TMSARFQVAA
51 EGRDKNAVNA EFVKKFNNFT RKSKNGSFKT ELVSRSAMPR YOYTNGRRIO
```

- 101 TGWEERAEFK AEGRDFDALN RFIADVQTDA SLEDTDFSVS RERRNEVIDQ
- 151 VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NFGQIGSHIA GDGAVRAKML
- 201 RAMPMAASVN MKGTDSAAPG VEEISISING TVQF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1799>: m584.seq..

```
ATGTTGCGTC TTGTTTTGGC GGCTTCGCTG TCGGCGGTAT CTTTTCCGGC
 1
    AGCGGCTGAA GCATTGAATT ACAATATTGT CGAATTTTCC GAATCGGCGG
 51
101
    GTGTCGAGGT GGCTCAGGAT ACAATGTCCG CACGTTTCCA AGTGACGGCG
151
    GAAGGACGGG ACAAAAATGC CGTCAATGCT GAGTTTGTTA AAAAATTCAA
201 CAAGTTCATC AGAAAATCGA AAAATGGTAG CTTTAAAACC GAATTGGTAT
    CGCGCAGTGC GATGCCGCGC TATCAATATA CCAACGGCAG ACGCATTCAA
251
    ACAGGCTGGG AGGAGCGTGC GGAATTTAAG GTCGAAGGTA GAGATTTTGA
301
    TGAGTTAAAC CGTTTTATTG CCGATATTCA AGCAGATGCC GCGTTGGMAT
401
    ATACGGATTT CCATGTGTCG CGCGAACGCC GCAACGAGGT CATCKATCAG
451 GTCAGCAAGG ATGCCGTTTT GCGTTTCAAG GCGCGTGCCG AAAAGTTGGC
501
    GGGCGTTTTG GGTGCGTCCG GTTATAAAAT CGTCAAATTG AATTTGGGAC
    ACATCGGCAG CCATATCGCG GGAGGGGGAG CTGCTCAGGC AAAAATGCTT
    CGTGCCATGC CGATGGCGGC AAGCGTCAAT ATGGAGGGTG CGGATTCCGC
601
    CGCGCCTGGT GTGGAGGAAA TCAGCATCAG CGTCAATGGG ACGGTTCAGT
651
701
```

This corresponds to the amino acid sequence <SEQ ID 1800; ORF 584>:

```
m584.pep..
        MLRLVLAASL SAVSFPAAAE ALNYNIVEFS ESAGVEVAQD TMSARFQVTA
     1
        EGRDKNAVNA EFVKKFNKFI RKSKNGSFKT ELVSRSAMPR YQYTNGRRIQ
     51
    101 TGWEERAEFK VEGRDFDELN RFIADIQADA ALXYTDFHVS RERRNEVIXQ
    151 VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NLGHIGSHIA GGGAAQAKML
    201 RAMPMAASVN MEGADSAAPG VEEISISVNG TVOF*
m584 / g584 89.7% identity in 234 aa overlap
                                  30
                 3.0
                         20
                                          40
                                                  50
m584.pep
           MLRLVLAASLSAVSFPAAAEALNYNIVEFSESAGVEVAQDTMSARFQVTAEGRDKNAVNA
           MIRSTLAASLLAVSFPAAAEALNYNIVEFSESAGIEVAODTMSARFOVAAEGRDKNAVNA
q584
                 10
                         20
                                  30
                                          40
                                                  50
                 70
                         80
                                  90
                                         100
                                                 110
                                                          120
           EFVKKFNKFIRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRDFDELN
m584.pep
           EFVKKFNNFTRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKAEGRDFDALN
q584
                                  90
                         80
                                         100
                        140
                                 150
                                         160
                                                 170
          RFIADIQADAALXYTDFHVSRERRNEVIXQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
m584.pep
           RFIADVQTDASLEDTDFSVSRERRNEVIDQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
q584
                130
                        140
                                 150
                                         160
                                                 170
                                                          180
                         200
                                 210
                                         220
                190
          NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVQFX
m584.pep
           g584
          NFGQIGSHIAGDGAVRAKMLRAMPMAASVNMKGTDSAAPGVEEISISINGTVQFX
                190
                        200
                                 210
                                         220
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1801>:
     a584.seq
              ATGTTGCGTT CTATTTTGGC GGCTTCCCTG CTG.....
          51
              ..... ATTGT CGAATTTCT GAATCGGCGG
              GTGTCGAGGC GGTTCAGGAT ACAATGTCCG CACGTTTCCA AGTGACGGCG
         151 GAAGGACGGG ACAAAAATGC CGTCAATGCC GAGTTTGTTA AAAAATTCAA
         201 CAATTTCACC AGAAAATCAA AAAATGGTAG CTTTAAAAACC GAATTGGTAT
         251 CGCGCAGTGC GATGCCGCGC TATCAATATA CCAACGGCAG ACGCATTCAA
         301 ACAGGTTGGG AGGAGCGTGC GGAATTTAAG GTCGAGGGTA GGAATTTTGA
         351
             TGCGTTGAAC CGTTTTATTG CCGATGTTCA GGCAGATGCC GCGTTGGAAT
         401 ATACGGATTT CCATGTGTCG CGCGAACGCC GCAACGAGGT CATCGATCAG
         451 GTCAGCAAGG ATGCCGTTTT GCGTTTCAAG GCGCGTGCCG AAAAGTTGGC
         501 GGGCGTTTTG GGTGCGTCCG GTTATAAAAT CGTCAAATTG AATTTGGGAC
         551 ACATCGGCAG CCATATCGCG GGAGGGGGAG CTGCTCAGGC AAAAATGCTT
         601 CGTGCCATGC CGATGGCGGC AAGCGTCAAT ATGGAGGGTG CGGATTCCGC
         651 CGCGCCTGGT GTGGAGGAAA TCAGCATCAG CGTCAATGGG ACGGTTCAGT
         701 TCTGA
This corresponds to the amino acid sequence <SEO ID 1802; ORF 584.a>:
    a584.pep
             MLRSILAASL L......IVEFS ESAGVEAVQD TMSARFQVTA
          51 EGRDKNAVNA EFVKKFNNFT RKSKNGSFKT ELVSRSAMPR YQYTNGRRIQ
              TGWEERAEFK VEGRNFDALN RFIADVQADA ALEYTDFHVS RERRNEVIDQ
         101
              VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NLGHIGSHIA GGGAAQAKML
         201 RAMPMAASVN MEGADSAAPG VEEISISVNG TVQF*
                 88.9% identity in 234 aa overlap
    m584/a584
                        10
                                  20
                                           30
                 MLRLVLAASLSAVSFPAAAEALNYNIVEFSESAGVEVAQDTMSARFQVTAEGRDKNAVNA
    m584.pep
                 111 : 11111
                                        a584
                 MLRSILAASLL-
                                    -----IVEFSESAGVEAVQDTMSARFQVTAEGRDKNAVNA
                        10
                                               20
```

```
70
                                                                                                                                                            90
                                                                                                                                                                                             100
                                                                                                                      80
                                                                                                                                                                                                                                    110
                                                 EFVKKFNKFIRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRDFDELN
m584.pep
                                                  EFVKKFNNFTRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRNFDALN
a584
                                                                                                60
                                                                                                                                    70
                                                         50
                                                                                                                                                                          80
                                                                                                                                                                                                                90
                                                                            130
                                                                                                                   140
                                                                                                                                                       150
                                                                                                                                                                                             160
                                                                                                                                                                                                                                    170
                                                                                                                                                                                                                                                                         180
                                                 RFIADIQADAALXYTDFHVSRERRNEVIXQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
m584.pep
                                                 1981: 1981: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1881: 1
                                                 RFIADVQADAALEYTDFHVSRERRNEVIDQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
a584
                                                                                           120
                                                                                                                                130
                                                                                                                                                                      140
                                                    110
                                                                                                                                                                                                          150
                                                                                                                                                                                                                                                  160
                                                                            190
                                                                                                                  200
                                                                                                                                                       210
                                                                                                                                                                                            220
                                                                                                                                                                                                                                   230
                                                 NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVQFX
m584.pep
                                                 NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVOFX
a584
                                                                                                                                 190
                                                                                           180
                                                                                                                                                                      200
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1803>:

```
1 atgaaactgt tocaacgcat tttcgccaca ttttgcgcgg ttatcgtctg
 51 cgcaatcttt gtggcgagtt tttctttttg gctggtgcag aacacccttg
    ccgaaaacca attcaaccaa cgccgcacca tcgaaaccac attgatgggc
101
151
    agcattattt ccgcattcaa gacacggggc gacaacggcg cgcgcgaaat
201 cctgaccgaa tggaaaaaca gccccgtctc atccgccgtt tacgtcatac
251 agggcgacga gaaaaaagac atcttaaacc gctatatcga caattacacc
301 atagaacgcg cccggctgtt tgccgccaac aacccccatt ccaaccttgt
351
    ccgcatcgaa tacgaccgtt tcggcgaaga atacctgttc ttcattaaag
    getgggacaa ccaccaggca caacgcctgc ccagcccgct gtttatcccg
401
451 ggcctgccgc ttgccccgat ttggcacgaa ttcatcatcc tctccttcat
501 catcattgtc ggactgctga tggcatatat ccttgccggc aacattgcca
551 aacccatcag aatcttaggc aacggcatgg acagggtggc agaacgagaa
601 cttgaagacc gcgtttgcca acaggttcgc gaccgcgacg acgaattggc
651 cgatgttgcc atgcaattcg acacaatggt ggaaaaactg gaataa
```

This corresponds to the amino acid sequence <SEQ ID 1804; ORF 585.ng>: g585.pep..

- 1 MKLFQRIFAT FCAVIVCAIF VASFSFWLVQ NTLAENQFNQ RRTIETTLMG
- SIISAFKTRG DNGAREILTE WKNSPVSSAV YVIQGDEKKD ILNRYIDNYT 51
- 101 IERARLFAAN NPHSNLVRIE YDRFGEEYLF FIKGWDNHQA QRLPSPLFIP
- 151 GLPLAPIWHE FIILSFIIIV GLLMAYILAG NIAKPIRILG NGMDRVAERE 201 LEDRVCQQVR DRDDELADVA MQFDTMVEKL E*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1805>: m585.seq.

```
1 ATGAAACTGT TCCAACGCAT TTTCGCCACA TTTTGCGCGG TTATCGTCTG
  51 TGCAATCTTT GTGGCGAGTT TTTCTTTCTG GCTGGTGCAG AACACCCTTG
 101 CCGAAAACCA GTTCAACCAA CGCCGCACCA TCGAAACCAC TTTGATGGGC
 151 AGCATCATTT CCGCATTCCG GGCACGCGGG GACGCGGGTG CGCGCGAAAT
 201 CCTGACGGAA TGGAAAGACA GCCCCGTCTC ATCGGGCGTG TACGTTATAC
 251 AGGGCGACGA GAAAAAAGAT ATCCTGAACC GGTATATCGA CAGCTATACC
 301 ATCGAACGCG CCCGGCTTTT CGCCGCCGGA CACCCGCATT CCAACCTCGT
 351 CCATATCGAA TACGACCGCT TCGGCGAAGA ATACCTGTTC TTCACCAAAG
 401 ACTGGGACAA ACTCCAAGCC CGCCGCCTGC CCAGCCCCCT GTTGATCCCC
 451 GGCCTGCCGC TCGCCCCGAT TTGGCACGAA CTCATCATAT TGTCCTTCAT
 501 CATCATCGTC GGACTGCTGA TGGCATATAT CCTCGCCGGC AACATTGCCA
 551 AACCCATCAG AATCTTAGGC AACGGCATGG ACAGGGTGGC AAACGGAGAA
 601 CTTGAAACCC GTATCTCCCA ACAGGTCGAC GACCGCGACG ACGAATTGTC
 651 CCATCTTGCC ATCCAATTCG ACAAAATGGT GGAAAAACTC GAAAAACTCG
 701 TTGCCAAAGA ACGCCACCTG CTCCATCACG TCTCCCATGA AATGCGTTCT
 751 CCCCTTGCGC GCATGCAGGC AATTGTCGGA CTGATTCAGG CGCAGCCCCA
 801 AAAACAGGAG CAATATCTCA AACGGCTGGA AGGCGAACTG ACCCGCATGG
 851 ATACGCTGGC CGGGGAACTG TTAACCCTGT CCCGTCTCGA AACTTCCAAT
 901 ATGGCTTTGG AAAAAGAAAG CCTGAAACTC CTGCCCTTCC TGGGCAACCT
951 GGTAGAAGAC AATCAAAGCA TTGCCCAGAA AAACGGACAA ACGGTTACCC
1001 TGTCTGCCGA CGGAAAAATC CCCGAAAACA CAACCATCCT TGCCAACGAA
```

```
1051 AGCTACCTGT ACCGCGCCTT CGACAACGTC ATCCGCAACG CCGTCAACTA
1101 CAGTCCCGAA GGCAGCACCA TCCTGATCAA CATCGGACAA GACCACAAAC
1151 ACTGGATAAT CGACGTTACC GACAACGGCC CCGGCGTGGA CGAAATGCAG
1201 CTCCCGCACA TCTTCACCGC TTTCTACCGT GCAGACTCCA GTGCCAACAA
1251 ACCCGGAACA GGACTGGGGC TTGCATTGAC CCAACATATT ATTGAACAGC
1301 ACTGCGGCAA AATCATCGCC GAAAACATCA AACCGAACGG TCTGCGGATG
1351 CGCTTTATCC TGCCCAAGAA AAAAACCGGT TCCAAAACAG AAAAAAGTGC
1401 GAACTGA
```

This corresponds to the amino acid sequence <SEQ ID 1806; ORF 585>: m585.pep..

```
MKLFORIFAT FCAVIVCAIF VASFSFWLVQ NTLAENOFNO RRTIETTLMG
     SIISAFRARG DAGAREILTE WKDSPVSSGV YVIQGDEKKD ILNRYIDSYT
 51
     IERARLFAAG HPHSNLVHIE YDRFGEEYLF FTKDWDKLQA RRLPSPLLIP
101
     GLPLAPIWHE LIILSFIIIV GLLMAYILAG NIAKPIRILG NGMDRVANGE
151
    LETRISOOVD DRDDELSHLA IQFDKMVEKL EKLVAKERHL LHHVSHEMRS
201
     PLARMQAIVG LIQAQPQKQE QYLKRLEGEL TRMDTLAGEL LTLSRLETSN
251
     MALEKESLKL LPFLGNLVED NQSIAQKNGQ TVTLSADGKI PENTTILANE
    SYLYRAFDNV IRNAVNYSPE GSTILINIGQ DHKHWIIDVT DNGPGVDEMQ
351
    LPHIFTAFYR ADSSANKPGT GLGLALTQHI IEQHCGKIIA ENIKPNGLRM
401
451 RFILPKKKTG SKTEKSAN*
```

m585 / g585 88.3% identity in 231 aa overlap

```
20
                                30
                                        40
                                                50
                                                        60
          MKLFQRIFATFCAVIVCAIFVASFSFWLVQNTLAENQFNQRRTIETTLMGSIISAFRARG
m585.pep
          MKLFORIFATFCAVIVCAIFVASFSFWLVONTLAENOFNORRTIETTLMGSIISAFKTRG
a585
                        20
                10
                                30
                                        40
                                                50
                                                        60
                        80
                                90
          DAGAREILTEWKDSPVSSGVYVIQGDEKKDILNRYIDSYTIERARLFAAGHPHSNLVHIE
m585.pep
          g585
          DNGAREILTEWKNSPVSSAVYVIOGDEKKDILNRYIDNYTIERARLFAANNPHSNLVRIE
                70
                        80
                                90
                                       100
                                               110
               130
                       140
                               150
                                       160
                                                       180
          YDRFGEEYLFFTKDWDKLQARRLPSPLLIPGLPLAPIWHELIILSFIIIVGLLMAYILAG
m585.pep
          g585
          YDRFGEEYLFFIKGWDNHQAQRLPSPLFIPGLPLAPIWHEFIILSFIIIVGLLMAYILAG
               130
                       140
                               150
                                       160
                                               170
                                                       180
               190
                       200
                               210
                                       220
          NIAKPIRILGNGMDRVANGELETRISQQVDDRDDELSHLAIQFDKMVEKLEKLVAKERHL
m585.pep
          q585
          NIAKPIRILGNGMDRVAERELEDRVCQQVRDRDDELADVAMQFDTMVEKLEX
                       200
               190
                               210
                                       220
               250
                        260
                               270
                                       280
                                               290
                                                       300
          \verb|Lhhvshemrsplarmqaivgliqaqpqkqeqylkrlegeltrmotlagelltlsrletsn|
m585.pep
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1807>:

```
a585.seq
          ATGAAACTGT TCCAACGCAT CTTCGCCACA TTTTGCGCGG TTATCGTCTG
         TGCAATCTTT GTGGCGAGTT TTTCTTTCTG GCTGGTGCAG AACACCCTTG
      51
          CCGAAAACCA GTTCAACCAA CGCCGCACCA TCGAAACCAC TTTGATGGGC
     151 AGCATCATTT CCGCATTCCG GGCACGCGGG GACGCGGGTG CGCGCGAAAT
         CCTGACGGAA TGGAAAGACA GCCCCGTCTC ATCGGGCGTG TACGTTATAC
     251 AGGGCGACGA GAAAAAAGAT ATCCTGCACC GGTATATCGA CAGCTACACC
     301 ATCGAACGCG CCCGGCTTTT CGCCGCCGGA CACCCGCATT CCAACCTCGT
     351 CCATATCGAA TACGACCGCT TCGGCGAAGA ATACCTGTTC TTCACCAAAG
     401 ACTGGGACAA ACTCCAAGCC CGCCGCCTGC CCAGCCCCCT GTTGATCCCC
     451 GGCCTGCCGC TCGCCCCGAT TTGGCACGAA CTCATCATAT TGTCCTTCAT
         CATCATCGTC GGACTGCTGA TGGCGTACAT CCTCGCCGGC AACATTGCCA
     501
     551 AACCCATCAG AATCTTAGGC AACGGCATGG ACAGGGTGGC AAACGGAGAA
     601 CTTGAAACCC GTATCTCCCA ACAGGTCGAC GACCGCGACG ACGAATTGTC
```

```
651 CCATCTTGCC ATCCAATTCG ACAAAATGGT GGAAAAACTC GAAAAACTCG
             TTGCCAAAGA ACGCCACCTG CTCCATCACG TCTCCCATGA AATGCGTTCT
         751
             CCCCTTGCGC GCATGCAGGC AATTGTCGGA CTGATTCAGG CGCAGCCCCA
         801
             AAAACAGGAG CAATATCTCA AACGGCTGGA AGGCGAACTG ACCCGCATGG
             ATACGCTGGC CGGGGAACTG TTAACCCTGT CCCGTCTCGA AACTTCCAAT
         851
         901 ATGGCTTTGG AAAAAGAAAG CCTGAAACTC CTGCCCTTCC TGGGCAACCT
             GGTAGAAGAC AATCAAAGCA TTGCCCAGAA AAACGGACAA ACGGTTACCC
         951
        1001
             TGTCTGCCGA CGGAAAAATC CCCGAAAACA CAACCATCCT TGCCAACGAA
             AGCTACCTGT ACCGCGCCTT CGACAACGTC ATCCGCAACG CCGTCAACTA
        1051
             CAGTCCCGAA GGCAGCACCA TCCTGATCAA CATCGGACAA GACCACAAAC
        1101
             ACTGGATAAT CGACGTTACC GACAACGGCC CCGGCGTGGA CGAAATGCAG
        1151
        1201
             CTCCCGCACA TCTTCACCGC TTTCTACCGT GCAGACTCCA GTGCCAACAA
             ACCCGGAACA GGACTGGGGC TTGCATTGAC CCAACATATT ATTGAACAGC
        1251
        1301 ACTGCGGCAA AATCATCGCC GAAAACATCA AACCGAACGG TCTGCGGATG
             CGCTTTATCC TGCCCAAGAA AAAAACCGGT TCCAAAACAG AAAAAAGTGC
        1351
        1401 GAACTGA
This corresponds to the amino acid sequence <SEQ ID 1808; ORF 585.a>:
    a585.pep
             MKLFQRIFAT FCAVIVCAIF VASFSFWLVQ NTLAENQFNQ RRTIETTLMG
             SIISAFRARG DAGAREILTE WKDSPVSSGV YVIQGDEKKD ILHRYIDSYT
             IERARLFAAG HPHSNLVHIE YDRFGEEYLF FTKDWDKLQA RRLPSPLLIP
         101
         151
             GLPLAPIWHE LIILSFIIIV GLLMAYILAG NIAKPIRILG NGMDRVANGE
             LETRISQQVD DRDDELSHLA IQFDKMVEKL EKLVAKERHL LHHVSHEMRS
         201
         251 PLARMQAIVG LIQAQPQKQE QYLKRLEGEL TRMDTLAGEL LTLSRLETSN
             MALEKESLKL LPFLGNLVED NQSIAQKNGQ TVTLSADGKI PENTTILANE
         301
             SYLYRAFDNV IRNAVNYSPE GSTILINIGQ DHKHWIIDVT DNGPGVDEMQ
         351
             LPHIFTAFYR ADSSANKPGT GLGLALTQHI IEQHCGKIIA ENIKPNGLRM
         401
             RFILPKKKTG SKTEKSAN*
         451
                99.8% identity in 468 aa overlap
    m585/a585
                                20
                                         30
                                                  40
                                                          50
                                                                   60
                MKLFQRIFATFCAVIVCAIFVASFSFWLVQNTLAENQFNQRRTIETTLMGSIISAFRARG
    m585.pep
                a585
                MKLFQRIFATFCAVIVCAIFVASFSFWLVQNTLAENQFNQRRTIETTLMGSIISAFRARG
                               20
                                        30
                                                 40
                                                          50
                                80
                                        90
                                                100
                                                                  120
    m585.pep
                DAGAREILTEWKDSPVSSGVYVIQGDEKKDILNRYIDSYTIERARLFAAGHPHSNLVHIE
                DAGAREILTEWKDSPVSSGVYVIQGDEKKDILHRYIDSYTIERARLFAAGHPHSNLVHIE
    a585
                                80
                                        90
                                                100
                                                         110
                                                                  120
                              140
                                       150
                                                160
    m585.pep
               YDRFGEEYLFFTKDWDKLQARRLPSPLLIPGLPLAPIWHELIILSFIIIVGLLMAYILAG
                a585
               YDRFGEEYLFFTKDWDKLQARRLPSPLLIPGLPLAPIWHELIILSFIIIVGLLMAYILAG
                      130
                              140
                                       150
                                                160
                      190
                              200
                                       210
                                                220
                                                         230
                                                                  240
               NIAKPIRILGNGMDRVANGELETRISQQVDDRDDELSHLAIQFDKMVEKLEKLVAKERHL
    m585.pep
               NIAKPIRILGNGMDRVANGELETRISQQVDDRDDELSHLAIQFDKMVEKLEKLVAKERHL
    a585
                     190
                              200
                                       210
                                                220
                                                         230
                                                                  240
                              260
                                       270
                                                280
                                                         290
                                                                  300
               \verb|LHHVSHEMRSPLARMQAIVGLIQAQPQKQEQYLKRLEGELTRMDTLAGELLTLSRLETSN|
    m585.pep
               LHHVSHEMRSPLARMQAIVGLIQAQPQKQEQYLKRLEGELTRMDTLAGELLTLSRLETSN
    a585
                     250
                              260
                                       270
                                                280
                                                         290
                                                                  300
                     310
                              320
                                       330
                                                340
                                                         350
               MALEKESLKLLPFLGNLVEDNQSIAQKNGQTVTLSADGKIPENTTILANESYLYRAFDNV
    m585.pep
               a585
               MALEKESLKLLPFLGNLVEDNQS1AQKNGQTVTLSADGK1PENTT1LANESYLYRAFDNV
```

	370	380	390	400	410	
m585.pep	IRNAVNYSPEGST	ILINIGQDHK	HWIIDVTDNG	PGVDEMQLPH	IFTAFYRADS	SANK
				111111111	111111111	1111
a585	IRNAVNYSPEGST		HWIIDVTDNG	PGVDEMQLPH	IFTAFYRADS	Sank
	370	380	390	400	410	
	430	440	450	460	469	
m585.pep	GLGLALTQHIIEQ	HCGKIIAENII	KPNGLRMRFI	LPKKKTGSKT	EKSANX	
			[1111]	111111111	111111	
a585	GLGLALTQHIIEQ	HCGKIIAENII	KPNGLRMRFII	LPKKKTGSKT	EKSANX	
	430	440	450	460		
		•				
					ae <seo id<="" td=""><td></td></seo>	

```
51 ttggaaaacc acgggcaaat ggctgtttgc cctgctgatt ttggcggcac
101 teggetaett gggatacaeg gtttaccaaa accgtgegge tteccaaaat
151 caggaagcgg cggcggtgct ggcaaacatc gtggaaaagg cgcaaaacaa
201 agccccgcaa agcgaaatca atgccgaact gtccaaactc caacaaagct
251 acceccattc cattteegec geccaageca cgetgatgge ggeggeaace
301 gaatttgacg cgcagcgtta cgatgttgcc gaaggtcatt tgaaatgggt
351 gttgtccaac caaaaagaca gcctgattca ggcgttggcg gcgcagcgtc
401 tgggcgttgt gttgttgcaa caaaaaaaat acgatgccgc gcttgccgca
451 ctcgacacgc cggttgaggc ggacttcgcc cccctgctga tggaaactaa
```

501 aggcgatgtt tatgccgcac aggaaaaaag ccaggaagcc ttaaaaaact

551 acggacaggc tttggaaaaa atgcctcaag attctgtcgg tcgcgaattg

601 cttcaaatga aactcgattc gctgaaataa

This corresponds to the amino acid sequence <SEQ ID 1810; ORF 586.ng>: g586.pep..

1 MAAHLEEQQE LDNFKYFWKT TGKWLFALLI LAALGYLGYT VYQNRAASQN

51 QEAAAVLANI VEKAQNKAPQ SEINAELSKL QQSYPHSISA AQATLMAAAT

101 EFDAQRYDVA EGHLKWVLSN QKDSLIQALA AQRLGVVLLQ QKKYDAALAA

151 LDTPVEADFA PLLMETKGDV YAAQEKSQEA LKNYGQALEK MPQDSVGREL

201 LQMKLDSLK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1811>: m586.seq

1 ATGGCAGCCC ATCTCGAAGA ACAACAAGAG TTAGACAACT TTAAATATTT 51 TTGGAAAACC ACGGGCAAAT GGCTGTTTGC CTTGCTGATT TTGGCGGCAC 101 TCGGCTACTT GGGATACACG GTTTACCAAA ACCGTAAAGT TTCCCAAAAT 151 CAGGAAGCGG CGGCGGTGCT GGCAAACATC GTAGAAAAGG CGCAAAGCAA 201 AGCCCCGCAA AGCGAAATCA ATGCCGAATT GACCAAACTC CAACAAAGCT 251 ACCCGCATTC CATTTCCGCC GCCCAAGCCA CACTGATGGC GGCGGCAACC 301 GAATTTGACG CGCAGCGTTA CGATGTTGCC GAAGGCCATT TGAAATGGGT 351 GTTGTCCAAC CAAAAAGACA GCCTGATTCA AGCGTTGGCG GCGCAGCGTC 401 TGGGCGTTGT GTTGTTGCAA CAAAAAAAA ACGATGCCGC GCTTGCCGCG 451 CTCGATACGC CGGTTGAAGC GGACTTCGCC CCCCTGCTGA TGGAAACCAA

501 AGGCGATGTC TATGCCGCAC AGGGAAAAAG CCAGGAAGCC TTAAAAAAACT 551 ACGGACAGGC TTTAGAAAAA ATGCCTCAAG ATTCTGTCGG TCGCGAATTG

601 GTTCAAATGA AACTTGATTC GCTGAAATAA

This corresponds to the amino acid sequence <SEQ ID 1812; ORF 586>: m586.pep

MAAHLEEQQE LDNFKYFWKT TGKWLFALLI LAALGYLGYT VYQNRKVSQN

QEAAAVLANI VEKAQSKAPQ SEINAELTKL QQSYPHSISA AQATLMAAAT 51

101 EFDAQRYDVA EGHLKWVLSN QKDSLIQALA AQRLGVVLLQ QKKYDAALAA

151 LDTPVEADFA PLLMETKGDV YAAQGKSQEA LKNYGQALEK MPODSVGREL

201 VQMKLDSLK*

m586 / g586 97.1% identity in 209 aa overlap

20 30 40 m586.pep MAAHLEEQQELDNFKYFWKTTGKWLFALLILAALGYLGYTVYQNRKVSQNQEAAAVLANI 

g58	6	маан	LEEQQELDNFX 10	YFWKTTGKW 20	LFALLII 30	Aalgylgyt 40	VYQNRAASQNQ 50	EAAAVLANI 60	
			70	80	90	100	110	120	
m58	6.pep	VEKA	QSKAPQSEINA	ELTKLQQSY	PHSISA	TAAAMITAQ	EFDAORYDVAE	GHLKWVLSN	
g58	6		:	:	 		 EFDAQRYDVAE		
950	u	VEICH	70	80	90	100		120	
			130	140	150	3.60			
m58	6.pep	QKDS	LIQALAAQRLG	VVLLQQKKY	DAALAAL	160 DTPVEADFA	170 PLLMETKGDVY	180 AAOGKSOEA	
Norm		-1111		11111111	1111111		1111111111	111 11111	
g58	6	QKDSI	LIQALAAQRLG 130	VVLLQQKKY 140	DAALAAL 150	DTPVEADFA 160	PLLMETKGDÝY 170	AAQEKSQEA 180	
						-	2,0	100	
m58	6.pep	T.KNY(	190 GQALEKMPQDS	200 VGRELVOMK	210				
50	o.pop								
g58	5	LKNYC	GALEKMPQDS	_					
			190	200	210				
The	followin	ig pai	rtial DNA	sequence	was id	lentified in	n <i>N. menin</i>	<i>gitidis</i> <sf< td=""><td>EQ ID 1813&gt;:</td></sf<>	EQ ID 1813>:
	a586.s	eq							•
		1 /	ATGGCAGCCC	ATTTGGA	AGA AC	CAACAAGAG	TTGGACAAC	ATAAATT	TTT
		51 7	L'TGGAAAACC PCGGCTACTT	CGGATAC	AAT GG	CTGTTTGC	CGTGCTGAT ACCGTGCGG	TTGGCGG	CAC
		51 (	CAGGAAGCGG	CGGCGGT	GCT GG	CAAACATC	GTGGAAAAG	G CGCAAAA	AAT Caa
		01 2	AGCCCCGCAA	AGCGAAA	TCA AT	GCCGAATT	GGCCAAGCT	C CAACAAA	CCT
		51 <i>I</i>	ACCCCCATTC	CATTTCC	GCC GC	CCAAGCCA	CGCTGATGG	C GGCAGCA	ACC
		51 2	ATTGTCCAAC	CAAAAAG	ACA GO	CTGATCCA	GAAGGCCAT GGCGTTGGC	T TGAAATG	GGT GTC
		01 1	rgggcgttgt	GTTGTTG	CAA CA	ТАААААА	ACGATGCCG	C GCTTGCC	GCA
		51 (	CTCGACACGC	CGGTTGA	AGC GG	ACTTCGCC	CCCCTGCTG	A TGGAAAC	CAA
		01 <i>F</i> 51 <i>F</i>	AGGCGATGTC ACGGACAGGC	TATGCCG	CAC AG	GGAAAAAG	CCAGGAAGC ATTCTGTCG	C TTAAAAA	ACT
		01 6	TTCAAATGA	AACTTGA	TTC GC	TGAAATAA	MITCIGICG	G TUGUGAA	rrg
<b>.</b>									
Thi	s correspo	onds	to the amir	no acid se	quence	e <seq ii<="" td=""><td>D 1814; OI</td><td>Œ 586.a&gt;:</td><td></td></seq>	D 1814; OI	Œ 586.a>:	
	a586.pe	ер 1 м	יא א עד בבררב	INTEVVE	WVM MC	VIII 113111 T			
	ţ	51 0	EAAAVLANI	VEKAONK	APO SE	INAFLAKI.	LAALGYLGY QQSYPHSIS	T VYONRAAS	3QN Nam
		01 E	FDAQRYDVA	EGHLKWV	LSN QK	DSLIQALA	AORLGVVLL	O OKKYDAAI	LAA.
		51 I	.DTPVEADFA 'OMKLDSLK*	PLLMETK	GDV YA	aqgksqea	LKNYGQALE	K MPQDSVGF	REL
	20	OT A	OMYTD2TV.						
	m586/a5	586	97.6% i	dentity	in 209	aa over]	lap		
				10	00				
	m586.pe	aе	MAAHLEE	10 OOELDNFK	20 Y FWKTT	30 GKWI.FAI.I.	) 4 [[AA] GVI GV	ם ביים מסעטים פו מוויס מוויס עונים	60 60 NQEAAAVLANI
	_	•		1111111	11111	111111:11		111111 :11	
	a586		MAAHLEE	<b>QQELDNFK</b>	YFWKTT	GKWLFAVL)	LAALGYLGY	TVYQNRAASÇ	ONQEAAAVLANI
				10	20	30	) 4	0 5	60
				70	80	90	10	0 11	10 120
	m586.pe	qe	VEKAQSK	APOSEINA	ELTKLQ(	QSYPHSIS#	AOATLMAAA	TEFDAORYDV	AEGHT.KWVT.SN
	a586		11111:1		11:11	11111111	111111111	11111111111	1111111111
	a500		VERAQNIA	70	80 5TAKTÖ	90 90	AQATLMAAA ) 10:		AEGHLKWVLSN
						50	. 10	- 11	.0 120
	m586.pe	20		130	140	150	160	0 17	0 180
	™oo.be	.P	 			KKYDAALAA !!!!!!!!!	LDTPVEADE	APLLMETKGD	VYAAQGKSQEA
	a586		ÖKDZTIĞ	ALAAQRLG	VVLLQQI	KKYDAALAA	LDTPVEADE		VYAAQGKSQEA
			:	130	140	150	160		

-- 500

915

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1815>: g587.seq..

```
atgaaacgta tctttttgcc cgccttgccc gccatcctgc ctttatccgc
ttatgccgac ctgcccttga cgattgaaga cataatgacc gacaagggaa
lol aatggaaact ggaaacttcc cttacctatc tgaatagcga aaacagccgc
lol gccgcacttg ccgcaccggt ttacattcaa accggcgcaa cctcgtttat
ccccattccg accgaaattc aagaaaacgg cagcaatacc gatatgctcg
ccggcacgct cggtttgcgc tacggactga ccgcaatacc gacatttac
ggcagcggca gctatctgtg gcacgaagaa cgcaaactcg acggcaacgg
caaaaccgg accaaaccgg tgccgacat atccgccggc atcagccaca
ccttccttaa agacggcaaa aaccccgccc taatcagctt tcttgaaagc
dol gctttgccc ttttataact taaggataaa ttatgaatat taa
```

This corresponds to the amino acid sequence <SEQ ID 1816; ORF 587.ng>: g587.pep..

```
1 MKRIFLPALP AILPLSAYAD LPLTIEDIMT DKGKWKLETS LTYLNSENSR
51 AALAAPVYIQ TGATSFIPIP TEIQENGSNT DMLAGTLGLR YGLTGNTDIY
```

101 GSGSYLWHEE RKLDGNGKTR NKRMSDISAG ISHTFLKDGK NPALISFLES

151 TVYEKSRNKA SLIKKRGLCP FYNLRINYEY *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1817>: m587.seq..

```
1 ATGAAGCGCA TCTTTTTGCC CGCCTTGCCC GCCATCCTGC CTTTATCCAC
 51 TTATGCCGAC CTGCCCTTGA CGATTGAAGA CATAATGACC GACAAGGGAA
.101 AATGGAAACT GGAAACTTCC CTTACCTACC TGAACAGCGA AAACAACCGC
151 GCCGAACTTG CCGCACCGGT TTACATTCAA ACCGGCGCAA CCTCGTTTAT
201 CCCCATTCCG ACCGAAATCC AAGAAAACGG CAGCAATACC GATATGCTCG
251 TCGGCACGCT CGGTTTGCGC TACGGACTGA CCGGGAATAC CGACATTTAC
301 GGCAGCGGCA GCTATCTGTG GCACGAAGAA CGCAAACTCG ACGGCAACAG
351 CAAAACCCGC AACAAACGGA TGTCCGACGT ATCCCTCGGC ATCAGCCACA
401 CTTTCCTTAA AGACGACAAA AACCCCGCCC TAATCAGCTT TCTTGAAAGC
451 ACGGTTTACG AAAAATCGCG CAACAAAGCC TCGTCGGGAA AATCCTGGCT
501 CATCGGCGCC ACCACCTACA AAGCCATAGA TCCGATTGTC CTTTCCCTCA
551 CCGCCGCCTA CCGCATCAAC GGCAGCAAAA CCCTTTCAGA CGGCATCCGC
601 TACAAATCGG GCAACTACCT GCTGCTCAAC CCCAACATCT CATTTGCTGC
651 CAACGACAGA ATCAGCCTGA CCGGAGGCAT CCAATGGCTG GGCAGGCAGC
     CCGACCGGAC GGACGGCAAA CGGGAATCCT CCAGAAACAC ATCCACCTAC
751 GCCCATTTCG GCGCAGGTTT CGGTTTCACC AAAACCACGG CTTTAAACGC
801 ATCCGCACGT TTCAACGTTT CAGGGCAAAG CAGTTCCGAA CTGAAATTTG
851 GCGTACAGCA TACATTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1818; ORF 587>:

```
m587.pep..

1 MKRIFLPALP AILPLSTYAD LPLTIEDIMT DKGKWKLETS LTYLNSENNR
51 AELAAPVYIQ TGATSFIPIP TEIQENGSNT DMLVGTLGLR YGLTGNTDIY
101 GSGSYLWHEE RKLDGNSKTR NKRMSDVSLG ISHTFLKDDK NPALISFLES
151 TVYEKSRNKA SSGKSWLIGA TTYKAIDPIV LSLTAAYRIN GSKTLSDGIR
201 YKSGNYLLLN PNISFAANDR ISLTGGIQWL GRQPDRTDGK RESSRNTSTY
251 AHFGAGFGFT KTTALNASAR FNVSGQSSSE LKFGVQHTF*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m587 / g587 95.0% identity in 161 aa overlap

10 20 30 40 50 60

	m587.pep	MKRIFLPALPAILPLSTYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ
	g587	MKRIFLPALPAILPLSAYADLPLTIEDIMTDKGKWKLETSLTYLNSENSRAALAAPVYIQ
		10 20 30 40 50 60
		70 80 90 100 110 120
	m587.pep	TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNSKTR
	g587	TGATSFIPIPTEIQENGSNTDMLAGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNGKTR
		70 80 90 100 110 120
neer		130 140 150 160 170 180
	-E07 non	
	m587.pep	NKRMSDVSLGISHTFLKDDKNPALISFLESTVYEKSRNKASSGKSWLIGATTYKAIDPIV
	g587	NKRMSDISAGISHTFLKDGKNPALISFLESTVYEKSRNKASLIKKRGLCPFYNLRINYEY
	g567	100 140 150 450
		130 140 150 160 170 180
		190 200 210 220 230 240
	m587.pep	190 200 210 220 230 240 LSLTAAYRINGSKTLSDGIRYKSGNYLLLNPNISFAANDRISLTGGIQWLGRQPDRTDGK
	qsq.,ocm	PODITATIVINGOVI DODGIVINGGAI PREMIMI NI STAMMOVI SPI GGI OM FGKÖLDKI DGV
	g587	X
	9507	•
The	fallowing n	artial DNA reguence were identified in M. maning ideals of TO TD 1010.
ine.		artial DNA sequence was identified in N. meningitidis <seq 1819="" id="">:</seq>
	a587.seq	
	1	ATGAAGCGCA TCTTTTTGCC CGCCTTGCCC GCCATCCTGC CTTTATCCGC
	51	TTATGCCGAC CTGCCCTTGA CGATTGAAGA CATAATGACC GACAAGGGCA
	101	AATGGAAACT GGAAACTTCC CTTACCTACC TGAACAGCGA AAACAACCGC
	151	GCCGAACTTG CCGCACCGGT TTACATCCAA ACCGGCGCAA CCTCGTTTAT
	201	CCCCATTCCG ACCGAAATCC AAGAAAACGG CAGCAATACC GATATGCTCG
	251	TTGGCACGCT CGGTTTGCGC TACGGACTGA CCGGGAATAC CGACATTTAC
	301	GGCAGCGGCA GCTATCTGTG GCACGAAGAA CGCAAACTCG ACGGCAACGG
	351 401	CAAAACCCGA AACAAACGGA TGTCCGACGT ATCCCTCGGC ATCAGCCACA
	451	CCTTCCTTAA AGACGACAAA AACCCCGCCC TAATCAGCTT TCTTGAAAGC ACGGTTTACG AAAAATCGCG CAACAAAGCC TCGTCGGGAA AATCCTGGCT
	501	CATCGGCGCC ACCACCTACA AAGCCATCGA CCCCGTCGTC CTCTCATTGA
	551	CCGCTGCCTA CCGTATCAAC GGCAGCAAAA CCCTTTCAAG CAACACCAAA
	601	TACAAAGCAG GCAATTACTG GATGCTGAAT CCCAATATAT CCTTCGCCGC
	651	CAACGACAGA ATCAGCCTCA CGGGCGGCAT CCAATGGCTG GGCAAGCAGC
	701	CCGACCGTCT GGACGCCAAA AAAGAATCCG CAAGAAACAC ATCCACCTAT
	751	GCCCATTTCG GCGCAGGTTT CGGTTTCACC AAAACCACGG CTTTAAACGC
	801	ATCCGCACGT TTCAACGTTT CAGGGCAAAG CAGTTCCGAA CTGAAATTTG
	851	GCGTACAGCA TACGTTTTAA
	001	dodnondon modiling
This	correspond	s to the amino acid sequence <seq 1820;="" 587.a="" id="" orf="">:</seq>
11115		s to the annio acid sequence SLQ ID 1020, OKT 301.82.
	a587.pep	WENTER DATE OF CALVAN AND ADDRESS OF THE CALVANDARY
	1 51	MKRIFLPALP AILPLSAYAD LPLTIEDIMT DKGKWKLETS LTYLNSENNR
	101	AELAAPVYIQ TGATSFIPIP TEIQENGSNT DMLVGTLGLR YGLTGNTDIY GSGSYLWHEE RKLDGNGKTR NKRMSDVSLG ISHTFLKDDK NPALISFLES
	151	TVYEKSRNKA SSGKSWLIGA TTYKAIDPVV LSLTAAYRIN GSKTLSSNTK
	201	YKAGNYWMLN PNISFAANDR ISLTGGIQWL GKQPDRLDGK KESARNTSTY
	251	AHFGAGFGFT KTTALNASAR FNVSGQSSSE LKFGVOHTF*
	201	WILLOWGETT KITANIKOW IMARGORDE TWICHOUTI.
	m587/a587	95.2% identity in 289 aa overlap
		10 20 30 40 50 60
	m587.pep	MKRIFLPALPAILPLSTYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ
	* **	
	a587	MKRIFLPALPAILPLSAYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ
		10 20 30 40 50 60
		70 80 90 100 110 120
	m587.pep	TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNSKTR
		111181111111111111111111111111111111111
	a587	TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNGKTR
		70 80 90 100 110 120

	130	140	150	160	170	180
m587.pep	NKRMSDVSLGISHT	FLKDDKNPAI	LISFLESTVYE	KSRNKASSG	KSWI.TGATTVI	KATDPTV
	11111111111111					
a587	NKBWEDAGI CI CAL	ו אם ואשתא זא זי		VCDVVX 000		1111111
455.	NKRMSDVSLGISHT		21257521415	VOKMVYQQGI	(SWLIGATTY)	KAIDPVV
	130	140	150	160	170	180
	190	200	210	220	230	240
m587.pep	LSLTAAYRINGSKTI	LSDGIRYKS	NYLLLNPNIS	FAANDRISL	GGTOWT CROI	שאמשממם
					COLOUTOVO	PULLDGK
	-111111111111111111	11:: : : : : : :		3     B   1   I   I   I   I		
 a587	LSLTAAYRINGSKTI	LSSNTKYKAC	SNYWMLNPNIS:	FAANDRISLT	GGIOWLGKO	PDRIDGK
	190	200	210	220	230	
				220	230	240
	250	260	270	280	200	
					290	
m587.pep	RESSRNTSTYAHFGA	<i>GEGETKTT?</i>	LNASARFNVS(	GOSSSELKFO	VOHTEX	
	:::::::::::::::::::::::::::::::::::::::	111111111	THURSTILL	111111111	11111	
a587	KECADNITCTVA HECA	CECEDENTO	T N/A C A D TO 1110	7000000	111111	
4307	KESARNTSTYAHFGA		THAPARENAS	JUSSSETKE.	VQHTFX	
	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1821>: g588.seq

```
atgcttaaac atctcgcatt cctactgccc gccatgatgt tcgccctccc
   cgcccagacc gccgtcctaa gcccctatca ggaaaccggc tgcacctacg
51
```

- 101 aaggegggat eggaaaagae gggetteett eaggeaaagg catatggegt
- 151 tgccgggatg ggcgcggtta taccggttca ttcaaaaacg gcaaattcga
- 201 cgggcaaggc gtttataccg ttgccgccgg ccgcgaagta tttctcgagc
- 251 cgttcaattc cgacagtacc aaattccgca atatggcatt gtcgggcacg
- 301 ttcaaacaag gcttggcaca cggcaggttc gccgcctcgc aaaacggcga 351 aaccctcttt tattatgaaa tgcgaacacg gcatgattaa

This corresponds to the amino acid sequence <SEQ ID 1822; ORF 588.ng>: g588.pep..

- 1 MLKHLAFLLP AMMFALPAQT AVLSPYQETG CTYEGGIGKD GLPSGKGIWR
- CRDGRGYTGS FKNGKFDGQG VYTVAAGREV FLEPFNSDST KFRNMALSGT
- 101 FKQGLAHGRF AASQNGETLF YYEMRTRHD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1823>: m588.seq.

- 1 ATGCTTAAAC ATCTCGCATT CCTACTGCCC GCCATGATGT TCGCCCTCCC
- 51 CACTTCGGCC GCCGTCCTGA CTTCCTATCA AGAACCAGGC TGCACCTACG
- 101 ACGGCAATGT CGGCAAAGAC GGTAAACCCG CCGGCAAAGG CACATGGCGC
- 151 TGCCAAGACG GGCGCAACTA TACCGGTTCG TTTAAAAACG GCAAATTCGA 201 CGGGCAAGGC GTTTATACCG TTGCCGCCAA CCGCGAAATA TTTATCGAAC
- 251 CGTTCAATTC CGACAGTACC AAATTCCGCA ACATGGTACT CTCGGGCACG 301 TTCAAAAAAG GCTTGGCACA CGGCAGATTT ACCGTCTCGC AAAACGGCGA
- 351 AACCCTCTTC ATTATGAM 401 TGCCCAAAAA CAAATAA AACCCTCTTC ATTATGAAAT GCGAAAACGG CATGATTAAA GAAGTGAAAC

This corresponds to the amino acid sequence <SEQ ID 1824; ORF 588>: m588.pep..

- 1 MLKHLAFLLP AMMFALPTSA AVLTSYQEPG CTYDGNVGKD GKPAGKGTWR
- CQDGRNYTGS FKNGKFDGQG VYTVAANREI FIEPFNSDST KFRNMVLSGT
- 101 FKKGLAHGRF TVSQNGETLF IMKCENGMIK EVKLPKNK*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m588 / g588 82.5% identity in 120 aa overlap

```
MLKHLAFLLPAMMFALPTSAAVLTSYQEPGCTYDGNVGKDGKPAGKGTWRCQDGRNYTGS
        m588.pep
                    normannassans är melsam sin mänsmi
                    MLKHLAFLLPAMMFALPAQTAVLSPYQETGCTYEGGIGKDGLPSGKGIWRCRDGRGYTGS
        g588
                           10
                                    20
                                             30
                                                       40
                                                                50
                           70
                                    80
                                             90
                                                     100
                                                               110
                                                                        120
                    FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLF
       m588.pep
                    FKNGKFDGQGVYTVAAGREVFLEPFNSDSTKFRNMALSGTFKQGLAHGRFAASQNGETLF
       g588
                           70
                                    80
                                             90
                                                     100
                                                              110
-- ***
                          130
                                  139
       m588.pep
                    IMKCENGMIKEVKLPKNKX
       g588
                    YYEMRTRHDX
                          130
  The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1825>:
       a588.seq
                ATGCTTAAAC ATCTCGCATT CCTACTGCCC GCCATGATGT TCGCCCTCCC
                CGCCGCGTCC GCCGTTCTGA CTTCCTATCA AGAACCCGGC TGCACCTACG
                AAGGCGATGT CGGCAAAGAC GGTAAACCCG CCGGCAAAGG CACATGGCGC
            101
                TGCCAAGACG GGCGCAACTA TACCGGTTCG TTTAAAAATG GCAAATTCGA
            151
                CGGACAAGGC GTTTATACCG TTGCCGCCAA CCGCGAAATA TTTATCGAAC
            201
                CGTTCAATTC CGACAGTACC AAATTCCGCA ACATGGTACT CTCGGGCACA
            251
                TTCAAAAAAG GCTTGGCACA CGGCAGATTT ACCGTCTCGC AAAACGGCGA
            301
                AACCCTCTTC ATTATGAAAT GCGAAAACGG CATGATTAAA GAAGTGAAGC
            401
                TGCCCAAAAA CAAATAA
  This corresponds to the amino acid sequence <SEQ ID 1826; ORF 588.a>:
       a588.pep
                MLKHLAFLLP AMMFALPAAS AVLTSYQEPG CTYEGDVGKD GKPAGKGTWR
             1
                CQDGRNYTGS FKNGKFDGQG VYTVAANREI FIEPFNSDST KFRNMVLSGT
             51
                FKKGLAHGRF TVSQNGETLF IMKCENGMIK EVKLPKNK*
           101
       m588/a588
                   96.4% identity in 138 aa overlap
                                            30
                                                      40
                                                               50
       m588.pep
                   MLKHLAFLLPAMMFALPTSAAVLTSYQEPGCTYDGNVGKDGKPAGKGTWRCQDGRNYTGS
                   a588
                   MLKHLAFLLPAMMFALPAASAVLTSYQEPGCTYEGDVGKDGKPAGKGTWRCQDGRNYTGS
                                   20
                                            30
                                                     40
                                                               50
                                                                        60
                          70
                                   80
                                            90
                                                     100
                                                              110
                   FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLF
      m588.pep
                   a588
                   FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLF
                          70
                                   80
                                            90
                                                    100
                                                              110
                                                                       120
                         130
                                 139
      m588.pep
                   IMKCENGMIKEVKLPKNKX
                   1111111111111111111
      a588
                  IMKCENGMIKEVKLPKNKX
                         130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1827>: g589.seq..

```
atgcaacaaa aaatccgttt ccaaatcgag gcgatgacct gtcaggcatg
51 tgcttcgcgc attgaaaaag tgttgaacaa aaaagatttt gtcgaatcgg
101 cgggagtgaa ctttgccagt gaggaagcgc aggttacgtt tgacggcagc
151 aaaacctcgg ttgccgacat tgccaaaatc attgagaaaa ccggttacgg
201 cgcgaaggaa aaaacggaag atacattgcc gcaacctgaa gcagaacacc
251 atatcggctg gcggttgtgg cttttgctga ccatcaatat cccgttcctt
```

```
301 atcggtatgg tagggatgat gctaaaaggg ctgaattgga cacggcacga
 351 ttggatgatt ccgcctgtat ggcagtttgt actggcaagc atagtgcaac
      tttggctggc aatcccgttt tacaaaagcg cgtgggcaag cattaaaggc
 401
      gggctggcga atatggacgt actcgttacc atcggcacgg tgtcgattta
 451
 501 cctgtattcc gtttatatgc tgtttttcag ttcgcatgcg gcgcacggta
 551 tggcgcatgt gtattttgaa gcgggcgtga tggtgatcgg ttttgtgtcg
 601 ctgggtaagt ttttggaaca ccgcaccaaa aaatccagcc tgaacagctt
 701 gcgaatggaa acaactgccc atcgaccaag tgcaaatcgg cgaccttatc
 751 cgcaccaacc acggcgaacg catcgctgcc gacggcatta tcgaaagcgg
 801 cagcggttgg gcggacgaaa gccaccttac cggcgaatcc aatcccgaag
 851 agaaaaaggc gggcggcaaa gtgttggcgg gcgcgctgat gaccgaaggc
 901 agcgtggtgt accgcgccgc gcagctcggc agccaaaccc tgctcggcga
 951 catgatgaac gcgctctctg aagcacaagg cagtaaagca ccgattgcgc
1001 gcgtggccga taaagcggcg gcggtatttg tgccaactgt cgtgggcatc
1051 gcgcttctga cttttatcgt tgcttggctg attaagggcg attggacggt
1101
      cgcactgatg cacgccgttg ccgttttggt gattgcctgc ccgtgcgcgc
1151 tcggtctggc gacccetgcc gcgattatgg tcggcatggg caaagcggtg
1201 aaacacggca tttggtttaa agacgcggcg gcaatggagg aagcagccca
1251 cgtcgatgcc gtcgtattgg acaaaaccgg tacgctgacc gaaggcaggc
1301 cgcaggttgc cgccgtttat tacgttcccg acagcggctt tgacgaagac
1351 gctttgtacc gcatcgccgc cgccgtcgag caaaacgccg cccacccgct
1401 cgcccgcgcc atcgtctccg ccgcacaagc gcgcggtttg gagattcccg
1451 ctgcacaaaa tgcgcaaacc gttgtcggag caggcattac cgccgaagtg
1501 gaaggcgtgg gtttggtgaa atcaggcaaa gccgaatttg ccgaactgac
1551 cttgccgaag ttttcagacg gcgtttggga aatcgccagt gcggttaccg
1601 tatctgtaaa cggcaaaccg atcggcgcat tcgcactctc cgacgcgttg
1651 aaagccgata ccgccgaagc cataggccgt ctgaaaaaac acaatatcga
1701 tgtctatatt atgagcggcg ataaccaaag tacggtcgaa tacgtcgcca
1751 aacaactggg catcgcacac gccttcggta atatgagtcc gtgcgacaaa
1801 gccgccgaag tgcagaaact caaagccgcc ggcaaaaccg tggcgatggt
1851 cggcgacggc atcaacgacg cgcccgcgct tgccgccgcc aacgtcagct
1901 tegecatgaa aggeggtgeg gaegttgeeg aacacacege eteegeeaeg
1951 ctgatgcagc attcggtcaa tcagctcgcc gatgccctgc tgatatcgca
2001 ggcaacgttg gaaaacatca agcaaaacct atttttcgcc ttcttctaca
2051 atatattggg cattccgctc gccgcgctcg gctttttaaa tcccgtcata
     gcaggcgcgg caatggcggc aagctcggtt tcggtattgg gcaatgccct
2151 gcgcctgaaa tgggtaaaaa tcgattga
```

## This corresponds to the amino acid sequence <SEQ ID 1828; ORF 589.ng>: g589.pep..

```
1 MQQKIRFQIE AMTCQACASR IEKVLNKKDF VESAGVNFAS EEAQVTFDGS
51 KTSVADIAKI IEKTGYGAKE KTEDTLPQPE AEHHIGWRLW LLLTINIPFL
101 IGMVGMMLKG LNWTRHDWMI PPVWQFVLAS IVQLWLAIPF YKSAWASIKG
151 GLANMDVLVT IGTVSIYLYS VYMLFFSSHA AHGMAHVYFE AGVMVIGFVS
201 LGKFLEHRTK KSSLNSLGLL LKLTPTQVNV QRNGEWKQLP IDQVQIGDLI
251 RTNHGERIAA DGIIESGSGW ADESHLTGES NPEEKKAGGK VLAGALMTEG
301 SVVYRAQLG SQTLLGDMMN ALSEAQGSKA PIARVADKAA AVFVPTVVGI
351 ALLTFIVAWL IKGDWTVALM HAVAVLVIAC PCALGLATPA AIMVGMGKAV
401 KHGIWFKDAA AMEEAAHVDA VVLDKTGTLT EGRPQVAAVY YVPDSGFDED
451 ALYRIAAAVE QNAAHPLARA IVSAAQARGL EIPAAQNAQT VVGAGITAEV
501 EGVGLVKSGK AEFAELTLPK FSDGVWEISA AVTVSVNGKP IGAFALSDAL
551 KADTAEAIGR LKKHNIDVYI MSGDNQSTVE YVAKQLGIAH AFGNMSPCDK
601 AAEVQKLKAA GKTVAMVGDG INDAPALAAA NVSFAMKGGA DVAEHTASAT
651 LMQHSVNQLA DALLISQATL ENIKQNLFFA FFYNILGIPL AALGFLNPVI
701 AGAAMAASSV SVLGNALRLK WVKID*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1829>: m589.seq..

```
ATGCAACAAA AAATCCGTTT CCAAATCGAA GGCATGACCT GCCAGGCCTG

51 CGCTTCGCGC ATTGAAAAAG TGTTGAACAA AAAAGATTTT GTCGAATCGG

101 CGGGGGTAAA CTTCGCCAGC GAAGAGGCGC AGGTAGTGTT TGACGACAGC

151 AAAACCTCAG TAGCCGACAT TGCCAAAATC ATTGACGAAAA CCGGTTACGG

201 CGCGAAGGAA AAAACGGAAG ATACATTGCC GCAACCCGAA GCAGAACACC

251 ATATCGGCTG GCGGCTGTGG CTGCTGTTCA CCATCAACGT CCCGTTCCTT
```

```
301 ATCGGCATGG CGGGGATGAT GATCGGCAGA CACGATTGGA TGATTCCGCC
      GTTGTGGCAG TTCGCATTGG CAAGCGTGGT GCAGCTTTGG CTGGCAATCC
 401 CGTTTTACAA AAGCGCGTGG GCGAGCATTA AGGGCGGACT GGCGAATATG
 451 GACGTGCTGG TTACCATCGG CACGGTCTCG ATTTACCTGT ATTCCGTCTA
 501 TATGCTGTTT TTCAGCCCGC ACGCGGCGTA CGGTATGGCG CATGTGTATT
      TTGAAGTGGG CGTGATGGTG ATCGGTTTTG TGTCACTGGG TAAATTTTTG
 601 GAACACCGTA CCAAAAAATC CAGCCTCAAC AGCTTGGGCT TGCTGCTCAA
 651 ACTTACACCA ACCCAAGTCA ACGTGCAACG CAACGGCGAA TGGAAACAGC
 701
     TTCCCATCGA CCAAGTGCAA ATCGGCGACC TTATCCGCGC CAACCACGGC
      GAACGCATTG CCGCAGACGG CATCATTGAA AGCGGCAGCG GTTGGGCGGA
 751
 801 CGAGAGCCAT CTTACCGGCG AATCCAATCC TGAAGAAAAA AAGGCGGGCG
 851 GCAAAGTGTT GGCGGGCGCG TTAATGACCG AAGGCAGTGT GGTGTACCGC
 901 GCCACGCAGC TCGGCAGCCA AACCCAGCTC GGCGACATGA TGAACGCGCT
      CTCTGAAGCA CAAGGCAGTA AAGCACCGAT TGCGCGCGTA GCCGATAAAG
 951
     CGGCTGCGGT ATTCGTGCCT GCCGTCGTGG GCATTGCGTT GTTGACTTTT
1001
     ATTGTTACTT GGCTGATTAA GGGCGATTGG ACGGTTGCGC TGATGCACGC
1051
      CGTCGCCGTT TTGGTGATTG CCTGCCCGTG CGCGCTGGGT CTGGCAACCC
1101
1151
      CTGCCGCGAT TATGGTCGGT ATGGGCAAAG CGGTTAAACA CGGTATTTGG
      TTTAAAGACG CGGCAGCAAT GGAGGAAGCC GCCCACGTCG ATGCCGTCGT
1201
     GTTGGACAAA ACCGGTACGC TGACCGAAGG CAGCCCGCAG GTTGCCGCCG
1251
      TTTATTGCGT TCCCGACAGC GGCTTTGACG AAGACGCTTT GTACCGCATC
1301
     GCCGCCGCCG TCGAACAAAA CGCCGCCCAT CCGCTCGCCC GTGCCATCGT
1351
     CTCCGCCGCC CAAGCGCGCG GTTTGGACAT TCCCGCCGCA CAAAACGCAC
1401
     AAACCGTTGT CGGCGCAGGC ATTACCGCCG AAGTGGAAGG CGTGGGTTTG
1451
     GTGAAAGCAG GCAAAGCCGA ATTTGCCGAA CTGGCCTTGC CGAAGTTTTT
1501
1551 AGACGGCGTT TGGGATATTG CAAGCATTGT TGCGGTCTCA GTCGATAACA
1601 AACCCATCGG CGCATTCGCA CTTGCCGACG CGTTGAAAGC CGATACCGCC
     GAAGCCATAG GCCGTCTGAA AAAACACAAT ATCGATGTCT ATATTATGAG
1651
     CGGCGACAAC CAAGGCACGG TCGAATACGT CGCCAAACAA CTGGGCATCG
1701
1751 CACACGCCTT CGGCAACATG AGTCCGCGCG ATAAAGCTGC CGAAGTGCAA
1801 AAACTCAAAG CCGCCGGCAA AACCGTGGCG ATGGTCGGCG ACGGCATCAA
     CGACGCGCCC GCGCTTGCCG CCGCTAACGT CAGCTTCGCC ATGAAAGGCG
1851
1901 GAGCGGACGT TGCCGAACAT ACCGCATCCG CCACGCTGAT GCAGCATTCG
1951 GTCAACCAAC TCGCCGATGC TCTGCTGGTG TCGCAAGCCA CTTTGAAAAA
2001
     CATCAAGCAA AACCTGTTTT TCGCCTTCTT CTACAATATT TTGGGCATTC
     CTCTCGCCGC GCTTGGCTTT TTAAATCCCG TCATCGCTGG CGCGGCAATG
2051
2101 GCGGCAAGCT CGGTTTCCGT GTTGAGCAAT GCCTTGCGCC TGAAACGGGT
2151
     AAAAATCGAT TAG
```

This corresponds to the amino acid sequence <SEQ ID 1830; ORF 589>: m589.pep..

```
MQQKIRFQIE GMTCQACASR IEKVLNKKDF VESAGVNFAS EEAQVVFDDS
 51 KTSVADIAKI IEKTGYGAKE KTEDTLPQPE AEHHIGWRLW LLFTINVPFL
101 IGMAGMMIGR HDWMIPPLWQ FALASVVQLW LAIPFYKSAW ASIKGGLANM
    DVLVTIGTVS IYLYSVYMLF FSPHAAYGMA HVYFEVGVMV IGFVSLGKFL
201 EHRTKKSSLN SLGLLLKLTP TQVNVQRNGE WKQLPIDQVQ IGDLIRANHG
251 ERIAADGIIE SGSGWADESH LTGESNPEEK KAGGKVLAGA LMTEGSVVYR
301 ATQLGSQTQL GDMMNALSEA QGSKAPIARV ADKAAAVFVP AVVGIALLTF
    IVTWLIKGDW TVALMHAVAV LVIACPCALG LATPAAIMVG MGKAVKHGIW
351
401
    FKDAAAMEEA AHVDAVVLDK TGTLTEGSPQ VAAVYCVPDS GFDEDALYRI
451 AAAVEQNAAH PLARAIVSAA QARGLDIPAA QNAQTVVGAG ITAEVEGVGL
501 VKAGKAEFAE LALPKFLDGV WDIASIVAVS VDNKPIGAFA LADALKADTA
    EAIGRLKKHN IDVYIMSGDN QGTVEYVAKQ LGIAHAFGNM SPRDKAAEVQ
601 KLKAAGKTVA MVGDGINDAP ALAAANVSFA MKGGADVAEH TASATLMQHS
    VNQLADALLV SQATLKNIKQ NLFFAFFYNI LGIPLAALGF LNPVIAGAAM
    AASSVSVLSN ALRLKRVKID *
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m589 / g589 94.2% identity in 725 aa overlap

10 20 30 40 50 60

MQQKIRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
```

g589	MQQKIR		MTCQA		EKVLN:		ESAGV		EAQVT		TSVAD	
		10		20		30		40		50		60
		70		80		90		100		1	110	
m589.pep	IEKTGY	GAKEK	TEDTL	POPEA	EHHIG	WRLWI	LFTIN	VPFLI	GMAGM			DWMT
	111111	11111	11111	HH	11111	HILL	1:111	:1111	11:11	1:		1111
g589	IEKTGY	GAKEK	TEDTL	POPEA	EHHIG	WRLWL	LLTIN	IPFLI	GMVGM	MLKGL	NWTRH	הייי דאשת
_		70		80		90		100		110		120
	120		130		140		150		160		170	
m589.pep	PPLWQF.	ALASV	VQLWL	AIPFY	KSAWA:	SIKGG	LANMD	VLVTI		YLYSV	YMLFF:	днд
	11:11	:111:	HIII	HH	11111	11111	HILL	ПТП	11111		11111	1 11
g589	PPVWQF	VLASI	VQLWL	AIPFY	KSAWA	SIKGG	LANMD	VLVTI	GTVSI	YLYSV	YML FF:	AHRR
		130		140		150		160		170		180
	180		190		200		210		220		230	
m589.pep	AYGMAH	VYFEV	GVMVI	FVSL(	SKFLE	IRTKK	SSLNS	LGLLL	KLTPT	QVNVQ	RNGEW	KQLP
	1:111	1111:	111111			11111	11111			11111	11111	1111
g589	AHGMAH	VYFEA	GVMVI	FVSL	SKFLE	irtkk	SSLNS		KLTPT	QVNVQ	RNGEWI	KQLP
		190		200		210		220		230		240
							•					
***	240		250		260		270		280		290	
m589.pep	IDQVQI	GDLIR	ANHGEF	RIAADO	SIIESC	SGWA	DESHL	rgesni	PEEKK	AGGKV	LAGALN	MTEG
	111111		:	11111	11111						11111	
g589	IDQVQI	SDLIR'	TNHGEF	CIAADO	SILESC		DESHL		PEEKK		LAGALN	<b>ITEG</b>
		250		260		270		280		290		300
	300		310		320		330		340		350	
m589.pep	SVVYRAT	rQLGS(	QTQLGE	MMNAI	SEAQO	SKAP		KAAA		VVGTAI	LTTETU	ידשד.
	1111111:	1111	11-111	ШП	ШП	$\Pi\Pi$	ШПП	1111	1111:		11111	• 11
g589	SVVYRA	AQLGS(	OTLLGE	MMNAI	SEAQO	SKAP	IARVA	KAAA	/FVPT	VVGIAI	LLTFIV	AWT.
		310		320	_	330		340		350		360

```
360
                           370
                                    380
                                             390
                                                      400
                                                               410
                IKGDWTVALMHAVAVLVIACPCALGLATPAAIMVGMGKAVKHGIWFKDAAAMEEAAHVDA
     m589.pep
                 g589
                IKGDWTVALMHAVAVLVIACPCALGLATPAAIMVGMGKAVKHGIWFKDAAAMEEAAHVDA
                       37.0
                                380
                                         390
                                                  400
                  420
                           430
                                    440
                                             450
                                                      460
                VVLDKTGTLTEGSPQVAAVYCVPDSGFDEDALYRIAAAVEQNAAHPLARAIVSAAQARGL
     m589.pep
                инин бин иншинининининин
                VVLDKTGTLTEGRPQVAAVYYVPDSGFDEDALYRIAAAVEQNAAHPLARAIVSAAQARGL
     g589
                                                 460
                                440
                                         450
                                                           470
                  480
                           490
                                    500
                                             510
                                                      520
                DIPAAQNAQTVVGAGITAEVEGVGLVKAGKAEFAELALPKFLDGVWDIASIVAVSVDNKP
    m589.pep
                EIPAAQNAQTVVGAGITAEVEGVGLVKSGKAEFAELTLPKFSDGVWEIASAVTVSVNGKP
     g589
                       490
                               500
                                        510
                                                 520
                                                          530
                  540
                           550
                                    560
                                             570
                                                      580
                                                               590
                IGAFALADALKADTAEAIGRLKKHNIDVYIMSGDNQGTVEYVAKQLGIAHAFGNMSPRDK
    m589.pep
                IGAFALSDALKADTAEAIGRLKKHNIDVYIMSGDNQSTVEYVAKQLGIAHAFGNMSPCDK
     a589
                      550
                               560
                                                 580
                                                          590
                                                                    600
                  600
                           610
                                    620
                                             630
                                                      640
                                                               650
                AAEVQKLKAAGKTVAMVGDGINDAPALAAANVSFAMKGGADVAEHTASATLMQHSVNQLA
    m589.pep
                AAEVQKLKAAGKTVAMVGDGINDAPALAAANVSFAMKGGADVAEHTASATLMQHSVNQLA
    g589
                      610
                               620
                                        630
                                                 640
                                                                    660
                  660
                           670
                                    680
                                             690
                                                      700
                                                               710
                DALLVSQATLKNIKQNLFFAFFYNILGIPLAALGFLNPVIAGAAMAASSVSVLSNALRLK
    m589.pep
                g589
                DALLISQATLENIKQNLFFAFFYNILGIPLAALGFLNPVIAGAAMAASSVSVLGNALRLK
                      670
                               680
                                        690
                                                 700
                                                          710
                  720
    m589.pep
                RVKIDX
                 IIIII
    g589
                WVKIDX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1831>:
    a589.seq
          1
             ATGCAACAAA AAGTCCGTTT CCAAATCGAA GGCATGACCT GCCAGGCATG
             TGCTTCGCGC ATTGAAAAAG TGTTGAACAA AAAAGATTTT GTCGAATCGG
          51
         101
             CGGGGGTAAA CTTCGCCAGC GAAGAGGCTC AGGTAGTGTT TGACGACAGC
         151
             AAAACCTCAG TAGCCGACAT TGCCAAAATC ATTGAGAAAA CCGGTTACGG
         201
             CGCGAAGGAA AAAACGGAAG ATACATTGCC GCAACCCGAA GCAGAACACC
             ATATCGGCTG GAGGTTGTGG CTTTTGCTGG CCATCAATAT CCCGTTCCTT
             ATCGGTATGG TAGGGATGAT GCTAAAAGGG CTGAATTGGA CACGGCATGA
         301
             TTGGATGTTG TCGCCCTTGT TGCAGTTTGC ATTGGCGAGT GTGGTGCAGC
         351
             TTTGGCTGGC GGTGCCATTT TACAAAAGCG CGTGGGCGAG CATTAAAGGC
         401
             GGGCTGGCGA ATATGGACGT ACTCGTTACC ATCGGCACGG TCTCGATTTA
         451
             CCTGTATTCC GTCTATATGC TGTTTTTCAG CCCGCACGCG GCGTACGGTA
         501
             TGGCGCATGT GTATTTTGAA GTAGGCATAA TGGTGATTGG TTTTGTGTCA
         551
             CTGGGTAAAT TTTTGGAACA CCGCACCAAA AAATCCAGCC TGAACAGCTT
         601
             GGGCTTGCTG CTCAAACTCA CGCCAACCCA AGTCAACGTG CAACGCGATG
         651
         701
             GCGAATGGCG GCAGCTACCC ATCGACCAAG TGCAAATCGG CGACCTAATC
             CGCGCCAATC ACGGCGAACG CATTGCCGCC GACGGCATCA TAGAAAGCGG
         751
         801
             CAGCGGCTGG GCGGACGAAA GCCATCTTAC CGGCGAATCC AATCCCGAAG
         851 AGAAAAAGGC AGGCGGCAAA GTATTGGCGG GCGCGCTGAT GACTGAAGGC
         901 AGCGTGGTGT ACCGCGCCGC GCAGCTCGGC AGCCAAACCC TGCTCGGCGA
             CATGATGAAC GCGCTCTCCG AAGCGCAAGG CAGTAAAGCA CCGATTGCGC
         951
       1001 GTGTGGCGGA CAAGGCGGCG GCGGTATTCG TGCCTGCCGT TGTGGGCATC
       1051 GCACTTTTGA CTTTTATCGC TACTTGGCTG ATTAAGGGCG ATTGGACGCT
       1101 CGCATTGATG CACGCCGTCG CCGTTTTGGT GATTGCCTGC CCGTGTGCAC
```

1151 TCGGTTTGGC AACCCCTGCT GCGATTATGG TCGGTATGGG CAAAGCGGTT

```
AAACACGGTA TTTGGTTTAA AGACGCGGCA GCAATGGAAG AAGCCGCCCA
           1201
           1251
                CGTTGATGCC GTCGTGCTGG ACAAAACCGG CACGCTGACC GAAGGCAAGC
                CGCAGGTTGC CGCCGTTTAT TGTGTTCCCG ACAGCGGCTT TGACGAAGAC
           1301
           1351 GCTTTGTACC GCATCGCCGC CGCCGTCGAA CAAAACGCCG CCCATCCGCT
                CGCCCGTGCC ATCGTCTCCG CCGCCCAGGC GCGCGGTTTG GAGATTCCCA
           1401
           1451 CCGCACAAAA TGCCCAAACC ATTGTCGGCG CGGGCATTAC CGCCGAAGTA
           1501 AAAGGCGCGG GTTTGGTAAA AGCAGGCAAA GCCGAATTTG CCGAACTGAC
           1551
                CTTGCCGAAG TTTTCAGACG GCGTTTGGGA AATCGCCAGT GTGGTTGCCG
                TATCTGTAAA CGGCAAACCT ATCGGCGCAT TCGCACTCGC CGACGCGTTG
           1601
           1651 AAAGCCGATA CCGCCGAAGC CATAGGCCGT CTGAAAAAAC ACAATATCGA
. .
           1701 TGTCTATATT ATGAGCGGCG ATAACCAAGG CACGGTCGAG TACGTCGCCA
           1751 AACAACTGGG CATCGCACAC GCCTTCGGTA ATATGAGTCC GCGCGACAAA
                GCCGCCGAAG TGCAGAAACT CAAAGCCGCC GGCAAAACCG TGGCGATGGT
           1801
                CGGCGACGGC ATCAACGACG CGCCCGCGCT CGCCGCCGCC AACGTCAGCT
           1851
                TCGCCATGAA AGGCGGTGCA GACGTTGCCG AACACACCGC ATCCGCCACA
           1901
                CTGATGCAGC ATTCGGTCAA CCAGCTCGCC GATGCGCTAT CGGTATCGCG
           1951
                AGCGACGTTG AAAAACATCA AGCAAAACCT GTTTTTCGCC TTCTTCTACA
           2001
           2051 ATATTTTGGG CATTCCGCTC GCCGCGCTCG GCTTTTTAAA CCCCGTCATC
                GCAGGCGCGG CAATGGCGGC AAGCTCGGTT TCCGTGTTGA GCAACGCCTT
           2151 GCGCCTGAAA CGGGTAAAAA TCGATTGA
  This corresponds to the amino acid sequence <SEQ ID 1832; ORF 589.a>:
       a589.pep
                MQQKVRFQIE GMTCQACASR IEKVLNKKDF VESAGVNFAS EEAQVVFDDS
                KTSVADIAKI IEKTGYGAKE KTEDTLPQPE AEHHIGWRLW LLLAINIPFL
            51
                IGMVGMMLKG LNWTRHDWML SPLLQFALAS VVQLWLAVPF YKSAWASIKG
           101
                GLANMDVLVT IGTVSIYLYS VYMLFFSPHA AYGMAHVYFE VGIMVIGFVS
           151
                LGKFLEHRTK KSSLNSLGLL LKLTPTQVNV QRDGEWRQLP IDQVQIGDLI
           201
           251 RANHGERIAA DGIIESGSGW ADESHLTGES NPEEKKAGGK VLAGALMTEG
           301 SVVYRAAQLG SQTLLGDMMN ALSEAQGSKA PIARVADKAA AVFVPAVVGI
                ALLTFIATWL IKGDWTLALM HAVAVLVIAC PCALGLATPA AIMVGMGKAV
           351
                KHGIWFKDAA AMEEAAHVDA VVLDKTGTLT EGKPQVAAVY CVPDSGFDED
           401
           451 ALYRIAAAVE QNAAHPLARA IVSAAQARGL EIPTAQNAQT IVGAGITAEV
               KGAGLVKAGK AEFAELTLPK FSDGVWEIAS VVAVSVNGKP IGAFALADAL
           501
                KADTAEAIGR LKKHNIDVYI MSGDNQGTVE YVAKQLGIAH AFGNMSPRDK
           551
           601 AAEVQKLKAA GKTVAMVGDG INDAPALAAA NVSFAMKGGA DVAEHTASAT
           651 LMQHSVNQLA DALSVSRATL KNIKQNLFFA FFYNILGIPL AALGFLNPVI
           701 AGAAMAASSV SVLSNALRLK RVKID*
      m589/a589
                   94.9% identity in 725 aa overlap
                                             30
                                                      40
                   MQQKIRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
      m589.pep
                   a589
                   MQQKVRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
                                   20
                                             30
                                                      40
                          70
                                   80
                                            90
                                                     100
                                                             1
      m589.pep
                   IEKTGYGAKEKTEDTLPQPEAEHHIGWRLWLLFTINVPFLIGMAGMMIG----RHDWMI
                   a589
                   IEKTGYGAKEKTEDTLPQPEAEHHIGWRLWLLLAINIPFLIGMVGMMLKGLNWTRHDWML
                          70
                                   80
                                            90
                                                     100
                                                              110
                                                                       120
                    120
                              130
                                       140
                                                150
                                                         160
                                                                   170
                  PPLWQFALASVVQLWLAIPFYKSAWASIKGGLANMDVLVTIGTVSIYLYSVYMLFFSPHA
      m589.pep
                   a589
                  SPLLQFALASVVQLWLAVPFYKSAWASIKGGLANMDVLVTIGTVSIYLYSVYMLFFSPHA
                         130
                                  140
                                           150
                                                     160
                                                              170
                                                                       180
                             190
                                       200
                                                210
                                                         220
                  AYGMAHVYFEVGVMVIGFVSLGKFLEHRTKKSSLNSLGLLLKLTPTQVNVQRNGEWKQLP
      m589.pep
                  \overline{m}
                  AYGMAHVYFEVGIMVIGFVSLGKFLEHRTKKSSLNSLGLLLKLTPTQVNVQRDGEWRQLP
      a589
                                  200
                                           210
                                                    220
                                                              230
                                                                       240
```

	m589.pep	240	250	260	270	280	) 2	90
		IDQVQIGDLIR			11111111			
	a589	IDQVQIGDLIR 250	ANHGERI	AADGILES	GSGWADES	iltgesnpeei	(KAGGKVLA	GALMTEG
		250	2	60	270	280	290	300
	m589.pep	300	310	320	330	340	) 3:	50
	moos.pep	SVVYRATQLGS	QTQLGDM 	MNALSEAQ 	GSKAPIARV	'ADKAAAVFVI	'AVVGIALL'	TFIVTWL
	a589	PAALKWWÖTGP	OI TPG DW	MNALSEAQ	GSKAPIARV	'ADKAAAVFVE	'AVVGIALL'	III:    FFIATWL
er-		310	3:	20	330	340	350	360
		360	370	380	390	400	41	10
	m589.pep	IKGDWTVALMH			11111111	111111111		
	a589	TIGONITIAMIN	AMATAT1	ACPCALGL	AT PAA IMVG	MGKAVKHGIW	FKDAAAMEF	IIIIIIII EAAHVDA
		370	38	30	390	400	410	420
	m589.pep	420	430	440	450	460	47	70
	moos.pep	VVLDKTGTLTEG			, , , , , , , , ,			
	a589	AADMIGITIE	VECAN	/YCVPDSG	PDEDALYRI	aaaveonaah	PLARAIVSA	IIIIIII AQARGI
		430	4.4	10	450	460	470	480
	m589.pep	480	490	500	510	520	53	0
		DIPAAQNAQTVV		1:1:111				
	a589	EIPTAQNAQTIV 490	GAGITAE 50	VKGAGLVE	(AGKAEFAE)	LTLPKFSDGV	WEIASVVAV	SVNGKP
			30	10	510	520	530	540
	m589.pep		550	560	570	580	59	0
		IGAFALADALKA	111111		11111111			
	a589	IGAFALADALKA 550	DTAEAIG 56	KTKKHNIL	VYIMSGDNO	)GTVEYVAKQI	GIAHAFGN	MSPRDK
				U	570	580	590	600
	m589.pep	600 AAEVQKLKAAGK	610 TVAMVCD	620	630	640	650	0
	• •		111111	#     <b>         </b>	11111111	1111111111	1111111	
	a589	AAEVQKLKAAGK	TVAMVGD: 62	GINDAPAL	AAANVSFAM 630	ikggadvaeht	'ASATLMQH	SVNQLA
				U	630	640	650	660
	m589.pep	660 DALLVSQATLKN	670 TKONT FF:	680	690	700	710	)
				1111111	11111111	1111111111		
	a589	DALSVSRATLKN: 670	IKQNLFFI 680	ALLANTEG	IPLAALGFL 690	NPVIAGAAMA 700	ASSVSVLSN	VALRLK
			000	-	030	700	710	720
	m589.pep	720 RVKIDX						
		ШШ						
	a589	RVKIDX						

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1833>: g590.seq..

```
1 atgaaaaaac ctttgatttc agttgcggca gtattgctcg gcgttgcttt
 51 gggtacacct tattatttgg gtgtcaaagc agaagaaagt ctgacgcagc
101 agcaaaaaat attgcagaaa acgggctttt tgaccgtcga atcgcaccag
151 tatgatcgag gctggtttac ctctacggaa acgacggtca tccgtctgaa
201 accegagitg cigcataatg cgcagaaata ccigccggat aactigaaaa
251 tagtgttgga acagccggtt acgctggtaa accatatcac gcacggccct
301 ttcgccggcg gattcggcac gcaggcgcac attgaaaccg agttcaaata
351 cgcgcctgaa acggaaaaag ttttggaacg cttttttggg aaacaagttc
401 cggtttccct tgccaatacc gtttatttca acggcagcgg taaaatggaa
```

451 gtcagtgttc ccgctttcga ttatgaagaa ctgtcgggca tcaggctgca

```
501 ctgggaaggc ctgacggggg aaacggttta tcaaaaaggt ttcaaaagct
         551 accgcaacag ctatgatgcg cccttgttca aaatcaagct ggcagacaaa
         601 ggcgatgccg cgtttgaaaa agcgcatttc gattcggaaa cttcagacgg
         651 catcaatccg cttgctttgg gcagcagcaa tctgactttg gaaaaatttt
         701 cgctcgaatg gaaagaggt gtcgattaca acgtcaaatt gaacgaactg
         751 gtcaacctcg ttaccgattt gcagatcggc gcgtttatca atcccaacgg
         801 cagcategea cettecaaaa tegaagtegg caagetgget ttttcaacca
        851 agaccgggga atcgggcgcg tttatcgaca gcgaagggcg gttccgtttc
        901 gatacgttgg tgtacggcga tgaaaaatac ggcccgctgg acatccatat
             cgctgccgaa cacctcgatg cttctgcctt aaccgtattg aaacgcaagt
        951
       1001 ttgcacaaat ttctgccaaa aaaatgactg aggaacaaat ccgcaatgat
       1051 ttgattgcgg cagtcaaagg cgatgcttcc ggattattta cccatgaccc
- North
       1101 ggtactaaat atcaaaattt tccgtttcac cctgcctcag ggaaaaattg
       1151 atgtgggcgg aaaaatcatg tttaaaggca tgaagaagga agatttgaac
       1201 caattgggac tgatgttaaa gaaaaccgag gcaaacatca gaatgagtat
       1251
             tectcaaaaa atgttggaag atttggeggt aagtcagget ggaaatattt
       1301 tcagtgtaaa tgccgaagat gaggcggaag ccagagcaag cattgccgat
       1351 attaatgaaa cattgcgcct gatggtggac agtacggtcc aaagtatggc
       1401 aagggaaaaa tatcttactt tagacggtaa tcagattgat acggtcattt
       1451 cccttaaaaa caacgccctg aagttaaacg ggaaaacgct gcaaaatgaa
       1501 cccgatcctg attttgacga gggagatatg gtttccggcc agccgcatta
       1551 a
```

This corresponds to the amino acid sequence <SEQ ID 1834; ORF 590.ng>: g590.pep..

```
1 MKKPLISVAA VLIGVALGTP YYLGVKAEES LTQQQKILQK TGFLTVESHQ
51 YDRGWFTSTE TTVIRLKPEL LHNAQKYLPD NLKIVLEQPV TLVNHITHGP
101 FAGGFGTQAH IETEFKYAPE TEKVLERFFG KQVPVSLANT VYFNGSGKME
151 VSVPAFDYEB LSGIRLHWEG LTGETVYQKG FKSYRNSYDA PLFKIKLADK
201 GDAAFEKAHF DSETSDGINP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
251 VNLVTDLQIG AFINPNGSIA PSKIEVGKLA FSTKTGESGA FIDSEGRFRF
301 DTLVYGDEKY GPLDIHIAAE HLDASALTVL KRKFAQISAK KMTEEQIRND
351 LIAAVKGDAS GLFTHDPVLN IKIFRFTLPQ GKIDVGGKIM FKGMKKEDLN
401 QLGLMLKKTE ANIRMSIPQK MLEDLAVSQA GNIFSVNAED EAEARASIAD
451 INETLRLMVD STVQSMAREK YLTLDGNQID TVISLKNNAL KLNGKTLQNE
501 PDPDFDEEGDM VSGOPH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1835>: m590.seq (partial) ...

```
..TGGTTTACCT CTATGGAAAC GACGGTCATC CGTCTGAAAC CCGAGTTGCT
   1
  51
        GAATAATGCC CGAAAATACC TGCCGGATAA CCTGAAAACA GTGTTGGAAC
 101
        AGCCGGTTAC GCTGGTTAAC CATATCACGC ACGGCCCTTT CGCCGGCGGA
        TTCGGCACGC AGGCGTACAT TGAAACCGAG TTCAAATACG CGCCTGAAAC
 151
        GGAAAAAGTT CTGGAACGCT TTTTTGGAAA ACAAGTCCCG GCTTCCCTTG
 201
 251
        CCAATACCGT TTATTTTAAC GGCAGCGGTA AAATGGAAGT CAGTGTTCCC
        GCCTTCGATT ATGAAGAGCT GTCGGGCATC AG.CTGCACT GGGAAKGCCT
 301
        GACGGGAGAA ACGGTTTATC AAAAAGGTTT CAAAAGCTAC CGGAACGGCT
 351
 401
        ATGATGCCCC CTTGTTTAAA ATCAAGCTGG CAGACAAAGG CGATGCCGCG
 451
        TTTGAAAAAG TGCATTTCGA TTCGGAAACT TCAGACGGCA TCAATCCGCT
        TGCTTTGGGC AGCAGCAATC TGACCTTGGA AAAATTCTCC CTAGAATGGA
 501
        AAGAGGGTGT CGATTACAAC GTCAAGTTAA ACGAACTGGT CAATCTTGTT
 551
        ACCGATTTGC AGATTGGCGC GTTTATCAAT CCCAACGGCA GCATCGCACC
 601
 651
        TTCCAAAATC GAAGTCGGCA AACTGGCTTT TTCAACCAAG ACCGGGGAAT
        CAGGCGCGTT TATCAACAGT GAAGGGCAGT TCCGTTTCGA TACACTGGTG
 701
 751
        TACGGCGATG AAAAATACGG CCCGCTGGAC ATCCATATCG CTGCCGAACA
        CCTCGATGCT TCTGCCTTAA CCGTATTGAA ACGCAAGTTT GCACAAATTT
 801
 851
        CCGCCAAAAA AATGACCGAG GAACAAATCC GCAATGATTT GATTGCCGCC
        GTCAAAGGAG AGGCTTCCGG ACTGTTCACC AACAATCCCG TATTGGACAT
 901
 951
        TAAAACTTTC CGATTCACGC TGCCATCGGG AAAAATCGAT GTGGGCGGAA
1001
        AAATCATGTT TAAAGACATG AAGAAGGAAG ATTTGAATCA ATTGGGTTTG
        ATGCTGAAGA AAACCGAAGC CGACATCAGA ATGAGTATTC CCCAAAAAAT
1051
1101
        GCTGGAAGAC TTGGCGGTCA GTCAAGCAGG CAATATTTTC AGCGTCAATG
1151
        CCGAAGATGA GGCGGAAGGC AGGGCAAGTC TTGACGACAT CAACGAGACC
        TTGCGCCTGA TGGTGGACAG TACGGTTCAG AGTATGGCAA GGGAAAAATA
1201
        TCTGACTTTG AACGGCGACC AGATTGATAC TGCCATTTCT CTGAAAAACA
1251
        ATCAGTTGAA ATTGAACGGT AAAACGTTGC AAAACGAACC GGAGCCGGAT
1301
1351
        TTTGATGAAG GCGGTATGGT TTCAGAGCCG CAGCAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1836; ORF 590>:

m590.pep	(partial)
1 .	.WFTSMETTVI RLKPELLNNA RKYLPDNLKT VLEQPVTLVN HITHGPFAGG
51	FGTQAYIETE FKYAPETEKV LERFFGKQVP ASLANTVYFN GSGKMEVSVP
101	AFDYEELSGI XLHWEXLTGE TVYQKGFKSY RNGYDAPLFK IKLADKGDAA
151	FEKVHFDSET SDGINPLALG SSNLTLEKFS LEWKEGVDYN VKLNELVNLV
201	TDLQIGAFIN PNGSIAPSKI EVGKLAFSTK TGESGAFINS EGQFRFDTLV
251	YGDEKYGPLD IHIAAEHLDA SALTVLKRKF AQISAKKMTE EQIRNDLIAA
301	VKGEASGLFT NNPVLDIKTF RFTLPSGKID VGGKIMFKDM KKEDLNQLGL MLKKTEADIR MSIPQKMLED LAVSQAGNIF SVNAEDEAEG RASLDDINET
351 401	LRLMVDSTVQ SMAREKYLTL NGDQIDTAIS LKNNQLKLNG KTLONEPEPD
451	FDEGGMVSEP QQ*
	<del></del>
m590 / g590	93.1% identity in 462 aa overlap
	10 20 30
m590.pep	WFTSMETTVIRLKPELLNNARKYLPDNLKT
~~^~	
g590	VKAEESLTQQQKILQKTGFLTVESHQYDRGWFTSTETTVIRLKPELLHNAQKYLPDNLKI 30 40 50 60 70 80
	30 40 50 60 70 80
	40 50 60 70 80 90
m590.pep	VLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPETEKVLERFFGKQVPASLANTVYFN
g590	VLEQPVTLVNHITHGPFAGGFGTQAHIETEFKYAPETEKVLERFFGKQVPVSLANTVYFN
	90 100 110 120 130 140
	100 110 120 130 140 150
m590.pep	GSGKMEVSVPAFDYEELSGIXLHWEXLTGETVYQKGFKSYRNGYDAPLFKIKLADKGDAA
-500	
g590	GSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKGFKSYRNSYDAPLFKIKLADKGDAA 150 160 170 180 190 200
	150 160 170 180 190 200
	160 170 180 190 200 210
m590.pep	FEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEGVDYNVKLNELVNLVTDLQIGAFIN
g590	FEKAHFDSETSDGINPLALGSSNLTLEKFSLEWKEGVDYNVKLNELVNLVTDLQIGAFIN
	210 220 230 240 250 260
	220 230 240 250 260 270
m590.pep	PNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRFDTLVYGDEKYGPLDIHIAAEHLDA
÷500	
g590	PNGSIAPSKIEVGKLAFSTKTGESGAFIDSEGRFRFDTLVYGDEKYGPLDIHIAAEHLDA 270 280 290 300 310 320
	270 280 290 300 310 320
	280 290 300 310 320 330
m590.pep	SALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEASGLFTNNPVLDIKTFRFTLPSGKID
g590	SALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGDASGLFTHDPVLNIKIFRFTLPQGKID
	330 340 350 360 370 380
	340 350 360 370 380 390
m590.pep	VGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQKMLEDLAVSQAGNIFSVNAEDEAEG
~500	
g590	VGGKIMFKGMKKEDLNQLGLMLKKTEANIRMSIPQKMLEDLAVSQAGNIFSVNAEDEAEA 390 400 410 420 430 440
	390 400 410 420 430 440
	400 410 420 430 440 450
m590.pep	RASLDDINETLRLMVDSTVQSMAREKYLTLNGDQIDTAISLKNNQLKLNGKTLQNEPEPD
* - 4	:
g590	RASIADINETLRLMVDSTVQSMAREKYLTLDGNQIDTVISLKNNALKLNGKTLQNEPDPD
	450 460 470 480 490 500
	460
m590.pep	FDEGGMVS-EPQQX
~E00	
g590	FDEGDMVSGQPHX
	510

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1837>:
        a590.seq
                  ATGAAAAAC CTTTGATTTC GGTTGCGGCA GCATTGCTCG GCGTTGCTTT
                  GGGCACGCCT TATTATTTGG GTGTCAAAGC CGAAGAAAGC TTGACGCAGC
              51
             101 AGCAAAAAT ATTGCAGGAA GCGGGCTTCT TGACCGTCGA ATCGCACCAA
             151 TATGAGCGCG GCTGGTTTAC CTCTACGGAA ACGACGGTCA TCCGCTTGAA
             201 ACCCGAGTTG CTGCATAATG CGCAGAAATA CCTGCCGGAT AACCTGAAAA
                 CAGTGTTGGA ACAGCCGGTT ACGCTGGTAA ACCATATCAC GCACGGTCCT
             251
             301 TTTGCCGGCG GATTCGGCAC GCAGGCGTAC ATTGAAACCG AGTTCAAATA
             351 CGCGCCTGAA ACGGAAAAAG TTCTGGAACG CTTTTTTGGA AAACAAGTCC
             401 CGGTTTCCCT TGCCAATACC GTTTATTTTA ACGGCAGCGG TAAAATGGAA
-- 550
                 GTCAGTGTTC CCGCCTTCGA TTATGAAGAG CTGTCGGGCA TCAGGCTGCA
             451
             501 CTGGGAAGGC CTGACGGGAG AAACGGTTTA TCAAAAAGGT TTCAAAAGCT
             551 ACCGGAACGG CTATGATGCC CCCTTGTTTA AAATCAAGCT GGCAGACAAA
             601 GGCGATGCCG CGTTTGAAAA AGTGCATTTC GATTCGGAAA CTTCAGACGG
                 CATCAACCCG CTTGCTTTGG GCAGCAGCAA TCTGACCTTG GAAAAATTTT
             651
             701 CCTTAGAATG GAAAGAGGGT GTCGATTACA ACGTCAAGTT AAACGAACTG
             751 GTCAATCTTG TTACCGATTT GCAGATTGGC GCGTTTATCA ATCCCAACGG
            801 CAGCATCGCA CCTTCCAAAA TCGAAGTCGG CAAGCTGGCT TTTTCAACCA
             851 AGACCGGGGA ATCGGGCGCG TTTATCGATA GCGAAGGGCA GTTCCGTTTT
            901 GGCACGCTGG TTTACGGCGA TGAAAAATAC GGCCCTCTGG ACATCCATAT
            951 CGCTGCCGAA CACCTCGATG CTTCTGCCTT AACCGTATTG AAACGCAAGT
                 TTGCACGAAT TTCTGCCAAA AAAATGACTG AAGAACAAAT CCGCAATGAT
            1001
                 TTGATTGCGG CAGTCAAAGG CGAGGCTTCC GGATTATTTA CCCATAACCC
           1051
           1101 AGTATTGGAC ATTAAAACTT TCCGATTCAC GCTGCCATCG GGAAAAATCG
           1151 ATGTGGGCGG AAAAATCATG TTTAAAGACA TGAAGAAGGA AGATTTGAAC
           1201 CAATTGGGTT TGATGCTGAA GAAAACCGAA GCCGACATCA GAATGAGTAT
                 TCCCCAAAAA ATGCTGGAAG ACTTGGCGGT CAGTCAAGCA GGCAATATTT
           1251
                 TCAGCGTCAA TGCCGAAGAT GAGGCGGAAG GCAGGGCAAG TCTTGACGAC
           1301
           1351 ATCAACGAGA CCTTGCGCCT GATGGTGGAC AGTACGGTTC AGAGTATGGC
           1401 AAGGGAAAAA TATCTGACTT TGAACGGCGA CCAGATTGAT ACTGCCATTT
                 CTCTGAAAAA CAATCAGTTG AAATTGAACG GTAAAACGTT GCAAAACGAA
           1451
           1501 CCGGAGCCGG ATTTTGATGA AGGCGGTATG GTTTCAGAGC CGCAGCAGTA
           1551 A
  This corresponds to the amino acid sequence <SEQ ID 1838; ORF 590.a>:
       a590.pep
                 MKKPLISVAA ALLGVALGTP YYLGVKAEES LTQQQKILQE AGFLTVESHO
                YERGWFTSTE TTVIRLKPEL LHNAQKYLPD NLKTVLEQPV TLVNHITHGP
             51
            101 FAGGFGTQAY IETEFKYAPE TEKVLERFFG KQVPVSLANT VYFNGSGKME
            151 VSVPAFDYEE LSGIRLHWEG LTGETVYQKG FKSYRNGYDA PLFKIKLADK
                 GDAAFEKVHF DSETSDGINP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
            201
            251 VNLVTDLQIG AFINPNGSIA PSKIEVGKLA FSTKTGESGA FIDSEGQFRF
            301 GTLVYGDEKY GPLDIHIAAE HLDASALTVL KRKFARISAK KMTEEQIRND
            351 LIAAVKGEAS GLFTHNPVLD IKTFRFTLPS GKIDVGGKIM FKDMKKEDLN
            401
                 QLGLMLKKTE ADIRMSIPQK MLEDLAVSQA GNIFSVNAED EAEGRASLDD
            451 INETLRLMVD STVQSMAREK YLTLNGDQID TAISLKNNQL KLNGKTLQNE
            501 PEPDFDEGGM VSEPOO*
       m590/a590
                    97.8% identity in 462 aa overlap
                                                        10
                                                                  20
       m590.pep
                                                WFTSMETTVIRLKPELLNNARKYLPDNLKT
                                                VKAEESLTQQQKILQEAGFLTVESHQYERGWFTSTETTVIRLKPELLHNAQKYLPDNLKT
       a590
                       30
                                 40
                                           50
                                                    60
                                                              70
                                     50
                                                        70
                   VLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPETEKVLERFFGKQVPASLANTVYFN
      m590.pep
                   a590
                   VLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPETEKVLERFFGKQVPVSLANTVYFN
                       90
                                100
                                         110
                                                   120
                                                             130
                                    110
                                             120
                                                       130
                                                                 140
                   GSGKMEVSVPAFDYEELSGIXLHWEXLTGETVYQKGFKSYRNGYDAPLFKIKLADKGDAA
      m590.pep
```

	a590		DYEELSGIR				
		150	160	170	180	190	200
		160	170	180	190	200	210
	m590.pep	FEKVHFDSETS	GINPLALGSS	NLTLEKFSLE	WKEGVDYNV	LNELVNLVT	DLQIGAFIN
	a590	FERVHEDSETS	GINPLALGSS	SNLTLEKFSLE	WKEGVDYNV	CLNELVNLVT	
		210	220	230	240	250	260
t	m590.pep	220	230	240	250	260	270
	m590.pep	PNGSIAPSKIEV	1   ;   ;	111111:11	1111 1111	1111111111	
	a590	PNGSIAPSKIEV 270	GKLAFSTKTG	ESGAFIDSEG	QFRFGTLVYG	DEKYGPLDIH	IIAAEHLDA
	·	270	280	290	300	310	320
	m590.pep	280	290	300	310	320	330
	moso.pep	SALTVLKRKFAQ	111111111		111111111111	11111111111	ELLIELE
	a590	SALTVLKRKFAR 330	ISAKKMTEEQ	IRNDLIAAVK	GEASGLFTHN	PVLDIKTFRF	TLPSGKID
		330	340	350	360	370	380
	m590.pep	340	350	360	370	380	390
	moso.pep	VGGKIMFKDMKK	, , , , , , , , , , ,	1111111111	11111111	1111111111	
	a590	VGGKIMFKDMKK	SOTNOTCTWE	KKTEADIRMS:	I PQKMLEDLA	VSQAGNIFSV	NAEDEAEG
		390	400	410	420	430	440
	m590.pep	400	410	420	430	440	450
	moso.pep	RASLDDINETLR	:	111111111			
	a590	RASLDDINETLRI 450	MVDSTVQSMI 460	arekyltlngi	DQIDTAISLK	NQLKLNGKT:	LQNEPEPD
		430	400	470	480	490	500
	m590.pep	460 FDEGGMVSEPQQ	,				
	a590	FDEGGMVSEPQQX 510					
		210					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1839>: m590-1.seq

```
1 ATGAAAAAC CTTTGATTTC GGTTGCGGCA GCATTGCTCG GCGTTGCTTT
   51 GGGCACGCCT TATTATTTGG GTGTCAAAGC CGAAGAAAGC TTGACGCAGC
 101 AGCAAAAAAT ATTGCAGGAA ACGGGCTTCT TGACCGTCGA ATCGCACCAA
 151 TATGAGCGCG GCTGGTTTAC CTCTATGGAA ACGACGGTCA TCCGTCTGAA
 201 ACCCGAGTTG CTGAATAATG CCCGAAAATA CCTGCCGGAT AACCTGAAAA
 251 CAGTGTTGGA ACAGCCGGTT ACGCTGGTTA ACCATATCAC GCACGGCCCT
      TTCGCCGGCG GATTCGGCAC GCAGGCGTAC ATTGAAACCG AGTTCAAATA
 301
      CGCGCCTGAA ACGGAAAAAG TTCTGGAACG CTTTTTTGGA AAACAAGTCC CGGCTTCCCT TGCCAATACC GTTTATTTTA ACGGCAGCGG TAAAATGGAA
 351
 401
      GTCAGTGTTC CCGCCTTCGA TTATGAAGAG CTGTCGGGCA TCAGGCTGCA
      CTGGGAAGGC CTGACGGGAG AAACGGTTTA TCAAAAAGGT TTCAAAAGCT
      ACCGGAACGG CTATGATGCC CCCTTGTTTA AAATCAAGCT GGCAGACAAA
 551
 601
      GGCGATGCCG CGTTTGAAAA AGTGCATTTC GATTCGGAAA CTTCAGACGG
 651
      CATCAATCCG CTTGCTTTGG GCAGCAGCAA TCTGACCTTG GAAAAATTCT
      CCCTAGAATG GAAAGAGGGT GTCGATTACA ACGTCAAGTT AAACGAACTG
 701
      GTCAATCTTG TTACCGATTT GCAGATTGGC GCGTTTATCA ATCCCAACGG
 751
      CAGCATCGCA CCTTCCAAAA TCGAAGTCGG CAAACTGGCT TTTTCAACCA
 801
      AGACCGGGGA ATCAGGCGCG TTTATCAACA GTGAAGGGCA GTTCCGTTTC
 901
      GATACACTGG TGTACGGCGA TGAAAAATAC GGCCCGCTGG ACATCCATAT
      CGCTGCCGAA CACCTCGATG CTTCTGCCTT AACCGTATTG AAACGCAAGT
1001 TTGCACAAAT TTCCGCCAAA AAAATGACCG AGGAACAAAT CCGCAATGAT
1051 TTGATTGCCG CCGTCAAAGG AGAGGCTTCC GGACTGTTCA CCAACAATCC
1101 CGTATTGGAC ATTAAAACTT TCCGATTCAC GCTGCCATCG GGAAAAATCG
1151 ATGTGGGCGG AAAAATCATG TTTAAAGACA TGAAGAAGGA AGATTTGAAT
1201 CAATTGGGTT TGATGCTGAA GAAAACCGAA GCCGACATCA GAATGAGTAT
```

```
1251 TCCCCAAAAA ATGCTGGAAG ACTTGGCGGT CAGTCAAGCA GGCAATATTT
    1301
         TCAGCGTCAA TGCCGAAGAT GAGGCGGAAG GCAGGGCAAG TCTTGACGAC
    1351
         ATCAACGAGA CCTTGCGCCT GATGGTGGAC AGTACGGTTC AGAGTATGGC
         AAGGGAAAAA TATCTGACTT TGAACGGCGA CCAGATTGAT ACTGCCATTT
         CTCTGAAAAA CAATCAGTTG AAATTGAACG GTAAAACGTT GCAAAACGAA
    1451
         CCGGAGCCGG ATTTTGATGA AGGCGGTATG GTTTCAGAGC CGCAGCAGTA
    1501
    1551
 This corresponds to the amino acid sequence <SEQ ID 1840; ORF 590-1>:
m590-1.pep
      1 MKKPLISVAA ALLGVALGTP YYLGVKAEES LTQQQKILQE TGFLTVESHQ
      51
         YERGWFTSME TTVIRLKPEL LNNARKYLPD NLKTVLEQPV TLVNHITHGP
         FAGGFGTQAY IETEFKYAPE TEKVLERFFG KQVPASLANT VYFNGSGKME
     101
         VSVPAFDYEE LSGIRLHWEG LTGETVYQKG FKSYRNGYDA PLFKIKLADK
         GDAAFEKVHF DSETSDGINP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
     201
         VNLVTDLQIG AFINPNGSIA PSKIEVGKLA FSTKTGESGA FINSEGOFRF
         DTLVYGDEKY GPLDIHIAAE HLDASALTVL KRKFAOISAK KMTEEOIRND
     301
         LIAAVKGEAS GLFTNNPVLD IKTFRFTLPS GKIDVGGKIM FKDMKKEDLN
     351
         QLGLMLKKTE ADIRMSIPQK MLEDLAVSQA GNIFSVNAED EAEGRASLDD
INETLRLMVD STVQSMAREK YLTLNGDQID TAISLKNNQL KLNGKTLQNE
     401
     451
         PEPDFDEGGM VSEPOO*
m590-1/g590
              93.6% identity in 516 aa overlap
            MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQETGFLTVESHQYERGWFTSME
m590-1.pep
            MKKPLISVAAVLLGVALGTPYYLGVKAEESLTQQQKILQKTGFLTVESHQYDRGWFTSTE
g590
                   10
                            20
                                    30
                                             40
                                                      50
                            80
                                     90
                                            100
                                                              120
            TTVIRLKPELLNNARKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE
m590-1.pep
            g590
            TTVIRLKPELLHNAQKYLPDNLKIVLEQPVTLVNHITHGPFAGGFGTQAHIETEFKYAPE
                            80
                                     90
                                            100
                                                     110
                  130
                           140
                                    150
                                            160
                                                     170
            TEKVLERFFGKQVPASLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG
m590-1.pep
            a590
            TEKVLERFFGKQVPVSLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG
                  130
                          140
                                    150
                                                              180
                                            220
            FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG
m590-1.pep
            FKSYRNSYDAPLFKIKLADKGDAAFEKAHFDSETSDGINPLALGSSNLTLEKFSLEWKEG
g590
                  190
                          200
                                   210
                                            220
                                                     230
                  250
                           260
                                   270
m590-1.pep
           VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRF
            VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFIDSEGRFRF
q590
                                            280
                                                     290
                                                              300
                  310
                          320
                                   330
                                            340
                                                     350
           DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEAS
m590-1.pep
            DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGDAS
a590
                 310
                          320
                                   330
                                                              360
                                            400
           GLFTNNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK
m590-1.pep
           g590
           {\tt GLFTHDPVLNIKIFRFTLPQGKIDVGGKIMFKGMKKEDLNQLGLMLKKTEANIRMSIPQK}
                 370
                          380
                                   390
                                            400
                  430
                          440
                                            460
                                                     470
                                                              480
           MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDOID
m590-1.pep
           ពីពីពេក្សាការប្រជាពេក ស្រាយការប្រជាពេក្យការប្រជាពេក
           MLEDLAVSQAGNIFSVNAEDEAEARASIADINETLRLMVDSTVQSMAREKYLTLDGNQID
g590
                  430
                          440
                                   450
                                            460
                                                     470
                 490
                          500
                                   510
           TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVS-EPQQX
m590-1.pep
```

g590	:              TVISLKNNALKLNGK 490					
a590/m590-1	98.3% identit	y in 516 a	a overlap			
a590.pep	10 MKKPLISVAAALLGV	20 ALGTPYYLGV	30 KAEESLTQQQ	40 KILQEAGFL	50 IVESHQYERG	60 WFTSTE
m590-1		ALGTPYYLGV 20	KAEESLTQQQ 30	KILQETGFLT	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WFTSME 60
· Value						
a590.pep	70 TTVIRLKPELLHNAQI	80 KYLPDNLKTV	90 LEQPVTLVNH	100 ITHGPFAGGI	110 FGTQAYIETE	120 FKYAPE
m590-1		KYLPDNLKTV 80	LEQPVTLVNH:	ITHGPFAGGE 100	FGTQAYIETE 110	FKYAPE 120
2500 non	130	140	150	160	170	180
a590.pep m590-1	TEKVLERFFGKQVPVS	1111111111	1111111111	1111111111	HILLIAM	111111
	130	140	150	160	170	180
a590.pep	190 FKSYRNGYDAPLFKIR					
m590-1		KLADKGDAAFI	EKVHFDSETSI	DGINPLALGS	SNLTLEKFS	LEWKEG
	190 250	200 260	210 270	220 280	230	240
a590.pep	VDYNVKLNELVNLVTE	DLQIGAFINP	NGSIAPSKIE	/GKLAFSTKT	290 GESGAFIDS	300 EGQFRF
m590-1	VDYNVKLNELVNLVTC 250	LQIGAFINPN 260	NGSIAPSKIEV 270	/GKLAFSTKT 280	GESGAFINS	EGQFRF 300
a590.pep	310 GTLVYGDEKYGPLDIH	320 IIAAEHLDAS <i>I</i>	330 ALTVLKRKFAI	340 RISAKKMTEE	350 OIRNDLIAA	360 VKGEAS
m590-1	DTLVYGDEKYGPLDIH	HIAAEHLDASA	<b>ALTVLKRKFA</b> (	<b>DISAKKMTEE</b>	QIRNDLIAA	 VKGEAS
	310 370	320	330	340	350	360
a590.pep	GLFTHNPVLDIKTFRF	TLPSGKIDVO	390 GKIMFKDMKI	400 ŒDLNQLGLM	410 LKKTEADIR	420 ASIPQK
m590-1	GLFTNNPVLDIKTFRF 370	TLPSGKIDVO 380	GKIMFKDMKE 390	EDLNQLGLM	LKKTEADIR 410	ASIPQK 420
a590.pep	430 MLEDLAVSQAGNIFSV	440 Naedeaegra	450 ASLDDINETLE	460 LMVDSTVQS	470 MAREKYLTLI	480
m590-1	MLEDLAVSQAGNIFSV	1111111111		111111111	11111111111	
a590.pep	490	500	510			
m590-1	TAISLKNNQLKLNGKT	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	1111111111	1		
	490	500	510			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1841>: g591.seq

aed					
1	TTGCAAACCC	TTCTAGCTTT	TATCTTCGCC	ATCCTGATTT	TGGTCAGCCT
51	GCACGAATTC	GGACACTACA	TCGTCGCCAG	GTTGTGCGGC	GTCAAGGTTG
101	TGCGTTTTTC	CGTCGGCTTC	GGCAAACCGT	TTTTCACCCG	AAAGCGCGGC
151	GACACCGAAT	GGTGCCTCGC	CCCGATTCCG	TTGGGCGGCT	ACCTCADADT
201	GGTCGATACG	CGCGAAGGCG	AAGTATCAGA	AGCCGATTTA	CCCTACGCTT
251	TTGACAAACA	ACACCCCGCC	AAGCGCATCG	CCATCGTCGC	CGCCGGTCCG
301	CTGACCAACC	TCGCActggc	ggTTTTGCTG	TACGGACTGA	actTttcctt
351	cggcgtaaCC	GAACTGCGGC	CCtatgtcgg	cacagtcgaA	CCCGacaccG

```
401 ttgccgCCCG CACCGGCTTC caaagcggcg acaaAATACa atccgtcaac
 451 ggcgtTtccg tCCAAGACTG GAGCAGCGCG CAAACCGAAA TCGTcctcAA
      CCTCGAAGCC Ggcaaagtcg ccgtcggcgT TCAGACGGCA TCGGGCGCGC
 501
 551 AAACCGTCCG CACCAtcgAT GCCGCAGGCA CGCCGGAAGC CGGTAAAATC
 601 GCAAAAAACC AAGGCTACAT CGGACTGATG CCCTTTAAAA TCACAACCGT
      TGCCGGCGGC GTGGAAAAG GCAGCCCCGC CGAAAAAGCA GGCCTGAAAC
 651
 701 CGGGCGACAG GCTGACTGCC GCCGACGGCA AACCCATCGC ctcaTGGCAG
 751 GAATGggcaa acctgACccg cCAAAGCCCg ggcAAAAAAA Tcaccctgac
 801 ctacgAaCGC GCcggacaaa cccaTAccgc CGACATCCGC CccgATactg
851 TCGAAcagec cgACCACACC CTGATCgggc gcgTCGGCCT CCGtccgcaG
901 CCGGACAGGG CGTGGGACGC GCAAATCCGC CGCAGCTACC GTCCGTCTGT
      TGTCCGCGCA TTCGGCATGG GCTGGGAAAA AACCGTTTCC CACTCGTGGA
 951
1001 CAACCCTCAA ATTTTTCGGC AAACTAATCA GCGGCAACGC CTCTGTCAGC
      CATATTTCCG GGCCGCTGAC CATTGCCGAC ATTGCCGGAC AGTCCGCCGA
1051
1101 ACTCGGCTTG CAAAGTTATT TGGAATTTTT AGCGTTGGTC AGCATCAGCC
1151 TCGGCGTGCT GAACCTGCTG CCCGTCCCCG TTTTGGACGG CGGGCACCTC
1201 GTGTTTTATA CTGTCGAATG GATACGCGGC AAACCTTTGG GCGAACGTGT
      CCAAAACATC GGTTTGCGCT TCGGGCTCGC CCTGATGATG CTGATGATGG
1251
1301 CGGCCGCCTT CTTCAACGAC GTTACCCGGC TGATCGGTTA G
```

This corresponds to the amino acid sequence <SEQ ID 1842; ORF 591.ng>:

```
1 LQTLLAFIFA ILILVSLHEF GHYIVARLCG VKVVRFSVGF GKPFFTRKRG
51 DTEWCLAPIP LGGYVKMVDT REGEVSEADL PYAFDKQHPA KRIAIVAAGP
101 LTNLALAVLL YGLSFSFGVT ELRPYVGTVE PDTVAARTGF QSGDKIQSVN
151 GVSVQDWSSA QTEIVINLEA GKVAVGVQTA SGAQTVRTID AAGTPEAGKI
201 AKNQGYIGLM PFKITTVAGG VEKGSPAEKA GLKFGDRLTA ADGKPIASWQ
251 EWANLTRQSP GKKITLTYER AGQTHTADIR PDTVEQPDHT LIGRVGLRFQ
301 PDRAWDAQIR RSYRPSVVRA FGMGWEKTVS HSWTTLKFFG KLISGNASVS
351 HISGPLTIAD IAGQSAELGL QSYLEFLALV SISLGVLNLL PVPVLDGGHL
401 VFYTVEWIRG KPLGERVQNI GLRFGLALMM LMMAAAFFND VTRLIG*
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1843>:

```
m591.seq
          TTGCACACCC TTCTAGCTTT TATCTTCGCC ATCCTGATTT TGGTCAGCCT
         GCACGAGTTC GGACACTACA TCGTTGCCAG ATTGTGCGGC GTCAAAGTCG
     101 TACGCTTTTC CGTCGGCTTC GGCAAACCGT TTTTCACCCG AAAGCGCGGC
         GACACCGAAT GGTGCCTCGC CCCGATTCCG TTGGGCGGTT ACGTCAAAAT
         GGTCGATACG CGCGAAGGCG AAGTATCAGA AGCCGATTTA CCCTACGCTT
         TTGACAAACA ACACCCCGCC AAGCGCATCG CCATCGTCGC CGCCGGCCCA
    251
         CTGACCAACC TCGCACTGGC GGTTTTGCTG TACGGACTGA GCTTTTCCTT
         CGGCGTAACC GAACTGCGCC CCTACGTCGG CACAGTCGAA CCCGACACCA
     351
         TTGCCGCCCG CGCCGGCTTC CAAAGCGGCG ACAAATACA ATCCGTCAAC
     401
     451 GGCACACCCG TTGCAGATTG GGGCAGCGCG CAAACCGAAA TCGTCCTCAA
    501 CCTCGAAGCC GGCAAAGTCG CCGTCGGCGT TCAGACGGCA TCGGGCGCGC
    551 AAACCGTCCG CACCATCGAT GCCGCAGGCA CGCCGGAAGC CGGTAAAATC
         GCAAAAAACC AAGGCTACAT CGGACTGATG CCCTTTAAAA TCACAACCGT
    601
    651 TGCCGGCGGC GTGGAAAAAG GCAGCCCCGC CGAAAAAGCA GGCCTGAAAC
    701 CGGGCGACAG GCTGACTGCC GCCGACGGCA AACCCATCGC CTCATGGCAA
    751 GAATGGGCAA ACCTGACCCG CCAAAGCCCC GGCAAAAAAA TCACCCTGAA
         CTACGAACGC GCCGGACAAA CCCATACCGC CGACATCCGC CCCGATACTG
    801
    851 TCGAACAGTC CGACCACACC CTGATCGGGC GCGTCGGCCT CCGTCCGCAG
    901 CCGGACAGGG CGTGGGACGC GCAAATCCGC CGCAGCTACC GTCCGTCTGT
         TGTCCGCGCA TTCGGCATGG GCTGGGAAAA AACCGTTTCC CACTCGTGGA
    951
    1001 CAACCCTCAA ATTTTTCGGC AAACTAATCA GCGGCAACGC CTCCGTCAGC
   1051 CATATTTCCG GGCCGCTGAC CATTGCCGAC ATTGCCGGAC AGTCCGCCGA
    1101 ACTCGGCTTG CAAAGTTATT TGGAATTTTT AGCACTGGTC AGCATCAGCC
         TCGGCGTGCT GAACCTACTG CCCGTCCCTG TTTTGGACGG CGGGCACCTC
   1201 GTGTTTTATA CTGCCGAATG GATACGCGGC AAACCTTTGG GCGAACGCGT
   1251 CCAAAACATC GGTTTGCGCT TCGGGCTCGC CCTCATGATG CTGATGATGG
   1301 CGGTCGCCTT CTTCAACGAC GTTACCCGGC TGCTCGGTTA G
```

This corresponds to the amino acid sequence <SEQ ID 1844; ORF 591>: m591.pep..

1	LHTLLAFIFA	ILILVSLHEF	GHYIVARLCG	VKVVRFSVGF	GKPFFTRKRG
51	DTEWCLAPIP	LGGYVKMVDT	REGEVSEADL	PYAFDKOHPA	KRIAIVAAGP
101	<u>LTNLALAVL</u> L	YGLSFSFGVT	ELRPYVGTVE	PDTIAARAGE	OSGDKIOSVN
151	GTPVADWGSA	QTEIVLNLEA	GKVAVGVQTA	SGAOTVRTID	AAGTPEAGKT
201	AKNQGYIGLM	PFKITTVAGG	VEKGSPAEKA	GLKPGDRLTA	ADGKPTASWO
251	EWANLTRQSP	GKKITLNYER	AGQTHTADIR	PDTVEOSDHT	LIGRYGLERO
301	PDRAWDAQIR	RSYRPSVVRA	<b>FGMGWEKTVS</b>	HSWTTLKFFG	KLISGNASUS
351	HISGPLTIAD	IAGQSAELGL	QSYLEFLALV	SISLGVLNLL	PVPVLDGGHT.
401	VFYTAEWIRG	KPLGERVQNI	GLRFGLALMM	LMMAVAFFND	VTRLLG*

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1845>: a591.seq

```
1 TTGCACACCC TTCTAGCTTT TATCTTCGCC ATCCTGATTT TGGTCAGCCT
              GCACGAATTC GGACACTACA TCGTCGCCAG ATTGTGCGGC GTCAAGGTTG
           51
          101
              TGCGTTTTTC CGTCGGCTTC GGCAAACCGT TTTTCACCCG AAAGCGCGGC
              GACACCGAAT GGTGCCTCGC CCCGATTCCG TTGGGCGGTT ACGTCAAAAT
          201 GGTCGACACG CGCGAAGGCG AAGTATCAGA AGCCGATTTA CCCTACGCTT
              TTGACAAACA ACACCCCGCC AAGCGCATCG CCATCGTCGC CGCCGGCCCG
          251
          301 CTGACCAACC TCGCACTGGC GGTTTTGCTG TACGGACTGA GCTTTTCCTT
          351 CGGCGTTACC GAACTGCGCC CCTATGTCGG CACAGTCGAA CCCGACACCA
              TTGCCGCCCG CGCCGGCTTC CAAAGCGGCG ACAAATACA ATCCGTCAAC
          401
              GGCACACCCG TTGCAGATTG GGGCAGCGCG CAAACCGAAA TCGTCCTCAA
          451
              CCTCGAAGCC GGCAAAGTCG CCGTCGGCGT TCAGACGGCA TCGGGCGCGC
          501
          551 AAACCGTCCG CACCATCGAT GCCGCAGGCA CGCCGGAAGC CGGTAAAATC
          601 GCAAAAAACC AAGGCTACAT CGGACTGATG CCCTTTAAAA TCACAACCGT
              TGCCGGCGGC GTGGAAAAG GCAGCCCCGC CGAAAAAGCA GGCCTGAAAC
          651
              CGGGCGACAG GCTGACTGCC GCCGACGGCA AACCCATCGC CTCATGGCAA
          701
              GAATGGGCAA ACCTGACCCG CCAAAGCCCC GGCAAAAAA TCACCCTGAC
          751
              CTACGAACGC GCCGGACAAA CCCATACCGC CGACATCCGC CCCGATACTG
          801
              TCGAACAGCC CGACCACACC CTGATCGGGC GCGTCGGCCT CCGTCCGCAG
          851
          901
              CCGGACAGGG CGTGGGACGC GCAAATCCGC CGCAGCTACC GTCCGTCTGT
              TGTCCGCGCA TTCGGCATGG GCTGGGAAAA AACCGTTTCC CACTCGTGGA
          951
         1001
              CAACCCTCAA ATTTTTCGGC AAACTAATCA GCGGCAACGC CTCCGTCAGC
              CATATTTCCG GTCCGCTGAC CATTGCCGAT ATTGCCGGAC AGTCCGCCGA
         1051
              ACTCGGCTTG CAAAGTTATT TGGAATTTTT GGCACTGGTC AGCATCAGCC
         1101
        1151 TCGGCGTGCT GAACCTGCTG CCCGTCCCCG TTTTGGACGG CGGCCACCTC
        1201 GTGTTTTATA CTGCCGAATG GATACGCGGC AAACCTTTGG GCGAACGCGT
        1251
              CCAAAACATC GGTTTGCGCT TCGGGCTTGC CCTCATGATG CTGATGATGG
        1301 CGGTCGCCTT CTTCAACGAC GTTACCCGGC TGCTCGGTTA G
This corresponds to the amino acid sequence <SEQ ID 1846; ORF 591.a>:
     a591.pep
              LHTLLAFIFA ILILVSLHEF GHYIVARLCG VKVVRFSVGF GKPFFTRKRG
              DTEWCLAPIP LGGYVKMVDT REGEVSEADL PYAFDKQHPA KRIAIVAAGP
          51
              LTNLALAVLL YGLSFSFGVT ELRPYVGTVE PDTIAARAGF QSGDKIQSVN
         101
         151
              GTPVADWGSA QTEIVLNLEA GKVAVGVQTA SGAQTVRTID AAGTPEAGKI
         201 AKNQGYIGLM PFKITTVAGG VEKGSPAEKA GLKPGDRLTA ADGKPIASWQ
              EWANLTRQSP GKKITLTYER AGQTHTADIR PDTVEQPDHT LIGRVGLRPQ
         251
              PDRAWDAQIR RSYRPSVVRA FGMGWEKTVS HSWTTLKFFG KLISGNASVS
         351 HISGPLTIAD IAGQSAELGL QSYLEFLALV SISLGVLNLL PVPVLDGGHL
         401 VFYTAEWIRG KPLGERVONI GLRFGLALMM LMMAVAFFND VTRLLG*
             99.6% identity in 446 aa overlap
m591/a591
                        10
                                 20
                                           30
                                                    40
                 LHTLLAFIFAILILVSLHEFGHYIVARLCGVKVVRFSVGFGKPFFTRKRGDTEWCLAPIP
    m591.pep
                 LHTLLAFIFAILILVSLHEFGHYIVARLCGVKVVRFSVGFGKPFFTRKRGDTEWCLAPIP
     a591
                        10
                                 20
                                           30
                                                    40
                                                             50
                                                                      60
                                 80
                                           90
                                                   100
                 {\tt LGGYVKMVDTREGEVSEADLPYAFDKQHPAKRIAIVAAGPLTNLALAVLLYGLSFSFGVT}
    m591.pep
                 LGGYVKMVDTREGEVSEADLPYAFDKQHPAKRIAIVAAGPLTNLALAVLLYGLSFSFGVT
     a591
                        70
                                 80
                                          90
                                                   100
                       130
                                140
                                          150
                                                   160
                                                            170
                 ELRPYVGTVEPDTIAARAGFQSGDKIQSVNGTPVADWGSAQTEIVLNLEAGKVAVGVQTA
    m591.pep
                 a591
                 ELRPYVGTVEPDTIAARAGFQSGDKIQSVNGTPVADWGSAQTEIVLNLEAGKVAVGVQTA
                       130
                                140
                                         150
                                                   160
                                                            170
                                                                     180
                                200
                                         210
                                                   220
                                                            230
                 SGAQTVRTIDAAGTPEAGKIAKNQGYIGLMPFKITTVAGGVEKGSPAEKAGLKPGDRLTA
    m591.pep
                 a591
                 SGAQTVRTIDAAGTPEAGKIAKNQGYIGLMPFKITTVAGGVEKGSPAEKAGLKPGDRLTA
                       190
                                200
```

220

		2	50	260	270	280	290	300
	m591.pep	ADGKPIAS	WQEWANLTR	QSPGKKITLN	YERAGQTHTA	DIRPDTVEQS	DHTLIGRVGL	RPQ
	_	11111111	111111111	111111111:	1111111111	111111111	1111111111	H
	a591	ADGKPIAS	WQEWANLTR	QSPGKKITLT	YERAGOTHTA	DIRPDTVEQE	DHTLIGRVGL	RPQ
		2	50	260	270	280	290	300
		_	10	320	330	340		360
	m591.pep	PDRAWDAQ	IRRSYRPSV	VRAFGMGWEK	TVSHSWTTLK	FFGKLISGNA	SVSHISGPLT	IAD
		1111111	111111111	1111111111	111111111	11111111111		111
	a591						SVSHISGPLT	IAD
• Notice		3	10	320	330	340	350	360
		_						
		_		380	390	400		420
	m591.pep	IAGOSAEL	GLQSYLEFL	ALVSISLGVL	NLLPVPVLDG	GHLVFYTAEW	IRGKPLGERV	QNI
		11111111	11111111	Пінни	1111111111			
	a591						IRGKPLGERV	-
		3	70	380	390	400	410	420
			30	440				
	.501	_		440				
	m591.pep	GLREGLAL	MMLMMAVAE	FNDVTRLLGX				
	F 0.1	CIPTOIN	111111					
	a591			FNDVTRLLGX				
		4	30	440				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1847>: g592.seq..

```
1 atgattccgg acgtgttcgg tcagattttt tcgggcgcgt tcaaattcga
51 cgcggcagca ggcggcttac tcggcggtct gatttcgcaa acgatgatga
101 tgggcatcaa acgcggcctg tattccaacg aggcgggtat gggttccgcg
151 ccgaacgccg ccgccgccgc cgaagtgaaa caccctgttt cgcaaggtat
201 gattcaaatg ctgggcgtgt ttgtccgatac catcatcgtt tgttcttgca
251 ccgccttcat catcttgatt taccaacagc cttatggcga tttgacggt
301 gcggcgctga cgcaggcggc gattgtcagc caagtggggc aatggggggc
351 gggtttcctc gccgtcatcc tgtttatgtt tgccttttcc accgttatcg
401 gcaactatgc ctatgccgag tccaacgtcc aattcatcaa aagccattgg
451 ctgattaccg ccgttttccg tatgctggt ttggcgtggg tctattccgg
501 cgcggttgca aatggcgct ttggtctgga tatggcggat atggcgatgg
551 gcatcatggc gtggatcaac ctcgtcgca tcctgctgct ctcgccattg
601 gcgtttatgc tgctgcgca ttacaccgcc aagctgaaaa tgggcaaaga
651 ccccgagttc aaactttccg aacatccggc cctgaaacgc cgcatcaaat
701 ccgatgtttg gtaa
```

This corresponds to the amino acid sequence <SEQ ID 1848; ORF 592.ng>:

g592.pep .

- 1 MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
- 51 PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG
- 101 AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVQFIKSHW
- 151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
- 201 AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1849>: m592.seq ...

```
ATGATTCCGG ACGTGTTCGG TCAGATTTTT TCGGGCGCGT TCAAATTCGA
51 CGCGGCAGCA GGCGGCTTAC TCGGCGGCTT GATTTCGCAA ACGATGATGA
101 TGGGCATCAA ACGCGGCCTG TATTCCAACG AGGCGGGTAT GGGTTCCGCG
151 CCGCACCGCC CCGCCGC CGAGGTGAAA CACCCTGTTT CGCCAAGGTAT
251 CCGCCTTCAT CATCTTGATT TACCAACAGC CTTACCGCGA TTTGACGCGGT
301 GCGGCGCTGA CGCAGGCGGC GATTGTCAGC CAAGTGGGGC AATGGGCGCG
351 GGGCTTCCTC CTATGCCGAG TCCAACGTCC AATTCATCAA AAGCCATTGG
401 GCAACTATCC CCGTTTTCCG TATGCTGGTT TTGGCTGGG TCTATTCCG
501 CGCGGTTGCC AATGTGCCTA TGGCTGGGA TATGGCGGGAT ATGGCCATGG
551 GCATTATGCC GTGGATCAAC CTTGTCGCCA TCCTGCTCTT CTCGCCCTTG
```

WO 99/57280 PCT/US99/09346

935

```
601 GCGTTTATGC TGCTGCGCGA TTACACCGCC AAGCTGAAAA TGGGCAAAGA
```

651 CCCCGAGTTC AAACTTTCCG AACATCCGGG CCTGAAACGC CGTATCAAAT

701 CCGACGTTTG GTAA

This corresponds to the amino acid sequence <SEQ ID 1850; ORF 592>: m592.pep ...

- 1 MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
- 51 PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG
- 101 AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVQFIKSHW
- 151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
- 201 AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*

m592 / g592 100.0% identity in 237 aa overlap

	10	20	30	40	50	60
m592.pep	MIPDVFGQIFSGAF	Krdaaaggii	AGDISUTMMM	GTKKGTA2NF	SAGMGSAPNA	
	111111111111	41144411.		[]][]	:	
g592	MIPDVFGQIFSGAF	KFDAAAGGLI	LGGLISQTMMM	GIKRGLYSNE	eagmgsapnaa	AAAEVK
	10	20	30	40	50	60
			•			
	70	80	90	100	110	120
m592.pep	HPVSQGMIQMLGVF	VDTIIVCSC1	TAFIILIYQQP	YGDLSGAAL1	`QAAIVSQVGÇ	WGAGFL
	1111111111111	!				111111
g592	HPVSQGMIQMLGVF	VDTIIVCSC'	TAFIILIYQQP	YGDLSGAALT	OAAIVSOVGO	WGAGFL
_	70	80	90	100	110	120
	130	140	150	160	170	180
m592.pep	AVILFMFAFSTVIG	NYAYAESNVO	FIKSHWLITA	VFRMLVLAWV	YFGAVANVPI	VWDMAD
	11111111111111	шшы				111111
g592	AVILFMFAFSTVIG		TITLE TO THE TOTAL TOTAL		1   1	111111
9334						
	130	140	150	160	170	180
	190	200	210	220	230	
m592.pep	MAMGIMAWINLVAI	LLLSPLAFMI	LRDYTAKLKM	SKDPEFKLSE	HPGLKRRIKS	DVWX
	1111111111111	1111111111	1111111111	1111111111	1111111111	1111
g592	MAMGIMAWINLVAI	T.T.S.DT.AFMI	T.RDYTAKT.KM	יייייייייייייייייייייייייייייייייייייי	ון ון וווווון סעד ממע. זממעי	יווו
2000	190	200	210			DAMY
	130	200	<b>410</b>	220	230	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1851>:

```
a592.seq
       1
          ATGATTCCGG ACGTGTTCGG TCAGATTTTT TCGGGCGCGT TCAAATTCGA
      51
          CGCGGCAGCA GGCGGCTTAC TCGGCGGTCT GATTTCGCAA ACGATGATGA
          TGGGCATCAA ACGCGGCCTG TATTCCAACG AGGCGGGTAT GGGTTCCGCG
     101
     151 CCGAACGCCG CCGCCGCCGC CGAAGTGAAA CACCCTGTTT CGCAAGGTAT
     201 GATTCAAATG CTGGGCGTGT TTGTCGATAC CATCATCGTT TGTTCTTGCA
     251 CCGCCTTCAT CATCTTGATT TACCAACAGC CTTACGGCGA TTTGAGCGGT
301 GCGGCGCTGA CGCAGGCGGC GATTGTCAGC CAAGTGGGGC AATGGGGCGC
     351 GGGCTTCCTC GCCGTCATCC TGTTTATGTT TGCCTTTTCC ACCGTTATCG
     401 GCAACTATGC CTATGCCGAG TCCAACGTCC AATTCATCAA AAGCCATTGG
          CTGATTACCG CCGTTTTCCG TATGCTGGTT TTGGCGTGGG TCTATTTCGG
     451
     501 CGCGGTTGCC AATGTGCCTT TGGTCTGGGA TATGGCGAT ATGGCGATGG
     551 GCATTATGGC GTGGATCAAC CTTGTCGCCA TCCTGCTGCT CTCGCCCTTG
     601 GCGTTTATGC TGCTGCGCGA TTACACCGCC AAGCTGAAAA TGGGCAAAGA
     651 CCCCGAGTTC AAACTTTCCG AACATCCGGG CCTGAAACGC CGTATCAAAT
         CCGACGTTTG GTAA
```

This corresponds to the amino acid sequence <SEQ ID 1852; ORF 592.a>: a592.pep

- 1 MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
  - 51 PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG 101 AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVQFIKSHW
  - 151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
  - 201 AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*

m592/a592 100.0% identity in 237 aa overlap

```
20
                                     30
                                             40
                                                    50
                                                            60
                MIPDVFGQIFSGAFKFDAAAGGLLGGLISQTMMMGIKRGLYSNEAGMGSAPNAAAAAEVK
      m592.pep
                a592
                MIPDVFGQIFSGAFKFDAAAGGLLGGLISQTMMMGIKRGLYSNEAGMGSAPNAAAAAEVK
                      10
                             20
                                     30
                                            40
                                                    50
                      70
                             80
                                     90
                                            100
                                                   110
                                                           120
                HPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFL
      m592.pep
                a592
                HPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFL
... 920.00
                      70
                             80
                                     90
                                          100
                                                   110
                             140
                                    150
                                            160
                AVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMAD
      m592.pep
                AVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMAD
      a592
                     130
                            140
                                    150
                                           160
                                                   170
                                   210
                     190
                            200
                                            220
                                                   230
               MAMGIMAWINLVAILLLSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX
     m592.pep
                MAMGIMAWINLVAILLLSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX
      a592
                     190
                            200
                                    210
                                           220
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1853>: g593.seq..

```
1 atgettgaac tgaacggact ctgcaaatgc ttcggcggca aaacggtcgc
    cgacaacatc tgcctgactg tcgggcgcgg caaaatactc gccgtactgg
101
    ggcggtcggg ctgcggcaaa tccaccctgc tgaatatgat tgcgggcatc
151 gtccggccgg acggcggcga aattcggctg aacggggaaa acattacctg
201 tatgccgccc gaaaaacgcc gtatctcgct gatgtttcaa gattacgcgc
251 tgtttcccca tatgagtgcg ctggaaaata cggcattcgg tttgaaaatg
301 caaaaaatgc cgaaagccga agccgaacgc ctcgccttgt cggcacttgc
351 cgaagtcggg ctggaaaacg aggcgcaccg caagcctgaa aaactttccg
401
    gaggcgagaa gcaacggttg gcactggcgc gcgctttggt tgtccgccct
451
    tecetgetgt tgetggatga ategttttee agtttggaca egeatttgeg
501 cgaccggctg cgccgtatga ccgccgaacg catccgcaag ggcggcatcc
551 ctgccgtttt ggtaacgcat tcgcccgaag aggcctgcac ggcggcggac
    gaaatcgccg tcatgcacga ggggaaaatc cttcaatgcg gtacgcccga
601
651 aaccttgatt caaacgcctg ccggcgtgca ggtcgcccgt ctgatggggc
701 tgcccaatac cgacgatgac cgccatattc cgcaaaatgc cgtgtgcttg
751 gacaatcatg gaacggaatg ccgtctgctg tccctcgtcc gcctgcccga
    ctegeteegg ettteegeeg tecateeega acaeggegag etgaeettaa
851
    acctgactgt cggacaacat acggacggta tttccggaaa cggtacggtc
901 cgcatccgcg tcgatgaagg gcgtatcgtc cgtttccgat ga
```

## This corresponds to the amino acid sequence <SEQ ID 1854; ORF 593.ng>: g593.pep..

- 1 MLELNGLCKC FGGKTVADNI CLTVGRGKIL AVLGRSGCGK STLLNMIAGI
- 51 VRPDGGEIRL NGENITCMPP EKRRISLMFQ DYALFPHMSA LENTAFGLKM 101 QKMPKAEAER LALSALAEVG LENEAHRKPE KLSGGEKQRL ALARALVVRP
- 151 SLLLLDESFS SLDTHLRDRL RRMTAERIRK GGIPAVLVTH SPEEACTAAD
- 201 EIAVMHEGKI LQCGTPETLI QTPAGVQVAR LMGLPNTDDD RHIPQNAVCL
- 251 DNHGTECRLL SLVRLPDSLR LSAVHPEHGE LTLNLTVGQH TDGISGNGTV
- 301 RIRVDEGRIV RFR*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1855>: m593.seq

- 1 ATGCTTGAAC TGAACGGACT CTGCAAACGC TTCGGCAATA AAACCGTCGC
- 51 CGACAACATC TGCCTGACTG TCGGGCGCGG CAAAATACTC GCCGTTTTGG
- 101 GGCGGTCGGG CTGCGGAAAA TCCACCCTGC TGAATATAAT TGCGGGGATT
- 151 GTCCGGCCGG ACGGCGGGGA AATATGGCTG AACGGAGAAA ACATTACCCG