习题. 若G是一个(p,q)图, $q>\frac{1}{2}(p-1)(p-2)$, 试证G是连通图。

证明. 用反证法。假设G不连通,则至少有两个连通分量。设其中一个连通分量的顶点数为 p_1 ,边数为 q_1 ,所有其他连通分量的顶点数为 p_2 ,边数为 q_2 。则

$$\frac{1}{2}(p-1)(p-2)
= \frac{1}{2}(p_1+p_2-1)(p_1+p_2-2)
= \frac{1}{2}(p_1+p_2-1)((p_1-1)+(p_2-1))
= \frac{1}{2}(p_1(p_1-1)+p_1(p_2-1)+p_2(p_1-1)+p_2(p_2-1)-(p_1-1)-(p_2-1))
= \frac{1}{2}(p_1(p_1-1)+p_2(p_2-1)+2(p_1-1)(p_2-1))
= \frac{p_1(p_1-1)}{2}+\frac{p_2(p_2-1)}{2}+(p_1-1)(p_2-1))
\geq \frac{p_1(p_1-1)}{2}+\frac{p_2(p_2-1)}{2}
\geq q$$

矛盾。