# Preconditioning the Stage Equations of Implicit Runge-Kutta Methods

Michal Outrata and Martin J. Gander
UNIGE

Introduction and Preliminaries

Preconditioner

Optimization

Numerical examples

# Model problem

## Model problem

$$\left(\frac{\partial}{\partial t} - \Delta\right) u = f \quad \text{in } \Omega \times (0, T)$$

$$u = g \quad \text{on } \partial\Omega \times (0, T)$$

$$u = u_0 \quad \text{on } \partial\Omega \times \{0\}$$

# Model problem





### Discretization

### Discretization



### Discretization





 $t_M = T$ 

#### Discretization



#### Discretization



## Runge-Kutta methods

$$\frac{\partial}{\partial t}u = \Delta u + f \quad \text{in } \Omega \times (0, T)$$

$$u = g \quad \text{on } \partial \Omega \times (0, T)$$

$$u = u_0 \quad \text{on } \partial \Omega \times \{0\}$$

$$\mathbf{u}^m = \mathbf{u}^{m-1} + \tau \sum_{i=1}^{\infty} b_i \mathbf{k}_i^m$$

$$\mathbf{u}^m = \mathbf{u}^{m-1} + \tau \sum_{i=1}^{3} b_i \mathbf{k}_i^m$$

$$\mathbf{k}_{1}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{1,j} L \mathbf{k}_{j}^{m} \qquad c_{1} \mid a_{1,1} \dots a_{1,s} \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ \mathbf{k}_{s}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{s,j} L \mathbf{k}_{j}^{m} \qquad c_{s} \mid a_{s,1} \dots a_{s,s} \\ \hline b_{1} \dots b_{s}$$

$$\mathbf{k}_{1}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{1,j} L \mathbf{k}_{j}^{m}$$

$$\vdots$$

$$\mathbf{k}_{s}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{s,j} L \mathbf{k}_{j}^{m}$$

$$\mathbf{k}_{1}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{1,j} L \mathbf{k}_{j}^{m}$$

$$\vdots$$

$$\mathbf{k}_{s}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{s,j} L \mathbf{k}_{j}^{m}$$

$$\left(I_s \otimes I_n - \frac{\tau}{h^2} (A \otimes L)\right) \mathbf{k}^m = \frac{1}{h^2} (I_s \otimes L) \mathbf{u}^m$$

$$\mathbf{k}_{1}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{1,j} L \mathbf{k}_{j}^{m}$$

$$\vdots$$

$$\mathbf{k}_{s}^{m} = \frac{1}{h^{2}} L \mathbf{u}^{m} + \frac{\tau}{h^{2}} \sum_{j=1}^{s} a_{s,j} L \mathbf{k}_{j}^{m}$$

$$\left(I_s \otimes I_n - \frac{\tau}{h^2} (A \otimes L)\right) \mathbf{k}^m = \frac{1}{h^2} (I_s \otimes L) \mathbf{u}^m$$

### Preconditioner – idea

#### **Preconditioner** – idea

$$\left| \operatorname{factor} \left( I_s \otimes I_n - \frac{\tau}{h^2} A \otimes L \right) \right| \approx I_s \otimes I_n - \frac{\tau}{h^2} \left| \operatorname{factor} \left( A \right) \otimes L \right|$$

#### **Preconditioner** – idea

$$\left| \text{factor} \left( I_s \otimes I_n - \frac{\tau}{h^2} A \otimes L \right) \right| \approx I_s \otimes I_n - \frac{\tau}{h^2} \left| \text{factor} \left( A \right) \otimes L \right|$$

$$I_s \otimes I_n - \frac{\tau}{h^2} U_A \otimes L =: P^{\text{triang}}$$

#### Preconditioner

$$I_s \otimes I_n - \frac{\tau}{h^2} U_A \otimes L =: P^{\text{triang}}$$

$$M\left(P^{\text{triang}}\right)^{-1}$$

 $sp.linalg.gmres(M, rhs, P^{triang})$ 

# **Convergence Analysis**

Michal Outrata
SND 2021

sp.linalg.gmres

# **Convergence Analysis**

sp.linalg.gmres

$$\frac{\|r_k\|}{\|r_0\|} \leq \min_{\substack{\varphi(0)=1\\\deg(\varphi)\leq k}} \|\varphi(M\left(P^{\text{triang}}\right)^{-1})\|$$

$$\frac{\|r_k\|}{\|r_0\|} \leq \kappa(S) \min_{\substack{\varphi(0)=1\\\deg(\varphi)\leq k}} \max_{\zeta_i \in \text{sp}(M(P^{\text{triang}})^{-1})} |\varphi(\zeta_i)|$$

$$\frac{\|r_k\|}{\|r_0\|} \leq \kappa(S) \min_{\substack{\varphi(0)=1\\\varphi(0)=1}} \max_{\zeta \in \text{co}(sp(\cdots))} |\varphi(\zeta)|$$

$$\frac{\|r_k\|}{\|r_0\|} \leq \kappa(S) \min_{\substack{\varphi(0)=1\\\varphi(0)=1}} \max_{\zeta \in \text{co}(sp(\cdots))} |\varphi(\zeta)|$$

Michal Outrata
SND 2021

Step I:

#### Step I:

$$M(P^{\text{triang}})^{-1} \sim \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

Step I:

$$M(P^{\mathrm{triang}})^{-1} \sim \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

with 
$$X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$$
  $\forall ij$ 

Michal Outrata
SND 2021

Step II:

#### Step II:

$$X = \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix} \sim$$

with 
$$X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$$

$$X \in \mathbb{R}^{ns \times ns}$$

#### Step II:

$$X = \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

with 
$$X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$$

$$X \in \mathbb{R}^{ns \times ns}$$



$$X_k \in \mathbb{R}^{s \times s}$$

**Lemma.** Let  $X \in \mathbb{R}^{ns \times ns}$  and  $X_k \in \mathbb{R}^{s \times s}$  be as above and set

eigenpair 
$$(X_k) = \left(\mu_\ell^{(k)}, \mathbf{s}_\ell^{(k)}\right)$$
.

Then the eigenpairs of X are equal to  $(\mu_{\ell}^{(k)}, \mathbf{s}_{\ell}^{(k)} \otimes \mathbf{e}_k)$ .

s=2

# Michal Outrata SND 2021

**Theorem.** Let s = 2 and  $a_{11}$ ,  $\det(A) \neq 0$ . Adopting the above notation and setting  $\operatorname{sp}(L) = \{\lambda_k\}_k$  and  $\theta_k = \frac{\tau}{h^2} \lambda_k$  we have  $\operatorname{sp}(M\left(P^{\operatorname{triang}}\right)^{-1}) = \{1\} \cup_{k=1}^n \zeta_k$  with

$$\zeta_k = \frac{(1 - a_{22}\theta_k)(1 - a_{11}\theta_k) - a_{21}a_{12}\theta_k^2}{(1 - a_{11}\theta_k)\left(1 - \left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right)\right)\theta_k}.$$

**Theorem.** Let s = 2 and  $a_{11}$ ,  $\det(A) \neq 0$ . Adopting the above notation and setting  $\operatorname{sp}(L) = \{\lambda_k\}_k$  and  $\theta_k = \frac{\tau}{h^2} \lambda_k$  we have  $\operatorname{sp}(M\left(P^{\operatorname{triang}}\right)^{-1}) = \{1\} \cup_{k=1}^n \zeta_k$  with

$$\zeta_k = \frac{(1 - a_{22}\theta_k)(1 - a_{11}\theta_k) - a_{21}a_{12}\theta_k^2}{(1 - a_{11}\theta_k)\left(1 - \left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right)\right)\theta_k}.$$

Moreover, assuming that  $a_{21} \neq 0$  it holds

$$\kappa(S) = \max_{k \in \{1, ..., n\}} \kappa(S_k) = \max_{k \in \{1, ..., n\}} \sqrt{\frac{\sqrt{1 + \alpha_k^2 + \alpha_k}}{\sqrt{1 + \alpha_k^2 - \alpha_k}}}$$
with  $\alpha_k = \frac{|a_{21}|}{|a_{11} - \theta_k^{-1}| \cdot |1 - \zeta_k|}$ 



# Numerical examples

s=2



## Michal Outrata SND 2021

#### Optimization of the method

| $c_1$ | $a_{1,1}$ |    | $a_{1,s}$ |
|-------|-----------|----|-----------|
| :     | •         | ٠. | •         |
| $c_s$ | $a_{s,1}$ |    | $a_{s,s}$ |
|       | $b_1$     |    | $b_s$     |

• GMRES convergence

Order of convergence of RK

Numerical stability (A, L)

• GMRES convergence

Order of convergence of RK

Numerical stability (A, L)

s=2



## Michal Outrata SND 2021

## **Numerical examples**

s=2



Michal Outrata
SND 2021

Average number of GMRES iterations for IRK:

#### Average number of GMRES iterations for IRK:

| DoF            | NoPrec | UpperTriang | UpperTriang opt |
|----------------|--------|-------------|-----------------|
| $2 \cdot 225$  | 46     | 6           | 2               |
| $2 \cdot 833$  | 50     | 6           | 1               |
| $2 \cdot 3201$ | 50     | 6           | 1               |
| $2\cdot 12545$ | 50     | 6           | 1               |
| $2\cdot 49665$ | 49     | 6           | 3               |

#### Conclusion

#### **Results & Generalizations**

- Transformed system (M. Neytcheva)
- Multiple stages (  $s \geq 3$  )
- Other preconditioners (LU, diag, ...)
- FEM discretization
- Limit analysis for au and h

- Other preconditioners (EVD)
- Analysis for more difficult problems
- Analysis for multiple stages (with simplifications)
- Descriptive complex bounds (Joukowski/ FoV)
- No spectrum, only bounds (complex case)

#### References

- M. M. Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone. A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems, 2021.
- M. Neytcheva and O. Axelsson. Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order. In *Proceedings of ALGORITHMY 2020*, 2020.
- G. Wanner, S. P. Nørsett, and E. Hairer. Solving Ordinary Differential Equations I: Non-Stiff Problems. Springer Berlin-Heidelberg, 1987.
- G. Wanner and E. Hairer. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Berlin-Heidelberg, 1996.
- R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1994.

# Thank you for your attention