Corrigé 11

1. Soit \hat{b} la fonction définie dans l'exercice 3. de la série 10 (fonction prolongée par continuité de la fonction b donnée dans l'exercice 1.b) de la série 9):

$$\hat{b}(x) = \frac{\sqrt{x^2 + 1} + x - 1}{x}$$
 si $x \neq 0$ et $\hat{b}(0) = 1$.

La fonction \hat{b} est-elle continûment dérivable en $x_0 = 0$?

Dans l'exercice 3. de la série 10, nous avons montré que la fonction \hat{b} est dérivable en $x_0 = 0$. Le nombre dérivée $\hat{b}'(0)$ est défini par

$$\hat{b}'(0) = \lim_{h \to 0} \frac{\hat{b}(h) - \hat{b}(0)}{h} = \frac{1}{2}.$$

La fonction \hat{b} est continûment dérivable en $x_0=0$ si et seulement si la fonction \hat{b} est continue en $x_0=0$, c'est-à-dire si et seulement si $\lim_{x\to 0} \hat{b}'(x) = \hat{b}'(0)$.

• Expression de la fonction dérivée $\hat{b}'(x)$ pour $x \neq 0$.

$$\begin{split} \widehat{b}'(x) &= \left(\frac{\sqrt{x^2+1}+x-1}{x}\right)' = \frac{\left(\frac{2x}{2\sqrt{x^2+1}}+1\right)x - \left(\sqrt{x^2+1}+x-1\right)1}{x^2} \\ &= \frac{\left(x+\sqrt{x^2+1}\right)x - \left(x^2+1\right) - x\sqrt{x^2+1} + \sqrt{x^2+1}}{x^2\sqrt{x^2+1}} = \frac{-1+\sqrt{x^2+1}}{x^2\sqrt{x^2+1}} \,. \end{split}$$

• Calcul de la limite de $\hat{b}'(x)$ lorsque x tend vers 0.

$$\lim_{x \to 0} \hat{b}'(x) = \lim_{x \to 0} \frac{-1 + \sqrt{x^2 + 1}}{x^2 \sqrt{x^2 + 1}} = \lim_{x \to 0} \frac{\left(-1 + \sqrt{x^2 + 1}\right)\left(1 + \sqrt{x^2 + 1}\right)}{x^2 \sqrt{x^2 + 1}\left(1 + \sqrt{x^2 + 1}\right)}$$
$$= \lim_{x \to 0} \frac{x^2}{x^2 \sqrt{x^2 + 1}\left(1 + \sqrt{x^2 + 1}\right)} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 1}\left(1 + \sqrt{x^2 + 1}\right)} = \frac{1}{2}.$$

• Conclusion.

$$\lim_{x\to 0} \widehat{b}'(x) = \frac{1}{2} = \widehat{b}'(0) \text{ donc la fonction } \widehat{b}' \text{ est continue en } x_0 = 0.$$

2. Déterminer les points de tangence T des tangentes issues de l'origine à la courbe Γ d'équation $y=\frac{3x+1}{x^2-x+4}$.

Soit $f(x) = \frac{3x+1}{x^2-x+4}$. L'équation de la tangente t à Γ en x_0 s'écrit :

$$t: y - f(x_0) = f'(x_0)(x - x_0).$$

La tangente $\,t\,$ passe par l'origine $\,O,\,$ donc les coordonnées $\,(0,0)\,$ vérifient l'équation de $\,t\,$:

$$0 - f(x_0) = f'(x_0) (0 - x_0) \quad \Leftrightarrow \quad f(x_0) = x_0 \cdot f'(x_0).$$

Calcul de la fonction dérivée de f:

$$f'(x) = \frac{3(x^2 - x + 4) - (3x + 1)(2x - 1)}{(x^2 - x + 4)^2} = \frac{-3x^2 - 2x + 13}{(x^2 - x + 4)^2}.$$

Résolution de l'équation en x_0 :

$$f(x_0) = x_0 \cdot f'(x_0) \Leftrightarrow \frac{3x_0 + 1}{x_0^2 - x_0 + 4} = x_0 \cdot \frac{-3x_0^2 - 2x_0 + 13}{(x_0^2 - x_0 + 4)^2}$$

$$\Leftrightarrow (3x_0 + 1)(x_0^2 - x_0 + 4) = x_0 \cdot (-3x_0^2 - 2x_0 + 13) \Leftrightarrow 6x_0^3 - 2x_0 + 4 = 0$$

$$\Leftrightarrow (x_0 + 1)(\underbrace{6x_0^2 - 6x_0 + 4}_{0 < 0}) = 0 \Leftrightarrow x_0 = -1. \quad \text{D'où}: \quad T(-1; -\frac{1}{3}).$$

3. Soient f une fonction dérivable en $x_0=2$, Γ_1 la courbe d'équation y=f(x) et t_1 la tangente à Γ_1 en $x_0=2$.

$$t_1: 3x - 2y - 4 = 0.$$

Soient g la fonction définie par $g(x) = \frac{1}{x^2 + 1}$,

 Γ_2 la courbe d'équation $y = g \circ f(x)$ et t_2 la tangente à Γ_2 en $x_0 = 2$.

Déterminer l'équation cartésienne de $\ t_2$.

L'équation cartésienne de t_2 s'écrit $y - g \circ f(x_0) = (g \circ f)'(x_0) \cdot (x - x_0)$.

• Calcul de $g \circ f(x_0)$:

 $\circ (x_0, f(x_0))$ est le point de contact entre Γ_1 et t_1 .

On en déduit que $f(x_0)$ est l'ordonnée du point de t_1 d'abscisse x_0 :

$$(x_0, f(x_0)) \in t_1 \Leftrightarrow 3x_0 - 2f(x_0) - 4 = 0 \Leftrightarrow f(x_0) = 1.$$

• Puis on calcule
$$g \circ f(x_0)$$
: $g \circ f(x_0) = g[f(x_0)] = \frac{1}{x^2 + 1} \Big|_{x=1} = \frac{1}{2}$.

- Calcul de $(g \circ f)'(x_0) = g'[f(x_0)] \cdot f'(x_0)$:
 - o $f'(x_0)$ est la pente de $t_1: y = \frac{3}{2} x 2$, d'où $f'(x_0) = \frac{3}{2}$.

$$\circ g'[f(x_0)] = \left[\frac{1}{x^2+1}\right]'_{x=1} = -\frac{2x}{(x^2+1)^2}\Big|_{x=1} = -\frac{1}{2}$$

- On en déduit $(g \circ f)'(x_0)$: $(g \circ f)'(x_0) = g'[f(x_0)] \cdot f'(x_0) = -\frac{3}{4}$.
- ullet L'équation cartésienne de t_2 s'écrit donc

$$y - g \circ f(x_0) = (g \circ f)'(x_0) \cdot (x - x_0) \Leftrightarrow y - \frac{1}{2} = -\frac{3}{4}(x - 2)$$

 $\Leftrightarrow 3x + 4y - 8 = 0.$

4. Calculer la dérivée d'ordre $n, n \in \mathbb{N}^*$, des fonctions suivantes :

a)
$$f(x) = x^{-3}$$

b)
$$g(x) = \sin(ax), \quad a \in \mathbb{R}^*.$$

a)
$$f(x) = x^{-3}$$
, $f'(x) = -3x^{-4}$, $f''(x) = (-3)(-4)x^{-5}$,
 $f^{(3)}(x) = (-3)(-4)(-5)x^{-6}$, \cdots , $f^{(n)}(x) = (-1)^n \frac{(n+2)!}{2!} x^{-(n+3)}$.

On démontre ce résultat par récurrence.

• Vérification pour n=1.

$$f^{(n)}(x)\big|_{n=1} = (-1)^n \frac{(n+2)!}{2!} x^{-(n+3)}\bigg|_{n=1} = -3 x^{-4} = f'(x).$$

- Démonstration du pas de récurrence.
 - o Hypothèse : $f^{(n)}(x) = (-1)^n \frac{(n+2)!}{2!} x^{-(n+3)}$ pour un n donné.

• Conclusion:
$$f^{(n+1)}(x) = (-1)^{n+1} \frac{(n+3)!}{2!} x^{-(n+4)}$$
.

• Preuve:
$$f^{(n+1)}(x) = \left[f^{(n)}(x) \right]' = \left[(-1)^n \frac{(n+2)!}{2!} x^{-(n+3)} \right]'$$

 $= (-1)^n \frac{(n+2)!}{2!} \left[x^{-(n+3)} \right]' = (-1)^n \frac{(n+2)!}{2!} \left[-(n+3) \right] x^{-(n+3)-1}$
 $= (-1)^{n+1} \frac{(n+3)!}{2!} x^{-(n+4)}$.

b)
$$g(x) = \sin(ax)$$
, $g'(x) = a \cos(ax)$, $g''(x) = -a^2 \sin(ax)$, $g^{(3)}(x) = -a^3 \cos(ax)$, $g^{(4)}(x) = a^4 \sin(ax)$, \cdots \cdots , $g^{(n)}(x) = a^n \sin(ax + n\frac{\pi}{2})$.

On démontre ce résultat par récurrence.

• Vérification pour n=1.

$$g^{(n)}(x)\big|_{n=1} = a^n \sin(ax + n\frac{\pi}{2})\big|_{n=1} = a \cos(ax) = g'(x).$$

- Démonstration du pas de récurrence.
 - o Hypothèse : $g^{(n)}(x) = a^n \sin(ax + n\frac{\pi}{2})$ pour un n donné.
 - $\circ \text{ Conclusion : } g^{(n+1)}(x) = a^{n+1} \sin \left[ax + (n+1) \frac{\pi}{2} \right].$
 - Preuve: $g^{(n+1)}(x) = \left[g^{(n)}(x)\right]' = \left[a^n \sin(ax + n\frac{\pi}{2})\right]'$ $= a^n \left[\sin(ax + n\frac{\pi}{2})\right]' = a^n \left[a\cos(ax + n\frac{\pi}{2})\right]$ $= a^{n+1} \sin\left[(ax + n\frac{\pi}{2}) + \frac{\pi}{2}\right] = a^{n+1} \sin\left[ax + (n+1)\frac{\pi}{2}\right].$
- 5. Estimer, à l'aide de l'approximation linéaire, la quantité $A=\sqrt[4]{16,032}$.

Soient $f(x) = \sqrt[4]{x}$, $x_0 = 16$ et $\Delta x = 0,032$.

L'approximation linéaire de $f(x_0 + \Delta x)$ en x_0 s'écrit $f(x_0) + \Delta x \cdot f'(x_0)$.

$$f'(x) = \frac{1}{4} x^{-3/4} = \frac{1}{4\sqrt[4]{x^3}}, \quad f'(x_0) = \frac{1}{32}. \quad A \approx \sqrt[4]{16} + 0,032 \cdot \frac{1}{32} = 2,001.$$

6. Soient Δf l'accroissement et df la différentielle de la fonction $f(x)=x^3$. Evaluer $\delta=|\Delta f-df|$ aux points x=0 et x=100 pour un accroissement $\Delta x=\frac{1}{10}$.

Expressions de Δf et de df en x_0 et relativement à l'accroissement Δx :

$$\Delta f = f(x_0 + \Delta x) - f(x_0)$$
 et $df = \Delta x \cdot f'(x_0)$,

avec $f(x) = x^3$ et $f'(x) = 3x^2$.

- En $x_0 = 0$, $\Delta f = f(\frac{1}{10}) f(0) = 10^{-3}$ et $df = \frac{1}{10} \cdot f'(0) = 0$. D'où $\delta = 10^{-3}$.
- En $x_1 = 100$, $\Delta f = f(100 + \frac{1}{10}) f(100) = 3 \cdot 10^3 + 3 + 10^{-3}$ et $df = \frac{1}{10} \cdot f'(100) = 3 \cdot 10^3$. D'où $\delta = 3 + 10^{-3}$.
- 7. Soient g(x) la fonction définie par

$$g(x) = \frac{1 + \sqrt{16 + x^2}}{1 - \sqrt{25 - x^2}}$$

et f(x) une fonction définie dans un voisinage de x_0 telle que $f(x_0) = 3$.

Soient A l'approximation linéaire de $f(x_0 + \Delta x)$ en x_0 et B l'approximation linéaire de $(g \circ f)(x_0 + \Delta x)$ en x_0 pour un Δx donné.

Sachant que $A = \frac{22}{7}$, en déduire la valeur de B.

L'approximation linéaire B de $(g \circ f)(x_0 + \Delta x)$ en x_0 s'écrit

$$B = (g \circ f)(x_0) + (g \circ f)'(x_0) \cdot \Delta x = g[f(x_0)] + g'[f(x_0)] \cdot f'(x_0) \cdot \Delta x.$$

• Calcul de $g[f(x_0)]$

$$g[f(x_0)] = g(3) = \frac{1 + \sqrt{16 + x^2}}{1 - \sqrt{25 - x^2}} \bigg|_{x=3} = \frac{1+5}{1-4} = -2$$

- Calcul de $g'[f(x_0)]$
 - \circ Fonction dérivée g'(x)

$$g'(x) = \frac{\frac{2x}{2\sqrt{16+x^2}} \cdot (1 - \sqrt{25 - x^2}) - (1 + \sqrt{16 + x^2}) \cdot \frac{-2x}{-2\sqrt{25 - x^2}}}{(1 - \sqrt{25 - x^2})^2}.$$

• Evaluation

$$g'[f(x_0)] = g'(3) = \frac{\frac{3}{5} \cdot (1-4) - (1+5) \cdot \frac{3}{4}}{(1-4)^2} = -\frac{1}{5} - \frac{2}{4} = -\frac{7}{10}$$

• Calcul de $f'(x_0) \cdot \Delta x$

L'approximation linéaire A de $f(x_0 + \Delta x)$ en x_0 s'écrit

$$A = f(x_0) + f'(x_0) \cdot \Delta x.$$

Connaissant $A = \frac{22}{7}$ et $f(x_0) = 3$, on en déduit la valeur de $f'(x_0) \cdot \Delta x$:

$$A = f(x_0) + f'(x_0) \cdot \Delta x \quad \Leftrightarrow \quad f'(x_0) \cdot \Delta x = A - f(x_0)$$

$$\Leftrightarrow \quad f'(x_0) \cdot \Delta x = \frac{22}{7} - 3 = \frac{1}{7}.$$

• Conclusion

$$B = (g \circ f)(x_0) + (g \circ f)'(x_0) \cdot \Delta x = g[f(x_0)] + g'[f(x_0)] \cdot f'(x_0) \cdot \Delta x,$$

$$B = (-2) + \left(-\frac{7}{10}\right) \cdot \frac{1}{7} = -2, 1.$$

8. Soient Γ la courbe définie par la relation : $y^3 + xy^2 + x^3y + x = 0$ et P le point de Γ d'abscisse $x_P = 1$.

Déterminer l'équation de la tangente à Γ en P.

• Equation de la tangente à Γ passant par P.

$$y - y_P = m(x - x_P), \quad \text{avec} \quad m = \frac{dy}{dx}\Big|_P.$$

 \bullet Coordonnées du point P.

$$\begin{split} P \in \Gamma \quad \Rightarrow \quad y_P^3 + x_P \, y_P^2 + x_P^3 \, y_P + x_P &= 0 \,, \qquad x_P = 1 \,, \\ \\ \Rightarrow \quad y_P^3 + y_P^2 + y_P + 1 &= 0 \quad \Leftrightarrow \quad (y_P + 1) \left(y_P^2 + 1 \right) &= 0 \quad \Leftrightarrow \quad y_P = -1 \,, \\ \\ P \left(1, -1 \right) \,. \end{split}$$

• Dérivation implicite de la relation définissant Γ .

$$3y^2y' + y^2 + 2xyy' + 3x^2y + x^3y' + 1 = 0$$
.

• Evaluation en P.

$$3y_P^2 m + y_P^2 + 2x_P y_P m + 3x_P^2 y_P + x_P^3 m + 1 = 0 \Leftrightarrow m = \frac{1}{2}.$$

• Equation de la tangente à Γ passant par P.

$$y+1 = \frac{1}{2}(x-1) \Leftrightarrow x-2y-3 = 0.$$

9. Sous quel angle φ les courbes Γ_1 et Γ_2 se coupent-elles ?

$$\Gamma_1: y^3 + x^3y^2 + x = 3, \qquad \Gamma_2: y^3 + x^3y^2 - x = 1.$$

Au point d'intersection de Γ_1 et Γ_2 , l'angle entre ces deux courbes est l'angle défini par leur tangente en ce point.

Figure d'étude :

• Recherche des points d'intersection de Γ_1 et Γ_2 .

$$y^3 + x^3y^2 + x - 3 = y^3 + x^3y^2 - x - 1 \implies x = 1 \implies y = 1.$$

Les deux courbes se coupent en un seul point P(1; 1).

- Recherche de la pente m_1 de la tangente à Γ_1 en P.
 - \circ Dérivation implicite de la relation définissant Γ_1 .

$$3y^2y' + 3x^2y^2 + 2x^3yy' + 1 = 0$$
.

 \circ Evaluation en P.

$$3y_P^2 m_1 + 3x_P^2 y_P^2 + 2x_P^3 y_P m_1 + 1 = 0 \Leftrightarrow m_1 = -\frac{4}{5}.$$

- Recherche de la pente m_2 de la tangente à Γ_2 en P.
 - \circ Dérivation implicite de la relation définissant Γ_2 .

$$3y^2y' + 3x^2y^2 + 2x^3yy' - 1 = 0$$
.

 \circ Evaluation en P.

$$3y_P^2 m_2 + 3x_P^2 y_P^2 + 2x_P^3 y_P m_2 - 1 = 0 \Leftrightarrow m_2 = -\frac{2}{5}.$$

• Détermination de $\varphi \in [0; \frac{\pi}{2}[$ à l'aide de $\tan \varphi$.

$$\tan \varphi = \tan |\varphi_1 - \varphi_2| = \left| \tan (\varphi_1 - \varphi_2) \right| = \left| \frac{\tan \varphi_1 - \tan \varphi_2}{1 + \tan \varphi_1 \cdot \tan \varphi_2} \right|$$

$$= \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right| = \left| \frac{-\frac{4}{5} - \left(-\frac{2}{5}\right)}{1 + \left(-\frac{4}{5}\right) \cdot \left(-\frac{2}{5}\right)} \right| = \frac{10}{33},$$
(10)

$$\varphi = \arctan\left(\frac{10}{33}\right)$$
.