ত্রিকোণমিতি ফাংশনের লেখচিত্র

প্রশ্নমালা VI B

1(a) Sol^n : জ্যামিতিক কোণ ধনাত্মক এবং 360^0 এর ছোট হয় 1.: Ans. B

(b)
$$Sol^n$$
 : ব্ৰু প্রিমি $= \pi$ Ans. C (c) Sol^n : $sec \theta = \frac{OB}{OP}$: Ans. A

(d) Solⁿ: $\tan^2 \theta = \sec^2 \theta - 1$ Ans. C

(e) Sol": সবগুলি তথ্য সত্য i Ans. D

(f) $\mathbf{Sol}^n : \sin \theta$ ও $\cos \theta$ এর মান সবসময় -1 থেকে +1 Ans. C

(g) $\mathbf{Sol}^{\mathbf{n}}$: কোণ 90° থেকে বেড়ে 180° হলে $\cos \theta$ এর মান 0 থেকে কমে -1 হবে । Ans. A

(h) Solⁿ: সর্বোচ্চ মান =
$$1 + \sqrt{(\pm 1)^2 + 1} = 1 + \sqrt{2}$$
 Ans. C

2. নিম্নের ফাংশনগুলোর লেখচিত্র অজ্জন কর ঃ

(a) $y = \cos 2x$, যখন $0 \le x \le 2\pi$

[ঢা.'১০,'১৪; চ.'০৯,'১৩]

সমাধান ঃ নিচের তালিকায় $x \in [0, 2\pi]$ এর জন্য $y = \cos 2x$ এর প্রতিরূপী মান নির্ণয় করিঃ

х	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	3. $\frac{\pi}{18}$	4. $\frac{\pi}{18}$	$4.5 \times \frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$y = \cos 2x$	1	0.94	0.77	.0 · 5	0 · 17	0	-0.17	-0.5
х	7. $\frac{\pi}{18}$	$8. \frac{\pi}{18}$	9. $\frac{\pi}{18}$	$12.\frac{\pi}{18}$	$17.\frac{\pi}{18}$	$22.\frac{\pi}{18}$	$28.\frac{\pi}{18}$	36. $\frac{\pi}{18}$
$y = \cos 2x$	-0.77	- 0.93	-1.	-0.5	0.94	-0.17	0.94	1

 \triangle কটি ছক কাগজে স্থানান্তেকর অক্ষরেখা X'OX ও YOY' আঁকি ।

 $y = \cos 2x$ এর লেখচিত্র।

স্কেল নির্ধারণ x x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের x x x এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত ক্মিপুলো ছক কাগজে স্থাপন করি । স্থাপিত ক্মিপুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y = \cos 2x$ এর লেখ অপ্তকন করা হল ।

(b) $y = \sin 3x$, যখন $0 \le x \le \pi$

[কু. '০৯,'১২; রা.'১৪; দি.'১৩]

সমাধান $x \in [0, \pi]$ এর জন্য $y = \sin 3x$ এর প্রতিরূপী মান নির্ণয় করি $x \in [0, \pi]$

х	0	$\frac{\pi}{36}$	$2. \frac{\pi}{36}$	$3. \frac{\pi}{36}$	4. $\frac{\pi}{36}$	$5. \frac{\pi}{36}$	$6. \frac{\pi}{36}$	$7. \frac{\pi}{36}$
$y = \sin 3x$	0	0.26	0.5	0.71	0 · 87	0.97	1	0.97
х	$8. \frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	22. $\frac{\pi}{36}$	28. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$y = \sin 3x$	0.87	0.71	0.5	0	-0.97	-0.5	0.87	0

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{36}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

y = sin 3x এর শেখচিত্র

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত বিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\sin 3x$ এর লেখ অঞ্জন করা হল ।

2. (c) $y = \cos 3x$, যখন $0 \le x \le \pi$

[চ. '০১, '০৪; ঢা. '০৩ ; য. '০৫]

সমাধান $x \in [0, \pi]$ এর জন্য $y = \cos 3x$ এর প্রতিরূপী মান নির্ণয় করিঃ

x	0	$\frac{\pi}{36}$	$2. \frac{\pi}{36}$	$3. \frac{\pi}{36}$	4. $\frac{\pi}{36}$	5. $\frac{\pi}{36}$	6. $\frac{\pi}{36}$	7. $\frac{\pi}{36}$
$y = \cos 3x$	1	0.97	0.87	0.71	0.5	0.26	0	-0.26
Х	8. $\frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	22. $\frac{\pi}{36}$	28. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$y = \cos 3x$	-0.5	-0.71	-0.87	-1	-0.26	-0.5	0.5	-1

একটি ছক কাগজে স্থানান্তেকর অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেল নির্ধারণ x x-জন্ম বরাবর ছোট বর্গন্দেত্রের এক বাহু = $\frac{\pi^c}{36}$ এবং y- জন্ম বরাবর ছোট বর্গন্দেত্রের 10-বাহু = 1

y = cos 3x. এর শেখচিত্র।

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\cos 3x$ এর লেখ অঞ্চন করা হল ।

2. (d)
$$y = \sin^2 x$$
 যখন $-\pi^2 \le x \le \pi$

[ব. '০১;সি. '১, '১০; ঢা. '০৪; কু. '১৩; চ. '১৩]

সমাধান ঃ নিচের তালিকায় $x \in [-\pi, \pi]$ এর জন্য $y = \sin^2 x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

х	0	$\pm \frac{\pi}{18}$	$\pm 2. \frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm 5. \frac{\pi}{18}$	$\pm 6. \frac{\pi}{18}$
$y = \sin^2 x$	0	0.03	Ò·117	0 - 25	0.41	0 · 59	0.75
х	$\pm 7. \frac{\pi}{18}$	•±8. $\frac{\pi}{18}$	$\pm 9. \ \frac{\pi}{18}$	$\pm 12. \frac{\pi}{18}$	$\pm 14. \frac{\pi}{18}$	$\pm 16. \frac{\pi}{18}$	$\pm 18. \ \frac{\pi}{18}$
$y = \sin^2 x$	0.88	0.97	1	0.75	0.41	0.117	0

একটি ছক কাগজে স্থানাভেকর অক্ষরেখা X'OX ও YOY' আঁকি ।

স্কেল নির্ধারণ x x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত বিন্দুগুলো মুক্ত হচ্ছেত বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\sin^2 x$ এর লেখ অপ্তকন করা হল।

(e) $y = \cos^2 x$, যখন $-\pi \le x \le \pi$ [রা.'০৩, '০৬,'০১; ব.'০৫; চ.'০৫,'১১; য.'০৯,'১৩; ব.,দি.'১৩] সমাধান ঃ নিচের তালিকায় $x \in [-\pi, \pi]$ এর জন্য $y = \cos^2 x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

х	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm 5.\frac{\pi}{18}$	$\pm 6.\frac{\pi}{18}$
$y = \cos^2 x$	1	0.97	0.88	0.75	0.59	0.41	0 · 25
Х	$\pm 7.\frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$+9.\frac{\pi}{18}$	$\pm 10 \frac{\pi}{18}$	$\pm 12.\frac{\pi}{18}$	$\pm 15.\frac{\pi}{18}$	$\pm 18.\frac{\pi}{18}$
$y = \cos^2 x$	0 · 12	0.03	0	0.97	0.25	0.75	1

একটি ছক কাগজে স্থানাংকের অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

 $y = \cos^2 x$ এর লেখচিত্র।

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত বিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\cos^2 x$ এর লেখ অঞ্জন করা হল ।

2. (f) $y = \sin^3 x$, যখন $0 \le x \le \pi$ [য. '০০; চ. '০২] সমাধাদ ঃ নিচের তালিকায় $x \in [0\,,\,\pi]$ এর জন্য $y = \sin^3 x$ এর প্রতিরূপী মান নির্ণয় করিঃ

х	0	$\frac{\pi}{18}$	$2. \frac{\pi}{18}$	$3.\frac{\pi}{18}$	$4.\frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$y = \sin^3 x$	0	0.005	0.04	0.13	0.27	0.45	0.65
х	7. $\frac{\pi}{18}$	8. $\frac{\pi}{18}$	9. $\frac{\pi}{18}$	12. $\frac{\pi}{18}$	14. $\frac{\pi}{18}$	16. $\frac{\pi}{18}$	18. $\frac{\pi}{18}$
$y = \sin^3 x$	0.83	0.96	1	0.65	0.27	0.04	0

একটি ছক কাগজে স্থানাজ্কের অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

এখন নির্ধরিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত বিন্দুগুলো মুক্ত হচেত বকাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\sin^3 x$ এর লেখ অপ্তকন করা হল।

2. (g) $y = \sin x \cos x$, যখন $-\pi \le x \le \pi$

সমাধান ও $y = \sin x \cos x \Rightarrow y = \frac{1}{2} \sin 2x$

নিচের তালিকায় $\mathbf{x} \in [-\pi, \pi]$ এর জন্য $\mathbf{y} = \frac{1}{2} \sin 2\mathbf{x}$ এর প্রতিরূপী মান নির্ণয় করি

			<u>Z</u>				
x	0	$\pm \frac{\pi}{18}$	$\pm 2. \frac{\pi}{18}$	$\pm 3. \frac{\pi}{18}$	$\pm 4. \frac{\pi}{18}$	$\pm \frac{\pi}{4}$	$\pm 5. \frac{\pi}{18}$
$y = \frac{1}{2}\sin 2x$	0	±0.17	± 0.32	± 0 · 43	± 0 · 49	±0.5	± 0.49
х	$\pm 6. \frac{\pi}{18}$	$\pm 7 \frac{\pi}{18}$	$\pm 8. \frac{\pi}{18}$	$\pm 9. \frac{\pi}{18}$	$\pm 14. \frac{\pi}{18}$	$\pm 15. \frac{\pi}{18}$	$\pm 18. \frac{\pi}{18}$
$y = \frac{1}{2} \sin 2x$	± 0 · 43	± 0.32	± 0.17	0	∓ 0.49	∓0.43	0

v = sinx cosx এর শেখচিত্র।

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেল নির্ধারণ x_x -অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y_x - অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1 এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত বিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y=\sin x$ $\cos x$ এর শেখ অপ্তকন করা হল ।

3. লেখচিত্রের সাহায্যে সমাধান কর ৪

(a)
$$\sin x - \cos x = 0$$
, $0 \le x \le \frac{\pi}{2}$

[কু. '০৯; রা.'১৩; চ.'১২; য.'১১,'১৪; ব.'০৯; সি.'০৯; ঢা. '০৯,'১২,'১৪; মা.'১৪]

সমাধান ঃ দেওয়া আছে $\sin x - \cos x = 0 \Rightarrow \sin x = \cos x$ মনে করি , $y = \sin x = \cos x$ $\therefore y = \sin x$ এবং $y = \cos x$

নিচের তালিকায় $x \in [0, \frac{\pi}{2}]$ এর জন্ম $y = \sin x$ ও $y = \cos x$ এর প্রতিরূপী মান নির্ণয় করিঃ

X	0	π	π	π	π	π	π
		18	2. 18	$\frac{318}{18}$	$\frac{4.18}{18}$	4	3. —
$y = \sin x$	0	0.17	0.34	0.5	0.64	0.71	0.77
$y = \cos x$	1	0.98	0.94	0.87	0.77	0.71	0.64
Х	π	π	π	π			
	$\frac{6.}{18}$	$\frac{7.}{18}$	8. 18	9. 18			
$y = \sin x$	0.87	0.94	0.98	1	1		
$y = \cos x$	0.5	0.34	0 · 17	0	1		

একটি ছক কাগজে স্থানান্তেকর অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y = \sin x$ ও $y = \cos x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ বিন্দুর ভূজ

হচ্ছে
$$\frac{\pi}{4}$$
. সূতরাং নির্ণেয় সমাধান , $x = \frac{\pi}{4}$.

3. (b)
$$2 \sin^2 x = \cos 2x$$
, $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$

[য.'০৩,'০৮,'০৯]

সমাধান ঃ মনে করি , $y = 2\sin^2 x = \cos 2x$ $y = 2\sin^2 x$ এবং $y = \cos 2x$

নিচের তালিকায় $x \in [-\frac{\pi}{2}, \frac{3\pi}{2}]$ এর জন্য $y = 2\sin^2 x$ ও $y = \cos 2x$ এর প্রতিরূপী মান নির্ণয় করিঃ

X	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm \frac{\pi}{4}$	$\pm 5.\frac{\pi}{18}$
$y = 2\sin^2 x$	0	0.06.	0 · 23	0.5	0.83	i	1.17
$y = \cos 2x$	1	0.94	0.77	0.5	0.17	0	-0 · 17
X	$\pm 6.\frac{\pi}{18}$	$\pm 7.\frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$\pm 9.\frac{\pi}{18}$	$15.\frac{\pi}{18}$	$21.\frac{\pi}{18}$	$27.\frac{\pi}{18}$
$y = 2\sin^2 x$	1.5	1.77	1 · 94	2	0.5	0.5	2
$y = \cos 2x$	-0.5	-0.77	0.94	-1	0.5	0.5	_z -1

একটি ছক কাগজে স্থানান্তেকর অক্ষরেখা X'OX ও YOY' আঁকি।

্রেকল নির্ধারণ x x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 5 বাহু =1

্বন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y=2\sin^2x$ ও $y=\cos2x$ কংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ বিন্দুর হচ্ছে $-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$. সুতরাং, নির্ণেয় সমাধান , $x=-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$

3. (c)
$$5 \sin x + 2 \cos x = 5$$
, $0 \le x \le \frac{3\pi}{2}$

[য.'০৪; চ.'১০; রা.,ব.'১৪]

সমাধান ঃ দেওয়া আছে , $5 \sin x + 2 \cos x = 5 \Rightarrow 2 \cos x = 5(1 - \sin x)$

উচ্চতর গণিত্_{ব সম}প্রথম্ম পত্র সমাধান

ৰহ্ধর ক্ম www.boighar.com sx ∴ y = 5(1 – sinx) এবং y = 2cosx $y = 5(1 - \sin x) = 2\cos x$

সমাধান ঃ নিচের তালিকায় $x \in [0, \frac{3\pi}{2}]$ এর জন্য $y = 2\sin^2 x$ ও $y = \cos 2x$ এর প্রতিরূপী মান নির্ণয় করিঃ

····							
х	0	$\frac{\pi}{}$	$2.\frac{\pi}{}$	$3.\frac{\pi}{}$	$4.\frac{\pi}{}$	$5.\frac{\pi}{}$	$6.\frac{\pi}{18}$
		18	$2.\frac{1}{18}$	18	18	18	18-
$y = 5(1 - \sin x)$	5	4 · 13	3 · 29	2.5	1.79	1.17	0.67
$y = 2\cos x$	2	1.97	1.88	1.73	1.53	1 · 29	1
x	$7.\frac{\pi}{}$	$8.\frac{\pi}{}$	$9.\frac{\pi}{}$	$11.\frac{\pi}{}$	$15.\frac{\pi}{}$	$19.\frac{\pi}{}$	$20.\frac{\pi}{}$
	18	18	18	11.	13,	13.	18
$y = 5(1 - \sin x)$	0.3	0.08	0	0.3	2.5	5.89	6.7
$y = 2\cos x$	·68	0.35	0	0.68	-1.73	-1.97	-1.88
x x	$21.\frac{\pi}{}$	$22.\frac{\pi}{}$	$23.\frac{\pi}{}$	$24.\frac{\pi}{}$	$25.\frac{\pi}{}$	$26.\frac{\pi}{}$	π
	18	18	23. 18	18	18	18	$\frac{27.1}{18}$
$y = 5(1 - \sin x)$	7.5	8 · 2	8.83	9.93	9.7	9.9	10
$y = 2\cos x$	73	1 · 53	-1.29	-1	-0.68	-0.35	0

একটি ছক কাগজে স্থানাজ্কের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y=5(1-\sin x)$ ও y = 2cosx. ফাংশনদ্বয়ের লেখচিত্র দুইটি অপ্তকন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদত্ত সীমার মধ্যে ছেদ কিপুর ভূজসমূহ হচ্ছে $46.4^{\circ} = \frac{232}{9}\pi$, $90^{\circ} = \frac{\pi}{2}$. সূতরাং , নির্ণেয় সমাধান, $x = 46.4^{\circ} = \frac{232}{9}\pi$, $90^{\circ} = \frac{\pi}{2}$

3. (d)
$$x - \tan x = 0$$
, $0 \le x \le \frac{\pi}{2}$

[রা. '০৪, '০৯; ব. '০৪, '১১, '১৩. '০৫, '১০, '১২; কু. '০৭, '১০; দি. '১০, '১২; চ. '১১; ঢা. '১১; য. '১২]

সমাধান ঃ দেওয়া আছে , $x-tanx=0 \Rightarrow x=tanx$ মনে করি y=x=tanx $\therefore y=x$ এবং y=tanx

নিচের তালিকায় $x \in [0, \frac{\pi}{2}]$ এর জন্য y = x ও y = tanx এর প্রতিরূপী মান নির্ণয় করিঃ

X	0	π	$3.\frac{\pi}{2}$	π			
		18	$3.\overline{18}$	$\overline{2}$			
y = x	0	0.18	0.52	1.57			
х	0	π	$_{2}$ π	$_{2}$ π	π	$_{5}$ π	π
		18	18	$\frac{3.}{18}$	4. —	$\frac{3.1}{18}$	6. 18
y = tanx	0	0.18	0.36	0.58	0.84	1 · 19	1.73
х	$_{\tau}$ π	$7.5\times\frac{\pi}{}$	$_{\circ}$ π	$8.5\times\frac{\pi}{}$	$9.\frac{\pi}{}$	i	
	$^{\prime}\overline{18}$	$\frac{7.3\times\overline{18}}{18}$	$8.\frac{\pi}{18}$	18	18		
y = tanx	2 - 75	3 · 73	5.67	11.43	অসংজ্ঞায়িত		

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো, ছক কাগজে স্থাপন করে y=x ও $y=\tan x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদত্ত সীমার মধ্যে ছেদ কিন্দুর হুজসমূহ হচ্ছে 0 , $\frac{\pi}{18}$. সুতরাং নির্ণেয় সমাধান x=0 , $\frac{\pi}{18}$

3 (e)
$$2x = \tan x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ [5.'02]

দমাধান % মনে করি $y = 2x = \tan x$: y = 2x এবং $y = \tan x$

নিচের তালিকায় $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ এর জন্য y = 2x ও y = tanx এর প্রতিরূপী মান নির্ণয় করিঃ

উচ্চতর গণিত : প্রথম পত্র সমাধান

$$x$$
 0 $\pm \frac{\pi}{18}$ $\pm 3.\frac{\pi}{18}$ $\pm \frac{\pi}{2}$
 $y = 2x$ 0 ± 0.35 ± 1.05 ± 3.14

X	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm 5.\frac{\pi}{18}$	$\pm 6.\frac{\pi}{18}$
y = tanx	0	± 0.18	±0.36	±0.58	±0.84	±1.19	±1.73
х	$\pm 7\frac{\pi}{18}$	$\pm 7.5 \times \frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$\begin{array}{ c c } \pm \\ 8.5 \times \frac{\pi}{18} \end{array}$	$\pm 9.\frac{\pi}{18}$		
y = tanx	±2.75	±3.73	±5.67	± 11.43	অসংজ্ঞায়িত]	

একটি ছক কাগজে স্থানাঙ্কের অক্ষরেখা X'OX ও YOY' আঁকি।

েকল নির্ধারণ x x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে y=2x ও $y=\tan x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ বিন্দুর ভূজসমূহ হচ্ছে $0\,,-66^\circ=-\frac{11\pi}{30}\,,\,66^\circ=\frac{11\pi}{30}\,.$ সুতরাং, নির্ণেয় সমাধান, $x=0\,,-\frac{11\pi}{30}\,,\,\frac{11\pi}{30}\,$

3. (f) $\cot x - \tan x = 2$, $0 \le x \le \pi$ ্য. '০৫ ; চ.'০২; সি.'০৬, গা.'০৬; রা.'১০,'১২;কু.'১২ সমাধান ঃ দেওয়া আছে , $\cot x - \tan x = 2 \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = 2 \Rightarrow \cos^2 x - \sin^2 x = 2 \sin x \cos x$

 $\Rightarrow\cos 2x=\sin 2x$ মনে করি , $y=\sin 2x=\cos 2x$.: $y=\sin 2x$, $y=\cos 2x$ নিচের তালিকায় $x\in[0$, $\pi]$ এর জন্য $y=\sin 2x$ ও $y=\cos 2x$ এর প্রতিরূপী মান নির্ণয় করিঃ

$$\frac{x}{36}$$
 2. $\frac{\pi}{36}$ 3. $\frac{\pi}{36}$ 4. $\frac{\pi}{36}$ 5. $\frac{\pi}{36}$ 6. $\frac{\pi}{36}$

$$y = \sin 2x \qquad 0 \qquad 0.17 \qquad 0.34 \qquad 0.5 \qquad 0.64 \qquad 0.77 \qquad 0.87$$

$$y = \cos 2x \qquad 1 \qquad 0.98 \qquad 0.94 \qquad 0.87 \qquad 0.77 \qquad 0.64 \qquad 0.5$$

$$x \qquad 7. \frac{\pi}{36} \qquad 8. \frac{\pi}{36} \qquad 9. \frac{\pi}{36} \qquad 10. \frac{\pi}{36} \qquad 24. \frac{\pi}{36} \qquad 32. \frac{\pi}{36} \qquad 36. \frac{\pi}{36}$$

$$y = \sin 2x \qquad 0.94 \qquad 0.98 \qquad 1 \qquad 0.98 \qquad -0.87 \qquad -0.64 \qquad 0$$

$$y = \cos 2x \qquad 0.34 \qquad 0.17 \qquad 0 \qquad -0.17 \qquad -0.5 \qquad 0.77 \qquad 1$$

একটি ছক কাগজে স্থানাংকের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেল নির্ধারণ x_- অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{36}$ এবং y_- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y=\sin 2x$ ও $y=\cos 2x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অপ্তকন করি। লেখচিত্র থেকে দেখা যাছে যে প্রদন্ত সীমার মধ্যে ছেদ বিন্দুর ভূজসমূহ হচ্ছে $\frac{\pi}{8}, \frac{5\pi}{8}$. সূতরাং নির্দেয় সমাধান $x=\frac{\pi}{8}, \frac{5\pi}{8}$.

4. (a) প্রমাণ : OA ⊥ OC টানি।

$$\frac{\sqrt{3}}{\sqrt{3}}$$
 কলা AOC এর ে জাত্রফল $=\frac{\angle AOB}{\angle AOC}$ এর পরিমাপ

 \Rightarrow বৃত্তকলা AOB এর ক্ষেত্রফল $=\frac{\theta}{\pi/2} \times$ বৃত্তকলা AOC এর ক্ষেত্রফল

$$=\frac{2\theta}{\pi}\times\frac{1}{4}\times$$
 বুত্তের ক্ষেত্রফল $=\frac{\theta}{2\pi}\times\pi r^2=\frac{r^2\theta}{2}$

(b) সমাধান: OBP ত্রিভূজের ক্ষেত্রে,
$$\sin\theta = \frac{BP}{OB} = \frac{BP}{r}$$
 ও $\cos\theta = \frac{OP}{OB} = \frac{OP}{r}$

উত্তরের অবশিষ্ট অংশ প্রশ্নমালা VI B এর 3(a) দুষ্টব্য।

উচ্চতর গণিত : **প্রথম পত্র সমাধান**

(c) সমাধান: দেওয়া আছে,
$$\theta = 60^0 = \frac{\pi}{3}$$
 , $r = 5$ সে.মি., $BP = 4$ সে.মি.

$$OP = \sqrt{OB^2 - BP^2} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3$$
 সে.মি.

বৃত্তাংশ s এর দৈর্ঘ্য =
$$r\theta = 5 \times \frac{\pi}{3} = \frac{5\pi}{3}$$
 সে.মি.

এবং ABP ক্ষেত্রের ক্ষেত্রফল = বৃত্তকলা AOB এর ক্ষেত্রফল – ত্রিভুজ OBP এর ক্ষেত্রফল

$$= \frac{r^2\theta}{2} - \frac{1}{2}(OP \times BP) = \frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2}(3 \times 4)$$
$$= \frac{25\pi}{6} - 6 = \frac{25\pi - 36}{6} \text{ বৰ্গ সে.মি. } 1$$

- 5. চিত্রে ABC সমকোণী ত্রিভুজে ABC একটি অর্ধ্ববৃত্ত ও ADC একটি বৃত্তাংশ।
- (a) সমাধান: ADC একটি বৃত্তাংশ বলে AB = BC = 5 মিটার । বৃত্তাংশ ADC এর দৈর্ঘ্য = $AB \times \angle ABC = 5 \times \frac{\pi}{2} = \frac{5\pi}{2}$ মিটার ।

- (b) প্রশ্নমালা VI B এর উদাহরণ-1 দুষ্টব্য।
- (c) $AC = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ মিটার । সূতরাং, ABC একটি অর্ধ্ববৃত্তের ব্যাসার্থ $= \frac{AC}{2} = 2\sqrt{2}$ মিটার । ABCD সম্পূর্ণ ক্ষেত্রের ক্ষেত্রফল = ABC অর্ধবৃত্তের ক্ষেত্রফল

+ (ABC বৃশুকলার ক্ষেত্রফল – ABC ত্রিভুজের ক্ষেত্রফল)
$$= \frac{1}{2}\pi \times (2\sqrt{2})^2 + (\frac{1}{2} \times 5^2 \times \frac{\pi}{2} - \frac{1}{2} \times 5 \times 5)$$

$$= 4\pi + (\frac{25\pi}{4} - \frac{25}{2}) = \frac{16\pi + 25\pi - 50}{4} = \frac{41\pi - 50}{4}$$
 বর্গ মিটার ।

ভর্তি পরীক্ষার MCQ ঃ

1. sin(4x + 1) এর পর্যায় কত?

[RU 06-07;BUET 00-01]

$$Sol^n$$
: $4x = 2\pi \Rightarrow x = \frac{\pi}{2}$: প্ৰ্যায়কাল = $\frac{\pi}{2}$

নিয়ম % $\sin x,\cos x,\sec x,\cos ecx$ এর পর্যায় = 2π এবং $\tan x,\cot x$ এর পর্যায় = π .

2. $\sqrt{3} \sin \theta + \cos \theta$ এর সর্বোচ্চ মান- [SU 08-09] Sol^n : সর্বোচ্চ মান = $\sqrt{1+3} = 2$ বি.স্র. 8 $a \cos x + b \sin x$

$$= \sqrt{a^2 + b^2} \sin(x + \tan^{-1} \frac{b}{a})$$

 $a\cos\theta + b\sin\theta$ সর্বোচ্চ হবে যদি $\sin(x + \tan^{-1}\frac{b}{a})$

সর্বোচ্চ হয় অর্থাৎ $\sin(x + \tan^{-1}\frac{b}{a}) = 1$ হয়।

 $\therefore x = 90^{\circ} - \tan^{-1} \frac{b}{a}$ এর জ্বন্য $a \cos x + b \sin x$ এর সর্বোচ্চ মান = $\sqrt{a^2 + b^2}$

3. $f(x) = 1 + \sqrt{\sin^2 x + 1}$ ফাংশনের সর্বোচ্চ মান হবে– [CU 07-08]

 Sol^n : সর্বোচ্চ মান = $1 + \sqrt{(\pm 1)^2 + 1} = 1 + \sqrt{2}$

4. $f(x) = 2\cos|x|$ এর সীমা – [RU 03-04]

 $Sol^n :: \cos |x|$ এর বিস্তার = [-1,1] $\therefore -2 \le f(x) \le 2$

 $5.\cos^2 x$ (x \in IR) এর বৃহত্তম এবং ক্ষুদ্রতম মান হচ্ছে– [CU 03-04]

Sol".: বৃহত্তম এবং ক্ষুদ্রতম মান যথাক্রমে 1 ও 0.

 $6. \sin 2x - \cos x$ এর সর্বনিমু মান – [IU 07-08]

 Sol^n : $x = -45^0$ এর জন্য প্রদন্ত রাশির স্বানিমু মান পাওয়া যায় $-\sqrt{3}$.