Facilities planning

Facility location

Notation

m: existing facilities

n:new facilities

$$\mathbf{x}_{j} = (x_{j}, y_{j})$$
: location of new facility j

$$\mathbf{p}_{i} = (a_{i}, b_{i})$$
:location of existing facility i

 t_{ij} :trip between x_j and p_i per month

$$d(\mathbf{x_j}, \mathbf{p_i})$$
:distance between $\mathbf{x_j}$ and $\mathbf{p_i}$

total distance per month =
$$t_{ij} d(\mathbf{x_j}, \mathbf{p_i})$$

v_{ij}:average travel speed from facility i to j

average travel time =
$$t_{ij} d(\mathbf{x_j}, \mathbf{p_i})/v_{ij}$$

c_{ij}:cost per unit travel time

total travel cost per month = $c_{ij}t_{ij} d(\mathbf{x_j}, \mathbf{p_i})/v_{ij}$

$$let w_{ij} = c_{ij}t_{ij} / v_{ij}$$

want to minimize $f(x_1,...,x_n) = g(w_{ij}d(\mathbf{x_j},\mathbf{p_i}))$

Facility location problems

Facility location problems

- Single facility, multiple facilities
- single facility problem: n = 1
- multiple facility problem: n > 1
- Distance: rectilinear, Euclidean
- rectilinear distance $d(x_j, p_i) = |x_j a_i| + |y_j b_i|$
- Euclidean distance = $\sqrt{\left(\left(x_{j} a_{i}\right)^{2} + \left(y_{j} b_{i}\right)^{2}\right)}$
- Optimization: minisum, minimax

minisum problem
$$\rightarrow$$
 minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} d(x_{j}, p_{i})$
minimax problem \rightarrow minimize $\max_{i,j} \left(w_{ij} d(x_{j}, p_{i}) \right)$

single facility minisum problem with rectilinear distance

minimize
$$f(x, y) = minimize \sum_{i=1}^{m} w_i (|x - a_i| + |y - b_i|)$$

The objective function can be rewritten as

minimize
$$f(x, y) = minimize(f_1(x) + f_2(y))$$

where
$$f_1(x) = w_i (|x - a_i|)$$
 and $f_2(y) = w_i (|y - b_i|)$

Therefore we can solve for x and y independently.

example)

A test station is to be added to an existing plant. The station will receive 4 loads per day from location (10,8), 2 from (1,4), 3 from (4,6) and 2 from (4,9).

Where should the station be located to minimize total distance traveled?

minimize
$$f(x, y) = 4 | x - 10 | + 2 | x - 1 | + 3 | x - 4 | + 2 | x - 4 | +$$

single facility minisum problem with rectilinear distance

Optimal location exists among existing locations

Optimal property

Median Location (x, y)

$$\sum_{x_i < x} w_i \le \sum_{i=1}^m \frac{w_i}{2} \text{ and } \sum_{x_i > x} w_i \le \sum_{i=1}^m \frac{w_i}{2}$$

$$\sum_{y_i < y} w_i \le \sum_{i=1}^m \frac{w_i}{2} \text{ and } \sum_{y_i > y} w_i \le \sum_{i=1}^m \frac{w_i}{2}$$

Fact: Every median location solves the single facility rectilinear location problem

sol)
$$\sum w_i = 4 + 2 + 3 + 2 = 11, \frac{\sum w_i}{2} = 5.5$$

w:2 5 4
$$\sum_{x_i < 4} w_i \le 5.5$$
 and $\sum_{x_i > 4} w_i \le 5.5$

w:2 3 4 2
$$\sum_{y_i < 8} w_i \le 5.5$$
 and $\sum_{y_i > 8} w_i \le 5.5$

$$(x^*, y^*) = (4.8)$$

Justification of Median location

Assume that there exists an optimal location, x * that is not a median location. We will show that this statement leads to a contradiction with the definition of a median location

Let

$$S_1 = \{i : x_i < x^*\}, S_2 = \{i : x_i > x^*\} \text{ and } S_3 = \{i : x_i = x^*\}$$

Since x * is not a median location either

$$\sum_{i \in S_1} w_i > \frac{\sum_{i=1}^m w_i}{2} \text{ or } \sum_{i \in S_2} w_i > \frac{\sum_{i=1}^m w_i}{2}$$

Assume
$$\sum_{i \in S_1} w_i > \frac{\sum_{i=1}^m w_i}{2}$$

Justification of Median location(cont.)

In the neighborhood of x^* , the objective can be written

$$f_1(x) = \sum_{i \in S_1} w_i(x - x_i) + \sum_{i \in S_2} w_i(x_i - x) + \sum_{i \in S_3} w_i |x - x_i|$$

Since x * is optimal, $f_1(x * -\varepsilon) > f_1(x^*)$

$$f_1(x^* - \varepsilon) - f_1(x^*) = \sum_{i \in S_1} w_i((x^* - \varepsilon) - x_i) + \sum_{i \in S_2} w_i(x_i - (x^* - \varepsilon)) + \sum_{i \in S_3} w_i |(x^* - \varepsilon) - x_i|$$

$$-\sum_{i \in S_1} w_i (x^* - x_i) + \sum_{i \in S_2} w_i (x_i - x^*) + \sum_{i \in S_3} w_i |x^* - x_i|$$

$$= \left[-\sum_{i \in S_1} w_i + \sum_{i \in S_2} w_i + \sum_{i \in S_3} w_i \right] \varepsilon$$

Justification of Median location(cont.)

Thus $f_1(x^*-\varepsilon) < f_1(x^*)$ is a contradiction to the assumed optimality of x^*

Contour line

The optimal location found by optimal property may not be feasible.

Other machiens may be there, access to the location may be insufficient, etc.

Contour Line: every point on the contour line has the same value of the objective function

p: number of unique x; locations

q: number of unique y; locations

 c_i : x coordinate of unique existing location j

 r_i : y coordinate of unique existing location j

 C_i : sum of the weights associated with coordinate c_i

 R_i : sum of the weights weight associated with coordinate r_i

minimize
$$\sum_{j=1}^{p} C_{j} |x - c_{j}| + \sum_{j=1}^{q} R_{j} |y - r_{j}|$$

Contour line

For any point (x, y) in rectangle [s, t]

where $c_t \le x \le c_{t+1}$ and $r_s \le y \le r_{s+1}$

$$f(x, y) = \sum_{j=1}^{p} C_{j} |x - c_{j}| + \sum_{j=1}^{q} R_{j} |y - r_{j}|$$

$$= \sum_{j=1}^{t} C_{j}(x - c_{j}) + \sum_{j=t+1}^{p} C_{j}(c_{j} - x) + \sum_{j=1}^{s} R_{j}(y - r_{j}) + \sum_{j=s+1}^{q} R_{j}(r_{j} - y)$$

$$= \left(\sum_{j=1}^{t} C_{j} - \sum_{j=t+1}^{p} C_{j}\right) x - \left(\sum_{j=1}^{t} C_{j} c_{j} - \sum_{j=t+1}^{p} C_{j} c_{j}\right)$$

$$+\left(\sum_{j=1}^{s} R_{j} - \sum_{j=s+1}^{q} R_{j}\right) y - \left(\sum_{j=1}^{s} R_{j} r_{j} - \sum_{j=s+1}^{q} R_{j} r_{j}\right)$$

$$=\Theta_{t}x+\Phi_{s}y+K_{st}$$

Contour line associated with objective value = k

$$k = \Theta_t x + \Phi_s y + K_{st} \rightarrow y = -\frac{\Theta_t}{\Phi_s} x + \frac{k - K_{st}}{\Phi_s}$$

$$R_{s+1}$$
 s+1

 Φ_{s}

$$R_s$$
 s

$$-rac{\Theta_{
m t}}{\Phi_{
m s}}$$

$$\begin{array}{ccc} t & \Theta_t & t+1 \\ C_t & C_{t+1} \end{array}$$

Constructing contour line

Step1: Draw p vertical lines to intersect all x_i and q horizontal lines to intersect all y_i Step2. Label vertical lines by C_j and horizontal lines by R_j , the sum of the weights of facilities intersected by the lines

Step 3: Set
$$\Theta_0 = -\sum_{j=1}^p C_j, \Phi_0 = -\sum_{j=1}^q R_j$$

$$\Theta_{r} = \sum_{j=1}^{r} C_{j} - \sum_{j=r+1}^{p} C_{j}$$
 and $\Phi_{s} = \sum_{j=1}^{s} R_{j} - \sum_{j=s+1}^{q} R_{j}$

Step4: for each rectangular segment [r,s], compute the slope of contour line by

$$s_{rs} = -\frac{\Theta_r}{\Phi_s}$$

Step5: Select any point (x, y) and draw the contour that starts and ends at(x, y) using slope s_{rs} in each segment. Step 5 can be repeated as many times as desired to produce the contour map

Example

D -	Φ ₄ =11	1	7/11	(49) -3/11	-1
R ₄ = 2	Ф ₃ =7	11/7	1	-3/7 (10 ₈	8) 11/7
$R_3 = 4$	Φ ₂ =-1	-11	-7	3 (4.6)	11
R ₂ = 3	Φ ₁ =-7	-11/7 (1	-1 4)	3/7	11/7
R ₁ = 2	Φ ₀ =-11	-1	-7/11	3/11	1
	·	$\Theta_0 = -11$ $C_1 = 2$	$\Theta_1 = -7$	$\Theta_3 = 3$ $\Theta_3 = 5$ $\Theta_3 = 6$	⊖ ₄ =11

Example(cont.): Contour line starting from (4,5)

Example(cont.): Finding an optimal solution (4,8)

Minimax location problem with Rectilinear distance

Let $z = max((w_i | x - a_i | + | y - b_i |) + h_i, \forall i)$

min z

st
$$w_{i}(|x-a_{i}|+|y-b_{i}|)+h_{i} \leq z, \forall i$$

Equivalent formulation

min z

st
$$|x-a_i|+|y-b_i| \le \frac{z-h_i}{w_i}, \forall i$$

Unweighted Problem(UP): $w_i = 1, h_i = 0, \forall i$

Unweighted Problem with Attends(UPA): $W_i = 1, h_i > 0, \exists i$

Weighted Problem with Attends(WPA): $w_i \neq w_i, h_i > 0, \exists i$

Geometric interpretation of UP

min z

st
$$|x-a_i|+|y-b_i| \le z, \forall i$$

The problem is to find a diamond of minimum radius that will contain all the existing facility locations \Rightarrow center point is (x, y)

i	1	2	3	4	5	6
а	9	9	10	14	15	16
b	13	18	7	15	15	6

Solution procedure for UP

$$C_1 = \min(a_i + b_i, \forall i) = \min(22,27,17,29,30,22) = 17$$

$$C_2 = \max(a_i + b_i, \forall i) = \max(22,27,17,29,30,22) = 30$$

$$C_3 = \min(-a_i + b_i, \forall i) = \min(4,9,-3,1,0,-10) = -10$$

$$C_4 = \max(-a_i + b_i, \forall i) = \max(4,9,-3,1,0,-10) = 9$$

$$C_5 = \max(C_2 - C_1, C_4 - C_3) = \max(13,19) = 19$$

Solution procedure for UP(cont.)

$$(x_1^*, y_1^*) = \left(\frac{C_2 - C_4}{2}, \frac{C_2 + C_3}{2}\right)$$

 \Leftarrow (intersection of $-x + y = C_4$ and $x + y = C_2$, intersection of $x + y = C_2$ and $-x + y = C_3$)

$$(\mathbf{x}_{2}^{*}, \mathbf{y}_{2}^{*}) = \left(\frac{\mathbf{C}_{1} - \mathbf{C}_{3}}{2}, \frac{\mathbf{C}_{1} + \mathbf{C}_{4}}{2}\right)$$

 \Leftarrow (intersection of $x + y = C_1$ and $-x + y = C_3$, intersection of $x + y = C_1$ and $-x + y = C_4$)

$$(x_{1}^{*}, y_{1}^{*}) = \left(\frac{C_{2} - C_{4}}{2}, \frac{C_{2} + C_{4} - (C_{4} - C_{3})}{2} = \frac{C_{2} + C_{4} - C_{5}}{2} \Leftarrow \text{since } C_{4} - C_{3} \ge C_{2} - C_{1}\right)$$

$$(x_{2}^{*}, y_{2}^{*}) = \left(\frac{C_{1} - C_{3}}{2}, \frac{C_{1} + C_{3} + C_{4} - C_{3}}{2} = \frac{C_{1} + C_{3} + C_{5}}{2} \Leftarrow \text{since } C_{4} - C_{3} \ge C_{2} - C_{1}\right)$$

$$(x_{1}^{*}, y_{1}^{*}) = (10.5, 10), (x_{2}^{*}, y_{2}^{*}) = (13.5, 13), z = x_{1}^{*} + C_{4} - 10 = 9.5$$

Solution procedure for UP(cont.)

$$(x_1^*, y_1^*) = \left(\frac{C_2 - C_4}{2}, \frac{C_1 + C_4}{2}\right)$$

 \Leftarrow (intersection of $-x + y = C_4$ and $x + y = C_2$, intersection of $x + y = C_1$ and $-x + y = C_4$)

$$(x_2^*, y_2^*) = \left(\frac{C_1 - C_3}{2}, \frac{C_2 + C_3}{2}\right)$$

 \Leftarrow (intersection of $x + y = C_1$ and $-x + y = C_3$, intersection of $x + y = C_2$ and $-x + y = C_3$)

$$(x_1^*, y_1^*) = \left(\frac{C_2 - C_4}{2}, \frac{C_2 + C_4 - (C_2 - C_1)}{2}\right) = \frac{C_2 + C_4 - C_5}{2} \iff \text{since } C_2 - C_1 \ge C_4 - C_3$$

$$(x_2^*, y_2^*) = \left(\frac{C_1 - C_3}{2}, \frac{C_1 + C_3 + C_2 - C_1}{2}\right) = \frac{C_1 + C_3 + C_5}{2} \iff \text{since } C_2 - C_1 \ge C_4 - C_3$$

LP formulation

min z

st
$$|x-a_i|+|y-b_i| \le z, \forall i$$

$$|x-a_i| \le z-|y-b_i|, \forall i \Rightarrow -z+|y-b_i| \le x-a_i \le z-|y-b_i|, \forall i$$

$$\Rightarrow \begin{cases} |y-b_{i}| \leq z+x-a_{i}, \forall i \\ |y-b_{i}| \leq z-x+a_{i}, \forall i \end{cases} \Rightarrow \begin{cases} -z-x+a_{i} \leq y-b_{i} \leq z+x-a_{i}, \forall i \\ -z+x-a_{i} \leq y-b_{i} \leq z-x+a_{i}, \forall i \end{cases} \Rightarrow \begin{cases} x+y-z \leq a_{i}+b_{i}, \forall i \\ x+y+z \geq a_{i}+b_{i}, \forall i \\ -x+y-z \leq -a_{i}+b_{i}, \forall i \\ -x+y+z \geq -a_{i}+b_{i}, \forall i \end{cases}$$

Let
$$C_1 = \min(a_i + b_i, \forall i), C_2 = \max(a_i + b_i, \forall i), C_3 = \min(-a_i + b_i, \forall i), C_4 = \max(-a_i + b_i, \forall i)$$

$$\Rightarrow \begin{cases} x + y - z \le C_1 \sim (1) \\ x + y + z \ge C_2 \sim (2) \\ -x + y - z \le C_3 \sim (3) \\ -x + y + z \ge C_4 \sim (4) \end{cases}$$

$$-(1)+(2) \Rightarrow z \ge \frac{C_2 - C_1}{2} \text{ and } -(3)+(4) \Rightarrow z \ge \frac{C_4 - C_3}{2}$$

Therfore
$$z \ge \max(\frac{C_2 - C_1}{2}, \frac{C_4 - C_3}{2})$$

Let
$$C_5 = \max(C_2 - C_1, C_4 - C_3)$$
 then $z \ge \frac{C_5}{2}$

Geometric interpretation of LP

infeasible

increase z

infeasible

Geometric interpretation of LP(cont.)

increase z

infeasible

increase z

z is minimized at this line

feasible region

Example 10.3

Table 10.3 Data for Example 10.3

1	i	a_i	b_i	$a_i + b_i$	$-a_i + b_i$	
	1	0	0	. 0	0	
	2	4	6	10	2	
	3	8	2	10	-6	
	4	10	. 4	14	-6	
	5	4	8	12	4	
	6	2	4	6	2	
	7	6	4	10	-2	
	8	8	8	16	0	
2011	$c_1 = 0$	$c_2 = 16$	$c_3 = -6$	$c_4 = 4$	$c_5 = 16$	

HW#4

- 10.1(4th edition, 10.1)(Assume minisum optimization problem)
- 10.4(4th edition, 10.8) (Do not consider total value of the houses.)