PID Control Implementation Record

1. Variable Operations Record

Low-Pass Filter Coefficient Calculation

```
case 5'd21:
TwoTau = 2 * iHsVd LPF tau
TwoTau_A_T = TwoTau + iHsCtrl_SplIntv
TwoTau_S_T = TwoTau - iHsCtrl_SplIntv
HsVd_Coeff = iHsCtrl_SplIntv / TwoTau_A_T
case 5'd29:
HsVd_LPF_Coeff1 = TwoTau_S_T / TwoTau_A_T
Low-Pass Filter Operations
case 9'd21:
HsVd_Coeff_M_HsVd_VECT6_0 = iHsVd_VECT6[0] * HsVd_Coeff
HsVd_Coeff_M_HsVd1_VECT6_0 = HsVd1_VECT6[0] * HsVd_Coeff
case 9'd22:
HsVd LPF Coeff1 M HsVd1 LPF VECT6 0 = HsVd1 LPF VECT6[0] * HsVd LPF Coeff1
case 9'd35:
HsVd_ForLPF_Sum_VECT6_0 = HsVd_Coeff_M_HsVd_VECT6_0 + HsVd_Coeff_M_HsVd1_VECT6_0
HsVd_LPF_VECT6_0 = HsVd_ForLPF_Sum_VECT6_0 + HsVd_LPF_Coeff1_M_HsVd1_LPF_VECT6_0
PID Coefficient Calculation
case 5'd0:
HsIgain_M_SplIntv02_VECT6[0] = iHsIgain_VECT6[0] * iHsCtrl_SplIntv02
HsDgain_D_SplIntv02_VECT6[0] = iHsDgain_VECT6[0] / iHsCtrl_SplIntv02
HsIgain_M_SplIntv_VECT6[0] = iHsIgain_VECT6[0] * iHsCtrl_SplIntv
case 5'd7:
Intm Coeff VECT6[0] = HsDgain D SplIntv02 VECT6[0] + HsIgain M SplIntv02 VECT6[0]
case 5'd13:
FourHsDgain_D_SplIntv_VECT6[0] = 2 * HsDgain_D_SplIntv02_VECT6[0]
case 5'd15:
oHsCoeff_VECT6[0] = Intm_Coeff_VECT6[0] + iHsPgain_VECT6[0]
oHsCoeff1_VECT6[0] = Intm_Coeff_VECT6[0] - iHsPgain_VECT6[0]
case 5'd27:
oHsCoeff2_VECT6[0] = HsIgain_M_SplIntv_VECT6[0] - FourHsDgain_D_SplIntv_VECT6[0]
Error Calculation
case 9'd56:
oHsVerr_VECT6[0] = HsVd_LPF_VECT6[0] - iHsVm_VECT6[0]
```

```
case 9'd63:
```

oHsVctrlFF_VECT6[0] = HsVd_LPF_VECT6[0] / iHsFFgain_VECT6[0]

PID Control Calculation

case 9'd64:

HsVerr_M_HsCoeff_VECT6[0] = oHsVerr_VECT6[0] * oHsCoeff_VECT6[0]

case 9'd70:

HsVerrHsCoeff_A_HsVctrl2_VECT6[0] = HsVerr_M_HsCoeff_VECT6[0] +
HsVctrlCompl_2_VECT6[0]

case 9'd76:

HsVerr1_M_HsCoeff1_VECT6[0] = HsVerr1_VECT6[0] * oHsCoeff1_VECT6[0]

case 9'd82:

HsVerr2_M_HsCoeff2_VECT6[0] = HsVerr2_VECT6[0] * oHsCoeff2_VECT6[0]

case 9'd90:

 $\label{eq:hsverr1} HsVerr1HsCoeff1_A_HsVerr2HsCoeff2_VECT6[0] = HsVerr2_M_HsCoeff2_VECT6[0] + HsVerr1_M_HsCoeff1_VECT6[0]$

case 9'd98:

 $oHsVctrlCompl_VECT6[0] = HsVerr1HsCoeff1_A_HsVerr2HsCoeff2_VECT6[0] + HsVerrHsCoeff_A_HsVctrl2_VECT6[0]$

oHsVctrlTot_VECT6[0] = oHsVctrlCompl_VECT6[0] + oHsVctrlFF_VECT6[0]

Low-Pass Filter Difference Equation

$$Vd_{LPF}[k] = \frac{T}{2\tau+T} \cdot (Vd[k] + Vd[k-1]) + \frac{2\tau-T}{2\tau+T} \cdot Vd_{LPF}[k-1]$$

Where:

- $T = \frac{1}{100000}$ (Sampling period = 10 μ s)
- $\tau = \frac{1}{10000}$ (Low-pass filter time constant = 100 µs)

PID Control Difference Equation

$$e[k] = Vd_{LPF}[k] - Vm[k] \label{eq:epsilon}$$

$$\begin{split} u_{PID}[k] &= \left(K_p + K_i \cdot \frac{T}{2} + \frac{K_d}{\frac{T}{2}}\right) \cdot e[k] \\ &\quad + \left(K_i \cdot \frac{T}{2} + \frac{K_d}{\frac{T}{2}} - K_p\right) \cdot e[k-1] \\ &\quad + \left(K_i \cdot T - 4 \cdot \frac{K_d}{T}\right) \cdot e[k-2] \\ \end{split}$$

Where:

- $K_p = 8$
- $K_i = 20000$
- $K_d = 0$

Total Control Output

$$u_{total}[k] = u_{PID}[k] + u_{FF}[k]$$

$$u_{FF}[k] = V d_{LPF}[k] / F_{gain}$$

Feedforward Gains:

- Channel 0: $F_0 = 0.5716$
- Channel 1: $F_1 = 0.5832$
- Channel 2: $F_2 = 0.5945$
- Channel 3: $F_3 = 0.5389$
- Channel 4: $F_4 = 0.6081$
- Channel 5: $F_5 = 0.5622$

DAC Output

$$oldsymbol{V_{out}} = oldsymbol{M_{DC}} \cdot oldsymbol{u_{total}}$$

Timing Marks

 $case~5'd0 \rightarrow case~5'd10\text{:}$ PID coefficient calculation completed

 $case \ 5'd21 \rightarrow case \ 5'd29 \hbox{: Low-Pass Filter coefficient calculation completed}$

 $\textbf{case 9'd56} \rightarrow \textbf{case 9'd98:} \ \textbf{PID} \ \textbf{control operation completed, output oHsVctrlTot_VECT6[0]}$

Extended PID Control Analysis

3. Complete PID Implementation Formula

Tustin Transform Coefficients

The PID controller uses Tustin (bilinear) transform to discretize the continuous PID controller:

Coefficient Calculations:

```
Intm\_Coeff = Kd/(T/2) + Ki*(T/2) oHsCoeff = Intm\_Coeff + Kp = Kp + Ki*(T/2) + Kd/(T/2) oHsCoeff1 = Intm\_Coeff - Kp = Ki*(T/2) + Kd/(T/2) - Kp oHsCoeff2 = Ki*T - 4*Kd/T
```

Complete PID Recursive Formula

The discrete PID controller implementation:

```
u[k] = oHsCoeff * e[k] + oHsCoeff1 * e[k-1] + oHsCoeff2 * e[k-2] + u[k-2]
```

Where:

- e[k] = Vd_LPF[k] Vm[k] (Error signal)
- u[k] = Control output
- e[k-1], e[k-2] = Previous error samples
- u[k-2] = Control output two samples ago

Low-Pass Filter Implementation

The desired voltage Vd passes through a low-pass filter before PID control:

```
Vd_LPF[k] = HsVd_Coeff * (Vd[k] + Vd[k-1]) + HsVd_LPF_Coeff1 * Vd_LPF[k-1]
```

Filter coefficients:

- HsVd_Coeff = T/(2*tau + T)
- $HsVd_LPF_Coeff1 = (2*tau T)/(2*tau + T)$

Feedforward Control

The total control effort includes feedforward compensation:

```
u_total[k] = u_PID[k] + u_FF[k]
```

Where feedforward term: $u_FF[k] = Vd_LPF[k] / FFgain$

4. Implementation Details

Sampling Rate

- Default sampling frequency: 100 kHz (T = $10 \mu s$)
- Optional 200 kHz mode available via mHsCtrl_Rate flag

History Management

The controller maintains history for recursive computation:

- HsVerr1 VECT6[i] = e[k-1]
- $HsVerr2_VECT6[i] = e[k-2]$
- HsVctrlCompl_1_VECT6[i] = u[k-1]
- $HsVctrlCompl_2_VECT6[i] = u[k-2]$

Parameter Update Handling

When PID gains or sampling interval changes:

- 1. All history buffers reset to zero
- 2. Coefficients recalculated (case 5'd0 to 5'd29)
- 3. HsCoeff_InHsCtrl_bol flag set to trigger update

Output Scaling

Final control output scaled for DAC:

- 1. Multiply by iDA_Scale1V_fp (floating-point scaling)
- 2. Convert to 16-bit integer
- 3. Add offset 32768 for unsigned DAC format

5. State Machine Sequence

Coefficient Update Phase (5-bit counter)

- States 0-5: Calculate HsIgain_M_SplIntv02, HsDgain_D_SplIntv02
- States 6-12: Calculate intermediate coefficients
- States 13-20: Calculate FourHsDgain_D_SplIntv, Intm_Coeff
- States 21-29: Final coefficient assembly and L P F coefficients

Control Calculation Phase (9-bit counter)

- States 0-20: State estimation and prediction
- States 21-55: Low-pass filter calculation
- States 56-69: Error calculation and feedforward
- States 70-98: PID control law computation
- States 99-111: Total control output assembly
- States 112-230: Output scaling and format conversion

PID Control Mathematical Model with System Parameters

6. Complete Mathematical Formulation

System Parameters (from USB_Parameter_Transmission)

Sampling Parameters:

- Sampling frequency: $f_s=100~\mathrm{kHz}$ (optional 200 kHz via mHsCtrl_Rate)
- Sampling period: $T = \frac{1}{f_s} = 10 \,\mu\text{s}$
- Half sampling period: $\frac{T}{2} = 5 \,\mu s$

Low-Pass Filter:

- Time constant: $au = \frac{1}{10000} = 0.1 \ \mathrm{ms}$
- Filter coefficient 1: $\alpha_1=\frac{T}{2\tau+T}=\frac{0.01}{0.2+0.01}=0.0476$ Filter coefficient 2: $\alpha_2=\frac{2\tau-T}{2\tau+T}=\frac{0.2-0.01}{0.2+0.01}=0.9048$

Default PID Gains (6 channels):

- Proportional gain: $K_p = 8.0$
- Integral gain: $K_i = 20000.0$
- Derivative gain: $K_d = 0.0$

Feedforward Gains (6 channels):

- Channel 0: $\mathbb{F}_0 = 0.5716$
- Channel 1: $\mathbb{F}_1 = 0.5832$
- Channel 2: $\mathbb{F}_2 = 0.5945$
- Channel 3: $\mathbb{F}_3 = 0.5389$
- Channel 4: $\mathbb{F}_4 = 0.6081$
- Channel 5: $\mathbb{F}_5 = 0.5622$

Complete Control System Equations

1. Low-Pass Filter (Input Smoothing)

$$V_{d_{LPF}}[k] = \alpha_1 \Big(V_{d[k]} + V_{d[k-1]} \Big) + \alpha_2 V_d^{LPF}[k-1]$$

Substituting parameters:
$$V_{d_{LPF}}[k] = 0.0476 \left(V_{d[k]} + V_{d[k-1]}\right) + 0.9048 V_d^{LPF}[k-1]$$

2. Error Signal

$$e[k] = V_d^{LPF}[k] - V_{m[k]} \label{eq:epsilon}$$

Where:

- $V_{d_{LPF}}[k]$: Filtered desired voltage
- $V_{m[k]}$: Measured voltage from Hall sensor

3. PID Control Coefficients

With
$$T=10\times 10^{-6}$$
 s, $K_p=8,\,K_i=20000,\,K_d=0$:

$$C_0 = K_p + K_i \frac{T}{2} + \frac{K_d}{\frac{T}{2}} = 8 + 20000 \times 5 \times 10^{-6} + 0 = 8.1$$

$$C_1 = K_i \frac{T}{2} + \frac{K_d}{\frac{T}{2}} - K_p = 20000 \times 5 \times 10^{-6} + 0 - 8 = -7.9$$

$$C_2 = K_i T - 4 \frac{K_d}{T} = 20000 \times 10 \times 10^{-6} - 0 = 0.2$$

4. Discrete PID Controller

$$u_{PID}[k] = C_0 e[k] + C_1 e[k-1] + C_2 e[k-2] + u[k-2] \\$$

Substituting coefficients: $u_{PID}[k] = 8.1e[k] - 7.9e[k-1] + 0.2e[k-2] + u[k-2]$

5. Feedforward Control

$$u_{FF}[k] = V_d^{LPF}\frac{[k]}{\mathbb{F}_i}$$

Where \mathbb{F}_i is the feedforward gain for channel $i \in \{0, 1, 2, 3, 4, 5\}$

6. Total Control Output

$$u_{total}[k] = u^{PID}[k] + u^{FF}[k] \label{eq:utotal}$$

7. Multi-Channel Matrix Operation

DC Transformation Matrix (Normalized)

The system uses a 6×6 DC matrix for multi-channel control coordination:

$$\boldsymbol{M}_{DC} = \begin{pmatrix} 0.482 & 0.040 & 0.069 & 0.106 & 0.097 & 0.064 \\ 0.057 & 0.314 & 0.129 & 0.072 & 0.057 & 0.134 \\ 0.068 & 0.092 & 0.460 & 0.047 & 0.083 & 0.071 \\ 0.127 & 0.061 & 0.057 & 0.380 & 0.060 & 0.123 \\ 0.136 & 0.057 & 0.120 & 0.071 & 0.311 & 0.056 \\ 0.063 & 0.096 & 0.071 & 0.103 & 0.038 & 0.465 \end{pmatrix}$$

Channel Coupling

For 6-channel simultaneous control: $V_{out} = M_{DC} \cdot U_{total}$

Where:

$$\begin{aligned} & \bullet & \textit{\textbf{U}}_{total} = \left[u_{0_{total}}, u_{1_{total}}, ..., u_{5_{total}}\right]^T \text{: Control outputs} \\ & \bullet & \textit{\textbf{V}}_{out} = \left[V_{0_{out}}, V_{1_{out}}, ..., V_{5_{out}}\right]^T \text{: Applied voltages} \end{aligned}$$

8. Implementation Verification Checklist

Coefficient Calculations

 \square Low-pass filter coefficient $\alpha_1=\frac{T}{2\tau+T} \checkmark \square$ Low-pass filter coefficient $\alpha_2=\frac{2\tau-T}{2\tau+T} \checkmark \square$ PID coefficient $C_0=K_p+K_i\frac{T}{2}+\frac{K_d}{\frac{T}{2}} \checkmark \square$ PID coefficient $C_1=K_i\frac{T}{2}+\frac{K_d}{\frac{T}{2}}-K_p \checkmark \square$ PID coefficient $C_2=K_iT-4\frac{K_d}{T} \checkmark$

Signal Flow

- 1. Input $V_{d[k]} \to \text{Low-pass filter} \to V_{d_{LPF}}[k]$
- 2. Error calculation: $e[k] = V_d^{LPF}[k] V_{m[k]}$
- 3. PID control: $u_{PID}[k]$ using e[k], e[k-1], e[k-2], u[k-2]
- 4. Feedforward: $u_{FF}[k] = V_d^{LPF} \frac{[k]}{\mathbb{F}}$
- 5. Total output: $u_{total}[k] = u^{PID}[\overset{\cdot}{k}] + u^{\mathbb{F}}[k]$
- 6. Matrix transformation: $V_{out} = M_{DC} \cdot U_{total}$

Parameter Ranges

- Sampling rate: 100-200 kHz
- P-gain: 0-100 (typical: 8.0)
- I-gain: 0-100000 (typical: 20000.0)
- D-gain: 0-10 (typical: 0.0)
- L P F time constant: 0.1 ms (fixed)
- Feedforward gains: 0.5-0.7 (channel-specific)