RELATION BINAIRE

Exercice 1:

Soit $E = \{1,2,3,4\}$ et \mathcal{R} la relation binaire sur E dont le graphe est

$$\Gamma = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$$

- 1. Vérifier que la relation \mathcal{R} est une relation d'équivalence.
- 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient R/\mathcal{R} .

Allez à : Correction exercice 1 :

Exercice 2:

1. Montrer que la relation de congruence modulo n

$$a \equiv b$$
 $[n] \Leftrightarrow n$ divise $b - a$

Est une relation d'équivalence sur \mathbb{Z} .

2. En vous servant de la division euclidienne, montrer qu'il y a exactement n classes d'équivalentes distinctes.

Allez à : Correction exercice 2 :

Exercice 3:

Sur \mathbb{R}^2 , on considère la relation \mathcal{R} définie par

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow a^2 + b^2 = c^2 + d^2$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Décrire la classe d'équivalence (a, b) du couple (a, b).
- 3. On désigne par \mathbb{R}^2/\mathcal{R} l'ensemble quotient pour cette relation. Montrer que l'application

$$\mathbb{R}^2/\mathcal{R} \to [0, +\infty[$$

$$(a.b) \mapsto a^2 + b^2$$

Est bien définie et que c'est une bijection.

Allez à : Correction exercice 3 :

Exercice 4:

Soient E et F deux ensembles et $f: E \to F$ une application. On définit une relation \mathcal{R} sur E en posant, pour tout $(x, x') \in E \times E$,

$$x\mathcal{R}x' \Leftrightarrow f(x) = f(x')$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Décrire la classe \dot{x} de l'élément $x \in E$.
- 3. Pourquoi l'application

$$E/\mathcal{R} \to F$$

 $\dot{x} \mapsto f(x)$

Est-elle bien définie ? Montrer qu'elle est injective. Que peut-on conclure sur l'ensemble quotient E/\mathcal{R} ?

Allez à : Correction exercice 4 :

Exercice 5:

Soit E un ensemble et soit A une partie de E. On définit dans $\mathcal{P}(E)$ la relation d'équivalence \mathcal{R} en posant, pour tout couple (X,Y) de parties de E:

$$X\mathcal{R}Y \Leftrightarrow A \cap X = A \cap Y$$

- 1. Expliciter les classes $\dot{\emptyset}$, \dot{E} , \dot{A} et $\dot{C_EA}$.
- 2. Montrer que si $B = A \cap X$, alors B est l'unique représentant de \dot{X} contenu dans A.
- 3. Expliciter une bijection entre $\mathcal{P}(E)/\mathcal{R}$ et $\mathcal{P}(A)$.

Remarque : ne pas hésiter, si nécessaire, à expliciter les classes pour un cas particulier, par exemple

 $E = \{1,2,3,4\} \text{ et } A = \{1,2\}.$

Allez à : Correction exercice 5 :

Exercice 6:

Soit \mathbb{P}^* l'ensemble des nombres premiers strictement supérieurs à 2. On considère la relation \mathcal{R} entre deux éléments de \mathbb{P}^* définie par :

$$p\mathcal{R}q \Leftrightarrow \frac{p+q}{2} \in \mathbb{P}^*$$

La relation est-elle réflexive, symétrique et transitive ?

Allez à : Correction exercice 6 :

Exercice 7:

Soient E un ensemble fini non vide et x un élément fixé de E. Les relations \sim définies ci-dessous sont-elles des relations d'équivalences sur $\mathcal{P}(E)$?

- 1. $\forall A, B \in \mathcal{P}(E), A \sim B \Leftrightarrow A = B$
- 2. $\forall A, B \in \mathcal{P}(E), A \sim B \Leftrightarrow A \subset B$
- 3. $\forall A, B \in \mathcal{P}(E), A \sim B \Leftrightarrow A \cap B \neq \emptyset$
- 4. $\forall A, B \in \mathcal{P}(E), A \sim B \Leftrightarrow (A \cap B = \emptyset \text{ ou } A \cup B \neq \emptyset)$
- 5. Soit $x \in E$, $\forall A, B \in \mathcal{P}(E)$, $A \sim B \Leftrightarrow x \in A \cup B$
- 6. Soit $x \in E$, $\forall A, B \in \mathcal{P}(E)$, $A \sim B \Leftrightarrow (x \in A \cap B \text{ ou } x \in \overline{A} \cap \overline{B})$

Allez à : Correction exercice 7 :

Exercice 8:

Dans \mathbb{N}^* , on définit une relation \ll en posant

 $m \ll n$ s'il existe $k \in \mathbb{N}^*$ tel que n = km

1. Montrer que \ll est une relation d'ordre partiel sur \mathbb{N}^* .

On considère dans la suite de l'exercice que l'ensemble \mathbb{N}^* est ordonné par la relation \ll .

- 2. L'ensemble № possède-t-il un plus grand élément ? un plus petit élément ?
- 3. Soit $A = \{4,5,6,7,8,9,10\}$. L'ensemble A possède-t-il un plus grand élément ? Un plus petit élément ?

Allez à : Correction exercice 8 :

Exercice 9:

Dans \mathbb{N}^* , on définit une relation \ll en posant pour tout $(x, y) \in \mathbb{N}^* \times \mathbb{N}^*$:

$$x \ll y$$
 s'il existe $n \in \mathbb{N}^*$ tel que $y = x^n$

1. Montrer que \ll est une relation d'ordre partiel sur \mathbb{N}^* .

On considère dans la suite de l'exercice que l'ensemble \mathbb{N}^* est ordonné par la relation \ll .

2. Soit $A = \{2,4,16\}$. Déterminer le plus grand élément et le plus petit élément de A.

Allez à : Correction exercice 9 :

Exercice 10:

Dans \mathbb{R}^2 , on définit la relation \ll en posant $(x,y) \ll (x',y') \Leftrightarrow x < x'$ ou (x=x') et $y \leq y'$

- 1. Montrer que ≪ est une relation d'ordre. Est-ce une relation d'ordre total ?
- 2. Déterminer l'ensemble des majorants et des minorants du singleton $\{(a,b)\}$ et représenter les dans \mathbb{R}^2 .
- 3. Soit $X = \{(a, b), (c, d)\}$. Déterminer Sup X et Inf X.

Allez à : Correction exercice 10 :

Exercice 11:

Soient E un ensemble fini non vide et x un élément fixé de E. Les relations \mathcal{R} définies ci-dessous sont-elles des relations d'ordre sur $\mathcal{P}(E)$?

- 1. $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow A = B$
- 2. $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow A \subset B$
- 3. $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow x \in A \cap \overline{B}$
- 4. $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow x \in A \cup \overline{B}$
- 5. $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow (x \in A = B \text{ ou } x \in A \cap \overline{B})$

Allez à : Correction exercice 11 :

Exercice 12:

Les relations \mathcal{R} définies ci-dessous sont-elles des relations d'ordre sur \mathbb{R} .

- 1. $\forall x, y \in \mathbb{R}, x \mathcal{R} y \Leftrightarrow x < y$
- 2. $\forall x, y \in \mathbb{R}, x \mathcal{R} y \Leftrightarrow x \leq y$
- 3. $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow e^x \leq e^y$
- 4. $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow |x| \leq |y|$
- 5. $\forall x, y \in \mathbb{R}, x \mathcal{R} y \Leftrightarrow x y \in \mathbb{N}$
- 6. $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x y \in \mathbb{Z}$

Allez à : Correction exercice 12 :

Exercice 13:

Montrer que la relation binaire définie par :

$$x\mathcal{R}y \Leftrightarrow f(x) \leq f(x)$$

Est une relation d'ordre.

Allez à : Correction exercice 13 :

Exercice 14:

Les relations $\mathcal R$ défines ci-dessous sont-elles des relations d'équivalence sur $\mathbb C$?

- 1. $z\Re z' \Leftrightarrow |z| = |z'|$
- 2. $z\Re z' \Leftrightarrow \left|\frac{z}{z'}\right| = 1$
- 3. $z\Re z' \Leftrightarrow e^z = e^{z'}$
- 4. $z\Re z' \Leftrightarrow |z-z'|=1$
- 5. $z\Re z' \Leftrightarrow e^{|z-z'|} = 1$

Allez à : Correction exercice 14 :

Exercice 15:

Soit \mathcal{R} , la relation définie sur \mathbb{R} par :

$$x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de x pour tout réel x.
- 3. Déterminer l'ensemble quotient.

Allez à : Correction exercice 15 :

Exercice 16:

Soit \mathcal{E} la relation définie sur]1, $+\infty$ [par :

$$x\mathcal{E}y \Leftrightarrow \frac{x}{1+x^2} \ge \frac{y}{1+y^2}$$

Montrer que \mathcal{E} est une relation d'ordre total.

Allez à : Correction exercice 16 :

Exercice 17:

1. Soit $a \in \mathbb{C}^*$, déterminer en fonction de a l'ensemble des complexes tels que $z^4 = a^4$.

Soit
$$\mathcal{U}_n = \{z \in \mathbb{C}, z^n = 1\}$$

On définit sur \mathcal{U}_{12} la relation $z \sim z' \Leftrightarrow z^4 = z'^4$

- 2. Montrer que \sim est une relation d'équivalence sur \mathcal{U}_{12} .
- 3. Décrire l'ensemble des classes d'équivalence.

Allez à : Correction exercice 17 :

Exercice 18:

On définit sur $\mathbb{N} \times \mathbb{N}$ la relation

$$(a,b) \le (c,d) \Leftrightarrow \begin{cases} a+b < c+d \\ \text{ou} \\ a+b=c+d \text{ et } b \le d \end{cases}$$

- 1. Montrer que ≤ est une relation d'ordre.
- 2. On admettra qu'il s'agit d'une relation d'ordre totale. Classer par ordre croissant les dix premiers couples de N × N muni de la relation d'ordre ≤.

Allez à : Correction exercice 18 :

Exercice 19:

Soient \mathcal{R} une relation définie sur $\mathbb{Z} \times \mathbb{N}^*$ par :

$$(a,b)\mathcal{R}(a',b') \Leftrightarrow ab' = a'b$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. soit $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, avec $p \land q = 1$, décrire la classe d'équivalence de (p,q).

Allez à : Correction exercice 19 :

Exercice 20:

Soit \ll la relation définie sur \mathbb{N}^2 par :

$$(a,b) \ll (a',b') \Leftrightarrow \begin{cases} a < a' \\ ou \\ a = a' \text{ et } b < b' \end{cases}$$

Montrer que ≪ est une relation d'ordre total.

Allez à : Correction exercice 20 :

Exercice 21:

Soit *E* un ensemble.

On pose $A\Delta B = (A \cup B) \setminus (A \cap B)$

On définit dans l'ensemble $\mathcal{P}(E)$ des parties de E, la relation \mathcal{R} , en posant, pour tout couple (A,B) de parties de E:

 $A\mathcal{R}B \Leftrightarrow A\Delta B$ est un ensemble fini ayant un nombre fini pair d'élément.

Montrer que \mathcal{R} est une relation d'équivalence dans $\mathcal{P}(E)$.

Allez à : Correction exercice 21 :

CORRECTIONS

Correction exercice 1:

1. D'après le graphe, on a :

$$1\mathcal{R}1$$
; $1\mathcal{R}2$; $2\mathcal{R}1$; $2\mathcal{R}2$; $3\mathcal{R}3$; $3\mathcal{R}4$; $4\mathcal{R}3$ et $4\mathcal{R}4$

Pour tout $n \in \{1,2,3,4\}$ on a $n\Re n$ donc la relation est réflexive. On a $1\Re 2$ et $2\Re 1$ d'une part et $3\Re 4$ et $4\Re 3$ ce qui montre que la relation est symétrique et évidemment elle est transitive, donc il s'agit d'une relation d'équivalence.

2. Il y a deux classes d'équivalence $E_1=\{1,2\}$ et $E_2=\{3,4\}$ par conséquent

$$R/\mathcal{R} = \{E_1, E_2\}$$

Allez à : Exercice 1 :

Correction exercice 2:

1. n divise a - a = 0 car existe $k \in \mathbb{Z}$ tel que 0 = kn, il suffit de prendre k = 0, par conséquent $a \equiv a \lceil n \rceil$

 \equiv est réflexive.

Si $a \equiv b$ [n] alors n divise b - a, c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que b - a = kn, ce qui entraine que a - b = (-k)n, $-k \in \mathbb{Z}$ donc a - b divise n, autrement dit $b \equiv a$ [n].

≡ est symétrique.

Si $\begin{cases} a \equiv b & [n] \\ b \equiv c & [n] \end{cases}$ alors il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tel que $\begin{cases} b-a=kn \\ c-b=ln \end{cases}$, en faisant la somme de ces deux égalités $b-a+c-b=kn+ln \Leftrightarrow c-a=(k+l)n$, comme $k+l \in \mathbb{Z}$, n divise c-a, autrement dit $c \equiv a$ [n].

 \equiv est transitive.

Finalement \equiv est une relation d'équivalence.

2. Soit $m \in \mathbb{Z}$, effectuons la division euclidienne de m par n. Il existe un unique couple $(q,r) \in \mathbb{Z} \times \{0,1,\ldots,n-1\}$ tel que m=qn+r, donc m-r=qn autrement dit $m \equiv r$ [n]. Il y a exactement n classes d'équivalence $\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$.

Allez à : Exercice 2 :

Correction exercice 3:

1.

$$a^2 + b^2 = a^2 + b^2 \Leftrightarrow (a, b)\mathcal{R}(a, b)$$

 \mathcal{R} est réflexive.

$$(a,b)\mathcal{R}(c,d) \Rightarrow a^2 + b^2 = c^2 + d^2 \Rightarrow c^2 + d^2 = a^2 + b^2 \Rightarrow (c,d)\mathcal{R}(a,b)$$

 \mathcal{R} est symétrique.

$$\begin{cases} (a,b)\mathcal{R}(c,d) \\ (c,d)\mathcal{R}(e,f) \end{cases} \Rightarrow \begin{cases} a^2 + b^2 = c^2 + d^2 \\ c^2 + d^2 = e^2 + f^2 \end{cases} \Rightarrow a^2 + b^2 = e^2 + f^2 \Rightarrow (a,b)\mathcal{R}(e,f)$$

 \mathcal{R} est transitive.

Finalement \mathcal{R} est une relation d'équivalence.

2.

$$(x,y) \in (a,b) \Leftrightarrow (x,y)\mathcal{R}(a,b) \Leftrightarrow x^2 + y^2 = a^2 + b^2$$

Si on pose $R^2 = a^2 + b^2$ alors $x^2 + y^2 = R^2$, donc la classe de (a, b) est le cercle de centre (0,0) de rayon R. Si (a, b) = (0,0) la classe de (a, b) est réduite à (0,0) (c'est un cercle un peu spécial).

3. On appelle φ cette « application », en fait cela sera une application lorsque l'on aura montré que lorsque que l'on change de représentant la valeur de φ ne change pas, c'est ce que l'énoncé veut dire en demandant de montrer que φ est bien définie.

Précisons un peu : si on a (a',b') = (a,b) ce qui équivaut à $(a',b')\mathcal{R}(a,b)$ (si ce n'est pas évident pour vous, réfléchissez un peu et vous verrez c'est évident) et si $((a',b')) \neq \varphi((a,b))$ on voit bien que cela pose un problème dans la définition de φ .

Si (a',b') = (a,b) alors $a'^2 + b'^2 = a^2 + b^2$ donc $\varphi((a',b')) = a'^2 + b'^2 = a^2 + b^2 = \varphi((a,b))$, tout va bien φ est bien définie.

Remarque:

Si $\varphi((a,b)) = ab$ alors φ n'est pas une application.

Montrons que φ est une bijection.

Pout tout $y \in [0, +\infty[$ il faut montrer qu'il existe une unique classe (a, b) tel que $y = \varphi((a, b))$

$$y = \varphi((a, b)) \Leftrightarrow y = a^2 + b^2$$

Soit il est évident que tous les couples (a, b) qui vérifie $y = a^2 + b^2$ sont dans la même classe, soit on fait l'effort de le montrer, ce que nous allons faire.

Un couple solution est $(\sqrt{y}, 0)$ car $(\sqrt{y})^2 + 0^2 = y$. Soit (a, b) un autre couple solution on a alors $y = a^2 + b^2$

Mais comme $(\sqrt{y})^2 + 0^2 = a^2 + b^2$ on en déduit que $(\sqrt{y}, 0) = (a, b)$, cela montre qu'il n'y a qu'une classe (a, b) telle que $y = \varphi((a, b))$, φ est bijective.

Allez à : Exercice 7 :

Correction exercice 4:

1.

$$f(x) = f(x) \Rightarrow x \mathcal{R} x$$

 \mathcal{R} est réflexive.

$$x\mathcal{R}x' \Rightarrow f(x) = f(x') \Rightarrow f(x') = f(x) \Rightarrow x'\mathcal{R}x$$

 \mathcal{R} est symétrique.

$$\begin{cases} x\mathcal{R}x' \\ x'\mathcal{R}x'' \end{cases} \Rightarrow \begin{cases} f(x) = f(x') \\ f(x') = f(x'') \end{cases} \Rightarrow f(x) = f(x'') \Rightarrow x\mathcal{R}x''$$

 \mathcal{R} est transitive.

Finalement \mathcal{R} est une relation d'équivalence.

2. Pour tout $y \in \dot{x}$, $y\mathcal{R}x$ et donc f(y) = f(x) donc

$$\dot{x} = \{ y \in E, f(y) = f(x) \}$$

3. Notons φ cette « application », c'est le même problème que dans l'exercice précédent, pour une classe on doit le même résultat quel que soit le représentant de la classe, si on a $\dot{x} = \dot{x}'$ a-t-on forcément $\varphi(\dot{x}) = \varphi(\dot{x}')$?

 $\dot{x} = \dot{x}' \Leftrightarrow f(x') = f(x)$ donc $\varphi(\dot{x}) = f(x) = f(x') = \varphi(\dot{x}')$, tout va bien, φ est bien définie, autrement dit φ est une application.

Montrons que φ est injective.

$$\varphi(\dot{x}) = \varphi(\dot{x}') \Leftrightarrow f(x) = f(x') \Leftrightarrow \dot{x} = \dot{x}'$$

Donc φ est injective.

Allez à : Exercice 4 :

Correction exercice 5:

Ici on ne demande pas de montrer que \mathcal{R} est une relation d'équivalence.

1.

$$X \in \dot{\emptyset} \Leftrightarrow A \cap \emptyset = A \cap X \Leftrightarrow A \cap X = \emptyset \Leftrightarrow X \subset C_E A$$
$$\dot{\emptyset} = \{X \in \mathcal{P}(E), X \subset C_E A\}$$

$$X \in \dot{E} \Leftrightarrow A \cap E = A \cap X \Leftrightarrow A \cap X = A \Leftrightarrow A \subset X$$
$$\dot{E} = \{X \in \mathcal{P}(E), X \subset C_E A\}$$
$$X \in \dot{A} \Leftrightarrow A \cap A = A \cap X \Leftrightarrow A \cap X = A \Leftrightarrow X \subset A$$
$$\dot{A} = \{X \in \mathcal{P}(E), X \subset A\}$$
$$X \in C_E A \Leftrightarrow A \cap C_E A = A \cap X \Leftrightarrow A \cap X = \emptyset \Leftrightarrow X \subset C_E A$$
$$C_E A = \{X \in \mathcal{P}(E), X \subset C_E A\}$$

Remarque : $\dot{\emptyset} = C_E \dot{A}$

2. Montrons que $B = A \cap X \in \dot{X}$:

$$A \cap B = A \cap (A \cap X) = (A \cap A) \cap X = A \cap X$$

Donc $B \in \dot{X}$, il est clair que $B \subset A$, mais est-ce le seul ?

Soit $B' \in \dot{X}$ et $B' \subset A$, $A \cap X = A \cap B' = B'$ car $B' \subset A$ ce qui entraine que $B' = A \cap X$.

 $B = A \cap X$ est le seul élément de la classe de X qui soit inclus dans A.

3. On rappelle que $\mathcal{P}(E)/\mathcal{R}$ est l'ensemble des classes pour la relation d'équivalence \mathcal{R} .

On pose $\varphi: \mathcal{P}(E)/\mathcal{R} \to \mathcal{P}(A)$ définie par $\varphi(\dot{X}) = A \cap X$.

Est-ce que φ est bien définie ? Si on prends $\dot{X}' = \dot{X}$ a-t-on $\varphi(\dot{X}) = \varphi(\dot{X}')$?

$$\dot{X}' = \dot{X} \Leftrightarrow A \cup X = A \cap X'$$

Donc

$$\varphi(\dot{X}') = A \cap X' = A \cup X = \varphi(\dot{X})$$

Tout va bien.

Pour tout $B \subset A$ on cherche s'il existe un unique $\dot{X} \in \mathcal{P}(E)/\mathcal{R}$ tel que $B = \varphi(\dot{X})$?

D'après la question 2. $B = A \cap X$ est le seul élément de la classe de X qui soit inclus dans A, c'est parfait c'est exactement ce que l'on voulait. φ est bijective.

Allez à : Exercice 5 :

Correction exercice 6:

Pour tout $p \in \mathbb{P}^*$

$$\frac{p+p}{2} = p \in \mathbb{P}^* \Leftrightarrow p\mathcal{R}q$$

 \mathcal{R} est réflexive.

$$p\mathcal{R}q \Rightarrow \frac{p+q}{2} \in \mathbb{P}^* \Rightarrow \frac{q+p}{2} \in \mathbb{P}^* \Rightarrow q\mathcal{R}p$$

 \mathcal{R} est symétrique.

Cherchons un peu

$$\begin{cases} p\mathcal{R}q \\ q\mathcal{R}r \end{cases} \Rightarrow \begin{cases} \frac{p+q}{2} \in \mathbb{P}^* \\ \frac{q+r}{2} \in \mathbb{P}^* \end{cases}$$

Il faudrait pouvoir en déduire que $\frac{p+r}{2} \in \mathbb{P}^*$ et à ce moment là on doit se dire que cela n'a pas l'air évident et que donc, puisque l'énoncé demande « la relation est-elle transitive ? » et non pas « montrer que la relation est transitive » il se peut que la réponse soit « non », on va donc chercher un contre-exemple, pour cela on va faire un tableau.

	3	5	7	11	13	17
p+q						
2						
3	3	4	5	7	8	10
5	4	5	6	8	9	11
7	5	6	7	9	10	12
11	7	8	9	11	12	14
13	8	9	10	12	13	15
17	10	11	12	14	15	17

On a coché en jaune les cases des couples (p, q) en relation.

On a $11\mathcal{R}7$ et $7\mathcal{R}5$ et pourtant 11 n'est pas en relation avec 5.

Remarque:

Pour trouver un contre-exemple il faut qu'il y ait au moins deux cases cochées en jaune autre que celle de la case $p\mathcal{R}p$, donc sur ce tableau l'exemple cité est le seul contre-exemple, pour en trouver d'autre il faudrait faire un tableau plus grand.

Allez à : Exercice 6 :

Correction exercice 7:

1. $A = A \Leftrightarrow A \sim A$ donc \sim est réflexive

 $A \sim B \Rightarrow A = B \Rightarrow B = A \Rightarrow B \sim A \text{ donc } \sim \text{ est symétrique.}$

$$\begin{cases} A \sim B \\ B \sim C \end{cases} \Rightarrow \begin{cases} A = B \\ B = C \end{cases} \Rightarrow A = C \Rightarrow A \sim C \text{ donc } \sim \text{ est transitive.}$$

Cette relation est une relation d'équivalence.

Allez à : Exercice 7 :

2. $A \subseteq A \Leftrightarrow A \sim A$ donc \sim est réflexive.

$$\begin{cases}
A \sim B \\
B \sim C
\end{cases} \Rightarrow
\begin{cases}
A \subset B \\
B \subset C
\end{cases} \Rightarrow
A \subset C \Rightarrow
A \sim C \text{ donc } \sim \text{ est transitive.}$$

Mais si $A \subseteq B$ alors $A \sim B$ mais $B \not\subset A$ donc on n'a pas $B \sim A$ donc la relation n'est pas symétrique.

Cette relation n'est pas une relation d'équivalence.

Remarque : il était inutile de montrer que cette relation était réflexive et transitive.

Allez à : Exercice 7 :

3. Si $A \neq \emptyset$ alors $A \cap A \neq \emptyset$ donc cette relation n'est pas réflexive.

Donc ce n'est pas une relation d'équivalence, on va tout de même regarder les deux autres propriétés.

 $A \sim B \Rightarrow A \cap B = \emptyset \Rightarrow B \cap A = \emptyset \Rightarrow B \sim A$ donc cette relation est symétrique.

$$\begin{cases} A \sim B \\ B \sim C \end{cases} \Rightarrow \begin{cases} A \cap B = \emptyset \\ B \cap C = \emptyset \end{cases}$$

Cela n'entraine pas que $A \cap C = \emptyset$, prenons un exemple $A = \{1,2\}$, $B = \{3,4\}$ et $C = \{1,5\}$.

Cette relation n'est pas transitive.

Allez à : Exercice 7 :

4. Il vaut mieux réfléchir un peu avant de se lancer, comment peuvent être deux ensembles A et B qui ne vérifient pas A ∪ B ≠ Ø ? C'est clair il faut que ces deux ensembles soient tous les deux égal à l'ensemble vide, mais alors A ∩ B = Ø. Il semble bien que pour tout ensemble A et B on ait A ~ B, démontrons cela.

Soient A et B deux ensembles :

Si $A = \emptyset$ alors $A \cap B = \emptyset$ et donc $A \sim B$.

Si $A \neq \emptyset$ alors $A \cup B \neq \emptyset$ et donc $A \sim B$.

La relation binaire ~ est une relation d'équivalence, si vous n'êtes pas convaincu :

 $A \sim A$ donc \sim est réflexive.

Si $A \sim B$ alors $B \sim A$ ($B \sim A$ étant vraie pour tout B et pour tout A). Donc \sim est symétrique.

Si $A \sim B$ et si $B \sim C$ alors $A \sim C$ ($A \sim C$ étant vraie pour tout A et pour tout C). Donc \sim est transitive.

Remarque:

Il n'y a qu'une seule classe d'équivalence.

Allez à : Exercice 7 :

5. Si $x \notin A$ alors $x \notin A \cup A$ et donc on n'a pas $A \sim A$, \sim n'est pas réflexive. Par conséquent \sim n'est pas une relation d'équivalence.

Allez à : Exercice 7 :

6. Soit $x \in E$, $\forall A, B \in \mathcal{P}(E)$, $A \sim B \Leftrightarrow (x \in A \cap B \text{ ou } x \in \overline{A} \cap \overline{B})$

 $x \in A = A \cup A$ ou $x \in \overline{A} = \overline{A} \cap \overline{A}$ donc $A \sim A$, ce qui signifie que \sim est réflexive.

 $A \sim B \Rightarrow (x \in A \cap B \text{ ou } x \in \overline{A} \cap \overline{B}) \Rightarrow (x \in B \cap A \text{ ou } x \in \overline{B} \cap \overline{A}) \Rightarrow B \sim A$, la relation \sim est donc symétrique.

$$\begin{cases} A \sim B \\ B \sim C \end{cases} \Rightarrow \begin{cases} x \in A \cap B \ ou \ x \in \overline{A} \cap \overline{B} \\ x \in B \cap C \ ou \ x \in \overline{B} \cap \overline{C} \end{cases} \Rightarrow x \in \left((A \cap B) \cup \left(\overline{A} \cap \overline{B} \right) \right) \cap \left((B \cap C) \cup \left(\overline{B} \cap \overline{C} \right) \right)$$

Oı

$$(A \cap B) \cup (\overline{A} \cap \overline{B}) = (A \cup \overline{A}) \cap (A \cup \overline{B}) \cap (B \cup \overline{A}) \cap (B \cup \overline{B}) = E \cap (A \cup \overline{B}) \cap (B \cup \overline{A}) \cap E$$
$$= (A \cup \overline{B}) \cap (B \cup \overline{A})$$

De même

$$(B\cap C)\cup\left(\overline{B}\cap\overline{C}\right)=\left(B\cup\overline{C}\right)\cap\left(\overline{B}\cup C\right)$$

Donc

$$((A \cap B) \cup (\overline{A} \cap \overline{B})) \cap ((B \cap C) \cup (\overline{B} \cap \overline{C})) = ((A \cup \overline{B}) \cap (B \cup \overline{A})) \cap ((B \cup \overline{C}) \cap (\overline{B} \cup C))$$

$$= (A \cup \overline{B}) \cap (B \cup \overline{A}) \cap (B \cup \overline{C}) \cap (\overline{B} \cup C)$$

$$= ((B \cup \overline{A}) \cap (B \cup \overline{C})) \cap ((A \cup \overline{B}) \cap (\overline{B} \cup C)) = (B \cup (\overline{A} \cap \overline{C})) \cap (\overline{B} \cup (A \cap C))$$

$$= (B \cap \overline{B}) \cup (B \cap (A \cap C)) \cup ((\overline{A} \cap \overline{C}) \cap \overline{B}) \cup ((\overline{A} \cap \overline{C} \cap A \cap C))$$

$$= \emptyset \cup (B \cap (A \cap C)) \cup ((\overline{A} \cap \overline{C}) \cap \overline{B}) \cup (\emptyset \cap \emptyset) = (A \cap B \cap C) \cup ((\overline{A} \cup \overline{C}) \cap \overline{B}) \cup \emptyset$$

$$= (A \cap B \cap C) \cup (\overline{A} \cup \overline{C} \cup \overline{B})$$

Or
$$A \cap B \cap C \subset A \cap C$$
 et $A \cup C \cup B \supset A \cup C \Rightarrow \overline{A \cup B \cup C} \subset \overline{A \cup C}$ donc
$$(A \cap B \cap C) \cup (\overline{A \cup C \cup B}) \subset (A \cap C) \cup (\overline{A \cup C}) = (A \cap C) \cup (\overline{A} \cap \overline{C})$$

Par conséquence :

$$x \in (A \cap C) \cup (\overline{A} \cap \overline{C})$$

Et alors

$$A \sim C$$

Ce qui montre que ~ est transitive et finalement ~ est une relation d'équivalence.

Allez à : Exercice 7 :

Correction exercice 8:

1.

Il existe $k \in \mathbb{N}^*$ tel que n = kn, il suffit de prendre k = 1, donc $n \ll n$. \ll est réflexive.

Si $\begin{cases} m \ll n \\ n \ll m \end{cases}$ alors il existe $k, l \in \mathbb{N}^*$ tels que $\begin{cases} n = km \\ m = k'n \end{cases}$, d'où n = kk'n, en simplifiant par $n \neq 0$, 1 = kk'.

k et k' sont deux entiers positifs, la seul solution est k = k' = 1, on en déduit que m = n. \ll est antisymétrique.

Si $\begin{cases} l \ll m \\ m \ll n \end{cases}$ alors il existe $k, k' \in \mathbb{N}^*$ tels que $\begin{cases} m = kl \\ n = k'm \end{cases}$, d'où n = k'kl, comme $k'k \in \mathbb{N}^*$ on a $l \ll n$. \ll est transitive.

Finalement ≪ est une relation d'ordre partiel.

Remarque:

 \ll n'est pas une relation d'ordre totale car il y a des couples de $\mathbb{N}^* \times \mathbb{N}^*$ qui ne sont pas en relation, par exemple on a ni 2 \ll 3 ni 3 \ll 2.

2. Supposons que \mathbb{N}^* admette un plus grand élément noté N alors 2N = kN avec $k = 2 \in \mathbb{N}^*$ donc $N \ll 2N$ ce qui signifie que 2N est plus grand (au sens de \ll) que N ce qui est contradictoire puisque N est le plus grand, donc il n'y a pas de plus grand élément.

Remarque préliminaire : si $m \ll n$ alors $m \le n$ puisque n = km avec $k \ge 1$ donc $n \ge m$.

S'il y a un plus petit élément cela ne peut être que le plus petit élément de \mathbb{N}^* au sens de \leq , c'est-à-dire 1. Est-ce que 1 est le plus petit élément au sens de \ll ?

Pour tout $n \in \mathbb{N}^*$, il existe $k = n \in \mathbb{N}^*$ tel que $n = k \times 1$ donc $1 \ll n$, c'est bon 1 est le plus petit élément de \mathbb{N}^* .

Remarque:

 $\mathbb{N}^* \setminus \{1\}$, c'est-à-dire l'ensemble des entiers supérieur ou égal à 2 n'a pas de plus petit élément puisque 2 ne vérifie pas $2 \ll n \Leftrightarrow n = k \times 2$ avec $k \in \mathbb{N}^*$ pour tout $n \in \mathbb{N}^*$.

3. Avec la remarque préliminaire du 2. le seul plus petit élément de A possible est 4 mais il n'existe pas de $k \in \mathbb{N}^*$ tel que : $5 = k \times 4$. Il n'y a pas de plus petit élément (On a pris 5 mais on aurait pu prendre 5,6,7,9 ou 10.

De même le seul plus grand élément possible serait 10 mais il n'existe pas de $k \in \mathbb{N}^*$ tel que $10 = k \times 7$ (on a pris 7 mais on aurait pu prendre 4,6,7,8 ou 9.

Allez à : Exercice 8 :

Correction exercice 9:

1. Pour tout $x \in \mathbb{N}^*$

Il existe $n = 1 \in \mathbb{N}^*$ tel que $x = x^1$ donc $x \ll x$. \ll est réflexive.

S'il existe $n, n' \in \mathbb{N}^*$ tels que $\begin{cases} y = x^n \\ x = y^{n'} \end{cases}$ alors $y = (y^{n'})^n = y^{nn'}$ donc nn' = 1, comme n et n' sont des entiers positifs, la seule solution est n = n' = 1, par conséquent y = x.

« est antisymétrique.

Si
$$\begin{cases} x \ll y \\ y \ll z \end{cases}$$
 il existe $n, n' \in \mathbb{N}^*$ tels que $\begin{cases} y = x^n \\ z = y^{n'} \end{cases}$ alors $z = (x^n)^{n'} = x^{nn'}$ comme $nn' \in \mathbb{N}^*$ on a $x \ll z$.

« est une relation d'ordre partiel.

Remarque:

Ce n'est pas une relation d'ordre totale car il y a des couples (x, y) qui ne sont pas en relation, par exemple on a ni 2 \ll 3 ni 3 \ll 2.

2. Remarque : si $x \ll y$ alors $x \leq y$ car il existe $n \in \mathbb{N}^*$ $(n \geq 1)$ tel que $y = x^n = x \times ... \times x \geq x$ car $x \geq 1$.

Le seul plus petit élément possible est 2.

$$4 = 2^2 \Rightarrow 2 \ll 4$$
$$16 = 2^4 \Rightarrow 2 \ll 16$$

Donc 2 est le plus petit élément de {2,4,16}

Le seul plus grand élément est 16.

$$16 = 2^4 \Rightarrow 2 \ll 16$$
$$16 = 4^2 \Rightarrow 4 \ll 16$$

Donc 16 est le plus grand élément de {2,4,16}

Remarque:

{2,4,16} est un ensemble totalement ordonné pour la relation d'ordre «, autrement dit « est une relation d'ordre totale (sur cet ensemble).

Allez à : Exercice 9 :

Correction exercice 10:

1. $(x = x \text{ et } y \le y) \text{ donc } (x, y) \ll (x, y)$.

≪ est réflexive.

$$\begin{cases} (x,y) \ll (x',y') \\ (x',y') \ll (x,y) \end{cases} \Rightarrow \begin{cases} x < x' \text{ ou } (x = x' \text{ et } y \le y') \\ x' < x \text{ ou } (x' = x \text{ et } y' \le y) \end{cases}$$

$$\Rightarrow \begin{cases} x < x' \\ x' < x \end{cases} \text{ ou } \begin{cases} x < x' \\ x' = x \text{ et } y' \le y \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' < x \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' = x \text{ et } y' \le y \end{cases}$$

$$\Rightarrow \begin{cases} x = x' \text{ et } y \le y' \\ x' = x \text{ et } y' \le y \end{cases} \Rightarrow \begin{cases} x = x' \\ y = y' \end{cases} \Rightarrow (x,y) = (x',y')$$

« est antisymétrique.

$$\begin{cases} (x,y) \ll (x',y') \\ (x',y') \ll (x'',y'') \end{cases} \Rightarrow \begin{cases} x < x' \text{ ou } (x = x' \text{ et } y \le y') \\ x' < x'' \text{ ou } (x' = x'' \text{ et } y' \le y'') \end{cases}$$

$$\Rightarrow \begin{cases} x < x' \\ x' < x'' \end{cases} \text{ ou } \begin{cases} x < x' \\ x' = x'' \text{ et } y' \le y'' \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' < x'' \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' < x'' \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y'' \\ x' = x'' \text{ et } y' \le y'' \end{cases}$$

$$\Rightarrow (x < x'') \text{ ou } (x < x'' \text{ et } y' < y'') \text{ ou } (x < x'' \text{ et } y' < y'') \text{ ou } (x = x'' \text{ et } y \le y'')$$

$$\Rightarrow (x < x'') \text{ ou } (x = x'' \text{ et } y \le y'') \Rightarrow (x, y) \ll (x'', y'')$$

≪ est transitive.

Finalement ≪ est une relation d'ordre (partiel).

Est-ce que cette relation est une relation d'ordre total ?

Considérons deux couples (x, y) et (x', y').

Il y a plusieurs cas:

Si x < x' alors $(x, y) \ll (x', y')$

Si
$$x > x'$$
 alors $(x', y') \ll (x, y)$

Si
$$x = x'$$
 et $y < y'$ alors $(x, y) \ll (x', y')$

Si
$$x = x'$$
 et $y > y'$ alors $(x', y') \ll (x, y)$

Si
$$x = x'$$
 et $y = y'$ alors $(x, y) = (x', y')$ (on a $(x, y) \ll (x', y')$ et $(x', y') \ll (x, y)$)

Tous les couples sont comparables, ≪ est une relation d'ordre total.

2. On cherche tous les couples (x, y) tels que $(a, b) \ll (x, y)$, ce sont les couples qui vérifient :

$$\begin{cases}
 a < x \\
 a = x \text{ et } b \le y
\end{cases}$$

Il s'agit d'un quart de plan limité en bas par la demi-droite $x \ge a$ et y = b (demi-droite comprise) et à gauche par la demi-droite x = a et $y \ge b$ (demi-droite non comprise).

L'ensemble des couples (x, y) tel que $(x, y) \ll (a, b)$ est le complémentaire de ce quart de plan.

3. $X = \{(a, b), (c, d)\}$

Si a < c alors $\inf(X) = (a, b)$ et $\sup(X) = (c, d)$.

Si a > c alors $\inf(X) = (c, d)$ et $\sup(X) = (a, b)$.

Si a = c et b < d alors $\inf(X) = (a, b)$ et $\sup(X) = (c, d)$.

Si a = c et b > d alors $\inf(X) = (c, d)$ et $\sup(X) = (a, b)$.

Si a = c et b = d alors $\inf(X) = \sup(X) = (a, b) = (c, d)$.

Allez à : Exercice 10 :

Correction exercice 11:

1. $A = A \Rightarrow ARA$ la relation est réflexive.

$$\begin{cases}
A\mathcal{R}B \\
B\mathcal{R}A
\end{cases} \Rightarrow \begin{cases}
A = B \\
B = A
\end{cases} \Rightarrow A = B \text{ la relation est antisymétrique.}$$

$$\begin{cases} A\mathcal{R}B \\ B\mathcal{R}C \end{cases} \Rightarrow \begin{cases} A=B \\ B=C \end{cases} \Rightarrow A=C \Rightarrow A\mathcal{R}C \text{ la relation est transitive.}$$

Il s'agit bien d'une relation d'ordre.

Allez à : Exercice 11 :

2. $A \subset A \Rightarrow A\mathcal{R}A$ la relation est réflexive.

$$\begin{cases} A\mathcal{R}B \\ B\mathcal{R}A \end{cases} \Rightarrow \begin{cases} A \subset B \\ B \subset A \end{cases} \Rightarrow A = B, \text{ la relation est antisymétrique}.$$

$$\begin{cases} A\mathcal{R}B \\ B\mathcal{R}C \end{cases} \Rightarrow \begin{cases} A \subset B \\ B \subset C \end{cases} \Rightarrow A \subset C \Rightarrow A\mathcal{R}C \text{ la relation est transitive.}$$

Il s'agit bien d'une relation d'ordre.

Allez à : Exercice 11 :

3. $A \cap \overline{A} = \emptyset$ donc on n'a pas $x \in A \cap \overline{A}$, la relation n'est pas réflexive, et ce n'est pas une relation d'équivalence.

Regardons tout de même les deux autres propriétés.

$$\begin{cases} A\mathcal{R}B \\ B\mathcal{R}A \end{cases} \Leftrightarrow \begin{cases} x \in A \cap \overline{B} \\ x \in B \cap \overline{A} \end{cases} \Leftrightarrow x \in (A \cap \overline{B}) \cap (B \cap \overline{A}) = A \cap \overline{B} \cap B \cap \overline{A} = (A \cap \overline{A}) \cap (B \cap \overline{B}) = \emptyset \cap \emptyset$$

On ne peut avoir ARB et BRA donc la relation n'est pas antisymétrique.

$$\begin{cases}
A\mathcal{R}B \\
B\mathcal{R}C
\end{cases} \Rightarrow \begin{cases}
x \in A \cap \overline{B} \\
x \in B \cap \overline{C}
\end{cases} \Rightarrow \begin{cases}
x \in A \\
x \in \overline{C}
\end{cases} \Rightarrow x \in A \cap \overline{C} \Rightarrow A\mathcal{R}C, \text{ la relation est transitive.}$$

Allez à : Exercice 11 :

4. $x \in E = A \cup \overline{A}$ donc $A\mathcal{R}A$, la relation est réflexive.

$$\begin{cases}
A\mathcal{R}B \\
B\mathcal{R}A
\end{cases} \Leftrightarrow \begin{cases}
x \in A \cup \overline{B} \\
x \in B \cup \overline{A}
\end{cases}$$

On est mal parti pour en déduire que A = B, il faut trouver un contre exemple.

Soient A contenant x et B contenant x, et tel que A ne soit pas inclus dans B et que B ne soit pas inclus dans A.

 $x \in A \subset A \cup \overline{B}$ donc $A\mathcal{R}B$, $x \in B \subset B \cup \overline{A}$ donc $B\mathcal{R}A$ et pourtant $A \neq B$. La relation n'est pas antisymétrique.

Donc la relation n'est pas une relation d'ordre, regardons tout de même la transitivité.

$$\begin{cases}
A\mathcal{R}B \\
B\mathcal{R}C
\end{cases} \Rightarrow \begin{cases}
x \in A \cup \overline{B} \\
x \in B \cup \overline{C}
\end{cases} \Rightarrow x \in (A \cup \overline{B}) \cap (B \cup \overline{C}) = (A \cap B) \cup (A \cap \overline{C}) \cup (\overline{B} \cap B) \cup (\overline{B} \cap \overline{C})$$

$$= (A \cap B) \cup (A \cap \overline{C}) \cup \emptyset \cup (\overline{B} \cap \overline{C}) = (A \cap B) \cup (A \cap \overline{C}) \cup (\overline{B} \cap \overline{C})$$

$$A \cap B \subset A$$

$$A \cap \overline{C} \subset A$$

$$\overline{B} \cap \overline{C} \subset \overline{C}$$

Donc

$$(A \cap B) \cup (A \cap \overline{C}) \cup (\overline{B} \cap \overline{C}) \subset A \cup A \cup \overline{C} = A \cup \overline{C}$$

On en déduit que $x \in A \cup \overline{C}$, on a alors $A\mathcal{RC}$. La relation est transitive.

Allez à : Exercice 11 :

Correction exercice 12:

1. x < x est faux donc la relation n'est pas réflexive, ce n'est pas une relation d'équivalence.

Allez à : Exercice 12 :

2. $x \le x \Leftrightarrow x\mathcal{R}x$, la relation est réflexive.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \Rightarrow \begin{cases} x \leq y \\ y \leq x \end{cases} \Rightarrow x = y, \text{ la relation est antisymétrique.}$$
$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}z \end{cases} \Rightarrow \begin{cases} x \leq y \\ y \leq z \end{cases} \Rightarrow x \leq z \Rightarrow x\mathcal{R}z, \text{ la relation est transitive.}$$

 \mathcal{R} est une relation d'ordre.

Remarque : cette relation est une relation d'ordre totale puisque pour tout $x \in \mathbb{R}$ et pour tout $y \in \mathbb{R}$, soit $x \le y$, soit $y \le x$.

Allez à : Exercice 12 :

3. $e^x \le e^x \Leftrightarrow x\mathcal{R}x$, la relation est réflexive.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \Rightarrow \begin{cases} e^x \leq e^y \\ e^y \leq e^x \end{cases} \Rightarrow e^x = e^y \Rightarrow x = y, \text{ la relation est antisymétrique.} \\ \begin{cases} x\mathcal{R}y \\ y\mathcal{R}z \end{cases} \Rightarrow \begin{cases} e^x \leq e^y \\ e^y \leq e^z \end{cases} \Rightarrow e^x \leq e^z \Rightarrow x\mathcal{R}z, \text{ la relation est transitive.} \end{cases}$$

 \mathcal{R} est une relation d'ordre.

Remarque : cette relation est une relation d'ordre totale puisque pour tout $x \in \mathbb{R}$ et pour tout $y \in \mathbb{R}$, soit $e^x \le e^y$, soit $e^y \le e^y$.

Allez à : Exercice 12 :

4. $|x| \le |x| \Leftrightarrow x\mathcal{R}x$, la relation est réflexive.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \Rightarrow \begin{cases} |x| \leq |y| \\ |y| \leq |x| \end{cases} \Leftrightarrow |x| = |y|$$

C'est mal parti pour affirmer que x = y, il faut trouver un contre exemple.

$$\begin{cases} (1)\mathcal{R}(-1) \\ (-1)\mathcal{R}(1) \end{cases} \Rightarrow \begin{cases} |1| \leq |-1| \\ |-1| \leq |1| \end{cases}$$

Et évidemment $-1 \neq 1$, la relation n'est pas antisymétrique.

Allez à : Exercice 12 :

5. $x - x = 0 \in \mathbb{N}$ donc $x\mathcal{R}x$, la relation est réflexive.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \Rightarrow \begin{cases} x-y \in \mathbb{N} \\ y-x \in \mathbb{N} \end{cases} \Rightarrow \begin{cases} \exists k \in \mathbb{N}, \ x-y=k \\ \exists k' \in \mathbb{N}, \ y-x=k' \end{cases} \Rightarrow 0 = (x-y) + (y-x) = k+k'$$

Si la somme de deux entiers positifs est nul, c'est que ces deux entiers sont nuls, par conséquent k = k' = 0.

Donc $x - y = 0 \Rightarrow x = y$. La relation est antisymétrique.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}z \end{cases} \Rightarrow \begin{cases} x - y \in \mathbb{N} \\ z - y \in \mathbb{N} \end{cases}$$

 $x - z = (x - y) + (y - z) \in \mathbb{N} \Leftrightarrow x\mathcal{R}z$, la relation est transitive.

Finalement est une relation d'ordre.

Remarque : Cette relation n'est pas une relation d'ordre totale car $\frac{3}{2}$ et 1 (par exemple) ne sont pas en relation, c'est une relation d'ordre partielle.

Allez à : Exercice 12 :

6. $x - x = 0 \in \mathbb{Z}$ donc $x\mathcal{R}x$, la relation est réflexive.

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \Leftrightarrow \begin{cases} x-y \in \mathbb{Z} \\ y-x \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} \exists k \in \mathbb{Z}, \ x-y=k \\ \exists k' \in \mathbb{Z}, \ y-x=k' \end{cases}$$

C'est mal parti, rien n'indique que x = y, prenons un contre-exemple.

$$\begin{cases} x = \frac{7}{2} \\ y = -\frac{1}{2} \end{cases} \Rightarrow \begin{cases} x - y = 4 \in \mathbb{Z} \\ y - x = -4 \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} x \mathcal{R} y \\ y \mathcal{R} x \end{cases}$$

Et pourtant $x \neq y$. La relation n'est pas antisymétrique.

Ce n'est pas une relation d'ordre. Regardons si elle est transitive (par curiosité).

$$\begin{cases} x\mathcal{R}y \\ y\mathcal{R}z \end{cases} \Rightarrow \begin{cases} x-y \in \mathbb{N} \\ z-y \in \mathbb{N} \end{cases}$$

 $x - z = (x - y) + (y - z) \in \mathbb{N} \Leftrightarrow x\mathcal{R}z$, la relation est transitive.

Allez à : Exercice 12 :

Correction exercice 13:

 $f(x) \le f(x)$ entraine que $x \mathcal{R} x$, la relation est réflexive.

Si $x\mathcal{R}y$ et $y\mathcal{R}x$ alors $f(x) \leq f(y)$ et $f(y) \leq f(x)$ alors f(x) = f(y), f est strictement monotone donc f est injective, par conséquent x = y, ce qui signifie que \mathcal{R} est antisymétrique.

Si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $f(x) \leq f(y)$ et $f(y) \leq f(z)$ donc $f(x) \leq f(z)$ ce qui signifie que $x\mathcal{R}z$, \mathcal{R} est transitive. On pourrait montrer que c'est une relation d'ordre totale.

Allez à : Exercice 13 :

Correction exercice 14:

1. $x^2 - x^2 = x - x$ donc \mathcal{R} est réflexive.

Si $x\mathcal{R}y$ alors $x^2 - y^2 = x - y$ alors $y^2 - x^2 = y - x$ alors $y\mathcal{R}x$ donc \mathcal{R} est symétrique. Si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $x^2 - y^2 = x - y$ et $y^2 - z^2 = y - z$, en additionnant ces deux égalités on trouve $x^2 - z^2 = x - z$. \mathcal{R} est transitive.

Finalement \mathcal{R} est une relation d'équivalence.

- 2. Soit $x \in \dot{a}$ si $x \mathcal{R} a$ c'est-à-dire si $x^2 a^2 = x a \Leftrightarrow x^2 x + a a^2 = 0$ autrement dit si x est solution de l'équation du second degré $X^2 - X + a - a^2 = 0$, évidemment a est solution, le produit des solutions est $a - a^2 = a(1 - a)$ donc l'autre solution est 1 - a. Donc $\dot{a} = \{a, 1 - a\}$ sauf si $a = \frac{1}{2}$ alors $\frac{1}{2} = \left\{ \frac{1}{2} \right\}$.
- 3. L'ensemble quotient est l'ensemble des classes d'équivalence :

$$\mathbb{R}/\mathcal{R} = \left\{ \{a, 1-a\}, a \ge \frac{1}{2} \right\}$$

On est obligé de considérer $a \ge \frac{1}{2}$ (ou $a \le \frac{1}{2}$) car pour $a \ge \frac{1}{2}$, $1 - a \le \frac{1}{2}$ donc si on considère $a \in \mathbb{R}$, on écrirait deux fois chaque classe.

Allez à : Exercice 14 :

Correction exercice 15:

1. $|z| = |z| \Leftrightarrow z\mathcal{R}z$, la relation est réflexive.

 $z\mathcal{R}z' \Rightarrow |z| = |z'| \Rightarrow |z'| = |z| \Rightarrow z'\mathcal{R}z$, la relation est symétrique.

 $\begin{cases} z\mathcal{R}z' \\ z'\mathcal{R}z'' \end{cases} \Rightarrow \begin{cases} |z| = |z'| \\ |z'| = |z''| \end{cases} \Rightarrow |z| = |z''| \Rightarrow z\mathcal{R}z'', \text{ la relation est transitive, il s'agit donc d'une relation}$ d'équivalence.

Allez à : Exercice 15 :

2. Il y a un piège parce que sur \mathbb{C}^* , $\left|\frac{z}{z'}\right| = 1 \Leftrightarrow |z| = |z'|$ et on vient de voir au 1°) qu'il s'agit une relation d'équivalence, le problème est en z = 0. La réflexivité dit que pour tout $z \in \mathbb{C}$, on a $z\mathcal{R}z$, ce qui est faux pour z = 0 car $\left| \frac{0}{0} \right|$ n'a pas de sens.

Ce n'est pas une relation d'équivalence.

Allez à : Exercice 15 :

3. $e^z = e^z \Leftrightarrow z\mathcal{R}z$, la relation est réflexive.

 $z\mathcal{R}z' \Rightarrow e^z = e^{z'} \Rightarrow e^{z'} = e^z \Rightarrow z'\mathcal{R}z$, la relation est symétrique.

 $\begin{cases} z\mathcal{R}z' \\ z'\mathcal{R}z'' \end{cases} \Rightarrow \begin{cases} e^z = e^{z'} \\ e^{z'} = e^{z''} \end{cases} \Rightarrow e^z = e^{z''} \Rightarrow z\mathcal{R}z'', \text{ la relation est transitive. Il s'agit d'une relation}$

d'équivalence.

Allez à : Exercice 15 :

4. $|z-z|=0 \neq 1$ donc on n'a pas $z\Re z$, la relation n'est pas réflexive et ce n'est donc pas une relation d'équivalence.

Regardons tout de même les autres propriétés.

 $z\mathcal{R}z' \Rightarrow |z-z'| = 1 \Rightarrow |z'-z| = 1 \Rightarrow z'\mathcal{R}z$, la relation est symétrique.

$$\begin{cases} z\mathcal{R}z' \\ z'\mathcal{R}z'' \Leftrightarrow \begin{cases} |z-z'| = 1 \\ |z'-z''| = 1 \end{cases}$$

On ne voit pas bien pourquoi on aurait |z - z''| = 1.

On prend z = 1, z' = 0 et z'' = i

$$\begin{cases} |z-z'| = |1-0| = 1 \\ |z'-z''| = |0-i| = 1 \end{cases}$$
 et $|z-z''| = |1-i| = \sqrt{1^2+1^2} = \sqrt{2}$, la relation n'est pas transitive.

Allez à : Exercice 15 :

5. $|e^{z-z}| = |e^0| = 1 \Leftrightarrow z\Re z$, la relation est réflexive.

$$z\mathcal{R}z' \Rightarrow \left| e^{z-z'} \right| = 1 \Rightarrow \left| e^{-(z'-z)} \right| = 1 \Rightarrow \left| \frac{1}{e^{z'-z}} \right| = 1 \Rightarrow \left| e^{z'-z} \right| = 1 \Rightarrow z'\mathcal{R}z$$

la relation est symétrique.

$$\begin{cases} z\mathcal{R}z' \\ z'\mathcal{R}z'' \end{cases} \Rightarrow \begin{cases} \left| e^{z-z'} \right| = 1 \\ \left| e^{z'-z''} \right| = 1 \end{cases} \Rightarrow \left| e^{z-z'} \right| \times \left| e^{z'-z''} \right| = 1 \times 1 \Rightarrow \left| e^{z-z'} \times e^{z'-z''} \right| = 1 \Rightarrow \left| e^{z-z'+z'-z''} \right| = 1 \Rightarrow \left| e^{z-z''+z'-z''} \right| = 1 \Rightarrow \left| e^{z-z''+z''-z''} \right| = 1 \Rightarrow \left| e^{z-z''+$$

la relation est transitive, il s'agit donc d'une relation d'équivalence.

Allez à : Exercice 15 :

Correction exercice 16:

Première méthode

 $\frac{x}{1+x^2} \ge \frac{x}{1+x^2}$ donc $x \in x$, \mathcal{E} est réflexive.

Si $x\mathcal{E}y$ et $y\mathcal{E}x$ alors $\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$ et $\frac{y}{1+y^2} \ge \frac{x}{1+x^2}$ donc $\frac{x}{1+x^2} = \frac{y}{1+y^2} \Leftrightarrow x(1+y^2) = y(1+x^2) \Leftrightarrow x = x(1+y^2)$ $y + xy^2 - yx^2 = 0 \Leftrightarrow x - y + xy(y - x) = 0 \Leftrightarrow x - y - xy(x - y) = 0 \Leftrightarrow (x - y)(1 - xy) = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y \text{ car } x > 1 \text{ et } y > 1 \text{ entraine } 1 - xy < 0 \text{ en particulier } 1 - xy \neq 0. \text{ Donc } \mathcal{E}$ est antisymétrique.

Si $x \mathcal{E} y$ et $x \mathcal{E} z$ alors $\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$ et $\frac{y}{1+y^2} \ge \frac{z}{1+z^2}$ donc $\frac{x}{1+x^2} \ge \frac{z}{1+z^2}$, d'où $x \mathcal{E} z$. \mathcal{E} est transitive.

Finalement \mathcal{E} est une relation d'ordre. Soit $\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$ et alors $x\mathcal{R}y$, soit $\frac{y}{1+y^2} \ge \frac{x}{1+x^2}$ et alors $y\mathcal{R}x$, il s'agit d'une relation d'ordre total.

Deuxième méthode

Soit $f:]1, +\infty[\to \mathbb{R}$ définie par $f(t) = \frac{t}{1+t^2}, f'(t) = \frac{1-t^2}{(1+t^2)^2} < 0$ donc f est décroissante sur $]1, +\infty[$ Donc $x \mathcal{E} y \Leftrightarrow f(x) \geq f(y) \Leftrightarrow x \leq y \leq x$ est une relation d'ordre total donc \mathcal{E} est une relation d'ordre total

Allez à : Exercice 16 :

Correction exercice 17:

1.

$$z^4 = a^4 \Leftrightarrow \left(\frac{z}{a}\right)^4 = 1 \Leftrightarrow \frac{z}{a} \in \{1, -1, i, -i\}$$

Donc

$$z = a$$
; $z = -a$; $z = ia$; $z = -ia$

Ou

$$z \in \left\{a, ae^{\frac{i\pi}{2}}, ae^{i\pi}, ae^{\frac{3i\pi}{2}}\right\}$$

2. $z^4 = z^4 \Rightarrow z \sim z$ cette relation est réflexive. $z \sim z' \Rightarrow z^4 = z'^4 \Rightarrow z'^4 = z^4 \Rightarrow z' \sim z$ cette relation est réflexive. $\begin{cases} z \sim z' \\ z' \sim z'' \end{cases} \Rightarrow \begin{cases} z^4 = z'^4 \\ z'^4 = z''^4 \end{cases} \Rightarrow z^4 = z''^4 \Rightarrow z \sim z'' \text{ cette relation est transitive.}$

Donc ~ est une relation d'équivalence.

3. Remarque : ~ est aussi une relation d'équivalence sur \mathbb{C} , pas seulement sur \mathcal{U}_{12} .On rappelle que les éléments de \mathcal{U}_{12} sont les complexes $z_k = e^{\frac{ik\pi}{6}}$, $k \in \{0,1,2,3,4,5,6,7,8,9,10,11\}$ Regardons la classe de 1

$$\dot{1} = \{ z \in \mathcal{U}_{12}, z^4 = 1 \} = \{ 1, i, -1, -i \} = \left\{ e^{\frac{ik\pi}{6}}, k \in \{0, 3, 6, 9\} \right\}$$

Regardons la classe de $e^{\frac{i\pi}{6}}$

$$e^{\frac{i\pi}{6}} = \left\{ z \in \mathcal{U}_{12}, z^4 = e^{\frac{i\pi}{6}} \right\} = \left\{ e^{\frac{i\pi}{6}}, e^{\frac{i\pi}{2}} e^{\frac{i\pi}{6}}, e^{i\pi} e^{\frac{i\pi}{6}}, e^{\frac{3i\pi}{2}} e^{\frac{i\pi}{6}} \right\} = \left\{ e^{\frac{i\pi}{6}}, e^{\frac{4i\pi}{6}}, e^{\frac{7i\pi}{6}}, e^{\frac{10i\pi}{6}} \right\}$$
$$= \left\{ e^{\frac{ik\pi}{6}}, k \in \{1,4,7,10\} \right\}$$

Regardons la classe de $e^{\frac{2i\pi}{6}} = e^{\frac{i\pi}{3}}$

$$\begin{split} e^{\frac{\mathrm{i}\pi}{3}} &= \left\{z \in \mathcal{U}_{12}, z^4 = e^{\frac{\mathrm{i}\pi}{3}}\right\} = \left\{e^{\frac{\mathrm{i}\pi}{3}}, e^{\frac{\mathrm{i}\pi}{2}}e^{\frac{\mathrm{i}\pi}{3}}, e^{\mathrm{i}\pi}e^{\frac{\mathrm{i}\pi}{3}}, e^{\frac{\mathrm{i}\pi}{2}}e^{\frac{\mathrm{i}\pi}{3}}\right\} = \left\{e^{\frac{2\mathrm{i}\pi}{6}}, e^{\frac{8\mathrm{i}\pi}{6}}, e^{\frac{8\mathrm{i}\pi}{6}}, e^{\frac{11\mathrm{i}\pi}{6}}\right\} \\ &= \left\{e^{\frac{\mathrm{i}k\pi}{6}}, k \in \{2, 5, 8, 11\}\right\} \end{split}$$

Et c'est fini. Il y a trois classes de 4 éléments (cela fait bien 12 éléments).

Allez à : Exercice 17 :

Correction exercice 18:

1.

$$a+b=a+b \Rightarrow \begin{cases} a+b < a+b \\ \text{ou} \Rightarrow (a,b) \leq (a,b) \end{cases}$$

$$a+b=a+b \text{ et } b < b$$

Cette relation est réflexive.

$$\begin{cases} (a,b) \leq (c,d) \\ (c,d) \leq (a,b) \end{cases} \Leftrightarrow \begin{cases} a+b < c+d \text{ ou } (a+b=c+d \text{ et } b \leq d) \\ \text{et} \\ c+d < a+b \text{ ou } (c+d=a+b \text{ et } d \leq b) \end{cases}$$

$$\Leftrightarrow \begin{cases} a+b < c+d \\ \text{et} \\ \text{ou} \end{cases} \begin{cases} a+b < c+d \\ \text{et} \\ \text{ou} \end{cases} \begin{cases} a+b < c+d \\ \text{et} \end{cases} \text{ ou } \begin{cases} a+b=c+d \text{ et } b \leq d \\ a+b = c+d \text{ et } b \end{cases}$$

$$c+d < a+b \end{cases} \begin{cases} a+b = c+d \text{ et } b \leq d \\ \text{et} \end{cases} \text{ ou } \begin{cases} a+b=c+d \text{ et } b \leq d \\ c+d = a+b \text{ et } d \leq b \end{cases}$$

Les trois premiers systèmes n'ont pas de solutions donc

$$\begin{cases} (a,b) \leqslant (c,d) \\ (c,d) \leqslant (a,b) \end{cases} \Leftrightarrow \begin{cases} a+b=c+d & \text{et } b \leq d \\ & \text{et} \end{cases} \Leftrightarrow \begin{cases} a+b=c+d \\ & \text{et} \end{cases} \Leftrightarrow \begin{cases} a=c \\ & \text{et} \end{cases} \Leftrightarrow (a,b) = (c,d)$$

Cette relation est antisymétrique.

$$\begin{cases} (a,b) \leqslant (c,d) \\ (c,d) \leqslant (e,f) \end{cases} \Leftrightarrow \begin{cases} a+b < c+d \text{ ou } (a+b=c+d \text{ et } b \leq d) \\ et \\ c+d < e+f \text{ ou } (c+d=e+f \text{ et } d \leq f) \end{cases}$$

$$\Leftrightarrow \begin{cases} a+b < c+d \\ et \\ c+d < e+f \end{cases} \text{ ou } \begin{cases} a+b < c+d \\ et \\ c+d < e+f \end{cases} \text{ ou } \begin{cases} a+b=c+d \text{ et } b \leq d \\ et \\ c+d < e+f \end{cases} \text{ ou } \begin{cases} a+b=c+d \text{ et } b \leq d \\ et \\ c+d < e+f \end{cases} \text{ ou } \begin{cases} a+b=c+d \text{ et } b \leq d \\ et \\ c+d < e+f \end{cases} \text{ et } d \end{cases}$$

$$\Rightarrow (a+b < e+f) \text{ ou } (a+b < e+f) \text{ ou } (a+b < e+f) \text{ ou } (a+b=e+f \text{ et } b \leq d)$$

$$\Rightarrow \begin{cases} a+b < e+f \\ ou \\ a+b = e+f \text{ et } b \leq f \end{cases}$$

Cette relation est transitive.

Il s'agit bien d'une relation d'ordre.

2.

$$(0,0) \le (1,0) \le (0,1) \le (2,0) \le (1,1) \le (0,2) \le (3,0) \le (2,1) \le (1,2) \le (0,3)$$

Allez à : Exercice 18 :

Correction exercice 19:

1. $ab = ab \text{ donc } (a, b)\mathcal{R}(a, b), \mathcal{R} \text{ est réflexive.}$ $(a, b)\mathcal{R}(a', b') \Rightarrow ab' = a'b \Rightarrow a'b = ab' \Rightarrow (a', b')\mathcal{R}(a, b) \text{ donc } \mathcal{R} \text{ est symétrique.}$

Si
$$(a,b)\mathcal{R}(a',b')$$
 et $(a',b')\mathcal{R}(a'',b'')$ alors
$$\begin{cases} ab' = a'b \\ a'b'' = a''b' \end{cases}$$
 alors
$$\begin{cases} a' = \frac{ab'}{b} \\ a'b'' = a''b' \end{cases}$$
 car $b \neq 0$

Donc $\frac{ab'}{b}b'' = a''b'$, on multiplie par b et on simplifie par $b' \neq 0$, on a alors ab'' = a''b, c'est-à-dire $(a,b)\mathcal{R}(a'',b'')$, donc \mathcal{R} est transitive.

 \mathcal{R} est une relation d'équivalence.

2. Si $(a,b) \in (p,q) \Leftrightarrow aq = pb$, donc q divise bq et $q \land p = 1$ d'après le théorème de Gauss q divise b, il existe $d \in \mathbb{Z}$ tel que b = dq, cela que l'on remplace dans aq = pb, ce qui donne aq = pdq, $q \neq 0$ donc a = dp, l'ensemble des couples de (p,q) sont les couples de la forme (dp,dq).

Allez à : Exercice 19 :

Correction exercice 20:

$$\begin{cases} a = a \\ b = b \end{cases} \Rightarrow \{a = a \text{ et } b \leq b \text{ donc} \begin{cases} a < a \\ ou & \text{d'où } (a, b) \ll (a, b), \ll \text{ est r\'eflexive.} \end{cases}$$

$$\begin{cases} (a, b) \ll (a', b') \\ (a', b') \ll (a, b) \end{cases} \Rightarrow \begin{cases} a < a' \text{ ou } (a = a' \text{ et } b \leq b') \\ a' < a \text{ ou } (a' = a \text{ et } b' \leq b) \end{cases}$$

$$\Rightarrow \begin{cases} a < a' \\ a' < a \end{cases} \text{ ou } \begin{cases} a < a' \\ a' = a \text{ et } b' \leq b \end{cases} \text{ ou } \begin{cases} a = a' \text{ et } b \leq b' \\ b' < b \end{cases} \text{ ou } \begin{cases} a = a' \text{ et } b \leq b' \\ a' = a \text{ et } b' \leq b \end{cases}$$

$$\Rightarrow \begin{cases} a = a' \text{ et } b \leq b' \\ a' = a \text{ et } b' \leq b \end{cases} \Rightarrow \begin{cases} a = a' \\ b = b' \end{cases} \Rightarrow (a, b) = (a', b')$$

« est antisymétrique.

Si
$$(a,b) \ll (a',b')$$
 et $(a',b') \ll (a'',b'')$ alors

$$\begin{cases} a < a' \\ ou \\ a = a' et b \le b' \end{cases} et \begin{cases} a' < a'' \\ ou \\ a' = a'' et b' \le b'' \end{cases}$$

Si a < a' et a' < a'' alors a < a'' donc $(a, b) \ll (a'', b'')$

Si a < a' et a' = a'' et $b' \le b'$ alors a < a'' donc $(a, b) \ll (a'', b'')$.

Si $a = a' et b \le b' et a' < a'' alors <math>a < a'' donc (a, b) \ll (a'', b'')$.

Si a=a' et $b\leq b'$ et a'=a'' et $b'\leq b''$ alors a=a'' et $b\leq b''$ donc $(a,b)\ll (a'',b'')$.

Soit (a_1, b_1) et (a_2, b_2) deux couples de \mathbb{R}^2 .

Si $a_1 < a_2$ ou si $a_2 < a_1$ alors $(a_1, b_1) \ll (a_2, b_2)$ ou $(a_2, b_2) \ll (a_1, b_1)$. Si $a_1 = a_2$ alors soit $b_1 \le b_2$ soit $b_2 \le b_1$ donc $(a_1, b_1) \ll (a_2, b_2)$ ou $(a_2, b_2) \ll (a_1, b_1)$. La relation \ll est donc une relation d'ordre totale.

Allez à : Exercice 20 :

Correction exercice 21:

 $A\Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$ a zéro élément. Donc on a $A\mathcal{R}A$. \mathcal{R} est réflexive.

Si $A\mathcal{R}B$, $A\Delta B = (A \cup B) \setminus (A \cap B)$ est un ensemble fini qui a un nombre pair d'éléments.

Alors $B\Delta A = (B \cup A) \setminus (B \cap A) = (A \cup B) \setminus (A \cap B) = A\Delta B$ est un ensemble fini qui a un nombre pair

d'éléments. Donc \mathcal{R} est réflexive.

Si $A\mathcal{R}B$ et $B\mathcal{R}C$ alors $A\Delta B = (A \cup B) \setminus (A \cap B)$ est un ensemble fini qui a un nombre pair d'éléments et $B\Delta C = (B \cup C) \setminus (B \cap C)$ est un ensemble fini qui a un nombre pair d'éléments.

Comme
$$A \cap B \subset A \cup B$$
, $Card((A \cup B) \setminus (A \cap B)) = Card(A \cup B) - Card(A \cap B)$

$$Card(A\Delta B) = Card(A \cup B) - Card(A \cap B) = Card(A) + Card(B) - 2Card(A \cap B) = 2n$$

$$Card(B\Delta C) = Card(B \cup C) - Card(B \cap C) = Card(B) + Card(C) - 2Card(B \cap C) = 2m$$

Donc
$$Card(A) = -Card(B) + 2Card(A \cap B) + 2n$$
 et $Card(C) = -Card(B) + 2Card(B \cap C) + 2m$

Donc

$$Card(A \triangle C) = Card(A \cup C) - Card(A \cap C) = Card(A) + Card(C) - 2Card(A \cap C)$$
$$= -Card(B) + 2Card(A \cap B) + 2n - Card(B) + 2Card(B \cap C) + 2m$$
$$= 2Card(A \cap B) + 2n - 2Card(B) + 2Card(B \cap C) + 2m$$

C'est un nombre fini et pair donc ARC, R est transitive.

Finalement \mathcal{R} est une relation d'équivalence.

Allez à : Exercice 21 :