Searching for a more minimal intrinsic dimension of objective landscapes¹

Jonathan Lam & Richard Lee

December 17, 2020

"Measuring the intrinsic dimension of objective landscapes" ²

- Objective landscape (combination of learning problem + network architecture)
- Defines concept of "intrinsic weights"
- Proposed method of finding intrinsic weight of objective landscape by method of random linearly-projected weights
- Method to approximate minimum description length (MDL); can be used for model compression
- Our goal: to find a method to describe an objective landscape with even fewer weights

Method of random linearly-projected weights

Notation

- $\theta^{(D)}$: ordinary network weights; not stored as a tf.Variable, but rather the result of this calculation
- $\theta_0^{(D)}$: "base initialization weights" like an initial bias; randomly initialized and non-trainable
- P : projection matrix; randomly initialized and non-trainable
- $ightharpoonup heta^{(d)}$: intrinsic weights; randomly initialized and trainable

Augmenting $\theta^{(d)}$ with squared terms

What are random Fourier features (RFFs)?

RFFs are a nonlinear many-to-many mapping that can be used to help capture different frequency components.

$$\gamma(\vec{v}) = \begin{bmatrix} a_1 \cos(2\pi \vec{b}_1^T \vec{v}) \\ a_1 \sin(2\pi \vec{b}_1^T \vec{v}) \\ a_2 \cos(2\pi \vec{b}_2^T \vec{v}) \\ a_2 \sin(2\pi \vec{b}_2^T \vec{v}) \\ \vdots \\ a_m \cos(2\pi \vec{b}_M^T \vec{v}) \\ a_m \sin(2\pi \vec{b}_M^T \vec{v}) \end{bmatrix}$$

We can append these to our intrinsic weights again:

$$\theta^{(D)} = P \begin{bmatrix} \theta^{(d)} \\ \cos(B\theta^{(d)}) \\ \sin(B\theta^{(d)}) \end{bmatrix}$$

Example: Augmenting $\theta^{(d)}$ with RFF terms

Augmenting $\theta^{(d)}$ with power, RFF terms

Varying initialization of P: motivation

Varying the initialization of *P*

Trained P and $\theta^{(d)}$ weights

Initializing *P* with trained distributions

Bad convergence → decreased learning rates

(a) Trainable Projection Matrix

(b) Random Fourier Augmentation

Normalize *P*?

(c) Non-normalized Projection Matrix

(d) Normalized Projection Matrix

Conclusions and future research

- ▶ RFF > linear \approx power terms
- ► Still have a lot to try: different data, larger models, different layer types, etc.
- ► Compression? Practicality?