After rain comes sunshine

Forecasting Solar Irradiance in Los Angeles

Monday, May 22nd 2023
Andres Aguilar, Martijn de Vries, William Lopez
General Assembly
DSIR-0320 Project 4

Problem Statement

Grid integration of renewable energy

Task: Forecast **Global Horizontal Irradiance** 1-4 days into the future, in LA county

National Solar Radiation Database

Evaluate success with:

- 1) root mean squared error (RMSE)
- 2) mean absolute error (MAE)

For daylight predictions

Compare against baseline model of an average day

U.S. renewable electricity generation including end use

Source: https://www.eia.gov/todayinenergy/detail.php?id=51698

What is Global Horizontal Irradiance?

Radiation on a horizontal surface Sum of all rays hitting a detector GHI correlates the best with sun received by photovoltaic systems Units W/m²

Source; https://www.homerenergy.com/products/pro/docs/3.11/global horizontal irradiance ghi.html

National Solar Radiation Database (NSRDB)

Publicly accessible

Weather data (from satellites)

2x2 km resolution, 30 min timesteps

Model of GHI

Collected data from 2016-2020, using the NSRDB API

Source: https://www.nrel.gov/gis/solar-resource-maps.html

Exploratory Data Analysis

No data cleaning required (!)

Cloud types cause a lot of short-term variation

Two types of seasonal variation: daily and yearly

Model features

We feature engineered:

- Day Seasonality and Yearly Seasonality with trigonometric functions
- Wind Speed and direction -> Wind x and y components

Additionally, we used features with high correlation to GHI:

- Wind_x, Wind_y, Pressure, Relative Humidity, Dew Point, Temperature and Solar Zenith Angle
- Cloud Type as a categorical feature

Modeling Approach

'Traditional' time series models require assumptions (eg stationarity)

- Difficult to forecast many timesteps in advance

We used three alternative models:

- Neural Prophet: uses lagged values of GHI to forecast future values of GHI
- Recurrent Neural Network: uses meteorological features
- WaveNet: uses meteorological features

 Actual vs. predicted for 200 timesteps(4 days, 3 hours) In December 2020

Recurrent Neural Network

Simple topology: 2 'Long short-term memory' layers, one dense output layer

Use weather from 4 days to forecast 1 day ahead

WaveNet Model

- Main features:
 - Stacked Dilated Convolutional Layer Blocks.
 - Good for large sequencing (multi-time step)
- Originally for univariate time signals
- Modified for larger dimensions

WaveNet Model

- Pros:
 - Identifies peaks
 - Minimal noise from nighttime
- Cons:
 - Inaccurate shape
 - Overcompensates deviations

WaveNet Model

- Consistent errors over 24 hours
- Overfitting on Training set

Model Scores

Average day as Baseline Model

Only score for timestamps where the sun is up

Model	Training RMSE	Testing RMSE	Training MAE	Testing MAE
Baseline	N/A	198.4	N/A	160.7
Neural Prophet	120.48	101.96	87.82	59.25
RNN	106.5	119.9	72.1	78.0
WaveNet	91.4	135.0	59.6	81.54

Conclusions and Recommendations

- Neural Prophet performs best on the test data, but requires GHI
- For weather data inputs, the **RNN** performs best
- Clouds can make forecasts difficult!
- Next steps: probabilistic forecasting

Sources

- NREL API Key
- Global Horizontal Irradiance Overview
- NSRDB: National Solar Radiation Database
- Neural Prophet: Explainable Forecasting at Scale
- NeuralProphet: A Neural Network based Time-Series Model
- Recurrent Neural Networks(RNNs) and LSTMs for Time Series Forecasting
- WaveNet: A Generative Model for Raw Audio
- Conditional Time Series Forecasting with Convolutional Neural Networks