Regularization and Variable Selection via the Elastic Net

A Comparative Study of Penalized Regression Methods

Ruijuan Zhong Yue Zhou Wenxin JIANG

Department of Biostatistics City University of Hong Kong

9 April 2024

Table of Contents

🕕 rj

2 zy

3 Least Angle Regression and Coordinate Descent

Table of Contents

🕕 rj

2 zy

3 Least Angle Regression and Coordinate Descent

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

Table of Contents

1 rj

2 zy

3 Least Angle Regression and Coordinate Descent

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

Table of Contents

1 r

2 zy

3 Least Angle Regression and Coordinate Descent

- Forward Stepwise Selection
- Porward Stagewise Selection
- Least Angle Regression

A simple example in the case of p = 2 predictors.

Start with a null model.

A simple example in the case of p = 2 predictors.

- Start with a null model.
- Find the predictor most correlated with the response and perform simple linear regression.

A simple example in the case of p = 2 predictors.

- Start with a null model.
- Find the predictor most correlated with the response and perform simple linear regression.
- Set the residuals as the new response.

A simple example in the case of p = 2 predictors.

- Start with a null model.
- Find the predictor most correlated with the response and perform simple linear regression.
- Set the residuals as the new response.
- Project other predictors orthogonal to the predictor selected in previous step.

12/20

A simple example in the case of p = 2 predictors.

- Start with a null model.
- Find the predictor most correlated with the response and perform simple linear regression.
- Set the residuals as the new response.
- Project other predictors orthogonal to the predictor selected in previous step.
- Repeat steps 2 4 until the stopping criterion is met.

13/20

(BIOS) GLM Net April 2024

In contrast to forward stepwise selection, forward stagewise selection builds the model in successive small steps ε .

Let $\hat{\mu}$ be the current Stagewise estimate and $\hat{\mathbf{c}} = \mathbf{c}(\hat{\mu}) = X^T(y - \hat{\mu})$ be the vector of current correlations. Therefore, \hat{c}_j is proportional to the correlation between the covariate x_j and the current residual vector.

• Start with $\hat{\mu} = 0$.

Let $\hat{\mu}$ be the current Stagewise estimate and $\hat{\mathbf{c}} = \mathbf{c}(\hat{\mu}) = X^T(y - \hat{\mu})$ be the vector of current correlations.

• Start with $\hat{\mu} = 0$.

(BIOS)

- ② Find the predictor j that has the highest correlation that $\hat{j} = \arg\max_{j} |\hat{c}_{j}|$.
- **1** Update $\hat{\mu} \leftarrow \hat{\mu} + \varepsilon \cdot \operatorname{sign}(\hat{c}_{\hat{j}}) \cdot \mathbf{x}_{\hat{j}}$ and $\hat{\mathbf{c}}$.
- Repeat steps 2 3 until the stopping criterion is met.

GLM Net April 2024 15 / 20

Least Angle Regression (LARS) is a stylized version of forward stagewise procedure that uses a simple mathematical formula to accelerate the computations. Here shows the idea of LARS.

• Start with all coefficients equal to zero.

- Start with all coefficients equal to zero.
- Find the predictor most correlated with the response.

- Start with all coefficients equal to zero.
- Find the predictor most correlated with the response.
- Take the largest step possible in the direction of this predictor until some other predictor has as much correlation with the current residual.

- Start with all coefficients equal to zero.
- Find the predictor most correlated with the response.
- Take the largest step possible in the direction of this predictor until some other predictor has as much correlation with the current residual.
- The new direction is the equiangular vector of the two predictors. Move in until a third predictor earns its way into the "most correlated" set.
- Repeat steps 3 4 until met the stopping criterion.

19/20

(BIOS) GLM Net April 2024

Assume that $\mathbf{x}_1,\ldots,\mathbf{x}_p$ are linearly independent and for $\mathcal A$ a subset of indices $\{1,\ldots,p\}$, define the matrix $\mathbf{X}_{\mathcal A}=(\ldots,s_j\mathbf{x}_j,\ldots)_{j\in\mathcal A}$ where signs s_j equal ± 1 . Let

$$A_{\mathcal{A}} = \mathbf{X}_{\mathcal{A}}^{T} \mathbf{X}_{\mathcal{A}} \quad \text{and} \quad A_{\mathcal{A}} = (\mathbf{1}_{\mathcal{A}}^{T})_{\mathcal{A}}^{-1} \mathbf{1}_{\mathcal{A}})^{-1/2},$$
 (1)

where $\mathbf{1}_{\mathcal{A}}$ is a vector of ones of length $|\mathcal{A}|$. The equiangular vector $\mathbf{u}_{\mathcal{A}}$ is defined as

$$\mathbf{u}_{\mathcal{A}} = \mathbf{X}_{\mathcal{A}} A_{\mathcal{A}} \}_{\mathcal{A}}^{-1} \mathbf{1}_{\mathcal{A}}, \tag{2}$$

is the unit vector making equal angles, less than 90° , with the columns of $\mathbf{X}_{\mathcal{A}}$ satisfying $\mathbf{X}_{\mathcal{A}}^{\mathsf{T}}\mathbf{u}_{\mathcal{A}}=A_{\mathcal{A}}\mathbf{1}_{\mathcal{A}}$ and $\|\mathbf{u}_{\mathcal{A}}\|=1$.

<ロト < 個ト < 重ト < 重ト = 三 のQで

Then the algorithm of LARS comes as follows:

- Initialize all the coefficients as 0, the residual $\mathbf{u}=\mathbf{y}$ and the active set $\mathcal{A}=\emptyset$.
- ② Suppose that $\hat{\mu}_{\mathcal{A}}$ is the current estimate of the response and $\hat{\mathbf{c}} = \mathbf{c}(\hat{\mu}_{\mathcal{A}}) = X^T(y \hat{\mu}_{\mathcal{A}})$ are the current correlations. The active set \mathcal{A} is the set of indices corresponding to covariates with the greatest absolute correlations, i.e., $\mathcal{A} = \{j : |\hat{c}_j| = \hat{\mathbf{C}}\}$ and $\hat{\mathbf{C}} = \max_j |\hat{c}_j|$. Let $s_j = \mathrm{sign}(\hat{c}_j)$ for $j \in \mathcal{A}$, and compute $A_{\mathcal{A}}$, and $\mathbf{u}_{\mathcal{A}}$ as in 1 and 2. Also, compute the inner product $\mathbf{a} =: X^T \mathbf{u}_{\mathcal{A}}$. Updates $\hat{\mu}_{\mathcal{A}}$ as

$$\hat{\mu}_{\mathcal{A}} \leftarrow \hat{\mu}_{\mathcal{A}} + \hat{\gamma} \mathbf{u}_{\mathcal{A}},$$

where $\hat{\gamma} = \min_{j \in \mathcal{A}^c}^+ \left(\frac{\hat{\mathbf{C}} - \hat{c}_j}{A_{\mathcal{A}} - \mathbf{a}_j}, \frac{\hat{\mathbf{C}} + \hat{c}_j}{A_{\mathcal{A}} + \mathbf{a}_j} \right)$; "min+" denotes the minimum taken over only positive quantities.

Repeat steps 2 until the stopping criterion is met.