- 1. What is the main difference between the Skip-gram and CBOW models in word2vec?
 - a. Skip-gram predicts context words given a focus word, while CBOW predicts a focus word given context words.
 - b. Skip-gram and CBOW models have the same architecture and weight matrix generation.
 - c. Skip-gram is faster to train than CBOW for large corpora.
 - d. Skip-gram cannot capture multiple semantics for a single word.
- 2. How many vector representations of the word "Apple" can the Skip-gram model capture?
 - a. One
 - b. Two
 - c. Three
 - d. Four
- 3. Which model is recommended for implementing word2vec when dealing with a large corpus with higher dimensions?
 - a. Skip-gram
 - b. CBOW
 - c. Both Skip-gram and CBOW are equally suitable.
 - d. Neither Skip-gram nor CBOW is suitable.
- 4. What is the purpose of semantic analysis?
 - a. To draw exact meaning within two parts of a sentence.
 - b. To expand keywords search in information retrieval.
 - c. To study the meaning of individual words.
 - d. To combine individual words to provide meaning in sentences.
- 5. Which term refers to words that have meanings that are opposite to each other?
 - a. Synonyms
 - b. Antonyms
 - c. Homonyms
 - d. Polysemy
- 6. What type of homonyms are the words "right" and "write"?
 - a. Homographs
 - b. Homophones
 - c. Hypernyms
 - d. Hyponyms
- 7. Which term refers to words that have the same written form and related meanings?
 - a. Homonyms
 - b. Homophones
 - c. Synonyms
 - d. Polysemy
- 8. What is a hyponym?
 - a. A word that has the same written form but unrelated meanings.
 - b. A word that represents a subclass of another word.
 - c. A word that has the opposite meaning of another word.
 - d. A word that has multiple semantic representations.
- 9. What is a hypernym?
 - a. A word that represents a superclass of another word.
 - b. A word that sounds similar to another word but has different meanings.
 - c. A word that has the same written form but different meanings.
 - d. A word that captures multiple semantics for a single word.

- 10. When might you want to retrieve synonyms of query words in information retrieval?
 - a. When you want to expand the keywords search.
 - b. When you want to study the meaning of individual words.
 - c. When you want to combine individual words to provide meaning in sentences.
 - d. When you want to capture multiple semantics for a single word.
- 11. Which algorithm is better suited for a large corpus with higher dimensions?
 - a. Skip-gram
 - b. CBOW
 - c. Both Skip-gram and CBOW are equally suitable.
 - d. Neither Skip-gram nor CBOW is suitable.
- 12. What is the main difference between Skip-gram and CBOW models in word2vec?
 - a. Skip-gram is faster to train than CBOW.
 - b. CBOW can capture two semantics for a single word.
 - c. Skip-gram predicts context words given a focus word.
 - d. CBOW uses a different weight matrix generation.
- 13. What is the purpose of semantic analysis?
 - a. To draw exact meaning within two parts of a sentence.
 - b. To generate word embeddings.
 - c. To study the meaning of individual words.
 - d. To combine individual words to provide meaning in sentences.

Question 14: What is a confusion matrix?

- A) A layout of algorithm performance visualization
- B) A table layout of algorithm performance visualization
- C) A measure of algorithm accuracy
- D) A measure of algorithm precision

Question 15: What does accuracy measure?

- A) How many correct results the algorithm managed to identify
- B) The proportion of true results among the total cases examined
- C) How good the algorithm is in general
- D) The quality of the algorithm
- **Question 16:** In which scenario is accuracy a good measure?
- A) When data sets are symmetric
- B) When precision and recall are balanced
- C) When there are equal positive and negative values
- D) When the algorithm performs well

Question 17: What does precision represent?

- A) The fraction of relevant documents that were retrieved
- B) The fraction of retrieved documents that are relevant
- C) The ability to tradeoff precision against recall
- D) The average of precision and recall values

Question 18: What does recall represent?

- A) The fraction of relevant documents that were retrieved
- B) The fraction of retrieved documents that are relevant
- C) The ability to tradeoff precision against recall
- D) The average of precision and recall values
- **Question 19:** What is the F-score (F-measure)?

- A) A measure of algorithm performance
- B) A measure of precision and recall tradeoff
- C) The average of precision and recall values
- D) A fraction of retrieved relevant documents

Question 20: What does a higher F-score value indicate?

- A) Better algorithm performance
- B) Higher precision
- C) Higher recall
- D) Balanced precision and recall

Question 21: Which metric enables tradeoff between precision and recall?

- A) Accuracy
- B) F-Score
- C) Confusion matrix
- D) Recall

Question 22: What is the purpose of precision?

- A) To measure algorithm performance
- B) To evaluate the quality of the algorithm
- C) To quantify the fraction of relevant documents
- D) To balance precision and recall tradeoff

Question 23: What is the purpose of recall?

- A) To measure algorithm performance
- B) To evaluate the quality of the algorithm
- C) To quantify the fraction of relevant documents
- D) To balance precision and recall tradeoff

Question 24: What are the possible values of precision and recall?

- A) Between 0 and 1
- B) Between -1 and 1
- C) Between 0 and 100
- D) Any positive value

Question 25: Which metric considers the relevance of retrieved documents?

- A) Accuracy
- B) Precision
- C) Recall
- D) F-Score

Question 26: Which metric considers the fraction of true results?

- A) Accuracy
- B) Precision
- C) Recall
- D) F-Score

Question 27: Which metric approximately averages precision and recall?

- A) Accuracy
- B) Precision
- C) Recall
- D) F-Score

Question 28: How can you evaluate the quality of an algorithm?

- A) By examining precision and recall values
- B) By considering the confusion matrix layout
- C) By calculating the proportion of true results
- D) By measuring the fraction of relevant documents