MMC HW5

1. (Kinematic Redundancy)

Referred to the Yoshikawa's paper uploaded in class material, Select the singularity avoidance scheme as a redundancy utilization scheme Redo this problem with a simple 3 DOF robot below and show the effectiveness of your scheme by simulation like

2. (Kinematic Calibration)

 $l_{1}\cos\theta_{1} + l_{2}\cos\theta_{2} + l_{3}\cos\theta_{123} = \chi$ $l_{1}\sin\theta_{1} + l_{2}\sin\theta_{12} + l_{3}\sin\theta_{123} = \chi$ $l_{1}\sin\theta_{1} + l_{2}\sin\theta_{12} + l_{3}\sin\theta_{123} = \chi$

Shown a manipulator, $l_1 = l_2 = l_3 = 1$ is known.

but the real link length are $l_1=l_2=l_3=0.95$, other kinematic parameters are correct. perform Kinematic Calibration process for 3 link lengths

Hint: X_{real} = $X_{measured}$ is computed with real link lengths

 $X_{\!\mathit{computed}}$ is computed with the known lengths