Administración Base de Datos

Semana 2 y 3 Modelado de una base de datos

Docente: Lic. Norberto A. Orlando

Diseño de la Base de Datos

¿Qué es un buen diseño de base de datos?.

El proceso de diseño de una base de datos se guía por algunos principios:

- El primero de ellos es que se debe evitar la información duplicada o, lo que es lo mismo, datos redundantes, porque malgastan el espacio y aumentan la probabilidad de que se produzcan errores e incoherencias.
- El segundo principio es que es importante que la información sea correcta y completa

MODELADO DE BASE DE DATOS

Modelado

Un modelo permite describir la **estructura lógica** de una base de datos.

En esta clase veremos dos modelos:

Modelo **Relacional**

Lenguaje que describe de una base de datos las **entidades** que participan en el problema y las **relaciones** que existen entre ellas.

Entidad

Concepto del **mundo real** que se describe en una base de datos

Entidad

- → Pueden ser concretas o abstractas.
- Se representan con un rectángulo.
- → Sus atributos se representan con un círculo.

Relación

- → Conexión lógica entre entidades.
- → Pueden tener atributos propios.
- → Se representa con un **rombo**.

Cardinalidad

Número de entidades con la cual otra entidad puede asociarse mediante una relación.

Metodología

→ Identificar entidades:

Definir objetos del mundo a representar.

→ Identificar atributos:

- Definir las "propiedades" de cada entidad.
- → Determinar la clave primaria de cada entidad.
- → Identificar relaciones entre las entidades.
- → Señalar cardinalidad entre entidades.

Ejemplo

Se quiere representar la compra de **productos** por **clientes**.

- → Un **cliente** tiene un **DNI**.
- Un producto tiene un código de producto (SKU).
- → Un cliente puede comprar muchos productos y un producto puede ser adquirido por muchos clientes.
- → Nos interesa registrar la fecha de compra y la cantidad de unidades que el cliente compró de ese producto.

Ejemplo

El Modelo Entidad Relación describe los datos mediante entidades, atributos y relaciones.

- Una **Entidad** es algo que representa un objeto y que interesa al sistema.
- Un **Atributo** representa lo que describimos de la entidad.
- Una **Relación** a una abstracción que muestra la asociación entre entidades.

Propiedades de una Relación.

- **Grado**: Definimos como grado de una relación a la cantidad de entidades que forman parte de la relación, así encontramos a relaciones de diferentes grados:
- Unario en donde una sola entidad forma parte de la relación (no son muy comunes)
- Binario dos entidades forman parte de la relación (son las mayorías de las relaciones)
- Ternario tres entidades forman parte de la relación. (no son muy comunes)

Conectividad de una Relación.

- Por conectividad entendemos a la cantidad de instancias de un objeto que participan en la relación con otro objeto
- Relación 1:1 → En este caso una instancia de una entidad se relaciona con una instancia de la otra entidad
- Relación 1:M → En este caso una instancia de una entidad se relaciona con una o muchas instancias de la otra entidad
- Relación M:1 → Una relación de tipo muchos a uno es similar a la del ejemplo anterior todo depende del lugar en el cual se encuentra la entidad
- Relación M:N → En este tipo de relación cada una de las instancias de la primera entidad se relaciona con una o muchas instancias de la otra entidad y viceversa.
- Ejemplos (Pag sig.)

Relación 1:1

Relación 1:M

Relación M:1

Informa

Relación M:N

Condicionalidad de una relación.

Con la propiedad **condicionalidad** estamos indicando si la relación entre las entidades es obligatoria u opcional, lo que significa determinar si existen o no instancias de ambas entidades que forman parte de la relación.

Del ejemplo anterior observamos que si bien la relación es de cardinalidad M a N, el médico M2 no atiende a ningún paciente por lo tanto esta relación es condicional.

Información Privada

Relaciones → representados mediante un rombo, donde en su interior se escribe el nombre de la relación, para este nombre se utiliza un verbo que representa la asociación entre las dos entidades que relaciona o el nombre de las dos entidades separadas por un guión.

1)_ Utilizando el verbo Tiene como nombre de la relación.

2) Médicos - Pacientes.

Relación Pacientes Médicos

Se lee de la siguiente manera: un médico tiene uno o muchos pacientes (N) y un paciente tiene uno o muchos médicos (M).

Para una relación de 1:1

En este caso decimos que un esposo está relacionado como mínimo con una esposa y como máximo con una esposa

Para una relación de 1:M

Significa que un empleado trabaja en un proyecto como mínimo y un proyecto como máximo y en un proyecto trabajan uno o muchos empleados.

Información Privada

Para una relación de M:1

Una factura le pertenece a un cliente como mínimo y a un cliente como máximo, y un cliente tiene una factura como mínimo y muchas facturas como máximo.

Para el caso 1,M condicional

En donde un alumno no tiene aprobada ninguna o muchas materias, ninguna puede ser para el caso de un alumno que recién se inscribe en primer año y todavía no aprobó ningún final.

Tipos de Objeto Asociativo o TOA → estos tipos de elementos aparecen cuando en una relación además de conectar las entidades posee atributos propios, es decir que contiene información que existe siempre y cuando exista la relación y en el caso que la relación no exista, tampoco existirá el TOA.

Es representado en un Modelo Entidad relación como un rectángulo que está conectado a través de una flecha a la relación.

Supertipo, Subtipo y Especialización → En algunos casos una entidad tiene varias subagrupaciones adicionales que deben representarse explícitamente por su importancia.

Especialización. La especialización es el hecho de agrupar un conjunto de **subtipos** de un **supertipo**. Este agrupamiento se produce teniendo en cuenta alguna característica distintiva del subtipo.

En este caso Empleados técnicos es una especialización de los subtipos técnicos e ingenieros.

Modelos

Del modelo Entidad Relación al modelo Relacional

Entidades

Se representan con tablas. Los atributos de la entidad ahora serán atributos en la tabla.

Relaciones 1 a 1

La relación que existía en el modelo entidad relación, ahora se convierte en un atributo de alguna de las tablas.

Ejemplo

- → Un presidente gobierna un solo País.
- → Del presidente nos interesa el nombre, el apellido y el DNI.
- → Del País nos interesa el nombre y la cantidad de habitantes.

Modelo Relacional

Relaciones 1 a N

La relación que existía en el modelo entidad relación, ahora se convierte en un atributo de la tabla que posee la cardinalidad N.

Ejemplo:

- → Un científico trabaja en una única investigación
- Varios científicos pueden trabajar en una investigación.
- → Cada investigación tiene un nombre único.
- Cada científico tiene un número de matrícula y un nombre.

Relaciones 1 a N

Relaciones 1 a N

Ejemplo:

- → Un docente puede dar clase en varias aulas y en varias aulas pueden dar clases varios docentes.
- → Cada aula tiene un número distintivo
- → Cada docente tiene un número de legajo distintivo.

¿Cómo se transforma al modelo relacional?

En el caso de las relaciones de muchos a muchos para mantener la unicidad se requiere una nueva **tabla intermedia** que va a **representar la relación** muchos a muchos.

Relaciones N a M (muchos a muchos)

Relaciones Cardinales (opcionales / obligatorias)

Una entidad puede estar relacionada con otra de dos maneras.

→ Obligatoria

→ Opcional

Relaciones opcionales

Un científico puede tener una investigación

Relaciones obligatorias

Un científico debe tener una investigación

NORMALIZACIÓN DE BASES DE DATOS

 Las formas normales de una base de datos fueron planteadas por Boyce y Codd a principios de la década del '70

¿Para qué normalizar un base de datos?

- Tres objetivos principales:
 - O Garantizar la integridad de la información
 - O Evitar redundancia en los datos
 - O **Escalabilidad**: que el modelo soporte modificaciones y extensiones con un bajo impacto

Normalización

PRIMERA FORMA NORMAL

La primera forma normal exige los siguientes puntos:

- Eliminar los grupos repetidos en celdas individuales, cada celda debe contener un atributo "atómico" o indivisible
- Crear tablas separadas para cada conjunto de observaciones relacionadas
- Identificar a cada tabla con una clave primaria

PRIMERA FORMA NORMAL

NO CUMPLE

Customer

Customer ID	First Name	Surname	Telephone Number
123	Pooja	Singh	555-861-2025, 192-122-1111
456	San	Zhang	(555) 403-1659 Ext. 53; 182-929-2929
789	John	Doe	555-808-9633

Customer

Customer ID	First Name	Surname	Telephone Number1	Telephone Number2
123	Pooja	Singh	555-861-2025	192-122-1111
456	San	Zhang	(555) 403-1659 Ext. 53	182-929-2929
789	John	Doe	555-808-9633	

CUMPLE

Customer Name

Customer ID	First Name	Surname
123	Pooja	Singh
456	San	Zhang
789	John	Doe

Customer Telephone Number

Customer ID	Telephone Number
123	555-861-2025
123	192-122-1111
456	(555) 403-1659 Ext. 53
456	182-929-2929
789	555-808-9633

PRIMERA FORMA NORMAL

NO CUMPLE

DATA		
Curso	Contenido	
Programación	Java, C++	
Web	HTML, CSS, Php	

CUMPLE

CURSO		
id_curso descripcion		
1	Programación	
2	Web	

CONTENIDO		
id_contenido descripcion		
1	Java	
2	C++	
3	HTML	
4	css	
5	php	

CURSO_CONTENIDO		
id_curso	id_contenido	
1	1	
1	2	
2	3	
2	4	
2	5	

PRIMERA FORMA NORMAL

NO CUMPLE

DATA		
Curso	Contenido	
Programación	Java, C++	
Web	HTML, CSS, Php	

CUMPLE

CURSO		
id_curso descripcion		
1	Programación	
2	Web	

CONTENIDO		
id_contenido descripcion		
1	Java	
2	C++	
3	HTML	
4	css	
5	php	

CURSO_CONTENIDO		
id_curso	id_contenido	
1	1	
1	2	
2	3	
2	4	
2	5	

SEGUNDA FORMA NORMAL

Además de cumplir con la primera forma normal la segunda forma normal exige:

- Que todos los atributos que no forman parte de la clave primaria, dependan de todos los componentes de la clave primaria.
- Si uno de los atributos depende únicamente de una parte de la clave primaria, entonces no se cumple la segunda forma normal.

SEGUNDA FORMA NORMAL

Electric Toothbrush Models

Manufacturer	Model	Model Full Name	Manufacturer Country
Forte	X-Prime	Forte X-Prime	Italy
Forte	Ultraclean	Forte Ultraclean	Italy
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZbrush	USA
Kobayashi	ST-60	Kobayashi ST-60	Japan
Hoch	Toothmaster	Hoch Toothmaster	Germany
Hoch	X-Prime	Hoch X-Prime	Germany

Electric Toothbrush Manufacturers

Manufacturer	Manufacturer Country
Forte	Italy
Dent-o-Fresh	USA
Kobayashi	Japan
Hoch	Germany

Electric Toothbrush Models

Manufacturer	Model	Model Full Name
Forte	X-Prime	Forte X-Prime
Forte	Ultraclean	Forte Ultraclean
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZbrush
Kobayashi	ST-60	Kobayashi ST-60
Hoch	Toothmaster	Hoch Toothmaster
Hoch	X-Prime	Hoch X-Prime

SEGUNDA FORMA NORMAL

TERCERA FORMA NORMAL

Además de cumplir con la segunda forma normal la tercera forma normal exige:

 Que ninguno de los atributos que no forman parte de la clave primaria dependan transitivamente de alguno de los otros atributos

La tercera forma normal se puede parafrasear de la siguiente manera:

"Cada atributo no clave debe proporcionar un hecho sobre la clave, la clave completa y nada más que la clave."

TERCERA FORMA NORMAL

NO CUMPLE

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

CUMPLE

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Winner Dates of Birth

Winner	Date of Birth	
Chip Masterson	14 March 1977	
Al Fredrickson	21 July 1975	
Bob Albertson	28 September 1968	

TERCERA FORMA NORMAL

