

BLG 335E – Analysis of Algorithms I Fall 2015, Recitation 1 7.10.2015

R.A. Doğan Altan daltan@itu.edu.tr - 4316
R.A. Kübra Cengiz kcengiz@itu.edu.tr

Prepared by Atakan Aral & Mustafa Ersen

Bubble Sort Problem

- Slightly modified version of **Problem 2.2** in *Introduction to Algorithms, T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, MIT Press, 2001*
- We will:
 - Write *pseudocode* for the given algorithm
 - Prove that the algorithm actually solves the problem (using *loop invariants*)
 - Compute the worst case running time of the algorithm

Bubble Sort Algorithm

6 5 3 1 8 7 2 4

http://bit.ly/VScGXL

Writting the Pseudocode


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Question 1

• What do we need to prove to show that Bubble sort actually sorts?

- We need to prove that:
 - it terminates
 - the elements of A' form a permutation of the elements of A
 - $-A'[1] \le A'[2] \le \cdots \le A'[n]$ where n = length[A]

Question 2

• State precisely a loop invariant for the for the inner loop, and prove that this loop invariant holds.

```
 \begin{cases} \textbf{for } i \leftarrow 1 \textbf{ to } length[A] \\ \textbf{do for } j \leftarrow length[A] \textbf{ downto } i + 1 \\ \textbf{do if } A[j] < A[j - 1] \\ \textbf{then } exchange A[j] \leftrightarrow A[j - 1] \end{cases}
```



```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Loop invariant:

- At the start of each iteration of the inner for loop:
 - $A[j] = \min \{ A[k] : j \le k \le n \}$
 - the sub array A[j..n] is a permutation of the values that were in A[j..n] at the time that the loop started.


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Initialization:

- Initially, j = n, and the sub array A[j ... n] consists of single element A[n].
- The loop invariant trivially holds.


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Maintenance (1/3):

- Consider an iteration for a given value of j.
- -A[j] is the smallest value in A[j ... n].
- After the exchange, A[j-1] will be the smallest value in A[j-1...n]


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Maintenance (2/3):

- We know that:
 - Rest of the sub array remains the same
 - The sub array A[j ... n] is a permutation of the values that were in A[j ... n]


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Maintenance (3/3):

- We see that:
 - A[j-1..n] is a permutation of the values that were in A[j-1..n] at the time that the loop started
 - Decrementing *j* for the next iteration maintains the invariant


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Termination:

- The loop terminates when *j* reaches *i*
- Loop invariant holds

Question 3

• Using the termination condition of the loop invariant proved in *Question 2*, state a loop invariant for the for the outer loop that will allow you to prove:

```
-A'[1] \le A'[2] \le \cdots \le A'[n] where n = length[A]
```

```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```



```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

Loop invariant:

- At the start of each iteration of the outer loop:
 - the sub array A[1 ... i-1] consists of the i-1 smallest values originally in A[1 ... n], in sorted order
 - A[i ... n] consists of the n-i+1 remaining values originally in A[1 ... n].


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Initialization:

- Before the first iteration of the loop:
 - *i* = 1
 - The sub array A[1 ... i -1] is empty
 - the loop invariant vacuously holds


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Maintenance (1/2):

- Consider an iteration for a given value of i
 - A[1 ... i -1] consists of the i smallest values in A[1 ... n], in sorted order
- In question 2 we have showed that:
 - after executing the outer loop, A[i] is the smallest value in A[i..n]


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Maintenance (2/2):

- As a result,
 - A[1 ... i] is now the i smallest values originally in A[1 ... n], in sorted order
 - since the inner loop permutes A[i ... n], the sub array A[i +1 ... n] consists of the n-i remaining values originally in A[1 ... n]


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• Termination:

- The outer loop terminates when i = n+1, so that i-1 = n
- -A[1..i-1] is the entire array A[1..n]
- it consists of the original array A[1 .. n], in sorted order

Question 4

- What is the worst-case running time of bubble sort?
- How does it compare to the running time of insertion sort and merge sort?


```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]
```

• For a given *i*, the inner loop makes *n* - *i* iterations. The total number of iterations, therefore, is:

$$\sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2}$$
$$= n^2/2 - n/2$$

- The running time of bubble sort is $\Theta(n^2)$ in all cases (best, worst, average)
- Its worst case runing time is
 - worse than Merge sort which is $O(n \log n)$
 - same as Insertion sort

Comments

- How can we optimize Bubble sort?
 - Terminate if no swaps are made in a loop step
 - Best case performance is O(n)
 - After every pass, all elements after the last swap are sorted, and do not need to be checked again
 - 50% improvement in comparison counts
 - no improvement in swap counts
 - Cocktail shaker sort (aka. bidirectional bubble sort)
 - Complexity approaches to O(n) if the list is mostly ordered