ZigBee & 6LoWPAN

IEEE 802.15.4

Mention on

- ➤ Physical Layer Specifications
 - ☐ Channels
 - ☐ Frequency Bands
 - Modulation
- ➤ MAC layer specifications
 - ☐ Channel Access
 - ☐ Frames
- ➤ Clustering
 - ☐ Management of devices
 - ☐ Topologies
- ➤ Packet types
 - □ Data
 - ☐ MAC Command
 - Beacon
 - □ ACK

No-Mention on

- ➤ Network Formation
- ➤ Neighbor discovery process
- ➤ Managing Application Layer
- ➤ Definition of Application Objects
- ➤ Device Maintenance
- ➤ Security at Higher Layers

ZigBee

- Consortium to Define Upper layer protocols on IEEE 802.15.4
- Defines scope for application development
- Strictly speaks about interoperability among different manufacturers
- Networks are separated based on services they offer

- Profiles
 - ➤ Smart Home
 - **>**Utility
 - ☐Smart Energy
 - **≻**Lighting
 - ➤ Retail Services
- NetworkSpecifications
- Compliance
 Specifications
- Certification Program

Architecture

Network Layer

- The network layer is required to provide functionality to ensure correct operation of the IEEE 802.15.4 MAC sub-layer and to provide a suitable service interface to the application layer
- Join and leave a network
- Apply security to Network Layer frames
- Route frames to their intended destinations

- Discovery and maintenance of routes among devices
- Discover one-hop neighbors
- Store of pertinent neighbor information
- Addressing Schemes
 - **>**16 Bit
 - >PAN-ID
 - ➤ Node-ID

Network Layer

NLDE-SAP

- ➤ Generation of the Network level PDU (NPDU)
- ➤ Topology specific routing
- **≻**Security

NLME-SAP

- ➤ Configuring a new device
- ➤ Starting a network
- ➤ Joining and leaving a network
- **≻**Addressing
- ➤ Neighbor discovery
- ➤ Route discovery
- ➤ Reception control

Application Layer

- Application Support Sub Layer
- Application Objects
- ZigBee Device Object (ZDO) Layer
- ZDO Management Plane

Application Support Sub Layer (APS)

- Maintaining tables for binding, defined as the ability to match two devices together based on their services and their needs
- Forwarding messages between bound devices

Application Support Sub Layer (APS)

- Security for application layer packets
- Message handling for Application Objects
- Connections to Application Objects
- Reflector Management
- Connections to ZDO

Application Framework

- Connections from APS Sub Layer
- Application objects
 - ➤ Sensor Profiles
 - > Actuator Profiles
- Upto 240 Object definitions
- A Device may have more than one Application Object
- Interface to ZDO Layer

ZigBee Device Object (ZDO)

- Initializing the Application Support Sublayer (APS), Network Layer (NWK), Security Service Provider (SSP) and any other ZigBee device layer other than the end applications residing over Endpoints 1-240
- Defines the role of the device within the network (e.g., ZigBee coordinator or end device)
- Initiating and/or responding to binding requests
- Establishing a secure relationship between network devices

ZDO

- Device & Service discovery
- Security Manager
 - ➤ Establish Key
 - ➤ Transport Key
 - ➤ Request Key
 - ➤ Update Device
 - ➤ Remove Device
 - ➤ Switch Key
- Network Manager
 - ➤ ZigBee Coordinator (ZC)
 - ➤ ZigBee Router (ZR)
 - ➤ ZigBee End Device (ZED)
 - ➤ Dynamic selection if cluster head

- Clustering
 - **→**Binding
 - ➤ Reducing Load on Co-ordinator
 - >...

6LoWPAN

- IPv6 over Low power Personal Area Networks
- IETF's initiative
- Extending the scope of IEEE 802.15.4 for Global connectivity
- RFC 4944

Architecture

- LoWPANs are stub networks
- Simple LoWPAN
 - ➤ Single Edge Router
- Extended LoWPAN
 - Multiple Edge Routers with common backbone link
- Ad-hoc LoWPAN
 - ➤ No route outside the LoWPAN
- Internet Integration issues
 - Maximum transmission unit
 - > Application protocols
 - > IPv4 interconnectivity
 - > Firewalls and NATs
 - Security

6LoWPAN

IP	v6
Ethernet MAC	LoWPAN Adaptation
<u> </u>	1EEE 802.15.4 MAC
Ethernet PHY	IEEE 802.15.4 PHY

IPv6-LoWPAN Router Stack

IP Protocol Stack

6LoWPAN Protocol Stack

Application

Transport

Network

Data Link

Physical

ì	Application	nuntanala					
1	Application	protocois					
ı	UDP	ICMP					
ı	IPv6						
1	LoWI	PAN					
1	IEEE 802.	15.4 MAC					
ı	IEEE 802.	15.4 PHY					

- Addressing
- Tunneling
- Header
- Transport Layer Protocols
- Application Layer Protocols

Motivation & Adoption

- Open Geospatial Consortium
- IP for Smart Objects
- ISA 100 (industry automation consortium)
- M2M

Features

- Support for e.g. 64-bit and 16-bit 802.15.4 addressing
- Useful with low-power link layers such as IEEE 802.15.4
- Narrowband ISM and power-line communications
- Efficient header compression
 - > IPv6 base and extension headers, UDP header
- Network Auto-configuration using Neighbour Discovery
- Unicast, multicast and broadcast support
 - ➤ Multicast is compressed and mapped to broadcast
- Fragmentation
 - > 1280 byte IPv6 MTU -> 127 byte 802.15.4 frames
- Support for IP routing (e.g. IETF RPL)
- Support for use of link-layer mesh (e.g. 802.15.5)

Addressing

- 8 bit addressing
- 16 bit addressing
- 128 bit addressing
- 64 bit Interface identifier

Header

Header

From	То	Allocation
00 000000	00 111111	NALP – Not a LoWPAN frame (NALP)
01 000000 01 000001 01 000010 01 000011 01 010000 01 010001 01 100000 01 111111	01 001111 01 011111 01 111111	reserved for future use IPv6 – uncompressed IPv6 packets LOWPAN_HC1 – compressed IPv6, see Section 2.6.1 reserved for future use LOWPAN_BC0 – broadcast, see Section 2.8 reserved for future use proposed for LOWPAN_IPHC, see Section 2.6.2 ESC – Additional Dispatch byte follows (preempted by IPHC)
10 000000	10 111111	MESH – Mesh header, see Section 2.5
11 000000 11 001000 11 100000 11 101000 11 101100	11 000111 11 011111 11 100111 11 101011 11 111111	FRAG1 – Fragmentation Header (first), see Section 2.7 reserved for future use FRAGN – Fragmentation Header (subsequent), see Section 2.7 proposed for fragment recovery [ID-thubert-sfr] reserved for future use

Modified Dispatch Identifier

Routing

IP Routing

Application

UDP

IPv6

LoWPAN

DLL

PHY

Interface0

LoWPAN FIB
{dest, next hop}

Application

UDP

IPv6

LoWPAN

DLL

PHY

Interface0

L3, Route Over

L2, Mesh Under

L2, Mesh Under

Header Compression

0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
0	1	0	0	0	0	1	0	SA	۸E	DA	۸E	С	N	Н	0				ι	Jnc	on	npı	es	sec	l Fi	eld	ls				
	С)is	sp	a	tc	h		F	łC	1	Н	e	ac	de	r																

0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
0	1	0	0	0	0	1	0	SÆ	٩E	DA	٩E	С	NH 1			S	D	L	_	_	_				N	I.C	. Fi	eld	ls		
	D)is	p	at	tc	h		ŀ	łC	1	Н	e	ac	de	r	ŀ	10	2	H	le	a	dε	er								

SAE or DAE value	Prefix	IID
00	sent in-line	sent in-line
01	sent in-line	elided and derived from L2 or mesh address
10	elided and assumed to be link- local (FE80::/64)	sent in-line
11	elided and assumed to be link-local (FE80::/64)	elided and derived from L2 or mesh address

```
00 Next header sent in-line
```

⁰¹ Next header = 17 (UDP)

¹⁰ Next header = 1 (ICMP)

¹¹ Next header = 6 (TCP)

IPHC (IPv6 Header compression)

- 6LoWPAN Context has increased demand
 - While joining a Node
 - Performing a Neighbor Discovery
- Context based header compression is inevitable
- LoWPAN Nodes should use context-based header compression
 - > only when a higher-layer protocol is in use
 - ➤ Protects the IPv6 addresses using some form of pseudo-header-based checksum and/or authenticator, such as UDP, TCP or some application-specific integrity protocol

Networking

- Bootstrapping
 - Establishing a network (Commissioning)
 - ☐ new node joining
 - ☐ Network re-organizing
 - Uses
 - ☐ Service Set ID (WLAN)
 - ☐ Security (Wireless Protected Access)
 - Prefix match -- Home network
 - Neighbor Discovery
 - ☐ DHCPv6 (Stateless Address Auto configuration)
 - ☐ Registration
 - ☐ Reg. collision
 - ☐ Multi-hop registration
 - ☐ Various operations (node, router, edge router)

Networking

Security

Objectives ☐ Confidentiality ☐ Integrity ☐ Availability ➤ Layer2 mechanisms ☐ As 802.15.4 implements AES(CCM, RFC 3610) ☐ 13 byte key based on 8 byte MAC Id \square 2^22= 7 weeks of key repetition Layer3 mechanisms (Internet Key Exchange [RFC 2409]) ☐ IPSec ☐ Doesn't suit for LoWPANs Key Management (Enhanced L3) ☐ Username & Password ☐ Long, Short, Group, Pair wise keys

Mobility

• So far nodes are considered stationary

Mobility
☐ Roaming (macro)
☐ Handover (micro)
Causes
☐ Physical movement
☐ Radio channel
☐ Network performance
☐ Sleep schedules
☐ Node failure
Node & Network controlled (Wi-Fi, cellular systems)
Solutions for Mobility
Commissioning
■ Bootstrapping
☐ Security
☐ Updating DNS
☐ Notifying upper layers

Mobility

• MIPv6

Proxy Home Agent

Mobility

Proxy MIPv6

Network Mobility

Routing

- ROLL Routing Over Low Power Lossy networks
- Traffic patterns
 - > peer-to-peer unicast flows
 - > point-to multipoint
 - > multipoint-to-point flows
- Routers in 6LoWPANs have a limited memory
- 6LoWPANs must be optimized for energy consumption.
- 6LoWPANs will be deployed over links with a limited frame size.
- Security and manageability are extremely important as 6LoWPANs are typically autonomous.

- Tunneling
- Dual Stack Devices

Application Protocols

- People's internet
 - >HTTP/HTTPS
 - **≻**FTP
 - **≻**RTP
 - **≻**SNMP
- As 6LoWPANs are Stateless
 - **>**SOAP
 - **≻**REST
- Protocol paradigms
 - **≻**End to End
 - ➤ Real Time Streaming / Session
 - ➤ Pub/ Sub

- Common Protocols
 - ➤ Web service protocols
 - ➤MQTT (MQTT-S)
 - ➤ ZIGBEE Compact Application Protocol
 - ➤ Service Discovery
 - □SLP, UPnP, DPWS
 - ➤Industry Specific (BACnet, oBIX, ANSI c12.19)
- ZCAP, MQTT has own discovery features

Hardware Platforms

• Suited for Host, Routers

Suited for Gateways

Software Stacks

- TinyOS
- ContikiOS
- RIoT
- Jennic 6LoWPAN
- Sensinode NanoStack
- Nivis ISA100

Software Stacks

- ContikiOS
 - >C
 - ➤ MSP430, AVR, HC12, Z60, etc...
 - ≥2kB RAM, 40kB ROM
 - ➤ LoWPAN Support
 - ➤ Multitasking
 - Event driven kernel
 - ➤uIP stack
 - >Thread based
 - **≻**COOJA Simulator
 - ➤ Tmote, TelosB, Ubimote etc...

- TinyOS
 - **≻**nesC
 - ➤MSP430, AVR
 - ➤ 0.4kB RAM
 - **≻**LoWPAN Support
 - **≻**BLIP
 - >TOS Simulator
 - > FIFO
 - ➤OS merges with Program
 - ➤ TelosB, Imote, Smartmote etc...