Statistics 452: Statistical Learning and Prediction

Chapter 4, Part 2: Linear Discriminant Analysis Classifier

Brad McNeney

2018-09-25

Linear Discriminant Analysis (LDA) Classifier

Logistic Regression vs LDA Classifieer

- ▶ Logistic regression models Pr(Y = 1|X = x) = p(x).
 - More generally, polytomous regression models Pr(Y = k|X = x).
- LDA models Pr(X = x | Y = k), which relates to Pr(Y = k | X = x) via Bayes' rule:

$$Pr(Y=k|X=x) = \frac{Pr(X=x|Y=k)Pr(Y=k)}{\sum_{j} Pr(X=x|Y=j)Pr(Y=j)}.$$

Notation and Terminology

Notation: $f_k(X) = Pr(X = x | Y = k)$, $\pi_k = Pr(Y = k)$, $p_k(x) = Pr(Y = k | X = x)$, so that

$$p_k(x) = \frac{f_k(x)\pi_k}{\sum_j f_j(x)\pi_j}.$$

- ▶ Terminology:
 - \blacktriangleright π_k is the *prior* probability of class k
 - \triangleright $p_k(x)$ is the *posterior* probability of class k given data x.

Bayes Classifier

- We saw in Chapter 2 that the classifier with the lowest error rate is the one that chooses the class with the highest posterior probability.
- ▶ If we have good estimates, $\hat{p}_k(x)$, we can choose the class with the highest **estimated** posterior probability.
- ▶ Estimate $p_k(x)$ by estimating
 - \star π_k : If training sample is a population random sample, use the sample proportions.
 - ▶ $f_k(x)$: LDA model is parametric, so we estimate f_k by estimating its parameters.

LDA Classifier: Model for $f_k(x)$ when p = 1

- ▶ Assume $f_k(x)$ is normal with mean μ_k and variance σ_k^2 .
 - ▶ Then estimating f_k amounts to estimating μ_k and σ_k^2 .
 - ▶ Further assume σ_k is the same for all k and let σ denote this common value.
- ► For a particular *x*, the class with highest posterior probability is the one with highest value of

$$\delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k.$$

Example

▶ Suppose two classes, $\pi_1 = 0.1$, $\pi_2 = 0.9$, $\mu_1 = 1$, $\mu_2 = -1$, $\sigma = 1$.

```
mu1<-1; mu2<-(-1); sigma<-1; pi1<-0.1;pi2<-0.9
x <-seq(from=-4,to=4,length=100)
f1 <- dnorm(x,mean=mu1,sd=sigma)
f2 <- dnorm(x,mean=mu2,sd=sigma)
delta <- function(x,mu,sigma,pi) {
    x*mu/sigma^2 - mu^2/(2*sigma^2) + log(pi)
}
delta1 <- delta(x,mu1,sigma,pi1)
delta2 <- delta(x,mu2,sigma,pi2)
dd <- data.frame(x=x,f1=f1,f2=f2,delta1=delta1,delta2=delta2)</pre>
```

```
library(tidyverse)
ggplot(dd,aes(x=x))+
  geom_line(aes(y=f1*pi1),color="cyan")+
  geom_line(aes(y=f2*pi2),color="red") +
  labs(y=expression(f[k](x)*pi[k]))
```



```
ggplot(dd,aes(x=x))+
  geom_line(aes(y=delta1),color="cyan")+
  geom_line(aes(y=delta2),color="red") +
  labs(y=expression(delta[k](x)))
```


Decision Boundary

- ▶ The point where the δ_k lines cross is the decision boundary.
- Can show that the boundary is

$$\frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2 \log(\pi_2/\pi_1)}{\mu_1 - \mu_2}.$$

In this example the boundary is $(1+(-1))/2 + \log(.9/.1)/2 \approx 1.1$

$$(mu1 + mu2)/2 + sigma^2*log(pi2/pi1)/(mu1-mu2)$$

[1] 1.098612

Estimated Distributions

- ▶ Replace means and variance in $\delta_k(x)$'s with estimates (equation 4.15 of text) to get the discriminant functions $\hat{\delta}_k$.
- ▶ Illustrate with Default data.

```
library(ISLR)
data(Default)
```


Software Note

- Specifying color=default groups the data by default.
- ▶ The density geom plots the estimated densities $\hat{f}_k(x)$ by default, but also computes the variable ...count..., which for group k is $\hat{f}_k(x)n_k$.
- ▶ We are interested in $\hat{f}_k(x)\hat{\pi} = \hat{f}_k(x)n_k/n$, so count is proportional to what we want to plot.

Estimated Densities and Discriminant Functions

```
n <- 10000; K <- 2
pi1 <- with(Default,mean(default=="Yes")); pi2 <- 1-pi1
defBalance <- with(Default,balance[default=="Yes"])
nodefBalance <- with(Default,balance[default=="No"])
mu1 <- mean(defBalance)
mu2 <- mean(nodefBalance)
sigma <- sqrt((sum((defBalance-mu1)^2) + sum((nodefBalance-mu2)^2))/(n-K))
with(Default,range(balance))</pre>
## [1] 0.000 2654.323
```

```
x <- seq(from=0,to=3000,length=100)
f1 <- dnorm(x,mean=mu1,sd=sigma)
f2 <- dnorm(x,mean=mu2,sd=sigma)
delta1 <- delta(x,mu1,sigma,pi1)
delta2 <- delta(x,mu2,sigma,pi2)
dd <- data.frame(x=x,f1=f1,f2=f2,delta1=delta1,delta2=delta2)</pre>
```

```
ggplot(dd,aes(x=x))+ geom_line(aes(y=f1*pi1),color="cyan")+
  geom_line(aes(y=f2*pi2),color="red") +
  labs(y=expression(hat(f)[k](x)*hat(pi)[k]))
```


min(x[f1*pi1>f2*pi2])

```
## [1] 2030.303
```

```
ggplot(dd,aes(x=x))+
  geom_line(aes(y=delta1),color="cyan")+
  geom_line(aes(y=delta2),color="red") +
  labs(y=expression(hat(delta)[k](x)))
```


Decision Boundary for Default Data

```
(mu1 + mu2)/2 + sigma^2*log(pi2/pi1)/(mu1-mu2)
## [1] 2008.584
```

LDA Classifier in R

```
library(MASS)

11 <- lda(default ~ balance, data=Default)
preds <- predict(11)
head(preds$posterior)</pre>
```

```
## No Yes
## 1 0.9972130 0.002786981
## 2 0.9958358 0.004164240
## 3 0.9865931 0.013406929
## 4 0.9988882 0.001111757
## 5 0.9963955 0.003604464
## 6 0.9933487 0.006651334
```

```
head(preds$class)
```

```
## [1] No No No No No No Water No Yes
```

LDA Classifier for p > 1

- Same basic idea of classifying based on highest posterior probabilities.
- ▶ Generalize the model for $f_k(X)$ from a Gaussian distribution to a *multivariate* Gaussian distribution.
- ▶ The mean in class k is now a vector μ_k and the variance is a matrix Σ .
- ▶ Details on the multivariate density and the resulting $\delta_k(x)$ are given on page 143 of the text.

LDA Classifier Using all Default Data

```
11 <- lda(default ~ student + balance + income, data=Default)
preds <- predict(ll)
head(preds$posterior)</pre>
```

```
## No Yes
## 1 0.9967765 0.003223517
## 2 0.9973105 0.002689531
## 3 0.9852914 0.014708600
## 4 0.9988157 0.001184329
## 5 0.9959768 0.004023242
## 6 0.9957918 0.004208244
```

Predictions vs True Default Status

Tabulating predictions and true default status gives the following "confusion matrix":

- (Slight difference with results in text.)
- ▶ 9724 correctly predicted, 276 incorrectly predicted, so error rate is 2.76%.
- ▶ But 254/333, or 76% of defaulters missed.

Classification Error Rates

- ► Terminology is from diagnostic testing in medicine.
 - ▶ E.G., pap smear to screen for cervical cancer
- ▶ The test can be positive (T^+) or negative (T^-) , and an individual may have the disease (D^+) or not (D^-) :

Replace test with prediction and true disease classification with true classification.

Sensitivity, Specificity, True- and False-Positive Rates

- ► The observed true positive rate (TPR) is the proportion of D⁺ who are TP, or TP/(TP+FN).
 - ▶ TP/(TP+FN) is an estimate of $P(T^+ \mid D^+)$, known as the sensitivity of the test.
 - ▶ Sensitivity is only 79/333 or 23.7% for Default data.
- ► The observed true negative rate is the proportion of D⁻ who are TN, or TN/(TN+FP).
 - ▶ TN/(TN+FP) is an estimate of the true negative rate $P(T^- \mid D^-)$, known as the *specificity* of the test. Specificity is 9645/9667 or 99.8% for Default data.
 - ▶ The complement, FP/(TN+FP), is an estimate of the false positive rate (FPR) $P(T^+ \mid D^-)$. FPR is 22/9667 or 0.2% for Default data.

Receiver Operating Characteristic (ROC) Curves

- ▶ The classification of a subject with $X = x_0$ as T^+ or T^- is made by comparing the posterior probability $Pr(T^+|X=x_0)$ to a threshold t=1/2; e.g., >t classify as T^- .
- ▶ Lowering the threshold will increase the number of T^+ , and hence the TPR, $P(T^+ \mid D^+)$, and the FPR, $P(T^+ \mid D^-)$.
- ► The ROC curve is a plot plot of the TPR versus FPR as we vary t.
 - ► Try to get a sense of the trade-off between true- and false-positive rates, and possibly choose an "optimal" t.

ROC for LDA Classifier on Default Example

```
library(AUC) # for the roc() function; install.packages("AUC") to install
library(broom) # for the tidy() function
posteriorYes <- preds$posterior[,"Yes"]
trueYes <- # require a binary factor with 1=Yes
   (Default$default=="Yes") %>% as.numeric() %>% factor()
ROCres <- roc(posteriorYes,trueYes)
tidyROCres <- tidy(ROCres)</pre>
```

ROC Curve

ROC Curve for Logistic Regression

```
lfit <- glm(default ~ .,data=Default,family=binomial())
posteriorYesLogistic <- fitted(lfit)
ROClogist <- tidy(roc(posteriorYesLogistic,trueYes))
ggplot(ROClogist,aes(x=fpr,y=tpr)) + geom_point(pch=".")</pre>
```


ROC Interpretation

- ► The points on the plot represent the FPR/TPR combinations for each threshold.
- The ideal test threshold would yield a TPR of one and a FPR of zero, and so would appear in the upper-left corner of the ROC plot.
 - We usually select the threshold that is closest to the upper-left corner.
 - No obvious "best" threshold in this example. Perhaps the threshold that gives TPR of about 0.875 and FPR of about 0.125.

```
tidyROCres %>%
filter(fpr >= 0.1249,fpr <= 0.1251)</pre>
```

```
## instance cutoff fpr tpr
## 1 7644 0.04572886 0.1249612 0.8768769
## 2 8518 0.04572196 0.1250647 0.8768769
## 3 8490 0.04569361 0.1250647 0.8798799
```

Re-classify

```
n <- nrow(Default); thresh <- 0.0457
dclass <- rep("No",n); dclass[posteriorYes>thresh] <- "Yes"
Default <- data.frame(Default,prednew = dclass)
xtabs(~ prednew + default, data=Default)</pre>
```

```
## default
## prednew No Yes
## No 8458 41
## Yes 1209 292
```

- Sensitivity is much better (about 87.7%).
- ▶ Many more false-positives (1209)

Area Under Curve (AUC)

- ► The area under the ROC curve is a measure of the overall performance of the classifier.
- If TPR jumps to near one with FPR remaining low, the performance is good.
 - ▶ This would give AUC near 1.
- A poor classifier would do no better than the null classifier, which for threshold t randomly assigns $t \times 100\%$ to be the success category and has AUC=1/2.

```
auc(ROCres)
```

[1] 0.9495202

Quadratic Discriminant Analysis (QDA)

- ▶ Back to the p = 1 case.
- ▶ If we let the variances differ by class k, then it can be shown that the Bayes classifier assigns an observation with X = x to the class with the largest

$$\delta_k(x) = -\frac{1}{2} \frac{(x - \mu_k)^2}{\sigma^2} - \frac{1}{2} \log \sigma_k^2 + \log \pi_k,$$

which is a quadtratic function of x.

▶ See the text, page 149, for the multivariate version.

QDA for the Default Data

```
qq <- qda(default ~ student + income + balance, data=Default)
preds <- predict(qq)
Default <- data.frame(Default,predicted = preds$class)
xtabs( ~ predicted + default, data=Default)</pre>
```

```
## default
## predicted No Yes
## No 9645 254
## Yes 22 79
```

Same as LDA for these data.

QDA vs LDA: Bias vs Variance

- ▶ When should we assume the K classes have a common variance matrix?
- ▶ LDA has fewer parameters and so lower variance.
 - ▶ When *p* is large relative to *n*, the number of parameters in QDA can become large, and variance of the posterior probabilities large.
- On the other hand, if the variances really are different, the LDA posterior probabilities can be biased.
- ▶ Recommendation from the text: If the training data set is large, use QDA. If not, use LDA.

QDA vs LDA: Decision Boundaries

► Text, Figure 4.9: \$p=2), Bayes (purple dashed), LDA (black dotted), QDA (green solid).

Comparison of Classification Methods

- ▶ Performance depends on the nature of the true decision boundary (curve that separates the two classes).
- One can show that logistic regression leads to linear decision boundaries, just like LDA
 - Difference is in how the methods estimate the parameters of the boundaries.
 - Oftern give very similar results, as in the Default data.
- QDA gives quadratic boundaries.
- The KNN classifier is non-parametric and so there are no restrictions on the decision boundary.
- ▶ Performance depends on the nature of the true decision boundary.