- How to balance new science, new sensors, more sensors with processing effort
- Maximize analysis of data that are currently available
- Efficiency
- How much is management of a sensor per year
- Different approaches to data collections
 - Smarter sensor networks
 - Higher frequency during interesting events
 - Power conservation
 - sending only necessary data
 - turning sensors on and off according to measurements of other sensors
 - computing power closer to the sensor (android sensors)
 - research on optimization of sensor placements
 - experimental design
 - spatial variability
 - moving sensors (terrestrial train, trolley)
 - profiling instruments (lake or ocean)
- new types of sensors
 - genomic, taxonomic
- collaboration with computer science
 - problems
 - CS is interested in the research and prototype not in the production stage
 - Science needs are frequently not interesting CS problems
 - Communicating needs
 - Maybe not CS is needed but software engineering
- Different research groups' approaches and what to learn from them
 - Possible overlap in methods between groups (IOOS, NERR, LTER)
 - Centralized comparable methods at all sites (IOOS, NERR)
 - Distributed (LTER)
- · Compare to bio-informatics pipelines of data processing
 - Genomics data are more standardized than ecological data
- Make sensors more comparable by standardized comparisons like chemical analysis lab certifications
 - Knowledgebase of recommended QA/QC procedures
 - have reference sensors travel to different sites
 - knowledgebase for protocols for classes for sensors
 - how often to calibrate
 - how to install