

Income Expansion Path & Engel Curve

iClicker

Jess likes to craft. She has \$40 per week she can spend on yarn at \$8 each or paint sets at \$4 each.

Suppose the price of paint sets rises to \$6. What happens to Jess's budget constraint? (Suppose the graph has yarn on the y-axis and paint sets on the x-axis.)

- A. Shift inward
- B. Shift outward
- (C.) Rotate inward
- D. Rotate outward

Price & Choice

Changes in **relative** prices (holding all else constant) matter too!

Consider two goods: cheese and crackers

- By changing the price of cheese (and holding the price of crackers, income, and preferences constant) we will observe various (optimal) consumer choices
- We summarize these choices with the demand curve for cheese

Choice & Demand

The demand curve for cheese will **shift** following changes* in:

- Income
- Price of crackers
- Preferences

*These are isolated changes; for example, we change income but hold everything else constant

Choice & Demand: Changes in Price

Hill Country Fare

Hill Country Fare Grade A Large White Eggs

12 ct

\$4.92 each (\$0.41 / ct)

Choice & Demand: Decomposing Price Effects

Why is there an inverse relationship between consumption and price?

 To better understand behavior, we can (theoretically) decompose total price effects on consumption into substitution and income effects TE = SE + IE

Substitution effect: CHANGING LANSUMPTION FROM CHANGE RELATIVE PRICES
HOWING P.P. LINSTANT

Income effect: CHANGING LANGUMPTION FROM CHANGE IN PURCHASING
POWER (P.P.)
(DING RELATIVE PRICES
(DISTANT)

Decomposing Price Effects for a Normal Good

