Matriz super-legal

Nome do arquivo: matriz.c, matriz.cpp, matriz.pas, matriz.java, matriz.js, matriz_py2.py ou matriz_py3.py

Denotando por $A_{i,j}$ o elemento na *i*-ésima linha e *j*-ésima coluna da matriz A, dizemos que uma matriz é "legal" se a condição

$$A_{1,1} + A_{lin,col} \le A_{1,col} + A_{lin,1}$$

é verdadeira para todo lin > 1 e col > 1.

Adicionalmente, dizemos que a matriz é "super-legal" se cada uma de suas submatrizes com pelo menos duas linhas e duas colunas é legal. Lembre que uma submatriz S de uma matriz $M_{L\times C}$ é uma matriz que inclui todos os elementos $M_{i,j}$ tais que $l_1 \leq i \leq l_2$ e $c_1 \leq j \leq c_2$, para $1 \leq l_1 \leq l_2 \leq L$ e $1 \leq c_1 \leq c_2 \leq C$.

A sua tarefa é, dada uma matriz A, determinar a maior quantidade de elementos de uma submatriz super-legal da matriz A.

Entrada

A primeira linha contém dois inteiros L e C indicando respectivamente o número de linhas e o número de colunas da matriz. Cada uma das L linhas seguintes contém C inteiros X_i representando os elementos da matriz.

Saída

Seu programa deve produzir uma única linha, com apenas um número inteiro, a maior quantidade de elementos de uma submatriz super-legal da matriz da entrada, ou zero no caso de não existir uma submatriz super-legal.

Restrições

- $2 \le L, C \le 1000$
- $-10^6 \le X_i \le 10^6$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 10 pontos, $L, C \leq 3$.
- Para um conjunto de casos de testes valendo outros 50 pontos, $L, C \leq 300$.

Exemplo de entrada 1	Exemplo de saída 1
3 3	9
1 4 10	
5 2 6	
11 1 3	

Exemplo de entrada 2	Exemplo de saída 2
3 3	4
1 3 1	
2 1 2	
1 1 1	

Exemplo de entrada 3	Exemplo de saída 3
5 6	15
1 1 4 0 3 3	
4 4 9 7 11 13	
-3 -1 4 2 8 11	
1 5 9 5 9 10	
4 8 10 5 8 8	