NETOLOGY DS-9

Исследование методов парсинга в многосторонних диалогах.

Смольников Виталий Москва 2020

Постановка задачи

Высока вероятность среди всего информационного шума пропустить важные или информативные сообщения

В качестве возможного решения задачи разбора многостороннего диалога была выдвинута гипотеза: автоматический синтез взаимосвязей между отдельными фразами может сильно облегчить анализ многостороннего диалога.

Метрики

$$Precision_{Micro} = \frac{TP_{summ}}{TP_{summ} + FP_{summ}}$$

$$Recall_{Micro} = \frac{TP_{summ}}{TP_{summ} + FN_{summ}}$$

$$F1_{Micro} = \frac{2 * Precision_{Micro} * Recall_{Micro}}{Precision_{Micro} + Recall_{Micro}}$$

Постановка задачи

Пример многостороннего диалога с его структурой дискурса из корпуса STAC (Asher и др., 2016), где «Q-Elab» - это сокращение от «Вопрос-разработка», «QAP» для «пара вопрос-ответ». и АСК. » для «Подтверждение».

Анализ

• Исследование предыдущих решений.

234 235 236 237 238 239	18:55:02:745 18:55:10:047 18:55:18:787 18:55:23:428 18:55:32:308 18:55:47:845	gotwood4sheep inca CheshireCatGrin gotwood4sheep dmm gotwood4sheep	anyone got wheat for a sheep? sorry, not me nope. you seem to have lots of sheep! yup baaa i think i'd rather hang on to my wheat i'm afraid kk I'll take my chances then	235	QAP 236 ACK 239	238
--	--	---	---	-----	--------------------------	-----

Пример направленного ациклического графа (DAG).

234

Анализ

• Исследование предыдущих решений.

Модель	F1 связь	F1 СВЯЗЬ И ТИП
ILP	67.1	51.6
DSM	73.2	55.7

Анализ

STAC Corpus

	Всего	Тренировочная выборка	Тестовая выборка
Диалогов	1091	968	123
Кол-во EDU	10677	9545	1132
Кол-во связей	11348	1058	1190

Два недостатка :

- язык английский
- много избыточной информации о состоянии игры.

Анализ данных

- EN RU
- библиотека googletrans

• Избыточность информации

- {"id": "s1-league3-game3",
- "edus":
- [{"speaker": "nareik15", "text": "эээ ... как принять сделку?"},
- {"speaker": "inca", "text": "у тебя есть пшеница?"},
- {"speaker": "yiin", "text": "ага, я тоже не уверен"},
- {"speaker": "nareik15", "text": "да, могу торговать"},
- {"speaker": "nareik15", "text": "но может видеть только кнопку \"отклонить\""}],
- "relations":
- [{"type": "Contrast", "x": 3, "y": 4},
- {"type": "Q-Elab", "x": 0, "y": 1},
- {"type": "Parallel", "x": 0, "y": 2},
- {"type": "Question-answer_pair", "x": 1, "y": 3}]}

Обзор модели

Для текущего EDU u_i модель предсказывает связь зависимостей, оценивая распределение вероятностей следующим образом:

$$\mathcal{P}(u_j|u_i, \mathcal{T}, 0 \leq j \leq i-1)$$

де $\pi = \{(u_i, u_k, r_{lk}) \mid 0 \le l \le k \le i - 1\}$ - это набор отношений зависимостей, которые уже предсказаны перед текущим шагом i. В данной модели это так называемое *предсказание ссылки*. Аналогичным образом модель предсказывает тип отношения для предсказанной ссылки $u_i \to u_i$ (j < i) со следующим распределением:

$$\mathcal{P}(r_{ji}|u_j \to u_i, \mathcal{T}_i)$$

где r_{ji} ∈ { r_1 , r_2 , \cdots , r_K }, r_K (1≤k≤K) - тип отношения, а K - количество типов отношений. Это так называемая классификация отношений.

Обзор модели

Для текущего EDU u_i прогнозирование связи оценивает распределение по предыдущим EDU, классификация отношений оценивает распределение по типам связей, а структурированный кодер обновляет структурированное (Structured) представление u_i , используя представления u_i и p_i и эмбеддинг прогнозируемого отношения r_{ij} .

Dialogue Discourse Parsing. Code to Zhouxing Shi and Minlie Huang. A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues. In AAAI, 2019. https://arxiv.org/pdf/1812.00176.pdf

Обзор модели

Локальные представления создаются с помощью Bi-GRU

Общая структура Bi-GRU

Ячейка GRU

Параметры модели (итоговой)

- векторы слов инициализируются 300-мерными GloVe векторами
- размер словаря 1000 слов
- Максимальное расстояние между связуемыми фразами = 20
- Размер эмбеддинга отношений = 100
- Количество скрытых юнитов = 256
- dropout= 0.5

Результаты

• Результаты работы различных вариантов.

Модель	F1, %
Deep Sequential , en, GloVe	69.7
Deep Sequential , ru, GloVe	70.4
Deep Sequential, ru, FastText	69
Dummy*	54

Результаты

Зависимость F1 от количества фраз в

Зависимость F1 от количества эпох в

Результаты. Пример

Размечено в датасете

Передсказано в модели

Типы связей: Elaboration - проработка, QAP – пара-вопрос-ответ, ACK- подтверждение, Comment – комментарий, Explanation - объяснение

Итоги и планы на развитие

- Итоги
- Перенос модели на датасет диалогами на русском языке дает схожие результаты.
- Заметно, что качество работы модели на длинных диалогах заметно падает.
- Главная проблема на данном этапе отсутствие большого размеченного датасета на русском языке.
- План развития.
 - Провести разметку существующих датасетов с помощью данного алгоритма*.
 - Перевод модели на TF 2.
 - Использование направленного ациклического графа.
 - Обучение модели на большом датасете.
 - Исследование возможности использования Multilingual Universal Sentence Encoder for Semantic Retrieva**