SAI - 2020 Motion and Deep learning

CONTENTS

/

Deep learning in CGI (Motion, Render)

02 Learning motion manifold with CAE

03 Deep learning framework for Motion synthesis

Deep learning in CGI

Denoise

Improving corrupted data

모션 입력(좌), 왼쪽에서부터 오른쪽으로 순서대로 uncleaned data, denoised data, hand-cleaned data

출처: Ubisoft

좌우 그림에서 좌측은 간단한 path tracing으로 렌더된 이미지들, 중간은 RL/ML 개선된 이미지들 02

AN OVERVIEW

Figure 1. Example results for Poisson noise ($\lambda = 30$). Our result was computed by using noisy targets.

Learning motion manifold with Convolutional AE

What is Convolutional AutoEncoder?

Figure (D)

Encoder: Filtering + MaxPooling

In order to fit a neural network framework for model training, we can stack all the $28 \times 28 = 784$ values in a column. The stacked column for the first record look like this: (using $x_{train[1].reshape(1,784)}$):

Figure (B)

Encoder: Filtering + MaxPooling

Figure (E): The Feature Maps

filtering

Figure (G)

Encoder: Filtering + MaxPooling

Figure (H): Max Pooling

Max pooling

Decoder: Filtering + UpSampling

Decoder: Filtering + UpSampling

Transpose Convolutional matrix

Input Data(2*2)를 1*4로 reshape 2*2 input → 4*4 output

Convolution By Matrix Multiplication

궁금해서 한 번 해본 Autoencoder

모델 학습 결과물:

결과물:

결론: 그냥 CNN이다

Encoder & Decoder가 있는

Learning motion manifold with CAE

다량의, 노이즈가 낀 모션 데이터를 CAE로 학습해보자

Biologically impossible Unrealistic "Fast" motion

Valid motion

Time series of human pose: Visible unit n: num of frames m: num of degree of freedom, $\mathbf{X} \in \mathbb{R}^{nm}$ $\mathbf{Y} \in [-1,1]^{ik}$

 $k \in \mathbb{R}^{nm}$ Weights/Biases $k \in [-1,1]^{ik}$

Hidden unit

Tanh의 함수의 범위

Max pooling

Projection

$$\Phi_k(\mathbf{X}) = \tanh(\Psi(\mathbf{X} * \mathbf{W}_k + \mathbf{b}_k))$$

Inverse Projection

$$\mathbf{\Phi}_k^{\dagger}(\mathbf{Y}) = (\mathbf{\Psi}^{\dagger}(\tanh^{-1}(\mathbf{Y})) - \mathbf{b}_k) * \tilde{\mathbf{W}}_k$$

Initial value: 0

 \mathbf{W}, \mathbf{b}

Figure 2: Structure of the Convolutional Autoencoder. Layer 1 contains 64 filters of size 15x63. Layer 2 contains 128 filters of size 15x64. Layer 3 contains 256 filters of size 15x128. The first dimension of the filter corresponds to a temporal window, while the second dimension corresponds to the number of features/filters on the layer below.

Sub-sampled input data = X
Sub-sampled input data = X
160 frames roughly covers 5 sec
= covers distinct motion

Visible Units L1 Hidden L2 Hidden L3 Hidden (160x63) (80x64)(40x128) (20x256) Convolution & Max Pooling One dimension convolution Normalized joint lengths.. etc Depooling & Deconvolution

Encoder:
$$\mathbf{\Phi}_k(\mathbf{X}) = anh(\mathbf{\Psi}(\mathbf{X}*\mathbf{W}_k+\mathbf{b}_k))$$

Decoder:
$$\mathbf{\Phi}_k^\dagger(\mathbf{Y}) = (\mathbf{\Psi}^\dagger(anh^{-1}(\mathbf{Y})) - \mathbf{b}_k) * \tilde{\mathbf{W}}_k$$

Ground truth data
$$0.01$$
 $Loss(\mathbf{X}) = \|\mathbf{X} - \mathbf{\Phi}^\dagger(\mathbf{\Phi}(\mathbf{X}_c))\|_2^2 + \alpha \|\mathbf{\Phi}(\mathbf{X}_c)\|_1$ Mean Squared Error Loss 노이즈가 첨가된 data

Stepped Motion

Projected

Ground Truth

DL framework for Character Motion synthesis

Solved Issues

Hovering Character → Some-how similar to human "walking"

Motion Editing

Building Motion manifold (위 내용과 거의 동일)

Structure of the Feedforward Network

$$h_1, h_2$$
 w_1, w_2, w_3 l 64, 128, 45, 25, 15 and 7,

$$\mathbf{T} \in \mathbb{R}^{n imes k}$$
Contact: 1, Else: -1
 $\mathbf{F} \in \{-1,1\}^{n imes 4}$

$$\mathbf{\Pi}(\mathbf{T}) = ReLU(\mathbf{\Psi}(ReLU(ReLU(\mathbf{T}))) + \mathbf{W}_1 + \mathbf{b}_1) * \mathbf{W}_2 + \mathbf{b}_2) * \mathbf{W}_3 + \mathbf{b}_3), \quad (4)$$

where $\mathbf{W}_1 \in \mathbb{R}^{h_1 \times l \times w_1}$, $\mathbf{b}_1 \in \mathbb{R}^{h_1}$, $\mathbf{W}_2 \in \mathbb{R}^{h_2 \times h_1 \times w_2}$, $\mathbf{b}_2 \in \mathbb{R}^{h_2}$, $\mathbf{W}_3 \in \mathbb{R}^{m \times h_2 \times w_3}$, $\mathbf{b}_3 \in \mathbb{R}^m$, h_1, h_2 are the

$$Cost(\mathbf{T}, \mathbf{X}, \phi) = \|\mathbf{X} - \mathbf{\Phi}^{\dagger}(\mathbf{\Pi}(\mathbf{T}))\|_{2}^{2} + \alpha \|\phi\|_{1}$$

where $\mathbf{F} \in \{-1, 1\}^{n \times 4}$ is a matrix that represents the contact states of left heel, left toe, right heel, and right toe at each frame, and

$$\mathbf{F}(\omega,\tau) = \begin{bmatrix} sign(\sin(c\,\omega + a^h) - b^h - \tau^{lh}) \\ sign(\sin(c\,\omega + a^t) - b^t - \tau^{lt}) \\ sign(\sin(c\,\omega + a^h + \pi) - b^h - \tau^{rh}) \\ sign(\sin(c\,\omega + a^t + \pi) - b^t - \tau^{rt}) \end{bmatrix}^{\mathsf{T}}$$

where ω and τ control the *frequency* and *step duration* at each frame

Structure of the Feedforward Network

Gait cycle (보행 주기)

보행 주기의 나쁜 예(?):

Contact frequency:
$$\omega_i = \Delta \omega_i + \Delta \omega_{i-1} + ... + \Delta \omega_0$$
 $\Delta \omega_i = \frac{\pi}{L_i}$ wavelength of the steps.

Contact duration:
$$au_i = \cos \frac{\pi d_i}{u_i + d_i}$$
 of the number of frames with the foot up u_i over the number of frames with the foot down d_i .

matrix
$$\Gamma = \{\tau^{lh}, \tau^{lt}, \tau^{rh}, \tau^{rt}, \Delta\omega\}$$

Locomotion Path

$$\mathbf{\Gamma}(\mathbf{T}) = ReLU(\mathbf{T} * \mathbf{W}_4 + \mathbf{b}_4) * \mathbf{W}_5 + \mathbf{b}_5 \qquad w_4, w_5 \ h_4 \ k, l$$

$$\mathbf{W}_4 \in \mathbb{R}^{h_4 \times k \times w_4}, \ \mathbf{b}_4 \in \mathbb{R}^{h_4}, \ \mathbf{W}_5 \in \mathbb{R}^{l \times h_4 \times w_5}, \ \mathbf{b}_5 \in \mathbb{R}^l$$
3 and 5

Network trained
$$\rightarrow$$

$$\mathbf{F}(\omega, \tau) = \begin{bmatrix} sign(\sin(c \, \omega + a^h) - b^h - \tau^{lh}) \\ sign(\sin(c \, \omega + a^t) - b^t - \tau^{lt}) \\ sign(\sin(c \, \omega + a^h + \pi) - b^h - \tau^{rh}) \\ sign(\sin(c \, \omega + a^t + \pi) - b^t - \tau^{rt}) \end{bmatrix}^{\mathsf{T}}$$

Motion Editing

Apply constraints in the hidden space

Positional Constraints:
$$Pos(\mathbf{H}) = \sum_{j} \|\mathbf{v}_{r}^{\mathbf{H}} + \boldsymbol{\omega}^{\mathbf{H}} \times \mathbf{p}_{j}^{\mathbf{H}} + \mathbf{v}_{j}^{\mathbf{H}} - \mathbf{v}_{j}'\|_{2}^{2}.$$

Fixing foot sliding

Bone Length Constraints:
$$Bone(\mathbf{H}) = \sum_{i} \sum_{b} |||\mathbf{p}_{b_{j_1}}^{\mathbf{H}i} - \mathbf{p}_{b_{j_2}}^{\mathbf{H}i}|| - l_b|^2$$

Preserve rigidity

Trajectory Constraints:
$$Traj(\mathbf{H}) = \|\omega^{\mathbf{H}} - \omega'\|_2^2 + \|\mathbf{v}_r^{\mathbf{H}} - \mathbf{v}_r'\|_2^2$$

Constrain motion into precise trajectory

$$\mathbf{H}' = arg \min_{\mathbf{H}} \ Pos(\mathbf{H}) + Bone(\mathbf{H}) + Traj(\mathbf{H}).$$

Motion Editing

Apply style in the hidden unit values which produce Gram matrix

Gram Matrix에 대한 짧은 설명 by 홍교수님 http://blog.naver.com/PostView.nhn?blogId=atelierjpro&logNo=221180412283

Style 삼관계수 = 1.0 Content 삼관계수 = 0.01
$$Style(\mathbf{H}) = \overset{\downarrow}{s} \|G(\mathbf{\Phi}(\mathbf{S})) - G(\mathbf{H})\|_2^2 + \overset{\downarrow}{c} \|\mathbf{\Phi}(\mathbf{C}) - \mathbf{H}\|_2^2$$
 Compute Gram matrix

$$G(\mathbf{H}) = \frac{\sum_{i}^{n} \mathbf{H}_{i} \mathbf{H}_{i}^{\mathsf{T}}}{n}.$$

Copyright 2020 © GitHub: @ameliacode