# Feature Selection (on Tileset7) - July 2017

Created: 17 July 2018 Last update: 17 july 2018

#### Using random forest (extra forest), existing features can be ranked in order of contribution

(This notebook follows the feature selection notebook from Pierluggi)

In [84]: # this will remove warnings messages

Note that this is a different approach then PCA (see notebook 'realxtals1-dimensionality1'). In PCA, the data is transformed onto the 'natural axis' of the data (its eigen vectors) and the top N of these are used, while in feature selection the existing features are being assessed based on their contribution to a classifier.

See e.g.:

- https://www.quora.com/What-is-the-difference-between-principal-component-analysis-PCA-and-feature-selection-in-machine-learning-Is-PCA-a-means-of-feature-selection (https://www.quora.com/What-is-the-difference-between-principal-component-analysis-PCA-and-feature-selection-in-machine-learning-Is-PCA-a-means-of-feature-selection)
- https://stats.stackexchange.com/questions/182711/principal-component-analysis-vs-feature-selection (https://stats.stackexchange.com/questions/182711/principal-component-analysis-vs-feature-selection)

#### 1. Imports

```
import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

%matplotlib inline

# import
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.preprocessing import LabelEncoder
import imgutils
In [85]: # Re-run this cell if you altered imgutils
import importlib
```

# 2. Import Crystal Image Data & Statistics

importlib.reload(imgutils)

The data was labeled and exported to csv in the notebook realxtals1\_dataeng1.ipynb

#### About the data:

The CSV contains the image files, slice information (sub-images) and associated statistics, which are the features for which a classifier needs to be found.

Out[85]: <module 'imgutils' from 'C:\\JADS\\SW\\Grad Proj\\realxtals1\\sources\\imgutils.py'>

The goal is to find the clustering in feature-space and use those to categorize the images. For this particular dataset, a single statistics could be used to label into three classes:

A = subimage contains no crystal,

B = part of subimage contains crystal,

C = (most of) subimage contains crystal

But the labels have been added here for analyses, eventually the data will be unlabelled.

Import data:

In [86]: df = pd.read\_csv('../data/Crystals\_Apr\_12/Tileset7-2.csv', sep=';')
 df.head()

Out[86]:

|   | Unnamed: | filename                                        | s_y | s_x | n_y | n_x | alias        | img_mean    | img_std    | img_kurtosis | img_skewnes |
|---|----------|-------------------------------------------------|-----|-----|-----|-----|--------------|-------------|------------|--------------|-------------|
| 0 | 0        | \data\Crystals_Apr_12\Tileset7\Tile_001-001     | 0   | 0   | 4   | 4   | img0_0-<br>0 | 8955.557637 | 489.754848 | 4.163737     | 0.107415    |
| 1 | 1        | \data\Crystals_Apr_12\Tileset7\Tile_001-001     | 0   | 1   | 4   | 4   | img0_0-<br>1 | 8883.137305 | 501.739963 | 6.528225     | -0.146746   |
| 2 | 2        | \data\Crystals_Apr_12\Tileset7\Tile_001-001     | 0   | 2   | 4   | 4   | img0_0-<br>2 | 8786.996070 | 327.512136 | 1.323241     | -0.110828   |
| 3 | 3        | \data\Crystals_Apr_12\Tileset7\Tile_001-<br>001 | 0   | 3   | 4   | 4   | img0_0-<br>3 | 8679.430512 | 273.673569 | 0.112149     | 0.008591    |
| 4 | 4        | \data\Crystals_Apr_12\Tileset7\Tile_001-<br>001 | 1   | 0   | 4   | 4   | img0_1-<br>0 | 8982.867158 | 380.410977 | 0.168520     | 0.033678    |

# 3. Quick visual inspection of the 'feature space'

```
In [87]: # plot it in 3 dimensions, choosing some stat combinations
         fig0 = plt.figure(figsize=(16, 12))
         plt.suptitle("Tileset 7 - Exploring feature space", fontsize=14)
         # trick to convert category labels into color codes
         color = pd.DataFrame(df['class'].astype('category'))['class'].cat.codes
         def scatter 3d(ax, df, feat1, feat2, feat3, colors):
             ax.scatter(df[feat1], df[feat2], df[feat3], c=colors)
             ax.set_xlabel(feat1)
             ax.set_ylabel(feat2)
             ax.set_zlabel(feat3)
         ax = fig0.add_subplot(221, projection='3d')
         scatter_3d(ax, df, '|img_mean|', '|img_std|', '|img_std2|', color)
         ax = fig0.add_subplot(222, projection='3d')
         scatter_3d(ax, df, '|img_mean|', '|img_kurtosis|', '|img_skewness|', color)
         ax = fig0.add_subplot(223, projection='3d')
         scatter_3d(ax, df, '|img_mode|', '|img_kurtosis|', '|img_std|', color)
         ax = fig0.add_subplot(224, projection='3d')
         scatter_3d(ax, df, '|img_mean|', '|img_mode|', '|img_std|', color)
         plt.show()
```

Tileset 7 - Exploring feature space



From visual inspection of these graphs, I would expect the std, std2 and kurtosis to be the most important features (they seem like the most seperating ones, though the mean has quite a big variance). Also look at the histograms (to get idea of the variance):

```
In [88]: | df.hist(['|img_mean|','|img_std|', '|img_std2|', '|img_kurtosis|', '|img_skewness|','|img_mode|'])
Out[88]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000E01BCF8>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x000000000DC2E160>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x0000000000E0CF400>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000C8EF1D0>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x000000000E272B70>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x000000000E272860>]],
                dtype=object)
                  |img kurtosis|
                                             |img mean|
           50
                                     20
           25
                                     0
                  olimg_model
                                         4 |img_skewness|
                                     60
                                     40
           20
                                     20
                                     0
                   img_stq2
                                              ling_std| 0
           50
                                     50
```

## 4. Assess feature imporance (using extra trees classifier)

25

0

(sort of random forest, an ensemble method that will create classifiers based on random subsets)

#### First vectorize the data:

25

```
In [89]: # convert labels into values
le = LabelEncoder()
df["|class|"] = le.fit_transform(df["class"])

In [90]: # convert into X Y vectors:
    feature_cols = ['|img_std|', '|img_mean|','|img_skewness|', '|img_mode|', '|img_kurtosis|', '|img_std2|']
    X = df.loc[:,feature_cols]
    y = df.loc[:,'|class|']
```

#### Then generate the classifier 'extra tries' and extract the importances

```
(a la Pierluggi)
```

```
In [91]: # Build a forest and compute the feature importances
         forest = ExtraTreesClassifier(n_estimators=500,random_state=0)
         forest.fit(X, y)
Out[91]: ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
                    max_depth=None, max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
                    oob_score=False, random_state=0, verbose=0, warm_start=False)
In [92]: # Extracting feature importance:
         importances = forest.feature_importances_
         std = np.std([tree.feature_importances_ for tree in forest.estimators_],
                      axis=0)
         indices = np.argsort(importances)[::-1]
         # Print the feature ranking
         print("Feature ranking:")
         for f in range(X.shape[1]):
             print("%d. feature %d '%s' (%f)" % (f + 1, indices[f], feature_cols[indices[f]], importances[indices[f]]))
         Feature ranking:
```

```
    feature 5 '|img_std2|' (0.331023)
    feature 0 '|img_std|' (0.310544)
    feature 2 '|img_skewness|' (0.111690)
    feature 3 '|img_mode|' (0.100443)
    feature 4 '|img_kurtosis|' (0.082564)
    feature 1 '|img_mean|' (0.063736)
```

#### Visually inspect the important features

Let's make some plots based on the first 3 most important ones

```
In [93]: fig0 = plt.figure(figsize=(16, 12))
    plt.suptitle("Tileset 7 - The 3 Most Important Features",fontsize=14)
    ax = fig0.add_subplot(111, projection='3d')
    scatter_3d(ax, df, '|img_std|', '|img_std2|', '|img_skewness|', color)
```

Tileset 7 - The 3 Most Important Features



Indeed with these three variables they are clearly separatable.

But I think with the kurtosis or some of the others it would also work, as long as std and std2 are in there. So let's compare

```
In [94]: fig0 = plt.figure(figsize=(16, 12))
    plt.suptitle("Tileset 7 - Combinations of important features",fontsize=14)
    ax = fig0.add_subplot(221, projection='3d')
    scatter_3d(ax, df, '|img_std|', '|img_std2|', '|img_skewness|', color)
    ax = fig0.add_subplot(222, projection='3d')
    scatter_3d(ax, df, '|img_std|', '|img_std2|', '|img_kurtosis|', color)
    ax = fig0.add_subplot(224, projection='3d')
    scatter_3d(ax, df, '|img_std|', '|img_std2|', '|img_mean|', color)
    ax = fig0.add_subplot(223, projection='3d')
    scatter_3d(ax, df, '|img_std|', '|img_std2|', '|img_mode|', color)
```

Tileset 7 - Combinations of important features



Indeed the std and std are leading, but you need a 3rd dimension for separation. Looking at the importances this is maybe not so surprising, as skewness, kurtosis, mode and mean are rather close.

# 5. Comparing result with Dimensionality Reduction Techniques

(this has been analyzed in realxtals1-dimensionality1. To keep this notebook self-contained and independend, we do the dimensionality reduction here instead of exporting from the other notebook)

```
In [95]: from sklearn import manifold, decomposition, datasets, random_projection
```

#### First assess PCA and IsoMap with 3 components

(looked most promising in dimensionality assessment)

```
In [96]: # Create graph
         fig0 = plt.figure(figsize=(16, 12))
         plt.suptitle("Tileset 7 PCA & IsoMap (3 components)", fontsize=14)
         # PCA (or SVD, which is almost the same)
         title = 'PCA'
         fieldnames = ['pca_1','pca_2','pca_3']
         pca = decomposition.TruncatedSVD(n_components=3)
         X_fit = pca.fit_transform(X)
         df_pca = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(221, projection='3d', title=title)
         scatter_3d(ax, df_pca, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # Iso Map
         title = 'ISO'
         fieldnames = ['iso_1','iso_2','iso_3']
         iso = manifold.Isomap(n neighbors=10, n components=3)
         X_fit = iso.fit_transform(X)
         df_pca = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(222, projection='3d', title=title)
         scatter_3d(ax, df_pca, fieldnames[0],fieldnames[1],fieldnames[2], color)
```

Tileset 7 PCA & IsoMap (3 components)



0

-2 -3

#### Comparing with range of dimensionality reduction techniques

Let's assess more methods just as in the 'dimensionality notebook', but using three components

```
In [97]: # Create graph
         fig0 = plt.figure(figsize=(16, 12))
         plt.suptitle("Tileset 7 Range of Manifold Learning Techniques (3 components)", fontsize=14)
         fieldnames = ['comp_1','comp_2','comp_3']
         # PCA (or SVD, which is almost the same)
         title = 'PCA'
         pca = decomposition.TruncatedSVD(n_components=3)
         X_fit = pca.fit_transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(321, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # Iso Map
         title = 'ISO'
         iso = manifold.Isomap(n neighbors=10, n components=3)
         X_fit = iso.fit_transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(322, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # MDS
         title = 'MDS'
         mds = manifold.MDS(n components=3, max iter=100, n init=1)
         X_fit = mds.fit_transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(323, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # Spectral embedding
         title = 'Spectral Embedding'
         se = manifold.SpectralEmbedding(n_components=3, n_neighbors=10)
         X_fit = se.fit_transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(324, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # Random Projection
         title = 'Random Projection'
         rp = random_projection.SparseRandomProjection(n_components=3, random_state=42)
         X fit = rp.fit transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(325, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
         # t-SNE
         title = 't-SNE'
         tsne = manifold.TSNE(n_components=3, init='pca', random_state=42)
         X_fit = tsne.fit_transform(X)
         df_fit = pd.DataFrame(X_fit[:,0:3], columns=fieldnames)
         ax = fig0.add_subplot(326, projection='3d', title=title)
         scatter_3d(ax, df_fit, fieldnames[0],fieldnames[1],fieldnames[2], color)
```



# 6. More analysis?

#### 7. Conclusions

- From visually inspecting these graphs and comparing those to the 'feature selection method', the 'feature selection' looks more separatable.
- · However, the feature selection method requires labeled data in order to train the classifier, while the manifest learning methods does not require labelling

### 8. Next Steps:

- Try unsupervised learning on this data set (maybe first apply a manifold learning technique to optimize the data?)
- · Repeat this notebook on harder dataset

Michael Janus, 17 July 2018