الاشتقاق و تطبيقاته

	محتوى الدرس	
2 2 2	تذكير و إضافات 1.1 العدد المشتق – الدالة المشتقة	1
4	مشتقة مركب دالتين	2
4	مشتقة الدالة العكسية	3
5	الدوال الأصلية لدالة	4

1 تذكير و إضافات

1.1 العدد المشتق - الدالة المشتقة

تعاريف

I منصر من I مغرفة على مجال مفتوح I و a عنصر من

- f'(a) العدد l يسمى العدد المشتق للدالة في a و نرمز له بالرمز l
- f قابلة للاشتقاق على I إذا كانت \hat{f} قابلة للاشتقاق في كل نقطة من f
 - $f': x \mapsto f'(x)$ الدالة المشتقة للدالة f على الدالة المشتقة للدالة الم

خاصية

a في متصلة في a فإن f متصلة في a

2.1 المماس لمنحنى دالة - الدالة التآلفية المماسة

تعاريف

a لتكن f دالة قابلة للاشتقاق في نقطة

- المماس لمنحنى الدالة f في النقطة ذات الأفصولa هو المستقيم الذي معادلته f الدالة الماس لمنحنى الدالة أ
- م الدالة التآلفية المماسة للدالة f في a هي الدالة الدالة الدالة التآلفية المماسة للدالة الترابية a
- العدد f(a+h) یسمی f'(a)h+f(a) بجوار ۰۵ باعدد و f(a+h) بجوار ۰۵ ب

ملاحظة

h=x-a الدالة φ تكتب كذلك $h\mapsto f'(a)h+f(a)$ الدالة φ تكتب كذلك $\frac{df}{dx}$ و تسمى الكتابة التفاضلية.

جدول مشتقات بعض الدوال الاعتيادية

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto a; (a \in \mathbb{R})$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x^n; (n \in \mathbb{N}^* \setminus \{1\})$

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	R *	$x \mapsto \frac{1}{x}$
$x \mapsto \cdots \cdots$	\mathbb{R}_+^*	$x \mapsto \sqrt{x}$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto \cdots \cdots$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$	$x \mapsto \tan x$

تمرين 1

 $f(x)=|x+1|\sqrt{3-2x}$: يلي: $]-\infty;rac{3}{2}$ على الدالة المعرفة على الدالة الدالة الدالة الدالة المعرفة على الدالة الدالة

- 1. أدرس قابلية اشتقاق الدالة f في 1 ثم أول هندسيا النتيجة.
 - -1 هل الدالة f متصلة في -1
- 3. أدرس قابلية اشتقاق الدالة f في $\frac{3}{2}$ ثم أو ل هندسيا النتيجة.
 - $]-1; \frac{3}{2}[$ من x لكل f'(x) .4
- 5. حدد معادلة المماس لمنحنى الدالة f في النقطة ذات الأفصول f
 - •f(1,0003) حدد تقريباً للعدد -6

العمليات على الدوال المشتقة

و g دالتان قابلتان للاشتقاق على مجال g عدد حقيقي.

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$(f+g)' = \cdots \cdots$	I	f+g
$(kf)' = \cdots \cdots$	I	kf
$(fg)' = \cdots \cdots$	I	fg
$\left(\frac{1}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{1}{g}$
$\left(\frac{f}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{f}{g}$

نتائج

كل دالة حدودية قابلة للاشتقاق على ®. كل دالة جذرية قابلة للاشتقاق على كل مجال ضمن مجموعة تعريفها.

2 مشتقة مركب دالتين

خاصية

a من a من $f(I) \subset J$ التكن g و f التوالي على مجالين التوالي على مجالين التكن g

- م. وقابلة للاشتقاق في a و وقابلة للاشتقاق في $g \circ f$ فإن f(a) فإن $g \circ f$ قابلة للاشتقاق في $g \circ f$ لدينا: $(g \circ f)'(a) = f'(a)g'(f(a))$

نتائج

I لتكن f دالة قابلة للاشتقاق على

- و الدالة f^n قابلة للاشتقاق على I و لدينا: I و لدينا: ولدينا: ولدينا:
- و الدالة \sqrt{f} قابلة للاشتقاق على $\{x \in I/f(x) > 0\}$ و لدينا: \sqrt{f}

تمرين 2

حدد مشتقات الدوال:

 $i: x \mapsto \sin\left(\sqrt{x^2+5}\right)$ $g: x \mapsto \sqrt{x^3+x^2-2}$ $g: x \mapsto \left(\frac{x+1}{x^2+3x+7}\right)^3$ $f: x \mapsto \cos(x^2+7x-1)$

3 مشتقة الدالة العكسية

نشاط 1

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

- $f(f^{-1})'(f(a))$ عنصرا من $f(a) \neq 0$ بين أن f^{-1} قابلة للاشتقاق في f(a) و حدد $f(a) \neq 0$.1
 - $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ قابلة للاشتقاق على f^{-1} قابلة للاشتقاق على 2
 - J على الدالة $f \circ f^{-1}$ على (۱)
 - $\bullet(f^{-1})'$ استنتج تعبیر الدالة

خاصية

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

f(a) في عنصرا من I بحيث $f'(a) \neq 0$ ، الدالة f^{-1} قابلة للاشتقاق في

 $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$: keight

 ${f J}=\{x\in f(I)/f'(f^{-1}(x))
eq 0\}$ الدالة \hat{f}^{-1} قابلة للاشتقاق على •

 $(\forall x \in J) : (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ لدينا:

نتائج

Iليكن n عنصرا من \mathbb{N}^* و f دالة قابلة للاشتقاق على مجال $(\forall x \in]0; +\infty[): (\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$ الدالة $x \mapsto \sqrt[n]{x}$ قابلة للاشتقاق على $|0; +\infty[]$ و لدينًا: $(\sqrt[n]{f})' = \frac{f'}{n\sqrt[n]{f^{n-1}}}$ و لدينا: $x \in I/f(x) > 0$ و لدينا: $\sqrt[n]{f}$

ملاحظة

 $(\forall r \in \mathbb{Q}^*) : (f^r)' = rf'f^{r-1}$ \bullet $(\forall r \in \mathbb{Q}^*) (\forall x \in [0; +\infty[) : (x^r)' = rx^{r-1}]$

تمرين 3

حدد مشتقات الدوال:

 $i: x \mapsto x^{\frac{2}{3}} - \sqrt[4]{x^3 + 1}$ $h: x \mapsto \frac{1}{\sqrt[3]{x^2 + 7}}$ $g: x \mapsto \sqrt[3]{x^4} + (x - 1)^{\frac{1}{3}}$ $f: x \mapsto (x^2 + x)^{\frac{1}{3}}$

تمرين 4

- -1. بين أن كل من الدوال $-\frac{\pi}{2}$ و cos و tan تقبل دالة عكسية على التوالي على $[-\frac{\pi}{2}; \frac{\pi}{2}]$ و $[0;\pi]$ و $-\frac{\pi}{2}$
 - 2. حدد مشتقات الدوال العكسية للدوال x فقط، x فقط،

الدوال الأصلية لدالة

نشاط 2

 $F(x) = \frac{2x-3}{x+3} - x$ و $f(x) = \frac{-x^2-6x}{(x+3)^2}$ نعتبر الدالتين $f(x) = \frac{3}{x+3} - x$ و $f(x) = \frac{3}{x+3} - x$ نعتبر الدالتين $f(x) = \frac{3}{x+3} - x$

- $(\forall x \in]-3; +\infty[): F'(x) = f(x)$ أن: 1.
- $\bullet(\forall x\in]-3;+\infty[):G'(x)=f(x)$ بحيث G بحيث \bullet
- $(\forall x \in]-3;+\infty[):H'(x)=f(x)$ لتكن H دالة عددية تحقق.
 - $-3; +\infty[$ على H F)' على $-3; +\infty[$ (ا) استنج تعبير الدالة H

تعریف

I لتكن f دالة عددية معرفة على مجال

f في الله أصلية للدالة f على I كل دالة F قابلة للاشتقاق على I و مشتقتها هي f

خاصية

I لتكن f دالة عددية معرفة على مجال I و F دالة أصلية للدالة f على f الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على f على f على الدوال الأصلية للدالة f على f على

تمرين 5

 $g(x)=2x-rac{x-1}{x+1}$ و $f(x)=rac{2x^2+4x}{(x+1)^2}$ يلي: $g(x)=1;+\infty$ و المعرفتين على g(x)=1

- $-1;+\infty$ ا على g دالة أصلية للدالة f على g دالة أصلية الدالة g
- $-1;+\infty$ ا على f على الدوال الأصلية للدالة الماية على $-1;+\infty$

خاصية

I منصر من I لتكن f دالة عددية معرفة على مجال f

G(a)=b إذا كانت f تقبل دالة أصلية على I فإنه توجد دالة أصلية G وحيدة للدالة f على I تحقق

تمرين 6

 $g(x)=\cos 2x$ و $f(x)=\sin(x)\cos(x)$ يلي: $g(x)=\cos 2x$ و $g(x)=\sin(x)\cos(x)$ يعتبر الدالتين $g(x)=\cos 2x$

- \mathbb{R} على \mathbb{R} على \mathbb{R} .1
- .2 استنتج مجموعة الدوال الأصلية للدالة g على \mathbb{R} .
- $G\left(-rac{\pi}{2}
 ight)=-1$ التي تحقق G الله الأصلية G للدالة g للدالة g للدالة الأصلية G

خاصية

كل دالة متصلة على مجال I تقبل دالة أصلية على I.

جدول دوال أصلية لدوال اعتيادية

الدوال الأصلية للدالة f على I	ا لجال I	f lk. lk.
$x \mapsto ax + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto a; a \in \mathbb{R}$
$x \mapsto \frac{1}{2}x^2 + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto x$
$x \mapsto \frac{1}{n+1}x^{n+1} + k; k \in \mathbb{R}$	\mathbb{R}	$x\mapsto x^n; n\in\mathbb{N}^*$
$x \mapsto -\frac{1}{x} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^2}$
$x \mapsto \frac{1}{(1-n)x^{1-n}} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^n}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto 2\sqrt{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt{x}}$
$x \mapsto n\sqrt[n]{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt[n]{x^{n-1}}}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto \sin(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto -\cos(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \tan(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto 1 + \tan^2(x)$

ملاحظة

 $k\in\mathbb{R}$ حيث $x\mapsto rac{1}{r+1}x^{r+1}+k$ هي: \mathbb{R}^* هي الدوال الأصلية للدالة $x\mapsto x^r$ على \mathbb{R}^* هي \mathbb{R}^*

العمليات على الدوال الأصلية

و v دالتين قابلتين للاشتقاق على مجال u

دوالة أصلية للدالة f على المجال	المجال	f allul
u + v	I	u' + v'
uv	I	u'v + v'u
$-\frac{1}{u}$	u عليه u نعدم عليه u	$\frac{u'}{u^2}$
$\frac{u}{v}$	v عليه v كل مجال ضمن V تنعدم عليه	$\frac{u'v - v'u}{v^2}$
$\frac{1}{n+1}u^{n+1}$	I	$u'u^n; n \in \mathbb{N}^*$
$2\sqrt{u}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$\frac{u'}{\sqrt{u}}$
$\frac{1}{r+1}u^{r+1}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$u'u^r; r \in \mathbb{Q}^* \setminus \{-1\}$
$x \mapsto \frac{1}{a}u(ax+b)$	I	$x \mapsto u'(ax+b); (a;b) \in \mathbb{R}^* \times \mathbb{R}$
$u \circ v$	$v(I)\subset I$ کل مجال المجیث $V(I)$	$x \mapsto v'(x)u'(v(x))$

تمرين 7

حدد الدوال الأصلية للدالة f على I في الحالات التالية:

$$\begin{split} I =]0; +\infty[\ ; \ f(x) = \frac{3}{x^2} - \cos(x) \mathbf{tsk} \{1] \\ I = \mathbb{R} \ ; \ f(x) = \cos(\mathbf{sk} \{1]) \end{split}$$

$$I = \mathbb{R} \ ; \ f(x) = \frac{2x+1}{(x^2+x+1)^2} [1])$$

$$I = \mathbb{R} \ ; \ f(x) = (x-2)(x^2-4x+\mathbf{tsk} \{1\})$$

$$\begin{split} I &= \mathbb{R} \ ; \ f(x) = x^5 + x^2 - 3x \mathbf{tsk} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ I &= \end{bmatrix} 0; + \infty \begin{bmatrix} \ ; \ f(x) = -\frac{2}{\sqrt{x}} + \sin(x) \mathbf{tsk} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix} \\ I &= \mathbb{R} \ ; \ f(x) = \sin\left(2x + \frac{1}{\sqrt{x^2 + 1}} \begin{bmatrix} 1 \end{bmatrix} \right) \\ I &= \mathbb{R} \ ; \ f(x) = \frac{x \mathbf{tsk}}{\sqrt{x^2 + 1}} \begin{bmatrix} 1 \end{bmatrix} \end{split}$$

تمرين 8

$$f(x)=rac{x^2-2x}{(x-1)^2}$$
 يلي: $+\infty$ [المجال المجال على المجال على المجال على المجال المحرفة على المجال المحرفة على المجال المحرفة على المجال المحرفة على المحرفة المحرفة

- $\forall x \in]1; +\infty[: f(x) = a + \frac{b}{(x-1)^2}$:عدد العددين الحقيقيين a و b و a بحيث: 1
 - $-1;+\infty$ [الأصلية للدالة f على المجال الأصلية للدالة على المجال .2
 - محدد الدالة الأصلية G للدالة f التي تنعدم في G .