第三部分 近红外光谱分析技术

微信号: qingzhouyuan

袁洪福

北京化工大学

1.定量分析原理

光谱分析的理论基础

- 1.被测组分的信息是分离的
- 2.校正标准是纯样品

基团谱带重叠

混合物的光谱

样品包括 n种化学组分,假定共存化学组分之间没有相互干扰,则样品光谱数学模型为:

$$a = c_1 a_1 + c_2 a_2 + \dots + c_n a_n + e$$

式中,a表示混合物的光谱矢量,x_i各组分的纯物质光谱矢量,e是光谱测量误差矢量。c是系数(一般视为相对浓度系数)。

数学分离

- 建立多元联立方程求解;
- •实际光谱求解过程中存在"共线性";
- 波长选择或降维处理获得"独立"的光谱变量,进行多元变量求解。

解决共线性问题

主成分分析

用少数主成分光谱表达高維光谱数据

$$X = t_{1}\mathbf{p}_{1} + t_{2}\mathbf{p}_{2} + \dots + t_{f}\mathbf{p}_{f} + \sum_{j=1}^{n} e_{j}$$

$$= \sum_{i=1}^{f} \mathbf{t}_{i}\mathbf{p}_{i} + \sum_{j=1}^{n} e_{j}$$

使用p向量替代波长(变量)作为坐标,使用t值替代吸光度(A),实现坐标系的转换。

优点:

数据获得降维;

向量之间为正交关系,是独立变量,解决了"共线性"问题。 向量自身在维数上与原光谱数据相同,覆盖了光谱的所有信息通

道范围。

通过选择坐标向量,有效地剥离噪声干扰。

常用多元定量校正方法

- · 多元线性回归(MLR)
- ·偏最小二乘法(PLS)
- 拓扑 (TP)

定性分析原理

常用分类 (classification)鉴别 (identification)方法

- 系统树
- PCA
- SIMCA
- PLS-DA

样品收集

光谱测量

光程差

Figure 3 Changes in Peak Wavenumber of Water due to Temperature

Figure 3: Visible (400–700 nm) and NIR (700–2500 nm) diffuse reflectance (log(1/R)) spectra of differing grades of microcrystalline cellulose (Avicel™) which vary in particle size. Baseline increases as particle size increases due to changes in penetration depth and absorption.

基础数据测定

重复性和再现性

建模与预测

27#-me... 校正

28#-me... 校正 ▼ 0.826

29#-me... 校正 ▼ 0.828

▼ 0.822

26

27

应用

样品集 模型组 预测 辅助工具 帮助

模型组 预测

描述信息:

标 题:

未命名1/

模型组: 未命名<mark>/</mark>

编辑者:

样品集: 防水材料/

描 述:

应用

•	序号	谱图名称	总沥青含量	总沥青含量	总沥青含量
	序号	谱图名称	outlier	预测值	置信区间
	1	1#-mean.txt	否	0.919	0.022
	2	3#-mean.txt	否	0.933	0.022
	3	4#-mean.txt	否	0.935	0.022
	4	5#-mean.txt	否	0.916	0.022
	5	6#-mean.txt	否	0.895	0.023
	6	7#-mean.txt	是	0.868	0.025
	7	8#-mean.txt	否	0.818	0.023
	8	9#-mean.txt	否	0.809	0.022
	9	10#-mean.txt	否	0.834	0.023

近红外光谱标准

分子光谱多元分析框架GB标准进展情况

- ·"分子光谱多元分析定量校正通则" (GB/T 28959-2013);
- ·"近红外定性分析通则"已经获批 GB立项,正在编制之中。
- "近红外光谱仪性能测定方法"已通过TC481标委会批准申报GB。

近红外光谱分析技术特点

- 寧可直接测量液体,固体样品;
- 寧可直接测量透明和不透明样品;
- 學可直接测量均匀和不均匀体系;
- 寧可直接测量静止和可移动样品;
- 寧可直接测量低温和高温样品;
- 寧可直接测量带压的样品;
- 严通过光纤远距离测量;
- 學大多数样品不做任何样品前处理;
- 寧无创伤分析,环保绿色分析;
- 寧实验室,野外,现场,离线,在线,原位;

- •定性和定量分析;
- 同时测定多种性质;
- •无需制样、无损、速度快;
- •操作方便和智能化;
- •质量监督(真假识别,质量分析);
- •过程分析与优化控制。

局限性

- •近红外光谱方法适用于常量分析,不适用于微量和痕量成分分析;
- •近红外光谱分析需要建模,工作量大和成本高;
- •缺乏技术标准是制约进一步推广应用的问题;
- •模型传递尚需建立和完善。