Programowanie I R

Zadania – seria 12.

Obliczenia naukowe: równania różniczkowe cząstkowe.

Zadanie 1. heat - Przewodnictwo cieplne metalowej płytki.

Równanie przewodnictwa cieplnego opisuje przepływ ciepła w ośrodku materialnym. Przyjmuje ono postać

$$\frac{\partial T}{\partial t} - \alpha \Delta T = 0,$$

gdzie $T=T\left(t,\mathbf{r}\right)$ jest temperaturą w punkcie o wektorze wodzącym \mathbf{r} w chwili t, zaś α – charakteryzującą materiał stałą nazywaną współczynnikiem wyrównania temperatury lub dyfuzyjnością cieplną, określającą tempo, z jakim przebiegają zmiany temperatury w danym materiale. Po uzupełnieniu tego równania o warunki początkowe, czyli zadaniu rozkładu temperatury w ośrodku w chwili t=0, oraz warunki brzegowe, czyli zadaniu ustalonego, niezmiennego rozkładu temperatury na brzegu obszaru, jesteśmy w stanie wyznaczyć rozkład temperatury w ośrodku w dowolnej chwili t>0.

Rozważmy cienką metalową płytkę w kształcie kwadratu. Przyjmujemy, że w chwili początkowej t=0 płytka miała temperaturę T_0 . Do górnej krawędzi płytki przyłożono w chwili początkowej ciało o temperaturze T_1 , do krawędzi prawej – ciało o temperaturze T_2 , do krawędzi dolnej – ciało o temperaturze T_3 , zaś do krawędzi lewej – ciało o temperaturze T_4 ; zakładamy przy tym, że ciała te utrzymują stałą temperaturę oraz że temperatury T_k , k=0,1,2,3,4, znajdują się w przedziale od 0° C do 100° C.

Napisz program heat, który posługując się metodą różnic skończonych rozwiąże równanie przewodnictwa cieplnego dla omówionej płytki i wyznaczy rozkład temperatury wewnątrz płytki w dowolnej chwili t>0. Program powinien przyjmować jako argumenty wywołania pięć liczb zmiennoprzecinkowych odpowiadających wartościom, odpowiednio, T_0 , T_1 , T_2 , T_3 i T_4 . Wynikiem działania programu powinna być animacja przedstawiająca zmiany temperatury w płytce. Przyjmij $\alpha=2$, krok przestrzenny (na obu osiach przestrzennych) $\delta x=1$, krok czasowy $\delta t=\delta x^2/4\alpha$ oraz rozmiar płytki $l=50\delta x$.

Zadanie 2. quantum – Propagacja paczki falowej w mechanice kwantowej.

Zależne od czasu równanie Schrödingera jest jednym z podstawowych równań nierelatywistycznej mechaniki kwantowej. Pozwala ono opisać ewolucję czasową stanu układu kwantowego.

Niech $\Psi = \Psi(t, \mathbf{r})$ będzie funkcją falową pewnego układu kwantowego w reprezentacji położeniowej. Funkcja ta zadaje stan tego układu, a jej zmienność w czasie opisywana jest właśnie przez zależne od czasu równanie Schrödingera, które w reprezentacji położeniowej przyjmuje postać

$$\hat{H}\Psi\left(t,\mathbf{r}\right) = \mathrm{i}\hbar\frac{\partial}{\partial t}\Psi\left(t,\mathbf{r}\right). \tag{1}$$

 \hat{H} jest hamiltonianem układu; przyjmiemy, że ma on postać odpowiadającą cząstce o masie m w potencjale $V=V(\mathbf{r})$:

$$\hat{H} = \frac{1}{2m}\hat{\mathbf{p}}^2 + \hat{V} = -\frac{\hbar^2}{2m}\Delta + V(\mathbf{r}), \qquad (2)$$

gdzie $\hat{\mathbf{p}}=-\mathrm{i}\hbar\nabla$ jest operatorem pędu, zaś $\Delta=\nabla^2$ to laplasjan. Przyjmiemy dla wygody jednostki, w których $m=\frac{1}{2}$ oraz $\hbar=1$. Równanie (1) przyjmuje zatem ostatecznie postać

$$\left(-\Delta + V(\mathbf{r})\right)\Psi(t,\mathbf{r}) = i\frac{\partial}{\partial t}\Psi(t,\mathbf{r}). \tag{3}$$

Napisz program quantum, który posługując się metodą różnic skończonych rozwiąże zależne od czasu równanie Schrödingera i za jego pomocą wyznaczy ewolucję dwuwymiarowej gaussowskiej paczki falowej w potencjale w postaci "ściany". Wynikiem działania programu powinna być trójwymiarowa animacja przedstawiająca ewolucję paczki.

Opracowanie: Bartłomiej Zglinicki.