Tidying and organizing data

Tidying data

- Data rarely come to us as we want to use them.
- Before we can do analysis, typically have organizing to do.
- This is typical of ANOVA-type data, "wide format":

```
pig feed1 feed2 feed3 feed4

1 60.8 68.7 92.6 87.9

2 57.0 67.7 92.1 84.2

3 65.0 74.0 90.2 83.1

4 58.6 66.3 96.5 85.7

5 61.7 69.8 99.1 90.3
```

- 20 pigs randomly allocated to one of four feeds. At end of study, weight of each pig is recorded.
- Are any differences in mean weights among the feeds?
- Problem: want all weights in one column, with 2nd column labelling which feed. Untidy!

Tidy and untidy data (Wickham)

- Data set easier to deal with if:
 - each observation is one row
 - each variable is one column
- each type of observation unit is one table
- Data arranged this way called "tidy"; otherwise called "untidy".
- For the pig data:
 - response variable is weight, but scattered over 4 columns, which are levels of a factor feed.
 - Want all the weights in one column, with a second column feed saying which feed that weight goes with.
 - Then we can run aov.

Packages for this section

```
library(tidyverse)
library(readxl)
```

Reading in the pig data

```
my_url <- "http://www.utsc.utoronto.ca/~butler/c32/pigs1.txt"
pigs1 <- read_delim(my_url, " ")
pigs1</pre>
```

pig	feed1	feed2	feed3	feed4
1	60.8	68.7	92.6	87.9
2	57.0	67.7	92.1	84.2
3	65.0	74.0	90.2	83.1
4	58.6	66.3	96.5	85.7
5	61.7	69.8	99.1	90.3

Gathering up the columns

This is a very common reorganization, and the magic "verb" is pivot_longer:

- pigs2 is now in "long" format, ready for analysis. See next page.
- Anatomy of pivot_longer:
 - columns to combine
 - a name for column that will contain groups
 - a name for column that will contain measurements

Long format pigs

pigs2

oig	feed	weight
1	feed1	60.8
1	feed2	68.7
1	feed3	92.6
1	feed4	87.9
2	feed1	57.0
2	feed2	67.7
2	feed3	92.1
2	feed4	84.2
3	feed1	65.0
3	feed2	74.0
3	feed3	90.2
3	feed4	83.1
4	feed1	58.6
Tidy	ing and organ	nizing data

Identifying the pigs

- Values in pig identify pigs within each group: pig 1 is four different pigs!
- Create unique pig IDs by gluing pig number onto feed:

```
pigs2 %>% mutate(pig_id=str_c(feed, "_", pig)) -> pigs2
pigs2 %>% slice_sample(n=7)
```

pig	feed	weight	pig_id
2	feed3	92.1	feed3_2
1	feed4	87.9	feed4_1
2	feed4	84.2	feed4_2
3	feed4	83.1	feed4_3
1	feed1	60.8	feed1_1
1	feed3	92.6	feed3_1
5	feed1	61.7	feed1_5

...and finally, the analysis

• which is just what we saw before:

```
weight.1 <- aov(weight ~ feed, data = pigs2)
summary(weight.1)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## feed 3 3521 1173.5 119.1 3.72e-11 ***

## Residuals 16 158 9.8

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- The mean weights of pigs on the different feeds are definitely not all equal.
- So we run Tukey to see which ones differ (over).

Tukey

TukeyHSD(weight.1)

```
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = weight ~ feed, data = pigs2)
##
## $feed
##
               diff
                           lwr
                                 upr padj
## feed2-feed1 8.68 3.001038 14.358962 0.0024000
## feed3-feed1 33.48 27.801038 39.158962 0.0000000
## feed4-feed1 25.62 19.941038 31.298962 0.0000000
## feed3-feed2 24.80 19.121038 30.478962 0.0000000
## feed4-feed2 16.94 11.261038 22.618962 0.0000013
## feed4-feed3 -7.86 -13.538962 -2.181038 0.0055599
```

All of the feeds differ!

Mean weights by feed

To find the best and worst, get mean weight by feed group. I borrowed an idea from later to put the means in descending order:

```
pigs2 %>%
  group_by(feed) %>%
  summarize(mean_weight = mean(weight))%>%
  arrange(desc(mean_weight))
```

feed	mean_weight
feed3	94.10
feed4	86.24
feed2	69.30
feed1	60.62

Feed 3 is best, feed 1 worst.

Should we have any concerns about the ANOVA?

Comments

- Feed 2 has an outlier
- But there are only 5 pigs in each group
- The conclusion is so clear that I am OK with this.

Tuberculosis

- The World Health Organization keeps track of number of cases of various diseases, eg. tuberculosis.
- Some data:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/c32/tb.csv"
tb <- read_csv(my_url)</pre>
```

```
## Parsed with column specification:
## cols(
## .default = col_double(),
## iso2 = col_character()
## )
## See spec(...) for full column specifications.
```

The data

glimpse(tb)

```
## Rows: 5,769
## Columns: 22
## $ iso2 <chr> "AD", "AD", "AD", "AD", "AD", "AD", "AD"...
## $ year <dbl> 1989, 1990, 1991, 1992, 1993, 199...
## $ mO4 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ m014 <dbl> NA, NA, NA, NA, NA, NA, O, O, O, ...
## $ m1524 <dbl> NA, NA, NA, NA, NA, NA, O, O, O, ...
## $ m2534 <dbl> NA, NA, NA, NA, NA, NA, O, 1, O, ...
## $ m3544 <dbl> NA, NA, NA, NA, NA, NA, 4, 2, 1, ...
## $ m4554 <dbl> NA, NA, NA, NA, NA, NA, 1, 2, 0, ...
## $ m5564 <dbl> NA, NA, NA, NA, NA, NA, O, 1, O, ...
         <dbl> NA, NA, NA, NA, NA, NA, O, 6, O, ...
## $ m65
          <dbl> NA, NA, NA, NA, NA, NA, NA, NA, N...
                      Tidying and organizing data
```

What we have

- Variables: country (abbreviated), year. Then number of cases for each gender and age group, eg. m1524 is males aged 15–24. Also mu and fu, where age is unknown.
- Lots of missings. Want to get rid of.
- Abbreviations here.

All frequencies in one column

- columns to make longer
- column to contain the names
- column to contain the values
- (optional) drop missings in the values

Results (some)

tb2

iso2	year	genage	freq
AD	1996	m014	0
AD	1996	m1524	0
AD	1996	m2534	0
AD	1996	m3544	4
AD	1996	m4554	1
AD	1996	m5564	0
AD	1996	m65	0
AD	1996	f014	0
AD	1996	f1524	1
AD	1996	f2534	1
AD	1996	f3544	0
AD	1996	f4554	0
AD	1996	f5564	1
	Transaction	at a constitution of the con-	

Separating

- 4 columns, but 5 variables, since genage contains both gender and age group. Split that up using separate.
- separate needs 3 things:
 - what to separate (no quotes needed),
 - what to separate into (here you do need quotes),
 - how to split.
- For "how to split", here "after first character":

```
tb2 %>% separate(genage, c("gender", "age"), 1) -> tb3
```

Tidied tuberculosis data (some)

tb3

iso2	year	gender	age	freq
AD	1996	m	014	0
AD	1996	m	1524	0
AD	1996	m	2534	0
AD	1996	m	3544	4
AD	1996	m	4554	1
AD	1996	m	5564	0
AD	1996	m	65	0
AD	1996	f	014	0
AD	1996	f	1524	1
AD	1996	f	2534	1
AD	1996	f	3544	0
AD	1996	f	4554	0
AD	1996	f	5564	1

In practice...

 instead of doing the pipe one step at a time, you debug it one step at a time, and when you have each step working, you use that step's output as input to the next step, thus:

```
tb %>%
  pivot_longer(m04:fu, names_to = "genage",
               values_to = "freq", values_drop_na = T) %>%
  separate(genage, c("gender", "age"), 1)
```

iso2	year	gender	age	freq
AD	1996	m	014	0
AD	1996	m	1524	0
AD	1996	m	2534	0
AD	1996	m	3544	4
AD	1996	m	4554	1
AD	1996	m	5564	0
٧ ل	1006 Tidy	ing and organizi	C C	^

Total tuberculosis cases by year (some of the years)

```
tb3 %>%
  filter(between(year, 1991, 1998)) %>%
  group_by(year) %>% summarize(total=sum(freq))
```

year	total
1991	544
1992	512
1993	492
1994	750
1995	513971
1996	635705
1997	733204
1998	840389

Something very interesting happened between 1994 and 1995.

To find out what

• try counting up total cases by country:

```
tb3 %>% group_by(iso2) %>%
  summarize(total=sum(freq)) %>%
  arrange(desc(total))
```

iso2	total
CN	4065174
IN	3966169
ID	1129015
ZA	900349
BD	758008
VN	709695
CD	603095
PH	490040
BR	440609
Tidying ar	d organizing data

what years do I have for China?

China started recording in 1995, which is at least part of the problem:

```
tb3 %>% filter(iso2=="CN") %>%
group_by(year) %>%
summarize(total=sum(freq))
```

year	total
1995	131194
1996	168270
1997	195895
1998	214404
1999	212258
2000	213766
2001	212766
2002	194972
2003	267280
Tidying and	organizing data

first year of recording for each country?

A lot of countries started recording in about 1995, in fact:

```
tb3 %>% group_by(iso2) %>%
  summarize(first_year=min(year)) %>%
  count(first_year)
```

first_year	n
1980	2
1994	2
1995	130
1996	31
1997	17
1998	6
1999	10
2000	4
2001	1
2002	3
2003	2
	-

Some Toronto weather data

```
my url <-
  "http://ritsokiguess.site/STAC32/toronto weather.csv"
weather <- read_csv(my_url)</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     station = col character(),
##
     Month = col character(),
##
     element = col character()
## )
## See spec(...) for full column specifications.
```

The data (some)

weather

# Out 511 0 1							
station	Year	Month	element	d01	d02	d03	d04
TORONTO CITY	2018	01	tmax	-7.9	-7.1	-5.3	-7.7
TORONTO CITY	2018	01	tmin	-18.6	-12.5	-11.2	-19.7
TORONTO CITY	2018	02	tmax	5.6	-8.6	0.4	1.8
TORONTO CITY	2018	02	tmin	-8.9	-15.0	-9.7	-8.8
TORONTO CITY	2018	03	tmax	NA	NA	NA	NA
TORONTO CITY	2018	03	tmin	NA	-0.5	NA	-3.1
TORONTO CITY	2018	04	tmax	4.5	6.5	5.0	5.7
TORONTO CITY	2018	04	tmin	-2.6	-1.2	2.4	-3.2
TORONTO CITY	2018	05	tmax	23.5	26.3	23.0	24.0
TORONTO CITY	2018	05	tmin	8.5	14.4	11.4	9.2
TORONTO CITY	2018	06	tmax	28.2	20.5	19.6	20.1
TORONTO CITY	2018	06	tmin	17.4	14.0	15.5	12.2
TORONTO CITY	2018	07	tmax	32.7	31.6	29.6	32.6

7 tmax
Tidying and organizing data

27 / 39

The columns

- Daily weather records for "Toronto City" weather station in 2018:
 - station: identifier for this weather station (always same here)
 - Year. Month
 - element: whether temperature given was daily max or daily min
 - d01, d02,... d31: day of the month from 1st to 31st.
- Numbers in data frame all temperatures (for different days of the month), so first step is

So far

d

station	Year	Month	element	day	temperature
TORONTO CITY	2018	01	tmax	d01	-7.9
TORONTO CITY	2018	01	tmax	d02	-7.1
TORONTO CITY	2018	01	tmax	d03	-5.3
TORONTO CITY	2018	01	tmax	d04	-7.7
TORONTO CITY	2018	01	tmax	d05	-14.7
TORONTO CITY	2018	01	tmax	d06	-15.4
TORONTO CITY	2018	01	tmax	d07	-1.0
TORONTO CITY	2018	01	tmax	d08	3.0
TORONTO CITY	2018	01	tmax	d09	1.6
TORONTO CITY	2018	01	tmax	d10	5.9
TORONTO CITY	2018	01	tmax	d11	11.6
TORONTO CITY	2018	01	tmax	d12	11.9
TORONTO CITY	2018	01	tmax	d13	-11.0

The days

- Column element contains names of two different variables, that should each be in separate column.
- Distinct from eg. m1524 in tuberculosis data, that contained levels of two different factors, handled by separate.
- Untangling names of variables handled by pivot_wider:

So far

d

station	Year	Month	day	tmax	tmin
TORONTO CITY	2018	01	d01	-7.9	-18.6
TORONTO CITY	2018	01	d02	-7.1	-12.5
TORONTO CITY	2018	01	d03	-5.3	-11.2
TORONTO CITY	2018	01	d04	-7.7	-19.7
TORONTO CITY	2018	01	d05	-14.7	-20.6
TORONTO CITY	2018	01	d06	-15.4	-22.3
TORONTO CITY	2018	01	d07	-1.0	-17.5
TORONTO CITY	2018	01	d08	3.0	-1.7
TORONTO CITY	2018	01	d09	1.6	-0.6
TORONTO CITY	2018	01	d10	5.9	-1.3
TORONTO CITY	2018	01	d11	11.6	5.6
TORONTO CITY	2018	01	d12	11.9	-11.2
TORONTO CITY	2018	01	d13	-11.0	-14.5

Further improvements

- We have tidy data now, but can improve things further.
- mutate creates new columns from old (or assign back to change a variable).
- Would like numerical dates. separate works, or pull out number as below.
- select keeps columns (or drops, with minus). Station name has no value to us:

So far

d

Year	Month	day	tmax	tmin	Day
2018	01	d01	-7.9	-18.6	1
2018	01	d02	-7.1	-12.5	2
2018	01	d03	-5.3	-11.2	3
2018	01	d04	-7.7	-19.7	4
2018	01	d05	-14.7	-20.6	5
2018	01	d06	-15.4	-22.3	6
2018	01	d07	-1.0	-17.5	7
2018	01	d08	3.0	-1.7	8
2018	01	d09	1.6	-0.6	9
2018	01	d10	5.9	-1.3	10
2018	01	d11	11.6	5.6	11
2018	01	d12	11.9	-11.2	12
2018	01	d13	-11.0	-14.5	13

Final step(s)

- Make year-month-day into proper date.
- Keep only date, tmax, tmin:

Our tidy data frame

 $weather_tidy$

date	tmax	tmin
2018-01-01	-7.9	-18.6
2018-01-02	-7.1	-12.5
2018-01-03	-5.3	-11.2
2018-01-04	-7.7	-19.7
2018-01-05	-14.7	-20.6
2018-01-06	-15.4	-22.3
2018-01-07	-1.0	-17.5
2018-01-08	3.0	-1.7
2018-01-09	1.6	-0.6
2018-01-10	5.9	-1.3
2018-01-11	11.6	5.6
2018-01-12	11.9	-11.2
2018-01-13	-11.0	-14.5
T14.200.004	Commentation of the	

Plotting the temperatures

 Plot temperature against date joined by lines, but with separate lines for max and min. ggplot requires something like

```
ggplot(..., aes(x = date, y = temperature)) + geom_point() +
  geom_line()
```

only we have two temperatures, one a max and one a min, that we want to keep separate.

- The trick: combine tmax and tmin together into one column, keeping track of what kind of temp they are. (This actually same format as untidy weather.) Are making weather_tidy untidy for purposes of drawing graph only.
- Then can do something like

```
ggplot(d, aes(x = date, y = temperature, colour = maxmin))
+ geom_point() + geom_line()
```

to distinguish max and min on graph.

Setting up plot

- Since we only need data frame for plot, we can do the column-creation and plot in a pipeline.
- For a ggplot in a pipeline, the initial data frame is omitted, because it is whatever came out of the previous step.
- To make those "one column"s: pivot_longer. I save the graph to show overleaf:

The plot

g

Summary of tidying "verbs"

Verb	Purpose
pivot_longer	Combine columns that measure same thing into
	one
<pre>pivot_wider</pre>	Take column that measures one thing under dif-
	ferent conditions and put into multiple columns
separate	Turn a column that encodes several variables into
	several columns
unite	Combine several (related) variables into one "com-
	bination" variable

pivot_longer and pivot_wider are opposites; separate and unite are opposites.