

### Foreword

- Generally, process management deals with assigning processes to the resources (main resource being the processor itself). There are hundreds of processes, distributed across multiple systems.
- The issue dealt here is which process is executed on which machine (processor)
- A resource Manager of the distributed system controls the assignment of resources to the individual processes
- A resource manager schedules the processes in a distributed system to make use of the system resources in such a manner that resource usage, response time, network congestion and scheduling overhead are optimized.

# Resource Management

- Distributed Systems have :
  - > Resource multiplicity
  - > Transparency
  - Resource Interconnection
- Require Process Migration facilities in addition to communication facilities
- Why migrate processes?

## Introduction

- A resource can be logical, such as a shared file or physical such as CPU.
- The set of available resources in a distributed system acts like a single virtual system
- Resource manager: Controls the assignment of resources to processes. Routes the processes to suitable nodes of the system in such a manner that resource usage, response time, network congestion, and scheduling overhead are optimized.

# Process Scheduling Techniques

- Task assignment approach: Each process submitted by a user for processing is viewed as a collection of related tasks. Tasks are scheduled to suitable nodes to improve performance.
- Load-balancing approach: All the processes submitted by the users are distributed among the nodes of the system.• Equalizes the workload among the nodes.
- Load-sharing approach: Attempts to conserve the ability of the system, assuring that no node is idle while processes wait for being processed.

# Desirable features of a good Scheduling Algorithm

- No a priori knowledge about the processes.
- Dynamic in nature.
- Quick decision-making capability.
- Balanced system performance.
- Stability.
- Scalability.
- Fault tolerance.
- · Fairness of service.

# Task assignment approach

- A process is considered to be composed of multiple tasks.
- Goal is to find an optimal assignment policy for the task of an individual process

# Task assignment approach

#### Assumptions:

- 1. A process has already been split into pieces called tasks.
- 2. Amount of computation required by each task and speed of each processor are known.
  - 3. The cost of processing each task on every node of the system is known.
- 4. The IPC costs between every pair of task is known.

# Task assignment approach

- Assumptions (contd...)
  - 5. Other constraints, like Resource requirements of the tasks and the available resources at each node are also known.
  - 6. Reassignment of the tasks is generally not possible.

## Assignment of Tasks

- · Goals:
  - Minimization of IPC costs
  - Quick turnaround time for the complete process
  - □ A high degree of parallelism
  - ☐ Efficient utilization of system resources in general
  - These goals often conflict with each other.

### Cont...

- Two task assignment parameters
  - Task execution cost and
  - Inter-task communication cost

#### Example

Total tasks = 6

Total nodes = 2

# A task assignment problem (example)

| Inter Task Communication Cost |    |    |    |    |    |    |  |
|-------------------------------|----|----|----|----|----|----|--|
|                               | t1 | t2 | t3 | t4 | t5 | t6 |  |
| t1                            | 0  | 6  | 4  | 0  | 0  | 12 |  |
| t2                            | 6  | 0  | 8  | 12 | 3  | 0  |  |
| t3                            | 4  | 8  | 0  | 0  | 11 | 0  |  |
| t4                            | 0  | 12 | 0  | 0  | 5  | 0  |  |
| t5                            | 0  | 3  | 11 | 5  | 0  | 0  |  |
| t6                            | 12 | 0  | 0  | 0  | 0  | 0  |  |

| Execution costs |          |          |  |  |
|-----------------|----------|----------|--|--|
| Tasks           | N1       | N2       |  |  |
| t1              | 5        | 10       |  |  |
| t2              | 2        | $\infty$ |  |  |
| t3              | 4        | 4        |  |  |
| t4              | 6        | 3        |  |  |
| t5              | 5        | 2        |  |  |
| t6              | $\infty$ | 4        |  |  |