

GENERAL INSTRUMENT

MOS TRANSISTOR

P CHANNEL-ENHANCEMENT MODE SILICON INSULATED GATE FIELD EFFECT TRANSISTOR

Silicon P-Channel, Insulated — Gate Enhancement Mode Field Effect Transistor Designed Primarily For Low-Power Audio, Radio Frequency and Commutating Applications.

FEATURES:

- 10¹⁰ ohms input resistance
- Integrated zener clamp protects the gate
- · Normally off with zero gate voltage
- Square Law linear transfer characteristics

APPLICATIONS:

- · High input impedance amplifiers
- · Series and shunt choppers
- · Operational amplifiers
- Logic circuits
- · RF and IF amplifiers

CASE STYLE:

See Drawing

MAXIMUM RATINGS:

 $(T_A = 25^{\circ}C.$, unless otherwise specified)

Drain to Source Voltage—30V
Gate to Source Voltage ——30V
Gate to Drain Voltage ————————————————————————————————————
Drain Current —50mA
Gate Current (Forward Direction for Zener Clamp) + 0.lmA
Storage Temperature —50 to 150°C
Operating Junction Temperature —50 to 125°C
Total Dissipation at 25°C Case Temperature 650mW
Total Dissipation at 25°C Ambient Temperature 225mW

ELECTRICAL CHARACTERISTICS:

 $(T_A = 25^{\circ}C. \text{ unless otherwise specified})$

(1 A - 20 0, allicoo .	0 (1101 111	oo op	0011100)		
SYMBO	L CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
V_{GS}	Gate Source Cutoff Voltage	-3		-6	Volts	$V_{GS} \equiv V_{DS}$, $I_D \equiv 10 \mu_i A$
DSS	Drain Leakage Current			10	па	$V_{DS} = -20V, V_{GS} = 0$
less	Gate Leakage Current			1	na	$V_{GS} = -15V$, $V_{DS} = 0$
D(on)	Drain Current	- 3			ma	$V_{GS} = V_{DS} = 10V$
BVDSS	Drain-Source Breakdown	-30			Volts	$I_D=10\mu A$, $V_{GS}=0$
Y_{FS}	Transadmittance	1000 1000			μmho μmho	$1 \text{KC}, V_{GS} = V_{DS} = 10 \text{V}$ $10 \text{MC}, V_{GS} = V_{DS} = 10 \text{V}$
C_{gs}	Gate to Source Capacitance			3	pf	$V_{\rm es}=V_{\rm DS}=10V$
$C_{\sf gd}$	Gate to Drain Capacitance			2.5	pf	$V_{GS} = V_{DS} = 10V$
C_{ds}	Drain to Source Capacitance			2.0	pf	$V_{GS} = V_{DS} = 10V$
$r_{ds(on)}$	Drain to Source Resistance		250		ohms	$V_{GS} = -15V$, $I_{DS} = -1mA$

4 LEAD TO-18 TYPE PACKAGE

Bottom view

Note: All dimensions in inches.

TERMINAL DIAGRAM

Lead

- 1. Drain
- 2. Gate
- 3. Body (Case)
- 4. Source

TYPICAL CHARACTERISTIC CURVES

DRAIN CHARACTERISTICS AT 25 °C

TURN-ON CHARACTERISTICS AT 25 °C

DRAIN CHARACTERISTICS AT -200 °C

TURN-ON CHARACTERISTICS AT 25°C

SMALL SIGNAL EQUIVALENT CIRCUIT (Conditions: $V_{GS} = V_{DS} = 10V$)

SYMBOL		TYPICAL	UNITS
Diodes	All diodes are to be considered perfect diodes		
r_{gs}	Gate to source leakage resistance and diode leakage resistance	1010	ohms
ľd	Dynamic drain resistance	25	Kohms
C_{gs}	Gate to source capacitance	2.25	pf
C_{gd}	Gate to drain capacitance	1.5	pf
C_{ds}	Drain to source capacitance	1.25	pf
Y_{fs}	Forward transadmittance	2500	μmho

HANDLING PRECAUTIONS

The MEM 511 insulated gate field effect transistors have been designed with an integrated zener diode clamp from the high input resistance (10¹⁵ ohm typical) gate, to the body which is internally connected to the case. This clamp eliminates the detrimental effects of high electrostatic voltages on the gate that can be generated in normal handling.

It is recommended that the body (lead 3) be connected to the source (lead 4) for most applications.

GENERAL INSTRUMENT CORPORATION

SEMICONDUCTOR PRODUCTS GROUP

Western Area Headquarters 6108 West Venice Blvd., Los Angeles, Calif. 90034 (213) WE 3-7261 Central Area Headquarters 5404 West Diversey Ave., Chicago, III. 60639 (312) 622-6970

MICROELECTRONIC DIVISION

Eastern Area Headquarters 256 Passaic St., Newark, N. J., 07104 (201) HU 5-0072