$\begin{array}{c} Diskrete\ Wahrscheinlichkeitstheorie\ -\\ Probeklausur \end{array}$

Sommersemester 2007 - Lösung

Name:	
Vorname:	
Matrikelnr.:	
Studiengang	

Hinweise

- \bullet Sie sollten insgesamt ∞ Blätter erhalten haben.
- Tragen Sie bitte Ihre Antworten in den dafür jeweils vorgesehenen Platz auf den Aufgabenblättern ein.
- \bullet Sie können maximal π Punkte erreichen.
- Füllen Sie die untenstehende Tabelle bitte nicht aus.
- Viel Erfolg.

A1	A2	A3	\sum

Aufgabe 1 P

Jede der folgenden Aufgaben gibt einen Punkt. Soweit nicht anders angegeben, wird nur das Endergebnis verlangt. In den anderen Fällen reicht eine kurze Begründung.

- 1. Der Erwartungswert einer Indikatorvariable X sei $\mathbb{E}[X] = \frac{1}{4}$. Geben Sie $\mathrm{Var}[X]$ an.
- 2. Sei X eine stetige Zufallsvariable mit Dichte f_X . Für $x \in [-1, 1]$ gelte $f_X(x) = \frac{1}{2}$. Welchen Wert hat $f_X(2)$?
- 3. Geben Sie eine möglichst kleine, *reduzible* Markov-Kette an, welche eine stationäre Verteilung besitzt. Es reicht den entsprechenden Graph anzugeben.
- 4. Es seien ω_1 und ω_2 zwei *verschiedene* Elementarereignisse in dem diskreten Wahrscheinlichkeitsraum (Ω, \Pr) mit $\Pr[\omega_1], \Pr[\omega_2] > 0$. Zeigen Sie, dass $\{\omega_1\}$ und $\{\omega_2\}$ stochastisch von einander abhängen.
- 5. Seien X und Y unahbängige Zufallsvariablen mit Var[X+Y]=4 und Var[2X-Y]=10. Bestimmen Sie Var[X].
- 6. Es sei $(\{\omega_1, \omega_2\}, Pr)$ ein diskreter Wahrscheinlichkeitsraum und X eine diskrete Zufallsvariable auf diesem mit Var[X] = 0 und $\mathbb{E}[X] = 0$. Zeigen Sie, dass hieraus nicht $X(\omega_1) = X(\omega_2) = 0$ folgen muss.

Antwort:

- 1. $Var[X] = \frac{1}{4} \cdot (1 \frac{1}{4}) = \frac{3}{16}$.
- 2. $f_X(2) = 0$.
- 3. $A \xrightarrow{1/2} A$, $A \xrightarrow{1/2} B$, $B \xrightarrow{1} B$.
- 4. $\Pr[\{\omega_1\} \cap \{\omega_2\}] = 0 \neq \Pr[\omega_1] \cdot \Pr[\omega_2] > 0$.
- 5. Var[X] = 2.
- 6. Es gelte $\Pr[\omega_1] = 1$, $\Pr[\omega_2] = 0$. Dann erfüllt $X_1(\omega_1) = 0$ und $X_2(\omega_2) = 5$ die beiden Bedingungen.

Aufgabe 2 P

Wir betrachten eine Urne, die zu Beginn jeweils eine schwarze und eine weiße Kugel enthält. Es werden nun solange Kugeln gezogen, bis schließlich die schwarze Kugel gezogen wird. Wird eine weiße Kugel gezogen, so wird diese zurückgelegt und zusätzlich noch eine neue weiße Kugel in die Urne gelegt. Das bedeutet, wird nicht im ersten Versuch die schwarze Kugel gezogen, so befinden sich beim zweiten Experiment zwei weiße Kugeln in der Urne, usw.

- 1. Es sei Z die Zufallsvariable, die angibt, im wievielten Experiment schließlich die schwarze Kugel gezogen wird. Geben Sie W_Z an und $\Pr[Z=k]$ für $k\in W_Z$.
- 2. Existiert $\mathbb{E}[Z]$? Falls ja, geben Sie $\mathbb{E}[Z]$ an, ansonsten begründen Sie, warum $\mathbb{E}[Z]$ nicht existiert.
- 3. Bestimmen Sie $\mathbb{E}[Z|Z \leq 3]$.

Antwort:

1. $W_Z = \{1, 2, \ldots\} = \mathbb{N}$. Im k.ten Versuch befinden sich k weiße Kugeln in der Urne, daher gilt

$$\Pr[Z=k] = \frac{1}{k+1} \cdot \prod_{m=1}^{k-1} \frac{m}{m+1} = \frac{1}{k(k+1)}.$$

2.

$$\mathbb{E}[Z] = \sum_{k>1} \frac{k}{k(k+1)} = \sum_{k>2} \frac{1}{k} \to \infty.$$

 $\mathbb{E}[Z]$ ist die harmonische Reihe bis auf das erste Reihenglied.

3. Mit $\Pr[Z \le 3] = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4} \text{ folgt } \Pr[Z = 1 | Z \le 3] = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}, \Pr[Z = 2 | Z \le 3] = \frac{\frac{1}{6}}{\frac{3}{4}} = \frac{2}{9}$ und $\Pr[Z = 3 | Z \le 3] = \frac{\frac{1}{12}}{\frac{3}{4}} = \frac{1}{9}$. Und damit

$$\mathbb{E}[Z|Z \le 3] = 1 \cdot \frac{2}{3} + 2 \cdot \frac{2}{9} + 3 \cdot \frac{1}{9} = \frac{6+4+1}{9} = \frac{11}{9}.$$

Aufgabe 3

Wir betrachten den vollständigen, ungerichteten Graphen K_n mit Knotenmenge $V = \{1, 2, ..., n\}$ und Kantenmenge $\{\{i, j\} | 1 \le i < j \le n\}$.

Jede der $\binom{n}{2}$ Kanten wird unabhängig von den restlichen Kanten mit Wahrscheinlichkeit p rot eingefärbt, mit Wahrscheinlichkeit 1-p schwarz.

1. Für $1 \leq i \leq n$ sei R_i die Anzahl von roten Kanten, welche als einen Endknoten i besitzen. Geben Sie $\Pr[R_i = k]$ an.

Mit $R := \frac{1}{n} \sum_{i=1}^{n} R_i$ ist die durchschnittliche Anzahl von roten Kanten pro Knoten gegeben.

Was ist an der Rechnung $Var[R] = \frac{1}{n^2} \sum_{i=1}^n Var[R_i] = \frac{1}{n} Var[R_1]$ falsch?

2. Für $1 \le i < j < k \le n$ sei $X_{i,j,k} = 1$, falls die Kanten $\{i,j\}, \{j,k\}, \{i,k\}$ alle rot sind, sonst sei $X_{i,j,k} = 0$.

Es sei nun $X := \sum_{1 \le i \le j \le k \le n} X_{i,j,k}$. Bestimmen Sie $\mathbb{E}[X]$.

3. Es sei $k \in \{1, 2, \dots, n\}$ und es gelte $p = \frac{k}{n}$. Zeigen Sie $\Pr[X = 0] \ge 1 - \frac{k^3}{6}$.

Antwort:

1. Jeder der n-1 Kanten, welche von einem Knoten i ausgehen (bzw. in ihm enden), ist mit Wahrscheinlichkeit p rot, somit folgt R_i Bin(n-1,p) bzw. $\Pr[R_i=k]=\binom{n-1}{k}p^k(1-p)^{n-1-k}$.

Die R_i sind allerdings nicht unabhängig, da eine Kante jeweils zu zwei Knoten gehört. Somit kann die Summe nicht mit der Varianz vertauscht werden.

2. Da die Kanten unahbängig von einander eingefärbt werden, gilt $\Pr[X_{i,j,k}=1]=p^3$.

Es folgt
$$\mathbb{E}[X] = \binom{n}{3} \mathbb{E}[X_{1,2,3}] = \binom{n}{3} p^3$$
.

3. Es gilt

$$\Pr[X = 0] = 1 - \Pr[X \ge 1] = 1 - \Pr[\bigcup_{i < j < k} X_{i,j,k} = 1] \ge 1 - \sum_{i < j < k} \Pr[X_{i,j,k} = 1]$$

$$= 1 - \binom{n}{3} \left(\frac{k}{n}\right)^3 = 1 - \frac{n \cdot (n-1) \cdot (n-2)}{n^3} \cdot \frac{k^3}{6} \ge 1 - \frac{k^3}{6}.$$

Aufgabe 4

Sei X eine Bernoulli-verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit p. Mit einer Stichprobe von nur zwei Elementen soll die Nullhypothese $H_0: p \leq \frac{1}{3}$ getestet werden. Die Testvariable sei $T = X_1 + X_2$, wobei X_1, X_2 unabhängig und identisch Bin(1, p)-verteilt sind. Der Ablehnungsbereich des Tests sei $K = \{1, 2\}$.

1. Berechnen Sie die Fehlerwahrscheinlichkeit erster Art zum Signifikanzniveau α_1 , d.h. bestimmen Sie

$$\alpha_1 := \sup_{p \le \frac{1}{3}} \Pr_p[T \in K].$$

- 2. Wir nehmen an, dass bekannt ist, dass entweder $H_0: p \leq \frac{1}{3}$ oder $H_1: p \geq \frac{3}{4}$ gilt. Bestimmen Sie die maximale Wahrscheinlichkeit, mit der H_0 nicht abgelehnt wird, obwohl H_1 gilt.
- 3. Es seien nun X_1, X_2, \ldots, X_n unabhängige und identisch Bin(1, p)-verteilte Zufallsvariablen. Mit Hilfe der Testgröße $T = \sum_{i=1}^n X_i$ soll die Nullhypothese $H_0: p \leq p_0$ zum Signifikanzniveau α getestet werden. Der Test soll H_0 ablehnen, falls T > c für ein gewisses $c \in \mathbb{R}$.

Bestimmen Sie c mit Hilfe des zentralen Grenzwertsatzes!

Antwort:

1. Gesucht ist

$$\sup_{p \le 1/3} \Pr_p[T \in \{1, 2\}] = \sup_{p \le 1/3} (1 - \Pr_p[T = 0]) = \sup_{p \le 1/3} (1 - (1 - p)^2) = 1 - (1 - \frac{1}{3})^2 = \frac{5}{9}.$$

2. Gesucht ist nun

$$\sup_{p \ge 3/4} \Pr_p[T \in \{0\}] = \sup_{p \ge 3/4} (1 - p)^2 = \frac{1}{16}.$$

3. Der Test soll H_0 mit Wahrscheinlichkeit höchstens α abhlehnen, falls H_0 gilt, d.h. es soll

$$\sup_{p \le p_0} \Pr_p[T > c] \stackrel{!}{=} \alpha$$

gelten.

Das Supremum von $\Pr_p[T>c]$ auf $[0,p_0]$ wird in p_0 angenommen, so dass

$$\sup_{p \le p_0} \Pr_p[T > c] = \Pr_{p_0}[T > c] \stackrel{!}{=} \alpha$$

gelten muss.

Mit dem ZGWS folgt:

$$\Pr_{p_0}[T > c] = \Pr_{p_0}\left[\frac{T - n \cdot p_0}{\sqrt{n \cdot p_0 \cdot (1 - p_0)}} > \frac{c - n \cdot p_0}{\sqrt{n \cdot p_0 \cdot (1 - p_0)}}\right] \approx 1 - \Phi\left(\frac{c - n \cdot p_0}{\sqrt{n \cdot p_0 \cdot (1 - p_0)}}\right) \stackrel{!}{=} \alpha.$$

Mit Hilfe des Quantils z_α folgt

$$c = n \cdot p_0 + z_{1-\alpha} \cdot \sqrt{n \cdot p_0 \cdot (1-p_0)}.$$

Aufgabe 5

 X_1, X_2 seien unabhängige Zufallsvariablen mit $X_1 \sim \operatorname{Exp}(\lambda_1)$ und $X_2 \sim \operatorname{Exp}(\lambda_2)$ und $\lambda_1 \neq \lambda_2$. Bestimmen Sie die Dichte und die Verteilung der Zufallsvariablen $X := a(X_1 + X_2)$, wobei a eine positive Konstante sei.

Antwort:

In der Übungsaufgabe 9.2 wurde gezeigt, dass

$$f_{X_1+X_2}(z) = \frac{\mu}{\mu-\lambda} \cdot \lambda \cdot e^{-\lambda \cdot z} + \frac{\lambda}{\lambda-\mu} \cdot \mu \cdot e^{-\mu \cdot z}$$

auf $[0, \infty)$ gilt. (Zur Übung und Wiederholung selbst nachrechnen!)

Damit folgt

$$F_{X_1+X_2}(z) = \frac{\mu}{\mu - \lambda} F_{X_1}(z) + \frac{\lambda}{\lambda - \mu} F_{X_2}(z).$$

Schlies" lich gilt

$$F_X(z) = \Pr[X \le z] = \Pr[X_1 + X_2 \le \frac{z}{a}] = \mathbf{F}_{X_1 + X_2}(\frac{z}{a}).$$

Ableiten führt auf

$$f_X(z) = \frac{1}{a} f_{X_1 + X_2}(\frac{z}{a}).$$