Department of Computer Science & Engineering Indian Institute of Technology Kharagpur Mid-semester Examination, Autumn 2015 CS60050: Machine Learning

Full Marks: 100 Time: 2 Hrs

Answer ALL questions. You can use calculators.

- 1. Which of the following is true or false. Explain with reasons (max 2-3 sentences): 3+3+3=9
 - (a) Root mean square error is a good performance measure for multiclass classification problem.
 - (b) Cross-validation is expected to reduce the variance in the estimate of error rate of a classifier.
 - (c) Training set error will initially decrease and then increase as we increase the parameter C in soft-margin SVM training.
- 2. Write the soft-margin SVM problem. Write the KKT conditions for this problem. Derive the dual for soft-margin SVM.

 10

3. Consider the following balloons dataset:

4		Į	
-	-	•	-

Color	Size	Act	Age	Inflated
YELLOW	SMALL	STRETCH	ADULT	T
YELLOW	SMALL	STRETCH	CHILD	${f T}$
YELLOW	SMALL	DIP	ADULT	${ m T}$
YELLOW	SMALL	DIP	CHILD	${ m T}$
YELLOW	LARGE	STRETCH	ADULT	${f T}$
YELLOW	LARGE	STRETCH	CHILD	F
YELLOW	LARGE	DIP	ADULT	F
YELLOW	LARGE	DIP	CHILD	F
PURPLE	SMALL	STRETCH	ADULT	${ m T}$
PURPLE	SMALL	STRETCH	CHILD	F
PURPLE	SMALL	DIP	ADULT	\mathbf{F}
PURPLE	SMALL	DIP	CHILD	F
PURPLE	LARGE	STRETCH	ADULT	${f T}$
PURPLE	LARGE	STRETCH	CHILD	F
PURPLE	LARGE	DIP	ADULT	\mathbf{F}
PURPLE	LARGE	DIP	CHILD	F

Compute the parameters of Naive Bayes classifier for predicting *in-flated*; and the training set error.

- 4. Define shattering and VC dimension. What is the VC dimension of the function class: circles in R^2 whose interiors are class 1 and exteriors are class 2. Give crisp reasons. There will be marks for conciseness. 15
- 5. In the context of logistic regression, define the prediction and loss functions. Show that if the class conditional densities, $p(x|c_k)k = \{1,2\}$, are gaussian, with equal co-variance, the posterior distribution $p(c_k|x)$ is a logistic.
- 6. Consider the following dataset:

$$\{(-,(1,-4)),(+1,(5,-1)),(+,(3,3)),(+,(-1,5)),(-,(-5,2)),(-,(-2,-2))\}$$

15

Run 5 iterations of IRLS for finding the parameter w for fitting a logistic regression model without the bias term, w_0 .

- 7. Define the expected squared loss function for regression problem $y = f(x), y \in R, x \in R^d$. Derive the bias- variance decomposition of the expected squared loss function, from first principles. 7+10+10=27
 - (a) Consider the regression problem where $x \in [0, 1]$, and $y = x^2$. Generate the dataset, D, taking 11 equidistant points at distance 0.1 starting with x = 0, and computing $y = x^2$. Learn the predictor function y(x) = wx from the above dataset.
 - (b) Calculate the bias considering $E_D[y(x)] = w'x$ and expected squared error with y(x) = wx, considering uniform distribution for x in the range [0,1]. Which component in the bias-variance decomposition is the difference and why?

2