ELECTROMAGNETISMO

Série 5 – Corrente e resistência

- 1. Num tubo de raios catódicos, a intensidade da corrente do feixe de electrões é de 30.0 μA. Quantos electrões atingem o ecrã em 40.0 s?
- 2. Um fio de cobre com uma secção de $5.00 \times 10^{-6} \ m^2$ é percorrido por uma corrente de $5.00 \ A$.
 - a) Qual é o valor da densidade de corrente no fio?
 - b) Calcule a velocidade de deriva dos electrões no fio.
 - (A densidade do cobre é $8.96 \ g/cm^3$ e a sua massa atómica é $63.546 \ u.m.a.$. Considere que cada átomo de cobre contribui com um electrão livre.)
- 3. Um cubo de prata tem uma massa de 90.0 g. A resistividade da prata é $1.59 \times 10^{-8} \Omega .m$. a) Qual é a resistência entre faces opostas do cubo?
 - b) Determine a velocidade de deriva dos electrões quando uma diferença de potencial de $1.00 \times 10^{-5} V$ é aplicada a faces opostas.
 - (A densidade da prata é 10.5 g/cm^3 e a sua massa atómica é 107.87 u.m.a.). Considere que cada átomo de prata contribui com um electrão livre.)
- 4. Um fio de alumínio com um diâmetro de $0.100\,mm$ está sujeito a um campo eléctrico de $0.200\,V/m$ sobre todo o seu comprimento. A temperatura do fio é de $50.0\,^{\circ}C$. a) Sabendo que a resistividade do alumínio a $20.0\,^{\circ}C$ é de $2.82\times10^{-8}\,\Omega m$ e que o seu coeficiente de temperatura é $3.9\times10^{-3}\,(^{\circ}C)^{-1}$, calcule a resistividade do alumínio a $50.0\,^{\circ}C$,
 - b) Qual é a densidade de corrente no fio?
 - c) Qual é a intensidade da corrente que percorre o fio?
 - d) Qual é a diferença de potencial que tem de existir entre as pontas de um fio com 2.00 m de comprimento para produzir o campo eléctrico acima referido?
 - (A densidade do alumínio é $2.70 \ g/cm^3$ e a sua massa atómica é $26.98 \ u.m.a.$. Considere que cada átomo de alumínio contribui com um electrão livre.)
- 5. Um aquecedor eléctrico de 500 W que funciona a 110 V é feito com fio de Nicrómio de 0.500 mm de diâmetro. A resistividade do Nicrómio a $20.0 \, ^{\circ}C$ é $1.50 \times 10^{-6} \, \Omega m$ e o seu coeficiente de temperatura é $0.4 \times 10^{-3} \, (^{\circ}C)^{-1}$.
 - a) Se a resistividade do Nicrómio se mantivesse constante e igual ao seu valor a $20.0\,^{\circ}C$, qual seria o comprimento do fio?
 - b) Se agora tiver em conta a variação da resistividade com a temperatura, qual seria a potência transferida para o fio com o comprimento calculado na parte a) quando a sua temperatura atinge os $1200.0\,^{\circ}C$?

- 6. Uma companhia fornece energia eléctrica a um cliente a partir da rede (de $120\,V$) através de um ramal constituído por dois fios de cobre com um comprimento de $50.0\,m$ cada e uma resistência de $0.108\,\Omega$ por cada $300\,m$. Quando a corrente no ramal é de $110\,A$, calcule:
 - a) a diferença de potencial na casa do consumidor;
 - b) a potência entregue ao consumidor;
 - c) a potência dissipada nos fios do ramal.
- 7. O material dieléctrico entre as armaduras dum condensador de placas planas paralelas tem sempre uma condutividade não nula σ . Seja A a área de cada placa, d a distância entre as armaduras e κ a constante dieléctrica do material.
 - a) Mostre que a resistência R e a capacidade C do condensador obedecem à relação

$$RC = \frac{\kappa \varepsilon_0}{\sigma}$$

- b) Calcule a resistência R entre as placas dum condensador de 14.0 nF cujo dieléctrico é o quartzo fundido. (Quartzo fundido: $\kappa = 3.78$, $\rho = 75 \times 10^{16} \ \Omega m$, $\varepsilon_0 = 8.85 \times 10^{-12} \ F/m$).
- 8. Num sistema de stereo, cada coluna tem uma resistência de 4.00 Ω. O sistema está marcado de 60.0 W em cada canal, e o circuito de cada coluna inclui um fusível marcado de 4.00 A. Está este sistema adequadamente protegido contra sobrecarga? Explique o seu raciocínio.

Soluções:

1.
$$N = 7.5 \times 10^{15}$$
.

2. a)
$$J = 1.00 \times 10^6 A/m^2$$
; b) $v_d = 7.36 \times 10^{-5} m/s$.

3.
$$R = 777 \ n\Omega$$
; b) $v_d = 3.28 \ \mu m/s$.

4. a)
$$\rho = 3.15 \times 10^{-8} \ \Omega.m$$
; b) $J = 6.35 \times 10^6 \ A/m^2$; c) $I = 49.9 \times 10^{-3}$; d) $\Delta V = 0.400 \ V$.

5. a)
$$l = 3.17 m$$
; b) $P = 340 W$.

6. a)
$$(\Delta V)_{casa} = 116 V$$
; b) $P_{casa} = 12.8 \times 10^3 W$; c) $P_{fios} = 436 W$.

7. b)
$$R = 1.79 \times 10^{15} \Omega$$
.

8. O sistema não está adequadamente protegido pois deixa passar uma corrente que pode danificar as colunas; o fusível deveria ser de 3.87 *A*, ou menos.