

Algoritmos de aproximación: Presentación

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Motivación

Muchos problemas de uso práctico

Se han demostrado como NP-Completos

Sin embargo, su importancia es elevada

Y no pueden dejarse de lado

Motivación (cont.)

Si la instancia del problema es pequeña

Se puede resolver óptimamente aun siendo no polinomiales

Si la instancia cumple con ciertas características

Se puede encontrar un algoritmo polinómico (ej 2-SAT)

Sino

Tratar de encontrar una solución aproximada al óptimo en tiempo polinomial

Relación de aproximación $\rho(n)$

Sea

Un problema de optimización P (de maximización o minimización)

Un algoritmo A que resuelve P de forma aproximada

Diremos

Que A tiene una <u>relación de aproximación p(n)</u>

Si para cualquier I instancia de tamaño n

La solución producida por C=A(I)

Esta dentro de un factor $\rho(n)$

de la solución óptima C*

$$max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n)$$

Relación de aproximación $\rho(n)$

Llamaremos al algoritmo A

Un ρ(n)-algoritmo de aproximación

La aproximación es siempre peor o igual al optimo

 $\rho(n) \ge 1$

Aunque (ojo!) algunos autores definen

ρ(n) ≤ 1 para problemas de maximización

ρ(n) ≥ 1 para problemas de minimización

Esquema de aproximación

Existen algoritmos de aproximación

Que permiten en su ejecución adicionar un parámetro adicional

Su valor

permitirá mejorar la relación de aproximación

A costo de

aumentar el tiempo de ejecución del mismo

Esquema de aproximación (cont.)

Sea

Un problema de optimización P

Un algoritmo A que resuelve P de forma aproximada

Un parámetro ε>0 fijo

Diremos

Que A tiene un <u>esquema de aproximación (1+ε)</u>

Si para cualquier I instancia de tamaño n

La solución producida por C=A(I)

Esta dentro de un factor (1+ε) del optimo

Esquema de aproximación polinomial en tiempo

Un esquema de aproximación

Es polinomial en tiempo

Si

Para cualquier ε>0 fijo

Se ejecuta

En tiempo polinomial en función a n

Ejemplo

 $O(n^{2/\epsilon}) \leftarrow$ cuanto mas pequeño ϵ , mas costosa la ejecución

Esquema de aproximación totalmente polinomial en tiempo

Un esquema de aproximación

Es totalmente polinomial en tiempo

Si

Para cualquier ε>0 fijo

Se ejecuta

En tiempo polinomial en función a n y de 1/ε

Ejemplo

 $O((1/\epsilon)^2 n^3)$

Construcción de algoritmos de aproximación

Existen diversas técnicas

para construir algoritmos de aproximación

Entre ellos

Uso de algoritmos greedy

Pricing method (primal-dual technique)

Programación lineal y redondeo

Programación dinámica y redondeada de la instancia

Desafíos

Para cada

Algoritmo de aproximación presentado

Deberemos probar

su relación o esquema de aproximación

Su complejidad temporal en función de los parámetros

... sin conocer realmente cual es su optimo!

(lo haremos con paciencia y detalle)

Imposibilidad de aproximación

Existen ciertos problemas

Que dada su naturaleza

No permiten

Generar algoritmos aproximados

Un ejemplo

Problema del viajante general (sin desigualdad triangular, ni simetría)

Solo existe un algoritmo de aproximación si P=NP!

Presentación realizada en Julio de 2020