Matrix theory - Assignment 10

Shreeprasad Bhat AI20MTECH14011

 $\label{lem:abstract} \textbf{Abstract} \textbf{—} \textbf{This document illustrates applications of Rank-Nullity Theorem}$

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment10/

1 Problem

Let **A** be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times 1}$ into $F^{m \times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. Show that

- 1) if m < n it may happen that T is onto without being non-singular
- 2) if m > n we may have T non-singular but not onto.

2 Definitions

singular	A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be singular if \exists some non-zero $\mathbf{X} \in \mathbb{R}^n$ s.t $\mathbf{A}\mathbf{X} = 0$ i.e $Nullity(A) \neq 0$. From rank-nullity theorem we can say $rank(A) < n$	
non-singular	A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be non-singular if $\mathbf{AX} = 0$ implies $\mathbf{X} = 0$ i.e $Nullity(A) = 0$	
onto	A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$ is said to be onto if for every $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{A}\mathbf{X} = \mathbf{b}$ has at least one solution $\mathbf{X} \in \mathbb{R}^n$	
	i.e $dim(Col(\mathbf{A})) = m$ or $Rank(\mathbf{A}) = m$	
	If $m > n$, then $\mathbf{AX} = \mathbf{b}$ has no solution because rank-nullity theorem is not satisfied.	

3 Proof

Let A be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times 1}$ into $F^{m \times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. If,			
	m < n	m > n	
singular	Since $rank(\mathbf{A}) < n$, by definition T is singular	Consider an non-singular T such that $rank(\mathbf{A}) > n$	
onto	Since $m < n$, by definition T can be onto	Since $m > n$, by definition T is not onto.	

4 Examples

 $4.1 \, m < n$

 $4.2 \ m > n$

Let,
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 (4.1.1) Let, $T : \mathbb{R}^3 \to \mathbb{R}^2$ (4.2.1)
$$T(\mathbf{X}) = \mathbf{A}\mathbf{X} = \mathbf{b}$$
 (4.1.2) Let, $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ (4.1.3) Let, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ (4.2.3) Consider, $\mathbf{X} = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$ (4.1.4) Consider, $\mathbf{X} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ (4.2.4)

$$\Rightarrow \mathbf{AX} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \qquad (4.1.5) \qquad \Rightarrow \mathbf{AX} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad (4.2.5)$$

$$= \begin{pmatrix} 6 \\ 5 \end{pmatrix} \tag{4.1.6}$$

$$= \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

Hence T is onto. (4.2.7)

Consider, $\mathbf{X} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ \therefore T is not onto, and is also non-singular.

$$\implies \mathbf{AX} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{4.1.8}$$

$$= \mathbf{0} \tag{4.1.9}$$

Since $\exists X \neq 0$ such that AX = 0, T is singular.

.. T is both onto and singular.