1 Introduction

Stem diameter distribution (i.e. stand tables) have long played an important role in forestry (Bailey and Dell, 1973; Hyink and Moser, 1983). Published models tend to be specific to a given combination of species, stand structure, geographic area, and inventory sampling method. No stem diameter distribution models have been published to date for the province of Quebec, Canada. Furthermore, no generalized methodology has been published to model stem diameter distributions from permanent sample plot (PSP) data, documenting how to correctly estimate best-fit parameter uncertainty and correlations for the common case where observed diameter data has a priori bounded domain (e.g. only merchantable stems of a certain minimum diameter are inventoried and trees never grow beyond a certain maximum diameter). The present study fills these gaps in the literature.

The most commonly-used statistical distribution used to model stem diameters seems to be the Weibull function (Bailey and Dell, 1973; Liu et al., 2002; Cao, 2004; Coomes and Allen, 2007). Other distributions used to model diameter distributions include the gamma (Nelson, 1964), exponential (Meyer and Stevenson, 1943) and S_B (Johnson, 1949) distrubtions. The Weibull, gamma and exponential functions are all derivatives of the generalized gamma function, which is itself a member of the of generalized beta family of statistical distributions.

We fit 25 truncated distributions from the generalized beta family to a large dataset of stems from government-compiled permanent fixed-area plots in the province of Quebec, Canada. We describe a two-stage distribution-fitting methodology that correctly handles parameter estimation error and correlations for input data with bounded domain. We present best-fit distributions for 30 combinations of species group and cover type.

Our best-fit distribution results cover all combinations of species and cover types in Quebec, and could be used directly. Alternatively, our methodology can be easily replicated using readily-available PSP data, for example to derive models for different aggregations of species and cover type, or for a different geographic extent of plot data used as input. The two-stage parameter-fitting methodology is potentially applicable to any context where trunctated data is fitted to standard-form statistical distributions.

The remainder of this paper is organized as follows. We describe our methodology in §2. Results are presented in §3, followed by discussion in §4.

2 Methods

Ducey and Gove (2015) document three parent distributions in the generalized beta family that can be used to derive several other distributions. These parent distributions are the generalized beta distribution of the first kind (GB1), the generalized beta distribution of the second kind (GB2), and the generalized gamma distribution (GG). The probability density functions (PDF) of GB1

and GB2 distributions have the following forms (adapted from Ducey and Gove, 2015)

GB1
$$(x; a, b, p, q) = \frac{|a|x^{ap-1} [1 - (x/b)^a]^{q-1}}{b^{ap}B(p, q)}, \qquad 0 < x^a < b^a, b > 0, p > 0, q > 0$$
(1)

and

GB2
$$(x; a, b, p, q) = \frac{|a|x^{ap-1}x^{q-1}}{b^{ap}B(p,q)\left[1 - (x/b)^a\right]^{p+q}}, \quad a > 0, b > 0, p > 0, q > 0$$
(2)

defined for x > 0, where B(p,q) represents the beta function (not to be confounded with the beta, or generalized beta, distributions), which is given by

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt.$$
 (3)

The PDF of the generalized gamma GG distribution has the following form

$$GG(x; a, \beta, p) = \frac{ax^{ap-1}e^{-\left(\frac{x}{\beta}\right)^a}}{\beta^{ap}\Gamma(p)}, \qquad a > 0, \beta > 0, q > 0$$

$$\tag{4}$$

defined for x > 0, where $\Gamma(p)$ represents the gamma function (not to be confounded with the gamma, or generalized gamma, distributions), which is given by

$$\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx. \tag{5}$$

We can define the PDFs for 22 different distributions in the generalized beta family in terms of one of the three parent distributions, as follows (adapted from Ducey and Gove, 2015)

$$IB1(x; b, p, q) = GB1(x; -1, b, p, q)$$
 (6)

$$UG(x; b, d, q) = \lim_{a \to \infty} GB1(x; a, b, d/a, q)$$
(7)

$$B1(x; b, p, q) = GB1(x; 1, b, p, q)$$
 (8)

$$B2(x; b, p, q) = GB2(x; 1, b, p, q)$$
(9)

$$SM(x; a, b, q) = GB2(x; a, b, 1, q)$$

$$\tag{10}$$

$$Dagum(x; a, b, p) = GB2(x; a, b, p, 1)$$
(11)

$$Pareto(x; b, p) = GB1(x; -1, b, p, 1)$$

$$(12)$$

$$P(x; b, p) = GB1(x; 1, b, p, 1)$$
(13)

$$LN(x; \mu, \sigma) = \lim_{a \to 0} GG(x; a, (\sigma^2 a^2)^{1/a}, (a\mu + 1)/(\sigma^2 a^2))$$
 (14)

$$GA(x; \beta, p) = GG(x; 1, \beta, p)$$
(15)

$$W(x; a, \beta) = GG(x; a, \beta, 1)$$
(16)

$$F(x; u, v) = GB2(x; 1, v/u, u/2, v/2)$$
(17)

$$L(x; b, q) = GB2(x; 1, b, 1, q)$$
 (18)

$$IL(x; b, p) = GB2(x; 1, b, p, 1)$$
 (19)

$$Fisk(x; a, b) = GB2(x; a, b, 1, 1)$$

$$(20)$$

$$U(x;b) = GB1(x;1,b,1,1)$$
(21)

$$\frac{1}{2}N(x;0,\sigma) = GG(x;2,\sigma^2,1/2) \tag{22}$$

$$\chi^{2}(x;p) = GG(x;1,2,p) \tag{23}$$

$$EXP(x;\beta) = GG(x;1,\beta,1)$$
(24)

$$R(x;\beta) = GG(x;2,\beta,1) \tag{25}$$

$$\frac{1}{2}t(x;df) = GB2(x;2,\sqrt{df},1/2,df/2)$$
(26)

$$LL(x;b) = GB2(x;1,b,1,1)$$
 (27)

We use a weighted non-linear least squares (NLLS) algorithm to fit target distributions to PSP inventory data binned into 26 size classes of uniform width W.

The objective function value of the NLSQ problem minimizes the sum of squares of the residual terms

$$Z\left(f(x; \hat{\boldsymbol{P}})\right) = \min \sum_{i \in \{I | \hat{y}_i > 0\}} e\left(f(x_i; \boldsymbol{P}), \hat{y}_i\right)^2$$
(28)

with

$$e\left(f(x_i; \mathbf{P}), \hat{y}_i\right) = w_i \left[f(x_i; \mathbf{P}) - \hat{y}_i\right] \tag{29}$$

where x_i is the diameter corresponding to the center of bin $i \in I$, $f(x_i; \mathbf{P})$ is the value of the PDF of the target distribution at $x_i \in \mathbf{X}$ (given a vector of parameters \mathbf{P}). $\hat{y}_i \in \hat{\mathbf{Y}}$ represents the estimated stem density in bin i, which corresponds to the average of plot-wise stem density measurements.

Note that residual terms are scaled by a weight factor $w_i = 1 - \min(E_{\hat{y}_i} \hat{y}_i^{-1}, 1)$, which dampens the impact of \hat{y}_i on Z as a function of the relative margin of error $E_{\hat{y}_i} \hat{y}_i^{-1}$. We cap relative margin of error at 1 (negative values of w_i would have the effect of rewarding large residual value $f(x_i; \mathbf{P}) - \hat{y}_i$, which would make NLLS algorithm results unnecessarily difficult to interpret). Thus, w_i converges to 1 as relative margin of error approaches 0, and $w_i = 0$ if $E_{\hat{y}_i} \hat{y}_i^{-1} \geq 1$. Note that if sampling error is high enough for all bins (due to insufficient sample size), such that $w_i = 0, \forall i \in I$, the objective function value is 0 regardless of values of input data vector $\hat{\mathbf{Y}}$ and the NLLS optimisation problem becomes meaningless.

The margin of error corresponds to the product $t\sigma_{\hat{y}_i}$ of the critical t value (with $\alpha = 0.05$ and $|\hat{Y}| - 1$ degrees of freedom) and bin-wise sampling error

$$\sigma_{\hat{y}_i} = \sqrt{\frac{\sum_{j \in J} (y_{ij} - \hat{y}_i)^2}{|\hat{\boldsymbol{Y}}| - 1}}$$
(30)

where y_{ij} corresponds to the observed stem density in bin i in sample plot j (Schreuder et al., 2004).

We normalize our binned data, such that $\sum_{i\in I} W\hat{y}_i = 1$. The domain of input data is bounded, such that $a \leq x_1 - w/2$ and $x_{|I|} + w/2 \leq b$, where a > 0 and $b < \infty$. Our dataset intentionally includes only merchantable stems (i.e. a = 9), and contains very few stems of diameter greater than 61 cm (i.e. b = 61).

The integral of the standard forms of the PDFs described above over the interval $[0, \infty]$ is 1 for any given vector of input parameters P, that is

$$\int_{0}^{\infty} f(x; \mathbf{P}) dx = 1. \tag{31}$$

Fitting the standard forms of f to the normalized binned data will generally produce poor fits, as the sum of residuals will be positively biased (i.e. $\sum_{i \in I} e_i > 1$), with quality of fit inversely proportional to b-a. We can obtain a better fit using an augmented PDF $f'(x; \mathbf{P}') = sf(x; \mathbf{P})$. The global scaling parameter s effectively relaxes the unity constraint on the integral of f'. Thus, using f', we obtain similar quality fits for any scaling of bin value vector $\hat{\mathbf{Y}}$.

The variance $\sigma_{\hat{p}_j}^2$ of best-fit parameter estimator $\hat{p}_j \in \hat{\boldsymbol{P}}$ corresponds to element j of the diagonal of the covariance matrix. The covariance matrix, which is automatically calculated by most software implementations of the NLSQ algorithm, corresponds to the inverse of the negative of the expected values of the Hessian matrix $-E[H(\hat{\boldsymbol{P}})]$, where the Hessian $H(\hat{\boldsymbol{P}})$ is the matrix of second derivatives of the likelihood function with respect to $\hat{\boldsymbol{P}}$. Standard error $\sigma_{\hat{p}_j} = \sqrt{\sigma_{\hat{p}_j}^2}$ of parameter $\hat{p}_j \in \hat{\boldsymbol{P}}$ corresponds to the square root of the variance.

Note that variance estimates are only correct asymptotically. In practice, fitting algorithms will use numerical approximations of Hessian matrix values. Quality of finite approximations of the second derivatives of \mathcal{L} will tend to be

proportional to sample size $|\hat{Y}|$, inversely proportional to distance from parameter constraint boundaries, and inversely proportional to the number of parameters $|\hat{P}|$.

Parameter estimation error for augmented function $f'(x; \mathbf{P'})$ can be improved, without deteriorating fit quality, by solving the fitting problem in two stages. In the first stage, we determine $\hat{\mathbf{P'}}$ by solving for $Z(f'(x; \hat{\mathbf{P'}}))$. For the best-case scenario, where $f'(x; \mathbf{P'})$ is fitted to an infinitely large sample $\hat{\mathbf{Y}}$ randomly drawn from $f'(x; \hat{\mathbf{P'}})$, the estimated value of scaling parameter $\hat{s} \in \hat{\mathbf{P'}}$ will completely eliminate the bias in the sum of residuals $\sum_{i \in I} e(f(x_i; \hat{\mathbf{P}}), \hat{y}_i)$, such that $\int_a^b f(x; \bar{\mathbf{P'}}) dx = \sum_{i \in I} W \hat{y}_i$.

In the second stage, we solve for $Z(f''(x; \hat{\boldsymbol{P}}, \hat{s}))$, where f'' corresponds to our augmented distribution f' with the scaling parameter value fixed at $s = \hat{s}$ (i.e. only the original vector of parameters \boldsymbol{P} is optimized by the fitting algorithm).

The shape distributions from both stages are equivalent, such that

$$Z(f'(x; \hat{P}')) \simeq Z(f''(x; \hat{P}, \hat{s})). \tag{32}$$

However, error vector $\sigma_{\hat{P}}$ and parameter covariance (which can be estimated from off-diagonal elements of the covariance matrix) estimated in the second stage will tend to be more reliable.

Our computational experiment dataset consists of 52 192 stems extracted from a database of PSP data, collected from public forests in Quebec (Canada). This data was collected by the *Ministère de la forêt*, de la faune et des parcs (MFFP) as part of the official government inventory program¹, which operates on a 10-year cycle.

Data was collected throughout the province of Quebec, using 11.28 meter radius circular fixed-area plots. The full dataset contains 1 685 233 stems, sampled from 12 570 permanent sample plot locations. However, this includes repeated measures from four decennial inventory cycles, collected from 7 different PSP networks. We filtered data to include only stems from the most recent inventory cycle, which ensures that we are not tallying repeated measures on the same plots. We further filtered data to include only stems from the largest of the seven PSP networks (codename BAS1), which ensures uniform data-collection standards for all stems.

Our ultimate goal (i.e. beyond the scope of this paper) is to link a long-term wood supply optimization model with a short-term fibre-procurement optimization model. Thus, we are interested in modelling diameter distribution of merchantable stems in mature (operable), undisturbed stands. We therefore applied a series of other filters to our stem dataset to exclude plots in disturbed or immature stands, unmerchantable stems (with DBH less than 9cm), very large stems (with DBH greater than 61cm), and dead or otherwise unmerchantable stems.

¹Detailed information on the PSP inventory program under which our test data was collected is available from the MFFP web site (http://www.mffp.gouv.qc.ca/forets/inventaire/).

A Jupyter Notebook containing Python code implementing these filters and detailed explanations is available from the corresponding author upon request. Although we do not have permission to distribute the PSP dataset, it is possible to request a copy from the *Ministère des forêts*, de la faune et de parcs (see footnote for URL).

We segmented the 52 192 stems in our filtered PSP dataset into 30 sub-datasets, representing combinations of 10 species groups and 3 cover types. More detailed information on species groups is provided in an appendix. For each of 30 sub-datasets $d \in D$, we applied our two-stage fitting method on 25 target distributions $f \in F$ (i.e. GB1, GB2, and GG parent distributions, and the 22 special cases of these distributions defined in (6) through (27)).

We used the small-sample form of the Akaike information criterion (AICc) to evaluate goodness-of-fit for each combination of $d \in D$ and $f \in F$. AICc is given by

AICc =
$$AIC + \frac{2K(k+1)}{n-k-1}$$
 (33)

with

$$AIC = 2K - n \ln \left(\frac{\chi^2}{n}\right) \tag{34}$$

where $K = |\mathbf{P}| + 1$ (i.e. the cardinality of the parameter vector \mathbf{P} , plus the μ parameter of the implicit i.i.d. Gaussian error distribution of input data vector $\hat{\mathbf{Y}}$), $n = |\hat{\mathbf{Y}}|$, as recommended in Burnham and Anderson, 2002), and χ^2 is the sum of squared residuals given by

$$\chi_2 = \sum_{i \in I} e\left(f(x_i; \hat{\boldsymbol{P}}), \hat{y}_i\right)^2 \tag{35}$$

For each sub-dataset $d \in D$, we ranked distributions $f \in F$ in decreasing order of AICc, and reported best-fit distribution, best-fit parameter values (with standard error estimates on parameter values) for first and second stages, and second-stage AICc.

3 Results

Figures 1 and 2 show best-fit distributions plotted against empirical input data distribution, binned by diameter class. The name of the best-fit distribution is identified in the legend for each subplot.

Table 1 reports estimated parameter values, standard error on parameter estimates, and second-stage AICc for best-fit distributions.

4 Discussion

As predicted, second-stage parameter standard error estimates are systematically lower than first-stage error estimates. This is attributable to fixing of the s parameter in the second stage.

Table 1: Best-fit distributions for each combination of species group and cover type. We report estimated parameter values and standard error for first- and second-stage fits, and second-stage AIC.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Species Group	Cover Type	Dist. Name	Parameters (Stage 1)	Parameters (Stage 2)	AICc (Stage 2)
Fir-Spruce-Pine-Larch $\begin{pmatrix} H & W & a = 2.67\pm0.20 & a = 2.67\pm0.16 & -25 \\ \beta = 27.09\pm0.80 & \beta = 27.10\pm0.74 & 36 = 27.50\pm0.074 \\ \beta = 2.35\pm0.04 & \beta = 2.35\pm0.01 & -33 \\ p = 4.97\pm0.09 & p = 4.97\pm0.02 & a = 1.25\pm0.06 \\ \beta = 10.63\pm0.06 & a = 1.25\pm0.01 & -30 \\ \beta = 10.63\pm0.44 & \beta = 10.63\pm0.13 & -30 \\ \beta = 10.63\pm0.44 & \beta = 10.63\pm0.13 & -30 \\ \beta = 10.63\pm0.44 & \beta = 10.63\pm0.13 & -30 \\ \beta = 10.63\pm0.44 & \beta = 10.63\pm0.13 & -30 \\ \beta = 10.63\pm0.44 & \beta = 10.63\pm0.13 & -30 \\ \beta = 19.13\pm0.99 & \beta = 4.09\pm0.09 & -25 \\ \beta = 19.13\pm0.99 & \beta = 19.20\pm0.89 & -7 \\ \beta = 19.13\pm0.99 & \beta = 19.20\pm0.89 & -32 \\ \beta = 19.06\pm0.38 & \beta = 19.06\pm0.35 & -7 \\ \beta = 19.06\pm0.38 & \beta = 19.06\pm0.35 & -7 \\ \beta = 19.06\pm0.38 & \beta = 19.06\pm0.35 & -7 \\ \beta = 23.60\pm2.57 & \beta = 23.57\pm0.56 & -23 \\ \beta = 23.60\pm2.57 & \beta = 23.57\pm0.56 & -23 \\ \beta = 23.60\pm2.57 & \beta = 23.57\pm0.56 & -23 \\ \beta = 23.60\pm2.57 & \beta = 23.57\pm0.56 & -23 \\ \beta = 17.67\pm0.18 & \beta = 17.67\pm0.17 & -16 \\ \beta = 17.67\pm0.18 & \beta = 17.67\pm0.17 & -25\pm0.03 & -23 \\ \beta = 17.67\pm0.18 & \beta = 17.67\pm0.17 & -25\pm0.03 & -23 \\ \beta = 26.06\pm0.23 & \beta = 26.06\pm0.22 & -28 \\ \beta = 26.06\pm0.23 & \beta = 26.06\pm0.22 & -28 \\ \beta = 26.06\pm0.23 & \beta = 26.06\pm0.22 & -28 \\ \beta = 26.06\pm0.23 & \beta = 26.06\pm0.22 & -28 \\ \beta = 50.91\pm3.40 & \beta = 50.83\pm2.40 & -28 \\ \beta = 50.91\pm3.40 & \beta = 50.83\pm2.40 & -29 \\ \beta = 50.91\pm3.40 & \beta = 50.83\pm2.40 & -29 \\ \beta = 50.91\pm3.40 & \beta = 9.93\pm1.16 & -15 \\ Other Hardwoods & S & GA & \beta = 9.42\pm0.11 & \beta = 0.43\pm0.07 & -10 \\ \beta = 28.57\pm0.60 & \beta = 9.15\pm0.34 & -20 \\ M & EXP & \beta = 9.94\pm1.58 & \beta = 9.93\pm1.16 & -15 \\ Other Maples & S & \chi^2 & p = 5.95\pm0.21 & p = 5.95\pm0.18 & -14 \\ M & GA & \beta = 3.35\pm0.99 & \beta = 3.35\pm0.09 & -28 \\ p = 4.45\pm0.26 & p = 4.45\pm0.12 & p = 5.95\pm0.18 & -14 \\ M & GA & \beta = 3.35\pm0.99 & \beta = 3.35\pm0.09 & -28 \\ M & GA & \beta = 3.35\pm0.99 & \beta = 3.35\pm0.09 & -28 \\ M & GA & \beta = 3.35\pm0.91 & \beta = 3.55\pm0.90 & -28 \\ M & GA & \beta = 3.93\pm0.15 & p = 0.04\pm0.02 & -25 \\ M & GA & \beta = 3.92\pm0.15 & p = 0.04\pm0.02 & -25 \\ M & GA & \beta = $	Oak-Hickory	S	EXP	$\beta = 20.83 \pm 3.22$	$\beta = 15.00 \pm 2.62$	-62
Fir-Spruce-Pine-Larch S GA $\beta=27.09\pm0.80$ $\beta=27.10\pm0.74$ $\beta=2.35\pm0.01$ $\beta=4.97\pm0.02$ $\beta=10.63\pm0.13$ $\beta=10.63\pm0.13$ $\beta=10.63\pm0.13$ $\beta=10.63\pm0.13$ $\beta=10.63\pm0.13$ $\beta=10.63\pm0.13$ $\beta=4.09\pm0.99$ $\beta=4.09\pm0.09$ $\beta=2.24\pm0.04$ $\beta=2.24\pm0.04$ $\beta=2.24\pm0.07$ $\beta=2.42\pm0.07$ $\beta=2.42\pm0.04$ $\beta=1.91.3\pm0.99$ $\beta=1.92\pm0.089$ $\beta=19.20\pm0.89$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.35$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.35$ White Birch S EXP $\beta=6.24\pm0.39$ $\beta=6.23\pm0.17$ $\beta=2.35\pm0.06$ $\beta=2.35\pm0.$		\mathbf{M}	EXP	$\beta = 40.80 \pm 15.09$	$\beta = 36.27 \pm 6.54$	-178
Fir-Spruce-Pine-Larch S GA $\beta=2.35\pm0.04$ $\beta=2.35\pm0.01$ -33 p = 4.97 ± 0.09 p = 4.97 ± 0.02 A $\beta=1.25\pm0.01$ -30 p = 4.97 ± 0.02 A $\beta=1.25\pm0.01$ -30 $\beta=10.63\pm0.44$ $\beta=10.63\pm0.13$ B = 10.63 ± 0.13 B = 10.63 ± 0.27 p = 2.42 ± 0.04 Sugar Maple S EXP $\beta=6.34\pm1.44$ $\beta=5.20\pm0.35$ -7 $\beta=19.13\pm0.99$ $\beta=19.20\pm0.89$ H W $\alpha=1.33\pm0.99$ $\beta=19.20\pm0.89$ B = 19.13 ± 0.99 $\beta=19.20\pm0.89$ B = 19.06 ± 0.38 $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.38$ $\beta=19.06\pm0.39$ M GG $\alpha=2.78\pm0.57$ $\alpha=2.77\pm0.22$ -28 $\beta=23.60\pm2.57$ $\beta=23.57\pm0.56$ p = 0.25 ± 0.14 p = 0.25 ± 0.03		H	W	$a = 2.67 \pm 0.20$	$a = 2.67 \pm 0.16$	-250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\beta = 27.09 \pm 0.80$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fir-Spruce-Pine-Larch	\mathbf{S}	GA	$\beta = 2.35 \pm 0.04$	$\beta = 2.35 \pm 0.01$	-336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$p = 4.97 \pm 0.09$	$p = 4.97 \pm 0.02$	
Sugar Maple S EXP $\beta = 4.09\pm0.32$ $\beta = 4.09\pm0.09$ -25 $p = 2.42\pm0.04$ $p = 2.42\pm0.04$ $p = 2.42\pm0.04$ $p = 2.42\pm0.04$ $p = 2.42\pm0.035$ -7 $p = 1.9.13\pm0.99$ $p = 19.20\pm0.89$ $p = 19.13\pm0.99$ $p = 19.20\pm0.89$ $p = 19.06\pm0.38$ $p = 19.06\pm0.38$ $p = 19.06\pm0.35$ $p = 19.06\pm0.38$ $p = 19.06\pm0.35$ $p = 19.06\pm0.38$ $p = 19.06\pm0.35$ $p = 23.60\pm2.57$ $p = 2.35\pm0.17$ $p = 2.25\pm0.17$ $p = 2.25\pm0.18$ p		M	W	$a = 1.25 \pm 0.06$	$a = 1.25 \pm 0.01$	-302
Sugar Maple S EXP $\beta=6.34\pm1.44$ $\beta=5.20\pm0.35$ -7 P = 2.42±0.04 Sugar Maple S EXP $\beta=6.34\pm1.44$ $\beta=5.20\pm0.35$ -7 P = 2.42±0.06 S = 19.13±0.99 $\beta=19.20\pm0.89$ H W $\alpha=1.33\pm0.99$ $\beta=19.20\pm0.89$ H W $\alpha=1.42\pm0.06$ $\alpha=1.42\pm0.02$ $\beta=19.06\pm0.35$ White Birch S EXP $\beta=6.24\pm0.39$ $\beta=6.23\pm0.17$ -16 M GG $\alpha=2.78\pm0.57$ $\alpha=2.77\pm0.22$ -28 $\beta=23.60\pm2.57$ $\beta=23.57\pm0.56$ $\beta=0.25\pm0.04$ $\beta=0.25\pm0.03$ H W $\alpha=2.55\pm0.08$ $\alpha=2.55\pm0.08$ $\alpha=2.55\pm0.05$ $\beta=17.67\pm0.18$ $\beta=17.67\pm0.17$ P = 4.55±0.79 M W $\alpha=2.76\pm0.07$ $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ -32 $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ -31 $\alpha=2.76\pm0.05$ -32 $\alpha=2.76\pm0.05$ -33 $\alpha=2.76\pm0.05$ -34 $\alpha=2.76\pm0.05$ -35 $\alpha=2.76\pm0.05$ -36 $\alpha=2.76\pm0.05$ -37 $\alpha=2.76\pm0.05$ -38 $\alpha=2.76\pm0.05$ -39 $\alpha=2.76\pm0.05$				$\beta = 10.63 \pm 0.44$	$\beta = 10.63 \pm 0.13$	
Sugar Maple S EXP $\beta = 6.34\pm 1.44$ $\beta = 5.20\pm 0.35$ -7 M W $a = 1.33\pm 0.14$ $a = 1.35\pm 0.06$ -27 $\beta = 19.13\pm 0.99$ $\beta = 19.20\pm 0.89$ H W $a = 1.42\pm 0.06$ $a = 1.42\pm 0.02$ -32 $\beta = 19.06\pm 0.38$ $\beta = 19.06\pm 0.35$ White Birch S EXP $\beta = 6.24\pm 0.39$ $\beta = 6.23\pm 0.17$ -16 M GG $a = 2.78\pm 0.57$ $a = 2.77\pm 0.22$ -28 $\beta = 23.60\pm 2.57$ $\beta = 23.57\pm 0.56$ $p = 0.25\pm 0.14$ $p = 0.25\pm 0.03$ $\beta = 17.67\pm 0.18$ $\beta = 17.67\pm 0.17$ Poplar S GA $\beta = 4.85\pm 1.41$ $\beta = 4.73\pm 0.85$ -17 $\beta = 26.06\pm 0.23$ $\beta = 26.06\pm 0.22$ H W $\alpha = 2.56\pm 0.07$ $\alpha = 2.76\pm 0.05$ -31 $\beta = 26.06\pm 0.23$ $\beta = 26.06\pm 0.22$ H W $\alpha = 3.03\pm 0.15$ $\beta = 28.77\pm 0.48$ Pine S GG $\alpha = 5.17\pm 2.62$ $\alpha = 5.15\pm 2.39$ -27 $\beta = 50.91\pm 3.40$ $\beta = 50.83\pm 2.40$ $\beta = 50.91\pm 3.40$ $\beta = 50.83\pm 2.40$ $\beta = 0.20\pm 0.12$ $\beta = 9.94\pm 1.58$ $\beta = 9.93\pm 1.16$ -15 Other Hardwoods S GA $\beta = 0.42\pm 0.11$ $\beta = 0.43\pm 0.07$ -10 $\beta = 28.54\pm 7.58$ $\beta = 9.91\pm 0.34$ $\beta = 0.43\pm 0.07$ -10 $\beta = 28.54\pm 7.58$ $\beta = 9.91\pm 0.34$ $\beta = 0.43\pm 0.07$ -10 $\beta = 28.54\pm 7.58$ $\beta = 9.91\pm 0.34$ $\beta = 0.43\pm 0.07$ -10 $\beta = 28.54\pm 7.58$ $\beta = 9.91\pm 0.34$ -20 $\beta = 3.35\pm 0.19$ $\beta = 3.18\pm 0.33$ $\beta = 3.35\pm 0.09$		H	GA	$\beta = 4.09 \pm 0.32$	$\beta = 4.09 \pm 0.09$	-253
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$p = 2.42 \pm 0.27$	$p = 2.42 \pm 0.04$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sugar Maple	\mathbf{S}	EXP	$\beta = 6.34 \pm 1.44$	$\beta = 5.20 \pm 0.35$	-79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\mathbf{M}	W	$a = 1.33 \pm 0.14$	$a = 1.35 \pm 0.06$	-274
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	$\beta = 19.20 \pm 0.89$	
White Birch S EXP $\beta = 6.24 \pm 0.39$ $\beta = 6.23 \pm 0.17$ -16 M GG a = 2.78 \pm 0.57 a = 2.77 \pm 0.22 -28 \\ \textit{\begin{subarray}{c ccccccccccccccccccccccccccccccccccc		Н	W			-328
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	White Birch			,	,	-163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	GG			-289
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	
Poplar S GA $\beta = 4.85\pm 1.41$ $\beta = 4.73\pm 0.85$ -17 $p = 4.46\pm 1.17$ $p = 4.55\pm 0.79$ M W $a = 2.76\pm 0.07$ $a = 2.76\pm 0.05$ -31 $\beta = 26.06\pm 0.23$ $\beta = 26.06\pm 0.22$ H W $a = 3.03\pm 0.15$ $a = 3.03\pm 0.12$ -28 $\beta = 28.77\pm 0.50$ $\beta = 28.77\pm 0.50$ $\beta = 28.77\pm 0.48$ Pine S GG $a = 5.17\pm 2.62$ $a = 5.15\pm 2.39$ -27 $\beta = 50.91\pm 3.40$ $\beta = 50.83\pm 2.40$ $p = 0.20\pm 0.14$ $p = 0.20\pm 0.12$ M EXP $\beta = 49.73\pm 12.38$ $\beta = 46.81\pm 5.81$ -26 H EXP $\beta = 9.94\pm 1.58$ $\beta = 9.93\pm 1.16$ -15 Other Hardwoods S GA $\beta = 0.42\pm 0.11$ $\beta = 0.43\pm 0.07$ -10 $\beta = 28.54\pm 7.58$ $\beta = 28.08\pm 4.80$ H EXP $\beta = 9.15\pm 0.49$ $\beta = 9.15\pm 0.34$ -20 Other Maples S χ^2 $\beta = 5.95\pm 0.21$ $\beta = 5.95\pm 0.18$ -14 M GA $\beta = 3.35\pm 0.19$ $\beta = 3.35\pm 0.09$ -28 $\beta = 3.18\pm 0.33$ $\beta = 3.18\pm 0.13$ Yellow Birch S EXP $\beta = 20.20\pm 2.75$ $\beta = 20.04\pm 2.61$ -22 M B1 $\beta = 0.33\pm 0.13$ $\beta = 0.43\pm 0.13$		Н	W			-238
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~	~ .	,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Poplar	\mathbf{S}	GA	,		-170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	W			-311
Pine $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		**	***			20-
Pine S GG $a = 5.17 \pm 2.62$ $a = 5.15 \pm 2.39$ -27 $\beta = 50.91 \pm 3.40$ $\beta = 50.83 \pm 2.40$ $p = 0.20 \pm 0.14$ $p = 0.20 \pm 0.12$ M EXP $\beta = 49.73 \pm 12.38$ $\beta = 46.81 \pm 5.81$ -26 H EXP $\beta = 9.94 \pm 1.58$ $\beta = 9.93 \pm 1.16$ -15 Other Hardwoods S GA $\beta = 0.42 \pm 0.11$ $\beta = 0.43 \pm 0.07$ -10 $p = 28.54 \pm 7.58$ $p = 28.08 \pm 4.80$ M EXP $\beta = 9.15 \pm 0.49$ $\beta = 9.15 \pm 0.34$ -20 H EXP $\beta = 9.38 \pm 0.67$ $\beta = 9.41 \pm 0.48$ -25 Other Maples S χ^2 $p = 5.95 \pm 0.21$ $p = 5.95 \pm 0.18$ -14 M GA $\beta = 3.35 \pm 0.19$ $\beta = 3.35 \pm 0.09$ -28 $\beta = 4.91 \pm 0.48$ $\beta = 4.90 \pm 0.20$ -25 $\beta = 20.04 \pm 2.61$ -22 M B1 $\beta = 20.20 \pm 2.75$ $\beta = 20.04 \pm 2.61$ -30 P = 0.39 ± 0.15 P = 0.40 ± 0.02 P = 0.39 ± 0.15 P = 0.40 ± 0.02 P = 0.39 ± 0.15 P = 0.40 ± 0.02 Eastern White Cedar S W $\alpha = 1.70 \pm 0.07$ $\alpha = 1.70 \pm 0.04$ -31 $\beta = 20.42 \pm 0.36$		H	W			-285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D:	a	aa			0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pine	S	GG			-277
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	EVD	•	-	004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O+1 II1 1-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Other nardwoods	S	GA	,	'	-101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		м	EVD	•	-	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Other Maples					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Other Maples			•	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11/1	GA	,		-200
Yellow Birch $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		н	GA	-	•	-258
Yellow Birch S EXP $\beta=20.20\pm2.75$ $\beta=20.04\pm2.61$ -22 M B1 b = 60.60 ± 3.82 b = 60.62 ± 3.41 -30 p = 0.39 ± 0.15 p = 0.40 ± 0.02 q = 1.73 ± 0.30 q = 1.74 ± 0.16 H EXP $\beta=16.60\pm1.34$ $\beta=16.60\pm1.31$ -26 Eastern White Cedar S W a = 1.70 ± 0.07 a = 1.70 ± 0.04 -31 $\beta=20.42\pm0.36$		11	GH			-200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vellow Birch	S	EXP	•	•	-993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tenew Bren				,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111	Di			500
Eastern White Cedar S W $\hat{\beta} = 16.60 \pm 1.34$ $\hat{\beta} = 16.60 \pm 1.31$ -26 $\hat{\beta} = 16.60 \pm 1.31$ -27 $\hat{\beta} = 1.70 \pm 0.07$ $\hat{\beta} = 1.70 \pm 0.04$ -31 $\hat{\beta} = 20.42 \pm 0.36$				•	-	
Eastern White Cedar S W $a = 1.70 \pm 0.07$ $a = 1.70 \pm 0.04$ -31 $\beta = 20.42 \pm 0.36$		Н	EXP		-	-269
$\beta = 20.42 \pm 0.37$ $\beta = 20.42 \pm 0.36$	Eastern White Cedar					-317
· · · · · · · · · · · · · · · · · · ·		~				011
M GG $a = 2.87 \pm 0.94$ $a = 2.83 \pm 0.45$ -30		M	GG	$a = 2.87 \pm 0.94$	$a = 2.83 \pm 0.45$	-307
$\beta = 37.52 \pm 4.50$ $\beta = 37.34 \pm 1.28$			- 400			
$p = 0.16 \pm 0.13$ $p = 0.17 \pm 0.03$						
		H	EXP	-	-	-182

Four distributions (GG, GA, W, EXP) dominate our best-fit model selection experiment, taking first place for 28 out of 30 combinations of species group and cover type. The χ^2 and B1 distributions had the lowest AICc value for the other two cases.

This confirms previous results in the forestry literature reporting success using GG, GA, W, and EXP distributions to model stem diameter distribution from stem tally data. If analytic resources are highly constrained, we recommend limiting the list of candidate distributions these four. Note that in most cases many of the other 21 distributions were rejected altogether, either because the NLLS algorithm did not converge, or because fitting results were deems unstable (due to extremely high parameter values, or extremely high or otherwise unreliable parameter error estimates). GA, W, and EXP distributions are all derivatives of the GG distribution, with one or more of its three parameters fixed to a value of 1. It is not surprising that the GG distribution generally had slightly better fit (i.e. lower χ^2), however results show that AICc recommends selecting a more parsimonious model in most (but not all) cases.

Overall, fit results are very good, as indicated by relatively low second-stage parameter standard error estimates. This observation can be confirmed by visual inspection of fit results in Figures 1 and 2. Relatively small sample sizes in some combinations of species group and cover type yielded binned datasets with more erratic values (including empty bins, which were excluded from NLLS algorithm input data before fitting). Naturally, best-fit parameter standard error and AIC values are higher for these datasets.

Our input dataset includes a large number of stems, inventoried throughout the province of Quebec. Our best-fit distribution results could be used to forecast diameter distribution for mature stands in Quebec, or in other locations with similar forests. For researchers looking for more customized fits, our two-stage methodology can easily be replicated on publicly-available inventory data.

5 Acknowledgements

This study was supported by funding from the FORAC Research Consortium.

References

Bailey, R. L. and Dell, T. (1973). Quantifying diameter distributions with the weibull function. *Forest Science*, 19(2):97–104.

Burnham, K. and Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag New York.

Cao, Q. V. (2004). Predicting parameters of a weibull function for modeling diameter distribution. *Forest science*, 50(5):682–685.

- Coomes, D. A. and Allen, R. B. (2007). Mortality and tree-size distributions in natural mixed-age forests. *Journal of Ecology*, 95(1):27–40.
- Ducey, M. J. and Gove, J. H. (2015). Size-biased distributions in the generalized beta distribution family, with applications to forestry. *Forestry*, 88(1):143–151.
- Hyink, D. M. and Moser, J. W. (1983). A generalized framework for projecting forest yield and structure using diameter distributions. *Forest Science*, 29(1):85–95.
- Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. *Biometrika*, 36(1/2):149–176.
- Liu, C., Zhang, L., Davis, C. J., Solomon, D. S., and Gove, J. H. (2002). A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. *Forest Science*, 48(4):653–661.
- Meyer, H. A. and Stevenson, D. D. (1943). The structure and growth of virgin beech-birch-maple-hemlock forests in northern pennsylvania. *J. Agric. Res*, 67(2).
- Nelson, T. C. (1964). Diameter distribution and growth of loblolly pine. *Forest Science*, 10(1):105–114.
- Schreuder, H. T., Ernst, R., and Ramirez-Maldonado, H. (2004). Statistical techniques for sampling and monitoring natural resources. Technical Report RMRS-GTR-126, USDA Forest Service, Rocky Mountain Research Station.

Appendix

Table 2 lists common and Latin names of species in the species groups used to segment our PSP data.

Table 2: Mapping of species group names to species common and Latin names. Alternate names are shown in parentheses.

Species Group	Common Name	Latin Name	
Other Hardwoods	(white, American) ash	Fraxinus americana	
	black ash	Fraxinus nigra	
	(green, red) ash	Fraxinus pennsylvanica	
	(North) American beech	Fagus grandifolia	
	(American, white, water) elm	Ulmus americana	
	slippery elm	Ulmus rubra	
	(rock, cork) elm	Ulmus thomasii	
	American hophornbeam	Ostrya virginiana	
	American linden (basswood)	Tilia americana	
White Birch	· · · · · · · · · · · · · · · · · · ·		
white pirch	grey birch	Betula populifolia	
77.11 D. 1	(white, paper) birch	Beutul papyrifera	
Yellow Birch	yellow birch	Betala alleghaniensis	
Oak-Hickory	(bitternut, swamp) hickory	Carya cordiformis	
	shagbark hickory	$Carya\ ovata$	
	([wild, mountain] black, rum) cherry	$Prunus\ serotina$	
	white oak	$Quercus\ alba$	
	swamp white oak	$Quercus\ bicolor$	
	bur oak	$Quercus\ macrocarpa$	
	(northern, eastern) red oak	Quercus rubra	
	(butternut, white walnut)	Juglans cinerea	
Spruce-Pine-Fir	white spruce	Picea glauca	
	black spruce	Picea mariana	
	Norway spruce	Picea abies	
	red spruce	Picea rubens	
	hybrid larch	Larix X marschlinsii	
	Japanese larch	Larix leptolepis	
	([eastern, American] larch, tamarack)	Larix larincina	
	European larch	Larix decidua	
	pitch pine	$Pinus\ rigida$	
	([eastern, black] jack, grey, scrub) pine	$Pinus\ banksiana$	
	Scots pine	$Pinus\ sylvestris$	
	balsam fir	$Abies\ balsamea$	
Other Maples	(silver, silverleaf) maple	$Acer\ saccharinum$	
	black maple	$Acer \ nigrum$	
	red maple	$Acer \ rubrum$	
Sugar Maple	(sugar, rock) maple	$Acer\ saccharum$	
Poplar	balsam poplar	Populus balamifera	
Торки	eastern cottonwood (poplar)	Populus deltoides	
	(large-tooth, big-tooth) aspen	Populus grandidentata	
	hybrid poplar	Populus sp X P . sp.	
Dimo	([quaking, trembling] [aspen, poplar]	Populus tremuloides	
Pine	white pine	Pinus strobus	
	red pine	Pinus resinosa	
Hemlock-Cedar	(eastern, Canadian) hemlock	Tsuga canadensis	
	(eastern, northern) white-cedar	$Thuja\ occidentalis$	

Figure 1: Best-fit distributions are shown with a solid line. Empirical distributions (binned by 2-cm diameter class) are shown with gray circles. Bin-wise sampling error is shown with light gray error bars. Species group is fixed for a given row of subfigures, and cover type is fixed for a given column of subfigures.

Figure 2: (Continued from Figure 1) Best-fit distributions are shown with a solid line. Empirical distributions (binned by 2-cm diameter class) are shown with gray circles. Bin-wise sampling error is shown with light gray error bars. Species group is fixed for a given row of subfigures, and cover type is fixed for a given column of subfigures.