Chenxi Liao

Bethesda, MD 20814 | cl6070a@american.edu | (202)415-8261 | https://github.com/cl3789

Research interest: Visual perception and cognition, Visual psychophysics, Computational models of perception, Human-machine alignment, Learning and neural plasticity

Education

Ph.D Neuroscience, American University, Washington, DC • Advisor: Prof. Bei Xiao, Department of Computer Science	Expected Dec 2025
M.S. Neuroscience, American University, Washington, DC	2020 - 2023
M.S. Industrial Engineering, Columbia University, New York, NYB.S. Mechanical Engineering, George Washington University, Washington, DC	2018 – 2020 2014 – 2018

Selected Research Experience

Visual adaptation of material appearances, Bei Xiao Lab

2024 - Present

- Designed psychophysical experiments to investigate the adaptation aftereffect of complex stimuli.
- Applied Bayesian multilevel modeling to analyze adaptation effect.

Material Categorization, Bei Xiao Lab

2023 - Present

- Investigated the interplay between material categorization, property estimation, and visual discrimination.
- Developed self-supervised deep learning models to quantify and compare category representations between humans and artificial systems.

Probing the vision-language connection in material perception, Bei Xiao Lab

2023 - 2024

- Developed a deep-learning-based image morphing pipeline for generating controlled visual stimuli.
- Implemented Representational Similarity Analysis and unsupervised alignment to characterize individual differences in how visual and semantic representations align.

Unsupervised learning of translucency perception, Bei Xiao Lab

2021 - 2023

- Curated and processed image datasets tailored for training machine learning models of translucency perception.
- Developed an unsupervised deep generative model that predicts human translucency judgments, revealing latent visual features aligned with perceptual dimensions.

Probing the effect of color on translucency perception, Bei Xiao Lab

2020 - 2021

- Designed and deployed online experiments for crowdsourcing human behavioral data over Pavlovia.
- Used image statistics to quantify visual features underlying perceptual judgments.

Fellowships & Awards

Center for Neuroscience and Behavior Summer Research Award, American University	2024
Center for Neuroscience and Behavior Travel Award, American University	2022
College of Arts and Sciences Graduate Student Research Award, American University	2021
Summer School	
Visual Neuroscience From Spikes to Awareness, Hesse, Germany	2024

Publications

Xiao, B & Liao, C. (2025). Understanding vision in the physical world through material perception. Nature Reviews Psychology (Conditionally Accepted).

Liao, C., Sawayama, M., & Xiao, B. (2024). Probing the link between vision and language in material perception using psychophysics and unsupervised learning. PLOS Computational Biology, 20(10), e1012481.

Reinisch, M., He, J., **Liao, C.**, Siddiqui, S., & Xiao, B. (2024). CTP-LLM: Clinical trial phase transition prediction using large language models. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3667-3672). IEEE.

Liao, C., Sawayama, M., & Xiao, B. (2023). Unsupervised learning reveals interpretable latent representations for

translucency perception. PLOS Computational Biology, 19(2), e1010878. (Issue cover story)

Liao, C., Sawayama, M., & Xiao, B. (2022). Crystal or jelly? Effect of color on the perception of translucent materials with photographs of real-world objects. Journal of Vision, 22(2), 6-6.

Conference Proceedings

Liao, C., Sawayama, M., & Xiao, B. (2024). Probing the link between vision and language in material perception. Cognitive Computational Neuroscience Conference. Boston, MA.

Liao, C., Sawayama, M., & Xiao, B. (2022). Translucency perception emerges in deep generative representations for natural image synthesis. Cognitive Computational Neuroscience Conference. San Francisco, CA.

Abstracts

Liao, C., Cheeseman, J., Schmidt, F., Fleming, R. W., & Xiao, B. (2025). Visual adaptation of complex material appearances. Vision Sciences Society. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., Cheeseman, J., Schmidt, F., Fleming, R. W., & Xiao, B. (2024). Probing the relationship between material categorization and material property estimation using ambiguous visual stimuli. Vision Sciences Society. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2023). Probing the link between vision and language in material perception using machine learning and psychophysics. **Poster**. Society for Neuroscience Annual Meeting, Washington, DC.

Liao, C., Sawayama, M., & Xiao, B. (2023). Shared representation of different material categories: transfer learning from crystals to soaps. Vision Sciences Society. **Talk**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2022). A perceptual evaluation of the StyleGAN2-ADA generated translucent objects. Vision Sciences Society. **Talk**. St. Pete's Beach, FL.

Sawayama, M., Liao, C., Nishida, S. Y., & Xiao, B. (2022). Replaceability of two deep generative models trained with a pair of translucent objects with different geometries. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2021). Individual differences in the classification of translucent materials using photos of real-world objects. **Poster**. Virtual Meeting.

Teaching

Teaching Assistant, Computer Vision	2024
Teaching Assistant, Cognition and Perception	2023-2024
Teaching Assistant, Introduction to Deep Learning, Applied Natural Language Processing,	2021-2023
Introduction to Programming.	

Technical Skills

Languages: Python, TensorFlow, PyTorch, Git, R, Matlab, SQL, JavaScript, P5.JS

Deep learning Convolutional Neural Network, Recurrent Neural Network, Generative Adversarial Network, Self-supervised Learning Models, Transfer Learning, Large Language Models, Vision-language Models, Stable Diffusion

Statistical modeling: Generalized Linear Model, Bayesian Multilevel Models