

CIRCULAR COORDINATES

Why

We identified points in \mathbb{R}^2 with elements of the plane in a natural way.¹

Definition

Let $(x,y) \in \mathbb{R}^2$. Then $(r,\theta) \in \mathbb{R}^2$ is the polar form or circular form of (x,y) if

$$x = r\cos\theta$$
 and $y = r\sin\theta$.

In this case we call r and θ the circular coordinates or polar coordinates.

Since sin and cos polar coordinates are not unique.

Non-uniqueness

A difficulty with polar coordinates is that there are many elements of \mathbb{R}^2 that correspond to the same point in the plane. For example, consider the points

$$(5, \pi/3), (5, -5\pi/3), (-5, 4\pi/3), (-5, -2\pi/3).$$

Each of these specifies the same point in \mathbb{R}^2 .

¹Future editions will expand on this in the genetic approach, and likely reference celestial motion.

