Sorting

TABLE OF CONTENTS

Hello Everyone

- 1. Understand sorting
- 2. Few problems on sorting
- 3. 2 sorting algorithms
 - 3.1 Selection Sort
 - 3.2 Insertion Sort

Sorting: Arrangement of deuta in particular

order with respect to specific parameter

Why	Sorting.
	1) Organizing
	2) Amalyzing 3) Searching
	3) Scarching

Question (Elements Removal)

Given N elements, at every step remove an array element.

Cost to remove an element = Sum of array of elements present in an array

Find minimum cost to remove all elements.

NOTE: First add the cost of removal and then remove it.

0 2 arr - [2 1 4]	index to remove	Cost	Critay
	0	2+1+4=7	طلا, ۱, 4
	•	144 = 5	مر المراتول
	2	4 = 4	ر مر الركول

in) cr to remove Cost creay
$$2 = 2+1+4=7 \quad \{2\}$$

$$0 = 2+1=3 \quad \{1\}$$

$$1 = 1 \quad \{4\}$$

Sun 2:
$$A = \{4, 6, 1\}$$

inla to remove	cust	Array
	47 8 +1 = 1)	24 14
0	4+1=5	414
2	=	X
	= 17	

$$\frac{90123!}{9 = 43}$$

indea to remove	Cost	Array
	3+5+1-3=6	131-3
0	3+1-3 = 1	41 -3>
2	1 -3 = -2	2-35
3	-3=-3	X
	= 2	
Observation:	Remove la	7501
Tab C	3	

b + c + J
C +1
+1
3

(03t) Q+2b+3C+4J
(03t) Q > b>C>J

Time Conglealty, for sorting Using inbuilt fun. O(ntogn)

Space complexity O(n)[O(1)]

```
Il sort array în desunding orter.
    Cost = 0
   for (i = 0; i2 N; i++)
        Cost = (ost + BTi] * (it 1)
    return cost;
   74,6,2) descensing.
indea
          (D)t
          =0+6*(0+1)=6
         = 6 + 4 米 (1+1) = 14
         = 14+ 2* (2+1)= 20
```


Question (Noble Integers) { Distinct data }

Given N array elements, calculate number of noble integers.

An element ele in arr [] is said to be noble if { count of smaller elements = ele itself }

sc: 0(1)

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ A = \begin{bmatrix} 2 & 3 & 8 & 2 & -1 & 5 & -3 \end{bmatrix}$$
After -3 -1 2 3 5 8

Sorby

$$TC = O(N \log N + N) = O(N \log N)$$

$$SC = O(N) (O(1)$$


```
Question (Noble Integers): { Data can repeat }
```

```
arr - [-10, 1, 1, 3, 100] Ans = 3
```

$$arr - [-10, 1, 1, 2, 4, 4, 4, 8, 10]$$

#ev((A[i) > 0) 3 4 4 4 7 8

</>
</>
Code

If
$$(i==0 | | A[i]] != A[i-1])$$

Cut = i;

If $(cut == A[i])$

i	(เวล	1F Cond	(nt	ans
D	-10	True	0	D
	•	True)	1
2	1	False	1	2
3	3.	True	3	3
4	10	Truc	4	3

$$TC: O(nlogn+n) = O(nlogn)$$
 $SC: O(n)(0(1)$

Selection Sort

idea: Select the minimum element and send that elements to correct position by swapping.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ A = \begin{bmatrix} 2 & 3 & 2 & -1 & 5 & -3 \end{bmatrix}$$

Find
$$2^{h_1}$$
 max ele in ATJ \rightarrow $Tc=O(2N)=O(N)$
Sc = O(1)

Find
$$3^{rd}$$
 max ele in ATJ \rightarrow $Tc=O(3m)=O(n)$
Sc = O(1)

- •
- •

find
$$K^{H}$$
 largest ele in ALJ \rightarrow $T_{C}=O(K*N)$

$$SC=O(K)$$

$$>O(2)$$

</>
</>
Code

for
$$(i=N-1;i>=1;i--)$$

 $d = N=0$ | index of max. element.

Insertion Sort (Arrangement of playing cards)

$$(i+)$$
 $(i+)$ $(i+)$

भाषान का पा

</>
</>
Code

```
tor all the input (2)
    index= w-1;
     Uhile (insex >=0)
          If (Atinber) > x)
              P[+1] = A[]; Shift nint-
          cise
                      11 currond ele is
smaller or equal
                           to insa cte,
        Alindati] = 1;
        カナナン
```


$$inlex = 1$$
 $int = 1$ in

