1a) $5n^3 + 2n^2 + 3n \le 5n^3 + 2n^2 + 3n^2$ for $n \ge 1$ $5n^3 + 2n^2 + 3n^2 = 5n^3 + 5n^2$ $5n^3 + 5n^2 \le 5n^5 + 5n^3$ for $n \ge 1$ $5n^3 + 5n^3 = 10n^3$

5n3+2n2+3n =10n3 for nz1

Thus, we have found a c and no where $cn^3 \ge 5n^3 + 2n^2 + 3n$ for all $n \ge n_0$

16) $\sqrt{7n^2 + 2n} - 8 \leq \sqrt{7n^2 + 2n}$ $\sqrt{7n^2 + 2n} \leq \sqrt{7n^2 + 2n^2}$ for $n \geq 1$ $\sqrt{7n^2 + 2n^2} = 3n$

√7n2+2n-8 ≤3n for n≥1

 $\sqrt{7n^2 + 2n - 8} \ge \sqrt{7n^2 + 2n - 8n} \quad \text{for } n \ge 1$ $\sqrt{7n^2 + 2n - 8n} = \sqrt{7n^2 - 6n}$ $\sqrt{7n^2 - 6n} \ge \sqrt{7n^2 - 6n^2} \quad \text{for } n \ge 1$ $\sqrt{7n^2 - 6n^2} = n$

 $\sqrt{7n^2 + 2n - 8} \ge n \quad \text{for } n \ge 1$

Allo

Thus, $\sqrt{7}n^2+2n-8$ is both O(n) and Q(n), making it O(n)

Scanned with CamScanner

d(n) = 0 (fcn) and e(n) = 0 (qcn))

We can rewrite as

 $d(n) \leq C_1(f(n))$ and $e(n) \leq C_2(g(n))$

for all n > Nos

for all N = Noz

Since we know all 4 terms are nonnegative, we can do

d(n) · e(n) = c1 · f(n) · c2 · g(n) for all n = max (noz, noz)

rewriting, we get

dinsein) = (c, · c2) fins q(n) for all n = max (No1, No2)

Since C, and C2 are just arbitrary constants, we can rephrase as

denseen) = c (finsgens) for n > no

where C=C1.C2 and No = Max (No1, No2)

Thus, we have found a valid C and no, to satisfy the definition of big-O. Therefore ...

densech) = O(fens gens)

2) example 1: O(n2) example 2:0(n) example 3: O (log(n)) example 4:0(n) Justification for example 4: n operations n12 operations logn iterations 2 operations 1 operation n+ + + ... 2+1 & 2n, which is O(n), not O(n logn) Justification for example 3: log_ (n2) = 2. log_(n), which is just O (log(n)) Justification for example 2: only one loop, whose body iterates in constant time, n times Justification for example 1: 1+2+3+4 ... (N-2)+(n-1)+n is + (n2)

Scanned with CamScanner