This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPIO)

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classificati n internationale des brevets 6: C07K 14/16, C12N 7/00

(11) Numéro de publication internationale:

WO 98/45323

A1

(43) Date de publication internati nale: 15 octobre 1998 (15.10.98)

PCT/FR98/00691 (21) Numéro de la demande internationale:

(22) Date de dépôt international:

6 avril 1998 (06.04.98)

(30) Données relatives à la priorité:

97/04356 98/02212

9 avril 1997 (09.04.97)

FR 24 février 1998 (24.02.98) FR

(71) Déposant (pour tous les Etats désignés sauf US): PASTEUR SANOFI DIAGNOSTICS [FR/FR]; 3, boulevard Raymond Poincaré, F-92430 Marnes la Coquette (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): CHENEBAUX, Denis, Marie, Bernard [FR/FR]; 34, boulevard de Glatigny, F-78000 Versailles (FR). DELAGNEAU, Jean-François, Hubert [FR/FR]; 60, avenue des Gressets, F-78170 La Celle Saint Cloud (FR). GADELLE, Stéphane, Jean, Xavier [FR/FR]; Chemin de la Pature, F-91570 Bièvres (FR). RIE-UNIER, François, Yves [FR/FR]; 6, chemin des Graviers, F-78330 Fontenay le Fleury (FR).
- (74) Mandataire: LE GUEN, Gérard; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR).

(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

- (54) Title: SYNTHETIC PEPTIDES USEFUL IN BIOLOGICAL ASSAYS FOR DETECTING INFECTIONS CAUSED BY GROUP O HIV-1 VIRUSES
- (54) Titre: PEPTIDES SYNTHETIQUES UTILISABLES DANS LES ESSAIS BIOLOGIQUES POUR LA DETECTION DES INFEC-TIONS DUES AUX VIRUS VIH-1 DU GROUPE O

(57) Abstract

The invention concerns peptides used in biological assays for detecting infections caused by group O HIV-1 viruses, the method for preparing them, compositions and kits containing such peptides and the biological assays using such peptides.

(57) Abrégé

L'invention concerne des peptides synthétiques trouvant leur application dans les essais biologiques de détection des infections dues aux virus VIH-1 du groupe O, leur procédé de préparation, des compositions et des trousses contenant de tels peptides ainsi que les essais biologiques mettant en œuvre de tels peptides.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanic	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce ·		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

Peptides synthétiques utilisables dans les essais biologiques pour la dét ction des infections dues aux virusVIH 1 du groupe O.

L'invention concerne des peptides synthétiques utilisables dans les essais biologiques pour la détection des infections dues aux virus VIH-1 du groupe O, leur procédé de préparation, des compositions et des trousses contenant de tels peptides ainsi que les essais biologiques mettant en oeuvre de tels peptides.

5

10

Des rétrovirus VIH-1 du groupe O sont connus dans l'art antérieur. Le brevet EP 0 345 375 et la demande de brevet EP 0 657 532 décrivent les isolats ANT 70 et ANT 70 NA isolés chez des malades Camerounais. Ces documents décrivent plus précisément des antigènes et des compositions antigéniques contenant des lysats ou des protéines de ces isolats, les acides nucléiques correspondant à l'ARN génomique, des méthodes d'hybridation mettant en oeuvre ces acides nucléiques, des méthodes de production des isolats dénommés ci-dessus ainsi que des procédés de préparation de protéines p12, p16, p25, gp41, gp120 de ces rétrovirus.

15

La demande EP 0 591 914 décrit l'isolat MVP 5180/91. Cet isolat caractérisé par Western Blot présente, comme l'isolat précédent, des différences par rapport aux isolats du rétrovirus VIH-1 connus depuis longtemps. La demande EP 0 591 914 décrit précisément la séquence d'ADN de l'isolat MVP 5180/91 et indique précisément la localisation des gènes gag, pol et env. La demande EP 0 591 914 décrit encore des peptides synthétiques de la boucle V3 ainsi que de la région immunodominante (gp41). Ces derniers sont utiles pour des essais biologiques, notamment pour la détection, *in vitro*, des anticorps VIH-1 du groupe O.

25

30

35

20

La demande EP 0 673 948 décrit des peptides synthétiques ou recombinés constitués de 15 à 50 acides aminés (AA) et comportant la séquence

-VWGIRQLRARLQALETLIQNQQRLNLWGXKGKLIXYTSVKWNTSWSGR- dans laquelle X représente soit un résidu de cystéine, soit un résidu de sérine. Ces peptides sont utiles dans le domaine diagnostique pour la détection des infections dues à certains isolats de rétrovirus VIH-1 du groupe O.

On connaît également la demande EP 0 727 483 qui décrit l'isolat MVP 2901/94 qui fait aussi partie des rétrovirus appart nant à la famille VIH-1 du groupe O. Cette demande décrit certains antigènes ayant des séquences peptidiques bien déterminées. Ces s'quences peptidiques correspondent à une partie de la séquence de la gp120 et une partie de la gp41 (région immunodominante) de l'isolat MVP 2901/94.

15

20

25

La demande WO 96/12809 décrit deux nouveaux isolats appartenant à la famille VIH-1 du groupe O. Il s'agit des isolats VAU et DUR. Cette demande décrit certaines séquences peptidiques issues des deux virus cités ci-dessus, utiles pour la détection d'anticorps reconnaissant les séquences peptidiques VIH-1 VAU ou DUR.

La demande WO 96/32293 décrit deux antigènes issus de la séquence de l'isolat ANT 70. Il s'agit de l'antigène appelé MDL061 et de l'antigène MDL056, de la région immunodominante de la gp41. Selon cette invention, pour détecter 100% des échantillons d'une collection limitée de sérums de malades infectés par le virus de VIH-1 du groupe O, il est nécessaire d'utiliser des compositions contenant ces deux peptides, puisque chaque peptide isolé ne permet pas à lui seul d'obtenir des résultats satisfaisants.

En effet, il est quasi impossible, au regard de la variabilité génétique révélée par les isolats du virus du groupe O, de garantir le dépistage sérologique des individus contaminés par la mise en oeuvre d'antigènes issus du même et unique isolat. Cela signifie qu'il n'est pas possible d'obtenir des réactifs qui garantissent 100% de sensibilité. Le groupe O ainsi soulève pour la première fois un problème important; il s'agit de l'inadéquation de certains réactifs sérologiques à reconnaître des individus contaminés par des groupes ou sous-types particulièrement divergents. C'est le cas justement des VIH1 du groupe O.

La demande WO 96/40763 insiste aussi sur la grande divergence du groupe O. Cette demande décrit des peptides qui incorporent, dans une séquence naturelle VIH-1 de type B, quelques petites modifications (remplacement d'un ou de deux acides aminés). Selon cette demande, ces peptides hybrides sont capables de réagir avec des anticorps anti groupe O.

La demande WO 96/27013 décrit une série de nouveaux virus VIH1 du groupe O désignés BCF 01, BCF 02, BCF 03, BCF06, BCF 07, BCF 08, BCF09, BCF11, BCF12, BCF13 et BCF14 ainsi qu'une série de peptides de la région dominante de la gp41 correspondante dénommés ESS/BCF02, FAN/BCF01, LOB/BCF06, MAN/BCF07, NKO/BCF08, POC/BCF03, NAN/BCF11, BCF09, BCF12, BCF13 et BCF14. Un certain nombre de ces peptides sont peu maniables en diagnostic à cause de leur faible solubilité, notamment le peptide BCF13.

30

De manière inattendue, il a été maintenant trouvé que certains peptides synthétiques sont des réactifs diagnostiques de qualité supérieure et permettent de dépister de manière satisfaisante les malades infectés par les rétrovirus VIH-1 du groupe O. Ces peptides sont composés de séquences variables articulées autour de courtes séquences très conservées, présentes dans les isolats des rétrovirus VIH-1 du groupe O. Les peptides de l'invention permettent d'obtenir des résultats bien supérieurs à ceux obtenus avec des peptides synthétiques porteurs d'épitopes immunodominants de la gp41 (env) de certains isolats VIH-1 du groupe O.

10

20

25

5

Par la suite, pour dénommer les acides aminés, on utilisera la nomenclature à trois lettres.

Les peptides synthétiques de l'invention répondent à la formule 15 générale (I) :

$$\Delta$$
-Z-TrpGlyCys- Θ -CysTyrThrSer- Ω (I)

dans laquelle:

 $-\Delta$ représente un radical biotinyle, un radical biocytinyle, un atome d'hydrogène, un radical acétyle (CH₃CO-), une chaîne aliphatique pouvant contenir une ou deux fonctions thiol, aldéhyde ou amine, la chaîne aliphatique étant de préférence une chaîne alkyle de 1 à 6 atomes de carbone ou une chaîne alcényle de 2 à 6 atomes de carbone, ou une chaîne aminoalkylcarbonyle de 2 à 6 atomes de carbone,

-Z représente une séquence peptidique d'une des formules (II) à (X) :

$$-\Xi_{1}$$
-Ser- Ξ_{2} - (II)
 $-$ Ser- Ξ_{2} - (III)
 $-\Xi_{1}$ -Ser- (IV)
 $-\Xi_{1}$ -Gln- Ξ_{2} - (V)
 $-$ Gln- Ξ_{2} - (VI)
 $-\Xi_{1}$ -Gln- (VII)
 $-\Xi_{1}$ -Asn- Ξ_{2} - (IX)
 Ξ_{1} -Asn- (X)

35

30

dans lesquelles :

-∃₁ représente une séquence peptidique de 0 à 9 acides aminés et

-E₂ représente une séquence peptidique de 0 à 5 acides aminés, -O représente une séquence peptidique de formule (XI) : $-(AA_1)-(AA_2)-(AA_3)-(AA_4)-(AA_5)-$ (XI) dans laquelle: • (AA₁) représente soit un résidu lysine, soit un résidu arginine, soit 5 un résidu ornithine. • (AA2) représente soit un résidu glycine, soit un résidu asparagine, • (AA₃) représente soit un résidu lysine, soit un résidu arginine, soit un résidu ornithine, • (AA4) représente soit un résidu leucine, soit un résidu alanine, 10 soit un résidu isoleucine, soit un résidu glutamine, • (AA₅) représente soit un résidu isoleucine, soit un résidu valine, soit un résidu leucine, soit un résidu thréonine, soit un résidu norleucine, soit un résidu norvaline, à condition toutefois que (AA_1) , (AA_2) , (AA_3) , (AA_4) et (AA_5) ne 15 forment iamais ensemble les séquences peptidiques -Lys Gly Lys Leu IIe- et -Lys Gly Lys Leu Val-, - Ω , fixé sur le groupe -CO- de la sérine représente : - un radical hydroxyle (-OH) ou un radical amino (-NH₂), - un radical alcoxy comportant de 1 à 6 atomes de carbone, 20 - une séquence peptidique de formule (XII) : -Val-Σ-Ψ (XII) dans laquelle Σ représente une séquence de formule (XIII) ou de formule (XIV): 25 - (AA_6) -Trp Asn- (AA_7) - (AA_8) (XIII) -(AA₆)-Trp His-(AA₇)-(AA₈) (XIV) dans lesquelles : • (AA₆) représente un acide aminé différent de la lysine, • (AA₇) représente un acide aminé, 30 • (AA₈) représente un résidu sérine ou thréonine, et Ψ fixé sur le reste -CO- de l'acide aminé AA₈ libre, représente un groupe OH, NH2 ou un radical alcoxy comportant de 1 à 6 atomes de carbone, - une séquence peptidique de formule (XV) : 35 -Val-Ψ (XV)

dans laquelle Ψ fixé sur le reste -CO- de la valine, a la même

signification que pour la formule (XII),

- ou une séquenc peptidique d'une des formules (XVI) à (XVIII) :

-Z-TrpGlyCys-Θ-CysTyrThrSer-Ψ

(XVI)

Val-Σ-Z-TrpGlyCys-Θ-CysTyrThrSerVal-Σ-Ψ

(XVII)

Val-Z-TrpGlyCys-Θ-CysTyrThrSerVal-Ψ

(XVIII)

dans lesquelles Z et Θ ont la définition donnée pour la formule (I) et Σ a la définition donnée pour la formule (XII) et Ψ fixé sur le reste -CO- de la sérine, sur le reste -CO- de l'acide aminé AA₈ ou sur le reste -CO- de la valine, a la même signification que pour la formule (XII).

10

15

5

Lorsque Ω représente une séquence peptidique d'une des formules (XVI) à (XVIII), le peptide de formule (I) devient un dimère, dont la taille peut varier de 26 à 66 acides aminés. Lorsque Ω ne représente pas une séquence peptidique d'une des formules (XVI) à (XVIII), les peptides de formule (I) sont de type monomère et leur taille peut varier de 13 à 33 acides aminés.

Les peptides selon l'invention peuvent être soit sous forme linéaire, soit sous forme cyclisée par l'intermédiaire de ponts disulfures inter-cystéines.

20

On préfère les composés de formule (I) dans laquelle (AA_5) représente soit un résidu valine, soit un résidu leucine, soit un résidu thréonine, et lorsque Ω correspond à une séquence peptidique de formule (XII), (AA_6) représente soit un résidu glutamine, soit un résidu arginine.

25

On préfère les peptides de formule (I) dans laquelle :

-Δ représente un radical biotinyle, un atome d'hydrogène, ou une chaîne aliphatique pouvant contenir une ou deux fonctions thiol, aldéhyde ou amine, la chaîne aliphatique étant de préférence une chaîne alkyle de 1 à 6 atomes de carbone, ou une chaîne aminoalkylcarbonyle de 2 à 6 atomes de carbone,

30

-Z représente une séquence peptidique de formule (II) ou (V), dans lesquelles Ξ_1 représente une séquence peptidique de deux acides aminés et Ξ_2 représente un acide aminé, ou une séquence de formule (IV), dans laquelle Ξ_1 représente trois acides aminés, ou une séquence peptidique de formule (VIII), dans laquelle Ξ_1 représente une séquence peptidique de neuf, huit ou trois acides aminés et Ξ_2 une séquence peptidique de cinq acides aminés,

35

-⊖ représente une séquence peptidique de formule :

-Lys Gly Arg Leu Val-, -Arg Gly Lys Ala Val-,

- Arg Gly Arg Leu Val-,

ou

-Arg Gly Arg Ala Val-,

et

- 5 -Ω représente un groupe hydroxyle, la séquence peptidique (XV) ou une des séquences suivantes qui correspondent à la séquence peptidique de formule (XII) :
 - Val Arg Trp Asn Glu Thr-Ψ,
 - Val Gln Trp Asn Glu Thr-Ψ

10 ou

- Val Gln Trp Asn Ser Thr-Ψ.

De préférence Z représente une séquence peptidique de formule :

- -Leu Leu Ser Ser-
- · -Leu Leu Asn Ser-
- 15 • -Leu Leu Gln Ser-
 - -Arg Leu Asn Ser-
 - -Ala Leu Glu Thr Leu Leu Gin Asn Gin Gin Leu Leu Asn Ser-
 - -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu-
 - -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ile-
- -Leu Asn Gln Gln Arg Leu Leu Asn Ser-

ou

-Arg Ala Leu Glu Thr Leu Leu Asn Gln Gln Arg Leu Leu Asn Ser-

Font également partie de l'invention, les peptides synthétiques comportant de 20 à 50 acides aminés et répondant à la formule (la) :

$$\Delta$$
- Z_a -TrpGlyCys- Θ -CysTyrThrSer- Ω_a (Ia)

dans laquelle Za représente un radical de formules lla à Xa :

30 Ξ_{1a} -Ser- Ξ_{2a} (IIa) -Ser-E2a (IIIa) -E₁a-Ser (IVa) Ξ_{1a}-GIn-Ξ_{2a} (Va) -GIn-E22 (VIa) 35 Ξ_{1a}-Gln-(VIIa) Ξ_{1a}-Asn-Ξ_{2a} (VIIIa) -Asn-E2a (IXa) -Ξ₁a-Asn (Xa)

dans lesquelles :

-Ξ_{1a} représente une séquence peptidique de 1 à 5 acides aminés et

-Ξ_{2a} un acide aminé,

- Ω_{a} représente une séquence peptidique de formule (XII), telle que définie pour la formule (I), ou une séquence peptidique de formule (XVIIa):

10 $\mbox{Val-}\Sigma\mbox{-}Z_a\mbox{-}\mbox{TrpGlyCys-}\Theta\mbox{-}\mbox{CysTyrThrSerVal-}\Sigma\mbox{-}\Psi$ (XVIIa)

> dans laquelle Z_a a la définition donnée pour la formule (la) et

 Δ , Θ , Σ et Ψ ont la même signification que pour la formule (I).

15

5

On préfère les peptides de formule (I) ou (Ia) incluant l'une des séquences suivantes (ces peptides peuvent être de type dimère ou de type monomère comme défini précédemment). Les séquences sont données selon les nomenclatures à une et à trois lettres :

20

25

Séquence N° 1

-LLSLWGCRGKAVCYTSVQWNET-

5

-Leu Leu Ser Leu Trp Gly Cys Arg Gly Lys Ala Val Cys Tyr Thr Ser Val Gln Trp Asn 10

15

20

Glu Thr-

22

30 Séquence N° 2

-LLSLWGCRGRLVCYTSVQWNET-

ou

-Leu Leu Ser Leu Trp Gly Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Gln Trp Asn 10 15 20

35 Glu Thr-

			8		
	Séquence N° 3				
	-LLSSWGCKGF	RLVCYTSVQWNE	ET-		
	ou				
	-Leu Leu Ser Ser	Trp Gly Cys Lys G	Bly Arg Leu Val Cys Ty		
5	1	5	10	15	20
	Glu Thr-				
	22				
0	Séquence N° 4				
		RLVCYTSVQWN	ST-		
	ou				
	-Leu Leu Ser Ser	r Trp Gly Cys Lys C	Gly Arg Leu Val Cys T	yr Thr Ser Val Gin Trp	Asn
	1	5	10	15	20
15	Ser Thr-				
	22				
	Séquence N° 5				
20		RLVCYTSVQWN	IST-		
	ou				
		r Trp Gly Cys Lys (Gly Arg Leu Val Cys T	yr Thr Ser Val Gin Tr	p Asn
	· 1	5	10	15	20
	Ser Thr-				
25	22				
	Séquence N° 6				
		SKAVCYTSVQW I	NEI-		
30	ou havelander Co	T Ch. C A	Challes Ale Vel Cue T	or The Section Classe	- ^ -
		er Trp Gly Cys Arg	Gly Lys Ala Val Cys T	15	p Asi 20
	1 Glu Thr-	3	10	13	۷.
	22				
35					
-	Séquence N° 7	,			

BNSDOCID: <WO___9845323A1_I_>

ou

-LLSLWGCRGRAVCYTSVQWNET-

	-Leu Leu Ser Le	eu Trp Gly Cys	Arg Gly Arg Ala Val Cys	s Tyr Thr Ser Val (Gln Trp Asn
	1	5	10	15	20
	Glu Thr-				
	22				
5					
	01				
	Séquence N° 8		\\A/\!\\\\		
	-LLSSWGCRO	SKLVC113VL	IAAINE I -		
10	OU Jan Lau Sar Sa	er Tro Gly Cys	Ara Gly Ara Ley Vol Cy	o Tur The Soc Val	31- T A
10	1	5 5	Arg Gly Arg Leu Val Cys 10		
	Glu Thr-	3	10	15	20
	22				
15	. :				
	Séquence N° 9) :			
	-LLSSWGCKO	- "			
	ou .				
	-Leu Leu Ser S	Ser Trp Gly Cy	s Lys Gly Arg Leu Val	I Cys Tyr Thr Se	r-
20	1	5	10	15	
	Séquence N° 1	<u> </u>			
	-LLNSWGCK	SRLVCYTS-			
25	ou				
	-Leu Leu Asn (Ser Trp Gly Cy	ys Lys Gly Arg Leu Va	I Cys Tyr Thr Se	r-
	1	5	10	15	
	01				
30	Séquence N° 1				
		QLLNSWGCR	GRLVCYTSVRWNET	-	
	ou Alo Lovi OliviT				
			n Asn Gin Gin Leu Lei		ly Cys Arg Gly
35	1 Arg Lou Vol Cv	5	10	15 - .	
J	20		Val Arg Trp Asn Glu	ı hr-	
	20	25	30		

			10	
_	Séquence N° 12	.		•
	-ALETLLQNQQL	LNIWGCRGRL	CYTSVRWNET-	•
	ou			
	-Ala Leu Glu Thr	Leu Leu Gin Ası	n Gln Gln Leu Leu A	Asn lie Trp Gly Cys Arg Gly
5	1	5	10	15
	Arg Leu Val Cys	Tyr Thr Ser Val	Arg Trp Asn Glu Thi	٠.
	20	25	30	
10	Séquence N° 13 :			
	-ALETLLQNQQLI	LDLWGCRGRL	VCYTSVRWNET-	
	ou			
	-Ala Leu Glu Thr	Leu Leu Gln Asr	n Gin Gin Leu Leu A	sp Leu Trp Gly Cys Arg Gly
	1	5	10	15
15	Arg Leu Val Cys	Гуг Thr Ser Val <i>I</i>	Arg Trp Asn Glu Thr	_
	20	25	30	
	0.6			
20	Séquence N° 14 :	201400111401		
20	-LNQQRLLNSWG	CKGRLVCYTS	V-	
	Ou Ann Cla Ola	Anna I		
	1	Arg Leu Leu Ası		ys Gly Arg Leu Val Cys Tyr
	Thr Ser Val-	5	10	15
25	20			
	20			
	Ságuana, ve 45.			
	Séquence N° 15 :	LNOWOOKOD		
30	-RALETLLNQQRL ou	LINOVVGUKGRL	.VCYTSV-	
		brioude: Acc C	l= 01= 4	
	1 g Ala Leu Giu II	ıı Leu Leu Asn G		sn Ser Trp Gly Cys Lys
	Glv Arg Leu Val Cvs		10	15

BNSDOCID: <WO___9845323A1_I_>

20

35

			11		
. .	Séquence N -RLNSWG0	<u>1° 16</u> : CKGRLVCYTS	SV-		
	ou				
	- Arg Leu As	sn Ser Trp Gly	Cys Lys Gly Arg Leu	Val Cvs Tvr Thr	Ser Val-
5	1	5	10	15	
	Les p	eptides synth	étiques		
	ci-après sor	nt des peptide	s particulièrement pré	eférés :	
10	PEPTIDE N°	1 (2B) : SEQ I	D N° 1		
		RGKAVCYTS			
	ou				
	Leu Leu Ser	Leu Trp Gly Cy	s Arg Gly Lys Ala Val (Cvs Tvr Thr Ser Val	Gin Tro Asn
	1	5	10	15	20
15	Glu Thr				
	22				
		2 (3B) : SEQ I			
20		RGRLVCYTSV	QWNET		
	ou				
			s Arg Gly Arg Leu Val	Cys Tyr Thr Ser Val	Gln Trp Asr
	1	5	10	15	20
	Glu Thr				
25	22				
	Pentine Nº 3	2 (4D) : SEO II	2 No 2		
		<u>3 (4B) : SEQ II</u> (GRLVCYTS)			
30	OU	CORLVCTION	QVVNEI		
30		Sor I- Oly Ov	a liva Oliv Ara I a i Mila		.
	1		s Lys Gly Arg Leu Val (
	ı Glu Thr	5	10	15	20
	22				
35	22				

BNSDOCID: <WO___9845323A1_I_>

ou

PEPTIDE N° 4 (5B): SEQ ID N° 4
LLSSWGCKGRLVCYTSVQWNST

- 5	Leu Leu Ser Ser 1 Ser Thr 22	r Trp Gly Cys Lys Gl 5	y Arg Leu Val Cys Ty 10	yr Thr Ser Val Gln Tr 15	p Asn 20
10	LLQSWGCKGF ou	B): SEQ ID N° 5 RLVCYTSVQWNS Trp Gly Cys Lys Gl	T y Arg Leu Val Cys Ty 10	r Thr Ser Val Gin Tr 15	p Asn 20
15	ou	(AVCYTSVQWNE	T y Lys Ala Val Cys Tyl	The Sou Val Oly Tu	
20	1 Glu Thr 22	5	10	15	20
25 30	ou	AVCYTSVQWNET	r Arg Ala Val Cys Tyr 10	Thr Ser Val Gln Trp	Asn 20
	PEPTIDE N° 8 (7E LLSSWGCRGR ou	B) : SEQ ID N° 8 LVCYTSVQWNET	-		
35	Leu Leu Ser Ser 1 1 Glu Thr 22	Trp Gly Cys Arg Gly 5	Arg Leu Val Cys Tyr 10	Thr Ser Val Gln Trp 15	Asn 20

13 PEPTIDE N° 9 (12B): SEQ ID N° 9 **LLSSWGCKGRLVCYTS** Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser 1 5 5 15 PEPTIDE N° 10 (14B) : SEQ ID N° 10 LLNSWGCKGRLVCYTS 10 ou Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15 15 PEPTIDE N° 11 (18B) : SEQ ID N° 11 ALETLLQNQQLLNSWGCRGRLVCYTSVRWNET ou Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ser Trp Gly Cys Arg Gly 5 10 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 20 20 25 30 PEPTIDE N° 12 (19B) : SEQ ID N°12 25 ALETLLQNQQLLNIWGCRGRLVCYTSVRWNET ou Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ile Trp Gly Cys Arg Gly 10 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 30 20 25 30

PEPTIDE N° 13 (20B): SEQ ID N° 13
ALETLLQNQQLLDLWGCRGRLVCYTSVRWNET

35 ou

14

-Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu Trp Gly Cys Arg Gly 1 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 20

30

5

PEPTIDE N° 14 (21B) : SEQ ID N° 14 LNQQRLLNSWGCKGRLVCYTSV

25

Leu Asn Gln Gln Arg Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr 10 1 5 15 Thr Ser Val 20

15

PEPTIDE N° 15 (22B) : SEQ ID N° 15

RALETLLNQQRLLNSWGCKGRLVCYTSV

ou

Arg Ala Leu Glu Thr Leu Leu Asn Gln Gln Arg Leu Leu Asn Ser Trp Gly Cys Lys

20 5 Gly Arg Leu Val Cys Tyr Thr Ser Val

20 25

25 PEPTIDE N° 16 (23B) : SEQ ID N° 16

RLNSWGCKGRLVCYTSV

ou

Arg Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser Val 5 10 15

30

35

Les peptides synthétiques de formule (I), objet de la présente invention, peuvent être obtenus par synthèse en phase solide selon des méthodes classiques: R.B. Merrifield, J. Amer. Chem. Soc. (1963), <u>85</u>, pp. 2149-2154; R.C. Sheppard, in « Peptides 1971 », Nesvadba H. (ed.) North Holland, Amsterdam, pp. 111; E. Atherton and R.L. Sheppard, in « Solid phase peptide synthesis, a practical approach », IRL PRESS, (1989), Oxford University Press, pp. 25-34. Comme synthétiseur automatique, on peut utiliser le synthétiseur « 9050 Plus Pep Synthesizer » de Millipore ou un synthétiseur équivalent.

de

Le support solide, utilisé pour les synthèses, doit être compatible avec la technique et la chimie utilisées. Par exemple, pour une synthèse sur le synthétiseur « 9050 Plus pep. Synthesizer », il est recommandé d'utiliser une résine adaptée à la technique dite « en flux continu » ; les résines PEG PS répondent à ces critères. Ces supports sont constitués d'un bras (« spacer ») à base de polyéthylène glycol (PEG) situé entre le groupement fonctionnel des billes de polystyrène et le point d'accrochage du premier acide aminé. La nature de ce point d'ancrage peut varier selon la fonction C-terminale choisie. Dans le cas présent, différentes résines PEG-PS ont été utilisées.

10

La résine de départ et les acides aminés utilisés comme matières premières sont des produits disponibles dans le commerce (PerSeptive-Biosystem, ou Néosystem).

15

Pour la synthèse peptidique, les groupements protecteurs de chaînes latérales suivants ont été utilisés :

Acides aminés	Groupement protecteur
Arginine	Pentaméthyl-2,2,4,6,7-dihydrobenzofurane-5-sulfonyle (Pbf)
Asparagine, Glutamine	Trityle (Trt)
Cystéine	Trityle (Trt) ou Acétamidométhyle (Acm)
Sérine, Thréonine, Tyrosine	Ether tert-butyle (tBu)
Lysine, Tryptophane	Tert-butyloxycarbonyle (Boc)

20

La protection temporaire de la fonction amine primaire en α des acides aminés utilisée est le groupement 9-fluorénylméthyloxylcarbonyle (Fmoc). La déprotection est effectuée par une solution de pipéridine à 20% en diméthylformamide.

Pour le couplage, on utilise de préférence un excès disopropylcarbodiimide (DIPCDI) et d'hydroxy-1-benzotriazole (HOBt).

Après synthèse, la résine est lavée avec des solvants organiques, (diméthylformamide, puis dichlorométhane) séchée sous vide puis traitée par une solution à base d'acide trifluoroacétique (TFA) refroidie à 0°C et contenant

des « scavengers » appropriés. On peut utiliser, par exemple, le réactif K contenant 82% d'acide trifluoroacétique, 5% de ph'nol, 5% d'eau, 5% de thioanisole et 3% d'éthanedithiol.

Après filtration de la résine, les peptides synthétiques sont précipités et rincés à l'éther.

Les peptides synthétiques sont ensuite purifiés par chromatographie liquide en phase inverse et leur pureté est déterminée par spectrométrie de masse. Comme phase solide, on peut utiliser, par exemple, la phase Bondapak C-18. Les peptides sont élués en réalisant un gradient linéaire entre deux solutions tampons, le premier essentiellement aqueux (par exemple eau-TFA 0,1 %) et le second plutôt organique (par exemple un mélange contenant d'acétonitrile 60 %, eau 39,92 % et TFA 0,08 %). Les fractions pures collectées sont rassemblées, concentrées sous vide et lyophilisées.

15

20

10

5

Pour la cyclisation, les peptides synthétiques purifiés sont dissous dans une solution d'acétate d'ammonium (10mM). Le pH est ajusté à 8,5 par addition d'ammoniaque 1 M. La solution est vigoureusement agitée. La cyclisation est complète après 18 heures. Le pH est ensuite abaissé à 6 par addition d'acide acétique. Les peptides cyclisés sont lyophilisés, puis purifiés par chromatographie liquide en phase inverse comme cela a été décrit précédemment.

L'immunoréactivité des peptides de l'invention a été évaluée à l'aide de sérums de malades majoritairement d'origine camerounaise infectés par des rétrovirus VIH-1 du groupe O. Les différents essais effectués ont démontré que les peptides de l'invention, seuls ou en association (compositions de peptides), permettent de détecter 100% des sérums infectés par des rétrovirus VIH-1 du groupe O.

30

35

25

Les peptides synthétiques de l'invention trouvent donc leur application dans les tests immunologiques pour le dépistage des infections dues aux rétrovirus VIH-1 groupe O. Il est également possible d'utiliser des associations de plusieurs peptides synthétiques de formule I. Ces associations, qui peuvent contenir deux ou plusieurs peptides de formule I, font aussi partie de l'invention. On préfère des associations contenant les peptides N°1(2B) et N°3(4B).

10

15

Il est également possible d'utiliser des peptides synthétiques de formule (I) de la présente invention en association avec des peptides recombinés (protéines recombinantes) VIH-1 du groupe O tels qu'ils peuvent être obtenus par des méthodes classiques et ayant les séquences décrites par exemple dans la demande EP 0 591 914. De telles compositions entrent aussi dans le cadre de la présente invention.

Les peptides synthétiques de l'invention peuvent être également utilisés en association avec d'autres peptides synthétiques ou recombinés VIH-1 (protéines recombinantes) et/ou VIH-2, tels que les peptides décrits dans les demandes de brevets ou brevets EP 0 387 914, EP 0 239 425, EP 0 220 273, ou EP 0267 802. Cette liste de demandes de brevets ou brevets n'est pas exhaustive et est donnée à titre d'exemple.

Les compositions contenant un ou plusieurs peptides synthétiques de formule (I) et un ou plusieurs peptides synthétiques ou recombinés VIH-1 ou VIH-2 trouvent leur application en diagnostic pour le dépistage de malades infectés par différents rétrovirus VIH. Ces compositions font également partie de la présente invention.

20

Des procédés d'immunodosage utilisant un ou plusieurs peptides synthétiques de formule (I), seuls ou en association avec des peptides recombinés VIH-1 du groupe O ou des peptides synthétiques ou recombinés VIH-1 et/ou VIH-2, font également partie de l'invention.

25

30

L'invention vise également des trousses, pour la mise en oeuvre d'immunodosages, qui incluent un peptide de formule (I) ou une composition qui contient au moins un peptide de formule (I).

Les exemples suivants illustrent l'invention et sont donnés à titre non limitatif.

EXEMPLE 1:

Préparation d'un composé selon l'invention ; PEPTIDE N° 2 (3B) LLSLWGCRGRLVCYTSVQWNET

35 ou

Leu Leu Ser Leu Trp Gly Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Gln Trp Asn
1 5 10 15 20
Glu Thr

10

22

Ce peptide a été synthétisé en phase solide. La technique mise au point en 1963 par Merrifield (*J. Am. Chem. Soc. (1963)* <u>85</u>, pp. 2149-2154) consiste à fixer le premier acide aminé sur un support solide polymérique (résine) par sa fonction acide et à allonger la séquence peptidique à partir de ce premier acide aminé, le peptide en cours de synthèse restant ancré sur la résine.

Pour la synthèse du peptide N° 2, ont été utilisés, comme synthétiseur, le synthétiseur « 9050 Plus Pep Synthetizer » et comme résine, la résine Fmoc Thr (OtBu) PEG PS.

Les différentes étapes de la synthèse sont résumées dans le tableau I ciaprès :

Tableau I

RESIDU	PROTECTION	PROTECTION	METHODE DE	Nombre D'EQ -
ACIDE AMINE	NH ₂	LATERALE	COUPLAGE	DUREE DE
				COUPLAGE
Glu	Fmoc	OtBu	DIPCDI/HOBt	5 eq - 30 min
Asn	Fmoc	Trt	DIPCDI/HOBt	5 eq - 30 min
Тгр	Fmoc	Boc	DIPCDI/HOBt	5 eq - 30 min
Gin	Fmoc	Trt	DIPCDI/HOBt	5 eq - 30 min
Val	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Ser	Fmoc	tBu	DIPCDI/HOBt	5 eq - 30 min
Thr	Fmoc	tBu	DIPCDI/HOBt	5 eq - 30 min
Tyr	Fmoc	tBu	DIPCDI/HOBt	5 eq - 30 min
Cys	Fmoc	Trt	DIPCDI/HOBt	5 eq - 30 min
Val	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Leu	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Arg	Fmoc	Pbf	DIPCDI/HOBt	5 eq - 30 min
Gly	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Arg	Fmoc	Pbf	DIPCDI/HOBt	5 eq - 30 min
Cys	Fmoc	Trt	DIPCDI/HOBt	5 eq - 30 min
Gly	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Trp	Fmoc	Вос	DIPCDI/HOBt	5 eq - 30 min
Leu	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Ser	Fmoc	tBu	DIPCDI/HOBt	
Leu	Fmoc		DIPCDI/HOBt	5 eq - 30 min
Leu	Fmoc		DIPCDI/HOBt	5 eq - 30 min 5 eq - 30 min

10

15

20

Après la fin de la synthèse, la résine a été lavée avec du diméthylformamide, puis du dichlorométhane et séchée sous vide.

Ensuite, la résine a été traitée avec du réactif K (acide trifluoacétique 82 %; phénol 5 %; eau 5 %; thioanisole 5 %; éthanedithiol 3 %). Le peptide N° 2 (3B), isolé par précipitation à l'aide de diéthyle oxyde, a été ensuite rincé avec le même solvant. On a ainsi obtenu 140 mg du peptide N° 2 (3B).

Le peptide N° 2 (3B) a été ensuite purifié par chromatographie liquide en phase inverse. Comme phase solide, il a été utilisé la phase Bondapak C-18. Le peptide a été élué en réalisant un gradient linéaire entre deux solutions tampons, le premier essentiellement aqueux (par exemple eau-TFA 0,1 %) et le second plutôt organique (par exemple un mélange contenant : acétonitrile 60 %, eau 39,92 % et TFA 0,08 %). Les fractions pures collectées ont été rassemblées, concentrées sous vide et lyophilisées.

Pour la cyclisation, le peptide synthétique purifié, ainsi obtenu a été dissous dans une solution d'acétate d'ammonium (10mM). Le pH a été ajusté à 8,5 par addition d'ammoniaque 1 M. La solution a été vigoureusement agitée. La cyclisation a été complète après 18 heures. Le pH a été ensuite abaissé à 6 par addition d'acide acétique. Le peptide cyclisé a été lyophilisé, puis purifié par chromatographie liquide en phase inverse comme cela a été décrit précédemment.

25

Préparation d'un composé selon l'invention : PEPTIDE N° 15 (22B)

Ce peptide a été synthétisé comme le peptide N° 2 (3B), mais en utilisant comme résine, la résine FmocPAL PEG-PS.

30

Les différentes étapes de la synthèse sont résumées dans le tableau II ciaprès :

RESIDU ACIDE AMINE	PROTECTION NH ₂	PROTECTION LATERALE	METHODE DE	Nombre d'eq -
			333. 2432	COUPLAGE
Val	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Ser	Fmoc	tBu	DIPCDI/HOBt	5 eq - 45 mn
Thr	Fmoc	tBu	DIPCDI/HOBt	5 eq - 45 mn
Tyr	Fmoc	tBu	DIPCDI/HOBt	5 eq - 45 mn
Cys	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
Val	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Leu	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Arg	Fmoc	Pbf	DIPCDI/HOBt	5 eq - 45 mn
Gly	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Lys	Fmoc	Вос	DIPCDI/HOBt	5 eq - 45 mn
Cys	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
Gly	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Trp	Fmoc	Вос	DIPCDI/HOBt	5 eq - 45 mn
Ser	Fmoc	tBu	DIPCDI/HOBt	5 eq - 45 mn
Asn	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
Leu	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Leu	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Arg	Fmoc	Pbf	DIPCDI/HOBt	5 eq - 45 mn
Gin	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
GIn	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
Asn	Fmoc	Trt	DIPCDI/HOBt	5 eq - 45 mn
<u>Leu</u>	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Leu	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Thr	Fmoc	tBu	DIPCDI/HOBt	5 eq - 45 mn
Glu	Fmoc	OtBu	DIPCDI/HOBt	5 eq - 45 mn
Leu	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Ala	Fmoc		DIPCDI/HOBt	5 eq - 45 mn
Arg	Fmoc	Pbf	DIPCDI/HOBt	5 eq - 45 mn

10

Après la fin de la synthèse, la résine a été lavée avec du diméthylformamide, puis du dichlorométhane et séchée sous vide.

Ensuite, la résine a été traitée avec du réactif K (acide trifluoracétique 82 %; phénol 5 %; eau 5 %; thioanisole 5 %; éthanedithiol 3 %). Le peptide $N^{\circ}7$ (22B) isolé par précipitation à l'aide d'oxyde de diéthyle, a été ensuite rincé avec le même solvant. On a ainsi obtenu 140 mg du peptide N° 15 (22B).

Le peptide N° 15 (22B) a été ensuite purifié par chromatographie liquide en phase inverse, puis cyclisé, lyophilisé et purifié comme décrit précédemment pour le peptide N° 2 (3B).

De manière équivalente, et en utilisant les résines et acides aminés appropriés, les autres composés de l'invention ont été synthétisés.

Le tableau III indique le poids moléculaire de certains peptides de formule (I), sous forme non cyclisée, évalué par spectrométrie de masse.

Tableau III

Peptide N°	Poids moléculaire (Daltons)
1 (2B)	2512
2 (3B)	2583
3 (4B)	2528
4 (5B)	2586
5 (6B)	2527
9 (12B)	1772
10 (14B)	1799
11 (18B)	3752
12 (19B)	3778
13 (20B)	3780
14 (21B)	2538
15 (22B)	3222
16 (23B)	1941

10

20

25

30

35

EXEMPLE 2:

Evaluation de l'immunoréactivité des peptides selon l'inv ntion par test immuno-enzymatique : Essai nº 1

Les sérums utilisés ESS, DUR, VAU et HAD sont des sérums de malades français infectés par des rétrovirus VIH-1 du groupe O. Les autres échantillons de sérums de malades infectés par des rétrovirus VIH-1 groupe O ont été obtenus par le Centre Pasteur de Yaoundé au Cameroun et ont été sérotypés groupe O selon l'algorithme sérologique décrit dans AIDS (1977), 11, pp 445-453.

Les sérums VIH négatifs (n=48) ont été obtenus à partir de volontaires sains.

15 Les peptides synthétiques utilisés ont été dissous dans l'eau à une concentration de 1 mg/ml (solution mère). Pour l'étape de sensibilisation de la phase solide (coating), 110 μl d'une solution à 2 μg/ml de chaque peptide (obtenue par dilution de la solution mère avec de la solution tampon carbonate 0,1 M) ont été ajoutés à chaque cupule des plaques de microtitrage Microtiter™ (NUNC). Après incubation pendant une nuit à température ambiante, les microplaques ont été d'abord lavées avec une solution tampon Tris NaCl pH 7,4 contenant 0,1% de Tween® 20 et du merthiolate de sodium 0,001%, puis saturées avec une solution de PBS contenant 0,5% de Régilait™ (lait écrémé desséché). Après aspiration de la solution de saturation, les plaques ont été chauffées pendant 10 min à 50°C.

Les échantillons de sérums ont été dilués au 1/5 avec une solution de lait écrémé (tampon citrate additionné de 0,01% de rouge de phénol, de chloroforme à 0,25% et de Kathon® à 0,25%), déposés sur les cupules des plaques et mis à incuber pendant 30 min à 40°C.

Après lavage avec une solution tampon Tris NaCl pH 7,4 contenant 0,1% de Tween® 20 et du merthiolate de sodium à 0,001%, 100 µl d'une solution de conjugué anticorps de chèvre anti IgG et IgM humaines marqués à la peroxydase du raifort, contenant comme conservateur 0,01% de merthiolate de sodium, en solution dans une solution tampon citrate additionné de glycérol à 30% et du sérum normal de veau foetal à 25% ont été ajoutés à chaque cupule de plaques puis ces dernières ont été mises à incuber pendant 30 min à 40°C.

20

Après lavage avec une solution tampon Tris NaCl pH 7,4 contenant 0,1% de Tween® 20 et du merthiolate de sodium à 0,001%, le développement de la coloration a été obtenu par addition, dans chaque cupule, de 100 μl de O-phenylène diamine en solution dans du peroxyde d'hydrogène. Les microplaques ont été ensuite mises à incuber pendant 30 min à température ambiante et dans l'obscurité. La réaction colorée a ensuite été arrêtée par addition de 100 μl d'acide sulfurique 4N. L'absorbance (A) a été déterminée à 490 et 620 nm.

L'absorbance relative (A490-A620) lue dans chaque cupule est proportionnelle à l'immunoréactivité de chaque peptide. Cela indique l'aptitude de chaque peptide à réagir avec l'échantillon biologique avec lequel est effectué l'essai. La valeur seuil (cut-off) a été déterminée comme étant une absorbance égale à 0.15. Elle correspond à la moyenne de valeurs négatives (n=48) plus 12 15 . écart-types.

La réactivité des peptides de l'invention, (peptide N° 3 (4B), peptide N° 2 (3B) et peptide N° 1 (2B) tous sous forme cyclisée) a été comparée à celle de deux peptides synthétiques ayant comme séquence une partie de la séquence naturelle de l'enveloppe (env) de l'isolat VAU (rétrovirus VIH-1 du groupe O) et comportant un épitope immunodominant de gp41.

Ces deux peptides ont la séquence suivante :

VAU 22 AA

Leu Leu Asn Leu Trp Gly Cys Lys Asn Arg Ala lle Cys Tyr Thr Ser Val Lys Trp Asn 25 1 5 15 20

Lys Thr

22

30 **VAU 35 AA**

Arg Leu Leu Ala Leu Glu Thr Phe lle Glu Glu Asn Glu Leu Leu Asn Leu Trp Gly Cys

1 5 10 15 20

Lys Asn Arg Ala lle Cys Tyr Thr Ser Val Lys Trp Asn Lys Thr

25 30 35

Pour l'étude, ces peptides ont été utilisés sous forme cyclisée. Les résultats de cette étude sont indiqués dans le tableau IV.

24 Tableau IV

SERUM	ABSORBANCE						
	PEPTIDE N° 3 (4B)	PEPTIDE N° 2 (3B)	PEPTIDE N° 1 (2B)	VAU 22 AA	VAU 35 AA		
ESS*	>**	^	2,494	>	>		
DUR*	>	>	>	0,118	0,872		
HAD	>	0,518	0,041	0,789	0,871		
VAU*	1,342	>	>	> ·	>		
3935	>	0,893	0,307	0,138	0,227		
6891	>	0,614	0,062	0,359	0,496		
6512*	0,746	0,785	>	0,120	0,174		
1105*	1,421	1,031	>	0,099	0,129		
4021*	0,430	0,119	>	0,050	1,957		
5969*	>	0,282	>	2,491	>		
2700	>	0,274	>	>	>		
5453	0,555	0,081	>	1,267	1,482		
5931	>	>	>	0,202	2,225		
3136	>	0,992	0,302	>	>		
3653	1,352	>	0,044	1,441	1,322		
2352	>	>	0,205	>	>		
3016	>	>	0,243	>	>		
3302	>	>	0,386	>	>		
2294	>	>	0,447	>	>		
3771	>	>	0,544	>	>		
1581	>	>	>	1,112	0,894		
5373	>	>	>	1,359	0,856		
7443	>	>	>	0,920	0,574		
3637	>	>	>	0,779	1,647		
6295*	1,718	1,063	>	0,972	>		
6689*	0,710	>	>	>	>		
1754	>	>	>	1,263	1,948		
4489*	>	>	>	1,318	1,718		
4364	>	>	1,382	>	>		
3884*	>	>	1,839	>	>		
3529	>	>	1,803	>	>		
3482	2,402	>	1,473	>	>		
1702	>	>	1,162	>	>		
6487	>	1,017	2,687	2,889	2,891		
5164	>	>	>	>	>		
5766*	>	>	>	>	>		
3945	>	>	>	>	>		

sérotypés / génotypés > = signal supérieur à la capacité de lecture du spectrophotomètre.

Tableau IV (suite)

SERUM	ABSORBANCE						
	PEPTIDE N° 3 (4B)	PEPTIDE N° 2 (3B)	PEPTIDE N° 1 (2B)	VAU-22 AA	VAU 35 AA		
4434	>	>	>	2 272	<u> </u>		
4288*	>	>	2,802	2,273	>		
6782	>	2,091	2,462	2,337	N.T.***		
2313	>	>	>	2,190	2,214		
2312	>	>			>		
1062	>	>	>	>	>		
402	>	>	>	>	>		
134	>	>	>	>	>		
7120	>	>	>	>	>		
7212	>	>	>	>	>		
6976*	>	>	>		>		
3600*	>	>	2,743	>	>		
3236	>	>	>	>	>		
3235	>	>		>	<u> </u>		
2551	>	>	>	>	>		
5270*	>	>	>	>	>		
5210	>	>		>	>		
5149*	>	>		>	>		
4477	>	>	>	>	>		
3891	>	>	2,780	2,511	>		
3627*	>	>	2,780	>	>		
7258*	>	>	2,477	->	>		
7007	2,136	2,334	2,4//	>	>		
6697	>	>			2,151		
6998	>	>	>	>	>		
6627	>	-	>	>	>		
6198*	>		>	>	>		
6165	>	>		>	>		
7439	>		2,714	>	>		
7297*	>		>	>	>		
6111	>		>	>	>		
625	>		->	>	>		
			>	>	2,885		

sérotypés / génotypés > = signal supérieur à la capacité de lecture du spectrophotomètre.

Les résultats du tableau IV démontrent que le peptide N° 3 (4B) présente les meilleures performances au regard de celles relevées pour les autres peptides. Ce peptide permet la meilleure discrimination des sérums de malades infectés par des rétrovirus VIH-1 du groupe O par rapport aux deux peptides ayant une partie de la séquence de l'isolat VAU correspondant à l'épitope immunodominant de la gp41. Par ailleurs, les peptides N° 2 (3B) et N° 1 (2B) de l'invention sont plus immunoréactifs que le peptide VAU 22 AA qui comporte le même nombre d'acides aminés.

10

EXEMPLE 3:

Evaluation par test immunoenzymatique de l'immunoréactivité des peptides selon l'invention : Essai n° 2

15 . .

20

25

30

35

Les échantillons de sérums de malades infectés par des rétrovirus VIH-1 du groupe O ont été obtenus par le Centre Pasteur de Yaoundé au Cameroun et ont été serotypés groupe O selon l'algorithme sérologique décrit dans *AIDS* (1977), 11, pp. 445-453. Un échantillon (Maryland) génotypé provient des Etats-Unis. Ces échantillons ont été préalablement dilués en sérum humain négatif aux dilutions données dans le tableau V, afin de disposer d'un volume suffisant pour les différents essais d'immunoréactivité.

Les peptides synthétiques utilisés ont été dissous dans l'eau à une concentration de 1 mg/ml (solution mère). Pour l'étape de sensibilisation de la phase solide (« coating »), il a été procédé comme cela a été décrit pour l'exemple 2.

Les échantillons de sérums ont été dilués au 1/5 avec une solution de lait écrémé (en tampon citrate additionné de rouge de phénol à 0,01%, de chloroforme à 0,25% et de Kathon® à 0,25%), déposés dans les cupules des plaques et mis à incuber pendant 30 min à 40°C.

Après lavage avec une solution tampon Tris NaCl pH 7,4 contenant 0,1% de Tween® 20 et du merthiolate d' sodium à 0,001%, 100 µl d'une solution de conjugué d'anticorps de chèvre anti IgG et IgM humaines marqués à la peroxydase du raifort, contenant comme conservateur du merthiolate de sodium à 0,01%, en solution dans une solution tampon citrate additionnée de glycérol à

10

20

25

30% et du sérum normal de veau foetal à 25%, ont été ajoutés à chaque cupule des plaques puis ces dernières ont été mises à incuber pendant 30 mn à 40°C.

Après lavage avec une solution tampon Tris NaCl pH 7,4 contenant du Tween® 20 à 0,1% et du merthiolate de sodium à 0,001%, le développement de la coloration a été obtenu comme cela a été décrit dans l'exemple 2.

L'absorbance (DO) relative (A490-A620) lue dans chaque cupule est proportionnelle à l'immunoréactivité de chaque peptide. Cela indique l'aptitude de chaque peptide à réagir avec l'échantillon biologique avec lequel est effectué l'essai.

La réactivité des peptides de l'invention, peptides N° 10 (14B), N° 11 (18B), N° 12 (19B), N° 14 (21B), N° 15 (22B), N° 16 (23B) tous sous forme 15 cyclisée, a été comparée à celle de trois peptides synthétiques homologues, ayant comme séquence une partie de la séquence naturelle de l'enveloppe (env) de rétrovirus VIH-1 du groupe O. Ces peptides sont deux peptides dérivés de l'isolat VAU, -le peptide VAU 22 AA et le peptide VAU 35 AA- et le peptide MVP 5180 (désigné « MVP 5180 » dans le tableau V). Les peptides VAU 22 AA et VAU 35 AA (dont la structure est indiquée dans l'exemple 2) et le peptide MVP 5180 comportent un épitope immunodominant de la gp41.

Tous ces peptides ont été utilisés sous forme cyclisée. La séquence du peptide MVP 5180 est la suivante :

MVP 5180

Arg Leu Gln Ala Leu Glu Thr Leu lle Gln Asn Gln Gln Arg Leu Asn Leu Trp Gly Cys 1 10 15 20 Lys Gly Lys Leu lle Cys Tyr Thr Ser Val Lys Trp Asn Thr Ser 30 25 30

Les résultats de cette étude sont indiqués dans le tableau V.

²⁸ Tableau V

	PEPTIDES *								
	N° 10	N° 11	N° 12	N° 14	N° 15	N° 16	MVP	VAU	VAU
SERUM							5180	35 AA	22 AA
	ABSORBANCE (DO)								
4280	0,022	0,686	0,201	0,286	0,689	0,033	0,382	0,013	0,021
au 1/50	0.007	0.005	0.400	0.457	0.045	2 1 1 2	0.404	0.055	0.040
NGO au 1/50	0,067	0,335	0,193	0,157	0,315	0,110	0,184	0,055	0,040
NJEM	0,032	0,811	0,391	0,277	0,939	0,025	0,146	0,159	0,024
au 1/100									
MBASSI	1,217	1,150	0,747	2,134	2,010	2,683	0,248	0,120	0,257
au 1/100 WANG	0,698	0,234	0,124	2,397	2,680	1,290	0,075	0,025	0,041
au 1/50	0,050	0,204	0,124	2,007	2,000	1,290	0,073	0,020	0,041
258 OUDI	0,587	0,373	0,226	0,764	1,184	1,692	0,116	0,058	0,100
au 1/100	. =			·					•
DO15	1,613	0,859	1,286	3,357	3,693	3,038	0,673	0,036	0,075
au 1/100									
DJOU au 1/100	1,268	0,482	0,419	1,998	2,088	2,166	0,203	0,022	0,042
3600	0,482	0,360	0,249	0,716	0,801	0,933	0,206	0,025	0,058
au 1/100	•		•-	•	,		,	.,	.,
3613	1,108	0,837	0,773	1,508	1,627	1,679	0,478	0,250	0,396
au 1/400									
6111 au 1/100	0,596	0,348	0,202	0,850	1,207	1,009	0,226	0,087	0,180
625	0,838	0,338	0,264	2,045	2,122	1,791	0,202	0,069	0,165
au 1/50									
Maryland au 1/400	0,524	0,370	0,285	0,734	0,844	1,229	0,241	0,054	0,168
3653 au 1/10	0,347	0,337	0,247	0,072	0,380	0,406	0,401	0,021	0,310

PHASE SOLIDE* : PEPTIDE 2µg/ml

5

10

Pour chaque peptide testé, les échantillons ont été rangés en quatre classes (a, b, c, et d) correspondant à divers niveaux d'absorbance relative lue aux longueurs d'onde A492-A620 :

- pour a : DO < 0,100,

- pour b: 0,100 < DO < 0,500,

• - pour c : 0,500 < DO < 1,000,

• - pour d : DO > 1,000,

permettant ainsi d'évaluer le degré d'immunoréactivité des peptides. Les peptides les plus immunoréactifs sont ceux pour lesquels le plus grand nombre d'échantillons est trouvé dans les classes correspondant aux absorbances les plus élevées.

Les résultats sont indiqués dans le tableau VI.

Tableau VI

	PEPTIDES *								
CLASSE	N° 10	N° 11	N° 12	N° 14	N° 15	N° 16	MVP 5180	VAU 35 AA	VAU 22 AA
	Nombre d'échantillons								
a	3	0	0	1	0	2	1	11	7
b	2	9	11	3	2	2	12	3	7
С	5	4	2	4	4	1	1	0	
d	4	1	1	6	8	9		0	0
							U	U	U

PHASE SOLIDE* : PEPTIDE 2µg/ml

10

15

20

25

5

Les résultats montrent que tous les peptides de l'invention testés réalisent une meilleure performance en immunoréactivité que les peptides de référence de l'art antérieur qui dérivent d'isolats naturels (MVP 5180, VAU). Les peptides de l'invention N° 15 (22B), N° 14 (21B), et N° 16 (23B) s'avèrent les plus immunoréactifs.

EXEMPLE 4:

Evaluation de l'immunoréactivité des compositions contenant d s peptides selon l'invention par test immuno-enzymatique.

Pour cet essai, il a été procédé selon le protocole décrit dans l'exemple 2 et les mêmes sérums ont été utilisés. Les microplaques utilisées ont été sensibilisées soit avec le peptide n° 1 (2B) cyclisé, soit avec le peptide n° 3 (4B) cyclisé, soit avec une composition contenant ces deux peptides (1:1 p/p). Dans chaque cupule ont été déposés, soit 100 μ l d'une solution contenant 2 μ g/ml de peptide n° 1 (2B), soit 100 μ l d'une solution contenant 2 μ g/ml de peptide n° 3 (4B), soit 100 μ l d'une solution contenant 1 μ g/ml de peptide n° 1 (2B) et 1 μ g/ml de peptide n° 3 (4B).

30

Les résultats de cet essai sont donnés dans le tableau VII.

30 **Tableau VII**

SERUM	ABSORBANCE						
	PEPTIDE N° 1 (2B) (2 μg/ml)	PEPTIDE N° 3 (4B) (2 μg/ml)	PEPTIDE N° 1 (2B) (1µg/ml) + PEPTIDE N° 3 (4B) (1 µg /ml)				
3529	1,803	>*	>				
1105	>	1,421	>				
3891	2,780	>	>				
3235	>	>	>				
2700	>	>	>				
5931	>	>	>				
3935	0,307	>	>				
7443	>	>	>				
1062	>	>	>				
1754	>	>	>				
3136	0,302	>	>				
6891	0,062	>	>				
5149	>	>	>				
5270	>	>	>				
2551	>	>	>				
3600	2,743	>	>				
6976	>	>	>				
4489	>	>	>				
6165	2,714	>	>				
6198	>	>	>				
6627	>	>	>				
6998	>	>	>				
6697	>	>	>				
7258	2,477	>	>				
3627	2,910	>	>				
4477	>	>	>				
3771	0,544	>	>				
1702	1,016	>	>				
2294	0,447	>	>				
2352	0,205	>	>				
3016	0,243	>	>				
3302	0,386	>	. >				
3482	1,473	>	>				
3653	0,044	1,322	1,105				
4364	1,382	>	>				
3637	>	>	>				
4288	2,802	>	>				
5969	>	>	>				
258	>	>	>				
6111	>	>	>				

> = signal supérieur à la capacité de lecture du spectrophotomètre.

31
Tableau VII (suite)

PEPTIDE Nº 1 (2B)		
(2 μg/ml)	PEPTIDE N° 3 (4B) (2 μg/ml)	PEPTIDE N° 1 (2B) (1µg/ml)
>	>	PEPTIDE N° 3 (4B) (1 µg /ml)
>		>
0,302		
>		>
>		>
>		> .
1.839		2,381
>		>
2.687		>
		>
		>
		>
	> 0,302 > > > > 1,839	> 2,769 0,302 > 0,710 > 0,710 > 1,718 > 0,430 1,839 > 0,746 2,687 > 0,746 2,494 > 0,041

> = signal supérieur à la capacité de lecture du spectrophotomètre.

Les résultats du tableau VII démontrent que les compositions des peptides de l'invention, lorsque utilisées en diagnostic permettent la détection de tous les sérums de malades infectés par des rétrovirus VIH-1 du groupe O.

LISTE DE SEQUENCES

- (1) INFORMATION GENERALE:
 - (i) DEPOSANT:
 - (A) NOM: Pasteur Sanofi Diagnostics
 - (B) RUE: 3 boulevard Raymond Poincaré
 - (C) VILLE: Marnes la Coquette
 - (E) PAYS: France
 - (F) CODE POSTAL: 92430
 - (G) TELEPHONE: 0153774000
 - (H) TELECOPIE: 0153774133
 - (ii) TITRE DE L' INVENTION: peptides synthétiques utilisables dans les essais biologiques pour la détection des infections dues au virus VIH-1 du groupe O
 - (iii) NOMBRE DE SEQUENCES: 16
 - (iv) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)
- (2) INFORMATION POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

Leu Leu Ser Leu Trp Gly Cys Arg Gly Lys Ala Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Glu Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 2:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Leu Leu Ser Leu Trp Gly Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Glu Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 3:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser

Val Gln Trp Asn Glu Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 4:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Val Gln Trp Asn Ser Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 5:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

Leu Leu Gln Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Ser Thr

- (2) INFORMATION POUR LA SEQ ID NO: 6:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

Leu Leu Asn Ser Trp Gly Cys Arg Gly Lys Ala Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Glu Thr

- (2) INFORMATION POUR LA SEQ ID NO: 7:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

Leu Leu Ser Leu Trp Gly Cys Arg Gly Arg Ala Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Glu Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 8:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

Leu Leu Ser Ser Trp Gly Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15

Val Gln Trp Asn Glu Thr 20

- (2) INFORMATION POUR LA SEQ ID NO: 9:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 16 acides aminés
- (B) TYPE: acide aminé
- (ii) TYPE DE MOLECULE: peptide
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15

- (2) INFORMATION POUR LA SEQ ID NO: 10:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 16 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser 1 5 10 15

- (2) INFORMATION POUR LA SEQ ID NO: 11:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 32 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ser Trp Gly
1 5 10 15

Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 20 25 30

- (2) INFORMATION POUR LA SEQ ID NO: 12:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 32 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ile Trp Gly
1 5 10 15

Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 20 25 30

- (2) INFORMATION POUR LA SEQ ID NO: 13:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 32 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu Trp Gly

1 10 15

Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr 20 25 30

- (2) INFORMATION POUR LA SEQ ID NO: 14:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 22 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

Leu Asn Gln Gln Arg Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu 1 5 10 15

Val Cys Tyr Thr Ser Val

- (2) INFORMATION POUR LA SEQ ID NO: 15:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 28 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15 :

Arg Ala Leu Glu Thr Leu Leu Asn Gln Gln Arg Leu Leu Asn Ser Trp 5 10 15

Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser Val 20 25

- (2) INFORMATION POUR LA SEQ ID NO: 16:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 acides aminés
 - (B) TYPE: acide aminé
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

Arg Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser

1 10 15

Val

REVENDICATIONS

1. Peptides synthétiques de type monomère de 13 à 33 acides aminés ou de type dimère de 26 à 66 acides aminés, sous forme linéaire ou sous forme cyclisée par l'intermédiaire de ponts disulfures inter-cystéines, répondant à la formule générale (I) :

$$\Delta$$
-Z-TrpGlyCys- Θ -CysTyrThrSer- Ω (I)

10 dans laquelle:

 $-\Delta$ représente un radical biotinyle, un radical biocytinyle, un atome d'hydrogène, un radical acétyle (CH₃CO-), une chaîne aliphatique pouvant contenir une ou deux fonctions thiol, aldéhyde ou amine, la chaîne aliphatique étant de préférence une chaîne alkyle de 1 à 6 atomes de carbone ou une chaîne alcényle de 2 à 6 atomes de carbone, ou une chaîne aminoalkylcarbonyle de 2 à 6 atomes de carbone,

-Z représente une séquence peptidique d'une des formules (II) à (X) :

•	a standard habitation	,
	-Ξ₁-Ser-Ξ ₂ -	(II)
	-Ser-Ξ₂-	(111)
20	-Ξ₁-Ser-	(IV)
	-Ξ₁-Gln-Ξ₂-	(V)
	-GIn-Ξ₂-	(VI)
	-Ξ₁-Gln-	(VII)
	-Ξ₁-Asn - Ξ₂-	(VIII)
25	-Asn-Ξ₂-	(IX)
	Ξ ₁ -Asn-	(X)

dans lesquelles :

-∃₁ représente une séquence peptidique de 0 à 9 acides aminés et

 $-\Xi_2$ représente une séquence peptidique de 0 à 5 acides aminés, $-\Theta$ représente une séquence peptidique de formule (XI) :

$$-(AA_1)-(AA_2)-(AA_3)-(AA_4)-(AA_5)-$$
 (XI)

dans laquelle :

• (AA₁) représente soit un résidu lysine, soit un résidu arginine, soit un résidu ornithine,

• (AA₂) représente soit un résidu glycine, soit un résidu asparagine,

30

• .	 (AA₃) représente soit un résidu lysine, soit un résidu arginine, soit un résidu ornithine,
	(AA₄) représente soit un résidu leucine, soit un résidu alanine, soit un résidu isoleucine, soit un résidu glutamine,
5	• (AA _s) représente soit un résidu isoleucine, soit un résidu valine,
J	
	soit un résidu leucine, soit un résidu thréonine, soit un résidu
	norleucine, soit un résidu norvaline,
	à condition toutefois que (AA_1) , (AA_2) , (AA_3) , (AA_4) et (AA_5) ne
	forment jamais ensemble les séquences peptidiques
10	-Lys Gly Lys Leu lle- et -Lys Gly Lys Leu Val-,
	-Ω, fixé sur le groupe -CO- de la sérine représente :
	- un radical hydroxyle (-OH) ou un radical amino (-NH₂),
	 un radical alcoxy comportant de 1 à 6 atomes de carbone,
	- une séquence peptidique de formule (XII) :
15	-Val-Σ-Ψ (XII)
	dans laquelle Σ représente une séquence de formule (XIII) ou de
	formule (XIV):
	$-(AA_6)$ -Trp Asn- (AA_7) - (AA_8) (XIII)
	$-(AA_6)$ -Trp His- (AA_7) - (AA_8) (XIV)
20	dans lesquelles :
	 (AA₅) représente un acide aminé différent de la lysine,
	 (AA₇) représente un acide aminé,
	 (AA₈) représente un résidu sérine ou thréonine,
	et Ψ fixé sur le reste -CO- de l'acide aminé AA ₈ libre,
25	représente un groupe OH, NH₂ ou un radical alcoxy
	comportant de 1 à 6 atomes de carbone,
	- une séquence peptidique de formule (XV) :
	-Val-Ψ (XV)
	dans laquelle Ψ fixé sur le reste -CO- de la valine, a la même
30	signification que pour la formule (XII),
	o amon que peur la remaie (XIII),
	- ou une séquence peptidique de formule (XVI) à (XVIII) :
	-Z-TrpGlyCys- Θ -CysTyrThrSer- Ψ (XVI)
	Val-Σ-Z-TrpGlyCys-Θ-CysTyrThrSerVal-Σ-Ψ (XVII)
35	Val-Z-TrpGlyCys-Θ-CysTyrThrSerVal-Ψ (χVIII)

dans lesquelles Z et Θ ont la définition donnée pour la formule (I) et Σ a la définition donnée pour la formule (XII) et Ψ fixé sur le reste

-CO- de la sérine, sur le reste -CO- de l'acide aminé AA₈ ou sur le reste -CO- de la valine, a la même signification que pour la formule (XII).

- Peptides synthétiques de formule (I) selon la revendication 1, dans laquelle (AA₅) représente soit un résidu valine, soit un résidu leucine, soit un résidu thréonine et lorsque Ω correspond à une séquence peptidique de formule (XII) ou (XIV), (AA₆) représente soit un résidu glutamine, soit un résidu arginine.
- 10 3. Peptides synthétiques de formule (I), selon la revendication 1, dans laquelle :

-Δ représente un radical biotinyle, un atome d'hydrogène, ou une chaîne aliphatique pouvant contenir une ou deux fonctions thiol, aldéhyde ou amine, la chaîne aliphatique étant de préférence une chaîne alkyle de 1 à 6 atomes de carbone, ou une chaîne aminoalkylcarbonyle de 2 à 6 atomes de carbone,

-Z représente une séquence peptidique de formule (II) ou (V) dans lesquelles Ξ_1 représente une séquence peptidique de deux acides aminés et Ξ_2 représente un acide aminé, ou une séquence de formule (IV) dans laquelle Ξ_1 représente trois acides aminés, ou une séquence peptidique de formule (VIII) dans laquelle Ξ_1 représente une séquence peptidique de neuf, huit ou trois acides aminés et Ξ_2 une séquence peptidique de cinq acides aminés,

-O représente une séquence peptidique de formule :

-Lys Gly Arg Leu Val-,

-Arg Gly Lys Ala Val-,

- Arg Gly Arg Leu Val-,

ou

20

25

-Arg Gly Arg Ala Vai-,

et

 -Ω représente un groupe hydroxyle, la séquence peptidique (XV) ou une des séquences suivantes qui correspondent à la séquence peptidique de formule (XII) :

- Val Arg Trp Asn Glu Thr-Ψ,
- Val Gin Trp Asn Glu Thr-Ψ

ou

35

30

- Val Gln Trp Asn Ser Thr-Ψ.

4. Peptides synthétiques de formule (I), selon l'une des revendications 1 à 3, dans laquelle Z représente une séquence peptidique de formule :

- -Leu Leu Ser Ser-
- -Leu Leu Asn Ser-
- · -Arg Leu Asn Ser-
- -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ser-
- -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu-
- -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ile -
- -Leu Asn Gin Gin Arg Leu Leu Asn Ser-

ou

-Arg Ala Leu Glu Thr Leu Leu Asn Gln Gln Arg Leu Leu Asn Ser-

10

5

5. Peptides synthétiques de 20 à 50 acides aminés selon la revendication 1, de formule (la) :

$$\Delta$$
- Z_a -TrpGlyCys- Θ -CysTyrThrSer- Ω_a (Ia)

15

20

dans laquelle Za représente un radical de formules IIa à Xa :

$$\Xi_{1a}$$
-Ser- Ξ_{2a} (IIa)
-Ser- Ξ_{2a} (IIIa)
- Ξ_{1a} -Ser (IVa)
 Ξ_{1a} -Gln- Ξ_{2a} (VIa)
-Gln- Ξ_{2a} (VIa)
 Ξ_{1a} -Gln- (VIIa)
 Ξ_{1a} -Asn- Ξ_{2a} (IXa)
- Ξ_{1a} -Asn (Xa)

25

dans lesquelles :

- $-\Xi_{1a}$ représente une séquence peptidique de 1 à 5 acides aminés et
- -E₂a un acide aminé,

30

 $\text{-}\Omega_{\text{a}}$ représente une séquence peptidique de formule (XII), telle que définie pour la formule (I), ou une séquence peptidique de formule (XVIIa) :

$$Val-\Sigma-Z_a-TrpGlyCys-\Theta-CysTyrThrSerVal-\Sigma-\Psi \qquad \qquad (XVIIa)$$

35

et

 Δ , Θ , Σ et Ψ ont la même signification que pour la formule (I).

42 Peptides synthétiques de formule (I) selon l'une des revendications 1 à 5 6. incluant l'une des séquences suivantes : Séquence N° 1 -LLSLWGCRGKAVCYTSVQWNETou -Leu Leu Ser Leu Trp Gly Cys Arg Gly Lys Ala Val Cys Tyr Thr Ser Val Gin Trp Asn 1 5 10 15 20 Glu Thr-22 10 Séquence N° 2 -LLSLWGCRGRLVCYTSVQWNET--Leu Leu Ser Leu Trp Gly Cys Arg Gly Arg Leu Val Cys Tyr Thr Ser Val Gln Trp Asn 15 1 15 20 Glu Thr-22 20 Séquence N° 3 -LLSSWGCKGRLVCYTSVQWNETou -Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser Val Gln Trp Asn 10 15 20 25 Glu Thr-22 Séquence N° 4 -LLSSWGCKGRLVCYTSVQWNST-30 -Leu Leu Ser Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser Val Gin Trp Asn 1 5 15 20 Ser Thr-22 35 Séquence N° 5

ou

-LLQSWGCKGRLVCYTSVQWNST-

WO 98/45323 PCT/FR98/00691

	-Leu Leu Gln	Ser Trp Gly Cys	Lys Gly Arg Leu Val Cy	s Tyr Thr Ser Val G	In Trp Asn
-	1	5	10	15	20
	Ser Thr-				
	22				
5					
	Séquence n°	6			
	-LLNSWGCF	RGKAVCYTSV	QWNET-		
	ou				
	-Leu Leu Asn	Ser Trp Gly Cy	s Arg Gly Lys Ala Val Cys	Tvr Thr Ser Val G	In Trn Asn
10	1	5	10	15	20
	Glu Thr-			,,,	20
	22				
	Séquence N°	7			
15	-LLSLWGCR	_ GRAVCYTSV	QWNET-		
	ou				
	-Leu Leu Ser l	_eu Trp Glv Cvs	s Arg Gly Arg Ala Val Cys	Tyr Thr Ser Vai Gi	n Trn Asn
	1	5	10	15	20
	Glu Thr-			10	20
20	22			•	
	Séquence N°	8			
		- GRLVCYTSV	QWNET-		
	ou				
25	-Leu Leu Ser S	Ser Trp Glv Cvs	Arg Gly Arg Leu Val Cys	Tyr Thr Ser Val Gl	n Tro Aco
	1	5	10	15	20
	Glu Thr-		••	15	20
	22				
30	Séquence N°	9 :			
	-LLSSWGCK				
	ou				
		Ser Trn Gly C	ys Lys Gly Arg Leu Val	Com Tom The C	
	1	5			
35	•	3	10	15	
-	Séquence N°	10 ·			
	-LLNSWGCK		•		
	OU	GKLVC113-			
	ou .				

-Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser-1 5 15 Séquence N° 11: -ALETLLQNQQLLNSWGCRGRLVCYTSVRWNETou -Ala Leu Glu Thr Leu Leu Gln Asn Gln Leu Leu Asn Ser Trp Gly Cys Arg Gly 5 10 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr-10 25 Séquence N° 12 : -ALETLLQNQQLLNIWGCRGRLVCYTSVRWNET--Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asn Ile Trp Gly Cys Arg Gly 15 5 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr-20 25 30 20 Séquence N° 13: -ALETLLQNQQLLDLWGCRGRLVCYTSVRWNETou -Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu Trp Gly Cys Arg Gly 10 15 Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr-25 20 25 30 Séquence N° 14 : -LNQQRLLNSWGCKGRLVCYTSV-30 -Leu Asn Gin Gin Arg Leu Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr 1 10 15 Thr Ser Val-20 35 Séquence N° 15: -RALETLLNQQRLLNSWGCKGRLVCYTSVou

	- Arg Ala Leu G	ilu Thr Leu Leu	Asn Glr	Gln A	rg Lei	ı Leu Asn S	er Trp	Gly Cy	s
	1	5		10		1	5		
	Lys Gly Arg Let	u Val Cys Tyr Tl	hr Ser V	al-					
	20	25							
5									
	Séquence N° 16	<u>2</u> :							
	-RLNSWGCKG	RLVCYTSV-							
	ou								
	- Arg Leu Asn S	Ser Trp Gly Cys	Lys Gly	Arg Le	eu Val	Cys Tyr Th	r Ser V	'al-	
10	1	5		10		15			
	7. Peptides	synthétiques,	selon	l'une	des	revendicat	ions 1	à 6	, de
	séquence :	•				•			•
15	PEPTIDE N° 1 (2	R)							
13	LLSLWGCRGK		JET.						•
	ou	ON VOITO VQ VVI	7 L. 1						
	Leu Leu Ser Leu	Tro Gly Cys Ara	Gly I ve	Ala Val	Cve T	vr Thr Sor V	al Glo T	'ro Aco	
	1	5	10	Ala Val	Cys	15	ai Giii i	20	
20	Glu Thr		.0			13		20	
	22								
	PEPTIDE N° 2 (3)	<u>B)</u>							
	LLSLWGCRGR	RLVCYTSVQWI	NET						
25	ou								
	Leu Leu Ser Leu	Trp Gly Cys Arg	Gly Arg	Leu Va	i Cys	Tyr Thr Ser \	/al Gln∃	Γrp Asn	1
	1	5	10			15		20	
	Glu Thr							•	
	22								
30									
	PEPTIDE N° 3 (4)	<u>B)</u>							
	LLSSWGCKGR	RLVCYTSVQWN	NET						
	ou								
	Leu Leu Ser Ser	Trp Gly Cys Lys	Gly Arg	Leu Val	Cys T	yr Thr Ser V	al Gln T	rp Asn	
35	1	5	10			15		20	
	Glu Thr								
	22								

-	PEPTIDE N° 4	4 (5B)			·
	LLSSWGC	KGRLVCYTS'	VQWNST		
	ou				
	Leu Leu Ser	Ser Trp Gly C	ys Lys Gly Arg Leu Val Cys	Tyr Thr Ser Val	GIn Trp Asr
5	1	5	10	15	20
	Ser Thr				
	22				
	PEPTIDE N°	5 (6B)			
10	LLQSWGCI	KGRLVCYTS	VQWNST		
	ou				
	Leu Leu Gin	Ser Trp Gly Cy	s Lys Gly Arg Leu Val Cys	Tyr Thr Ser Val	Gln Trp Asn
	1	5	10	15	20
	Ser Thr				
15	22				
	PEPTIDE N° 6	<u> </u>			
	LLNSWGCF	RGKAVCYTS	VQWNET		
	ou				
20	Leu Leu Asn	Ser Trp Gly C	ys Arg Gly Lys Ala Val Cys	Tyr Thr Ser Val	Gln Trp Asn
	1	5	10	15	20
	Glu Thr				
	22				
25	PEPTIDE N° 7	7_			
	LLSLWGCR	RGRAVCYTS	/QWNET		
	ou				
	Leu Leu Ser	Leu Trp Gly C	s Arg Gly Arg Ala Val Cys	Tyr Thr Ser Val	Gin Trp Asn
	1	5	10	15	20
30	Glu Thr				
	22				
	PEPTIDE N° 8	3 (7B)			
	LLSSWGCF	RGRLVCYTS	/QWNET		
35	ou				

	Leu Leu Se	r Ser Trp Gly Cys A	rg Gly Arg Leu Val Cy	s Tyr Thr Ser Val G	Sin Trp Asn
•	1	5	10	15	20
	Glu Thr				
	22				
5					
	PEPTIDE N°	9 (12B)			
	LLSSWGC	KGRLVCYTS			
	ou				
	Leu Leu Se	er Ser Trp Gly Cys	Lys Gly Arg Leu Va	al Cys Tyr Thr Ser	
10	1	5	10	15	
	PEPTIDE N°	10 (14B)	•		
		KGRLVCYTS			
	ou				
15	Leu Leu As	sn Ser Trp Gly Cys	s Lys Gly Arg Leu Va	al Cvs Tvr Thr Ser	
	1	5	10	15	
	PEPTIDE N°	11 (18B)			
	ALETLLQN	IQQLLNSWGCRO	SRLVCYTSVRWNE ⁻	Г	
20	ou				
	Ala Leu Gli	u Thr Leu Leu Gin	Asn Gln Gln Leu Le	eu Asn Ser Trp Gl	v Cvs Ara Gh
	1	5	10	15	, o , o , a , a
	Arg Leu Va	I Cys Tyr Thr Ser	Val Arg Trp Asn Glu		
	20	25	30		
25					
	PEPTIDE N°	12 (19B)			
	ALETLLQN	IQQLLNIWGCRG	RLVCYTSVRWNET		
	ou				
		u Thr Leu Leu Gln	Asn Gin Gin Leu Le	u Asn lle Trn Gly	Cue Ara Gly
30	1	5	10	15	Cys Aig Gly
	Arg Leu Va		Val Arg Trp Asn Glu		
	20	25	30	1111	
		~~			

PEPTIDE N° 13 (20B)

ALETLLQNQQLLDLWGCRGRLVCYTSVRWNET

ou

-Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Asp Leu Trp Gly Cys Arg Gly

5 15

Arg Leu Val Cys Tyr Thr Ser Val Arg Trp Asn Glu Thr

20

25

30

PEPTIDE N° 14 (21B)

LNQQRLLNSWGCKGRLVCYTSV 10

ou

1

Leu Asn Gin Gin Arg Leu Leu Asn Ser Trp Giy Cys Lys Giy Arg Leu Vai Cys Tyr 10

5

15

15

Thr Ser Val

15 20

PEPTIDE N° 15 (22B)

RALETLLNQQRLLNSWGCKGRLVCYTSV

Arg Ala Leu Glu Thr Leu Leu Asn Gln Gln Arg Leu Leu Asn Ser Trp Gly Cys Lys 20

Gly Arg Leu Val Cys Tyr Thr Ser Val

20

25

PEPTIDE N° 16 (23B) 25

RLNSWGCKGRLVCYTSV

ou

Arg Leu Asn Ser Trp Gly Cys Lys Gly Arg Leu Val Cys Tyr Thr Ser Val

1

5

10

15

- Composition contenant un ou plusieurs peptides synthétiques de 8. formule (I) selon l'une quelconque des revendications 1 à 7.
- Composition selon la revendication 8 contenant le peptide N° 3 (4B) et le peptide N° 1 (2B). 35

- 10. Composition contenant un ou plusieurs peptides synthétiques de formule (I) selon la revendication 1 et un ou plusieurs peptides recombinés VIH-1 du groupe O.
- 5 11. Composition contenant un ou plusieurs peptides synthétiques de formule (I), selon la revendication 1, et un ou plusieurs peptides synthétiques ou recombinés VIH-1 et/ou VIH-2.
- 12. Procédé d'immunodosage mettant en oeuvre un ou plusieurs peptides synthétiques de formule (I), selon l'une quelconque des revendications 1 à 7.
 - 13. Procédé d'immunodosage mettant en oeuvre une composition selon l'une quelconque des revendications 8 à 11.
- 15 14. Trousse de diagnostic incluant au moins un peptide synthétique de formule (I), selon l'une quelconque des revendications 1 à 7, ou une composition selon l'une quelconque des revendications 8 à 11.

INTERNATIONAL SEARCH REPORT

inte __nal Application No PCT/FR 98/00691

		PCT/FR	98/00691
A. CLASSI IPC 6	IFICATION OF SUBJECT MATTER C07K14/16 C12N7/00		
According to	o international Patent Classification (iPC) or to both national classifica	ation and IPC	
	SEARCHED		
IPC 6	ocumentation searched (classification system followed by classification CO7K A61K C12N		
	tion searched other than minimumdocumentation to the extent that s		
Electronic d	lata base consulted during the international search (name of data bar	se and, where practical, search terms	used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
Х	WO 96 12809 A (PASTEUR INSTITUT; PIERRE (FR); CLAVEL FRANCOIS (FR) 2 May 1996 cited in the application Peptide n. 18 see page 23 see claims 36-39	CHARNEAU; BORM)	1-14
X	WO 96 27013 A (INST NAT SANTE REC ;ASSIST PUBL HOPITAUX DE PARIS (F SIMON) 6 September 1996		1-9, 12-14
Y	SEQ ID 68 see page 46 see the whole document		10,11
		-/	i ·
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are	isted in annex.
"A" docume consid	tegories of cited documents : ent defining the general state of the art which is not ered to be of particular relevance	"T" later document published after the or priority date and not in conflicting the cited to understand the principle invention	at with the application but
filing d		"X" document of particular relevance cannot be considered novel or of	
which i	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	Involve an inventive step when "Y" document of particular relevance	the document is taken alone
	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve document is combined with one	an inventive step when the or more other such docu-
"P" docume	ent published prior to the International filing date but an the priority date claimed	ments, such combination being in the art. "&" document member of the same p	•
Date of the	actual completion of theinternational search	Date of mailing of the Internation	al search report
9	September 1998	21/09/1998	
Name and m	nailing address of the ISA European Patent Office, P.B. 5816 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fuhr, C	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intr fonal Application No
PCT/FR 98/00691

Category °	ction) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Helevari w dam No.
Y	WO 95 32293 A (INT MUREX TECH CORP ;DUNCAN RICHARD JULIAN STUART (GB)) 30 November 1995 cited in the application	10,11
	see page 5, line 20 - page 6, line 14	
Α	WO 96 27012 A (AKZO NOBEL NV ;KOOLEN MARCUS JOSEPHUS MARIE (NL); SCHIELEN WILHELM) 6 September 1996 see the whole document	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/FR 98/00691

Patent document cited in search repor	t	Publication dat		Patent family member(s)	Publication date
- WO 9612809	Α	02-05-1996	FR FR AU CA EP ZA	2726006 A 2731225 A 3808995 A 2202408 A 0787191 A 9508878 A	26-04-1996 06-09-1996 15-05-1996 02-05-1996 06-08-1997 21-05-1996
WO 9627013	A	06-09-1996	FR CA EP	2731013 A 2214102 A 0812359 A	30-08-1996 06-09-1996 17-12-1997
WO 9532293	Α	30-11-1995	AU	2530795 A	18-12-1995
WO 9627012	Α	06-09-1996	AU	5100696 A	18-09-1996

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

le Internationale No

		PCT/FR 98	/00691
A. CLASSES CIB 6	MENT DE L'OBJET DE LA DEMANDE CO7K14/16 C12N7/00		·
Selon la clas	sification internationale des brevets (CIB) ou à la fois selon la classificati	on nationale et la CIB	
	ES SUR LESQUELS LA RECHERCHE A PORTE		
Documentati CIB 6	on minimale consultée (système de classification suivi des symboles de c CO7K A61K C12N	classement)	
Documentati	ion consultée autre que la documentationminimale dans la mesure où ce	s documents relèvent des domaines s	ur lesquets a porté la recherche
Base de don utilisés)	nées électronique consultée au cours de la recherche internationale (no	m de la base de données, et si cela es:	t réalisable, termes de recherche
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des	s passages pertinents	no. des revendications visées
X	WO 96 12809 A (PASTEUR INSTITUT ;CF PIERRE (FR); CLAVEL FRANCOIS (FR);	HARNEAU BORM)	1-14
	2 mai 1996 cité dans la demande Peptide n. 18 voir page 23		
	voir revendications 36-39		
Х	WO 96 27013 A (INST NAT SANTE RECH ;ASSIST PUBL HOPITAUX DE PARIS (FR SIMON) 6 septembre 1996		1-9, 12-14
Y	SEQ ID 68 voir page 46 voir le document en entier		10,11
	-/-		; •
X Voir	la suite du cadre C pour la finde la liste des documents	X Les documents de familles de b	revets sont indiqués en annexe
"A" docum	es spéciales de documents cités: T' ent définissant l'état général de latechnique, non déré comme particulièrement pertinent	document uttérieur publié après la da date de priorité et n'appartenenant technique pertinent, mais cité pour ou la théorie constituant la base de	pas à l'état de la comprendre le principe
"E" docum	ent antérieur, mais publié à la date dedépôt international "X rès cette date ent pouvant jeter un doute sur une revendcation de	 document particulièrement pertinent être considérée comme nouvelle ou inventive par rapport au document 	; l'invention revendiquée ne peut u comme impliquant une activité considéré isolément
autre "O" docum une e	citation ou pour une ratson speciale (felle qu'inciquee) lant se référant à une divulgation orale, à un usage, à exposition ou tous autres moyens	" document particulièrement pertinent ne peut être considérée comme im lorsque te document est associé à documents de même nature, cette pour une personne du métier	pliquant une activité inventive un ou plusieurs autres
posté		document qui fait partie de la même	
	uelle la recherche internationale a étéeffectivement achevée	Date d'expédition du présent rappor	t de recherche internationale
	9 septembre 1998 esse postale de l'administrationchargée de la recherche internationale	Fonctionnaire autorisé	
Monu et adt	Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fuhr, C	

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

•

Der : Internationale No PCT/FR 98/00691

Catégorie °	WO 95 32293 A (INT MUREX TECH CORP; DUNCAN RICHARD JULIAN STUART (GB)) 30 novembre 1995 cité dans la demande voir page 5, ligne 20 - page 6, ligne 14 WO 96 27012 A (AKZO NOBEL NV; KOOLEN MARCUS JOSEPHUS MARIE (NL); SCHIELEN WILHELM) 6 septembre 1996 voir le document en entier	tinents	no. des revendications yisées
Y	WO 95 32293 A (INT MUREX TECH CORP; DUNCAN RICHARD JULIAN STUART (GB)) 30 novembre 1995 cité dans la demande voir page 5, ligne 20 - page 6, ligne 14 WO 96 27012 A (AKZO NOBEL NV; KOOLEN MARCUS JOSEPHUS MARIE (NL); SCHIELEN WILHELM) 6 septembre 1996	unents	
	WO 96 27012 A (AKZO NOBEL NV ;KOOLEN MARCUS JOSEPHUS MARIE (NL); SCHIELEN WILHELM) 6 septembre 1996		10,11
A	WILHELM) 6 septembre 1996		

RAPPORT DE RECHE INTERNATIONALE

Renseignements relatifsx membres de familles de brevets

Der le Internationale No PCT/FR 98/00691

Document brevet cité au rapport de recherch	Ð	Date de publication		mbre(s) de la le de brevet(s)	Oate de publication
WO 9612809	A	02-05-1996	FR FR AU CA EP ZA	2726006 A 2731225 A 3808995 A 2202408 A 0787191 A 9508878 A	26-04-1996 06-09-1996 15-05-1996 02-05-1996 06-08-1997 21-05-1996
WO 9627013	A	06-09-1996	FR CA EP	2731013 A 2214102 A 0812359 A	30-08-1996 06-09-1996 17-12-1997
WO 9532293	Α	30-11-1995	AU	2530795 A	18-12-1995
WO 9627012	Α	06-09-1996	AU	5100696 A	18-09-1996

Formulaire PCT/ISA/210 (annexe families de brevets) (juillet 1992)

THIS PAGE BLANK (USPTO)