- 2.6.3 卡诺图化简法
- 1)逻辑函数的卡诺图表示
- (1) 卡诺图的构成
- ①格图形式的真值表

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

说明:卡诺图是由矩形或正方形组成的 图形,将矩形分成若干小方块,每个小 方块对应一个最小项。

上表头编码按00-01—11-10 循环码 顺序排列

- I最小项的序号为该小格对应的取值组合组成的
- 二进制数的十进制值
- Ⅱ逻辑相邻。

"逻辑相邻"一上下相邻,左 右相邻,并呈现"循环相邻" 的特性,它类似于一个封闭的 球面,如同展开了的世界地图 一样。对角线上不相邻。

③ 卡诺图中0和1的含义

I 从真值表的观点;

II 从最小项方块图观点:在函数的标准表达式中,不包含或包含某最小项.

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

2.6 逻辑函数的化简

- 2.6.3 卡诺图化简法
- 1)逻辑函数的卡诺图表示
- (1) 卡诺图的构成

例: 画出逻辑函数 $F(A,B,C) = \overline{ABC} + A\overline{BC} + AB\overline{C}$ 对应的卡诺图

解:

BO	00	01	11	10
$^{\Lambda}$ 0	0	1	0	0
1	1	0	0	1

w

- 2.6.3 卡诺图化简法
- 1)逻辑函数的卡诺图表示
- (1) 卡诺图的构成
- (2) 得到卡诺图的几种方法
- ① 按真值表直接填(课本page34,图2.6.1)
- ② 先把一般表达式转换为标准表达式,然后再填
- ③ 观察法

观察法: 在包含乘积项中全部变量的小格中填 1 例2.6.11 试将 $F(A,B,C,D) = AB\overline{C}\overline{D} + \overline{A}BD + AC$ 用卡诺图表示。

解:

(CI	D			
AB	00	01	11	10
00				
01		1	1	
11	1		1	1
10			1	1

- 2.6.3 卡诺图化简法
- 2) 卡诺图的运算(自学)
- (1) 相加
- (1) 相乘
- (1) 异或
- (1) 反演

例: 己知 $F_1(A,B,C,D) = A \overline{B} + C D$ $F_2(A,B,C,D) = B \overline{C} + A D$

试求
$$F = F_1 \oplus F_2 = \sum m(?)$$
。

解:用卡诺图分别表示函数 F_1 , F_2 ,F,如下图所示。

所以 $F = \sum m(3,4,5,7,8,10,12,13)$

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (1) 化简原理

最小项逻辑相邻,可以利用合并相邻项公式:

 $AB+A\overline{B}=A$ 化简。

10

2.6 逻辑函数的化简

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (2) 合并的对象

C\E	3 <u>00</u>	01	11	10
0		1	1	1
1	1	1		1

卡诺图上的小方格中,相邻的、并且构成矩形框的 2ⁿ个小格所包含的最小项。

(3) 合并的规则

将每个合并对象用一个卡诺圈圈起来,每个卡诺圈形成一个乘积项,该乘积项由卡诺圈内各小方格对应的取值相同的变量组成,其中"1"对应原变量,"0"对应反变量。

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (4) 合并的规律
- ① 圈2格,可消去1个变量;

$$F = \overline{A} \overline{B}$$

$$F = \overline{A} \overline{C}$$

М

②圈4格,可消去2个变量;

BC	00	01	11	10
0	1	1	0	0
1	1	1	0	0

$$F = \overline{B}$$

ABO	00	01	11	10
0	1	0	0	1
1	1	0	0	1

BC	00	01	11	10
0	1	1	1	1
1	0	0	0	0

$$\mathbf{F} = \overline{\mathbf{A}}$$

$$\mathbf{F} = \overline{\mathbf{C}}$$

$$F = \overline{B}\overline{D} + BD$$

AB\C	D 00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0

$$F = \overline{B}D + B\overline{D}$$

③ 圈8格,可消去3个变量;

ABC	D 00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0
		F =	D	

$$\mathbf{F} = \mathbf{D}$$

AB ^C	D 00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1
	-	$\overline{\mathbf{F}} =$	D	

结论: 圈2ⁱ 个相邻最小项,可消去 i 个变量(i = 0,1,2...)

v

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (5) 化简的原则、步骤
 - ① 圈卡诺圈的原则
 - a. 排斥原则: "1"和"0"不可共存于同一圈中;
 - b. 闭合原则: 圈完所有的"1"格;
 - c. 最小原则: 圈个数最少, 圈范围最大。

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (5) 化简的原则、步骤
 - ② 化简的步骤
 - a. 先圈孤立的"1格";
 - b. 再圈只有一个合并方向的"1格";
 - c. 圈剩下的"1格"。
 - d. 检查:每个圈中至少有1个"1格"未被其它圈圈过。

- 2.6.3 卡诺图化简法
- 3)卡诺图化简法
- (6) 化简举例

例2.6.12 化简函数

$$F(A,B,C,D) = \sum m(0,2,5,6,7,9,10,14,15)$$

为最简与或式。

AB ^C	00	01	11	10
00	1	0	0	1
01	0	1	1	1
11	0	0	1	1
10	0	1	0	1

$$F(A,B,C,D) = \overline{A} \overline{B} \overline{D} +$$

$$\overline{A} B D + A \overline{B} \overline{C} D +$$

$$B C + C \overline{D}$$

注意 (对"圈卡诺圈的原则"的补充和强调):

- a. 圈中"1"格的数目只能为 2^{i} (i = 0,1,2...),且是相邻的。
- b. 首先考虑圈数最少, 其次考虑圈尽可能大。
- c. 为了使卡诺圈尽可能的大,同一个"1"格可被圈多次(A+A=A)。
- d. 每个圈中必须有该圈独有的"1"格。
- e. "1格"要圈完,圈法有可能是不唯一的。

- 2.6.4 非完全描述逻辑函数的化简
- 1)约束项、任意项、无关项及非完全描述逻辑函数

约束项 (1) 无关项-

: 不可能出现的取值组合

所对应的最小项。

· **任音**節

任意项: 出现以后函数的值可任

意规定的取值组合所对应的最小项。

(2) 非完全描述逻辑函数

w

2.6 逻辑函数的化简

- 2.6.3 卡诺图化简法
- 2) 非完全描述逻辑函数的化简

无关项小格既可作为"0格"处理,也可作为"1格"处理,以使化简结果最简为准。

注意:卡诺圈中不可全是无关项;

例2.6.16 用卡诺图化简逻辑函数

$$\begin{cases} F(A,B,C,D) = \sum m(4,5,6,13,14,15) \\ A\overline{B} = 0 \end{cases}$$

$$F(A,B,C,D) = \overline{A} B \overline{C} + A D$$
$$+ B C \overline{D}$$

- 2.6.3 卡诺图化简法
- 3) 无关项的运算规则

表 2.6.1

+	0	1	Ø
Ø	Ø	1	Ø

X	0	1	Ø
Ø	0	Ø	Ø

\oplus	0	1	Ø
Ø	Ø	Ø	Ø

$$\overline{\mathbf{Q}} = \mathbf{Q}$$

例:三个人,只有一枝笔,都会写字。列出有人写字与三个人之间的逻辑关系。

C	B	A	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	×
1	0	0	1
1	0	1	×
1	1	0	×
1	1	1	×

内容回顾

- 什么是卡诺图? 它和逻辑函数及其真值表有何关系?
- 如何利用卡诺图化简逻辑函数?