Learning Circuits with Few Negations

Boolean functions are not that monoton(ous).

Clément Canonne

LIAFA - 2015

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Introduction

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $C \subseteq 2^{\{0,1\}^n}$, and unknown $f \in C$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $C \subseteq 2^{\{0,1\}^n}$, and unknown $f \in C$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Many flavors:

With membership queries: Can we approximately learn f (in Hamming distance, with high probability) from queries of the form $x? \leadsto f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $C \subseteq 2^{\{0,1\}^n}$, and unknown $f \in C$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Many flavors:

With membership queries: Can we approximately learn f (in Hamming distance, with high probability) from queries of the form $x? \rightsquigarrow f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

PAC-learning: unknown underlying distribution D on $\{0,1\}^n$. Can we approximately learn f (with high probability) from random examples $\langle x, f(x) \rangle$ – where each x is a *sample* drawn independently from D?

$$\Pr_{x \sim D}[f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $C \subseteq 2^{\{0,1\}^n}$, and unknown $f \in C$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Many flavors:

With membership queries: Can we approximately learn f (in Hamming distance, with high probability) from queries of the form $x? \rightsquigarrow f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

PAC-learning: unknown underlying distribution D on $\{0,1\}^n$. Can we approximately learn f (with high probability) from random examples $\langle x, f(x) \rangle$ – where each x is a *sample* drawn independently from D?

$$\Pr_{x \sim D}[f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

PAC-learning under the uniform distribution: PAC-learning is too hard, so assume D is uniform.

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $C \subseteq 2^{\{0,1\}^n}$, and unknown $f \in C$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Many flavors:

With membership queries: Can we approximately learn f (in Hamming distance, with high probability) from queries of the form $x? \rightsquigarrow f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

PAC-learning: unknown underlying distribution D on $\{0,1\}^n$. Can we approximately learn f (with high probability) from random examples $\langle x, f(x) \rangle$ – where each x is a *sample* drawn independently from D?

$$\Pr_{x \sim D}[f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

PAC-learning under the uniform distribution: PAC-learning is too hard, so assume D is uniform.

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

uniform PAC learning ≤ learning with queries

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if for any $x \leq y$ in $\{0,1\}^n$, $f(x) \leq f(y)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if for any $x \leq y$ in $\{0,1\}^n$, $f(x) \leq f(y)$.

For people with a twisted mind:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if $f(0^n) \le f(1^n)$, and f changes value at most once on any increasing chain from 0^n to 1^n .

(These definitions are equivalent.)

Examples.

The majority function (1 iff at least half the votes are positive): more votes cannot make a candidate lose. The s-clique function (1 iff the input graph contains a clique of size s): more edges cannot remove a clique.

The dictator function (1 iff $x_1 = 1$): more voters have no influence anyway.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Learning the class C^n from membership queries (to error $\frac{1}{\sqrt{n}\log n}$) requires query complexity $2^{\Omega(n)}$. [BT96]

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Learning the class C^n from membership queries (to error $\frac{1}{\sqrt{n}\log n}$) requires query complexity $2^{\Omega(n)}$. [BT96]

Are we done here?

Outline of the talk

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Introduction

Generalizing monotone functions: \mathcal{C}_t^n .

Learning C_t^n : Upper bound.

Learning C_t^n : Lower bound.

Conclusion and Open Problem(s).

Plan in more detail

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

 \blacksquare Generalizing monotone functions to "k-alternating:" two views, reconcilied by Markov's Theorem.

■ A structural theorem: characterizing these new functions as combination of simpler ones \rightsquigarrow upper bound on learning k-alternating functions, almost "for free."

 \blacksquare Lower bound: a succession and combination thereof (from monotone... to monotone to k-alternating: hardness amplification)

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Generalizing monotone functions: \mathcal{C}_t^n .

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ has inversion complexity t if it can be computed by a Boolean circuit with t negations (besides AND and OR gates), but no less.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ has inversion complexity t if it can be computed by a Boolean circuit with t negations (besides AND and OR gates), but no less.

For people with a twisted mind:

Definition. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is k-alternating if f changes value at most k times on any increasing chain from 0^n to 1^n .

(Analysis of Boolean functions enthusiasts, stay with us?)

Examples.

The "not-too-many" function (1 iff between 40% and 60% of the votes are positive): more votes can harm a candidate.

The s-clique-but-no-Hamiltonian function (1 iff the input graph contains a clique of size s, but no Hamiltonian cycle): more edges can make things worse.

The Highlander function (1 iff exactly one of the x_i 's is 1): there shall be only one.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 4 (Markov's Theorem [Mar57]). Let $f: \{0,1\}^n \to \{0,1\}$ be a function which is not identically 0. Then f is k-alternating if and only if it has inversion complexity $O(\log k)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 7 (Markov's Theorem [Mar57]). Let $f: \{0,1\}^n \to \{0,1\}$ be a function which is not identically 0. Then f is k-alternating if and only if it has inversion complexity $O(\log k)$.

A refinement of this characterization:

Theorem 8. If f is k-alternating, then it can be written $f(x) = h(m_1(x), \ldots, m_k(x))$, where each $m_i(x)$ is monotone and h is either the parity function or its negation. Conversely, any function of this form is k-alternating.

Corollary 9. Every $f \in C_t^n$ can be expressed as $f = h(m_1, \dots, m_T)$ where h is either Parity_T or its negation, each $m_i : \{0, 1\}^n \to \{0, 1\}$ is monotone, and $T = O(2^t)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 10 (Markov's Theorem [Mar57]). Let $f: \{0,1\}^n \to \{0,1\}$ be a function which is not identically 0. Then f is k-alternating if and only if it has inversion complexity $O(\log k)$.

A refinement of this characterization:

Theorem 11. If f is k-alternating, then it can be written $f(x) = h(m_1(x), \dots, m_k(x))$, where each $m_i(x)$ is monotone and h is either the parity function or its negation. Conversely, any function of this form is k-alternating.

Corollary 12. Every $f \in C_t^n$ can be expressed as $f = h(m_1, \dots, m_T)$ where h is either $Parity_T$ or its negation, each $m_i : \{0,1\}^n \to \{0,1\}$ is monotone, and $T = O(2^t)$.

Proof (and interpretation). the m_i 's are successive nested layers:

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Learning C_t^n : Upper bound.

Influence, Low-Degree Algorithm, and a Can of Soup

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 13. There is a uniform-distribution learning algorithm which learns any unknown $f \in C_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$.

Influence, Low-Degree Algorithm, and a Can of Soup

•

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 15. There is a uniform-distribution learning algorithm which learns any unknown $f \in C_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$. (Recall the $n^{O(\sqrt{n}/\varepsilon)}$ for monotone functions, i.e. t=0.)

Influence, Low-Degree Algorithm, and a Can of Soup

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 17. There is a uniform-distribution learning algorithm which learns any unknown $f \in C_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$. (Recall the $n^{O(\sqrt{n}/\varepsilon)}$ for monotone functions, i.e. t=0.)

Proof. Recall the *influence* of a Boolean functions is defined as

$$\mathbf{Inf}[f] = \sum_{i=1}^{n} \mathbf{Inf}_i[f], \quad \text{where} \quad \mathbf{Inf}_i[f] = \Pr_{x \in \{0,1\}^n}[f(x) \neq f(x^{\oplus i})]$$

and that monotone functions each have total influence at most \sqrt{n} . Moreover, we can learn functions with good Fourier concentration:

Theorem 18 (Low-Degree Algorithm ([LMN93])). Let C be a class of Boolean functions such that for $\varepsilon > 0$ and $\tau = \tau(\varepsilon, n)$,

$$\sum_{|S| > \tau} \hat{f}(S)^2 \le \varepsilon$$

for any $f \in \mathcal{C}$. Then \mathcal{C} can be learned from uniform random examples in time poly $(n^{\tau}, 1/\varepsilon)$.

Combining the decomposition theorem, a union bound, some massaging, and the above, k-alternating functions have total influence at most $k\sqrt{n}$, and we get the theorem.

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Learning C_t^n : Lower bound.

Three-step program

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Three-step program

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

(a) Monotone functions are hard to learn well. (A simple extension of [BT96].)

Learning monotone functions to (very small) error $\frac{1}{\sqrt{n}}$ requires 2^{Cn} queries, for some absolute C > 0.

(b) Monotone functions are hard to learn, period. (Hardness amplification and the previous result.)

Learning monotone functions to (almost any) error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ queries.

(c) k-alternating functions are hard to learn, too! (Hardness amplification again – and a truncated parity.)

Learning k-alternating functions to (almost any) error ε requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ queries.

In more detail: tools for (b) and (c) – bear with me

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Definition (Composition). For $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^r \to \{0,1\}$, $g \otimes f$ is the function on n = mr variables defined by

$$(g \otimes f)(x) \stackrel{\text{def}}{=} g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

For any $g: \{0,1\}^r \to \{0,1\}$ and $\mathcal{F}_m \subseteq 2^{\{0,1\}^m}$, $g \otimes \mathcal{F}_m = \{g \otimes f: f \in \mathcal{F}_m\}$ and $g \otimes \mathcal{F} = \{g \otimes \mathcal{F}_m\}_{m \geq 1}$.

Definition (Noise stability). For $f: \{0,1\}^n \to \{0,1\}$, the noise stability of f at $\eta \in [-1,1]$ is

$$\operatorname{Stab}_{\eta}(f) \stackrel{\text{def}}{=} 1 - 2 \Pr[f(x) \neq f(y)]$$

where $x \sim \{0,1\}^n$, and x and y are η -correlated.

In more detail: tools for (b) and (c) – bear with me

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Definition (Composition). For $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^r \to \{0,1\}$, $g \otimes f$ is the function on n = mr variables defined by

$$(g \otimes f)(x) \stackrel{\text{def}}{=} g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

For any $g: \{0,1\}^r \to \{0,1\}$ and $\mathcal{F}_m \subseteq 2^{\{0,1\}^m}$, $g \otimes \mathcal{F}_m = \{g \otimes f: f \in \mathcal{F}_m\}$ and $g \otimes \mathcal{F} = \{g \otimes \mathcal{F}_m\}_{m \geq 1}$.

Definition (Noise stability). For $f: \{0,1\}^n \to \{0,1\}$, the noise stability of f at $\eta \in [-1,1]$ is

$$\operatorname{Stab}_{\eta}(f) \stackrel{\text{def}}{=} 1 - 2 \Pr[f(x) \neq f(y)]$$

where $x \sim \{0,1\}^n$, and x and y are η -correlated.

Definition (Bias and expected bias). The bias of a Boolean function $h: \{0,1\}^n \to \{0,1\}$ is bias $(h) \stackrel{\text{def}}{=} \max(\Pr[h=1], \Pr[h=0])$ while the expected bias of h at δ is defined as

$$\operatorname{ExpBias}_{\delta}(h) \stackrel{\operatorname{def}}{=} \mathbb{E}_{\rho}[\operatorname{bias}(h_{\rho})]$$

where ρ is a random δ -restriction on n coordinates.

In more detail: tools for (b) and (c) – bear with me

Introduction Generalizing monotone functions: \mathcal{C}_{t}^{n} . Learning \mathcal{C}_{t}^{n} : Upper bound. Learning \mathcal{C}_{t}^{n} : Lower bound. Conclusion and Open Problem(s).

Definition (Composition). For $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^r \to \{0,1\}$, $g \otimes f$ is the function on n = mr variables defined by

$$(g \otimes f)(x) \stackrel{\text{def}}{=} g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

For any $g: \{0,1\}^r \to \{0,1\}$ and $\mathcal{F}_m \subseteq 2^{\{0,1\}^m}$, $g \otimes \mathcal{F}_m = \{g \otimes f: f \in \mathcal{F}_m\}$ and $g \otimes \mathcal{F} = \{g \otimes \mathcal{F}_m\}_{m \geq 1}$.

Definition (Noise stability). For $f: \{0,1\}^n \to \{0,1\}$, the noise stability of f at $\eta \in [-1,1]$ is

$$\operatorname{Stab}_{\eta}(f) \stackrel{\text{def}}{=} 1 - 2 \Pr[f(x) \neq f(y)]$$

where $x \sim \{0,1\}^n$, and x and y are η -correlated.

Definition (Bias and expected bias). The bias of a Boolean function $h: \{0,1\}^n \to \{0,1\}$ is bias $(h) \stackrel{\text{def}}{=} \max(\Pr[h=1], \Pr[h=0])$ while the expected bias of h at δ is defined as

$$\operatorname{ExpBias}_{\delta}(h) \stackrel{\operatorname{def}}{=} \mathbb{E}_{\rho}[\operatorname{bias}(h_{\rho})]$$

where ρ is a random δ -restriction on n coordinates.

Theorem 21 (Theorem 12 of [FLS11]). Fix $g: \{0,1\}^r \to \{0,1\}$, and let \mathcal{F} be a class of m-variable functions with "very small bias." Let A be a membership query algorithm that learns $g \otimes \mathcal{F}$ to accuracy $\operatorname{ExpBias}_{\gamma}(g) + \epsilon$ using $T(m, r, 1/\epsilon, 1/\gamma)$ queries. Then there is a membership query algorithm to learn \mathcal{F} to accuracy $1 - \gamma$, using $O(T \cdot \operatorname{poly}(m, r, 1/\epsilon, 1/\gamma))$ membership queries.

In more detail: step (b)

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Theorem 22. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

In more detail: step (b)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 23. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

• Choose suitable $m, r = \omega(1)$ such that mr = n.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 24. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

- \blacksquare Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise) $(Why? We want \operatorname{ExpBias}_{\gamma}(g_r) + \epsilon' \leq 1 \varepsilon, \ and \ less \ stable \ means \ smaller \ expected \ bias)$

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 25. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise) $(Why? We \ want \ ExpBias_{\gamma}(g_r) + \epsilon' \le 1 \varepsilon, \ and \ less \ stable \ means \ smaller \ expected \ bias)$
- \blacksquare Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class of monotone functions" from Step (a).

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 26. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise) $(Why? We \ want \ ExpBias_{\gamma}(g_r) + \epsilon' \le 1 \varepsilon, \ and \ less \ stable \ means \ smaller \ expected \ bias)$
- \blacksquare Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class of monotone functions" from Step (a).
- Hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 27. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise) $(Why? We \ want \ ExpBias_{\gamma}(g_r) + \epsilon' \le 1 \varepsilon, \ and \ less \ stable \ means \ smaller \ expected \ bias)$
- Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class of monotone functions" from Step (a).
- Hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 28. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 29. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

• Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 30. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

 (Why? We want our function to be k-alternating, very little stable, and $r \approx k^2$ instead of k is a technicality)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 31. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

 (Why? We want our function to be k-alternating, very little stable, and $r \approx k^2$ instead of k is a technicality)
- Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m being the "hard class of monotone functions" from Step (b).

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 32. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

 (Why? We want our function to be k-alternating, very little stable, and $r \approx k^2$ instead of k is a technicality)
- Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m being the "hard class of monotone functions" from Step (b).
- Really hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 33. For any function $k: \mathbb{N} \to \mathbb{N}$, there exists a class $\mathcal{H}^{(k)}$ of balanced k(n)-alternating Boolean functions (on n variables) such that, for any n sufficiently large and $\varepsilon > 0$ such that (i) $2 \le k < n^{1/14}$, and (ii) $k^{7/3}/n^{1/6} \le \varepsilon \le .49$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

 (Why? We want our function to be k-alternating, very little stable, and $r \approx k^2$ instead of k is a technicality)
- Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m being the "hard class of monotone functions" from Step (b).
- Really hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Conclusion and Open Problem(s).

Open problems

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Weak Learning: can one learn C_t^n to error $\frac{1}{2} - \frac{1}{\text{poly}(n)}$ ("barely better than random") in polynomial time? (Related) Fourier spectrum: Can we get any further understanding of the Fourier spectrum of k-alternating functions?

Concrete example:

Let f, g be monotone Boolean functions, and $h = \mathsf{Parity}(f, g)$. Can we prove

$$\sum_{|S| \le 2} \hat{h}(S)^2 \ge \frac{1}{\text{poly}(n)}?$$

Or even $\sum_{|S| \le 2} \hat{h}(S)^2 > 0$?

Thank you.

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Any question?

References

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

- [BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the ACM, 43(4):747–770, 1996.
- [FLS11] V. Feldman, H. K. Lee, and R. A. Servedio. Lower bounds and hardness amplification for learning shallow monotone formulas. *Journal of Machine Learning Research Proceedings Track*, 19:273–292, 2011.
- [LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. Journal of the ACM, 40(3):607-620, 1993.
- [Mar57] A. A. Markov. On the inversion complexity of systems of functions. *Doklady Akademii Nauk SSSR*, 116:917–919, 1957. English translation in [?].
- [MO03] E. Mossel and R. O'Donnell. On the noise sensitivity of monotone functions. Random Structures and Algorithms, 23(3):333–350, 2003.