1 Lema do Bombeamento

Seja L uma linguagem reconhecível.

Então, existe um inteiro $n \ge 1$ tal que para cada palavra $\omega \in L$, com $|\omega| \ge n$, existem palavras x, y e z tal que $x = xyz, y \ne \lambda, |xy| \le n$ e para todo $k \ge 0$, $xy^kz \in L$.

Demonstração. Seja L uma linguagem reconhecível. Então, existe um afd $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ tal que $L(\mathcal{A}) = L$. Considere n = |Q|. Seja em L não existem palavras de comprimento $\geq n$, nada ha para provar. Caso contrario, seja $\omega \in L$, com $|\omega| \geq n$. Então, $w = \sigma_1 \sigma_2 \dots \sigma_n \omega^i$, com $\sigma_i \in \Sigma$ (para $1 \leq i \leq n$) e $\omega \in \Sigma^+$ TERMINAR

1.1 Exemplos

• $B = \{w \in \{a, b\}^* : |w|_a = |w|_b\}$

Suponha que B seja reconhecível.

Então, $B \cap L(a^*b^*)$ deveria ser reconhecível, pois $L(a^*b^*)$ e rec. e $Rec(\Sigma)$ e fechada para a intersecção.

Mas, $B \cap L(a^*b^*) = A$ que ja provamos que não e rec. Logo, obtemos uma contradição. Portanto, B não e rec.

1.2 Mostre que as seg. ling. não são reconhecíveis

1. $L1 = \{xx : x \in \{a, b\}^*\}$

Suponha que L1 seja rec.

Seja n o inteiro fornecido pelo L.B. para L1.

Considere a palavra $w = a^n b a^n b$.

Como $w \in L1$ e |w| > n, o L.B. garante que existem palavras x, y e z, tal que $w = xyz, y \neq \lambda, |xy| \leq n$ e para todo $k \geq 0, xy^kz \in L1$.

Como $y \neq \lambda$ e $|xy| \leq n$, existem inteiros $r \geq 0$ e s > 0 ($r + s \leq n$) tal que $x = a^r$, $y = a^s$ e $z = a^{n-r-s}ba^nb$.

Considere a palavra $t=xy^3z=a^r(a^s)^3a^{n-r-s}ba^nb=a^{n+2s}ba^nb$. Pelo L.B., $t\in L1$.

Como |t| = 2(n+s+1) e s > 0, segue que o prefixo de t de comprimento $\frac{|t|}{2}$ é $t_1 = a^{n+s+1}$ e o sufixo de t de comprimento $\frac{|t|}{2}$ é $t_2 = a^{s-1}ba^nb$.

Mas, como $t_1 = t_2$ e $|t_1| = |t_2|$, resulta que $t = t_1 t_2 \notin L1$.

O que é uma contradição. Portanto, L1 não é reconhecível.

2. $L2 = \{a^{i^2} : i \ge 0\}$

Suponha que L2 seja rec.

Seja n o inteiro fornecido pelo L.B. para L2.

Considere a palavra $w = a^{n^2}$.

Como $w \in L2$ e |w| > n, o L.B. garante que existem palavras x, y e z, tal que $w = xyz, y \neq \lambda, |xy| \leq n$ e para todo $k \geq 0, xy^kz \in L2$.

Como $y \neq \lambda$ e $|xy| \leq n$, existem inteiros $r \geq 0$ e $s > 0 (r + s \leq n)$ tal que

```
x=a^r,\,y=a^se z=a^{n^2-r-s}. Considere a palavra t=xy^2z=a^r(a^s)^2a^{n^2-r-s}=a^{n^2+s} Pelo L.B., t\in L2. Mas, n^2<|t|=n^2+s\leq n^2+n< n^2+2n+1=(n+1)^2 Logo, |t| não pode ser um quadrado perfeito. Então, t\notin L2. O que é uma contradição. Portanto, L2 não é reconhecível.
```

3. $L3 = \{a^i b^j : i > j \ge 0\}$ Suponha que L3 seja rec.

Seja n o inteiro fornecido pelo L.B. para L3.

Considere a palavra $w = a^{n+1}b^n$.

FAZER EM CASA?!?!

4. $L4 = \{a^ib^i: i, j \geq 0 \text{ e } i \neq j\}$ PENSAR EM CASA?!?!?!?!

Sem usar o L.B. ...

Vimos que $A = \{a^i b^i : i \ge 0\}$ não é rec.

 $\bar{L} = \{a^ib^i : i, j \ge 0 \text{ e } i = j\} \cup \{w \in \{a,b\}^* : \text{w tem pelo menos um fator } ba\}.$

Suponha que L4 seja rec.

Então, \bar{L} também seria rec.

A não e rec.

Logo, $\bar{L} \cap L(a^*b^*)$ também não e rec.

Mas, $\bar{L} \cap L(a^*b^*) = A$ que não é rec. Chegamos a uma contradição.

Portanto, \bar{L} e L não são rec.

Obs:
$$L = \{a^i b^j c^k : i, j, k \ge 0 \text{ e } (i = 0 \text{ ou } j = k)\}.$$

- $\bullet\,$ Prove que L satisfaz o L.B. (n=1)
- \bullet Vamos provar que L não é rec.

$$L = \{b\}^* \{c\}^* \cup \{a\}^+ \{b^j c^k : j, k \ge 0 \text{ e } j = k\}.$$

Mostrar que L^R não é rec.

"Esboço:"

Suponha que L é rec.

Então, $L \cap \{a\}^{+}\{b\}^{*}\{c\}^{*}$ seja rec. Mas $L \cap \{a\}^{+}\{b\}^{*}\{c\}^{*} = L'$.

Prove que $L^{'} = \{a\}^{+}\{b^{j}c^{j} : j \geq 0\}$ não é rec.

(Use o L.B. para provar que Rec e fechada para inverso).

5. $L5 = \{a^p : peprimo\}$