Package 'superpc'

October 12, 2020

Type Package

Version 1.10

Title Supervised Principal Components

Date 2020-10-12
Author Eric Bair [aut], Jean-Eudes Dazard [cre, ctb], Rob Tibshirani [ctb]
Maintainer Jean-Eudes Dazard < jean-eudes.dazard@case.edu>
Description Supervised principal components for regression and survival analysis. Especially useful for high dimnesional data, including microarray data.
Depends R ($>= 3.5.0$)
Imports survival, stats, graphics, grDevices
NeedsCompilation no
<pre>URL http://www-stat.stanford.edu/~tibs/superpc, https: //github.com/jedazard/superpc</pre>
Repository CRAN, GitHub, Inc.
Date/Publication 2004-09-16
License GPL (>= 3) file LICENSE
Archs i386, x64
R topics documented:
superpc.decorrelate
superpc.fit.to.outcome
superpc.listfeatures
superpc.lrtest.curv
superpc.plotcv
superpc.plotred.lrtest
superpc.predict
superpc.predict.red
superpc.predict.red.cv
superpc.predictionplot 1 superpc.rainbowplot 2
superpe.train

2 superpc.cv

Index 24

 ${\it superpc.cv} \qquad {\it Cross-validation for supervised principal components}$

Description

This function uses a form of cross-validation to estimate the optimal feature threshold in supervised principal components

Usage

Arguments

fit	Object returned by superpc.train
data	Data object of form described in superpc.train documentation
n.threshold	Number of thresholds to consider. Default 20.
n.fold	Number of cross-validation folds. default is around 10 (program pick a convenient value based on the sample size
folds	List of indices of cross-validation folds (optional)
n.components	Number of cross-validation components to use: 1,2 or 3.
min.features	Minimum number of features to include in determining range for threshold. Default 5.
max.features	Maximum number of features to include in determining range for threshold. Default is total number of features in the dataset
compute.fullcv	Should full cross-validation be done?
compute.preval	Should full pre-validation be done?
xl.mode	Used by Excel interface only
xl.time	Used by Excel interface only
xl.prevfit	Used by Excel interface only

Details

This function uses a form of cross-validation to estimate the optimal feature threshold in supervised principal components. To avoid prolems with fitting Cox models to samll validation datastes, it uses the "pre-validation" approach of Tibshirani and Efron (2002)

superpc.cv 3

Value

threshold Vector of thresholds considered

nonzero Number of features exceeding each value of the threshold

scor.preval Likelihood ratio scores from pre-validation

scor Full CV scores

folds Indices of CV folds used

featurescores.folds

Feature scores for each fold

v.preval The pre-validated predictors

type problem type call calling sequence

Author(s)

• "Eric Bair, Ph.D."

• "Jean-Eudes Dazard, Ph.D."

• "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

4 superpc.decorrelate

superpc.decorrelate

Decorrelate features with respect to competing predictors

Description

Fits a linear model to the features as a function of some competing predictors. Replaces the features by the residual from this fit. These "decorrelated" features are then used in the superpc model building process, to explicitly look for predictors that are independent of the competing predictors. Useful for example, when the competing predictors are clinical predictors like stage, grade etc.

Usage

Arguments

x matrix of features. Different features in different rows, one observation per column

competing.predictors

List of one or more competing predictors. Discrete predictors should be factors

Value

Returns lm (linear model) fit of rows of x on compeiting predictors.

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
set.seed(332)
#generate some data
x <- matrix(rnorm(50*30), ncol=30)
y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))

featurenames <- paste("feature", as.character(1:50), sep="")
competing.predictors <- list(pred1=rnorm(30),</pre>
```

superpc.fit.to.outcome 5

superpc.fit.to.outcome

Fit predictive model using outcome of supervised principal components

Description

Fit predictive model using outcome of supervised principal components, via either coxph (for surival data) or lm (for regression data)

Usage

Arguments

fit Object returned by superpc.train.

data.test Data object for prediction. Same form as data object documented in superpc.train.

score Supervised principal component score, from superpc.predict.

competing.predictors

Optional - a list of competing predictors to be included in the model.

print Should a summary of the fit be printed? Default TRUE.

iter.max Max number of iterations used in predictive model fit. Default 5. Currently only

relevant for Cox PH model.

Value

Returns summary of coxph or lm fit.

6 superpc.listfeatures

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

Examples

```
set.seed(332)
#generate some data
x \leftarrow matrix(rnorm(50*30), ncol=30)
y \leftarrow 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
ytest <- 10 + \text{svd}(x[1:50,]) v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test \leftarrow sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                    y=ytest,
                    censoring.status=censoring.status.test,
                    featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
fit <- superpc.predict(a,</pre>
                         data,
                         data.test,
                         threshold=1.0,
                         n.components=1,
                         prediction.type="continuous")
superpc.fit.to.outcome(a,
                         data,
                         fit$v.pred)
```

superpc.listfeatures Return a list of the important predictors

Description

Return a list of the important predictor

superpc.listfeatures 7

Usage

Arguments

data Data object

train.obj Object returned by superpc.train

fit.red Object returned by superpc.predict.red, applied to training set

fitred.cv (Optional) object returned by superpc.predict.red.cv

num.features Number of features to list. Default is all features.

component.number

Number of principal component (1,2, or 3) used to determine feature importance scores

Value

Returns matrix of features and their importance scores, in order of decreasing absolute value of importance score. The importance score is the correlation of the reduced predictor and the full supervised PC predictor. It also lists the raw score- for survival data, this is the Cox score for that feature; for regression, it is the standardized regression coefficient. If fitted.cv is supplied, the function also reports the average rank of the gene in the cross-validation folds, and the proportion of times that the gene is chosen (at the given threshold) in the cross-validation folds.

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
set.seed(332)
#generate some data
x <- matrix(rnorm(50*30), ncol=30)
y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))</pre>
```

8 superpc.lrtest.curv

```
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                   y=ytest,
                   censoring.status=censoring.status.test,
                   featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
fit.red <- superpc.predict.red(a,</pre>
                                 data,
                                 data.test,
                                  .6)
superpc.listfeatures(data,
                       fit.red,
                       num.features=10)
```

superpc.lrtest.curv

Compute values of likelihood ratio test from supervised principal components fit

Description

Compute values of likelihood ratio test from supervised principal components fit

Usage

Arguments

object Object returned by superpc.train.

data List of training data, of form described in superpc.train documentation.

newdata List of test data; same form as training data.

 ${\tt n.components}$ Number of principal components to compute. Should be 1,2 or 3.

threshold Set of thresholds for scores; default is n.threshold values equally spaced over

the range of the feature scores.

n. threshold Number of thresholds to use; default 20. Should be 1,2 or 3.

superpc.lrtest.curv 9

Value

1rtest Values of likelihood ratio test statistic

comp2 Description of 'comp2'

threshold Thresholds used

type Type of outcome variable

call calling sequence

Author(s)

• "Eric Bair, Ph.D."

"Jean-Eudes Dazard, Ph.D."

• "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

• E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.

• E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
set.seed(332)
#generate some data
x \leftarrow matrix(rnorm(50*30), ncol=30)
y \leftarrow 10 + svd(x[1:50,])v[,1] + .1*rnorm(30)
ytest <- 10 + \text{svd}(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                    y=ytest,
                   censoring.status=censoring.status.test,
                    featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
aa <- superpc.lrtest.curv(a, data, data.test)</pre>
#superpc.plot.lrtest(aa)
```

10 superpc.plot.lrtest

Description

Plot likelhiood ratio test statistics from output of superpc.predict

Usage

Arguments

```
object.lrtestcurv
Output from superpc.lrtest.curv
call.win.metafile
For use by PAM Excel interface
```

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

superpc.plotcv 11

superpc.plotcv

Plot output from superpc.cv

Description

Plots pre-validation results from plotcy, to aid in choosing best threshold

Usage

Arguments

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

12 superpc.plotred.lrtest

Examples

superpc.plotred.lrtest

Plot likelihood ratio test statistics from supervised principal components predictor

Description

Plot likelihood ratio test statistics from supervised principal components predictor

Usage

Arguments

```
object.lrtestred
Output from either superpc.predict.red or superpc.predict.redcv
call.win.metafile
Used only by PAM Excel interface call to function
```

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

superpc.predict 13

References

• E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.

• E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

Examples

```
## Not run:
set.seed(332)
#generate some data
x \leftarrow matrix(rnorm(50*30), ncol=30)
y \leftarrow 10 + svd(x[1:50,])v[,1] + .1*rnorm(30)
ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                    y=ytest,
                    censoring.status=censoring.status.test,
                    featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
aa <- superpc.cv(a, data)</pre>
fit.red <- superpc.predict.red(a,</pre>
                                  data,
                                  data.test,
                                  .6)
fit.redcv <- superpc.predict.red.cv(fit.red,</pre>
                                       data,
                                       .6)
superpc.plotred.lrtest(fit.redcv)
## End(Not run)
```

superpc.predict

Form principal components predictor from a trained superpc object

Description

Computes supervised principal components, using scores from "object"

Usage

14 superpc.predict

```
newdata,
threshold,
n.components=3,
prediction.type=c("continuous","discrete","nonzero"),
n.class=2)
```

Arguments

object Obect returned by superpc.train

data List of training data, of form described in superpc.train documentation,

newdata List of test data; same form as training data

threshold Threshold for scores: features with abs(score) > threshold are retained.

n.components Number of principal components to compute. Should be 1,2 or 3.

prediction.type

"continuous" for raw principal component(s); "discrete" for principal component categorized in equal bins; "nonzero" for indices of features that pass the

threshold

n. class Number of classes into which predictor is binned (for prediction.type="discrete"

Value

v.pred Supervised principal componients predictor
u U matrix from svd of feature matrix x
d singual values from svd of feature matrix x
which.features Indices of features exceeding threshold
n.components Number of supervised principal components requested

call calling sequence

Author(s)

- "Eric Bair, Ph.D."
- · "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
set.seed(332)
#generate some data
x <- matrix(rnorm(50*30), ncol=30)
y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)</pre>
```

superpc.predict.red 15

```
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
             censoring.status=censoring.status,
             featurenames=featurenames)
data.test <- list(x=x,</pre>
                   y=ytest,
                   censoring.status=censoring.status.test,
                   featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
fit <- superpc.predict(a,</pre>
                        data,
                        data.test,
                        threshold=1.0,
                        n.components=1)
plot(fit$v.pred, ytest)
```

superpc.predict.red

Feature selection for supervised principal components

Description

Forms reduced models to approximate the supervised principal component predictor.

Usage

Arguments

fit	Object returned by superpc.train
data	Training data object, of form described in superpc.train dcoumentation
data.test	Test data object; same form as train
threshold	Feature score threshold; usually estimated from superpc.cv
n.components	Number of principal components to examine; should equal 1,2, etc up to the number of components used in training

16 superpc.predict.red

n.shrinkage Number of shrinkage values to consider. Default 20.

shrinkages Shrinkage values to consider. Default NULL.

compute.lrtest Should the likelihood ratio test be computed? Default TRUE sign.wt Signs of feature weights allowed: "both", "pos", or "neg"

prediction.type

Type of prediction: "continuous" (Default) or "discrete". In the latter, superprc

score is divided into n.class groups

n.class Number of groups for discrete predictor. Default 2.

Details

Soft-thresholding by each of the "shrinkages" values is applied to the PC loadings. This reduce the number of features used in the model. The reduced predictor is then used in place of the supervised PC predictor.

Value

shrinkages Shrinkage values used

1rtest.reduced Likelihood ratio tests for reduced models

num.features Number of features used in each reduced model feature.list List of features used in each reduced model

coef Least squares coefficients for each reduced model

import Importance scores for features

wt Weight for each feature, in constructing the reduced predictor

v.test Outcome predictor from reduced models. Array of n.shrinkage by (number of

test observations)

v.test.1df Outcome combined predictor from reduced models. Array of n.shrinkage by

(number of test observations)

n. components Number of principal components used

type Type of outcome call calling sequence

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

superpc.predict.red.cv 17

Examples

```
set.seed(332)
#generate some data
x <- matrix(rnorm(50*30), ncol=30)</pre>
y \leftarrow 10 + svd(x[1:50,])v[,1] + .1*rnorm(30)
ytest <- 10 + \text{svd}(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                   y=ytest,
                    censoring.status=censoring.status.test,
                    featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
fit.red <- superpc.predict.red(a,</pre>
                                  data,
                                 data.test,
                                  threshold=.6)
superpc.plotred.lrtest(fit.red)
```

superpc.predict.red.cv

Cross-validation of feature selection for supervised principal components

Description

Applies superpc.predict.red to cross-validation folds generates in superpc.cv. Uses the output to evaluate reduced models, and compare them to the full supervised principal components predictor.

Usage

Arguments

fitred	Output of superpc.predict.red
fitcv	Output of superpc.cv
data	Training data object
threshold	Feature score threshold; usually estimated from superpc.cv
sign.wt	Signs of feature weights allowed: "both", "pos", or "neg"

Value

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
## Not run:
set.seed(332)
#generate some data
x <- matrix(rnorm(50*20), ncol=20)</pre>
y \leftarrow 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20)
ytest <- 10 + \text{svd}(x[1:10,])$v[,1] + .1*rnorm(20)
censoring.status <- sample(c(rep(1,15), rep(0,5)))
censoring.status.test <- sample(c(rep(1,15), rep(0,5)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                    y=ytest,
                    censoring.status=censoring.status.test,
                    featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
aa <- superpc.cv(a, data)</pre>
fit.red <- superpc.predict.red(a,</pre>
                                  data,
                                  data.test,
                                  threshold=.6)
fit.redcv <- superpc.predict.red.cv(fit.red,</pre>
                                        aa,
                                        data,
```

superpc.predictionplot 19

threshold=.6)

End(Not run)

superpc.predictionplot

Plot outcome predictions from superpc

Description

Plots outcome predictions from superpc

Usage

Arguments

train.obj	Object returned by superpc.train	
data	List of training data, of form described in superpc.train documentation	
data.test	List of test data; same form as training data	
threshold	Threshold for scores: features with abs(score) > threshold are retained.	
n.components	Number of principal components to compute. Should be 1,2 or 3.	
n.class	Number of classes for survival stratification. Only applicable for survival data. Default 2.	
shrinkage	Shrinkage to be applied to feature loadings. Default is NULL, meaning no shrinkage	
call.win.metafile		

Used only by Excel interface call to function

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

20 superpc.rainbowplot

Examples

```
set.seed(332)
#generate some data
x <- matrix(rnorm(50*30), ncol=30)</pre>
y \leftarrow 10 + svd(x[1:50,])v[,1] + .1*rnorm(30)
ytest <- 10 + \text{svd}(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                   y=ytest,
                   censoring.status=censoring.status.test,
                   featurenames=featurenames)
a <- superpc.train(data, type="survival")</pre>
superpc.predictionplot(a,
                         data,
                         data.test,
                         threshold=1)
```

superpc.rainbowplot

Make rainbow plot of superpc and compeiting predictors

Description

Makes a heatmap display of outcome predictions from superpc, along with expected survival time, and values of competing predictors.

Usage

Arguments

data List of (test) data, of form described in superpc.train documentation pred Superpc score from superpc.predict or superpc.predict.red sample.labels Vector of sample labels of test data competing.predictors

List of competing predictors to be plotted call.win.metafile

Used only by Excel interface call to function

superpc.rainbowplot 21

Details

Any censored survival times are estimated by E(T|T>C), where C is the observed censoring time and the Kaplan-Meier estimate from the training set is used to estimate the expectation.

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

```
set.seed(332)
#generate some data
x \leftarrow matrix(rnorm(50*30), ncol=30)
y \leftarrow 10 + svd(x[1:50,])v[,1] + .1*rnorm(30)
ytest <- 10 + \text{svd}(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))
featurenames <- paste("feature", as.character(1:50), sep="")</pre>
competing.predictors.test <- list(pred1=rnorm(30),</pre>
                                     pred2=as.factor(sample(c(1,2),
                                                      replace=TRUE,
                                                      size=30)))
data <- list(x=x,</pre>
              censoring.status=censoring.status,
              featurenames=featurenames)
data.test <- list(x=x,</pre>
                   y=ytest,
                   censoring.status=censoring.status.test,
                   featurenames=featurenames)
sample.labels <- paste("te", as.character(1:20), sep="")</pre>
a <- superpc.train(data, type="survival")</pre>
pred <- superpc.predict(a,</pre>
                          data,
                          data.test,
                          threshold=.25,
                          n.components=1)$v.pred
superpc.rainbowplot(data,
                     sample.labels,
                     competing.predictors=competing.predictors.test)
```

22 superpc.train

SIII	perpc	tr	าลาท

Prediction by supervised principal components

Description

Does prediction of a quantitative regression or survival outcome, by the supervised principal components method.

Usage

Arguments

type

data	Data object with components x- p by n matrix of features, one observation per
	column; y- n-vector of outcome measurements; censoring.status- n-vector of
	censoring censoring.status (1= died or event occurred, 0=survived, or event was
	censored), needed for a censored survival outcome

Problem type: "survival" for censored survival outcome, or "regression" for sim-

ple quantitative outcome

s0.perc Factor for denominator of score statistic, between 0 and 1: the percentile of

standard deviation values added to the denominator. Default is 0.5 (the median)

Details

Compute wald scores for each feature (gene), for later use in superpc.predict and superpc.cv

Value

feature.scores

Score for each feature (gene)

type problem type

s0.perc Factor for denominator of score statistic

call calling sequence

Author(s)

- "Eric Bair, Ph.D."
- "Jean-Eudes Dazard, Ph.D."
- "Rob Tibshirani, Ph.D."

Maintainer: "Rob Tibshirani, Ph.D."

References

- E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
- E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

superpc.train 23

Index

```
* regression
                                               superpc.train, 22
    superpc.cv, 2
    superpc.decorrelate, 4
    superpc.fit.to.outcome, 5
    superpc.listfeatures, 6
    superpc.lrtest.curv, 8
    superpc.plot.lrtest, 10
    superpc.plotcv, 11
    superpc.plotred.lrtest, 12
    superpc.predict, 13
    superpc.predict.red, 15
    superpc.predict.red.cv, 17
    superpc.predictionplot, 19
    superpc.rainbowplot, 20
    superpc.train, 22
* survival
    superpc.cv, 2
    superpc.decorrelate, 4
    superpc.fit.to.outcome, 5
    superpc.listfeatures, 6
    superpc.lrtest.curv, 8
    superpc.plot.lrtest, 10
    superpc.plotcv, 11
    superpc.plotred.lrtest, 12
    superpc.predict, 13
    superpc.predict.red, 15
    superpc.predict.red.cv, 17
    superpc.predictionplot, 19
    superpc.rainbowplot, 20
    superpc.train, 22
superpc.cv, 2
superpc.decorrelate, 4
superpc.fit.to.outcome, 5
superpc.listfeatures, 6
superpc.lrtest.curv, 8
superpc.plot.lrtest, 10
superpc.plotcv, 11
superpc.plotred.lrtest, 12
superpc.predict, 13
superpc.predict.red, 15
superpc.predict.red.cv, 17
superpc.predictionplot, 19
superpc.rainbowplot, 20
```