1 Model Checking problem

input:

- formula ϕ
- ullet structure S defining a semantic for the tokens of the formular

output:

does the formula hold over ϕ

validity satifiability

input:

• formula $\phi \to$ checker \rightarrow yes no output: yes/no does ϕ hold over all possible S ϕ needs to hold over all S and is more strict than

logical equivalence:

input:

formula ϕ_1

formula ϕ_n

output:

yes: if ϕ_1 till ϕ_n hold over all S

usefull for:

if ϕ_1 is very complex and ϕ_2 is super trivial. If it turns out that they are logically equivalent we can use ϕ_2 instead of ϕ_1 and save a lot of calculations.

equivalence reduces to validity satisfiability

Note

 \models is equivalent to \Rightarrow

and means from that the Righthand side is the logical consequence of the Lefthand side

1.1 <u>definability between logics</u>

input:

- formula ϕ_1
- Logic L_1

Question:

can you rewrite ϕ_1 valid in L_1 to another formula ϕ_2 in L_2 for example because maybe L_2 has better algorithmical complexity.

2 Propositional Logic

vocabulary:

- $\sum = \{p, q, r\}$ are boolean variables
- \vee , \wedge , \neg , \Longrightarrow , \iff are boolean connectives

syntax

```
grammar: what is a valid formula examples : p|q|, |\phi \wedge \phi| \neg |\phi \implies \phi|
```

all formulas can also be represented by a <u>syntactic tree</u>

example $p \wedge (\neg q \vee r)$ is

semantics:

requires a structure $S: \sum \implies \{true, false\}$ describes when ϕ holds on S (denoted as $S \models \phi$)

examples for the application of \models

$$S \models p \iff S(p) = True$$
 $S \models \phi_1 \land \phi_2 \iff S \models \phi_1 ext{ and } S \models \phi_2$ $S \models \phi_1 \lor \phi_2 \iff S \models \phi_1 ext{ or } S \models \phi_2$

3 Model Checking

We write a program that check if the above statements are fulfilled

What is the complexity of this algorithm is polynomial: size of the formula -> number of rows of the <u>syntactic tree</u> times the size of the structure -> polynomial

Name EVAL and is p-complete

4 Satisfiability

Short name: SAT

We look for one Structure of S where the

The complexity is exponential time because you have to try every possible configuration of variables.

One can guess the inputs ${\it vx}$ to make it non-deterministic. Then the complexity is not exponential.

#Validity

We look if the formula ϕ is valid in all Structures S

```
def Valid(phi):
    let p1,p2,... = all propositional variables in phi

for v1 = true,false do
    for v2 = true,false do
    ...
    S=[p1:v1,p2:v2]
    if not Model-check(phi,S):
        return false
    return true
```

The complexity is exponential time because you have to try every possible configuration of variables.

One can guess the inputs vx to make it non deterministic.

5 Economy of Syntax

Lemma 1:

Every formula is equivalent to one without \iff and \implies

prove:

```
\phi_1 \implies \phi_2 is equivalent to (\neg \phi_1) \lor \phi_2 \phi_1 \iff \phi_2 is equivalent to (\phi_1 \land \phi_2) \land (\neg \phi_1 \land \neg \phi_2))
```

Lemma 2:

Every formula is equivalent to one in Negation Normal Form.

The <u>Negation Normal Form</u> can be computed efficiently if there is no \iff .

$$\neg(\phi_1\lor\phi_2)$$

proof:

- $\neg(\phi_1 \lor \phi_2)$ becomes $(\neg\phi_1 \land \neg\phi_2)$
- $\neg(\phi_1 \land \phi_2)$ becomes $(\neg \phi_1 \lor \neg \phi_2)$

see: Morgans Laws

Lemma 3:

Every formula is <u>equi-sartisfiable</u> to one in <u>Conjunctive Normal Form</u>. The <u>Conjunctive Normal Form</u> can be computed efficiently if there is no \iff

proof: exercise

Corollary 1:

CNF-SAT is NP-complete

6 Tableaux

We want to check Satisfiability

Motto:instead of guessing the structure we guess pieces of the formula that are easy to satisfy.

A <u>Tableaux</u> is usually a tree.

Another example:

Rules:

One can only break up on conjunction or disjunction every level.

The choice changes the tableaux but the result is always the same.

- 1. ϕ needs to be in the <u>Negation Normal Form</u> -> to keep the \neg next to the variables
- 2. start with a singleton tree $\{\phi\}$ which in other representation is $\{\alpha_0\}$ with one single leave F_0 for each leave that is not *unblocked*:
- 3. Choose a part of the formula α_n (a sub-formula)
- 4. expand the tree under F_n by adding
 - if α_n has the form of $\beta \wedge \beta'$
 - $F_n + 1 = \{F \text{ ohne } \alpha, \beta, \beta'\}$
 - if α_n has the form of $\beta \vee \beta'$ add two children
 - $F_{n+1} = \{F \text{ ohne } \alpha, \beta\}$
 - $F_{n+1} = \{F \text{ ohne } \alpha, \beta'\}$

The formula is not

The formula is **invalid** if one branch contains a contradiction for instance $\{p, \neg p\}$

The formula is valid if no branch contains a contradiction

6.1 Example/ Application:

Consider a device whose internal state is encoded by k bits $p=p_1,\ldots,p_n$

- initial state is described by a propositional formula $\phi_{init}(p)$
- ullet target state is described by a propositional formula $\phi_{target}(p)$
- Transitional formulas are described by a propositional formula $\phi_{step}(p,p')$

Question: can we go from $\phi_{init}(p)$ to $\phi_{target}(p)$ by only applying $\phi_{step}(p,p')$

Maximum length of steps is 2^k as there are ony 2^k possible variations when having k bits.

The formula describes it:

$$\phi_{reach}(\underline{p_1},\ldots,\underline{p_n}) = \phi_{init}(\underline{p_1}) \land \phi_{step}(\underline{p_1},\underline{p_2}) \land \ \ldots \ \land \phi_{step}(\underline{p_{n-2}},\underline{p_{n-1}}) \land \phi_{target}(\underline{p_n})$$

If this formula is satisfiable there is a way from init to target

7 QBF Quantified Boolean Formulas

Vocabulary:

- Boolean variables $\sum = \{p,q,r...\}$
- Boolean connectives $\land, \lor, \neg, \iff, \implies$
- ∀, ∃ Quantifiers

Syntax:

$$\phi = p|q|\dots|\phi \wedge \phi|\phi \vee \phi|\neg\phi|\phi \iff \phi|\phi \implies \phi|\exists p\phi|\forall p\phi$$

semantics:

describes when $S \models \phi$ for $S: \sum \implies \{\text{True,False}\}$

$S \models p$	\iff	S(p) = True
$S \models \phi_1 \land \phi_2$	\iff	$S\models\phi_1 ext{ or } S\models\phi_2$
$S \models \exists p \phi$	\iff	$S' \models \phi ext{ for some } S' \in \{S[p := ext{true}], S[p := ext{false}]\}$
$S \models \exists p \phi$	\iff	$S' \models \phi ext{ for every } S' \in \{S[p := ext{true}], S[p := ext{false}]\}$

The \forall and \exists means that we fix one of the variables to either true or false and reevaluate it with this fixed value. If S is valid for one of the set values one uses \exists if the structure holds for all one uses \forall .

Note

 $\exists p\phi$ is logically equivalente to $\neg \forall p \neg \phi$

Example:

$$S \stackrel{?}{\models} orall p \exists q (p ee
eg q) \wedge (
eg p ee q)$$

$$S_1 = [p := true] \models \forall p \exists q (p \lor \neg q) \land (\neg p \lor q)$$

two possibilities for S_1 of which one but be satisfied:

$$S_1' = [p = true, q = false]$$
 result with this input is not satisfied

$$S_1^{\prime\prime}=[p=true,q=true]$$
 result with this input is satisfied => True

$$S_2 = [p := false] \models \forall p \exists q (p \lor \neg q) \land (\neg p \lor q)$$

Same here, one of the two options need to be satisfieed

$$S_2' = [p = false, q = false]$$
 result with this input is satisfied =>true

$$S_2^{\prime\prime}=[p=false,q=true]$$
 result with this input is not satisfied=>false

That means that in case S'' there does not exist one q that makes the equation valid that means the whole statement is wrong

Bound and free variables

- a variable p is considered bound when it appears under a scope of a quantor i.e. $\exists p$ or $\forall p$
- a variable is considered free when it is not in the a scope under quantor. i.e. in all other cases

Example:

the first occurrence of p is free. The third occurrence of p $(\neg p)$ is bound to the $\exists p$. $\phi = p \dots \exists p \dots (\neg p)$

When we write $\phi(p_1, p_2, \dots, p_n)$ we mean that the free variables of ϕ are p_1, p_2, \dots, p_n

When we write $\phi[p/\alpha]$ we denote a formula where we replace all occurences of p by α . Another Notation could be when we first write $\phi(p)$ that to denote that we exchange p by α we write $\phi[\alpha]$. Take care square brackets!

Example:

 $\phi = \neg p ee \exists p (p \wedge q)$

When we write $\phi[p/\alpha]$ we only replace the free occurences of p

i.e:

$$\phi = \neg lpha \lor \exists p (p \land q)$$

Lemma 4 (renaming)

 $\exists p\phi$ is equivalent to $\exists q\phi[p/q]$ if q does not appear free in ϕ