Resolução Detalhada da Prova de Probabilidade

Análise Estatística e Matemática

06 de julho de 2025

Sumário

Introdução

Este documento apresenta a resolução detalhada dos problemas propostos na avaliação. Cada questão é abordada com rigor matemático e estatístico, explicitando todas as etapas do raciocínio, desde a definição dos conceitos fundamentais até a obtenção do resultado final. A notação e a linguagem utilizadas são consistentes com a teoria de probabilidades e a estatística matemática, visando a clareza e a precisão técnica.

Problema 1. pr-1 Seja $\Omega = \{a, b, c\}$ um espaço amostral, $\mathcal{F} = \mathcal{P}(\Omega)$ o conjunto de partes de Ω como sua σ -álgebra e $P(\{\omega\}) = \frac{1}{3}$ para todo $\omega \in \Omega$. Consideremos as variáveis aleatórias X e Y definidas em (Ω, \mathcal{F}, P) como

$$X(\omega) = \begin{cases} 1, & se \quad \omega = a, \ ou \ \omega = b, \\ 0, & se \quad \omega = c \end{cases} \qquad e \qquad Y(\omega) = \begin{cases} \pi, & se \quad \omega = a, \\ \frac{1}{2}, & se \quad \omega = b, \\ -1, & se \quad \omega = c \end{cases}$$

Obtenha as distribuições condicionais acumuladas F(X|Y) e F(Y|X).

Resolução do Problema 1

Para obter as funções de distribuição acumulada (FDA) condicionais, $F(x|y) = P(X \le x|Y = y)$ e $F(y|x) = P(Y \le y|X = x)$, o primeiro passo é caracterizar a distribuição de probabilidade conjunta do par de variáveis aleatórias (X,Y).

1. Determinação da Função de Probabilidade Conjunta

A função de probabilidade conjunta, p(x,y)=P(X=x,Y=y), é determinada avaliando os pares $(X(\omega),Y(\omega))$ para cada $\omega\in\Omega$ e sua respectiva probabilidade. Dado que $P(\{a\})=P(\{b\})=P(\{c\})=1/3$:

- Para $\omega = a$: Temos X(a) = 1 e $Y(a) = \pi$. A probabilidade deste evento é $P(\{a\}) = 1/3$. Portanto, $p(1,\pi) = P(X=1,Y=\pi) = 1/3$.
- Para $\omega=b$: Temos X(b)=1 e Y(b)=1/2. A probabilidade deste evento é $P(\{b\})=1/3$. Portanto, p(1,1/2)=P(X=1,Y=1/2)=1/3.
- Para $\omega = c$: Temos X(c) = 0 e Y(c) = -1. A probabilidade deste evento é $P(\{c\}) = 1/3$. Portanto, p(0, -1) = P(X = 0, Y = -1) = 1/3.

Para todos os outros pares (x, y), a probabilidade conjunta é zero. A distribuição conjunta pode ser resumida na seguinte tabela, que também inclui as distribuições marginais (soma das linhas e colunas).

Y X	-1	1/2	π	$p_X(x)$
0	1/3	0	0	1/3
1	0	$0 \\ 1/3$	1/3	$\frac{1/3}{2/3}$
$p_Y(y)$	1/3	1/3	1/3	1

2. Determinação das Funções de Probabilidade Condicionais

A função de probabilidade condicional é dada por $p(x|y) = \frac{p(x,y)}{p_Y(y)}$ e $p(y|x) = \frac{p(x,y)}{p_X(x)}$

0.0.0.1 Condicional de X dado Y = y:

- Se y = -1: $p(x|-1) = \frac{p(x,-1)}{1/3}$. Assim, p(0|-1) = 1 e p(1|-1) = 0.
- Se y = 1/2: $p(x|1/2) = \frac{p(x,1/2)}{1/3}$. Assim, p(0|1/2) = 0 e p(1|1/2) = 1.
- Se $y = \pi$: $p(x|\pi) = \frac{p(x,\pi)}{1/3}$. Assim, $p(0|\pi) = 0$ e $p(1|\pi) = 1$.

0.0.0.2 Condicional de Y dado X = x:

- Se x = 0: $p(y|0) = \frac{p(0,y)}{1/3}$. Assim, p(-1|0) = 1 e p(y|0) = 0 para $y \neq -1$.
- Se x = 1: $p(y|1) = \frac{p(1,y)}{2/3}$. Assim, p(1/2|1) = 1/2 e $p(\pi|1) = 1/2$.

3. Obtenção das Funções de Distribuição Acumulada Condicionais

0.0.0.3 FDA Condicional $F(x|y) = P(X \le x|Y = y)$: A partir das probabilidades condicionais, construímos a FDA para cada valor de y.

• Para y = -1: A massa de probabilidade está toda em X = 0.

$$F(x|-1) = \begin{cases} 0, & \text{se } x < 0 \\ 1, & \text{se } x \ge 0 \end{cases}$$

• Para y = 1/2: A massa de probabilidade está toda em X = 1.

$$F(x|1/2) = \begin{cases} 0, & \text{se } x < 1\\ 1, & \text{se } x \ge 1 \end{cases}$$

• Para $y = \pi$: A massa de probabilidade está toda em X = 1.

$$F(x|\pi) = \begin{cases} 0, & \text{se } x < 1\\ 1, & \text{se } x \ge 1 \end{cases}$$

0.0.0.4 FDA Condicional $F(y|x) = P(Y \le y|X = x)$: Analogamente, para cada valor de x.

• Para x = 0: A massa de probabilidade está toda em Y = -1.

$$F(y|0) = \begin{cases} 0, & \text{se } y < -1\\ 1, & \text{se } y \ge -1 \end{cases}$$

2

- Para x=1: A massa de probabilidade está distribuída entre Y=1/2 e $Y=\pi.$

$$F(y|1) = \begin{cases} 0, & \text{se } y < 1/2 \\ P(Y \le y|X = 1) = p(1/2|1) = 1/2, & \text{se } 1/2 \le y < \pi \\ P(Y \le y|X = 1) = p(1/2|1) + p(\pi|1) = 1, & \text{se } y \ge \pi \end{cases}$$

Problema 2. pr-3 Suponha que a distribuição conjunta das variáveis aleatórias discretas X e Y está dada por

$X \setminus Y$	1	2	3	4
0	0,1	0	0	0
-1	0,1	0,1	0	0
-2	0,1	0,1	0,1	0
-3	0,1	0,1	0,1	0,1

Calcule:

- 1. $P(X \ge -1, Y \ge 1)$
- 2. As distribuições marginais de X e Y e determine se X e Y são independentes.
- 3. Encontre a função de distribuição condicional de X dado Y.

Resolução do Problema 2

Seja p(x,y) a função de probabilidade conjunta dada na tabela.

Item (a): Cálculo de $P(X \ge -1, Y \ge 1)$

O evento $\{X \ge -1, Y \ge 1\}$ compreende os pares (x, y) tais que $x \in \{0, -1\}$ e $y \in \{1, 2, 3, 4\}$. A probabilidade é a soma das probabilidades conjuntas para esses pares.

$$P(X \ge -1, Y \ge 1) = \sum_{x \in \{0, -1\}} \sum_{y=1}^{4} p(x, y)$$

$$= p(0, 1) + p(0, 2) + p(0, 3) + p(0, 4)$$

$$+ p(-1, 1) + p(-1, 2) + p(-1, 3) + p(-1, 4)$$

$$= (0, 1 + 0 + 0 + 0) + (0, 1 + 0, 1 + 0 + 0)$$

$$= 0, 1 + 0, 2 = 0, 3$$

Portanto, $P(X \ge -1, Y \ge 1) = 0, 3$.

Item (b): Distribuições Marginais e Independência

As distribuições marginais, $p_X(x)$ e $p_Y(y)$, são obtidas somando as probabilidades ao longo das linhas e colunas da tabela conjunta, respectivamente.

Y X	1	2	3	4	$p_X(x)$
0	0,1	0	0	0	0,1
-1	0,1	0,1	0	0	0,2
-2	0,1	0,1	0,1	0	0,3
-3	0,1	0,1	0,1	0,1	0,4
$p_Y(y)$	0,4	0,3	0,2	0,1	1,0

0.0.0.5 Distribuição Marginal de X: $p_X(0) = 0, 1$; $p_X(-1) = 0, 2$; $p_X(-2) = 0, 3$; $p_X(-3) = 0, 4$.

0.0.0.6 Distribuição Marginal de Y: $p_Y(1) = 0, 4$; $p_Y(2) = 0, 3$; $p_Y(3) = 0, 2$; $p_Y(4) = 0, 1$.

0.0.0.7 Verificação de Independência: Duas variáveis aleatórias X e Y são independentes se, e somente se, $p(x,y) = p_X(x)p_Y(y)$ para todos os pares (x,y). É suficiente encontrar um contra-exemplo. Consideremos o par (x,y) = (0,1):

- Da tabela, p(0,1) = 0, 1.
- O produto das marginais é $p_X(0) \cdot p_Y(1) = (0,1) \times (0,4) = 0,04$.

Como $p(0,1) = 0, 1 \neq 0, 04 = p_X(0)p_Y(1)$, concluímos que as variáveis aleatórias X e Y não são independentes.

Item (c): Função de Distribuição Condicional de X dado Y

A FDA condicional $F(x|y) = P(X \le x|Y = y)$ é construída a partir da PMF condicional $p(x|y) = p(x,y)/p_Y(y)$.

0.0.0.8 Caso 1:
$$\mathbf{Y} = \mathbf{1}$$
 $(p_Y(1) = 0, 4)$ $p(0|1) = \frac{0, 1}{0, 4} = \frac{1}{4}$; $p(-1|1) = \frac{0, 1}{0, 4} = \frac{1}{4}$; $p(-2|1) = \frac{0, 1}{0, 4} = \frac{1}{4}$; $p(-3|1) = \frac{1}{4}$;

$$\textbf{0.0.0.9} \quad \textbf{Caso 2: } \mathbf{Y} = \textbf{2} \ (p_Y(2) = 0, 3) \quad p(-1|2) = \frac{0, 1}{0, 3} = \frac{1}{3}; \ p(-2|2) = \frac{0, 1}{0, 3} = \frac{1}{3}; \ p(-3|2) = \frac{0, 1}{0, 3} = \frac{1}{3}.$$

$$F(x|2) = \begin{cases} 0, & x < -3 \\ 1/3, & -3 \le x < -2 \\ 1/3 + 1/3 = 2/3, & -2 \le x < -1 \\ 1, & x \ge -1 \end{cases}$$

0.0.0.10 Caso 3:
$$\mathbf{Y} = \mathbf{3}$$
 $(p_Y(3) = 0, 2)$ $p(-2|3) = \frac{0,1}{0,2} = \frac{1}{2}$; $p(-3|3) = \frac{0,1}{0,2} = \frac{1}{2}$. $F(x|3) = \begin{cases} 0, & x < -3 \\ 1/2, & -3 \le x < -2 \\ 1, & x \ge -2 \end{cases}$

0.0.0.11 Caso 4:
$$\mathbf{Y} = \mathbf{4} \ (p_Y(4) = 0, 1) \quad p(-3|4) = \frac{0, 1}{0, 1} = 1. \ F(x|4) = \begin{cases} 0, & x < -3 \\ 1, & x \ge -3 \end{cases}$$

Problema 3. pr-2 Considere um par de variáveis aleatórias discretas (X,Y) cuja função de distribuição de probabilidade conjunta é F, i.e., $F(x,y) = P(X \le x, Y \le y)$, $x,y \in \mathbb{R}$. Sejam F_X e F_Y as funções de distribuição das variáveis aleatórias X e Y, respectivamente (distribuições marginais). Mostre que:

$$P(X > x, Y > y) = 1 - F_X(x) - F_Y(y) + F(x, y).$$

Resolução do Problema 3

Desejamos provar a identidade $P(X > x, Y > y) = 1 - F_X(x) - F_Y(y) + F(x, y)$. Esta identidade é frequentemente chamada de função de sobrevivência conjunta. A prova se baseia na teoria de conjuntos e nos axiomas de probabilidade de Kolmogorov.

Sejam A e B os seguintes eventos:

- $A = \{\omega \in \Omega : X(\omega) > x\}$
- $B = \{\omega \in \Omega : Y(\omega) > y\}$

O nosso objetivo é calcular $P(A \cap B)$.

Consideremos os eventos complementares, A^c e B^c :

- $A^c = \{\omega \in \Omega : X(\omega) \le x\}$. Por definição da FDA marginal, $P(A^c) = P(X \le x) = F_X(x)$.
- $B^c = \{\omega \in \Omega : Y(\omega) \le y\}$. Por definição da FDA marginal, $P(B^c) = P(Y \le y) = F_Y(y)$.

Pelo axioma da probabilidade do complemento, a probabilidade de um evento $E \notin P(E) = 1 - P(E^c)$. Aplicando isso ao evento $A \cap B$:

$$P(A \cap B) = 1 - P((A \cap B)^c)$$

Utilizando as Leis de De Morgan para conjuntos, sabemos que $(A \cap B)^c = A^c \cup B^c$. Substituindo na equação:

$$P(A \cap B) = 1 - P(A^c \cup B^c)$$

Agora, aplicamos o Princípio da Inclusão-Exclusão para a probabilidade da união de dois eventos:

$$P(A^c \cup B^c) = P(A^c) + P(B^c) - P(A^c \cap B^c)$$

Vamos identificar cada termo desta expressão:

- $P(A^c) = F_X(x)$.
- $P(B^c) = F_Y(y)$.
- $A^c \cap B^c = \{X \leq x \text{ e } Y \leq y\}$. A probabilidade deste evento é, por definição da FDA conjunta, $P(A^c \cap B^c) = P(X \leq x, Y \leq y) = F(x, y)$.

Substituindo estes termos de volta na fórmula da união:

$$P(A^{c} \cup B^{c}) = F_{X}(x) + F_{Y}(y) - F(x, y)$$

Finalmente, inserimos este resultado na expressão para $P(A \cap B)$:

$$P(A \cap B) = 1 - (F_X(x) + F_Y(y) - F(x, y))$$

Distribuindo o sinal negativo, obtemos a identidade desejada:

$$P(X > x, Y > y) = 1 - F_X(x) - F_Y(y) + F(x, y)$$

o que completa a demonstração. É importante notar que esta prova é geral e se aplica tanto a variáveis aleatórias discretas quanto contínuas.

Problema 4. pr5 Sejam X e Y variáveis aleatórias com função de densidade de probabilidade conjunta dada por

$$f(x,y) = \begin{cases} \frac{1}{4}, & se - 1 < x < 1, -1 < y < 1, \\ 0, & caso \ contrário. \end{cases}$$

- 1. Obtenha P(X + Y > 0) e P(X > 0).
- 2. Sejam Z = X + Y e W = X Y funções lineares das varáveis aleatórias X e Y. Usando o método do Jacobiano obtenha a função de densidade conjunta de Z e W.
- 3. Obtenha a função de densidade (marginal) de W.
- 4. Obtenha a função de densidade condicional de Z dado W, i.e., $f_{Z|W}(z|w)$.

Resolução do Problema 4

A função de densidade f(x,y) descreve uma distribuição uniforme sobre o quadrado $S=[-1,1]\times[-1,1]$. A área desta região de suporte é $A_S=2\times2=4$.

Item (a): Cálculo de Probabilidades

Como a distribuição é uniforme, a probabilidade de um evento $A \subseteq S$ é dada por P(A) = Área(A)/Área(S).

0.0.0.12 Cálculo de P(X + Y > 0): O evento corresponde à região $R_1 = \{(x, y) \in S : x + y > 0\}$, ou y > -x. A linha y = -x divide o quadrado S em duas metades de área igual. A região y > -x é a metade superior do quadrado. Portanto, a Área $(R_1) = \frac{1}{2}$ Área $(S) = \frac{1}{2} \times 4 = 2$. A probabilidade é: $P(X+Y>0) = \frac{1}{2}$

0.0.0.13 Cálculo de P(X > 0): O evento corresponde à região $R_2 = \{(x, y) \in S : x > 0\}$. Esta região é o retângulo $[0, 1] \times [-1, 1]$, que é a metade direita do quadrado S. A área é Área $(R_2) = (1 - 0) \times (1 - (-1)) = 1 \times 2 = 2$. A probabilidade é: P(X > 0) = 0

Item (b): Método do Jacobiano

0.0.0.14 1. Transformação Inversa: Dada a transformação Z = X + Y e W = X - Y, resolvemos para X e Y:

•
$$Z + W = (X + Y) + (X - Y) = 2X \implies X = \frac{Z + W}{2}$$

•
$$Z - W = (X + Y) - (X - Y) = 2Y \implies Y = \frac{Z - W}{2}$$

0.0.0.15 2. Jacobiano da Transformação Inversa: O Jacobiano J é o determinante da matriz de derivadas parciais de (x, y) em relação a (z, w):

$$J = \det \begin{pmatrix} \frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w} \end{pmatrix} = \det \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

O valor absoluto do Jacobiano é |J| = 1/2.

0.0.0.16 3. Nova Região de Suporte: O suporte original é -1 < x < 1 e -1 < y < 1. Substituímos X e Y:

$$\bullet \quad -1 < \frac{z+w}{2} < 1 \implies -2 < z+w < 2$$

$$\bullet \quad -1 < \frac{z-w}{2} < 1 \implies -2 < z-w < 2$$

Esta região S' no plano (z, w) é um quadrado rotacionado com vértices em (2, 0), (0, 2), (-2, 0), (0, -2).

0.0.0.17 4. Densidade Conjunta de (Z,W): A densidade é $f_{Z,W}(z,w) = f_{X,Y}(x(z,w),y(z,w)) \cdot |J|$.

$$f_{Z,W}(z,w) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$

Assim, a FDP conjunta de (Z, W) é:

$$f_{Z,W}(z,w) = \begin{cases} \frac{1}{8}, & \text{se } (z,w) \in S' \\ 0, & \text{caso contrário.} \end{cases}$$

Item (c): Densidade Marginal de W

Para obter $f_W(w)$, integramos $f_{Z,W}(z,w)$ sobre z. Para um $w \in (-2,2)$ fixo, os limites de z são dados por $-2 < z + w < 2 \implies -2 - w < z < 2 - w$ e $-2 < z - w < 2 \implies w - 2 < z < w + 2$. Combinando: $\max(-2 - w, w - 2) < z < \min(2 - w, w + 2)$. Isto simplifica para -2 + |w| < z < 2 - |w|.

$$f_W(w) = \int_{-\infty}^{\infty} f_{Z,W}(z, w) dz = \int_{-2+|w|}^{2-|w|} \frac{1}{8} dz$$

$$= \frac{1}{8} [z]_{-2+|w|}^{2-|w|} = \frac{1}{8} ((2-|w|) - (-2+|w|))$$

$$= \frac{1}{8} (4-2|w|) = \frac{2-|w|}{4}$$

A densidade marginal de W (uma distribuição triangular) é:

$$f_W(w) = \begin{cases} \frac{2-|w|}{4}, & \text{se } -2 < w < 2\\ 0, & \text{caso contrário.} \end{cases}$$

Item (d): Densidade Condicional $f_{Z|W}(z|w)$

A densidade condicional é $f_{Z|W}(z|w) = \frac{f_{Z,W}(z,w)}{f_{W}(w)}$, para $f_{W}(w) > 0$.

$$f_{Z|W}(z|w) = \frac{1/8}{(2-|w|)/4} = \frac{4}{8(2-|w|)} = \frac{1}{2(2-|w|)}$$

O suporte de z dado $w \in -2 + |w| < z < 2 - |w|$.

$$f_{Z|W}(z|w) = \begin{cases} \frac{1}{2(2-|w|)}, & \text{para } -2+|w| < z < 2-|w| \text{ e } w \in (-2,2) \\ 0, & \text{caso contrário.} \end{cases}$$

Isto indica que, dado W=w, Z segue uma distribuição uniforme no intervalo (-2+|w|,2-|w|).

Problema 5. pr-4 Considere a convolução $f_X * f_Y$ entre as funções de densidade das variáveis aleatórias X e Y, i.e., a função de densidade da variável aleatória Z = X + Y. Mostre que o operador de convolução (*) é:

- 1. comutativo: $f_X * f_Y = f_Y * f_X$
- 2. distributivo: $f_Z * (f_X + f_Y) = f_Z * f_X + f_Z * f_Y$
- 3. associativo: $(f_Z * f_X) * f_Y = f_Z * (f_X * f_Y)$

Resolução do Problema 5

A convolução de duas funções integráveis g e h é definida como $(g*h)(t) = \int_{-\infty}^{\infty} g(x)h(t-x)\,dx$. Se X e Y são V.A.s independentes com FDPs f_X e f_Y , a FDP da soma S = X + Y é $f_S = f_X * f_Y$.

Item (a): Comutatividade

Desejamos provar que $(f_X * f_Y)(t) = (f_Y * f_X)(t)$.

$$(f_X * f_Y)(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t - x) dx$$

Realizamos a mudança de variável u=t-x. Assim, x=t-u e dx=-du. Os limites de integração se invertem: quando $x\to\infty,\,u\to-\infty$ e quando $x\to\infty,\,u\to\infty$.

$$(f_X * f_Y)(t) = \int_{-\infty}^{-\infty} f_X(t - u) f_Y(u) (-du)$$

$$= \int_{-\infty}^{\infty} f_Y(u) f_X(t - u) du \quad \text{(invertendo os limites e o sinal)}$$

$$= (f_Y * f_X)(t)$$

Portanto, o operador de convolução é comutativo.

Item (b): Distributividade

Desejamos provar que $f_Z * (f_X + f_Y) = (f_Z * f_X) + (f_Z * f_Y)$.

$$(f_Z*(f_X+f_Y))(t) = \int_{-\infty}^{\infty} f_Z(x)(f_X+f_Y)(t-x) dx$$

$$= \int_{-\infty}^{\infty} f_Z(x)[f_X(t-x)+f_Y(t-x)] dx \quad \text{(soma de funções)}$$

$$= \int_{-\infty}^{\infty} [f_Z(x)f_X(t-x)+f_Z(x)f_Y(t-x)] dx \quad \text{(distributividade do produto)}$$

$$= \int_{-\infty}^{\infty} f_Z(x)f_X(t-x) dx + \int_{-\infty}^{\infty} f_Z(x)f_Y(t-x) dx \quad \text{(linearidade da integral)}$$

$$= (f_Z*f_X)(t) + (f_Z*f_Y)(t)$$

Portanto, o operador é distributivo sobre a adição.

Item (c): Associatividade

Desejamos provar que $((f_Z*f_X)*f_Y)(t)=(f_Z*(f_X*f_Y))(t)$. Começamos pelo lado esquerdo. Seja $g=f_Z*f_X,$ onde $g(y)=\int_{-\infty}^{\infty}f_Z(x)f_X(y-x)\,dx.$

$$((f_Z * f_X) * f_Y)(t) = (g * f_Y)(t) = \int_{-\infty}^{\infty} g(y) f_Y(t - y) \, dy$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f_Z(x) f_X(y - x) \, dx \right) f_Y(t - y) \, dy$$

Pelo Teorema de Fubini-Tonelli, podemos trocar a ordem de integração:

$$= \int_{-\infty}^{\infty} f_Z(x) \left(\int_{-\infty}^{\infty} f_X(y-x) f_Y(t-y) \, dy \right) \, dx$$

Analisamos a integral interna. Façamos a substituição u=y-x, o que implica y=u+x e dy=du.

$$\int_{-\infty}^{\infty} f_X(u) f_Y(t - (u + x)) du = \int_{-\infty}^{\infty} f_X(u) f_Y((t - x) - u) du$$

Esta integral é, por definição, $(f_X * f_Y)(t-x)$. Substituindo de volta:

$$\int_{-\infty}^{\infty} f_Z(x) (f_X * f_Y)(t-x) \, dx$$

Esta expressão é a definição de $(f_Z*(f_X*f_Y))(t)$. Portanto, a associatividade é válida.