PERSONALIZED MOOC RECOMMENDATIONS

MOOCREC V2

MOOCs, chosen just for you.

AN OVERVIEW OF MOOCS

Source:

https://www.class-central.com/report/moocs-stats-and-trends-2018/

RESEARCH PROBLEM

- MOOCs have different video production styles
- MOOCs have a low completion rate
- ✓ Consumers prefer different types of video production styles
- ✓ Lack of connection between MOOC recommenders' and consumers' preference for video production styles
- ✓ No personalization exists for MOOC recommendations

GENERAL OBJECTIVES

- ✓ Identifying user's learning styles by a more interactive method
- ✓ Implement support for parallel processing to significantly improve performance.
- ✓ Improve MOOC recommendations based on information within discussion forums

SPECIFIC OBJECTIVES

- A catalogue of MOOCs from most popular providers
- Forum activity across platforms are analyzed automatically

Hub for MOOCs

- Identifying user's learning styles by a more interactive method
- Use the sentiments of other users

Personalized MOOCs

- Accurately classify a wide range of video production styles
- Efficiently classify using parallel processing

Parallel Image Classification

VIDEO PRODUCTION STYLES

- ✓ Some MOOCs contain multiple video styles

LEARNING STYLES AND DIMENSIONS

- ✓ People have different styles of learning, according to Felder and Silverman
- A mismatch between learning styles and video styles exists

MOOCREC V1

- A solution proposed by a previous research
- Proposed solution, MOOCRec V2 extends up on MOOCRec V1
- ✓ Identifies learner styles using a lengthy questioner
- ✓ Covers only a few video production styles
- ✓ Inefficient video classification

FEATURE COMPARISON

Features	Class Central	My MOOC	MOOCRec	MOOCRec V2 Proposed Solution
Direct learning style identification	X	X	X	✓
Video Production Styles	X	X	✓	✓
Complex and mixed video production styles	X	X	X	✓
Identify the spoken language of the presenter	X	X	X	✓
Search filter based on specific keywords / topics	X	X	✓	✓
User profile and dashboard	X	X	√	✓
Online discussion forums analysis and extraction of sentiments of forum posts for better MOOC recommendations	X	X	X	8

COMPLEX VIDEO PRODUCTION STYLE CLASSIFICATION

Different types of MOOC video production styles

Talking Head

Conversations

Presentation slides with voiceover

Writing

Coding/Demonstration

COMPLEX VIDEO PRODUCTION STYLE CLASSIFICATION

Figure 2: Multiple Video styles in one video

- Some MOOC videos may contain multiple video production styles.
- ✓Identification of Percentage of each production style in a video.
- ✓ Video will be split into frames and using Convolutional Neural Networks(CNN) frames will be classified.
- ✓ To increase the speed and accuracy of CNN Sparse and Low-rank decomposition shot segmentation method will be used.

COMPLEX VIDEO PRODUCTION STYLE CLASSIFICATION

Figure 3: Video Classification

- ✓ Identified using an interactive introductory video
- ✓ Intro video contains MOOCs learning material types recognized by MOOCRec V2
- Learning material types and Felder Silverman Learning Style Model are mapped

Figure 6: Learning Material Type to FSLSM Mapping

PROCEDURE

Figure 9: Procedure of identifying User's Preferred Learning Material

Strong Engagement

Figure 8: Academic Emotion and User Engagement Level Mapping

HOW?

- Mapped adapting Russell and Feldman model, Watson and Tellegen Model and literature studies

Figure 7: Procedure of deriving affected model

Do you like if an online learning platform automatically identifies your learning style or to fill a questionnaire and identify your learning style?

45 responses

Figure 4 : Survey on Filling a Questionnaire

Do you like allowing the online learning platform to analyze your facial expressions only once by turning on your webcam and watch a video of 5-10 minutes to help you automatically identify your learning style given that your data is not shared with any other party?

40 responses

Figure 5: Survey on Users' Willingness to Provide Temporary Web Cam Access

FORUM ANALYSIS WHY?

1. Users who prefer learning through peer-to-peer interactions need to be recommended MOOCs which have high forum activity

Figure 10: Required recommendation characteristic

 Currently ratings & reviews aren't considered when recommending MOOCs in MOOCRec V1

FORUM ANALYSIS OVERVIEW

Analyzing user **Calculating Scores** Information gathering sentiments & metadata Using web crawlers Course score (Rating) Data Sources • Forum Activity Sentiments Score • From reviewtype forums General **Discussions** Metadata Technical Discussions

Figure 11: Forum Analysis Process

FORUM ANALYSIS GATHERING DATA

Filter Data

FORUM ANALYSIS PROCESS

1. Technical discussions about the topic (not linked to a course)

About the course Course Score 1. Review-type forums (Sentiment Extraction) 2. Ratings from several platforms 3. General Discussions Content of the course 1. Technical Discussions Forum Activity Score 2. Q & A About the topic of the course

FORUM ANALYSIS EXPECTED RESULT

Course	Course Score (Rating)	Forum Activity Score
Machine Learning – Coursera (Stanford Uni.)	9.2	8.9
Machine Learning – Coursera (Columbia Uni.)	7.8	3.2
Machine Learning - edX	7.6	8.8
Machine Learning – Future Learn	5.4	4.0

PARALLEL VIDEO CLASSIFICATION

- ✓ Over 11 400 MOOCs right now
- Assuming every MOOC has one 8-minute video
 - 24 frames per second
 - 480 seconds per MOOC
 - 11 520 frames per MOOC
 - 131 328 000 image frames to Analyze
- - Cause loss of progress if the classifier crashes
 - Underutilize processing power available
 - Hard to scale to meet increasing/decreasing demands

PARALLEL VIDEO CLASSIFICATION

- - Workload is distributed
 - Workload is independent
 - No loss of progress by using Message Queues
 - Can scale up or down with ease
- Ability to run two differently trained classifiers/techniques on the same data set

PARALLEL VIDEO CLASSIFICATION TECHNIQUES

- **SIMD**
 - Single Instruction Multiple Data-stream
- **SISD**
 - Single Instruction Single Data-stream
- **Ø** MIMD
 - Multiple Instructions Multiple Data-stream
- **Ø** MISD
 - Multiple Instructions Single Data-stream

PARALLEL VIDEO CLASSIFICATION

APPROACH 1

Figure 13: Shared memory orchestrator with distributed service workers

PARALLEL VIDEO CLASSIFICATION

APPROACH 2

- Use a Message Queue to direct work to classifiers
- ✓ Increase scalability
- Work progress is persistent

Figure 14: Distributed service workers and orchestrator with a message queue

WORK BREAKDOWN STRUCTURE

Figure 15: Distributed service workers and orchestrator with a message queue

GANTT CHART

