כזכור, חבורת התמורות על קבוצה X מסומנת ב- S_X ואם x הסדר שלה הוא x במקרה כזה ניתן להתאים לכל $x\in X$ ייאינדקסיי בין $x\in X$ לבדוק איזהות את התמורות על איברי $x\in X$ עם התמורות המתאימות של האינדקסים. קל לבדוק שזיהוי זה הוא איזומורפיזם x

מסתבר שכל חבורה היא תת-חבורה של חבורת תמורות:

של S_n של .S

 S_n משפט 4.1 (Cayley משפט קיילי, Cayley) תהי חבורה מסדר תהי (Cayley משפט 4.1 משפט איזומורפית לתת-חבורה של

למעשה, משפט זה נכון, ועם אותה הוכחה, גם לחבורות מסדר אינסופי.

הוכחה: ראינו כבר כיG פועלת על עצמה על-ידי כפל משמאל

$$,g_1.g_2=g_1g_2$$

, למשל, $\varphi:G\to S_n$ כי כל פעולה של G על קבוצה בגודל n מתאימה להומומורפיזם (3.4) כי כל פעולה של G על קבוצה בגודל $\{g_1=e,g_2,\ldots,g_n\}$ אם איברי החבורה הם

$$\varphi(g)(i) = j \iff gg_i = g_j$$

אזי אויע, כלומר i- או אפילו אפר ק $\varphi=\{e\}$ אם אכן אפר אפילו לכל יחיד, אויע, כלומר או הומומורפיזם אה אפילו אפר אפר אפר אפר אפר אפר זהו, אם כן, שיכון, ולכן לפי משפט האיזומורפיזם הראשון נקבל $gg_i=g_i$

$$.G\cong \operatorname{Im}\varphi\leq S_n$$

אין לטעות ולגזור ממשפט קיילי שדי לנו לחקור את חבורות התמורות כדי לנתח את כלל החבורות. בשיכון שמספק לנו משפט קיילי אנו משכנים חבורה בגודל n בחבורה גדולה הרבה יותר: בגודל n חקר החבורה הגדולה לרוב לא יחשוף בפנינו תכונות של החבורה הקטנה. (למשל, ראו תרגילים 4.9 או 7.21 להלן.)

4.1 תמורות בכתיב מחזורים

. $\{1,\dots,n\}$ - בצורה של טבלה שמתארת, לפי הסדר, לאן עובר כל מספר ב- S_n בצורה של למשל

בדרך זו ניתן לכתוב כל פונקציה, לאו דווקא תמורה, מהקבוצה $\{1,\dots,n\}$ לעצמה. מסתבר שישנה דרך יעילה יותר לרישום תמורות שגם מנצלת את התכונות המיוחדות של תמורה כפונקציה חח"ע ועל: כתיב מחזורים. כתיב זה קצר יותר, וכפי שנראה להלן, גם מציג בצורה מאירת עיניים תכונות חשובות