Device Interfacing with Python and ZIO

vijaykumar@zilogic.com Zilogic Systems

Overview

- Introduction to ZIO
- Interfacing Devices
- Demo Projects

Device Interfacing

- Parallel Port
- Limitations
 - Only Digital IO
 - Phased out

ZIO Architecture

PC – The Universal Platform API to communicate with ZIO

USB based IO board

- Digital I/O
- Analog Input
- PWM Output
- I²C Bus
- SPI Bus

Sensors

Transistors

Relays

LEDs

Switches

I²C Devices

DC Motors

IR receivers

. . .

ZIO Agent

- ZIO Motherboard is powered by a ARM processor.
- ZIO Agent
 - Receives commands from PC through USB
 - Manipulates the interfaces based on the commands

Ports

GPIO

LEDs, Relays,Switches, MOSFETs,Optocouplers, ...

Sensor

Tempature,
 Potentiometer, Light,
 Pressure, Humidity, ...

PWM

DC Motor, Servo
 Motor, LED Brightness
 Control, ...

I2C/SPI

RTCs, LCDs, IR
 Receivers, Sensors,
 Phone Line Interface

. . .

Ports (Contd.)

- Each Port has 6 signals
- Example GPIO port
 - +5V Power
 - GND
 - 2 Outputs
 - 2 Inputs
- Terminated in RJ12 connector

Demo Board

- ZIO Motherboard
- Bread Board
- RJ12 Breakout Board
- Devices Board
- Temp. Sensor Board

LED

- Simple output devices
- Used for status indication, displays, lighting ...

LED (Contd.)

Interface LED to ZIO

- GPIO Port
- Signals
 - 2 Outputs, 2 Inputs
 - +5V Supply, GND
- Setting Output to True, outputs 0V
- Setting Output to False, outputs 5V

Interface LED to ZIO (Contd.)

- GPIO outputs have a built-in series resistor
- Eliminates series resistors on external circuit

Interface LED to ZIO (Contd.)


```
from zio import *
agent = Agent("/dev/ttyUSB0")
gpio = GPIO(agent)
gpio.write_output_pin(0, True)
gpio.write_output_pin(0, False)
```

Voltage Divider

Larger the bottom Resistor Smaller the bottom Resistor Larger the Voltage

Smaller the Voltage

Switch

- Simple input device
- Switch is closed
 - Vout = 0V
- Switch is open
 - Vout = 5V
- Switch state can be determined, by measuring Vout.

Interface Switch to ZIO

- GPIO Input signals can test for a 0V or 5V.
- Input > 2V
 - Read as True
- Input < 0.8V
 - Read as False

Interface Switch to ZIO (Contd.)

- GPIO inputs have built-in pull-ups resistors
- Eliminates pull-ups on external circuits

Interface Switch to ZIO (Contd.)


```
import time
from zio import *

agent = Agent("/dev/ttyUSB0")
gpio = GPIO(agent)
while True:
    print gpio.read_input_pin(0)
    time.sleep(1)
```

Light Sensor (LDR)

- LDR Light Dependent Resistor
- Resistance decreases with increase in light intensity
- Voltage Vout decreases with increase in light intensity

Interface LDR to ZIO

- Sensor port
 - measure voltagesbetween 0 3V
- Signals
 - +5V, GND
 - 2 Sensor Inputs
- Read the voltage at Sensor 0

Interface LDR to ZIO (Contd.)

- Sensor inputs have built-in pull-up resistors
- Eliminates pull-ups on external circuits
- Pull-ups connected to 3V, the max voltage that can be measured by sensor port.

Interface LDR to ZIO (Contd.)


```
import time
from zio import *

agent = Agent("/dev/ttyUSB0")
sensor = Sensor(agent)
while True:
    print sensor.read_pin(0)
    time.sleep(1)
```

DC Motor

- Examples
 - CPU Fan
 - Wheels of a Robot
 - CDROM drives
 - Printers
- DC motor controlled by a human operated switch

DC Motor (Contd.)

- Replace switch by a MOSFET
- Vcontrol = 5V
 - Motor turns ON
- Vcontrol = 0V
 - Motor turns OFF

DC Motor (Contd.)

- GPIO port motor ON and OFF
- Motor speed can be controlled
- DC motor speed is propotional to the supply voltage
- Speed control can be acheived by varying the averaging voltage delivered to the motor

DC Motor (Contd.)

- Rapidly turn motor on and off
- Duty cycle
 - (ON time / Period) * 100
- Duty cycle 100%
 - Average voltage 12V
- Duty cycle 50%
 - Average voltage 6V

Interface DC Motor to ZIO


```
pwm = PWM(agent)
pwm.set_freq([0], 25)
pwm.set_duty([0], 100)
pwm.start([0])

pwm.set_duty([0], 50)
pwm.set_duty([0], 25)
```

Temperature Sensor

- Temperature Sensors
 - Resistive Sensors
 - Non-ratiometric Sensors
 - I2C / SPI Sensors
- 12C
 - kind of very simplified USB
 - connect devices to CPU
 - EEPROMs, RTCs, Accelerometers, Sensors ...

12C Bus

Temperature Sensor


```
i2c = I2C(agent)
i2c.config(100)
while True:
   temp = i2c.read(0x48, 1)
   print temp[0]
   time.sleep(1)
```

Demo Projects

- Laser Pointer Presentation Control
- Light Bulb Control

Laser Pointer Demo

- Control presentation with input from the laser pointer.
- ZIO + LDR + Laser Pointer + Software Magic
- User shines laser on the LDR
- Software detects drop in the input voltage
- Software generates a key (Space) to active window (the presentation)

Controlling a Light Bulb

Controlling a Light Bulb (Contd.)

- Relay is a mechanical switch controlled by a electro magnet
- If Vin = 0V then bulb turns off
- If Vin = 5V then bulb turns on

Questions

Credits

- Zilogic Team: Mr. PG and Mr. Kannan
 - Demo boards, Add-ons, Setup
- Software Tools
 - Dia
 - Open Office