CS 245 - Logic and Computation

Fall 2016

Lecture 5: September 22, 2016

Lecturer: Kevin Lanctot

Notes By: Harsh Mistry

5.1 Definability of Connectives

Formulas $\alpha \implies \beta$ and $\neg \alpha \lor \beta$ are equivalent. This, \implies is said to be **Definable** in terms of \neg and \lor

5.2 Adequate Sets

A set of connectives is said to be adequate iff any n-ary $(n \ge 1)$ connective can be defined in terms of the ones in the set.

5.3 Proof In Propositional Logic: Resolution

We notate there is a proof with assumptions sum and conclusion φ by

$$\sum \vdash \varphi$$

We can be read as \sum proves φ

5.3.1 Inference Rules

In general, an inference rule is written as : $\frac{\alpha_1 \alpha_2 ... \alpha_i}{\beta}$

The notation means if $\alpha_1 \alpha_2 \dots \alpha_i$ already appears in the proof, then one may infer the formula β

5.3.2 Approaches

- Direct Proofs : Establish $\sum \vdash \varphi$ by stating the assumptions and from their derive φ
- Refutation (Contradiction): Give a direct proof of $\sum \cup \{\neg \varphi\} \models \bot$

5.3.3 The "Resolution" System and Rule

Resolution is a refutation system, with the following inference rule:

$$\frac{(\alpha \vee p)(\neg p \vee \beta)}{a \vee B}$$

for any variable p and formulas α and β .

We consider the following as special cases:

Unit Resolution (Eliminate P)
$$\frac{(\alpha \lor P)(\neg p)}{\alpha}$$

Contradiction (Refuation is complete)
$$\frac{p(\neg p)}{\bot}$$

A proof is complete when one derives a contradiction \perp . In this case, the original assumptions are refuted.

5.3.4 Connective Normal Form

The Resolution rule can only be used successfully on formulas of a restricted form.

CNF:

- A Literal is a variable or the negation of a variable
- A Clause is a disjunction of literals
- A formula in CNF if it is a conjunction of clauses

In essence, a formula is in CNF if and only if

- its only connectives are \neg , \lor , and/or \land ,
- $\bullet\,\,\neg$ applies only to variables, and
- \vee applies only to sub formulas with no occurrence of \wedge

5.3.5 Converting to CNF

- 1. Eliminate Implication and Equivalence
 - Replace $\alpha \implies \beta$ by $\neg \alpha \lor \beta$
 - Replace $\alpha \iff \beta$ by $(\neg \alpha \lor \beta) \land (\alpha \lor \neg \beta)$
- 2. Apply De Morgans and double-negation laws as often as possible.
 - Replace $\neg(\alpha \lor \beta)$ with $\neg \alpha \land \neg \beta$
 - Replace $\neg(\alpha \land \beta)$ with $\neg \alpha \lor \neg \beta$
 - Replace $\neg \neg \alpha$ with α
- 3. Transform into a conjunction of clauses using distributivity
 - Replace $(\alpha \vee (\beta \wedge \gamma))$ with $(\alpha \vee \beta) \wedge (\alpha \vee \alpha)$
- 4. Simplify using idempotence, contradiction, excluded middle and Simplification I & II.

5.3.6 The Resolution Proof Procedure

- 1. Convert each formula in \sum to CNF
- 2. Convert $\neg \varphi$ to CNF
- 3. Split the CNF formulas at the $\land\mbox{'s},$ yielding a set of clauses
- 4. Form the resulting set of clauses, keep applying the resolution until either :
 - The empty clause \bot results. In this case φ is a theorem
 - \bullet The rule can no longer be applies to give a new formula. In this case, φ is not a theorem