# Misc

#### Misc

- $\cos(a+b)+i\sin(a+b) = e^{i(a+b)} = [\cos(a)+i\sin(a)][\cos(b)+i\sin(b)] = \cos(a)\cos(b) \sin(a)\sin(b) + i[\cos(a)\sin(b) + \cos(b)\sin(a)]$ 
  - $\circ$   $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$
  - $\circ$  sin(2 $\theta$ )=2cos( $\theta$ )sin( $\theta$ )
- $sin(\pi x) \equiv sin(x)$
- $cos(-x) \equiv cos(x)$
- $sin(x\pm\pi) \equiv -sin(x)$
- $cos(x\pm\pi) \equiv -cos(x)$
- $tan(x\pm\pi) \equiv tan(x)$
- Something that was inside a trig function (eg 2x in sin(2x)) should <u>not</u> be simplified further until all solutions have been found adjust the range instead

# Number systems

#### Bases

- Base conversion: Divide by the new base, record the remainder, then repeat with the quotient, once you have have a quotient of 0 stop and write the number left-to-right using the remainders bottom-to-top
- If a divides b, then to convert between base a and b it suffices to convert each digit to/from b and concatenate the results

## Euclid's division algorithm

```
divide(a, b)
    r := a
    q := 0
    while r >= b
        r -= b
        q++
    //a = qb + r (a/b gives quotient q and remainder r)
    return (q, r)
```

#### Greatest common divisor

```
gcd(m, n)
  assert m >= 0 && n >= 0
  // Or just assert ordering
  if m > n
      m, n = n, m
  if m == 0
      return n
  return gcd(n mod m, m)
```

• This works because if d divides n=qm+r then d divides qm and r

#### Modular arithmetic

- a and b are congruent mod n  $\Leftrightarrow \exists k \in \mathbb{Z}$ :  $a=b+kn \Leftrightarrow n$  divides a-b
- If x mod n = a and y mod n = b:
  - x+y mod n = a + b mod n
  - o xy mod  $n = ab \mod n$ 
    - $\mathbf{x}^k \mod n = a^k \mod n$
  - x-y mod n = a b mod n
  - Division is complicated
  - o  $z^{xy}$  mod  $n = (z^x \mod n)^y \mod n$
- Fermat's little theorem: For all integers n and p, if p is prime and n and p are coprime, then  $n^{p-1}$  mod p=1
- Interpreting an n-bit two's complement number x as unsigned gives x mod 2<sup>N</sup> — the above is why normal arithmetic works with two's complement

## **Sets of numbers**

#### Subsets of the reals

- $x \in \mathbb{Q} \Leftrightarrow \exists m \in \mathbb{Z}$ :  $\exists n \in \mathbb{N} \setminus \{0\}$ : z=m/m, and m and n are coprime
- x is algebraic iff x is real and there exists a finite polynomial with rational (or equivalently integer) coefficients with a root x
- x is transcendental iff it is real and it is not algebraic

#### The real numbers: Axioms

- Commutativity of addition and multiplication
- Associativity of addition and multiplication
- Distributivity of multiplication over addition
- Existence of additive identity 0
- Existence of multiplicative identity 1
- 0 and 1 are distinct
- All the above hold for the naturals also
- Existence of additive inverse:  $\forall x. \exists -x: x+(-x) = 0$
- All the above hold for the integers also
- Existence of multiplicative inverse:  $\forall x. \exists x^{-1}: x \cdot (x^{-1}) = 1$
- All the above hold for the rationals and algebraics also
- Transitivity:  $\forall x, y, z. (x < y \land y < z) \Rightarrow x < z$
- Trichotomy: For all x, y; exactly one of these is true: x<y, y<x, x=y
- Preservation of ordering under addition: ∀x, y, z. x<y⇒x+z<y+z</li>
- Preservation of ordering under multiplication:  $\forall x, y, z. (x < y \land 0 < z) \Rightarrow x \cdot z < y \cdot z$
- Completeness: Every non-empty subset that has an upper bound has a least upper bound in the reals

## The real numbers: Completeness

- Let  $S \subseteq \mathbb{R}$ ,  $S \neq \emptyset$ , and  $\leq$  be the standard total ordering over  $\mathbb{R}$ 
  - $u \subseteq \mathbb{R}$  is <u>a</u> upper bound of S iff  $\forall x \subseteq S$ .  $x \le u$
  - S is bounded iff there exists an upper bound of S
  - $\circ$  u ∈  $\mathbb{R}$  is the least upper bound (supremum) of S iff it is the least element of the set of upper bounds of S (for all upper bounds u', u≤u')
- There are dual notions of lower bound, greatest lower bound, and infimum
- Theorem (Archimedean property of the reals):  $\forall a, b \in \mathbb{R}_{>0}$ .  $\exists n \in \mathbb{N}$ : na > bProof: Assume for the sake of contradiction that there exists positive reals a, b such that for all natural n  $na \le b$

Then, b is an upper bound of  $\{na: n \in \mathbb{N}\}$ 

By the completeness of the reals, there exists a supremum I of  $\{na: n \in \mathbb{N}\}$ 

Hence,  $\forall n \in \mathbb{N}$ . na  $\leq 1$ 

Hence,  $\forall n \in \mathbb{N}$ .  $(n+1)a \le l$ . So,  $\forall n \in \mathbb{N}$ .  $na \le l-a$ 

Hence, I-a is an upper bound. As a is positive, I-a < I. Hence, there exists an upper bound smaller than the supremum?!

## Complex numbers

- (a+bi)(c+di)=ac-bd+(ad+bc)i
- If z=a+bi,  $z^*$  (can also be denoted by an overbar) =a-bi
  - $(z+w)^* = z^* + w^*$
  - $\circ$  (zw)\* = z\*w\*
    - $= (z/w)^* = z^*/w^*$
- If  $z=re^{i\theta}$ , then  $z=r[\cos(\theta) + i\cdot\sin(\theta)]$  and  $z^*=re^{-i\theta}$ 
  - o If z=x+iy,  $r^2=x^2+y^2$  and  $tan(\theta)=y/x$
  - $\theta$  is measured anticlockwise from the real axis a diagram is necessary to establish the relationship between arctan(y/x) and  $\theta$
- To evaluate  $z_1/z_2$  multiply top and bottom by  $z_2^*$  to obtain  $z_1/z_2 = (z_1z_2^*)/((|z_2|)^2)$
- $|z_1z_2| = |z_1||z_2|$
- Triangle inequality:  $|z_1+z_2| \le |z_1| + |z_2|$
- $\bullet \qquad ||z| |w|| \le |z w|$
- Fundamental theorem of algebra: Every polynomial of degree n has exactly n (not necessarily distinct) roots in ©

# **Vectors**

#### **Vectors**

- Vectors u and v are equal iff their components are equal iff they have the same length and are parallel and in the same direction
- If a and b are position vectors, then c=a+b is the position vector s.t. OACB is a
  parallelogram or equivalently is the point obtained by top and tailing a and b
- Pythagoras extends to higher dimensions  $|(a_1, ..., a_n)|^2 = \text{sum of } (a_i^2)$
- $(a_1, ..., a_n) \cdot (b_1, ..., b_n) = \text{sum of } (a_i b_i) = |a||b|\cos(\theta) \text{ where } \theta \text{ is angle between a and b}$ Proof for n=2: Let  $\alpha$  be the angle made between a and the origin and  $\beta$  be the angle made between b and the origin. Without loss of generality, assume  $\alpha \leq \beta$ . Then,  $\theta = \beta - \alpha$ .

Thus,  $\cos(\theta) = \cos(\beta)\cos(\alpha) + \sin(\beta)\sin(\alpha) = (b_1/|b|)(a_1/|a|) + (b_2/|b|)(a_2/|a|) = a_1b_1/|a||b| + a_2b_2/|a||b|.$ 

So, 
$$a_1b_1 + a_2b_2 = |a||b|\cos(\theta)$$

- a and b are orthogonal (perpendicular) iff  $a \cdot b = 0$
- $|\lambda \vee| = \lambda |\vee|$

## Subspaces

- span( $\{\mathbf{u_1}, ..., \mathbf{u_m}\}$ ) =  $\{a_1\mathbf{u_1} + ... + a_m\mathbf{u_m} : a_1, ..., a_m \in \mathbb{R}\}$  = the set of all linear combinations of  $\mathbf{u_1}, ..., \mathbf{u_m}$ 
  - Equivalently span( $\{u_1, ..., u_m\}$ ) = the vector  $a_1u_1+...+a_mu_m$  where  $a_1, ..., a_m$  are real parameters
- A finite subset S of  $\mathbb{R}^n$  is a subspace of  $\mathbb{R}^n$  iff S is: non-empty, closed under addition (u,  $v \in S \Rightarrow u+v \in S$ ), and closed under scalar multiplication (u  $\in S$  and  $\lambda \in \mathbb{R} \Rightarrow \lambda u \in S$ )
  - Equivalently, S is a subspace of  $\mathbb{R}^n$  iff S  $\subseteq \mathbb{R}^n$  and S = span(S)  $\neq \emptyset$ 
    - Hence, if S is a non-empty finite subset of  $\mathbb{R}^n$ , then span(S) is a subspace of  $\mathbb{R}^n$
  - Due to closure under scalar multiplication, every subspace of  $\mathbb{R}^n$  contains the zero vector

## Linear independence

- {u<sub>1</sub>, ..., u<sub>m</sub>} is linearly dependent iff a vector can be written as a linear combination of the others iff there is a linear combination with coefficients not all zero that gives the zero vector
- {υ<sub>1</sub>, ..., υ<sub>m</sub>} is linearly independent iff it is not linear dependent iff (if a linear combination gives the zero vector then the coefficients are all zero)

#### Bases

- A set of vectors U is a basis of a subspace S iff U is linearly independent and span(U)=S
- If V={v<sub>1</sub>, ..., v<sub>m</sub>} spans S, then any linearly independent subset of S contains at most m vectors
- Any two bases of the same subspace have the same number of elements
   Proof: Let U={u<sub>1</sub>, ..., u<sub>m</sub>} and W={w<sub>1</sub>, ..., w<sub>p</sub>} be bases for S
   As U spans S and W is a linearly independent subset of S, m ≤ p
   As W spans S and U is a linearly independent subset of S, p ≤ m
   Thus, p=m
- Dimension of a subspace = cardinality of any basis for the subspace
- If  $U \subseteq S$  and |U| > dim(S), then U is linearly dependent

## Matrices

#### Misc

- A matrix of order mxn has m rows and n columns
- a<sub>ii</sub> is the element in the ith row and jth column
- A matrix is diagonal iff every element not on the leading diagonal is zero (elements on leading diagonal may also be zero)
  - Matrix multiplication of diagonal matrices reduces to element wise multiplication
  - Determinant of a diagonal matrix = product of elements along diagonal
- Matrix multiplication is associative
- Matrix multiplication distributes over matrix addition
- $A^T$  is the transpose of A the rows of  $A^T$  are the columns of A and the columns of  $A^T$  are the rows of A
  - $\circ$  (AB)<sup>T</sup>  $\equiv$  B<sup>T</sup>A<sup>T</sup>
  - $\circ$   $(A+B)^T \equiv A^T + B^T \equiv B^T + A^T$  as matrix addition is commutative
- If C=AB, the element in row i and column j of C is the dot product of row i of A and column j of B row, row, row your boat down the column fall
- <u>Can either pre-multiply a matrix to both sides or post-multiply a matrix to both sides can not place it wherever is convenient</u>
- $(ABC...)^{-1} = ...C^{-1}B^{-1}A^{-1}$

## Row operations

- The elementary row operations are: Swap two rows, multiply a row by a non-zero real, add a non-zero real multiple of a row to another
- A ~ B (A and B are row equivalent) iff A can be transformed to B using a series of elementary row operations
- Each elementary row operation can be written as pre-multiplication by a(n invertible) matrix
- A matrix is in row-echelon form iff the first non-zero entry in each row is further right than the first non-zero entry in the previous row
- Creating an augmented matrix by including the RHS then reducing to row echelon form simplifies a system of simultaneous equations

## Row operations and the determinant

- Swapping two rows causes the sign of the determinant to flip
  - Proof sketch: Induction on n. Base case n=2. Inductive step, calculate determinant using a row that wasn't in the swap
- Add a multiple of a row to another has no impact on the determinant

Proof sketch: Corresponding matrix can fairly easily be shown to have det

- = 1 (as a matrix with non-zero elements only on the diagonal has det
- = product of diagonal elements)
- $\circ$  Corollary: A row is a multiple of another  $\Rightarrow$  determinant = 0
- Multiplying a row (or a column) by a constant k increases the determinant by a factor of k

**Proof: Trivial** 

## Matrix inverse: Row operations

 Theorem: If a series of elementary row operations transforms a (square) matrix A into I, then A is invertible and the same sequence transforms I into A<sup>-1</sup>

```
Proof: We have that E_n...E_1A=I. Let E=E_n...E_1
As E is a product of invertible matrices, it is invertible AE=IAE=E^{-1}EAE=E^{-1}IE=I
So, A^{-1}AE=A^{-1}I and thus E=A^{-1}I
```

 Augmenting a matrix by including the identity matrix then carrying out row operations to turn it into the identity matrix causes the augmented part to become the inverse

#### Determinant of a 3x3 matrix: The rule of Sarrus

- Only works for 3x3
- 1. Write out the first 2 rows again below the matrix
- 2. Working your way down the left hand column, sum the products of the (first 3 elements of the) leading diagonals
- 3. Working your way down the right hand column, sum the products of the (first 3 elements of the) trailing diagonals
- 4. Determinant = sum of leading diagonals sum of trailing diagonals



Matrix inverse: Cofactors

Multiply the minor by +1 or −1 accordingly to find the cofactor

- 1. Create a new matrix C where each element is the cofactor of that element in the original matrix
- 2. Write down C<sup>T</sup>
- 3. Write down the determinant of the original matrix
- 4. Inverse =  $1/|original| \times C^T$

## Linear independence of vectors

 A set of n vectors is linearly independent iff the matrix it is the column vectors of has non-zero determinant

Proof sketch: Linearly independent iff Ua = 0 doesn't have any solutions other than a=0 where U is the matrix, a is the vector of coefficients, and 0 is the zero vector

Only solution is a=0 iff U is invertible iff U has non-zero determinant

#### Linear transformations and coordinates

- A function T:  $\mathbb{R}^m \mapsto \mathbb{R}^n$  is a linear transform iff it preserves addition (T(u+v)  $\equiv$ T(u)+T(v)) and preserves scalar multiplication (T( $\lambda u$ ) $\equiv \lambda$ T(u))
  - Hence, must map zero vector to itself
- Theorem: A function is a linear transform iff it can be written as multiplication by a matrix
  - Proof sketch: Matrix multiplication distributes over addition and preserves scalar multiplication
- Coordinates of a vector v with respect to a basis B = vector of coefficients of linear combination of B that gives v
- To construct a matrix from a linear transform T: Pick bases for  $\mathbb{R}^m$  and  $\mathbb{R}^n$  V={v<sub>1</sub>, ..., v<sub>m</sub>} and W={w<sub>1</sub>, ..., w<sub>n</sub>} and let the i<sup>th</sup> column be the coordinates of T(v<sub>i</sub>) with respect to W
- A transition matrix (and its inverse) allows conversion between coordinates in two bases for the same subspace
- Transition matrix = matrix for linear transform using identity function

## Eigenvectors

- $\underline{v}$  is an eigenvector of M  $\Leftrightarrow$  M $\underline{v} = \lambda \underline{v}$  where  $\lambda$  is a scalar constant (the eigenvalue)
  - $0 \quad M\underline{\vee} = \lambda\underline{\vee} \Leftrightarrow IM\underline{\vee} = I\lambda\underline{\vee} \Leftrightarrow IM\underline{\vee} I\lambda\underline{\vee} = 0 \Leftrightarrow (M I\lambda)\underline{\vee} = 0$
- To find eigenvalues: Solve  $det(M-\lambda I)=0$  for  $\lambda$
- To find eigenvector sub in  $\lambda$  and solve  $M\underline{v} = \lambda \underline{v}$  for  $\underline{v}$
- A root in the eigenvalue equation that is repeated n times could have up to n non-parallel eigenvectors associated with it
- If there are non-real solutions, include them
- Sum of the leading diagonal of a matrix ≡ sum of its eigenvalues this is a useful check
- Product of eigenvalues  $\equiv$  det(M) this is a useful check

## Diagonalisation

- An nxn matrix is diagonalisable \(\Delta\) it has n non-parallel eigenvectors
- Let V be the matrix where each column is an eigenvector of M.
   Let D the diagonal matrix of eigenvalues for the eigenvectors in the corresponding columns in U.
   Then, V<sup>-1</sup>MV=D
  - Corollary: VDV<sup>-1</sup>=M and thus M<sup>k</sup>=VD<sup>k</sup>V<sup>-1</sup>

# Sequences

### Convergent sequences

- Sequence  $a_n$  converges to  $l(a_n \to l)$  iff  $\forall \epsilon \in \mathbb{R}_{>0}$ .  $\exists N \in \mathbb{N}$ :  $\forall n \in \mathbb{N}_{>N}$ .  $|a_n l| < \epsilon$ 
  - o To prove: Construct a suitable N in terms of epsilon and show this provides a sufficient condition
- If a converges to l, then every subsequence of a also converges to l
  - Contrapositive: If there exists a subsequence of a<sub>n</sub> that does not converge to l, then a<sub>n</sub> does not converge to l
    - Corollary: If there exists a pair of subsequences that converge to different limits, then a<sub>n</sub> is divergent
  - Subsequence = a sequence (of infinitely many terms) obtained by removing some terms without adding any
- Squeeze rule: If  $a_n$  and  $b_n$  both converge to the same limit l and  $\exists N \in \mathbb{N}$ :  $\forall n \in \mathbb{N} > N$ .  $a_n \le c_n \le b_n$ , then  $c_n$  also converges to l
- If a<sub>n</sub>, b<sub>n</sub>, c<sub>n</sub> converge to A, B, C respectively:
  - $\circ$   $|a_n| \rightarrow A$
  - $\circ$   $\lambda a_n \rightarrow \lambda A$
  - $\circ$   $a_n + b_n \rightarrow A + B$
  - $\circ \quad \ a_n^{}b_n^{} \to AB$
  - $\circ$  1/a<sub>n</sub>  $\rightarrow$  1/A

### Properties of sequences

- $a_n$  diverges (to (positive) infinity) iff  $\forall K \in \mathbb{R}$ .  $\exists N \in \mathbb{N}$ :  $\forall n \in \mathbb{N}_{>N}$ .  $a_n > K$
- $a_n$  is decreasing iff  $\forall n \in \mathbb{N}$ .  $a_n \ge a_{n+1}$
- $a_n$  is increasing iff  $\forall n \in \mathbb{N}$ .  $a_n \le a_{n+1}$
- $a_n$  is bounded above iff  $\exists U \in \mathbb{R}$ .  $\forall n \in \mathbb{N}$ .  $a_n \leq U$
- $a_n$  is bounded below iff  $\exists U \in \mathbb{R}$ .  $\forall n \in \mathbb{N}$ .  $L \le a_n$
- a<sub>n</sub> is bounded iff it is bounded above <u>and</u> below
- If a<sub>n</sub> is convergent, then it is bounded
- If a<sub>n</sub> is increasing and bounded above, then it is convergent
- If a<sub>n</sub> is decreasing and bounded below, then it is convergent
- a<sub>n</sub> oscillates iff it is neither convergent nor divergent

## Asymptotics

- $a_n \in O(b_n)$  iff  $\exists c, N \in \mathbb{R}$ :  $\forall n \in \mathbb{N}_{>N}$   $[|a_n| \le c|b_n|]$   $b_n$  is an asymptotic upper bound for  $a_n$
- $a_n \in \Omega(b_n)$  iff  $\exists c, N \in \mathbb{R}$ :  $\forall n \in \mathbb{N}_{>N}$   $[|a_n| \ge c|b_n|]$   $b_n$  is an asymptotic lower bound for  $a_n$
- $a_n \in \Theta(b_n)$  iff  $a_n \in O(b_n)$  and  $a_n \in \Omega(b_n)$
- A useful trick: [f(n)]<sup>k</sup> + [f(n)]<sup>k-1</sup> + ... + [f(n)]<sup>0</sup> ≤ [f(n)]<sup>k</sup> + ... + [f(n)]<sup>k</sup> if f(n) ≥ 1

E.g.  $n^2+2n+1 \in O(n^2)$  as  $n^2+2n+1 \le n^2+2n^2+n^2$  (for n>1) =  $4n^2$ 

#### Recurrence relations

- The homogeneous second-order linear recurrence  $ax_n + bx_{n-1} + cx_{n-2} = 0$  has auxiliary equation  $a\lambda^2 + b\lambda + c = 0$ 
  - If auxiliary equation has distinct roots r<sub>1</sub>, r<sub>2</sub>: x<sub>n</sub>=Ar<sub>1</sub><sup>n</sup>+Br<sub>2</sub><sup>n</sup>
  - If auxiliary equation has repeated root r: x<sub>n</sub>=Ar<sup>n</sup>+Bnr<sup>n</sup>
  - A and B are found using initial conditions
- The homogeneous second-order linear recurrence  $ax_n + bx_{n-1} + cx_{n-2} = f(n)$  is solved by solving the homogeneous case and adding a particular solution p(n) s.t.  $ap(n)+bp(n-1)+cp(n-2) \equiv f(n)$ 
  - If f(n) is a kth degree polynomial, use a general kth degree of polynomial in n as p(n)
    - Multiply p(n) through by n if a root of auxiliary equation is 1 multiply through by  $n^2$  if 1 is a repeated root

# Series

#### Series

- sum from i=0 to i= $\infty$  of  $a_i$  converges to t iff the sequence of partial sums  $s_n$  = sum from i=0 to i=n of  $a_i$  converges to t
- $a_n$  converges to 0 is necessary but not sufficient for  $\Sigma a_n$  converges
- $\Sigma |a_n|$  is sufficient but not necessary for  $\Sigma a_n$  converges
- If Σa<sub>n</sub> and Σb<sub>n</sub> converge to S and T:
  - $\circ \quad \lambda \Sigma a_n \to \lambda S$
  - $\circ$   $\Sigma a_n + b_n \rightarrow S + T$
- Comparison test: If  $\Sigma b_n$  converges and  $\exists N \in \mathbb{N}$ :  $\forall n \in \mathbb{N}_{>N}$ .  $0 \le a_n \le b_n$ , then  $a_n$  also converges
  - Contrapositive: If  $\Sigma a_n$  diverges and  $\exists N \in \mathbb{N}$ :  $\forall n \in \mathbb{N}_{>N}$ .  $0 \le a_n \le b_n$ , then  $b_n$  also diverges
  - o It is not a coincidence that this looks a lot like the squeeze rule
- Ratio test: Let  $|a_{n+1}/a_n| \rightarrow k$ , then:
  - $0 \le k < 1 \Rightarrow \Sigma a_n$  converges
  - ∘ k>1 (including ratio diverges)  $\Rightarrow \Sigma a_n$  diverges
  - $\underline{k=1} \Rightarrow$  was a waste of time,  $\underline{can't tell anything}$

#### Power series

- A power series is a series of the form Σa<sub>n</sub>x<sup>n</sup>
- Theorem: If  $\exists R \in \mathbb{R}_{\geq 0}$ : Σ $a_n R^n$  converges then,  $\forall x \in \mathbb{R}$  [|x|<R ⇒ Σ $a_n x^n$  converges]
  - The largest such R is called the radius of convergence for  $|x| < R Σa_n x^n$  converges and for  $|x| > R Σa_n x^n$  diverges behaviour at  $x = \pm R$  is indeterminate
    - Ratio test is a good way of finding
- Let  $f(x) = \sum a_n x^n$  and  $g(x) = \sum b_n x^n$  have domains  $|x| < R_1$  and  $|x| < R_2$  where  $R_1$  and  $R_2$  are the radii of convergence. Let  $R=\min(R_1, R_2)$ . Then for all |x| < R:
  - o If f(x)=g(x), then  $a_n=b_n$  for all n
  - $\circ f(x)+g(x)=\Sigma(a_n+b_n)x^n$
  - $\circ \quad \lambda f(x) = \sum \lambda a_n x^n$

  - These are useful when considering Taylor series
- Binomial theorem:  $\Sigma(qCn)x^n$  converges to  $(1+x)^q$  with radius of convergence |x|<1

## Long division

- Let  $s/t \in (0; 1)$ :
  - $\circ$  r<sub>0</sub>=10s
  - $\circ$   $q_{i+1} = r_i \text{ div t}$
  - $\circ$   $r_{i+1} = 10(r_i \mod t)$
  - $\circ$  s/t= $\Sigma q_i/10^i$  starting at i=1 up to i=inf (or equivalently up to i s.t.  $r_i=0$ )
  - For a finite approximation:  $s/t=q_1/10^1+...+q_n/10^n$  (+  $r_n/t10^{n+1}$ )

## Calculus

# Limits

#### Limits

- Let f be a function with domain of I or I\{a}
  - o  $\lim_{x\to a^-} = l$  iff for every sequence  $x_n$  in I s.t.  $x_n \to a$  and  $x_n$  is bounded above by a, the sequence  $f(x_n) \to l$
  - o  $\lim_{x\to a+} = l$  iff for every sequence  $x_n$  in I s.t.  $x_n\to a$  and  $x_n$  is bounded below by a, the sequence  $f(x_n)\to l$
  - o  $\lim_{x\to a} = l$  iff for every sequence  $x_n$  in I s.t.  $x_n\to a$  and  $x_n$  does not contain a, the sequence  $f(x_n)\to l$ 
    - $\lim_{x\to a} = l \text{ iff } \lim_{x\to a} = l \text{ and } \lim_{x\to a+} = l$
- Same rules apply as for convergent sequences

## Continuity

- f is continuous at  $a \in I$  iff  $\lim_{x\to a} f(x) = f(a)$
- f is continuous iff for all  $a \in I \lim_{x\to a} f(x) = f(a)$
- If f is continuous at a and g is continuous at f(a), then g of is continuous at a
- Intermediate value theorem: If f is continuous and is defined at a and b and f(a) and f(b) have opposite signs, then f(c)=0 for some c (a; b)
- Extreme value theorem: If f is defined for and continuous over [a;
   b], then ∃m, M ∈ [a; b]: ∀x ∈ [a; b]. f(m)≤f(x)≤f(M) all intervals are closed

## Differentiation

#### Differentiation

- $f'(a) = \lim_{h\to 0} = (f(a+h)-f(a))/h = \lim_{x\to a} (f(x)-f(a))/(x-a)$ 
  - f is differentiable at a iff this limit exists
- f is differentiable iff it is differentiable at every point in its domain
- f is continuous at a is necessary but not sufficient for f is differentiable at a

Proof that f is differentiable at a  $\rightarrow$  f is continuous at a: We have that  $\lim_{x\to a} (f(x) - f(a))/(x-a)$  exists, let it be c.

Then,  $\lim_{x\to a} f(x) - f(a) = c \cdot \lim_{x\to a} x - a = 0$ So,  $\lim_{x\to a} f(x) - \lim_{x\to a} f(a) = 0$  and thus  $\lim_{x\to a} f(x) = f(a)$  as f(a) is a constant

- If f' and g' exist then:
  - $\circ (f+g)'=f'+g'$
  - $\circ$   $(\lambda f)' = \lambda f'$
  - $\circ (f \cdot g)' = f' \cdot g + g' \cdot f$
  - $\circ$  (g  $\circ$  f)'=(g' $\circ$ f)·f'
  - $\circ (f/g)' = (f' \cdot g f \cdot g')/g^2$
- In partial differentiation (δ instead of d), all variables not on the bottom of the derivative operator are treated as constants

#### Using differentiation

- a is a turning point iff there exists a closed interval I near a s.t.  $\forall x \in I$ .  $f(x) \le f(a)$  or  $\forall x \in I$ .  $f(a) \le f(x)$  iff a is a local minimum or a local maximum
- Global maximum and minimum may be endpoints instead of turning points
- a is a stationary point iff f'(a)=0 iff f is either a turning point or a point of inflection
- nth derivative test: If  $f'(a)=...=f^{(n-1)}(a)=0$  and  $f^{(n)}$  is continuous then:
  - on is even and  $f^{(n)}(a) > 0 \Rightarrow a$  is a local minimum
  - o n is even and  $f^{(n)}(a) < 0 \Rightarrow a$  is a local maximum
  - o n is odd and  $f^{(n)}(a) \neq 0 \Rightarrow a$  is a point of inflection
- Turning point theorem: If f is differentiable and has a turning point at a, then f'(a)=0
- Rolle's theorem: If f is continuous over [a;b] and differentiable over (a;b) and f(a)=f(b), then  $\exists c \in (a;b)$ : f'(c)=0

Proof:

By extreme value theorem f has extreme values in [a;b]

Case f is a constant function over (a;b): Then, f'(c)=0 for any choice of c

Case f is not a constant function over (a;b): Then, extreme values must be distinct, thus  $\exists c \in (a; b)$  s.t. c is a turning point and so by turning point theorem f'(c)=0

• Mean value theorem: If f is continuous over [a;b] and differentiable over (a;b), then  $\exists c \in (a;b)$ :

#### f'(c)=(f(b)-f(a))/(b-a)

Proof: Consider  $h(x)=f(x)-(f(b)-f(a))\cdot(x-a)/(b-a)$ 

Deduce that h(a)=f(a) and h(b)=f(a)(=h(a)). Hence, by Rolle's theorem,  $\exists c \in (a;b)$ : h'(c)=0.

Thus, as h'(c)=f'(c)-(f(b)-f(a))/(b-a), f'(c)=(f(b)-f(a))/(b-a)

## Sketching rational functions

- For y=(ax+b)/(cx+d) and  $y=(ax^2+bx+c)/(dx^2+ex+f)$ :
  - o x-intercept ⇔ numerator=0
  - y-intercept ⇔ x=0
  - Vertical asymptote ⇔ denominator=0
  - Horizontal asymptote ⇔ x→∞ ⇔ y is approaching a/c in first case and a/d in the second case
- To find (y-values of) stationary points set the equation equal to k (to find intersection points with y=k) then find discriminant, set that equal to 0, and solve for k
  - $\circ$  The set of values that y cannot take is described by discriminant < 0
- Oblique asymptotes: If  $y=(ax^2+bx+c)/(ex+f)$ :
  - All above rules apply except for the one for horizontal asymptotes.
  - Instead, y tends towards (ax²+bx+c)//(ex+f) i.e. polynomial division but discard the remainder — this process works in all cases <u>dividing coefficients</u> is a shortcut that only works if f=0

#### L'hopital's rule

- Weak L'hopital's rule: If f(a)=g(a)=0 and  $g'(a)\neq 0$ , then  $\lim_{x\to a}f(x)/g(x)=f'(a)/g'(a)$ 
  - Proof:  $\lim_{x\to a} f(x)/g(x) = \lim_{x\to a} (f(x)-f(a))/(g(x)-g(a))$ = $(f'(a)/g'(a))\lim_{x\to a} (x-a)/(x-a)$  as limits preserve multiplication = f'(a)/g'(a)
- L'hopital's rule: If f(a)=g(a)=0 and f and g are differentiable, then  $\lim_{x\to a} f(x)/g(x)=\lim_{x\to a} f'(x)/g'(x)$
- Strong l'hopital's rule: If f and g are differentiable and f(a)=g(a)=0 or  $f(a)=g(a)=\pm\infty$ , then  $\lim_{x\to a}f(x)/g(x)=\lim_{x\to a}f'(x)/g'(x)$

#### Differentiation of inverse functions

- Implicit differentiation: To find dy/dx, first differentiate each term with respect to x treating y terms as functions of x using chain rule with dy/dx then rearrange for dy/dx
  - o If  $x^2+y^2=1$ ,  $2x+2y\cdot dy/dx=0$  and  $2x\cdot dx/dy+2y=0$
- Let y=f(x), then  $[f^{-1}(y)]'=[f'(x)]^{-1}$  then rewrite in terms of y (e.g. by using below instead) Proof: By implicit differentiation,  $1=f'(x)\cdot dx/dy$ . So, dx/dy=1/f'(x)
  - Corollary: Let y=f(x), then  $[f^{-1}(y)]' \equiv [f'(f^{-1}(y))]^{-1} useful for differentiating inverse trig functions$

Alternate Proof: We have that  $f(f^{-1}(y)) \equiv y$ Differentiating both sides using chain rule:  $[(f^{-1}(y))]' \cdot [f'(f^{-1}(y))] = 1$ 

To find d/dx(arcsin(x)):

```
Let f(x) = \sin(x)
Then, f^{-1}(x) = \arcsin(x) and f'(x) = \cos(x)
Thus, d/dx(\arcsin(x)) = 1/\cos(\arcsin(x))
Let a = \arcsin(x)
Then, \sin^2(a) + \cos^2(a) \equiv 1 and x = \sin(a)
Thus, d/dx(\arcsin(x)) = 1/\operatorname{sqrt}(1 - x^2)
```

# **Taylor series**

#### Taylor series

- Taylor series of f(x) at x=a:  $f(x) = \sum f^{(i)}(a)/n! \cdot (x-a)^i$  (if f can be differentiated any number of times)
- Taylor polynomial:  $f(x) = \sum f^{(i)}(a)/n! \cdot (x-a)^i$  from i=0 to i=n (+  $R_n(x)$  where  $R_n(x)$  is the difference between f(x) and the taylor polynomial)
  - Taylor's theorem: If  $f^{(n+1)}$  exists over (a; x) and  $f^{(n)}$  is continuous over [a; x], then  $\exists c \in (a;x)$ :  $R_n = f^{(n+1)}(\underline{c})/(n+1)! \cdot (x-a)^{n+1}$  and  $\lim_{x \to a} R_n(x) = 0$
  - For x in the radius of convergence,  $\lim_{n\to\infty} R_n(x) = 0$
- For x in the radius of convergence,  $a_n = f^{(i)}(a)/n! \cdot (x-a)^i$  passes ratio test for  $n \to \infty$
- Taylor series are power series!
- Let  $g(x) = \Sigma f^{(i)}(a)/n! \cdot (x-a)^i$  from i=0 to i=n. Then, g(a)=f(a) and for all N≤n  $g^{(N)}(a)=f^{(N)}(a)$
- Maclaurin series = taylor series at a=0

# Integration

#### Integration

- Let  $\{x_0, ..., x_n\}$  be a partition of [a; b] (a subset of [a; b] s.t.  $x_0=a$ ,  $x_n=b$ , and the elements are strictly increasing)
  - Let  $m_r = \min \{f(x): x \in [x_{r-1}, x_r]\}$  and  $M_r = \max \{f(x): x \in [x_{r-1}, x_r]\}$
  - $\circ$  Let L =  $\Sigma$  (x<sub>r</sub>-x<sub>r-1</sub>)m<sub>r</sub> from r=1 to r=n and U =  $\Sigma$  (x<sub>r</sub>-x<sub>r-1</sub>)M<sub>r</sub> from r=1 to r=n
  - Then, L is the area formed by tallest rectangles that lie entirely below f and U is the area formed by shortest rectangles that lie entirely above f
  - o f is integrable over [a; b] (and A is the definite integral of f between a and b) iff there exists exactly one A:  $L \le A \le U$  for every partition of [a; b]
- The following are each necessary and sufficient for f is integrable over [a;b]:
  - f is continuous over [a;b]
  - f is increasing over [a;b]
  - f is decreasing over [a;b]
- First fundamental theorem of calculus: Let f: [a; b]  $\mapsto \mathbb{R}$  and F(x) =  $\int f(t) dt$  from t=a to t=x. If f is continuous at c  $\in$  [a;b], then F is differentiable at c and moreover F'(c)=f(c)
- Second fundamental theorem of calculus: Let f: [a; b]  $\mapsto \mathbb{R}$  and F be a function s.t.  $\forall x \in [a;b]$  F'(x)=f(x). Then, [f(x)] dx from b to a=F(b)-F(a)

# (First order ordinary) Differential equations

## **Terminology**

- Ordinary DE (ODE) = DE where all derivatives are with respect to the same variable
- Order of a DE = order of highest order derivative it contains
- In this module we only deal with first order ODEs
  - $\circ$  Separable iff can be written in the form dy/dx = f(x)g(y)
    - Then  $\int 1/g(y) dy = \int f(x) dx$
  - Homogenous iff can be written in form dy/dx=f(y/x)
    - Making the substitution v=y/x gives  $log(x) = \int 1/(f(v)-v) dv$  reverse substitution once evaluated

Proof: We have that y=vxImplicit differentiation with respect to x:  $dy/dx = v+x\cdot dv/dx$ dv/dx = (dy/dx - v)/xdv/dx = (f(v) - v)(1/x) — separable

Linear iff can be written in the form dy/dx+P(x)y=Q(x)

## Solving linear (the integrating factor)

- If Q=0 for all x, then is separable (f(x)=P(x) and g(y)=1/y) and  $y=e^{\int -P(x)}$
- Let  $I(x) = e^{\int P(x) dx}$ , then I'(x) = P(x)I(X)
- Multiplying both sides of DE by I(x) gives I(x)y'+I'(x)y=I(x)Q(x)
  - O By the product rule, d/dx(I(x)y) = I'(x)y + I(x)y'. So, d/dx(I(x)y) = I(x)Q(x)
  - $\circ So, I(x)y = \int I(x)Q(x) dx$ 
    - Don't need +C in I(x) but do need it here and don't forget to divide it by I(x)
  - Thus,  $y = 1/I(x)[\int I(x)Q(x) dx]$