	ECS 122A Lecture 4 Divide + Conquer
	Divide + Conquer
Trivi	Cl-sest pair of points in 2D
0 (n2	Given list of n points (xi, yi)
	Find the pair closest to each other.
	Want to improve to O(n lag n) time.
	How to divide?
	- 1 7
	<u> </u>
	X
	一 フ
	- 7
	- For O(9/09 n) time, want split into y nalves.
	Split by median in x-coordinate (can do y too)
	J
	Observation (case analysis):
	Closest pair either recursion - both in left half
	\cdot

Actually only 7 points, it we sweep from small to large y. Can also consider points outside of strip, doesn't nurt, i.e. now forget about d function cl-sest (List A)

Find median, split auto left, right halves

D(nlegn) d_ = closest (left half)

by sort, d R = closest (right half) though Sort points in A in y-coordinate, cleurer als new list A' for each vi Fn A', compare w/ next 7 pints in A'. => Compute min dist downs return min(de, de, deross). Runtinu? O(n log2n)... not quite. If only we can sort in Dan time. Observation: closest has exactly the Same recursive structure as mergesort! & Do both at the same time (compute closest, merge in x-roord) Exercise to figure out details. by-coord)

Strassen's Algorithm Given 2 nou matrices A, B, compute Cij = Lai, bj7 ~O(n) time Naive computation is O(n3) Matrix multiplication inherently has DfC str-cture Cu Ci An Bri An Brz + A12 B21 + A12 B22 (21 | A22 B21 | A22 B22 | C22 multiplications Runtine recurrence: $T(n) \approx \beta T(\frac{h}{2}) + C_1 \cdot n^2$ Can prove that T(n) = Q(n3) This doesn't help Strassen's Observation: (Magic) Do 7 clever multiplication instead (plus mon O(n2) arithmetic) M2= (A21+A22) B11

 $(p|uS mon O(n^2)|arithmetic)$ $M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$ $M_2 = (A_{21} + A_{22})B_{11}$ $M_3 = A_{11} (B_{12} - B_{22})$ $M_4 = A_{22} (B_{21} - B_{11})$ $M_5 = (A_{11} + A_{12})B_{22}$ $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$ $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$

[C11 C12] = M1+M4-M5+M7 M3+M5] [C21 C22] M2+M4 M1-M2+M5+M6] $T(n) \leq 7T(\frac{h}{2}) + Cn^{2}$ $\Rightarrow Can show that <math>T(n) \leq C'n^{\log_{2}7} - cn^{2}$ sufficiently large $|\alpha_{2}7| < |\alpha_{2}2f = 3$

Fun exercise:

Given complex #s

compute product using 3 real number multiplications.