Vektoraume:

· (IR[x], +) ist eine Gruppe

Polynome kann man addiesen

3.B.
$$p(x) = x^2 - 0.5x$$
 $q(x) = x^{10} + 2x^8 + 0.5 \cdot x + 1$
 $p(x) + q(x) = x^{10} + 2x^8 + 1$

In verses you $p(x) : 4 - p(x)$...

Skalarmultiplikation: 7.8. 5. p(x) = 5x²-2,5x. => R[x] ist ein Vektorraum!

Polynome = Veletoren.

· (RIX]=d = Polynome von Grad = d.

sind ein Vektorraum

- Addition von zwei Polynomen vom Grad = d ist wieder ein Polynom __n_
- Kultipliziert man ein Polynom von Grad & d mit einer reellen Zehr durch (Skalamuttiplikation) damm bekommet man wieder eines vom Grad & d

$$p(x)=4, x^{2}+2$$
 $\in \mathbb{R}[x]_{\leq 2}$ $p: \mathbb{R} \longrightarrow \mathbb{R}$
 $p(2) = 4, 2^{2}+2$ $q(2) = p(2)$ $p: \mathbb{R} \longrightarrow p(x) = 4x^{2}+2$
 $q(x) = x^{4}+2$

im Re:

luterrame: 2

0 (5 4

4 12 4

im R2

und R?.

R

· 1-dimensionle Unterraume:

2.B. X-Achse ≥ R Y-Achse

Jede Gerade durch du Kullpunkt: y = ax

jur x e R.

 $\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$

1-dimensionale Geraden = V. IR (lur einen Vektor). VERS

3

eine Gerade ist gegeben durch
$$\mathbb{R} \cdot V$$
 für ein $V \in \mathbb{R}^3$ 2.8. $\begin{pmatrix} 2 \\ 0 \end{pmatrix} \cdot \mathbb{R} = \begin{pmatrix} 1 \\ 0 \\ -0.5 \end{pmatrix}$. $\mathbb{R} = \operatorname{Span} \begin{pmatrix} 1 \\ 0 \\ -0.5 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \mathbb{R} = \begin{pmatrix} \pi \\ \pi \end{pmatrix} \cdot \mathbb{R} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \cdot \mathbb{R} = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} \cdot \mathbb{R}.$$

2-dimensionales Unterâme: Ebenen durch den

E= \(v \in R^3 \ \ a \cdot v_1 + b \cdot v_2 = v \ a \(b \in R^3 \) = \(\sigma \cho \nu \cdot v_1 \cdot v_2 \)

Siud Vn,..., vn lin. (un)abhäugig? V1= 12v2+--+ Dvn /- vn Gleichung 85y 80ecu.

Slöse Jar / 12,--- 12n.

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 5 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 2 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

 $\Lambda = 2\lambda_1 + \lambda_2 + 0 \cdot \lambda_3$ $\Lambda = 0 \cdot \lambda_1 + \lambda_2 + 1 \cdot \lambda_3$ $\Lambda = 2\lambda_1 + \lambda_2 + 0$ 3 Gleich ungen mit
3 Unbekanneten.

(III) (=) $\lambda 2^{-1} N - 2\lambda_{N}$ in (I) and (II).

(I) 1=21/4+1-21/4=1

(II) N = N-9/4 + y = => 13=2/1

1-Y + 7 y

2.B. jur Xx=1:

=0 Lösungsmenge $\lambda_2 = 1 - 2\lambda_1$ λ z = -1 ×3= 2 λ3=2λ,

Augenouver V, lie abh. vou v_2, \ldots, v_n ~ $V_{\Lambda} = \lambda_2 \cdot v_2 + \cdots + \lambda_n v_n$ für gewisse $\lambda_2, \ldots, \lambda_n$.

 $=0 0 = -V_1 + \lambda_2 V_2 + ... + \lambda_n V_n \qquad \lambda = -1. \neq 0.$

Wenn - 1, lin. wash. ist you is, undaw hat do

Glichung O= h V1 + ... + h Vn zwai die Lo grung 1/2-12-1-10

Wenn to un line wealth ist von Uz. -- , un, dann betrachten wir das lin. Gleichungesystem $\frac{\lambda_1 \cdot V_1 + \lambda_2 \cdot V_2 + \dots + \lambda_n \cdot V_n = 0}{\lambda_1, \dots, \lambda_n \in \mathbb{R}}$ The Losung für $\lambda_1, \ldots, \lambda_n$ ist $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$. mit einem $\lambda_i \neq 0$ $(=) \frac{\lambda_{\Lambda}}{\lambda_{i}} \cdot V_{\Lambda} + \frac{\lambda_{2}}{\lambda_{i}} \cdot V_{2} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{\Lambda} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{\Lambda} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{\Lambda} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{\Lambda} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} = 0 / \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{n}} \cdot V_{n} + \dots + \frac{\lambda_{n}}{\lambda_{i}} \cdot V_{n} + \dots + \frac{\lambda_$ Widerspruch zur Annahme dass the U11... Vin liver wealth. sind! = es gibt keine Lösung au ser $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$. Eusanmende Jasst: · Were U1,..., Un lin. abh. sind, dann hat die Gleichung 11. V1 + 12. U2 + ... + 2n. Un = 0 eine Lösung jur $\lambda_1, \dots, \lambda_n$ außer $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ · Wenn U1,..., Un linear unabhängig sind, dann hat du Gleichung $\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \cdots + \lambda_n \cdot v_n = 0$ hur du Lösuce $\lambda_n = \lambda_2 = \cdots = \lambda_n = 0$. Basis des \mathbb{R}^3 : $\binom{1}{3}$ $\binom{0}{1}$ $\begin{pmatrix} \mathring{y} \\ 2 \end{pmatrix} = X \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + Y \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + Z \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

Beiepile zu lin. Abhäugigkeit:

$$V_{\Lambda} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \quad V_{Z} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad V_{S} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$O = \lambda_{\Lambda} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda_{Z} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad V_{S} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$ETO = \lambda_{\Lambda} - \lambda_{Z} - \lambda_{S} \quad \text{lineare Gleichungssystem}$$

$$III O = \lambda_{\Lambda} - \lambda_{Z} - \lambda_{S} \quad \text{lineare Gleichungssystem}$$

$$III O = \lambda_{\Lambda} - \lambda_{Z} + \lambda_{S} \quad \text{lineare Gleichungssystem}$$

$$ETO = \lambda_{\Lambda} \cdot \lambda_{S} + \lambda_{A} = \lambda_{\Lambda} \cdot \lambda_{S} \quad \text{lineare Gleichungssystem}$$

$$V_{\Lambda} \cdot v_{Z} \cdot v_{S} \quad \text{sind linear}$$

Eine Lösung ist
$$\lambda_1 = k_1 1$$
, $\lambda_2 = 2$, $\lambda_3 = (-1)$.

Du, ν_2 , ν_3 sind linear

(III)
$$\Rightarrow \lambda_2 = -2\lambda_3$$
 in (I) $0 = 2 \cdot \lambda_1 - 2\lambda_3 + 4\lambda_3 = 2(\lambda_1 + \lambda_3)$
 $\Rightarrow \lambda_1 = -\lambda_3$
in (III) $0 = \lambda_1 + 2\lambda_3 - \lambda_3 = \lambda_1 + \lambda_3$

De l'ésungemenge ist
$$g(\lambda_1, \lambda_2, \lambda_3) = (\frac{1}{2} - \lambda_3, -2\lambda_3, \lambda_3)$$

 $\lambda_3 \in \mathbb{R}^3 = g(\frac{-1}{2} \cdot \lambda_3, \lambda_3)$
Da due Lesungemenge $\neq g(\frac{-1}{2})$ ist

>> > = - > 3

Da die Losungsmerge + {(0)} ist, sind V1, V2, U3 linear abhäugig.

$$\Rightarrow \langle v_1, v_2, v_3 \rangle$$
 hat Dimension ≤ 2
Span(v_1, v_2, v_3).

Abe: (2) und (-1) Sind night linear abhäugig weil sie keine Vielfachen voueinander Sind a dim $\langle v_1, v_2, v_3 \rangle = 12$.

· V= R[x] = 2 b(x) = 00 (1)+ ax (x)+ as (xs) V_= 1 Vz = x Vz = x ist eine Basis vou V Vist de Henge der Linarkomb. vou 1, x, x² - N,x,x2 exempt V (Span (1, x, x2) = V) $= \lambda_1 \cdot 1 + \lambda_2 \cdot x + \lambda_3 \cdot x^2$ Dies ist nur mögl. wenn $\lambda_1 = \lambda_2 = \lambda_3 = 0$. · dim R[x]=5 = 6 dien R[x] = 00 mit Basis: 1, x, x², x³, x⁹, x⁵, x⁶... $V = iR[x] \le 2$ $V_A = x^2$ $V_Z = x(1-x)$ $V_3 = (1-x)^2$ V1, V2, Vz lin. unabhangig? $0 = \lambda_1 \cdot V_1 + \lambda_2 \cdot V_2 + \lambda_3 \cdot V_3 = \lambda_1 \times_3 + \lambda_2 (x - x_3) + \lambda_3 \cdot V_3 = \lambda_1 \times_3 + \lambda_2 (x - x_3) + \lambda_3 \cdot V_3 = \lambda_1 \times_3 + \lambda_2 \cdot V_3 = \lambda_1 \times_3 + \lambda_2$ λ3. (V - Tx +x2) = $\lambda_1 = \lambda_2 = \lambda_3 = 0$ ist du einsige Losung · Basis vou RE 2.B. (1) (0) bou TR3 2 B. (1) (0) (0)

$$V_{\mathcal{Z}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.