Week	Dates	Book chapters	Topic
1	March 1–4	1 and 2	Electromagnetic model, field concepts. Vector algebra, vector analysis.
2	March 8–11	3	Electrostatics. Coulomb's law, scalar potential, electric dipole, permittivity, conductors and insulators, capacitance, electrostatic energy and forces.
3	March 15– 18	4 and 5	Static electric currents, Ohm's law, conductivity. Magnetostatics, Biot-Savart's law, vector potential, permeability, magnetic dipole, inductance.
4	March 22– 25	6	Faraday's law, Maxwell equations for dynamic electromagnetic fields. Complex representation of time-harmonic fields.
5	March 29 – April 1	7	Plane waves in lossless and lossy media. Attenuation of waves, Wave reflection from planar interfaces. Brewster angle.
6	April 6–8	(8,9) 10	Electromagnetic radiation. Fields generated by a Hertzian dipole.

Is there curl?

$$\mathbf{A}_1 = x \, \mathbf{a}_x + y \, \mathbf{a}_y$$

$$\nabla \cdot \mathbf{A}_1 = 2$$

$$\nabla \times \boldsymbol{A}_1 = 0$$

$$\mathbf{A}_2 = x \, \mathbf{a}_x - y \, \mathbf{a}_y$$

$$\nabla \cdot \mathbf{A}_2 = 0$$

$$\nabla \times \mathbf{A}_2 = \mathbf{0}$$

$$\mathbf{A}_3 = y \, \mathbf{a}_x + x \, \mathbf{a}_y$$

$$\nabla \cdot \mathbf{A}_3 = 0$$

$$\nabla \times \mathbf{A}_3 = \mathbf{0}$$

$$\mathbf{A}_4 = -y\,\mathbf{a}_x + x\,\mathbf{a}_y$$

$$\nabla \cdot \mathbf{A}_4 = 0$$

$$\nabla \times \mathbf{A}_4 = 2\,\mathbf{u}_z$$

What about divergence?

$$\mathbf{D}_1 = x \, \mathbf{a}_x$$

$$\mathbf{D}_2 = 2x\,\mathbf{a}_x + y\,\mathbf{a}_y$$

$$\mathbf{D}_3 = y \, \mathbf{a}_x + x \, \mathbf{a}_y$$

Field of a circular line charge on the symmetry axis

$$\mathbf{E}(z) = \mathbf{a}_z \frac{Q}{4\pi\varepsilon_0} \frac{z}{(z^2 + b^2)^{3/2}}$$

$$Q = (2\pi b)\rho_l$$

Field of circular line charge everywhere (elliptic integrals!) $\mathbf{E}(z)$ zx plane ρ_l $|\mathbf{E}(z)|$ xy plane

$$\mathbf{p} = \mathbf{a}_z \, q \, d = \mathbf{a}_z \, p$$

$$V(\mathbf{R}) = \frac{\mathbf{p} \cdot \mathbf{a}_R}{4\pi\varepsilon_0 R^2}$$

$$\mathbf{E}(\mathbf{R}) = \frac{p}{4\pi\varepsilon_0 R^3} \left(\mathbf{a}_R 2\cos\theta + \mathbf{a}_\theta \sin\theta \right)$$

Two point charges or a dipole?

x	$\frac{1}{1+x}$	1 - x	error	$\sqrt{1+x}$	$1+\frac{x}{2}$	error
0,1	0,90909090909	0,9	1 %	1,0488088482	1,05	0,114 %

X	$\frac{1}{1+x}$	1 – <i>x</i>	error	$\sqrt{1+x}$	$1+\frac{x}{2}$	error
0,1	0,909090909	0,9	1%	1,0488088482	1,05	0,114 %
0,01	0,99009900990	0,99	10-4	1,0049875621	1,005	1,24*10 ⁻⁵

X	$\frac{1}{1+x}$	1 - x	error	$\sqrt{1+x}$	$1+\frac{x}{2}$	error
0,1	0,909090909	0,9	1 %	1,0488088482	1,05	0,114 %
0,01	0,99009900990	0,99	10-4	1,0049875621	1,005	1,24*10 ⁻⁵
0,001	0,99900099900	0,999	10-6	1,0004998751	1,0005	1.25*10 ⁻⁷

x	$\frac{1}{1+x}$	1-x	error	$\sqrt{1+x}$	$1+\frac{x}{2}$	error
0,1	0,909090909	0,9	1 %	1,0488088482	1,05	0,114 %
0,01	0,99009900990	0,99	10-4	1,0049875621	1,005	1,24*10 ⁻⁵
0,001	0,99900099900	0,999	10-6	1,0004998751	1,0005	1.25*10 ⁻⁷
0,0001	0,999900009999	0,9999	10-8	1,0000499988	1,00005	1.25*10 ⁻⁹

x	$\frac{1}{1+x}$	1-x	error	$\sqrt{1+x}$	$1+\frac{x}{2}$	error
0,1	0,909090909	0,9	1 %	1,0488088482	1,05	0,114 %
0,01	0,99009900990	0,99	10-4	1,0049875621	1,005	1,24*10 ⁻⁵
0,001	0,99900099900	0,999	10-6	1,0004998751	1,0005	1.25*10 ⁻⁷
0,0001	0,999900009999	0,9999	10-8	1,0000499988	1,00005	1.25*10 ⁻⁹

Three point charges: +1[C] & +1[C] & -2[C]

Three point charges: +1[C] & +1[C] & -2[C]

