Máquinas de Moore e Máquinas de Mealy

Extensões

- Autômatos Finitos
- Associam, a cada sentença de entrada, uma correspondente cadeia de saída sobre um segundo alfabeto
 - Eventualmente distinto do alfabeto de entrada

Extensões

- Máquinas de <u>Moore</u>
 - associação de símbolos de saída a partir da sequência de estados percorridos
- Máquinas de Mealy
 - associação de símbolos de saída a partir das transições de que se compõe o autômato finito

Definição formal

$$T_{Moore} = (Q, \Sigma, \Delta, \delta, \lambda, q 0, F)$$

- Δ é o alfabeto de saída

$$\Sigma = \{0,1\}$$

 $\Lambda = \{a,b\}$

 $T_{Moore} = (Q, \Sigma, \Delta, \delta, \lambda, q 0, F)$ de saída
unção de transdução $\lambda: Q \rightarrow \Delta$ é a função de transdução

 $-\delta = \{(q0, a) \rightarrow q1, (q1, b) \rightarrow q1, (q1, c) \rightarrow q0\}$

-
$$T = (Q, \Sigma, \Delta, \delta, \lambda, q0, F)$$

$$- Q = \{q0, q1\}$$

$$- \Sigma = \{a, b, c\}$$

$$-\Delta = \{1\}$$

$$- \quad \nabla = \{T\}$$

$$- \lambda = \{q0 \rightarrow 1, q1 \rightarrow \epsilon\}$$

$$A = \{\underline{qo} \rightarrow \underline{1}, \underline{q\underline{1}} \rightarrow \underline{c}\}$$

$$- F = \{q1\}$$

Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	1 · ·
abbbcab	
acacaca	
a	

Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	111
abbbcab	11
acacaca	1111
a	1

Definição formal

$$T_{Mealy} = (Q, \Sigma, \Delta, \delta, \underline{\lambda}, q0, F)$$

- Δ é o alfabeto de saída
- λ : Q × Σ → Δ é a função de transdução
 - No caso das Máquinas de Mealy, associam-se os símbolos do alfabeto de saída às transições, e não aos estados

• Exemplo:
$$- T = (Q, \Sigma, \Delta, \delta, \lambda, q 0, F)$$

$$- Q = \{q 0, q 1\}$$

$$- \Sigma = \{a, b, c\}$$

$$-\Delta = \{a, b, c\}$$

$$\begin{array}{lll} - & \delta = \{ (q \ 0 \ , \ a) \ \rightarrow \ q \ 1 \ , \ (q \ 1 \ , \ b) \ \rightarrow \ q \ 1 \ , \ (q \ 1 \ , \ c) \ \rightarrow \ q \ 0 \ \} \\ - & \lambda = \{ (q \ 0 \ , \ a) \ \rightarrow \ ab, \ (q \ 1 \ , \ b) \ \rightarrow \ \epsilon \ , \ (q \ 1 \ , \ c) \ \rightarrow \ c \} \\ & \Gamma = \{ a \ 1 \ \} \end{array}$$

$$- F = \{q 1\}$$

• Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	
abbbcab	
acacaca	
a	

• Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	abcabcab
abbbcab	abcab
acacaca	abcabcabcab
a	ab

Equivalência

- Dois modelos distintos de transdutores finitos
- Pode-se demonstrar a plena equivalência de ambos
 - toda e qualquer Máquina de Moore pode ser simulada por uma Máquina de Mealy e vice-versa