Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$	3 p
	$\frac{1}{12}:\frac{1}{12}=1$	2p
2.	$x_1 + x_2 = 5$, $x_1 x_2 = 6$	2p
	$4(x_1 + x_2) - 3x_1x_2 = 4 \cdot 5 - 3 \cdot 6 = 2$	3 p
3.	x-1=4	3 p
	x = 5, care verifică ecuația	2p
4.	$p-10\% \cdot p = 90$, unde p este prețul obiectului înainte de ieftinire	3 p
	p = 100 de lei	2p
5.	$AB = \sqrt{(3-5)^2 + (1-1)^2} =$	3 p
	= 2	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{4}{5}\right)^2 = \frac{9}{25}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 2 \cdot 2 - 3 \cdot 3 =$	3p
	=4-9=-5	2p
b)	$A \cdot B = \begin{pmatrix} 2x+3 & 2+3x \\ 3x+2 & 3+2x \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 2x+3 & 3x+2 \\ 2+3x & 3+2x \end{pmatrix} = A \cdot B$, pentru orice număr real x	3p
c)	$A \cdot A = \begin{pmatrix} 13 & 12 \\ 12 & 13 \end{pmatrix}, \ A + B = \begin{pmatrix} 2+x & 4 \\ 4 & 2+x \end{pmatrix}$	2p
	$A \cdot A - 3(A + B) = I_2 \Leftrightarrow \begin{pmatrix} 13 - 3(2 + x) & 12 - 12 \\ 12 - 12 & 13 - 3(2 + x) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, de unde obţinem $x = 2$	3p
2.a)	$1*(-3) = \frac{1}{3} \cdot 1 \cdot (-3) + 1 + (-3) =$	3p
	=-1+1+(-3)=-3	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

b)	$x * y = \frac{1}{3}xy + x + y + 3 - 3 = \frac{1}{3}(xy + 3x + 3y + 9) - 3 =$	3p
	$= \frac{1}{3}(x(y+3)+3(y+3))-3 = \frac{1}{3}(x+3)(y+3)-3$, pentru orice numere reale x şi y	2p
c)	$\left[\frac{1}{3}(x+3)\left(\frac{1}{x}+3\right)-3=-3 \Leftrightarrow (x+3)\left(\frac{1}{x}+3\right)=0\right]$	3 p
	$x = -3 \text{ sau } x = -\frac{1}{3}$	2 p

1.a)	$f'(x) = 3x^2 - 3 =$	3p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 0} \frac{f(x) + 3x}{x} = \lim_{x \to 0} \frac{x^3}{x} =$	2 p
	$=\lim_{x\to 0} x^2 = 0$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$x \in [-1,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-1,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = -2$, obţinem $f(x) \ge -2$, pentru orice $x \in [-1, +\infty)$	1p
2.a)	$\int_{0}^{1} (f(x) - x - 1) dx = \int_{0}^{1} (x^{4} + x + 1 - x - 1) dx = \int_{0}^{1} x^{4} dx =$	2p
	$=\frac{x^5}{5}\bigg _0^1 = \frac{1}{5} - 0 = \frac{1}{5}$	3 p
b)	$\int_{1}^{e} (f(x) - x^{4} - 1) \ln x dx = \int_{1}^{e} x \ln x dx = \frac{x^{2}}{2} \ln x \bigg _{1}^{e} - \int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{1}{x} dx =$	3 p
	$= \frac{e^2}{2} - \frac{1}{2} \int_{1}^{e} x dx = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2 p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{4} + x + 1) dx = \frac{x^{5}}{5} \left \frac{1}{0} + \frac{x^{2}}{2} \right _{0}^{1} + x \left \frac{1}{0} \right _{0}^{1} =$	3 p
	$=\frac{1}{5}+\frac{1}{2}+1=\frac{17}{10}$	2p

Matematică M_tehnologic

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{1}{3} \frac{1}{4}\right)$: $\frac{1}{12} = 1$.
- **5p** 2. Arătați că $4(x_1 + x_2) 3x_1x_2 = 2$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 5x + 6 = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x-1} = 2$.
- **5p 4.** După o ieftinire cu 10%, prețul unui obiect este 90 de lei. Determinați prețul obiectului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,1) și B(3,1). Calculați lungimea segmentului AB.
- **5p 6.** Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{4}{5}$, arătați că $\sin x = \frac{3}{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$ și $B = \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -5.
- **5p** | **b**) Arătați că $A \cdot B = B \cdot A$, pentru orice număr real x.
- **5p** c) Determinați numărul real x, pentru care $A \cdot A 3(A + B) = I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x * y = \frac{1}{3}xy + x + y$.
- **5p a**) Arătați că 1*(-3) = -3.
- **5p b)** Demonstrați că $x * y = \frac{1}{3}(x+3)(y+3)-3$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale nenule x, pentru care $x * \frac{1}{x} = -3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x$.
- **5p** | **a**) Arătați că $f'(x) = 3(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x\to 0} \frac{f(x)+3x}{x} = 0$.
- **5p** c) Demonstrați că $f(x) \ge -2$, pentru orice $x \in [-1, +\infty)$
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 + x + 1$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) x 1) dx = \frac{1}{5}$.
- **5p b)** Arătați că $\int_{1}^{e} (f(x) x^4 1) \ln x \, dx = \frac{e^2 + 1}{4}$.
- **5p** c) Determinați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 1.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} - \frac{1}{5} = \frac{3}{10}$	3p
	$\frac{3}{10} \cdot \frac{10}{3} = 1$	2 p
2.	$f(1) = 0 \Rightarrow 1 - a = 0$	3p
	a=1	2p
3.	x+1=25	3p
	x = 24, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	Multiplii de 30 din mulțimea M sunt 30, 60 și 90, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	2
	nr. cazuri posibile 9 3	2 p
5.	$x_M = 5$, unde punctul M este mijlocul segmentului AB	3p
	$y_M = 5$	2 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$ şi, cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\sin x = \frac{12}{13}$	3р
	$tg x = \frac{\sin x}{\cos x} = \frac{12}{13} \cdot \frac{13}{5} = \frac{12}{5}$	2p

1.a)	$\det A = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 \cdot 0 - 1 \cdot (-1) =$	3p
	=0+1=1	2 p
b)	$B \cdot B = \begin{pmatrix} 1 & 0 \end{pmatrix}$	3 p
	$B \cdot B + A = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x & 0 \\ 0 & 4^y \end{pmatrix} \Leftrightarrow \begin{cases} 2^x = 1 \\ 4^y = 1 \end{cases}, \text{ deci } x = 0 \text{ si } y = 0$	3 p
2.a)	$f(1)=1^3-2\cdot 1^2-2\cdot 1+1=$	3p
	=1-2-2+1=-2	2p

b)	Câtul este $X^2 - 3X + 1$	3 p
	Restul este 0	2p
c)	$x_1 + x_2 + x_3 = 2$	2p
	$(x_2 + x_3)(x_3 + x_1)(x_1 + x_2) = (2 - x_1)(2 - x_2)(2 - x_3) = f(2) = -3$	3 p

1.a)	$f'(x) = -3x^2 + 3 =$	3 p
	$=3(1-x^2)=3(1-x)(1+x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 2} \frac{f(x)}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} =$	3 p
	= f'(2) = -9	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$x \in [-1,1] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-1,1]$	1p
	$x \in [1,+\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[1,+\infty)$	1p
	Cum $f(1) = 4$, obţinem $f(x) \le 4$, pentru orice $x \in [-1, +\infty)$	1p
2.a)	$\int_{-1}^{1} (f(x) - 2) dx = \int_{-1}^{1} (x + 2 - 2) dx = \int_{-1}^{1} x dx =$	2p
	$=\frac{x^2}{2} \bigg _{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0$	3 p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} (x+2) dx = e^{x} (x+2) \Big _{0}^{1} - e^{x} \Big _{0}^{1} =$	3p
	=(3e-2)-(e-1)=2e-1	2p
c)	$= (3e-2) - (e-1) = 2e-1$ $\int_{0}^{a} f(x)dx = \int_{0}^{a} (x+2)dx = \frac{a^{2}}{2} + 2a$	2p
	$\int_{0}^{6-a} (f(x)-4)dx = \int_{0}^{6-a} (x-2)dx = \frac{(6-a)^{2}}{2} - 2(6-a)$	2 p
	$\frac{a^2}{2} + 2a = \frac{\left(6 - a\right)^2}{2} - 2\left(6 - a\right) \Leftrightarrow a = 1$	1p

Matematică M tehnologic

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{1}{2} \frac{1}{5}\right) \cdot \frac{10}{3} = 1$.
- **5p** 2. Determinați numărul real a, știind că punctul A(1,0) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+1} = 5$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$, acesta să fie multiplu de 30.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,5) și B(7,5). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{5}{13}$, arătați că $\operatorname{tg} x = \frac{12}{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.
- **5p** | **a**) Arătați că det A = 1.
- **5p b)** Arătați că $B \cdot B + A = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Determinați numerele reale x și y, pentru care $A + B = \begin{pmatrix} 2^x & 0 \\ 0 & 4^y \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 2X + 1$.
- **5p a**) Arătați că f(1) = -2.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul X + 1.
- **5p** c) Demonstrați că $(x_2 + x_3)(x_3 + x_1)(x_1 + x_2) = -3$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^3 + 3x + 2$
- **5p a**) Arătați că $f'(x) = 3(1-x)(1+x), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x\to 2} \frac{f(x)}{x-2} = -9$.
- **5p** c) Demonstrați că $f(x) \le 4$, pentru orice $x \in [-1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2.
- **5p a)** Arătați că $\int_{-1}^{1} (f(x)-2)dx = 0$.
- **5p b)** Arătați că $\int_{0}^{1} e^{x} f(x) dx = 2e 1.$
- **5p** c) Determinați numărul real a, știind că $\int_{0}^{a} f(x) dx = \int_{0}^{6-a} (f(x)-4) dx$.

Examenul de bacalaureat national 2016 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

(30 de puncte)

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{3}{4} = \frac{1}{4}$	3 p
	$\frac{1}{4}:\frac{1}{4}=1$	2p
2.	f(-1)=0	2p
	$f(1) = 0 \Rightarrow f(-1) + f(1) = 0$	3 p
3.	3x + 4 = 16	3 p
	x = 4, care verifică ecuația	2 p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	1p
	Multiplii de 3 din mulțimea A sunt 3, 6 și 9, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	2p
5.	AO = 5	2p
	$BO = 5 \Rightarrow \triangle AOB$ este isoscel	3 p
6.	$A_{\Delta ABC} = \frac{4 \cdot 3}{2} =$	3 p
	= 6	2p

SUBIECTUL al II-lea

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 1 =$	3p
	=1-2=-1	2p
b)	$A \cdot A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$	3p
	$A \cdot A - 2A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
c)	$A \cdot B = \begin{pmatrix} 2x - 3 & x - 2 \\ x - 2 & x - 1 \end{pmatrix}$	3p
	$\begin{pmatrix} 2x-3 & x-2 \\ x-2 & x-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem } x = 2$	2p
2.a)	$f(1) = 1^3 + 5 \cdot 1^2 - 4 =$	3p
	=1+5-4=2	2p
b)	Câtul este $X^2 + 4X - 4$	3p
	Restul este 0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)
$$x_1x_2 + x_1x_3 + x_2x_3 = 0$$
, $x_1x_2x_3 = 4$
 $x_1 + x_2 + x_3 = -5 \Rightarrow \frac{x_2 + x_3}{x_1} + \frac{x_3 + x_1}{x_2} + \frac{x_1 + x_2}{x_3} = \frac{-5 - x_1}{x_1} + \frac{-5 - x_2}{x_2} + \frac{-5 - x_3}{x_3} = -5\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) - 3 = 3$

$$= -5 \cdot \frac{x_1x_2 + x_1x_3 + x_2x_3}{x_1x_2x_3} - 3 = -5 \cdot 0 - 3 = -3$$

1.a)	$f'(x) = (3x)' - (x^3)' =$	2p
	$=3-3x^2=3(1-x^2), x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} \frac{\ln x}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{3x - x^3} = \lim_{x \to +\infty} \frac{(\ln x)'}{(3x - x^3)'} =$	3p
	$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{3 - 3x^2} = 0$	2p
c)	f(1) = 2, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 2$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) + x^2 - x + 1 \right) dx = \int_{-1}^{1} \left(x^3 - x^2 + x - 1 + x^2 - x + 1 \right) dx = \int_{-1}^{1} x^3 dx = \frac{x^4}{4} \Big _{-1}^{1} =$	3р
	$= \frac{1}{4} - \frac{1}{4} = 0$	2p
b)	$F'(x) = \left(\frac{x^4}{4} - \frac{x^3}{3} + \frac{x^2}{2} - x\right)' = \frac{4x^3}{4} - \frac{3x^2}{3} + \frac{2x}{2} - 1 =$	3 p
	$=x^3-x^2+x-1=f(x), x \in \mathbb{R}$	2 p
c)	$g(x) = x - 1 \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (x - 1)^{2} dx = \pi \cdot \frac{(x - 1)^{3}}{3} \Big _{1}^{2} =$	3р
	$=\frac{\pi}{3}$	2p

Matematică M_tehnologic

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(1 \frac{3}{4}\right) : \frac{1}{4} = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$. Calculați f(-1) + f(1).
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x+4} = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, acesta să fie multiplu de 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(0,5) și B(5,0). Arătați că triunghiul AOB este isoscel.
- **5p 6.** Calculați aria triunghiului ABC, dreptunghic în A cu AB = 4 și AC = 3.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -1.
- **5p b**) Arătați că $A \cdot A 2A = I_2$.
- **5p** c) Determinați numărul real x, pentru care $A \cdot B = I_2$, unde $B = \begin{pmatrix} -1 & x \\ x 1 & -1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 + 5X^2 4$.
- **5p a)** Arătați că f(1) = 2.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul X + 1.
- **5p** c) Demonstrați că $\frac{x_2 + x_3}{x_1} + \frac{x_3 + x_1}{x_2} + \frac{x_1 + x_2}{x_3} = -3$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x x^3$.
- **5p** a) Arătați că $f'(x) = 3(1-x^2)$, $x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{\ln x}{f(x)} = 0$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 x^2 + x 1$.
- **5p** a) Arătați că $\int_{-1}^{1} (f(x) + x^2 x + 1) dx = 0$.
- **5p b)** Arătați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^4}{4} \frac{x^3}{3} + \frac{x^2}{2} x$ este o primitivă a funcției f.
- **5p c**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, $g(x) = \frac{f(x)}{x^2 + 1}$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2}$: 0,5 = 1	3 p
	$1 - \frac{1}{2} : 0, 5 = 1 - 1 = 0$	2p
2.	$x_1 + x_2 = 8$, $x_1 x_2 = 15$	2p
	$2(x_1 + x_2) - x_1 x_2 = 2 \cdot 8 - 15 = 1$	3 p
3.	5x + 1 = 36	3 p
	x=7, care verifică ecuația	2p
4.	Mulțimea A are 8 elemente, deci sunt 8 cazuri posibile	1p
	Numerele divizibile cu 2 din mulțimea A sunt 2, 4, 6 și 8, deci sunt 4 cazuri favorabile	2p
	n_{-} nr. cazuri favorabile $-\frac{4}{1}$	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{8} = \frac{1}{2}$	2p
5.	$AB = \sqrt{(0-6)^2 + (8-0)^2} =$	3p
	=10	2p
6.	$\cos B = \frac{AB}{BC} \Rightarrow \frac{\sqrt{2}}{2} = \frac{AB}{3\sqrt{2}}$	3p
	AB=3	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 \\ -2 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot (-2) =$	3p
	=1-0=1	2p
b)	$A \cdot A = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} \Rightarrow A \cdot A + I_2 = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = 2A$	2p
c)	$ \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} a-2 & b \\ c+1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a-2 & b \\ -2(a-2)+c+1 & -2b+1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	2p
	a=3, b=0, c=1	3 p
2.a)	$1 \circ (-3) = 1 \cdot (-3) + 3 \cdot 1 + 3 \cdot (-3) + 6 =$	3 p
	=-3+3+(-9)+6=-3	2p
b)	$x \circ y = xy + 3x + 3y + 9 - 3 =$	2p
	= x(y+3)+3(y+3)-3=(x+3)(y+3)-3, pentru orice numere reale x şi y	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 2

			-
c)	$(x+3)(x+3)-3 \le x \Leftrightarrow (x+3)(x+2) \le 0$	3p	
	$x \in [-3, -2]$	2p	

1.a)	$f'(x) = (2x^3)' - (3x^2)' + 7' =$	2p
	$=6x^2-6x=6x(x-1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to 2} \frac{f(x) - 11}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) =$	3p
	$=6\cdot 2\cdot 1=12$	2p
c)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 1$	2p
	$x \in [0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = 6$, obţinem $f(x) \ge 6$, pentru orice $x \in [0, +\infty)$	1p
2.a)	$\int_{-1}^{1} (f(x) - 3x) dx = \int_{-1}^{1} (x^2 + 3x - 3x) dx = \int_{-1}^{1} x^2 dx =$	2p
	$=\frac{x^3}{3}\Big _{-1}^1 = \frac{2}{3}$	3p
b)	$\int_{0}^{1} \left(f(x) - x^{2} \right) e^{x} dx = \int_{0}^{1} \left(x^{2} + 3x - x^{2} \right) e^{x} dx = 3 \int_{0}^{1} x e^{x} dx = 3 \left(x e^{x} \middle 0 - \int_{0}^{1} e^{x} dx \right) =$	3p
	$=3(x-1)e^{x}\Big _{0}^{1}=3$	2p
c)	$g(x) = 3(x+3) \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} 9(x+3)^{2} dx = 9\pi \cdot \frac{(x+3)^{3}}{3} \Big _{1}^{2} =$	3p
	$=183\pi$	2p

Matematică M_tehnologic

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **1.** Arătați că $1 \frac{1}{2} : 0,5 = 0$. **5**p
- 2. Arătați că $2(x_1 + x_2) x_1x_2 = 1$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 8x + 15 = 0$. **5p**
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{5x+1} = 6$. **5**p
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, acesta să fie **5p** divizibil cu 2.
- 5. În reperul cartezian xOy se consideră punctele A(6,0) și B(0,8). Calculați lungimea **5p** segmentului AB.
- 6. Calculați lungimea laturii AB a triunghiului ABC, dreptunghic în A, știind că $BC = 3\sqrt{2}$ și 5p $m(\not \triangleleft B) = 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5**p a) Arătați că $\det A = 1$.
- **b)** Arătați că $A \cdot A + I_2 = 2A$. **5p**
- c) Determinați numerele reale a, b și c, pentru care $A \cdot \begin{pmatrix} a-2 & b \\ c+1 & 1 \end{pmatrix} = I_2$. **5p**
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 3x + 3y + 6$.
- a) Arătați că $1 \circ (-3) = -3$. **5p**
- **b)** Demonstrați că $x \circ y = (x+3)(y+3)-3$, pentru orice numere reale $x \neq y$. **5p**
- **5p** | **c**) Determinați valorile reale ale lui x, pentru care $x \circ x \le x$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 3x^2 + 7$.
- a) Arătați că $f'(x) = 6x(x-1), x \in \mathbb{R}$. **5p**
- **b**) Arătați că $\lim_{x\to 2} \frac{f(x)-11}{x-2} = 12$. 5p
- c) Demonstrați că $f(x) \ge 6$, pentru orice $x \in [0, +\infty)$. **5**p
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 3x$.
- **5**p
- **a)** Arătați că $\int_{-1}^{1} (f(x) 3x) dx = \frac{2}{3}$. **b)** Arătați că $\int_{0}^{1} (f(x) x^{2}) e^{x} dx = 3$. **5**p
- c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, $g(x) = \frac{3f(x)}{x}$.

Examenul de bacalaureat național 2016

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{1}{2} = \frac{1}{2}$, $1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$	3p
	$\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{4}$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	$x_1 = 1 \text{ si } x_2 = 2$	2p
3.	$2x-1=5^2$	3 p
	x = 13, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea A sunt 4 divizori ai lui 1000, deci sunt 4 cazuri favorabile	2 p
	nr. cazuri favorabile 4	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{9}$	2p
5.	AO = 3, $BO = 4$, $AB = 5$	3p
	$P_{\Delta AOB} = 3 + 4 + 5 = 12$	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{4}{5}\right)^2 = \frac{9}{25}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -1 & 1 \\ 0 & 0 \end{vmatrix} =$	2p
	$=-1\cdot 0-1\cdot 0=0$	3p
b)	$A + I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$	2p
	$A \cdot \left(A + I_2\right) = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	3 p
c)	$A \cdot A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1+m & -1 \\ 0 & m \end{pmatrix}, \det B = m(m+1)$	3p
	$\det B = 0 \Leftrightarrow m = -1 \text{ sau } m = 0$	2p
2.a)	$f(-1) = (-1)^3 + (-1)^2 + 4 \cdot (-1) + 4 =$	3 p
	=-1+1-4+4=0	2p
b)	Câtul este $X-2$	3p
	Restul este $8X + 8$	2p

Probă scrisă la matematică M tehnologic

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic,

$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_1x_3 + x_2x_3 = 4$, $x_1x_2x_3 = -4$	3p
$(x_2x_3 + x_1x_3 + x_1x_2) + (x_3 + x_1 + x_2) - 4 + (-1) - 3$	2n
$x_1x_2x_3$ -4 4	2p

	(6.4.4)	puncte)
1.a)	$f'(x) = 3x^2 - 12 =$	3 p
	$=3(x^2-4)=3(x-2)(x+2), x \in \mathbb{R}$	2p
b)	f(2) = -16, f'(2) = 0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2) \Rightarrow y = -16$	3 p
c)	$f'(-2) = 0$, $f'(2) = 0$ și $f'(x) \le 0$, pentru orice $x \in [-2,2]$	3 p
	$f(2) \le f(x) \le f(-2) \Rightarrow -16 \le f(x) \le 16$, pentru orice $x \in [-2,2]$	2p
2.a)	$\int_{0}^{1} \left(f(x) - 3x^{2} - 1 \right) dx = \int_{0}^{1} 5x^{4} dx = x^{5} \Big _{0}^{1} =$	3p
	=1-0=1	2p
b)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} (5x^{4} + 3x^{2} + 1) dx = (x^{5} + x^{3} + x) \Big _{1}^{2} =$	3р
	$= (2^5 + 2^3 + 2) - (1^5 + 1^3 + 1) = 39$	2p
c)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in \mathbb{R}$	2p
	$F'(x) = 5x^4 + 3x^2 + 1 > 0$ pentru orice număr real x, deci F este crescătoare pe \mathbb{R}	3p

Matematică *M_tehnologic*

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(1 \frac{1}{2}\right)\left(1 \frac{1}{3}\right)\left(1 \frac{1}{4}\right) = \frac{1}{4}$.
- **5p** 2. Determinați abscisele punctelor de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$ cu axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(2x-1) = 2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$, acesta să fie divizor al lui 1000.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(0,3) și B(4,0). Calculați perimetrul triunghiului AOB.
- **5p** 6. Arătați că $\sin x = \frac{3}{5}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{4}{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că $\det A = 0$.
- **5p b)** Verificați dacă $A \cdot (A + I_2) = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Determinați numerele reale m pentru care $\det B = 0$, unde $B = A \cdot A + mI_2$.
 - **2.** Se consideră polinomul $f = X^3 + X^2 + 4X + 4$.
- **5p** a) Arătați că f(-1) = 0.
- **5p b)** Determinați câtul și restul împărțirii polinomului f la polinomul $X^2 + 3X + 2$.
- **5p** c) Demonstrați că $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_1 x_2} + \frac{1}{x_2 x_3} + \frac{1}{x_3 x_1} = -\frac{3}{4}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 12x$.
- **5p** a) Arătați că $f'(x) = 3(x-2)(x+2), x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Arătați că $-16 \le f(x) \le 16$, pentru orice $x \in [-2,2]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 5x^4 + 3x^2 + 1$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) 3x^2 1) dx = 1$.
- **5p b)** Calculați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = 2.
- **5p** | c) Demonstrați că orice primitivă a funcției f este crescătoare pe \mathbb{R} .

Matematică *M_tehnologic*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{10}{3+i} = \frac{10(3-i)}{3^2 - i^2} = 3 - i$	3p
	$3-i=a+ib \Rightarrow a=3, b=-1$	2p
2.	f(1) = 0, $f(0) = -1$	2p
	$(f(1))^{2016} + (f(0))^{2016} = 0^{2016} + (-1)^{2016} = 1$	3 p
3.	$6^{x^2-3x+5} = 6^3 \Leftrightarrow x^2-3x+2=0$	3 p
	x=1 sau $x=2$	2p
4.	$C_6^5 = \frac{6!}{5!(6-5)!} =$	3 p
	= 6	2p
5.	Punctul <i>C</i> este mijlocul segmentului $AB \Rightarrow 10 = \frac{5 + 2m + 1}{2}$	3 p
	$2m+6=20 \Rightarrow m=7$	2p
6.	ΔABC este dreptunghic în A	2p
	$\cos C = \frac{12}{13}$	3p

SUBIECTUL al II-lea

1.a)	$\det A = \begin{vmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} = 1 + 0 + 0 - 0 - 0 - 0 =$	
	$\det A = \begin{vmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} = 1 + 0 + 0 - 0 - 0 - 0 =$	3 p
	=1	2p
b)	$A - I_3 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	$(A-I_3)(A-I_3) = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow (A-I_3)(A-I_3)(A-I_3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3$	3p
c)	$ \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x+2y+4z \\ y+3z \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} $	2p
	x = 2, $y = -5$, $z = 2$	3p

2.a)	x * y = xy - x - y + 1 + 1 =	2 p
	=x(y-1)-(y-1)+1=(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
b)	0*1*2*3=(0*1)*2*3=1*(2*3)=	3 p
	=1	2p
c)	$a*a = (a-1)^2 + 1 \Rightarrow a*a*2016 = 2015(a-1)^2 + 1$	2p
	$2015(a-1)^2 + 1 = 2016 \Leftrightarrow (a-1)^2 = 1 \Leftrightarrow a = 0 \text{ sau } a = 2$	3 p

1.a)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$	2p
	$f'(x) = -\frac{1}{x^2}$ şi $f'(2) = -\frac{1}{4} \Rightarrow \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = -\frac{1}{4}$	3p
b)	f(1) = 2, f'(1) = -1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = -x + 3$	3 p
c)	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare pe $(0, +\infty)$	2p
	Cum $f(1) = 2$ și $f(2016) = \frac{2017}{2016}$, obținem $\frac{2017}{2016} \le f(x) \le 2$, pentru orice $x \in [1, 2016]$	3 p
2.a)	$\int_{0}^{2} \left(f(x) + 3x^{2} - 2 \right) dx = \int_{0}^{2} x^{3} dx = \frac{x^{4}}{4} \Big _{0}^{2} =$	3p
	= 4	2p
b)	$\int_{0}^{1} (f(x) - x^{3} + 3x^{2} + x)e^{x} dx = \int_{0}^{1} (2 + x)e^{x} dx =$	2p
	$=(1+x)e^{x}\begin{vmatrix} 1\\0\\2 = 2e-1\end{vmatrix}$	3p
c)	$\int_{1-a}^{1+a} f(x)dx = \left(\frac{x^4}{4} - x^3 + 2x\right) \Big _{1-a}^{1+a} =$	2p
	$=2a+2a^3-2a^3-6a+4a=0$, pentru orice număr real a	3p

Examenul de bacalaureat național 2016

Proba E. c)

Matematică M tehnologic

Clasa a XII-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numerele reale a și b, pentru care $\frac{10}{3+i} = a+ib$, unde $i^2 = -1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$. Calculați $(f(1))^{2016} + (f(0))^{2016}$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $6^{x^2-3x+5} = 216$.
- **5p 4.** Calculați în câte moduri poate fi aleasă o echipă formată din 5 elevi din totalul de 6 elevi pe care îi are la dispoziție un antrenor.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,0) și B(2m+1,0), unde m este număr real. Determinați numărul real m, știind că punctul C(10,0) este mijlocul segmentului AB.
- **5p 6.** Se consideră triunghiul ABC în care AB = 5, AC = 12 și BC = 13. Calculați $\cos C$.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$.
- **5p** a) Calculați det A.
- $\mathbf{5p} \mid \mathbf{b}) \text{ Arătați că } (A I_3)(A I_3)(A I_3) = O_3, \text{ unde } I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ și } O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
- **5p** c) Rezolvați ecuația matriceală $AX = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, unde $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy x y + 2.
- **5p** a) Arătați că x * y = (x-1)(y-1)+1, pentru orice numere reale x și y.
- **5p b)** Calculați 0*1*2*3.
- **5p** c) Determinați numerele reale a, știind că a*a*2016 = 2016.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+1}{x}$.
- **5p** a) Calculați $\lim_{x\to 2} \frac{f(x)-f(2)}{x-2}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\frac{2017}{2016} \le f(x) \le 2$, pentru orice $x \in [1, 2016]$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x^2 + 2$.

- a) Calculați $\int_{0}^{2} (f(x)+3x^{2}-2)dx$. b) Arătați că $\int_{0}^{1} (f(x)-x^{3}+3x^{2}+x)e^{x}dx = 2e-1$. c) Demonstrați că $\int_{1-a}^{1+a} f(x)dx = 0$, pentru orice număr real a.

Matematică *M_tehnologic*

Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

		1
1.	Rația progresiei este egală cu 4	2p
	$b_1 + b_2 + b_3 = 2 + 8 + 32 = 42$	3 p
2.	$f(5) = 6$, $f(a-5) = a^2 - 14a + 46$	2p
	$a^2 - 14a + 40 = 0 \Leftrightarrow a = 4 \text{ sau } a = 10$	3 p
3.	$2^{x+1} = 2^{2x-4} \Leftrightarrow x+1 = 2x-4$	3p
	x=5	2p
4.	Cifra sutelor se poate alege în 3 moduri, cifra zecilor se poate alege în câte 4 moduri	3 p
	Cifra unităților se poate alege, pentru fiecare mod de alegere a celorlalte două cifre, în câte 4 moduri, deci se pot forma $3 \cdot 4 \cdot 4 = 48$ de numere	2p
5.	Punctul M este mijlocul segmentului AB	2p
	M(2,1)	3 p
6.	Înălțimea din A a triunghiului ABC este de $\frac{1}{2} \cdot 8 = 4$	2p
	Aria triunghiului <i>ABC</i> este egală cu $\frac{4 \cdot 12}{2} = 24$	3p

1.a)	$d(0) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 3 & 2 \end{vmatrix} = 0 + 6 + 3 - 0 - 3 - 4 =$	3р
	= 2	2 p
b)	$d(x) = 0 + 6 + 3(x+1) - 0 - 2(x^2 + 2) - 3(x+1) = -2x^2 + 2 =$	3 p
	$=-2(x^2-1)=-2(x-1)(x+1)$, pentru orice număr real x	2 p
c)	$-2(x-1)(x+1) = -2(y-1)(y+1) \Leftrightarrow x^2 - y^2 = 0$	2p
	Cum $x \neq y$, din $(x-y)(x+y) = 0$, obţinem $x+y=0$	3p
2.a)	$A + I_2 = \begin{pmatrix} 0+1 & 1+0 \\ -1+0 & 0+1 \end{pmatrix} =$	3р
	$= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$	2p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2 \Rightarrow M = A + I_2 + (-I_2) = A$	2p
	Cum $A \cdot (-A) = (-A) \cdot A = I_2$, obținem că inversa matricei M este matricea $-A$	3 p

c)
$$(A+I_2)(B+I_2) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ x^2 & 1 \end{pmatrix} = \begin{pmatrix} 1+x^2 & x+1 \\ -1+x^2 & -x+1 \end{pmatrix}$$
 $= \begin{pmatrix} 1+x^2 & x+1 \\ -1+x^2 & -x+1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Leftrightarrow x = -1$ 2p

1.a)	$\lim_{x \to 1} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} = \frac{\sqrt{1^2 + 3 \cdot 1 + 5}}{1 + 2} =$	3p
	$x \to 1 \qquad x+2 \qquad 1+2$ $=1$	2p
b)		2p
	$\lim_{x \to -2} f(x) = \lim_{\substack{x \to -2 \\ x > -2}} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} =$	3p
	$=+\infty$, deci dreapta de ecuație $x=-2$ este asimptotă verticală la graficul funcției f	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} = \lim_{x \to +\infty} \frac{\sqrt{1 + \frac{3}{x} + \frac{5}{x^2}}}{1 + \frac{2}{x}} = 1$	3р
	Dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
2.a)	f(-1) = -1	2p
	$f(1) = 0 \Rightarrow f(-1) + f(1) = -1$	3p
b)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (2x+1) = 1$	1p
	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (1 - x^3) = 1$	1p
	Cum $f(0)=1$, obținem $\lim_{x\to 0} f(x) = f(0)$, deci funcția f este continuă în punctul $x=0$	3p
c)	$f(x) = 0 \Leftrightarrow x = -\frac{1}{2} \text{ sau } x = 1$	2p
	Funcția f este continuă pe $\mathbb R$, deci funcția f are semn constant pe fiecare din intervalele	
	$\left(-\infty, -\frac{1}{2}\right), \left(-\frac{1}{2}, 1\right)$ și $\left(1, +\infty\right)$	2 p
	$f(x) \ge 0 \Leftrightarrow x \in \left[-\frac{1}{2}, 1\right]$	1p

Examenul de bacalaureat național 2016

Proba E. c)

Matematică M_tehnologic

Clasa a XI-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră progresia geometrică $(b_n)_{n\geq 1}$ cu $b_1=2$ și $b_2=8$. Calculați $b_1+b_2+b_3$
- **5p** 2. Determinați numerele reale a pentru care f(a-5) = f(5), unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 1$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2 \cdot 2^x = 4^{x-2}$.
- **5p 4.** Determinați câte numere naturale de trei cifre se pot forma cu cifrele din mulțimea $A = \{0, 2, 4, 5\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,-2) și B(-1,4). Determinați coordonatele punctului M, știind că $\overline{AM} = \overline{MB}$.
- **5p 6.** Se consideră triunghiul ABC cu $m(\angle ABC) = 30^{\circ}$, AB = 8 și BC = 12. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $d(x) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & x+1 \\ 3 & 3 & x^2+2 \end{vmatrix}$, unde x este număr real.
- **5p** a) Calculați d(0).
- **5p b**) Demonstrați că d(x) = -2(x-1)(x+1), pentru orice număr real x.
- **5p** c) Arătați că, dacă x și y sunt două numere reale diferite astfel încât d(x) = d(y), atunci x + y = 0.
 - **2.** Se consideră matricele $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Calculați $A + I_2$.
- **5p b)** Arătați că inversa matricei $M = A + I_2 + A \cdot A$ este matricea -A.
- **5p** c) Determinați numărul real x, pentru care avem $(A + I_2)(B + I_2) = 2I_2$, unde $B = \begin{pmatrix} 0 & x \\ x^2 & 0 \end{pmatrix}$.

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^2 + 3x + 5}}{x+2}$.
- **5p a**) Calculați $\lim_{x \to 1} f(x)$.
- **5p b**) Determinați ecuația asimptotei verticale la graficul funcției f.
- **5p** $| \mathbf{c} |$ Determinați ecuația asimptotei orizontale la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x+1, & x \in (-\infty, 0] \\ 1-x^3, & x \in (0, +\infty) \end{cases}$.
- **5p a**) Calculați f(-1) + f(1).
- **5p b**) Demonstrați că funcția f este continuă în punctul x = 0.
- **5p** c) Rezolvați în mulțimea numerelor reale inecuația $f(x) \ge 0$.

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 01

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{4}$: 0, 25 = 1	3 p
	$1 - \frac{1}{4} : 0, 25 = 1 - 1 = 0$	2p
2.	$f(-1) = 0$ $f(-1) \cdot f(1) = 0$	3p
	$f(-1)\cdot f(1)=0$	2 p
3.	2x-3=25	3 p
	x=14, care verifică ecuația	2p
4.	20% din 100 este egal cu $\frac{20}{100} \cdot 100 = 20$	3 p
	Prețul după scumpire este 100 + 20 = 120 de lei	2p
5.	$AB = \sqrt{(5-2)^2 + (4-4)^2} =$	3 p
	= 3	2 p
6.	$\triangle ABC$ este isoscel $\Rightarrow AB = AC =$	3 p
	= 6	2p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} = 1 \cdot (-2) - 1 \cdot 2 =$	3р
	=-2-2=-4	2 p
b)	$A - 2B = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} - \begin{pmatrix} 2x & 2 \\ 2y & -2 \end{pmatrix} = \begin{pmatrix} 1 - 2x & 0 \\ 1 - 2y & 0 \end{pmatrix}$	2 p
	$\det(A-2B) = \begin{vmatrix} 1-2x & 0 \\ 1-2y & 0 \end{vmatrix} = 0, \text{ pentru orice numere reale } x \text{ și } y$	3 p
c)	$A \cdot B = \begin{pmatrix} x + 2y & -1 \\ x - 2y & 3 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} x + 1 & 2x - 2 \\ y - 1 & 2y + 2 \end{pmatrix}$	2p
	$\begin{pmatrix} x+2y & -1 \\ x-2y & 3 \end{pmatrix} = \begin{pmatrix} x+1 & 2x-2 \\ y-1 & 2y+2 \end{pmatrix}$, de unde obţinem $x = \frac{1}{2}$, $y = \frac{1}{2}$	3р
2.a)	$1 \circ (-2) = 1 \cdot (-2) + 2 \cdot 1 + 2 \cdot (-2) + 2 =$	3p
	=-2+2-4+2=-2	2p
b)	$x \circ y = xy + 2x + 2y + 4 - 2 =$	3 p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	2p

c)
$$(x+2)\left(\frac{1}{x}+2\right)-2=x \Leftrightarrow (x+2)\left(\frac{1}{x}+2\right)=x+2 \Leftrightarrow (x+2)\left(\frac{1}{x}+1\right)=0$$

 $x=-2 \text{ sau } x=-1$
2p

1.a)	$f'(x) = (x^3)' + (x^2)' - x' + 1' =$	2p
	$=3x^2+2x-1+0=3x^2+2x-1, \ x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = \lim_{x \to +\infty} \frac{3x^3 + 2x^2 - x}{x^3 + x^2 - x + 1} =$	2p
	$\lim_{x \to +\infty} f(x) \qquad \lim_{x \to +\infty} x^3 + x^2 - x + 1$ $= \lim_{x \to +\infty} \frac{3 + \frac{2}{x} - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3}} = 3$ $f'(x) = 4$	3 p
c)	f'(x) = 4	2p
	$3x^2 + 2x - 5 = 0 \Leftrightarrow x = -\frac{5}{3} \text{ sau } x = 1$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) - x^3 - 2x \right) dx = \int_{-1}^{1} \left(x^5 + x^3 + 2x - x^3 - 2x \right) dx = \int_{-1}^{1} x^5 dx =$	2 p
	$=\frac{x^6}{6} \bigg _{-1}^{1} = \frac{1}{6} - \frac{1}{6} = 0$	3р
b)	$\int_{0}^{2} e^{x} (f(x) - x^{5} - x^{3} + 1) dx = \int_{0}^{2} e^{x} (2x + 1) dx = e^{x} (2x + 1) \Big _{0}^{2} - \int_{0}^{2} 2e^{x} dx =$	3р
	$=5e^2 - 1 - 2(e^2 - 1) = 3e^2 + 1$	2p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$, $x \in \mathbb{R}$	2p
	$F''(x) = f'(x) = 5x^4 + 3x^2 + 2 \ge 0$, pentru orice număr real x , deci F este convexă pe \mathbb{R}	3 p

Matematică *M_tehnologic*

Varianta 01

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- 1. Arătați că $1 \frac{1}{4} : 0,25 = 0$. **5**p
- **2.** Calculați $f(-1) \cdot f(1)$, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x+1. **5p**
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x-3} = 5$. **5**p
- 4. Un obiect costă 100 de lei. Determinați prețul obiectului după o scumpire cu 20%. **5p**
- 5. În reperul cartezian xOy se consideră punctele A(2,4) și B(5,4). Calculați distanța de la punctul A la punctul B.
- **6.** Calculați lungimea laturii AB a triunghiului ABC, dreptunghic în A, știind că AC = 6 și $B = \frac{\pi}{4}$. 5p

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$ și $B = \begin{pmatrix} x & 1 \\ v & -1 \end{pmatrix}$, unde x și y sunt numere reale.
- a) Arătați că $\det A = -4$. **5p**
- **b)** Arătați că $\det(A-2B)=0$, pentru orice numere reale x și y. **5p**
- c) Determinați numerele reale x și y, pentru care $A \cdot B = B \cdot A$. **5p**
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 2x + 2y + 2$.
- a) Arătați că $1 \circ (-2) = -2$. 5p
- **b)** Demonstrați că $x \circ y = (x+2)(y+2)-2$, pentru orice numere reale x și y. **5**p
- c) Determinați numerele reale nenule x, pentru care $x \circ \frac{1}{x} = x$. **5**p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2 x + 1$.
- **a)** Arătați că $f'(x) = 3x^2 + 2x 1, x \in \mathbb{R}$. **5**p
- **b)** Arătați că $\lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = 3$. 5p
- c) Determinați abscisele punctelor situate pe graficul funcției f în care tangenta la graficul funcției **5**p f este paralelă cu dreapta y = 4x + 1.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^5 + x^3 + 2x$.
- **a)** Arătați că $\int_{-1}^{1} (f(x) x^3 2x) dx = 0$. **b)** Arătați că $\int_{-1}^{2} e^x (f(x) x^5 x^3 + 1) dx = 3e^2 + 1$.
- **5p** c) Demonstrați că orice primitivă a funcției f este convexă pe $\mathbb R$.