Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID13654	
Project Name	Efficient water quality analysis and	
	prediction using machine learning	
Maximum Marks	10 Marks	

Model Performance Testing:

S.N	Parameter	Values	Screenshot
o. 1.	Metrics	Classification Model: # Support vector classifier from sklearn.svm import SVC svc_classifier = SVC(class_weight = "balanced") svc_classifier.fit(X_train_final, y_train) y_pred_scv = svc_classifier.predict(X_test_final) ACCURACY: accuracy_score(y_test, y_pred_scv) #0.62255 CLASSIFICATION REPORT: print(classification_report(y_test, y_pred_scv)) CONFUSION MATRIX: cm = confusion_matrix(y_test, y_pred_scv) plt.title('Heatmap of Confusion Matrix', fontsize = 12) sns.heatmap(cm, annot = True, fmt = "d") plt.show()	Support vector Machine b (2)

Random Forest Classifier from sklearn.ensemble import RandomForestClassifier rf classifier = RandomForestClassifier(n estimators = 20, criterion = 'entropy', 8 8.65 8.87 8.74 497 1 8.52 8.24 8.33 383 accuracy 8.59 8.55 8.54 898 sighted avg 8.68 8.63 8.59 800 class weight = "balanced_subsample",random_state = 51) rf classifier.fit(X train final, y train) v pred = rf classifier.predict(X test final) **ACCURACY_SCORE:** accuracy_score(y_test, y_pred) **CLASSIFICATION REPORT:** e e.es e.er e.74 497 1 e.52 e.24 e.33 363 print(classification report(y test, y pred)) **#XGBoost Classifier** 0 0.67 0.77 0.72 697 1 0.50 0.38 0.43 303 from xgboost import XGBClassifier accuracy 8.62 800 macro avg 8.59 8.57 8.57 800 ighted avg 8.61 8.62 8.61 800 xgb classifier = XGBClassifier(random state=0) xgb classifier.fit(X train final, y train) y_pred_xgb = xgb_classifier.predict(X_test_final) **ACCURACY SCORE:** accuracy score(y test, y pred xgb) **CLASSIFICATION REPORT:** print(classification_report(y_test, y_pred_xgb)) 2. Tune the **Hyperparameter Tuning** param_grid = {'C': [0.1, 1, 10, 100, 200 Model , 400, 600, 800], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']}

from sklearn.model_selection import
GridSearchCV
grid = GridSearchCV(SVC(),
param_grid, refit = True, verbose = 3)

fitting the model for grid search
grid.fit(X_train_final, y_train)
print best parameter after tuning
print(grid.best_params_)

print how our model looks after hyper-parameter tuning print(grid.best_estimator_)

