The 13th Asian Control Conference (ASCC 2022) Tutorial: Homomorphic Encryption and Its Application to Feedback Control

ECLib: Encrypted Control Library for Python

Kaoru Teranishi

The University of Electro-Communications
Research Fellow of Japan Society for the Promotion of Science

ECLib

Encrypted control requires the knowledge of control theory and cryptography.

For control engineers, studying cryptography is challenging.

ECLib (Encrypted Control Library)

- Open source software
- Easy to use for researchers and students

https://github.com/KaoruTeranishi/EncryptedControl

Why Python?

In control society, MATLAB is a popular tool for design and analysis of control systems. Unfortunately, MATLAB does not support **bignum arithmetic**.

Cryptography is typically based on very big integers, and so MATLAB is not suitable for encrypted control.

Python

- The most popular programming language in 2021 [1]
- Built-in support for bignums
- Many OSS packages for developing codes
- Interactive coding and computing

Jupyter Notebook

Jupyter notebook is a web application for interactive computing.

https://jupyter.org

Jupyter notebook documents can contain codes, markdown texts, equations, and plots.

(≒ MATLAB live editor)

Visual Studio Code supports Jupyter Notebook.

Goal of This Presentation

This presentation is a brief introduction to Python and ECLib to develop numerical simulations of encrypted control.

The usage of ECLib will be explained through two applications.

- ElGamal encryption
- Encrypted PI control

Slides and codes are available here:

https://github.com/KaoruTeranishi/EncryptedControl

Example 1: ElGamal encryption

Algorithms

```
\mathsf{KeyGen}: 1^{\lambda} \mapsto (\mathsf{pk}, \mathsf{sk}) = ((\mathbb{G}, g, p, q, h), s)
```

 $\mathsf{Enc}: (\mathsf{pk}, m) \mapsto c = (c_1, c_2) = (g^r \bmod p, mh^r \bmod p)$

 $Dec: (sk, c) \mapsto m = c_1^{-s} c_2 \bmod p$

 $\mathsf{Eval}: (c,c') \mapsto (c_1c_1' \bmod p, c_2c_2' \bmod p)$

Import Packages

1 from eclib.elgamal import *

Import all functions from elgamal module in eclib package.

Module: Script file consisting of some commands. Module can be used from external codes.

Package: A way structuring multiple modules.

Package Installation

We can use many OSS packages for developing codes.

CVXPY

If you want to install ECLib, run pip command on your terminal.

\$ pip install eclib

- De facto standard of package management system in Python.
- The system installs packages from online repository, Python Package Index (PyPI).
- The system can also update and uninstall packages.

Key Generation

```
3 key_length = 20
4 params, pk, sk = keygen(key_length)
5
6 print(f'\u03BB = {key_length}')
7 print(f'p = {params.p}')
8 print(f'q = {params.q}')
9 print(f'g = {params.g}')
10 print(f'h = {pk}')
11 print(f's = {sk}')
```

Result:

```
λ = 20
p = 1049963
q = 524981
g = 3
h = 33790
s = 110369
```

Line 3: Assign 20 to key_length.

Line 4: Generate public and secret keys.

params: public parameters p, q, g

pk: public key h

sk: secret key s

Each public parameter can be referred by the dot operator.

Encryption and Decryption (1/2)

```
13 delta = 0.01
14 x1 = 1.23
15 m1 = encode(params, x1, delta)
16 c1 = encrypt(params, pk, m1)
17 n1 = decrypt(params, sk, c1)
18 y1 = decode(params, n1, delta)
19
20 print(f'x1 = {x1}')
21 print(f'm1 = Ecd(x1) = {m1}')
22 print(f'c1 = Enc(m1) = {c1}')
23 print(f'n1 = Dec(c1) = {n1}')
24 print(f'y1 = Dcd(n1) = {y1}')
```

Result:

```
x1 = 1.23
m1 = Ecd(x1) = 122
c1 = Enc(m1) = [40345, 874487]
n1 = Dec(c1) = 122
y1 = Dcd(n1) = 1.22
```

Line 15: Encode x1 = 1.23 using delta = 0.01.

$$m_1 = \mathsf{Ecd}_{\Delta}(x_1), \ x_1 = 1.23, \ \Delta = 0.01$$

Line 16: Encrypt m1.

$$c_1 = \mathsf{Enc}(m_1)$$

Line 17: Decrypt c1.

$$n_1 = \mathsf{Dec}(c_1)$$

Line 18: Decode n1 using delta.

$$y_1 = \mathsf{Dcd}_\Delta(n_1)$$

Encryption and Decryption (2/2)

```
26 x2 = -4.56
27 c2 = enc(params, pk, x2, delta)
28 y2 = dec(params, sk, c2, delta)
29
30 print(f'x2 = {x2}')
31 print(f'c2 = Enc(Ecd(x2)) = {c2}')
32 print(f'y2 = Dcd(Dec(c2)) = {y2}')
```

Result:

```
x2 = -4.56

c2 = Enc(Ecd(x2)) = [424381, 935668]

y2 = Dcd(Dec(c2)) = -4.57
```

Line 27: We can encrypt float numbers by encinstead of using encode and encrypt.

$$c_2 = \text{Enc}(\text{Ecd}_{\Delta}(x_2)), \ x_2 = -4.56$$

Line 28: Similarly, we can use dec for decryption.

$$y_2 = \mathsf{Dcd}_\Delta(\mathsf{Dec}(c_2))$$

Homomorphic Computation

```
34 x3 = x1 * x2
35 c3 = mult(params, c1, c2)
36 y3 = dec(params, sk, c3, delta ** 2)
37
38 print(f'x3 = x1 * x2 = {x3}')
39 print(f'c3 = Mult(c1, c2) = {c3}')
40 print(f'y3 = Dcd(Dec(c3)) = {y3}')
```

Line 34: Assign x1 multiplied by x2 to x3.

Line 35: Compute homomorphic multiplication.

$$c_3 = c_1 \otimes c_2$$

Result:

```
x3 = x1 * x2 = -5.6088
c3 = Mult(c1, c2) = [954767, 686157]
y3 = Dcd(Dec(c3)) = -5.5754
```

Line 36: Decrypt and decode c3 using delta squared because delta is accumulated every homomorphic multiplication.

$$y_3 = \mathsf{Dcd}_{\Delta^2}(\mathsf{Dec}(c_3))$$

Example 2: Encrypted PI Control

Plant ($T_s = 0.1 \text{ s}$)

$$x_{t+1} = \begin{bmatrix} 0.35 & -0.16 \\ 0.13 & 0.98 \end{bmatrix} x_t + \begin{bmatrix} 0.031 \\ 0.004 \end{bmatrix} u_t$$
$$y_t = \begin{bmatrix} 0 & 1 \end{bmatrix} x_t$$

PI controller ($K_p = 15.34$, $K_i = 15.62$)

$$w_{t+1} = w_t + \begin{bmatrix} T_s & -T_s \end{bmatrix} \begin{bmatrix} r_t \\ y_t \end{bmatrix}$$

$$u_t = K_i w_t + \begin{bmatrix} K_p & -K_p \end{bmatrix} \begin{bmatrix} r_t \\ y_t \end{bmatrix}$$

$$\iff \begin{bmatrix} w_{t+1} \\ u_t \end{bmatrix} = \begin{bmatrix} 1 & T_s & -T_s \\ K_i & K_p & -K_p \end{bmatrix} \begin{bmatrix} w_t \\ r_t \\ y_t \end{bmatrix}$$

$$\psi_t = \begin{bmatrix} w_{t+1} \\ u_t \end{bmatrix}, \ \Phi = \begin{bmatrix} 1 & T_s & -T_s \\ K_i & K_p & -K_p \end{bmatrix} = \begin{bmatrix} 1 & 0.1 & -0.1 \\ 15.62 & 15.34 & -15.34 \end{bmatrix}, \ \xi_t = \begin{bmatrix} w_t \\ r_t \\ y_t \end{bmatrix}$$

Import Packages

```
1 from eclib.elgamal import *
2 from eclib.colors import *
3 import eclib.figsetup
4 import numpy as np
5 import numpy.linalg as la
6 from control.matlab import *
7 import matplotlib.pyplot as plt
```

Import modules in ECLib, NumPy, Python-control, and matplotlib.

Line 4: Import numpy module as the short name, np.

After this line, we can refer numpy module as np.

Lines 5, 7: Import linalg and pyplot modules from numpy and matplotlib packages as la and plt, respectively.

Simulation Settings (1/2)

```
9 # sampling time
10 Ts = 0.1
11
12 # simulation setting
13 simulation_time = 10
14 t = np.linspace(0, simulation_time - Ts, int(simulation_time / Ts))
```

In this simulation, a sampling time is 0.1 s, and the total simulation time is 10 s.

Line 14: Generate an array including sampling points.

linspace(start, stop, num) returns an array consisting of num elements, which are equally spaced in the interval from start to stop.

Simulation Settings (2/2)

Example:

```
a = np.linspace(0, 10, 5)
print(f'a = {a}')
```

Result:

```
a = [0. 2.5 5. 7.5 10.]
```

```
14 t = np.linspace(0, simulation_time - Ts, int(simulation_time / Ts))
```

t is an array consisting of int(simulation_time / Ts) elements in the interval from 0 to simulation_time - Ts.

Here, simulation_time is 10, and Ts is 0.1. Hence, t is an array, t = [0, 0.1, 0.2, 0.3, ... 9.7, 9.8, 9.9]

Plant

```
16 # plant (continuous time)
17 A = np.array([[-10, -2.5],
    [ 2, 0 ]])
18
19 B = np.array([0.5],
                [0]
20
21 C = np.array([0, 1])
22 D = np.array(0)
24 # plant (discrete time)
25 sys = c2d(ss(A, B, C, D), Ts)
26 A = sys.A
27 B = sys.B
28 C = sys.C
29 D = sys.D
30
31 # dimension
32 n = A.shape[0]
33 m = B.shape[1]
34 \ 1 = C.shape[0]
```

Lines 17-22: Define plant parameters.

$$\dot{x}(\tau) = \begin{bmatrix} -10 & -2.5 \\ 2 & 0 \end{bmatrix} x(\tau) + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u(\tau)$$

$$y(\tau) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(\tau)$$

$$A = \begin{bmatrix} -10 & -2.5 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

Lines 25-29: Discretize plant parameters with Ts.

Lines 32-34: Assign signal dimensions to n, m, and 1.

```
36 # controller

37 Kp = 15.34

38 Ki = 15.62

39

40 Phi = np.array([[ 1, Ts, -Ts],

[Ki, Kp, -Kp]])
```

Line 40: Define controller parameter matrix.

$$w_{t+1} = w_t + \begin{bmatrix} T_s & -T_s \end{bmatrix} \begin{bmatrix} r_t \\ y_t \end{bmatrix}$$

$$u_t = K_i w_t + \begin{bmatrix} K_p & -K_p \end{bmatrix} \begin{bmatrix} r_t \\ y_t \end{bmatrix}$$

$$\iff \begin{bmatrix} w_{t+1} \\ u_t \end{bmatrix} = \begin{bmatrix} 1 & T_s & -T_s \\ K_i & K_p & -K_p \end{bmatrix} \begin{bmatrix} w_t \\ r_t \\ y_t \end{bmatrix}$$
Phi

Controller Encryption

```
43 # cryptosystem
44 key_length = 256
45 params, pk, sk = keygen(key_length)
46
47 # scaling parameter
48 delta = 0.0001
49
50 # controller encryption
51 Phi_enc = enc(params, pk, Phi, delta)
```

Line 51: Encrypt controller parameter matrix.

enc can be used for a scalar, vector, and
matrix.

The dimensions of return value are decided automatically.

```
Phi_enc = [c1, c2]

enc(params,pk,Phi[0,0],delta) enc(params,pk,Phi[0,1],delta) enc(params,pk,Phi[1,0],delta)

enc(params,pk,Phi[1,0],delta) enc(params,pk,Phi[1,1],delta) enc(params,pk,Phi[1,2],delta)
```

Signals (1/3)

```
53 # state
54 \times = np.zeros([len(t) + 1, n])
55 x_{-} = np.zeros([len(t) + 1, n])
56
57 # input
58 u = np.zeros([len(t), m])
59 u_{\underline{}} = np.zeros([len(t), m])
60
61 # output
62 y = np.zeros([len(t), 1])
63 y_{-} = np.zeros([len(t), 1])
64
65 # reference
66 r = np.zeros([len(t), 1])
67 r_{-} = np.zeros([len(t), 1])
68
69 # controller state
70 \text{ w} = \text{np.zeros}([len(t) + 1, 1])
71 \text{ w} = \text{np.zeros}([len(t) + 1, 1])
```

Define arrays for saving signal data.

x, u, y, r, and w are used for unencrypted control.

Variables with underscore are used for encrypted control.

np.zeros(shape) returns an array consisting of zeros. shape is an array of integers.

len(t) is a length of t.

Example:

Result:

5

Signals (2/3)

```
73 # controller input
74 xi = np.zeros([len(t), 3 * 1])
75 xi_ = np.zeros([len(t), 3 * 1])
76 xi_enc = [[[0, 0] for j in range(3 * 1)] for i in range(len(t))]
77
78 # controller output
79 psi = np.zeros([len(t), 1 + m])
80 psi_ = np.zeros([len(t), 1 + m])
81 psi_enc = [[[[0, 0] for k in range(3 * 1)] for j in range(1 + m)] for i in range(len(t))]
```

Line 76: Define 2-dimensional array of which elements are [0, 0] by using list comprehension.

range(stop) represents an immutable sequence numbers from 0 to stop - 1.

Example: Result:

```
a = range(5)
print(list(a))
```

[0, 1, 2, 3, 4]

Signals (3/3)

List comprehension is a way to create various lists.

Example:

a = [x ** 2 for x in range(5)]
print(f'a = {a}')

Result:

$$a = [0, 1, 4, 9, 16]$$

```
76 xi_enc = [[0, 0] for j in range(3 * 1)] for i in range(len(t))]
```

81 psi_enc = [[[0, 0] for k in range(3 * 1)] for j in range(1 + m)] for i in range(len(t))]

xi_enc

Simulation of Unencrypted Control (1/2)

```
83 # unencrypted control
84 for k in range(len(t)):
       # reference
85
      r[k] = 1
86
87
       # sensor measurement
       y[k] = C @ x[k]
88
       # controller input
89
       xi[k,0:1] = w[k]
90
       xi[k,1:2*1] = r[k]
91
       xi[k,2*1:3*1] = y[k]
92
       # controller computation
93
       psi[k] = Phi @ xi[k]
94
95
       # controller output
       w[k+1] = psi[k,0:1]
96
       u[k] = psi[k,l:l+m]
97
       # plant update
98
       x[k+1] = A @ x[k] + B @ u[k]
99
```

Line 84: For loop from k = 0 to k = len(t) - 1.

Line 88: Compute plant output. @ is the operator for matrix product.

$$y_k = Cx_k$$

Lines 90-92: Construct a controller input.

$$\xi_k = \begin{bmatrix} w_k^{\top} & r_k^{\top} & y_k^{\top} \end{bmatrix}^{\top}$$

Colon is an operator for slicing an array.

Example (2-dimensional array):

Simulation of Unencrypted Control (2/2)

```
83 # unencrypted control
84 for k in range(len(t)):
       # reference
85
86
     r[k] = 1
87
      # sensor measurement
     y[k] = C @ x[k]
88
       # controller input
89
       xi[k,0:1] = w[k]
90
       xi[k,1:2*1] = r[k]
91
       xi[k,2*1:3*1] = y[k]
92
93
       # controller computation
       psi[k] = Phi @ xi[k]
94
95
       # controller output
       w[k+1] = psi[k,0:1]
96
       u[k] = psi[k,l:l+m]
97
       # plant update
98
       x[k+1] = A @ x[k] + B @ u[k]
99
```

Line 94: Compute a controller output.

$$\psi_k = \Phi \xi_k$$

Lines 96-97: Decompose a controller output.

$$\begin{bmatrix} w_{k+1} \\ u_k \end{bmatrix} = \psi_k$$

Line 99: Update a plant state.

Simulation of Encrypted Control

```
101 # encrypted control
102 for k in range(len(t)):
103
        # reference
      r_{[k]} = 1
104
105
        # sensor measurement
        y_{[k]} = C @ x_{[k]}
106
107
        # controller input
108
        xi_[k,0:1] = w_[k]
109
        xi_{k,1:2*1} = r_{k}
110
        xi_{k,2*1:3*1} = y_{k}
111
        xi_enc[k] = enc(params, pk, xi_[k], delta)
        # encrypted controller computation
112
113
        psi_enc[k] = mult(params, Phi_enc, xi_enc[k])
        # controller output
114
        psi_[k] = dec_add(params, sk, psi_enc[k], delta ** 2)
115
116
        w_{k+1} = psi_{k,0:1}
        u_{[k]} = psi_{[k,1:1+m]}
117
118
        # plant update
        x_{k+1} = A @ x_{k} + B @ u_{k}
119
```

Line 111: Encrypt a controller input.

$$\xi_{\mathsf{Enc}} = \mathsf{Enc}(\mathsf{Ecd}_\Delta(\xi_k))$$

Line 113: Homomorphic computation

$$\Psi_{\mathsf{Enc}} = f^{\times}(\Phi_{\mathsf{Enc}}, \xi_{\mathsf{Enc}})$$

Line 115: Decrypt a controller output.

$$\psi_k = \mathsf{Dcd}_{\Delta^2}(\mathsf{Dec}^+(\Psi_{\mathsf{Enc}}))$$

Figures

```
130 plt.figure()
131 plt.plot(t, y, linestyle='-', color=gray, linewidth=3.0, label='unencrypted')
132 plt.plot(t, y_, linestyle='-', color=blue, linewidth=1.0, label='encrypted')
133 plt.plot(t, r, linestyle='--', color=black, linewidth=0.5)
134 plt.xlabel('Time (s)')
135 plt.ylabel(r'$y$')
136 plt.xlim(0, simulation_time)
137 plt.ylim(0, 1.2)
138 plt.legend(loc='lower right')
```

266 plt.show()

Line 130: Create a new figure.

Lines 131-133: Plot y, y_, and r.

Lines 134-137: Set labels and ranges of x- and y-axises.

Lines 138: Set a legend position.

Lines 266: Show the figure.

Conclusion

- ECLib is an OSS Python library for researchers and students.
- ECLib provides functions of homomorphic encryption to develop numerical simulation codes of encrypted control.
- Supported cryptosystems in ECLib are ElGamal encryption and Paillier encryption.
- We welcome your suggestions, bug reports, and contributions. https://github.com/KaoruTeranishi/EncryptedControl

