٠,

Implémentation de CNNs avec NumPy

 $\begin{array}{c} \text{Lenny Malard} \\ \textit{Melpy} \end{array}$

Abstract

Ce projet avait pour objectif d'implémenter, à l'aide de NumPy, des réseaux de neurones convolutifs pour la bibliotèque Melpy et de comparer leur performances avec Keras. Les résultats nous montrent...

Table des matières

Introduction

1	Introduction	1	Les réseaux de neurones convolutifs (CNNs) ont été cités pour la première fois par Yann
2	Théorie 2.1 L'architecture	2 2 2 3 3 4 4 5	LeCun en 1998, dans le papier "Gradient-Based Learning Applied to Document Recognition" [6]. Il y met en avant l'apprentissage automatique des motifs présents dans les images d'un jeu de données et démontre l'efficacité du modèle dans des tâches de classification. Cependant, ce n'est qu'en 2012 que cette approche gagna en popularité grâce à la victoire d'AlexNet [5] durant la compétition de détection d'images
3	Implémentation3.1 La méthode Im2Col3.2 Les couches de Convolution3.3 Les couches de Pooling	5 6 8 10	ImageNet. Depuis, les CNNs sont reconnues comme des architectures performantes dans le domaine de la Vision par Ordinateur, et sont exploités pour de nombreuses tâches telles que la reconnaissance faciale, l'estimation de poses
4	Expérimentations 4.1 Méthode	12 12 13 13 13 14	ou encore la reconnaissance d'actions [7]. Il est donc aujourd'hui naturel que les bibliothèques de deep learning les proposent, et c'est pourquoi Melpy ne déroge pas à la règle. Nous verrons dans ce rapport la théorie derrière les CNNs et les choix dans leur implémentation pour des tâches de classification. Nous discuterons également des performances de Melpy par rapport à Keras, un framework de référence pour la réalisation de modèles de
5	Conclusions	14	deep learning de haut niveau.

Théorie

Dans cette section, nous verrons l'aspect théorique derrière les CNNs.

2.1 L'architecture

Les CNNs se composent de deux parties principales : une partie dédiée à l'extraction des caractéristiques des images d'entrée, et une autre à leur classification.

En effet, le réseau va d'abord utiliser une couche de Convolution pour créer des cartes de caractéristiques, puis va ensuite réduire la taille des données grâce à une couche de Pooling. Ce processus est répété et ajusté selon la profondeur nécessaire au réseau.

Ensuite, les cartes de caractéristiques sont transformées en vecteurs aplatis, où chaque pixel devient une caractéristique. Ces vecteurs alimentent un perceptron multicouche (MLP), qui, via des couches entièrement connectées, détermine la classe de chaque image.

Pour imager, nous pouvons prendre comme exemple l'architecture de la Figure 1 :

Figure 1: Architecture de LeNet-5^[6]

Nous observons deux couches de Convolution et deux couches de Pooling. On voit également le MLP composé d'une couche d'entrée, d'une couche cachée et d'une couche de sortie.

2.2 Les couches de Convolution

Nous verrons ici les calculs de propagation avant et de propagation arrière nécéssaires à l'entrainement des couches de convolution.

L'opération de convolution est définie par :

$$y[m,n] = x[m,n] * h[m,n]$$

$$= \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j]h[m-i,n-j]$$
(2)

Avec x l'entrée, y la sortie et h le filtre.

Cependant, pour simplifier les calculs, nous éffectuerons des opérations de crosscorrélation, définis par :

$$y[m, n] = x[m, n] \star h[m, n]$$

$$= \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i, j] h[m+i, n+j]$$

$$= \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i, j] rot_{180^{\circ}}[h][m-i, n-j]$$

$$= x[m, n] * rot_{180^{\circ}}[h[m, n]]$$
(5)
$$= x[m, n] * fot_{180^{\circ}}[h[m, n]]$$
(6)

Pour nos calculs, nous posons les termes suivant :

l l'indice d'une couche

y la sortie

x l'entrée

w le filtre (ou kernel)

 σ la fonction d'activation

L la fonction coût

m, n les indices des pixels de la sortie

i, j les indices des pixels du filtre

m',n' les indices des pixels de la dérivée de l'entrée

i',j' les indices des pixels de la dérivée du filtre

H, W la hauteur et la largeur de la sortie k la taille du filtre

Afin de simplifier les calculs théoriques, nous nous restreignons à une cross-corrélation sans padding et sur qu'un seul canal.

ou des formes plus complexes si nécessaire.

2.2.1 **Propagation Avant**

Une couche de convolution aura comme opération en propagation avant :

$$y^l = \sigma(y^{l-1}) \star w^l \tag{7}$$

$$= x^l \star w^l \tag{8}$$

$$y_{m,n}^{l} = \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} \sigma(y_{i,j}^{l-1}) \cdot w_{m+i,n+j}^{l}$$
 (9)

$$= \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \sigma(y_{m+i,n+j}^{l-1}) \cdot w_{i,j}^{l}$$
 (10)

Cela génère des cartes de caractéristiques qui mettent en évidence certains motifs d'une image, aidant le MLP à la classifier. nombre de cartes correspond au nombre de filtres dans la couche. Par exemple, pour obtenir 6 cartes de caractéristiques, il faut utiliser 6 filtres différents.

Figure 2: Cartes de caractéristiques générées avec Melpy sur le dataset MNIST^[2]. Les entrées se situent dans la première colonne.

Sur la Figure 2, nous observons que certains pixels de l'image d'entrées sont activés et d'autres non. On peut l'expliquer par le fait que les filtres vont être entrainés à activer uniquement certaines caractéristiques telles que les bords verticaux, les bords horizontaux

2.2.2 Propagation Arrière

En propagation arrière, nous aurons besoin des dérivées de la fonction coût L par rapport à l'entrée x^l et par rapport au filtre w^l .

Commençons par calculer $\frac{\partial L}{\partial w_{s',s'}^l}$:

$$\frac{\partial L}{\partial w_{i',j'}^{l}} = \sum_{n=0}^{W-1} \sum_{m=0}^{H-1} \frac{\partial L}{\partial w_{i',j'}^{l}} \cdot \frac{\partial x_{m,n}^{l+1}}{\partial x_{m,n}^{l+1}}$$
(11)

$$= \sum_{n=0}^{W-1} \sum_{m=0}^{H-1} \frac{\partial L}{\partial x_{m,n}^{l+1}} \cdot \frac{\partial x_{m,n}^{l+1}}{\partial w_{i',j'}^{l}}$$
(12)

On pose:
$$\frac{\partial L}{\partial x_{m,n}^{l+1}} = \delta_{m,n}^{l+1}$$

$$\implies \frac{\partial L}{\partial w_{i',j'}^{l}} = \sum_{n=0}^{W-1} \sum_{m=0}^{H-1} \delta_{m,n}^{l+1} \cdot \frac{\partial x_{m,n}^{l+1}}{\partial w_{i',j'}^{l}}$$
(13)

$$\frac{\partial x_{m,n}^{l+1}}{\partial w_{i',j'}^{l}} = \frac{\partial}{\partial w_{i',j'}^{l}} \left(\sum_{j=0}^{W-1} \sum_{i=0}^{H-1} \sigma(x_{m+i,n+j}^{l}) \cdot w_{i,j}^{l} \right)$$
(14)

$$= \frac{\partial}{\partial w_{i',j'}^l} \left(\sigma(x_{m+i',n+j'}^l) \cdot w_{i',j'}^l \right) \tag{15}$$

$$= \sigma(x_{m+i',n+j'}^l) \cdot \frac{\partial}{\partial w_{i',j'}^l} (w_{i',j'}^l)$$
 (16)

$$=\sigma(x_{m+i',n+j'}^l)\tag{17}$$

$$= \sigma(x_{m+i',n+j'}^l)$$

$$\Rightarrow \frac{\partial L}{\partial w_{i',j'}^l} = \sum_{n=0}^{W-1} \sum_{m=0}^{H-1} \delta_{m,n}^{l+1} \cdot \sigma(x_{m+i',n+j'}^l)$$

$$= \delta_{i',i'}^{l+1} \star \sigma(x_{i',i'}^l)$$

$$= \delta_{i',i'}^{l+1} \star \sigma(x_{i',i'}^l)$$

$$(17)$$

Calculons ensuite $\frac{\partial L}{\partial x_{m',n'}^l}$:

$$\frac{\partial L}{\partial x_{m',n'}^{l}} = \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \frac{\partial L}{\partial x_{m',n'}^{l}} \cdot \frac{\partial x_{m'-i,n'-j}^{l+1}}{\partial x_{m'-i,n'-j}^{l+1}}$$
(20)

$$\begin{aligned}
&j=0 & i=0 & \delta x_{m',n'} & \delta x_{m'-i,n'-j} \\
&= \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \frac{\partial L}{\partial x_{m'-i,n'-j}^{l+1}} \cdot \frac{\partial x_{m'-i,n'-j}^{l+1}}{\partial x_{m',n'}^{l}} & (21) \\
&= \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \delta_{m'-i,n'-j}^{l+1} \cdot \frac{\partial x_{m'-i,n'-j}^{l+1}}{\partial x_{m',n'}^{l}} & (22)
\end{aligned}$$

$$= \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} \delta_{m'-i,n'-j}^{l+1} \cdot \frac{\partial x_{m'-i,n'-j}^{l+1}}{\partial x_{m',n'}^{l}}$$
(22)

$$\begin{split} \frac{\partial x^{l+1}_{m'-i,n'-j}}{\partial x^l_{m',n'}} &= \frac{\partial}{\partial x^l_{m',n'}} \left(\sum_{j'=0}^{k-1} \sum_{i'=0}^{k-1} \right. \\ & \left. \sigma(x^l_{m'-i+i',n'-j+j'}) \cdot w^l_{i',j'} \right) \end{split} \tag{23}$$

$$= \frac{\partial}{\partial x_{m',n'}^l} \left(\sigma(x_{m',n'}^l) \cdot w_{i,j}^l \right) \tag{24}$$

$$= w_{i,j}^l \cdot \frac{\partial}{\partial x_{m',n'}^l} \left(\sigma(x_{m',n'}^l) \right) \tag{25}$$

$$= w_{i,j}^l \cdot \sigma'(x_{m',n'}^l) \tag{26}$$

$$\implies \frac{\partial L}{\partial x^{l}_{m',n'}} = \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \delta^{l+1}_{m'-i,n'-j} \cdot w^{l}_{i,j} \cdot \sigma'(x^{l}_{m',n'}) \quad (27)$$

$$= \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \delta_{m'-i,n'-j}^{l+1} \cdot w_{i,j}^{l}$$
 (28)

$$= rot_{180} \circ \left\{ \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \delta_{m'+i,n'+j}^{l+1} \cdot w_{i,j}^{l} \right\}$$
 (29)

$$= \delta^{l+1}_{m',n'} \star rot_{180} \circ \{w^l_{m',n'}\} \tag{30}$$

Lors du calcul de $\frac{\partial L}{\partial x_{m',n'}^l}$, nous avons éffectué une convolution. Cela vient du fait que les éléments de la dérivée doivent être positionnés à l'emplacement des pixels ayant contribué aux erreurs correspondantes.

Les dérivées calculées sont ensuite utilisées algorithme de Descente Gradient^[9], afin de mettre à jour le reste des paramètres du réseau.

2.3 Les couches de Pooling

Une couche de Pooling résume les informations d'une image en réduisant les pixels d'une fenêtre à une seule valeur représentative. Cette méthode, déjà présente en 1998 dans l'architecture de LeNet-5, réduit également le coût des calculs en temps et en mémoire. Nous étudierons ici l'une de ses variantes les plus courantes : le Max Pooling.

2.3.1 **Propagation Avant**

Le Pooling est une opération algorithmique donc nous n'aborderons pas la formulation mathématique.

Deux paramètres influencent le Max Pooling: le stride et la taille de la fenêtre (poolsize). Le stride détermine le nombre de pixels à sauter entre chaque position de la fenêtre.

Cette dernière de taille poolsize parcourt les pixels en lignes et colonnes, avec un pas de valeur *stride*, pour produire une nouvelle image de taille $\lfloor \frac{Taille\ d'entrée-Poolsize}{Stride} + 1 \rfloor$. À chaque déplacement, elle sélectionne la valeur maximale de la fenêtre analysée, constituant un nouveau pixel de la sortie.

On peut visualiser l'opération de la manière suivante:

Figure 3: Exemple de la propagation avant d'un Max Pooling

Dans la Figure 3, nous voyons qu'un Max Pooling de poolsize 2 et de stride 2 a eu pour effet de diviser la taille de l'image par 2.

Sur une image réelle, l'opération donnerait le résultat suivant :

Figure 4: Exemple d'une opération de Max Pooling sur une image^[1]

On observe ici une réduction de la taille de l'image tout en préservant ses informations essentielles.

2.3.2 Propagation Arrière

En propagation arrière, on redistribue les erreurs de la couche précédente, aux positions des maxima utilisé en propagation avant. Les autres pixels sont quant à eux désactivés.

Figure 5: Exemple de la propagation arrière d'un Max Pooling

Implémentation

Dans cette section, nous verrons l'implémentation des couches de Pooling et de Convolution à l'aide de NumPy.

Il existe diverses façons de réaliser un Pooling et une Convolution en Python. La méthode la plus intuitive consiste à parcourir chaque pixel d'une image avec des boucles, enregistrer les informations dans des listes, puis effectuer les calculs élément par élément. Cependant, cette approche s'avère très lente pour des opérations complexes sur plusieurs dimensions.

En effet, Python est un langage interprété, ce qui signifie que chaque ligne de code est traduite en instructions machine à l'exécution. Cela engendre une surcharge importante, surtout lorsque des boucles répétitives traitent un grand volume de données. Ce manque d'efficacité devient rapidement problématique avec des images de grande taille ou des ensembles volumineux.

Voici ci-dessous les résultats de calculs montrant la différence de temps entre une méthode naïve et l'utilisation de NumPy pour effectuer un produit matriciel.

Dims de A	Dims de B	Rapport de temps
A	B	t_1/t_2
$(10^2, 10^1)$	$(10^1, 10^2)$	$\frac{0.029}{0.00046} = 63.04$
$(10^3, 10^2)$	$(10^2, 10^3)$	$\frac{10.65}{0.07} = 152.14$
$(10^3, 10^3)$	$(10^3, 10^3)$	$\frac{124.64}{0.6} = 207.73$

Table 1: Comparaison des temps de calcul pour le produit matriciel entre les matrices A et B t1 le temps de calcul avec des boucles en secondes t2 le temps de calcul avec NumPy en secondes

On vois dans Table 1 à la ligne 3, qu'il a fallu 2 minutes à la méthode naïve pour calculer le produit matriciel entre A et B contre 0,6 secondes pour NumPy.

L'utilisation de NumPy est donc à privilégier pour accélérer les calculs tensoriels. En effet, la bibliothèque est implémentée en C, ce qui permet d'effectuer des opérations directement en langage machine. Le papier "The NumPy array: a structure for efficient numerical computation" [10] explique bien son fonctionnement et le secret de cette rapidité.

3.1 La méthode Im2Col

Im2Col (image to column) est une méthode de vectorisation introduite en 2006 par trois chercheurs de l'Inria^[3]. Cette technique convertit les tenseurs d'images en matrices tout en les décomposant en fenêtres, ce qui simplifie les calculs de convolution et de pooling tout en s'intégrant naturellement avec NumPy.

L'opération se présente de la manière suivante .

Figure 6: Transformation en matrice d'une image RGB^[8]

Figure 7: Transformation en matrice de n images $RGB^{[8]}$

Figure 8: Valeurs de la matrice remplacées par leurs indices dans l'image^[8]

Dans cet exemple, nous utilisons un *stride* de 1 et une taille de fenêtre de valeur 2. Comme illustré dans les Figures 6, 7 et 8, les canaux d'une image sont concaténés verticalement (de haut en bas), tandis que les fenêtres sont disposées horizontalement (de gauche à droite). De même, chaque image est concaténée horizontalement.

Nous avons, dans la Figure 8, remplacé les valeurs des pixels par leur position dans l'image, révélant ainsi des motifs récurrents. Ces motifs nous aideront à générer les indices i, j et k nécessaires pour construire la matrice à partir des positions des pixels. Examinons ces motifs en détail et modélisons-les mathématiquement.

Ici, le motif de l'indice i au niveau 1 (zone violette dans la Figure 8) est (0,0,1,1). On remarque ensuite que les éléments sont additionnés par 1 au niveau 2 (zone rose dans la Figure 8) puis additionnés une nouvelle fois au niveau 3 (zone orange dans la Figure 8). Nous pouvons donc généraliser avec la formule suivante :

 $i_{m} = \{0_{0} + (m-1) \times stride, 0_{1} + (m-1) \times stride, ..., 0_{k-1} + (m-1) \times stride, 1_{0} + (m-1) \times stride, 1_{1} + (m-1) \times stride, ..., 1_{k-1} + (m-1) \times stride, (k-1)_{0} + (m-1) \times stride, (k-1)_{1} + (m-1) \times stride, ..., (k-1)_{k-1} + (m-1) \times stride\},$ où m correspond au niveau, à partir de m = 1

et k la taille de la fenêtre.

Voici le code Python nécessaire pour générer les indices i:

```
import numpy as np

level1 = np.repeat(np.arange(
    window_shape), window_shape)

level1 = np.tile(level1, image_shape
    [1])

increment = stride * np.repeat(np.
    arange(output_height),
    output_width)

i = level1.reshape(-1, 1) +
    increment.reshape(1, -1)
```

Dans la ligne 3, np.arrange(window_shape) génère une séquence d'entiers allant de 0 à window_shape-1 et np.repeat(..., window_shape) répète chaque élément de cette séquence un nombre de fois égal à window_shape.

Dans la ligne 4, np.tile(level1, image_shape[1]) répète tout le tableau level1 horizontalement un nombre de fois égal au nombre de canaux.

Dans la ligne 6, np.arange(output_height) génère une séquence d'entiers allant de 0 à output_height-1 et np.repeat(..., output_width) répète chaque entier de cette séquence un nombre de fois égal à output_width. Ensuite, le résultat est multiplié par le *stride*.

Dans la ligne 8, level1.reshape(-1, 1) transforme le tableau level1 en un vecteur colonne. De même, increment.reshape(1, -1) transforme le tableau increment en un vecteur ligne. L'addition entre ces deux matrices suit les règles de broadcasting de NumPy^[10], combinant chaque élément de level1 avec chaque élément de increment pour produire une matrice contenant

l'ensemble des indices i.

Concernant l'indice j, les motifs observés sont : $j_{1,2,3} = \{(0,1,0,1), (1,2,1,2), (2,3,2,3)\}$. On voit qu'à chaque déplacement de la fenêtre, les indices j sont additionnés par 1 à partir de j_1 . On peut donc généraliser de la manière suivante :

```
j_n = \{0_0 + (n-1) \times stride, 1_0 + (n-1) \times stride, ..., (k-1)_0 + (n-1) \times stride, ..., 0_{k-1} + (n-1) \times stride, 1_{k-1} + (n-1) \times stride, ..., (k-1)_{k-1} + (n-1) \times stride\} où n correspond au glissement, à partir de n = 1 et k la taille de la fenêtre.
```

Voici le code Python nécessaire pour générer les indices j:

```
import numpy as np

slide1 = np.tile(np.arange(
    window_shape), window_shape *
    image_shape[1])

increment = stride * np.tile(np.
    arange(output_width),
    output_height)

j = slide1.reshape(-1, 1) +
    increment.reshape(1, -1)
```

Dans la ligne 3, np.arange(window_shape) génère une séquence d'entiers allant de 0 à window_shape-1 et np.repeat(..., window_shape) répète chaque élément de cette séquence un nombre de fois égal à window_shape.

Dans la ligne 4, np.tile(level1, image_shape[1]) répète tout le tableau level1 horizontalement un nombre de fois égal au nombre de canaux.

Dans la ligne 6, np.arange(output_height) génère une séquence d'entiers allant de 0 à output_height-1 et np.repeat(..., output_width) répète chaque entier de cette séquence un nombre de fois égal à

output_width. multiplié par le stride.

Dans la ligne 8, slide1.reshape(-1, 1) transforme le tableau slide1 en un vecteur colonne. De même, increment.reshape(1, -1) transforme le tableau increment en un vecteur ligne. L'addition entre ces deux matrices suit, encore une fois, les règles de broadcasting de NumPv^[10], combinant chaque élément de slide1 avec chaque élément de increment pour produire une matrice contenant l'ensemble des indices j.

Concernant l'indice des canaux k, il suffit de répéter les indices des canaux pour chaque pixel dans une fenêtre.

Voici le code Python nécessaire pour générer les indices k:

```
import numpy as np
 k = np.repeat(np.arange(image_shape
    [1]), window_shape * window_shape
    ).reshape(-1, 1)
```

Dans cette ligne. np.arange(image_shape[1]) génère séquence d'entiers allant de 0 au nombre de canaux de l'image. Ensuite, np.repeat(..., window_shape * window_shape) répète chaque entier de cette séquence un nombre de fois égal à window_shape * window_shape, c'est-à-dire le nombre de pixels dans une fenêtre. Enfin, .reshape(-1, 1) transforme le tableau résultant en un vecteur colonne. contenant l'ensemble des indices k.

Maintenant que nous avons les indices, il reste à générer la matrice correspondant au jeu de données :

```
1 import numpy as np
% k, i, j = get_indices(images.shape,
    window_shape, stride)
```

```
Ensuite, le résultat est 4 columns = np.concatenate(images[:, k
                        , i, j], axis=-1)
```

Dans ce code, chaque image est vectorisée puis concaténée avec les précédentes. À la fin, nous obtenons des colonnes de matrices correspondant à chacune d'entre elles.

L'opération inverse (Col2Im) est également possible en replacant chaque pixel à sa position initiale:

```
import numpy as np
3 images = np.zeros(image_shape)
4 k, i, j = get_indices(image_shape,
    window_shape, stride)
5 cols_reshaped = np.array(np.hsplit(
    columns, image_shape[0]))
6 np.add.at(images, (slice(None), k, i
  , j), cols_reshaped)
```

Dans le cas où le *stride* crée des fenêtres qui se superposent, les pixels sont additionnés aux positions concernées (voir Figure 9). Cela n'aura pas d'effets négatifs dans nos calculs étant donné que cela réspecte leur contribution.

Figure 9: Opération Col2Im^[8]

L'ensemble du code de la méthode Im2col se trouve dans le repo de Melpy, l'adresse suivante : https://github. com/lennymalard/melpy-project/blob/ main/melpy/im2col.py

3.2 Les couches de Convolution

Les couches Convolution2D héritent de la superclasse Layer de Melpy, ce qui leur impose l'utilisation des méthodes forward() et backward() pour effectuer respectivement les propagations avant et arrière.

Voici, dans un premier temps, le code de la propagation avant:

```
def forward(self):
      self.input_padded = self.
     explicit_padding()
      self.input_cols = im2col(self.
     input_padded, self.kernel_size,
     self.stride)
      self.filter_cols = self.weights.
     reshape(self.out_channels, -1)
6
      output_height, output_width =
     self.get_output_size(self.inputs.
     shape[2], self.inputs.shape[3])
      self.output_cols = self.
                                          10
9
     filter_cols @ self.input_cols
                                          11
      self.outputs = np.array(np.
11
     hsplit(self.output_cols, self.
                                          12
     inputs.shape[0])).reshape(
          (self.input_padded.shape[0],
12
      self.out_channels, output_height
       output_width)
13
14
      if self.biases is not None:
                                          16
          self.outputs += self.biases
                                          17
16
17
      return self.outputs
18
```

Les images d'entrée sont d'abord paddées 19 via self.explicit_padding() pour ajuster leurs dimensions, puis converties en colonnes avec im2col(). Les poids de la couche sont également aplatis en une matrice pour pouvoir effectuer un produit matriciel avec les colonnes d'images. Les dimensions de sortie $^{^{23}}\,$ sont calculées avec self.ge_output_size(), 25 et la convolution est réalisée en multipliant les colonnes des images par les filtres aplatis. 26 Les résultats sont réassemblés en images de 27 sortie, ajustés si des biais sont présents, puis retournés comme résultat final de la couche.

18

Voici maintenant le code de la propagation arrière:

```
def backward(self, dX):
     self.dY = dX
     flipped_filters = self.weights
     [:, :, ::-1, ::-1]
     flipped_filters_cols =
     flipped_filters.reshape(self.
    out_channels, -1)
     self.dY_reshaped = self.dY.
    reshape(self.dY.shape[0] * self.
    dY.shape[1], self.dY.shape[2] *
    self.dY.shape[3])
     self.dY_reshaped = np.array(np.
    vsplit(self.dY_reshaped, self.
     inputs.shape[0]))
     self.dY_reshaped = np.
     concatenate (self.dY_reshaped,
     axis=-1)
     self.dX_cols =
    flipped_filters_cols.T @ self.
     dY_reshaped
     self.dW_cols = self.dY_reshaped
    @ self.input_cols.T
     self.dX_padded = col2im(self.
    dX_cols, self.input_padded.shape,
     self.kernel_size, self.stride)
     if self.padding == "same":
          (pad_top, pad_bottom,
    pad_left, pad_right) = self.
     calculate_padding()
         self.dX = self.dX_padded[:,
     :, pad_top:-pad_bottom, pad_left
     :-pad_right]
     else:
         self.dX = self.dX_padded
     self.dW = self.dW_cols.reshape((
    self.dW_cols.shape[0], self.
     in_channels, self.kernel_size,
    self.kernel_size))
     if self.biases is not None:
         self.dB = np.sum(self.dY,
     axis=(0, 2, 3), keepdims=True)
```

Les gradients reçus (dX) sont d'abord stockés dans self.dY, tandis qu'un tableau nul pour les gradients d'entrée est initialisé. Les

return self.dX

gradients et les entrées sont convertis en 12 colonnes (via im2col()) et réorganisés pour 13 correspondre aux dimensions nécessaires. Un masque binaire est ensuite créé pour identifier les maxima des fenêtres de pooling, assurant 15 que seuls les gradients liés aux maxima sont propagés. Ces gradients modifiés sont réassemblés en colonnes, puis reconvertis dans leur forme d'origine avec col2im(). Enfin, les gradients reconstitués sont retournés pour les propager dans les couches précédentes.

L'ensemble du code lié aux couches de Convolution se trouvent dans le repo de Melpy, à l'adresse suivante : https:// github.com/lennymalard/melpy-project/ blob/main/melpy/layers.py

3.3 Les couches de Pooling

Les couches Pooling2D héritent également de la superclasse Layer de Melpy, leur imposant les mêmes contraintes que Convolution2D.

Voici donc le code de la propagation avant :

```
def forward(self):
      output_height = int((self.inputs
     .shape[2] - self.pool_size + self
     .stride) // self.stride)
      output_width = int((self.inputs.
     shape[3] - self.pool_size + self.
     stride) // self.stride)
      output_shape = (self.inputs.
     shape[0], self.inputs.shape[1],
     output_height, output_width)
      self.input_cols = im2col(self.
     inputs, self.pool_size, self.
     stride)
      self.input_cols_reshaped = np.
     array(np.hsplit(np.array(np.
     hsplit(self.input_cols, self.
     inputs.shape[0])), self.inputs.
     shape [1]))
      self.maxima = np.max(self.
     input_cols_reshaped, axis=2)
      self.maxima_reshaped = self.
11
     maxima.reshape(self.inputs.shape
     [1], -1)
```

```
self.outputs = col2im(self.
maxima_reshaped, output_shape, 1,
1)
return self.outputs
```

Dans la ligne 2, les dimensions de hauteur de sortie output_height sont calculées en fonction des dimensions d'entrée, de la taille de la fenêtre de pooling pool_size, et du stride.

Dans la ligne 3, la même formule est appliquée pour calculer les dimensions de largeur de sortie output_width, cette fois sur l'axe horizontal.

Dans la ligne 5, output_shape est défini comme un tuple contenant les dimensions du lot, du nombre de canaux, et des dimensions calculées pour la hauteur et la largeur de sortie. Cela facilite la reconstruction des résultats après le traitement.

Dans la ligne 7, la méthode im2col() est utilisée pour transformer les entrées en colonnes de matrices, où chaque colonne correspond à une fenêtre de pooling. Cela permettra de simplifier les calculs de pooling.

Dans la ligne 8, les colonnes générées sont organisées par canal et par échantillon en utilisant deux appels imbriqués de np.hsplit(). Cela restructure les colonnes pour préparer l'opération de pooling.

Dans la ligne 10, l'opération np.max() est appliquée le long de l'axe des colonnes pour extraire les maxima de chaque fenêtre de pooling. Ces maxima représentent les valeurs de sortie du pooling pour chaque fenêtre.

Dans la ligne 11, les valeurs maximales obtenues self.maxima sont réorganisées en une matrice aplatie par canal grâce à reshape().

Dans la ligne 13, la méthode col2im() ¹⁸ est utilisée pour reconstruire les sorties ¹⁹ self.outputs à partir des valeurs maximales. La reconstruction respecte les dimensions de sortie spécifiées par output_shape.

Enfin, dans la ligne 15, les sorties calculées self.outputs sont retournées.

Voici maintenant le code de la propagation arrière :

```
def backward(self, dX):
      self.dY = dX
      self.dX = np.zeros_like(self.
     inputs)
      self.dY_cols = im2col(self.dY,
5
      self.dY_cols_reshaped = np.array
     (np.hsplit(np.array(np.hsplit(
     self.dY_cols, self.dY.shape[0])),
      self.dY.shape[1])).transpose(0,
     1, 3, 2)
      self.input_cols = im2col(self.
     inputs, self.pool_size, self.
     stride)
      self.input_cols_reshaped = np.
     array(np.hsplit(np.array(np.
     hsplit(self.input_cols, self.
     inputs.shape[0])), self.inputs.
     shape[1])).transpose(0, 1, 3, 2)
      self.output_cols = im2col(self.
11
     outputs, 1, 1)
12
      self.output_cols_reshaped = np.
     array(np.hsplit(np.array(np.
     hsplit(self.output_cols, self.
     inputs.shape[0])), self.inputs.
     shape [1])).transpose (0, 1, 3, 2)
13
      self.mask = np.array(self.
14
     input_cols_reshaped == self.
     output_cols_reshaped, dtype=np.
     uint64)
15
16
      self.dX_cols = np.concatenate(np
     .concatenate(np.array(self.mask *
      self.dY_cols_reshaped).transpose
     (0, 1, 3, 2), axis=1), axis=1)
      self.dX = col2im(self.dX_cols,
17
     self.inputs.shape, self.pool_size
```

```
, self.stride)
return self.dX
```

Dans la ligne 2, les gradients reçus depuis la couche suivante, dX, sont assignés à self.dY pour être utilisés dans les calculs de propagation arrière.

Dans la ligne 3, un tableau nul de même forme que les entrées originales self.inputs est initialisé pour self.dX. Ce tableau accueillera les gradients des entrées calculés lors de cette étape.

Dans la ligne 5, les gradients self.dY sont transformés en colonnes à l'aide de la méthode im2col() avec une taille de fenêtre et un stride égaux à 1. Cela a pour effet d'applatir self.dY dans des dimensions appropriées pour les calculs à venir.

Dans la ligne 6, ces colonnes de gradients sont réorganisées en utilisant des appels imbriqués de np.hsplit() et une transposition via transpose(). Cela restructure les gradients pour les aligner avec la disposition des entrées sur les dimensions batch, canal et fenêtre.

Dans la ligne 8, les entrées d'origine self.inputs sont transformées en colonnes à l'aide de im2col() avec la taille et le *stride* du pooling. Ces colonnes contiennent les éléments correspondants aux fenêtres utilisées lors de la propagation avant.

Dans la ligne 9, les colonnes des entrées sont également réorganisées à l'aide de np.hsplit() et transpose() pour s'assurer qu'elles ont la même structure que les colonnes de gradients.

Dans la ligne 11, les sorties obtenues lors de la propagation avant self.outputs sont également converties en colonnes avec im2col() et restructurées de manière similaire aux étapes précédentes pour

correspondre aux autres matrices.

Dans la ligne 13, un masque binaire self.mask est créé en comparant chaque élément des colonnes des entrées self.input_cols_reshaped avec les colonnes des sorties self.output_cols_reshaped. Ce masque identifie les indices des maxima calculés lors de la propagation avant.

Dans la ligne 15, les gradients de sortie self.dY_cols_reshaped sont multipliés par le masque self.mask. Cela garantit que seuls les emplacements correspondant aux maxima contribuent aux gradients des entrées.

Dans la ligne 16, les colonnes des gradients résultants self.dX_cols sont concaténées pour reformer une représentation plate des

gradients d'entrée.

Dans la ligne 17, col2im() est utilisé pour reconstruire self.dX à partir des colonnes calculées, en respectant les dimensions d'entrée originales self.inputs.shape. Cela restitue les gradients à l'emplacement de leur contribution respective.

Enfin, dans la ligne 19, les gradients des entrées self.dX sont retournés pour continuer la propagation des gradients, dans les couches précédentes.

L'ensemble du code lié aux couches de Pooling se trouvent dans le repo de Melpy, à l'adresse suivante : https://github.com/ lennymalard/melpy-project/blob/main/ melpy/layers.py

Expérimentations

Dans cette section, nous verrons les expérimentations éffectuées et discuterons de leurs résulats.

Pour évaluer la justesse et l'efficacité de l'implémentation, il a fallu entraîner des architectures, ajuster leurs hyperparamètres, puis comparer les résultats obtenus avec ceux de Keras sur les mêmes architectures.

Le jeu de données MNIST a été choisi pour le premier test. Composé de 60 000 images de chiffres manuscrits (de 0 à 9), il est l'un des jeux de données les plus connus pour les tâches de classification d'images. Chaque image mesure 28x28 pixels et est en niveaux de gris. Ce jeu de données est particulièrement populaire car il est simple à traiter et offre une grande qualité et quantité d'exemples, ce qui en fait une référence pour les premières expérimentations en apprentissage profond.

Cependant, afin d'augmenter la complexité des expérimentations, le jeu de données CIFAR-10^[4] a également été utilisé. Il contient 60 000 images réparties en 10 classes (avions, voitures, oiseaux, chats, cerfs, chiens, grenouilles, chevaux, bateaux et camions). Les images sont des photographies sous échantillonnées, qui mesurent 32x32 pixels et qui sont en couleur (format RGB), ce qui les rend plus complexes à traiter que celles de MNIST. La diversité des classes et le manque de corrélation entre elles ajoutent également de la complexité à ce jeu de données. En ce qui concerne la qualité de ces dernières, elle est comparable à celle de MNIST.

4.1 Méthode

Le protocole expérimental est le suivant :

Pré-traitement des données Les données sont pré-traitées pour être compatibles avec

les modèles.

Création et évaluation d'architectures avec Melpy Des architectures sont créées et entraînées avec différents hyperparamètres pour identifier celle qui offre la meilleure généralisation.

Création et entraînement des architectures avec Keras L'architecture sélectionnée est ensuite entraînée avec Keras de manière similaire.

Visualisation et interprétation des prédictions On analyse les prédictions.

Comparaison des métriques finales On compare les métriques finales d'une bibliothèque avec celles de l'autres.

4.2 Résultats et discussion

4.2.1 Pré-traitement des données

Afin d'éviter des problèmes tels que Dead ReLU, l'explosion des gradients ou encore la disparition des gradients, il est nécessaire de mettre les images à l'échelle.

Pour ce faire, nous commençons par normaliser les données, en les mettant sur une échelle allant de 0 à 1, puis nous les standardisons.

Enfin, les étiquettes doivent être encodées. Pour cela, nous utilisons l'encodeur One-Hot.

4.2.2 Sélection du modèle

MNIST

L'architecture sélectionnée pour MNIST est la suivante :

Figure 10: Réseau de neurones sélectionné pour MNIST

Comme illustré dans la Figure 10, le réseau de neurones commence par une couche de convolution qui génère 32 cartes de caractéristiques, suivie d'une couche de pooling qui réduit leur taille de moitié. Ensuite, une seconde couche de convolution produit 64 cartes de caractéristiques, ensuite aplaties pour alimenter un MLP composé de deux couches cachées : la première avec 128 neurones et la seconde avec 64 neurones.

Les couches cachées utilisent la fonction d'activation Leaky ReLU, tandis que la sortie applique une fonction Softmax. Pour optimiser l'architecture, l'algorithme Adaptive Momentum (Adam) a été utilisé pour minimiser la fonction de coût d'entropie croisée catégorielle (Categorical Cross-Entropy).

CIFAR-10

L'architecture sélectionnée pour CIFAR-10 est la suivante :

Figure 11: Réseau de neurones sélectionné pour CIFAR-10

Comme illustré dans la Figure 11, le réseau de neurones se compose de deux couches de convolution et ne comporte aucune couche de pooling. Cette absence de pooling s'explique par les expérimentations qui montrent qu'il

est préférable de conserver les informations d'entrée intactes pour ce jeu de données. En effet, les photographies étant très petites, réduire leur taille risquerait d'écraser des caractéristiques importantes déjà difficiles à détecter. Les cartes de caractéristiques sont ensuite applaties pour alimenter un MLP composé d'une couche caché de 128 neurones.

La couche cachée utilise la fonction d'activation Leaky ReLU, tandis que la sortie est activée par la fonction Softmax. Pour optimiser l'architecture on utilise l'algorithme Adaptive Momentum afin de minimiser la fonction de côut d'entropie croisée catégorielle.

4.2.3 Comparaison des résultats

Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

References

[1] digitalocean.com. Image d'exemple de Max Pooling sur une image.

- [2] Léon Bottou and Chhavi Yadav. Cold case: the lost mnist digits. 2019.
- [3] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks for document processing. 2006.
- [4] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. 2009.
- [5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. 2012.
- [6] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradientbased learning applied to document recognition. 1998.
- [7] Sinisa Mihajlovic, Dragan Vojo Ivetic, and Ivana Berković. Applications of convolutional neural networks. 2020.
- [8] Ferdinand Mom. hackmd.io. Images d'illustrations pour la méthode Im2Col.
- [9] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017.
- [10] Stéfan van der Walt, Gael Varoquaux, and S. Chris Colbert. The numpy array: a structure for efficient numerical computation. 2011.