[Digital Signal Processing]

Homework 2

1. Consider a continuous-time signal $x_c(t)$ with Fourier transform $X_c(j\Omega)$ shown in Figure 1-1.

Figure 1-1

(a) A continuous-time signal $x_r(t)$ is obtained through the process shown in Figure 1-2. First, $x_c(t)$ is multiplied by an impulse train of period T_1 to produce the waveform $x_s(t)$:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT_1).$$

Next, $x_s(t)$ is passed through a low-pass filter with frequency response $H_r(j\Omega)$. $H_r(j\Omega)$ is shown inf Figure 1-3. Determine the range of values for T_1 for which $x_r(t) = x_c(t)$.

Figure 1-2 Figure 1-3

(b) Consider the system in Figure 1-4. The system in this case is the same as the one in part (a), except that the sampling period is now T_2 . The system $H_s(j\Omega)$ is some continuous-time ideal LTI filter. We want $x_o(t)$ to be equal to $x_c(t)$ for all t, i.e., $x_o(t) = x_c(t)$ for some choice of $H_s(j\Omega)$. Find all values of T_2 for which $x_o(t) = x_c(t)$ is possible.

$$\begin{array}{c} X_{5}(j\Omega) \\ X_{5}(j\Omega) \\ \vdots \\ \frac{2\pi}{7} - \Omega_{0} \geq \Omega_{0} \\ \vdots \\ \frac{2\pi}{7} - \Omega_{0} \geq \Omega_{0} \\ \vdots \\ X_{5}(j\Omega) \\ \vdots \\ \frac{2\pi}{7} - \Omega_{0} \geq \Omega_{0} \\ \vdots \\ X_{5}(j\Omega) \\ \vdots$$

For the largest T_2 you determined that would still allow recovery of $x_c(t)$, choose $H_s(j\Omega)$ so that $x_o(t) = x_c(t)$. Sketch $H_s(j\Omega)$.

Figure 1-4

2. Figure 2-1 shows a continuous-time filter that is implemented using an LTI discrete-time ideal lowpass filter with frequency response over $-\pi \le \omega \le \pi$ as

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \omega_c < |\omega| \le \pi. \end{cases}$$

- (a) If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Figure 2-2 and $\omega_c=\pi/5$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$ when $1/T_1=1/T_2=2\times 10^4$.
- (b) For $1/T_1=1/T_2=6\times 10^3$, and for input signals $x_c(t)$ whose spectra are bandlimited to $|\Omega|<2\pi\times 5\times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which the overall system is LTI? For this maximum choice of ω_c , specify $H_c(j\Omega)$.

Figure 2-1

Figure 2-2

3. The system shown in Figure 3 is intended to approximate a differentiator for bandlimited continuous-time input waveforms.

Figure 3

- The continuous-time input signal $x_c(t)$ is bandlimited to $|\Omega| < \Omega_M$.
- The C/D converter has sampling rate $T=\frac{\pi}{\Omega_M}$, and produces the signal $x_d[n]=x_c(nT)$.
- The discrete-time filter has frequency response

$$H_d(e^{j\omega}) = \frac{e^{j\omega/2} - e^{-j\omega/2}}{T}, \ |\omega| \le \pi$$

- The ideal D/C converter is such that $y_d[n] = y_c(nT)$.
- (a) Find the continuous-time frequency response $H_c(j\Omega)$ of the end-to-end system.
- (b) Find $x_d[n]$, $y_c(t)$, and $y_d[n]$, when the input signal is

$$x_c(t) = \frac{\sin(\Omega_M t)}{\Omega_M t}.$$

4. Consider the representation of the process of sampling followed by reconstruction shown in Figure 4.

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_{c}(t) \times x_{s}(t)$$

$$H_{r}(j\Omega)$$

$$x_{r}(t)$$

Figure 4

Assume that the input signal is

$$x_c(t) = 2\cos(100\pi t - \pi/4) + \cos(300\pi t + \pi/3), -\infty < t < \infty$$

The frequency response of the reconstruction filter is

$$\begin{array}{lll}
\boxed{3} & (a) \cdot \chi_{a}(e^{j\omega}) = \frac{1}{T} \chi_{c}(j\frac{\omega}{T}) & (|\omega| < \pi) \\
 & \cdot \chi_{c}(j\Omega) = \frac{1}{T} H_{a}(e^{j\Omega T}) \chi_{c}(j\frac{\omega}{T}) & (|\omega| < \pi) \\
 & \cdot \chi_{c}(j\Omega) = H_{a}(e^{j\Omega T}) \chi_{c}(j\Omega) \\
 & \cdot H_{c}(j\Omega) = \int_{\chi_{c}(j\Omega)} \frac{\chi_{c}(j\Omega)}{\chi_{c}(j\Omega)} & (|\Omega| < \frac{\pi}{T}) \\
 & \cdot \int_{\Omega} \frac{1}{T} \frac{\chi_{c}(j\Omega)}{\eta_{c}(j\Omega)} & (|\Omega| < \frac{\pi}{T}) \\
 & \cdot \int_{\Omega} \frac{1}{T} \frac{1}{T}$$

$$= \frac{\sin(\pi n)}{\pi n} = 0 \quad (\because T = \frac{\pi}{\Omega_M} ; \Omega_M T = \pi)$$

$$= \frac{\sin(\pi n)}{\pi n} = 0, \quad y_n(t) = 0$$

= sin(Qm·nT) Qm·nT

$$f_s = \frac{1}{T} = 150 \rightarrow \Omega_s = 360\pi (rad/s)$$

$$\chi_r(\pm) = \frac{1}{2} \left\{ \cos\left(\frac{\pi}{3}\right) + \cos\left(-\frac{\pi}{3}\right) \right\} + 2 \cos\left(|\cos\pi t - \frac{\pi}{4}\right)$$

$$= \frac{1}{2} + 2 \cos\left(|\cos\pi t - \frac{\pi}{4}\right)$$

$$\therefore$$

$$H_r(j\Omega) = \begin{cases} T & |\Omega| \le \pi/T \\ 0 & |\Omega| > \pi/T \end{cases}$$

- (a) Determine the continuous-time Fourier transform $X_c(j\Omega)$ and plot it as a function of Ω .
- (b) Assume that $f_s=1/T=500$ samples/sec and plot the Fourier transform $X_s(j\Omega)$ as a function of Ω for $-2\pi/T \le \Omega \le 2\pi/T$. What is the output $x_r(t)$ in this case? (You should be able to give an exact equation for $x_r(t)$.)
- (c) Now, assume that $f_s = 1/T = 250$ samples/sec. Repeat part (b) for this condition.
- (d) Is it possible to choose the sampling rate so that

$$x_r(t) = A + 2\cos(100\pi t - \pi/4)$$

where A is a constant? If so, what is the sampling rate $f_s = 1/T$, and what is the numerical value of A?

5. Consider a discrete-time LTI system for which the frequency response $H(e^{j\omega})$, is described by:

$$H(e^{j\omega}) = -j, \qquad 0 < \omega < \pi$$

$$H(e^{j\omega}) = j, \qquad -\pi < \omega < 0$$

- (a) Is the impulse response of the system h[n] real-valued? (i.e., is $h[n] = h^*[n]$ for all n)
- (b) Calculate the following

$$\sum_{n=-\infty}^{\infty} |h[n]|^2$$

- (c) Determine the response of the system to the input $x[n] = s[n] \cos(\omega_c n)$, where $0 < \omega_c < \pi/2$ and $S(e^{j\omega}) = 0$ for $\omega_c/3 \le |\omega| \le \pi$.
- 6. A causal LTI system has the system function

$$H(z) = \frac{(1 - e^{j\pi/3}z^{-1})(1 - e^{-j\pi/3}z^{-1})(1 + 1.1765z^{-1})}{(1 - 0.9e^{j\pi/3}z^{-1})(1 - 0.9e^{-j\pi/3}z^{-1})(1 + 0.85z^{-1})}.$$

(a) Write the difference equation that is satisfied by the input x[n] and output y[n] of this system.

$$\begin{split} & [] \text{ (a) } H_{\text{le}}^{\text{le},\text{lw}}) = H_{\text{le}}(e^{j_{\text{lw}}}) & \text{off} \quad \frac{1}{2} e^{j_{\text{lw}}} e^{j_{\text{lw}}} \\ & \text{occut} \quad \text{oth} : H(e^{j_{\text{lw}}}) = -j \rightarrow H(e^{j_{\text{lw}}}) = j \\ & \text{occut} \quad \text{oth} : H(e^{j_{\text{lw}}}) = -\pi < -\omega < 0. \\ & \text{oth} : H(e^{j_{\text{lw}}}) = j \rightarrow H(e^{j_{\text{lw}}}) = H_{\text{le}}^{\text{lw}} \\ & \text{occut} \quad \text{oth} : H(e^{j_{\text{lw}}}) = j \rightarrow H(e^{j_{\text{lw}}}) = H_{\text{le}}^{\text{lw}} \\ & \text{occut} \quad \text{oth} : H(e^{j_{\text{lw}}}) = j \rightarrow H(e^{j_{\text{lw}}}) = H_{\text{le}}^{\text{lw}} \\ & \text{occut} \quad \text{oth} : H(e^{j_{\text{lw}}}) = j \rightarrow H(e^{j_{\text{lw}}}) = H_{\text{le}}^{\text{lw}} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ & \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \quad \text{occut} \\ &$$

$$= \frac{|+0.1965\chi^{-1} - 0.1965\chi^{-2} + 1.1965\chi^{-3}}{1 - 0.05\chi^{-1} + 0.045\chi^{-2} + 0.6855\chi^{-3}} = \frac{Y(\chi)}{X(\chi)}$$

$$= \frac{1 + 0.1965\chi^{-1} - 0.1965\chi^{-2} + 0.6855\chi^{-3}}{X(\chi)} = \frac{Y(\chi)}{X(\chi)}$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - 2\chi + 0.6855y(\chi) - 2\chi$$

$$= y(\chi) - 0.05y(\chi) - (\chi) + 0.045y(\chi) - \chi$$

$$= y(\chi) - 0.05y(\chi) - \chi$$

$$= y(\chi) - \chi$$

$$= \chi$$

$$=$$

6 (a) $H(z) = \frac{(1-e^{i\pi/3}z^{-1})(1-e^{-i\pi/3}z^{-1})(1+1,1^{65}z^{-1})}{(1-0.9e^{i\pi/3}z^{-1})(1-0.9e^{i\pi/3}z^{-1})(1+0.85z^{-1})}$

-1,195

- (b) Plot the pole–zero diagram and indicate the ROC for the system function.
- 7. Consider the system function

$$H(z) = \frac{rz^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}, \qquad |z| > r.$$

Assume first that $\omega_0 \neq 0$.

- (a) Draw a labeled pole–zero diagram and determine h[n].
- (b) Repeat part (a) when $\omega_0=0$.

$$\begin{array}{c}
\boxed{\prod} (a) \ H(\underline{z}) = \frac{r\underline{z}}{\underline{z}^2 - r(e^{j\omega} + e^{-j\omega})} \underline{z} + r^2 & \text{i. pole} : \underline{z} = re^{j\omega}, re^{j\omega} \\
\underline{z} = 0, \infty \\
\boxed{\prod} \\
\underline{z} = 0, \infty \\
\boxed{\exists r} \\
\boxed{x} \\$$

