Basi di dati Avanzate Login: Appello del 21/06/2022 (100 minuti) Nome e cognome:

ESERCIZIO 1

E' finita la scuola e prima degli scrutini i professori devono calcolare i voti dei loro alunni. Il registro elettronico memorizza i voti nel seguente formato:

VOTI (<u>V IDVoto</u>, V_IDAlunno: ALUNNI, V_Materia, V_Data, V_Voto, V_Tipo) ALUNNI(<u>A IDAlunno</u>, A_Nome, A_Cognome, A_Classe)

Il voto finale per ogni materia è calcolato facendo la media di tutti i voti esclusi il migliore e il peggiore. Nel computo della media ci devono essere almeno 4 voti: se sono 5 si scarta solo il migliore, se sono 6 o più sia il migliore che il peggiore, in caso contrario il voto assegnato sarà 0.

Si scriva la funzione **votiAlunno(vAlunno)** che stampa i voti finali di tutte le materie di un alunno (per semplicità si considerino solo le materie per cui l'alunno ha voti).

Login: SID: ESAMESI NOMEHOST:si-oracle-11.csr.unibo.it USER: ESAME1 PASSWORD: 6AW0L

Esempio

votiAlunno (1)

Alunno: Ale Rossi Materia: Mate voto 7,8

Materia: Storia voto 0 (valutazioni insufficienti)

Materia: Ita voto 5,5

ESERCIZIO 2

Utilizzando il database TPCD si disegni l'albero di esecuzione proposto da ORACLE e si calcoli il costo di accesso della seguente query:

```
SELECT P_BRAND, sum(PS_SUPPLYCOST)
FROM TPCD.PART,TPCD.PARTSUPP
WHERE P_PARTKEY=PS_PARTKEY and P_TYPE='SMALL BURNISHED STEEL'
    and PS_AVAILQTY>220
GROUP BY P_BRAND;
```

OPERATION	OBJECT_NAME	CARDINALITY	COST
□ SELECT STATEMENT		25	4632
ip A SORT (GROUP BY)		25	4632
☐ TABLE ACCESS (BY INDEX ROWID)	PARTSUPP	4	3
়ি তি দুলি Filter Predicates			
PS_AVAILQTY>220			
- NESTED LOOPS		5164	4577
TABLE ACCESS (FULL)	PART	1333	578
i → O Filter Predicates			
P_TYPE='SMALL BURNISHED STEEL'			
i index (range scan)	IX_PART_PARTSUPP	4	2
☐ ·· O™ Access Predicates			
P_PARTKEY=PS_PARTKEY			

Si facciano le seguenti assunzioni e si estraggano dal DB eventuali dati mancanti:

$$D = 4096 \text{ byte len(P)} = \text{len(K)} = 4 \text{ byte}$$
 $NB = 101$ $u = 0.69$

Si assuma inoltre che ORACLE non applichi proiezioni sui risultati intermedi e che non esegua operazioni in pipeline.

Login: USER: USERSI PASSWORD: usersi SID: TPCD NOMEHOST:si-oracle-11.csr.unibo.it

ESERCIZIO 3

Data la collezione **Movies** scrivere le seguenti **query**:

- a) Aggiungere ["Action", "Sci-Fi" ai generi del film "Da wan".
- b) Per ogni genere visualizzare il numero di film e la lista dei titoli (ordinare il risultato per numero di film decrescente)
- c) Trovare i 10 film di genere "Drama" con rating maggiore (considerando solo i film dal 2000 in poi)

Consegnare le query in un file Es3<cognome>.js