Pre-calculus 2

Hashem A. Damrah

April 4, 2022

Contents

Lecture 1: Sets and Numbers

Apr 04 2022 (10:01:23)

Definition 1 (Set). A set is a collection of objects specified in a manner that enables one to determine if a given object is or isn't in the set.

Problem. Which of the following represent a set?

- 1. The students registered for MTH 112 at PCC this quarter.
- 2. The good students registered for MTH 112 at PCC this quarter.

Solution. The following do represent a set:

- 1. This represents a set since it's well defined. We all know what it means to be registered for a class.
- 2. This does not represent a set since it's not well defined. There are many different interpretations of what it means to be a good student (get an A or pass the class or attend class or avoid falling asleep in class or don't cause trouble in class)

Notation. Roster Notation involves listing the elements in a set within curly brackets: " $\{\}$ "

Definition 2 (Element). An object in a set is called an **element** of the set. (symbol: " \in ")

Example. 5 is an element of the set $\{4, 5, 6, 7, 8, 9\}$. We can express this symbolically:

 $5 \in \{4, 5, 6, 7, 8, 9\}$

.

Definition 3 (Subset). A set S of a set T, denoted $S \subseteq T$, if all elements of S are also elements of T.

If S and T are sets and S = T, then $S \subseteq T$. Sometimes it's useful to consider a subset S of a set T that isn't equal to T. In such case, we write $S \subset T$ and say that S is a proper subset of T.

Example. $\{4, 7, 8\}$ is a subset of the set $\{4, 5, 6, 7, 8, 9\}$.

We can express this fact symbolically by $\{4,7,8\} \subseteq \{4,5,6,7,8,9\}$

Since these two sets aren't equal, $\{4,7,8\}$ is a proper subset of $\{4,5,6,7,8,9\}$, so can write:

$$\{4,7,8\} \subset \{4,5,6,7,8,9\}$$

Definition 4 (Empty Set). The empty set, denoted \emptyset , is the set with no elements

$$\emptyset = \{\}$$

Definition 5 (Union). The union of two sets A and B, denoted $A \cup B$, is the set containing all of the elements in either A or B (or both A and B).

Example. Consider the sets $\{4,7,8\}$, $\{0,2,4,6,8\}$, and $\{1,3,5,7\}$. Then

- a. $\{4,7,8\} \cup \{1,3,5,7\} = \{1,3,4,5,6,8\}$ b. $\{4,7,8\} \cup \{0,2,4,6,8\} = \{0,2,4,6,7,8\}$ c. $\{0,2,4,6,8\} \cup \{1,3,5,7\} = \{0,1,2,3,4,5,6,7,8\}$

Definition 6 (Intersection). The intersection of two sets A and B, denoted $A \cap B$, is the set containing all the elements in both A and B.

Example. Consider the sets $\{4,7,8\}$, $\{0,2,4,6,8\}$, and $\{1,3,5,7\}$. Then a. $\{4,7,8\} \cap \{0,2,4,6,8\} = \{4,8\}$

a.
$$\{4, 7, 8\} \cap \{0, 2, 4, 6, 8\} = \{4, 8\}$$

b.
$$\{4,7,8\} \cap \{1,3,5,7\} = \{7\}$$

c.
$$\{0, 2, 4, 6, 8\} \cap \{1, 3, 5, 7\} = \emptyset$$

Example. All the whole numbers form a set. This set is called the integers, and is represented by the symbol \mathbb{Z} . We can express the set of integers in roster notation:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Now, we can use set builder notation to create a set with a range of numbers.

Notation. Set Builder Notation.

"All the whole numbers between 3 and 10" = $\{x | x \in \mathbb{Z} \text{ and } 3 < x < 10\}$

Definition 7 (Important Sets of Numbers). The set of natural numbers:

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$

The set of integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

The set of rational numbers:

$$\mathbb{Q} = \left\{ x | x = \frac{p}{q} \text{ and } p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$$

The set of real numbers: \mathbb{R}

(All the numbers on the number line)

The set of complex numbers:

$$\mathbb{C} = \left\{ x | x = a + bi \text{ and } a, b \in \mathbb{R} \text{ and } i = \sqrt{-1} \right\}$$

Note. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, the set of natural numbers (\mathbb{N}) is a subset of the set of integers (\mathbb{Z}) which is a subset of the set of rational numbers (\mathbb{Q}) which is a subset of the set of complex numbers (\mathbb{C}) .

CONTENTS

Notation. Since we use the real numbers so often, we have special notation for subsets of the real numbers. Interval Notation. Interval Notation involves square or round brackets.

Example. Quick demo of Interval Notation

a.
$$\{x | x \in \mathbb{R} \text{ and } -2 \le x \le 3\} = [-2, 3]$$

a.
$$\{x|x \in \mathbb{R} \text{ and } -2 \le x \le 3\} = [-2,3]$$

b. $\{x|x \in \mathbb{R} \text{ and } -2 < x < 3\} = (-2,3)$
c. $\{x|x \in \mathbb{R} \text{ and } -2 < x \le 3\} = (-2,3]$
d. $\{x|x \in \mathbb{R} \text{ and } -2 \le x < 3\} = [-2,3)$

c.
$$\{x | x \in \mathbb{R} \text{ and } -2 < x \le 3\} = (-2, 3]$$

d.
$$\{x | x \in \mathbb{R} \text{ and } -2 \le x < 3\} = [-2, 3]$$

When the interval has no upper or lower bound, we use the infinity symbol (∞ or $-\infty$)

a.
$$\{x|x\in\mathbb{R} \text{ and } x\leq 4\}=(-\infty,4]$$

a.
$$\{x|x\in\mathbb{R} \text{ and } x\leq 4\}=(-\infty,4]$$

b. $\{x|x\in\mathbb{R} \text{ and } x\geq 4\}=[4,-\infty)$

Problem. Simplify the following expressions:

a.
$$(-4, \infty) \cup [-8, 3]$$

b.
$$(-4, \infty) \cup (-\infty, 2]$$

b.
$$(-4,\infty)\cap(-\infty,2]$$

a.
$$(-4, \infty) \cap [-10, -5]$$

Solution. .

a.
$$(-4, \infty) \cup [-8, 3] = [-8, \infty)$$

b.
$$(-4, \infty) \cup (-\infty, 2] = (-\infty, \infty) = \mathbb{R}$$

b.
$$(-4, \infty) \cap (-\infty, 2] = (-4, 2]$$

a.
$$(-4, \infty) \cap [-10, -5] = \emptyset$$