a.)

Suppose $M_i \geq 0$, $m_i \geq 0$: Then, $M_i = M'_i$, $m_i = m'_i$, so $M'_i - m'_i = M_i - m_i$

Suppose $M_i \ge 0, m_i \le 0$: Then $0 \le m'_i \le |m_i|$ and $M'_i = \max\{M_i, |m_i|\}$. But, $M'_i - m'_i \le M'_i - |m_i| = \max\{M_i - |m_i|, 0\} \le M_i$. So, $M'_i - m'_i \le M_i \le M_i - m_i$.

Finally, $M_i \le 0$, $m_i \le 0$: Then, $M'_i = |m_i|, m'_i = |M_i|$, and $M_i - m_i = |m_i| + M_i = |m_i| - |M_i| = m'_i - M'_i$.

So, in all cases, $M'_i - m'_i \leq M_i - m_i$. Then, from the definitions of $U(f, \mathcal{P})$ and L(f, mathcal P) and the corresponding upper and lower sums on |f|, we have

$$\sum_{i=1}^{n} M_i'(t_{i-1} - t_i) - \sum_{i=1}^{n} m_i'(t_{i-1} - t_i) = \sum_{i=1}^{n} (M_i' - m_i')(t_{i-1} - t_i)$$

$$\leq \sum_{i=1}^{n} (M_i - m_i)(t_{i-1} - t_i)$$

$$= \sum_{i=1}^{n} M_i(t_{i-1} - t_i) - \sum_{i=1}^{n} m_i(t_{i-1} - t_i)$$

$$= U(f, \mathcal{P}) - L(f, \mathcal{P})$$

b.)

If f integrable, $\exists \mathcal{P} : U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon$. Since from the above, $U(|f|,\mathcal{P}) - L(|f|,\mathcal{P}) \leq U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon$, |f| satisfies the Riemann criterion, so it is integrable.

c.)

 $f + |f| = 2f_+$, so $\frac{f}{2} + \frac{|f|}{2} = f_+$. Since we've proven that both of those functions are integrable, so is f_+ . The same arugment applies to f_- , which can be written as $\frac{f}{2} - \frac{|f|}{2}$.