Sprawozdanie laboratorium lista 2 - obliczenia naukowe

Zofia Tarchalska

1 Zadanie 1

Celem zadania było powtórzenie zadania 5 z listy 1, ale z lekko zmodyfikowanymi danymi. Dokładnie chodziło o to aby usunąć ostatnią 9 z czwartej współrzędnej wektora x i ostatnią 7 z piątej współrzędnej. Wektory te prezentują się następująco:

```
 \begin{aligned} x &= [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] \\ y &= [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049] \end{aligned}
```

Po zmianie:

x = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]

Po lewej: poprzednie uzyskane wyniki. Po prawej: nowe wyniki

Float32
real: -1.00657107000000e-11
forward: -0.4999443
backward: -0.4543457
biggest_to_smallest: -0.5
smallest_to_biggest: -0.5

Float32
------forward: -0.4999443
backward: -0.4999443
backward: -0.4543457
biggest_to_smallest: -0.5
smallest_to_biggest: -0.5

Float64 Float64

biggest_to_smallest: 0.0 biggest_to_smallest: -0.004296342842280865 smallest_to_biggest: 0.0 smallest_to_biggest: -0.004296342842280865

Można zauważyć, że jeśli chodzi o arytmetykę single wyniki w ogóle nie różnią się od tych uzyskanych w poprzedniej próbie. Dzieje się tak, ponieważ usuwane cyfry są na gracnicy precyzji. Inaczej jest w przypadku double, w tej arytmetyce otrzymujemy różne rezultaty.

Wnioski

Okazuje się, że w przypadku arytmetyki Float64 niewielka zmiana na 10 miejscu po przecinku powoduje zmianę wyniku o 7 rzędów wielkości. Najpierw wynik był rzędu 10^{-10} żeby następnie wzrosnąć rzędu 10_{-3} (dla sposobu forawrd i backward, ponieważ są to te bardziej precyzyjne sposoby). Widzimy zatem, że zadanie jest źle uwraunkowane (mała zmiana w danych powoduje duże zmiany wyniku).

2 Zadanie 2

W zadaniu należy narysować wykres funkcji $f(x) = e^x ln(1+e^{-x})$ w co najmniej dwóch różnych programach do wizualizacji. Następnie trzeba policzyć jej granicę i porównać z otrzymanymi wykresami.

Po lewej widnieje wykres wygenerowany za pomocą PyPlot, a po prawej w WolframAlpha.

Teraz ręcznie policzmy granicę funkcji w nieskończoności:

$$\lim_{x \to \infty} e^x \cdot \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{-e^{-x}}{(1 + e^{-x}) \cdot (-e^{-x})} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1$$

Jak widać rzeczywisty przebieg funckji różni się od tego co zwracają nam obydwa programy.

Wnioski

Znów zadanie charakteryzuje się silnym uwarunkowaniem numerycznym. Niedokładności wynikające z ograniczonej percyzji, prowadzą do odchyleń wartości funkcji od prawidłowego wyniku, szczególnie w zakresie $x \in [30,36]$. Dla argumentów > 36 funkcja zbiega do 0, ponieważ zachodzi przybliżenie $1+e^{-x}\approx 1$ zatem $ln(1+e^{-x})\approx 0$. Jest to sprzeczne z rzeczywistym przebiegiem funkcji i wyznaczoną granicą analityczną. Zaburzenie występuje w obydwu programach zewnętrznych, co oznacza złe uwarunkowanie zadania.

3 Zadanie 3

Zadanie polegało na rozwiązaniu układu równań liniowych dwoma różnymi sposobami oraz porównaniu ich pod kątem policzonych błędów względnych.

Mamy równanie liniowe postaci: Ax = b, gdzie:

- A to macierz współczynników. Generujemy ją na dwa sposoby:
 - $-A = H_n$, gdzie H_n jest macierzą Hilberta stopnia n
 - $-A=R_n,$ gdzie R_n to losowa macierz stopnia n
 z podanym wskaźnikiem uwarunkowania c
- b to wektor prawych stron

Układ ten będziemy rozwiązywać dwoma metodami:

- metodą eliminacji Gauss'a $x = A \backslash b$
- metodą z macierza odwrotną x = inv(A) * b

Nasz dokładny x to $x=(1,...,1)^T$. Z jego pomocą będziemy obliczać błąd względny. Na nastęnych stronach zamieszczone zostają wartości zwracane przez funkcje rank(A) i cond(A) oraz policzone błędy względne dla obu metod.

Macierz Hilberta

n	cond(A)	rank(A)	error Gauss	error inv
1	1.0	1	0.0	0.0
2	19.28147006790397	2	5.661048867003676e-16	1.4043333874306803e-15
3	524.0567775860644	3	8.022593772267726e-15	0.0
4	15513.73873892924	4	4.137409622430382e-14	0.0
5	476607.2502422687	5	1.6828426299227195e-12	3.3544360584359632e-12
6	1.49510586424659e7	6	2.618913302311624e-10	2.0163759404347654e-10
7	4.753673565921816e8	7	1.2606867224171548e-8	4.713280397232037e-9
8	1.5257575538072489e10	8	6.124089555723088e-8	3.07748390309622e-7
9	4.931537556012197e11	9	3.8751634185032475e-6	4.541268303176643e-6
10	1.602441350036382e13	10	8.67039023709691e-5	0.0002501493411824886
11	5.222703245009594e14	10	0.00015827808158590435	0.007618304284315809
12	1.760619121841585e16	11	0.13396208372085344	0.258994120804705
13	3.1905581877988255e18	11	0.11039701117868264	5.331275639426837
14	9.27636978936766e17	11	1.4554087127659643	8.71499275104814
15	3.67568286586649e17	12	4.696668350857427	7.344641453111494
16	7.063115212292111e17	12	54.15518954564602	29.84884207073541
17	8.07124989431416e17	12	13.707236683836307	10.516942378369349
18	1.4135073701749765e18	12	10.257619124632317	24.762070989128866
19	5.190132496359103e18	13	102.15983486270827	109.94550732878284
20	1.3193976166344822e18	13	108.31777346206205	114.34403152557572
21	3.2903033202156175e18	13	44.089455838364245	34.52041154914292
22	8.482350008309597e18	13	17.003425713362045	102.60161611995359
23	6.101209031674573e17	13	25.842511917947366	22.272314298730727
24	1.8162451419244399e19	13	39.638573210187644	43.34914763015038
25	1.3309197553221074e18	13	7.095757204652332	21.04404299195525
26	7.779515179373411e18	14	63.80426636186403	100.78434642499187
27	4.28683702161786e18	14	27.43309009053957	35.68974530952139
28	5.937872779302876e18	14	276.91498822022265	290.1167291705239
29	8.277434084408434e18	14	60.095450394724104	43.40383683199056
30	3.8719824664564173e18	14	24.80615905441871	59.97231132227779
31	9.796434738176467e18	14	21.45662601984968	23.74575780277118
32	4.2803982785172644e18	14	36.582441571177284	67.4381226943068
33	1.1705168465593727e19	14	37.556822732776205	32.88969741379979
34	5.546235957952042e18	14	88.87380459381126	95.99116506490785
35	2.552419613144824e19	14	31.166902974731222	36.723963451169304
36	4.227992561870757e18	15	15.563379312608328	19.599011323097056
37	5.859007350289631e18	15	13.974714130452178	16.39248770656996
38	8.652991891691735e18	15	72.12122789133323	95.5655782183542
39	1.8383449979886094e19	15	118.2033650158989	263.5309838641091
40	6.581732387647914e18	15	23.926484807638683	140.97274594056717
41	1.5426903357896567e19	15	41.348771577098454	40.75749340255354
42	2.9056333619025285e19	15	229.6423260398746	333.75226335487844
43	1.4838416581923312e19	15	53.18930954995267	54.52704305417691

44	2.6895334840373182e19	15	124.67413636996756	94.88356401052424
45	1.214705872715781e19	15	244.58124814685374	179.92316617880468
46	1.5097027936171698e19	15	69.14584939886464	109.17112219679052
47	1.9943467382012723e20	15	41.43803149349301	83.82203728470039
48	1.0925283248003965e19	15	58.952689545073156	156.78973560359313
49	6.093374357739825e18	16	24.150620097509638	35.92139018094681
50	1.0993264246156683e19	16	63.36958239742337	69.99768122728986

Macierz losowa

n	С	rank(A)	error Gauss	error inv
5	1.00000000000001	5	1.4043333874306804e-16	2.2752801345137457e-16
5	9.9999999999996	5	2.482534153247273e-16	2.432376777795247e-16
5	1000.000000000236	5	2.9790409838967276e-16	4.203627514058621e-15
5	9.999999998130372e6	5	5.799015982916193e-11	1.377444663806729e-10
5	9.999322361505425e11	5	8.767946479620035e-6	1.101328684658636e-5
5	4.3389446864305475e15	4	0.5593130377167642	0.5591916598984644
10	1.00000000000001	10	5.15985034193911e-16	3.3121136700345433e-16
10	9.999999999993	10	2.8737410463596867e-16	2.4575834280036907e-16
10	999.99999999911	10	2.293995889930822e-14	2.7609708695270473e-14
10	9.99999999916912e6	10	2.0955792024649492e-10	1.81840723377465e-10
10	9.99976991136977e11	10	4.196755515487614e-5	3.614790502971321e-5
10	1.7803773341590864e16	9	0.14037179426228394	0.13931683203224224
20	1.000000000000016	20	5.382005793715205e-16	3.9409007944299576e-16
20	10.0	20	7.854386543748146e-16	6.309740391678007e-16
20	1000.000000000028	20	3.120208680502288e-14	3.6192861929420846e-14
20	9.99999999564815e6	20	1.603342362471366e-10	1.5697362145029217e-10
20	1.0000134366492958e12	20	1.6168699871775732e-5	1.4716047607150038e-5
20	8.563256185085127e15	19	0.3290975485091718	0.32066957992953976

Wnioski

Możemy zauważyć, że macierze Hilberta osiągają bardzo duże wartości współczynnika uwarunkowania (parametr ${\tt cond(A)}$) już przy stosunkowo niewielkich rozmiarach n. Wysoki wskaźnik uwarunkowania oznacza, że układ Ax=b jest źle uwarunkowany, czyli nawet niewielkie błędy w danych (w macierzy A lub w b) mogą prowadzić do dużych błędów w rozwiązaniu. Eksperymenty pokazują, że możemy to zaobserowować zarówno dla metody eliminacji Gauss'a jak i metody z użyciem odwrotności macierzy. Oznacza to, że numeryczne rozwiązanie układu Hilberta jest trudne do uzyskania z dużą dokładnością.

Dla losowych macierzy z ustalonym współczynnikiem uwarunkowania c, błędy względne są małe i podobne dla obu metod. Oznacza to, że algorytmy są stabilne numerycznie dla macierzy dobrze uwarunkowanych.