In-class Exercise

1

2

3

4

5

6 Limit of function

For any $\varepsilon > 0$, there is $\delta = \sqrt{2}\varepsilon$, s.t., if $|x - 1| < \delta$, then

$$|\sqrt{1+x} - \sqrt{2}| = \frac{|x-1|}{\sqrt{1+x} + \sqrt{2}} < \epsilon.$$

7 Continuity/uniform continuity of functions

7.1

yes, yes. (reason omitted, you should add by yourself)

7.2

yes, no. (reason omitted, you should add by yourself)

8 Limits of multivariate functions

8.1

no.

Take the limit along the line y=kx, then the limit is $\lim_{x\to 0}\frac{kx^2}{x^2+2k^2x^2}=\frac{k}{1+2k^2}$. They are different for different k.

8.2

yes.

For any $\varepsilon>0$, there is $\delta=4\varepsilon^2$, s.t., if $\sqrt{x^2+y^2}<\delta$, then

$$\left|\frac{xy}{\sqrt{x^2+2y^2}}\right| \le \frac{x^2+y^2}{2\sqrt{x^2+y^2}} < \epsilon.$$

8.3

no.

Go along the curve $y = kx^3$, you will find they approach different values for different k.

9 Pointwise & uniform convergence of sequence of functions

9.1

Converge pointwise, because for all $x \in [-a, a]$,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$$

Converge uniformly, because

$$\sup_{x} \left| f_n(x) - \frac{1}{1-x} \right| = \sup_{x} \left| \sum_{i=n+1}^{\infty} x^i \right| \le \frac{|a|^{n+1}}{1-|a|},$$

and when $n \to \infty$ the limit is 0.

9.2

Let f(x)=1 for $x=k\pi, k\in\mathbb{Z}$, and f(x)=0 otherwise. $f_n(x)$ converges to f(x) pointwise (omitted the proof, you should do it by yourself). It is not uniformly convergence, because for all n,

$$\sup_{x} |f_n(x) - f(x)| = 1.$$

9.3

For any x,

$$|f_n(x) - f(x)| \le \sup_{t} |f_n(t) - f(t)|,$$

the convergence of the right hand side to 0 implies the convergence of left hand side to 0.

10 Derivatives

10.1

We know that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

That is, for any $\varepsilon > 0$, there exists $0 < \delta < \frac{\varepsilon}{|f'(x_0)| + \varepsilon}$, s.t., for any $|h| < \delta$,

$$\left| \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right| < \varepsilon,$$

so,

$$|f(x_0 + h) - f(x_0)| < |h|(|f'(x_0)| + \varepsilon) < \varepsilon.$$

This means that f(x) is continuous at x_0 .

10.2

$$\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{x^n + nx^{n-1}h + \dots + nxh^{n-1} + h^n - x^n}{h} = nx^{n-1}.$$

10.3

A hint:

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{\left(f(x+h)g(x+h) - f(x)g(x+h)\right) + \left(f(x)g(x+h) - f(x)g(x)\right)}{h} = \cdots$$

11 Mean value theorem

11.1

Let $F(x) := \int_a^x f(t)dt$, then F'(x) = f(x) on (a,b). By mean value theorem, there exist some $c \in (a,b)$, s.t.,

$$f(c) = F'(c) = \frac{F(b) - F(a)}{b - a} = \frac{\int_a^b f(x)dx}{b - a}.$$

11.2

$$a = -\pi, b = \pi, f(x) = \sin x, g(x) = \cos x.$$

12 Cauchy's mean value theorem

We prove for the case $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$. The $\pm\infty$ case can be obtained from the 0 case. (why? explain it by yourself.)

Let $x \in I$ and $x \neq c$. Without loss of generality, we consider the case x < c. Then f and g are continuous on [x, c], and differentiable on (x, c). By Cauchy's mean value theorem, there is a $\xi \in (x, c)$, s.t., when $g(x) \neq 0$,

$$\frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(\xi)}{g'(\xi)}.$$

Take limit $x \to c$ on both sides, we get the answer.

13 Remainder term for Taylor series

$$\sup_{x} R_k \left(\frac{1}{1-x} \right) = \sup_{x} \sum_{i=k+1}^{\infty} x^i = \sup_{x} x^{k+1} \sum_{i=0}^{\infty} x^i = \sup_{x} \frac{x^{k+1}}{1-x} = \frac{a^{k+1}}{1-a} \le \varepsilon.$$

We have $k \ge \frac{\ln \varepsilon (1-a)}{\ln a} - 1$.

14 Riemann integral

Choose a partition $P: 0 = \frac{0\pi}{2n}, \frac{1\pi}{2n}, \dots, \frac{n\pi}{2n} = \frac{\pi}{2}$.

$$R(f,P) = \sum_{k=0}^{n-1} \sin \frac{k\pi}{2n} = Im \sum_{k=0}^{n-1} \exp \frac{k\pi i}{2n} = \cdots$$

(omitted the rest of the computation, do it by yourself.)

15 Remainder term for numerical integration

15.1

(omit)

15.2

By the error analysis, we know there is a number $\xi \in (-1,1)$,

$$error = -\frac{2^3}{12N^2}f''(\xi).$$

First estimate the range of f''(x), and then estimate the required value of N. (Details omitted.)

15.3

Similar to above.