\mathbb{Z}_n and Diophantine equations

Andres Buritica

1 The integers modulo an integer

Let n be a positive integer.

We define \mathbb{Z}_n (the integers mod n) using an equivalence relation

$$a \equiv b \pmod{n} \iff n \mid b - a$$

over the integers.

This gives us n equivalence classes corresponding to the least residues mod n:

$$\{0, 1, 2, \dots, n-1\}.$$

• Prove that addition, subtraction, multiplication and exponentiation are consistently defined: that is, if a, b, c, d are integers with $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

$$a+c \equiv b+d \pmod{n}$$
, $a-c \equiv b-d \pmod{n}$, $ac \equiv bd \pmod{n}$, $a^m \equiv b^m \pmod{n}$.

- Prove that for any integer a with gcd(n, a) = 1 there is an integer b with $0 \le b < n$ such that $ab \equiv 1 \pmod{n}$. We call b the inverse of a in mod n, notated a^{-1} .
- We may define fractions in mod n as

$$\frac{a}{b} \equiv ab^{-1} \pmod{n},$$

assuming gcd(b, n) = 1. Prove that addition, subtraction, and multiplication still work.

- Let's say you have integers a, b, c, n such that $ab \equiv ac \pmod{n}$. What can you say about c b?
- Let \mathbb{Z}_n^* be the set of nonzero residues mod n that are coprime to n, and let a be an element of \mathbb{Z}_n^* . Prove that the function f(x) = ax is a bijection from \mathbb{Z}_n^* to \mathbb{Z}_n^* . Deduce that $n \mid a^{\varphi(n)} 1$.
- Prove that if $a^x \equiv 1 \pmod{n}$ and $a^y \equiv 1 \pmod{n}$ then $a^{\gcd(x,y)} \equiv 1 \pmod{n}$.
- Let m and n be coprime positive integers. For any integers a and b, prove that there is a unique residue $c \mod mn$ such that $a \equiv c \pmod m$, $b \equiv c \pmod n$.
- Prove that φ is multiplicative.
- What is the product of the elements of $\mathbb{Z}_n^* \mod n$?

2 Choosing good mods

Prove that:

- Squares are 0, 1 or $4 \mod \text{each of } \{5,8\}$, and $0 \text{ or } 1 \mod 3$.
- Cubes are $0, 1 \text{ or } -1 \text{ mod each of } \{7,9\}.$

In general, for nth powers, try looking mod m where $\varphi(m)$ is a small multiple of n.

Also, of course, try choosing a mod which divides a bunch of terms.

3 Diophantine equation tricks

- Factorising expressions
- Using mods to find contradictions or get conditions on the variables
- Choosing a prime that divides some number or expression
- Reducing expressions mod other expressions
- Quadratic discriminant trick: if a, b, c, n are positive integers such that $an^2 + bn + c = 0$ then $b^2 4ac$ is a perfect square.
- (for later lectures) Bounding arguments, descent, ν_p considerations

4 Problems

- 1. Find all positive integers n such that $2^n + 7^n$ is a perfect square.
- 2. Show that for any fixed integers n and a, the sequence a, a^a, a^{a^a}, \ldots is eventually constant mod n.
- 3. Prove that for each positive integer n there exist n consecutive positive integers, none of which is a prime power.
- 4. Let m and n be positive integers. Show that 4mn m n can never be a perfect square.
- 5. Find all positive integer solutions to $3^x + 4^y = 5^z$.
- 6. Let n > 1 be a positive integer and let p be a prime. Given that $n \mid p-1$ and $p \mid n^3-1$, prove that 4p-3 is a perfect square.

5 Homework

- 1. Let n > 1 be an odd positive integer and let S be the set of integers x, with $1 \le x \le n$, such that both x and x + 1 are coprime to n. Find the product of the elements of S mod n.
- 2. What is the smallest positive integer n for which there exist positive integers x_1, x_2, \ldots, x_n such that

$$x_1^3 + x_2^3 + \dots + x_n^3 = 2002^{2002}$$
?

3. Find all integers x, y such that $(x^2 + y)(x + y^2) = (x - y)^3$.