

## Matchmaking Encryption

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea Magistrale in Engineering in Computer Science

Candidate Luigi Russo

ID number 1699981

Thesis Advisors

Prof. Riccardo Lazzeretti Prof. Daniele Venturi

Academic Year 2019/2020

| Thesis not yet defended |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |

#### Matchmaking Encryption

 ${\bf Master's\ thesis.\ Sapienza-University\ of\ Rome}$ 

 $\ensuremath{{\mathbb C}}$  2020 Luigi Russo. All rights reserved

This thesis has been typeset by  $\LaTeX$  and the Sapthesis class.

 $Author's\ email:\ russo.1699981@studenti.uniroma1.it$ 

# Contents

| 1                | Inti   | roduction                      | 1  |
|------------------|--------|--------------------------------|----|
|                  | 1.1    | Thesis Contributions           | 1  |
| 2                | Pre    | liminaries                     | 3  |
|                  | 2.1    | Notation                       | 3  |
|                  | 2.2    | Signature Schemes              | 4  |
|                  | 2.3    | Non-Interactive Zero Knowledge | 4  |
| 3                | Ma     | tchmaking Encryption           | 7  |
|                  | 3.1    | The General Setting            | 7  |
|                  |        | The Arranged Setting           |    |
| 4                | Cho    | osen Ciphertext Security       | 9  |
|                  | 4.1    | Privacy                        | 9  |
|                  | 4.2    | Authenticity                   | 9  |
|                  | 4.3    | CPA to CCA Transformation      | 9  |
| 5                | Cor    | nclusions                      | 11 |
| $\mathbf{B}^{i}$ | ibliog | graphy                         | 13 |

## Introduction

Write introduction

### 1.1 Thesis Contributions

Explain which are thesis contributions

### **Preliminaries**

#### 2.1 Notation

We use the notation  $[n] \stackrel{\text{def}}{=} \{1,\ldots,n\}$ . Capital boldface letters (such as  $\mathbf{X}$ ) are used to denote random variables, small letters (such as x) to denote concrete values, calligraphic letters (such as  $\mathcal{X}$ ) to denote sets, and serif letters (such as A) to denote algorithms. All of our algorithms are modeled as (possibly interactive) Turing machines; if algorithm  $A = (A_1, \ldots, A_k)$  has oracle access to some oracle O, we often implicitly write  $\mathcal{Q}_O$  for the set of queries asked by A to O and  $\mathcal{Q}_O^i$  for the set of queries asked by  $A_i$  to O. Furthermore, we denote by  $\mathcal{O}_O$  (resp.  $\mathcal{O}_O^i$ ) the set of outputs returned to O (resp. O) by O.

For a string  $x \in \{0,1\}^*$ , we let |x| be its length; if  $\mathcal{X}$  is a set,  $|\mathcal{X}|$  represents the cardinality of  $\mathcal{X}$ . When x is chosen randomly in  $\mathcal{X}$ , we write  $x \leftarrow \mathcal{X}$ . If A is an algorithm, we write  $y \leftarrow \mathcal{A}(x)$  to denote a run of A on input x and output y; if A is randomized, y is a random variable and A(x;r) denotes a run of A on input x and (uniform) randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any input  $x, r \in \{0,1\}^*$  the computation of A(x;r) terminates in a polynomial number of steps (in the input size).

**Negligible functions.** Throughout the document, we denote by  $\lambda \in \mathbb{N}$  the security parameter and we implicitly assume that every algorithm takes as input the security parameter. A function  $\nu : \mathbb{N} \to [0,1]$  is called *negligible* in the security parameter  $\lambda$  if it vanishes faster than the inverse of any polynomial in  $\lambda$ , i.e.  $\nu(\lambda) \in O(1/p(\lambda))$  for all positive polynomials  $p(\lambda)$ . We sometimes write  $\operatorname{negl}(\lambda)$  (resp.,  $\operatorname{poly}(\lambda)$ ) to denote an unspecified negligible function (resp., polynomial function) in the security parameter.

Indistinguishability. We say that **X** and **Y** are *computationally* indistinguishable, denoted **X**  $\approx_c$  **Y**, if for all PPT distinguishers D we have  $\Delta_{\mathsf{D}}(X_\lambda; Y_\lambda) \in \mathsf{negl}(\lambda)$ , where

$$\Delta_{\mathsf{D}}(X_{\lambda};Y_{\lambda}) \stackrel{\text{def}}{=} \left| \mathbb{P}\left[\mathsf{D}(1^{\lambda},X_{\lambda}) = 1\right] - \mathbb{P}\left[\mathsf{D}(1^{\lambda},\mathbf{Y}_{\lambda}) = 1\right] \right|.$$

4 2. Preliminaries

#### 2.2 Signature Schemes

A signature scheme is made of the following polynomial-time algorithms.

KGen( $1^{\lambda}$ ): The randomized key generation algorithm takes the security parameter and outputs a secret and a public key (sk, pk).

Sign(sk, m): The randomized signing algorithm takes as input the secret key sk and a message  $m \in \mathcal{M}$ , and produces a signature s.

Ver(pk, m, s): The deterministic verification algorithm takes as input the public key pk, a message m, and a signature s, and it returns a decision bit.

A signature scheme should satisfy two properties. The first property says that honestly generated signatures always verify correctly. The second property, called unforgeability, says that it should be hard to forge a signature on a fresh message, even after seeing signatures on polynomially many messages.

**Definition 1** (Correctness of signatures). A signature scheme  $\Pi = (\mathsf{KGen}, \mathsf{Sign}, \mathsf{Ver})$  with message space  $\mathcal{M}$  is correct if  $\forall \lambda \in \mathbb{N}$ ,  $\forall (\mathsf{sk}, \mathsf{pk})$  output by  $\mathsf{KGen}(1^{\lambda})$ , and  $\forall m \in \mathcal{M}$ , the following holds:

$$\mathbb{P}[\mathsf{Ver}(\mathsf{pk}, m, \mathsf{Sign}(\mathsf{sk}, m)) = 1] = 1.$$

**Definition 2** (Unforgeability of signatures). A signature scheme  $\Pi = (\mathsf{KGen}, \mathsf{Sign}, \mathsf{Ver})$  is existentially unforgeable under chosen-message attacks (EUF-CMA) if for all PPT adversaries A:

$$\mathbb{P}\left[\mathbf{G}_{\Pi,\mathsf{A}}^{\mathsf{euf}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda)\,,$$

where  $\mathbf{G}_{\Pi,\mathbf{A}}^{\mathsf{euf}}(\lambda)$  is the following experiment:

- 1.  $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{s} \mathsf{KGen}(1^{\lambda})$ .
- 2.  $(m,s) \leftarrow_{\$} \mathsf{A}^{\mathsf{Sign}(\mathsf{sk},\cdot)}(1^{\lambda},\mathsf{pk})$
- 3. If  $m \notin \mathcal{Q}_{Sign}$ , and Ver(pk, m, s) = 1, output 1, else output 0.

#### 2.3 Non-Interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-knowledge (NIZK) proof system for R is a tuple of polynomial-time algorithms  $\Pi = (\mathsf{I},\mathsf{P},\mathsf{V})$  specified as follows:

- The randomized algorithm I takes as input the security parameter and outputs a common reference string  $\omega$ ;
- The randomized algorithm  $P(\omega, (y, x))$ , given  $(y, x) \in R$  outputs a proof  $\pi$ ;
- The deterministic algorithm  $V(\omega, (y, \pi))$ , given an instance y and a proof  $\pi$  outputs either 0 (for "reject") or 1 (for "accept").

We say that a NIZK for relation R is *correct* if  $\forall \lambda \in \mathbb{N}$ , every  $\omega$  output by  $I(1^{\lambda})$ , and any  $(y, x) \in R$ , we have that  $V(\omega, (y, P(\omega, (y, x)))) = 1$ .

We define two properties of a NIZK proof system. The first property, called adaptive multi-theorem zero knowledge, says that honest proofs do not reveal anything beyond the fact that  $y \in L$ . The second property, called knowledge soundness, requires that every adversary creating a valid proof for some statement, must know the corresponding witness.

**Definition 3** (Adaptive multi-theorem zero-knowledge). A NIZK  $\Pi$  for a relation R satisfies adaptive multi-theorem zero-knowledge if there exists a PPT simulator  $Z := (Z_0, Z_1)$  such that the following holds:

- Algorithm  $Z_0$  outputs  $\omega$  and a simulation trapdoor  $\zeta$ .
- For all PPT distinguishers D, we have that

$$\begin{split} \Big| \, \mathbb{P} \Big[ \mathsf{D}^{\mathsf{P}(\omega,(\cdot,\cdot))}(\omega) &= 1: \ \omega \leftarrow \$ \, \mathsf{I}(1^\lambda) \Big] \\ &- \mathbb{P} \Big[ \mathsf{D}^{\mathsf{O}(\zeta,(\cdot,\cdot))}(\omega) &= 1: \ (\omega,\zeta) \leftarrow \$ \, \mathsf{Z}_0(1^\lambda) \Big] \, \Big| \leq \mathsf{negl}(\lambda) \, , \end{split}$$

where the oracle  $O(\zeta, \cdot, \cdot)$  takes as input a pair (y, x) and returns  $Z_1(\zeta, y)$  if  $(y, x) \in R$  (and otherwise  $\bot$ ).

**Definition 4** (True-simulation f-extractability). Let f be a fixed efficiently computable function. A NIZK  $\Pi$  for a relation R satisfies true-simulation f-extractability (f-tSE) if there exists a PPT extractor  $K = (K_0, K_1)$  such that the following holds:

- Algorithm  $K_0$  outputs  $\omega$ , a simulation trapdoor  $\zeta$  and an extraction trapdoor  $\xi$ , such that the distribution of  $(\omega, \zeta)$  is computationally indistinguishable to that of  $Z_0(1^{\lambda})$ .
- For all PPT adversaries A, we have that

$$\mathbb{P}\left[\begin{array}{cc} \mathsf{V}(\omega,y,\pi) = 1 \wedge & (\omega,\zeta,\xi) \leftarrow \mathsf{s} \; \mathsf{K}_0(1^\lambda) \\ (y,\pi) \notin \mathcal{O}_\mathsf{O} \wedge & : (y,\pi) \leftarrow \mathsf{s} \; \mathsf{A}^{\mathsf{O}(\zeta,(\cdot,\cdot))}(\omega) \\ \forall x \, s.t. \, f(x) = z, (y,x) \not \in R & z \leftarrow \mathsf{s} \; \mathsf{K}_1(\xi,y,\pi) \end{array}\right] \leq \mathsf{negl}(\lambda)\,,$$

where the oracle  $O(\zeta, \cdot, \cdot)$  takes as input a pair (y, x) and returns  $Z_1(\zeta, y)$  if  $(y, x) \in R$  (and otherwise  $\bot$ ).

In the case when f is the identity function, we simply say that  $\Pi$  is true-simulation extractable (tSE).

# Matchmaking Encryption

3.1 The General Setting

Add formal definitions

3.2 The Arranged Setting

Add formal definitions

# Chosen Ciphertext Security

### 4.1 Privacy

Add CCA-privacy definition

### 4.2 Authenticity

Add CCA-authenticity definition

### 4.3 CPA to CCA Transformation

Formalize the transformation

# Conclusions

Write conclusions

# Bibliography