Assignment 1 Report

Q1. N Puzzle - (i) Input matrix :- [[5,1,8], [3,0,6], [7,2,4]]

- a) BFS:
 - i) No. of nodes explored = 224113
 - ii) Avg time = (26.44 + 26.00 + 26.50) / 3 = 26.31 sec
- b) DFS:
 - i) No. of nodes explored = 83466
 - ii) Avg time = (9.13 + 8.99 + 9.16) / 3 = 9.09 sec
- c) A*:
 - i) No. of nodes explored = 5742
 - ii) Avg time = (0.89 + 0.98 + 0.92) / 3 = 0.93 sec
- d) IDA* (Initial Limiting Value = 8; increased in steps of 2):
 - i) No. of nodes explored = 2517
 - ii) Avg time = (0.42 + 0.43 + 0.41) / 3 = 0.42 sec
- (ii) Input Matrix : [[7,2,3],[6,0,5],[4,1,8]]
 - a) BFS:
 - i) No. of nodes explored = 62257
 - ii) Time = 11.4711
 - b) DFS
 - i) No. of nodes explored = 17132
 - ii) Time = 2.386
 - c) A*:
 - i) No. of nodes explored = 1287
 - ii) Time = 0.192
 - d) IDA*:
 - i) No. of nodes explored = 1135
 - ii) Time = 0.178

(iii) Input Matrix : [[6,1,2] ,[3,0,5], [8,4,7]]

- a) BFS:
 - i) No. of nodes explored = 65592
 - ii) Time = 9.2405
- b) DFS
 - i) No. of nodes explored = 50951
 - ii) Time = 6.7927
- c) A*:
 - i) No. of nodes explored = 3882
 - ii) Time = 1.0056
- d) IDA*:
 - i) No. of nodes explored = 3598
 - ii) Time = 0.6796
- I. For IDA* and A*, f(n) = no. of steps from start state + manhattan distance to the goal state. Since the manhattan distance is the closest distance of a cell from its goal state, the heuristic never overestimates the cost of reaching the goal state, i.e., h(n)<=h*(n). Hence, f(n) is admissible.
- II. A* and IDA* explore very less nodes as compared to BFS and DFS. The total number nodes explored by IDA* depends on the limiting value. If the initial limiting value is large enough, then the number of nodes explored by IDA* will be equal to the number of nodes explored by A*.

Q2. 4-Color - (i) input grid =
$$[[3,3,3,1], [2,2,3,1], [3,3,3,4], [4,1,2,1]]$$

- a) BFS:
 - i) No. of nodes explored = 28
 - ii) No. of steps = 3
 - iii) Time = 0.0692
- b) A*:
 - i) No. of nodes explored = 3
 - ii) No. of steps = 3
 - iii) Time = 0.0105

```
(ii) input grid = [[3, 4, 3], [2, 3, 1], [1, 3, 1]]
```

- a) BFS:
 - i) No. of nodes explored = 7
 - ii) No. of steps = 2
 - iii) Time = 0.0034
- b) A*:
 - i) No. of nodes explored = 2
 - ii) No. of steps = 2
 - iii) Time = 0.0013

(iii) input grid =
$$[[1, 1, 3, 1, 1], [4, 3, 3, 1, 3], [1, 3, 2, 2, 3], [3, 1, 4, 3, 4], [4, 3, 1, 2, 2]]$$

- a) BFS:
 - i) No. of nodes explored = 489
 - ii) No. of steps = 4
 - iii) Time = 3.0318
- b) A*:
 - i) No. of nodes explored = 7
 - ii) No. of steps = 6
 - iii) Time = 0.0224

- a) BFS:
 - i) No. of nodes explored = 4
 - ii) No. of steps = 2
 - iii) Time = 0.0099
- b) A*:
 - i) No. of nodes explored = 2
 - ii) No. of steps = 2
 - iii) Time = 0.0050
- I. For IDA* and A*, f(n) = no. of steps from start state +(n*n number of connected components). The connected components have been defined as follows: If two adjacent cells have the same color, they are linked to each other.

Since the number of connected components in a properly colored matrix is equal to n!, where n is the number of rows in the matrix, less the number of $(n^*n - number of connected components)$ in a matrix, closer is the solution, Hence, the heuristic never overestimates the cost of reaching the goal state, i.e., $h(n) \le h^*(n)$. Hence, f(n) is admissible.