Московский физико-технический институт (госудраственный университет)

Лабораторная работа по термодинамике

Определение теплоты испарения жидкости [2.4.1]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 29.03.2021

Содержание

1	Ані	нотация										
	1.1	1 Цель работы										
	1.2											
	1.3	Теоретическое вступление и модель										
2	Экс	спериментальная установка										
3	Ход работы											
	3.1	Снятие данных										
	3.2	Аппроксимация полученных данных										
	3.3	Графики и таблицы										
	3.4	Вывод										
4		исок используемой литературы										

1 Аннотация

1.1 Цель работы

- 1. Измерение давления насыщенного пара жидкости при разной температуре;
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

1.2 В работе используются:

- термостат
- герметический сосуд, заполненный исследуемой жидкостью
- отсчетный микроскоп

1.3 Теоретическое вступление и модель

Энтальпия испарения (синоним: теплота парообразования) – количество теплоты, которое необходимо сообщить веществу при постоянных давлении и температуре, чтобы перевести его из жидкого состояния в газообразное.

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)} \tag{1}.$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V2 — объем пара, V1 — объем жидкости. Найдя из опыта $\frac{dP}{dT}, T, V2$ и V1, можно определить L путем расчета. Величины L, V2 и V1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю. В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

С помощью уравнения Ван-дер-Ваальса можно получить зависимость P(T), с помощью которой определить искомую величину:

$$(P + \frac{a}{V^2})(V - b) = RT (2)$$

В таблице ниже приведены все значения параметров различных жидкостей уранения Ван-дер-Ваальса в условиях данного опыта.

Откуда видно, что $\frac{V_1}{V_2} < 0.005$, а $\frac{a}{PV^2} < 0.03$, ошибка метода измерений равна 4%, тогда записав уравнение Клапейрона-Менделеева для насыщенного пара, получим: $V = \frac{RT}{P}$. Пренебрегая V_1 (который не превосходит 0.5% от V_2), запишем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} (3).$$

	$T_{\text{кип}}$	V_1 ,	V_2 ,	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	моль	$\frac{_{\rm M}3}{_{\rm MOЛЬ}}$	моль	$\frac{\Pi a \cdot M^6}{MOJL^2}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl_4	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4

Эта формула является окончательной.

2 Экспериментальная установка

Схема установки изображена на рисунке 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряетс я термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

Рис. 1: Схема установки для определения теплоты испарения

3 Ход работы

3.1 Снятие данных

Измерим разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру. H - высота высокого колена, h - низкого. При этом будем настраивать микроскоп так, чтобы каждый раз основание мениска было у метки прибора (в дальнейшем считаем, что высота мениска не меняется, не смотря на то что поверхностное натяжение ртути на самом деле зависит от температуры и высота немного должна меняться). Результаты представлены в таблицах 1 и 2. Под P_0 подразумевается давление 1 мм рт.ст.

Приведём формулы для рассчётов погрешностей. Поскольку давление напрямую зависит от разности уровней ртути (пренебрегаем давлением насыщенных паров ртути, так как при комнатной температуре оно приблизительно равно 0, 24 Па, а так же изменением уровня столба воды, так как он слишком мал), то для погрешности давления P воспользуемся следующей формулой:

$$\sigma_P = P_{\text{atm}} \cdot \frac{\sigma_{H-h}}{H_0} \tag{1}$$

где под H_0 подразумевается 760 мм, а под $P_{\text{атм}}=101325$ Па - нормальное атмосферное давленине. В качестве σ_{H-h} будем брать 2 мм, поскольку точность измерения каждого из уровня 0,1 мм, а так же мы будем учитывать, что U-образный манометр в нашей установке был не вертикален, а немного наклонён.

$$\sigma_{\ln \frac{P}{P_0}} = \frac{\sigma_P}{P} \tag{2}$$

Погрешность определения температуры возьмём учитывая точность прибора и тот факт, что во время измерений уровней температура могла немного изменяться: $\sigma_T=0,2~K.$

Соответсвенно

$$\sigma_{\frac{1}{T}} = \frac{\sigma_T}{T^2} \tag{3}$$

Снимем все точки данных, проведя сам эксперимент (см. таблицы, приведены в конце).

3.2 Аппроксимация полученных данных

Как было сказано в теоретическом введении, согласно формуле (3), график зависимости $ln(P)\left(\frac{1}{T}\right)$ – убывающая прямая. Учитывая, что известны погрешности $\sigma_{ln(P)}\gg\sigma_{\frac{1}{T}}$, определим характеристики прямой графика с помощью МНК в программе MATLAB по следующим формулам:

$$L_{1} = \frac{\langle ln(P)\rangle \cdot \langle \frac{1}{T}\rangle - \langle \frac{ln(P)}{T}\rangle}{\langle \frac{1}{T^{2}}\rangle - (\langle \frac{1}{T}\rangle)^{2}}$$
(4)

$$L_2 = \frac{R \cdot \langle T \rangle^2}{\langle P \rangle} \cdot \frac{\langle P \rangle \cdot \langle T \rangle - \langle P \cdot T \rangle}{\langle T^2 \rangle - \langle T \rangle^2}$$
 (5)

$$\delta_L = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (L_i - \langle L \rangle)^2}$$
 (6)

По этим формулам получим следующие значения при нагревании:

$$L_{\rm H1} = 2,69 \cdot 10^6 \, \frac{\text{Дж}}{\text{K}}, \Delta L_{\rm H1} = 9,86 \cdot 10^4 \, \frac{\text{Дж}}{\text{K}}$$
 (7)

$$L_{\rm H2} = 2,81 \cdot 10^6 \, \frac{\text{Дж}}{\text{K}}, \Delta L_{\rm H2} = 11,73 \cdot 10^4 \, \frac{\text{Дж}}{\text{K}}$$
 (8)

$$L_{\text{охл1}} = 2,83 \cdot 10^6 \frac{\text{Дж}}{\text{K}}, \Delta L_{\text{охл1}} = 9,65 \cdot 10^4 \frac{\text{Дж}}{\text{K}}$$
 (9)

$$L_{\text{охл2}} = 3.01 \cdot 10^6 \frac{\text{Дж}}{\text{K}}, \Delta L_{\text{охл2}} = 12.01 \cdot 10^4 \frac{\text{Дж}}{\text{K}}$$
 (10)

$$L_{\rm H1} = (2,69 \pm 0,099) \cdot 10^6 \, \frac{\text{Дж}}{\text{K}}$$
 (11)

$$L_{\rm H2} = (2, 81 \pm 0, 117) \cdot 10^6 \, \frac{\text{Дж}}{\text{K}}$$
 (12)

$$L_{\text{охл1}} = (2,83 \pm 0,097) \cdot 10^6 \frac{\text{Дж}}{\text{K}}$$
 (13)

$$L_{\text{охл2}} = (3,01 \pm 0,120) \cdot 10^6 \frac{\text{Дж}}{\text{K}}$$
 (14)

Заметим, что значение удельной теплоты парообразования воды при нагревании для $ln(p)(\frac{1}{T})$ больше всего приближенна к табличным данным $(L=2,44\cdot 10^6~\frac{\rm Дж}{\rm K})$

Теперь нужно учесть погрешности, вызванные методическими приближениями.

Первое, что нужно учесть – давление насыщенного пара ртути, которым мы пренебрегли при расчёте погрешностей ввиду его малости по сравнению с атмосферным давлением:

$$\frac{\Delta L_P}{L} = \frac{P_s}{P} = \frac{0.26}{3 \cdot 10^3} = 8,667 \cdot 10^{-5} \tag{15}$$

Эта формула следует напрямую из уравнения Клапейрона-Клаузиуса. Теперь посчитаем относительную погрешность:

$$\epsilon_{\text{H}1} = \frac{\Delta L_{\text{H}1}}{L_{\text{H}1}} = 0,0367$$
(16)

$$\epsilon_{\text{ох}\pi 1} = \frac{\Delta L_{\text{ох}\pi 1}}{L_{\text{ох}\pi 1}} = 0,0417$$
(17)

$$\epsilon_{\text{H}2} = \frac{\Delta L_{\text{H}2}}{L_{\text{H}2}} = 0,034$$
(18)

$$\epsilon_{\text{OX},12} = \frac{\Delta L_{\text{OX},12}}{L_{\text{OX},12}} = 0,0420$$
(19)

Стоить отметить, что погрешности вышли заниженными, так как следует учитывать также следующие факторы, которые измерить тяжело: температура термометра в точности не совпадает с температурой пара из-за неравномерности распределения температуры в термостате, из-за капиллярных эффектов давление насыщенного пара должно быть больше, чем просто разность высот в трубках.

Всё же можно видеть, что полученные значения хорошо соответствуют ранее описанной теории. Для убедительности построим графики P(T) и $ln(P)\left(\frac{1}{T}\right)$ и проведем сглаживающие прямые по методу МНК с помощью программы MATLAB.

3.3 Графики и таблицы

Таблица 1: При нагреве

N	T, C	T, K	h(б), мм	h(M), MM	Δh , mm	P,	Ln(P)	$1/T \cdot 10^{-3}, 1/K$
1	20	293.15	90.60	76.00	14.60	142.97	4.96	3.41
2	21	294.15	91.60	74.90	16.70	163.53	5.10	3.40
3	22	295.15	92.25	73.45	18.80	184.10	5.22	3.39
4	23	296.15	92.65	72.35	20.30	198.78	5.29	3.38
5	24	297.15	93.50	71.45	22.05	215.92	5.37	3.37
6	25	298.15	94.35	71.00	23.35	228.65	5.43	3.35
7	26	299.15	95.25	70.45	24.80	242.85	5.49	3.34
8	27	300.15	95.65	69.35	26.30	257.54	5.55	3.33
9	28	301.15	96.55	69.25	27.30	267.33	5.59	3.32
10	29	302.15	96.90	67.65	29.25	286.43	5.66	3.31
11	30	303.15	98.25	67.50	30.75	301.11	5.71	3.30
12	31	304.15	99.00	64.40	34.60	338.82	5.83	3.29
13	32	305.15	99.45	65.65	33.80	330.98	5.80	3.28
14	33	306.15	100.95	64.60	36.35	355.95	5.87	3.27
15	34	307.15	101.95	63.85	38.10	373.09	5.92	3.26

	N	T, C	T, K	h(6), мм	h(M), MM	Δh , mm	P,	Ln(P)	$1/T \cdot 10^{-3}, 1/K$
ĺ	1	35	308.15	103.85	63.35	40.50	396.59	5.98	3.25
ĺ	2	34	307.15	102.35	63.75	38.60	377.98	5.93	3.26
ĺ	3	33	306.15	101.80	64.55	37.25	364.76	5.90	3.27
ĺ	4	32	305.15	101.25	65.65	35.60	348.61	5.85	3.28
ĺ	5	31	304.15	100.15	66.65	32.30	316.29	5.76	3.29
ĺ	6	30	303.15	99.25	67.85	30.65	300.14	5.70	3.30
ĺ	7	29	302.15	98.00	68.60	29.05	284.47	5.65	3.31
ĺ	8	28	301.15	96.75	68.95	26.75	261.95	5.57	3.32
ĺ	9	27	300.15	96.50	70.00	26.50	259.50	5.56	3.33
ĺ	10	26	299.15	95.75	71.00	24.75	242.36	5.49	3.34
ĺ	11	25	298.15	94.60	70.65	23.95	234.53	5.46	3.35
ĺ	12	24	297.15	93.85	71.75	22.10	216.41	5.38	3.37
ĺ	13	23	296.15	92.95	72.65	20.30	198.78	5.29	3.38
Î	14	22	295.15	92.40	72.85	19.55	191.44	5.25	3.39
ĺ	15	21	294.15	92.35	73.65	18.70	183.12	5.21	3.40

Таблица 2: При охлаждении

3.4 Вывод

В работе изучилась зависимость давления насыщенного пара воды от температуры. По полученным данным были найдены коэффициенты удельного испарения воды при нагревании и охлаждении жидкости и были вычислены все возможные погрешности полученных величин.

Полученное в результате работы из зависимости $ln(P)\left(\frac{1}{T}\right)$ при нагревании, L получилось наиболее приближенное к табличному значнию, но всё-таки получилось не очень точное, на это повляли факторы описанные выше. Различие с табличными:

$$\eta = \frac{L_{\rm H} - L_{\rm табл}}{L_{\rm табл}} \cdot 100\% = 10,24\% \tag{20}$$

4 Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
- Описание лабораторных работ на кафедре общей физики МФТИ