MG26018 Simulation Modeling and Analysis 仿真建模与分析

Lecture 3: Random Variate Generation

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

- ★ shenhaihui.github.io/teaching/mg26018

Fall 2019

Contents

- 1 Introduction
- 2 Random Number Generation
 - ▶ Definition
 - ► Pseudo-Random Numbers
 - ► Linear Congruential Generator
 - ► More Sophisticated RNGs
 - ► Tests for Random Numbers
- 3 Random Variate Generation
 - ► Inverse-Transform Technique
 - ► Acceptance-Rejection Technique
 - ► Other Ad-Hoc Methods
 - ► Generating Poisson Process

Introduction

- Random variable is a variable whose values are random and depend on a probability distribution.
 - E.g., normal, exponential, Poisson, etc.
- Random variate is a particular outcome (i.e. observed sample, realization) of a random variable.
 - E.g., 5 random variates (outcomes) from a $\mathcal{N}(0,1)$ random variable: 0.5377, 1.8339, -2.2588, 0.8622, 0.3188.
- When simulating a system, we often need to generate random variates (e.g., interarrival time, service time) from all kinds of distributions (e.g., exponential distribution, arbitrary empirical distribution).

Introduction

- In practice:
 - Most simulation softwares have build-in functions to generate random variates from common distributions.
 - Most programming languages have implemented the common routines of random variate generation in the libraries.
- It is nevertheless worthwhile to understand how random variate generation occurs.
 - In case when build-in functions or libraries are unavailable.
 - To better understand the randomness in stochastic simulation.
 - Be alert to some inadequate random variate generator.
- To produce a sequence of random variates from a given distribution:
 - ① Start with random variates from Uniform[0,1] (called random numbers).
 - 2 All random variates with given distribution are "transformed" from random numbers.

- Random numbers are a sequence of independent random observations from uniform distribution on [0, 1].
 - If $U \sim \mathrm{Uniform}[0,1]$, then $\mathbb{E}[U] = \frac{1}{2}$, $\mathrm{Var}(U) = \frac{1}{12}$, and its pdf is $f(u) = \begin{cases} 1, & 0 \leq u \leq 1, \\ 0, & \mathrm{otherwise.} \end{cases}$
 - 10 random numbers: 0.2760, 0.6797, 0.6551, 0.1626, 0.1190, 0.4984, 0.9597, 0.3404, 0.5853, 0.2238.
- Statistical Properties
 - Uniformity: Each value on [0,1] has equal likelihood.
 - Independence: No correlation between successive numbers.

Uniformity

Figure: Uniformity vs Nonuniformity (from ZHANG Xiaowei)

Independence

Figure: Independence vs Dependence (from ZHANG Xiaowei)

- A computer can NOT generate true randomness! It can only give us pseudo-random (伪随机) numbers.
- "Pseudo" means false
 - Generating random numbers by a known method removes true randomness.
 - The set of pseudo-random numbers can be repeated.
- Goal: To produce a sequence of numbers in [0,1] that imitates the ideal properties of random numbers.
 - Statistical properties are the most important.
 - True randomness is not the first priority.

- Properties of a good random number generator (RNG):
 - Pass statistical tests.
 - Solid theoretical support.
 - 3 Fast.
 - 4 Sufficiently long cycle (period).
 - 5 Portable to different computers.
 - 6 Replicable.
- Techniques for RNG:
 - Linear Congruential Generator (LCG)
 - Combined LCG
 - Multiple Recursive Generator (MRG)

- Linear Congruential Generator (LCG, 线性同余发生器) is a simple and early development of RNG.
- f 0 Produce a sequence of integers x_1,x_2,\ldots between 0 and m-1 by

$$x_{i+1} = (ax_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

- The initial value x_0 is called the seed (种子), a is multiplier (乘子), c is increment (增量), and m is modulus (模数).
- 2 Transform x_i 's to values between 0 and 1 by

$$u_i = \frac{x_i}{m}, \quad i = 0, 1, 2, \dots$$

- Possible values of u_i : $\{0, \frac{1}{m}, \dots, \frac{m-1}{m}\}$. (May not cover all!)
- The selection of the values for a, c, m, and x_0 drastically affects the statistical properties and the cycle length.

Example: Use LCG with $x_0=27$, a=17, c=43, and m=100.

$$x_0 = 27$$

 $x_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$
 $u_1 = 2/100 = 0.02$
 $x_2 = (17 \times 2 + 43) \mod 100 = 77 \mod 100 = 77$
 $u_2 = 77/100 = 0.77$
 $x_3 = (17 \times 77 + 43) \mod 100 = 1352 \mod 100 = 52$
 $u_3 = 52/100 = 0.52$
 $x_4 = (17 \times 52 + 43) \mod 100 = 927 \mod 100 = 27$
 $u_4 = 27/100 = 0.27$

The cycle length is only 4!

• Try https://xiaoweiz.shinyapps.io/randNumGen for different parameters.

- An actual use of LCG (Lewis et al. 1969): $a=7^5$, c=0, $m=2^{31}$.
 - It passes many of the standard statistical tests.
 - Cycle length $\approx 2^{31} 2 \approx 2 \times 10^9$ (well over 2 billion).
- Note: By letting modulus m be a power of 2, the modulo operation can be conducted efficiently, since most digital computers use a binary representation of numbers.
- As computing power has increased, LCG is not adequate nowadays; more sophisticated RNGs are used in practice.

- Combined LCG: Combine J (≥ 2) LCG (with c=0).
- For 32-bit computers, L'Ecuyer (1988) suggests combining J=2 generators with $a_1=40,014,\ m_1=2,147,483,563,\ a_2=40,692,\ \text{and}\ m_2=2,147,483,399.$
 - ① Select seed $x_{1,0}$ in the range $[1, m_1 1]$ for the first generator, and seed $x_{2,0}$ in the range $[1, m_2 1]$ for the second. Set j = 0.
 - 2 Calculate

$$x_{1,j+1} = a_1 x_{1,j} \mod m_1,$$

 $x_{2,j+1} = a_2 x_{2,j} \mod m_2.$

- 3 Let $x_{j+1} = (x_{1,j+1} x_{2,j+1}) \mod (m_1 1)$.
- 4 Return

$$u_{j+1} = \begin{cases} \frac{x_{j+1}}{m_1}, & \text{if } x_{j+1} > 0, \\ \frac{m_1 - 1}{m_1}, & \text{if } x_{j+1} = 0. \end{cases}$$

5 Set j = j + 1 and go to Step 2.

It has cycle length $(m_1 - 1)(m_2 - 1)/2 \approx 2 \times 10^{18}$.

 Multiple Recursive Generator (MRG): Extends LCG by using a higher-order recursion:

$$x_i = (a_1x_{i-1} + a_2x_{i-2} + \dots + a_kx_{i-K}) \mod m.$$

- A specific instance that has been widely implemented is MRG32k3a † (L'Ecuyer 1999), which is a combined MRG with J=2 and K=3.
 - It has cycle length $\approx 3 \times 10^{57}$, which is enormous.
 - If you could generate 2 billion (10⁹) pseudo-random numbers per second, then it would take longer than the age of the universe to exhaust the period of MRG32k3a!

- Tests based on generated sequences of numbers.
 - Frequency Test for uniformity (discussed in next lecture)
 - Kolmogorov-Smirnov test (柯尔莫哥洛夫-斯米尔诺夫检验)
 - chi-square test (χ^2 test, 卡方检验)
 - Autocorrelation Test for independence.
- There are also some *theoretical tests* without actually generating any numbers, e.g., spectral test (谱检验).
- Fortunately, the well-known RNGs which are widely used in simulation softwares and languages have been extensively tested and validated.
- Be careful when the RNG at hand is not explicitly known or documented!
 - Even RNGs that have been used for years in popular commercial softwares (e.g., Excel, Visual Basic), have been found to be inadequate (L'Ecuyer 2001).

Random Variate Generation

- Assumption: RNG is available, i.e. we have a sequence of random numbers (Uniform[0, 1]).
- Goal: Produce random variates from a given probability distribution (e.g. exponential, Poisson, etc.).
- Widely-used techniques[†]
 - Inverse-transform technique (generic)
 - Acceptance-rejection technique (generic)
 - Other ad-hoc methods for some specific distributions

[†]Methods introduced in this lecture are exact; there are also approximation methods such as MCMC

• Let F(x) be the cumulative distribution function (cdf) of X.

Figure: Continuous Random Variable

Figure: Discrete Random Variable

- Procedures
 - Generate (as needed) random numbers (on vertical axis).
 - 2 Map inversely to points on horizontal axis, which are the desired random variates from F(x).

• The formal definition of inverse function is

$$F^{-1}(y) := \inf\{x : F(x) \ge y\}, \quad 0 \le y \le 1.$$

• If $U \sim \mathrm{Uniform}[0,1]$, then $F^{-1}(U)$ has the same distribution as X, i.e.,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

Figure: Continuous Random Variable

Figure: Discrete Random Variable

- The inverse-transform technique is useful when the cdf is so simple that its inverse function can be analytically solved or easily computed.
- It can be used to sample from various continuous distributions
 - uniform
 - exponential
 - triangular
 - Weibull
 - Cauchy
 - Pareto
- It can be used to sample from all (in principle) discrete distributions, e.g.,
 - discrete uniform
 - geometric
 - arbitrary empirical distribution

- Goal: Generate random variates from $X \sim \text{Uniform}[a, b]$.
- Intuition: Since X = a + (b a)U, we just need to:
 - **1** Generate random number u_i ;
 - 2 Output $x_i = a + (b a)u_i$ as the required random variates.
- For $X \sim \mathrm{Uniform}[a,b]$, the pdf and cdf are

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases} \quad F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & b < x. \end{cases}$$

• Solve the inverse function of F(x),

$$F^{-1}(y) = a + (b - a)y, \quad 0 \le y \le 1.$$

• So, $F^{-1}(U) = a + (b-a)U$ has the same distribution as X.

- Goal: Generate random variates from $X \sim \text{Exp}(\lambda)$.
- For $X \sim \mathrm{Uniform}[a,b]$, the pdf and cdf are

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

• Solve the inverse function of F(x),

$$F^{-1}(y) = -\frac{1}{\lambda} \ln(1-y), \quad 0 \le y \le 1.$$

- So, $F^{-1}(U) = -\frac{1}{\lambda} \ln(1-U)$ has the same distribution as X.
- Numerical test for Exp(1) in Excel.
 - 1 Generate 200 random numbers.
 - 2 Obtain 200 random variates via the inverse function.

Figure:

- (a) Empirical histogram of 200 generated uniform random numbers:
- (b) Theoretical density of Uniform[0, 1];

- (c) Empirical histogram of 200 generated exponential variates $(\lambda=1)$; (d) Theoretical density of
- $\exp(1)$.

(from Banks et al. (2010))

- Consider a discrete random variable X taking values 0, 1, 2with probability 0.5, 0.3 and 0.2.
- The pmf and cdf are

$$p(x) = \begin{cases} 0.5, & x = 0, \\ 0.3, & x = 1, \\ 0.2, & x = 2, \end{cases} F(x) = \begin{cases} 0, & x < 0, \\ 0.5, & 0 \le x < 1, \\ 0.8, & 1 \le x < 2, \\ 1, & 2 \le x. \end{cases}$$

• Solve the inverse function. (Recall $F^{-1}(y) := \inf\{x : F(x) \ge y\}$.)

- Why do we need another method when the inverse-transform technique is already generic?
 - The cdf of a desired distribution may not have an analytical form.
 - The inverse cdf may not exist in closed form and may be challenging to evaluate, e.g., beta, gamma, normal, etc.
 - Although you can solve the inverse transform via numerical methods anyway, the efficiency may be low.
 - E.g., consider a pdf f(x) = 6x(1-x) for $0 \le x \le 1$, then the cdf is $F(x) = 3x^2 2x^3$. Computing inverse cdf requires to solve $3x^2 2x^3 = y$ for given y.
- Acceptance-rejection technique is also useful for generating a non-stationary Poisson process (more details later).

- Goal: Generate random variates from $X \sim \mathrm{Uniform}[1/4,1]$ using acceptance-rejection technique.
 - **1** Generate a random number u (from $U \sim \text{Uniform}[0,1]$).
 - **2** If $u \ge 1/4$, accept u, output u as the desired random variate; if u < 1/4, reject u, and return to Step 1.
 - 3 If another Uniform[1/4, 1] random variate is needed, repeat the procedure from Step 1; stop otherwise.
- Important Observation 1: To produce one random variate using A-R technique, one may need to generate multiple random numbers.
 - Whereas there exists a one-to-one mapping for the inverse-transform method.

- Important Observation 2: The accepted values of U are conditioned values.
 - U itself does not have the desired distribution.
 - U conditioned on the event $\{U \ge 1/4\}$ does!
- For $1/4 \le x \le 1$,

$$\mathbb{P}\{U \leq x | U \geq 1/4\} = \frac{\mathbb{P}\{U \leq x \text{ and } U \geq 1/4\}}{\mathbb{P}\{U \geq 1/4\}} = \frac{x - 1/4}{3/4},$$

which is exactly the desired cdf of $X \sim \mathrm{Uniform}[1/4, 1]$.

• Suppose we want to generate random variates from X, whose density f(x) has support [a,b] and is upper bounded by M.

Figure: Bounded Support (original image from ZHANG Xiaowei)

- ① Generate random variate pairs (y_1, z_1) , (y_2, z_2) , ..., from Uniform $\{(y, z) : a \le y \le b, \ 0 \le z \le M\}$.
 - y_i from $Y \sim \text{Uniform}[a, b]$, z_i from $Z \sim \text{Uniform}[0, M]$
- 2 Accept the pair if $z_i < f(y_i)$ and output y_i as random variate from X with density f(x).

- Y conditioned on the event $\{Z < f(Y)\}$ has the same distribution as X, i.e., having density f(x).
 - $(Y, Z) \sim \text{Uniform}\{(y, z) : a \le y \le b, \ 0 \le z \le M\}.$

Proof.

$$\begin{split} \mathbb{P}\{Y \leq x | Z < f(Y)\} &= \frac{\mathbb{P}\{Y \leq x, Z < f(Y)\}}{\mathbb{P}\{Z < f(Y)\}} \\ &= \frac{\int_a^x \int_0^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y} \quad \text{Note: } f_{Y,Z}(y,z) = \frac{1}{(b-a)M} \\ &= \frac{\int_a^x \int_0^{f(y)} \frac{1}{(b-a)M} \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} \frac{1}{(b-a)M} \mathrm{d}z \mathrm{d}y} = \frac{\int_a^x \int_0^{f(y)} \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} \mathrm{d}z \mathrm{d}y} \\ &= \frac{\int_a^x f(y) \mathrm{d}y}{\int_a^b f(y) \mathrm{d}y} = \frac{\mathbb{P}\{X \leq x\}}{1} = \mathbb{P}\{X \leq x\}. \quad \blacksquare \end{split}$$

• The acceptance rate is $\mathbb{P}\{Z < f(Y)\} = \frac{1}{(b-a)M}$.

Random Variate Generation

• Goal: Generate random variates from $\operatorname{Beta}(\alpha,\beta)$, where the density is $f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \ x \in [0,1].$

- If $\alpha>1$ and $\beta>1$, then f(x) is maximized at $x=\frac{\alpha-1}{\alpha+\beta-2}$ and the maximum is $M=\frac{(\alpha-1)^{\alpha-1}(\beta-1)^{\beta-1}}{(\alpha+\beta-2)^{\alpha+\beta-2}B(\alpha,\beta)}.$
- The acceptance rate is $\frac{1}{(b-a)M} = \frac{1}{(1-0)M} = \frac{1}{M}$.

28 / 36

• Generate random variates from X, whose density f(x) is upper bounded by Mg(x), where g(x) is instrumental density.

Figure: Unbounded Support (original image from ZHANG Xiaowei)

- ① Generate random variate pairs (y_1,z_1) , (y_2,z_2) , ..., from $\mathrm{Uniform}\{(y,z):y\in \mathrm{support\ of\ }g(\cdot),\ 0\leq z\leq Mg(y)\}.$
 - y_i from $Y \sim g(\cdot)$, z_i from $Z \sim \mathrm{Uniform}[0, Mg(y_i)]$ (why?)
- 2 Accept the pair if $z_i < f(y_i)$ and output y_i as random variate from X with density f(x).

- Y conditioned on the event $\{Z < f(Y)\}$ has the same distribution as X, i.e., having density f(x).
 - Let Θ denote $\{(y,z): y \in \text{support of } g(\cdot), \ 0 \le z \le Mg(y)\}.$
 - $(Y, Z) \sim \text{Uniform }\Theta$.

Proof.

$$\begin{split} \mathbb{P}\{Y \leq x | Z < f(Y)\} &= \frac{\mathbb{P}\{Y \leq x, Z < f(Y)\}}{\mathbb{P}\{Z < f(Y)\}} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y} \quad \text{Note: } f_{Y,Z}(y,z) = \frac{1}{\Theta \text{ area}} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \frac{1}{\Theta \text{ area}} \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y} = \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y} \\ &= \frac{\int_{-\infty}^{x} f(y) \mathrm{d}y}{\int_{-\infty}^{\infty} f(y) \mathrm{d}y} = \frac{\mathbb{P}\{X \leq x\}}{1} = \mathbb{P}\{X \leq x\}. \quad \blacksquare \end{split}$$

• The acceptance rate is $\mathbb{P}\{Z < f(Y)\} = \frac{1}{\Theta \text{ area}} = \frac{1}{\int_{-\infty}^{\infty} Mg(y)\mathrm{d}y} = \frac{1}{M\int_{-\infty}^{\infty} g(y)\mathrm{d}y} = \frac{1}{M} \text{ is a finite of the property of the prope$

Random Variate Generation

▶ Normal from Cauchy

- Goal: Generate random variates from $\mathcal{N}(0,1)$, where the density is $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \ x \in (-\infty,\infty).$
- Use $\operatorname{Cauchy}(0)$ density as instrumental density, which is $g(x) = \frac{1}{\pi(1+x^2)}, \ x \in (-\infty, \infty).$

- It is easy to see that $\frac{f(x)}{g(x)}=\sqrt{\frac{\pi}{2}}(1+x^2)e^{-\frac{x^2}{2}}$ is maximized at $x=\pm 1$ and the maximum is $M=\sqrt{\frac{2e}{\pi}}.$
- The acceptance rate is $\frac{1}{M} = \sqrt{\frac{\pi}{2c}} \approx 0.7602$.

• Univariate normal: A normal RV with mean μ and s.d. σ has pdf

$$\phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in (-\infty, \infty).$$

- If $\mu = 0$ and $\sigma = 1$, then it is a *standard* normal RV.
- If $Z \sim \mathcal{N}(0,1)$, then $\mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$.
- Generate $\mathcal{N}(0,1)$ random variate

Method 1 Acceptance-rejection technique (from Cauchy).

Method 2 Box-Muller method.

- Box–Muller method
 - **1** Generate u_1 and u_2 independently from Uniform [0,1].
 - 2 Let $z_1 = \sqrt{-2 \ln u_1} \cos(2\pi u_2)$ and $z_2 = \sqrt{-2 \ln u_1} \sin(2\pi u_2)$.
- z_1 and z_2 are random variates from $\mathcal{N}(0,1)$ (independent).
- Intuition:
 - For two independent $\mathcal{N}(0,1)$ RVs Z_1 and Z_2 ,

$$Z_1^2 + Z_2^2 \sim \chi_2^2.$$

- $X \sim \text{Exp}(1/2) \Leftrightarrow X \sim \chi_2^2$.
- $-2 \ln u_1$ is a random variate from $\operatorname{Exp}(1/2)$ (and thus χ_2^2).
- The angle is distributed uniformly around the circle.

Figure: Box-Muller Method Visualisation ([image] by [Cmglee] / [CC BY 3.0])
Interactive Graph: [Wikimedia] [Backup]

• Multivariate normal: Independent $Z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, \ldots, d$, with $\Sigma_{ij} \coloneqq \operatorname{Cov}(Z_i, Z_j)$, form a random vector $\boldsymbol{Z} = (Z_1, \ldots, Z_d)^\mathsf{T} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and it has joint pdf

$$\phi(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right\},$$

 $oldsymbol{x} \in \mathbb{R}^d$, where $|oldsymbol{\Sigma}|$ is the determinant of $oldsymbol{\Sigma}.$

- $\Sigma = (\Sigma_{ij})$ is a symmetric and positive semidefinite matrix.
- If $\mu_i = 0$ and $\sigma_i = 1$ for all i, then $\boldsymbol{Z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.
- If $m{Z} \sim \mathcal{N}(\mathbf{0}, m{I})$, and $m{\Sigma} = m{A}m{A}^{\mathsf{T}}$ (Cholesky decomposition), then $m{\mu} + m{A}m{Z} \sim \mathcal{N}(m{\mu}, m{\Sigma})$.
- There are many other relationships among various probability distributions.
 - See, for example, Leemis & McQueston (2008) and the interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

• Poisson process with rate λ : Interarrival time distribution is exponential with rate λ (or mean $1/\lambda$), and

$$N(t+h) - N(t) \sim \text{Poisson}(\lambda h)$$
. (same as $N(h)$)

- To generate Poisson process with rate λ , one only need to generate iid $\operatorname{Exp}(\lambda)$ random variates.
 - s_i , the arrival time of the *i*th arrival, satisfies

$$s_i = s_{i-1} - (1/\lambda) \ln(u_i), i = 1, 2, \dots$$

• Nonhomogeneous Poisson process with rate (intensity) function $\lambda(t)$:

$$N(t+h) - N(t) \sim \mathrm{Poisson}(m(t+h) - m(t)),$$
 where $m(t) = \int_0^t \lambda(s) \mathrm{d}s.$

- To generate nonhomogeneous Poisson process with rate function $\lambda(t)$, one can use the acceptance-rejection method (which is also called *thinning* in this context).
- Idea behind thinning:
 - Generate a *stationary* Poisson arrival process at the fastest rate $\lambda^* = \max_t \lambda(t)$.
 - But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate.
- Algorithm:
 - **1** Set t = 0 and i = 1.
 - **2** Generate x from $\operatorname{Exp}(\lambda^*)$, and let $t \leftarrow t + x$ (this is the arrival time of the *stationary* Poisson process with rate λ^*).
 - 3 Generate random number u (from Uniform[0, 1]). If $u \leq \lambda(t)/\lambda^*$, then $s_i = t$ and $i \leftarrow i + 1$.
 - 4 Go to Step 2.

