系数	系数 K'		ナ風以ナニ☆図
加强。	无加强 ^a	图	布置形式示意图
0.48	0.8	a)	s/l<0.3
-0.48	-0.8	b) 2	s/l<0.3
1.33	1.33	3	s/l<0.3
-0.36	-0.6	d) 4	s/l<0.3

图 13 反映小齿轮偏置状况的常数 K'

系数 K'		图	布置形式示意图
加强。	无加强 [®]	[3]	44 直形八小总图
-0.6	-1.0	e) 5	s/t<0.3

* 假定 $d_1/d_{sh} \ge 1.15$ 为刚度加强, $d_1/d_{sh} < 1.15$ 为无刚度加强,此外,当小齿轮在装有导向键的轴上滑动或类似配置的情况,轴几乎没有或根本没有刚度加强,一般的热装配置也如此。

T*——为输入或输出转矩端,不依赖于旋转方向。

虚线表示一个双斜齿轮中变形较小的那个单斜齿轮。

对人字齿轮传动,以其在轴承间居中安装时退刀槽处的直径确定 f sh。

图 13 (续)

7.5.2.4.4 f_{sh} 的最大给定值

有时,借助相似的齿轮装置的使用经验能够选取一个适当的 fsh。

示例 1: 大刚度设计中,取 $f_{sh} \approx 0 \mu m$,忽略变形。

示例 2: 对一些透平齿轮传动,有时规定 $f_{sh}=6~\mu\mathrm{m}$ 作为最大值,并据此进行相应的齿轮设计。

基于这种假设进行计算时,应通过计算或测量验证假设的有效性。

7.5.2.4.5 给定齿轮精度的 f sh值

对于某些齿轮,指定 f_{sh} 为许用螺旋线倾斜偏差的一个百分比,并据此进行相应的齿轮精度设计。

$$f_{\rm sh} = 1.0 f_{\rm HB}$$
 (59)

7.5.2.4.4 中,假设条件应由计算或测量进行验证。

7.5.3 由制造偏差引起的螺旋线偏啮分量 f_{ma}

 f_{ma} 指在不大的载荷下轮齿保持接触,轴颈在其工作位置时,配对齿轮啮合齿面间的最大分离量。

 f_{ma} 取决于啮合平面内各分量偏差的综合作用,即不管每个齿轮螺旋线倾斜偏差 f_{HB} 与轴间的对中偏差是叠加还是补偿,也不管轴间的对中偏差是否可调(如用可调节轴承调整)。

按照本部分计算承载能力时,可用 $7.5.3.1 \sim 7.5.3.6$ 提供的方法确定 f_{ma} 。

用于计算 f_m 的数值,推荐通过工作状态下接触区的检验予以确认。

7.5.3.1 由各分量偏差引起的 f_{ma} 的偏差

fma的偏差可通过对齿轮、轴承和箱体的检查和测量确定。

最大螺旋线偏啮分量与各单偏差的最不利组合有关:

$$F_{\text{ma max}} = (|f_{\text{par act}} + f_{\text{HB1 act}} + f_{\text{HB2 act}}|)_{\text{max}} \qquad \cdots \qquad (60)$$

最小螺旋线偏啮分量与各单偏差的最有利组合有关: