Honours Analysis Examples

Christopher Shen

Winter 2023

TT	A 1-	•_ •	D	1
Honours	Anar	VSIS	r xar	nnies

Winter 2023

		- 1		- 1	
\mathbf{C}	വ	ገ ተ	$\boldsymbol{\alpha}$	nt.	C
•	.,.		T		. 7

1 Lebesgue integrals				
	1.1 Characteristic and step functions	3		

1 Lebesgue integrals

1.1 Characteristic and step functions

- 1. Let ϕ and ψ be step functions. Show that the following are also step functions:
 - $\alpha \phi + \beta \psi$
 - $\max\{\phi,\psi\}$ and $\min\{\phi,\psi\}$
 - $\phi\psi$.

Firstly define step function ϕ wrt finite set $\{x_0, x_1, \dots, x_n\}$ and step function ψ wrt finite set $\{y_0, y_1, \dots, y_n\}$. Their linear combination is a step function wrt the union of these two finite sets.

The rest are proven similarly via construction.

2. Show that ϕ is a step function **if and only if**:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{J_j}(x)$$

where c_j is some constant and J_j some interval.

From the definition of ϕ we can write:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{(x_{j-1}, x_j)}(x) + \sum_{j=0}^{n} \phi(x_j) \chi_{\{x_j\}}$$

and the opposite direction is shown by the first example and the fact that a characteristic function is a step function.