DATA ANALYTICS AND MACHINE LEARNING WITH R EXPLORATORY DATA ANALYSIS

LUIS GUSTAVO NARDIN INTERNET TECHNOLOGY BRANDENBURG UNIVERSITY OF TECHNOLOGY

EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis refers to the critical process of performing initial investigations on data to discover patterns and to spot anomalies with the help of graphic representations and summary statistics.

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

GRAPHIC REPRESENTATION

GRAPHIC REPRESENTATION

- Basic Graphs
 Introduction to
 ggplot2
 qplot() function
 ggplot() function

BASIC GRAPHS

R provides some basic commands to create a graph

- Scatterplot
 Chart
 Bar Chart
 Line Chart
 Pie Chart
 Boxplot Chart
 Boxplot Chart

SCATTERPLOT CHART

The basic function is plot(x, y), where x and y are numeric vectors denoting the (x,y) points to plot.

BAR CHART

Create barplots with the barplot(height) function where height is a vector or matrix.

Line charts are created with the function lines(x, y, type) where x and y are numeric vectors of (x,y) points to connect. type is the type of the line (see Line Types).

PIE CHART

Pie charts are created with the function pie(x, labels) where x is a non-negative numeric vector indicating the area of each slice and labels notes a character vector of names for the slices.

BOXPLOT CHART

Boxplots can be created for individual variables or for variables by group. The format is boxplot(x, data), where x is a formula and data denotes the data frame providing the data.

INTRODUCTION TO GGPL0T2

- A powerful R package for producing statistical, or data, graphics
 Based on the Grammar of Graphics (Wikinson, 2005)
 Not installed on R by default
 install.packages("ggplot2")
 Load the package
 library(ggplot2)

DOCUMENTATION

- Website http://had.co.nz/ggplot2/
 Books
 Wilkison, L. (2005). The grammar of graphics.
 Springer.
 Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer.
 Code and sample chapters available at http://ggplot2.org/book/
 Chang, W. (2013). R graphics cookbook. O'Relly.
 Code and useful information about R and more specifically about ggplot2 available at http://www.cookbook-r.com/

DATA SETS

- diamonds data set provides ~ 54000 diamonds entries from http://www.diamondse.info/
 Structure of the data frame
 help(diamonds)
 str(diamonds)
 10 variables: price, carat, cut, color, clarity, x, y, z, depth, and table

DATA SETS

- economics data set provides 478 US economic time series data from http://research.stlouisfed.org/fred2
 Structure of the data frame
 help(economics)
 str(economics)
 6 variables: date, psavert, pce, unemploy, uempmed and pop

TERMINOLOGY

- Aesthetics refers to characteristics of the plots like shape, color, and size
 Faceting refers to generate a plot displaying multiple plots of different subsets of the data

GGPLOT2 FUNCTIONS

- Provide two major functions
 qulot for quick plots
 ggplot for fine, granular control of everything
 Main difference between qplot and ggplot is that the former allows the use of vectors, while the latter requires the use of data frame

QPLOT

- Wraps up al the details of ggplot with a familiar syntax from plot
 Automatically scales data
 Can produce any type of plot
 Faceting and margins
 Creates objects that can be saved and modified

QPLOT

qplot(x, y = NULL, ..., data, facets = NULL,
margins = FALSE, geom = "auto", xlim = c(NA,
NA), ylim = c(NA, NA), log = "", main = NULL,
xlab = deparse(substitute(x)), ylab =
deparse(substitute(y)), asp = NA)

SCATTERPLOT

- qplot(diamonds\$carat, diamonds\$price)qplot(carat, price,
- qplot(carat, pri data=diamonds, geom="point")
- geom="point")
 qplot(carat, price, data=diamonds)

TRANSFORMING VARIABLES

- qplot qplot accepts functions of variables as arguments
 qplot(log(carat),
 - log(price),
- log(price), data-diamonds)

 uplot(carat, price, data-diamonds, log="x")

 uplot(carat, price, data-diamonds, log="xy")

 uplot(carat, x "y "z, data-diamonds, log="xy")

SIMPLE LAYOUT MODIFICATIONS

- Change the labels main, xlab, and ylab
 qlab;
 qplot(carat, price, data=diamonds, main="Diamonds (Carat X Price)", xlab="Carat", ylab="Price")

SIMPLE LAYOUT MODIFICATIONS

- Change the limits and aspect xlim, ylim, and asp
 qplot(carat, price, data=diamonds, main="Diamonds (Carat X Price)", xlab="Carat", ylab="Price", xlim=c(1,3), ylim=c(0,10000), asp=0.5)

COLOR, SHAPE, AND SIZE

qplot automatically handles color and shape. In addition, it also provide a legend.

COLOR, SHAPE, AND SIZE

- Manually change the color and shape defined by qplot (
 Shapes and Line Types)

 qplot(carat, price,
 data=diamonds[sample(nrow(diamonds), 100),],
 shape=cut, size=I(5)) +
 scale_shape_manual(values = c(0, 5, 6, 15, 1))

COLOR, SHAPE, AND SIZE

- Manually change the color and shape defined by qplot (
 Shapes and Line Types)
 qplot(carat, price,
 data-diamonds[sample(nrow(diamonds), 100),],
 color=color, size=I(3)) +
 scale_color_manual(values = c("black",
 "orange", "blue", "green", "yellow", "red",
 "purple"))

TRANSPARENCY

- The alpha parameter allows to manipulate transparency qplot(carat, price, data=diamonds,
- alpha=1/10)

 Necessary to use I() to inhibit interpretation
 qplot(carat, price, data=diamonds,
- alpha=I(1/10))

 qplot(carat, price, data=diamonds, alpha=I(1/10))

GEOMETRIC OBJECTS

- Scatterplot is the default geometric object of qplot
 ggplot2 provides several other geometric objects to
 generate graphics.

The most common and useful geoms are:

- geom="point" draws points to produce scatterplots
 geom="smooth" fits a smoother to the data
 geom="boxplot" produces a box-and-whisker plot
 geom="path" and geom="line" draw line between data
 points

- geom="histogram" draws a histogram
 geom="density" creates a density plot
 geom="bar" makes bar charts for discrete variables

SMOOTH

It can be hard to see the trend shown by the data. Smooth creates a line representing this trend.

qplot(carat, price, data=diamonds, geom=c("point", "smooth"))
qplot(carat, price, data=diamonds) + stat_smooth(se=TRUE, level=0.5))

SMOOTH

- There are different smoothers that can be chosen by using the method argument in the stat_smooth:

 loess (default) uses a smooth local regression
 gam (requires mgcv package) fits a generalized additive model

 Im (requires splines package) fits a linear model

 rlm (requires MASS package) uses a robust fitting algorithm

library(splines)
qplot(carat, price,
data=diamonds) +
stat_smooth(method="lm",
formula=y ~ ns(x,5))

- Data includes a categorical and one or more continuous variables
 You can plot how the values of the continuous variables vary with the levels of the categorical variable

qplot(color, carat,
data=diamonds,
geom="boxplot")

Reordering the boxplots

qplot(reorder(color, price),
carat, data=diamonds,
geom="boxplot")

- qplot(color, carat, data = diamonds, geom="boxplot", fill=color)
- fill-color)
 qplot(color, carat, data =
 diamonds, geom="boxplot",
 size=1(0.1))
 qplot(color, carat, data =
 diamonds, geom="boxplot",
 fill-color, size=1(0.1)) +
 scale_fill_manual(values =
 c("black", "orange",
 "blue", "green", "yellow",
 "red", "purple"))

Jitter allows to see the actual distribution of the data as it plots all the points categorized

qplot(color, carat,
data=diamonds, geom="jitter")

BOXPLOT AND JITTER

qplot(color, carat, data=diamonds,
geom="jitter", alpha=[alpha])

[alpha]=I(1/5) [alpha]=I(1/10) [alpha]=I(1/100)

HISTOGRAMS AND DENSITIES

Show the distribution of a single variable.

qplot(carat, price,
data=diamonds,
geom="histogram")

qplot(carat, price,
data=diamonds,
geom="density")

HISTOGRAMS AND DENSITIES

 The control of smoothness in histogram and density plots can be changed. Use binwidth for histogram and adjust for density plots.

qplot(carat, price,
data=diamonds,
geom="histogram",
binwidth=0.1)

qplot(carat, price,
data=diamonds,
geom="density", adjust=0.5)

HISTOGRAMS AND DENSITIES

BAR CHART

Discrete analogue of histogram.

BAR CHART

Discrete analogue of histogram.

LINE AND PATH

Line and path plots are typically used for time series data economics data set.

LINE AND PATH

year <- function(x){
as.POSIXlt(x)\$year + 1900 }</pre>

- as.POSTXIt(x)Syear + 1900 }

 aglot(unemploy / pop, unempmed, data=economics, geom="path", color=year(date)) + scale_y_discrete()

 aglot(unemploy / pop, unempmed, data=economics, geom="path", color=as.factor(year(date))) + scale_y_discrete()

FACETING

Creates plots arranged on a grid specified by a faceting formula

qplot(carat, data=diamonds, facets=cut \sim color, geom="histogram", binwidth=0.1, xlim=c(0,3))

FACETING

- g <- qplot(carat, data=diamonds, geom="histogram", binwidth=0.1, xlim=c(0,3))
- g + facet_wrap(~color)g + facet_wrap(~color, ncol=2)
- g + facet_wrap(~color,
 scales="free")

 g + facet_wrap(~color,
 scales="free_x")

han		ь. Ь.	has.	hu.
ha ha hai	ha. ha. ha.	Bea.		
ha ha ha ha ha ku tilla	hair hair kini Milita	-		
	ha ha ha			
	ha ha ha	h	hu.	M.

FACETING

- g <- qplot(carat, data=diamonds, geom="histogram", binwidth=0.1, xlim=c(0,3))

ai dhahajharaa ...

OTHER PLOT FUNCTIONS

OTHER PLOT FUNCTIONS

- Get information about the plot
 summary(g)
 Saving a figure
 ggsave(file="test.pdf", plot=g)
 ggsave(file="test.jpeg", dpi=72, plot=g)
 ggsave(file="test.png", plot=g, width=10, height=5)

Upload the file bp.txt

- e bp. txt

 HEIGHT (cm)

 WEIGHT (cm)

 WAIST (cm)

 HIP (cm)

 BPSYS (Systolic pressure)

 BPDIA (Diastolic pressure)

- Generate a scatterplot of HEIGHT and WEIGHT
 Experiment with color, size, and shape aesthetics
 Add a column TYPE=[A, B, D, B, A, A]
 Generate a boxplot of TYPE with BPSYS and BPDIA

- diamonds data set provides ~ 54000 diamonds entries from http://www.diamondse.info/
 Available in ggplot2 package
 Structure of the data frame
 help(diamonds)
 str(diamonds)
 10 variables: price, carat, cut, color, clarity, x, y, z, depth, and table

- Identify the numeric columns and summarize them:
 Average, Median, Standard Deviation, Minimum and Maximum
 Generate a new data frame containing all diamonds whose price is greater than 10000 and cart greater or equal than 3
 Generate a boxplot by price and color
 Generate a histogram of the price

SUMMARY STATISTICS