CS 511, Fall 2020, Lecture Slides 23 Examples of Structural Induction

Assaf Kfoury

October 15, 2020

All finite strings/words of decimal digits

- ► The set of all decimal digits: $A \stackrel{\text{def}}{=} \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ▶ Definition of the set A^* of all finite strings (or words) over A by induction:
 - 1. Base step: $\varepsilon \in A^*$ where ε denotes the empty string,
 - 2. **Inductive step**: For all $s \in A^*$ and $x \in A$, the string $s \cdot x$ is a member of A^* .

Concatenation of two strings s and t is denoted $s \cdot t$.

For example, if $s \stackrel{\text{def}}{=} 456$ and $t \stackrel{\text{def}}{=} 22$, then $s \cdot t = 45622$.

All finite strings/words of decimal digits

- ► The set of all decimal digits: $A \stackrel{\text{def}}{=} \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ▶ Definition of the set A^* of all finite strings (or words) over A by induction :
 - 1. **Base step**: $\varepsilon \in A^*$ where ε denotes the empty string,
 - 2. **Inductive step**: For all $s \in A^*$ and $x \in A$, the string $s \cdot x$ is a member of A^* .

Concatenation of two strings s and t is denoted $s \cdot t$.

For example, if $s \stackrel{\text{def}}{=} 456$ and $t \stackrel{\text{def}}{=} 22$, then $s \cdot t = 45622$.

- ▶ Definition of the function $\underline{\text{reverse}}: A^* \to A^*$ by structural induction :
 - 1. Base step: $\underline{\text{reverse}}(\varepsilon) \stackrel{\text{def}}{=} \varepsilon$,
 - 2. Inductive step: $\underline{\text{reverse}}(s \cdot x) \stackrel{\text{def}}{=} x \cdot \underline{\text{reverse}}(s)$.

All finite strings/words of decimal digits

- ► The set of all decimal digits: $A \stackrel{\text{def}}{=} \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ightharpoonup Definition of the set A^* of all finite strings (or words) over A by induction:
 - 1. Base step: $\varepsilon \in A^*$ where ε denotes the empty string,
 - 2. **Inductive step**: For all $s \in A^*$ and $x \in A$, the string $s \cdot x$ is a member of A^* .

Concatenation of two strings s and t is denoted $s \cdot t$.

For example, if $s \stackrel{\text{def}}{=} 456$ and $t \stackrel{\text{def}}{=} 22$, then $s \cdot t = 45622$.

- ▶ Definition of the function $\underline{\text{reverse}}: A^* \to A^*$ by structural induction :
 - 1. Base step: $\underline{reverse}(\varepsilon) \stackrel{\text{def}}{=} \varepsilon$,
 - 2. Inductive step: $\underline{reverse}(s \cdot x) \stackrel{\text{def}}{=} x \cdot \underline{reverse}(s)$.
- ▶ Definition of the function $\underline{\text{foo}}: A^* \to \mathbb{R}$ by structural induction :
 - 1. Base step: $foo(\varepsilon) \stackrel{\text{def}}{=} 1.0$,
 - 2. Inductive step: $\underline{\text{foo}}(s \cdot x) \stackrel{\text{def}}{=} \underline{\text{foo}}(s) \times 0.5$.

Proposition:

For all strings $s, t \in A^*$, it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$.

Proof: Use *structural induction* on $t \in A^*$ to prove the property P(t) defined by:

$$P(t) \stackrel{\text{def}}{=}$$
 "for all $s \in A^*$ it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$ "

This induction is on the structure of t as a string, there is no induction on natural numbers here.

Proposition:

For all strings $s, t \in A^*$, it holds that $\underline{reverse}(s \cdot t) = \underline{reverse}(t) \cdot \underline{reverse}(s)$.

Proof: Use *structural induction* on $t \in A^*$ to prove the property P(t) defined by:

$$P(t) \stackrel{\text{def}}{=}$$
 "for all $s \in A^*$ it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$ "

This induction is on the structure of t as a string, there is no induction on natural numbers here.

▶ Proposition:

For all strings $s \in A^*$, it holds that $\underline{\text{reverse}(\text{reverse}(s))} = s$.

Proof: By *structural induction*. (*Hint*: Use preceding proposition as a lemma.)

Proposition:

For all strings $s, t \in A^*$, it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$.

Proof: Use *structural induction* on $t \in A^*$ to prove the property P(t) defined by:

$$P(t) \stackrel{\text{def}}{=}$$
 "for all $s \in A^*$ it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$ "

This induction is on the structure of t as a string, there is no induction on natural numbers here.

► Proposition:

For all strings $s \in A^*$, it holds that $\underline{\text{reverse}(\text{reverse}(s))} = s$.

Proof: By *structural induction*. (*Hint*: Use preceding proposition as a lemma.)

► Proposition:

The function reverse : $A^* \to A^*$ is one-one and onto, *i.e.*, a bijection .

Proof: By structural induction.

<u>reverse</u> is *one-one*: for all $s_1, s_2 \in A^*$, if $\underline{\text{reverse}}(s_1) = \underline{\text{reverse}}(s_2)$ then $s_1 = s_2$. reverse is *onto*: for every $t \in A^*$ there is $s \in A^*$ such that $\underline{\text{reverse}}(s) = t$.

Proposition:

For all strings $s, t \in A^*$, it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$.

Proof: Use *structural induction* on $t \in A^*$ to prove the property P(t) defined by:

$$P(t) \stackrel{\text{def}}{=}$$
 "for all $s \in A^*$ it holds that $\underline{\text{reverse}}(s \cdot t) = \underline{\text{reverse}}(t) \cdot \underline{\text{reverse}}(s)$ "

This induction is on the structure of t as a string, there is no induction on natural numbers here.

▶ Proposition:

For all strings $s \in A^*$, it holds that $\underline{\text{reverse}(\text{reverse}(s))} = s$.

Proof: By *structural induction*. (*Hint*: Use preceding proposition as a lemma.)

▶ Proposition:

The function $\underline{\text{reverse}}: A^* \to A^*$ is one-one and onto, *i.e.*, a bijection .

Proof: By structural induction.

<u>reverse</u> is *one-one*: for all $s_1, s_2 \in A^*$, if $\underline{\text{reverse}}(s_1) = \underline{\text{reverse}}(s_2)$ then $s_1 = s_2$. $\underline{\text{reverse}}$ is *onto*: for every $t \in A^*$ there is $s \in A^*$ such that $\underline{\text{reverse}}(s) = t$.

▶ Proposition:

For all $s \in A^*$, it holds that $\underline{\mathsf{foo}}(\underline{\mathsf{reverse}}(s)) = \underline{\mathsf{foo}}(s)$.

Proof: By structural induction.

Binary trees with labels in A

- ► Inductive definition of the set BN(*A*) of binary trees with labels in *A*:
 - 1. **Base step**: if $x \in A$, then $x \in BN(A)$,
 - 2. Inductive step: if $x \in A$ and $t_1, t_2 \in BN(A)$, then $\langle x, t_1, t_2 \rangle \in BN(A)$.
- ▶ Different standard traversals of binary trees: pre_order, post_order, in_order^L (from the left), in_order^R (from the right), etc.
- ▶ Definition of $\operatorname{in_order}^{\operatorname{L}} : \operatorname{BN}(A) \to A^*$ by structural induction:
 - 1. Base step: in_order^L(x) $\stackrel{\text{def}}{=} x$,
 - $\textbf{2. Inductive step:} \quad \text{in_order}^{L}(\langle x,t_1,t_2\rangle) \stackrel{\text{def}}{=} \ \, \text{in_order}^{L}(t_1) \cdot x \cdot \text{in_order}^{L}(t_2) \; .$
- ▶ Definition of $in_order^R : BN(A) \rightarrow A^*$ by structural induction:
 - 1. Base step: in_order^R $(x) \stackrel{\text{def}}{=} x$,
 - 2. **Inductive step**: in_order^R($\langle x, t_1, t_2 \rangle$) $\stackrel{\text{def}}{=}$ in_order^R(t_2) $\cdot x \cdot \text{in_order}^R(t_1)$.

in_order^L, in_order^R, and <u>reverse</u>

A nice property which is best proved by structural induction . . .

► Proposition:

For all binary trees $t \in \mathsf{BN}(A)$, it holds that $\underline{\mathsf{reverse}}(\mathsf{in_order}^\mathsf{L}(t)) = \mathsf{in_order}^\mathsf{R}(t)$.

Proof: We prove by *structural induction* on $t \in BN(A)$ the property P(t) defined by:

$$P(t) \stackrel{\mathrm{def}}{=}$$
 "for all $s \in \mathsf{BN}(A)$ it holds that $\underline{\mathsf{reverse}}(\mathsf{in_order}^\mathsf{L}(t)) = \mathsf{in_order}^\mathsf{R}(s)$ "

This induction is on the structure of t as a binary tree, there is no induction on natural numbers here.

- 1. **Base step**: Prove P(t) when $t = x \in A$.
- 2. **Inductive step**: Prove P(t) when $t = \langle x, t_1, t_2 \rangle$, using the *induction hypothesis* (IH) which states that: $P(t_1)$ holds and $P(t_2)$ holds.
- **Exercise**: Fill in the missing details in the preceding proof.

<u>Hint</u>: For the *inductive step*, you will need to use the definition of <u>reverse</u> on slide 2 and the first proposition on slide 3.

(THIS PAGE INTENTIONALLY LEFT BLANK)