# Terro's real estate agency Data Analysis

Name – Abhishek Kumar

Sept. 2023 DLCA

Mail Id:- abhishekkumarburnwal@gmail.com

Johishex

Date: - 05th November 2023

# Contents:

Executive Summary: Terro's real-estate is an agency that estimates the pricing of houses in a certain locality. The pricing is

concluded based on different features / factors of a property. This also helps them in identifying the

business value of a property. To do this activity the company employs an "Auditor", who studies

various geographic features of a property like pollution level (NOX), crime rate, education facilities

(pupil to teacher ratio), connectivity (distance from highway), etc. This helps in determining the price

of a property.

Introduction: Our project involves a comprehensive analysis of a dataset comprising 506 houses in the Boston area. The primary objective is to assess the impact of various variables on the pricing of homes within a specific neighbourhood. This study aims to investigate the significance of each variable in influencing house prices, ultimately providing valuable insights into the determinants of real estate values in the area.

Data Description:

| Attribute  | Description                                                            |
|------------|------------------------------------------------------------------------|
| CRIME RATE | per capita crime rate by town                                          |
| INDUSTRY   | proportion of non-retail business acres per town (in percentage terms) |
| NOX        | nitric oxides concentration (parts per 10 million)                     |
| AVG_ROOM   | average number of rooms per house                                      |
| AGE        | proportion of houses built prior to 1940 (in percentage terms)         |
| DISTANCE   | distance from highway (in miles)                                       |
| TAX        | full-value property-tax rate per \$10,000                              |
| PTRATIO    | pupil-teacher ratio by town                                            |
| LSTAT      | % lower status of the population                                       |
| AVG_PRICE  | Average value of houses in \$1000's                                    |

- I. Observations from the statistical summary of the dataset:
  - 1. \*\*CRIME\_RATE:\*\* The mean crime rate in the Boston area is approximately 4.87, with a relatively low standard error, indicating that the data is clustered around this mean. The range of crime rates varies from 0.04 to 9.99.
  - 2. \*\*AGE:\*\* The mean age of properties in the dataset is around 68.57, with a standard error of 1.25. The range of property ages is substantial, spanning from 2.9 to 100.
  - 3. \*\*INDUS:\*\* The mean industrial proportion in the neighborhood is approximately 11.14, with a standard error of 0.30. The data is somewhat normally distributed with a range of 0.46 to 27.74.
  - 4. \*\*NOX:\*\* The mean nitric oxide concentration is around 0.55, with a low standard error, suggesting consistency. The range of NOX levels goes from 0.385 to 0.871.

- 5. \*\*DISTANCE:\*\* The mean distance to employment centers is about 9.55, with a standard error of 0.39. The range of distances spans from 1 to 24 units.
- 6. \*\*TAX:\*\* The mean property tax rate is approximately 408.24, with a standard error of 7.49. Tax rates vary widely, with a range of 187 to 711.
- 7. \*\*PTRATIO:\*\* The mean pupil-teacher ratio is roughly 18.46, with a standard error of 0.10. The range of pupil-teacher ratios is from 12.6 to 22.
- 8. \*\*AVG\_ROOM:\*\* The mean average number of rooms is about 6.28, with a standard error of 0.03. The range of room counts goes from 3.56 to 8.78.
- 9. \*\*LSTAT:\*\* The mean percentage of lower status population is around 12.65, with a standard error of 0.32. The data is slightly positively skewed, and the range of values is from 1.73 to 37.97.
- 10.\*\*AVG\_PRICE:\*\* The mean average house price in the dataset is approximately 22.53. This column represents the target variable, i.e., the house prices, and the range of prices is from 5 to 50.
- II. These observations provide valuable insights into the central tendencies, variability, and ranges of the variables, which will be crucial for further analysis and modelling of house prices in the Boston area.



# 3. Covariance Matrix

|            | CRIME_RATE   | AGE          | INDUS        | NOX          | DISTANCE     | TAX          | PTRATIO      | AVG_ROOM     | LSTAT        | AVG_PRICE   |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| CRIME_RATE | 8.516147873  |              |              |              |              |              |              |              |              |             |
| AGE        | 0.562915215  | 790.7924728  |              |              |              |              |              |              |              |             |
| INDUS      | -0.110215175 | 124.2678282  | 46.97142974  |              |              |              |              |              |              |             |
| NOX        | 0.000625308  | 2.381211931  | 0.605873943  | 0.013401099  |              |              |              |              |              |             |
| DISTANCE   | -0.229860488 | 111.5499555  | 35.47971449  | 0.615710224  | 75.66653127  |              |              |              |              |             |
| TAX        | -8.229322439 | 2397.941723  | 831.7133331  | 13.02050236  | 1333.116741  | 28348.6236   |              |              |              |             |
| PTRATIO    | 0.068168906  | 15.90542545  | 5.680854782  | 0.047303654  | 8.74340249   | 167.8208221  | 4.677726296  |              |              |             |
| AVG_ROOM   | 0.056117778  | -4.74253803  | -1.884225427 | -0.024554826 | -1.281277391 | -34.51510104 | -0.539694518 | 0.492695216  |              |             |
| LSTAT      | -0.882680362 | 120.8384405  | 29.52181125  | 0.487979871  | 30.32539213  | 653.4206174  | 5.771300243  | -3.073654967 | 50.89397935  |             |
| AVG_PRICE  | 1.16201224   | -97.39615288 | -30.46050499 | -0.454512407 | -30.50083035 | -724.8204284 | -10.09067561 | 4.484565552  | -48.35179219 | 84.41955616 |
|            |              |              |              |              |              |              |              |              |              |             |
|            |              |              |              |              |              |              |              |              |              |             |

# 4. Correlation Matrix

|            | CRIME_RATE   | AGE          | INDUS        | NOX          | DISTANCE     | TAX      | PTRATIO      | AVG_ROOM     | LSTAT        | AVG_PRICE |
|------------|--------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|-----------|
| CRIME_RATE | 1            |              |              |              |              |          |              |              |              |           |
| AGE        | 0.006859463  | 1            |              |              |              |          |              |              |              |           |
| INDUS      | -0.005510651 | 0.644778511  | 1            |              |              |          |              |              |              |           |
| NOX        | 0.001850982  | 0.731470104  | 0.763651447  | 1            |              |          |              |              |              |           |
| DISTANCE   | -0.009055049 | 0.456022452  | 0.595129275  | 0.611440563  | 1            |          |              |              |              |           |
| TAX        | -0.016748522 | 0.506455594  | 0.72076018   | 0.6680232    | 0.910228189  | 1        |              |              |              |           |
| PTRATIO    | 0.010800586  | 0.261515012  | 0.383247556  | 0.188932677  | 0.464741179  | 0.460853 | 1            |              |              |           |
| AVG_ROOM   | 0.02739616   | -0.240264931 | -0.391675853 | -0.302188188 | -0.209846668 | -0.29205 | -0.355501495 | 1            |              |           |
| LSTAT      | -0.042398321 | 0.602338529  | 0.603799716  | 0.590878921  | 0.488676335  | 0.543993 | 0.374044317  | -0.613808272 | 1            |           |
| AVG_PRICE  | 0.043337871  | -0.376954565 | -0.48372516  | -0.427320772 | -0.381626231 | -0.46854 | -0.507786686 | 0.695359947  | -0.737662726 | 1         |
| <u> </u>   |              |              |              |              |              |          |              |              |              |           |

- a) The top three positively correlated pairs in the provided correlation matrix are as follows:
- i. The pair consisting of "AVG\_ROOM" and "AVG\_PRICE" exhibits the highest positive correlation with a value of 0.695359947.
- ii. "INDUS" and "TAX" are also positively correlated, with a correlation value of 0.72076018.
- iii. The third positively correlated pair is "NOX" and "DISTANCE," with a correlation value of 0.611440563.

These pairs indicate strong positive relationships, suggesting that as one variable increases, the other tends to increase as well.

- b) The top three negatively correlated pairs, with the highest negative correlation values (in absolute terms), are as follows:
- i. "AVG\_ROOM" and "LSTAT" exhibit the most significant negative correlation with a value of -0.613808272.
- ii. "INDUS" and "AVG\_ROOM" are negatively correlated with a correlation value of -0.391675853.

iii. The pair "INDUS" and "AVG\_PRICE" also displays a negative correlation, with a correlation value of -0.48372516.

These pairs demonstrate strong negative relationships, implying that as one variable increases, the other tends to decrease, and vice versa.

Note: So From the questions no.5 to 8 I am taking constant as zero and solving the questions.

5.

- a) From the Regression Summary:
- i. The R-squared value (R^2) is 0.4486, meaning that LSTAT explains about 44.86% of the variation in Avg\_Price, showing a moderate fit.
- ii. The coefficient for LSTAT is 1.1221, suggesting that a one-unit increase in LSTAT corresponds to a 1.1221-unit increase in Avg\_Price.
- iii. The intercept is 0, representing Avg\_Price when LSTAT is zero, which may not be practical in this context.
- iv. A well-behaved residual plot is essential for validating the model, but it's not provided.
- b) Is LSTAT significant?

The very low p-value (2.71419E-67) associated with LSTAT's coefficient indicates that LSTAT is highly significant for predicting Avg\_Price based on the model and the data.

6.

a) Regression Equation:

The regression equation can be written as follows:

AVG\_PRICE = Intercept + (Coef\_AVG\_ROOM \* AVG\_ROOM) + (Coef\_LSTAT \* LSTAT)

From the summary output, we have:

- Coef\_AVG\_ROOM = 4.906906071
- $Coef_LSTAT = -0.655739993$

However, the summary output doesn't provide the Intercept value, so we need to obtain that value to complete the equation. Assuming the Intercept is available elsewhere, you can substitute the values:

AVG\_PRICE = Intercept + (4.906906071 \* 7) + (-0.655739993 \* 20)

Now, calculate AVG\_PRICE with the Intercept value.

To compare to the company's quote of \$30,000, you can subtract the calculated AVG\_PRICE from \$30,000. If the calculated price is higher, the company may be undercharging, and if it's lower, the company may be overcharging.

# b) Model Comparison:

To compare the performance of this model with the previous one, we can look at the adjusted R-squares:

Previous Model:

Adjusted R Square = 0.446669056

Current Model:

Adjusted R Square = 0.946366278

The adjusted R-squared for the current model is significantly higher (0.9464), which suggests that it explains a much larger proportion of the variance in AVG\_PRICE compared to the previous model (0.4467). A higher adjusted R-squared indicates a better fit of the model to the data. Therefore, the current model is superior to the previous one in terms of explaining the variance in AVG\_PRICE.

| SUMMARY OUTPUT    |              |                |              | Dependent Variable   |                          |                 |                  |              |
|-------------------|--------------|----------------|--------------|----------------------|--------------------------|-----------------|------------------|--------------|
|                   |              |                |              | Y Variable = Avg_Pri | ice                      |                 |                  |              |
| Regression        | n Statistics |                |              |                      |                          |                 |                  |              |
| Multiple R        | 0.976274396  |                |              | Independent Variab   | le                       |                 |                  |              |
| R Square          | 0.953111697  |                |              | X Variable = CRIME   | _RATE, AGE,INDUS,NOX,DIS | STANCE,TAX,PTRA | TIO,AVG_ROOM,LST | AT           |
| Adjusted R Square | 0.950344883  |                |              |                      |                          |                 |                  |              |
| Standard Error    | 5.316723284  |                |              |                      |                          |                 |                  |              |
| Observations      | 506          |                |              |                      |                          |                 |                  |              |
| ANOVA             |              |                |              |                      |                          |                 |                  |              |
|                   | df           | SS             | MS           | F                    | Significance F           |                 |                  |              |
| Regression        | 9            | 285577.3694    | 31730.81882  | 1122.517614          | 0                        |                 |                  |              |
| Residual          | 497          | 14048.9706     | 28.26754648  |                      |                          |                 |                  |              |
| Total             | 506          | 299626.34      |              |                      |                          |                 |                  |              |
|                   | Coefficients | Standard Error | t Stat       | P-value              | Lower 95%                | Upper 95%       | Lower 95.0%      | Upper 95.0%  |
| Intercept         | 0            | #N/A           | #N/A         | #N/A                 | #N/A                     | #N/A            | #N/A             | #N/A         |
| CRIME_RATE        | 0.078490799  | 0.08103866     | 0.96855994   | 0.333235892          | -0.080729795             | 0.237711394     | -0.080729795     | 0.237711394  |
| AGE               | 0.011429371  | 0.013064265    | 0.874857552  | 0.38207399           | -0.014238626             | 0.037097368     | -0.014238626     | 0.037097368  |
| INDUS             | 0.050103378  | 0.063897126    | 0.784125691  | 0.433339911          | -0.075438412             | 0.175645168     | -0.075438412     | 0.175645168  |
| NOX               | 1.086060216  | 3.531453835    | 0.307539123  | 0.758561879          | -5.852358811             | 8.024479243     | -5.852358811     | 8.024479243  |
| DISTANCE          | 0.095829214  | 0.064460373    | 1.486637599  | 0.137744642          | -0.030819214             | 0.222477643     | -0.030819214     | 0.222477643  |
| TAX               | -0.010117985 | 0.003976992    | -2.544130344 | 0.01125658           | -0.017931774             | -0.002304196    | -0.017931774     | -0.002304196 |
| PTRATIO           | -0.500685299 | 0.097791762    | -5.119912824 | 4.37816E-07          | -0.692821528             | -0.308549069    | -0.692821528     | -0.308549069 |
| AVG_ROOM          | 6.185018222  | 0.294536339    | 20.99916855  | 1.48811E-70          | 5.606328359              | 6.763708086     | 5.606328359      | 6.763708086  |
| LSTAT             | -0.495863299 | 0.051805724    | -9.571592945 | 4.94631E-20          | -0.597648522             | -0.394078075    | -0.597648522     | -0.394078075 |

- i. \*\*Adjusted R-Square (0.9503):\*\* This high value suggests that the model is excellent at explaining house prices (AVG\_PRICE).
- ii. \*\*Coefficient Values:\*\* These values show how each independent variable influences house prices:
  - \*\*CRIME\_RATE:\*\* Not a strong predictor.
  - \*\*AGE:\*\* Not a strong predictor.
  - \*\*INDUS:\*\* Not a strong predictor.
  - \*\*NOX:\*\* Not a strong predictor.
  - \*\*DISTANCE:\*\* Not a strong predictor.
- \*\*TAX:\*\* A decrease in TAX is associated with a slight decrease in house prices.

- \*\*PTRATIO:\*\* A higher pupil-teacher ratio leads to lower house prices.
- \*\*AVG\_ROOM:\*\* More rooms mean higher house prices.
- \*\*LSTAT:\*\* A higher percentage of lower-income residents is linked to lower house prices.
- iii. \*\*Significance of Independent Variables:\*\*
- Some variables like TAX, PTRATIO, AVG\_ROOM, and LSTAT are statistically significant and have a strong impact on house prices.
- Variables like CRIME\_RATE, AGE, INDUS, NOX, and DISTANCE are not as important in predicting house prices based on the provided data.

In summary, this model does a great job explaining house prices. Variables like tax rates, pupil-teacher ratios, room numbers, and the percentage of lower-income residents significantly affect house prices, while other factors like crime rates and age are less influential.

| SUMMARY OUTPUT        |              |                | Dependent Variable | Independent Variables            |                |              |              |              |
|-----------------------|--------------|----------------|--------------------|----------------------------------|----------------|--------------|--------------|--------------|
|                       |              |                | Y Variable         | X Variables                      |                |              |              |              |
| Regression Statistics |              |                | Avg_Price          | TAX (P-value = 0.01125658)       |                |              |              |              |
| Multiple R            | 0.975974908  |                |                    | PTRATIO (P-value = 4.37816E-07)  |                |              |              |              |
| R Square              | 0.952527021  |                |                    | AVG_ROOM (P-value = 1.48811E-70) |                |              |              |              |
| Adjusted R Square     | 0.950251286  |                |                    | LSTAT (P-value = 4.94631E-20)    |                |              |              |              |
| Standard Error        | 5.323060209  |                |                    |                                  |                |              |              |              |
| Observations          | 506          |                |                    |                                  |                |              |              |              |
| ANOVA                 |              |                |                    |                                  |                |              |              |              |
|                       | df           | SS             | MS                 | F                                | Significance F |              |              |              |
| Regression            | 4            | 285402.1851    | 71350.54627        | 2518.109117                      |                |              |              |              |
| Residual              | 502          | 14224.15494    | 28.33496999        |                                  |                |              |              |              |
| Total                 | 506          | 299626.34      |                    |                                  |                |              |              |              |
|                       | Coefficients | Standard Error | t Stat             | P-value                          | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept             | 0            | #N/A           | #N/A               | #N/A                             | #N/A           | #N/A         | #N/A         | #N/A         |
| TAX                   | -0.003617717 | 0.001761832    | -2.053383289       | 0.040552982                      | -0.00707919    | -0.000156244 | -0.00707919  | -0.000156244 |
| PTRATIO               | -0.509612558 | 0.096467922    | -5.282715221       | 1.9002E-07                       | -0.699143165   | -0.320081951 | -0.699143165 | -0.320081951 |
| AVG_ROOM              | 6.223251004  | 0.224950035    | 27.66503677        | 5.1234E-103                      | 5.78129148     | 6.665210529  | 5.78129148   | 6.665210529  |
| LSTAT                 | -0.454943798 | 0.04333661     | -10.49790931       | 1.92841E-23                      | -0.540087271   | -0.369800324 | -0.540087271 | -0.369800324 |

a) This model is built to predict the average house price (Avg\_Price) using the following independent variables: TAX, PTRATIO, AVG\_ROOM, and LSTAT.

Adjusted R-Square (0.9503): The adjusted R-squared value suggests that around 95.03% of the variation in house prices (Avg\_Price) is explained by these four independent variables, indicating a strong model.

Coefficients:

Intercept: The intercept is not provided in the output.

TAX: For every unit increase in TAX, the average house price decreases by approximately 0.0036 units.

PTRATIO: An increase in pupil-teacher ratio (PTRATIO) results in a decrease in average house price. For each unit increase in PTRATIO, the house price decreases by around 0.5096 units.

AVG\_ROOM: More rooms (AVG\_ROOM) significantly increase house prices. Each additional room corresponds to an increase of approximately 6.2233 units in the average house price.

LSTAT: A higher percentage of lower-income residents (LSTAT) in a neighborhood is associated with lower house prices. For each unit increase in LSTAT, the average house price decreases by about 0.4549 units.

b) Comparison of Adjusted R-Square:

The adjusted R-squared value of this model is the same as the previous model (0.9503). Both models explain approximately 95.03% of the variance in house prices. Therefore, both models perform equally well in terms of explaining the variation in house prices based on the data.

c) Sorting Coefficients and Impact of NOX:

If we sort the coefficients in ascending order, from lowest to highest magnitude: LSTAT (-0.4549)

TAX (-0.0036)

PTRATIO (-0.5096)

AVG\_ROOM (6.2233)

The coefficient for NOX is not included in this model, so we cannot directly assess its impact on the average price using this model.

d) Regression Equation:

The regression equation based on this model, without the intercept (which is not provided), would be:

Avg\_Price = (-0.0036 \* TAX) + (-0.5096 \* PTRATIO) + (6.2233 \* AVG\_ROOM) - (0.4549 \* LSTAT)