1. Soit (C) le cylindre de \mathbb{R}^3 de rayon 1 et d'axe oz. Soient $(\theta, z) \in]0, 2\pi[\times \mathbb{R}$ les coordonnées locales de $(C): \psi(\theta, z) = (x = \cos \theta, y = \sin \theta, z = z)$. Soit

$$g_0 = dx \otimes dx + dy \otimes dy + dz \otimes dz$$

la métrique canonique sur \mathbb{R}^3 .

- (a) Trouver la métrique g sur (C) donnée par la restriction de g_0 sur (C)
- (b) Trouver la connexion ∇ sur (C) qui est compatible avec g
- (c) Donner les géodésiques sur (C) relativement à ∇ et vérifier qu'elles sont , soit les droites vertcales, soit les cercles horizontaux soit les helices sur (C)
- (d) Soit (γ) l'ellipse sur (C) d'équation $z = \cos \theta + \sin \theta$ et soit $p(\frac{\pi}{2}, 1)$ un point de (γ) soit $V = a\frac{\partial}{\partial \theta} + b\frac{\partial}{\partial z}|_p$ un vecteur de T_pC
 - 1. Trouver le transport parallèl de V le long de (γ) relativement à la connexion ∇
 - 2. Soient $u = \frac{\partial}{\partial \theta} + \frac{\partial}{\partial z}|_p$ et $v = \frac{\partial}{\partial \theta} \frac{\partial}{\partial z}|_p$ deux vecteurs de T_pC . Vérifier par le calcul que le produit scalaire $\langle u, v \rangle = \langle \widetilde{u}, \widetilde{v} \rangle$ où \widetilde{u} et \widetilde{v} sont respectivement les transports parallèls le long de γ de u et v au point $\gamma(t)$
- 2. On considère S^2 la sphère unité de \mathbb{R}^3 . On considère un recouvrement de S^2 par deux cartes (U, σ) et (V, δ) où

$$U = S^{2} \cap \{(x, y, z) \in \mathbb{R}^{3} / y \neq 0 \text{ ou } x < 0\}$$

$$V = S^{2} \cap \{(x, y, z) \in \mathbb{R}^{3} / z \neq 0 \text{ ou } x > 0\}$$

avec

$$\sigma: \quad]0.2\pi[\times] \frac{-\pi}{2}, \frac{\pi}{2}[\quad \longrightarrow \quad U \\ (\theta, \varphi) \quad \to \quad (x = \cos\theta\sin\varphi, y = \sin\theta\cos\varphi, z = \sin\varphi)$$

et

$$\begin{array}{cccc} \delta: &]0.2\pi[\times]\frac{-\pi}{2},\frac{\pi}{2}[& \longrightarrow & V \\ & (\theta,\varphi) & \to & (u=-\cos\theta\sin\varphi,v=-\sin\varphi,w=-\sin\theta\cos\varphi) \end{array}$$

c'est à dire $\delta(\theta,\varphi)$ est la rotation de $\sigma(\theta,\varphi)$, d'angle π autour de oz suivie par une rotation d'angle $\frac{\pi}{2}$ autour de ox. Aussi, $\theta=(\overrightarrow{ox},\overrightarrow{oM'}),\ \varphi=(\overrightarrow{oM'},\overrightarrow{oM})$ avec $M'=\operatorname{Proj}_{xoy}M$ Le changement de coordonnées est (u,v,w)=(-x,-z,-y).

Donner l'application de transition φ_{12} du fibré tangent TS^2 relative à ce recouvrement.

- 3. Soit M une variété de dimension 2, on considère l'espace des tenseurs 1- covariants et 1-contravariants $\otimes_1^1 M = \{t : \chi(M) \longrightarrow \chi(M) \ C^{\infty} \text{-linéaires}\}$. Si (x_i) est un système de coordonnées locales autour d'un point $x \in M$ alors $\{dx^i \otimes \frac{\partial}{\partial x_i}\}$ est une base locale du module $\otimes_1^1 M$.
 - (a) Vérifier que $\otimes_1^1 TM = \bigcup_{x \in M} \otimes_1^1 T_x M$ est un fibré vectoriel sur M. Déterminer ses fibes et son rang
 - (b) Soient $\{x_i\}$, et $\{y_i\}$ deux systèmes de coordonnées locales autour de $x \in M$
 - 1. Vérifier que

$$\begin{cases} \frac{\partial}{\partial y_i} \Big|_x = \frac{\partial x^j}{\partial y_i} \Big|_x \frac{\partial}{\partial x_j} \Big|_x \\ dy^i \Big|_x = \frac{\partial y^i}{\partial x_j} \Big|_x dx^j \Big|_x \end{cases}$$

2. Déduire les applications de transition $\varphi_{i\ j}(x,v),\ x\in U_i\cap U_j;\ v\in\mathbb{R}^4$ IND. $T\in\otimes^1_1T_xM,\ T=T^j_idx^i\otimes\partial x_j=\widetilde{T}^j_idy^i\otimes\partial y_j$. Exprimer \widetilde{T}^j_i en fonction de T^j_i

- (c) On suppose que (M,g) une variété Riemannienne et ∇ une connexion sur M compatible avec g. Soit $\Gamma(\otimes_1^1 TM)$ l'espace des sections sur le fibré $\otimes_1^1 TM$ Etablir $\Gamma(\otimes_1^1 TM) = \otimes_1^1 M$
- (d) On définit $\widetilde{\nabla}: \chi(M) \times \otimes_1^1 M \longrightarrow \otimes_1^1 M$ par $(\widetilde{\nabla}_X L)Y = \nabla_X L(Y) L(\nabla_X Y)$. Vérifier si $\widetilde{\nabla}$ est une connxion sur le fibré $\otimes_1^1 TM$
- 4. Soit (M,g) une variété Riemannienne et ∇ la connexion associée à g. Soit $\flat: T_xM \longrightarrow T_x^*M$ et $\sharp: T_x^*M \longrightarrow T_xM$ l'application musicale et son inverse. et soit $\langle w_1, w_2 \rangle_{*:} = \langle \sharp w_1, \sharp w_2 \rangle$ le produit scalaire sur le fibré T^*M induit par \langle , \rangle . On définit $\nabla_X^*W = \flat \nabla_X \sharp w$.
 - (a) Vérifier que ∇^* est une connexion sur le fibré T^*M qui est adaptée à la métrique $<,>_*$
 - (b) Montrer que $(\nabla_X^* w)(Y) = Xw(Y) w(\nabla_X Y)$
 - (c) Montrer que la courbure R^* associée à ∇^* est donnée par:

$$[R^*(X,Y)w]Z = -wR(X,Y)Z \quad \forall X,Y,Z \in \chi(M), \ w \in \wedge^1 M$$