

INF250

Filters: Edges and contours

Edges and contours

- Edges and contours are important for humans and animals vision
- A contour of an object can easily be used to reconstruct the object itself
- An edge can be described as image positions where the local intensity vary dramatically in relation to its surroundings

How can edges and contours be localised

Figure 6.1 Edges play an important role in human vision. Original image (a) and edge image (b).

Gradient based edge detection

$$f'(x) = \frac{df}{dx}(x)$$

Figure 6.2 Sample image and first derivative in one dimension: original image (a), horizontal intensity profile f(x) along the center image line (b), and first derivative f'(x) (c).

Deriving a discrete signal

Figure 6.3 Estimating the first derivative of a discrete function. The slope of the straight (dashed) line between the neighboring function values f(u-1) and f(u+1) is taken as the estimate for the slope of the tangent (i.e., the first derivative) at f(u).

$$\frac{df}{du}(u) \; \approx \; \frac{f(u+1) - f(u-1)}{2} \; = \; 0.5 \cdot \left(f(u+1) - f(u-1) \right)$$

Partial derivation and gradient

$$\frac{\partial I}{\partial u}(u,v)$$
 and $\frac{\partial I}{\partial v}(u,v)$

$$\nabla I(u,v) = \begin{bmatrix} \frac{\partial I}{\partial u}(u,v) \\ \frac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

The magnitude of the gradient is invariant of image rotation, important for isotropic localization of edges.

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Simple edge operators

Linear filter and derivation

Horizontal and vertical component of the gradient can be obtained by the linear filters

$$H_{x}^{D} = \begin{bmatrix} -0.5 & 0 & 0.5 \end{bmatrix} = 0.5 \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$H_y^D = \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$$

Gradient filters

Prewitt operator

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\boldsymbol{H}_{x}^{P} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{H}_{y}^{P} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\boldsymbol{H}_{y}^{P} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Gradient filters

Sobel operator – assigns higher weight to center line and column than the prewitt operator

$$\boldsymbol{H}_{x}^{S} = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$\boldsymbol{H}_{x}^{S} = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix} \qquad \boldsymbol{H}_{y}^{S} = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

Gradient - from 1 to 2 dimensions

Gradientfiltere (SOBEL)

Gradientfilter, Orientation, Strength

Gradient Magnitude, Gmag (left), and Gradient Direction, Gdir (right), using Sobel method

Canny filter

- Multi stage edge detector
- Based on the derivative of a Gaussian filtered image to compute the intensity of the gradients
- http://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html#sphx-glr-auto-examples-edges-plot-canny-py
- Two input parameters:
 - Sigma of gaussian smoothing
 - Hysterisis thresholding (min and max)

noisy image

Canny filter, $\sigma = 1$ Canny filter, $\sigma = 3$

Canny filter for road detection

$$\frac{x}{\partial^2 f} \equiv H_x^L = \begin{bmatrix} 1 - 2 & 1 \end{bmatrix}$$
 and $\frac{\partial^2 f}{\partial^2 y} \equiv H_y^L = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

$$T \cdot x H^{L} = H_{x}^{L} + H_{y}^{L} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Laplace – edge sharpening

$$\check{f}(x) = f(x) - w \cdot f''(x)$$

Low pass filter

- Filter ⇔ Convolution kernel
- Uniform weight convolution
 - The simples filter (kernel)

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} * \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \text{"Lowpassfilter"}$$

Lowpass – passing low frequencies, coarse structures, long wavelenghts

N B U

High pass filter

- Passing high frequencies / fine structures / short wavelengths
- High pass filtrered image: Use a low pass filter and subtract result from the original image

$$H = I - L$$

 H = high pass filtered image, I = original image, L = low pass filtrered image

$$h \otimes I = i \otimes I - I \otimes I$$

• h, I and i are high pass, low pass and identity filter

High pass filter cont.

$$i = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} = identity$$

$$h = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{9} * \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = highpassfilter$$

$$h = \frac{1}{9} * \begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{vmatrix} = highpassfilter$$

Making the image sharper

- Sharping kernel kan be made by
 - Blending / mixing / overlaying an original image with a high pass filtered image (weighted)

$$S = (1-f)*I + f*H$$

• S is the result, f is a factor (0,1), I is the original image, H is the high pass filtered image

$$s \otimes I = (1-f)^*i \otimes I + f^*h \otimes I$$

$$s = (1-f)*i + f*h$$

Making the image sharper cont.

$$s = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + f \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Producing

$$s = \frac{1}{9} \begin{bmatrix} -f & -f & -f \\ -f & (9-f) & -f \\ -f & -f & -f \end{bmatrix}$$

S=s ⊗I

where s is the sharping filter, I is the original image and S is the result

N B U

Unsharpen Mask (USM)

- USM is a technique to increase the sharpness using edge detections
- Popular within astronomy, digital printing, web publications etc
- USM was used in classical photography where sharp photos were constructed from a combination of the original photo and a smoothed (unsharp) photo
- The human vision uses the same principle

USM algorithm

 The mask M is generated by subtracting a smoothed version of the image from the original image (I)

$$M \leftarrow I - (I * \tilde{H}) = I - \tilde{I}$$

where the kernel of the smoothing filter is assumed to normalized

 To obtain the sharpened image the mask is added to the original image, weighted by a factor a, which controls the amount of sharpening

$$\widetilde{I} \leftarrow I + a \cdot M = I + a \cdot (I - \widetilde{I}) = (1 + a) \cdot I - a \cdot \widetilde{I}$$

Smoothing filter used in USM

Any filter can be used but Gaussian filters with variable radius are most common

(g) $\sigma = 10.0$

(h)

(i)


```
import numpy as np
import matplotlib.pyplot as plt
from skimage import filters

from skimage import data, img_as_float
from skimage.data import astronaut
from skimage.color import rgb2gray

astro = rgb2gray(img_as_float(data.astronaut()))

astro = astro[30:180,150:300]
plt.imshow(astro,'gray')
```

```
#sobel and prewitt filter
astro_sobel = filters.sobel(astro)
plt.imshow(astro_sobel, 'gray')
astro_sobel_h = filters.sobel_h(astro)
plt.imshow(astro_sobel_h,'gray')
astro_sobel_v = filters.sobel_v(astro)
plt.imshow(astro_sobel_v,'gray')
astro_prewitt = filters.prewitt(astro)
plt.imshow(astro_prewitt, 'aray')
from skimage import feature
edges1 = feature.canny(astro, sigma=1)
plt.imshow(edges1, 'gray')
edges2 = feature.canny(astro, sigma=3)
plt.imshow(edges2,'gray')
```

```
# laplace filter
 from skimage.filters import laplace
 astro_lap = laplace(astro)
 plt.imshow(astro_lap, 'gray', vmin=0., vmax=0.2)
 astro_sharp = astro-2*astro_lap
 plt.imshow(astro_sharp, 'gray', vmin=0.4, vmax=0.9)
# high pass filter
from skimage.filters import gaussian
plt.imshow(astro, 'gray')
gaussastro = gaussian(astro, sigma=5)
plt.imshow(gaussastro,'gray')
astro_high = astro-(gaussastro)
plt.imshow(astro_high, 'gray', vmin=0., vmax=0.2)
# unsharpening mask to sharpen the image
amount = 2
usm_astro = astro + amount*(astro-gaussastro)
plt.imshow(usm_astro, 'gray', vmin=0.2, vmax=0.9)
plt.imshow(astro, 'gray', vmin=0.2, vmax=0.9)
plt.hist(astro.ravel(),256,[0,1], color='black')
plt.show()
plt.hist(gaussastro.ravel(),256,[0,1], color='black')
plt.show()
```

