Preliminary Assignment of Helsinki Master Program in Computer Science

Hazem Mohamed Safwat Mesilhy February 23, 2016

 $Application\ number:\ UAF1604997$

Abstract

The Preliminary Assignment was discussing Amortized Analysis as a time complexity measurement method. First task require implementing tree and calculate the number of steps required to finish in-order traversal. While, the second task was handling stack structure and the complexity of pop and push operations. In order to complete this tasks, I used Python 2.7 to implement and solve the problems.

1 Task I

To make a program that randomly generates trees in range of 50- 100 items. To test the theory given in the assignment that In-order traversal has O(n-1) complexity. with (n-1) calls will cost 2(n-1)

1.1 Results

The results is as shown in the following Table

no. number of it	ems	num	oer of	calls number of steps
	0	75	74	148
	1	60	59	118
	2	59	58	116
	3	84	83	166
	4	78	77	154
	5	60	59	118
	6	73	72	144
	7	83	82	164
	8	92	91	182
	9	58	57	114
	10	72	71	142
	11	90	89	178
	12	95	94	188
	13	57	56	112
	14	76	75	150
	15	52	51	102
	16	68	67	134
	17	64	63	126
	18	80	79	158
	19	61	60	120
	20	74	73	146
	21	85	84	168
	22	53	52	104
	23	80	79	158
	24	86	85	170
	25	71	70	140
	26	99	98	196
	27	53	52	104
	28	66	65	130
	29	79	78	156
	30	98	97	194
	31	82	81	162
	32	90	89	178
	33	92	91	182
	34	96	95	190
	35	69	68	136
	36	94	93	186
	37	82	81	162
	38	50	49	98
	39	$\frac{50}{52}$	51	102
	40	$\frac{52}{54}$	53	106
	41	80	79	158
	42	$\frac{50}{52}$	51	102
	43	82	81	162
	44	60	59	118 3
	45	67	66	132
	46	66	65	130
	47	64	63	126
	49	92	91	182
			<u> </u>	-

Table 1: Results from In-order traversal. Shown number of iteration, number of items and number of calls

Results are matching the theory and the output of the program showed that, the number of calls is n-1. Hence, the total number of steps is 2(n-1) and the complexity is 2(n-1) as Amortized analysis predict. As, every call cost 2 (2 traversal each time). The worst case is so pessimistic with $O(n^2)$ complexity, but amortized analysis show a real complexity of 2(n-1) for (n-1) calls, which is lower than worst case with a respectful amount.

1.2 Implementation

The implementation of my solution is a Python class called BST.py containing the tree structure and In-order function and main.py to generate trees and print the results table.

All source codes can be found on my account on github: https://goo.gl/ EfX2Wa

1.2.1 Tree Class BST.py

```
author = 'Hazem_Safwat'
class BST :
      \mathbf{def} __init__(self , root):
             self.left = None
             self.right = None
             self.root = root
      def left (self):
             return self.left
      def right (self):
            return self.right
      def set val (self, val):
             self.root = val
      def getval(self):
             return self.root
      def insert (self, item):
             if (item < self.getval()):</pre>
                   if (self.left != None):
                          self.left.insert(item)
                   else:
                          self.left = BST(item)
                   else:
                          if (self.right != None):
                                 self.right.insert(item)
                          else:
                                 self.right = BST(item)
      def inorder (tree):
             if tree != None:
                   if tree.left !=None:
                         BST. inorder (tree.left)
```

```
print(tree.getval())
                   if tree.right !=None:
                          BST. inorder (tree. right)
      \mathbf{def} stepCounter (tree , counter=0):
             if tree != None:
                   if tree.left !=None:
                          counter=BST.stepCounter(tree.left , counter+1)
             if tree.right !=None:
                          counter=BST.stepCounter(tree.right, counter+1)
             return counter
1.2.2 main.py
  author = 'Hazem_Safwat'
from BST import BST
import random
from tabulate import tabulate
table = [[]]
for i in range (51): \#creating\ 50\ different\ trees
     size = random.randint(50,100)
     items = random.sample(range(1,12000), size) \#random
          items in tree has a size = size
     tree = BST(items[0]) #Root of the tree
     for j in range (1, size): #inserting items in the
         tree
           tree.insert(items[i])
     counter = BST.stepCounter(tree)
     table.append([i , size , counter])
\mathbf{print}(\mathsf{tabulate}(\mathsf{table}[1:51]), \mathsf{headers} = ["no."], "number_of
   _items", "number_of_steps"]))
  Please refer to This github repository for better visual and formatting.
```

2 Task II

Amortized analysis over a stack operation m₁pushes and m₂pops

Assumption:

- Stack is initially empty.
- pop(k) preform a multi-pop k times.

Using Aggregate method:

```
If the stack is empty initially.
```

```
then m_1 = n, where n is the stack length.
```

```
so, m_1 calls to push(x) cost m_1.
```

If pop(k) use multi pops k times then the max number of pops is n. lets assume that pop(k) cost m_2n where m_2 is

In the worst case, $m_2n \leq m_1$. as we can't pop more than the number of elements in the stack m_1 .

```
thus, m_2n = m_1 and m_1 = n
so, the complexity now = 2m_1 = 2n for the n operations.
single operation = \frac{2n}{n} = 2.
\therefore actual cost 2.
```

Same will be valid if pop(k) is preforming pop for the item with index k as n pushes cost n and pop(k) in worst case will cost n as well, the total cost will be 2n and for single operation that will cost 2 as previousally mentioned.

3 References

- $\bullet \ \ http://www.cs.cornell.edu/courses/cs3110/2011sp/lectures/lec20-amortized/amortized.htm$
- https://www.youtube.com/watch?v=UYcWpldlX-o
- https://www.youtube.com/watch?v=B3SpQZaAZP4

3.1 References for task I

- https://docs.python.org/2/library/random.html
- \bullet http://effbot.org/pyfaq/how-do-i-generate-random-numbers-in-python.htm
- http://www.pythonschool.net/data-structures-algorithms/binary-tree/
- https://pypi.python.org/pypi/tabulate

3.2 References for task II

- $\bullet \ http://interactive python.org/runestone/static/pythonds/Basic DS/Implementing a Stackin Python.html \\$
- $\bullet \ \ http://www.cs.toronto.edu/^{\sim} krueger/cscB63h/lectures/tut08.txt$

Source codes are available on My github repository (link)

my github account: https://github.com/hazemIII