

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: G06F	A2	(11) International Publication Number: WO 00/26745 (43) International Publication Date: 11 May 2000 (11.05.2000)
(21) International Application Number: PCT/US99/25793		Published
(22) International Filing Date: 02 November 1999 (02.11.1999)		
(30) Priority Data: 09/184,571 02 November 1998 (02.11.1998) US 09/382,907 25 August 1999 (25.08.1999) US		
(60) Parent Application or Grant HSX, INC. [/]; O. KEISER, Timothy, M. [/]; O. BURNS, Michael, R. [/]; O. LIBERCHUK, Larry ; O.		
(54) Title: COMPUTER-IMPLEMENTED SECURITIES TRADING SYSTEM WITH VIRTUAL CURRENCY AND VIRTUAL SPECIALIST (54) Titre: SYSTEME INFORMATIQUE DESTINE AU COMMERCE DE VALEURS BOURSIERES, AVEC DEVISE VIRTUELLE ET SPECIALISTE VIRTUEL		
(57) Abstract A computer-implemented financial management system provides the trading of securities via a network using virtual currency. A server computer receives buy and sell orders for derivative financial instruments from a plurality of client computers. The server computer attempts to match the buy and sell orders and then generates a market price through the use of a virtual specialist program executed by the server computer. The virtual specialist program responds to an imbalance in the matching of the buy and sell orders. The virtual currency accumulated by HSX account holders as a result of successful trading may be converted to another currency, credited toward the cost of merchandise provided through a vendor's web site, etc.		
(57) Abrégé Système informatique de gestion financière pour le commerce de valeurs boursières par l'intermédiaire d'un réseau utilisant une devise virtuelle. Un ordinateur serveur reçoit les ordres d'achat et de vente d'instruments financiers dérivés à partir d'une pluralité d'ordinateurs clients. L'ordinateur serveur tâche d'apparier les ordres d'achat et de vente, puis il génère un prix de marché grâce à un spécialiste virtuel, logiciel exécuté par l'ordinateur serveur. Le logiciel du spécialiste virtuel répond à un déséquilibre dans la concordance des ordres d'achat et de vente. Le montant accumulé en devise virtuelle par les titulaires d'un compte HSX (Hollywood Stock Exchange) grâce à leurs opérations commerciales réussies pourra être changé en une autre devise, utilisé pour l'achat de marchandises à partir d'un site Web, etc.		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : G06F		A2	(11) International Publication Number: WO 00/26745 (43) International Publication Date: 11 May 2000 (11.05.00)
(21) International Application Number: PCT/US99/25793 (22) International Filing Date: 2 November 1999 (02.11.99) (30) Priority Data: 09/184,571 2 November 1998 (02.11.98) US 09/382,907 25 August 1999 (25.08.99) US (71) Applicant: HSX, INC. [US/US]; 225 Arizona Avenue, Suite 250, Santa Monica, CA 90401 (US). (72) Inventors: KEISER, Timothy, M.; 1322 Wellesley Avenue #5, Los Angeles, CA 90025 (US). BURNS, Michael, R.; 8365 Sunset View, Los Angeles, CA 90069 (US). (74) Agent: LIBERCHUK, Larry; Brown Raysman Millstein Felder & Steiner, LLP, 120 West 45th Street, New York, NY 10036 (US).		(81) Designated States: European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(54) Title: COMPUTER-IMPLEMENTED SECURITIES TRADING SYSTEM WITH VIRTUAL CURRENCY AND VIRTUAL SPECIALIST			
(57) Abstract A computer-implemented financial management system provides the trading of securities via a network using virtual currency. A server computer receives buy and sell orders for derivative financial instruments from a plurality of client computers. The server computer attempts to match the buy and sell orders and then generates a market price through the use of a virtual specialist program executed by the server computer. The virtual specialist program responds to an imbalance in the matching of the buy and sell orders. The virtual currency accumulated by HSX account holders as a result of successful trading may be converted to another currency, credited toward the cost of merchandise provided through a vendor's web site, etc.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UG	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	US	United States of America
BY	Belarus	IS	Iceland	MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan	NL	Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya	NO	Norway	ZW	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand		
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Description

5

10

15

20

25

30

35

40

45

50

55

5 **COMPUTER-IMPLEMENTED SECURITIES TRADING
SYSTEM WITH VIRTUAL CURRENCY AND VIRTUAL SPECIALIST**

10 BACKGROUND OF THE INVENTION

This invention relates in general to computer-implemented financial systems, and in
10 particular to an improved automated securities trading system.

Computer-implemented securities trading systems are well known in the art. One such
15 system is that disclosed in U.S. Patent No. 4,674,044, issued to Kalmus et al., entitled
“Automated Securities Trading System”, and incorporated by reference herein. These computer-
implemented securities trading systems obtain bid and asked trades based on the bid and asked
10 prices. However, there is generally still a human component to such systems.

For example, most financial markets also employ one or more market makers called
20 “specialists.” These specialists fill customer orders from the specialist’s inventory position if
there are no matches for the customer orders in the open market. In the prior art, the specialist
function is not automated, but is performed by a firm or individual. Thus there is a need in the
15 art for an improved computer-implemented trading system that includes an automated specialist
function to create a market for the securities traded and to lessen the volatility of smaller
25 securities markets.

30 SUMMARY OF THE INVENTION

Accordingly, it is an object of this invention to solve the problems with existing systems
30 described above.

Another object of the present invention is to lessen the price volatility of derivative
35 financial instruments traded in narrower markets.

Another object of the present invention is to provide an on-line virtual trading system.

Another object of the present invention is to provide a virtual specialist program that
25 engages in trading in the market to offset the price volatility and to provide liquidity to the
market.

Another object of the present invention is to provide a security instrument pricing system
40 which depends from buy-sell trade imbalances.

Another object of the present invention is to provide a security instrument price control
45 system which controls volatility of a security.

Another object of the present invention is to provide a security instrument trade halting
50 system to prevent extreme price volatility for a security instrument.

Another object of the present invention is to provide a ghost trader for a security in order
55 to generate trading activity so that adjusted market control factors take effect.

5 Another object of the present invention is to provide a virtual reserve bank program to
control money market interest rates and global volatility for the virtual market.

10 Another object of the present invention is to provide an on-line market research tool
which researchers can access to obtain statistical information based on trading behavior.

15 10 To overcome the limitations in the prior art, and to overcome other limitations that will
become apparent upon reading and understanding the present specification, the present invention
discloses a method, apparatus, and article of manufacture for a computer-implemented financial
management system that permits the trading of securities via a network. In accordance with the
present invention, a server computer receives buy and sell orders for derivative financial
instruments from a plurality of client computers. The server computer matches the buy orders to
the sell orders and then generates a market price through the use of a virtual specialist program
executed by the server computer. The virtual specialist program responds to an imbalance in the
matching of the buy and sell orders.

20 25 In one embodiment, a database of securities is provided for trading in an open,
computerized, exchange. Securities are listed which relate to movies, actors, products or service
companies.

25 30 Users may access the system over a network, using a standard interface. An exemplary
system comprises a Web server with an SQL compliant back-end database, with a standardized
Web browser interface. Using the Web browser, the user may register for the on-line trading
system over a network, providing demographic information, such as age, sex, location,
occupation, income, hobby interest, and the like. Once registered, the user is given the option of
choosing a unique userID which will be used for logging in after registration. In providing the
demographic information, the user also provides an e-mail address to which a randomly assigned
password and other instructional information can be forwarded.

35 40 Once the user has received a password, the user may freely log in and out of the system
over the Web by selecting a start button present on a Web home page for the system. However,
while the password is being forwarded to the new user, the new user is given temporary access
to the system so that trading can begin instantaneously.

45 50 Automatically, the user is provided with a fixed quantity of virtual currency in virtual
dollars (V\$) from a reserve bank program, described below, to begin trading with. This quantity
can either be considered a loan from the reserve bank program, for which interest is charged, or a
gift.

55 After logging in, the user's portfolio summary page is displayed which displays the
user's current cash balance, amount held in stocks, bonds, and other types of securities. When

5 the new user logs in, the cash value of the user's portfolio is represented solely in cash, or in a
money market account. The cash in the user's portfolio accrues at an interest rate set by a virtual
reserve bank program.

10 10 The user may trade security instruments by typing in the symbol for the instrument for
which a purchase is desired in a buy-sell area of the page. A quantity is also specified in the buy
sell area. If the user does not know the symbol for a particular instrument, a lookup or search
function is provided in another area of the screen using standard graphical user interface (GUI)
15 features such as drop-down list boxes, text search boxes, or slider bar lists. Alternatively, a
ticker tape style updating menu at the bottom of the screen displays available instruments with
10 the corresponding instrument prices.

20 Once the user has successfully entered the symbol for an available instrument, a buy
button may be pressed in the buy-sell area of the page. If the user has enough cash on account,
and if the instrument is available for trading, then a confirmation screen appears before
execution of the transaction. Upon confirmation, the trade is executed, and the cash is debited
25 from the user's account.

30 15 If the user wishes to sell a security instrument, the same procedure is followed, except, a
sell button is clicked on in the buy-sell area of the Web page. After confirmation, the market
price for the shares sold is added to the user's account, and the shares are made available in the
system for fulfilling purchase orders.

35 20 The system includes a virtual specialist program which, among other things, handles
fulfillment of buy and sell orders. In the embodiment of the present system, the virtual
specialist program controls the economy, and provides it with liquidity. In one embodiment, the
virtual specialist program provides instantaneous liquidity by fulfilling all orders, whether or not
there are equal and matching sell orders to offset buy orders, and vice versa. The system keeps a
25 running net movement balance for the quantity of buy or sell trades which the virtual specialist
program had to fulfill without offsetting sell or buy trades. The imbalance is stored as a positive
40 number if the buy-sell imbalance represents more buy trade orders executed than sell orders, or a
negative number if the buy-sell imbalance represents more sell orders executed than buy orders.

45 30 Unlike the case with non-virtual markets, the virtual specialist program of the
embodiment does not control the economy by setting prices of shares based on last executed buy
order price offered. Rather, the virtual specialist program determines the price of an instrument
after each trade by computing and effecting an outstanding buy-sell imbalance.

50 35 The buy-sell imbalance, also referred to herein as the net movement balance (NMB),
controls security prices by incrementing or decrementing security prices using a combination of

5 a security price increment (SPI) constant, and a pair of security price threshold constants. Both a
positive security price threshold (PSPT) constant, and a negative security price threshold (NSPT)
constant is set in a security constant table 2002 for each security in the system. A net trade
movement (NTM) variable for a trade order is set to the positive quantity of shares in the trade
10 order if the trade order is a buy, and to the negative quantity of shares in the trade order if the
trade order is a sell. A new NMB is calculated by adding the NMB before the trade, retrieved
5 from a net price movement table 2008 (NMB (old)), to the NTM.

15 A security price increment (SPI) constant for the security which is the subject of the trade
order is retrieved from the security constant table 2002. The NMB is then compared to the
10 PSPT. If the NMB is greater than the PSPT, then the price for the security (SP) is calculated by
adding the SPI to the SP before the trade which was retrieved from a security price table 2006.
20 The NMB is then reduced by the PSPT and stored back to the net price movement table.

Conversely, if the NMB is less than the NSPT (a negative value) then the SP (new) is
calculated by subtracting the SPI from the SP (old). The NMB is then incremented by the
25 15 NSPT.

After the above calculations are made, the SP is stored in a security price table 2006,
which keeps track of all security prices. The NMB is updated in the net movement balance
database. Each record of the net movement balance database further contains an increment
30 30 tracking field for keeping track of the number of consecutive increments for the security
instrument, up or down. Also, a price history tracking table 2010 is updated after each trade,
performing a write SQL statement which adds a record comprising the SP, NMB, UserID, and
35 other information relating to the trade. This information is used by a marketing tool, explained
below, which provides statistical information to market researchers.

Periodically, due to natural popularity of a particular security, or by market manipulation
40 25 by an individual or groups of traders, the security will realize wild fluctuations in price. This is
especially true in a market in which virtual currency is used in a virtual market. Given the
special circumstances of the virtual market, the system provides an artificial price control , or
45 30 braking, mechanism.

The braking mechanism of the present invention monitors each price increment the
virtual specialist performs. When a price moves up or down on a security instrument, the
50 30 increment tracking field of the net movement balance table 2012 is retrieved for the security. A
security brake threshold (SBT) constant, and a security brake increment (SBI) constant is
retrieved from the security constant table 2002. If the total consecutive number of price
increments (TCPI) is greater than the SBT, then the PSPT is increased by the security brake

5 increment, and then stored back to the security constant table 2002. If the total consecutive
10 number of price decrements (a negative value) is less than the SBT, the NSPT is decreased by
the security brake increment, and then stored back to the security constant table 2002. In this
15 way, for securities which have experienced price movement greater than the set thresholds, the
20 price movement will be slowed.

Still, the braking mechanism may not be effective enough in either an extreme bear or
10 bull market for the security, or the market as a whole. In those instances, a halting mechanism is
15 provided by the system. The halting mechanism acts much in the same way as the braking
mechanism. The exception is that a security halt threshold (SHT) constant is compared to the
20 TCPI/TCPD field. If the absolute value of the TCPI/TCPD field value exceeds the SBT, trading
is halted for that particular security. A notice appears on screen for a trader who tries to trade
the security, informing the user that trading has been halted by the system. Trading for the
25 security may be resumed after an administratively set period of time, or manually through an
administration module.

25 The virtual economy may have a finite amount of capital with which to close arbitrage
situations that might arise if the policy of the exchange is different than what is reflected by the
30 prices on the market. The virtual economy is unlike non-virtual economies, which may have an
infinite amount of capital. A system administrator is provided a separate control screen where
35 changes to global constants, such as the PSPT, NSPT, SBT, SBI, etc., can be adjusted to affect
40 the market. In effect, the password protected control screen serves as a volatility control
45 module. The volatility control, or ghost trade, module is used to implement and enhance
50 monetary regulations, and the market as a whole. The desired effect is implemented by causing
the system to issue buy and sell programs which comprise coordinated, across the board, buying
and selling timer intervals. A timer periodically queries the ghost trading table 2014. Each
55 security instrument record in the ghost trading table 2014 is set to cause a trade for an
administratively set number of times per trading day. If the timer detects that the time interval
between trades for a security has ended, the ghost trading mechanism retrieves a ghost buy
probability (GBT) from the ghost trade table 2014. A random trade constant (RTC) is generated
60 by the system. Next, a ghost security buy/sell quantity (GBQ) is retrieved from the ghost trade
table 2014. If the GBT is greater than or equal to the RTC, a buy order is placed by the system
for the number of shares specified by the GBQ. Otherwise, a sell order is placed for the number
of shares specified by the GBQ.

50 The system of the present invention includes a virtual reserve bank program. The reserve
bank program regulates the economy with monetary tools which are provided within the reserve
55

5 bank program module. With these tools, certain system global constants, such as total money supply and interest rates can be adjusted. In the case of interest rates, adjustable global constants are built into the administration table 2016 for the virtual trading system. By raising or lowering rates, the amount of interest paid on the virtual dollars not tied up in securities is adjusted for the
10 5 users. In this way, the unused money in users' accounts act as a money market accounts for which interest is adjusted accordingly. Alternatively, a virtual reserve bank program chairman can determine interest rate and security threshold constants by using global interest threshold
15 constants (GITCs) which monitor inflationary and deflationary pressures in the system.
Inflationary and deflationary pressure may be defined as the size of the system economy, i.e.,
10 number of shares of securities which obtain a certain defined price. For example, the total
20 outstanding shares may have a combined par value of V\$8 billion, and the total market price for the shares outstanding may be V\$80 billion with about V\$5 billion average daily trading volume. The virtual specialist program, for the majority of securities in the system, may have set price movement thresholds to 10,000 positive and 10,000 negative. The money market rate
25 15 may be set to 7% under these market conditions by the reserve bank program. However, if prices on the exchange were to inflate to a value of V\$200 billion, for example, price movement thresholds might be reset to 20,000 and 20,000 positive and negative respectively, and the money market interest rate reset to 15%.

30 Considering the vast cross-section of on-line users, comprising different interests, artistic
20 tastes and economic buying powers, the system of the present invention further provides
extremely useful information for entities such as market research firms, movie and television
35 studios, phonorecord companies, radio stations and movie rental companies. Accordingly, for select market research users, an on-line market research tool is provided which allows the market research users to access statistical information about trader demographics and artistic tastes.

25 BRIEF DESCRIPTION OF THE DRAWINGS

40 Referring now to the drawings in which like reference numbers represent corresponding parts throughout:

Fig. 1 is a block diagram of an exemplary hardware environment of the present invention;

45 30 Fig. 2 is a flowchart illustrating the general logic of a first embodiment of the present invention;

50 Fig. 3 is a flowchart illustrating the logic of the pricing/trading program of the first embodiment of the present invention;

Fig. 4 is a flowchart illustrating the logic of the generate market price program of the first

5 embodiment of the present invention;

Fig. 5 is a flow diagram illustrating the logic of the virtual specialist program of the first embodiment of the present invention;

10 5 Fig. 6 is a flow diagram illustrating the logic of the stop trading program of the first embodiment of the present invention;

Fig. 7 is block diagram of a system component overview;

15 Fig. 8A shows an exemplary interface for the second embodiment of the present invention with a new user registration screen;

Fig. 8B shows the interface screen of Fig. 8A with a new user welcome screen displayed;

10 Fig. 9 shows the interface screen of Fig. 8A with a system home page displayed;

Fig. 10 shows the interface screen of Fig. 8A with a user portfolio page displayed;

20 Fig. 11 shows the interface screen of Fig. 8A with a trade confirmation screen displayed;

Fig. 12 is a flow diagram illustrating the logic of an initial security pricing program for the second embodiment of the system;

25 15 Fig. 13 is a flow diagram illustrating the logic of a security trade fulfillment and security price setting program of the second embodiment of the present invention;

Fig. 14 is a flow diagram illustrating the logic of a trade braking program of the second embodiment of the present invention;

30 20 Fig. 15 is a flow diagram illustrating the logic of a trade halting program of the second embodiment of the present invention;

Fig. 16 is a flow diagram illustrating the logic of a ghost trading program of the second embodiment of the present invention;

35 35 Fig. 17 is a flow diagram illustrating the logic of a research market tool of the second embodiment of the present invention.

25 Fig. 18 shows an exemplary administration module screen;

40 Fig. 19 shows a flowchart for using virtual currency in e-commerce in accordance with one embodiment of the present invention;

Fig. 20 shows a flowchart for using the virtual currency in e-commerce in accordance with another embodiment of the present invention;

45 30 Fig. 21 shows a flowchart for using the virtual currency in e-commerce in accordance with yet another embodiment of the present invention; and

50 Fig. 22 shows a flowchart for using the virtual currency in e-commerce in accordance with still another embodiment of the present invention.

5

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

10

Overview Of Virtual Trading System

15

The present invention comprises a computer-implemented trading system for derivative financial instruments. The present invention accepts buy and sell orders from traders for the derivative financial instruments, sets a market price based on the supply and demand, and participates in the market as a trader in order to minimize price volatility. A first preferred embodiment of the present invention is a computer-implemented HOLLYWOOD STOCK EXCHANGE, which may be implemented as a simulation (i.e., game) or as an actual trading system for derivative financial instruments representing movies, talent, CDs, and television programs. These derivatives could be purchased with dollars or with a virtual currency known as HOLLYWOOD DOLLARS which are controlled by a virtual reserve bank program.

20

The derivative financial instruments are identified by a Current Trading List displayed for the traders that comprises a list of movies in various stages of production, talent, and other entertainment-oriented assets. The list contains:

25

name of the derivative financial instrument;
genre of the movie (action-adventure, mystery, western, comedy, etc.);
production status (scripting, pre-production, filming, editing, release, home-video, etc.);
number of shares in circulation;
last trading price (printed every 15 minutes)
price movement (i.e. +/- HOLLYWOOD DOLLARS) since the previous midnight
(PST);

30

price movement since the previous mid-day;
price movement year to date;

35

Traders are able to view the list sorted by:

40

name, alphabetically;
genre, alphabetically;
productions status, alphabetically;
most active (number of shares traded yesterday);
biggest gainers;
biggest losers; and
fastest movers today (e.g., fastest 20 movers up and fastest 20 movers down).

45

Similar information would be provided for other derivative financial instruments offered on the HOLLYWOOD STOCK EXCHANGE.

50

Each trader's portfolio is identified by a Portfolio data structure that comprises the

5 trader's account status. This information includes:
the amount of cash in the trader's account (paid interest at the system discount rate plus
some increment, compounded daily);
10 current percentage rate paid to cash;
the total value of held stocks at the last selling price;
the total value of held bonds at the last selling price;
15 total portfolio value (TPV) (cash + bonds + stocks);
percentage of TPV in cash;
percentage of TPV in bonds; and
percentage of TPV in stocks.
20 Traders can generate any number of different reports for display, including:
lists of stocks and bonds being traded (see above);
index of total Hollywood stocks (HSXI) expressed as a number, with 1000 defined as the
25 aggregate total stock price value on opening day, wherein HSXI = (today's gross
stock-value) / (opening day gross stock-value);
index of total HOLLYWOOD BONDS (HBXI) expressed as a number, with 1000
defined as the aggregate total bond price value on opening day, wherein HBXI =
(today's gross bond-value) / (opening day gross bond-value));
30 index of total HOLLYWOOD STOCK EXCHANGE (HMXI) comprised of all stocks
and bonds, and expressed as a number, with 1000 as the aggregate total stock price
value on opening, wherein HMXI = ((today's gross market-value) / (opening day
35 gross market-value));
lists of the top market performers, e.g., the top 10 traders in percentage portfolio growth
calculated as net portfolio value - change = (% change of cash) + (% change of
40 stocks) + (% change of bonds), and for each of the categories: yesterday (midnight to
midnight), last week (7 days, ending midnight, each Thursday), last month (closes at
midnight last calendar day of month), last quarter (closes at midnight on last day of
last month/quarter), year-to-date (running daily total of percentage value
45 changes)/(days year-to-date), and annually (closes at midnight on December 31 each
year);
50 overall market condition report, including a list of stopped issues with:
name;
last trading price;
time that stop-trade condition occurred;

5 percentage the issue actually moved on-the-day before the stop-trade;
number of total shares and/or bonds traded today;
dollar value of total trades today;
10 number of buy and sell trades today; and
5 number of buy and sell trades this month.

Use of the above information will guide traders in making future buy and sell orders.

Hardware Environment

With reference to Fig. 1, a block diagram illustrates an exemplary hardware environment for the preferred embodiments of the present invention. More particularly, a typical distributed computer system is illustrated, which uses the Internet 10 to connect client computers 12 executing for example, Web browsers, to server computers 14 executing a computer program embodying the present invention. A typical combination of resources may include client computers 12 that are personal computers or work stations connected via the Internet 10 to server computers 14 that are personal computers, work stations, minicomputers, or mainframes.

Generally, both the client computers 12 and the server computers 14 are comprised of one or more CPUs 16, various amounts of RAM storing computer programs 20 and other data, and other components typically found in computers. In addition, both the client computers 12 and the server computers 14 may include one or more monitors, and fixed or removable data storage devices 20 such as hard disk drives, floppy disk drives, and/or CD-ROM drives. Also, input devices, such as mouse pointing devices and keyboards, may be included.

Both the client computers 12 and the server computers 14 operate under the control of an operating system, such as Windows, Macintosh, UNIX, etc. Further, both the client computers 12 and the server computers 14 each execute one or more computer programs 18 under the control of their respective operating systems. The present invention is preferably implemented as one or more computer programs 18 executed by the server computer 14, although in alternative embodiments these computer programs 18 may also be executed on the client computer 12.

Generally, the computer programs 18 implementing the present invention are tangibly embodied in a computer-readable medium, e.g., one or more of the fixed and/or removable data storage devices 20 attached to the computer. Under control of the operating system, the computer programs 18 may be loaded from the data storage devices 20 into the RAM of the computer for subsequent execution by the CPU 16. The computer programs 18 comprise instructions which, when read and executed by the computer, causes the computer to perform the steps necessary to execute the steps or elements of the present invention.

5 Those skilled in the art will recognize that the exemplary environment illustrated in Fig.
1 is not intended to limit the present invention. Indeed, those skilled in the art will recognize
that other alternative hardware environments may be used without departing from the scope of
the present invention.

10 5 I. GENERAL LOGIC OF A FIRST EMBODIMENT OF THE TRADING SYSTEM

15 With reference to Fig. 2, a flowchart illustrating the general logic of a first embodiment
of the present invention is shown.

20 Block 200 represents the server computer 14 waiting for the next event to occur. Once
the event occurs, control is transferred to blocks 202-224 to identify the event and respond
10 accordingly.

25 Block 202 is a decision block that represents the server computer 14 determining whether
it received a request to display data from the client computer 12. If so, block 204 represents the
server computer 14 transmitting data to the client computer 12 for subsequent display. The data
transmitted for display preferably includes at least three types of data: the current list of trading
15 derivative financial instruments, the trader's portfolio, and other reports generated by the server
computer 14.

30 Block 206 is a decision block that represents the server computer 14 determining whether it
received a request to submit a buy order from the client computer 12 for a particular derivative
financial instrument, e.g., stock or bond. If so, block 208 represents the server computer 14
20 processing the buy order by placing it in a queue in the memory of the server computer 14. The
buy order is a data structure comprising:

35 trader's account number;
trader's name;
the time and date of the order;
40 25 the stock or bond to buy;
the cash balance in the trader's account; and
a text-field where the trader may enter the total number to buy (generally in multiples of
45 40 100).

50 In a first preferred embodiment, the buy order waits in the queue for the expiration of a
30 predetermined "sweep pricing cycle." The sweep pricing cycle occurs periodically, such as
every 15 minutes, or during another specified time interval. The marked price the trader actually
pays for the derivative financial instrument is determined by the aggregate supply/demand for the
derivative financial instrument at the end of the sweep pricing cycle during which the order was

5 placed.

The market price is set by the pricing/trading program executed by the server computer, which is described below in FIG. 3. The trader's account is then charged the market price for the derivative financial instrument. If the purchase uses up all available cash in the trader's account, 10 the trader is "loaned" enough money to pay for the purchase, and their account is charged interest at a predetermined rate, e.g., 18% a year compounded daily, on the negative account balance. The interest is charged against the trader's account until they accumulate more cash to zero out 15 the balance, either by selling stocks or buying dollars.

Block 210 is a decision block that represents the server computer 14 determining whether 10 it received a request to submit a sell order from the client computer 12. If so, block 212 represents the server computer 14 processing the sell order by placing it in queue in the memory 20 of the server computer 14. The sell order is a data structure comprising:

trader's account number;

trader's name;

15 the time and date of the order;

the stock or bond to sell;

the amount of the stock or bond in the trader's account; and

a text-field where the trader may enter the total number to sell (generally in multiples of 30 100).

20 In the first preferred embodiment, like the buy order, the sell order waits in the queue for the expiration of the predetermined sweep pricing cycle. The market price at which the trader actually sells the derivative financial instrument is determined by the aggregate supply/demand 35 for the derivative financial instrument at the end of the sweep pricing cycle during which the order was placed. The market price is set by the pricing/trading program executed by the server 25 computer, which is described below in Fig. 3. The trader's account is then credited with the market price for the derivative financial instrument.

40 The sell order can be either produced by a trader or generated by the server computer 14, as will be explained in more detail below. For a sell order produced by a trader, the trader views 45 a list of stocks or bonds owned by the trader on a monitor attached to the client computer and 30 chooses to sell a quantity at the market price.

When the trader requests to view the list of stocks, the server computer 14 transmits 50 certain information to the client computer 12 for display, including, for each stock owned, the last trading price (LTP), the quantity of stocks, the purchase price, and the date purchased. Similarly, when viewing the list of bonds, the server computer 14 transmits certain information

5 to the client computer 12 for display, including, for each bond owned, the last trading price
10 (LTP), the interest rate being earned for each kind of bond, the quantity of bonds, the purchase
15 price, and the date purchased.

10 Block 214 is a decision block that represents the server computer 14 determining whether
5 an internal timer for the sweep pricing cycle has expired. If so, block 216 represents the server
computer 14 processing the timer executing a pricing/trading program as described in Fig. 3.

15 Block 218 is a decision block that represents the server computer 14 determining whether
it received a request to change the discount rate. If so, block 220 represents the server computer
14 executing a discount rate program. In order to add or subtract liquidity, the server computer
10 14 occasionally steps in to act as a virtual reserve bank program and adjust the discount rate.

20 The discount rate is adjusted based on the performance of the specific industry of the market.
For the HOLLYWOOD STOCK EXCHANGE, the discount rate is adjusted to add or subtract
liquidity to affect the growth of the entertainment industry. When the server computer 14 lowers
the discount, all the bonds seem to be a better deal, because the bonds are paying a fixed rate
25 15 interest that never changes. In the first preferred embodiment, this encourages traders to buy
more bonds, and this surge in buying demand causes a correlated increase in bond prices as
described above. The same thing happens to stocks, because traders are making less money on
the interest being paid on the cash balance in their trading account. When the server computer 14
30 raises the discount, the bonds seem to be a worse deal, since their advantage over the discount is
20 smaller. Thus, the server computer 14 relaxes the buying pressures or demands for bonds, which
should result in additional sell orders, or at least slow the buying of bonds, thus decreasing their
prices as they trade in the market. Likewise, stocks seem less attractive, since traders could make
35 more money by keeping cash in their accounts and getting interest on it.

Block 222 is a decision block that represents the server computer 14 determining whether
25 it received a request to revise the derivative list. If so, block 224 represents the server computer
40 14 executing a listing program. The server computer 14 determines whether the list of
derivatives trading in the system should be revised. The list could be revised to reflect new
derivative offerings, expired derivatives, and delisted derivatives.

45 When a new derivative is offered, the price is based on the derivative's potential value.
30 For example, for a new stock offering, which represents a movie on the HOLLYWOOD STOCK
EXCHANGE, the initial price of the stock could be based on the movie's potential box office
revenue. For a bond offering, which represents talent on the Hollywood Bond Exchange, the
50 price of the bond could be based on the Hollywood Reporter's Star Power Index. A bond
representing a talent with a low Star Power Index of 15 would be issued with a higher yield than

5 a bond representing a talent with a high Star Power Index rating.

A warrant with a strike price is attached to the new derivative when it is offered. When the derivative and warrant are first issued, the warrant is of no value until the strike price is reached. For a stock, the strike price could be reached after the movie has grossed a certain level of
10 revenue. When a derivative is delisted from the exchange, a stock due to the movie ending its production run or a talent due to retirement or death, for example, the warrants are called and the traders are paid the value of the warrants, thus providing off-balance sheet financing for studios.
5

15 **Pricing/Trading Program**

With reference to FIG. 3, a flowchart illustrating the logic of the pricing/trading program
10 of the present invention is shown. Block 300 represents the server computer 14 retrieving the buy and sell orders that have accumulated in the queue during the period since the prior sweep
pricing cycle. Block 302 represents the server computer 14 matching the buy orders with the sell
orders, although it is likely than an identical number of buy and sell orders would not have
20 accumulated in the queue during the period. Block 304 represents the server computer 14
executing the generate market price program described in Fig. 4 to determine the market price for
the derivative financial instruments. After the market price is determined, block 306 represents
25 the server computer 14 updating the traders' portfolios to reflect the buy and sell orders in the queue being processed at the market price. Block 308 represents the end of the pricing/trading
30 program.

20 **Generate Market Price Program**

With reference to Fig. 4 a flowchart illustrating the logic of the generate market price program of the present invention is shown. One purpose of the generate market price logic is to
35 generate a market price for a derivative financial instrument that reflects the demand or lack of demand for the derivative financial instrument in the market. Block 400 represents the server
computer 14 measuring the imbalance between the buy and sell orders during the period since
25 the prior sweep pricing cycle. Block 402 represents the server computer 14 determining the price movement of a derivative financial instrument caused by the imbalance in buy and sell orders.
40 Block 404 represents the server computer 14 executing a virtual specialist program as described in Fig. 5 to provide stability and liquidity to the market. Block 406 represents the server
45 computer 14 executing the stop trade program, as described in Fig. 6, to stop trading in a derivative financial instrument if the projected price movement is excessive during the trading day and threatens the integrity of the market for that instrument. Block 408 represents the server
50 computer 14 setting the market price, which becomes the price the pricing/trading program uses to update the traders' portfolios. Block 410 represents the end of the generate market price

5 program.

In measuring the imbalance between buy and sell orders, as represented by block 400, the absolute difference between the number of sells and the number of buys is defined as the net movement in sweep (NMS). A sweep increment variable (SIV) is defined as the increase or decrease in price caused by an incremental imbalance in the number of buy orders and sell orders. A lot movement variable (LMV) represents the incremental lot size that will result in a price increase or decrease of one SIV. The projected price movement (PM) can be expressed as:

$$PM = (NMS/LMV) * SIV.$$

For example, with 42,000 buy orders and 30,000 sell orders for a particular stock, the
10 NMS = (42,000-30,000) = 12,000. With SIV = \$0.25 and LMV = 5000, the price movement of
the particular stock will be (12,000/5,000) * .25 = \$0.50. Thus, the market price of the particular
20 stock will be \$0.50 greater than the last trading price.

One can easily see that, with such a pricing scheme, there is the potential for great
volatility in the price of a derivative financial instrument and the eventual loss of investor
25 confidence in the market mechanism. In exchanges such as the HOLLYWOOD STOCK
EXCHANGE, it would be possible for one or more individuals to pursue trading strategies that
would purposely cause drastic price fluctuations.

In order to encourage growth and stability in the capital market regulated by the trading
30 system of the present invention, a virtual specialist program is executed by the server computer,
20 as represented by block 404 in Fig. 4. In executing the virtual specialist program, the server
computer 14 regulates the trading by actively trading in the market out of a virtual specialist
35 portfolio (VSP). In the first preferred embodiment, the virtual specialist program portfolio
initially contains half of all the issued shares of each derivative financial instrument.

Virtual Specialist Program

25 With reference to Fig. 5 a flow diagram illustrating the logic of the virtual specialist
program of the present invention is shown. Block 500 is a decision block that represents the
40 server computer 14 determining whether or not the price movement during the sweep pricing
cycle is greater or equal to an adjusted price movement threshold (APT). The APT is a constant
in the memory of the server computer 14. If the APT is greater than the price movement, then
45 30 the server computer 14 does not trade in the market. If the price movement is greater than or
equal to the APT, then the server computer 14 trades out of a virtual specialist program portfolio.
The level of trading by the server computer 14 is determined by the amount that the price
50 movement exceeded the APT. The greater the price movement, the more shares the server
computer 14 trades to offset the price movement.

5 In an exemplary embodiment of the present invention, the ATP = 1.25 and the server
computer 14 performs the following steps: if PM = APT then the server computer 14 matches
20% of unmatched shares; if PM = APT + .25 then the server computer 14 matches 20% of
unmatched shares; if PM = APT + .50 then the server computer 14 matches 30% of unmatched
shares; if PM = APT + .75 then the server computer 14 matches 40% of unmatched shares; if PM
10 = APT + 1.0 then the server computer 14 matches 50% of unmatched shares; if PM = APT +
1.25 then the server computer 14 matches 60% of unmatched shares; if PM = APT + 1.50 then
15 the server computer 14 matches 70% of unmatched shares; if PM = APT + 1.75 then the server
computer 14 matches 80% of unmatched shares.

10 Block 502 represents the server computer 14 generating a buy or a sell order to offset the
price movement. The buy or sell order generated by the server computer 14 is placed in the
20 queue with the trader buy and sell orders to be processed during the next sweep cycle.

20 In the first preferred embodiment, since the virtual specialist program portfolio initially
includes half of all the securities traded, the server computer 14 could eventually deplete the
25 15 virtual specialist program portfolio or cause the virtual specialist program portfolio to own all the
shares of a stock. In order to maintain a balanced virtual specialist program portfolio, and
provide some liquidity to the market, the server computer 14 generates additional buy and sell
orders to offset orders generated in response to the price movement exceeding the APT. Block
30 504 represents the server computer 14 generating timed buy and sell orders. In one embodiment
20 of the invention, the server computer 14 assess each stock and each bond in the virtual specialist
program portfolio. The server computer 14 determines the deficit or surplus in the item, and then
place 1/288th of the deficit as a "timed recovery order" into each successive 15 minute segment
35 for the next 3 days. When the pricing/trading program 255 matches buy and sell orders as
represented by block 320, the pricing/trading program 255 includes any "timed recovery orders"
40 25 outstanding for the last 3 days in the sweep. These orders are matched with the traders' buy and
sell orders. Block 506 represents the end of the virtual specialist program.

Stop Trading Program

45 FIG. 6 is a flow diagram illustrating the logic of the stop trading program of the present
invention. Block 600 represents the server computer 14 determining the price movement of a
30 stock caused by the imbalance in buy and sell orders. Block 602 represents the server computer
14 measuring the price movement on the day, not just during the sweep cycle period. Block 604
is a decision block that represents the server computer 14 determining whether the net price
50 movement (NPM) within one "trading day" (i.e., midnight-midnight) is greater than 50% up or
down. As represented by block 606, the buy and sell orders are removed from the queue if the

5 net price movement is greater than 50% for a stock trading above \$20. At that point, the trading
in that issue is stopped within the 15 minute period until further notice. All orders (buy and sell)
for that stock during this sweep are unfilled. The trading has stopped due to "excessive order
imbalance".

10 5 For example, assume that the Last Trading Price (LTP) for "Rambo-17" is \$67 (+7.5 on-
the-day). During one 15-minute sweep pricing cycle, the server computer 24 receives buy orders
15 for 655,000 shares of "Rambo-17". Also, the server computer 14 receives sell orders for 35,000
shares of "Rambo-17". The server computer 14 evaluates the price movement for the sweep
pricing cycle, and tests it to see if the net projected price movement "on-the-day" is greater than
10 50%. If it would be greater than 50%, it stops trading in that instrument only. In this example,
there is a net order-imbalance of 620,000 shares, which would create an up movement in price of
20 $(+620,000/5000) * \$25 = +\31.00 . Since the total movement on the day would be the \$7.50 so
far plus the additional \$31.00, the net projected price movement on the day would be $\$31.00 +$
 $\$7.50 = \38.50 . If the opening price that day was \$59.50, the percentage projected price
25 movement for the day is $\$38.50/\$59.50 = 64\%$. Since the projected net price movement would
be greater than 50%, the trading is stopped for that instrument. If the projected price movement
was less than 50%, the price of the instrument would be adjusted accordingly and trade in that
stock continued. Block 608 represents the STOP TRADE order that issues regarding the
30 particular stock. Traders who issued a buy or sell order for the stock are notified that the order
20 has not been filled due to excessive order imbalance during the trading day. Finally, block 610
represents the end of the stop trading program.

II. GENERAL LOGIC OF A SECOND EMBODIMENT OF THE TRADING SYSTEM

35 As with the first embodiment described above, a second embodiment of the system of the
present invention includes a database of securities provided for trading in an open, computerized,
25 exchange. Securities are listed which relate to movies, actors, products or service companies.
40 Thus, the following description of the second embodiment focuses on the differences in
functionality from the first embodiment, and may omit features which are nevertheless included
in the second embodiment, but do not require further description.

System Component Overview

45 30 With reference to Fig. 7, included within the system are a plurality of tables, including a
global constant table 2022, development stage table 2024, price history table, 2020, net price
movement table, 2008, security price table 2006, security constant table 2002, trade history
50 tracking table 2010, net price movement balance table, 2012, ghost trading table 2014,

5 administration table, 2016, and a user database table 2026, which are used as explained below.
Interfacing with these tables are the virtual specialist program, 2028, which passes economic and
price control data between all of the tables, a reserve bank program, 2030, which passes
economic control data between all of the tables, and the user interface, 700, which passes trade
10 information between itself and the user database as explained below. Also
5 interfacing with all tables is a marketing tool, 2040, as described below.

Administration Module

15 With reference to Fig. 18, the system includes an administration module which is used, as
explained below, to adjust constants and variables in the system. The administration module is
10 password protected and implemented with browser interface 700, also described below.

User Registration And Login

20 With reference to Fig. 1, users may access the system over a network, using a standard
interface. An exemplary system comprises a Web client 12 connected to a network such as the
Internet 10, which is connected to SQL compliant back-end database servers 14.

25 With reference to Fig. 8A, a standardized Web browser interface 700 may be used by the
user to register with the on-line trading system over Internet 10, providing demographic
information, such as first name, last name, age, sex, location, occupation, income, hobby interest,
and the like. Once registered, the user is given the option of choosing a unique userID which
30 will be used for logging in after registration. In providing the demographic information, the user
20 also provides an e-mail address to which a randomly assigned password and other instructional
information can be forwarded.

35 With reference to Fig. 8B, once the user is registered, the first time user's default
portfolio may be accessed using a temporary password free login by selecting the View Portfolio
button 802 in the upper left hand corner of a Welcome Web page 804.

40 25 With reference to Fig. 9, after the user has received their permanent password, the system
can be accessed over Internet 10 (Fig. 1) using Internet browser 700 by selecting a start button
902 present on a Web home page 804 for the system.

45 With reference to Fig 10, the user is presented with their portfolio on Web page 700.
Automatically, the new user is provided with a fixed quantity of virtual currency 1002 in virtual
30 dollars (V\$) from a reserve bank program, described below, to begin trading with. This quantity
can either be considered a loan from the reserve bank program, for which interest is charged, or a
gift.

50 After logging in, the user's portfolio summary 1004 is displayed at the top of the page,
which displays the user's current cash balance 1002, amount held in stocks 1006, bonds 1008,

5 and other types of securities. When a new user logs in, the cash value of the user's portfolio is
usually represented solely in cash 1002, or in a money market account. However, sometimes the
system may award new users a free security holding up front, for example comprising bond
securities 1008. The cash in the user's portfolio accrues at an interest rate set by a virtual reserve
10 5 bank program.

Trade Orders

15 The user may trade security instruments by typing in the symbol 1012 for the instrument
for which a purchase is desired in a buy-sell area of page 1010. A quantity 1014 is also specified
in buy sell area 1010. If the user does not know the symbol for a particular instrument, a lookup
10 or search function is provided in a symbol search area 1016 of the screen using standard
graphical user interface (GUI) features such as drop-down list boxes, text search boxes, or slider
20 bar lists. Alternatively, a ticker tape style updating menu 1018 at the bottom of the screen
displays available instruments with the corresponding instrument prices.

25 Once the user has successfully entered the symbol 1010 for an available instrument, and a
15 quantity 1014, a buy button 1020 may be pressed in buy-sell area 1010. With reference to Fig.
11, if the user has enough cash on account, and if the instrument is available for trading, then a
confirmation screen 1102 appears before execution of the transaction. Upon confirmation, the
trade is executed, and the cash is debited from the user's cash account 1002 (Fig. 10).

30 With reference to Fig 10, if the user wishes to sell a security instrument, the same
20 procedure is followed for placing a buy order described above, except, a sell button 1022 is
clicked on in buy-sell area 1010 of the portfolio page1004. After confirmation, the market price
35 for the shares sold is added to the user's cash account 1008, and the shares are made available in
the system for fulfilling purchase orders.

Virtual Specialist Program

25 The system includes a virtual specialist program which, among other things, handles
40 fulfillment of buy and sell orders. In the second embodiment of the present system, the virtual
specialist program controls the economy, and provides it with liquidity. The virtual specialist
program provides instantaneous liquidity by fulfilling all orders, whether or not there are equal
and matching sell orders to offset buy orders, and vice versa.

45 30 With reference to Fig. 12 a flow chart is shown illustrating the calculations performed by
the virtual specialist program for determining an initial security price. The virtual specialist
program calculates the initial price in a public offering for a new security to be listed on the
50 exchange based on administrator entered values. A system administrator, through a password
protected administration module, is able to set up a new security for listing on the exchange. In

5 the case of films listed in the HOLLYWOOD STOCK EXCHANGE described above, one way
to determine price is by stage of production of the movie. Each movie has an associated
10 estimated gross box office performance. An administrator is allowed to enter the estimated gross
box office performance (EGBO) for the security, step 1202, in the administration screen. The
15 administrator enters a quantity for the number initial of shares (NIS) issued for the security, step
1204. The number of shares issued is a hypothetical number since the virtual specialist program
of the second embodiment does not actually keep any shares in reserve. The user also enters a
code for the stage of production for the movie (described below), step 1205. The virtual
specialist program takes the EGBO, and divides it by the NIS to determine a raw initial share
10 price (RIS), step 1206.

20 The initial share price (ISP) is then adjusted by a stage of production factor. The
following is a description of the different stages of production for a movie, with the code format
entered by the administrator:

25 C = Concept: During a movie's concept stage, there is not active production yet. Rumors
15 are heard about a 'new' project; maybe a sequel to an existing movie or a book
adaptation.

30 D = Development: During a movie's development stage, the project has attracted interest,
and funds are spent on developing the idea further. The final script premise is being
20 perfected. Pre-conceptual design work is taking place. More crew and actors are
dedicating themselves to the project in this stage.

35 P = Production: The project has moved to active production. All of the crew and stars
have been selected, and principal photography is scheduled or commenced. The
release date starts to become fixed.

40 W = Wrap: The movie has been completed in its entirety, and is awaiting release. The
25 release date may have been pushed back a short time, maybe a number of weeks or
months, to an unscheduled future date, awaiting a more favorable window of
opportunity for commercial success.

45 R = Release: The movie is playing in theaters.

50 When a movie is in the concept stage, it is much more difficult to determine the likelihood of
success for the movie than when the movie is in the production, wrap, or release stage. The
production cycle relates to a continuum of success, beginning with the concept stage, where it is
more difficult to judge potential success, and ending with the release stage, where actual box
office receipts can be observed to more accurately determine the potential success of a movie.
Thus, when determining the initial success of a movie, the RIS should be reduced accordingly.

5 Starting with step 1208 (Fig. 12), the virtual specialist program checks to see if the movie
is in the concept stage. If so, then the price of the security is multiplied by an administratively
set concept factor for movies in the concept stage, step 1210.

10 The virtual specialist program checks to see if the movie is in the development stage, step
5 1212. If so, then the price of the security is multiplied by an administratively set development
factor for movies in the development stage, step 1214.

15 The virtual specialist program checks to see if the movie is in the production stage, step
1216. If so, then the price of the security is multiplied by an administratively set production
factor for movies in the production stage, step 1218.

20 10 The virtual specialist program checks to see if the movie is in the release stage, step 1224.
If so, then the price of the security set to the raw unchanged RIS, step 1226.

25 20 It should be recognized by one skilled in the art that the above described factors are not
the only factors which could be used in adjusting the RIS. For example, the RIS could be
adjusted by such factors as an industry box office index of the movie's cast, an industry
15 popularity index for the cast, an estimated budget, actual budget, or the release season for the
movie. Further, it should be recognized that different factors will be used for product, actor, or
service company securities to determine initial price.

30 25 The calculated initial price for a movie is not statically tied to the above formula.

35 30 Regardless of the estimated price determined by the above factors, in the system of the second
20 embodiment, the price is further adjusted after release of the movie. On the morning following a
movie's release date, trading for the movie stock is halted. Trading is allowed to continue at the
end of its opening weekend at an adjusted price that is based on the following formula:

40 35 $(\text{opening weekend box office gross} / 1 \text{ MM}) * (\text{a historic multiplier for total domestic gross})$

45 40 25 By historic observation, the ideal historic multiplier value for the second embodiment of the
present invention has been found to be 3.6.

50 45 The initial price for a bond in the market is determined in a similar way as with stocks.

55 50 In the case of movie stars listed in the HOLLYWOOD STOCK EXCHANGE described above,
one way to determine price is by historical performance of movies the star has starred in.

30 55 50 In the HOLLYWOOD STOCK EXCHANGE, individual actors are available for
investors in the form of star bonds. Star bonds pay interest depending on a star's rating. Ratings
are determined by a star's 36 month trailing average gross (TAG). TAG is the trailing average
box-office gross of the movies a star has been in during the preceding 3 years. TAG values and
ratings correspond to one of 11 classes: AAA, AA, A, BBB, BB, B, CCC, CC, C, U, and D.

5 Each one of the 11 star bond ratings classes corresponds to a virtual dollar interest rate or coupon
 rate (see chart below). The rating and coupon for an individual actor in the second embodiment
 of the system of the present invention is determined according their TAG value as follows:

10	AAA	average gross: more than \$100 million	Coupon: V\$60
15	S AA	average gross: \$75-99.9 million	Coupon: V\$80
20	A	average gross: \$50-74.9 million	Coupon: V\$100
25	BBB	average gross: \$40-49.9 million	Coupon: V\$140
30	BB	average gross: \$30-39.9 million	Coupon: V\$160
35	B	average gross: \$20-29.9 million	Coupon: V\$180
40	10 CCC	average gross: \$15-19.9 million	Coupon: V\$220
45	CC	average gross: \$10-14.9 million	Coupon: V\$240
50	C	average gross: \$5-9.9 million	Coupon: V\$260
55	U (unrated)	average gross: less than \$5 million	Coupon: V\$300
	D (default)	average gross: none	Coupon: V\$0

15 Investors in star bonds receive 1/365th of the coupon interest per bond, each day. The % annual
 20 rate of return, or current yield is calculated by dividing the V\$ coupon rate by the current price.
 Low rated star bonds denote high risk. The daily V\$ payment of low rated star bonds is high to
 25 compensate traders for taking the risk of owning a low rated star bond. A high rating, such as
 AAA, denotes just the opposite.

30 20 The system is programmed under the principle that some traders buy star bonds whose
 rating is low in anticipation of the star's appearance in an upcoming blockbuster, raising the TAG
 35 (Trailing Average Gross), rating and price. Conversely, traders sell star bonds whose rating is
 high in anticipation of the star's appearance in an upcoming flop, lowering the TAG, rating and
 price.

40 25 A star bond with a U rating means that the bond is un-rated and a rating of D means that
 the bonds is in default.

45 30 Throughout the year, the system administrator updates TAG values, and thus, class
 ratings, as box office results are reported. Each Thursday, as new box office data is reported, the
 virtual specialist program sweeps the star bond market, looking for bond ratings which need to be
 35 updated. Because a star bond's value is based on the cumulative performance of a movie, the
 virtual specialist program uses a 1.24 multiplier of the gross to date to estimate the movie's total
 40 gross after four weekends.

50 45 Alternatively, the price for bonds may be determined in a number of ways. One way a
 bond price may be determined is by assigning a box office index to the bond, which is based on

5 the bond rating, and multiplying the index by a constant to obtain the price. Using this method,
the bond rating can be adjusted by other factors, such as the number of films the bond's
associated star has appeared in, the length of the star's career, the relative billing the star receives
10 for the individual films that the star has appeared in, and the public's morality perception of the
star. All of these factors are administratively set by the system administrator, and are then
multiplied together with the box office index to obtain an adjusted box office index. The bond
rating is then determined using the adjusted box office index.

15 Another way of determining an initial bond price is to determine the initial value in the
same way the other security prices are determined as described above; namely by using a number
10 of market factors, while determining future prices for bonds in the same way that other security
prices are adjusted by the virtual specialist program as described below instead of using tradition
20 fixed bond par values.

25 With respect to non-bond securities in the second embodiment of the system of the
present invention, the virtual specialist program stores a running net movement balance (NMB)
representing the quantity of securities for orders that the virtual specialist program fulfills which
do not have any offsetting orders. The imbalance is stored as a positive number if the buy-sell
30 imbalance represents more buy trade orders executed than sell orders, or a negative number if the
buy-sell imbalance represents more sell orders executed than buy orders.

35 With reference to Fig. 13, a flowchart illustrating the calculations for determining price
movement of a security is shown. Unlike trading non-virtual markets, the virtual specialist
program of the second embodiment does not control the economy by setting prices of shares
based on last executed buy order price. Rather, the virtual specialist program determines the
40 price of an instrument after each trade by computing an outstanding buy-sell imbalance. The
system scans or sweeps a trade queue containing the data for buy and sell orders placed by users
for price adjustment, step 1202.

45 The buy-sell imbalance for the security, also referred to herein as the net movement
balance (NMB) is read from a net movement balance database where net movement balances for
all securities are tracked, step 1304. The virtual specialist program controls security prices by
incrementing or decrementing security prices based on the NMB using a combination of a
50 security price increment (SPI) constant, and a pair of security price threshold constants. Both a
positive security price threshold (PSPT) constant, and a negative security price threshold (NSPT)
constant is set in a security constant table 2002 for each security in the system by the system
administrator.

55 When a user executes a trade, a record is added to the trade queue. As a field in the trade

5 record, a net trade movement (NTM) variable for a trade order is set to the positive quantity of shares if the trade order is a buy order, and to the negative quantity of shares if the trade order is a sell order, step 1306. A new NMB is calculated by adding the pre-trade NMB, as retrieved from a net price movement table 2008 (NMB (old)), to the NTM, step 1308.

10 5 The NSPT and PSPT constants for the securities are retrieved the security constant table 2002, step 1310. A security price increment (SPI) constant for the security which is the subject of the trade order is retrieved from the security constant table 2002, 1312. The NMB is then compared to the PSPT, step 1314. If the NMB is greater than the PSPT, then the price for the security (SP) is calculated by adding the SPI to the SP before the trade which was retrieved from 15 10 a security price table 2002, step 1316. The NMB is then reduced by the PSPT and stored back to the net price movement table 2008, step 1318.

20 Conversely, if the NMB is less than the NSPT (a negative value), step 1320, then the SP (new) is calculated by subtracting the SPI from the SP (old), step 1322. The NMB is then incremented by the NMB (which is also negative in this case), step 1324.

25 15 After the above calculations are made, the SP is stored in a security price table 2006, step 1326, which keeps track of all security prices. If the price of the security changed, a price history tracking table 2020 is updated, performing a write SQL statement which adds a record comprising the SP, NMB, UserID, and other information relating to the trade, step 1328. The 30 NMB is updated in the net movement balance table 2008 for the security that was the subject of 20 the trade order, step 1330. Each record of the net movement balance database further contains an increment tracking field for keeping track of the number of consecutive increments for the 35 security instrument, up or down. Aside from the virtual specialist program, the stored information is used by a marketing tool, explained below, which provides statistical information to market researchers.

40 25 The last steps for processing a trade record are to call the security brake check routine, step 1332, and the security halt check routine, step 1334, both explained in detail below.

45 Periodically, due to natural popularity of a particular security, or by market manipulation by an individual or groups of traders, a security may realize wild fluctuations in price. This is especially true in a market in which virtual currency is used in a virtual market. Given the 30 special circumstances of the virtual market, the system provides an artificial price control, or 40 braking, mechanism.

50 The braking mechanism of the present invention monitors each price increment the virtual specialist program performs. When a price moves up or down on a security instrument, the increment tracking field of the net movement balance table 2008 is retrieved for the security,

5 step 1402. A security brake threshold (SBT) constant, and a security brake increment (SBI)
constant is retrieved from the security constant table 2002, steps 1404-1406. If the total
consecutive number of price increments (TCPI) is greater than the SBT, step 1408, then the
10 PSPT is increased by the security brake increment, and then stored back to the security constant
table 2002, step 1410. If the total consecutive number of price decrements is greater than the
5 SBT, step 1412, the NSPT is decreased by the security brake increment, and then stored back to
the security constant table 2002, 1414. In this way, for securities which have experienced price
movement greater than the set thresholds, the price movement will be slowed.

15 Still, the braking mechanism may not be effective enough in either an extreme bear or
10 bull market for the security, or the market as a whole. In those instances, a halting mechanism is
provided by the system. With reference to Fig. 15, a flowchart illustrating a process for
20 preempting trading for certain securities with out of control price movements is shown.

25 The halting mechanism acts much in the same way as the braking mechanism. The TCPI
or TCPD is retrieved for the security which was the subject of the trade order above from the
15 price tracking history table 2020, step 1502. The exception is that a security halt threshold
(SHT) constant is compared to the value from TCPI/TCPD field, step 1504. If the TCPI/TCPD
field value exceeds the SHT, steps 1506 or 1508, then trading is halted for that particular
security, step 1510. A notice appears on screen for a trader who tries to trade the security
30 informing the user that trading has been halted by the system. Trading for the security may be
20 resumed after an administratively set period of time, or manually through an administration
module.

35 With reference to Fig. 16, a ghost trading system process is illustrated. The ghost trading
system of the second embodiment is used as both a tool to bolster the trading level of some
securities which would otherwise have low trading levels and, more importantly, as a means for
25 the system administrator to take control of the economy after changing thresholds, constants and
global variables. The ghost trading system is used to speed up the actions of the economy by
creating volume that, when processed with new variables changes the direction of the market
40 quickly.

45 For each of certain selected securities, a ghost trading mechanism randomly creates
30 automatic or ghost trades. A ghost trading table 2014 is provided with a timer, which reads the
system clock and determines daily time intervals, is included. The system periodically queries
the ghost trading table 2014, step 1602. Each security instrument record in the ghost trading
table 2014 is set to cause a trade for an administrative set number of times per trading day. If the
50 timer detects that the time interval between trades for a security has ended, step 1604, the ghost

5 trading mechanism retrieves a ghost buy probability (GBT) from the ghost trade table 2014, step
1606. A random trade constant (RTC) is generated by the system, 1608. Next, a ghost security
10 buy/sell quantity (GBQ) is retrieved from the ghost trade table 2014, step 1610. If the GBT is
greater than or equal to the RTC, step 1612, a buy order is placed by the system for the number
shares specified by the GBQ, step 1614. Otherwise, a sell order is placed for the number of
shares specified by the GBQ, step 1616.

15 In the above discussion, the term trade or the term trade order also includes stop limit
orders and short sells. The only difference in these types of trades is when the actual trade is
10 posted. In the case of a stop limit order placed by a user, for example, when the user specifies
the condition in which the trade should take place, the stop limit order is stored in a stop limit
20 order queue. Each time a security changes price, the stop limit queue is checked by the virtual
specialist program to see if any stop limit conditions are met. If so, the normal trade queue is
updated with the stop limit order, and the virtual specialist program performs the trade as with a
normal trade.

25 15 Virtual Reserve Bank Program
The system of the present invention includes a virtual reserve bank program. The reserve
bank program regulates the economy with monetary tools which are provided within a reserve
30 bank program module. With these tools, certain system global constants, such as total money
supply and interest rates can be adjusted.

20 20 In the case of interest rates, adjustable global constants are built into the an administration
table 2016 for the virtual trading system. By raising or lowering rates, the amount of interest
paid on the virtual dollars not tied up in securities is adjusted for the users. In this way, the
35 unused money in users' accounts act as money market accounts for which interest is adjusted
accordingly.

25 25 In the second embodiment, a virtual reserve bank program chairman can determine
interest rates and security threshold constants by using global interest threshold constants
(GITCs), and acts as a monitor of inflationary and deflationary pressures in the system.
Inflationary and deflationary pressure may be defined as the size of the system economy, i.e.,
40 30 number of shares of securities which obtain a certain defined price. For example, the total
outstanding shares may have a combined par value of V\$8 billion, and the total market price for
the shares outstanding may be V\$80 billion with about V\$5 billion average daily trading volume.
The virtual specialist program, for the majority of securities in the system, may have PSPTs set
45 35 to 10,000 and NSPTs set to -10,000. The money market rate may be set to 7% under these
market conditions by the reserve bank program. However, if prices on the exchange were to

5 inflate to a value of V\$200 billion, for example, the PSPT might be increased by 10,000 and the
NSPTs decreased by 10,000, and the money market interest rate reset to 15%.

10 As part of maintaining a sound economy, the system's virtual reserve bank program
program and/or the virtual specialist program may monitor certain inflationary thresholds and
5 trigger a drain of the system if those thresholds are met. During a system drain, users are offered
the opportunity to exchange virtual dollars into U.S. Dollars for exchange of goods and/or
services. The drain will have the effect of taking virtual currency out of the system, thus helping
15 to control inflation. Executing the drain comprises comparing the overall currency and/or
security holdings to a drain constant administratively set in the global constant table 2022. When
10 the global constant has been reached or exceeded, users are offered the opportunity to purchase
products, such as software or mail order products, with their virtual dollars. For the users who
choose to do so, the cost of the products are debited from their accounts and orders are added to a
20 product fulfillment database designating that the offered products need to be sent to the user.
Similarly to the order tracking database, the orders are stored in a drain history database so that
15 statistical information can be drawn in the marketing research tool explained below.

25 **Marketing Research Tool**

With reference to Fig.1, the second embodiment of a market research tool is also
30 implemented in the client server environment over Internet 10. Computer 12 is used as a front
end for a market research user who wishes to access the system of the present invention to view
20 and download statistical research data which has been compiled and stored on servers 14 from
the users' demographic data and trading history.

35 With reference to Fig. 17 the market research user accesses the market research tool by
logging into the system, step 1702. Each market research user may establish an account, by
either subscribing on-line or by telephone before using the system. The market research user is
25 prompted for a user identification code and password for entry into the system.

40 Upon successful login into the system, the market research user is presented with a list of
securities in the system database, step 1704. The market research user may, by use of a mouse or
arrow keys, highlight securities for which the user wishes to view or download statistics, step
1706. In order to choose more than one security, the market research user may use a
45 30 combination of the mouse, arrow keys and shift key. If the shift key is held down during
selection, the prior selections made by the user are retained as highlighted selections in
combination with the new selection. Selection criteria may also be selected to choose a certain
class of securities, or securities which meet, for example, a minimal trading volume threshold
50 over a specified period of time.

5 After selection of securities, the market research user is given options, on screen, for
categories of information which may be obtained, step 1708. Exemplary categories which may
be obtained regarding a security or group of securities include: trade volume information, buy vs.
sell volume information, timing of volume information, total volume held information,
10 investment concentration information, price information, stop limit order volume information,
short sell volume information, and aggregate index information.

15 More specifically, in choosing to obtain trade volume for particular securities, the market
research user may assess public awareness of the security. A very high trade volume over a
period of time indicates a high degree of awareness for the security. Conversely, minimal volume
10 indicates very little awareness. A query is performed on a trade history tracking table 2010
maintained by the virtual specialist program which contains a mirror image of all trades fulfilled
by the virtual specialist program. A trade volume query answer table is created which contains,
20 for each requested security, overall trade volume figures, yearly trade volume figures, monthly
trade volume figures, and daily trade figures.

25 15 With regard to buy vs. sell volume information, if the volume for a security is
predominantly buy-side volume, or volume generated by traders buying the security, it is
generally due to a positive awareness. A predominantly sell-side volume for a security indicates
that traders believe the security to be overvalued. When the market research user directs the
30 system to obtain buy vs. sell volume information, the market research tool performs a query on
20 the trade history tracking table 2010 and the price history tracking table 2020 described with
respect to the virtual specialist program above. The query creates a temporary buy-sell volume
answer table for all securities requested. The buy-sell volume answer table contains, for each
35 security, overall buy volume figures, overall sell volume figures, yearly buy volume figures,
yearly sell volume figures, monthly buy volume figures, monthly sell volume figures, daily buy
25 volume figures, and daily sell volume figures.

40 40 With regard to timing of volume information, the trade volume for a security may be
evaluated with respect to the stage of development that a project, for example a movie or actor's
career, is in. A film that has just entered production, for example, hasn't been marketed by the
studio to the public yet. High trading volume for the related movie stock may represent great
45 30 public awareness for the movie or positive reaction by traders to the combination of actors who
star in the movie. Similarly, in the movie star bond market, a non A-list actor that has high trade
volume has a relatively high awareness. When the market research user directs the system to
obtain timing volume information, the market research tool performs a query on the trade history
tracking table 2010 and related development stage history table 2024, which keeps track of start
50 50

5 and completion times of stages of development. The query creates a temporary timing volume
answer table for all securities requested. The timing volume answer table contains, for each
security, timing volume figures for each stage of production or project.

10 With regard to the total volume held for a security, if traders buy a particular security and
15 generally hold on to it for a longer than average period of time, it demonstrates a high degree of
faith in the long term performance of a security. For example, if traders tend to invest and hold
an actor's star bond, it is probably because they think she has a long career ahead of her and will
be popular for more than just one or two films. When the market research user directs the system
10 to obtain total volume held information, the market research tool performs a query on the trade
history tracking table 2010 which calculates the average number of shares held for each trader for
the requested securities for each trader. The query creates a temporary total volume held answer
table for all securities requested. The total volume held answer table contains, for each security,
the time that each trader held each security they purchased, along with the volume held.

20 With regard to investment concentration, when there is heavy investment volume per
25 shareholder in a particular security it demonstrates a high degree of faith in a project or loyalty to
an actor. For example, if 50,000 traders each hold an average of 100 star bonds for a first actor,
and 10,000 traders hold an average of 500 star bonds for a second actor, the first actor would
tend to have more widespread appeal than the second actor, but the second actor would tend to
30 have a more loyal following. In financial markets, this is known as concentration. In down
markets, holders of these securities are unwilling to sell; in up markets they are willing to add to
their positions. When the market research user directs the system to obtain investment
concentration information, the market research tool performs a query on the trade history
35 tracking table 2010 to retrieve figures for the average volume per share for all requested
securities held at any time by all traders. The query creates a temporary investment
concentration answer table for all securities requested. The total investment concentration
40 answer table contains, for each security, the average volume that each trader held for each
requested security.

45 With regard to price information, security prices are tied to perceived sales performance
for the product or person which the security is tied to. For example, movie stock prices are tied
30 to perceived box office performance. If a movie stock is priced at \$30, and a trader thinks that
the movie will gross more than \$30 million at the box office, the trader will most probably buy
the movie stock. Thus, the system of the present invention has the ability to find out what films,
actors, phonorecordings or products consumers perceive will be successful. When the market
50 research user directs the system to obtain price information, the market research tool performs a

5 query on the price history tracking table 2020, described with respect to the virtual specialist
program above, to retrieve price per share for all requested securities held by traders. The query
creates a temporary price answer table for all securities requested. The price answer table
contains, for each security, the price for each requested security.

10 5 With regard to stop limit order information, the system of the present invention tracks
traders who set the price a security must obtain before a trade order is filled. Stop limit orders
are not filled in the event that the market doesn't hit the specified price before the time that the
15 order expires. This functionality gauges traders' sensitivity to a price. For example, if a trader
will only buy a movie stock below \$30, that may indicate that the trader only perceives a limited
10 upside for the security, and thus believes that the movie will not be an industry blockbuster.
When the market research user directs the system to obtain stop limit order information, the
20 market research tool performs a query on the trade history tracking table 2010 to retrieve price
per share and volume figures for all requested securities held at any time by all traders which
were stop limit orders, whether the limit for such orders were met or not. The query creates a
15 stop limit order answer table for all securities requested. The stop limit order answer table
contains, for each security, price per share and volume figures for every stop limit order
requested by traders for the requested securities.

25 30 With respect to short sell information, if a trader thinks that the value of a security is
going to decline, the trader can short sell the security. Analysis of short sell volume on a security
20 can gauge if there is negative sentiment towards the security. When the market research user
directs the system to short sell information, the market research tool performs a query on the
trade history tracking table 2010 to retrieve short sell volume figures. The query creates a short
35 sell answer table for all securities requested. The short sell answer table contains, for each
security requested, the short sale trades orders by all traders.

40 25 With regard to index performance information, by aggregating market information into
indices, insights can be drawn about the market as a whole. For example, a movie studio security
index can be generated by calculating the sum of a studio's ten highest priced movie stocks over
time. The performance of such an index tends to measure the potential strength of a studio's
45 distribution, or the potential box office potential of the studio's upcoming films. When the
30 market research user directs the system to obtain index performance information, the market
research tool performs a query on the price history tracking table 2020 to retrieve price
change figures for the securities in all requested indices. The query creates a temporary index
performance answer table for all securities requested. The index performance answer table
50 contains, for each requested index, price change over time figures.

5 In step 1708 (Fig. 17), the market research user may choose any number of the above
categories of information for display or download for the securities selected in step 1706 by an
on-screen selection or check list.

10 After the categories of information have been chosen, the market research user may then
15 select an on-screen Ok button to execute the research. The system then compiles and executes a
selection of SQL query calls according to all selections made by the user, step 1710. The query
results are compiled and prepared for display, step 1712.

15 Once the results are compiled, pre-programmed graph, trend line and textual templates
are used to display the query results on the GUI client display for all chosen securities and
10 information categories described above, step 1714.

20 After display, the user is given the option, by selection button, to download the displayed
results and underlying query data, step 1716. If selected, the market research user is allowed to
select from a variety of download formats, such as ASCII, xbase, dbf, HTML, tif, gif, bmp, or
the like, step 1718. The market research user is allowed to choose a download location on the
25 local client, step 1720. The system then proceeds to compile the data into the chosen format,
step, 1722. The data is then transferred, using any one of a variety of protocols such as zmodem,
xmodem, ftp, or any one of the OSI industry standard protocols, step 1724. In the Web client-
server environment, a TCP/IP socket is used.

30 After transfer, the market research user is prompted for whether another query is desired,
20 step 1726. If another query is desired, execution is passed back to step 1704 for another research
iteration. Otherwise, time and/or transaction charges, which are tracked from login time at step
1702, are compiled and displayed on client 12, step 1728. The charges are simultaneously stored
35 in a billing database for the next billing cycle, step 1730. The user is then logged out of the
system, step 1732.

40 As mentioned above, according to the present invention derivative securities are traded in
electronic or virtual currency known as Hollywood dollars (H\$) on the exchange. When a
customer opens an account with HSX, Inc. by logging on the HSX web site and registering his
information, he is given an initial amount of virtual currency to trade on Hollywood Stock
45 Exchange. For example, the initial trading portfolio may include cash in the amount of H\$2
30 Million for the registered HSX account holders. The issuance of money to the newly registered
HSX account holders is controlled by the virtual reserve bank program. By trading in derivative
securities (stock, bonds, options, etc.), the HSX account holder either increases or decreases the
total value of his portfolio measured in Hollywood dollars and comprised of various securities
50 (debt and equity) and cash (money market funds). Of course, trading on margin results in

5 negative amounts debited to his portfolio, and any proceeds from selling activities are swept into
the money market fund to add to the cash portion.

10 After successfully trading on the exchange, the HSX account holder may significantly
increase the value of his portfolio. The HSX account holder may sell some or all of the
15 securities and accumulate vast amount of Hollywood dollars. Alternatively, the HSX account
holder's cash portion of the portfolio may be quite large by itself, without the need to sell his
securities. In accordance with one aspect of the present invention and as shown in block 1900 of
Fig. 19, the HSX account holder may access a vendor's web site for currency exchange to
convert the cash portion of his portfolio to "real" currency. The HSX account holder logs onto
10 the web site dealing in currency exchange and requests the conversion rate for Hollywood
dollars. In block 1902 the HSX account holder obtains the exchange rate and decides, in block
1904, whether to proceed with the transaction by exchanging his accumulated virtual currency
(HS\$) for a desired type of "real" currency, such as U.S. Dollars, Euros, Yens, Rubles, etc. If he
decides to exchange his Hollywood dollars for U.S. dollars, for example, the HSX account holder
15 accesses his trading portfolio with HSX, Inc. over secure Internet communications link in block
1906. In block 1908 the HSX account holder is presented a menu using a graphical user
interface for facilitating the transfer from his account to the currency exchange web site. The
HSX account holder then completes the required fields in the menu and sends this information to
30 the currency exchange web site along with the authorization to verify the HSX account holder's
identity and availability of funds in his account.

35 The operator of the currency exchange web site verifies, via a secure communication
session, the information provided by the HSX account holder. If the information is accurate as
decided in block 1910, the HSX account holder's Hollywood dollars are converted to the
requested "real" currency in block 1912. And in block 1914, the HSX account holder requests
25 that the funds be delivered in the requested "real" currency by mail, courier, etc.

40 Although "real" currency hereinabove refers to the tangible representation of money, the
Internet dominance and its accompanying e-commerce may blur the boundaries between virtual
and "real" monetary systems. Due to the information overload resulting from the global
networking, people's attention and time becomes valuable commodity. Thus, as the currency
45 exchange web site receives the people's attention and increased traffic flow in return for the
30 "real" currency, this "monetization" of time may be more valuable than the "real" money. The
currency exchange web site may carry goods and/or services, advertisements, etc. for other
vendors, and by attracting people to the web site because of the currency exchange, significant
50 financial benefits may be obtained by the vendor using this strategy of paying small sums for

5 people's attention and time.

Fig. 20 shows a flowchart for using the virtual currency in e-commerce in accordance with another embodiment of the present invention. In block 2000, an HSX account holder accesses a vendor's web site for selling goods and/or services that may be desired by the HSX 10 account holder. In block 2002, the HSX account holder selects the desired product and/or service on the vendor's web site. If the desired product and/or service is sold in the virtual currency (H\$), as decided in block 2004, then the HSX account holder accesses his trading portfolio with HSX, Inc. over secure Internet communications link in block 2006. In block 15 2008, the HSX account holder is presented a menu using a graphical user interface for 10 facilitating the transfer from his account to the currency exchange web site, as explained above. The HSX account holder then completes the required fields in the menu and sends this 20 information to the vendor's web site along with the authorization to verify the HSX account holder's identity and availability of funds in the account.

The vendor then verifies, via a secure communication session, the information provided 15 by the HSX account holder. If the information is accurate as determined in block 2010, the cost of the desired product and/or service is debited to the HSX account or, alternatively, is transferred to the vendor's web site in block 2012. And in block 2014, the HSX account holder receives an electronic confirmation of the transaction.

Fig. 21 shows a flowchart for using the virtual currency in e-commerce in accordance 30 with yet another embodiment of the present invention. In block 2100, an HSX account holder 20 accesses a vendor's web site for selling goods and/or services. In block 2102, a predetermined amount of H\$ is transferred by the HSX account holder to the vendor's web site via secure 35 communications lines as described above with reference to Figs. 19 and 20. Alternatively, the HSX account may be debited for that predetermined amount in response to the request from the 25 HSX account holder. In return, the vendor issues a credit to the HSX account holder toward the purchase of goods and/or services on the vendor's web site in block 2104. The amount of credit 40 is based on the exchange rate established by the vendor.

In still another embodiment of the present invention, Fig. 22 shows a flowchart for using 45 the virtual currency in the HSX account in e-commerce. In block 2200, an official representative 30 of HSX, Inc. logs on the Web to access a vendor's site for selling goods and/or services. In block 2202, the HSX, Inc. representative offers the virtual currency in H\$ for redemption by the vendor. In return, HSX, Inc. receives "real" currency at the exchange rate provided by the 50 vendor at his web site. In block 2204, an HSX account holder is informed of a promotion run by the vendor through the vendor's web site. The HSX account holder may then visit the vendor's

5 web site to purchase goods and/or services on-line in block 2206. In that case, HSX, Inc. mails a
check to the HSX account holder in a predetermined amount. The check is in "real" currency
and is a portion of the virtual currency exchange between HSX, Inc. and the vendor.

10 Alternatively, the converted currency may be retained in the HSX holder's account as a deposit
5 or credit towards future purchases on the Internet.

15 While the invention has been described and illustrated in connection with preferred embodiments,
many variations and modifications as will be evident to those skilled in this art may be made without
departing from the spirit and scope of the invention, and the invention is thus not to be limited to the
precise details of methodology or construction set forth above as such variations and modification are
10 intended to be included within the scope of the invention.

20

25

30

35

40

45

50

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5

WHAT IS CLAIMED IS:

1. A method for trading a plurality of instruments in a computerized trading system that receives buy orders and sell orders for an instrument, the method comprising:

10

measuring an imbalance between the buy orders and sell orders for the instrument received over a given period;

15 computing a projected price movement based on the measured imbalance between the number of buy and sell orders;

19 setting a market price for the instrument based upon the received buy and sell orders and the measured imbalance;

20 automatically generating additional buy orders or sell orders for the instrument at the market price to guarantee execution of some or all of the received buy or sell orders;

25

generating an electronic currency to execute the buy and sell orders;

29 crediting a first trader's account with proceeds in the electronic currency for the executed sell orders by the first trader; and

35

debiting a second trader's account in the electronic currency for the executed buy orders by the second trader.

2. The method according to claim 1, wherein the electronic currency is Hollywood dollars.

30

3. The method according to claim 2, further comprising exchanging the Hollywood dollars in the first or second trader's account for desired currency.

35 4. The method according to claim 3, wherein the Hollywood dollars are exchanged at a currency exchange web site, and wherein a request for the exchange is transmitted to the currency exchange web site via a secured communication.

5. The method according to claim 2, further comprising purchasing goods or services using the Hollywood dollars in the first or second trader's account, the goods or services being offered for sale by an on-line vendor via a web site on the Internet.

40

6. The method according to claim 5, wherein a request for the purchase is transmitted to the vendor's web site via a secured communication.

7. The method according to claim 5, wherein the vendor debits the first or second trader's account in the Hollywood dollars for the purchase of goods or services via a secured communication.

45

8. The method according to claim 1, wherein the additional buy orders or sell orders for the instrument are automatically generated at the market price if the projected price movement is greater than or equals a predetermined price movement threshold.

50

9. A computerized trading system for trading a plurality of instruments via buy orders and sell orders, comprising:

- 5 means for measuring an imbalance between the buy orders and sell orders for an instrument received over a given period;
- 10 means for computing a projected price movement based on the measured imbalance between the number of buy and sell orders;
- 15 means for setting a market price for the instrument based upon the received buy and sell orders and the measured imbalance;
- means for automatically generating additional buy orders or sell orders for the instrument at the market price to guarantee execution of some or all of the received buy or sell orders;
- 20 means for generating an electronic currency to execute the buy and sell orders; and
- means for crediting a first trader's account with proceeds in the electronic currency for the executed sell orders by the first trader and for debiting a second trader's account in the electronic currency for the executed buy orders by the second trader.
- 25 10. The system according to claim 9, wherein the electronic currency is Hollywood dollars.
11. The system according to claim 10, further comprising means for exchanging the Hollywood dollars in the first or second trader's account for desired currency.
- 30 12. The system according to claim 10, further comprising means for purchasing goods or services using the Hollywood dollars in the first or second trader's account, the goods or services being offered for sale by an on-line vendor via a web site on the Internet.
- 35 13. The system according to claim 9, wherein the additional buy orders or sell orders for the instrument are automatically generated at the market price if the projected price movement is greater than or equals a predetermined price movement threshold.
- 40 14. A computer-readable storage medium for storing program code means for, when executed, causing a computer to perform a method for trading a plurality of instruments in a computerized trading system that receives buy orders and sell orders for an instrument, the method comprising:
- measuring an imbalance between the buy orders and sell orders for the instrument received over a given period;
- 45 computing a projected price movement based on the measured imbalance between the number of buy and sell orders;
- setting a market price for the instrument based upon the received buy and sell orders and the measured imbalance;
- automatically generating additional buy orders or sell orders for the instrument at the market price to guarantee execution of some or all of the received buy or sell orders;
- 50 generating an electronic currency to execute the buy and sell orders;
- crediting a first trader's account with proceeds in the electronic currency for the executed

5 sell orders by the first trader; and
debiting a second trader's account in the electronic currency for the executed buy orders by
the second trader.

10 15. A method for conducting market research by regulating market price in a computerized
trading system, the system receiving buy orders and sell orders for a plurality of securities, the
method comprising:

15 computing a plurality of buy-sell imbalances by measuring the imbalances between buy
orders and sell orders for the security after fulfilling a plurality of trade orders;

20 computing matching projected price movements for the plurality of trade orders by
retrieving a matching plurality of security price thresholds from a database, comparing the
matching security price thresholds to the plurality of the buy-sell imbalances, retrieving a plurality
of matching security price increments from the database representing matching quantities for price
movements for the plurality of instruments, and setting the projected price movements for the
plurality of securities to the matching security price increments for the buy-sell imbalances which
exceed the matching security price thresholds; and

25 setting market prices for the plurality of securities by incrementing market prices of the
securities by the matching projected price movements.

30

35

40

45

50

55

FIG. I

FIG. 2

FIG. 5

FIG. 6

Fig. 8A

Fig. 8B

Fig. 9

Fig. 11

Fig. 15

Fig 16

Fig. 17

Administration Module

Global Exchange Variables	
*** Virtual Specialist Volatility Adjusters	MoneyMarketRate: CommissionPercent:
StockPosPriceThresh: StockNegPriceThresh: BondPosPriceThresh: BondNegPriceThresh: StockPriceIncr: BondPriceIncr:	Game Engine Control
StockBrakeThresh: BondBrakeThresh: StockBrakeIncr: BondBrakeIncr: StockTradeHaltThresh: BondTradeHaltThresh:	OrderExecInter: TradingDayInter: CommissionExecInter: SessionLengthInter: InitialCashBalance: NumStandingsDisplay:
*** Ghost Trading Parameters	
GhostBuyProb: GhostNumOrders: GhostStockBuyQty: GhostStockSellQty: GhostBondBuyQty: GhostBondSellQty:	
General Trading Parameters (Not Specific to Virtual Specialist)	
StockTradeMod: BondTradeMod: StockAmtOutstanding: BondAmtOutstanding: MaxSecOwnPercent: StockTradeMin: BondTradeMin: StockTradeMax: BondTradeMax:	
SyndicateMaxStockThresh: SyndicateMinStockThresh: SyndicateMinBondThresh: SyndicateMaxBondThresh:	
Economy Wide Parameters	
DiscountRate:	

700

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.