<<PackageHeader(rplidar_python)>>

Overview

the rplidar_python package provides a solution for RPlidar sensor usage in ros. This packge also allow robot launches a 360 degree scanning map through gmapping module without twisting.

Hardware Requirements

to use rplidar_python, you should get a robot that provides odometry, like turtlebot. Also, you need a RPlidar sensor. Here we use RPLIDAR 360 laser scanner development kit.

we use RPlidar to replace kinect sensor and we mount it in the position of kinect, thus kinect tf frame is useful for RPlidar sensor as well.

Example

to make a map by RPlidar, you should launch rplidar_gmapping_demo.launch.

roslaunch rplidar python rplidar gmapping demo.launch

Nodes

rplidar_scan_ver3.py

driver for RPlidar. Automatically starts sensor and convert data stream into sensor msgs/LaserScan type. sensor publish topic every frame, one frame contain 360 laser data.

Published Topic

/scan(sensor msgs/LaserScan)

output Laser scans to create the map from

Parameters

range_min (flaot default 0.15)

• the min range that laser can scan

range_max (float default 6.0)

• the min range that laser can scan

frame_id (string default 'laser')

• rplidar frame

angle_max(float default pi)

• the max angle that laser can reach

angle_min(float default -pi)

• the min angle that laser can reach

angle_increment(float default -0.017453292519943295)

• angular distance between measurements

scan_time (float)

• time between scans

ranges (float[])

• range data

AUTOGENERATED DON'T DELETE ## CategoryPackage