MATH 2135 Linear Algebra

Chapter 5 Eigenvalues, Eigenvectors, and Invariant Subspaces

Alyssa Motas

April 5, 2021

Contents

_	O • 1 I	Invariant Subspaces	3
	1.1	Definition of Invariant Subspace	3
		1.1.1 Example	3
	1.2	Eigenvalues and Eigenvectors	3
		1.2.1 Equivalent conditions to be an eigenvalue	3
		1.2.2 Example	4
		1.2.3 Linearly independent eigenvectors	4
		1.2.4 Number of eigenvalues	5
2	5 B	Eigenvectors and Upper-Triangular Matrices	5
	2.1	Polynomials Applied to Operators	5
	2.1	2.1.1 Definition of $p(T)$	6
			6
	0.0		
	2.2	Existence of Eigenvalues	6
3	5. C	Eigenspaces and Diagonal Matrices	7
	3.1	Definition of Eigenspace, $E(\lambda, T)$	8
	3.2	Definition of Diagonalizable	8
		3.2.1 Example	8
	3.3	Conditions equivalent to diagonalizability	Ć
	3.4	Enough eigenvalues implies diagonalizability	Ć
		3.4.1 Example	ç

1 5.A Invariant Subspaces

1.1 Definition of Invariant Subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

1.1.1 Example

Suppose $T \in \mathcal{L}(V)$. Show that each of the following subspaces of V is invariant under T:

- 1. $\{0\}$: If $u \in \{0\}$, then u = 0 and hence $Tu = 0 \in \{0\}$. Thus $\{0\}$ is invariant under T.
- 2. V: If $u \in V$, then $Tu \in V$. Thus V is invariant under T.
- 3. null T: If $u \in \text{null } T$, then Tu = 0, hence $Tu \in \text{null } T$. Thus null T is invariant under T.
- 4. range T: If $u \in \text{range } T$, then $Tu \in \text{range } T$. Thus range T is invariant under T.
- 5. Suppose that $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is defined by Tp = p'. Then $\mathcal{P}_4(\mathbb{R})$, which is a subspace of $\mathcal{P}(\mathbb{R})$, is invariant under T because if $p \in \mathcal{P}(\mathbb{R})$ has degree at most 4, then p' also has degree at most 4.

1.2 Eigenvalues and Eigenvectors

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbf{F}$ is called an *eigenvalue* of T if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$. The vector $v \in V$ is called an *eigenvector* of T corresponding to λ .

1.2.1 Equivalent conditions to be an eigenvalue

Recall that I is the identity operator. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Then the following are equivalent:

- 1. λ is an eigenvalue of T;
- 2. $T \lambda I$ is not injective;
- 3. $T \lambda I$ is not surjective;
- 4. $T \lambda I$ is not invertible.

1.2.2 Example

Suppose $T \in \mathcal{L}(\mathbf{F}^2)$ is defined by

$$T(w,z) = (-z,w).$$

Find the eigenvalues and eigenvectors of T if $\mathbf{F} = \mathbb{C}$.

Solution: To find eigenvalues of T, we must find the scalars λ such that

$$T(w,z) = \lambda(w,z)$$

has some solution other than w=z=0. The equation above is equivalent to

$$-z = \lambda w, \quad w = \lambda z.$$

Substituting the value for w, we get

$$-z = \lambda^2 z$$
.

Now z cannot equal to 0, so we have

$$-1 = \lambda^2$$

and the solutions are $\lambda = i$ and $\lambda = -i$. The eigenvectors corresponding to the eigenvalue i are the vectors of the form (w, -wi), with $w \in \mathbb{C}$ and $w \neq 0$. For the eigenvalue -i are the vectors of the form w, wi, with $w \in \mathbb{C}$ and $w \neq 0$.

1.2.3 Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof. Suppose v_1, \ldots, v_m are linearly dependent. We will derive a contradiction. Let k be the smallest index such that

$$v_k \in \operatorname{span}(v_1, \dots, v_{k-1}).$$

Then there exist a_1, \ldots, a_k such that

$$v_k = a_1 v_1 + \dots + a_{k-1} v_{k-1}.$$

Appply T to both sides of this equation, getting

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$

Multiply both sides of v_k by λ_k and then subtract the equation above, getting

$$0 = a_1(\lambda_k - \lambda_1)v_1 + \dots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$$

Since k was the smallest index satisfying $v_k \in \text{span}(v_1, \dots, v_{k-1})$, then v_1, \dots, v_{k-1} is linearly independent. Thus all the a's are 0. Since $\lambda_1, \dots, \lambda_m$ were assumed to be distinct, then $\lambda_1 - \lambda_k \neq 0, \dots, \lambda_{k-1} - \lambda_k \neq 0$. We have

$$a_1, \dots, a_{k-1} = 0$$

and we get $v_k = 0$ which contradicts our assumption.

1.2.4 Number of eigenvalues

Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Proof. Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Let v_1, \ldots, v_m be corresponding eigenvectors. Then the previous theorem implies that the list v_1, \ldots, v_m is linearly independent. Thus $m \leq \dim V$ as desired.

2 5.B Eigenvectors and Upper-Triangular Matrices

2.1 Polynomials Applied to Operators

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.

• T^m is defined by

$$T^m = \underbrace{T \dots T}_{m \text{ times}}$$

- T^0 is defined to be the identity operator I on V.
- If T is invertible with inverse T^{-1} , then T^{-m} is defined by

$$T^{-m} = (T^{-1})^m$$
.

• If T is an operator, then

$$T^m T^n = T^{m+n}$$
 and $(T^m)^n = T^{mn}$.

2.1.1 Definition of p(T)

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbf{F})$ is a polynomial given by

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

for $z \in \mathbf{F}$. Then p(T) is the operator defined by

$$p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m.$$

2.1.2 Example

Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is the differentiation operator defined by Dq = q' and p is the polynomial defined by $p(x) = 7 - 3x + 5x^2$. Then $p(D) = 7I - 3D + 5D^2$; thus

$$(p(D))q = 7q - 3q' + 5q''$$

for every $q \in \mathcal{P}(\mathbb{R})$.

2.2 Existence of Eigenvalues

Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

Proof. Suppose V is a complex vector space with dimension n > 0 and $T \in \mathcal{L}(V)$. Choose a nonzero vector $v \in V$ then

$$v, Tv, T^2v, \ldots, T^nv$$

is not linearly independent, because V has dimension n and we have n+1 vectors. Thus, there exist complex numbers a_0, \ldots, a_n such that

$$0 = a_0v + a_1Tv + \dots + a_nT^nv.$$

Note that a_1, \ldots, a_n cannot all be 0 because the equation becomes $a_0v = 0$ which forces $a_0 = 0$. Make a_0, \ldots, a_n be the coefficients of a polynomial, which by the Fundamental Theorem of Algebra has a factorization

$$a_0 + a_1 z + \dots + a_n z^n = c(z - \lambda_1) \dots (z - \lambda_m)$$

where c is a nonzero complex number, each λ_j is in \mathbb{C} , and the equation holds for all $z \in \mathbb{C}$. We then have

$$0 = a_0 v + a_1 T v + \dots + a_n T^n v$$

= $(a_0 I + a_1 T + \dots + a_n T^n) v$
= $c(T - \lambda_1 I) \dots (T - \lambda_m I) v$.

Thus $T - \lambda_j I$ is not injective for at least one j. In other words, T has an eigenvalue.

Note: The theorem above requires a *complex* vector space. Note that for a *real* vector space, this theorem would not hold.

3 5.C Eigenspaces and Diagonal Matrices

A *diagonal matrix* is a square matrix that is 0 everywhere except possibly along the diagonal.

Let V be a finite-dimensional vector space over a field \mathbf{F} . Let $B = v_1, \ldots, v_n$ be a basis of V and let $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. $\mathcal{M}(T, B, B)$ is diagonal,
- 2. Each v_1, \ldots, v_n is an eigenvector of T.

Proof. (2) implies (1). Assume v_1, \ldots, v_n are eigenvectors of T, with respective eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $\mathcal{M}(T)$ is computed as follows:

$$Tv_1 = \lambda_1 v_1 = \lambda_1 v_1 + 0v_2 + \dots + 0v_n$$

$$Tv_2 = \lambda_2 v_2 = 0v_1 + \lambda_2 v_2 + \dots + 0v_n$$

$$\vdots$$

$$Tv_n = \lambda_n v_n = 0v_1 + 0v_2 + \dots + \lambda_n v_n.$$

Then

$$\mathcal{M}(T) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

is diagonal.

(1) implies (2). Assume $\mathcal{M}(T)$ is diagonal. This means that

$$Tv_1 = a_n v_1 + 0v_2 + \dots + 0v_n$$

 \vdots
 $Tv_n = v_1 + 0v_2 + \dots + a_m v_n$

So we have

$$Tv_1 = a_{11}v_1$$

$$Tv_2 = a_{22}v_2$$

$$\vdots$$

$$Tv_n = a_{mm}v_n$$

and all of v_1, \ldots, v_n are eigenvectors.

3.1 Definition of Eigenspace, $E(\lambda, T)$

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbf{F}$. The *eigenspace* of T corresponding to λ , denoted $E(\lambda, T)$, is defined by

$$E(\lambda, T) = \text{null}(T - \lambda I).$$

In other words, $E(\lambda, T)$ is the set of all eigenvectors of T corresponding to λ , along with the 0 vector.

3.2 Definition of Diagonalizable

An operator $T \in \mathcal{L}(V)$ is called **diagonalizable** if the operator has a diagonal matrix with respect to some basis of V.

3.2.1 Example

Define $T \in \mathcal{L}(\mathbb{R}^2)$ by

$$T(x,y) = (41x + 7y, -20x + 74y).$$

The matrix of T with respect to the standard basis of \mathbb{R}^2 is

$$\begin{pmatrix} 41 & 7 \\ -20 & 74 \end{pmatrix}$$

which is not a diagonal matrix. However, T is diagonalizable, because the matrix of T with respect to the basis (1,4),(7,5) is

$$\begin{pmatrix} 69 & 0 \\ 0 & 46 \end{pmatrix}.$$

3.3 Conditions equivalent to diagonalizability

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T. Then the following are equivalent:

- 1. T is diagonalizable;
- 2. V has a basis consisting of eigenvectors of T;
- 3. $\dim V = \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T)$.

Proof. (1) implies (2). By the previous proposition. (3) implies (2). Assume (3) and

Let
$$V_{1,1}, \ldots, V_{1,k_1}$$
 be a basis of $E_{\lambda_1}(T)$.
Let $V_{2,1}, \ldots, V_{2,k_2}$ be a basis of $E_{\lambda_2}(T)$.
 \vdots
Let $V_{m,1}, \ldots, V_{m,k_m}$ be a basis of $E_{\lambda_m}(T)$.

Then all of the $V_{i,j}$ are linearly independent (by previous theorem). And by assumption (3), there are $n = \dim V$ of them. So they form a basis of V consisting of eigenvectors of T. So (2) holds.

3.4 Enough eigenvalues implies diagonalizability

If $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, then T is diagonalizable.

Proof. In this case, let v_1, \ldots, v_n be the corresponding eigenvectors. They are linearly independent by theorem, so a basis.

3.4.1 Example

- For the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, there are 3 distinct eigenvalues and it is diagonalizable.
- For the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, there are 2 distinct eigenvalues, and 3 linearly independent eigenvectors. It is also diagonalizable.

- For the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, there is 1 distinct eigenvalue, 3 linearly independent eigenvectors, and it is diagonalizable.
- For the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ there are 2 distinct eigenvalues and 2 linearly independent eigenvectors. However, it is not diagonalizable.