

Curso 2 – CD, AM e DM

IA BIG ATA

Mineração de Dados

Parte 3
Extração de Padrões
Agrupamento Hierárquico

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

Métodos para Agrupamento de Dados

- Particionais: organizar dados em uma partição de *k clusters*
- Hierárquicos: organizar dados em uma decomposição hierárquica de clusters e subclusters

Métodos para Agrupamento de Dados

- Particionais: organizar dados em uma partição de *k clusters*
- Hierárquicos: organizar dados em uma decomposição hierárquica de clusters e subclusters

 Dendrograma: diagrama com a estrutura hierárquica que representa o resultado de um agrupamento.
 Sumariza a formação dos clusters e subclusters.

Conjunto de Dados

 Os objetos do conjunto de dados estão organizados no eixo x do dendrograma. A altura dos arcos indica a dissimilaridade entre objetos e grupos de objetos.

Conjunto de Dados

 Podemos inspecionar o dendrograma para estimar o número natural de clusters. No exemplo, há 4 subárvores bem separadas.

 Conceitos de homogeneidade (<u>coesão interna</u>) e heterogeneidade (<u>separabilidade</u>) dos clusters representados pela altura (eixo y) da união entre cluster.

Conjunto de Dados

MBA IA BIG DAYA

- Dendrogramas podem ser úteis para detectar outliers.
- Ramos isolados indicam objetos muito distante dos demais.

MBA IA BIG DAYA

- Dendrogramas podem ser úteis para detectar outliers.
- Ramos isolados indicam objetos muito distante dos demais.

Dois métodos clássicos para agrupamento hierárquico

Aglomerativos:

- → Iniciar alocando cada objeto em um *cluster*
- → Encontrar o melhor par de clusters para unir
- → Repetir até formar um único *cluster*

Divisivos:

- → Iniciar alocando todos os objetos em um único *cluster*
- → Dividir um *cluster* em dois subclusters
- → Repetir a divisão até que cada objeto seja um *cluster*

Dois métodos clássicos para agrupamento hierárquico

Aglomerativos:

- → Iniciar alocando cada objeto em um cluster
- → Encontrar o melhor par de clusters para unir
- → Repetir até formar um único *cluster*

Divisivos:

- → Iniciar alocando todos os objetos em um único *cluster*
- → Dividir um cluster em dois subclusters
- → Repetir a divisão até que cada objeto seja um cluster

• Matriz de dissimilaridades: armazena as distâncias entre cada par de objetos do conjunto de dados

Matriz atributo-valor

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}$$

Matriz dissimilaridades

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix} \quad \begin{array}{c} \mathsf{Aplicar\ medida} \\ \mathsf{de\ proximidade} \\ \mathsf{de\ proximidade} \\ \mathsf{M} = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ \vdots & & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{bmatrix}$$

- As diagonais são dissimilaridades entre um mesmo objeto
- Por simetria, podemos usar apenas a triangular superior ou inferior da matriz de dissimilaridades

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Inicialmente, cada objeto é um cluster.

	1	2	3	4	5
1	0				
1 2 3 4 5	2 6	0			
3	6	5	0		
4	10	9	4	0	
5	9	8	5	3	0
					ノ

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

3

5

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

$$d_{(12)3} = \min\{d_{13}, d_{23}\} = d_{23} = 5$$

$$d_{(12)4} = \min\{d_{14}, d_{24}\} = d_{24} = 9$$

$$d_{(12)5} = \min\{d_{15}, d_{25}\} = d_{25} = 8$$

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

$$d_{(12)3} = \min\{d_{13}, d_{23}\} = d_{23} = 5$$

$$d_{(12)4} = \min\{d_{14}, d_{24}\} = d_{24} = 9$$

$$d_{(12)5} = \min\{d_{15}, d_{25}\} = d_{25} = 8$$

$$3 \mid 5 \mid 0$$

$$9 \mid 4 \mid 0$$

$$8 \mid 5 \mid 3 \mid 0$$

$$5 \mid 8 \mid 5 \mid 3 \mid 0$$

$$\begin{array}{c|ccccc}
12 & 3 & 4 & 5 \\
12 & 0 & & & \\
3 & 5 & 0 & & & \\
4 & 9 & 4 & 0 & & \\
5 & 8 & 5 & 3 & 0
\end{array}$$

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

$$\begin{array}{c|ccccc}
\mathbf{12} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\
\mathbf{12} & 0 & & & \\
\mathbf{3} & 5 & 0 & & \\
\mathbf{4} & 9 & 4 & 0 & \\
\mathbf{5} & 8 & 5 & 3 & 0
\end{array}$$

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

$$d_{(12)(45)} = \min\{d_{14}, d_{15}, d_{24}, d_{25}\} = d_{25} = 8$$
45

$$d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$$

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

$$d_{(12)(45)} = \min\{d_{14}, d_{15}, d_{24}, d_{25}\} = d_{25} = 8$$

$$d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$$

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

Qual é o melhor par de clusters para unir?

$$\begin{array}{c|cccc}
 & 12 & 3 & 45 \\
12 & 0 & & \\
3 & 5 & 0 & \\
45 & 8 & 4 & 0
\end{array}$$

Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

• Exemplo de Agrupamento Hierárquico

Considere uma matriz de dissimilaridades calculada para 5 objetos

A etapa mais importante é determinar distância entre clusters!

Nosso exemplo utilizou a estratégia de Vizinho mais Próximo (MIN)

A etapa mais importante é determinar distância entre clusters!

Nosso exemplo utilizou a estratégia de Vizinho mais Próximo (MIN)

Distância entre clusters A e B = menor distância de qualquer objeto do cluster A para qualquer objeto do cluster B

A etapa mais importante é determinar distância entre clusters!

Nosso exemplo utilizou a estratégia de Vizinho mais Próximo (MIN)

Distância entre clusters A e B = menor distância de qualquer objeto do cluster A para qualquer objeto do cluster B

Single-Link

Single-Link (MIN)

Tende a capturar *clusters* baseado em contiguidade ou encadeamento.

Single-Link (MIN)

Tende a capturar *clusters* baseado em contiguidade ou encadeamento.

Sensível a ruídos!

MBA IA BIGA DAYA

Single-Link (MIN)

Pontos Originais

Pontos Agrupados (dois clusters)

Complete-Link (MAX)

Distância entre clusters A e B = maior distância de qualquer objeto do cluster A para qualquer objeto do cluster B

Complete-Link (MAX)

Pontos Originais

Pontos Agrupados (dois clusters)

Tende a encontrar clusters com diâmetros semelhantes. Vantagem: menos sensível a ruído.

Complete-Link (MAX)

Tende a encontrar clusters com diâmetros semelhantes. Desvantagem: tende a dividir grandes *clusters*.

Average-Link (Média)

Distância entre clusters A e B = média das distâncias de todos os objetos do *cluster* A em relação aos objetos do *cluster* B

Average-Link (Média)

Distância entre clusters A e B = média das distâncias de todos os objetos do *cluster* A em relação aos objetos do *cluster* B

$$d(C_i, C_j) = \frac{\sum_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)}{|C_i||C_j|}$$

Average-Link (Média)

Distância entre clusters A e B = média das distâncias de todos os objetos do *cluster* A em relação aos objetos do *cluster* B

Ponto de equilíbrio entre Single-Link e Complete-Link

$$d(C_i, C_j) = \frac{\sum_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)}{|C_i||C_j|}$$

- Podemos extrair partições a partir de um agrupamento hierárquico
- Escolha do número de clusters "a posteriori"

Cortes no dendrograma

Partição P = $\{(1,2), (3,4,5)\}$

- Podemos extrair partições a partir de um agrupamento hierárquico
- Escolha do número de clusters "a posteriori"

Cortes no dendrograma

Partição P = $\{(1,2), (3), (4,5)\}$

Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

