Learning Agent: Supervised Learning (kNN, Naïve Bayes, Decision Tree)

Informatics Engineering Study Program School of Electrical Engineering and Informatics

Institute of Technology Bandung

Review Supervised Learning

- Learning Agent
- Feedback vs learning type
- Supervised learning:

Learning Method (Supervised Learning)

Example-based classifier:

- k-Nearest Neighbor:
 - Instance-based learning
 - Lazy learner (not eager learner)
- Numeric/quantitative:
 - probabilistic classifier, linear classifier, SVM, regression, artificial neural network, Naïve Bayes
 - Naïve Bayes:
 - ▶ Probabilistic classifier : P(Y|x)
- Nonnumeric/symbolic:
 - Decision tree learning, decision rule classifier

Contoh: Decision Tree Model

Figure 18.2 FILES: figures/restaurant-tree.eps (Tue Nov 3 16:23:29 2009). A decision tree for deciding whether to wait for a table.

Contoh: Neural Network

Figure 18.20 FILES: figures/neural-net.eps (Wed Nov 4 11:08:22 2009). (a) A perceptron network with two inputs and two output units. (b) A neural network with two inputs, one hidden layer of two units, and one output unit. Not shown are the dummy inputs and their associated weights.

Contoh: Support Vector Machines

```
svm type c svc
kernel type rbf
gamma 0.017241379310344827
nr class 2
total sv 402
rho -0 8300595301464558
label 0 2
probA -5.460987117018979
probB 2.0721783740735344
nr sv 222 180
SV
1.0 1:0.0 2:1.0 3:0.0 4:1.0 5:1.0 (
27:0.0 28:0.0 29:0.0 30:0.0 31:0.0
53:0.0 54:0.0 55:0.0 56:0.0 57:0.0
1.0 1:0.0 2:1.0 3:0.0 4:1.0 5:2.0 (
27-0 0 28-0 0 29-1 0 30-0 0 31-0 0
```

k-Nearest Neighbour

Instance-based Learning

K-Nearest Neighbor Learning (Dipanjan Chakraborty)

K-Nearest Neighbor

- Menyimpan semua data
- ▶ Input baru → kelas dari data terdekat

Contoh k-NN

Contoh Data set: Play Tennis

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes

outlook	temp.	humidity	windy	play
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

outlook	temp.	humidity	windy	play
sunny	cool	high	true	?

Naïve Bayes

Naïve Bayes

$$v_{\text{NB}} = \arg\max_{v_j \in \{\text{yes,no}\}} P(v_j) \prod_i P(a_i|v_j)$$

- $P(v_j)$: probabilitas kelas v_j
- $ightharpoonup P(a_i|v_j)$: probabilitas atribut a_i pada v_j

Contoh Data set: Play Tennis

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes

outlook	temp.	humidity	windy	play
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Frekuensi setiap nilai atribut

ou	outlook temperature		humidity				windy			play			
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3	hot	2	2	high	3	4	false	6	2	9	5
overcast	4	0	mild	4	2	normal	6	1	true	3	3		
rainy	3	2	cool	3	1								

Model Probabilitas

01	utlool	k	temperature			humidity				windy			play	
	yes	no		yes	no		yes	no		yes	no	yes	no	
sunny	2/9	3/5	hot	2/9	2/5	high	3/9	4/5	false	6/9	2/5	9/14	5/14	
overcast	4/9	0/5	mild	4/9	2/5	normal	6/9	1/5	true	3/9	3/5			
rainy	3/9	2/5	cool	3/9	1/5									

Klasifikasi Unseen Example

outlook	temp.	humidity	windy	play
sunny	cool	high	true	?

$$\begin{split} v_{\text{NB}} &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) \prod_i P(a_i | v_j) \\ &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) P(\text{outlook} = \text{sunny} | v_j) P(\text{temp} = \text{cool} | v_j) \\ P(\text{humidity} = \text{high} | v_j) P(\text{windy} = \text{true} | v_j) \end{split}$$

- 1. Kalikan probabilitas semua atribut untuk setiap kelas
- 2. Hasil I dikalikan dengan probabilitas setiap kelas
- 3. Klasifikasi: kelas dengan probabilitas maksimum

Proses Klasifikasi

$$P(\text{play} = \text{yes}) = 9/14$$
 $P(\text{play} = \text{no}) = 5/14$
 $P(\text{yes})P(\text{sunny}|\text{yes})P(\text{cool}|\text{yes})P(\text{high}|\text{yes})P(\text{true}|\text{yes})$
 $= 9/14 \cdot 2/9 \cdot 3/9 \cdot 3/9 \cdot 3/9 = 0.0053$
 $P(\text{no})P(\text{sunny}|\text{no})P(\text{cool}|\text{no})P(\text{high}|\text{no})P(\text{true}|\text{no})$
 $= 5/14 \cdot 3/5 \cdot 1/5 \cdot 4/5 \cdot 3/5 = 0.0206$

$$v_{\text{NB}} = \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) P(\text{sunny}|v_j) P(\text{cool}|v_j) P(\text{high}|v_j) P(\text{true}|v_j)$$

$$= \text{no}$$

Decision Tree

Decision Tree (DT) Y>40 80 X>80 60 non-Y<80 churner 40 X>60 churner 20 churner nonchurner 20 60 40 80

Decision Tree: Pengetahuan

IF Y>40 and X>80 THEN non-churner

Will I wait for a table?

Example					At	tributes	}				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	Τ	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Alt: whether there is a suitable alternative restaurant nearby

Bar: whether the restaurant has a comfortable bar area to wait in

Fri: true on Fridays and Saturdays

Hun: whether we are hungry

Pat: how many people are in the restaurant

Price: price range

Raining: whether it is raining outside

Reservation: whether we made a reservation

NUMMLK/IF3170/19Mar2014

Decision tree learning

- Data training digunakan untuk membangun decision tree
- Simpul: pertanyaan
- Cabang: jawaban yang mungkin

Problem: decide whether to wait for a table at a restaurant

Decision Tree vs Truth Table

- 1 row truth table → 1 path DT
- Data training: 1 examples → 1 path ?
- N boolean atribut \rightarrow 2ⁿ rows/path \rightarrow 2²ⁿ distinct decision tree
- No generalization for unseen data

Example					At	tributes	,				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	Τ	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	Τ	Τ	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	MENIM	∕ILK \$ IF3	17 0 77191	Ma F 20	1 B urger	30-60	T

Decision tree learning (2)

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best \leftarrow \texttt{CHoose-Attribute}(attributes, examples) \\ tree \leftarrow \texttt{a} \text{ new decision tree with root test } best \\ \text{for each value } v_i \text{ of } best \text{ do} \\ examples_i \leftarrow \{\text{elements of } examples \text{ with } best = v_i\} \\ subtree \leftarrow \texttt{DTL}(examples_i, attributes - best, \texttt{Mode}(examples)) \\ \texttt{add a } \text{ branch to } tree \text{ with label } v_i \text{ and subtree } subtree \\ \textbf{return } tree
```

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

Using information theory

- ▶ To implement Choose-Attribute in the DTL algorithm
- Information Content (Entropy):

$$I(P(v_1), \ldots, P(v_n)) = \Sigma_{i=1} - P(v_i) \log_2 P(v_i)$$

For a training set containing p positive examples and n negative examples:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

Information gain

A chosen attribute A divides the training set E into subsets E_I , ..., E_v according to their values for A, where A has v distinct values.

remainder(A) =
$$\sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Information Gain (IG) or reduction in entropy from the attribute test:

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

Choose the attribute with the largest IG

Representasi Example

- Attribute-based representations
- Examples described by attribute values

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Information gain

For the training set, p = n = 6, I(6/12, 6/12) = I bit

Consider the attributes Patrons and Type (and others too):

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .0541 \text{bits}$$

$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Mengapa DT Learning?

- Mudah diimplementasikan
- Hipotesis yang dihasilkan mudah dipahami
- Efisien

Contoh Bankruptcy Dataset

R: Rasio pendapatanpengeluaran

L: jumlah pembayaran tagihan kartu kredit yang telat pada tahun lalu

Hipotesis 1-Nearest Neighbor

Hipotesis Decision Tree

35

THANK YOU