STAT 500

Lack of Fit Test

Lack of Fit Test

- One method for model checking.
- Suppose we have multiple observations at one or more of the x_i values
- ullet Notation: Y_{ij} is the jth observation at x_i
- Three models:
 - 1) $Y_{ij} = \mu + \epsilon_i$ (common mean)
 - 2) $Y_{ij} = \beta_0 + \beta_1 X_i + \epsilon_i$ (regression)
 - 3) $Y_{ij} = \mu_i + \epsilon_i$ (separate means)

Lack of Fit Test

• SSE from regression model 2

$$SS_{error} = \sum_{i} \sum_{j} (Y_{ij} - \hat{Y}_{i})^{2}$$

$$= \sum_{i} \sum_{j} (Y_{ij} - \bar{Y}_{i})^{2} + \sum_{i} \sum_{j} (\bar{Y}_{i} - \hat{Y}_{i})^{2}$$

$$= SS_{pure\ error} + SS_{lack-of-fit}$$

- $SS_{Pure\ Error}$ is the error sum of squares for model 3. It measures variability of observations about the mean response for each X. Does not assume the model fits.
- $SS_{Lack-of-Fit}$ measures lack of fit.
- Let r = number of distinct x values

Lack of Fit Test

New and improved ANOVA table

source of	degrees of	sums of
variation	freedom	squares
Regression	1	$\overline{SS_{regression}}$
Lack-of-Fit	r-2	$SS_{lack-of-fit}$
Pure Error	n-r	$SS_{pure\ error}$
Total	n-1	$\overline{SS_{total}}$

•
$$E(MS_{Pure\ Error}) = \sigma^2$$

•
$$E(MS_{Lack-of-Fit}) = \sigma^2 + \frac{\sum_{i=1}^r n_i [\mu_i - (\beta_0 + \beta_1 x_i)]^2}{r - 2}$$

• $E(MS_{Regression}) = \sigma^2 + \beta_1^2 \sum_{i=1}^r n_i [x_i - \bar{x}]^2$

•
$$E(MS_{Regression}) = \sigma^2 + \beta_1^2 \sum_{i=1}^r n_i [x_i - \bar{x}]^2$$

Breakdown Times of an Insulating Fluid

Chapter 8, The Statistical Sleuth

- Objective: Examine the relationship between voltage and breakdown time of insulating fluid
- Different batches of an insulating fluid were subjected to particular voltages until the insulating property of the fluid broke down
- Seven voltages were used, spaced 2 kV apart from 26 kV to 38 kV
- Measured time (in minutes) until the insulating property broke down
- More than one batch tested at each voltage level

Summary Statistics Log(Breakdown times)

Level of		Logy		
voltage	N	Mean	Std Dev	
26	3	5.62397487	3.35520660	
28	5	5.32952567	1.14455914	
30	11	3.82199830	1.11120182	
32	15	2.22852317	2.19809924	
34	19	1.78639275	1.52521123	
36	15	0.90224550	1.10990142	
38	7	-0.44192816	1.06980069	

Example: One-way ANOVA

First consider a one-way ANOVA for the model with a different mean breakdown time at each voltage

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

where $\epsilon_{ij} \sim N(0, \sigma^2)$

source of		sums of	mean
variation	df	squares	square
Voltage Levels	6	$\sum_{i=1}^{9} n_i (\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot})^2 = 190.43$	31.738
Pure Error	68	$\sum_{i=1}^{9} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2 = 173.73$	2.555
Total	74	$\sum_{i=1}^{9} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{\cdot \cdot})^2 = 364.16$	

Note that
$$E(MS_{Pure\ Error}) = \sigma^2$$

Example: Simple Linear Regression

Now consider the more restrictive regression model

$$Y_{ij} = \beta_0 + \beta_1 x_i + \eta_{ij}$$

where $\eta_{ij} \sim N(0, \sigma_{\eta}^2)$

• Least squares estimates

$$b_1 = \frac{\sum_{i=1}^{9} n_i (\bar{y}_{i.} - \bar{y}_{..}) (x_i - \bar{x}_{.})}{\sum_{i=1}^{9} n_i (x_i - \bar{x}_{.})^2} = -0.5075$$

$$b_0 = \bar{y}_{\cdot \cdot} - b_1 \bar{x}_{\cdot} = 2.17828 - (-0.5075)(33.06667) = 18.9605$$

• The least squares estimate of the line is

$$\hat{Y}_i = 18.9605 - 0.5075x_i$$

Example: Lack-of-Fit Test

Incorporate $SS_{regression} = \sum_{i=1}^{9} n_i (\hat{y}_i - \bar{y}_{\cdot \cdot})^2 = 184.0856$ into the ANOVA table

source of		sums of	mean
variation	df	squares	square
Regression on			
voltage	1	$SS_{regression} = 184.0856$	184.0856
Lack-of-Fit	5	$\sum_{i=1}^{9} n_i (\hat{y}_i - \bar{y}_{i\cdot})^2 = 6.3427$	1.26854
Pure Error	68	$\sum_{i=1}^{9} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2 = 173.7316$	2.5549
Total	74	$\sum_{i=1}^{9} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{})^2 = 364.1599$	

Example: Lack-of-Fit Test

F-test for lack of fit

$$H_o: E(Y_{ij}|x_i) = \beta_0 + \beta_1 x_i$$

 $H_a: E(Y_{ij}|x_i) = \mu_i = \beta_0 + \beta_1 x_i + g(x_i)$

- $E(MS_{Pure\ Error}) = \sigma^2$
- $E(MS_{Lack-of-Fit}) = \sigma^2 + \frac{\sum_{i=1}^{I} n_i[g(x_i)]^2}{I-2}$
- Reject H_o if $F = \frac{MS_{Lack-of-Fit}}{MS_{Pure\ Error}} > F_{(df_{LoF}, df_{PE}), 1-\alpha}$
- For the insulating fluid breakdown data,

$$F = \frac{1.26854}{2.5549} = 0.50$$
 on (5,68) df with p-value = 0.778

Example: Conclusion and Remarks

• Conclusion: Using Y = Log(time) as the response, the data are consistent with a straight line model

$$Y_{ij} = \beta_0 + \beta_1 x_i + \epsilon_i$$

This does not prove that

$$Y_{ij} = \beta_0 + \beta_1 x_i + \epsilon_i$$

with $\epsilon_{ij} \sim N(0, \sigma^2)$ is exactly correct, but it suggests that a straight line model is a reasonable approximation for E(Y|X=x), the conditional mean of the natural logarithm of the breakdown time when the voltage is set at x.

If the lack-of-fit test is significant, search for a better model.