LECTURE 430 – COMPENSATION OF OP AMPS-II

(READING: Text-Sec. 9.2, 9.3, 9.4)

INTRODUCTION

The objective of this presentation is to continue the ideas of the last lecture on compensation of op amps.

Outline

Compensation of Op Amps

General principles

Miller, Nulling Miller

Self-compensation

Feedforward

Summary

Conditions for Stability of the Two-Stage Op Amp (Assuming $p_3 \ge GB$)

• Unity-gainbandwith is given as:

$$GB = A_{\mathcal{V}}(0) \cdot |p_1| = \left(\frac{gmIgmIIRIRII}{gmIIRIRIICc}\right) = \frac{gmI}{Cc} = \left(\frac{gm1gm2R1R2}{gm2R1R2Cc}\right) = \frac{gm1}{Cc}$$

• The requirement for 45° phase margin is:

$$\pm 180^{\circ}$$
 - Arg[AF] = $\pm 180^{\circ}$ - tan-1 $\left(\frac{\omega}{|p_1|}\right)$ - tan-1 $\left(\frac{\omega}{|p_2|}\right)$ - tan-1 $\left(\frac{\omega}{|p_2|}\right)$ = 45°

Let $\omega = GB$ and assume that $z \ge 10GB$, therefore we get,

$$\pm 180^{\circ} - \tan^{-1}\left(\frac{GB}{|p_{1}|}\right) - \tan^{-1}\left(\frac{GB}{|p_{2}|}\right) - \tan^{-1}\left(\frac{GB}{z}\right) = 45^{\circ}$$

$$135^{\circ} \approx \tan^{-1}(A_{v}(0)) + \tan^{-1}\left(\frac{GB}{|p_{2}|}\right) + \tan^{-1}(0.1) = 90^{\circ} + \tan^{-1}\left(\frac{GB}{|p_{2}|}\right) + 5.7^{\circ}$$

$$39.3^{\circ} \approx \tan^{-1}\left(\frac{GB}{|p_{2}|}\right) \Rightarrow \frac{GB}{|p_{2}|} = 0.818 \Rightarrow \boxed{|p_{2}| \ge 1.22GB}$$

• The requirement for 60° phase margin:

$$|p_2| \ge 2.2GB$$
 if $z \ge 10GB$

• If 60° phase margin is required, then the following relationships apply:

$$\frac{gm6}{C_C} > \frac{10gm1}{C_C}$$
 \Rightarrow $gm6 > 10gm1$ and $\frac{gm6}{C_2} > \frac{2.2gm1}{C_C}$ \Rightarrow $C_C > 0.22C_2$

Controlling the Right-Half Plane Zero

Why is the RHP zero a problem?

Because it boosts the magnitude but lags the phase - the worst possible combination for stability.

Solution of the problem:

If zeros are caused by two paths to the output, then eliminate one of the paths.

Use of Buffer to Eliminate the Feedforward Path through the Miller Capacitor Model:

The transfer function is given by the following equation,

$$\frac{V_O(s)}{V_{\text{in}}(s)} = \frac{(g_{mI})(g_{mII})(R_I)(R_{II})}{1 + s[R_IC_I + R_{II}C_{II} + R_IC_c + g_{mII}R_IR_{II}C_c] + s^2[R_IR_{II}C_{II}(C_I + C_c)]}$$

Using the technique as before to approximate p_1 and p_2 results in the following

$$p_1 \cong \frac{-1}{R_I C_I + R_{II} C_{II} + R_I C_c + g_{mII} R_{IR} R_{II} C_c} \cong \frac{-1}{g_{mII} R_I R_{II} C_c}$$

and

$$p_2 \cong \frac{-g_{mII}C_c}{C_{II}(C_I + C_c)}$$

Comments:

Poles are approximately what they were before with the zero removed.

For 45° phase margin, $|p_2|$ must be greater than GB

For 60° phase margin, $|p_2|$ must be greater than 1.73GB

Use of Buffer with Finite Output Resistance to Eliminate the RHP Zero

Assume that the unity-gain buffer has an output resistance of R_o .

Model:

It can be shown that if the output resistance of the buffer amplifier, R_o , is not neglected that another pole occurs at,

$$p_4 \cong \frac{-1}{R_o[C_I C_c / (C_I + C_c)]}$$

and a LHP zero at

$$z_2 \cong \frac{-1}{R_o C_c}$$

Closer examination shows that if a resistor, called a *nulling resistor*, is placed in series with C_c that the RHP zero can be eliminated or moved to the LHP.

Use of Nulling Resistor to Eliminate the RHP Zero (or turn it into a LHP zero)

Nodal equations:

$$g_{mI}V_{in} + \frac{V_I}{R_I} + sC_IV_I + \left(\frac{sC_c}{1 + sC_cR_z}\right)(V_I - V_{out}) = 0$$

$$g_{mII}V_I + \frac{V_o}{R_{II}} + sC_{II}V_{out} + \left(\frac{sC_c}{1 + sC_cR_z}\right)(V_{out} - V_I) = 0$$

Solution:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{a\{1 - s[(C_c/g_{mII}) - R_zC_c]\}}{1 + bs + cs^2 + ds^3}$$

where

$$a = g_{mI}g_{mII}R_{I}R_{II}$$

$$b = (C_{II} + C_c)R_{II} + (C_I + C_c)R_I + g_{mII}R_IR_{II}C_c + R_zC_c$$

$$c = [R_IR_{II}(C_IC_{II} + C_cC_I + C_cC_{II}) + R_zC_c(R_IC_I + R_{II}C_{II})]$$

$$d = R_IR_{II}R_zC_IC_{II}C_c$$

[†] W,J. Parrish, "An Ion Implanted CMOS Amplifier for High Performance Active Filters", Ph.D. Dissertation, 1976, Univ. of CA., Santa Barbara. ECE 4430 - Analog Integrated Circuits and Systems

Use of Nulling Resistor to Eliminate the RHP - Continued

If R_z is assumed to be less than R_I or R_{II} and the poles widely spaced, then the roots of the above transfer function can be approximated as

$$p_{1} \cong \frac{-1}{(1 + g_{mII}R_{II})R_{I}C_{c}} \cong \frac{-1}{g_{mII}R_{II}R_{I}C_{c}}$$

$$p_{2} \cong \frac{-g_{mII}C_{c}}{C_{I}C_{II} + C_{c}C_{I} + C_{c}C_{II}} \cong \frac{-g_{mII}}{C_{II}}$$

$$p_{4} = \frac{-1}{R_{7}C_{I}}$$

and

$$z_1 = \frac{1}{C_c(1/g_{mII} - R_z)}$$

Note that the zero can be placed anywhere on the real axis.

Conceptual Illustration of the Nulling Resistor Approach

The output voltage, V_{out} , can be written as

$$V_{out} = \frac{-g_{m6}R_{II}\left(R_z + \frac{1}{sC_c}\right)}{R_{II} + R_z + \frac{1}{sC_c}}V'' + \frac{R_{II}}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{g_{m6}}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{1}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{1}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{sC_c}}V'' = \frac{-R_{II}\left[g_{m6}R_z + \frac{1}{sC_c} - 1\right]}{R_{II} + R_z + \frac{1}{$$

when V = V' = V''.

Setting the numerator equal to zero and assuming $g_{m6} = g_{mII}$ gives,

$$z_1 = \frac{1}{C_c(1/g_{mII} - R_z)}$$

A Design Procedure that Allows the RHP Zero to Cancel the Output Pole, p₂

We desire that $z_1 = p_2$ in terms of the previous notation.

Therefore,

$$\frac{1}{C_c(1/g_{mII} - R_z)} = \frac{-g_{mII}}{C_{II}} \times \bigotimes \qquad \qquad \downarrow j\omega$$

$$value of P can be found as -p_4 -p_2 -p_1 \qquad z_1 \qquad \text{Fig. 430-06}$$

The value of R_z can be found as

$$R_z = \left(\frac{C_c + C_{II}}{C_c}\right) (1/g_{mII})$$

With p_2 canceled, the remaining roots are p_1 and p_4 (the pole due to R_z). For unity-gain stability, all that is required is that

$$|p_4| > A_v(0)|p_1| = \frac{A_v(0)}{g_{mII}R_{II}R_IC_c} = \frac{g_{mI}}{C_c}$$

and

$$(1/R_zC_I) > (g_{mI}/C_c) = GB$$

Substituting R_z into the above inequality and assuming $C_{II} >> C_c$ results in

$$C_c > \sqrt{\frac{g_{mI}}{g_{mII}} C_I C_{II}}$$

This procedure gives excellent stability for a fixed value of C_{II} ($\approx C_L$).

Unfortunately, as C_L changes, p_2 changes and the zero must be readjusted to cancel p_2 .

Increasing the Magnitude of the Output Pole[†]

The magnitude of the output pole, p_2 , can be increased by introducing gain in the Miller capacitor feedback path. For example,

The resistors R_1 and R_2 are defined as

$$R_1 = \frac{1}{g_{ds2} + g_{ds4} + g_{ds9}}$$
 and $R_2 = \frac{1}{g_{ds6} + g_{ds7}}$

where transistors M2 and M4 are the output transistors of the first stage.

Nodal equations:

$$I_{in} = G_1 V_1 - g_{m8} V_{s8} = G_1 V_1 - \left(\frac{g_{m8} s C_c}{g_{m8} + s C_c}\right) V_{out} \quad \text{and} \quad 0 = g_{m6} V_1 + \left[G_2 + s C_2 + \frac{g_{m8} s C_c}{g_{m8} + s C_c}\right] V_{out}$$

[†] B.K. Ahuja, "An Improved Frequency Compensation Technique for CMOS Operational Amplifiers," *IEEE J. of Solid-State Circuits*, Vol. SC-18, No. 6 (Dec. 1983) pp. 629-633.

Increasing the Magnitude of the Output Pole - Continued

Solving for the transfer function V_{out}/I_{in} gives,

$$\frac{V_{out}}{I_{in}} = \left(\frac{-g_{m6}}{G_1 G_2}\right) \left[\frac{\left(1 + \frac{sC_c}{g_{m8}}\right)}{1 + s\left[\frac{C_c}{g_{m8}} + \frac{C_2}{G_2} + \frac{C_c}{G_2} + \frac{g_{m6}C_c}{G_1 G_2}\right] + s^2\left[\frac{C_cC_2}{g_{m8}G_2}\right]} \right]$$

Using the approximate method of solving for the roots of the denominator gives

$$p_{1} = \frac{-1}{\frac{C_{c}}{g_{m8}} + \frac{C_{c}}{G_{2}} + \frac{C_{2}}{G_{2}} + \frac{g_{m6}C_{c}}{G_{1}G_{2}}} \approx \frac{-6}{g_{m6}r_{ds}^{2}C_{c}}$$

and

$$p_{2} \approx \frac{-\frac{g_{m6}r_{ds}^{2}C_{c}}{6}}{\frac{C_{c}C_{2}}{g_{m8}G_{2}}} = \frac{g_{m8}r_{ds}^{2}G_{2}}{6} \left(\frac{g_{m6}}{C_{2}}\right) = \left(\frac{g_{m8}r_{ds}}{3}\right) |p_{2}'|$$

where all the various channel resistance have been assumed to equal r_{ds} and p_2 ' is the output pole for normal Miller compensation.

Result:

Dominant pole is approximately the same and the output pole is increased by $\approx g_m r_{ds}$.

Concept Behind the Increasing of the Magnitude of the Output Pole

$$R_{out} = r_{ds7} | \left(\frac{3}{g_{m6}g_{m8}r_{ds8}} \right) \approx \frac{3}{g_{m6}g_{m8}r_{ds8}}$$

Therefore, the output pole is approximately,

$$|p_2| \approx \frac{8m68m8^r ds8}{3C_{\text{II}}}$$

FEEDFORWARD COMPENSATION

Use two parallel paths to achieve a LHP zero for lead compensation purposes.

To use the LHP zero for compensation, a compromise must be observed.

- Placing the zero below *GB* will lead to boosting of the loop gain that could deteriorate the phase margin.
- Placing the zero above *GB* will have less influence on the leading phase caused by the zero.

Note that a source follower is a good candidate for the use of feedforward compensation.

SELF-COMPENSATED OP AMPS

Self compensation occurs when the load capacitor is the compensation capacitor (can never be unstable for resistive feedback)

Voltage gain:

$$\frac{v_{out}}{v_{in}} = A_{v}(0) = G_{m}R_{out}$$

Dominant pole:

$$p_1 = \frac{-1}{R_{out}C_L}$$

Unity-gainbandwidth:

$$GB = A_{v}(0) \cdot |p_{1}| = \frac{G_{m}}{C_{L}}$$

Stability:

Large load capacitors simply reduce GB but the phase is still 90° at GB.

SUMMARY

Compensation

- Designed so that the op amp with unity gain feedback (buffer) is stable
- Types
 - Miller
 - Miller with nulling resistors
 - Self Compensating
 - Feedforward