Macroeconomics A: Review Session I

Constrained Optimization

Gregory Auclair allan.auclair@graduateinstitute.ch

Outline

- 1 Introduction
 - Structure of the Review Session

- 2 Constrained Optimization
 - Lagrange's Method

- 3 Dynamic Optimization
 - Sequential Approach
 - Euler Equation

Table of contents

- 1 Introduction
 - Structure of the Review Session

- 2 Constrained Optimization
 - Lagrange's Method

- 3 Dynamic Optimization
 - Sequential Approach
 - Euler Equation

Advice for New Students

In general, as economists

- Intuition is important (diagnosis)
- So is technical ability (knowing what medicine to prescribe)
- So is presentation (bedside manner)

In the MIS

- Good teamwork matters
- Focus on improvement :)
- Take the initiative

Specifically, for this course

- Fully understand all the models and material
- Prof. Tille's office hours are very helpful!!
- It will not be easy, but there will be no surprises

Purpose

Developing a toolkit

- Today, we cover constrained optimalization in discrete time
- Many useful/important methods are not covered in class but are needed to solve models, review sessions will fill gaps

Deepening Intuition

- Some of the models we will see are not intuitive at first
- The only way to get comfortable is 'learning-by-doing'
- We will spend some time looking at applications

Q&A

 Please send questions in 1-2 days in advance if you want detailed/correct answers

Structure of the Review Sessions

Format

- Time: Monday at 18h every week (but not the days before exams)
- Duration: As long as needed, maybe 2 hours but probably less
- Location: Room S7

Plan

- Main goal: get you ready for the midterm!
- Other goal: build confidence; clarify topics covered in class

Week	Topic
Sept. 25	constrained optimization in discrete time
Oct. 2	IS-TR model
Oct. 9	monetary policy (discretion vs. commitment)
Oct. 16	understanding phase diagrams
Oct. 23	exam prep
Nov	TBD

Table of contents

- 1 Introduction
 - Structure of the Review Session

- 2 Constrained Optimization
 - Lagrange's Method

- 3 Dynamic Optimization
 - Sequential Approach
 - Euler Equation

Lagrange's Method

- A lot of economics is constrained optimization... we optimize utility subject to some budget constraint
- The basic statement of the problem becomes formulaic after a while, but it is useful to have an intuition for how constrained optimization works
- Let's start with the function z = f(x, y) in \mathbb{R}^3
- The basis vectors $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$ run 1 unit along the x and y axes
- The gradient $\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$ gives the change in z as we move over the xy plane
- For a given point, we can find the change in z in any direction by multiplying $\nabla f(x, y)$ by a unit vector \mathbf{u} in that direction

Note: this section follows Seth Leonard's guide

Finding the Gradient

- Let's define $f(x, y) = 8 x^2 y^2$ so that $\nabla f(x, y) = -2x\mathbf{i} 2y\mathbf{j}$
- We want to find the slope of z in the direction $\mathbf{u} = \langle -\sqrt{0.5}, -\sqrt{0.5} \rangle$ at point A = (0, -1)
- Therefore we take $\langle -\sqrt{0.5}, -\sqrt{0.5} \rangle \cdot \langle 0, 2 \rangle = -2\sqrt{0.5}$

Figure: $f(x, y) = 8 - x^2 - y^2$

Finding Level Curves

Let's set z equal to a constant k

$$f(x,y)=k$$

If **u** is tangent to the level curve, then

$$\nabla f(x,y) \cdot \mathbf{u} = 0$$

Figure: Level Curves $k = \{5, 6, 7\}$

Level Curve Tangent to the Constraint

- Let's say we have a constraint of the form g(x, y) = 0
- The constrained maximum (B) is the value of k tangent to g(x, y)

Figure: $g(x, y) = x + y - 2\sqrt{0.5}$

■ If the two lines are tangent, their gradients have the same direction

$$\nabla f(x, y) = \lambda \nabla g(x, y) \tag{1}$$

■ The term λ sets the magnitudes of the two gradients equal

Putting Things Together

■ Recalling that g(x, y) = 0, we can write equation 1 as

$$\mathcal{L} = f(x, y) - \lambda g(x, y)$$

■ The constrained optimum is at the point where

$$\mathcal{L}_{x}=\mathcal{L}_{y}=0$$

Exercise: find the constrained optimum where

$$f(x,y) = 8 - x^2 - y^2$$
 and $g(x,y) = x + y - 2\sqrt{0.5}$

Putting Things Together

■ Recalling that g(x, y) = 0, we can write equation 1 as

$$\mathcal{L} = f(x, y) - \lambda g(x, y)$$

■ The constrained optimum is at the point where

$$\mathcal{L}_{x}=\mathcal{L}_{y}=0$$

Exercise: find the constrained optimum (z) where

$$f(x,y)=8-x^2-y^2$$
 and $g(x,y)=x+y-2\sqrt{0.5}$ (Answer here)

Greg Auclair Review Session I 12 / 18

Applying to a One-Period Problem

Exercise: Let's solve a simple model with a constraint

$$\max_{c,\ell} \quad u(c,\ell) = \frac{c^{1-\sigma}}{1-\sigma} - \frac{\ell^{1+\eta}}{1+\eta}$$
s.t.
$$y = A\ell^{1-\alpha}$$

$$c = y$$

Applying to a One-Period Problem

Exercise: Let's solve a simple model with a constraint

$$\max_{c,\ell} \quad u(c,\ell) = \frac{c^{1-\sigma}}{1-\sigma} - \frac{\ell^{1+\eta}}{1+\eta}$$
s.t.
$$y = A\ell^{1-\alpha}$$

$$c = y$$

(Answer here)

Table of contents

- 1 Introduction
 - Structure of the Review Session

- 2 Constrained Optimization
 - Lagrange's Method

- 3 Dynamic Optimization
 - Sequential Approach
 - Euler Equation

Discounting the Future

Most of the time, we make forward looking decisions and take into account both our present and future constraints

For a two-period problem, take that

$$\max_{c_t, a_t} \mathcal{L}_0 = \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - \lambda g(c_t, a_{t-1}) \right] \quad \text{where} \quad a_t = y_t - c_t + (1 + r_{t-1}) a_{t-1}$$

Writing this out, we get

$$\max_{c_{t},a_{t}} \mathcal{L}_{t} = u(c_{t}) - \lambda g(c_{t},a_{t-1}) + \beta \left[u(c_{t+1}) - \lambda g(c_{t+1},a_{t}) \right] + \dots$$

$$\beta^{2} \left[u(c_{t+2}) - \lambda g(c_{t+2}, a_{t+1}) \right] + \sum_{n=3}^{\infty} \beta^{n} \left[u(c_{t+n}) - \lambda g(c_{t+n}, a_{t+n-1}) \right]$$

Note when $\beta < 1$, that $\lim_{t \to \infty} \beta^t = 0$

Euler Equation

Taking the previous example and setting $u(c_t) = \log(c_t)$

$$\mathcal{L}_{t} = \log(c_{t}) - \lambda_{t} (a_{t} - y_{t} + c_{t} - (1 + r_{t-1})a_{t-1}) + \dots$$

$$\beta \left[\log(c_{t+1}) - \lambda_{t+1} (a_{t+1} - y_{t+1} + c_{t+1} - (1 + r_{t})a_{t}) \right] + \dots$$

Taking derivatives

$$\frac{\partial \mathcal{L}_t}{\partial c_t} = \frac{1}{c_t} - \lambda_t = 0$$

$$\frac{\partial \mathcal{L}_t}{\partial a_t} = -\lambda_t + \beta \lambda_{t+1} (1 + r_t) = 0$$

Combining terms, we get the celebrated Euler equation

$$\frac{c_{t+1}}{c_t} = \beta(1+r_t)$$

Steady State

We can write out the Euler equation recursively so that

$$c_{t+2} = \beta c_{t+1} (1 + r_{t+1}) = \beta^2 c_t (1 + r_t) (1 + r_{t+1})$$

Setting $r = r_t = r_{t+1}$ for all t

$$c_{t+n} = \beta^n c_t (1+r)^n$$

If $1 + r > 1/\beta$ then

 $c_{t+n} = \infty$ (violates resource/borrowing constraint)

Conversely if $1 + r < 1/\beta$

 $c_{t+n} = 0$ (marginal utility becomes infinite)

Households would never choose this, so the only possible value for r is

$$r = \frac{1}{\beta} - 1$$

Greg Auclair Review Session I 18 / 18