Aufgaben

- Arbeit an einem CNN für den Pascal VOC 2012 Datensatz fortsetzen
- Implementierung des Ansatz der Deep Taylor Decomposition für DNN (insbesondere CNN)
- \blacksquare Vergleich LRP \leftrightarrow Deep Taylor Decomposition

Aufgabe

■ Einführung CNN Part und Wdh. Deep Taylor

Deep Taylor Decomposition - Rückblick

- Einfaches Netzwerk mit einem Hidden Layer, ReLU Aktivierung und Sum-Pooling als Output.
- Zusätzliche Voraussetzung: $b_j \le 0$.

■ Für das Outputneuron x_k gilt: $x_k = max(0, \sum_i x_i)$

Deep Taylor Decomposition - Rückblick

■ Suche eine Nullstelle für die Taylorentwicklung von $R_k(\mathbf{x}) = \sum_i x_i$.

Deep Taylor Decomposition - Rückblick

Suche eine Nullstelle für die Taylorentwicklung von $R_k(\mathbf{x}) = \sum_j x_j$.

- Wg. ReLU Aktivierung im vorherigen Layer und $\sum_j x_j \stackrel{!}{=} 0$ ist $\tilde{\mathbf{x}} = \mathbf{0}$ die einzige Nullstelle von R_k .
- Wegen $R_j = \frac{\partial R_k}{\partial x_i}(x_j \tilde{x}_j) = 1 \cdot (x_j 0)$ gilt also
- $R_j = x_j = \max(0, \sum_i x_i w_{ij} + b_j)$

Deep Taylor Decomposition - Generische Regel

• Es gilt $R_j = x_j = \max(0, \sum_i x_i w_{ij} + b_j)$

- Unterscheide nun 2 Fälle:
 - **11** $R_j = 0$: Nicht aktivierte Neuronen sollen keine Relevanz zurückverteilen. Insbesondere gilt hier $\tilde{\mathbf{x}} = \mathbf{x}$.
 - **2** $R_j > 0$: Hierfür wird ein Richtungsvektor $\mathbf{v}^{(j)}$ definiert. $\tilde{\mathbf{x}}$ soll von der Form $\mathbf{x} + t \cdot \mathbf{v}^{(j)}$, mit $t \in \mathbb{R}$ sein.

Deep Taylor - Entwicklungspunkt

- Allgemeine Vorgehensweise:
- Durch Einsetzen von $\tilde{\mathbf{x}} = \mathbf{x} + t \cdot \mathbf{v}^{(j)}$ in die Ebenengleichung $\sum_i \tilde{x}_i w_{ij} + b_j$ lässt sich eine allgemeine Formel für t finden.
- Somit gilt:

$$0 = \sum_{i} \left(x_i + t v_i^{(j)} \right) w_{ij} + b_j$$
$$\Leftrightarrow -t = \frac{\sum_{i} x_i w_{ij} + b_j}{\sum_{i} v_i^{(j)} w_{ij}}$$

$$\Rightarrow x_i - \tilde{x}_i = -tv_i^{(j)} = \frac{\sum_i x_i w_{ij} + b_j}{\sum_i v_i^{(j)} w_{ij}} v_i^{(j)}$$

Deep Taylor - Entwicklungspunkt

lacktriangle Für die Umverteilung von der I+1-ten Schicht in die I-te Schicht gilt

$$R_{i}^{I} = \sum_{j} R_{i \leftarrow j}^{I} = \sum_{j} \frac{\partial R_{j}^{I+1}}{\partial x_{i}^{I}} (x_{i} - \tilde{x}_{i})$$

$$= \sum_{j:R_{j}=0} \frac{\partial R_{j}^{I+1}}{\partial x_{i}^{I}} \cdot 0 + \sum_{j:R_{j}>0} w_{ij} \frac{\sum_{i} x_{i} w_{ij} + b_{j}}{\sum_{i} v_{i}^{(j)} w_{ij}} v_{i}^{(j)}$$

$$= \sum_{j} \frac{v_{i}^{(j)} w_{ij}}{\sum_{i} v_{i}^{(j)} w_{ij}} R_{j}^{I+1}$$

 \blacksquare \Rightarrow Allgemeine Formel in Abhängigkeit von $v_i^{(j)}$

Deep Taylor - Die z^+ -Regel

- Grundannahme der Deep Taylor Decomposition ist die Anwendung der ReLU-Aktivierungsfunktion.
 - \Rightarrow für Input eines Layers gilt $extbf{ extit{x}} \in \mathbb{R}^d_+$
 - \Rightarrow zulässige Nullstelle sollte auch aus zulässigem Bereich kommen
- Gesucht wird Nullstelle für R_j auf dem Intervall

$$[\{x_i 1_{w_{ij} < 0}\}, \{x_i\}]$$

■ Mindestens eine Nullstelle existiert bei $\{x_i 1_{w_{ij} < 0}\}$

Deep Taylor - Die z^+ -Regel

- Wähle $v_i^{(j)} = x_i x_i \cdot 1_{w_{ii} \le 0} = x_i \cdot 1_{w_{ii} > 0}$
- Einsetzen in die Gleichung liefert:

$$R_{i} = \sum_{j} \frac{x_{i} 1_{w_{ij} > 0} w_{ij}}{\sum_{i} x_{i} 1_{w_{ij} > 0} w_{ij}} R_{j}^{l+1} = \sum_{j} \frac{z_{ij}^{+}}{\sum_{i} z_{ij}^{+}} R_{j}^{l+1}$$

 $\blacksquare \text{ Mit } z_{ij} = x_i \cdot w_{ij}$

Herleitung z^B-Regel

- Für Inputwerte des ersten Layers (z.B. Pixelwerte) gilt Positivität i.A. nicht
- Diese sind meistens beschränkt und können auch Werte kleiner
 0 annehmen
- Formal: $x \in \mathcal{B}$ mit

$$\mathcal{B} = \{ x \in \mathbb{R}^d : I_i \le x_i \le h_i \quad \forall i \in \{0, ..., d\} \}$$

Herleitung z^B-Regel

■ Gesucht wird Nullstelle für R_i auf dem Intervall

$$[I_i 1_{w_{ij}>0} + h_i 1_{w_{ij}<0}, \{x_i\}]$$

Auf diesem Intervall existiert mindestens eine Nullstelle, denn

$$R_{j} (\{I_{i}1_{w_{ij}>0} + h_{i}1_{w_{ij}<0}\})$$

$$= \max \left(0, \sum_{i} I_{i}1_{w_{ij}>0} \cdot w_{ij} + h_{i}1_{w_{ij}<0} \cdot w_{ij} + b_{j}\right)$$

$$= \max \left(0, \sum_{i} I_{i} \cdot w_{ij}^{+} + h_{i} \cdot w_{ij}^{-} + b_{j}\right) = 0$$

Herleitung z^B-Regel

■ Dieses Intervall ist also für die Suche zulässig und wir fügen die Richtung $v_i^{(j)}$, mit

$$v_i^{(j)} = x_i - I_i 1_{w_{ij} > 0} + h_i 1_{w_{ij} < 0},$$

in die Grundformel

$$\sum_{j} \frac{v_i^{(j)} w_{ij}}{\sum_{i} v_i^{(j)} w_{ij}} R_j$$

• ein und erhalten unsere finale $z^{\mathcal{B}}$ -Regel

$$R_{i} = \sum_{j} \frac{z_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}}{\sum_{i} z_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}} R_{j}$$

Anwendung auf den Pascal-Datensatz

- VGG16 trainiert für Multilabel-Klassifizierung für die Klassen Mensch und Pferd
- $z^{\mathcal{B}}$ -Regel wurde bei Anwendung aller Regeln für das Inputlayer verwendet
- LRP-Composition:
 - LRP-0 auf Dense-Layern
 - lacktriangle LRP- ϵ auf mittleren sechs Conv-Layern
 - lue LRP- γ auf den letzten sechs Conv-Layern vor Inputlayer

Aufgabe

- Vergleich LRP DTD theoretisch
- Ggf. Ausblick Min-Max?