ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 8: Contingency Tables

William Marsh

Outline

- Aim: Understand how to use a Contingency Table to look at the relationship between categorical variables
- Probability recap: joint and conditional
- Contingency tables (cross tabulation)
- Comparing categorical variables
- Odds and odds ratios
- Comparing distribution (of a continuous variable) for different categories

Context

- Correlation: do two variables 'vary together'?
- Strength of correlation
 - Approach: average of $(x_i \mu_X)(y_i \mu_Y)$
 - ... also written $(x_i \bar{x})(y_i \bar{y})$ for sample values
 - Only applies to continuous variables (with a mean)
- What about categorical variables?
- ANS: look at proportions of one variable, conditional on the values of others

Probability Recap

Recap on Joint and Conditional Probability

What is P(A)?

- Survey of plants
- Plant height (H)
 - Categorical variable
 - Values: tall (t), short (s)
- P(H) is a <u>table</u>

Tall	7/12
Short	5/12

How do we estimate probabilities from data?

Probabilities Come from Counts

Counts in each category

Plant	Height
100	tall
101	tall
102	short
103	tall
104	short
105	short
106	short
107	tall
108	short

data: records of 60 plants

tall	35	di
short	25	to

divide by	
total	

tall	7/12
short	5/12

Total = 1

table of probabilities (sample)

Joint Probability P(H, L)

Counts in two Categories

	Stem Height (H)		
Leaves (L)	Short (s)	Tall (t)	
Broad (b)	9	21	
Long (g)	16	14	

Still 60 plants in total

Probabilities

P(H,L) is also a table

	Stem Height (H)		
Leaves (L)	Short (s)	Tall (t)	
Broad (b)	9/60	21/60	
Long (g)	16/60	14/60	

Total is 1

Conditional Probability

- Look at some entries in the table
 - The short ones

	Stem H	leight (H)
Leaves (L)	Short (s)	Tall (t)
Broad (b)	9/60	21/60
Long (g)	16/60	14/60

25 short plants

P(L | H = short)

broad	9/25
long	16/25

probability of leaf types given the plant is short

Conditional Probability

- Look at some entries in the table
 - The short ones or the tall ones

	Stem Height (H)			
Leaves (L)	Short (s)		Tall (t)	
Broad (b)	9/60		21/60	
Long (g)	16/60		14/60	

25 short plants35 tall plants

P(L | H = short)

broad	9/25
long	16/25

 $P(L \mid H = tall)$

broad	21/35
long	14/35

probability of leaf types given the plant is **short**

probability of leaf types given the plant is **tall**

Conditional Probabilities Table

- P(L|H) a table of tables
 - Each column is a probability distribution

Loovoo (L)	Stem H	leight (H)
Leaves (L)	Short (s) Tall (t)	
Broad (b)	9/25	21/35
Long (g)	16/25	14/35

$$P(L \mid H = short)$$

$$P(L \mid H = tall)$$

total is 1

total is 1

Probabilities and Tables: Summary

- Assume variable with two categories (binary)
 - Generalises to more categories

Probability	Table Entries	Total	
P(H)	2: short & tall	1	
P(L)	2: broad & long	1	
P(H, L)	4: (s, b) & (s, g) & (t, b) & (t, g)	1	
P(L, H)	Same table as P(H, L)		
P(H L)	Broad column: s & t Long column: s & t	1 1	
P(L H)	Short column: b & g Tall column: b & g	1 1	

Relationship between Joint and Conditional Probabilities

Contingency Tables

Recall Rule for P(A,B)

$$P(A,B) = P(A).P(B|A)$$

$$P(A,B) = P(B).P(A|B)$$

- The joint probability of A & B is the probability of A multiplied by the probability of B given A
- (also the other way around)

P(H).P(L|H) Using Tables

Marginalisation

Going from p(H, L) to p(H) or p(L)

Leaves (L)	Stem Ho	eight (H)	
Leaves (L)	Short (s)	Tall (t)	
Broad (b)	9/60	21/60	
Long (g)	16/60	14/60	
			d up value with me height
	25/60	35/60	

$$p(H) = \sum_{l \in \{b,g\}} p(H, L = l) \qquad p(L) = \sum_{h \in \{s,t\}} p(H = h, L)$$

$$p(L) = \sum_{h \in \{s,t\}} p(H = h, L)$$

Independence

If two variables A, B are independent then:

- p(A | B) = p(A)
 - knowing B makes not difference to what A to expect
- p(B | A) = p(B)
 - Same the other way around
- p(A, B) = p(A).p(B)
 - The joint probability is given by the product
- Dependent?
 - If $p(A \mid B=b1)$ differs from $p(A \mid B=b2)$

Quiz 1

Python Nugget

Keyword parameters

Keyword Parameters

- Function
 parameters can be
 given by
 - Position
 - Keyword
- Keywords have a default value
- Also allows 'extra' parameters

```
def addxy(x, y=1):
    return x + y

addxy(2, 3) # result 5
    addxy(2, y=3) # result 5
    addxy(2) # result 3 - default
addxy(y = 3) # error
```

Examples of Keywork Arguments

pandas.DataFrame

class pandas. DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)

[source]

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

Data structure also contains labeled thought of as a dict-like container for

Parameters: data : ndarray (struc

Dict can contain insertion-order.

Changed in version

index: Index or arra

Index to use for a no index provide

columns : Index or a

Column labels to provided.

dtype: dtype, defau

Data type to for

copy: bool, default

Copy data from

pandas.DataFrame.plot

DataFrame.plot(*args, **kwargs)

Make plots of Series or DataFrame.

Uses the backend specified by the option plotting.backend. By default, matplotlib is used.

Parameters: data: Series or DataFrame

The object for which the method is called.

x: label or position, default None

Only used if data is a DataFrame.

y: label, position or list of label, positions, default None

Allows plotting of one column versus another. Only used if data is a DataFrame.

kind: str

The kind of plot to produce:

'line': line plot

· 'bar': vertical

**kwargs

Options to pass to matplotlib plotting method.

Cross Tabulation

Contingency Tables

Generalising to More Variables

Contingency tables can show counts over many categories

	(Seed) Size	Stem Height (H)	
Leaves (L)	(Z)	Short (s)	Tall
	Large (I)	4	7
Broad (b)	Medium (m)	3	1 0
	Small (s)	2	4
	Large (I)	7	3
Long (I)	Medium (m)	5	4
	Small (s)	5	6

$$p(L=b, H=t, Z=m) = 10/60$$

Probability tables given by 'normalising'

Contingency Table Summary

- Also called 'cross tabulation'
 - Pandas has 'crosstab'

- Table shape not fixed
 - Can have multiple variables on each axis
- Table contains
 - Counts

Comparing Categories

Heart Data Again

Heart Disease: Categorical

Variable	Meaning	Type
Sex	1 = male, 0 = female	Categorical
ChestPain	The chest pain experienced (1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic)	Categorical
Bsugar	The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)	Binary
Angina	Exercise induced angina (1 = yes; 0 = no)	Binary
RestECG	Resting electrocardiographic measurement (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable e left ventricular hypertrophy)	Ordinal (?)
ECG_ST_slope	The slope of the peak exercise ST segment (1: upsloping, 2: flat, 3: downsloping)	Categorical
Vessels	The number of major vessels (0-3) coloured by fluoroscopy	Ordinal
Thallium	Thallium update test (0 = normal; 1 = fixed defect; 2 = reversible defect)	Categorical
Disease	Heart disease (0 = no, 1 = yes)	Binary

Questions: Do They Vary Together?

- Two categorical variables
 - Does knowing one change value the distribution of the other

- 'Dependent' or 'response' variable: Disease
 - Often one of the variables

Cross Tabulation Example

- 'Crosstab' counts occurrences in categories
- Can 'normalise'
- Results are joint or conditional probability distributions

p(Sex, Disease)

Sex	M	F
Disease		
False	0.30	0.24
True	0.38	0.08

'Normalise all'

p(Disease | Sex)

Sex	M	F
Disease		
False	0.44	0.74
True	0.56	0.26

'Normalise columns'

Cross Tabulation Example

Joint probability

p(Sex, Disease)

Sex	M	F
Disease		
False	0.30	0.24
True	0.38	0.08

Cross Tabulation Example

Conditional probability
 p(Disease | Sex)

Which Conditional Probability?

Joint distribution: easy to understand, but harder to see 'association'

Is this the best way around?

Prefer: p(Disease | ?)

Joint Probability of Disease and ECG ST slope

Probability and Odds

Odds is Another Way to Write a Probability

- Two rules of probability
 - $-0 \le p(A) \le 1$
 - -p(A) + p(not A) = 1 (we write 'not A' as A)
- Definition of odds: $o_A = \frac{p(A)}{p(\bar{A})}$
 - Odds ranges from zero upwards
 - $-o_{\bar{A}}={}^1\!/_{o_A}$ so that o_A . $o_{\bar{A}}=1$
- Example: p(A) = 75% then $odds_A = 75/25 = 3$
 - Odds > 1 implies probability > 50%
 - Odds < 1 implies probability < 50%</p>

Odds / Odds Ratio of Heart Disease

- From sample probabilities
 - $\text{ odds}_{\text{Disease I M}} = 56/44 = 1.27$
 - $\text{ odds}_{\text{Disease | F}} = 26/74 = 0.35$

Sex	M	F
Disease		
False	0.44	0.74
True	0.56	0.26

- Observation:
 - Men have increased chance of heart disease
 - Odds ratio: odds_{Disease | M} / odds_{Disease | F} = 3.6
- 'Odds ratio' can measure strength of one variable on another (for binary variables)

Quiz 2

Comparing Continuous Distributions for Categories

Heart Disease: Continuous

Variable	Meaning	Type
Age	The person's age in years	Continuous
RestBP	The person's resting blood pressure (mm Hg on admission to the hospital)	Continuous
Chol	The person's cholesterol measurement in mg/dl	Continuous
MaxRate	The person's maximum heart rate achieved	Continuous
ECG_ST_d	ST depression induced by exercise relative to rest ('ST' relates to positions on the ECG plot)	Continuous

Question: Do They Vary Together?

- A categorical variable and a continuous one
 - Is the continuous variable distribution different for the different categorical values

- Example: look at the different distribution of 3 continuous variables by disease status
 - Histograms
 - Kernel density
 - Boxplot

Histograms

Using Kernel Density

 Kernel Density Estimator (KDE): smoothed histogram

BoxPlots

Quiz 3

Summary

- Comparing categorical variables
 - Look at conditional probability or odds ratio
- Contingency tables
 - Counting, by category
 - Normalised to give probabilities (joint or conditional)
- Which conditional?
 - Very easy to get confused label clearly
- Continuous by category
 - use boxplot, KDE or histogram
- Future: are the differences we see 'reliable'?