Orthogonality Computations

Problem 1. Let

$$A = \left(\begin{array}{rrr} 3 & 4 \\ -3 & -4 \\ 1 & 1 \\ -2 & 0 \end{array}\right).$$

- a. Use the Rank Theorem and Theorem 3 on page 381 to compute $\dim((\operatorname{Col} A)^\perp)$ without any row reduction.
- b. Find a basis for $(\operatorname{Col} A)^{\perp}$. Use this to verify your computation in part (a).

Problem 2. Let

$$\mathbf{u} = \left(\begin{array}{c} 3\\2\\4 \end{array}\right).$$

- a. Find a basis for $(\operatorname{Span}\{\mathbf{u}\})^{\perp}$.
- b. Choose a nonzero vector \mathbf{v} in $(\mathrm{Span}\{\mathbf{u}\})^{\perp}$ (there are many possibilities). Find a basis for $(\mathrm{Span}\{\mathbf{u},\mathbf{v}\})^{\perp}$.
- c. Choose a nonzero vector \mathbf{w} in $(\operatorname{Span}\{\mathbf{u},\mathbf{v}\})^{\perp}$ (there are many possibilities). Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent.