VE203 Discrete Math

Spring 2022 — Worksheet 5 Solutions

March 25, 2022

Exercise 5.1 Group

In Exercises 1 through 6, determine whether the binary operation * gives a group structure on the given set. If no group results, give the first axiom in the order $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ from Definition that does not hold.

- 1. Let * be defined on \mathbb{Z} by letting a*b=ab.
- 2. Let * be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting a * b = a + b.
- 3. Let * be defined on \mathbb{R}^+ by letting $a * b = \sqrt{ab}$.
- 4. Let * be defined on \mathbb{Q} by letting a*b=ab.
- 5. Let * be defined on the set \mathbb{R}^* of nonzero real numbers by letting a * b = a/b.
- 6. Let * be defined on \mathbb{C} by letting a * b = |ab|.

Solution:

- 1. No. G_3 fails.
- 2. Yes
- 3. No. G_1 fails.
- 4. No. G_3 fails.
- 5. No. G_1 fails.
- 6. No. G_2 fails.

Exercise 5.2 Group

Let S be the set of all real numbers except -1. Define * on S by

$$a * b = a + b + ab.$$

- a. Show that * gives a binary operation on S.
- b. Show that $\langle S, * \rangle$ is a group.
- c. Find the solution of the equation 2 * x * 3 = 7 in S.

Solution:

a. We must show that S is closed under *, that is, that $a+b+ab \neq -1$ for $a,b \in S$. Now a+b+ab=-1 if and only if 0=ab+a+b+1=(a+1)(b+1). This is the case if and only if either a=-1 or b=-1, which is not the case for $a,b \in S$.

b. Associative: We have a*(b*c) = a*(b+c+bc) = a+(b+c+bc) + a(b+c+bc) = a+b+c+ab+ac+bc+abc and (a*b)*c = (a+b+ab)*c = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc. Identity: 0 acts as identity element for *, for 0*a = a*0 = a.

Inverses: $\frac{-a}{a+1}$ acts as inverse of a, for

$$a * \frac{-a}{a+1} = a + \frac{-a}{a+1} + a \frac{-a}{a+1} = \frac{a(a+1) - a - a^2}{a+1} = \frac{0}{a+1} = 0$$

c. Because the operation is commutative, 2*x*3 = 2*3*x = 11*x. Now the inverse of 11 is -11/12 by Part(**b**). From 11*x = 7, we obtain

$$x = \frac{-11}{12} * 7 = \frac{-11}{12} + 7 + \frac{-11}{12} = \frac{-11 + 84 - 77}{12} = \frac{-4}{12} = -\frac{1}{3}$$

Exercise 5.3 Subgroup

In Exercises 1 through 6, determine whether the given subset of the complex numbers is a subgroup of the group \mathbb{C} of complex numbers under addition.

- $1. \mathbb{R}$
- $2. \mathbb{Q}^+$
- $3.7\mathbb{Z}$
- 4. The set $i\mathbb{R}$ of pure imaginary numbers including 0
- 5. The set $\pi \mathbb{Q}$ of rational multiples of π
- 6. The set $\{\pi^n \mid n \in \mathbb{Z}\}$

Solution:

- 1. Yes
- 2. No, there is no identity element.
- 3. Yes
- 4. Yes
- 5. Yes
- 6. No, the set is not closed under addition.

Exercise 5.4 Cyclic Group

In Exercises 1 through 5, find all orders of subgroups of the given group.

- 1. \mathbb{Z}_6
- $2. \mathbb{Z}_8$
- 3. \mathbb{Z}_{12}
- 4. \mathbb{Z}_{20}
- 5. \mathbb{Z}_{17}

Solution:

- 1. 1, 2, 3, 6
- 2.1, 2, 4, 8
- 3. 1, 2, 3, 4, 6, 12
- 4. 1, 2, 4, 5, 10, 20
- 5. 1,17

Exercise 5.5 Permutation Group

In Exercises 1 through 5, compute the indicated product involving the following

permutations in
$$S_6$$
: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$, $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$

- 1. $\tau \epsilon$
- $2. \tau^2 \sigma$
- 3. $\mu\sigma^2$
- 4. $\sigma^{-2}\tau$
- 5. $\sigma^{-1}\tau\sigma$

Solution:

$$1. \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{array}\right)$$

Exercise 5.6 Permutation Group

In Exercises 1 through 4, compute the expressions shown for the permutations σ, τ and μ defined prior to Exercise 5.5 .

- 1. $|\langle \sigma \rangle|$
- 2. $|\langle \tau^2 \rangle|$
- 3. σ^{100}
- 4. μ^{100}

Solution:

1. Starting with 1 and applying σ repeatedly, we see that σ takes 1 to 3 to 4 to 5 to 6 to 2 to 1, so σ^6 is the smallest possible power of σ that is the identity permutation. It is easily checked that σ^6 carries 2, 3, 4, 5 and 6 to themselves also, so σ^6 is indeed the identity and $|\langle \sigma \rangle| = 6$.

2.
$$\tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 1 & 5 & 6 \end{pmatrix}$$
 and it is clear that $(\tau^2)^2$ is the identity. Thus we have $|\langle \tau^2 \rangle| = 2$.

3. Because σ^6 is the identity permutation (see Exercise 6), we have

$$\sigma^{100} = (\sigma^6)^{16} \sigma^4 = \sigma^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

4. We find that μ^2 is the identity permutation, so $\mu^{100} = (\mu^2)^{50}$ is also the identity permutation.

Exercise 5.7 Homomorphism

Determine whether the given map ϕ is a homomorphism.

- 1. Let $\phi: \mathbb{Z} \to \mathbb{R}$ under addition be given by $\phi(n) = n$.
- 2. Let $\phi: \mathbb{R} \to \mathbb{Z}$ under addition be given by $\phi(x) = \text{the greatest integer} \leq x$.
- 3. Let $\phi: \mathbb{R}^* \to \mathbb{R}^*$ under multiplication be given by $\phi(x) = |x|$.

Solution:

- 1. It is a homomorphism, because $\phi(m+n) = m+n = \phi(m) + \phi(n)$.
- 2. It is not a homomorphism, because $\phi(2.6 + 1.6) = \phi(4.2) = 4$ but $\phi(2.6) + \phi(1.6) = 2 + 1 = 3$.
 - 3. It is a homomorphism, because $\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$ for $x, y \in \mathbb{R}^*$.

Exercise 5.8 Coset and Lagrange Theorem

- 1. Find all cosets of the subgroup $4\mathbb{Z}$ of $2\mathbb{Z}$.
- 2. Find all cosets of the subgroup $\langle 2 \rangle$ of \mathbb{Z}_{12} .
- 3. Find all cosets of the subgroup $\langle 4 \rangle$ of \mathbb{Z}_{12} .
- 4. Find all cosets of the subgroup $\langle 18 \rangle$ of \mathbb{Z}_{36} .
- 5. Find the index of $\langle 3 \rangle$ in the group \mathbb{Z}_{24} .
- 6. Let $\sigma = (1, 2, 5, 4)(2, 3)$ in S_5 . Find the index of $\langle \sigma \rangle$ in S_5 .
- 7. Let $\mu = (1, 2, 4, 5)(3, 6)$ in S_6 . Find the index of $\langle \mu \rangle$ in S_6 .

Solution:

- 1. $4\mathbb{Z} = \{\cdots, -8, -4, 0, 4, 8, \cdots\}, 2 + 4\mathbb{Z} = \{\cdots, -6, -2, 2, 6, 10, \cdots\}$
- 2. $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}, 1 + \langle 2 \rangle = \{1, 3, 5, 7, 9, 11\}$
- 3. $\langle 4 \rangle = \{0, 4, 8\}, \quad 1 + \langle 4 \rangle = \{1, 5, 9\}, \quad 2 + \langle 4 \rangle = \{2, 6, 10\}, \quad 3 + \langle 4 \rangle = \{3, 7, 11\}$
- 4. $\langle 18 \rangle = \{0, 18\}, \quad 1 + \langle 18 \rangle = \{1, 19\}, \quad 2 + \langle 18 \rangle = \{2, 20\}, \quad \cdots, \quad 17 + \langle 18 \rangle = \{17, 35\}$
- 5. $\langle 3 \rangle = \{1, 3, 6, 9, 12, 15, 18, 21\}$ has 8 elements, so its index (the number of cosets) is 24/8 = 3.
- 6. $\sigma = (1, 2, 5, 4)(2, 3) = (1, 2, 3, 5, 4)$ generates a cyclic subgroup of S_5 of order 5, so its index (the number of left cosets) is 5!/5 = 4! = 24.
- 7. $\mu = (1, 2, 4, 5)(3, 6)$ generates a cyclic subgroup of S_6 of order 4, (the cycles are disjoint) so its index (the number of left cosets) is 6!/4 = 720/4 = 180.

Reference

- 1. Rosen, Kenneth H., and Kamala Krithivasan. Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education, 2012.
- 2. Fraleigh, John B. A first course in abstract algebra. Pearson Education India, 2003.