1 Введение

Что будет затронуто:

- Введение в функциональный анализ
- Алгебраические структуры, геометрия графов
- Спектральная теория
- Гармонический анализ
- Приложения к дискретной математике

Лекция 1. Алгебраические структуры

2 Алгебраические структуры

Определение 1. Напоминание определений основных структур:

- Полугруппа множество с ассоциативной операцией.
- Полугруппа с единицей.
- Группа множество с обратимой ассоциативной операцией.

В том числе свободная группа и группа, заданная соотношениями $G = \langle S \mid \mathcal{A} \rangle.$

Автоматные группы. Пусть задан конечный преобразователь F с двумя состояниями $\{a,b\}$. Несколько преобразователей можно комбинировать. Получился моноид. $G(\mathcal{A}) = \langle \mathcal{A}_a, \mathcal{A}_b \rangle$, где \mathcal{A} — обратимый преобразователь, \mathcal{A}_x — преобразователь с начальным состоянием x.

3 Немного конечномерной линейной алгебры

Рассмотрим вычисление аналитических функций от матриц. $f(z) = \sum_{k=0}^{\infty} a_k z^k$.

Метод: применение интерполяционных многочленов. Если оператор диагонализуем, то все ясно, нужно знать только $f(\lambda_i)$. Утверждается, что всегда работает следующее: для каждой Жорданового блока запишем $P(\lambda_1) = f(\lambda_1), \ldots, P^{(r_1-1)}(\lambda_1) = f^{(r_1-1)}(\lambda_1)$, где r_1 — кратность λ_1 , интерполируем это и вычислим P(A).