Bioinorganic Chemistry (BIC) III. Metal-Dependent Hydrolase and Lyase Enzymes

 $Dr. (O_6S_4C_4Ar)$ Lung Wa CHUNG(钟龙华) (oscarchung@sustech.edu.cn) Department of Chemistry

Review on Part II

Biological ligands for coordination to metals: Generally, heteroatoms of biological molecules (e.g. proteins, DNA/RNA, cofactor) as potential ligands can coordinate to metal: coordination modes depends on ligands, metal(s), biological molecules.

Coordination to metal can sometimes maintain the overall (folded) structure, but sometimes only stabilize its binding site in some biological molecules.

Storage & Transport of small molecules (e.g. O_2 and metal ions) by some bioinorganic systems can keep **sufficient amounts/distribution** (not too many or few) of the molecules for various biological functionals.

Classification of Enzymes

Enzyma Function

Enzyma Class

	Elizyllie Class	Elizyme Function
EC1	Oxidoreductase	Oxidation-reduction
EC2	Transferase	Transfer of a group from one compound to another
EC3	Hydrolase	Hydrolysis
EC4	Lyase	Nonhydrolytic addition or removal of groups
EC5	Isomerase	Conversion of a substance into an isomeric form
EC6	Ligase	Synthesis of a large molecule from two smaller ones

EC, Enzyme Commission number: Classification scheme for enzymes based on the **chemical reactions** involved.

Hydrolases

A family of enzymes catalyze hydrolysis of a chemical bond, in which the metal (cofactor) acts as a Lewis acid generally.

$A-B + H_2O \rightarrow A-OH + B-H$

It can be further classified based on the bond involved:

EC 3.1: Ester bonds

EC 3.2: Sugars (DNA glycosylases, glycoside hydrolase)

EC 3.3: Ether bonds EC 3.4: Peptide bonds (proteases/peptidases)

EC 3.5: C-N bonds other than peptide bonds

EC 3.6: Acid anhydrides

EC 3.7: C-C bonds

EC 3.8: Halide bonds

EC 3.9: P-N bonds

EC 3.10: S-N bonds

Lyases

A family of enzymes catalyze non-hydrolytic addition or removal of groups (non-H₂O).

It can be further classified based on the bond involved:

EC 4.1: C-C Lyases, e.g. decarboxylases, aldehyde

Iyases & others C-C Iyases

EC 4.2: C-O Lyases

EC 4.3: C-N Lyases

EC 4.4: C-S Lyases

EC 4.5: C-Halide Lyases

EC 4.6: P-O Lyases

EC 4.99: Other lyases

- For metal-dependent hydrolases & lyases, a metal cation, or sometimes cations, (as the cofactor) with a high Lewis acidity is important for many hydrolysis & condensation reactions under physiological conditions.
- The general roles of the metal(s):
- (1) **activate** a metal-bound **nucleophile** (e.g. ionization of M-OH₂ to give a **more reactive** M-OH form),
- (2) stabilize a metal-bound intermediate/product, or (3) sometimes bring the reactant species in the active site (structural role).

M + H₂O → M-OH + H⁺
Zn(II), p
$$K_a$$
: ~8.8; Mg(II), p K_a : ~11.4
p K_W : 14.0 (25 deg.)

- <u>Non-redox</u> metals are widely used in these enzymes to protect sensitive functional groups in proteins and nucleic acids from oxidative damage. Namely, Zn²⁺ & Mg²⁺ (sometimes Ca²⁺) are common metals.
- "Intermediate" Lewis acid Zn²⁺ ion center in these enzymes is usually tetrahedral & coordinates to "Intermediate" base histidine (His) & sometimes to soft cysteine (Cys) or hard carboxylate residues or H₂O.
- Whereas, harder Mg²⁺ ion center in these enzymes typically coordinates to hard carboxylate residues or water molecules (usually octahedral).

Magnesium (Mg)

Some Mg-dependent enzymes require at least two metal-binding sites: (1) an allosteric regulatory site modulating either structure or binding (structural role), (2) a catalytic site.

Mg-catalyzed 1,2-hydridé shift: Mg2²⁺ as the catalytic ion, while Mg1²⁺ likely plays a structural role.

Proposed Mechanism

 $Mg2^{2+}$

Kinetic results suggests:

- Mg²⁺ first binds to site 1 (higher affinity), facilitating substrate binding & proper orientation and stabilizing intermediates.
- The **second Mg**²⁺ then binds, & **initiates the reaction**.
- A Mg²⁺-bound water molecule likely assists proton transfer between the hydroxyl and carbonyl oxygens.

HO

Asp256

Glutamine Synthetase: Mg

Catalyzes the formation of **glutamine** (**GIn**) from **glutamate** (**Glu**) & **NH**₃ with hydrolysis of ATP.

Crystal structure
& kinetic studies:
metal-binding
sites (high & low
affinity) with a Mg-Mg distance (5.8 Å).

• The high-affinity site (catalytic cofactor), while the weakly bound ion (possible binding of an Mg-ATP chelate) in the low-affinity site.

Zinc (Zn)

• pK_a for Zn^{2+} (aq) is ~9-10, & can drop ~7 in an enzyme environment with the **more hydrophobic** environment (favoring reduction in the overall charge).

HIS \neg $^{2+}$ HIS - Zn II - OH $_2$

hydrolysis reactions.

• While, Zn²⁺ forms kinetically inert bonds to His residues.

TABLE 12.1 Coordination Motifs in Catalytic Sites of Some Typical Mononuclear Zinc Enzymes

Carbonic anhydrase His-X-His-X₂₂-His

β-lactamase His-X-His-X₁₂₁-His

Thermolysin His-X₃-His-X₁₉-Glu

Carboxypeptidase His-X₂-Glu-X₁₂₃-His

Alcohol dehydrogenase Cys-X₂₀-His-X₁₀₆-Cys

Alkaline phosphatase Asp-X₃-His-X₈₀-His

Adenosine deaminase His-X-His-X₁₉₆-His

Carbonic anhydrase

Carbonic Anhydrase (CA): Zn

$$CO_2 + H_2O \rightarrow HCO_3^- + H^+$$

- Catalyzes hydration of CO₂, with acceleration of ~10⁷ relative to the uncatalyzed reaction.
- The first Zn-dependent enzyme to be discovered.
- Prevalent in red blood cells & key in respiration and pH buffering: CA helps transport of CO₂.

• Zn²⁺ with **3 His** and **1 labile** H₂**O** (distorted tetrahedron coordination). Water molecules in the active site play key structural & functional roles (proton transfer).

- A **Zn-bound hydroxide** (from **deprotonation**) attacks CO_2 . The Zn^{2+} ion also **polarizes the O=C bond** and stabilizes the developing negative charge (Lewis acid).
- Subsequent uptake of a H₂O & release of HCO₃⁻.

Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride

Nat. Chem. 2021, 312

Pengfei Ji¹, Jeeyoung Park¹, Yang Gu¹, Douglas S. Clark^{1,2} and John F. Hartwig¹

Carboxypeptidase: Zn

• Carboxypeptidase A (CPA): a digestive enzyme that hydrolyzes/cleaves a peptide bond of residues with aromatic or aliphatic side-chains at the carboxyterminal (C-terminal) of a protein.

 Carboxypeptidase B (CPB) is similar to CPA, but it favors to cleave a peptide bond of residues with basic residues (Arg, Lys).

- The Zn ion in CPA: tetrahedral with 2 **His** ligands, 1 bidentate **Glu** & 1 **H₂O**, which is hydrogen bonded to Ser197 and Glu270.
- In the presence of the substrate, the bound Glu shifts to monodentate coordination.
- The enzyme can also hydrolyze esters.

Two Proposed Mechanisms

Form an anhydride intermediate

 Hydrolyzes/cleaves a peptide bond of residues at the amino-terminal (N-terminal) of a protein. A dinuclear Zn active site was found & both Zn ions are required with different roles.

• The first group: leucine aminopeptidase from bovine lens; the second group: leucine aminopeptidases AAP from *Aeromonas proteolytica* and SAP from *Streptomyces griseus*.

Liver Alcohol Dehydrogenase (LADH): Zn

- Formally, LADH catalyzes an oxidation of a primary or secondary **alcohol** to give an **aldehyde** or **ketone**, respectively, through **hydride transfer to NAD**+.
- LADH in mammalian liver are dimeric proteins with 2 Zn²⁺ ions in each subunit: one is catalytically active (coordinating with 1 His, 2 (soft) Cys & 1 H₂O) & the other Zn plays a structural role (with 4 Cys).

Proposed Mechanism

Arginase: Mn

- Catalyzes hydrolysis of arginine to give urea & ornithine (the final step in the urea cycle).
- A trimer protein; 2 Mn ions has 3 bridging ligands (a bidentate Asp, a monodentate Asp and a hydroxide) in the active site.

(Mn-Mn: ~3.3 Å)

• The substrate does not bind directly to the metal cofactors. Why? Why not proton transfer to the terminal N atom?

- Hydrolyzes urea to give NH₃ & carbamate, which decomposes to give another NH₃ & HCO₃⁻ (key role in nitrogen metabolism in plants & microbes).
- It was the **first Ni enzyme** & contains **two Ni ions**.

Two Proposed Mechanisms

1. A pathway via the bridging hydroxide as the nucleophile

 Why the urea O preferentially coordinates to the left Ni center?

2. A pathway via the terminal hydroxide as the nucleophile

Hydrolysis or Condensation Reactions with Nucleic Acids

NUCLEASE

Hydrolysis or Condensation Reactions with **Nucleic Acids**

 Almost all these enzymes require divalent metal ion cofactor to promote activity. Mg ion (relatively labile) is typically used, while Ca & Zn ions are also used in some cases.

Ion	Coordination Numbers	Geometry a	Radius (Å)	Ligand P
Mg^{2+b}	6	oct	0.65	$O; (H_2O)$
Mn^{2+}	5, 6	dist oct, sq pyr	0.85	O, N,

tet, sq pyr

dist oct, tet, sq pyr

0.81

0.79

N, S

O, N, S

4, 5, 6

4, 5

 Zn^{2+}

^a Octahedral = oct, distorted octahedral = dist oct, square pyramidal = sq pyr, tetrahedral = tet.

^b Maguire, M. E. and Cowan, J. A., "Magnesium Chemistry and Biochemistry", *Biometals* 15, 203–210 (2002).

3 Generic Models for Hydrolysis of Phosphodiester

Nucleases (cleavage of poly-nucleotide chain)

Exonucleases

 Cleave fragments from **end** of a polynucleotide chain (DNA or RNA) by **hydrolysis** of the terminal phosphodiester linkage.

dн_{z О}

5' CH2 0

ÓΗ

Base

Base

Exonuclease III

 $HO - \neq = 0$

ÓΗ

Crystal Structure of WRN Exonuclease

Endonucleases

• Endonucleases cleave the phosphodiester bond within a polynucleotide chain.

• Restriction endonucleases cleave only at very specific nucleotide sequences (Most restriction enzymes are endonucleases).

Restriction Endonucleases

• A few Mg-dependent nucleases: restriction endonucleases. Some uncertainty about the metal cofactor stoichiometry, although an inner-sphere pathway seems to be likely.

Apurinic/apyrimidinic (AP) Endonuclease

Human base excision repair enzyme APE1

Nature **2000**, 403. 451

E. Coli Endonuclease IV

RNase H (Ribonuclease H)

Staphylococcal Nuclease Arg87 HN N—Н CH₃ H_2N NH Arg35 Asp21 Ca²⁺ Asp40 Glu43 Thr41

The active site with an inhibitor thymidine-3',5'-bisphosphate

enzyme hydrolyzes DNA or RNA.

• Ca²⁺ binds the to phosphodiester stabilizes the leaving group after hydrolysis.

- CRISPR (clustered regularly interspaced short palindromic repeat)-associated protein 9 (Cas9)
- RGENs (RNA-guided engineered nucleases); crRNA (CRISPR RNA); tracrRNA (a transactivating crRNA)

 Nat. Rev. Genet. 2014, 321; Annu. Rev. Biochem. 2013, 237

RNase III

Polymerases

- Catalyzes replication & synthesis of DNA or RNA strands.
- Typically require 2 metals (usually Mg²⁺), & 2 bridging Asp groups.
- Acidic active-site residues can interact with the Mg-phosphate chelate to promote nucleophilic attack at the phosphate.
- Both metals help stabilize the negative charge on the 5-coordinate transition state & the leaving group during phosphoryl or nucleotidyl transfer reactions.

polymerase β

Catalyzes synthesis of DNA from deoxyribonucleotides

• (left) **DNA polymerase** catalyzed phosphodiester bond formation (Mg²⁺); (right) Transition-state model for phosphodiester bond formation in **RNA polymerase**.

Phosphoryl Transfers

- Enzymes that catalyze **phosphorylation** of substrates (usually Ser, Thr, or Tyr residues) typically use Mg²⁺-chelates to facilitate nucleophilic attack at the phosphate.
- Hydrolysis of simple phosphate esters is often catalyzed by enzymes with transition-metal cofactors, e.g. alkaline phosphatase & purple acid phosphatase.

3 possible mechanisms

2-Metal-ion-dependent Phosphoryl Transfer Reaction

- (a) Substrates: phosphate & water (or RO-H).
- **(b) Intermediate**: the **2 metals** are always coordinated by **oxygen of the phosphate** and a conserved Asp.
- (c) Products: a new phosphoryl bond is formed between the nucleophile and phosphate.

Phosphoserine Phosphatase (PSP)

Active site with one Mg²⁺ (bacterial) or Ca²⁺ (human)

E. coli Alkaline Phosphatase

Phosphate monoester

or R'OH (instead of H₂O)

Alcohol Phosphate $O=P(OH)_2(OR')$ phosphotransferase

- Catalyzes removal of the phosphate groups.
- The optimal pH for activity:
 ~8 (basic) → a low pKa values for the Zn-bound water.

Proposed Mechanism

Kidney Bean Purple Acid Phosphatase

- The optimal pH for activity: acidic → the high pKa values for the bound water.
- The substrates in acid phosphatases are **possibly** less reactive than alkaline phosphatase → require stronger Lewis acid (Fe(III)).

- Some RNA molecules were found to have enzymatic activities in 1982 (so-called catalytic RNA, ribozymes, RNA enzymes, or RNAzymes).
- Single-stranded DNA molecules were also found to catalyze RNA cleavage in 1994 (so-called deoxyribozymes, DNA enzymes or DNAzymes).

Reactions Catalyzed by Catalytic Nucleic Acids^a

	Catalytic Activity				_	
Reaction ^b	Enzyme ^c	$k_{\rm cat}~({\rm min^{-1}})$	$K_{\rm m}~(\mu M)$	$k_{\rm cat}/k_{\rm u}$	<u>u</u>	
Phosphoester transfer	R-nat	0.1	1×10^{-3}	1011	(R-nat):	
•	R-lab	0.3	0.02	10^{13}	catalytic	RNA
Phosphoester cleavage	R-nat	1	0.05	10^{6}	derived	from
	R-lab	0.1	0.03	10^{5}		ПОШ
	D-lab	3	8×10^{-4}	10^{6}	naturally	
Polynucleotide ligation	R-nat	4	3	10^{6}	occurring	
	R-lab	100	9	10^{9}	•	
	D-lab	0.04	100	10^{4}	sources.	
Polynucleotide phosphorylation	R-lab	0.3	40	$> 10^{5}$		
Mononucleotide aminoacylation	R-lab	0.3	5×10^3	$> 10^{7}$	(R-lab):	
Polynucleotide aminoacylation	R-lab	1	9×10^3	10^{6}	,	
Aminoacyl ester hydrolysis	R-lab	0.02	0.5	10	catalytic	RNA
Aminoacyl transfer	R-lab	0.2	0.05	10^{3}	obtained	by in
Amide bond cleavage	R-lab			10^{2}	vitro selec	rtion
Amide bond formation	R-lab	0.04	2	10^{5}	villo selection.	
Peptide bond formation	R-lab	0.05	200	10^{6}		
N-Alkylation	R-lab	0.6	1×10^3	10^{7}	(D-lab):	
S-Alkylation	R-lab			10^{3}	,	DNIV
Oxidative DNA cleavage	R-lab			$> 10^{6}$	catalytic	DNA
Biphenyl rotation	R-lab	3×10^{-5}	500	10^{2}	obtained	by in
Porphyrin metallation	R-lab	0.9	10	10^{3}	vitro selec	ction
	D-lab	0.2	3×10^3	10^{3}		
Diels-Alder cycloaddition	R-lab	> 0.1	> 500	10^{3}		

2 Classes of Catalytic Nucleic Acids for Hydrolysis

- They are typically small (< 200 bases).
- M1 metal activates an internal 2'-OH for nucleophilic attack at the phosphorus of a phosphodiester bond & form 2',3'-cyclic phosphate & 5'-OH termini (e.g. in hammerhead, hairpin, hepatitis delta virus (HDV)).

2 Examples of Sequence of Catalytic RNA

Hammerhead Ribozyme

Hairpin Ribozyme

- These catalytic nucleic acids are larger (> 400 bases, e.g. ribonuclease P, group I and group II intron ribozymes).
- They use an **external nucleophile**, e.g. an activated nucleotide or water, to attack the adjacent phosphodiester to form 3'-OH and 5'-phosphate termini.

One Example of Sequence of Catalytic RNA

Catalytic Nucleic Acids	Functional	Nonfunctional					
Hammerhead ^b	$Mg^{2+}, Mn^{2+}, Ca^{2+}, \\ Cd^{2+}, Co^{2+}$	$\begin{array}{c} Ba^{2+},Sr^{2+},[Cr(NH_3)_6]^{3+},Pb^{2+},\\ Zn^{2+},Tb^{2+},Eu^{2+} \end{array}$					
Hairpin ^b	All tested, including $[Cr(NH_3)_6]^{3+}$						
Hepatitis δ virus ^b	$Mg^{2+}, Mn^{2+}, Ca^{2+}, Sr^{2+}$	Cd^{2+} , Ba^{2+} , Co^{2+} , Pb^{2+} , Zn^{2+}					
Neurospora VS ^b	Mg ²⁺ , Mn ²⁺ , Ca ²⁺						
RNase P^b	$Mg^{2+}, Mn^{2+}, Ca^{2+}$	Sr^{2+} , Ba^{2+} , Zn^{2+} , Co^{2+} , Cu^{2+} , Fe^{2+} , Ni^{2+}					
Tetrahymena Group I ^b	Mg^{2+}, Mn^{2+}	$Ca^{2+}, Sr^{2+}, Ba^{2+}, Zn^{2+}, Co^{2+}, Cu^{2+}$					
Tetrahymena Group II ^b	Mg^{2+}	Ca^{2+}, Mn^{2+}					
■ Mg²+, Mn²+, or Ca²+: generally essential for the catalytic							
function of most catalytic nucleic acids.							
● Structural role: facilitate folding to stable tertiary							
structures by charge neutralization with the anionic							
phosphodiester backbones.							
• Catalytic role: increase nucleophilicity of the							
nucleophile or stabilize the negative charge in transition							
states & products.							

Key Summary

Hydrolase: enzymes catalyze **hydrolysis** of a chemical bond.

General roles of the metal(s):

- 1. Structural role: bring the substrate into the active site & orient the substrate properly for the reactions.
- 2. Catalytic roles: as a Lewis acid to activate a metal-bound nucleophile (forming reactive M-OH or M-OR), stabilize the negative charge in transition states & leaving group/products.
- 3. Non-redox Zn²⁺ & Mg²⁺ are commonly used. The two metal ions are often required for the reactions.

Catalytic nucleic acids: a new class of enzymes.

Thank You for Your Attention! Any Questions?