OPERACIONES SOBRE LENGUAJES

Preguntas:

Pregunta 1

Dados $L_1 = \{ax : x \in \{a,b\}^*\}$ y $L_2 = \{x \in \{a,b\}^* : |x|_b \equiv 1 \pmod{2}\}$, proporcione las 10 primeras palabras en orden canónico de $L_1 \cup L_2$.

Solución:

a, b, aa, ab, ba, aaa, aab, aba, abb, baa

Pregunta 2

Dados $L_1 = \{ax : x \in \{a,b\}^*\}$ y $L_2 = \{x \in \{a,b\}^* : |x|_b \equiv 1 \pmod{2}\}$, proporcione las 10 primeras palabras en orden canónico de $L_1 \cap L_2$.

Solución:

ab, aab, aba, aaba, aaba, abaa, abbb, aaaab, aaba, aabaa

Pregunta 3

Dado $L_1 = \{ax : x \in \{a, b\}^*\}$, proporcione las 10 primeras palabras en orden canónico de $\overline{L_1}$.

Solución:

 λ , b, ba, bb, baa, bab, bba, bbb, baaa, baab

Pregunta 4

Dados $L_1 = \{x \in \{a, b\}^* : |x| \equiv 0 \pmod{2}\}$ y $L_2 = \{x \in \{a, b\}^* : |x|_b \equiv 1 \pmod{2}\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $L_1 \cap L_2$.

Solución:

 $L_1 \cap L_2 = \{x \in \{a, b\}^* : |x|_a \equiv |x|_b \equiv 1 \pmod{2}\}$

Pregunta 5

Dados $L_1 = \{ax : x \in \{a,b\}^*\}$ y $L_2 = \{bx : x \in \{a,b\}^*\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $L_1 \cup L_2$.

Solución:

$$L_1 \cup L_2 = \{a, b\}^+$$

Pregunta 6

Dado $L = \{x \in \{a, b\}^* : |x|_a \equiv 1 \pmod{2}\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje \overline{L} .

Solución:

$$\overline{L} = \{ x \in \{a, b\}^* : |x|_a \equiv 0 \pmod{2} \}$$

Pregunta 7

Dado $L=\{a^nb^m:n,m\geq 0\},$ proporcione una descripción formal (lo más concisa posible) del lenguaje $\overline{L}.$

Solución:

$$\overline{L} = \{x \in \{a, b\}^* : ba \in Seg(x)\}$$

Pregunta 8

Dados $L_1 = \{x \in \{a, b\}^* : |x| > 2\}$ y $L_2 = \{aa, ab, ba, bb\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $L_1 \cup L_2$.

Solución:

$$L_1 \cup L_2 = \{x \in \{a, b\}^* : |x| \ge 2\}$$

Pregunta 9

Dados $L_1 = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$ y $L_2 = \{x \in \{a, b\}^* : ba \in Seg(x)\}$, proporcione las 10 primeras palabras en orden canónico del lenguaje $L_1 - L_2$.

Solución:

 $\lambda, ab, a^2b^2, a^3b^3, a^4b^4, a^5b^5, a^6b^6, a^7b^7, a^8b^8, a^9b^9$

Pregunta 10

Dados $L_1 = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$ y $L_2 = \{x \in \{a, b\}^* : ba \in Seg(x)\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $L_1 - L_2$.

Solución:

$$L_1 - L_2 = \{a^n b^n : n \ge 0\}$$

Pregunta 11

Dados $L_1 = \{x \in \{a, b\}^* : |x| \equiv 0 \pmod{2}\}$ y $L_2 = \{x \in \{a, b\}^* : |x| \equiv 1 \pmod{2}\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje L_1L_2 .

Solución:

$$L_1L_2 = L_2 = \{x \in \{a, b\}^* : |x| \equiv 1 \pmod{2}\}$$

Pregunta 12

Dados $L_1 = \{x \in \{a,b\}^* : |x| \equiv 0 \pmod{2}\}$ y $L_2 = \{x \in \{a,b\}^* : |x| \equiv 0 \pmod{3}\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje L_1L_2 .

Solución:

$$L_1L_2 = \{a, b\}^* - \{a, b\}$$

Pregunta 13

Dado $L = \{x \in \{a, b\}^* : |x| = 2\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje L^3 .

Solución:

$$L^3 = \{x \in \{a, b\}^* : |x| = 6\}$$

Pregunta 14

Dado $L = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje L^3 .

Solución:

$$L^3 = L = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$$

Pregunta 15

Dado $L = \{a, ab\}$, proporcione las 10 primeras palabras en orden canónico de L^* .

Solución:

 λ , a, aa, ab, aaa, aab, aba, aaaa, aaab, aaba

Pregunta 16

Dado $L = \{x \in \{a, b\}^* : |x|_a = 2\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje L^* .

Solución:

$$L^* = \{x \in \{a, b\}^* : |x|_a = 2n, n \ge 1\} \cup \{\lambda\}$$

Pregunta 17

Dado $L = \{x \in \{a, b\}^* : |x|_a = 2\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $b^{-1}L$.

Solución:

$$b^{-1}L=L=\{x\in\{a,b\}^*\ :\ |x|_a=2\}$$

Pregunta 18

Dado $L = \{x \in \{a, b\}^* : |x|_a = 2\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $(bab)^{-1}L$.

Solución:

$$(bab)^{-1}L = \{x \in \{a,b\}^* : |x|_a = 1\}$$

Pregunta 19

Dado $L=\{x\in\{a,b\}^*:bbb\in Seg(x)\}$, proporcione una descripción formal (lo más concisa posible) del lenguaje $(aab)^{-1}L$.

Solución:

$$(aab)^{-1}L = \{bbx : x \in \{a,b\}^*\} \cup L$$

Pregunta 20

Dado $L=\{x\in\{a,b\}^*\ :\ |x|_a\geq 1 \land |x|_b\geq 1\},$ y dado el homomorfismo:

$$\begin{cases} h(a) = 1\\ h(b) = 00 \end{cases}$$

proporcione las 10 primeras palabras en orden canónico del lenguaje h(L).

Solución:

001, 100, 0011, 1001, 1100, 00001, 00100, 00111, 10000, 10011

Pregunta 21

Dado $L = \{x \in \{a, b, c\}^* : |x|_a = |x|_b + |x|_c\}$, y dado el homomorfismo:

$$\begin{cases} h(a) = 0 \\ h(b) = 1 \\ h(c) = \lambda \end{cases}$$

proporcione una descripción formal (lo más concisa posible) del lenguaje h(L).

Solución:

$$h(L) = \{x \in \{0,1\}^* : |x|_0 \ge |x|_1\}$$

Pregunta 22

Dado $L = \{x \in \{a, b, c\}^* : |x|_a = |x|_b = |x|_c\}$, y dado el homomorfismo:

$$\begin{cases} h(a) = 0 \\ h(b) = 1 \\ h(c) = 0 \end{cases}$$

proporcione una descripción formal (lo más concisa posible) del lenguaje h(L).

Solución:

$$h(L) = \{x \in \{0,1\}^* : |x|_0 = 2|x|_1\}$$

Pregunta 23

Dado $L = \{x \in \{0,1\}^* : |x|_0 = |x|_1\}$, y dado el homomorfismo:

$$\begin{cases} h(a) = 1\\ h(b) = 00 \end{cases}$$

proporcione una descripción formal (lo más concisa posible) del lenguaje $h^{-1}(L)$.

Solución:

$$h^{-1}(L) = \{x \in \{a, b\}^* : |x|_a = 2|x|_b\}$$

Pregunta 24

Dado $L = \{x \in \{0, 1\}^* : 10 \in Seg(x)\}, y \text{ dado el homomorfismo:}$

$$\begin{cases} h(a) = 1\\ h(b) = 00 \end{cases}$$

proporcione una descripción formal (lo más concisa posible) del lenguaje $h^{-1}(L)$.

Solución:

$$h^{-1}(L) = \{x \in \{a, b\}^* : ab \in Seg(x)\}$$