1. Si stabilisca se le seguenti sequenze sono dipendenti o indipendenti

$$e_1 + e_2 + e_3$$
, $e_1 + e_2 + e_4$, $e_1 + e_3 + e_4 \in \mathbb{R}^4$ (con Proposizioni e con Procedura);
 $e_1 + e_2 + e_3 + e_4$, $2e_1 + 4e_2 + 3e_3 + 5e_4$, $3e_1 + 7e_2 + 5e_3 + 9e_4 \in \mathbb{R}^4$;
 $e_1 + 2e_2 + 3e_3$, $e_1 + 4e_2 + 7e_3$, $e_1 + 3e_2 + 5e_3$, $e_1 + 5e_2 + 9e_3 \in \mathbb{R}^3$.

2. Si stabilisca se le seguenti sequenze sono basi di \mathbb{R}^2 , sia usando la Definizione ¹ che usando i Teoremi ²

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix};$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix};$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$$

3. Si stabilisca se la sequenza è una base di \mathbb{R}^3 e in caso affermativo si calcolino le coordonate di e_1 rispetto ad essa

$$e_1 + e_2 + e_3$$
, $e_1 + 2e_2 + 4e_3$, $e_1 + 3e_2 + 9e_3$;
 $e_1 + e_2 - 2e_3$, $e_1 - 3e_2 + 2e_3$, $e_1 + 2e_2 - 3e_3$.

4. In \mathcal{V}^2 sono date una base b_1, b_2 e i vettori c_1, c_2 che hanno coordinate (3, 1) e (2, 1) rispetto ad essa. Si stabilisca se c_1, c_2 è una base di \mathcal{V}^2 e in caso affermativo si calcolino le coordinate di b_1 e b_2 rispetto ad essa.

¹Definizione:

Dei vettori di uno spazio vettoriale V sono una base di V se ogni vettore di V si scrive in un unico modo come loro combinazione lineare.

²I Teotremi si possono riassumere così:

Dei vettori di uno spazio vettoriale V di dimensione n sono una base di V se e solo se sono n e sono indipendenti.