In the Claims

1. (previously presented) A compound of formula (I), (II) or (III)

$$\begin{bmatrix} A & R_1 & COY \\ A & R_2 & COY \end{bmatrix}_n$$

$$(II)$$

$$\begin{bmatrix} A & R_1 & COY \\ R_2 & R_3 & R_3 \end{bmatrix}_n$$

$$(III)$$

wherein

 R_1 and R_2 are independently of each other hydrogen, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl or phenyl which are unsubstituted or substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

A is a group capable of forming a stable free nitroxyl radical A•, which is bound via its oxygen atom to the carbon atom:

Y is O, NR₃ or CHR₃-X_a, wherein X_a is O, S or NR₃;

R₃ is hydrogen, C₁-C₁₈alkyl, C₃-C₁₈alkenyl, C₃-C₁₈alkinyl or phenyl which are unsubstituted or substituted by NO₂, halogen, amino, hydroxy, cyano, carboxy, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino;

Q₁ is an organic radical derived from an unsubstituted or substituted triazine, from a polycarboxylic acid or polycarboxylic acid derivative having 2-6 carboxylgroups, from a multifunctional alkylating agent having 2-6 functional groups or from a polyisocyanate having 2-6 isocyanate groups;

Q ₂ is an organic radical derived from a mono or polyfunctional alcohol, mono or polyfunctional
aminoalcohol, mono or polyfunctional amine mono or polyfunctional mercaptane, mono or
polyfunctional phenol or mono or polyfunctional thiophenol; and
n is a number from 2 to 10;
with the proviso, that in formula (I) if n is 2, R_1 is H and R_2 is
$- CH_2-O-tert-butyl,\ A\ is\ not\ 2,2,6,6-tetramethyl piperidine\ or\ 2,2,6,6-tetramethyl piperidine-4-carboxylic$
acid.
2. (canceled)
3. (original) A compound of formula (I), (II) or (III) according to claim 1, wherein
R ₁ and R ₂ are independently of each other hydrogen, C ₁ -C ₁₂ alkyl, C ₃ -C ₁₂ alkenyl or phenyl.
4. (asiminally A agreement of formula (II) according to plain 4. wherein V is Q on ND
4. (original) A compound of formula (II) according to claim 1, wherein Y is O or NR ₃ .
5. (canceled)
6. (canceled)
7. (canceled)
8. (original) A compound of formula (II) according to claim 1, wherein
Q ₂ is an organic radical derived from a polyfunctional alcohol, a polyfunctional aminoalcohol or a
polyfunctional amine.

- **9.** (original) A compound of formula (II) according to claim **8**, wherein Q₂ is a radical derived from a polyalcohol having 2-6 hydroxy groups, a polyaminoalcohol having 2-6 amino and/or hydroxy groups, or a polyamine having 2-6 amine groups.
- **10. (original)** A compound of formula (I), (II) or (III) according to claim **1**, wherein the radical A• derived from the group A is a stable open chain nitroxyl radical or a cyclic nitroxyl radical.
- **11.** (previously presented) A compound of formula (I), (II) or (III) according to claim 1, wherein A is a group of formula (X)

$$R_{103}$$
 R_{102}
 R_{111}
 R_{112}
 R_{110}
 R_{110}
 R_{110}
 R_{110}
 R_{110}
 R_{110}
 R_{110}

wherein n₁ is 0 or 1

 R_{101} , R_{102} , R_{103} are each independently of one another hydrogen, halogen, NO_2 , cyano, $-CONR_{105}R_{106}$, $-(R_{109})COOR_{104}$, $-C(O)-R_{107}$, $-OR_{108}$, $-SR_{108}$, $-NHR_{108}$, $-N(R_{108})_2$, carbamoyl, $di(C_1-C_{18}alkyl)$ carbamoyl, $-C(=NR_{105})(NHR_{106})$;

unsubstituted C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom; or

 C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or phenyl, which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

or R_{102} and R_{103} , together with the linking carbon atom, form a C_3 - C_{12} cycloalkyl radical, a $(C_4$ - C_{12} cycloalkanon)-yl radical or a C_3 - C_{12} cycloalkyl radical containing at least one O atom and/or a NR_{108} group; or if n_1 is 1

$$R_{102}$$
 are a group ;

R₁₀₄ is hydrogen, C₁-C₁₈alkyl, phenyl, an alkali metal cation or a tetraalkylammonium cation;

 R_{105} and R_{106} are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O or/and NR_{108} atom;

R₁₀₇ is hydrogen, C₁-C₁₈alkyl or phenyl;

 R_{108} is hydrogen, C_1 - C_{18} alkyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group; R_{109} is C_1 - C_{12} alkylen or a direct bond;

 R_{110} is C_4 - C_{18} alkyl bound via a tertiary C-atom to the nitrogen atom, C_9 - C_{11} phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom; or C_4 - C_{18} alkyl bound via a tertiary C-atom to the nitrogen atom, C_9 - C_{11} phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylhio, C_1 - C_4 alkylamino or $di(C_1$ - C_4 alkyl)amino; or

phenyl, naphthyl, which are unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

R₁₁₁ is C₁-C₁₈alkyl, C₇-C₉phenylalkyl, C₃-C₁₂cycloalkyl or C₃-C₁₂cycloalkyl containing at least one nitrogen or oxygen atom; or

 C_1 - C_{18} alkyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO₂, halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or

phenyl, naphthyl, which are unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or

a polycyclic cycloaliphatic ring system or a polycyclic cycloaliphatic ring system with at least one di- or trivalent nitrogen atom; or

 R_{110} and R_{111} together form a C_2 - C_{12} alkylene bridge, a C_3 - C_{12} alkylen-on bridge or a C_2 - C_{12} alkylene bridge which is interrupted by at least one O or N atom, which bridges are unsubstituted or substituted with C_1 - C_{18} alkyl, hydroxy(C_1 - C_4)alkyl, phenyl, C_7 - C_9 phenylalkyl, NO₂, halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino,

if n₁ is 1

 R_{112} is hydrogen, -(R_{109})COOR₁₀₄, cyano, -OR₁₀₈, -SR₁₀₈, -NHR₁₀₈, -N(R_{108})₂, -NH-C(O)-R₁₀₈, unsubstituted C₁-C₁₈alkyl, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₇-C₉phenylalkyl, C₃-C₁₂cycloalkyl or C₃-C₁₂cycloalkyl containing at least one nitrogen or oxygen atom; or

 C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or phenyl, naphthyl, which are unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino; or R_{111} and R_{112} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

or A is a group of formula XXa, XXb or XXc

$$R_{201} \xrightarrow{N} R_{203} R_{204} \qquad (XXa), \qquad R_{\overline{209}} \xrightarrow{R_{208}} R_{208} \xrightarrow{N} R_{206} R_{210} \qquad (XXb), \qquad R_{\overline{211}} \xrightarrow{R_{208}} R_{208} \xrightarrow{N} R_{206} R_{212}$$

(XXc),

wherein

Y₁ is O or CH₂;

Q is O or NR_{220} , wherein R_{220} is hydrogen or C_1 - C_{18} alkyl;

 R_{201} is tertiary C_4 - C_{18} alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)- R_{222} wherein R_{221} is hydrogen, a alkali metal atom or C_1 - C_{18} alkyl and R_{222} is C_1 - C_{18} alkyl; or R_{201} is C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is interrupted by at least one O or N atom, a polycyclic alkyl radical or a polycyclic alkyl radical which is interrupted by at least one O or N atom; R_{202} and R_{203} are independently C_1 - C_{18} alkyl, benzyl, C_5 - C_{12} cycloalkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)- R_{222} or together with the carbon atom form a C_5 - C_{12} cycloalkyl ring;

if Y₁ is O,

 R_{204} and R_{212} are OH, O(alkali-metal) C_1 - C_{18} alkoxy, benzyloxy, $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently from each other hydrogen, C_1 - C_{18} alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)- R_{222} ;

if Y₁ is CH₂,

 R_{204} is OH, C_1 - C_{18} alkoxy, benzyloxy, O-C(O)-(C_1 - C_{18})alkyl or $NR_{223}R_{224}$;

 R_{212} are a group C(O) R_{225} , wherein R_{225} is OH, C₁-C₁₈alkoxy, benzyloxy, NR₂₂₃R₂₂₄, wherein R₂₂₃ and R₂₂₄ are independently from each other hydrogen, C₁-C₁₈alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)-R₂₂₂;

 R_{205} , R_{206} , R_{207} and R_{208} are independently of each other C_1 - C_{18} alkyl, C_5 - C_{12} cycloalykyl or phenyl; or R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_5 - C_{12} cycloalkyl ring; R_{209} and R_{210} are independently of each other hydrogen, formyl, C_2 - C_{18} alkylcarbonyl, benzoyl, C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)- R_{222} ;

 R_{211} , is formyl, C_2 - C_{18} alkylcarbonyl, benzoyl, C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, COOR₂₂₁ or C(O)- R_{222} ,

or A is a group containing a structural element of formula (XXX)

$$G_6$$
 G_5 (XXX), wherein G_2 G_3 G_4

 G_1 , G_2 , G_3 , G_4 are independently C_1 - C_6 alkyl or G_1 and G_2 or G_3 and G_4 , or G_1 and G_2 and G_3 and G_4 together form a C_5 - C_{12} cycloalkyl group;

 G_5 , G_6 independently are H, C_1 - C_{18} alkyl, phenyl, naphthyl or a group COOC₁- C_{18} alkyl;

or A is a group of formula (XLa) or (XLb)
$$R_{301}$$
 R_{302} R_{304} R_{304}

$$R_{301}$$
 R_{306}
 R_{307}
 R_{303}
 R_{302}
 R_{304}
 R_{304}
 R_{304}
(XLb), wherein

 R_{301} , R_{302} , R_{303} and R_{304} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, which are substituted by OH, halogen or a group -O-C(O)- R_{305} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR₃₀₅ group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{301} and R_{302} and/or R_{303} and R_{304} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

 R_{305} , R_{306} and R_{307} independently are hydrogen, C_1 - C_{18} alkyl or C_6 - C_{10} aryl; Z_1 is O or NR_{308} ;

 R_{308} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group -O-C(O)- R_{305} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{305} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, -C(O)- C_1 - C_{18} alkyl, -O- C_1 - C_{18} alkyl or -COOC₁- C_{18} alkyl; C_8 is a direct bond or a divalent radical $CR_{309}R_{310}$, $CR_{309}R_{310}$ - $CR_{311}R_{312}$, $CR_{309}R_{310}CR_{311}R_{312}CR_{313}R_{314}$, C(O) or $CR_{309}R_{310}C(O)$, wherein R_{309} , R_{310} , R_{311} , R_{312} , R_{313} and R_{314} are independently hydrogen, phenyl or C_1 - C_{18} alkyl.

12. (previously presented) A compound of formula (I) or (II) according to claim **11**, wherein A is a group of formula (X)

n₁ is 1

R₁₀₁ is cyano;

 R_{102} and R_{103} are each independently of one another unsubstituted C_1 - C_{12} alkyl or phenyl; or R_{102} and R_{103} , together with the linking carbon atom, form a C_5 - C_7 cycloalkyl radical;

R₁₁₀ is C₄-C₁₂alkyl bound via a tertiary C-atom to the nitrogen atom, C₉-C₁₁phenylalkyl or phenyl;

R₁₁ is C₁-C₁₈alkyl, C₇-C₉phenylalkyl or C₃-C₁₂cycloalkyl; or

 R_{110} and R_{111} together form a $C_2\text{-}C_6$ alkylene bridge which is unsubstituted or substituted with

C₁-C₄alkyl; and

R₁₁₂ is C₁-C₄alkyl;

or wherein A is a group of formula (XXa)

R₂₀₁ is tertiary C₄-C₈alkyl;

R₂₀₂ and R₂₀₃ are methyl, ethyl or together with the carbon atom form a C₅-C₆cycloalkyl ring;

 R_{204} is C_1 - C_{18} alkoxy, benzyloxy or $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently of each other hydrogen or C_1 - C_8 alkyl;

or wherein A is a group of formula (XXb), wherein Q is O;

R₂₀₅, R₂₀₆, R₂₀₇ and R₂₀₈ are independently of each other methyl or ethyl; or

 R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_5 - C_6 cycloalkyl ring;

 R_{209} and R_{210} are independently of each other formyl, C_2 - C_8 alkylcarbonyl, benzoyl, C_1 - C_8 alkyl, benzyl or phenyl;

or wherein A is a group of formula (XXc), wherein Y_1 is O;

R₂₀₅, R₂₀₆, R₂₀₇ and R₂₀₈ are independently of each other methyl or ethyl; or

R₂₀₅ and R₂₀₆ and/or R₂₀₇ and R₂₀₈ together with the carbon atom form a C₅-C₆cycloalkyl ring;

R₂₁₁ is formyl, C₂-C₁₈alkylcarbonyl, benzoyl, C₁-C₁₈alkyl, benzyl or phenyl and

R₂₁₂ is OH, C₁-C₁₈alkoxy, benzyloxy, NR₂₂₃R₂₂₄, wherein R₂₂₃ and R₂₂₄ are independently of each other hydrogen or C₁-C₁₈alkyl,

or wherein A is a group of formula (XXXA), (XXXB) or (XXXO)

$$G_{1}$$

$$G_{2}$$

$$G_{6}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{5}$$

$$G_{4}$$

$$G_{5}$$

$$G_{6}$$

$$G_1$$

$$G_2$$

$$G_6$$

$$R_{401}$$

$$R_{402}$$

$$G_3$$

$$G_4$$

$$G_5$$

$$P$$

$$G_6$$
 G_5
 G_3
 G_2
 G_4
 G_4
 G_5
 G_4
 G_4

wherein

 G_1 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_1 and G_2 together or G_3 and G_4 together are pentamethylene;

G₅ and G₆ are independently hydrogen or C₁-C₄ alkyl;

m is a number from 1-4;

p is a number from 1-3;

R, if m is 1, is hydrogen, C₁-C₁₈alkyl which is uninterrupted or C₂-C₁₈alkyl which is interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or

an α , β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ₁₂ groups, in which Z₁₂ is H, C₁-C₂₀alkyl, C₃-C₁₂alkenyl, C₅-C₇cycloalkyl, phenyl or benzyl; or

R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical:

R, if m is 2, is C₂-C₁₂alkylene, C₄-C₁₂alkenylene, xylylene, a divalent radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, or a cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 carbon atoms, where each dicarboxylic acid may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by one or two -COOZ₁₂ groups; or

R is a divalent radical of a phosphorus-containing acid or a divalent silyl radical;

R, if m is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by

-COOZ₁₂, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical,

R, if m is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid; p is 1, 2 or 3,

 R_{401} is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl; when p is 1,

 R_{402} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)- Z_4 or of the formula -CO- Z_4 - or -CONH- Z_4 wherein Z_4 is hydrogen, methyl or phenyl; or when p is 2,

 R_{402} is C_2 - C_{12} alkylene, C_6 - C_{12} -arylene, xylylene, a - $CH_2CH(OH)CH_2$ -O-B-O- $CH_2CH(OH)CH_2$ - group, wherein B is C_2 - C_{10} alkylene, C_6 - C_{15} arylene or C_6 - C_{12} cycloalkylene; or, provided that R_{401} is not alkanoyl, alkenoyl or benzoyl; or

R₄₀₂ is a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or is the group -CO-; or

 R_{401} and R_{402} together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or

R₄₀₂ is a group

where T_7 and T_8 are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T_7 and T_8 together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene; when p is 3,

R₄₀₂ is 2,4,6-triazinyl;

or wherein in formula (XLa) or (XLb)

 R_{301} , R_{302} , R_{303} and R_{304} independently of each other are C_1 - C_4 alkyl, which is unsubstituted or substituted by OH, or a group -O-C(O)- R_{305} , or R_{301} and R_{302} and/or R_{303} and R_{304} together with the linking carbon atom form a C_5 - C_6 cycloalkyl radical;

R₃₀₅ is hydrogen or C₁-C₄alkyl,

R₃₀₆ and R₃₀₇ independently are hydrogen, methyl or ethyl;

 Z_1 is O or NR₃₀₈;

Q₄ is a direct bond or a divalent radical CH₂, CH₂CH₂, CH₂-CH₂-CH₂, C(O), CH₂C(O) or CH₂-CH-CH₃; R_{308} is hydrogen, C₁-C₄alkyl, C₁-C₄alkyl which is substituted by OH, or benzyl.

- **13.** (previously presented) A compound according to claim **12**, wherein in formula (XXXA), (XXXB) or (XXXO) G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl, or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.
- **14.** (previously presented) A compound according to claim **12**, wherein in formula (XXXA) G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl, or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl, one of G_5 and G_6 is hydrogen and the other is methyl or both are hydrogen, m is 1 and R is C_1 - C_{18} alkyl or the monovalent radical of a C_2 - C_{18} carboxylic acid.

15. (original) A compound according to claim **11** wherein in formula (XLa) and (XLb) at least two of R_{301} , R_{302} , R_{303} and R_{304} are ethyl, propyl or butyl and the remaining are methyl.

16. (canceled)

- 17. (previously presented) A polymerizable composition, comprising
- a) at least one ethylenically unsaturated monomer or oligomer, and
- b) a compound of formula (I), (II) or (III) according to claim 1.

18. (canceled)

- 19. (previously presented) A polymerizable composition according to claim 17, wherein the ethylenically unsaturated monomer or oligomer is selected from the group consisting of ethylene, propylene, n-butylene, i-butylene, styrene, substituted styrene, conjugated dienes, acrolein, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acidanhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles, (alkyl)acrylamides, vinyl halides and vinylidene halides.
- **20.** (**previously presented**) A process for preparing an oligomer, a cooligomer, a polymer or a copolymer (block or random) by free radical polymerization of at least one ethylenically unsaturated monomer or oligomer, which comprises (co)polymerizing the monomer or monomers/oligomers in the presence of an initiator/regulator compound of formula (I), (II) or (III) according to claim **1** under reaction conditions capable of effecting scission of the O-C bond to form two free radicals, the •C radical being capable of initiating polymerization.
- **21.** (original) A process according to claim **20**, wherein the scission of the O-C bond is effected by ultrasonic treatment, heating or exposure to electromagnetic radiation, ranging from γ to microwaves.

22.	(original)	A process	according	to claim	20,	wherein	the	scission	of the	O-C	bond	is	effec	ted	by
hea	ting and tal	kes place a	t a temper	ature of	betv	ween 50°	C a	nd 160°0	D			-		-	

- **23.** (original) A process according to claim **20**, wherein a cooligomer or copolymer of star, comb or block structure is prepared.
- **24.** (previously presented) A process according to claim **20**, wherein the compound of formula (I), (II) or (III) is present in an amount of from 0.01 to 30 mol % based on the monomer or monomer mixture.
- **25.** (original) A oligomer, cooligomer, polymer or copolymer prepared by a process according to claim **20**.

26-29. (canceled)