Examen Parcial 1

Tiempo para resolver: 90 Minutos

1. Sea $\boldsymbol{X}=(X_1,X_2,X_3)$ un vector 3-dimensional con distribución $N\left(x|\mu,\Sigma\right)$ con

$$\mu = (3, -2, 0)$$
 y $\Sigma = \begin{pmatrix} 5 & 0 & -3 \\ 0 & 9 & 0 \\ -3 & 0 & 2 \end{pmatrix}$.

- 1. Indique si X_2 y $2X_1-X_3$ son estocásticamente independientes y justifique por qué.
- 2. Encuentra la distribución condicional de X_3 dado que $X_1=2$ y $X_2=-3$.
- 2. Defina los siguientes términos:
 - 1. Producto interior
 - 2. Eigenvalor y eigenvector
 - 3. Normalización
 - 4. Estandarización
 - 5. Singularidad de una matriz
- 3. Explica por qué la estandarización de una matriz de datos se realiza en sus columnas y no en sus renglones.
- 4. Explica la diferencia entre PCA y FA. También explica cuándo y en qué circunstancias tal diferencia es inexistente.
- 5. En un estudio de pobreza y criminalidad, la matriz de correlación de las variables de criminalidad está dada de la siguiente forma:

$$\mathbf{R} = \begin{pmatrix} 1 & 0.6 & -0.1 & -0.3 \\ 0.6 & 1.0 & -0.2 & -0.1 \\ \hline -0.1 & -0.2 & 1.0 & -0.3 \\ -0.3 & -0.1 & -0.3 & 1.0 \end{pmatrix}.$$

Las variables son:

- 1. homicidios dolosos,
- 2. homicidios no dolosos,
- 3. severidad de castigo,
- 4. ejecución de castigo,

enunciadas en el orden correspondiente con las variables de la matriz R.

Encuentra el primer par de variables canónicas (U_1, V_1) y su correlación muestral (entre ellas y entre las variables originales). Escribe las expresiones analíticas/algebraicas de la solución.