*17-24.

The door has a weight of 200 lb and a center of gravity at G. Determine how far the door moves in 2 s, starting from rest, if a man pushes on it at C with a horizontal force F=30 lb. Also, find the vertical reactions at the rollers A and B.

SOLUTION

$$\stackrel{\pm}{\rightarrow} \Sigma F_x = m(a_G)_x; \qquad 30 = (\frac{200}{32.2})a_G$$

$$a_G = 4.83 \text{ ft/s}^2$$

$$\zeta + \Sigma M_A = \Sigma (M_k)_A;$$
 $N_B(12) - 200(6) + 30(9) = (\frac{200}{32.2})(4.83)(7)$

$$N_B = 95.0 \text{ lb}$$

$$+\uparrow \Sigma F_y = m(a_G)_y;$$
 $N_A + 95.0 - 200 = 0$

$$N_A = 105 \, \text{lb}$$

$$(\stackrel{\pm}{\rightarrow}) \qquad s = s_0 + \nu_0 t + \frac{1}{2} a_G t^2$$

$$s = 0 + 0 + \frac{1}{2}(4.83)(2)^2 = 9.66 \text{ ft}$$

Ans.

Ans.

17-43.

Determine the acceleration of the 150-lb cabinet and the normal reaction under the legs A and B if P=35 lb. The coefficients of static and kinetic friction between the cabinet and the plane are $\mu_s=0.2$ and $\mu_b=0.15$, respectively. The cabinet's center of gravity is located at G.

SOLUTION

Equations of Equilibrium: The free-body diagram of the cabinet under the static condition is shown in Fig. a, where **P** is the unknown minimum force needed to move the cabinet. We will assume that the cabinet slides before it tips. Then, $F_A = \mu_s N_A = 0.2 N_A$ and $F_B = \mu_s N_B = 0.2 N_B$.

$$\stackrel{\perp}{\longrightarrow} \Sigma F_x = 0;$$
 $P - 0.2N_A - 0.2N_B = 0$ (1)

$$+\uparrow \Sigma F_y = 0;$$
 $N_A + N_B - 150 = 0$ (2)

$$+\Sigma M_A = 0;$$
 $N_B(2) - 150(1) - P(4) = 0$ (3)

Solving Eqs. (1), (2), and (3) yields

$$P = 30 \text{ lb}$$
 $N_A = 15 \text{ lb}$ $N_B = 135 \text{ lb}$

Since P < 35 lb and N_A is positive, the cabinet will slide.

Equations of Motion: Since the cabinet is in motion, $F_A=\mu_kN_A=0.15N_A$ and $F_B=\mu_kN_B=0.15N_B$. Referring to the free-body diagram of the cabinet shown in Fig. b.

$$\stackrel{\perp}{\longrightarrow} \Sigma F_x = m(a_G)_x;$$
 35 - 0.15N_A - 0.15N_B = $\left(\frac{150}{32.2}\right)a$ (4)

$$\stackrel{\perp}{\Rightarrow} \Sigma F_x = m(a_G)_x;$$
 $N_A + N_B - 150 = 0$ (5)

$$+\Sigma M_G = 0$$
; $N_B(1) - 0.15N_B(3.5) - 0.15N_A(3.5) - N_A(1) - 35(0.5) = 0$ (6)

Solving Eqs. (4), (5), and (6) yields

$$a = 2.68 \text{ ft/s}^2$$
 Ans

$$N_A = 26.9 \text{ lb}$$
 $N_B = 123 \text{ lb}$ Ans.

Ans.

17-53.

The arched pipe has a mass of 80 kg and rests on the surface of the platform. As it is hoisted from one level to the next, $\alpha=0.25~\text{rad/s}^2$ and $\omega=0.5~\text{rad/s}$ at the instant $\theta=30^\circ$. If it does not slip, determine the normal reactions of the arch on the platform at this instant.

SOLUTION

$$+\uparrow \Sigma F_y = m(a_G)_y;$$
 $N_A + N_B - 80(9.81) = 20 \sin 60^\circ - 20 \cos 60^\circ$

$$N_A + N_B = 792.12$$

$$\zeta + \Sigma M_A = \Sigma (M_k)_A$$
; $N_B(1) - 80(9.81)(0.5) = 20 \cos 60^{\circ}(0.2) + 20 \sin 60^{\circ}(0.5)$

 $-20\cos 60^{\circ}(0.5) + 20\sin 60^{\circ}(0.2)$

$$N_B = 402 \text{ N}$$

$$N_A = 391 \text{ N}$$
 Ans.

80(0.23)(1)=20

30(0.5)3(1): 20

The uniform slender rod has a mass m. If it is released from rest when $\theta=0^\circ$, determine the magnitude of the reactive force exerted on it by pin B when $\theta=90^\circ$.

SOLUTION

Equations of Motion: Since the rod rotates about a fixed axis passing through point $B_r(a_G)_t = \alpha r_G = \alpha \left(\frac{L}{6}\right)$ and $(a_G)_n = \omega^2 r_G = \omega^2 \left(\frac{L}{6}\right)$. The mass moment of inertia of the rod about its G is $I_G = \frac{1}{12} mL^2$. Writing the moment equation of motion about

point
$$B$$
,
$$+ \Sigma M_B = \Sigma (M_k)_B; \quad -mg\cos\theta \left(\frac{L}{6}\right) = -m\left[\alpha\left(\frac{L}{6}\right)\right]\left(\frac{L}{6}\right) - \left(\frac{1}{12}mL^2\right)\alpha$$

$$\alpha = \frac{3g}{2L}\cos\theta$$
 This equation can also be obtained by applying $\Sigma M_B = I_B\alpha$, where $I_B = \frac{1}{12}mL^2 + m\left(\frac{L}{6}\right)^2 = \frac{1}{9}mL^2$. Thus,

$$+\sum M_B = I_B \alpha;$$
 $-mg \cos \theta \left(\frac{L}{6}\right) = -\left(\frac{1}{9} mL^2\right) \alpha$
 $\alpha = \frac{3g}{2L} \cos \theta$

Using this result and writing the force equation of motion along the n and t axes,

$$\Sigma F_t = m(a_G)_i;$$
 $mg \cos \theta - B_t = m \left[\left(\frac{3g}{2L} \cos \theta \right) \left(\frac{L}{6} \right) \right]$
 $B_t - \frac{3}{4} mg \cos \theta$ (1)

$$\Sigma F_n = m(a_G)_n;$$
 $B_n - mg \sin \theta - m\left[\omega^2\left(\frac{L}{6}\right)\right]$
 $B_n = \frac{1}{6}m\omega^2L + mg \sin \theta$ (2)

$$\int \omega d\omega = \int \alpha d\theta$$

$$\int_{0}^{\omega} \omega d\omega = \int_{0}^{\theta} \frac{3g}{2L} \cos \theta d\theta$$

$$\omega = \sqrt{\frac{3g}{L}} \sin \theta$$

When $\theta = 90^{\circ}$, $\omega = \sqrt{\frac{3g}{I}}$. Substituting this result and $\theta = 90^{\circ}$ into Eqs. (1) and (2),

$$B_t = \frac{3}{4} mg \cos 90^\circ = 0$$

 $B_v = \frac{1}{6} m \left(\frac{3g}{L}\right)(L) + mg \sin 90^\circ - \frac{3}{2} mg$
 $F_A = \sqrt{A_t^2 + A_{\pi}^2} = \sqrt{0^2 + \left(\frac{3}{2} mg\right)^2} = \frac{3}{2} mg$ Ans

(a)

The two blocks A and B have a mass of 5 kg and 10 kg, respectively. If the pulley can be treated as a disk of mass 3 kg and radius 0.15 m, determine the acceleration of block A. Neglect the mass of the cord and any slipping on the pulley.

SOLUTION

 $\it Kinematics:$ Since the pulley rotates about a fixed axis passes through point $\it O$, its angular acceleration is

$$\alpha = \frac{a}{r} = \frac{a}{0.15} = 6.6667a$$

The mass moment of inertia of the pulley about point O is

$$I_o = \frac{1}{2}Mr^2 = \frac{1}{2}(3)(0.15^2) = 0.03375 \text{ kg} \cdot \text{m}^2$$

 $\pmb{Equation}$ of Motion: Write the moment equation of motion about point O by referring to the free-body and kinetic diagram of the system shown in Fig. $a_{\rm r}$

$$\zeta + \Sigma M_o = \Sigma(M_k)_o;$$
 $5(9.81)(0.15) - 10(9.81)(0.15)$
$$= -0.03375(6.6667a) - 5a(0.15) - 10a(0.15)$$

$$a = 2.973 \text{ m/s}^2 - 2.97 \text{ m/s}^2$$
 Ans.

*17-96.

The spool has a mass of 100 kg and a radius of gyration of $k_G=0.3$ m. If the coefficients of static and kinetic friction at A are $\mu_x=0.2$ and $\mu_k=0.15$, respectively, determine the angular acceleration of the spool if P=50 N.

SOLUTION

$$\begin{split} & \Rightarrow \Sigma F_x = m(a_G)_x \, ; \qquad 50 + F_A = 100 a_G \\ & + \uparrow \Sigma F_y = m(a_G)_y \, ; \qquad N_A - 100(9.81) = 0 \\ & \zeta + \Sigma M_G = I_G \, \alpha; \qquad 50(0.25) - F_A(0.4) = [100(0.3)^2] \alpha \end{split}$$

Assume no slipping: $a_G = 0.4\alpha$

$$\alpha = 1.30 \text{ rad/s}^2$$

 $a_G = 0.520 \text{ m/s}^2$ $N_A = 981 \text{ N}$ $F_A = 2.00 \text{ N}$

Since
$$(F_A)_{\text{max}} = 0.2(981) = 196.2 \text{ N} > 2.00 \text{ N}$$
 OK

Ans.

The 30-kg slender rod AB rests in the position shown when the horizontal force $P=50\,\mathrm{N}$ is applied. Determine the initial angular acceleration of the rod. Neglect the mass of the rollers.

SOLUTION

Equations of Motion: Here, the mass moment of inertia of the rod about its mass center is $I_G = \frac{1}{12}ml^2 = \frac{1}{12}(30)(1.5^2) = 5.625 \, \mathrm{kg} \cdot \mathrm{m}^2$. Writing the moment equations of motion about the intersection point A of the lines of action of \mathbf{N}_A and \mathbf{N}_B and using, Fig. a,

$$+\Sigma M_A = \Sigma(M_k)_A;$$
 $-50(0.15) = 30(a_G)_x(0.75) - 5.625\alpha$
 $5.625\alpha - 22.5(a_G)_x = 75$ (1)

Kinematics: Applying the relative acceleration equation to points A and G, Fig. b,

$$\mathbf{a}_{G} = \mathbf{a}_{A} + \alpha \times \mathbf{r}_{G/A} - \omega^{2}\mathbf{r}_{G/A}$$

 $(a_{G})_{*}\mathbf{i} + (a_{G})_{2}\mathbf{j} = -a_{A}\mathbf{j} + (-\alpha\mathbf{k}) \times (-0.75\mathbf{j}) - \mathbf{0}$
 $(a_{G})_{*}\mathbf{i} + (a_{G})_{2}\mathbf{j} = -0.75\alpha\mathbf{i} - a_{A}\mathbf{j}$

Equating the I components,

$$(a_G)_x = -0.75\alpha$$
 (2)

Substituting Eq. (2) into Eq. (1),

$$\alpha = 3.333 \text{ rad/s}^2 = 3.33 \text{ rad/s}^2$$
 Ans.

The double pulley consists of two parts that are attached to one another. It has a weight of 50 lb and a centroidal radius of gyration of $k_0=0.6$ ft and is turning with an angular velocity of 20 rad/s clockwise. Determine the angular velocity of the pulley at the instant the 20-lb weight moves 2 ft downward.

SOLUTION

Kinetic Energy and Work: Since the pulley rotates about a fixed axis, $v_A = \omega r_A = \omega(1)$ and $v_B = \omega r_B = \omega(0.5)$. The mass moment of inertia of the pulley about point O is $I_O = mk_O^2 = \left(\frac{50}{32.2}\right)(0.6^2) = 0.5590$ slug·ft². Thus, the kinetic energy of the system is

$$T = \frac{1}{2}I_{0}\omega^{2} + \frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{2}m_{B}v_{B}^{2}$$

$$= \frac{1}{2}(0.5590)\omega^{2} + \frac{1}{2}\left(\frac{20}{32.2}\right)[\omega(1)]^{2} + \frac{1}{2}\left(\frac{30}{32.2}\right)[\omega(0.5)]^{2}$$

Thus, $T_1=0.7065(20^2)=282.61$ ft·lb. Referring to the FBD of the system shown in Fig. a, we notice that ${\bf O}_2$, ${\bf O}_2$, and ${\bf W}_B$ do no work while ${\bf W}_A$ does positive work and ${\bf W}_B$ does negative work. When A moves 2 ft downward, the pulley rotates

$$\theta = \frac{S_A}{r_A} = \frac{S_B}{r_B}$$

$$\frac{2}{1} = \frac{S_B}{0.5}$$

$$S_B = 2(0.5) = 1 \text{ ft } \uparrow$$

Thus, the work of \mathbf{W}_A and \mathbf{W}_B are

$$U_{W_A} = W_A S_A = 20(2) = 40 \text{ ft} \cdot \text{lb}$$

 $U_{W_B} = -W_B S_B = -30(1) = -30 \text{ ft} \cdot \text{lb}$

Principle of Work and Energy:

$$T_1 + U_{1-2} = T_2$$

 $282.61 + [40 + (-30)] = 0.7065 \omega^2$
 $\omega = 20.4 \text{ rad/s}$

Ans.

A motor supplies a constant torque or twist of $M=120\,\mathrm{lb}$ -ft to the drum. If the drum has a weight of 30 lb and a radius of gyration of $k_O=0.8\,\mathrm{ft}$, determine the speed of the 15-lb crate A after it rises $s=4\,\mathrm{ft}$ starting from rest. Neglect the mass of the cord.

SOLUTION

Free Body Diagram: The weight of the crate does negative work since it acts in the opposite direction to that of its displacement s_w . Also, the couple moment \mathbf{M} does positive work as it acts in the same direction of its angular displacement θ . The reactions O_x , O_y and the weight of the drum do no work since point O does not displace.

Kinematic: Since the drum rotates about point O, the angular velocity of the drum and the speed of the crate can be related by $\omega_D = \frac{v_A}{r_D} = \frac{v_A}{1.5} = 0.6667 v_A$. When the crate rises s = 4 ft, the angular displacement of the drum is given by $\theta = \frac{s}{r_D} = \frac{4}{1.5} = 2.667$ rad.

$$\begin{split} T_1 + \sum U_{1-2} &= T_2 \\ 0 + M\theta - W_C s_C &= \frac{1}{2} I_O \omega^2 + \frac{1}{2} m_C v_C^2 \\ 0 + 120(2.667) - 15(4) &= \frac{1}{2} (0.5963)(0.6667 v_A)^2 + \frac{1}{2} \Big(\frac{15}{32.2}\Big) v_A^2 \\ v_A &= 26.7 \text{ ft/s} \end{split}$$
 Ans

At the instant shown, the 50-lb bar rotates clockwise at 2 rad/s. The spring attached to its end always remains vertical due to the roller guide at C. If the spring has an unstretched length of 2 ft and a stiffness of $k=6\,\mathrm{lb/ft}$, determine the angular velocity of the bar the instant it has rotated 30° clockwise.

SOLUTION

Datum through A.

$$T_1 + V_1 = T_2 + V_2$$

$$\frac{1}{2} \left[\frac{1}{3} \left(\frac{50}{32.2} \right) (6)^2 \right] (2)^2 + \frac{1}{2} (6)(4 - 2)^2 - \frac{1}{2} \left[\frac{1}{3} \left(\frac{50}{32.2} \right) (6)^2 \right] \omega^2$$

$$+ \frac{1}{2} (6)(7 - 2)^2 - 50(1.5)$$

$$\omega = 2.30 \text{ rad/s}$$

 $M = 120 \text{ lb} \cdot \text{ft}$

18-47.

At the instant the spring becomes undeformed, the center of the $40 \cdot \text{kg}$ disk has a speed of 4 m/s. From this point determine the distance d the disk moves down the plane before momentarily stopping. The disk rolls without slipping.

k = 200 N/m MHHHHH 0.3 m

SOLUTION

Datum at lowest point.

$$\begin{split} T_1 + V_1 &= T_2 + V_2 \\ \frac{1}{2} \left[\frac{1}{2} (40)(0.3)^2 \right] \left(\frac{4}{0.3} \right)^2 + \frac{1}{2} (40)(4)^2 + 40(9.81) d \sin 30^\circ - 0 + \frac{1}{2} (200) d^2 \\ 100 d^2 - 196.2 d - 480 = 0 \end{split}$$

Solving for the positive root

$$d = 3.38 \text{ m}$$

