

3.2. CAMPO MAGNÉTICO I FÍSICA 2.º BACH

FORMULARIO

ALBA LÓPEZ VALENZUELA

Campo magnético creado por carga en movimiento (Biot-Savart)

$$\vec{B} = \frac{\mu_o}{4\pi} \cdot \frac{q \cdot (\vec{v} \times \vec{u})}{r^2} \qquad T$$

Ley de AMPÈRE

CREADO POR UNA CORRIENTE ELÉCTRICA RECTA

CREADO POR UNA CORRIENTE CIRCULAR:

E INFINITA

$$B = \frac{\mu I}{2\pi r}$$

ESPIRA

$$B = \frac{\mu I}{2\pi}$$

CREADO EN EL INTERIOR DE UN SOLENOIDE

Creado en el interior de un TOROIDE
$$B = \frac{\mu NI}{2\pi r} = \mu nI$$

$$B = \frac{\mu NI}{l} = \mu nI$$

FUERZA DE LORENTZ

La fuerza de Lorentz es la fuerza a la que se ve sometida una carga que atraviesa un \vec{B} .

$$\overrightarrow{F_m} = q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$
 N

- Si \vec{v} es paralelo a \vec{B} la carga atraviesa siguiendo un MRU (F=0).
- Si \vec{v} es perpendicular a \vec{B} la carga gira siguiendo un MCU ($F_m = F_c$).
- Si \vec{v} forma otro ángulo con \vec{B} , la componente paralela hace que avance y la perpendicular que gire con MCU: Trayectoria helicoidal.

Si la carga está sometida a un campo electromagnético, la FUERZA TOTAL es la suma de la fuerza eléctrica más la magnética:

$$\vec{F} = \vec{F}_e + \vec{F}_m = q(\vec{E} + \vec{v} \times \vec{B})$$

Fuerza sobre corriente rectilínea (Laplace)

$$\overrightarrow{F_m} = I \cdot (\overrightarrow{l} \times \overrightarrow{B})$$
 N

FUERZAS ENTRE CORRIENTES RECTILÍNEAS, PARALELAS E INDEFINIDAS

$$f = \frac{\mu I_1 I_2}{2\pi r} \qquad \text{N/m}$$

Fuerza por unidad de longitud (f = F/l). Atractiva si las corrientes tienen el mismo sentido y repulsiva si tienen sentido contrario.