1. Throw a 2kg ball with speed 5m/s into the air. How high does it go?

Initial Energy

KE
$$\frac{1}{2}mv^2 = \frac{1}{2}(2)(5)^2 = 25$$

 $PE \quad 0$

Final Energy

KE ()

PE
$$mgh=(2)(9.8)h=19.6h$$

Solve
$$E_f = E_i + W$$

 $25 = 19.6h$
 $h = 25/19.6 = 1.28 \text{m}$

$$\frac{1}{2}mv^2 = mgh$$

$$\downarrow$$

$$h=v^2/2g$$

2a. The natural length of this spring is 5cm and it has a stiffness of 800N/m. When the spring is released, it pushes the block across the floor. How fast is the block moving as soon as it loses contact with the spring?

Initial Energy

Final Energy

KE ()

KE
$$\frac{1}{2}(0.5)v^2$$

= $0.25v^2$

$$^{1/2}k(\Delta L)^{2}$$
PE = $^{1/2}(800)(0.03)^{2}$ PE 0
= 0.36J

Work W 0J

Solve
$$E_f = E_i + W$$

$$0.36 = 0.25v^2$$

$$v = \sqrt{0.36/0.25} = 1.2 \text{m/s}$$

2b. Same setup as before. If the coefficient of kinetic friction between block and table is μ_K =0.2, how far will the block go before stopping?

Initial Energy

KE ()

Final Energy

KE ()

PE 0

$$F = \mu_K N = \mu_K mg$$
Work $W = (0.2)(0.5)(9.8) = 0.98$

$$W = -F\Delta x = -0.98\Delta x$$

Solve
$$E_f = E_i + W$$

 $0 = 0.36 - 0.98 \Delta x$
 $\Delta x = 0.36 / 0.98 = 37 cm$

3. A 50kg skiier starts from rest at the top of a hill. How fast is she moving at the top of the second hill? (Assume no friction.)

Initial Energy

KE ()

Final Energy

KE
$$\frac{1}{2}mv^2 = 25v^2$$

PE =
$$mgh$$

=(50)(9.8)(100)
=49,000J

PE =
$$mgh$$

=(50)(9.8)(50)
=24,500J

Work W ()

Solve
$$E_f = E_i + W$$

$$25v^2 + 24500 = 49000+0$$

 $v^2 = 24500/25 = 980$
 $v = \sqrt{980} = 31.3$ m/s

4. What is the minimum force required to push this bowling ball (weight mg=50N) 2 meters to the top of the ramp?

Initial Energy

KE (

Final Energy

KE () (minimum)

PE
$$(mg)h$$
 PE 0
 $-(50N)(1m)$
=-50

Work
$$W F(2m) \cos 30^\circ = 1.73F$$

$$\frac{d}{30^{\circ}}$$

Solve
$$E_f = E_i + W$$

$$0 = -50 + 1.73F$$

$$F = 50/1.73 = 29N$$

5. An 80kg man falls 40m and lands on a spring Physics with stiffness k=4000 N/m. The spring compresses

by Δy before bouncing him back into the air.

Find Δy .

Initial Energy

KE **0**

$$PE_G = mgh$$

=(80)(9.8)(40)
=31360

 PE_S ()

Final Energy

KE ()

Solve
$$E_f = E_i$$

$$2000(\Delta y)^2 - 784\Delta y = 31360$$

 $2000(\Delta y)^2 - 784\Delta y - 31360 = 0$

$$\Delta y = \frac{784 \pm \sqrt{784^2 - 4(2000)(-31360)}}{4000}$$

$$\Delta y = \{0.40 \text{m}, -0.005 \text{m}\}$$

$$PE_G -mg\Delta y = -784\Delta y$$

$$PE_s \frac{1}{2}k(\Delta y)^2 = 2000(\Delta y)^2$$