$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Spring 2020} & \text{Discussion 6A} \end{array}$

1. True or False? (S16 MT Problem)

You only need to write True or False under each subpart.

- (a) There exists an invertible $n \times n$ matrix A for which $A^2 = 0$.
- (b) If A is an invertible $n \times n$ matrix, then for all vectors $\vec{b} \in \mathbb{R}^n$, the system $A\vec{x} = \vec{b}$ has a unique solution.
- (c) If A and B are invertible $n \times n$ matrices, then the product AB is invertible.
- (d) The two vectors $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ form a basis for the subspace $\text{Span}(\{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\})$.
- (e) A set of *n* linearly dependent vectors in \mathbb{R}^n can span \mathbb{R}^n .
- (f) For all matrices A and B, where A is 5×5 and B is 4×4 , it is always the case that Rank(A) > Rank(B).

2. Pagerank Review

(a) Consider two linked websites A and B with the following relationship that describes how proportions of visitors move from one to the other:

$$\begin{bmatrix} x_A[k+1] \\ x_B[k+1] \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{5}{6} \end{bmatrix} \begin{bmatrix} x_A[k] \\ x_B[k] \end{bmatrix}$$

Determine if there is a steady state of visitors on each website and if we converge to it.

- (b) Give the fractions of traffic there will be on each site in the long run.
- **3. Eigenvectors (F17 MT Problem)** Consider a matrix $\mathbf{A} \in \mathbb{R}^{3\times 3}$ with eigenvalues $\lambda = 1, 2, 3$, and corresponding eigenvectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 respectively. Let the matrix $\mathbf{B} = \mathbf{A}^3 6\mathbf{A}^2 + 11\mathbf{A} 6\mathbf{I}$.
 - (a) Find $\mathbf{B}\vec{v}$, where \vec{v} is one of the eigenvectors of \mathbf{A} . *Hint*:

$$\lambda^3-6\lambda^2+11\lambda-6=(\lambda-1)(\lambda-2)(\lambda-3)$$

- (b) Find all the eigenvalues of the matrix **B**.
- (c) Write out the numerical values in the 3×3 matrix **B** and justify your answer.