Ames lowa Housing Prediction

Jason Washam

Define Problem/Purpose

Analyze the Ames lowa housing data and apply machine learning concept to build a model that can predict the sale price of the houses.

Method

- Import and check the data
- Identify data types and missing values
- Handle missing values and clean the data
- Create charts and graphs to identify trends
- Analyze the relationship between sale price and predictors
- Evaluate the predictors and build a model
- Check the performance of the model
- Interpret the model

Ames Iowa Housing Data

- 2050 rows and 81 columns
- 39 numeric columns
 - Year Built
 - 1st Floor area (square feet)
 - Garage area (square feet)
 - Pool area (square feet)
- 42 categorical columns
 - Neighborhood
 - House style
 - Garage quality
 - Central air conditioning

Fireplace Qu	Garage Type	Garage Yr Blt	Garage Finish	Garage Cars	Garage Area	Garage Qual	Garage Cond	Paved Drive	Wood Deck SF	Open Porch SF
NaN	Attchd	1976.0	RFn	2.0	475.0	TA	TA	Υ	0	44
TA	Attchd	1997.0	RFn	2.0	559.0	TA	TA	Υ	0	74
NaN	Detchd	1953.0	Unf	1.0	246.0	TA	TA	Υ	0	52
NaN	BuiltIn	2007.0	Fin	2.0	400.0	TA	TA	Υ	100	0
NaN	Detchd	1957.0	Unf	2.0	484.0	TA	TA	N	0	59
Gd	Attchd	1966.0	Fin	2.0	578.0	TA	TA	Υ	0	0
NaN	Basment	2005.0	Fin	2.0	525.0	TA	TA	Υ	0	44
NaN	Attchd	1959.0	RFn	2.0	531.0	TA	TA	Υ	0	0
NaN	Detchd	1952.0	Unf	1.0	420.0	TA	TA	Υ	0	324
TA	Attchd	1969.0	Unf	2.0	504.0	TA	TA	Υ	335	0

- 9822 total missing values
- About 6% of the data

Handling Missing Data

"If you cannot fill the missing values, just drop them"

Categorical Columns

House with no pool = Pool quality do not apply (NA)

	Pool QC	Pool Area	Pool QC
0	NaN	0	NA
)	NaN	0	NA
)	NaN	0	NA
0	NaN	0	NA

Numeric Columns

- House with no garage = No garage year built (0)

Data Cleaning

- Ordinal data (19 total)

- Ex: Excellent = 5
- Gd: Good = 4
- TA: Typical = 3
- Fa: Fair = 2
- Po: Poor = 1
- NA: None = 0

- Binary data (2 total)

- N: No = 0
- Y: Yes = 0

BsmtCond: General condition of the basement

- Ex Excellent
- · Gd Good
- TA Typical slight dampness allowed
- Fa Fair dampness or some cracking or settling
- o Po Poor Severe cracking, settling, or wetness
- NA No Basement

Fence: Fence quality

- GdPrv Good Privacy
- MnPrv Minimum Privacy
- GdWo Good Wood
- MnWw Minimum Wood/Wire
- NA No Fence

CentralAir: Central air conditioning

- N No
- Y Yes

Bsmt Cond

- 3
- 3
- 57820
- 4

Fence

- 0
- -
- J
- 3

Central Air

1

Distribution of Sale Price

- Average (mean) of sale price > Midpoint (median) of sale price
 - Increase in error in model
 - Bad prediction

Log Transformation

- Convert sale price to log(sale price)
 - Average (mean) of sale price ≈ Midpoint (median) of sale price
 - Better prediction

Correlation with Sale Price

Positive correlation

- Overall Quality
- External Quality
- Living Area

- Negative correlation

- Lot Shape
- Fence
- Enclosed Porch

Correlation

- High correlation between predictors (Multicollinearity)
 - Total Bsmt SF and 1st Flr SF
 - TotRms AbvGrd and Gr Liv Area
 - Fireplace and Fireplace Qu
 - Garage Yr Blt and Garage Qual
 - Garage Yr Blt and Garage Cond
 - Garage Area and Garage Cars
 - Garage Qual and Garage Cond
 - Pool Area and Pool QC

Removed

- Fireplace Qu
- Garage Cond
- Garage Cars
- Pool QC
- Garage Qual

Feature Engineering

- High correlation between predictors (Multicollinearity)
 - Total Bsmt SF and 1st Flr SF
 - TotRms AbvGrd and Gr Liv Area
 - Total Bsmt SF and Gr Liv Area also have high correlation with sale price
- Make new features instead of removing
 - Total Area * Overall Qu = (Total Bsmt SF + 1st Flr SF + 2nd Flr SF) * Overall Qu
 - Gr Liv Area * Overall Qu

Total Bsmt SF	1st Fir SF	2nd Fir SF	Total Area	Total Area * Overall
725.0	725	754	2204.0	13224.0
913.0	913	1209	3035.0	21245.0
1057.0	1057	0	2114.0	10570.0

Feature Selection and Modeling

- Selecting features

- Lasso method
- Fit all features
- Unnecessary features will have value (coefficient) of zero
- Set different cutoffs for the value

Modeling

- Lasso and Elastic Net
- Fit the model with selected features
- Check the error (RMSE)

Final Model

Elastic Net Method

- With 53 features
 - Living Area
 - Overall Condition
 - Building Type
 - Neighborhood
 - Sale Type

Interpreting the model

Features that help the sale price to increase

- High positive coefficient
 - Gr Liv Area: above ground living area in square feet
 - Total Area: area of basement, 1st floor and 2nd floor in square feet
 - Neighborhood Crawfor: Crawford neighborhood in Ames, Iowa (Expensive neighborhood?)
 - Exterior 1st_BrkFace: Brick Face exterior covering on house

Features that help the sale price to decrease

- High negative coefficient
 - Roof Matl_ClyTile: Clay or tile roof material
 - Functional_Sal: Home functionality rating (salvage only)
 - Functional_Sev: Home functionality rating (severely damaged)
 - Neighborhood_Edwards: Edwards neighborhood in Ames, Iowa (Inexpensive neighborhood?)

Questions

