

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Pozostałe rodzaje diod, zastosowania

- · Stabilizator parametryczny
- Zastosowanie diod stabilizacyjnych
- Dioda tunelowa
- Dioda pojemnościowa
- Złącze m-s (dioda Schottky'ego)
- Diody mikrofalowe (m.in. wsteczne, p-i-n)
- Diody LED

Elementy elektroniczne I

Prostownik ze stabilizatorem parametrycznym

Elementy elektroniczne I – zastosowanie diod stabilizacyjnych

3

Zasilacz ze stabilizatorem parametrycznym

https://ea.elportal.pl

Elementy elektroniczne I – zastosowanie diod stabilizacyjnych

.

Stabilizator parametryczny

Zastosowanie

- proste zasilacze bez regulacji napięcia wyjściowego,
- napięcie odniesienia w bardziej rozbudowanych stabilizatorach (ze sprzężeniem zwrotnym, czy impulsowych).

Zalety:

- prostota (najprostszy stabilizator).

Wady:

- brak możliwości regulacji napięcia wyjściowego,
- duża moc tracona w rezystorze,
- duża zależność warunków pracy od obciążenia.

Elementy elektroniczne I – zastosowanie diod stabilizacyjnych

5

Ogranicznik diodowy

Ogranicza wzrost napięcia wyjściowego powyżej określonej wartości

Elementy elektroniczne I – zastosowanie diod stabilizacyjnych

Dioda tunelowa

Przejście tunelowe – zachodzi w złączach silnie domieszkowanych (P+-N+)

U = 0 – stan równowagi termodynamicznej: J_{Z} = J_{E} pasmo przewodzenia prąd Zenera Warunki przejścia tunelowego: istnienie stanów energetycznych: zajętych po jednej stronie złącza, a wolnych po drugiej stronie (podstawowy warunek), prąd Esakiego – mała szerokość bariery (dodatkowy warunek – spełniony dzięki silnemu domieszkowaniu).

Elementy elektroniczne I – pozostałe rodzaje diod

pasmo walencyjne

Dioda tunelowa

Przejście tunelowe

Duża koncentracja

 ${\rm domieszek:}\ E_F\!<\!E_V$

Dioda tunelowa

Parametry

$$r_d = \frac{\Delta U_D}{\Delta I_D} < 0$$

małosygnałowy schemat zastępczy dla w.cz.

Parametry

- <u>charakterystyczne</u>:
- współrzędne punktu wierzchołka (I_P, U_P),
- współrzędne punktu doliny (I_V, U_V) ,
- ujemna rezystancja dynamiczna r_d ,
- pojemność warstwy zaporowej C_{j}
- rezystancja szeregowa R_S,
 indukcyjność szeregowa L_s.

$$\bar{r}_d = \frac{U_V - U_I}{I_V - I_I}$$

- dopuszczalne graniczne:
- maksymalny prąd przewodzenia $I_{\rm F}$,
- maksymalny prąd w kierunku zaporowym I_R ,
- maksymalna temperatura złącza T_i.

Zastosowania – w zależności od parametrów własnych w schemacie zastępczym oraz wielkości napięcia polaryzacji i obciążenia:

- · układy przełączające,
- · wzmacniacze mikrofalowe,
- · generatory mikrofalowe.

Elementy elektroniczne I – pozostałe rodzaje diod

c

Diody pojemnościowe

Złącza P-N przeznaczone do zastosowań z wykorzystaniem zjawiska zmiany pojemności warstwy zaporowej złącza przy polaryzacji w kierunku zaporowym:

- warikapy (VARiable CAPacitance) większe pojemności (10 500 pF) przeznaczone do zastosowania jako zmienne pojemności, np. w układach automatycznego przestrajania obwodów rezonansowych,
- waraktory (VARiable REACTance) mniejsze pojemności (0,2 20 pF) przeznaczone do zastosowania jako zmienne reaktancyjne, np. we wzmacniaczach i generatorach parametrycznych, czy powielaczach częstotliwości w zakresie wysokich częstotliwości.

Charakterystyka $C_{\it j}(U)$ warikapu

Marciniak, "Przyrządy półprzewodnikowe i układy scalone"

Diody pojemnościowe

Schematy zastępcze

Parametry

- charakterystyczne:
- pojemność złącza C_j,
- rezystancja szeregowa R_S,
- dopuszczalne graniczne:
- maksymalne napięcie wsteczne $U_{\rm R}$,
- maksymalny prąd w kierunku przewodzenia I_F ,
- maksymalna temperatura złącza T_i,

warikap

(zakres mniejszych częstotliwości)

· charakterystyczne:

 $-C_{min}(U_{Rmax}), C_{max}(U_{Rmin}),$

waraktor

(zakres większych częstotliwości)

- · charakterystyczne:
- $-C_{min}(U_{Rmax}), C_{max}(U_{R=0}),$
- pojemność pasożytnicza oprawki C_p ,
- indukcyjność szeregowa $L_{\rm s}$,
- częstotliwość maksymalna,

$$f_{\text{max}} = \frac{1}{2\pi \sqrt{C_j L_s}}$$

Elementy elektroniczne I – pozostałe rodzaje diod

Rodzaje kontaktów (złączy)

- Homozłącze kontakt dwóch obszarów półprzewodnika tego samego rodzaju (np. Si/Si, Ge/Ge, GaAs/GaAs, AlGaN/AlGaN, HgCdTe/HgCdTe, itd.), ale różnie domieszkowanym (o różnym typie przewodnictwa), np. dioda, tranzystor bipolarny, tranzystor JFET.
- Heterozłącze kontakt dwóch obszarów półprzewodnika różnego rodzaju (np. Si/Ge, InAs/GaSb, GaAs/AlGaAs, GaN/AlGaN, HgCdTe/CdTe, itd.) – o różnej szerokości przerwy enegetycznej, np. dioda, tranzystor, laser półprzewodnikowy.
- Złącze ms kontakt metal-półprzewodnik, np. dioda Schotky'ego, złącze omowe.
- **Złącze p-i-n** złącze pn zawierające dodatkową warstwę półprzewodnika samoistnego.
- Struktura MIS (MOS) układ metal-izolator-półprzewodnik (metal-tlenekpółprzewodnik), np. tranzystor unipolarny z izolowaną bramką.

Złącze metal-półprzewodnik (m-s)

Złącze m-s (w technologii epiplanarnej) – styk warstwy półprzewodnika i metalu

(końcówek elementu) Kontakt półprzewodnik-metal (doprowadzenie) powinien być niskorezystancyjny i nie powinien wpływać na charakterystykę I(U) elementu. Jednak w pewnych warunkach może powstać złącze prostujące, ale może też być niskorezystancyjne.

Właściwości złącza m-s wynikają głównie z różnicy prac wyjścia elektronów z metalu i półprzewodnika.

Elementy elektroniczne I – pozostałe rodzaje diod

13

Złącze m-s

Model złącza m-s – właściwości złącza m-s zależą od prac wyjścia elektronów z metalu i półprzewodnika oraz od rodzaju przewodnictwa półprzewodnika.

Złącze m-s

Energetyczny model pasmowy złącza m-s po połączeniu

Elementy elektroniczne I – pozostałe rodzaje diod

15

Złącze m-s

Energetyczny model pasmowy złącza m-s po połączeniu

Elementy elektroniczne I – pozostałe rodzaje diod

Złącze m-s

Złącze prostujące – dioda Schottky'ego

Elementy elektroniczne I – pozostałe rodzaje diod

17

Złącze m-s

Złącze liniowe – kontakt omowy

Warunki utworzenia złącza omowego:

- cienka warstwa zaporowa (umożliwiająca tunelowanie elektronów), lub
- wyeliminowanie wpływu stanów powierzchniowych (całkowite zapełnienie lub opróżnienie).

Diody mikrofalowe

Przeznaczone do zastosowań w zakresie mikrofalowym: λ < 1 m (f > 300 MHz)

W praktyce inżynierskiej: $1~{\rm GHz} < f < 700~{\rm GHz}$ – początek zakresu promieniowania podczerwonego (λ = $430~\mu m$)

Podział pod względem funkcjonalnym:

Elementy elektroniczne I – pozostałe rodzaje diod

10

Dioda wsteczna

Dioda wsteczna (zwrotna) – odwrócenie roli obu kierunków polaryzacji

Konstrukcyjnie diody wsteczne są podobne do diod tunelowych – nie mają charakterystycznego punktu szczytowego na charakterystyce. Wynika to ze słabszego domieszkowania – poziom

- Fermiego jest na krawędzi pasma zabronionego:
- polaryzacja w kierunku przewodzenia nie ma prądu Esakiego (mały prąd – "idealny zawór"),
- polaryzacja w kierunku zaporowym gwałtownie wzrasta prąd Zenera.

Właściwości:

- brak napięcia progowego,
- duża czułość prądowa,
- działają na nośnikach większościowych (duża szybkość działania).

Symbol diody:

https://pl.wikipedia.org

Zastosowania: detekcja i mieszanie sygnałów.

Dioda p-i-n

Dioda o zmiennej impedancji

półprzewodnik słabo domieszkowany (samoistny)

Dzięki warstwie "i":

- polaryzacja w kierunku zaporowym duża rezystancja (~ $10k\Omega$) i mała pojemność (~ 1pF) obszar zubożony praktycznie pokrywa się z warstwą "i" bez względu na wartość napięcia,
- polaryzacja w kierunku przewodzenia mała rezystancja w kierunku przewodzenia warstwa "i" jest "zalewana" przez dziury i elektrony z sąsiednich warstw:
 - dla m.cz. nośniki w warstwie "i" zdążą zrekombinować dioda ma własności prostownicze,
 - dla w.cz. zmiana wartości płynącego prądu powoduje zmianę koncentracji nośników i w efekcie zmianę rezystancji (o kilka rzędów, nawet do $\sim 0.1\Omega$).

Zastosowania: przełączniki, tłumiki o regulowanym tłumieniu, detektory promieniowania, zabezpieczenia przez przesterowaniem wejść urządzeń w.cz., modulatory, dzielniki.

Elementy elektroniczne I – pozostałe rodzaje diod

21

Dioda LED

Dioda elektroluminescencyjna, LED (ang. light-emitting diode)

Elektroluminescencja – zjawisko luminescencji w ciałach stałych i gazach pod wpływem przepływu prądu, pola elektrycznego.

Elementy elektroniczne I – pozostałe rodzaje diod

Dioda LED

Widmo promieniowania

Elementy elektroniczne I – pozostałe rodzaje diod

23

Dioda LED

Charakterystyki diod

Intensywność świecenia zależy od wartości doprowadzonego prądu (zależność ta jest liniowa w dużym zakresie zmian prądu).

Dioda LED

Dobór rezystora

http://lednique.com

Elementy elektroniczne I – pozostałe rodzaje diod

25

Dioda LED

Materiały półprzewodnikowe – duża ilość dostępnych materiałów i domieszek – zakres barw pokrywa

praktycznie promieniowanie widzialne. The Lumex LED color guide

LED P/N Suffix	Description	Chemistry	# of Elements	Color Temperature (CCT Typ)	Peak Wavelength (A / x-coord)	Dominant Wavelength (A / y-coord)	Forward Voltage		
							(Vf Typ)	(Vf Max)	Brightness
н	High Efficiency Red	GaP	2	~	700	660	2.0	2.5	Standard
SR	Super Red	GaAlAs	3	~	660	640	1.7	2.2	High
SR	Super Red	AlinGaP	4	~	660	640	2.1	2.5	High
SI	Super High Intensity Red	AlnGaP	4	~	636	628	2.0	2.6	High
-	High Intensity Red	GaAsP	3	~	635	625	2.0	2.5	Standard
ZI	TS AllnGaP Red	AllnGaP	4	~	640	630	2.2	2.8	High
SO	Super Orange	AllnGaP	4	~	610	602	2.0	2.5	Standard
A	Amber	GaAsP	3	~	605	610	2.0	2.5	Standard
SY	Super Yellow	AllnGaP	4	~	590	588	2.0	2.5	Standard
ZY	TS AllnGaP Yellow	AllnGaP	4	~	590	589	2.3	2.8	High
Υ	Yellow	GaAsP	3	~	590	588	2.1	2.5	Standard
SUG	Super Ultra Green	AllnGaP	4	~	574	568	2.2	2.6	High
G	Green	GaP	2	~	565	568	2.2	2.6	Standard
SG	Super Green	GaP	2	~	565	568	2.2	2.6	Standard
PG	Pure Green	GaP	2	~	555	555	2.1	2.5	Standard
UPG	Ultra Pure Green	InGaN	3	~	525	520	3.5	4.0	High
UEG	Ultra Emerald Green	InGaN	3	~	500	505	3.5	4.0	High
USB	Ultra Super Blue	InGaN	3	~	470	470	3.5	4.0	High
UV	Ultra Violet	InGaN	3	~	410	~	3.5	4.0	Standard
SUV	Super Violet	InGaN	3	~	380	~	3.4	3.9	Standard
T	Turquoise	InGaN	3	~	0.19	0.41	3.2	4.0	Standard
V	Violet / Purple	InGaN	3	~	0.22	0.11	3.2	4.0	Standard
Р	Pink	InGaN	3	~	0.33	0.21	3.2	4.0	Standard
MW (Warm)	Warm White	InGaN	3	3000K	~	~	3.3	4.0	High
W (Neutral)	Neutral White	InGaN	3	4000K	~	~	3.3	4.0	High
UW (Cool)	Cool White	InGaN	3	6000K	~	~	3.3	4.0	High

Elementy elektroniczne I – pozostałe rodzaje diod