SOLAR COOLING

Outline

INTRODUCTION

- Cooling market
- Psychrometric processes
- Basic principle

AVAILABLE TECHNOLOGIES

- Compression chillers
- TDCs:
 - Absorption chillers
 - Adsorption chillers
- Desiccant systems

- Principles
- Thermodynamic analysis
- System performance

Thermally driven compression chiller Principle

Principle:

Substitute mechanical compression

by

thermal compression

Thermally driven compression chiller Principle

Principle:

Substitute mechanical compression

by

Thermal compression

ABSORPTION ADSORPTION

Thermally driven compression chiller ...within the whole system

Thermally driven compression chiller ...within the whole system

Absorption chillers: principle

Refrigerant: Water

Absorbent: LiBr

Absorption chillers

LiBr – Water (refrigerant): if T_{chilled} (T_{evap})>5°C

- Water cooled
- Water freezes at 0°C -> lower limit for Tcool!!
- LiBr soluble in water if ist concentration > 70%
 -> max. T_{middle} (absorber temperature)

Ammonia (refrigerant) – Water : if T_{chilled}(T_{evap})<5°C

Water or air cooled

Electric power consupmtion (pumps) 1-5% of cooling power

$$T_{\text{middle}} = T_{\text{cond}} = 27 - 32 \,^{\circ}\text{C}$$

$$T_{chilled} = T_{evao} = 5 - 16^{\circ}C$$

Absorption chillers

Single-effect

- COP: 0.7-0.8
- $T_{driving} = 75-90$ °C

Source: APEP-UCI, 2017

Absorption chillers

Single-effect

COP: 0.7-0.8

 $T_{driving} = 75-90$ °C

Double-effect

- COP: around 1.1
- $T_{driving} = 140-160$ °C

Outline

INTRODUCTION

- Cooling market
- Psychrometric processes
- Basic principle

AVAILABLE TECHNOLOGIES

- Compression chillers
- TDCs:
 - Absorption chillers
 - Adsorption chillers
- Desiccant systems

Adsorption chillers

Absorption = Molecules are taken up by the volume

Adsorption = Molecules are take up by the surface

Heat rejection

Adsorption chillers

(environmental heat)

Water vapor

Adsorption chillers

Adsorption chillers

Comparison: absorption and adsorption chillers

```
Single effect absorption: >100kW (few<100kW)
water/LiBr or ammonia/water
COP ca. 0.7; T<sub>drive</sub> =75-110°C
```

Double effect absorption: no product <100kW)
mainly water/LiBr
COP ca. 1.1-1.3; T_{drive} =140-160°C

Adsorption: few products (large and heavy) water/silica gel or zeolite/water COP ca. 0.6 - 0.7; T_{drive} =65-95°C

Comparison: absorption and adsorption chillers

Temperature levels

Coefficient of performance COP

$$COP = \frac{useful cooling}{driving heat}$$

Carnot efficiency factor

$$\xi_{carnot} = \frac{COP_{real}}{COP_{ideal}}$$

Reversible COP_{ideal}

$$COP_{ideal} = \frac{T_{c}}{T_{H}} \cdot \frac{T_{H} - T_{M}}{T_{M} - T_{c}}$$

Typical range of ξ_{Carnot} for real machines:

$$0.3 \le \xi_{carnot} \le 0.4$$

Absorption chiller

Thermodynamic analysis Absorption chiller

$$COP_{cool} = \frac{Q_{evap}}{Q_g} = \frac{T_g - T_a}{T_g} \cdot \frac{T_{evap}}{T_{cond} - T_{evap}}$$

Absorption chiller

Absorption chiller

$$COP_{cool} = \frac{Q_{evap}}{Q_g} = \frac{T_g - T_a}{T_g} \cdot \frac{T_{evap}}{T_{cond} - T_{evap}}$$

Comparison of absorption and adsorption chillers

Thermodynamic analysis Driving temperatures: solar collectors

System performance **Efficiency of cold generation**

Flat plate collector

Radiation= 1000 W/m²

 $COP_{sol} =$ $COP_{thermisch} *$ $\eta_{Kollektor}$

System performance **Efficiency of cold generation**

Optimal driving temperature for solar-cooling system depends on the incident radiation strahlung ab

 $COP_{solar} = \eta_{coll} * COP_{TDC, carnot}$

System performance Primary energy balance

$$E_{PE} = Q_{bu} / \varepsilon_{fossil} + E_{elec} / \varepsilon_{elec}$$

$$E_{PE,save} = E_{PE,reference} - E_{PE,solar}$$

$$E_{pe,solar} = \frac{1}{(\varepsilon_{elec} - COP)}$$

$$PE_{spec,sol} = \frac{1}{\varepsilon_{fossil} \cdot COP_{thermal}} \cdot (1 - SF_{cool}) + 1$$

$$Q_{use} = Q_{tot} - Q_{bu}$$

$$E_{\textit{PE,save,rel}} = \frac{E_{\textit{PE,save}}}{E_{\textit{PE,reference}}} \qquad E_{\textit{PE,save,spec}} = \frac{E_{\textit{PE,save}}}{A_{\textit{coll}}}$$

E_{spec,cooling tower}

6-10 W/kW_{cooling,power} (axial)

10-20 $W/kW_{cooling,power}$ (radial)

$$PE_{\textit{spec,cooling tower}} = \frac{E_{\textit{spec,cooling tower}}}{\varepsilon_{\textit{elec}}} \cdot \left(1 + \frac{1}{COP_{\textit{thermal}}}\right)$$

System performance Primary energy balance

Example:

Cooling tower: 0,05 kWh_{el}/kWh_{cool}; COP = 0,7; F_p =2,7 (ϵ =1/ f_p)

Solar fraction: 0.7

27% lower32% higher

System performance

Primary energy balance

Solar energy + back up boiler (fossil fueled)

Primary energy conversion factor electricity: 0.36

Primary energy conversion factor for heat: 0.9

References

- Henning, H.M. (Ed.) 2003. Solar-Assisted Air-Conditioning in Buildings A Handbook for Planners. Springer-Verlag/Wien (Austria). 2003.
- Henning H-M., 2007. Solar cooling. SES Solar World Congress 2007 Beijing International Convention Center (BICC). Beijing, CHINA September 19, 2007
- Henning H-M., 2004. Solare Klimatisierung: Stand der Entwicklung. Tagung "Solares Kühlen" Wirtschaftskammer Österreich, Wien. 7. Mai 2004
- Cmu.edu, 2017. http://www.cmu.edu/iwess/components/steam_absorption_chiller/flow-diagr am.html Last visited: 18.09.2017
- APEP-UCI, 2017.
 http://www.apep.uci.edu/der/buildingintegration/2/Technologies/WasteHeat
 Recovery.aspx
 Last visited: 18.09.2017