# **Functional Specification**

for the

# Mail Delivery Robot Version 1

Date: 01/28/2025

Sponsored by: Dr. Logan Porter

**Designed by: Talaria Robotics** 



ESET 420 Section 502



### 1. Design

- 1.1. Able to hold a combined 15 pounds of Mail
  - 1.1.1. No large or heavy packages
  - 1.1.2. All folders will be letter size or smaller
- 1.2. Mail will be secured
  - 1.2.1. Mail does not fall out during typical movement
- 1.3. Clean and organized design
  - 1.3.1. All cables will be secured
  - 1.3.2. Faculty Advisor will approve of final design
  - 1.3.3. All buttons and touchscreen options are clearly labeled
- 1.4. Robot size
  - 1.4.1. Robot will fit through an average door frame
    - 1.4.1.1. Robot size will not exceed 28 inches
- 1.5. Driving method
  - 1.5.1. Robot will have enough traction to avoid slipping on tile and carpet
  - 1.5.2. Tank treads are preferred
- 1.6. Motors
  - 1.6.1. A minimum of two motors
  - 1.6.2. Motors will be controlled by a motor driver
  - 1.6.3. Motors will be related to encoders
  - 1.6.4. Motors will be able to run under the maximum mail load

# 2. Set Up

- 2.1. Robot will start in the same position every run
- 2.2. User will ensure that the system is adequately charged prior to starting
  - 2.2.1. Batteries should be above 20%
- 2.3. Robot will travel a minimum of 1 stop, not including the mail room
- 2.4. Normal Operation
  - 2.4.1. User will load robot with mail before selecting the desired rooms
  - 2.4.2. Robot will navigate to desired location while avoiding obstacles
  - 2.4.3. Robot must wait for end user to instruct it before continuing it's path

#### 3. Autonomous Navigation

- 3.1. Indoor navigation only
  - 3.1.1. Testing will occur on the first floor of Fermier Hall.
- 3.2. Mapping
  - 3.2.1. Map will be preloaded
  - 3.2.2. Route will be programmable
  - 3.2.3. The user will have the ability to select any combination of the listed rooms
- 3.3. Obstacle Avoidance
  - 3.3.1. Robot will avoid static and dynamic obstacles
    - 3.3.1.1. Robot will stop if an object is within 6 inches
    - 3.3.1.2. Robot will attempt to navigate around if an object is more than 6 inches away
  - 3.3.2. Obstacle avoidance sensor will not be a physical detection method (e.g. whiskers or bumpers)
    - 3.3.2.1. LiDAR is preferred

#### 4. Touchscreen

- 4.1. Touchscreen will be visible at all times
- 4.2. Touchscreen will be larger than 5 inches
- 4.3. Touchscreen is reactive when touched

#### 5. Power

- 5.1. Power supply will be supplied using portable batteries
  - 5.1.1. Batteries used for any module in the system must meet the following criteria:
    - 5.1.1.1. Sufficiently power all components
    - 5.1.1.2. Provide one hour of non-continuous operation per day
  - 5.1.2. Preferred 3.7V Lithium Ion (Li-Ion)
- 5.2. Batteries must be rechargeable

## 6. Communication

- 6.1. Raspberry Pis will be connected using Ethernet or another stable form of communication
- 6.2. Robot will not communicate with any technology not attached to the mobile system

# 7. Reports

- 7.1. An up to date Google drive will be shared with all stakeholders and include:
  - 7.1.1. Mechanical Concept Drawings
  - 7.1.2. Schematic Drafts
  - 7.1.3. Software Documentation
  - 7.1.4. Test Plans
  - 7.1.5. Critical Design Review
  - 7.1.6. Final Technical Report
- 7.2. Up to date code can be found on the GitHub
  - 7.2.1. Organization display name will be Talaria Robotics
- 7.3. Robot will be completed by the Final Technical Presentation
  - 7.3.1. Robot will be at the Engineering Project Showcase