DNN_02

- 1. Neural Network Architecture
- 2. Forward Pass
- 3. Loss Function4. Optimization
- 5. Gradient Descent
- 6. Learning Rate
- 7. Tips of Gradient Descent
- 8. Batch Gradient Descent9. Stochastic Gradient Descent
- 10. Mini Batch Gradient Descent
- 11. Exponential Weighted Average
- 12. Gradient Descent with momentum
 - Adam
- 15. Learning Rate Decay
- 16. Local Optima

RMSprop

13.

Neural Network Architectures

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs. **Right:** A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.

Neural Network Architectures ..cont

- The first network (left) has 4 + 2 = 6 neurons (not counting the inputs), [3 x 4] + [4 x 2] = 20 weights and 4 + 2
 = 6 biases, for a total of 26 learnable parameters.
- The second network (right) has 4 + 4 + 1 = 9 neurons, $[3 \times 4] + [4 \times 4] + [4 \times 1] = 12 + 16 + 4 = 32$ weights and 4 + 4 + 1 = 9 biases, for a total of 41 learnable parameters.

The forward pass of a fully-connected layer corresponds to one matrix multiplication followed by a bias offset and an activation function.

Forward Pass

$$\begin{bmatrix}
3 & 5 \\
5 & 1 \\
10 & 2
\end{bmatrix}
\begin{bmatrix}
w_{11}^{(0)} & w_{12}^{(0)} & w_{13}^{(0)} \\
w_{21}^{(1)} & w_{22}^{(0)} & w_{23}^{(0)}
\end{bmatrix} = \begin{bmatrix}
3w_{11}^{(0)} + 5w_{21}^{(0)} & 3w_{12}^{(0)} + 5w_{22}^{(0)} \\
5w_{11}^{(0)} + 1w_{21}^{(0)} & 5w_{12}^{(0)} + 1w_{23}^{(0)} \\
10w_{11}^{(0)} + 2w_{21}^{(0)} & 10w_{12}^{(0)} + 2w_{23}^{(0)} & 10w_{13}^{(0)} + 2w_{23}^{(0)}
\end{bmatrix}$$


```
In [1]: class Neural_Network(object):
            def init (self):
                #Define Hyperparameters
                self.inputLayerSize = 2
                self.outputLayerSize = 1
                self.hiddenLayerSize = 3
                #Weights (Parameters)
                self.W1 = np.random.randn(self.inputLayerSize, \
                                         self.hiddenLayerSize)
                self.W2 = np.random.randn(self.hiddenLayerSize, \
                                          self.outputLayerSize)
            def forward(self, X):
                #Propagate inputs though network
                self.z2 = np.dot(X, self.W1)
                self.a2 = self.sigmoid(self.z2)
                self.z3 = np.dot(self.a2, self.W2)
                yHat = self.sigmoid(self.z3)
                return yHat
            def sigmoid(self, z):
                #Apply sigmoid activation function to scalar, vector, or
                return 1/(1+np.exp(-z))
```

$$z^{(2)} = XW^{(1)} \tag{1}$$

$$a^{(2)} = f(z^{(2)}) \quad (2)$$

$$z^{(3)} = a^{(2)} W^{(2)} \tag{3}$$

$$\hat{y} = f(z^{(3)})$$
 (4)

Loss/Cost/Objective Function

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

$$\mathcal{J}(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Mean Square Error

MSE =
$$\frac{1}{N} = \frac{1}{(y_i - \hat{y_i})^2}$$
average over all results i = 1

Mostly used in linear regression.

Cross Entropy

$$H(x) = \sum_{i=1}^{N} p(x) \log q(x)$$

Mostly used in classification problem / logistic regression.

Methods of Optimization

- 1. Random Search
- 2. Random Local Search
- 3. Following the gradient

Gradient Descent

Gradient descent is an optimization algorithm used to find the values of parameters of a function (f) that minimizes a cost function (cost).

$$C(w,b)\equiv rac{1}{2n}\sum \|y(x)-a\|^2.$$

Hypothesis:

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters:

 θ_0, θ_1

Cost Function:

Cost Function:
$$I(\theta, \theta_0) =$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Simplified

 θ_1

 $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\underset{\theta_1}{\text{minimize}} J(\theta_1)$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Gradient Descent

Gradient Descent Algorithm

repeat until convergence {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
}

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

Implementation

Summary of gradient descent

$$\begin{split} dz^{[2]} &= a^{[2]} - y & dZ^{[2]} &= A^{[2]} - Y \\ dW^{[2]} &= dz^{[2]} a^{[1]^T} & dW^{[2]} &= \frac{1}{m} dZ^{[2]} A^{[1]^T} \\ db^{[2]} &= dz^{[2]} & db^{[2]} &= \frac{1}{m} np. \, sum(dZ^{[2]}, axis = 1, keepdims = True) \\ dz^{[1]} &= W^{[2]T} dz^{[2]} * g^{[1]'}(z^{[1]}) & dZ^{[1]} &= W^{[2]T} dZ^{[2]} * g^{[1]'}(Z^{[1]}) \\ dW^{[1]} &= dz^{[1]} x^T & dW^{[1]} &= \frac{1}{m} dZ^{[1]} X^T \\ db^{[1]} &= dz^{[1]} & db^{[1]} &= \frac{1}{m} np. \, sum(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$

Importance of Learning Rate

How big the steps are that Gradient Descent takes into the direction of the local minimum are determined by the so-called learning rate. It determines how fast or slow we will move towards the optimal weights.

Tips for Gradient Descent

- Plot Cost versus Time: Collect and plot the cost values calculated by the algorithm each iteration. The expectation for a well performing gradient descent run is a decrease in cost each iteration. If it does not decrease, try reducing your learning rate.
- Learning Rate: The learning rate value is a small real value such as 0.1, 0.001 or 0.0001. Try different values for your problem and see which works best.
- Rescale Inputs: The algorithm will reach the minimum cost faster if the shape
 of the cost function is not skewed and distorted. You can achieved this by
 rescaling all of the input variables (X) to the same range, such as [0, 1] or [-1,
 1].

Number of Iteration Vs Cost

Batch Gradient Descent

- Also known as vanilla gradient descent
- Calculates the error for each example within the training dataset, but only after all training examples have been evaluated, the model gets updated
- computational efficient
- it produces a stable error gradient and a stable convergence
- Stable error gradient may lead to local minima
- It also requires that the entire training dataset is in memory and available to the algorithm
- Use this is training set have approx 2000-3000 input data

Stochastic Gradient Descent

- Calculates the error for each example within the training dataset, and update the model for each example. This means that it updates the parameters for each training example, one by one.
- This can make SGD faster than Batch Gradient Descent, depending on the problem.
- Frequent updates are more computationally expensive.
- The frequency of those updates can also result in noisy gradients, which may cause the error rate to jump around, instead of slowly decreasing. This help in solving the problem of convergence at local minima.

Mini Batch Gradient Descent

- Mini-batch Gradient Descent is the go-to method since it's a combination of the concepts of SGD and Batch Gradient Descent.
- It simply splits the training dataset into small batches and performs an update for each of these batches.
- Common mini-batch sizes range between 64, 256, 512

(X & X &) = (X X) mini-both size = m : Borth godut desch. > It min; both size = 1: Stochaste growth descent. Every excepte is (X stry (x (x (y (1))) ... (x (x (y (1))) min; -both. Evan excepte is it our In practice: Someth in-between I all m In-bother Stochostic Bortch gred-t lesent (minihotal size godiet desut not too by/small) (min; both size = m) Live speaky Fustest learnly. Too long · Vectorbortion. per iteration (~ 1 aco) · Mate poor without

Exponential Weighted Average

Temperature in London

```
\theta_{1} = 40^{\circ}F \quad 4^{\circ}C \leftarrow \theta_{2} = 49^{\circ}F \quad 9^{\circ}C \leftarrow \theta_{3} = 45^{\circ}F \quad \vdots \\ \theta_{180} = 60^{\circ}F \quad 6^{\circ}C \leftarrow \theta_{181} = 56^{\circ}F \quad \vdots
```


 $V_{\pm} = \beta V_{\pm -1} + (1-\beta) \Theta_{\pm}$ $\beta = 0.9$: % lo days' texpertu. $\beta = 0.98$: % So days

Ve as approximately
overage over

Note to the days'

Gradient Descent with Momentum

Gradient descent example

Gradient descent example

Implementation details

On iteration *t*:

Compute dW, db on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta) \underline{dW}$$

$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}$$
, $b = b - \alpha v_{db}$

Hyperparameters: α, β

= 0.9

Implementation details

On iteration *t*:

Compute dW, db on the current mini-batch

$$v_{dW} = \beta v_{dW} + (M - \beta)dW \qquad \qquad | \underline{v_{dW}} = \beta v_{dW} + (M - \beta)dW \qquad | \underline{v_{dW}}$$

$$W = W - \alpha v_{dW}$$
, $b = \underline{b} - \alpha v_{db}$

Hyperparameters: α , β

$$r = 0.9$$

RMSprop

RMSprop

A -41 -- 4 - 1 A /1 -- 1 -- --

RMSprop W, W2, 42 Mm Compute DW, do on count mini-both Saw = R Saw + (1-p) QW) < W:= W- d dw € b:= b-2 db €

Adam optimization algorithm

Hyperparameters choice:

$$\rightarrow \alpha$$
: needs to be tune
 $\rightarrow \beta$: 0.9 $\rightarrow (du)$
 $\rightarrow \beta$: 0.999 $\rightarrow (du^2)$
 $\rightarrow \Sigma$: 10-8

Adam: Adaptiv momet estimation

Learning Rate Decay

Learning rate decay

1 apoch = 1 pass throft dort.

d = 1 + dacay-rote * epoch-num

Epoch | 2

0.1

6.5

0.67

	do ←
-nugo	do = 0.2 decq. rote = 1
_	

Other learning rate decay methods

Local optima in neural networks

Problem of plateaus

- Unlikely to get stuck in a bad local optima
- · Plateaus can make learning slow

Reference

https://machinelearningmastery.com/gradient-descent-for-machine-learning/

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

http://neuralnetworksanddeeplearning.com/chap1.html

https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

https://www.coursera.org/learn/deep-neural-network/home/week/2