Transformer-based Satellite Image and Segmentation Generation for Ground-to-Aerial Image Matching

Computer Vision A.A. 2024-2025

Project presentation by:

Filippo Tatafiore 1934988 Lorenzo Ciappetta 2011296

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Table of Contents

Presentation outline

- 1. Objective
- 2. State of the art
- 3. Proposed method
- 4. Dataset
- 5. Setup and training
- 6. Evaluation
- 7. Conclusion
- 8. References

Objective

Area of interest of the project

 Ground-to-Aerial image matching is the problem of associating a query ground-view with the corresponding satellite image, despite of the extreme view-point difference.

Objective:

- Learn to synthesize aerial images through a transformer model for image generation
- Learn to extract the characteristics and features of the images.
- Correlate the features from the different images, and evaluate it with a score.
- Discriminate non-matching views from matching ones

State of the art

Current research approaches to this challenge

- Popular Approaches based on:
 - Feature extraction through VGG models and correlation between separate branches
 - Triplet loss

figure 1: JointFeatureLearningNet architecture from [1]

figure 3: SAN-QUAD Architecture from [2]

figure 2: FeatureFusionNett architecture from [1]

figure 4: SAN Architecture from [3]

Project pipeline

- Image Generation, Feature Extraction and Fusion:
 - Fine-tune Image Generation model to produce expected aerial views and segmentation maps from ground images
 - Use generated images along with the others to aid in feature extraction
 - Fuse salient features to elaborate the compatiblity between query ground view and aerial candidate image
- Image Discrimination
 - Train the model for matching to true aerial image representation from wrong ones via triplet loss

Models

Image Generation: Vision Transformer model

Models

 Feature Extraction and Fusion: Joint Feature Learning Net and Feature Fusion Net

Another approach

 Feature Extraction and Fusion: Joint Feature Learning Net and Feature Fusion Net

Dataset

CVUSA

- polarized ground view images
- aerial satellite images
- aerial satellite segmentation maps
- polarized aerial satellite images
- polarized aerial satellite segmentation maps

Preprocessing

- Resize (adapt to pretrained models)
- Data augmentation
- Normalization

Setup and Training

Configuration of the elements of the project

Generative model

- encoder: version of nvidia/segformer-b0-finetuned-ade-512-512, fine-tuned on satellite semantic dataset [4]
- training strategy: 2 phases

Setup and Training

Configuration of the elements of the project

- Joint Feature Learning Net
 - Logs for first approach:

Logs for second approach (with attention module):

Setup and Training

Configuration of the elements of the project

- Feature Fusion Net
 - Logs for first approach:

Logs for second approach (shallow NN instead of FC):

Evaluation

- Generative model
 - Aerial Loss: weighted sum of Perceptual Loss and L1 loss
 - Segmentation loss: Weighted
 Focal Loss + Dice Loss
 - PSNR and IoU Monitoring
- Joint Feature Learning Net model
 - Weighted sum of three triplet losses
- Feature Fusion Net model
 - Triplet loss
 - Recall@k

======= Test set results ========

Avg Segmentation Loss: 0.8044

Avg Aerial Reconstruction Loss: 0.5933

Avg Total Loss: 0.7247

Test metric	DataLoader 0
loss 1	0.7349947690963745
loss 2	0.8178892135620117
loss 3	0.8212516903877258
test_loss	8.98908805847168

Test metric	DataLoader 0
test_loss	0.7335683703422546

Recall@1: 0.5621 Recall@5: 0.8239 Recall@10: 0.9016 Recall@20: 0.9431

Conclusion

Final considerations

- Generative model:
 - different encoders: nvidia/mit-b1,
 sawthiha/segformer-b0-finetuned-deprem-satellite
 - different losses:
 - Aerial loss: L1 loss, Perceptual Loss
 - Segmentation loss: Weighted Cross Entropy, Weighted Focal Loss, Dice loss
- Joint Feature Learning model:
 - different architectures: with or without attention
- Feature Fusion model:
 - different approaches for extracting the query embedding

Conclusion

Future work

- Generative model:
 - larger encoder, pre-trained on satellite data (Prithvi, Swin Transformer, ...)
 - deeper decoders
- Joint Feature Learning and Feature Fusion:
 - use also ground view segmentation maps
 - calculate negative not only within the current batch
- Other possibilities:
 - Larger dataset
 - Different training strategies

References

- [1] Regmi, K., & Shah, M. (2019). Bridging the Domain Gap for Ground-to-Aerial Image Matching. arXiv.
- [2] Mule, E., Pannacci, M., Goudarzi, A., Pro, F., Papa, L., Maiano, L., and Amerini, I. (2025). Enhancing Ground-to-Aerial Image Matching for Visual Misinformation Detection Using Semantic Segmentation. In Proceedings of the Winter Conference on Applications of Computer Vision (WACV) Workshops (pp. 795-803).
- [3] F. Pro, N. Dionelis, L. Maiano, B. L. Saux and I. Amerini, "A Semantic Segmentation-Guided Approach for Ground-to-Aerial Image Matching," IGARSS 2024 Athens, Greece, 2024, pp. 2630-2635.
- [4] https://huggingface.co/sawthiha/segformer-b0-finetuned-deprem-satellite

Thanks for your attention