Shift Registers

Overview

- Multiple flip flops can be combined to form a data register
- Shift registers allow data to be transported one bit at a time
- ° Registers also allow for parallel transfer
 - Many bits transferred at the same time
- Shift registers can be used with adders to build arithmetic units
- Remember: most digital hardware can be built from combinational logic (and, or, invert) and flip flops
 - Basic components of most computers

Register with Parallel Load

- ° Register: Group of Flip-Flops
- ° Ex: D Flip-Flops
- ° Holds a Word (Nibble) of Data
- Loads in Parallel on Clock Transition
- Asynchronous Clear (Reset)

Fig. 6-1 4-Bit Register

Register with Load Control

° Load Control = 1

 New data loaded on next positive clock edge

° Load Control = 0

 Old data reloaded on next positive clock edge

Fig. 6-2 4-Bit Register with Parallel Load

Shift Registers

- ° Cascade chain of Flip-Flops
- Bits travel on Clock edges
- ° Serial in Serial out, can also have parallel load / read

Fig. 6-3 4-Bit Shift Register

Parallel Data Transfer

- ° All data transfers on rising clock edge
- ° Data clocked into register Y

Parallel versus Serial

Serial communications is defined as

 Provides a binary number as a sequence of binary digits, one after another, through one data line.

Parallel communications

 Provides a binary number through multiple data lines at the same time.

Shift register application

° Parallel-to-serial conversion for serial transmission

Serial Transfer

Oata transfer one bit at a time

Data loopback for register A

Fig. 6-4 Serial Transfer from Register A to register B

Serial Transfer of Data

Transfer from register X to register Y (negative clock edges for this example)

Pattern recognizer

- ° Combinational function of input samples
 - in this case, recognizing the pattern 1001 on the single input signal

CIK	IN OUT1 OUT2	0013 00	14 001
Before -			
1	1 0 0	0 \ 0	0
2	0 1 0	0 0	0
3	0 1	• 0 • 0	0
4	1 0 0	1 0	0
5	0 1 0	1	1

Serial Addition (D Flip-Flop)

- Slower than parallel
- Low cost
- Share fast hardware on slow data
- Good for multiplexed data

Fig. 6-5 Serial Adder

Serial Addition (D Flip-Flop)

- Only one full adder
- Reused for each bit
- Start with loworder bit addition
- Note that carry(Q) is saved
- Add multiple values.
 - New values placed in shift register B

Fig. 6-5 Serial Adder

Serial Addition (D Flip-Flop)

- Shift control used to stop addition
- Generally not a good idea to gate the clock
- Shift register can be arbitrary length
- FA can be built from combin. logic

Fig. 6-5 Serial Adder

Universal Shift Register

Fig. 6-7 4-Bit Universal Shift Register

Summary

- Shift registers can be combined together to allow for data transfer
- ° Serial transfer used in modems and computer peripherals (e.g. mouse)
- ° D flip flops allow for a simple design
 - Data clocked in during clock transition (rising or falling edge)
- Serial addition takes less chip area but is slow
- ° Universal shift register allows for many operations
 - The register is programmable.
 - It allows for different operations at different times
- ° Next time: counters (circuits that count!)