

_UNCLAS			•		\$, ,	(2)			
SECURITY C	ΑГ	D-A 186	140				0			
	,	7 100	TTU DOUME	NTATION PAG	7.7	בון ב	conv			
16. REPOR	ASSIFIED		/	16. RESTRICTIVE M	ARKINGS U	itte like	C027			
		CATION AUTHORITY		3 DISTRIBUTION/A	VAILABILITY O	F REPORT				
				APPROVED FO			j			
26. DECLAS	SIFICATION	DOWNGRADING SCHEE	DULE	DISTRIBUTIO	ON UNLIMITE	D				
4. PERFOR	MING ORGAN	NIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBER(S)				
				AFOSK.	1K- 87	- 1209	1			
6. NAME C	FPERFORM	ING ORGANIZATION	66. OFFICE SYMBOL	78. NAME OF MONE	TORING ORGAN	IZATION				
WEA		•	(If applicable)	AFTOS 2	MH					
6c. ADDRES	SS (City, State	and ZIP Code)	<u> </u>	76. ADDRESS (City.		ie)				
P.O.	Box 260,	, MIT Branch		Blda-4	(10		1 1 1 1			
Cambi	ridge, MA	02139		Beding AFB DC 20332-6448						
		SPONSORING	86. OFFICE SYMBOL	9. PROCUREMENT	NOTRUMENT ID	ENTIFICATION NET	THE STATE			
		R FORCE OFFICE RESEARCH	(If applicable) AFOSR/NA	F49620-85-	-0148		LECT			
		and ZIP Code;		10. SOURCE OF FUR	NDING NOS.		20 9 8			
BOLL	O 41 C ING/AFB,) DC 20332 - 6 ч	142	PROGRAM ELEMENT NO.	PROJECT	TASK	SEK UNIT			
DOLL.	ind/faib,	DC 20332 · ·	1.0	ECEMENT NO.	140.	NO.	No.			
		ty Classification) WAVE		61102F	2302	B1				
	AL AUTHOR	22-BAY LATTICE (UNCLASSIFIED)	<u></u>	<u></u>	<u> </u>				
	-	liams, Jr. and J	ia J. Zhang				ł			
	F REPORT	13b. TIME C		14. DATE OF REPOR	- :	15. PAGE CO	UNT			
	NICAL MENTARYN		ept 85 rol June 87	1987, June	<u>, 1</u>	37				
		51211 3 1					,			
17	/ COSATI	CODE	I.a. 6110.507 750140.6							
FIELD	/GROUP	SUB. GR.	18. SUBJECT TERMS (C.		WAVE EXPE					
	<u> </u>		WAVE PROPAGAT	ION	PERIODIC	LATTICE	ł			
19. ABSTRA	ST (Continue	on reverse if necessary an	d identify by block number							
ì	ul Novo pro	onacetion charac	teristics of la	raa anaaa atri	10 turos (TC	S) affort the	d'r			
perf			the ability to no							
			ion characteris							
			erimentally. To							
4			various location:				s			
			impulsive load		-					
			the receiving tra				ne			
			vaves, transverse By be described l							
			nding signal has				10			
		greater than 0.5		a broad frequ	ichey spect	.Ium Containi	-0			
			ed, waves propa	gate through '	'T" and "L"	joints into	1			
vari			ture. The speed				re			
20. DISTRIE	BUTION/AVA	ILABILITY OF ABSTRA	CT /	21. ABSTRACT SECU	JRITY CLASSIFI	CATION				
UNCLASSIF	HED/UNLIMI	TED 🏖 SAME AS RPT.	OTIC USERS -	UNCLASSIFI	ED		ţ			
B .		BLE INDIVIOUAL		226 TELEPHONE N		22c. OFFICE SYMBO	٥١			
ANTH	ONY K. AM	10S		(Include Area Ca 202/767-4937		AFOSR/NA				

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (cont'd)

measured. The resulting speeds of wave propagation along members of the lattice are measured to range from 4.53 km/s (14,800 ft/s) to 5.18 km/s (17,000 ft/s). It is indicated that the measured wave speed is between the longitudinal wave speed and the flexural wave speed.

The frequency spectra of the output signals are also obtained. It is observed that the frequency at the maximum amplitude of the output spectrum generally occurs between 353 kHz and 450 kHz. It is also observed that, beyond the first five bays, the maximum amplitude of the output spectrum decreases logarithmically with the number of bays that the output is located away from the input, regardless of the input location on the structure. Thus, an attenuation of the maximum amplitude of the output spectrum can be defined for LSS based on the number of lattice bays. This attenuation parameter may be convenient for the design of LSS because it is based on a natural unit of the LSS, namely, the lattice bay. For the planar lattice considered, this attenuation is found to be 0.085 neper per bay.

Furthermore, reciprocity between input and output is observed experimentally, in both the time domain and the frequency domain. The development of quantitative measures of reciprocity is recommended.

This experimental study also demonstrates that wave propagation characteristics of a lattice structure can be obtained. In particular, the wave speed, the frequency at the maximum amplitude of the output spectrum, and the attenuation of the maximum amplitude of the output spectrum per lattice bay traversed appear to be useful parameters in the characterization of wave propagation properties of LSS. Further study should investigate the effects of boundaries, lattice member connectivities, and structural defects on these parameters. Perhaps, statistical energy analysis or pattern recognition techniques would also be of benefit in such efforts.

AFOSR-TR. 87-1289

ACKIOLLEDGIELTS

The Air Force Office of Scientific Research (Project Monitor, Dr. Anthony A. Amos) is gratefully acknowledged for its support of this research.

	Acces	sion For					
	1	GRA&I	X				
	DTIC	TAB					
	Unann	ounced	ñ				
/	Justi	fication					
QUALITY							
INSPECTED 2	Ву						
	Distribution/						
	Availability Codes						
		Avail ar	d/or				
	Dist	Specia	ı İ				
	1		_				
		1					
		1	į				

NCTICL

C.

This document was prepared under the sponsorship of the Air Force. Reither the US Government nor any person acting on behalf of the US Government assumes any liability resulting from the use of the information contained in this document. This notice is intended to cover UFA as well.

TABLE OF COLTENS

																													Pare
AbSI	F A C	T	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
ACano	Oi. L	ĿĿ	G I. I	Ei.	TS		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
NOTI	CL	•	•	•	•	•	•	•			•	•		•		•	•	•	•	•	•		•	•	•		•		4
TAuLl	t U	F	C U1	17	ĿΝ	īS		•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	5
LIST	CF	T	ABI	LΕ	S		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ϵ
LIST	0F	F	IGU	J Ř.	ĒS		•			•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	7
RTAI	OLU	Сī	IOI		•		•				•	•	•		•		•	•	•	•	•		•	•		•	•	•	ć
LATT	ICF	C	EOI	ξĒ,	I R	Υ,	I	XF	EF	I	.EI	T	L	ΕC	υI	Pl	Eŀ	T	ΑÌ	.D	E X	:PI	ER]	[KI	E1. 7	l A l	J		
PAC	ÜCΞ.	ԸՆ	ĥΕŝ	S	•	•					•	•		•	•		•	•	•	•	•		•	•	•		•		ċ
	La	tt	ice	9	G€	0 m	e 1	ry	,		•	•					•	•	•	•	•	•	•		•		•	•	è
	Εx	þε	ri	n e :	n t	al	1	દુા	ij	om∈	ni	t		•	•					•		•	•	•	•		•		9
	Еx	ŗ.e	rin	ī. ε :	n t	al	I	rc	: c €	dι	ıre	Ξ.Ξ		•	•	•					•			•					10
	C n	ar	ēС.	t€	ri	za	ti	ior	1 6	:í	Ir	ıŗı	it	Ρι	ıls	e	•	•	•		•	•	•	•	•	•	•		11
RESUI	Lis	A	ı, D	D	IS	СU	Si	:I() N S	5		•			•		•	•	•		•		•	•	•				12
	l, ā	v e	ទ	i e	e a				•							•				•	•		•	•					12
	Cu	tp	ut	F	r e	q u	. € 1) c)	; S) Pe	e c 1	trı	1 Ti.	•	•	•			•	•	•		•		•				12
	OŁ	೯ ೮	rva	εt	1 C	n	01	. 1	ec	eip	oro	oc:	Lty	,		•	•		•	•	•			•				•	15
CG1. C1	ւնչ	ΙC	1.5	A	l. L	E	E(101	.l.I	INI	CAI	rI(2710	5				•	•		•	•	•		•				16
RLFL	r.E.li	CE	S	•	•		•					•			•		•		•	•				•			•		2 Ç
TABLI	ŁS			•		•	•				•	•			•			•		•			•	•			•		22
FTCH	. 1 0																												77

LIST OF TAILES

<u>lable</u>		Fare
1	Summary of Measured Wave Speeds for Initial Waves Arriving at Various Output Locations for Various Input Locations	22
2	Calculated Flexural W Speed in Aluminum Ears of Cross Section Corr ing to That of Lattice at Various Frequencies	
3	Summary of Leasured Frequencies at Maximum Amplitude of Output Frequency Spectra for Waves Arriving at Various Output Locations for Various Input Locations	26
4	Summery of Reasured Maximum Amplitudes of Output Frequency Spectra for Waves Arriving at Various Output Locations for Various Input Locations	5 0
5	Comparison of Wave Propagation Crarecteristics between the 5-Lay and 22-Lay Planar Lattice	. 32

LIST CF FIGURES

Figure		Pag€
1	Geometry of 22-bay lattice structure (dimensions in cm)	33
2	Schematic of experimental system for measuring wave speed and frequency spectrum of 22-bay lattice, showing typical locations of transmitting	
	and receiving transducers	34
3	Schematic illustrating locations A through V ₁ on lattice structure	35
4	(a) Time trace and (b) frequency spectrum of output from receiving transducer when transmitting and receiving transducers are coupled together directly (face-to-face) without any structural specimen	
5	Logarithm (tase 10) of maximum amplitude (mV) of output spectrum versus number of tay widths that output is located from input for various input	
	locations	37

INTRODUCTION

Large space structures (LSS) are periodic lattice structures being considered for use in orbiting space stations, space communication antennas and space platforms [1]. The proposed application of LSS in geocentric orbit requires structures of outstanding performance and integrity under extreme or hostile environmental conditions. have propagation characteristics of LSS affect their performance, integrity and the ability to noncestructively assess their integrity in service.

have propagation characteristics of an aluminum 22-bay planar lattice structure[2-4] are measured experimentally in this study. Two ultrasonic piezoceramic longitudinal transducers are mounted at various locations on the structure. Wave measurements are obtained by injecting an impulsive load via the transmitting transducer and recording the response via the receiving transducer. The waves injected into the structure are generated as longitudinal waves, transverse to the surface.

In the lattice considered, waves propagate through "T" and "L" joints into various members of the structure. The resulting speeds of wave propagation along members of the lattice are measured. The frequency spectra of output signals at various locations due to input excitations at various locations on the lattice are measured also. The wave speed and the frequency spectrum should be useful in the characterization of wave propagation properties of LSS.

PROCEDURES EXPERIMENTAL EQUIPMENT AND EXPERIMENTAL

Lattice Geometry

Fig. 1 shows the geometry of the 22-bay planar lattice structure considered in this study and in other studies [2-4]. The structure has twenty-two repeating substructures (bays). The 22-bay planer lattice is machined from a single piece of 0.953 cm (0.375 in) thick 6061-TE aluminum plate. Thus, the structure contains no welds or fasteners in its construction.

Experimental Equipment

A schematic of the wave measurement system is shown in life. 2. The system consists of a broadband ultrasonic pulser-receiver (Fanametrics model 5052PR) to generate and receive electrical pulses up to 30 LHz; 2.54 cm (1 in) diameter (1.91 cm (0.75 in) ciameter fiezoceramic element) broadband (0.1 to 3.0 MHz) transmitting and receiving longitudinal transducers (Panametrics model V105) having an approximately flat sensitivity of -85 of (relative to 1 V/ Bar) and weighing 0.082 kgf (0.18 lbf) each; a transducer specimen interface couplant (Acoustic Emission Technology model SC-6); 26.7 h (6 ltf) constant-force springs (Acoustic Emission Technology model CFC-6.0) to secure the transducers onto the specimen; and a 16-bit digital oscilloscope (Ricclet model 4094 with dual-channel 8-bit plug-in model 4175, dual disk recorder model AF-44/2 and Naveform Analysis Packe, e) naving a maximum sampling frequency of 50 LHz (500 MHz for rejetitive signals), a maximum storage capability of 15,872 data points per trace, and a Fourier transform software package capable of handling up to 2,048 points per trace.

Experimental Procedures

The lattice as shown in Fig. 1 is suspended freely in air via two thin strings. Two transducers are attached to the lattice at various locations using the constant-force springs and are coupled to the structure via the transducer specimen interface couplant. The resulting clamping pressure of 0.11 LFa (10 psi) on the transducer is approximately equal to the saturation pressure which is defined in [5] as the minimum transducer-specimen interface pressure which results in the maximum amplitude of the output signal, all other parameters being held constant. Furthernore, the orientation of each transducer relative to the structural members of the lattice is maintained throughout to avoid any variations that could be introduced by the directional effects of the transducer presoceramic element.

An impulse is input into the transmitting transducer via the ultrascnic pulser-receiver. The signal arriving at the receiving transducer is recorded on a 13.3 cm (5.25 in) clameter diskette using a sampling frequency of 5 MHz and 15,872 data points per trace.

The arrival time of the initial output wave signal is noted from the time trace. From this arrival time and the shortest wave path length between the transmitting and the receiving transducers through the elements of the lattice, a wave speed is calculated for the initial wave to propagate from the

transmitting transducer to the receiving transducer. Also, traffrequency spectrum of the output signal is obtained via the Fast Fourier Transform (FFT), employing the Hanning window provided by the Ricclet Raveform Analysis Package using 2,048 points (initiated at the beginning of the output wave packet).

Fig. 3 shows locations A through V_1 used to locate positions on the lattice. The input is applied at locations A, L, V_C and V_1 , and the output is recorded at all the remaining locations on the lattice.

Characterization of Input Pulse

The input impulse (including the transducers and the electronic equipment) is characterized by coupling the transmitting and receiving transducers directly (face-to-face) without the presence of any specimen. When the receiving transducer is coupled directly to the transmitting transducer without the structure, the output of the receiving transducer is as whom in Fig. 4a. The corresponding frequency spectrum is snown in Fig. 4b.

On the time scale being used in these experiments, there is no conservable time delay between the input and the output when the transducers are coupled face-to-face as shown in Fig. 4a. In the frequency comain, as shown in Fig. 4b, the input signal contains a broad frequency spectrum from zero frequency to frequencies greater than 0.5 EHz.

RESULTS AND DISCUSCIONS

Lave Speed

The measured wave speeds for initial wave fronts arriving at various output locations for various input locations are summarized in Table 1. The measurement error of the wave speed is estimated to be less than 2 percent.

As shown in Table 1, the wave speed ranges from 4.53 km/s (14,800 ft/s) to 5.18 km/s (17,000 ft/s). The longitudinal wave speed in an aluminum rod is 5.23 km/s (17,200 ft/s) [6]. The shear wave speed in an aluminum rod is 3.13 km/s (10,300 ft/s) [7]. The flexural wave speed in aluminum bars of the cross section corresponding to that of the lattice depends on the frequency and is tabulated in Table 2 [6]. Thus, the measured wave speed appears to be between the longitudinal wave speed and the clexural wave speed if a frequency of greater than 350 kHz is considered for the flexural wave. (The longitudinal end flexural wavelengths at 350 kHz are 1.49 cm (0.588 in) and 1.31 cm (0.515 in), respectively.)

as discussed in [&], the cutput signal contains many wave reflections from multiple wave paths arriving at the receiving transcacer.

Output Frequency Spectrum

As discussed in [9], the irequency spectrum contains many resonances of the structure. The measured frequencies at the maximum applitude of the output frequency spectra for waves arriving at various output locations for various input locations

are summarized in Table 3. The corresponding measured maximum amplitudes of the output frequency spectra for waves arriving at various output locations for various input locations are summarized in Table 4.

€

From Table 3, it is observed that the frequency at the maximum amplitude of the output spectrum generally occurs between 353 kHz and 450 kHz. The exceptions are for inputs at location A with corresponding outputs at locations S,T,U,V and inputs at location V_1 with corresponding outputs at locations £,E,C,D. Apparently, for the most distant locations, the high frequency components are attenuated and the frequency at the maximum amplitude of the output spectrum is lowered to approximately 115 kHz.

From Table 4, it is observed that the maximum amplitude of the output spectrum generally decreases with increasing transmitter-receiver distance, except for the first five bays. Fig.5 shows the logarithm (base 10) of the maximum amplitude of the output spectrum plotted versus the number of bay widths away from the input for inputs at locations A, L, V_0 and V_1 . Fore precisely, the number of bay widths away is defined as the distance separating the vertical cross sections containing the input and output locations, normalized with respect to the lay width. For example, if the input is at location A, locations D and V_1 are defined as three tays away.

A straight line is drawn through the 110 data points in Fig.5 using linear regression, regardless of input location, except for the first five cays. The resulting correlation coefficient is 0.9180. Thus, it appears that the maximum amplitude of the

output spectrum decreases logarithmically with the number of bays away from the input, reparcless of input location. Specifically, the correlation equation for the maximum amplitude of the output for a specifical number of tays away from the input is

Log₁₀ (Amplitude in mV) = 1.10354 - 0.03690x(No. of Hays) (1) Eqn. (1) can be manipulated and rewritten as

Amplitude in mV =
$$12.69 e^{-0.081 \times (No. \text{ of Fays})}$$
 (2)

Thus, an attenuation of the maximum amplitude of the output spectrum can be defined for LSS based on the number of lattice bays and eqn. (2). For the planar lattice structure considered, this attenuation is found from eqn. (2) to be 0.085 neper per bay. The attenuation described by nepers per bay may be convenient in the design of LSS consisting of periodic lattice bays because it is based on a natural unit of the LSS, namely, the lattice bay. It represents an insertion loss in the maximum amplitude of the output spectrum for wave propagation due to the addition ("insertion") of a periodic lattice bay.

because the width of a bay is 6.25 on (2.46 in) as shown in Fig. 1, the attenuation of 0.085 neper per bay can also be expressed as 0.014 neper/on (0.035 neper/in). This compares with the longitudinal attenuation of 0.015 neper/on (0.038 neper/in) for bulk aluminum at ultrasonic frequencies of the order of 1 EHz [10]. However, when vibrational damping data obtained for a 22-bay aluminum planar lattice at frequencies below 1 kHz [4] are used to extrapolate the attenuation [11] at frequencies of the

order of several hundreds of kHz, the predicted attenuation ranges from 10^{-7} neper/cm $(2.5 \times 10^{-7} \text{ neper/cm})$ to 10^{-6} neper/cm $(2.5 \times 10^{-6} \text{ neper/cm})$. Thus, it appears that the attenuation increases significantly with frequency.

Observation of Reciprocity

As discussed in [8], from Tables 1, 3 and 4, it is observed that when the input and output locations are interchanged, the results are very similar.

Table 5 shows various comparisons of wave propagation characteristics between the 5-bay and 22-bay planar lattices.

CONCLUSIONS AND RECORMENDATIONS

have propagation characteristics of an aluminum 22-bay planar lattice structure have been considered. Two ultraschic piezoceramic longitudinal transducers were mounted at various locations on the structure. Wave measurements were obtained by injecting an impulsive load via the transmitting transducer and recording the response via the receiving transducer. The waves injected into the structure were longitudinal waves transverse to the surface although a complex stress distribution, described by directivity functions, was actually realized [10]. The impulsive loading signal had a broad frequency spectrum containing frequencies greater than 0.5 Mhz.

Based on the results of this study, the following conclusions can be made:

- (1) The measured wave speed for initial wave arrivals ranges from 4.53 km/s (14,800 ft/s) to 5.18 km/s (17,000 ft/s), which is between the longitudinal wave speed and the flexural wave speed for flexural waves of frequencies greater than 350 kHz.
- (2) The cutput signal contains many wave reflections from multiple wave paths arriving at the receiving transducer.
- (3) The measured frequency at the maximum amplitude of the cutput frequency spectrum generally occurs between 353 kFz and 450 kHz.
- (4) The measured maximum amplitude of the output frequercy spectrum decreases logarithmically with increasing number of lattice bays away from the input location, regardless of

input location on the structure, except for the first five bays.

6

- (5) In accordance with the preceding conclusion, an attenuation of the maximum amplitude of the output spectrum can be defined for LSS based on the number of lattice bays away from the input. This attenuation may be convenient for the design of LSS because it is based on a natural unit of the LSS, namely, the lattice bay. For the planar lattice considered, this attenuation is found to be 0.085 neper per bay.
- (E) As discussed in [8], reciprocity between input and output is observed experimentally.

Eased on the results of this study, the following recommendations can be made:

- (1) This experimental study should be extended to 3-dimensional lattice structures such as tetrahedral trusses.
- (2) Scaling laws for other structural sizes, geometries, frequencies and materials should be developed; and the effects of joints on such scaling laws should be delineated.
- (3) The validity of the attenuation of the maximum amplitude of the cutput spectrum defined based on the number of bays away from the input regardless or the input location in the LSS should be verified by considering other lattice structures.
- (4) The effects of boundaries, lattice member connectivities, and structural defects on the wave speed, the frequency at the maximum amplitude of the output frequency spectrum, and the attenuation of the maximum amplitude of the output spectrum per bay should be considered.

- (5) The measured initial wave speed appears to be between the longitudinal wave speed and the flexural wave speed. The exact nature of the wave mode transmission should be investigated. The possibility of wave mode conversion for waves propagating through a "T" or "L" joint should not be excluded.
- (t) The possibility of a decrease in the frequency at the maximum amplitude of the cutput spectrum as the signal propagates should be investigated. It's effect on the attenuation of the maximum amplitude of the output spectrum per lattice bay should also be considered.
- (7) For the 22-bay lattice, at the frequencies considered, the measured attenuation of the maximum amplitude of the output spectrum per bay happens to correspond closely to the longitudinal attenuation in bulk aluminum. The exact nature of this attenuation should be investigated.
- (E) Reciprocity between the input and the output has been observed qualitatively. However, quantitative measures of reciprocity should be developed.
- (9) Analytical efforts for predicting the output signal measured from the planar lattice should be undertaken [12-15]. Prohaps the analytical skill so developed could be extended to better understand wave propagation in three-dimensional LSS. Perhaps, statistical energy analysis (SEA) or pattern recognition techniques should also be considered in this regard.

In conclusion, this experimental study demonstrates that

wave propagation characteristics of a lattice structure can be obtained. In particular, the wave speed, the frequency at the maximum amplitude of the output spectrum, and the attenuation of the maximum amplitude of the output spectrum per lattice tay appear to be useful parameters for the characterization of wave propagation properties of LSS.

e

HLFERELCE:

- [1] h.F. Card and h.J. Boyer, "Large Space Structures---Fantasies and Facts", Proceedings of AIAA/ASLE/ASCE/AES 21st Structures, Structural Lynamics and Materials Conference, Held in Seattle, hA, May 12-14, 1980, Part 1, American Institute of Aeronautics and Astronautics, N.Y., NY, 1980, pp. 101-114.
- [2] J.h. Williams, Jr., R.H. Leiler, Jr. and S.S. Lee, "Lave Propagation Inrough 'T' and 'L' Lattice Joints", Air Force Contractor Report, October 1984.
- [3] J.h. Williams, Jr., R.A. Schroder and S.S. Lee, "Pynamic Analysis of Two-Dimensional Lattices", Air Force Contractor Report, August 1984.
- [4] D.L. Edberg, "Material Damping of Simple Structures in a Simulated Space Environment", Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, January 1985.
- [5] J.H. Williams, Jr., H. Nayeb-Hashemi and S.S. Lee, "Ultrasonic Attenuation and Velocity in AS/3501-6 Graphite Fiber Composite", Journal of Nondestructive Evaluation, Vol. 1, No. 2, June 1980, pp. 137-148.
- [6] K.F. Graff, Lave Motion in Elastic Solids, Onio State University Press, Columbus, Oh, 1975.
- [7] J. Krautkramer and H. Krautkramer, Ultrascnic Testing of Naterials, 3rd ed., Springer-Verlag, N.Y., NY, 1983.
- [8] J.H. Williams, Jr., J.J. Zhang and S.S. Lee, "Nave Propagation Measurements on Two-Dimensional Lattice", Air Force Contractor Report, September 1985.
- [9] J.H. Williams, Jr., E.F. Rahn and S.S. Lee, "Effects of Specimen Resonances on Accustic-Ultrasonic Testing", Naterials Evaluation, Vol. 14, No. 13, December 1983, pp. 1502-1510.
- [10] J.A. Williams, Jr., H. Karagulle and S.S. Lee, "Oltrasonic Input-Output for Transmitting and Receiving Longitudinal Transducers Coupled to Same Face of Isotropic Elastic Plate", Eaterials Evaluation, Vol. 40, No. 6, Nay 1982, pp. 655-662.
- [11] J.h. Williams, Jr., S.S. Lee and H. Nayeb-Hashemi, "Ultrascric wave Propagation Loss Factor in Composite in Terms of Constituent Properties", Journal of Nondestructive Evaluation, Vol. 1, No. 3, September 1980, pp. 191-199.
- [12] J.L. Williams, Jr., F.C. Eng and S.S. Lee, "Neve

- Propagation and Dynamics of Lattice Structures", Air Force Contractor Report, May 1984.
- [13] J.H. Williams, Jr. and H.K. Yeung, "Nondispersive Wave Propagation in Periodic Structures", Air Force Contractor Report, January 1985.
- [14] J.H. Williams, Jr., H.K. Yeung and R.J. Nagem, "Joint Coupling Matrices for Wave Propagation Analysis of Large Space Structures", Air Force Contractor Report, April 1986.
- [15] J.H. Williams, Jr., R.J. Nagem and H.K. Yeung, "Wave-Mode Coordinates and Scattering Matrices for Wave Propagation in Large Space Structures", Air Force Contractor Report, October 1986.

TRELE 1 Summary of Measured Nave Speeds for Initial Naves Arriving at Various Output Locations for Various Input Locations.

Uutput		easured Wave or Input Loca		
Loca tron	А	L	v _C	V 1
A	*	5•°4	4.€7	4.70
Ŀ	6.01	5.02	4.66	4.70
С	5.12	5•04	4.67	4.68
D	5.1 5	5.05	4.68	4.68
i 	5.14	5•06	4.71	4.66
F ·	5.12	5 · 0 S	4.72	4.65
G	5.12	5.12	4.77	4.62
H	5.08	5.12	4.81	4.59
I	5.05	5.18	4.78	4.5€
J	5.04	5.12	4.7E	4.53
K	5.02	5.90	4.74	4.70
L	5.05	*	4.73	4.69
4.	4.81	5.90	4.71	4.66
1.	4.79	5.12	4.69	4.64
С	i 4.81	5.18	4.72	4.60
P	4.63	5.14	5.03	4.57

0

(Continued on next page)

TABLE 1 (Continued) Summary of Heasured Wave Speeds for Initial Laves Arriving at Various Cutput Locations for Various Input Locations.

Output Location		easured Wave or Input Loca		
2000 0101.	A	L	v _C	V 1
Ç	4.65	5.11	4 • º ɛ	4.65
R	4.65	5.08	5.06	4.72
S	4.69	5.05	4.98	4.81
Т	4.71	5.05	4.93	4.98
υ	4.73	4•99	5.1€	4.84
V	4.71	5.00	* !	4.84
^1	4.84	4.74	4.67	4.71
Ł ₁	4.84	4.71	4.€5	4.73
C ₁	4.56	4.70	4.65	4.71
1·1	4.79	4.65	4.68	4.70
E ₁	4.73	4.61	4.68	4.67
F 1	4.65	4.57	4.70	4.83
⁽ 1	4.57	4.51	4.79	4.83
E ₁	4.58	69	4.80	4.8 1
I ₁	4.62	4.81	4.77	4.79
J ₁	4.62	4.98	4.77	4.81

(Continued on next page)

Table 1 (Continued) Summary of Heasured have Specus for Initial Waves Arriving at Various Output Locations for Various Input Locations.

F

Output		asured Lave r Input Loca	Speed (km/s)	
Location	A	L	v _c ¦	V 1
К 1	4.68	4.84	4•75	5.05
L ₁	4.69	4.80	4.74	5.09
E 1	4.53	4.64	4.73	5.05
1. 1	4.50	4.98	4.67	5.04
° ₁	4.59	4.81	4.68	5.06
P ₁	4.61	4.72	5.00	5.09
[©] 1	4.65	4.51	5.04	5 • C §
^k 1	4.66	4.56	5.02	5.12
⁵ 1	4.67	4.60	5.00	5.07
T ₁	4.69	4.65	4•91	4.96
^U 1	4.70	4.66	5 .1 6	5.90
V 1	4.70	4.67	*	*

^{*} Not applicable

TABLE 2 Calculated Flexural Wave Speed in Aluminum Bars of Cross Section Corresponding to That of Lattice at Various Frequencies [6, page 143].

Emaguana	Calculated Fle	xural Wave Speed
Frequency (kHz)	(km/s)	(ft/s)
100	1.89	6,200
150	2.32	7,600
200	2.67	8,800
250	2.99	9,800
300	3.28	10,700
350	3.54	11,600
400	3.78	12,400
450	4.01	13,200
500	4.23	13,900

1ALLE 3 Summary of Reasured Frequencies at Faximum Amplitude of Cutput Frequency Spectra for Naves Arriving at Various Cutjut Locations for Various Input Location.

Cutrut	Measured Front Of Output Fr	requency (khz requency Spec	at Maximum etrum for Ing	a Amplitude out Location
Location	A	L	v _c	v ₁
,	*	393	36 <i>6</i>	115
Ł	385	393	370	115
С	370	353	37C	115
Ĺ	368	393	368	3 <u>9</u> 0
Ł	373	390	370	3 88
ŀ	353	390	375	350
C.	36€	355	:75	308
E	353	445	370	390
I	393	445	373	3 90
\mathcal{J}	393	373	375	390
K	393	438	385 1	393
L	393	*	373	390
I	353	358	375	393
Ľ	395	353	360	393
O	39C	445	360	370
1	390	443	443	358

(Continued on next page)

TABLE 3 (Continued) Summary of Measured Frequencies at Laximum Amplitude of Output Frequency Spectra for Naves Arriving at Various Output Locations for Various Input Location.

Output Location	heasured Front Cof Out, ut Front Front Core	red Frequency (kHz) at Maximum Amplitude						
	A	L	v _o	Υ ₁				
<u>(</u>	390	355	363	37C				
F.	385	390	358	355				
l ¦ S	123	3 75	443	358				
I I	123	393	450	358				
Ü	115	39 3	440	360				
v	115	393	*	360				
^K 1	443	393	3ć8	115				
ь 1	443	393	370	115				
с ₁	448	393	3 €8	11 5				
^D 1	358	390	368	123				
^Е 1	370	3 90	413	370				
F ₁	368	358	36 _, e	373				
G ₁	353	445	36 8	36E				
^H 1	390	440	358	393				
^I 1	390	38C	355	3 93				
J ₁	390	448	363	397				

<u>, essessivio in divinio de la concentió de concentration de concentration de concentration de concentration</u>

(Continued on next page)

TABLE 3 (Continued) Summary of Measured Frequencies at Maximum Amplitude of output Frequency Spectra for Naves Arriving at Various Output Locations for Various Input Location.

C

C

Cutput Location		heasured Frequency (kHz) at heximum Amplitude of Output Frequency Spectrum for Input Location					
Location	A	L	¦ v _o	v ₁			
К 1	3 90	395	385	393			
L ₁	393	3 88	385	393			
1.	393	i 395	360	395			
h 1	386	448	380	393			
01	358	3ôC	443	380			
F ₁	388	35E	44.3	35€			
^હ 1	390	443	443	355			
F ₁	368	443	358	360			
s ₁	390	390 1	i 35⊎	373			
T ₁	123	393	45C	3 € C			
^U 1	115	393	440	3€C			
v ₁	115	i 393	! *	 			

^{*} hot applicable

TABLE 4 Summary of Leasured Haximum Amplitudes of Out; ut Frequency Spectra for Waves Arriving at Various Output Locations for Various Input Locations.

Cutput Location	Leasured Leximum Amplitude (mV) of Gutput Frequency Spectrum for Input Location				
	A	L	v _o	^V 1	
A	*	9.69	3.10	3. 00	
E	11.63	9.65	3.23	4.25	
С	11.33	9•95	3. 55	4.91	
D	11.69	10.30	3.€1	5.05	
E	11.24	10.31	3. 69	5.30	
F	11.70	16.85	4.61	5.64	
G	12.53	11.03	5.04	7.05	
l.	12.90	11.23	5.69	8.41	
I	12.56	11.91	6.16	8.68	
J	12.43	10.95	6.49	10.21	
К	10.89	10.94	6.54	10.29	
L	9.89	*	6.63	10.80	
i 	9.78	10.94	7.79	11.46	
i 	7.61	11.59	8.00	11.33	
C	7.51	11.33	8.65	11.7 <u></u> 9	
} }	5.64	11.54	9.38	11.13	

(Continued or next page)

TABLE 4 (Continued) Summary of Leasured Faximum Amilitudes of Cutput Prequency Spectra for Naves Arriving at Various Cutput Locations for Various Input Locations.

Cutput Location	Leasured haximum Amplitude (nV) of Output Frequency Spectrum for Input Location				
Lecated.	A	L	V _C	l v ₁	
ζ,	5.26	11.41	9.96	11.24	
£.	4•9£	10.60	10.51	10.65	
S	4.10	10.25	11.24	1 0.25	
T	3.69	10.04	11.33	10.26	
Ū	3.25	10.09	11.57	10.14	
v	2.99	9.44	*	10.14	
A 1	10.39	8.98	3.08	3.46	
^E 1	10.39	9.24	3.13	4.15	
c ₁	10.48	9.80	3.30	7.25	
^{I:} 1	10.53	10.20	3.62	4.59	
E ₁	11.20	10.39	3.83	4.01	
F ₁	11.43	10.26	4.10	4.85	
^C 1	11.84	10.99	4.46	5•4C	
^{li} 1	11.59	10.65	4.61	6.73	
I ₁	11.95	10.25	4.94	7•73	
J 1	11.89	1(.20	5.31	8.09	

(Continued on next page)

TALLE 4 (Continued) Summary of Reasured Haximum Amplitudes of Output Frequency Spectra for Waves Arriving at Various Output Locations for Various Input Locations.

Output	Neasured Maximum Amplitude (mV) of Output Frequency Spectrum for Input Location				
Location	A	L l	v _O	^V 1	
K ₁	11.16	10.59	5.46	10.09	
L ₁	9.63	10.14	6.58	12.26	
1.1	9.75	10.35	6.98	12.26	
K ₁	9.01	10.48	7.95	12.54	
01	8.09	10.29	£.39	11.84	
F ₁	7.65	10.53	9.35	11.45	
e 1	0.41	10.34	10.43	11.04	
h ₁	5.13	10.39	10.76	11.38	
£ 1	5.05	10.38	11.31	11.24	
T ₁	4.59	9.80	11.63	11.41	
U ₁	3.55	9.75	11.71	11.64	
V ₁	3.48	10.04	*	+	

^{*} Not applicable

TABLE 5 Comparisons of have Propagation Characteristics Eetween the 5-bay and 22-bay Planar Lattices.

C

	5-Eay Lattice		22-Eay Lattice	
	Fron	То	lrom.	To
have Speed (km/s)	4.13	5 .1 0	4.53	5.18
Frequency (kHz)	283	355	353	450
Amplitude versus Number or Lays:				
Correlation Coefficient	0.9296		0.9186	
Attenuation (Reper/Lay)	0.3259		0.0850	
Attenuation (Leper/cm)	0.013		0.014	

g. 1 Geometry of 22-bay lattice structure (dimensions in cm).

Fig. 2 Schematic of experimental system for measuring wave speed and frequency spectrum of 22-bay lattice, showing typical locations of transmitting and receiving transducers.

€-

Schematic illustrating locations A through \mathbf{V}_1 on lattice structure. Fig. 3

Statement produced produced between the contests besides produced by the contest produced passed passed bess

Fig. 4 (a) Time trace and (b) frequency spectrum of output from receiving transducer when transmitting and receiving transducers are coupled together directly (face-to-face) without any structural specimen.

Logarithm (base 10) of maximum amplitude (mV) of output spectrum versus number of bay widths that output is located from input for various input locations. Fig. 5