GraphUnzip: using assembly graphs to improve assemblies

Roland Faure^{1,2}, Nadège Guiglielmoni^{1,4}, Jean-François Flot ^{1,3}

¹Evolutionary Biology & Ecology Université libre de Bruxelles (ULB)

²Université de Rennes, Inria RBA

³Interuniversity Institute of Bioinformatics in Brussels

⁴Universität zu Köln

November 2021

Genome assembly

2/22

Real assembly graphs

Animal: *Adineta vaga* (PacBio CLR + Shasta)

Bacterium: *Acidithiobacillus* sp. (Illumina + SPAdes)

Finishing assemblies: scaffolding

Finishing assemblies: scaffolding

- Gaps of approximate length between contigs
- Scaffolding may lose contigs

Finishing assemblies: scaffolding

- Gaps of approximate length between contigs
- Scaffolding loses contigs

An alternative to scaffolding Assembly graph Long-range information (long

- Duplicating all contigs that are present in multiple copies
- ► Find paths through the graph to reach maximum contiguity

Particular case: multiploid genomes

Integrating other types of data: Hi-C

- → The closer the contigs the more frequent the contacts
- → Intrachromosomal are more frequent than interchromosomal contacts

Integrating other types of data: Hi-C

Integrating other types of data: (ultra-)long reads

- → Long reads can be mapped to the graph using e.g. GraphAligner
- → PacBio (~20 kb) or Oxford Nanopore (10-100+ kb) can be used

Integrating other types of data: long reads

An algorithm inspired by the program Unicycler

Algorithm: determining single-copy contigs

Algorithm: determining single-copy contigs

- ▶ Only one link left and right
- Coverage information

Algorithm: inferring multiplicities

Spreading the multiplicity

Algorithm: inferring multiplicities

Spreading the multiplicity

Algorithm: inferring multiplicities

Spreading the multiplicity

Algorithm: building bridges

 We look at long reads building "bridges" between haploid contigs

Algorithm: building bridges

 We look at long reads building "bridges" between haploid contigs

Algorithm: building bridges

 We look at long reads building "bridges" between haploid contigs

Two test datasets

- ► Genome: Escherichia coli, Sakai strain
- Short Illumina reads simulated with IDBA-sim reads
- Long PacBio HiFi reads simulated with Badread

- Genome: "diploid"
 Escherichia coli, one
 haplotype Sakai strain and
 one haplotype K12 strain
- Short Illumina reads simulated with IDBA-sim reads
- Long PacBio HiFi reads simulated with Badread

GraphUnzip: haploid E. coli

SPAdes short-read assembly

- Untangled with GraphUnzip
- 0 errors in untangling

GraphUnzip: diploid E. coli

► SPAdes short-read assembly

- Untangled with GraphUnzip
- ➤ 99.99% of the genome in 7 contigs
- ▶ 0 misassemblies, missing 2kbp

Benchmark description

- Scaffolding tools:
 - LongStitch
 - SLR
 - npScarf
- Hybrid assembly tools:
 - OPERA-MS (metagenome assembler)
 - Unicycler

Results

Assembly metrics: haploid assembly (5.6 Mb)

	completeness (%)	Misassemblies	N50 (Mb)	N90 (Mb)	Size (Mb)
LongStitch	96	0	1.5	0.14	5.9
SLR	96	0	0.15	0.006	5.6
npScarf	99	17	3.1	0.26	5.8
OPERA-MS	96	0	0.15	0.006	5.6
Unicycler	100	0	5.5	5.5	5.5
GraphUnzip	100	0	1.8	1.7	5.8

Assembly metrics: diploid assembly (10.3 Mb)

	completeness (%)	Misassemblies	N50 (Mb)	N90 (Mb)	Size (Mb)
LongStitch	76	0	0.002	0.0005	9.5
SLR npScarf	82	44	0.115	0.0005	10.8
OPERA-MS	87	492	0.41	0.0006	15.1
Unicycler	70	43	0.64	0.006	7.4
GraphUnzip	100	0	1.5	0.29	10.3

GraphUnzip is clearly the best on the diploid assembly

Unzipping of Adineta vaga with long reads

HiFi assembled with hifiasm

Assembly after GraphUnzip with Nanopore

 $N50:\,6.3\;Mb\,\rightarrow\,10.3\;Mb$

GraphUnzip can also be used to combine HiFi and Nanopore

Pros and cons of GraphUnzip

Limitations of GraphUnzip:

- Blind trust in the input assembly
- Haplotypes not explicitly separated

Strengths of GraphUnzip:

- Very modular, can be used with any assembler
- Fast and memory-efficient (all examples ran on laptop)
- ▶ Naive: makes no assumption on ploidy, parameter-free

Take-home message

- GraphUnzip is the first standalone software to untangle assembly graphs using long-range data
- GraphUnzip can use Hi-C or long reads to do so
- Available at github.com/nadegeguiglielmoni/GraphUnzip

Acknowledgements

- ▶ Nadège Guiglielmoni and Jean-François Flot for their guidance
- The EEB-EBE and GenScale teams
- ► This work has been supported by a grant from the Société Française de Bioinformatique

