wenter Jiang FE364a HWZ wenter a stanford 2-9
(a) Consider Set Si = { $\chi \in \mathbb{R}^n | ||\chi - \chi_0||_2 \leq ||\chi - \chi_i||_2$ }, which is a half-space with boundary 1/x-Xollz=1/x-Xill. And V= (15i, hence Vis a polyhedron. (b) Pick any point To EP. 1) For each surface A; of P, define x; as the mirroring image of To against Ai. 3 P is the Voronoi region of o To with respect to Ti, ..., TK 2.15. Apparently, Pitself is convex. (a) Ef(x) = Ip: f(ai), i.e., $x \leq Ip: f(ai) \leq \beta$, which is a slab. : The intersection with P is convex. (b) $P(\chi > \alpha) = \sum_{\{i \mid a_i > \alpha\}} P_i \leq \beta$.: it is convex. (C) EIX3 EXEIN => I p; a; a; |a; | = x & p; |ail \Rightarrow Σ $p_i(|a_i^3| - \alpha |q_i|) \leq 0$. it is convex (d) Ex= I p; a; < \(\times \) it is convex. (e) fame similar to (d), it is convex. (f) $Var(x) = Ex^2 (Ex)^2 = Zp_i a_i^2 - (Zp_i a_i)^2$ =-ptaatp +bTp < x, where b; = a; aat to in the above inequality doesn't give a convex set in general.

(g) Similar to (t), the inequality is pTaaTp-bTp+ x ≤0 aaT≥0 :. From 2.10 (a), it is convex. (h) For the definition of quartile $(x) = \inf \{ \beta | P(x \leq \beta) \geq 0.25 \}$ Assume I dict and I di = 4 = quartile(x) = ak For condition quartile(x) > x , assume ak-1 < x and ak > x ⇒ ZIP; < 1 : it is convex. (i) Similar to (h), for the same k'. I Pizy 3.18 (a) $f(x) = tr(X^{-1})$. Let's look at $g(t) = tr((X+tA)^{-1})$ $g(t) = tr((X^{\frac{1}{2}}(1+tX^{-\frac{1}{2}}AX^{\frac{1}{2}})X^{\frac{1}{2}})^{-1})$ $= tr \left(X^{-\frac{1}{2}} \left(1 + t X^{-\frac{1}{2}} A X^{\frac{1}{2}} \right)^{-1} X^{-\frac{1}{2}} \right)$ Since tr(ABC) = tr(CAB) = tr(BCA) :- g ct) = tr[(I+ t x - 2 Ax 2) X= [(I+ t). X';] where is are eigenvalues of matrix X- 2 A X 2, X' is another matrix that objest't involve at. :gct) is convex since 20. di > 0. (b) Similarly, define g(t) = (det (X+tA)) 1/n = $(\det X^{\frac{1}{2}} \det (I + t X^{-\frac{1}{2}} A X^{-\frac{1}{2}}) \det X^{\frac{1}{2}})^{\frac{1}{n}}$ = (detX) + (TT (1+ txi)) 1/n where is one eigenvalues of matrix X-2AX-2 since the geometric mean is concave, on g(t) is concave, f(x) is concave.

3.24.	
(a)	$Ex = \alpha^T P$ it is convex, concave, quasiconvex and quasiconcave.
(6)	$P(X>X) = \sum_{i=k}^{\infty} P_i$ for some ke which is fixed as long as α_i are
	given. :. It's convex, concave, quasiconvex and quasiconcave.
(c)	$P(\alpha \leq x \leq \beta) = \sum_{i=k}^{k} p_i$ for some fixed k, and k.
	: It's convex, concave, quasiconvex and quasiconcave.
(d)	fcx) = 7 log x is convex on R+, :. I p; log p; is convex
	and quesiconvex.
	For n=2, the expression is plopp + (1-p) log(1-p) which has
	a minimum at $p=\frac{1}{2}$ the superlevel sets are not convex It's
	not concave and not quesiconcave.
(e)	$Voyr(\pi) = E\pi^2 - (E\pi)^2 = -p^{\dagger}\alpha\alpha^{\dagger}p + b^{\dagger}p \qquad \alpha\alpha^{\dagger} \geq 0$
	: It's concave and quasi-showe.
	for $n=2$ and $a_1=0$, $a_2=1$, $vorcan=-p_2^2+p_2$, which is not convex
	and not quasiconvex.
(f)	from 2.15 (h) and (i), the sublevels and superlevels are the convex sets.
	:. The function is quasiconvex and quasiconcave.
	For $n=2$, if $p_1=0$, $p_2=1$, then quantile $(x)=a_2$
	if $P_{2}=0$, $P_{1}=1$, then quartile $(x)=a_{1}$
	If $P_i=P_2=\frac{1}{2}$, quaertile $(x)=a_i$, if $P_i=\frac{1}{5}$, $P_i=\frac{1}{5}$, $P_i=\frac{1}{5}$, $P_i=\frac{1}{5}$
	: The function and the either can is not convex and not concave.
	since on and on
(9)	It we sort P; by their magnitude Pi, > Piz > > Pin
	Perote the function as $f(x)$, then $f(x) = int \{k \mid \sum_{j=1}^{k} P_j, j \geq 909\}$
	It's better \$P to denote it as f(p), since values as doesn't matter.
	It we define a new random variable y with $p' = P_{ij}$ and values
	$\alpha'_{j}=j$: $f(p')$ is now very similar to the quantile function except
P3	it's inf {B P(y \section \beta) > 0.9}
1	3 (7) (329) (4.1)

(e) $\nabla f_0 = (2\pi, 18\pi^2) > 0$ on the feasible set .. minimum happens on the boundary, where & fo is perpendicular to the boundary. It must be on either $\chi_1 + 3\chi_2 = 1$ or $\chi_1 + \chi_2 = 1$.

Try to solve $\chi_1 + 3\chi_2 = 1$ $\chi_2 = \frac{1}{2}$, which satisfies $\chi_1 + \chi_2 = 1$. $\chi_2 = \frac{1}{2}$ $\begin{cases} 2\chi_1 + \chi_2 = 1 \\ \frac{2\chi_1}{18\chi_2} = 2 \end{cases} \Rightarrow \begin{cases} \chi_1 = \frac{18}{37}, \text{ which doesn't satisfy} \\ \chi_2 = \frac{1}{37}, \text{ which doesn't satisfy} \end{cases}$: min $f_0 = \frac{1}{2}$, $\chi = (\frac{1}{2}, \frac{1}{6})$. A3.2. See attached codes. A3.3. (a) Left hand side is not affine. Norm = 0 \Rightarrow all components are zero : $\{X+2y=0\}$ (e) test hand side is not convex. Left hand side of $xy \ge 1$ is not concave. It's equivalent to $\{x > \frac{1}{y}\}$, and the first one should be $y \ge 0$ written as x > = inv - pos(y)(f) (7+4)2/Jy will not be recognized as a convex expression. quad-over-lin should be used, i.e., quad-over-lin(x+y, sqrt(y)) <= x-y+5 sqrt is non decreasing and concave: satisfies composition rules (9) The left hand side $\chi^3 + y^3$ is convex only on R^2 Hence should use pow_abs (x, 3) + pow_abs (y, 3) <=1 PC

```
A 10.2

A 10.2

(a) f(u,v) = (u,v)^T X(u,v) = u^T A u + u^T B v + v^T B^T u + v^T c v

\nabla_u f(u,v) = 2 A u + 2 B v

2 U + A > 0, \text{ then } \inf_u f(u,v) = f(u,v) \Big|_{Vuf(u,v) = 0}
= f(-A^{-1} B B v, v)
= v^T B^T A^T A A^T B v - 2 v^T B^T A^T B v + v^T c v
= v^T S v, \text{ where } S = C - B^T A^{-1} B.

(b) For the first theory: X > 0 iff A > 0 and S > 0

We as see from (a) that g(u) = \inf_u f(u,v) = v^T S v if A > 0.

14 further S > 0, then g(u) > 0, i.e., f(u,v) > 0

i.e., X > 0.
```

Code for A 3.2 with CVX:

```
%% 4.1 a
cvx_begin
variables x1 x2
minimize(x1+x2)
subject to
2 * x1 + x2 >= 1
x1 + 3 * x2 >= 1
x1 >= 0
x2 >= 0
cvx_end
% Status: Solved
% Optimal value (cvx_optval): +0.6
```

0/0/446

%% 4.1 b cvx_begin variables x1 x2 minimize(-x1-x2) subject to

```
2 * x1 + x2 >= 1
x1 + 3 * x2 >= 1
x1 >= 0
x2 >= 0
cvx end
% Status: Unbounded
% Optimal value (cvx_optval): -Inf
%% 4.1 c
cvx_begin
variables x1 x2
minimize(x1)
subject to
2 * x1 + x2 >= 1
x1 + 3 * x2 >= 1
x1 >= 0
x2 >= 0
cvx_end
% Status: Solved
% Optimal value (cvx_optval): +8.45293e-10
%% 4.1 d
cvx_begin
variables x1 x2
minimize(max(x1,x2))
subject to
2 * x1 + x2 >= 1
x1 + 3 * x2 >= 1
x1 >= 0
x2 >= 0
cvx_end
% Status: Solved
% Optimal value (cvx_optval): +0.333333
%% 4.1 e
cvx_begin
variables x1 x2
minimize(x1^2 + 9*x2^2)
subject to
2 * x1 + x2 >= 1
x1 + 3 * x2 >= 1
x1 >= 0
x2 >= 0
```

cvx_end

% Status: Solved

% Optimal value (cvx_optval): +0.5

They all give the same values as analytically obtained (expect 4.1 c and 4.1 d).