Breast Cancer Classification.

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import sklearn.datasets
```

Data Importing and Preprocessing

```
In [3]: Breast_Data = pd.read_csv("wdbc.data.csv", names= columns_name)
In [4]: Breast_Data.head()
```

Out[4]:		ID	DIAGNOSIS	RADIUS_MEAN	TEXTURE_MEAN	PERIMETER_MEAN	AREA_MEAN	٤
	0	842302	М	17.99	10.38	122.80	1001.0	
	1	8/12517	M	20.57	17 77	132 90	1326.0	

1 842517	М	20.57	17.77	132.90	1326.0
2 84300903	М	19.69	21.25	130.00	1203.0
3 84348301	М	11.42	20.38	77.58	386.1
4 84358402	М	20.29	14.34	135.10	1297.0

5 rows × 32 columns

In [5]: Breast_Data.tail()

Out[5]:		ID	DIAGNOSIS	RADIUS_MEAN	TEXTURE_MEAN	PERIMETER_MEAN	AREA_MEAN	:
	564	926424	М	21.56	22.39	142.00	1479.0	
	565	926682	М	20.13	28.25	131.20	1261.0	
	566	926954	М	16.60	28.08	108.30	858.1	
	567	927241	М	20.60	29.33	140.10	1265.0	
	568	92751	В	7.76	24.54	47.92	181.0	

5 rows × 32 columns

Getting Rows and Columns of Dataset

```
In [6]: Breast_Data.shape
Out[6]: (569, 32)
```

Getting some information about the Dataset

In [7]: Breast_Data.info

10:34 PM				Breast_cancer_and_c	orani_tumor_classification		
Out[7]:	<box< th=""><th>nd method DataF</th><th>rame.in</th><th></th><th>ID DIAGNOSIS</th><th>RADIUS_MEAN</th><th>TEXTURE_</th></box<>	nd method DataF	rame.in		ID DIAGNOSIS	RADIUS_MEAN	TEXTURE_
046[/]:	MEAN	PERIMETER_MEA	N AREA	A_MEAN \			
	0	842302	M	17.99	10.38	122.80	1001.0
	1	842517	M	20.57	17.77	132.90	1326.0
	2	84300903	M	19.69	21.25	130.00	1203.0
	3	84348301	М	11.42	20.38	77.58	386.1
	4	84358402	М	20.29	14.34	135.10	1297.0
		• • •		• • •	• • •	• • •	• • •
	564	926424	М	21.56	22.39	142.00	1479.0
	565	926682	M	20.13	28.25	131.20	1261.0
	566	926954	М	16.60	28.08	108.30	858.1
	567	927241	М	20.60	29.33	140.10	1265.0
	568	92751	В	7.76	24.54	47.92	181.0
		SMOOTHNESS_MEA	N COMI	PACTNESS_MEAN C	CONCATIVITY_MEAN	CONCAVE_POI	NTS_MEAN
	\						
	0	0.1184		0.27760	0.30010		0.14710
	1	0.0847	4	0.07864	0.08690		0.07017
	2	0.1096	0	0.15990	0.19740		0.12790
	3	0.1425		0.28390	0.24140		0.10520
	4	0.1003		0.13280	0.19800		0.10430
	• •	•••		•••	•••		
	564	0.1110		0.11590	0.24390		0.13890
	565	0.0978		0.10340	0.14400		0.09791
	566	0.0845		0.10230	0.09251		0.05302
	567	0.1178		0.27700	0.35140		0.15200
	568	0.0526	3	0.04362	0.00000		0.00000
		RADIUS_WO	ספיי ייז	EXTURE_WORST PE	ERIMETER WORST	AREA_WORST \	
	0	25.		17.33	184.60	2019.0	
	1	24.		23.41	158.80	1956.0	
	2	23		25.53	152.50	1709.0	
	3	14.		26.50	98.87	567.7	
	4	22.		16.67	152.20	1575.0	
	564	25.	••• 450	26.40	166.10	2027.0	
	565	23.		38.25	155.00	1731.0	
	566	18.		34.12	126.70	1124.0	
	567	25.		39.42	184.60	1821.0	
	568	9.	456	30.37	59.16	268.6	
		SMOOTHNESS_WOR	ST CON	MPACTNESS WORST	CONCATIVITY WO	RST \	
	0	0.162		0.66560	0.7	119	
	1	0.123		0.18660		416	
	2	0.144		0.42450		504	
	3	0.209		0.86630		869	
	4	0.137	••	0.20500	0.4	000	
	564	0.141		0.21130	0 . 4	107	
	565	0.116		0.19220		215	
	566	0.113		0.30940		403	
	567 568	0.165 0.089		0.86810 0.06444		387 000	
	500	0.009		0.00111	0.0		
		CONCAVE_POINTS	_WORST	SYMMETRY_WORST	FRACTAL_DIMEN	SION_WORST	
	0		0.2654	0.4601	L	0.11890	
	1		0.1860	0.2750)	0.08902	
	2		0.2430	0.3613		0.08758	
	3		0.2575	0.6638		0.17300	
	4		0.1625	0.2364		0.07678	
			=				

• •	• • •	• • •	• • •
564	0.2216	0.2060	0.07115
565	0.1628	0.2572	0.06637
566	0.1418	0.2218	0.07820
567	0.2650	0.4087	0.12400
568	0.0000	0.2871	0.07039

[569 rows x 32 columns]>

<pre>In [8]: Breast_Data.describe()</pre>)
---	---

Out[8]:		ID	RADIUS_MEAN	TEXTURE_MEAN	PERIMETER_MEAN	AREA_MEAN	ѕмоо
	count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	
	mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	
	std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	
	min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	
	25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	
	50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	
	75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	
	max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	

8 rows x 31 columns

Getting Target points from Datasets B: Benign, M: Malignant

```
In [9]: Breast_Data['DIAGNOSIS'].value_counts()
Out[9]: B     357
     M     212
     Name: DIAGNOSIS, dtype: int64
```

Getting Mean of Malignant and Benign Data from dataset (GroupBy).

```
In [10]:
          Breast Data Grouped = Breast Data.groupby('DIAGNOSIS')
          print(Breast Data Grouped)
          <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7fe273106430>
In [11]:
          Breast Data Grouped.mean()
Out[11]:
                              ID RADIUS_MEAN TEXTURE_MEAN PERIMETER_MEAN AREA_MEAN !
          DIAGNOSIS
                  B 2.654382e+07
                                      12.146524
                                                      17.914762
                                                                      78.075406
                                                                                  462.790196
                     3.681805e+07
                                                     21.604906
                                                                      115.365377
                                                                                  978.376415
                                      17.462830
```

2 rows × 31 columns

```
In []:
```

Converting Diagnosis column to 0,1 for training the model.

```
In [12]: from sklearn.preprocessing import LabelEncoder
In [13]: lb_Diagnosis = LabelEncoder()
In [14]: Breast_Data['Label_Diagnosis'] = lb_Diagnosis.fit_transform(Breast_Data['DIAGNOSIS'])
```

Created Label_Diagnosis column where M: 1 and B:0

```
In [16]: Breast_Data['Label_Diagnosis'].info
          <bound method Series.info of 0</pre>
Out[16]:
                  1
          2
                  1
          3
                  1
                  1
          564
                  1
          565
                  1
          566
                  1
          567
                  1
          568
          Name: Label_Diagnosis, Length: 569, dtype: int64>
```

Training the Dataset and Splitting into Test and Training variables.

```
In [20]:
         from sklearn import preprocessing
         from sklearn.model selection import train test split
In [21]:
         X = Breast Data.drop(columns=['DIAGNOSIS', 'Label Diagnosis'], axis= 1)
         Y = Breast Data['Label Diagnosis']
In [23]:
         X.shape, Y.shape
         ((569, 31), (569,))
Out[23]:
In [24]:
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random
In [26]:
         X train.shape, X test.shape, Y train.shape, Y test.shape
         ((455, 31), (114, 31), (455,), (114,))
Out[26]:
In [27]:
         Y train
```

```
560
Out[27]:
          428
          198
                  1
          203
          41
                  1
                  . .
          299
                  0
          534
                  0
          493
                  0
          527
                  0
          168
                  1
          Name: Label Diagnosis, Length: 455, dtype: int64
```

Scaling the Training and Tsting Dataframe "As we know that remaining columns is a Numerical Data so it would be beneficial for sklearn's regresstion model understand the data while training"

```
In [72]: Scaler = preprocessing.StandardScaler()
In [29]: X_trainS = Scaler.fit_transform(X_train)
    X_testS = Scaler.fit_transform(X_test)

In [30]: X_trainS.shape, X_testS.shape
Out[30]: ((455, 31), (114, 31))
```

Importing Tensorflow and keras to setup Neural network for classification

```
In [31]: import tensorflow as tf
    tf.random.set_seed(3)

2022-12-07 15:44:40.380632: I tensorflow/core/platform/cpu_feature_guard.cc:19
    3] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library
    (oneDNN) to use the following CPU instructions in performance-critical operati
    ons: AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate co
    mpiler flags.
```

Making neural network layers using keras, Hidden Layer

```
loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)
```

Training the Neural network

```
In [51]: trained_model = MODEL.fit(X_trainS, Y_train, epochs=25, validation_split=0.01)
```

```
Epoch 1/25
15/15 [============= ] - 0s 7ms/step - loss: 0.0386 - accurac
y: 0.9889 - val_loss: 1.7687e-04 - val_accuracy: 1.0000
Epoch 2/25
15/15 [==============] - 0s 4ms/step - loss: 0.0383 - accurac
y: 0.9889 - val_loss: 1.7642e-04 - val_accuracy: 1.0000
Epoch 3/25
15/15 [==============] - 0s 4ms/step - loss: 0.0376 - accurac
y: 0.9889 - val_loss: 1.7509e-04 - val_accuracy: 1.0000
Epoch 4/25
y: 0.9889 - val loss: 1.5607e-04 - val accuracy: 1.0000
Epoch 5/25
y: 0.9911 - val loss: 1.4801e-04 - val accuracy: 1.0000
Epoch 6/25
15/15 [=============] - 0s 4ms/step - loss: 0.0359 - accurac
y: 0.9889 - val_loss: 1.4849e-04 - val_accuracy: 1.0000
Epoch 7/25
y: 0.9889 - val_loss: 1.4262e-04 - val_accuracy: 1.0000
y: 0.9911 - val loss: 1.3385e-04 - val accuracy: 1.0000
Epoch 9/25
15/15 [==============] - 0s 4ms/step - loss: 0.0346 - accurac
y: 0.9889 - val_loss: 1.1884e-04 - val_accuracy: 1.0000
Epoch 10/25
15/15 [=============] - 0s 4ms/step - loss: 0.0341 - accurac
y: 0.9911 - val loss: 1.2170e-04 - val accuracy: 1.0000
Epoch 11/25
15/15 [=============] - 0s 4ms/step - loss: 0.0335 - accurac
y: 0.9911 - val loss: 1.1555e-04 - val accuracy: 1.0000
Epoch 12/25
y: 0.9911 - val loss: 1.1140e-04 - val accuracy: 1.0000
Epoch 13/25
15/15 [============== ] - 0s 4ms/step - loss: 0.0327 - accurac
y: 0.9911 - val loss: 1.1400e-04 - val accuracy: 1.0000
Epoch 14/25
y: 0.9911 - val loss: 1.0945e-04 - val accuracy: 1.0000
Epoch 15/25
15/15 [=============] - 0s 4ms/step - loss: 0.0317 - accurac
y: 0.9911 - val_loss: 1.0046e-04 - val_accuracy: 1.0000
Epoch 16/25
15/15 [============== ] - 0s 4ms/step - loss: 0.0313 - accurac
y: 0.9933 - val loss: 9.8982e-05 - val accuracy: 1.0000
Epoch 17/25
15/15 [=============] - 0s 3ms/step - loss: 0.0308 - accurac
y: 0.9933 - val loss: 9.2450e-05 - val accuracy: 1.0000
Epoch 18/25
15/15 [==============] - 0s 4ms/step - loss: 0.0303 - accurac
y: 0.9933 - val loss: 8.5132e-05 - val accuracy: 1.0000
Epoch 19/25
15/15 [=============] - 0s 5ms/step - loss: 0.0299 - accurac
y: 0.9933 - val_loss: 8.3368e-05 - val_accuracy: 1.0000
Epoch 20/25
15/15 [============== ] - 0s 4ms/step - loss: 0.0296 - accurac
y: 0.9933 - val loss: 8.2724e-05 - val accuracy: 1.0000
```

Epoch 21/25

```
15/15 [============= ] - 0s 5ms/step - loss: 0.0293 - accurac
       y: 0.9933 - val_loss: 7.5859e-05 - val_accuracy: 1.0000
       Epoch 22/25
       15/15 [=========================] - 0s 4ms/step - loss: 0.0287 - accurac
       y: 0.9933 - val_loss: 7.6098e-05 - val_accuracy: 1.0000
       Epoch 23/25
       15/15 [=======
                       ========= ] - 0s 4ms/step - loss: 0.0284 - accurac
       y: 0.9933 - val_loss: 7.2927e-05 - val_accuracy: 1.0000
       Epoch 24/25
       y: 0.9933 - val loss: 6.8851e-05 - val accuracy: 1.0000
       Epoch 25/25
       y: 0.9933 - val loss: 6.6777e-05 - val accuracy: 1.0000
In [61]:
       trained_model.params
       {'verbose': 1, 'epochs': 25, 'steps': 15}
Out[61]:
In [195...
       %matplotlib inline
       plt.plot(trained_model.history['accuracy'])
       plt.plot(trained_model.history['val_accuracy'])
       plt.xlabel('Accuracy vs Epoch')
       plt.legend(['Training data', 'Validation data'], loc = 'lower right')
```

Out[195]: <matplotlib.legend.Legend at 0x7fe24c28ea60>


```
In [97]: %matplotlib inline
   plt.plot(trained_model.history['loss'])
   plt.plot(trained_model.history['val_loss'])
```

```
plt.xlabel('Loss vs Epoch')
plt.legend(['Training data', 'Validation data'], loc = 'upper right')
```

Out[97]: <matplotlib.legend.Legend at 0x7fe24ac2e730>


```
In [64]:
          trained_model.history['accuracy']
          [0.602222204208374,
Out[64]:
           0.8399999737739563,
           0.8933333158493042,
           0.9200000166893005,
           0.9377777576446533,
           0.9466666579246521,
           0.95333331823349,
           0.9577777981758118,
           0.9599999785423279,
           0.9599999785423279,
           0.9599999785423279,
           0.9599999785423279,
           0.9622222185134888,
           0.9666666388511658,
           0.9688888788223267,
           0.9711111187934875,
           0.9733333587646484,
           0.9800000190734863,
           0.9800000190734863,
           0.9800000190734863,
           0.9844444394111633,
           0.9844444394111633,
           0.9844444394111633,
           0.9844444394111633,
           0.9844444394111633]
```

Finding The accuracy Of the model

```
array([[7.31051564e-01, 1.60803854e-01],
Out[68]:
                 [6.40998840e-01, 1.19231343e-01],
                 [9.37755644e-01, 7.71941384e-04],
                 [1.46365725e-10, 9.99996722e-01],
                 [7.75570273e-01, 1.45885289e-01],
                 [2.51738061e-06, 9.99234438e-01],
                 [7.65389800e-01, 3.26402187e-02],
                 [9.77818191e-01, 5.78860636e-04],
                 [9.34239268e-01, 3.35949101e-03],
                 [9.51056778e-01, 3.64095857e-03],
                 [2.69510746e-01, 5.29248536e-01],
                 [8.63291442e-01, 2.08233427e-02],
                 [3.33902031e-01, 5.19329421e-02],
                 [7.74546206e-01, 5.58350533e-02],
                 [8.96992207e-01, 2.01532012e-03],
                 [1.39508245e-03, 8.70443106e-01],
                 [9.41922307e-01, 2.42094253e-03],
                 [9.88540828e-01, 1.83954940e-03],
                 [8.10406327e-01, 6.12178305e-03],
                 [1.59763676e-05, 9.99054551e-01],
                 [7.55457938e-01, 8.93481309e-04],
                 [9.81762886e-01, 1.28782354e-03],
                 [9.41038787e-01, 2.99099670e-03],
                 [9.88616705e-01, 7.75113702e-04],
                 [9.31395590e-01, 1.40412310e-02],
                 [3.82299797e-04, 9.89704430e-01],
                 [9.33316231e-01, 1.08463056e-02],
                 [8.33260000e-01, 8.09682533e-02],
                 [1.38626585e-03, 9.58235323e-01],
                 [5.59933134e-04, 9.76477087e-01],
                 [9.55433547e-01, 1.30898431e-02],
                 [9.30512309e-01, 5.04098088e-03],
                 [9.76345599e-01, 2.23975838e-03],
                 [1.08914362e-08, 9.99970734e-01],
                 [3.70614871e-05, 9.96860445e-01],
                 [9.55898643e-01, 9.72562749e-03],
                 [9.46212113e-01, 5.24495146e-04],
                 [7.72765160e-01, 3.02293189e-02],
                 [9.82399225e-01, 9.01362626e-04],
                 [9.68568623e-01, 3.78753850e-03],
                 [3.20463944e-09, 9.99991238e-01],
                 [4.50073220e-02, 8.21912766e-01],
                 [7.52093434e-01, 2.11587059e-03],
                 [9.91524577e-01, 9.89714987e-04],
                 [7.18579628e-03, 9.57393646e-01],
                 [7.09191144e-01, 1.22571678e-03],
                 [9.95527565e-01, 1.83623939e-04],
                 [8.86224985e-01, 7.61702948e-04],
                 [6.74261514e-07, 9.99415815e-01],
                 [1.28702656e-03, 9.76919532e-01],
                 [9.74253297e-01, 1.78660871e-03],
                 [3.64623405e-02, 7.34966755e-01],
                 [4.88777280e-01, 2.46961400e-01],
                 [9.05061066e-01, 3.91130336e-03],
                 [9.79775548e-01, 4.70038998e-04],
                 [4.95718181e-01, 2.34145314e-01],
                 [7.24772930e-01, 6.43579066e-02],
                 [9.47778225e-01, 3.16638208e-04],
                 [2.30452002e-04, 9.63313103e-01],
                 [9.84664559e-01, 2.54050177e-03],
```

```
[8.15996885e-01, 7.85517767e-02],
[2.14043539e-03, 9.31277215e-01],
[9.86494899e-01, 1.08903891e-03],
[8.36508843e-05, 9.95497286e-01],
[4.16360563e-03, 8.83585155e-01],
[9.31065381e-01, 2.64307903e-03],
[1.48323625e-06, 9.99362111e-01],
[2.74783233e-03, 9.63605404e-01],
[4.38670486e-01, 1.14846162e-01],
[2.60057777e-01, 6.23337217e-02],
[6.14540651e-02, 6.10680342e-01],
[2.29546975e-04, 9.92862225e-01],
[9.46358562e-01, 2.77371169e-03],
[1.52478134e-02, 9.22355473e-01],
[9.86157715e-01, 3.17322672e-04],
[1.06969764e-02, 9.36964154e-01],
[9.35326517e-01, 2.55872938e-03],
[9.90373254e-01, 9.76463896e-04],
[6.53627098e-01, 8.44691247e-02],
[2.68205479e-02, 9.03193891e-01],
[1.52896289e-04, 9.90437508e-01],
[7.53849233e-03, 9.32610810e-01],
[4.61395830e-05, 9.97916758e-01],
[9.51771140e-01, 9.77563206e-03],
[9.29120004e-01, 5.08035999e-03],
[2.57168531e-01, 2.49635205e-01],
[9.96572077e-01, 2.61942710e-04],
[9.87862170e-01, 7.43782613e-04],
[9.73691404e-01, 8.20897426e-03],
[3.91975254e-06, 9.98498261e-01],
[9.80087698e-01, 2.14376533e-03],
[9.09832656e-01, 2.88372356e-02],
[9.97190773e-01, 5.36317064e-04],
[4.92907013e-04, 9.52523053e-01],
[1.38734635e-02, 9.19794023e-01],
[9.77464557e-01, 2.48204288e-03],
[1.70654857e-05, 9.98443663e-01],
[1.42859906e-04, 9.85853493e-01],
[7.73116529e-01, 2.43944768e-02],
[9.49195504e-01, 6.48476183e-04],
[9.80180800e-01, 3.17703205e-04],
[4.84219491e-02, 8.77735734e-01],
[6.30656132e-08, 9.99676943e-01],
[2.06084081e-07, 9.99889791e-01],
[8.47639740e-01, 8.97210930e-03],
[9.94968712e-01, 1.84790217e-04],
[9.98517811e-01, 9.22357067e-05],
[9.90152776e-01, 4.10761219e-04],
[9.17411208e-01, 1.63754885e-05],
[5.05371332e-01, 5.50724491e-02],
[8.09481753e-06, 9.96149719e-01],
[5.73819443e-06, 9.99302149e-01],
[3.40470187e-02, 4.52843338e-01],
[6.62702776e-04, 9.85725522e-01]], dtype=float32)
```

In []:

Prediction Using random Data

```
In [74]:
         from sklearn.preprocessing import StandardScaler
In [75]:
         SCALER = StandardScaler()
In [82]:
         Random_data = (0.21.6,74.72,427.9,0.08637,0.04966,0.01657,0.01115,0.1495,0.0588)
         Random_data_N = np.asarray(Random_data)
         Random_data_N = Random_data_N.reshape(1,-1)
         Random data NS = SCALER.fit transform(Random data N)
In [83]:
         MODEL.predict(Random data NS)
                            ======= | - 0s 23ms/step
         array([[0.5062147 , 0.42554605]], dtype=float32)
Out[83]:
In [86]:
         Label = [np.argmax(MODEL.predict(Random_data_NS))]
         Label
         1/1 [======= ] - 0s 22ms/step
Out[86]:
In [87]:
         if(Label[0] == 0):
           print('The tumor is Malignant')
           print('The tumor is Benign')
```

The tumor is Malignant

Primary Tumor Dataset

```
Col_namesT = ["Class", "Age", "Sex", "Histological_type", "Degree_of_diff", "Both

In [113...
                         "Peritoneium", "Liver", "Brain", "Skin", "Neck", "Supraclavicular
                        1
In [114...
          TumorData = pd.read csv("primary-tumorD.csv", names= Col namesT)
 In [ ]:
In [116...
          TumorData["Age"].unique()
           array([1, 2, 3])
Out[116]:
In [120...
          TumorData.head()
```

Out[120]:		Class	Age	Sex	Histological_type	Degree_of_diff	Bone	Bone- marow	lung	Pluera	Peritoneiu
	0	1	1	1	?	3	2	2	1	2	
	1	1	1	1	?	3	2	2	2	2	
	2	1	1	2	2	3	1	2	2	2	
	3	1	1	2	?	3	1	2	1	1	
	4	1	1	2	?	3	1	2	1	1	

In [121... TumorData.tail()

Out[121]:

:		Class	Age	Sex	Histological_type	Degree_of_diff	Bone	Bone- marow	lung	Pluera	Periton
	334	22	2	2	2	?	2	2	2	2	
	335	22	2	2	2	?	2	2	2	2	
	336	22	2	2	?	?	1	2	2	2	
	337	22	3	2	2	2	2	2	2	2	
	338	22	3	2	2	2	2	2	2	2	

In [122... TumorData.shape

Out[122]: (339, 18)

In [124... TumorData.info

2, 10:54 PM					Breast _.	_cancer_and	l_brain_t	umor_classifi	cation				
Out[124]:		nd method				C	lass	Age Se	x Hist	ological_	type Do	egree	_
	of_di	ff Bone	Bone	e-marow	lung	\							
	0	1	1	1		?			3	2	2	1	
	1	1	1	1		?			3	2	2	2	
	2	1	1 :	2		2			3	1	2	2	
	3	1	1 :	2		?			3	1	2	1	
	4	1	1	2		?			3	1	2	1	
	• •	• • • •		•		• • •		•	• • •	• •	• • •		
	334	22	2	2		2			?	2	2	2	
	335	22	2	2		2			?	2	2	2	
	336	22	2	2		?			?	1	2	2	
	337	22	3	2		2			2	2	2	2	
	338	22	3	2		2			2	2	2	2	
		Pluera 1	Perito	oneium	Liver	Brain	Skin	Neck	Supra	clavicula	r axil	lar	\
	0	2		2	2	2	2	2	-		2	2	
	1	2		2	1	2	2	2			1	2	
	2	2		2	2	2	2	2			2	2	
	3	1		2	2	2	2	2			2	2	
	4	1		2	2	2	2	2			2	2	
											•		
	334	2		2	2	2	2	2			2	1	
	335	2		2	2	2	2	2			2	1	
	336	2		2	2	2	2	2			1	1	
	337	2		2	2	2	2	1			1	1	
	338	2		2	2	2	2	2			1	1	

	Mediastinum	Abdominal
0	2	2
1	1	2
2	1	2
3	1	2
4	1	2
	• • •	• • •
334	2	2
335	2	2
336	2	2
337	2	2
338	2	2

[339 rows x 18 columns]>

In [126... TumorData.describe()

Out[126]:

	Class	Age	Bone	Bone- marow	lung	Pluera	Peritoneiu
count	339.000000	339.000000	339.000000	339.000000	339.000000	339.000000	339.00000
mean	8.678466	2.247788	1.722714	1.979351	1.778761	1.778761	1.71976
std	7.052624	0.568362	0.448321	0.142416	0.415695	0.415695	0.4497
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000
25%	2.000000	2.000000	1.000000	2.000000	2.000000	2.000000	1.0000(
50%	7.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.00000
75%	14.000000	3.000000	2.000000	2.000000	2.000000	2.000000	2.00000
max	22.000000	3.000000	2.000000	2.000000	2.000000	2.000000	2.00000

Checking for Null values, according to dataset description here null value indicated by "?"

```
In [137...
           TumorData.isnull().sum()
                                    0
            Class
Out[137]:
                                    0
            Age
            Sex
                                    0
            Histological_type
                                    0
            Degree_of_diff
            Bone
                                    0
            Bone-marow
                                    0
                                    0
            lung
           Pluera
                                    0
            Peritoneium
                                    0
                                    0
            Liver
            Brain
                                    0
            Skin
            Neck
                                    0
                                    0
            Supraclavicular
            axillar
                                    0
            Mediastinum
                                    0
            Abdominal
                                    0
            dtype: int64
In [140...
           TumorDataR = TumorData.replace("?", "0")
           TumorDataR.head()
Out[140]:
                                                                        Bone-
                           Sex Histological_type Degree_of_diff Bone
                                                                                     Pluera Peritoneiu
               Class
                     Age
                                                                               lung
                                                                        marow
            0
                   1
                        1
                             1
                                               0
                                                              3
                                                                     2
                                                                            2
                                                                                  1
                                                                                          2
                                                                     2
                                                                            2
                                                                                  2
                                                                                          2
            1
                   1
                                               0
                                                              3
            2
                             2
                                               2
                                                                            2
                                                                                  2
                                                                                          2
                   1
                        1
                                                              3
                                                                     1
            3
                   1
                             2
                                               0
                                                              3
                                                                            2
                                                                                  1
                                                                                          1
                        1
            4
                   1
                        1
                             2
                                               0
                                                              3
                                                                     1
                                                                            2
                                                                                  1
                                                                                          1
In [141...
           TumorDataR["Class"].value counts()
```

```
84
Out[141]:
                   39
            18
                   29
            11
                   28
            14
                   24
            22
                   24
            2
                   20
            12
                   16
            7
                   14
            4
                   14
            17
                   10
            3
                    9
            13
                    7
            8
            19
                    6
                    2
            10
                    2
            15
                    2
            20
            6
                    1
            16
                    1
            21
                    1
            Name: Class, dtype: int64
```

In []: