TP26 - Mesures d'une enthalpie de changement d'état

Objectif: déterminer l'enthalpie de fusion de l'eau.

1 Contexte

On appelle enthalpie massique de fusion de l'eau, notée ℓ_F , l'enthalpie massique de changement d'état lorsque qu'une unité de masse d'eau passe de l'état solide à l'état liquide, à pression et température constantes.

Données : pour une pression de 1 bar

- Capacité thermique massique de l'eau liquide : $c_L = 4,18 \text{ kJ.K}^{-1}.\text{kg}^{-1}$.
- Capacité thermique massique de l'eau solide : $c_S = 2, 10 \text{ kJ.K}^{-1}.\text{kg}^{-1}.$
- Capacité thermique massique de l'aluminium solide : $c_A = 0,897 \ \mathrm{kJ.K^{-1}.kg^{-1}}$.
- Masse volumique de l'eau liquide : $\rho=1$ kg.L⁻¹.

2 Mesures

Matériel: sur votre paillasse ou celle du professeur.

- Calorimètre avec vase en aluminium et agitateur
- Thermomètre à alcool et sonde de température interfaçable avec l'ordinateur
- Balance de précision
- Éprouvette graduée
- Glaçons et eau liquide du robinet
- 1. Proposer un protocole expérimental permettant la mesure de enthalpie massique de fusion de l'eau, notée ℓ_F . En particulier, vous prendrez soin de réfléchir au point suivant :
 - Comment préparer simplement de la glace à une température connue?
 - Quelle quantité de glace est-il raisonnable de prendre? Comment mesurer sa masse?
 - Quelle quantité d'eau liquide est-il raisonnable de mettre dans le calorimètre? A quelle température?
 - Est-il nécessaire, comme la semaine dernière, de procéder à une correction calorimétrique des pertes du calorimètre?

3 Conclusion

2. Comparer votre résultat de mesure de ℓ_F à la valeur attendue de 334 kJ.kg $^{-1}.$