1 Матанализ от Виноградова

1.1

Норма в пространстве $L_p(E,\mu)$ равна:

$$||f||_{L_p(E,\mu)} = \left(\int_E |f|^p d\mu\right)^{\frac{1}{p}}$$

Положительная однородность очевидна, неравенству треугольника соответствует неравенство Минковского, а из ||f|| = 0 следует $f \sim 0$, то есть f = 0 как элемент $L_p(E, \mu)$.

Пусть (X, \mathbb{A}, μ) — пространство с мерой, $E \in \mathbb{A}$. Полагают:

$$L_{\infty}(E,\mu) = egin{cases} f & ext{ п.в. } E o \overline{\mathbb{R}} & ext{ (или } \overline{\mathbb{C}}), \\ f & ext{ измерима}, \\ ext{ess } \sup_{x \in E} |f(x)| < +\infty \end{cases}$$

Эквивалентные функции отождествляются. Легко видеть, что $L_{\infty}(E,\mu)$ — векторное пространство. Норма в $L_{\infty}(E,\mu)$ задаётся равенством:

$$||f||_{L_{\infty}(E,\mu)} = \operatorname{ess \ sup}_{x \in E} |f(x)|$$

1.2

Непустое семейство $\mathbb A$ подмножеств X называется σ -алгеброй, если выполняются следующие два условия.

- 1. Если $A \in \mathbb{A}$, то $A^c \in \mathbb{A}$.
- 2. Если $A_k \in \mathbb{A}$ при всех $k \in \mathbb{N}$, то $\bigcup_{k=1}^{\infty} A_k \in \mathbb{A}$.

Свойства 1 и 2 называются аксиомами σ -алгебры.

2 Большое задание от доктора Тренча

2.1

Let $y = ue^{3x}$. Then

$$y'' - 3y' + 2y = e^{3x} [(u'' + 6u' + 9u) - 3(u' + 3u) + 2u]$$

= $e^{3x} (u'' + 3u' + 2u) = e^{3x} [21 \cos x - (11 + 10x) \sin x]$

if $u'' + 3u' + 2u = 21\cos x - (11 + 10x)\sin x$. Now let

$$u_p = (A_0 + A_1 x) \cos x + (B_0 + B_1 x) \sin x$$
; then
 $u'_p = (A_1 + B_0 + B_1 x) \cos x + (B_1 - A_0 - A_1 x) \sin x$
 $u''_p = (2B_1 - A_0 - A_1 x) \cos x - (2A_1 + B_0 + B_1 x) \sin x$, so

$$u'' + 3u' + 2u = [A_0 + 3A_1 + 3B_0 + 2B_1 + (A_1 + 3B_1)x]\cos x + [B_0 + 3B_1 - 3A_0 - 2A_1 + (B_1 - 3A_1)x]\sin x$$
$$= 21\cos x - (11 + 10x)\sin x \text{ if}$$

$$A_1 + 3B_1 = 0$$
 and $A_0 + 3B_0 + 3A_1 + 2B_1 = 21$
 $-3A_1 + B_1 = -10$ and $-3A_0 + B_0 - 2A_1 + 3B_1 = -11$.

From the first two equations $A_1 = 3$, $B_1 = -1$. Substituting these in last two equations yields and solving for A_0 and B_0 yields $A_0 = 2$, $B_0 = 4$. Therefore, $u_p = (2+3x)\cos x + (4-x)\sin x$ and $y_p = e^{3x}\left[(2+3x)\cos x + (4-x)\sin x\right]$. The characteristic polynomial of the complementary equation is $p(r) = r^2 - 3r + 2 = (r-1)(r-2)$, so $\{e^x, e^{2x}\}$ is a fundamental set of solutions of the complementary equation, and (A) $y = e^{3x}\left[(2+3x)\cos x + (4-x)\sin x\right] + c_1e^x + c_2e^{2x}$ is the general solution of the nonhomogeneous equation. Differentiating (A) yields

$$y' = 3e^{3x} [(2+3x)\cos x + (4-x)\sin x] + e^{3x} [(7-x)\cos x - (3+3x)\sin x] + c_1e^x + 2c_2e^{2x}.$$

Therefore, y(0) = 0, $y'(0) = 6 \Rightarrow 0 = 2 + c_1 + c_2$, $6 = 6 + 7 + c_1 + 2c_2$, so $c_1 + c_2 = -2$, $c_1 + 2c_2 = -7$. Therefore, $c_1 = 3$, $c_2 = -5$, and $y = e^{3x} [(2 + 3x) \cos x + (4 - x) \sin x] + 3e^x - 5e^{2x}$.

3 Маленькие задания от доктора Тренча

3.1

$$\sinh at \leftrightarrow \frac{a}{s^2-a^2} \text{ and } \cosh at \leftrightarrow \frac{1}{s^2-a^2}, \text{ so } H(s) = \frac{as}{(s^2-a^2)^2}.$$

3.2

$$t\sin\omega t\leftrightarrow \frac{2\omega s}{(s^2+\omega^2)^2}$$
 and $t\cos\omega t\leftrightarrow \frac{s^2-\omega^2}{(s^2+\omega^2)^2}$, so $H(s)=\frac{2\omega s(s^2-\omega^2)}{(s^2+\omega^2)^4}$.

3.3

$$e^t \leftrightarrow \frac{1}{s-1}$$
 and $\sin at \leftrightarrow \frac{a}{s^2+a^2}$, so $H(s) = \frac{a}{(s-1)(s^2+a^2)}$.