LSDL Seminar 03 Efficient training and inference

Ildus Sadrtdinov, 30.09.2024

Floating point numbers

float 32

Floating point formats

Automatic Mixed Precision (AMP)

- Training in FP16 diverges
- Some operations are feasible with FP16 (matrix multiplication),
 while other require FP32 (softmax, normalization)
- Data cast gives almost no overhead
- We can use FP16 where appropriate to speed up forward and backward passes
- Loss scaling is required

Automatic Mixed Precision (AMP)

MIXED PRECISION TRAINING

Automatic Mixed Precision

Two paradigms of parallelism

Data Parallelism

Model Parallelism

Data Parallelism

Host

Naive All-Reduce

Devices

Tree All-Reduce

Devices

Butterfly All-Reduce

Devices

What happens in practice?

Ring All-Reduce

- Gradient subvector n of Worker A (n = 1, 2, 3)
- Gradient Subvector n of Worker C (n = 1, 2, 3)
- Gradient subvector 2 summation for Workers B and C
- Gradient subvector n summation for Workers A, B, and C (n = 1, 2, 3)

- Gradient subvector n of Worker B (n = 1, 2, 3)
- Gradient subvector 1 summation for Workers A and B
- Gradient subvector 3 summation for Workers A and C
- Sum of full gradient vectors of Workers A, B, and C

Gradient accumulation

Desired batch size does not fit in memory

Regular backpropagation

2. **Single object** does not fit in memory

Drawing inspired by https://github.com/cybertronai/gradient-checkpointing

Orange nodes are the ones kept in memory to compute the gradient update for this node

Low-memory backpropagation

2. **Single object** does not fit in memory

Drawing inspired by https://github.com/cybertronai/gradient-checkpointing

These nodes are being recomputed and kept in memory temporarily (not all at the same time)

Orange nodes are the ones kept in memory to compute the gradient update for this node

Gradient checkpointing

2. **Single object** does not fit in memory

Drawing inspired by https://github.com/cybertronai/gradient-checkpointing

This node is being recomputed and kept in memory temporarily

Orange nodes are the ones kept in memory to compute the gradient update for this node

Memory offloading

3. **Model parameters** do not fit in memory

Conventional Execution *n*-layer NN

EPS with L2L execution

Model-parallel training

3. **Model parameters** do not fit in memory

Pipeline Parallelism

3. **Model parameters** do not fit in memory

Conclusion

- AMP accelerates training with a memory overhead
- Data-parallel: default choice if your model fits into 1 GPU
- Model-parallel: depends on model architecture but sometimes can be more effective