خلاصه پایانترم شبیهسازی

فصل پنج

جمعیت هدف: جمعیتی که افراد از بین آن وارد سیستم میشوند.

ظرفیت سیستم: محدودیت سیستم برای تعداد افراد داخل آن

در سیستمهایی که جمعیت هدف نامحدود است فرض می کنیم سیستم هیچگاه بیکار نیست.

شرایط pending: شرایطی که کاربر کاملا بیرون از سیستم و صف قرار دارد.

زمان runtime: مدت زمان بین دو مراجعهی کاربر به سیستم. طول زمان شرایط pending.

رفتار صف: رفتاری که کاربران در صف از خود نشان میدهند. میتواند Balk (عدم ورود به صف طولانی)، Renege (خروج از صف کند) و Jockey (ورود به یک صف کوتاهتر) باشد.

سرویس دهی دستهای (batch service): اگر یک سرور بتواند به طور همزمان به چند مشتری خدمترسانی کند، سیستم دارای سرویس دهی دستهای خواهد بود.

نام گذاری A/B/c/N/K: توزیع زمان بین ورود، توزیع زمان سرویسدهی، تعداد سرورهای داخل سیستم، H: الله بازه E_k : الله نمایی، E_k : الله نمایی، E_k : الله توزیع فاز، E_k : الله فرانمایی، E_k : الله عمومی)

$$L = \lim_{T \to \infty} \frac{1}{T} \int_0^T L(t) dt$$

Little'law (convservation equation): $L = \lambda w$

$$w = \frac{1}{\mu} \text{ (stable systems, } G/G/1/\infty/\infty) \Longrightarrow w = \frac{\lambda}{\mu}$$

$$\rho = \frac{\lambda}{c\mu}$$

 $customer\ cost = \lambda w_0 \times unit\ cost$

$server cost = unit cost \times c(2 - \rho)$

برای صفهای M/G/1:

$$P_{0} = 1 - \rho$$

$$L = \rho + \frac{\rho^{2}(1 + \sigma^{2}\mu^{2})}{2(1 - \rho)}, \qquad L_{Q} = \frac{\rho^{2}(1 + \sigma^{2}\mu^{2})}{2(1 - \rho)} = \left(\frac{\rho^{2}}{1 - \rho}\right) \left(\frac{1 + (cv)^{2}}{2}\right)$$

$$w = \frac{1}{\mu} + \frac{\lambda\left(\frac{1}{\mu^{2}} + \sigma^{2}\right)}{2(1 - \rho)}, \qquad w_{Q} = \frac{\lambda\left(\frac{1}{\mu^{2}} + \sigma^{2}\right)}{2(1 - \rho)}$$

برای صفههای $\frac{1}{\mu^2}$ را جایگزین کنیم. σ^2 مقدار $\frac{1}{\mu^2}$ را جایگزین کنیم.

$$P_n = (1 - \rho)\rho^n$$

$$L = \frac{\lambda}{\mu - \lambda} = \frac{\rho}{1 - \rho}, \qquad L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{\rho^2}{1 - \rho}$$

$$w = \frac{1}{\mu - \lambda} = \frac{1}{\mu(1 - \rho)}, \qquad w_Q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{\rho}{\mu(1 - \rho)}$$

برای کاهش طول صفها میتوان ho یا σ^2 یا σ^2 این کاهش طول صفها میتوان ho یا کاهش داد.

برای صفهایی با چند سرور:

$$P_{0} = \left\{ \left[\sum_{n=0}^{c-1} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} \right] + \left[\left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{1}{c!}\right) \left(\frac{c\mu}{c\mu - \lambda}\right) \right] \right\}^{-1}$$

$$L = c\rho + \frac{(c\rho)^{c+1} P_{0}}{c(c!)(1-\rho)^{2}} = c\rho + \frac{\rho P(L(\infty) \ge c)}{1-\rho}$$

برای سیستمهایی با جامعهی هدف محدود:

$$P_{0} = \left\{ \sum_{n=0}^{c-1} {K \choose n} \left(\frac{\lambda}{\mu}\right)^{n} + \sum_{n=c}^{K} \frac{K!}{(K-n)! \, c! \, c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} \right\}^{-1}$$

$$P_{n} = \left\{ \begin{cases} {K \choose n} \left(\frac{\lambda}{\mu}\right)^{n} P_{0}, & n = 0, 1, \dots, c-1 \\ \frac{K!}{(K-n)! \, c! \, c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n}, & n = c, c+1, \dots, K \end{cases}$$

$$L = \sum_{n=0}^{K} n P_{n}, \quad w = \frac{L}{\lambda_{e}}, \quad \rho = \frac{\lambda_{e}}{c\mu}$$

$$\lambda_{e} = \sum_{n=0}^{K} (K-n) \lambda P_{n}$$

در شبکهی صفها:

arrival rate i to j: $\lambda_i P_{i,j}$, P: fraction of customers that go from i to j

$$\lambda_i = a_j + \sum_{all,i} \lambda_i p_{ij}$$

فصل شش

ویژگیهای مهم اعداد تصادفی:

- یکنواختی: احتمال تولید هر کدام از آنها با یکدیگر برابر باشد.
 - استقلال: تولید یک عدد روی اعداد دیگر اثر نگذارد.

روش (LCM) (LCM)

از فرمول زیر استفاده می کنیم

$$X_i + 1 = (aX_i + c) \bmod m$$

$$R_i = \frac{X_i}{m}$$

که اعداد خروجی همان R_i ها هستند که اعدادی بین صفر تا یک هستند. مقادیر X و X_0 و M شانسی انتخاب می شوند.

برای رسیدن به طولانی ترین طول دوره دو حالت داریم:

$$c \neq 0, m = 2^b, \gcd(c, m) = 1, a = 1 + 4k \implies P = m$$

 $c = 0, X_0 \% 2 = 1, m = 2^b, a = 3 + 8k \mid 5 + 8k, \implies P = \frac{m}{4}$
 $m \text{ prime}, a^k - 1 \% m = 0 \implies P = m - 1$

روش ترکیبی به صورت زیر است:

$$X_{i} = \left(\sum_{j=1}^{k} (-1)^{j-1} X_{i,j}\right) \mod (m_{1} - 1)$$

$$P = \frac{(m_{1} - 1)(m_{2} - 1) \dots (m_{k} - 1)}{2^{k-1}}$$

تست اعداد تصادفي:

باید ویژگیهای یکنواختی و استقلال تست شوند. در هر دو حالت اگر نتوانیم فرض پوچ (null hypothesis) را رد کنیم، یعنی شواهد کافی نداریم و باید تستهای بیشتری انجام شود.

Level of significance: $\alpha = P(Reject\ H0\ |\ H0\ is\ True)$

تست كولموگروف: به صورت زير تست را انجام مىدهيم:

- 1. اعداد تولید شده را به صورت صعودی مرتب می کنیم.
- میباشد. $S_N(x)$ مقدار $S_N(x)$ معان مقدار محاسبه می کنیم که همان مقدار $S_N(x)$ میباشد.
- . دو تفاضل $R_i \frac{i-1}{N}$ و $\frac{i}{N} R_i$ را محاسبه می کنیم و ماکسیمم مقادیر آنها را بدست می آوریم.

4. ماکسیمم بدست آمده را با توجه به α و N با critical value مقایسه می کنیم و نتیجه ی تست را اعلام می کنیم.

تست chi square: در این تست اعداد را دستهبندی می کنیم و تعداد اعداد هر دسته را می شماریم (O_i) و با تعداد اعدادی که انتظار داشتیم در هر دسته باشد (E_i) مقایسه می کنیم:

$$X_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

$$E_i = np(x)$$

سپس عدد بدست آمده را از جدول، با توجه به مقدار lpha از سطر n-1 ام میخوانیم.

تست autocorrelation: یک مقدار i و یک مقدار m انتخاب می کنیم. از عدد i ام در لیست m تا m تا، تا انتهای جلو می ویم. سه مقدار زیر را محاسبه می کنیم:

$$\hat{\rho}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\hat{\sigma}_{\rho_{im}} = \frac{\sqrt{13M+7}}{12(M+1)}$$

$$Z_0 = \frac{\hat{\rho}_{im}}{\hat{\sigma}_{\widehat{\rho}_{im}}}$$

سپس درصد اطمینان مورد نیاز خود را از روی جدول پیدا می کنیم و با جمع سطر و ستون آن، بازهی مجاز برای Z_0 را بدست می آوریم.

فصل هفت

در فصل قبل تولید اعداد با توزیع یکنواخت را آموختیم. در این فصل با استفاده از آن اعداد، مقادیر تصادفی با توزیع مشخص میسازیم.

روش inverse transform: بهتر است روی توزیعهایی استفاده شود که CDF وارون پذیر دارند. مراحل به صورت زیر هستند:

$$R_i \sim U[0,1] \Longrightarrow R_i = F_X(x) \Longrightarrow x = F_X^{-1}(R_i)$$

توابع مولد چند توزیع مختلف به شرح زیر هستند:

exponential:
$$x = -\frac{1}{\lambda} \ln(R)$$

uniform(a,b): x = a + (b-a)R

weibull:
$$x = \alpha[-\ln(1-R)]^{\frac{1}{\beta}}$$

triangular:
$$x = \begin{cases} \sqrt{2R}, & 0 \le R \le \frac{1}{2} \\ 2 - \sqrt{2(1-R)}, \frac{1}{2} < R \le 1 \end{cases}$$

geometric:
$$X = q + \left[\frac{\ln(1-R)}{\ln(1-p)} - 1\right]$$

برای توزیعهای empirical دو راه داریم. در راه اول سعی میکنیم نمودار دادهها را رسم کنیم و از روی نمودار مقادیر جدید را استخراج کنیم.

در روش دوم، در صورت کوچک بودن اندازه ی مجموعه داده، CDF دادهها را رسم می کنیم (که شامل خطوط منقطع است) و سپس از فرمول زیر استفاده می کنیم:

$$\frac{j-1}{n} < R \le \frac{j}{n}$$

$$x = y_{j-1} + a_j \left[R - \frac{j-1}{n} \right]$$

که در آن a_j شیب خط j ام در نمودار CDF است:

$$a_j = \frac{y_j - y_{j-1}}{\frac{1}{n}}$$

به زبان ساده تر، مقدار R را روی نمودار عمودی مشخص می کنیم و در امتداد افقی ادامه می دهیم تا نمودار CDF را قطع کند. سپس نقطه ی متناظر x را به عنوان جواب انتخاب می کنیم.

در صورت زیاد بودن اندازه ی مجموعه داده، از همین روش استفاده می کنیم با این تفاوت که بازهها را به صورت دستی تثبیت می کنیم (در روش قبلی خود اعداد بازهها را تشکیل می دادند) و همچنین CDF را با استفاده از تعداد اعداد در هر بازه بدست می آوریم.

$$c_{j-1} < R < c_j$$

$$x = y_{j-1} + a_j [R - c_{j-1}]$$

$$a_j = \frac{y_j - y_{j-1}}{c_j - c_{j-1}}$$

نکتهی دیگری که حائز اهمیت است، نقطهی شروع اولین بازه است که در این حالت برابر مینیمم عدد دیده شده و در حالت قبلی برابر ۰ میباشد.

روش CDF را نداشته باشیم از این روش استفاده عروش Acceptance-rejection و نداشته باشیم از این روش استفاده عرصی نیم. ابتدا باید یک شرط پذیرش برای متغیرهای تصادفی بیابیم و سپس اعداد تصادفی تولید کنیم و بینیم آیا در آن شرط قرار می گیرند یا خیر. شرط چند توزیع مختلف به صورت زیر است:

uniform: $a \le R \le b$

poisson:
$$\prod_{i=1}^{n} R_i \ge e^{-\lambda} \ge \prod_{i=1}^{n+1} R_i$$

روش تقریبی برای تولید متغیرهای پوآسون به کمک توزیع نرمال:

$$z_{1} = (-2 \ln R_{1})^{\frac{1}{2}} \cos(2\pi R_{2})$$

$$z_{2} = (-2 \ln R_{1})^{\frac{1}{2}} \sin(2\pi R_{2})$$

$$\Rightarrow N = \left[\lambda + \sqrt{\lambda}Z - 0.5\right]$$

تکنیک thining برای NSPP

1.
$$\lambda^* = \max \lambda(t), t = 0, i = 1$$

2.
$$E \sim \exp(\lambda^*)$$
, $t = t + E$

3.
$$R \sim U[0,1] \rightarrow R \leq \frac{\lambda(t)}{\lambda^*}? \Longrightarrow \tau_i = t, i = i+1$$

4. return to 2.

تکنیک convolution: برای توزیع ارلانگ و دوجملهای استفاده می شود.

$$X = \sum_{i=1}^{k} -\frac{1}{k\theta} \ln R_i$$

فصل هشت

پیدا کردن توزیع ورودیها: از هیستوگرام استفاده میکنیم. پیشنهاد میشود طول بازهها برابر ریشهی تعداد دادهها باشد. سپس با استفاده از Context ورودیها و شکل هیستوگرام، نوع توزیع را حدس میزنیم.

توزیعهای مختلف و کاربردهایشان:

دو جملهای	تعداد موفقیتها در n آزمایش
دوجملهای منفی و هندسی	تعداد آزمایش مورد نیاز برای مشاهدهی k موفقیت
پواسون	تعداد رویدادها در یک بازهی زمانی / مکانی
نرمال	هر متغیری که مجموع چندین کامپوننت مختلف باشد.
لاگ-نرمال	هر متغیری که حاصل ضرب چندین کامپوننت مختلف باشد.
نمایی	مدت زمان بین دو رویداد
گاما	مدل کردن هر متغیر نامنفی
بتا	مدل کردن هر متغیر محدود به دو مقدار
ارلانگ	مجموع چند متغير نمايي

مدل کردن TTF	ويبول
احتمال هر رویداد یکسان است	يكنواخت
حالتی که فقط مینیمم و ماکسیمم را میدانیم (حالت قوی تر یکنواخت)	مثلثى

نمودارهای Qunatile-Quantile: از دادهها نمونهبرداری می کنیم. همچنین مقادیر $F^{-1}\left(\frac{j-0.5}{n}\right)$ از دادهها نمونهبرداری می کنیم. همچنین مقادیر و Qunatile و Quantile: توزیعی که حدس می زنیم استخراج می کنیم. نمودار این دو را رسم می کنیم. اگر حدودا خط صاف بود، یعنی حدسمان درست بوده.

پارامترهای اطلاعات جمع آوری شده:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \qquad S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\bar{X}^2}{n-1}$$

و اگر اطلاعات دستهبندی شده باشد:

$$\bar{X} = \frac{\sum_{j=1}^{c} f_j m_j^2}{n}, \qquad S^2 = \frac{\sum_{j=1}^{c} f_j m_j^2 - m \bar{X}^2}{n-1}$$

که در آن m_j میانگین دستهی jام است.

اسلاید ۲۳ لکچر ۸ تخمین گرها مطالعه شود.

تخمین نرخ در NSPP:

$$\hat{\lambda}(t) = \frac{1}{n\Delta t} \sum_{j=1}^{n} C_{ij}$$

کوواریانس کوریلیشن دو متغیر:

$$cov(X_1, X_2) = E(X_1 X_2) - \mu_1 \mu_2$$

$$\rho = corr(X_1, X_2) = \frac{cov(X_1, X_2)}{\sigma_1 \sigma_2}$$