Algebra 2 - Zestaw 12

Wojciech Szlosek

May 2020

1 Zadanie 1, (a)

$$\forall x \in R \ 0 \cdot x = 0 \ \mathrm{i} \ x \cdot 0 = 0$$

Dowód:

Ponieważ 0=0+0, więc (z def. pierścienia): $x\cdot(0+0)=x\cdot0+x\cdot0$. Skąd (z prawa skracania w grupach) mamy, że $x\cdot0=0$. Analogicznie, $0\cdot x=(0+0)\cdot x=0\cdot x+0\cdot x$ Zatem $0\cdot x=0$. Udowodniłem więc wejściowe własności z treści zadania. CND.

2 Zadanie 1, (b), (c)

(b)
$$\forall x, y \in R (-x) \cdot y = -(x \cdot y) i x \cdot (-y) = -(x \cdot y)$$

Dowód: (wykorzystamy własność z podpunktu (a)

$$x \cdot y + (-x) \cdot y = ((-x) + x) \cdot y = 0 \cdot y = 0$$
 [(a)]. Mamy zatem: $(-x) \cdot y = -(x \cdot y)$.

Analogicznie dowód wygląda dla $x \cdot (-y) = -(x \cdot y)$. CND.

(c)
$$\forall x, y \in R (-x) \cdot (-y) = (x \cdot y)$$

Dowód:

Użyjemy wniosku z poprzedniego podpunktu. Mamy: $(-x)\cdot (-y)=-(x\cdot (-y))=-(-(x\cdot y))=(x\cdot y)$ CND.

3 Zadanie 5, (a)

 Z_5

Możemy sobie wytłumaczyć, że w tym podpunkcie elementami odwracalnymi tutaj będą te liczby dla których największy wspólny dzielnik z 5 wynosi 1. I tak u nas:

Elementy odwracalne: $\{1, 2, 3, 4\}$.

Brak dzielników zera.

Dany pierścień jest ciałem.

4 Zadanie 5, (b)

 Z_8

Analogicznie do podpunktu (a). Zatem elementami odwracalnymi są: $\{1,3,5,7\}.$ Dzielnikami zera są $\{2,4,6\}.$

Dany pierścień nie jest ciałem.

5 Zadanie 7

$$x \cdot x^2 - (x^3 - 5) = 5 \in I$$

Niech $J\subseteq R$ będzie ideałem generowanym przez zbiór $\{5,x\}.$ $5\in I,$ $x\in I$ -zatem $J\subseteq I.$

Przypuśćmy, że J=(z). Wtedy $z|_{Z(x)}$ 5. Zatem z=1 lub z=5. Warto zauważyć, że $J=\{a_nx^n+a_{n-1}x^{n-1}...+a_1x+5a_0;a_n,a_{n-1},...,a_1,a_0\in Z\}$ (!)

Jeżeli z=1, to J=Z(x), co stoi w sprzeczności z (!), ponieważ 1 $\not\in J$ Czyli sprzeczność.

Jeżeli z=5, to $x \notin J=5Z(x)$. Sprzeczność.

(Odp.) Zatem nie jest ideałem głównym.