

Class – XI 2023-24 Board: Maharashtra

Chemical Bonding

Hybridisation and Geometry

S.No.	Type of Orbital	No. of hybrid orbital	3D orientation	Example
1.	one s + on p	2; sp	Linear	BeH ₂ , BeCl ₂
2.	one s + two p	3; sp ²	Triangular	BCl ₃ , BF ₃
3.	one s + three p	4; sp ³	Tetrahedral	CH ₄ , CCl ₄
4.	one s + three p + one d	5; sp ² d	Triangular bipyramidal	PCl ₅
5.	one s + three p + two d	6; sp ³ d ²	Octahedral	SF ₆
6.	one s + three p + three d	7; sp ³ d ³	Pentagonal bipyramidal	IF ₇

VSEPR Theory & Geometry of Some Molecules/Ions:

No. of Electron pirs	No. of Lone pairs	No. of bonding pairs	Electron pair geometry	Molecular geometry	Examples
2	0	2	Linear	Linear	BeBr ₂ , CO ₂
3	0	3	Trigonal planar	Trigonal planar	BF ₃ , BCl ₃ , BH ₃
4	0	4	Tetrahedral	Tetrahedral	CH ₄ , NH ₄ ⁺ , SiCl ₄
5	0	5	Trigonal bipyramidal	Trigonal bipyramidal	PCl ₅ , SbF ₅ , AsF ₅
6	0	6	Octahedral	Octahedral	SF ₆ , TeF ₆ , SeF ₆
3	1	2	Trigonal planar	Bent	SO ₂ , O ₃
4	1	3	Tetrahedral	Trigonal pyramidal	NH ₃ , PCl ₃
4	2	2	Tetrahedral	Bent	H ₂ O, OF ₂ , H ₂ S, SCl ₂
5	1	4	Trigonal bipyramidal	See-saw	SF ₄
5	2	3	Trigonal bipyramidal	T-shaped	ClF ₃ , BrF ₃ , ICl ₃
6	1	5	Octahedral	Square pyramidal	BrF ₅ , IF ₅
6	2	4	Octahedral	Square planar	XeF ₄

• Molecular Orbital Theory

Formation of molecule or orbitals from atomic orbitals $(\psi_A \pm \psi_B)$ $\psi_{MO} = \psi_A \pm \psi_B$

$$\begin{split} \sigma &= \psi_A + \psi_B \ \ (\text{Bonding molecular orbital}) \\ \sigma^* &= \psi_A - \psi_B \ \ (\text{Antibonding molecular orbital}) \end{split}$$

Relative energies of M.O. having

Less than or equal to 14 electrons.

$$\sigma 1_{S} < \sigma^{*} 1_{S} < \sigma^{2} 2_{S} < \sigma^{*} 2_{S} < \pi 2_{p_{x}} = \pi 2_{p_{y}} < \pi 2_{p_{z}} < [\pi^{*} 2_{p_{x}} = \pi^{*} 2_{p_{y}}] < \sigma^{*} 2_{p_{z}}$$

For more than 14 electrons

$$\sigma 1_S < \sigma^* 1_S < \sigma 2_S < \sigma^* 2_S < \pi 2p_z < [\pi^* 2p_x = \pi^* 2p_v] < [\pi^* 2p_x = \pi^* 2p_v] < \sigma^* 2p_z$$

Bond order

Bond order = 1/2 [Number of bonding electrons – Number of antibonding electrons] Or, $N_b - N_a/2$

B.O. ∝ B.E. ∝ 1/B.L ∝ Stability

•Dipole moments and geometry of some molecules:

Types of molecule	Examples	Dipole moment μ (D)	Geometry
Molecule AB	HG	1.91	Linear
	HCl	1.03	Linear
	HBr	0.79	Linear
	H ₂	0	Linear
Molecule AB ₂	H ₂ O	1.85	Angular (Bent)
	H ₂ S	0.95	Angular (Bent)
	CO ₂	0	Linear
Molecule AB ₃	NH ₃	1.47	Trigonal pyramidal
	NF ₃	0.23	Trigonal pyramidal
	BF ₃	0	Trigonal planar
Molecule AB ₄	CH ₄	0	Tetrahedral
	CHCl ₄	1.04	Tetrahedral
	CCl ₄	0	Tetrahedral

Formulae:

1. Formal charge, F.C. = V.E. - N.E. - (B.E./2)

Where,

V.E. = Total number of valence electrons in free atom.

N.E. = Total number of non-bonding or lone pairs of electrons.

B.E. = Total number of bonding or shared electrons.

$$N_b - N_a$$

2. Bond order = 2

Where,

 N_b = Number of electrons in bonding MOs.

 N_a = Number of electrons in antibonding MOs.