ttbl_indexes

 $ttbl_indexes$ is a small Python program that is able to calculate 6th order accurate thickness parameters $(\delta_{99}, \delta^*, \theta)$ for a temporal turbulent boundary layer (TTBL). It also calculates the related Reynolds numbers $(Re_{\tau}, Re_{\delta^*}, Re_{\theta})$, the streamwise shear velocity $u_{\tau x}$ and the streamwise friction coefficient c_{fx} . Results are saved in $d_{t} = d_{t} = d_{t} = d_{t}$.

Moreover, the program calculates time evolution of non-dimensional grid spacings and domain dimensions, and stores them in the file /data_post/ttbl_indexes/nd_mesh_evolution.txt.

Finally, the minimum Kolmogorov time scale τ_{η} and the viscous time unit t_{ν} are calculated and stored in the file /data_post/ttbl_indexes/time_scales_evolution.txt.

Requirements

ttbl_indexes employs mean statistics calculated with post_incompact3d. The script is able to automatically open each mean_stats, vort_stats and diss_stas files, based on inputs given through post.prm. Time-units are read from the .xdmf snapshots' headers in a flow realization folder asked to the user.

High order interpolation

The mean velocity profile is reconstructed with the SciPy function InterpolatedUnivariateSpline, with a spline of order 5 that passes through all data points. Integrals are evaluated with the integral command of the same function. In this manner, the integrals calculated are 6th order accurate.

List of calculated quantities

• BL thickness δ_{99} (O(6))

$$\delta_{99} \equiv y : \langle u(y)
angle = 0.01 U_w$$

Displacement thickness (O(6))

$$\delta^* = \int_0^\infty rac{\langle u
angle}{U_w} dy$$

Momentum thickness (O(6))

$$heta = \int_0^\infty rac{\langle u
angle}{U_w}igg(1-rac{\langle u
angle}{U_w}igg)dy$$

Friction Reynolds number (O(6))

$$Re_{ au}=rac{u_{ au x}\delta_{99}}{u}=\delta_{99}^{+}$$

Reynolds number based on displacement thickness (O(6))

$$Re_{\delta^*}=rac{U_w\delta^*}{
u}$$

Reynolds number based on momentum thickness (O(6))

$$Re_{ heta} = rac{U_w heta}{
u}$$

Streamwise shear velocity (O(6))

$$u_{ au x} = \sqrt{
u \left| rac{\partial U}{\partial y}
ight|}$$

• Streamwise friction coefficient (O(6))

$$c_{fx} = 2igg(rac{u_{ au x}}{U_w}igg)^2$$

Kolmogorov time scale

$$au_{\eta} = \sqrt{rac{
u}{arepsilon}}$$

• Viscous time unit

$$t_
u = rac{
u}{u_{ au x}^2}$$