United International University (UIU)

Dept. of Computer Science and Engineering (CSE)

Final Exam Year: 2023 Trimester: Fall Course: CSE 2215 Data Structure and Algorithms I

Total Marks: 40, Time: 2 hours

(Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules)

There are FOUR questions. Answer all of them. Figures in the right-hand margin indicate full marks.

1.	a) Which Data Structures are appropriate to implement the following and why?i) Matrix representationii) Bus Ticket Counter					[3]
 iii) Different locations of Dhaka City with a distance from one another b) Convert the following infix expression into postfix using a STACK. Infix expression: a↑2-(b+c/d*a+b) 						[4] [3]
	c) Evaluate the postfix expression, a $b-c$ d * + for a=2, b=3, c=2 and d=1. d) Design an iterative algorithm for TOWER OF HANOI using one intermediate pillar/peg and show simulation for $n = 2$, where n is the number of disks.					[3]
2	a) Show the manual tracing of the following algorithm using the given Queue of size 3. Here, Queue is a FIFO data structure, and m, f and r are size, front and rear of the Queue, respectively. What is the purpose of the algorithm?					[3]
	Queue	32	30		31	
	i=(f+1)%(m+1) while(i!=f){	0); ", Queue[i]	r=1);	f=2	3	
b) Show the status of a QUEUE and a Priority QUEUE (Data in Descending the following operations, where both QUEUEs are implemented by an arm m=3. Here, Enqueue and Dequeue mean insert and delete respectively, and digits of your student id+4, y=x+3, z=x+y and p=y+z. Enqueue(z), Enqueue(p), Dequeue(), Enqueue(y), Enqueue(z)					an array of size,	[3]
	c) Find a min-heap tree from the following data where ID=last two digits of your student ID. Show step by step procedure during construction of the tree.					[3]
	10 40	20	8 99	ID 15	17	
3.	a) Draw a directed acyclic graph with six vertices.b) Show the simulation of the Topological Ordering Algorithm using the graph in Ques. 3(a).					[1] [4]
	c) Draw a binary tree using the data given below, where x, y, z, p, r, t, u and v are nodes of the tree.					[1]

 $y\quad p\quad z\quad x\quad r\quad t\ u\ v$

Here, x=last digit of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r, u=r+t, v=t+u

- d) How can you represent the binary tree of Ques. 3(c) using one dimensional array and linked list?
- 4. a) Draw a binary tree from the following Inorder and Postorder sequences [2]

Inorder: v p y r x t z u

Postorder: v p r y t u z x

Here, x=last digit of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r, u=r+t, v=t+u

- b) Construct a binary search tree (BST) using the nodes y, p, z, x, r and t, where x=last digit of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r. Show the insertion and deletion of r+t and y, respectively in/from the BST.
- c) Two disjoint sets $\{y, p, z, x\}$ and $\{r, t\}$ are given, where minimum one of a set is the representative of that set. Determine UNION(Find(x), Find(t)). How can you check x and y are in the same set using Find operation? Here, x=last two digit of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r.
- d) Develop an idea to check whether addition of an edge in a binary tree forms a cycle or not using Find operation. [2]