

Feasibility Study of an application for public health

JANUARY 2022

Presentation Outline

- 1. My application idea
- 2. Dataset Cleaning
- 3. Dataset Exploratory Analysis
- 4. Presentation of facts relevant to the application

My application idea

Context

Context

- The agency is launching a call for projects to find innovative ideas for applications related to food.
- Open Food Fact dataset available

Business Problem

Answer the call and identify an application idea

Mission

• Consult the dataset provided to conclude if it allows to realise the idea, in response to the call.

Methodology

- 1.Process the dataset
- 2.Perform univariate analysis of relevant variables
- 3. Perform multivariate analysis of relevant variables
- 4. Justify the idea of application and conclude its feasibility

My application idea

The idea

Application NutrINF

- Nutrition of children under 3 years of age
- Operation:

Entry of foods and associated servings consumed/to be consumed and age

Baby is very happy!
100% nutrigrade A meal

Baby is happy!
80-100% nutrigrade A meal

Baby is in a neutral mood!
50-80% nutrigrade A meal

< 50% nutrigrade A meal

Baby is tired!

Nutrition of children under 3 years of age

Based on the amount of servings in 5 food categories

Category (portion size)	Minimum servings / day		
	1 to 2 years	2 to 3 years	
Legumes and legumes (75g)	2-3	2 ½	
Fruits (350kJ)	1/2	1	
Grain and grain foods (500kJ)	4	4	
Lean meat and poultry, fish, eggs, tofu, nuts and seeds, and legumes (550kJ)	1	1	
Milk, cheese with yogurt and/or substitutes (550kJ)	1-1 ½	1 ½	
Other (considered by default nutrigrade non A)	0	0	

Description of the dataset

File description							
	Data (2054909 obs. x 187 columns)						
	Product Informati	on					
	Section	Top 5 most filled variables	Type variables	% NaN	Ratio NaN per variable		
	Variables _ general information	Code, url, creator, created_datetime , product_name	Object / int64 / datetime	25	Ratio valeurs manquantes par variables 10 02 02		
	Variables _ set of tags & ingredients	Countries, pnns_groups_1, pnns_groups_2, states, images	Object / Float	69	Ratio valeurs manquantes par variables 10 08 08 07		
	Variables - nutritional information	Energy_kj_100g, energy_100g, Proteins_100g Fat_100g, Carb_100g	Float	92	Ratio valeurs manquantes par variables 10		

Cleaning operations

Cleaning process followed in 4 steps

Simplification – filter data to:

- Products sold in France
- Products without duplicates

Selecting variables – removing:

- Variables not filled in
- Redundant variables
- Non-relevant variables

Handling missing values – filling according to the variable by different methods:

- Values at 0
- Average values by category
- Calculated values
- Imputed values by classification and backward

Identifying outliers – removing:

- Non-logical values
- Impossible values

Simplification and relevance of the dataset

Variables: 187

Products: 562410

NaN: 78%

Relevance of the simplified dataset for the application of the idea

The dataset completed over a period mainly of 5 years (2016-2021), and including a number of products in each PNNS category and for each nutrigrade during this period.

Selecting variables

Variables: 30

Products: 562410

NaN: 58%

Selecting variables

#	Column	Non-Null Count	Dtype
0	code	562410 non-null	object
1	product_name	542074 non-null	object
2	pnns_groups_1	562395 non-null	object
3	nutriscore_grade	269454 non-null	object
4	nutrition_score	269457 non-null	float64
5	energy_100g	460177 non-null	float64
6	fat_100g	457355 non-null	float64
7	saturated_fat_100g	457415 non-null	float64
8	monounsaturated_fat_100g	3045 non-null	float64
9	polyunsaturated_fat_100g	3066 non-null	float64
10	omega_3_fat_100g	1390 non-null	float64
11	omega_6_fat_100g	302 non-null	float64
12	omega_9_fat_100g	54 non-null	float64
13	trans_fat_100g	2912 non-null	float64
14	cholesterol_100g	2933 non-null	
15	carbohydrates_100g	457278 non-null	float64
16	sugars_100g	458484 non-null	
17	starch_100g	298 non-null	float64
18	polyols_100g	762 non-null	float64
19	fiber_100g	143338 non-null	
20	soluble_fiber_100g	152 non-null	float64
21	insoluble_fiber_100g	150 non-null	float64
22	proteins_100g	459167 non-null	
23	casein_100g	49 non-null	float64
24	serum_proteins_100g	44 non-null	float64
25	nucleotides_100g	21 non-null	float64
26	salt_100g	448118 non-null	
27	sodium_100g	448117 non-null	
28	fruits_vegetables_nuts_100g	250892 non-null	float64
29	pnns_groups_12	562395 non-null	object

Removing outliers

Variables: 30

Products: 562410

NaN: 60%

Handling missing values

Variables: 15

Products: 562410

NaN: 4%

Cleaned dataset

Variables: 15

Products: 562410

NaN: 4%

Univariate analysis of quantitative variables (1 of 2)

Observations

- The nutriscore seems to have an almost normal distribution.
- The distributions of the other variables are very different and different from each other. None of their distribution seems to follow a normal distribution.
- Some are very dispersed carbohydrates. Others very tight proteins
- => The Nutriscore does not appear to have a direct link to the other variables.

Univariate analysis of quantitative variables (2 of 2)

Histogram of quantitative variables

 Some distributions are concentrated - salt, fiber, fruit. Others less concentrated - nutriscore, energy.

positive skewness.

- Some distributions are bimodal nutriscore, energy and the main nutritional variables.
- => The Nutriscore has a distribution that has some similarities with some other variables.

Univariate and bivariate analysis of qualitative variables

Observations

- The modalities of each variable generally have an equivalent proportion.
- The nutrigrade by category PNNS12 (categories that interest us) does not allow to conclude a
 precise relationship between them. Note that we have many products in each of Nutrigrade A.
- Nutrigrade A is dominant for vegetables/starchy foods/fruits. While nutrigrade E dominates the meat and dairy categories.
- => Nutrigrade varies from one category to another, hence a possible dependence.

Bivariate analysis of quantitative variables (1 of 2)

Bivariate analysis of quantitative variables (2 of 2)

Heatmap between quantitative variables

Observations

- The heatmap makes it possible to identify the dependence between the nutriscore and the nutritional variables.
- Nutriscore is highly correlated with energy, saturated fatty acids and fats, correlated with sugars and carbohydrates, and less with protein to have none with fiber and fruits/vegetables. This seems consistent.
- Energy has a strong correlation with fat, saturated fat and carbohydrates.
- => Nutriscore is dependent on other variables and more particularly on energy, saturated fatty acids, and lipids.

Bivariate analysis of qualitative and quantitative variables

Multivariate analysis in main components

Principal Component Analysis

- The eigenvalues decomposition suggest the first
 2 most relevant components (drop to axis 3)
- F1 and F2 account for 71% of total inertia.
- On F1, energy, fat and saturated fat are positively correlated. All variables are positive on this axis. This axis represents the amount of energy.
- On F2, carbohydrates and sugars are negatively correlated, unlike proteins and fats. This axis represents natural energy.
- The projection of products on these two axes is concentrated.
- => The PCA allows a reduction to 2 components.

Presentation of facts relevant to the application

Observations

Observations of the dataset exploratory analysis

Observations

- Dependency between variables.
- Strong correlation between nutriscore and certain variables such as energy, saturated fatty acids and lipids.
- Reduction of 6 initial variables to 2 main components representing 71% of the total inertia.

Presentation of facts relevant to the application

Conclusions

Relevance and limitation of the dataset

Reminder - the needs for the idea

• The idea requires product information, 5 specific categories and nutriscore/nutrigrade (especially nutrigrade A).

Feasibility of the idea

- The database is regularly filled and contains more than 500,000 products in France spread over all categories and nutrigrade.
- The nutriscore /nutrigrade of the products not known can be deduced from the two new compound variables 1 and 2. Compound variables can be inferred for 79% of products.
- The product category is known for about 70% of the products.
- The idea is feasible but limited to products with categories and for which component variables are provided.

Thank you for your attention!