Ondas y Óptica Parte II

Mario I. Caicedo

7 de junio de 2021

Todos tenemos alguna intuición acerca de que es una Onda

¡DONDE BUSQUEMOS HAY ONDAS!

LAS ESCUCHAMOS

¿POR QUÉ ESTUDIAR ONDAS?

JUGAMOS CON ELLAS

LA NATURALEZA LAS UTILIZA ... Y NOSOTROS TAMBIÉN

SON NUESTRA VENTANA AL UNIVERSO

¿POR QUÉ ESTUDIAR ONDAS?

NOS MUESTRAN COSAS OCULTAS

Definición

Una onda es una señal reconocible que puede ser transferida de un lugar a otro de un medio con una velocidad de propagación relativamente bien definida.

G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, ISBN 0471359424

OBSERVACIÓN

Las ondas transportan energía y momentum no transportan materia.

Definición

Una onda es una perturbación (señal) que se propaga manteniendo ciertas características relativamente bien definidas.

Observac<u>ión</u>

Esta manera de decir las cosas no involucra la necesidad de un medio alguno.

En 1886 Hertz experimentaba con un par de espirales de Riess y noyó que la descarga de una botella de Levden a través de una de ellas, producía una chispa en la otra. Luego de tres años de experimentación, en 1889 Hertz había mostrado que sus observaciones iniciales eran debidas a las las ondas predichas por J. C. Maxwell en la década de 1860. Las ondas electromagnéticas pueden propagarse en el vacio.

Al igual que las ondas electromagnéticas, las ondas gravitacionales -detectadas por primera vez el **17 de marzo de 2014** por la colaboración LIGO- no requieren de un medio de soporete y se propagan en el vacio.

En D = 1 + 1, podemos representar perturbaciones que viajan-sin deformación- a velocidad v usando las fórmulas,

$$u_{\pm}(x,t)=f(x\pm vt),$$

donde f es una función de una variable real que toma valores reales. El signo — propaga hacia la derecha y el + hacia la izquierda.

Superposición

A VECES LAS ONDAS SE PUEDEN SUMAR

OTRAS VECES ... NO

- Un modelo cinemático (ondas viajeras) no es suficiente para los propósitos de la física.
- Requerimos construir un modelo dinámico. Una ecuación diferencial que posea las siguientes características
 - Tener por soluciones ondas viajeras y
 - Permitir el principio de superposición (linealidad)

El límite del contínuo del sistema de N osciladores acoplados, dió como resultado una ecuación que satisface estos requisitos.

Construcción ad hoc

• Dadas $f, g: \Re \to \Re$ que satisfacen

$$\frac{d^2f(s)}{ds^2} = g(s) \tag{1}$$

• Si definimos $u: \mathbb{R}^{1+1} \to \mathbb{R}$

$$u(x,t) = g(x \pm vt) \tag{2}$$

v constante

Ocurre

$$\frac{\partial^2 u(x,t)}{\partial x^2} = g(x \pm v t)$$

$$\frac{\partial^2 u(x,t)}{\partial t^2} = v^2 g(x \pm v t)$$
(4)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = v^2 g(x \pm v t) \tag{4}$$

Proposición

La ecuación

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 u(x,t)}{\partial t^2} = 0$$
 (5)

satisface nuestros requisitos para un modelo dinámico de propagación de ondas

GENERALIZACIÓN A D+1

Definición

En \Re^D el operador de Laplace (laplaciano) está dado por:

$$\Delta_D \equiv \partial_{\chi^1}^2 + \partial_{\chi^2}^2 + \dots + \partial_{\chi^D}^2 \tag{6}$$

Definición

En \Re^{D+1} la ecuación de ondas es

$$\Delta_D \, \psi(\mathsf{x}, t) - \frac{1}{v^2} \frac{\partial^2 \, \psi(\mathsf{x}, t)}{\partial \, t^2} = 0 \,, \quad \mathsf{x} \in \Re^D$$
 (7)

POR ESTUDIAR:

- ¿ Consecuencias del principio de superposición?
- ¿ Cuál es la solución general de la ecuación 5?
- 6 Comportamiento de ciertas soluciones
- Qué sistemas físicos tendrán una dinámica descrita por la ecuación de ondas?
- ¿Qué sistemas tendrán comportamientos similares?

