全国青少年信息学奥林匹克竞赛

CCF-NOIP-2018

提高组(复赛)模拟试题

中文题目名称	贪吃蛇	分糖果	排序	
英文题目名称	snake	candy	sort	
输入文件名	snake.in	candy.in	sort.in	
输出文件名	snake.out	candy.out	sort.out	
每个测试点时限	1秒	1秒	3 秒	
内存限制	512MB	512MB	512MB	
测试点数目	20	20	20	
每个测试点分值	5	5	5	
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	

提交源程序须加后缀

对于 Pascal 语言	snake.pas	candy.pas	sort.pas
对于 C 语言	snake.c	candy.c	sort.c
对于 C++ 语言	snake.cpp	candy.cpp	sort.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关。

贪吃蛇

【问题描述】

贪吃蛇是一个好玩的游戏。在本题中, 你需要对这个游戏进行模拟。

这个游戏在一个n 行m 列的二维棋盘上进行。我们用(x, y)来表示第x 行第y 列的格子,那么左上角为(1, 1),右下角为(n, m)。

我们用一个长度为 k 的不重复的坐标的序列(形如(x_1, y_1), (x_2, y_2), ..., (x_k, y_k))来表示一条长度为 k 的蛇,其中(x_1, y_1)称为蛇的头部。在游戏的任何时刻,都满足 k > 1。

游戏开始时,蛇的长度为 1,坐标为(x_s , y_s)。接下来会进行 q 个操作,每个操作是以下两种类型之一:

- <u>1 d</u>: 蛇的头部往 *d* 方向伸长一格,其中 *d* 为 <u>U D L R</u>之一,分别表示"上"、 "下"、"左"、"右"。
- 2: 蛇的尾部缩短一格,保证该操作前蛇的长度大于1。

棋盘上还有 t ($0 \le t < nm$)个障碍物,分别位于(u_i, v_i) ($1 \le i \le t$),保证没有两个障碍物占据同一个格子

在任何时候,如果蛇的头部碰到蛇的身体(即蛇的其他格子),或碰到棋盘 上的障碍物,或移动到棋盘的边界之外,那么蛇会立即死亡。

你的任务是,输入游戏配置以及 q 个操作,判断蛇是否会死亡。

【输入格式】

输入的第一行包含四个非负整数 n, m, t, q,具体含义见问题描述。

接下来 t 行,每行两个整数,表示一个障碍物的坐标。保证每个坐标都在棋盘上,即在(1,1)到(n,m)之间,且不存在重复的坐标。

接下来一行两个整数,表示游戏开始时蛇的坐标(x_s , y_s)。保证该坐标在棋盘上,且不是任何一个障碍物的坐标。

接下来 q 行,每行给出一个操作,具体格式和含义见问题描述。

【输出格式】

如果在q个操作后蛇没有死亡,输出-1,否则输出一个整数k,表示蛇在第k个操作之后死亡。

【样例输入1】

- 3 4 2 10
- 1 3
- 3 3
- 1 1
- 1 D
- 1 R
- 2
- 1 R
- 2
- 1 R
- 1 U
- 1 L
- 1 L
- 1 L

【样例输出1】

8

【样例说明1】

第 8 个操作时,蛇的头部碰到了位于(1,3)的障碍物,因此在这个操作之后死亡。

【样例输入2】

- 2 5 0 6
- 1 2
- 1 R
- 1 R
- 1 D
- 1 L
- 1 U
- 1 L

【样例输出2】

5

【样例说明2】

第 5 个操作时,蛇的头部碰到了位于(1,3)的蛇的身体,因此在这个操作之后死亡。

【数据规模与约定】

在所有测试点中,有 20%的测试点 n=1。

在所有测试点中,有 40%的测试点 t=0。

在所有测试点中,有20%的测试点满足任何时候蛇的长度不超过2。

以上三类特殊的测试点可能存在交叉。

对于全部测试点, $1 \le n, m \le 100$, $0 \le t < nm$, $1 \le q \le 10000$.

分糖果

【问题描述】

到了学期末,在幼儿园工作的刘老师要为自己所带班级的小朋友分发糖果。 刘老师的班上共有 n 名小朋友,第 i 位小朋友对糖果的喜爱程度为 a_i ,他在本学期的表现评分为 b_i 。刘老师分配糖果的方法如下:

- 1. 以某个顺序安排这 n 位小朋友排成一排, 刘老师从头到尾逐一分配糖果。
- 2. 队伍中的**第i位**小朋友至少获得的糖果数量为**前i位**小朋友对糖果的喜爱程度之和。
- 3. 由于第i位小朋友可以看见第i-1位小朋友获得的糖果数量,为了不让第i位小朋友觉得不公平,刘老师保证第i位小朋友获得的糖果不少于第i-1位小朋友。
- 4. 在为第i位小朋友分配完糖果后,刘老师将额外再奖励第i位小朋友数量为 b_i 的糖果。

我们设第i位小朋友获得的糖果数量为 c_i ,形式化地讲:

$$c_{i} = \begin{cases} a_{1} + b_{1} & i = 1\\ \max\{c_{i-1}, \sum_{j=1}^{i} a_{j}\} + b_{i} & 2 \le i \le n \end{cases}$$

由于预算有限, 刘老师希望你能帮她安排这 n 位小朋友的顺序, 使得获得糖果最多的小朋友, 所获得的糖果数量尽可能少。

【输入格式】

第一行包含一个正整数 T,表示测试数据的组数。

接下来描述这T组测试数据,每组数组的第一行包含一个正整数n,表示刘老师班上小朋友的数量。

每组数据接下来n行中,每行两个正整数,分别为 a_i 和 b_i ,含义如问题描述中所述。

【输出格式】

共T行,每行包含一个整数,表示被分配到最多糖果的那位小朋友最少获得的糖果数量。

【样例输入1】

1

3

4 1

2 2

1 2

【样例输出1】

8

【样例说明1】

按照 1、2、3 排列队伍, 获得最多糖果的小朋友获得糖果数量为 10:

按照 1、3、2 排列队伍, 获得最多糖果的小朋友获得糖果数量为 9;

按照 2、1、3 排列队伍,获得最多糖果的小朋友获得糖果数量为 9;

按照 2、3、1 排列队伍, 获得最多糖果的小朋友获得糖果数量为 8;

按照 3、1、2 排列队伍, 获得最多糖果的小朋友获得糖果数量为 9;

按照3、2、1排列队伍,获得最多糖果的小朋友获得糖果数量为8。

当按照 3、2、1 这样排列队伍时,三位小朋友所对应的 a_i 与 b_i 如下:

$$(1, 2)$$
, $(2, 2)$, $(4, 1)$

- 第1位小朋友获得的糖果为1+2=3;
- 第 2 位小朋友获得的糖果为 max {3, 1+2} + 2 = 5;
- 第 3 为小朋友获得的糖果为 $\max\{5, 1+2+4\}+1=8$ 。

【样例输入2】

1

12

9 68

18 45

52 61

39 83

63 67

45 99

52 54

82 100

23 54

99 94

63 100

52 68

【样例输出2】

902

【数据规模与约定】

所有测试点的数据规模与约定如下:

测试点编号	n 的规模	T的规模	约定
1	n=1	T=1	
2	n=2	I - 1	
3	n=5		
4	n = 9		/
5	n = 15	T=5	/
6	n = 15	I - J	
7	n = 16		
8	n = 16		
9	n = 3,000		a - b
10	n = 3,000		$a_i = b_i$
11	n = 5,000		$b_i = a_i + 1$
12	n = 5,000		
13	n = 10,000		
14	n = 10,000	n = 10,000 $T = 10$	
15	n = 20,000	I - 10	/
16	n = 20,000		
17	n = 30,000		
18	n = 30,000		
19	n = 50,000		
20	n = 50,000		

对于全部测试数据满足: $1 \le a_i, b_i \le 10^9$ 。

排序

【问题描述】

已知一个正整数数组中包含 n 个正整数, 依次为 a_1, a_2, \ldots, a_n 。

我们将进行 m 次操作。对于第 j 次操作,会指定一个位置 p_j ,将所有位置 k 满足 $p_j \le k \le n$ 且大小满足 $a_k \le a_{pj}$ 的正整数 a_k 从数组中拿出,并将这些正整数按照**从小到大**的顺序进行排序,之后重新放回数组中。

举一个例子,对于正整数数组 <u>1 4 2 5 3</u> 而言,若选择位置 p_j = 2,则拿出的正整数为 <u>4 2 3</u>,分别对应 k = 2, k = 3, k = 5,拿出的正整数排序以后变为 <u>2 3</u> 4,再将它们放回到数组中,数组变成 **1 2 3 5 4**。

在每次操作以后,你需要回答整个数组中逆序对的总数。正整数 a_i 与 a_j 构成一个逆序对,当且仅当 $a_i > a_i$ 且 $1 \le i < j \le n$ 。

【输入格式】

输入第一行包含两个正整数n和m,其中n表示数组的长度,m表示操作的次数。

接下来一行包括 n 个正整数,依次表示正整数数组中的元素 $a_1, a_2, ..., a_n$ 。接下来一行包括 m 个正整数,依次表示询问的位置 $p_1, p_2, ..., p_m$ 。

【输出格式】

输出文件共包括m行,其中第j行表示第j次操作以后整个数组的逆序对总数。

【样例输入1】

5 3

1 4 2 5 3

5 2 4

【样例输出1】

3

1

0

【样例输入2】

7 4

7 7 1 4 2 5 3

6 4 2 1

【样例输出2】

12

10

5

0

【数据规模与约定】

所有测试点的数据规模与约定如下:

测试点编号	n 的规模	m 的规模	a _i 的规模	特殊限制
1	n=2			
2	n = 5000			$p_1 = n$
3	n = 300,000	m=1		
4	n = 400,000		$1 \le a_i \le n$	无
5	n = 500,000			
6	n = 400	m = n		
7	n = 500			
8	n = 10,000	m = 500		
9	n = 20,000			
10	n = 30,000			
11	n = 250,000			
12	n = 300,000	m = n	$1 \le a_i \le 10^9$	- 数据为随机生成
13	n = 350,000		$1 \le a_i \le n$	
14	n = 400,000		$1 \le a_i \le 10^9$	
15	n = 450,000		$1 \le a_i \le n$	
16	n = 500,000		$1 \le a_i \le 10^9$	
17	n = 350,000		$1 \le a_i \le n$	
18	n = 400,000		$1 \le a_i \le 10^9$	无
19	n = 450,000		$1 \le a_i \le n$)L
20	n = 500,000		$1 \le a_i \le 10^9$	

第 11~16 号测试点的生成方法如下:

奇数号测试点的每个 a_i 在区间[1, n]中等概率随机生成,偶数号测试点的每个 a_i 在区间[1, 10^9]中等概率随机生成。

这 6 个测试点的每个 p_i 都在区间[1, n]中等概率随机生成。

对于全部测试数据,满足 $1 \le n \le 500,000$, $1 \le m \le 500,000$, $1 \le a_i \le 10^9$, $1 \le p_i \le n$ 。