ル・ハーン

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-021160

(43)Date of publication of application: 29.01.1993

(51)Int.CI.

H05B 33/08

(21)Application number: 03-034206

(71)Applicant: NEC KANSAI LTD

(22)Date of filing:

28.02.1991

(72)Inventor: FUJITA YUJI

(54) EL LIGHTING CIRCUIT

(57)Abstract:

PURPOSE: To compensate a variation in brightness relative to the temperature of an EL element.

CONSTITUTION: There are provided a DC-DC converter 39 for converting an input voltage Vin into a high DC voltage VD and DC-AC inverter 20 for applying an AC voltage to an EL 10. In circuits, Rp1, Rp2, Cp, for controlling the power of the DC-DC converter 30, the Rp1 uses an element having a positive temperature characteristic. The Rp2, Cp use elements having negative temperature characteristic. This reduces a variation in brightness of the EL relative to ambient temperature and improves the life of the EL at high temperatures.

LEGAL STATUS

[Date of request for examination]

20.01.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3082259

[Date of registration]

30.06.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平5-21160

(43)公開日 平成5年(1993)1月29日

(51)IntCl.5

H 0 5 B 33/08

識別記号

庁内整理番号

8815-3K

FΙ

技術表示箇所

審査請求 未請求 請求項の数1(全 12 頁)

(21)出願番号

(22)出頭日

特頭平3-34206

平成3年(1991)2月28日

(71)出願人 000156950

関西日本電気株式会社

滋賀県大津市晴嵐2丁目9番1号

(72)発明者 藤田 裕司

滋賀県大津市晴嵐2丁目9番1号関西日本

電気株式会社内

(54) 【発明の名称 】 EL点灯回路

(57)【要約】

【目的】 EL素子の温度に対する輝度変化を補償する EL点灯回路。

【効果】 周囲温度に対してELの輝度変化を低減すると共に、ELの高温時での寿命を改善することができる。

【特許請求の範囲】

【請求項1】直流電圧を交流電圧に変換してELに印加 し、ELを点灯させる点灯回路において、

点灯回路の出力電力に負の温度特性を持たせたことを特 徴とするELの点灯回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶ディスプレイのバ ックライト等に用いられるELを点灯させる回路であ り、特に周囲温度に対する輝度の安定性を向上させた点 10 灯回路に関する。

[0002]

【従来の技術】ELは、主に各種計測器等の文字、図形 を表示する液晶ディスプレイ(以下LCDと称する)の バックライトとして利用されているが、ELを点灯させ るためには、例えば 120V,600Hzなどの比較的高い交 流電圧を印加しなければならない。

【0003】このような交流電圧は、一般に商用電源と は電圧、周波数が異なるため、通常、直流電圧から所定 の交流電圧を発生する専用の点灯回路が使われている。 【0004】この点灯回路には、例えば、特公昭 62-15 032 等で提案されているような自励式の点灯回路があ る。この点灯回路は、ELが容量性素子であることを利 用し、図7に示すように、主にトランス (T1) のイン ダクタンスとEL(10)の静電容量とで決定される点灯 周波数でスイッテ(Q1)が ON/OFF され、2次側(N 2) に発生した交流電圧をEL(10) に印加して点灯さ

【0005】また、駆動周波数を任意に決めることがで きる他励式の点灯回路には、図8に示すように、制御回 路(201)によってトランス(T2)の1次側(N1) をスイッチ(Q2, Q3)でON/OFFし、トランス(T2) の2次側 (N2) に発生した交流電圧をEL (10) に印加する方式の点灯回路がある。

【0006】これらの点灯回路は、簡単な回路で部品点 数が少なく低コストになるという特長を持つ反面、効率 やELの寿命補償の特性が悪く、しかも自励式の点灯回 路では周波数の変動によるELとLCDとの干渉縞の発 生といった問題があり、他励式で効率が高く、しかもE しの寿命補償能力が優れた点灯回路が求められていた。 【0007】そこで、本発明者らは特願平1-138568等に 記載されているような他励式の点灯回路を提案してい ā,

【0008】この他訪式点灯回路は、図9に示すよう に、 5~18 Vdc程度の直流電圧を入力電圧 (Vin) とし て直流高電圧 (VD) を出力する電力制御型の DC-DCコ ンバータ (30) と、ELとインダクタ (L1) とを直列 に接続し、この直列国路のインダクタ側を直流高電圧 (VD) と GNDに切り換えるスイッチ (Q5, Q6) と で構成された DC-XCインバータ (20) とから成る回路

で、 DC-ACインバータ (20) の制御回路 (201) によっ て、スイッチ (Q5 , Q6) をON/OFFさせ、EL (10) に交流電圧を印加している。

2

[0009]

【発明が解決しようとする課題】以上説明したように図 9の他励式点灯回路は、高効率で安定した駆動周波数が 得られ、電力制御型DC-DC コンバータを定電力特性にす ることにより、理想的なEL補償能力を持った点灯回路 となったが、図10に示すように、ELには周囲温度が高 くなるに従って効率が高くなる特性があり、一定の電力 を出力する点灯回路では、周囲温度が高くなる程ELの 輝度が高くなるため、LCDのバックライトに使った場 「合などには、周囲温度によって輝度を調整する必要があ った。また、周囲温度が高くなってELの輝度が高くな ると、ELの寿命時間 (ELの輝度が初期輝度の1/2 に なる時間)が短くなるといった問題もあった。

[0010]

【課題を解決するための手段】本発明は、直流電圧を交 流電圧に変換してELに印加し、ELを点灯させる点灯 回路において、点灯回路の出力電力に負の温度特性を持 たせることを特徴とする。

[0011]

【作用】上記の方法によれば、周囲温度が変化してもE Lの輝度変化を低減でき、高温時のELの寿命特性を改 善することができる。

[0012]

40

【実施例】以下、本発明についての一実施例について図 1, 図2, 図3を参照して説明する。図1の点灯回路は 5~18Vdc程度の直流電圧を入力電圧(Vin)として直 30 流高電圧 (VD) を出力する DC-DCコンバータ (30) と、EL(10)とインダクタ(L1)とを直列に接続 し、この直列回路のEL側をコンデンサ(C5.C6) 及び抵抗(R5, R6)とで直流高電圧(VD)を分圧 した中点(VD/2)に接続し、インダクタ側を直流高電 圧(VD)とGNDに切り換えるスイッチ(Q5,Q6),ダイオード(D5, D6)、及びスイッチ(Q5) , Q6)の ON/OFF を制御する制御回路(201)とで 構成された DC-ACインバータ (20) とから成る回路であ ā,

【0013】ここで、 DC-ACインバータ (20) の動作原 理について図2を参照して説明する。DC-AC インバータ (20) は制御回路(201)によって、スイッチ(Q5. Q6) を ON/OFF させ、EL (10) に交流電圧を印加す る回路である。このON/OFFのタイミングは、図2に示す ように、時間 t L 点でスイッチ(Q5) がONすると、直 流高電圧 (VD) から電流が流れ、EL (10) の端子電 圧はVplまで上昇する。そして、時間 t 2 点でスイッチ (Q6) がONすると、EL(IO)に蓄えられていた電荷 が放電を始め電流が流れるが、この放電電流によってイ 50 ンダクタ (L1) にエネルギが蓄えられ、このエネルギ

er garage

によってELは電荷放電後、さらに逆向きの電圧(-V p2) で充電される。そして、時間 t l'点でスイッチ(Q 5) がONし一周期が完了する。

【0014】次に、本考案の主要回路である DC-DCコン バータ (30) について説明する。DC-DC コンバータ (3 0) は、制御用 I C (301) によってトランス (T3) の1次側(N1)をスイッチ(Q4)で ON/OFF し、2 次側 (N2) で発生した電圧をダイオード (D1). コ ンデンサ (C5, C6) で整流して直流高電圧 (VD) を発生する回路である。

【0015】ここで、スイッチ(Q4)がONになった時 のトランス (T3) の1次側 (N1) に流れる電流は、 図3のような鋸歯状波になり、トランス (T3) の2次 側(N2)に出力される電力(Pout)は、スイッチ (Q4) が OFFになる直前の電流、すなわちピーク電流 (Ip) で決まり、トランス (T3) の1次側 (N1) のインダクタンスをLN1, ON/OFFの周波数をfD, 効 率を ηD とすると、Pout = $1/2 \cdot LN1 \cdot Ip^2 \cdot f$ $D \cdot ηD$ ····· (1) となり、LN1, ηD は、ほぼー 定と考えられるため、fD を一定にすれば、出力電力 (Pout)はピーク電流 (Ip)の2乗に比例すること が分かる。

【0016】また、EL(10)に入力される電力は、こ の出力電力 (Pout) に DC-ACインバータ (20) の変換 効率 (ηA) を掛けたのとになり、ηA もほぼ一定と考 えられるため、EL(10)に入力される電力は、出力電 力(Pout)に比例することになる。

【0017】以上のことから、スイッチ(Q4)に流れ るピーク電流(Ip)を制御することによって、電力制 御型の DC-DCコンバータが実現されることになり、EL 30 (10) に入力される電力を制御できる。従来は、ELの 輝度補償能力を考慮に入れ、ピーク電流(Ip)を一定 に保つことにより、EL(10)の入力電力を一定とした 定電力型の点灯回路を構成していたが、本発明の回路で は周囲温度によってピーク電流(Ip)を制御する。

【0018】これを実現する方法として、図1に示すよ うに、 DC-DCコンバータ (30) のスイッチ (Q4) に電 流検出抵抗(Rpl)を接続し、接続点(a点)からフィ ルタ用の抵抗 (Rp2) とコンデンサ (Cp) を通して制 御用 I C (301) の I s 入力点 (b点) に接続する。こ 40 の Is 入力は制御用 IC (301) の出力 (Out 端子) を 制御するもので、Is 入力点が、制御用IC (301)内 部にある基準電圧より高くなると出力 (Out 端子) がし になるように制御用IC内部のシーケンスが組まれてい

【0019】この回路構成において、スイッチ(Q4) がONになって電流(Id)が流れると、電流検出抵抗 (RpI) のa点に電圧 (RpI×Id) が発生し、フィル タ用の抵抗 (Rp2) とコンデンサ (Cp) を通して制御 用IC (301) のIs 入力点(b点)にも電圧が発生す。50 ためにELの寿命低下の問題があったが、本発明による

る。そして電流 (Id) が増加するに従い、Is 入力点 (b点)の電圧も上昇するが、IC内部の基準電圧値よ り高くなると出力(Out端子)がLになり、スイッチ (Q4) が OFFになる。この時、ダイオード (D1) を 通して電流が流れ、コンデンサ (C5, C6) に充電され

【0020】ここで、フィルタ用の抵抗(Rp2)とコン デンサ (Cp) は、スイッチ (Q4) のスイッチングノ イズ等による誤動作を防ぐためのもので、通常1KQ前 10 後,1000 pF 程度のものを用いるが、このRp2とCp の 値が大きいほど出力電力 (Pout) は大きくなる。そこ で、フィルタ用の抵抗 (Rp2) にサーミスタを用いる と、サーミスタは図4のように負の温度特性を持ってい るため、低温では抵抗が高くなって出力電力 (Pout) が大きくなり、逆に高温では抵抗が低くなって出力電力 (Pout) が小さくなる。ここで、温度に対してELの 輝度を一定にするためには、温度に対する出力電力 (P out) の変化率をELの効率の変化率等に合わせる必要 があるが、図4のようにサーミスタに直列、あるいは並 列の抵抗を挿入することによって、温度に対する抵抗変 化率を調整できるため、温度に対してELの輝度をほぼ 一定にすることができる。

【0021】また、同様にしてフィルタ用のコンデンサ (Cp) に図5に示すような負の温度特性を持った温度 補償用のコンデンサを用いることにより、同様の効果が 得られる。

【0022】上記のように、抵抗 (Rp2) やコンデンサ (Cp) を温度特性を有する素子で構成することによっ て出力電力 (Pout) を制御できるが、スイッチ (Q4))の誤動作を防止するという本来の目的を優先する範 囲でフィルタ用の抵抗 (Rp2) とコンデンサ (Cp) の 温度に対する変化率を選定しなければならない。

【0023】一方、電流検出用の抵抗(Rpl)は、抵抗 値が大きくなる程出力電力 (Pout) が小さくなるた め、電流検出用の抵抗(Rpl)に図6のような正の温度 特性を持った抵抗を用いることにより、温度に対して安 定した輝度が得られる。

【0024】以上に説明したように、本発明によれば抵 抗 (Rpl) 、抵抗 (Rp2) 、コンデンサ (Cp) の少な くとも一つを温度特性を有する素子で構成することによ り、出力電力を制御できて温度変化に対して安定したE L輝度を実現することができる。

[0025]

【発明の効果】以上説明したように本発明によるELの 点灯回路は、使われる環境によって周囲温度が変化して もELの輝度を、ほぼ一定にすることができるため、例 えばELをLCDのバックライトに使った場合でも、周 囲温度によって輝度を調整する必要が無い。

【0026】また、従来では、高温時に輝度が高くなる

ELの点灯回路では、高温時での輝度上昇を抑えているため、ELの寿命が改善される。

【0027】さらに、本発明のELの点灯回路を実現するためには、サーミスタや温度補償用のコンデンサだけで済むため、点灯回路の大きさやコストに対する悪影響は、ほとんど生じない。

【0028】また、これらのサーミスタや温度補償用のコンデンサと直列、あるいは並列に抵抗やコンデンサを挿入することによって、温度に対するELの輝度変化率を自由に設定できるため、EL以外の容量性素子などに 10幅広い用途が考えられる。

【図面の簡単な説明】

【図1】 本発明の実施例を示す回路図。

【図2】 同実施例のDC-AC インバータの動作を説明するための図

【図3】 同実施例のDC-DC コンバータの動作を説明するための図

【図4】 本発明の実施例に使う抵抗の温度特性図

【図5】 本発明の実施例に使うコンデンサの温度特性

図

【図6】 本発明の実施例に使う抵抗の温度特性図

【図7】 従来の自励式EL点灯回路の回路図

【図8】 従来の他励式EL点灯回路の回路図

【図9】 従来の他励式EL点灯回路の他の例の回路図

【図10】 ELの温度特性図

【符号の説明】

10 EL素子

20 DC-ACインバータ

30 DC-DCコンバータ

[図1]

[図2]

[図5]

[図7]

[図4]

[図8]

[図10]

【手続補正書】 【提出日】平成4年8月10日 【手続補正1】 【補正対象書類名】図面

【補正対象項目名】全図 【補正方法】変更 【補正内容】

【図1】

[図3]

Pout =
$$\frac{1}{2} \cdot LN_1 \cdot Ip^2 \cdot fD \cdot \eta_0$$

[図5]

[図6]

抵抗温度特性

[図7]

[図4]

[図8]

[図9]

Į