Алгебра

Лектор: Жуков Игорь Борисович

Содержание

1	Teo	Теория чисел	
	1	Делимость	
	2	Отношение эквивалентности и разбиение на классы	
	3	Сравнение по модулю	
	4	Кольцо классов вычетов	
	5	Наибольший общий делитель	
	6	Взаимно простые числа	
	7	Линейные диофантовы уравнения	
	8	Простые числа	
	9	Основная теорема арифметики	
	10	Китайская теорема об остатках	
	11	Функция Эйлера	
2	Kor	иплексные числа	
4	1	Построение поля комплексных чисел	
	$\frac{1}{2}$		
	3		
	3	Корни из комплексных чисел	
3	Многочлены 2		
	1	Многочлены и формальные степенные ряды	
	2	Свойства степени	
	3	Деление с остатком	
	4	Гомоморфизм подстановки	
	5	Евклидовы области	
	6	Факториальность области главных идеалов	
	7	Кратные корни и производные	
	8	Формула Тейлора	
	9	Алгебраически замкнутые поля. Каноническое разложение над $\mathbb C$ и над $\mathbb R$ 42	
	10	Рациональные дроби	
	11	Интерполяция	
4	Лиг	нейная алгебра 49	
	1	Матрицы	
	2	Элементарные преобразования и элементарные матрицы	
	3	Перестановки	
	4	Определители	
	5	Дальнейшие свойства определителя	
	6		
	U	Линейные пространства 60 6.1 Основные определения 60	
		- U.I	

1 Теория чисел

1 Делимость

Определение 1.1. $a,b \in \mathbb{Z}, a \mid b \iff \exists c \in \mathbb{Z} : b = ac$

Свойства.

- 1. $a \mid a$ рефлексивность
- 2. $a \mid b, b \mid c \implies \exists c \in \mathbb{Z} : b = ac$ транзитивность
- 3. $a \mid b, k \in \mathbb{Z} \implies ka \mid kb$
- 4. $a \mid b_1, \ a \mid b_2 \implies a \mid (b_1 \pm b_2)$
- 5. $\pm 1 \mid a$
- $6. \begin{cases} ka \mid kb \\ k \neq 0 \end{cases} \implies a \mid b$

Определение 1.2. a, b называются accouuupoванными, если $a \mid b$ и $b \mid a$. Иногда такое отношение обозначают $a \sim b$:

$$a \sim b \iff a \mid b \land b \mid a$$

Свойства.

1. Пусть $a \sim a'$, $b \sim b'$. Тогда $a \mid b \iff a' \mid b'$.

2 Отношение эквивалентности и разбиение на классы

Определение 2.1. Отношение эквивалентности — бинарное отношение, удовлетворяющее следующим свойствам: рефлексивность, симметричность, транзитивность.

Определение 2.2. Разбиение на классы множества M — это представление M в виде $M = \bigcup_{i \in I} M_i$, где M_i — классы, I — индексное множество, $M_i \cap M_j = \varnothing$ при $i \neq j$.

Теорема 2.1. Пусть $M = \bigcup_{i \in I} M_i$ — разбиение на классы. Введем отношение \sim над M так, что $a \sim b \iff \exists i \in I: a,b \in M_i$. Тогда \sim — отношение эквивалентности.

Доказательство.

Рефлексивность и симметричность очевидны. Докажем транзитивность.

$$a \sim b, \ b \sim c \implies \exists i, j : \begin{cases} a, b \in M_i \\ b, c \in M_j \end{cases}$$

Тогда $b \in M_i \cap M_j$, но так как $M_i \cap M_j \neq \emptyset$ при неравных i и j, i = j. Значит $a, b, c \in M_i$.

Теорема 2.2. Пусть \sim — отношение эквивалентности на M. Значит существует разбиение на классы $M = \bigcup_{i \in I} M_i$ такое, что $\forall a, b \in M : a \sim b \iff \exists i : a, b \in M_i$.

Доказательство.

Рассмотрим $a \in M$. Назовем классом элемента a множество

$$[a] = \{b \in M \mid a \sim b\}.$$

Докажем, что для любых элементов a и b, либо [a] = [b], либо $[a] \cap [b] = \emptyset$.

Пусть $[a] \cap [b] \neq \emptyset$. Тогда

$$\exists x \in [a] \cap [b] \implies \begin{cases} x \in [a] & \text{onp. Класса} \\ x \in [b] \end{cases} \stackrel{\text{класса}}{\Longrightarrow} \begin{cases} x \sim a & \text{транзитивность } \sim a \sim b.$$

$$(\forall c \in [a] \ c \sim a \stackrel{a \sim b}{\Longrightarrow} \ c \sim b \implies c \in [b]) \implies [a] \subset [b]$$
 (1)

$$(\forall c \in [b] \ c \sim b \stackrel{a \sim b}{\Longrightarrow} c \sim a \implies c \in [a]) \implies [b] \subset [a]$$
 (2)

Из (1) и (2) получаем [a] = [b].

Тогда искомое разбиение можно построить как

$$X = \{ [a] \mid a \in M \}.$$

Действительно $\forall a \in M$, так как $a \in [a]$, то $M = \bigcup_{\alpha \in I} M_i$, а так как различные классы не пересекаются (доказано выше) $\forall a, b \ [a] \neq [b]$.

Определение 2.3. Построенное множество X называют фактор-множеством множества M по отношению эквивалентности \sim , обозначение: M/\sim .

Пример.
$$\mathbb{Z}/\sim=\{[z]\mid z\in\mathbb{Z}\}=\{[0],[1],[2],\dots\}$$

3 Сравнение по модулю

Определение 3.1. $\exists a, b, m \in \mathbb{Z}$. Говорят, что

$$a \equiv b \iff a \equiv_m b \iff a \equiv b \pmod{m} \iff m \mid (a - b)$$

Свойства.

- 1. $\equiv -$ рефлексивно
- $2. \equiv -$ симметрично
- $3. \equiv -$ транзитивно
- 4. $a \equiv b, d \mid m \implies a \equiv b$
- 5. $a \equiv b, \ k \in \mathbb{Z} \implies ka \equiv kb$
- 6. $a \equiv b, \ k \in \mathbb{Z} \implies ka \equiv kb$ (ослабленная версия предыдущего свойства)

7.
$$a_1 \equiv b_1, \ a_2 \equiv b_2 \implies a_1 \pm a_2 \equiv b_1 \pm b_2$$

8.
$$a_1 \equiv b_1, \ a_2 \equiv b_2 \implies a_1 a_2 \equiv b_1 b_2$$

Замечание. Сравнение по модулю — отношение эквивалентности.

4 Кольцо классов вычетов

Определение 4.1. Множество классов вычетов по модулю m — это множество всех вычетов по модулю m.

Обозначается как $\mathbb{Z}/m\mathbb{Z} \iff \mathbb{Z}/m \iff \mathbb{Z}/\equiv m$

Теорема 4.1. $\exists m \in \mathbb{N}$. Тогда

- 1. $\mathbb{Z}/m\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{m-1}}$
- 2. $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство.

- 1. $\exists a \in \mathbb{Z}, (!) \ \overline{a} = \overline{r}, \quad 0 \leqslant r < m$
 - а) Случай $a\geqslant 0$: $\exists r$ наименьшее число, такое что $r\geqslant 0$ и $a\equiv r$.

Если $r \geqslant m$, то $r - m \equiv a$, $r - m \geqslant 0$, r - m < r. То есть r - m подходит под условие для r и меньше. Противоречие с выбором r.

Значит r < m, то есть r — искомое.

b) Случай a < 0:

Рассмотрим $a'=a\pm (-a)m=a(1-m).$ Тогда $a<0,\ 1-m\leqslant 0,$ и $a'\geqslant 0.$ $\overline{a}=\overline{a'}=\overline{r},\ 0\leqslant r< m$

2. предположим $\overline{r} = \overline{r'}, \ 0 \leqslant r, r' < m.$

$$\begin{cases} |r' - r| < m \\ m \mid (r - r') \end{cases} \implies r' - r = 0 \implies r = r'.$$

Следствие. Теорема о делении с остатком

Пусть $a \in \mathbb{Z}, b \in \mathbb{N}$. Тогда

$$\exists ! \, q, r \in \mathbb{Z} : \begin{cases} a = bq + r \\ \leqslant r < b \end{cases}$$

Доказательство.

«Существование»:

В $\mathbb{Z}/b\mathbb{Z}$ рассмотрим $\overline{a} \in \{\overline{0},\overline{1},\dots,\overline{b-1}\}$, тогда по теореме выше найдется $0 \leqslant r < b$ для которого $\overline{a} = \overline{r}$:

$$a \equiv r \iff a = bq + r, \quad q \in \mathbb{Z}.$$

«Единственность»: Пусть нашлось два таких $q,q'\in\mathbb{Z}$ и $r,r'\in\mathbb{Z}$ для которых $a=bq+r,\ a=bq'+r'.$ Тогда

$$bq + r \equiv bq' + r' \iff r \equiv r' \stackrel{0 \leqslant r, r' < b}{\Longleftrightarrow} r = r' \implies bq = bq' \iff q = q'.$$

Напомню, что вторая равносильнось выполняется благодаря единственности класса вычетов \bar{r} .

Определение 4.2. q — неполное частное при делении a на b, r — остаток при делении a на b.

Определение 4.3. Операция на множестве M — бинарное отображение $M \times M \to M$.

На $\mathbb{Z}/m\mathbb{Z}$ определим операцию сложения и умножения по модулю m:

- $\bullet \ \overline{a} + \overline{b} = \overline{a+b}$
- $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$

Предложение 4.1. Это правда операции над множеством $\mathbb{Z}/m\mathbb{Z}$:

Доказательство. То, что за пределы множества при сложении и умножении мы не выходим, очевидно. Надо доказать, что при подстановке одинаковых классов, получаеются одинаковые результаты, то есть:

$$(!) \ \overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies \overline{a+b} = \overline{a'+b'}, \ \overline{a\cdot b} = \overline{a'\cdot b'}$$

распишем условия через сравнения по модулю:

$$\overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies a \equiv a', \ b \equiv b'$$

Воспользуемся свойствами сравнения:

$$a \equiv a', \ b \equiv b' \implies a + b \equiv a' + b', \ a \cdot b \equiv a' \cdot b'$$

И перейдем обратно к классам:

$$a+b \equiv a'+b', \ a\cdot b \equiv a'\cdot b' \implies \overline{a+b} = \overline{a'+b'}, \quad \overline{a\cdot b} = \overline{a'\cdot b'}$$

Пример. $m=4,~\mathbb{Z}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$

Определение 4.4. $e \in M$ — нейтральный элемент относительно операции * на M, если $\forall a \in M$ справедливо a*e=e*a=a.

Предложение 4.2. Операции сложения и умножения на $\mathbb{Z}/m\mathbb{Z}$ обладают следующими свойствами:

 $\forall A, B, C \exists A'$:

- 1. A + B = B + A коммутативность сложения
- 2. (A + B) + C = A + (B + C) ассоциативность сложения
- 3. $A + \overline{0} = A$ существование нейтрального элемента относительно сложения
- 4. $A + A' = \overline{0}$ существование обратного элемента относительно сложения
- 5. AB = BA коммутативность умножения
- 6. (AB)C = A(BC) ассоциативность умножения
- 7. $A \cdot \overline{1} = A$ существование нейтрального элемента относительно умножения
- 8. $A \cdot (B + C) = A \cdot B + A \cdot C$ дистрибутивность умножения относительно сложения.
- 9. $(B+C) \cdot A = B \cdot A + C \cdot A$ дистрибутивность сложения относительно умножения.

Определение 4.5. Кольцом называется множество M с операциями сложения и умножения, для которых выполнены аналоги свойств 1-4 и 8-9.

Определение 4.6. Кольцо коммутативное, если выполнено свойство 5.

Определение 4.7. Колько ассоциативное, если выполнено свойство 6.

Определение 4.8. Кольцо *с единицей*, если выполнено свойство 7.

Определение 4.9. Я оставлю это для полноты картины, но wtf is this?

 $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} : x + y = n \implies n$ — нейтральный элемент относительно сложения.

 ${\it Замечание.}\ {\it Ecли*-}$ операция на M, то существует единственный нейтральный элемент относительно *.

Доказательство. e, e' — нейтральные элементы относительно *, тогда e = e * e' = e'.

Типа просто в определение нейтрального элемента подставили и получилось.

Предложение 4.3. В нашем курсе все кольца будут ассоциативные с единицей.

Лемма 4.1. В любом кольце $0 \cdot a = 0$.

Доказательство.

Предположим противное. Покажем, что $0 \cdot a + 0 \cdot a = 0 \cdot a$.

$$0+0=0 \stackrel{\exists 0}{\Longrightarrow} (0+0) \cdot a = 0 \cdot a \stackrel{\text{дистр.}}{\Longrightarrow} 0 \cdot a + 0 \cdot a = 0 \cdot a$$

Теперь вычтем $0 \cdot a$. Так как $\exists b: b + (0 \cdot a) = 0$, то

$$0 = b + (0 \cdot a) = b + (0 \cdot a + 0 \cdot a) = (b + 0 \cdot a) + (0 \cdot a) = 0 + (0 \cdot a) = 0 \cdot a$$

Противоречие.

Определение 4.10. A^* — множество обратимых элементов кольца A (по умножению, разумеется).

Примеры.

- $\bullet \ \mathbb{R}^* = \mathbb{R} \setminus \{0\}$
- $\mathbb{Z}^* = \{-1, 1\}$
- $(\mathbb{Z}/4\mathbb{Z})^* = \{\overline{1}, \overline{3}\}$
- $(\mathbb{Z}/5\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Определение 4.11. Полем называется коммутативное кольцо F, такое что $F^* = F \setminus \{0\}$.

5 Наибольший общий делитель

Определение 5.1. R — коммутативное кольцо, $a, b \in R$.

Элемент d называется наибольшим общим делителем, если:

- 1. $d \mid a, d \mid b$
- 2. $d' \mid a, d' \mid b \implies d' \mid d$

Предложение 5.1.

- 1. $d_1,\ d_2$ наибольшие общие делители, тогда $d_1 \sim d_2.$
- 2. $\exists d_1$ наибольший общий делитель, $d_2 \sim d_1$, тогда d_2 тоже наибольший общий делитель.

Доказательство.

- 1. По свойству 2 : $d_1 \mid d_2, \ d_2 \mid d_1 \implies d_1 \sim d_2$.
- $2. d_2 \mid d_1, d_1 \mid a, d_1 \mid b \implies d_2 \mid a, d_2 \mid b$

Пусть d_2 не наибольший, тогда $\exists d' > d_2$.

 $d'\mid a,\ d'\mid b\implies d'\mid d_1$, так как d_1 наибольший общий делитель,

 $d'\mid d_1,\ d_1\mid d_2\implies d'\mid d_2,$ противоречие, так как $d'>d_2.$

Предложение 5.2. $\exists a, b \in \mathbb{Z} \implies$

- 1. $\exists d \in \mathbb{Z}: \ a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$, иначе говоря: $\forall x,y \in \mathbb{Z} \ \exists d,z \in \mathbb{Z}: ax + by = dz$
- 2. при этом d наибольший общий делитель a, b.

Доказательство.

1. Пусть $I = a\mathbb{Z} + b\mathbb{Z}$.

Заметим что $0 \in I$, так как 0a + 0b = 0.

Если
$$I=\{0\},$$
 то $I=0\mathbb{Z}.$

Иначе
$$I \neq \{0\} \implies c \in I \implies -c \in I$$
, так как $-(ax+by) = a \cdot -x + b \cdot -y$

То есть в I есть положительные числа.

Пусть $d = \min\{c \mid c \in I, \ c > 0\}$, и докажем что $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

«⊃»:

$$d \in I$$
 (по определению) $\Longrightarrow d = ax_0 + by_0, \quad x_0, y_0 \in \mathbb{Z} \Longrightarrow$

$$\forall z \in \mathbb{Z}: dz = a(x_0z) + b(y_0z) \in I$$
, значит $d\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z}$

«C»:

$$\exists c \in I, d \in \mathbb{N} \implies \exists q, r \in \mathbb{Z}: c = dq + r, 0 \leqslant r < d$$

$$c \in I$$
, значит $c = ax_1 + by_1$, $x_1, y_1 \in \mathbb{Z}$

Мы уже знаем, что $d \in I$, значит $d = ax_0 + by_0$, $x_0, y_0 \in \mathbb{Z}$

$$r = c - dq = a(x_1 - x_0q) + b(y_1 - y_0q) \in I$$

По определению остатка:
$$\begin{cases} r\geqslant 0,\\ r< d \end{cases} , \text{ но } d=\min\{c\mid c\in I,\ c>0\} \implies \begin{cases} r=0\\ r=c-dq \end{cases} \implies c=dq\implies c\in d\mathbb{Z} \implies a\mathbb{Z}+b\mathbb{Z}\subset d\mathbb{Z}$$

2. Пусть d — наибольший общий делитель a, b.

$$a = a1 + b0 \in I = d\mathbb{Z} \implies d \mid a$$

$$b = a0 + b1 \in I = d\mathbb{Z} \implies d \mid b$$

$$\exists d' \mid a, \ d' \mid b, \ d = ax_0 + by_0$$

 $d'\mid ax_0,\ d'\mid by_0\implies d'\mid d,$ значит d действительно наибольший общий делитель a,b.

Следствие.

- 1. $a, b \in \mathbb{Z}$: Тогда наибольший общий делитель a, b существует.
- 2. Если d наибольший общий делитель a, b, то $\exists x, y \in \mathbb{Z} : d = ax + by$ (Линейное представление наибольшего общего делителя).

Доказательство.

- 1. Доказали в двух частях предложения.
- 2. Из первой части знаем, что существует d_0 наибольший общий делитель a,b, то есть $d_0=ax_0+by_0$

d ассоциирован с $d_0 \implies d = d_0 \mathbb{Z}, \ z \in \mathbb{Z} \implies d = a(x_0 z) + b(y_0 z)$

Определение 5.2. $\mathrm{HOД}(a,b) \iff \gcd(a,b)$ — неотрицательный наибольший общий делитель a,b.

Предложение 5.3. $\exists a_1, a_2, b \in \mathbb{Z}: a_1 \equiv a_2$

Тогда $gcd(a_1, b) = gcd(a_2, b)$.

Доказательство. (!) $\{c: c \mid a_1, c \mid b\} = \{c: c \mid a_2, c \mid b\}$

«C»:

$$a_2 - a_1 = bm \implies a_2 = a_1 + bm$$

```
c \mid a_1, c \mid b \implies c \mid a_2
\ll \supset \gg:
a_1 - a_2 = bm \implies a_1 = a_2 + bm
c \mid a_2, c \mid b \implies c \mid a_1
```

Получается, что:

$$\forall x \in \{c : c \mid a_1, c \mid b\} : x \mid \gcd(a_1, b)$$
$$\forall x \in \{c : c \mid a_2, c \mid b\} : x \mid \gcd(a_2, b)$$
$$\gcd(a_1, b) = \gcd(a_2, b)$$

Определение 5.3. Алгоритм Евклида

```
\gcd(a,b) = \gcd(b,a \mod b), если b \neq 0
int \gcd(\text{int a, int b}) {
    if (b == 0) return a;
    return \gcd(b, a \% b);
}
```

6 Взаимно простые числа

Определение 6.1. Числа a и b называются взаимно простыми, если $\gcd(a,b)=1$. $a \perp b$ — сокращенная запись для обозначения взаимной простоты.

Предложение 6.1.

- 1. $\exists a,b \in \mathbb{Z}$, тогда $a \perp b \iff \exists m,n \in \mathbb{Z} : am + bn = 1$.
- $2. a_1 \perp b. a_2 \perp b \implies a_1 a_2 \perp b$

3.
$$\begin{cases} a_1, \dots, a_m \in \mathbb{Z} \\ b_1, \dots, b_n \in \mathbb{Z} \end{cases} \quad \text{if } \forall i, j : a_i \perp b_j \implies a_1 \dots a_m \perp b_1 \dots b_n.$$

- 4. $a \mid bc, a \perp b \implies a \mid c$.
- 5. $ax \equiv ay$, $a \perp m \implies x \equiv y$.
- 6. $gcd(a, b) = d \implies a = da', b = db', a' \perp b'.$

Доказательство.

1. m и n существуют согласно линейному представлению НОД.

$$d = \gcd(a,b), \ d \mid a, \ d \mid b \implies d \mid (am+bn) = 1 \implies d \mid 1 \implies d = 1.$$

$$2. \begin{cases} 1 = a_1 m_1 + b n_1 & \xrightarrow{\text{перемножим}} 1 = a_1 a_2 (m_1 m_2) + b (a_1 m_1 n_2 + a_2 m_2 n_1 + b n_1 n_2) \implies a_1 a_2 \bot b. \end{cases}$$

$$3. \begin{cases} a_1 \bot b \\ \vdots \\ a_n \bot b \end{cases} \implies a_1 \dots a_n \bot b$$

$$\begin{cases} a_1 \dots a_n \perp b_1 \\ \dots \\ a_1 \dots a_n \perp b_n \end{cases} \implies a_1 \dots a_n \perp b_1 \dots b_n$$

4. $1 = am + bn \implies c = acm + bcn$

$$a \mid acm, \ a \mid bcn \implies a \mid c.$$

5.
$$m \mid (ax - ay), \ a \perp m \implies m \mid (x - y) \implies x \equiv y.$$

6.
$$d \mid a, d \mid b \implies \begin{cases} a = da' \\ b = db' \end{cases}$$
 : $a', b' \in \mathbb{Z}$

$$d = am + bn, \quad m, n \in \mathbb{Z}$$

$$d = 0 \implies a' = b' = 0 = da'm + db'm$$

$$d \neq 0 \implies 1 = a'm + b'n \implies a' \perp b'.$$

7 Линейные диофантовы уравнения

Определение 7.1. Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида ax + by = c, где $a, b, c \in \mathbb{Z}$.

Определение 7.2. Решением линейного диофантова уравнения называется множество всех пар $(x,y) \in \mathbb{Z}^2: ax + by = c.$

Замечание. Если $\gcd(a,b) \nmid c$, то решение — пустое множество, так как все линейные комбинации a,b делятся на $\gcd(a,b)$.

Замечание. Теперь заметим следующее: если $ax_1 + by_1 = c$ и $ax_2 + by_2 = c$, то $a(x_1 - x_2) + b(y_1 - y_2) = 0$. Иными словами, разность двух решений линейного диофантова уравнения — решение соответствующего однородного уравнения.

А значит все решения линейного диофантова уравнения можно найти, решив однородное уравнение и прибавив ко всем его решениям какое-то решение исходного уравнения.

Решим однородное уравнение:

$$ax + by = 0 \iff ax = -by$$

$$\exists d = \gcd(a, b), \ a = da', \ b = db'$$

$$ax = -by \iff da'x = -db'y \iff a'x = -b'y \iff \begin{cases} x = b'k \\ y = -a'k \end{cases}, \ k \in \mathbb{Z}$$

$$(\star)\gcd(a',b')=1 \implies a'\mid y,\ b'\mid x \implies x=b'k,\ k\in\mathbb{Z} \implies y=-a'k$$

Теперь найдём какое-то решение исходного уравнения, вспомнив о линейном представлении gcd:

9

$$gcd(a,b) = d = ax_0 + by_0 \implies c = dc' = a(c'x_0) + b(c'y_0)$$

Таким образом, решение исходного уравнения: $\{(c'x_0 + b'k, c'y_0 - a'k) \mid k \in \mathbb{Z}\}$, где:

 x_0, y_0 - коэффициенты при a, b в линейном представлении gcd(a, b),

$$a' = \frac{a}{\gcd(a,b)}, b' = \frac{b}{\gcd(a,b)}, c' = \frac{c}{\gcd(a,b)}$$

```
int extgcd(int a, int b, int &x, int &y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    int x1, y1;
    int tmp = extgcd(b, a % b, x1, y1);
    x = y1, y = x1 - (a / b) * y1;
    return tmp;
}
void solve() {
    int a, b, c;
    cin >> a >> b >> c;
    int x, y;
    int gcd = extgcd(a, b, x, y);
    if (c % gcd != 0) {
        cout << "No solutions\n";</pre>
    } else {
        int k = c / gcd;
        cout << x * k << ' ' << b / gcd << '\n'; // c' * x_0 + b' * k
        cout << y * k << ' ' ' << -(a / gcd) << '\n'; // c' * y_0 - a' * k
    }
}
```

8 Простые числа

Определение 8.1. Число $p \in \mathbb{Z}$ называется простым, если $p \notin \{-1,0,1\}$ и все делители p — это ± 1 и p.

Свойства.

```
1. p — простое \iff -p — простое.
```

2.
$$p$$
 — простое, $a \in \mathbb{Z} \implies p \mid a$ или $p \perp a$.

3.
$$p, q$$
 — простые $\implies p \sim q$ или $p \perp q$.

4.
$$p \mid ab \implies p \mid a$$
 или $p \mid b$.

Предложение 8.1. $\exists a \neq \pm 1$, тогда существует простое число $p: p \mid a$.

Доказательство.

```
Пусть a = 0, тогда p = 239
```

Тогда $a \neq 0$, пускай a > 0, так как, случай a < 0 аналогичен.

Индукция по a:

«База»: a = 1, но a > 0, значит простое число уже встречалось.

«Переход»:

```
a — простое \implies p = a, p \mid a
```

a — не простое, значит $\exists d: 1 < d < a, d \mid a$

a = dd', тогда по индукционному переходу существует простое число $p: p \mid d$

$$p \mid d, d \mid a \implies p \mid a$$

Определение 8.2. Составное число — это число отличное от 0, и не являющееся простым.

Определение 8.3. Решето Эратосфена — это алгоритм, который позволяет найти все простые числа от 1 до n.

 $2, 3, 4, 5, 6, 7, 8, 9, \ldots, 100$

- 2 простое, вычеркиваем все числа кратные 2
- 3 простое, вычеркиваем все числа кратные 3
- 4 составное, пропускаем
- ит. д.

В итоге получим все простые числа от 1 до 100.

Замечание. \mathbb{P} — множество всех простых чисел.

Теорема 8.1 (Теорема Евклида). Существует бесконечно много простых чисел

Доказательство.

 $\exists p_1, p_2, \dots p_n$ — все простые числа. Возьмем $N = p_1 p_2 \dots p_n + 1$, пусть оно составное \implies

$$\exists p \in \mathbb{P}: p \mid N, p > 0 \implies \exists j: p = p_i$$

Тогда, $p \mid (N-1) \implies p \mid 1 \implies p = \pm 1$, противоречие.

9 Основная теорема арифметики

Теорема 9.1. Пусть $n \ge 2$. Тогда n можно представить в виде произведения простых чисел, и такое представление единственно с точностью до порядка сомножителей.

Доказательство.

«Существование»:

 $\exists n_0$ — наименьшее число ($\geqslant 2$), для которого такого представления нету.

 n_0 — составное число $\implies n_0 = ab, \ 2 \leqslant a, b < n_0$

Это число минимальное $\implies a = p_1 \dots p_k, \ b = q_1 \dots q_l$, где все p_i, q_j — простые.

Но тогда, $n_0=p_1\dots p_kq_1\dots q_l$, где все p_i,q_j — простые \implies такое представление существует, противоречие.

«Единственность»:

$$n = p_1 \dots p_k = q_1 \dots q_l, \quad p_i, q_i -$$
простые.

Нужно доказать, что k=l и что $q_1\dots,q_k$ совпадают с p_1,\dots,p_k с точностью до порядка.

Не умаляя общности можно считать: $k \leq l$.

Индукция по k:

«База»:
$$k = 1$$
: $p_1 = q_1 \dots q_l, p_1$ — простое $\implies l = 1, p_1 = q_1$

«Переход»: k > 1: $p_k \mid n \implies p_k \mid (q_1 \dots q_l) \implies \exists j : p_k \mid q_j \implies p_k \sim q_j \implies p_k = q_j$

А значит $p_1 \dots p_{k-1} = q_1 \dots \hat{q_j} \dots q_l$, где $k-1 \leqslant l-1$

 $k-1 < k \implies$ применим индукционный переход:

k-1=l-1 и $q_1,\ldots,\hat{q_j},\ldots,q_k$ — это p_1,\ldots,p_{k-1} с точностью до порядка. \Longrightarrow

 $q_1,\ldots,(q_j=p_k),\ldots,q_k$ — это p_1,\ldots,p_k с точностью до порядка.

Определение 9.1. Каноническое разложение (факторизация) числа n — это представление n в виде $p_1^{r_1} \dots p_s^{r_s}$, где $\forall i: p_i \in \mathbb{P}, \ r_i \in \mathbb{N}$

Примеры.

- $n = 112 = 2^4 \cdot 7$
- $n = 6006 = 2^1 \cdot 3^1 \cdot 7^1 \cdot 11^1 \cdot 13^1$

Предложение 9.1. $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $a \mid b \iff r_i \leqslant t_i \ \forall i \in \{1, \dots, s\}$

Доказательство.

«**←**»:

 $b = a \cdot p_1^{t_1 - r_1} \dots p_s^{t_s - r_s} \implies a \mid b$

«⇒»:

 $a \mid b \implies b = ac, \ c = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$

 $b = p_1^{t_1} \dots p_s^{t_s} = p_1^{r_1 + m_1} \dots p_s^{r_s + m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n} \implies$

$$\begin{cases} t_i = r_i + m_i, & \forall i \in \{1, \dots, s\} \\ m_{s+1} = \dots = m_n = 0 \end{cases} \implies t_i \geqslant r_i, \quad \forall i \in \{1, \dots, s\}$$

Следствие. $\exists a = p_1^{r_1} \dots p_s^{r_s}$

Тогда $\{d > 0 \mid a : d\} = \{p_1^{t_1} \dots p_s^{t_s} \mid 0 \leqslant t_i \leqslant r_i, \forall i \in \{1, \dots, s\}\}$

Следствие. $\exists a=p_1^{r_1}\dots p_s^{r_s},\ b=p_1^{t_1}\dots p_s^{t_s}$

Тогда $\gcd(a,b)=p_1^{\min(r_1,t_1)}\dots p_s^{\min(r_s,t_s)}$

Определение 9.2. $\exists a,b \in \mathbb{Z}$. Число $c \in \mathbb{Z}$ называется наименьшим общим кратным чисел a и b, если:

- 1. $a \mid c, b \mid c$
- $2. \ a \mid c', \ b \mid c' \implies c \mid c'$

Предложение 9.2. $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $c = {p_1}^{\max(r_1,t_1)}\dots {p_s}^{\max(r_s,t_s)}$ — наименьшее общее кратное чисел a и b

Доказательство.

1. $a \mid c, b \mid c$ — очевидно

2.
$$\exists a \mid c', b \mid c', c' = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$$

$$a \mid c', b \mid c' \implies r_i \leqslant m_i, t_i \leqslant m_i, \forall i \in \{1, \dots, s\} \implies \max(r_i, t_i) \leqslant m_i, \forall i \in \{1, \dots, s\} \implies c \mid c'$$

Определение 9.3. $\mathrm{HOK}(a,b) \iff \mathrm{lcm}(a,b) - \mathrm{положительное}$ значение наименьшего общего кратного чисел a и b.

Cледcmвиe. $\exists a, b \in \mathbb{N}$

Тогда $lcm(a, b) \cdot gcd(a, b) = ab$

Доказательство. $min(r_i, t_i) + max(r_i, t_i) = r_i + t_i$

10 Китайская теорема об остатках

Теорема 10.1. Пусть $m_1 \perp m_2$, $a_1, a_2 \in \mathbb{Z}$, тогда:

1.
$$\exists x_0 \in \mathbb{Z}$$
:
$$\begin{cases} x_0 \equiv a_1 \\ x_0 \equiv a_2 \\ x_0 \equiv a_2 \end{cases}$$

2. $\exists x_0$ удовлетворяет системе выше, тогда:

 $x \in \mathbb{Z}$, где x удовлетворяет системе выше $\iff x \equiv_{m_1 m_2} x_0$

Доказательство.

1. $x_0 = a_1 + km_1 = a_2 + lm_2 \implies km_1 - lm_2 = a_2 - a_1$ — линейное диофантово уравнение с двумя неизвестными k, l

 $m_1 \perp m_2 \implies$ у него есть решение (k_0, l_0)

 $x_0 = a_1 + k_0 m_1$ — искомое

$$2. \ll \approx x \underset{m_1 m_2}{\equiv} x_0 \implies \begin{cases} x \underset{m_1}{\equiv} x_0 \\ x \underset{m_2}{\equiv} x_0 \end{cases} \implies \begin{cases} x \underset{m_1}{\equiv} a_1 \\ x \underset{m_2}{\equiv} a_2 \end{cases}$$

«⇒»:
$$x$$
 удовлетворяет системе из теоремы \Longrightarrow
$$\begin{cases} x \equiv x_0 \\ x \equiv x_0 \end{cases} \Longrightarrow \begin{cases} m_1 \mid (x-x_0) \end{cases} \xrightarrow{m_1 \perp m_2} m_2 \mid (x-x_0) \end{cases}$$

Определение 10.1. $\exists R, S$ — кольца с единицей. Отображение $\varphi: R \to S$ называется изоморфизмом колец, если: φ биекция.

1.
$$\forall r_1, r_2 : \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

2.
$$\forall r_1, r_2 : \varphi(r_1 r_2) = \varphi(r_1) \varphi(r_2)$$

Предложение 10.1. $\exists m_1 \bot m_2$, тогда существует изоморфизм: $\mathbb{Z}/m_1 m_2 \mathbb{Z} \to \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z}$ $[a]_{m_1m_2} \mapsto ([a]_{m_1}, [a]_{m_2})$

Доказательство.

Проверим корректность:

«при подстановке одинаковых классов»:

$$\exists [a]_{m_1 m_2} = [a']_{m_1 m_2} \implies a \underset{m_1 m_2}{\equiv} a' \implies \begin{cases} a \underset{m_1}{\equiv} a' \\ a \underset{m_2}{\equiv} a' \end{cases} \implies ([a]_{m_1}, [a]_{m_2}) = ([a']_{m_1}, [a']_{m_2})$$

«сложения»:

$$\varphi([a]_{m_1m_2} + [b]_{m_1m_2}) = \varphi([a+b]_{m_1m_2}) = ([a+b]_{m_1}, [a+b]_{m_2}) =$$

$$([a]_{m_1}, [a]_{m_2}) + ([b]_{m_1}, [b]_{m_2}) = \varphi([a]_{m_1m_2}) + \varphi([b]_{m_1m_2})$$

«умножения»:

$$\varphi([a]_{m_1m_2} \cdot [b]_{m_1m_2}) = \varphi([a \cdot b]_{m_1m_2}) = ([a \cdot b]_{m_1}, [a \cdot b]_{m_2}) =$$

$$([a]_{m_1}, [a]_{m_2}) \cdot ([b]_{m_1}, [b]_{m_2}) = \varphi([a]_{m_1m_2}) \cdot \varphi([b]_{m_1m_2})$$

Проверим биективность, инъективность и сюръективность:

 φ — отображение между конечными равномощными множествами, поэтому оно биективно \iff оно сюръективно \iff оно инъективно.

Действительно, если $\varphi: A \to B, \ |A| = |B| < \infty$ инъективно, то полный прообраз любого элемента из B состоит из не более чем одного элемента из A (определение инъективности).

А если сложить количества прообразов у всех элементов из B, то должно получиться в точности |A|, так как каждый прообраз — чей-то образ.

Но тогда каждый прообраз состоит из в точности одного элемента, т. е. φ — биекция.

Аналогично можно рассуждать и про сюрьективное отображение.

По китайской теореме об остатках
$$\forall a_1,a_2\in\mathbb{Z}\ \exists a\in\mathbb{Z}: \begin{cases} a \equiv a_1 \\ a \equiv a_2 \\ a \equiv a_2 \end{cases}$$

Таким образом φ — биекция.

11 Функция Эйлера

Предложение 11.1. $\exists m \in \mathbb{N}, \ a \in \mathbb{Z}, \text{тогда } [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff a \bot m$

Доказательство.

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff \exists [b]_m : [a]_m \cdot [b]_m = [1]_m \iff$$

$$\exists b \in \mathbb{Z} : ab \equiv 1 \iff$$

$$\exists b, c \in \mathbb{Z}: ab = 1 + mc \iff$$

$$\exists b, c \in \mathbb{Z}: ab - mc = 1 \iff \gcd(a, m) = 1 \iff a \perp m$$

 $Cnedcmeue. \ \mathbb{Z}/m\mathbb{Z}-$ поле $\iff m-$ простое число.

Доказательство.

$$m=1: \mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$$

$$m$$
 — простое: $gcd(a, m) = 1$, $\forall a \in \{1, 2, \dots, m-1\} \implies$

$$(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{1}, \overline{2}, \dots, \overline{m-1}\}$$

m — составное: m = ab, $2 \leqslant a < m$

 $\gcd(a,m) \neq 1 \implies \overline{a} \notin (\mathbb{Z}/m\mathbb{Z})^*$

Определение 11.1. \mathbb{F}_n — поле из n элементов. Называется конечным полем или полем Галуа.

Предложение 11.2. \mathbb{F}_n — поле из n элементов $\iff n=p^r,\ p\in\mathbb{P},\ r\in\mathbb{Z}_+.$ p — характеристика $\mathbb{F}_n.$

Доказательство. Пока без доказательства.

Определение 11.2. $\exists m \in \mathbb{N} : \varphi(n) = |(\mathbb{Z}/m\mathbb{Z})^*|$

Функция $\varphi \times \mathbb{N} \to \mathbb{N}$ — функция Эйлера.

Предложение 11.3. $\exists p \in \mathbb{P}, r \in \mathbb{N}$.

Тогда
$$\varphi(p^r) = p^r - p^{r-1}$$
.

Доказательство.
$$\varphi(p^r) = |\{a \mid 0 \leqslant a < p^r, \ (a,p^r) = 1\}| =$$

$$p^r - |\{a \mid 0 \le a < p^r, (a, p) \ne 1\}| =$$

$$p^r - |\{a \mid 0 \le a < p^r, \ p \mid a\}| = p^r - p^{r-1}$$

Предложение 11.4. Мультипликативность функции Эйлера.

 $\exists m, n \in \mathbb{N}, \ m \perp n.$

Тогда $\varphi(mn) = \varphi(m) \cdot \varphi(n)$.

Доказательство. Построим отображение $\lambda: (\mathbb{Z}/mn\mathbb{Z})^* \to (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$:

$$[a]_{mn} = A \in (\mathbb{Z}/mn\mathbb{Z})^* \mapsto ([a]_m, [a]_n)$$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^* \implies a \perp mn \implies \begin{cases} a \perp m \\ a \perp n \end{cases} \implies \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/n\mathbb{Z})^* \end{cases}$$

Проверка корректности:

$$[a]_{mn} = [a']_{mn} \implies a \underset{mn}{\equiv} a' \implies \begin{cases} a \underset{m}{\equiv} a' \\ a \underset{n}{\equiv} a' \end{cases} \implies \begin{cases} [a]_{m} = [a']_{m} \\ [a]_{n} = [a']_{n} \end{cases} \implies ([a]_{m}, [a]_{n}) = ([a']_{m}, [a']_{n})$$

Проверим что λ — биекция:

Инъективность:

$$\lambda([a]_{mn}) = \lambda([b]_{mn}) \implies \begin{cases} [a]_m = [b]_m & \xrightarrow{m \perp n} a \equiv b \implies [a]_{mn} = [b]_{mn} \\ [a]_n = [b]_n & \xrightarrow{m \perp n} a \equiv b \end{cases} \implies [a]_{mn} = [b]_{mn}$$

Сюръективность:

Рассмотрим $([b]_m, [c]_n) \in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

$$m \perp n \stackrel{\text{KTO}}{\Longrightarrow} \exists a : \begin{cases} a \equiv b \\ a \equiv c \end{cases}$$

$$\begin{cases} b \bot m \implies a \bot m \\ c \bot n \implies a \bot n \end{cases} \implies a \bot mn \implies [a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$$

$$\lambda([a]_{mn}) = ([a]_m, [a]_n) = ([b]_m, [c]_n) \implies \lambda$$
 — биекция.

$$\lambda$$
 — биекция $\implies |(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*| \implies \varphi(mn) = \varphi(m) \cdot \varphi(n)$

Следствие. $\exists m_1, \dots, m_k$ — попарно взаимно простые числа.

Тогда
$$\varphi(\prod_{i=1}^k m_i) = \prod_{i=1}^k \varphi(m_i).$$

Доказательство. Индукция по k.

«База»:
$$k=1 \implies \varphi(m_1)=\varphi(m_1)$$

«Переход»: $n-1 \rightarrow n$

$$(m_n, m_1) = \ldots = (m_n, m_{n-1}) = 1 \implies (m_1, \ldots, m_n) = 1 \implies$$

$$\varphi(m_1 \dots m_n) = \varphi(m_1 \dots m_{n-1})\varphi(m_n) = \varphi(m_1) \dots \varphi(m_{n-1})\varphi(m_n)$$

 $\pmb{Cnedcmeue.} \ \exists n=p_1^{r_1},\ldots,p_s^{r_s}$ — разложение числа n на простые множители.

$$\implies \varphi(n) = \prod_{i=1}^{s} (p_i^{r_i} - p_i^{r_i-1})$$

Доказательство. По следствию:
$$\varphi(n) = \varphi(\prod_{i=1}^s p_i^{r_i}) = \prod_{i=1}^s \varphi(p_i^{r_i}) = \prod_{i=1}^s (p_i^{r_i} - p_i^{r_i-1})$$

Лемма 11.1. Пусть R — ассоциативное кольцо с единицей.

1.
$$a, b \in R^* \implies ab \in R^*$$

2.
$$a \in R^*$$
, $x, y \in R \implies \begin{cases} ax = ay \implies x = y \\ xa = ya \implies x = y \end{cases}$

Доказательство.

1. a' — обратный к a элемент, b' — обратный к b элемент.

$$(ab)(b'a') = a(bb')a' = aa' = 1$$

 $(b'a)(ab) = b'(aa')b = bb' = 1$

2. a' — обратный к a элемент.

$$ax = ay \implies a'ax = a'ay \implies x = y$$

 $xa = ya \implies xaa' = yaa' \implies x = y$

Теорема 11.1 (Теорема Эйлера). $\exists m \in \mathbb{N}, \ a \in \mathbb{Z}, \ a \perp m \implies a^{\varphi(m)} \equiv 1.$

Доказательство.

$$(\mathbb{Z}/m\mathbb{Z})^* = \{A_1, A_2, \dots, A_{\varphi(m)}\}\$$

 $[a]_m,A_j\in (\mathbb{Z}/m\mathbb{Z})^*\stackrel{1}{\Longrightarrow} \stackrel{\text{из леммы}}{\Longrightarrow} [a]_mA_j\in (\mathbb{Z}/m\mathbb{Z})^*,$ тогда $[a]_mA_1,\ldots,[a]_mA_{\varphi(m)}$ — различные элементы, иначе $[a]_mA_j=[a]_mA_k\stackrel{2}{\Longrightarrow} \stackrel{\text{из леммы}}{\Longrightarrow} A_j=A_k$

$$\{[a]_m A_1, \dots, [a]_m A_{\omega(m)}\} = (\mathbb{Z}/m\mathbb{Z})^* \implies$$

$$[a]_m A_1 \cdot \ldots \cdot [a]_m A_{\varphi(m)} = A_1 A_2 \ldots A_{\varphi(m)} \Longrightarrow$$

$$[a]_m^{\varphi(m)}A_1A_2\dots A_{\varphi(m)}=[1]_mA_1A_2\dots A_{\varphi(m)}\overset{\text{2 из леммы}}{\Longrightarrow}$$

$$[a]_m^{\varphi(m)} = [1]_m \implies [a^{\varphi(m)}]_m = [1]_m \implies a^{\varphi(m)} \equiv 1$$

Теорема 11.2 (Малая теорема Ферма). $\exists p \in \mathbb{P}, \ a \in \mathbb{Z} \implies a^p \equiv a$

Доказательство.

$$(a,p) = 1 \implies a^{p-1} \underset{p}{\equiv} 1 \implies a^{p-1} \cdot a \underset{p}{\equiv} 1 \cdot a \implies a^p \underset{p}{\equiv} a$$

$$(a,p) \neq 1 \implies a \equiv 0 \implies \begin{cases} a^p \equiv 0 \\ a \equiv 0 \\ a \equiv 0 \end{cases} \implies a^p \equiv a$$

Теорема 11.3 (Теорема Вильсона). $p \in \mathbb{P} \implies (p-1)! \equiv -1$

Доказательство. В
$$(\mathbb{Z}/p\mathbb{Z})^*:\overline{(p-1)!}=\overline{1}\cdot\overline{2}\cdot\ldots\cdot\overline{p-1}=\prod_{A\in(\mathbb{Z}/p\mathbb{Z})^*}A=$$

$$\left(\prod_{A^2=\overline{1}} A\right) \cdot \left(\prod_{A^2\neq \overline{1}} A\right) = \left(\prod_{A^2=\overline{1}} A\right) \cdot \left(A_1 \cdot A_1' \cdot \ldots\right) = \left(\prod_{A^2=\overline{1}} A\right) \cdot \overline{1} = \prod_{A^2=\overline{1}} A$$

Рассмотрим каждый элемент:

$$A^2=\overline{1}\iff A^2-\overline{1}^2=\overline{0}\iff (A-\overline{1})(A+\overline{1})=\overline{0}\stackrel{\mathbb{Z}/p\mathbb{Z}}{\iff}A-\overline{1}=\overline{0}$$
 или $A+\overline{1}=\overline{0}$

Тогда, если:
$$\begin{cases} p=2, & \text{то } \prod\limits_{A^2=\overline{1}} A=\overline{1}=\overline{-1} \\ p\neq 2, & \text{то } \prod\limits_{A^2=\overline{1}} A=\overline{1}\cdot\overline{-1}=\overline{-1} \end{cases}$$

2 Комплексные числа

1 Построение поля комплексных чисел

Определение 1.1. $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a,b) \mid a,b \in \mathbb{R}\}$

Определение 1.2.

- Сложение на \mathbb{C} : $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- Умножение на \mathbb{C} : $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 b_1 b_2, a_1 b_2 + a_2 b_1)$

Предложение 1.1. $(\mathbb{C}, +, \cdot)$ — поле.

Доказательство.

• Коммутативность сложения:

$$(a, a') + (b, b') = (a + b, a' + b') = (b + a, b' + a') = (b, b') + (a, a')$$

• Ассоциативность сложения:

$$((a, a') + (b, b')) + (c, c') = (a + b + c, a' + b' + c') = (a + (b + c), a' + (b' + c')) = (a, a') + ((b, b') + (c, c'))$$

- (0,0) нейтральный элемент сложения.
- (-a, -b) обратный элемент к (a, b).
- Коммутативность умножения:

$$(a, a') \cdot (b, b') = (ab - a'b', ab' + a'b) = (ba - b'a', ba' + b'a) = (b, b') \cdot (a, a')$$

• Ассоциативность умножения:

$$((a, a') \cdot (b, b')) \cdot (c, c') = (ab - a'b', ab' + a'b) \cdot (c, c') = (c(ab - a'b') - c'(ab' + a'b), c(ab' + a'b) + c'(ab - a'b')) = (cab - ca'b' - c'ab' - c'a'b, cab' + ca'b + c'ab - c'a'b') = (abc - a'b'c - ab'c' - a'bc', abc' + ab'c + abc' - a'b'c')$$

$$(a,a') \cdot ((b,b') \cdot (c,c')) = (a,a') \cdot (bc - b'c',bc' + b'c) = (a(bc - b'c') - a'(bc' + b'c), a(bc' + b'c) + a'(bc - b'c')) = (abc - a'b'c - ab'c' - a'bc', abc' + abc' - a'b'c')$$

Как видно, выражения совпадают.

• Дистрибутивность:

Проверим правую, левая проверяется аналогично:

$$((a,a')+(b,b'))\cdot(c,c') = (a+b,a'+b')\cdot(c,c') = ((ac+bc)-(a'c'+b'c'),(a'c+b'c)+(ac'+bc')) = (ac-a'c',a'c+ac')+(bc-b'c',b'c+bc') = (a,a')\cdot(c,c')+(b,b')\cdot(c,c')$$

- \bullet (1,0) нейтральный элемент умножения.
- $(a,b)z_1z_2 = (1,0)$: $z_1 = (a,-b)$, $z_2 = \frac{1}{a^2+b^2}$

Определение 1.3. \mathbb{C} — поле комплексных чисел.

Определение 1.4. $c \in \mathbb{C}$ — комплексное число.

Предложение 1.2. $\mathbb{R}' = \{(a,0) \mid a \in \mathbb{R}\}$, тогда:

 \mathbb{R}' замкнуто относительно сложения, вычитания, умножения, содержит единицу, то есть является подкольцом поля $\mathbb{C} \implies \mathbb{R}'$ — само является кольцом относительно сложения, умножения, ограниченных на \mathbb{R}' .

Тогда существует отображение $\varphi: \mathbb{R} \to \mathbb{R}'$, где $a \mapsto (a,0)$, и $\varphi(a)$ — изоморфизм колец,

то есть
$$\varphi$$
 — биекция и
$$\begin{cases} \varphi(a+b) = \varphi(a) + \varphi(b) \\ \varphi(ab) = \varphi(a)\varphi(b) \end{cases}$$

Отождествим (a, 0) с вещественным числом a.

Давайте наконец-то определим комплексное число.

$$(a,0)\cdot(0,1) = (0,a)$$

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + b \cdot (0,1) = a + bi$$

Определение 1.5. z = a + bi - комплексное число.

 $a = \text{Re}(z), b = \text{Im}(z) - \partial e \ddot{u} c m \epsilon u m e n b h a я и м н u м a я части комплексного числа z.$

В геометрическом виде это вектор z = (a, b).

Определение 1.6. Пусть z = a + bi — комплексное число, тогда $\overline{z} = a - bi$ — сопряженное к z.

Отступление про отображения

Определение 1.7. $id_M: M \to M, \ x \mapsto x$ — тождественное отображение на M.

Определение 1.8. $\exists \alpha : M \to N, \ \beta : N \to P$ — отображения

Тогда $\alpha \circ \beta : M \to P$, $x \mapsto \alpha(\beta(x))$ — композиция отображений.

Определение 1.9. $\exists \alpha : M \to N$ — отображение

Отображение $\beta: N \to M$ — обратное к α , если $\beta \circ \alpha = id_M$.

Предложение 1.3. У отображения $\alpha: M \to N$ есть обратное отображение, если и только если α — биекция.

Доказательство.

 $\ll \Rightarrow \gg$:

Инъективность:

$$\beta \circ \alpha = id_M, \ \alpha(x) = \alpha(y) \implies \beta(\alpha(x)) = \beta(\alpha(y)) \implies x = y$$

Сюръективность:

$$y \in N, \ y = \alpha(\beta(y)) \in \operatorname{Im}(\alpha)$$
 (Іт это прообраз)

≪⇔:

Пусть α — биекция, назовем $\beta: N \to M$ — обратным, если $\forall y \in N\alpha^{-1}(y) = \{x\}, x \in M$

Положим $\beta(y) = x$, $\alpha \circ \beta = id_N$, $\beta \circ \alpha = id_M$

Продолжение

Определение 1.10. Автоморфизм — изоморфизм на себя.

Предложение 1.4. $\sigma: \mathbb{C} \to \mathbb{C}, \ z \mapsto \overline{z}$ — автоморфизм.

Доказательство.

$$\sigma$$
 — биекция, т.к. $\sigma \circ \sigma = id_{\mathbb{C}}$

$$\sigma(z_1+z_2)=\sigma(z_1)+\sigma(z_2)$$
 — очевидно

$$\sigma(z_1 z_2) = \sigma(z_1)\sigma(z_2)$$

$$\sigma(1) = 1$$
 — очевидно

$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$

$$\sigma(z_1 z_2) = \overline{a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)} = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)$$

$$\sigma(z_1)\sigma(z_2) = \overline{(a_1 - ib_1)(a_2 - ib_2)} = a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1)$$

2 Тригонометрическая форма комплексного числа

Определение 2.1. $a + bi = r(\cos \varphi + i \sin \varphi)$

$$a = r \cos \varphi$$

$$b = r \sin \varphi$$

Определение 2.2. Модулем комплексного числа $z = a + bi \in \mathbb{C}$ назовем:

$$|z| = \sqrt{a^2 + b^2}$$

Предложение 2.1.

$$1. \ |z| \geqslant 0, \ |z| = 0 \iff z = 0$$

$$2. |z_1 z_2| = |z_1||z_2|$$

3.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

$$4. \ |\overline{z}| = |z|$$

$$5. \ z\overline{z} = |z|^2$$

Доказательство.

1. очевидно

2.
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$

$$|z_1 z_2|^2 = (a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2 = a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2 = a_1^2 a_2^2 + a_1^2 b_2^2 + a_2^2 b_$$

$$(a_1^2 + b_1^2)(a_2^2 + b_2^2) = |z_1|^2 |z_2|^2$$

3.
$$\iff |z_1 + z_2|^2 \leqslant (|z_1| + |z_2|)^2$$

$$\iff (a_1 + a_2)^2 + (b_1 + b_2)^2 \leqslant a_1^2 + b_1^2 + a_2^2 + b_2^2 + 2|z_1||z_2|$$

$$\iff a_1 a_2 + b_1 b_2 \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\Leftrightarrow |a_1 a_2 + b_1 b_2| \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\Leftrightarrow a_1^2 a_2^2 + b_1^2 b_2^2 + 2a_1 a_2 b_1 b_2 \leqslant (a_1^2 + b_1^2)(a_2^2 + b_2^2)$$

$$\Leftrightarrow 2a_1 a_2 b_1 b_2 \leqslant b_1^2 a_2^2 + a_1^2 b_2^2$$

$$\Leftrightarrow (b_1 a_2 - b_2 a_1)^2 \geqslant 0$$

4. очевидно

5.
$$z = a + bi \implies \overline{z} = a - bi$$

 $z\overline{z} = (a + bi)(a - bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$

Замечание. $z^{-1}=rac{ar{z}}{|z|^2}=rac{a}{a^2+b^2}-irac{b}{a^2+b^2}$

Определение 2.3. Пусть $z\in\mathbb{C}$. Аргументом z назовем такое $\varphi\in\mathbb{R},$ что $z=|z|(\cos\varphi+i\sin\varphi)$

Предложение 2.2.

- 1. Если z=0, то любой $\varphi\in\mathbb{R}$ аргумент z
- 2. Если $z \neq 0$, то:
 - (а) аргумент существует
 - (b) если φ_0 аргумент z, и φ аргумент $z \iff \varphi = \varphi_0 + 2\pi k, \ k \in \mathbb{Z}$

Доказательство.

1. тривиально

2.
$$z_0 = \frac{1}{|z|} \cdot z$$

$$|z_0| = \left| \frac{1}{|z|} \right| \cdot |z| = \frac{1}{|z|} \cdot |z| = 1$$

$$z_0 = a_0 + ib_0, \ |z_0| = a_0^2 + b_0^2 = 1 \implies \exists \varphi_0 : \begin{cases} a_0 = \cos \varphi_0 \\ b_0 = \sin \varphi_0 \end{cases}$$

$$z = |z| \cdot z_0 = |z| (\cos \varphi_0 + i \sin \varphi_0)$$

$$\Leftrightarrow \Rightarrow :$$

$$\varphi = \varphi_0 + 2\pi k \implies \begin{cases} \cos \varphi = \cos \varphi_0 \\ \sin \varphi = \sin \varphi_0 \end{cases} \implies \varphi - \text{аргумент}$$

$$\Leftrightarrow \Rightarrow :$$

$$\varphi - \text{аргумент} \implies z = |z|(\cos \varphi + i \sin \varphi) \implies \begin{cases} \cos \varphi = \cos \varphi_0 \\ \sin \varphi = \sin \varphi_0 \end{cases} \implies \varphi - \varphi_0 = 2\pi k, \ k \in \mathbb{Z}$$

Определение 2.4. $arg(z) = \varphi$ означает φ — один из аргументов z

Замечание. Предположим оказалось, что $z=r(\cos\varphi+i\sin\varphi)$ для некоторых $r\geqslant 0,\ \varphi\in\mathbb{R}.$ Тогда $r=|z|,\ \varphi=\arg z$

Доказательство. $|z| = \sqrt{(r\cos\varphi)^2 + (r\sin\varphi)^2} = \sqrt{r^2} = r$, а φ — аргумент по определению

Предложение 2.3.

- 1. $\arg \overline{z} = -\arg z$
- 2. $z \in \mathbb{R} \iff \arg z = k\pi, \ k \in \mathbb{Z}$
- 3. $\arg(z_1 z_2) = \arg z_1 + \arg z_2$
- 4. $\exists z_2 \neq 0 \implies \arg \frac{z_1}{z_2} = \arg z_1 \arg z_2$

Доказательство.

1.
$$\arg z = \varphi$$

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$\overline{z} = |z|(\cos\varphi - i\sin\varphi) = |\overline{z}|(\cos(-\varphi) + i\sin(-\varphi)) \implies$$

$$\arg \overline{z} = -\varphi$$

 $2. \ll \gg :$

$$z > 0$$
:

$$z = |z| \cdot 1 = |z|(\cos 0 + i \sin 0) \implies \arg z = 0$$

$$z < 0$$
:

$$z = |z| \cdot (-1) = |z|(\cos \pi + i \sin \pi) \implies \arg z = \pi$$

«**⇔**:

$$\sin(k\pi) = 0$$

3.
$$\arg z_1 = \varphi_1$$
, $\arg z_2 = \varphi_2 \implies$

(!)
$$\varphi_1 + \varphi_2 = \arg(z_1 z_2)$$

$$z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1), \ z_2 = |z_2|(\cos\varphi_2 + i\sin\varphi_2) \implies$$

$$z_1 z_2 = |z_1| \cdot |z_2| (\cos \varphi_1 \cdot \cos \varphi_2 - \sin \varphi_1 \cdot \sin \varphi_2 + i (\sin \varphi_1 \cdot \cos \varphi_2 + \cos \varphi_1 \cdot \sin \varphi_2)) =$$

$$|z_1 z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)) \implies \arg(z_1 z_2) = \varphi_1 + \varphi_2$$

4.
$$z_1 = \frac{z_1}{z_2} \cdot z_2 \implies \arg z_1 = \arg \frac{z_1}{z_2} + \arg z_2 \implies \arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$$

 ${\it Cnedcmeue}$ (Формула Муавра). Пусть $z\in \mathbb{C},\ |z|=r,\ {\rm arg}\, z=\varphi,\ n\in \mathbb{Z}.$

Тогда
$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

Доказательство.

• n > 0: индукция по n

«База»:
$$n = 1$$
 — тривиально

«Переход»:
$$n-1 \rightarrow n$$

$$z^{n} = z^{n-1} \cdot z = r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot z =$$

$$r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot r(\cos\varphi + i\sin\varphi) =$$

$$r^{n}(\cos((n-1)\varphi + \varphi) + i\sin((n-1)\varphi + \varphi)) =$$
$$r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

•
$$n = 0: 1 = r^0(\cos(0) + i\sin(0)) = 1$$

•
$$n < 0 : n = -k, k \in \mathbb{N}$$

 $z^n = \frac{1}{z^k}$
 $|z^n| = \frac{1}{|z^k|} = \frac{1}{|z|^k} = |z|^{-k} = |z|^n$
 $\arg z^n = \arg 1 - \arg z^k = 0 - k\varphi = n\varphi$

3 Корни из комплексных чисел

Рассмотрим уравнение $z^n = w, n \in \mathbb{N}, w \in \mathbb{C}$.

Теорема 3.1. $\exists n \in \mathbb{N}, w \in \mathbb{C}$

- 1. Если w = 0, То уравнение $z^n = w$ имеет единственный корень z = 0.
- 2. Если $w \neq 0$, То уравнение $z^n = w$ имеет ровно n различных корней:

$$z_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k = 0, 1, \dots, n - 1$$

Доказательство.

1.
$$w = 0 \implies z = 0$$

2.
$$w \neq 0 \implies \begin{cases} w = r(\cos \varphi + i \sin \varphi) : & r > 0, \ \varphi \in \mathbb{R} \\ z = p(\cos \alpha + i \sin \alpha) : & p > 0, \ \alpha \in \mathbb{R} \end{cases}$$

$$z^{n} = w \iff p^{n}(\cos n\alpha + i\sin n\alpha) = r(\cos \varphi + i\sin \varphi) \iff \begin{cases} p^{n} = r \\ n\alpha = \varphi + 2\pi k, \ k \in \mathbb{Z} \end{cases}$$
$$\int p = \sqrt[n]{r}$$

$$\begin{cases} p = \sqrt[n]{r} \\ \alpha = \frac{\varphi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

$$z^n = w \iff z = \underbrace{\sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)}_{z_k}, \ k \in \mathbb{Z}$$

При каких $k, l: z_k = z_l$?

$$z_k = z_l \iff \frac{\varphi + 2\pi k}{n} = \frac{\varphi + 2\pi l}{n} + 2\pi s, \ s \in \mathbb{Z} \iff$$

$$\frac{k}{n} = \frac{l}{n} + s, \ s \in \mathbb{Z} \iff k = l + ns, \ s \in \mathbb{Z} \iff$$

$$k \equiv l \iff z \in \{z_0, z_1, \dots, z_{n-1}\}$$

Изображение на окружности

Комплексные корни образуют правильный n-угольник на окружности.

Лемма 3.1. Пусть z_0, z_1, \dots, z_{n-1} — все корни $z^n = w, n > 1$

Тогда $z_0 + z_1 + \ldots + z_{n-1} = 0$

Доказательство.

Заметим, что
$$z_k=z_{k-1}\underbrace{\left(\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\right)}_{\xi}$$
, тогда $z_k=z_0\cdot\xi^k$.

Обозначим
$$S = z_0 + z_1 + \ldots + z_{n-1}$$
, значит $\xi \cdot S = z_1 + z_2 + \ldots + \underbrace{z_n}_{=z_0} = S \implies \xi S = S \implies (\xi - 1)S = 0$

Из того что $n>1 \implies \xi \neq 1$, а значит $(\xi-1)S=0 \implies S=0$

Определение 3.1. Группа — это множество G с операцией $*: G \times G \to G$ такая, что:

- 1. * ассоциативна: (a*b)*c = a*(b*c)
- 2. Существует нейтраальный элемент $e \in G$ такой, что a*e=e*a=a для любого $a \in G$
- 3. У любого элемента $a \in G$ существует обратный элемент $a^{-1} \in G$ такой, что $a * a^{-1} = a^{-1} * a = e$

Примеры.

- 1. $(\mathbb{Z},+)$
- 2. $((\mathbb{Z}/n\mathbb{Z})^*, \cdot)$
- 3. Если R ассоциативное кольцо с 1, то $R^* = \{r \mid \exists s \in R : rs = sr = 1\}$ группа относительно умножения.

Предложение 3.1. $\mu_n = \{z \in \mathbb{C} \mid z^n = 1\} = \{\underbrace{\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}}_{\xi_k} \mid k = 0, 1, \dots, n-1\}$ — группа относительно умножения.

Доказательство.

ullet Ассоциативность — так как есть ассоциативность в ${\mathbb C}$

• $1 \in \mu_n \ (1 = \xi_0)$

•
$$\xi_k \cdot \xi_{-k} = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right) \left(\cos\frac{2\pi(-k)}{n} + i\sin\frac{2\pi(-k)}{n}\right) = 1$$

Лемма 3.2. $\xi_k = \xi_1^k$

Доказательство. $\left(1 \cdot \cos \frac{2\pi k}{n} + 1 \cdot i \sin \frac{2\pi}{n}\right)^k = 1^k \cdot \left(\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}\right)$ (по формуле Муавра)

Определение 3.2. G — группа с операцией $*, g \in G, n \in \mathbb{Z},$ тогда:

$$g^{n} = \begin{cases} g * g * \dots * g, & n > 0 \\ e, & n = 0 \\ g^{-1} * g^{-1} * \dots * g^{-1}, & n < 0 \end{cases}$$

Определение 3.3. Группа G называется циклической, если $\exists g \in G: \ G = \{g^n \mid n \in \mathbb{Z}\}$ Пишут: $G = \langle g \rangle$

Определение 3.4. g — образующий элемент группы G

Примеры.

•
$$\mathbb{Z}=\langle 1 \rangle=\langle -1 \rangle$$
 (по сложению) $g^n=egin{cases} 1+1+\ldots+1 & n>0 \\ 0 & n=0 \\ -1+-1+\ldots+-1 & n<0 \end{cases}$

- $\mathbb{Z}/5\mathbb{Z}=\langle\overline{1}\rangle=\langle\overline{2}\rangle=\langle\overline{3}\rangle=\langle\overline{4}\rangle$ (по сложению)
- $\mathbb{Z}/6\mathbb{Z}=\langle\overline{1}\rangle=\langle\overline{5}\rangle$ (по сложению)
- $(\mathbb{Z}/5\mathbb{Z})^* = \langle \overline{2} \rangle = \langle \overline{3} \rangle$ (по умножению)
- $(\mathbb{Z}/8\mathbb{Z})^*$ не циклическая группа $g^2=e\implies g^{2k}=e,\ g^{2k+1}=g$

Определение 3.5. G — группа, $g \in G$

Если $\forall n \in \mathbb{N} : g^n \neq e$, то говорят, что g — бесконечный порядок

Если $\exists n \in \mathbb{N} : g^n = e$, то минимальное такое n называют порядком g (пишут: ord g = n)

Пример. $\mathbb{Z}/5\mathbb{Z}$

$$\operatorname{ord} \overline{1} = 1$$

$$\operatorname{ord} \overline{2} = 4$$

$$\operatorname{ord} \overline{3} = 4$$

$$\operatorname{ord} \overline{4} = 2$$

Предложение 3.2. Пусть G — конечная группа, $|G| = n, g \in G$.

Тогда:
$$G = \langle g \rangle \iff \text{ord } g = n$$

Доказательство.

«⇒»:

$$\exists k, \ l \in \{0, 1, \dots, n\}, \ k \neq l: \ g^k = g^l$$

$$k < l: g^{-k} \cdot g^k = g^{-k} \cdot g^l = g^{l-k} = e$$

$$0 < l - k \leqslant n$$

Таким образом, порядок g не превосходит n

Предположим, ord g = m < n

$$G = \{g^k \mid k \in \mathbb{Z}\} = \{g^{mq+r} \mid q \in \mathbb{Z}, \ 0 \leqslant r < m\} = \{g^0, g^1, \dots, g^{m-1}\}$$
 — противоречие, так как $|G| \leqslant m < n$, а мы знаем что $|G| = n$.

«**←**»:

 $\operatorname{ord} g = n$

$$\implies g^0, g^1, g^2, \dots, g^{n-1}$$
 — попарно различны

$$\implies \{g^0, g^1, \dots, g^{n-1}\} = G$$

$$\implies G = \langle g \rangle$$

Определение 3.6. Первообразным корнем из 1 степени n называется такой элемент $z\in\mathbb{C}^*,$ что ord z=n

Пример. $\mu_6 = \{1, \xi_1, \xi_2, \xi_3, \xi_4, \xi_5\}$

ord
$$1 = 1$$
, ord $\xi_1 = 6$, ord $\xi_2 = 3$, ord $\xi_3 = 2$, ord $\xi_4 = 3$, ord $\xi_5 = 6$

 ξ_2 — первообразный корень из 1 степени 3

3 Многочлены

1 Многочлены и формальные степенные ряды

Определение 1.1. Последовательность финитная $\iff \exists N : \forall n \geqslant N : a_n = 0.$

Определение 1.2. Многочленом над R (от одной переменной) называется финитная последовательность $(a_i), a_i \in \mathbb{R}, i = 0, 1, 2, \dots$

Определение 1.3. R — коммутативное кольцо с 1, тогда:

 $R[x] = \{(a_i) \mid a_i \in R, \ i = 0, 1, \dots; a_i = 0 \text{ при } i \to \infty\}$ — кольцо многочленов над R.

Предложение 1.1. Операции в R[x]:

«Сложение»: $(a_i) + (b_i) = (a_i + b_i)$

«Умножение»: $(a_i) \cdot (b_i) = (p_i)$, где $p_k = \sum_{i=0}^k a_i b_{k-i}$

Предложение 1.2 (Переход к стандартной записи).

 $\exists a \in R, \ [a] = (a,0,0,\ldots)$ — многочлен, равный a.

$$[a] + [b] = [a+b]$$

 $[a] \cdot [boba] = (aboba, 0, 0, \ldots) = [aboba]$

Отождествим [a] с a.

$$[a] \cdot (b_0, b_1, \ldots) = (ab_0, ab_1, \ldots)$$

$$(a_0, a_1, \ldots, a_n, 0, 0, \ldots) = (a_0, 0, 0, \ldots) + (0, a_1, 0, 0, \ldots) + \ldots + (0, 0, \ldots, a_n, 0, 0, \ldots) =$$

$$a_0 \cdot \underbrace{(1, 0, 0, \dots)}_{x_0} + a_1 \cdot \underbrace{(0, 1, 0, \dots)}_{x_1} + \dots + a_n \cdot \underbrace{(0, 0, \dots, 1, 0, 0, \dots)}_{x_n} = a_0 + a_1 \cdot x_1 + \dots + a_n \cdot x_n$$

$$x_j \cdot x_1 = (0, \dots, 1, 0, 0, \dots) \cdot (0, 1, 0, 0, \dots) = (0, \dots, 0, 1, 0, 0, \dots) = x_{j+1} \implies \forall m \in \mathbb{N} : x_m = x_1^m$$

$$x_1 = x \implies x_m = x_1^m = x^m$$

Значит получили стандартную запись многочленов $(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n)$

Определение 1.4. $\exists f \in R[x], f \neq 0$ (то есть не (0))

Тогда степенью f называется максимальное j такое что $a_i \neq 0$

Обозначим $\deg f = j$.

Если f = 0, то $\deg f \in \{-1, -\infty\}$ (по разному обозначают).

Определение 1.5. $d = \deg f \implies a_d$ называется старшим коэффициентом f.

Определение 1.6. Константой называется множество f такое что $\deg f \leq 0$.

Определение 1.7. Мономом называется множество вида ax^{j} .

Предложение 1.3. R[x] — коммутативное ассоциативное кольцо с 1.

Доказательство.

- 1-4. Аксиомы относящиеся к сложению очевидны.
 - 5. Коммутативность умножения очевидна.
 - 6. Ассоциативность умножения:

$$f, g, h \in R[x], (fg)h = f(gh)$$

$$f = \sum_{i=0}^k f_i X_i$$
, где $f_i \in R$

$$g = \sum\limits_{i=0}^l g_i X_i$$
, где $g_i \in R$

$$h = \sum_{i=0}^n h_i X_i$$
, где $h_i \in R$

Ассоциативность мономов $(f \cdot g) \cdot h = f \cdot (g \cdot h)$ — сводится к сложению, f, g, h — мономы.

$$(fg)h = (\sum f_i X^i \cdot \sum g_j X^j) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^j) \cdot \sum h_k X^k \stackrel{\text{accoil. } \underline{\text{monormode}}}{=} h_k X^k = \sum (f_i X^i \cdot g_j X^j) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^i) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^k = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i) \cdot \sum h_k X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i \cdot g_j X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i \cdot g_j X^i = \sum (f_i X^i \cdot g_j X^i \cdot g_j X^i = \sum (f_i X^i \cdot g_j X^i - g$$

$$\sum f_i X^i \cdot \sum (g_j X^j \cdot h_k X^k) = f(gh)$$

- 7. Нейтральный элемент по умножению $-1 = (1, 0, 0, \ldots)$.
- 8. Дистрибутивность: $\begin{cases} (aX^i \cdot bX^j) \cdot cX^k = abX^{i+j} \cdot cX^k = abc \cdot X^{i+j+k} \\ aX^i \cdot (bX^j \cdot cX^k) = aX^i \cdot bcX^{j+k} = abc \cdot X^{i+j+k} \end{cases}$

Определение 1.8. $R[[x]] = \{(a_i) \mid a_i \in R, i = 0, 1, \ldots\}$ — множество формальных степенных рядов над R.

$$(a_i) = \sum_{i=0}^{\infty} a_i X^i$$

Упражнение. R[[x]] — коммутативное ассоциативное кольцо с 1.

2 Свойства степени

Предложение 2.1. $f, g \in R[x], \deg f = m, \deg g = n$

1.
$$\deg(f+g) \leqslant \max(m,n)$$

При этом:
$$m \neq n \implies \deg(f+g) = \max(m,n)$$

$$2. \deg(fg) \leqslant m + n$$

Доказательство.

1.
$$f = \sum_{i=0}^{m} a_i X^i$$
, $g = \sum_{i=0}^{n} b_i X^i$, $d = \max(m, n)$

$$f = \sum_{i=0}^{d} a_i X^i, \ g = \sum_{i=0}^{d} b_i X^i$$

$$f + g = \sum_{i=0}^{d} (a_i + b_i) X^i \implies \deg(f + g) \leqslant d$$

$$m \neq n \implies \begin{cases} a_d = 0 \\ b_d \neq 0 \end{cases}$$
 или $\begin{cases} a_d \neq 0 \\ b_d = 0 \end{cases} \implies a_d + b_d \neq 0 \implies \deg(f + g) = d$

2.
$$\left(\sum_{i=0}^{m} a_i X^i\right) \left(\sum_{j=0}^{n} b_j X^j\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + \dots + a_m b_n X^{m+n} \implies \deg fg \leqslant m + n$$

Замечание. $\deg fg < m+n,$ если $a_m \neq 0$ или $b_n \neq 0$ и $a_m b_n = 0$

Замечание. Будем считать, что $\deg 0 = -\infty$

Определение 2.1. Область целостности (целостное кольцо, область) — коммутативное ассоциативное кольцо с $1 \neq 0$ и без делителей нуля (то есть никакие два ненулевых элемента не дают ноль при умножении)

Предложение 2.2. Пусть R — область целостности.

- 1. $\forall f, g \in R[x] : \deg(fg) = \deg f + \deg g$
- 2. R[x] область целостности

Доказательство.

1. В предыдущем доказательстве
$$\begin{cases} a_m \neq 0 \\ b_n \neq 0 \end{cases} \implies a_m b_n \neq 0 \implies \deg(fg) = m+n$$

2.
$$f \neq 0 \implies \deg f \geqslant 0, g \neq 0 \implies \deg g \geqslant 0 \implies \deg(fg) \geqslant 0 \implies fg \neq 0$$

 ${\it Cnedcmeue.}\ \ {\rm Пусть}\ R-\ {\rm область}\ {\rm целостности:}\ {\rm тогда}\ R[x]^*=R^*$

Доказательство.

«>»: очевидно $R^* \subset R[x]^*$

«С»: пусть
$$f \in R[x]^* \implies \exists g \in R[x] : f \cdot g = 1$$

$$\deg(fg) = 0 = \deg f + \deg g \implies \deg f = \deg g = 0 \implies f \in R \implies f \in R^*$$

Примеры.

1.
$$\mathbb{Z}[x]^* = \{\pm 1\}$$

$$2. \ \mathbb{R}[x]^* = \mathbb{R} \setminus \{0\}$$

3.
$$(\mathbb{Z}/4\mathbb{Z})[x]^*$$
 — бесконечное множество

Упражнение. $R[[x]]^* = \{\sum_{i=0}^{\infty} a_i X^i \mid a_0 \in R^* \}$

3 Деление с остатком

Теорема 3.1 (о делении с остатком для многочленов). R — область целостности.

Пусть $f, g \in R[x], g \neq 0$ и старший коэффициент g обратим.

Тогда $\exists ! \ q, r \in R[x]$:

1.
$$f = gq + r$$

2.
$$\deg r < \deg q$$

Доказательство. Пусть $\deg g = d, \ g = b_d X^d + \dots$

1. «Существование»

Индукция по $\deg f$: $\deg f < d \implies$ подходит q = 0, r = f

Пусть
$$\deg f = n \geqslant d$$

 $f_1 = f - g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d}$, где b_d — старший коэффициент g (на первый взгляд здесь написано что-то неочевидное, но на деле это простое деление многочленов столбиком, то есть мы просто делаем так, чтобы старший коэффициент f исчез)

$$g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = (b_d X^d + \dots) \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = a_n X^n + \dots \implies \deg f_1 < n$$

По индукционному предположению $\exists q_1, r_1 \in R[x]$ такие, что:

(a)
$$f_1 = gq_1 + r_1$$

(b)
$$\deg r_1 < d$$

$$f = g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} + f_1 = g \underbrace{(a_n \cdot b_d^{-1} \cdot X^{n-d} + q_1)}_{q} + \underbrace{r_1}_{r}$$

2. «Единственность»

Предположим $f = g \cdot q_1 + r_1 = g \cdot q_2 + r_2$, $\deg r_1 < d$, $\deg r_2 < d$

$$q(q_1 - q_2) = r_2 - r_1$$

Предположим $q_1 \neq q_2 \implies \deg g \cdot (q_1 - q_2) \stackrel{R - \text{OII}}{=} \underbrace{\deg g}_d + \underbrace{\deg q_1 - q_2}_{\geqslant 0} \geqslant d \implies \deg(r_2 - r_1) \geqslant d,$ но $\deg(r_2 - r_1) < d$, противоречие.

Замечание. Условие R — область целостности не существенно.

(я без понятия что написано дальше, но пускай будет)

$$g = b_d X^d + \dots, \ b_d \in R^*$$

$$b_d \cdot a = 0 \implies b_d^{-1}(b_d a) = 0 \implies a = 0$$
 (что это значит?)

4 Гомоморфизм подстановки

Определение 4.1. Пусть R, S — кольца. Гомоморфизм из кольца R в кольцо S называется отображение $\varphi: R \to S$, такое что:

1.
$$\varphi(a+b) = \varphi(a) + \varphi(b), \forall a, b \in R;$$

2.
$$\varphi(ab) = \varphi(a)\varphi(b)$$

$$3. \ \varphi(1_R) = 1_S$$

Предложение 4.1 (свойства гомоморфизма).

1.
$$\varphi(0_R) = 0_S$$

2.
$$\forall a \in R : \varphi(-a) = -\varphi(a)$$

3.
$$\forall a, b \in R : \varphi(a - b) = \varphi(a) - \varphi(b)$$

Доказательство.

1.
$$0_R = 0_R + 0_R \implies \varphi(0_R) = \varphi(0_R) + \varphi(0_R) \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \varphi(0_R) + \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \varphi(0_R) + \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S}$$

2.
$$a + (-a) = 0_R \implies \varphi(a) + \varphi(-a) = \varphi(0_R) = 0_S \implies \varphi(-a) = -\varphi(a)$$

3.
$$\varphi(a-b) = \varphi(a) + \varphi(-b) = \varphi(a) - \varphi(b)$$

Определение 4.2. Пусть S — кольцо, $R \subset S$. R называется подкольцом S, если:

- 1. $\forall a, b \in R : a b \in R$
- 2. $\forall a, b \in R : ab \in R$
- $3. 1_S \in R$

Замечание. Этих условий достаточно (остальные выражаются)

$$1 \in R \implies 0 = 1 - 1 \in R$$

$$a \in R \implies -a = 0 + (-a) = 0 - a \in R$$

$$a, b \in R \implies a + (-(-b)) = a - (-b) \in R$$

Примеры.

- 1. Пусть R подкольцо в S. Тогда $i_R: R \to S$ гомоморфизм, $a \mapsto a$.
- 2. $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ гомоморфизм, $a \mapsto \overline{a}$
- 3. $\mathbb{C} \to \mathbb{C}$ гомоморфизм, $z \mapsto \overline{z}$

Теорема 4.1. Пусть B — кольцо, A — подкольцо такое что, $\forall a \in A \ \forall b \in B : ab = ba$

Зафиксируем $b \in B$. Тогда отображение $\varphi_b : A[x] \to A[b]$

$$a_nX^n+\ldots+a_1X+a_0\mapsto a_nb^n+\ldots+a_1b+a_0$$
 является гомоморфизмом колец.

(Смысл этой теоремы в том, что подставить элементы надкольца в сумму/произведение многочленов, это тоже самое, что подставить элементы надкольца в многочлены, а потом сложить-/умножить)

Доказательство.

Если
$$f = a_n X^n + \ldots + a_1 X + a_0$$
, то $f(b) = a_n b^n + \ldots + a_1 b + a_0 = \varphi_b(f)$

Нужно проверить: (f+g)(b) = f(b) + g(b) и (fg)(b) = f(b)g(b)

$$1(b) = 1$$
 — тривиально

$$(f+g)(b)=f(b)+g(b)$$
 — очевидно из определения $f+g$.

Осталось проверить, что (fg)(b) = f(b)g(b):

$$f = \sum_{i=0}^{n} a_i X^i, \ g = \sum_{i=0}^{m} c_i X^i$$

$$fg = \sum_{k=0}^{n+m} d_k X^k, \ d_k = \sum_{i+j=k} a_i c_j$$

$$(fg)(b) = \sum_{k=0}^{n+m} d_k b^k$$

$$f(b)g(b) = \left(\sum_{i=0}^{n} a_i b^i\right) \left(\sum_{j=0}^{m} c_j b^j\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b^i c_j b^j \stackrel{\text{коммут.}}{=}$$

$$\sum_{i=0}^{n} \sum_{j=0}^{m} a_i c_j b^{i+j} = \sum_{k=0}^{n+m} \left(\sum_{i,j \geqslant 0, \ i+j=k} (a_i c_j) \right) b^k = (fg)(b)$$

Примеры.

- 1. A любое коммутативное кольцо, B = A[x]
 - A подкольцо в $B=A[x] \implies$ можно рассмотреть f(g), где $f,g\in A[x]$
- 2. $\mathbb{R}[x] \xrightarrow{\varphi} \mathbb{R}[x], f \mapsto f(5)$

$$\operatorname{Im}\varphi = \mathbb{R} \neq \mathbb{R}[x]$$

 $3. A \rightarrow A$

 $f \stackrel{lpha}{\longmapsto} f(x_2,x_3,x_4,\ldots)$ — инъективный, но не сюръективный

 $f \stackrel{\beta}{\longmapsto} f(0,x_1,x_2,x_3,\ldots)$ — сюръективный, но не инъективный

Упражнение.

- 1. Найти все автоморфизмы Q
- 2. Найти все автоморфизмы \mathbb{R}
- 3. Найти все автоморфизмы $\mathbb{R}[x]$

Теорема 4.2 (Безу). Пусть $f \in R[X]$, $c \in R$. Тогда остаток при делении f на X - c есть f(c).

Доказательство.

 $f = (X-c) \cdot q + r,$ по теореме о делении с остатком $\deg r < \deg(X-c) = 1 \implies$

$$f(c) = (c-c) \cdot q(c) + r(c) = r(c)$$

Следствие. Пусть $f \in R[X], c \in R$. Тогда $f(c) = 0 \iff (X - c) \mid f$

Определение 4.3. Пусть R — подкольцо S, элементы R коммутируют с элементами S. Тогда $s \in S$, такой что f(s) = 0, где $f \in R[x]$ — называется корнем из f в R.

Примеры.

1.
$$f = x^4 - 2 \text{ B } \mathbb{Z}[x]$$

f не имеет корней в $\mathbb Z$

f имеет 2 корня в \mathbb{R}

f имеет 4 корня в \mathbb{C}

Предложение 4.2. Пусть R – область целостности, $f \in R[x]$, $\deg f = d \geqslant 0$. Тогда число корней f в R не превосходит d.

Доказательство. Индукция по d

База: $d=0 \implies f$ ненулевой $d \implies$ корней нет

 Π ереход: d > 0

y f нет корней в $R \implies y$ тверждение выполнено

У f есть корни в R, пусть $c \in R$ — какой-либо из корней f

$$f(c) = 0 \implies f = (X - c) \cdot g$$
, где $g \in R[x]$

$$\deg f = \deg(X - c) + \deg g \implies \deg g = d - 1$$

Пусть c_1, \ldots, c_l — все корни g в R

По предположению индукции: $l \leqslant d-1$

Утверждение: $\{c_1, \ldots c_l, c\}$ — все корни f в R

$$f(c_1) = \ldots = f(c_l) = f(c) = 0$$

Предположим $\exists c' \notin \{c_1, \ldots, c_l, c\}$, такой что f(c') = 0

 $\implies (c'-c)\cdot g(c') = 0$ — противоречие с тем, что R — область целостности

 \implies у f не более $l+1\leqslant d$ корней в R.

Пример. x^2-1 имеет 4 корня в $\mathbb{Z}/8\mathbb{Z}$ или в $\mathbb{Z}/5\mathbb{Z}$

$$x^2 \equiv 1 \iff \begin{cases} x^2 \equiv 1 \\ x^2 \equiv 1 \end{cases} \iff \begin{cases} x \equiv 1 \text{ или } x \equiv -1 \\ x \equiv 1 \text{ или } x \equiv -1 \end{cases}$$

Предложение 4.3 (формальное и функциональное равенство многочленов).

Пусть R — бесконечная область: $f, g \in R[x]$ таковы, что $\forall a \in R : f(a) = g(a)$

Тогда f = q

Доказательство.

h=f-g, предположим, что $h \neq 0 \implies \deg h = d \geqslant 0 \implies$ у h есть $\leqslant d$ корней.

Но $\forall a \in R: h(a) = f(a) - g(a) = 0, R$ — бесконечная область, противоречие. Так как их не больше чем d, но R бесконечно.

Пример. $R = \mathbb{Z}/3\mathbb{Z}, f = X, g = X^3$

$$\forall A \in \mathbb{Z} : a^3 \equiv a \implies \forall \alpha \in \mathbb{Z}/3\mathbb{Z} : f(\alpha) = g(\alpha)$$

5 Евклидовы области

Определение 5.1. Евклидовой областью целостности (евклидовой областью, евклидовым кольцом) называется область целостности R, для которой существует функция $\nu: R \setminus \{0\} \to \mathbb{Z}_{\geqslant 0}$, называемая евклидовой нормой, такая что:

- 1. Если $d \mid a$, то $\nu(d) \leqslant \nu(a)$, причем $\nu(d) = \nu(a) \iff d \sim a$.
- 2. Для любых $a, b \in R, \ b \neq 0$: существует представление a = bq + r, где r = 0 или $\nu(r) < \nu(b)$.

Замечание: свойство один можно убрать, но доказательства будут сложнее.

Примеры.

- 1. R = K[x], (K поле), где $\nu(P) = \deg P$
- 2. $R = \mathbb{Z}$, где $\nu(a) = |a|$
- 3. $R = \mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$, где $\nu(a+bi) = a^2 + b^2$ (подробнее в книжке Аейрленд, Роузен «Классическое введение в современную теорию чисел»)
- 4. R = K[[x]], (K поле) $R^* = \{a_0 + a_1x + a_2x + \dots \mid a_0 \neq 0\}$ ord $f = \min\{j \mid a_j \neq 0\}$ $f = x^{\text{ord } f} \cdot (a_i + a_{i+1}x + \dots) \sim x^{\text{ord } f}$

Упражнение. Докажите, что это евклидова область.

5.
$$R = \mathbb{Z}_{(5)} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, 5 \nmid b \}$$

Упражнение. Докажите, что это евклидова область.

Лемма 5.1. Пусть R — область целостности, $a,b \in R$. Тогда $a \sim b \iff a = \varepsilon b, \ \varepsilon \in R^*$

Доказательство.

«**⇔**:

Пусть $a=\varepsilon b\implies b$. Так как ε — обратим, $b=\varepsilon^{-1}a$.

$$\left. \begin{array}{l}
a = \varepsilon b \implies a \mid b \\
b = \varepsilon^{-1} a \implies b \mid a
\end{array} \right\} \iff a \sim b$$

«⇒»:

$$a \sim b \implies egin{cases} a \mid b \\ b \mid a \end{cases} \implies egin{cases} b = arepsilon a \\ a = arepsilon' b \end{cases} \implies b = arepsilon arepsilon' b \implies (arepsilon arepsilon' - 1) b = 0 \implies arepsilon - ext{обратим}.$$

Определение 5.2. R — коммутативное кольцо, $I \subset R$ называется udeanom в R, если:

- 1. $I \neq \emptyset$
- $2. \ \forall a, b \in I : a + b \in I$
- 3. $\forall a \in I \ \forall b \in R : ab \in I$

Примеры.

- 1. $R = \mathbb{Z}, I = 2\mathbb{Z}$
- 2. $R = K[X], I = \{ f \in R \mid f(0) = 0 \}$
- 3. R = C[0,1] (непрерывные функции на отрезке [0,1]), $I = \{f \in R \mid f(0) = 0\}$

Определение 5.3. Пусть R — коммутативное кольцо, $r \in R$. Из свойств кольца очевидно, что $\langle r \rangle \rightleftharpoons \{rs \mid s \in R\}$ — идеал в R.

Тогда (r) называется главным идеалом порожденным элементом r.

Замечание. $(r) = (r') \iff r \sim r'$

Пример. Пример неглавного идеала:

$$R = \mathbb{Z}[X], I = \{f : 2 \mid f(0)\}$$

Это множество всех многочленов, у которых свободный член четный.

Предложение 5.1. В евклидовой области все идеалы главные.

Доказательство. Пусть I — идеал в евклидовой области R.

Случай $I = \{0\}$ — тривиален, тогда I = (0). Пусть $I \neq \{0\}$.

Зафиксируем норму ν и рассмотрим $c \in I$ с минимальной нормой. Докажем, что I = (c).

«⊃»:

Так как для любого $b \in R$ должно быть выполнено $cb \in I$, то $I \supset (c)$.

«C»:

Предположим, $\exists a \in I \setminus (c)$. Представим евклидову норму в виде $a = cq + r, q, r \in R$. Если r = 0, то $a \in (c)$ по определению главного идеала. Но иначе $\nu(r) < \nu(c)$. Выразим r:

$$r = a - cq = a + c(-q).$$

Так как $c \in I$ и $a \in I$, то и $c(-q) \in I$, следовательно $r \in I$. Но $\nu(r) < \nu(c)$, что противоречит минимальности нормы $\nu(c)$

Определение 5.4. Область целостности, в которых все идеалы главные, называется *областью* главных идеалов $(O\Gamma U)$.

Предложение 5.2. Пусть R — область главных идеалов. Тогда:

- 1. $a, b \in R \implies$ у a и b существует наибольший общий делитель
- 2. Если d наибольший общий делитель a и b, то d = am + bn, $m, n \in R$

Доказательство.

Можно считать $a \neq 0$ или $b \neq 0$, если a = b = 0, то d = 0 подходит, $d \neq 0$ не подходит.

1. Рассмотрим множество $I = \{am + bn \mid m, n \in R\}$ — идеал в R. Тогда можно записать I = (d), так как I — область главных идеалов.

Заметим, что d — общий делитель a и b.

$$\begin{cases} a = a \cdot 1 + b \cdot 0 \in I = (d) \\ b = a \cdot 0 + b \cdot 1 \in I = (d) \end{cases} \implies \begin{cases} d \mid a \\ d \mid b \end{cases}$$

Покажем, что d — наибольший общий делитель a и b. То есть, что

$$\begin{cases} d' \mid a & \xrightarrow{(!)} d' \mid d \\ d' \mid b & \end{cases}$$

Так как $d \in I$, $d = am_0 + bn_0$, $m_0, n_0 \in R$.

$$\begin{cases} d' \mid a \\ d' \mid b \end{cases} \implies \begin{cases} d' \mid am_0 \\ d' \mid bn_0 \end{cases} \implies d' \mid d.$$

Что и требовалось доказать.

2. Если d' — наибольший общий делитель a и b, то:

$$d' \sim d \in I \implies d' \in I \implies d' = am + bn, \ m, n \in R.$$

Замечание. Наибольший общий делитель в ОГИ обозначают (a, b).

Определение 5.5. Элементы ОГИ a и b называют взаимно простыми, если (a,b)=1.

Предложение 5.3. $(a,b) = 1 \iff m, n \in R : am + bn = 1$

Доказательство.

«⇒»: Из предыдущего предложения

 $\ll \gg : \exists m, n \in R : am + bn = 1$

$$\exists d = (a, b) \implies d \mid a, d \mid b \implies d \mid (am + bn) \implies d \mid 1 \implies d \sim 1 \implies (a, b) = 1$$

6 Факториальность области главных идеалов

Определение 6.1. Пусть R — коммутативное кольцо. Элемент a называется henpusodumыm, если $a \neq 0$, $a \notin R^*$ и $a = bc \implies b \in R^*$ или $c \in R^*$.

To есть неприводимый элемент — необратимый элемент, который не раскладывается в произведение двух обратимых.

Определение 6.2. *Приводимый элемент* — элемент, который не является ни 0, ни обратимым, ни неприводимым.

Примеры.

1. R = K[x], (K - поле)

 $\deg f=1\implies f$ — неприводимый, так как $f=bc,\ \deg f=\deg b+\deg c=1+0=0+1=1$

 $2. \mathbb{R}[x]$:

$$x^2 - 4$$
 приводим $x^2 - 4 = (x - 2)(x + 2)$

 x^2+1 неприводим, иначе имел бы корень в $\mathbb R$

Лемма 6.1. Пусть $f \in K[x]$ — многочлен степени 2 или 3. Тогда f приводим \iff у него есть корень в K.

Доказательство.

«⇒»:

a — корень $f \stackrel{\text{т. Безу}}{\Longrightarrow} (X-a) \mid f$. Рассмотрим разложение $f = (X-a) \cdot g$. Так как $\deg g = \deg f - 1 \geqslant 1$, оно нетривиально и f — приводимый.

«**←**»:

Пусть f = gh и $\deg g$, $\deg h \geqslant 1$, не умаляя общности, $\deg g \geqslant \deg h$. Тогда:

$$\underbrace{\deg f}_{2 \text{ MIN } 3} = \deg g + \deg h$$

Есть два стула: 2 = 1 + 1 и 3 = 2 + 1 (на какой сам сядешь, на какой друга посадишь?)

В любом случае:

$$\deg h = 1 \implies h = aX + b \implies h\left(-\frac{b}{a}\right) = 0 \implies f\left(-\frac{b}{a}\right) = 0.$$

Значит $-\frac{b}{a}$ — корень f.

Замечание. Многочлены большей степени могут быть приводимыми, но не иметь корней в K.

Пример. Рассмотрим $f = x^4 + 2x^2 + 1$ в $\mathbb{R}[x]$:

$$f = (x^2 + 1)^2 = (x^2 + x + 1)(x^2 - x + 1).$$

Замечание. Далее считается, что R — область главных идеалов

Лемма 6.2. Пусть $p, f \in R$. p — неприводимый элемент. Тогда $p \mid f$ либо (p, f) = 1.

Доказательство. $(p, f) \mid p \implies (p, f) = 1$ или $(p, f) = p \implies (p, f) = 1$ или $p \mid f$.

Предложение 6.1. Пусть p — неприводимый, $p \mid ab \implies p \mid a$ или $p \mid b$.

Доказательство. Пусть
$$p \nmid a, p \nmid b \implies (p, a) = (p, b) = 1 \implies pm + an = 1, pm' + bn' = 1 \stackrel{\text{перемножим}}{\Longrightarrow} p(pmm' + mbn' + anm') + abnn' = 1 \implies p \mid 1$$

Определение 6.3. Область целостности R называют факториальным кольцом, если:

1. Любой $a \in R$ отличный от 0 и не являющийся обратимым можно представить в виде $a = p_1 \dots p_s, \ s \geqslant 1$ и p_1, \dots, p_s — неприводимые элементы.

2. Если $p_1 \dots p_s = q_1 \dots q_t$, где все p_i, q_i — неприводимые элементы, то s = t и после перенумерации q_i выполнено $q_1 \sim p_1, \dots, q_s \sim p_s$.

Теорема 6.1. Область главных идеалов является факториальным кольцом.

Доказательство.

1. «Существование разложения»

Есть элемент a, докажем что существует неприводимый p такой, что $p \mid a$.

Возьмем a, если он неприводимый, то доказывать нечего (т.к. $a \mid a$), иначе: $a = a_1b_1$, где $a_1, b_1 \notin R^*$ (a не неприводим $\implies a_1, b_1$ оба обратимы либо оба необратимы, если оба обратимы, то a обратим, а нас такие элементы не интересуют)

 a_1 — неприводимый, следовательно утверждение доказано, иначе $a_1=a_2b_2$, где $a_2,b_2\notin R^*$ и так далее

Предположим, утверждение неверно. Обозначим $I = \bigcup_{i=1}^{\infty} (a_i)$.

Можно заметить, что $a_2 \mid a_1, \ a_3 \mid a_2, \ \ldots \implies (a_1) \subset (a_2) \subset \ldots$

Покажем, что I — главный идеал.

(a)
$$x, y \in (a_i) \subset I \implies x + y \in (a_i) \subset I$$

(b)
$$x \in I \implies x \in (a_i)$$
 для некоторого i , тогда для $a \in R \implies ax \in (a_i) \subset I$

Значит I главный идеал, тогда I=(c) для некоторого $c\in I\implies c\in (a_i)$ для некоторого i, при этом $a_{i+1}\in I\implies c\mid a_{i+1}$

$$\begin{cases} a_i \mid c \\ c \mid a_{i+1} \end{cases} \implies a_i \mid a_{i+1} \stackrel{a_{i+1} \mid a_i}{\Longrightarrow} a_i \sim a_{i+1} \implies \text{ цепочка когда-то прервется, так как}$$
 $a_i = a_{i+1} \cdot b_{i+1}, \text{ где } a_i = \varepsilon a_{i+1}, \ \varepsilon \in R^* \implies b_{i+1} = \varepsilon \in R^*$

Значит любой необратимый элемент делится на неприводимый.

2. «Единственность разложения»

Пусть $p_1 \dots p_s = q_1 \dots q_t$, где все p_i, q_i — неприводимы и не умаляя общности $s \leqslant t$

Индукция по S

«База»: s = 1

 $p_1=q_1\ldots q_t$, где p_1 — неприводимый $\implies t=1,\ q_1=p_1.$

«Перехол»: s > 1

$$p_s \mid (p_1 \dots p_s) \implies p_s \mid (q_1 \dots q_t) \implies \exists j : p_s \mid q_i$$

Перенумеруем, так чтобы j=t, тогда $q_t=p_s\cdot \varepsilon$, но q_t неприводим $\implies \varepsilon\in R^*$

$$p_1 \dots p_s = q_1 \dots q_{t-1} \cdot \varepsilon p_s \implies p_1 \dots p_{s-1} = q_1 \dots q_{t-1} \cdot \varepsilon = \underbrace{\left(\varepsilon q_1\right)}_{\text{неприводимый}} \cdot q_2 \dots q_{t-1}$$

По индукционному предположению $p_1 \dots p_{s-1}$ совпадает с $(\varepsilon q_1) \cdot q_2 \dots q_{t-1}$ с точностью до порядка и ассоциировнности.

Замечание. Евклидова область \subset Область главных идеалов \subset Факториальное кольцо \subset Область целостности

Примеры.

- 1. R факториальное кольцо $\implies R[X]$ факториальное кольцо.
- 2. $\mathbb{Z}[X]$ факториальное кольцо.
- 3. $K[X][Y] = K[X,Y] \implies K[X,Y] -$ факториальное кольцо.

7 Кратные корни и производные

Определение 7.1. Пусть $f \in R[x]$ и $f \neq 0$. Пусть $a \in R$ — корень.

 $(X-a) \mid f$ по теореме Безу.

Наибольший n, такой что $(X-a)^n \mid f$, называется *кратностью корня а*. Можно заметить, что $n \leq \deg f$, поэтому он всегда существует.

Корни кратности 1 называются *простыми корнями* f,

корни кратности ≤ 2 называются *кратными корнями* f,

корни кратности $2 - \partial e o \ddot{u} + b u M u$, $3 - m p o \ddot{u} + b u M u$

Теорема 7.1. Пусть K поле, $f \in K[X]$, $d = \deg f > 0$

 a_1, \ldots, a_s — его корни, n_1, \ldots, n_s — их кратности.

Тогда $n_1 + \ldots + n_s \leqslant d$.

Доказательство. Разложим f на неприводимые множители.

$$f = (X - a_1)^{m_1} \dots (X - a_s)^{m_s} \cdot g$$
, где $g \in K[x]$ и $(X - a_i)$ — неприводимые множители.

Заметим, что $(X - a_1) \neq q, \ldots, (X - a_s) \neq q$.

Считаем, что $m_1\leqslant n_1,\ \dots,\ m_s\leqslant n_s$. Предположим, при некотором $j\colon n_j>m_j$

$$(X - a_i)^{m_i + 1} \mid f \implies (X - a_i)^{m_i + 1} \cdot h = (X - a_1)^{m_1} \dots (X - a_s)^{m_s} \cdot g \implies$$

$$(X-a_j)\cdot h = (X-a_1)^{m_1}\dots(\widehat{X-a_j})^{m_j}\dots(X-a_s)^{m_s}\cdot g \implies$$

$$(X-a_j) \mid (X-a_1)^{m_1} \dots (\widehat{X-a_j})^{m_j} \dots (X-a_s)^{m_s} \cdot g \implies$$

Либо $(X-a_j)\mid (X-a_i),\; i\neq j$ или $(X-a_j)\mid g,$ но такого не может быть, значит $m_j=n_j,\; j=1,\ldots,s.$

Тогда
$$d = \deg f = m_1 + \ldots + m_s + \underbrace{\deg g}_{\geqslant 0} \geqslant n_1 + \ldots + n_s$$

Определение 7.2. Пусть $f \in K[X]$, $f = a_n X_n + a_{n-1} X_{n-1} + \ldots + a_1 X_1 + a_0$

Его $npouseo\partial noй$ будет называться многочлен $f' \in K[X], f' = na_n X_{n-1} + (n-1)a_{n-1} X_{n-2} + \ldots + a_1$

Предложение 7.1.

- 1. (f+g)' = f' + g'
- 2. (fg)' = f'g + fg'

3.
$$(f^n)' = nf^{n-1}f'$$

Доказательство.

- 1. лёгкая непосредственная проверка (сначала очевидно, потом тривиально, как всегда короче)
- 2. Пусть f,g мономы, то есть $f=aX^n,\ g=bX^m$

$$(fg)' = (abX^{n+m})' = (n+m)abX^{n+m-1} = n \cdot abX^{n+m-1} + m \cdot abX^{n+m-1} = n \cdot abX^{n+m-1}$$

$$\underbrace{naX^{n-1}}_{f'} \cdot \underbrace{bX^m}_g + \underbrace{aX^n}_f \cdot \underbrace{mbX^{m-1}}_{g'}$$

$$f = \sum f_i, \ g = \sum g_i, \quad f_i, g_i$$
 — мономы

$$(fg)' = \left(\sum_{i,j} f_i g_j\right) = \sum_{i,j} (f_i g_j)' = \sum_{i,j} (f_i' g_j + f_i g_j') = \sum_{i,j} f_i' g_j + \sum_{i,j} f_i g_j' = \sum_i f_i' \sum_j g_j + \sum_i f_i \sum_j g_j' = f'g + fg'$$

3. Индукция по n

«База»: n = 1

$$f' = f'$$

«Переход»: n > 1

$$(f^n)' = (f^{n-1} \cdot f)' = (f^{n-1})' \cdot f + f^{n-1} \cdot f' \stackrel{\text{переход}}{=}$$

$$((n-1)\cdot f'\cdot f^{n-2})\cdot f + f^{n-1}\cdot f' = (n-1)f'\cdot f^{n-1} + f'\cdot f^{n-1} = nf^{n-1}f'$$

Предложение 7.2. K — поле. $f \in K[X], f \neq 0, a \in K$

Тогда a кратный корень $f \iff f(a) = f'(a) = 0$

Доказательство.

«⇒»:

$$a$$
 кратный корень $f \implies (X-a)^2 \mid f \implies f = (X-a)^2 \cdot g, \quad g \in K[X]$

$$f' = ((X - a)^2)' \cdot g + (X - a)^2 \cdot g' = 2(X - a) \cdot g + (X - a)^2 \cdot g' \implies f'(a) = 0$$

«**⇔**:

Пусть f(a) = f'(a) = 0.

$$f(a) = 0 \stackrel{\text{\tiny T.Besy}}{\Longrightarrow} f = (X - a) \cdot g, \quad g \in K[X] \implies f' = g + (X - a)g'$$

$$f'(a)=0 \implies g(a)=0 \implies (X-a)\mid g \implies (X-a)^2\mid f \implies a$$
 кратный корень f

Следствие. K — поле. $f \in K[X], f \neq 0, a \in K$

Пусть
$$D = (f, f')$$

Тогда a кратный корень $f \iff D(a) = 0$

Доказательство. a кратный корень $\iff f(a) = f'(a) = 0 \stackrel{\text{т.Безу}}{\iff} (X - a) \mid f$ и $(X - a) \mid f' \iff (X - a) \mid D \stackrel{\text{т.Безу}}{\iff} D(a) = 0$

Определение 7.3. Для кольца с 1 xарактеристикой char <math>R называется минимальное $n \in \mathbb{N}$ такое, что $\underbrace{1+\ldots+1}_n=0$, а если такого n нет, то char R=0

Предложение 7.3. K — поле с характеристикой 0, то есть $\underbrace{1+\ldots+1}_{n}\neq 0$, $\forall n\in\mathbb{N}$

 $f \in K[X], \ a \in K$ — корень f кратности $s \geqslant 2$.

Тогда a — корень f' кратности s-1

Доказательство. $f = (X - a)^s g$

$$(X-a) \nmid g \stackrel{\text{\tiny T.Besy}}{\Longrightarrow} g(a) \neq 0$$

$$f' = ((X - a)^s)' \cdot q + (X - a)^s \cdot q' =$$

$$s(X-a)^{s-1} \cdot g + (X-a)^s \cdot g' =$$

$$(X-a)^{s-1} \cdot h$$
, где $h = s \cdot g + (X-a)g'$

$$h(a) \stackrel{\text{char } K = 0}{=} s \cdot g(a) \neq 0 \implies (X - a) \nmid h$$

8 Формула Тейлора

Предложение 8.1. K — поле, $f, g \in K[x], f \neq 0, d = \deg(g) \geqslant 1.$

Тогда f можно представить единственным образом в виде:

$$f = h_n g^n + \dots + h_1 g + h_0,$$

где $n \ge 0, \ h_i \in K[x], \ h_n \ne 0, \ \deg(h_i) < d, \ \forall i = 0, \dots, n.$

Доказательство.

«Существование»:

Индукция по $l = \deg f$.

«База»: При l < d подходит $n = 0, h_0 = f$.

«Переход»: При $l \geqslant d$: f = gq + r, $\deg(r) < d$, $q \neq 0$.

 $\deg gq \geqslant \deg g > \deg r$

$$\implies$$
 deg $f = \text{deg } qq \implies$ deg $q = l - d$

Πο ΜΠ: $q = h_n g^n + \cdots + h_1 g + h_0$, $h_n \neq 0$, $\deg(h_i) < d$, $i = 0, \ldots, n$.

$$\implies f = h_n g^{n+1} + \dots + h_0 g + r.$$

«Единственность»:

Индукция по $l = \deg f$.

При l < d:

 $\deg h_n g^n \geqslant nd > \deg h_i g^i, \ i = 0, \dots, n-1 \implies \deg f = \deg h_n g^n \implies \deg h_n g^n < d.$

 $nd+d-1\geqslant l\geqslant nd\implies n$ — неполное частное при делении l на d.

«База»: При $l < d : n = 0 \implies h_0 = f$.

«Переход»: При $l\geqslant d$ предположим, что есть еще разложение $f=\hat{h_n}g^n+\cdots+\hat{h_1}g+\hat{h_0}.$

$$f = g(h_n g^{n-1} + \dots + h_1) + h_0 = g(\hat{h_n} g^{n-1} + \dots + \hat{h_1}) + \hat{h_0}, \quad \deg \hat{h_0}, \ \deg \hat{h_0} < d$$

Тогда $h_0 = \hat{h_0}$. По единственности деления с остатком.

По ИП: $\deg f_1 = h_n g^{n-1} + \dots + h_1 < \deg f \implies h_i = \hat{h_i}, \ i = 1, \dots, n-1.$

Предложение 8.2. $\operatorname{char} K = 0, \ f \in K[x], \ f \neq 0, \ d = \deg(f) = n \geqslant 0, \ a \in K.$

$$\implies f = \sum_{i=0}^{n} \frac{f^{(i)}(x-a)^{i}}{i!}, \ f^{(i)} \in K[x], \ \deg(f^{(i)}) < d, \ i = 0, \dots, n.$$

Доказательство. $f = \sum_{i=0}^{n} c_i(x-a)^i, \ c_i \in K, \ i=0,\ldots,n, \ c_n \neq 0.$

$$f^{(i)} = \sum_{j=i}^{n} c_j j! (x-a)^{j-i}, \quad i = 0, \dots, n.$$

$$f^{(j)}(a) = c_j j! \implies c_i = \frac{f^{(i)}(a)}{i!}.$$

9 Алгебраически замкнутые поля. Каноническое разложение над $\mathbb C$ и над $\mathbb R$.

Определение 9.1. Поле K называется алгебраически замкнутым, если любой $f \in K[x]$ имеет корень в K.

Теорема 9.1. Основная теорема алгебры.

С алгебраически замкнуто.

Доказательство. Не будет в курсе.

Идея доказательства:

$$f = a_n x^n + \dots + a_1 x + a_0, \ z \in \mathbb{C}, \ f(z) = 0.$$

$$r > \max\{|a_0|, \dots, |a_n|\}.$$

$$f(r(\cos(\varphi) + i\sin(\varphi))) = r^n(\cos(n\varphi) + i\sin(n\varphi)) + q(r(\cos(\varphi) + i\sin(\varphi))).$$

$$|g(r(\cos(\varphi) + i\sin(\varphi)))| < r^{n-1}(|a_{n-1}| + \dots + |a_1| + |a_0|) < r^n.$$

$$\implies \Delta \arg f(r(\cos(\varphi) + i\sin(\varphi))) = 2\pi n.$$

$$D = \{ z \in \mathbb{C} \mid |z| \leqslant r \}$$

 $\stackrel{\text{Топология}}{\Longrightarrow} f(D)$ — односвязная область.

$$\implies 0 \in f(D) \implies \exists z \ f(z) = 0.$$

Замечание. Любое поле можно вложить в алгебраически замкнутое поле.

Всегда есть минимальное такое поле.

Для \mathbb{Q} это поле алгебраических чисел.

Алгебраическое число — комплексный корень многочлена над \mathbb{Q} .

Предложение 9.1. K — алгебраически замкнутое поле, $f \in K[x]$.

Тогда f — неприводим \iff deg f = 1.

Доказательство. Все многочлены степени 1 неприводимы.

$$\deg f \neq 1 \implies \exists x \in K : f(x) = 0$$

$$\stackrel{\text{T. Безу}}{\Longrightarrow} (x - c) \mid f \implies$$
 он приводим

Таким образом если $f \in K[x]$, deg $f \ge 1$, то его каноническое разложение имеет вид:

$$f = c_0 \prod_{i=1}^{n} (x - c_i)^{d_i},$$

где $c_i \in K, \ d_i \in \mathbb{Z}_+.$

Предложение 9.2. $f \in \mathbb{R}[x], a \in \mathbb{C}$ — его корень.

Тогда \overline{a} — корень f той же кратности.

Доказательство.

Пусть l — кратность корня a.

B $\mathbb{C}[x]$ имеем $f = (x - a)^l g$, $g \in \mathbb{C}[x]$, $g(a) \neq 0$.

Пусть $g = b_n x^n + \dots + b_1 x + b_0$.

Рассмотрим $\overline{g} = \overline{b_n} x^n + \dots + \overline{b_1} x + \overline{b_0}$.

Тогда
$$f=\overline{f}=\overline{(x-a)^l}\overline{g}=(x-\overline{a})^l\overline{g} \implies f(\overline{a})=0$$

$$0 \neq g(a) = \overline{\overline{g(\overline{a})}} \implies (x - \overline{a}) \nmid \overline{g}$$

 $\implies \overline{a}$ — корень f кратности l

 \implies все корни разбиваются на пары сопряженных, тогда каноническое разложение в $\mathbb{C}[x]$ имеет вид:

$$f = r_0 \left(\prod_{i=1}^n (x - r_i)^{d_i} \right) \cdot \left(\prod_{i=1}^m ((x - c_i)(x - \overline{c_i}))^{p_i} \right),$$

где $r_i \in \mathbb{R}, \ d_i \in Z_+, \ c_i, \overline{c_i} \in \mathbb{C}, \ p_i \in \mathbb{Z}_+.$

$$\iff f = r_0 \left(\prod_{i=1}^n (x - r_i)^{d_i} \right) \cdot \left(\prod_{i=1}^m B_i^{p_i} \right),$$

 B_i — квадратичные многочлены, неприводимые в \mathbb{R} .

$$B_i = (x - c_i)(x - \overline{c_i}) = x^2 - (c_i + \overline{c_i})x + c_i\overline{c_i} = x^2 - 2\operatorname{Re} c_i x + |c_i|^2 \in \mathbb{R}[x]$$

Предложение 9.3. Унитарные неприводимые многочлены в \mathbb{R} — это:

1.
$$x - a$$
, $a \in \mathbb{R}$

2.
$$x^2 + ax + b$$
, $a, b \in \mathbb{R}, b^2 - 4ac < 0$

Доказательство. С многочленами степени 1 и 2 все ясно.

Если степень многочлена больше 2, то справедливо разложение 9.2, значит он приводим.

10 Рациональные дроби

Определение 10.1. Поле частных области целостности R — наименьшее поле, в которое вложена R.

Назовем его Q(R).

Элементы поля частных представляются как дроби $\frac{a}{b}$, где $a,b\in R$ и $b\neq 0$. Это поле строится так:

Рассмотрим $M = R \times (R \setminus \{0\})$ и введём на M отношение \sim :

$$(a,b) \sim (a',b') \iff ab' = a'b$$

Предложение 10.1. \sim — отношение эквивалентности

Доказательство. рефлексивность и симметричность очевидны

транзитивность:
$$\begin{cases} (a,b) \sim (a',b') \\ (a',b') \sim (a'',b'') \end{cases} \implies ab'b'' = a'bb'' = a''bb' \implies b'(ab'' - a''b) = 0$$

$$b \neq 0 \implies ab'' - a''b = 0 \implies ab'' = a''b \implies (a,b) \sim (a'',b'')$$

То есть \sim — это отношение эквивалентности на M.

Определение 10.2. $Q(R) = M/\sim = \{[(a,b)] \mid a \in R, b \in R \setminus \{0\}\}$

Определение 10.3. Обозначим $\frac{a}{b}$ — это $[(a,b)] \in Q(R)$.

Предложение 10.2. Введём в Q(R) операции сложения и умножения:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$$
$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$$

Замечание. $(a,b) \sim (ac,bc) \quad \forall c \in R \setminus \{0\}$

Такая замена не изменит результат.

Замечание.
$$(a,b) \sim (a',b') \iff (ab',bb') = (a'b,b'b)$$

Предложение 10.3. Операции на Q(R) определены корректно, при этом Q(R) с этими операциями — поле.

Доказательство. Коммутативность и ассоциативность сложения очевидны в случае одинакого знаменателя.

44

$$\frac{a_1}{b} + \frac{a_2}{b} = \frac{a_1b + a_2b}{b^2} = \frac{a_2b + a_1b}{b^2} = \frac{a_2}{b} + \frac{a_1}{b}$$

Но любые 2 дроби можно привести к общему знаменателю:

$$\frac{a_1}{b_1} = \frac{a_1b_2}{b_1b_2} \quad \frac{a_2}{b_2} = \frac{a_2b_1}{b_1b_2}$$

Нейтральный по сложению элемент — это $\frac{0}{1}$

Противоположный по сложению элемент к $\frac{a}{b}$ — это $\frac{-a}{b}$

Дистрибутивность:
$$\left(\frac{a_1}{b} + \frac{a_2}{b}\right) \frac{a'}{b'} = \frac{a_1 + a_2}{b} \frac{a'}{b'} = \frac{(a_1 + a_2)a'}{bb'} = \frac{a_1a' + a_2a'}{bb'} = \frac{a_1}{b} \frac{a'}{b'} + \frac{a_2}{b} \frac{a'}{b'} = \frac{a_1}{b} \frac{a'}{b'} + \frac{a_2}{b} \frac{a'}{b'}$$

Нейтральный по умножению элемент — это $\frac{1}{1}$

$$\frac{a}{b} \neq \frac{0}{1} \implies a \cdot 1 \neq b \cdot 0 \iff a \neq 0$$

Обратный по умножению элемент к $\frac{a}{b}$ — это $\frac{b}{a}$

Замечание. $R \overset{\varepsilon}{\mapsto} Q(R), \ r \mapsto \frac{r}{1}$

To есть, считаем $R \subset Q(R)$

Определение 10.4. Пусть K — поле. Тогда поле K(x) = Q(K[x]) назовем *полем рациональных* дробей (дробно-рациональных функций) над полем K.

Предложение 10.4 (Несократимое представление). Пусть R — факториальное кольцо. Тогда любой $S \in Q(R)$ представимых в виде $s = \frac{p}{q}, \ (p,q) = 1$. Такое представление единственно с точностью до умножения p и q на $\varepsilon \in R^*$.

Доказательство.

Пусть
$$s = \frac{a}{b}$$
, $d = \gcd(a, b) \implies a = da'$, $b = db' \implies s = \frac{a'}{b'}$, $(a', b') = 1$

Если
$$\frac{p}{q} = \frac{p'}{q'}$$
, $(p,q) = (p',q') = 1$, то $pq' = p'q \implies \begin{cases} p \mid p'q \\ (p,q) = 1 \end{cases} \implies p \mid p'$, аналогично $p' \mid p'$

To есть p и p' ассоциативны $\implies p' = \varepsilon p, \ \varepsilon \in R^*$

$$pq' = \varepsilon pq \implies q' = \varepsilon q$$

Лемма 10.1. Пусть $s \in K(x), \ s = \frac{p}{q}, \ p, q \in K[x]$

Тогда $\deg p - \deg q$ — инвариант s. (то есть не зависит от выбора представления в виде p и q)

Доказательство.

Если $\frac{p}{q} = \frac{p'}{q'}$, то pq' = p'q, а значит $\deg p + \deg q' = \deg p' + \deg q \implies \deg p - \deg q = \deg p' - \deg q'$ Таким образом можно определить степень рациональной дроби $\deg s = \deg \frac{p}{q} = \deg p - \deg q$

Определение 10.5. $s \in K(x)$ называется правильной дробью, если $\deg s < 0$

В частности 0 — правильная дробь

Замечание. Очевидно сумма и произведение правильных дробей — правильная дробь

Лемма 10.2. Любая рациональная дробь однозначно представляется в виде суммы многочленов и правильной дроби.

Доказательство.

«Существование»:

Пусть $s=rac{p}{q},$ поделим на p на q, получается:

$$p=q\cdot t+r$$
, где $r=0$ или $\deg r<\deg q\implies rac{p}{q}=t+rac{r}{q},\ t\in K[x]$, где $rac{r}{q}$ — правильная дробь

«Единственность»:

$$t+rac{r}{q}=t_1+rac{r_1}{q_1},\,\,t_1\in K[x],$$
 где $rac{r_1}{q_1}$ — правильная дробь

$$t-t_1=rac{r_1}{q_1}-rac{r}{q}$$
 — правильная дробь

$$t - t_1 = \frac{t - t_1}{1} = \frac{r_1}{q_1} - \frac{r}{q} \implies \deg(\frac{r_1}{q_1} - \frac{r}{q}) = \deg(t - t_1) < 0 \implies t - t_1 = 0 = \frac{r_1}{q_1} - \frac{r}{q}$$

Лемма 10.3. Пусть (f,g)=1. Тогда любую дробь со знаменателем fg можно представить как сумму дробей со знаменателем f и g.

Доказательство. 1 = cf + dg для некоторых $c, d \in K[x]$

$$\frac{a}{fg} = \frac{a(cd+dg)}{fg} = \frac{acf}{fg} + \frac{adg}{fg} = \frac{ac}{g} + \frac{ad}{fg}$$

Определение 10.6. Дробь s называется nримарной (p-npимарной), если $s=\frac{a}{p^n},\ p$ — неприводимый многочлен, $n\in\mathbb{N}$

Предложение 10.5. Любую правильную дробь можно однозначно представить в виде суммы нескольких отличных от 0 правильных p-примарных дробей, где p — различные унитарные неприводимые многочлены.

Доказательство.

«Существование»:

Запишем значение s в виде $p_1^{m_1}\dots p_t^{m_t}$, где p_i — унитарные неприводимые многочлены

По лемме
$$s = \frac{\dots}{p_1^{m_1}} + \frac{\dots}{p_t^{m_t}} = \frac{a_1}{p_1^{m_1}} + \dots + \frac{a_t}{p_t^{m_t}}$$

Перепишем это в виде суммы многочлена и правильных дробей, с тем же знаменателем, получим:

$$s=f+rac{b_1}{p_1^{m_1}}+\ldots+rac{b_t}{p_t^{m_t}},\,\,f\in K[x],\,\,rac{b_j}{p_j^{m_j}}$$
 — правильная дробь

$$\Longrightarrow f = s - rac{b_1}{p_1^{m_1}} - \ldots - rac{b_t}{p_t^{m_t}}$$
, где $rac{f}{1}$ — правильная дробь

$$\implies \deg f < 0 \implies f = 0$$

«Единственность»:

Пусть у S есть 2 различных таких разложения

Вычитаем из первого разложения второе, получим:

$$\frac{c_1}{p_1^{n_1}} + \ldots + \frac{c_l}{p_l^{n_l}} = 0, \ p_i$$
 — унитарные неприводимые многочлены

$$c_1,\ldots,c_l\neq 0$$

Можно считать все эти дроби несократимыми.

$$\implies \frac{c_1}{p_1^{n_1}} + \ldots + \frac{c_{l-1}}{p_{l-1}^{n_{l-1}}} = \frac{-c_l}{p_l^{n_l}}$$

Приведем к общему знаменателю левую часть и сократим дробь, тогда знаменатель полученной дроби будет делить $p_1^{n_1} \dots p_{l-1}^{n_{l-1}}$ и не будет ассоциирован с $p_l^{n_l}$, так как не может быть делителем p_l , противоречие.

Определение 10.7. Простейшей дробью называется дробь вида $\frac{a}{p^n}$, где p — неприводимый многочлен, $n \in \mathbb{N}$, $\deg a < \deg p$

Теорема 10.1. Любая ненулувая правильная дробь единственным образом представляется в виде суммы нескольких простейших дробей с различными знаменателями.

Доказательство.

«Существование»:

Достаточно разложить правильную примарную дробь $\frac{a}{n^n}$

$$a = r_m p^m + \ldots + r_1 p + r_0, \deg r_i < \deg p, \ r_m \neq 0$$

m < n, так как $\deg a < \deg p$

$$\frac{a}{p^n} = \frac{r_m}{p^{n-m}} + \frac{r_{m-1}}{p^{n-m+1}} + \ldots + \frac{r_1}{p^{n-1}} + \frac{r_0}{p^n}$$
 — искомое представление, если удалить нулевые слагаемые «Елинственность»:

Пусть для s есть представления в виде суммы примарных. Обозначим C_p за сумму p-примарных дробей в этом представлении.

 $C_p - p$ -примарная правильная дробь

$$s = C_{p_1} + \ldots + C_{p_t} \implies$$
 все C_p определены однозначно

Пусть у C_p есть два разных разложения в сумму простейших дробей со степенями p в знаменателях.

$$\frac{r_n}{p^n}+\ldots+\frac{r_1}{p^1}=\frac{s_n}{p^n}+\ldots+\frac{s_1}{p^1},$$
 где n — максимальный показатель степени p в знаменателях

Пусть m — максимальный индекс, такой что $r_m \neq s_m$, некоторые r_i и s_i могут быть нулевыми

$$\frac{r_m - s_m}{p^m} + \ldots + \frac{r_1 - s_1}{p^1} = 0$$

$$\implies \frac{r_m - s_m}{n} = -(r_{m-1} - s_{m-1}) - p(r_{m-2} - s_{m-2}) - \dots \in K[X]$$

Противоречие, слева дробь, а справа многочлен.

11 Интерполяция

Теорема 11.1. Пусть K — поле, $n \in \mathbb{N}$: $x_1, x_2, \ldots, x_n \in K$, различные между собой. $y_1, y_2, \ldots, y_n \in K$. Тогда $\exists ! f \in K[x] : \deg f \leqslant n-1$ и $f(x_i) = y_i, \ i=1,\ldots,n$.

Доказательство.

«Единственность»:

Предположим, что существует два многочлена $f, g \in K[x]$, $\deg f \leqslant n-1$, $\deg g \leqslant n-1$: $f(x_i) = g(x_i) = y_i, \ i = 1, \ldots, n$

$$\exists h = f - g, \ \deg h \leq n - 1, \ h(x_i) = 0, \ i = 1, \dots, n$$

Предположим, $h \neq 0 \implies y \ h \leqslant n-1$ корней, но такого не может быть.

«Существование»:

Формула Лагранжа

Решим интерполяционную задачу в специальном случае, когда $y_1=1,\ y_2=\ldots=y_n=0.$

Найдем соответствующий многочлен f_1 .

$$x_1,\ldots,x_n$$
 — корни многочлена $f_1 \implies (x-x_2)\mid f_1,\ldots,(x-x_n)\mid f_1 \implies$

$$\underbrace{(x-x_2)(x-x_3)\dots(x-x_n)}_{\text{СТЕЦЕНИ}} \mid f_1 \implies f_1 = c(x-x_2)\dots(x-x_n), \ c \in K$$

$$f_1(x_1) = 1 \iff c(x_1 - x_2) \dots (x_1 - x_n) = 1 \implies c = \frac{1}{(x_1 - x_2) \dots (x_1 - x_n)}$$

Получился многочлен $f_1 = \frac{(x-x_2)...(x-x_n)}{(x_1-x_2)...(x_1-x_n)}$

Аналогичная задача с $y_i = 1, \forall_{j \neq i} \ y_j = 0$ имеет решение:

$$f_i = \frac{(x-x_1)...(\widehat{x-x_i})...(x-x_n)}{(x_i-x_1)...(\widehat{x_i-x_i})...(x_i-x_n)} = \frac{(x-x_1)...(\widehat{x-x_i})...(x-x_n)}{F'(x_i)}$$

Рассмотрим $f = y_1 f_1 + y_2 f_2 + \ldots + y_n f_n$, y_1, \ldots, y_n теперь произвольные.

$$\deg \leqslant \max(\deg f_1, \dots, \deg f_n) = n - 1$$

Получилась такая формула
$$f(x_i) = y_1 \underbrace{f_1(x_i)}_0 + y_2 \underbrace{f_2(x_i)}_0 + \ldots + y_i \underbrace{f_i(x_i)}_1 + \ldots + y_n \underbrace{f_n(x_i)}_0 = y_i$$

Замечание. Про связь с производной

$$F = (x - x_1) \dots (x - x_n)$$

$$F' = \sum_{i=1}^{n} (x - x_1) \dots (\widehat{x - x_i}) \dots (x - x_n)$$

$$F'(x_j) = \sum_{i=1}^{n} (x_j - x_1) \dots (\widehat{x_j - x_i}) \dots (x_j - x_n) = (x_j - x_1) \dots (\widehat{x_j - x_j}) \dots (x_j - x_n)$$

Метод Ньютона

Рассмотрим интерполяционную задачу и предположим, что мы уже нашли $f_{(n-1)} \in K[x]$, такой что $f_{(n-1)}$ решение интерполяционной задачи $(x_1, \ldots, x_{n-1}; y_1, \ldots, y_{n-1})$, то есть

$$\deg f_{(n-1)} \leqslant n-2$$
 и $f_{(n-1)}(x_i) = y_i, i = 1, \dots, n-1$

Пусть f решение интерполяционной задачи

$$f = f_{(n-1)} + g, \ g = ?$$

$$f(x_i) = y_i = f_{(n-1)}(x_i), i = 1, \dots, n-1$$

$$g = f - f_{(n-1)}, \ g(x_1) = \ldots = g(x_{n-1}) = 0$$

$$\deg q \leqslant n-1 \implies q = c(x-x_1)\dots(x-x_{n-1})$$

$$g(x_n)=f(x_n)-f_{(n-1)}(x_n)=y_n-f_{(n-1)}(x_n)\implies$$
 отсюда находится c

4 Линейная алгебра

1 Матрицы

Определение 1.1. R — кольцо, $m, n \in \mathbb{N}$

Матрица $m \times n$ над кольцом R — прямоугольная таблица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \text{ где } a_{ij} \in R$$

Есть краткая запись $A = (a_{ij})_{i=1,\dots,m}$; $j=1,\dots,n} = (a_{ij})$

Определение 1.2. Множество матриц $m \times n$ над кольцом R обозначается как $M_{m,n}(R)$

Так же обозначают, как: $R^{m \times n}$, M(m, n, R), $M_{m \times n}(R)$

Пусть $A, B \in M_{m,n}(R)$ — матрицы. $A = (a_{ij}), B = (b_{ij})$

Их суммой называется матрица $C = (c_{ij})$, где $c_{ij} = a_{ij} + b_{ij}$.

Пусть $A = (a_{ij}) \in M_{m,n}(R), B = (b_{ij}) \in M_{n,p}(R)$

Их произведением называется матрица $C = (c_{ij}) \in M_{m,p}(R)$, где $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Пусть $c \in R$, $A \in M_{m,n}(R)$

Тогда $c \cdot A = (c \cdot a_{ij}) \in M_{m,n}(R)$

Замечание. По умолчанию R — коммутативное кольцо

Определение 1.3. Транспонированная матрица $A=(a_{ij})\in M_{m,n}(R)$ — матрица $B=(b_{ij})\in M_{n,m}(R)$, где $b_{ij}=a_{ji}$

Обозначается как A^T

Пример.
$$\begin{pmatrix} 2 & 0 & -3 \\ 1 & 5 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \\ 0 & 5 \\ -3 & 4 \end{pmatrix}$$

Определение 1.4. Матрица $A = (a_{ij}) \in M_{m,n}(R)$ — квадратная, если m = n

Обозначается как $A \in M_n(R)$

Теорема 1.1 (Свойства операций над матрицами).

1.
$$A + (B + C) = (A + B) + C$$

2.
$$0 = (0)$$
, тогда $A + 0 = 0 + A = A$

3. Для любой
$$A$$
 есть $-A$, такая что $A + (-A) = (-A) + A = 0$

4.
$$A + B = B + A$$

5. (AB)C = A(BC), нужно чтобы $A \in M_{m,n}(R)$, $B \in M_{n,p}(R)$, $C \in M_{p,q}(R)$ Обе матрицы принадлежат $M_{m,q}(R)$

$$6. \ A(B+C) = AB + AC$$

7.
$$(B+C)A = BA + CA$$

8.
$$(\lambda + \mu)A = \lambda A + \mu A, \ \lambda, \mu \in R$$

9.
$$\lambda(A+B) = \lambda A + \lambda B, \ \lambda \in R$$

10.
$$(\lambda A)B = \lambda(AB) = A(\lambda B), \ \lambda \in R$$

11.
$$(\lambda \mu)A = \lambda(\mu A), \ \lambda, \mu \in R$$

12.
$$(A+B)^T = A^T + B^T$$

13.
$$(AB)^T = B^T A^T$$

Определение 1.5. Пусть $n \in \mathbb{N}$. Единичной матрицой порядка n называется:

$$E_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in M_n(R)$$

Как кратко обозначить: $E_n=(\delta_{ij}),$ где $\delta_{ij}=\begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$ — символ Кронекера

Предложение 1.1. Пусть $A \in M_{m,n}(R)$.

Тогда
$$E_m A = A E_n = A$$

Доказательство.

$$E_m A = (b_{ij}), \ A = (a_{ij})$$

$$b_{ij} = \sum_{k=1}^{m} \delta_{ik} a_{kj} = a_{ij}$$

To есть $E_m A = A$

$$E_n A^T = A^T \implies (E_n A^T)^T = (A^T)^T \implies (A^T)^T E_n^T = (A^T)^T \implies A E_n = A$$

 ${\it Cnedcmeue.}\ M_n(R)$ — кольцо, где E_n — нейтральный элемент по умножению

Называют кольцом квадратных матриц порядка n.

Замечание. Кольцо не обязательно коммутативное при $n\geqslant 2$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A \neq B$$

Замечание. $M_1(R) \cong R$

Определение 1.6. $GL_n(R) = M_n(R)^* = \{A \in M_n(R) \mid \exists B \in M_n(R), \ AB = BA = E_n\}$

Такая B единственная и называется обратной к A, обозначается A^{-1}

Предложение 1.2.

1.
$$E_n \in GL_n(R), E_n^{-1} = E_n$$

2.
$$A_1, \ldots, A_k \in GL_n(R) \implies \prod_{i=1}^k A_i \in GL_n(R), \ (A_1 \ldots A_k)^{-1} = A_k^{-1} \ldots A_1^{-1}$$

3.
$$A \in GL_n(R) \implies A^T \in GL_n(R), (A^T)^{-1} = (A^{-1})^T$$

Доказательство.

1.
$$E_n E_n = E_n E_n = E_n$$

2.
$$(A_1 \dots A_k)(A_k^{-1} \dots A_1^{-1}) = A_1 \dots A_{k-1}(A_k A_k^{-1}) \dots A_1^{-1} = A_1 \dots A_{k-1} A_{k-1}^{-1} \dots A_1^{-1} = A_1 A_1^{-1} = E_n$$

 $(A_k^{-1} \dots A_1^{-1})(A_1 \dots A_k) = \dots = A_k^{-1} A_k = E_n$

3.
$$(A^T \cdot (A^T)^{-1}) = (A^{-1} \cdot A)^T = E_n^T = E_n$$

 $((A^T)^{-1} \cdot A^T) = (A \cdot A^{-1})^T = E_n^T = E_n$

Oпределение 1.7. Матричная единица — это матрица, где все элементы нулевые, кроме одного, который равен единице.

Обозначается как e_{ij} .

Замечание.
$$A=(a_{ij})=\sum\limits_{i,j}a_{ij}e_{ij}$$

2 Элементарные преобразования и элементарные матрицы

Определение 2.1. Элементарное преобразование 1 типа:

К i строке прибавить j строку, умноженную на $\lambda \in R$. Обозначается $T_{ij}(\lambda)$

Определение 2.2. Элементарное преобразование 2 типа:

Поменять местами i и j строки. Обозначается S_{ij}

Определение 2.3. Элементарное преобразование 3 типа:

Умножить i строку на $\lambda \in R$, $\lambda \neq 0$. Обозначается $D_{ij}(\lambda)$

Замечание. Аналогичные преобразования можно делать с столбцами.

Определение 2.4. Матрица $A \in M_{m,n}(K)$ называется ступенчатой, если существует $0 \le r \le m$ и числа $j_1, \ldots, j_r : 1 \le j_1 < \ldots < j_r \le n$ такие, что:

1.
$$a_{kj_k} \neq 0, \ k = 1, \dots, r$$

2.
$$a_{kj} = 0, k = 1, \ldots, r, j < j_k$$

3.
$$a_{kj} = 0, \ \forall j, k : \ k > r$$

Пример.
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Предложение 2.1. Любую матрицу можно превратить в ступенчатую с помощью преобразования строк 1 и 2 типа.

Доказательство. (короче Гаусса пишем и работает)

$$A = a(i,j) \in M_{m,n}(k)$$

Индукция по m.

База: m = 1. A ступенчатая по определению.

Переход: m > 1:

Если A = 0, то A ступенчатая по определению.

 j_1 — номер первого ненулевого столбца.

 $\exists i: a_{ij_1} \neq 0$

 $i \neq 1 \implies$ применим S_{1i}

Таким образом можно считать $a_{1j_1} \neq 0$.

Применим
$$T_{21}\left(-\frac{a_{2j_1}}{a_{1j_1}}\right), T_{31}\left(-\frac{a_{3j_1}}{a_{1j_1}}\right), \dots, T_{m1}\left(-\frac{a_{mj_1}}{a_{1j_1}}\right)$$

Получим
$$A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{mm} & \dots & a_{mn} \end{pmatrix}$$

По индукции A' ступенчатая.

Определение 2.5. Окаймленная единичная матрица — матрица вида:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$

Теорема 2.1. Пусть $A \in M_{m,n}(K)$. Тогда ее можно преобразовать в окаймленную единичную матрицу с помощью преобразования строк и столбцов.

Доказательство.

Сделаем A ступенчатой.

С помощью третьего преобразования сделаем все ведущие элементы равными 1.

Превратим ступеньки разной длины в единичные. (меняя столбцы)

Применим
$$D_1(a_{11}^{-1}), \ldots, D_r(a_{rr}^{-1}).$$

Потом будем от верхней строки к нижней превращать их в строки с одной 1 и нулями. (вычитая строки и столбцы)

Пример.
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \stackrel{\text{вычесть столбцы}}{\rightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Определение 2.6. Элементарная матрица:

«Первого типа»:

Пусть
$$1 \leqslant i, j \leqslant n, i \neq j, \lambda \in K$$

$$T_{ij}(\lambda) = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & \lambda \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = E_n + \lambda e_{ij}$$

«Второго типа»:

$$S_{ij} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = E_n - e_{ii} - e_{jj} + e_{ij} + e_{ji}$$

«Третьего типа»:

$$D_{i}(\lambda) = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = E_{n} + (\lambda - 1)e_{ii}$$

Предложение 2.2. Пусть $A \in M_{m,n}(K)$. Тогда при элементарных преобразованиях строк матрицы A получаются матрицы $T_{ij}A, S_{ij}A, D_iA$.

Доказательство.

1. «Первого типа»:

Поскольку матрица $T_{ij}(\lambda)$ отличается от E_n только в i-ой строке, то произведение тоже. В i-ой строке $T_{ij}(\lambda)$ только две позиции отличаются от нуля, это i и j. При умножении получаем следующее:

$$\begin{pmatrix}
a_{1k} \\
\vdots \\
a_{ik} \\
\vdots \\
a_{jk} \\
\vdots \\
a_{nk}
\end{pmatrix} = a_{ik} + \lambda a_{jk}$$

Такое происходит в каждом столбце матрицы, поэтому получаем, что i строка матрицы $T_{ij}A$ равна $(a_{i1} + \lambda a_{j1} \ldots a_{ik} + \lambda a_{jk} \ldots a_{in} + \lambda a_{jn})$

2. «Второго типа»:

Поскольку матрица S_{ij} отличается от E_n только в i-ой и j-ой строках, то произведение тоже. i-ая строка равна произведению $(0 \ldots 1 \ldots 0)$ на матрицу A, то есть на её j-тую строку. Аналогично с j-ой строкой.

3. «Третьего типа»:

Поскольку матрица $D_i(\lambda)$ отличается от E_n только в i-ой строке, то произведение тоже. i-ая строка равна произведению $\begin{pmatrix} 1 & \dots & \lambda & \dots & 1 \end{pmatrix}$ на матрицу A, то есть на её i-тую строку. Что равно произведению i-ой строки на λ .

Следствие. Аналогично, преобразования столбцов можно записать в виде $AT_{ii}(\lambda), \ AS_{ii}, \ AD_{i}(\lambda).$

Доказательство. $A \longrightarrow A'$ — результат прибавления к i столбцу j-го с коэффицентом λ .

$$\implies (A')^T = T_{ij}(\lambda)A^T$$

$$\implies A' = (T_{ij}(\lambda)A^T)^T = (A^T)^T(T_{ij}(\lambda))^T = AT_{ii}(\lambda)$$

Аналогично: элементарные преобразования столбцов 2 и 3 типов сводятся к умножению справа на S_{ij} и $D_i(\lambda)$ соответственно.

Следствие.

- 1. $T_{ij}(-\lambda)T_{ij}(\lambda) = E_n$
- $2. S_{ij}S_{ij} = E_n$
- 3. $D_i(\lambda)D_i(\lambda^{-1}) = E_n$

Следствие. $T_{ij}(\lambda), \ S_{ij}, \ D_i(\lambda) \in GL_n(k)$ — все они обратимы.

Предложение 2.3. (PDQ — разложение матриц)

Пусть $A \in M_{m,n}(k)$. Тогда существуют элементарные матрицы $P_1, \ldots, P_k \in GL_m(k), Q_1, \ldots, Q_l \in GL_n(k)$, окаймленная единичная матрица $D \in M_{m,n}(k)$, такие, что $A = P_1 \ldots P_k DQ_1 \ldots Q_l$.

Доказательство. Существуют элементарные преобразования строк и столбцов, превращающие A в окаймленную единичную матрицу D.

$$\Longrightarrow D = \underbrace{u_k \dots u_1}_{\text{обратимы}} A \underbrace{v_1 \dots v_l}_{\text{обратимы}},$$
 где $u_1, \dots, u_k, \ v_1, \dots, v_l$ — элементарные матрицы

$$\implies A = u_1^{-1} \dots u_k^{-1} D v_l^{-1} \dots v_1^{-1}$$

Следствие. Пусть $A \in M_n(K)$? Тогда условия эквивалентны:

- 1. $A \in GL_n(K)$
- 2. $A=P_1\dots P_m$, где P_1,\dots,P_m элементарные матрицы

Доказательство.

«2 \Longrightarrow 1»: так как все $P_i \in GL_n(k)$

 $\ll 1 \implies 2$ »:

$$A = P_1 \dots P_k DQ_1 \dots Q_l, \ D = \begin{pmatrix} E_n & 0 \\ 0 & 0 \end{pmatrix}$$

$$\implies D = P_k^{-1} \dots P_1^{-1} A Q_l^{-1} \dots Q_1^{-1} \implies D \in GL_n(K)$$

В D есть нулевая строка, значит $\forall C \in M_n(k)$: в DC есть нулевая строка $\Longrightarrow DC \neq E_n$, но ведь $D \in GL_n(K)$, значит $D = E_n \Longrightarrow A = P_1 \dots P_k Q_1 \dots Q_l$, где все матрицы элементарны.

3 Перестановки

Определение 3.1. M — множество. Π ерестановкой M называется биекция на себя.

 $S(M) = \{$ перестановка $M\}$

$$S(M) \times S(M) \to S(M)$$

$$(g, f) \mapsto g \circ f$$

Предложение 3.1. $(S(M), \circ)$ — группа.

Доказательство.

- 1. Ассоциативность очевидна.
- 2. id_{M} нейтральный элемент.
- $3. \ f \in S(M) \implies f^{-1} \in S(M)$ обратный элемент.

Определение 3.2. S_n — симметрическая группа степени n (*группа перестановок n-элементного множества*)

Замечание. $|S_n| = n!$

Пример.
$$S_3 = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}$$

Определение 3.3. *Циклом* (i_1, i_2, \dots, i_k) называется $\sigma \in S_n$ такая что

$$\sigma(i_1) = i_2, \sigma(i_2) = i_3, \dots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1,$$

а так же $\sigma(i_j) = i_j$ для всех $j \notin \{1, 2, \dots, k\}$.

 $k\geqslant 2-\partial$ лина цикла.

Определение 3.4. Циклы (i_1,i_2,\ldots,i_k) и (j_1,j_2,\ldots,j_l) называются *независимыми*, если $\forall r,s:i_r\neq j_s$

Предложение 3.2. Любая перестановка является произведением нескольких попарно независимых циклов.

Доказательство. $i, \sigma(i), \sigma(\sigma(i)), \ldots$ все различны, так как σ — биекция, значит это — независимый цикл.

Определение 3.5. Цикл длины 2 называется транспозицией.

Определение 3.6. Транспозиция (i, i+1) назывется элементарной транспозицией.

Предложение 3.3. Любой цикл (i_1, i_2, \ldots, i_n) раскладывается в произведение транспозиций $(i_1, i_2) \cdot (i_2, i_3) \cdot \ldots \cdot (i_{n-1}, i_n)$

Упражнение. Любая перестановка раскладывается в произведение элементраных транспозиций.

Определение 3.7. (i, j), i < j - uнверсия, если $\sigma(i) > \sigma(j)$

Определение 3.8. $Inv(\sigma)$ — число инверсий перестановки σ

Определение 3.9. Четность перестановки — четность числа инверсий в ней.

Определение 3.10. Знак перестановки — $\mathrm{sgn}(\sigma) = \begin{cases} 1, & \text{если перестановка четная} \\ -1, & \text{если перестановка нечетная} \end{cases}$

Лемма 3.1. Если перестановку умножить справа на транспозицию, то ее знак поменяется на противоположный, то есть $\operatorname{sgn}(\sigma \circ (i,j)) = -\operatorname{sgn}(\sigma)$.

Доказательство. Четность числа инверсий с участием $\sigma(i)$ и $\sigma(j)$ не изменится, так как все элементы между i и j поменяют число инверсий четное число раз. Соответственно, изменится лишь инверсия между i и j.

Следствие. Четность перестановки равна четности количества транспозиций в ее разложении.

Доказательство. $sgn((i_1, j_1)(i_2, j_2) \dots (i_k, j_k)) = (-1)^k$

Следствие. Пусть $\sigma, \tau \in S_n$, тогда:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

$$\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$$

Определение 3.11. Множество четных перестановок $A_n = \{ \sigma \in S_n \mid \operatorname{sgn}(\sigma) = 1 \}$ — подгруппа S_n

Предложение 3.4. Пусть $n \geqslant 2$, тогда $|A_n| = \frac{n!}{2}$

Доказательство. Рассмотрим

$$\varphi: A_n \to S_n \setminus A_n$$

 $\sigma \mapsto \sigma \circ (1,2)$ — из четной перестановки получаем нечетную

$$\psi: S_n \setminus A_n \to A_n$$

 $\sigma \mapsto \sigma \circ (1,2)$ — из нечетной перестановки получаем четную

$$arphi=\psi^{-1}\implies arphi$$
 — биекция $\implies |A_n|=|S_n\setminus A_n|=rac{n!}{2}$

4 Определители

Мы знаем, что матрицы тесно связаны с системами линейных уравнений и мы хотим знать, когда системы разрешимы единственным образом, когда не имеют решений, и когда имеют бесконечно много решений.

Определение 4.1. Системы линейных уравнений подразделяются на:

- Несовместные не имеют решений.
- Совместные имеют решения.
 - Определенные имеют единственное решение.
 - Неопределенные имеют бесконечно много решений.

Определение 4.2. $A \in M_n(R)$, R — коммутативное кольцо.

Определителем матрицы A называется:

$$\det(A) = |A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

Свойства.

1.
$$det(A) = det(A^T)$$

$$2. A = \begin{bmatrix} A_1 \\ \vdots \\ A'_i + A''_i \\ \vdots \\ A_n \end{bmatrix}, \det(A) = \begin{vmatrix} A_1 \\ \vdots \\ A'_i \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A''_i \\ \vdots \\ A_n \end{vmatrix}$$

3.
$$A = \begin{bmatrix} A_1 \\ \vdots \\ \alpha A_i \\ \vdots \\ A_n \end{bmatrix}$$
, $\det(A) = \alpha \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_n \end{vmatrix}$

4.
$$det(\alpha A) = \alpha^n det(A)$$

5.
$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_n \end{bmatrix}, A_i = A_j \implies \det(A) = 0$$

6.
$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_j \\ \vdots \\ A_n \end{bmatrix}, B = \begin{bmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_i \\ \vdots \\ A_n \end{bmatrix}, \det(A) = -\det(B)$$

7.
$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_n \end{bmatrix}, B = \begin{bmatrix} A_1 \\ \vdots \\ A_i + \alpha A_j \\ \vdots \\ A_n \end{bmatrix}, \det(A) = \det(B)$$

Доказательство.

1.

$$|A^{T}| = \sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma \cdot \prod_{i=1}^{n} a_{\sigma(i)i} =$$

$$\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma \cdot \prod_{i=1}^{n} a_{i\sigma^{-1}(i)} =$$

$$\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma^{-1} \cdot \prod_{i=1}^{n} a_{i\sigma^{-1}(i)} =$$

$$\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma \cdot \prod_{i=1}^{n} a_{i\sigma(i)} = |A|$$

TODO: Дописать

5 Дальнейшие свойства определителя

Свойства.

$$A = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}, \ \det(A) = \det(X) \det(Z)$$

Доказательство.

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_i a_{i,\sigma(i)} = \sum_{\sigma \in S_n} A_{\sigma}$$

 A_{σ} не включает элементов из нижней левой нулевой матрицы, значит $\sigma(\{n+1,n+2,\dots,m\})=\{n+1,n+2,\dots,m\}$ и $\sigma(\{1,2,\dots,n\})=\{1,2,\dots,n\}$

А тогда
$$\sigma = \gamma \delta$$
, $\gamma \in S_n$, $\delta \in S_m$, $A_{\sigma} = \operatorname{sgn}(\gamma) X_{\gamma} \operatorname{sgn}(\delta) Z_{\delta}$

Свойства.

$$A, B \in M_{n \times n}(K), \det(AB) = \det(A)\det(B)$$

Доказательство. Элементарными преобразованиями можно и A и B привести к диагональному виду и тогда определители посчитаются легко

Определение 5.1. Минором M_{ij} матрицы A порядка 1 называется определитель A_{kl} , где $i \neq k, j \neq l$.

Алгебраическим дополнением A_{ij} называется $(-1)^{i+j}M_{ij}$.

Лемма 5.1. Об определители квадратной матрицы с почти нулевой строкой.

$$A \in M_{n \times n}(K)$$
 $1 \leqslant i_0, j_0 \leqslant n, \ a_{i_0j} = 0$ при $j \neq j_0$

Тогда $\det(A) = a_{i_0j_0} \det(A_{i_0j_0})$

Доказательство. $\sigma(i_0)=j_0$ и потом посмотреть просто как знак перестановки меняется

Теорема 5.1. Разложение определителя по k-ой строке

$$A \in M_{n \times n}(K), \ \det(A) = \sum_{i=1}^{n} a_{ki} A_{ki}$$

Tогда
$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

Доказательство. Разложим k-ую строку в сумму строк вида $\begin{bmatrix} 0 & \dots & 0 & a_{ki} & 0 & \dots & 0 \end{bmatrix}$ и применим лемму

Следствие. Разложение по столбцу ничем не отличается

Cледствие. Матрица обратима $\iff \det(A) \neq 0$

Лемма 5.2. Пусть $1 \leqslant i \neq j \leqslant n$

Тогда
$$\sum_{k=1}^{n} a_{ik} A_{jk} = 0$$

Доказательство. Это выражение это определитель матрицы $A'= \begin{bmatrix} \vdots \\ A_j \\ \vdots \\ A_n \end{bmatrix}$

Следствие.

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} \det(A), & i = j \\ 0, & i \neq j \end{cases}$$

Определение 5.2. Взаимная матрица \tilde{A} это матрица $(A_{ij})_{i,j}^T$

Следствие.

$$A\tilde{A} = \tilde{A} = \det(A)I_n$$

$$A^{-1} = \det(A)^{-1} \tilde{A}$$

Теорема 5.2. (Крамера)

$$A \in M_n(K)$$
, тогда

A - совместная определенная $\iff \det(A) \neq 0$

Доказательство.

$$2 \implies 1$$

$$A \in GL_n(K)$$
, тогда

$$AX = b \iff X = A^{-1}b$$

$$1 \implies 2$$

Приведем методом Гаусса к ступенчатому виду. Таким образом можно считать, что (A|b) ступенчатая. Посмотрим на последнюю ступеньку. Если ведущий елемент последней ненулевой строки находится в последнем столбце, то система несовместная, что невозможно. В противном случае все ступеньки начинаются левее верикальной черты и нет свободных неизвестных. Поскольку система определенная, ширина всех ступенек равна 1. Таким образом

$$A = \begin{bmatrix} a_1 & * & \dots & * \\ 0 & a_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}$$
, где $a_i \neq 0$.

Тогда
$$\det(A) = \prod_{i=1}^n a_i \neq 0$$

6 Линейные пространства

6.1 Основные определения

Определение 6.1.

Пусть K - поле. Говорят, что задано линейное пространство над полем K, если заданы

- 1. множество V
- 2. операция $V \times V \to V$ сложение
- 3. операция $K \times V \to V$ умножение на скаляр

Такие что выполняются следующие аксиомы:

Пусть $a, b \in K$, $A, B \in V$, тогда

(V,+) - абелева группа

1.
$$a(A + B) = aA + aB$$

2.
$$(a+b)A = aA + bA$$

$$3. (ab)A = a(bA)$$

4.
$$1A = A$$

Пример.

1. $K^n = M(n, 1, K)$ - арифметическое n-мерное пространство над полем K.

2.
$$V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid a+b+c=0 \right\}$$

- 3. V = K[x]
- 4. V = C[0, 1]
- 5. $K = \mathbb{R}, \ V = \mathbb{R}_+$
 - $\bigoplus : v_1 \bigoplus v_2 = v_1 v_2$
 - \bigotimes : $a \bigotimes v = v^a$
- 6. $K = \mathbb{F}_2 = \{0, 1\}, M-$ множество, $V = 2^M$
 - $\bigoplus : v_1 \bigoplus v_2 = v_1 \triangle v_2$
 - $\bigotimes:\ a\bigotimes v=\begin{cases}1\bigotimes v=v\\0\bigotimes v=\varnothing\end{cases}$

Лемма 6.1.

$$0 \cdot v = 0$$

$$a \cdot 0 = 0$$

$$av = 0 \iff a = 0 \lor v = 0$$

$$(-1) \cdot v = -v$$

Доказательство.

$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 \cdot v = 0$$

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \implies a \cdot 0 = 0$$

$$a \neq 0 \implies a^{-1}av = v = 0 \implies v = 0$$

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = 0 \cdot v = 0 = v + -v \implies (-1) \cdot v = -v$$

Системы образующих. Линейные подпространства

Определение 6.2.

$$a_1, a_2, \ldots, a_n \in K, \ v_1, v_2, \ldots, v_n \in V$$
, тогда

 $a_1v_1+a_2v_2+\ldots+a_nv_n$ - линейная комбинация векторов v_1,v_2,\ldots,v_n с коэффициентами a_1,a_2,\ldots,a_n .

 $Lin(v_1,v_2,\ldots,v_n)=\langle v_1,v_2,\ldots,v_n\rangle=\{a_1v_1+a_2v_2+\ldots+a_nv_n\mid a_1,a_2,\ldots,a_n\in K\}$ - линефная оболочка v_1,v_2,\ldots,v_n .

Пусть $M \subset V$

 $\langle M \rangle = V$, говорят, что M - система/семейство образующих/порождающих пространства V.

Предложение 6.1.

$$M = \{v_1, v_2, \dots, v_n\}$$

Пусть v_n представляется в виде линейной комбинации $v_1, v_2, \ldots, v_{n-1}$, тогда

$$\langle M \rangle = \langle M \setminus v_n \rangle$$

Доказательство.

$$v_n = a_1 v_1 + a_2 v_2 + \ldots + a_{n-1} v_{n-1}$$

$$\forall w \in \langle M \rangle \ w = b_1 v_1 + b_2 v_2 + \ldots + b_{n-1} v_{n-1} + b_n v_n = (b_1 + b_n a_1) v_1 + (b_2 + b_n a_2) v_2 + \ldots + (b_{n-1} + b_n a_{n-1}) v_{n-1} \in \langle M \setminus v_n \rangle$$

Обратное включение очевидно.

Определение 6.3. Пространство V называется конечномерным, если у него есть конечная система образующих.

Пример.

- 1. $M(n, m, K) = \langle e_{ij} \rangle$ пространство размерности nm
- 2. R_+ пространство размерности 1
- 3. $K[x] = \langle x^i \rangle, 0 \leqslant i$ пространство бесконечномерное

Определение 6.4. $V' \subseteq V$ называется линейным подпространством пространства V, если

- 1. $0 \in V'$
- 2. $\forall v_1, v_2 \in V' \ v_1 + v_2 \in V'$
- 3. $\forall a \in K, v \in V' \ av \in V'$

Теорема 6.1.

Пусть V' - линейное подпространство пространства V, тогда V' - линейное пространство.

Доказательство.

Из неочевидного только третья аксиома Абелевой группы.

$$v \in V' \implies -v \in V'$$
 - верно в силу $(-1)v = -v$

Определение 6.5. V' < V - обозначает, что V' - линейное подпространство пространства V.

Лемма 6.2.

Пусть V' < V и $M \subseteq V'$, тогда $\langle M \rangle \subseteq V'$.

Доказательство. Очев.

Линейная зависимость и независимость

Определение 6.6.

 $v_1, v_2, \dots, v_n \in V$ называются линейно независимыми семейством (ЛНС), если

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0 \implies a_1 = a_2 = \ldots = a_n = 0.$$

 $v_1, v_2, \dots, v_n \in V$ называются линейно зависимыми семейством (ЛЗС), если существует

$$a_1,a_2,\ldots,a_n\in K$$
 такие, что $a_1^2+a_2^2+\ldots+a_n^2>0$ и $a_1v_1+a_2v_2+\ldots+a_nv_n=0.$

Теорема 6.2.

 $v_1, v_2, \ldots, v_n \in V$, тогда эквивалентны следующие утверждения:

1.
$$v_1, v_2, \dots, v_n$$
 - ЛЗС

2.
$$\forall j v_i \in \langle v_1, v_2, \dots, \widehat{v_{i-1}}, v_i, \dots, v_n \rangle$$

3.
$$\exists j v_i \in \langle v_1, v_2, \dots, v_{i-1} \rangle$$

Доказательство.

2)
$$\implies$$
 1) - $v_j = a_1v_1 + a_2v_2 + \dots \implies 0 = a_1v_1 + a_2v_2 + \dots + (-1)v_j + \dots$

1)
$$\implies$$
 3) - 0 = $a_1v_1 + a_2v_2 + \dots \implies$ 0 = $a_1v_1 + a_2v_2 + \dots + a_jv_j \implies v_j = \frac{-a_1}{a_j}v_1 + \dots \in \langle v_1, v_2, \dots, v_{j-1} \rangle$