

Even Tree ☆

1204.44 more points to get your next star!

Rank: 55158 | Points: 995.56/2200

Problem

Submissions

Leaderboard

Editorial

RATE THIS CHALLENGE

You are given a tree (a simple connected graph with no cycles).

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of nodes.

Input Format

The first line of input contains two integers n and m, the number of nodes and edges.

The next m lines contain two integers u_i and v_i which specify nodes connected by an edge of the tree. The root of the tree is node 1.

Constraints

- $2 \le n \le 100$
- $n \in \mathbb{Z}_{\text{even}}^+$

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes. $\mathbb{Z}_{\text{even}}^+$ is the set of positive even integers.

Output Format

Print the number of removed edges.

Sample Input 1 Copy Download

16	9
2	1
3	1
4	3
5	2
6	1
7	2
8	6
9	8
10	8 (

Sample Output 1

Explanation 1

Remove edges (1,3) and (1,6) to get the desired result.

Original tree:

Decomposed tree:

No more edges can be removed.