ME361 – Manufacturing Science Technology

Wire drawing

Dr. Mohit Law

mlaw@iitk.ac.in

Wire drawing

https://www.youtube.com/watch?v=rV9NeLBvasw

Wire drawing

https://www.youtube.com/watch?v=wlWkz9hjASo

Preliminaries. Stress-strain behavior.

(a) Perfectly elastic

(b) Rigid, perfectly plastic

(c) Elastic, perfectly plastic

(d) Rigid, linearly strain hardening

(e) Elastic, linearly strain hardening

Wire drawing

Source: Kalpakjian and Schmid

Wire drawing: actual die

Source: Kalpakjian and Schmid

Wire drawing: objectives and assumptions

Objectives:

- To determine drawing stresses and forces
- To determine maximum reduction possible

Assumptions:

- Specimen is cylindrical
- Coefficient of friction and the half-cone angle are small
- The coefficient of friction is low and constant over the entire die-workpiece interface
- Wire drawing is a continuous operation, with the wire being pulled and hence being in tension always

Wire drawing: ideal deformation (frictionless)

Drawing ratio

$$R = \left(\frac{A_o}{A_f}\right)$$

True strain

$$\epsilon = \ln\left(\frac{A_o}{A_f}\right) = \ln R$$

Drawing stress

$$\sigma_d = Y \ln \left(\frac{A_o}{A_f} \right)$$

with strain hardening, avg. flow stress

$$\overline{Y} = \frac{K\varepsilon_1^n}{n+1}$$

Drawing force

$$F = \overline{Y}A_f \ln\left(\frac{A_o}{A_f}\right)$$

Wire drawing: with friction

Use the slab method; resolve forces in the horizontal direction and use a yield criterion:

$$\sigma_d = Y \left(1 + \frac{\tan \alpha}{\mu} \right) \left[1 - \left(\frac{A_f}{A_o} \right)^{\mu \cot \alpha} \right]$$

for strain hardening material, replace Y by \overline{Y}

Wire drawing: maximum reduction per pass

Drawing stress:
$$\sigma_d = Y \left(1 + \frac{\tan \alpha}{\mu} \right) \left[1 - \left(\frac{A_f}{A_o} \right)^{\mu \cot \alpha} \right]$$

- With greater reduction, drawing stress increases, but up to a limit
- If drawing stress reaches the yield stress of the material, the material will simply yield, which is not desirable, since wire/rod will undergo further deformation
- For ideal perfectly plastic material with a yield stress of Y, the limit condition is:

$$\sigma_d = Y \ln \left(\frac{A_0}{A_f}\right) = Y \qquad \longrightarrow \qquad \ln \left(\frac{A_0}{A_f}\right) = 1 \qquad \longrightarrow \qquad \frac{A_0}{A_f} = e$$

Hence, maximum reduction per pass:
$$\frac{A_0 - A_f}{A_0} = 1 - \frac{1}{e} = 0.63 = 63\%$$

Wire drawing: optimum die angle

$$\frac{\sigma_d}{\overline{Y}} = \left(1 + \frac{\tan \alpha}{\mu}\right) \left[1 - \left(\frac{A_f}{A_o}\right)^{\mu \cot \alpha}\right]$$

- Drawing stress depends on ideal and frictional work
- There exists a drawing angle at which the force is minimum
- Friction ranges from 0.01 to 0.1

Tube drawing

Tube drawing

https://www.youtube.com/watch?v=QKAg1yMZIpY

