Getting up to speed @AIRLab

Things are moving fast, so this presentation might be outdated and/or incomplete.

Contribution and improvements are welcome!

Copyrights © 2023 Nico Catalano Contacts: nico.catalano@polimi.it

Disclaimer

Most of the concepts in this presentation are just suggestions for a great start

-> It can't contain everything you will ever need

Every thesis is different, you will learn to learn by yourself!

Who told you what to do during your thesis?

Tesista's check list

Make sure to be able to access the **building 7**

https://airlab.deib.polimi.it/life-in-airlab/service-pages/becoming-an-airlab-user/

Ask your co-advisor for the **VPN** credentials if not already provided

Ask your co-advisor for the servers' **credentials** if not already provided

Ask your co-advisor the **AIRLab Discord** server joining link if not already provided

How to approach the thesis' challenges

- The thesis is <u>YOUR PROJECT</u>, so it should reflect <u>YOUR INTEREST</u> and ambition
- The co-advisor is there to help you getting there
- You should enjoy the ride
- There is not a fixed time frame
- Do not hesitate to talk to your co-advisor!

Things to know before start writing

• Notes on how to write the thesis: https://airlab.deib.polimi.it/wp-content/uploads/2021/03/How-to-write-a-thesis.pdf

• Rules: https://www.ingindinf.polimi.it/en/1/teaching/lectures-and-exams/degree-examinations

• POLIMI's LATEX (Overleaf) template: https://www.overleaf.com/gallery/tagged/polimi

• POLIMI's MS PowerPoint template: https://polimi365-my.sharepoint.com/:f:/g/personal/10306579_polimi_it/Eu7UoRKAz-pHmHKuXXwdFd8Bn4JVyBfeYbMOm3ulGg4pkg?e=zLNdnj

General Suggestions

- Take notes during meetings
- Schedule regular update meeting with your co-advisor
- Always prepare what to show and talk about for scheduled meetings
- Keep track of your readings (eg using Zotero)
- Do not use Latex for presentations, only for your thesis!

AIRLab's servers

westworld – GPU Server

8 x 11GB Nvidea 1080 TI 40 core 252 GB RAM

elysium – GPU Server

4 x 24GB Nvidea RTX6000 1 x 12GB Nvidea Titan X 1 x 11GB Nvidea 1080TI 48 core 252 GB RAM

magrathea – GPU Server

8 x 24GB Nvidea RTX6000 112 core 252 GB RAM

multiverse – NAS

Notice! To obtain the servers IPs, please ask your co-supervisor.

AIRLab's servers

westworld – GPU Server

elysium – GPU Server

magrathea – GPU Server

multiverse – NAS

Computation only

Storage

AIRLab's servers

westworld – GPU Server

elysium – GPU Server

magrathea – GPU Server

multiverse – NAS

Students

PhDs and Postdocs

Computation only

Storage

Your account on the servers

- Same user/password on westworld, elysium (and magrathea)
- Home directory in each server:

```
/surname
/dataset
/shared -> link to multiverse
/private -> link to multiverse
/storage -> link to multiverse
```

Your home folder is supposed to be empty besides the link you already find. Please put your code under /surname/storage and the datasets in /surname/dataset/private

What is on multiverse is visible from all servers

AIRLab's network

Run experiments

- Share resources (GPU, CPU, ..)
- Virtualization
- Avoid dependencies conflicts
- Easier reproducibility

If you are not familiar with docker is advisable to check out some introductory tutorial on line

Book resources

Before using any GPU or CPU check that is not already used and book it for you

- Westworld resources: <u>https://docs.google.com/spreadsheets/d/1n6HDbSX0Pe0zcRA0iBYDStrud7</u> <u>d yRhBSrpFld4WNxs/edit#gid=1311829678</u>
- Elysium resources: <u>https://docs.google.com/spreadsheets/d/1wvzz0ZgPypepkZJtZahAmIJxV-iOlhsR7_s5Mht4l1A/edit#gid=0</u>
- Magrathea resources: <u>https://docs.google.com/spreadsheets/d/1zpmh4hSZp8u45HZ4p2aKrMqlBsSQHbYEthdlzRkKj2o/edit#gid=0</u>

Tutorial

- Get ssh certificate for servers
- Configure ssh autocomplete
- Configure network drive on ubuntu
- Configure ssh certificate for github on server
- Tmux
- Nvidia-smi
- Introduction to docker
- "Tutorial" pytorch + jupyter + tensorboard

Tutorial

 The following tutorial assumes you are using Ubuntu as operative system and VS Code as editor

• It mainly cover how I have configurated my machine -> there might be

better ways, please tell me about it

You can use whatever OS/Editor you prefer

Configure VPN

If you can't connect to the AIRLab ethernet network, you can always connect to any of the servers using the VPN.

<u>Instructions for OSX and Windows on POLIMI web site at</u>

https://www.ict.help.polimi.it/network-vpn-global/

VPN installation on Ubuntu

sudo apt install network-manager-openconnect network-manager-openconnect-gnome -y

Extract certificates (use the unique password you created the certificate with): (with newer opensal versions, from 3.0, append the "-legacy" option to the following commands)

openssl pkcs12 -in YOUR_CERTIFICATE_FILE.p12 -out usercert.pem -clcerts -nokeys openssl pkcs12 -in YOUR_CERTIFICATE_FILE.p12 -out userkey.pem -nocerts -nodes openssl pkcs12 -in YOUR CERTIFICATE FILE.p12 -cacerts -nokeys -chain -out userca.pem

Work from home.

Configure in GNOME

Under settings:

- 1. Network
- 2. Add VPN
- 3. Multi-protocol VPN client (openconnect)

Fill with:

- VPN Protocol: Palo Alto Networks GlobalProtect
- Gateway: gp-deib.vpn.polimi.it
- CA Certificate: userca.pem
- User Certificate: usercert.pem
- Private Key: userkey.pem

Launch the vpn from the menu filling in your polimi login credentials

(name.surname@(mail.)polimi.it and password)

Add VPN

Multi-protocol VPN client (openconnect)

Import from file..

Connect to the servers

Names instead of IP

- Instead of typing each time the IP of the server you want to connect to -> use DNS entry
- Add the following lines to your `/etc/hosts` file:

```
# AirLab servers

<magrathea_ip> magrathea magra

<elysium_ip> elysium ely

<westworld_ip> westworld ww

<multiverse_ip> multiverse multi
```

Now you can also use "nicknames" for the server (eg, `ww` instead of `westworld`)

SSH certificate

- Each time you connect to a server you need to put your credentials
- Tedious, error prone, need to remember a password
- -> use ssh certificate

https://linuxhint.com/generate-ssh-key-ubuntu/

Do it for all the server you can connect to

SSH config

- Typing `ssh surname@server` each time is tedious as the username is always the same!
- We can configure ssh to do it for us!
- Add to your `.ssh/config` the following lines:

Host ely HostName ely User YOUR_USERNAME_HERE Port 22 Host magra HostName magra User YOUR_USERNAME_HERE Port 22 Host ww HostName ww User YOUR_USERNAME_HERE Port 22

ssh config

Finally now you can connect to any server with just: `ssh server_nickname`

Bonus: you should now also have tab-autocomplete for server_nickname

Move files from/to servers

- You can use FTP, scp, and rsync
- But you can also map your home on the server in nautilus on your local machine
- Use sftp://server_name/home/username as address
- Save this location to bookmarks

Configure VS Code Remote SSH

+ Add New SSH Host...

Have a github repo for your project!

- Sync your work on github repo
- Following these instruction on the sever you are developing will let you use git hub

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

tmux: keeping ssh session alive when disconnect from server

- Running a time intensive script and want to turn off your pc?
- Want to login on the same shell from different location?

use tmux!

• Cheat sheet here: https://tmuxcheatsheet.com/
Check how to create, attach, detach and delete a tmux session

tmux: things to know

Scroll a tmux pane:

"Ctrl + b" followed by "[" (then you can use the arrows)

• tmux copy and paste:

Enter 'copy mode' by pressing "CTRL + b", [.

Use the arrow keys to go to the position from where you want to start copying. Press "CTRL + SPACE" to start copying.

Use arrow keys to go to the end of text you want to copy. Press "ALT + w" or "CTRL+ w" to copy into the tmux buffer.

Press "CTRL +b",] to paste in a possibly different Tmux pane/window.

tmux alternatives??

Do you know tmux alternatives?

<u>Please let me know!!</u>

Check GPU status

• Use command `nvidia-smi`

NVIDIA-SMI 520.56.06 Driver Version: 520.56.06 CUDA Version: 11.8									
	Temp		Pwr:Usag	e/Cap		Memo	ry-Usage	GPU-Util	Uncorr. ECC Compute M. MIG M.
0	Quadro		6000	0n	0000000	0:04:	00.0 Off	İ	Off Default N/A
	Quadro 60C		6000 99W /				00.0 On 24576MiB		Off Default N/A
	NVIDIA 66C		AN X 179W /				00.0 Off 12288MiB		N/A Default N/A
3 32%	NVIDIA 37C	A GeFo	orce 9W /	On 180W			00.0 Off 11264MiB		N/A Default N/A
	Quadro 57C		6000 151W /						Off Default N/A
5 36%	Quadro 40C						00.0 Off 24576MiB		Off Default N/A
+									
GPU	esses: GI ID	CI ID	PID						GPU Memory Usage
0	N/A	N/A	2558		G /usr	/lib/	xorg/Xorg		 8MiB
0 0	N/A N/A	N/A N/A	14390 2533867		C /usr		python3		3122MiB 6642MiB
1	N/A	N/A	2559				xorg/Xorg		8MiB
1	N/A	N/A	388610		C /usr	/bin/	python3		17288MiB
2	N/A	N/A	2560				xorg/Xorg		8MiB
2	N/A N/A	N/A N/A	3829190 3829728		C pytho				4314MiB 4080MiB
2	N/A	N/A	3840660		C pytho				1644MiB
3	N/A	N/A	2561		G /usr	/lib/	xorg/Xorg		8MiB
4	N/A	N/A	2562		G /usr	/lib/	xorg/Xorg		8MiB
4	N/A	N/A	2523223		C pytho	on			6642MiB

Get information about a process

Use `ps aux | grep PROCESS_PID`

Useful to get the process' user

"task manager" for the command line

• Use `htop`

```
catalano@elysium: ~
                                                                                                                          0.6%
                                                                                                                          2.6%
                                                                 26
                                 15
                                                                 27
                                                                                                  39
                                                                                                                          5.2%
                                                                                                                          1.9%
                                                                                                                          7.7%
                                                                                                                          8.3%
                                                                 31 [||
                        10.8%
                                 19
                                                         1.9%
                                                                                                                          9.0%
                                 20
                                                         3.2%
                                                                 32 [|||
                                                                                         10.3%
                                                                                                                          6.5%
                                                         0.6%
                                                                 33
 10 [ | |
                                                                 34
                                                         0.0%
                                                                                                                          7.7%
                                                                 35 []
                                                                                                  47 []]
                                                                                                                          8.3%
                                                                                                  48 [||
                                                        17.8%
                                                                                                                          7.1%
                                                  ||64.1G/252G|
 Swp
                                                     OK/8.00G
                                                                 Load average: 9.52 9.31 9.26
                                                                 Uptime: 4 days, 20:16:46
   PID USER
                                      SHR S CPU% MEM%
                                                        TIME+ Command
                     0 39.6G 11.9G 931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
390609 lampis
390610 lampis
                                                 4.7 0:43.12 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
390611 lampis
                                     931M S 0.0 4.7 9:11.60 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
390612 lampis
                                                4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
390613 lampis
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime,
390614 lampis
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel_launcher -f /.local/share/jupyter/runtime,
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel_launcher -f /.local/share/jupyter/runtime
390615 lampis
390616 lampis
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
                                     931M S 0.0 4.7 0:00.03 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
390617 lampis
390618 lampis
                                     931M S 0.0 4.7 0:00.08 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
392849 lampis
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime
395191 lampis
                                     931M S 0.0 4.7 0:00.00 /usr/bin/python3 -m ipykernel launcher -f /.local/share/jupyter/runtime/
                                     931M S 0.0 4.7 0:00.63 /usr/bin/python3 -m ipykernel_launcher -f /.local/share/jupyter/runtime/
395200 lampis
      F2Setup F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill F10Ouit
```


The "virtual environment"

- what library to make available to your script
- what dependences to install

- .

Docker Container

The image actually running. **It is immutable**

Assign resources (GPUs, CPUs)

Think of it as a "virtual machine"

Docker File

Docker Image description

text file

(or processes)

The "virtual enviorment"

- what library to make available to your script
- what dependeces to install

Docker File

Docker Container

The image actually running, its filesystem is immutable

Assign resources (GPUs, CPUs)

Think of it as a "virtual machine"

Attach external drive (read and write)

From here you can execute command as you are in a virtual machine separate from the hosting machine.

Developing/running/d ebugging ecc..

Docker useful commands

Build a new docker image:

docker build --rm -t your_surname/image_name

Visualize docker images:

docker images
docker images | grep your_surname

Run contanier

docker run
with some sugar
run-docker

Visulize running containers:

docker ps
docker ps | grep your_surname

Atach to a running contatiner: docker exec -it CONTAINER ID bash

Stop container: docker stop CONTAINER ID

Remove contanier: docker rm CONTAINER ID

Remove a docker image: docker rmi your_surname/image_name

- You need to specify your UID and GID
 - Use command 'id surname' to get it
- You need to specify which image to use
- You need to specify the resulting docker container name

- Set UID and GID as 1085
- Set container name surname_docker_example
- Image to use surname/example_image:v0

docker run -e HOST_UID=1085 -e HOST_GID=1085 --name surname_docker_example surname/example_image:v0

- Use GPU 7
- Use CPU from 104 to 111

docker run --gpus device=7 --cpuset-cpus 104-111 -e HOST_UID=1085 -e HOST_GID=1085 -u 1085:20002 -- name surname docker example surname/example image:v0

Set the working directory as /home/surname/exp

docker run --gpus device=7 --cpuset-cpus 104-111 -w /home/catalano/exp -e HOST_UID=1085 -e HOST_GID=1085 -u 1085:20002 --name surname_docker_example surname/example_image:v0

- Mount the dataset folder
- Mount the project folder

```
docker run --gpus device=7 --cpuset-cpus 104-111 --mount

type=bind,source=/home/surname/storage/project,target=/home/surname/exp --mount

type=bind,source=/multiverse/datasets/surname/,target=/home/surname/exp/private_datasets -w /home/catalano/exp -e

HOST UID=1085 -e HOST GID=1085 -u 1085:20002 --name surname docker example surname/example image:v0
```

- Use parameter -d to let the container run in the background
- Use parameter -- rm to automatically remove the container when it exits
- Use parameter -it to have a console

docker run -d --rm -it --gpus device=7 --cpuset-cpus 104-111 --mount type=bind,source=/home/surname/storage/project,target=/home/surname/exp --mount type=bind,source=/multiverse/datasets/surname/,target=/home/surname/exp/private_datasets -w /home/catalano/exp -e HOST_UID=1085 -e HOST_GID=1085 -u 1085:20002 --name surname_docker_example surname/example_image:v0

Other parameters

- You might also want to:
 - set a memory limit
 - Forward some TCP port outside the container
 - ..
- Google/ChatGPT it

The lazy way

- Write a docker file starting from an existing one
- Have a build script
- Run the container via a bash script
- Attach your IDE to the running container
 - In VS Code you can:
 - Forward ports from a running container
 - Run Jupiter notebooks in the attached container w/o using the browser
- When you finish, stop the container, remove it, remove the image.
- Check your IDE plugins, there might be something useful for handling docker

Toy example

• MNIST classification example:

Repo on github

https://github.com/AIRLab-POLIMI/MNIST Toy Example

- We create the environment with the docker file, and install the python libs in requirements.txt
- Build the image with docker/build_docker.sh (it takes some time)
- Book the resources needed
- Run the container with
- Attach VS Code to the running container

Attach VS Code to an already running container

3 Select your container from the list

- Your project will be in /home/surname/exp
- CTRL + j to open a terminal
- Now you can play

Tensorboard

- Store and compare logs from many experiments
- Can visulize many kind of data:
 - Scalars:
 - Loss value, accuracy ..
 - Images
 - Model architecture
 - Embeddings

Tensorboard

- 1. Create a folder for all your experiments
- 2. For each experiment create a "writer" with a meaningful name
- 3. Add values to the writer
- 4. To visualize the data run tensorbord with command: tensorboard --logdir TB_DIRECTORY

By default it will listen on port 6006

Port forwarding

- When you run tensorboard VSCode should see that and auto forward its port outside.
- If not, or if you want to forward something else you can force the port forwarding
- ALT + j to open the bottom panel, go to the PORTS tab
- "Add Port"

Tensorboard - Projector

- Let you project (PCA, UMAP,t-SNE) high dimensional object to a 2D or 3D space
- -> allow to have an idea on how "far apart" objects are in the embedding space
- For some scenarion can be extremly insigthfull (eg let you see outliers)
- Not well documented, but for each embedding you can attach some metadata (images, text, numbers, boolean) to do filters.
- Check example

• Install the extension @tag:notebookKernelJupyterNotebook

- Install the extension @tag:notebookKernelJupyterNotebook
- Create/Open a ipynb file
- Select a kernel

- Install the extension @tag:notebookKernelJupyterNotebook
- Create/Open a ipynb file
- Select a kernel
- "python enviorment"

- Install the extension @tag:notebookKernelJupyterNotebook
- Create/Open a ipynb file
- Select a kernel
- "python enviorment"
- "base"

Endorsed practice

- Use configuration files and keep the same source code to implement small variations in your experiments (use flags and values from a config file)
- Use tensorboard to log values
 - Losses
 - Accuracy
 - Ecc...
- Use a log file instead of printing to the console
- Most importantly

Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live.

