Course Code:	Course Title	Credit
CSC602	Cryptography & System Security	3

Pr	Prerequisite: Computer Networks		
Co	Course Objectives:		
1	To introduce classical encryption techniques and concepts of modular arithmetic and		
	number theory.		
2	To explore the working principles and utilities of various cryptographic algorithms		
	including secret key cryptography, hashes and message digests, and public key algorithms		
3	To explore the design issues and working principles of various authentication protocols, PKI		
	standards and various secure communication standards including Kerberos, IPsec, and		
	SSL/TLS.		
4	To develop the ability to use existing cryptographic utilities to build programs for secure		
	communication		
Course Outcomes:			
1	Understand system security goals and concepts, classical encryption techniques and acquire		
	fundamental knowledge on the concepts of modular arithmetic and number theory		
2	Understand, compare and apply different encryption and decryption techniques to solve		
	problems related to confidentiality and authentication		
3	Apply different message digest and digital signature algorithms to verify integrity and		
	achieve authentication and design secure applications		
4	Understand network security basics, analyse different attacks on networks and evaluate the		
	performance of firewalls and security protocols like SSL, IPSec, and PGP		
5	Analyse and apply system security concept to recognize malicious code		

Module		Content	Hrs
1		Introduction - Number Theory and Basic Cryptography	8
	1.1	Security Goals, Attacks, Services and Mechanisms, Techniques. Modular Arithmetic: Euclidean Algorithm, Fermat's and Euler's theorem	
	1.2	Classical Encryption techniques, Symmetric cipher model, monoalphabetic and polyalphabetic substitution techniques: Vigenere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers	
2		Symmetric and Asymmetric key Cryptography and key Management	11
	2.1	Block cipher principles, block cipher modes of operation, DES, Double DES, Triple DES, Advanced Encryption Standard (AES), Stream Ciphers: RC4 algorithm.	
	2.2	Public key cryptography: Principles of public key cryptosystems- The RSA Cryptosystem, The knapsack cryptosystem	
	2.3	Symmetric Key Distribution: KDC, Needham-schroeder protocol. Kerberos: Kerberos Authentication protocol, Symmetric key agreement: Diffie Hellman, Public key Distribution: Digital Certificate: X.509, PKI	
3		Cryptographic Hash Functions	3
	3.1	Cryptographic hash functions, Properties of secure hash function, MD5, SHA-1, MAC, HMAC, CMAC.	
4		Authentication Protocols & Digital Signature Schemes	5
	4.1	User Authentication, Entity Authentication: Password Base, Challenge Response Based	

	4.2	Digital Signature, Attacks on Digital Signature, Digital Signature Scheme: RSA	
5		Network Security and Applications	9
	5.1	Network security basics: TCP/IP vulnerabilities (Layer wise), Network Attacks: Packet Sniffing, ARP spoofing, port scanning, IP spoofing	
	5.2	Denial of Service: DOS attacks, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service	
	5.3	Internet Security Protocols: PGP, SSL, IPSEC. Network security: IDS, Firewalls	
6		System Security	3
	6.1	Buffer Overflow, malicious Programs: Worms and Viruses, SQL injection	

Tex	Textbooks:	
1	William Stallings, "Cryptography and Network Security, Principles and Practice", 6th	
	Edition, Pearson Education, March 2013	
2	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill	
3	Behrouz A. Forouzan & Debdeep Mukhopadhyay, "Cryptography and Network	
	Security" 3rd Edition, McGraw Hill	

Ref	Referecebooks:	
1	Bruce Schneier, "Applied Cryptography, Protocols Algorithms and Source Code in C",	
	Second Edition, Wiley.	
2	Atul Kahate, "Cryptography and Network Security", Tata McGraw-Hill Education, 2003.	
3	Eric Cole, "Network Security Bible", Second Edition, Wiley, 2011.	

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- 3 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Useful Links 1 https://github.com/cmin764/cmiN/blob/master/FII/L3/SI/book/W.Stallings%20%20Cryptography%20and%20Network%20Security%206th%20ed.pdf 2 https://docs.google.com/file/d/0B5F6yMKYDUbrYXE4X1ZCUHpLNnc/view