Description of the planar torus grid

Author 05/2016: F. Prill, DWD

Figure 1: Topological representation of the torus geometry.

The torus grid consists of equal-sided triangles, with edge length edge_length, which is a namelist parameter of the grid generator, and height $\frac{\sqrt{3}}{2}$ edge_length, cf. Fig. 2.

The lon-lat parameterization of the torus is

$$(lon, lat) = [0, 2\pi] \times [-\texttt{max_lat}, \texttt{max_lat}]$$

where $\max_{l} = \frac{\pi}{18} \equiv 10$ degrees (hard-coded in the torus grid generator). Variables related to the lon-lat parameterization are stored as the data type t_geographical_coordinates in the ICON code.

The Cartesian coordinates of the torus grid are: v = (x, y, 0) where

$$(x,y) = [0, \mathtt{domain_length}] \times [0, \mathtt{domain_height}]$$

The lengths domain_length, domain_height are stored as global attributes in the grid file. Related to the namelist parameters x_no_of_columns, y_no_of_rows of the grid generator we have

- domain_length := edge_length * x_no_of_columns
- domain_height := $\frac{\sqrt{3}}{2}$ * edge_length y_no_of_rows

Variables related to the Cartesian mesh are stored as the data type t_cartesian_coordinates in the ICON code.

Note The torus geometry and the corresponding global meta-data (NetCDF attributes) are *not* generated by the "standard grid generator" in src/grid_generator, but require L. Linardakis' grid generator tool (e.g. available in branches/icon-test-torus).

Figure 2: Triangulation of the torus mesh.