# CREDIT EDA ASSIGNMENT

**Pratik P Punyawant** 

## PROBLEM STATEMENT

- ✓ Loan providers struggle to lend to individuals with insufficient or non-existent credit histories, leading some consumers to default.
- ✓ Working for a consumer finance company specializing in various urban loans, your task is to use EDA to analyze data patterns.
- ✓ This analysis will help ensure that capable applicants are approved, reducing the risk of default and improving loan approval accuracy.

## ASSUMPTIONS MADE

- Focus on columns with less than 50% null values: Prioritize columns with higher data availability.
- Drop columns with over 50% null values: Remove columns with significant missing data.
- Ensure a cleaner dataset: Enhance data quality by reducing noise and inconsistencies.
- Improve model predictions: Increase the reliability of models in identifying potential loan defaulters.

## METHODOLOGY

Analysing the Given Data.



Assumptions for the data.



Cleaning the data.



Treating the missing values.



Bivariate Analysis



Merging the data.



Finding out the outliers.



Univariate Analysis.

### APPROACH

- Importing all the necessary datasets like NumPy, Pandas, etc.
- Dropped the columns as per the assumption.
- Clean the data for each columns by filling mean, median, mode.
- Done the Univariate analysis for both categorical and numerical data.
- Find the correlation and defaulter correlation in the data
- Finding the outliers.
- Done the Bivariate analysis.

#### ANALYZING CATEGORICAL COLUMNS THROUGH GRAPHS



- We can observe that the cash loans are higher than the revolving loans in 'NAME\_CONTRACT\_TYPE'.
- Similarly, the unaccompanied is higher, compared to other in column 'NAME\_TYPE\_SUITE'.
- In the same way frequency of females is higher than the male in the 'CODE GENDER' column.

#### CATEGORICAL UNIVARIATE ANALYSIS

Plotting data for the column: OCCUPATION\_TYPE



0.22628190703665588 Laborers 31% 18% count 10% Cleaning staf Sales staff Cooking staff Security staff Medicine staff Accountants Core staff High skill tech staff Drivers Managers





Plotting data for the column: NAME INCOME TYPE



- 10% of the revolving loans out of 100% is occupied, where as 90% of that is cash loans.
- We can observe that, with 18% of the occupation is covered with laborers which is highest of all other occupations.
- More than 50% is filled with working professions compared to others.

#### OUTLIERS











#### **BIVARIATE ANALYSIS**

- This is the one of the example for bivariate analysis.
- It is observed that secondary/secondary special is the highest in approved loans.
- Similarly the lower secondary is the least approved loans.

### CONCLUSION

- Example for defaulters (medium pay, age 25-35 then 35-45, male, jobless).
- People working in workers, sales, driving jobs of the business type 3, and not buying houses usually have small loan amounts.
- Additionally, consideration should be given to female candidates, as they
  historically have lower default rates, than their male counterparts.
- However, many of the past applications listed as denied, withdrawn, or inactive
  often exhibit well-timed payments, which suggests previous decisions were
  flawed.
- Previously, dubious applications with rejected, cancelled, or unveiled loans were also involved in defaults, and thus initiated decision making.

## THANK YOU