• 大模型的三要素

1.算法:模型结构,训练方法

2.数据: token计算方法,数据和模型效果之间的关系

3.算力:英伟达GPU介绍

基于大模型对话的系统架构

机器学习的四个范式

- 非神经网络时代的完全监督学习 (Fully Supervised Learning, Non-Neural Network)
- 基于神经网络的完全监督学习 (Fully Supervised Learning, Neural Network)
- 预训练,**精调**范式 (Pre-train, Fine-tune)
- 预训练,**提示**,预测范式 (Pre-train, Prompt, Predict)

提示学习: 提示工程的支撑

Fine-tuning

Prompting是例如意思

范式	第1、2种范式:完全 监督学习(Fully Supervised Learning;非神经网 络和神经网络)	第3种范式: 预训练- 微调	第4种范式: 预训练- 提示学习
训练数据	目标任务数据集	大规模生语料,目标 任务数据集	大规模生语料,目标 任务数据集
输入	我是谁?	我是谁?,	[CLS]我是谁? [SEP] 主题是[MASK] [MASK] [SEP],
输出	,[0,0,1]	[0,0,1]	[CLS]哲学[SEP]
输出层	一个线性变换	一个线性变换	无新增结构
特点	依赖目标任务数据集来获得文本表示。	基于庞大的生语料拉 来获得良好的文本表 示。 基于目标任务数据获 得下游任务知识。	基于庞大的生语料拉 来获得良好的文本表示。 基于语言模型的文本 生成能力,和下游任 务特点,设计训练和 推理领路。

提示工程(Prompt engineering)是一门相对较新的学科,旨在为各种应用和研究主题开发和优化提示,以有效地利用语言模型(LMs:language models)。提示工程技能有助于更好地了解大型语言模型(LLMs:large language models)的能力和局限性。研究人员使用提示工程来提高 LLMs 在各种常见和复杂任务(如问答和算术推理)上的能力。开发人员使用提示工程来设计稳健且有效的提示技术,与 LLMs 和其他工具进行交互。

Prompt:

完成这个句子:

天空是

Output:天空是指大气层上方的空间,通常是指人们在地面上所看到的天空,它的颜色和形态会随着时间、地点、季节和气象条件的不同而变化。

Prompt:

根据今天天气情况,完成描述今天天气的句子:

天空是

Output:天空是阴沉的,乌云密布,目前正在下雨。

Prompt:

根据上海今天晴天,完成描述今天天气的句子:

天空是

Output: 天空是湛蓝色的,阳光明媚,没有云彩。

提示的组成部分(Elements of a Prompt)

提示可能包含以下任何组件:

• Instruction 指令: 您想让模型执行的特定任务或指令

• Context 上下文:可以涉及外部信息或附加上下文,可以引导模型产生更好的响应

• Input Data 输入数据: 我们有兴趣为其找到响应的输入或问题

• Output Indicator 输出指示符:指示输出的类型或格式。

基础prompt提示

- 文本摘要(Text Summarization)
- 信息提取(Information Extraction)
- 问答(Question Answering)
- 文本分类(Text Classification)
- 对话(Conversation)
- 代码生成(Code Generation)
- 推理(Reasoning)

高级prompt提示

- 零样本提示(Zero-shot Prompting)
- 少量样本提示(Few-shot Prompting)
- 思维链(COT)提示(Chain-of-Thought Prompting)
- 零样本CoT(Zero-shot CoT)
- 自洽性/自一致性(Self-Consistency)
- 生成知识提示(Generate Knowledge Prompting)
- 自动提示工程(Automatic Prompt Engineer)

少量样本提示(Few-shot Prompting)

Prompt:

巴黎是法国的首都,有艾菲尔铁塔、卢浮宫和香榭丽舍大道等著名景点。 纽约是美国的一座大城市,拥有自由女神像、时代广场和中央公园等著名景点。 东京是日本的首都,有天空树、浅草寺和新宿御苑等著名景点。 北京是?

Completion:北京是中国的首都,有故宫、长城和天坛等著名景点。

通过COT解决基本逻辑问题:

Prompt:

煮一个鸡蛋需要2分钟,煮5个鸡蛋需要几分钟?

Completion:

煮一个鸡蛋需要2分钟,因此煮5个鸡蛋所需的时间是5个鸡蛋的煮时间之和。所以煮5个鸡蛋需要 $5 \times 2 = 10$ 分钟。答案是10分钟。

自洽性/自一致性(Self-Consistency)

Prompt:

我6岁的时候,我妹妹只有我的一半大。现在我70岁了,我妹妹多大了?

Completion:你的妹妹现在应该是64岁,因为当你6岁时,她只有3岁,相比之下,你已经增长到70岁,所以她应该比你小6岁。

大模型的内核: Transformer

公村等人经时纪星 模型 结构 位置编码 激活函数 layer norm方法 原生 Encoder-Sinusoidal编码 ReLU Post layer norm Transformer Decoder 绝对位置编码 **BERT** Encoder GeLU Post layer norm RoPE Casual decoder, **SwiGLU** LLaMA Pre RMS Norm Post Deep ChatGLM-6B Prefix decoder RoPE GeGLU Norm Bloom Casual decoder **ALiBi** GeLU Pre Layer Norm

大模型的架构

激活函数

$$GELU(x) = x imes P(X <= x) = x imes \phi(x), x \sim N(0, 1) \ = 0.5x \left(1 + tanh\left(\sqrt{2/\pi}(x + 0.044715x^3)
ight)
ight)$$

GEGLU
$$(x, W, V, b, c)$$
 = GELU $(xW + b) \otimes (xV + c)$
SwiGLU (x, W, V, b, c, β) = Swish $_{\beta}(xW + b) \otimes (xV + c)$

这里 $Swish_{eta}(x)=x\sigma(eta x)$, eta 为指定常数,如1

作者并没有对激活函数提出的原理和动机做过多描述,论文本身是对各类激活函数变种效果的对比 尝试

Deep Norm是对Post-LN的的改进,具体的:

```
def deepnorm(x):
    return LayerNorm(x * α + f(x))
```

与layerNorm相比, RMS Norm的主要区别在于去掉了减去均值的部分, 计算公式为:

$$\bar{a}_i = \frac{a_i}{\mathrm{RMS}(\mathbf{a})} g_i, \quad \text{where } \mathrm{RMS}(\mathbf{a}) = \sqrt{\frac{1}{n} \sum_{i=1}^n a_i^2}.$$

这里的 a_i 与Layer Norm中的 x 等价,作者认为这种模式在简化了Layer Norm的同时,可以在各个模型上减少约 $7\%\sim64\%$ 的计算时间

位置编码

旋转位置编码

cos(a-b)=cosacosb+sinasinb

$$egin{aligned} \langle oldsymbol{f}(oldsymbol{q},oldsymbol{m}),oldsymbol{f}(oldsymbol{k},oldsymbol{n}) &= oldsymbol{g}(oldsymbol{q},oldsymbol{k},oldsymbol{m}-oldsymbol{n}) \ q_0 \ q_2 \ q_3 \ dots \ q_{d-2} \ q_{d-1} \end{pmatrix} egin{aligned} &\cos m heta_0 \ \cos m heta_0 \ \cos m heta_1 \ \cos m heta_{d/2-1} \ \cos m heta_{d/2-1} \ \end{pmatrix} + egin{aligned} &-q_1 \ q_0 \ -q_3 \ q_2 \ dots \ \vdots \ \\ q_2 \ dots \ \vdots \ \\ -q_{d-1} \ q_{d-2} \ \end{pmatrix} \otimes egin{aligned} &\sin m heta_0 \ \sin m heta_0 \ \sin m heta_1 \ \sin m heta_1 \ dots \ \vdots \ \sin m heta_{d/2-1} \ \sin m heta_{d/2-1} \ \end{pmatrix} \end{aligned}$$

LayerNorm编码

Transformer有效性分析

