华南农业大学期末考试参考答案(A卷)

2017-2018 学年第 2 学期

考试科目: 计算机组成原理

考试类型:(闭卷)考试

考试时间: 120 分钟

一、选择题(本大题共15小题,每小题2分,共30分)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	C	C	В	D	A	В	C	D	В	A	A	A	В	С

二、填空题(本大题共5小题,每题2分,共10分)

- 1. __控制器____, __适配器____
- 2. 11.0010111
- 4. 64 , 16
- 5. $(3000)_{16}$, $(4000)_{16}$
- 6. <u>AR</u> , <u>DR</u> , <u>R1</u>
- 7. _ 高______, 计数器查询 , 独立请求 (注:后2个顺序可以调换)
- 8. A, D, E , 011
- 9. 扇区 , 小 _____

三、计算题(本大题共2小题,共17分)

1. (9分)

解: (1) 256MB 内存,因内存按字编址,字长 1B,因此地址总位数 28 位。块大小为 32B,字长 1B,因此字地址位数为 5 位。Cache 容量为 512KB,总共可以分为 512KB/32B=16K (行),Cache 行号位数 14 位。若按 4-路组相连进行组织,则共有 16K/4=4K (组),组号位数为 12 位。据此可得: A 的位数为 28-5-14=9,B 的位数为 14,C 的位数为 5,D 的位数为 28-5-12=11,E 的位数为 12,G 的位数为 28-5=23。

(A-E 和 G 各 1 分, 共 6 分)

(2) (2BF3A2E)₁₆=(0010 1011 1111 0011 1010 0010 1110)₂

(不给分)

订

线

若采用 4-路组相连,则标记 D 为高 11 位地址(0010 1011 111)₂,用十六进制表示为(15F)₁₆。 (1分)

2. (8分)

解:
$$(1)$$
 $(3A2E)_{16}=(0011\ 1010\ 0010\ 1110)_{16}$ $(1分)$

根据题意,采用交叉方式组成的存储器,低3位用于片选,高13位用于片内选择。(1分)因此,该地址位于存储器的模块6,在模块内是第(0011 1010 0010 1)2或(0745)16个字。

(模块号和块内号各1分)

 $t=T+(n-1)\times\tau=400+(8-1)\times50=750(ns)$

存储器的带宽为: W=8×32/750=341.3×10⁶(Mbps) (2分)

四、分析题(本大题共3小题,共33分)

1. (9分)

 $[X]_{h=110010101}, [Y]_{h=000100101}, [Z]_{h=110100101}$

[X+Y-Z]补的运算结果为: (3个等号各1分)

 $[X+Y-Z]_{\not\uparrow h} = [X]_{\not\uparrow h} + [Y]_{\not\uparrow h} + [-Z]_{\not\uparrow h} = 110010101 + 000100101 + 001011011 = 000010101$

(2)由于变形补码运算结果双符号位为00,因此没有溢出。 (2分)

2. (10分)

这 4 条指令的执行时空图如下所示:

4	È

时钟 指令	1	2	3	4	5	6	7	8	9
I_1	IF	ID	EXE	MEM	WB				
I_2		IF	ID	EXE	MEM	WB			
I_3			IF	ID	EXE	MEM	WB		
I_4					IF	ID	EXE	MEM	WB

(3分,时空图总体2分,画出推后一拍1分)

(2分)

(2) I_1 和 I_2 间存在 RAW 和 WAW (2分)

$$I_2$$
和 I_3 间存在 WAR (1分)

$$I_3$$
和 I_4 间存在 WAR 和 RAW (2分)

3. (14 分)解:(1)各空的内容如下:(评分标准: <1>和<3>每空 1 分; <2>和<4>每空 2 分,控制信号数量超过一半时给 1 分,全对给 2 分)

<1>PC->AR, PC+1->PC

<2> REC, ALU_IN_SEL, SCI, ALU_FUNC, STT, PC_EN

<3>R2->R1

<4>ALU_IN_SEL, SCI, ALU_FUNC, STT, REG_EN

(2) MVRD R2, 25 指令的执行周期流程图及相应的控制信号如下图所示。(评分标准:方框内的功能及方框外的控制信号各 1 分,其中第 1 个方框外的控制信号中/WR 必须给出。)

(3) 执行完 JRZ 一共需要 5×4+2×3=26 (时钟周期)

(说明:加上初始化时的1时钟周期为27时钟周期,结果也对。)

综合实验中指令从内存的 0 号单元开始,则存放 LOOP 标号对应指令的起始地址单位为 2×4=8,存放 JRNZ LOOP 指令的起始地址单位为 2×5+1×6=16。因此,对于 JRNZ LOOP 指令而言,当前 PC 值为 16,转移目标地址位 8,则偏移量 offset=8-16-1=-9。 (1 分) 用 8 位二进制表示为(11110111)₂,对应的十六进制为(F7)₂。 (1 分)