ADVANCED BAYESIAN MODELING

ROBUST INFERENCE:

A COMPUTATIONAL TRICK

Can we implement a Gibbs sampler for a model that uses the t distribution?

Direct natural conjugacy is not available.

Partial conjugacy is possible using a special representation ...

Scale Mixture Representation

For fixed μ , σ^2 , ν , if

$$y \mid V \sim N(\mu, V)$$
 and $V \sim Inv-\chi^2(\nu, \sigma^2)$

then

$$y \sim t_{\nu}(\mu, \sigma^2)$$

This represents the t distribution as a scale mixture of normals.

May be useful, since the normal and scaled inverse chi-square both have natural conjugacy.

Thus, in a Bayesian model, replace

$$y_1, \ldots, y_n \mid \mu, \sigma^2, \nu \sim \text{iid } t_{\nu}(\mu, \sigma^2)$$

with

$$y_1, \ldots, y_n \mid \mu, V_1, \ldots, V_n \sim \text{indep. } N(\mu, V_i)$$

$$V_1, \ldots, V_n \mid \sigma^2, \nu \sim \text{iid Inv-}\chi^2(\nu, \sigma^2)$$

This is an example of data augmentation:

The **auxiliary variables** V_i are present only to assist in the computation.

Gibbs Sampler

If ν is fixed, and the prior is

$$p(\mu) \propto 1$$
 $-\infty < \mu < \infty$ $p(\sigma^2) \propto (\sigma^2)^{-1}$ $\sigma^2 > 0$

then the conditional posterior distributions are standard and easily sampled – see BDA3, Sec. 12.1.

Thus, a Gibbs sampler is easily implemented.

(The same is true with some proper conjugate priors: normal for μ , and gamma for σ^2 .)

30

What if ν is a parameter (not fixed)?

There is no natural conjugacy for ν , but because it is one-dimensional, it can be sampled from its conditional posterior by many methods.

For example, you could use Metropolis or Metropolis-Hastings.

This would be an example of *Metropolis-within-Gibbs*.

Note: Unless you are programming the Gibbs sampler yourself, you probably do not need this computational trick.

For example, JAGS lets you directly specify a t distribution in your model, and then it handles the computational details.

Application to Normal Sample Model

Recall: For a two-parameter normal sample with the usual improper prior, the posterior can be expressed as

$$\mu \mid \sigma^2, y \sim N(\bar{y}, \sigma^2/n)$$

 $\sigma^2 \mid y \sim \text{Inv-}\chi^2(n-1, s^2)$

Since it can be shown that

$$\sigma^2/n \mid y \sim \text{Inv-}\chi^2(n-1, s^2/n)$$

it follows from the t representation that the marginal posterior for μ is

$$\mu \mid y \sim t_{n-1}(\bar{y}, s^2/n)$$

Thus, simulation is actually not needed to get posterior information about μ .

For example, it follows that

$$\frac{\mu - \bar{y}}{s/\sqrt{n}} \mid y \sim t_{n-1}(0,1)$$

from which it follows that the 95% central posterior interval is the same as the classical t-interval:

$$\bar{y} \pm t_{n-1,0.025} \cdot s/\sqrt{n}$$