Задание начального приближения:

21:-- Z

Задание количества шагов разбиения:

N = 100

Формирование функции производных:

$$D\big(x\,,y\big)\!\coloneqq\!-3\ y$$

Задание диапазона решения:

$$x0 \coloneqq 0$$
 $x1 \coloneqq 4$

Решение дифференциалоьного уравнения:

 $Z = \text{rkfixed}(y, x_0, x_1, N, D)$

 $Z^{\!\langle 0
angle}$

Задание начального приближения:

$$y = \begin{bmatrix} 1 \\ -10 \end{bmatrix}$$

Задание количества шагов разбиения:

N = 100

Формирование вектор-функции производных:

$$D(x,y) \coloneqq \begin{bmatrix} y_0 - y_1 \cdot \sin(x) \\ \sqrt[3]{y_0} - y_1 \end{bmatrix}$$

Задание диапазона решения:

$$x0 \coloneqq -2$$
 $x1 \coloneqq 8$

Решение дифференциального уравнения:

 $Z = \text{rkfixed}(y, x_0, x_1, N, D)$

Построение функций:

Вектор начальных условий:

$$y \coloneqq \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Количество шагов разбиения:

 $N \coloneqq 100$

Вектор-функция:

$$D(x,y) \coloneqq \begin{bmatrix} y_{_1} \\ y_{_0} - y_{_1} + x \end{bmatrix}$$
 Первая производная Вторая производная

Граница интервала решения:

x0 = 0

 $x1 \coloneqq 3$

Численное решение:

 $Z := \text{rkfixed}(y, x_0, x_1, N, D)$

Начальное приближение на левой стороне:

$$y_{_0}\!\coloneqq\!3$$

Количество шагов разбиения:

N = 200

Вектор-функция производных:

$$D(x,y) \coloneqq \begin{bmatrix} -3 \cdot x \cdot y_0 + y_1 \\ \sqrt[3]{y_1} - y_0 \end{bmatrix}$$
 Границы диапазона решения:

 $x0 \coloneqq 0$ $x1 \coloneqq 2$

Начальные условия на левой границе:

$$load(x0, V) \coloneqq \begin{bmatrix} 3 \\ V_0 \end{bmatrix}$$

Условия на правой границе:

$$score(x1, W) := W_1 - 1.6$$

Нахождение условий на правой границе:

$$IC \coloneqq \operatorname{sbval}\left(y\,,x0\,,x1\,,D\,,load\,,score\right) \!=\! \begin{bmatrix} 2.503\\ 2.325 \end{bmatrix}$$

Формирование начальных условий:

$$ic = load(x0, IC) = \begin{bmatrix} 3\\ 2.503 \end{bmatrix}$$

Решение задачи Коши для проверки:

$$Z = \text{rkfixed}(ic, x0, x1, N, D)$$

Проверка значений на правой границе:

$$Z_{_{N,\,2}} = 1.6$$

$$\begin{aligned} y &\coloneqq \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ N &\coloneqq 100 \\ D(x,y) &\coloneqq \begin{bmatrix} y_1 \\ y_0 - y_1 + x \end{bmatrix} \\ x0 &\coloneqq 0 \qquad x1 &\coloneqq 3 \\ Z &\coloneqq \text{rkfixed} \left(y, x0, x1, N, D \right) \end{aligned}$$

$$y_{_{\scriptscriptstyle{0}}}\!\coloneqq\!3$$

$$N \coloneqq 100$$

$$D(x,y) \coloneqq \begin{bmatrix} -3 \cdot x \cdot y_0 + y_1 \\ \sqrt[3]{y_1} - y_0 \end{bmatrix}$$

$$x0 \coloneqq 0$$
 $x1 \coloneqq 2$

$$load(x0, V) \coloneqq \begin{bmatrix} 3 \\ V_0 \end{bmatrix}$$

$$score\left(x1\,,W\right)\!\coloneqq\!W_{_{1}}\!-\!1.598$$

$$IC := \text{sbval}(y, x0, x1, D, load, score) = \begin{bmatrix} 2.5\\ 1.163 \end{bmatrix}$$
$$ic := load(x0, IC) = \begin{bmatrix} 3\\ 2.5 \end{bmatrix}$$

$$ic = load(x0, IC) = \begin{bmatrix} 3 \\ 2.5 \end{bmatrix}$$

$$Z\!\coloneqq\!\operatorname{rkfixed}\left(ic\,,x0\,,x1\,,\!N\,,\!D\right)$$

$$Z_{_{N,\,2}}\!=\!1.598$$

Задание исходных данных

$$g = 9.807 \frac{m}{s^2}$$
 Встроенная переменная

$$mass = 1 \ kg$$

$$\rho \coloneqq 1.2 \; \frac{kg}{m^3}$$

$$Cf = 0.49$$

$$S = 10 \ cm^2$$

Начальные условия

Диапазон времени:

$$t0 \coloneqq 0 \ s$$
 $t1 \coloneqq 10 \ s$

Вектор-функция при учете сил сопротивления:

$$D(x,y) \coloneqq \begin{bmatrix} y_1 \\ \frac{-Cf}{mass} \cdot \frac{\rho \cdot y_1^{\ 2}}{2} \cdot S \\ y_3 \\ -g + Cf \cdot \frac{\rho \cdot y_3^{\ 2}}{2} \cdot S \end{bmatrix}$$

Вектор-функция без учета сил сопротивления:

$$D2(x,y) \coloneqq egin{bmatrix} y_1 \ 0 \ y_3 \ -q \end{bmatrix}$$

Количество шагов разбиения интервала:

 $N \coloneqq 100$

Решение уравнения:

Z = rkfixed(init, t0, t1, N, D)

Z2 = rkfixed(init, t0, t1, N, D2)

$$g = 9.8$$

$$\rho\!\coloneqq\!1.2$$

$$Cf \coloneqq 0.49$$

 $S \coloneqq 0.5$

$$init \coloneqq \begin{bmatrix} 0 \\ 100 \\ 0 \\ 0 \end{bmatrix}$$

$$D(x,y) \coloneqq \begin{bmatrix} t1 \coloneqq 10 \\ y_1 \\ -Cf \cdot \frac{\rho \cdot \left(\left|y_1^{-2}\right|\right) \cdot S}{2} \\ y_3 \\ -q \end{bmatrix}$$

$$N \coloneqq 100$$

 $Z\!\coloneqq\! \mathrm{rkfixed} \big(init\,,t0\,,t1\,,\!N\,,\!D\big)$

0	0	100	0	0
0.1	5.174	25.444	-0.049	-0.98
0.2	7.333	18.519	-0.196	-1.96
0.3	8.971	14.557	-0.441	-2.94
0.4	10.29	11.991	-0.784	-3.92
0.5	11.394	10.194	-1.225	-4.9
0.6	12.344	8.866	-1.764	-5.88
0.7	13.177	7.843	-2.401	-6.86
0.8	13.92	7.033	-3.136	-7.84
0.9	14.589	6.374	-3.969	-8.82
1	15.198	5.828	-4.9	-9.8
1.1	15.757	5.368	-5.929	-10.78
				:

Z=