Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image Segmentation

Published In MICCAI 2021

Presented By: Jatin Sachdeva

Course Instructor
Prof. Dr C Krishan Mohan

Mentor Peketi Divya

Table of Content

- Motivation
- Problem
- Problem Statement
- Challenges
- Existing State of Art
- Unet
- GAN
- Proposed Model
- Loss Functions
- Dataset
- Result
- Abmation Study
- Conclusion

Motivation

Problem

Problem Statement

Getting Labeled data for medical image segmentation is challenging task. To address this issue we propose a semi-supervised image segmentation technique.

Challenges

How to came up with good loss function

How to come up with loss function for unlabeled data

Existing State of Arts

- Pseudo Labelling
- Mean Teacher
- VAT(virtual adversarial training)
- Deep Co-training

Unet and GAN

Unet

Generative Adversarial Networks (GAN)

Loss Function for GAN

$$\min_{G} \max_{D} V(D, G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

$$\mathbb{E}_{x \sim p_t}[1 - D(x)] + \mathbb{E}_{x \sim p_g}[D(x)] = \int_{\mathbb{D}} (1 - D(x))p_t(x) + D(x)p_g(x)dx$$

State of Art Experiment

Multitask loss function

$$\min_{\mathbf{\Theta}} \max_{\theta_C} \mathcal{L}(\mathbf{\Theta}; \mathcal{D})$$
.

$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{D}) := \lambda_s \, \mathcal{L}_{\mathrm{s}}(\boldsymbol{\Theta}; \mathcal{X}) + \lambda_u \, \mathcal{L}_{\mathrm{u}}(\boldsymbol{\Theta}; \mathcal{U}) + \lambda_c \, \mathcal{L}_{\mathrm{c}}(\boldsymbol{\Theta}; \boldsymbol{\theta}_C; \mathcal{D})$$

Supervised Loss

$$\mathcal{L}_{ ext{ce}}(heta_i; \mathcal{X}) = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{X}} \left[\left\langle \mathbf{Y}, \log \left(\mathcal{F}_i(\mathbf{X}) \right)
ight
angle
ight]$$

$$\mathcal{L}_{\text{dice}}(\theta_i; \mathcal{X}) = 1 - \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{X}} \left[\frac{2 \langle \mathbf{Y}, \mathcal{F}_i(\mathbf{X}) \rangle}{\|\mathbf{Y}\|_1 + \|\mathcal{F}_i(\mathbf{X})\|_1} \right],$$

where we use
$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i,j} \mathbf{A}[i,j] \mathbf{B}[i,j]$$
 and $\|\mathbf{A}\|_1 = \sum_{i,j} |\mathbf{A}[i,j]|$.

Unsupervised Loss

$$P(h^1 \neq h^2) \ge \max\{P_{\text{err}}(h^1), P_{\text{err}}(h^2)\}$$
.

$$\mathcal{L}_{u}(\boldsymbol{\Theta}; \mathcal{U}) \coloneqq \mathbb{E}_{\mathbf{U} \sim \mathcal{U}} \left[\left\langle \mathcal{F}_{1}(\mathbf{U}), \log \left(\mathcal{F}_{2}(\mathbf{U}) \right) \right\rangle + \left\langle \mathcal{F}_{2}(\mathbf{U}), \log \left(\mathcal{F}_{1}(\mathbf{U}) \right) \right\rangle \right].$$

Critic Loss

$$\Psi : [0, 1]^{H \times W} \to [0, 1]^{H \times W}$$

$$\mathcal{L}_{adv1}(\mathbf{\Theta}; \theta_C; \mathcal{X}) \coloneqq \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{X}} \left[-\sum_{a \in H} \sum_{b \in W} \left\{ (1 - \eta) \log \left(\psi(\mathbf{Y})[a, b] \right) + \eta \log \left(1 - \psi(\mathcal{F}_i(\mathbf{X}))[a, b] \right) \right\} \right],$$

$$\mathcal{L}_{adv2}(\mathbf{\Theta}; \theta_C; \mathcal{U}) \coloneqq \mathbb{E}_{\mathbf{U} \sim \mathcal{U}} \left[-\sum_{a \in H} \sum_{b \in W} \left\{ \log \left(1 - \psi(\mathcal{F}_i(\mathbf{U}))[a, b] \right) \right\} \right],$$

$$\mathcal{L}_{c}(\boldsymbol{\Theta}; \theta_{C}; \mathcal{D}) = \mathcal{L}_{adv1}(\boldsymbol{\Theta}; \theta_{C}; \mathcal{X}) + \mathcal{L}_{adv2}(\boldsymbol{\Theta}; \theta_{C}; \mathcal{U}) .$$

Dataset

- 670 Fluorescence Microscopy (FM) images from Nuclei
- 20 MRI volumes from Heart
- 41 CT volumes from Spleen
- 2D images are obtained by slicing the high-resolution MRI and CT volumes

17

- Heart (2271 slices)
- Spleen (3650 slices)
- Each slice is then resized to a resolution of 256 × 256.

Results

Dataset	Method	DSC			MAE		
	Fully Supervised	91.36			2.25		
		$l_a = 5\%$	$l_a = 20\%$	$l_a = 50\%$	$l_a = 5\%$	$l_a = 20\%$	$l_a = 50\%$
Nuclei	Mean Teacher	83.78	84.92	87.99	4.78	4.30	3.36
	Pseudo Labeling	60.90	72.46	85.91	8.40	6.37	3.84
	VAT	85.24	86.43	88.45	4.09	3.77	3.26
	Deep Co-training	85.83	87.15	89.20	4.08	3.80	3.08
93	Duo-SegNet	87.14	87.83	89.28	3.57	3.43	3.03

5.0	Fully Supervised		97.17			0.02	-
		$l_a = 5\%$	$l_a = 20\%$	$l_a = 50\%$	$l_a = 5\%$	$l_a = 20\%$	$l_a = 50\%$
Heart	Mean Teacher	71.00	87.59	93.43	0.22	0.09	0.05
	Pseudo Labeling	65.92	79.86	80.75	0.20	0.13	0.13
	VAT	85.33	91.60	94.83	0.11	0.06	0.04
	Deep Co-training	85.96	91.54	94.55	0.10	0.06	0.04
	Duo-SegNet	86.79	93.21	95.56	0.10	0.05	0.03
535	Fully Supervised		97.89			0.02	
	$l_a = 5\% \ l_a = 20\% \ l_a = 50\% \ l_a = 5\% \ l_a = 20\% \ l_a = 50\%$						
Spleen	Mean Teacher	75.44	90.76	92.98	0.20	0.08	0.06
Spieen	Pseudo Labeling	67.70	68.81	84.81	0.24	0.21	0.12
	VAT	78.31	91.37	94.34	0.19	0.07	0.05
	Deep Co-training	79.16	89.65	94.90	0.16	0.09	0.05
	Duo-SegNet	88.02	92.19	96.03	0.10	0.07	0.03

Ablation Study

(a) Network Structure Analysis.

Experiment	DSC	MAE
Duo-SegNet	88.02	0.10
w/o Critic	77.69	0.19
w/o Unlabeled Data	76.67	0.17
One Segmentation Network	82.44	0.16

(b) Hyper-parameter Analysis for λ_u .

λ_u	0.1	0.2	0.3	0.4	0.5
DSC	83.58	85.62	88.02	87.14	78.89
MAE	0.15	0.12	0.10	0.11	0.20

Conclusion

Inspired by Generative Adversarial Networks(GANs) and GAN based medical imaging applications including medical image segmentation, reconstruction and domain adaptation, Duoseg-net method graciously encloses the min-max formulation in dual-view learning for segmenting medical images where high-confidence predictions for unlabeled data are leveraged, which is simple and effective.

References

- Yi, Xin, Ekta Walia, and Paul Babyn. "Generative adversarial network in medical imaging: A review." Medical image analysis 58 (2019): 101552.
- Zhao, Jing, et al. "Multi-view learning overview: Recent progress and new challenges." Information Fusion 38 (2017): 43-54.
- Sivagami, S., et al. "Unet architecture based dental panoramic image segmentation." 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). IEEE, 2020.
- Miyato, Takeru, et al. "Virtual adversarial training: a regularization method for supervised and semi-supervised learning." IEEE transactions on pattern analysis and machine intelligence

Thank You