GRAFLAR

DR. ZEYNEP BANU ÖZGER

Düğümler ve bu düğümleri birleştiren kenarlardan oluşan ayrık yapılardır.

- Tanım:
 - Graf, düğümler ve kenarlar kümesinden oluşur.
 - G=(V,E) olarak gösterilir.
 - Her bir kenar 1 veya 2 düğümle ilişkilidir.
- Kenarlar bağladığı düğümler ile ifade edilir.
 - e=(dugum1,dugum2)
- Sonsuz sayıda kenar veya düğüm → sonsuz graf (infinite graph),
- Sonlu sayıda düğüm ve kenar → sonlu graf (finite graph) denir.

- Bir grafı tanımlamak için;
 - Kenar ve düğüm kümeleri tanımlanmalı.
 - Hangi kenarların hangi düğümleri bağladığı tanımlanmalıdır.
- Örnek;
 - G=(V,E),
 - V={s, u, v, w, x, y, z},
 - $E=\{(x,s), (x,v), (x,v), (x,u), (v,w), (s,v), (s,u), (s,w), (s,y), (w,y), (u,y), (u,z), (y,z)\}$

• Bir düğümü kendisine bağlayan kenar döngü (loop) oluşturur.

• Aynı kenar ve düğüm kümeleri ile farklı şekillerde graflar çizilebir.

Basit graf (simple graph)

Çoklu graf (multi graph)

Pseudograph

Ağırlıklı (weighted) graf

Yönlü Graf

Yönlü graf (directed graph)

Directed multi graph

Yönlü bir grafta, e=(v,w) v düğümünden w düğümüne bir kenar olmak üzere v düğümüne başlangıç düğümü (initial vertex), w düğümüne ise terminal veya bitiş düğümü (end vertex) denir.

Döngü içeren bir düğümün başlangıç ve bitiş noktaları aynıdır.

Graf Terminolojisi

Туре	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixed graph	Directed and undirected	Yes	Yes

GRAFLARDA İŞLEMLER

- Birleşim:
 - $G_1 = (V_1, E_1)$ ve $G_2 = (V_2, E_2)$ olmak üzere G_1 ve G_2 graflarının birleşimi 2 grafın **kenar ve** düğüm kümelerinin birleşimi ile elde edilir.
 - $G_1 \cup G_2 \rightarrow V_1 \cup V_2 \ ve \ E_1 \cup E'_2 dir$
 - Örneğin:

U

GRAFLARDA İŞLEMLER

- G₁ ve G₂ en az bir ortak düğümü olan 2 graf olmak üzere;
- $G_1 \cap G_2$ her 2 grafta ortak olan kenar ve düğümlerden oluşur.
 - $G_1 \cap G_2 \rightarrow V(G_1) \cap V(G_2)$ ve $E(G_1) \cap E(G_2)$

Tümleyen (Complement):

• G, n düğüm içeren basit bir graf olmak üzere G'nin tümleyeni K_n tam grafından G grafının kenarlarının silinmesiyle elde edilir.

Bir Düğümün Derecesi

- Bir G grafında, bir kenar ile bağlı olan 2 düğüme komşu, bitişik (adjacent) düğümler denir.
- Yönsüz bir grafta bir v düğümünün derecesi o düğüme bağlı kenar sayısıdır.
 - deg(v) ile gösterilir.
 - Örnek; Yandaki graf için
 - deg(a)=2, deg(b)=4, deg(c)=4, deg(d)=1,
 - deg(e)=3, deg(f)=4, deg(g)=0
 - Döngü düğüm derecesine 2 defa eklenir.

• Tüm düğümleri aynı r derecesine sahip grafa **r-dereceli düzenli graf** veya **r-derece graf** denir.

Bir Düğümün Derecesi

- Sıfır dereceli düğüme izole edilmiş (isolated) düğüm denir.
- Düğüm derecesi 1 olan düğüme pendant denir.
- Handshaking Teoremi;
 - e kenarlı ve n düğümlü bir G(V,E) grafının düğümlerinin dereceleri toplamı kenar sayısının
 2 katıdır.
 - $\sum_{i=1}^n \deg(V_i) = 2e$
 - Örneğin: Her birinin derecesi 6 olan 10 düğümlü bir grafın kaç tane kenarı vardır?

Bir Düğümün Derecesi

- e=(i,j) yönlü kenarı, j köşesine gelen (incident to) ve i köşesinden çıkandır (incident from).
- Bir j düğümüne gelen kenarların sayısına indegree denir.
 - $deg^{-}(j)$
- Bir i köşeden çıkan kenarların sayısına outdegree denilir.
 - $deg^+(j)$ ile gösterilir.
- Örnek; Aşağıdaki grafın indegree ve outdegree değerlerini hesaplarsak;

•
$$deg^{-}(a) = 2$$
, $deg^{+}(a) = 4$

•
$$deg^{-}(b) = 2$$
, $deg^{+}(b) = 1$

•
$$deg^{-}(c) = 3$$
, $deg^{+}(c) = 2$

•
$$deg^{-}(d) = 2$$
, $deg^{+}(d) = 2$

•
$$deg^{-}(e) = 3$$
, $deg^{+}(e) = 3$

•
$$deg^{-}(f) = 0$$
, $deg^{+}(f) = 0$

- Tüm düğümler bağlı.
- K_n şeklinde gösterilir.
- K₅ grafi

Çember (Cycle) Graf;

- n >=3,
- Düğümler halka oluşturur.
- C_n ile gösterilir.

Tekerlek (Wheel) Graf;

- Bir çember grafa, diğer tüm düğümlerle bağlı olacak şekilde bir düğüm eklenerek oluşturulur.
- W_n ile gösterilir.

• Küp (N-Cube) Graf;

- **D**üğümler 2^n bit stringi ile gösterilir.
- Bir düğümden diğerine geçerken stringin sadece bir biti değişir.
- 2ⁿ kenarı vardır.
- Q_n ile gösterilir.

- **D**üğüm kümesi V_1 ve V_2 olacak şekilde 2 ayrı kümeye ayrılabiliyor ve
- Graftaki kenarlar 2 kümeden birer düğümü birbirine bağlıyorsa iki parçalı graf denir.

G, bipartite graf ise:

$$V(G) = V(G_1) \cup V(G_2)$$

$$|V(G_1)| = m, |V(G_2)| = n$$

$$V(G_1) \cap V(G_2) = \emptyset$$

Bipartite Graph

• Bipartite midir?

HAYIR

EVET

•
$$V_1 = \{a, b, d\}$$

•
$$V_2 = \{g, f, e, c\}$$

- · İki Parçalı Tam (Complete Bipartite) Graf;
 - bir kümedeki her düğümün diğer kümedeki tüm düğümler ile bağlantılıdır.
 - $K_{m,n}$ olarak gösterilir.

Özel grafların kenar ve düğüm sayıları

Graf	Sembol	Düğüm sayısı	Kenar sayısı
Tam (complete)	K_n	n	n(n-1)/2
Çember (Cycle)	C_n	n	n
Tekerlek (Wheel)	W_n	n+1	2n
Küp (n-cube)	Q_n	2^n	$n2^{n-1}$
Tam İki Parçalı	$K_{m,n}$	m+n	m*n

Alt Graflar (Sub-graph)

- $V(S) \subseteq V(G)$
- $E(S) \subseteq E(G)$
- S grafı G grafının alt grafıdır.
- Kenarlar bağladığı düğümler ile birlikte dikkate alınır.

Alt Graflar (Sub-graph)

- G grafından bazı kenar ve düğümleri silerek S grafını elde edebiliyorsak, S grafı G grafının alt grafıdır.
 - Düğüm silerek alt graf oluşturma

Kenar silerek alt graf oluşturma

- Örnek: Aşağıdaki grafları çizin.
 - 1. K₇ ?
 - 7 düğümlü tam graf
 - 2. K_{1,8} ?
 - Tam (complete) bipartite graf.
 - 1+8=9 düğümlü

$$M = \{A\}$$

$$N = \{B, C, D, E, D, F, G, H, I\}$$

- Örnek: Aşağıdaki grafları çizin.
 - C₇ ?
 - 7 düğümlü çember graf

- W_7 ?
 - 7+1=8 düğümlü tekerlek graf

- N-cube graf
- $2^n = 2^4$ düğüm

Örnek: Aşağıdaki graflar bipartite graf mıdır?

$$V_1 = \{a, c\}$$

 $V_2 = \{b, e, d\}$

EVET

HAYIR

$$V_1 = \{a, b, d, e\}$$

 $V_2 = \{c, f\}$

EVET

HAYIR

Aşağıdaki graf için 4 ve 3 düğümlü tüm alt grafları çizin

• 4 düğümlü alt graflar:

1. Kenarların listelenmesi

- Örnek; Aşağıdaki kenar bilgileri verilen yönsüz grafı çizin.
- Kenar

e(a,b)

e(a,c)

e(a,e)

e(c,e)

e(c,d)

e(d,e)

Örnek; Aşağıdaki başlangıç ve bitiş düğümleri verilen yönlü grafı çizin.

Bitiş	
b,c,d,e	
b,d	
a,c,e	
b,c,d	

- G (V,E), düğümleri kümesi $V=\{v_1,v_2,\ldots,v_n\}$ olan n düğümlü bir graf olmak üzere,
- G grafının komşuluk matrisi n x n boyutunda bir matristir.
- A(G).
- Simetriktir.
- Hangi düğümlerin birbiri ile bağlantılı olduğunu gösterir.

$$\mathbf{A} = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}.$$

Komşuluk Matrisi

$$A = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

$$A = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} \quad deg(v_1) = 2 * 1 + 1 + 1 = 4$$

$$deg(v_2) = 1 + 2 = 3$$

$$deg(v_3) = 1 + 2 = 3$$

$$deg(v_4) = 0$$

- Bir düğümün derecesini o düğümü gösteren satır veya sütundaki sayılar toplanarak bulunur.
- v_1 düğümünde döngü olduğu için döngü kenarı 2 ile çarpılarak eklendi.

1. Aşağıdaki graflar için komşuluk matrisini çizin.

2. Aşağıdaki komşuluk matrislerinin graflarını sırasıyla yönlü ve yönsüz olarak çizin.

GRAFLARIN TEMSILI

- Grafta düğümler ile kenarlar arasındaki ilişkiyi gösterir.
- n düğüm sayısı ve m kenar sayısı olmak üzere matrisin boyutu n x m'dir
- Matriste düğümler satırlara, kenarlar ise sütunlara yerleştirilir.
- Graf ağırlıklı değilse;
 - Bir kenar bir düğüme bağlı ise matriste kesiştikleri hücrenin değeri 1, aksi halde 0'dır.
- Ağırlıklı graf ise matriste kesiştikleri yere ağırlık değeri yazılır.
- Örnek: Aşağıdaki grafın ilişki matrisi;

GRAFLARDA ISOMORPHISM

- 2 graf karşılaştırıldığında;
 - · Kenar sayıları,
 - Düğüm sayıları,
 - Düğüm dereceleri,
 - Ve düğümler arasındaki ilişkiyi gösteren matrisleri aynı ise bu 2 graflar izomorfiktir.

GRAFLARDA ISOMORPHISM

Örnek: Aşağıdaki 2 graf izomorfik midir?

- G grafının düğüm sayısı: 5, H grafının düğüm sayısı:5
- G grafının kenar sayısı: 6, H grafının düğüm sayısı:6
- Düğüm dereceleri;

•	G grafında	H grafında
	0	0

•
$$Deg(c)=3$$
 $Deg(c)=3$

· İzomorfik değildir.

1. Aşağıdaki graf çifti izomorfik midir?

- 2 grafında 6 düğümü var
- 2 grafında 9 kenarı var

	U1	U2	U3	U4	U5	U6
U1	0	1	0	1	0	1
U2	1	0	1	0	0	1
U3	0	1	0	1	1	0
U4	1	0	1	0	1	0
U5	0	0	1	1	0	1
U6	1	1	0	0	1	0

		V5	V2	V3	V6	V4	V1
	V5	0	1	0	1	0	1
	V2	1	0	1	0	0	1
	V3	0	1	0	1	1	0
	V6	1	0	1	0	1	0
	V4	0	0	1	1	0	1
	V1	1	1	0	0	1	0

• Düğüm dereceleri;

• 1. grafta

2. grafta

• $Deg(u_1)=3$

 $\text{Deg}(v_1)=3$

• $Deg(u_2)=3$

 $\text{Deg}(v_2)=3$

• $Deg(u_3)=3$

 $\text{Deg}(v_3)=3$

• $Deg(u_4)=3$

 $\text{Deg}(v_4)=3$

• $Deg(u_5)=3$

 $\text{Deg}(v_5)=3$

• $Deg(u_6)=3$

 $Deg(v_6)=3$

• $f(u_1)=v_5$, $f(u_2)=v_2$, $f(u_3)=v_3$, $f(u_4)=v_6$, $f(u_5)=v_4$, $f(u_6)=v_1$,

$$E_2 = \{(v_5, v_2), (v_5, v_6), (v_5, v_1), (v_2, v_3), (v_2, v_1), (v_3, v_6), (v_3, v_4), (v_6, v_4), (v_4, v_1)\}$$

$$E_1 = \{(u_1, u_2), (u_1, u_4), (u_1, u_6), (u_2, u_3), (u_2, u_6), (u_3, u_4), (u_3, u_5), (u_4, u_5), (u_5, u_6)\}$$

izomorfiktir

2. Aşağıda komşuluk matrisi verilen yönlü 2 graf izomorfik midir?

- · 2 grafında 3'er düğümü ve 4'er kenarı var
- Düğümler kümesi;
 - $V_1 = \{a, b, c\}$
 - $V_2 = \{d, e, f\}$
- Kenarlarını yazarsak
 - $E_1 = \{(a,c), (b,c), (c,a), (c,b)\}$
 - $E_2 = \{(d, e), (d, f), (e, d), (f, d)\}$
- Düğüm dereceleri;
 - Deg(a)=1, deg(b)=1, deg(c)=2
 - Deg(d)=2, deg(e)=1, deg(f)=1

- Birebir ve onto fonksiyonlarını yazarsak;
 - f(a)=f, f(b)=e, f(c)=d
- Komşuluk matrisleri;

	Α	В	С
Α	0	0	1
В	0	0	1
С	1	1	0

	F	E	D
F	0	0	1
Ε	0	0	1
D	1	1	0

izomorfiktir

YOL (PATH);

- Bir grafta bir düğümden diğer bir düğüme gitmek için geçilmesi gereken düğümler listesine yol (path) denir.
- n uzunluğundaki bir yolda n+1 tane düğüm olur.
- Bir yol da aynı düğümden birden fazla defa geçilmiyorsa bu yola basit (simple) yol denir.

- Örneğin;
 - $a \rightarrow e = a-b-e$
 - c→e=d-e veya a-b-e
 - b→d=b-d, b-e-d,b-a-d..

- Örneğin a düğümünden f düğümüne yol yok.
 - · Not connected

- Cut Vertex;
 - Connected bir graf, kendisinden bir düğüm çıkarıldığında 2 veya daha fazla not-connected grafa dönüşüyorsa, o düğümlere cut-vertex denir.
 - Örneğin

Cut Edge;

- Bağlı bir graf, kendisinden bir kenarın çıkarılması sonucu bağlı olmayan 2 veya daha fazla grafa dönüşüyorsa, bu kenara **cut-edge** denir.
- Örneğin;

- Edge Connectivity (Kenar Bağlılığı);
 - Bağlı bir grafı, bağlı olmayan hale getirmek için kaldırılması gereken minimum kenar sayısıdır.
 - G graf olmak üzere $\lambda(G)$ ile gösterilir.
 - Örneğin;

- Vertex Connectivity (Düğüm Bağlılığı);
 - Bir G bağlı grafını, bağlı olmayan grafa dönüştürmek için kaldırılması gereken minimum düğüm sayısıdır.
 - K (G) ile gösterilir.
 - Herhangi bir G bağlı grafında $\delta(G)$ =G grafındaki min düğüm derecesi olmak üzere
 - $K(G) \le \lambda(G) \le \delta(G)$
 - Örneğin;

- a,e,b,c,b → basit yol değildir.
- a,e,a,d,b,c,a → yol değil
- e,b,a,d,b,e → yol değildir
- c,b,d,a,e,c → simple yoldur.
 - → cycle var.
 - →Yol uzunluğu: 5

- cut-vertex:d,c
- cut-edge: (c,d)

- cut-vertex: b,c,e ve i
- cut-edge: (a,b), (b,c), (c,d), (c,e), (e,i), (h,i)

Eular Döngüsü ve Eular Yolu

- Königsberg köprüsü probleminden çıkmış kavramlardır.
 - Bir şehirde bir nehir üzerinde bulunan 7 köprünün her birinden sadece **bir kere** geçmek kaydıyla başlanılan noktaya dönmek mümkün müdür?

Eular Döngüsü ve Eular Yolu

- Problemi graf ile temsil edersek;
 - Kenarlar köprüleri,
 - Düğümler ise bölgeleri göstersin

- Eular Yolu; Bir graftaki tüm kenarlardan sadece 1 defa geçmek kaydıyla tüm düğümleri dolaşan bir yol bulunabiliyorsa buna Eular Yolu denir.
- Eular Döngüsü; Bir graftaki tüm kenarlardan sadece 1 defa geçmek kaydıyla tüm düğümleri dolaşan kapalı bir yol bulunabiliyorsa buna Eular döngüsü denir.
- Bir graf içinde en az bir Eular yolu barındırıyorsa buna Eular grafı denir.

Eular Döngüsü ve Eular Yolu

 Aşağıdaki graflarda her kenardan en az bir kez geçirilerek graf gezilmiştir, hangileri Euler grafıdır?

- Eular yolu var
- Eular döngüsü yok

- Eular yolu var
- Eular döngüsü var.
- Eular Grafi

Hamilton Döngüsü ve Hamilton Yolu

- Bir G grafında;
 - Her düğümden sadece 1 defa geçerek ve tüm düğümlerin dolaşılabildiği yola Hamilton yolu denir.
 - Her düğümden sadece 1 defa geçmek ve tüm düğümlerin dolaşmak şartıyla başlanılan noktaya dönülebiliyorsa bu kapalı yola Hamilton Döngüsü denir.
 - Hamilton döngüsüne sahip grafa Hamilton grafı denir.
- Hamilton yollarının bulunması NP-Complete bir problemdir.
- Herhangi bir Hamilton döngüsü bir kenarın çıkarılması ile Hamilton yoluna dönüştürülebilir.
- Traveling Salesmen Problem

EN KISA YOL PROBLEMİ

- · Ağırlıklı bir grafta verilen 2 düğüm arasındaki en kısa mesafenin bulunmasıdır.
- Graftaki ağırlıklar, bir düğümden diğerine gitmenin maliyetidir.

Dijkstra Algoritması

- · Bir grafta herhangi bir düğümden diğer bütün düğümlere giden en kısa yolu hesaplar.
- Açgözlü (greedy) bir algoritmadır.
- Negatif kenar ağırlığı olan graflar için uygun değildir.

Dijkstra Algoritması

Aşağıdaki graf için 0. düğümden en kısa yolu Dijkstra ile bulursak

Planar (Düzlemsel) Graf

- Bir G grafının kenarları birbirlerini kesmeyecek şekilde çizilebiliyorsa, buna planar graf denir.
- Mesela 3 tesisatı 3 ayrı eve birbirini kesmeyecek şekilde döşememiz gerekiyordur.

• Örneğin aşağıdaki graf kenarlar birbirini kesmeyecek şekilde yeniden çizilebilir.

Eular Formülü

- b k + n = 2 denkliği her zaman sağlanır.
- Aşağıdaki graf için
 - Bölge sayısı=3,
 - Kenar sayısı=6,
 - Düğüm sayısı=5

•
$$b - k + n = 3 - 6 + 5 = 2$$

Bir grafın planar graf olup olmadığını belirlemek için yararlanılabilir.

Aşağıdaki graflar herhangi bir kesişme olmayacak şekilde çizilebilirmi?

Graf Boyama Problemi

- Yönsüz bir grafta düğümlerin minimum sayıda boyanmasını temsil eden bir optimizasyon problemidir.
 - Komşu düğümler farklı renklerde olmak zorundadır.

Graf Boyama Problemi

- Final Sınavı Programlama
 - Düğümler dersleri ve kenarlar derslerdeki ortak öğrencilerin varlığını gösteriyor.
 - 7 tane sınav planlanacak;
 - 1-2, 1-3, 1-4, 1-7, 2-3, 2-4, 2-5, 2-7, 3-4, 3-6, 3-7, 4-5, 4-6, 5-6, 5-7, 6-7 nolu derslerin ortak öğrencisi var.

Courses
1, 6
2
3, 5
4, 7

GRAF

2. İletişim Ağları

3. Bilgi Ağları;

GRAF

5. Biyolojik Ağlar

6. Yazılım Tasarımı Ağları

