▼ Representaciones lineales

Para las siguietes representaciones asumimos una matriz A de tamaño 2 imes 3 donde sus columnas son v_1 , v_2 y v_3

$$A = egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}, \quad S = \{v_1, v_2, v_3\}, \quad ec{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} \in \mathbb{R}^3, \quad ec{y} = egin{bmatrix} y_1 \ y_2 \end{bmatrix} \in \mathbb{R}^2$$

Grafo	Sistema de Ecuaciones	Matriz Extendida	Combinación Lineal de vectores	Matriz por vector	Transformación Matricial
	[Nakos, cap 1]	[Nakos, cap 1]	[Nakos, cap 2]	[Nakos, cap 3]	[Nakos, cap 5]
	Planteamiento de problemas. Sustitución hacia atrás	Eliminación de Gauss, Pivotes	La representación gráfica de vectores en \mathbb{R}^2 y \mathbb{R}^3 . Operaciones vectoriales.	Operaciones matriciales. Inversa.	Composición de funciones.
	$3x_1 + 4x_2 + 0x_3 = y_1$ $0x_1 + 2x_2 + 1x_3 = y_2$	$\begin{bmatrix} x_1 & x_2 & x_3 \\ 3 & 4 & 0 & : & y_1 \\ 0 & 2 & 1 & : & y_2 \end{bmatrix}$	$x_1 \left(egin{array}{c} 3 \\ 0 \end{array} ight) + x_2 \left(egin{array}{c} 4 \\ 2 \end{array} ight) + x_3 \left(egin{array}{c} 0 \\ 1 \end{array} ight) = \left(egin{array}{c} y_1 \\ y_2 \end{array} ight)$	$\begin{bmatrix} 3 & 4 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$	$T_{A} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$ $= \begin{pmatrix} 3x_{1} + 4x_{2} + 0x_{3} \\ 0x_{1} + 2x_{2} + 1x_{3} \end{pmatrix}$ $= \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix}$
	-	$[A:ec{y}]$	$x_0 \overset{ ightarrow}{v_0} + x_1 \overset{ ightarrow}{v_1} + x_2 \overset{ ightarrow}{v_2} = ec{y}$	$A ec{x} = ec{y}$	$T_A(ec{x}) = ec{y}$
n entradas, m salidas	Sistmea de m de ecuaciones con n variables	-	Combinación lineal de n vectores de \mathbb{R}^m	$A_{m imes n}$, Matriz A de tamaño $m imes n$	$T_A : \mathbb{R}^n \to \mathbb{R}^m$
Conjunto de entradas que generan cero.	Solución del S.H.	-	-	$\mathrm{Nu}(A)$, Espacio nulo de A	$\mathrm{Nu}(T_A)$, Núcleo (o Kernel) de T_A
Conjunto de salidas posibles.	Número de variables libres del S.H.	Número de columnas de A sin I-pivotes	-	$\nu(A)$, nulidad $\operatorname{de} A$	$ u(T_A)$, nulidad de T_A
	¿Tiene el S.H. solución única?	$_{ m 2}$ Tiene A un i-pivotes en cada columna?	$ {\it \&Es}~S~{\it Linealmente}~{\it Independiente}~({\it L.~I.})? \\ {\it \&No}~{\it es}~S~{\it Linealmente}~{\it Dependiente}~({\it L.~D.})? \\ {\it \&Ningún}~{\it vector}~{\it se}~{\it puede}~{\it escribir}~{\it como}~{\it combinación}~{\it lineal}~{\it de}~{\it los}~{\it otros}? $	$_{\mathcal{L}}\nu(A)=0$? $_{\mathcal{L}}\mathrm{Nu}(A)=\{\vec{0}\}$?	$ m _{\it L}$ Es $T_{\it A}$ inyecciva?
	Conjunto de VTC consistentes		$\operatorname{Gen}(S)$, Espacio generado por S	$\mathrm{Col}(A)$, Espacio columna de A. (Se pueden <u>quitar columnas</u> sin l-pivotes)	$\mathrm{Im}(T_A)$, Imagen de T_A
	Número de variables delanteras del S.H.	Número de l-pivotes de A	Dim(Gen(S))	ho(A), rango de A	$ ho(T_A)$, rango de T_A
	¿Es consistente para todo VTC?	¿ A tiene un l-pivotes en cada renglón? ¿ A tiene m l-pivotes? ¿ Si $B\sim A$ entonces B no tiene renglones de ceros?	$_{m{\mathcal{L}}} ext{Dim}(ext{Gen}(S))=m?$ $_{m{\mathcal{L}}} ext{Gen}(S)=\mathbb{R}^m?$	$\iota ho(A)=m?$ $\iota\operatorname{Col}(A)=\mathbb{R}^m?$	¿Es T_A sobreyecciva?
	¿Tiene el sistema de ecuaciones solución única para todo VTC?	¿Es A cuadrada con n pivotes? ¿Es A equivalente a la identidad?	¿Es S una base de \mathbb{R}^m ?	¿Es A invertible?	¿Es T_A biyectiva?

Abreviaturas:

- I-pivite: lugar del pivote en una matriz escalón equivalente
- L.I.: Linealmente Independientes
- S.H.: Sistema Homogéneo
- VTC: Vector de Términos Constantes (\vec{b})

MOSTRAR CÓDIGO

