

Computational Engineering

2021-12-17

BM40A0202 Foundations of Computer Science Olli-Pekka Hämäläinen

Exercise 2, Logical circuits and von Neumann's architecture

5 tasks, 1p/task.

- 1. Task in Moodle.
- 2. Use the truth table to show how the circuit in Figure 1 works. Be sure to note the effect of the output o on the operation of the circuit.

Figure 1: Logical circuit with modern notation

3. Design a logic circuit that implements the truth table of Table 1.

Table 1: 7			Truth table.
a	b	$^{\mathrm{c}}$	Output (o)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

4. Learn about the computer architecture developed by John von Neumann, a good starting point is to consult the wikipedia article. What else could be a good source to learn about von Neumann architecture? Why would that be a good source? What does "good source" mean?

How does today's computer compare to the architecture presented by von Neumann? Make a presentation outlining 5 (five) key points (bullet points) about the von Neumann architecture and how it compares to modern computers.

- 5. Apply the following algorithm to the numbers M=63 and N=71.
 - Step 1. Start with two columns on a page, the left column is labeled \mathbf{A} and the right column is labeled \mathbf{B} ; and put the value of M under \mathbf{A} and the value of N under \mathbf{B} .
 - Step 2. Repeat
 - (a) calculate a new value for **A** by multiplying the old value in **A** by 2; and
 - (b) calculate a new value for \mathbf{B} by dividing the old value in \mathbf{B} by 2 and reducing the result by a half if necessary to obtain an integer;

Until the value in **B** equals one.

- Step 3. Go down the columns crossing out the value in $\bf A$ whenever the value in $\bf B$ is even.
- Step 4. Add up the remaining values in A and "return" the sum.

What do you get as the "return" value? Test the same algorithm with two binary numbers, e.g. $M=11101_2$ and $N=1011_2$.