

Общее описание

Жидкокристаллический модуль MT-16S2H состоит из БИС контроллера управления и ЖК панели. Контроллер управления КБ1013BГ6, производства ОАО "АНГСТРЕМ" (www.angstrem.ru), аналогичен HD44780 фирмы HITACHI и KS0066 фирмы SAMSUNG. Модуль выпускаются в двух вариантах: со светодиодной подсветкой и без нее. Внешний вид приведен на рисунке 1.

Рис 1.

1

Модуль позволяет отображать 2 строки по 16

символов в каждой. Символы отображаются в матрице 5х8 точек. Между символами имеются интервалы шириной в одну отображаемую точку.

Каждому отображаемому на ЖКИ символу соответствует его код в ячейке ОЗУ модуля.

Модуль содержит два вида памяти — кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК панелью.

Габаритные размеры модуля приведены на рисунке 7.

Внимание! Недопустимо воздействие статического электричества больше 30 вольт.

Модуль позволяет

- модуль имеет программно переключаемые две страницы встроенного знакогенератора (алфавиты: русский, украинский, белорусский, казахский и английский; см. табл. 5–0 и 5–1).
- работать как по 8-ми, так и по 4-х битной шине данных (задается при инициализации);
- принимать команды с шины данных (перечень команд приведен в таблице 4);
- записывать данные в ОЗУ с шины данных;
- читать данные из ОЗУ на шину данных;
- читать статус состояния на шину данных (см. табл. 4);
- запоминать до 8 изображений символов, задаваемых пользователем;
- выводить мигающий (или не мигающий) курсор двух типов;
- управлять контрастностью и подсветкой;

Основные сведения

Модуль управляется по параллельному 4-х или 8-ми битному интерфейсу.

Временные диаграммы приведены на рис. 3 и 4, динамические характеристики приведены в таблице 2.

Примеры обмена по интерфейсу приведены на рис. 5 и 6.

Программное управление осуществляется с помощью системы команд, приведенной в таблице 4.

Перед началом работы модуля необходимо произвести начальную установку.

Встроенный знакогенератор приведен в таблицах 5-0 и 5-1.

Модуль позволяет задать изображения восьми дополнительных символов знакогенератора, использующихся при работе наравне со встроенными. Пример задания дополнительных символов приведен в таблице 3.

Таблица 1. Динамические характеристики модуля

Название	Обозн.	Min	Max	Единицы
Время цикла чтения/записи	t _{cycE}	500	-	ns
Длительность импульса разрешения чтения/записи	PW _{EH}	230	-	ns
Время нарастания и спада	t _{Er} , t _{Ef}	-	20	ns
Время предустановки адреса	t _{AS}	40	-	ns
Время удержания адреса	t _{AH}	10	-	ns
Время выдачи данных	t _{DDR}	-	120	ns
Время задержки данных	t _{DHR}	5	-	ns
Время предустановки данных	t _{DSW}	80	-	ns
Время удержания данных	t _H	10	-	ns

Управление контрастностью

Контрастность индикатора зависит от напряжения питания ЖК панели (V_{LCD}) и температуры. Управление контрастностью производится внешним резистором (рис. 2). При поставке модуля контрастность настроена на Vcc=5B, поэтому при напряжении питания модуля 5B, контакт 3(Vo) необходимо объединить с контактом 1(GND). При температурах ниже 0°C регулировка контрастности необходима.

Характеристики модуля по постоянному току

Таблица 2. Характеристика модуля постоянному току.

2

Наимен	ование	Обозначение	Мин.	Ном.	Макс.	Единицы измерения
Напряжение	логическое	Vcc-GND	4,5	5,0	5,5	В
питания	ЖКИ	Vcc-Vo	4,8	5,0	5,2	В
Ток потребления		Icc		0,8	1,0	мА
Входное напряжение высокого уровня		Uін	2,4		Vcc+0,6	В
Входное напряжение низкого уровня		UıL	-0,6	_	0,8	В
Напряжені подсветки пр				4,1	4,5	В
Ток под	цсветки				150,0	мА

Рис 3. Диаграмма чтения

Рис 4. Диаграмма записи

Диаграмма обмена по 4-х битному интерфейсу

Рис 5.

Примечание. В каждом цикле обмена необходимо передавать (читать или писать) все 8 бит — два раза по 4 бита. Передача старших 4-х бит без последующей передачи младших 4-х бит **не допускается**.

Диаграмма обмена по 8-ми битному интерфейсу

© МЭЛТ 2003 http://www.melt.com.ru

4

Начальная установка модуля

Модуль войдет в нормальный режим работы только после подачи на него следующих команд:

* — после этих команд флаг занятости "BS" не проверять! Остальные команды выдавать в соответствии с таблицей 4 и примечаниями под ней.

Примечание. Назначение бит указано в таблице 4.

После этих действий модуль переходит в рабочее состояние с установленными параметрами.

Распределение ОЗУ

Модуль содержит ОЗУ для хранения данных (DDRAM), выводимых на ЖКИ. Адреса отображаемых на ЖКИ символов распределены следующим образом:

I	Nº 3⊦	накоместа	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ι,	A Д	1-я строка	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh
	E C	2-я строка	40h	41h	42h	43h	44h	45h	46h	47h	48h	49h	4Ah	4Bh	4Ch	4Dh	4Eh	4Fh

Символы, программируемые пользователем

Модуль содержит также память для хранения изображений восьми символов, программируемых пользователем (CGRAM). Коды этих восьми символов показаны в табл. 5. Адреса строк изображений этих символов не зависят от адресов выводимых символов (расположены в отдельном адресном пространстве) и занимают адреса от 0h до 3Fh. Каждый символ занимает 8 байт (0h-7h, 8h-Fh, 10h-17h, ..., 30h-37h, 38h-3Fh). Нумерация байт идет в порядке отображения на индикаторе сверху вниз (первый байт самый верхний, восьмой байт самый нижний). Последняя, восьмая строка используется также для отображения курсора (если выбран курсор в виде подчеркивания). В каждом байте используются только 5 младших бит (4, 3, 2, 1, 0), старшие 3 бита (7,6,5) могут быть любые, на отображение они не влияют. Бит 4 соответствует левому столбцу матрицы символа, бит 0 — правому столбцу символа. Пример см. в таблице 3.

Таблица 3.

		ес в нераторе	Значения в знакогенераторе
7 6 5 4 3 2 1 0	5 4 3	2 1 0	7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	* * * 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1	0 0 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	* * * 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
		0 0 0 0 0 0 1	* * *
00000111	1 1 1	1 0 0 1 0 1 1 1 0 1 1 1	* * *

^{* -} значение не влияет на отображение

Аналоги модулей

мэлт	BOLYMIN	WINTEK	SUNLIKE
MT-16S2H	SC1602H(H1)	WD-C1602K	SC1602H(H1)

Описание команд модуля

Таблица 4.

Команда	A 0	$\frac{R}{\overline{W}}$	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Описание	Время выполнения	
Clear Display	0	0	0	0	0	0	0	0	0	1	Очищает индикатор и помещает курсор в самую левую позицию	1,5 мс	
Return Home	0	0	0	0	0	0	0	0	1	χ	Перемещает курсор в левую позицию	40 мкс	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Установка направления сдвига курсора и разрешение сдвига дисплея	40 мкс	
Display ON/OFF control	0	0	0	0	0	0	1	D	С	В	Включает индикатор (D=1), курсор (C=1) и выбирает тип курсора: мигающий блок (B=1) или подчеркивание (B=0)	40 мкс	
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	Χ	χ	Выполняет сдвиг дисплея или курсора (S/C) вправо или влево (R/L)	40 мкс	
Function Set	0	0	0	0	1	DL	1	0	Р	0	Установка разрядности интерфейса DL=0/1 — 4/8 бита и страницы знакогенератора Р	40 мкс	
Set CGRAM Address	0	0	0	1	1 ACG						Установка адреса для последующих операций (и установка туда курсора) и выбор области CGRAM	40 мкс	
Set DDRAM Address	0	0	1		ADD						Установка адреса для последующих операций и выбор области DDRAM	40 мкс	
Read BUSY flag and Address	0	1	BS		AC						Прочитать флаг занятости и содержимое счетчика адреса	_	
Write Data to RAM	1	0			Write Data						Запись данных в активную область	40 мкс	
Read Data from RAM	1	1			Read Data					Read Data		Чтение данных из активной области	40 мкс

Примечания.

^{1.} Указанное время является максимальным. Его не обязательно выдерживать при условии чтения флага занятости BS — как только флаг BS=0, так сразу можно писать следующую команду или данные. Если же флаг BS перед выдачей команд не проверяется — необходимо формировать паузу не менее указанного времени для надежной работы модуля.

^{2.} Большая X — любое значение (0 или 1).

Таблица 5-0. Страница 0 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатиричном виде)

Таблица 5-1. Страница 1 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатиричном виде)

© МЭЛТ 2003 http://www.melt.com.ru

9

Таблица 7. Назначение внешних выводов

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0V)
2	Vcc	Напряжение питания (5V)
3	Vo	Управление контрастностью
4	A0	Адресный сигнал — выбор между передачей данных и команд управления
5	R/W	Выбор режима записи или чтения
6	Е	Разрешение обращений к модулю (а также строб данных)
7	DB0	Шина данных (8-ми битный режим) (младший бит в 8-ми битном режиме)
8	DB1	Шина данных (8-ми битный режим)
9	DB2	Шина данных (8-ми битный режим)
10	DB3	Шина данных (8-ми битный режим)
11	DB4	Шина данных (8-ми и 4-х битные режимы) (младший бит в 4-х битном режиме)
12	DB5	Шина данных (8-ми и 4-х битные режимы)
13	DB6	Шина данных (8-ми и 4-х битные режимы)
14	DB7	Шина данных (8-ми и 4-х битные режимы) (старший бит)
15	+LED	+ питания подсветки
16	-LED	- питания подсветки

Габаритные размеры модуля MT-16S2H

Рис. 7

10

Компания МЭЛТ

Наши координаты

🛮 Адрес: Москва, Нижегородская ул, дом 29.

тел: (095) 278-9660, 278-9674, факс: (095) 913-8421

e-mail: sales@melt.com.ru http://www.melt.com.ru

Авторские права © 2004 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления.

Компания МЭЛТ не несет ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации.

Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.com.ru

Компания МЭЛТ непрерывно работает над улучшением качества и надежности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.

Подписано в печать 11 мая 2004 года. Формат А4. Отпечатано в России.

