

MARE-Madeira 2025

Population-level inferences

Using the 'ctmm' R package

Inês Silva

i.simoes-silva@hzdr.de

Using foraging hotspots of pelagic seabirds to identify marine **Important Bird Areas (IBAs)** in Spain.

Arcos et al. (2012)

DOI: 10.1016/j.biocon.2011.12.011

Analyses of ecological data should always account for the **uncertainty** in the process(es) that generated the data.

We want to quantify the effect of covariates, such as **species**, **sex**, **body size**, **age**, **habitat**, **anthropogenic impact**, etc...

...even if we are comparing different populations with different **movement behaviors** or **sampling schedules**.

NON-HIERARCHICAL MODELS

How does data inform parameters?

NON-HIERARCHICAL MODELS

How does data inform parameters?

HIERARCHICAL MODELS

How does data inform parameters?

HIERARCHICAL MODELS

How does data inform parameters?

HIERARCHICAL MODELS

How does data inform parameters?

This framework facilitates population-level inference with as few as **2–3 observed home range crossings** (τ_p) and similarly small **number of individuals** (m).

distribution

distribution

A statistically efficient estimator will **downweight** uncertain estimates relative to more certain estimates in such a way that the estimated mean has a smaller variance.

Lowland tapir

Tapirs have **home range crossing times** (τ_p) of 0.72 days, (ranging from 0.05–12.8 days)

What's the mean home range area?

Average area used by individuals in a sample

What's the population distribution?

Spatial extent of the population as a whole

Methods:

- (A)KDE of population?
- Union of (A)KDEs?
- Mean of (A)KDEs?

Dual challenge:

Individual temporal autocorrelation Population variation

Sample Tracked individuals

Population
Tracked + untracked individuals

KDE is a weighted average of kernels, where the optimal *H* minimizes the MISE:

MISE[**H**] = E
$$\left[\iint (\hat{p}(\mathbf{x}|\mathbf{H}) - p(\mathbf{x}))^2 d\mathbf{x}\right]$$

 $p(\mathbf{x})$ = approximation (e.g., Gaussian reference function)

PKDE

$$MISE[\mathbf{H}] = E\left[\iint (\hat{p}_{pop.}(\mathbf{x}|\mathbf{H}) - p_{pop.}(\mathbf{x}))^{2} d\mathbf{x}\right]$$

$$\hat{p}_{pop.}(\mathbf{x}|\mathbf{H}) = \sum_{ind.} \sum_{t} w_{ind.}(t) \kappa(\mathbf{x} - \mathbf{x}_{ind.}(t)|\mathbf{H}_{ind.})$$

 $p_{\mathsf{pop}}(\mathsf{x})$ requires a hierarchical approximation

Saturation curves

Number of individuals sampled