Методы кластеризации

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

май 2013

Постановка задачи кластеризации

Дано:

X — пространство объектов; $X^\ell = \left\{x_i\right\}_{i=1}^\ell$ — обучающая выборка; $ho \colon X \times X o [0, \infty)$ — функция расстояния между объектами.

Найти:

- У множество кластеров и
- $a: X \to Y$ алгоритм кластеризации, такие, что:
 - каждый кластер состоит из близких объектов;
 - объекты разных кластеров существенно различны.

Кластеризация — это обучение без учителя.

Некорректность задачи кластеризации

Решение задачи кластеризации принципиально неоднозначно:

- точной постановки задачи кластеризации нет;
- существует много критериев качества кластеризации;
- существует много эвристических методов кластеризации;
- ullet число кластеров |Y|, как правило, неизвестно заранее;
- результат кластеризации существенно зависит от метрики ρ , которую эксперт задаёт субъективно.

Цели кластеризации

- Упростить дальнейшую обработку данных, разбить множество X^{ℓ} на группы схожих объектов чтобы работать с каждой группой в отдельности (задачи классификации, регрессии, прогнозирования).
- Сократить объём хранимых данных, оставив по одному представителю от каждого кластера (задачи сжатия данных).
- Выделить нетипичные объекты, которые не подходят ни к одному из кластеров (задачи одноклассовой классификации).
- Построить иерархию множества объектов (задачи таксономии).

Типы кластерных структур

внутрикластерные расстояния, как правило, меньше межкластерных

ленточные кластеры

кластеры с центром

Типы кластерных структур

Типы кластерных структур

- Каждый метод кластеризации имеет свои ограничения и выделяет кластеры лишь некоторых типов.
- Понятие «тип кластерной структуры» зависит от метода и также не имеет формального определения.

Проблема чувствительности к выбору метрики

Результат зависит от нормировки признаков:

Содержание: методы кластеризации

- 1 Графовые методы кластеризации
 - Алгоритм выделения связных компонент
 - Алгоритм ФОРЭЛ
 - Функционалы качества кластеризации
- Иерархическая кластеризация (таксономия)
 - Агломеративная иерархическая кластеризация
 - Дендрограмма и свойство монотонности
 - Свойства сжатия, растяжения и редуктивности
- Отатистические методы кластеризации
 - ЕМ-алгоритм
 - Метод k-средних

Алгоритм выделения связных компонент

Выборка представляется в виде графа:

- вершины графа объекты x_i ;
- рёбра пары объектов с расстоянием $ho_{ij}=
 ho(x_i,x_j)\leqslant R.$
 - 1: повторять
 - 2: удалить все рёбра (i,j), для которых $\rho_{ii} > R$;
 - 3: K :=число связных компонент (алгоритм Дейкстры или поиск в глубину);
 - 4: если $K < K_1$ то уменьшить R;
 - 5: если $K > K_2$ то увеличить R;
 - 6: пока $K \notin [K_1, K_2]$

Недостатки:

- задаётся неудобный параметр *R*;
- высокая чувствительность к шуму.

Алгоритм КНП — «Кратчайший Незамкнутый Путь»

- 1: Найти пару вершин (i,j) с наименьшим ρ_{ij} и соединить их ребром;
- 2: пока в выборке остаются изолированные точки
- найти изолированную точку,
 ближайшую к некоторой неизолированной;
- соединить эти две точки ребром;
- 5: удалить K-1 самых длинных рёбер;

Достоинство:

• задаётся число кластеров К.

Недостаток:

• высокая чувствительность к шуму.

Алгоритм ФОРЭЛ — «ФОРмальные ЭЛементы»

[Загоруйко, Ёлкина, 1967]

- 1: $U := X^{\ell}$ множество некластеризованных точек;
- 2: **пока** в выборке есть некластеризованные точки, $U \neq \varnothing$:
- 3: взять случайную точку $x_0 \in U$;
- 4: повторять
- 5: образовать кластер с центром в x_0 и радиусом R:

$$K_0 := \{x_i \in U \mid \rho(x_i, x_0) \leq R\};$$

6: переместить центр x_0 в центр масс кластера:

$$x_0 := \frac{1}{|K_0|} \sum_{x_i \in K_0} x_i;$$

- 7: **пока** состав кластера K_0 не стабилизируется;
- 8: пометить все точки K_0 как кластеризованные: $U := U \setminus K_0$;
- 9: применить алгоритм КНП к множеству центров кластеров;
- 10: каждый $x_i \in X^{\ell}$ приписать кластеру с ближайшим центром;

Замечание к шагу 6:

если X не является линейным векторным пространством, то

$$x_0 := \frac{1}{|K_0|} \sum_{x_i \in K_0} x_i \longrightarrow x_0 := \arg\min_{x \in K_0} \sum_{x' \in K_0} \rho(x, x');$$

Преимущества ФОРЭЛ:

- получаем двухуровневую структуру кластеров;
- кластеры могут быть произвольной формы;
- варьируя R, можно управлять детальностью кластеризации.

Недостаток ФОРЭЛ:

• чувствительность к R и начальному выбору точки x_0 . Способ устранения:

сгенерировать несколько кластеризаций и выбрать лучшую по заданному функционалу качества.

Функционалы качества кластеризации Случай 1: X — метрическое (не линейное векторное) пространство

• Среднее внутрикластерное расстояние:

$$F_0 = \frac{\sum\limits_{i < j} [y_i = y_j] \, \rho(x_i, x_j)}{\sum\limits_{i < j} [y_i = y_j]} \to \min.$$

• Среднее межкластерное расстояние:

$$F_1 = \frac{\sum\limits_{i < j} [y_i \neq y_j] \, \rho(x_i, x_j)}{\sum\limits_{i < j} [y_i \neq y_j]} \to \max.$$

• Отношение пары функционалов:

$$F_0/F_1 \rightarrow \min$$
.

Функционалы качества кластеризации Случай 2: X — линейное векторное пространство

• Сумма средних внутрикластерных расстояний:

$$\Phi_0 = \sum_{y \in Y} \frac{1}{|K_y|} \sum_{i: y_i = y} \rho^2(x_i, \mu_y) \to \min,$$

$$K_y = \{x_i \in X^\ell \mid y_i = y\}$$
 — кластер y , μ_y — центр масс кластера y .

• Сумма межкластерных расстояний:

$$\Phi_1 = \sum_{\mathbf{y} \in \mathbf{Y}} \rho^2(\mu_{\mathbf{y}}, \mu) \to \mathsf{max},$$

где μ — центр масс всей выборки.

• Отношение пары функционалов:

$$\Phi_0/\Phi_1 \to min$$
.

Агломеративная иерархическая кластеризация

Алгоритм Ланса-Уильямса [1967]

1: сначала все кластеры одноэлементные:

$$t := 1; \quad C_t = \{\{x_1\}, \dots, \{x_\ell\}\}; \\ R(\{x_i\}, \{x_i\}) := \rho(x_i, x_i);$$

- 2: для всех $t = 2, ..., \ell$ (t номер итерации):
- 3: найти в C_{t-1} два ближайших кластера:

$$(U,V) := \arg\min_{U \neq V} R(U,V);$$

$$R_t := R(U, V);$$

4: слить их в один кластер:

$$W := U \cup V$$
;

$$C_t := C_{t-1} \cup \{W\} \setminus \{U, V\};$$

- 5: для всех $S ∈ C_t$
- 6: вычислить R(W, S) по формуле Ланса-Уильямса;

Формула Ланса-Уильямса

Как определить расстояние R(W,S) между кластерами $W=U\cup V$ и S, зная расстояния $R(U,S),\ R(V,S),\ R(U,V)$?

Формула, обобщающая большинство разумных способов определить это расстояние [Ланс, Уильямс, 1967]:

$$R(U \cup V, S) = \alpha_U \cdot R(U, S) +$$

$$+ \alpha_V \cdot R(V, S) +$$

$$+ \beta \cdot R(U, V) +$$

$$+ \gamma \cdot |R(U, S) - R(V, S)|,$$

где α_U , α_V , β , γ — числовые параметры.

Частные случаи формулы Ланса-Уильямса

1. Расстояние ближнего соседа:

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = -\frac{1}{2}.$$

2. Расстояние дальнего соседа:

$$R^{A}(W,S) = \max_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = \frac{1}{2}.$$

3. Групповое среднее расстояние:

$$R^{r}(W,S) = \frac{1}{|W||S|} \sum_{w \in W} \sum_{s \in S} \rho(w,s);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \quad \alpha_{V} = \frac{|V|}{|W|}, \quad \beta = \gamma = 0.$$

Частные случаи формулы Ланса-Уильямса

4. Расстояние между центрами:

$$R^{\mathsf{u}}(W,S) = \rho^2 \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right);$$

$$\alpha_U = \frac{|U|}{|W|}, \ \alpha_V = \frac{|V|}{|W|},$$

$$\beta = -\alpha_U \alpha_V, \ \gamma = 0.$$

5. Расстояние Уорда:

$$\begin{split} R^{y}(W,S) &= \frac{|S||W|}{|S|+|W|} \, \rho^{2} \bigg(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \bigg); \\ \alpha_{U} &= \frac{|S|+|U|}{|S|+|W|}, \ \alpha_{V} &= \frac{|S|+|V|}{|S|+|W|}, \ \beta &= \frac{-|S|}{|S|+|W|}, \ \gamma &= 0. \end{split}$$

Проблема выбора

Какой тип расстояния лучше?

1. Расстояние ближнего соседа:

Диаграмма вложения

2. Расстояние дальнего соседа:

3. Групповое среднее расстояние:

Диаграмма вложения

5. Расстояние Уорда:

Диаграмма вложения

Свойство монотонности

Определение

Кластеризация монотонна, если при каждом слиянии расстояние между объединяемыми кластерами только увеличивается: $R_2 \leqslant R_3 \leqslant \ldots \leqslant R_\ell$.

Теорема (Миллиган, 1979)

Кластеризация монотонна, если выполняются условия

$$\alpha_U \geqslant 0$$
, $\alpha_V \geqslant 0$, $\alpha_U + \alpha_V + \beta \geqslant 1$, $\min\{\alpha_U, \alpha_V\} + \gamma \geqslant 0$.

Если кластеризация монотонна, то дендрограмма не имеет самопересечений.

 R^{μ} не монотонно; R^{6} , R^{μ} , R^{r} , R^{y} — монотонны.

Свойства сжатия и растяжения

Определение

Кластеризация *сжимающая*, если $R_t \leqslant \rho(\mu_U, \mu_V)$, $\forall t$. Кластеризация *растягивающая*, если $R_t \geqslant \rho(\mu_U, \mu_V)$, $\forall t$. Иначе кластеризация *сохраняет метрику пространства*.

Свойство растяжения наиболее желательно, так как оно способствует более чёткому отделению кластеров.

```
R^6 — сильно сжимающее; R^{\rm H}, R^{\rm Y} — растягивающие; R^{\rm F}, R^{\rm H} — сохраняют метрику пространства.
```

Проблема повышения эффективности алгоритма

Проблема эффективности:

• самая трудоёмкая операция в алгоритме Ланса-Уильямса — поиск ближайших кластеров — $O(\ell^2)$ операций:

шаг 3:
$$(U, V) := \underset{U \neq V}{\operatorname{arg min}} R(U, V).$$

• значит, построение всего дерева — $O(\ell^3)$ операций.

Идея повышения эффективности:

• перебирать лишь наиболее близкие пары:

шаг 3:
$$(U,V) := \underset{R(U,V) \leq \delta}{\operatorname{arg \, min}} R(U,V).$$

ullet периодически увеличивать параметр δ .

Быстрый (редуктивный) алгоритм Ланса-Уильямса

```
1: сначала все кластеры одноэлементные:
   t := 1; \quad C_t = \{\{x_1\}, \dots, \{x_\ell\}\};
   R(\{x_i\},\{x_i\}) := \rho(x_i,x_i);
2: выбрать начальное значение параметра \delta;
   P(\delta) := \{(U, V) \mid U, V \in C_t, R(U, V) \leq \delta\};
3: для всех t = 2, ..., \ell (t — номер итерации):
      если P(\delta) = \emptyset то увеличить \delta так, чтобы P(\delta) \neq \emptyset;
      (U, V) := \arg \min R(U, V);
5:
                   (U,V)\in P(\delta)
      R_t := R(U, V);
      C_t := C_{t-1} \cup \{W\} \setminus \{U, V\}:
6:
7:
      для всех S \in C_t
         вычислить R(W, S) по формуле Ланса-Уильямса;
8:
         если R(W,S) \leqslant \delta то P(\delta) := P(\delta) \cup \{(W,S)\};
9:
```

Свойство редуктивности

Всегда ли быстрый алгоритм строит ту же кластеризацию?

Определение (Брюинош, 1978)

Расстояние R называется peдуктивным, если для любого $\delta>0$ и любых δ -близких кластеров $R(U,V)\leqslant \delta$ объединение δ -окрестностей U и V содержит δ -окрестность объединения $W=U\cup V$:

$$\left\{S\colon R(U\cup V,S)<\delta\right\}\subseteq \left\{S\colon R(S,U)<\delta\right\}\cup \left\{S\colon R(S,V)<\delta\right\}.$$

Теорема

Если расстояние R редуктивно, то быстрый алгоритм приводит к той же кластеризации, что и исходный алгоритм.

Свойство редуктивности

Теорема (Диде и Моро, 1984)

Расстояние R является редуктивным, если

$$\alpha_U \geqslant 0, \ \alpha_V \geqslant 0, \ \alpha_U + \alpha_V + \min\{\beta, 0\} \geqslant 1, \ \min\{\alpha_U, \alpha_V\} + \gamma \geqslant 0.$$

Утверждение

Всякое редуктивное расстояние является монотонным.

 R^{q} не редуктивное; R^{f} , R^{g} , R^{r} , R^{y} — редуктивные.

Рекомендации и выводы

Стратегия выбора параметра δ на шагах 2 и 4:

- ullet Если $|C_t| \leqslant n_1$, то $P(\delta) := \{(U,V) \colon U, V \in C_t\}.$
- Иначе выбрать n_2 случайных расстояний R(U,V); $\delta :=$ минимальное из них;
- n_1 , n_2 влияют только на скорость, но не на результат кластеризации; сначала можно положить $n_1 = n_2 = 20$.

Общие рекомендации по иерархической кластеризации:

- лучше пользоваться R^y расстоянием Уорда;
- лучше пользоваться быстрым алгоритмом;
- определение числа кластеров по максимуму $|R_{t+1} R_t|$, тогда результирующее множество кластеров := C_t .

Гипотеза (о вероятностной природе данных)

Выборка X^ℓ случайна, независима, из смеси распределений

$$p(x) = \sum_{y \in Y} w_y p_y(x), \qquad \sum_{y \in Y} w_y = 1,$$

 $p_{v}(x)$ — плотность, w_{v} — априорная вероятность кластера y.

Гипотеза (о пространстве объектов и форме кластеров)

$$X=\mathbb{R}^n,\;\;x_i\equiv \left(f_1(x_i),\dots,f_n(x_i)
ight);\;$$
 кластеры n -мерные гауссовские $p_y(x)=(2\pi)^{-\frac{n}{2}}(\sigma_{y1}\cdots\sigma_{yn})^{-1}\exp\left(-\frac{1}{2}\rho_y^2(x,\mu_y)
ight),$ $\mu_y=(\mu_{y1},\dots,\mu_{yn})$ — центр кластера $y;$ $\Sigma_y={
m diag}(\sigma_{y1}^2,\dots,\sigma_{yn}^2)$ — диагональная матрица ковариаций; $\rho_y^2(x,x')=\sum_{i=1}^n\sigma_{yj}^{-2}|f_j(x)-f_j(x')|^2.$

ЕМ-алгоритм (повторение)

- 1: начальное приближение w_y , μ_y , Σ_y для всех $y \in Y$;
- 2: повторять
- 3: E-шаг (expectation):

$$g_{iy} := P(y|x_i) \equiv \frac{w_y p_y(x_i)}{\sum_{z \in Y} w_z p_z(x_i)}, y \in Y, i = 1, \dots, \ell;$$

4: M-шаг (maximization):

$$w_{y} := \frac{1}{\ell} \sum_{i=1}^{\ell} g_{iy}, y \in Y;$$

$$\mu_{yj} := \frac{1}{\ell w_{y}} \sum_{i=1}^{\ell} g_{iy} f_{j}(x_{i}), y \in Y, j = 1, ..., n;$$

$$\sigma_{yj}^{2} := \frac{1}{\ell w_{y}} \sum_{i=1}^{\ell} g_{iy} (f_{j}(x_{i}) - \mu_{yj})^{2}, y \in Y, j = 1, ..., n;$$

- 5: $y_i := \underset{v \in Y}{\operatorname{arg max}} g_{iy}, i = 1, \dots, \ell;$
- пока у; не перестанут изменяться;

Mетод k-средних (k-means)

 $X = \mathbb{R}^n$. Упрощённый аналог EM-алгоритма:

- 1: начальное приближение центров $\mu_{V}, \ y \in Y;$
- 2: повторять
- 3: аналог Е-шага:

отнести каждый x_i к ближайшему центру:

$$y_i := \underset{y \in Y}{\operatorname{arg min}} \rho(x_i, \mu_y), \quad i = 1, \dots, \ell;$$

4: аналог М-шага:

вычислить новые положения центров:

$$\mu_{yj} := \frac{\sum_{i=1}^{\ell} [y_i = y] f_j(x_i)}{\sum_{i=1}^{\ell} [y_i = y]}, \ y \in Y, \ j = 1, \dots, n;$$

5: **пока** y_i не перестанут изменяться;

Модификации и обобщения

Варианты k-means:

- вариант Болла-Холла (на предыдущем слайде);
- вариант МакКина: при каждом переходе объекта из кластера в кластер их центры пересчитываются;

Основные отличия EM и k-means:

- ЕМ: мягкая кластеризация: $g_{iy} = P\{y_i = y\};$ k-m: жёсткая кластеризация: $g_{iy} = [y_i = y];$
- ЕМ: форма кластеров эллиптическая, настраиваемая; k-m: форма кластеров жёстко определяется метрикой ρ ;

Гибридные варианты по пути упрощения ЕМ:

- ЕМ с жёсткой кластеризацией на Е-шаге;
- ЕМ без настройки дисперсий (сферические гауссианы);

Частичное обучение (Semi-supervised learning)

Дано:

Y — множество кластеров; $\left\{x_i\right\}_{i=1}^\ell$ — обучающая выборка; $\left\{x_i,y_i\right\}_{i=\ell+1}^{\ell+m}$ — размеченная часть выборки, обычно $m \ll \ell$.

Найти:

 $a: X \to Y$ — алгоритм кластеризации.

Как приспособить ЕМ-алгоритм:

Е-шаг:
$$g_{iy}:=\begin{bmatrix} y=y_i\end{bmatrix}$$
, $y\in Y$, $i=\ell+1,\ldots,\ell+m$;

Как приспособить k-means:

Е-шаг:
$$y_i := \operatorname*{arg\,min}_{y \in Y} \rho(x_i, \mu_y), \ i = 1, \dots, \ell.$$

Hедостатки k-means

- Чувствительность к выбору начального приближения.
- \bullet Необходимость задавать k;

Способы устранения этих недостатков:

- Несколько случайных кластеризаций;
 выбор лучшей по функционалу качества.
- Постепенное наращивание числа кластеров k (аналогично EM-алгоритму)