

Descriptive analysis and differential expression

José Manuel Sánchez Santos Dpto. Estadística - CIC-Usal

\Samples Variables	S_I	S ₂	•••	S_m	
Gene/Protein 1	X_{11}	X_{12}		X_{lm}	
Gene/Protein 2	X_{21}	X_{22}		X_{2m}	
Gene/Protein n	X_{n1}	X_{n2}		X_{nm}	
Factor 1	F ₁₁	F_{12}		F_{lm}	
Factor k	F_{k1}	F_{k2}		F_{km}	

Omic data (gene/protein expression from microarrays, RNASeq,...)

- -Genomic data
- -Transcriptomic data

Phenotypic data (genre, age groups, patient type, cell type, cancer type, experiments, batch...)

OMIC DATA

- Gene expression values up to 2²⁰, then log-scale.
- Lots of genes with low expression.
- Very few genes with high expression.
- Expression is not Normal (Gaussian) distributed.
 - Plots: histogram, density, boxplot, MA-plot...

OMIC DATA

One microarray density plot

One microarray MA-plot (expresión vs mean)

PHENOTYPIC DATA

- ☐ Biological variability.
- ☐ Different experimental conditions.
- □ Samples from different sources.
- ☐ Join datasets from different experiments or batches.
- □ Plots: joint histograms / density / boxplots, PCA plot.

PHENOTYPIC DATA

(imagine) n dimensional space, each • is a sample

PCA: n dimensional space but plot of 2 axis explaining most variability

Usually remove low expressions (low count filtering, background correction...)

Heatmap:

- Search patterns.
- Search batch effects.

Normalize:

- Make the expression signal comparable.
- RMA, MAS5, fRMA...

After normalization

samples

Batch effects correction:

- Correct the technical sources of variation, such as different processing times or different handlers.

- Combat, f-RMA, TMM, RLE, upperquartile...

Gene/Protein expression profile: expression signal in each sample

	S_{I}	S ₂	S_3	 S_{m-1}	S_m
Gene/Protein	X_{11}	X_{12}	X ₁₃	 $X_{l(m-l)}$	X_{lm}

Differential expression analysis: expression signal comparison between groups

	S_{I}	S ₂	S_3	 S_{m-1}	S _m
Gene/Protein	X_{11}	X ₁₂	X ₁₃	 $X_{l(m-l)}$	X _{lm}
Factor/Group	\mathbf{F}_{1}	F_2	F ₃	 F_{m-1}	F_{m}

Some scenarios:

In statistics it is a hypothesis contrast:

H₀: The gene does not change (not DE)

H₁: The gene changes (there are significant differences between groups)

Objective:

- Find genes that change between groups.
 - lacktriangle Over-expressed genes \rightarrow the disease activates it

lacksquare Under-expressed genes o the disease represses it o

* Examples:

- Use this information to activate or repress genes with drugs to fight the disease.
- Find genetic signatures, groups of genes that represent a disease, a type of cancer, a group of individuals...

ACKNOWLEDGMENTS

Group CIC-IBMCC-USAL

Javier De Las Rivas
Diego Alonso
Alberto Berral
Fernando Bueno
Santiago Bueno
Óscar González
Elena Sánchez
José Manuel Sánchez

