Část III.

Integrál funkce více proměnných

12. Základní pojmy

Rozdělení intervalu. Mějme $a, b \in \mathbb{R}, a < b$, pak konečná množina $\sigma = \{x_0, x_1, \ldots, x_n\}$ kde platí $a = x_0 < x_1 < \ldots < x_n = b$ se nazývá **rozdělení intervalu**, které je ekvidistantní.

Ekvidistantní. Rozdělení σ se nazývá ekvidistantní, pokud $x_k - x_{k-1} = \frac{b-a}{n}, \ k = 1, \dots, n$. Tedy rozdělení zachovává konstantní vzdálenost mezi prvky.

Norma. Číslo $\nu(\sigma) = \max\{x_k - x_{k-1} | k = 1, \dots, n\}$ se nazývá norma σ . Norma dělení charakterizuje, jak je dělení jemné.

13. Riemannův integrál funkce jedné a více proměnných

- Hlavní myšlenka konstrukce je aproximace plochy pod křivkou pomocí obdélníků:
 - interval rozdělíme na malé kousky (tzv. rozdělení intervalu);
 - na těchto kouscích aproximujeme funkci f(x) vhodně zvolenými konstantami;
 - dostaneme takzvané stupňovité funkce;
 - obsah pod grafem stupňovité funkce je součet obdélníků, a tedy snadno spočítatelná veličina.
- Zjemňujeme rozdělení a tím získáváme přesnější a přesnější aproximace hledaného obsahu.
- Přesnou hodnotu získáme tak, že v limitě "pošleme" šířku výše uvedených malých kousků k nule.

Obrázek 3: Dělení intervalu

Definice. Nechť funkce f je spojitá na intervalu $\langle a, b \rangle$ a $\sigma = \{x_0, x_1, \dots, x_n\}$ je rozdělení tohoto intervalu. Označme

$$M_i = \max_{\langle x_{i-1}, x_i \rangle} f$$
 a $m_i = \min_{\langle x_{i-1}, x_i \rangle} f$

pro každé $i = 1, 2, \dots n$. Potom

$$S(\sigma) = \sum_{i=1}^{n} M_i \Delta_i \text{ a } s(\sigma) = \sum_{i=1}^{n} m_i \Delta_i$$

nazýváme horním, resp. dolním, součtem funkce f při rozdělení σ .

Dolní, resp. horní, součty představují obsah plochy tvořené obdélníky pod, resp. nad, grafem funkce.

Posloupnost rozdělení σ_n nazveme normální, pokud pro její normy platí

$$\lim_{n\to\infty}\nu\left(\sigma_n\right)=0.$$

Nyní můžeme zformulovat velmi důležitou větu, umožňující definovat Riemannův integrál.

Nechť σ_n je normální posloupnost rozdělení intervalu $\langle a,b\rangle$ a funkce f nechť je spojitá na intervalu $\langle a,b\rangle$. Potom limity

$$\lim_{n\to\infty} s\left(\sigma_n\right) \ \text{a} \ \lim_{n\to\infty} S\left(\sigma_n\right)$$

existují, jsou si rovny a nezáleží na konkrétní volbě posloupnosti σ_n . Tuto společnou limitu nazýváme Riemannovým integrálem funkce f na intervalu $\langle a, b \rangle$ a značíme symboly

$$\int_{a}^{b} f \text{ nebo } \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Obrázek 4: Dolní součet

Obrázek 5: Horní součet

- Riemannův integrál vychází z faktu, že snadno vypočteme obsah obdélníka. Budeme tedy aproximovat oblast pod grafem funkce pomocí vhodných obdélníků.⁵
- $\int_a^{\underline{b}}$ je horní integrální součet, $\int_{\underline{b}}^a$ je dolní integrální součet. Navíc platí, že $\int_{\underline{b}}^a \le \int_a^{\underline{b}}$.
- Pokud je funkce na intervalu integrovatelná, je možné integraci vyjádřit pomocí primitivní funkce (Newtonova formule)

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

- Počítání s určitými integrály:
 - per partes vychází z násobení derivace (uv)' = u'v + v'u,
 - substituce vychází z derivace složené funkce.
- Místo intervalu můžeme mít např. pravoúhelník

$$D = [a, b] \times [c, d]$$

- Vlastnosti dvojného integrálu:
 - Linearita pokud jsou f, g integrovatelné na D, pak jsou na D integrovatelné f+g.
 - Nerovnosti pokud jsou f, g integrovatelné na D a $f \leq g$, pak $\iint_D f(x) \leq \iint_D g(x)$.
 - Věta: $\iint_{D}f\left(x,\ y\right)$ je možné rozepsat jako $\int_{a}^{b}\left(\int_{c}^{d}f\left(x,\ y\right)\right)$
- Můžeme integrovat i nad obecnější oblastí:

⁵http://math.feld.cvut.cz/mt/txtd/1/txc3da1a.htm

- typ 1 - shora a zdola,

- typ 2 - zleva a zprava.

- Lagrangeova funkce

13.1. Vlastnosti Riemannova integrálu

Aditivita integrálu. Nechť f a g jsou spojité funkce na intervalu $\langle a, b \rangle$. Potom pro Riemannův integrál funkce f + g, která je také automaticky spojitá na $\langle a, b \rangle$, platí

$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Multiplikativita integrálu. Nechť f je spojitá na intervalu $\langle a, b \rangle$ a $c \in \mathbb{R}$ je konstanta. Potom pro Riemannův integrál funkce cf platí

$$\int_{a}^{b} (cf)(x) dx = c \int_{a}^{b} f(x) dx$$

14. Newtonův integrál

14.1. Primitivní funkce

Primitivní funkce k funkci f je taková funkce F, pro kterou platí, že f = F'. Hledání primitivní funkce je tedy něco jako inverzní proces k derivování.

14.2. Primitivní funkce elementárních funkcí

Přehled tabulkových integrálů

$$\int 0 \, dx = c$$

$$\int a \, dx = ax + c$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c \operatorname{pro} x > 0, n \in R \text{ a } n \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x| + c \operatorname{pro} x \neq 0$$

$$\int e^x \, dx = e^x + c$$

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + c \operatorname{pro} a > 0, \text{ a } a \neq 1$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

Integrace per partes (integrace po částech):

$$\int u * v' = uv - \int u' * v$$

14.3. Newtonova-Leibnizova formule

Newtonův integrál představuje definici určitého integrálu, která je založena na existenci primitivní funkce.

Platí, pokud je funkce f(x) spojitá na intervalu $\langle a, b \rangle$ a funkce F(x) je k ní na intervalu $\langle a, b \rangle$ primitivní.

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Tento vztah bývá též označován jako Newton-Leibnizova formule, popř. se o něm také hovoří jako o základní větě integrálního počtu.

15. Dvojný integrál nad obdélníkovou oblastí

Následující věta nám říká, jak převést problém výpočtu dvojného integrálu na dva jednodimenzionální podproblémy. Dvojný integrál přes obdélníkovou oblast D definujeme jako

$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \text{ nebo } \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

kde $D = \langle a,b \rangle \times \langle c,d \rangle \subset D_f \subset \mathbb{R}^2$ a a < b, c < d jsou reálná čísla.

Výpočet dvojného integrálu tedy můžeme provést tak, že funkci nejdříve zintegrujeme vzhledem k jedné proměnné a druhou považujeme za konstantu. Výsledek této integrace (získaný pomocí Newtonovy formule) potom již závisí pouze na jedné proměnné, vzhledem které provedeme druhou integraci.

16. Dvojný integrál nad obecnou oblastí

Nyní si ukážeme, jak integrovat i přes oblasti, které jsou vymezené spojitými funkcemi. Uvažujeme dva typy oblastí

• Typ 1: x je z intervalu $\langle a, b \rangle$ a y je omezené spojitými funkcemi $\varphi_1(x)$ a $\varphi_2(x)$.

$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right) dx$$

Obrázek 6: Obecná oblast typu 1

Myšlenka:

- Pro oblast typu 1 zafixujme hodnotu x (na obrázku $x=x_0$), nad vzniklým řezem oblasti D (na obrázku tučná červená čára) nám vznikne funkce $f(x_0,y)$ jedné proměnné y.
- Plocha nad tímto řezem je rovna $\int_{\varphi_1(x_0)}^{\varphi_2(x_0)} f(x_0, y) dy$
- Nyní "posčítáme" takto získané jednorozměrné plochy přes všechna x od a do b a dostaneme $\iint_D f(x, y) dxdy = \dots$

Obrázek 7: Obecná oblast typu $1\,$

• Typ 2: y je z intervalu $\langle c, d \rangle$ a x je omezené spojitými funkcemi $\psi_1\left(y\right)$ a $\psi_2\left(y\right)$.

$$\iint_{D} f(x, y) dxdy = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx \right) dy$$

Obrázek 8: Obecná oblast typu 2

Poznámka k příkladu 2.2 ve cvičení 12: Vypočítejte $\iint_D f(x+y)^2 dxdy$. Zde budeme vyjadřovat y pomocí x (tj. $f(y) = x \dots$ – funkce ohraničující "shora" a "zdola" trojúhelník), poté se budeme automaticky omezovat na ose x.

$$\int_{x_1}^{x_2} \left(\int_{y_1}^{y_2} (\ldots) \, \mathrm{d}y \right) \mathrm{d}x$$

17. Trojný integrál a aplikace

Pomocí trojného integrálu můžeme spočítat několik užitečných čísel charakterizujících daný objem pod grafem funkce f nad oblastí D.

Konstrukce trojného integrálu je naprosto analogická konstrukci integrálu dvojného, pouze integrujeme funkci tří proměnných $f\left(x,y,z\right)$

$$\iiint_D f(x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

Výpočet lze opět převést na tři výpočty jednorozměrného integrálu, existuje ovšem 3! možných pořadí integrování.