Pengenalan Geostatistic

Definsi Geostatistic

- In its broadest sense, geostatistics can be defined as the branch of statistical sciences that studies spatial/temporal phenomena and capitalizes on spatial relationships to model possible values of variable(s) at unobserved, unsampled locations (Caers, 2005)
- Geostatistics: study of phenomena that vary in space and/or time (Deutsch, 2002)
- Geostatistics can be regarded as a collection of numerical techniques that deal with the characterization of spatial attributes, employing primarily random models in a manner similar to the way in which time series analysis characterizes temporal data. (Olea, 1999)
- "Geostatistics offers a way of describing the spatial continuity of natural phenomena and provides adaptations of classical regression techniques to take advantage of this continuity." (Isaaks and Srivastava, 1989)

- Komponen dasar dari Geostatistic
 - Semivariogram analysis
 - Kriging
 - Stochastic simulation
- Metode geostatistical optimal dengan kondisi data:
 - Normally distributed
 - Stationary
 - Bagaimana menguji data terdistibusi normal?

Semivariogram

Covariance, Correlation and Semivariance

- Covariance
 - Ukuran seberapa besar 2 random variable berubah bersama.

$$\sigma(X,Y) = E[(X - E(X))(Y - E(Y))]$$

- Correlation
 - Nilai derajat dari 2 random variable secara linier berelasi.

$$\rho(X,Y) = \frac{\sigma(X,Y)}{\sigma(X)\sigma(Y)}$$

Correlation coefficient (ρ)

- ▶ I : perfect positive correlation
- 0 : uncorrelated
- -I : perfect negative correlation

Variable dalam spatial statistic

- u: vector dari koordinat spatial (x,y atau easting, northing)
- z(u): fungsi dari koordinat spatial.
- h: lag vector; pemisah antara 2 koordinat spatial.
- > z(u+h): lagged variable.

 Covariance, Correlation dan semivariance dalam spatial statistic

Covariance
$$C(h) = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} z(u_{\alpha}) \cdot z(u_{\alpha} + h) - m_0 \cdot m_{+h}$$

Correlation
$$\rho(h) = \frac{C(h)}{\sqrt{\sigma_0^2 \cdot \sigma_{+h}^2}}$$

Semivariance
$$\gamma(h) = \frac{1}{2N(h)} \sum_{\alpha=1}^{N(h)} [z(u_{\alpha} + h) - z(u_{\alpha})]^2$$

Means

$$m_0 = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} z(u_\alpha)$$

$$m_0 = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} z(u_{\alpha})$$
 $m_{+h} = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} z(u_{\alpha} + h)$

Variances

$$\sigma_0^2 = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} [z(u_\alpha) - m_0]^2 \quad \sigma_{+h}^2 = \frac{1}{N(h)} \sum_{\alpha=1}^{N(h)} [z(u_\alpha + h) - m_{+h}]^2$$

Pada kondisi second-order stationarity (mean dan variance tetap)

$$C(0) = Cov(z(u), z(u)) = \sigma^{2}(z(u))$$

$$\gamma(h) = C(0) - C(h)$$

$$\rho(h) = \frac{C(h)}{C(0)}$$

- ▶ H-scattergram adalah scatter plot dari z(u) dan z(u+h).
- Semivariance → seberapa menyebarnya data dari garis 45° pada h-scattergram.
- Covariance dan correlation adalah ukuran similaritas sedangkan semivariance adalah ukuran disimilaritas.
- Nilai lag (h) biasanya menggunakna toleransi misalkan nilai lag nya 1000 dengan toleransi 500 (i.e. 500-1500)

Variogram Cloud

• Plot γ dan lag.

$$\gamma_{ij} = \frac{\left[Z(s_i) - Z(s_j)\right]^2}{2}$$

Contoh Covariance, Correlation dan Semivariance

Data: the Big Bean Oil Field, Zone A

- Correlation vs lag
 - Correlogram
- Semivariance vs lag
 - Semivariogram

Karakteristik Semi-Variogram

- ▶ Sill nilai dimana grafik semivariogram turun (disebut ampliudo).
- Range Nilai lag dimana grafik semivariogram mencapai sill.
- Nugget Nilai semivariogram pada jarak yang mendekati 0.

Jika empirical semivariogram bernilai naik dan stabil di luar dari nilai glpbal variance. Maka mengindikasikan ada suatu spatial trend yang significant

Pemodelan dari Semivariogram

Perlu untuk kriging

- Dapat mengakses nilai semivariogram sebagai fungsi bukan emperical.
- ▶ Pemodelannya yang umum (licit semivariogram model):

Nugget:
$$g(h) = \begin{cases} 0 & \text{if } h = 0 \\ c & \text{otherwise} \end{cases}$$

Spherical:
$$g(h) = \begin{cases} c \cdot \left(1.5 \left(\frac{h}{a} \right) - 0.5 \left(\frac{h}{a} \right)^3 \right) & \text{if } h \le a \\ c & \text{otherwise} \end{cases}$$

$$ightharpoonup c$$
: still

Exponential:
$$g(h) = c \cdot \left(1 - \exp\left(\frac{-3h}{a}\right)\right)$$

Gaussian:
$$g(h) = c \cdot \left(1 - \exp\left(\frac{-3h^2}{a^2}\right)\right)$$

Power:

$$g(h) = c \cdot h^{\omega}$$
 with $0 < \omega < 2$

Ilustrasi pemodelan semivariogram

- Nugget
 mengindikasikan murni
 random variable
 dengan tidak ada
 spatial correlation
 - Discontinuity
- ▶ Gaussian → bervariasi dengan sangat halus.
 - Parabolic behaviour
- Spherical dan
 Exponential ->
 bervariasi pada jarak
 yang pendek
 - Linear behaviour

- Gabungan linier dari licit semivariogram model adalah tetap sebahai licit model
- Nagget (c = 0.1) + Gaussian (a=1500,c=0.2) + Exponantial (a=8000, c=0.6)

Proses fitting model dari data observasi dengan regression
Porosity Semivariogram with Three Models

Omnidirectional

- Emperical semivariogram dihitung dengan memperhatikan arah.
- Anisotropic semivariogram
- Semivariance dihitung per directional band

Contoh

Lebih bernoisi karena memotong jumlah pasangan data

Kriging

Interpolation

- Menghitung nilai suatu variable pada lokasi yang belum terhitung dengan menggunakan data observasi disekitarnya.
- Nilai dari suatu lokasi = jumlahan terbobot dari data disekitarnya.
- Ijka data merata dan tredistibusi uniform maka hasil interpolasi akan baik tanpa mempedulikan metode yang dipakai
- Jika data tercluster dengan jarak antar cluster jauh maka akan mendapatkan hasil yang buruk tanpa mempedulikan metode yang dipakai

Definisi Kriging

- Optimal interpolation yang berdasarkan regresi pada data observasi disekitarnya dan diberi bobot sesuai dengan nilai spatial covariancenya.
- Kaunggulan
 - Membantu menanggulangi data tercluster dg memberikan nilai bobot lebih kecil dari pada isolated point.
 - Memberikan estimasi dari estimasi error (kriging variance)
 - Estimasi error ini menjadi basis untuk stochastic sumulation

Kriging estimator

Basis linear estimator

$$Z^*(u) - m(u) = \sum_{\alpha=1}^{n(u)} \lambda_{\alpha} [Z(u_{\alpha}) - m(u_{\alpha})]$$

- Dimana
- u : lokasi yang ingin diestimasi.
- u_a : data observasi disekirat u.
- n(u) : jumlah data observasi disekitar u
- > m(u) : nilai ekspektasi dari <math>Z(u)
- $m(u_{\alpha})$: nilai ekspektasi dari $Z(u_{\alpha})$
- Z(u): random field dengan trend komponen m(u) dan residual komponen R(u). R(u) = Z(u) m(u)

Goal

Menentukan nilai λ_{α} yang memiminalkan variance dari

$$\sigma_E^2(u) = \sigma^2 \{Z^*(u) - Z(u)\}$$

dengan konstrain unbiasedness

$$E\{Z^*(u)-Z(u)\}=0$$

- Residual Component
 - Stationary mean $E\{R(u)\}=0$
 - Stationary covariance

$$Cov\{R(u), R(u+h)\} = E\{R(u) \cdot R(u+h)\} = C_R(h)$$

Simple Kriging

- ▶ Trend nya konstan $\rightarrow m(u) = m$
- Simple Kriging Estimator:

$$Z_{SK}^*(u) = m + \sum_{\alpha=1}^{n(u)} \lambda_{\alpha}(u) [Z(u_{\alpha}) - m]$$

Error Estimation

$$Z_{SK}^*(u) - Z(u) = [Z_{SK}^*(u) - m] - [Z(u) - m]$$

$$Z_{SK}^*(u) - Z(u) = R_{SK}^*(u) - R(u)$$

$$R_{SK}^*(u) = \sum_{\alpha=1}^{n(u)} \lambda_{\alpha}(u) R(u_{\alpha})$$

Variance

$$\sigma_{E}^{2}(u) = \sigma^{2} \{R_{SK}^{*}(u)\} + \sigma^{2} \{R_{SK}(u)\} - 2Cov\{R_{SK}^{*}(u), R_{SK}(u)\}$$

$$= \sum_{\alpha=1}^{n(u)} \sum_{\beta=1}^{n(u)} \lambda_{\alpha}^{SK}(u) \lambda_{\beta}^{SK}(u) C_{R}(u_{\alpha} - u_{\beta}) + C_{R}(0) - 2\sum_{\alpha=1}^{n(u)} \lambda_{\alpha}^{SK}(u) C_{R}(u_{\alpha} - u)$$

• Untuk meminimalkan error maka σ_E^2 diturunkan terhadap setiap pembobotan kriging dan disamadengankan 0 sehingga

$$\sum_{\beta=1}^{n(u)} \lambda_{\beta}^{SK}(u) C_R(u_{\alpha} - u_{\beta}) = C_R(u_{\alpha} - u_{\beta})$$

untuk

$$\alpha = 1, ..., n(u)$$

▶ Karena mean adalah konstant maka $C(h) = C_R(h)$ sehingga

$$\sum_{\beta=1}^{n(u)} \lambda_{\beta}^{SK}(u)C \left(u_{\alpha} - u_{\beta}\right) = C \left(u_{\alpha} - u_{\beta}\right)$$

$$\alpha = 1, \dots, n(u)$$

Persamaan di atas dapat dibentuk dalam bentuk matrix; $K\lambda_{SK} = k$

Dimana K adalah covariance matrix antara data points dengan $K(i,j) = C(u_i - u_j)$, k adalah vector covariance antara data point dan estimation point di mana $k(i) = C(u_i - u_j)$ dan λ_{SK} adalah vector dari bobot kriging.

Bobot kriging didapatkan dengan

$$\lambda_{SK} = K^{-1}k$$

Kringing variance dapat dihitung sesuai dengan persamaan

$$\sigma_{SK}^2(u) = C(0) - \lambda_{SK}^T(u)k$$

- Secara intiusi
 - Mencari set dari bobot untuk mengestimasi suatu nilai variable pada lokasi u dari nilai-nilai tetangganya.
 - Bobot akan bersesuaian dengan jarak dari u dan pengulangan data (data tercluster)

FIN!