21-671: Computational Linear Algebra Homework Assignment Due 11:59pm on 09/30/24 Solutions

Instructions: Write or type solutions to the following problems and create a PDF file of your work. Then upload that PDF to Gradescope before the due date and time.

1. (20 pts.) (Norms and Calculus) Consider the problem of computing the 2-norm of the 2×2 matrix $A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$. Recall that

$$||A||_2 = \max_{||x||_2=1} ||Ax||_2.$$

Now every unit vector $x \in \mathbb{R}^2$ is of the form $x = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ for some $\theta \in [0, 2\pi]$. Thus we have

$$Ax = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} \cos \theta - 2\sin \theta \\ -3\cos \theta + 4\sin \theta \end{bmatrix},$$

so we have

$$||Ax||_2^2 = (\cos\theta - 2\sin\theta)^2 + (4\sin\theta - 3\cos\theta)^2 \equiv f(\theta).$$

Now use calculus to find $\max \|Ax\|_2^2$ and thus $\|A\|_2$. Also give a unit vector that maximizes $\|Ax\|_2$. (You may wish to use a plot of $f(\theta)$ to see where f is maximized as finding the inverse of a periodic function can be tricky.)

2. (40 pts.) (Programming) **Include the code and any results from the code to solve this problem in your single PDF file. Your code should be commented.** In this problem we are going to investigate how long the built-in linear system solvers in MATLAB or Python require to solve linear systems of increasing size. We will visualize the results by generating a plot of the run time vs. the matrix size.

Write Python or MATLAB code to perform the following tasks:

- (a) For each n in the table below, Construct a random matrix A (with entries between 0 and 1) of size $n \times n$. Use the rand() function in MATLAB or the numpy.random.rand() function in Python to do this.
- (b) Construct a random true solution vector x (with entries between 0 and 1) of size $n \times 1$.
- (c) Find the correct right hand side vector b by computing b = Ax.
- (d) Use the built-in linear solver (\ in MATLAB or numpy.linalg.solve in Python) to find the approximate solutions x̂. Calculate the time each solve takes using the built-in timing functions (tic and toc in MATLAB or time.time() in Python). For example, in MATLAB, a code snippet that will do this is:

 $tic;xhat = A \ b;toc.$

- (e) Now that you have \hat{x} , calculate the 2-norm of x, the 2-norm of the relative error, and the relative 2-norm of the residual $b A\hat{x}$ using the built-in norm function. Enter these values in the table below.
- (f) Once you have completed the above steps for all *n* in the table below, construct a log-log scale plot with *n* on the horizontal axis and the Solve Time on the vertical axis. Label your axes and give your plot a title. Can you draw any conclusions from the curve you plotted? Include your plot in your homework submission.

n	Solve Time	$\ \hat{x}\ _2$	Relative Error $\frac{\ x - \hat{x}\ _2}{\ x\ _2}$	Residual Norm $\frac{\ b - A\hat{x}\ _2}{\ b\ _2}$
100				
200				
500				
800				
1000				
2000				
5000				
8000				
10000				
15000				
20000				