10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos. N.C.: 0

1. Dadas las especificaciones de una familia lógica que se muestran en la tabla adjunta, indique cuál de las siguientes afirmaciones es **VERDADERA**.

V _{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
3V	1.5V	4V	1V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
20μΑ	-0.36mA	–300μΑ	6mA

- [A] El margen de ruido a nivel alto es 0.5V.
- [B] El margen de ruido es 1V.
- [C] El fan-out a nivel bajo es 17.
- [D] El fan-out es 15.
- 2. En el siguiente registro de desplazamiento síncrono se están utilizando biestables tipo D con las siguientes especificaciones: $t_{su} = 5$ ns, $t_h = 3$ ns, $t_{pLH} = 15$ ns, $t_{pHL} = 12$ ns. Indique cuál de las siguientes afirmaciones es **VERDADERA**.

- [A] La frecuencia máxima de la señal de reloj es 50MHz.
- B] El periodo mínimo de la señal de reloj es 17ns.
- [C] El t_r (*rise time*) y el t_f (*fall time*) de la señal de reloj deben ser como mínimo de 3ns.
- [D] Para poder utilizar una señal de reloj de 100MHz debería haber solo 2 biestables.
- 3. Considere el circuito adjunto y los parámetros característicos siguientes. Si las puertas tienen salidas en colector abierto, indique cuál de los valores propuestos sería adecuado para la resistencia de *pull-up*.

V _{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
2.5V	V8.0	3V	0.5V
I _{IHmax}	I _{ILmax}	I _{Ohmax(fugas)}	I _{OLmax}
300μΑ	-0.36mA	100μΑ	7mA

- [A] $R_{PU} = 0.22k\Omega$
- [B] $R_{PU} = 2.2k\Omega$
- [C] $R_{PU} = 5k\Omega$
- [D] $R_{PU} = 10k\Omega$

4. Se desea realizar la conexión de dos familias lógicas tal y como se muestra en la figura. A partir de las especificaciones de las familias A y B indicadas en las tablas adjuntas, indique cuál de las siguientes opciones permitiría una conexión **CORRECTA**.

Familia A			
V _{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
40 μΑ	-1.6 mA	-400 μΑ	16 mA

Familia B				
V _{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}	
2.1 V	0.9 V	2.9 V	0.1 V	
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	
1 pA	–20 pA	−0.5 mA	0.5 mA	

- [A] Se puede realizar la conexión directamente, ya que existe compatibilidad a nivel de tensión y corrientes.
- [B] La conexión no es posible de ninguna manera, ya que están alimentadas a diferente tensión.
- [C] Existe incompatibilidad de tensiones. Se puede solucionar intercalando un *buffer* en colector abierto a la salida de la puerta A y una resistencia de *pull-up* entre la salida del *buffer* y 5V.
- [D] Existe incompatibilidad de corrientes. Se puede solucionar intercalando un *buffer* de la familia B alimentado a 3V que proporcione suficiente corriente a la puerta A
- 5. Dado el biestable D *master-slave* de la figura, diseñado con puertas de transmisión CMOS, indique la afirmación **CORRECTA**:

- [A] Está formado por dos latches D activos a nivel bajo.
- [B] Cuando CLK = '0', se mantiene /QM gracias al bucle de realimentación.
- [C] Cuando CLK = '1' el maestro envía el dato al esclavo y la entrada D se bloquea.
- [D] Funciona como un *flip-flop* D activo por flanco de bajada.
- 6. Un procesador CMOS contiene 10⁶ transistores dedicados a la lógica combinacional/secuencial y 10⁸ transistores dedicados a la memoria *cache*. El factor de actividad medio es 0.1 para la lógica, y 0.01 para la memoria. La capacidad media de cada transistor es 1 fF (1 femtofaradio = 10⁻¹⁵F), el voltaje de alimentación es 2V y la frecuencia de reloj 3 GHz (1GHz = 10⁹ Hz). Calcule la potencia dinámica aproximada que consume el procesador.
- [A] No se puede calcular, ya que faltan las corrientes de fuga de los transistores.
- [B] 13.2W
- [C] 15W
- [D] 12.5W

7. A partir del *layout* de la celda estándar de la figura, identifique la función que implementa:

- [A] $F = \overline{A} \cdot \overline{B} + \overline{C} \cdot \overline{D}$
- [B] $F = (A \cdot B) + (C \cdot D)$
- [C] F = (A + B) + (C + D)
- [D] $F = \overline{A + B + C + D}$

8. Dada la memoria de la figura, indique la afirmación FALSA:

Nota: El bit menos significativo es el 0, tanto en las direcciones (A0) como en los datos (Y0)

- [A] Es una memoria ROM de 4 palabras de 6 bits.
- [B] Si A1 = "1" y A0 = "0", en el bus de datos se leerá la palabra "100101".
- [C] La presencia de un transistor en la intersección entre la línea de palabra y la línea de bit pone un "1" en la celda, que se lee como "0" en la correspondiente salida Yx.
- [D] Los transistores PMOS de la parte superior se comportan como resistencias de *pull-up* conectadas a alimentación.

9. A la vista del cronograma de la figura determine cuál de las afirmaciones es la FALSA:

- [A] Es un cronograma de escritura de una memoria SRAM.
- [B] tco es el tiempo de acceso desde la selección de chip.
 - t_A es el tiempo de acceso desde las direcciones.
- [D] t_{DF} es el tiempo (desde que se desactiva CS) que ha de transcurrir para que el bus pueda ser ocupado por otro dispositivo.

- 10. El circuito integrado CY62256, cuyo patillaje se indica en la figura, es una memoria SRAM con un tiempo de acceso típico de unos 70ns. A la vista del dibujo, se puede afirmar que:
- [A] Su capacidad de almacenamiento será de 32KB (2¹⁵ palabras de 8 bits).
- [B] 70 ns es el tiempo máximo que tarda un dato en ser escrito en las celdas de almacenamiento desde que se estabiliza la dirección (A_{0...}A₁₄).
- [C] La línea /CE (pin 20) corresponde a la selección de chip, por lo que deberá mantenerse a "1" durante cualquier operación de lectura o escritura que afecte al chip.
- [D] La línea /WE permite controlar la temporización del proceso de lectura, mientras que la línea /OE nos permite el control temporal del proceso de escritura.

Apellidos: Nombre:

PROBLEMA (4 PUNTOS)

A. (1 pto.) Se pretende diseñar la función $F = A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$ en lógica CMOS complementaria. Dibuje un esquema con transistores. Justifique el diseño.

NOTA: Utilice el símbolo simplificado de los transistores.

- B. (1 pto.) Compruebe el funcionamiento del circuito para la combinación de entradas: A = B = "1", C = "0".
 - B.1. (0.75 ptos.) Dibuje el circuito sustituyendo los transistores por interruptores (abiertos y/o cerrados).
 - B.2. (0.25 ptos.) Justifique el valor lógico de la salida F.

C. (1 pto.) Suponga que se modifica el circuito del apartado A, tal como muestra la figura adjunta.

- C.1. **(0.25 ptos.)** Indique el tipo de salida (estándar / drenador abierto / triestado):
- C.2. (0.25 ptos.) Indique el nombre del elemento añadido y dibuje su estructura interna con transistores.

C.3. (0.5 ptos.) Explique el funcionamiento del circuito modificado y rellene la tabla de verdad adjunta.

Α	В	С	EN	Υ
0	0	0	0	
0	0	1	0	
0	1	0	0	
1	1	1	0	
0	0	0	1	
0	0	1	1	
0	1	0	1	
1	1	0	1	
1	1	1	1	

D. (1 pto.) Complete la tabla de verdad de la función F del apartado A y realice el diseño de esta función utilizando una memoria ROM NOR. Dibuje la estructura interna con transistores e indique el tamaño de la memoria. Justifique el resultado.

Α	В	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	