	xi	xi^2	xi^3	xi^4	f(xi)	xif(xi)	xi^2f(xi)
	-2.00	4.00	-8.00	16.00	19.01	-38.02	76.04
	-1.00	1.00	-1.00	1.00	3.99	-3.99	3.99
	0.00	0.00	0.00	0.00	-1	0	0
	1.00	1.00	1.00	1.00	4.01	4.01	4.01
	2.00	4.00	8.00	16.00	18.99	37.98	75.96
	3.00	9.00	27.00	81.00	45.00	135	405
soma:	3.00	19.00	27.00	115.00	90.00	134.98	565.00

$$\begin{bmatrix} 115 & 27 & 19 \\ 27 & 19 & 3 \\ 19 & 3 & 6 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} 565 \\ 134.98 \\ 90.00 \end{bmatrix}$$

>>> import numpy as np

>>> xi=np.array([-2.00,-1.00,0.00,1.00,2.00,3.00])

>>> f_xi=np.array([19.01,3.99,-1,4.01,18.99,45.00])

>>> soma_xi=np.sum(xi)

>>>

A=np.matrix([[soma_xi_4,soma_xi_3,soma_xi_2],[soma_xi_3,soma_xi_2,soma_xi],[soma_xi_2,soma_xi_6]])

>>> B=np.matrix([[soma_xi_x_f_xi],[soma_xif_xi],[soma_f_xi]])

 $a_1 = 5.0893$ $a_2 = 0.0515$ $a_3 = -1.1403$