Homework #2

Chapter 1, Sec. 3

Ex. 1 Sketch the image under the spherical projection of the following sets on the sphere:

(a) the lower Hemisphere Z<0

$$x = X/(1-Z)$$
, $y = Y/(1-Z)$

We have that 1-Z>1, since Z<0

so
$$|x| < |X|$$
 and $|y| < |Y|$

and also because Z
eq 0, $X^2 + Y^2 < 1$

meaning, $x^2 + y^2 < X^2 + Y^2 < 1$

(b) the polar cap $\frac{3}{4} \leq Z \leq 1$

When
$$Z=rac{3}{4}$$
, $1-Z=rac{1}{4}$, so we have: $x=4X$ and $y=4Y$

And
$$1-Z^2=1-\frac{9}{16}=\frac{7}{16}$$

so:
$$x^2+y^2=16(X^2+Y^2)=16 imes rac{7}{16}=7$$

The image will be the grey section.

and as Z goes towards 1, the radii of the circles on the plane centered at 0 tend towards ∞ , so we have that $x^2+y^2\geq 7$ when $Z\in [\frac{3}{4},1]$

(c) lines of latitude $X=\sqrt{1-Z^2}\cos\theta$, $Y=\sqrt{1-Z^2}\sin\theta$, for Z fixed and $0\leq\theta\leq2\pi$

so this will correspond to a circle on the plane centered at 0.

the radius will be
$$=rac{\sqrt{1-Z^2}}{1-Z}$$
 , since $x=rac{X}{1-Z}=(rac{\sqrt{1-Z^2}}{1-Z})\cos heta=r\cos heta$

So for each Z:

(d) lines of longitude
$$X=\sqrt{1-Z^2}\cos\theta$$
, $Y=\sqrt{1-Z^2}\sin\theta$, for θ fixed and $-1\leq Z\leq 1$

These will correspond to lines on the plane that pass through origin

and slope
$$m=y/x= an heta$$
 , $x=rac{\sqrt{1-Z^2}}{1-Z} an heta$, $y=rac{\sqrt{1-Z^2}}{1-Z}\sin heta$.

For a fixed θ , when x is nonzero, x has the same sign as $\cos \theta$, because $\sqrt{1-Z^2} \geq 0$ and $1-Z \geq 0$, and similarly for y and $\sin \theta$

when Z=-1,1, x=y=0 , regardless of the value of θ , so the origin is always included in the image.

as $Z \to 1$, x and y approach either positive or negative infinity depending on θ .

(e) the spherical cap $A \leq X \leq 1$, with center lying on the equator for fixed A. Separate into cases, according to various ranges of A.

A=1: We only have the point (1,0,0), which means x=1, y=0

A=0: We have the entire right half-plane. $X\geq 0 \implies x\geq 0$

A=-1: We get the whole sphere as the domain, which means the whole plane.

 $A \in (0,1)$:

$$-\sqrt{1-A^2} \leq Y, Z \leq \sqrt{1-A^2}$$

Setting Y = 0:

$$rac{A}{1+\sqrt{1-A^2}} \leq x \leq rac{A}{1-\sqrt{1-A^2}}$$
, as Z goes from $-\sqrt{1-A^2}$ to $\sqrt{1-A^2}$

In the plane X=A, the intersection with the unit sphere is the circle in the plane centered at (0,0) with radius $\sqrt{1-A^2}$

this gives us the circle: $(x-rac{1}{A})^2-y^2=rac{1}{A^2}-1=rac{1-A^2}{A^2}$

It is centered at $(\frac{1}{A},0)$ with radius $\frac{\sqrt{1-A^2}}{A}$.

and if we continue to look at circles that come from the intersection of the sphere with the planes of the form X=D, with $D\in (A,1)$. As D increases, we get circles that are contained within the one before, each with center (1/D,0) and radius $\frac{\sqrt{1-D^2}}{D}$. Our image is therefore the section within the circle centered at (1/A,0) with radius $\frac{\sqrt{1-A^2}}{A}$

When $A \in (-1,0)$, If we looked at the spherical cap $-1 \le X \le A$, we'd get a similar situation as the one before. Since we're looking at the projection from the rest of the sphere, we'd get the image being the exterior of the circle.

Ex. 6 We define the chordal distance d(z,w) between two points $z,w\in\mathbb{C}^*$ to be the length of the straight line segment joining the points P and Q on the unit sphere whose stereographic projections are z and w respectively.

(a) Show that the chordal distance is a metric, that is, it is symmetric, d(z,w)=d(w,z); it satisfies the triangle inequality $d(z,w)\leq d(z,\zeta)+d(\zeta,w)$, and d(z,w)=0 if and only if z=w

let
$$P=(X_1,Y_1,Z_1)$$
 and $Q=(X_2,Y_2,Z_2)$, and let $z=x_1+iy_1$ and $w=x_2+iy_2$

then we have the length of the line segment \overline{PQ}

$$= \sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2} = \sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2+(Z_1-Z_2)^2} = \text{the length of } \overline{QP} \text{ so } d(z,w) = d(w,z)$$

For the Triangle Inequality: the length of the segment is the distance between the two points, where the distance is the usual metric on \mathbb{R}^3 , and by the definition of a metric, the triangle inequality is satisfied. Also, if we let R be a point on the unit sphere with the stereographic projection ζ , we could find the angles between \overline{PQ} , \overline{QR} , and \overline{RP} by identifying the vectors, say u_1 from P to Q, u_2 from Q to R, and u_3 from P to R, using these vectors to find the cosine of the angle θ_1 between u_1 and u_3 , and θ_2 between $-u_1$ and u_2 , and use:

 $||u_1|| = ||u_3|| \cos \theta_1 + ||u_2|| \cos \theta_2$ since these angles are going to be less than π , $\cos \theta_1$, $\cos \theta_2 \in (0,1)$

$$d(z, w) = ||u_1|| \le ||u_3|| + ||u_2|| = d(z, \zeta) + d(\zeta, w)$$

For d(z, w) = 0, we'd need $X_1 - X_2 = 0$, $Y_1 - Y_2 = 0$, $Z_1 - Z_2 = 0$, which means

 $P=(X_1,Y_1,Z_1)=(X_2,Y_2,Z_2)=Q$, which means they have the same stereographic projection z=w

(b) Show that the chordal distance from z to w is given by $d(z,w)=rac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}},\ z,w\in\mathbb{C}$

We rewrite d(z, w) in terms of x_1, y_1, x_2, y_2 and |z|, |w|

$$\sqrt{\left(\frac{2x_1}{|z|^2+1} - \frac{2x_2}{|w|^2+1}\right)^2 + \left(\frac{2y_1}{|z|^2+1} - \frac{2y_2}{|w|^2+1}\right)^2 + \left(\frac{|z|^2-1}{|z|^2+1} - \frac{|w|^2-1}{|w|^2+1}\right)^2}$$

$$(\frac{|z|^2-1}{|z|^2+1}-\frac{|w|^2-1}{|w|^2+1})^2=\frac{(|z|^2-1)^2}{(|z|^2+1)^2}-2\frac{(|w|^2-1)(|z|^2-1)}{(|z|^2+1)(|w|^2+1)}+\frac{(|w|^2-1)^2}{(|w|^2+1)^2}$$

$$(rac{2x_1}{|z|^2+1}-rac{2x_2}{|w|^2+1})^2=4(rac{x_1^2}{(|z|^2+1)^2}-2rac{x_1x_2}{(|z|^2+1)(|w|^2+1)}+rac{x_2^2}{(|w|^2+1)^2})$$

For the part containing y_1,y_2 can replace the x_i 's' with the corresponding y_i 's

And using $\left|z\right|^2=x_1^2+y_1^2$, when combining terms with denominator $(\left|z\right|^2+1)^2$

When we combine $(|z|^2-1)^2+4|z|^2=|z|^4-2|z|^2+1+4|z|^2=(|z|^2+1)^2$ (and similarly for $|w|=x_2^2+y_2^2$

Under the radical we now have:

$$2(\tfrac{-4x_1x_2-4y_1y_2-(|w|^2-1)(|z|^2-1)+(|w|^2+1)(|z|^2+1)}{(|z|^2+1)(|w|^2+1)})=2\tfrac{-4x_1x_2-4y_1y_2+2|w|^2+2|z|^2}{(|z|^2+1)(|w|^2+1)}=2\tfrac{2(x_1-x_2)^2+2(y_1-y_2)^2}{(|z|^2+1)(|w|^2+1)}$$

squaring this we get: $2\frac{\sqrt{(x_1-x_2)-(y_1-y_2)}}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}$ and the numerator is, by definition, |z-w|

(c) What is $d(z, \infty)$?

as $w \to \infty$,

$$d(z,w) = \frac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}} = \frac{2|z/w-1||w|}{\sqrt{1+|z|^2}(\sqrt{1/|w|^2+1})|w|} = \frac{2|z/w-1|}{\sqrt{1+|z|^2}\sqrt{1/|w|^2+1}} \to \frac{2|-1|}{\sqrt{1+|z|^2}} = \frac{2}{\sqrt{1+|z|^2}}$$

Chapter 1, Sec. 5

Ex. 4 Show that the only periods of e^z are the integral multiples of $2\pi i$, that is, if $e^{z+\lambda}=e^z$ for all z, then \lambda is an integer times $2\pi i$

Let
$$e^{z+\lambda}=e^z$$

$$e^{z+\lambda}=e^ze^\lambda=e^z$$
 (because of the addition formula property)

multiplying by e^{-z} : $e^{\lambda}=1$ = $\cos(2\pi k)+i\sin(2\pi k)=e^{i2\pi k}$, where k is an integer.

multiplying by $e^{-i2\pi k}$ we have $e^{\lambda}e^{-i2\pi k}=1$,

$$e^{\lambda - i2\pi k} = e^0$$

$$\lambda - i2\pi k = 0 \equiv \lambda = i2\pi k$$

Chapter 1, Sec. 6

Ex. 1 Find and plot $\log z$ for the following complex numbers z. Specify the principal value.

(a) 2, principal value = $\log |2|$

$$x = \log |2|, y = 0$$

(b) i, principal value $=0+i\pi/2$

$$|i| = 1$$

$$x = 0, y = \pi/2$$

(c)
$$1+i$$
, principal value $=\log(\sqrt{2})+i\pi/4=(1/2)\log(2)+i\pi/4$

$$x=\log\sqrt{2}, y=\pi/4$$

(d)
$$(1+i\sqrt{3})/2$$
, principal value $=\log(\sqrt{1/4+3/4}=1)+i\pi/3$

$$x=0$$
, $y=\pi/3$

Ex. 4 How would you make a branch cut to define a single-value branch of function $\log(z+i-1)$? How about $\log(z-z_0)$

Each branch of $f_m(z) = Log(z+i-1) + 2\pi i m$

We want to make a slit in the z-plane where $z+i-1\in (-\infty,0]$, and this will allow us to define a single-value branch of the function similar to the way we define one for $\log(z)$

so any
$$z=x-i$$
, where $x\in(-\infty,1]$

So:

Where the red line is the slit in the complex plane.

Basically, started at the point (1, -1) and drew a horizontal line towards $-\infty$ from there.

It's like treating (1, -1) as a new origin and moving the axes over to the right by 1 and down by 1.

For example: For any point on the red line, (x,-1) the function maps this point to $(\log(\sqrt{(x-1)^2},\pi)$

In general, for any z_0 , we start at z_0 and draw a horizontal line towards $-\infty$

Chapter 2, Sec. 1

Ex. 10 At what points are the following functions continuous? Justify your answer.

(a) z

Let $z_0 \in \mathbb{C}$ and let $\epsilon > 0$

Let $\delta=\epsilon$

then for any
$$z$$
 s.t. $|z-z_0|<\delta \implies |f(z)-f(z_0)|=|z-z_0|<\epsilon$

so as z approaches z_0 , f(z) approaches $f(z_0)$, and since z_0 was an arbitrary point in \mathbb{C} , z is continuous at any point in \mathbb{C}

(b)
$$z/|z|$$

from (a), z is continuous everywhere. |z| is a function that maps $\mathbb C$ to $\mathbb R$

From triangle inequality:
$$|(z-z_0)+(z_0)|=|z| \leq |z-z_0|+|z_0| \implies |z|-|z_0| \leq |z-z_0|$$

so let $z_0 \in \mathbb{C}$ and let $\delta = \epsilon$, then:

for any z in $\mathbb C$ s.t. $|z-z_0|<\delta \implies ||z|-|z_0||<\delta=\epsilon$

so |z| is continuous everywhere.

However, z/|z| must have $|z| \neq 0$ for this to be continuous, and |z| = 0 when z = 0

so continuous everywhere except z=0

(c)
$$z^2/|z|$$

From page 37, and (a), z^2 is continuous on every point in $\mathbb C$

From (b), we have that 1/|z| is not continuous at z=0

so continuous everywhere except at 0.

If we were to define this function to be 0 at z=0, then it would be continuous since the limit as z approaches 0 is 0:

for any $\epsilon>0$, we have that if $|z|<\epsilon$

Using the fact that for any 2 complex numbers, |zw| = |z||w|

then
$$|f(z)-0|=|rac{z^2}{|z|}|=rac{|z|^2}{|z|}=|z|<\epsilon$$

(d)
$$z^2/|z|^3$$

Continuous everywhere except at 0.

There is no limit as $z \to 0$, since $|z^2/|z|^3 = |z|^2/|z|^3 = 1/|z| \to \infty$

Ex. 15 Which of the following sets are open subsets of C? Which are closed? Sketch the sets.

(a) The punctured plane $\mathbb{C}\setminus\{0\}$

Let z = x + iy be a point in \mathbb{C} , (x, y)

Let
$$\rho=|z|>0$$
, since $z\neq 0$

let w be a point in the open disk centered at z with radius p

then
$$|w-z|<
ho$$

by triangle inequality: $|z| \leq |z-w| + |w| \equiv |w| \geq |z| - |z-w| > 0$, since $|z-w| = |w-z| < \rho$

so $w \neq 0$, and since w was arbitrary, the disk is contained in the punctured plane.

It is open.

(b) the exterior of the open unit disk in the plane, $\{|z| \geq 1\}$

Not open, and also:

Closed, because the complement of the set is open.

(c) the exterior of the closed unit disk in the plane, $\{|z|>1\}$

Open, you can take any point z and the open disk centered around it with radius |z|-1 is contained in the set. Also it is the complement of a closed set.

(d) the plane with the open unit interval removed, $\mathbb{C} \setminus (0,1)$

Not Open, if you take z=0 or z=1, then any open disk with radius > 0 will contain points in the open unit interval, such as (0,.99999999...). (if the radius is ≥ 1 , then all of the open unit interval will be contained in the disk, if the $\rho=$ radius is ≤ 1 , then the point $(0,1-\rho/2)$ is a point in the interval and in the disk.

Not closed: (0,1) is not an open subset: let z=(x,0) be in (0,1). Any disk centered at the point with radius ρ will contain the point $(x,\rho/2)$, which is not in the open unit interval

(e) the plane with the closed unit interval removed, $\mathbb{C}\setminus[0,1]$

open: let z
otin [0,1] . there exists a point $w \in [0,1]$ such that for all $w' \in [0,1]$

|z-w'|>|z-w| . In other words, w is the closets point to z

We define the radius for the open disk to be <|z-w|, which is possible since |z-w|>0, and there are infinitely many real numbers between any two real numbers, in this case: (0, |z-w|).

So, for every point in the set there is an open disk centered around it that is contained in the set.

(f) the semidisk { $|z|<1, Im(z)\geq 0$ }

not closed: the complement of this set contains the points on the boundary of the disk, such as (0,1). And any open disk centered around (0,1) with radius $\rho<1$ will contain $(0,1-\rho/2)$ in the semidisk, so the complement is not open, meaning this set is not closed.

not open:Let z be in the semidisk with $x\in (-1,1), y=0$. Any open disk centered on z with radius ρ will contain the point $(x,-\rho/2)$, which is not in the semidisk, since $Im(z)=-\rho/2<0$, so there exists points where no open disk centered on them will be contained in the set.

(g) the complex plane $\mathbb C$

Both open and closed.

Any disk centered on any point in $\mathbb C$ is in $\mathbb C$, so open.

The empty set is considered open, so $\mathbb C$ is closed.

Also, there are no points in the empty set, so it does satisfy

whenever a point is in the set, there exists an open disk such that the disk is contained in the set.

Ex. 19 Give a proof of the fundamental theorem of algebra along the following lines. Show that if p(z) is a nonconstant polynomial, then |p(z)| attains its minimum at some point $z_0\in\mathbb{C}$ Assume that the minimum is attained at $z_0=0$, and that $p(z)=1+az^m+\ldots$, where $m\geq 1$ and $a\neq 0$. Contradict the minimality by showing that $|P(\epsilon e^{i\theta_0})|<1$ for an appropriate choice of θ_0

Let
$$p(z) = a_n z^n + \ldots + a_1 z + a_0$$
, $a_n \neq 0$ and $n \geq 1$

If we were to take the limit of $|p(z)|/|z|^n$ as $|z|\to\infty$

We would get $rac{|z^n||(a_0/z^n+a_1/z^{n-1}+...+a_n)|}{|z|^n}$ and since $|z^n|=|z|^n$ we have

$$|(a_0/z^n+a_1/z^{n-1}+\ldots+a_n)| o |a_n|$$
 as $z o \infty$

So for any $\delta > 0$

so
$$\exists N>0$$
 such that for $|z|>N$, $|p(z)|/|z|^n\in (|a_n|-\delta,|a_n|+\delta)$

Restricting $\delta < |a|$, so $|a| - \delta > 0$, we have for all |z| > N

$$|p(z)|/|z|^n > |a_n| - \delta \equiv |p(z)| > (|a_n| - \delta)(|z|^n) > 0$$

So we know that a minimum for |p(z)| is obtained when $|z| \leq R$, and this minimum is at most $(|a_n| - \delta)(|z|^n)$

Now looking at $p(z) = 1 + az^m + \ldots$ higher order terms,

Assuming $z_0 = 0$ is when |p(z)| has its minimum, |p(0) = 1| = 1

let $|a|e^{i\phi}$ be the polar representation of $a \neq 0$

Then
$$a\epsilon^m e^{i\phi}=|a|e^{i\phi}\epsilon^m e^{im\theta_0}=|a|\epsilon^m e^{i(\phi+m\theta_0)}$$

if we choose θ_0 such that $\phi+m\theta_0=\pi$, then $e^{i(\phi+m\theta_0)}=-1$

so we get

$$p(z)=1-|a|\epsilon^m+C_1\epsilon^{m+1}e^{i(m+1)\theta_0}+\dots$$
 and if we choose ϵ to be sufficiently small, we'll have $|p(z)|=|1-|a|\epsilon^m+C_1\epsilon^{m+1}e^{i(m+1)\theta_0}+\dots|<1$

this is because no matter how large the coefficient, C_i , for any number n>0 there always exists an $\epsilon>0$ s.t. $|C_i|\epsilon< n$.

We could for example have a condition on ϵ to make $|1-|a|\epsilon^m|<1/2$

and
$$|C_1\epsilon^{m+1}e^{i(m+1 heta_0)}\!+\!\ldots|<1/2$$

so that by triangle inequality:

$$|p(z)| = |1 - |a|\epsilon^m + C_1\epsilon^{m+1}e^{i(m+1\theta_0)} + \dots| < 1/2 + 1/2 = 1$$