TD n°2

Réponse d'une membrane rectangulaire

L'objectif est d'étudier la réponse en fréquence d'une membrane rectangulaire. On considère une membrane de dimensions a=1m, b=0.8m, de masse surfacique $\mu_s=0.262\,kg/m^2$ et avec une tension uniforme T=3990N/m.

Décomposition modale

- a) Calculer sur Python les fréquences des 10 premiers modes propres.
- b) Créer un tableau contenant les déformées modales. Afficher les déformées des 4 premiers modes propres.

Régime forcé

- a) Déterminer la force modale pour une excitation harmonique placée en $x_e = a/5$, $y_e = b/6$ et pour une fréquence d'excitation $f_e = 500\,Hz$. Visualiser sous forme d'image cette force modale F_{nm} en fonction des indices (n,m) des modes.
- b) Calculer la fonction de transfert H_{nm} associée à chaque mode (n,m). Visualiser la sous forme d'image en fonction des indices (n,m) des modes.
- c) Calculer les coefficients modaux W_{nm} et les visualiser de la même façon.
- d) Calculer et afficher la déformée opérationnelle correspondant à cette excitation.
- e) Réaliser une animation de cette déformée au cours du temps. Qu'entendrait-on en faisant l'écoute du signal de déplacement d'un point de la membrane ?
- f) Calculer et afficher la réponse dans le cas d'une excitation uniforme sur toute la membrane. Refaire la comparaison des différents termes dans ce cas : force modale, fonction de transfert, coefficients modaux.