Lizhong Zhang

L-310A, Tsinghua Park, University Town of Shenzhen, Lishui Road, Shenzhen City, Guangdong Province, China $+86\ 178\ 4310\ 6383 \diamond zhanglz5116@163.com$

EDUCATION

Master of Engineering in Electronic Information

September 2021 - June 2024

Working on Biomedical Engineering Program, Shenzhen International Graduate School

Tsinghua University

Bachelor of Science in Electronical Information Science and Technology

September 2016 - June 2020

College of Electronic Science & Engineering

Jilin University (National Key University, 211 & 985 Projects)

GPA: 3.30/4

GPA: 3.80/4

RESEARCH EXPERIENCE

Ultra-precise weak measurement-based interfacial biosensors

June 2022 - December 2022

Principal Proponent and Finisher

- · An ultra-precise interfacial biosensing solution based on weak measurement.
- · High performance sensor on a common glass 'chip'.
- · Improves sensor stability using self-referencing and pixel point averaging methods.
- · Enables label-free detection of biomolecules with an IgG detection limit of 2.71 ng/mL.

Ultra-sensitive refractive index sensor with surface plasmon resonance and weak value amplification

April 2022 - May 2023

Responsible for the principal completion of the experiments and part of the theoretical simulation work

- · A surface plasmon resonance (SPR) sensor with enhanced sensitivity is proposed based on weak value amplification. With principles of weak value amplification, a phase compensator is used to modulate the coupling strength and enhance the refractive index sensitivity of the system.
- · This sensor illustrates a high sensitivity of 4.737×104 nm/RIU along with a resolution of 6.333× 10-8 RIU on a simple Au-coated prism-coupled SPR structure.
- · This sensor is utilized to detect IgG with a limit of detection of 5.3 ng/mL.

SARS-COV-2 Spike Protein Precise Detection based on weak measurement-based interfacial biosensor

June 2023 - August 2023

Principal Proponent and Finisher

· Detection

RESEARCH PUBLICATION

Zhang, L., Huang, Q., Zhang, X., Zeng, Z., Zhang, H., Guan, T., ... & He, Y. (2023). Ultra-precise weak measurement-based interfacial biosensors. Talanta, 257, 124217. May 2023

Zhou, C., Zhang, L., Xu, Y., et al (2023). Ultra-sensitive refractive index sensor with surface plasmon resonance and weak value amplification. Optics Express (Co-first Author) In peer review

SKILLS AND INTERESTS

Interests

Biomedical Photonics, Nanobiophotonics, Nanoscopy, Molecular Interaction Analysis

Software

MATLAB, Labview, COMSOL, Solidworks

Skills

Programming Languages: Python/ C

Hands-on Experimental Ablity including:

- Construction of discrete structure and cage structure optical system
 - Molecular Biology Experiments in the Wet Lab

ACHIEVEMENTS

Tsinghua University Shenzhen International Graduate School 16th Annual Academic New Talent Nomi	ination
(One of 11 out of 5290 masters and PhDs)	Spring 2023
Oral Presentation of the 1st Medical and Health Engineering Cup Graduate Student Academic Forum	
(One of 15 out of 63 selected)	Winter 2022
Jilin University Third Class Scholarship	2019 - 2020
College Students' Innovative Training Plan Program (Evaluated as National project)	
Name: High-precision RF frequency measurement system based on excited Brillouin scattering	2018-2019
Second Prize of Jilin Provincial Undergraduate Mathematical Contest on Modeling	Summer 2019
Provincial First Prize of China Undergraduate Mathematical Contest on Modeling	Fall 2018

DECLARATION

I hereby declare that all the details furnished above are true to the best of my knowledge and belief.