

The DiffuseStyleGesture+ entry to the GENEA Challenge 2023

GENEA

Sicheng Yang^{1,*}, Haiwei Xue^{1,*} Zhensong Zhang³, Minglei Li², Zhiyong Wu^{1,4}, Xiaofei Wu³, Songcen Xu³, Zonghong Dai²

HUAWEI

¹ Tsinghua Shenzhen International Graduate School, Tsinghua University, China ² Huawei Cloud Computing Technologies Co., Ltd, China ³ Huawei Noah's Ark Lab, China ⁴ The Chinese University of Hong Kong, Hong Kong SAR, China

Huber loss ----

 $0, \hat{x}_0$ Sample

Speaker ID → RM → ■ -

→ Seed gesture → RM

 $T_d, x_{T_d} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

1. Introduction

1.1 Motivation

- ➢ Goal:
 - ✓ Co-speech gesture is very important in daily communication.
- Challenge Setting:
- Input:
 - Audio, text of the main agent
 - Audio, text and gesture of the interlocutor
- Output:
 - Gesture of the main agent
- Problems:
 - GAN-based methods → Training difficulty
 - VAEs and Flows-based methods → Take diversity into account

1.2 Contribution

- ✓ Propose DiffuseStyleGesture+, a improved diffusion-based model for multimodal-driven co-speech gesture generation
- ✓ Our model is among the first tier at human-likeness, appropriateness for the interlocutor, and achieves competitive performance on appropriateness for speech.

2. Visualization

3. Methodology

3.1 Feature Extraction

- Gesture
 - 62 joints including the fingers
 - Motion features: pos., vel., acc.,
 rot., rot. vel., and rot. acc. of each joint
 - Denote natural mocap gestures clip as
- > Audio $x_0 \in \mathbb{R}^{(N_{seed}+N)\times[62\times(9+3)\times3]}$
- Audio features: MFCC, Mel Spectrum,
 Pitch, Energy, WavLM, and Onsets
- Denote the features of audio clip as

$$\mathbf{A} \in \mathbb{R}^{N \times (40+64+2+2+1024+1)}$$

- Text features: FastText, one bit to indicate whether there is a laugh or not
- Denote the features of text clip as $\mathbf{T} \in \mathbb{R}^{N \times 302}$
- > Speaker ID, one-hot vectors, 17 speakers, denote as $S \in \mathbb{R}^{17}$

3.2 Gesture Denoising

- Reconstruct the original gesture x_0 from the pure noise x_t , noising step t_d and conditions c, c = [S, D, A, T]. This is given by $\hat{x}_0 = \text{Denoise}(x_{t_d}, t_d, c)$.
- \triangleright Loss function $\mathcal{L} = E_{x_0 \sim q(x_0|c), t_d \sim [1, T_d]}[\text{HuberLoss}(x_0 \hat{x}_0)]$

3.3 Gesture Sampling

- Initial noisy gesture x_T is sampled from the standard normal distribution; other x_{t_d} , $t_d < T_d$ is the result of the previous noising step
- Initial seed gesture is a gesture from the dataset; other clips is the last N_{seed} frames of the gesture generated in the previous clip
- For every clip, in every noising step t_d , we predict the clean gesture \hat{x}_0 and add Gaussian noise to the noising step x_{t_d-1}
- This process is repeated from $t_d = T_d$ until \hat{x}_0 is reached

4.1 Experiment Setting 4. Experiments

• Latent dimension 512, 8 heads, 48 attention channels, window size is 15 frames, 120000 steps, $T_d=1000$

4.2 Evaluation Analysis

- NA: natural mocap; BM (D): monadic (dyadic) baseline; S: submission
- Human-likeness: mean 63.6±1.3, median 65 ∈ [64, 67]
- Appropriateness for agent speech: MAS 0.20 \pm 0.06, Pref. matched 55.8%
- Appropriateness for the interlocutor: MAS 0.04 \pm 0.06, Pref. matched 51.5% \

Reference

- [1] The GENEA Challenge 2023: A large scale evaluation of gesture generation models in monadic and dyadic settings
- [2] DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models
- [3] Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis
- [4] The IVI Lab entry to the GENEA Challenge 2022--A Tacotron2 based method for co-speech gesture generation with locality-constraint attention mechanism

