开关电源EMI技术交流

En Li

Mar. 2022

主要内容

- ▶ 电磁干扰(EMI)分析及处理方案
 - Reducing The Noise Source
 - Improving the Noise Path
- ➤ MPS产品介绍

EMI 危害

Noise Source Coupling Path Receptor

Suppress noise source

Cut off coupling path

Make receptor insensitive

开关电源中的主要噪声源

The main noise sources and coupling paths in flyback converter

Noise Source: MOSFET, Diode

Coupling path: parasitic capacitance, PCB routing

Load: 25Ω resistor

差模噪声耦合路径

Differential mode noise is mainly current phenomenon and is driven by rapidly changing current signals.

- >DM = f (di/dt)
- ➤DM is associated with voltage across bulk cap created due to switching currents

Common mode noise is mainly voltage phenomenon and is driven by rapidly changing voltage signals

- ightharpoonup CM = f(dV/dt)
- > CM can be associated with capacitive coupling and displacement currents external to the power supply

传导电磁干扰改善步骤

❖ 用滤波器来区分共模与差模干扰;

❖ 根据频率分布来确定主导的电磁干扰;

- 主要差模
- 低次谐波
- 交流整流相关
- 近场干扰
- ...

- 差模与共模
- 高次谐波
- 低频震荡
- 近场干扰
- ...

- 共模
- 近场干扰
- 高频振荡
- 开关上升下降沿
- •二极管反向恢复
- Layout
- ...

Frequency jittering which leads to better EMI performance.

Date: 21.NOV.2016 17:38:38

Test Condition: Vin=230VAC, Output=20V/2.25A

L=365uH, N=7, K@90VAC= I_{ripple}/I_{peak} =1.

L=740uH, N=8, K@90VAC= I_{ripple}/I_{peak} =0.7.

When the system enter DCM, the oscillation is determined by primary inductance L and parasitic capacitor (MOS and transformer).

The oscillation frequency is hundreds kHz, it's hard to get enough EMI margin.

Test Condition: Vin=230VAC, Output=20V/2.25A

L=365uH, N=7, K@90VAC= I_{ripple}/I_{peak} =1.

L=740uH, N=8, K@90VAC=I_{ripple}/I_{peak}=0.7.

Increasing inductor can reduce frequency, and chooses smaller K can reduce the cycles.

❖ 改善效果快速判定方法

通过改变原边Mosfet关断时VDS的震荡来改善EMI

❖ 改善效果快速判定方法

传导EMI在3MHz段有~5dB改善

❖ 改善效果快速判定方法

改变VDS的上升/下降斜率来改善EMI

❖ 改善效果快速判定方法

传导EMI在5MHz段有~3dB改善

❖ 减小传导电磁干扰途径一 - 改善电路板的布线

传导EMI在10MHz+段有~3dB改善

- Y capacitors
- Common mode filters (Common Choke)
- Better transformer construction techniques aimed at reducing CM noise at its source thus reducing the need for heavy filtering using CM line filters and Y capacitors
 - Basic transformer construction recommendations
 - Use of Shield windings
- Near field coupling

Effects of terminal position on conducted EMI noise

- Generally 2 separate shield windings are recommended
- 1st shield is the "Cancellation Shield winding" and is normally placed between core and primary winding
- 2nd shield is the "Balanced Shield winding" placed between the Primary and the Secondary windings

- Cancels out the P-E noise mechanism
- Generally uses around ½ the number of turns in the first layer of primary winding (should be tuned by the evaluation)
- Both the primary and cancellation windings induce displacement currents in opposite directions, leading to "cancellation" of displacement currents within the LISN

- Used to reduce P-S coupling mechanism
- Generally uses 1-2 turns less than the secondary winding
- Principle is to "balance" the potential at the primary & secondary side thereby reducing noise coupling

The following test results is based on the same SCH except the different transformer structure

Xformer #1 W/I balance winding, which wound with the auxiliary winding

Xformer #2 W/I cancellation winding

Xformer #3 W/O any cancellation or balance winding

Test conditions:
220Vac input
5.3V/0.7A output
L line

传导至少有⁴²5dB改善#1⁵0, kHz #2 Vs #3

Test conditions:
220Vac input
5.3V/0.7A output
N line

❖ 减小传导电磁干扰途径 – 改变变压器结构

❖ 减小传导电磁干扰途径四 - 改变变压器结构

在通过将变压器的一个绕组拆分为两部分,200kHz 至 5MHz 有大约 6dB 的改善.

❖ 近场耦合效应

- ☐ Coupling inside EMI filter: CMC to CMC, CMC to Cap, Cap to Cap.
- □ Coupling between EMI filter and transformer/inductor.

❖ 近场耦合效应

Produce DM noise

❖ 近场耦合效应

方案1 改变共模电感方向 方案2 共模电感双线并绕 方案3 共模电感前加电容

❖ 近场耦合效应

AC/DC Flyback regulator with integrated MOSFET, up to 40W

AC/DC Flyback Controller, up to 140W

Q&A

