# Lezione 2

## Guglielmo Bartelloni

### $28 \ {\rm settembre} \ 2022$

| <b>T</b>                         | 1                     | ٠ |   |                       |
|----------------------------------|-----------------------|---|---|-----------------------|
| $\mathbf{In}$                    | $\boldsymbol{\alpha}$ | 1 | C | $\boldsymbol{\alpha}$ |
| $\mathbf{T}\mathbf{I}\mathbf{I}$ | u                     | 1 | v | C                     |

| Facciamo vedere che il teorema precedente valeva anche per $n>1$ | 2 |
|------------------------------------------------------------------|---|
| Torniamo al I ordine                                             | 2 |

#### Facciamo vedere che il teorema precedente valeva anche per n > 1

Supponiamo che u e v siamo due soluzioni di (1), cioè che:

$$Lu = f \in Lv = f \text{ su } I$$

La differenza di queste diventano soluzione su I=[a,b] dell'omogenea associata Usando la propietà della linearità:

$$L(\lambda u + \mu v) = \lambda L u + \mu L v$$

$$L(u-v) = Lu - Lv = f - f = 0$$

Se indichiamo con  $V_0$  l'insieme di tutte le soluzioni dell'equzione omogenea associata (Lw=0 su I=[a,b] e  $V_0$  è l'insieme delle  $w\in\mathbb{C}^n(I)$ ) e con  $\bar{u}(t)$  una soluzione nota di (1)

$$u(x) = \bar{u}(x) + w(x)$$

L'uguglianza sopra, al variare di w(x) in  $V_0$  ci da tutte le soluzioni del problema di partenza. (Il problema quindi, diventa solo di studiare il problema omogeneo)

#### Torniamo al I ordine

Adesso ritorniamo al problema di I ordine (in forma normale):

(1) 
$$y'(x) + a(x)y(x) = f(x)$$

dove a() e f() sono continue su [a,b]

(2) 
$$y'(x) + a(x)y(x) = 0$$

Secondo il teorema della prima lezione:

$$y(x) = z(x) + \bar{y}(x)$$

Come si determina l'insieme di tutte le soluzioni (integrale generale) di (2), cioe:

(2) 
$$y'(x) + a(x)y(x) = 0, x \in [a, b]$$

Sia A(x) una **primitiva** di a(x):

$$A(x) = \int a(x) \, dx$$

Moltiplichiamo i due membri della (2) per  $e^{A(x)}$ :

$$e^{A(x)} + e^{A(x)}a(x)y(x) = 0, x \in [a, b]$$

La posso scrivere anche (la derivata di  $e^{A(x)}y(x))\colon$ 

$$(e^{A(x)}y(x))' = e^{A(x)}a(x)y(x) + e^{A(x)}y'(x)$$

quindi:

$$(e^{A(x)}y(x))' = 0$$