

(https://cognitiveclass.ai/?

<u>utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NASkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkRP0321ENSkillsNetwork25371262-2021-01-01)</u>

Predict Hourly Rented Bike Count using Basic Linear Regression Models

Estimated time needed: 90 minutes

Lab Overview:

Now that you have performed exploratory analysis on the bike sharing demand dataset and obtained some insights on the attributes, it's time to build predictive models to predict the hourly rented bike count using related weather and date information.

In this lab, you will be asked to use tidymodels to build some baseline linear regression models:

- TASK: Split data into training and testing datasets
- TASK: Build a linear regression model using only the weather variables
- TASK: Build a linear regression model using both weather and date variables
- · TASK: Evaluate the models and identify important variables

Let's start!

First install and import the necessary libraries

```
In [3]: # It may take several minutes to install those libraries in Watson Studio
          install.packages("rlang")
          install.packages("tidymodels")
          Updating HTML index of packages in '.Library'
          Making 'packages.html' ... done
          also installing the dependencies 'listenv', 'parallelly', 'future', 'warp',
          'lhs', 'DiceDesign', 'glue', 'lifecycle', 'tidyselect', 'vctrs', 'pillar', 'i soband', 'patchwork', 'generics', 'globals', 'ipred', 'furrr', 'slider', 'ell ipsis', 'cpp11', 'GPfit', 'pROC', 'broom', 'cli', 'conflicted', 'dials', 'dpl yr', 'ggplot2', 'hardhat', 'infer', 'modeldata', 'parsnip', 'purrr', 'recipe s', 'rsample', 'rstudioapi', 'tibble', 'tidyr', 'tune', 'workflows', 'workflo
          wsets', 'yardstick'
          Updating HTML index of packages in '.Library'
          Making 'packages.html' ... done
In [4]: library("tidymodels")
          library("tidyverse")
          library("stringr")
          Registered S3 method overwritten by 'tune':
             method
                                            from
             required_pkgs.model_spec parsnip
          — Attaching packages —
                                                                                 --- tidymodels 0.1.4

√ broom

                             0.7.9
                                         ✓ recipes
                                                               0.1.17

√ dials

                             0.0.10
                                           ✓ rsample
                                                               0.1.0
                                                               3.1.5
                                                              1.1.4
                                                              0.1.6
                                                              0.2.4
                                           ✓ workflowsets 0.1.0
                                          √ yardstick
                             0.3.4
          ✓ purrr
                                                              0.0.8
          — Conflicts —
                                                                             - tidymodels_conflicts()
          X purrr::discard() masks scales::discard()
          X dplyr::filter() masks stats::filter()
          ★ dplyr::lag()
                                  masks stats::lag()
          X recipes::step() masks stats::step()
          • Dig deeper into tidy modeling with R at https://www.tmwr.org
          Registered S3 method overwritten by 'rvest':
             method
             read xml.response xml2
          — Attaching packages —
                                                                                    — tidyverse 1.2.1
          √ readr
                       1.3.1

√ stringr 1.4.0

          √ readr
                       1.3.1
                                    ✓ forcats 0.4.0
          — Conflicts —
                                                                             — tidyverse conflicts()
          X readr::col factor() masks scales::col factor()
          X purrr::discard()
X dplyr::filter()
X stringr::fixed()
Masks stats::filter()
Masks recipes::fixed()
Masks stats::lag()
Masks stats::lag()
Masks stats::lag()
          X readr::spec()
                                      masks yardstick::spec()
```

The seoul_bike_sharing_converted_normalized.csv will be our main dataset which has following variables:

The response variable:

· RENTED BIKE COUNT - Count of bikes rented at each hour

Weather predictor variables:

- TEMPERATURE Temperature in Celsius
- HUMIDITY Unit is %
- WIND_SPEED Unit is m/s
- VISIBILITY Multiplied by 10m
- DEW_POINT_TEMPERATURE The temperature to which the air would have to cool down in order to reach saturation, unit is Celsius
- SOLAR_RADIATION MJ/m2
- RAINFALL mm
- SNOWFALL cm

Date/time predictor variables:

- DATE Year-month-day
- HOUR Hour of he day
- FUNCTIONAL DAY NoFunc(Non Functional Hours), Fun(Functional hours)
- HOLIDAY Holiday/No holiday
- SEASONS Winter, Spring, Summer, Autumn

Let's read the dataset as a dataframe first:

```
In [5]: # Dataset URL
    dataset_url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.c
    loud/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwork/labs/datasets/seoul_bike
    _sharing_converted_normalized.csv"
    bike_sharing_df <- read_csv(dataset_url)
    spec(bike_sharing_df)</pre>
```

```
Parsed with column specification:
cols(
  .default = col_double(),
  DATE = col character(),
  FUNCTIONING DAY = col character()
See spec(...) for full column specifications.
cols(
  DATE = col character(),
  RENTED_BIKE_COUNT = col_double(),
  TEMPERATURE = col double(),
  HUMIDITY = col_double(),
  WIND SPEED = col double(),
  VISIBILITY = col double(),
  DEW POINT TEMPERATURE = col double(),
  SOLAR_RADIATION = col_double(),
  RAINFALL = col double(),
  SNOWFALL = col_double(),
  FUNCTIONING_DAY = col_character(),
  `0` = col_double(),
  `1` = col double(),
  `10` = col_double(),
  `11` = col double(),
  `12` = col_double(),
  `13` = col_double(),
  `14` = col double(),
  `15` = col double(),
  `16` = col double(),
  `17` = col_double(),
  `18` = col_double(),
  `19` = col_double(),
  `2` = col double(),
  `20` = col double(),
  `21` = col_double(),
  `22` = col_double(),
  `23` = col_double(),
  `3` = col_double(),
  `4` = col double(),
  `5` = col_double(),
  `6` = col_double(),
  `7` = col_double(),
  `8` = col double(),
  `9` = col_double(),
  AUTUMN = col double(),
  SPRING = col double(),
  SUMMER = col double(),
  WINTER = col_double(),
  HOLIDAY = col double(),
  NO HOLIDAY = col double()
)
```

We won't be using the DATE column, because 'as is', it basically acts like an data entry index. (However, given more time, we could use the DATE colum to create a 'day of week' or 'isWeekend' column, which we might expect has an affect on preferred bike rental times.) We also do not need the FUNCTIONAL DAY column because it only has one distinct value remaining (YES) after missing value processing.

TASK: Split training and testing data

First, we need to split the full dataset into training and testing datasets.

The training dataset will be used for fitting regression models, and the testing dataset will be used to evaluate the trained models.

TODO: Use the initial_split(), training(), and testing() functions to generate a training dataset consisting of 75% of the original dataset, and a testing dataset using the remaining 25%.

RENTED_BIKE_COUNT	TEMPERATURE	HUMIDITY	WIND_SPEED	VISIBILITY	DEW_POINT_TEMPI
2716	0.6066434	0.4795918	0.18918919	0.8160162	(
419	0.3776224	0.7040816	0.00000000	0.9974658	1
1106	0.5716783	0.5102041	0.45945946	0.9944247	1
154	0.4178322	0.7346939	0.06756757	0.5195134	1
192	0.5000000	0.6020408	0.06756757	1.0000000	1
213	0.1853147	0.3877551	0.41891892	1.0000000	1
4					•
RENTED_BIKE_COUNT	TEMPERATURE	HUMIDITY	WIND_SPEED	VISIBILITY	DEW_POINT_TEMPI
RENTED_BIKE_COUNT	TEMPERATURE 0.1993007	HUMIDITY 0.3775510	WIND_SPEED 0.2027027	VISIBILITY 1.0000000	DEW_POINT_TEMPI
			-		DEW_POINT_TEMPI
100	0.1993007	0.3775510	0.2027027	1.0000000	DEW_POINT_TEMPI
100	0.1993007 0.1958042	0.3775510 0.3571429	0.2027027 0.1756757	1.0000000	DEW_POINT_TEMPI
100 181 360	0.1993007 0.1958042 0.3024476	0.3775510 0.3571429 0.2142857	0.2027027 0.1756757 0.1756757	1.0000000 1.0000000 0.9675621	DEW_POINT_TEMPI
100 181 360 555	0.1993007 0.1958042 0.3024476 0.3251748	0.3775510 0.3571429 0.2142857 0.5918367	0.2027027 0.1756757 0.1756757 0.2162162	1.0000000 1.0000000 0.9675621 1.0000000	DEW_POINT_TEMPI

TASK: Build a linear regression model using weather variables only

As you could imagine, weather conditions may affect people's bike renting decisions. For example, on a cold and rainy day, you may choose alternate transportation such as a bus or taxi. While on a nice sunny day, you may want to rent a bike for a short-distance travel.

Thus, can we predict a city's bike-sharing demand based on its local weather information? Let's try to build a regression model to do that.

TODO: Build a linear regression model called 1m model weather using the following variables:

- TEMPERATURE Temperature in Celsius
- HUMIDITY Unit is %
- WIND SPEED Unit is m/s
- VISIBILITY Multiplied by 10m
- DEW_POINT_TEMPERATURE The temperature to which the air would have to cool down in order to reach saturation, unit is Celsius
- SOLAR_RADIATION MJ/m2
- RAINFALL mm
- SNOWFALL cm

Define a linear regression model specification.

```
In [8]: # Use `linear_reg()` with engine `lm` and mode `regression`
lm_spec <- linear_reg() %>%
    set_engine("lm") %>%
    set_mode("regression")

#lm_model_weather <- linear_reg(mode = "regression", engine = "lm", penalty =
    NULL, mixture = NULL)</pre>
```

Fit a model with the response variable RENTED_BIKE_COUNT and predictor variables TEMPERATURE + HUMIDITY + WIND_SPEED + VISIBILITY + DEW_POINT_TEMPERATURE + SOLAR_RADIATION + RAINFALL + SNOWFALL

```
In [9]: # Fit the model called `lm_model_weather`
# RENTED_BIKE_COUNT ~ TEMPERATURE + HUMIDITY + WIND_SPEED + VISIBILITY + DEW_P
OINT_TEMPERATURE + SOLAR_RADIATION + RAINFALL + SNOWFALL, with the training d
ata

lm_model_weather <- lm_spec %>% fit(RENTED_BIKE_COUNT ~ TEMPERATURE + HUMIDITY
+ WIND_SPEED + VISIBILITY + DEW_POINT_TEMPERATURE + SOLAR_RADIATION + RAINFALL
+ SNOWFALL, data = train_data)
```

Print the fit summary for the 1m model weather model.

```
In [10]: print(lm model weather)
         parsnip model object
         Fit time: 6ms
         Call:
         stats::lm(formula = RENTED BIKE COUNT ~ TEMPERATURE + HUMIDITY +
             WIND SPEED + VISIBILITY + DEW POINT TEMPERATURE + SOLAR RADIATION +
             RAINFALL + SNOWFALL, data = data)
         Coefficients:
                                          TEMPERATURE
                   (Intercept)
                                                                    HUMIDITY
                        156.71
                                              2399.74
                                                                      -918.38
                    WIND SPEED
                                           VISIBILITY DEW_POINT_TEMPERATURE
                        404.47
                                                                     -316.92
                                                12.56
               SOLAR_RADIATION
                                             RAINFALL
                                                                    SNOWFALL
                       -444.85
                                             -1764.01
                                                                       317.78
```

You should see the model details such as formula, residuals, and coefficients.

TASK: Build a linear regression model using all variables

In addition to weather, there could be other factors that may affect bike rental demand, such as the time of a day or if today is a holiday or not.

Next, let's build a linear regression model using all variables (weather + date/time) in this task.

TODO: Build a linear regression model called 1m model all using all variables RENTED BIKE COUNT ~ .

Print the fit summary for 1m model all.

```
In [20]:
         summary(lm model all$fit)
         Call:
         stats::lm(formula = RENTED_BIKE_COUNT ~ ., data = data)
         Residuals:
              Min
                         10
                              Median
                                           30
                                                   Max
         -1401.45 -218.96
                               -7.31
                                       199.53
                                               1780.67
         Coefficients: (3 not defined because of singularities)
                                Estimate Std. Error t value Pr(>|t|)
                                  212.20
                                              51.04
                                                      4.158 3.26e-05 ***
         (Intercept)
         TEMPERATURE
                                  782.66
                                             212.13
                                                      3.690 0.000227 ***
                                              99.49 -8.913 < 2e-16 ***
         HUMIDITY
                                 -886.73
         WIND SPEED
                                   31.91
                                              40.27
                                                      0.792 0.428169
                                   21.87
                                                      1.079 0.280439
         VISIBILITY
                                              20.26
         DEW_POINT_TEMPERATURE
                                  598.39
                                             221.37
                                                      2.703 0.006888 **
                                  276.88
                                              41.47
                                                      6.677 2.64e-11 ***
         SOLAR_RADIATION
         RAINFALL
                                -2064.64
                                             143.28 -14.410 < 2e-16 ***
         SNOWFALL
                                  260.97
                                             103.50
                                                      2.522 0.011709 *
         `0`
                                              34.26 -0.855 0.392515
                                  -29.30
         `1`
                                              33.72 -3.465 0.000533 ***
                                 -116.85
         10
                                 -237.52
                                              32.74 -7.255 4.48e-13 ***
         111
                                 -247.38
                                              33.85 -7.309 3.02e-13 ***
          12`
                                 -208.34
                                              34.39 -6.059 1.45e-09 ***
         13
                                              35.04 -5.461 4.90e-08 ***
                                 -191.35
         14
                                              34.44 -5.588 2.39e-08 ***
                                 -192.44
          15`
                                 -109.73
                                              34.40 -3.190 0.001429 **
         16
                                                     0.680 0.496431
                                   23.13
                                              34.00
          `17`
                                  305.55
                                              34.15
                                                      8.946 < 2e-16 ***
                                                             < 2e-16 ***
         18
                                              34.02 23.364
                                  794.80
         `19`
                                                     15.268 < 2e-16 ***
                                  522.99
                                              34.25
         `2`
                                 -237.21
                                              33.74
                                                     -7.030 2.28e-12 ***
         `20`
                                  432.00
                                              34.13 12.657
                                                             < 2e-16 ***
         `21`
                                  446.58
                                              34.09 13.100
                                                             < 2e-16 ***
         `22`
                                  342.64
                                              33.85 10.123 < 2e-16 ***
          `23`
                                              33.85
                                                      3.066 0.002175 **
                                  103.81
         `3`
                                              34.23
                                                     -9.346 < 2e-16 ***
                                 -319.87
         `4`
                                 -386.29
                                              34.00 -11.361 < 2e-16 ***
         `5`
                                 -362.72
                                              33.48 -10.834 < 2e-16 ***
         `6`
                                 -204.12
                                              33.59 -6.076 1.30e-09 ***
          `7`
                                  106.76
                                              33.58
                                                      3.179 0.001486 **
         `8`
                                  450.98
                                              32.62 13.823 < 2e-16 ***
         `9`
                                      NA
                                                 NA
                                                         NA
                                                                   NA
                                                             < 2e-16 ***
         AUTUMN
                                  359.00
                                              20.29 17.694
         SPRING
                                  191.37
                                              19.36
                                                      9.884
                                                             < 2e-16 ***
                                              29.19
                                                      6.789 1.24e-11 ***
         SUMMER
                                  198.14
         WINTER
                                      NA
                                                 NA
                                                         NA
                                                                   NA
                                                     -5.422 6.11e-08 ***
                                 -124.42
                                              22.95
         HOLIDAY
         NO HOLIDAY
                                      NA
                                                 NA
                                                         NA
                                                                   NA
         ---
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 377.9 on 6312 degrees of freedom
```

F-statistic: 348.4 on 35 and 6312 DF, p-value: < 2.2e-16

Adjusted R-squared: 0.657

Multiple R-squared: 0.6589,

Now you have built two basic linear regression models with different predictor variables, let's evaluate which model has better performance,

TASK: Model evaluation and identification of important variables

Now that you have built two regression models, lm_model_weather and lm_model_all, with different predictor variables, you need to compare their performance to see which one is better.

In this project, you will be asked to use very important metrics that are often used in Statistics to determine the performance of a model:

- 1. R² / R-squared
- 2. Root Mean Squared Error (RMSE)

R-squared

R squared, also known as the coefficient of determination, is a measure to indicate how close the data is to the fitted regression line. The value of R-squared is the percentage of variation of the response variable (y) that is explained by a linear model.

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{MSE}$$

As you know, the Mean Squared Error measures the average of the squares of errors, where 'error' is the difference between the actual value (y) and the estimated value (\hat{y}) . Another metric that is related to MSE is **Root Mean Squared Error (RMSE)** and is simply the square root of MSE.

We first need to test the lm_model_weather and lm_model_all models against the test dataset test_data, and generate RENTED_BIKE_COUNT prediction results.

TODO: Make predictions on the testing dataset using both 1m model weather and 1m model all models

edict.lm(object = object\$fit, newdata = new data, type = "response"):

NOTE: if you happen to see a warning like: prediction from a rank-deficient fit may be misleading, it may be casued by collinearity in the predictor variables. Collinearity means that one predictor variable can be predicted from other predictor variables to some degree. For example, RAINFALL could be predicted by HUMIDITY.

"prediction from a rank-deficient fit may be misleading"

But dont worry, you will address glmnet models (Lasso and Elastic-Net Regularized Generalized Linear Models) instead of regular regression models to solve this issue and futher improve the model performance.

Next, let's calculate and print the R-squared and RMSE for the two test results

standard 364.4235

rmse

TODO: Use rsq() and rmse() functions to calculate R-squared and RMSE metrics for the two test results

```
In [25]:
          rsq weather <- rsq(test results weather, truth = truth, estimate = .pred)
          rsq_weather
           .metric .estimator
                              .estimate
                    standard 0.6690204
              rsq
In [26]:
          rsq_all <- rsq(test_results_all, truth = truth, estimate = .pred)</pre>
          rsq all
           .metric .estimator
                              .estimate
                    standard 0.6690204
              rsq
In [28]:
          rmse_weather <- rmse(test_results_weather,truth = truth, estimate = .pred)</pre>
          rmse_weather
           .metric .estimator
                             .estimate
```

From these tables, you should find that the test results from lm_model_all are much better. It means that using both weather and datetime variables in the model generates better prediction results.

Since lm_model_all has many predictor variables, let's check which predictor variables have larger coefficients. Variables with larger coefficients in the model means they attribute more in the prediction of RENTED_BIKE_COUNT. In addition, since all predictor variables are normalized to the same scale, 0 to 1, we thus can compare their coefficients directly.

You could try building another regression model using the non-normalized seoul_bike_sharing_converted.csv dataset, and you would find that the coefficients are much different.

First let's print all coefficients:

(Intercept) 212.199462743954 **TEMPERATURE** 782.657870088692 **HUMIDITY** -886.73027784441 WIND_SPEED 31.9129927279246 **VISIBILITY** 21.8716449661126 DEW_POINT_TEMPE... 598.387261041619 SOLAR_RADIATION 276.881652368234 **RAINFALL** -2064.63754308304 **SNOWFALL** 260.973302878596 ,0, -29.2983361016137 `1` -116.846747038285 10 -237.51820120511 `11` -247.38341321939 `12` -208.341330868407 `13` -191.354228014138 `14` -192.441682312028 `15` -109.733640240686 `16` 23.128163602844 `17` 305.547618249471 `18` 794.803151569959 `19` 522.988214834461 `2` -237.211663999792 `20` 431.99523757542 `21` 446.580533576852 `22` 342.64091922177 `23` 103.808410131075 `3` -319.871517124491 `4` -386.292807947984 `5` -362.720001875814 `6` -204.118732579813 `7` 106.757133838754 ,8, 450.977534093274 , 9, <NA> **AUTUMN** 358.999443905867 **SPRING** 191.365267451116 **SUMMER** 198.142010192369 <NA> **WINTER HOLIDAY** -124.423741444013 NO_HOLIDAY

hmm, it's not very clear to compare the coefficients from a long and unsorted list. Next, you need to sort and visualize them using a bar chart

<NA>

```
In [41]: sorted <- sort(abs(lm_model_all$fit$coefficients), decreasing = TRUE)
    sorted</pre>
```

```
2064.63754308304
           RAINFALL
                       886.73027784441
           HUMIDITY
                 `18`
                       794.803151569959
      TEMPERATURE
                       782.657870088692
DEW_POINT_TEMPE...
                       598.387261041619
                 19
                       522.988214834461
                  ,8,
                       450.977534093274
                 `21`
                       446.580533576852
                 `20`
                       431.99523757542
                  `4`
                       386.292807947984
                  `5`
                       362.720001875814
            AUTUMN
                       358.999443905867
                 `22`
                       342.64091922177
                  `3`
                       319.871517124491
                 `17`
                       305.547618249471
  SOLAR_RADIATION
                       276.881652368234
          SNOWFALL
                       260.973302878596
                 `11`
                       247.38341321939
                 `10`
                       237.51820120511
                  `2`
                       237.211663999792
           (Intercept)
                       212.199462743954
                 `12`
                       208.341330868407
                  `6`
                       204.118732579813
                       198.142010192369
            SUMMER
                 `14`
                       192.441682312028
             SPRING
                       191.365267451116
                 `13`
                       191.354228014138
            HOLIDAY
                       124.423741444013
                  `1`
                       116.846747038285
                 `15`
                        109.733640240686
                  `7`
                        106.757133838754
                 `23`
                       103.808410131075
        WIND_SPEED
                       31.9129927279246
                  ,0,
                       29.2983361016137
                 `16`
                       23.128163602844
           VISIBILITY
                       21.8716449661126
```

```
In [111]: sorted_df <- as.data.frame(sorted)
    sorted_df$coefficient <- as.numeric(sorted_df$sorted)
    sorted_df$feature <- row.names(sorted_df)
    sorted_df</pre>
```

feature	coefficient	sorted	
RAINFALL	2064.63754	2064.63754	RAINFALL
HUMIDITY	886.73028	886.73028	HUMIDITY
`18`	794.80315	794.80315	`18`
TEMPERATURE	782.65787	782.65787	TEMPERATURE
DEW_POINT_TEMPERATURE	598.38726	598.38726	EW_POINT_TEMPERATURE
`19`	522.98821	522.98821	`19`
.8,	450.97753	450.97753	.8.
`21`	446.58053	446.58053	`21`
`20`	431.99524	431.99524	`20`
`4`	386.29281	386.29281	`4`
`5`	362.72000	362.72000	`5`
AUTUMN	358.99944	358.99944	AUTUMN
`22`	342.64092	342.64092	`22`
.3.	319.87152	319.87152	,3,
`17`	305.54762	305.54762	`17`
SOLAR_RADIATION	276.88165	276.88165	SOLAR_RADIATION
SNOWFALL	260.97330	260.97330	SNOWFALL
`11`	247.38341	247.38341	`11`
`10`	237.51820	237.51820	`10`
`2`	237.21166	237.21166	`2`
(Intercept)	212.19946	212.19946	(Intercept)
`12`	208.34133	208.34133	`12`
,6,	204.11873	204.11873	`6`
SUMMER	198.14201	198.14201	SUMMER
`14`	192.44168	192.44168	`14`
SPRING	191.36527	191.36527	SPRING
`13`	191.35423	191.35423	`13`
HOLIDAY	124.42374	124.42374	HOLIDAY
`1`	116.84675	116.84675	Ή`
`15`	109.73364	109.73364	`15`
`7`	106.75713	106.75713	`7`
`23`	103.80841	103.80841	`23`
WIND_SPEED	31.91299	31.91299	WIND_SPEED
,0,	29.29834	29.29834	`0 `
`16`	23.12816	23.12816	`16`
VISIBILITY	21.87164	21.87164	VISIBILITY

You should see a sorted coefficient bar chart like the following example:

(https://cognitiveclass.ai/?

utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NASkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkRP0321ENSkillsNetwork25371262-2021-0101

Mark down these 'top-ranked variables by coefficient', which will be used for model refinments in the next labs.

Next Steps

Great! Now you have built a baseline linear regression model to predict hourly bike rent count, with reasonably good performance. In the next lab, you will be refining the baseline model to improve its performance.

Authors

Yan Luo (https://www.linkedin.com/in/yan-luo-96288783/?
utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA
SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkRP0321ENSkillsNetwork253712622021-01-01)

Other Contributors

Jeff Grossman

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2021-04-08	1.0	Yan	Initial version created

© IBM Corporation 2021. All rights reserved.