Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

Xuanli Li¹, John Mecikalski¹, Traci Fehnel¹, Bradley Zavodsky², and Jayanthi Srikishen³

¹Department of Atmospheric Sciences, University of Alabama in Huntsville

²NASA Marshall Space Flight Center

³Universities Space Research Association

2-6 February 2014

Dual-Polarimetric Radar

Horizontal and vertical signals: more info about the type, shape, and size of the hydrometeors – more accurate estimates of precipitation and cloud particles.

Variables:

Z_H: Horizontal reflectivity

V_R: Radial velocity

 Z_{DR} : Differential reflectivity $Z_{DR} = 10 \log 10(Z_H/Z_V)$

ρ_{HV}: Correlation coefficient, the coefficient

between the horizontal and vertical power

returns.

 Φ_{DP} : Differential phase, the measured phase

shift between horizontal and vertical pulses

SW: Spectrum width, measures the consistence

of the phase shifts

Motivation and Goals

- Only a few studies have been done assimilating real dual polarimetric data in storm scale forecasting.
- NWS recently completed upgrade of NEXRAD radar network to include dual-polarization capabilities. Migrate to use of Sband data.
- Project goal is to assimilate dual-pol Doppler radar observations and enhance the implementation of dual-pol radar data in NWP.
- Investigate the impact of the dual-pol radar variables on the initial fields and short-term forecast.

Model and Procedure

- WRF model ARW v3.3
- GSI v3.2
- Assimilation procedure:
- Reflectivity is used by the Global Systems Division
 (GSD) cloud analysis to improve precipitation analysis
- Zdr information is added in calculation of rain amount in GSD cloud analysis package.

Radar Reflectivity Operator

GSD Cloud Analysis for rain:

Kessler (1969):

$$q_r = a \cdot (\rho \cdot \arg)^b$$

where
$$arg = 10.0^{(0.1 \cdot dBZ)}$$

With Zdr, using Ulbrich and Atlas (1984):

$$q_r = 1.28 \times 10^{-4} Z_H \cdot Z_{DR}^{-1.94}$$

Sample Data: 0631 UTC 2 September 2013

34

 \mathfrak{S}

-86

-5

-10

-20

-30

34

33

-88

Case Study: 2 September 2013

Data Assimilation Experiments

Experiment	Radar Data Assimilation	Variables
CTRL	N/A	N/A
ZH	0600 UTC 2 September 2014	Z _H
ZHZDR	0600 UTC 2 September 2014	Z_H and Z_{DR}

Reflectivity at 0600 UTC 2 September 2013:

Forecast Validation 0900 UTC 2 September 2013

ZHZDR

Forecast Validation 1200 UTC 2 September 2013

Summary and Future Work

- The dual-polarimetric variable Z_{DR} has been implemented in GSI v3.2 through GSD cloud analysis package.
- The impact of dual-polarimetric variable Z_{DR} can be seen in the fields of temperature, hydrometeor, and moisture.
- Preliminary results showed the impact of dual-polarimetric variable.

Thoughts:

- 1. Z_{DR} is only used for rain water with Kessler (1969), can we use it for other hydrometeors;
- 2. Convective vs. Stratiform region;
- 3. Use dual-polarimetric variables for particle type and parameters

Summary and Future Work (cont.)

- Implementation of dual-polarimetric radar variables for snow and graupel or hail.
- More case studies and continuous assimilation.
- Investigation of the impact of dual-polarimetric radar variables.
- Impact of dual-polarimetric radar variables for different microphysical options/parameters.
- Sensitivity studies with different radar operators.
- Sensitivity studies on background error matrix and observational error.