INFS 4203 / 7203 Data Mining

Tutorial 6: Anomaly Detection + Assignment 2 Q&A

Content

- 1. Density-based: LOF Calculation (Step-by-step)
- 2. Assignment 2 Q&A

Density-based Technique Calculate the Local Outlier Factor (LOF)

• Given four points: $P_1(1,0)$, $P_2(2,0)$, $P_3(1,1)$, $P_4(2,2.5)$. Calculate the Local Outlier Factor (LOF) for each point and find the top-1 outliers. Use a \mathbf{k} value of 2 and Euclidean Distance as the distance function.

LOF Calculation

Background Knowledge:

- Density
- Average Relative Density (ard)

Steps of LOF calculation:

- Distance Matrix and k-nearest neighbourhood
- Reachability Distance (reachdist)
- Local Reachability Density (Ird)
- Average Relative Ird (arIrd)
- Anomaly Score

Distance Matrix and k-nearest neighbourhood

Distance Matrix (Euclidean)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

$$if k = 2$$
:

k-nearest neighbourhood?

Distance Matrix and k-nearest neighbourhood

Distance Matrix (Euclidean)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$ $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$ $N\{P_4, 2\} = \{P_2, P_3\}$

$$N\{P_1, 2\} = \{P_2, P_3\}$$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$ $N\{P_4, 2\} = \{P_2, P_3\}$

Background: Density Calculation

Distance Matrix (dist)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

$$if k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$density(\mathbf{x}, k) = \left(\frac{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} dist(\mathbf{x}, \mathbf{y})}{|N(\mathbf{x}, k)|}\right)^{-1}$$

	P_1	P_2	P_3	P_4
density	,	Ş	Ş	?

Background: Density Calculation

Distance Matrix (dist)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

$$if k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$density(\mathbf{x}, k) = \left(\frac{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} dist(\mathbf{x}, \mathbf{y})}{|N(\mathbf{x}, k)|}\right)^{-1}$$

$$density(P_1, 2) = \left(\frac{dist(P_1, P_2) + dist(P_1, P_3)}{|N(P_1, 2)|}\right)^{-1} = \left(\frac{1+1}{2}\right)^{-1} = 1$$

Background: Average Relative Density (ard)

	P_1	P_2	P_3	P_4
density	1	0.8290	0.8290	0.4650

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$ard(\mathbf{x}, k) = \frac{density(\mathbf{x}, k)}{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} density(\mathbf{y}, \mathbf{k}) / |N(\mathbf{x}, k)|}$$

The average density in the *k-nearest* neighbourhood

	P_1	P_2	P_3	P_4
ard	?	Ş	,	?

Background: Average Relative Density (ard)

	P_1	P_2	P_3	P_4
density	1	0.8290	0.8290	0.4650

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$ard(\mathbf{x}, k) = \frac{density(\mathbf{x}, k)}{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} density(\mathbf{y}, \mathbf{k}) / |N(\mathbf{x}, k)|}$$

The average density in the *k-nearest* neighbourhood

	P_1	P_2	P_3	P_4
ard	1.2060	0.9070	0.9070	0.5610

$$ard(P_1,2) = \frac{density(P_1,2)}{(density(P_2,2) + density(P_3,2))/|N(P_1,2)|} = \frac{1}{(0.8290 + 0.8290)/2} = 1.2060$$

LOF Calculation

Background Knowledge:

- Density
- Average Relative Density (ard)

Steps of LOF calculation:

- Distance Matrix and k-nearest neighbourhood
- Reachability Distance (reachdist)
- Local Reachability Density (Ird)
- Average Relative Ird (arIrd)
- Anomaly Score

Distance Matrix and k-nearest neighbourhood

Distance Matrix (Euclidean)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$

$$N\{P_1, 2\} = \{P_2, P_3\}$$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$ $N\{P_4, 2\} = \{P_2, P_3\}$

Reachability Distance (reachdist)

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$reachdist_k(y \leftarrow x) = \max\{dist(x, y), dist_k(y)\}$$

y's distance to its kth nearest neighbour

Distance Matrix (dist)

	P_1	P_2	P_3	P_4
P_1	0	1	1	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	1.803
P_4	2.693	2.5	1.803	0

Reachability Distance (reachdist)

	P_1	P_2	P_3	P_4
P_1				
P_2				
P_3				
P_4				

Reachability Distance (reachdist)

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$reachdist_k(y \leftarrow x) = \max\{dist(x, y), dist_k(y)\}$$

y's distance to its kth nearest neighbour

Distance Matrix (dist)

	P_1	P_2	P_3	P_4	
P_1	0	1	1	2.693	
P_2	1	0	1.414	2.5	
P_3	1	1.414	0	1.803	
P_4	2.693	2.5	1.803	0	_

Reachability Distance (reachdist)

	P_1	P_2	P_3	P_4
P_1	0	<u>1.414</u>	<u>1.414</u>	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	2.5
P_4	2.693	2.5	1.803	0

Local Reachability Density (Ird)

Reachability Distance (reachdist)

	P_1	P_2	P_3	P_4
P_1	0	<u>1.414</u>	<u>1.414</u>	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	2.5
P_4	2.693	2.5	1.803	0

if
$$k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$\frac{lrd}{density}(x,k) = \left(\frac{\sum_{y \in N(x,k)} \frac{dist(x,y)}{dist(x,k)}\right)^{-1}$$

	P_1	P_2	P_3	P_4
lrd				

Local Reachability Density (Ird)

Reachability Distance (reachdist)

	P_1	P_2	P_3	P_4
P_1	0	<u>1.414</u>	<u>1.414</u>	2.693
P_2	1	0	1.414	2.5
P_3	1	1.414	0	2.5
P_4	2.693	2.5	1.803	0

$$if k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$lrd(\mathbf{x}, k) = \left(\frac{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} reachdist(\mathbf{x}, \mathbf{y})}{|N(\mathbf{x}, k)|}\right)^{-1}$$

	P_1	P_2	P_3	P_4
lrd	0.7070	0.8290	0.8290	0.4650

$$lrd(P_1, 2) = \left(\frac{reachdist(P_1, P_2) + reachdist(P_1, P_3)}{|N(P_1, 2)|}\right)^{-1} = \left(\frac{1.414 + 1.414}{2}\right)^{-1} = 0.707$$

...still a density calculation, but based on reachdist

Average Relative Ird (arIrd)

$$if k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$\frac{arlrd}{ard}(x,k) = \frac{\frac{lrd}{density}(x,k)}{\sum_{y \in N(x,k)} \frac{density}{lrd}(y,k)/|N(x,k)|}$$

	P_1	P_2	P_3	P_4
arlrd				
1/arlrd				

Average Relative Ird (arlrd)

	P_1	P_2	P_3	P_4
lrd	0.7070	0.8290	0.8290	0.4650

$$if k = 2$$
:
 $N\{P_1, 2\} = \{P_2, P_3\}$
 $N\{P_2, 2\} = \{P_1, P_3\}$
 $N\{P_3, 2\} = \{P_1, P_2\}$
 $N\{P_4, 2\} = \{P_2, P_3\}$

$$arlrd(\boldsymbol{x},k) = \frac{lrd(\boldsymbol{x},k)}{\sum_{\boldsymbol{y} \in N(\boldsymbol{x},k)} lrd(\boldsymbol{y},\boldsymbol{k}) / |N(\boldsymbol{x},k)|}$$

	P_1	P_2	P_3	P_4
arlrd	0.8530	1.0790	1.0790	0.5610
1/arlrd	1.1723	0.9268	0.9268	1.7825

$$arlrd(P_1, 2) = \frac{lrd(P_1, 2)}{(lrd(P_2, 2) + lrd(P_3, 2))/|N(P_1, 2)|} = \frac{0.7070}{(0.8290 + 0.8290)/2} = 0.853$$

Outliers

0

i

2

-1.0 +

Assignment 2 Q&A

- Coding Questions
- Calculation
- Statements True/False

Coding-related Questions

- The source code used in this assignment will be released.
- Data pre-processing (as demonstrated in Week 4 Tutorial):
 - Import libraries, load data, clean data, format transform
- Questions have four types:
 - Q1. Frequent itemset
 - Q2. Itemset support
 - Q3. Number of frequent itemsets
 - Q4. Strong rule

Q1. Frequent itemset

• For the data in groceries.csv file we used in Week 4 tutorial, if we set the minimum support rate to be 0.009, then {whole milk, tropical fruit, bread} is a frequent itemset.

```
# define the MIN SUPP
  MIN SUPP = 0.009
   # apply the defined apriori algorithm
   freq_set = apriori(df, min_support=MIN_SUPP,use_colnames=True)
 6
   check_set = ['whole milk', 'tropical fruit', 'bread']
   # Select the idx from the frequent set based on the given check set
   itemset_idx = freq_set.index[freq_set['itemsets'] == frozenset(check_set)].tolist()
   if itemset idx==[]: # given check set does not exist in the frequent set
       print('Not frequent!')
12
   else:
13
                                                                     (Partial code)
       print('Found at location '+str(itemset idx[0]))
14
```

Answer: False

Q2. Itemset support

 In the groceries.csv file we used in Week 4 tutorial, what is the support rate for itemset {other vegetables, whipped/sour cream, yogurt} (round to four decimal places)

```
(Partial code)
1 # define the MIN SUPP
 MIN SUPP = 0.005
 # apply the defined apriori algorithm
                                                                 Apply Apriori
  freq set = apriori(df, min support=MIN SUPP, use colnames=True)
  print('Done!')
                                                                      Check set
  check_set = ['other vegetables', 'whipped/sour cream', 'yogurt']
  # Select the idx from the frequent set based on the given check set
  itemset idx = freq set.index[freq set['itemsets'] == frozenset(check set)].tolist()
  if itemset_idx==[]: # given check_set does not exist in the frequent set
      print('Not frequent!')
  else:
      print('Found at location '+str(itemset_idx[0]))
                                                                      Supp rate
      print(freq_set.loc[[itemset_idx[0]], ['support', 'itemsets']])
```

Answer: 0.0102

Q3. Number of frequent itemsets

 In the groceries.csv file we used in Week 4 tutorial, how many frequent itemsets are there if we set the minimum support rate threshold to be 0.01?

```
# define the MIN_SUPP
MIN_SUPP = 0.01

# apply the defined apriori algorithm
freq_set = apriori(df, min_support=MIN_SUPP,use_colnames=True)

print(freq_set)

(Partial code)
```

Answer: 333

Q4. Strong rule

• For the data in groceries.csv file we used in Week 4 tutorial, if we set the **minimum support rate** to be **0.009** and the **minimum confidence** rate to be **0.2**, then {bottled water}-> {whole milk} is a strong rule

```
# define the MIN_SUPP
MIN_SUPP = 0.009

# apply the defined apriori algorithm
freq_set = apriori(df, min_support=MIN_SUPP, use_colnames=True)

# Specify the content of X and Y
X = ['bottled water']
Y = ['whole milk']

# Get the confidence
get_rule_confidence(freq_set, X, Y)
(Partial code)
```

The confidence of rule {['bottled water']} -> {['whole milk']} is: 0.310948

Answer:25True

Calculation – DBSCAN Elbow method

• If we set **MinPts = 2**, what would the **Eps** be using the Elbow method for the following dataset (rounding to the nearest integer)

	X	У	
P1	119	508	How to determine Eps and MinPts
P2	83	490	One recommended Elbow method:
P3	413	454	 Fix MinPts to be k, (e.g., k=2)
P4	395	448	 Calculate all points' distances to their (k-1)th nearest point Sort the distance in ascending order and plot them
P5	416	427	 Find the "elbow" point, whose corresponding distance is
P6	401	424	Eps
P7	284	193	26

Calculation – DBSCAN Elbow method (Cont'd)

• If we set **MinPts = 2**, what would the **Eps** be using the Elbow method for the following dataset (rounding to the nearest integer)

Calculation – K-means Elbow Method

 To run a k-means algorithm, you need to specify k beforehand. If we use the elbow method to determine k, what is the selected k for the following data:

	X	У
P1	302	550
P2	158	469
Р3	164	454
P4	359	448
P5	347	427
P6	245	355
P7	242	334

Pain of *k*-means: How to decide *k*

• **Elbow method**: try different *k* and see the average distance to centroid

$$\frac{1}{n} \sum_{i=1}^{k} \sum_{x \in C_i} dist(x, c_i)^2$$

• Try k from 2 to \sqrt{n} (n is the number of all data points)

Calculation – K-means Elbow Method (Cont'd)

• To run a k-means algorithm, you need to specify k beforehand. If we use the elbow method to determine k, what is the selected k for the following data:

- 1. Feature engineering is the process to do feature selection among existing features. False
 - Feature engineering is the process to **extract features**. It is an important preprocessing procedure.

Raw Data

Features / Attributes

taste

sweet

Forms of attribute

Numerical:

-The values of the attribute is to indicate the quantity of some predefined unit.

Nominal

—The values of the attribute are symbols, which is used to distinguish each other.

Ordinal

—The values of the attribute is to indicate certain ordering relationship resided in the attribute.

- 2. If we use {very sweet, sweet, not sweet} to describe the taste of an apple, we have to use three numerical features to transform the taste feature into numerical. False
 - "Taste" is an ordinal feature to describe three levels of sweetness.

ordinai

We could transfer it into numerical form: Very sweet: 5; sweet: 3; not sweet:
1. But one numerical feature will be sufficient.

	Taste			Taste
Pink Lady	Very sweet		Pink Lady	5
Granny Smith	Not sweet		Granny Smith	1
Golden Delicious	Sweet		Golden Delicious	3
	ordinal	-		numorical

- 3.1 Different k always gives different clustering results. False
 - Not always. Sometimes different k gives same clustering result.

An intuitive example:

- 3.2 Different initialization always gives different results. False
 - Not always. Although the initial centroids are different, they may still converge into same clustering result. An intuitive example:
 - × Initial centroid
 - Data point

- 4. We need to fix the "k" parameter for the k-means method. But we
 do not need to fix any parameter for the AGNES method to get a
 clustering result. False
- For the parameter "k", since there is some inconsistent in "Parameters in Python Function", this question will not be marked.
- We now provide an updated version (next slide).

- 4. (*Updated*) We would like to partition a dataset into 4 clusters. The K-Means method would require setting the "k" parameter, but the AGNES method does not require any parameter to be set. Parameter refers to any user-specified measurable or numerical factors. False
 - The dendrogram shows the AGNES algorithm's output.
 - We still need to choose where to cut to produce the clustering result.

- 5.1 Features are used to describe the cluster in clustering technique.
 False
- 5.2 Attributes are used to describe the cluster. False
 - Features/Attributes are used to describe the objects.

- 6.1 K-means algorithm is simple and straightforward. Although it does not work the best on all datasets, it is the first choice to do clustering.
 False
 - It not always be the first choice. For example, k-means doesn't work well on "spiral" dataset in Week 5's tutorial.
- 6.2 k-means algorithm is simple and straightforward. However, it is not as good as density or hierarchical based clustering methods considering the performance. False
 - The decision making of what algorithm to use is based on the data.

Thanks for your attention