

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Me. Antônio Clementino Neto

Conceitos Computacionais - II

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

História e evolução dos Computadores:

- Geração Zero (? 1945) Mecânicos
- Primeira Geração (1945 1955) Válvulas
- Segunda Geração (1955 1965) Transistor
- Terceira Geração (1964 1980) Circuito Integrada
- Quanta Geração (1980 até hoje) CI VLSI
- Quinta Geração(Visão do Futuro) Uso de Inteligência

Artificial. Atribui ao comutador características humanas.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA

Prof. Ms. Antônio Clementino Neto

Evolução dos Computadores

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA

Prof. Ms. Antônio Clementino Neto

VIII A.C	Ábaco		
1642	Máquina de Pascal		
1671	Máquina de calcular de Leibnitz		
1820	Charles Babbage : "Computador Analítico"		
1886	Herman Hollerit: cartão perfurado		
1936	Primeiro computador: Z-1		
1940 - 1955	1ª Geração de computadores: válvulas		
1944	MARK I		
1945	ENIAC		
1955-1965	2ª Geração de computadores: transístores		
1965-1980	3ª Geração de computadores: circuitos integrados		
1980- 1990	4ª Geração de computadores: circuitos de larga escala		
1990- até hoje	5ª Geração de computadores: Ultra Large Scale Integration		

^{*} ENIAC foi uma máquina eletrônica diferentemente do Mark 1 que era eletromecânico.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

1944: ENIAC

O ENIAC (sigla em inglês que significa "Computador Eletrônico de Integração Numérica"), criado por J. Maulchy & J. Eckert, foi o mais bem sucedido dos computadores a primeiro entrar em operação. Algumas curiosidades sobre o **ENIAC:**

- Custou aproximadamente 5 milhões de dólares e possuía 18.000 válvulas;
- Pesava 33 toneladas e ocupava uma área de 212m²;
- Os problemas eram passados para o computador através de pequenas placas furadas;
- Tinha a capacidade de processamento de uma calculadora de bolso moderna.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA GOVERNO DO DE SÃO PA

Prof. Ms. Antônio Clementino Neto

1945 - ENIAC

- Projetado para fins militares, pelo Departamento de Material de Guerra do Exército dos EUA.
- Era o primeiro computador digital eletrônico de grande escala.
- O ENIAC tinhas as seguintes características:
 - totalmente eletrônico
 - 17.468 válvulas
 - 500.000 conexões de solda
 - 30 toneladas de peso
 - 180 m² de área construída
 - 5,5 m de altura
 - 25 m de comprimento
 - 2 vezes maior que MARK I
 - realizava uma soma em 0,0002 s

Vista do lado esquerdo do ENIAC

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

ENIAC - Electronic Numerical Integrator and Computer.

Em português: computador integrador numérico eletrônico. Foi o primeiro computador digital eletrônico de grande escala.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

Mark I, foi construído e desenvolvido numa parceria da Universidade de Harvard e a IBM.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA GOVER

Prof. Ms. Antônio Clementino Neto

WILLIAM STALLINGS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Gerações de computadores

- Válvula 1946-1957.
- Transistor 1958-1964.
- Integração em pequena escala 1965 em diante.
 - Até 100 dispositivos em um chip.
- Integração em média escala 1971.
 - -100-3 000 dispositivos em um chip.
- Integração em grande escala 1971-1977.
 - -3 000 100 000 dispositivos em um chip.
- Integração em escala muito grande 1978 -1991.
 - -100 000 100 000 000 dispositivos em um chip.
- Integração em escala ultragrande 1991.
 - Mais de 100 000 000 dispositivos em um chip.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

Resumo da Evolução dos **Processadores**

Geração do PC	Primeira	Segunda	Terceira	Quarta
Microprocessador	8088	80286	386	486
Ano	1979	1982	1985	1991
Nº de Transistores	29.000	134.000	275.000	1.2 milhões
Bus interno	16bits	16 bits	32 bits	32 bits
Bus externo	8 bits	16 bits	32 bits	32 bits
Co-processador	8087	80287	80387	Interno
	(Externo)	(Externo)	(Externo)	
Encapsulamento	DIL	PLCC	PGA	PGA
	40 terminais	68 terminais	132 terminais	168 terminais
Memória Interna	Não	Não	Não	Si(16kB)
Linhas Múltiplas de execução	Não	Não	Não	Não
Sistema operacional	DOS 1.0 - 3.3	DOS 4.0	Dos 5.0 + Windows 3.1	Windowss 3.11

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

Prof. Ms. Antônio Clementino Neto

Geração do PC	Quinta	Sexta	Sétima	Oitava
Microprocessador	Pentium, K5,K6, 6x86,M-II	Pentium Pro, Pentium II, Pentium III, Celeron, K6-2, K6-3	Athlon, Duron, Pentium 4, Celeron	Itanium, Opteron, Athlon 64, Athlon 64FX
Ano	1993	1995	1999	2003
Nº de Transistores	3.1 – 8.8 milhões	7.5-21 Milhões	Mais de 25 milhões	Mais de 100 milhões
Bus interno	32 bits	32 bits	32 bits	64 bits
Bus externo	64 bits	64bits	64 bits	64 bits
Co-processador	Interno	Interno	Interno	Interno
Encapsulamento	PGA 296 terminais	SEC-242(SLOT-A, PGA-296, PGA-370	SEC-242) PGA-462, PGA-478	PGA-754, PGA-940
Memória Interna	Si(32-64kB)	Si(até 256kB)	Si(até 256kB)	Si(até 3MB)
Linhas Múltiplas de execução	Sim	Sim	Sim	Sim
Sistema operacional	Windows	Windows 98,ME	Windows 2000,XP	Windows XP, Linux-64

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA GOVER

Prof. Ms. Antônio Clementino Neto

O Intel Core i7-6950X, permite que cada núcleo conte com uma quantidade muito maior de transistores, o que pouco tem a ver com a frequência final de operação, mas sim com a quantidade de operações por ciclo de clock.

Em números, o Intel Core i7-6950X tem nada menos do que 4,7 bilhões de transistores, contra "mero" 1,75 bilhão no caso dos modelos quad-core da geração Skylake. São 168% mais transistores.

O Core i9 modelo 7920X chegará ao mercado no dia 28 de agosto de 2018, enquanto os demais aparecerão um pouco mais tarde, em 25 de setembro de 2018, nas lojas. Seus preços variam entre US\$ 999 e US\$ 1.999

intel

X-series

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA

Prof. Ms. Antônio Clementino Neto

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES - AOC

CENTRO PAULA SOUZA GOVERN

Prof. Ms. Antônio Clementino Neto

FIXAÇÃO DE CONTEÚDO

EVOLUÇÃO DAS GERAÇÕES DOS COMPUTADORES