Trabalho 3 Controlo difuso Processo de aquecimento pt326

Computação Adaptativa

Aulas práticas

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

Jorge Henriques

Dezembro de 2013

Índice

1.	Intr	Introdução				
	1.1	Sistema a Controlar Descrição matemática	3 3			
	1.2	Controlador Objectivo 4 Tipos de Controladores	4			
	u(k)	$u(k-1) + K_{p} e(k) + K_{i} e(k-1)$	5			
		•				
	1.3	Estratégia seguida	5			
2.	Con	Controlador Difuso				
	2.1	Estrutura	6			
	2.1	Módulo de Fuzificação	7			
	2.2	Módulo de regras e de Dados Base de Regras Base de dados	8 8 10			
	2.3	Modulo de Inferência	13			
	2.4	Módulo de desfuzificação Método do centro da área Método da altura	17 17 18			
3.	Trak	Trabalho				
	3.1	Objectivo	20			
	3.2	MatLab	21			
4.	Con	Conclusões				
	4.1	Relatório	26			
	4.2	Funções MatLab	26			

1. Introdução

A aprendizagem computacional é cada vez mais aplicada no contexto do controlo automático, quer na sua forma mais tradicional (controladores proporcionais e/ou integrais) quer recorrendo a metodologias de computação adaptativa (soft computing) de que são exemplos as redes neuronais e os sistemas difusos.

Neste trabalho prático pretende-se estudar conceitos de lógica e de sistemas difusos e a sua aplicação ao controlo da temperatura do ar de um processo térmico (pt326).

Muito resumidamente, para controlar um sistema, deve ter-se em atenção as seguintes questões:

- 1- O que se conhece do sistema?
- 2- Como projectar o controlador?
- 3- Que estratégia seguir?

Responde-se agora, também muito resumidamente, às questões anteriores.

1.1 Sistema a Controlar

Representação esquemática

- y Variáveis de saída, representativas do objectivo a atingir
- *u* Variáveis de entrada, as que se podem manipular.
- ζ Perturbações existentes, efeitos imprevisíveis não desejados.

Descrição matemática

De forma a poder controlar um sistema deve-se ter algum conhecimento acerca deste. Depende do tipo de conhecimento existente, assim se distinguem vários tipos de modelos matemáticos:

i) Baseado em relações físicas/químicas

- Modelo analítico ou de caixa-branca;
- Conhecimento é completo;
- Obtém-se um modelo descrito por equações diferenciais.

ii) Baseado em dados (conhecimento quantitativo)

- Extracção do conhecimento por um processo de identificação experimental;
- Modelos caixa-negra;
- Resulta numa representação por funções de transferência, equações de estados, redes neuronais.

iii) Baseado no seu comportamento (conhecimento qualitativo)

- O sistema pode ser caracterizado por um conjunto de regras;
- A informação qualitativa é usada para descrever seu comportamento;
- São exemplo deste tipo de modelos os modelos difusos descritos por regras do tipo IF erro THEN acçãoControlo

1.2 Controlador

Objectivo

Consiste em modificar, de forma adequada, o comportamento do sistema.

Como?

Através da manipulação da variável de entrada, ou de controlo, u, de forma que a saída v apresente um determinado valor desejado ou de valor de referência r=vd.

Além disso é ainda necessário assegurar que a presença de variáveis desconhecidas e indesejáveis, as perturbações ζ , não afectem a dinâmica desejada para o processo controlado.

Regra geral o procedimento de controlo é executado em malha-fechada, definindo desta forma como manipular **u**, definindo a seguinte lei de controlo:

"o controlador usa o valor da saída (estados), compara-a com o valor desejado (referência), e com base nesta comparação modifica a acção de controlo sobre o sistema ".

Tipos de Controladores

A sua escolha depende fundamentalmente do conhecimento considerado acerca do sistema. São exemplos bem conhecidos de controladores os seguintes:

- PID Proporcional +Integral +Derivativo
- Colocação de pólos
- Óptimos, preditivos, realimentação de variáveis de estado
- Neuronais
- Difusos
- ...

jh@dei.uc.pt _____4

Exemplo:

Controlador proporcional (P):

$$u(k) = K e(k) = K r(k) - y(k)$$

Controlador proporcional+integral (PI):

$$u(k) = u(k-1) + K_{n} e(k) + K_{i} e(k-1)$$

1.3 Estratégia seguida

Neste caso, leia-se trabalho, segue-se uma abordagem utilizando metodologias de computação adaptativa (*Soft computing*). Como se referiu inicialmente, destacam-se as redes neuronais e os sistemas difusos.

Redes neuronais

- Vantagens: Treino feito automaticamente e de uma forma genérica (sempre da mesma forma).
- Desvantagens: Modelo tipo caixa-negra, isto é, a sua interpretabilidade é difícil, ou mesmo impossível.

Sistemas Difusos

- Vantagens: A sua implementação é trivial. São capazes de gerar modelos interpretáveis do ponto de vista humano (regras tipo IF ... THEN ..).
- **Desvantagens:** Especificação das funções de pertença, tipo, simetria, ... é um processo moroso. Base de regras: cada caso é um caso!

IF < nivel baixo < *ENTAO* < abre muito a torneira >

Representação de Conhecimento por regras IF .. THEN ..

IF nível é baixo	ENTÃO	torneira mais aberta
 IF nível é alto 	ENTÃO	torneira menos aberta
 IF nível é correcto 	ENTÃO	torneira não é alterada
 IF nível muito baixo 	ENTÃO	torneira abertura máxima

...

Este último, sistemas difusos, é o tipo de controlador a utilizar no presente trabalho prático.

2. Controlador Difuso

2.1 Estrutura

Relativamente à sua estrutura um controlador difuso é constituído por quatro módulos principais:

- 1. Módulo de fuzificação ou fuzificador;
- 2. Base de conhecimento;
- 3. Mecanismo de inferência;
- 4. Módulo de desfuzificação ou desfuzificador.

2.1 Módulo de Fuzificação

O objectivo da operação de fuzificação é converter um valor numérico na sua representação difusa. Implica definir:

- Factores de escala;
- Variáveis linguísticas;
- Universo de discurso;
- Termos linguísticos e respectivos conjuntos difusos.

Exemplo

- E, variável linguística erro;
- LE={NG, NP, Z=, PP, PG}, conjunto de termos linguísticos;
- E=[-10, 10], universo de discurso;
- Factor de escala = **0.1**
- Conjuntos difusos

2.2 Módulo de regras e de Dados

Base de Regras

A base de regras **define a estratégia de controlo**, expressando o conhecimento de quem está a projectar o controlador tem acerca do processo. As regras são da seguinte forma:

$$SE < estado do processo > ENTAO < valor do controlador >$$

A parte do **SE** < > de uma regra é designada por **antecedente** da regra. A parte do **ENTAO** < >, designa-se por **consequente** da regra.

Parâmetros envolvidos na construção da base de regras a especificar:

- 1. Variáveis linguísticas de entrada e saída do controlador;
- 2. Termos linguísticos para cada variável linguística;
- 3. Síntese do conjunto de regras.

1. Escolha das variáveis linguísticas

Neste trabalho as variáveis de entrada do controlador (antecedente) a usar são:

- Erro (*E*);
- Variação do erro (△E);

As variáveis de saída do controlador (consequente):

Variação da acção de controlo (△U);

Por analogia com um controlador convencional, os valores das variáveis atrás referidas são definidas por:

$$e(k) = y_d(k) - y(k) = r(k) - y(k)$$
$$\Delta e(k) = e(k) - e(k-1)$$
$$\Delta u(k) = u(k) - u(k-1)$$

2. Escolha do conjunto de termos linguísticos

Exemplos típicos de conjuntos de termos linguísticos são três, cinco, sete e nove termos linguísticos.

LX ={NE, ZO, PO}

Negativo, Zero, Positivo

LX ={NG, NP, **ZO**, PP, PG}

NegativoGrande, NegativoPequeno, Zero, PositivoPequeno, PositivoGrande

LX ={NG, NM, NP, ZO, PP, PM, PG}

negGrande, negMedio, negPequeno, Zero, posPequeno, posMedio, posGrande

3. Síntese das regras

Existem várias abordagens para a síntese das regras de um controlador difuso:

- 1. Baseada numa base de regras padrão;
- 2. Baseada na experiência e conhecimento que o operador e/ou engenheiro de controlo têm acerca do processo;
- 3. O controlador difuso aprende as regras por ele próprio (adaptativo, neurodifuso)

Interessa-nos aqui o segundo caso, isto é, o controlador será projectado usando o conhecimento de um perito, nós próprios!

As regras serão do tipo

SE <E pequeno> e <∆E elevado> THEN <∆U elevado>

Como construir a tabela = como controlar um processo?

Exemplo:

regra	E	ΔΕ	ΔU
1	N	N	?
2	N	Z	?
3	N	Р	?
4	Z	N	?
5	Z	Z	?
6	Z	Р	?
7	Р	N	?
8	Р	Z	?
9	Р	Р	?

	N	ΔE Z	P
N	1	2	3
E Z	4	5	6
P	7	8	9

Base de dados

Os parâmetros envolvidos no projecto da base de dados de um controlador difuso são os seguintes:

- 1. Especificação das funções de pertença;
- 2. Escolha dos factores de escala.
- 3. ---

1. Especificação das funções pertença

- Tipo
- Sobreposição
- Simetria, largura, ...

i) Tipo

O tipo das funções de pertença que descrevem os termos linguísticos afectam o desempenho do controlador difuso de várias maneiras (óbivo!!). O normal é serem triangulares!

ii) Sobreposição

O grau de sobreposição entre duas funções de pertença é definido como sendo o grau de pertença correspondente ao ponto do universo de discurso em que se intersectam. O grau de sobreposição é um valor entre 0 e 1.

Grau de sobreposição e taxa de sobreposição.

Grau de sobreposição insuficiente

Grau de sobreposição zero.

Sobreposição (cont...)

- Se o grau de sobreposição entre duas funções de pertença é zero apenas disparará uma regra de cada vez.
- Pelo contrário se o grau de sobreposição entre duas funções de pertença adjacentes é um então isso conduz a um "aplanamento" da característica do controlador que reduz a sua capacidade de intervenção no controlo do processo.
- Estudos realizados mostram que há valores considerados óptimos para o grau de sobreposição. Concretamente demonstrou-se que **0,5** é um valor adequado para o grau de sobreposição.

iii) Simetria e largura

As funções de pertença que descrevem os **termos linguísticos devem ser simétricas e equidistantes**? Processos **não lineares**?

Nos controladores difusos é frequente encontrar funções de pertença com larguras diferentes. As funções de pertença com maior largura são menos importantes pois o controlo é menos preciso. Para obter um controlo mais preciso, ou mais fino, é necessário utilizar funções de pertença com menor largura.

2. Escolha dos factores de escala

A utilização de domínios normalizados requer uma transformação de escala que mapeie os valores físicos das variáveis de estado do processo num domínio normalizado. É a chamada **normalização** de entrada.

3. Concluindo

- 1. Dados valores crespos de variáveis E e ΔΕ
- 2. É feita a sua fuzificação obtendo-se conjuntos difusos
- 3. Destes últimos e da base de regras obtém-se a saída do controlador (conjunto difuso)

2.3 Modulo de Inferência

Implicação de Mamdani

Esta é a implicação mais conhecida no que diz respeito ao controlo difuso. A sua definição é baseada:

- 1. Implicação, operação de intersecção para os antecedentes;
- 2. Mecanismo de inferência: conceito de raciocínio aproximado para os consequentes.

1. Operação de intersecção (mínimo)

São combinados os antecedentes por uma qualquer operação de conjunção, por exemplo o *mínimo* ou o *produto*.

2. Inferência: raciocínio aproximado

Regra: Se o diospiro está vermelho então o diospiro está maduro

Antecedente: O diospiro está muito vermelho

Consequente:

:. O diospiro está muito maduro

 Por outras palavras se o antecedente é verdade com um grau X o consequente será verdade com o mesmo grau X.

Exemplo

Estado actual

Admita-se que se deseja um valor de temperatura (referência) de 20 °C e que o valor actual é de 13° C. Tem-se portanto um erro de 7°C ($e(k) = 7^\circ = r(k) - y(k)$) e uma variação do erro nula ($\Delta e(k) = 0^\circ = e(k) - e(k-1)$).

1. Fuzificação

i) Entradas

Como já se disse consideram-se como variáveis de entrada do sistema difuso

■ Erro (E e variação do erro (△E)

Consideram-se, por exemplo, os termos linguísticos para o erro e variação do erro

LE ={NG, NP, ZO, PP, PG}
$$L\Delta E$$
 ={NG, NP, ZO, PP, PG}

ii) Fuzificação

Os valores crespos de e=7 e Δ e = 0, resultam nos seguintes valores difusos

$$E = \left\{ \frac{0.6}{PP}, \frac{0.4}{PG} \right\}$$

$$\Delta E = \left\{ \frac{1.0}{ZO} \right\}$$

2. Base de Regras

Tabela onde se encontram definidas todas as regras. Por exemplo, para seguinte regra de operação

corresponderão os seguintes valores de verdade para os antecedentes.

$$E = \left\{ \frac{0.4}{PG} \right\} e \ \Delta E = \left\{ \frac{1.0}{ZO} \right\}$$

3. Mecanismo de inferência

Admitindo duas regras que são disparadas

1. Antecedentes: operação de intersecção (mínimo) *Regra 1)*

$$E = \frac{0.6}{PP}$$
 $E \Delta E = \frac{1.0}{ZO}$
min(0.6, 1.0)= 0.6

Regra 2)

$$E = \frac{0.4}{PG}$$
 $E \Delta E = \frac{1.0}{ZO}$
min(0.4, 1.0)= 0.4

2. Inferência: raciocínio Aproximado

Regra 1)

$$\Delta U = \frac{0.6}{ZO}$$

Regra 2)

$$\Delta U = \frac{0.4}{PP}$$

3. Conclusão (mecanismo de inferência)

$$\Delta U = \left\{ \frac{0.6}{ZO}, \frac{0.4}{PP} \right\}$$

4. Desfuzificação

Finalmente, e porque se pretende um valor real à saída do controlador, é necessário aplicar um dos métodos de desfuzificação a esse conjunto difuso, para assim se obter o valor crespo para a acção de controlo.

Graficamente

Regra 1

Regra1: SE E <
$$\Delta$$
E é ZO> THEN < Δ U é ZO>
$$E = \frac{0.6}{PP} \quad E \quad \Delta E = \frac{1.0}{ZO}$$

$$\Delta U = \frac{0.6}{ZO}$$

Regra 2

Regra2: SE E <
$$\Delta$$
E é ZO> THEN < Δ U é PP>
$$E = \frac{0.4}{PG} \quad E \quad \Delta E = \frac{1.0}{ZO}$$

$$\Delta U = \frac{0.4}{PP}$$

Agregação

$$\Delta U = \left\{ \frac{0.6}{ZO}, \frac{0.4}{PP} \right\}$$

2.4 Módulo de desfuzificação

A desfuzificação consiste na selecção de um valor crespo a partir da **saída difusa** do controlador

Os métodos de desfuzificação mais utilizados no controlo difuso são:

- Método do centro da área;
- Método do centro das somas
- Método da altura;
-

Método do centro da área

Representado pela abreviatura CoA. Este método tem em consideração a área como um todo (U).

Complexa do ponto de vista computacional, uma vez que é necessário calcular um centro de gravidade, resulta em ciclos de inferência algo lentos,

$$u^* = \frac{\sum_{i=1}^{l} u_i \cdot \mu_U(u_i)}{\sum_{i=1}^{l} \mu_U(u_i)}$$

Método da altura

Este método em vez de utilizar o valor difuso global da saída do controlador U recorre às saídas individuais de cada uma das regras, U^k . O método toma o valor de pico de cada U^k e constrói a **soma pesada destes valores**. Este método é muito simples e rápido.

Sejam $c^{(k)}$ e f_k , respectivamente, o valor de pico e da altura de U^k . Então o método de desfuzificação da altura para um controlador difuso com m regras é formalmente definido por:

$$u^* = \frac{\sum_{k=1}^{m} c^{(k)} \cdot f_k}{\sum_{k=1}^{n} f_k}$$

Exemplo

Do exemplo atrás efectuado tinha resultado

$$\Delta U = \left\{ \frac{0.6}{ZO}, \frac{0.4}{PP} \right\}$$

Valores dos picos

Concluindo

$$\Delta U(k) = \frac{0.6 \times 0.0 + 0.4 \times 0.5}{0.6 + 0.4} = 0.02 \sim$$

$$\Delta U(k) = 0.02$$

$$u(k) = u(k - 1) + 0.02$$

Assim sendo, conclui-se que a acção de controlo no próximo instante deve ser incrementada de 0.02 unidades.

3. Trabalho

3.1 Objectivo

O objectivo deste trabalho prático consiste no controlo da temperatura do ar de um processo térmico (pt326).

1. Sistema

Admita que a variável a controlar (temperatura do ar à saída do tubo) pode ser medida por um termómetro, operacional no intervalo [-10..10] V=[0..50º]. Admita ainda que, de forma a controlar a valor da temperatura do ar, é possível manipular a potência eléctrica a fornecer a uma grelha de aquecimento no intervalo [0..10]V=[0,100] %.

Assim sendo, e como se mostra na figura anterior, a variável de entrada (a possível de manipular) consiste na potência de aquecimento (U), a variável de saída, a ser controlada, consiste na temperatura do ar (Y).

2. Controlador

Neste trabalho pretende-se implementar um controlador difuso em que as variáveis que definem o seu comportamento são definidas pelo **Erro** e **Variação do erro** (antecedentes) e em que se define a **variação da acção de controlo** (consequente). As regras serão então do tipo:

SE <Erro é muito negativo> e <Variação do Erro é pequena> ENTÃO <Variação da acção de controlo será muito positiva>

3.2 MatLab

1. Sistema

De forma a poder validar a sua estratégia de controlo é-lhe disponibilizada uma função que permite simular o sistema térmico

$$yk = pt326(uk1,uk2,yk1,yk2); %[0..50]$$
°C

ou seja, assume-se um processo dinâmico onde a saída em cada instante y(k) é função do passado: entrada (u(k)- potência aquecimento) e saída (y(k-1) - temperatura da ar). Por exemplo, para uma variação da potência de aquecimento da posição 0 (desligado) para a posição 10 (valor máximo) a temperatura irá evoluir desde o valor ambiente ($\approx 10^{\circ}$ C) até um valor final aproximadamente igual a 50° C, como se mostra na figura seguinte. Pode-se ainda observar que a temperatura estabiliza sensivelmente ao fim de 20 minutos.

2. Controlador Proporcional

Assumindo, por exemplo, que se deseja implementar um controlador proporcional, o código Matlab poderá ser:

```
clear
                                 Valores globais
P=30;
                                  % duracao de um patamar
patamar=ones(P,1);
                                 % referencia (temperatura desejada)
R=[ 12*patamar; 20*patamar]
N=length(R);
                                  % minutos de simulação
Y=zeros(N,1);
                                  % saída (temperatura)
U=zeros(N,1);
                                  % entrada (potência)
                                  Valores em cada instante
yk = 0; yk1=0; yk2=0;
uk =0; uk1=0; uk2=0;
rk = 0;
```

```
ek = 0;
%----- Controlador
gP = 0.31;
                       % ganho do controlador
%----- 1. saida do sistema - temperatura
yk=pt326(uk1,uk2,yk1,yk2);
%----- 2. referencia e erro
rk = R(i);
ek = rk-yk;
%----- 3. accao de controlo (potência)
varuk = gP*ek;
uk = uk1 + varuk;
if uk< 0; uk= 0; end % limites físicos</pre>
if uk>100; uk=100; end % da potência de aquecimento
%----- 4. guardar dados e actualização
Y(i)=yk;
U(i)=uk;
uk2=uk1; uk1=uk;
yk2=yk1; yk1=yk;
end
         ----- Erro Total e Visualizacao
erro = (R-Y)'*(R-Y)
plot([R Y U])
```

O resultado da simulação anterior mostra-se na figura seguinte:

Assim, para uma referência (valor desejado) de 12 graus, a temperatura atinge cerca de 11º e para um valor desejado de 20 º o controlador proporcional não consegue estabilizar o valor da temperatura nos 30 minutos que dura esta última referência.

3. Controlador Difuso

O MatLab disponibiliza uma interface gráfica para o desenvolvimento de sistemas difusos, que será utilizado neste trabalho.

» fuzzy

No nosso caso, para a definição do sistema de controlo difuso devem ser considerados os seguintes parâmetros:

1. Entradas: Erro e Variação do erro

Universo de discurso

Factor de normalização (ou escala)

Mecanismo de fuzificação:

Conjunto de termos linguísticos: LE ={NG, NP, ZO, PP, PG} (?)

Tipo de funções de pertença (triangulares, gaussianas, ?)

2. Base de regras

Baseada na experiência, bom senso, do tipo:

Regra i: SE <E é PP> E <∆E é ZO> THEN <∆U é ZO>

Note-se que considerando cinco termos linguísticos para o erro e variação do erro devem-se definir 25 regras (caso contrário o sistema não seria completo).

3. Agregação de regras e mecanismo de inferência

Agregação (mínimo?)

Inferência de Mandani (max{min}?)

4. Saída: Variação do erro

Desfuzificação

Método das alturas (?)

A representação gráfica do trabalho a implementar é mostrada na figura seguinte:

Após o desenvolvimento do controlador difuso o seu valor poderá ser determinada através da função evalfis.

```
» duk = evalfis([ erro varerro ],modelodifuso);
```

Esta deverá substituir o controlador proporcional (código MatLab) atrás descrito.

4. Conclusões

4.1 Relatório

O relatório deverá ser entregue até dia ?? de ?? de ??.

Deve explicar de uma <u>forma sucinta</u> os passos que efectuou na implementação do seu trabalho, os parâmetros particulares, as conclusões a que chegou, nomeadamente na capacidade do controlador em lidar com as várias situações, além de outros aspectos que ache serem convenientes.

4.2 Funções MatLab

De entre as funções possíveis de utilizar destacam-se:

- » fuzzy
- » readfis
- » evalfis

Bom trabalho!