Radio Aurora Explorer:

A CubeSat-based Ground-to-Space Bistatic Radar Experiment

Planned radar measurements

Hasan Bahcivan¹, James Cutler², John Buonocore¹ and Matt Bennett²

¹SRI International

²University of Michigan

June 22, 2010

Outline

- 1. Science objectives
- 2. Experiment description
- 3. Radar parameters
- 4. Radar angular and spatial resolution
- 5. Revised radar sensitivity calculations

Science objectives

- 1. What is the altitude distribution of high-latitude meter-scale ionospheric (electron density) irregularities?
- 2. To what extent are the irregularities magnetic field-aligned?
- 3. Which plasma waves are responsible for these irregularities?
- 4. What are the driving forces, e.g., electric field, density gradients?

Specific science objectives

- 1) What is the dependence of Farley-Buneman waves on driving electric fields and density gradients?
- 2) How are the parallel E field responsible for E region electron heating generated?
- 3) What is the role of electric fields and density gradients in the generation of F region irregularities?
- 4) Is the Post-Rosenbluth instability operational in the F region?
- 5) How much of F region artificial turbulence dissipated by parallel E fields?

Methodology and assumptions

- 1. Radar echoes originate inside the radar beam
- 2. Range gate the radar echoes to locate the target along the beam
- 3. Repeat at consecutive satellite positions to change the radar wave-vector with respect to B
- 4. Do above while measuring the background electric field and density gradient conditions

RAX radar parameters

RAX radar receiver parameters	Value Units		
Frequency	426-510	MHz	
Sampling frequency	1000000	I/Q samples/s	
Altitude range	80-400	(km)	
Wavelength	0.4-1.2	m	
Max range resolution	3	km	
Altitude resolution	3-5	km	
Aspect angle resolution	1	degree	
Aspect angle resolution after de-convolution	0.1 degree		
Experimental zone radius at satellite altitude	~150 s/1200 km		
Duration of snapshot acquisition	~300s/2400 km	400 km	
Experiments per day per ISR	2-3		
RAX capability per day	1-2		
SNR range	-10 to 80	dB	
Data options	Raw voltages, synchronized / unsynchronized matched filtering/incoherent integration, GPS or overflow based synchronization		
Pulse patterns	Single/multi pulse, single/multi beam Uncoded, 13-baud barker etc.	Reprogrammable Mode upgradable. Software upgradably.	
Maximum snapshot acquisition time	500	S SRIF	

ISR	Location	Freq. MHz	PowerM W	BW	Inv. Lat.
PFISR	Alaska	449.0	2.0	1.0	78
RISR*	Canada	443.0	2.0	1.0	81
ESR	Norway	500.0	1.0	0.6	75
Millstone	Mass.	440.0	2.5	0.6	53
MUIR	Alaska	446.0	0.25	10	62*
Arecibo	Puerto Rico	430.0	2.5	0.2	34

roprietary

Determination of magnetic field alignment

For a given altitude, the time series of measurements along the satellite track will determine how thick each wall is, determining the magnetic aspect sensitivity of the irregularities.

Determination of wavelength dependence

For a given altitude and magnetic aspect angle, the satellite will cross a cone at two points during a single experiment. The two crossings will provide measurements at two different radar Bragg wavelengths, corresponding to measurements at a pair of k-spectrum points.

rocket measurements [Bahcivan et al. 2009, submitted]

Experimental zone, wavelengths, and resolution

891 passes during the 11 month mission are in the vicinity of the scattering zone (aspect angle < 3 degrees, for irregularities at 100 km). The scattering zone contains Bragg wavelengths in the range from 0.4-2.0 m, with a concentration at 0.5 m.

PFISR SINGLE BEAM

Transit time per degree aspect angle for perpendicular crossing: 2-5 sec.

Arecibo

Transit time per degree aspect angle for perpendicular crossing: 10-15 sec.

PFISR THREE BEAMS

Multiple AMISR beams can be used for more "detailed" illumination.

Radar resolution

Radar altitude-aspect angle ambiguity functions at various satellite positions in the scattering zone (~3-5 km and ~0.5°).

De-convolving the ambiguity function for high angular resolution

 Similar to the view of a telescope while observing the sky except we do not move the radar beam.

E region model for de-convolution test

$$\begin{split} S_{i,j}(h,\theta) &= \sum_{h,\theta} \ \omega_{i,j}(h,\theta) * \left(\sum_{k=1}^{7} I_k e^{-\left(\frac{h-h_{0k}}{\Delta h}\right)^2} e^{-\left(\frac{\theta}{\Delta \theta_k}\right)^2} \right) \\ & I\left(h,\theta\right) \end{split}$$

De-convolution test in the presence of noise and uncertainty

Uncertainty: Due to random nature of scattering process.

Uncertainty factor =
$$(1 + randn / \sqrt{N})$$

Noise: System noise

Noise =
$$S_{i,j max} / M$$

$$S_{i,j} = (S_{i,j} + Noise) * (Uncertainty factor)$$

De-convolution Results

Plot of error in de-convolution due to noise and uncertainty.

10% error margin in irregularity intensity and 0.1° error margin in aspect angle. SRI Proprietary

Measurement of absolute scattering coefficients

- (1) Absolute intensity measurements requires the specification of the antenna gain for a given scattered signal polarization defined by the eccentricity and the direction of the polarization.
- (2) The eccentricity is obtained from the scattering geometry.
- (3) The polarization direction is obtained from the geometry and the estimated Faraday rotation based on the ISR TEC measurements.

$$E_s = |E_{\theta}|e^{i(\omega t)}\hat{\theta} + |E_{\phi}|e^{i(\omega t + \pi/2)}\hat{\phi}$$

$$G_r(\theta, \phi) = (G_{\theta}(\theta, \phi)|E_{\theta}|^2 + G_{\phi}(\theta, \phi)|E_{\phi}|^2)/(|E_{\theta}|^2 + |E_{\phi}|^2)$$

Doppler measurements

- (1) Spectral shift of the irregularities is between -400 and 400 m/s.
- (2) Spectral width is between 0 and 400 m/s.
- (3) At 0.5 m Bragg wavelength, the correlation time is > 1.25 ms
- (4) Range aliasing restriction is $\sim 500 \,\mu s$ (for $< 3^{\circ}$ aspect angles).

Revised Sensitivity Calculations

The sensitivity of the RAX-PFISR bistatic radar is comparable to that of UHF Homer radar, whose power statistics are shown on

the right.

ne right.							
	RAX	Homer	Unit				
P _t	2x10 ⁹	4x10 ⁷	mW				
L	1.00	0.63	-				
G _t	20000	3981	-				
V _s	9.00x1 0 ¹¹	1.45x10 ¹³	m ³				
σ	1.94x1 0 ⁻⁹	5.34x10 ⁻	m ⁻¹				
G _r	1	3981	-				
λ	0.670	0.754	m				
R ₁	150	800	km				
R ₂	1000	800	km				
P _r	-81	-76	dBm				
P _n	-114	-115	dBm				
SNR	33	39	dB				

The distribution of observations as a function of receiver power [Moorcroft 1987] based on two separate time windows of Homer radar measurements. The bottom axis is shifted to interpret the data for RAE.

Relative intensities of natural and artificial E region irregularities

Statistics of electric fields at PFISR and RISR

Figure 5. Electric field statistics in the vicinity of PFISR.

Payload Receiver

Primarily Analog Industrial Components

- Pulse (>2µS) or CW operation
- 426 510 MHz (1 MHz steps)
- 4-bands
- Adjustable Gain
- Internal Voltage Regulation
- Continuous Sampling at 14-bit Resolution
- In-phase and Quadrature (I/Q) Signals
- Internal 500 MHz Calibration Source

Provides EMI Shield

- Thermally Dissipative
- 9.7cm x 9.7cm x 3.6cm
- Weight 320 g
- Power 2.6 W

SRI Proprietary

Recovery from direct hit

Experiment plans after satellite launch

- 1. Test low resolution radar modes with PFISR
- 2. Begin 6 months of PFISR-RAX experiment schedule of 2-3 experiments per day. Process only those that E exceeds 20 mV/m. If F region echoes observed for below threshold electric fields, process all. The goal is to obtain sufficient statistics for
- 3. I(E, ne, theta, h)
- 4. Solicit experiments from community, natural and artificial irregularities, at mid-latitudes and high latitudes.