

EMBEDDED SYSTEMS INTERNSHIP PRESENTATION

Simulation of Washing Machine using PIC16F877A

Presented by :-

Name: Priyanshi Singh

College: JKIAPT, University of Allahabad

CONTENTS

- Introduction of C Programming
- Embedded Systems Concepts
- Memory Classifications
- Microcontroller
- Tools Used
- Washing Machine Requirements
- Implementation Process
- Washing Machine Simulation
- Learning Outcomes & Conclusion

C Programming Language

- C was created by Dennis Ritchie at the Bell Laboratories in 1972 as a system implementation language for the Unix operating system.
- It is a very popular language, despite being old. Is simple and flexible programming language that is widely used in various applications.

Characteristics:

- Is a general-purpose language
- Is a free-formatted language
- Efficiency
- Portability
- Library Facilities

C Keywords

auto	double	int	struct
break	else	long	switch
case	enum	register	typedef
char	extern	return	union
continue	for	signed	void
do	if	static	while
default	goto	sizeof	Volatile
const	float	short	Unsigned

DataTypes in C

Modifiers in C

C has five types modifiers

- Short (stores 2 bytes of memory)
- → Long (stores 4 bytes of memory)
- Long long (stores 8 or 16 bytes of memory)
- → Signed (stores both negative and positive numbers)
- Unsigned (stores only positive numbers)

Conditional Constructs

Operators in C

Operatos	Type of Operatos	Operation Type	
++,	Increments/Decrements Operators	Unary Operator	
+, -, *, /,%	Arithmetic Operators		
<, <=, >, >=,==, !=	Relational Operators	Rimowy On overton	
&&, , !	Logical Operators		
&, , <<, >>, ~, ^	Bitwise Operators	Binary Operator	
=, +=, -=, *=, /=, %=	Assignment Operators		
sizeof () , & *	Special Operaots		
?:	Ternary or Conditional Operator	Ternary Operator	

Arrays and Strings in C

ARRAYS:

- An array is a collection of data of same data type. First element will be with the lowest address and the last element with the highest address.
- Each element in the array is accessed by index

STRINGS:

- A String in C programming is a sequence of characters terminated with a null character '\0'.
- The difference between a character array and a C string is that the string in C is terminated with a unique character '\0'.

Pointers and Functions in C

POINTERS:

- A pointer is a variable that stores the memory address of another variable.
- Instead of holding a direct value, it has the address where value is stored in memory.
- This allows us to manipulate the data stored at a specific memory location without actually using its variable.

FUNCTIONS:

- A function in C is a set of statements that, when called, perform some specific tasks.
- It is the basic building block of a C program that provides modularity and code reusability.
- We have 2 methods of parameters passing:
- Pass by value
- Pass by reference

Embedded Systems

- Any combination of Hardware and Software which is intended to do a Specific Task can be called as an Embedded System.
- Example: Washing Machine, Micro Oven, Fridges etc.

Types of Embedded Systems

- Stand-alone
- Real Time
- Networked
- Mobile

Embedded System Components

Embedded System

REQUIREMENTS:

- Reliability
- Cost-effectiveness
- Low Power Consumption
- Efficient Usage of Processing Power
- Efficient Usage of Memory

CHALLENGES:

- Efficient Inputs/Outputs
- Embedding an OS
- Code Optimization
- Testing and Debugging

Memory Classification

- ROM
 - 1. Programmable ROM (PROM)
 - 2. Erasable Programmable ROM (EPROM)
 - 3. Masked ROM
- RAM
 - 1. Dynamic RAM (DRAM)
 - 2. Static RAM (SRAM)
- Hybrid Memories
 - 1. Flash
 - i. NOR Flash
 - ii. NAND Flash
 - 2. EEPROM (Electrically Erasable Programmable Read-Only Memory

Microcontroller

- Microcontroller is an integrated circuit which is capable of being programmed to perform a specific task.
- Unlike Microprocessor, a Microcontroller has all components integrated in a single chip.
- It is less flexible and require less design complexity.
- To build this project, we are using PIC Microcontroller.

Specifications of PIC Microcontroller

- PIC Stand for Peripheral Interface Controller.
- Very easy to use Flash memory technology so that we can be write-erase until thousand times.
- For support serial communication it has 2 pins Tx and Rx.
- It can also support SPI Protocol.
- To build this project, we are using PIC16F877A Microcontroller.

PIC16F877A

- It has 40 pins.
- It has 5 Ports in total.
 - -PORT A [6 pins]
 - -PORT B[8 pins]
 - -PORT C[8 pins]
 - -PORT D[8 pins]
 - -PORT E [3 pins]).
- It supports Serial Communication for TX and RX.
- It can also supports SPI protocol.
- We have oscillator frequency range from 4MHZ-40MHZ.

Software Used

- PICSIMLAB
- MPLAB-X IDE
- XC8 COMPILER
- PICGENIOUS-PIC16F877A MC BOARD

Washing Machine

- This project focuses on simulating a washing machine using PICSimLab, aiming to replicate real-world washing machine functionality in a virtual environment.
- The project begins with a comprehensive understanding of washing machine components, cycles, and operations.
- Parameters defining laundry status, such as fabric type, load size, and water level, are identified.
- Peripherals Used :
- **→**CLCD
- → FAN
- → BUZZER
- → SWITCHES
- **→**Timer

Functional Requirements

POWER ON SCREEN

POWER ON SCREEN – Press SW5 to power ON Washing Machine

POWERING ON SCREEN

Washing Program Screen

Washing Program Menu:

- 1. Daily
- 2. Heavy
- 3. Dedicates
- 4. Whites
- 5. Stain wash
- 6. Eco cottons
- 7. Woolens
- 8. Bed sheets
- 9. Rinse + Dry
- 10. Dry only
- 11. Wash only
- 12. Aqua store

Press SW4 to scroll menu options Long Press SW4 to select

Water Level Screen

Water Level Menu:

- 1. Auto
- 2. Low
- 3. Medium
- 4. High
- 5. Max
- The user need to select water level

Press SW4 to scroll menu options Long Press SW4 to select

Start Screen

Start or Stop Screen Display:

- User have options to start or stop the program.
- If SW5 is pressed, then washing run for selected menu.
- If SW6 is pressed it goes back to Washing menu screen.

Function Screen

- Selected menu starts executing.
- Timer shows how many mins/secs washing Will be done.
- User can Pause and Start the program by pressing SW6 and SW5 respectively.
- FAN is turned ON during the program

Function Screen

- Selected menu starts executing.
- Timer shows how many mins/secs washing Will be done.
- User can Pause and Start the program by pressing SW6 and SW5 respectively.
- FAN is turned ON during the program

- SW1 acts as door for washing machine.
 If SW1 is proceed BUZZER turns ON
- If SW1 Is pressed BUZZER turns ON and FAN turn OFF

Completion Status Screen

 If program time is completed, then, PROGRAM COMPLETION SCREEN is displayed, and BUZZER turns ON.

Washing Machine Simulation Demo

Learning Outcomes

- Understood C for embedded use
- Applied timer interrupts
- FSM design principles
- Peripheral control using GPIO
- Debugging with PicsimLab
- Importance of documentation

THANK YOU!