Classical Algorithm Engineer Assignment Report

Qualcomm

Problem statement

Given configuration of environment

Camera Specifications:

Focal length: 200

• Principle point: (0,0)

No distortion

Checkerboard Details:

Size: 1m x 1m

Features: 50 identifiable corners

Point Cloud:

Location: Fixed within the environment

Imaging Process:

• The camera captures the checkerboard and point cloud from five different angles.

Objective:

 Determine the most accurate 3D positions for the points in the point cloud using multi-view geometry.

Projection of points in each camera

Homography Matrix

- Ensures that the rotation matrix columns have a unit norm
- The cross product $r1 \times r2$ yields a vector orthogonal to both r1 and r2,
- Aligns the scale of the translation with the scale of the rotation column

$$egin{aligned} R|t = K^{-1}H &= egin{bmatrix} r_1 & r_2 & t \end{bmatrix} \ r_1 &= rac{r_1}{\|r_1\|} \ r_2 &= rac{r_2}{\|r_2\|} \ r_3 &= r_1 imes r_2 \ t &= rac{t}{\|r_1\|} \end{aligned}$$

Reference:-

- 1. https://docs.opencv.org/4.x/d9/dab/tutorial-homography.html
- 2. https://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-12 lec04.pdf

Compute the optimal rotation matrix

$$\hat{R} = U \Sigma V^T$$

where U and V are orthogonal matrices from the SVD of \hat{R} , and Σ is a diagonal matrix. To ensure that Σ is also orthogonal and thus R is a proper rotation matrix with $\det(R)=1$, we modify Σ as follows:

$$egin{aligned} d &= ext{sign}(ext{det}(VU^T)) \ \Sigma' &= egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & d \end{bmatrix} \ R &= V\Sigma'U^T \end{aligned}$$

This adjustment guarantees that R is orthogonal since V and U are orthogonal and Σ' is chosen such that R has a determinant of +1, which is a necessary condition for a rotation matrix.

Reference:-

1. https://en.wikipedia.org/wiki/Kabsch algorithm#Computation of the optimal rotation matrix

Reprojection based on [R|t] (Homography)

Multi-View Triangulation

Multi-View Stereo Triangulation

Resulting configuration after triangulation

3D Visualization of World Frame, Camera Frames, and Checkerboard Points

Reference:-

https://3d.bk.tudelft.nl/nail/stereo/

1. Representation of Rays:

- $P_i = C_i + \lambda_i d_i$
- ullet P_i : Point on the ray from the i^{th} camera
- ullet C_i : Camera center in world coordinates
- λ_i : Scalar representing distance along the ray
- d_i : Direction vector of the ray from the i^{th} camera

2. Ideal Case (No Noise):

- $\lambda_i d_i pprox X C_i$
- ullet Assumes the 3D point X lies exactly on the ray from C_i in the absence of noise

3. Ray Equation and Residual:

- $ullet r = X C_i d_i d_i^T (X C_i)$
- ullet r: Residual vector, component perpendicular to d_i
- $d_i^T(X-C_i)$: Projection of $X-C_i$ onto d_i

4. Loss Function:

- $L = \sum_{i=1}^N ((I-d_id_i^T)(X-C_i))^2$
- ullet L: Sum of squares of residuals for all cameras
- I: Identity matrix

5. Minimization and Derivative:

- $rac{\partial L}{\partial X} = 2\sum_{i=1}^{N}(I-d_id_i^T)^2(X-C_i) = 0$
- ullet Derivative of L with respect to X set to zero

6. Matrix Formulation and Solution:

- $A_i = (I d_i d_i^T)$
- $X = (\sum_{i=1}^{N} A_i^T A_i)^{-1} \sum_{i=1}^{N} A_i^T C_i$
- ullet A_i : Matrix to find orthogonal component of $X-C_i$ to d_i

Bundle Adjustment

Note -

- Used both Axis Angle and quaternion for Rotation representation
- Fixed the checkboard 3d point to fix the structure
- Used sparse Jacobian method to speed up the bundle adjustment

The reprojection error equation in bundle adjustment is formulated as:

$$e_{ij} = x_{ij}^{ ext{obs}} - \pi(K_i, P_i, X_j)$$
 $\min_{X,P,K} \sum_{i=1}^n \sum_{j=1}^m \|e_{ij}\|^2$

where:

- e_{ij} is the reprojection error for the jth point in the ith image.
- x_{ij}^{obs} is the observed image point.
- π represents the projection function that maps 3D points X_j into 2D image points using the camera intrinsic parameters K_i and the extrinsic parameters $P_i = (R_i, t_i)$.
- ${}^{ullet}\,K_i$ are the intrinsic parameters of the ith camera.
- ullet $P_i=(R_i,t_i)$ represents the pose (rotation R_i and translation t_i) of the ith camera.
- X_i is the jth 3D point in the world coordinate system.

The goal is to find the parameters $\theta=\{X_j,P_i,K_i\}$ that minimize the sum of squared reprojection errors for all observations. The LM optimization problem can be formulated as: $\min_{\theta}\sum_{i=1}^n\sum_{j=1}^m\|e_{ij}(\theta)\|^2$

The update rule in the LM method is given by:

$$\Delta heta = -(J^T J + \lambda \cdot \mathrm{diag}(J^T J))^{-1} J^T e$$
 where:

- ullet J is the Jacobian matrix of partial derivatives of the error terms with respect to the parameters,
- $oldsymbol{\cdot}$ e is the vector of all reprojection errors,
- λ is the damping factor controlling the step size and the mix between the gradient descent and Gauss-Newton method,
- $\operatorname{diag}(J^TJ)$ represents the diagonal matrix of J^TJ .

The parameters are updated iteratively: $heta^{(k+1)} = heta^{(k)} + \Delta heta^{(k)}$

Reference:-

1. https://www.telesens.co/2016/10/25/bundle-adjustment-part-3/

Bundle Adjustment

Resulting configuration after Bundle Given configuration Adjustment

Resulting point cloud location

Point #	X Coordinate	Y Coordinate	Z Coordinate
1	0.13	-0.21	0.12
2	-0.13	0.21	-0.02
3	-0.34	-0.36	-0.11
4	-0.02	0.10	-0.10
5	-0.02	-0.21	0.10
6	-0.26	-0.19	-0.11
7	-0.11	-0.33	-0.34
8	-0.00	0.14	0.24
9	-0.18	0.10	-0.22
10	-0.09	0.07	0.14