Имеется пространство (множество) элементарных исходов Ω . В этом пространстве определяется функция вероятности $\mathbb{P} \colon \mathcal{F} \to [0,1]$, где $\mathcal{F} - \sigma$ -алгебра — система подмножеств в Ω

Определение. Дано непустое Ω . Система подмножеств \mathcal{A} в Ω называется **алгеброй**, если выполняются такие аксиомы

- (a1) $\Omega \in \mathcal{A}$
- (a2) если $A \in \mathcal{A}$, то $A^c \in \mathcal{A}$
- (а3) если $A_1, A_2 \in \mathcal{A}$, то $A_1 \cup A_2 \in \mathcal{A}$

Примечание. Ω называется **единицей** алгебры \mathcal{A} , то есть если мы определим операцию пересечения множеств, как умножение, то получим, что $\forall A \in \mathcal{A} \colon A \cap \Omega = A$

Пример. Пусть $\Omega = \{\heartsuit, \diamondsuit, \clubsuit, \spadesuit\}$. Проверим, являются ли следующие множества алгебрами

- $\mathcal{K}_1 = \{\varnothing, \Omega, \{\heartsuit, \diamondsuit\}, \{\clubsuit, \spadesuit\}\}$ алгебра
- $\mathcal{K}_2 = \{\varnothing, \Omega, \{\heartsuit, \diamondsuit\}\}$ не алгебра, так как $\{\heartsuit, \diamondsuit\} \in \mathcal{K}_2$, но $\{\heartsuit, \diamondsuit\}^c = \{\spadesuit, \clubsuit\} \notin \mathcal{K}_2$

Определение. Пусть $\Omega \neq \varnothing$. Система подмножеств $\mathcal{F} \in \Omega$ называется σ -алгеброй, если

- (σ 1) $\Omega \in \mathcal{F}$
- (σ **2**) если $A \in \mathcal{F}$, то $A^c \in \mathcal{F}$

(
$$\sigma$$
3) $A_1,\ldots,A_n\in\mathcal{F}, \text{ to } \bigcup_{i=1}^n A_i\in\mathcal{F}$

Задача №1

Пусть \mathcal{A} — алгебра, докажите, что $\emptyset \in \mathcal{A}$

Проверим выполнение условий (а1) и (а2):

- $\Omega \in \mathcal{A} \emptyset \in \Omega \Longrightarrow$ (а1) выполнено
- $\varnothing = \Omega^c \in \mathcal{A} \Longrightarrow$ (а2) выполнено

Примечание. Если $\mathcal{F} - \sigma$ -алгебра, то доказательство аналогично

Задача №2

Пусть \mathcal{A} — алгебра и $A_1, A_2 \in \mathcal{A}$

- а) Доказать, что $A_1\cap A_2\in\mathcal{A}$ Применим формулы де Моргана: $A_1\cap A_2=(A_1^c\cup A_2^c)\in\mathcal{A}$
- b) Доказать, что $A_1\setminus A_2\in\mathcal{A}$ Аналогично, используем де Моргана: $A_1\setminus A_2=A_1\cap\underbrace{A_2^c}_{\in\mathcal{A}}\in\mathcal{A}$

Задача №3

Доказать, что всякая σ -алгебра является алгеброй

Решение. $\mathcal{F} - \sigma$ -алгебра, то есть для нее выполнены аксиомы $\sigma 1$, $\sigma 2$, $\sigma 3$. При этом, аксиомы $\sigma 1$ и $\sigma 2$ аналогичны аксиомам (a1) и (a2). Значит, осталось проверить, что для \mathcal{F} выполняется (a3)

Пусть $A_1,A_2\in\mathcal{F}$. Положим, что $A_n=\varnothing\in\mathcal{F}$ при $n\geqslant 3$, тогда

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$$

$$= A_1 \cup A_2$$

Примечание. Из задач 2 и 3 следует, что если $\mathcal{F}-\sigma$ -алгебра и $A_1,A_2\in\mathcal{F},$ то

$$A_1 \cup A_2 \in \mathcal{F}, \quad A_1 \cap A_2 \in \mathcal{F}, \quad A_1 \setminus A_2 \in \mathcal{F}$$

Задача №4

Пусть $\mathcal{F}-\sigma$ -алгебра и $A_1,\dots,A_n\in\mathcal{F}$. Докзаать, что $\bigcap_{n=1}^\infty A_n\in\mathcal{F}$ Доказательство.

$$\bigcap_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \underbrace{A_n^c}_{\in \mathcal{F}} \in \mathcal{F}$$

Примечание. Пусть $\mathcal{A}-$ алгебра, тогда в общем случае из условия, что $A_1,\dots,A_n\in\mathcal{A}$ не следует ни одно из условий:

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}, \quad \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$$

Задача №5

 $\Omega = \{a, b, c, d\}$. Какие из множеств являются σ -алгебрами?

а) $S_1 = \{\varnothing, \Omega\}$ — самая бедная σ -алгебра

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{S}_1$$

b) $S_2 = 2^{\Omega}$ — множество всех подмножеств в множестве Ω

$$A \in 2^{\Omega} \Longleftrightarrow A \subseteq \Omega \Longrightarrow \Omega \setminus A \subseteq \Omega \Longleftrightarrow \underbrace{\Omega \setminus A}_{=A} \in 2^{\Omega}$$

$$\bigcup_{n=1}^{\infty} A_n \subseteq \Omega \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in 2^{\Omega}$$

 \mathbf{c}) $\mathcal{S}_3=\{\{a,b\},\{c,d\}\}$ $\Omega\in\mathcal{S}_3\implies\mathcal{S}_3$ — не σ -алгебра

d)
$$S_4 = \{\varnothing, \Omega, \{a, b\}\}$$

 $\{a, b\} \in S_4$, HO $\{a, b\}^c \notin S_4$

Задача №6

Имеется полуинтервал $\Omega = (0,1]$, тогда

$$\mathcal{A} = \{ A = \bigcup_{k=1}^{n} (a_k; b_k] \colon n \in \mathbb{N}, (a_k; b_k] \subseteq \Omega, (a_k; b_k] \cap (a_l; b_l] = \emptyset, l \neq k \}$$

Или же, говоря в терминах дизъюнктного объединения:

$$\mathcal{A} = \left\{ A = \bigsqcup_{k=1}^{n} \left(a_k; b_k \right] \right\}$$

а) Докажите, что \mathcal{A} — алгебра

$$A\cup B=A\sqcup B$$
 для $A\cap B=\varnothing,$ значит $\bigcup_{n=1}^\infty A_n=\coprod_{n=1}^\infty A_n$

Пусть у нас имеется A, определяемое как

$$A = (0.1, 0.25] \cup (0.33, 0.47] \cup (0.9, 1] \in \mathcal{A}$$

Тогда, если мы попытаемся включить $\{0.1\}$ в A, получим, что

$$A = [0.1, 0.25] \cup (0.33, 0.47] \cup (0.9, 1] = 0.1 \cup (0.1, 0.25] \cup (0.33, 0.47] \cup (0.9, 1] \notin \mathcal{A}$$
$$(0.1, 0.1] = \{x \colon 0.1 < x \leqslant 0.1\} = \varnothing$$
$$(a; b] = \{x \colon a < x \leqslant b\} \Longrightarrow \Omega = (0, 1] \in \mathcal{A}$$

При этом,

$$A^c = (0, 0.1] \sqcup (0.25, 0.33] \sqcup (0.47, 0.9] \in \mathcal{A}$$

b) Приведите пример: $A_1,\ldots,A_n,\ldots\in\mathcal{A},$ но $\bigcup_{n=1}^\infty A_n\not\in\mathcal{A}$

$$A_1 = \underbrace{\varnothing}_{\in \mathcal{A}} \in \mathcal{A}, A_n = \underbrace{\left(0, 1 - \frac{1}{n}\right]}_{\in \mathcal{A}}, n \leqslant 2$$

$$\bigcup_{n=1}^{\infty} A_n = (0,1) \not\in A$$

 $\Longrightarrow \mathcal{A}$ — не σ -алгебра

Задача №7

$$\Omega = \{a, b, c, d\}, \mathcal{F}_1 = \{\emptyset, \Omega, \{a\}, \{b, c, d\}\}, \mathcal{F}_2 = \{\emptyset, \Omega, \{a, b, c\}, \{d\}\}\}$$

Пункт а является трививальной проверкой выполнения аксиом, начнем с с

c) Является ли $\mathcal{F}_1 \cap \mathcal{F}_2$ σ -алгеброй? $\mathcal{F}_1 \cap \mathcal{F}_2 = \{A \colon A \in \mathcal{F}_1 \text{ и } A \in \mathcal{F}_2\} = \{\varnothing, \Omega\} - \sigma$ -алгебра

е) Явялется ли $\mathcal{F}_1 \cup \mathcal{F}_2$ σ -алгеброй?

$$\mathcal{F}_1 \cup \mathcal{F}_2 = \{A \colon A \in \mathcal{F}_1 \text{ или } A \in \mathcal{F}_2\} = \{\varnothing, \Omega, \{a\}, \{b, c, d\}, \{a, b, c\}, \{d\}\}$$

$$\{a\},\{d\}\in\mathcal{F}_1\cup\mathcal{F}_2$$

$$\{a\} \cup \{d\} = \{a, d\} \notin \mathcal{F}_1 \cup \mathcal{F}_2$$

 \Longrightarrow это не σ -алгебра

Задача №9

Доказать, что пересечение любого семейста σ -алгебр с одной и той же единицей является σ -алгеброй

Пусть у нас имеется σ -алгебры \mathcal{F}_j , где $j\in J$ — производьный набор индексов, $\forall j\in J$ $\Omega\in\mathcal{F}_j$

Также определим $\hat{\mathcal{F}}_j := \bigcap_{j \in J} \mathcal{F}_j$

$$\mathbf{a)} \ \Omega \in \hat{\mathcal{F}} \ \forall j \in J \Longrightarrow \Omega \in \mathcal{F}_j \Longrightarrow \Omega \in \bigcap_{j \in J} \mathcal{F}_j = \hat{\mathcal{F}}$$

b) Пусть $A \in \hat{\mathcal{F}}$. Значит, $\forall j \colon A \in \mathcal{F}_j \Longrightarrow \forall j \in A^c \in \mathcal{F}_j \Longrightarrow A^c \in \hat{\mathcal{F}}$, так как $\mathcal{F}_j - \sigma$ -алгебра

c)
$$\Pi \text{усть } A_1, \dots, A_n \in \hat{\mathcal{F}} \Longrightarrow \forall n \in \mathbb{N}, \forall j \in J \ A_n \in \mathcal{F}_j \\ \Longrightarrow \forall j \in J (\forall n \in \mathbb{N} \ A_n \in \mathcal{F}_j) \\ \Longrightarrow \forall j \in J \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_j \\ \Longrightarrow \bigcup_{j \in J} A_j \in \bigcap_{j \in J} \mathcal{F}_j = \hat{\mathcal{F}}$$

Определение. Пусть $\Omega \neq \emptyset$ и S — это непустая система подмножеств множества Ω Минимальной σ -алгеброй, содержащей систему S называется такая σ -алгебра $\sigma(S)$, что

- $S \subseteq \sigma(S)$
- \forall σ -алгебры \mathcal{G} , которая содержит систему \mathcal{S} ($\mathcal{S} \subseteq \mathcal{G}$) справедливо, что $\sigma(\mathcal{S}) \subseteq \mathcal{G}$

Определение. Минимальная σ -алгебра, содержащая все полуинтервалы вида $(a;b] \in \mathbb{R}$, где a и b, такие что $a,b \in (-\infty;+\infty)$ называется **борелевской** σ -алгеброй на числовой прямой и обозначается $\mathcal{B}(\mathbb{R})$

Элементы борелевской σ -алгебры называются борелевскими множествами