

《数学实验》报告

实验名称	素性测试	
学院	计算机与通信工程	
专业班级	信安 1602	
姓名	李宇桐	
学号	41624545	

2018年4月

1

素性测试算法

摘要

关于素数的一个基本问题是如何有效地确定一个数是否是一个素数,即素性测试问题。 素性测试问题不仅在数学上是一个有挑战性的问题,而且在实际应用系统中也具有十分 重要的地位。例如,很多现代密码学应用通常需要确定一个几百位的素数,如果不采用 一些快速有效的素性测试方法,就算使用运算速度最快的计算机也要花费很多时间。 本文探究素性检测的算法,并用 matlab 实现代码部分和分析比较各类算法的有效性。

分工: 刘海壮用 matlab 实现代码部分、孙文睿用 matlab 分析比较各类算法的有效性、李宇桐负责撰写论文。

关键词: 素性检测 确定性检测算法 概率性检测算法

一、问题分析

密码学是网络信息安全的基础,而公钥密码体制是密码学的重要组成部分,其中 RSA 算法作为公钥密码体制中较为完善的算法之一,具有较高的安全性,被广泛应用于 数据加、解密和数字签名技术中。但 RSA 算法的公开密钥和私有密钥是一对大素数,因 此研究素性测试对此具有十分重要的意义。

素性检测的方法分为两大类:确定性检测算法和概率性检测算法。确定性素数方法的优点在于产生的数一定是素数;缺点是生成的素数带有一定的限制。若算法设计不当,很容易构造出的有规律的素数,致使密码分析者很容易地分析到素数的变化,直接猜测到密码系统所使用的素数。概率性方法是目前检测素数的主要算法。该方的优点是:检测伪素数速度较快、原理简单、易于编程实现,构造的伪素数没有规律性,其缺点是其检测的数具有一定的误判,所以称为伪素数。

二、算法实现

2.1 确定性检测算法

2.1.1 Eratosthenes 筛法

Eratosthenes 筛法是对于所有素数都有效的最古老的素数测试算法,然而它的复杂性是关于输入整数规模的幂指数关系,因此用它来测试大的素数是不合适的。

理论基础:

设正整数n>1,如果对于所有 $\leq \sqrt{n}$ 的素数,均有p|n,则n为素数。

例如给定一个一百以内的数,给出要筛选数值的范围,找出 \sqrt{n} 以内的素数。先把 2 留下,2 的倍数剔除;再把 3 留下,3 的倍数剔除;接着 5 留下,5 的倍数剔除,不断重复下去。

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	
		53			59
61				67	
71		73			79
		83			89
				97	

算法实现:

%Eratosthenes 筛选法

%确定性素性检测算法

%函数返回值 对应位置为1代表为素数0为和数

function ss=Eratosthenes(x)

```
size_x=size(x);
ss=ones(size(x));
for i=1:size_x(1)
    for j=1:size_x(2)
        n=fix(sqrt(x(i,j)));%向下取整 sqrt(x(i,j))
```

2.1.2 AKS 算法

2002年,印度理工学院的 Agrawal, Kayal 和 Saxena 等三人提出了一种多项式时间的确定性素性测试方法。

理论基础:

设x为变量,a,n是两个正整数, $\left(a,n\right)=1$,则n为素数当且仅当:

$$(x+a)^n \equiv x^n + a \pmod{n}$$
$$(x+a)^n \equiv x^n + a^n \pmod{n}$$

算法实现:

1) 主函数

function ss=AKS(n)

if(n==1)

ss=0;

elseif(n==2)

ss=1;

```
a=rprime(n);
       %a=15;
       x=-a;ss=1;
       while(1)
              q=mod\_long((x+a), n, n);
               w=mod(a, n);
              r=mod_long(a, n, n);
              t=mod\_long(x, n, n);
              \text{if} \left( \boldsymbol{w}^{\sim} = \boldsymbol{r} \ \middle| \ \boldsymbol{q}^{\sim} = \text{mod} \left( \boldsymbol{t} + \boldsymbol{w}, \, \boldsymbol{n} \right) \middle| \ \boldsymbol{q}^{\sim} = \text{mod} \left( \boldsymbol{t} + \boldsymbol{r}, \, \boldsymbol{n} \right) \right)
                      ss=0;
                      break
               end
               if(x>n-1-a)
                      break
               end
               x=x+1;
       end
end
2) rprime 函数
%随机生成一个和 x 互质且不为 1 的数字
function ss=rprime(x)
while (1)
       a=fix(x*rand(1));
```

else

```
if (\gcd(a, x) == 1 \&\& a^=1)
       break
   end
end
ss=a;
3) mod_long 函数
%函数功能计算 x n mod m 的值
%返回值在 0-m-1 之内
%输入值只能为1位(长度为1)
function ss=mod_long(x, n, m)
if (n==1)%到底出结果
   ss=mod(x, m);
elseif(n==Euller(m))%到达欧拉函数也出结果
       ss=1;
else
   if (mod (n, 2) == 0)
       ss=mod_long(mod(x^2, m), n/2, m);%函数递归n取一半 mod(x^2, n)
   else
       ss=mod(mod_long(mod(x^2, m), (n-1)/2, m)*x, m);%乘 x 前 n-1 个合并
   end
end
4) Euller 函数
%欧拉函数
function ss=Euller(x)
```

```
[w, p] = fprime(x);
size_p=size(p);
ss=x;
for i=1:size_p(2)
   ss=ss*(1-1/p(i));
end
5) fprime 函数
%质因数分解
%输入一个 x 返回两个向量
%第一个向量中包括第二个向量中对应质因子的幂次方
%第二个向量中包含 n 个 x 的质因子(不包含 1)
%例如 20=2^2*5^1
%返回 m=[2 1]ss=[2 5]
function [m, ss]=fprime(x)
k=1;
p=primes(x);
size_p=size(p);
for i=1:size_p(2) %遍历整个 2- x-1
   if(gcd(p(1, i), x) == p(1, i))
       ss(1,k)=p(1,i);
       j=1;
       while(1)
           flag n=gcd(p(1, i)^j, x)==p(1, i)^j;
           if(flag n==1)
```

```
m(1,k)=j;
              else
                 break
              end
              j=j+1;
          end
          k=k+1;
      end
   end
   6) 改进
   a) mod_long2
   %和1不同此函数可以输入一个矩阵 同时返回一个矩阵对应位置为1则原矩阵中对
应数
   %的 n 次方 mod m 的得数最终返回值为一个 0-m-1 内数字
   function ss=mod_long2(x, n, m)
   size_x=size(x);
   ss=zeros(size(x));
   for i=1:size x(1)
      for j=1:size_x(2)
          ss(i, j) = mod_long(x(i, j), n, m);
      end
   end
   b) Euller2
   %将函数改造成矩阵形式
```

```
function ss=Euller2(x)
ss=zeros(size(x));
size_x=size(x);
for i=1:size_x(1)
    for j=1:size_x(2)
        ss(i, j)=Euller(x(i, j));
    end
end
c) AKS2
%将函数改造成矩阵形式
function ss=AKS2(x)
ss=zeros(size(x));
size_x=size(x);
for i=1:size_x(1)
    for j=1:size_x(2)
        ss(i, j) = AKS(x(i, j));
    end
end
```

2.2 概率性检测算法

2.2.1 Fermat 素性测试法

由于 Eratosthenes 筛法所需的时间复杂度为 $O(\sqrt{n})$,因而效率极低,不能在实际中应用。17 世纪,Fermat 提出一个有效的素性测试方法,只花费 $\log(n)$ 的多项式时间。

理论基础:

1) Fermat 小定理:

当n为素数时,对每个a, (a,n)=1,均有: $a^{n-1}\equiv 1\pmod{n}$

- 2) Fermat 素性测试
- a) 随机选取整数b, $2 \le b \le n-2$
- b) 计算g = (b, n), 如果 $g \neq 1$, 则n为合数
- c) 计算 $r = b^{n-1} \pmod{n}$, 如果 $r \neq 1$, 则 n 为合数
- d) 如果(b)、(c)均不发生,则n可能为素数
- e) 将(a) $^{\sim}$ (d)重复 t 次,如果每次得到 $_n$ 可能为素数,则 $_n$ 为素数的概率为1- $\frac{1}{2^t}$

算法实现:

1) 主函数

%Fermat 素性测试方法 第二个参数为精度要求

%当缺省时默认进行 20 次精度为 1/2~20

```
function ss=Fermat(n, N)
```

if (nargin<2)

N=20;

end

if(n==2 | | n==3)

ss=1;

else

if (mod (n, 2) == 0)

ss=0;

else

ss=1;

for t=1:N

while(1)

b=rprime(n);

```
if (b)=2 \&\& b <=n-2
                   break
               end
           end
           g=gcd(b, n);
           if(g^{\sim}=1)
               ss=0;
               break
           end
           r=mod_long(b, n-1, n);%要用大数 mod_long 函数不然会出现溢出问题)
           if(r^{\sim}=1)
               ss=0;
               break
           end
       end
       if(ss==1)
           ss=1-0.5^t;
       end
   end
end
2) rprime 函数
%随机生成一个和 x 互质且不为 1 的数字
function ss=rprime(x)
while(1)
```

```
a=fix(x*rand(1));
   if (\gcd(a, x) == 1 \&\& a^=1)
       break
   end
end
ss=a;
3) mod long 函数
%函数功能计算 x n mod m 的值
%返回值在 0-m-1 之内
%输入值只能为1位(长度为1)
function ss=mod_long(x, n, m)
if(n==1)%到底出结果
   ss=mod(x, m);
elseif(n==Euller(m))%到达欧拉函数也出结果
       ss=1;
else
   if (mod (n, 2) == 0)
       ss=mod_long(mod(x^2, m), n/2, m);%函数递归n取一半 mod(x^2, n)
   else
       ss=mod(mod_long(mod(x^2, m), (n-1)/2, m)*x, m);%乘 x 前 n-1 个合并
   end
end
4) Euller 函数
%欧拉函数
```

```
function ss=Euller(x)
    [w, p] = fprime(x);
   size_p=size(p);
   ss=x;
   for i=1:size_p(2)
       ss=ss*(1-1/p(i));
   end
   2. 2. 2 Lehmann 素性测试法
   理论基础:
1) 随机选取整数b, 2 \le b \le n-2
2) 计算 g = (b,n), 如果 g \neq 1, 则 n 为合数
3) 计算 r = b^{(n-1)/2} \pmod{n}, 如果 r \neq \pm 1, 则 n 为合数
4) 如果(2)、(3)均不发生,则n可能为素数
将(1)^{\sim}(4)重复t次,如果每次得到n可能为素数,则n为素数的概率为:1-\frac{1}{2^t}
   算法实现:
   1) 主函数
   %Lehmann 素性检测
   function ss=Lehmann(x, N)
   if (nargin<2)
       N=20;
   end
   if(x==2 \mid \mid x==3)
       ss=1;
   else
        if (mod (x, 2) == 0)
```

```
ss=0;
else
    ss=1;
    for i=1:N
        while(1)
            b=fix(x*rand(1));
             if(b)=2\&\&b<=x-2)
                 break
            end
        end
        g=gcd(b, x);
        if(g^{\sim}=1)
            ss=0;
            break
        end
        r=mod_1ong(b, (x-1)/2, x);
        if(r==1 | r==x-1)
            continue
        else
            ss=0;
        end
    end
    if(ss==1)
        ss=1-0.5^{i};
```

```
end
   end
end
2) mod_long 函数
%函数功能计算 x n mod m 的值
%返回值在 0-m-1 之内
%输入值只能为1位(长度为1)
function ss=mod_long(x, n, m)
if(n==1)%到底出结果
   ss=mod(x, m);
elseif(n==Euller(m))%到达欧拉函数也出结果
       ss=1;
else
   if (mod (n, 2) == 0)
       ss=mod long(mod(x^2, m), n/2, m);%函数递归n取一半 mod(x^2, n)
   else
       ss=mod (mod_long (mod (x^2, m), (n-1)/2, m)*x, m);%乘 x 前 n-1 个合并
   end
end
3) Euller 函数
%欧拉函数
function ss=Euller(x)
```

[w, p] = fprime(x);

size_p=size(p);

```
ss=x;
for i=1:size_p(2)
    ss=ss*(1-1/p(i));
end
4) 改进
%函数矩阵化
function ss=Lehmann2(x, N)
if (nargin<2)
    N=20;
end
ss=zeros(size(x));
size x=size(x);
for i=1:size_x(1)
    for j=1:size_x(2)
        ss(i, j) = Lehmann(x(i, j), N);
    end
end
```

2.2.3 Miller-Rabin 素性测试法

Miller-Rabin 素性检测算法是 Fermat 算法的一个变形的改进,它的理论基础是 Fermat 定理引申出来的。

理论基础:

1) Miller-Rabin 测试: 设n为奇正合数, $n-1=2^sm$,其中 $s\geq 0$,m为奇整数,至多有 $\frac{n-1}{4}$ 个b ,满足如下条件:

$$b^m \equiv 1 \pmod{n}$$
或者存在 $r(0 \le r < s)$, 使得

$$b^{2^{r_m}} \equiv -1 \pmod{m}$$

2)Miller-Rabin 测试法: 在 $0 \le n$ 之间随机选取b,计算 $b^m \pmod{n}$,如果其值为 ± 1 ,则n通过M-R 测试,否则依次计算 $b^{2m}, b^{4m}, \cdots, b^{2^{s-1}m} \pmod{n}$,如果得到 -1,则n也通过M-R 测试,否则n为复合数

如果随机选取t个b,b均通过M-R 测试,则n为素数的概率: $1-\frac{1}{4'}$

算法实现:

1) 主函数

```
%Miller-Rabin 素性测试法
```

function ss=MR(x, N)

if
$$(mod(x, 2) == 0 \&\& x^{\sim} = 2)$$

ss=0;

elseif(x==2)

ss=1;

else

s=1; k=1;

while(1)

 $if(gcd(x-1, 2^k) == 2^k)$

s=k;

k=k+1;

else

break

end

end

```
m = (x-1)/2^s;
if(nargin<2)
     N=20;
end
ss=1;
for t=1:N
     while(1)
           b=fix(x*rand(1));
           if (b>0 \&\& b < x)
                break;
           end
     end
     flag_bm=mod_long(b, m, x);
     if(flag_bm==1 || flag_bm==x-1)
           continue
     else
           flag_2rm=0;
           for i=1:s-1
                mod2rm=mod\_long(b, (2^i)*m, x);
                \texttt{if} \, (\texttt{mod} 2 \texttt{rm} = = \texttt{x} - 1 \, | \, | \, \texttt{mod} 2 \texttt{rm} = = 1)
                      flag_2rm=1;
                      break
                end
           end
```

```
if(f1ag_2rm==0)
               s=0;
               break
           end
       end
   end
   if(ss==1)
       ss=1-0.25^t;
   end
end
2) mod_long 函数
%函数功能计算 x n mod m 的值
%返回值在 0-m-1 之内
%输入值只能为1位(长度为1)
function ss=mod_long(x, n, m)
if (n==1)%到底出结果
   ss=mod(x, m);
elseif(n==Euller(m))%到达欧拉函数也出结果
       ss=1;
else
   if (mod (n, 2) == 0)
       ss=mod_long(mod(x^2, m), n/2, m);%函数递归n取一半 mod(x^2, n)
   else
       ss=mod(mod_long(mod(x^2, m), (n-1)/2, m)*x, m);%乘 x 前 n-1 个合并
```

```
end
end
```

end

```
3) Euller 函数
%欧拉函数
function ss=Euller(x)
[w, p] = fprime(x);
size_p=size(p);
ss=x;
for i=1:size_p(2)
    ss=ss*(1-1/p(i));
end
4) 改进:
%函数矩阵化
function ss=MR2(x, N)
if(nargin<2)
    N=20;
end
ss=zeros(size(x));
size_x=size(x);
for i=1:size_x(1)
    for j=1:size_x(2)
        ss(i, j) = MR(x(i, j), N);
    end
```

20

三、算法比较

研究上述确定性检测算法和概率性检测算法的有效性。通过输入一个数n,求出 $2\sim n$ 的素数个数,并输出运算时间。

算法实现:

```
function A=test(n)
aa=0;ee=0;ff=0;11=0;mrr=0;
Atime=0; Etime=0; Ftime=0; Ltime=0; MRtime=0;
for x=2:n
    tic; a=AKS(x); atime=toc;
    Atime=Atime+atime;
    tic; e=Eratosthenes(x); etime=toc;
    Etime=Etime+etime;
    tic; f=Fermat(x); ftime=toc;
    Ftime=Ftime+ftime;
    tic; 1=Lehmann(x); 1time=toc;
    Ltime=Ltime+1time;
    tic; mr=MR(x); mrtime=toc;
    MRtime=MRtime+mrtime;
    if(a==1)
        aa=aa+1;
    end
    if(e==1)
        ee=ee+1;
    end
    if(f^{\sim}=0)
```

```
ff=ff+1;
end
if(1~=0)
    11=11+1;
end
if(mr~=0)
    mrr=mrr+1;
end
end
A=[aa, ee, ff, 11, mrr; Atime, Etime, Ftime, Ltime, MRtime];
```

结果比较:

test(5)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	3.0000	3.0000	3.0000	3.0000	3.0000
运算时间	0.0586	0.0044	0.0074	0.0052	0.0072

test (26)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	9.0000	9.0000	9. 0000	9. 0000	9.0000
运算时间	0. 2179	0.0042	0. 0287	0. 0462	0.0510

test (74)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	21.0000	21.0000	21.0000	21.0000	21.0000
运算时间	3. 5485	0.0006	0. 1293	0. 3930	0. 4300

test (99)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	25. 0000	25. 0000	25. 0000	25. 0000	25. 0000
运算时间	6. 3170	0.0010	0. 1943	0. 6222	0. 6983

test (150)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	35. 0000	35. 0000	35. 0000	35. 0000	35.0000
运算时间	20. 9991	0.0011	0. 3942	1. 2999	1. 5900

test (200)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	46. 0000	46.0000	46. 0000	46. 0000	46. 0000
运算时间	55. 3161	0.0016	0. 6436	2. 8552	3. 1502

test (500)	AKS	Eratosthenes	Fermat	Lehmann	MR
素数个数	95. 0000	95. 0000	95. 0000	95. 0000	95. 0000
运算时间	758. 5255	0.0119	3. 6584	17. 8102	19. 9859

四、参考文献

[1]李创成,陈文庆.基于 Delphi 的大素数 Miller-Rabin 检测方法的实现[J].湖南科技学院学报,2011,32(12):67-69

[2]程胜利, 韩智强.素性检测及其实现[J]. 计算机与数字工程, 1995,23(3-4):41-48 [3]赵勇, 张益新, 杨文伟. AKS 算法及其在公钥加密术中的意义[J]. 广东工业大学学报, 2004,21(3):79-82