Handwritten Digit Recognition

Shruti Bendale

Person Number: 50289048, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, 14214 shrutitu@buffalo.edu

Abstract

The purpose of this project is to compare classify images to recognize the handwritten digits. This task was performed using different classifiers, namely, logistic regression classifier, Neural Networks, Support Vector Machine and Random Forests. The results of these classifiers were compared and analyzed by generating a confusion matrix. The predictions of all these classifiers were combined to design a combined classifier that works on a majority voting system.

1. Introduction

The problem of handwriting recognition is to interpret intelligible handwritten input automatically, which is of great interest in the pattern recognition research community because of its applications to many fields. As one of the fundament problems in designing practical recognition systems, the recognition of handwritten digits is an active research field. Immediate applications of the digit recognition techniques include postal mail sorting, automatic address reading and mail routing, bank check processing, etc.

In this report we train and test a set of classifiers on the MNIST database for pattern analysis in solving the handwritten digit recognition problem. MNIST is a publicly available and widely used dataset consisting of bilevel images of handwritten digits and labels. It is divided into 60000 images for training and 10000 images for testing, where each image is of the size 28 x 28 pixels. We use both the training and the testing samples for the purpose of this project.

The USPS dataset was used to test the models. It contains 20000 images of handwritten digits (200 samples for each digit). We use these samples to test the models generated using the MNIST dataset. The USPS images were resized to fit the size of 28 x 28 pixels.

Four different models (Logistic, NN, SVM and random forests) are applied to compare the performance in terms of both accuracy and speed. Potential improvements including combinations of the classifiers using majority voting are further discussed in this report.

2. Implementation

2.1. Multinomial Logistic Regression:

Multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. We have 10 possible discrete outputs for our digit recognition problem.

Softmax function:

The softmax function generates probabilities for each of these output classes and the class with the highest probability is chosen as the predicted class. The equation for the softmax function is given as:

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$
 where, $z_i = x_i w_i + bias$

The weights $(w_1, w_2,..., w_i)$ represent the learned likelihood of a pixel contributing positively or negatively to the overall image being in a certain class. Thus, the value of the pixel, multiplied with the learned weight, gives a kind of "vote" towards the final result.

Gradient Descent:

The weights are learned through an iterative process called gradient descent and back-propogation whereby error is attributed to specific weights with each prediction. These weights are modified with each iteration to improve the prediction. In this case, we use an error metric called **cross-entropy loss** that can be given by the equation:

$$H_{y'}(y) = -1/m \sum_{i} y'_{i} * log(softmax(y_{i}))$$

The decrease in the cross entropy error for all 10 classes after gradient descent can be seen in the following loss vs number of epochs graph:

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 91.41% and after testing the performance on the USPS dataset, the accuracy was found to 35.787%. The confusion matrix for the MNIST dataset is given in *figure 2.1* and that for the USPS dataset is given in *figure 2.2*.

]]	956	0	11	4	1	10	13	3	8	11]
] [0	1105	8	1	4	4	3	15	9	7]
] [2	2	903	21	5	4	4	22	7	4]
] [2	3	14	911	1	41	3	7	27	12]
] [1	0	15	0	912	9	13	8	9	42]
] [6	3	1	28	0	760	10	0	23	9]
] [9	4	13	4	10	17	908	0	13	0]
] [1	1	17	12	2	10	1	936	13	21]
] [3	17	42	20	8	30	3	3	853	6]
] [0	0	8	9	39	7	0	34	12	897]]
Ove	erall	l accu	racy:	91.4	1 %					

[[548	176	165	77	42	138	273	159	193	32]
] [2	345	21	1	77	19	10	217	29	164]
] [320	168	1221	140	44	201	392	320	151	154]
] [61	327	154	1288	59	166	105	460	217	477]
] [240	258	55	20	994	40	97	69	121	147]
] [215	103	121	301	160	1190	333	155	720	118]
] [90	32	87	14	42	108	693	26	110	14]
[67	395	87	67	160	72	22	348	52	404]
] [127	176	63	52	258	42	42	193	340	300]
]	330	20	25	40	164	24	33	53	67	190]]
Οve	Overall accuracy: 35.78678933946697 %									

figure 2.1: Confusion Matrix for MNIST

figure 2.2: Confusion Matrix for USPS

2.2. Neural Network:

1.1.1. Deep Neural Network:

We construct a 2-layer deep neural network using tensorflow, where, the input layer has 784 nodes and the output layer has 10 nodes. Each node of the input layer represents a pixel in an image to classify and each node in the output layer represent a distinct target class.

The hyperparameters that were set are as follows:

Hidden layer nodes: 2048

Dropout: 0.2

Activation for hidden layer: relu Activation for output layer: softmax

Optimizer: adam

Loss: categorical crossentropy

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 98% and after testing the performance on the USPS dataset, the accuracy was found to 49.52%. The confusion matrix for the MNIST dataset is given in *figure 2.3* and that for the USPS dataset is given in *figure 2.4*.

mo a t	- 1-		00010	200200	21005	704								
	Test loss: 0.09019882881085704													
Test	Test accuracy: 0.98													
Conf	Confusion Matrix:													
]]	974	1	0	0	1	0	C) 1	1	2]				
[0	1130	2	1	0	0	0	0	2	0]				
[5	2	999	3	1	0	1	8	13	0]				
[1	0	6	994	0	2	0	3	2	2]				
[1	1	4	0	963	0	1	2	3	7]				
[4	0	0	17	1	863	3	0	3	1]				
[7	4	0	1	4	6	933	0	3	0]				
[1	2	5	3	1	0	0	1008	2	6]				
[5	0	2	3	4	2	1	2	950	5]				
[3	3	0	4	8	1	0	3	1	986]]				

Tes	Test loss: 5.157580578849938													
Tes	Test accuracy: 0.4952747637292458													
Cor	nfusi	on Ma	atrix	:										
[[702		3 18:	2 35	270	125	153	91	113	326]				
[43	566	393	92	311	63	7	366	107	52]				
[73	10	1648	30	20	66	55	47	43	7]				
[34	9	198	1454	8	194	6	18	66	13]				
[22	75	48	13	1222	95	29	223	241	32]				
[68	1	173	57	18	1465	51	18	143	6]				
[196	19	420	17	49	115	1015	68	33	68]				
[29	144	312	309	55	23	22	874	221	11]				
[190	14	175	292	134	227	116	110	710	32]				
[9	66	109	197	269	30	6	670	395	249]]				

figure 2.3: Confusion Matrix for MNIST

figure 2.4: Confusion Matrix for USPS

1.1.2. Convolutional Neural Network:

A 2-layer CNN was constructed with the input as (28,28). A CNN does not require flattening of the input as opposed to the DNN. The optimal hypreparameters found after fine tuning are:

Hidden layer nodes: 128

Dropout: 0.2

Activation for hidden layer: relu Activation for output layer: softmax

Optimizer: adam

Loss: sparse categorical crossentropy

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 98.52% and after testing the performance on the USPS dataset, the accuracy was found to 48.76%. The confusion matrix for the MNIST dataset is given in *figure 2.5* and that for the USPS dataset is given in *figure 2.6*.

Test	Test loss: 0.0560671895022675														
Test	Test accuracy: 0.9852														
Confusion Matrix:															
[[960															
[0	1126	4	0	0	0	2	3	0	0]					
[0	0	1021	0	0	0	2	7	2	0]					
[0	0	0	999	0	5	0	3	3	0]					
[0	1	4	0	965	0	2	0	1	9]					
[1	0	1	5	0	881	2	1	1	0]					
[3	2	0	0	1	2	949	0	1	0]					
[0	1	7	0	0	0	0	1018	0	2]					
[2	0	3	5	1	5	0	4	950	4]					
[1	3	0	6	5	6	1	4	0	983]]					

figure 2.5: Confusion Matrix for MNIST

figure 2.6: Confusion Matrix for USPS

2.3. Support Vector Machine:

SVM generates a hyperplane that acts as a separator between the classes. If the classes are not linearly separable, the points are projected into higher dimensions in order to calculate a hyperplane. This is called as the kernel trick. 'rbf' kernel is a radial basis function given by the following formula:

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}\right)$$
 where $||\mathbf{x} - \mathbf{x}'||^2$ is the squared Euclidean distance between two data points x and x'.

An SVC classifier using an RBF kernel has two parameters: gamma and C.

- gamma is the decision region. When gamma is low, the 'curve' of the decision boundary is very low and thus the decision region is very broad and vice versa.
- C is a parameter of the SVC learner and is the penalty for misclassifying a data point. Higher the value of C, higher the penalty.

SVM was implemented using the 'svm.SVC(kernel=kernel, C=c,gamma=gamma)' function in sklearn.metrics library. The best parameters found after tuning are: kernel='rbf', C=2, gamma=0.001

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 95% and after testing the performance on the USPS dataset, the accuracy was found to 41%. The confusion matrix for the MNIST dataset is given in figure 2.7 and that for the USPS dataset is given in figure 2.8.

Coi	onfusion matrix:												Confusion matrix:							
11	967	0	1	0	0	5	4	1	2	0]	1	[5	580	2	424	22	265	253	68	52
]	0	1122	2	3	0	1	3	1	3	0]		[1	102	413	311	154	264	173	43	500
]	7	1	969	8	10	2	10	10	13	2]		[1	L26	16	1416	67	38	192	60	55
]	1	1	18	947	1	16	1	9	12	4]		[69	5	199	1128	8	479	5	64
]	1	1	7	0	936	0	7	2	2	26]		[15	53	95	15	1150	251	25	220
]	7	4	5	32	6	809	13	1	10	5]		[1	L04	18	281	116	20	1337	61	39
1	9	3	4	1	5	8	927	0	1	0]		[1	L78	6	521	31	89	381	749	10
]	1	12	23	6	7	1	0	960	3	15]		[44	208	433	301	57	403	15	460
]	4	5	7	15	8	24	10	7	892	2]		[73	22	220	203	81	1000	95	40
]	8	6	1	14	29	4	1	14	5	927]]		[18	150	237	293	188	158	6	510

figure 2.7: Confusion Matrix for MNIST

figure 2.8: Confusion Matrix for USPS

40 242 3281

171

101

13]

102]

51

29]

231

241

228]]

23

19

30

74

19

6

56

212

2.4. Random Forests:

Random forest builds a forest of multiple decision trees and merges them together to get a more accurate and stable prediction. The forest it builds, is an ensemble of Decision Trees, most of the time trained with the "bagging" method. The general idea of the bagging method is that a combination of learning models increases the overall result.

It was implemented using the 'RandomForestClassifier()' function in sklearn. RandomForestClassifier library.

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 94.46% and after testing the performance on the USPS dataset, the accuracy was found to 32%. The confusion matrix for the MNIST dataset is given in figure 2.9 and that for the USPS dataset is given in figure 2.10.

ra	ndom	fores	t acc	uracy	: 0.	9446					Confi
Co	nfusi	ion ma	trix:								1 1 608
]]	966	0	1	0	0	5	3	1	3	1]	r 87
[0	1118	3	3	0	2	5	0	3	1]	[204
[10	2	990	11	1	0	4	7	7	0]	[109
[2	3	19	940	1	16	2	8	13	6]	
[1	4	8	1	924	0	6	1	6	31]	[43
[8	3	1	38	7	817	5	2	8	3]	[231
[16	5	7	0	9	5	913	0	3	0]	[291
[2	6	21	5	3	2	0	977	2	10]	[75
[9	2	12	12	10	17	6	6	890	10]	[105
[10	6	5	13	37	7	0	13	7	911]]	[67

Confus	sion	mati	cix:						
806]]	36	273	94	331	170	119	153	11	205]
[87	642	187	96	90	177	37	640	23	21]
[204	132	939	130	52	274	66	163	26	13]
[109	89	262	962	41	350	28	106	26	27]
[43	260	139	88	789	153	61	352	31	84]
[231	101	213	238	72	918	62	114	18	33]
[291	92	333	73	147	366	545	117	14	22]
[75	407	480	212	41	139	46	550	24	26]
[105	129	282	276	151	685	102	110	110	50]
[67	274	367	309	203	165	30	409	71	105]]

figure 2.9: Confusion Matrix for MNIST

figure 2.10: Confusion Matrix for USPS

2.5. Combined Classifier (Majority voting):

For each sample, we compare the predicted values of all classifiers. The value that was predicted the most number of times is the predicted value of the combined classifier.

For example, For a sample x,

Logistic model predicts 2, CNN predicts 7, DNN predicts 7, SVM predicts 1, Random forests predicts 9 The final prediction of the combined model will be 7 (as it was predicted by 2 out of 5 models)

Accuracy and Confusion Matrix:

After testing the model performance on the MNIST testing dataset, the accuracy was found to be 97.53% and after testing the performance on the USPS dataset, the accuracy was found to 44%. The confusion matrix for the MNIST dataset is given in *figure 2.11* and that for the USPS dataset is given in *figure 2.12*.

Cor	mhino	d 200	uracy	ngin	* mai	oritu	170±	ing.	0.9753	
			_	using	, maj	оттсу	VOC.	Liig.	0.9755	'
Coi	ntusı	on ma	trix:							
]]	978	0	5	1	0	1	1	0	2	0]
[0	1128	0	1	0	2	2	2	3	0]
[6	0	995	5	0	1	3	1	6	1]
[1	1	7	994	0	6	2	2	3	0]
[1	1	3	0	964	0	3	1	2	11]
[4	0	2	10	0	857	6	1	5	3]
[7	2	2	1	2	1	941	0	3	0]
[3	4	8	2	3	1	0	1009	3	11]
[3	0	5	6	4	4	4	3	928	3]
[5	5	1	10	11	2	0	4	6	959]]

365] 161 284 109 25 507 65 512 201 151 37 111 31 12 8] 20 25 1205 781 99 188 110 32] 157 151 133 755 46] 219]]

Combined accuracy for USPS using majority voting: 0.44

figure 2.11: Confusion Matrix for MNIST

figure 2.12: Confusion Matrix for USPS

3. Inferences

A comprehensive summary of the testing accuracies for all the six classifiers is shown in *table 3.1* and *figure 3*.

Accuracy	Logistic	DNN	CNN	SVM	Random	Ensemble
					Forests	Classifier
Testing MNIST	91.41%	98.52%	98%	95%	94.46%	97.53%
Testing USPS	35.79%	48.75%	49.52%	41%	32%	44%

Table 3.1: Testing accuracies of all the classifiers

Figure 3

After an overall estimation and comparison of the performance of the above-mentioned classifiers, we can make the following observations:

- The neural network models give the most accuracy, followed by SVM, Random Forests and Logistic Regression.
- SVM took the most time for training the model, followed by random forests, neural networks and logistic regression.
- Random forests have less number of hyperparameters to tune. It gives the best performance on the default configuration of sklearn. The main limitation of Random Forest is that a large number of trees can make the algorithm too slow.
- Logistic regression, Random forests can be used for both classification and regression problems.
- Neural Network is a very convenient and scalable method of generating machine learning models.

The "No Free Lunch" theorem states that there is no one model that works best for every problem. The assumptions of a great model for one problem may not hold for another problem, so it is common in machine learning to try multiple models and find one that works best for a particular problem. The CNN model gave the best accuracy for USPS dataset but for the MNIST dataset, DNN gave the best accuracy. This proves the 'No Free Lunch' theorem.