锁相放大器

洪宇宸[†] 181840084 南京大学物理学院

摘要: 锁相放大器

关键词: 锁相放大器

1 引言

锁相放大器实验步骤

A. 强噪声背景下检测微弱信号实验

- 1. 断开所有与机箱连接的信号线,打开电源开关(在电源线边上),此时系统处于默认设置状态。
 - (如果系统不是默认设置状态,可以在前面板上选择 SAVE RECALL 菜单,Save&Recall 设置为 Recall,此时 Channel 会变成 Default,按下软键 3,将 Execute 设置为 YES,即可恢复默认设置状态。)
- 2. 使用 OE1022D 产生频率 1kHz, 幅值为 100mVrms (0.282Vpp)的正弦波信号;
- 3. 对锁相放大器 OE1022D 的 A 通道进行以下设置:
- 4. 进入 INPUT FLTERS 菜单,设置 Source 为 A;
- 5. 进入 GAIN TC 菜单, 设置 Sensitivity 为 500mV, Reserve 为 Normal, Time Constant 为 1s, Filter dB/oct 为 24dB;
- 6. 进入 REF PHASE 菜单,设置 Ref.source 为 Internal;
- 7. 使用 BNC-BNC 信号线连接 OE1022D 的"SINE OUT A"接口与实验仪的相应实验框图中的"VIN"接口;
- 8. 使用 BNC-BNC 信号线连接实验仪的相应实验框图中的"VOUT"接口与 OE1022D 的"A/I"接口;
- 9. 读取 OE1022D 测到的 R 值, 即为被噪声淹没的正弦信号有效值;
- 10. 改变 OE1022D 产生正弦波有效值,在不同信噪比下重复上述测量;
- 11. 特实验测德波形图、R 值记录在表 31 强噪声背景检测弱信号实验结果中作 实验结果分析。

(正弦波 Vin 幅值选取 1000mV、100mV、10mV、1mV、0.1mV 获得锁相放大器测量 R 值)

- B. 测量变容二极管内 PN 结电容与反偏电压的关系
- 1. 在 0E1022D 的 REF PHASE 菜单下, Ref. source 选择 Internal, Ref. frequency 设置为 10.000kHz, SINE OUT 设置为 0.010Vrms (0.028Vpp);
- 2. 用 BNC-BNC 信号线连接 0E1022D 的 "SINE OUT" 接口与实验仪本实验框图中的 "V₁," 接口;
- 3. 用 BNC-BNC 信号线连接实验仪本实验框图中的 "Voot"接口与 OE1022D 的 "A/I"接口;
- 4. 此时,可以用 0E1022D 直接测量反偏直流电压点 DC-V_{*}电位。操作方法为用 BNC-BNC 信号线连接 DC-V_{*}接口与 0E1022D 后面板的 AUX IN 1接口,在 0E1022D 的 DISPLAY 菜单下,Display&Scale 选择 Full,Type 设置为 List。此时可以从 0E1022D 显示屏读取 AD1 的电压值,即是反偏直流电压点 DC-Vdiode 电压,如常设法表找到时间源。,然后调节电位器使得反偏直流电压点 DC-Vdiode 置零;
- 5. 设置 "SIN OUT" 的输出电压为 10mV;
- 6. 调节完第(5)步骤之后,将BNC-BNC信号线恢复原位,即将BNC-BNC信号线连接DC-V、接口与 0E1022D 后面板的 AUX IN 1接口,将BNC-BNC信号线连接实验仪本实验框图中的"Vox"接口与0E1022D的"A/I"接口。小心缓慢调节电位器,使得变容二极管的反偏直流电压 DC-V、从1至7.9V逐渐变化,变化步长为0.2V、逐点记录 DC-V、和锁相放大器R信:

[†] Email: 181840084@smail.nju.edu.cn

锁相放大器实验要求

实验要求

- 1. 了解 OE1022 锁相放大器和配套教学实验仪的基本概况。
- 2. 完成强噪声背景下检测微弱信号实验
- 3. 测量变容二极管内 PN 结电容与反偏电压的关系

实验报告只需提供测量数据并分析和思考题解答

- 2 实验目的
- 3 实验原理
- 4 实验仪器
- 5 实验内容
- 6 数据记录与处理
- 6.1 强噪声背景下检测微弱信号

实验原理图:

实验数据记录如下表所示:

Experiments in Modern Physics

正弦波幅值 V _{in} (Vrms)	被噪声淹没的正弦信号有效值 R	
0.01	10.02mV	
0.0001	102.07 μV	
0.001	1.0035mV	
0.1	100.55mV	
1	1.0077V	

因为噪声的影响, 检测出的正弦信号有效值都偏大。

6.2 变容二极管结电容测量实验

实验原理图:

 $V_{sin} = 0.01 V_{rms} = 10000 \mu V$

实验数据记录如下:

<u> </u>		A(X)	В	C(Y)
9	Long Name	DC-Vt	R	Сх
+	Units	V	μV	nF
	Comments			
÷ -	F(x)=			B/(10000-B)*6.8
海。	1	1.003	293.210	0.20541
் T	2	1.212	274.930	0.19224
E3°	3	1.388	256.900	0.1793
7-	4	1.588	242.800	0.16921
/·	5	1.800	226.300	0.15745
-0	6	2.000	213.720	0.1485
/a →	7	2.207	200.800	0.13934
₩ • I	8	2.395	189.270	0.13119
4	9	2.593	178.300	0.12345
	10	2.807	166.610	0.11521
	11	3.011	155.810	0.10763
-6	12	3.201	146.200	0.10089
*	13	3.389	137.100	0.09452
<u> </u>	14	3.601	126.280	0.08697
•	15	3.800	116.160	0.07992
	16	3.997	105.870	0.07276
I)	17	4.213	93.730	0.06434
	18	4.400	82.710	0.05671
	19	4.611	69.950	0.0479
-	22	4 6 4 4	FO 000	0.04050

从拟合的结果可以看出误差还是比较大的,与理论公式-0.5次幂的关系有较大偏差。

7 实验分析和讨论

8 思考题

问题 1:被测信号携带了哪些信息?锁相放大器能够测量信号的什么信息? 有用信号和噪声。锁相放大器可以用 LPF 滤除噪声而放大有用信号,极大提高信噪比。

问题 2: 既然锁相放大器只能测量交流信号的幅度及相位,而被测信号却往往是微弱的直流信号,怎么办?

对于幅度较小的直流信号或慢变信号,为了防止 1/f 噪声和直流放大的直流漂移(例如运算放大器输入失调电压的温度漂移)的不利影响,一般都使用调制器或斩波器将其变换成交流信号后,再进行放大和处理,用带通滤波器抑制宽带噪声,提高信噪比,之后再进行解调和低通滤波,得到放大了的被测信号。

问题 3: 锁相放大器在什么情况下采用内部参考模式, 什么情况下采用外部参考模式?

问题 4: 有没有什么测量情况不采用参考信号? 没有,都需要采用参考信号。

问题 5: 锁相放大器能不能测量非正弦的周期信号?

锁相放大器是根据正弦函数的正交性原理工作的。具体来说,就是当一个频率为μ的正弦函数与另一个频率为ν的正弦函数相乘,然后对乘积进行积分(积分时间远大于两个函数的周期),其结果为零。如果两个频率相等,并且两个函数是同相位的,则平均值等于幅值乘积的一半。

若有一组周期函数可以构成正交函数集,理论上应该可以实现。

问题 6:被测信号的幅度如果变化很快,锁相放大器测量参数怎么设置?

- 1. 参考本方法, 思考三极管、场效应管的寄生电容或者电感如何测量。
- 2. 某些传感器的阻抗在外界环境情况下会随环境快速响应,例如测量发动机气缸的温度的变化。这种情况可以考虑用一个热敏电阻(电阻值随着温度变化而变化)作为传感器,由于发动机气缸的温度变化很快,因此传统的方法测量信噪比低;思考及设计采用锁相放大技术进行测量的方案。

9 参考文献