2019-11-05 Продолжение док-ва:

#### Док-во

$$U_1^* U_1 \stackrel{\text{def}}{=} D^{-\frac{1}{2}} \underbrace{V_1^* A^* A V_1}_{=D} D^{-\frac{1}{2}} = E_k$$

Осталось из  $U_1$  и  $V_1.\Rightarrow U_1$  содержит k ортогональных столбцов. Раз они ортогональны, можно дополнить до ортогонального базиса в  $\mathbb{C}^n$  и получаем:

$$U = (U_1 U_2) \in M_n(\mathbb{C})$$

Эта матрица ортонормирована из-за ортог. столбцов.

$$S := \begin{pmatrix} \begin{pmatrix} D^{\frac{1}{2}} & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \in M_{m_1 n}(\mathbb{C})$$

$$(U_1U_2)S(V_1V_2)^* = U_1F^{\frac{1}{2}}V_1^* = A$$

Матрица S нужного размера. Матрица  $U_1$  - квадратная и унитарная. С  $V_1$  тоже все ок

#### Замечание

Такая же теорема верна в  $\mathbb{R}$ . Только если тут унитарные матрицы, то там ортоганальные

# 1 Квадратичные формы над $\mathbb R$

# Опр

$$x = (x_1, ..., x_n)$$
, тогда:

$$S(x) = \sum_{i\geqslant j} a_{ij} x_i x_j$$
 - квадратичная форма

# Замечание

$$S(x) = \sum_{\substack{a_{ij} x_i x_j \\ b_{ij} = b_{ji}}} a_{ij} x_i x_j$$

$$b_{ij} = \begin{bmatrix} a_{ij}, & i = j \\ \frac{a_{ij}}{2}, & i > j \\ \frac{a_{ji}}{2}, & j > i \end{bmatrix}$$

$$B = (b_{ij})$$
 - матрица ...?  $S(x) = x^T B x$   $x = M y$   $S(x) = y^T M^T B M y$ 

#### Опр

S - положительно определена, если:

1. 
$$\forall x \quad S(x) \geqslant 0$$

2. 
$$S(x) = 0 \Rightarrow x = 0$$

## Замечание

Эквивалентно тому, что матрица S - положительно определена. В частности это значит, что верен критерий Сильвестра

## Опр

$$S(x) = a_1 x^2 + ... + a_n x_n^2$$
 - канонический вид

#### Теорема

Любую матрицу можно привести к каноническому виду с помощью элементарного преопразования

# Док-во

Любая самосопряженная матрица представляется в виде: унитарная матрица \* диагональная \* унитарная сопряженная к первой. В  $\mathbb{R}$  формулируется так: любая симметрическая матрица: ортогональная \* симметричная \* ортоганальная в минус 1. То есть получили то что нам нужно

# 1.1 Применение сингулярного разложения

$$Ax = b$$

У А столбцов мало, строк много Хотим решить приближенно, то есть чтобы  $\|Ax - b\| \to \min$ 

# Опр

х, который минимизирует разность называется решением методом наименьших квадратов (МНК)

## Теорема

$$A \in M_{n,m}(\mathbb{R})$$

- 1.  $x^*$  решение МНК  $\Leftrightarrow A^T A x^* = A^T b$
- 2.  $A^T A \in \operatorname{GL}_n(\mathbb{R}) \Leftrightarrow \operatorname{rk} A = m$

## Док-во

1.  $x^*$  - решением МНК  $\overset{\text{Лада записала}}{\Leftrightarrow}$ 

 $Ax^*$  - проекция b на линейную оболочку столбцов A

$$Ax^* = \operatorname{pr}_L v$$
$$b - \operatorname{pr}_L b \perp L \Rightarrow A^T (b - \operatorname{pr}_L b) = 0$$

Почему  $v \perp L \Rightarrow A^T v = 0$ ?

$$\forall e: (Ae, v) = 0$$
$$= (e, A^T v)$$

Какой вектор ортогонален произвольному? Только нулевой. Мы в док-ве воспользовались  $(Ax, y) = (x, A^T y)$  (просто расписать)

$$A^Tb=A^TAx^*$$
 
$$A^TAx^*=A^Tb$$
 
$$A^T(Ax^*-b)=0 \ \Rightarrow \ Ax^*-b\perp L \ (\text{аналогично})$$
 
$$\Rightarrow b=Ax^*-(\in\in L^\perp Ax^*-b)$$

2.  $Ax = 0 \Leftrightarrow A^T Ax = 0$ . В  $(\Rightarrow)$  - очевидно. Пусть  $A^T Ax = 0 \Rightarrow x^T A^T Ax = 0 \Rightarrow (Ax)^* Ax \Leftrightarrow Ax = 0$  Будем говорить в этом случае (немного некорректно), что х лежит в ядре матрицы А. Теперь к пункту 2.

$$(\Rightarrow)$$
:

$$A^T A \in \mathrm{GL}_n(\mathbb{R}) \Rightarrow \mathrm{Ker}\, A^T A = \{0\} \Rightarrow \mathrm{Ker}\, A = \{0\}$$

Значит Ax - не имеет решения кроме нулевого. Но это ЛК столбцов матрицы. Значит столбцы матрицы A - ЛН. Значит она имеет полный ранг. Ч.т.д.

$$(\Leftarrow)$$
:

Ранг равен m  $\Rightarrow$  столбцы ЛН  $\Rightarrow$   $Ax=0 \Rightarrow x=0$  Но знаем, что ядро у матриц в  $Ax=0 \Leftrightarrow A^TAx=0$  равны нулю  $\Rightarrow$   $A^TA$  - обратимо

## Теорема

$$A = UDV^T$$
  $A \in M_{n,m}(\mathbb{R})$   $D \in M_{n,m}(\mathbb{R})$ 

#### Док-во

D - как бы диагональна. А все диагональные элементы вещ. неотриц. числа, приведем её так:

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \vdots & 0 & 0 \\ 0 & 0 & \lambda_k & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D^{+} = \begin{pmatrix} \lambda_{1}^{-1} & 0 & 0 & 0 \\ 0 & \vdots & 0 & 0 \\ 0 & 0 & \lambda_{k}^{-1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad D^{+} \in M_{m,n}(\mathbb{R})$$

$$A^+ = VD^+U^T$$

$$x^*$$
 - решение МНК  $Ax = b \Leftrightarrow x^* = A^*b$ 

$$A^{T}Ax^{*} = A^{T}b$$

$$A^{T}AA^{+}b \stackrel{?}{=} A^{+}b$$

$$VD^{T}\mathcal{V}^{\mathcal{T}}UDV^{T}\mathcal{V}D^{+}U^{T}b \stackrel{?}{=} VD^{T}U^{T}b$$

$$V\underbrace{D^{T}DD^{+}}_{-D^{T}}U^{T}b$$

# Опр

$$||A|| \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||y||=1} ||Ay||$$

## Свойства

1. 
$$\|\lambda A\| = |\lambda| \|A\|$$

2. 
$$||A + B|| \ge ||A|| + ||B||$$
  

$$\sup_{\|y\|=1} ||(A + B)y|| \le \sup_{\|z_1\|=1} ||Az_1|| + \sup_{\|z_2\|=1} ||Bz_2||$$

Пусть sup достигается в  $z_1, z_2$ 

$$||Az_1|| \geqslant ||Ay||$$

 $||Az_2|| \geqslant ||Ay||$ 

Подробное док-во: (убидили д-ть)

$$\sup_{\|y\|=1} \|(A+B)y\| = M$$

$$\sup_{\|z_1\|=1} \|Az_1\| = m_1$$

$$\sup_{\|z_2\|=1} \|Az_2\| = m_2$$

$$M \leqslant m_1 + m_2$$

$$\forall z : ||z|| = 1$$
  $||Az|| \le m_1$   
 $||Bz|| \le m_2 \Rightarrow ||(A+B)z|| \le ||Az|| + ||Bz|| \le m_1 + m_2$ 

3. 
$$\|UA\|=\|AV\|\|A\|$$
, если U,V - ортогон. матрицы (очевидно) 
$$\|UA\|=\sup_{\|y\|=1}\|UAy\|=\sup_{\|y\|=1}\|Ay\|=\|A\|$$

4.  $||A|| = \sigma_1(A)$  - наибольшее сингулярное число. Как его получить? Взяли сингулярное разложение  $A = UDV^T$ . На диагонали D выбираем наибольшее сингулярное число