Faculty Development Program on

Machine Learning and Image Processing

Neural Network

History of basic model

- The first learning machine: the Perceptron
 - Built at Cornell, 1960
- Perceptron was linear classifier on top of simple feature extractor
- Most of the practical applications of ML today use glorified linear classifiers or glorified template matching.
- Significant effort is required for identifying relevant features
- Typically it will solve $y = sign \left(\sum_{i=1}^{N} (w_i \times f_i(X) + b) \right)$

Biological Neuron

Image source: Internet

Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm²
 - Twice the area of computer keyboard
- It contains around 10¹¹ neurons
 - Number of stars in the Milky-way
- Each neuron is connected to 10³-10⁴ other neurons
- Total connections is around 10¹⁴-10¹⁵
- Connectionist model

Image source: Internet

Artificial Neural Network

• A simple model

Artificial Neuron

- Neuron pre-activation function
 - $a(\mathbf{x}) = \sum_{i} w_{i}x_{i} + b = b + \mathbf{w}^{\mathsf{T}}\mathbf{x}$
- Neuron output activation function

•
$$h(\mathbf{x}) = g(a(\mathbf{x})) = g\left(\sum_{i} w_{i}x_{i} + b\right)$$

- Notations
 - w Weight vector
 - b Neuron bias
 - g(.) Activation function

Physical interpretation

Classification using single neuron

- Single neuron can do binary classification
 - Also known as logistic regression classifier

Artificial neuron

• Can solve linearly separable problems

Example NN: XOR gate

Example NN: XOR gate

Example NN: XOR gate

Artificial neuron: XOR problem

- There are issues for linear separation
- Transformation of representation can help in obtaining linearly separable data

Geometrical view of NN

Capacity of neural network

- Universal approximation theorem (Hornik,1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Deep Neural Network

• Also known as feedforward neural network or multilayer perceptron

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For a classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For a classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For a classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For a classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model
- Goal of NN is not to model brain accurately!

Multilayer neural network

Single hidden layer neural network

• Hidden layer pre-activation

$$a(x) = b^1 + w^1 x$$

• Hidden layer activation

$$h(\mathbf{x}) = g(a(\mathbf{x}))$$

Output layer activation

$$f(\mathbf{x}) = o(b^{(2)} + \mathbf{w}^{(2)}h^{1}(\mathbf{x}))$$

Multi layer neural network

• Pre-activation in layer

$$k > 0 (\mathbf{h}^{(0)}(\mathbf{x}) = x)$$

$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$$

• Hidden layer activation

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

Output layer activation

$$h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$$

Issues with linear FFN

- Fits well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

Overcome issues of linear FFN

• Transform **x** (input) into $\phi(\mathbf{x})$ where ϕ is nonlinear transformation

Overcome issues of linear FFN

- Transform **x** (input) into $\phi(\mathbf{x})$ where ϕ is nonlinear transformation
- How to choose ϕ ?

Overcome issues of linear FFN

- Transform **x** (input) into $\phi(\mathbf{x})$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness

• Do not encode enough prior information

Overcome issues of linear FFN

- Transform **x** (input) into $\phi(\mathbf{x})$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge

Overcome issues of linear FFN

- Transform **x** (input) into $\phi(\mathbf{x})$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge
 - Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y = f(x; \theta, w) = \phi(x; \theta)^T w$
- We use θ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\mathbf{x}, \boldsymbol{\theta})$
 - θ can be determined by solving optimization problem
- Advantages
 - ϕ can be very generic
 - Human practitioner can encode their knowledge to designing $\phi(\mathbf{x}; \boldsymbol{\theta})$

Design issues of feedforward network

- Design of architecture number of layers, number of units in each layer
- Choice of activation function
- The form of output unit
- Cost function
- Choice of optimizer
- Computation of gradients

- Linear activation function
 - Not very interesting
 - No change in values
 - Huge range
- Uniform gradient

- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded
- Gradient saturates at the extreme end

$$g(x) = \operatorname{sigm}(x) = \frac{1}{1 + \exp(-x)}$$

- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - **Strictly increasing function**
 - **Bounded**
- Gradient saturates at the extreme end

$$g(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

- Rectified linear activation function
 - Bounded below by 0
 - Strictly increasing function
 - Not upper bounded
- Gradient is 0 in left half
- Gradient is constant in right half

Generalization of ReLU

- ReLU is defined as $g(z) = \max\{0, z\}$
- Using non-zero slope, $h_i = g(\mathbf{z}, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - Absolute value rectification fixes $\alpha_i = -1$ to obtain g(z) = |z|
- Leaky ReLU assumes very small values for α_i
- Parametric ReLU tries to learn α_i parameters
- Maxout unit $g(\mathbf{z})_i = \max_{j \in \mathbb{G}^{(i)}} z_j$
 - Suitable for learning piecewise linear function

Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid $g(z) = \sigma(z)$
- Hyperbolic tangent g(z) = tanh(z)
 - $tanh(z) = 2\sigma(2z) 1$
- Widespread saturation of sigmoidal unit is an issue for gradient based learning
 - Usually discouraged to use as hidden units
- Usually, hyperbolic tangent function performs better where sigmoidal function must be used
 - Behaves linearly at 0
 - Sigmoidal activation function are more common in settings other than feedforward network

Other hidden units

- Differentiable functions are usually preferred
- Activation function $h = \cos(Wx + b)$ performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function $\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} \mathbf{c}\|)$
 - Gaussian $\exp(-(\varepsilon r)^2)$
- Softplus $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh $g(x) = \max(-1, \min(1, x))$

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
 - Still gradient descent performs well
 - Neural network does not converge to local minima but reduces the value of cost function to a very small value

Output units

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

Linear units

- Suited for Gaussian output distribution
- Given features h, linear output unit produces $\hat{y} = W^T h + b$
- This can be treated as conditional probability $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
 - Discrete probability distribution of a random variable which takes the value either 0 or 1
- The neural networks need to predict p(y = 1|x)
 - If linear unit has been chosen, $p(y = 1|\mathbf{x}) = \max\{0, \min\{1, \mathbf{W}^T \mathbf{h} + \mathbf{b}\}\}$
 - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with $z = W^T h + b$
- Therefore, $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in J_0, 1} \exp(y'z)}$
 - It can be written as $P(y) = \sigma((2y 1)z)$
- The loss function for maximum likelihood is $J(\theta) = -\log P(y|\mathbf{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

Softmax unit

- Similar to sigmoid. Mostly suited for multinoulli distribution
 - Discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories
- We need to predict a vector $\hat{\mathbf{y}}$ such that $\hat{\mathbf{y}}_i = P(\mathbf{Y} = i | \mathbf{x})$
- A linear layer predicts unnormalized probabilities $z = W^T h + b$ that is $z_i = \log \tilde{P}(y = i|x)$
- Formally, softmax(z)_i = $\frac{\exp z_i}{\sum_j \exp(z_j)}$
- Log in log-likelihood can undo exp $\log \operatorname{softmax}(\mathbf{z})_i = z_i \log \sum_i \exp(z_i)$
 - Does it saturate?
 - What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie.
 softmax(z) = softmax(z + c)

Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of $p(y = c|\mathbf{x})$
- Softmax activation function is used at the output

$$o(a) = \mathbf{softmax}(a) = \begin{bmatrix} \frac{\exp(a_1)}{\sum_c \exp(a_c)} & \frac{\exp(a_2)}{\sum_c \exp(a_c)} & \dots & \frac{\exp(a_c)}{\sum_c \exp(a_c)} \end{bmatrix}^\mathsf{T}$$

- Strictly positive
- Sum to 1
- Class having the highest probability will be the predicted output

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $U(\theta) = \frac{1}{2} \sum_{x} (f^*(x) f(x; \theta))^2$
 - $(J(\theta) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (f^*(\mathbf{x}) f(\mathbf{x}; \theta))^2)$
- We need to choose $f(\mathbf{x}; \theta)$ where θ depends on \mathbf{w} and b
- Let us consider a linear model $f(\mathbf{x}; \mathbf{w}, b) = \mathbf{x}^T \mathbf{w} + b$

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $f(x) = \frac{1}{2} \sum_{x \in \mathcal{X}} f(x, x) = \frac{1}{2} \sum_{x \in \mathcal{X}} f(x) = \frac{1}{2} \sum_{x \in \mathcal{X$

$$(J(\theta) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (f^*(\mathbf{x}) - f(\mathbf{x}; \theta))^2)$$

- We need to choose $f(\mathbf{x}; \theta)$ where θ depends on \mathbf{w} and b
- Let us consider a linear model $f(\mathbf{x}; \mathbf{w}, b) = \mathbf{x}^T \mathbf{w} + b$
- Solving these, we get $\mathbf{w} = \mathbf{0}$ and $b = \frac{1}{2}$

• Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(\mathbf{x}) = \mathbf{W}^\mathsf{T} \mathbf{x}$ and $f^2(\mathbf{h}) = \mathbf{h}^\mathsf{T} \mathbf{w}$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = \mathbf{W}^{\mathsf{T}} \mathbf{x}$ and $f^2(h) = \mathbf{h}^{\mathsf{T}} \mathbf{w}$ then $f(x) = \mathbf{w}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{x}$

- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h = g(\mathbf{W}^\mathsf{T} \mathbf{x} + \mathbf{c})$
- Let us use ReLU as activation function $g(z) = \max\{0, z\}$
- g is chosen element wise $h_i = g(\mathbf{x}^\mathsf{T}\mathbf{W}_{:i} + c_i)$

• Complete network is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{c}\} + b$

- Complete network is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

- Complete network is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

- Now we have
 - X

- Complete network is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

$$\bullet \ \, \mathbf{X} = \left[\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right],$$

- Complete network is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}}\mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{XW}$$

- Complete network is $f(x; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}}\mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix},$$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c

- Complete network is $f(x; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \max\{0, \mathbf{W}^{\mathsf{T}}\mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

IIT Patna

41

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $C \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $H = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, b = 0$$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $C \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

Simple FFN with hidden layer (contd.)

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, b = 0$$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $C \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $H \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply with

w

Simple FFN with hidden layer (contd.)

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, b = 0$$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $C \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply with

$$\mathbf{w} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Performance measure

- Accuracy is one of the key measures
 - The proportion of examples for which the model produces correct outputs
 - Similar to error rate
 - Error rate often referred as expected 0-1 loss
- Mostly interested how ML/DL algorithm performs on unseen data
- Choice of performance measure may not be straight forward
 - Transcription
 - Accuracy of the system at transcribing entire sequence
 - Any partial credit for some elements of the sequence are correct
- Typically MSE is used as performance measure for regression problem and crossentropy for classification

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y|x;\theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg\max_{m{ heta}} p_{model}(\mathbb{X};m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^m p_{model}(m{x}^{(i)};m{ heta})$$

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg\max_{m{ heta}} p_{model}(\mathbb{X};m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^{m} p_{model}(m{x}^{(i)};m{ heta})$$

• It can be written as $heta_{\mathsf{ML}} = \arg\max_{m{ heta}} \sum_{i=1}^m \log p_{model}(\mathbf{x}^{(i)}; m{ heta})$

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg\max_{m{ heta}} p_{model}(\mathbb{X};m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^m p_{model}(m{x}^{(i)};m{ heta})$$

- It can be written as $\theta_{\mathsf{ML}} = \arg\max_{\theta} \sum_{i=1}^m \log p_{model}(\mathbf{x}^{(i)}; \theta)$
- By dividing m we get $heta_{\mathsf{ML}} = \arg\max_{m{ heta}} \mathbb{E}_{\mathbf{X} \sim p_{data}} \log p_{model}(\mathbf{x}; m{ heta})$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

$$D_{\text{KL}}(\hat{p}_{\textit{data}} \| p_{\textit{model}}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{X} \sim \hat{p}_{\textit{data}}} \left[\log \hat{p}_{\textit{data}}(\mathbf{x}) - \log p_{\textit{model}}(\mathbf{x}; \boldsymbol{\theta}) \right]$$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

$$D_{ ext{KL}}(\hat{p}_{data} \| p_{model}) = rg \min_{m{ heta}} \mathbb{E}_{m{ extbf{X}} \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(m{ extbf{x}}) - \log p_{model}(m{ extbf{x}}; m{ heta})
ight]$$

• We need to minimize — $\arg\min_{\theta} \mathbb{E}_{\mathbf{X} \sim \hat{p}_{data}} \log p_{model}(\mathbf{x}; \theta)$

Error

- Training error Error obtained on a training set
- Generalization error Error on unseen data
- Data assumed to be independent and identically distributed (iid)
 - Each data set are independent of each other
 - Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

• Overfitting vs Underfitting - described next

Regression example

Underfitting & Overfitting

- Underfitting
 - When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
 - When the gap between training set and test set error is too large

Underfitting example

Overfitting example

Better fit

Capacity

- Ability to fit wide variety of functions
 - Low capacity will struggle to fit the training set
 - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
 - A polynomial of degree 1 gives linear regression $\hat{y} = b + wx$
 - By adding x^2 term, it can learn quadratic curve $\hat{y} = b + w_1 x + w_2 x^2$
 - Output is still a linear function of parameters
- Capacity of is determined by the choice of model (Representational capacity)
- Finding best function is a very difficult optimization problem
 - Learning algorithm does not find the best function but reduces the training error
 - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Error vs Capacity

Image source: Deep Learning Book

IIT Patna

59

Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
- It is possible to have optimal capacity but have large gap between training and generalization error

Need more training examples

Regularization

- A set of preferences is applied to learning algorithm so that it performs well on a specific task
- Weight decay In linear regression, preference on the weights is introduced
 - Sum of MSE and squared L^2 norms of the weight is minimized ie.

$$J(\mathbf{w}) = \mathbf{MSE}_{train} + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

- $\lambda = 0$ No preference
- λ becomes large weight becomes smaller
- Regularization is intended to reduce test error not training error

Example: Weight decay

Hyperparameters

- Settings that are used to control the behavior of learning algorithm
 - Degree of polynomial
 - λ for decay weight
- Hyperparameters are usually not adapted or learned on the training set

Validation set

- Test data should not be used to choose the model as well as hyperparameters
- Validation set is constructed from training set
 - Typically 80% will be used for training and rest for validation
- Validation set may be used to train hyperparameters

Gradient descent, SGD

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
 - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
 - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Regression example

Regression example

Example

NOTE:

• The points are taken from a square curve. We would like to fit a straight line for these set of points passing through the origin. It means we are trying to fit a line of the form $y = w \times x$. Let us plot MSE value by varying w.

Example: Variation of MSE wrt *w*

Example: Best fit

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=1.80002

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=1.80002

 x_{new} =1.56001

 $y = 0.3x^2, x_0 = 3, \alpha = 0.8$

gradient=1.80002

 x_{new} =1.56001

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.936

 x_{new} =1.56001

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.936

 x_{new} =0.81122

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.936

 x_{new} =0.81122

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.48672

 x_{new} =0.81122

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.48672

 $x_{new} = 0.42184$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.48672

 $x_{new} = 0.42184$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.2531

 $x_{new} = 0.42184$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.2531

 $x_{new} = 0.21938$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.2531

 x_{new} =0.21938

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.13162

 x_{new} =0.21938

 $y = 0.3x^2, x_0 = 3, \alpha = 0.8$

gradient=0.13162

 x_{new} =0.11409

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.13162

 $x_{new} = 0.11409$

 $y = 0.3x^2, x_0 = 3, \alpha = 0.8$

gradient=0.06845

 $x_{new} = 0.11409$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.06845

 $x_{new} = 0.05934$

 $y = 0.3x^2, x_0 = 3, \alpha = 0.8$

gradient=0.06845

 $x_{new} = 0.05934$

$$y = 0.3x^2, x_0 = 3, \alpha = 0.8$$

gradient=0.0356

 $x_{new} = 0.05934$

 $y = 0.3x^2, x_0 = 3, \alpha = 0.8$

gradient=0.0356

 $x_{new} = 0.03087$

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1, w_2} J(w_1, w_2)$
- Approach
 - Start with some W₁, W₂
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1, w_2} J(w_1, w_2)$
- Approach
 - Start with some W₁, W₂
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved
- Algorithm
 - Repeat the following until convergence

$$w_j = w_j - \frac{\partial}{\partial w_j} J(w_1, w_2)$$

- For a function y = f(x), derivative (slope at point x) of it is $f'(x) = \frac{dy}{dx}$
- A small change in the input can cause output to move to a value given by $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
- We need to take a jump so that y reduces (assuming minimization problem)
- We can say that $f(x \epsilon sign(f'(x)))$ is less than f(x)
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as $\nabla_{\mathbf{x}} f(\mathbf{x})$
- Gradient descent proposes a new point as $\mathbf{x}' = \mathbf{x} \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$ where ϵ is the learning rate

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch ($\mathbb{B} = \{x^{(1)}, \dots, x^{(m')}\}$)
- Estimated gradient is $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- New point will be $\theta = \theta \epsilon \mathbf{g}$

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

```
Step
      Point
              Derivative
                                  New w
```

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

```
Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80
```

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

```
      Step
      Point
      Derivative
      New w

      1
      (1,2)
      1*(4.0*1-2)=2.0
      3.80

      2
      (2,4)
      2*(3.8*2-4)=7.2
      3.08
```

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

```
Step
     Point
            Derivative
                             New w
      (1,2) 1*(4.0*1-2)=2.0 3.80
     (2,4) 2*(3.8*2-4)=7.2 3.08
     (3.6) 3*(3.1*3-6)=9.7 2.11
     (4,8) 4*(2.1*4-8)=1.7 1.94
     (1.2) 1*(1.9*1-2)=-0.1 1.94
     (2.4) 2*(1.9*2-4)=-0.2 1.97
     (3.6) 3*(2.0*3-6)=-0.3
                             1.99
     (4.8) 4*(2.0*4-8)=-0.1
                             2.00
      (4,8) 1*(2.0*1-2)=0.0
                             2.00
```

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_i x_i (w \times x_i y_i)$

Step Derivative New w

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_i (w \times x_i y_i)$

```
Step Derivative New w
1 15 2.5
```

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_i x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_i x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13
3	0.94	2.03
4	0.23	2.01
5	0.06	2.00

Back propagation

- In a feedforward network, an input x is read and produces an output ŷ
 - This is forward propagation
- During training forward propagation continues until it produces cost $J(\theta)$
- Back-propagation algorithm allows the information to flow backward in the network to compute the gradient
- Computation of analytical expression for gradient is easy
- We need to find out gradient of the cost function with respect to the parameters ie. $\nabla_{\theta} J(\theta)$

Computational graph

- Computational graph is used to represent basic operations and to be used for back propagation
- Each node represents a variable (scalar, vector, etc.)
- Operation decribes relation between variables
- Computational graph of $H = \max\{0, xw + b\}$

Chain rule of calculus

- Back-propagation algorithm heavily depends on it
- Let x be a real number and y = g(x) and z = f(g(x)) = f(y)
- Chain rule says $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- This can be generalized: Let $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{g} : \mathbb{R}^m \to \mathbb{R}^n$ and $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{y} = \mathbf{g}(\mathbf{x})$ and $\mathbf{z} = \mathbf{f}(\mathbf{y})$ then $\frac{\partial \mathbf{z}}{\partial \mathbf{x}_i} = \sum_j \frac{\partial \mathbf{z}}{\partial \mathbf{y}_j} \frac{\partial \mathbf{y}_j}{\partial \mathbf{x}_i}$
- In vector notation it will be where $\frac{\partial y}{\partial x}$ is the $n \times m$ Jacobian matrix of g

$$\nabla_{\mathbf{x}} \mathbf{z} = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{\mathsf{T}} \nabla_{\mathbf{y}} \mathbf{z}$$

X₁

 X_2

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \text{out}} \frac{\partial \text{out}}{\partial a} \frac{\partial a}{\partial w_1}$$

Example

Hidden and output layer have sigmoid activation function. Loss function - MSE.

Example

Optimization

Minimization of cost function

Approximate minimization

x

Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\text{data}}} L(f(\mathbf{x}, \theta), \mathbf{y})$ where \hat{p} is the empirical distribution
- We would like to optimize $J^*(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p_{\mathsf{data}}} L(f(\mathbf{x}, \theta), \mathbf{y})$ where p is the data generating distribution
 - Also known as risk
- We hope minimizing J will minimize J*

Surrogate loss function

- Loss function may not be optimized efficiently
 - Exact minimization of 0-1 loss is typically intractable
- Surrogate loss function is used
 - Proxy function for the actual loss function
 - Negative log likelihood of correct class used as surrogate function
- There are cases when surrogate loss function results in better learning
 - 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss has reached to 0
- A training algorithm does not halt at local minima usually
 - Tries to minimize surrogate loss function but halts when validation loss starts to increase

• Training function can halt when surrogate function has huge derivative

Batch

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of the cost function estimated using only a subset of the terms of full cost function
- Maximum likelihood problem $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Maximizing this sum is equivalent to maximizing the expectation over empirical distribution $J(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\mathsf{data}}} \log p_{\mathsf{model}}(\mathbf{x}, \mathbf{y}, \theta)$

Batch (contd.)

- Common gradient is given by $\nabla_{\theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\mathsf{data}}} \nabla_{\theta} \log p_{\mathsf{model}}(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})$
 - It becomes expensive as we need to compute for all examples
 - Random sample is chosen, then average of the same is taken
 - Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation
 - Redundancy in training examples is an issue
- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient descent or online method

Minibatch

- Larger batch provides more accurate estimate of the gradient but with lesser than linear returns
- Multicore architecture are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array
- Small batch can add regularization effect due to noise they add in learning process
- \bullet Methods that update the parameters based on g only are usually robust and can handle small batch size \sim 100

Issues in optimization

- Ill conditioning
- Local minima
- Plateaus
- Saddle points
- Flat region

- Cliffs
- Exploding gradients
- Vanishing gradients
- Long term dependencies
- Inexact gradients

Stochastic gradient descent

- Inputs Learning rate (ϵ_k) , weight parameters (θ)
- Algorithm for SGD:

```
while stopping criteria not met
```

Sample a minibatch $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Estimate of gradient
$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$$

Update parameters $\theta = \theta - \epsilon_k \hat{g}$ end while

Stochastic gradient descent

- Learning rate is a crucial parameter
- Learning rate ϵ_k is used in the kth iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD

•
$$\sum_{k=1}^{\infty} \epsilon_k = \infty$$
, $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$

• Common way is to decay the learning rate $\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_\tau$ with $\alpha = \frac{k}{\tau}$

Stochastic gradient descent

- Choosing learning rate is an art than science!
 - Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

Momentum

- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
- Introduces a parameter v that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} \mathsf{L}(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathsf{y}^{(i)}) \right)$$

 \bullet α — hyperparameter, denotes the decay rate

Momentum

Image source: Deep Learning Book

SGD with momentum

- Inputs Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (\mathbf{v})
- Algorithm:

```
while stopping criteria not met
```

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$

Estimate of gradient:
$$g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + \mathbf{v}$

end while

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes **g** always, then it will accelerate in $-\mathbf{g}$ with terminal velocity $\frac{\epsilon |\mathbf{g}|}{\mathbf{1} \alpha}$
- Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

Parameter initialization

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability
- Need to break symmetry while initializing the parameters

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should increase

Applicable for full batch optimization

AdaGrad

- Adapts the learning rate of all parameters by scaling them inversely proportional to the square root of the sum of all historical squared values of the gradient
 - Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
 - Net effect is greater progress
- It performs well on some models

Steps for AdaGrad

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r)
- Algorithm:

```
while stopping criteria not met
```

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$

Gradient:
$$\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \mathsf{L}(f(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

Accumulated squared gradient: $r = r + g \odot g$

Update:
$$\Delta \theta = -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$$

Apply update: $\theta = \theta + \Delta \theta$

end while