

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación

Biased Random Key Genetic Algorithm for the Team Orienteering Problem

Tesis presentada para optar al título de Licenciado en Ciencias de la Computación

Alejandro Federico Lix Klett

Director: Loiseau, Irene Buenos Aires, 2017

ALGORITMO GENÉTICO DE CLAVE ALEATORIA SESGADA PARA EL PROBLEMA DE ORIENTACIÓN DE EQUIPO

El problema de orientación de equipo (TOP) es la generalización al caso de múltiples recorridos del problema de orientación, también conocido como Problema del vendedor ambulante selectivo (TSP). TOP implica encontrar un conjunto de rutas desde el punto de inicio hasta el punto final, de modo que la recompensa total obtenida al visitar un subconjunto de ubicaciones se maximice y la longitud de cada ruta esté restringida por un límite preestablecido. En esta tesis, se propone un enfoque de algoritmo genético de clave aleatoria sesgada (BRKGA) para el problema de orientación de equipo. Además, en cada generación de población, la mejor solución no mejorada se mejora con una secuencia de heurística de búsqueda local. Los experimentos computacionales se realizan en instancias estándar. Luego, estos resultados se compararon con los resultados obtenidos por Chao, Golden y Wasil (CGW), Tang y Miller-Hooks (TMH) y Archetti, Hertz, Speranza (AHS). Aunque mis resultados fueron muy buenos y competitivos en la mayoría de los casos, en otros no fueron tan buenos como los trabajos mencionados anteriormente.

Keywords: Problema de Orientación de Equipo, Algoritmo Genético de Clave Aleatoria Sesgada, Problema de Enrutamiento, Heurística de Búsqueda Local, Construcción de Soluciones Golosas.

BIASED RANDOM KEY GENETIC ALGORITHM FOR THE TEAM ORIENTEERING PROBLEM

The team orienteering problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, know also as Selective Traveling Salesman Problem (TSP). TOP involves finding a set of paths from the starting point to the ending point such that the total collected reward received from visiting a subset of locations is maximized and the length of each path is restricted by a pre-specified limit. In this thesis, a biased random key genetic algorithm (BRKGA) approach is proposed for the team orienteering problem. Also, In every population generation, the best unenhanced solution is enhanced with a sequence of local search heuristics. Computational experiments are made on standard instances. Then, this results, were compared to the results obtained by Chao, Golden, and Wasil (CGW), Tang and Miller-Hooks (TMH) and Archetti, Hertz, Speranza (AHS). Though my results where very good and competitive in most intances, in some they were not as good as mentioned previous works.

Keywords: Team orienteering problem, Biased Random Key Genetic Algorithm, Routing Problem, Local Search Heuristic, Greedy Solution Construction.

Índice general

1	Intro	oducción							1
	1.1.	Historia							1
	1.2.	Ejemplos de TOP							1
	1.3.	Como se modelo TOP en nuestra solucion	 •						2
2	Revi	sión Bibliográfica							3

1. INTRODUCCIÓN

1.1. Historia

Orientación (Orienteering) es un deporte al aire libre usualmente jugado en una zona montañosa o fuertemente boscosa. Con ayuda de un mapa y una brújula, un competidor comienza en un punto de cotrol específico e intenta visitar tantos otros puntos de control como sea posible dentro de un límite de tiempo prescrito y regresa a un punto de control especificado. Cada punto de control tiene una puntuación asociada, de modo que el objetivo de la orientación es maximizar la puntuación total. Un competidor que llegue al punto final después de que el tiempo haya expirado es descalificado. El competidor elegible con la puntuación más alta es declarado ganador. Dado que el tiempo es limitado, un competidor puede no ser capaz de visitar todos los puntos de control. Un competidor tiene que seleccionar un subconjunto de puntos de control para visitar que maximizarán la puntuación total sujeto a la restricción de tiempo. Esto se conoce como problema de orientación de un solo competidor (Single-Competitor Orienteering Problem) y se denota por OP.

El equipo de orientación extiende la versión de un solo competidor del deporte. Un equipo formado por varios competidores (digamos 2, 3 o 4 miembros) comienza en el mismo punto. Cada miembro del equipo intenta visitar tantos puntos de control como sea posible dentro de un límite de tiempo prescrito, y luego termina en el punto final. Una vez que un miembro del equipo visita un punto y se le otorga la puntuación asociada, ningún otro miembro del equipo puede obtener una puntuación por visitar el mismo punto. Por lo tanto, cada miembro de un equipo tiene que seleccionar un subconjunto de puntos de control para visitar, de modo que haya una superposición mínima en los puntos visitados por cada miembro del equipo, el límite de tiempo no sea violado y la puntuación total del equipo sea maximizada. Lo llamamos el Problema de Orientación de Equipo (Team Orienteering Problem) y lo denotan por TOP.

Notar que la versión de un solo competidor (OP) de este problema ha demostrado ser NP-dura por Golden, Levy, y Vohra [9], por lo que el TOP es al menos tan difícil. Por lo tanto, la mayoría de la investigación sobre estos problemas se han centrado en proporcionar enfoques heurísticos.

1.2. Ejemplos de TOP

El TOP surge en muchas aplicaciones. Considerar, por ejemplo, los técnicos de enrutamiento para atender a los clientes en ubicaciones geográficamente distribuidas. En este contexto, cada vehículo en el modelo TOP representa un solo técnico y hay a menudo una limitación en el número de horas que cada técnico puede programar para trabajar en un día dado. Por lo tanto, puede no ser posible incluir a todos los clientes que requieren servicio en los horarios de los técnicos para un día determinado. En su lugar, se seleccionará un subconjunto de los clientes. Las decisiones sobre qué clientes elegir para su inclusión en cada uno de los horarios de los técnicos de servicio pueden tener en cuenta la

importancia del cliente o la urgencia de la tarea. Notar que este requisito de selección de clientes también surge en muchas aplicaciones de enrutamiento en tiempo real.

1.3. Como se modelo TOP en nuestra solucion

Para la generación y comparación de resultados se utilizaron instancias de test de Tsiligirides y de Chao. Las intancias de Tsiligirides y de Chao comparten el mismo formato.

Una instancea de TOP contiene:

- N vehículos de carga, cada vehículo tiene una distancia máxima que puede recorrer. En esta implementación cada vehículo puede tener una distancia máxima diferente. De todos modos en las intancias de test utilizadas todos los vehículos tienen el mismo valor de distancia máxima.
- M clientes. Cada cliente tiene un beneficio mayor a cero. Además tienen un set de coordenadas X e Y que representan su ubicación en un plano cartesiano.
- Un punto de inicio y fin de ruta para cada vehículo. Ambos puntos tienen un beneficio de cero y tienen un set de coordenadas X e Y.

También es importante mencionar que:

- Se utiliza la distancia euclidiana para medir distancias.
- Una solución es valida si:
 - Para todo vehículo, la distancia de su ruta es menor o igual a la distancia máxima del vehículo que realiza tal ruta.
 - Ningun cliente pertenece a dos rutas distintas.
 - Toda ruta parte del punto de inicio y finaliza en el punto de fin.
- La función objetivo retorna la sumatoria de los beneficios de los clientes visitados.

2. REVISIÓN BIBLIOGRÁFICA

Hay varios trabajos previos que encaran TOP. Basandome en la encuesta de C. Archetti, M.G. Speranza, D. Vigo [3] y búsquedas realizadas.

La primera heurística propuesta para el TOP es un algoritmo de construcción simple introducido en Butt y Cavalier [6] y probado en pequeñas instancias de tamaño con hasta 15 vértices.

Una heurística de construcción más sofisticada se da en Chao, Golden y Wasil (CGW) [7] en la que la solución inicial se refina a través de movimientos de los clientes, los intercambios y varias estrategias de reinicio. En este trabajo mencionan que TOP puede ser modelado como un problema de optimización multinivel. En el primer nivel, se debe seleccionar un subconjunto de puntos para que el equipo visite. En el segundo nivel, se asignan puntos a cada miembro del equipo. En el tercer nivel, se construye un camino a través de los puntos asignados a cada miembro del equipo. El algoritmo resultante se prueba en un conjunto de 353 instancias de prueba con hasta 102 clientes y hasta 4 vehículos.

Luego, se aplicaron varias metaheurísticas al TOP, partiendo del algorítmo de búsqueda tabú introducido en Tang y Miller-Hooks (TMH) [12], que está incorporado en un procedimiento de memoria adaptativa que alterna entre vecindarios pequeños y grandes durante la búsqueda. Sus resultados de experimentos computacionales realizados sobre el mismo conjunto de problemas de Chao et al. muestran que la técnica propuesta produce consistentemente soluciones de alta calidad y supera a otras heurísticas publicadas hasta tal momento para el TOP.

Archetti et al. [4] proponen dos variantes de un algorítmo de búsqueda tabú generalizada y un algorítmo de búsqueda de vecindario variable. Ke et al. [10] utilizan un enfoque de optimización de colonia de hormigas que utiliza cuatro métodos diferentes para construir soluciones candidatas. Otros paradigmas metaheurísticos se aplican con éxito al TOP, como la búsqueda local guiada (Vansteenwegen et al. [13]), el reencaminamiento de caminos (Souffriau et al. [11]) y el enjambre de partículas Basado en la optimización algorítmo memético (Dang et al. [8]), este último siendo el mejor actual en la clase.

En la investigación sobre los trabajos realizados, no se encontraron trabajos que implementen algorítmos geneticos. En este trabajo se propone resolver TOP utilizando biased random key generation algorithim (BRKGA)

REFERENCES

- [1] Autores Paper title. Editora y Fecha
- [2] Name: Site Title, http://google.com
- [3] [Ref1] C. Archetti, M.G. Speranza, D. Vigo. Vehicle Routing Problems with Profits. Department of Economics and Management, University of Brescia, Italy 2013
- [4] [8] C. Archetti, A. Hertz, and M.G. Speranza. *Metaheuristics for the team orienteering problem*. Journal of Heuristics, 13:49–76, 2007.
- [5] [19] H. Bouly, D.-C. Dang, and A. Moukrim. A memetic algorithm for the team orienteering problem. 4OR, 8:49–70, 2010.
- [6] [21] S.E. Butt and T.M. Cavalier. A heuristic for the multiple tour maximum collection problem. Computers and Operations Research, 21:101–111, 1994.
- [7] [24] I-M. Chao, B.L. Golden, and E.A. Wasil. *The team orienteering problem*. European Journal of Operational Research, 88:464–474, 1996.
- [8] [26] D.-C. Dang, R.N. Guibadj, and A. Moukrim. A PSO-based memetic algorithm for the team orienteering problem. In C. Di Chio, A. Brabazon, G. Di Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A. Tettamanzi, N. Urquhart, and A. Uyar, editors, Applications of Evolutionary Computation, Lecture Notes in Computer Science, pages 471–480. Springer, Berlin, 2011.
- [9] [43] B.L. Golden, L. Levy, and R. Vohra. *The orienteering problem*. Naval Research Logistics, 34:307–318, 1987.
- [10] [50] L. Ke, C. Archetti, and Z. Feng. Ants can solve the team orienteering problem. Computers and Industrial Engineering, 54:648–665, 2008.
- [11] [68] W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oudheusden. A path relinking approach for the team orienteering problem. Computers and Operations Research, 37:1853–1859, 2010.
- [12] [70] H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering problem. Computers and Operations Research, 32:1379–1407, 2005.
- [13] [77] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196:118–127, 2009.
- [14] [80] Goldberg, D. Genetic algorithms in search, optimization and machine learning. 1st Ed., Addison-Wesley, Massachusetts, 1989.
- [15] [81] Bean, J.C. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)

References 5

[16] Villiam M. Spears , Kenneth A. De Jong On the virtues of parameterized uniform crossover. 1991

- [17] Michel Goossens, Frank Mittelbach, and Alexander Samarin. *The LATEX Companion*. Addison-Wesley, Reading, Massachusetts, 1993.
- [18] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905.
- [19] Name: Site Title, http://google.com