

Wen Zhang

https://github.com/gogowenzhang https://www.linkedin.com/in/wenzhang886/

ATRIAL FIBRILLATION(AF)

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

DATASETS

• 8331 samples of 30s single-lead ECG recordings - 1D array

• Label 4 classes

Туре	# Recordings	%
Normal	4911	58.95
AF	742	8.91
Other rhythm	2528	30.33
Noise	150	1.80
Total	8331	100.0

^{*}Labeling: given by AliveCor, 10% over-read by physicians.

DATA PROCESSING

Spectrogram

Log Transformation

Standardization

MODEL ARCHITECTURE

- 24-layer convolutional neural network
- Architecture is inspired by (Pranav Rajpurkar et al., 2017) and (Martin Zihlmann et al., 2017)'s work

MODEL TRAINING

3000

Loss function: cross entropy

Optimizer: Adam

• Batch size of 20 and 200 epochs.

• Used Keras with Tensorflow backend.

 Models were trained on AWS EC2 P2 instance with NVIDIA Tesla K80 GPUs.

EVALUATION

• 5-fold cross validation

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

$$F1_{Overall} = (F1_{Normal} + F1_{AF} + F1_{Other}) / 3$$

Metric	Normal	AF	Other	Noise	Overall
Precision	87.3	73.7	75.1	81.8	-
Recall	89.4	80.9	71.0	37.5	_
F1	88.3	77.1	73.1	51.4	79.5
Accuracy	-	-	-	-	81.8

Comparison of F1 score between Cardiologist and Model

TAKEAWAYS

- Spectrogram + CNN is powerful.
- Standardization of input image is important for CNN.
- Batch normalization helps optimization.
- Learning rate and dropout rate are crucial in model convergence.
- Training a CNN is computationally expensive.

LIMITATIONS

- Larger sample size needed.
- Data augmentation has not been applied.
- Only takes in fixed length of recordings. Method to deal with arbitrary length input should be implemented.
- LSTM tested individual and combined, neither come to better performance. Further investigation needed.
- Experiments needed to validate the causal effect.

IN THE FUTURE

- To investigate extending the set of arrhythmias and other forms of heart disease.
- To equip wearable device with real-time detection and save life.
- Map ECG to emotional status would be an interesting topic.

