Summary of Yearly Comtrade Data, HS 2012

July 13, 2017

Clean data and create trade gap variables

This is for a small subset of the UN Comtrade data: specifically, for years 2012-2016, products that start with a 0 in the HS 2012 classification system, and for countries that start with the letter "A" (Afghanistan) through "M" (Myanmar).

Notes:

- There are a lot of cases where country A has reported exports but country B has not reported anything. As much as half of the raw data becomes "missing" due to this. This seems consistent with Fisman/Wei (pg 4).
- The raw data contains re-exports and re-imports. These amounts are also included in a country's regular exports/imports as imports from one country to itself. For example, France has re-imports that are also included in France's imports as Reporter = France and Partner = France. This doesn't affect this analysis because there is no matched reporter/partner pair, but they might affect our trade gap measure if they're actually imports from an unforseen place. More on re-exports at this link.

```
#Keep product codes starting with "0" and country pairs starting with letters "A" through "M"
load(paste(DataPath, "Raw Data/Comtrade/Yearly/y_hs12/y_2012_hs12.Rda", sep = "/"))
y_2012_hs12 <- as.data.table(y_2012_hs12)</pre>
y_2012_hs12 <- subset(y_2012_hs12, substr(y_2012_hs12\$`Commodity Code`,1,1)=='0')</pre>
y_2012_hs12 <- y_2012_hs12[grep("^[A-M]", y_2012_hs12$Reporter)]
 y_2012_hs12 <- y_2012_hs12[grep("^[A-M]", y_2012_hs12$Partner)] 
load(paste(DataPath, "Raw Data/Comtrade/Yearly/y_hs12/y_2013_hs12.Rda", sep = "/"))
y_2013_hs12 <- as.data.table(y_2013_hs12)</pre>
y_2013_hs12 \leftarrow subset(y_2013_hs12, substr(y_2013_hs12)^Commodity Code^1, 1, 1) == '0'
y_2013_hs12 <- y_2013_hs12[grep("^[A-M]", y_2013_hs12$Reporter)]
y_2013_hs12 <- y_2013_hs12[grep("^[A-M]", y_2013_hs12$Partner)]</pre>
load(paste(DataPath, "Raw Data/Comtrade/Yearly/y_hs12/y_2014_hs12.Rda", sep = "/"))
y_2014_hs12 <- as.data.table(y_2014_hs12)
y_2014_hs12 <- subset(y_2014_hs12, substr(y_2014_hs12)^* Commodity Code^*, 1, 1) == '0'
y_2014_hs12 <- y_2014_hs12[grep("^[A-M]", y_2014_hs12$Reporter)]
y_2014_hs12 <- y_2014_hs12[grep("^[A-M]", y_2014_hs12$Partner)]</pre>
load(paste(DataPath, "Raw Data/Comtrade/Yearly/y_hs12/y_2015_hs12.Rda", sep = "/"))
y_2015_hs12 <- as.data.table(y_2015_hs12)
y_2015_hs12 \leftarrow subset(y_2015_hs12, substr(y_2015_hs12)^{Commodity} Code^{,1,1}='0')
y_2015_hs12 <- y_2015_hs12[grep("^[A-M]", y_2015_hs12$Reporter)]
y_2015_hs12 <- y_2015_hs12[grep("^[A-M]", y_2015_hs12$Partner)]</pre>
load(paste(DataPath, "Raw Data/Comtrade/Yearly/y_hs12/y_2016_hs12.Rda", sep = "/"))
y_2016_hs12 <- as.data.table(y_2016_hs12)
y_2016_hs12 \leftarrow subset(y_2016_hs12, substr(y_2016_hs12)^{Commodity Code^1,1,1)=='0'
y_2016_hs12 <- y_2016_hs12[grep("^[A-M]", y_2016_hs12$Reporter)]</pre>
y_2016_hs12 <- y_2016_hs12[grep("^[A-M]", y_2016_hs12$Partner)]</pre>
```

```
#Combine HS 2012 data
hs12 <- do.call("rbind", list(y_2012_hs12, y_2013_hs12, y_2014_hs12, y_2015_hs12, y_2016_hs12))
rm(y_2012_hs12, y_2013_hs12, y_2014_hs12, y_2015_hs12, y_2016_hs12)
#Create table where country is reporting imports
hs12im <- hs12[`Trade Flow Code`==1]
hs12im[ , := Classification = NULL, Year = NULL,
                  `Period Desc.` = NULL, `Is Leaf Code` = NULL,
                  'Reporter ISO' = NULL, 'Partner ISO' = NULL,
                  `Qty Unit Code` = NULL, Flag = NULL
                  )]
hs12im <- rename(hs12im, "Import Value" = "Trade Value (US$)")
hs12im <- rename(hs12im, "Import Qty Unit" = "Qty Unit")
hs12im <- rename(hs12im, "Import Qty" = "Qty")
hs12im <- rename(hs12im, "Import Netweight (kg)" = "Netweight (kg)")
#Create table where country is reporting exports
hs12ex <- hs12[`Trade Flow Code`==2]
hs12ex[ , := (Classification = NULL, Year = NULL,
                  `Period Desc.` = NULL, `Is Leaf Code` = NULL,
                  `Reporter ISO` = NULL, `Partner ISO` = NULL,
                  `Qty Unit Code` = NULL, Flag = NULL
                  )]
hs12ex <- rename(hs12ex, "Export Value" = "Trade Value (US$)")
hs12ex <- rename(hs12ex, "Export Qty Unit" = "Qty Unit")
hs12ex <- rename(hs12ex, "Export Qty" = "Qty")
hs12ex <- rename(hs12ex, "Export Netweight (kg)" = "Netweight (kg)")
#Merge import and export tables together
hs12 <- merge(hs12im, hs12ex,
             by.x=c("Period", "Aggregate Level",
                    "Reporter Code", "Reporter", "Partner Code", "Partner",
                    "Commodity Code", "Commodity"),
            by.y=c("Period", "Aggregate Level",
                    "Partner Code", "Partner", "Reporter Code", "Reporter",
                    "Commodity Code", "Commodity"),all=TRUE)
hs12 <- rename(hs12, "Importer" = "Reporter")
hs12 <- rename(hs12, "Exporter" = "Partner")
#Create variable of the trade value gap between what countries report
hs12$Raw_gap = hs12$`Export Value` - hs12$`Import Value`
#Create variable of the log trade value gap
hs12$Log_gap = log(hs12$`Export Value`) - log(hs12$`Import Value`)
#Create variable of the trade value gap as a ratio of total reported trade
hs12$Gap_ratio = hs12$`Raw_gap`/(hs12$`Import Value` + hs12$`Export Value`)
#Repeat created variables but for the gap in quantity reported
hs12$`Export Netweight (kg)` <- as.numeric(hs12$`Export Netweight (kg)`)
```

Value Trade Gap

The difference between what the exporting country reports and what the importing country reports in US dollars.

Coverage

```
load(paste(DataPath, "Analysis Data/hs12.Rda", sep = "/"))
hs12 <- as.data.table(hs12)
options(digits=2)
#Remove observations where one or more countries do not report imports/exports.
#699,887 rows deleted.
hs12 <- hs12[!is.na(Log_gap)]
#For each year, how many product*country pairs / all possible product*country pairs?
product <- hs12[, uniqueN(`Commodity Code`)]</pre>
product_year <- hs12[, uniqueN(`Commodity Code`), by=Period]</pre>
product_year <- rename(product_year, Products = V1)</pre>
pair <- unique(setDT(hs12), by = c("Importer", "Exporter"))</pre>
pair <- pair[, .N]</pre>
pair_year <- unique(setDT(hs12), by = c("Importer", "Exporter", "Period"))</pre>
pair_year <- pair_year[, .N, by=Period]</pre>
pair_year <- rename(pair_year, Pairs = N)</pre>
year_coverage <- merge(product_year, pair_year)</pre>
year_coverage$Total_products <- product</pre>
year_coverage$Total_pairs <- pair</pre>
year_coverage$Coverage <- (year_coverage$Products*year_coverage$Pairs)/</pre>
                            (year_coverage$Total_products*year_coverage$Total_pair)
year_coverage
      Period Products Pairs Total_products Total_pairs Coverage
##
```

```
## 1:
      2012 614 1715
                                                    0.50
                                  617
                                            3423
      2013
               614 2224
                                            3423
                                                    0.65
## 2:
                                  617
## 3: 2014
               614 2539
                                  617
                                            3423
                                                    0.74
## 4:
     2015
               612 2633
                                  617
                                            3423
                                                    0.76
      2016
                                                    0.54
## 5:
               615 1842
                                  617
                                            3423
```

```
rm(pair_year, product_year, year_coverage)
#For each product, how many year*country pairs / all possible year*country pairs?
year <- hs12[, uniqueN(`Period`)]</pre>
year_product <- hs12[, uniqueN(`Period`), by=`Commodity Code`]</pre>
year_product <- rename(year_product, Years = V1)</pre>
pair_product <- unique(setDT(hs12), by = c("Importer", "Exporter", "Commodity Code"))</pre>
pair_product <- pair_product[, .N, by= .(`Commodity Code`)]</pre>
pair_product <- rename(pair_product, Pairs = N)</pre>
product_coverage <- merge(year_product, pair_product)</pre>
product_coverage$Total_years <- year</pre>
product_coverage$Total_pairs <- pair</pre>
product_coverage$Coverage$Pairs)/
  (product_coverage$Total_years*product_coverage$Total_pairs)
product_coverage[order(Coverage)][1:10]
       Commodity Code Years Pairs Total_years Total_pairs Coverage
##
##
               010231
                                2
                                           5
                                                     3423 0.00023
   1:
               030356
                                            5
                                                     3423 0.00023
## 2.
                          2
                                2
## 3:
               010633
                               3
                                           5
                                                     3423 0.00035
## 4:
               020830
                         4
                               3
                                           5
                                                     3423 0.00070
               030446
                          3
                                           5
                                                     3423 0.00070
## 5:
                                4
                                          5
## 6:
               030455
                          3
                                4
                                                     3423 0.00070
                                          5
## 7:
               030564
                         4
                                5
                                                     3423 0.00117
                                          5
               010239
                          5
                                                     3423 0.00146
## 8:
                                5
                                           5
##
   9:
               020840
                          5
                                5
                                                     3423 0.00146
## 10:
               021091
                          5
                                5
                                                     3423 0.00146
product_coverage[order(-Coverage)][1:10]
       Commodity Code Years Pairs Total_years Total_pairs Coverage
##
##
   1:
                   09
                          5 2006
                                           5
                                                     3423
                                                              0.59
##
   2:
                   80
                          5 1929
                                            5
                                                     3423
                                                              0.56
## 3:
                   07
                          5 1796
                                            5
                                                     3423
                                                              0.52
                          5 1741
                                            5
                                                     3423
                                                              0.51
## 4:
                   03
                                            5
                                                              0.47
## 5:
                   04
                          5 1601
                                                     3423
                                           5
                   06
                          5 1242
                                                     3423
                                                              0.36
## 6:
                 0901
                                           5
                                                              0.36
## 7:
                          5 1239
                                                     3423
## 8:
                   02
                          5 1106
                                            5
                                                     3423
                                                              0.32
## 9:
                   01
                          5 1105
                                            5
                                                     3423
                                                              0.32
                   05
                          5 1104
                                                     3423
## 10:
                                                              0.32
rm(year_product, pair_product, product_coverage)
#For each country pair, how many year*product / all possible year*product?
product_pair <- hs12[, uniqueN(`Commodity Code`), by = c("Importer", "Exporter")]</pre>
product_pair <- rename(product_pair, Products = V1)</pre>
year_pair <- hs12[, uniqueN(`Period`), by = c("Importer", "Exporter")]</pre>
year_pair <- rename(year_pair, Years = V1)</pre>
pair_coverage <- merge(product_pair, year_pair, by = c("Importer", "Exporter"))</pre>
```

```
pair_coverage$T_products <- product</pre>
pair_coverage$T_years <- year</pre>
pair_coverage$Coverage <- (pair_coverage$Products*pair_coverage$Years)/</pre>
  (pair_coverage$T_products*pair_coverage$T_years)
pair_coverage$Exporter <- strtrim(pair_coverage$Exporter, 15)</pre>
pair_coverage[order(Coverage)][1:10]
##
         Importer
                          Exporter Products Years T_products T_years Coverage
##
          Albania
                                                                      5 0.00032
   1:
                         Australia
                                            1
                                                  1
                                                            617
                                                                      5
##
    2:
          Albania Bolivia (Plurin
                                            1
                                                            617
                                                                         0.00032
                                                  1
                                                            617
                                                                      5 0.00032
##
   3:
          Albania China, Hong Kon
                                            1
##
   4:
          Albania Dominican Rep.
                                           1
                                                  1
                                                            617
                                                                      5 0.00032
##
   5:
          Albania
                           Morocco
                                            1
                                                  1
                                                            617
                                                                      5 0.00032
##
   6:
          Algeria China, Hong Kon
                                           1
                                                  1
                                                            617
                                                                      5 0.00032
                                                                      5 0.00032
##
   7:
          Algeria
                    Dominican Rep.
                                           1
                                                  1
                                                            617
##
                                            1
                                                            617
                                                                      5 0.00032
    8:
        Argentina
                           Austria
                                                  1
##
    9: Azerbaijan
                           Morocco
                                            1
                                                  1
                                                            617
                                                                      5 0.00032
          Bahrain CÃ te d'Ivoire
                                            1
                                                                      5 0.00032
## 10:
                                                            617
pair_coverage[order(-Coverage)][1:10]
##
         Importer Exporter Products Years T_products T_years Coverage
##
   1:
          Belgium
                     France
                                  581
                                          5
                                                    617
                                                               5
                                                                     0.94
##
    2:
            Italy
                     France
                                  551
                                          5
                                                    617
                                                               5
                                                                     0.89
##
   3:
          Germany
                     France
                                  546
                                          5
                                                    617
                                                               5
                                                                     0.88
   4:
           France Belgium
                                  545
                                          5
                                                    617
                                                               5
                                                                     0.88
                                                               5
##
   5: Luxembourg
                     France
                                  545
                                          5
                                                    617
                                                                     0.88
##
                                  537
                                          5
                                                    617
                                                               5
                                                                     0.87
   6: Luxembourg Belgium
                                                               5
##
   7:
           France
                      Italy
                                  534
                                          5
                                                    617
                                                                     0.87
           France Germany
                                                               5
                                                                     0.86
##
   8:
                                  528
                                          5
                                                    617
##
   9:
          Belgium
                    Germany
                                  518
                                          5
                                                    617
                                                               5
                                                                     0.84
## 10:
                                  516
                                          5
                                                    617
                                                               5
                                                                     0.84
            Italy
                   Germany
rm(product_pair, year_pair, pair_coverage, pair, product, year)
```

Trade gap over time

```
#How has the trade gap changed over time?
hs12$Period <- as.Date(hs12$Period, "%Y")
hs12$Period <- floor_date(hs12$Period, "year")
periods <- hs12[, .(mean = as.double(mean(Log_gap)),</pre>
                     median = as.double(median(Log_gap)),
                     p25 = as.double(quantile(Log_gap,.25)),
                    p75 = as.double(quantile(Log_gap, .75))
),
by=Period]
periods <- melt(periods, id = 'Period')</pre>
periods$variable <- factor(periods$variable, levels = c("p25", "p75", "median", "mean"))</pre>
ggplot(data=periods ) +
 geom_line(data=periods, aes(x = Period, y = value, colour = variable, size=variable)) +
  scale_colour_manual(values=c("grey", "grey", "black", "royalblue4")) +
 background_grid(major = 'y', minor = "none") +
  scale_size_manual(values = c(1,1,1.1,1.25)) +
```

```
scale_y_continuous(expand = c(0, 0), limits = c(-1,1), minor_breaks = NULL) +
xlab(label = "") +
ylab(label = "Value gap") +
labs(title="Value Gap Over Time")
```


Trade gap across products

Trade gap across country pairs


```
ggplot(data=countries, aes(p25)) +
  geom_histogram(col="royalblue4",
```


rm(periods, products, countries)

Year coefficients controlling for product codes and country pairs

```
hs12$Period <- as.Date(hs12$Period, "%Y")
hs12$Period <- floor_date(hs12$Period, "year")
hs12$Period.f <- factor(hs12$Period)
hs12$Products.f <- factor(hs12$`Commodity Code`)
hs12$Importer.f <- factor(hs12$`Reporter Code`)
hs12$Exporter.f <- factor(hs12$`Partner Code`)
hs12$Pairs.f <- with(hs12, interaction(Importer.f, Exporter.f))
reg <- felm(Log_gap ~ 1 | Period.f + Products.f + Pairs.f,</pre>
            data = hs12,
            exactDOF = FALSE,
            keepX = FALSE,
            keepCX = FALSE)
fes <- getfe(reg,</pre>
             se=TRUE,
             bN = 50
)
periodfes <- subset(fes,fe == "Period.f")</pre>
periodfes$ci_ub <- periodfes$effect + (1.96 * periodfes$se)</pre>
periodfes$ci_lb <- periodfes$effect - (1.96 * periodfes$se)</pre>
periodfes <- merge(periodfes,unique(hs12[,list(Period,Period.f)]),by.x = "idx",by.y="Period.f")</pre>
periodfes <- rename(periodfes, period = Period)</pre>
ggplot(data = periodfes, aes(period,effect)) +
  geom_errorbar(aes(ymin = ci_lb, ymax = ci_ub), color = "grey35") +
  geom_line(color = "royalblue4", size = 1) +
  geom_point(color = "royalblue4") +
 background_grid(major = 'y', minor = "none") +
  scale_y = continuous = c(0, 0), limits = c(-.050, .075), minor_breaks = NULL) +
 xlab(label = "") +
 ylab(label = "Trade gap") +
 labs(title = "Trade Gap Over Time, Controlling for Product/Country Pair")
```


Why the 2016 bump? Could it be something to do with how they revise value estimates when they get more data or convert to most recent HS classification?

Product code coefficients controlling for country pairs and years

Country pair coefficients controlling for years and product codes

rm(fes, hs12, pairfes, periodfes, productfes, reg)

Quantity Trade Gap

The difference between what the exporting country reports and what the importing country reports in netweight (kg).

Coverage

```
options(digits=2)
load(paste(DataPath, "Analysis Data/hs12.Rda", sep = "/"))
hs12 <- as.data.table(hs12)
#Remove observations where one or more countries do not report quantities. 748,839 rows deleted.
hs12 <- hs12[!is.na(Qty_log_gap)]
#There are 411 instances where `qty_loq_qap` = inf.
#I removed them -- something else we should do?
hs12 <- hs12[!is.infinite(Qty_log_gap)]
#For each year, how many product*country pairs / all possible product*country pairs?
product <- hs12[, uniqueN(`Commodity Code`)]</pre>
product_year <- hs12[, uniqueN(`Commodity Code`), by=Period]</pre>
product_year <- rename(product_year, Products = V1)</pre>
pair <- unique(setDT(hs12), by = c("Importer", "Exporter"))</pre>
pair <- pair[, .N]</pre>
pair_year <- unique(setDT(hs12), by = c("Importer", "Exporter", "Period"))</pre>
pair_year <- pair_year[, .N, by=Period]</pre>
pair_year <- rename(pair_year, Pairs = N)</pre>
year_coverage <- merge(product_year, pair_year)</pre>
year_coverage$Total_products <- product</pre>
year_coverage$Total_pairs <- pair</pre>
```

```
year_coverage$Coverage <- (year_coverage$Products*year_coverage$Pairs)/</pre>
  (year_coverage$Total_products*year_coverage$Total_pair)
year_coverage
##
      Period Products Pairs Total_products Total_pairs Coverage
## 1:
        2012
                  604 1652
                                        608
                                                    3292
                                                             0.50
## 2:
        2013
                  604
                       2153
                                        608
                                                    3292
                                                             0.65
                                        608
                                                    3292
## 3:
        2014
                  603 2441
                                                             0.74
## 4:
        2015
                  601 2519
                                        608
                                                    3292
                                                             0.76
## 5:
        2016
                                                    3292
                  605 1778
                                        608
                                                             0.54
rm(pair_year, product_year, year_coverage)
#For each product, how many year*country pairs / all possible year*country pairs?
year <- hs12[, uniqueN(`Period`)]</pre>
year_product <- hs12[, uniqueN(`Period`), by=`Commodity Code`]</pre>
year_product <- rename(year_product, Years = V1)</pre>
pair_product <- unique(setDT(hs12), by = c("Importer", "Exporter", "Commodity Code"))</pre>
pair_product <- pair_product[, .N, by= .(`Commodity Code`)]</pre>
pair_product <- rename(pair_product, Pairs = N)</pre>
product_coverage <- merge(year_product, pair_product)</pre>
product_coverage$Total_years <- year</pre>
product_coverage$Total_pairs <- pair</pre>
product_coverage$Coverage$Pairs)/
  (product_coverage$Total_years*product_coverage$Total_pairs)
#Note: Quantity is not reported at the two-digit level
product_coverage[order(Coverage)][1:10]
##
       Commodity Code Years Pairs Total_years Total_pairs Coverage
               010612
##
   1:
                                             5
                                                       3292 0.00012
                           1
                                 2
##
   2:
               010231
                           2
                                 2
                                             5
                                                       3292 0.00024
                                             5
##
   3:
               010633
                           2
                                 2
                                                       3292 0.00024
##
   4:
               030356
                           2
                                 2
                                             5
                                                       3292 0.00024
                                             5
                                                       3292 0.00055
## 5:
               010239
                           3
                                 3
                                             5
##
   6:
               020830
                          4
                                 3
                                                       3292 0.00073
               030446
                                             5
   7:
                           3
                                 4
                                                       3292 0.00073
##
                                             5
   8:
               030455
                                                       3292 0.00073
##
   9:
               010613
                           4
                                 5
                                             5
                                                       3292 0.00122
## 10:
               030564
                                                       3292 0.00122
product_coverage[order(-Coverage)][1:10]
       Commodity Code Years Pairs Total_years Total_pairs Coverage
##
##
                 0901
                           5 1231
                                                                0.37
   1:
                                             5
                                                       3292
##
    2:
                 0902
                           5 1022
                                             5
                                                       3292
                                                                0.31
                 0713
                               986
                                             5
                                                       3292
##
   3:
                           5
                                                                0.30
                                             5
##
   4:
                 0910
                           5
                               982
                                                       3292
                                                                0.30
##
   5:
                 0303
                           5
                               981
                                             5
                                                       3292
                                                                0.30
##
   6:
                 0406
                           5
                               940
                                             5
                                                       3292
                                                                0.29
                                             5
##
   7:
                 0602
                           5
                               863
                                                       3292
                                                                0.26
##
   8:
                 0904
                           5
                               863
                                             5
                                                       3292
                                                                0.26
                                             5
                 0712
                               853
                                                       3292
                                                                0.26
##
   9:
                           5
```

```
## 10:
                  0402
                                847
                                                        3292
                                                                  0.26
rm(year_product, pair_product, product_coverage)
#For each country pair, how many year*product / all possible year*product?
product_pair <- hs12[, uniqueN(`Commodity Code`), by = c("Importer", "Exporter")]</pre>
product_pair <- rename(product_pair, Products = V1)</pre>
year_pair <- hs12[, uniqueN(`Period`), by = c("Importer", "Exporter")]</pre>
year_pair <- rename(year_pair, Years = V1)</pre>
pair_coverage <- merge(product_pair, year_pair, by = c("Importer", "Exporter"))</pre>
pair_coverage$T_products <- product</pre>
pair_coverage$T_years <- year</pre>
pair_coverage$Coverage <- (pair_coverage$Products*pair_coverage$Years)/</pre>
  (pair_coverage$T_products*pair_coverage$T_years)
pair_coverage$Exporter <- strtrim(pair_coverage$Exporter, 15)</pre>
pair_coverage[order(Coverage)][1:10]
##
                    Exporter Products Years T_products T_years Coverage
        Importer
##
                                                     608
                                                                5 0.00033
         Albania Madagascar
                                     1
                                           1
                                                                5 0.00033
##
    2:
         Algeria Cabo Verde
                                     1
                                           1
                                                     608
   3:
                                                     608
                                                                5 0.00033
##
         Algeria
                      Guinea
##
   4:
          Angola Costa Rica
                                     1
                                           1
                                                     608
                                                                5 0.00033
                                                                5 0.00033
##
   5:
          Angola
                   Honduras
                                     1
                                           1
                                                     608
                                                     608
                                                                5 0.00033
##
   6: Argentina
                     Hungary
                                     1
                                           1
##
   7: Argentina
                     Lebanon
                                     1
                                           1
                                                     608
                                                                5 0.00033
                                                                5 0.00033
##
    8:
         Armenia
                     Cyprus
                                     1
                                           1
                                                     608
                                                     608
##
    9:
         Armenia
                     Estonia
                                     1
                                           1
                                                                5 0.00033
## 10:
                                                     608
                                                                5 0.00033
         Austria
                    Cambodia
                                            1
pair_coverage[order(-Coverage)][1:10]
##
         Importer Exporter Products Years T_products T_years Coverage
##
                                  564
                                          5
                                                    608
                                                               5
                                                                     0.93
   1:
          Belgium
                     France
                                                               5
##
    2:
            Italy
                     France
                                  542
                                          5
                                                    608
                                                                     0.89
##
   3:
          Germany
                     France
                                  537
                                          5
                                                    608
                                                               5
                                                                     0.88
                                  536
                                                               5
                                                                     0.88
##
   4: Luxembourg
                     France
                                          5
                                                    608
##
   5:
           France
                   Belgium
                                  526
                                          5
                                                    608
                                                               5
                                                                     0.87
                                                               5
##
   6:
           France
                      Italy
                                  525
                                           5
                                                    608
                                                                     0.86
##
   7: Luxembourg Belgium
                                  523
                                          5
                                                    608
                                                               5
                                                                     0.86
                                                               5
                                                                     0.85
##
   8:
           France
                    Germany
                                  519
                                          5
                                                    608
##
   9:
            Italy
                    Germany
                                  507
                                          5
                                                    608
                                                               5
                                                                     0.83
                                           5
                                                               5
## 10:
          Germany
                                  505
                                                    608
                                                                     0.83
                      Italy
rm(product_pair, year_pair, pair_coverage, pair, product, year)
```

Quantity trade gap over time

```
hs12$Period <- as.Date(hs12$Period, "%Y")
hs12$Period <- floor_date(hs12$Period, "year")
periods <- hs12[, .(mean = as.double(mean(Qty_log_gap))),</pre>
                    median = as.double(median(Qty_log_gap)),
                    p25 = as.double(quantile(Qty_log_gap,.25)),
                    p75 = as.double(quantile(Qty_log_gap,.75))
```

```
by=Period]

periods <- melt(periods, id = 'Period')
periods$variable <- factor(periods$variable, levels = c("p25","p75","median","mean"))

ggplot(data=periods) +
    geom_line(data=periods, aes(x = Period, y = value, colour = variable, size=variable)) +
    background_grid(major = 'y', minor = "none") +
    scale_colour_manual(values=c("grey","grey","black","royalblue4")) +
    scale_size_manual(values = c(1,1,1.1,1.25)) +
    scale_y_continuous(expand = c(0, 0), limits = c(-1,1), minor_breaks = NULL) +
    xlab(label = "") +
    ylab(label = "Quantity gap") +
    labs(title="Quantity Gap Over Time")</pre>
```


Quantity trade gap across products

Quantity trade gap across country pairs

Median Quantity Gap Across Country Pairs 2500 2000 1500 500 Quantity gap

```
background_grid(major = 'y', minor = "none") +
scale_y_continuous(expand = c(0, 0), limits = c(0,1500), minor_breaks = NULL) +
labs(title="25th Percentile Quantity Gap Across Country Pairs") +
labs(x="Quantity gap", y="Number of pairs")
```


rm(periods, products, countries)

Quantity year coefficients controlling for product codes and country pairs

```
hs12$Period <- as.Date(hs12$Period, "%Y")
hs12$Period <- floor_date(hs12$Period, "year")
```

```
hs12$Period.f <- factor(hs12$Period)
hs12$Products.f <- factor(hs12$`Commodity Code`)
hs12$Importer.f <- factor(hs12$`Reporter Code`)
hs12$Exporter.f <- factor(hs12$`Partner Code`)
hs12$Pairs.f <- with(hs12, interaction(Importer.f, Exporter.f))
reg <- felm(Qty_log_gap ~ 1 | Period.f + Products.f + Pairs.f,</pre>
            data = hs12,
            exactDOF = FALSE,
            keepX = FALSE,
            keepCX = FALSE)
fes <- getfe(reg,</pre>
             se=TRUE,
             bN = 50
)
periodfes <- subset(fes,fe == "Period.f")</pre>
periodfes$ci_ub <- periodfes$effect + (1.96 * periodfes$se)</pre>
periodfes$ci_lb <- periodfes$effect - (1.96 * periodfes$se)</pre>
periodfes <- merge(periodfes,unique(hs12[,list(Period,Period.f)]),by.x = "idx",by.y="Period.f")</pre>
periodfes <- rename(periodfes, period = Period)</pre>
ggplot(data = periodfes, aes(period,effect)) +
  geom_errorbar(aes(ymin = ci_lb, ymax = ci_ub), color = "grey35") +
  geom_line(color = "royalblue4", size = 1) +
  geom_point(color = "royalblue4") +
 background_grid(major = 'y', minor = "none") +
  scale_y = c(0, 0), limits = c(-.05, .10), breaks = seq(-.05, .10, .05)) +
  xlab(label = "") +
 ylab(label = "Quantity gap") +
  labs(title = "Quantity Gap Over Time, Controlling for Product/Country Pair")
```


Quantity product code coefficients controlling for country pairs and years

Quantity country pair coefficients controlling for years and product codes

rm(fes, hs12, pairfes, periodfes, productfes, reg)