Отчёт по лабораторной работе №2

Дисциплина: Архитектура компьютера

Ким Денис Вячеславович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	12
Список литературы		13

Список иллюстраций

4.1	Учётная запись на GitHub
4.2	Предварительная конфигурация git
4.3	Настройка UTF-8 и задача имени начальной ветки
4.4	Настройка параметров
4.5	Генерация ключей
4.6	Создание каталога
	Клонирование созданного репозитория
4.8	Удаление лишних файлов
4.9	Создание необходимых каталогов
4.10	Отправка файлов на сервер
4.11	Создание каталогов
4.12	Копирование отчетов
413	Загрузка файлов на github

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Цель работы – изучении идеологии и применение средств контроля версий, а также приобретение практических навыков по работе с системой git.

2 Задание

При выполнении лабораторной работы необходимо получить базовые навыки работы с GitHub.

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-				
талога	Описание каталога			
/	Корневая директория, содержащая всю файловую			
/bin	Основные системные утилиты, необходимые как в			
	однопользовательском режиме, так и при обычной работе всем			
	пользователям			
/etc	Общесистемные конфигурационные файлы и файлы конфигурации			
	установленных программ			
/home	Содержит домашние директории пользователей, которые, в свою			
	очередь, содержат персональные настройки и данные пользователя			
/media	Точки монтирования для сменных носителей			
/root	Домашняя директория пользователя root			
/tmp	Временные файлы			
/usr	Вторичная иерархия для данных пользователя			

Более подробно про Unix см. в [1-4].

4 Выполнение лабораторной работы

Создаём учётную запись на сайте https://github.com/ и заполняем основные данные (рис. 4.1):

Рис. 4.1: Учётная запись на GitHub

Сначала сделаем предварительную конфигурацию git. Открываем терминал и вводим следующие команды, указав имя и email владельца репозитория (рис. 4.2):

```
dvkim@dk8n72 - dvkim

dvkim@dk8n72 - $ git config --global user.name "dvkim2306"

dvkim@dk8n72 - $ git config --global user.email "mickey300a@gmail.com"
```

Рис. 4.2: Предварительная конфигурация git

Настроим UTF-8 в выводе сообщений git. Зададим имя начальной ветки (будем называть её master) (рис. 4.3):

```
dvkim@dk8n72 ~ $ git config --global core.quotepath false
dvkim@dk8n72 ~ $ git config --global init.defaultBranch master
```

Рис. 4.3: Настройка UTF-8 и задача имени начальной ветки

Параметры autocrlf и safecrlf (рис. 4.4):

```
dvkim@dk8n72 ~ $ git config --global core.autocrlf input
dvkim@dk8n72 ~ $ git config --global core.safecrlf warn
```

Рис. 4.4: Настройка параметров

Для последующей идентификации пользователя на сервере репозиториев необходимо сгенерировать пару ключей (приватный и открытый) (рис. 4.5):

```
dvkim@dk8n72 ~ $ ssh-keygen -C "dvkim2306 mickey300a@gmail.com"
Generating public/private ed25519 key pair.
Enter file in which to save the key (/afs/.dk.sci.pfu.edu.ru/home/d/v/dvkim/.ssh/id_ed25519): []
```

Рис. 4.5: Генерация ключей

Открываем терминал и создаём каталог для предмета «Архитектура компьютера» (рис. 4.6):

```
dvkim@dk8n72 ~ $ mkdir -p ~/work/study/2024-2025/"Архитектура компьютера"
dvkim@dk8n72 ~ $
```

Рис. 4.6: Создание каталога

Клонируем созданный репозиторий (рис. 4.7):

```
dvkim@dk8n72 ~/work/study/2024-2025/Архитектура компьютера $ git clone --recursive git@github.com:dvkim2306/study_2 024-2025_arh--pc.git arch-pc
Клонирование в «arch-pc»...

клонирование в warch-pc»...

клонирование в warch-pc»...

клонирование в warch-pc»...

гемоte: Counting objects: 100% (33/33), done.

гемоte: Counting objects: 100% (33/33), done.

гемоte: Cotal 33 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Получение объектов: 100% (33/33), 18.81 Киб | 18.81 Миб/с, готово.
Определение изменений: 100% (1/1), готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presentation-markdown-template.git) зарегистрирован по пути «template/presentation».
Подмодуль stemplate/report» (https://github.com/yamadharma/academic-laboratory-report-template.git) зарегистрирован по пути «template/report»

Клонирование в «/afs/.dk.sci.pfu.edu.ru/home/d/v/dvkim/work/study/2024-2025/Архитектура компьютера/arch-pc/template/presentation»..

remote: Counting objects: 100% (111/111), done.

remote: Counting objects: 100% (111/111), done.

remote: Cotal 111 (delta 42), reused 100 (delta 31), pack-reused 0 (from 0)
Получение объектов: 100% (111/111), 102.17 Киб | 1.17 Миб/с, готово.
Определение изменений: 100% (42/42), готово.
Определение изменений: 100% (42/42), готово.
Определение изменений: 100% (42/42), отово.
Сомрезья объектов: 100% (142/142), done.

remote: Counting objects: 142, done.

remote: Counting objects: 100% (142/142), done.

remote: Compressing objects: 100% (142/142), done.

remote: Counting objects:
```

Рис. 4.7: Клонирование созданного репозитория

Переходим в каталог курса и удаляем лишние файлы (рис. 4.8):

```
dvkim@dk8n72 ~/work/study/2024-2025/Apхитектура компьютера $ cd arch-pc
dvkim@dk8n72 ~/work/study/2024-2025/Apхитектура компьютера/arch-pc $ rm package.json
dvkim@dk8n72 ~/work/study/2024-2025/Apхитектура компьютера/arch-pc $
```

Рис. 4.8: Удаление лишних файлов

Создаём необходимые каталоги (рис. 4.9):

Рис. 4.9: Создание необходимых каталогов

Отправляем файлы на сервер (рис. 4.10):

```
dvkim@dk8n72 -/work/study/2024-2025/Архитектура компьютера/arch-pc $ git push
Перечисление объектов: 5, готово.
Подсчет объектов: 100% (5/5), готово.
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (2/2), готово.
Запись объектов: 100% (3/3), 286 байтов | 286.00 КиБ/с, готово.
Тота1 3 (delta 1), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:dvkim2306/study_2024-2025_arh--pc.git
5f0e887..88007d6 master -> master
dvkim@dk8n72 -/work/study/2024-2025/Архитектура компьютера/arch-pc $ \[ \]
```

Рис. 4.10: Отправка файлов на сервер

Выполним задания для самостоятельной работы. Создаём отчет по выполнению лабораторной работы в соответствующем каталоге рабочего пространства (labs>lab02>report) (рис. 4.11):

```
dvkim@vbox:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ mkdir -p labs/
lab01 labs/lab02
```

Рис. 4.11: Создание каталогов

Копируем отчеты по выполнению предыдущих лабораторных работ в соответствующие каталоги созданного рабочего пространства (рис. 4.12):

```
dvkim@vbox:~$ mv /home/dvkim/Загрузки/Л01_Ким_отсчет.pdf /home/dvkim/work/study/
2024-2025/"Архитектура компьютера"/arch-pc/labs/lab01
dvkim@vbox:~$ mv /home/dvkim/Загрузки/Л02_Ким_отсчет.pdf /home/dvkim/work/study/
2024-2025/"Архитектура компьютера"/arch-pc/labs/lab02
```

Рис. 4.12: Копирование отчетов

Загружаем файлы на github (рис. 4.13):

dvkim@vbox:~/work/study/2024-2025/Архитектура компьютера/arch-pc\$ git push

Рис. 4.13: Загрузка файлов на github

5 Выводы

При выполнении данной работы я развил свои практические навыки работой с системой Git. Я изучил основные принципы контроля версий и получил практический опыт работы с инструментами Git. В ходе этой лабораторной работы я регистрировался на платформе GitHub, проводил конфигурацию системы, создавал SSH-ключ, ознакомился с основными командами git и научился загружать файлы в созданный репозиторий через терминал.

Список литературы

- 1. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.
- 2. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.