

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3543500 A1

124pp2S
A01N 37/16+M

(51) Int. Cl. 4:

C07C 179/133

D 06 L 3/02

C 11 D 3/395

A 01 N 37/10

A 01 N 37/02

A 01 N 43/40

(21) Aktenzeichen: P 35 43 500.3
(22) Anmeldetag: 10. 12. 85
(43) Offenlegungstag: 11. 6. 87

(71) Anmelder:

(72) Erfinder:

No	références, formules, pages à photocopier, etc	No	classement
		1	124 pp 2S
		2	INF 124 pp 2D2B
3	//(A01N 37/16, 37/16, 37/10, 25/22)	3	A01N 37/16+M
4	//(A01N 59/00, 37/16, 37/10, 25/22)	4	A01N 59/00+M
5	en entier	5	C11D 3/39H

Berlin
C07C 179/133
Modle 350

BEST AVAILABLE COPY

DE 3543500 A1

3

180

Patentansprüche

1. Wässrige Lösung aromatischer Percarbonsäuren, stabilisiert mit
a) mindestens der gleichen Menge der dieser Percarbonsäure entsprechenden aromatischen Carbonsäure und
i) einer mit einem Überschuß an H₂O₂ stabilisierten wässrigen Perglutaräurelösungen und/oder
ii) einer 10- bis 60-%igen H₂O₂-Lösung.
2. Percarbonsäurelösung nach Anspruch 1, dadurch gekennzeichnet, daß sie 0,001 bis 2 Gew.-% aromatische Percarbonsäure und 0,001 bis 2 Gew.-% der entsprechenden aromatischen Carbonsäure sowie 5 bis 35 Gew.% einer wässrigen, mit einem Überschuß von H₂O₂ stabilisierten Perglutaräure enthält.
3. Percarbonsäurelösung nach Anspruch 2, dadurch gekennzeichnet, daß sie 0,05 bis 0,5% aromatische Percarbonsäure und 0,05 bis 1 Gew.% der entsprechenden aromatischen Carbonsäure und 10 bis 20 Gew.% einer wässrigen mit einem Überschuß von H₂O₂ stabilisierten Perglutaräure enthält.
4. Percarbonsäurelösung nach Anspruch 1, dadurch gekennzeichnet, daß sie 0,001 bis 0,5 Gew.% aromatische Percarbonsäure und 0,001 bis 0,5 Gew.% aromatische Carbonsäure und eine 10- bis 60-%ige H₂O₂-Lösung enthält.
5. Percarbonsäurelösung nach Anspruch 4, dadurch gekennzeichnet, daß sie 0,01 bis 0,2 Gew.% aromatische Percarbonsäure und 0,01 bis 0,5 Gew.% aromatische Carbonsäure und eine 20- bis 35-%ige H₂O₂-Lösung enthält.
6. Percarbonsäurelösung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß sie als aromatische Percarbonsäure Perbenzoësäure und als entsprechende aromatische Carbonsäure Benzoësäure enthält.
7. Percarbonsäurelösung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß sie als stabilisierte aromatische Percarbonsäure das Umsetzungsprodukt enthält, das durch Versetzen des aromatischen Carbonsäure-anhydrids und gegebenenfalls des Glutaräureanhydrids mit einem Überschuß an 10- bis 60-%iger H₂O₂-Lösung erhältlich ist.
8. Percarbonsäurelösung nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß sie als Stabilisierungsmittel Harnstoff oder Pyridin-2,3- und/oder Pyridin-2,6-dicarbonsäure enthält.
9. Percarbonsäurelösung nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß sie oxidationsbeständige organische oder anorganische Säuren bzw. deren Persäuren in Mengen bis zu 5 Gew.% enthält.
10. Percarbonsäurelösung nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß sie außerdem ein Tensid enthält.
11. Die Verwendung der Lösung nach Anspruch 1 bis 10 als Desinfektions-, Oxidations- und/oder Bleichmittel.

Beschreibung

Gegenstand der Erfindung ist eine wässrige Lösung aromatischer Percarbonsäuren, die mit mindestens der gleichen Menge der dieser Percarbonsäure entsprechenden aromatischen Carbonsäure und mit einer durch Überschüssiges H₂O₂ stabilisierten wässrigen Perglutaräurelösung und/oder einer 10- bis 60-%igen H₂O₂-Lösung stabilisiert ist, sowie ferner deren Verwendung als Desinfektions- oder Bleichmittel.

Aromatische Percarbonsäuren sind als hoch wirksame Biozide mit breitem Wirkungsspektrum und als Bleich- und Oxidationsmittel aus der DE-OS 26 53 738 und DE-AS 12 89 815 bekannt. Sie können nach Ullmann (4. Aufl.) Bd. 17, S. 669 aus den Carbonsäuren und Wasserstoffperoxid oder aus aktivierten Carbonsäurederivaten wie z. B. Carbonsäureanhydriden und H₂O₂ in wässriger Lösung hergestellt werden.

In der Praxis werden aromatische Percarbonsäuren jedoch kaum eingesetzt, weil ihre Löslichkeit in Wasser basierten Formulierungen zu gering ist und die Stabilität in wässrigen Lösungen nicht befriedigend ist. Aromatische Percarbonsäuren sind in fester Form mit Ausnahme der Perbenzoësäure zwar hinreichend stabil, lassen sich jedoch praktisch wegen der geringen Löslichkeit und Lösungsgeschwindigkeit in flüssigen Anwendungsformeln kaum einsetzen. Man hat zwar gemäß DE-AS 12 89 815 versucht, aromatische Percarbonsäuren in wässriger Bleichmittellösungen einzusetzen, die tert-Butylalkohol und Wasser im Verhältnis von 1 : 1 enthielten; jedoch sind diese Lösungen wegen ihres Geruches, der Flüchtigkeit des in verhältnismäßig hoher Konzentration vorliegenden tert-Alkohols und wegen ihres niedrigen Flammpunktes ungeeignet. Ferner ist es gemäß DE-OS 26 53 735 bekannt, substituierte aromatische Percarbonsäuren als gesättigte wässrige Lösungen mit Bodenkörpern als Desinfektionsmittel einzusetzen; auch diese Lösungen haben sich in der Praxis nicht durchgesetzt, da die Percarbonsäuren selbst unter diesen Bedingungen nicht hinreichend stabil sind.

Letztlich ist es aus der DE-PS 27 01 133 bekannt, feste Mischungen aus einem aktivierten aromatischen Carbonsäurederivat wie beispielsweise einem Carbonsäureester und einem H₂O₂-Depot wie beispielsweise Natriumpercarbonat nebst weiteren für die Lagerstabilität erforderlichen Zusatzstoffen als Desinfektionsmittel einzusetzen, die beim Lösen in Wasser aromatische Percarbonsäurelösungen ergeben. Nachteilig ist bei diesen Mitteln der Umgang mit staubenden Pulvern, die nach wie vor geringe Lösungsgeschwindigkeit und die begrenzte Haltbarkeit der ungesetzten Gebrauchsösungen, die wegen der Umsetzung von Carbonsäureester mit dem H₂O₂-Depot einen verhältnismäßig hohen pH-Wert haben müssen; im Übrigen ist bei diesen festen Mischungen das Verhältnis von Wirkstoff zu Balaststoff unwirtschaftlich.

Die Erfindung hat sich die Aufgabe gestellt eine wässrige Lösung aromatischer Percarbonsäuren zur Verfügung zu stellen, die die oben erwähnten Nachteile nicht besitzen und insbesondere eine hervorragende Langzeitsicherheit besitzen.

Zur Lösung dieser Aufgabe werden wässrige Lösungen aromatischer Percarbonsäuren vorgeschlagen, die stabilisiert sind mit einmal mindestens der gleichen Menge der den aromatischen Percarbonsäuren entsprechen-

Als aromatische Percarbonsäuren bzw. aromatische Carbonsäureanhydride, aus denen durch Reaktion mit H_2O_2 aromatische Percarbonsäuren und aromatische Carbonsäuren gebildet werden, werden in erster Linie Benzoesäureanhydrid aber auch substituierte Verbindungen wie 4-Methyl-, 4-tert-Butyl-, 4-Methoxy-, 3-Chlor-, 2-Methyl-, 3-Methyl-, 4-Cyano-, 4-Nitro-, 4-Fluor-, 2,4-Dichlor-, 4-Phenyl-, 4-Methoxycarbonyl-, und 4-Trifluormethyl-benzoesäureanhydrid eingesetzt, die jeweils die entsprechende Benzoesäure und Perbenzoesäure bilden.

- 100 Ferner können die folgenden Anhydride eingesetzt werden: Phthalsäureanhydrid, die Monoperphthalsäure und Phthalsäure bildet, 2-Naphthoësäureanhydrid die 2-Naphthopersäure und 2-Naphthoësäure bildet, 2-Furancarbonsäureanhydrid, das 2-Furanperoxycarbonsäure und 2-Furancarbonsäure bildet sowie o-Sulfobenzoesäure-cyclo-anhydrid, das 2-Sulfoperbenzoesäure und 2-Sulfobenzoesäure bildet.
- 110 Es können auch gemischte aromatische Carbonsäureanhydride eingesetzt werden, die die folgenden Reaktionsprodukte ergeben.

20	2-Carboxy-benzoesäure-anhydrid	Benzoesäure +	Perbenzoesäure +
21	4-Sulfo-benzoesäure-anhydrid	Benzoesäure +	Monoperphthalsäure
22	Essigsäure-benzoesäure-anhydrid	4-Sulfo-benzoesäure	Perbenzoesäure +
23	Bernsteinsäure-benzoesäure-anhydrid	Benzoesäure +	4-Sulfo-perbenzoesäure
24	Glutarsäure-benzoesäure-anhydrid	Benzoesäure +	Peressigsäure
25		Bernsteinsäure	Perbenzoesäure +
26		Glutarsäure	Perbernsteinsäure
27			Perbenzoesäure +
28			Perglutaräure

Benzoesäureanhydrid bzw. Perbenzoesäure wird deswegen bevorzugt, weil die an sich korrodierend auf Metall wirkenden Aktivsauerstoff enthaltenden Lösungen wegen der als Korrosionsinhibitor bekannten Benzoesäure weniger korrodierend wirkt.

- 29 Allgemein können als oxidationsstabile, geruchsarme anorganische oder organische Säuren Schwefelsäure, Phosphorsäure, Kaliumhydrogensulfat und Amidosulfonsäure sowie Bernsteinsäure oder Zitronensäure zugesetzt werden. Diese dienen auch als pH-Regulator, als Reinigungskomponente oder als Elektrolyt zur Ermöglichung einer über den Leitwert gesteuerten Dosierung.

Ferner können die erfundungsgemäßen wässrigen Lösungen der aromatischen Percarbonsäure noch oxidationsstabile biozide Wirkstoffe wie Monoperoxyschwefelsäure, Kaliumperoxymonosulfat, Perbernsteinsäure, Pederipinsäure und Permaleinsäure enthalten; ferner können Peressigsäure und Perpropionsäure eingesetzt werden, die bevorzugt werden und in geringer Konzentration eingesetzt werden, um den Geruch des Mittels nicht zu stark zu beeinträchtigen. Als Stabilisatoren für die erfundungsgemäßen aromatischen Percarbonsäurelösungen finden Pyridin-2,6-dicarbonsäure, Pyridin-2,3-dicarbonsäure und Harnstoff Anwendung, ferner t-Butanol und t-Amylalkohol, die auch noch als Lösungsmittel dienen.

- 30 Ferner können die erfundungsgemäßen Lösungen noch Tenside enthalten, und zwar nichtionische Tenside wie Dodecyl-, Nonylphenol-, und Kokosfettsäure-polyglykolether ferner Kokosfettsäuremonoethanolamid, fluoriertes Alkylpolyoxyethylenethanol, Ethylenoxid-propylenoxid-blockpolymere sowie anionische Tenside wie Natriumlaurylsulfat, Dodecylbenzolsulfonsäure auch als Natriumsalz, Natriumalkylpolyglykolethersulfat und -phosphat, Natriumstearat, Kaliumperfluorooctylcarboxylat und Perfluoroctansulfonsäure; als kationische Tenside sind unter anderem Dimethyliddecylammoniumchlorid, Benzylidimethylfettalkylammoniumsulfat, Dodecyltrimethylammoniumacetat, Polyhexamethylenbiguanidchlorid, Kokospropylendiamininguanidiniumacetat und als amphotere Tenside Dodecyldi-(aminoethyl)-glycin und Laurylamidopropyl-N,N-dimethylaminoessigsäure geeignet.

Ferner können neben Korrosionsinhibitoren wie Toluoltriazol, Benzotriazol und Diethylendiaminpentamethylene-phosphorsäure noch andere übliche Zusätze wie Parfüm, Farbstoff und pH-Wert regulierende Substanzen zugesetzt werden.

- 31 Die erfundungsgemäßen wässrigen Lösungen von aromatischen Percarbonsäuren können als saure oder neutrale flüssige Desinfektionsmittel beispielsweise für vorgereinigte Flächen oder Flächen mit geringer bis mittlerer Schmutzbelastung, aber auch als Desinfektionsmittel für Haut, Schleimhaut oder Hände eingesetzt werden. Ferner können diese Mittel zur Verbesserung der mikrobiologischen Wasserqualität insbesondere zur Verbesserung der Abwasserqualität und Senkung der CSB- und BSB-Werte, ferner als Bleichmittel, Oxidationsmittel, zur Geruchsverbesserung, als Mittel zur Bekämpfung pflanzenpathogener Keime und Viren, zur Bodenentseuchung, als Holzschutz und zur Verringerung des Keimgehaltes der Luft, beispielsweise in Klimaanlagen

Zusammensetzung	Lösung gemäß Erfindung	Lösung D	Lösung E
Benzoesäureanhydrid	0,5	—	—
Glutarsäureanhydrid	10	10	10
Benzoesäure	—	—	0,5
Pyridin-2,6-dicarbonsäure	0,2	0,2	0,2
H ₂ O ₂ , 35-%ig	ad 100	ad 100	ad 100

In der folgenden Tabelle II sind die Werte von Suspensionsversuchen nach DGHM ohne Serumbelastung mit einer Abtötungszeit in Minuten angegeben; die Lösung war 19 Monate bei Raumtemperatur gelagert worden.

Tabelle II

Eingesetzte Lösung	Einsatz-konzentration	Staph. aureus	Cand. albicans
gem. Erfindung	2	5	5
	1	5	5
	0,5	5	5
	0,25	5	5
	0,1	5	5
Lösung D	2	5	15
	1	5	30
	0,5	5	> 60
	0,25	5	> 60
	0,1	5	> 60
Lösung E	2	5	15
	1	5	15
	0,5	5	30
	0,25	5	> 60
	0,1	5	> 60

Die obigen Werte zeigen deutlich, daß mit den erfindungsgemäßen Lösungen von aromatischen Percarbon-säuren bei Candida albicans sehr viel bessere Werte erhalten werden.

Nach 19 Monate Lagerung bei Raumtemperatur wurde auch der H₂O₂-Gehalt der Lösung bestimmt, wobei sich zeigte, daß die erfindungsgemäße Lösung nach wie vor einen hohen H₂O₂-Gehalt von 26,0% gegenüber einem Wert von 23,7 bzw. 25,5% bei den Lösungen D und E aufwies.