

APSSDC

Andhra Pradesh State Skill Development Corporation S

Day Objectives

Decision Tree

- · Decision tree is the most powerful and popular tool for classification and prediction
- A decision tree is a very specific type of probability tree that enables you to make a decision about some kind of process.
- · A Decision tree is a flowchart like tree structure
- Used in data mining for deriving a strategy to reach a particular goal, its also widely used in machine learning

Types of Algorithms

- CART classification and regression algorithm
 - gini index/ gini impurity
- ID3 iterative dechomister 3
 - Information gain
 - log function / std deviation

Types of Decision Trees Types of decision trees are based on the type of target variable we have. It can be of two types:

- Categorical Variable Decision Tree: Decision Tree which has a categorical target variable then it called a Categorical variable decision tree.
- Continuous Variable Decision Tree: Decision Tree has a continuous target variable then it is called Continuous Variable Decision Tree.

Important Terminology related to Decision Trees

- Root Node: It represents the entire sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- **Decision Node**: When a sub-node splits into further sub-nodes, then it is called the decision node.
- Leaf / Terminal Node: Nodes do not split is called Leaf or Terminal node.
- **Pruning**: When we remove sub-nodes of a decision node, this process is called pruning. You can say the opposite process of splitting.
- Branch / Sub-Tree: A subsection of the entire tree is called branch or sub-tree.
- **Parent and Child Node**: A node, which is divided into sub-nodes is called a parent node of sub-nodes whereas sub-nodes are the child of a parent node.

Advantages:

- Simple to understand, interpret, visualize.
- Decision trees implicitly perform variable screening or feature select ion.
- Can handle both numerical and categorical data. Can also handle multioutput problems.
- Nonlinear relationships between parameters do not affect tree performa nce.

DisAdvantage:

- OverFitting Problem

Decision Tree Classification

In [1]:

- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt

Out[13]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	ļ
0	6	148	72	35	0	33.6	0.627	_
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	

```
In [3]:
           1 data.shape
Out[3]: (768, 9)
 In [4]:
           1 data.columns
Out[4]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
               dtype='object')
 In [6]:
             data.info()
 In [7]:
             data.isnull().sum()
 In [8]:
           1 data.describe()
             data["Outcome"].value_counts()
 In [9]:
Out[9]: 0
              500
              268
         Name: Outcome, dtype: int64
In [11]:
             data["Age"].min()
Out[11]: 21
```

```
In [12]:
           1 data["Age"].max()
Out[12]: 81
In [22]:
           1 data.columns
Out[22]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                dtype='object')
In [23]:
           1 | X = data[["Glucose", "BMI", "Age"]]
           2 X.head()
Out[23]:
             Glucose BMI Age
          0
                 148
                     33.6
                           50
          1
                 85 26.6
                           31
          2
                 183 23.3
                           32
                 89
                     28.1
                           21
                 137 43.1
                           33
In [19]:
              import seaborn as sns
           2 sns.pairplot(data)
                                           . . .
In [21]:
              data.corr()
           1 y = data["Outcome"]
In [24]:
In [25]:
           1 from sklearn.model_selection import train_test_split
           2 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random)
In [26]:
              from sklearn.tree import DecisionTreeClassifier
In [46]:
           1 dcls = DecisionTreeClassifier( max_depth = 3)
           2 dcls.fit(X_train,y_train)
Out[46]: DecisionTreeClassifier(max_depth=3)
In [47]:
           1 y_pred = dcls.predict(X_test)
           2 X_test.shape
Out[47]: (231, 3)
```


Calculation of Gini Index

· this is worked on Probability

$$GI = 1 - \sum_{i=1}^{n} (p)^{2}$$

$$GI = 1 - \left[(P_{(+)})^{2} + (P_{(-)})^{2} \right]$$

Past Trend	Open Interest	Trading Volume	Return
Positive	Low	High	Up
Negative	High	Low	Down
Positive	Low	High	Up
Positive	High	High	Up
Negative	Low	High	Down
Positive	Low	Low	Down
Negative	High	High	Down
Negative	Low	High	Down
Positive	Low	Low	Down
Positive	High	High	Up

Return

up probability - 4/10

down prob - 6/10

Past Trend

positive Prob - 6/10

Negative prob - 4/10

Past Trend prob with Return

prob(Positive, up)-4/6

prob (Negative, up) - 2/6

Decision Tree Regressor

```
In [59]:
             df = pd.read_csv("https://raw.githubusercontent.com/LavanyaPolamarasetty/Dat
           2 df.head()
                                          . . .
In [60]:
           1 df.columns
Out[60]: Index(['make', 'fuel-type', 'num-of-doors', 'body-style', 'engine-location',
                 'length', 'width', 'height', 'num-of-cylinders', 'horsepower',
                 'peak-rpm', 'city-mpg', 'highway-mpg', 'price'],
               dtype='object')
In [61]:
           1 df.shape
Out[61]: (201, 14)
In [62]:
           1 df.info()
In [63]:
           1 df.isnull().sum()
```

```
In [64]:
             1 df.corr()
 Out[64]:
                            length
                                       width
                                                height
                                                       city-mpg highway-mpg
                                                                                 price
                  length
                          1.000000
                                    0.857170
                                             0.492063
                                                      -0.665192
                                                                    -0.698142
                                                                              0.690628
                   width
                          0.857170
                                    1.000000
                                             0.306002
                                                      -0.633531
                                                                    -0.680635
                                                                              0.751265
                                                      -0.049800
                  height
                          0.492063
                                    0.306002
                                              1.000000
                                                                    -0.104812
                                                                              0.135486
                city-mpg
                         -0.665192
                                   -0.633531
                                             -0.049800
                                                       1.000000
                                                                    0.972044
                                                                             -0.686571
                                                                             -0.704692
            highway-mpg
                         -0.698142
                                   -0.680635
                                             -0.104812
                                                       0.972044
                                                                    1.000000
                   price
                          0.690628
                                    0.751265
                                             0.135486
                                                      -0.686571
                                                                    -0.704692
                                                                              1.000000
 In [65]:
                X = df[["length","width","height"]]
 In [66]:
                y = df["price"]
 In [67]:
                X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3)
 In [68]:
                from sklearn.tree import DecisionTreeRegressor
In [109]:
                dreg = DecisionTreeRegressor(max depth=3)
In [110]:
                dreg.fit(X train,y train)
Out[110]: DecisionTreeRegressor(max depth=3)
In [111]:
                y pred = dreg.predict(X test)
In [112]:
             1 X train.iloc[0]
Out[112]:
           length
                       178.5
           width
                        67.9
                        49.7
           height
           Name: 103, dtype: float64
In [113]:
             1
                y_train.iloc[0]
Out[113]: 18399
```

```
plt.figure(figsize = (15,15))
In [120]:
```

- tree.plot_tree(dreg)
- 2
- 3 plt.show()

In]:	1	