A Major Project Report

On

"ASSESSING THE IMPACT OF AUTONOMOUS DRONE FLEETS IN MISSING CHILD SEARCH AND RESCUE OPERATIONS"

Submitted in partial fulfillment of the

Requirements for the award of the degree of

Bachelor of Technology

In

Computer Science & Engineering –
Artificial Intelligence & Machine Learning
By

Mohammed Owais	20R21A6639	
Veerannagari Sravan Kumar	20R21A6654	
Ramaram Sandeep Reddy	20R21A6645	
Kalyanam Tharuni Dixitha	20R21A6623	
Ellelvula Venkat sai	20R21A6615	

Under the guidance of

J. Vijay Gopal Associate Professor

Department of Computer Science & Engineering –
Artificial Intelligence & Machine Learning

2024

CERTIFICATE

This is to certify that the project entitled "Assessing the Impact of Autonomous Drone Fleets in Missing Child Search and Rescue Operations" has been submitted by Mohammed Owais (20R21A6639), Veerannagari Sravan Kumar (20R21A6654), Ramaram Sandeep Reddy (20R21A6645), Kalyanam Tharuni Dixitha (20R21A6623), Ellelvula Venkat sai (20R21A6615) in partial fulfillment of the requirements for the award of degree of Bachelor of Technology in Computer Science and Engineering – Artificial Intelligence & Machine Learning from Jawaharlal Nehru Technological University, Hyderabad. The results embodied in this project have not been submitted to any other University or Institution for the award of any degree or diploma.

Internal Guide Head of the Department

Project coordinator External Examiner

DECLARATION

We hereby declare that the project entitled "Assessing the Impact of Autonomous Drone Fleets in Missing Child Search and Rescue Operations" is the work done during the period from January 2024 to April 2024 and is submitted in partial fulfillment of the requirements for the award of degree of Bachelor of Technology in Computer Science and Engineering – Artificial Intelligence & Machine Learning from Jawaharlal Nehru Technology University, Hyderabad. The results embodied in this project have not been submitted to any other university or Institution for the award of any degree or diploma.

Mohammed Owais	20R21A6639
Veerannagari Sravan Kumar	20R21A6654
Ramaram Sandeep Reddy	20R21A6645
Kalyanam Tharuni Dixitha	20R21A6623
Ellelvula Venkat sai	20R21A6615

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of people who made it possible, whose constant guidance and encouragement crowned our efforts with success. It is a pleasant aspect that we now have the opportunity to express our guidance for all of them.

First of all, we would like to express our deep gratitude towards our internal guide

J. Vijay Gopal, Associate Professor, Department of CSE-AIML for his support in the completion of our dissertation. We wish to express our sincere thanks to **Dr.K.SAI PRASAD**, HOD, Dept. of CSE- AIML and principal **Dr. K. SRINIVAS RAO** for providing the facilities to complete the dissertation.

We would like to thank all our faculty and friends for their help and constructive criticism during the project period. Finally, we are very much indebted to our parents for their moral support and encouragement to achieve goals.

Mohammed Owais

Veerannagari Sravan Kumar

20R21A6639

Veerannagari Sravan Kumar

20R21A6654

Ramaram Sandeep Reddy

20R21A6645

Kalyanam Tharuni Dixitha

20R21A6623

Ellelyula Venkat sai

20R21A6615

ABSTRACT

Children lost amidst vast forests — definitely that scenery most feared by any parent. Our drone project innovation aims to transmute the dark fears of disaster into a rapid save. Picture a group of intelligent "guardian drones" armed with thermal cameras sensitive to heat in any weather, as well as night vision for traversing through thick forests, and GPS for exact locationing. Such devices can easily localize a missing child with a prompt response over a wide range, and send relevant information to the search team intermittently. The rapid reaction system is of utter importance during those first critical hours, transforming fear into comfort, and thus wows return for children who got lost.

APPENDIX-1 LIST OF FIGURES

LIST OF FIGURES

Fig No	Description of Figure	
Fig 0	Top-view of Pixhawk drone	02
Fig 1	Architecture of the solution to the existing problem.	115
Fig 2	Use case diagram	117
Fig 3	Class diagram	119
Fig 4	Sequence diagram	120
Fig 5	Activity diagram	121
Fig 6	Metrics	132
Fig 7	Image representing prediction of yolov8 model 1	133
Fig 8	Image representing prediction of yolov8 model 2	133
Fig 9	Image representing prediction of yolov8 model	134

APPENDIX-2 LIST OF TABLES

LIST OF TABLES

Table No	Description	Page No
Table 2.2	Comparison table	82
Table 2.3	Work Evaluation table	85

APPENDIX-3 LIST OF ABBREVIATIONS

ABBREVIATIONS

UAV Unnamed Aerial Vehicle

MAVLink Micro Air Vehicle Link

CNN Convolutional Neural Network

YOLO You Only Look Once

APPENDIX-3 REFERENCES

REFERENCES

- [1]. Rafal Ablamowicz and Bertfried Fauser. 2007. CLIFFORD: a Maple 11 Package for Clifford Algebra Computations, version 11. Tennessee Technological University. Retrieved February 28, 2008from http://math.tntech.edu/rafal/cliff11/index.html.
- [2]. Patricia S. Abril and Robert Plant. 2007. The patent holder's dilemma: Buy, sell, or troll? Commun. ACM 50, 1 (Jan. 2007), 36–44. https://doi.org/10.1145/1188913.1188915
- [3]. Sten Andler. 1979. Predicate Path expressions. In Proceedings of the 6th. ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages (POPL '79). ACM Press, New York, NY, 226–236. https://doi.org/10.1145/567752.567774
- [4]. David A. Anisi. 2003. Optimal Motion Control of a Ground Vehicle. Master's thesis. Royal Institute of Technology (KTH), Stockholm, Sweden.
- [5]. Kenneth L. Clarkson. 1985. Algorithms for Closest-Point Problems (Computational Geometry). Ph.D. Dissertation. Stanford University, Palo Alto, CA. UMI Order Number: AAT 8506171
- [6]. Jacques Cohen (Ed.). 1996. Special issue: Digital Libraries. Commun. ACM 39, 11 (Nov. 1996).
- [7]. Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalences among conjunctive aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. https://doi.org/10.1145/1219092.1219093
- [8]. Bruce P. Douglass, David Harel, and Mark B. Trakhtenbrot. 1998. Statecarts in use: structured analysis and object-orientation. In Lectures on Embedded Systems, Grzegorz Rozenberg and Frits W. Vaandrager (Eds.). Lecture Notes in Computer Science, Vol. 1494. Springer-Verlag, London, 368–394. https://doi.org/10.1007/3-540-65193-4 29
- [9]. Ian Editor (Ed.). 2008. The title of book two (2nd. ed.). University of Chicago Press, Chicago, Chapter 100, 201–213. https://doi.org/10.1007/3-540-09237-4
- [10]. Peter Eston 1993. The title of the work (3 ed.). 5, Vol. 4. The name of the publisher, The address of the publisher, Chapter 8, 201–213. https://doi.org/10.1007/3-540- 09237-4 An optional note.

- [11]. Matthew Van Gundy, Davide Balzarotti, and Giovanni Vigna. 2007. Catch me, if you can: Evading network signatures with web-based polymorphic worms. In Proceedings of the first USENIX workshop on Offensive Technologies (WOOT '07). USENIX Association, Berkley, CA, Article 7, 9 pages.
- [12]. David Harel. 1978. LOGICS of Programs: AXIOMATICS and DESCRIPTIVE POWER. MIT Research Lab Technical Report TR-200. Massachusetts Institute of Technology, Cambridge, MA.
- [13]. David Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science, Vol. 68. Springer-Verlag, New York, NY. https://doi.org/10.1007/3-540-09237-4
- [14]. Donald E. Knuth. 1997. The Art of Computer Programming, Vol. 1: Fundamental Algorithms (3rd. ed.). Addison Wesley Longman Publishing Co., Inc., USA.
- [15]. David Kosiur. 2001. Understanding Policy-Based Networking (2. ed.). Wiley, USA.
- [16]. Stan W. Smith. 2010. An experiment in bibliographic mark-up: Parsing metadata for XML export. In Proceedings of the 3rd. annual workshop on Librarians and Computers (LAC '10), Reginald N. Smythe and Alexander Noble (Eds.), Vol. 3. Paparazzi Press, Milan Italy, 422–431. https://doi.org/10.1038/nphys1170
- [17]. Asad Z. Spector. 1990. Achieving application requirements. In Distributed Systems (2nd. ed.), Sape Mullender (Ed.). ACM Press, New York, NY, 19–33. https://doi.org/10.1145/90417.90738
- [18]. Harry Thornburg. 2001. Introduction to Bayesian Statistics. Stanford University. Retrieved March 2, 2005 from http://ccrma.stanford.edu/~jos/bayes/bayes.html
- [19]. Cuevas García, C. (2018). Obstacle alert and collision avoidance system development for UAVs with Pixhawk flight controller. BS thesis.
- [20]. Talaat, F.M., ZainEldin, H. (2023). An improved fire detection approach based on YOLOv8 for smart cities. Neural Comput Applic, 35, 20939–20954. doi: 10.1007/s00521-023-08809-1
- [21]. Siewert, S., et al. (2019). Fail-Safe, Fail-Secure Experiments for Small UAS and UAM Traffic in Urban Airspace. In 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE.

- [22]. Nguyen, H. H., Ta, T. N., Nguyen, N. C., Bui, V. T., Pham, H. M., Nguyen, D. M. (2021). YOLO Based Real-Time Human Detection for Smart Video Surveillance at the Edge. In 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) (pp. 439-444). Phu Quoc Island, Vietnam. doi: 10.1109/ICCE48956.2021.9352144
- [23]. Kim, J.-H., Kim, N., Won, C. S. (2023). High-Speed Drone Detection Based On Yolo-V8. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-2). Rhodes Island, Greece. doi: 10.1109/ICASSP49357.2023.10095516.
- [24]. Vujović, V., Maksimović, M. (2014). Raspberry Pi as a Wireless Sensor node: Performances and constraints. In 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1013-1018). Opatija, Croatia. doi: 10.1109/MIPRO.2014.6859717
- [25]. Choi, H., Geeves, M., Alsalam, B., Gonzalez, F. (2016). Open source computer-vision based guidance system for UAVs on-board decision making. In 2016 IEEE Aerospace Conference (pp. 1-5). Big Sky, MT, USA. doi: 10.1109/AERO.2016.7500600
- [26]. Cordova-Cardenas, R., Emmi, L., Gonzalez-de-Santos, P. (2023). Enabling Autonomous Navigation on the Farm: A Mission Planner for Agricultural Tasks. Agriculture, 13(12), 2181. doi: 10.3390/agriculture13122181
- [27]. Beaton, R. M., Adams, M. B., Harrison, J. V. A. (1987). Real-time mission and trajectory planning. In 26th IEEE Conference on Decision and Control (pp. 1954-1959). Los Angeles, CA, USA. doi: 10.1109/CDC.1987.272876
- [28]. Hassija, V., et al. (2021). Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(4), 2802-2832.
- [29]. Talaat, F. M., ZainEldin, H. (2023). An improved fire detection approach based on YOLO-V8 for smart cities. Neural Computing and Applications, 35(28), 20939-20954.
- [30]. Spector, A. Z. (1990). Achieving application requirements. In Distributed Systems (2nd ed.), S. Mullender (Ed.). ACM Press, New York, NY, 19–33. doi: 10.1145/90417.90738

INDEX

Certificate	i
Declaration	ii
Acknowledgement	iii
Abstract	iv
List of Figures	vi
List of Tables	viii
List of Abbreviations	X
References	xiii
Chapter 1	
Introduction	1
1.1 Overview	1
1.2 Purpose of the project	1
1.3 Motivation	1
Chapter 2	
Literature Survey	3
2.1 Existing System	3
2.2 Comparison table	82
2.3 Work Evaluation table	85
Chapter 3	
Proposed System	109
3.1 Proposed System	109
3.2 Advantages of Proposed System	109
3.3 System Requirements	109
3.3.1 Software Requirements	110
3.3.2 Hardware Requirements	110
3.3.3 Implementation Technologies	111
Chapter 4	
System Design	113
4.1Proposed System architecture	113
4.2 UML diagrams	115

4.2.1 Use Case Diagram	116
4.2.2 Class Diagram	117
4.2.3 Sequence Diagram	118
4.2.4 Activity Diagram	119
Chapter 5	
Implementation	120
5.1 Implementation of The Autonomous Drone Fleet	
for search and rescue operations	120
5.1.1 Drone hardware integration	120
5.1.2 Drone software integration	121
5.1.3 Working with yolov8	122
5.1.4 Integration of raspberry pi	123
5.1.5 path planning and altitude fixing	124
5.2 Source Code	124
Chapter 6	
Results	130
Chapter 7	
Conclusion	133
Future Enhancements and Discussions	133

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Picture a child, desperately lost in the midst of a vast woodland. As the sun slips below the horizon, shadows deepen, and panic grips the heart. Search and rescue teams mobilize, but their efforts are hindered by the dense forest and limited visibility. With each passing moment, hope dwindles. This distressing scenario is all too common in forested regions worldwide. Children love twists and turns in forests, but those paths become dangerous if lost. Regular searches don't work well in big, thick forests. Hope fades quickly. Then drones appear, their propellers whirring! Drones have awesome sensors and smart code. They fly over trees, seeing all. Sensors pierce the forest roof. Drones scan huge areas, guided by great systems mapping search routes. We set aside conventional drone applications, instead tackling the unique challenges posed by these critical missions. Envision a fleet of aerial sentinels equipped with high-tech sensors, scouring the forest floor, their cameras trained on the telltale signs of a lost child—a brightly colored jacket, the glint of sunlight reflecting off tears.

1.2 PURPOSE OF THE PROJECT

The purpose of this project is to build a new technology that offers creative solutions for search and rescue missions will be introduced. Using AI algorithms, real-time data transfer, a potent camera, and a drone fleet in situations involving lost children, drones might scan wide areas in such endeavors, discover people in steep places, and provide the rescue crews with vital information. The employment of autonomous drones could expedite and improve the search operation's accuracy while also raising the likelihood of a successful outcome.

1.3 MOTIVATION

Traditional search and rescue methods in forests face significant challenges. Reliance on human crews is hampered by limited manpower and difficult terrain, slowing searches and reducing the chance of finding missing children quickly. Dense foliage and uneven ground make navigation hard, potentially causing crews to miss crucial areas. Time is critical, but traditional methods might not fully utilize the golden hours after a disappearance. Communication between emergency responders, volunteers, and families can be complex, leading to delays and a lack of real-time

information. Finally, bad weather conditions like rain, fog, and snow further hinder search efforts and limit the effectiveness of some technologies. These issues not only impact the success of the search but also create immense psychological stress for families waiting for news about their loved ones.

Figure 0: Top-view of Pixhawk drone

CHAPTER 2

LITERATURE SURVEY

An extensive literature survey has been conducted by studying existing systems of Drone integration and object detection. A good number of research papers, journals, and publications have also been referred before formulating this survey.

2.1EXISTING SYSTEMS

1	

Reference in APA		
format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org	ZHIJUN MENG	Reinforcement learning,UAV
/document/9348925	LIFENG WANG	(Unmanned Aerial Vehicle)
	HAOCHEN LI	Obstacle avoidance,A*
	KAIPENG WANG	algorithm, Artificial potential field
	KAIPENG WANG	method Genetic algorithm,Ant
		colony algorithm,Particle swarm
		optimization,Q
		learning,Convolutional Neural
		Network (CNN)
		Recurrent Neural Network
		(RNN), Markov Decision Process
		(MDP)
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is the	
(Technique/ Method/	problem that need to be	
Scheme/ Algorithm/	solved	
Model/ Tool/		
Framework/ etc)		
Unmanned Aerial	the aim is to create a smart	Construction of the Algorithmfor
Vehicle Path Planning	drone that can fly by itself,	effective path planning Stability

learn from its surroundings,	and Convergence obsatcle
and make decisions to	avoidence
navigate safely through	
and Dynamic different environments	
1	and make decisions to navigate safely through

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	The algorithm establishes the	Clearly defining the	Depending on the complexity the
	state and action spaces for	state space and action	environment a three-dimensional
	addressing UAV path	space provides a	map could lead to increased
	planning. It frames the	structured	computational demands
	problem as a Partially	representation of the	
	Observable Markov Decision	problem.	
	Process (POMDP) and		
	employs a three-dimensional		
	topographic map for		
	algorithm evaluation		
2.	The algorithm is constructed	Deep reinforcement	Training deep networks might
	on the foundation of deep	learning with CNNs	face challenges like overfitting.
	reinforcement learning,	and RNNs enables the	
	incorporating a network	algorithm to learn	
	structure featuring	complex patterns and	
	Convolutional Neural	temporal	
	Networks (CNN) and	dependencies.	
	Recurrent Neural Networks		
	(RNN). To tackle partial		
	observability, a recurrent		
	neural network with temporal		
	memory is employed to		
	extract vital information		

	from historical state-action		
	sequences		
3.	The algorithm proposes a	The integration of	In certain situations, the
	new action selection strategy	current reward and	combined strategy might struggle
	that combines the current	state-action value can	to adapt effectively across
	reward value and the state-	lead to more informed	diverse environments.
	action value. This strategy	and efficient decision-	
	reduces meaningless	making.	
	exploration and improves the	8	
	learning efficiency of the		
	algorithm.		
4.	The algorithm constructs two	The approach	Adaptive mechanisms may
	memory pools based on the	minimizes	introduce additional complexity
	average reward value per	computational costs by	to the algorithm.
	round. It uses an adaptive	focusing on important	to viio uigoriviiiii
	sampling mechanism to take	memory.	
	samples from the important		
	memory pool according to		
	the frequency of task failure.		
	This approach improves the		
	learning efficiency and		
	convergence stability of the		
	algorithm with low		
	computational cost		
5.	The algorithm conducts	The approach	Adaptive mechanisms may
	simulation experiments to	minimizes	introduce additional complexity
	evaluate its performance. It	computational costs by	to the algorithm.
	compares the algorithm with	focusing on important	
	other path planning	memory.	
	algorithms and analyzes the	-	
	results. The experimental		
	results show that the		
	proposed algorithm has		

significant improvements in		
terms of stability and		
learning compared to other]
algorithms.		

Major Impact Factors in this Work

Dependent	Independent	Moderating variable	Mediating (Intervening)	
Variable	Variable		variable	
The	The independent	The type or complexity of	the use of deep	
effectiveness of	variable could be	the environment in which	reinforcement learning with	
the UAV path	the various design	the UAV operates	CNNs and RNNs	
planning	choices and			
algorithm can	parameters of the			
be assessed by	UAV path planning			
evaluating its	algorithm			
capacity to				
identify optimal				
routes and its				
success rate				
across diverse				
environments				

Input and Output		Feature of This Solution	Contribution & The Value of This Work
		1 1	Good to have this knowledge
Input	Output	algorithm stands out for its	from this paper as we want to
		ability to navigate in three	work on UAVs
Input from	Path to	dimensions, considering both	
different	follow by	horizontal and vertical actions.	
sensers about	UAV	It formulates the problem as a	

the	Partially Observable Markov	
environment	Decision Process, making	
	decisions with incomplete	
	information. The algorithm	
	incorporates a probabilistic	
	safety measure, evaluates	
	performance in diverse	
	environments, and introduces	
	adaptive mechanisms for	
	efficient learning. Its	
	effectiveness in obstacle	
	avoidance and applicability to	
	limited sensor scenarios make it	
	a robust solution for dynamic	
	UAV navigation.	

Positive Impact of this Solution in This Project Domain

It

addresses

adaptability.

solution for UAV projects.

The algorithm enhances UAV path planning by improving efficiency, learning, stability, partial observability, performs well in diverse environments, and does so with low computational cost, making it a valuable

Negative Impact of this Solution in This Project Domain

The algorithm's potential drawbacks in the UAV project domain include computational intensity, implementation complexity, reliance simulation, sensitivity to environmental changes, risk of overfitting, limited robustness, and a learning curve for implementation.

Analyse This Work By	The Tools That Assessed this	What is th	e Structure of this
Critical Thinking	Work	Paper	
This work is good, as they	Deep Learning	Abstract	
used Deep Reinforcement		l.	Introduction
Learning for effective path		II.	Construction of
planning			the Algorithm
		III.	Approaches to
			Speed Up

		Algorithm
	IV.	Experimental
		Results and
		Analysis
	I.	Conclusion and
		Future Work
2		

Reference in APA		
format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
	Transition with Emilia	Tiej words in this itererence
https://link.springer.com/	Kevin Pluckter	Precision landing
chapter/10.1007/978-3-	Sebastian Scherer	Unstructured environments
030-33950-0_16		Helipad design
		Visual Teach and Repeat (VTR)
		Visual servoing
		Fisheye lens camera
		Pinhole camera lens
		Rigid body transform
The Name of the	The Goal (Objective) of	What are the components of it?
		what are the components of it:
Current Solution	this Solution & What is the	
(Technique/ Method/	problem that need to be	
Scheme/ Algorithm/	solved	
Model/ Tool/		
Framework/ etc)		
Precision UAV Landing	The goal or objective of this	Take-off and Landing
in Unstructured	solution is to enable	Localization
Environments	autonomous precision	Pose Estimation and Control
	landing of unmanned aerial	Safety Measures
	vehicles (UAVs) in	
	unstructured and unknown	

environments, specifically at the UAV's starting position. The problem that needs to be solved is the reliance on GPS or odometry-based landing which can systems, inaccurate and unreliable, especially in GPS-denied environments. The proposed solution aims to address this issue by using a downwardfacing fisheye lens camera to accurately guide the drone back to its initial position without the need for a specific landing pattern

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Take-off: The drone takes	Starting with a recorded	Sensitivity to lighting
	off from its initial position	set of images provides a	conditions and potential
	while recording a set of	baseline for comparison	false matches.
	images at regular intervals	during landing.	
	using a fisheye lens camera		
2	Image Processing: Key	Extracting key points and	Limited to the features
	points and ORB descriptors	ORB descriptors enables	present in the initial take-
	are extracted from the	efficient feature matching.	off image, may struggle
	recorded images during		with drastic scene changes.
	take-off. These features will		

	be used for localization			
	during the landing phase.			
3	Localization: During the landing phase, the drone compares the current image captured by the fisheye lens camera with the image taken at a lower altitude during take-off. By matching the ORB descriptors, the drone	Relatively quick and accurate localization using feature matching.	Assumption of planar projection might not hold in complex environments.	
	can estimate its relative position to the take-off image.			
4	Pose Estimation:After	Correcting position based	Susceptible to errors if the	
	finding similar features in	on roll and pitch improves	initial localization is	
	the images, the drone adjusts	accuracy.	incorrect.	
	these points based on how			
	it's tilted (roll and pitch).			
	Then, it imagines these			
	adjusted points in a 3D space			
	using the assumption that the			
	environment is mostly flat.			
	Considering the height and			
	camera details, this helps the			
	drone figure out where it is			
	compared to the starting			
	image			
5	Control and Descent: With	Continuous descent	Temporary loss of	
	the estimated pose, the drone	toward the take-off	localization during	
	commands itself towards the	position enhances	ascension may impact	
	position of the take-off	precision.	efficiency.	
	image. As the drone			
	approaches the position, it			

	continuously descends. If the		
	drone goes below the height		
	of the current take-off image		
	being compared to, the next		
	closest image is used for		
	localization.		
6	Safety Measures: If the	Proactive ascension in	ı
	RANSAC algorithm fails to	case of potential scene	
	determine a consensus on the	changes ensures safety.	
	rigid body transform,		
	indicating a potential scene		
	change, the drone ascends to		
	increase its field of view		
	until it can match with the		
	take-off image again. This		
	ensures safe landing even in		1
	challenging environments.		1

Major Impact Factors in this Work

Ī	Dependent	Independent		ndent Independent Moderating		ating	Mediating (Intervening) variable
	Variable	Variable		Variable variable			
	The accuracy	The	method	A mod	erating	The correction of drift errors in state	
	of the drone	using	a	variable	could	estimation	
	landing	downw	ard	be			
		facing	fisheye	environr	nental		
		lens	camera	conditio	ns		
		and	the				
		associa	ted				
		algorith	ım				

Relationship Among the Above 4 Variables in This article

The relationship involves the algorithm impacting both the correction of drift errors and the accuracy of the drone landing. The correction of drift errors serves as an important mediating variable, explaining how the algorithm's influence translates into improved accuracy during the landing process.

Input and	l Output	Feature of	This Solution	Contribution & The Value
				of This Work
		This solution	features efficient	Good to have this knowledge
Input	Output	feature exti	raction, precise	from this paper as it provides
Drone takes	During	localization,	and 3D pose	a knowledge provides a fail
off and	landing, the	estimation	during drone	safe mechanismUAVs
records	drone	landing. It in	corporates safety	
images using	compares the	measures, su	ch as proactive	
a fisheye lens	current image	ascension in	case of scene	
camera.	with the take-	changes. The	system undergoes	
	off image	rigorous eval	uation in diverse	
	using the	environments,	comparing the	
	extracted	performance	of fisheye and	
	features.	pinhole lens ca	ameras.	
Positive Impa	act of this Solu	tion in This	Negative Imp	act of this Solution in This
P	roject Domain		P	roject Domain
This solution s	significantly in	proves drone	This solution has	potential drawbacks, including
precision and r	eliability in lo	calization and	dependence on in	nitial conditions, sensitivity to
landing, ensure	es safety thro	igh proactive	lighting, limitation	ons in complex environments,
measures, and o	ffers versatility	across diverse	risks of false ma	atches, and temporary loss of
environments. The rigorous eva		valuation and	localization durin	g safety measures. Addressing
camera compari	ison enhance its	effectiveness	these challenges	s is essential for optimal
in UAV projects	S.		performance in U	AV projects.
Analyse Thi	s Work by	The Tools Th	nat Assessed this	What is the Structure of
Critical T	Thinking	V	Vork	this Paper

	Diagram/Flowchart						
real-world effectiveness.							
localization loss is crucial for							
conditions and temporary							
dependencies on initial							
though addressing		I.	Futurework				
evaluation is commendable,		VI.	Conclusion				
conditions. Rigorous			n				
assumption and sensitivity to			ults and Evaluatio				
limitations like the planar		V.	ExperimentalRes				
but prompts consideration of			up				
extraction and safety measures	Pinhole Lens Camera	IV.	ExperimentalSet				
highlights strengths in feature	Algorithm	III.	ProposedMethod				
and landing. Critical analysis	3D Pose Estimation	II.	RelatedWorks				
approach to drone localization	ORB Descriptors	l.	Introduction				
The work presents a thorough	Fisheye Lens Camera	Abstract					
T1	Fig. 1 I C	A 14 4					

3			
Reference in APA			
form	at		
URL of the	Reference	Authors Names and	Keywords in this Reference
		Emails	
https://www.h	indawi.co	Xin Liu	UAV (Unmanned Aerial
m/journals/wc	mc/2021/5	Zhanyue Zhang	Vehicle)
565589/			YOLO v4 (You Only Look
			Once version 4)
			DeepSORT (Deep Simple
			Online and Realtime Tracking)
			Cascade matching
			Occlusions
			Mahalanobis distance
			matching

The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
A Vision-Based Target	The goal of this solution is to	Vehicle Detection
Detection, Tracking, and	use a UAV to automatically	Multitarget Tracking
Positioning Algorithm for	detect, track, and accurately	Trajectory Processing and State
Unmanned Aerial	position a moving target. The	Estimation
Vehicle	problem to be solved is the	Cascade Matching
	state estimation of the target	
	in a nonlinear system.	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Vehicle Detection: The "You	The YOLO v4 algorithm	The performance of
	Only Look Once version 4"	is known for its	the algorithm may be
	(YOLO v4) algorithm is	robustness and	affected by factors
	used for vehicle detection.	generalization	such as weather
	This algorithm is known for	capabilities, allowing it	conditions, lighting
	its robustness and	to accurately detect	conditions, and
	generalization capabilities,	vehicles in urban	occlusions.
	allowing it to accurately	environments.	
	detect vehicles in urban		
	environments		
2	Multitarget Tracking:	The DeepSORT	The algorithm's
	The DeepSORT	algorithm combines	performance may be
	algorithm, which	target detection with	affected by occlusions
	combines target	multitarget tracking,	and complex motion

	detection with	allowing for the	patterns.
	multitarget tracking, is	tracking of multiple	
	employed. DeepSORT	vehicles over time.	
	uses the detections		
	from YOLO v4 to		
	track multiple vehicles		
	over time, maintaining		
	their identities and		
	estimating their		
	trajectories.		
3	Trajectory Processing and	The algorithm	The algorithm's
	State Estimation: The	processes the tracked	performance may
	algorithm processes the	trajectories and	degrade in situations
	tracked trajectories and	estimates the state of	where the target's motion
	estimates the state of the	the target, including	is highly nonlinear or
	target, including its	its position and	unpredictable.
	position and velocity. The	velocity.	
	Mahalanobis distance		
	matching method is used		
	to associate detected		
	positions with the average		
	tracking position.		
	Additionally, target		
	appearance information is		
	utilized to improve		
	tracking performance		
4	Cascade Matching: When	Cascade matching helps	It may not be effective
	a target is occluded for a	handle occlusions and	in situations where
	long time, the algorithm	maintain accurate	occlusions are frequent

onged.	or prolonged.	tracking even when	employs cascade matching	
		targets are occluded for	to handle the increased	
		a long time.	uncertainty in filtering	
		-	predictions. This step helps	
			maintain accurate tracking	
			even in challenging	
			scenarios.	
		_	predictions. This step helps maintain accurate tracking even in challenging	

Major Impact Factors in this Work

Dependent Variable	Independent	Moderating	Mediating
	Variable	variable	(Intervening)
			variable
the independent	The accuracy of the	The UAV system's	The efficiency of the
variable could be	target detection and	performance is	signal processing
the characteristics or	tracking	affected differently	algorithm
settings related to		based on whether it's	
the UAV and the		a sunny day or a rainy	
sensors input.		day	

Relationship Among The Above 4 Variables in This article

The UAV characteristics influence target detection accuracy, with environmental conditions moderating this relationship, and the efficiency of the signal processing algorithm mediating the impact of UAV characteristics on accuracy.

Input and Output	Feature of This Solution	Contribution & The
		Value of This Work

1			TEN 1 1 1 1 1	C 1 1 11:
			This solution combines the	Good to have this
	Input	Output	YOLO v4 algorithm for	knowledge from this paper
	video or	set of	accurate vehicle detection,	as we want to work on
	image data	bounding	DeepSORT for multitarget	UAVs
	containing	boxes and	tracking, the Mahalanobis	
	urban scenes	class labels	distance matching method for	
		that indicate	precise state estimation, and	
		the location	cascade matching to handle	
		and type of	occlusions. Its objective is to	
		vehicles in	achieve real-time and accurate	
		the input data	detection, tracking, and	
			positioning of vehicles using	
			UAVs in urban environments.	

Negative Impact of this Solution in This Positive Impact of this Solution in This Project Domain Project Domain positive impacts such as enhanced search It may raise concerns regarding privacy, ethics, capabilities, real-time monitoring, improved technical limitations, costs, and legal efficiency, data-driven decision making, and compliance. better collaboration among stakeholders. These benefits increase the chances of locating the missing child and contribute to the success of the project.

Analyse This Work By Critical Thinking	The Tools That Assessed this Work		the Structure of is Paper
This work is good, as they	Deeplearning	Abstract	
tried improve the target		I.	Introduction
detection by vision based.		II.	RelatedWorks
		III.	ProposedMetho
			d
		IV.	ExperimentalSe
			tup
		V.	ExperimentalR

		esultsandEvalu
		ation
	VI.	Conclusion
		Futurework

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org/document/9878336	MUHAMMAD ARIF ARSHAD SADDAM HUSSAIN KHAN1, SULEMAN QAMAR MUHAMMAD WALEED KHAN IQBAL MURTZA JEONGHWAN GWAK ASIFULLAH KHAN	Drone navigation Region and edge exploitation Deep CNN Convolutional neural network Perception and autonomy Drone split transform merge Reinforcement learning Machine learning Deep learning Object identification Object detection Visual navigation Collision probability
The Name of the	The Goal (Objective) of	What are the components of
Current Solution (Technique/ Method/	this Solution & What is the problem that need to be	it?
Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	solved	

Drone Navigation Using Region and Edge	The goal or objective of the proposed solution is to	Drone-STM-RENet STM-based CNN blocks Regression CNN
Exploitation-Based Deep	develop a deep	Deep learning techniques
CNN	Convolutional Neural	
	Network (CNN) based	
	strategy for drone navigation	
	in complex and dynamic	
	environments. The problem	
	that needs to be solved is the	
	safe and reliable navigation	
	of unmanned aerial vehicles	
	(UAVs) in challenging and	
	unpredictable environments	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

Creating a drone navigation system requires the incorporation of machine learning, computer vision, GPS, and optical sensors, along with the implementation of SLAM for navigating urban environments. The steps involve gathering a varied dataset, labeling it for training, and designing a tailored Drone-STM-RENet neural network equipped with STM to enhance obstacle detection efficiency. Training and validation processes are crucial for ensuring the system's capability to navigate effectively in intricate surroundings.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Detection Methods: Utilize	Machine learning and	Dependence on sensor
	machine learning algorithms	computer vision techniques	accuracy; errors in GPS
	or computer vision	provide accurate obstacle	or sensor data may lead to
	techniques to detect	detection.	navigation issues.
	obstacles using GPS range		
	and optical sensors. These		
	methods assess the device		

	status, detect obstacles, and		
	determine the flight route.		
2	SLAM Approach:	Effective in urban areas	Computational
	Overcome the challenges in	where GPS signals may be	complexity may be high,
	urban areas by employing	obstructed.	impacting real-time
	Simultaneous Localization		performance.
	and Mapping (SLAM) as a		
	typical approach. SLAM		
	allows the UAV to develop a		
	map of the environment		
	while simultaneously self-		
	locating within it. This		
	approach is beneficial for		
	global navigation.		
3	Dataset Collection: Collect a	Including various city	
	dataset consisting of images	areas and obstacles enhances system	Time-consuming and
	from three cameras and data	adaptability.	resource-intensive to
	from GPS, IMU, brake,		collect a comprehensive
	steering angles, throttle,		dataset
	gear, and speed. The dataset		
	should include images from		
	various city areas with		
	different obstacles and		
	surroundings		
4	Dataset Labeling: Label the	Binary labeling simplifies	Manual labeling can be
	dataset based on the	the training process.	time-consuming and
	presence or absence of		prone to human error.
	obstacles. Frames with no		
	obstacles are labeled as 0		
	(no collision), while frames		
	with obstacles are labeled as		
	1 (collision). This labeled		

	dataset is used for training,					
	validation, and testing.					
5	Architecture Design: Design	The region operations help	Complexity may require			
	the Drone-STM-RENet	in understanding the	significant computational			
	architecture, which consists	broader context of the	resources.			
	of branched CNN blocks.	scene, while edge				
	These blocks utilize the	operations enhance the				
	Split-Transform-Merge	network's ability to detect				
	(STM) concept to efficiently	finer details and				
	process the input data and	boundaries.				
	extract relevant features.In					
	STM we use region and					
	edge operation					
6	Training and Validation:	Training on a diverse	Overfitting or			
	Divide the dataset into	dataset enhances model	underfitting may occur if			
	training and validation sets.	robustness.	not carefully managed.			
	Use a portion of the dataset					
	for training the drone					
	navigation system with the					
	Drone-STM-RENet					
	architecture and another					
	portion for validation to					
	assess the system's					
	performance					
	Major Impact Factors in this Work					

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The performance of the drone navigation system	Sensors data	The type and complexity of urban environments	Dataset quality and diversity could serve

Relationship Among The Above 4 Variables in This article

The performance of the drone navigation system is influenced by the effectiveness of machine learning algorithms, the adaptability of the architecture, the complexity of urban environments, and the quality of the training dataset. Understanding and optimizing these relationships are crucial for developing a robust and versatile drone navigation system.

Input and Output	Feature of This Solution	Contribution in This
		Work

Input	Output
Sensor data	A navigation
and Images	system that
captured by	processes
multiple	input data to
cameras	detect
	obstacles and
	determine an
	optimal
	flight route.

Key features include the use of **SLAM** for robust urban navigation, a diverse dataset for training, and a specialized Drone-STM-RENet neural network with STM for efficient obstacle detection. The system is designed to process GPS, optical sensor, and camera data, providing comprehensive and adaptable solution for navigating complex environments.

Good to have this knowledge from this paper as we want to work on UAVs and it is very important to know about how the pathplanning works

Positive Impact of this Solution in This Project Domain

This drone navigation solution positively impacts UAV projects by improving accuracy in urban environments through machine learning, computer vision, and SLAM. It ensures effective obstacle detection and avoidance, global navigation capability, adaptability to complex settings, real-time decision-making, and comprehensive sensor integration for a reliable and versatile system.

Negative Impact of this Solution in This Project Domain

Potential drawbacks of this drone navigation solution include computational complexity, resource intensiveness in dataset collection, dependency on sensor accuracy, the risk of overfitting during training, challenges in dynamic environments, and considerations regarding data privacy.

Analyse This Work By	The Tools That Assessed this	What is the Structure of
Critical Thinking	Work	this Paper
This drone navigation system	Machine Learning	Abstract
shows innovation in addressing urban UAV challenges with machine learning and SLAM. Strengths include diverse dataset use and	Frameworks Computer Vision Libraries Neural Network Design Tools Statistical Analysis Tools	VII. Introduction VIII. RelatedWorks IX. ProposedMeth od X. Experimental Setup XI. Experimental

a specialized neural network.		ResultsandEv
However, potential concerns		aluation XII. Conclusion
include computational		I. Futurework
complexity, resource intensity,		
and sensor dependencies.		
Ongoing testing and privacy		
considerations are crucial for		
practical implementation.		
Overall, the solution		
demonstrates promise but		
requires careful consideration		
of real-world challenges.		
	Diagram/Flowchart	

5			
Referen	ice in APA		
fo	rmat		
URL of th	ne Reference	Authors Names and Emails	Keywords in this Reference
S108480452	20302137	Abhishek Sharma Pankhuri Vanjani Nikhil Paliwal M. Wijerathna Basnayaka Dushantha Nalin K. Jayakody Hwang-Cheng Wang	Wireless networks Communication systems UAVs (Unmanned Aerial Vehicles) Mesh network Wireless Sensor Network (WSN) Point-to-point (P2P) protocols Cyber-physical security Air-to-ground channel measurements Channel model Machine learning Artificial intelligence Internet of Things (IoT) Aerial base stations Channel modeling UAV regulation

The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Communication and Networking Technologies for UAVs	The goal of the solution presented in the document is to improve the communication and networking capabilities of Unmanned Aerial Vehicles (UAVs). The problem that needs to be solved is the limited and inefficient communication infrastructure for UAVs, which hinders their ability to transmit data, receive control signals, and coordinate with ground operators	Communication Modules Resource Handling Platforms Networking Technologies

The Process (Mechanism) of this Work; Means How the problem has Solved & Advantage & Disadvantage of Each Step in This Process

The author said UAV communication process involves initializing network parameters, discovering nearby devices, establishing communication links through signal exchange and parameter negotiation, and finally transmitting data once a reliable link is established. Each step comes with its own advantages and challenges in building an efficient and robust UAV network.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Before connections can be	Configuring network	It might take time and
	established, the UAV	parameters in advance	resources to initialize the
	communication network	allows for a more controlled	network, and if not done
	must undergo initialization.	and organized setup. It	correctly, it could lead to
	This process includes setting	helps in avoiding conflicts	

	up network parameters like	and ensures that UAVs	connectivity issues or
	network ID, channel	operate on a designated	vulnerabilities
	selection, and	network.	
	synchronization.		
2	network discovery phase:	Enables UAVs to find and	Depending on the method
	UAVs must locate and	connect with each other	used, there might be
	recognize other devices or	efficiently. It's a crucial step	delays in the discovery
	nodes within their	for creating a network in	process, and there's a
	communication range. This	dynamic and changing	potential for information
	can be achieved through	environments.	leakage to unauthorized
	activities such as scanning		entities.
	and listening for available		
	networks or exchanging		
	network information with		
	neighboring UAVs.		
3	Link Establishment: Once	Once established, a reliable	Establishing links can
	UAVs recognize each other,	communication link	take time, and there's a
	they can begin the process of	ensures efficient data	risk of link failures or
	establishing a link. This	exchange and coordination	disruptions, especially in
	involves exchanging control	between UAVs.	challenging
	signals, negotiating		environmental conditions.
	communication parameters,		
	and creating a reliable		
	communication link.		
4	Channel Allocation: In a	Optimizes the use of	Centralized control might
	multi-UAV scenario, where	available communication	introduce a single point of
	multiple UAVs are operating	resources, minimizing	failure, while distributed
	in the same area, channel	interference in multi-UAV	algorithms could lead to
	allocation is necessary to	scenarios.	suboptimal channel
	avoid interference and		allocation in certain
	ensure efficient use of		situations
	available communication		
	resources. This can be done		

Γ		through centralized control		
		or distributed algorithms.		
	5	Data Transmission: Once the	Enables the actual	Data transmission might
		connection is established,	exchange of information	be affected by latency,
		UAVs can start transmitting	between UAVs or with	packet loss, or
		data between each other or	ground control, supporting	interference, impacting
		with the ground control	mission-critical tasks	the reliability of
		station. This can include		communication
		sensor data, control		
		commands, or other relevant		
		information		

Major Impact Factors in this Work

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
It could be the overall	network parameters	environmental	The synchronization
efficiency,	(e.g., network ID,	conditions	process
reliability, or	channel selection		
performance of the			
communication			
network			

Relationship Among the Above 4 Variables in This article

It the relationship among these variables in the UAV communication network establishmen process involves configuring network parameters (independent variable), which influences the overall efficiency and reliability of UAV communication (dependent variable). This relationship can be moderated by environmental conditions, and the synchronization mechanism acts as a mediating variable, explaining the process by which configured parameter impact communication outcomes

Input and Output		Feature of	This Solution	Contribution & The
				Value of This Work
		Efficient	UAV	Good to have this
Input	Output	communication	on solution	knowledge from this paper
Identify	Successfully	featuring	precise	as we want to work on
devices or	established	initialization,	dynamic	UAVs and it is very
nodes within	communicati	network disc	covery, reliable	important to know about
communicati	on links with	link establish	ment, optimized	how the how
on range	neighboring	channel al	llocation, and	communication takes place
through	UAVs.	seamless data	transmission.	
scanning or				
exchanging				
information				
Positive Impact of this Solution		tion in This	Negative Impa	act of this Solution in This
I	Project Domain		Pı	roject Domain
This solution e	nhances overall	UAV project	This UAV con	nmunication solution, while
efficiency by	optimizing co	mmunication,	beneficial, may	pose challenges such as
ensuring fle	ensuring flexibility, and imp		complexity in	implementation, resource
coordination, reliability, and		nd resource	intensiveness, si	usceptibility to interference,
utilization			high initial costs	, and security concerns in the
			UAV project do	main.
Analyse Th	is Work By	The Tools	That Assessed	What is the Structure
Critical '	Thinking	this	Work	of this Paper
The UAV	communication		mmunication	Abstract
solution shows	s promise with	Protocols An UAV Groun	•	XIII. Introduction XIV. RelatedWorks
its focus o	on efficiency,	Software	gation Modeling	XV. ProposedMeth
coordination,	and resource	Tools	sation iviousing	od XVI. ExperimentalS
optimization.	However,	10013		etup
challenges lik	e complexity,			XVII. ExperimentalR esultsandEvalu
resource	demands,			ation
vulnerability t	o interference,			XVIII. Conclusion Futurework
high initial cos	ts, and security			

need careful consideration for		
successful implementation.		
	Diagram/Flowchart	

Reference in APA		
format		
URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	
https://ico.com/long.ico.co.com	Datas Havington	Duadafinad flight alon single
https://ieeexplore.ieee.org	Peter Harington Wai Pang	Predefined flight plan, single
/document/9249585	Richard Binns	autonomous drone, flight
		command codes, receiving drone,
		autonomous drone control, Wi-Fi
		network, quadcopter drone,
		military drones, commercial
		applications, flight time, drone
		mission, multiple drone network,
		NodeMCU, signal processing
		algorithms, digital signal
		processing, hardware, wireless
		fidelity, drones, aerospace
		control.
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/	De Boireu	
Framework/ etc)		

Autonomous drone control within a Wi-Fi network

a network of multiple
drones from
commercially available
ones.
Problem to Solve: Enable
coordination among
autonomous drones to follow
predefined flight plans and
communicate using flight

command

missions.

codes

collaborative and controlled

for

Goal (Objective): Create

The system's building blocks involve the Parrot AR2 drone, which is essentially a common drone you can control via Wi-Fi and has built-in navigation cameras. Wi-Fi is the tech glue that allows these drones to chat and share flight commands and data. Then, there are these NodeMCU Wi-Fi modules they're like the middlemen, linking the drones and offering some handy programmable stuff. To control the drones using a laptop, you've got this software toolkit (SDK) for writing flight programs and managing Wi-Fi connections.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Start by selecting the Parrot	Drones can be programmed	The use of Wi-Fi and
	AR2 drone, a commercially	to follow predefined flight	NodeMCU modules
	available drone with	plans and execute	allows for wireless
	navigation cameras. Set up	commands, reducing the	communication and
	a Wi-Fi network for	need for continuous manual	reduces the need for
	communication, allowing	control.	physical connections.
	drones to share flight		

	commands and navigation		
	data.		
2	Configure the NodeMCU	The SDK and AT	While using
	Wi-Fi modules.To control	commands provide the	commercially available
	the drones via a laptop,	flexibility to customize	drones is cost-effective,
	install the software	drone behaviors to suit	there can still be an initial
	development kit (SDK)	specific applications.	investment in hardware
	provided by Parrot, allowing		components and software
	users to write flight control		development.
	programs in 'C' and handle		
	Wi-Fi connections.		
3	Implement flight control	The constant transmission	
	functions using AT	of navigation data through	
	commands in the NodeMCU	the network enables real-	
	modules.	time monitoring and	
		control, improving mission	
		accuracy.	
4	As a result of the above	The use of Wi-Fi and	The configuration of
4	steps, a network of	NodeMCU modules allows	multiple components,
		for wireless communication	
	created. These drones can	and reduces the need for	software, can be complex
	operate independently,	physical connections.	and may require technical
	follow predefined flight	physical connections.	expertise.
	plans, communicate via Wi-		expertise.
	Fi, and execute specific		
	flight commands.		
	Major I	mpact Factors in this Work	

Dependent Variable	Independent	Moderating variable	Mediating
	Variable		(Intervening)
			variable
Performance of	Parrot AR2 Drone,	Wi-Fi Network	Real-time Data
Autonomous Drone	Implementation of	Stability	Exchange (continuous
Network	NodeMCU Wi-Fi		transmission o
	Modules, Application		navigation data)
	of SDK for Laptop		
	Control, Flight		
	Control Functions.		

Relationship Among The Above 4 Variables in This article

Input and Output		Feature of This Solution	Contribution & The
			Value of this Work
		Users can easily program	Good to have this
Input	Output	various flight parameters, enabling direction and distance	knowledge from this paper. As it inclined more on
Flight Plan	Controlled	control. The solution allows	controlling the drone
Commands	Flight of	the creation of drone networks	autonomously. We know
	Autonomous	for collaborative missions,	that drones are cost
	Drones	thanks to Wi-Fi	effective making sure of its
		communication. Real-time data exchange ensures accurate monitoring. Future work includes expanding the network through a discovery algorithm, facilitating the inclusion of more drones for enhanced capabilities.	security is essential.

Positive Impact of this Solution in This	Negative Impact of this Solution in This
Project Domain	Project Domain
Good to have this knowledge from this	The use of autonomous drones with
paper. As it inclined more on controlling the	networked capabilities, especially in
drone autonomously. We know that drones	surveillance or data collection applications,
are cost effective making sure of its security	may raise privacy issues if not properly
is essential.	regulated.

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper		
This work is good, as they tried improving the performance by nodemcu wifi modules. Even if any drone lose the connectivity alternate module is activated. One critical point to consider is the potential security vulnerabilities associated with using Wi-Fi networks for drone communication.		Abstract I. Introduction II. Methodology III. Results and Analysis Conclusion		
	Diagram/Flowchart			

Reference in APA format URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org/doc	Sankula Likhith Krishna	Cameras, Telemetry, Sensors,
ument/9032876	Guduru Sai Rama Chaitanya Abbasani Sree Hari Reddy	Drones, Conferences,
	Arasada Manoj Naidu	Trajectory, INSPEC:
	S.S. Poorna K. Anuraj	Controlled Indexing,

The Name of the Current	The Goal (Objective) of this	autonomous aerial vehicles, disasters, emergency management, intelligent robots, object detection, rescue robots, robot vision, Unmanned Aerial Vehicle (UAV) What are the components of
Solution (Technique/	Solution & What is the	it?
Method/ Scheme/ Algorithm/	problem that need to be	
Model/ Tool/ Framework/	solved	
etc)		
Human detection system methodology	The goal is to create a drone-based automated human detection system for Search and Rescue (SAR) missions, with the primary problem being the swift localization of disaster victims.	The paper describes the development of an autonomous drone system for human detection in disaster situations. It outlines the key hardware components used in the system, integration of these components into the drone, and a human detection algorithm employing motion detection. The algorithm provides confidence scores for detected humans. This technology aims to expedite Search and Rescue operations in natural disasters by swiftly identifying survivors.

The Process (mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

Process Steps Advantage Disadvantage 1 The drone is equipped with key hardware components, including the Pixhawk Flight as the Pixhawk Flight Disadvantage Limitation (Limitation (Limitation (The setup and into of these hardware components, such including the Pixhawk Flight (Including the Pixhawk Flight) Disadvantage (Limitation (Including the Pixhawk Flight) Disadvantage (Including the Pixhawk Flight) Disadvantage (Including the Pixhawk Flight) Disadvantage (Including the Pixhawk Flight)	egration
The drone is equipped with the integration of advanced the setup and int key hardware components, hardware components, such of these hardware	egration e
key hardware components, hardware components, such of these hardware	e pe
	be
including the Pixhawk Flight as the Pixhawk Flight components can be	
	require
Controller, SiK Telemetry Controller, SiK Telemetry complex and may	
Radio, Camera, and Radio Radio, and a high-quality specialized technic	ical
Receiver and Transmitter camera, equips the drone expertise.	
System. with the capability for	
efficient data collection and	
communication. These	
components provide	
precision and reliability in	
capturing critical	
information during Search	
and Rescue operations.	
2 The drone operates Autonomous flight While the system	performs
autonomously by following minimizes the need for well with pre-received	
predefined flight trajectories, manual piloting, making datasets, its relian	
leveraging the Ardupilot data collection more such data may po	
mission planning software to efficient and reducing the challenges when a navigate the route and risk associated with human with diverse and control of the challenges when a navigate the route and risk associated with human with diverse and control of the challenges when a navigate the route and risk associated with human with diverse and control of the challenges when a navigate the route and reducing the rou	
	· ·
	108.
trajectories and mission	
planning software enable	
precise and repeatable flight	
paths, enhancing the drone's	
ability to cover specific	
areas of interest.	

An algorithm utilizing The 3 human detection algorithm, particularly using motion detection processes the captured video, motion detection and employing Kalman filtering Kalman filtering, allows for efficient identification of to identify moving human centroids, tracking their individuals from the movements and assigning captured video. It offers the confidence scores to detected ability to track moving individuals. subjects and assign confidence scores to human detections, aiding in rescue prioritization. 4 The system aids Search and The system's primary Rescue operations by swiftly advantage lies in its ability to locating survivors, providing swiftly locate survivors in rescuers with vital data for disaster scenarios, which can significantly increase their effective action plans, potentially elevating the chances of survival. survival rate in disaster-Additionally, the system's stricken areas. provision of confidence scores for human detections can assist rescue teams in making informed decisions and prioritizing their efforts.

Major Impact Factors in this Work

	Dependent Variable	Independent	Moderating	Mediating
		Variable	variable	(Intervening)
				variable
l				

Relationship Among The Above 4 Variables in This article

This study explores the connection between stuttering severity and the automation of stuttering recognition , with age serving as a moderating factor. The workload of Speech Language Pathologists acts as a mediating variable, influencing the relationship between automation and stuttering severity. The study aims to discern how automated recognition, moderated by age and mediated by workload, correlates with the severity of stuttering.

Input and	d Output	Feature of This Solution	Contribution in This Work
Input Visual data from the UAV's camera	Output Localization and identification of survivors, confidence scores for detected humans	It takes advantage of various sensors, including GPS and cameras, to gather comprehensive environmental data. This data informs the system's core function: generating precise flight paths for the Unmanned Aerial Vehicle (UAV). The output provides the UAV with a predefined trajectory, ensuring safe and efficient operation during Search and Rescue missions. Real-time updates on the UAV's progress and the detection of survivors are also offered. This input-	
		output setup equips the system with the critical ability to navigate complex environments and swiftly	

	locate and aid disaster survivors.	
Positive Impact of this Solution i	n This Project Domain	Negative Impact of this
		Solution in This Project
		Domain
The major impact of this solution in substantial improvement in disaster identification and localization of surviv Rescue (SAR) operations. This leads to rescue missions, potentially saving more	response. It accelerates the fors, streamlining Search and o quicker and more effective	A negative impact of this solution is its vulnerability to technical issues and weather-related challenges, which could impede its performance during critical Search and Rescue (SAR) operations What is the Structure
Thinking	this Work	of this Paper
It addresses a critical real-world problem, but its technical complexity and sensitivity to adverse weather conditions present practical challenges. Additionally, privacy concerns related to surveillance technology require careful consideration. The reliability of the human detection algorithm in diverse scenarios warrants further investigation.	MATLAB, OpenCV, Ardupilot, Pixhawk Flight Controller, cameras, GPS modules, and telemetry radios	I. Introduction II. Related Works

8		
Reference in APA		
format		
URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	
https://ieeexplore.ieee.org	Kadi	Payload capacity, cruise speed,
/document/9243257	Shiza nehwaz	drone, video transmission,
		communication module,
		autonomous flight control,
		waypoints, altitude, firmware,
		telemetry unit, transmission power,
		receiver sensitivity, remote
		controllervideo transmitter, mean
		aerodynamic chord, center of
		gravity, MAC line, wing span, root
		chord, tip chord

The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Development of an Aircraft Type Portable Autonomous Drone for Agricultural Applications	The objective of this solution is to design and develop a portable agricultural drone that can be used for various agricultural applications. The agricultural drone provides a solution by offering a faster and more precise way to perform these tasks. It helps in improving productivity, reducing manual labor, and optimizing resource utilization in agriculture.	Mechanical Module: The mechanical module of the drone consists of the airframe, which is constructed using composite glass fibers, foam pad, plywood, and aluminum pipe. Electrical and Electronics Module The communication module facilitates autonomous and manual control of the drone. It comprises a ground control station (GCS) for path programming, a telemetry unit transmitting data at 64kbps, for the autopilot (PixHawk 2)

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	The drone's sturdy airframe	Precision Agriculture:	Drones have limited
	was crafted from composite	Drones enable precision	battery life and flight time.
	glass fibers, foam padding,	agriculture by providing	which can be a constraint in
	plywood, and aluminum pipe.	real-time data on crop health,	covering large areas of
	Components were	nutrient levels, and pest	farmland. Frequent
	strategically placed—GPS	infestations. This allows	recharging or battery
		farmers to make informed	replacement may be

and telemetry units on top,	decisions and optimize their	required, leading to
while the power unit,	farming practices.	interruptions in operations.
autopilot, and electronics	rarining practices.	merraprions in operations.
were housed inside. Weighing		
around 2 kilograms without		
payload, featuring two		
8"×4.5" propellers, it could		
carry up to 1.4 kilograms.		
Two brushless motors with electronic speed controllers powered the drone's propulsion system. It utilized a high-precision GPS and a lithium-polymer battery. Additionally, an HD camera with a 3-axis gimbal and a bottom-mounted loudspeaker were incorporated.	Efficient Monitoring: Agricultural drones can cover large areas of farmland quickly and efficiently, providing farmers with a comprehensive view of their crops. This helps in early detection of diseases, pests, and other problems, allowing for timely intervention.	
The drone's flight path was programmed using Mission Planner software from the Ground Control Station. Test flights followed a set course of five waypoints with specific radii. Autonomous navigation relied on a telemetry unit with a 4-kilometer range, while manual control was possible via a 2.4 GHz long-range remote controller.	Increased Productivity: Drones can automate tasks such as crop spraying, seed sowing, and mapping, reducing the time and effort required by farmers. This leads to increased productivity and improved crop yields.	regulatory restrictions and guidelines. Farmers need to

Precise calculations established the Mean Aerodynamic Chord (MAC) and Center of Gravity. The MAC, derived from averaging root and tip chord lengths, crucially impacted aerodynamic stability. To ensure stability, the estimated of center gravity positioned at 22.5% of the MAC from the wing's leading edge.

Cost-Effective solutions for monitoring and managing agricultural fields. They eliminate the need for manual labor and reduce the use of pesticides and fertilizers, resulting in cost savings for farmers.

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Flight Performance	Modules and Design		
Metrics, Ease of	Components, Cruise		
Installation and	Speed, Modules and		
Portability	Design Components		

Relationship Among The Above 4 Variables in This article					
Input and Output		Feature of This Solution	Contribution & The Value		
			of This Work		
		The Altitude Range, from 10 to	Good to have this knowledge		
Input	Output	200 meters, fundamentally	from this paper. As it inclined		
1		shapes the drone's performance	more on efficiency the drone		
		metrics. It directly affects	autonomously. We know that		

Altitude	Flight	speed, endurance, stability, drones are cost effective
Range	Performance	and power usage. Higher making sure of its security is
	Metrics	altitudes reduce air density, essential.
		impacting speed and
		endurance while posing
		stability challenges due to
		altered air pressure and wind
		conditions. Altitude changes
		also influence power
		consumption, affecting the
		drone's endurance and
		operational range. Ultimately,
		the Altitude Range plays a
		crucial role in defining the
		drone's capabilities and
		behavior during flights.

Positive Impact of this Solut	ion in This	Negative Imp	oact of this Solution in This
Project Domain		P	Project Domain
The drone, meticulously designed	ed, showcases	Environmental C	oncerns: The use of agricultural
exceptional capabilities. Its design	gn parameters	drones for sprayi	ng pesticides and fertilizers can
exceed requirements with a pay	load capacity	lead to environm	nental pollution. The chemicals
of 1 kilogram, a maximum	speed of 60	used in these app	plications can contaminate soil,
kilometers/hour, and wings en	ngineered for	water sources, and harm beneficial insects and	
stability. Computational Fluid Dynamics		wildlife.	
analysis validated optimal airflow at high			
wind speeds, ensuring efficiency. Post-			
installation, it weighs 2 kilogra	ams, achieves		
200 meters altitude and a 4-kile	ometer range,		
with a development cost below \$800.			
Analyse This Work By	The Tools	That Assessed	What is the Structure of
Critical Thinking	this Work		this Paper

This work demonstrates detailed design and analysis, highlighting the drone's strengths in speed, payload, and stability. However, critical assessment questions the \$800 development cost's impact on accessibility and urges deeper exploration of sustainability and scalability for broader agricultural adoption.

The tools used to assess this work include Python and its libraries (such as PyDub and Librosa) for audio processing and feature extraction, scikit-learn for training the SVM model, Keras with TensorFlow backend for developing and training the GRCNN models, and various deep learning models such as CNN and RNN.

Abstract

- I. Introduction
- II. Methodology
- III. Results and Analysis
- IV. Conclusion

Reference in APA format

URL of the Reference	Authors Names and	Keywords in this Reference			
	Emails				
https://ieeexplore.ieee.org /document/9332518	Seema Barda	Anand Ashok Athul midhur			
The Name of the	The Goal (Objective) of	What are the components of it?			
Current Solution	this Solution & What is				
(Technique/ Method/	the problem that need to				
Scheme/ Algorithm/	be solved				
Model/ Tool/					
Framework/ etc)					
Short Range Telemetry	This study aims to innovate	The experimental setup comprises a			
Communication for	wireless telemetry for	250mm carbon fiber frame drone with			
Autonomous Drone	autonomous drone	PM3DR, ESCs, BLDC motors, HC-			
Navigatin	navigation by interfacing a	05 Bluetooth, LiPo battery, and GPS.			
	Raspberry Pi with a Pixhawk	A Raspberry Pi interfaces with the			
	Mini 3DR using Python and	Pixhawk Mini 3DR using Pytho			
	Ardupilot. It targets short-	HC-05 modules enable short-range			
	range Bluetooth	telemetry, and baud rate set at 57600			
	communication for low-	establishes MAVLink			
	latency benefits, addressing	communication. The setup also			
	the need for cost-effective,	includes image processing code for			
	user-friendly drone systems.	target detection and hardware			
	Successful implementation	connections established between the			
	can advance intelligent,	RPi and HC-05 Bluetooth modules.			
	autonomous drones.	Fig. 1 visually represents these			
		components and connections.			
The Process (Mechanism	of this Work; Means How tl	he Problem has Solved & Advantage			
& Disadvantage of Each Step in This Process					

	Process Steps	Advantage	Disadvantage	
			(Limitation)	
1	Interface Setup: The study aimed to interface a	The interface setup allowed for the successful	This can restrict the operational range of the	
	companion PC (Raspberry	communication between the	drone and limit its	
	Pi) with an autopilot system	Raspberry Pi and the	capabilities in certain	
	(Pixhawk Mini 3DR) using	Pixhawk Mini 3DR,	scenarios.	
	Python programming and	enabling control of the drone		
	Ardupilot software.	operations using commands		
		sent by the Raspberry Pi.		
2	Bluetooth Telemetry: The use	Bluetooth telemetry offered		
	of Bluetooth telemetry was	low latency, making it		
	chosen over radio telemetry	advantageous for short-		
	due to its lower latency (up to	range communication		
	100ms) compared to radio	between the Raspberry Pi		
	telemetry (up to 250ms).	and the flight controller.		
	Bluetooth telemetry allowed			
	for successful			
	communication between the			
	Raspberry Pi and the PM3DR			
3	Bluetooth Telemetry: The use	The analysis of flight data		
	of Bluetooth telemetry was	provided insights into		
	chosen over radio telemetry	various parameters that		
	due to its lower latency (up to	govern the quality and		
	100ms) compared to radio	manner of drone flight,		
	telemetry (up to 250ms).	allowing for further		
	Bluetooth telemetry allowed	improvements and		
	for successful	optimizations.		
	communication between the			
	Raspberry Pi and the PM3DR			
4	Flight Data Analysis: The	The vibration analysis		
	flight data logged in the SD	ensured that the vibration		

card storage of the PM3DR	levels during autonomous
was extracted using Mission	flight were within the
Planner software.	permissible range, ensuring
	smooth flight and avoiding
	malfunction of the aircraft.

Major Impact Factors in this Work

Dependent Variable	Independent	Moderating variable	Mediating
	Variable		(Intervening)
			variable
Flight Data Analysis,	performance	bluetooth Network	Real-time Data
experimental setup		Stability	Exchange (continuous
			transmission of
			navigation data)

Relationship Among The Above 4 Variables in This article

Input and Output		Feature of This Solution	Contribution & The Value of
			This Work
		Bluetooth modules serve as	Good to have this knowledge
Input Output		the enabling technology for	from this paper. It helps us to
		establishing short-range	first test on the smaller platform
Bluetooth	Short-range	telemetry communication	which has low damage. And can
modules for	telemetry	within this solution. Their	be easily controlled.
telemetry	communicati	utilization facilitates direct,	
	on	low-latency communication	
	establishmen	between the Raspberry Pi and	
	t	Pixhawk, ensuring effective	
		and efficient data exchange	

	crucial for drone control and			
	navigation.			
Positive Impact of this Solut	tion in This	Negative Im	pact of this	s Solution in This
Project Domain]	Project Do	main
Enhancing drone control,	the solution	Insufficient telen	netry range	due to the short-range
streamlines communication	between	nature of Bluetoo	oth modules	s can limit operational
Raspberry Pi and Pixhawk, fostering efficient		distances		
data exchange. This improve	s operational			
precision, enabling seamless	control and			
navigation, thereby augn	nenting the			
autonomy and efficacy of unr	nanned aerial			
vehicles in various applications				
Analyse This Work By	The Tools	That Assessed	What is t	the Structure of this
Analyse This Work By Critical Thinking		That Assessed Work	What is	the Structure of this Paper
			What is t	
Critical Thinking			Abstract	Paper Introduction
Critical Thinking Critical thinking seems			Abstract IV. V.	Paper Introduction Methodology
Critical Thinking Critical thinking seems implicit in the document			Abstract	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power draw to assess drone			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power draw to assess drone performance. Use of Mission			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power draw to assess drone performance. Use of Mission Planner software for flight log			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power draw to assess drone performance. Use of Mission Planner software for flight log analysis and comparison of			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion
Critical Thinking Critical thinking seems implicit in the document through systematic analysis of parameters like vibration levels, flight path, and power draw to assess drone performance. Use of Mission Planner software for flight log analysis and comparison of vibration levels with limits			Abstract IV. V. VI.	Paper Introduction Methodology Experimental setup Conclusion

Diagram/Flowchart

10				
Referenc	e in APA			
format				
URL of the Reference		Authors Names and Keywords in this Referen		
		Emails		
https://ieeexp	olore.ieee.org	Emad	Propellers, Signal processing	
/document/84	491889	Arne poramate	algorithms, Navigation, Laser radar,	
		porumate	System recovery, Collision avoidance,	
			Simulation, Autonomous drone system	
The Nar	ne of the	The Goal (Objective) of	What are the components of it?	
Current	Solution	this Solution & What is		
(Technique	e/ Method/	the problem that need to		
Scheme/ A	Algorithm/	be solved		
Model	/ Tool/			
Framewoo	rk/ etc)			

Short Range Telemetry Develop adaptive The drone, a quadcopter using a carbon an Communication obstacle avoidance fiber frame and 14" carbon propellers, for algorithm drones to hosts a PIXHAWK 2 flight controller Autonomous Drone for navigate LIDAR obstacle Navigation complex with sensors. environments, Controlled by a neural network, these preventing deadlock and enable collisions. sensors adaptive obstacle This solution is vital for avoidance, ensuring safe navigation through complex terrains. The paper real-world applications like infrastructure inspection details the system's design, mechanics, and neural control for efficient obstacle and search operations. It must be efficient, ensuring evasion. safety without endangering lives or property while navigating obstacles autonomously.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

		Process Steps	Advantage	Disadvantage (Limitation)
	1	Requirement Identification:	Drones can be programmed	Frameworks can be
		Define objectives—creating	to follow predefined flight	expensive
		an adaptive obstacle	plans and execute	
		avoidance drone for real-	commands, reducing the	
		world scenarios, prioritizing	need for continuous manual	
		safety, prolonged flight, and	control.	
		simple control strategies.		
	2	Choose components aligning	The advantage is that the	all the requirements may add
		with requirements—a Tarot	design requirements ensure	complexity and weight to the
		650 Sport frame, suitable	the drone meets the	drone.
		motors and propellers for	necessary criteria for safety	
		necessary thrust, Pixhawk	and performance.	
Н				

3	controller, LIDA for obstacle dete neural-based com	ction, and a trol system.	The cons	stant transmission		
	integrating components, con	selected figuring the	_	tion data through ork enables real-		
	control system	based on	time r	monitoring and		
	LIDAR inpu	its, and	control, i	mproving mission		
	developing th	ne neural	accuracy.			
	network for	obstacle				
	avoidance.					
4	Validate the syst	em through	software	tool like eCalc is		
	simulations,	ensuring	that it p	provides a quick		
	efficient obstacle	navigation.	estimation	n of the drone's		
	Implement the alg	gorithm on a	performar	nce.		
	physical plati	form for				
	infrastructure	inspection,				
	confirming its c	apability to				
	navigate	complex				
	environments saf	ely.				
		Major	Impact Fa	ctors in this Work	<u> </u>	
Dep	endent Variable	Indepe	ndent	Moderating		Mediating
		Varia	ble	variable		(Intervening)
						variable
Succ	cessful navigation	Implementa	tion of	Environme	enta	Utilization of short-
of tl	of the drone through adaptive		obstacle	l factors (e.g.,	term memory within the
envi	ronments	avoidance	control	weather, terrain)		neural network control
		system				system
				ı		
	Relat	ionship Amo	ong The Al	oove 4 Variables in	ı Thi	s article
	•					

This study examines the link between dysarthria severity and the accuracy of diagnosis using a Convolutional Neural Network . Speech features like zero crossing rates and MFCCs serve as mediating variables, explaining how dysarthria severity affects diagnosis accuracy. Age is considered as a potential moderating variable, suggesting its influence on this relationship. Overall, the study showcases the CNN's effectiveness in early dysarthria diagnosis, considering severity levels and potential moderating factors.

Input and Output		Feature of	This Solution	Contribution & The Value of
				This Work
			tive obstacle	This work pioneers an adaptive
Input Output		avoidance sy	ystem integrates	obstacle avoidance system,
	-	LiDAR sens	sors to detect	utilizing LiDAR sensors and a
LIDAR	Yaw	obstacles, em	ploying a neural	neural network for drone
Sensor Data	Command	network fo	or continuous	navigation. Its contribution lies
	for Steering	navigation	adjustments. It	in enabling safe autonomous
		ensures dro	one safety by	flight, crucial for diverse
		converting r	eal-time sensor	applications like infrastructure
		data into precise steering		inspection and crisis response.
		commands, enabling efficient		The value lies in real-world
		and collision-free autonomous		implementation, enhancing
		flight	in diverse	safety and efficiency in complex
		environments		environments.
Positive Imp	act of this Solu	tion in This	Negative Impac	et of this Solution in This Project
F	Project Domain			Domain
This solution	n revolution	izes drone	Complex impl	ementation might entail high
autonomy, en	suring safe r	navigation in	costs or requir	e specialized expertise, limiting
diverse terrains. It empowers applications		accessibility and	d widespread adoption in certain	
such as infrast	such as infrastructure inspection and search		contexts.	
operations, enhancing efficiency and safety.				
By enabling obstacle-free flight, it elevates				
the reliability	and effectivene	ess of drone-		

based tasks in challenging environments, revolutionizing their capabilities.

11		
Reference in APA format		

URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org /document/9080597	Chenchen Xu Xiaohan Liao Junming Tan Huping Ye Haiying Lu	Low-altitude airspace, RS and GIS for UAV regulation, UAV regulation technology and policy, Urban region, UAV low-altitude air routes.
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Geographic Information System (GIS) technology	Aim is to incorporate the rapidly increasing number of UAVs into an already crowded airspace, as well as to ensure civilian aviation safety, countries or regions commonly segregate UAV activities from civil aviation in airspace by several measures.	Author used bionic intelligence optimization algorithm and GIS, Ant Colony Optimization (ACO) algorithm for path planning which helps UAV to find the optimal path in crowded, low altitude areas.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The author emphasizes the role of technology, particularly urban remote sensing and GIS, in advancing the field of UAV regulation in urban regions and the technologies used for real-time data processing, object detection and optimal path searching.

Process Steps Advantage Disadvantage (Limitation) The information of USS1 is 1 Describes bionic Ensemble based collected by UAV cloudintelligence optimization techniques should algorithm and GIS, Ant based control system. preferably use to develop Colony Optimization (ACO) automated dynamic filter algorithm for path planning generation which is not fulfilled in this paper. which helps UAV to find the optimal path and easily pass the information. gathers 2 The UAV the Data confidentiality and information to release issue. It is difficult find the optimal path in low-altitude for data updating without areas and crowded places. the support of geographic

			information and fast data acquisition.
3	UAV service system and the data exchange platform	The USS and the data exchange platform are core components of UTM, providing real-time operation and manufacture data of UAVs from different operators to the UAV cloud-based control system.	

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Low altitude areas	Path detection	Environmental conditions	ACO, GIS

Relationship Among The Above 4 Variables in This article

Input and Output		Feature of This Solution	Contribution & The Value of This Work
Input	Output	Developing possible air-routes while sending the information to the cloud-based systems.	Good to have this knowledge from this paper as we reviewing of all the basic algorithms under
low altitude	Detecting possible airroutes, object detection.	Ensuring the safe and legal operation of UAVs at low-altitudes in urban areas through surveying and mapping technology in RS, GIS and geographical grid technology.	data mining filter designing rules.

Positive Impact of this Solution in This Project Domain

Path searching algorithms are big challenging in the current research. Restricting UAV flight by imposing a maximum height and spatial range (geofence) can distinguish civil

Negative Impact of this Solution in This Project Domain

Since this is a performance evaluation of various algorithms, not much to project on negative side as all the things used are defined in advance.

Analyse This Work By	The Tools That Assessed	What is the Structure of						
Critical Thinking	this Work	this Paper						
This work is good, as they tried improving the latest policies and key technologies to ensure the safe flight of UAVs at low-altitude over cities.		I. Introduction II. Machine Learning Techniques III. Benchmark spam datasets IV. Design environments and Evaluation Metrics V. Experimental evaluation VI. Conclusion Future work						
	Diagram/Flowchart							

GNSS+RDSS GNSS+RDSS Large UAV Large UAV ADS-B Middle UAV ADS-B Ground station Remote control Ground station Large UAV ADS-B Large UAV ADS-B Large UAV ADS-B Large UAV ADS-B

-	
•	
7.	
_	

Reference in		
APA format URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexpl ore.ieee.org/st amp/stamp.js p?tp=&arnum ber=9164987	André Farinha Raphael Zufferey Peter Zheng Sophie F. Armanini Mirko Kovac	Aerial systems, applications, robotics in hazardous fields, sensor networks.
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
micro SMA- based trigger, WSN	Aerial sensor placement through impulsive launching with application to Wireless Sensor Network deployment in hazardous environments.	demonstrates a new aerial sensor placement method based on impulsive launching. Since direct physical interaction is not required, sensor deployment can be achieved in cluttered environments where the target location cannot be safely approached by the UAV.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	Direct placement	usage of manipulators is a viable method for sensor delivery.	Accurate state estimation is required to ensure stability of the platform
2	Sensor dropping		
3	Impulsive launching		
4	Sensor attatchment and trajectory		
5	Energy storage		

Major Impact Factors in this Work

Dependent V	ariable	Indepe	endent Variable	Moderating va	ariable	Mediatin (Intervening)
	Relat	ionship	Among The Abo	ove 4 Variables in	n This ar	ticle
			O			
Total	10 4 4		E. A. CEDI	·	G. A.	
Input and	a Output		Feature of Th	is Solution	Contri	bution in This Work
			Demonstrates a no		_	roposed system
Input	Outpu	1 T	placement meth impulsive launchi	od based on ng. Since direct	does not require direct physical interaction to	
Sensor placement	Sensor deployme	ll ll	physical interaction is not required, sensor deployment can be achieved in cluttered environments where the target location cannot be safely		accurately place sensors which brings significant advantages in safety as well as operation in cluttered environments.	
placement	асрюуние					
			approached by the			
Positive Impaction in This Pro			Negative Impact of this Solution in This Project Domain			
This will requi						
vision state positioning, as	estimation well as a		which are alrea	dy defined.		
sensor for estima		-				
location. Analyse This W	ork Ry Cr	itical	The Tools That	Assessed this	What is	s the Structure
Thin	-	lticai	Wo			this Paper
Logically this is	_	1	WSN, Trigger		Abstrac	t
senspr placement physical interaction		any			I. II.	Introduction Related Work
					III.	Proposed
					IV.	Method Experiment
					V.	Results Conclusion
			Diagram/Flow	chart		

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexpl ore.ieee.org/d ocument/8317 266	Anton A. Zhilenkov Ignat R. Epifantsev	Autonomous navigation deep learning, Control system, Drone
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
A propose model of Autonomous Navigation of the Drone in Difficult Conditions of the Forest Trails	To find optimal paths in difficult areas, ex: forest areas.	Convolutional neural networks, autonomous navigation of drones

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)		
1	1. Develop algorithms and models for processing panoramic video, route recognition, machine learning, decision making, optimized for the characteristics of mobile hardware platforms.	Reduced power latency, improve accuracy	complexity, limited scalability		
2	Design a mobile hardware platform for autonomous navigation using neural network architectures that maximize performance and AI hardware acceleration technologies.	Can enable real-time autonomous navigation in complex environments	Expensive, time consuming, limited battery life		
3	Develop software for the mobile hardware platform to implement the algorithms and models.	Portability, flexibility, maintainability	may not be able to achieve the same level of performance as hardware-accelerated solutions.		
4	Design machine learning training methods and tools to make the system robust to different terrains and environmental factors.	Improved generalization performance, Increased safety	Reduced interpretability, increased training time		

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
forest path	CNN architecture	Environmental	CNN features
recognition accuracy		conditions	

Relationship Among The Above 4 Variables in This article

The independent variable (CNN architecture) is hypothesized to have a significant impact on the dependent variable (forest path recognition accuracy). This impact is moderated by the environmental conditions. The mediating variable (CNN features) explains how the independent variable affects the dependent variable.

Input and Output		F	Ceature of This Solution	Contribution & The Value of This Work
Input Processed panoramic image	Output Finding optimal path	CNN-based forest path recognition for autonomous drone navigation		provides a new approach for autonomous drone navigation in forests.
_	t of this Solutio oject Domain	n		s Solution in This Project main
Analyse Thi Critical T	•	T	The Tools That Assessed this Work	What is the Structure of this Paper
The paper makes a significant contribution to the field of autonomous navigation. The proposed system is a promising new approach for autonomous drone navigation in forests, and it has the potential to be used in other applications as well.		Convolutional neural networks, deep learning, control systems		Abstract I. Introduction II. Malicious spam detection overview III. Related Work IV. Proposed Methodology V. Conclusion and Future work
		Ι	Diagram/Flowchart	
	Panorami video recording system (1)		Optical system of M Image recognition and Sy	decision aking ystem (4) 4.1 Motion Control Signals 4.2 4.p

Reference in APA		
format		
10111111		
URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	
https://ieeexplore.ieee.org	Gayathri Devi Ramaraj	PHD, UAV, OCSVM Classifier
/document/8270406	Sriram Venkatakrishnan	
	Ganeshaanand	
	Balasubramanian	
	Soorya Sridhar	
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
Energy Efficient Coverage	Deep Learning-Based	PHD, UAV, OCSVM Classifier
Path Planning	Autonomous Drone	
	Navigation System for	
	Forest Trails	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	A dataset of panoramic video	it allows the model to learn	it can be difficult to label
	images of forest trails is	to identify forest paths in a	the video footage with the
	collected. This dataset is used	variety of different forest	ground truth locations of
	to train the CNN model.	environments.	forest paths

2 The drone is pre-fed with the securely determines The drone needs to process the position of a set of devices following algorithms to help and execute the the drone achieve this. Three and securely verifies the instructions of all three path planning algorithms for position of a set of devices. algorithms, which can put a secure positioning and secure guarantees a bound on the strain on its computational position verification have positioning error, at a cost of resources. been used here: 1) Localizer a longer path. Bee, 2) VerifierBee, and 3) PreciseVerifierBee. This allows for immediate 3 A stream of real time images, Human detection with this background and responses to potential threats algorithms can sometimes frames are fed into the system be fooled by objects or or incidents. For example, if and used to detect human the system detects human animals that resemble humans. This can lead to movement in a restricted movement. area, it can alert security alarms and personnel. unnecessary alerts. 4 drone has the **GPS** providing the drone with the The drone's flight path is coordinates of the charging GPS coordinates of charging constrained by the charge and significantly locations of charging platforms to platforms maintain the battery capacity. reducing enhances operational platforms, efficiency, range, and ability to adapt to changing reliability, making it conditions or explore new areas without the need for valuable asset for various additional applications. charging infrastructure.

Major Impact Factors in this Work

Dependent Variable	Independent	Moderating variable	Mediating
	Variable		(Intervening)
			variable

Surveillance of public	UAV	with	auto	Object	PHD, OCSVM
areas	tracking	features	ı	detection	

Relationship Among The Above 4 Variables in This article

The use of drones for surveillance purposes. Drones can be used to automatically track objects of interest in public areas using algorithms such as PHD and OCSVM. This technology has the potential to improve public safety and security.

Input and Output		Feature of	This Sol	lution	Contribution & The Value of
					This Work
		Swarm of droi	nes which	can act	This research has the potential
Input	Output	autonomously processing a		Image	to revolutionize public monitoring and security. The
Stream of	J	tracking featur	res.		proposed system can be used to
frames	ct position				monitor large areas, such as
					borders or airports, for security
					threats. It can also be used to
					track and follow individuals,
					such as criminals or suspects.
Positive Impa	act of this Solu	tion in This	Neg	ative Im	pact of this Solution in This
P	Project Domain				Project Domain
the solution ca	an be used to	monitor large	Privacy	concerns	5
areas for securi	ity threats, such	as borders or			
airports. This	can help to pre	event terrorist			
attacks and other crimes. The solution can also					
be used to track	be used to track and follow individuals, such				
as criminals or suspects by using PHD,					
OCSVM and ot	her three algorit	hms.			

Analyse This Work By	The Tools That Assessed	What is th	e Structure of this
Critical Thinking	this Work		Paper
The proposed system	PHD,	Abstract	
addresses these shortcomings	MCMC,EECPP,CMC,OCSV	I.	Introduction
by using a swarm of drones	M	1.	Introduction
that can autonomously track			
and follow individuals using		II.	Path Planning
image processing algorithms.			
The drones would be able to			
cover a much larger area than		III.	Human Secure Verification of
current surveillance systems,			Position
and they would be able to track			
individuals even if they are			
moving or partially occluded.		IV.	Human Tracking
The system would also require			
fewer human operators than		V.	Auto Charging
current surveillance systems.			Platform for the
			MCCTV
		VI.	Conclusion
		. 21	
	Diagram/Flowchart		

Reference in APA format			
URL of the Reference	Authors Names and	Keywords in this Reference	
	Emails		
https://ieeexplore.ieee.org/	Ahmed Z. Bashir	Defence in Depth, Drone fleets,	
document/8769017	Bryan O'Halloran	Model driven engineering, Mine	
	Douglas L. Van Bossuyt	Counter Measures	
The Name of the Current	The Goal (Objective) of	What are the components of it?	
Solution (Technique/	this Solution & What is		
Method/ Scheme/	the problem that need to		
Algorithm/ Model/ Tool/	be solved		
Framework/ etc)			
Defence in Depth concept	To explore the early		
	assessment of drone fleet	UML, UAV, NMCM	
	defense in depth capabilities		
	for mission success.		

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Develop the domain specific metamodel that will enable the modelling of the system/process of interest.	offers in terms of improved communication, efficient analysis, reusable knowledge, and reduced complexity	the metamodel may need to be updated to reflect the changes, which can be resource-intensive.
2	Build the dependency model of the fleet.		
3	The tool first identifies the redundant functions and mapps the fleet components to the functions.		

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Defence in Depth capabilities	Drone fleet	Environmental conditions	DiD

Relationship Among The Above 4 Variables in This article						
Input and Output Feature of This Solution Contribution & The Value of						
		This Work				

Input	0	utput
Drone fleet	In	Depth
	capabilites	

it uses a fleet of drones that can be organized in a way that will increase the survivability of the drones and improve mission success. This work is the development of a new framework for early assessment of drone fleet defense in depth capabilities for mission success. The framework is based on a set of key system effectiveness design parameters that are balanced against mission costs.

Positive Impact of this Solution in This	Negative Impact of this Solution in This
Project Domain	Project Domain
The solution will help to reduce drone crashes	Privacy concerns
by providing a more accurate and reliable way	
to detect and avoid obstacles and will help to	
improve mission efficiency by allowing drones	
to fly more autonomously and avoid human	
intervention.	

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper
The researchers found that using a fleet of drones can significantly increase the survivability of individual drones. This is because the drones can share information and support each other, which makes them more difficult to target and destroy. The researchers also found that using a fleet of drones can improve mission success rates. This is because the drones can	UML, UAV, HLIM	I. Introduction II. Methodology III. Case study IV. Conclusion

work together to cover a larger area and complete tasks more quickly.

Diagram/Flowchart

Referen	ice in APA						
fo	rmat						
URL of th	he Reference	Authors Names and	I	Keyword	s in this Re	ference	
		Emails					
https://wwv	w.m	Eleftherios Lygouras,	UAV,	GNSS,	NVIDIA	Jetson	X1,
dpi.com/14 8220/19/16		Nicholas Santavas, Anastasios	Obstac	le detection	on		
42		Taitzoglou,					
		Konstantinos					
		Tarchanidis, Athanasios					
		Mitropoulos, and Antonios Gasteratos					

The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Unsupervised Human Detection with an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations.	The goal of the solution is to develop a fully autonomous UAV system equipped with an embedded vision system to detect and rescue open water swimmers in peril without human intervention. The problem that needs to be solved is the timely and accurate detection and rescue of individuals in distress in open water environments using unmanned aerial vehicles.	Convolutional Neural Networks (CNN) for image processing and object detection , Hardware configurations such as the NVIDIA Jetson X1 for on board image processing, Software configurations for implementing the embedded vision system ,. Global Navigation Satellite System (GNSS) techniques for location tracking , Real-time processing capabilities to avoid the need for transmitting video data to a ground station for processing.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	The fully autonomous UAV system, equipped with an embedded vision system, captures live video of open water environments.	1	detection and avoidance systems can be costly,

			and updates.				
2	The embedded vision system processes each frame of the	Timely and accurate detection and rescue of	Obstacle detection systems, such as				
	live video using a pipeline, dividing the input image into a grid and predicting bounding boxes and confidence scores for object detection.	individuals in distress in open water environments using unmanned aerial vehicles.	sensors and cameras, can be sensitive to environmental conditions like poor lighting, adverse weather, or occlusions. These conditions can affect the accuracy and reliability of obstacle detection, potentially leading to false positives or false negatives.				
3	The system utilizes computational efficient computer vision algorithms to detect swimmers in the open water, ensuring effectiveness under all lighting conditions.	Utilization of computational efficient computer vision algorithms to detect swimmers in open water, ensuring effectiveness under various lighting conditions.					
4	Upon detection of individuals in distress, the UAV	Integration of obstacle detection, avoidance,					
	autonomously navigates to the location for rescue and trajectory control algorithms for safe and efficient operations, without the need for human intervention. The UAV navigation system's integrated obstacle detection, collision avoidance navigation during the rescue process	and trajectory control algorithms ensure safe and efficient during rescue operations.					
	Major Impact Factors in this Work						

Dependent Va	riable	Independent Variable	Moderating variable	(Interv	iating vening) iable
Men a precision	verage	Image characterisites	Environmental conditions	Image techniques	processing

Relationship Among The Above 4 Variables in This article

Input and Output	Feature of This Solution	Contribution & The Value of This Work
The input to the system is live	Tiny YOLO V3 architecture, for	detection in search and rescue
video captured by a camera	real-time human detect swimmers.	missions using
The use of deep learning		
techniques, specifically the		
onboard the UAV, which is		
processed by the pipeline to		

Negative Impact of this Solution in This Project Positive Impact of this Solution in This Project Domain Domain the system can significantly enhance the The limitations of a particular solution, such as its efficiency and effectiveness of search and speed dependency and poor performance in certain rescue operations for missing children. The weather conditions. autonomous nature of the drone. combined with its ability to detect and locate individuals in peril, can lead to rapid response times and potentially life-saving interventions. This technology has the potential to improve the chances of successfully locating and rescuing missing children, particularly in challenging or

remote environments. Overall, the solution can greatly enhance the capabilities of autonomous drones for missing child rescue, ultimately contributing to improved outcomes in such critical situations.

Analyse This Work By	The Tools That Assessed this	What is the Structure	
Critical Thinking	Work	this Paper	•
This work is good, as they tried improving the	Self-supervised learning	Abstract	
performance of UAV		I.	INTRODUCTION
using efficient object detection and tracking of		II.	RELATED WORK
the target		III.	PROPOSED
			ARCHITECTURE
		IV.	EXPERIMENTAL
			EVALUATION
		V.	RESULTS
		VI.	CONCLUSION

Diagram/Flowchart

Reference in APA		
format		
URL of the	Authors Names and Emails	Keywords in this
Reference		Reference
https://ieeexplore.iee	Sahana,	object detector, person
e.org/document/9348	Aniket Sengar,	detection, search and rescue operations,
925	Aniruddh Dubey,	UAV, image processing
	Umang Agrawal.	, machine learning
The Name of the	The Goal (Objective) of this Solution & What	What are the
Current Solution	is the problem that need to be solved	components of it?
(Technique/ Method/		
Scheme/ Algorithm/		
Model/ Tool/		
Framework/ etc)		
Person Detection in	The objective of the solution is to develop and	Unmanned Aerial
Maritime Search	implement advanced technologies, such as	Vehicles (UAVs),
And Rescue	unmanned aerial vehicles (UAVs) and deep	Deep Convolutional
Operations	convolutional neural networks, to enhance	Neural Networks,
	search	Multispectral
	and rescue operations. This includes	Cameras,
	automatic	Feature Pyramid
	detection of individuals and objects in	Networks,
	challenging	Monte Carlo Tree
	environments, particularly in maritime	Search Method.
	search and	
	rescue (MSAR) operations. The objective is	
	to	
	improve the efficiency, cost-effectiveness, and	
	anu	

time-saving aspects of search and rescue missions through the use of innovative technology and machine learning algorithms.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	Data Collection: Gathering	The use of unmanned	The integration and
	relevant data, including images and videos, from	aerial vehicles (UAVs) and deep	deployment of UAVs, deep
	sources such as UAVs and	convolutional neural	convolutional neural
	other reconnaissance	networks improves the	networks, and advanced
	methods.	efficiency	algorithms may require
		of search and rescue	specialized technical
		operations by automating	expertise and resources.
		the detection of individuals	
		and objects in challenging	
		environments.	
2	Pre-processing:	By utilizing advanced	The use of advanced
	Preprocessing the	technology and machine	technologies for data
	collected data for	learning algorithms, the	collection and analysis
	analysis, which may	solution offers a cost	raises concerns related
	involve tasks such as	effective approach to	to privacy, data security,
	image	search and rescue	and ethical
		missions,	

enhancement and data potentially reducing the considera	tions,
normalization.so model need for extensive human particularl	y when dealing
can be resources and manual with	
more accurate search efforts sensitive	information in
search an	d rescue
scenarios	
3 Model Training: Training The automated detection	
deep convolutional neural and localization	
networks using the capabilities	
collected data to enable of the solution can	
automatic significantly reduce the	
detection of individuals and time	
objects in search and required to identify and	
rescue locate individuals in need	
scenarios.and of	
Implementing the survivor rescue, leading to faster	
finding response times and	
algorithm, potentially potentially	
utilizing the Monte Carlo saving lives.	
Tree	
Search Method, to	
enhance the localization of	
individuals in need of	
rescue.	
4 integrate the developed The use of UAVs and	
algorithms and advanced data collection	
components methods allows for a wider	
into the UAV systems and coverage area, enabling	
conduct thorough testing to the identification of	
individuals in remote or	

ensure their effectiveness	challenging terrains.	
in real-world search and		
rescue operations.		

Major Impact Factors in this Work

Dependent Variable	Independent Moderating variable Variable		Mediating (Intervening) variable
Detection	UAV Sensor	Environmental	Data
Accuracy,Performa	Data, Algorithm	Factors,Technologic	Processing, Algorith
nce of	Parameters, Environ	al	m
Neural Network	mental	Constraints, Human	Performance, Decisi
Models,Localization	Conditions	Intervention	on-Making
Efficiency			Processes

Relationship Among The Above 4 Variables in This article

In the context of speech recognition for people who stutter, the study investigates the impact of independent variables (Endpointer Threshold, ASR Decoder Tuning, Dysfluency Refinement) on dependent variables (Word Error Rate, Intent Error Rate), with stuttering severity serving as a moderating factor and dysfluency annotations as a mediating variable.

Input a	and Output	Feature of This Solution	Contribution
			in This Work
			Good to have
Input	Output	The solution involves using UAVs with	this knowledge
the inputs are	the output is	advanced	from this paper
Unmanned	Detection	vision systems and deep learning	as we can able
Aerial	and	algorithms,	

Vehicle	Localization
(UAV)	Results
Sensor	,performanc
Data,Enviro	e metrics
nmental	
Conditions	

such as CNNs and feature pyramids, to enhance search and rescue operations. It aims to achieve precise human detection and localization, potentially retraining models with real-world data, and applying the technology in cooperative missions.The solution involves using UAVs with advanced vision systems and deep learning algorithms, such as CNNs and feature pyramids, to enhance search and rescue operations. It aims to achieve precise human detection and localization, potentially retraining models with real-world data, and

to tack the object
Using UAV efficiently.

Positive Impact of this Solution in This Project Domain	Negative Impact of this Solution in					
	This Project Domain					
The solution significantly enhances search and rescue	the possibility of technical					
operations	malfunctions or errors, and the					
within the project domain by leveraging advanced	ethical considerations					
technology and	surrounding the use of					
algorithms. It brings about improved efficiency through	surveillance technology in search					
precise	and rescue operations					

technology in cooperative missions

applying the

human detection and localization, potentially reducing search times and increasing the likelihood of successful rescues. Furthermore, the use of UAVs and advanced vision systems enhances safety by gathering crucial data without endangering human life.

Analyse This Work By Critical Thinking	The Tools That Assessed this	What is the
	Work	Structure of
		this Paper
		•
This work is good, as they tried improving the	Deep learning, convolutional	Abstract
performance of object detection and	neural network,	I. Introduction
localization	machine learning	II. Related
using deep neural network	method(Monte Carlo Tree	Works
	Search	III.Proposed
	Method).	Method
		IV.Experimental
		Setup
		V.Experimental
		Results and
		Evaluation
		VI. Conclusion
		VII. Future work
Dia assassa	/Elevychout	
Diagram	/Flowchart	

2.2 COMPARISON TABLE

Authors	Yea r	Approach	Description
Andre Farinha	202	Micro sma based trigger, WSN	solution Demonstrates a new aerial sensor placement method
Chenchen Xu	202	RS and GIS for UAV Regulation, Low-altitude airspace, Urban region	This solution Ensures ethical operation of an Unmanned aerial vehicle at low-altitudes in urban areas through surveying and mapping technology in RS, GIS and geographical grid technology
Anton A. Zhilenkov	201	UAV navigation In miserable Conditions of the Forest Trails	This solution proposes a model of UAV Navigation in miserable Conditions of the Forest Trails This solution features with the help of Image processing and autonomous tracking features group of drones can act autonomously
Peter Harington	202	Payload capacity, cruise speed, drone, video transmission, communicatio n module	The project focused on creating a portable autonomous agricultural drone comprising three modules: mechanical, electrical/electronics, and communication. The mechanical module involved constructing the airframe with composite
Sankula Likhith Krishna	201	Cameras, Telemetry, Sensors, Drones, Conferences, Trajectory, INSPEC: Controlled Indexing,	The human Detection algorithm utilizes motion detection and assigns confidence scores to detected humans. By flying autonomously over predefined trajectories, the system aims to enhance Search and Rescue operations by swiftly identifying survivors and providing rescuers with critical data
Kadi Shiza nehwaz	202	video transmission, communicatio n module	The project focused on creating a portable autonomous agricultural drone comprising three modules: mechanical, electrical/electronics, and communication.

Anand	202	Raspberry Pi, PM3DR, HC-05 Bluetooth Module, LiPo Battery, GPS Module:	The study aimed to link a Raspberry Pi with a Pixhawk Mini 3DR using Python for Bluetooth telemetry.Bluetooth, chosen for lower latency than radio telemetry(100ms),facilitated Successful communication.
Zhijun Meng	202	Deep Reinforceme nt Learning for UAV Path Planning	The paper proposes UAV path planning algorithm utilizes POMDP, deep reinforcement learning with CNNs and RNNs, and a novel action selection strategy to enhance efficiency
Kevin Pluckter	201	Precision UAV Landing in Unstructured Environment s	The drone takes off, records key features, and during landing, uses these features to find its position by adjusting for tilt and estimating 3D space based on a flat assumption
Jawad N. Yasin	202	UAV Collision Avoidance System	obstacle detection using monocular or stereo cameras
Nicholas Santavas	201 9	Deeplearning , (you only look once) YOLOV5	embedded vision system to detect and rescue in open water swimmers .
Gayathri Devi Ramaraj	201 7	PHD, UAV, OCSVM Classifier, EECPP	This solution features a swarm of drones that can act autonomously with Image processing and autonomous tracking features.
Sungtae Moon	202	Yolo v5, image stiching	Autonomous drone system designed for real-time object detection. It incorporates the YOLO (You Only Look Once) algorithm to enable rapid and accurate detection of objects.
Xin Liu	202	YOLO v4 (You Only Look Once version 4) Deep SORT (Deep Simple Online and	using YOLO v4 and Deep SORT algorithms to real-time vehicle detection environments using UAVs

		Realtime Tracking)	
MUHAM MAD ARIF ARSHAD	202	Drone-STM-RENet STM-based CNN blocks Regression CNN	it use of SLAM for robust urban navigation and a specialized Drone-STM-RENet neural network
Sahana	202	Deep Convolutional Neural Networks, Yolo v4	It uses advanced technologies, such as (UAVs) and deep convolutional neural networks, to enhance search and rescue operations.
B.Pinney	202	YOLO v4	object detection using YOLO V4
Hasegawa	201 8	Image recognition	Accuracy improvement by contrast correction
Mozhgan Navard	202	Neural networks, visual perception, deep learning	two different methods for implementing the NN inference phase onto tiny drones and analyzing the implementation results for each case: 1) a Cloud-IoT implementation and 2) Onboard Processing

2.3 WORK EVALUATION TABLE

Wor	Syste	Systm	Features	Performance	P	Results
k	m's	's	/Charac		l	
Goal	Com	Mech	teristics		a	
	pone	anism			t	
	nts				f	
					0	
					n	

Elefth	Th	Convol	The	The use	The	_		improving the
	e	utional	use of	of deep	performanc		_	performance
erios	goa	Neural	deep	learning	e of the			of UAV using
Lygou	l of	Networ	The	techniq	system will			efficient
	the	ks	autho	ues,	be			object
ras,	sol	(CNN)	r	specific	dependent			detection and
Nicho	uti	for	focus	ally the	on training			tracking of the
	on	image	ed on	Tiny	and			target
las	is	process	creati	YOLO	algorithmic			8**
Santa	to	ing and	ng a	V3	specificatio			
	dev	object	comp	architec	ns.			
vas,	elo	detecti	letely	ture, for				
Anast	ра	on ,	auton	real-				
asios	full	Hardw	omou	time				
asios	y	are	S	human				
Taitzo	aut	configu	UAV	detectio				
glou,	on	rations	syste	n in				
	om	such as	m	search				
Konst	ous	the	with	and				
antino	UA	NVIDI	an	rescue				
	V	A	integr	mission				
S	sys	Jetson	ated	s using				
Tarch	te	X1 for	visio	unmann				
	m	on	n	ed aerial				
anidis,	equ	board	syste	vehicles				
Athan	ipp	image	m to	(UAVs)				
asios	ed	process	identi	. It also				
as108	wit	ing ,	fy	incorpo				
Mitro	h	Softwa	and	rates a				
poulo	an	re	assist	combin				
1	em bed	configu	open water	ation of				
s, and	ded	rations	swim	global				
Anton	visi	for	mers	navigati on				
	on	implem	in	satellite				
ios	sys	enting the	dange	system				
Gaster	te	embed	r	(GNSS)				
atos	m	ded	witho	techniq				
atos	to	vision	ut	ues and				
	det	system	huma	comput				
	ect	5,500111	n	er				
	and	,. Global	Invol	vision				
	res	Naviga	veme	algorith				
	cue	tion	nt.	m.				
	ope	Satellit						
	n	e						
	wat	System						
	er	(GNSS						
		`				I .		

	swi m me rs in per il) techniq ues for locatio n trackin g.							
	wit ho ut hu ma n int erv								
	ent ion								
Saha	The	Unman	The	The	-	-	-		
na,	obje	ned	drone	solution				improvi	
Anik	ctiv	Aerial	embe	involves				ng the	
et	e of	Vehicle	dding	using				perform	
Seng	the		advan	UAVs				ance of	
ar,	solu	S	ced	with				object	
Anir	tion	(UAVs	techn	advanced				detectio	
uddh	is to),	ologi	vision				n and	
Dube	dev	Deep	es,	systems				localizat	
y,	elop	Convo	such	and deep				ion	
Uma	and	lutiona	as	learning				using	
ng	im	1	unma	algorithm				deep	
Agra	ple	Neural	nned	S,				neural	
wal.	me	Netwo	aerial	such as				networ	
	nt	rks,	vehic	CNNs				k	
202	ad	Multis	les	and				K	
1	va	pectral	(UA	feature					
1	nc	Camer	Vs)	pyramids,					
	ed	as,	and	to					
	tec		deep	enhance					
	hn	Featur	conv	search					
	olo	e Dymam	olutio	and					
	gie	Pyram	nal	rescue					
	s,	id Notwo	neura	operation					
	su	Netwo	1	s. It aims					
	ch	rks,	netw	to achieve					
	as	Monte	orks,	precise					
		Carlo	to	human					

Tree detection enhan un Search ce and ma Metho localizati searc nn d. h and on, ed potentiall aer rescu ial y retraining ve opera models. tions. hic les (U A V_{S}) an d de ep co nv olu tio nal ne ura 1 net wo rks , to en ha nc e sea rch an d res cu e op era tio ns.

SUNGTA	The	key	an	It	-	The	The	-	This
E MOON	goa	hard	auton	takes		perfo	syst		solutio
<u>JIHU</u>	1 is	ware	omou	adva		rman	em'		n,
<u>N</u>	to	comp	S	ntag		ce of	s		incorpo
<u>JEON</u>	crea	onent	drone	e of		the	use		rating
DOY	te	S	syste	vario		syste	of		YOLO
<u>00</u>	an	used	m	us		m	vari		object
<u>N</u>	un	in the	desig	sens		has	ous		detecti
<u>KI</u>	ma	syste	ned	ors,		been	sens		on,
<u>M</u>	nne	m,	for	inclu		evalu	ors,		address
<u>YON</u>	d	integ	real-	ding		ated	Incl		es a
<u>GW</u>	dro	ratio	time	GP		throu	udi		critical
<u>00</u>	ne	n of	objec	S		gh	ng		real-
<u>KI</u>	whi	thes	t	and		chec	RT		world
<u>M</u>	ch	e	detec	cam		king	K-		proble
<u>2019</u>	can	com	tion.	eras		the	GP		m, but
	fly	pon	It	, to		accur	S,		it
	itsel	ents	incor	gath		acy	ens		encoun
	f	into	porat	er		in	ures		ters
	and	the	es the	com		predi	cent		challen
	use	dron	YOL	pre		ction	ime		ges due
	d	e,	O	hen		of	ter-		to its
	for	and	(You	sive		the	leve		technic
	dete	Yol	Only			mod	1		al
	ctio	О	Look	envi		el.	prec		comple
	n of	algo	Once	ron					xity
		rith)	men					

real	m -	algori	tal		isio	and
tim	This	thm	data		n in	sensitiv
e	algo	to			posi	ity to
obj	rith	enabl	Thi		tion	adverse
ects	m	e	S		esti	weathe
suc	prov	rapid	data		mat	r
h as	ides	and	info		ion,	conditi
pers	conf	accur	rms		enh	ons.
on'	iden	ate	the		anci	
s in	ce	detec	syst		ng	
larg	scor	tion	em'		the	
er	es	of	s		acc	
area	for	objec	core		urac	
s.	dete	ts.	fun		y of	
	cted	The	ctio		obje	
	hum	hard	n:		ct	
	ans.	ware	gen		dete	
	This	comp	erat		ctio	
	tech	onent	ing		n	
	nolo	S,	prec		and	
	gy	inclu	ise		trac	
	aim	ding	flig		kin	
	s to	the	ht		g.	
	exp	Pixha	path			
	edit	wk	S			
	e	Fligh	for			
	Sear	t	the			
	ch	Contr	Un			
	and	oller	man			
	Res	and a	ned			
	cue	came	Aer			
	oper	ra,	ial			
	atio	play a				

Veh cruci ns al icle in (U role natu in AV ral this). disa setup. sters by swif tly iden tifyi ng surv ivor s.

	ı		П				I
	the						to
	recor						detecti
	ding						ng
	of						drowsi
	facial						ne ss
	imag						without
	es						annoya
	durin						n ce
	g						and
	night						interfer
	time						e nce
	drivi						
	ng.						

									T			
JAWA	Th	colli	on	the	-	Th	-	The	The	-	-	The
D N.	e	sion	obst	effecti		e		syst	adva			system
YASI	obj	avoid	acle	ve		sy		em	ntag			achiev
Ν,	ecti	ance	dete	collisi		st		ach	es of			es a
SHERI	ve	strate	ctio	on		m		iev	the			proces
FA.S.	of	gies,	n	avoida		ac		es	syste			s speed
MOH	the	senso	usin	nce		hie		an	m			of
AME	sol	rs	g	system		ve		mA	inclu			44ms
D,	uti	used	mon	s for		s a		P of	de			per
MOH	on	for	ocul	UAVs		pr		86.	its			image,
AMM	is	colli	ar or	incorp		oc		4	spee			an
AD-	to	sion	ster	orates		ess		on	d,			mAP
HASH	dev	avoi	eo	intellig		sp		the	accu			of 86.4
EM	elo	dan	cam	ent		ee		test	racy,			on the
HAGH	p	ce	eras,	decisio		d		ing	and			testing
	eff	in	with			of		set,	robu			set,
BAYA	ecti		a	n- molein		44		out	stnes			and
N,	ve	UA Va	divi	makin		ms		perf	stiles s. It			more
JUKK	col	Vs,	sion	g				-	is is			than
A	lisi	and .	of	capabi		pe		orm	faste			6%
HEIK		vari	capt	lities,		r im		ing R-				
KONE	on	ous	ured	obstacl				FC	r than			improv
N1,	avo	appr	ima	е		ag		rc N				e ment
HANN	ida	oac	ges	detecti		e,			YO			in
U	nce	hes	into	on		wh		whi	LO			mAP
TENH	sys	and	regi	algorit		ich		ch	and			on the
UNEN	te	tech	ons	hms,		is		ach	othe			testing
1,	ms	niqu	to	and		fas		iev	r			set.
JUHA	for	es	redu	path		ter		es	obje			
PLOSI	aut	for	ce	planni		tha		67.	ct			
LA	on	colli	com	ng		n		7. It	dete			
•	om	sion	puta	techni		Y		also	ction			
2010	ous	avoi	tion	ques.		O		sho	algo			
2018	veh	dan	al	By		L		WS	rith			
	icle	ce	cost.	analyz		O		mor	ms,			
	s,	in	Coll	ing		by		e	whil			
	spe	diff	isio	real-		18.		tha	e			
	cifi	eren	n	time				n	outp			
	call	t	avoi	data,				6%	erfor			
	у	scen	dan	UAVs				imp	min			
	un	ario	ce	equipp				rov	g			
	ma	sme	cont	ed				em	them			
	nne	thod	rol	with				ent	in			
	d	olog	and	this				in	accu			
	aer	ies	traje	solutio				mA	racy.			
	ial	relat	ctor	n can				P				
	veh	ed	у	make				on				
	icle	to	cont	inform				the				
	S		rol					test				
		rada		ed								

(U decisio r are ing ΑV com set. sens ns to bine s). avoid ors, d, Th artif potenti and e icial al an collisi pote goa algo 1 is ntial ons by rith fiel to assessi m enh ds, ng the sele anc part speed, cts e icle traject the swa the ory. opti aut rm mal on opti path om miz base y atio d on and n, obst saf and acle ety path clas of plan sific UA ning atio V_{S} algo n for by rith safe int ms and egr for effic ati UA ient ng Vs. dron int e elli navi gen gati t on. dec isio nma kin g.

F	Th	You	The	YOL	YO	_	YOL	YOL	-	_	YO
_	e	Only	YO	0	LO		0	0			LO
a	goa	Look	LO	achie	ach		achi	offers			ach
d	lof	Once	mod	ves	iev		eves	a			iev
,	the	(YOL	el	unpa	esa		a	simpl			es
h	wo	Ov5)	brea	rallel	fast		Mea	e and			a
1	rk	deep	ks	ed	spe		n	highl			Fra
	is	learni	thro	spee	ed		Aver	y			me
a	to	ng	ugh	d	wit		age	effici			Per
n	im	model	the	with	h a		Prec	ent			Se
h	pro	for	tradi	a	Fra		ision	way			co
11	ve	huma	tion	Fram	me		(mA	of			nd
a	obj	n	al	e Per	Per		P) of	solvi			(F
f	ect	detect	appr	Seco	Sec		78.6,	ng			PS
1	det	ion in	oach	nd	on		surp	objec)
e	ecti	searc	of	(FPS	d		assi	t			of
e	on	h and	the) of	(FP		ng	detect			15
	by	rescu	CN	155	S)		the	ion. It			5
Z	acc	e	N	and a	of		perf	achie			an
	eler	operat	fami	Mea	11.		orm	ves			d a
	atin	ions.	ly	n	7,		anc	fast			M
2	g	The	and	Aver	su		e of	speed			ea
0	the	model	intro	age	rp		Fast	and			n
	spe	is	duce	Preci	as		er	high			Av
1	ed	traine	s a	sion	si		R-	accur			era
8	whi	d	new	(mA	n		CN	acy,			ge
	le	using	way	P) of	g		N	surpa			Pr
	mai	data	of	78.6,	th			ssing			eci
	ntai	collec	solv	surpa	e			the			sio
	nin	ted	ing	ssing	pe			perfo			n
	g	durin	obje	the	rf			rman			(m
	hig	g a	ct	perfo	or			ce of			AP
	h	simul	dete	rman	m			Faste)
	acc	ation	ctio	ce of	an			r R-			of
	ura	of	n. It	Faste	ce			CNN.			78.
	сy	searc	achi	r R-	of			It			6,
	and	h and	eves	CNN	Fa			also			surp
	gen	rescu	high		st			has			assi
	eral	e	effic	YOL	er			stron			ng
	izat	operat	ienc	Ov2,	R-			g			the
	io	ions,	y	an	C			gener			perf
	n	where	and	impr	N			alizat			orm
	abil	mann	spee	oved	N.			ion			a
	ity.	equin	d by	versi				abilit			nce
	Th	S	proc	on,				y to			of
	e	were	essi	offer				repre			Fast
	pap	used	ng	s a				sent			er
	er		the	trade				the			

intr	to	entir	off		whol		R-
odu	repres	e	betw		e		CN
ces	ent	ima	een		imag		N
the	huma	ge at	spee		e		
Yo	n	once	d				
u	victi	,	and				
Onl	ms.	rath	accur				
y		er	acy.				
Lo		than	It				
ok		usin	also				
On		g	has				
ce		regi	stron				
(Y		on	g				
OL		prop	gene				
O)		osal	raliz				
mod		S	ation				
el as			abilit				
a			y to				

sol		repres				
utio		ent				
n to		the whole				
this		whole				
pro		image				
ble						
m.						

Sa	The	Un	The	The	The	The	-	improving the
ha	objec	man	drone	soluti	valida	autom		performance of
na	tive	ned	embe	on	tion	ated		object
,	of	Aeri	dding	invol	results	detecti		detection and
An	the	al	advan	ves	show	on and		localization
ike	solut	Vehi	ced	using	high	localiz		using deep
t	ion is	cles	techn	UAV	accura	ation		neural
Se	to	(UA	ologie	s with	cy in	capabi		network
ng	devel	Vs),	s,	advan	object	lities		
ar,	op	v 5),	such	ced	detect	of the		
An	and	Dee	as	visio	ion	soluti		
iru	imp	p	unma	n	and	on can		
dd	lem	Con	nned	syste	locali	signifi		
h	ent	volu	aerial	ms	zation	cantly		

		_			 	 	
Du	adv	tion	vehicl	and	reduce		
be	anc	al	es	deep	the		
y,	ed	Neu	(UAV	learni	time		
U	tech	ral	s) and	ng	requir		
ma	nolo	Net	deep	algori	ed to		
ng	gies	wor	convo	thms,	identif		
Ag	,	ks,	lution	such	y and		
ra	suc	Mult	al	as	locate		
wa	h as		neural	CNN	indivi		
l.	unm	ispe ctral	netwo	s and	duals		
	ann	Cam	rks, to	featur	in		
2	ed		enhan	e	need		
0	aeri	eras,	ce	pyra	of		
$\frac{1}{2}$	alve	Feat	searc	mids,	rescue		
2 1	hicl	ure	h and	to	,		
	es	Pyra	rescu	enhan	leadin		
	(UA	mid	e	ce	g to		
	Vs)	Net	operat	searc	faster		
	and	wor	ions.	h and	respon		
	dee	ks,		rescu	se		
	p	Mon		e	times		
	con	te		opera	and		
	volu	Carl		tions.	potent		
	tion	0		It	ially		
	al	Tree		aims	saving		
	neur	Sear		to	lives.		
	al	ch		achie			
	net	Met		ve			
	wor	hod.		precis			
	ks,			e			
	to			huma			
	enh			n			
	anc			detect			
	e			ion			
	sear cha			and			
	nd			locali			
	resc			zatio			
	ue			n,			
	oper			poten			
	atio			tially			
	ns.			retrai			
	110.			ning			
				mode			
				ls.			

<u>SU</u>	Th	key	an	It	-	The	The	-	This
<u>N</u>	e	hardw	auto	take		perfor	syste		solution,
<u>G</u>	goa	are	nom	S		manc	m's		incorpor
<u>T</u>	1 is	compo	ous	adva		e of	use		ating
<u>A</u>	to	nents	dron	ntag		the	of		YOLO
<u>E</u>	cre	used in	e	e of		syste	vario		object
<u>M</u>	ate	the	syste	vari		m has	us		detection
<u>o</u>	an	system	m	ous		been	sens		,
<u>o</u>	un	,	desig	sens		evalu	ors,		addresse
<u>N</u>	ma	integra	ned	ors,		ated	Inclu		s a
<u>JI</u>	nne	tion of	for	inclu		throu	ding		critical
<u>H</u>	d	these	real-	ding		gh	RTK		real-
<u>U</u>	dro	comp	time	GPS		check	-		world
<u>N</u>	ne	onent	objec	and		ing	GPS,		problem,
<u>J</u>	whi	s into	t	cam		the	ensu		but it
<u>E</u>	ch	the	detec	eras,		accur	res		encounte
<u>O</u>	can	drone	tion.	to		acy in	centi		rs
<u>N</u>	fly	, and	It	gath		predic	mete		challeng
<u>D</u>	itse	Yolo	incor	er		tion	r-		es due to
<u>O</u>	lf	algori	porat	com		of the	level		its
<u>Y</u>	and	thm -	es	preh		model	preci		technical
<u>O</u>	use	This	the	ensi		•	sion		complexi
<u>O</u>	d	algori	YOL	ve			in		ty and
<u>N</u>	for	thm	0	envi			posit		sensitivit
<u>K</u>	det	provi	(You	ron			ion		y to
<u>I</u>	ecti	des	Only	ment			esti		adverse
<u>M</u>	on	confi	Look	al			mati		weather
<u>Y</u>	of	dence	Once	data.			on,		conditio
	real	score)	This			enha		ns.
<u>N</u>	tim	s for	algor	data			ncin		
<u>G</u>	e	detect	ithm	infor			g the		
$\underline{\mathbf{W}}$	obj	ed	to				0		

	ect	humo	enabl	ms	20011	
0		huma		ms	accu	
<u>O</u>	S	ns.	e	the	racy	
<u>K</u>	suc	This	rapid	syste	of	
<u>I</u>	h	techn	and	m's	obje	
<u>M</u>	as	ology	accur	core	ct	
<u>20</u>	per	aims	ate	func	detec	
1	son	to	detec	tion:	tion	
9	's	exped	tion	gene	and	
	in	ite	of	ratin	track	
	lar	Searc	objec	g	ing.	
	ger	h and	ts.	preci		
	are	Resc	The	se		
	as.	ue	hard	fligh		
		opera	ware	t		
		tions	com	noth		
		in	pone	path		
		natur	nts,	s for		
		al	inclu	the		
		disast	ding	Unm		
		ers by	the	anne		
		swiftl	Pixh	d A a mi		
		у	awk	Aeri		
		identi	Fligh	al		
		fying	t	Vehi		
		survi	Cont	cle		
		vors.	roller	(UA		
			and a	V).		
			came			
			ra,			
			play			
			a			
			cruci			
			al			
			uı			

role			
in			
this			
setup			

	the recordin g of facial				to detecting drowsine ss without
	images during nighttim e driving.				annoyan ce and interfere nce

sol		repres				
utio		ent				
n to		the				

this		whole				
pro		image				
ble		•				
m.						

Sa The ha obje anne original civ down and obje anne original civ down and obje anne original civ down and obje and original civ down and original civ down and object detection of the land original civ down and object detection original civ detection o		ı	I	I					1	1	Γ
ha na obje na ctiv d ctiv d<											
na ctiv d dembe on dati mat on eed the factor of the land the land doing invol on eed the factor of the land the land doing invol on eed the factor of eed using lts ctio on eed the factor of eed using lts ctio of of of of of object techn cles techn UAV sho n of of of object detection of eed using lts ctio of of of object ar, elop dev Vs), s., with high loca accu lizat on and and peep as need racy ion in capa olocalizing im Conv unma visio in capa olocalizing in on and aerial syste of the land of the factor of the land of the land of the factor of the land of t			Unm			-			-	-	
An the the tion ced using lts ctio mance of formance techn lto ced using lts ctio mance of formance is is to (UA ologie serve, elop dev Vs), s, s, elop and and ple oluti nme onal ple oluti nme onal aerial syste which nee orks, s) and learni degree eras, neural neg tec spect convolate in as olo Cam as pyra ed man orks, nn orks, nn orks, nn orks, nn orks, nn orks, ed Mont e	ha	-	anne		soluti						-
the the the solu the solu to ced using to tion cles techn UAV sho n cles is to (UA ologie short to cles short to cles short to operation in capa and to object detection on and localizat on and localizat on and localizat on and to object detection in capa altion localizat on and to ologie shilit using deep short to cles short to short to cles short to ologie shor	na		d				dati				_
An ike tion of ton cles is to ng dev dev ple dev ple iru dd ple nt nt nt of opera on and of of opera on and of of of of of of opera on and of of opera on and of of of opera on accuration or of of opera on accuration or of of opera on accuration or of of opera on accuration or of of opera on accuration or of of opera on accuration or of of opera on accuration or of of opera of of opera on accuration or of opera on accuration or of opera on accuration or of opera on accuration or of opera on accuration or of opera on accuration or opera opera on accuration or opera on accuration or opera on accuration or opera on		e of			invol		on	ed			the
t tion cles techn UAV sho n of		the		advan	ves		resu	dete			perfor
tion Se is to (UA ologie s w and high loca ar, elop dev Vs), s, such adva accu lizat on and localiz iru im Conv unma visio in capa ologie numa onal aerial syste ct ies of neural al lution ork orks, s) and learni and tion ork ork such ads al seras, neural as such eras, neural as such eras, neural as netwo cras, neural net	ike			ced	using		lts	ctio			mance
Se is to dev (UA ologie s w high loca accu lizat object detecti detecti on and localiz accu lizat An and Deep as as nced unma nced or sum	t	tion		techn	UAV		sho	n			of
ng ar, elopdev Vs), such Deep as mad dd ple onal new onal accu new onal accu new onal accu new onal accu new onal accu new onal acci new onal acci new onal acci acci new onal acci acci new onal acci new acci new ad onal acci new acci new ad onal acci new acci new ad orks, s) and learni olo cam ad olo cam ad olo cam ad olo cam new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new acci new new acci new new new acci new acci new new new acci new	Se	is to		ologie	S		W	and			object
An and and Deep as nced racy ion and localiz iru im Conv unma visio in capa oluti nned n obje bilit ation using deep neura al es and ctio the neura al es and ctio the neura al es and localiz ation using deep neura al es and ctio the neura al es and loca ican lizat sign ion iffica rad olo Cam al such eras, such such enhan pyra mid as mid orks, nn neural as neural neura neural n	ng	dev	,	S,	with		high	loca			_
An and Deep as nced Conv unma visio in capa obje bilit ation using deep neura la syste va Netw (UAV deep ng loca can loca olo can al such as pie eras, neural as netwo CNN suc re enhan nn orks, rescu to ed Mont aer e operat ial Carlo ve Tree hic Searc les h (U Meth opera dod.) An and Deep as nced visio in capa obje bilit in capa obje	ar,	elop	V S),	such	adva		accu	lizat			on and
iru dd ple oluti nned n obje billit nee onal aerial syste ct ies dete of neura la syste wehicl ms deep neura d Multi deep ng loca can netwo ching as prace of the netwo suc pyra nee on mid orks, nn orks, rescu to ed Mont aer e nial Carlo ve Tree hic Searc les h (U Meth A od.)	An	and		as	nced		racy	ion			localiz
dd h h meple onal onal meoluti onal onal aerial vehicl msn obje ct dete of ctio the of the of of the orks, orkolutio orks, s) and d ma d ma d orkn orks, s) and deep orks, s) and learni learni tec spect hn ral olo cam lution than ac ra olo cam lution than al sspect hn ral olo cam al such ral olo cam al such ral olo cam al such ral olo cam ntly radu in ce e e ras no ma orks, rescu ed Mont aer e ed Mont ce e operat lial carlo orks rescu lial carlo ed hand orks, rescu to ed hand orks, rescu to e hand rescu hand hand rescu hand hand hand rescu hand hand hand rescu hand h	iru	im	Conv				•				
h me Neur vehicl ms deep neura l netw ork Du nt Neur vehicl ms ad al es and ctio the neura l netw y, va Netw (UAV deep ng loca can loca can lizat sign ion ifica hn ral lution thms, and tion ion ifica l. s, suc suc suc to mid ne enhan featur e mid nm orks, rescu to ed Mont aer e operat nce ial Carlo ve Tree hic Searc les h cut of the network h me Neur Netw vehicl ms was deep deep neura deep neura l. s, suc suc to deep of the of the new ork deep neura deep ng loca can lizat sign ion ifica not to redu ce eras, neural as redu the time time requ ired time orks, rescu to iden tiffy aer e operat nce ial Carlo ions. searc loca loca h and tion loca can ntly redu ired indi lizat sign ion ifica not to re enhan featur ce e eras, neural time time to iden tiffy aer e operat nce ial Carlo ions. searc loca loca loca loca ve Tree hic Searc rescu les h e od. Vidu od. Vidu od. Vidu opera od. Visual searc loca in den tindi in loca loca loca loca loca loca in no loca in in loca loca loca loca loca loca loca loca	dd	ple	oluti				obje	_			
DuntNeur advehicl almsdeteof ctioneuray,vaNetw(UAV deepdeep ncensolu nceneuramadMulti deep orks, s) and ddeep ng learni learni mansolu ncenetwo orkAg ng tec spect learni ng tec spect convo spect convo algori tal nal lution ral olo Cam ral netwo convo algori thms, ral netwo convo algori thms, ionlizat ifica ntly redu ce redu time redu time redu time redu time redu time redu time redu time requ ired to iden to iden to iden to iden to iden to iden to iden te indi vidu od.Du na to rescu les h (U A A od.nn e e opera tions.dete of the no can requ iindi inDu no con rescu les h A A A od.ne rescu e e ne no no ctio rescu to e no no e no e no no e no no no no <br< th=""><th>h</th><th>_</th><th>onal</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>_</th></br<>	h	_	onal				-				_
be ad al es and very va Netw (UAV deep orks, s) and learni and tion ork ma d Multi deep ng loca can lizat sign ion iffica Mag hn ral lution thms, and olo Cam al such gie eras, neural as s, suc Featu mid Netw orks, to s and re e mid orks, rescu ed Mont aer e dial Carlo ve Tree hic Searc les h (U Meth A od.) Methodology value of the the ore and of tion in the solu and tion ork ork I h notwo ork I tizat sign ion iffica I netwo ork I to the n solu and tion ork I to notwo ork I tizat sign ion iffica I the time ore redu time time ore requ ired inding to iden to iden tify and inding to inding the properation. I to the the notwo ork I to notwo or	Du		Neur		•		dete				_
y, va Netw orks, s) and learni d Multi deep ng loca can lizat sign ion ifica ntly redu seras, neural as such such such as mid searc pyra as mid orks, nn ork	be		al								
U nce orks, s) and d learni deep ng loca can loca can lizat sign ion sign ion nct work ng tec spect convo algori ral lution thms, ra olo Cam al such wa gie eras, neural such such suc re enhan featur re enhan featur or enhan featur dun number orks, rescu to ed Mont e enhan for mids, rescu to ed Mont aer e operat ial Carlo ions. Featu rescu to enha erascu loca and tion ork sign ion sich ion loca can ntly redu ion ifica ntly redu time the time time requ ired inden tiffy and to iden tiffy are enha to to ions. 2 h may byra ma orks, rescu to ed Mont aer e operat ial Carlo ions. e enha tiffy and tiffy and tee indi ions. 4 Mont aer e operat ial Carlo ions. searc hand rescu indi vidu opera tions. 6 Moth aer e operat ial carlo ions. searc indi vidu opera tions. 8 A od. od.	у,		Netw								
ma d Multi deep ng loca lizat sign ion ifica Multi spect convo algori lution thms, and olo Cam al such gie eras, neural as such suc suc lass loca ntly redu the time re enhan featur ce e enha aer e operat ial Carlo ve Tree hic Searc les h (U Meth A od.) Multi deep ng loca can lizat sign ion ifica I loca lizat sign ion ion ion ion ion ion ion ion ion io			orks,	`	-						
ng tec spect convo algori na neural lution thms, such sign na olo Cam al such neural as redu redu neural as redu redu neural as redu neural cenhan featur neural netwo CNN result result the neural netwo CNN result reatur time neural result the netwo cenhan featur time netwo result to iden netwo result to iden netwo rescult to iden netwo rescult indi to netwo result ne	ma		Multi	· ·							OIK
hn ral lution thms, olo Cam al such gie eras, neural as netwo CNN suc re enhan featur ce wind orks, nn edd orks, rescu to edd Mont e enha aer e operat nce ial Carlo ions. Ag hn ral lution thms, ion iffica ntly redu the redu time required time required hand mids, rescu to iden tify aer e operat nce ial Carlo ions. searc ve Tree h and hic Searc les h (U Meth A od. tions.	ng			_							
ra olo Cam al such ntly redu ce such ntly redu ce searc pyra ired to nm orks, nn ed Mont ed Mont aer e operat ial Carlo ve Tree hic Searc les h (U Meth A od.)	_		-		_			_			
wa gie eras, stant neural neural as neural as suc redu suc redu ce 2 h re rehan redu ce redu ce 2 h pyra enhan reatur the time requ time 2 un mid searc pyra hand mids, rescu to ed to iden to iden 1 ma orks, rescu to ed enha enha enha enha tify to iden to iden 1 aer e operat ial Carlo ions. searc loca ions. loca indi te 1 ye Tree hic Searc les loca indi te 1 ye rescu indi to indi te 1 ye rescu indi to indi te 2 ye rescu indi to indi te 3 ye rescu indi tindi te 4 ye rescu indi tindi to inde 5 ye rescu indi tindi te 6 ye rescu indi tindi te 8 ye rescu indi te ye	_				*		1011				
I. S, Suc Featu re Pyra netwo rks, to s and the time re Pyra as mid Netw orks, nn ed Mont ed Mont aer e ial Carlo ve Tree hic Searc les h (U Meth A od.) I suc Featu re rks, to s and the the time requerate searc pyra ired hand mids, rescu to iden tify aer e operat nce ial carlo ve Tree hic Searc les h (U Meth A od.) I suc Featu reks, to s and the time requerate indicate to iden tify and te indicate indic	wa							•			
suc h re re Pyra rks, to s and the time requ ired h and mids, rescu to ed Mont aer e operat ial Carlo ve Tree hic Searc h and rescu les h (U Meth A od.) Suc h re rks, to s and the time requ ired time requ ired h and mids, rescu to iden tify and to ions. Searc h and to to iden tify and tify aer te ial carlo ions. Searc h and te indi vidu opera als tions.	l.		eras,								
h Pyra enhan featur ce e e required number orks, number of each orks, are e e e e e e e e e e e e e e e e e e			Featu								
as	2		re								
ma nn orks, rescu to ed Mont aer e operat nce ial Carlo ions. Searc h and rescu to h and rescu to iden tify aer to h and rescu to ial Carlo ions. Searc h and te hic Searc les h (U Meth A od. Va.			Pyra								
ma nn orks, rescu to iden ed Mont e enha aer e operat nce ial Carlo ve Tree hic Searc les h (U Meth A od. Ve			mid					_			
nn ed Mont e enha iden tify aer e operat nce ial Carlo ions. searc loca ve Tree hic Searc les h (U Meth A od. Ve to Meth A od			Netw								
ed Mont e enha tify and tial Carlo ions. searc loca ve Tree hic Searc les h (U Meth A od. Va.	1		orks,		,						
aer e operat nce ial Carlo ions. searc loca ve Tree hic Searc rescu les h (U Meth A od. Va.											
ial Carlo ions. searc loca te h and rescu les h (U Meth A od. tions. loca to indi vidu las to opera tions.											
ve Tree h and te hic Searc rescu indi vidu (U Meth A od. tions.				_							
hic Searc les h e vidu (U Meth A od. tions.				ions.							
les h e vidu als h A od. tions.					h and						
(U Meth A od. tions.					rescu						
A od. tions. in					e			vidu			
W ₂ tions.					opera			als			
VS			od.		tions.			in			
		Vs			It						

aims to dof dof dof dee ve ue, pp preci lead see ing nv lead tion fast tion detec er and locali time large in time large in tion ne ura locali locali time large in tially note in tially note in tially note in ning savi mad noce sea rch an d rees cue op era	1	1	1					1
dee p preci ve preci lead ing huma to olu tio n fast tion and onse ura locali l time l l zatio net wo poten rks tially ntial retrai en ning ha noce sea rch aan d res cue op				aims				
dee p ve preci se lead ing huma to olu tio n fast tion resp and onse ura locali l time l zatio net wo rks tially ntial retrai en nne nne nne nne nne tially nne en nne nne nne locali ls.						d of		
p co se lead ing huma to olu tio n fast tion resp and onse ura locali latime lation se not time time to not resp and onse locali latime lation set not not retrai ly not retrai ly en ning node nce sea rch an d res cue op				achie		resc		
co nv olu tio n olu tio nal ne ura locali net not wo rks tially ntial retrai en nnce sea rch an d res cue op ling to ing to fast to fast to rer er resp and onse time locali time s s s n, and pote pote rks tially ntial retrai ly ng live s s.	dee					ue,		
nv olu tio n fast to fast er er resp and onse locali time la tion net wo rks tially ntial retrai en ha nce sea rch and d res cue op	p			preci		lead		
olu tio detec er	co			se		ing		
tio nal ne tura locali locali locali locali locali net net wo rks tially retrai ning nad nce sea rch aan d res cue op	nv			huma		to		
nal ne and locali time locali lime locali	olu			n		fast		
ne ura locali time locali time locali	tio			detec		er		
ne ura locali time locali loca	nal			tion		resp		
l net net n, and poten pote rks tially retrai ly savi ng nand nce sea rch an d res cue op	ne			and				
net wo rks tially ntial ly en ha mode nce sea rch an d res cue op	ura			locali		time		
wo rks , to en ha nce sea rch an d res cue op	1			zatio		S		
rks , to en ha nce sea rch an d res cue op	net			n,		and		
rks , to en ha nce sea rch an d res cue op	wo							
retrai ly savi ng live sea rch an d res cue op	rks							
en ha ming mode ls. savi ng live sea rch an d res cue op	, to							
ha nce sea rch an d res cue op	en							
nce sea rch an d res cue op	ha							
sea rch an d res cue op	nce			ls.				
rch an d res cue op	sea							
d res cue op	rch							
res cue op	an							
cue op	d							
op	res							
	cue							
	op							
tio tio								
ns.								

SUNTAE	The	key	an	T.	l <u>-</u>	The	TD1	_	This
MOON	goa	hard	auton	It		perf	The		solutio
JIHUN	l is	ware	omo	take		orm	syste		n,
				S			m's		,
JEON DOVOG	to	comp	us	adva		ance of	use		incorpo
DOYOO N	cre	onent	dron	ntag			of		rating
N N	ate	S	e	e of		the	vario		YOLO
<u>KIMYO</u>	an	used	syste	vari		syst	us		object
NGWOO	un	in the	m	ous		em	senso		detecti
<u>KIM</u>	ma	syste	desig	sens		has	rs,		on,
<u>2019</u>	nne	m,	ned	ors,		bee	Inclu		address
	d	integr	for	incl		n	ding		es a
	dro	ation	real-	udin		eval	RTK-		critical
	ne	of	time	g		uate	GPS,		real-
	whi	thes	objec	GPS		d	ensur		world
	ch	e	t	and		thro	es		proble
	can	com	detec	cam		ugh	centi		m, but
	fly	pone	tion.	eras,		chec	meter		it
	itse	nts	It	to		king	-level		encoun
	lf	into	incor	gath		the	preci		ters
	and	the	porat	er		accu	sion		challen
	use	dron	es the	com		racy	in		ges due
	d	e,	YOL	preh		in			to its
	for	and	O	ensi		pred	positi		technic
	det	Yol	(You	ve		ictio	on		al
	ecti	0	Only			n of	estim		comple
	on	algo	Look	envi		the	ation,		xity
	of	rith	Once	ron		mod	enha		and
	real	m -)	men		el.	ncing		sensitiv
	tim	This	algor	tal			the		ity to
	e	algo	ithm	data.			accur		adverse
	obj	rith	to	This			acy		weathe
	ects	m	enabl	data			of		r
	suc	prov	e	infor					

h as	ides	rapid	ms		objec	conditi
per	conf	and	the		t	ons.
son	iden	accur	syst		detec	
's	ce	ate	em's		tion	
in	scor	detec	core		and	
larg	es	tion	func		tracki	
er	for	of	tion:		ng.	
are	dete	objec	gene		C	
as.	cted	ts.	ratin			
	hum	The	g			
	ans.	hard	prec			
	This	ware	ise			
	tech	comp	fligh			
	nolo	onent	t			
	gy	S,	path			
	aims	inclu	s for			
	to	ding	the			
	expe	the	Un			
	dite	Pixh	man			
	Sear	awk	ned			
	ch	Fligh	Aeri			
	and	t	al			
	Resc	Cont	Vehi			
	ue	roller	cle			
	oper	and a	(UA			
	atio	came	V).			
	ns in	ra,	* <i>)</i> ·			
	natu	play				
	ral	a				
	disa	cruci				
	sters	al				
	by	role				
	swif	in				

tly this iden setup tifyi . ng surv ivor s.

	the recordin g of facial				to detect ing drow
	images				sine
	during				SS
	nighttim				witho
	e				ut
	driving.				anno
					yan
					ce
					and
					interf
					ere
					nce

JA	Th	collisio	on	the	The	Th	The		The
WA	e	n	obsta	effec		e	adva	-	
D N.	obj	avoidanc	cle	tive	syst em				syste m
YAS			detec	collis	achi	sys	ntage s of		achie
	ect ive	e	tion			tem ach	the		
IN,	of	strategie	using	ion	eve	iev			ves a
SHE	the	S,	mono	avoid	s a		syste		proce
RIF		sensors	cular	ance	pro	es	m in also		SS
A.	sol	used for	or	syste	cess	an	inclu		spee
S.	uti	collisio	stere	ms	spe	mA	de its		d of
MO	on ·	n	0	for	ed	P	speed		44ms
HA	is	avoidan	came	UAV	of	of	,		per ·
ME	to	ce in	ras,	S	44	86.	accur		imag
D ,	de	UAVs,	with	incor	ms	4	acy,		e, an
MO	vel	and	a	porat	per	on	and		mAP
HA	op	various	divisi	es	ima	the	robus		of
MM	eff	approac	on of	intell	ge,	test	tness.		86.4
AD-	ect	hes and	captu	igent	whi	ing	It is		on
HAS	ive	techniq	red	decis	ch	set,	faster		the
HE	col	ues	imag	ion-	is	out	than		testin
M	lisi	for	es	maki	fast	per	YOL		g set,
HA	on	collisio	into	ng	er	for	0		and
GH	av	n	regio	capa	tha	mi	and		more
BA	oid	avoidan	ns to	biliti	n	ng	other		than
YA	anc	ce in	reduc	es,	YO	R-	objec		6%
Ν,	e	differen	e	obsta	LO	FC	t		impr
JUK	sys	t	comp	cle	by	N	detec		ove
KA	te	scenario	utatio	detec	18.	whi	tion		ment
HEI	ms	smetho	nal	tion		ch	algor		in
KK	for	dologie	cost.	algor		ach	ithms		mAP
ON	aut	s related	Colli	ithms		iev	,		on
EN1	on	to radar	sion	, and		es	while		the
,	om	sensors,	avoid	path		67.	outpe		testin
HA	ous	artificia	ance	plann		7.	rform		g set.
NN	ve	1	contr	ing		It	ing		
U	hic	potentia	ol	techn		als	them		
TEN	les,	l fields,	and	iques		О	in		
HU	spe	particle	trajec	. By		sho	accur		
NE	cifi	swarm	tory	analy		WS	acy		
N1,	cal	optimiz	contr	zing		mo			
JUH	ly	ation,	ol are	real-		re			
A	un	and	comb	time		tha			
PLO	ma	path	ined,	data,		n			
SIL	nn	plannin	and	UAV		6%			
A	ed	g	an	S		im			
	aer	algorith	algori	equip		pro			
20	ial	ms for	thm	ped		ve			
20	ve	UAVs.	select	with		me			
18	hic		s the	this		nt			
		1							

optim soluti in les (U al on mApath P A can V_{S} based make on on). infor the obsta Th med test cle decis e ing classi ions set. go ficati al to on for is avoid safe to poten and en tial effici ha collis ent nce ions drone the by navig aut asses ation. on sing om the y spee an d, d trajec saf tory. ety of U A V_{S} by int egr ati ng int elli ge nt dec isi onma kin g.

		ı		1	1	T	1	1 1	
									•
Fad	The	You	The	YOL	YOL	YOL	YOL	-	YOL
	goal	Only	YOL	0	0	0	0		O
hla	of the	Loo	0	achie	achi	achie	offers		achi
n	work	k	model	ves	eves	ves a	a		eves
	is to	Onc	breaks	unpar	a	Mea	simpl		a
hafe	impro	e	throug	allele	fast	n	e and		Fra
ez	ve	(YO	h the	d	spee	Aver	highl		me
	object	LOv	traditi	speed	d	age	y		Per
	detect	5)	onal	with a	with	Preci	effici		Sec
201	ion by	deep	approa	Frame	a	sion	ent		ond
	accele	lear	ch of	Per	Fra	(mA	way		(FP
8	rating	nin	the	Secon	me	P) of	of		S)
	the	g	CNN	d	Per	78.6,	solvi		of
	speed	mo	family	(FPS)	Sec	surp	ng		155
	while	del	and	of	ond	assi	objec		and
	maint	for	introd	155	(FP	ng	t		a
	aining	hu	uces a	and a	S)	the	detect		Mea
	high	ma	new	Mean	of	perf	ion. It		n
	accur	n	way of	Avera	11.7	orm	achie		Ave
	acy	det	solvin	ge		ance	ves		rage
	and	ecti	g	Precis	surp	of	fast		Prec
	gener	on	object	ion	assi	Fast	speed		isio
	alizati	in	detecti	(mAP	n g	er	and		n
	o n	sea	on. It) of	the	R-	high		(m
	abilit	rch	achiev	78.6,	perf	CN	accur		AP)
	у.	and	es	surpas	orm	N	acy,		of
	The	res	high	sing	an	1,	surpa		78.6
	paper	cue	efficie	the	ce		ssing		,
	introd	ope	ncy	perfor	of		the		surpa
	uces	rati	and	manc	Fast		perfo		ssi
	the	ons	speed	e of	er		rman		ng
	You		by	Faster	R-		ce of		the
	Only	The	proces	R-	CN		Faste		perfo
	Look	mo	sing	CNN.	N.		r R-		rma
	Once	del	the	YOL			CNN.		nce
	(YOL	is	entire	Ov2,			It		of
	O)	trai	image	an			also		Faste
	model	ned	at	impro			has		r
	as a	usi	once,	ved			stron		

ng rather versio Rg CNN gener dat than n, offers alizat a using region ion coll propos tradeo ect abilit ed als ff y to betwe repre dur ing en sent a speed the and sim whol ulat accur e imag acy. It ion also of e has sea strong rch gener and alizati res on cue ability ope to rati ons wh ere ma nne qui ns wer e use d to rep res ent hu ma n vict ims repres sol utio ent n to the this

PROPOSED SYSTEM

3.1 PROPOSED SYSTEM

The proposed approach is to find an innovative solution for finding lost children leverages AI-powered drones. These drones overcome limitations of traditional searches by rapidly covering large areas and seeing through dense foliage. Real-time data from the drones streamlines communication with rescue teams. The AI core, built on a Raspberry Pi, utilizes a YOLOv8 model to detect humans in real-time. This ten-step process includes training the model on data and ensuring the drone's safe operation. By offering a faster and more comprehensive search, our system significantly increases the chances of a successful rescue in these time-sensitive situations.

3.2 ADVANTAGES OF PROPOSED SYSTEM

The proposed system has the following advantages:

- Precision Navigation
- Unerring Detection
- Lifeline of Communication
- Synchronized Operations

3.3 SYSTEM REQUIREMENTS

The system requirements for the development and deployment of the project as an application are specified in this section.

3.3.1 SOFTWARE REQUIREMENTS

Below are the software requirements:

- I. CNNs
- II. Mavlink
- III. Mavproxy
- IV. Ardupilot
- V. computer vision
- VI. OpenCV
- VII. Raspbian
- VIII. YOLOv8 model

3.3.2 HARDWARE REQUIREMENTS

Hardware requirements are as follows:

- 1. F450 quadcopter frame
- 2. A2212, 1000 KV BLDC motors (interchangeable with any similar industrial motor on the market)
- 3. 1045 screws (clockwise and counterclockwise rotary pairs)
- 4. 30A Cmonk ESCs
- 5. Pixhawk 2.4.8 hardware control unit
- 6. Flysky FSI6 as a radio transmitter and receiver
- 7. 3300mAh LiPo cell battery
- 8. XT60 connector
- 9. IMAX B6 AC charger

3.3.3 IMPLEMENTATION TECHNOLOGIES

Path planning and Altitude Fixing:

Path planning and altitude fixing are both crucial aspects of ensuring efficient and safe drone operation, especially in search and rescue missions. Path Planning involves creating a preprogrammed flight path for the drone to follow during its search. Imagine it like a roadmap in the sky. Path planning software considers factors like the search area size, desired coverage pattern (grid, spiral, etc.), and potential obstacles like trees or power lines. An efficient path minimizes wasted flight time and ensures the drone covers the entire search area thoroughly. **Altitude Fixing** refers to maintaining a specific and consistent height for the drone throughout its mission. Altitude fixing is important for several reasons. First, it ensures the drone captures consistent image data at a usable resolution for human detection. Second, it minimizes the risk of collisions with obstacles, especially in forested environments with uneven terrain. Finally, maintaining a safe altitude optimizes battery life and communication range between the drone and the control center. Altitude fixing can be achieved through onboard sensors and pre-programmed flight instructions.

Fail-safe Mechanism:

A fail-safe mechanism in our drone system is essentially an automated safety net embedded in the flight control software. It constantly monitors vital flight parameters and pre-set safety thresholds. If these thresholds are exceeded or anomalies detected, the fail-safe kicks in, taking pre-programmed corrective actions like initiating a return-to-home sequence or safe landing maneuvers. This ensures the drone's safe return even in case of communication loss or malfunctions.

YOLO v8:

You Only Look Once (YOLO) is a real-time object detection algorithm known for its speed and single-stage processing. Unlike some object detection methods that perform multiple scans of an image and refine detections iteratively, YOLO utilizes a single neural network to predict bounding boxes and class probabilities for objects in an image during a single forward pass. This approach

prioritizes speed and efficiency, making it ideal for real-time applications like autonomous vehicles, drone object detection, and video analysis. While YOLO may sacrifice some accuracy compared to more complex detectors, the trade-off is often acceptable in scenarios where immediate results are critical.

MAVLink Protocol:

MAVLink, short for Micro Air Vehicle Link, is a communication lifeline for resource-constrained drones. It acts as a simple language for drones and Ground Control Stations (GCS) to exchange information effectively. Unlike complex protocols, MAVLink keeps messages short and uses a byte format, perfectly suited for drones with limited processing power and bandwidth. But MAVLink offers more than just brevity. It's also configurable, allowing communication between the drone and the GCS, as well as between the drone's internal components like sensors and flight software. In the world of autonomous drones, this standardized protocol is a game-changer, ensuring seamless interoperability between devices from different manufacturers and software tools.

SYSTEM DESIGN

4.1 PROPOSED SYSTEM ARCHITECTURE

The proposed solution architecture depicted in Fig. 6 involves several processes and components. It is an artificial intelligence-based system designed to detect humans in the context of search and rescue operations. The first step involves hardware integration, which requires the collection of necessary components such as a quadcopter frame, motors, screws, ESCs, Pixhawk 2.4.8 hardware control unit, a radio transmitter/receiver, a LiPo cell battery, an XT60 connector, and tools such as a soldering iron, zip ties, scissors, etc. The next step is to calibrate the drone, which involves ensuring that the drone is level and balanced. After hardware integration and calibration, the next step is to integrate the Raspberry Pi 4. The Raspberry Pi is a small, single-board computer that can be used for various applications such as image processing and object detection. The next steps are data collection and data preprocessing, which involve collecting and labeling images using tools like LabelImg to define bounding boxes and assign class labels. This data is then organized into train and validation folders. The YOLOv8 model is then implemented as part of the solution. A YAML training configuration file is created containing class information, image paths, training parameters, and a desired model architecture. The model is then trained using the ultralytics library, and training metrics such as loss and accuracy are monitored. The best-performing model is then selected for deployment.

Finally, the model is tested to ensure that it can accurately detect and locate humans in real-world scenarios. Overall, the proposed solution architecture involves a combination of hardware and software components and processes, working together to detect humans in search and rescue operations.

Figure 1: Architecture of proposed system

4.2 APPLICATION MODULES

The following modules are involved in the proposed implementation:

- a) Path Planning
- b) Object Detection
- c) Data Visualisation
- d) Response Generation

4.2.1 Path Planning:

The drone's autopilot relies heavily on a strong GPS signal and seamless integration with Ardupilot (Mission Planner) software. A Mavlink connection establishes communication, displaying the drone's real-time location on the Mission Planner map. Before planning a mission, ensure a good GPS signal with enough satellites and a healthy battery level. Once these checks are complete, you can define waypoints on the map. Each waypoint requires two things: altitude (relative to the takeoff point) and commands like takeoff, return-to-home (RTH), or directional changes. Arming the drone activates the autopilot, enabling it to follow the pre-programmed waypoints autonomously. The "home point" is where the drone was disarmed, and an RTL mission will return there. Rally points can be designated as alternative return locations for specific situations.

4.2.2 Object Detection:

Object detection, in general, is the task of locating and identifying objects within an image or video sequence. The proposed system aims to use object detection to locate and detect humans in aerial imagery for the purpose of search and rescue operations. YOLOv8 is a real-time object detection model that was used in this system for human detection. The model uses convolutional neural networks (CNNs), which are a type of deep learning algorithm, to detect and classify objects in real-time video streams. The YOLOv8 model is much faster compared to other object detection models because it performs both object detection and classification in a single forward pass through the network.

4.2.3 Data Visualization:

By using a combination of real-time video feeds from the drone fleets and data from external sources such as search area maps and weather data to help visualize the search and rescue operation. The proposed system aims to visualize the location of the missing child, the location of the search team, and any obstructions that may be impeding the search.

The data visualizations are made possible by integrating the drone fleet's controller software with other visual tools like GIS and data analysis software. The paper proposes using real-time video feeds from the drone fleet to generate a live video map overlaid on a search area map for better search area coverage.

4.2.4 Response Generation:

autonomous drone fleet system for missing child search and rescue operations, and it includes communication as a crucial aspect of their proposed solution. The system involves using a network of autonomous drones with a command and control server (CCS) responsible for managing the fleet's communication network. An essential part of the communication aspect of the system is the use of drones to provide live video feeds to rescuers on the ground. The paper suggests using a low latency video stream to provide real-time video footage to rescuers, which will help locate the missing child and assess the surrounding area. This live video feed could also help in quickly identifying obstructions or hazards during the rescue operation by using MAVLink Protocol.

4.3 UML DIAGRAMS

UML, or Unified Modeling Language, offers a standardized visual notation for software development. It's a technical language distinct from natural language descriptions, using a collection of specialized diagrams with precise symbols and notations to represent software

components and their interactions. This enables UML to address various software development aspects: Class diagrams capture a system's static structure, detailing classes (data and functionality holders) and their relationships. Use case diagrams depict user interactions (actors and use cases) from a behavioral perspective. Sequence diagrams delve into the dynamic interactions between objects within a use case, showcasing the message sequence with parameters exchanged to fulfill user requests. By combining these targeted diagrams, developers build a comprehensive technical blueprint of the entire software system, promoting clear communication, early problem identification, and ensuring the final product aligns with user needs and system functionalities.

4.3.1 Use Case Diagram

The use case diagram depicts the inner workings of a small drone, likely a quadcopter. It showcases how various electronic components work together to achieve flight. The battery provides power, which is distributed to the flight controller, motors, and other systems. The flight controller, the brain of the operation, receives control signals from the remote and interprets them. It then instructs the electronic speed controllers, which manage the speed and direction of each motor. These motors spin the propellers, generating thrust for flight. Additional components like cameras and sensors can be integrated for functionalities like capturing footage or aiding navigation.

The image part with relationship ID rid39 was not found in the file.

Figure 2: Use Case Diagram

4.3.2 Class Diagram

The class diagram illustrates the fundamental structure of the autonomous drone system, comprising key classes and their associated attributes and methods. The AutonomousDrone class

embodies the drone itself, managing attributes like ID, location, speed, and battery level, alongside methods for navigation and operation. The Child class represents the subject of search operations, tracking attributes such as ID, location, and status. SearchAlgorithm encapsulates search logic, while CommunicationModule facilitates data exchange with attributes for transmission type and signal strength. GPSModule and CameraModule handle location tracking and image processing, respectively, and Battery manages power-related functionalities. This depiction offers a comprehensive understanding of the system's architecture, aiding in its development and comprehension.

Figure 3: Class Diagram

4.3.3 Sequence Diagram

The provided sequence diagram illustrates the sequential flow of interactions between various objects within the autonomous drone system during a rescue operation. Initially, the system initializes essential components such as the drone, GPS module, camera module, and communication module. Subsequently, the search operation commences, wherein the drone navigates to a designated location, scans the area using its camera module, and evaluates the presence of the missing child. Depending on the outcome, if the child is found, the drone transmits the location to the base station via the communication module; otherwise, it updates its location and resumes the search. Finally, upon receiving a return command, the drone returns to the base station, completing its mission. This sequence diagram serves as a blueprint for understanding the

dynamic interactions and behaviors of the autonomous drone system throughout the rescue process.

Figure 4: Sequence Diagram

4.3.4 Activity Diagram

The activity diagram outlines the workflow for a coordinated search and rescue operation using a fleet of autonomous drones to find a missing child. The flowchart starts with receiving an alert about a missing child and defining a search area. Weather conditions are then checked to determine if drone deployment is safe. If conditions are favorable, the search area is divided into zones and drones are dispatched with specific flight paths. Each drone searches its assigned zone using cameras to find the child. If a potential sighting is made, the drone captures images and attempts communication. All findings are reported back to a base station where human operators review the data and prioritize dispatching ground search teams. The flowchart concludes with the search outcome, which may involve switching to recovery operations or continued monitoring based on new information.

Figure 5: Activity Diagram

IMPLEMENTATION

5.1 IMPLEMENTATION OF THE AUTONOMOUS DRONE SYSTEM FOR SEARCH AND RESCUE

The implementation spearheads a paradigm shift in search and rescue with its cutting-edge autonomous Unmanned Aerial Vehicles (UAVs). Imagine expansive search zones traversed with unparalleled efficiency, pinpointing missing subjects even within treacherous geographies characterized by complex topography. These UAVs, equipped with low-latency data transmission protocols, advanced Machine Learning algorithms, and high-resolution electro-optical sensors, can furnish rescue teams with mission-critical intel in real-time. In time-sensitive scenarios involving missing minors, the strategic deployment of autonomous UAV fleets has the potential to exponentially increase the probability of a favorable outcome. These UAVs not only expedite the search process by leveraging their extensive coverage capabilities, but also enhance its precision through the integration of AI-powered object detection and recognition algorithms. By incorporating such UAV swarms into search and rescue operations, we can revolutionize response times and mission effectiveness.

5.1.1 Drone Hardware Integration (Pixhawk 2.4.8 Set)

- Component Selection: Before commencing with the process of minor integration, one must first collect all of the necessary components. These include:
- F450 quadcopter frame
- A2212, 1000 KV BLDC motors (interchangeable with any similar industrial motor on the market)
- 1045 screws (clockwise and counterclockwise rotary pairs)
- 30A Cmonk ESCs
- Pixhawk 2.4.8 hardware control unit
- Flysky FSI6 as a radio transmitter and receiver
- 3300mAh LiPo cell battery
- XT60 connector
- IMAX B6 AC charger
- Tools: soldering iron, soldering wire, soldering paste, zip ties, dual-sided tape, scissors

- Frame Assembly: The first step is to set up the quadcopter frame, with the bottom plate serving as the power distribution board and the top plate. Fasten the X-shaped arms to the base plate using four M2 screws. Ensure proper alignment and orientation to ensure that the black arm selects the forward direction for easier directional identification.
- **ESC Installation:** Use solder to attach the ESCs to their specified pads on the power distribution board to ensure a good fastening. Correct soldering procedure is important to avoid mid-flight malfunctions. Use zip ties to anchor the ESCs on the arms to prevent vibrations.
- Motor Mounting: Install the BLDC motors on the frames onto the motor mounts using the M3 screws. Pay attention to the thread alignment of motor screw threads and frame holes to protect motor windings. Thread the motor wires along the arms and attach them to their respective ESCs in a clean manner.
- Wiring and Connections: Direct the motor wires to the relevant ESCs, taking care of the positive and negative terminals. Wire the ESCs to the flight controller's motor output pins per the customized list. Apply the supplied cables to connect the receiver and the flight controller as indicated by the signal polarity and pin configuration.
- Flight Controller Installation: Get a Pixhawk 2.4.8 flight controller and properly mount it to the center of your frame with dual-sided tape. Ensure the frame's arrow is pointing forward and align properly with the orientation indicators. Ensure that the motor and receiver terminals are securely screwed and appropriately inserted.
- Additional Accessories Integration: Connect a buzzer onto the control board as a warning during flight. Fasten the LiPo battery to the frame using a battery strap and position it so that no propellers will contact it. Handle and charge the LiPo battery carefully to avoid accidents. And also connect the Gps module to the pixhawk 2.4.8 for accurate postioning. The arrow on the Gps must be inclined with the arrow of the pixhawk.

5.1.2 Drone Software Integration (Pixhawk 2.4.8 Set)

Mission Planner (Ardupilot) serves as the central hub for drone setup and calibration. This software connects to the Pixhawk flight controller via USB using the Mavlink communication protocol. The first crucial step is uploading the appropriate firmware to the Pixhawk. Following this, a series of calibrations are performed to ensure optimal flight performance.

- Sensor Calibration: This includes accelerometer calibration, which involves physically
 maneuvering the drone in specific orientations as instructed by the software. Additionally,
 compass calibration requires rotating the drone with its GPS unit to capture magnetic field
 data from all directions.
- Radio Calibration: Here, the software verifies communication between the drone and your remote controller, ensuring proper signal reception.
- **Fail-safe Configuration:** This critical safety feature defines the drone's automated response to situations like low battery or signal loss, typically prompting a return to home.
- **ESC Calibration:** The final step ensures proper synchronization between the Pixhawk and the Electronic Speed Controllers (ESCs) that power the motors.

Once these calibrations are complete, your drone is ready for flight with propellers attached.

This revised version streamlines the explanation and emphasizes key steps:

- Mission Planner as the central software tool.
- Uploading firmware and performing essential calibrations.
- The purpose and importance of each calibration step (sensor, radio, failsafe, ESC).

5.1.3 Working with yolo v8

Model Selection and Training: We selected the YOLOv8 model for its accuracy and CPU inference speed. Raspberry Pi 4 is computationally heavy for YOLOv8 operations but feasible for smaller datasets. To overcome this, utilize optimization techniques like pruning and quantization, and leverage cloud training for large-scale training with minimal impact on RPi4 resources.

Model Deployment and Inference Finalization for Drones: The trained YOLOv8 model has been deployed onto the Raspberry Pi 4 coupled with the drone. The deployment involves model conversion and real-time inference using libraries like Open-CV.

Environment Setup: Install Python version 3.11.7 or later compatible with your OS. Create a virtual environment to manage project dependencies

Data Preparation: Organize data into train and validation folders. Collect and label images using tools like LabelImg to define bounding boxes and assign class labels.

Configuration and Training: By Creating a YAML training configuration file containing class information, image paths, training parameters, and desired model architecture, we can train the YOLOv8 model using the ultralytics library and monitor training metrics. Select the best model based on performance before deployment.

Training: To execute the code for training the YOLO model, follow these steps: First, the training starts up using the suggesting command should be specified - the amount of epochs, configuration file name, model name, image size, and batch size. When training is over, compile all the models by moving to runs/weights and select the best performing model named "best.pt". After that the object detection will be performed by executing the prediction command that identifies objects in the given video file with threshold confidence of 0.5. Saved results will be in runs/predict directory. This way helps YOLO to train and predict in a workable functional mode which is needed for accurate object detection in picture or video.

5.1.4 Integrating Raspberry pi 4:

Connecting the Raspberry Pi (RPi4) to the Pixhawk flight controller is a crucial step. A micro USB or DF-13 cable establishes the physical connection. Power the RPi4 with 5V via USB or another source, ensuring reliable operation for search and rescue missions. Finally, connect additional components specific to your drone design, such as receiver lines, motor controls (ESCs), steering servos, telemetry modules, and power cables.

On the software side, install communication packages for the RPi4 to interact with the Pixhawk. Consult official documentation or reliable summaries for the latest instructions and compatibility needs. This typically involves installing frameworks like Mavlink and Mavproxy. Additionally, configure the RPi4's firmware to enable UART communication compatible with Pixhawk. Tools like raspi-config might be used here, and further documentation might be necessary for proper configuration.

Once hardware and software are connected, thoroughly verify communication between the RPi4 and Pixhawk. You can use the mavproxy command or a Python script (refer to the book for details), but remember to replace "/dev/ttyAMA0" with the actual connection string.

Rigorous testing is essential before deploying the system for real-world search and rescue tasks. This ensures reliability and mitigates risks during critical operations.

5.1.5 Path planning and Altitude Fixing

The drone's autonomous flight relies heavily on its GPS and Ardupilot integration. A Mavlink connection with Mission Planner establishes communication, displaying the drone's real-time location on the software's map.

Before mission planning, ensure a strong GPS signal with sufficient satellites and a healthy battery voltage. Once these prerequisites are met, you can define waypoints on the map. Each waypoint requires two things: altitude (relative to the takeoff point) and commands like takeoff, return-to-home (RTH), or directional turns.

Arming the drone activates the autopilot, enabling it to follow the pre-programmed waypoints autonomously. The "home point" is the location where the drone was disarmed, and an RTL mission will return there. Rally points can be designated as alternative return locations for specific situations.

The Mission Planner's command menu provides various options depending on the type of drone you're using (copter, rover, etc.). These commands fall into four categories:

- Navigation: These guide the drone to reach waypoints.
- Loiter: These commands instruct the drone to hover at a specific location for a set duration.
- DO commands: These trigger specific actions like taking pictures or executing custom code.
- Condition commands: These control when certain actions are performed based on pre-defined conditions.

Each command requires user-defined parameters, such as waypoint coordinates, desired altitude, or specific action details.

5.2 SOURCE CODE

Training and Testing:

```
# -*- coding: utf-8 -*-
"""project.ipynb
```

```
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1cUQvOLgl1YLVQuPTqUiL3ACMn2XeyBOa
!pip install torch
!pip install torch --extra-index-url https://download.pytorch.org/whl/cu116
pip install ultralytics
pip install --upgrade pip
!pip install split-folders
pip install clearml
!pip install colorama
! python -m venv env
# prompt: apt install python3.10-venv
!apt install python3.10-venv
 python -m venv env
!pip install colorama
import os
import shutil
import splitfolders
import pandas as pd
import numpy as np
from tqdm import tqdm
from colorama import Fore
IMAGE_PATH = "/content/drive/MyDrive/Colab Notebooks/drone-dataset/ds0/img" # The
path to the folder with images.
TARGET_PATH ="/content/drive/MyDrive/Colab Notebooks/drone-dataset/ds0/ann"
def create_dataset(data_path,target_path) :
    assert isinstance(data_path, str)
    assert isinstance(target_path, str)
    dict_paths = {
       "image": [],
```

```
"annotation": []
    }
    for dir_name, _, filenames in os.walk(data_path):
        for filename in tqdm(filenames):
            name = filename.split('.')[0]
            dict_paths["image"].append(f"{data_path}/{name}.jpg")
            dict_paths["annotation"].append(f"{target_path}/{name}.txt")
    dataframe = pd.DataFrame(
        data=dict_paths,
        index=np.arange(0, len(dict paths["image"]))
    return dataframe
def prepare_dirs(dataset_path: str,
                 annotation_path: str,
                 images_path: str) -> None:
    if not os.path.exists(dataset_path):
        os.mkdir(path=dataset_path)
        os.mkdir(path=annotation_path)
        os.mkdir(path=images_path)
def copy_dirs(dataframe, data_path: str,target_path: str) :
    assert isinstance(dataframe, pd.DataFrame)
    assert isinstance(data_path, str)
    assert isinstance(target_path, str)
    for i in tqdm(range(len(dataframe))):
        image_path, annotation_path = dataframe.iloc[i]
        shutil.copy(image_path, data_path)
        shutil.copy(annotation_path, target_path)
def finalizing_preparation(dataset_path: str, ladd_path: str):
    assert os.path.exists(f"{dataset_path}")
    example_structure = [
        "dataset",
        "train", "labels", "images",
        "test", "labels", "images",
        "val", "labels", "images"
    ]
    dir_bone = (
        dirname.split("/")[-1]
```

```
for dirname, _, filenames in os.walk('/content/drive/MyDrive/Colab
Notebooks/drone-dataset/working/dataset')
       if dirname.split("/")[-1] in example_structure
    )
    try:
        print("\n~ Lacmus Dataset Structure ~\n")
        print(
        f"""
         {next(dir_bone)}
             {next(dir_bone)}
              {next(dir_bone)}
              ___ {next(dir_bone)}
             {next(dir_bone)}
              {next(dir_bone)}
             ___ {next(dir_bone)}
             {next(dir_bone)}
              [next(dir_bone)]
    except StopIteration as e:
       print(e)
    else:
        print( "-> Success")
    finally:
       os.system(f"rm -rf {ladd_path}")
import os
df = create_dataset(
    data_path=IMAGE_PATH,
    target_path=TARGET_PATH
dataset_path = "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/dataset"
ladd_path = "/content/drive/MyDrive/Colab Notebooks/drone-dataset/working/ladd"
annotation_path = "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/ladd/labels"
image_path = "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/ladd/images"
prepare_dirs(
   dataset_path=ladd_path,
```

```
annotation_path=annotation_path,
    images path=image path
copy_dirs(
    dataframe=df,
    data_path=image_path,
    target_path=annotation_path
splitfolders.ratio(
    input=ladd path,
    output=dataset_path,
    seed=42,
    ratio=(0.80, 0.10, 0.10),
    group_prefix=None,
   move=True
import colorama
finalizing_preparation(
    dataset_path,
    ladd_path
pip install clearml
!pip install clearml
! clearml-init
import yaml
from ultralytics import YOLO
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
config = {
    "path": "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/dataset",
    "train": "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/dataset/train/images",
    "val": "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/dataset/val/images",
    "predict": "/content/drive/MyDrive/Colab Notebooks/drone-
dataset/working/test/train/image",
   "nc": 1,
```

```
"names": ["human"]
with open("config.yaml", "w") as f:
   yaml.dump(config, f)
with open("config.yaml", "r") as f:
    print(f.read())
# prompt: exactly which code to be altered to change it to cpu instrad of cuda
also alter the code
def main():
   model = YOLO("yolov8n.pt")
   model.train(
        # Project
        project="Polar-Owl",
        name="yolov8n",
        # Random Seed parameters
        deterministic=True,
        seed=42,
        # Data & model parameters
        data="/content/config.yaml",
        save=True,
        save_period=5,
        pretrained=True,
        imgsz=1280,
        # Training parameters
        epochs=20,
        batch=4,
        workers=8,
        val=True,
        device="cpu",
        # Optimization parameters
        lr0=0.0195,
        patience=3,
        optimizer="SGD",
        momentum=0.957,
        weight_decay=0.0005,
        close_mosaic=5,
if __name__ == '__main__':
   main()
```

RESULTS

Our goal is to build a top-notch object detection model. To achieve this, we'll use a toolbox of metrics during development. We'll track various "loss functions" to pinpoint areas for improvement, like how well the model differentiates objects and their locations. Additionally, a metric called mAP@50 will provide a big-picture view of the model's overall accuracy. Throughout training, we'll closely monitor specific losses to ensure the model is learning effectively and reaches its full potential. By analyzing this data, we can identify both strengths and weaknesses, allowing us to refine the model for optimal performance. We'll further test the model across various situations using different datasets to find the most effective configuration. This evaluation process could pave the way for applications in fields like self-driving cars and video surveillance. Ultimately, we aim for an accuracy of at least 70%, ensuring the model is robust enough for real-world use. The results are as follows:

Figure 6: Metrics

man 0.86 man 0.91 man 0.86

Figure 7: Image representing the prediction of YOLOv8 model

Figure 8: Image representing the prediction of YOLOv8 model 2

2,102 382 -1500 -1550 -1000 -750 -500 -250 -250 -0

Figure 9: Image representing the prediction of YOLOv8 model

CONCLUSION

Imagine a future where search and rescue missions are revolutionized by AI-powered drones. This document outlines the development of such a system. The core lies in a powerful single-board computer, the Raspberry Pi 4, which acts as the drone's brain. This tiny powerhouse is equipped with a cutting-edge Artificial Intelligence model called YOLOv8. Unlike traditional AI, YOLOv8 excels at real-time object detection, making it perfect for spotting humans from the drone's aerial perspective. But safety is paramount. The system leverages Ardupilot software, a proven flight planning program. Ardupilot meticulously charts a safe path for the drone, adhering to all necessary altitude and safety regulations. This ensures the drone can efficiently cover vast areas while minimizing risks. Ultimately, this AI-powered drone system holds immense potential. Search and rescue operations could become significantly faster and more extensive, potentially saving countless lives in the process.

FUTURE ENHANCEMENTS AND DISCUSSIONS

This paper permits an autonomous drone to function by means of a human detection artificial intelligence system. For real-time object detection, a Raspberry Pi 4 and a YOLOv8 Model were used. To put this system into practice. In order to identify people in aerial imagery, the YOLOv8 Model was trained on an appropriate labeled dataset. The drone will be able to fly in accordance with all essential safety regulations and at an altitude for effective search modalities because of Path Planning with Ardupilot Software. This method might enable us to carry out search and rescue operations more quickly and thoroughly.