Поведение модели на расширенной области определения, подбор гиперпараметров

Рассматривалась следующая задача:

$$iq_{t} + ia_{1}q_{x} + a_{2}q_{xx} + ia_{3}q_{xxx} + a_{4}q_{xxxx} + ia_{5}q_{xxxxx} + a_{6}q_{xxxxx} + q(b_{1}|q|^{2} + b_{2}|q|^{4} + b_{3}|q|^{6}) = 0,$$

$$x \in [x_{L}, x_{R}], t \in [0, t_{max}],$$

$$q(x, 0) = q_{0}(x),$$

$$q(x_{L}, t) = 0,$$

$$q(x_{R}, t) = 0,$$

$$q_{x}(x_{L}, t) = 0,$$

$$q_{x}(x_{R}, t) = 0,$$

$$q_{xx}(x_{L}, t) = 0,$$

$$q_{xx}(x_{R}, t) = 0$$
(BVP6)

имеющая решение в виде:

$$q(x,t) = \frac{A_1}{ae^{x-C_0t-x_0} + \frac{\chi}{4a}e^{-(x-C_0t-x_0)}} e^{i(kx-\omega t + \theta_0)},$$
(1)

где

$$A_{1}^{(1,2)} = \pm \sqrt{2} \sqrt{\frac{\chi \left(a_{2} - 6a_{4}k^{2} + 12a_{4}k + 10a_{4} + 75a_{6}k^{4} + 150a_{6}k^{2} + 91a_{6}\right)}{b_{1}}},$$

$$C_{0} = a_{1} + 2a_{2}k + 8a_{4}k^{3} + 96a_{6}k^{5},$$

$$\omega = a_{1}k + a_{2}k^{2} - a_{2} + 3a_{4}k^{4} - 6a_{4}k^{2} - a_{4} + 35a_{6}k^{6} - 75a_{6}k^{4} - 15a_{6}k^{2} - a_{6}.$$

$$(2)$$

k=1, а χ,a,x_0,θ_0 - произвольные константы.

Параметры имеют вид:

$$a_{5} = -6a_{6}k,$$

$$a_{3} = -4a_{4}k - 40a_{6}k^{3},$$

$$b_{3} = \frac{720a_{6}\chi^{3}}{A_{1}^{6}},$$

$$b_{2} = -\frac{24a_{4}\chi^{2} + 360a_{6}\chi^{2}k^{2} + 840a_{6}\chi^{2}}{A_{1}^{4}},$$
(3)

где a_1, a_2, a_4, a_6, b_1 - произвольные.

В качестве a_i , где $i \in \{1,2,3,4,5,6\}$, были взяты: 0.1, 0.1, -4.4, 0.1, -0.600000000000001, 0.1, а в качестве b_j , где $j \in \{1,2,3\}$: 2.0, -0.1103806509211915, 0.0019498436834692017.

Модель была обучена на $x \in [-25, 25]$ с $t_{max} = 0.1$, а тестировалась на $x \in [-26, 26]$ с $t_{max} = 0.15$ и на $x \in [-50, 50]$ с $t_{max} = 1$. В качестве параметров для отладки были взяты: $\chi = 0.1$, a = 0.1, $x_0 = 0$, $\theta_0 = 0$.

Использовались 30 тыс. точек коллокаций, 3000 точек для начального условия и 1000 точек для левой и правой границ по x. Для генерации точек коллокаций

использовалось псевдослучайное распределение.

Нейронная сеть включала в себя следующие слои: один входной слой с 2 нейронами, 2 скрытых слоя, каждый из которых содержал 200 нейронов, и один выходной слой с 2 нейронами. В качестве функции активации был выбран синус.

Сначала обучение проводилось на протяжении 30000 итераций. Использовался отпимизатор Adam с параметрами: $initial_learning_rate = 1.1e - 02$, $loss_weights = [1, 1, 1000, 1000, 1, 1000, 1000, 1, 10000, 10000]$. Затем нейронная сеть обучалась в течение еще 10000 итераций с использованием оптимизатора L-BFGS с параметром $loss_weights = [1, 1, 1000, 1000, 1, 1000, 1000, 1, 10000, 10000]$.

Входные и выходные данные не подвергались дополнительной обработке.

Были получены следующие результаты:

Рис. 1: Результаты решения задачи BVP6 для $x \in [-26, 26]$ с $t_{max} = 0.15$

Рис. 2: Результаты решения задачи BVP6 для $x \in [-50, 50]$ с $t_{max} = 1$

	Lw_{1_max}	Lw_{1_mean}	Lw_{2_max}	Lw_{2_mean}	Rel_h
ĺ	5.2309	1.7480	4.6995	1.5828	0.0790
Ī	152.1487	112.4568	165.0656	73.1291	1.3055

Таблица 1: Основные метрики

Данные таблицы 1 свидетельствуют о том, что модель плохо ведёт себя на тех областях, где не училась.

Далее был осуществлен возврат к предыдущей области определения и составлена таблица 2, отражающая изменение Rel_h .

\mathbf{w}_1	W_2	w_3	w_4	W_5	w_6	w_7	W ₈	w_9	w_{10}	float(32/64)	Rel_h
1	1	1000	1000	1	1000	1000	1	1000	1000	32	0.0904
1	1	1000	1000	1	1000	1000	1	1000	1000	64	0.0822
1	1	1000	1000	1	1000	1000	1	10000	10000	32	0.0773
1	1	1000	1000	1	1000	1000	1	10000	10000	64	0.0468
1	1	1000	1000	1	1000	1000	1	100000	100000	32	0.0731
1	1	1000	1000	1	1000	1000	1	100000	100000	64	0.0781

Таблица 2: Точность модели

Наибольшая точность достигается при конфигурации весов: $loss_weights = [1, 1, 1000, 1000, 1, 1000, 1000, 1, 10000, 10000]$ и float64.