

РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ ФОРМИРОВАНИЯ ЭКВИВАЛЕНТНЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СОЛНЕЧНЫХ ЭЛЕКТРОСТАНЦИЙ НА ОСНОВЕ ДАННЫХ ИНФОРМАЦИОННОЙ МОДЕЛИ ЭНЕРГОСИСТЕМЫ

Магистерская диссертация
09.04.03 «Прикладная информатика»

Выполнил: Чернобров М.Е., студент О-5КМ01 ИШЭ ТПУ

Научный руководитель: Прохоров А.В., к.т.н., доцент ИШЭ ТПУ

Консультант: Калентьев А.А., к.т.н., доцент КСУП ТУСУР

Куратор: Каптарь С.Ю. гл. специалист, ОР САСДУ ОДУ Сибири

07.02.2023

ПРОБЛЕМАТИКА РАБОТЫ

РМ должны быть актуальными и обеспечивать совпадение расчетных и фактических режимных параметров

Модели СЭС должны содержать элементы *коллекторной сети*

Изменение топологии или параметров элементов требует *повторного* эквивалентирования

Модели СЭС рекомендуется *эквивалентировать*

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Разработка ПО для формирования эквивалентных математических моделей СЭС на основе данных ИМ энергосистемы

- 1. Проанализированы:
 - Процедура формирования РМ
 - Представление СЭС в ИМ
 - Варианты интеграции ПО
- 2. Определены требования к ПО
- 3. Выполнено концептуальное проектирование

- 4. Выполнена программная реализация:
 - Модели данных
 - Модуля взаимодействия с ПК «RastrWin3»
 - Модели представления
 - Расчетного модуля
 - Графического интерфейса
- 5. Проведено тестирование ПО
- 6. Разработана техническая документация

АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

При актуализации данных ИМ в состав перечня работ входит формирование РМ с использованием ПО «Интеграция» в ПК «RastrWin3»

Таблица 1 - Представление СЭС в ИМ

Объект	Требование	Факт	Заключение
Солнечная электростанция	×	Cogeneration Plant	CogenerationPlant
Генератор (система «фотоэлектрические модули – инвертор»)	PhotoVoltaicUnit PowerElectronicsConnection	ThermalGeneratingUnit SynchronousMachine	ThermalGeneratingUnit SynchronousMachine
Фидеры	Feeder	×	Line
Преобразовательные трансформаторы	PowerTransformer PowerTransformerEnd	×	PowerTransformer PowerTransformerEnd

ВАРИАНТЫ ИНТЕГРАЦИИ. ВАРИАНТ 1

ВАРИАНТЫ ИНТЕГРАЦИИ. ВАРИАНТ 2

ВАРИАНТЫ ИНТЕГРАЦИИ. ВАРИАНТ 3

Вариант 3 «Эквивалентирование РМ по данным ИМ»

ВАРИАНТЫ ИНТЕГРАЦИИ

Критерий	Вариант 1. Эквивалентирования РМ	Вариант 2. Эквивалентирование ИМ	Вариант 3. Эквивалентирование РМ по данным ИМ
Работа с ИМ (следование тенденциями развития АСДУ)	0		
Независимость от представления СЭС в КМ		0	
Возможности самостоятельной реализации		0	
Сроки реализации		0	0
Сравнительно меньшие издержки на сопровождение ПО	0		0

ИНЖИНИРИНГ ТРЕБОВАНИЙ

ТЗ на разработку ПО «Эквивалент СЭС» Ј

Требования к архитектуре

А. Система должна быть представлена настольным приложением

с графическим интерфейсом

Требования к структуре данных

D. В качестве входных и выходных данных должны использоваться файлы УРв формате ПК «RastrWin3» (*.rg2)

Требования к математическому обеспечению

М. Метод эквивалентирования должен быть основан на расчете эквивалентного сопротивления из *условий суммарных потерь*

Функциональные требования

- **F.** В Системе должны быть реализованы следующие функции:
 - Выбор узлов модели, определяющих вершины эквивалентов;
 - Создание групп эквивалентирования для соответствующих вершин;
 - Наполнение групп ветвями, подлежащих эквивалентированию.

АЛГОРИТМ ЭКВИВАЛЕНТИРОВАНИЯ

ДИАГРАММА КОМПОНЕНТОВ

- Стек разработки:
 - C#
 - .NET6
 - WPF

Шаблон проектирования

МОДЕЛЬ ЭЛЕМЕНТОВ СЕТИ

МОДЕЛЬ ГРАФА (ТОПОЛОГИИ)

МОДУЛЬ ВЗАИМОДЕЙСТВИЯ С RASTRWIN3

Декомпиляция библиотек RastrWin3

МОДЕЛЬ ПРЕДСТАВЛЕНИЯ

CommunityToolkit.Mvvm для реализации:

- *INotifyPropertyChanged*
- ObservableObject
- ObservableRecipient
- RelayCommand

GUI. ВЕРШИНЫ ЭКВИВАЛЕНТОВ

GUI. ГРУППЫ ЭКВИВАЛЕНТОВ

GUI. ПРОТОКОЛ

GUI. РЕЗУЛЬТАТ

ТЕСТИРОВАНИЕ. УРОВНИ НАПРЯЖЕНИЯ

в точке подключения СЭС к ЭС идентично и равно 110,02 кВ

ТЕСТИРОВАНИЕ. ПОТЕРИ МОЩНОСТИ

Переток в отпайке линии идентичен и равен 6,9 – j2,85(±0,05) МВА

ЗАКЛЮЧЕНИЕ

К проектированию системы принят Вариант 1 «Эквивалентирования РМ»

Реализован алгоритм эквивалентирования основанный на методе суммарных *эквивалентных потерь* с применением поиска кратчайшего пути в графе методом Дейкстры

ПО выполнено в виде настольного приложения на языке программирования C#, платформ .NET и WPF, библиотек с открытым исходным кодом и шаблона проектирования MVVM

ПО «Эквивалент СЭС» соответствует заявленным требованиям и предоставляет *готовый MVP* получения PM, содержащих эквивалентные модели СЭС.

ПРИЛОЖЕНИЕ 1. USE CASE

ПРИЛОЖЕНИЕ 2. ИСХОДНАЯ МОДЕЛЬ

ПРИЛОЖЕНИЕ З. УТОЧНЁННАЯ МОДЕЛЬ

ПРИЛОЖЕНИЕ 3. ЭКВИВАЛЕНТ

