- 1. The only polynomial of any degree such that p(-1) = 1, p(0) = 0 and p(1) = 1 is the quadratic polynomial $p(x) = x^2$.
- 2. Let $p(x) = x^3 + 3x^2 x + 1$ and let $q \in \mathcal{P}_2$ denote the polynomial interpolation of p at $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$. Then there exists a constant $C \neq 0$ such that error satisfies

$$\forall x \in \mathbb{R}, \qquad p(x) - q(x) = C(x - x_0)(x - x_1)(x - x_2)$$

- 3. Given $x_0 < x_1 < \ldots < x_n \in \mathbb{R}$ and $y_0, y_1, \ldots, y_n \in \mathbb{R}$, there exist multiple polynomials $p \in \mathcal{P}_{n+1}$ such that $p(x_i) = y_i$ for all $i \in \{0, 1, \ldots, n\}$.
- 4. In interpolation, the choice of interpolating points can have an influence on the accuracy of the interpolation.
- 5. Suppose that $f: [-1,1] \to \mathbb{R}$ is the function which to x associates e^x , and for any $n \in \mathbb{N}$, let $f_n \in \mathcal{P}_n$ denote the polynomial interpolating f at n+1 equidistant points $-1 = x_0 < x_1 < \ldots < x_n = 1$. Then

$$\lim_{n \to \infty} \left(\max_{-1 \le x \le 1} \left| f(x) - f_n(x) \right| \right) = 0.$$

6. There exists a polynomial p such that

$$\forall n \in \mathbb{N}, \quad p(n) = 2^n.$$

- 7. In Julia, if A is a matrix, then A[:, 1:2] gives the submatrix containing the first two rows of A.
- 8. In Julia, if A is a matrix, then A[1:end .!= 2, 1:end .!= 2] gives the matrix obtained by removing the second column and the second row.
- 9. In Julia, typing] in a REPL (command line) enables to access package mode, from which new packages can be installed.
- 10. In the following code, p is the interpolating polynomial through the data in x and y.