基礎 徹底 演習 問題プリント

2次関数①

[6]

2次関数のグラフ C が 3 点 (-1, -4), (0, 5), (2, 5) を通るとする。

- (2) *C*の頂点は,点(**オ**,**カ**)である。
- (3) C が x 軸から切り取る線分の長さは $\frac{1}{5}$ である。
- (4) C を y 軸に関して対称移動したグラフの方程式は、y = コサ x^2 シ x + ス で ある。また、C を x 軸に関して対称移動したグラフの方程式は、

 $y = \begin{bmatrix} t \\ x^2 - \end{bmatrix} y x - \begin{bmatrix} g \\ \end{bmatrix}$ である。

ア	1	ウ	エ	オ	カ	キ	ク	ケ	コ	サ	シ	ス	セ	ソ	タ

年 組 番 名前

7

2 つの 2 次方程式 $x^2+2ax+2a+3=0$ ……①, $x^2+bx+c=0$ ……② がある。ただし、a、b. c は定数とする。

方程式①が重解をもつとき、 $a = \boxed{\textbf{r1}}$, $\boxed{\textbf{o}}$ であり、重解は

$$a=$$
 アイ のとき、 $x=$ エ

である。

方程式②が $x = \boxed{ 1 }$ を解にもつとき, $c = \boxed{ 1 }$ か成り立ち, もう1つの解は, $x = \boxed{ 1 }$ かまる。

さらに、方程式②の2つの解の差が4であれば

$$b=$$
 サ , $c=$ シス または, $b=$ セソ , $c=$ タチ

である。