

Introduction

Luigi Borzì

Data

Data processing

Data Data processing Data Input Data Cleaning Pre-processing Model Training Deployment

Data visualization and exploration

Data visualization and exploration

Data visualization and exploration

The importance of data visualization

Line plot

Bar chart

Pie chart

Histogram

Scatter plot

Heat map

Spider plot

Correlation plot

Data

Data processing

Missing values and Outliers

Missing values and outliers

Missing values and Outliers

What are missing values and outliers?

Why it is important to manage them?

Detect missing values

Imputation strategies

Recognize outliers

Handle outliers

Verify data consistency

Practical examples

Who is me?

Luigi Borzì, PhD Assistant professor Department of Control and Computer engineering

Topics

Signal processing

Artificial intelligence

Wearable technology

What I do?

Technologies for heath monitoring

Big amount of high-dimensional multi-modal data

Artificial intelligence

- Speed up data analysis
- Extract meaningful info
- Anomaly detection
- Find hidden patterns
- Monitor changes
- Predict changes

1. Research activities

Collaborations

Main activities

Data collection, signal processing and artificial intelligence Applications:

- Sleep monitoring
- Speech analysis
- Movement analysis
- Rehabilitation
- Stress and emotion recognition

Sleep monitoring

Movement analysis in Parkinson's disease

Movement analysis in Parkinson's disease

Sensors record movement

Signals are analysed in real time

Gait impairment is recognized

Vibro-tactile stimulation is activated

Available online at ScienceDirect

www.sciencedirect.com

Elsevier Masson France
EM consulte

www.em-consulte.com

Review

Cueing for people with Parkinson's disease with freezing of gait: A narrative review of the state-of-the-art and novel perspectives

Pieter Ginis*, Evelien Nackaerts, Alice Nieuwboer, Elke Heremans

KU Leuven, Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Tervuursevest 101 box 1501, 3000 Leuven, Belgium

Swallowing

Movement

Muscle activity

Rehabilitation

Stress and emotions

Home monitoring

- Medical device(class IIa)
- Battery life: 7 days
- Recording: 8h/day

Data

Continuous, non-invasive data collection

- Heart rate
- Respiration
- Oxygen saturation
- Movement
- Pressure
- Voice
- Temperature
- Location
- Sweating

A huge quantity of data is collected!

Artificial intelligence

- Speed up analysis
- Information extraction
- Anomaly detection
- Find hidden patterns
- Monitor changes over time
- Predict complications

Field of computer science that focuses on creating systems capable of performing tasks that typically require human intelligence

Subfield of artificial intelligence that includes the development of algorithms and models that enable computers to learn and make predictions or decisions based on data without explicit programming.

Sottocampo dell'apprendimento automatico che prevede l'uso di reti neurali complesse che imparano direttamente dai dati.

Subject	Age (years)	Gender	Blood pressure (mmHg)	Heart rate(bpm)	Glucose level(mg/dL)
1	45	Male	120	72	90
2	35	Female	110	65	95
3	50	Male	130	80	105
4	28	Female	115	68	88
5	50	Male	130	85	120
6	32	Female	118	70	98
7	55	Male	135	85	95
8	40	Female	112	60	92
9	48	Male	125	75	102
10	38	Female	120	70	100
•••					
•••					
Ν	40	Female	112	60	95

IF 60 < heart rate < 90 AND blood pressure < 120 AND glucose level < 100 → THEN condition: normal

IF 90 < heart rate < 120 AND 120 < blood pressure < 140 AND 100 < glucose level < 125 → THEN condition: at risk

If heart rate = 0 → THEN condition: dead

Control

Amplitude	Frequency	Regularity	Symmetry	Class
1.5	12	2.5	0.8	PD
1.8	8	2.1	0.9	Control
1.6	6	1.8	1.2	Control
1.2	15	1.5	1.1	PD
2.5	12	1.4	0.7	PD
3.2	11	1.6	1.35	Control
2.8	8	1.2	0.75	PD

PD

Amplitude	Frequency	Regularity	Symmetry	Class
1.5	12	2.5	0.8	PD
1.8	8	2.1	0.9	Control
1.6	6	1.8	1.2	Control
1.2	15	1.5	1.1	PD
2.5	12	1.4	0.7	PD
3.2	11	1.6	1.35	Control
2.8	8	1.2	0.75	PD

The decision tree is the simplest machine learning model.

It is fast, easy to visualize and thus interpretable.

However, it is not the most convincing.

Usually, instead of choosing sharp thresholds, it is preferred to maximize the separation between classes.

Deep learning

