Algoritmi e Principi dell'Informatica

Soluzioni al Tema d'esame 17 Febbraio 2021

1 Informatica teorica

Esercizio 1

Si consideri il seguente linguaggio L definito sull'alfabeto $\Sigma = \{a, b, c, d\}$:

$$L = \{a^n b^i c^j d^k, n \ge 0, i \ge 0, j \ge 0, k \ge 0, n = i + j + k\}$$

Si descriva la grammatica a potenza minima che lo genera.

SOLUZIONE

È possibile generare il linguaggio tramite una grammatica non ambigua, libera dal contesto. In particolare, la grammatica mette in corrispondenza ogni a con la rispettiva b, c, o d a seconda della posizione della a stessa nella stringa.

$$G = \begin{cases} S \to aSd \mid A \\ A \to aAc \mid B \\ B \to aBb \mid \varepsilon \end{cases}$$

Esercizio 2

Si denoti con M_i la *i*-esima macchina di Turing e si denoti con $L(M_i)$ il linguaggio da essa riconosciuto. Si considerino i seguenti insiemi:

- 1. $S_1 = \{i | L(M_i) \text{ non contiene nessuna stringa di lunghezza pari}\}$
- 2. $S_2 = \{i | L(M_i) \text{ contiene almeno una stringa di lunghezza pari}\}$

Per entrambi gli insiemi, si indichi, motivando opportunamente la risposta, se sono ricorsivi o ricorsivamente enumerabili.

SOLUZIONE

Nessuno dei due è ricorsivo (teorema di Rice). S_2 è ricorsivamente enumerabile (tecnica diagonale). S_1 non è ricorsivamente enumerabile perché lo è il suo complemento S_2 , e quindi se lo fosse anche S_1 , S_1 e S_2 dovrebbero essere ricorsivi.

2 Algoritmi e strutture dati

Esercizio 3

Sia T[1..n][1..n] una matrice $n \times n$; si consideri la seguente procedura f(T,n) e se ne valuti la complessità temporale.

```
w = ceil(n/2)
if v == w then w = w+1
A = T[1..v][1..v]
A1 = f(A, v)
B = T[w..n][w..n]
B1 = f(B, n-w+1)
for i from 1 to n:
    for j from 1 to n:
        if i <= v and j <= v then T[i][j] = A1[i][j]
        if i >= w and j >= w then T[i][j] = B1[i-w+1][j-w+1]
        else T[i][j] = T[i][j] * T[i][j]
return T
```

SOLUZIONE

Si denoti con $N=n^2$ il numero di elementi della matrice T. La complessità della procedura è espressa dalla seguente ricorrenza: $T(N)=2T(\frac{N}{4})+\Theta(N)$. È possibile applicare il terzo caso del Master Theorem, ottenendo quindi: $T(N)=\Theta(N)=\Theta(n^2)$.

Esercizio 4

Si descriva il funzionamento di una macchina di Turing a k nastri che, date due stringhe in ingresso x e y sull'alfabeto $A = \{a, b\}$, restituisce 0 se x non è un suffisso di y, altrimenti restituisce in uscita il prefisso che non è in comune. Si assuma che l'ingresso sia del tipo x\$y, dove \$ è un carattere usato come separatore. Si specifichino le complessità temporale e spaziale della macchina.

SOLUZIONE

Con una macchina di Turing a 3 nastri si può fare una lettura sequenziale dell'ingresso, trascrivendo la stringa x (prima del \$) sul primo nastro di memoria e la stringa y (dopo il \$) sul secondo nastro. A questo punto si può procedere con una lettura parallela da destra a sinistra dei due nastri di memoria, fintantoché i caratteri letti sono uguali. Se alla fine di questo passaggio non si è riavvolto completamente il primo nastro, vuol dire che x non è un suffisso di y e si può quindi scrivere 0 in uscita. Altrimenti si procede alla stampa dei caratteri rimanenti sul secondo nastro. Per farlo, continuiamo la lettura da destra a sinistra sul secondo nastro e ne trascriviamo i caratteri sul terzo nastro di memoria (da sinistra a destra). Infine, riavvolgiamo il terzo nastro di memoria e lo rileggiamo da sinistra a destra, stampandone il contenuto in uscita. Le complessità sono lineari.