005859278 & 004562011

CSE 512 Artificial Intelligence

Homework #4

Problem 1

Step 1 – Convert to CNF

Propositional sentence

$$\neg L5 \rightarrow \left(\neg(L7 \land L2)\right) \equiv L5 \lor \neg L7 \lor \neg L2$$

Set of premises

$$\neg L2 \rightarrow L1 \equiv L2 \lor L1$$

$$L4 \rightarrow L3 \equiv \neg L4 \lor L3$$

$$L5 \rightarrow (L1 \land L4) \equiv (\neg L5 \lor L1) \land (\neg L5 \lor L4)$$

$$\neg L6 \rightarrow \neg L2 \equiv L6 \lor \neg L2$$

$$L7 \rightarrow \neg L6 \equiv \neg L7 \land \neg L6$$

Step 2(a) – Use resolution refutation to disprove contradiction of propositional sentence

Disprove: $\neg L5 \land L7 \land L2$

1	L2 v L1	Given	
2	$\neg L4 \lor L3$	Given	
3	$(\neg L5 \lor L1) \land (\neg L5 \lor L4)$	Given	
4	<i>L</i> 6 ∨ ¬ <i>L</i> 2	Given	
5	$\neg L7 \land \neg L6$	Given	
6	$\neg L5 \wedge L7 \wedge L2$	Negated Propositional Sentence	
7	L6	4+6	
8	$\neg L7$	5+7	
9	Null	5+8, EOP	

Step 2(b) – Use same method to disprove contradiction of propositional sentence

$$\neg L3 \rightarrow (\neg L4 \wedge \neg L5) \equiv \neg L3 \wedge L4 \vee L5$$

Disprove: $\neg L3 \land L4 \lor L5$

1	<i>L</i> 2 ∨ <i>L</i> 1	Given		
2	¬L4 ∨ L3	Given		
3	$(\neg L5 \lor L1) \land (\neg L5 \lor L4)$	Given		
4	<i>L</i> 6 ∨ ¬ <i>L</i> 2	Given		
5	$\neg L7 \land \neg L6$	Given		
6	$\neg L3 \land L4 \lor L5$	Negated Propositional Sentence		
7	$\neg L4$	6+2		
8	<i>L</i> 5	6+7		
9	L4	8+3		
10	Null	7+9, EOP		

Problem 2

id	Α	В	С	D	Ok
1	1	0	1	1	0
2	1	1	0	1	1
3	1	1	0	0	0
4	1	1	0	1	1
5	1	0	0	0	0
6	0	1	1	1	1
7	0	1	0	1	1
8	0	1	0	0	0
9	0	1	0	1	1
10	0	0	0	0	0

Step 1 – Find row with best ratio...

$$A = \frac{2}{5} = 40\%$$

$$B = \frac{5}{7} = 71.4\%$$

$$C = \frac{1}{2} = 50\%$$

$$D = \frac{5}{6} = 83.3\%$$

D appears to be the best choice, however, is not 100%, therefore add another row.

Step 2 - Best ratio with row D...

$$D \cap A = \frac{2}{3} = 66.7\%$$

$$D \cap B = \frac{5}{5} = 100\%$$

$$D \cap C = \frac{1}{2} = 50\%$$

Since $D \cap B$ has a 100% ratio, this is a becomes the **first learning rule**. This is also our only learning rule, since we now have 0's in all rows for our 'ok' vector.