Deleting Vertices and Relations in the Posets Julia Package

Deleting Vertices

Deleting vertices from a poset is somewhat different from deleting vertices in a graph. When a vertex is deleted from a graph, the vertex and all edges incident with that vertex are removed. Similarly, when a vertex is removed from a poset, the relations between all the remaining vertices remain unchanged. However, this is not the same as simply deleting a vertex and its edges from the poset's Hasse diagram.

Consider the poset on the left in Figure 1. Mathematically, deleting vertex 2 from this poset results in the poset in the middle of the figure. In the Hasse diagram we have an edge from 1 upward to 3 because $1 \prec 3$ in the original poset, and so we still have $1 \prec 3$ after the deletion. Similarly, the relation $4 \prec 3$ is preserved.

However, the Julia Posets package is based on the Graphs package. A key convention of graphs (and hence of posets) in these packages is that the vertex set is always of the form $\{1, 2, ..., n\}$. If vertex n is deleted, no special action needs to be taken. But if a vertex k (with k < n) is removed, then the name n is no longer valid by the naming convention. In this case, the vertex formally named n is renamed k (the label of the deleted vertex). As a result, the result in Posets of deleting vertex 2 in Figure 1 is the poset on the right.

This is illustrated in Julia as follows:

```
julia> p = chain(3) + chain(3);
julia> add_relation!(p, 4, 2);
julia> rem_vertex!(p, 2);
julia> collect(relations(p))
5-element Vector{Relation{Int64}}:
Relation 1 < 3
Relation 4 < 2
Relation 4 < 3
Relation 4 < 5
Relation 5 < 2</pre>
```

Deleting Relations

Deleting a relation from a poset is complicated. The simplest case is the removal of a relation $a \prec b$ where b is a cover of a. In this case, it is possible just to remove the single relation $a \prec b$ and make no other changes to the poset. This is illustrated in Figure 2 in which we delete the cover relation $2 \prec$ from the linear order $1 \prec 2 \prec 3 \prec 4$.

The following Julia code implements the action of deleting $2 \prec 3$ from a 4-element chain:

```
julia> p = chain(4);
julia> rem_relation!(p, 2, 3);
julia> collect(relations(p))
6-element Vector{Relation{Int64}}:
Relation 1 < 2
Relation 1 < 3
Relation 1 < 4
Relation 2 < 3
Relation 2 < 4
Relation 3 < 4</pre>
```

It is an easy exercise that deleting a single cover relation from a poset yields a poset.

The situation is different for non-cover relations. For example, consider the linear order $1 \prec 2 \prec 3 \prec 4 \prec 5$. Suppose we wish to delete the relation $2 \prec 4$. If we only delete that one relation, we would still have $2 \prec 3$ and $3 \prec 4$, so omitting $2 \prec 4$ would result in a violation of transitivity.

More generally, suppose we wish to remove the relation $a \prec b$ from a poset. If there is an element x with $a \prec x \prec b$ we cannot delete just $a \prec b$ and keep both $a \prec x$ and $x \prec b$. There is no *a priori* reason to prefer one of $a \prec x$ or $x \prec b$ for deletion (or retention). Hence, it is a design decision that when removing a relation $a \prec b$ we also remove both

relations $a \prec x$ and $x \prec b$ for all x between a and b. Again, one can prove that the result of this is a poset.

For example, suppose we wish to delete the relation $2 \prec 4$ from the linear order $1 \prec 2 \prec 3 \prec 4 \prec 5$. Our implementation deletes not only $2 \prec 4$ but also $2 \prec 3$ and $3 \prec 4$ as well. This is illustrated in Figure 3.

This is the Julia code to illustrate this deletion:

```
julia> p = chain(5);
julia> rem_relation!(p, 2, 4);
julia> collect(relations(p))
7-element Vector{Relation{Int64}}:
Relation 1 < 2
Relation 1 < 3
Relation 1 < 4
Relation 1 < 5
Relation 2 < 5
Relation 3 < 5
Relation 4 < 5</pre>
```