COMPARAÇÃO DO DESEMPENHO MULTICORE DE ARQUITETURAS RISC E CISC: UM ESTUDO DE CASO ENTRE COMPUTADOR DESKTOP E O RASPBERRY PI

Aluno: Paulinelly de Sousa Oliveira

Orientador: Prof. Dr. Laerte Mateus Rodrigues

Coorientador: Prof. Carlos Renato Nolli

Bambuí-MG Dezembro/2017

Introdução

- Necessidade de aumento da capacidade de processamento;
- Melhorias na organização e na arquitetura (pipeline, memória cache, redução componentes);
- 3. RISC x CISC;
- 4. Processadores Multicore;
- 5. Problemas de tempo não polinomial.

Introdução

Objetivo Geral:

Comparar o desempenho computacional paralelo e sequencial do Raspberry Pi em relação à computadores (desktops).

Objetivos Específicos:

- 1. Definir o algoritmo;
- 2. Adaptar ou implementar o algoritmo;
- 3. Avaliar o desempenho computacional nas 2 arquiteturas propostas.

Arquitetura RISC:

- 1. Registradores: 16-32;
- 2. Instruções de tamanho fixo;
- 3. Instrução leva 1 ciclo de clock;
- 4. Complexidade no software.

Arquitetura x86:

- 1. Instruções com comprimento variável;
- 2. Híbrida RISC/CISC;
- Micro operações;
- Número elevado de instruções;

Sistemas Embarcados:

São definidos como sistemas computacionais para uso específico ou dedicados.

- 1. Economia de energia;
- 2. Portabilidade;
- 3. Complexidade de processamento;
- Baixo custo.

Propósito Geral x Uso específico

Placa Raspberry Pi moledo 3B

- Processador;
- 2. Memória RAM;
- 3. Portas USB 2.0;
- 4. Pinos GPIO;
- 5. Porta Full HDMI;
- 6. Porta 10/100 Ethernet:
- 7. Áudio jack and composite video;
- 8. Interface de câmera (CSI);
- Interface para Display (DSI);
- 10. Slot para cartão Micro SD;
- 11. Chip Gráfico VideoCore IV.

Fonte: Fundação Raspberry Pi, 2017).

Início **Algoritmos Genéticos** População Inicial Calculo da Aptidão Mutação Inteligência Artificial; Não Algoritmo Bio-inspirado; Atingiu critério de parada Selecão Cruzamento Princípio da seleção e evolução natural de organismos biológicos (Darwinismo); Sim Trabalha de forma aleatória e orientada para algumas regras probabilísticas; Função de avaliação;

O Problema do Caixeiro Viajante (PCV):

- 1. Problema de otimização combinatória;
- 2. Simétrico;
- 3. Assimétrico;
- 4. Problema NP-Difícil;

Revisão de Literatura

Ramos, Ralha e Teodoro (2016): Avaliação de cluster raspberry pi para execução de aplicações de análises de imagens microscópicas médicas.

Crotti et al. (2013): Raspberry pi e experimentação remota.

Silva e Martins (2012): Avaliação de implementações do algoritmo genético paralelo para solução do problema do caixeiro viajante usando openmp e pthreads.

Materiais e Métodos

Notebook Asus X44C:

- 1. Linux Ubuntu 16.04 64 bits;
- 2. Processador Intel Core i3-2330M 2.2GHz;
- 3. RAM 4GB DDR3 1333MHz;
- 4. HD SATA 500 GB 5400 rpm;

Raspberry Pi modelo 3B

- 1. Linux Raspbian;
- 2. Processador 1.2GHz 64-bits quad-core ARMv8-A;
- 1GB RAM LPDDR2 (900 MHz);
- 4. Cartão MicroSD de 16GB;

Compiladores GCC e G++ versões 5.4.0; Biblioteca OpenMp 3.1;

Materiais e Métodos

Métricas:

- Speedup;

$$Sp = Ts / Tp$$

- Eficiência;

Materiais e Métodos

Algoritmo;

Entrada;

Dois testes:

- 1. Entradas variadas
- 2. Entrada fixa

Sequencial e Paralelo.

Notebook Sequencial

Raspberry Sequencial

Parâmetro analisado	Media	Mediana	Desvio Padrão
Sd Ts Raspberry/Notebook	3,2695	2,9558	1,0925
$Sd\ Tp\ { m Raspberry/Notebook}$	3,3224	3,3456	0,1667
Sd Notebook Ts/Tp	1,9123	2,1792	0,5637
Sd Raspberry Ts/Tp	1,7350	1,8731	0,3314
Ef Notebook	50,1549	54,4800	22,9936
Ef Raspberry	47,9383	48,1387	21,9332

Parâmetro analisado	Media	Mediana	Desvio Padrão
Ts Notebook	279,7962	279,7430	0,5213
Ts Raspberry	1370,545	1373,180	7,0393
Tp Notebook	139,5995	139,5775	0,3903
Tp Raspberry	481,2862	481,3365	1,5111
Sd Ts Raspberry/Notebook	4,8897	4,8995	0,0381
Sd Tp Raspberry/Notebook	3,4266	3,4439	0,0785
Sd Notebook Ts/Tp	1,9936	2,0032	0,0456
Sd Raspberry Ts/Tp	2,8449	2,8466	0,0213
Ef Notebook	49,8415	50,081	1,1407
Ef Raspberry	71,1238	71,165	0,5339

Conclusões

Sd de 3 a 4,8 do notebook em relação a Raspberry Pi no AG sequencial Sd em torno de 3,3 do notebook em relação a Raspberry Pi no AG paralelo Motivos:

- 1. Memória secundária;
- 2. Memória primária;
- 3. Arquitetura x86;

Melhor Eficiência.

Conclusões

Principais limitações:

- 1. Falta de um ambiente de rede (cluster);
- Falta de testes com outros tipos de aplicações;
- 3. Análises utilizando softwares do tipo benchmark;
- 4. Consumo de energia.

Trabalhos Futuros:

- Testes com aplicações distribuídas;
- Comparação com dispositivos similares a Raspberry Pi;
- 3. Testes com outras classes de algoritmos;
- 4. Análise do consumo de energia.

Referências

FUNDACAORASPBERRYPI. Raspberry pi 3 model b. Raspberry Pi Blog, 2017. Disponível em: https://www.raspberrypi.org/documentation.

RAMOS, R. M.; RALHA, C.; TEODORO, G. Avaliação de cluster raspberry pi para execução de aplicações de análises de imagens microscópicas médicas. Brasília, DF, 2016.

CROTTI, Y. et al. Raspberry pi e experimentação remota. Araranguá, SC, 2013.

SILVA, H. H.; MARTINS, C. A. P. S. Avaliação de implementações do algoritmo genético para lelo para solução do problema do caixeiro viajante usando openmp e pthreads. XIII Simpósio em Sistemas Computacionais WSCAD-SSC - Workshop de Iniciação Científica, 2012. Disponível em:

https://s3.amazonaws.com/academia.edu.documents/30275596/Artigo.pdf.

Obrigado!!

Dúvidas?

COMPARAÇÃO DO DESEMPENHO MULTI-CORE DE ARQUITETURAS RISC E CISC: UM ESTUDO DE CASO ENTRE COMPUTADOR DESKTOP E O RASPBERRY PI

Aluno: Paulinelly de Sousa Oliveira

Orientador: Prof. Dr. Laerte Mateus Rodrigues

Coorientador: Prof. Carlos Renato Nolli

Bambuí-MG Dezembro/2017

