VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Typografie a publikování – 2.projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty například Definice nebo rovnice na straně. Pro vytvoření těchto odkazů používáme kombinace příkazů \label, \ref, \eqref a \pageref. Před odkazy patří nezlomitelná mezera. Pro zvýrazňování textu jsou zde několikrát použity příkazy \verb a \emph.

Na titulní straně je použito prostředí titlepage a sázení nadpisu podle optického středu s využitím *přesného* zlatého řezu. Tento postup byl probírán na přednášce. Dále jsou na titulní straně použity čtyři různé velikosti písma a mezi dvojicemi řádků textu je použito odřádkování se zadanou relativní velikostí 0,5 em a 0,4 em¹.

1 Matematický text

V této sekci se podíváme na sázení matematických symbolů a výrazů v plynulém textu pomocí prostředí math. Definice a věty sázíme pomocí příkazu \newtheorem s využitím balíku amsthm. Někdy je vhodné použít konstrukci \$ { } \$ nebo \mbox { },která říká, že (matematický) text nemá být zalomen.

Definice 1. Zásobníkový automat (ZA) je definován jako sedmice tvaru $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde:

- Q je konečná množina vnitřních (řídících) satvů,
- Σ je konečná vstupní abeceda,
- Γ je konečná zásobníková abeceda,
- δ je přechodová funkce $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$,
- $q_0 \in Q$ je počáteční stav, $Z_0 \in \Gamma$ je startovací symbol zásobníku a $F \subseteq Q$ je množina koncových stavů.

Nechť $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je ZA. konfigurací nazveme trojici $(q,\omega,\alpha)\in Q\times \Sigma^*\times \Gamma^*$, kde qje aktuální stav vnitřního řízení, w je dosud nezpracovaná část vstupního řetězce a $\alpha=Z_{i_1}Z_{i_2}\ldots Z_{i_k}$ je obsah zásobníku.

1.1 Podsekce obsahující definici a větu

Definice 2. Řetězec ω and abecedou Σ je přijat ZA A jestliže $(q_0,\omega,Z_0)\stackrel{*}{\underset{A}{\vdash}} (q_F,\epsilon,\gamma)$ pro nějaké $\gamma\in\Gamma^*$ a $q_F\in F$. Množina $L(A)=\{w\mid w \text{ je přijat ZA }A\}\subseteq\Sigma^*$ je jazyk přijímaný za ZA A.

Věta 1. *Třída jazuků, které jsou přijímány ZA, odpovídá* bezkontextovým jazykům.

2 Rovnice

Složitější matematické formulace sázíme mimo plynulý text pomocí prostředí displaymath. Lze umístit i několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$1^{2^3} \neq \Delta^1_{\Delta^2_{\Lambda^3}} \quad y^{11}_{22} - \sqrt[9]{x + \sqrt[7]{y}} \quad x > y_1 \le y^2$$

V rovnici (2) jsou využity tři typy závorek s různou *explicitně* definovanou velikostí. Také nepřehlédněte, že následující tři rovnice mají zarovnaná rovnítka, a použijte k tomuto účelu vhodné prostředí.

$$-\cos^2 \beta = \frac{\frac{\frac{1}{x} + \frac{1}{3}}{y} + 1000}{\prod_{\substack{j=2\\ j=2}}^{8}}$$
(1)

$$\left(\left\{b \star \left[3 \div 4\right]\right\}^{\frac{2}{3}}\right) = \log_{10} x \tag{2}$$

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(y) dy \tag{3}$$

V této větě vidíme, jak vypadá implicitní vzsázení limity $\lim_{m \to \infty} f(m)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako $\bigcup_{N \in \mathcal{M}} N$, či $\sum_{i=1}^m x_i^2$. S vynucením méně úsporné sazby příkazem \limits budou vzorce vysázeny v podobě $\lim_{m \to \infty} f(m)$ a $\sum_{i=1}^m x_i^4$.

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left,\right).

$$B = \begin{vmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{vmatrix} = \begin{vmatrix} t & u \\ v & w \end{vmatrix} = tw - uv$$

$$\mathbb{X} = \mathbf{Y} \Longleftrightarrow \left[\begin{array}{cc} \Omega + \Delta & \hat{\psi} \\ \vec{\pi} & \omega \end{array} \right] \neq 42$$

Prostředí array lze úspěšně využít i jinde, například na pravé straně následující rovnice. Kombinační číslo na levé straně vysázejte pomocí příklazu \binom.

$$\binom{n}{k} = \begin{cases} 0 & pro \ k < 0 \\ \frac{n!}{k!(n-k)!} & pro \ 0 \le k \le n \\ 0 & pro \ k > 0 \end{cases}$$

¹Nezapomeňte použít správný typ mezery mezi číslem a jednotkou.