The Hausdorff Measure

In geometric measure theory, we like to work with outer measures so much that we just call them measures.

Definition 1. A(n) (outer) measure μ on \mathbb{R}^n is a function $\mu : \mathcal{P}(\mathbb{R}^n) \to [0, +\infty]$ such that, for $\{A_i\}_{i \in \mathbb{N}}$ a countable collection of subsets of \mathbb{R}^n and any $A \subseteq \bigcup_{i \in \mathbb{N}} A_i$, we have

$$\mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i).$$

A set $A \subseteq \mathbb{R}^n$ is **measurable** if, for all $E \subset \mathbb{R}^n$,

$$\mu(E \cap A) + \mu(E \cap A^C) = \mu(E).$$

The Hausdorff Measure

Some notation:

• The *diameter* of a set S is denoted by diam(S) and is given by the following formula:

$$diam(S) = \sup\{|x - y| : x, y \in S\}.$$

• The Lebesgue measure of the closed unit ball $\mathbb{B}^m(0,1)\subseteq\mathbb{R}^m$ is denoted by α_m and is given by the following formula

$$\alpha_m = \frac{\pi^{m/2}}{\Gamma\left(\frac{m}{2} + 1\right)}.$$

Definition 2. For any $A \subseteq \mathbb{R}^n$ define the (δ, m) -Hausdorff measure $\mathcal{H}^m_{\delta}(A)$ as

$$\mathcal{H}_{\delta}^{m}(A) = \inf_{\substack{A \subset \bigcup S_{j} \\ \operatorname{diam}(S_{j}) \leq \delta}} \sum \alpha_{m} \left(\frac{\operatorname{diam}(S_{j})}{2} \right)^{m}.$$

The m-dimensional Hausdorff measure is defined as $\mathcal{H}^m(A) = \lim_{\delta \to 0} \mathcal{H}^m_{\delta}(A)$.

Observation 1. Let \mathcal{H}^m be the m-dimensional Hausdorff measure over \mathbb{R}^n .

- (1) \mathcal{H}^m is countably subadditive.
- (2) All Borel sets of \mathbb{R}^n are \mathcal{H}^m -measurable.
- (3) For all $A \subset \mathbb{R}^n$ there exists a Borel subset $B \subset \mathbb{R}^n$ such that

$$\mathcal{H}^m(A) = \mathcal{H}^m(B).$$

The Hausdorff Dimension

Definition 3. Let $A \subseteq \mathbb{R}^n$ be nonempty. The **Hausdorff dimension** of A is defined as

$$\inf\{m \ge 0 : \mathcal{H}^m(A) < \infty\} = \inf\{m : \mathcal{H}^m(A) = 0\}$$
$$= \sup\{m : \mathcal{H}^m(A) > 0\}$$
$$= \sup\{m : \mathcal{H}^m(A) = \infty\}.$$

Observation 2. All four definitions of the Hausdorff dimension above are equivalent.

Numerical Implementations [Big WIP]

- For diameter...
 - 1. Let S = f(D) for some $D \subseteq \mathbb{R}^n$ and some function f.
 - 2. Sample random points (the more points sampled, the more accurate the method) and take their distances. A stored array would probably look like (for defining a surface)

\mathbf{x}	\mathbf{y}	$ (\mathbf{x}, f(\mathbf{x}) - (\mathbf{y}, f(\mathbf{y})) $
(1, 2)	(3, 4)	0.1234
(4, 3)	(1, 8)	4.6512
:	:	<u>:</u>

3. Then, diam(S) is reported as the max in the third column. Let's do it.

MATLAB 1. diam(S) numerical implementation for surfaces.

Implementation. See the folder, will improve it later.