Mapping migration in a songbird using high-resolution genetic markers

Kristen Ruegg^{1,2}, Eric C. Anderson^{3,4}, Kristina L. Paxton^{5,6}, Vanessa Apkenas³, Sirena Lao¹, Rodney B. Siegel⁷, David F. DeSante⁷, Frank Moore⁶ and Thomas B. Smith^{1,8}

METHODS SUPPLEMENT

(a) RAD-PE library preparation. In short, 100ng of genomic DNA from each individual was digested with 2 U of Sbfl-HF enzyme (New England Biolabs, Beverly MA, USA) for 60 min at 37° C. The reactions were then inactivated by holding at 65° C for 20 min. The P1 adapter (a modified Illumina adapter, see Baird et al. (1)) was ligated to the products of the restriction reactions, and the "barcoding" of the various samples was achieved with a set of index nucleotides within the P1 adapter sequence. 1 μL of 100 nM P1 adapter was then added to each sample with 60 U T4 DNA Ligase (Enzymatics, Inc.). Reactions were incubated at room temperature for 1 hour and then heat-inactivated by holding at 65° C for 10 min. The reactions were then pooled and the products were randomly sheared to a mean size of 500 bp using a Bioruptor NGS (Diagenode). The material was electrophoresed through a 1.5% agarose gel and DNA in the range of 200-700 bp was isolated using a MinElute Gel Extraction Kit (Qiagen). To remove overhangs, ssDNA ends were treated with 1 µL High Concentration End-Repair Mix (Enzymatics, Inc.). The samples were then purified by passing through a MinElute column (Qiagen) and 3'adenine overhangs were added by the addition of 50 U Klenow (3'-5' exo-) (Enzymatics) and 1 µL 10mM dATP. Samples were then incubation at 37° C for 30 min. Following re-purification, 1 μL of 1 μM P2 adapter (a modified Illumina adapter, see Baird et al. (1)) was ligated with 600 U T4 DNA Ligase (Enzymatics, Inc.) for 1 hour at room

temperature. The samples were then purified as above and eluted in a volume of 15 μ L. Following quantification using a Qubit fluorimeter (Invitrogen), 10 ng was taken as the template for a 100 μ L PCR containing 50 μ L Phusion Master Mix (NEB), 5 μ L 10 μ M P1 amplification primer and 5 μ L 10 μ M P2 amplification primer. The Phusion PCR settings followed standard protocols (NEB) over 18 cycles. Amplicons were then gel purified, the size range 300-700 bp was excised from the gel and its DNA content adjusted to 3.6 ng/ μ L.

(b) Pre-amplification and final SNPtype Assay amplification protocol. All protocols and genotyping efforts were carried out with the use of Fluidigm Corporation SNPtype™ Assays designed for 96.96 Dynamic Genotyping Arrays[™] on an EP1 [™] Genotyping System. This platform enabled us to efficiently genotype 96 SNP loci in 94 individuals at a time with two non-template controls per run. An initial pre-amplification step was performed on genomic DNA using a primer pool containing 96 unlabeled locus specific SNPtype primers (Specific Target Amplification (STA) and Locus Specific Primer (LSP) assays) made up ahead of time according to the following parameters: 2 µl 100 µM STA primer for each of 96 assays, 2 μ l 100 μ M LSP primer for each of 96 assays, 16 μ l 5 μ M Tris dH₂O. PCR master mix was comprised of: 2.6 µl Qiagen® 2X Multiplex PCR Master Mix, 0.52 µl primer pool, 0.78 µl dH₂O. Pre-amplification thermal cycling conditions were as follows: an initial denaturation of 15 min at 95 °C, then [15 s at 95 °C and 4 min at 60 °C] x 14 and a final hold at 10 °C. Products were then diluted 1:100 with 2 uM Tris dH₂O. We ran samples as: 2.5 μl diluted DNA, 3 μl Biotium Fast Probe qPCR Master Mix, 0.3 µl SNPtype 20X Sample Loading Reagent, 0.1 µl 60X SNPtype reagent,

0.036 μl ROX[™] Passive Reference Dye, 0.064 μl dH₂O. Assays were ran as: 1 μl SNPtype assay mix (Allele Specific Primer (ASP) and LSP assays), 2.5 μl 2X Assay Loading Reagent, 1.5 μl dH₂O. Once loaded into the array, samples and assays went through another amplification step in order to detect SNP-specific alleles: a thermal mix step of [30 min at 70 °C and 10 min at 25 °C], initial denaturation of 5 min at 95 °C, [95 °C for 15 s, 63 °C for 45 s, 72 °C for 15 s] x 3 (-1 °C/cycle), [95 °C for 15 s, 60 °C for 45 s, 72 °C for 15 s] x 34 and a final cooling step of 25 °C for 10 s. We imaged results and called alleles with Fluidigm Genotyping Analysis Software.

Figure Legend

SI Figure 1. Results of the population genetic analysis for Wilson's warblers across the breeding range using STRUCTURE. These data depict the output from all 10 runs at each K value (K=1-9) and the data are plotted using the program Distruct.

SI Table 1. RAD sequencing results for SNP ascertainment panel. For each individual, the population, the subspecies, the library prep pool ("pool"), the number of Illumina sequencing reads attained for the sample ("N reads"), the number of unique RAD tags with between 5x and 100x coverage ("N RAD tags"), the median depth of sequencing coverage for the sample across all RAD tags ("Med. seq. depth"), and the mean quality score per pool ("Mean Quality Score") are indicated.

Individual	Population	Subspecies	Pool	N reads	N RADtags	Med seq. depth	Mean Quality Score
QUE_98N2036	Lac St. Jean, Quebec	W. c. pusilia	С	7,551,325	168,880	28	35
QUE_98N2038	Lac St. Jean, Quebec	W. c. pusilia	С	9,621,485	178,891	35	35
QUE_98N2040	Lac St. Jean, Quebec	W. c. pusilia	С	9,295,065	172,704	35	35
QUE_98N2043	Lac St. Jean, Quebec	W. c. pusilia	C	9,488,049	176,141	35	35
QUE_98N2044	Lac St. Jean, Quebec	W. c. pusilia	С	8,713,916	173,084	32	35
AB_03N2126	Cochran, Alberta	W. c. pusilia/ W. c. pileolata	D	6,938,762	158,537	27	35
AB_03N2127	Cochran, Alberta	W. c. pusilia/ W. c. pileolata	D	8,761,518	175,795	30	35
AB_03N2128	Cochran, Alberta	W. c. pusilia/ W. c. pileolata	D	8,901,837	178,996	30	35
AB_03N2182	Cochran, Alberta	W. c. pusilia/ W. c. pileolata	D	6,551,410	159,025	25	35
AB_03N2185	Cochran, Alberta	W. c. pusilia/ W. c. pileolata	D	7,230,512	164,589	27	35
AK_97N4037	Juneau, AK	W. c. pileolata	D	8,829,749	174,495	32	35
AK_97N4039	Juneau, AK	W. c. pileolata	D	9,222,262	176,075	33	35
AK_97N4046	Juneau, AK	W. c. pileolata	D	8,826,285	173,830	32	35
AK_97N4049	Juneau, AK	W. c. pileolata	D	8,899,908	172,830	33	35
AK_97N4059	Juneau, AK	W. c. pileolata	D	5,574,860	161,879	22	35
06N26537	Cibola, AZ	W. c. pileolata	E	15,425,338	336,924	26	35
96N2356	Lake Tahoe, CA	W. c. chryseola	E	15,955,805	340,694	27	35
PRBO_08	Point Reyes, CA	W. c. chryseola	E	6,302,518	154,403	25	35
PRBO_11	Point Reyes, CA	W. c. chryseola	E	18,699,537	204,819	56	35
PRBO_19	Point Reyes, CA	W. c. chryseola	E	20,436,772	212,079	57	35
PRBO_20	Point Reyes, CA	W. c. chryseola	E	16,037,892	197,870	48	35
PRBO_25	Point Reyes, CA	W. c. chryseola	E	7,503,722	164,383	28	35

Assay Name	Chromosome	Zebra Finch Genome Coordinates	SNP Frequency in Southwest (SW)	SNP Freqeuncy in Alberta (AB)		SNP Freqeuncy in California (PRBO)	SNP Freqeuncy in Quebec (QUE)	Total Number of Genotypes in each population (SW, AB AK, PRBO, QUE)		Contig Length (bp)	Average depth of sequencing across the contig within an individual	sequence at SNP
AB_AK_02	8	3027501	1	0.25	0.9	0.75	0	2 4 5 4 5	GCCATAACTATGAAGTGCCTTAGTTTTGGCTTTGAT ATGACTGAGTTGTGAGCCTCAGAAAACAATGTTCTC AGC[A/G]TGCACTCCAGGGTGTTGTTTCTTCCTTCAA AGCTGCTGAAATGCGCAGCAGAGAGGATTTACTGT GAGCAACTGA	240	28.08	1133
AB_AK_03	3	22026684	0.25	0.125	0.75	0.4	0	2 4 4 5 5	TGCTGAAATCTACTAATTAATTCCAACTTCAAACACC CATAAAGACACACTCCATCTGACCACGATGAAATCT CA[T/C]GGCTAGCATTGCTATTTGTCAGAGGAAAAG CAACTTCCAAATTGTCAGTCTCTCCAACAACACGTGGT TCCTTCCC	373	32.91	929
AB_AK_04	14	16110885	0.75	1	0.375	0.5	1	2 4 4 5 5	CAGACATCCCAGACTCGGTGTCACTCCGGCATCTCA TCAAACAGGAAATTGCTTTTCCAGGGTCATCTGGGA TCT[C/G]GGCACGAACTGCTCGTCATCAGCATAATA ATGGCAGCTGAAACGATGCCTTGGCAGAGAGGGGC ACCTCTGCACA	381	18.93	745
AB_AK_05	NA	NA	1	1	0.375	0.5	0	15445	TGGAGCACCTCCCACCCCTTTTCACTAGCTTTGATG ACTGCAGAGTTGTTCCTCTCTTTTCTCACTCCTC T[T/C]CTCACCAAGAGCTGCACAGTTTTACTTCTTGG ATATGTTATCCCAGAGATGCTACTACCATCACAAGT TCATCTC	296	19.50	1086
AB_AK_06	NA	NA	0.25	0	0.625	0.5	0.125	2 4 4 4 4	AATCTAAAAGAAAAAAATATGGATTTCACATCTAGG AAAACCCAAACCAAA	329	36.57	1150
AB_AK_08	1	52827600	0.5	0	0.5	0.5	0.5	2 4 4 5 5	GAACAGGGTAATTACTCTGTCAGAGAAGAAGCTTC CAGGAGGTGCCTGAGAAGTGTAAATCATGTACAGA AAAAG[A/G]TTTTCAGACCAAAAATAAAAAGCATCTG TAAGGACAACAGTAGTGAAGTGA	462	24.68	893
AB_AK_09	2	18244201	1	1	0.5	0.8	1	2 4 4 5 5	CCACACCTCACTATTGTTACTAAAGTCAGCTGGACA CTCCTCTTGTCTCCACGTGCCCCATCAACCTCTTTGC TT[G/C]TGTGTGGATGAAGGAGGAGAACAGGATC TGGCTGAGTGTGGGGCCTCTTCTCTCACATCTTAAA GAGGATGCAA	362	33.73	449
AB_AK_11	7	5412014	0	1	0.5	0.875	1	14445	TTTTTCGATAGGCTTTAATAGTTTAATTTAACAGTC TTAAACACCGTCTATATTACTGAGACATAATGTGTAT T[T/A]GAGATTTGAGCAGCTGCATGGCACAAAATAA TATTTCACATTTAATTGTGTCTTTCATGCCGAAAAA GCTGAAA	279	17.06	234
AB_AK_12	NA	NA	1	1	0.5	0.7	0.125	25454	CACCTCTTCCAAAGACCTTTGGGAGGTCTCCCAGCA AGGTGAGAGAGCACAGGGAACCTTCCAGCCACAGA CAGA[G/C]ACTGCTGACTAGATGCAGGGAAAGGTCT CACCCTCTTTGACCCCAGCAGGCAACCTGGGAGCCT GGGCAGAGGCAA	461	30.46	708
AB_AK_13	NA	NA	0.5	1	0.5	0.625	1	25445	TGTCCAGGTACCTCCTCCACAGCTATGCCTCCCTTGC ATCTACAAACCTGATGCTTGACCCCTCTGCATGTGA AA](/TJACAAATTTTCCTTCTCCACACTTCCCGGCAT AGCCACTACAAGGATTATAGACTGGATGCATCTTTT CTTCAGAG	355	17.11	1026
AB_AK_15	1	93984316	0.25	0.5	1	1	1	25545	CCCCAACTACTCTGCTTTGATATCTGTGGGGTCTTTA TGGAAGTTCCTTTAAGAAGTCATCTATGAGATTAAT GG[A/T]CGAAGCCTGCTGAGCTACTTCATGTGGCTG AGTGGCACCAAGGAGAGCAGCAAGCCCTGTGCCAGGG ACAGAGATGT	248	31.31	822
AB_AK_20	1A	60531085	1	0.6	1	1	0.6	25455	CTGCTGTATATCTCTCTGCTACAAATATAGAAAGTG ACTTTTTGAGGTTGCAGAGCAGTATCACTGTGCATG CTG[T/G]ATGTGCAAGATAAGCTGCCTTTAGCTGGT GCTGGATGGACACTGCTAGCAAAGGTTTATCCTTTA CTGGAGGACACTGCTAGCAAAGGTTTATCCTTTA CTGGAGGACT	300	26.97	839
AB_AK_23	NA	NA	1	1	0.6	1	1	2 4 5 5 5	TCAGGGTATTATAAAGGAGGTTACACAAGCAGG ACTGTTCCGGGTTTATGTAAGGGCCACCCCAGCCTG GCGG[/A]AGAGGGATGGACAGTGGGACGGCAG CGGAACAGGCCGTCCCGCTCGGACCTGGGGTCACA GTGAGACTGGGATG	237	22.41	528
AB_AK_24	NA	NA	0.75	0.5	0	0.375	1	25445	AAGGCTAAGGATTCTCCTGGGGGGAGTCCTCAGCA GCACACCATCCATCTGTCCCAGAGGGGCCCCCTG CCCA[G/A]CCTACCATGTCCCTCTGTGCCAGTGCAA CCAAAGGCTCACCTCAC	433	39.49	1023
AB_AK_26	NA	NA	0.75	0.5	1	1	0.7	2 4 4 4 5	CCCAAAGGGATCATCCGAGAGCTCCGATTCTCGG ACAAGCCAATGGAAAGACTCTTGAGTGGCTTTATAC CGCC[J/C]GAGGATCAGGCCATTGCCCTGCCTG TCTCCTGGGCTTTCTCCAGACAAAACTCCCTCTCTCC TGAGCGCTCC	242	19.70	457
AB_AK_28	NA	NA	0.25	0.6	1	0.6	0.9	25555	AAGAGTAAATAGTATTTTCCATATGACATTGCAAGG CAAAGTTTGAACTTTTGAAGTAAATTACCCCAAGGAT AGC[T/A]GCTGGAATTAAGGAGGATTATAGCCCCAA AGAGAAATGGGAATCCCCTCATGAAGTGCAAGGTG CAGGGTAGAGA	285	8.94	307
AB_AK_29	NA	NA	1	0.6	1	0.9	0.375	25454	GATAATTTTTTAGTGATTCTGCAGTTTGTTGGAAAA CAACTAAGAAAAAATAAAACCTCCAAGGATTAATTTC AA[G/A]CACTGTGATTTTTGTTATATAGGAGGGTGA TGACTCACTCCCTAGTTTATAATCTGTGACAAAAGAT GTAAGAAT	384	45.25	1056

AB_AK_30	NA	NA	0.5	1	0.6	0.9	1	24555	AGGTGAGGCTGCCAGGGCTGTAACACAAACCTGCG TCCTCCCTGCCTGAGGTTGGAGTGCTGTCAGCC AAGA[C/T]TGGAGGCAGGAGTGGGATTTCATTGGC TGTGGGAAGCAAAGGAGTCAAATTGGTCAGGGAAT CAGAGGCCTCACA	200	25.49	526
AB_AK_32	NA	NA	1	1	0.6	0.6	1	15555	CCACACACTICTIGGCCTIGGGTCAATTGTACTATCA ATTGCCTTATACTGTGGAGCAAAAAATGTCACAGCT TAJA/GJAACAACGGTCAGTCTTGTAATGCTGTATGG ATTAGCAGAAAGGATATTGCTCAGGCTGAATAAGC ATCACTGTCT	303	17.03	270
AB_PRBO_01	NA	NA	0.5	0.125	0.625	0.9	1	2 4 4 5 4	GCCCCATTCACCAACCTGAATATGACAACAGGCTTA GTTTATTTATTGAATTTCCTCATTTACCCACAAGCAC TG[T/C]AATATCTGATGCAAATAAAAGCAGTCAGAA TGACAATCTGTAGCATCTTCTAATCTGTAACTGTTTA AACTGGGG	371	17.33	450
AB_PRBO_03	5	7709232	0	0	0.3	0.7	0	24555	AAATCCATTITTAAGAGAAAAGCCATAATATAAAAC AAGCAGGGCTAGAAGCCAACCAAATGGTCTGATTT GAGA[C/T]GGCAAATCCTGAAGCTACTTCATACTGT ATTTGGAAGCTTGGGAAGCTGCATTTGAGATAAGTA CAGCTACATCT	179	28.34	756
AB_PRBO_04	Z	64567518	0.25	0.3	0.5	1	1	2 5 5 5 5	CAGGTCCCAGGGGACCTTGACACAATTCAGGCGGG CTGATGCAAATCTCATGAAATTCAATAATGTGAAGT GCAA[G/A]GTCCTACACTTGGGTCATGGCAATCTA GCCTACAGGTTGGGTGAGAGAAGTGTGAGAACAGC CCTGCAGAGAAAT	191	52.75	1426
AB_PRBO_05	NA	NA	0.5	0.125	0.6	0.8	0	2 4 5 5 4	GGTTTAAGCAAACACTCCTGTCAGGGCCCATCCTAA CTGTCTGGGGAGATCTGTCCCCTCTATTTGCAGTGT TCT[G/AJCTCTTGGGCTCCCGTTCAGAGATAA ATTAGGCGTGTGGTCAGCTTGGACGAAAAATGAGA GAAACACCAC	435	49.91	464
AB_PRBO_06	1A	66726170	1	0.25	0.6	0.9	0	2 4 5 5 5	TCTGCCAGTCTTCCTGCTCCAAATTGCTCCTACTGAC CAATTCCCAACTATCTCCAGGCAGAAGGGGCCGCA GTC[A/T]GTGGGAAGCTGCAGGGAAGCAGGAGCAGT GGAACAAAGGCAGCAGC	191	8.28	926
AB_PRBO_07	5	7708797	0	0	0.25	0.625	0	25445	TTAAAGGACTGTGTGGGAAAGGAGCCAGGCTGC GCCTCCACACTGTGTTGTACCAGCTTACAGAAGCCA CTGCT[T/c]TCCCTGGGAAGGTCCAAAGCTCTAGCA CCAGCTGGTCAAATCCCATCCC	376	33.32	1242
AB_PRBO_08	12	10079166	0.75	0.375	0.6	1	0	2 4 5 5 5	TTAAAATCCTGATCACCCTCAGAGCTATGTCCTGCTG TCTCACTGACATGCTGTGTGGGGAGAGCAGGAGTAC CAG[A/G]CACACAGTACAACCCTTGCAAGCACAAA GACATTTGGTGAGGCCATGACAGTACAGCTGTTTCC TCTGTTGTAAC	329	25.71	926
AB_PRBO_09	NA	NA	0.75	0.375	1	1	0	2 4 5 5 5	AATATTGTTATAGATGACATGGATGGGGATTGAATC TTTCATTAGTAAATITTGAAGACGCCACTAAGCTGGG GGC[T/C]TGGTTGATCTATTGGAAGGAAGGAAGGATGGC TCTGCAGAGAAGAACATAGATCAGATGGATGGGTGGG CAGAGTCCAAC	382	82.54	2923
AB_PRBO_10	NA	NA	1	1	1	0.375	0.875	15444	ACCCATTATGCATTGTGGGGTGTACCTTGTTGCTTC ATGCTTTCACAGCATCTGTGCAACAGGGTCCTGATC CAC(G/A)AAGAAAACTTCTAGATTCAAATATAGC TGTTGTCCATTGAAAGCTTTCCCTCAGGAGGTGAAC CACAGAAATT	255	21.71	598
AB_PRBO_11	Z	31039342	0.5	1	1	0.375	1	25545	GAAAATGGTAAGTGATGATTTATCAAAAGCAGATG AATAATTCTTAATGAGAAAATATATCAGCAGAAATA ATCI[A/o]ITTCTTTACAATAATAGACTGACTTACAG GTTTATCAATCTTGTTCCTTCTGACAAGTGATTTAGA AAAAAATTG	190	14.04	479
AB_PRBO_13	1A	48408035	0.75	1	0.9	0.4	0.2	25555	AGACCTAAAAATGCTAAGACAGGATGTAAAATACC TTATTGCATCACTGGTCAAGGCAAAGCCCTGCAGTC CCCT[C/G]ITITTATCTTAAATGATAAAAGCTTTATTG CCAGTCAATAAAATGCACTGTGCTAAACCCCACGTT ATTTAGCATA	391	19.72	792
AB_PRBO_14	NA	NA	0.5	0	0	0.6	0	25554	TTAAAAGCATCAAAAGGTGGAAGATTTAGTTGCGC TCTGTCTAGGCAGGCAGAGAGGCATCTTCAGGACT ACAAA(A/G)CAGTGAGCCAGGTGCACAGCAGCCAG TGCCCTGCAGCCTGGCACAGCTTCTAGAGGGCAG	187	51.61	1175
AB_PRBO_15	9	15661046	0.25	0.25	0.3	0.8	1	2 4 5 5 5	GGCCATGAGGTAAAGAAAGATTGTAGAGCCATAGG AGACTTTCCTITTCCATCCTGTTGATGAGTTGATAGC ATGA[C/T]GTCCTCCTCTCCATGGCCAGACCTGGCTC CAGGCAGGAGAAAAGGTCTCCTTCACTGGGCACGG CAGGGAGACAT	390	19.91	1074
AB_PRBO_17	2	46885560	0.5	1	0.9	0.5	0	15555	TCTTAATGCATATGCTGTACATAGTAGGTTCAAAAG CTTAGTGTTTGCCAAAAACAGATGAAAAACACTACCT TAAĮT/CJCATGCAATTACAAGAACTCCTTGTAAACTG ACCTATGGAATAACATGCAAGACTCCTTGTAAACTG ACCTATGGAATAACATGCAAGACTCTTGGTGAAATGT AATACAAAA	333	16.47	673
AB_PRBO_19	NA	NA	0.25	0	0.2	0.5	0	2 5 5 5 4	TTCCCCCTCAAGCAACTAAATTTCAAAATGCAGAGT CTAAGTCCTTCTACAACAACTTGTAATAT CA[G/A]CTACACGTAATTAGAATTAGAATCCCATGC TTCAGTATTGTCTCATGTCTGAGACTCAGGTGGTAT TGATGAGCT	373	22.58	716
AB_PRBO_20	NA	NA	0.25	1	0.9	0.5	0	2 5 5 5 4	TTTCCCATTCCTTTTGGACACAACCCTAAGCAACTGG ATCTGATCTCATTGTAACCCTGCTTTGAGCAGGAGG CTIA/GJGGAGGGAAATAACCTGAGGTCCCTTTCAAC TGAAATAGTGATGCTGCGATATCTCTAAGCTGGGA GACAAAGCTC	254	30.72	794
AB_PRBO_21	NA	NA	0.5	0.25	0.1	0.75	0	2 4 5 4 4	GGAGCTGTAATGCCACACACCAATGTTCATCTCAAC ACGGGTTTTCAGGGGAGGGAGGCAGCAGAGGGGA GAGCC[A/G]TGCCTAGGTCCCCTTGTGGAATCTGAT TTCGATCCTTCCCACTAGTCCTGGACTTCCCCA	365	29.14	610

AB_PRBO_23	8	18544125	0	0	0	0.4	0	15555	ACAGTCTGTTTAAAACTGCTCAATATTGGTATCAGTT TATTGACTGTGGATTTGTCCCTCAATTACCAGTGCCC A[T/C]GATGGCAGGAGCTAATGCACTGCAAATCGC ATTGGAGTGGCTTATTAGATTTAAACTTGATACAC GCTTATGTA	341	18.33	956
AB_PRBO_29	NA	NA	0.75	1	1	0.6	1	2 4 5 5 5	TITGTAGATAAGGGAGGTTTGCAGGCTGTAGTTCTG AATGAAAAAGCTGTCCCCCCCCCTTGGAAATGTACTG CTG[C/T]TAATAAACGATTTCCTAGTGAAAAATAGG AATCAGTTTATGAAACATGATCATAATGTTGTCTCCT ITTGTGATG	300	12.17	249
AB_PRBO_30	NA	NA	0.75	1	1	0.6	1	25555	AACAGCATATCCCAGATATCCCATTTCTGGTCAAACT ACCACAATGAGAGAGGTTGGTAATGCCTCTGGTCA GAG[G/A]GAGGAGGAAGTGAGGAGGACATGTGA GGGAAAACAACATGGTGGCACCAAGGTCAGTGGA GAAGGAGGGGAGG	303	48.00	2485
AB_PRBO_31	NA	NA	0.75	1	1	0.6	1	24455	ACCCTTTGGATCTCTTCATCCCCATGCCATTCCTGTG CTTGGGAATCAGGCCTGCATGGCTGCAAAAGCTGC TTG[I/c]CTGACACTGCTTGTTTTAGGGGAAGTGTG ACTAAAGTCTCCCCATTTTGGCCTCCCCGAGGAGAA GAGAAGCACA	385	26.00	482
AB_PRBO_32	NA	NA	1	0.5	0.7	1	1	25555	TAATACGGTGGAGGGCTGTCTTGTCATAATGAAGTA ATTTAACATGTGAAGTGAA	269	14.72	800
AB_PRBO_33	NA	NA	1	0.3	0.6	0.8	1	25555	GAACATGTACACAAACCTAGCACTTGAACAAAGAAC ATCTGTATACTGTGCCCGCGTCTGCAAAGCACCCAAA ACA(C/T)TGTATGGACATGTACCCCTTGTATCAGCAG CAAAGAGCAGGATTTCTAAGGGCTTTGTGGTTGGCT CCTCACATTC	245	22.46	893
AB_PRBO_34	NA	NA	0.5	0.5	0.8	1	0.7	25555	TGAAGTGGCACAAACCCTGAGCCCGGGGACATGCA GGGCCCTGCTGCCATTCTCTTCCACGCTGTGTTCTGT GCAIT/CJGGGGGGAGAGGACAAGGGCAGCTCAG GCTGTAAAGGTCCCTGCCTGCTCCAGCTGCAC AGCACCGTAGCG	387	38.53	611
AB_SW_02	13	5182930	0	1	1	1	1	25455	AACTIGTATITGTATTGCTATAAATTAAACCAGTTGT TCTTGTCTAATCATTGGTGCACACAGGGACCAGCTG TI[C/G]TTCCTCCTCATCTTAATCACTTTACACATTTG ATGGTGGTTCTTTCATGCTTTTCCTGGGTTTCTCTTTTC TGTAC	378	17.09	184
AB_SW_04	24	573576	0.25	1	0.875	1	1	25455	AATCCCATCTGTATGGCTTTTTATTAAAAGATAAAA AGCTGGAGTTCACAGGAGTTAGCATTAAGTCACAG TCC[[6][A]GAGCAATCCAGGGTACTGCGTGGG GACTCTCTCTGTTTATTTCAAATACCCCTTTATCATCC TGTTGAAAG	489	9.98	486
AB_SW_05	NA	NA	0.25	1	0.8	0.9	0.2	2 4 5 5 5	AAAAAAAAACACTTCATGTACTGCTTAAGTGACA[A/C]TCCCCCCTGCATCACATCACACAATAAATCAAA AAATAACAAAACATGCAGCTATTGAGCTTCCAAAAT TTGCCA	198	22.18	487
AB_SW_07	1	52977777	0.5	1	1	1	1	25555	AATGCAGTTTAGAGTGGCAGTGGGAAGGGAAGTG CTAGAGTTTTGATCCATATTCCCAGCACATGTCCATT ATAC[A/o]lagGATGGAAGTTCTGGTCTGGTCACCTC TATCTCCCTCAGTGACAATATGATGTGCTATCATGA GGATGAGTCAG	296	10.03	659
AB_SW_08	1	74621794	0.5	1	1	1	1	15455	TATCAAGCAGCTTICAAGTGGCTTGTAAGAGATGAA TTCCAGTCCATCATAATTAACTCTAAAAGTCAGCTGC CT[1/c]CTGTGTGCTTAGTTTCTTCTTTCTTCTCCCC CTTTAGTTTTGTCTTTACTTTGATGTTCAGCTTTGTTT TCCCT	397	20.15	244
AB_SW_11	3	31465368	0.5	1	1	1	1	25455	GATTITTACTTGCTGCCASCTTTCACCCCTGCACGAGAGGCAGACTGTTCACCCTGTGGCATGCACTTCTCC CA[C/G]ATGCAGCTGGTTCCAGCTCTCCCCTGTTCAT CCTGGGTTTTTTGTCAATCATCTCTTGCTACAACTTG AAGTGAA	269	10.23	362
AK_PRBO_01	1	19055546	0	0	0	1	0	14545	CCCCACTGCTTACTTCAGAGTGTGATCTTCCCTCTTA CTTCTGGTAATTTCATTAGGTTGCTAACAAAGCTGA CG[G/T]TGATTTATCACTGGTTTTCAAAATTGCTCTG AACTGAGAAAGGTCACACCTCTCACAGCTGTTGTTG CAGGTTGT	340	26.70	685
AK_PRBO_02	NA	NA	0.5	0.3	0	1	0	25454	ATTCTAAGGCGTAACTGTGTTTTCTGCCAAGGAGGG ATGAGGGATGTGAAATGAAA	367	24.61	581
AK_PRBO_03	NA	NA	0	0.625	0.125	1	0	14444	CTCACTGGAGGAACACATAGTAATTITATACCCAGC TATTGAAGAAGATGAGGCCAAGCCCTGAGTGACAG ACAC[A/T]ITGATGAAACAACACATGAATGAAACAA AATTGTACTAGAAAAACAGTAAAACAGAATTAATCA TTGAGGGCCCT	379	15.43	785
AK_PRBO_04	7	22925324	0	0.5	0.1	0.9	0	25555	GGTTTCCCTTTCCCAAGGGGGAGGTCAGGCATGGC TCTCATGGCTGGGTCCAGGGGATTGCCATCATGGT GTGGG[T/C]ACGATGACCACACCATCTCCCACCAGC TCAGCTGCACTGGGTCCCGCTGCAGCCAGGAGAGT GCATGGAGAGCCA	390	38.71	1505
AK_PRBO_05	1	55121471	1	0.5	0.25	1	1	14445	TAGGGGTAAGTGTTAGGGACTGGTTGCCTGTCTG GAAGAAAGAAGAAGAAAACAACCTTATTGGTA CATTTIA/TJACTCTCTTACAGCAGAAAGGAGGTTTTT CTGATAGACTCTGTACTGCCCAAACATACCTCATGG TCCTGAAGCCA	355	26.20	684
AK_PRBO_06	1	87374294	0.5	0.9	0.3	1	1	25555	TIGITACTGCTGGAATCATTTAAGGACCTGATTAAA GCTGGCTTTCTCATCTAGGCTGATTTCCATAGGAAA CAA[G/CJGCTTGTGTGCCCACTCTGCCTGTCCCTTTA GATGTGTCACCTAATCACAGTAGTTTGATGATCAAG TTCACTTCA	337	27.61	1005

									GTACAGAAATTTTGTTTTAATTCCAGCTTTACTGAAT GTGCTTCTGAAAGCACAAAGGTACTGATCACACTTC			
AK_PRBO_07	NA	NA	1	1	1	0.3	0.7	15555	GIGLITLIGAAAGGACAAGGACAGTICACHT TG[C/T]CTGATTITTAGGGTTACAGTGACAGTGCCA AATGTCAGAATTATGAGTAAGTTAAAAAGCAGTGCT GAGTTGTA	277	10.95	369
AK_PRBO_08	1A	50103968	0.5	0.8	0.25	0.9	1	25455	CCTACCCAGGTGTTTCTGTTGTTTCATGACTAGCCCA CAAAAAAAAAA	233	22.71	714
AK_PRBO_10	1A	48784106	0.75	0.75	0.375	1	0	2 4 4 5 5	GAATGGCATCGTTTGGGAATTGCCTGCTTGGATAAG GAATGAACTAACGAGAGCTTGGATAAAGCAGCTCA TITTI[C/T]AAAGTGTTCCTCCGTGCTGACTCCCATCG GGATCCTTGAGAGACCTACACCACCAGGCTGGAAT TGCATGGGAT	315	21.46	759
AK_PRBO_11	2	27946810	1	0.6	0.4	1	0.9	25555	CATGCACTITITCAACCTTGTAAACTCTAACATAAAA AAAATAACAGTGTGTACATTAGAAAAAAAAATGCCA AAT[G/A]CCTAGCACAGCTGAATGTTTTACTACACA CAATTCTCCCTTAAGAATAAATGCAAGGTATTTGAA GGAGAITCTA	409	34.58	1334
AK_PRBO_12	NA	NA	0.5	0	0	0.6	1	2 4 5 5 5	CCTTAGAGCACAAGAACTTGCAGCCTTTGCGAGATG AAAGCAACCTTTAGAGGATAGAAAGATTTCCCTCAA AAA[C/T]ATGAGGCTTCACTTTTTACAGTCTGCATTT GCACACTGACATAAAATCCATGCCAGACTGTACTCC TGGTTTTTG	296	29.49	825
AK_PRBO_14	NA	NA	0	0	0.2	0.75	0	24545	ACCCTTCCACTCAGAGACTTATGAGATGTTGCACAT CCTCTGCCAGAGCTGTTCCCACCTTCCTGTGGAATCC CCIT/AJCCCTGAGCTCCAAGATGTGTGGGCTGCTCC CCAACCCTAGCAAGGGGCGAGTGGCAAGTGGGCAAC TGACCCAGCC	254	43.19	737
AK_PRBO_15	1	91999876	0	0	0	0.5	0	25555	TAAGATGATCGTGTTTGCCCTCTAGAAAAATTCAGCC TCACAGGTGGAACGAGGCCCTGACAGAAGGGCACA GTGA[1/c]GTGGGGGAACAGCAAGGGGGATAAAC AGCTCCGGGCTGCCCTTACTCACGCAGGGATGCAG GTGCTCAAGTGCGA	427	30.21	1717
AK_PRBO_16	2	17653584	1	1	1	0.5	1	2 4 4 4 5	AAATGATAAGAACAACAAAATAAAACAGTTTCTAAA AAGAAACCCCAGTGAATGCAGTTTAGATGCACACTA CTAIT/C[CTTCAGCAAATGTCAGCTCAAGCTCAGAG TITAITGATTGGGGCTCAGCGCTGGTTCTGCTAGAIT TGCACTCTT	431	38.19	820
AK_PRBO_17	2	72818899	1	1	1	0.5	1	25545	CTGAATCTAACATCTCCTGCCTCCTTCAGTGCTGTTT CATGGCTCTGTGACTCCTCTCCT	174	35.10	729
AK_PRBO_19	24	5589755	0.25	0.4	0	0.5	0.2	25555	CCCCTGTCTTGTTTGAAAACCCAAGGAAAACCATCT CAGAGGAATAAATATAATTATCACCACAGCCCAGA GAAA[C/T]GCTCACAACTTAAGCTGGCCCTGACACA AAGGAATAGATAAATGAGAGAGGGAAGGGGGA AGCCAACACTGCA	221	24.19	886
AK_PRBO_20	1A	48656370	1	0.5	0.5	1	1	2 5 5 5 5	TITCCTTTCCTGGCTATCAACACCTCCTACTTCCACCC AAACCCCACAGCACTGGCAATCATCTTGGACAGCCA GA[G/T]ACAACTGGAAAGGTGTGTTTGGATGACATCT GTGCTAGGTGGTCACCTGCAAGTAGGGAAGCAAGG GCCCTTCCTG	364	31.31	1857
AK_PRBO_21	NA	NA	0.5	1	1	0.5	0.125	2 5 5 5 4	TAATTGCAATTTTGTCTAATCTGTACTTGGCTAGAAA TGGAAACTCCAATTAAAATATGGAAAATAATATTCT GC[A/G]TCAGTAGTCCTTAGAGAAGTAAAAAAGATTCA AATATCCCCTGCTGTACAGCAATTATTTAAACATTTG CATATTCA	259	22.96	504
AK_PRBO_22	NA	NA	0.5	1	0.5	1	1	25555	GTGTCAGCTCCCCGGAGCACAGGAATGGAGGGTCC GGGCTCAGGGATGGGTGTCCCCTTCCCAGCCATTCC TGAC[1/6]CACAGACCCCAAAACAGCCCTGGTCTCC TCAGCCCCATGGCACTCTGGGCACCATC GCTACCCTTGC	316	17.81	1072
AK_PRBO_23	1A	54877748	1	0.9	1	0.6	1	15555	TCCCCAAAGAATGAATACCTATATAATTCCTCTATCA GCCAGGAAAATCTCAAGGCAGACTAGGTGCCTTCA CTC[C/T]TGTATGAAGAGAGGGCTCTCTATGGCTGA CAAGGGACAGTAAGAAACTACAGAAACTTGGAAAA GGCCACAGAAT	279	34.84	521
AK_PRBO_25	NA	NA	0.25	0.5	0.4	1	0.5	25554	AAAAATAGATATTTTTGCTAGCTTTCCTTGGGTGTTT TTTCTGTTCTCTGCCATATGTGTGGTGCAGCCTCTCT C[A/T]GTACCTGGGTGTTCAGTCAGGCTGTCAGTCA CTGCTGCAGGCACAGCAGCTGAGGGGCTCAGTGT GGGCTCAGC	221	33.21	1281
AK_PRBO_26	NA	NA	1	0.7	0.4	1	1	25555	AGTAAACTATCTAAAAATATTGATTTGCACTGTCTGT GCTTCTGCTCTGC	241	10.08	835
AK_PRBO_27	NA	NA	0.75	0.75	0.4	1	0	2 4 5 5 5	AGGCCTCCCACACAGACAGCTCTGTCTGCCTTCCCTT CCTTCACACACTCAAGGATGCCACATTCATTAGCGT GC[A/G]TCTGAGCTCAGAGCCCTCCATCCCTCACCC GGTGTCCTCTGCCTGTTTATTCAAGCTTAATGCCAA GGCAAATAA	448	27.98	1162
AK_PRBO_28	NA	NA	0.5	0.5	0.9	0.375	1	15545	TTAGTGTAGGTACTTGTGTGGCATACCAGCCCTCAC TGGCTTGCCCTTATGTAATTCTAGGCACATATGTTTC AC[A/G]TTCAGTTCTTTCATTTCATTTCAAATGTCAT TACATTTTTCATGTTTACAGGCAGTGATTCAGTTGTG GATGCC	462	13.63	603
AK_PRBO_29	NA	NA	1	0.625	0.5	1	1	24445	ATTCAATTTCCTGCTGGCTATTGATCACCTTTGATGT TAATTGCATCTTCATTCTTTGTTTCTCTTAACAATCTTT I/C]TCCCAGCCAGGGTGTCTCAAATGGATGAGAG GGTAATGTTCATTATTGTCCGTTAATAGTTATGGTT TATCT	351	15.08	356

AK_PRBO_32	NA	NA	1	0.9	0.5	1	1	25555	TIGITIGITIGITITITITITICCACAGACTCATGTAG TIGGGTTTTGGCAAGATCACACCATGCCCCACTTGA A[C/T]GTGTTTTGTCTTGAATCAGGTACTCAAGCATG CATGGAAAGCCTGTATTTCGCCCAGTGATCACCTTGC	253	23.73	513
AK_PRBO_33	NA	NA	0.5	0.9	0.25	0.7	1	15455	ACAGTAG ACGAGGATTAAGAGAGGACTACATCAACACAGTGC TCTACAGATGAACCAGGTGCACACAGAGAGAACAGAGTGAACCAGAGTGAACCAGAGAGAAGAGAAGAACAGAACAGAATTGAGAATCTCTATGAGCTGTGTGTG	421	38.79	804
East_West_01	Z	66755642	1	1	1	1	0	25555	TATITAGTAAGGTATGGCTACACATTTATACTAATTA TTATTACTTGAATAGATTTCACTAACTTTGGGTAAG GT[A/G]CCTCTCACCAGGCTGTGGTATAATTTGTACT AGAATACTGTTTTCCTTTCC	263	27.01	844
East_West_03	Z	23626857	1	1	1	1	0	2 4 5 4 5	AGTGGCTGCTTGCACAGCAGTGAAGTAACACACAT GTGTGGGATTTTGCACAATGTCTTGAAGAGCACTGT ACCT[6/T]CTCAGTTGTGTGTGGGTGCTGTAAAAGG GTACTGAATGATCCTAGAGAGGGCCCTAATGCCAGT ACAAAGGAAGGT	282	19.42	499
East_West_05	5	14184645	1	1	1	1	0	25555	CACTTGATTATTTTCTAACACAGGTCACCATTTTTAT GAACTTACTGACCAAAATAATTTCAAGTTCACATACT A[A/T]AGGGTTTTCCACCTACACACACATTAGAATCA GGCTTGTTGTCAAGTCCATCTTTTCATTCCTTTCCACT CCCAGT	353	8.13	443
East_West_10	18	9024958	1	1	1	1	0	25555	TTCTCCCTGGGCTTTGGAACATCAAAACAGCAGAAT AATCCATTCCCATGGTTCGGACTCTGCTCCCTCACAG AT[C/A]CAGAGGAGTTTGGCTGGGTTGACCCCTCC TGCTGGCTGCTACTGACCCTCACACTGACCTCGGCT GTGCAGGAT	350	45.73	1272
East_West_12	1A	51827765	1	1	1	1	0	25545	AATCCTCTGTATGTTCATTTTAAAGCCTGAAAGACA AGATAGCCCATATAACAGCAGCAGCAATTTCCCATA AAG[T/C]GCCAGTTTACTGAGAGCCCACCTTCATTTA ACAAGTGTGACCAATAACTGG	201	25.44	702
East_West_15	6	15555868	1	1	1	1	0	25555	AAATAACCTTGCAAAATGAAGCATTGCACTCCCTGT AATACACAAAACATTCCTAGAGTAACACCTGGGACA AGGIC/AJICCTTCCCAGAGAGAGCCCACCACCAGCAA AAAACAAAGAACCACATGAATAAAAACAAATGAGA GACCAAAACAC	386	19.21	954
East_West_16	Z	31672467	1	1	1	1	0	25555	ATGTTTTCATGCATTTTTTTTCACACTGGACAACCA GATCTTCTGCTGCAGCGGATCATGGTTCAGACGG AGAIT/CJACACAGGTGAGCAAGATTACTGAGAGA CTCCTGGAATGCAGAGGGCAAGGACTGACCAGACCA	330	35.54	1582
East_West_17	3	50903092	1	1	1	1	0	2 4 5 5 5	GAAAGATGCCGGGAGAGGGCCAGCCGGGATGGCA TCTCAGGGAGGAGAAACCTGTTCTGACCATAAATT ACTGAIT/CITCCTGTGCTGCAAGGAGTCCATTTA GGCACCAGCAATGGTTAACAGGATGGGTGAAGGT AGCCAGAACAGGC	370	19.04	742
East_West_18	5	6669499	1	1	1	1	0	2 4 5 5 5	CCACAGGATGGAGGGCTGGAATGGGATGGGACA CCCACCTGCACCAGCGGGACGAGGGCACGAACATC CCGCTCT[V]GACACCTGGATTTCCCAGACCAGTTTG TCCTTCTGCGCCTCGGGATCCTGGCCGGGATACTCC ACCTGCCACGTG	421	31.29	637
SW_AK_02	NA	NA	0	0.75	1	1	0	2 4 4 4 5	CAGGTACAAGGGCTGAGATGAGATCTTAGCGATAA CAAAGTTTATAGGAGACATTGCATGCTTGAAGTGTA GCAA[GCA]AGGATATCTGAGTTTTCATACAGCTGTG AAACAAGATGTAAAATCTCGATAAAGTATCAAAAA GCAAAGAAACCA	346	15.29	666
SW_AK_03	1	93977276	0.25	0.625	1	1	1	24555	GGAGATAACACACCCTCAAAACTGCACAAACTCCC CATTCTCTGTGGCACAGGACACAGTAAGCAGCCCTG AGG[C/AJACATCTCCTTCTTCCCCCACTTGCTCTCTG ACATCCTCTCCACTAACACTCACTTCAGCGAATGCT AGGATGAG	437	17.83	980
SW_AK_04	1A	39550183	0.25	0.9	1	1	1	25555	TAAAATAATAGTATCCCTGTGAGATTACACTTTCTTG AAAAAAAAACCTAAAAA AAC[C/I]TCTCTCTTTTCATTTATTAATTCATTTGATTT CAGCAAAAGTCATGCTGAGCAAGATAAAACAAAAC	341	12.67	622
SW_AK_05	NA	NA	0	0.75	0.75	0.7	1	2 4 4 5 4	ACACACCTGTTTTATCCAGTAAGAAAATTATCTGA AGTGGCAAGGCTTGATTCAGCTCTCATACAGATACA ATC[C/T]AAAAGCAATTCCTCCACAGAGAATGAAAG TCCTGAAAAATTCAATCTCTCCACAGGGTTTATACAT TTTGGGTTT	266	28.75	733
SW_AK_06	5	49236409	0.25	0.8	0.9	0.8	0.8	25555	TCCAGGGTAAATGAGATTCAGAAATTAAATACAAAC ATAACTTCCATCTGATCATCTTTCAGCTCCAGCTCTG GC[A/T]GGGTAACACTATTAAAAGACATTTCCACTG AAGGAAATAATATGCTGTGCCACCTTTTCACACCTC CTGGGCTAA	359	17.75	727
SW_AK_07	NA	NA	0.25	1	0.9	0.7	1	25555	ACTCAGGCGTTGCTGCAAGCCTTTGATATGGGAAG GAAATGCTTTCTTAAAAAAGAGCTGCTTTCTTTTTGG GCCTT/AJCTGGACCTCAGTGCAACTATCAAAGGAAG CTTATGATATCTTTCAAATCAAA	271	32.87	753
SW_AK_08	NA	NA	0	0.9	0.625	1	0.6	25455	AGCACCTCACAAATGTCAGGGACAGCATATGGGGT AGGCCAGACAATCTACATCTGCTTTTTTGCTATTTGC TGCTTTGGTGTCAAGACTGCATATTTGTAGTGCTG AGAGCAAAGAGGATGATCCTATGCATCTCTTTACTA GCATCTTGAT	200	44.64	839
SW_PRBO_1	NA	NA	1	0.75	0.5	0.375	0.875	2 4 5 4 4	TGGAGACACAGAGCTTTGCCTTCCTCTGTGGAAAA TCAGTTCAAAATGAGTAGAGAGGAAGGACAGGA GGTAAJA/TJGGACAGCTTATGCAACACTAGACATCA GGAAAAGGAAAAGAAGAAAAAAAACAGGCTGGAG AAACAAGGAAAAGT	360	13.71	765

SW_PRBO_2	NA	NA	0	1	0.4	0.6	0.4	24555	AACGITAATGAATITCITITGAGGAGAAGGACAGCA TIATITITCAAGAGAATGATTCAGAACAGTICTGCC AC[A/T]GTGGCTCAGCCTGACTAGCATTCATGITTTC CTGAGGAACTCCACCCAGGGCTTACACATGTGAGAAT GTGTGTAA	338	25.84	1008
SW_PRBO_3	NA	NA	0	0.5	0.25	0.6	0	24455	CAACCGAGCAGCCATGCCCTGCATGTCACCCACGG TGACAGCCGCACCTGCATGTCCCTCTGTGGCAGCAC AGG[G/A]CTGAGCTCTGTGGGAGAGGGGAGCCTGCA GTGCAGGGGATCCTGAGATGGGTGCAGATCTGCAT TTGCAAGCTGCC	407	31.49	689
SW_PRBO_4	NA	NA	1	0.7	1	0.4	0.1	25555	TTACAGCCTGTTCATACATATTTAATGGTGCTGTGAC ATTTCCCATTGTGAGCTGATTACCTTAATTGCCCAGT A[C/T]TGCTCCTGTTTCCTGATGGAATGCCACTCACG TGAGTGAGAGCTGCTCATAAACATGAGCTGTTCATA AACATTG	185	42.12	1357

SI Table 3. Fst calculated according to Weir and Cockerham. Values with * are significant at the p<0.05 level. Population names associated with each letter are listed in Table 1 and Figure 1b.

	В	С	D	E	F	G	н	ı	J	К	L	М	N	0	P	Q	R	s	т	U	v	w
A	0.010	0.006	0.01858*	0.02273*	0.02704*	0.04896*	0.09331*	0.08988*	0.1165*	0.16414*	0.13838*	0.15951*	0.17661*	0.15302*	0.14837*	0.08412*	0.0761*	0.15631*	0.16419*	0.53515*	0.46875*	0.46167*
В		0.02375*	0.010	0.03333*	0.01876*	0.04999*	0.08923*	0.07853*	0.12119*	0.17163*	0.14547*	0.17152*	0.18003*	0.16807*	0.1528*	0.10528*	0.0782*	0.16856*	0.18288*	0.55155*	0.47326*	0.46687*
С			0.03025*	0.0401*	0.04123*	0.08681*	0.12755*	0.12106*	0.15445*	0.20777*	0.17983*	0.20123*	0.21553*	0.19462*	0.18557*	0.11487*	0.10311*	0.18444*	0.20245*	0.56227*	0.49193*	0.48788*
D				0.03667*	0.016	0.04626*	0.08134*	0.08922*	0.11482*	0.18126*	0.14613*	0.17108*	0.19103*	0.16936*	0.1624*	0.0902*	0.0834*	0.16318*	0.18421*	0.60275*	0.49854*	0.49105*
E					0.006	0.05465*	0.105*	0.08352*	0.12869*	0.17277*	0.14326*	0.16261*	0.18803*	0.16866*	0.16795*	0.038*	0.03256*	0.1157*	0.12535*	0.52497*	0.45527*	0.44565*
F						0.04483*	0.09493*	0.08244*	0.1144*	0.1699*	0.14184*	0.16829*	0.1899*	0.16354*	0.16476*	0.04815*	0.01505*	0.09426*	0.10953*	0.5593*	0.4619*	0.45057*
G							0.005	0.01635*	0.01729*	0.05775*	0.04357*	0.0803*	0.07746*	0.05285*	0.05035*	0.08501*	0.06961*	0.15028*	0.16471*	0.54599*	0.43475*	0.42527*
н								0.01869*	0.002	0.04424*	0.02868*	0.04838*	0.06368*	0.05463*	0.05314*	0.14465*	0.12618*	0.20045*	0.20854*	0.51057*	0.43086*	0.42518*
1									0.01922*	0.07279*	0.048*	0.0807*	0.07754*	0.07076*	0.06776*	0.12003*	0.10769*	0.19341*	0.19778*	0.51763*	0.43751*	0.42893*
1										0.03748*	0.01846*	0.04672*	0.04749*	0.03472*	0.03652*	0.16188*	0.13429*	0.20655*	0.2163*	0.51403*	0.42279*	0.41167*
К											0.000	0.007	0.04466*	0.02767*	0.03914*	0.19191*	0.1899*	0.25771*	0.25658*	0.55441*	0.46185*	0.45351*
L												0.001	0.03674*	0.02863*	0.03814*	0.17845*	0.15987*	0.23016*	0.23335*	0.55105*	0.4529*	0.44109*
M													0.04868*	0.04599*	0.05678*	0.18112*	0.18359*	0.24379*	0.2461*	0.54043*	0.46475*	0.45638*
N														0.009	0.01187*	0.19702*	0.19843*	0.26615*	0.26833*	0.52345*	0.45016*	0.44449*
0															0.002	0.17644*	0.175*	0.23816*	0.23417*	0.54293*	0.44202*	0.43488*
P																0.16166*	0.1674*	0.23114*	0.2312*	0.529*	0.4238*	0.42058*
Q																	0.03543*	0.06442*	0.06312*	0.67878*	0.57398*	0.56929*
R																		0.05343*	0.06168*	0.5035*	0.43243*	0.42108*
S																			0.008	0.5553*	0.4793*	0.46735*
т																				0.57793*	0.48494*	0.46586*
U																					-0.005	0.009
v																						0.011

SI_Table 4. Assignment of wintering & migrant birds to breeding regions using GSI_Sim. Population names are listed in Table 1 and Fig. 1b.

Population (Fig. 1b)	Population	Alaska to Alberta	Pacific Northwest	Coastal California	Sierra	Rocky Mountain	Eastern
Wintering							
h	Baja	0	1	7	0	0	0
i	Sinaloa	0	2	5	1	0	0
j	Jalisco	28	0	0	0	0	0
k	San Angel	9	0	0	0	0	0
l	El Cielo Biosphere	15	0	0	0	0	0
m	Veracruz	20	0	0	0	0	0
n	Oaxaca	14	0	0	0	0	0
0	Tuxtlas	3	0	0	0	0	6
p	Belize	0	0	0	0	0	1
${f q}$	San Salvador	50	0	0	0	2	0
r	Tegucigalpa	23	0	0	0	3	0
S	Honduras	11	0	0	0	1	0
t	Monteverde	4	0	0	0	5	0
u	Puntarenaus	14	0	0	0	3	5
Migratory S	topover						
d	Albuquerque, NM	11	0	0	0	1	0
g	Braddock Bay, NY	0	0	0	0	0	19
c	Buenos Aires NWR, AZ	59	12	0	0	0	0
b	Cibola, AZ	400	135	63	6	0	0
f	Fairview, TX	1	0	0	0	0	42
a	O'neill Forbay, CA	41	27	5	2	0	0
c	San Pedro, AZ	51	1	0	0	0	0
e	Sierra del Carmen, MX	7	0	0	0	0	0

SI Figure 1. Results of the population genetic analysis for Wilson's warblers across the breeding range using STRUCTURE. The following figure depicts the output from all 10 runs at each K value (K=1-9) and the data are plotted using the program Distruct.

Distruct Plots at K = 2.

Distruct Plots at K=3.

Distruct Plots at K=4.

Distruct Plots at K = 5.

Distruct Plots at K = 6.

Distruct Plots at K = 7.

Distruct Plots at K = 8.

Distruct Plots at K = 9.