AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

1. (Currently Amended) A compound of the formula (I) or a salt thereof

$$R^3$$
 R^3
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

where the symbols and indices are as defined below:

$$X \text{ is } = CH - \text{ or } = N -;$$

Y is =0 or =S;

n is 0 or 1:

m is 0, 1 or 2m is 0;

 R^1 is (C_1-C_6) -alkyl, (C_1-C_6) haloalkyl, -S(halogen) $_5$ or halogen, where one or two CH_2 groups may be replaced by -O— or -S— or $-N(C_1-C_6)$ -alkyl, with the proviso that heteroatoms may not be adjacent;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6)-alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O— or -S— or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 R^4 is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl, (C_3-C_{10}) -heterocyclyl or (C_1-C_{10}) -alkanoyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

 R^5 is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -alkenyl- , (C_3-C_{10}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_8-C_{10}) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

except for compounds of the formula (I), in which X is =CH-, m is 1 or 2 and R⁵ is unsubstituted or substituted (C₁-C₁₀)-alkyl.

2. (Currently Amended) A compound of the formula (II) or a salt thereof

$$R^{4}$$
 $(O)_m$
 R^{6}
 R^{3}
 $(O)_n$
 (II)

where the symbols and indices are as defined below:

X is = CH - or = N - ;

Y' is -O- or -S-:

n is 0 or 1;

m is 0, 1 or 2m is 0;

 R^1 is (C_1-C_6) -alkyl- , (C_1-C_6) -haloalkyl, -S(halogen) $_5$ or halogen, where one or two CH_2 groups may be replaced by -O- or -S- or $-N(C_1-C_6)$ -alkyl, with the proviso that heteroatoms may not be adjacent;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6)-alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O or -S or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 $R^{4'}$ is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl or (C_3-C_{10}) -heterocyclyl, where the radicals mentioned may be unsubstituted or monoor polysubstituted; and

 R^6 is hydrogen, (C₁- C₁₀)-alkyl, (C₃- C₁₀)-alkenyl-, (C₃- C₁₀)-alkynyl, (C₃-C₈)-cycloalkyl, (C₄- C₈)-cycloalkenyl, (C₈- C₁₀)-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

3. (Currently Amended) A compound of the formula (I) or a salt thereof as claimed in

claim [[7]]1 where R1 is SF5, CHF2, CF2Cl or CF3.

4. (Currently Amended) A compound of the formula (I) or a salt thereof as claimed in claim 1

where X is =CH-, Y is =O, m and n are 0, R^1 is CF_3 , R^2 , R^3 and R^4 are hydrogen and R^5 is (C_1-C_{10}) -alkyl, (C_2-C_{10}) -alkenyl, (C_2-C_{10}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_8-C_{10}) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

5. (Original) A compound of the formula (I) or a salt thereof as claimed in claim 1 where R^5 is a radical of the formula IIa

where the symbols and indices are as defined below:

a is 0, 1, 2, 3 or 4;

 R^7 are identical or different R^8 , or two radicals R^7 together with the atoms to which they are attached form a three- to eight-membered saturated or unsaturated ring system which is unsubstituted or substituted by one or more radicals R^8 and which may also contain further heteroatoms, selected from the group consisting of O, N, S, SO and SO_2 ; R^8 are identical or different R^9 , R^{10} , $-C(W)R^9$, $-C(=NOR^9)R^9$, $-C(=NNR^9_2)R^9$, $-C(=W)OR^9$, $-C(=W)NR^9_2$, $-OC(=W)R^9$, $-OC(=W)OR^9$, $-NR^9C(=W)R^9$, $-N[C(=W)R^9]_2$, $-NR^9C(=W)OR^9$, $-NR^9C(=W)NR^9$,

```
-NR^9-NR^9C(=W)R^9, -NR^9-N[C(=W)R^9]_2, -N[(C=W)R^9]-NR^9_2, -NR^9-N[(C=W)WR^9],
-NR^{9}[(C=W)NR^{9}_{2}], -NR^{9}(C=NR^{9})R^{9}, -NR^{9}(C=NR^{9})NR^{9}_{2}, -O-NR^{9}_{2}, -O-NR^{9}(C=W)R^{9},
-SO_2NR_2^9, -NR_2^9SO_2R_2^9, -SO_2OR_2^9, -OSO_2R_2^9, -OR_2^9, -NR_2^9, -SR_2^9, -SR_3^9, -PR_2^9,
-P(=W)R^9, -SOR^9, -SO_2R^9, -PW_2R^9, -PW_3R^9, or two radicals R^8 together are (=W),
(=N-R^9), (=CR_2^9), (=CHR^9) or (=CH_2);
W is =O or =S;
R<sup>9</sup> are identical or different (C<sub>1</sub>-C<sub>6</sub>)-alkyl, (C<sub>2</sub>-C<sub>6</sub>)-alkenyl, (C<sub>2</sub>-C<sub>6</sub>)-alkynyl, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl,
(C_4-C_8)-cycloalkenyl, (C_3-C_8)-cycloalkyl-(C_1-C_4)-alkyl, (C_4-C_8)-cycloalkenyl-(C_1-C_4)-alkyl,
(C_3-C_8)-cycloalkyl-(C_2-C_4)-alkenyl, (C_4-C_8)-cycloalkenyl-(C_2-C_4)-alkenyl, (C_1-C_8)-alkyl-(C_3-C_4)-alkenyl, (C_1-C_8)-alkyl-(C_3-C_4)-alkenyl, (C_1-C_8)-alkyl-(C_3-C_4)-alkenyl
C<sub>8</sub>)-cycloalkyl, (C<sub>2</sub>-C<sub>6</sub>)-alkenyl-(C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl, (C<sub>2</sub>-C<sub>6</sub>)-alkynyl-(C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl, (C<sub>1</sub>-
C_6)-alkyl-(C_4-C_8)-cycloalkenyl, (C_2-C_6)alkenyl-(C_4-C_8)-cycloalkenyl, aryl, heterocyclyl; where
the radicals mentioned are unsubstituted or substituted by one or more radicals R<sup>10</sup> and two
radicals R<sup>9</sup> together may form a ring system;
R<sup>10</sup> are identical or different halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C<sub>1</sub>-C<sub>6</sub>)-
alkanoyl, (C<sub>1</sub>-C<sub>6</sub>)-alkoxy, (C<sub>3</sub>-C<sub>6</sub>)-alkenyloxy, (C<sub>3</sub>-C<sub>6</sub>)-alkynyloxy, (C<sub>1</sub>-C<sub>6</sub>)-haloalkyloxy, (C<sub>3</sub>-
C_6)-haloalkenyloxy, (C_3-C_6)-haloalkynyloxy, (C_3-C_8)-cycloalkoxy, (C_4-C_8)-cycloalkenyloxy,
(C<sub>3</sub>-C<sub>8</sub>)-halocycloalkoxy, (C<sub>4</sub>-C<sub>8</sub>)-halocycloalkenyloxy, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, (C<sub>4</sub>-
C_8)-cycloalkenyl-(C_1-C_4)-alko- xy, (C_3-C_8)-cycloalkyl-(C_2-C_4)-alkenyloxy, (C_4-C_8)-
cycloalkenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkenyloxy, (C<sub>1</sub>-C<sub>6</sub>)-alkyl-(C<sub>3</sub>-C<sub>8</sub>)-cycloalkoxy, (C<sub>2</sub>-C<sub>6</sub>)-alkenyl-(C<sub>3</sub>-C<sub>8</sub>)-
cycloalkoxy, (C<sub>2</sub>-C<sub>6</sub>)-alkynyl-(C<sub>3</sub>-C<sub>8</sub>)-cycloalkoxy, (C<sub>1</sub>-C<sub>6</sub>)-alkyl-(C<sub>4</sub>-C<sub>8</sub>)-cycloalkenyloxy, (C<sub>2</sub>-
C_6)-alkenyl-(C_4-C_8)-cycloalkenyloxy, (C_1-C_4)-alkoxy-(C_1-C_6)-alkoxy, (C_1-C_4)-alkoxy-(C_3-C_6)-
alkenyloxy, carbamoyl, (C<sub>1</sub>-C<sub>6</sub>)-mono- or -dialkylcarbamoyl, (C<sub>1</sub>-C<sub>6</sub>)-mono- or -
dihaloalkylcarbamoyl, (C<sub>3</sub>-C<sub>8</sub>)-mono- or -dicycloalkylcarbamoyl, (C<sub>1</sub>-C<sub>6</sub>)-alkoxycarbonyl, (C<sub>3</sub>-
C_8)-cycloalkoxycarbonyl, (C_1-C_6)-alkanoyloxy, (C_3-C_8)-cycloalkanoyloxy, (C_1-C_6)-
haloalkoxycarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-haloalkanoyloxy, (C<sub>1</sub>-C<sub>6</sub>)-alkanoylamino, (C<sub>1</sub>-C<sub>6</sub>)-
haloalkanoylamino, (C<sub>2</sub>-C<sub>8</sub>)-alkenoylamino, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkanoylamino, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl-
(C<sub>1</sub>-C<sub>4</sub>)-alkanoylamino, (C<sub>1</sub>-C<sub>6</sub>)-alkylthio, (C<sub>3</sub>-C<sub>6</sub>)alkenylthio, (C<sub>3</sub>-C<sub>6</sub>)-alkynylthio, (C<sub>1</sub>-C<sub>6</sub>)-
haloalkylthio, (C<sub>3</sub>-C<sub>6</sub>)-haloalkenylthio, (C<sub>3</sub>-C<sub>6</sub>)-haloalkynylthio, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkylthio, (C<sub>4</sub>-C<sub>8</sub>)-
cycloalkenylthio, (C<sub>3</sub>-C<sub>8</sub>)-halocycloalkylthio, (C<sub>4</sub>-C<sub>8</sub>)-halocycloalkenylthio, (C<sub>3</sub>-C<sub>8</sub>)-cycloalkyl-
(C_1-C_4)-alkylthio, (C_4-C_8)-cycloalkenyl-(C_1-C_4)-alkylthio, (C_3-C_8)-cycloalkyl-(C_3-C_4)-
alkenylthio, (C<sub>4</sub>-C<sub>8</sub>)-cycloalkenyl-(C<sub>3</sub>-C<sub>4</sub>)-alkenylthio, (C<sub>1</sub>-C<sub>6</sub>)-alkyl-(C<sub>3</sub>-C<sub>8</sub>)-cycloalkylthio, (C<sub>2</sub>-
```

C₆)-alkenyl-(C₃-C₈)-cycloalkylthio, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylthio, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylthio, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenylthio, (C₁-C₆)-alkylsulfinyl, (C₃-C₆)alkenylsulfinyl, (C₃-C₆)-alkynylsulfinyl, (C₁-C₆)-haloalkylsulfinyl, (C₃-C₆)-haloalkenylsulfinyl, (C_3-C_6) -haloalkynylsulfinyl, (C_3-C_8) -cycloalkylsulfinyl, (C_4-C_8) -cycloalkenylsulfinyl, (C_3-C_8) halocycloalkylsulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₃-C₈)-cycloalkyl-(C₁-C₄)alkylsulfinyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylsulfinyl, (C₃-C₈)-cycloalkyl-(C₃-C₄)alkenylsulfinyl, (C₄-C₈)-cycloalkenyl-(C₃-C₄)-alkenylsulfinyl, (C₁-C₆)-alkyl-(C₃-C₈)cycloalkylsulfinyl, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylsulfinyl, (C₂-C₆)-alkynyl-(C₃-C₈)cycloalkylsulfinyl, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylsulfinyl, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, (C₃-C₆)-alkenylsulfonyl, (C₃-C₆)-alkynylsulfonyl, (C_1-C_6) -haloalkylsulfonyl, (C_3-C_6) -haloalkenylsulfonyl, (C_3-C_6) -haloalkynylsulfonyl, (C_3-C_8) cycloalkylsulfonyl, (C₄-C₈)-cycloalkenylsulfonyl, (C₃-C₈)-halocycloalkylsulfonyl, (C₄-C₈)halocycloalkenylsulfonyl, (C₃-C₈)-cycloalkyl-(C₁-C₄)-alkylsulfonyl, (C₄-C₈)-cycloalkenyl-(C₁- C_4)-alkylsulfonyl, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) alkenylsulfonyl, (C₁-C₆)alkyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylsulfonyl, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylsulfonyl, (C₁-C₆)-alkyl-(C₄-C₈)cycloalkenylsulfonyl, (C₂-C₆)alkenyl-(C₄-C₈)-cycloalkenylsulfonyl, (C₁-C₆)-dialkylamino, (C₁-C₆)-alkylamino, (C₃-C₆)-alkenylamino, (C₃-C₆)-alkynylamino, (C₁-C₆)-haloalkylamino, (C₃-C₆)haloalkenylamino, (C₃-C₆)-haloalkynylamino, (C₃-C₈)-cycloalkylamino, (C₄-C₈)cycloalkenylamino, (C₃-C₈)-halocycloalkamino, (C₄-C₈)-halocycloalkenylamino, (C₃-C₈)cycloalkyl-(C₁-C₄)-alkylamino, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylamino, (C₃-C₈)-cycloalkyl- (C_3-C_4) -alkenylamino, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylamino, (C_1-C_6) -alkyl- (C_3-C_8) cycloalkylamino, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylamino, (C₂-C₆)-alkynyl-(C₃-C₈)cycloalkylamino, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylamino, (C₁-C₆)-trialkylsilyl, aryl, aryloxy, arylthio, arylsulfinyl, arylsulfonyl, arylamino, aryl-(C₁-C₄)-alkoxy, aryl-(C₃-C₄)-alkenyloxy, aryl-(C₁-C₄)-alkylthio, aryl-(C₁-C₄)alkylsulfinyl, aryl- (C_1-C_4) -alkylsulfonyl, aryl- (C_2-C_4) -alkenylthio, aryl- (C_2-C_4) -alkenylsulfinyl, $aryl-(C_2-C_4)$ -alkenylsulfonyl, $aryl-(C_1-C_4)$ -alkylamino, $aryl-(C_3-C_4)$ -alkenylamino, $aryl-(C_1-C_6)$ dialkylsilyl, diaryl-(C₁-C₆)-alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, where the cyclic moiety of the fourteen last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, cyano, nitro, amino, hydroxyl, thio,

 (C_1-C_4) -alkyl, (C_1-C_4) -haloalk- yl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkylthio, (C_1-C_4) -haloalkylthio, (C_1-C_4) -haloalkylamino and (C_1-C_4) -alkylamino, (C_1-C_4) -haloalkylamino and (C_1-C_4) -alkyl or (C_1-C_4) -haloalkyl.

6. (Currently Amended) A compound of the formula (II) or a salt thereof as claimed in claim 2 where R¹ is SF₅, CHF₂, CF₂Cl or CF₃.

$$R^{4}$$
 $(O)_{m}$
 R^{6}
 R^{3}
 $(O)_{n}$
 (II)

where the symbols and indices are as defined below:

X is = CH - ;

Y' is -O- or -S-;

n is 0 or 1;

m is 0, 1 or 2;

R¹ is SF₅, CHF₂, CF₂Cl or CF₃.;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6 ,alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O or -S or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 $R^{4'}$ is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cyclo- alkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl or (C_3-C_{10}) -heterocyclyl, where the radicals mentioned may be unsubstituted or monoor polysubstituted; and

 R^6 is hydrogen, (C_1 - C_{10})-alkyl, (C_3 - C_{10})-alkenyl-, (C_3 - C_{10})-alkynyl, (C_3 - C_8)-cycloalkyl, (C_4 - C_8)-cycloalkenyl, (C_8 - C_{10})-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

7. (Currently Amended) A compound of the formula (II) or a salt thereof as claimed in claim 2

$$R^{4}$$
 $(O)_m$
 R^{6}
 R^{3}
 $(O)_n$
 (II)

where X is =CH-, Y' is -O-, m and n are 0, R¹ is CF₃, R², R³ and R⁴ are hydrogen and R⁶ is (C₁-C₁₀)-alkyl, (C₃-C₈)-cycloalkyl, aryl, benzyl or heterocyclyl having a total of one to three nitrogen, oxygen and/or sulfur ring atoms, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

- 8. (Currently Amended) A compound of the formula (II) or a salt thereof as claimed in claim 7 where the substituents are radicals R⁷ having the following meaning: R⁷ are identical or different R⁸ or two radicals R⁷ together with the atoms to which they are attached form a three-to eight-membered saturated or unsaturated ring system which is unsubstituted or substituted by one or more radicals R⁸ and which may also contain further heteroatoms, selected from the group consisting of O, N, S, SO and SO₂; R⁸ being as defined in claim 6claim 5.
- 9. (Currently Amended) A process for preparing compounds of the formula (I) as claimed in claim 1, which comprises the following steps:

a) reaction of a carboxamide of the formula (III) with a halogenating agent to give a compound of the formula (IV), and

b) reaction of this compound with a thioether R^5SH in the presence of a base to give the end products of the formula (I), where in these formulae <u>Hal is halogen and</u> the radicals R^1 , R^2 , R^3 , R^4 , R^5 , X and Y and the index n have the meanings given in claim 1 and Hal is halogen. below: X is =CH—;

9

 \underline{Y} is $\underline{=}$ O or $\underline{=}$ S;

<u>n is 0 or 1;</u>

00410788

(I)

 R^1 is (C_1-C_6) -alkyl, (C_1-C_6) haloalkyl, --S(halogen)₅ or halogen, where one or two CH_2 groups may be replaced by -O— or -S— or $-N(C_1-C_6$ -alkyl, with the proviso that heteroatoms may not be adjacent;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6)-alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O or -S or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 R^4 is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl, (C_3-C_{10}) -heterocyclyl or (C_1-C_{10}) -alkanoyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

 R^5 is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -alkenyl-, (C_3-C_{10}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

10. (**Original**) A process for preparing compounds of the formula (I) as claimed in claim 1, which comprises reacting an activated derivative of the carboxylic acid or thiocarboxylic acid of the formula (VI)

$$R^{2}$$
 $(O)_{n}$
 (VI)

in the presence of a base with a compound of the formula (VII)

where in these formulae the radicals R¹, R², R³, R⁴, R⁵, X and Y and the indices m and n have the meanings given in claim 1.

10

11. (Currently Amended) A process for preparing compounds of the formula (Ia) as claimed in claim 1 by thermal decomposition of the sulfimides of the formula (VIII)

where the radicals R^1 , R^2 , R^3 , R^5 , X and Y and the index n are as defined in elaim 1 below:

X is = CH -;

Y is =0 or =S;

n is 0 or 1;

 R^1 is (C_1-C_6) -alkyl, (C_1-C_6) haloalkyl, --S(halogen)₅ or halogen, where one or two CH_2 groups may be replaced by -O or -S or $-N(C_1-C_6)$ -alkyl, with the proviso that heteroatoms may not be adjacent;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6)-alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O or -S or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 R^5 is hydrogen, (C_1 - C_{10})-alkyl, (C_3 - C_{10})-alkenyl-, (C_3 - C_{10})-alkynyl, (C_3 - C_8)-cycloalkyl, (C_4 - C_8)-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

00410788

 $R^{5'}$ is one of the groups defined in claim 1 for R^{5} having a β -hydrogen atom and $R^{5''}$ is the ethylenically unsaturated leaving group corresponding to $R^{5'}$ reduced by one hydrogen atom.

12. (Currently Amended) A process for preparing compounds of the formula (II) as claimed in claim 2, which comprises reacting the compounds of the formula (Ib)

$$R^2$$
 R^3
 R^4
 R^3
 R^4
 R^4

with an alcohol R⁴'—OH in the presence of an azodicarboxylic acid diester and a phosphine in accordance with the scheme above to give the compounds of the formula (II) in which, R⁴' has one of the meanings defined in claim 2below, except for H, and R¹, R², R³, R⁶, X, Y and n have one of the meanings defined in claim 2.below:

X is = CH - ;

Y' is -O- or -S-;

n is 0 or 1;

 R^1 is (C_1-C_6) -alkyl-, (C_1-C_6) -haloalkyl, -S(halogen)₅ or halogen, where one or two CH_2 groups may be replaced by -O- or -S- or $-N(C_1-C_6)$ -alkyl, with the proviso that heteroatoms may not be adjacent;

 R^2 , R^3 independently of one another are hydrogen, (C_1 - C_6 ,alkyl, (C_1 - C_6)-haloalkyl or halogen, where one or two CH_2 groups may be replaced by -O— or -S— or $-N(C_1$ - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent;

 $R^{4'}$ is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cyclo- alkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{10}) -alkynyl or (C_3-C_{10}) -heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted; and

 R^6 is hydrogen, (C_1 - C_{10})-alkyl, (C_3 - C_{10})-alkenyl-, (C_3 - C_{10})-alkynyl, (C_3 - C_8)-cycloalkyl, (C_4 - C_8)-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

- 13. (Currently Amended) A composition having insecticidal, acaricidal, ixodicidal, nematicidal, molluscidal and/or fungicidal action, which comprises at least one compound of the formula (I) or a salt thereof and/oror a compound of the formula (II) or a salt thereof as claimed in claim 1 and 2, respectively.
- 14. (**Original**) A method for controlling animal pests comprises the step of directly or indirectly applying to the pest a compound of the formula (I) or a salt thereof as claimed in claim 1.
- 15. (**Original**) A method for controlling animal pests comprises the step of directly or indirectly applying to the pest a compound of the formula (II) or a salt thereof as claimed in claim 2.
- 16. (**Original**) A method for warding off or fending off harmful organisms, where one or more compounds of the formula (I) or salts thereof as claimed in claim 1 are applied to the site from which the harmful organisms are to be fended off or warded off.
- 17. (**Original**) A method forwarding off or fending off harmful organisms, where one or more compounds of the formula (II) or salts thereof as claimed in claim 2 are applied to the site from which the harmful organisms are to be fended off or warded off.

- 18. (**Original**) A veterinary medicament comprising a compound of the formula (I) or a salt thereof as claimed in claim 1.
- 19. (**Original**) A veterinary medicament comprising a compound of the formula (II) or a salt thereof as claimed in claim 2.
- 20. (Withdrawn) A process for preparing sulfimides of the formula (VIII) by reacting a thiohydroxamic acid of the formula (Ia) in the presence of a compound R⁵'-Z and a base according to the scheme below:

$$R^{2}$$
 R^{3}
 R^{3}
 R^{5}
 R^{5}

where the radicals R^1 , R^2 , R^3 , R^5 , X and Y and the index n are as defined in claim 1, R^5 independently of R^5 is one of the groups defined in claim 1 for R^5 and Z is a leaving group.