Algèbre Linéaire 1 - Scherer

Benjamin Bovey - EPFL IC

Année 2018-2019

Introduction

Ce document est destiné à résumer les cours d'algèbre linéaire 1 donnés par Mr. Jérôme Scherer. Pour l'instant il regroupe la matière à partir du cours 16. Voici le GitHub du projet.

1 Inversibilité

Les propositions suivantes sont équivalentes:

- \bullet La matrice A est inversible
- L'application représentée par A est bijective (\Rightarrow injective et surjective)
- Les colonnes de A forment une base de \mathbb{R}^n
- $\operatorname{Im}(A) = \mathbb{R}^n$
- $\dim \operatorname{Im}(A) = n$
- $\operatorname{rang}(A) = n$
- $Ker(A) = \{0\}$
- $\dim \operatorname{Ker}(A) = 0$

2 Vecteurs propres et valeurs propres

Les propositions suivantes sont équivalentes:

- ullet 0 est valeur propre de A
- $Ker(A) \neq 0$
- $\operatorname{rang}(A) < n$
- A n'est pas surjective
- A n'est pas inversible

Les valeurs propres d'une matrice **triangulaire** sont les coefficients diagonaux de la matrice. Cette propriété tient donc bien sûr pour les matrices **diagonales**, qui sont des cas particuliers de matrices triangulaires.

2.1 Le polynôme caractéristique

Le polynôme caractéristique d'une matrice n'existe que pour les matrices carrées, car le déterminant est uniquement défini sur les matrices carrées.

Soit A une matrice $n \times n$, et soit $\chi_A(\lambda)$ son polynôme caractéristique. Alors

$$\chi_A(\lambda) = \det(A - \lambda I_n) \tag{2.1}$$

Une valeur propre de A est une racine du polynôme caractéristique $\chi_A(\lambda)$.

2.2 Espace propre associé à une valeur propre

Soit λ une valeur propre de A. Alors l'espace propre associé à λ est

$$\operatorname{Ker}(A - \lambda I_n)$$
 (2.2)

2.3 Similitude

DÉFINITION:

Deux matrices carrées de taille $n \times n$ sont **semblables** s'il existe une matrice inversible P de taille $n \times n$ telle que $A = P^{-1}BP$.

En gros, deux matrices sont semblables si elles représentent la même application exprimée dans deux bases différentes. Ce qui est important, c'est que:

Deux matrices semblables ont le même polynôme caractéristique, et donc les mêmes valeurs propres.

Attention: le fait que deux matrices aient les mêmes valeurs propres n'implique pas qu'elles sont semblables.

2.4 Multiplicité des valeurs propres

On fait la différence entre la multiplicité algébrique d'une valeur propre et sa multiplicité géométrique. Définition:

La multiplicité algébrique d'une valeur propre est sa multiplicité en tant que racine de $\chi_A(\lambda)$.

La multiplicité géométrique d'une valeur propre est la dimension de l'espace propre qui lui est associé.

On écrira d'ailleurs $\operatorname{mult}(\lambda)$ pour la multiplicité algébrique de λ et $\dim(E_{\lambda})$ pour la multiplicité géométrique de λ .

2.5 Diagonalisabilité

Théorème : une matrice A de taille n est diagonalisable si et seulement si:

- $\chi_A(\lambda)$ est scindé
- $\forall \lambda$, on a dim (E_{λ}) = mult (λ)

Autrement dit:

Une matrice A est diagonalisable si et seulement si la somme des multiplicités géométriques de ses valeurs propres est égale à n.

Une condition suffisante mais pas nécessaire est la suivante:

Une matrice A est diagonalisable si elle possède n valeurs propres <u>distinctes</u>.

3 Orthogonalité

3.1 Idées générales

Soit A une matrice de taille $n \times m$. Alors A^T est de taille $n \times m$.

- Les lignes de A^t sont les colonnes \vec{a}_i de A
- $A^T \vec{x} = \vec{0} \iff \vec{x} \perp \operatorname{Im} A$
- Les coefficients $(A^T A)_{ij}$ sont les produits scalaires $\vec{a}_i \cdot \vec{a}_j$

- Les colonnes de A sont orthogonales $\iff A^T A$ est diagonale
- \bullet Les coefficients de AA^T sont les produits scalaires des lignes de A
- Les lignes de A sont orthogonales $\iff AA^T$ est diagonale

Soit A une matrice de taille $m \times n$:

$$\operatorname{Ker} A = (\operatorname{Lign} A)^{\perp} \tag{3.1}$$

$$\operatorname{Ker} A^{T} = (\operatorname{Im} A)^{\perp} \tag{3.2}$$

Preuve:

 $A \cdot \vec{x} \iff \vec{x} \perp$ chaque ligne de A

$$\operatorname{Im} A = \operatorname{Lign} A^T$$

3.2 Base orthogonale

Soit W un sous-espace de \mathbb{R}^n et $(\vec{u}_1,\ldots,\vec{u}_k)$ une base orthogonale de W. Alors

$$\vec{w} \in W = \alpha_1 \vec{u}_1 + \dots + \alpha_k \vec{u}_k, \tag{3.3}$$

et on calcule les α_j de la manière suivante:

$$\alpha_j = \frac{\vec{w} \cdot \vec{u}_j}{\|\vec{u}_j\|^2} \tag{3.4}$$

3.3 Matrice orthogonale

<u>THÉORÈME</u>: matrices orthogonales Les propositions suivantes sont équivalentes:

- \bullet *U* est orthogonale.
- Les colonnes et lignes d'une matrice carrée U de taille n sont orthonormées
- $\bullet \ U^T U = I_n$
- $\bullet \ U^{-1} = U^T$

Une matrice orthogonale représente une transformation linéaire qui préserve les distances et l'orthogonalité (isométrie, p. ex rotation ou symétrie).

 $\underline{\text{TH\'e}\text{OR\`eme}}$: préservation des longueurs Soit U une matrice orthogonale. Alors:

- 1. $||U\vec{x}|| = ||\vec{x}|| \forall \vec{x} \in \mathbb{R}^n$
- 2. $U\vec{x} \cdot U\vec{y} = \vec{x} \cdot \vec{y}$
- 3. $U\vec{x} \perp U\vec{y} \iff \vec{x} \perp \vec{y}$

3.4 Projection orthogonale

<u>THÉORÈME</u>: projection d'un vecteur sur un sous-espace Soit $(\vec{u}_1, \dots, \vec{u}_k)$ une base orthogonale de W, sous-espace de \mathbb{R}^n .

$$\forall \vec{y} \in \mathbb{R}^n, \vec{y} = \hat{y} + \vec{z} \text{ où } \hat{y} \in W \text{ et } \vec{z} \in W^{\perp}.$$

Cette décomposition est unique. On peut calculer $\hat{y} = \text{proj}_W \vec{y}$ à l'aide de 3.4.

La meilleure méthode pour construire la projection est la suivante:

1. Vérifier que la base de W est orthogonale (c'est la base de la base!)

- 2. Calculer les normes au carré des vecteurs de base \vec{u}_i
- 3. Calculer les produits scalaires $\vec{y} \cdot \vec{u}_i$
- 4. Appliquer 3.4 pour chaque u_i
- 5. Calculer $\vec{z} = \vec{y} \hat{y}$ et vérifier que $\vec{z} \perp W$

<u>Théorème</u>: projection d'un vecteur sur un sous-espace, cas d'une base orthonormée

Soit U la matrice dont les colonnes sont les vecteurs $\vec{u}_1, \dots, \vec{u}_k$ d'une base $\underbrace{orthonorm\acute{e}e}_{proj_W} \vec{y} = UU^T \vec{y}$

3.5 Méthode des moindres carrés

Idée: On veut approximer une solution (appelée solution au sens des moindres carrés) d'un système incompatible de la forme $A\vec{x} = \vec{b}$, où $A\vec{x} \in \text{Im } A$, mais $\vec{b} \notin \text{Im } A$. On va donc vouloir résoudre le système en remplaçant \vec{b} par proj $_{\text{Im } A}\vec{b} = \hat{b}$. Comme $\hat{b} \in \text{Im } A$, on obtient le système compatible $A\hat{x} = \hat{b}$ qui permet d'obtenir 'approximation la plus proche de la solution.

Cependant, on n'aimerait pas devoir calculer \hat{b} . On peut trouver une équation, appelée l'équation normale du système, qui permet de trouver la solution au sens des moindres carrés sans calculer \hat{b} .

<u>Théorème</u>: équation normale

$$A\hat{x} = \hat{b} \iff A^T A \hat{x} = A^T \vec{b}$$
(3.5)

On appelle \hat{x} la solution au sens des moindres carrés du système.

Remarque: Il existe généralement une infinité de solutions au sens des moindres carrés.

La solution est unique \iff A est injective \iff A est inversible.

Remarque: On appelle $\|\vec{z}\| = \|\vec{b} - \hat{b}\|$ l'erreur quadratique ou écart quadratique. Graphiquement, c'est la distance entre le vecteur \vec{b} et la solution au sens des moindres carrés \vec{x} , donc la différence entre la solution "idéale" et la solution approximée.

Méthode:

- 1. Calculer $A^T A$
- 2. Calculer $A^T \vec{b}$
- 3. Résoudre le système $A^T A \hat{x} = A^T \vec{b}$ pour obtenir la solution au sens des moindres carrés \hat{x}
- 4. (Calculer $\|\vec{b} \hat{b}\|$ pour obtenir l'écart quadratique)

3.5.1 Méthode de Gram-Schmidt

But: Trouver une base orthogonale ou orthonormée d'un sous-espace W de \mathbb{R}^n .

Idée: Partir d'une base quelconque, et utiliser les projections orthogonales pour créer une base orthonormée.

3.6 Matrices symétriques

DÉFINITION:

Une matrice carrée A est $symétrique \iff A^T = A$, i.e. $a_{ij} = a_{ji}$.

THÉORÈME:

Les espaces propres d'une matrice symétrique sont orthogonaux entre eux.

DÉFINITION:

Une matrice carrée A est diagonalisable par un changement de base orthonormée ou orthodiagonalisable s'il existe une matrice P orthogonale telle que P^TAP est diagonale.

THÉORÈME:

A est orthodiagonalisable \iff A est symétrique.

THÉORÈME SPECTRAL:

Soit A une matrice symétrique. Alors, A est orthodiagonalisable.

On peut également faire les remarques suivantes sur A:

- 1. A admet n valeurs propres réelles, compte tenu de leur multiplicité
- 2. Pour toute valeur propre λ on a mult(λ) = dim E_{λ}
- 3. Les espaces propres de A sont perpendiculaires 2 à 2 (\iff si $\lambda \neq \mu$, alors $E_{\lambda} \perp E_{\mu}$)

MÉTHODE: ORTHODIAGONALISATION

- 1. Vérifier que A est symétrique
- 2. Calculer $\chi_A(t)$ et en extraire les valeurs propres
- 3. Calculer les espaces propres. Trouver une base orthonormée pour chaque espace propre par le procédé de Gram-Schmidt
- 4. Assembler les bases orthonormées des espaces propres, on obtient une base orthonormée B de \mathbb{R}^n
- 5. La matrice P dont les colonnes sont les vecteurs \vec{b}_i de B est orthogonale et $D = P^T A P$ est diagonale

Remarque: comme P est orthogonale, $P^{-1} = P^T$!

3.7 Matrice de projection

<u>Définition</u>:

Soit \vec{u} un vecteur unitaire. Alors $A = \vec{u}\vec{u}^T$ est la matrice de la projection orthogonale sur $W = \text{Vect}(\vec{u})$. On a $A\vec{x} = \text{proj}_{\vec{u}}\vec{x}$.

Remarque: \vec{u} est un vecteur propre de A pour la valeur propre 1 car $A\vec{u} = (\vec{u}\vec{u}^T)\vec{u} = \vec{u}(\vec{u}^T\vec{u}) = \vec{u}(\vec{u}\cdot\vec{u}) = \vec{u}$.

Remarque: Si $W = \text{Vect}(\vec{u})$, alors $W^{\perp} = \text{Ker } A$.

Remarque: Cette matrice de projection construite à partir d'un vecteur unitaire est un cas particulier de ce que nous avons vu avec les matrices de projection de la forme UU^T , où les colonnes de U forment une base orthonormée.

3.8 Décomposition spectrale

DÉFINITION:

L'ensemble des valeurs propres de A est appelé spectre de A.

THÉORÈME:

Comme $D = U^T A U$,

$$A = UDU^T = \dots = \lambda_1 \vec{u}_1 \vec{u}_1^T + \underbrace{\dots}^{\text{cours } 25} + \lambda_n \vec{u}_n \vec{u}_n^T$$
(3.6)

DÉFINITION:

 $A = \lambda_1 \vec{u}_1 \vec{u}_1^T + \dots + \lambda_n \vec{u}_n \vec{u}_n^T$ est la décomposition spectrale de la matrice symétrique A.

Remarque: c'est la somme de matrices contenant chacune 1 valeur propre dans sa diagonale. A est décomposée en une combinaison linéaire de matrices de projection orthogonale!