

Naïve QUBO Formulations

Jonas Nüßlein, Sebastian Zielinski, Sebastian Feld, Claudia Linnhoff-Popien

IEEE Quantum Week (IEEE QCE'23) September 18, 2023

Agenda

- I. Quantum Annealing in a Nutshell
- II. QGM vs. AQC
- III. QUBO and TSP
- IV. Satisfiability
- V. PyQUBO
- VI. Conclusion

Quantum Computing

Quantum Gate Model

Quantum Annealing

Quantum Annealing

Quality of solution

Portfolio Optimization

Spend budget, minimize risk, maximize outcome

Portfolio Optimization

Spend budget, minimize risk, maximize outcome

Qubits represent stocks

Initialize qubits in superposition

Formulate constraints

Anneal to optimal solution

Quantum Annealing

Quality of solution

Quantum Gate Model

Adiabatic Quantum Computation

Ising Model

$$H(s) = \sum_{i} h_i s_i + \sum_{i < j} J_{ij} s_i s_j$$

Quality of solution

Quantum Annealing

QUBO

Ising Model

$$H(s) = \sum_{i} h_i s_i + \sum_{i < j} J_{ij} s_i s_j$$

Quadratic Unconstrained Binary Optimization

$$\sum_{i=1}^{N} c_i X_i + \sum_{i=1}^{N} \sum_{j=1}^{i} Q_{ij} X_i X_j$$

$$X_i \in \{0,1\}$$

$$c_i, Q_{ij} \in \mathbb{R}$$

Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

The Good, the Bad and the Ugly

Combinatorial Optimization

n cities	(n-1)! combinations
2	1
3	2
4	6
5	24
10	362,880
20	1.2×10^{17}
100	9.3×10^{155}

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

Given graph G = (V, E) with edge weights W_{uv} , find hamiltonian cycle with minimum sum of edge weights

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	С3	C4
A1												
A2												
А3												
A4												
B1												
B2												
В3												
B4												

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	СЗ	C4
A1		α	α	α								
A2			α	α								
А3				α								
A4												
B1						α	α	α				
B2							α	α				
В3								α				
В4												

Every vertex can only appear once in a circle

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	С3	C4
A1		α	α	α	α				α			
A2			α	α		α				α		
А3				α			α				α	
A4								α				α
B1						α	α	α	α			
B2							α	α		α		
В3								α			α	
B4												α

There must be a j^{th} node in the cycle for each j

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	С3	C4
A1		α	α	α	α	(ab)		(ba)	α	(ac)		(ca)
A2			α	α	(ba)	α	(ab)		(ca)	α	(ac)	
А3				α		(ba)	α	(ab)		(ca)	α	(ac)
A4					(ab)		(ba)	α	(ac)		(ca)	α
B1						α	α	α	α	(bc)		(cb)
B2							α	α	(cb)	α	(bc)	
В3								α		(cb)	α	(bc)
B4									(bc)		(cb)	α

If the edge is part of the cycle, apply the edge weight

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	C4
A1	β	α	α	α	α	(ab)		(ba)	α	(ac)		(ca)
A2		β	α	α	(ba)	α	(ab)		(ca)	α	(ac)	
А3			β	α		(ba)	α	(ab)		(ca)	α	(ac)
A4				β	(ab)		(ba)	α	(ac)		(ca)	α
B1					β	α	α	α	α	(bc)		(cb)
B2						β	α	α	(cb)	α	(bc)	
В3							β	α		(cb)	α	(bc)
B4								β	(bc)		(cb)	α

Reward setting a qubit to 1 with negative value in diagonal

$$H = \alpha \sum_{v=1}^{n} \left(1 - \sum_{j=1}^{N} x_{v,j} \right)^{2} + \alpha \sum_{j=1}^{n} \left(1 - \sum_{v=1}^{N} x_{v,j} \right)^{2} + \sum_{(uv) \in E} W_{uv} \sum_{j=1}^{N} x_{u,j} x_{v,j+1}$$

Every vertex can only appear once in a circle

There must be a j^{th} node in the cycle for each j

If the edge is part of the cycle, apply the edge weight

	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	C4
A1	β	α	α	α	α	(ab)		(ba)	α	(ac)		(ca)
A2		β	α	α	(ba)	α	(ab)		(ca)	α	(ac)	
А3			β	α		(ba)	α	(ab)		(ca)	α	(ac)
A4				β	(ab)		(ba)	α	(ac)		(ca)	α
B1					β	α	α	α	α	(bc)		(cb)
B2						β	α	α	(cb)	α	(bc)	
В3							β	α		(cb)	α	(bc)
B4								β	(bc)		(cb)	α

Quantum Annealing (QA)

Quality of solution

All possible solutions

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (-x_1 \lor x_2 \lor x_4) \land (x_1 \lor -x_2 \lor x_3)$$

Step 1: Build a graph structure for each clause

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (-x_1 \lor x_2 \lor x_4) \land (x_1 \lor -x_2 \lor x_3)$$

Step 2: Interconnect conflicting literals from different clauses

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (-x_1 \lor x_2 \lor x_4) \land (x_1 \lor -x_2 \lor x_3)$$

Step 3: Add weights

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (-x_1 \lor x_2 \lor x_4) \land (x_1 \lor -x_2 \lor x_3)$$

Step 4: Rewrite as QUBO

	X _{1,1}	X _{2,1}	X _{3,1}	X _{1,2}	X _{2,2}	X _{4,2}	X _{1,3}	X _{2,3}	X _{3,3}
X _{1,1}	-1	3	3	3					
X _{2,1}		-1	3					3	
X _{3,1}			-1						
X _{1,2}				-1	3	3	3		
X _{2,2}					-1	3		3	
X _{4,2}						-1			
X _{1,3}							-1	3	3
X _{2,3}								-1	3
X _{3,3}									-1

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (-x_1 \lor x_2 \lor x_4) \land (x_1 \lor -x_2 \lor x_3)$$

Solutions: Independent sets minimizing node sums

PyQUBO

- Open-source Python library for constructing QUBOs matrices from objective functions and constraints of optimization problems
- Features abstraction of expressions and extensibility of the program to create QUBO instances and Ising models
- Examples: number partitioning problem, knapsack problem, graph coloring problem, and integer factorization using a binary multiplier

IEEE Transactions on Computers

PyQUBO: Python Library for Mapping Combinatorial Optimization Problems to QUBO Form

April 2022, pp. 838-850, vol. 71 DOI Bookmark: 10.1109/TC.2021.3063618

Authors

Mashiyat Zaman, Recruit Co., Ltd., Chuo-ku, Tokyo, Japan Kotaro Tanahashi, Recruit Co., Ltd., Chuo-ku, Tokyo, Japan Shu Tanaka, Department of Applied Physics and Physico-Informatics, Keio University, Kanagawa, Japan

$$\sum_{i=1}^{N} c_i X_i + \sum_{i=1}^{N} \sum_{j=1}^{i} Q_{ij} X_i X_j$$
$$X_i \in \{0,1\}$$
$$c_i, Q_{ij} \in \mathbb{R}$$

Naïve QUBO Formulations

Jonas Nüßlein, Sebastian Zielinski, Sebastian Feld, Claudia Linnhoff-Popien

IEEE Quantum Week (IEEE QCE'23) September 18, 2023 Thank You!