Name	Symbol	Units	Description
Total alkalinity	A_T	mol kg ⁻¹	Concentration of ions that can be converted to uncharged species by
			a strong acid. The model assumes $A_T = [HCO_3^-] + [CO_3^2^-]$, often referred to as carbonate alkalimity. Alkalimity and DIC together
			quantify the equilibrium state of the seawater carbon chemistry.
Nitrate	$[NO_3^-]$	${ m mg~N~m^{-3}}$	Concentration of nitrate. In the absence of nitrite [NO ₂] in the
			model, nitrate represents $[NO_3^-] + [NO_2^-]$.
Ammonia	$[\mathrm{NH_4^-}]$	$mg N m^{-3}$	Concentration of ammonia.
Dissolved Inorganic		$mg P m^{-3}$	Concentration of dissolved inorganic phosphorus, also referred to
$\mathbf{Phosphorus}$			as orthophosphate or soluble reactive phosphorus, SRP, composed chiefly of HPO ² ions with a small percentage present as PO ³ -
Dissolved inorgani	inorganic DIC	$mg C m^{-3}$	Concentration of dissolved inorganic carbon, composed chiefly at
carbon			seawater pH of HCO_3^- , with a small percentage present as CO_3^{2-} .
Dissolved oxygen	$[\mathrm{O}_2]$	$mg O m^{-3}$	Concentration of oxygen.
Chemical Oxygen De-		$mg O m^{-3}$	Concentration of products of anoxic respiration in oxygen units.
mand			This represents products such as hydrogen sulfide, H_2S , that are produced during anoxic respiration and which upon reoxidation of
			the water, will consume oxygen.
Dissolved Organi	Organic O_C	$mg C m^{-3}$	The concentration of carbon in dissolved organic compounds.
Carbon			
Dissolved Organic Ni-	i- O_N	${ m mg~N~m^{-3}}$	The concentration of nitrogen in dissolved organic compounds.
trogen			
Dissolved Organic	ic O_P	$mg P m^{-3}$	The concentration of phosphorus in dissolved organic compounds.
Phosphorus			

Table 38: Name in model output files, symbol and units used in this document, and a description of all dissolved state variables. When the concentration of an ion is given, the chemical formulae appears in [] brackets.

Name	Symbol & Units	Description
Phytoplankton N	$B [\text{mg N m}^{-3}]$	Total structural biomass of nitrogen of the phytoplankton population. All microalgae have a C:N:P ratio of the structural material of 106:16:1. Thus the mass of
		phosphorus in the structural material of a population with a biomass B is given by: $\frac{1}{16}\frac{31}{14}B$ and the mass of carbon by: $\frac{106}{16}\frac{12}{14}$ B. The number of cells is given by B/m_N .
Phytoplankton N reserves	BR_N^* [mg N m ⁻³]	Total non-structural biomass of nitrogen of the phytoplankton population. Phytoplankton N reserves divided by Phytoplankton N is a number between 0 and 1 and
	7	represents the factor by which phytoplankton growth is inhibited due to the internal reserves of nitrogen.
Phytoplankton P	$\frac{1}{16} \frac{31}{14} B R_P^*$ [mg P	Total non-structural biomass of phosphorus of the phytoplankton population. Phy-
reserves	m_2]	toplankton Γ reserves divided by (Phytoplankton IN $\times \frac{1}{16} \frac{14}{14}$) is a number between 0 and 1 and represent the factor by which phytoplankton growth is inhibited due to the internal reserves of phosphorus.
Phytoplankton I re-	$\frac{1060}{16} \frac{1}{14} BR_1^*$	Total non-structural biomass of fixed carbon of the phytoplankton population, quan-
serves	$\begin{bmatrix} m - 3 \end{bmatrix}$	uned in photons. First operation 1 reserves divided by (First operation in $\times \frac{1}{16} = \frac{1}{14}$) is a number between 0 and 1 and represent the factor by which phytoplankton growth
	•	is inhibited due to the internal reserves of energy (or fixed carbon).
Phytoplankton	$nc_iV \text{ [mg m}^{-3]}$	Concentration of the chlorophyll a pigment of the population. The four phytoplank-
chlorophyll		ton classes have two pigments, a chlorophyll a-based pigment and an accessory pig-
		ment. As the pigment concentration adjusts to optimise photosynthesis, including the presence of the accessory pigment, the intracellular content, c_iV , represents only
		the chlorophyll a-based pigment. As the model does not distinguish between mono-
		vinyl and di-vinyl forms of chlorophyll, this c_i represents either form, depending on
Zoonlankton M	Z [m α N m-3]	the phytoplankton type. Total biomaga of nitrogen in animals $With$ only small and large zoomlankton eato
	[5]	gories resolved, small zooplankton represents the biomass of unicellular fast growing
		animals (protozoans) and large zooplankton represents the biomass of all other an-
		imals (metazoans). All zooplankton have a C:N:P ratio of 106:16:1. Thus the mass
		of phosphorus of a population with a biomass Z is given by: $\frac{1}{16}\frac{31}{14}Z$ and the mass of
		carbon by: $\frac{100}{16} \frac{12}{14} Z$.

fast-sinking diatoms that are suspended primarily in the top layer of sediment porewaters. The elemental ratio of phy-Table 39: Name in model output files, symbol and units used in this document, and description of all biological toplankton; large: $e > 2 \mu m$ phytoplankton; trichodesmium: nitrogen fixing phytoplankton; and benthic microalgae: particulate state variables in the model. The model contains four catagories of phytoplankton: small, $r < 2 \mu \text{m}$ phytoplankton including both structural material and reserves is given by: C:N:P = $106(1+R_I^*):16(1+R_N^*):(1+R_P^*)$.

Name		Symbol	Units	Description
Mud		Mud	$[{ m kg~m}^{-3}]$	Small sized, re-suspending particles with a sinking velocity of 17 m d^{-1} .
Fine Sediment	ıt	Fine Sed	$[{ m kg~m}^{-3}]$	Identical to Mud, except that it is initialised to zero in the model domain, and enters only from the catchments.
Sand		Sand	$[\mathrm{kg}\ \mathrm{m}^{-3}]$	Medium sized, re-suspending particles with a sinking velocity of 173 m d^{-1} .
Gravel Particulate Inorganic Phosphorus	Inorganic	$Gravel\ PIP$	$[\mathrm{kg~m}^{-3}]$ $[\mathrm{mg~P~m}^{-3}]$	Large, non-resuspending particles. Phosphorus ions that are absorbed onto particles. It is considered a particulate with the same properties as Mud.
Immobilised Particulate Inorganic Phosphorus	Particu- iic Phos-	PIPI	$[\rm mg~P~m^{-3}]$	Phosphorus that is permanently removed from the system through burial of PIP.
Labile Detritus Nitrogen Plank	us Nitro-	D_{Red}	[mg N m-3]	Concentration of N in labile (quickly broken down) organic matter with a C:N:P ratio of 106:16:1 derived from living microalgae, zooplankton, coral host tissue and zooxanthellae with the same C:N:P ratio. Thus the mass of phosphorus in D_{Red} is given by: $\frac{1}{16}\frac{31}{14}D_{Red}$ and the mass of carbon by:
Labile Detritus Nitrogen Benthic	us Nitro-	D_{Atk}	[mg N m ⁻³]	Concentration of N in labile (quickly broken down) organic matter with a C:N:P ratio of 550:30:1 derived from living seagrass and macroalgae with the same C:N:P ratio. Thus the mass of phosphorus in D_{Atk} is given by: $\frac{1}{30}\frac{31}{14}D_{Atk}$ and the mass of carbon by: $\frac{550}{12}\frac{12}{12}D_{Atk}$.
Refractory Carbon	Detritus	D_C	[mg C m-3]	Concentration of carbon as particulate refractory (slowly breaking down) material. It is sourced only from the breakdown of labile detritus, and from rivers.
Refractory Nitrogen	Detritus	D_N	$[mg \qquad N \\ m^{-3}]$	Concentration of nitrogen as particulate refractory (slowly breaking down) material. It is sourced only from the breakdown of labile detritus, and from rivers.
Refractory Phosphorus	Detritus	D_P	$[{ m mg~P~m}^{-3}]$	Concentration of phosphorus as particulate refractory (slowly breaking down) material. It is sourced only from the breakdown of labile detritus, and from rivers.

Table 40: Name in model output files, symbol, unit used in this document, and description of all non-biological particulate state variables in the model.

Name	Symbo	Symbol Description
Macroalgae	MA	Concentration of nitrogen biomass per m ² of macrolagae. Macroalgae (or seaweed) grows
		above all other benthic plants (corals, seagrasses, benthic microalgae). It is parameterised
	$\mathrm{m}^{-2}]$	as a non-calcifying leafy algae, with a C:N:P ratio of 550:30:1, and a formulation for calcu-
		lating the percentage of the bottom covered as $1 - \exp(-\Omega_{MA} MA)$. In the model, in the
		absence of both calcifying macroalgae (particularly Halimeda) and unicellular epiphytes,
		macroalgae represents the biomass of all seaweeds and epiphytes.
$\operatorname{Seagrass}$	SG	Concentration of nitrogen biomass per m ² of a seagrass form parameterised to be similar
	N ®	to Zostera. This form captures light after it has passed through macroalgae and before
	$\mathrm{m}^{-2}]$	it passes through Halophila. This form is better adapted to high light, low nutrient
		conditions than Halophila as a result of a deeper root structure and being able to shade
		it. See macroalgae for elemental ratio and bottom cover.
Halophila	SG	Concentration of nitrogen biomass per m ² of a seagrass form parameterised to be similar
	ß N	to Halophila. This form captures light after it has passed through the Zostera seagrass
	m^{-2}	form. The Halophila form is batter adapted to low light conditions than Zostera, having
		a faster growth rate and lower minimum light requirement. See macroalgae for elemental
		ratio and bottom cover.
Coral host	CH	Concentration of nitrogen biomass per m^2 of coral host tissue in the entire grid cell. Unlike
Z	s N	other epibenthic variables, corals area is assumed to exist in communities that are poten-
	m^{-2}	tially smaller than the grid size. The fraction of the grid cell covered by corals is given by
		A_{CH} . Thus the biomass in the occupied region is given by CH/A_{CH} . The percent coverage
		of the coral of the bottom for the whole cell is given by $A_{CH}(1 - \exp(-\Omega_{CH} CH/A_{CH}))$.
		With only one type of coral resolved, CH represents the biomass of all symbiotic corals.
		Since the model contains no other benthic filter-feeders, CH best represent the sum of
		the biomass of all symbiotic filter-feeding organisms such as corals, sponges, clams etc.
		C:N:P is 106:16:1.
Coral sym-	CS	Concentration of nitrogen biomass per m ² of coral symbiont cells, or zooxanthellae. To
biont N	[mg]	determine the density of cells, use $n = CS/m_N$. The percentage of the bottom covered is
	Z	given by $\frac{\pi}{2\sqrt{3}}n\pi r_{zoo}^2$ where πr^2 is the projected area of the cell, n is the number of cells, and
	m^{-2}	$\pi/(2\sqrt{3}) \sim 0.9069$ accounts for the maximum packaging of spheres. C:N:P is 106:16:1.
Coral sym-	nc_iV	Concentration of chlorophyll biomass per m^2 of coral symbiont cells. As chlorophyll is the
biont chl	[mg	only pigment resolved in the coral symbiont, c_i represents the sum of the concentration
	chl_{j_1}	of all photosynthetic pigments within the cell and has an absorption spectrum of divinyl
	m_ ⁻²]	chlorophyll a.

Table 41: Name in model output files, units, symbol used in this document, and description of all epibenthic state variables in the model. The order in the above table corresponds to their vertical position, and therefore the order in which they access light. Benthic microalage, being suspended in porewaters, is consider as a particulate in Table 40.

Name	Units	Description
Absorption at 440 nm	m-1	Total absorption due to clear water, CDOM, microalgae and sus-
		pended sediments at 440 nm.
Scattering at 550 nm	m^{-1}	Total scattering due to clear water, microalgae and suspended sediments at 550 nm
Vertical attenuation at 490 nm	m ⁻¹	Vertical attenuation (along z axis not along zenith angle) of light
		at 490 nm.
Average PAR in layer	mol photon	Mean downwelling photosynthetically available radiation (400 - 700
Tions and consider the I	$m^{-2} d^{-1}$	nm) within the layer.
ngnt mensity above seagrass	$m^{-2} d^{-1}$	niean downweining photosyntheticany avaliable radiation (400 - 700 nm) above seagrass canopy.
Light intensity above sediment	mol photon	Mean downwelling photosynthetically available radiation (400 - 700 $$
layer Vertical attennation of heat	m-2 d-1 m - 1	nm) at the sediment-water interface. Vartical attenuation (along z axis not along zenith angle) of heat
Vereine acceltatelles of mean	111	Vertical acceleration (along \approx axis increased evillant angle) of the energy
Bicarbonate $[HCO_3^-]$	mmol m ⁻³	Concentration of bicarbonate ions calculated from carbon chemistry
		equlibra at water column values of T , S , DIC and A_T .
Carbonate $[CO_3^2]$	$mmol m^{-3}$	Concentration of carbonate ions calculated from carbon chemistry
		equlibra at water column values of T , S , DIC and A_T .
Oxygen % saturation	%	Dissolved oxygen concentration as a percentage of the saturation
	•	concentration at atmospheric pressure and local T and S .
$^{ m Hd}$	$\log_{10} \text{ mol m}^{-3}$	pH based on $[\mathrm{H}^+]$ calculated from carbon chemistry equlibra at
	,	water column values of T , S , DIC and A_T .
Sea-air CO_2 flux	$mg C m^{-2} s^{-1}$	Flux of carbon from sea to air (positive from sea to air). The value
		is given in the layer in which it was deposited (must be thicker than
· ·	-2 -1	20 cm), but still represents an areal flux.
Sea-air O_2 flux	mg O m 's '	Flux of oxygen from sea to air (positive from sea to air). The value
		is given in the layer in which it was deposited (must be thicker than
, , , , , , , , , , , , , , , , , , ,		20 cm), but still represents an areal flux.
$\mathrm{Delta\ pCO}_2$	ppmv	Partial pressure of CO_2 in the ocean minus that of the atmosphere
		(396 ppmv). $f \in \mathcal{O}$ is the constant of
Oceanic poo ₂	ppmv	Fartial pressure of CO_2 III the ocean.

Table 42: Name in model output files, units, and description of gas and optical diagnostic variables. Unless otherwise stated quantities are cell centred vertical averages.

Total C, N, P Total chlorophyll a mg m ⁻³ Ecology Fine Inorganics kg m ⁻³ Ecology Particulate Organics kg m ⁻³ Large phytoplankton net pro- mg C m ⁻³ d ⁻¹ duction Small phytoplankton net pro- mg C m ⁻³ d ⁻¹ duction Trichodesmium net production mg C m ⁻³ d ⁻¹ Microphytobenthos net pro- mg C m ⁻³ d ⁻¹	Sum of dissolved and particulate C, N, and P. Sum of chlorophyll concentration of the four microalgae types
	Sum of chlorophyll concentration of the four microalgae types
	$(\sum_{i} IUC_iV_i)$.
	Sum of time sediment and mud concentrations.
	Weight of carbon in microalgae, zooplankton, and particulate
	detritus.
	Rate of large phytoplankton organic matter synthesis from
	inorganic constituents.
esmium net production sytobenthos net pro-	Rate of small phytoplankton organic matter synthesis from
esmium net production sytobenthos net pro-	inorganic constituents.
ytobenthos net pro-	Rate of Trichodesmium organic matter synthesis from inor-
nytobenthos net pro-	ganic constituents.
	Rate of microphytobenthos organic matter synthesis from in-
duction	organic constituents.
Total phytoplankton net pro- $mg C m^{-3} d^{-1}$	Rate of total phytoplankton organic matter synthesis from
duction	inorganic constituents.
Large zooplankton removal $mg C m^{-3} d^{-1}$	Rate of carnivory of large zooplankton on small zooplankton.
rate from small zooplankton	
Small zooplankton removal $mg C m^{-3} d^{-1}$	Secondary production of small zooplankton.
rate from small phytoplankton	
Large zooplankton removal $mg C m^{-3} d^{-1}$	Secondary production of large zooplankton.
rate from large phytoplankton	
Zooplankton total grazing $mg C m^{-3} d^{-1}$	Total secondary pelagic production - feeding of both zoo-
	plankton classes on phytoplankton.
N_2 fixation $mg N m^{-3} s^{-1}$	Nitrogen fixation by <i>Trichodesmium</i> .

Table 43: Name in model output files, units, and description of pelagic diagnostic variables.

Name	Units	Description
Total epibenthic C, N, P	${ m mg~m^{-2}}$	Sum of C, N, and P in epibenthic plants and corals.
Coral inorganic supply	${ m mg~N~m^{-2}~s^{-1}}$	Flux of dissolved inorganic nitrogen into coral polyps from
		the water column, absorbed by zooxanthellae.
Coral organic supply	${ m mg~N~m^{-2}~s^{-1}}$	Flux of particulate organic nitrogen into coral polyps from
		the water column, consumed by the coral host.
Net calcification	${ m mg~C~m^{-2}~s^{-1}}$	Net calcification (calcification minus dissolution) at the
		sediment-water column interface leading to a change in the
		water column properties.
Halophila production	${ m g~N~m^{-2}~d^{-1}}$	Gross production of nitrogen in Halophila, where N fluxes are
		not accounted for in respiration.
Halophila growth rate	s_{-1}	Turnover time of above-ground Halophila biomass.
Seagrass growth rate	s-1	Turnover time of above-ground $Zostera$ biomass.
Seagrass production	${ m g~N~m^{-2}~d^{-1}}$	Gross production of nitrogen in Zostera, where N fluxes are
		not accounted for in respiration.
Macroalgae growth rate	s-1	Turnover time of macroalgae biomass.
Macroalgae production	${ m g~N~m^{-2}~d^{-1}}$	Gross production of nitrogen in macroalgae, where N fluxes
		are not accounted for in respiration.

Table 44: Name in model output files, units and description of benthic diagnostic variables.

Description	Calculation	Application
Monthly bottom light	1 hourly running-mean	seagrass viability
(eqival. to daily dose]	$\frac{1}{\tau} \int_0^t E_{d,\lambda,t} \exp(-\tau t) dt \text{ [mol m}^{-2} \text{ d}^{-1}]$	
Aragonite dissolution exposure	$\int_{t-t_{\Omega<3}}^{t} (3-\Omega) dt$ reset time 1 day, [unit days]	acidification stress
Monthly net calcification rate	1 hourly running-mean	calcification index
	$\frac{1}{T} \int_0^{\infty} g_{net,t} \exp(-\tau t) dt$	coral accretion
Temperature exposure	$\int_{t-t_{T}>T_{cdim}}^{t}\left(T-T_{clim} ight)dt$	thermal
(degree heating weeks)	rest time 7 day, [°C weeks]	coral bleaching
Weekly inorganic N uptake	1 hourly running-mean	oxidative stress
by corals	$rac{1}{ au} \int_0^t G_t \exp(- au t) dt$	
Salinity exposure	$\int_{t-t_{S<28}}^{t} (28-S) dt$	freshwater
	reset time I day, [PSU days]	coral bleaching
Weekly net deposition rate	1 hourly running-mean	coral smothering
(sinking / resuspension / diffusion)	$\frac{1}{\tau} \int_0^t D_t \exp(-\tau t) dt \ [\text{cm d}^{-1}]$	
Hypoxic exposure	$\int_{t-t_{\left[O_{2}\right]<2000}}^{t} \left(2000-\left[O_{2}\right]\right) dt$	low oxygen
	rest time 1 hour, $[mg O m^{-3} d^{-1}]$	stress
Weekly bottom light attenuation	1 hourly running-mean	predator visibility
(approx. from 490 nm)	$\frac{1}{\tau} \int_0^t K_{d,490,t} \exp(-\tau t) dt \; [\mathrm{m}^{-1}]$	prey behaviour
Remote-sensing reflectance	see Section 3.2.2	comparison with
R_{rs}	412, 443, 488, 531, 547, 648, 667, 748 nm	ocean colour products
MODIS algorithms - Kd, OC3, TSS, POC	empirical algorithms using	comparison with
- Kd, OC3, TSS, POC	remote-sensing reflectance	ocean colour products
Simulated true colour	RGB additive colour model	water quality
	using remote-sensing reflectance	non-expert communication
Plume classification	categorical from spectra matching	plume extent
(1-6) + clear water	using RMS errors on OC bands 1-7	

those metrics with a time scale, τ , the coefficient represents an exponential decay time - thus for a weekly running average, the impact of the value 1 week earlier on the running average is $100 \times \exp(-1)$, or 37 % of the impact of Table 45: Diagnostic variables. In addition to 60+ state variables, derived diagnostic variables have been developed in consultation with researchers and managers that provide metrics for improve understanding and application. For the present value.