A presentation by

THE SHORT-TERM CAPITAL GAINERS

On stock market prediction

INTRODUCTION & MOTIVATION

SPDR S&P 500 Trust ETF

STATE STREET GLOBAL ADVISORS. SPDR

RELATED WORK

- Short-term stock market price trend prediction using a comprehensive learning system, J. Shen & O. Shafiq (2020). Journal of Big Data
- How to apply Monte Carlo simulation to forecast Stock prices using Python, I. Valchanov (2017)
- ARIMA Model Complete Guide to Time Series Forecasting in Python, Prabhakaran, S. (2021)

Brownian motion with drift, ARIMA, Logistic Regression, LSTM

BROWNIAN MOTION

WITH DRIFT

WHAT IT IS

Instead of looking at prices, look at the changes in price.

From this

To this

THE EQUATIONS We define "drift" as $\,\mu - h \cdot \sigma^2\,$

We then simulate a change in price bu

n price by $e^{drift+\sigma\cdot Z}$

where // is a standard normal random variable

But what is $\, \hbar\,$?

THE HYPERPARAMETER h

 $e^{\mu-h\cdot\sigma^2+\sigma\cdot Z}$

h = 0.05

$$h = 1$$

OPTIMIZING h

Reject the status quo

Find the h that minimizes loss

Pick the best h

Ask the question, "why must I use ½?"

 $h = \frac{1}{2}$

For the loss function |predicted - actual|

Backtest and take the average optimal h

PREDICTING PRICE

Using the h we found, predict tomorrow's price by simulation

WHAT DOES MANDELBROT THINK?

WHAT WOULD MANDELBROT PROPOSE?

 $e^{drift+\sigma\cdot Z}$

He would insist on using a Cauchy distribution for Z

$e^{drift+\sigma\cdot Z}$

Follow-ups

RASYA SOEROSO

ARIMA

AutoRegressive Integrated Moving Average

AR

Uses the relationship between an observation and some predefined number of lagged observations.

Subtracts an observation from the previous **d** observations to make the data stationary.

MA

Uses the relationship between an observation and its lag errors.

p is the number of lag observations

d is the degree of differencing

q is the size/width of the moving average window

ARIMA

- ▶ I → Differencing

- ARIMA

$$Y_{t} = \kappa + \gamma_{1} Y_{t-1} + \gamma_{2} Y_{t-2} + \dots + \gamma_{p} Y_{t-p} + \epsilon_{t} + \phi_{1} \epsilon_{t-1} + \phi_{2} \epsilon_{t-2} + \dots + \phi_{q} \epsilon_{t-q}$$

AR

MA

p is the number of lag observations

d is the degree of differencing

q is the size/width of the moving average window

ARIMA RESULT

LINEAR REGRESSION

By: Jacqueline Gonzalez

RELATED WORK:

- https://www.akademiabaru.com/doc/ARBMSV14 N1 P35 41.pdf
- https://www.alpharithms.com/predicting-stoc k-prices-with-linear-regression-214618/
- https://byuistats.github.io/BYUI_M221_Book/L esson22.html

1. Building a data set

DataSet ticker = 'SPY' data = wb.DataReader(ticker, data_source='yahoo', start='2007-1-1') data.reset_index(inplace=True) **#Summary Statistics** data.head() High **Adj Close** Date Open Close Volume 0 2007-01-03 142.860001 94807600.0 140.570007 142.250000 141.369995 105.446762 1 2007-01-04 142.050003 140.610001 141.229996 141.669998 69620600.0 105.670479 2 2007-01-05 141.399994 141.330002 140.539993 76645300.0 104.827637 140.380005 **3** 2007-01-08 141.410004 140.250000 140.820007 141.190002 71655000.0 105.312469 4 2007-01-09 141.600006 140.399994 141.309998 141.070007 75680100.0 105.222977

Linear Regression is a linear model

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

Price = b₀+ b₁EMA + b₂BBANDS

2. Adding Technical Indicators

3. Training the Model

Price = 0.8818*EMA + 0.12568*BBANDS - .4180714

PREVIOUS PROBLEMS

LONG SHORT-TERM MEMORY MODEL (LSTM)

RELATED WORK

- Loukas, S. (2021, October 8). LSTM time-series forecasting: Predicting stock prices using an LSTM model. Medium.
- Olah, C. (2015). Understanding LSTM networks. Understanding LSTM Networks -- colah's blog.

LSTM - INTUITION

Cell State - One Layer

LSTM - STEPS

Step 1 - Decide what info to remove

Step 3 - Update old cell state to new

Step 2 - Decide what info to add

Step 4 - Decide output

BUILDING THE MODEL

- Data preparation & cleaning (SPY)
 - Normalize inputs with MinMaxScaler
- Train LSTM model using years 2007-2017
 - Hyperparameter setting: 50 neurons and 4 hidden layers
- > Test data on years 2018-2021
- ▶ Make Predictions

SPY Actual Price vs Predicted Price 2017-2021

Compare Absolute Error and Tomorrow's Adj. Closing Price

Closing price: 469.55

	Brownian	ARIMA	Linear Regression	LSTM*
Tomorrow's Adj. Closing Price (12/08/21)	\$468.38	\$468.97	\$468.82	\$337.37
Absolute error	\$1.14	\$0.55	\$0.70	\$132.15

^{**}LSTM is not scaled to fit data.

Thank you:)

DISCUSSION

DISCUSSION

- ARIMA works well for one stock market at a time (to apply to different markets, need to retrain the hyperparameters)
- What did you learn? What could you do better? (What would you have done next if you had more time)?.... Why do you think it didn't work if it didn't?
- If everything worked perfectly, what next steps would you suggest for follow-up work.

HELLO

I am Ethan Chuang

I am here because I love to give presentations.

You can find me at @username