Semaine 9a - 2022

Flèches de poutres 2/2

PARTIE 4: (slide 42 - 57) intro guidages flexibles

PARTIE 5: (slide 58 - 74) exemples guidages flexibles

PROGRAMME DU COURS, semaines 7-10

Sem	Date	Matière	Cours	Exos
		Herbert Shea		
7	mardi 01.11	Poutre: forces internes, relation différentielles, forces distribuées	Х	
7	jeudi 03.11	ϵ et σ_n ormale en flexion pure. Moment inertie de poutre	x	Série 7
8	mardi 08.11	charge axiale (et normales). poutre composite		Série 7
	ioudi 10 11	Elèche des resutues et 1		Cári e O
9	mardi 15.11	Flèche des poutres pt 2	Х	Série 8
<u> </u>	jeadi 17.11	Systèmes indéterminés et thermiques	^	Série S
10	mardi 22.11	Energie déformation Flambage	X	Série 9+10
10		fin Flambage	X	Série 10

Semain 9a - Flèche des guidages flexibles Objectifs d'apprentissage de cette partie

- Comprendre les avantages des guidages flexibles
- Exprimer les différentes constantes de ressort d'une lame

Guidages Flexibles

d'importance capitale en Microtechnique!

<u>Référence</u>: S. Henein "<u>Conception des guidages flexibles</u>",
Presses Polytechniques et Universitaires Romandes (PPUR)

- jeu, frottement, usure...
- + longue course, pas de force de rappel

https://www.youtube.com/watch?v=4fFH2RHpcTY

Guidage Flexibles en métal

Pivot mais sans charnière...

- ±10°
- Décalage de l'axe virtuel: max 1 µm
- Lame: 15 mm x 0.35 mm

S. Henein et al., ESA SP-524, Proc 10th European Space Mechanism and Tribology Symposium, 2003

En silicium

Lucent Technologies

Tous les MEMS (systèmes micro usinés) utilisent des guidages flexibles

Due aux forces de surface, il n'est pas réaliste de faire une glissière ou un pivot à l'échelle du µm Impossible de lubrifier efficacement à l'échelle du µm

Guidage flexible (translation) en silicium

https://www.youtube.com/watch?v=YwKM4Pvvidw

Guidage flexible en rotation (silicium)

$$F = -\frac{dE}{dx} = -\frac{d}{dx} \left(\frac{1}{2}CV^2 \right) = \frac{1}{2} \varepsilon \varepsilon_0 V^2 \frac{t}{g}$$

Single-mask stepper micromotor fabricated with SOI technology

Marc Stranczl, Edin Sarajlic, Hiroyuki Fujita, Martin A. M. Gijs, Christophe Yamahata

EPFL, IMT • 10/2011

Stranczl, M.; Sarajlic, E.; Fujita, H.; Gijs, M.A.M.; Yamahata, C.,
"High-Angular-Range Electrostatic Rotary Stepper Micromotors Fabricated With SOI
Technology," JMEMS, vol.21, no.3, pp.605,620, 2012

doi: 10.1109/JMEMS.2012.2189367

En plastique

http://compliantmechanisms.byu.edu/image-gallery/grippers

https://www.compliantmechanisms.byu.edu/about-compliant-mechanisms

guidages flexibles

- Avantages:
 - Absence de frottement (pas de "stick & slip")
 - Absence d'usure
 - Absence de grippage
 - Absence de lubrification
 - Grandes rigidités transverses (donc précision)
 - Absence de jeu
 - Pièces monolithiques (pas d'assemblage)
- Inconvénients:
 - Courses limitées
 - Force de rappel (mais peut être aussi un avantage)
 - Mouvement parasite
 - Modèles géométriques complexes
 - Lourd
 - Fatigue (fiabilité)
 - Usinage peut être difficile

Guidages flexibles élémentaires

- Les cols (ou amincissements locaux)
 - 3 DDL (2 rotations et 1 translation)
 - Paramètres géométriques : b, e, r

- 1 DDL en rotation
- Paramètres géométriques: I, b, h, e

- 3 DDL (2 rotations et 1 translation)
- Paramètres géométriques: I, b, h

Nous n'allons étudier que des lames cette semaine (cols et torsion avec Simon Henein en semaine 11-14 et le semestre prochain)

Quelle est la constante de ressort d'une lame?

Quelles sont les constantes de ressort d'une lame?

on applique une force ou un moment... différentes directions...

La Rigidité d'une lame

Impose une Force

Liaison	Constante d'élasticité
	Rigidité en traction
Ī, X	$k_{traction} = \frac{F}{x}$

$$k_{traction} = E \frac{A}{L}$$

$$\vec{F}$$

Rigidité en cisaillement

$$k_{cis,y} = \frac{F}{y}$$
 $k_{cis,\theta} = \frac{F}{\theta}$

$$k_{cis,y} = \frac{3EI}{L^3}$$

$$k_{cis,\theta} = \frac{2EI}{L^2}$$

$$k_{flex,y} = \frac{2EI}{L^2}$$

Calcul de k_{cis,θ} et k_{cis,y}

Poutre encastrée de longueur L avec **force F** imposée à l'extrémité (on néglige la masse de la poutre):

$$w(x) = \frac{F}{6EI} \left(x^3 - 3Lx^2 \right)$$

$$w'(x) = \frac{F}{EI} \left(\frac{x^2}{2} - Lx \right)$$

$$\theta = w'(x = L)$$

$$\theta = \frac{F}{2EI}L^2$$

$$k_{cis,\theta} = \frac{F}{\theta(x=L)}$$

$$k_{cis,\theta} = \frac{2EI}{L^2}$$

$$k_{cis,y} = \frac{F}{w(x=L)} = \frac{3EI}{L^3}$$

Exemple : guidage flexible Parallélogramme

- Le bloc rigide ne se déplace que le long de l'axe y (petit mouvement parasite en x)
- Il a de nombreuses applications de ce type de guidage en MEMS tels que dans les accéléromètres et les gyroscopes.

Exemple: accéléromètre simplifié

- Cet accéléromètre est composé de deux poutres identiques doublement encastrées et d'un bloc indéformable de masse m.
- Il est soumis à une accélération a.
- Trouver le déplacement d du bloc en fonction de l'accélération a. Ceci permettra de trouver la sensibilité de l'accéléromètre d/a

Il y a plusieurs façons de résoudre ce problème. Une est d'utiliser les formules pour $k_{ressort}$.

Ici je prend d'abord un raccourci, avec les formules du slide 49 de la semaine 8b. Puis slide 24 on verra un méthode plus détaillée

1. Diagramme des Forces du système « lames + masse »

2. on coupe à l'extrémité droite des lames.

$$V = \frac{ma}{2} \widehat{e_y}$$

Moment M_L

nous ne connaissons pas encore $M_{\rm L}$

Solution, utilisant formules flèches de la semaine 8b

1. Exprimer d en fonction de a

$$\begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix} = \begin{bmatrix} 12 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} \widetilde{W_L} \\ \theta_L \end{bmatrix}$$

$$\begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix} = \begin{bmatrix} 12 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} \widetilde{W_L} \\ \theta_L \end{bmatrix} \qquad \widetilde{W_L} = \frac{W_L}{L}, \widetilde{F_L} = \frac{F_L L^2}{EI}, \widetilde{M_L} = \frac{M_L L}{EI}$$

$$F_L = \frac{12EI}{L^3} w_L - \frac{6EI}{L^2} \theta_L$$

 $F_L = \frac{ma}{2} = \frac{12EI}{L^3}d - \frac{6EI}{L^2}.0$

(nous avions résolu le cas général)

Pour notre cas

$$\theta_L = 0$$
 $F_L = \frac{ma}{2}$

$$=\frac{ma}{2}$$
 $M_L = \text{inconnu}$

$$w_L =$$
inconnu $w_L = d$

$$\rightarrow d = \frac{L^3 m}{24EI} a$$

Et trouver k (de la lame et du système)

2. Exprimer k en fonction de la géometrie

$$d = \frac{L^3 m}{24EI} a \qquad F_L = \frac{ma}{2}$$

$$F_L = \frac{ma}{2}$$

$$\frac{d}{a} = \frac{L^3 m}{24EI}$$

$$k_{lame} = \frac{F}{d} = 12 \frac{EI}{L^3}$$

k d'une lame ou des deux lames?

Exemple numérique:

 $L=200 \mu m$, $m=10\mu q$, E=160 GPa, $a=1 ms^{-2}$, section des lames 2µm x 10µm.

$$d = 3 \text{ nm}$$

 $d/a = 3 \cdot 10^{-9} \text{ s}^2$
 $k = 20 \text{ N/m}$

$$k_{syt\`eme} = 2 k_{lame} = 24 \frac{EI}{L^3}$$

Comparer à slides 33+34

https://www.youtube.com/watch?v=IUe3mGkngs4

Semaine 9a – constante de ressort de guidage flexibles

Objectifs d'apprentissage

• Calculer constante de ressort d'une système avec des guidages flexibles à lames

Table à deux lames (guidage en translation)

Parallel spring stage

Table à deux lames

Calculer la rigidité K pour déplacement en X F = K X

- Lames **encastrées** dans le support et dans la base mobile.
- Nous allons négliger la masse de la table, et le déplacement parasite λ . Mais dans qqs semaines, vous en tiendrez compte pour dimensionner vos guidages flexibles

Méthode pour trouver rigidité K de la table

- 1. Définir la force d'entrée F et le déplacement de sortie X
- 2. Diagramme des forces
- 3. Isoler les éléments flexibles et identifier les déformations x_i des éléments flexibles
- 4. calculer $X = X(x_i)$
- 5. Identifier toutes les forces et moments externes agissant sur les éléments flexibles
- 6. Déterminer ces forces et moments externes en fonction de F (attention, il faudra souvent des hypothèses supplémentaires)
- 7. Calculer les déformations x_i des divers éléments flexibles
- 8. Déterminer X
- 9. Calculer K = F/X

diagramme des forces de table à deux lames

7 inconnus, mais seulement 3 eqs

7 inconnus: X, 4 forces, 2 moments

Attention au système de coordonnées: poutres "verticales", y positif vers la droite.

diviser en 3 sous-systèmes

13 inconnus...

Utiliser les équations de la statique sur la base mobile

 $\Sigma F_x = 0 \rightarrow T_1 = -T_2$

donc une lame est en traction, une lame est en compression!

$$\Sigma F_y = 0 \to F = F_1 + F_2$$

Au point P₁:
$$\Sigma M_{\grave{a}Point1} = 0$$
. \rightarrow $0 = -M_{1a} - M_{2a} - T_{2}e + aF$

<u>Trop d'inconnus!</u> Nous allons ajouter deux hypothèses:

- Chaque lames se déforme de manière identique à ses deux extrémités.
- 2. Les deux lames se déforment de façon identique.

$$M_{1a} \ _{=} \ M_{1b} = \ M_1$$

$$F_1 = F_2$$

$$M_1 = M_2$$

$$F_1 = F_2 = F/2$$

Sur lame 1, $\sum M = 0$ à une extrémité

$$M_1 + M_1 - F_1 L = 0$$

$$M_1 - \frac{LF}{M}$$

Sur base mobile, $\sum M = 0$ au point P_1

$$-M_1 - M_2 + aF - eT_2 = 0$$

 $2M = aF - eT_2$

$$T_1 = -T_2 = \frac{F}{e} \left(\frac{L}{2} - a \right)$$

Pour simplifier encore plus, nous allons nous limiter au cas sans forces de traction et nous imposons $a=\frac{L}{2}$ afin que $T_1=T_2=0$

Nous pouvons enfin calculer x_i , donc X, pour trouver K = F/X

Option 1. suivre slide 49, s8b (on cherche X, puis K)

$$F_1 = \frac{F}{2}$$

$$M_1 = \frac{LF}{4}$$

Lame1

Attention, pas même système de coordonnées...

$$w_{L} = \frac{1}{3} \frac{F_{1}L^{3}}{EI} - \frac{1}{2} \frac{M_{1}L^{2}}{EI}$$

$$= \frac{FL^{3}}{EI} \left(\frac{1}{6} - \frac{1}{8}\right)$$

$$= \frac{FL^{3}}{24 EI}$$

$$\begin{bmatrix} \widetilde{w_L} \\ \theta_L \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix}$$

$$\widetilde{w_L} = \frac{w_L}{L}, \widetilde{F_L} = \frac{F_L L^2}{EI}, \widetilde{M_L} = \frac{M_L L}{EI}$$

$$\widetilde{w_L} = -\left(-\frac{\widetilde{F_L}}{3} + \frac{\widetilde{M_L}}{2}\right)$$

$$K = \frac{F}{X} = \frac{F}{w_L}$$

$$K = \frac{24 EI}{L^3}$$

Rappel, valable que pour a = L/2

K = 8x rigidité simple poutre encastrée

$$k_{cis,y} = \frac{F}{w(x=L)} = \frac{3EI}{L^3}$$

Option 2. utiliser les k_{lame} de slide 15 (on cherche X, puis K)

$$F_{1} = \frac{F}{2}$$

$$M_{1} = \frac{LF}{4}$$

$$M_{1} = \frac{V}{4}$$

$$M_{2} = \frac{V}{4}$$

$$X = y_1(L) = y_2(L)$$

$$k_{flexion,y} = \frac{M}{w(x = L)} = \frac{2EI}{L^2}$$
$$k_{cis,y} = \frac{F}{w(x = L)} = \frac{3EI}{L^3}$$

$$y_1(L) = \frac{F_1}{k_{cis,y}} \underbrace{-\frac{M_1}{k_{flexion,y}}}$$

Attention aux directions des forces et moments...

$$K = \frac{F}{X} = \left[\frac{1}{2k_{cis,y}} - \frac{L}{4k_{flexion,y}} \right]^{-1}$$
$$= \left[\frac{L^3}{2.3 EI} - \frac{L L^2}{4 2EI} \right]^{-1}$$

$$K = \frac{24EI}{L^3} \quad \text{Pour } a = \frac{L}{2}$$

= 8x rigidité simple poutre encastrée

Exemple, un pivot

https://www.youtube.com/watch?v=jEGKO9e7fbQ

Exemple: Pivot flexible

- Le bloc rigide ne pivote qu'autour du point O (l'intersection des axes neutres).
- hypothèse; aucun déplacement de O sur les axes x et y.
- Ce pivot a de nombreuses applications en microtechnique-ingénierie telles que rotation en MEMS (gyro) ou oscillateur de montre.
- Quelle conception pour minimiser la rigidité?

Videos

https://www.youtube.com/watch?v=YwKM4Pvvidw

Watch oscillator

Zenith watch oscillator:

https://www.youtube.com/watch?v=KCTfx9IUnjc

Pivot en lames flexible

on impose M_0 (moment externe) pour obtenir une rotation θ

- 1. Trouver M_0 en fonction de θ en supposant un petit angle de rotation.
- 2. On souhaite un pivot sans force de rappel: minimiser M₀

Pivot en lames flexible

on impose M_0 (moment externe) pour obtenir rotation θ

Trouver M_0 en fonction de θ en supposant un petit angle de rotation.

On souhaite un pivot sans force de rappel: minimiser M₀

Solution (nous utilisons à nouveau notre solution de p.49 sem. 8b)

étape 1: Analyse des poutres, lien entre F_L , M_L , et w_L et θ_L

$$\widetilde{R}_{HL} \qquad \left[\begin{array}{c} \widetilde{F_L} \\ \widetilde{M_L} \end{array} \right] = \left[\begin{array}{cc} 12 & -6 \\ -6 & 4 \end{array} \right] \left[\begin{array}{c} \widetilde{W_L} \\ \theta_L \end{array} \right]$$

$$\widetilde{w_L} = \frac{w_L}{L}, \widetilde{F_L} = \frac{F_L L^2}{EI}, \widetilde{M_L} = \frac{M_L L}{EI}$$

$$w_L = -r\sin\theta \approx -r\theta$$

$$\theta_L = \theta$$

$$F_L = -\frac{12EI}{L^3}r\theta - \frac{6EI}{L^2}\theta = -\frac{6EI}{L^2}(1+2\frac{r}{L})\theta$$

$$M_L = \frac{6EI}{L^2}r\theta + \frac{4EI}{L}\theta = \frac{2EI}{L}\left(3\frac{r}{L} + 2\right)\theta$$

Solution

étape 2. diagramme des forces du bloc pour lien entre M_0 , $M_{\rm L}$ et $F_{\rm L}$

$$\sum_{L} M_{Z,O} = 0 \rightarrow M_0 = -2F_L r + 2M_L$$

$$M_0 = \frac{12EI}{L^2}r\left(1+2\frac{r}{L}\right)\theta + \frac{4EI}{L}\left(3\frac{r}{L}+2\right)\theta$$

$$M_0 = \frac{8EI}{L} \left[3 \left(\frac{r}{L} \right)^2 + 3 \frac{r}{L} + 1 \right] \theta$$

pivot à lames croisées

Rigidité en torsion

$$K = \frac{M_0}{\theta} = \frac{8EI}{L} \left[3\left(\frac{r}{L}\right)^2 + 3\frac{r}{L} + 1 \right]$$

K minimum pour $\frac{r}{L} = -\frac{1}{2}$.

On ajoute un poids P sur la table

→Flambage et rigidité variable

Que vaut K si on ajoute force P?

Que pour a = L/2

- Dans l'exemple précédent, nous n'avions aucune force de traction dans les lames, car nous avions choisi a=L/2
- $K_{P=0} = \frac{24 EI}{L^3}$

- Ici, nous verrons que K dépend de P!
- Nous maintenons l'Hypothèse de symétrie: même déformation dans les 2 lames

Commence par lame encastrée en O, avec forces et moment à l'extrémité

Sans P

Avec P Force axiale N

Je coupe la lame à une distance x du support

$$M_1(x) = M - N[X - y(x)] - F_1(L - x)$$

$$y''(x) = \frac{M_1(x)}{EI}$$

$$y''(x) + \frac{N}{EI}y(x) = -\frac{F_1x}{EI} + \frac{F_1L + NX - M}{EI}$$

Équation différentielle $2^{i\hat{e}me}$ ordre pour y(x)

On résout l'équation différentielle,

on trouve y(L) et donc X, et finalement K

$$K = \frac{F}{X} = \frac{F}{y(x = L)}$$

$$K = \frac{P/2}{\frac{2}{k} \tan\left(\frac{kL}{2}\right) - L}$$
$$k = \sqrt{\frac{P}{2EI}}$$

La constante de ressort K dépend de force verticale sur lame)!!

il existe une charge P_{critique} pour laquelle K=0

Quand K=0, Flambage!

On peut ainsi avoir une très faible force de rappel, mais on travaille proche du flambage...

Vous verrez la suite des guidages flexibles en détail avec le Professeur Simon Henein!