

Team Contest Reference Team: Romath

Roland Haase Thore Tiemann Marcel Wienöbst

Contents

1	DP		2
-	1.1	LongestIncreasingSubsequence	2
	1.2	LongestIncreasingSubsequence	3
	1.2	Longestinereasingouosequence	9
2	Data	Structures	3
	2.1	Fenwick-Tree	3
	2.2	Range Maximum Query	3
	2.3	Union-Find	4
	2.4	Suffix array	4
3	Gra		5
	3.1	2SAT	
	3.2	Breadth First Search	5
	3.3	BellmanFord	
	3.4	Bipartite Graph Check	5
	3.5	Maximum Bipartite Matching	6
	3.6	Bitonic TSP	6
	3.7	Single-source shortest paths in dag	6
	3.8	Dijkstra	7
	3.9	EdmondsKarp	7
	3.10	Reference for Edge classes	7
	3.11	FloydWarshall	8
	3.12	Held Karp	8
	3.13	Iterative DFS	8
	3.14	Johnsons Algorithm	8
	3.15	Kruskal	9
	3.16	Min Cut	9
	3.17	Prim	9
	3.18	Recursive Depth First Search	9
	3.19	Strongly Connected Components	10
	3.20	Suurballe	10
	3.21	Kahns Algorithm for TS	11
	3.22	Topological Sort	11
	3.23	Tuple	11
	3.24	Reference for Vertex classes	11
4	N / T = 41	L	12
4	Mat l	Binomial Coefficient	12
	4.2	Binomial Matrix	
	4.3	•	
	4.4	Graham Scan	
	4.5	Iterative EEA	
	4.6	Polynomial Interpolation	
	4.7	Root of permutation	
	4.8	Sieve of Eratosthenes	
	4.9	Greatest Common Devisor	15

	4.10	Least Common Multiple	15			
	4.11	Fourier transform	15			
	4.12	Matrix exponentiation	16			
	4.13	phi function calculator	16			
	4.14	prints farey seq	16			
5	Misc	.	17			
J	5.1	Binary Search				
	5.2	Next number with n bits set				
	5.3	Next Permutation				
	5.4	Mo's algorithm				
	Э. т	110 3 digoritalii	1 /			
6	Strin		18			
	6.1	Knuth-Morris-Pratt				
	6.2	Levenshtein Distance	18			
	6.3	Longest Common Subsequence				
	6.4	Longest common substring	19			
7	Matl	Math Roland				
	7.1	Divisability Explanation	19			
	7.2	Combinatorics	19			
	7.3	Polynomial Interpolation	20			
		7.3.1 Theory	20			
	7.4	Fibonacci Sequence	20			
		7.4.1 Binet's formula	20			
		7.4.2 Generalization	20			
		7.4.3 Pisano Period	20			
	7.5	Reihen	20			
	7.6	Binomialkoeffizienten	20			
	7.7	Catalanzahlen	20			
	7.8	Geometrie	20			
	7.9	Zahlentheorie	20			
	7.10	Faltung	20			
8	Java	Knowhow	20			
	8.1	System.out.printf() und String.format()	20			
	8.2	•	20			
	8.3	Speed up IO	20			

\overline{n}	Runtime $100 \cdot 10^6$ in 3s
[10, 11]	$\mathcal{O}(n!)$
< 22	$\mathcal{O}(n2^n)$
≤ 100	$\mathcal{O}(n^4)$
≤ 400	$\mathcal{O}(n^3)$
≤ 2.000	$\mathcal{O}(n^2 \log n)$
≤ 10.000	$\mathcal{O}(n^2)$
$\leq 1.000.000$	$\mathcal{O}(n \log n)$
$\leq 100.000.000$	$\mathcal{O}(n)$

byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767 integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647 long (64 Bit, signed): -2^{63} ... 2^{63} - 1

MD5: cat <string>| tr -d [:space:] | md5sum

1 DP

1.1 LongestIncreasingSubsequence

Computes the length of the longest increasing subsequence and is easy to be adapted.

Input: array arr containig a sequence of length N

Output: lenght of the longest increasing subsequence in arr

```
// This has not been tested yet
// (adapted from tested C++ Murcia Code)
public static int LISeasy(int[] arr, int N) {
   int[] m = new int[N];
   for (int i = N - 1; i >= 0; i--) {
        m[i] = 1; //init table
   for (int j = i + 1; j < N; j++) {</pre>
```

```
// if arr[i] increases the length
         // of subsequence from array[j]
         if (arr[j] > arr[i])
           if (m[i] < m[j] + 1)
             // store lenght of new subseq
12
             m[i] = m[j] + 1;
13
14
    }
15
    // find max in array
    int longest = 0;
17
    for (int i = 0; i < N; i++) {</pre>
      if (m[i] > longest)
         longest = m[i];
20
21
    return longest;
22
23 }
```

MD5: 7561f576d50b1dc6262568c0fc6c42dd | $\mathcal{O}(n^2)$

1.2 LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search. Input: array arr containing a sequence and empty array p of length arr.length for storing indices of the LIS (might be usefull to have)

Output: array p containing the longest increasing subsequence

```
public static int[] LISfast(int[] arr, int[] p) {
    // p[k] stores index of the predecessor of arr[k]
    // in the LIS ending at arr[k]
    // m[j] stores index k of smallest value arr[k]
     // so there is a LIS of length j ending at arr[k]
    int[] m = new int[arr.length+1];
     int l = 0;
     for(int i = 0; i < arr.length; i++) {</pre>
       // bin search for the largest positive j <= l</pre>
       // with arr[m[j]] < arr[i]</pre>
11
       int lo = 1;
12
       int hi = l;
       while(lo <= hi) {</pre>
13
        int mid = (int) (((lo + hi) / 2.0) + 0.6);
14
         if(arr[m[mid]] <= arr[i])</pre>
15
           lo = mid+1;
16
         else
17
           hi = mid-1;
18
       }
19
       // lo is 1 greater than length of the
20
       // longest prefix of arr[i]
21
       int newL = lo;
22
       p[i] = m[newL-1];
23
       m[newL] = i;
24
       // if LIS found is longer than the ones
25
       // found before, then update l
26
       if(newL > l)
27
         l = newL;
28
29
     // reconstruct the LIS
30
     int[] s = new int[l];
31
     int k = m[l];
32
     for(int i= l-1; i>= 0; i--) {
33
      s[i] = arr[k];
34
       k = p[k];
35
    }
36
    return s;
37
38 }
```

MD5: $1d75905f78041d832632cb76af985b8e \mid \mathcal{O}(n \log n)$

2 DataStructures

2.1 Fenwick-Tree

Can be used for computing prefix sums.

```
//note that 0 can not be used
  int[] fwktree = new int[m + n + 1];
  public static int read(int index, int[] fenwickTree) {
     int sum = 0;
     while (index > 0) {
        sum += fenwickTree[index];
        index -= (index & -index);
     }
     return sum;
  }
  public static int[] update(int index, int addValue,
11
      int[] fenwickTree) {
     while (index <= fenwickTree.length - 1) {</pre>
        fenwickTree[index] += addValue;
13
        index += (index & -index);
     }
     return fenwickTree;
```

MD5: 410185d657a3a5140bde465090ff6fb5 | $\mathcal{O}(\log n)$

2.2 Range Maximum Query

process processes an array A of length N in $O(N \log N)$ such that query can compute the maximum value of A in interval [i,j]. Therefore M[a,b] stores the maximum value of interval $[a,a+2^b-1]$.

Input: dynamic table M, array to search A, length N of A, start index i and end index j

 $\ensuremath{\textit{Output:}}$ filled dynamic table M or the maximum value of A in interval [i,j]

```
public static void process(int[][] M, int[] A, int N)
    for(int i = 0; i < N; i++)</pre>
      M[i][0] = i;
     // filling table M
     // M[i][j] = max(M[i][j-1], M[i+(1<<(j-1))][j-1]),
     // cause interval of length 2^j can be partitioned
     // into two intervals of length 2^(j-1)
    for(int j = 1; 1 << j <= N; j++) {</pre>
      for(int i = 0; i + (1 << j) - 1 < N; i++) {
         if(A[M[i][j-1]] >= A[M[i+(1 << (j-1))][j-1]])</pre>
           M[i][j] = M[i][j-1];
11
         else
12
           M[i][j] = M[i + (1 << (j-1))][j-1];
13
14
    }
15
  }
16
17
  public static int query(int[][] M, int[] A, int N,
                                         int i, int j) {
     // k = | log_2(j-i+1) |
    int k = (int) (Math.log(j - i + 1) / Math.log(2));
21
    if(A[M[i][k]] >= A[M[j-(1 << k) + 1][k]])
22
      return M[i][k];
23
    else
      return M[j - (1 << k) + 1][k];
25
26 }
```

MD5: db0999fa40037985ff27dd1a43c53b80 $\mid \mathcal{O}(N \log N, 1)$

2.3 Union-Find 2.4 Su

Union-Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets. UnionFind creates n disjoint sets each containing one element. union joins the sets x and y are contained in. find returns the representative of the set x is contained in.

Input: number of elements n, element x, element y

 $\it Output:$ the representative of element $\it x$ or a boolean indicating whether sets got merged.

```
1 class UnionFind {
    private int[] p = null;
                                                                12
    private int[] r = null;
                                                                13
    private int count = 0;
                                                                14
                                                                15
    public int count() {
                                                                16
       return count;
                                                                17
    } // number of sets
                                                                18
                                                                19
    public UnionFind(int n) {
                                                                20
10
11
       count = n; // every node is its own set
                                                                21
       r = new int[n]; // every node is its own tree with 22
12
             height 0
       p = new int[n];
                                                                24
13
       for (int i = 0; i < n; i++)</pre>
                                                                25
14
         p[i] = -1; // no parent = -1
                                                                26
15
                                                                27
16
    public int find(int x) {
19
       int root = x;
       while (p[root] >= 0) { // find root
21
         root = p[root];
22
       while (p[x] \ge 0) \{ // \text{ path compression } 
23
         int tmp = p[x];
25
         p[x] = root;
26
         x = tmp;
                                                                37
27
                                                                38
28
       return root;
29
30
    // return true, if sets merged and false, if already 42
31
          from same set
    public boolean union(int x, int y) {
32
                                                                44
       int px = find(x);
33
       int py = find(y);
34
                                                                45
       if (px == py)
35
                                                                46
         return false; // same set -> reject edge
36
       if (r[px] < r[py]) { // swap so that always h[px</pre>
37
                                                                48
           ]>=h[py]
                                                                49
         int tmp = px;
38
         px = py;
39
                                                                51
         py = tmp;
40
                                                                52
41
                                                                53
       p[py] = px; // hang flatter tree as child of
42
                                                                54
           higher tree
       r[px] = Math.max(r[px], r[py] + 1); // update (
43
           worst-case) height
                                                                57
       count--;
       return true;
45
46
```

```
MD5: 5c507168e1ffd9ead25babf7b3769cfd \mid \mathcal{O}(\alpha(n)) \mid
```

2.4 Suffix array

```
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
vector<int> sa, pos, tmp, lcp;
string s;
int N, gap;
bool sufCmp(int i, int j) {
  if(pos[i] != pos[i])
    return pos[i] < pos[j];</pre>
  i += gap;
  j += gap;
  return (i < N && j < N) ? pos[i] < pos[j] : i > j;
void buildSA()
  N = s.size();
  for(int i = 0; i < N; ++i) {</pre>
    sa.push_back(i);
    pos.push_back(s[i]);
  tmp.resize(N);
  for(gap = 1;;gap *= 2) {
    sort(sa.begin(), sa.end(), sufCmp);
    for(int i = 0; i < N - 1; ++i) {</pre>
      tmp[i+1] = tmp[i] + sufCmp(sa[i], sa[i+1]);
    for(int i = 0; i < N; ++i) {</pre>
      pos[sa[i]] = tmp[i];
    if(tmp[N-1] == N-1) break;
}
void buildLCP()
  lcp.resize(N);
  for(int i = 0, k = 0; i < N; ++i) {</pre>
    if(pos[i] != N - 1) {
      for(int j = sa[pos[i] + 1]; s[i + k] == s[j + k
           ];) {
         ++k;
      }
      lcp[pos[i]] = k;
      if (k) --k;
  }
}
int main()
  string r, t;
  cin >> r >> t;
  s = r + "§" + t;
  buildSA();
  buildLCP();
  for(int i = 0; i < N; ++i) {</pre>
```

```
cout << sa[i] << "" << lcp[i] << endl;
62
    }
     int mx = 0, mxi = -1;
63
     for(int i = 0; i+1 < s.size(); ++i) {</pre>
64
       bool a_in_s = sa[i] < r.size(), b_in_s = sa[i+1] < 17
65
             r.size();
       if(a_in_s != b_in_s) {
                                                                19
         int l = lcp[i];
         if(l > mx) {
           mx = l;
                                                                22
           mxi = sa[i];
      }
72
    }
73
     cout << mx << endl;</pre>
74
     cout << s.substr(mxi, mx) << endl;</pre>
75
```

MD5: 96e0269748dc2834567a075768eb871a | $\mathcal{O}(?)$

3 Graph

3.1 2SAT

```
1 //We assume that ind(not a) = ind(a) + N, with N being
        the number of variables
2 //could however be changed easily
g public static boolean 2SAT(Vertex[] G) {
    //call SCC
    double DFS(G);
    //check for contradiction
    boolean poss = true;
    for(int i = 0; i < S+A; i++) {</pre>
      if(G[i].comp == G[i + (S+A)].comp) {
        poss = false;
10
                                                             15
      }
11
                                                             16
    }
12
    return poss;
                                                             17
13
14
  }
```

MD5: 6c06a2b59fd3a7df3c31b06c58fdaaf5 | $\mathcal{O}(V+E)$

3.2 Breadth First Search

Iterative BFS. Uses ref Vertex class, no Edge class needed. In this²⁵ version we look for a shortest path from s to t though we could also²⁶ find the BFS-tree by leaving out t. *Input*: IDs of start and goal vertex and graph as AdjList *Output*: true if there is a connection between s and g, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
    //make sure that Vertices vis values are false etc
    Queue<Vertex> q = new LinkedList<Vertex>();
    G[s].vis = true;
    G[s].dist = 0;
    G[s].pre = -1;
    q.add(G[s]);
    //expand frontier between undiscovered and
        discovered vertices
    while(!q.isEmpty()) {
      Vertex u = q.poll();
10
      //when reaching the goal, return true
11
      //if we want to construct a BFS-tree delete this
12
          line
```

```
if(u.id = t) return true;
//else add adj vertices if not visited
for(Vertex v : u.adj) {
    if(!v.vis) {
       v.vis = true;
       v.dist = u.dist + 1;
       v.pre = u.id;
       q.add(v);
    }
    }
}
//did not find target
return false;
}
```

MD5: 71f3fa48b4f1b2abdff3557a27a9a136 $|\mathcal{O}(|V| + |E|)$

3.3 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
  //source is 0
  G[0].dist = 0;
  //calc distances
  //the path has max length |V|-1
  for(int i = 0; i < G.length-1; i++) {</pre>
    //each iteration relax all edges
    for(int j = 0; j < G.length; j++) {</pre>
      for(Edge e : G[j].adj) {
        if(G[j].dist != Integer.MAX_VALUE
        && e.t.dist > G[j].dist + e.w) {
          e.t.dist = G[j].dist + e.w;
      }
    }
  //check for negative-length cycle
  for(int i = 0; i < G.length; i++) {</pre>
    for(Edge e : G[i].adj) {
      if(G[i].dist != Integer.MAX_VALUE
          && e.t.dist > G[i].dist + e.w) {
        return true;
    }
  }
  return false;
```

MD5: d101e6b6915f012b3f0c02dc79e1fc6f | $\mathcal{O}(|V| \cdot |E|)$

3.4 Bipartite Graph Check

Checks a graph represented as adjList for being bipartite. Needs a little adaption, if the graph is not connected.

Input: graph as adjList, amount of nodes N as int Output: true if graph is bipartite, false otherwise

```
public static boolean bipartiteGraphCheck(Vertex[] G){
   // use bfs for coloring each node
   G[0].color = 1;
   Queue<Vertex> q = new LinkedList<Vertex>();
   q.add(G[0]);
   while(!q.isEmpty()) {
```

```
Vertex u = q.poll();
       for(Vertex v : u.adj) {
        // if node i not yet visited,
        // give opposite color of parent node u
        if(v.color == -1) {
11
          v.color = 1-u.color;
12
          q.add(v);
13
        // if node i has same color as parent node u
        // the graph is not bipartite
15
        } else if(u.color == v.color)
           return false;
17
         // if node i has different color
         // than parent node u keep going
19
20
    }
21
    return true;
22
```

MD5: e93d242522e5b4085494c86f0d218dd4 $|\mathcal{O}(|V| + |E|)$

3.5 Maximum Bipartite Matching

Finds the maximum bipartite matching in an unweighted graph using DFS.

Input: An unweighted adjacency matrix boolean[M][N] with M anodes being matched to N nodes.

Output: The maximum matching. (For getting the actual matching, little changes have to be made.)

```
// A DFS based recursive function that returns true
2 // if a matching for vertex u is possible
  boolean bpm(boolean bpGraph[][], int u,
               boolean seen[], int matchR[]) {
    // Try every job one by one
    for (int v = 0; v < N; v++) {
      // If applicant u is interested in job v and v
       // is not visited
                                                           17
      if (bpGraph[u][v] && !seen[v]) {
                                                           18
        seen[v] = true; // Mark v as visited
10
                                                           19
11
         // If job v is not assigned to an applicant OR
12
         // previously assigned applicant for job v
13
        // (which is matchR[v]) has an alternate job
14
         // available. Since v is marked as visited in
15
        // the above line, matchR[v] in the following
16
         // recursive call will not get job v again
17
        if (matchR[v] < 0 ||
18
        bpm(bpGraph, matchR[v], seen, matchR)) {
19
          matchR[v] = u;
20
           return true;
21
22
        }
      }
23
    }
24
    return false;
25
  }
26
27
28 // Returns maximum number of matching from M to N
int maxBPM(boolean bpGraph[][]) {
    // An array to keep track of the applicants assigned
    // to jobs. The value of matchR[i] is the applicant
31
    // number assigned to job i, the value -1 indicates 10
32
    // nobody is assigned.
33
                                                           11
    int matchR[] = new int[N];
                                                           12
34
    // Initially all jobs are available
                                                           13
35
    for(int i = 0; i < N; ++i)</pre>
36
                                                           14
  matchR[i] = -1;
37
```

```
// Count of jobs assigned to applicants
int result = 0;
for (int u = 0; u < M; u++) {
    // Mark all jobs as not seen for next applicant.
    boolean seen[] = new boolean[N];
    for(int i = 0; i < N; ++i)
        seen[i] = false;
    // Find if the applicant u can get a job
    if (bpm(bpGraph, u, seen, matchR))
        result++;
}
return result;
}</pre>
```

MD5: a4cc90bf91c41309ad7aaa0c2514ff06 | $\mathcal{O}(M \cdot N)$

3.6 Bitonic TSP

Input: Distance matrix d with vertices sorted in x-axis direction. Output: Shortest bitonic tour length

```
public static double bitonic(double[][] d) {
 int N = d.length;
  double[][] B = new double[N][N];
  for (int j = 0; j < N; j++) {
    for (int i = 0; i <= j; i++) {</pre>
      if (i < j - 1)
        B[i][j] = B[i][j - 1] + d[j - 1][j];
      else {
        double min = 0;
        for (int k = 0; k < j; k++) {
          double r = B[k][i] + d[k][j];
          if (min > r || k == 0)
            min = r;
        }
        B[i][j] = min;
      }
   }
 }
 return B[N-1][N-1];
```

MD5: 49fca508fb184da171e4c8e18b6ca4c7 $\mid \mathcal{O}(?)$

3.7 Single-source shortest paths in dag

Not tested but should be working fine Similar approach can be used for longest paths. Simply go through ts and add 1 to the largest longest path value of the incoming neighbors

```
public static void dagSSP(Vertex[] G, int s) {
    //calls topological sort method
    LinkedList<Integer> sorting = TS(G);
    G[s].dist = 0;
    //go through vertices in ts order
    for(int u : sorting) {
        for(Edge e : G[u].adj) {
            Vertex v = e.t;
            if(v.dist > u.dist + e.w) {
                 v.dist = u.dist + e.w;
                 v.pre = u.id;
            }
        }
    }
}
```

MD5: 552172db2968f746c4ac0bd322c665f9 | $\mathcal{O}(|V| + |E|)$

3.8 Dijkstra

Finds the shortest paths from one vertex to every other vertex in_{26} the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from²⁸ result.

To get a different shortest path when edges are ints, add an $\varepsilon = \frac{1}{k+1}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessor, vertices set.

```
public static void dijkstra(Vertex[] G, int s) {
    G[s].dist = 0:
    Tuple st = new Tuple(s, 0);
    PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
    q.add(st);
                                                            43
    while(!q.isEmpty()) {
      Tuple sm = q.poll();
      Vertex u = G[sm.id];
      //this checks if the Tuple is still useful, both
          checks should be equivalent
      if(u.vis || sm.dist > u.dist) continue;
      u.vis = true;
12
      for(Edge e : u.adj) {
13
        Vertex v = e.t;
14
        if(!v.vis && v.dist > u.dist + e.w) {
15
          v.pre = u.id;
          v.dist = u.dist + e.w;
17
          Tuple nt = new Tuple(v.id, v.dist);
18
          q.add(nt);
19
20
21
      }
    }
22
23 }
```

MD5: e46eb1b919179dab6a42800376f04d7a $|\mathcal{O}(|E|\log|V|)$

3.9 EdmondsKarp

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
    int N = G.length;
                                                              15
    for(int i = 0; i < N; i++) {</pre>
                                                              16
      G[i].vis = false;
                                                              17
    }
                                                              18
                                                              19
    Queue<Vertex> q = new LinkedList<Vertex>();
                                                              20
    G[s].vis = true;
                                                              21
    G[s].pre = -1;
                                                              22
    q.add(G[s]);
10
11
    while(!q.isEmpty()) {
12
      Vertex u = q.poll();
13
       if(u.id == t) return true;
14
       for(int i : u.adj.keySet()) {
15
         Edge e = u.adj.get(i);
16
         Vertex v = e.t;
17
        if(!v.vis && e.rw > 0) {
18
```

```
v.vis = true;
        v.pre = u.id;
        q.add(v);
    }
  }
  return (G[t].vis);
//We store the edges in the graph in a hashmap
public static int edKarp(Vertex[] G, int s, int t) {
  int maxflow = 0;
  while(BFS(G, s, t)) {
    int pflow = Integer.MAX_VALUE;
    for(int v = t; v!= s; v = G[v].pre) {
      int u = G[v].pre;
      pflow = Math.min(pflow, G[u].adj.get(v).rw);
    for(int v = t; v != s; v = G[v].pre) {
      int u = G[v].pre;
      G[u].adj.get(v).rw -= pflow;
      G[v].adj.get(u).rw += pflow;
    }
    maxflow += pflow;
  }
  return maxflow;
}
```

MD5: 6067fa877ff237d82294e7511c79d4bc | $\mathcal{O}(|V|^2 \cdot |E|)$

3.10 Reference for Edge classes

Used for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
//for Kruskal we need to sort edges, use: java.lang.
    Comparable
class Edge implements Comparable<Edge> {}
class Edge {
  //for Kruskal it is helpful to store the start as
  //well, moreover we might not need the vertex class
  int s;
 int t;
  //for EdKarp we also want to store residual weights
  int rw;
  Vertex t;
  int w:
  public Edge(Vertex t, int w) {
    this.t = t;
    this.w = w;
    this.rw = w;
 public Edge(int s, int t, int w) {...}
 public int compareTo(Edge other) {
    return Integer.compare(this.w, other.w);
```

MD5: aae80ac4bfbfcc0b9ac4c65085f6f123 | $\mathcal{O}(1)$

3.11 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

```
public static void floydWarshall(int[][] graph,
                         int[][] next, int[][] ans) {
    for(int i = 0; i < ans.length; i++)</pre>
       for(int j = 0; j < ans.length; j++)</pre>
         ans[i][j] = graph[i][j];
    for (int k = 0; k < ans.length; k++)</pre>
       for (int i = 0; i < ans.length; i++)</pre>
         for (int j = 0; j < ans.length; j++)</pre>
           if (ans[i][k] + ans[k][j] < ans[i][j]</pre>
                     && ans[i][k] < Integer.MAX_VALUE
                     && ans[k][j] < Integer.MAX_VALUE) {
12
             ans[i][j] = ans[i][k] + ans[k][j];
13
             next[i][j] = next[i][k];
14
           }
15
16
```

MD5: a98bbda7e53be8ee0df72dbd8721b306 | $\mathcal{O}(|V|^3)$

3.12 Held Karp

Algorithm for TSP

```
public static int[] tsp(int[][] graph) {
     int n = graph.length;
     if(n == 1) return new int[]{0};
     //C stores the shortest distance to node of the
         second dimension, first dimension is the
         bitstring of included nodes on the way
     int[][] C = new int[1<<n][n];</pre>
     int[][] p = new int[1<<n][n];</pre>
     //initialize
     for(int k = 1; k < n; k++) {
       C[1<< k][k] = graph[0][k];
10
11
     for(int s = 2; s < n; s++) {
       for(int S = 1; S < (1<<n); S++) {</pre>
12
13
         if(Integer.bitCount(S)!=s || (S&1) == 1)
              continue;
         for(int k = 1; k < n; k++) {</pre>
14
           if((S & (1 << k)) == 0) continue;
15
           //Smk is the set of nodes without k
17
           int Smk = S ^ (1 << k);
19
           int min = Integer.MAX_VALUE;
20
           int minprev = 0;
21
           for(int m=1; m<n; m++) {</pre>
22
             if((Smk & (1<<m)) == 0) continue;</pre>
23
             //distance to m with the nodes in Smk +
24
                  connection from m to k
             int tmp = C[Smk][m] +graph[m][k];
25
             if(tmp < min) {</pre>
26
               min = tmp;
27
               minprev = m;
28
             }
29
           }
30
           C[S][k] = min;
31
           p[S][k] = minprev;
32
33
       }
34
    }
35
   //find shortest tour length
```

```
int min = Integer.MAX_VALUE;
  int minprev = -1;
  for(int k = 1; k < n; k++) {</pre>
    //Set of all nodes except for the first + cost
        from 0 to k
    int tmp = C[(1 << n) - 2][k] + graph[0][k];
    if(tmp < min) {</pre>
      min = tmp;
      minprev = k;
 }
  //Note that the tour has not been tested yet, only
      the correctness of the min-tour-value backtrack
      tour
 int[] tour = new int[n+1];
  tour[n] = 0;
  tour[n-1] = minprev;
 int bits = (1<<n)-2;
  for(int k = n-2; k>0; k--) {
    tour[k] = p[bits][tour[k+1]];
    bits = bits ^ (1<<tour[k+1]);
 }
 tour[0] = 0;
 return tour;
}
```

MD5: f3e9730287dcbf2695bf7372fc4bafe0 | $\mathcal{O}(2^n n^2)$

3.13 Iterative DFS

57

60

Simple iterative DFS, the recursive variant is a bit fancier. Not tested.

```
//if we want to start the DFS for different connected
      components, there is such a method in the
      recursive variant of DFS
  public static boolean ItDFS(Vertex[] G, int s, int t){
    //take care that all the nodes are not visited at
        the beginning
    Stack<Integer> S = new Stack<Integer>();
    s.push(s);
    while(!S.isEmpty()) {
      int u = S.pop();
      if(u.id == t) return true;
      if(!G[u].vis) {
        G[u].vis = true;
        for(Vertex v : G[u].adj) {
          if(!v.vis)
            S.push(v.id);
      }
    }
    return false;
17
```

MD5: 80f28ea9b2a04af19b48277e3c6bce9e | $\mathcal{O}(|V| + |E|)$

3.14 Johnsons Algorithm

```
public static int[][] johnson(Vertex[] G) {
   Vertex[] Gd = new Vertex[G.length+1];
   int s = G.length;
   for(int i = 0; i < G.length; i++)
     Gd[i] = G[i];</pre>
```

```
//init new vertex with zero-weight-edges to each
         vertex
    Vertex S = new Vertex(G.length);
    for(int i = 0; i < G.length; i++)</pre>
       S.adj.add(new Edge(Gd[i], 0));
    Gd[G.length] = S;
10
11
    //bellman-ford to check for neg-weight-cycles and to
          adapt edges to enable running dijkstra
    if(bellmanFord(Gd, s)) {
13
       System.out.println("False");
       //this should not happen and will cause troubles
       return null;
17
    //change weights
18
    for(int i = 0; i < G.length; i++)</pre>
19
       for(Edge e : Gd[i].adj)
         e.w = e.w + Gd[i].dist - e.t.dist;
21
    //store distances to invert this step later
22
    int[] h = new int[G.length];
23
    for(int i = 0; i < G.length; i++)</pre>
24
25
       h[i] = G[i].dist;
26
27
    //create shortest path matrix
28
    int[][] apsp = new int[G.length][G.length];
29
    //now use original graph G
30
    //start a dijkstra for each vertex
31
    for(int i = 0; i < G.length; i++) {</pre>
32
       //reset weights
33
       for(int j = 0; j < G.length; j++) {</pre>
34
         G[j].vis = false;
35
         G[j].dist = Integer.MAX_VALUE;
36
37
       dijkstra(G, i);
38
       for(int j = 0; j < G.length; j++)</pre>
39
         apsp[i][j] = G[j].dist + h[j] - h[i];
40
41
    return apsp;
42
43 }
```

MD5: 0a5c741be64b65c5211fe6056ffc1e02 | $\mathcal{O}(|V|^2 \log V + VE)$

3.15 Kruskal

Computes a minimum spanning tree for a weighted undirected graph

```
public static int kruskal(Edge[] edges, int n) {
    Arrays.sort(edges);
    //n is the number of vertices
    UnionFind uf = new UnionFind(n);
    //we will only compute the sum of the MST, one could
         of course also store the edges
    int sum = 0;
    int cnt = 0;
    for(int i = 0; i < edges.length; i++) {</pre>
      if(cnt == n-1) break;
      if(uf.union(edges[i].s, edges[i].t)) {
10
        sum += edges[i].w;
11
        cnt++;
12
13
14
    return sum;
15
16 }
```

MD5: 91a1657706750a76d384d3130d98e5fb | $\mathcal{O}(|E| + \log |V|)$

3.16 Min Cut

Calculates the min cut using Edmonds Karp algorithm.

MD5: d41d8cd98f00b204e9800998ecf8427e | $\mathcal{O}(?)$

3.17 Prim

```
//s is the startpoint of the algorithm, in general not
     too important; we assume that graph is connected
public static int prim(Vertex[] G, int s) {
  //make sure dists are maxint
  G[s].dist = 0;
 Tuple st = new Tuple(s, 0);
 PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
 q.add(st);
  //we will store the sum and each nodes predecessor
  int sum = 0;
 while(!q.isEmpty()) {
    Tuple sm = q.poll();
    Vertex u = G[sm.id];
    //u has been visited already
    if(u.vis) continue;
    //this is not the latest version of u
    if(sm.dist > u.dist) continue;
    u.vis = true;
    //u is part of the new tree and u.dist the cost of
         adding it
    sum += u.dist;
    for(Edge e : u.adj) {
     Vertex v = e.t;
     if(!v.vis && v.dist > e.w) {
        v.pre = u.id;
        v.dist = e.w;
        Tuple nt = new Tuple(v.id, e.w);
        q.add(nt);
   }
 }
 return sum:
```

MD5: c82f0bcc19cb735b4ef35dfc7ccfe197 | $\mathcal{O}(?)$

3.18 Recursive Depth First Search

Recursive DFS with different options (storing times, connected/unconnected graph). Needs testing.

Input: A source vertex s, a target vertex t, and adjlist G and the time (0 at the start)

Output: Indicates if there is connection between s and t.

```
//if we want to visit the whole graph, even if it is
   not connected we might use this
public static void DFS(Vertex[] G) {
   //make sure all vertices vis value is false etc
   int time = 0;
   for(int i = 0; i < G.length; i++) {
      if(!G[i].vis) {
        //note that we leave out t so this does not work
        with the below function
      //adaption will not be too difficult though</pre>
```

```
//time should not always start at zero, change
             if needed
         recDFS(i, G, 0);
12
    }
13 }
  //first call with time = 0
  public static boolean recDFS(int s, int t, Vertex[] G,
    //it might be necessary to store the time of
         discovery
    time = time + 1;
18
    G[s].dtime = time;
19
    G[s].vis = true; //new vertex has been discovered
21
22
    //when reaching the target return true
23
    //not necessary when calculating the DFS-tree
24
    if(s == t) return true;
    for(Vertex v : G[s].adj) {
25
      //exploring a new edge
26
27
      if(!v.vis) {
28
         v.pre = u.id;
29
         if(recDFS(v.id, t, G)) return true;
30
31
    }
    //storing finishing time
32
    time = time + 1;
33
    G[s].ftime = time;
34
    return false;
35
36 }
                                                             13
```

MD5: 3cef44fd916e1aecfb0e3eacc355e2e3 $| \mathcal{O}(|V| + |E|)$

3.19 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer>
       sorting) {
     //compare with TS
     u.vis = true;
                                                              21
     for(Vertex v : u.out)
                                                              22
       if(!v.vis)
                                                              23
         fDFS(v, sorting);
     sorting.addFirst(u.id);
     return sorting;
9
11
  public static void sDFS(Vertex u, int cnt) {
     //basic DFS, all visited vertices get cnt
13
     u.vis = true;
                                                              31
14
     u.comp = cnt;
                                                              32
15
     for(Vertex v : u.in)
16
       if(!v.vis)
17
         sDFS(v, cnt);
18
  }
19
20
public static void doubleDFS(Vertex[] G) {
     //first calc a topological sort by first DFS
22
     LinkedList<Integer> sorting = new LinkedList<Integer 40
23
         >();
     for(int i = 0; i < G.length; i++)</pre>
24
                                                              42
       if(!G[i].vis)
25
                                                              43
         fDFS(G[i], sorting);
26
     for(int i = 0; i < G.length; i++)</pre>
27
       G[i].vis = false;
28
     //then go through the sort and do another DFS on G^T<sub>47</sub>
   //each tree is a component and gets a unique number 48
```

```
int cnt = 0;
for(int i : sorting)
  if(!G[i].vis)
    sDFS(G[i], cnt++);
}
```

MD5: 1e023258a9249a1bc0d6898b670139ea | $\mathcal{O}(|V| + |E|)$

3.20 Suurballe

Finds the min cost of two edge disjoint paths in a graph. If vertex disjoint needed, split vertices.

Input: Graph G, Source s, Target t

Output: Min cost as int

14

15

```
public static int suurballe(Vertex[] G, int s, int t){
  //this uses the usual dijkstra implementation with
      stored predecessors
  dijkstra(G, s);
  //Modifying weights
  for(int i = 0; i < G.length; i++)</pre>
    for(Edge e : G[i].adj)
      e.dist = e.dist - e.t.dist + G[i].dist;
  //reversing path and storing used edges
  int old = t;
  int pre = G[t].pre;
  HashMap<Integer, Integer> hm = new HashMap<Integer,
      Integer>();
  while(pre != -1) {
    for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
      if(G[pre].adj.get(i).t.id == old) {
        hm.put(pre * G.length + old, G[pre].adj.get(i)
             .tdist);
        G[pre].adj.remove(i);
        break;
    boolean found = false;
    for(int i = 0; i < G[old].adj.size(); i++) {</pre>
      if(G[old].adj.get(i).t.id == pre) {
        G[old].adj.get(i).dist = 0;
        found = true;
        break;
      }
    if(!found)
      G[old].adj.add(new Edge(G[pre], 0));
    old = pre;
    pre = G[pre].pre;
  }
  //reset graph
  for(int i = 0; i < G.length; i++) {</pre>
    G[i].pre = -1;
    G[i].dist = Integer.MAX_VALUE;
    G[i].vis = false;
  }
  dijkstra(G, s);
  //store edges of second path
  old = t;
  pre = G[t].pre;
  while(pre != -1) {
    //store edges and remove if reverse
    for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
      if(G[pre].adj.get(i).t.id == old) {
        if(!hm.containsKey(pre + old * G.length))
```

```
hm.put(pre * G.length + old, G[pre].adj.get(
                  i).tdist);
           else
             hm.remove(pre + old * G.length);
52
           break:
        }
53
54
      }
      old = pre;
55
      pre = G[pre].pre;
57
    //sum up weights
    int sum = 0;
    for(int i : hm.keySet())
      sum += hm.get(i);
    return sum;
62
                                                              18
63 }
```

MD5: 222dac2a859273efbbdd0ec0d6285dd7 | $\mathcal{O}(VlogV + E)$

3.21 Kahns Algorithm for TS

Gives the specific TS where Vertices first in G are first in the sorting

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer</pre>
         >():
    PriorityQueue<Vertex> p = new PriorityQueue<Vertex</pre>
         >();
    //inc counts the number of incoming edges, if they
         are zero put the vertex in the queue
    for(int i = 0; i < G.length; i++) {</pre>
5
      if(G[i].inc == 0) {
        p.add(G[i]);
         G[i].vis = true;
      }
10
    while(!p.isEmpty()) {
11
      Vertex u = p.poll();
12
                                                              13
      sorting.add(u.id);
13
                                                              14
      //update inc
14
15
      for(Vertex v : u.out) {
16
         if(v.vis) continue;
17
         v.inc--;
18
         if(v.inc == 0) {
           p.add(v);
19
           v.vis = true;
20
21
      }
22
23
    return sorting;
24
25
```

MD5: e53d13c7467873d1c5d210681f4450d8 | $\mathcal{O}(V+E)$

3.22 Topological Sort

```
//maybe checking if there are too many values in
           sorting is easier?!
      return sorting;
  }
  public static LinkedList<Integer> recTS(Vertex u,
      LinkedList<Integer> sorting) {
    u.vis = true;
    for(Vertex v : u.adj)
      if(v.vis)
        //the -1 indicates that it will not be possible
             to find an TS
        //there might be a much faster and elegant way (
             flag?!)
        sorting.addFirst(-1);
      else
        recTS(v, sorting);
    sorting.addFirst(u.id);
20
21
    return sorting;
22
  }
```

MD5: f6459575bf0d53344ddd9e5daf1dfbb8 | $\mathcal{O}(|V| + |E|)$

3.23 Tuple

Simple tuple class used for priority queue in Dijkstra and Prim

```
class Tuple implements Comparable<Tuple> {
  int id;
  int dist;

public Tuple(int id, int dist) {
    this.id = id;
    this.dist = dist;
}

public int compareTo(Tuple other) {
    return Integer.compare(this.dist, other.dist);
}

4
}
```

MD5: fb1aa32dc32b9a2bac6f44a84e7f82c7 | $\mathcal{O}(1)$

3.24 Reference for Vertex classes

Used in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
  int id;
  boolean vis = false;
  int pre = -1;

  //for dijkstra and prim
  int dist = Integer.MAX_VALUE;

  //for SCC store number indicating the dedicated
      component
  int comp = -1;

  //for DFS we could store the start and finishing
      times
  int dtime = -1;
  int ftime = -1;
```

```
//use an ArrayList of Edges if those information are
17
    ArrayList<Edge> adj = new ArrayList<Edge>();
18
    //use an ArrayList of Vertices else
    ArrayList<Vertex> adj = new ArrayList<Vertex>();
    //use two ArrayLists for SCC
21
    ArrayList<Vertex> in = new ArrayList<Vertex>();
    ArrayList<Vertex> out = new ArrayList<Vertex>();
    //for EdmondsKarp we need a HashMap to store Edges,
        Integer is target
    HashMap<Integer, Edge> adj = new HashMap<Integer,
        Edge>();
                                                            12
27
                                                            13
    //for bipartite graph check
28
                                                            14
29
    int color = -1;
                                                           15
30
                                                           16
31
    //we store as key the target
                                                           17
32
    public Vertex(int id) {
                                                            18
33
      this.id = id;
34
35 }
```

MD5: 90e8120ce9f665b07d4388e30395dd36 | $\mathcal{O}(1)$

4 Math

4.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
   if (k == 0)
     return 1;
   else if (k > n/2)
     return bin(n, n-k);
   else
   return n*bin(n-1, k-1)/k;
   }
```

MD5: 32414ba5a444038b9184103d28fa1756 | $\mathcal{O}(k)$

4.2 Binomial Matrix

Gives binomial coefficients for all $K \le N$.

```
public static long[][] binomial_matrix(int N, int K) {
19
long[][] B = new long[N+1][K+1];
20
for (int k = 1; k <= K; k++)

    B[0][k] = 0;
5 for (int m = 0; m <= N; m++)
    B[m][0] = 1;
7 for (int m = 1; m <= N; m++)
8 for (int k = 1; k <= K; k++)
9    B[m][k] = B[m-1][k-1] + B[m-1][k];
10 return B;
11</pre>
```

 $\textbf{MD5:} \ \texttt{e6f103bd9852173c02a1ec64264f4448} \mid \mathcal{O}(N \cdot K)$

4.3 Divisability

Calculates (alternating) k-digitSum for integer number given by₃₂

```
public static long digit_sum(String M, int k, boolean
    alt) {
  long dig_sum = 0;
  int vz = 1;
  while (M.length() > k) {
    if (alt) vz *= −1;
    dig_sum += vz*Integer.parseInt(M.substring(M.
        length()-k));
    M = M.substring(0, M.length()-k);
  }
  if (alt)
    vz \star = -1;
  dig_sum += vz*Integer.parseInt(M);
  return dig_sum;
}
// example: divisibility of M by 13
public static boolean divisible13(String M) {
  return digit_sum(M, 3, true)%13 == 0;
}
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 | $\mathcal{O}(|M|)$

4.4 Graham Scan

Multiple unresolved issues: multiple points as well as collinearity. N denotes the number of points

```
public static Point[] grahamScan(Point[] points) {
  //find leftmost point with lowest y-coordinate
  int xmin = Integer.MAX_VALUE;
  int ymin = Integer.MAX_VALUE;
  int index = -1;
  for(int i = 0; i < points.length; i++) {</pre>
    if(points[i].y < ymin || (points[i].y == ymin &&</pre>
        points[i].x < xmin)) {</pre>
      xmin = points[i].x;
      ymin = points[i].y;
      index = i;
   }
 }
  //get that point to the start of the array
 Point tmp = new Point(points[index].x, points[index
      ].y);
  points[index] = points[0];
 points[0] = tmp;
  for(int i = 1; i < points.length; i++)</pre>
    points[i].src = points[0];
  Arrays.sort(points, 1, points.length);
  //for collinear points eliminate all but the
      farthest
  boolean[] isElem = new boolean[points.length];
  for(int i = 1; i < points.length-1; i++) {</pre>
    Point a = new Point(points[i].x - points[i].src.x,
         points[i].y - points[i].src.y);
    Point b = new Point(points[i+1].x - points[i+1].
        src.x, points[i+1].y - points[i+1].src.y);
    if(Calc.crossProd(a, b) == 0)
      isElem[i] = true;
  //works only if there are more than three non-
      collinear points
 Stack<Point> s = new Stack<Point>();
  int i = 0;
  for(; i < 3; i++) {</pre>
    while(isElem[i++]);
    s.push(points[i]);
```

```
for(; i < points.length; i++) {</pre>
35
       if(isElem[i]) continue;
       while(true) {
37
         Point first = s.pop();
         Point second = s.pop();
39
         s.push(second);
         Point a = new Point(first.x - second.x, first.y
             - second.y);
         Point b = new Point(points[i].x - second.x,
             points[i].y - second.y);
         //use >= if straight angles are needed
         if(Calc.crossProd(a, b) > 0) {
44
           s.push(first);
45
           s.push(points[i]);
           break;
47
48
         }
49
      }
50
    }
51
    Point[] convexHull = new Point[s.size()];
    for(int j = s.size()-1; j >= 0; j--)
52
      convexHull[j] = s.pop();
53
54
    return convexHull;
55
    /*Sometimes it might be necessary to also add points
          to the convex hull that form a straight angle.
         The following lines of code achieve this. Only
         at the first and last diagonal we have to add
         those. Of course the previous return-statement
         has to be deleted as well as allowing straight
         angles in the above implementation. */
                                                            15
56 }
                                                            16
57 class Point implements Comparable<Point> {
                                                            17
    Point src; //set seperately in GrahamScan method
58
                                                            18
    int x;
59
                                                            19
60
    int y;
61
    public Point(int x, int y) {
62
      this.x = x;
63
      this.y = y;
64
65
66
    //might crash if one point equals src
67
    //major issues with multiple points on same location
68
        -1
    public int compareTo(Point cmp) {
69
    Point a = new Point(this.x - src.x, this.y - src.y);
70
    Point b = new Point(cmp.x - src.x, cmp.y - src.y);
71
    //checks if points are identical
72
    if(a.x == b.x && a.y == b.y) return 0;
73
    //if same angle, sort by dist
74
    if(Calc.crossProd(a, b) == 0 && Calc.dotProd(a, b) >
75
          0)
       return Integer.compare(Calc.dotProd(a, a), Calc.
76
           dotProd(b, b));
    //angle of a is 0, thus b>a
77
                                                            12
    if(a.y == 0 && a.x > 0) return -1;
78
                                                            13
    //angle of b is 0, thus a>b
                                                            14
    if(b.y == 0 \&\& b.x > 0) return 1;
                                                            15
    //a ist between 0 and 180, b between 180 and 360
                                                            16
    if(a.y > 0 && b.y < 0) return -1;
                                                            17
    if(a.y < 0 && b.y > 0) return 1;
    //return negative value if cp larger than zero
    return Integer.compare(0, Calc.crossProd(a, b));
85
                                                            19
86
87 }
                                                            21
                                                            22
89 class Calc {
    public static int crossProd(Point p1, Point p2) {
```

```
return p1.x * p2.y - p2.x * p1.y;
}
public static int dotProd(Point p1, Point p2) {
   return p1.x * p2.x + p1.y * p2.y;
}
```

MD5: 2555d858fadcfe8cb404a9c52420545d $| \mathcal{O}(N \log N) |$

4.5 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare Inverse $x=a^{-1} \mod b$ und $y=b^{-1} \mod a$.

```
// Extended Euclidean Algorithm - iterativ
public static long[] eea(long a, long b) {
  if (b > a) {
   long tmp = a;
    a = b:
    b = tmp:
 long x = 0, y = 1, u = 1, v = 0;
 while (a != 0) {
   long q = b / a, r = b % a;
    long m = x - u * q, n = y - v * q;
    b = a; a = r; x = u; y = v; u = m; v = n;
 long gcd = b;
  // x = a^{-1} \% b, y = b^{-1} \% a
  // ax + by = gcd
 long[] erg = { gcd, x, y };
  return erg;
```

MD5: 81fe8cd4adab21329dcbe1ce0499ee75 $| \mathcal{O}(\log a + \log b) |$

4.6 Polynomial Interpolation

```
public class interpol {
  // divided differences for points given by vectors x
       and y
  public static rat[] divDiff(rat[] x, rat[] y) {
    rat[] temp = y.clone();
    int n = x.length;
    rat[] res = new rat[n];
    res[0] = temp[0];
    for (int i=1; i < n; i++) {</pre>
      for (int j = 0; j < n-i; j++) {</pre>
        temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].
            sub(x[j]));
      res[i] = temp[0];
   }
    return res;
  // evaluates interpolating polynomial p at t for
  // x-coordinates and divided differences
 public static rat p(rat t, rat[] x, rat[] dD) {
    int n = x.length;
    rat p = new rat(0);
    for (int i = n-1; i > 0; i--) {
      p = (p.add(dD[i])).mult(t.sub(x[i-1]));
```

```
p = p.add(dD[0]);
       return p;
28
29 }
31 // implementation of rational numbers
32 class rat {
                                                                100
     public long c;
34
                                                                101
     public long d;
35
                                                                102
     public rat (long c, long d) {
                                                               104
37
       this.c = c;
38
       this.d = d;
39
       this.shorten();
40
41
42
     public rat (long c) {
43
44
      this.c = c;
45
       this.d = 1;
46
47
48
     public static long ggT(long a, long b) {
49
       while (b != 0) {
         long h = a%b;
50
         a = b;
51
         b = h:
52
53
       }
54
       return a;
55
56
     public static long kgV(long a, long b) {
57
       return a*b/ggT(a,b);
58
59
60
     public static rat[] commonDenominator(rat[] c) {
61
       long kgV = 1;
62
       for (int i = 0; i < c.length; i++) {</pre>
63
         kgV = kgV(kgV, c[i].d);
64
65
       for (int i = 0; i < c.length; i++) {</pre>
66
         c[i].c *= kgV/c[i].d;
67
         c[i].d *= kgV/c[i].d;
68
69
       return c;
70
71
72
73
     public void shorten() {
74
       long ggT = ggT(this.c, this.d);
75
       this.c = this.c / ggT;
       this.d = this.d / ggT;
76
       if (d < 0) {
77
         this.d *= -1;
78
         this.c *= -1;
79
80
81
     public String toString() {
83
       if (this.d == 1) return ""+c;
84
       return ""+c+"/"+d;
85
87
88
     public rat mult(rat b) {
89
       return new rat(this.c*b.c, this.d*b.d);
90
91
     public rat div(rat b) {
92
```

```
return new rat(this.c*b.d, this.d*b.c);
    }
    public rat add(rat b) {
      long new_d = kgV(this.d, b.d);
      long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.
      return new rat(new_c, new_d);
    public rat sub(rat b) {
      return this.add(new rat(-b.c, b.d));
105
  }
```

MD5: e7b408030f7e051e93a8c55056ba930b | $\mathcal{O}(?)$

4.7 **Root of permutation**

94

16

17

18

20

21

22

23

24

25

26

27

28

29

31

35

36

37

41

42

Calculates the K'th root of permutation of size N. Number at place i indicates where this dancer ended. needs commenting

```
public static int[] rop(int[] perm, int N, int K) {
  boolean[] incyc = new boolean[N];
  int[] cntcyc = new int[N+1];
  int[] g = new int[N+1];
  int[] needed = new int[N+1];
  for(int i = 1; i < N+1; i++) {</pre>
    int j = i;
    int k = K;
    int div;
    while(k > 1 && (div = gcd(k, i)) > 1) {
      k /= div;
      j *= div;
    needed[i] = j;
    g[i] = gcd(K, j);
  }
  HashMap<Integer, ArrayList<Integer>> hm = new
      HashMap<Integer, ArrayList<Integer>>();
  for(int i = 0; i < N; i++) {</pre>
    if(incyc[i]) continue;
    ArrayList<Integer> cyc = new ArrayList<Integer>();
    cyc.add(i);
    incyc[i] = true;
    int newelem = perm[i];
    while(newelem != i) {
      cyc.add(newelem);
      incyc[newelem] = true;
      newelem = perm[newelem];
    int len = cyc.size();
    cntcyc[len]++;
    if(hm.containsKey(len)) {
      hm.get(len).addAll(cyc);
    } else {
      hm.put(len, cyc);
  }
  boolean end = false;
  for(int i = 1; i < N+1; i++) {</pre>
    if(cntcyc[i] % g[i] != 0) end = true;
  if(end) {
    //not possible
    return null;
```

```
} else {
       int[] out = new int[N];
46
       for(int length = 0; length < N; length++) {</pre>
         if(!hm.containsKey(length)) continue;
         ArrayList<Integer> p = hm.get(length);
         int totalsize = p.size();
50
         int diffcyc = totalsize / needed[length];
51
         for(int i = 0; i < diffcyc; i++) {</pre>
52
           int[] c = new int[needed[length]];
53
           for(int it = 0; it < needed[length]; it++) {</pre>
             c[it] = p.get(it + i * needed[length]);
           int move = K / (needed[length]/length);
57
           int[] rewind = new int[needed[length]];
                                                              11
           for(int set = 0; set < needed[length]/length;</pre>
                set++) {
             int pos = set * length;
             for(int it = 0; it < length; it++) {</pre>
61
                                                              15
               rewind[pos] = c[it + set * length];
62
               pos = ((pos - set * length + move) %
63
                    length)+ set * length;
             }
64
           }
65
           int[] merge = new int[needed[length]];
66
           for(int it = 0; it < needed[length]/length; it</pre>
67
                ++) {
             for(int set = 0; set < length; set++) {</pre>
68
               merge[set * needed[length] / length + it]
69
                    = rewind[it * length + set];
70
             }
71
           for(int it = 0; it < needed[length]; it++) {</pre>
72
             out[merge[it]] = merge[(it+1) % needed[
73
                  length]];
74
           }
75
76
77
       return out;
78
    }
79
  }
```

MD5: b446a7c21eddf7d14dbdc71174e8d498 | $\mathcal{O}(?)$

4.8 Sieve of Eratosthenes

Calculates Sieve of Eratosthenes.

Input: A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

MD5: 95704ae7c1fe03e91adeb8d695b2f5bb $\mid \mathcal{O}(n) \mid$

4.9 Greatest Common Devisor

Calculates the gcd of two numbers a and b or of an array of numbers a and b array a and b array a and a array a and a array a and a array a and a array a

Input: Numbers a and b or array of numbers input Output: Greatest common devisor of the input

```
private static long gcd(long a, long b) {
    while (b > 0) {
        long temp = b;
        b = a % b; // % is remainder
        a = temp;
    }
    return a;
}

private static long gcd(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
    result = gcd(result, input[i]);
    return result;
}</pre>
```

MD5: 48058e358a971c3ed33621e3118818c2 $|\mathcal{O}(\log a + \log b)|$

4.10 Least Common Multiple

Calculates the lcm of two numbers a and b or of an array of numbers input.

Input: Numbers a and b or array of numbers input Output: Least common multiple of the input

```
private static long lcm(long a, long b) {
    return a * (b / gcd(a, b));
}

private static long lcm(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
        result = lcm(result, input[i]);
    return result;
}</pre>
```

MD5: 3cfaab4559ea05c8434d6cf364a24546 $| \mathcal{O}(\log a + \log b) |$

4.11 Fourier transform

```
#include<complex>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
void iterativefft(const vector<long long> &pol, vector
    <complex<double>> &fft, int n, bool inv)
    //copy pol into fft
    if(!inv) {
        for(int i = 0; i < n; ++i) {</pre>
            complex<double> cp (pol[i], 0);
            fft[i] = cp;
        }
    //swap positions accordingly
    for(int i = 0, j = 0; i < n; ++i) {
        if(i < j) swap(fft[i], fft[j]);</pre>
        int m = n >> 1;
        while(1 <= m && m <= j) j -= m, m >>= 1;
```

```
j += m;
23
       for(int m = 1; m <= n; m <<= 1) { //<= or <
24
           double theta = (inv ? -1 : 1) * 2 * M_PI / m;
25
           complex<double> wm(cos(theta), sin(theta));
           for(int k = 0; k < n; k += m) {</pre>
27
               complex<double> w = 1;
               for(int j = 0; j < m/2; ++j) {
                    complex<double> t = w * fft[k + j + m
                        /2];
                    complex<double> u = fft[k + j];
                    fft[k + j] = u + t;
                    fft[k + j + m/2] = u - t;
                    w = w*wm;
               }
           }
37
       if(inv) {
38
           for(int i = 0; i < n; ++i) {</pre>
39
40
               fft[i] /= complex<double> (n);
41
42
43 }
44
                                                             15
45 int main()
                                                             16
46
  {
                                                             17
       int N:
47
                                                             18
       cin >> N:
48
                                                             19
       vector<long long> pol (262144);
49
       int min = 60000;
50
       int max = -60000;
51
       for(int i = 0; i < N; ++i) {</pre>
52
           int ind;
53
           cin >> ind;
54
           if(ind < min) min = ind;</pre>
55
           if(ind > max) max = ind;
56
           ++pol[ind+65536];
57
58
       vector<complex<double>> fft (262144);
59
       iterativefft(pol, fft, 262144, false);
60
       for(int i = 0; i < 262144; ++i) {
61
           fft[i] *= fft[i];
62
63
       iterativefft(pol, fft, 262144, true);
64
       long long sum = 0;
65
       for(int i = 81072; i <= 181072; ++i) {
66
           int ind = i - 131072;
67
           if(ind < min) continue;</pre>
68
           if(ind > max) break;
69
           long long resi = round(fft[i].real());
70
           if(ind % 2 == 0 && ind != 0) {
71
               resi -= pol[ind/2 + 65536] * pol[ind/2 +
72
               resi += pol[ind/2 + 65536]*(pol[ind/2 +
73
                    65536]-1);
           resi *= pol[ind + 65536];
           if(ind != 0) {
               resi -= 2*pol[65536] * pol[ind + 65536] *
                    pol[ind + 65536];
               resi += 2*pol[65536] * pol[ind + 65536] *
                    (pol[ind + 65536]-1);
           }
           sum += resi;
       sum -= pol[65536] * pol[65536];
82
       sum += pol[65536] * (pol[65536] - 1) * (pol[65536]
83
            - 2);
```

```
cout << sum << endl;
}</pre>
```

MD5: fd9669c4967b6f26c13f464f98bdfb2a | $\mathcal{O}(?)$

4.12 Matrix exponentiation

```
void mult(int a[][nos], int b[][nos], int N)
    int res[nos][nos] = {0};
    for(int i = 0; i < N; i++) {</pre>
        for(int j = 0; j < N; j++) {</pre>
             for(int k = 0; k < N; k++) {
                 res[i][j] = (res[i][j] + a[i][k]*b[k][
                     j]) % 10000;
            }
        }
    for(int i = 0; i < N; i++) {</pre>
        for(int j = 0; j < N; j++) {</pre>
            a[i][j] = res[i][j];
        }
    }
        //start with g^L by succ squaring
        int res[nos][nos] = {0};
        for(int i = 0; i < N; i++) {</pre>
             for(int j = 0; j < N; j++) {
                 if(i == j) res[i][j] = 1;
        for(int i = 0; (1 << i) <= L; i++) {
            if(((1 << i) & L) == (1 << i)) {
                 mult(res, g, N);
            mult(g, g, N);
        }
```

MD5: dcabdd3a0beceb4221f4c41071ac9b6d | $\mathcal{O}(?)$

4.13 phi function calculator

takes sqrt(n) time

```
int phi(int n)
{
    double result = n;
    for(int p = 2; p * p <= n; ++p) {
        if(n % p == 0) {
            while(n % p == 0) n /= p;
            result *= (1.0 - (1.0 / (double) p));
        }
    }
    if(n > 1) result *= (1.0 - (1.0 / (double) n));
    return round(result);
}
```

MD5: $2ec930cc10935f1638700bb74e3439d9 | \mathcal{O}(?)$

4.14 prints farey seq

```
def farey( n, asc=True ):
    """Python function to print the nth Farey sequence
    , either ascending or descending."""
```

```
if asc:
    a, b, c, d = 0, 1, 1 , n # (*)

else:
    a, b, c, d = 1, 1, n-1, n # (*)

print "%d/%d" % (a,b)

while (asc and c <= n) or (not asc and a > 0):
    k = int((n + b)/d)
    a, b, c, d = c, d, k*c - a, k*d - b

print "%d/%d" % (a,b)
```

MD5: 5fe50f5717cb7d4e3eb91c8c8f6a1e85 | $\mathcal{O}(?)$

5 Misc

5.1 Binary Search

Binary searchs for an element in a sorted array.

Input: sorted array to search in, amount N of elements in array, element to search for a

Output: returns the index of a in array or -1 if array does not so contain a

```
12
  public static int BinarySearch(int[] array,
                                                               13
                                         int N, int a) {
    int lo = 0;
                                                               14
    int hi = N-1;
                                                               15
    // a might be in interval [lo,hi] while lo <= hi
                                                               16
                                                               17
    while(lo <= hi) {</pre>
                                                               18
       int mid = (lo + hi) / 2;
                                                               19
       // if a > elem in mid of interval,
                                                               20
       // search the right subinterval
                                                               21
       if(array[mid] < a)</pre>
                                                               22
         lo = mid+1;
11
       // else if a < elem in mid of interval,
12
       // search the left subinterval
13
       else if(array[mid] > a)
        hi = mid-1;
15
       // else a is found
16
       else
17
         return mid;
18
19
    // array does not contain a
20
    return -1;
21
22 }
```

MD5: 203da61f7a381564ce3515f674fa82a4 $\mid \mathcal{O}(\log n)$

5.2 Next number with n bits set

From x the smallest number greater than x with the same amount of bits set is computed. Little changes have to be made, if the calculated number has to have length less than 32 bits.

Input: number x with n bits set (x = (1 << n) - 1)

Output: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
    //break when larger than limit here
    if(x == 0) return 0;
    int smallest = x & -x;
    int ripple = x + smallest;
    int new_smallest = ripple & -ripple;
    int ones = ((new_smallest/smallest) >> 1) - 1;
    return ripple | ones;
```

```
MD5: 2d8a79cb551648e67fc3f2f611a4f63c | O(1)
```

5.3 Next Permutation

Returns true if there is another permutation. Can also be used to compute the nextPermutation of an array.

Input: String a as char array

Output: true, if there is a next permutation of a, false otherwise

```
public static boolean nextPermutation(char[] a) {
  int i = a.length - 1;
  while(i > 0 && a[i-1] >= a[i])
    i--;
  if(i <= 0)
    return false;
  int j = a.length - 1;
  while (a[j] <= a[i-1])
    j--;
  char tmp = a[i - 1];
  a[i - 1] = a[j];
  a[j] = tmp;
  j = a.length - 1;
  while(i < j) {</pre>
    tmp = a[i];
    a[i] = a[j];
    a[j] = tmp;
    i++;
    j--;
  }
  return true;
```

MD5: 7d1fe65d3e77616dd2986ce6f2af089b | $\mathcal{O}(n)$

5.4 Mo's algorithm

Works for queries on intervals. Sort queries and add, remove on borders in O(1). Thus only usable when this is possible for the task.

```
#include<vector>
#include<utilitv>
#include<algorithm>
using namespace std;
int BLOCK_SIZE;
int cur_answer;
vector<int> lmen;
vector<int> lwomen;
vector<int> cmen:
vector<int> cwomen;
bool cmp(const pair<pair<int, int>, int> &i, const
    pair<pair<int, int>, int> &j) {
    if(i.first.first / BLOCK_SIZE != j.first.first /
        BLOCK_SIZE) {
        return i.first.first < j.first.first;</pre>
    return i.first.second < j.first.second;</pre>
```

```
void add(int i, int j) {
       //adds values i, j to function
22
       cur_answer -= min(cmen[i], cwomen[i]);
23
       cur_answer -= min(cmen[j], cwomen[j]);
24
       if(i == j) cur_answer += min(cmen[j], cwomen[j]); 92
25
       ++cmen[i];
26
       ++cwomen[j];
27
       cur_answer += min(cmen[i], cwomen[i]);
       cur_answer += min(cmen[j], cwomen[j]);
       if(i == j) cur_answer -= min(cmen[j], cwomen[j]);
31
32
  void remove(int i, int j) {
       //removes values i, j from function
34
       cur_answer -= min(cmen[i], cwomen[i]);
35
       cur_answer -= min(cmen[j], cwomen[j]);
       if(i == j) cur_answer += min(cmen[j], cwomen[j]);
37
38
       --cmen[i];
       --cwomen[j];
39
       cur_answer += min(cmen[i], cwomen[i]);
40
       cur_answer += min(cmen[j], cwomen[j]);
41
42
       if(i == j) cur_answer -= min(cmen[j], cwomen[j]);
43
  }
44
45 int main()
46
  {
       int N, M, K;
47
       cin >> N >> M >> K;
48
       lmen.resize(N);
49
       lwomen.resize(N);
50
       cmen.resize(K);
51
       cwomen.resize(K);
52
       BLOCK_SIZE = static_cast<int>(sqrt(N));
53
       vector<pair<int, int>, int>> queries(M);
54
       vector<int> answers(M);
55
       for(int i = 0; i < N; ++i) {</pre>
56
           cin >> lmen[i];
57
58
       for(int i = 0; i < N; ++i) {</pre>
59
           cin >> lwomen[i];
60
61
       for(int i = 0; i < M; ++i) {</pre>
62
           cin >>queries[i].first.first >> queries[i].
63
                first.second;
           queries[i].second = i;
64
65
       //sort the queries into buckets
66
       sort(queries.begin(), queries.end(), cmp);
67
       int mo_left = 0, mo_right = -1;
68
       for(int i = 0; i < M; ++i) {</pre>
69
           int left = queries[i].first.first;
70
           int right = queries[i].first.second;
71
           while(mo_right < right) {</pre>
72
               ++mo right;
73
               add(lmen[mo_right], lwomen[mo_right]);
           while(mo_right > right) {
               remove(lmen[mo_right], lwomen[mo_right]);
               --mo_right;
           while(mo_left < left) {</pre>
               remove(lmen[mo_left], lwomen[mo_left]);
               ++mo_left;
           while(mo_left > left) {
               --mo_left;
85
               add(lmen[mo_left], lwomen[mo_left]);
```

```
}
    answers[queries[i].second] = cur_answer;
}
for(int i = 0; i < M; ++i) {
    cout << answers[i] << endl;
}
</pre>
```

MD5: a7af72b67f95a76818d1dabadf4f9e5c | $\mathcal{O}(?)$

6 String

6.1 Knuth-Morris-Pratt

Input: String s to be searched, String w to search for. *Output:* Array with all starting positions of matches

```
public static ArrayList<Integer> kmp(String s, String
    w) {
 ArrayList<Integer> ret = new ArrayList<>();
  //Build prefix table
  int[] N = new int[w.length()+1];
  int i=0; int j =-1; N[0]=-1;
 while (i<w.length()) {</pre>
    while (j>=0 && w.charAt(j) != w.charAt(i))
      j = N[j];
    i++; j++; N[i]=j;
  //Search string
  i=0; j=0;
  while (i<s.length()) {</pre>
    while (j>=0 && s.charAt(i) != w.charAt(j))
      j = N[j];
      i++; j++;
      if (j==w.length()) { //match found
      ret.add(i-w.length()); //add its start index
      j = N[j];
  return ret;
```

MD5: $3cb03964744db3b14b9bff265751c84b \mid \mathcal{O}(n+m)$

6.2 Levenshtein Distance

Calculates the Levenshtein distance for two strings (minimum number of insertions, deletions, or substitutions).

Input: A string a and a string b.

Output: An integer holding the distance.

MD5: 79186003b792bc7fd5c1ffbbcfc2b1c6 | $\mathcal{O}(|a| \cdot |b|)$

6.3 Longest Common Subsequence

Finds the longest common subsequence of two strings.

Input: Two strings string1 and string2.

Output: The LCS as a string.

```
public static String longestCommonSubsequence(String
      string1, String string2) {
    char[] s1 = string1.toCharArray();
    char[] s2 = string2.toCharArray();
    int[][] num = new int[s1.length + 1][s2.length + 1];
    // Actual algorithm
    for (int i = 1; i <= s1.length; i++)</pre>
      for (int j = 1; j <= s2.length; j++)</pre>
        if (s1[i - 1] == s2[j - 1])
          num[i][j] = 1 + num[i - 1][j - 1];
10
          num[i][j] = Math.max(num[i - 1][j], num[i][j -
11
                1]);
    // System.out.println("length of LCS = " + num[s1.
12
         length][s2.length]);
    int s1position = s1.length, s2position = s2.length;
13
    List<Character> result = new LinkedList<Character>()
14
    while (s1position != 0 && s2position != 0) {
15
      if (s1[s1position - 1] == s2[s2position - 1]) {
16
        result.add(s1[s1position - 1]);
17
        s1position--;
18
19
        s2position--;
20
      } else if (num[s1position][s2position - 1] >= num[
           s1position][s2position])
21
        s2position--;
      else
22
        s1position--;
23
24
    Collections.reverse(result);
25
    char[] resultString = new char[result.size()];
    int i = 0;
    for (Character c : result) {
      resultString[i] = c;
      i++;
31
    return new String(resultString);
32
33 }
```

MD5: 4dc4ee3af14306bea5724ba8a859d5d4 $\mid \mathcal{O}(n \cdot m)$

6.4 Longest common substring

gets two String and finds all LCSs and returns them in a set

```
public static TreeSet<String> LCS(String a, String b)
{
```

```
int[][] t = new int[a.length()+1][b.length()+1];
  for(int i = 0; i <= b.length(); i++)</pre>
    t[0][i] = 0;
  for(int i = 0; i <= a.length(); i++)</pre>
    t[i][0] = 0;
  for(int i = 1; i <= a.length(); i++)</pre>
    for(int j = 1; j <= b.length(); j++)</pre>
      if(a.charAt(i-1) == b.charAt(j-1))
         t[i][j] = t[i-1][j-1] + 1;
      else
         t[i][j] = 0;
  int max = -1;
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max < t[i][j])
         max = t[i][j];
  if(max == 0 || max == −1)
    return new TreeSet<String>();
  TreeSet<String> res = new TreeSet<String>();
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max == t[i][j])
         res.add(a.substring(i-max, i));
  return res;
}
```

MD5: 9de393461e1faebe99af3ff8db380bde | $\mathcal{O}(|a|*|b|)$

7 Math Roland

7.1 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \text{digit_sum}(M, k, \text{alt})$, refer to table for values of D, k, alt.

7.2 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, x_i \le n \}$

```
M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},\ |M| = \frac{n!}{(n-k)!}
```

- with repetition:

```
M = \{(x_1, \dots, x_k) : 1 \le x_i \le n\}, |M| = n^k
```

- Combinations (unordered): k out of n objects
 - without repetition: $M = \{(x_1, \ldots, x_n) : x_i \in \{0,1\}, x_1 + \ldots + x_n = k\}, |M| = \binom{n}{k}$
 - with repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1, \dots, k\}, x_1 + \dots + x_n = k\}, |M| = \binom{n+k-1}{k}$
- Ordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)

- #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points): !n $n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

Polynomial Interpolation

7.3.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}\$ find $p \in \Pi_n$ with $p(x_i) =$ y_i for all $i = 0, \ldots, n$.

Solution: $p(x) = \sum\limits_{i=0}^n \gamma_{0,i} \prod\limits_{j=0}^{i-1} (x-x_i)$ where $\gamma_{j,k} = y_j$ for k=0 and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1}-\gamma_{j,k-1}}{x_{j+k}-x_j}$ otherwise. Efficient evaluation of p(x): $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x-x_i) + \gamma_{0,i}$

for $i = n - 1, \dots, 0$ with $b_0 = p(x)$.

Fibonacci Sequence

7.4.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where } \phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

7.4.2 Generalization

$$g_n = \frac{1}{\sqrt{5}} (g_0(\phi^{n-1} - \tilde{\phi}^{n-1}) + g_1(\phi^n - \tilde{\phi}^n)) = g_0 f_{n-1} + g_1 f_n$$
 for all $g_0, g_1 \in \mathbb{N}_0$

7.4.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

7.5 Reihen

$$\begin{split} \sum_{i=1}^n i &= \frac{n(n+1)}{2}, \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^n c^i &= \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^\infty c^i = \frac{1}{1-c}, \sum_{i=1}^n c^i = \frac{c}{1-c}, |c| < 1 \\ \sum_{i=0}^n ic^i &= \frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^2}, c \neq 1, \sum_{i=0}^\infty ic^i = \frac{c}{(1-c)^2}, |c| < 1 \end{split}$$

Binomialkoeffizienten

7.7 Catalanzahlen

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, C_{n+1} = \frac{4n+2}{n+2} C_n$$

7.8 Geometrie

Polygonfläche:
$$A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + \cdots + x_{n-1}y_n - x_ny_{n-1} + x_ny_1 - x_1y_n)$$

7.9 Zahlentheorie

Chinese Remainder Theorem: Es existiert eine Zahl C, sodass: $C \equiv a_1 \mod n_1, \cdots, C \equiv a_k \mod n_k, \operatorname{ggt}(n_i, n_j) = 1, i \neq j$ Fall k=2: $m_1n_1+m_2n_2=1$ mit EEA finden.

Lösung ist $x = a_1 m_2 n_2 + a_2 m_1 n_1$.

Allgemeiner Fall: iterative Anwendung von k=2

Eulersche φ -Funktion: $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}), p$ prim

 $\varphi(p) = p - 1, \varphi(pq) = \varphi(p)\varphi(q), p, q \text{ prim}$

 $\varphi(p^k) = p^k - p^{k-1}, p, q \text{ prim}, k \ge 1$

Eulers Theorem: $a^{\varphi(n)} \equiv 1 \mod n$

Fermats Theorem: $a^p \equiv a \mod p, p$ prim

7.10 Faltung

$$(f * g)(n) = \sum_{m=-\infty}^{\infty} f(m)g(n-m) = \sum_{m=-\infty}^{\infty} f(n-m)g(m)$$

Java Knowhow

System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv] flags:

left-justify (default: right)

+ always output number sign

zero-pad numbers

space instead of minus for pos. numbers (space)

group triplets of digits with,

width specifies output width

precision is for floating point precision

conv:

byte, short, int, long d

f float, double

char (use C for uppercase)

String (use S for all uppercase)

8.2 **Modulo: Avoiding negative Integers**

8.3 Speed up IO

Use

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Use

Double.parseDouble(Scanner.next());