_	•
· 3	OPTICAL FIBER COUPLER
4	The present invention is a continuation-in-part of U.S.
J.D. 5	10/251,693 now U.S. Patent 6,60 Application $10/231,693$, filed 17 September 2002, in the names of
2/08/07 6	Lynn T. Antonelli and Patrick J. Monahan.
7	
8	STATEMENT OF GOVERNMENT INTEREST
9	The invention described herein may be manufactured and used
10	by or for the Government of the United States of America for
1,1	Governmental purposes without the payment of any royalties
12	thereon or therefor.
13	
14	BACKGROUND OF THE INVENTION
15	(1) Field of the Invention
16	The invention relates to fiber optic elements and is
17	directed more particularly to an optical fiber coupler wherein
18	fiber optic elements are coupled so as to provide a physical and
19	optical connection therebetween.
20	(2) Description of the Prior Art
21	Fiber optic strands typically include a central region in
22	which light propagates, a cladding region to contain the light
23	within the central region, and customarily a protective jacket.
24	It is generally known to consolidate light carried in a group of
25	fiber ontic strands into a single strand and conversely to

Attorney Docket No. 84454

- 1 element. However, in the case of fiber optic elements 40 and 50
- 2 each consisting of a single fiber optic element, the free ends
- 3 44, 52 may be spaced as close as is practical.
- 4 Light exiting either the first or second fiber optic
- 5 elements 40, 50 is propagated out of the appropriate strand end
- 6 or ends 44, 52. Light exiting the selected element is
- 7 transported through the cured optically transparent resin 60
- 8 towards the receiving fiber optic element.
- 9 The coupler described hereinabove provides a connection
- 10 which allows light to be coupled from a group of optical fiber
- 11 strands into a single strand or several other strands, or from a
- 12 single strand into another single strand or into a plurality of
- 13 strands. Further, it is to be understood that an n-by-n coupler
- 14 may be provided. The first and second fiber optic elements 40
- 15 and 50 in an n-by-n coupler each comprise a plurality of strands.
- 16 Such n-by-n couplers find utility in linear arrays of pulse
- 17 responsive, 2-mode, in-line within a fiber, Fabry-Perot
- 18 interference cavity sensors, which are disclosed in U.S. Patent
- 19 Application Serial Number 06/795,843, filed 5 September 1985, by
- 20 Eugene Green et al, entitled "Pulse Sample Optical Fiber"

J.D.

- 21 Hydrophone Array". In the type of hydrophone array systems which
- 22 employ pulse-responsive, 2-mode, interference cavity fiber
- 23 sensors as their individual hydrophone elements, one of the
- 24 strands of first fiber optic element 40 propagates pulses to a
- 25 plurality of strings of fiber sensors connected to respective