Difficult KP01 Instances

- * Algorithm PR (Pandit and Ravi-Kumar, 1993) is a "specialized" exact algorithm for KP01 designed to solve only SCR instances:
- * it is able to solve to optimality *SCR* instances with up to 10,000 items in few CPU minutes,
- * but it cannot solve *UCR* and *WCR* instances.

Data Set	n	MT2	DPT	PR
	50	0.01	0.02	_
	100	0.01	0.02	_
UCR	500	0.05	0.09	-
	1000	0.09	0.24	-
	10000	0.50	3.73	-
WCR	50	0.01	0.06	-
	100	0.02	0.08	-
	500	80.0	0.49	-
	1000	0.12	1.66	-
	10000	0.31	5.86	-
SCR	50	0.13	0.51	0.01
	100	134.48 (9)	2.03	0.03
	500	642.62 (4)	45.01	0.50
	1000	-	124.78 (5)	1.94
	10000	-	_	207.48

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds;

* Average time over 10 instances (solved instances if < 10)

Data Set	n	MT2	DPT	PR	Cplex
UCR	50	0.01	0.02	-	0.12
	100	0.01	0.02	-	0.19
	500	0.05	0.09	-	0.72
	1000	0.09	0.24	-	1.51
	10000	0.50	3.73	-	27.84
WCR	50	0.01	0.06	-	0.14
	100	0.02	80.0	-	0.23
	500	0.08	0.49	-	1.29
	1000	0.12	1.66	-	2.54
	10000	0.31	5.86	-	21.81
SCR	50	0.13	0.51	0.01	4.22
	100	(9)	2.03	0.03	(8)
	500	(4)	45.01	0.50	(4)
	1000	-	(5)	1.94	(1)
	10000	-	-	207.48	-

^{*} VAXstation 3100 seconds: Time limit = 2000 seconds:

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds; * Average time over 10 instances (solved instances if < 10)

Additional Test Instances for KP01

* Given: *n*, generate *k* random instances as follows

*
$$C = 0.5 \sum_{j=1, n} W_j$$

- 4) Almost Strongly Correlated (ASCR) Instances:
 - * W_i integer uniformly random in [1, 1000] (j = i, ..., n);
 - * P_i integer un. rand. in $[W_i + 99, W_i + 101]$ (j = i, ..., n).
- 5) Uncorrelated with Large Weights (ULWR) Instances:
 - * W_i integer un. rand. in [100,001, 101,000] (j = i, ..., n);
 - * P_i integer uniformly random in [1, 1000] (j = i, ..., n).

* Algorithm PR cannot solve ASCR and ULWR instances.

Data Set	n	MT2	DPT	PR
ASCR	50	0.09	0.51	-
	100	(9)	2.11	-
	500	(5)	44.47	_
	1000	-	118.78 (5)	-
	10000	-	-	_
ULWR	50	0.10	(8)	-
	100	0.02	(5)	-
	500	(7)	-	-
	1000	(8)	-	_
	10000	_	_	_

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds; * Average time over 10 instances (solved instances if < 10) * Better Upper Bounds for *KP01* are needed: strengthen a relaxed problem *RP* by adding valid inequalities which are redundant for the original problem, but could be violated by the optimal solution of *RP*.

Stronger Upper Bound for KP01 (M.-T. 1997)

* Determine:

Kmax = maximum number of items in a feasible solution

```
* Sort the items so that W_1 \le W_2 \le ... \le W_n

Kmax = \min \{ k : \sum_{j=1, k} W_j > C \} - 1
```

* Example:

```
n = 6; C = 48; (P_j) = (15, 16, 19, 17, 19, 23); (W_j) = (10, 12, 15, 14, 17, 21).

* s = 4; UB_D = 15 + 16 + 19 + [11 * 17 / 14] = 63

* sorted (W_j): (10, 12, 14, 15, 17, 21), Kmax = 3.
```

* Optimal Solution $(x_i) = (0, 1, 1, 0, 0, 1), z(KP01) = 58$

Stronger Upper Bound for KP01 (2)

* Determine:

KMAX = maximum number of items in a feasible solution

* Sort the items so that $W_1 \le W_2 \le ... \le W_n$ $KMAX = \min \{ k : \sum_{j=1, k} W_j > C \} - 1$

* Equivalent ILP model for *KP01*:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{j=1,n} x_j \leq KMAX$$

Stronger Upper Bound for KP01 (3)

* Equivalent ILP model for KP01:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j \qquad (1)$$

$$\sum_{j=1,n} W_j x_j \le C \qquad (2)$$

$$\sum_{j=1,n} x_j \le KMAX \qquad (3)$$

$$x_i \in \{0,1\} \qquad (j=1,...,n) \quad (4)$$

* Lagrangian Relaxation of constraint (3) ($v \ge 0$), and LP Relaxation of the Lagrangian Relaxation:

$$UB(v) = \max \left(\sum_{j=1,n} P_j x_j + v \left(\frac{KMAX}{N} - \sum_{j=1,n} x_j \right) \right) \text{ s.t. } (2), (4')$$

$$0 < x < 1$$
 $(i = 1, ..., n)$ (4)

Stronger Upper Bound for KP01 (4)

$$UB(v) = v * KMAX + \max \sum_{j=1,n} P(v)_j x_j$$

$$\sum_{j=1,n} W_j x_j \le C$$

$$0 \le x_j \le 1 \qquad (j = 1, ..., n)$$
with $P(v)_j = P_j - v \qquad (j = 1, ..., n)$

- * The corresponding *Dantzig Upper Bound* is computed.
- * The best Lagrangian Multiplier v^* (and the corresponding $UB(v^*)$) can be computed in O(n * n) time.

Stronger Upper Bound for KP01 (5)

$$UB(v) = v * KMAX + \max \sum_{j=1,n} P(v)_j x_j$$

$$\sum_{j=1,n} W_j x_j \le C; \quad 0 \le x_j \le 1 \quad (j = 1, ..., n)$$

with
$$P(v)_i = P_i - v$$
 $(j = 1, ..., n)$

* Example:
$$n = 6$$
; $C = 48$; $(P_j) = (15, 16, 19, 17, 19, 23)$; $(W_i) = (10, 12, 15, 14, 17, 21)$; $Kmax = 3$.

*
$$v = 0$$
, $s(0) = 4$; $UB(0) = 15 + 16 + 19 + [11 * 17 / 14] = 63$

*
$$v = 5$$
, sorted items $(P(5)_j) = (10, 14, 11, 12, 18, 14);$ $(W'_i) = (10, 15, 12, 14, 21, 17).$

$$s(5) = 4$$
; $UB(5) = 5 * 3 + 10 + 14 + 11 + [11 * 12 / 14] = 59$

Stronger Upper Bound for KP01 (6)

$$UB(v) = v * KMAX + \max \sum_{j=1,n} P(v)_j x_j$$

$$\sum_{j=1,n} W_j x_j \le C; \quad 0 \le x_j \le 1 \quad (j = 1, ..., n)$$
with $P(v)_j = P_j - v$ $(j = 1, ..., n)$
* Example:
$$n = 6; C = 48; \quad (P_j) = (15, 16, 19, 17, 19, 23);$$

$$(W_j) = (10, 12, 15, 14, 17, 21); \quad Kmax = 3.$$

*
$$v = 0$$
, $s(0) = 4$, $UB(0) = 63$; * $v = 5$, $s(5) = 4$, $UB(5) = 59$;
* $v = 10$, sorted items $(P(5)_j) = (13, 9, 9, 5, 6, 7)$;
 $(W''_j) = (21, 15, 17, 10, 12, 14)$.

s(10) = 3; UB(10) = 10 * 3 + 13 + 9 + [12 * 9 / 17] = 58

Alternative Stronger Upper Bound for KP01

- * Determine: *KMIN* = minimum number of items in an optimal solution.
- * Sort the items so that $P_1 \ge P_2 \ge ... \ge P_n$

$$KMIN = \min \{ k : \sum_{j=1,k} P_j > LB \}$$

where *LB* (Lower Bound) is the value of a feasible solution.

* Equivalent ILP model for KP01:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{j=1,n} x_j \geq KMIN$$

$$v \in \{0, 1\}$$
 (i-1)

Algorithm MTH for KP01 (M.-T., Oper. Res. 1997)

- * At each node of the branch-decision tree:
- a) compute the "stronger upper bound" or the "alternative stronger upper bound" by using a parametric technique;
- b) if the node is not fathomed, apply the Reduction Procedure, and try to fathom the node through Dominance Criteria;
- c) try to fathom the node through a "Partial Dynamic Programming" list.

Data Set	n	MT2	DPT	PR	MTH
UCR	50	0.01	0.02	-	0.03
	100	0.01	0.02	-	0.04
	500	0.05	0.09	-	0.08
	1000	0.09	0.24	_	0.14
	10000	0.50	3.73	-	1.59
	50	0.01	0.06	-	0.03
	100	0.02	0.08	-	0.04
WCR	500	80.0	0.49	-	0.09
	1000	0.12	1.66	-	0.15
	10000	0.31	5.86	-	1.28
SCR	50	0.13	0.51	0.01	0.10
	100	(9)	2.03	0.03	0.15
	500	(4)	45.01	0.50	0.71
	1000	_	(5)	1.94	1.31
	10000	_	-	207.48	2.31

* Average time over 10 instances (solved instances if < 10)

Data Set	n	MT2	DPT	PR	MTH
ASCR	50	0.09	0.51	-	0.11
	100 500	(9) (5)	2.11 44.47	-	0.64 0.78
	1000 10000	-	(5) -	-	5.65 102.83
ULWR	50 100	0.10 0.02	0.02 (8) 0.06 (5)	-	0.07 0.04
	500 1000	(7) (8)	-	-	3.30 0.76
	10000	-	-	-	327.58

- * VAXstation 3100 seconds; Time limit = 2000 seconds;
- * Average time over 10 instances (solved instances if < 10)