Методичка по астрономии для сдающих ЕГЭ по физике

Всё необходимое, чтобы не тупить на 24-м вопросе

Массы, скорости и силы

Средняя плотность

Центростремительные ускорения

Первая и вторая космические скорости

Ускорение свободного падения

Сила притяжения

Линейная скорость вращения по орбите

Угловая скорость вращения по орбите

Третий закон Кеплера

Орбиты

Эксцентриситет орбиты

Эклиптика

Перигелий и афелий

Единицы измерения расстояний

Солнечная система

Планеты

Группы

Земля

Сутки и год

Расстояния

Характеристики звёзд

Удалённость звёзд от Земли

Звёздные величины (т)

Распределение масс и размеров звёзд по классам

Характеристики Солнца

Спектральные классы по температурам

Энергия звёзд

Диаграмма Герцшпрунга — Рассела

Солнце на ГР-диаграмме

Расположение классов объектов на диаграмме

Белые карлики

Строение галактик

Особенности строения галактики Млечный путь

Звёздные скопления

Звёздная эволюция

Массы, скорости и силы

Средняя плотность

Средняя плотность планеты равна $ho=\frac{M}{V}$, где ho- плотность планеты, М — масса планеты, V — объём планеты: $V=\frac{4}{3}\pi r^3$, где r — радиус планеты.

Центростремительные ускорения

Отношение центростремительного ускорения планеты 1 к планете 2 относительно Солнца вычисляется по формуле $\frac{R_1^2}{R_2^2}$, где \mathbf{R}_1 — радиус орбиты планеты 1, \mathbf{R}_2 — радиус орбиты планеты 2.

Первая и вторая космические скорости

Первая космическая скорость (минимальная скорость, с которой объект выйдет на орбиту планеты) равна $v_1=\sqrt{G\frac{M}{r}}$, где ${\rm v_1}-$ первая космическая скорость, G — гравитационная постоянная (6,67408 × 10^{-11} м 3 кг $^{-1}$ с $^{-2}$), М — масса планеты, r — радиус планеты.

Вторая космическая скорость (минимальная скорость, с которой объект покинет орбиту планеты) равна $v_2=\sqrt{2G\frac{M}{r}}$, где ${\rm v_2}-$ вторая космическая скорость. Или $v_2=v_1\sqrt{2}$.

Ускорение свободного падения

Ускорение свободного падения равно $g=G\frac{M}{r^2}$, где ${
m g}$ – ускорение свободного падения, ${
m G}$ – гравитационная постоянная, ${
m M}$ – масса планеты, ${
m r}$ – радиус планеты. Также можно выразить через первую космическую скорость $g=\frac{v_1^2}{r}$ и вторую $g=\frac{v_2^2}{2r}$.

Сила притяжения

Сила притяжения планеты к Солнцу равна $F=G\frac{MM_s}{r^2}$, где F — сила притяжения планеты Солнцем, M_s — масса Солнца, G — гравитационная постоянная, M — масса планеты, r — радиус орбиты.

Эту же формулу можно использовать для подсчёта силы притяжения спутников планеты к самой планете.

Линейная скорость вращения по орбите

Линейная скорость вращения планеты по орбите равна $v=\frac{2\pi R}{T}$, где v — линейная скорость вращения по орбите, R — радиус орбиты, T — период обращения по орбите.

Угловая скорость вращения по орбите

Угловая скорость вращения планеты по орбите равна $\omega = \frac{2\pi}{T}$, где ω — угловая скорость вращения по орбите, T — период обращения по орбите.

Третий закон Кеплера

 $\frac{T_1^2}{T_2^2}=\frac{a_1^3}{a_2^3}$, где $\mathrm{T_1}$ и $\mathrm{T_2}$ — периоды вращение планет вокруг Солнца, $\mathrm{a_1}$ и $\mathrm{a_2}$ — радиусы их орбит. Следовательно, период обращения планеты тем больше, чем больше радиус орбиты.

При необходимости нахождения периода вращения вокруг Солнца можно вместо ${\rm T_2}$ подставлять данные Земли.

Орбиты

Эксцентриситет орбиты

Любая орбита — эллипс.

а — большая полуось орбиты, среднее расстояние до Солнца. Большая полуось орбиты Земли принята за единицу измерения — 1 астрономическая единица.

Эксцентриситет орбиты $e = \frac{c}{a}$, где e -эксцентриситет, c -расстояние от центра эллипса до фокуса, a -большая полуось (она же среднее расстояние до Солнце).

Чем ближе эксцентриситет к 0, тем более круговая орбита. Чем ближе к 1- тем более вытянутая орбита.

Эклиптика

Эклиптика — плоскость в которой Земля вращается вокруг Солнца. Остальные планеты вращаются вокруг Солнца в плоскостях очень близких к эклиптике.

Наклонение орбиты — угол между плоскостью вращения объекта вокруг Солнца и эклиптикой.

Перигелий и афелий

Перигелий — ближайшая к Солнцу точка орбиты. Расстояние до перигелия $r_p = (1-e)a$, где ${\bf r_p}$ — расстояние до перигелия, е — эксцентриситет, а — большая полуось.

Афелий — наиболее удалённая от Солнца точка орбиты. Расстояние до афелия $r_a=(1+e)a$, где ${\bf r_a}$ — расстояние до афелия, е — эксцентриситет, а — большая полуось.

Единицы измерения расстояний

- 1 астрономическая единица (а. е.) = 150 млн км. Равна расстоянию между Землёй и Солнцем.
- 1 световой год расстояние, которое проходит свет за год.
- 1 парсек расстояние до звезды, годичный параллакс которой равен 1". Что такое годичный параллакс смотри ниже:

Солнечная система

Планеты

Поряд ок	Название планеты	Количес тво спутник ов	Атмосфера	Обращение вокруг собственной оси	Расстояние от Солнца, а.е.
1	Меркурий		Кислород, натрий, водород. Атмосферы мало из-за чего высокие перепады температуры	59 дней	0,4
2	Венера		Углекислый газ. Из-за него высокая температура на поверхности (парниковый эффект)	243 дней, вращается в обратную сторону (с востока на запад)	0,7
3	Земля	1	Азот, кислород	24 часа	1
4	Марс	2	Углекислый газ	24,5 часов	1,5
Пояс астероидов (главный пояс)					
5	Юпитер	69	Водород, гелий	10 часов	5
6	Сатурн	62	Водород, гелий	10,5 часов	9,5
7	Уран	27	Водород, гелий	17 часов, вращается на боку в обратную сторону (с востока на запад)	19
8	Нептун	14	Водород, гелий	16 часов	30
Пояс Койпера (там же Плутон)					

Группы

Меркурий, Венера, Земля, Марс— планеты земной группы. Поверхность твёрдая. Плотность высокая.

Юпитер, Сатурн, Уран, Нептун — планеты-гиганты. Поверхность не твёрдая. Плотность пониже. Есть кольца (да, да, не только у Сатурна).

Земля

Радиус Земли — 6300 км.

Сутки и год

- Длительность суток определяется длительностью вращения планеты вокруг своей оси.
- Длительность года определяется длительностью вращения планеты вокруг Солнца.
- Смена времён года зависит от угла наклона оси вращения планеты к эклиптике.

Расстояния

Расстояние между Землёй и Луной — 384 000 км.

Диаметр Солнечной системы — 9 млрд км. (80 астрономических единиц).

Расстояние до ближайшей звезды — 4,2 световых года.

Характеристики звёзд

Удалённость звёзд от Земли

Звёзды, находящиеся в одном созвездии, вероятнее всего находятся на разном удалении от Земли и следовательно не находятся рядом друг с другом.

Видимая звёздная величина — это показатель яркости звезды для наблюдателя с Земли. Она зависит от расстояния до звезды.

Абсолютная звёздная величина— это показатель яркости звезды вне зависимости от наблюдателя. Не зависит от расстояния до звезды.

Звёздные величины (m)

- Звёзды 1-й величины в 2,512 раза ярче звёзд 2-й величины и т. д.
- Разница в 5 звёздных величин равна разнице яркостей (светового потока) в 100 раз.
- Чем значение звёздной величины меньше, тем звезда ярче.
- Невооружённым взглядом видны звезды с видимой звездной величиной меньше 6.
- При удалении от источника световой поток уменьшается обратно пропорционально квадрату расстояния ($\frac{1}{L^2}$).

Распределение масс и размеров звёзд по классам

Тип	Масса в Солнцах	Размер в радиусах Солнцах
Сверхгиганты	10-70	100-1000
Гиганты	10-20	10-100
Звёзды главной последовательности	~1	1–10
Карлики	До 0,75	0,1-1
Белые карлики	~1	0,001-0,1

Характеристики Солнца

Поверхностная температура — 5800 К. Средняя плотность Солнца — $1,4 \text{ г/см}^3$.

Спектральные классы по температурам

Спектральные классы зависят только от температур.

Чем выше температура, тем короче жизнь звезды.

Спектральный класс	Температура в Кельвинах
О (более голубые звёзды)	30 000-60 000
В	10 000—30 000
A	7500—10 000

F	6000-7500
G	5000-6000
K	3500-5000
М (более красные звёзды)	2000—3500

Мнемоническая формула для запоминания: **О**дин **Б**ритый **А**нгличанин **Ф**иники **Ж**евал **К**ак **М**орковь.

Энергия звёзд

Энергия в недрах звёзд берётся от реакций ядерного синтеза (термоядерных реакций). Например при слияния ядер водорода друг с другом, или гелия.

Диаграмма Герцшпрунга — Рассела

Звёзды за время своей жизни проходят по главной последовательности и затем сворачивают на ветви гигантов и сверхгигантов. Соответственно чем ближе к левому верхнему углу находится звезда, тем короче её «жизненный цикл».

Масса звезды влияет на время нахождения на главной последовательности.

На главной последовательности находятся практически все звёзды. Самые многочисленные — красные карлики.

Солнце на ГР-диаграмме

Солнце на диаграмме находится на пересечении светимости = 1 и линии «1 солнечный диаметр».

Расположение классов объектов на диаграмме

Низкая температура и низкая светимость	Только зарождающиеся звёзды, красные карлики
Высокая температура и низкая светимость	Маленькие и плотные объекты — белые карлики
Высокая температура и высокая светимость	
Низкая температура и высокая светимость	Высокая светимость за счёт больших размеров, низкая плотность — гиганты (температура низкая) и сверхгиганты

Белые карлики

Плотные, горячие, очень маленькие звёзды. Масса примерно равна массе Солнца, но диаметр в 100 раз меньше.

Строение галактик

Особенности строения галактики Млечный путь

- В центре (1) ядро галактики.
- Диск галактики (2) плотная спираль, состоит из спиральных рукавов.
- Рассеянные скопления молодые звёзды, располагаются в плоскости диска.
- Шаровые скопления (3) старые звёзды, располагаются вокруг галактики.
- Солнце (4) находится на окраине галактики.
- Галактики-спутники Млечного пути Большое и Малое Магелланово облако и Андромеда располагаются поодаль от Млечного пути. То есть их не будет на этой картинке.
- Диаметр Млечного Пути (5) 100000 световых лет.

Звёздные скопления

Звёздные скопления это очень компактные объединения звёзд (соответственно от Земли они все примерно одинаково удалены), которые движутся в пространстве все вместе.

Характеристики отдельных звёзд в скоплении могут быть совершенно различны.

Звёздная эволюция

На стадиях, обозначенных как «лёгкая звезда» и «тяжёлая звезда», происходит основное выгорание водорода и превращение его в гелий.

Версия 1.1.

Отдельное спасибо Павлу Костину и всем моим ученикам за помощь в составлении методички, а также <u>Саше Оводовой</u> за рисунки.

Наиболее актуальная версия всегда доступна по адресу: https://ovodov.me/astroege/. По вопросам, предложениям и исправлению ошибок пишите на boris@ovodov.me.

Борис Оводов, 2019.