Assignment 4

1. Exploration of Hyperparameters for Logistic Regression, Decision Tree, Random Forest, LightGBM, XGBoost, CatBoost, and Neural Network (MLP).

Model					1	Parameters		1			Av	erage FDR@	3%
	Iteration	Penalty		class_weight		Solver		L1_Ratio	L1 Ratio max ite		Train	Test	ООТ
Logistic Regression	1 (default)	12		None		lbfgs		None			61.79	61.57	47.2
	2	None	None		None		lbfgs		None 10		62.28	60.99	47.15
	3	I1		None		liblinear		None 1		1000	62.26	61.5	49.66
	4	12		Balanced		lbfgs		None	None 500		64.52	64.26	53.35
	5	elasticnet		None		saga		0.5			62.25	61.73	48.49
Decision Tree	Iteration	criterion		max_depth		min_samples_leaf		min sam	min_samples_split		Train	Test	ООТ
	1 (default)	gini		None		2		2			1	57.51	22.84
	2	gini		10		20		40			80.31	73.03	43.85
	3	gini		8		60		120			75.68	72.41	53.57
	4	entropy		10		80		160			79.8	74.46	41.22
	5	gini		8		40		90			75.02	70.93	52.34
Random Forest	Iteration	n_estimators		max_depth		min_samples_leaf		min_samples_split			Train	Test	ООТ
	1 (default)	100		None		1		2			1	83.55	38.54
	2	100		8		60		120			79.68	76.82	55.86
	3	50		8		60		120			80.54	76.62	48.32
	4	20		8		50			90			76.38	49.27
LightGBM	Iteration	boosting type	max	depth	n_estimators	num_leaves	colsample_bytree	subsample	learning_rate		80.25 Train	Test	OOT
	1 (default)	gbdt		-1	100	31	1	1	0		99.65	79.12	29.6
	2	gbdt		8	15	31	1	1	0.01		78.04	73.83	45.69
	3	gbdt		5	50	100	0.8	0.8	0.01		76.96	74.6	39.05
	4	gbdt	5		20	31	0.8	0.8	0.01		74.49	73.99	47.59
	5	gbdt	10		20	31	0.8	0.8	0.01		80.83	75.92	41.22
	6	gbdt	10		20	31	1	1	0.01		79.21	75.96	42.29
	7	dart		5		31	0.8	0.8	0.02		75.63	73.56	48.99
XGBoost	Iteration	booster	max_depth	n_estimators	20 tree_method	min_child_weight	colsample_bytree	subsample	e		Train	Test	OOT
	1 (default)	gbtree	6	100	auto	1	1	1	0		99.51	82.26	35.13
	2	gbtree	10	20	auto	5	1	1	0.		76.53	73.38	53.96
	3	gbtree	10	20	auto	5	0.8	0.8	0.		79.62	75.73	55.3
	4	dart	10	20	auto	5	0.8	0.8	0.05		80.53	76.48	53.79
	5	dart	10	20	auto	5	0.8	0.8	0.08		81.42	77.45	51.06
	6	gbtree	8	15	auto	5	0.8	0.8	0.05		77.78	75.5	54.86
	7	gbtree	8	15	approx	3	0.8	0.8	0.08		78.31	76.38	48.21
	Iteration	bootstrap_type	depth	iterations		leaf_reg		n_state		ng_rate	Train	Test	OOT
CatBoost	1 (default)	Bayesian	6	1000		3	None		0.03		95.89	81.53	36.64
	2	Bayesian	7	1000		12		10	0.01		89.83	81.41	44.97
	3	Bayesian		5 2000		8		None		0.01		78.99	46.53
	4	Bayesian		5 1500		12		10	0.01		84.52 81.9	77.31	48.21
	5	Bernoulli	5	1500	12			10	0.01		79.11	74.09	53.91
	6	MVS	5	1500		12		10	0.		81.29	78.61	45.69
Neural Network	Iteration	activati		solver		learning_rate	learning_rate_init		max_iter	alpha	Train	Test	00T
	1 (default)	relu		adam		N/A	0.001	100	200	0.0001	72.83	71.38	43.12
	2	relu		sgd		constant	0.01	70	200	0.001	73.14	70.96	41.45
	3	relu		adam		adaptive	0.001	20	200	0.005	68.24	68.06	55.53
	4	relu		adam		adaptive	0.001	70	200	0.005	70.18	69.35	55.86
	5	relu		adam		constant	0.01	200	500	0.0005	73.54	71.5	37.87
	6	logistic		adam		adaptive	0.01	100	200	0.0005	73.54	73.45	49.38
	7	tanh		adam		adaptive	0.01	150	200	0.0005	75.43	71.58	37.7
		tann		adam		auaptive	0.01	150	200	0.0003	/3.43	/1.50	37.7

2. Boxplot of all models with my best model hyperparameters

a) With 15 variables

I ran all my best models for the top 15 variables after last week's feature selection. Here, Logistic Regression, Decision Tree, CatBoost, and XGB perform the best on OOT validation set with low variation as compared to the other models. When it comes to training and testing accuracy, Catboost and XGBoost are significantly better than Logistic Regression and slightly better than Decision Tree. I would probably pick XGBoost here because of high OOT accuracy with little variation.

b) With 10 variables

I ran all my best models for the top 10 variables after last week's feature selection. Here, logistic regression, Random Forest and Catboost perform well on OOT data with relatively lower variation as compared to the other models. However, LR has much lower training and testing accuracy when compared to RF and Catboost. In this case, my best model performance seems to be with Random Forest with the highest training, testing and OOT accuracies with very little variation. I would go with RF here.

3. Performance vs Complexity of Models when they overfit:

a) LGBM

For LBGM, I kept all default parameters except n_estimators (number of estimators), which I varied from 1 to 61 with a step size of 10 (n = 7 on the x-axis). In LightGBM, the default number of estimators is 100 (which gives an overfit model) and my best model takes around 20, so increasing the number of estimators seemed like a good choice to cause this model to overfit. We see that as the distance between training and testing accuracy increases, the accuracy on OOT validation set goes down indicating an overfit model which is not able to generalize to unseen data.

b) XGBoost

For XGBoost, I varied n_estimators from 1 to 81 with a step size of 20 (n=5 on the x-axis). In XGBoost, the default number of estimators is 100 (which gives an overfit model) and my best model takes around 15, so increasing the number of estimators seemed like a good choice to cause this model to overfit. We see that as the distance between training and testing accuracy increases, the accuracy on OOT validation set goes down (starts from 0.55 and goes below 0.4) indicating an overfit model which is not able to generalize to unseen data.

3) CatBoost

For Catboost, I trained 4 models while varying iterations, I2_leaf_reg and eta simultaneously (n = 4 on the x-axis). I kept iterations as [1500, 1500, 1000, 1000], I2_leaf_reg as [12,8,8,3] and eta as [0.01,0.01,0.01,0.03]. I found that if you reduce the L2 regularization on Catboost model (indicative by smaller values of I2_leaf_reg), increase eta (learning rate) and reduce iterations of the model, the model tends to overfit so that is what I did and it caused the model to overfit on the 4th iteration. We see that for that iteration, our OOT accuracy goes down from 0.5 to 0.4 and the gap between training and testing accuracy is also high.

d) Decision Tree

For the Decision Tree model, I kept max_depth at 8 and varied min_samples_leaf and min_samples_split from higher values to less values. min_samples_leaf is the minimum number of samples required to be at a leaf node, min_samples_split is the minimum number of samples required to split an internal node. Decreasing these values leads to a more complex tree structure. I started with min_samples_leaf as 60 (i) and min_samples_split as 120 (2*i) and reduced the value of i by 3, so min_samples_leaf went from 60 to 3 (n=20 on the x-axis) and min_samples_split went from 120 to 6 (2*i). Smaller values of min_samples_split and min_samples_leaf causes the model to overfit. We see that as the distance between training and testing accuracy increases, the accuracy on OOT validation set goes down (starts from 0.55 and goes to around 0.3) indicating an overfit model which is not able to generalize to unseen data.

e) Random Forest

For the Random Forest model, I kept n_estimators at 50 and varied min_samples_leaf and min_samples_split from higher values to less values. min_samples_leaf is the minimum number of samples required to be at a leaf node, min_samples_split is the minimum number of samples required to split an internal node. Decreasing these values leads to a more complex tree structure. I started with min_samples_leaf as 80 (i) and min_samples_split as 160 (2*i) and reduced the value of i by 15, so min_samples_leaf went from 80 to 5 (n=6 on the x-axis) and min_samples_split went from 160 to 10 (2*i). Smaller values of min_samples_split and min_samples_leaf causes the model to overfit. We see that as the distance between training and testing accuracy increases, the accuracy on OOT validation set goes down indicating an overfit model which is not able to generalize to unseen data.

f) Neural Network

For the neural network, I changed the hidden layer size from 1 to 81 with a step size of 20 (n=5 on the x-axis) which increases model complexity. We see that for 1 hidden layer, the model is underfit and the training and testing accuracy is low. As we go till hidden layer 41, our training and testing accuracy improves and so does our OOT accuracy. However, beyond that point the model starts to overfit the data with further increase in hidden layers and as the gap between training and testing accuracy widens (due to overfitting), the OOT accuracy goes down indicating an overfit model which is not able to generalize to unseen data.