Алгебра 2 2023 Кузнецов

1 Листок 1

1. Для каких натуральных n многочлен $\frac{x^n-1}{x-1}=1+x+\ldots+x^{n-1}$ неприводим? По-видимому, имеется в виду неприводимость над полем $\mathbb Q$. Во-первых, заметим, что при n=ab имеет место равенство

$$1 + x + \dots + x^{n-1} = (1 + x + \dots + x^{a-1})(1 + x^a + \dots + x^{a(b-1)}).$$

Или без разложения:

$$\frac{x^{ab} - 1}{x - 1} = \frac{x^a - 1}{x - 1} \frac{x^{ab} - 1}{x^a - 1}.$$

Отсюда следует, что при составном n многочлен $\frac{x^n-1}{x-1}$ приводим.

Теперь попробуем доказать, что при простом n=p многочлен $\frac{x^n-1}{x-1}$ неприводим. Предположим, что

$$\frac{x^p - 1}{x - 1} = u(x)v(x),$$

где u,v — непостоянные многочлены с рациональными коэффициентами, причём будем считать, что их старшие коэффициенты равны 1, и u — непостоянный многочлен с рациональными коэффициентами наименьшей степени, делящий $\frac{x^p-1}{x-1}$. Тогда, что

$$u(x) = (x - a_1) \dots (x - a_k),$$

где a_1,\dots,a_k — попарно различные нее
единичные корни степени p из единицы. Поэтому все симметрические многочлены от
 $a_1,\dots a_k$

$$a_1 + \ldots + a_k,$$
 $a_1 a_2 + \ldots + a_{k-1} a_k,$
 \ldots
 $a_1 \ldots a_k$

рациональны — они являются коэффициентами многочлена u. Но тогда для любого натурального s

$$u_s(x) = (x - a_1^s) \dots (x - a_k^s)$$

— тоже многочлен с рациональными коэффициентами (поскольку все симметрические многочлены выражаются через элементарные), и он должен быть взаимно прост с u либо совпадать с u, ибо иначе наибольший общий делитель этих многочленов будет степени меньше степени u и будет делить многочлен $\frac{x^p-1}{x-1}$. Рассмотрим множество тех $s \in \{1,\ldots,p-1\}$, для которых

$$\{a_1^s, \dots, a_k^s\} = \{a_1, \dots, a_k\}.$$

Это подгруппа мультипликатиной группы \mathbb{F}_p . Значит, она циклическая, и есть $h \in \{1, \dots, p-1\}$, таких, что она порождена h. Тогда

$$u(x) = (x - a)(x - a^h)(x - a^{h^2})\dots(x - a^{h^t}).$$

Дальше я не знаю, как закончить это рассуждение. Поэтому будем решать по-другому. Попробуем применить критерий Эйзенштейна. $q(x)=rac{x^p-1}{x-1}$ неприводим над $\mathbb Q$ тогда и только тогда, когда неприводим

$$q(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + C_p^{p-1} x^{p-2} + \dots + C_p^2 x + p.$$

И применим критерий Эйзенштейна.

2. $x^n f(\frac{1}{x}) = c_0 x^n + c_1 x^{n-1} + \ldots + c_{n-1} x + c_n$ имеет с f(x) общий корень — тот, который лежит на единичной окружности (если $|\alpha| = 1$ и $f(\alpha) = 0$, то $f(\frac{1}{\alpha}) = f(\overline{\alpha}) = 0$). Значит, эти многочлены не взаимно просты, и в силу неприводимости f должны иметь все корни общие. То есть эти многолены пропорциональны:

$$f(x) = tx^n f\left(\frac{1}{x}\right), t \in \mathbb{Q}.$$

Отсюда $c_k=tc_{n-k}$ для всех k. Отсюда $t^2=1$. Значит, $t=\pm 1$. Если t=-1, то многочлен f имеет корнем 1, что противоречит неприводимости. Значит, t=1. Если n нечётно, n=2m+1, то

$$f(x) = (x^{2m+1} + 1) + c_1(x^{2m} + x) + \dots,$$

и этот многочлен имеет корень -1, что тоже невозможно в силу его неприводимости. Всё доказано.

3. а) Кажется, это известная теорема. Воспользуемсяя тем, что мультипликативная группа поля \mathbb{F}_p циклическая. Значит, она порождается неким $g \in \mathbb{F}_p$. Тогда $\left(\frac{-1}{p}\right) = 1$ тогда и только тогда, когда для некоторого s, 0 < s < p-1 имеет место

$$g^{2s} = -1.$$

Из этого равенства следует $g^{4s} = 1$, и получаем:

2s не делится на $p-1,\,4s$ делится на p-1.

Отсюда следует, что p-1 делится на 4. Пусть, напротив, p-1 делится на 4. Тогда возьмём $h=g^{\frac{p-1}{2}}$. Отсюда $h^2=1$. Поэтому $h=\pm 1$. Но h=1 быть не может. так как g — первообразный корень.

б) Очевидно. следующие утверждения равносильны:

- $\left(\frac{-3}{p}\right) = 1$
- Многочлен $x^2 + 3$ приводим над \mathbb{F}_p
- Многочлен $(x+1)^2 + 3 = x^2 + 2x + 4$ приводим над \mathbb{F}_p
- Многочлен $(x-2)(x^2+2x+4)=x^3-8$ разложим над \mathbb{F}_p
- Существует $\varepsilon \in \mathbb{F}_p, \varepsilon \neq 1$, такое, что $\varepsilon^3 = 1$ (поделить на 2 корни уравнения из предыдущего пункта)

Но мультипликативная группа поля \mathbb{F}_p циклическая. Значит, она порождается неким $g \in \mathbb{F}_p$. Тогда $\varepsilon = g^s, 0 < s < p-1$. Но тогда $g^{3s} = 1$, и 3s : p-1. Если p-1 не делится на 3, то s делится на p-1, а такое невозможно в силу 0 < s < p-1. Значит, p-1 делится на 3. И обратно — если p-1 делится на 3, то можно положить

$$\varepsilon = q^{\frac{p-1}{3}}.$$

Звдача решена.

4. K содержит примитивный корень из 1 степени 8. Пусть это корень g. Ясно, что тогда $g^4=-1, g^2=-1/g^2$. Рассмотрев пример поля комплексных чисел, я подобрал такое:

$$(g+1/g)^2 = g^2 + 2 + 1/g^2 = g^2 + 2 - g^2 = 2.$$

Теперь рассмотрим 3 случая:

- $p\equiv \pm 1 \pmod 8$. Тогда существует примитивный корень из 1 степени 8. Почему? Как мы помним, мультипликативная группа конечного поля \mathbb{F}_p циклическая. Она порождена элементом $t\in \mathbb{F}_p$. Тогда $t^{\frac{p\pm 1}{8}}$ и есть первообразный корень из 1 степени 8.
- $p \equiv -3 \pmod{8}$. Предположим,

$$s^2 \equiv 2 \pmod{p}$$
.

По задаче 3а есть $j \in \mathbb{F}_p$, такое, что

$$j^2 \equiv -1 \pmod{p}.$$

Рассмотрим $z = s \frac{1+j}{2}$. Тогда

$$z^2 = s^2 \frac{j}{2} = j.$$

Отсюда ясно, что z — первообразный корень из 1 степени 8. Мультипликативная группа поля \mathbb{F}_p циклическая. Она порождена элементом $t \in \mathbb{F}_p$. Тогда $z = t^k, 0 < k < p-1$. Отсюда $t^{8k} = 1, 8k$ делится на p-1. Но p-1 не делится на 8. Значит, 4k делится на p-1, и $z^4 = 1$. Противоречие с первообразностью p.

• $p \equiv 3 \pmod{8}$.