МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы 2.1.6

Эффект Джоуля-Томсона

Автор: Сенокосов Арсений Олегович Б02-012

Долгопрудный 16 августа 2021 г.

1 Введение

Цель работы:

- 1. определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

2 Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right).$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля–Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
(3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_i = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny Kp}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V) (T_1 - T_2) = \mu (v_2^2 - v_1^2) / 2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c},$ а диаметр трубки равен 3 мм. Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \cdot \text{cm}^3/\text{c}}{3.14 \cdot (0.3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44$ г/моль, $C_P = 40$ Дж/(моль·К); имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при трех температурах: комнатной, 30 °C и 50 °C.

3 Экспериментальная установка

Рис. 1: Схема установки

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм,

толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P=4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля–Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

4 Ход работы

4.1 Определение коэффициента Джоуля-Томсона

Проведём измерение зависимости ΔT от ΔP для разных значений температур. Полученные значения заносим в таблицы 1, 2 и 3. При записи полученных данных также учитываем, что чувствительность термопары медь – константан зависит от температуры. При вычислении будем использовать следующую формулу:

$$\Delta T = \frac{U}{\alpha},$$

где

$$\alpha_{20^{\circ}C} = 40.2 \text{ MKB}/^{\circ}C, \quad \alpha_{30^{\circ}C} = 41.1 \text{ MKB}/^{\circ}C, \quad \alpha_{50^{\circ}C} = 42.9 \text{ MKB}/^{\circ}C.$$

$T = 20 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, MB	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	0,156	0,001	4,05	0,02	
3,50	0,05	0,132	0,001	3,46	0,02	
3,00	0,05	0,108	0,001	2,86	0,02	
2,50	0,05	0,088	0,001	2,36	0,02	
2,00	0,05	0,066	0,001	1,82	0,02	
1,50	0,05	0,045	0,001	1,29	0,02	
1,00	0,05	0,026	0,001	0,82	0,02	
0,50	0,05	0,008	0,001	0,37	0,02	

Таблица 1: Экспериментальные данные для 20 °C

$T = 30 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, мВ	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	0,144	0,001	3,67	0,02	
3,50	0,05	0,123	0,001	3,16	0,02	
3,00	0,05	0,100	0,001	2,60	0,02	
2,50	0,05	0,080	0,001	2,12	0,02	
2,00	0,05	0,060	0,001	1,63	0,02	
1,50	0,05	0,040	0,001	1,14	0,02	
1,00	0,05	0,020	0,001	0,66	0,02	
0,50	0,05	0,008	0,001	0,36	0,02	

Таблица 2: Экспериментальные данные для 30 °C

$T = 50 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, мВ	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	0,127	0,001	3,12	0,02	
3,50	0,05	0,107	0,001	2,66	0,02	
3,00	0,05	0,088	0,001	2,21	0,02	
2,50	0,05	0,069	0,001	1,77	0,02	
2,00	0,05	0,051	0,001	1,35	0,02	
1,50	0,05	0,034	0,001	0,96	0,02	
1,00	0,05	0,019	0,001	0,61	0,02	
0,50	0,05	0,008	0,001	0,35	0,02	

Таблица 3: Экспериментальные данные для 50 °C

Также необходимо учесть, что при $\Delta P=0$ показания вольтметра составляли U(0)=-0.007 мкВ. Поэтому для корректной обработки данных сделаем необходимую поправку, вычитая из полученных показаний U(0).

Кроме того, при вычислении ΔT погрешность этого вычисления определяем по формуле:

$$\sigma_{\Delta T} = \Delta T \frac{\sigma_U}{U}.$$

По имеющимся данным проведём аппроксимацию зависимости ΔT от ΔP , чтобы определить коэффициент Джоуля-Томсона. На рисунке $\frac{2}{2}$ изображены графики зависимостей.

Вычислим $\mu_{\text{Д-T}}=\frac{dT}{dP},$ используя метод наименьших квадратов:

$$\mu_{\text{Д-T}} = \frac{\langle \Delta P \Delta T \rangle - \langle \Delta P \rangle \langle \Delta T \rangle}{\langle \Delta P \rangle - \langle \Delta P \rangle^2}.$$

Случайную погрешность определения этого коэффициента вычислим по следующей формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{случ}} = \sqrt{\frac{1}{N-2} \left(\frac{\left\langle \left(\Delta T - \left\langle \Delta T \right\rangle \right)^2 \right\rangle}{\left\langle \left(\Delta P - \left\langle \Delta P \right\rangle \right)^2 \right\rangle} \right) - \mu_{\text{Д-T}}^2},$$

где N – колличество измерений.

Систематические погрешности оценим по следующим формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{сист}} = \mu_{\text{Д-T}} \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_{\Delta T}^2}.$$

Рис. 2: Графики зависимости ΔT от ΔP

Таким образом, полная погрешность измерения определяется следующим соотношением:

$$\sigma_{\mu_{\rm Д-T}} = \sqrt{(\sigma_{\mu_{\rm Д-T}}^{\rm cuct})^2 + (\sigma_{\mu_{\rm Д-T}}^{\rm cnyq})^2}.$$

Результаты вычислений заносим в таблицу 4.

$T, ^{\circ}C$	$\mu_{\text{Д-T}},\mathrm{K/arm}$	$\sigma_{\mu_{\mathrm{Д-T}}},\mathrm{K/atm}$	ε , %
20	1,05	0,02	2,3
30	0,97	0,03	2,8
50	0,81	0,03	3,4

Таблица 4: Результаты измерений $\mu_{\mathrm{A-T}}$

4.2 Вычисление параметров газа Ван-дер-Ваальса

Вычислим параметры газа Ван-дер-Ваальса, используя коэффициенты $\mu_{\text{Д-T}}$, полученные в 4.1, для разных пар температур.

Пользуясь формулой (3), получим

$$\begin{cases} a = \frac{(\mu_1 - \mu_2) C_P R T_1 T_2}{2 (T_2 - T_1)}, \\ b = \frac{C_P (\mu_2 T_2 - \mu_1 T_1)}{T_1 - T_2}. \end{cases}$$

Погрешности этих вычислений можно оценить используя следующие формулы:

$$\sigma_a = a\sqrt{\varepsilon_{\mu_1 - \mu_2}^2 + \varepsilon_{T_1}^2 + \varepsilon_{T_2}^2 + \varepsilon_{T_2 - T_1}^2},$$

$$\sigma_b = b\sqrt{\varepsilon_{\mu_2 T_2 - \mu_1 T_1}^2 + \varepsilon_{T_1 - T_2}^2},$$

где

$$\sigma_{x\pm y} = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

Для температур 20°C и 30°C, а также для 30°C и 50°C, вычисляем параметры «а» и «b» газа Ван-дер-Ваальса. Результаты вычислений заносим в таблицу 5.

T, ° C	$a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	$\sigma_a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	ε_a , %	$b \cdot 10^{-4}, \frac{\text{M}^3}{\text{МОЛЬ}}$	$\sigma_b \cdot 10^{-4}, \frac{\text{M}^3}{\text{МОЛЬ}}$	ε_b , %
30 - 20	1,30	0,55	42,1	6,38	4,42	69,2
50 - 30	1,31	0,32	24,4	6,50	2,46	37,9

Таблица 5: Результаты измерения параметров газа Ван-дер-Ваальса

Сверим полученные результаты с табличными. Согласно справочнику для углекислого газа

$$a = 0.36 \; \frac{\Pi \text{a} \cdot \text{m}^6}{\text{моль}^2},$$

$$b = 0.42 \cdot 10^{-4} \; \frac{\text{м}^3}{\text{моль}}.$$

Полученные данные значительно отличаются от табличных. Про причины такого различия сказано в выводе.

4.3 Вычисление температуры инверсии

Используя формулу (4), по полученным параметрам газа Ван-дер-Ваальса вычислим $T_{\text{инв}}$. Также оценим погрешность по следующей формуле:

$$\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\varepsilon_a^2 + \varepsilon_b^2}.$$

Результаты вычислений занесём в таблицу 6.

T, ° C	$T_{\text{инв}}$, °К	$\sigma_{T_{\text{инв}}}$, °K	ε , %
30-20	489	396	81
50-30	485	219	45

Таблица 6: Результаты вычисления температуры инверсии

Для углекислого газа, согласно справочнику

$$T_{\text{инв}} = 2053 \text{ K}.$$

Полученные результаты снова сильно отличаются от табличных.

5 Обсуждение результатов и выводы

В ходе выполнения работы мы:

- экспериментальным методом измерили коэффициенты газа Ван-дер-Ваальса «а» и «b»;
- ullet вычислили $T_{
 m uhb}$ для углекислого газа.

В ходе работы мы получили значения, очень сильно отличающиеся от табличных. Погрешность вычисления параметров газа Ван-дер-Ваальса составила десятки процентов. Такая большая ошибка может говорить нам о неприменимости уравнения Ван-дер-Ваальса в условия лабораторной работы. Действительно, это уравнение используется лишь для качественного описания процессов, происходящих с реальными газами. Количественный подход к этому уравнению неприменим.

Также для увеличения точности измерений можно использовать более точные методы измерения температуры. Повысить точность необходимо как у термостата, так и у вольтметра, т.к. температура на них колебалась на протяжении эксперимента, несмотря на то, что условия оставались неизменными.

6 Контрольные вопросы

- 1. Реальные газы отличаются от своей модели идеальных газов тем, что их молекулы имеют конечные размеры и между ними действуют силы притяжения (при значительных расстояниях между молекулами) и отталкивания (при сближении молекул друг с другом).
- 2. Для потенциальной энергии двух молекул можно записать потенциал Леннарда-Джонса:

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right].$$

Ниже изображён характерный вид потенциала Леннарда-Джонса:

Чтобы получить силу, продифференцируем уравнение для потенциальной энергии:

$$F(r) = -\frac{\partial}{\partial r} \left(4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \right) = -24\varepsilon \left(\frac{\sigma^{6}}{r^{7}} - 2\frac{\sigma^{12}}{r^{13}} \right).$$

Ниже на графики изображён характерный вид зависимости силы от расстояния между молекулами:

По этим графикам можно объяснить причины эффекта Джоуля—Томсона. Заметим, что при увеличении расстояния между двумя молекулами, они совершают работу, против силы взаимодействия, а также их потенциальная энергия взаимодействия изменяется. Так как система замкнута, то происходит изменение внутренних энергий молекул, так что газ охлаждается.

- 3. Критическая температура определяется как температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимися в равновесии. Температура инверсии температура, при которой изменение температуры в дифференциальном эффекте отсутствует.
- 4. При $a \neq 0, b = 0$ велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении при расширении газа возрастает. Возрастание потенциальной энергии молекул происходит за счёт их кинетической энергии температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при $a = 0, b \neq 0$.