C14 problems

Find the transfer function $V_o(\omega)/I_i(\omega)$ for the circuit in Fig. 14.7. Obtain its zeros and poles.

Answer:
$$\frac{10(s+2)(s+3)}{s^2+8s+10}$$
, $s=j\omega$; zeros: $-2, -3$; poles: -1.5505 , -6.449 .

Practice Problem 14.2

Figure 14.7 For Practice Prob. 14.2.

Obtain the transfer function $H(\omega)$ corresponding to the Bode plot in Fig. 14.20.

Answer:
$$\mathbf{H}(\omega) = \frac{2,000,000(s+5)}{(s+10)(s+100)^2}$$
.

Practice Problem 14.6

Figure 14.20 For Practice Prob. 14.6.

Practice Problem 14.11

Design a bandpass filter of the form in Fig. 14.35 with a lower cutoff frequency of 20.1 kHz and an upper cutoff frequency of 20.3 kHz. Take $R = 20 \text{ k}\Omega$. Calculate L, C, and Q.

Answer: 15.915 H, 3.9 pF, 101.

Figure 14.35

A bandpass filter.

Practice Problem 14.13

Design a notch filter based on Fig. 14.47 for $\omega_0 = 20$ krad/s, K = 5, and Q = 10. Use $R = R_i = 10$ k Ω .

Answer: $C_1 = 4.762 \text{ nF}, C_2 = 5.263 \text{ nF}, \text{ and } R_f = 50 \text{ k}\Omega.$

Figure 14.47
Active bandreject filter.

- 14.2 (s14.1)
- 14.6 (s14.4)
- 14.11 (s14.7)
- 14.13 (s14.8)