INTRODUCCIÓN

CIBERSEGURIDAD DE LOS SISTEMAS DE CONTROL

CIBERSEGURIDAD DE LOS SISTEMAS DE CONTROL

Conceptos

SISTEMAS

- Sistema de Control: El que permite regular otro sistema para conseguir el comportamiento deseado
- Los sistemas de control modernos son sistemas ciber-físicos ya que combinan de forma integral los sistemas de control, la computación y las comunicaciones
- Proceso Industrial: Proceso que se encarga de obtener, transformar o transportar uno o varios productos primarios
- Automatización: Utilización de equipos y técnicas para que un proceso industrial funcione con poca o ninguna intervención humana
- Sistema de Control Industrial: Conjunto de dispositivos tecnológicos que permiten controlar la maquinaria que realiza un proceso industrial
- Activo industrial: Todo dispositivo usado dentro de un sistema de control industrial

SAFETY & SECURITY

- Seguridad operacional (Safety)
 - Protección ante eventos accidentales
 - Prevención de daños a nivel de equipamiento, instalaciones y personas
 - Desastres naturales, fallos de equipamiento, error humano
 - Tradicionalmente muy tenida en cuenta en el desarrollo y operación de los sistemas de control

Seguridad (Security)

- Protección ante daños intencionados
 - Seguridad física: robos, sabotajes, etc.
 - Seguridad de la información (o ciberseguridad): ataques internos, malware, ataques externos, APTs

CIBERSEGURIDAD DE LOS SISTEMAS DE CONTROL

Relevancia

INFRAESTRUCTURAS CRÍTICAS

- Los sistemas de control son componentes esenciales de las infraestructuras críticas
- Una infraestructura crítica es una instalación o sistema que soporta servicios esenciales para la seguridad nacional o el conjunto de la economía de un país

INFRAESTRUCTURAS CRÍTICAS

- No hay actividad humana que no se encuentre vinculada o dependa de algún sector estratégico contemplado por la normativa española:
 - Administración
 - Agua
 - Alimentación
 - Energía
 - Espacio
 - Industria Química
 - Industria Nuclear
 - Instalaciones de Investigación
 - Salud
 - Sistema Financiero y Tributario
 - Tecnologías de la Información y las Comunicaciones (TIC)
 - Transporte

UBICUIDAD

- Aunque una industria no esté catalogada como infraestructura crítica, su seguridad sigue siendo especialmente relevante por las serias consecuencias que podría acarrear un ataque:
- Los sistemas de control están presentes en todos los ámbitos imaginables, más allá de las infraestructuras críticas:
 - Automóviles
 - Aeronáutica
 - Automatización de edificios
 - Dispositivos "inteligentes"
 - •

SITUACIÓN DE PARTIDA

- Originalmente, la ciberseguridad en los sistemas de control no se consideraba una prioridad
 - Ni por parte de los fabricantes ni de los operadores
 - No existía un marco regulador
- Falsa sensación de seguridad
 - Personal no formado
 - Se suponía que el sistema de control funcionaba de forma aislada y no estaba conectado a otros sistemas de información
 - Seguridad por oscuridad, pues se usa tecnología específica
- Ignorancia de lo aprendido en el campo IT en las últimas décadas

HECHOS PREOCUPANTES

- Convergencia:
 - actualmente se utiliza masivamente software comercial de uso común en otros sistemas de información
- Por necesidades de gestión y operación, los sistemas de control están interconectados a redes corporativas (y/o al exterior)
- Hay suficiente información públicamente accesible

AIR GAP

HECHOS PREOCUPANTES

- Estos sistemas son un objetivo extremadamente atractivo para los atacantes con suficiente capacidad y recursos
- Las vulnerabilidades encontradas han aumentado

- Incidentes con gran repercusión: Stuxnet, red eléctrica ucraniana
- Cambios radicales: IoT, Industria 4.0,...

SITUACIÓN ACTUAL

- En 2018, el 77% de las empresas ya otorga gran prioridad a la ciberseguridad de los sistemas de control
- Los fabricantes de tecnología industrial comienzan a incorporar las consideraciones de seguridad en el desarrollo del producto
- Desarrollos normativos y creación de entidades de supervisión en multitud de países
- Creación de CERTs específicos: ICS CERT, CERTSI, ...
- Identificación de las infraestructuras críticas
- Exigencias y apoyo a sus operadores

SITUACIÓN ACTUAL

PERO sigue habiendo:

- Un nivel de madurez mucho menor que en otros ámbitos
- Necesidad de desarrollar procedimientos más sistemáticos
- Necesidad de desarrollar tecnologías adaptadas
- Necesidades de formación

CIBERSEGURIDAD DE LOS SISTEMAS DE CONTROL

Particularidades

- Longevidad de las instalaciones
- Funcionamiento continuo de las mismas
- A menudo se requieren bajas latencias y determinismo/tiempo real

- Difícil mantenimiento y parcheo
- Tecnologías obsoletas que ofrecen protección limitada o carecen de medidas de seguridad

- La disponibilidad es más importante que la integridad y la confidencialidad, al contrario que en otros sistemas
- Software y hardware específico

- Protocolos de comunicación específicos e inseguros
- Dificultad para introducir modificaciones, deshabilitar servicios, añadir software adicional al proporcionado
- Ciertas prácticas habituales pueden perturbar la operación normal del sistema: antivirus, análisis activo de vulnerabilidades

- Los recursos computacionales de muchos dispositivos son más limitados de lo habitual
- Arquitecturas de red específicas y potencialmente extensas
- Puede ser necesaria una certificación u homologación
- · La gestión de logs y el análisis forense es complicado

- El personal no es únicamente de tipo informático:
 - Diferentes prioridades, diferente lenguaje, diferente formación
- Mayor dependencia de los fabricantes/proveedores del sistema de control
- Impactos más tangibles de los incidentes de seguridad:
 - daños personales, en equipamiento y al entorno
 - impacto en la seguridad nacional
 - pérdida de producción, de calidad o de información confidencial
 - pérdida de reputación o confianza
 - violación de requisitos legales, etc.

CIBERSEGURIDAD DE LOS SISTEMAS DE CONTROL

Elementos de un sistema de control

HISTORIA

- Los primeros automatizaciones se basaban en sistemas cableados
- En 1969 se crea el primer autómata programable o PLC (Programmable Logic Controller), el Modicon 084
- A partir de ese momento, se produce una evolución, tanto en prestaciones como en capacidad de programación y conectividad
- Se pasa de un cableado directo de las señales de E/S a la utilización de redes de comunicaciones
- Aparecen arquitecturas de control distribuido
- La utilización de sistemas operativos y software comercial de uso común en otros ámbitos, junto con el uso de redes TCP/IP se populariza por la búsqueda de eficiencia y de funcionalidades como la supervisión eficaz o la gestión remota de los procesos

 La norma ISA-95 define 5 niveles de funcionalidad en una automatización industrial

 Integración de los procesos de producción (diseño, ingeniería y fabricación) con los de gestión de la empresa

Niveles ISA95

NIVEL 4:

Planificación de negocio y logística / Enterprise resource planning (ERP), Business Intelligence

NIVEL 3:

Gestión del flujo de trabajo / Manufacturing Execution System (MES), gestión de lotes, gestión de históricos

NIVEL 2:

Supervisión y control / SCADAs, controladores, interfaces hombre-máquina

NIVEL 1:

Medición y manipulación de los procesos / Sensores, actuadores y controladores

NIVEL 0:

Procesos físicos

Nivel de campo/ proceso:

- Conjunto de dispositivos, subprocesos, instrumentación en general, con que se realizan las operaciones elementales
- Se adquieren datos mediante los sensores
- Los actuadores ejecutan las acciones sobre el sistema físico determinadas por los algoritmos de control y consignas del nivel superior.

Nivel de control/estación:

- Encargado del mando y control de los elementos de campo.
- Forman parte de él los diferentes sistemas electrónicos de control:
 Autómatas programables (PLCs), sistemas de control distribuido
 (DCSs), computadores industriales, microcontroladores,...

Nivel de supervisión:

- Sistemas encargados de la monitorización de las unidades productivas funcionales y de la intervención sobre las mismas
- Tareas de toma de decisiones, establecimiento de consignas manuales, adquisición y tratamiento de datos, gestión de alarmas, mantenimiento, etc.
- Interfaces hombre-máquina y sistemas SCADA (Supervisory Control And Data Adquisition)

Nivel de supervisión Protocolos de control Nivel de control Buses de campo Información de medida / actuación

Nivel de campo

Nivel de gestión

- Actividades orientadas a la optimización de entornos industriales, la mejora de la productividad y el aseguramiento de la calidad
- Asignación y gestión de recursos y procesos
- MES (Manufacturing Execution Systems) y gestores de históricos (aunque estos últimos pueden también aparecer en el nivel de supervisión)

Nivel de planificación

- Integración de toda la información de la actividad industrial con el resto de actividades de la empresa (logística, distribución, inventario, contabilidad, recursos humanos, etc.)
- Sistemas de planificación de recursos empresariales (ERP)

ELEMENTOS DE CAMPO

ELEMENTOS DE CAMPO

TRANSDUCTOR

 Dispositivo que convierte una señal de entrada, función de una o más cantidades físicas, en una de salida.

SENSOR

Dispositivo capaz de medir una variable física

TRANSMISOR

 Capta la variable a través del sensor y la transmite a distancia en forma de señal (neumática o electrónica)

ACTUADOR o ACCIONAMIENTO

 Dispositivo que convierte una magnitud, generalmente eléctrica, en una salida, generalmente mecánica, que puede provocar un efecto sobre el proceso.

ELEMENTOS DE CAMPO: SENSORES

De cualquier magnitud física:

 Posición lineal o angular, velocidad lineal o angular, pequeños desplazamientos, aceleración, fuerza y par, presión, caudal, temperatura, presencia o proximidad, nivel, viscosidad, pH,...

• De acuerdo a su principio de funcionamiento, pueden clasificarse como:

- Activos: La magnitud física medida proporciona la alimentación necesaria para generar señal de salida.
- Pasivos: Con alimentación externa, modifican parámetros característicos como resistencia, capacidad,...

Se describen por medio de características:

- Estáticas, como el rango de medida, la resolución, la exactitud, la precisión, la sensibilidad, la linealidad o la histéresis
- Dinámicas, como la deriva, la respuesta frecuencial o la velocidad de respuesta

ELEMENTOS DE CAMPO: SENSORES

Ejemplos

Fuente: Izantux, Wikipedia

Resistivo

Fuente: Charles D. H. Williams

Capacitivo

Fuente: Images Scientific Instruments

Fuente: www.ecvv.com

Fuente: Schmersal

ELEMENTOS DE CAMPO: TRANSMISORES

- Elementos del transmisor:
 - El sensor puede estar separado o integrado
 - Tienen un bloque de tratamiento de señal y una etapa de salida que generalmente amplifica la señal
- Tipos de salida del transmisor:
 - Analógica
 - La señal estándar es generalmente de 4-20mA (bucle de corriente) o 0-10V (bucle de tensión) de corriente continua
 - Digitales todo-nada,
 - Con señal codificada
 - Usando protocolos de bus de campo específicos
 - El transmisor debe realizar la modulación, conversión a digital, etc.
- Los transmisores en la actualidad pueden también permitir: corregir no linealidades, realizar cálculos, autocalibrarse o autodiagnosticarse, etc.

ELEMENTOS DE CAMPO: TRANSMISORES

ELEMENTOS DE CAMPO: ACTUADORES

- Deben responder de manera rápida y precisa
- Incluyen a menudo un servo-motor, es decir, un motor que cuenta con un sensor y la posibilidad de obtener un comportamiento estable, rápido y fácil de controlar
- Pueden presentar limitaciones como saturación o zona muerta
- Eléctricos, neumáticos o hidráulicos

Fuente: Jesús Esparza y Gustavo Baños

ELEMENTOS DE CAMPO: ACTUADORES

Actuadores Eléctricos

- Motores de corriente continua
 - Con escobillas (tradicionales)
 - Sin escobillas y paso a paso
- Motores de corriente alterna
 - Síncronos
 - Asíncronos o de inducción

- Cilindros
- Motores

ELEMENTOS DE CONTROL

ELEMENTOS DE CONTROL

- Autómatas programables (PLCs, programmable logic controllers) y su periferia
- Sistemas de control distribuido (DCSs)
- Unidades terminales remotas (RTUs)
- PCs industriales
- Microcontroladores y máquinas dedicadas

Citcla b Critical Infrastructure Cuberscruits Lab

AUTÓMATAS PROGRAMABLES

- Un autómata programable es un sistema electrónico programable diseñado para el control de procesos y máquinas
- Destaca por:
 - La gestión de las entradas y salidas, digitales y analógicas
 - Facilitar operaciones específicas como lógica combinacional y secuencial, temporización, recuento y funciones aritméticas.

- Características básicas de un autómata programable:
 - Robustez
 - Adaptado a entornos industriales hostiles
 - Diseñado para funcionar de forma continua durante años
 - Modularidad
 - Potente interfaz de Entrada/Salida
 - Las entradas son los canales que le permiten adquirir señales al autómata, unas de mando y otras de realimentación (sensores)
 - Las salidas son los canales que permiten al PLC enviar órdenes a los actuadores del proceso e información de estado al sistema de supervisión
 - Determinismo
 - Software estable y de arranque rápido

- Tipos de autómatas programables:
 - Microautómatas o autómatas compactos

Autómatas modulares

AUTÓMATAS PROGRAMABLES

Arquitectura típica de un autómata programable modular

AUTÓMATAS PROGRAMABLES

Funcionamiento:

- Cuando el PLC está en modo de ejecución, el programa de control se ejecuta de manera indefinida
- Esa ejecución es cíclica, describiendo lo que se ha dado en llamar "Ciclo de Scan":
 - Lectura de las entradas del PLC, que a partir de este instante trabajará con una "imagen" en memoria hasta el próximo ciclo
 - Ejecución del programa de control almacenado en la memoria del PLC, de forma secuencial aunque no necesariamente lineal
 - Escritura en las salidas del PLC
 - Tareas internas del PLC, de comprobación de errores, almacenamiento de información interna, etc.

PERIFERIA

- Módulos de E/S remotos que suponen una alternativa a la conexión directa de entradas y salidas al PLC
- Generalmente cableados a transmisores y actuadores
- Conectados con el autómata por medio de un bus de campo
- Actúan simplemente como esclavos del PLC principal

SISTEMAS DE CONTROL DISTRIBUIDO

- Conjunto de dispositivos que se comunican entre sí para controlar de forma coordinada un proceso productivo generalmente extenso
- Cada equipo dispone de autonomía propia y sólo intercambian los datos necesarios para el control y supervisión del proceso.
- Incorporan funcionalidades adicionales como:
 - gestión de eventos y alarmas del proceso (cubren en parte el nivel de supervisión),
 - optimización de recursos,
 - control de activos (para un mantenimiento programado) y reemplazo en caliente de módulos
- Ámbito de utilización típico: instalaciones industriales con gran cantidad de procesos interrelacionados, como en la industria petroquímica

Fuente: José Carlos Villaluca

UNIDADES TERMINALES REMOTAS

- Los RTUs son dispositivos diseñados para la adquisición y transmisión de datos a un sistema de control remoto
- Se encuentran situados en emplazamientos remotos y permiten el control de la planta desde una localización centralizada
- Elemento típico en instalaciones de distribución y suministro de electricidad, agua, etc.
- Es habitual la capacidad simultánea de comunicación por diferentes medios físicos
- También se utilizan para la concentración de datos y la conversión de protocolos

PCS INDUSTRIALES

- Mayor flexibilidad y facilidad de ampliación
- Aprovechar la potencia de la CPU de un computador
 - Virtualización
 - Algoritmos avanzados
 - Posibilidad de comunicar en diversos protocolos por software
- Es necesario que sea robusto y que incorpore potentes interfaces de E/S
- Más inaccesible para personal con baja formación

MICROCONTROLADORES Y MÁQUINAS DEDICADAS

Microcontroladores

- Para el control de ciertas máquinas se utilizan sistemas embebidos, es decir, sistemas informáticos con una función dedicada
- Están optimizado para coordinar el flujo de información entre la memoria y la periferia
- Bajo coste y reducido tamaño
- No muy potentes, pero lo suficiente para, cada vez más, permitir funcionalidad "loT"

Máquinas dedicadas

- Robots
- Máquinas tipo CNC (Control numérico computerizado), también denominadas "máquinas-herramienta

ELEMENTOS DE SUPERVISIÓN

SCADA

Supervisory Control And Data Adquisition

- Software especializado para la monitorización en tiempo real de procesos industriales mediante una interfaz gráfica
- También permiten el control remoto de instalaciones y equipos
- En otros ámbitos, Building/Energy/... management system
- Diferentes arquitecturas: stand-alone, cliente servidor, ...

SCADA

- Funciones principales:
 - Supervisión remota de instalaciones y equipos: permite conocer el estado, detectar fallos y registrar estadísticas
 - Control remoto de instalaciones y equipos:
 - Se pueden enviar consignas, por ejemplo para activar o desactivar los equipos, de manera automática o manual
 - Es posible ajustar/reprogramar parámetros, valores de referencia, algoritmos de control, etc.
 - Procesamiento y almacenamiento de datos: que se pueden analizar y comparar con los anteriores o con otras referencias
 - Visualización gráfica:
 - Imágenes en movimiento que representan de forma esquemática el comportamiento del proceso
 - Gráficas de evolución
 - Representación de señales de alarma

SCADA

HMI

- Interfaces hombre-máquina o paneles de supervisión y control
- Dispositivos que permiten la visualización rápida de las variables del sistema industrial, las alarmas o introducción de consignas
- Se trata esencialmente de un sistema SCADA limitado y local, para cuya configuración se utiliza generalmente un software similar pero más flexible y restringido
- La pérdida de su operatividad conllevaría la falta de visibilidad del proceso.

COMUNICACIONES: BUSES DE CAMPO

- Inicialmente, se usaban solamente conexiones punto a punto entre los elementos de campo y los PLCs, que se comunicaban mediante señales analógicas (niveles de tensión/ corriente)
- Se ha evolucionado a utilizar en mayor medida un único medio de transmisión para comunicarlos: el BUS DE CAMPO
- Se trata de una comunicación digital en serie, utilizando unas ciertas características determinadas por una pila de protocolos
- Generalmente: tramas pequeñas y periódicas, bajas latencias, determinismo

COMUNICACIONES: BUSES DE CAMPO

- La implantación de buses de campo ha supuesto:
 - Modularidad y mejora de prestaciones por la descentralización de dispositivos inteligentes
 - Ahorro y mejoras en mantenimiento por la supresión de cableado
 - Interconexión de equipos heterogéneos
 - Acceso fácil/rápido a la información. Integración con otros sistemas
- Los protocolos utilizados en los buses de campo generalmente no son enrutables, ya que solamente implementan los niveles 1, 2 y 7 de OSI

• Diversas tecnologías compiten por el mercado, pero son generalmente estándares abiertos: IEC 61158, IEC 61784

COMUNICACIONES: BUSES DE CAMPO

 La capa física más habitual es el par trenzado, aunque en ocasiones podría utilizarse cable coaxial, fibra óptica o comunicación inalámbrica

- RS-485 es una configuración muy extendida en buses de campo, ya que permite una conexión multipunto
- No obstante, también se utilizan en algunos casos RS-232 o USB (para las conexiones punto a punto) u otras capas físicas específicas (p. ejemplo, es el caso de ASI)

COMUNICACIONES: PROTOCOLOS INDUSTRIALES A NIVEL DE CONTROL

- Generalmente sobre TCP/IP y por tanto enrutables
 - Mensajes generalmente no periódicos y más grandes que a nivel de campo
 - Requisitos de tiempos menos estrictos
- Por lo general, para cada familia de protocolos de automatización, se suelen definir protocolos para el bus de campo y el nivel de control
- En algunos casos, el protocolo de nivel de control se limita a encapsular las tramas del protocolo de bus de campo en paquetes TCP/IP

Aplicación

TCP/UDP

IΡ

Ethernet

ELEMENTOS DE COMUNICACIÓN

Switches industriales

- Deben cumplir unas condiciones de robustez
- Generalmente un número reducido de puertos
- Pueden implementar protocolos de redundancia que garantizan la llegada de los mensajes ante el fallo de un nodo en una topología en anillo:
 - PRP (Parallel Redundancy Protocol), MRP (Media Redundancy Protocol) o HSR (High-availability Seamless Redundancy)

Routers industriales

- De nuevo, deben ser dispositivos robustos
- Cada vez más incorporan opciones de seguridad, como la posibilidad de realizar túneles VPN

Pasarelas de comunicación:

- Permiten adaptar diferentes medios físicos o protocolos a capas superiores para establecer una comunicación
- A menudo se usan para aumentar la distancia útil o unir diferentes segmentos serie remotos por medio de una red TCP/IP

ELEMENTOS DE GESTIÓN Y PLANIFICACIÓN

- Historizador o gestor de históricos:
 - Software específico que salvaguarda todos los datos y estados del proceso para permitir su estudio off-line, la generación de informes, etc.
 - Pueden manejar grandes volúmenes de información
- MES (Manufacturing Execution System)
 - Gestión y optimización de la actividad de la industria

- Enterprise Resource Planning
 - Sistemas de planificación de recursos empresariales que fusionan la información proporcionada por el MES con otros aspectos necesarios para la gestión de la empresa (logística, inventario, contabilidad, etc.)
 - A menudo proporcionan herramientas de Business Intelligence orientadas al procesamiento de los datos para la obtención de conocimiento utilizando análisis estadístico, minería de datos, etc.

DUALIDAD SEGURIDAD OPERACIONAL-CIBERSEGURIDAD

- Los programas de ciberseguridad en sistemas de control deben integrarse en programas más amplios que también consideren la seguridad física y la seguridad operacional
- La ciberseguridad es, a día de hoy, esencial para la operación segura y confinable de cualquier proceso
- Se debe trabajar para alcanzar, en el ámbito de la ciberseguridad, niveles semejantes de sistematización a los que se utilizan en seguridad operacional:
 - Métodos de detección, evaluación y mitigación de riesgos
 - Definición de niveles de seguridad aceptables y de indicadores de desviación,...
 - Capacidad de trabajar aún en modo degradado ante un fallo

