Assignment 1

Chapter 2

Problem 4

(Register WREG is __ bit wide)

Answer: WREG is 8 bit wide

Problem 34

(In Q32 to place the result to file register the D bit must be__)

Answer: The D bit must be 1

Problem 39

(What is the difference between monwf and movf)

Answer:

Movwf moves the content of WREG to a fileregister.

movf moves the content of the fileregister to wreg or itself.

Problem 48

(What is the statut of the C and Z flags agter following code"movlw FFH addwf 1)

Answer: C flag is 1 and Z flag is 1

Problem 53

(Show a simple code to (a) load 11H into location 0-5 (B) add them to gether and place the result in WREG as the values are added. use EQU to assign names R0-R5 to location 0-5)

Answer:

R0 equ 0x10

R1 equ 0x10

R2 equ 0x10

R3 equ 0x10

R4 equ 0x10

R5 equ 0x10

org 0

movlw 11H

movwf R0

movwf R1

movwf R2

movwf R3

movwf R4

movwf R5

movlw 0

movf R0,w

addwf R1,w

addwf R1,w

addwf R2,w

addwf R3,w

addwf R4,w

addwf R5,w

End \$

Chapter 3

Problem 7

(True or False The target of a BNZ can be anywhere in the 2M address space)

Answer: False BNZ is 2-byte instruction address must be withing 256 bytes of the program counter

Problem 12

(Show code for a nested loop to perform an action 1000 times)

```
Answer:
```

```
counter1 equ 0x10
counter2 equ 0x11
movlw D'10
movwf counter1
 loop:
 movlw D'100
 movwf counter2
   loop2:
   Nop
   Decfsz Counter2
   bra loop2
   decfsz counter1
   bra loop1
   bra ending
 ending:
 bra $
```

Problem 19

(True or False the RCALL target address can be anywhere in the 2M address)

Answer: False Rcall is relavtive call that can be used when the call is half of the current segment

Problem 20

(True or false the call target address can be anywhere in the 2M address space)

Answer: True. Call is 4 bit instruction

Problem 28

(Find the instruction cycle if the crystal frequency is 20Mhz

Assuming the cycle consists from 4 oscillator periods.

20Mhz/4 = 5MHz → Intstruction cycle = 1/5MHz = 200nanoseconds

Answer: instruction cycle: 200 nanoseconds

Chapter 4

Problem 12

(Write program to get 8-bit data from Port D)

Answer:

BSF portC

BSC portB

BSC portD

kierros1:

BTFSC portC, 8

Bra Kierros2

BCF portB,8

BCF portD,8

Goto kierros1

kierros2:

BSF portB,8

BSF portD,8

Goto Kierros1

Problem 15

Write a program to toggle all the bits of Port B and Port c continuously

- (a) using AAH and 55H
- (b) using COMF instruction

(a)

counter egu 0x10

luku equ 0x11

Org 0

movlw 55H

movwf luku

movlw AAH

Silmukka: | Delay: movff luku portB | movlw .250

call delay | movwf counter

movff luku portC | Tauko:
call delay | nop
addwf portB, f | nop
call delay | nop

addwf portC, f | decf counter

Bra Silmukka | bnz Tauko | movlw AAH

return

```
(b)
```

counter egu 0x10

Org 0 movlw 55H movwf portB

movwf portC

Silmukka: | Delay: compf portB,f | movlw .250

compf portC,f | movwf counter call delay | Tauko:
Bra Silmukka | nop

nop

decf counter bnz Tauko movlw AAH return

Problem 21

(Write a program to toggle RD3,RD7 and RD5 constantly without disturbing the rest of the bitts)

Org 0

clrf pordD

Silmukka:

BTFSC portD,3

Bra pone

BTG portD,3

BTG portD,7

BTG portD, 5

Bra Silmukka

pone:

BTG portD,3

BTG portD,7

BTG portD, 5

Bra Silmukka

Problem 24

(Write a program to monitor the REO bit when it is high send 99H to port B if its low send 66H to port C)

Org 0

setf PortE clrf portB clrf portC Silmukka: BTFSS port E, 0 Bra Onolla movlw 99H movwf portB, f Bra Silmukka Onolla: movwl 66H movwf portC, f

Bra Silmukka