Complex Geometry. HW 7 IAN JORQUERA

- (11.3) Let $\operatorname{Pic}(\mathbb{CP}^1)$ be the equivalence classes of isomorphic line bundles of \mathbb{CP}^1 . We already know that every line bundle is isomorphic to $\mathcal{O}_{\mathbb{CP}^1}(d)$ for some $d \in \mathbb{Z}$, so these can be the representatives of the elements of the Picard Group. We also know that the tensor product is a binary operator on $\operatorname{Pic}(\mathbb{CP}^1)$. Consider the following surjective map $\Phi : \mathbb{Z} \to \operatorname{Pic}(\mathbb{CP}^1)$ by $d \mapsto [\mathcal{O}_{\mathbb{CP}^1}(d)]$ the class of line bundles isomorphic to $\mathcal{O}_{\mathbb{CP}^1}(d)$ We show that this is a group isomorphism, showing that the picard group is a group and is isomorphic to \mathbb{Z} .

 Notice that $\varphi(d_1+d_2) = [\mathcal{O}_{\mathbb{CP}^1}(d_1+d_2)] = [\mathcal{O}_{\mathbb{CP}^1}(d_1) \otimes \mathcal{O}_{\mathbb{CP}^1}(d_2)] = [\mathcal{O}_{\mathbb{CP}^1}(d_1)] \otimes [\mathcal{O}_{\mathbb{CP}^1}(d_2)] = \varphi(d_1) + \varphi(d_2)$ Also notice that $\varphi(0) = [\mathcal{O}_{\mathbb{CP}^1}(0)]$ which acts as an identity on $\operatorname{Pic}(\mathbb{CP}^1)$
 - with tensoring. Finally notice that $\varphi(d) = [\mathcal{O}_{\mathbb{CP}^1}(d_1) \otimes \mathcal{O}_{\mathbb{CP}^1}(d_2)] = [\mathcal{O}_{\mathbb{CP}^1}(d_1) \otimes \mathcal{O}_{\mathbb{CP}^1}(d_2)] = [\mathcal{O}_{\mathbb{CP}^1}(d_1) \otimes \mathcal{O}_{\mathbb{CP}^1}(d_2)] = [\mathcal{O}_{\mathbb{CP}^1}(d_2)] = [\mathcal{O}_{\mathbb{CP}^1}$
- (12.4) $H^0(\mathbb{CP}^1, \mathcal{O}_{\mathbb{CP}^1}(d))$ was defined to be the kernel of the map δ . Notice that if $(s_1, s_2) \in \ker \delta$ then $s_1|_{U_0 \cap U_1} \equiv s_2|_{U_0 \cap U_1}$. And because s_1 is holomorphic at 0, and s_2 is holomorphic at ∞ , it must be the case that s_1 has no worse then a removable singularity at ∞ and likewise s_2 has a removable singularity at 0. This means with these two points $s_1 \equiv s_2$ and so are equal and holomorphic everywhere.