Foodservice Recommender System

Springboard Data Science

Capstone project 2

Hye Joo Han

Project Goal

Imaginary client: a food delivery service company

• Goal:

- Analyze ratings for foodservice businesses
 (e.g., restaurants, coffee shops and breweries)
- Build a recommender system models that predict ratings
- Make business recommendations

Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
 - Businesses
 - Reviews
 - Users
- Recommender system models
- Final recommendation

Datasets

- Yelp datasets downloaded from https://www.yelp.com/dataset
- 3 files in json format.
 - review.json
 (review data with star rating, user_id, business_id, review date and comment)
 - business.json
 (business information in 10 metropolitan areas such as location data, number of reviews, average stars, attributes, and categories)
 - user.json
 (user information such as user_id, average stars and first date on Yelp)
- Cleaned each dataset (see the following slides)

Data Wrangling business.json

- 'categories' column
 - One top category and several subcategories related to the business
 - Selected only 'food' and 'restaurants' top categories
- 72,624 'food' and 'restaurants' businesses left
- Originally 18 columns, but 39 more added after expanding a dictionary column 'attributes'
- Missing values:
 - Dropped the columns with unnecessary information or too many missing values
 - Missing city names were guessed using latitude and longitude
- No suspicious outliers

Data Wrangling review.json

- String columns were cleaned
- Missing values
 - -1 for 'cool' or 'useful' vote counts
 - 0 star (only 1-5 stars are possible)
 - Removed 3 rows with these missing values
- Selected only the reviews for foodservice businesses
- 4,017,884 reviews left after cleaning and filtering

Data Wrangling user.json

- Many empty strings for user names and many 'None' (string type, not None type) for 'elite' and 'friends' columns. I did not clean these for now.
- I filtered out the users who have not left any reviews for foodservice businesses.
- 1,073,581 users left

Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
 - Businesses
 - Reviews
 - Users
- Recommender system models
- Final recommendation

Businesses

Where are the businesses?

Food and Restaurant Businesses on Yelp

- Mostly in North America and Europe
- Business in Antarctica? No, it was there due to swapped latitude and longitude

Average stars for business

Review count for business

- Review counts for businesses are highly right-skewed
- Top 6 businesses with the highest review counts have
 - Locations in Las Vegas, NV
 - Average stars higher than the mean stars (3.49)
 - Price ranges higher than the average price range, 1.7, except for one
- 3 questions made from the above result:
 - Which cities have the most reviews
 - Whether highly rated businesses tend to get more reviews
 - Whether more expensive businesses tend to get more reviews

Cities with the most reviews

- The city with the most number of reviews is Las Vegas, NV.
- The 9th city,
 Henderson is also
 part of the Las
 Vegas metropolitan
 area.

Do highly rated businesses tend to have more reviews?

Review counts VS Average star ratings businesses

 Highly rated businesses tend to have more reviews with some exceptions

Do more expensive businesses tend to get more reviews?

- The barplot (left) seems to show people are more likely to leave reviews for more expensive foodservice businesses
- However, the boxplot (right) shows there are not much difference in medians of review counts among the 4 different price ranges (outliers removed).

Price Range

- The most common price range is 2 and then 1
- Much fewer businesses with price range 3 and 4

Do more expensive businesses receive higher star ratings?

No (left), but it could be true for some cities (right)

Reviews

Frequency of each star in reviews

 Higher stars are more frequent except that 1 star is more frequent than 2 stars

Review date

- Monthly number of reviews have exponentially increased over time
- The monthly review count drops during winter months and reaches seasonal peaks around July

- The below violin plots show how distributions of stars changed over time and explain the quadratic shape in the graph for monthly mean stars (left).
- In the beginning, low stars were very rare and most stars were 3, 4, or 5. As years go by, 1 or 2 stars also became frequent. This can explain why the average stars were higher in the beginning and decreased over time.

 Up to 2013, 4 stars are the most frequent star rating, but from 2014 5 stars become the most frequent rating; this can explain the increase of average stars from 2014.

Users

Average stars for users

- Unimodal with a peak around 3.8 and is leftskewed
- Similar to the distribution of business average stars

Review Count for users

- Highly right-skewed
- 8 people who left even more than 6000 reviews

Monthly New User Counts

 Monthly new users increased over time and then started to decrease after the peak around 2014

Average Stars vs. Join Year

 The users who joined Yelp later tend to have higher average stars (ignoring the first couple years)

Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
 - Businesses
 - Reviews
 - Users
- Recommender system models
- Final recommendation

Data Preparation

- Selected Las Vegas—Henderson—Paradise metropolitan area (5 cities) only and cleaned city names
- Selected businesses and users with enough reviews
- Data left
 - 493,658 reviews
 - 20,340 users
 - 6,266 businesses
- Splitted test and training sets (10% vs. 90%)

Building recommender systems

- Predicted star ratings using collaborative filtering and content-based filtering algorithms
- Collaborative filtering
 - 4 algorithms
 - Used <u>Surprise</u>, a Python package developed for recommender systems
- Content-based filtering
 - 3 algorithms
 - Built using the basic concept of content-based filtering
 - Utilized Sci-kit learn
- Evaluated every model using RMSE

Collaborative Filtering

- Predicted ratings of a user on an item using ratings of other users
- Did not utilize metadata of items or users (content-based filtering)
- Grid search for hyperparameter tuning (if applicable)
- 3 fold cross-validation
- Algorithms
 - Normal Predictor
 - Baseline
 - SVD
 - Co-clustering

Content-based Filtering

- Built content-based filtering models using the <u>basic concept of</u> content-based filtering
- Regression algorithms with the business features as predictors
- Optimized model parameters for each user (for different user tastes)
- Preprocessing
 - Business features: city name, latitude, longitude, prince range, review count and categories (each business had multiple categories, 439 possible)
 - One-hot encoding for 5 kinds of city names
 - Reduced 439 subcategories to 100 using frequency and made one column for each category with 0's and 1's
- Regression algorithms used: Ridge, Random Forest and LightGBM

Top 5 models

 Collaborative filtering models outperformed content-based models

Feature Importances for the top user

- Only 37 nonzero importance features for the top user (LightGBM model).
- The top two features are latitude and longitude

Future Directions

- Error Analysis: the top user has only RMSE of 0.7629 for the LightGBM model. I would like to further investigate users and businesses with big RMSEs.
- The content-based filtering models tried here were made only using the basic concept. I would like to try more complex models for content-based filtering.
- Context-aware collaborative filtering (hybrid of content-based and collaborative filtering) would give the best ressult.

Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
 - Businesses
 - Reviews
 - Users
- Recommender system models
- Final recommendation

Final Recommendation from EDA

- Localized marketing strategy
 - EDA showed difference between cities
- Seasonal marketing
 - People leave more reviews during summer and less during winter
 - Summer could be the best season to raise profit for food delivery services
- Preference change over time
 - Review pattern change over time suggests to apply updated rating standards and consider ratings in recent years more
- Target elite users
 - Review counts of users are highly right-skewed and some people left even several thousands of reviews

Final Recommendation from recommender systems

- In general, collaborative filtering would perform better than contentbased filtering when recommending restaurants that users might like.
- However, collaborative filtering is not applicable for new businesses or new users (cold start problem) and for such a case, content-based filtering algorithms could come into play.
- Collaborative filtering models also had low error when predictions are made for ratings of users with lots of reviews
- Context-aware collaborative filtering (hybrid of content-based and collaborative filtering) could be the best for better recommendations and new businesses and users.

Links

Final report

https://docs.google.com/document/d/1 t4QVGhCVr2dN7XrMNbW1KWa2EkonQcrVeO3WPMRoU/edit?usp=sharing

Jupyter notebooks on Github

https://github.com/math470/Springboard Capstone Project 2