1 Hyperparameters for DNNs Used.

Throughout the paper, we use the following hyperparameters for our DNNs. Using these hyperparameters and the architectures stated in our repository, the trained DNNs successfully recovered the key.

Table 1: Hyperparameters used when training DNNs for each dataset.

	CW	ASCADf	ASCADr	AES_HD	ASCADf_desync50	ASCADf_desync100
Batch Size	128	50	200	256	500	300
Learning Rate	0.0001	0.005	0.005	0.005	0.001	0.001
Epochs	20	50	100	20	100	100
Weight Initialization	Glorot Uniform	He Uniform	He Uniform	He Uniform	Random Uniform	Glorot Uniform
Optimizer	RMSprop	Adam	Adam	Adam	RMSprop	RMSprop
Regularizer	None	None	None	None	l_2	Dropout
Regularizer Strength	-	-	-	-	0.0001	=

2 Details on DNN Architectures

Throughout this section, we denote classes = 9 for the HW leakage model and classes = 256 for the ID leakage model, and "padding = same" is padding evenly left and right such that the output has the same dimension as the input. We use the same DNN architecture for the CW dataset for both HW and ID leakage models. The architecture is explained in Table 2.

Table 2: DNN architecture used for the CW dataset for both HW and ID leakage models.

Layers	Hyperparameters
Conv1D_1	eq:Number of filters/channels out = 8, kernel size = 11, stride = 1, padding = same, activation = ReLU
Average Pooling	kernel size = 2, stride = 2
Linear Regression 1	$features \ out = = 128, \ activation = ReLU$
Linear Regression 2	features out = 128, activation = ReLU
Linear Regression 3	${\it features out} = classes, {\it activation} = {\it Softmax}$

Table 3: DNN architecture used for the ASCADf and ASCADr datasets.

Layers	Hyperparameters	
Conv1D_1	eq:Number of filters/channels out = 128, kernel size = 25, stride = 1, padding = same, activation = SeLU	
Batch Normalization		
Average Pooling	kernel size = 25, stride = 25	
Linear Regression 1	features out $= 20$, activation $= SeLU$	
Linear Regression 2	features out = 15, activation = $SeLU$	
Linear Regression 3	${\it features out} = classes, {\it activation} = {\it Softmax}$	

We used the same architecture for ASCADf and ASCADr (Table 3). For the AES_HD dataset, we use the same DNN architecture as in Zaid et al. [1]. Details are in Table 4. Table 4: DNN architecture used for the AES_HD dataset.

Layers	Hyperparameters	
Conv1D_1	eq:Number of filters/channels out = 2, kernel size = 1, stride = 1, padding = same, activation = SeLU	
Average Pooling	kernel size = 4, stride = 4	
Linear Regression 1	features out = 15, activation = SeLU	
Linear Regression 2	features out = 10, activation = SeLU	
Linear Regression 3	features out = 4, activation = SeLU	
Linear Regression 4	features out $= classes$, activation $= Softmax$	

Table 5: DNN architecture used for the ASCADf_desync50 dataset.

	· · · · · · · · · · · · · · · · · · ·	
Layers	Hyperparameters	
Conv1D_1	$Number\ of\ filters/channels\ out=8,\ kernel\ size=34,\ stride=17,\ padding=same,\ activation=SeLU$	
Max Pooling	kernel size = 2, stride = 2	
Batch Normalization		
Linear Regression 1	features out $= 400$, activation $= SeLU$	
Linear Regression 2	features out $= 400$, activation $= SeLU$	
Linear Regression 3	features out $= 400$, activation $= SeLU$	
Linear Regression 4	features out $= 400$, activation $= SeLU$	
Linear Regression 5	${\it features out} = classes, {\it activation} = {\it Softmax}$	

Table 6: DNN architecture used for the ASCADf_desync100 dataset.

	· · · · · · · · · · · · · · · · · · ·	
Layers	Hyperparameters	
Conv1D_1	eq:Number of filters/channels out = 12, kernel size = 30, stride = 15, padding = same, activation = SeLU	
Max Pooling	kernel size = 2, stride = 2	
Batch Normalization		
Linear Regression 1	features out = 300, activation = SeLU	
Dropout rate = 0.05		
Linear Regression 2	features out = 300, activation = SeLU	
Dropout rate = 0.05		
Linear Regression 3	features out $= classes$, activation $= Softmax$	

As for DNNs trained on the desynchronized datasets, we show the architectures in Tables 5 and 6 for ASCADf_desync50 and ASCADf_desync100, respectively.

3 Hyperparameter Search Space to Find More DNNs

In various cases, we would like to find more DNNs for our experiments. The hyperparameter search space to find the 10 DNNs for Section 7 are stated in Table 7.

References

[1] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, "Methodology for Efficient CNN Architectures in Profiling Attacks," *IACR Transactions* on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 1, p.

Hyperparameter	Options	
	CNN	
Convolution layers	1 to 4 in step of 1	
Convolution filters	4 to 16 in step of 4	
Kernel size	26 to 52 in step of 2	
Pooling type	Average or Max	
Pooling size	2 to 10 in step of 2	
Number of Dense Layers	1 to 4 in a step of 1	
Neurons per layer	10, 20, 50, 100, 200, 300, 400, 500	
	Others	
Batch size	300 to 1100 in a step of 100	
Activation function	ReLU or $SeLU$	
Optimizer	Adam or RMSprop	
Learning Rate	0.0005, 0.0001, 1e - 4, 5e - 4	
Weight Initializer	Random Uniform or Glorot Uniform or He Uniform	

Table 7: Hyperparameter search space.

1–36, Nov. 2019. [Online]. Available: https://tches.iacr.org/index.php/ $\rm TCHES/article/view/8391$