

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

## **Lubricant additives.**

**Patent number:** EP0166696  
**Publication date:** 1986-01-02  
**Inventor:** FRIEDRICH HANS-HELMUT; WIRTH HERMANN O DR  
**Applicant:** CIBA GEIGY AG (CH)  
**Classification:**  
- **international:** C10M135/20; C07C149/18; C07C149/20; C07C149/267,  
C07C149/26; C07C149/42; C07C149/23; C07D303/34;  
C07D293/10; C07D293/04; C07C149/273  
- **european:** C10M135/28, C10M137/10B, C07C149/18, C07C149/20  
C07C149/26, C07C149/267, C07C149/273,  
C07D303/34, C10M135/24, C10M135/26, C10M135/32,  
C07D207/26B2, C07D213/70B, C07D215/36,  
C07D277/36, C07D277/74, C07D285/12D4

**Application number:** EP19850810292 19850624

**Priority number(s):** CH19850002047 19850514; CH19840003148 19840629

**Also published as:**

 JP61031494 (A)  
 EP0166696 (A3)  
 EP0166696 (B1)

### Cited documents:

 EP0001217  
 US4246127  
 DE2730414

## Abstract of EP0166696

1. A composition containing a lubricant or a hydraulic fluid and at least one compound of the formula I see diagramm : EP0166696,P26,F1 in which R can be a radical of the form see diagramm : EP0166696,P26,F2 where  $R^{**1}$ ,  $R^{**2}$  and  $R^{**3}$  independently of one another are each C1 -C18 alkyl and together contain no more than 22 C atoms, and  $R^{**2}$  and  $R^{**3}$  are in addition hydrogen, or in which R is C5 -C6 cycloalkyl, phenyl or naphthyl unsubstituted or substituted by C1 -C4 alkyl, or is benzyl, furyl, thieryl, morpholinyl, imidazolyl, thiazolyl, oxazolyl, imidazolinyl, thiazolinyl, oxazoliyl, benzimidazolinyl, benzothiazolinyl or benzoxazolinyl, and in which  $R^{**4}$  is phenyl unsubstituted or substituted by -NH<sub>2</sub> , or is C1 -C16 -alkyl which is unsubstituted or substituted by phenyl, -NH<sub>2</sub> , 2-oxopyrrolidino, cyano, perfluoro-C1 -C8 alkyl or one or two OH groups, and which can be interrupted by -O- or -S-, or is C5 -C6 cycloalkyl, or  $R^{**4}$  is -(CH<sub>2</sub>)<sub>m</sub> -S-CH<sub>2</sub> -CH(OH)-CH<sub>2</sub> -S-(C1 -C16 alkyl), m being zero to 6, or  $R^{**4}$  is -(CH<sub>2</sub>)<sub>n</sub> -C(O)-O-R<sup>\*\*5</sup> where n is 1 or 2, and  $R^{**5}$  is hydrogen, C1 -C16 alkyl or an alkali metal, or in which  $R^{**4}$  is -CH[-CO-OR<sup>\*\*5</sup>] [-CH<sub>2</sub> -CO-OR<sup>\*\*5</sup>] where  $R^{**5}$  has the meaning given above, or in which  $R^{**4}$  is -(CH<sub>2</sub>)<sub>r</sub> -C(O)-OH<sub>9</sub>H<sub>2</sub> N-(C8 -C16 alkyl) or -(CH<sub>2</sub>)<sub>r</sub> -C(O)-OH<sub>9</sub>N-(CH<sub>2</sub> -CH<sub>2</sub> -OH)<sub>3</sub> , r being 1 or 2, or is -P(X)-[O-R<sup>\*\*6</sup>]<sub>2</sub> , where X can be O or S, and  $R^{**6}$  is C1 -C16 alkyl, phenyl or tolyl, or in which  $R^{**4}$  is alpha- or beta-naphthyl, benzothiazolyl, benzimidazolyl, benzoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyridyl, quinolyl, imidazolyl, imidazolinyl, oxazolinyl, -SO<sub>2</sub> -O-(alkali metal), -C6 H<sub>4</sub> -C(O)-O-(alkali metal), 2-oxo-4-hydroxy-3-penten-3-yl or -(CH<sub>2</sub>)<sub>s</sub> -R<sup>\*\*7</sup>, where s is 1 to 4, and  $R^{**7}$  is benzoxazolyl, benzimidazolyl,



benzothiazolyl, thiazolinyl, imidazolinyl or oxazolinyl, or in which R\*\*4 is -(CH<sub>2</sub>)<sub>t</sub>-CO-N-(R\*\*8)(R\*\*9), in which t is 1 or 2, and R\*\*8 is C<sub>1</sub>-C<sub>16</sub> alkyl which can be substituted by -OH, or is phenyl, 3-hydroxyphenyl or alpha-naphthyl, and R\*\*9 is hydrogen or R\*\*8, or in which R\*\*4 is -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R\*\*10, where R\*\*10 is hydrogen or C<sub>1</sub>-C<sub>16</sub>-alkyl, or in which R\*\*4 is a radical -R\*\*11-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R where R has the meaning given above, and R\*\*11 is a radical -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-, o- or m-phenylene, thiadiazol-2,5-ylene or -(CH<sub>2</sub>)<sub>u</sub>-, u being zero to 8, or a radical of the formulas see diagramm : EP0166696,P27,F3

---

Data supplied from the esp@cenet database - Worldwide



Europäisches Patentamt  
European Patent Office  
Office européen des brevets

19 ⑪ Veröffentlichungsnummer:

0 166 696  
A2

12

## EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 85810292.4

51 Int. Cl.: C 10 M 135/20, C 07 C 149/18,  
C 07 C 149/20, C 07 C 149/267,  
C 07 C 149/26, C 07 C 149/42,  
C 07 C 149/23, C 07 D 303/34,  
C 07 D 293/10, C 07 D 293/04,  
C 07 C 149/273

22 Anmeldetag: 24.06.85

23 Priorität: 29.06.84 CH 3148/84  
14.05.85 CH 2047/85

71 Anmelder: CIBA-GEIGY AG, Klybeckstrasse 141,  
CH-4002 Basel (CH)

24 Veröffentlichungstag der Anmeldung: 02.01.86  
Patentblatt 86/1

72 Erfinder: Wirth, Hermann O., Dr., Lessingstrasse 24,  
D-6140 Bensheim 3 (DE)  
Erfinder: Friedrich, Hans-Helmut, Am Rauhenstein 8,  
D-6147 Lautertal 2 (DE)

25 Benannte Vertragsstaaten: BE DE FR GB IT

### 54 Zusätze für Schmierstoffe.

57 Zusammensetzungen, enthaltend Verbindungen der  
Formel I



worin R ein Radikal der Form



A2

sein kann, wobei R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> unabhängig voneinander C<sub>1</sub>-C<sub>18</sub>-Alkyl sind und zusammen nicht mehr als 22 C-Atome besitzen und R<sup>2</sup> und R<sup>3</sup> ausserdem Wasserstoff sind, oder worin R C<sub>1</sub>-C<sub>6</sub>-Cycloalkyl, unsubstituiertes oder durch C<sub>1</sub>-C<sub>6</sub>-Alkyl substituiertes Phenyl oder Naphthyl, Benzyl, Furyl, Thienyl, Morpholinyl, Imidazolyl, Thiazolyl, Oxazolyl, Imidazolinyl, Thiazolinyl, Oxazolinyl, Benzimidazolinyl, Benzthiazolinyl, Benzoxazolinyl ist, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub>, substituiertes Phenyl, unsubstituiertes oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano, Perfluoro-C<sub>1</sub>-C<sub>6</sub>-Alkyl oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>18</sub>-Alkyl, das gegebenenfalls durch -O- oder

-S- unterbrochen sein kann, oder C<sub>5</sub>-C<sub>6</sub>-Cycloalkyl ist oder R<sup>4</sup>



(C<sub>1</sub>-C<sub>18</sub>-Alkyl) mit m gleich 0 bis 6 ist, oder R<sup>4</sup>



ist, wobei n gleich 1 oder 2 und R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>18</sub>-Alkyl oder Alkalimetall ist, oder worin R<sup>4</sup>



bedeutet, wobei R<sup>5</sup> die oben gegebene Bedeutung aufweist, oder worin R<sup>4</sup>



(C<sub>1</sub>-C<sub>18</sub>-Alkyl) oder



mit r gleich 1 oder 2 oder -P(X)O-R<sup>6</sup>, darstellt, wobei X = O oder S sein kann, und R<sup>6</sup> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder Tolyl ist, oder worin R<sup>4</sup> α- oder β-Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Triazolyl, Tetrazolyl, Pyridyl, Chinolyl, Imidazolyl, Imidazolinyl, Oxazolinyl, -SO<sub>2</sub>-O-(Alkalimetall), -C<sub>6</sub>H<sub>4</sub>-C(O)-O-(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl oder +CH<sub>2</sub>-R<sup>7</sup>

EP 0 166 696 A2

016696

ist, wobei s gleich 1 bis 4 ist und R' Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin R"



bedeutet, worin t gleich 1 oder 2 ist und R" C<sub>6</sub>-C<sub>14</sub>-Alkyl, das gegebenenfalls durch —OH substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder α-Naphthyl und R' Wasserstoff oder R" ist, oder worin R" = CH(OH) — CH<sub>2</sub> — S — R" ist, wobei R" Wasserstoff oder C<sub>6</sub>-C<sub>14</sub>-Alkyl ist, oder worin R" einen Rest — R" — S — CH<sub>2</sub> — CH(OH) — CH<sub>2</sub> — S — R darstellt, wobei R die oben gegebene Bedeutung hat und R" ein Radikal



o- oder m-Phenylen, Thiadiazol-2,5-yl oder  $\text{---CH}_2\text{---}$  mit u gleich 0 bis 8 ist oder ein Radikal der Formeln



darstellt, finden Verwendung als Additive in Schmierstoffen bzw. Schmiersystemen. Ausserdem werden einige neue Verbindungen, die unter die allgemeine Formel I fallen, beansprucht.

016696

- 1 -

CIBA-GEIGY AG  
Basel (Schweiz)

3-14990/1+2/CGM 293

Zusätze für Schmierstoffe

Die vorliegende Erfindung betrifft Schmierstoffe und Hydraulikflüssigkeiten, enthaltend thioäthergruppenhaltige Verbindungen, die Verwendung dieser Verbindungen als Additive und thioäthergruppenhaltige Verbindungen.

Aus der US-PS 4 246 127 sind Mercaptane, Thioäther, Di- und Polysulfide und deren Einsatz als Schmierstoffzusätze bekannt.

Schmierstoffen werden im allgemeinen verschiedene Zusatzstoffe zur Verbesserung ihrer Gebrauchseigenschaften beigegeben. Da Schmierstoffe zur Uebertragung grösserer Kräfte ein hohes Lasttragevermögen benötigen, werden diesen sogenannte Hochdruck- und Antiverschleiss-Additive zugesetzt, wodurch die sonst auftretenden Verschleisserscheinungen stark erniedrigt werden. Wenn andererseits z.B. Sauerstoff und Feuchtigkeit gleichzeitig auf eine Metalloberfläche einwirken, kann Korrosion auftreten, weshalb Korrosionsinhibitoren mit dem Ziel zugegeben werden, den Zutritt solcher Stoffe zur Metalloberfläche zu verhindern. Die beispielsweise bei erhöhter Temperatur verstärkt durch Luftsauerstoff eintretenden Oxidationsreaktionen in einem Schmierstoff können durch Zugabe von Antioxidantien unterbunden werden. Es ist bekannt, dass bestimmte Stoffe als Additive für Schmierstoffe eine Anzahl derartiger Eigenschaften in sich vereinigen können; sie werden als sogenannte Vielzweck-Additive bezeichnet. Solche Stoffe sind natürlich aus ökonomischen und praktischen Gründen sehr gefragt.

Die Verbindungen dieser Erfindung vereinigen einige dieser Eigenschaften.

0165696

- 2 -

Die vorliegende Erfindung betrifft Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel I



worin R ein Radikal der Form  $\begin{matrix} & R^3 \\ & | \\ R^1 - C - & | \\ & | \\ & R^2 \end{matrix}$  sein kann, wobei  $R^1$ ,  $R^2$  und

$R^3$  unabhängig voneinander  $C_1-C_{18}$ -Alkyl sind und zusammen nicht mehr als 22 C-Atome besitzen und  $R^2$  und  $R^3$  ausserdem Wasserstoff sind, oder worin  $R$   $C_5-C_6$ -Cycloalkyl, unsubstituiertes oder durch  $C_1-C_4$ -Alkyl substituiertes Phenyl oder Naphthyl, Benzyl, Furyl, Thienyl, Morpholinyl, Imidazolyl, Thiazolyl, Oxazolyl, Imidazolinyl, Thiazolinyl, Oxazolinyl, Benzimidazolinyl, Benzthiazolinyl, Benzoxazolinyl ist, und worin  $R^4$  unsubstituiertes oder durch  $-NH_2$  substituiertes Phenyl, unsubstituiertes oder durch Phenyl,  $-NH_2$ , 2-Oxopyrrolidino, Cyano, Perfluoro- $C_1-C_8$ -Alkyl oder eine oder zwei OH-Gruppen substituiertes  $C_1-C_{16}$ -Alkyl, das gegebenenfalls durch  $-O-$  oder  $-S-$  unterbrochen sein kann, oder  $C_5-C_6$ -Cycloalkyl ist oder  $R^4-(CH_2)_m-S-CH_2-CH(OH)-CH_2-S-(C_1-C_{16}$ -Alkyl) mit  $m$  gleich 0 bis 6 ist, oder  $R^4-(CH_2)_n-C(O)-O-R^5$  ist, wobei  $n$  gleich 1 oder 2 und  $R^5$  Wasserstoff,  $C_1-C_{16}$ -Alkyl oder Alkalimetall ist, oder worin  $R^4-CH[-CO-OR^5][-CH_2-CO-OR^5]$  bedeutet, wobei  $R^5$  die oben gegebene Bedeutung aufweist, oder worin  $R^4-(CH_2)_r-C(O)-OH\cdot H_2N-(C_8-C_{16}$ -Alkyl) oder  $-(CH_2)_r-C(O)-OH\cdot N(CH_2-CH_2-OH)_3$  mit  $r$  gleich 1 oder 2 oder  $-P(X)-[O-R^6]_2$  darstellt, wobei  $X = O$  oder  $S$  sein kann, und  $R^6$   $C_1-C_{16}$ -Alkyl, Phenyl oder Tollyl ist, oder worin  $R^4 \alpha-$  oder  $\beta$ -Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Triazolyl, Tetrazolyl, Pyridyl, Chinolyl, Imidazolyl, Imidazolinyl, Oxazolinyl,  $-SO_2-O$ -(Alkalimetall),  $-C_6H_4-C(O)-O$ -(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl oder  $t\cdot CH_2-s-R^7$  ist, wobei  $s$  gleich 1 bis 4 ist und  $R^7$  Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin  $R^4-(CH_2)_t-CO-N(R^8)(R^9)$  bedeutet, worin  $t$  gleich

1 oder 2 ist und  $R^8 C_1-C_{16}$ -Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl, Hydroxyphenyl oder  $\alpha$ -Naphthyl und  $R^9$  Wasserstoff oder  $R^4$  ist, oder worin  $R^4-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  Wasserstoff oder  $C_1-C_{16}$ -Alkyl ist, oder worin  $R^4$  einen Rest  $-R^{11}-S-CH_2-CH(OH)-CH_2-S-R$  darstellt, wobei R die oben gegebene Bedeutung hat und  $R^{11}$  ein Radikal  $\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} O \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} O \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} CH_2$ , o- oder m-Phenylen, Thiadiazol-2,5-ylen oder  $\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} u$  mit u gleich 0 bis 8 ist oder ein Radikal der Formeln



darstellt.

Stellt R ein Radikal der Form  $R^1-C^3-$  dar, so kann es sich um  $R^1-CH_2-$ ,  $R^1\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} C^3\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} R^2$  handeln, wobei  $R^1$ ,  $R^2$  und  $R^3$

jeweils  $C_1-C_{18}$ -Alkyl sind. Bei  $C_1-C_{18}$ -Alkyl handelt es sich um geradkettige oder verzweigte Substituenten, wie beispielsweise Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, geradkettiges oder verzweigtes Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl oder Octadecyl. Bevorzugt ist

$R^1-C^3-$ , worin  $R^1$ ,  $R^2$  und  $R^3$  zusammen mit dem C-Atom, an das sie

016696

- 4 -

gebunden sind,  $C_4-C_{14}$ -Alkyl bilden, wobei keiner dieser Substituenten  $R^1$ ,  $R^2$  und  $R^3$  Wasserstoff sein darf; besonders bevorzugt ist hier nun  $C_4-C_{14}$ -Alkyl, insbesondere ist tert.-Butyl, tert.-Nonyl (ex Phillips Petroleum) oder tert.-Dodecyl bevorzugt, wobei z.B. unter tert.-Dodecyl solch ein Rest verstanden werden soll, wie er für tertiäres Dodecylmercaptan in "Ullmanns Enzyklopädie der technischen Chemie, 4. Auflage, Band 23, Seite 181-182, Verlag Chemie, Weinheim" beschrieben ist.

Stellt  $R$   $C_5-C_6$ -Cycloalkyl dar, so handelt es sich um Cyclopentyl oder Cyclohexyl.

Stellt  $R$  durch  $C_1-C_4$ -Alkyl substituiertes Phenyl oder Naphthyl dar, so können Phenyl oder Naphthyl ein- bis dreifach, bevorzugt jedoch einfach, substituiert sein; bei  $C_1-C_4$ -Alkyl handelt es sich um Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl oder tert.-Butyl.

Ist  $R^4$   $C_1-C_{16}$ -Alkyl oder liegt in den Substituenten für  $R^4$ , wie bei  $-(CH_2)_m-S-CH_2-CH(OH)-S-(C_1-C_{16}-\text{Alkyl})$ ,  $-(CH_2)_n-C(O)-O-(C_1-C_{16}-\text{Alkyl})$ ,  $-P(X)-[O-R^6]_2$  oder  $-CH_2-CH(OH)-CH_2-S-(C_1-C_{16}-\text{Alkyl})$ , oder  $R^5$ ,  $R^8$  oder  $R^{10}$  ein  $C_1-C_{16}$ -Alkylrest vor, so handelt es sich um geradkettige oder verzweigte Alkylradikale, wie beispielsweise Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, oder geradkettiges oder verzweigtes Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl oder Hexadecyl, bevorzugt sind Isopropyl, tert.-Butyl, Isooctyl, 2-Ethylhexyl, tert.-Nonyl, tert.-Dodecyl oder tert.-Tridecyl. Dabei wird unter Isooctyl ein Rest verstanden, der sich vom Isooctylalkohol ableitet, und eine Mischung verschieden verzweigter Octylreste ist; für tert.-Nonyl sowie für tert.-Dodecyl sind die oben bereits gegebenen Definitionen anzuwenden.

016696

- 5 -

Liegt für  $R^4 \rightarrow (CH_2)_r C(O)-OH \cdot H_2N-(C_8-C_{16}-\text{Alkyl})$  vor, so handelt es sich darin bei  $C_8-C_{16}-\text{Alkyl}$  um geradkettige oder verzweigte Substituenten, wie beispielsweise Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl oder Hexadecyl, bevorzugt um tert.-Tridecyl. Als Amin kommt ferner in Frage  $N-(CH_2-CH_2-OH)_3$ .

Ist  $R^4$  durch Phenyl substituiertes  $C_1-C_{16}-\text{Alkyl}$ , so handelt es sich bevorzugt um durch Phenyl substituiertes  $C_1-C_4-\text{Alkyl}$ , wobei das Phenyl endständig ist, besonders bevorzugt um Benzyl.

Ist  $R^4$  durch ein oder zwei OH-Gruppen substituiertes  $C_1-C_{16}-\text{Alkyl}$ , so handelt es sich bevorzugt um  $-CH_2-CH_2-OH$ ,  $-CH(OH)-CH_2-OH$  oder  $-CH_2-CH(OH)-CH_2-OH$ .

Ist  $R^4$  durch  $-NH_2$  substituiertes  $C_1-C_{16}-\text{Alkyl}$ , so handelt es sich bevorzugt um  $-CH_2-CH_2-NH_2$ .

Ist  $R^5$  Alkalimetall oder tritt letzteres in  $-SO_2-O-$ (Alkalimetall) oder  $-C_6H_4-CO-O-$ (Alkalimetall) auf, so handelt es sich bevorzugt um Natrium oder Kalium.

Bevorzugt sind Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II



worin  $R^1$ ,  $R^2$  und  $R^3$  zusammen mit dem C-Atom, an das sie gebunden sind,

$C_4-C_{20}$ -Alkyl sind, wobei keiner dieser Substituenten  $R^1$ ,  $R^2$  und  $R^3$  Wasserstoff sein darf, und worin  $R^4$  unsubstituiertes oder durch  $-NH_2$  substituiertes Phenyl, unsubstituiertes oder durch Phenyl,  $-NH_2$ , 2-Oxo-pyrrolidino, Cyano, Perfluoro- $C_1-C_8$ -Alkyl, oder eine oder zwei OH-Gruppen substituiertes  $C_1-C_{16}$ -Alkyl, das gegebenenfalls durch  $-O-$  oder  $-S-$  unterbrochen sein kann, oder  $C_5-C_6$ -Cycloalkyl ist oder  $R^4$   $-(CH_2)_m-S-CH_2-CH(OH)-CH_2-S-(C_1-C_{16}-\text{Alkyl})$  mit  $m$  gleich 0 bis 6 oder  $-(CH_2)_n-C(O)-O-R^5$  ist, wobei  $n$  gleich 1 oder 2 und  $R^5$  Wasserstoff,  $C_1-C_{16}$ -Alkyl oder Alkalimetall ist, oder worin  $R^4$   $-CH[-CO-OR^5][-CH_2-CO-OR^5]$  bedeutet, wobei  $R^5$  die oben gegebene Bedeutung aufweist, oder worin  $R^4$   $-(CH_2)_r-C(O)-OH-H_2N-(C_8-C_{16}-\text{Alkyl})$  oder  $-(CH_2)_r-C(O)-OH-N(CH_2-CH_2-OH)$  mit  $r$  gleich 1 oder 2, oder  $-P(X)-[O-R^6]_2$  darstellt, wobei  $X = O$  oder  $=S$  sein kann und  $R^6 C_1-C_{16}$ -Alkyl, Phenyl oder Tollyl ist, oder worin  $R^4 \alpha-$  oder  $\beta$ -Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Pyridyl, Chinolyl, Imidazolinyl, Oxazolinyl,  $-SO_2-O$ -(Alkalimetall),  $C_6H_4-C(O)-O$ -(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl,  $-C_6H_4-C(O)-O$ -(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl,  $-(CH_2)_s-R^7$  ist, wobei  $s$  gleich 1 bis 4 ist und  $R^7$  Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin  $R^4 -(CH_2)_t-CO-N(R^8)(R^9)$  bedeutet, wobei  $t$  gleich 1 oder 2 ist und  $R^8 C_1-C_{16}$ -Alkyl, das gegebenenfalls durch  $-OH$  substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder  $\alpha$ -Naphthyl und  $R^9$  Wasserstoff oder  $R^8$  ist, oder worin  $R^4$   $-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  Wasserstoff oder  $C_1-C_{16}$ -Alkyl ist, oder worin  $R^4$  einen Rest  $-R^{11}-S-CH_2-CH(OH)-CH_2-S-C(R^3)-R^1$  darstellt, wobei  $R^1$ ,  $R^2$  und  $R^3$  die oben gegebene Bedeutung haben und  $R^{11}$  ein Radikal  $-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2$ , o- oder m-Phenylen, Thiadiazol-2,5-ylen oder  $-(CH_2)_u$  mit  $u$  gleich 0 bis 8, bevorzugt 2, ist oder ein Radikal der Formeln



darstellt.

Besonders bevorzugt sind Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II, worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>20</sub>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>13</sub>-Alkyl, das gegebenenfalls durch -O- oder -S- unterbrochen sein kann, ist oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C<sub>5</sub>-C<sub>16</sub>)-Alkyl mit m gleich 0 bis 4, oder -(CH<sub>2</sub>)<sub>n</sub>-CO-O-R<sup>5</sup> ist, wobei R<sup>5</sup> Wasserstoff, Kalium oder C<sub>4</sub>-C<sub>12</sub>-Alkyl und n gleich 1 oder 2 ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>r</sub>-CO-OH-H<sub>2</sub>N-(C<sub>10</sub>-C<sub>16</sub>-Alkyl) mit r gleich 1 oder 2, -P(S)-[O-R<sup>6</sup>]<sub>2</sub> darstellt, und R<sup>6</sup> C<sub>1</sub>-C<sub>8</sub>-Alkyl oder Phenyl ist, oder worin R<sup>4</sup> α-Naphthyl, Thiazolyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Pyridyl, Chinolyl oder -(CH<sub>2</sub>)<sub>s</sub>-R<sup>7</sup> ist, wobei s gleich 1 oder 2 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>t</sub>-CO-N(R<sup>8</sup>)(R<sup>9</sup>) ist, wobei t gleich 1 oder 2 ist und R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl oder α-Naphthyl ist, und R<sup>9</sup> Wasserstoff oder R<sup>8</sup> ist, oder worin R<sup>4</sup> -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R<sup>10</sup> ist, wobei R<sup>10</sup> C<sub>1</sub>-C<sub>14</sub>-Alkyl ist, oder worin R<sup>4</sup> einen Rest

$$-R^{11}-S-CH_2-CH(OH)-CH_2-S-C-\overset{R^3}{\underset{R^2}{|}}-R^1$$
 darstellt, wobei R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> die oben

gegebene Bedeutung haben und  $R^{11} - (CH_2)_2 - O - (CH_2)_2 - O - (CH_2)_2 -$ , o- oder m-Phenylen, Thiadiazol-2,5-ylen oder  $-(CH_2)_u$  mit u gleich 0 bis 4, bevorzugt 2, ist.

Insbesondere bevorzugt sind Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II, worin  $R^1$ ,  $R^2$  und  $R^3$  zusammen mit dem C-Atom, an das sie gebunden sind,  $C_4-C_{14}$ -Alkyl sind, wobei keiner dieser Substituenten  $R^1$ ,  $R^2$  und  $R^3$  Wasserstoff sein darf, und worin  $R^4$  Phenyl,  $-CH_2-CH_2-NH_2$ ,  $-CH_2-CH_2-OH$ ,  $-CH_2-CH(OH)-CH_2-OH$ , tertiäres  $C_4-C_{14}$ -Alkyl,  $-(CH_2)_2-S-CH(OH)-CH_2-S-(tert.-C_8-C_{12}$ -Alkyl),  $-CH_2-COOH$ ,  $-CH_2-CO-O-(i-C_8H_{17})$ ,  $-CH_2-CO-OH\cdot H_2N-(tert.-C_{10}-C_{16}$ -Alkyl),  $-P(S)-[O-(i-C_3H_7)]_2$ ,  $-P(S)-[O-(i-C_8H_{17})]_2$ , α-Naphthyl, Benzthiazolyl, Benzimidazolyl, Thiazolyl oder  $-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  tertiäres  $C_4-C_{14}$ -Alkyl ist, oder worin  $R^4$  einen Rest

$-R^{11}-S-CH_2-CH(OH)-CH_2-S-\underset{R^2}{\overset{R^3}{C}}-R^1$  darstellt, wobei  $R^1$ ,  $R^2$  und  $R^3$  die oben

gegebene Bedeutung haben und  $R^{11} - (CH_2)_2 - O - (CH_2)_2 - O - (CH_2)_2 -$ , o-Phenylen, Thiadiazol-2,5-ylen oder  $-(CH_2)_u$  mit u gleich 0 bis 2 ist.

Einen weiteren Gegenstand der Erfindung bilden neue Stoffe der Formel II, worin  $R^1$ ,  $R^2$  und  $R^3$  zusammen mit dem C-Atom, an das sie gebunden sind,  $C_4-C_{20}$ -Alkyl sind, wobei keiner dieser Substituenten  $R^1$ ,  $R^2$  und  $R^3$  Wasserstoff sein darf, und worin  $R^4$  unsubstituiertes oder durch  $-NH_2$  substituiertes Phenyl, unsubstituiertes  $C_1-C_9$ -Alkyl oder durch Phenyl,  $-NH_2$ , 2-Oxopyrrolidino, Cyano, Perfluoro- $C_1-C_8$ -Alkyl oder eine oder zwei OH-Gruppen substituiertes  $C_1-C_{16}$ -Alkyl ist, das gegebenenfalls durch  $-O-$  oder  $-S-$  unterbrochen sein kann, oder worin  $R^4 - (CH_2)_m-S-CH_2-CH(OH)-CH_2-S-(C_1-C_{16}$ -Alkyl) mit m gleich 0 bis 6, oder  $-(CH_2)_n-C(O)-O-R^5$  ist, wobei n gleich 1 oder 2 und  $R^5$  Wasserstoff,  $C_1-C_{16}$ -Alkyl oder Alkalimetall ist, oder worin  $R^4$

- 9 -

$-\text{CH}[-\text{CO-OR}^5][-\text{CH}_2-\text{CO-OR}^5]$  bedeutet, wobei  $\text{R}^5$  die oben gegebene Bedeutung aufweist, oder worin  $\text{R}^4 \xrightarrow{\text{r}} \text{C(O)-OH-NH}_2\text{-(C}_8\text{-C}_{16}\text{-Alkyl)}$  oder  $\xrightarrow{\text{r}} \text{C(O)-OH-N(-CH}_2\text{-CH}_2\text{-OH)}_3$  mit  $\text{r}$  gleich 1 oder 2, oder  $-\text{P(X)-[O-R}^6]_2$  darstellt, wobei  $\text{X}=\text{O}$  oder  $=\text{S}$  sein kann, und  $\text{R}^6 \xrightarrow{\text{s}} \text{C}_1\text{-C}_{16}\text{-Alkyl}$ , Phenyl oder Tollyl ist, oder worin  $\text{R}^4$   $\alpha$ - oder  $\beta$ -Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Pyridyl, Chinolyl, Imidazolinyl, Oxazolinyl,  $-\text{SO}_2\text{-O-(Alkalimetall)}$ ,  $-\text{C}_6\text{H}_4\text{-C(O)-O-(Alkalimetall)}$ , 2-Oxo-4-hydroxy-3-penten-3-yl, oder  $\xrightarrow{\text{s}} \text{C}_2\text{-R}^8$  ist, wobei  $\text{s}$  gleich 1 bis 4 ist und  $\text{R}^7$  Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin  $\text{R}^4 \xrightarrow{\text{t}} \text{CO-N(R}^8)(\text{R}^9)$  bedeutet wobei  $\text{t}$  gleich 1 oder 2 ist und  $\text{R}^8 \xrightarrow{\text{t}} \text{C}_1\text{-C}_{16}\text{-Alkyl}$ , das gegebenenfalls durch  $-\text{OH}$  substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder  $\alpha$ -Naphthyl ist und  $\text{R}^9$  Wasserstoff oder  $\text{R}^8$  ist, oder worin  $\text{R}^4 \xrightarrow{\text{t}} \text{CH}_2\text{-CH(OH)-CH}_2\text{-S-R}^{10}$  ist, wobei  $\text{R}^{10}$  Wasserstoff oder  $\text{C}_1\text{-C}_{16}\text{-Alkyl}$  ist, oder worin  $\text{R}^4$  einen Rest



$\text{o-}$  oder  $\text{m-Phenylen}$ , Thiadiazol-2,5-ylen oder  $\xrightarrow{\text{u}} \text{C}_2\text{-}$  mit  $\text{u}$  gleich 0 bis 8 ist oder ein Radikal der Formeln



darstellt.

Bevorzugt sind Verbindungen der Formel II, worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>20</sub><sup>3</sup>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes C<sub>4</sub>-C<sub>9</sub>-Alkyl oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>13</sub>-Alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C<sub>5</sub>-C<sub>16</sub><sup>5</sup>-Alkyl) mit m gleich 0 bis 4, oder -(CH<sub>2</sub>)<sub>n</sub>-CO-O-R<sup>5</sup> ist, wobei R Wasserstoff, Kalium oder C<sub>4</sub>-C<sub>12</sub><sup>4</sup>-Alkyl und n gleich 1 oder 2 ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>r</sub>-CO-OH-H<sub>2</sub>N(C<sub>10</sub>-C<sub>16</sub><sup>6</sup>-Alkyl) mit r gleich 1 oder 2, -P(S)-[O-R]<sub>2</sub><sup>6</sup>, wobei R C<sub>1</sub>-C<sub>8</sub><sup>6</sup>-Alkyl oder Phenyl ist, oder worin R<sup>4</sup> α-Naphthyl, Thiazolyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, oder -(CH<sub>2</sub>)<sub>s</sub>-R<sup>7</sup> ist, wobei s gleich 1 oder 2 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>t</sub>-CO-N(R)<sup>8</sup>(R') ist, wobei t gleich 1 oder 2 ist und R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub><sup>8</sup>-Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl oder α-Naphthyl ist und R<sup>9</sup> Wasserstoff oder R<sup>8</sup> ist, oder worin R<sup>4</sup> -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R<sup>10</sup> ist, wobei R<sup>10</sup> C<sub>1</sub>-C<sub>14</sub><sup>10</sup>-Alkyl ist, oder worin R<sup>4</sup> einen Rest



gegebene Bedeutung haben und R<sup>11</sup> -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-, o- oder m-Phenylen, Thiadiazol-2,5-ylen oder -(CH<sub>2</sub>)<sub>u</sub> mit u gleich 0 bis 4, bevorzugt 2, ist.

Besonders bevorzugt sind Verbindungen der Formel III, worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>14</sub><sup>3</sup>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> Phenyl, -CH<sub>2</sub>-CH<sub>2</sub>-NH<sub>2</sub>, -CH<sub>2</sub>-CH<sub>2</sub>-OH, -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-OH, tertiäres C<sub>4</sub>-C<sub>9</sub>-Alkyl, -(CH<sub>2</sub>)<sub>2</sub>-S-CH(OH)-CH<sub>2</sub>-S-(tert.-C<sub>8</sub>-C<sub>12</sub>-Alkyl), -CH<sub>2</sub>COOH, -CH<sub>2</sub>-CO-O-(i-C<sub>8</sub>H<sub>17</sub>), -CH<sub>2</sub>-CO-OH-H<sub>2</sub>N-(tert.-C<sub>10</sub>-C<sub>16</sub>-Alkyl),

016696

- 11 -

$-P(S)-[O-(i-C_3H_7)]_2$ ,  $-P(S)-[O-(iC_8H_{17})]_2$ ,  $\alpha$ -Naphthyl, Benzthiazolyl, Benzimidazolyl, Thiazolyl oder  $-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  tertiäres  $C_4-C_{14}$ -Alkyl ist, oder worin  $R^4$  einen Rest

$-R^{11}-S-CH_2-CH(OH)-CH_2-S-C(R^1)R^2R^3$  darstellt, wobei  $R^1$ ,  $R^2$  und  $R^3$  die oben

gegebene Bedeutung haben und  $R^{11} = -(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-$ ,  
o-Phenylen, Thiadiazol-2,5-ylen oder  $-(CH_2)_u$  mit  $u$  gleich 0 bis 2 ist.

Beispiele für Verbindungen der Formel I sind die folgenden:



016696

- 12 -



0166696

- 13 -

Die Herstellung der als Zwischenprodukt für die Verbindungen der Formel I fungierenden Alkyl-thiaglycidyläther geschieht auf folgende Art und Weise:



wobei der Substituent R die bereits gegebene Bedeutung hat. Besonders vorteilhaft für diese Umsetzung ist die Verwendung eines Phasentransfer-Katalysators, wie z.B. Tetrabutylaminchlorid. Die Herstellung von Alkyl-thiaglycidylethern ist auch in US 2 965 652, US 2 731 437 und BE 609 375 beschrieben.

Durch Umsetzung von Alkyl-thiaglycidyläthern der Formel III mit Verbindung der Formel IV



unter Verwendung von katalytischen Mengen von Nukleophilen, wie z.B. Natriumhydrid oder Triäthylamin, können die Verbindungen der Formel I hergestellt werden, wobei die Substituenten R und R<sup>4</sup> die bereits gegebene Bedeutung haben.

Andere Methoden, die sich zur Herstellung von Verbindungen der Formel I eignen, sind beispielsweise in DE-OS 2 730 414, aufgeführt.

Ein anderer Syntheseweg koppelt die Glycidylthioäthersynthese mit der Additionsreaktion des gleichen Mercaptans:



0166696

- 14 -



wobei ein Teil der unter die Formel I fallenden Verbindungen hergestellt werden kann.

Ein weiterer Syntheseweg führt über die folgende Reaktion



zu  $\alpha$ -Hydroxymercaptanderivaten, die mit Chlorverbindungen  $\text{Cl}-\text{R}^4$  die gewünschten Verbindungen der Formel I liefern, wobei der abgespaltene Chlorwasserstoff durch eine anorganische oder organische Base gebunden wird. Die oxidative Kupplung der  $\alpha$ -Hydroxymercaptanderivate führt ebenfalls zu einigen Verbindungen der Formel I mit Disulfidstruktur.

Schliesslich kann auch für einen Teil der Verbindungen der Formel I der folgende Syntheseweg beschritten werden



wobei  $-\text{CH}_2-\text{CH}_2-\text{R}'$  ein spezielles zu  $\text{R}^4$  gehöriges Radikal sein kann. Schliesslich kann eine solche  $\alpha$ -Hydroxymercaptanverbindung mit einem Glycidyläther umgesetzt werden, wie für ein Beispiel formuliert:



016696

- 15 -

Die Verbindungen der Formel I sind von leichtflüssiger, viskoser bis wachsartiger Beschaffenheit und überraschend gut in Schmierstoffen löslich. Sie sind als Zusätze zu Schmierstoffen besonders geeignet und führen zu einer Verbesserung der Hochdruck- und Antiverschleiss-Eigenschaften, ebenso ist auch auf ihre antioxidierende und antikorrosive Wirkung hinzuweisen. Ueberraschend ist schliesslich die Herstellung von sogenannten Masterbatches möglich.

Die Verbindungen der Formel I wirken schon in sehr geringen Mengen als Additive in Schmierstoffen. Sie werden den Schmierstoffen in einer Menge von 0,01 bis 5 Gew.-%, vorzugsweise in einer Menge von 0,05 bis 3 Gew.-%, bezogen auf den Schmierstoff, zugesetzt. Die in Frage kommenden Schmierstoffe sind dem Fachmann geläufig und z.B. in "Schmierstoffe und verwandte Produkte" (Verlag Chemie, Weinheim, 1982) beschrieben. Besonders geeignet sind neben Mineralölen z.B. Poly- $\alpha$ -Olefine, Schmierstoffe auf Esterbasis, Phosphate, Glykole, Polyglykole und Polyalkylenglykole.

Die Schmierstoffe können zusätzlich andere Additive enthalten, die zugegeben werden, um die Grundeigenschaften von Schmierstoffen noch weiter zu verbessern; dazu gehören: Antioxidantien, Metallpassivatoren, Rostinhibitoren, Viskositätsindex-Verbesserer, Stockpunktterniedriger, Dispergiermittel, Detergentien, Hochdruck-Zusätze und Antiverschleiss-Additive.

016696

- 16 -

Beispiele für phenolische Antioxidantien

1. Alkylierte Monophenole

2,6-Di-tert--butyl-4-methylphenol  
2,6-Di-tert--butylphenol  
2-tert--butyl-4,6-Dimethylphenol  
2,6-Di-tert--butyl-4-ethylphenol  
2,6-Di-tert--butyl-4-ethylphenol  
2,6-Di-tert--butyl-4-n-butylphenol  
2,6-Di-tert--butyl-4-i-butylphenol  
2,6-Di-cyclopentyl-4-methylphenol  
2-( $\alpha$ -Methylcyclohexyl)-4,6-dimethylphenol  
2,6-Di-octadecyl-4-methylphenol  
2,4,6-Tri-cyclohexylphenol  
2,6-Di-tert--butyl-4-methoxymethylphenyl  
o-tert--Butylphenol

2. Alkylierte Hydrochinone

2,6-Di-tert--butyl-4-methoxyphenol  
2,5-Di-tert--butyl-hydrochinon  
2,5-Di-tert--amyl-hydrochinon  
2,6-Diphenyl-4-octadecyloxyphenol

3. Hydroxylierte Thiodiphenylether

2,2'-Thio-bis-(6-tert-butyl-4-methylphenol)  
2,2'-Thio-bis-(4-octylphenol)  
4,4'-Thio-bis-(6-tert-butyl-3-methylphenol)  
4,4'-Thio-bis-(6-tert-butyl-2-methylphenol)

4. Alkylen-Bisphenole

2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol)  
2,2'-Methylen-bis-(6-tert-butyl-4-ethylphenol)  
2,2'-Methylen-bis-[4-methyl-6-( $\alpha$ -methylcyclohexyl)-phenol]  
2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol)  
2,2'-Methylen-bis-(6-nonyl-4-methylphenol)  
2,2'-Methylen-bis-(4,6-di-tert-butylphenol)  
2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol)  
2,2'-Ethyliden-bis-(6-tert-butyl-4-isobutylphenol)  
2,2'-Methylen-bis-[6-( $\alpha$ -methylbenzyl)-4-nonylphenol]  
2,2'-Methylen-bis-[6-( $\alpha$ , $\alpha$ -dimethylbenzyl)-4-nonylphenol]  
4,4'-Methylen-bis-(2,6-di-tert-butylphenol)  
4,4'-Methylen-bis-(6-tert-butyl-2-methylphenol)  
1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan  
2,6-Di-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol  
1,1,3-Tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecyl-  
mercaptobutan  
Ethylenglycol-bis-[3,3-bis-(3'-tert-butyl-4'-hydroxyphenyl)-butyrat]  
Di-(3-tert-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadien  
Di-[2-(3'-tert-butyl-2'-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-  
methyl-phenyl]-terephthalat.

5. Benzylverbindungen

1,3,5-Tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol  
Di-(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid  
3,5-Di-tert-butyl-4-hydroxybenzyl-mercaptoessigsäure-isooctylester  
Bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithiol-tere-  
phthalat  
1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-isocyanurat  
1,3,5-Tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat  
3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-dioctadecylester  
3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-monoethylester  
Calcium-salz.

016696

- 18 -

6. Acylaminophenole

4-Hydroxy-laurinsäureanilid

4-Hydroxy-stearinsäureanilid

2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-s-triazin

N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbaminsäureoctylester.

7. Ester der  $\beta$ -(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure

mit ein- oder mehrwertigen Alkoholen, wie z.B. mit

Methanol Diethylenglycol

Octadecanol Triethylenglycol

1,6-Hexandiol Pentaerythrit

Neopentylglycol Tris-hydroxyethyl-isocyanurat

Thiodiethylenglycol Di-hydroxyethyl-oxalsäurediamid

8. Ester der  $\beta$ -(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionsäure

mit ein- oder mehrwertigen Alkoholen, wie z.B. mit

Methanol Diethylenglycol

Octadecanol Triethylenglycol

1,6-Hexandiol Pentaerythrit

Neopentylglycol Tris-hydroxyethyl-isocyanurat

Thiodiethylenglycol Di-hydroxyethyl-oxalsäurediamid

9. Amide der  $\beta$ -(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure,

wie z.B.

N,N'-Di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylen-diamin

N,N'-Di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-trimethylen-diamin

N,N'-Di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.

016696

- 19 -

Beispiele für aminische Antioxidantien:

N,N'-Di-isopropyl-p-phenylen-diamin  
N,N'-Di-sec-butyl-p-phenylen-diamin  
N,N'-Bis(1,4-dimethyl-pentyl)-p-phenylen-diamin  
N,N'-Bis(1-ethyl-3-methyl-pentyl)-p-phenylen-diamin  
N,N'-Bis(1-methyl-heptyl)-p-phenylen-diamin  
N,N'-Diphenyl-p-phenylen-diamin  
N,N'-Di-(naphthyl-2)-p-phenylen-diamin  
N-Isopropyl-N'-phenyl-p-phenylen-diamin  
N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylen-diamin  
N-(1-Methyl-heptyl)-N'-phenyl-p-phenylen-diamin  
N-Cyclohexyl-N'-phenyl-p-phenylen-diamin  
4-(p-Toluol-sulfonamido)-diphenylamin  
N,N'-Dimethyl-N,N'-di-sec-butyl-p-phenylen-diamin  
Diphenylamin  
4-Isopropoxy-diphenylamin  
N-Phenyl-1-naphthylamin  
N-Phenyl-2-naphthylamin  
octyliertes Diphenylamin  
4-n-Butylaminophenol  
4-Butyrylamino-phenol  
4-Nonanoylamino-phenol  
4-Dodecanoylamino-phenol  
4-Octadecanoylamino-phenol  
Di-(4-methoxy-phenyl)-amin.  
2,6-Di-tert-butyl-4-dimethylamino-methyl-phenol  
2,4'-Diamino-diphenylmethan  
4,4'-Diamino-diphenylmethan  
N,N,N,N'-Tetramethyl-4,4'-diamino-diphenylmethan  
1,2-Di-[(2-methyl-phenyl)-amino]-ethan  
1,2-Di-(phenylamino)-propan  
(o-Tolyl)-biguanid

Di-[4-(1',3'-dimethyl-butyl)-phenyl]amin  
tert-octyliertes N-Phenyl-1-naphthylamino  
Gemisch aus mono- und dialkylierten tert-Butyl-/tert-Octyl-  
diphenylaminen.

Beispiele für Metallpassivatoren sind:

für Kupfer, z.B.:

Benztriazol, Tetrahydrobenztriazol, 2-Mercaptobenzthiazol  
2,5-Dimercaptothiadiazol, Salicylidien-propylendiamin, Salze  
von Salicylaminoguanidin.

Beispiele für Rost-Inhibitoren sind:

a) Organische Säuren, ihre Ester, Metallsalze und Anhydride, z.B.:

N-Oleoyl-sarcosin, Sorbitan-mono-oleat, Blei-naphthenat, Dodecenyln-  
bernsäure-anhydrid, Alkenylbernsäure-Halbester, 4-Nonyl-  
phenoxy-essigsäure.

b) Stickstoffhaltige Verbindungen, z.B.:

I. Primäre, sekundäre oder tertiäre aliphatische oder cycloali-  
phatische Amine und Amin-Salze von organischen und anorganischen  
Säuren, z.B. öllösliche Alkylammoniumcarboxylate.

II. Heterocyclische Verbindungen z.B.:

Substituierte Imidazoline und Oxazoline.

c) Phosphorhaltige Verbindungen, z.B.:

Aminsalze von Phosphorsäurepartialestern.

d) Schwefelhaltige Verbindungen, z.B.:

Barium-dinonylnaphthalin-sulfonate, Calciumpetroleum-sulfonate.

Beispiele für Viskositätsindex-Verbesserer sind z.B.

Polymethacrylate, Vinylpyrrolidon/Methacrylat-Copolymere, Polybutene,  
Olefin-Copolymere, Styrol/Acrylat-Copolymere.

0166696

- 21 -

Beispiele für Stockpunkt niedriger sind z.B.:

Polymethacrylat, alkylierte Naphthalinderivate.

Beispiele für Dispergiermittel/Tenside sind z.B.:

Polybutenylbernsteinsäure-imide, Polybutenylphosphonsäurederivate,  
basische Magnesium-, Calcium-, und Bariumsulfonate und -phenolate.

Beispiele für Verschleisssschutz-Additive sind z.B.:

Schwefel und/oder Phosphor und/oder Halogen enthaltende Verbindungen,  
wie geschwefelte pflanzliche Oele, Zinkdialkyldithiophosphate,  
Tritolyl-phosphat, chlorierte Paraffine, Alkyl- und Aryldisulfide.

Die erfundungsgemässen Verbindungen dienen als Zusätze für Schmiersysteme, insbesondere Motorenöle. Sie weisen in Schmiersystemen Hochdruck-, Antiverschleiss-, Antioxidans- und Korrosionsinhibitor-Wirkungen auf. Ein besonderer Vorteil dieser Verbindungen ist, dass sie im Gegensatz zu Verbindungen mit vergleichbaren Eigenschaften Phosphor- und Zinn-frei sind; wodurch dann auch die Nachverbrennung der Abgase nicht beeinträchtigt wird. Dariüberhinaus enthalten diese Verbindungen keine hydrolytisch bzw. solvolytisch spaltbaren Bindungen und sind daher auch besonders stabil.

Um die Erfindung näher zu erläutern, seien die folgenden Herstellungsbeispiele gegeben, wobei die Beispiele 1 und 2 Zwischenprodukte zur Herstellung der Verbindungen der Formel I, dargestellt durch die Beispiele 3 - 27, sind:

016696

- 22 -

Beispiel 1: (vgl. Tabelle 1) tert-Octylglycidylthioether

Zu einer Mischung aus 219 Gewichtsteilen tert-Octylmercaptan und 135 Gewichtsteilen Epichlorhydrin wird bei 15 bis 20°C unter Röhren und teilweiser Kühlung (besonders am Anfang der Zugabe) eine Lösung aus 66 Gewichtsteilen Natriumhydroxid, 300 Gewichtsteilen Wasser und 8 Gewichtsteilen Tetrabutylammoniumchlorid innerhalb von 70 Minuten zugetropft. Das Reaktionsgemisch wird 1 Stunde bei 50°C nachgerührt, die wässrige Phase wird abgetrennt, und die organische Phase wird mit 200 Gewichtsteilen Wasser gewaschen. Schliesslich wird dann die organische Phase im Vakuum destilliert, und man erhält den tert-Octylglycidylthioether als farblose Flüssigkeit mit einem Siedepunkt von 74 bis 75°C bei 0,02 Torr und einem Brechungsindex von  $n_D^{20} = 1,4803$ ; die Ausbeute beträgt 250 Gewichtsteile, was 82 % der theoretischen Ausbeute entspricht.

Beispiel 3: (vgl. Tabelle 1):

27,1 Gewichtsteile tert-Dodecylglycidylthioether werden zu einer Mischung aus 7,8 Gewichtsteilen 2-Mercaptoethanol und katalytischen Mengen Natriumhydrid bei 50 - 60°C unter Röhren zugetropft (exotherme Reaktion). Nach beendeter Zugabe wird bei der gleichen Temperatur 1 Stunde nachgerührt und die folgende Verbindung als gelbe viskose Flüssigkeit mit einem Brechungsindex von  $n_D^{20} = 1,5132$  in einer Ausbeute von 100 % erhalten



Beispiele 2, 4 - 27: Analog den in den Beispielen 1 und 3 beschriebenen Verfahren werden weitere Verbindungen hergestellt, die in der folgenden Tabelle zusammengestellt sind.

Tabelle 1:

| Bei-<br>spiel<br>Nr. | Formel                                                                                                                        | Bemerkungen          | Physikalische Daten        |            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|------------|
|                      |                                                                                                                               |                      | Siedepunkt<br>(°C)         | $n_D^{20}$ |
| 1                    | $t\text{-C}_8\text{H}_{17}\text{-S-CH}_2\text{-CH(O)CH}_2$                                                                    | farblose Flüssigkeit | 74-75 °C/<br>bei 2,66 Pa   | 1,4803     |
| 2                    | $t\text{-C}_9\text{H}_{19}\text{-S-CH}_2\text{-CH(O)CH}_2$                                                                    | farblose Flüssigkeit | 81-82 °C/<br>bei 1,33 Pa   | 1,4800     |
| 3                    | $t\text{-C}_{12}\text{H}_{25}\text{-S-CH}_2\text{-CH(O)CH}_2$                                                                 | farblose Flüssigkeit | 100-102 °C/<br>bei 1,33 Pa | 1,4800     |
| 4                    | $t\text{-C}_{12}\text{H}_{25}\text{-S-CH}_2\text{-CH(OH)CH}_2\text{-S-CH}_2\text{-CH}_2\text{-OH}$                            | viskose Flüssigkeit  |                            | 1,5132     |
| 5                    | $t\text{-C}_{12}\text{H}_{25}\text{-S-CH}_2\text{-CH(OH)CH}_2\text{-S-CH}_2\text{-CH(OH)CH}_2\text{-OH}$                      | viskose Flüssigkeit  |                            | 1,5115     |
| 6                    | $t\text{-C}_{12}\text{H}_{25}\text{-S-CH}_2\text{-CH(OH)CH}_2\text{-S-CH}_2\text{-CH}_2\text{-H}_2\text{C}_{12}\text{H}_{25}$ | viskose Flüssigkeit  |                            | 1,4958     |

0166696

- 24 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel                                                                                                                                                                                                                                     | Bemerkungen         | Physikalische Daten              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
|                      |                                                                                                                                                                                                                                            |                     | Siedepunkt<br>(°C)<br>$n_D^{20}$ |
| 7                    | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2-\text{CO}-\text{O}-\text{I-C}_8\text{H}_8 \end{array}$                                                    | viskose Flüssigkeit | 1,4905                           |
| 8                    | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2-\text{C=C} \\ \text{O} \end{array}$                                                                       | viskose Flüssigkeit | 1,5331                           |
| 9                    | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2-\text{CH}_2-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_{12}\text{H}_{25} \end{array}$ | viskose Flüssigkeit | 1,5210                           |
| 10.                  | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_{12}\text{H}_{25} \end{array}$                         |                     |                                  |
| 11                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{P}(\text{O}-\text{i-C}_3\text{H}_7)_2 \end{array}$                                                              | viskose Flüssigkeit | 1,5049                           |

Tabelle 1 (Fortsetzung)

0166696

- 26 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel 1                                                                                                                                                                                                                                                                                                               | Bemerkungen          | Physikalische Daten       |            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|------------|
|                      |                                                                                                                                                                                                                                                                                                                        |                      | Siedepunkt<br>(°C)        | $n_D^{20}$ |
| 16                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-(\text{CH}_2)_2-\text{O} \\   \\ (\text{CH}_2)_2 \\   \\ \text{t-C}_{12}\text{H}_{25}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-(\text{CH}_2)_2-\text{O} \\   \\ \text{OH} \end{array}$ | farblose Flüssigkeit | 1,5221                    |            |
| 17                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_8\text{H}_{17} \end{array}$                                                                                                                                                               | farblose Flüssigkeit | 133-135°C/<br>bei 2,66 Pa | 1,5010     |
| 18                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2-\text{CH}_2\text{OH} \end{array}$                                                                                                                                                        | viskose Flüssigkeit  |                           | 1,5112     |

0166696

- 27 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel                                                                                                                                                                                                                                                                                                                      | Bemerkungen          | Physikalische Daten            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
|                      |                                                                                                                                                                                                                                                                                                                             |                      | Siedepunkt<br>(°C)             |
|                      |                                                                                                                                                                                                                                                                                                                             |                      | $n_D^{20}$                     |
| 19                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2 \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{CH}_2 \\   \\ \text{OH} \end{array}$                                                              | viskose Flüssigkeit  | 1,5298                         |
| 20                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S} \\   \\ \text{OH} \end{array}$  | farblose Flüssigkeit | 1,5590                         |
| 21                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S} \\   \\ \text{t-C}_8\text{H}_{17}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S} \\   \\ \text{OH} \end{array}$  | viskose Flüssigkeit  | 1,5908                         |
| 22                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_4\text{H}_9-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_4\text{H}_9 \end{array}$                                                                                                                                                                          | farblose Flüssigkeit | 88-92°C/<br>bei 3,99 Pa 1,4961 |

0166696

- 28 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel                                                                                                                                                                                                                                        | Bemerkungen             | Physikalische Daten                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|
|                      |                                                                                                                                                                                                                                               |                         | Siedepunkt<br>(°C)<br>$n_D^{20}$    |
| 23                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_9\text{H}_{19}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_9\text{H}_{19} \end{array}$                                                                                      | farblose<br>Flüssigkeit | 143-147°C/<br>bei 6,65 Pa<br>1,4990 |
| 24                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_9\text{H}_{19}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_9\text{H}_{19} \end{array}$   |                         | 168-169°C/<br>bei 2,66 Pa<br>1,5392 |
| 25                   | $\begin{array}{c} \text{OH} \\   \\ \text{t-C}_9\text{H}_{19}-\text{S}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{S}-\text{t-C}_9\text{H}_{19} \end{array}$  |                         | 160-161°C/<br>bei 5,32 Pa<br>1,5477 |

0166696

- 29 -

Tabelle 1. (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel                                                                                                                         | Bemerkungen | Physikalische Daten    |              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------------|
|                      |                                                                                                                                |             | Siedepunkt<br>(°C)     | $n_{D}^{20}$ |
| 26                   |                                                                                                                                |             | 1,5638                 |              |
| 27                   |                                                                                                                                |             |                        | 1,5446       |
| 28                   | (sec-C <sub>4</sub> H <sub>9</sub> -S-CH <sub>2</sub> ) <sub>2</sub> CH-OH                                                     |             | 97-98°C<br>bei 5,32 Pa | 1,5000       |
| 29                   | t-C <sub>9</sub> H <sub>19</sub> -S-CH <sub>2</sub> -CH(OH)-S-CH <sub>2</sub> -CH <sub>2</sub> -C <sub>8</sub> F <sub>17</sub> |             |                        | 1,4179       |
| 30                   |                                                                                                                                |             |                        | 1,5467       |

0166696

- 30 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel | Bemerkungen  | Physikalische Daten      |            |
|----------------------|--------|--------------|--------------------------|------------|
|                      |        |              | Siedepunkt<br>(°C)       | $n_D^{20}$ |
| 31                   |        |              |                          | 1,5845     |
| 32                   |        |              |                          | 1,5491     |
| 33                   |        | fester Stoff | Schmelz-<br>punkt 46-48° |            |
| 34                   |        |              |                          | 1,5160     |
| 35                   |        |              |                          | 1,5122     |
| 36                   |        |              |                          | 1,5224     |

0166696

- 31 -

Tabelle 1 (Fortsetzung)

| Bei-<br>spiel<br>Nr. | Formel | Bemerkungen: | Physikalische Daten      |            |
|----------------------|--------|--------------|--------------------------|------------|
|                      |        |              | Siedepunkt<br>(°C)       | $n_D^{20}$ |
| 37                   |        |              |                          | 1,5143     |
| 38                   |        |              | 153-156°C<br>bei 6,65 Pa | 1,4948     |
| 39                   |        |              |                          | 1,5830     |
| 41                   |        |              |                          | 1,561      |

0166696

- 32 -

Das folgende Anwendungsbeispiel dient der näheren Erläuterung  
der anwendungstechnisch erhaltenen Ergebnisse.

Anwendungsbeispiel 1: Mit dem Shell-Vierkugel-Apparat (IP 239/73  
Extreme pressure and wear lubricant test for oils and greases-four  
ballmachine). werden folgende Werte bestimmt:

1. W.L. = Weld load (Schweisslast). Das ist die Last, bei der  
die 4 Kugeln innerhalb von 10 Sekunden zusammenschweißen.
2. W.S.D. = Wear Scar Diameter in mm: Das ist der mittlere Ver-  
schleissdurchmesser bei einer Belastung von 400 N  
während 10 Minuten.

Als Testflüssigkeit für die Wirksamkeit der Additive wird ein.  
Basisöl der Viskosität ISO-VH 100 mit niedrigen Aromatengehalt  
und 0,035% S verwendet.

016696

- 33 -

Tabelle 2

| Additiv:<br>Bei-<br>spiel<br>Nr.<br>(vgl. Ta-<br>belle 1) | Test mit dem Shell-Vierkugel-Apparat |               |                     |               |
|-----------------------------------------------------------|--------------------------------------|---------------|---------------------|---------------|
|                                                           | W.L. (N)                             |               | W.S.D. 10 min. (mm) |               |
|                                                           | 1 % Additiv                          | 2,5 % Additiv | 0,25 % Additiv      | 1,0 % Additiv |
| 4                                                         | 2200                                 | 2400          | 0,60                | 0,50          |
| 5                                                         | 1800                                 |               |                     | 0,75          |
| 6                                                         | 2200                                 | 2400          | 0,60                | 0,50          |
| 7                                                         | 1800                                 |               |                     | 0,75          |
| 8                                                         | 2200                                 | 2400          | 0,50                | 0,50          |
| 9                                                         | 2200                                 | 2200          | 0,50                | 0,70          |
| 10                                                        | 2200                                 | 2600          | 0,70                | 0,75          |
| 11                                                        | 2200                                 | 2400          | 0,50                | 0,50          |
| 12                                                        | 2200                                 | 2400          | 0,50                | 0,50          |
| 13                                                        | 2000                                 | 2200          | 0,50                | 0,50          |
| 16                                                        | 2000                                 | 2200          | 0,55                | 0,60          |
| 17                                                        | 2000                                 | 2400          | 0,50                | 0,55          |
| 19                                                        | 2200                                 | 2400          | 0,60                | 0,65          |
| 20                                                        | 2400                                 | 2800          | 0,55                | 0,65          |
| 21                                                        | 2350                                 | 2700          |                     |               |
| 22                                                        | 2000                                 | 2200          | 0,50                | 0,55          |
| 23                                                        | 2000                                 | 2050          |                     |               |

0166696

- 34 -

## Patentansprüche

1. Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel I



worin R ein Radikal der Form  $\begin{array}{c} \text{R} \\ | \\ \text{R}^1 - \text{C} - \\ | \\ \text{R}^2 \end{array}$  sein kann, wobei  $\text{R}^1$ ,  $\text{R}^2$  und

<sup>3</sup> unabhängig voneinander C<sub>1</sub>-C<sub>18</sub>-Alkyl sind und zusammen nicht mehr als 22 C-Atome besitzen und R<sup>2</sup> und R<sup>3</sup> ausserdem Wasserstoff sind, oder worin R C<sub>5</sub>-C<sub>6</sub>-Cycloalkyl, unsubstituiertes oder durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes Phenyl oder Naphthyl, Benzyl, Furyl, Thieryl, Morpholinyl, Imidazolyl, Thiazolyl, Oxazolyl, Imidazolinyl, Thiazolinyl, Oxazolinyl, Benzimidazolinyl, Benzthiazolinyl, Benzoxazolinyl ist, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes oder durch Phényl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano, Perfluoro-C<sub>1</sub>-C<sub>8</sub>-Alkyl oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>16</sub>-Alkyl, das gegebenenfalls durch -O- oder -S- unterbrochen sein kann, oder C<sub>5</sub>-C<sub>6</sub>-Cycloalkyl ist oder R<sup>4</sup> -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C<sub>1</sub>-C<sub>16</sub>-Alkyl) mit m gleich 0 bis 6 ist, oder R<sup>4</sup> -(CH<sub>2</sub>)<sub>n</sub>-C(O)-O-R<sup>5</sup> ist, wobei n gleich 1 oder 2 und R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>16</sub>-Alkyl oder Alkali-metall ist, oder worin R<sup>4</sup> -CH[-CO-OR<sup>5</sup>][-CH<sub>2</sub>-CO-OR<sup>5</sup>] bedeutet, wobei R<sup>5</sup> die oben gegebene Bedeutung aufweist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>r</sub>-C(O)-OH-H<sub>2</sub>N-(C<sub>8</sub>-C<sub>16</sub>-Alkyl) oder -(CH<sub>2</sub>)<sub>r</sub>-C(O)-OH-N(CH<sub>2</sub>-CH<sub>2</sub>-OH)<sub>3</sub> mit r gleich 1 oder 2 oder -P(X)-[O-R<sup>6</sup>]<sub>2</sub> darstellt, wobei X = O oder S sein kann, und R<sup>6</sup> C<sub>1</sub>-C<sub>16</sub>-Alkyl, Phenyl oder Tollyl ist, oder worin R<sup>4</sup> α- oder β-Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Triazolyl, Tetrazolyl, Pyridyl, Chinolyl, Imidazolyl, Imidazolinyl, Oxazolinyl, -SO<sub>2</sub>-O-(Alkalimetall), -C<sub>6</sub>H<sub>4</sub>-C(O)-O-(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl oder -(CH<sub>2</sub>)<sub>s</sub>R<sup>7</sup> ist, wobei s gleich 1 bis 4 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>t</sub>-CO-N(R<sup>8</sup>)(R<sup>9</sup>) bedeutet, worin t gleich

0166696

- 35 -

1 oder 2 ist und  $R^8 C_1-C_{16}$ -Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder  $\alpha$ -Naphthyl und  $R^9$  Wasserstoff oder  $R^8$  ist, oder worin  $R^4-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  Wasserstoff oder  $C_1-C_{16}$ -Alkyl ist, oder worin  $R^4$  einen Rest  $-R^{11}-S-CH_2-CH(OH)-CH_2-S-R$  darstellt, wobei R die oben gegebene Bedeutung hat und  $R^{11}$  ein Radikal  $\text{-(CH}_2\text{)}_2\text{O-(CH}_2\text{)}_2\text{O-(CH}_2\text{)}_2$ , o- oder m-Phenylen, Thiadiazol-2,5-ylen oder  $\text{-(CH}_2\text{)}_u$  mit u gleich 0 bis 8 ist oder ein Radikal der Formeln



2. Zusammensetzungen gemäss Anspruch 1, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II



worin  $R^1$ ,  $R^2$  und  $R^3$  zusammen mit dem C-Atom, an das sie gebunden sind,  $C_4-C_{20}$ -Alkyl sind, wobei keiner dieser Substituenten  $R^1$ ,  $R^2$  und  $R^3$  Wasserstoff sein darf, und worin  $R^4$  unsubstituiertes oder durch  $-NH_2$  substituiertes Phenyl, unsubstituiertes oder durch Phenyl,  $-NH_2$ , 2-Oxo-pyrrolidino, Cyano, Perfluoro- $C_1-C_8$ -Alkyl, oder eine oder zwei OH-Gruppen substituiertes  $C_1-C_{16}$ -Alkyl, das gegebenenfalls durch -O- oder

-S- unterbrochen sein kann, oder  $C_5-C_6$ -Cycloalkyl ist oder  $R^4$   
 $\xrightarrow{-CH_2-S-CH_2-CH(OH)-CH_2-S-(C_1-C_{16}-Alkyl)}$  mit m gleich 0 bis  
6, oder  $\xrightarrow{-CH_2-C(O)-O-R^5}$  ist, wobei n gleich 1 oder 2 und  $R^5$   
Wasserstoff,  $C_1-C_{16}$ -Alkyl oder Alkalimetall ist, oder worin  
 $R^4-CH(-CO-OR^5)[-CH_2-CO-OR^5]$  bedeutet, wobei  $R^5$  die oben  
gegebene Bedeutung aufweist, oder worin  $R^4-\xrightarrow{-CH_2-C(O)-OH-H_2N-}$   
 $(C_8-C_{16}-Alkyl)$  oder  $\xrightarrow{-CH_2-C(O)-OH-N(CH_2-CH_2-OH)_3}$  mit r gleich 1 oder  
2, oder  $-P(X)-\{O-R^6\}_2$  darstellt, wobei X = O oder =S sein kann und  $R^6$   
 $C_1-C_{16}$ -Alkyl, Phenyl oder Toly1 ist, oder worin  $R^4-\alpha-$  oder  $\beta$ -Naphthyl,  
Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl,  
Pyridyl, Chinolyl, Imidazolinyl, Oxazolinyl,  $-SO_2-O$ -(Alkalimetall),  
 $-C_6H_4-C(O)-O$ -(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl,  
 $\xrightarrow{-CH_2-R^7}$  ist, wobei s gleich 1 bis 4 ist und  $R^7$  Benzoxazolyl,  
Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder  
Oxazolinyl darstellt, oder worin  $R^4-\xrightarrow{-CH_2-CO-N(R^8)(R^9)}$  bedeutet,  
wobei t gleich 1 oder 2 ist und  $R^8-C_1-C_{16}-Alkyl$ , das gegebenenfalls  
durch  $-OH$  substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder  
 $\alpha$ -Naphthyl und  $R^9$  Wasserstoff oder  $R^8$  ist, oder worin  $R^4$   
 $-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  Wasserstoff oder  $C_1-C_{16}$ -Alkyl  
ist, oder worin  $R^4$  einen Rest  $\xrightarrow{-R^{11}-S-CH_2-CH(OH)-CH_2-S-C-R^1}$  darstellt, wobei  $R^1$ ,  $R^2$  und  $R^3$  die  
oben gegebene Bedeutung haben und  $R^{11}$  ein Radikal

$\xrightarrow{-CH_2-O-CH_2-O-CH_2}$ , o- oder m-Phenylen, Thiadiazol-2,5-ylen oder  
 $\xrightarrow{-CH_2-u}$  mit u gleich 0 bis 8, bevorzugt 2, ist oder ein Radikal der  
Formeln



darstellt.

3. Zusammensetzungen gemäss Anspruch 2, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II, worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>20</sub>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>13</sub>-Alkyl, das gegebenenfalls durch -O- oder -S- unterbrochen sein kann, ist oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C<sub>1</sub>-C<sub>16</sub>)-Alkyl mit m gleich 0 bis 4, oder -(CH<sub>2</sub>)<sub>n</sub>-CO-O-R<sup>5</sup> ist, wobei R<sup>5</sup> Wasserstoff, Kalium oder C<sub>4</sub>-C<sub>12</sub>-Alkyl und n gleich 1 oder 2 ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>r</sub>-CO-OH-H<sub>2</sub>N-(C<sub>10</sub>-C<sub>16</sub>)-Alkyl mit r gleich 1 oder 2, -P(S)-[O-R<sup>6</sup>]<sub>2</sub> darstellt, und R<sup>6</sup> C<sub>1</sub>-C<sub>8</sub>-Alkyl oder Phenyl ist, oder worin R<sup>4</sup> α-Naphthyl, Thiazolyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Pyridyl, Chinolyl oder -(CH<sub>2</sub>)<sub>s</sub>-R<sup>7</sup> ist, wobei s gleich 1 oder 2 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>t</sub>-CO-N(R<sup>8</sup>)(R<sup>9</sup>) ist, wobei t gleich 1 oder 2 ist und R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl oder α-Naphthyl ist, und R<sup>9</sup> Wasserstoff oder R<sup>8</sup> ist, oder worin R<sup>4</sup> -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R<sup>10</sup> ist, wobei R<sup>10</sup> C<sub>1</sub>-C<sub>14</sub>-Alkyl ist, oder worin R<sup>4</sup> einen Rest



gegebene Bedeutung haben und R<sup>11</sup> -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-, o- oder m-Phenylen, Thiadiazol-2,5-ylen oder -(CH<sub>2</sub>)<sub>u</sub> mit u gleich 0 bis 4, bevorzugt 2, ist.

4. Zusammensetzungen gemäss Anspruch 3, enthalten ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung

Insbesondere bevorzugt sind Zusammensetzungen, enthaltend ein Schmiermittel oder eine Hydraulikflüssigkeit und wenigstens eine Verbindung der Formel II, worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C-C<sub>14</sub>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> Phenyl, -CH<sub>2</sub>-CH<sub>2</sub>-NH<sub>2</sub>, -CH<sub>2</sub>-CH<sub>2</sub>-OH, -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-OH, tertiäres C-C<sub>14</sub>-Alkyl, -(CH<sub>2</sub>)<sub>2</sub>-S-CH(OH)-CH<sub>2</sub>-S-(tert.-C<sub>8</sub>-C<sub>12</sub>-Alkyl), -CH<sub>2</sub>-COOH -CH<sub>2</sub>-CO-O-(i-C<sub>8</sub>H<sub>17</sub>), -CH<sub>2</sub>-CO-OH-H<sub>2</sub>N-(tert.-C<sub>10</sub>-C<sub>16</sub>-Alkyl), -P(S)-{O-(i-C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>}, -P(S)-{O-(i-C<sub>8</sub>H<sub>17</sub>)<sub>2</sub>}, α-Naphthyl, Benzthiazolyl, Benzimidazolyl, Thiazolyl oder -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R<sup>10</sup> ist, wobei R<sup>10</sup> tertiäres C-C<sub>14</sub>-Alkyl ist, oder worin R<sup>4</sup> einen Rest



gegebene Bedeutung haben und R<sup>11</sup> -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-, α-Phenylen, Thiadiazol-2,5-ylen oder -(CH<sub>2</sub>)<sub>u</sub> mit u gleich 0 bis 2 ist.

5. Verbindungen der Formel II nach Anspruch 2,  
worin R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie  
gebunden sind, C-C<sub>20</sub>-Alkyl sind, wobei keiner dieser Substituenten  
R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> unsubstituiertes  
oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes C-C<sub>9</sub>-Alkyl  
oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano, Perfluoro-C-C<sub>8</sub>-  
Alkyl oder eine oder zwei OH-Gruppen substituiertes C-C<sub>16</sub>-Alkyl ist,  
das gegebenenfalls durch -O- oder -S- unterbrochen sein kann, oder  
worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C-C<sub>16</sub>-Alkyl) mit m gleich 0  
bis 6, oder -(CH<sub>2</sub>)<sub>n</sub>-C(O)-O-R<sup>5</sup> ist, wobei n gleich 1 oder 2 und R<sup>5</sup>  
Wasserstoff, C-C<sub>16</sub>-Alkyl oder Alkalimetall ist, oder worin R<sup>4</sup>

$-\text{CH}[-\text{CO-OR}^5][-\text{CH}_2-\text{CO-OR}^5]$  bedeutet, wobei  $\text{R}^5$  die oben gegebene Bedeutung aufweist, oder worin  $\text{R}^4 = \text{CH}_2\text{r-C(O)-OH-NH}_2\text{C}_8\text{-C}_{16}\text{-Alkyl}$  oder  $\{\text{CH}_2\text{r-C(O)-OH-N(-CH}_2\text{-CH}_2\text{-OH)}_3$  mit  $\text{r}$  gleich 1 oder 2, oder  $-\text{P(X)-[O-R}^6]_2$  darstellt, wobei  $\text{X} = \text{O}$  oder  $= \text{S}$  sein kann, und  $\text{R}^6 = \text{C}_1\text{-C}_{16}\text{-Alkyl, Phenyl oder Tollyl ist, oder worin R}^4 = \alpha\text{- oder } \beta\text{-Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazolinyl, Pyridyl, Chinolyl, Imidazolinyl, Oxazolinyl, }-\text{SO}_2\text{-O-(Alkalimetall), }-\text{C}_6\text{H}_4\text{-C(O)-O-(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl, oder }-\text{CH}_2\text{s-R}$  ist, wobei  $s$  gleich 1 bis 4 ist und  $\text{R}^7 = \text{Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl darstellt, oder worin R}^4 = \text{CH}_2\text{t-CO-N(R}^8)(\text{R}^9)$  bedeutet wobei  $t$  gleich 1 oder 2 ist und  $\text{R}^8 = \text{C}_1\text{-C}_{16}\text{-Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl, 3-Hydroxyphenyl oder } \alpha\text{-Naphthyl ist und R}^9 = \text{Wasserstoff oder R}^8$  ist, oder worin  $\text{R}^4 = \text{CH}_2\text{-CH(OH)-CH}_2\text{-S-R}^{10}$  ist, wobei  $\text{R}^{10} = \text{Wasserstoff oder C}_1\text{-C}_{16}\text{-Alkyl ist, oder worin R}^4 = \text{einen Rest}$

$-\text{R}^{11}\text{-S-CH}_2\text{-CH(OH)-CH}_2\text{-S-C-R}^1$  darstellt, wobei  $\text{R}^1$ ,  $\text{R}^2$  und  $\text{R}^3$  die oben

gegebene Bedeutung haben und  $\text{R}^{11}$  ein Radikal  $-\text{CH}_2\text{2-O-CH}_2\text{2-O-CH}_2\text{2}$ , o- oder m-Phenylen, Thiadiazol-2,5-yl oder  $-\text{CH}_2\text{u}$  mit  $u$  gleich 0 bis 8 ist oder ein Radikal der Formeln



oder



darstellt.

6. Verbindungen gemäss Anspruch 5, worin in Formel II R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>20</sub>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes C<sub>4</sub>-C<sub>9</sub>-Alkyl oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>13</sub>-Alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-(C<sub>1</sub>-C<sub>16</sub>-Alkyl) mit m gleich 0 bis 4, oder -(CH<sub>2</sub>)<sub>n</sub>-CO-O-R<sup>5</sup> ist, wobei R Wasserstoff, Kalium oder C<sub>4</sub>-C<sub>12</sub>-Alkyl und n gleich 1 oder 2 ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>r</sub>-CO-OH-N(C<sub>10</sub>-C<sub>16</sub>-Alkyl) mit r gleich 1 oder 2, -P(S)-{O-R}<sub>2</sub><sup>6</sup>, wobei R C<sub>1</sub>-C<sub>8</sub>-Alkyl oder Phenyl ist, oder worin R<sup>4</sup> α-Naphthyl, Thiazolyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, oder -(CH<sub>2</sub>)<sub>s</sub>-R<sup>7</sup> ist, wobei s gleich 1 oder 2 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazolinyl, Imidazolinyl oder Oxazolinyl ist, oder worin R<sup>4</sup> -(CH<sub>2</sub>)<sub>t</sub>-CO-N(R)(R)<sup>8</sup> ist, wobei t gleich 1 oder 2 ist und R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, das gegebenenfalls durch -OH substituiert sein kann, Phenyl oder α-Naphthyl ist und R<sup>9</sup> Wasserstoff oder R<sup>8</sup> ist, oder worin R<sup>4</sup> -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S-R<sup>10</sup> ist, wobei R<sup>10</sup> C<sub>1</sub>-C<sub>14</sub>-Alkyl ist, oder worin R<sup>4</sup> einen Rest



gegebene Bedeutung haben und R<sup>11</sup> -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-, o- oder m-Phenylen, Thiadiazol-2,5-ylen oder -(CH<sub>2</sub>)<sub>u</sub> mit u gleich 0 bis 4, bevorzugt 2, ist.

7. Verbindungen gemäss Anspruch 6, worin in Formel II R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> zusammen mit dem C-Atom, an das sie gebunden sind, C<sub>4</sub>-C<sub>14</sub>-Alkyl sind, wobei keiner dieser Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> Wasserstoff sein darf, und worin R<sup>4</sup> Phenyl, -CH<sub>2</sub>-CH<sub>2</sub>-NH<sub>2</sub>, -CH<sub>2</sub>-CH<sub>2</sub>-OH, -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-OH, tertäres C<sub>4</sub>-C<sub>9</sub>-Alkyl, -(CH<sub>2</sub>)<sub>2</sub>-S-CH(OH)-CH<sub>2</sub>-S-(tert.-C<sub>8</sub>-C<sub>12</sub>-Alkyl), -CH<sub>2</sub>COOH, -CH<sub>2</sub>-CO-O-(i-C<sub>8</sub>H<sub>17</sub>), -CH<sub>2</sub>-CO-OH-N-(tert.-C<sub>10</sub>-C<sub>16</sub>-Alkyl),

0166696

- 41 -

$-P(S)-[O-(i-C_3H_7)]_2$ ,  $-P(S)-[O-(iC_8H_{17})]_2$ ,  $\alpha$ -Naphthyl, Benzthiazolyl, Benzimidazolyl, Thiazolyl oder  $-CH_2-CH(OH)-CH_2-S-R^{10}$  ist, wobei  $R^{10}$  tertiäres  $C_4-C_{14}$ -Alkyl ist, oder worin  $R^4$  einen Rest

$$-R^{11}-S-CH_2-CH(OH)-CH_2-S-\underset{\substack{| \\ R^2 \\ | \\ R}}{C}-R^1$$
 darstellt, wobei  $R^1$ ,  $R^2$  und  $R^3$  die oben gegebene Bedeutung haben und  $R^{11} = -(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-$ , o-Phenylen, Thiadiazol-2,5-ylen oder  $-(CH_2)_u$  mit u gleich 0 bis 2 ist.

8. Verwendung von Verbindungen der Formel I gemäss Anspruch 1 als Additive in Schmierstoffen.

FO 7.3/SEN/gs\*



Europäisches Patentamt

(19)

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

**0 166 696**

A3

(12)

## EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85810292.4

(61) Int. Cl. 4: C 10 M 135/20

C 07 C 149/18, C 07 C 149/20  
C 07 C 149/267, C 07 C 149/26  
C 07 C 149/42, C 07 C 149/23  
C 07 D 303/34, C 07 D 293/10  
C 07 D 293/04, C 07 C 149/273

(22) Anmeldetag: 24.06.85

(30) Priorität: 29.06.84 CH 3148/84  
14.05.85 CH 2047/85

(71) Anmelder: CIBA-GEIGY AG  
Klybeckstrasse 141  
CH-4002 Basel(CH)

(43) Veröffentlichungstag der Anmeldung:  
02.01.86 Patentblatt 86/1

(72) Erfinder: Wirth, Hermann O., Dr.  
Lessingstrasse 24  
D-6140 Bensheim 3(DE)

(54) Veröffentlichungstag des später  
veröffentlichten Recherchenberichts: 14.05.86

(72) Erfinder: Friedrich, Hans-Helmut  
Am Rauhenstein 8  
D-6147 Lautertal 2(DE)

(84) Benannte Vertragsstaaten:  
BE DE FR GB IT

(55) Zusätze für Schmierstoffe.

(57) Zusammensetzungen, enthaltend Verbindungen der  
Formel I



worin

R ein Radikal der Form



sein kann, wobei

R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> unabhängig voneinander C<sub>1</sub>-C<sub>16</sub>-Alkyl sind und zusammen nicht mehr als 22 C-Atome besitzen und R<sup>2</sup> und R<sup>3</sup> ausserdem Wasserstoff sind, oder worin R C<sub>1</sub>-C<sub>6</sub>-Cycloalkyl, unsubstituiertes oder durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes Phenyl oder Naphthyl, Benzyl, Furyl, Thienyl, Morpholinyl, Imidazolyl, Thiazolyl, Oxazolyl, Imidazoliny, Thiazoliny, Benzimidazolyl, Thiazoxazolyl, Thiazoliny, Triazolyl, Tetrazolyl, Pyridyl, Chinolyl, Imidazolyl, Imidazoliny, Oxazoliny, -SO<sub>2</sub>-O-(Alkalimetall), -C<sub>6</sub>H<sub>4</sub>-C(O)-O-(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl oder (CH<sub>2</sub>)<sub>n</sub>R<sup>7</sup> ist, wobei n gleich 1 bis 4 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazoliny, Imidazoliny oder Oxazoliny dar-

nyl, Oxazoliny, Berimidazoliny, Benzthiazoliny, Benzoxazoliny ist, und worin R<sup>4</sup> unsubstituiertes oder durch -NH<sub>2</sub> substituiertes Phenyl, unsubstituiertes oder durch Phenyl, -NH<sub>2</sub>, 2-Oxopyrrolidino, Cyano, Perfluoro-C<sub>1</sub>-C<sub>6</sub>-Alkyl oder eine oder zwei OH-Gruppen substituiertes C<sub>1</sub>-C<sub>16</sub>-Alkyl, das gegebenenfalls durch -O- oder -S- unterbrochen sein kann, oder C<sub>5</sub>-C<sub>6</sub>-Cycloalkyl ist oder R<sup>4</sup> + CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-S- (C<sub>1</sub>-C<sub>16</sub>-Alkyl) mit m gleich 0 bis 6 ist, oder R<sup>4</sup> + CH<sub>2</sub>-C(O)-O-R<sup>5</sup> ist, wobei n gleich 1 oder 2 und R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>16</sub>-Alkyl oder Alkalimetall ist, oder worin R<sup>4</sup>-CH[CO-OR<sup>6</sup>]-CH<sub>2</sub>-CO-OR<sup>6</sup> bedeutet, wobei R<sup>4</sup> die oben gegebene Bedeutung aufweist, oder worin R<sup>4</sup> -CH<sub>2</sub>-C(O)-OH-H<sub>2</sub>N-(C<sub>6</sub>-C<sub>16</sub>-Alkyl) oder -CH<sub>2</sub>-C(O)-OH-N-(CH<sub>2</sub>-CH<sub>2</sub>-OH)<sub>r</sub> mit r gleich 1 oder 2 oder -P(X)-[O-R<sup>6</sup>]<sub>2</sub> darstellt, wobei X = O oder S sein kann, und R<sup>6</sup> C<sub>1</sub>-C<sub>16</sub>-Alkyl, Phenyl oder Tolyl ist, oder worin R<sup>4</sup> α- oder β-Naphthyl, Benzthiazolyl, Benzimidazolyl, Benzoxazolyl, Thiazolyl, Thiazoliny, Triazolyl, Tetrazolyl, Pyridyl, Chinolyl, Imidazolyl, Imidazoliny, Oxazoliny, -SO<sub>2</sub>-O-(Alkalimetall), -C<sub>6</sub>H<sub>4</sub>-C(O)-O-(Alkalimetall), 2-Oxo-4-hydroxy-3-penten-3-yl oder (CH<sub>2</sub>)<sub>n</sub>R<sup>7</sup> ist, wobei n gleich 1 bis 4 ist und R<sup>7</sup> Benzoxazolyl, Benzimidazolyl, Benzthiazolyl, Thiazoliny, Imidazoliny oder Oxazoliny dar-

/...

**EP 0 166 696 A3**

stellt, oder worin  $R^4$   $\rightarrow$   $-CH_2-$ ,  $-CO-$  oder  $H(R^5NR^6)$  bedeutet,  
 worin 1 gleich 1 oder 2 ist und  $R^5$   $C_1-C_6$ -Alkyl, das  
 gegebenenfalls durch  $-OH$  substituiert sein kann, Phenyl,  
 3-Hydroxyphenyl oder  $\alpha$ -Naphthyl und  $R^6$  Wasserstoff oder  
 $N^9$  ist, oder worin  $R^7$   $-CH_2-$ ,  $-CH(OH)-CH_2-$ ,  $-S-$  oder  $R^{10}$  ist, wobei  
 $R^{10}$  Wasserstoff oder  $C_1-C_6$ -Alkyl ist, oder worin  $R^8$  einen  
 Rest  $-R^{11}-S-CH_2-CH(OH)-LH_2-S-R'$  darstellt, wobei  $R$   
 die oben gegebene Bedeutung hat und  $R^{11}$  ein Radikal  
 $\rightarrow CH_2+$ ,  $\rightarrow O-CH_2+$ ,  $\rightarrow O^2-CH_2+$ ,  $\bullet$  oder  $\bullet^+$  ist,  $S$  Thiadiazol-2,5-dien oder  $\rightarrow CH_2+$ , mit  $u$  gleich 0 bis 6 ist  
 oder ein Radikal der Formula



oder



darstellt, finden Verwendung als Additive in Schmierstoffen  
 bzw. Schmiersystemen. Außerdem werden einige neue  
 Verbindungen, die unter die allgemeine Formel 1 fallen,  
 beansprucht.



Europäisches  
Patentamt

EUROPÄISCHER RECHERCHEBERICHT

0166696  
Nummer der Anmeldung

EP 85 81 0292

| EINSCHLÄGIGE DOKUMENTE                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SORTIMENT<br>DOKUMENTEN | KLASSIFIKATION DER<br>ANMELDUNG (IN C14)                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kategorie                                                                                         | Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                                                                                                                                                                                                                              |
| A                                                                                                 | EP-A-0 001 217 (CIBA-GEIGY)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | C 10 M 135/20<br>C 07 C 149/18<br>C 07 C 149/20<br>C 07 C 149/267<br>C 07 C 149/26<br>C 07 C 149/42<br>C 07 C 149/23<br>C 07 D 303/34<br>C 07 D 293/10<br>C 07 D 293/04<br>C 07 C 149/273<br>C 07 D 213/70<br>C 07 D 215/36<br>C 07 D 207/27<br>C 07 F 9/165 |
| A,D                                                                                               | US-A-4 246 127 (MICHAELIS et al.)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                                                                                                                              |
| A,D                                                                                               | DE-A-2 730 414 (CIBA-GEIGY)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                                                                                                                                                                                                                              |
| A,P                                                                                               | BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR, DIVISION OF CHEMICAL SCIENCE, Band 33, Nr. 6, Teil 2, Juni 1984, Seiten 1274-1282, Plenum Publishing Corporation, New York, US; A.R. DERZHINSKII et al.: "Functional sulfur-containing compounds. Communication 6. Synthesis and reactions of 2,3-epoxy(epithio)propyl alkyl sulfides, sulfoxides, and sulfones", & IZVESTIYA AKADEMII NAUK SSSR, SERIYA KHIMICHESKAYA, Band 33, Nr. 6, Juni 1984, Seiten 1384-1392 |                         | RECHERCHEIRTE<br>SACHGEBiete (IN C14)<br><br>C 07 C 149/00                                                                                                                                                                                                   |
|                                                                                                   | -----                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                              |
| Der vorliegende Recherchenbericht wurde für alle Patentanmeldungen erstellt                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                                                                                                                                                                                              |
| Rechtschreiber:<br>DEN HAAG                                                                       | Abschlußdatum der Recherche:<br>25-CI-1986                                                                                                                                                                                                                                                                                                                                                                                                                           | VAN GEYT P.J.A.         |                                                                                                                                                                                                                                                              |
| X : KATEGORIE DER GENANNTEN DOKUMENTEN von besonderer Bedeutung allein betrachtet                 | E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldeatum veröffentlicht worden ist                                                                                                                                                                                                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                              |
| Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie | D : in der Anmeldung angeführtes Dokument                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                                                                                                                                                                                                                              |
| A : technologischer Hintergrund                                                                   | L : aus anderen Gründen angeführtes Dokument                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                              |
| O : nichtschriftliche Offenbarung                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                                                                                                                                                                                              |
| P : Zwischenliteratur                                                                             | B : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                                                                                                                                                                                                                              |
| T : Erfindung zugrunde liegende Theorieien oder Grundsätze                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                                                                                                                                                                                              |