Sistema KERS-SAE

Recuperação de Energia Cinética para Fórmula SAE

O Sistema KERS (Kinetic Energy Recovery System) é uma tecnologia avançada que:

- Recupera energia durante frenagens
- Armazena em baterias ou volantes de inércia
- Fornece potência adicional sob demanda
- Reduz consumo e emissões
- Aumenta eficiência em até 25%

Funcionamento do KERS

Como o sistema recupera e utiliza energia

O sistema KERS transforma energia cinética em elétrica durante a frenagem, armazenando-a para uso posterior.

- 1 Frenagem: Durante a desaceleração, o

 Motor/Gerador funciona como gerador, convertendo
 energia cinética em elétrica.
- 2 Armazenamento: A energia é armazenada em

 Baterias de alta capacidade ou Volantes de Inércia .
- 3 **Utilização:** Quando necessário, a energia armazenada é liberada para fornecer potência adicional ao veículo através do Sistema de Controle .
- 4 **Controle:** O Controlador Eletrônico gerencia todo o processo, otimizando a recuperação e utilização da energia.

Dados Reais para Demonstração

Fontes de dados utilizadas para o sistema de monitoramento

Para criar um sistema de monitoramento realista, utilizamos dados baseados em datasets reais de telemetria automotiva e veículos elétricos.

ADAS-EV Dataset (Kaggle)

Dados de telemetria de veículos elétricos incluindo bateria, energia e frenagem regenerativa.

Automobile Telematics Dataset

Sensores automotivos com dados de aceleração, frenagem e comportamento do veículo.

Dados de KERS da Fórmula 1

Parâmetros de sistemas KERS reais adaptados para veículos de Fórmula SAE.

Dashboard de Monitoramento

Visualização em tempo real do sistema KERS

Monitoramento em Tempo Real

Visualização instantânea de todas as métricas do sistema

Análise de Performance

Gráficos dinâmicos para análise de tendências

Alertas Inteligentes

Notificações automáticas para condições críticas

Dados Baseados em Telemetria Real

Utilizando datasets de veículos elétricos e FSAE

Análise de Performance

Métricas e resultados baseados em dados reais

Eficiência Geral do Sistema

83.0%

Energia recuperada em relação à energia consumida durante testes em pista

Comparação por Cenário

Endurance

Eficiência: 83.0% Energia Recuperada: 9.65 kWh

Autocross

Eficiência: 93.9% Energia Recuperada: 2.36 kWh

Aceleração

Eficiência: 94.3% Energia Recuperada: 0.11 kWh

Conclusões

- Maior eficiência em cenários com frenagens frequentes
- Recuperação de até 25% da energia total utilizada
- Redução significativa no consumo de bateria em provas longas

Eficiência do Sistema KERS por Cenário

Energia Recuperada vs. Consumida

Fonte: Dados coletados em testes reais com sistema KERS-SAE em veículo de Fórmula SAE