

Redondeemos los intervalos de confianza: el caso de las medias

- Deben haber recordado^[1]:
 - Si $\hat{\theta}$ es un **estimador** que:
 - 1) tiene aproximadamente una distribución normal
 - 2) es insesgado (por lo menos aproximadamente)
 - 3) se conoce una expresión para el error estándar (i.e. la desviación estándar del estimador $\sigma_{\hat{\theta}}$)

entonces:

$$P\left(-z_{lpha\!\!/_{\!2}}<rac{\hat{ heta}- heta}{\sigma_{\hat{ heta}}}< z_{lpha\!\!/_{\!2}}
ight)pprox 1-lpha$$
 y $\hat{ heta}\pm z_{lpha\!\!/_{\!2}}\cdot\sigma_{\hat{ heta}}$

es un intervalo de confianza para θ con nivel de confianza aproximadamente de $100\cdot(1-\alpha)\%$.

Esto es consecuencia del teorema del límite central (TLC)

Que en su forma más general dice^[2]:

Si S_n es la suma de un **número grande** n de variables aleatorias independientes y de varianza no nula pero finita, entonces la función de distribución de S_n se aproxima bien a una distribución normal.

Esto es consecuencia del teorema del límite central (TLC)

- Aunque es común encontrarlo más acotado^[1]: Sean $x_1, x_2, ..., x_n$ una muestra aleatoria de una **distribución normal** con media μ y varianza σ^2 . Entonces **con cualquier** n, \bar{x} está normalmente distribuida (con media μ y varianza σ^2/n).
- O un poco más generalizado^[1]:
 Sean x₁, x₂, ..., x_n una muestra aleatoria de una distribución con media μ y varianza σ². Entonces si n es suficientemente grande, x̄ tiene aproximadamente una distribución normal con media μ y varianza σ²/n.

- Se cumplen las condiciones:
 - \bar{x} es un **estimador** de μ que:
 - 1) tiene aproximadamente una distribución normal
 - 2) es insesgado
 - 3) se conoce una expresión para $\sigma_{\bar{x}}$: sqrt(σ^2/n)

entonces:

$$P\left(-z_{\alpha/2}<rac{ar{x}-\mu}{\sigma/\sqrt{n}}< z_{\alpha/2}
ight)pprox 1-lpha$$
 y $ar{x}\pm z_{\alpha/2}\cdotrac{\sigma}{\sqrt{n}}$

es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100\cdot(1-\alpha)\%$.

- Pero, ¿qué es "suficientemente grande"?
 - Es aceptado que n > 30 como suficientemente grande en la mayoría de los casos^[1-4]
- Pero lo usual es que desconocemos σ
 - Y utilizar su estimador muestral s
 - Antes teníamos solo una fuente de aletoriedad, en el numerador
 - Ahora tanto \bar{x} como s varían muestra a muestra

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

$$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

Al menos deberíamos ser más exigentes

- Debemos ser más cuidadosos ahora:
 - Si la población es aproximadamente normal, n ≥ 10 usualmente es suficiente
 - En el caso de una distribución de población uniforme,
 n ≥ 12 da una buena aproximación
 - n > 30 sigue siendo adecuado para la mayoría de las poblaciones
 - n > 40 se recomienda para poblaciones asimétricas (skewed)
 - Existen distribuciones de población para las cuales
 n > 50 no es suficiente, aunque no son comunes en la práctica

- ¿Pero qué significa "confianza"?
 - Dijimos: "es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100\cdot(1-\alpha)\%$ "

- ¿Pero qué significa "confianza"?
 - Dijimos: "es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100 \cdot (1 \alpha)\%$ "

- Pero ahora:
 - no conocemos la población (dejamos la media para efectos de ubicarnos solamente)
 - normalmente podemos contar solo con una muestra

- ¿Pero qué significa "confianza"?
 - Dijimos: "es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100\cdot(1-\alpha)\%$ "

- ¿Pero qué significa "confianza"?
 - Dijimos: "es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100\cdot(1-\alpha)\%$ "

- Tenemos un intervalo que incluye μ en cada caso
- Vamos a repetir el procedimiento 20 veces (en cada caso)

- ¿Pero qué significa "confianza"?
 - Dijimos: "es un intervalo de confianza para μ con nivel de confianza aproximadamente de $100 \cdot (1 \alpha)\%$ "

- ¿Pero qué significa "confianza"?
 - Aquí usamos α = 0.05, luego 95% confianza = 1 falla en
 20 intentos en promedio

Referencias

- [1] Jay L. Devore (2011). Probability and Statistics for Engineering and the Sciences; 8th Edition, Duxbury Press.
- [2] Charles M. Grinstead, J. Laurie Snell (1997). Introduction to Probability, chapter 9: Central Limit Theorem; 2nd Edition, AMS Bookstore.
- [3] David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2015). OpenIntro Statistics; 3rd Edition. Disponible en www.openintro.org.
- [4] Rudolf J. Freund, William J. Wilson, Donna L. Mohr (2010). Statistical Methods; 3rd Edition, Academic Press.