Engineering Physics (PH1001-1) MCQ Questions

Unit-I: Wave Mechanics, Crystallography & X-rays

1.	An experimental evidence for matter waves is					
	(a) photoelectric effect					
	(b) compton effect					
	(c) electron diffractio	n				
	(d) interference of lig	ht				
	Ans: c					
2.	A wave packet is used	d to represent				
	(a) A light wave					
	(b) a stationary wave					
	(c) Matter wave					
	(d) a transverse wave					
	Ans: c					
3.	Wave function associ	ated with matter wave	es is a quantum mechani	cal equivalent of		
	(a) wavelength of the	wave				
	(b) frequency of the v	vave				
	(c) amplitude of the wave					
	(d) phase of the wave					
	Ans: c					
4.	The concept of matter	wave was suggested b	py			
	(a) Heisenberg	(b) de Broglie	(c) Schrodinger	(d) Laplace		
	Ans: b					
5.	The function represent	ing matter waves mus	et be			
	(a) complex	(b) real	(c) zero	(d) infinity		
	Ans: a					
6.	$6.\ A$ particle with rest mass m_o is moving with speed $c.\ The$ de-broglie wavelength associated with it is					
	(a) zero	(b) infinity	(c) $h\gamma/c^2$	(d) m_0c		
	Ans: a					

7. The matter waves	s are		
(a) light waves	(b) sound waves	(c) probablistic	waves (d) e.m.waves
Ans: c			
8. The wavelength of	of matter waves does not depe	nd on	
(a) charge	(b) mass	(c) velocity	(d) momentum
Ans: a			
9. de Broglie wave	length of a body of mass m ar	nd kinetic energy E is	given by:
(a) $\lambda = \sqrt{2\text{meV}}$	$/ h$ (b) $\lambda = h / meV$	(c) $\lambda = h / \sqrt{2}$	$\frac{1}{2}$ (d) $\lambda = h/2$ meV
Ans: c			
10. If the energy of	a particle is reduced to one-fo	urth then the percenta	ge increase in the de-
broglie wavelen	gth is		
(a) 41%	(b) 100%	(c) 144%	(d) 70%
Ans: b			
11. The kinetic ener	gy of electron and proton is the	ne same. The relation	between their de-broglie
wavelengths λ_e	and λ_p is		
(a) $\lambda_e = \lambda_p$	(b) $\lambda_e < \lambda_p$	(c) $\lambda_e > \lambda_p$	(d) $\lambda_e = 2\lambda_p$
Ans: c			
12. The wave nature	e associated with electrons in	motion was verified by	y
(a) Photoelectric	effect		
(b) Compton effe	ect		
(c) Diffraction by	crystals		
(d) incidence of e	electrons on metallic surface		
Ans: c			
13. In a waveguide,	which of the following condi-	tion is true always?	
(a) phase velocity	y = c		
(b) group velocit	y = c		
(c) phase velocity	y > c		
(d) phase velocit	y < c		
Ans: c			

	(a) Frequency	(b) Wavelength	(c) Phase	constant	(d) Attenuation constant
	Ans: d				
15	. deBroglie wav	elength can be assigned	to		
	(a) only electron	ns			
	(b) any stationa	ry body			
	(c) any moving	body			
	(d) only subator	mic particles			
	Ans: c				
16	. Which one of t wavelength?	he following objects, mo	oving at the sam	ne speed, has	the greatest de Broglie
	(a) Neutron				
	(b) Electron				
	(c) Tennis ball				
	(d) Foot ball				
	Ans: b				
17	. Uncertainty pri	inciple is applicable to			
	(a) Macroscopio	c particles			
	(b) Microscopio	c particles			
	(c) gases				
	(d) None				
	Ans: b				
18	. According to l	Heisenberg uncertainty p	orinciple,		
	(a) $E = mc^2$	(b) $\Delta x \times \Delta p \ge h/4\pi$	(c) $\lambda = h / p$	(d) $\Delta x \times \Delta$	$p = h/6\pi$
	Ans: b				
19	. If uncertainty i	n the position of an elec	tron is zero, the	uncertainty	in its momentum would be
	(a) zero	(b) \leq h/ 2λ	(c) $> h/2\lambda$	(d) Infinite	
	Ans: d				

20. The wave function is an acceptable wave function if it is

14. The phase and group velocities does not depend on which of the following?

(a) finite everywho	ere		
(b) continous ever	rywhere		
(c) single valued e	everywhere		
(d) having all thes	e properties		
Ans: d			
21. Schrodinger's tim	ne independent equation	on is applicable for the pa	articles with
(a) constant energy	y		
(b) variable energy	y		
(c) only constant p	potential energy		
(d) all of these			
Ans: a			
22. The Steady-state	form of Schrodinger v	wave equation is	
(a) Linear	(b) Quadratic	(c) Differential equa	ation (d) Derivable
Ans: a			
23. The values of Ener	rgy for which Schrodi	nger's steady state equat	ion can be solved is called as
(a) Eigen Vectors	(b) Eigen Values	(c) Eigen Functions	(d) Operators
Ans: b			
24. For a quantum wa	ave particle, E =		
(a) \hbar k	(b) $\hbar \omega$	(c) ħ ω/2	(d) \hbar k/2
Ans: b			
25. Which of the follo	owing can be a wave	function?	
(a) tan x	(b) sin x	(c) cot x	(d) sec x
Ans: b			
26. Which of the follo	owing is not a charact	eristic of wave function?	
(a) Continuous	(b) Single valued	(c) Differentiable	(d) Physically Significant
Ans: d			
27. Any wave function	on can be written as a	linear combination of	
(a) Eigen Vectors	(b) Eigen Values	(c) Eigen Functions	(d) Operators
Ans: c			
28. The total probabil	lity of finding the part	ticle in space must be	

(a) zero	(b) unity	(c) infinity	(d) do	uble
Ans: b				
29. The normaliz	zed wave function n	nust haveı	norm	
(a) infinite	(b) zero	(c) finite	(d) co	mplex
Ans: a				
30. The square o	f the magnitude of t	the wave function is	called	
(a) current der	sity (b) probabili	ity density (c) zero	density (d)) volume density
Ans: b				
31. According to	the wave function	and it first partial der	ivative should be	e functions for
all values of X	ζ			
(a) Zero	(b) Continou	(c) Infini	ty (d) D	Discontinous
Ans: b				
32. If the particl	e moving in a	_ potential then the s	olution of the wa	ve equation are
describe as a	stationary states			
(a) time inde	pendent			
(b) time depe	endent			
(c) velocity of	lependent			
(d) velocity i	ndependent			
Ans: a				
33. V_o/Δ is a mea	asure the	of the potential		
(a) Height	(b) Wid	lth (c) Strength	(d) Length
Ans: c				
34. For non-loca	lized states of the so	quare well potential _		
(a) $E = 0$	(b) E =	α (c)	E < 0	(d) $E > 0$
Ans: d				
35. For $E > 0$, the	e particle has a	kinetic energy		
(a) Zero	(b) Pos	itive (c)) Negative	(d) Infinity
Ans: b				
36. According to	Max Born's interp	retation, $ \psi ^2$ repres	ents	

Ans: b

(a) 1

43. The de Broglie wavelength associated with a particle of mass $6.62 \times 10^{-29} \text{ kg}$ travelling with a velocity 10^5 ms^{-1} is equal to

- (a) 10 nm
- (b) 1 nm
- (c) 0.1 nm
- (d) 0.01nm

Ans: c

44. What is the energy of electron in terms of its ground state energy (E_1) when it jumps from n = 1 to n = 4 is

- (a) $E_1/9$
- (b) $E_1/16$
- (c) $16 E_1$
- (d) $4 E_1$

Ans: c

45. An electron is trapped in a one dimensional potential well of width 1 Å. How much energy must be supplied to excite the electron from the ground state to second excited state?

- (a) $4.82 \times 10^{-17} \text{ J}$
- (b) $4.82 \times 10^{-18} \text{ J}$
- (c) $1.81 \times 10^{-17} \text{ J}$
- (d) 1.81 x 10⁻¹⁸ J

Ans: a

46. Calculate the deBroglie wavelength associated with an electron with a kinetic energy of

2000 eV is

- (a) 2.74 Å
- (b) 0.274 Å
- (c) 27.4 Å
- (d) 0.0274 Å

Ans: b

47. Calculate the Zero-point energy for a particle in an infinite potential well for an electron

	(a) 3.9 x10 ⁻²⁹ J	(b) 4.9 X 10 ⁻²⁹ J	(c) 5.9 X 10 ⁻²	⁹ J (d) 6.9 X 10 ⁻²⁹ J
	Ans: c			
48	. The de Broglie wa	velength associated w	vith an electron mo	oving with a speed of 10 ⁵ m/s
	(a) 0.727 Å	(b) 7.27 Å	(c) 72.7 Å	(d) 727 Å
	Ans: a			
49	. The ratio of energy	y of a photon with tha	t of a neutron whe	n both are associated with
	wavelength of 1 Å	A., given that the mass	of neutron is 1.67	78 x 10 ⁻²⁷ Kg.
	(a) 2.5×10^5	(b) 1.5×10^5	(c) 0.5×10^5	(d) 3.5×10^5
	Ans: b			
50	. An electron is con	firmed to move betwe	een two rigid walls	separated by 20 Å. The de Broglie
	wavelength repres	enting the groun state	energy of an elec-	eron is (assume the potential to be
	zero)			
	(a) 0.6 Å	(b) 0.2 Å	(c) 0.4 Å	(d) 0.8 Å
	Ans: d			
	******	*******	******	**********

confined to a 1 nm atom.

UNIT – I: Crystallography & X-rays

1. If the atoms or molecules in a solid are periodical at regular intervals of distances in three
dimensions, then that solid is known as:
(a) crystalline solid
(b) amorphous solid
(c) liquid crystals
(d) none
Ans: (a)
 2. The smallest portion of a crystal which when repeated in different directions generates the entire crystal is called: a) Lattice points b) Crystal lattice c) Unit cell d) None of the mentioned
Ans: (c)
 3. The complete three-dimensional arrangement of particles within a crystal is known as the, while the smallest repeating unit in the lattice is called the (a) unit cell; atom (b) crystal structure; unit cell (c) crystal structure; molecule (d) lattice; element Ans: (b)
 4. Number of atoms per unit cell in case of primitive unit cell. a. (a) 0 (b) 1 (c) 2 (d) 3 Ans: (b)
5. Number of atoms per unit cell in case of non-primitive unit cell.b. (a) 0 (b) 1 (c) more than one (d) less than one
Ans: (c)
6. The number of crystal systems are:
(a) 5
(b) 7
(c) 14
(d) 21
Ans: (b)
7. The number of Bravais lattices is:
(a) 256
(b) 7

- (c) 14
- (d) 37

Ans: (c)

- 8. A cubic crystal system is represented by:
 - (a) $a = b = c \alpha = \beta = \gamma \neq 90^{\circ}$
 - (b) $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$
 - (c) a = b = c $\alpha = \beta = \gamma = 90^{\circ}$
 - (d) $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Ans: (c)

- 9. In a triclinic crystal:
 - a. a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$
 - b. $a \neq b = c$, $\alpha = \beta = \gamma = 90^{\circ}$
 - c. $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
 - d. $a \neq b \neq c$, $\alpha = \beta = 90^{\circ} \gamma \neq 90^{\circ}$

Ans: (c)

- 10. Which of the following are the CORRECT axial distances and axial angles for rhombohedral system?
 - (a) a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$
 - (b) $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$
 - (c) $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$
 - (d) $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Ans: (a)

11. Monoclinic crystal has dimensions _____.

(a)
$$a \neq b \neq c$$
, $\alpha = \beta = 90^{\circ}$, $\gamma \neq 90^{\circ}$

- (b) $a = b = c, \ \alpha = \beta = \gamma = 90^{\circ}$
- (c) $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$
- (d) $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Ans: (a)

12. If 'a' stands for the edge length of the cubic systems: simple cubic, body centred cubic and face centred cubic, then the ratio of the radii of the spheres in these systems will be respectively:

(a)
$$\frac{1}{2}$$
a: $\frac{\sqrt{3}}{4}$ a: $\frac{1}{2\sqrt{2}}$ a

(b)
$$\frac{1}{2}$$
a: $\sqrt{3}$ a: $\frac{1}{\sqrt{2}}$ a

$$(c)$$
 $\frac{1}{2}a:\frac{\sqrt{3}}{2}a:\frac{\sqrt{2}}{2}a$

(d) 1a : √3a : √2a
Ans: (a)
13. In a face-centered cubic lattice, a unit cell is shared equally by how many unit cells? (a) 2 (b) 4 (c) 6 (d) 8
Ans: (c)
14. If R is the radius of the atom in a crystal, crystallizing in the simple cubic structure, then
the nearest neighbor distance is
(a) R/2 (b) 4R (c) 2R (d) $2\sqrt{2}$ R
Ans: (c)
15. The effective number of atoms belonging to the unit cell of FCC structure is
(a) 1 (b) 2 (c) 3 (d) 4
Ans: (d)
16. The packing efficiency in simple cubic unit cell is
(a) 52%
(b) 68%
(c) 74%
(b) 80%
Ans: (a)
17. The packing factor of the BCC structure is
(a) 52% (b) 72% (c) 64% (d) 68%
Ans: (d)
18. The maximum percentage of available volume that can be filled in a face centered cubic
system by an atom is
(a) 74% (b) 68% (c) 34% (d) 26%
Ans: (a)
19. Percentage of free space in a body centred cubic unit cell is(a) 32%(b) 34%(c) 28%

(d) 20% Ans: (a)	
20. A family of directions is represented by	
(a) (hkl) (b) <uvw> (c) {hkl} (d) [uvw]</uvw>	
Ans: (b)	
21. The Miller indices of the plane parallel to the X and Y axes and intersecting Z axis at 1unit	
are	
(a) (1 0 0) (b) (0 1 0) (c) (0 0 1) (d) (1 1 0)	
Ans: (c)	
22. The Miller indices of the plane parallel to the X and Z axes and intersecting one unit along	
Y axis are	
(a) (1 0 0) (b) (0 1 0) (c) (0 0 1) (d) (1 1 0)	
Ans: (b)	
23. The Miller indices of the plane parallel to the Y and Z axes and intersecting one unit along	
X axis are	
(a) (1 0 0) (b) (0 1 0) (c) (0 0 1) (d) (1 1 0)	
Ans: (a)	
24. The Miller indices of the plane parallel to the Y axis and intersecting one unit along both X	
and Z axes are	
(a) (1 0 0) (b) (0 1 0) (c) (0 0 1) (d) (1 0 1)	
Ans: (d)	
25. The Miller indices of the plane parallel to the X axis and intersecting one unit along both Y	
and Z axes are	
(a) (1 0 0) (b) (0 1 0) (c) (0 1 1) (d) (1 0 1)	
Ans: (c)	
26. The Miller indices of the plane parallel to the Z axis and intersecting one unit along both X	
and Y axes are	
(a) (1 0 0) (b) (1 1 0) (c) (0 0 1) (d) (1 0 1)	
Ans: (b)	
27. Which plane is perpendicular to a [100] direction? (a) (001) b) (010) c) (100) d) (011) Ans: (c)	

28. Co-ordination number of a crystalline solid is:
a) Number of particles in the unit cell
b) Number of nearest neighbours of a particle
c) Number of octahedral voids in a unit cell
d) Number of tetrahedral voids in a unit cell
Ans: (b)
29. Packing efficiency of a crystal structure is the ratio of:
a) Volume occupied by atoms to the total volume of the unit cell
b) Volume occupied by atoms to that by voids
c) Total volume of the unit cell to the volume occupied by atoms
d) Volume occupied by voids to that by atoms
Ans: (a)
30. Which of the following is a property of amorphous solids?
a) Sharp melting point
b) Isotropy
c) Long range order
d) Definite heat of fusion
Ans: (b)
31. Which of the following is a crystalline solid?
a) Copper wire
b) Glass bottle
c) Polythene bag
d) Rubber ball
Ans: (a)
32. In a face centred cubic (fcc) arrangement, the number of atoms per unit cell is
(a) 1
(b) 2
(c) 3
(d) 4
Ans: (d)
33. If (3 2 6) are the Miller indices of a plane, the intercepts made by the plane on the three
crystallographic axes are
(a) (2a, 3b, c) (b) (a, b, c) (d) (a, 2b, 3c) (d) none of these
Ans: (d)
34. A plane intercepts at a, b/2, 3c in a simple cubic unit cell. The Miller indices of the plane
are
(a) (1 3 2) (b) (2 6 1) (c) (3 6 1) (d) (1 2 3)

Ans: (d) 35. Find the Miller indices of a set of planes which makes the intercepts in the ratio 3a:4b on	
the x and y axis, and are parallel to the z axis	
(a) (3 4 0) (b) (4 3 0) (c) (0 4 3) (d) (4 0 3)	
Ans: (b) 36. The crystal system with lattices $a = b = c$ and interfacial angles $\alpha = \beta = \gamma \neq 90^{\circ}$ represents (a) Triclinic system (b) Monoclinic system (c) Tetragonal system (d) Rhombohedral system	
Ans: (d)	
37. The nearest neighbor distance between two atoms in case of BCC structure is	
(a) $a\sqrt{3}/2$ (b) $2a/\sqrt{3}$ (c) $a\sqrt{2}/2$ (d) $2a/\sqrt{2}$	
Ans: (a) 38. Wavelength of the X-ray ranges between to (a) 0.1Å - 100Å (b) 0.1μm – 100μm (c) 0.1mm – 100 mm (d) 0.1m – 100m Ans: (a)	
39. When a beam of fast moving electrons strikes a solid target, then rays produced are (a) alpha rays (b) beta rays (c) gamma rays (d) x-rays Ans: (d)	
40. X-rays have	
(a) Short wavelength (b) high frequency (c) both (a) and (b) (d) none	
Ans: (c)	
 41. When a filament (incident) electron knocks out a K shell electron from the target atom, it leads to what? (a) A characteristic x-ray photon (b) A continuous x-ray photon (c) Both continuous characteristic x-ray photon (d) None of the above. Ans: (a) 	
42 is an energetic characteristic x-rays.	
(a) K alpha (b) K beta (c) K gamma (d) L alpha	
Ans: (b) 43. L-alpha characteristic x-rays are due to (a) L shell to K shell transition	
(b) K shell to L shell transition	
(c) M shell to L shell transition	

(d) N shell to L shell transition
Ans: (c)
44. K beta characteristic x-rays are due to
(a) L shell to K shell transition
(b) M shell to K shell transition
(c) N shell to K shell transition
(d) K shell to L shell transition
Ans: (b)
45. In x-rays lower wavelength limit (λ_{min}) is depends on
(a) Acceleration Voltage
(b) Distance between filament and target materia
(c) Atomic number of the target material
(d) Thickness of the target material.
Ans: (a)
46. Intensity of x-rays increases with increase in
(a) Temperature
(b) Acceleration voltage
(c) Pressure
(d) None
Ans: (b)
47. X-ray diffraction is based on
(a) Bragg's law
(b) Newton's Laws
(c) Coulomb's Law
(d) Pascal's Law

and target material.

48. Hard x-rays are

Ans: (a)

- (a) L series x-rays
- (b) K series x-rays
- (c) L series and K series x-rays

Ans: (b)
49. Bragg's law is
(a) $4d\sin\theta = n\lambda$
(b) $2d\cos\theta = n\lambda$
(c) $2d\sin\theta = n\lambda$
(d) $4d\cos\theta = n\lambda$
Ans: (c)
50. X-ray spectrometer is based on
 (a) Pascal's Law (b) Newton's Laws (c) Coulomb's Law (d) Bragg's law Ans: (d)
51. Crystal structure determination and analysis is done with (a) alpha rays (b) beta rays (c) gamma rays (d) x-rays
Ans: (d)
52. Condition for constructive interference in x-ray diffraction
(a) Path difference is integral multiple of λ
(b) Path difference is integral multiple of $\lambda/2$
(c) Path difference is integral multiple of $\lambda/3$
(d) Path difference is integral multiple of $\lambda/4$
Ans: (a)

(d) None