Vector spaces

103

b) does the linear independence of a system $\{a_1, \ldots, a_n\}$ imply the linear independence of the system $\{a_1 + a_2, a_2 + a_3, \ldots, a_{n-1} + a_n, a_n + \lambda a_1\}$

3403. Prove the linear independence of the systems of functions:

- a) $\sin x$, $\cos x$;
- b) I. $\sin x$, $\cos x$;
- c) $\sin x$, $\sin 2x$, ..., $\sin nx$;
- d) 1, $\cos x$, $\cos 2x$, ..., $\cos nx$;
- e) 1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$;
- f) $1, \sin x, \sin^2 x, ..., \sin^n x$;
- g) 1, $\cos x$, $\cos^2 x$, ..., $\cos^n x$.

3404. Prove the linear independence of the systems of functions:

- a) $e^{\alpha_1 x}, \ldots, e^{\alpha_n x}$;
- b) $x^{\alpha_1}, \ldots, x^{\alpha_n};$
- c) $(1-\alpha_1x)^{-1},\ldots,(1-\alpha_nx)^{-1},$

where $\alpha_1, \ldots, \alpha_n$ are pairwise distinct real numbers.

3405. Prove that in the space of functions of one real variable, vectors f_1, \ldots, f_n are linearly independent if and only if there exist numbers a_1, \ldots, a_n such that $\det (f_i(a_i)) \neq 0$.

3406.

- a) Let there be defined, in a vector space V over the field \mathbb{C} , a new multiplication of vectors by complex numbers by the rule $\alpha \circ x = \tilde{\alpha}x$. Prove that V with respect to the operations + and \circ is a vector space. Find its dimension.
- b) Let \mathbb{C}^n be the abelian group of all rows (a_1, \ldots, a_n) of length $n, a_i \in \mathbb{C}$. If $b \in \mathbb{C}$ we put $b \circ (a_1, \ldots, a_n) = (b\bar{a}_1, \ldots, b\bar{a}_n)$. Is \mathbb{C}^n a vector space with respect to the operations + and \circ ?

3407. Prove that

- a) the group $\mathbb Z$ is not isomorphic to the additive group of any vector space;
- b) the group \mathbb{Z}_n is isomorphic to the additive group of a vector space over some field if and only if n is a prime number;
- c) a commutative group A is a vector space over the field \mathbb{Z}_p if and only if px = 0 for any $x \in A$;

a commutative group A can be turned into a vector space over \mathbb{Q} , if and only if it has no elements of finite order (except zero) and, for any natural number n and any $a \in A$, the equation nx = a has a solution in the group A.

3408. Let F be a field and E be its subfield.

- a) Prove that F is a vector space over E.
- b) If F is finite then $|F| = |E|^n$, where n is the dimension of F as a vector space over E.
- c) If F is finite then $|F| = p^m$, where p is the characteristic of F.
- d) Find the basis and dimension of \mathbb{C} over \mathbb{R} .
- e) Let m_1, \ldots, m_1 be distinct square-free natural numbers. Prove that the numbers $1, \sqrt{m_1}, \ldots, \sqrt{m_n}$ are linearly independent in \mathbb{R} over \mathbb{Q} .
- f) Let r_1, \ldots, r_n be distinct rational numbers in the interval (0, 1). Prove that in the space \mathbb{R} over \mathbb{Q} the numbers $2^{r_1}, \ldots, 2^{r_n}$ are independent.
- g) Let α be a complex root of an irreducible polynomial over \mathbb{Q} , $p \in \mathbb{Q}[x]$. Find the dimension over \mathbb{Q} of the space $\mathbb{Q}[\alpha]$, consisting of all numbers of the form $f(\alpha)$, $f \in \mathbb{Q}[x]$.

3409. Let M be a set consisting of n elements. On the set of its subsets 2^M let there be defined the operations of addition and multiplication by elements of the field \mathbb{Z}_2 as in Exercise 102.

$$1X = X$$
, $0X = \emptyset$.

- a) Prove that with respect to these operations the set 2^{M} is a vector space over the field \mathbb{Z}_{2} , and find its basis and dimension.
- b) Let X_1, \ldots, X_k be subsets of M, neither of which is contained in the union of the others. Prove that $\{X_1, \ldots, X_k\}$ is an independent system.

3410. Let the vectors e_1, \ldots, e_n and x be given, in some basis by coordinates:

- a) $e_1 = (1, 1, 1), e_2 = (1, 1, 2), e_3 = (1, 2, 3), x = (6, 9, 14);$
- b) $e_1 = (2, 1, -3), e_2 = (3, 2, -5), e_3 = (1, -1, 1), x = (6, 2, -7);$
- c) $e_1 = (1, 2, -1, -2), e_2 = (2, 3, 0, -1), e_3 = (1, 2, 1, 4), e_4 = (1, 3, -1, 0), x = (7, 14, -1, 2).$

Prove that (e_1, \ldots, e_n) is also a basis of the space and find the coordinates of x in this basis.