Number Theory Down Under 8 Further Study of the Knave Map

Thomas Morrill¹ Mansur Boase

¹Trine University Slides available at tsmorrill.github.io.

2020 October 8

Outline

- Look-and-Say Sequences
- The Look-Knave Sequence
- Limits of $k^n(s)$.
- Asymptotics
- Preliminary Bounds
- Next Steps

The Look-and-Say Sequence is a sequence of integers (words)

$$1, 11, 21, 1211, \dots$$

in which the digits of s_n are the description of the digits of s_{n-1} .

Theorem (Conway, 1987)

Let s_n denote the nth term in the Look-and-Say sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.3035...,$$

which is an algebraic integer of degree 71.

Theorem (Conway's Cosmological Theorem, 1987)

Let ℓ denote the Look-and-Say map. There is a known set (table) of words (elements) so that the following hold.

For all pairs of elements u, v on the table, $\ell(uv) = \ell(u)\ell(v)$.

Further, let $w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^n$, with $n \ge 1$. Then there exists $m \ge 0$ so that $\ell^m(w)$, and all its iterates under ℓ decompose into words from the table of elements

$$w' = w_1' \dots w_k'.$$

"All compounds eventually decompose into lower elements."

The Binary Look-and-Say Sequence is a sequence of binary words

in which the bits of s_n are the base-2 description of the digits of s_{n-1} .

Theorem (Johnston, 2010 (blog post))

Let s_n denote the nth term in the Binary Look-and-Say sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.4655...,$$

which is an algebraic integer of degree 3.

For a binary word s, let \overline{s} be the bitwise complement of s.

The Look-Knave Sequence is a sequence of binary words, in which $s_1 = 1$, and the bits of s_n are the base-2 description of $\overline{s_{n-1}}$.

We call this operation the knave map,

$$k: \bigcup_{n=1}^{\infty} \{0, 1\}^n \to \bigcup_{n=1}^{\infty} \{0, 1\}^n.$$

Here is the calculation of the first few terms of the sequence.

$$egin{array}{lll} s_1 & & & & \overline{s_1} = 0 \\ s_2 & = 10 & & & \overline{s_2} = 01 \\ s_3 & = 1011 & & & \overline{s_3} = 0100 \\ s_4 & = 1011101 & & & \overline{s_3} = 0100010 \\ & \vdots & & & \vdots \end{array}$$

Entries of the Look-Knave sequence

```
1
10
1011
1011100
1011110101
101111011101110
101111001110111011
1011100111101111011100
1011110111110111101111011
101110001110111101111011110111
```

Conjecture

Let s_n denote the nth term in the Look-Knave sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.12 \dots,$$

which is an algebraic integer.

Odd entries of the Look-Knave Sequence

Even entries of the Look-Knave Sequence

10 1011100 1011100011101110 1011100011101011100011100 101110001110101111011100011101011101110

Theorem (M, 2020)

Let $s_n = k^n(1)$. Then the bitwise limits

$$\lim_{n \to \infty} s_{2n} = S_0, \qquad \qquad \lim_{n \to \infty} s_{2n+1} = S_1$$

exist. Further, S_0 is the description of $\overline{S_1}$ and vice versa.

$$S_0 = 1011100011101\dots$$

$$S_1 = 10111101111110...$$

Can we really define the action of k on any infinite binary word? Simple, we only have two cases to handle: a tail of all 0s, and a tail of all 1s.

$$k(0\ldots) := 1\ldots$$

 $k(0\ldots) := 1\ldots$

This plays nicely with the inclusion map

$$\bigcup_{n=1}^{\infty} \{0, 1\}^n \to \{0, 1\}^{\mathbb{N}}$$

$$w0 \mapsto w0 1 \dots$$

$$w1 \mapsto w1 0 \dots$$

Theorem (M, 2020)

Let S be any infinite binary word. If S is neither of (0...) and (1...), then the bitwise limits

$$\lim_{n \to \infty} k^{2n}(S), \qquad \lim_{n \to \infty} k^{2n+1}(S)$$

both exist, and

$$\left\{ \lim_{n \to \infty} k^{2n}(s), \ \lim_{n \to \infty} k^{2n+1}(s) \right\} = \{S_0, S_1\}$$

Thus, S_0 and S_1 are the attracting fixed points of the map

$$k^2: \{0, 1\}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}},$$

and (0...) and (1...) are the repelling fixed points.

Asymptotics

What are the properties of k as a function of infinite sequences?

What are the properties of S_0 and S_1 ?

How about the density of 1s in these words?

Asymptotics

For a binary word s, define

|s| = the length of s.

 $|s|_1$ = the number of 1s which occur in s.

$$d_1(s) = |s|_1/|s|.$$

 $\Delta(s)$ = the number of bit changes which occur in s.

For example,

$$d_1(\texttt{11011}) = \frac{|\texttt{11011}|_1}{|\texttt{11011}|} = \frac{4}{5}$$

$$\Delta(\texttt{11011}) = 2.$$

Asymptotics

We are interested in studying limits of the form

$$\lim_{n\to\infty}\frac{f(w_n)}{g(w_n)},$$

where w_n is the prefix of S_0 (resp., S_1) of length n.

Notice w_n is also a prefix of some word $k^m(1)$!

Lemma

For $s_n \in \{k^n(1)\}_{n=0}^{\infty}$,

$$|s_n| \simeq |s_n|_1 \simeq |s_n|_0 \simeq \Delta(s_n) \simeq |k(s)|.$$

That is, for each pair of functions, there exist constants A, B so that

$$A|s_n| \le \Delta(s_n) \le B|s_n|$$

and so on.

Proof.

Run-lengths of s are bounded; at most three 0s, or five 1s, may occur in a run.

Corollary

For
$$s_n \in \{k^n(1)\}_{n=0}^{\infty}$$
,

$$1 \simeq d_1(s_n) \simeq d_0(s_n) \simeq \frac{\Delta(s_n)}{|s_n|} \simeq \frac{|k(s_n)|}{|s_n|}.$$

Lemma (M, 2020)

All $s_n \in \{k^n(1)\}_{n=0}^{\infty}$, may be decomposed into a concatenation of subwords w listed below.

Body		Tail	
w	k(w)	w	k(w)
0	11	00	101
000	111		
1	10	11	100
111	110		
1111	1000		
11111	1010		

Here, subwords in the "tail" column may only occur as the final subword of s_n .

This means 0110 and 1001 never occur in S_0 or S_1 .

Subwords of S_0 , S_1 , their densities, and densities are given below.

s	d(s)	k(s)	d(k(s))
10	1/2	1011	3/4
1000	1/4	10111	4/5
1110	3/4	1011	4/5
111000	1/2	110111	5/6
11110	4/5	100011	1/2
1111000	4/7	1000111	4/7
111110	5/6	101011	2/3
11111000			

With a little work, one can show 11111000 also does not occur in S_0 or S_1 .

They warned me about averaging averages...

Lemma (The Mediant Inequality)

For $1 \le i \le n$, let $q_i = \frac{a_i}{b_i}$ with $a_i \ge 0$, $b_i > 0$, and

$$q_1 \leq \ldots \leq q_n$$
.

Further let ω_i be nonnegative weights. Then

$$q_1 \le \frac{\omega_1 a_1 + \dots + \omega_n a_n}{\omega_1 b_1 + \dots + \omega_n b_n} \le q_n$$

So, if s is a prefix of S_0 or S_1 , then

$$\frac{|s|_1}{|s|} = \frac{\omega_1 \Sigma w_1 + \dots + \omega_n \Sigma w_n}{\omega_1 |w_1| + \dots + \omega_n |w_n|},$$

where the w_i are subwords taken from the k(s) column of the table. This gives us

$$\frac{1}{2} \le \frac{|s|_1}{|s|} \le \frac{5}{6}.$$

So, there are no fewer 1s than 0s.

Can we do better?

Gerrymandering

We don't like the subword s = 11110, because the density of k(s) is not rigged in our favor.

s	k(s)	d(k(s))
10	1011	3/4
1000	10111	4/5
1110	1011	4/5
111000	110111	5/6
11110	100011	1/2
1111000	1000111	4/7
111110	101011	2/3

By studying the k(s) column, we deduce 11110 cannot immediately follow itself in $k(s_n)$, but $s_n = k(s_{n-1})$.

Let's replace the 11110 line in the table by considering all possible subwords which begin with 1110 instead.

s	k(s)	d(k(s))
1111010	1000111011	6/10
111101000	10001110111	7/11
111101110	1000111011	7/11
11110111000	100011110111	2/3
111101111000	1000111000111	7/13
11110111110	100011101011	7/12

This implies

$$\frac{7}{13} \le \frac{|s|_1}{|s|} \le \frac{5}{6}.$$

Let s_n be the prefix of length n of S_0 (resp., S_1). Then

$$1 \le \underline{\lim} \frac{k^{n+1}(1)}{k^n(1)} \le \overline{\lim} \frac{k^{n+1}(1)}{k^n(1)} \le 1.7$$
$$\frac{7}{13} \le \underline{\lim} \frac{|s|_1}{|s|} \le \overline{\lim} \frac{|s|_1}{|s|} \le \frac{5}{6}$$

Next Steps

- Tighter bounds on the growth constant
- Develop a substitution system for S_0 and S_1
- Periodicity/entropy of S_0 , S_1 ?
- Work in an extended alphabet $\{0, 1, \mathbf{0}, \mathbf{1}\}$.

Thank you!