## 4.7.1. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

**Цель работы:** изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления в кристалле.

**Оборудование:** гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

## Теоретическая часть

В некоторых кристаллах потенциальные ямы, в которых находятся электроны вблизи узлов решетки, не являются симметричными. Причем всегда можно выбрать систему координат, чтобы потенциальная энергия электрона при малых отклонениях имела следующий вид

$$U = a_x x^2 a_y y^2 a_z z^2.$$

Если два коэффициента равны  $a_y=a_z=a_\perp,\ a_x=a,$  то кристалл называют одноосным, а ось x – главной оптической осью.

По сколько величины отклонений электрона от положения равновесия вдоль разных осей зависят от соответствующих коэффициентов  $a_x$ ,  $a_y$ ,  $a_z$ , то в случае одноосного кристалла вектор поляризации  ${\bf P}$  будет неколлиниарен вектору напряженности внешнего электрического поля  ${\bf E}$ :

$$\mathbf{P} = \alpha \mathbf{E}_{\parallel} + \alpha_{\perp} \mathbf{E}_{\perp}, \quad \mathbf{D} = \varepsilon_{\parallel} \mathbf{E}_{\parallel} + \varepsilon_{\perp} \mathbf{E}_{\perp}. \tag{1}$$

Записав волны в общем виде

$$\mathbf{E} = \mathbf{E}_0 e^{i(wt - \mathbf{kr})}, \quad \mathbf{H} = \mathbf{H}_0 e^{i(wt - \mathbf{kr})}, \quad \mathbf{D} = \mathbf{D}_0 e^{i(wt - \mathbf{kr})}$$

и подставив в уравнения Максвелла

$$rot \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}, \quad rot \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t},$$

получим

$$\mathbf{D} = -\frac{c}{w}\mathbf{k} \times \mathbf{H}, \quad \mathbf{H} = \frac{c}{w}\mathbf{k} \times \mathbf{E}.$$
 (2)

Главной плоскостью будем называть плоскость, образованную оптической осью и волновым вектором  ${\bf k}$ . Анализ уравнений  $(\ref{eq:constraint})$  показывает, что возможны два расположения векторов  ${\bf D}, {\bf E}, {\bf k}, {\bf H}$  друг относительно друга:

- (a)  $\mathbf{D} = \varepsilon_{\perp} \mathbf{E}_{\perp} \mathbf{D}$  перпендикулярен главной плоскости
- (b)  $\mathbf{D} = \varepsilon_{\parallel} \mathbf{E}_{\parallel} + \varepsilon_{\perp} \mathbf{E}_{\perp} \mathbf{D}$  лежит в главной плоскости



Рис. 1: Обыкновенная (a) и необыкновенная (б) волны

В первом случае волна называется обыкновенной, а во втором – необыкновенной. Поскольку уравнения Максвелла линейны, то в общем случае любое монохроматическое поле в кристалле можно представить как суперпозицию обыкновенной и необыкновенной волн.

Выразим фазовую скорость  $v=\frac{w}{k}$  для волны в анизотропной среде

$$(??) \Rightarrow v = \frac{cH}{D} = \frac{cE \cos \alpha}{H} \Rightarrow$$

$$\Rightarrow v = \sqrt{\frac{c^{2E} \cos \alpha}{D}} = c\sqrt{\frac{\mathbf{E} \cdot \mathbf{D}}{D^2}}.$$
(3)

Тогда в соответствии с формулой (??) фазовая скорость обыкновенной волны

$$v_o = \frac{c}{\sqrt{\varepsilon_\perp}} = \frac{c}{n_o}. (4)$$

Для необыкновенной волны

$$\mathbf{E} \cdot \mathbf{D} = \varepsilon_{\parallel} E_{\parallel}^{2} + \varepsilon_{\perp} E_{\perp}^{2} = \frac{D_{\parallel}^{2}}{\varepsilon_{\parallel}} + \frac{D_{\perp}^{2}}{\varepsilon_{\perp}} \Rightarrow$$

$$\Rightarrow v_{e} = c \sqrt{\frac{\sin^{2} \theta}{\varepsilon_{\parallel}} + \frac{\cos^{2} \theta}{\varepsilon_{\perp}}} = \frac{c}{n(\theta)}.$$
(5)

Величины  $n_o = \sqrt{\varepsilon_\perp}$ ,  $n_e = \sqrt{\varepsilon_\parallel}$  называют главными показателями преломления. Используя эти обозначения можно записать формулу для  $n(\theta)$  из уравнения (??)

$$n^2(\theta) = \left(\frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2}\right)^{-1}.$$
 (6)

При условии  $n_o - n_e l n_o, n_e$  формулу (??) можно упростить

$$n(\theta) \approx n_o + (n_o - n_e)\cos^2\theta \tag{7}$$

## Экспериментальная установка

Исследуемая призма, изготовленная из исландского шпата, закреплена в центре поворотного столика. Оптическая ось кристалла параллельна длинному катету и верхней поверхности призмы. Преломляющий угол A можно рассчитать, если известны угловые координаты лучей отраженных от преломляющих граней.

Из рис.2 можно получить

$$\varphi_2 = A + \psi - \varphi_1, \tag{8}$$



Рис. 2: Ход лучей в призме

где  $\psi$  — угол между первоначальным направлением и направлением преломленного луча — определяется по разности отсчетов на лимбе между точкой, куда попадает луч в отсутствии призмы, и точкой, куда попадает преломленный луч.

При монотонном увеличении угла падения  $\varphi_1$ , угол  $\psi$  сначала монотонно уменьшается, а затем монотонно увеличивается. Наименьшее значение угла  $\psi_m$  достигается при  $\varphi_1 = \varphi_2$ . Тогда показатель преломления n можно рассчитать по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\frac{A}{2}}. (9)$$

Строго говоря, формулой (??) в случае анизотропной призмы можно воспользоваться только для обыкновенной волны. Но если учесть, что угол при вершине призмы мал и при угле наименьшего отклонения преломленный луч в призме распространяется под углом к оси кристалла, близким к  $\pi/2$ , то формулу (??) можно использовать в качестве оценки  $n_e$ .

## Результаты и обработка

Таблица 1: Измерение преломляющего угла А призмы

|    | Лимб (отра-    | Риска (отражение от | Риска (отражение от |
|----|----------------|---------------------|---------------------|
|    | женный луч), ° | длинного катета), ° | гипотенузы), °      |
| 0  | 10             | 65                  | 283                 |
| 1  | 20             | 70                  | 289                 |
| 2  | 30             | 75                  | 293                 |
| 3  | 40             | 80                  | 299                 |
| 4  | 50             | 85                  | 304                 |
| 5  | 60             | 90                  | 308                 |
| 6  | 70             | 95                  | 314                 |
| 7  | 80             | 100                 | 319                 |
| 8  | 90             | 105                 | 324                 |
| 9  | 100            | 110                 | 329                 |
| 10 | 110            | 115                 | 334                 |
| 11 | 120            | 120                 | 339                 |
| 12 | 130            | 130                 | 344                 |
| 13 | 140            | 140                 | 349                 |

Таблица 2: Измерение главных показателей преломления  $n_o,\ n_e$ 

|    | Отраженный | Преломленный     | Преломленный       |
|----|------------|------------------|--------------------|
|    | луч        | обыкновенный луч | необыкновенный луч |
| 0  | 20         | 212.5            | 203.0              |
| 1  | 30         | 210.5            | 202.0              |
| 2  | 40         | 209.0            | 201.8              |
| 3  | 50         | 208.5            | 201.5              |
| 4  | 60         | 208.0            | 202.0              |
| 5  | 70         | 208.0            | 202.5              |
| 6  | 80         | 209.0            | 203.0              |
| 7  | 90         | 210.0            | 204.5              |
| 8  | 100        | 211.0            | 206.0              |
| 9  | 110        | 213.0            | 208.0              |
| 10 | 120        | 215.0            | 210.0              |
| 11 | 130        | 217.0            | 212.5              |
| 12 | 140        | 220.5            | 215.5              |