Test A *1. dubna 2021*

- 1. Rovinná vlna se šíří <u>bezeztrátovým</u> prostředím s relativní permitivitou $\varepsilon_r = 16$ a relativní permeabilitou $\mu_r = 1$. Ve směru osy x jsme naměřili nejkratší vzdálenost dvou míst se stejnou fází $\Delta x = 0.84$ m. Ve směru osy y byla tato vzdálenost $\Delta y = 1.68$ m.
 - a) Jaký úhel svírá směr šíření vlny s osou *x*?
 - b) Jaký je kmitočet vlny?
- V <u>bezeztrátovém</u> prostředím s relativní permitivitou $\varepsilon_r = 9$ a relativní permeabilitou $\mu_r = 1$ jsme naměřili v bodě A(1 m; 1 m) intenzitu elektrického pole $E^{(A)} = 1$ mV/m. Rovinná vlna o kmitočtu f = 300 MHz se šíří ve směru odchýleném od osy x o úhel $\alpha = 60^{\circ}$. Určete:
 - a) Výkon, který v bodě A protéká plochou $S = 0.5 \text{ m}^2$, která je kolmá k ose x.
 - b) Intenzitu magnetického pole v bodě B(-1 m; 0 m).
- 3. Vlnová impedance <u>bezeztrátového</u> prostředí je $Z_0 = (30\pi) \Omega$, jeho relativní permeabilita je $\mu_r = 1$. Kmitočet vlny je f = 50 MHz. Vlna se šíří směrem odchýleném od osy x o úhel $\alpha = 30^{\circ}$.
 - a) Jaká je hodnota vlnového čísla *k*?
 - b) Na jak dlouhém úseku ve směru osy y se změn fáze o 90°?
- **4.** Bezeztrátové vedení <u>na konci nakrátko</u> má charakteristickou impedanci $Z_V = 100 \Omega$, činitele zkrácení $\xi = 0.8$ a je dlouhé l = 40 mm. Pracovní kmitočet je f = 600 MHz.
 - a) Jakou indukčnost *L* toto vedení na svém vstupu vykazuje?
 - b) Jaký bude na tomto vedení poměr stojatých vln?
- 5. Na bezeztrátovém homogenním vedení s charakteristickou impedancí $Z_V = 50 \Omega$ a činitelem zkrácení $\xi = 0.8$ byl na kmitočtu f = 150 MHz naměřen poměr stojatých vln PSV = 2. Na konci vedení se nachází uzel napětí $U_{min} = 1$ V. Spočítejte:
 - a) Celkový proud na zátěži a proud přímé vlny.
 - b) Polohu prvního uzlu proudu.
- **6.** Homogenní vedení o charakteristické impedanci $Z_V = 200 \Omega$ a délce vlny $\lambda = 1$ m je zakončeno odporem $R_k = 50 \Omega$. Na zakončovacím odporu jsme naměřili napětí $U_k = 1$ V. Vypočítejte:
 - a) Celkový proud zátěží a proud přímé vlny.
 - b) Polohu první kmitny napětí

- 7. Do načrtnutých Smithových diagramů vyznačte:
 - a) Fázor činitele odrazu, který odpovídá normované impedanci z = 0.5 + j 0.5;
 - b) Fázor činitele odrazu, $\varphi = 0.5 j 0.5$;
 - c) Fázor činitele odrazu ve vzdálenosti $\zeta = 0.1 \lambda$ od zkratovaného konce vedení.

- 8. Zatěžovací impedanci $Z_k = (100 + j\ 100)\ \Omega$ máme přizpůsobit k vedení s charakteristickou impedancí $Z_V = 50\ \Omega$ vloženým vedením a čtvrt-vlnným transformátorem. Určete obě možná řešení.
- 9. Zatěžovací impedance $Z_k = (140 j\ 60)\ \Omega$ má být impedančně přizpůsobená k vedení s charakteristickou impedancí $Z_V = 100\ \Omega$. Nejprve vloženým vedením přizpůsobte reálnou část impedance, a následně dvěma symetrickými sériovými pahýly kompenzujte imaginární část impedance. Vložené vedení a pahýl mají charakteristickou impedanci $Z_V = 100\ \Omega$. Délka vloženého vedení musí být co možná nejkratší, pahýl je zakončen zkratem. Délka vlny na všech vedeních je $\lambda_V = 1\ m$.
- 10. Obrázek ilustruje jednu z Maxwellových rovnic. Odpovídající rovnici vyjádřete v integrálním tvaru. U veličin, které v rovnici vystupují, uveďte jednotky, v nichž se dané veličiny udávají. Ověřte, zda rovnost mezi jednotkami na levé a pravé straně rovnice platí.

B- magindhee - T

No - permeabiliter valva . * H. m. 1

Eo - permitivota valera = F. m-1

de - surerer elektrichedho toku - Vb

Ic- Prod - A

$$(3)$$
 $P = \frac{95V - 1}{3} = 0.133$

1) Nr=1

a)
$$+g = \frac{1.68}{0.84} = 30.261$$

C/2 = Umin = UA = 0,25V