数学竞赛培训前摸底

5月11日前提交纸质答案到 东7-503办公室 刘老师

- 1. 假设数列 $\{x_n\}_{n\geq 1}$ 满足 $0\leq x_{m+n}\leq x_m+x_n$, 其中 $m,n\geq 1$ 。证明
 - a) $x_n \le nx_1$, $n \ge 1$ 。
 - b) 如果非负整数 $n \ge 1, N \ge 1, q \ge 0, r \ge 0$,满足 $n = qN + r, 0 \le r < N$,则:

$$x_n \le q x_N + r x_1$$
 o

- c) $\lim_{n\to\infty}\frac{x_n}{n}$ 存在。
- 2. 设 n 为任意正整数, 证明
 - a) 如果 $\sin x \neq 0$,则有 $\frac{\sin(nx)}{\sin x} = \frac{\sin((n-2)x)}{\sin x} + 2\cos((n-1)x)$ 。
 - b) $\int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{\sin x} dx = \frac{\pi}{2}$ o
- 3. 证明

$$det\begin{bmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{bmatrix} =$$

$$(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d)$$
 _o

4. 设 $x^4 + 3x^2 + 2x + 1 = 0$ 的四个根为 a, b, c, d, 证明

$$det\begin{bmatrix} a & b & c & d \\ b & c & d & a \\ c & d & a & b \\ d & a & b & c \end{bmatrix} = 0$$

5. 证明: 若函数f(x)在[0,1]上可微,则在(0,1) 中至少存在一点 ξ ,使得 $\int_0^1 f(x) \, dx = f(0) + \frac{1}{2} f'(\xi) \, \, .$

1