CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

Warm-up Exercise

• Create a Boolean Algebra expression for \mathcal{C} below in terms of the variables \boldsymbol{a} and \boldsymbol{b}

а	b	C(a,b)
1	1	0
1	0	1
0	1	1
0	0	0

$$ab' + a'b$$

Warm-up Exercise

• Create a Boolean Algebra expression for "c" below in terms of the variables a and b

$$c = ab' + a'b$$

Draw this as a circuit (using AND, OR, NOT)

Combinational Logic Example

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

Weekday		isLecture	c _o	c ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

Truth Table to Logic (Part 3)

			1)		
	$d_2d_1d_0$	L	c _o	C ₁	C ₂	C ₃	Now, we do c₁:
SUN	000	0	0	1	0	0	
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	-
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$

Truth Table to Logic (Part 3)

	$d_2d_1d_0$	L	c ₀	C ₁	C ₂	C ₃	Now, we do c₁:
SUN	000	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ ' • L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ • L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	d ₂ ' • d ₁ • d ₀ ' • L'
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	d ₂ ' • d ₁ • d ₀ • L'
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	???
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	d ₂ • d ₁ ' • d ₀ • L
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1'$
							$c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot$

Truth Table to Logic (Part 3)

	$d_2d_1d_0$	L	c ₀	C ₁	c ₂	C ₃	Now, we do c₁ :
SUN	000	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ ' • L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ • L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	d ₂ '•d ₁ •d ₀ '•L'
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0 \cdot L'$
WED	011	1	0	0	1	0	No matter what L is
THU	100	-	0	1	0	0	d₂•d₁'•d₀' we always say it's 1 So, we don't need I
FRI	101	0	1	0	0	0	in the expression.
FRI	101	1	0	1	0	0	d ₂ • d ₁ ' • d ₀ • L
SAT	110	_	1	0	0	0	
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$
							\mathbf{u}_2 \mathbf{u}_1 \mathbf{u}_0 \mathbf{u}_1 \mathbf{u}_0 \mathbf{u}_1

Truth Table to Logic (Part 4)

$$\begin{aligned} c_0 &= d_2 \cdot d_1' \cdot d_0 \cdot L' + d_2 \cdot d_1 \cdot d_0' + d_2 \cdot d_1 \cdot d_0 \\ c_1 &= d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' + d_2 \cdot d_1' \cdot d_0 \cdot L \\ c_2 &= d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L \\ c_3 &= d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L \end{aligned}$$

Here's c₃ as a circuit:

Important Corollaries of this Construction

- ¬, ∧, ∨ can implement any Boolean function we didn't need any others to do this
- Actually, just ¬, ∧ (or ¬, ∨) are enough
 follows by De Morgan's laws
- Actually, just NAND (or NOR)

Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:


```
For any a, b, c in B:
1. closure:
                                       a + b is in B
                                                                                     a • b is in B
2. commutativity:
                                      a + b = b + a
                                                                                     a \cdot b = b \cdot a
                                 a + (b + c) = (a + b) + c a \cdot (b \cdot c) = (a \cdot b) \cdot c

a + (b \cdot c) = (a + b) \cdot (a + c) a \cdot (b + c) = (a \cdot b) + (a \cdot c)
3. associativity:
                                                                                     a \cdot (b + c) = (a \cdot b) + (a \cdot c)
4. distributivity:
                                      a + 0 = a
                                                                                     a \cdot 1 = a
5. identity:
6. complementarity:
                                      a + a' = 1
                                                                                     a \cdot a' = 0
                                      a + 1 = 1
                                                                                     a \cdot 0 = 0
7. null:
8. idempotency:
                                      a + a = a
                                                                                     a \cdot a = a
9. involution:
                                      (a')' = a
```

Simplification using Boolean Algebra

uniting:

10.
$$a \cdot b + a \cdot b' = a$$

absorption:

11.
$$a + a \cdot b = a$$

12.
$$(a + b') \cdot b = a \cdot b$$

factoring:

13.
$$(a + b) \cdot (a' + c) =$$

 $a \cdot c + a' \cdot b$

consensus:

14.
$$(a \cdot b) + (b \cdot c) + (a' \cdot c) = a \cdot b + a' \cdot c$$

de Morgan's:

15.
$$(a + b + ...)' = a' \cdot b' \cdot ...$$

10D.
$$(a + b) \cdot (a + b') = a$$

11D.
$$a \cdot (a + b) = a$$

12D.
$$(a \cdot b') + b = a + b$$

13D.
$$a \cdot b + a' \cdot c =$$

(a + c) \cdot (a' + b)

14D.
$$(a + b) \cdot (b + c) \cdot (a' + c) = (a + b) \cdot (a' + c)$$

15D.
$$(a \cdot b \cdot ...)' = a' + b' + ...$$

Simplifying using Boolean Algebra

```
c3 = d2' \cdot d1' \cdot d0' \cdot L + d2' \cdot d1' \cdot d0 \cdot L
    = d2' \cdot d1' \cdot (d0' + d0) \cdot L
    = d2' • d1' • 1 • L
    = d2' • d1' • L
                                                       AND
               d1
                           NOT
```

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: chain these together to add larger numbers

Recall from 2 4 8 elementary school: + 3 7 5

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)

 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)

S $1 + 0 = 1$ (with $C_{OUT} = 0$)

 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: These are chained together with a carry-in

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S	Derive an expression for S			
0	0	0	0	0	Don't dir oxprossion for o			
0	0	1	0	1	A' • B' • C _{IN}			
0	1	0	0	1	A' • B • C _{IN} '			
0	1	1	1	0	$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' +$			
1	0	0	0	1	$A \cdot B' \cdot C_{IN}'$ $A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$			
1	0	1	1	0				
1	1	0	1	0				
1	1	1	1	1	A • B • C _{IN}			

• Inputs: A, B, Carry-in

	A	В	C _{IN}	C _{OUT}	S		
	0	0	0	0	0	ъ.	
	0	0	1	0	1	Derive an expression	tor C _{out}
	0	1	0	0	1		
(0	1	1	1	0	A' • B • C _{IN}	
	1	0	0	0	1		$A' \bullet B \bullet C_{IN} + A \bullet B' \bullet C_{IN} +$
-	1	0	1	1	0	A • B' • C _{IN}	$A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$
-	1	1	0	1	0	A • B • C _{IN} '	
-	1	1	1	1	1	A • B • C _{IN}	

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

$$C_{OUT} = A' \cdot B \cdot C_{IN} + A \cdot B' \cdot C_{IN} + A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin

= (1) B Cin + A B' Cin + A B Cin' + A B Cin

= B Cin + A B' Cin + A B Cin' + A B Cin' + A B Cin

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin

= B Cin + A (1) Cin + A B Cin' + A B Cin

= B Cin + A Cin + A B (Cin' + Cin)

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B
```

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
= A' B Cin + A B' Cin + A B Cin' + A B Cin
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                  adding extra terms
        = B Cin + A Cin + A B
                                                 creates new factoring
                                                     opportunities
```

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Canonical Forms

Truth table is the unique signature of a 0/1 function

- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

(3) Add the minterms together

F = A'B'C + A'BC + ABC' + ABC' + ABC'

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

_A	В	С	minterms	
0	0	0	A'B'C'	1
0	0	1	A'B'C	
0	1	0	A'BC'	
0	1	1	A'BC	(
1	0	0	AB'C'	
1	0	1	AB'C	
1	1	0	ABC'	
1	1	1	ABC	

F in canonical form:

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC$$

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC' + C$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

F =

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F	
0	0	0	0	F' = A'B'C' + A'BC' + AB'C'
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

•
$$F' = A'B'C' + A'BC' + AB'C'$$

Taking the complement of both sides...

$$(F')' = (A'B'C' + A'BC' + AB'C')'$$

And using DeMorgan/Comp....

$$F = (A'B'C')' (A'BC')' (AB'C')'$$

$$F = (A + B + C)(A + B' + C)(A' + B + C)$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	