26-5-2025

TESTING REPORT

C1.033

https://github.com/marrivbec/gii-is-DP2-C1.033.git

MARIO RIVAS BECERRA

marrivbec1@alum.us.es

ÍNDICE

Contenido

ÍNDICE	1
RESUMEN EJECUTIVO	2
INTRODUCCIÓN	2
CAPÍTULO DE PRUEBAS FUNCIONALES	2
ASPECTOS COMUNES	3
PRUEBAS DE FLIGHT ASSIGNMENT	4
CREATE, UPDATE Y PUBLISH	4
LIST, SHOW	9
DELETE	11
PRUEBAS DE ACTIVITY LOG	11
CREATE, UPDATE Y PUBLISH	11
LIST, SHOW	14
DELETE	14
CAPÍTULO DE PRUEBAS DE RENDIMIENTO	15
GRÁFICOS DE RENDIMIENTO	15
CON ÍNDICES	15
SIN ÍNDICES	16
COMPARATIVAS DESDE OTRO ORDENADOR	16
INTERVALO DE CONFIANZA	17
CON ÍNDICE	17
SIN ÍNDICE	17
DESDE OTRO ORDENADOR	18
CONTRASTE DE HIPÓTESIS	18
SIN ÍNDICES Y CON ÍNDICES	18
COMPARATIVA DESDE OTRO ORDENADOR	19
CONCLUSIÓN	19
BIBLIOGRAFÍA	20

	TABLA DE REVISIÓN	
Número de revisión	Fecha	Descripción
v1.0	26/05/2025	Realización del "Testing Report"

RESUMEN EJECUTIVO

Este documento describe el proceso de pruebas llevado a cabo sobre el sistema, centrado en los módulos de Flight Assignments y Activity Logs, con el objetivo de asegurar que cumple con los requisitos funcionales y no funcionales definidos. Se realizaron principalmente dos tipos de pruebas: funcionales, para verificar el correcto funcionamiento de todas las características del sistema, y de rendimiento, para evaluar su capacidad de respuesta bajo distintas condiciones de carga y estrés.

INTRODUCCIÓN

El presente documento tiene como objetivo detallar el proceso de pruebas realizado sobre el sistema/software desarrollado, específicamente pruebas realizadas sobre los Flight Assignments y Activity Logs, con el fin de garantizar que cumple con los requisitos funcionales y no funcionales especificados en la fase de análisis.

Este abarca dos tipos principales de pruebas: las pruebas funcionales, que verifican que todas las funcionalidades del sistema operan conforme a lo esperado, y las pruebas de rendimiento, que evalúan la capacidad del sistema para responder adecuadamente bajo diferentes condiciones de carga y estrés.

CAPÍTULO DE PRUEBAS FUNCIONALES

Las pruebas se han llevado a cabo con el conjunto de datos "Sample-Data", centrado en los apartados "Text" [1] y "Numeric" [2].

ASPECTOS COMUNES

Para cada acción se han generado dos tipos de archivos diferentes, .safe y .hack, a partir de los launchers (Replay, Record y Analyse) [3] que otorga el framework.

El procedimiento seguido en la generación de cada archivo es el mismo: se ha ejecutado el launcher de Record para grabar las pruebas en el archivo tester.trace, y posteriormente el launcher Replay, para replicar las pruebas previamente grabadas en nuestra aplicación.

Para la creación de los archivos .safe correspondientes a cada acción de las entidades mencionadas, se ha empleado un conjunto único de datos de prueba ([1], [2]). Este conjunto incluye tanto datos válidos como inválidos, con el objetivo de verificar que los formularios puedan enviarse correctamente respetando las restricciones asociadas, especialmente en las acciones de Update (Actualizar), Publish (Publicar) y Create (Crear).

En aquellas acciones que no implican el envío de formularios, como Show y List (Listar y Mostrar), la verificación se limita a verificar que los Flight Assignment y Activity se listan correctamente y que sus formularios aparecen adecuadamente. Finalmente, en la acción Delete (Eliminar), se ha validado que los datos seleccionados por el usuario se borren con éxito.

Respecto a los archivos .hack generados, se ha utilizado la herramienta de desarrollador de Firefox Developer Edition [4], para realizar un POST hacking. Es importante destacar que, antes de iniciar la aplicación, se debe abrir dicha herramienta ya que al abrirla con la aplicación corriendo en el navegador, esta genera una consulta fantasma tipo GET que afecta negativamente al proceso de replay de las pruebas realizadas.

Una vez obtenidos los archivos tester.trace, se han copiado y renombrado en la carpeta correspondiente de la entidad, en este caso "src/test/resources", dentro de la carpeta Flight Crew Member.

PRUEBAS DE FLIGHT ASSIGNMENT

CREATE, UPDATE Y PUBLISH

Para generar el archivo .safe, nos registramos en nuestro rol correspondiente, Flight Crew Member [5] en nuestro caso, y accedemos al formulario de Create [6], Update, Publish o Delete [7] de Flight Assignment.

Para comenzar entregaremos el formulario de Create, Update o Publish vacío, se ha seguido el mismo procedimiento para las tres. En este caso entregamos el formulario de Create [8].

Posteriormente, se siguió la metodología presentada en las transparencias de la asignatura, realizando pruebas mediante un "loop" sobre cada atributo del formulario.

En concreto, para el formulario de creación (create) de Flight Assignment, se rellenó un único atributo dejando el resto vacíos. Por ejemplo, se completó el primer campo, Duty, con el valor PILOT, mientras que los demás campos quedaron sin rellenar. Al enviar el formulario con únicamente Duty = PILOT [9], se hizo clic en Create y se comprobó que se activaran todas las validaciones correspondientes a los campos obligatorios vacíos.

A continuación, se modificó el valor del campo Duty a COPILOT y se repitió el mismo procedimiento, asegurando que las validaciones se comportaran correctamente en cada caso.

Flight Assignment

En el caso de que sea un campo de texto, se ha completado con los valores de "Sample-Data", siguiendo el "loop" mencionado anteriormente, es decir, se rellenó el campo de texto con los datos de prueba base [10] y posteriormente borramos el texto base e introducimos el texto vacío (que sería el siguiente del conjunto de datos de texto).

Flight Assignment

También se han comprobado que los requisitos que se piden funcionen correctamente como vemos en las siguientes imágenes adicionales:

Flight Assignment

Una vez se han comprobado todos los atributos del formulario, se crea uno con datos válidos y se envía. Nos deslogueamos y accedemos al rol de Administrator, en el apartado de Shut System Down [11], para dejar de correr el launcher.

[11]

Para la generación del archivo .hack se ha verificado que, al modificar el identificador (id) del Flight Assignment que se intenta hackear, no sea posible crear, actualizar o publicar uno que corresponda a:

- Otros Flight Crew Member.
- Otras aerolíneas.
- ID's que no exista
- Aquellas que ya estén publicadas

Respecto a los campos del formulario, se comprobó que en el campo Leg no sea posible crear, actualizar o publicar un Flight Assignment:

- Con una Leg que pertenezca a otra aerolínea.
- Con una Leg que no exista.

Todos los intentos de hackeo descritos anteriormente resultarán en el mensaje de error Not Authorised [12], excepto aquellos que involucran la inserción de valores inválidos, los cuales generan mensajes de "Invalid Value" [13]. Por otro lado, los campos marcados como readOnly pueden ser modificados en el formulario, pero como no se procesan mediante el método bind, dichos cambios no se aplicarán cuando se publique, cree o actualice el registro.

[13]

LIST, SHOW

Para la generación del archivo .safe, se ha verificado que todos los Flight Assignment se muestren correctamente en pantalla [14], así como que sus formularios [15] correspondientes estén disponibles para las acciones de actualización, publicación, borrado, o mostrar los Activity Log que existen dentro de ese Flight Assignment.

[14]

Flight Assignment

[15]

Para la generación del archivo .hack se ha comprobado que otros roles, como Agent, Administrator o Anonymous, no puedan listar los Flight Assignment [16]. En cuanto a la acción de mostrar (show) [17], se realizó una prueba similar, añadiendo que un miembro diferente no pueda visualizar el formulario de un Flight Assignment que pertenece a otro miembro.

[16]

[17]

DELETE

Para generar el archivo .safe, se ha verificado que el usuario pueda eliminar correctamente el Flight Assignment que desee. Además, se comprobó que al sustituir en la URL la opción show por delete, se pueda ejecutar correctamente el método unbind, con el objetivo de aumentar los porcentajes de cobertura (coverage) en las pruebas.

Para generar el archivo .hack, se ha comprobado que al igual que en create, update y publish:

- No se puede eliminar un Flight Assigment que esté publicado.
- Que sea de otro member.
- Que sea de otra aerolínea.
- ID que no exista.

PRUEBAS DE ACTIVITY LOG

CREATE, UPDATE Y PUBLISH

Para generar el archivo .safe, nos registramos con nuestro rol correspondiente, Flight Crew Member, y accedemos a los Activity Log [18] desde Flight Assignment. A continuación, accedemos al formulario de Create [19], Update, Publish o Delete [20] de Flight Assignment.

[19]

Para comenzar entregaremos el formulario de Create, Update o Publish vacío, se ha seguido el mismo procedimiento para las tres. En este caso entregamos el formulario de Create [21].

Posteriormente, se siguió la metodología presentada en las transparencias de la asignatura, realizando pruebas mediante un "loop" sobre cada atributo del formulario.

En concreto, para el formulario de creación (create) de Activity Log, se rellenó un único atributo dejando el resto vacíos. Por ejemplo, se completó el primer campo, Type of Incident, con el valor base del texto de Sample-Data, mientras que los demás campos quedaron sin rellenar. Al enviar el formulario con únicamente el valor anterior, se hizo clic en Create y se comprobó que se activaran todas las validaciones correspondientes a los campos obligatorios vacíos.

A continuación, se modificó el valor del campo Type of Incident al siguiente valor del conjunto de datos y se repitió el mismo procedimiento, asegurando que las validaciones se comportaran correctamente en cada caso.

En el campo Severity Level se realiza el mismo procedimiento, introduciendo valores enteros negativos, nulos, demasiado grandres, etc.

También se ha seguido los requisitos especificados, como "Un Activity Log no puede ser publicado si no lo está su Flight Assignment", para esto se ha eliminado el botón de publish de aquellos Activity Log que su Flight Assignment no esté publicado.

Activity log form

Comparar con [20]

Una vez se han comprobado todos los atributos del formulario, se crea uno con datos válidos y se envía. Nos deslogueamos y accedemos al rol de Administrator, en el apartado de Shut System Down [11], para dejar de correr el launcher.

Para la generación del archivo .hack se ha verificado que, al modificar el identificador (id) del Activity Log que se intenta hackear, no sea posible crear, actualizar o publicar uno que corresponda a:

- Otros Flight Crew Member.
- Otras aerolíneas.
- ID's que no exista
- Aquellos que ya estén publicadas

Respecto a los campos del formulario, se comprobó que en el campo Severity Level no se pudieran introducir valores negativos desde las herramientas del desarrollador.

Todos los intentos de hackeo descritos anteriormente resultarán en el mensaje de error Not Authorised [12], excepto aquellos que involucran la inserción de valores inválidos, los cuales generan mensajes de "Invalid Value" [22]. Por otro lado, los campos marcados como readOnly pueden ser modificados en el formulario, pero como no se procesan mediante el método bind, dichos cambios no se aplicarán cuando se publique, cree o actualice el registro.

LIST, SHOW

Para la generación del archivo .safe, se ha verificado que todos los Activity Log se muestren correctamente en pantalla [19], así como que sus formularios [20] correspondientes estén disponibles para las acciones de actualización, publicación, borrado.

Para la generación del archivo .hack se ha comprobado que otros roles, como Agent, Administrator o Anonymous, no puedan listar los Activity Log [23]. En cuanto a la acción de mostrar (show) [24], se realizó una prueba similar, añadiendo que un miembro diferente no pueda visualizar el formulario de un Flight Assignment que pertenece a otro miembro.

[24]

DELETE

Para generar el archivo .safe, se ha verificado que el usuario pueda eliminar correctamente el Activity Log que desee. Además, se comprobó que al sustituir en la URL la opción show por delete, se pueda ejecutar correctamente el método unbind, con el objetivo de aumentar los porcentajes de cobertura (coverage) en las pruebas.

Para generar el archivo .hack, se ha comprobado que al igual que en create, update y publish:

- No se puede eliminar un Activity Log que esté publicado.
- Que sea de otro member.
- Que sea de otra aerolínea.
- ID que no exista.

CAPÍTULO DE PRUEBAS DE RENDIMIENTO

GRÁFICOS DE RENDIMIENTO

CON ÍNDICES

[Promedio de tiempo de cada petición 25]

SIN ÍNDICES

[Promedio de tiempo de cada petición 26]

COMPARATIVAS DESDE OTRO ORDENADOR

[Promedio de tiempo de cada petición 27]

En las gráficas "con índice" [25] y "sin índice" [26] vemos que son prácticamente iguales, al tener una base de datos pequeña no hay mucha diferencia al realizar las consultas con los índices.

Por otro lado, podemos observar que la petición más ineficiente es "list-completed", ya que es donde hay más Flight Assignment y tiene que obtener más datos del csv. Esta se ve resaltada en la comparativa de ordenadores [27].

INTERVALO DE CONFIANZA

CON ÍNDICE

A	В	С	D	Е	F
1 Columna1					
2			Interval(ms)	7,26185442	8,43184445
3 Media	7,84684943		Interval(s)	0,00726185	0,00843184
4 Error típico	0,29809913				
5 Mediana	4,4793				
6 Moda	1,4312				
7 Desviación estándar	9,27945784				
8 Varianza de la muestra	86,1083377				
9 Curtosis	11,2990741				
10 Coeficiente de asimetría	2,65319294				
11 Rango	81,1925				
12 Mínimo	0,4735				
13 Máximo	81,666				
14 Suma	7603,5971				
15 Cuenta	969				
16 Nivel de confianza (95,0%)	0,58499501				

[28]

SIN ÍNDICE

⊿ A	В	С	D	Е	F
1 Colur	nna1				
2			Interval(ms)	7,1440363	8,29276989
3 Media	7,7184031		Interval(s)	0,00714404	0,00829277
4 Error típico	0,29268325				
5 Mediana	4,3788				
6 Moda	0,9588				
7 Desviación e	9,11086821				
8 Varianza de	83,0079196				
9 Curtosis	10,8439011				
10 Coeficiente d	2,62710017				
11 Rango	77,2617				
12 Mínimo	0,4778				
13 Máximo	77,7395				
14 Suma	7479,1326				
15 Cuenta	969				
16 Nivel de conf	0,5743668				

[29]

DESDE OTRO ORDENADOR

4	А	В	С	D	Е	F
1	Colun	nna1				
2				Interval(ms)	20,4627135	24,3907431
3	Media	22,4267283		Interval(s)	0,02046271	0,02439074
4	Error típico	1,00081385				
5	Mediana	10,8381				
6	Moda	1,6088				
7	Desviación e	31,154099				
8	Varianza de	970,577887				
9	Curtosis	10,9177789				
10	Coeficiente d	2,88215986				
11	Rango	240,0058				
12	Mínimo	1,275				
13	Máximo	241,2808				
14	Suma	21731,4997				
15	Cuenta	969				
16	Nivel de cont	1,96401481				

[30]

Como podemos observar en las imágenes, el intervalo de confianza obtenido tanto "con índice" [28] como "sin índice" [29] son prácticamente iguales, entre 7,10 y 8,45 ms aproximadamente, esto se debe a que como mencionamos antes, al no tener muchos datos los csv no se obtiene una gran diferencia de rendimiento.

En cambio, sí lo corremos desde otro ordenador que es peor, por consiguiente, tendrá un rendimiento peor, como vemos en el intervalo de confianza [30].

CONTRASTE DE HIPÓTESIS

SIN ÍNDICES Y CON ÍNDICES

4	А	В	С
1	Prueba z para	a medias de d	dos muestras
2			
3		71,935	55,2189
4	Media	7,65206364	7,79791136
5	Varianza (co	83,0079196	86,1083377
6	Observacion	968	968
7	Diferencia hi	0	
8	z	-0,34893511	
9	P(Z<=z) una	0,36356901	
10	Valor crítico	1,64485363	
11	Valor crítico	0,72713803	
12	Valor crítico	1,95996398	

[31]

El valor obtenido de p-value obtenido tras el z-analysis de Excel, se encuentra en la fila 11, en mi caso 0,7271 [31]. Esto significa que los cambios no han resultado en mejoras importantes, ya que la diferencia entre tiempos no es significante, además de que en general son prácticamente iguales. Esto afirma nuestra hipótesis anterior.

COMPARATIVA DESDE OTRO ORDENADOR

[32]

Si lo ejecutamos desde otro ordenador, el p-value sale acorde con las gráficas anteriores. Suponiendo que el valor es tan pequeño que el propio Excel lo aproxima a 0, podemos deducir que ha habido cambios bastantes significativos, el ordenador en el que se han ejecutado mis pruebas ha tenido una media peor que en la máquina donde se generaron las pruebas inicialmente (7,79-22,29) [32], por lo tanto, tiene un rendimiento peor.

CONCLUSIÓN

La realización exhaustiva del conjunto de pruebas ha sido fundamental para detectar errores y vulnerabilidades, no contemplados inicialmente, en la aplicación. Este análisis ha contribuido a mejorar tanto la funcionalidad como la seguridad del sistema. En cuanto al rendimiento, las diferencias tras la implementación de índices fueron prácticamente insignificantes, lo cual era esperado debido al pequeño tamaño del conjunto de datos utilizado en las pruebas. Sin embargo, al comparar con los resultados de otros miembros del equipo, se observó que el rendimiento en las diferentes máquinas fue bastante notorio.

BIBLIOGRAFÍA

Dejada en blanca intencionalmente