Appunti del corso: Analisi Complessa Prof. Francesca Acquistapace

Stefano Maggiolo http://poisson.phc.unipi.it/~maggiolo/ maggiolo@mail.dm.unipi.it

2006-2007

Indice

1	Introduzione	3
2	Spazi funzionali	5
3	Teorema della mappa inversa	6
4	Sottovarietà	8
5	Singolarità rimovibili	8
6	Forme differenziali	10
7	Germi di funzioni e di insiemi	14
8	Spazi analitici e germi di spazi analitici	18
9	Nullstellensatz per ideali primi	20

1 Introduzione

2.10.2006

Definizione 1.1. Sia $D \subseteq \mathbb{C}^n$ un dominio (cioè un aperto connesso); $f: D \to \mathbb{C}$ si dice olomorfa se per ogni $w \in D$ esistono un policilindro $\Delta(w,r) = \Delta(w_1, r_1) \times \ldots \times \Delta(w_n, r_n) \subseteq \mathbb{C}^n$ e una serie convergente in $\Delta(w, r)$ tale che $f(z) = \sum_{|\nu| \geq 0} a_{\nu}(z - w)^{\nu}$.

Osservazione 1.2. L'insieme delle funzioni olomorfe nel dominio D si nota $\mathcal{O}(D)$ ed è un anello, integro se D è connesso. L'anello $\mathcal{O}(D)$ è un sottoinsieme delle funzioni continue a valori complesse; inoltre se $f \in \mathcal{O}(D)$, è olomorfa se considerata funzione di una qualsiasi delle variabili. Infine, è possibile calcolare le derivate parziali termine a termine.

Teorema 1.3 (lemma di Osgood). Sia $f: D \to \mathbb{C}$ continua e olomorfa in ogni variabile z_1, \ldots, z_n , allora $f \in \mathcal{O}(D)$.

Dimostrazione. Sia $w \in D$, $\bar{\Delta}(w,r) \subseteq D$. Poiché f è olomorfa in ogni z_i , se $z_i \in \Delta(w_i, r_i)$ per ogni i, si ha

$$f(z_1, \dots, z_n) = \frac{1}{2\pi i} \int_{|\xi_1 - w_1| = r_1} \frac{f(\xi_1, z_2, \dots, z_n)}{\xi_1 - z_1} d\xi_1 =$$

$$= \left(\frac{1}{2\pi i}\right)^2 \int_{|\xi_1 - w_1| = r_1} \frac{d\xi_1}{\xi_1 - z_1} \int_{|\xi_2 - w_2| = r_2} \frac{f(\xi_1, \xi_2, z_3, \dots, z_n)}{\xi_2 - z_2} d\xi_2 = \dots =$$

$$= \left(\frac{1}{2\pi i}\right)^n \int_{|\xi_1 - w_1| = r_1} \frac{d\xi_1}{\xi_1 - z_1} \dots \int_{|\xi_n - w_n| = r_n} \frac{f(\xi_1, \dots, \xi_n)}{\xi_1 - z_1} d\xi_n.$$

Inoltre,

$$\frac{1}{\xi_j - z_j} = \frac{1}{\xi_j - w_j - (z_j - w_j)} = \frac{1}{(\xi_j - w_j) \left(1 - \frac{z_j - w_j}{\xi_j - w_i}\right)} = \sum_{k \ge 0} \frac{(z_j - w_j)^k}{(\xi_j - w_j)^{k+1}}.$$

Le serie sono assolutamente convergenti, quindi si possono estrarre dall'integrale e moltiplicare; in definitiva si ha $f(z_1, \ldots, z_n) = \sum_{|\nu|>0} a_{\nu}(z-w)^{\nu}$ con

$$a_{\nu} = \left(\frac{1}{2\pi i}\right)^{n} \int_{\substack{|\xi_{1} - w_{1}| = r_{1} \\ |\xi_{n} - w_{n}| = r_{n}}} \frac{f(\xi)}{(\xi_{n} - w_{1})^{\nu_{1}} \dots (\xi_{n} - w_{n})^{\nu_{n}}} d\xi.$$

Osservazione 1.4. Dalla formula dell'integrale di Cauchy in più variabili si ottiene che se f è olomorfa in un intorno di $\bar{\Delta}(w,r)$ allora la formula di Cauchy vale per il prodotto dei bordi, insieme di dimensione n sui reali; non è necessario conoscere f su tutto il bordo, insieme di dimensione 2n-1 sui reali.

Inoltre se
$$f = \sum_{|\nu| \ge 0} a_{\nu} (z - w)^{\nu}$$
, risulta

$$\frac{\partial^{k_1 + \dots + k_n} f}{\partial z_1^{k_1} \dots z_n^{k_n}} = \frac{k_1! \dots k_n!}{(2\pi i)^n} \int_{\substack{|\xi_1 - w_1| = r_1 \\ |\xi_n - w_n| = r_n}} \frac{f(\xi)}{(\xi_1 - w_1)^{k_1 + 1} \dots (\xi_n - w_n)^{k_n + 1}} d\xi$$

da cui
$$a_{\nu} = \frac{1}{\nu_1! \dots \nu_n!} \frac{\partial^{\nu_1 + \dots + \nu_n} f}{\partial z_1^{\nu_1} \dots z_n^{\nu_n}}.$$

Teorema 1.5 (Hartogs). Il lemma di Osgood si può dimostrare anche senza l'ipotesi che f sia continua.

Definizione 1.6. Pensando a $D \subseteq \mathbb{C}^n = \mathbb{R}^{2n}$, si definiscono gli operatori $\partial/\partial z_i = 1/2 \left(\{\partial/\partial x_i - i\partial/\partial y_i \} \right)$ e $\partial/\partial \bar{z_i} = 1/2 \left(\partial/\partial x_i + i\partial/\partial y_i \right)$

Osservazione 1.7. Gli operatori appena definiti non sono derivate, ma $\partial/\partial z_i$ agisce sui polinomi come la normale derivata parziale rispetto a z_i ; inoltre sono derivazioni, cioè sono operatori lineari che soddisfano la regola di Leibniz.

Teorema 1.8 (Cauchy-Riemann). Una funzione $f: D \to \mathbb{C}$ continua è olomorfa se e solo se $\partial f/\partial \bar{z_i} = 0$ per ogni $j \in \{1, ..., n\}$.

Dimostrazione. Per il lemma di Osgood, f è olomorfa se e solo se è olomorfa rispetto a ogni z_i e per Cauchy-Riemann in una variabile questo accade se e solo se $\partial f/\partial \bar{z_i} = 0$ per ogni j.

Proposizione 1.9 (conseguenze di Cauchy-Riemann). Le unità di $\mathcal{O}(D)$ sono le funzioni prive di zeri e se $f \in \mathcal{O}(D)$ e Im $f \subseteq \mathbb{R}$ o |f| è costante, allora f è costante.

Dimostrazione. Se $f(z) \neq 0$ per ogni $z \in D$, la funzione g = 1/f è ben definita e $0 = \partial/\partial \bar{z_i}(fg) = \partial/\partial \bar{z_j}(f)g + f\partial/\partial \bar{z_j}(g) = f\partial/\partial \bar{z_j}(g)$ in quanto f è olomorfa, quindi $\partial/\partial z_j(g) = 0$ per ogni $z \in D$, cioè g è olomorfa.

Se $f(z) \in \mathbb{R}$ per ogni $z \in D$, anche le sue derivate sono reali, ma per Cauchy-Riemann $\partial f/\partial x_j = i\partial f/\partial y_j$, quindi devono annullarsi entrambe e f è costante. Se |f| è costante, $f = \rho e^{i\vartheta(z)}$ con ϑ funzione olomorfa a valori reali, quindi costante.

Definizione 1.10. Una mappa olomorfa tra $D \subseteq \mathbb{C}^n$ e $D' \subseteq \mathbb{C}^m$ è una funzione $G: D \to D', G = (g_1, \ldots, g_m)$ con $g_i: D \to \mathbb{C}$ olomorfa per ogni $i \in \{1, \ldots, m\}$.

Teorema 1.11. Siano $f \in \mathcal{O}(D')$ e $G: D \to D'$, allora $f \circ G \in \mathcal{O}(D)$; in particolare, G induce un morfismo di algebre $\mathcal{O}(D') \to \mathcal{O}(D)$.

Dimostrazione. Siano $z_0 \in D$, $w_0 = G(z_0) = (g_1(z_0), \ldots, g_m(z_0))$; senza perdere di generalità si può supporre $z_0 = 0$ e $w_0 = 0$. Le funzioni g_i sono olomorfe in 0, quindi si possono scrivere come serie di potenze in z e in particolare G come serie ha termine noto nullo. Per |z| abbastanza piccolo, $g_j(z_1, \ldots, z_n) \leq \eta_j$ (se si suppone f convergere in $\Delta(0, \eta)$). Quindi si può sostituire il valore della serie g_j in quella di f. Che l'applicazione che si ottiene sia un morfismo di algebre è banale.

Teorema 1.12 (prolungamento analitico). Siano $f, g \in \mathcal{O}(D)$, $f_{|U} = g_{|U}$ con $U \subseteq D$ aperto non vuoto, allora f = g.

Dimostrazione. Sia E la parte interna dell'insieme $\{z \in D \mid f(z) = g(z)\}; E$ è aperto in quanto è una parte interna, è non vuoto perché $U \subseteq E$. Sia $w \in \bar{E} \cap D$, allora $\Delta(w,r)$ interseca E; sia $w' \in \Delta(w,r/2) \cap E$. Ancora, esiste un policilindro $\Delta(w',\delta)$ che contiene w ed è contenuto in $\Delta(w,r)$. Le funzioni $f \in g$ sono olomorfe in D e hanno la stessa serie nel policilindro $\Delta(w',\delta)$, che converge anche in w, cioè $w \in E$.

Teorema 1.13 (principio del massimo). Siano $f \in \mathcal{O}(D)$, $w \in D$ tale che $|f(z)| \leq |f(w)|$ per ogni z in un intorno $U \subseteq D$ di w; allora f è costante.

Dimostrazione. Si può assumere che $U = \Delta(w, r)$; per ogni $z \in U$, sia R la retta complessa per z e w. Allora $f_{|R \cap U}$ è una funzione di una variabile complessa con un massimo relativo in w, quindi è costante; si ottiene così che f è costante in U e per il prolungamento analitico lo è in tutto D.

Definizione 1.14. Siano $f \in \mathcal{O}(D)$, $z_0 \in D$; si può scrivere $f(z) = \sum_{|\nu| \geq 0} a_{\nu} (z - z_0)^{\nu} = \sum_{i \geq 0} p_i(z)$ con p_i polinomio omogeneo di grado i; si definisce l'ordine di f in z_0 come k tale che $p_k \neq 0$ e $p_0 = \ldots = p_{k-1} = 0$.

Lemma 1.15 (di Schwarz). Sia f olomorfa in un intorno di $\bar{\Delta}(0,r)$, con $r = (\rho, \ldots, \rho)$ e f sia di ordine k in 0. Se $|f(z)| \leq M$ per ogni $z \in \bar{\Delta}(0,r)$ allora $|f(z)| \leq M |z/\rho|^k$ per ogni $z \in \bar{\Delta}(0,r)$.

Dimostrazione. Poiché f è di ordine k in 0, si può scrivere $f = \sum_{i \geq k} p_i(z)$; sia $g(t) = t^{-k} f\left(t^{z/|z|}\right)$ con $t \in \mathbb{C}$, $|t| \leq \rho$. La funzione g è analitica perché t^{-k} si semplifica e per $|t| = \rho$, $|g(t)| \leq M\rho^{-k}$. Per il principio del massimo, $|g(t)| = M\rho^{-k}$ per ogni t tale che $|t| \leq r$, quindi

$$\left| |z|^{-k} f(z) \right| = |g(z)| \le M\rho^{-k}.$$

2 Spazi funzionali

4.10.2006

Definizione 2.1. Si consideri lo spazio $C(D, \mathbb{C})$ delle funzioni continue a valori complessi nel dominio D; si definisce su questo spazio una topologia a partire da un sistema fondamentale di intorni di 0:

$$\{U(K,\varepsilon) \mid K \subsetneq D \text{ compatto}, \varepsilon > 0\}$$

con $U(K,\varepsilon)=\{f\mid \sup\{|f(x)|\mid x\in K\}<\varepsilon\}$. Questa topologia si chiama compatto-aperta.

Osservazione 2.2. Con la topologia compatto-aperta, una successione $(f_n)_{n\geq 0}$ converge a f se converge uniformemente a f. Inoltre, $C(D, \mathbb{C})$ diventa uno spazio vettoriale topologico completo (perché il limite uniforme di una successione di funzioni continue è continuo).

Osservazione 2.3. La topologia compatto-aperta è indotta da una metrica: si scriva $D = \bigcup_{s \geq 0} K_s$ con K_{s-1} contenuto nella parte interna di K_s e K_s compatto. Posto $\|f\|_{K_s} = \sup \{|f(x)| \mid x \in K_s\}, \|_{\bullet}\|_{K_s}$ è una seminorma (ovvero è una norma per cui non necessariamente vale $\|f\| = 0 \Rightarrow f = 0$). Per un teorema, data una famiglia infinita di seminorme, esiste una loro combinazione lineare che dà una norma; ad esempio la distanza

$$d(f,g) = \sum_{m>0} \frac{1}{2^m} \frac{\|f - g\|_{K_m}}{1 + \|f - g\|_{K_m}}$$

induce la topologia compatto-aperta.

Teorema 2.4. $\mathscr{O}(D)$ è chiuso in $\mathrm{C}(D,\mathbb{C})$, quindi è uno spazio metrico completo.

Dimostrazione. Data una successione $(f_m)_{m\geq 0}$ in $\mathcal{O}(D)$ che converge a f in $C(D,\mathbb{C})$ con la topologia compatto-aperta, si deve dimostrare $f\in\mathcal{O}(D)$. Siano $w\in D, \bar{\Delta}(w,r)\subseteq D$; allora per ogni $m\geq 0$,

$$f_m(z) = \left(\frac{1}{2\pi i}\right)^n \int_{\substack{|\xi_1 - w_1| = r_1 \\ |\xi_n - w_n| = r_n}} \frac{f_m(\xi)}{(\xi_1 - z_1) \dots (\xi_n - z_n)} d\xi.$$

Poiché la convergenza è uniforme, il limite passa sotto il segno dell'integrale, quindi vale la stessa formula con f al posto di f_m ; ma l'integranda è sviluppabile in serie, quindi f è analitica.

Teorema 2.5 (Ascoli-Arzelà). Ogni famiglia di funzioni equilimitate (cioè tale che per ogni K compatto esiste M tale che $|f| \leq M$ per ogni f) ha chiusura compatta.

3 Teorema della mappa inversa

Definizione 3.1. Una funzione olomorfa f è regolare di ordine s rispetto a z_n nel punto w se come funzione della sola z_n ha uno zero di ordine s in w_n .

Lemma 3.2. Sia f una funzione di ordine k in 0, allora esiste un cambio di coordinate lineare che rende f regolare di ordine k rispetto all'ultima variabile.

Dimostrazione. Si può scrivere $f(z) = \sum_{i \geq k} p_i(z)$ e in particolare esiste un punto a tale che $p_k(a) \neq 0$. Chiaramente esiste una matrice (n, (n-1)) B tale che

$$A = \begin{pmatrix} B & a_1 \\ \vdots \\ a_n \end{pmatrix}$$

abbia rango massimo. Con il cambio di coordinate dato da A si ha $z_i = \sum_{j=1}^{n-1} b_{i,j} \xi_j + a_i \xi_n$ e $g(\xi) = f(z(\xi))$. Essendo la trasformazione lineare, anche g ha ordine k in 0; inoltre $g(0,\ldots,0,1) = f(a_1,\ldots,a_n)$, quindi $g(0,\ldots,0,\xi_n) = f(a_1,\ldots,a_n)\xi_n^k + \ldots$ Si è ottenuto che g è regolare di ordine k rispetto a ξ_n e in particolare che i cambi di coordinate che danno questo risultato sono, in un certo senso, molti.

Lemma 3.3. Sia f olomorfa in un disco di \mathbb{C} con uno zero di ordine k in a; allora esiste un intorno U di a tale che per ogni $b \in U$, f(z) - f(b) ha k radici distinte in U.

Lemma 3.4. Sia $f \in \mathcal{O}(\Delta(0,r))$, regolare di ordine k in 0 rispetto a z_n , allora esiste un policilindro $\Delta(0,\eta) \subseteq \Delta(0,r)$ tale che per ogni $(a_1,\ldots,a_{n-1}) \in \Delta(0,(\eta_1,\ldots,\eta_{n-1}))$, $f(a_1,\ldots,a_{n-1},z_n)$ ha esattamente k zeri nel disco $|z_n| \leq \eta_n$ come funzione di z_n .

Dimostrazione. Per ipotesi $f(0,\ldots,0,z_n)$ ha uno zero di ordine k in 0; poiché gli zeri sono isolati, si può fissare η_n in modo che se z_n è tale che $0<|z_n|\leq \eta_n,\ f(0,\ldots,0,z_n)\neq 0$. Sia $\varepsilon=\inf\{|f(0,\ldots,0,z_n)|\ |\ |z_n|=\eta_n\}>0$. Ora, f è continua in un intorno del compatto $\{z\mid z_1=\ldots=z_{n-1}=0,|z_n|=\eta_n\}$,

quindi esiste un policilindro $\Delta(0, (\eta_1, \dots, \eta_{n-1}))$ tale che per $z \in \Delta(0, \eta)$, si ha $|f(z) - f(0, \dots, 0, z_n)| < \varepsilon$.

Si prenda ora $(a_1, \ldots, a_{n-1}) \in \Delta(0, (\eta_1, \ldots, \eta_{n-1}))$ e si fissino $g(z_n) = f(a_1, \ldots, a_{n-1}, z_n), h(z_n) = f(0, \ldots, 0, z_n)$. Allora $|g| \le |h|$ per $|z_n| = \eta_n$; per il teorema di Rouché, g + f e h hanno lo stesso numero di zeri, e h ne ha k per il lemma precedente, quindi anche $f(a_1, \ldots, a_{n-1}, z_n)$ ne ha k.

9.10.2006

Teorema 3.5 (della funzione implicita). Sia f olomorfa in $\Delta(w,r)$, regolare di ordine 1 in w rispetto a z_n ; allora esistono un policilindro $\Delta(w,\delta) \subsetneq \Delta(w,r)$ e un'unica funzione olomorfa φ , definita sulla proiezione D di $\Delta(w,\delta)$ nelle prime n-1 coordinate, tale che $f(z_1,\ldots,z_n)=0 \Leftrightarrow \varphi(z_1,\ldots,z_{n-1})=z_n$.

Dimostrazione. L'esistenza è data dal lemma precedente. Per l'ipotesi di regolarità, fissati $(z_1,\ldots,z_{n-1})\in D$ esiste un unica radice di $f(z_1,\ldots,z_{n-1},z_n)$ vista come funzione di z_n ; sia $\varphi(z_1,\ldots,z_{n-1})$ questa radice; si deve dimostrate che φ è olomorfa. Grazie a una forma dell'indicatore logaritmico, si ha

$$\varphi(z_1, \dots, z_{n-1}) = \frac{1}{2\pi i} \int_{\substack{|\xi - w_n| = \delta_n}} \xi \frac{f'(z_1, \dots, z_{n-1}, \xi)}{f(z_1, \dots, z_{n-1}, \xi)} d\xi.$$

Quindi essendo rappresentata tramite un integrale di una funzione olomorfa (perché f non si annulla nell'insieme di integrazione), φ è olomorfa.

Teorema 3.6. Siano f_{k+1}, \ldots, f_n olomorfe in $\Delta(w,r) \subseteq \mathbb{C}^n$ tali che $\frac{\partial f_j}{\partial z_i}(w) = \delta_{i,j}$ e $f_j(w) = 0$ per $i,j \in \{k+1,\ldots,n\}$. Allora esistono $\varphi_{k+1},\ldots,\varphi_n$ olomorfe in $\Delta(w,\delta) \subseteq \mathbb{C}^k$ tali che $f_j(z_1,\ldots,z_n) = 0$ se e solo se $z_j = \varphi_j(z_1,\ldots,z_k)$ per $j \in \{k+1,\ldots,n\}$.

Dimostrazione. Per induzione su n-k: il caso n-k=1 è il teorema precedente; si supponga ora che l'enunciato valga per ogni k'>k. Per il teorema della funzione implicita applicato a f_n , esiste un unica ψ tale che $f(z_1,\ldots,z_n)=0\Leftrightarrow z_n=\psi(z_1,\ldots,z_{n-1});$ sia $\bar{f}_j(z_1,\ldots,z_{n-1})=f_j(z_1,\ldots,z_{n-1},\psi)$. Per le \bar{f}_j vale l'ipotesi induttiva, quindi esistono $\varphi_{k+1},\ldots,\varphi_{n-1}$ tali che $\bar{f}_j=0\Leftrightarrow z_j=\varphi_j;$ risostituendo f_j si ottiene la tesi.

Definizione 3.7. Sia $\Delta(w,r) \subseteq \mathbb{C}^m$, $F: \Delta(w,r) \to \mathbb{C}^m$, $F = (f_1, \ldots, f_m)$. La matrice jacobiana di $F \in J_F = (\partial f_i/\partial z_j)_{i,j}$. F si dice non singolare in w se $J_F(w)$ ha rango massimo; è non singolare se lo è in ogni punto di $\Delta(w,r)$.

Teorema 3.8 (del rango). Sia $n \geq m$, $F: \Delta(0,r) \subseteq \mathbb{C}^n \to \mathbb{C}^m$ non singulare con F(0) = 0; allora esiste un cambio lineare di coordinate in \mathbb{C}^m , $w_i = \sum_{j=1}^m a_{i,j} z_j$ ed esistono funzioni olomorfe in un policilindro di centro 0, $\varphi_j(w_1,\ldots,w_{n-m})$ tali che $F(w_1,\ldots,w_n) = 0 \Leftrightarrow w_j = \varphi_j$.

Dimostrazione. Poiché $J_F(0)$ ha rango m, esistono due matrici (cambiamenti lineari di coordinate) A e B tali che $BJ_F(0)A^{-1}=(0\mid I_m)$. Sia $G=B\circ F$; ancora, G(0)=0 e $G=(g_{n-m+1},\ldots,g_n), g_i=\sum_{j=n-m}^n b_{i,j}f_j$. Quindi $J_G(0)=(0\mid I_m)$ e si può applicare il teorema precedente.

Teorema 3.9 (della mappa inversa). Sia $F: \Delta(0,r) \subseteq \mathbb{C}^n \to \mathbb{C}^n$ olomorfa e regolare allora $F \ \grave{e}$ localmente invertibile con inversa olomorfa.

Dimostrazione. Si ponga H(z,w)=w-F(z); è olomorfa in un intorno di $0 \in (\mathbb{C}^n)^2$ e non singolare. Allora è possibile cambiare le coordinate in modo che $J_H(0)=I_{2n}$, quindi esiste una mappa olomorfa $G=(g_1,\ldots,g_n)$ tale che $H(w,z)=w-F(z)=0 \Leftrightarrow z=G(w)$.

4 Sottovarietà

Definizione 4.1. Una sottovarietà di \mathbb{C}^n è $M \subseteq \mathbb{C}^n$ tale che per ogni $p \in M$, esiste un intorno U di p e una mappa $F: U \to \mathbb{C}^m$ $(m \le n)$ regolare in U e con $M \cap U = F^{-1}(0)$.

Teorema 4.2. $M \subseteq \mathbb{C}^n$ è una sottovarietà se e solo se in ogni punto $p \in M$ c'è un sistema di coordinate olomorfe w_1, \ldots, w_n centrate in p su un policilindro $\Delta(p,r)$ tali che $M \cap \Delta(p,r) = \{(w_1, \ldots, w_n) \mid w_1 = \ldots = w_m = 0\}.$

Dimostrazione. \Leftarrow Per ipotesi, esiste $F: \Delta(p,r) \to \mathbb{C}^m$, $F(q) = (w_1(q), \ldots, w_m(q))$.

⇒ Per ipotesi esiste F tale che $M \cap U = F^{-1}(0)$ e F(p) = 0; sia $F = (f_1, \ldots, f_m)$. Poiché F è regolare in p, i vettori $(\partial f_j/\partial z_1, \ldots, \partial f_j/\partial z_n)$ con $j \in \{1, \ldots, m\}$ sono linearmente indipendenti e si possono aggiungere n - m righe che definiscono la matrice A in modo che $\binom{J_F}{A}$ sia invertibile. Ponendo $f_j = \sum_{i=1}^n a_{i,j} z_i$ per $m < j \le n$ e $G = (f_1, \ldots, f_n)$, si ottiene che G ha matrice jacobiana invertibile e quindi è un sistema di coordinate, che in più soddisfa la condizione $M \cap U = \{(w_1, \ldots, w_n) \mid w_1 = \ldots = w_m = 0\}$. □

Teorema 4.3. $M \subseteq \mathbb{C}^n$ è una sottovarietà se e solo se per ogni $p \in M$ esiste un intorno U di p, un policilindro $\Delta(0,\delta) \subseteq \mathbb{C}^k$ e $F \colon \Delta(0,\delta) \to U$ olomorfa non singolare tale che $M \cap U = F(\Delta(0,\delta))$. Inoltre si definisce la dimensione di M come l'intero dim M := k.

Dimostrazione. Innanzitutto, k è indipendente dalla parametrizzazione: se F e G soddisfano le richieste, allora $G^{-1}F$ è localmente un biolomorfismo, quindi le dimensioni degli spazi di partenza e destinazione devono coincidere.

Se M è una sottovarietà e $p \in M$, esiste un policilindro $\Delta(p,r) \subseteq \mathbb{C}^n$ e un sistema di coordinate w_1, \ldots, w_n tale che $M \cap \Delta(p,r) = \{(w_1, \ldots, w_n) \mid w_1 = \ldots = w_m = 0\}$; siano k = n - m e $F : \Delta(0, \delta) \subseteq \mathbb{C}^k \to \Delta(p,r)$ con $F(z_1, \ldots, z_k) = (0, \ldots, 0, z_1, \ldots, z_k)$. Allora $F(\Delta(0, \delta)) = M \cap \Delta(p, (r_1, \ldots, r_m, \delta_1, \ldots, \delta_k))$.

5 Singolarità rimovibili

Teorema 5.1 (delle singolarità rimovibili di Riemann). $Sia\ f: \Delta(0,r) \setminus \{0\} \subseteq \mathbb{C} \to \mathbb{C}$ olomorfa, allora f si estende a una funzione olomorfa $\hat{f}: \Delta(0,r) \to \mathbb{C}$ se e solo se f è limitata in un intorno di 0.

Definizione 5.2. Un insieme X è detto magro se la sua parte interna è vuota.

Definizione 5.3. Un sottoinsieme $X \subseteq D$ è sottile se per ogni $z \in D$ esiste una funzione olomorfa non nulla in un intorno U di z tale che $X \cap U \subseteq f^{-1}(0)$.

11.10.2006

Osservazione 5.4. Essenzialmente, gli insiemi sottili sono (localmente) luoghi di zeri di funzioni olomorfe. In particolare, insiemi sottili sono magri.

Teorema 5.5. Sia $X \subseteq D$ un insieme sottile, $D \subseteq \mathbb{C}^n$ un dominio, $f \in \mathcal{O}(D \setminus X)$, localmente limitata in ogni punto di X (cioè, per ogni $p \in X$, esiste $\Delta(p,r)$ tale che $f_{|\Delta(p,r)\setminus X}$ è limitata), allora f si estende a $\hat{f} \in \mathcal{O}(D)$.

Dimostrazione. Si può supporre $D = \Delta(0, r)$, $X = g^{-1}(0)$, $0 \in X$ e che a meno di un cambio di coordinate, g sia regolare di ordine $k \geq 1$ rispetto all'ultima variabile. Per il teorema degli zeri, esiste un polidisco $\Delta(0, \delta) \subseteq D$ tale che se z_1, \ldots, z_{n-1} sono fissati in modo che $|z_i| < \delta_i$ per ogni $i \in \{1, \ldots, n-1\}$, e $(z_1, \ldots, z_{n-1}) \neq (0, \ldots, 0)$, allora $g(z_1, \ldots, z_{n-1}, \xi)$ ha k radici in $\{\xi \mid |\xi| \leq \delta_n\}$ ed è non nulla per $|\xi| = \delta_n$. Si può allora definire

$$\hat{f}(z_1,\ldots,z_n) = \frac{1}{2\pi i} \int_{|\xi|=\delta_n} \frac{f(z_1,\ldots,z_{n-1},\xi)}{\xi - z_n} d\xi.$$

Così definita, \hat{f} è olomorfa in z_1, \ldots, z_{n-1} ; lo è in z_n in quanto la formula è quella dell'integrale di Cauchy. Inoltre \hat{f} estende f, poiché in un aperto dove f è definita coincidono, quindi devono coincidere ovunque per il teorema del prolungamento analitico.

Corollario 5.6. Sia D un aperto connesso e $X \subseteq D$ sottile, allora $D \setminus X$ è connesso.

Dimostrazione. Si dimostra che $D \setminus \bar{X}$ è connesso: siano D_1 e D_2 due aperti di D tali che $D \setminus \bar{X} = D_1 \cup D_2$, $D_1 \cap D_2 = \varnothing$; sia $f : D_1 \cup D_2 \to \mathbb{C}$ la funzione olomorfa definita da $f_{|D_1} \equiv 1$, $f_{|D_2} \equiv 2$. Allora per il teorema, f si estende ad una funzione olomorfa $\hat{f} : D \to \mathbb{C}$, che per il prolungamento analitico deve essere costantemente 1 o costantemente 2, perciò $D_1 = \varnothing$ o $D_2 = \varnothing$.

Teorema 5.7. Sia $n \geq 2$, $\Delta(0,r) \subseteq \mathbb{C}^n$, f olomorfa in un intorno connesso U di $\partial \Delta(0,r)$, allora f si estende a $\hat{f} \in \mathcal{O}(\Delta(0,r) \cup U)$.

Dimostrazione. Siano $(z_1, \ldots, z_{n-1}) \in \Delta(0, (r_1, \ldots, r_{n-1}))$, allora si ponga

$$\hat{f}(z_1,\ldots,z_n) = \frac{1}{2\pi i} \int_{|\xi|=r_n} \frac{f(z_1,\ldots,z_{n-1},\xi)}{\xi - z_n} d\xi;$$

ancora, \hat{f} è olomorfa in tutte le variabili ed è un'estensione di f: se z_1, \ldots, z_{n-1} sono fissati opportunamente, $\{z \mid |z_n| \leq r_n\} \subseteq U$ e si ha $f(z_1, \ldots, z_n) = \hat{f}(z_1, \ldots, z_n)$.

Corollario 5.8. Se $n \ge 2$, le singolarità isolate di una funzione olomorfa sono rimovibili (rispetto al teorema di Riemann, cade la richiesta che la funzione sia limitata in un intorno della singolarità).

Teorema 5.9. Sia $D_i = \Delta(0,1) \subseteq \mathbb{C}$, $D_i' = \Delta(0,1+\varepsilon_i) \subseteq \mathbb{C}$, $D \supseteq D_1 \times \ldots \times D_n$, $D \supseteq \partial D_1 \times \ldots \times \partial D_k \times D'_{k+1} \times \ldots \times D'_n$, $f \in \mathcal{O}(D)$; allora f si estende a \hat{f} olomorfa in $D_1 \times \ldots \times D_k \times D'_{k+1} \times \ldots \times D'_n$.

Dimostrazione. Si definisce

$$\hat{f}(z_1, \dots, z_n) := \left(\frac{1}{2\pi i}\right)^k \int_{\substack{|\xi_1| = \dots = |\xi_k| = 1}} \frac{f(\xi_1, \dots, \xi_k, z_{k+1}, \dots, z_n)}{(\xi_1 - z_1) \dots (\xi_k - z_k)} d\xi_1 \dots d\xi_k. \quad \Box$$

Teorema 5.10. Siano $\Delta(0,r) \subseteq \mathbb{C}^n$, $g_1, g_2 \in \mathcal{O}(\Delta(0,r))$, $g_1(0) = g_2(0) = 0$, $V = \{ z \in \Delta(0,r) \mid g_1(z) = g_2(z) = 0 \}$; allora $f \in \mathcal{O}(\Delta(0,r) \setminus V)$ si estende ad una funzione olomorfa in $\Delta(0,r)$.

Dimostrazione. Si può supporre che g_1 sia regolare in 0 rispetto alla variabile z_n e che g_2 lo sia rispetto alla variabile z_{n-1} . Allora esiste un policilindro $D = \Delta(0, \delta)$ tale che $\bar{D} \subseteq \Delta(0, r)$ e $g_1(z_1, \ldots, z_n) \neq 0$ per $|z_i| \leq \delta_i$, per ogni $i \in \{1, \ldots, n-1\}$ e $|z_n| = \delta_n$. Allo stesso modo, si può trovare un altro policilindro che soddisfi la stessa condizione per g_2 rispetto a z_{n-1} , ed eventualmente prendendone uno più piccolo si può supporre che questi due policilindri coincidano. Allora $V \cap \Delta(0,r) \cap (tciz|z_{n-1}| = \delta_{n-1} \cup \{z \mid |z_n| = \delta_n\}) = \emptyset$ e si può definire

$$\hat{f}(z_1, \dots, z_n) = \left(\frac{1}{2\pi i}\right)^2 \int_{\substack{|\xi_{n-1}| = \delta_n \\ |\xi_n| = \delta_n}} \frac{f(z_1, \dots, z_{n-2}, \xi_{n-1}, \xi_n)}{(\xi_{n-1} - z_{n-1})(\xi_n - z_n)} d\xi_{n-1} d\xi_n. \quad \Box$$

6 Forme differenziali

Definizione 6.1. Dato D dominio di \mathbb{C}^n , l'algebra esterna generata da $\mathrm{d}z_1,\ldots,\mathrm{d}z_n,\mathrm{d}\bar{z_1},\ldots,\mathrm{d}\bar{z_n}$ su $\mathrm{C}^\infty(D)$, con

$$C^{\infty}(D) = \{ f \colon D \to \mathbb{C} \mid f \in C^{\infty}(D \subseteq \mathbb{R}^{2n}) \},$$

cioè il $C^{\infty}(D)$ -modulo libero quozientato in modo da verificare le relazioni

$$dz_i \wedge dz_j = -dz_j \wedge dz_i$$

$$d\bar{z}_i \wedge dz_j = -dz_j \wedge d\bar{z}_i$$

$$d\bar{z}_i \wedge d\bar{z}_j = -d\bar{z}_j \wedge d\bar{z}_i$$

si denota con $\mathcal{E}^{p,q}(D)$; un suo elemento è della forma

$$\varphi = \sum_{i,j} \varphi_{i,j} dz_{i_1} \wedge \ldots \wedge dz_{i_p} \wedge dz_{j_1}^- \wedge \ldots \wedge dz_{j_q}^-;$$

 $\begin{array}{l} \text{con } \mathscr{E}^{\star}(D) \text{ si intende } \sum_{p,q} \mathscr{E}^{p,q}(D) \in \varphi \in \mathscr{E}^{p,q}(D) \subseteq \mathscr{E}^{\star}(D) \text{ si dice avere } grado \\ (p,q) \in grado \ totale \ p+q. \end{array}$

Definizione 6.2. A $\varphi \in \mathscr{E}^{p,q}$ si possono applicare gli operatori $\partial/\partial z_k$ e $\partial/\partial \bar{z_k}$:

$$\frac{\partial \varphi}{\partial z_k} = \sum_{i,j} \frac{\partial \varphi_{i,j}}{\partial z_k} dz_k \wedge dz_{i_1} \wedge \ldots \wedge dz_{i_p} \wedge dz_{j_1}^- \wedge \ldots \wedge dz_{j_q},$$

$$\frac{\partial \varphi}{\partial \bar{z}_k} = \sum_{i,j} \frac{\partial \varphi_{i,j}}{\partial \bar{z}_k} d\bar{z}_k \wedge dz_{i_1} \wedge \ldots \wedge dz_{i_p} \wedge dz_{j_1}^- \wedge \ldots \wedge dz_{j_q}.$$

16.10.2006

Si hanno inoltre i seguenti operatori:

$$\begin{array}{ccccc} \partial \colon & \mathscr{E}^{p,q} & \longrightarrow & \mathscr{E}^{p+1,q} \\ & \varphi & \longmapsto & \sum_{k=1}^n \frac{\partial \varphi}{\partial z_k}, \\ \bar{\partial} \colon & \mathscr{E}^{p,q} & \longrightarrow & \mathscr{E}^{p,q+1} \\ & \varphi & \longmapsto & \sum_{k=1}^n \frac{\partial \varphi}{\partial z_k}, \\ d \colon & \mathscr{E}^{p,q} & \longrightarrow & \mathscr{E}^{p+1,q+1} \\ & \varphi & \longmapsto & \partial \varphi + \bar{\partial} \varphi. \end{array}$$

Osservazione 6.3. Si ricavano come regole di calcolo:

$$\partial(\varphi \wedge \psi) = \partial\varphi \wedge \psi + (-1)^{pq}\varphi \wedge \partial\psi$$
$$dd = \partial\partial = \bar{\partial}\bar{\partial} = 0 = \partial\bar{\partial} + \bar{\partial}d$$

Teorema 6.4 (di Cauchy generalizzato). Sia $D \subseteq \mathbb{C}$ un aperto connesso con $\gamma = \partial D$ una curva semplice chiusa rettificabile; siano $U \supseteq \bar{D}$ un aperto e $f \in C^{\infty}(U)$. Allora per ogni $z \in D$, valgono

$$\begin{split} 2\pi i f(z) &= \int\limits_{\gamma} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi + \iint\limits_{D} \frac{\partial f(\xi)}{\partial \bar{\xi}} \frac{\mathrm{d}\xi \wedge \mathrm{d}\bar{\xi}}{\xi - z}, \\ 2\pi i f(z) &= -\int\limits_{\gamma} \frac{f(\xi)}{\xi - z} \mathrm{d}\bar{\xi} + \iint\limits_{D} \frac{\partial f(\xi)}{\partial \xi} \frac{\mathrm{d}\xi \wedge \mathrm{d}\bar{\xi}}{\xi - z}. \end{split}$$

Dimostrazione. Fissato $z \in D$, si sceglie un disco $\Delta = \Delta(z,r)$ con chiusura contenuta in D e si pone $D_r = D \setminus \bar{\Delta}$; D_r è ancora un dominio, di frontiera $\partial D - \partial \bar{\Delta} = \gamma - \gamma_r$. Poiché in D_r la funzione $(\xi - z)^{-1}$ è olomorfa, $\partial/\partial \bar{\xi}(\xi - z)^{-1}$ si annulla e

$$\frac{\partial f(\xi)}{\partial \bar{\xi}} \frac{\mathrm{d} \xi \wedge \mathrm{d} \bar{\xi}}{\xi - z} = \frac{\partial}{\partial \bar{\xi}} \left(\frac{f(\xi)}{\xi - z} \right) \mathrm{d} \xi \wedge \mathrm{d} \bar{\xi} = \mathrm{d} \left(\frac{f(\xi) \mathrm{d} \xi}{\xi - z} \right).$$

Per il teorema di Stokes si ha:

$$\begin{split} \iint\limits_{D_r} \frac{\partial f(\xi)}{\partial \bar{\xi}} \frac{\mathrm{d}\bar{\xi} \wedge \mathrm{d}\xi}{\xi - z} &= \iint\limits_{D_r} \mathrm{d} \left(\frac{f(\xi)}{\xi - z} \right) \mathrm{d}\xi = \int\limits_{\gamma - \gamma_r} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi = \\ &= \int\limits_{\gamma} \frac{f(\xi) \mathrm{d}\xi}{\xi - z} - \int\limits_{\gamma_r} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi = \\ &= \int\limits_{\gamma} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi - \int\limits_{0}^{2\pi} \frac{f(re^{it} + z)}{re^{it}} ire^{it} \mathrm{d}t = \\ &= \int\limits_{\gamma} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi - \int\limits_{0}^{2\pi} if(re^{it} + z) \mathrm{d}t \xrightarrow{r \to 0} \\ &\to \int\limits_{\gamma} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi - 2\pi i f(z). \end{split}$$

La seconda uguaglianza si ottiene allo stesso modo.

Lemma 6.5. Siano D, γ , f come nel teorema precedente, allora esistono $g, h \in C^{\infty}(D)$ tali che $\partial g(z)/\partial \bar{z} = f(z)$, $\partial h/\partial z = f(z)$; inoltre, se f è differenziabile o olomorfa in altri parametri, anche g e h lo sono.

Dimostrazione. Si definisce

$$g(z) = \frac{1}{2\pi i} \iint_{D} \frac{f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi},$$

da cui si deduce l'ultima parte dell'enunciato; fissato z, sia D_r come nell'ultima dimostrazione, allora

$$d(\log|\xi - z|^2) = d(\log(\xi - z)(\bar{\xi} - \bar{z})) =$$

$$= d(\log(\xi - z) + \log(\bar{\xi} - \bar{z})) = \frac{d\xi}{\xi - z} + \frac{d\bar{\xi}}{\bar{\xi} - \bar{z}},$$

in quanto $\log(\xi-z)$ è olomorfa mentre $\log(\bar{\xi}-\bar{z})$ è antiolomorfa, quindi per Stokes

$$\iint_{D_r} d(f(\xi) \log |\xi - z|^2 d\bar{\xi}) = \int_{\gamma} f(\xi) \log |\xi - z|^2 d\bar{\xi} - \int_{\gamma_r} f(\xi) \log |\xi - z|^2 d\bar{\xi} =$$

$$= \iint_{D_r} \frac{\partial f(\xi)}{\partial \xi} \log |\xi - z|^2 d\xi \wedge d\bar{\xi} + \iint_{D_r} \frac{f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi} +$$

$$+ \iint_{D_r} \frac{\partial f(\xi)}{\partial \bar{\xi}} \log |\xi - z|^2 d\bar{\xi} \wedge d\bar{\xi} + \int_{D_r} \frac{f(\xi)}{\bar{\xi} - z} d\bar{\xi} \wedge d\bar{\xi}.$$

Facendo tendere r a 0, gli integrali in D_r si trasformano in integrali in D, quelli in γ rimandono uguali e rimane da capire a cosa tende quello in γ_r : si pone $\xi = z + re^{it}$, $M = \sup\{|f(\xi)| | \xi \in \partial D\} < \infty$, allora

$$\lim_{r \to 0} \left| \int_{\gamma_r} f(\xi) \log |\xi - z|^2 d\overline{\xi} \right| = \lim_{r \to 0} \left| \int_0^{2\pi} -f(z + re^{it}) 2r \log(r) i e^{-it} dt \right| \le \lim_{r \to 0} M4\pi r \log(r) = 0.$$

Di conseguenza si ha

$$2\pi i g(z) = -\iint_{D} \frac{f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi} + \int_{\gamma} f(\xi) \log |\xi - z|^{2} d\bar{\xi}$$

e la derivata di g rispetto a \bar{z} per il teorema di Cauchy generalizzato dà f. Rimane da dimostrare che anche la derivata di g rispetto a z è differenziabile; per h si procede allo stesso modo.

Teorema 6.6 (lemma di Dolbeaut). Sia $\bar{\Delta}$ un polidisco chiuso, $\omega \in \mathscr{E}^{p,q}(U)$ con $U \supseteq \bar{\Delta}$ aperto $e \neq 0$; allora $\bar{\partial}\omega = 0$ se e solo se esiste $\eta \in \mathscr{E}^{p,q-1}(D)$ tale che $\bar{\partial}\eta = \omega$.

Dimostrazione. Sia ν il massimo j per cui $\mathrm{d}\bar{z_j}$ è coinvolto in ω ; la dimostrazione è per induzione su ν . Se $\nu=0$, $\omega=0$ e si può prendere $\eta=0$. Supponiamo ora l'asserto vero per le (p,q)-forme $\bar{\partial}$ -chiuse che non contengono $\mathrm{d}\bar{z_\nu},\ldots,\mathrm{d}\bar{z_n}$ e sia $\omega=\mathrm{d}\bar{z_\nu}\wedge\alpha+\beta$, dove α e β non contengono $\mathrm{d}\bar{z_\nu},\ldots,\mathrm{d}\bar{z_n}$. Il coefficiente di ogni termine di α è una funzione $\alpha_{i,j}\in\mathrm{C}^\infty(U)$, quindi per il lemma precedente esiste $g_{i,j}$ tale che $\frac{\partial g_{i,j}}{\partial z_\nu}=\alpha_{i,j}$; sia γ la forma che si ottiene sostituendo i coefficienti $\alpha_{i,j}$ con i $g_{i,j}$.

Inoltre, si ha $0 = \bar{\partial}\omega = \mathrm{d}\bar{z}_{\nu} \wedge \bar{\partial}\alpha + \bar{\partial}\beta$, quindi se $\alpha_{i,j}$ non fosse olomorfo in $z_k, k \geq \nu$ (equivalentemente, $\partial \alpha_{i,j}/\partial z_k \neq 0$), in $\bar{\partial}\omega$ ci sarebbe un termine che non può essere cancellato da $\bar{\partial}\beta$, e viceversa, quindi $\alpha_{i,j}$ e $\beta_{i,j}$ sono olomorfi in z_k , $k \geq \nu$.

Si ottiene che $\bar{\partial}\gamma = d\bar{z}_{\nu} \wedge \alpha + \delta$ e si pone $\varphi := \omega - \bar{\partial}\gamma = \beta - \delta$; in particolare $\bar{\partial}\varphi = \bar{\partial}\omega - \bar{\partial}\bar{\partial}\gamma = 0$ e φ soddisfa l'ipotesi induttiva, perché né β né δ contengono \bar{z}_{ν} . Quindi esiste ψ tale che $\bar{\partial}\psi = \varphi$ e $\omega = \bar{\partial}\psi + \bar{\partial}\varphi = \bar{\partial}(\psi + \varphi)$.

18.10.2006

Grazie al lemma di Dolbeaut si può costruire la successione

$$\cdots \longrightarrow \mathscr{E}^{p,q-1} \xrightarrow{\bar{\partial}} \mathscr{E}^{p,q} \xrightarrow{\bar{\partial}} \mathscr{E}^{p,q+1} \longrightarrow \cdots$$

che soddisfa $\bar{\partial}^2 = 0$; si può quindi parlare di coomologia e si definiscono i gruppi di coomologia di Dolbeaut come $h^{p,q}(U)$, le (p,q)-forme $\bar{\partial}$ -chiuse modulo quelle esatte.

Teorema 6.7 (Dolbeaut). Sia Δ un polidisco (anche non compatto), allora:

- $h^{p,0}(\Delta)$ è costituito dalle (p,0)-forme con coefficienti olomorfi (in particolare $h^{0,0}(D) = \mathcal{O}(D)$);
- $h^{p,q}(\Delta) = 0$ per ogni $q \ge 1$.

Dimostrazione. Se $\varphi \in h^{p,0}(\Delta)$, $\varphi = \sum_i \varphi_i dz_{i_1} \wedge \ldots \wedge dz_{i_p}$ e $0 = \bar{\partial}\varphi = \sum_{j=1}^n \partial/\partial \bar{z_j} \left(\sum_i \varphi_i dz_{i_1} \wedge \ldots \wedge dz_{i_p}\right) \wedge dz_j$, da cui si deduce che $\partial \varphi_i/\partial \bar{z_j} = 0$ per ogni $i \in j$.

Per il secondo punto, si suppone $\Delta = \bigcup_{\nu} \Delta_{\nu}$ con Δ_{ν} polidisco con lo stesso centro e a chiusura compatta, tale che $\bar{\Delta}_{\nu} \subseteq \Delta_{\nu+1}$. Si supponga inoltre q > 1; per induzione su ν si vuole trovare una φ_{ν} definita in un intorno di $\bar{\Delta}_{\nu}$ e tale che $\bar{\partial}\varphi_{\nu} = \varphi$, $\varphi_{\nu+1}|_{\Delta_{\nu}} = \varphi_{\nu}$. Per $\nu = 1$ si tratta del lemma di Dolbeaut; si suppone ora di aver già trovato $\varphi_1, \ldots, \varphi_{\nu}$ con quelle proprietà, con il lemma di Dolbeaut si ha una ψ tale che $\bar{\partial}\psi = \varphi$ in un intorno di $\Delta_{\nu+1}$; sia $\sigma \in \mathbb{C}^{\infty}$ una funzione tale che $\sigma_{|\Delta_{\nu}} \equiv 1$ e $\sigma_{|\mathbb{C}^n \setminus \Delta_{\nu+1}} \equiv 0$. Dove sono entrambe definite, $\bar{\partial}(\psi - \varphi_{\nu}) = \varphi - \varphi = 0$, allora ancora per il lemma (q > 1 implica q - 1 > 0) esiste ϑ di grado (p, q - 1) tale che $\bar{\partial}\vartheta = \psi - \varphi_{\nu}$. La funzione $\varphi_{\nu+1} = \psi - \bar{\partial}\sigma\vartheta$ soddisfa le richieste e se si prende η con $\eta_{|\Delta_{\nu}} = \varphi_{\nu}$, si ha $\bar{\partial}\Delta = \varphi$, quindi $\varphi = 0$ in $h^{p,q}(\Delta)$.

Nel caso q=1, si costruiscono le φ_{ν} in modo che $\bar{\varphi_{\nu}}=\varphi$ e $\varphi_{\nu+1}-\varphi_{\nu}$ sia una forma olomorfa di $\mathscr{E}^{p,0}$ e $|\varphi_{\nu+1}|_i(z)-\varphi_{\nu}|_i(z)|<2^{-\nu}$ su Δ_{ν} . Ancora, φ_1 si costruisce con il lemma di Dolbeaut; per il passo induttivo si trova ψ con $\bar{\partial}(\psi-\varphi_{\nu})=0$, per cui $\psi-\varphi_{\nu}$ ha coefficienti olomotfi; per soddisfare la condizione di convergenza, si possono sviluppare questi coefficienti in serie di potenze; le somme parziali di queste serie sono polinomi p_i che singolarmente convergono uniformemente, ma essendo in numero finito convergono uniformemente insieme. Allora esistono dei polinomi tali che $|\varphi_{\nu+1,i}(z)-\varphi_{\nu,i}(z)-p_i(z)|<2^{-\nu}$ su

 Δ_{ν} . Ma $P=\sum_{i}p_{i}\mathrm{d}z_{i_{1}}\wedge\ldots\wedge\mathrm{d}z_{i_{p}}$ è una forma $\bar{\partial}$ -chiusa in quanto ha i coefficienti olomorfi e si può fissare $\varphi_{\nu+1}=\psi-P$. Allora $\bar{\partial}\varphi_{\nu+1}=\varphi-0=\varphi$ e per costruzione si ha la condizione di convergenza. Ora, per ogni punto di Δ , la successione $(\varphi_{\nu}(z))_{\nu}$ è definita da un certo ν in poi e i coefficienti convergono uniformemente, quindi la successione determina una (p,0)-forma η e $\eta-\varphi_{\mu}=\lim_{\nu\to\infty}\varphi_{\nu}-\varphi_{\mu}$. La differenza ha coefficienti olomorfi quindi il limite ha coefficienti olomorfi per la chiusura delle funzioni olomorfe, quindi $0=\bar{\partial}\eta-\bar{\partial}\varphi_{\mu}=\bar{\partial}\Delta-\varphi$.

Esempio 6.8. Sia $U = \mathbb{C}^2 \setminus \{0\}$; U è semplicemente connesso, ma $h^{p,1}(U) \neq 0$. Siano $U_i = \{(z_1, z_2) \mid z_i \neq 0\}, r^2 = |z_1^2| + |z_2^2|$ e si definiscono

$$\begin{split} \omega_{|U_1} &= \bar{\partial} \frac{\bar{z_2}}{z_1 r^2}, \\ \omega_{|U_2} &= -\bar{\partial} \frac{\bar{z_1}}{z_2 r^2}; \end{split}$$

sono entrambe forme chiuse su U_1 e U_2 . Ora, $(z_1z_2)^{-1}$ è olomorfa, quindi

$$0 = \bar{\partial} \frac{1}{z_1 z_2} = \bar{\partial} \frac{\bar{z_1}}{z_2 r^2} + \bar{\partial} \frac{\bar{z_2}}{z_1 r^2} = \omega_{|U_1} - \omega_{|U_2}:$$

questo significa che le due forme ne definiscono una globale. Per assurdo, sia f una primitiva di ω , allora $g=z_1f-\bar{z_2}/r^2$ è ben definita su U e in $U_1,\,g/z_1$ soddisfa $\bar{\partial}^g/z_1=\bar{\partial}f-\omega=0$, il che significa che g/z_1 è olomorfa in U_1 , quindi a maggior ragione lo è g. Ma g è localmente limitata in un intorno dell'origine, perciò si estende a \mathbb{C}^2 e $g(0,z_2)=\bar{z_2}/|z_2|^2=z_2^{-1}$ che non è olomorfa in 0, assurdo.

Problema 6.9 (Cousin). Siano $\Delta \subseteq \mathbb{C}^n$ un policilindro non necessariamente compatto, $\{U_i\}$ un suo ricoprimento aperto; dei dati di Cousin per questo ricoprimento sono delle funzioni $h_{i,j} \in \mathscr{O}(U_i \cap U_j)$ per ogni i e j tali che $U_i \cap U_j \neq \varnothing$ tali che $h_{i,j} = -h_{j,i}$ e $h_{i,j} + h_{j,k} + h_{k,i} = 0$ su $U_i \cap U_j \cap U_k$ (condizione di cociclo). Il problema consiste nel trovare $f_i \in \mathscr{O}(U_i)$ tali che $h_{i,j} = f_i - f_j$.

Esempio 6.10. Si suppone di avere delle primitive locali di una 1-forma, φ_i per ogni U_i e sia $h_{i,j} = \varphi_i - \varphi_j$; risolvere il problema di Cousin con questi dati significa riuscire a incollare le primitive (prendendo $\varphi_i - f_i$).

Teorema 6.11 (Cousin). Assegnati dei salti locali $h_{i,j} \in \mathcal{O}(U_i \cap U_j)$ per un ricoprimento di un polidisco Δ , esistono $f_i \in \mathcal{O}(U_i)$ tali che $h_{i,j} = f_i - f_j$.

7 Germi di funzioni e di insiemi

Definizione 7.1. Un germe di funzione olomorfa in $w \in \mathbb{C}^n$ è una classe di equivalenza di funzioni olomorfe in un intorno di w rispetto alla relazione $f \sim g$ se e solo se esiste un intorno W di w contenuto nell'intersezione dei domini di definizione e tale che $f_{|W} = g_{|W}$. L'insieme dei germi in w si denota con $\mathscr{O}_{n,w}$.

Osservazione 7.2. Si ha ovviamente $\mathcal{O}_{n,w} \cong \mathcal{O}_{n,0}$, che si indica anche solo con \mathcal{O}_n . Questo è un anello integro: se fg=0, esiste un intorno U di 0 tale che $(fg)_{|U}=0$ come funzione; se esiste $z\in U$ tale che $f(z)\neq 0$, per continuità f è non nulla in un aperto contenente z e ivi g è identicamente nulla, quindi g=0 per il teorema d'identità.

25.11.2006

Si può allora costruire il campo dei quozienti dell'anello \mathscr{O}_n , il campo dei germi delle funzioni meromorfe in 0, che verrà denotato \mathscr{M}_n . Le unità dell'anello \mathscr{O}_n sono i germi delle funzioni che non si annullano in 0; i germi che si annullano in 0 formano invece un ideale massimale, perciò \mathscr{O}_n è locale.

L'anello \mathcal{O}_n si può vedere come l'anello delle serie analitiche convergenti in n variabili, $\mathbb{C}\{z_1,\ldots,z_n\}$. Per lavorare su \mathcal{O}_n si considereranno le inclusioni $\mathcal{O}_{n-1} \hookrightarrow \mathcal{O}_{n-1}[z_n] \hookrightarrow \mathcal{O}_n$: il primo passaggio è semplice, si tratta soltanto dell'anello dei polinomi in una variabile; il secondo richiede invece il teorema di preparazione di Weierstrass.

Definizione 7.3. Un polinomio $q \in \mathcal{O}_{n-1}[z_n]$ è detto polinomio di Weierstrass se $q = z_n^k + \sum_{i=0}^{n-1} a_i z_n^i$ con $a_i \in \mathfrak{m} \leq \mathcal{O}_{n-1}$, cioè se per ogni i, a_i si annulla in 0.

Teorema 7.4 (di preparazione di Weierstrass). Sia $f \in \mathcal{O}_n$ regolare di ordine k in 0, allora esiste un unico polinomio di Weierstrass h di grado k tale che f = uh con $u \in \mathcal{O}_n$ unità.

Dimostrazione. Si può pensare che f sia regolare di ordine k in 0 rispetto a z_n ; allora esiste un policilindro $\Delta(0,\delta)$ dove f è definita e tale che per ogni z_1,\ldots,z_{n-1} con $|z_i|<\delta_i$, f come funzione della sola z_n ha k radici in $|z_n|<\delta_n$ e non ne ha in $|z_n|=\delta_n$. Siano $\varphi_i(z_1,\ldots,z_{n-1})$ con $i\in\{1,\ldots,k\}$ le radici: le φ_i non sono necessariamente continue perché non c'è un modo canonico di ordinare le radici, ma le funzioni simmetriche elementari $\sum \varphi_i, \sum \varphi_i \varphi_j, \ldots, \prod \varphi_i$ sono ben definite. Si ha

$$\sum_{i=1}^{k} \varphi_i(z_1, \dots, z_{n-1})^r = \frac{1}{2\pi i} \int_{|\xi| = \delta_n} \frac{\partial f(z_1, \dots, z_{n-1}, \xi)}{\partial \xi} \frac{\xi^r}{f(z_1, \dots, z_{n-1}, \xi)} d\xi;$$

la funzione $f(z_1,\ldots,z_{n-1},\xi)$ è non nulla per $|\xi|=\delta_n$, quindi le φ_i^r sono olomorfe. Denotando con a_1,\ldots,a_n le funzioni simmetriche elementari, si ha che $h=z_n^k+\sum_{i=1}^n a_i z_n^{n-i}$ è un polinomio di Weierstrass in quanto le a_i sono olomorfe e soddisfano $a_i(0)=0$, dato che $\varphi_j(0)=0$. Infine, $f/h\in\mathcal{M}_n$ è in realtà un'unità, poiché le radici di h sono le stesse di quelle di f e con la stessa molteplicità, e h per costruzione è l'unico polinomio di Weierstrass con questa proprietà.

Teorema 7.5 (di divisione). Siano $h \in \mathcal{O}_{n-1}[z_n]$ un polinomio di Weierstrass di grado k e $f \in \mathcal{O}_n$; allora esistono unici $g \in \mathcal{O}_n$ e $r \in \mathcal{O}_{n-1}[z_n]$ con $\deg r < k$ tali che f = gh + r. Inoltre, se $f \in \mathcal{O}_{n-1}[z_n]$, anche $g \in \mathcal{O}_{n-1}[z_n]$.

Dimostrazione. Sia $\Delta(0,\delta)$ un policilindro dove f e h sono definite tale che $h(z_1,\ldots,z_n)\neq 0$ per $|z_i|<\delta_i,\,i\in\{1,\ldots,n-1\}$ e $|z_n|=\delta_n$. Siano

$$g(z_1,\ldots,z_n) := \frac{1}{2\pi i} \int_{|\xi|=\delta_n} \frac{f(z_1,\ldots,z_{n-1},\xi)}{h(z_1,\ldots,z_{n-1},\xi)(\xi-z_n)} d\xi$$

e
$$r := f - gh$$
, cioè

$$r(z_{1},...,z_{n}) = \frac{1}{2\pi i} \int_{|\xi|=\delta_{n}} \frac{f(z_{1},...,z_{n-1},\xi)}{\xi - z_{n}} d\xi - \frac{1}{2\pi i} \int_{|\xi|=\delta_{n}} \frac{h(z_{1},...,z_{n})}{h(z_{1},...,z_{n-1},\xi)} \frac{f(z_{1},...,z_{n-1},\xi)}{\xi - z_{n}} d\xi = \frac{1}{2\pi i} \int_{|\xi|=\delta_{n}} \frac{f(z_{1},...,z_{n-1},\xi)}{h(z_{1},...,z_{n-1},\xi)} \frac{h(z_{1},...,z_{n}) - h(z_{1},...,z_{n-1},\xi)}{\xi - z_{n}} d\xi;$$

la variabile z_n viene coinvolta solo nell'ultima frazione e se $h(z_1,\ldots,z_n)=z_n^k+\sum_{i=1}^n a_i z_n^{n-i}$, il numeratore risulta $(\xi^k-z_n^k)+\sum_{i=1}^n a_i (\xi^{n-i}-z_n^{n-i})$, che è divisibile per $\xi-z_n$: quindi r è un polinomio in z_n di grado al più k-1. Se inoltre $f\in \mathscr{O}_{n-1}[z_n]$, l'ultima conclusione deriva dal teorema di divisione nell'anello dei polinomi.

Per l'unicità, se f = gh + r = g'h + r', allora r - r' = h(g - g'); poiché il secondo membro si annulla in generale k volte e il primo al più k - 1, segue che r = r' e di conseguenza g = g'.

Lemma 7.6. Sia f un polinomio di Weierstrass, allora f è riducibile in \mathcal{O}_n se e solo se è riducibile in $\mathcal{O}_{n-1}[z_n]$.

Dimostrazione. \Leftarrow Se f è riducibile in $\mathscr{O}_{n-1}[z_n]$ allora $f = g_1g_2$ con g_i non unità; se per assurdo g_1 fosse una unità di \mathscr{O}_n , si potrebbe scrivere $f/g_1 = g_2$ e applicando il teorema di preparazione seguirebbe che $g_1^{-1} \in \mathscr{O}_{n-1}[z_n]$, assurdo.

⇒ Se $f = g_1g_2$ in \mathcal{O}_n con g_i non unità, allora $g_i = u_ih_i$ e $f = u_1u_2h_1h_2$, ma h_1h_2 è ancora un polinomio di Weierstrass e per l'unicità della preparazione $u_1u_2 = 1$ e $h_1h_2 = f$, quindi f è riducibile in $\mathcal{O}_{n-1}[z_n]$. \square

Proposizione 7.7. L'anello \mathcal{O}_n è un UFD noetheriano.

Dimostrazione. Per induzione su n: se n=0, $\mathscr{O}_n\cong\mathbb{C}$ quindi la tesi è verificata; se \mathscr{O}_k è un UFD noetheriano per ogni k< n, sia $f\in \mathscr{O}_n$, allora f=uh e h si scrive a meno di unità in modo unico come prodotto di fattori irriducibili, che sono irriducibili anche in \mathscr{O}_n per il lemma, quindi si ha la decomposizione, che è unica perché gli irriducibili di \mathscr{O}_n lo sono anche in $\mathscr{O}_{n-1}[z_n]$. Per la noetherianità, $\mathscr{O}_{n-1}[z_n]$ è noetheriano per il teorema della base di Hilbert; sia $I\leq \mathscr{O}_n$ un ideale, allora $A\cap \mathscr{O}_{n-1}[z_n]=(h_1,\ldots,h_s)$. Sia $g\in A$ regolare in z_n ; per il teorema di preparazione si può assumere che $g\in \mathscr{O}_{n-1}[z_n]$. Si dimostrerà che $I=(h_1,\ldots,h_s,g)$: se $f\in I$, f=gt+r, per cui $r\in I\cap \mathscr{O}_{n-1}[z_n]$ e $r=\sum_{i=1}^s h_i r_i$, da cui $f=gt+\sum_{i=1}^s h_i r_i$.

Definizione 7.8. Dato $K \subseteq \mathbb{C}^n$ chiuso, l'*insieme dei germi di funzioni olomorfe* su $K \in \mathcal{O}_K$ ed è l'insieme delle funzioni olomorfe su un aperto che contiene K modulo l'uguaglianza su un aperto che contiene K.

Osservazione 7.9. Poiché $\mathscr{O}_K \subseteq \mathrm{C}(K,\mathbb{C})$, se K è compatto si può definire la seminorma $\|f\|_K = \sup\{|f(z)| \mid z \in K\}$; questa, vista in \mathscr{O}_K (non in $\mathrm{C}(K,\mathbb{C})$), diventa una norma se K° non è vuoto. Se $F = (f_1, \ldots, f_p) \in \mathscr{O}_K^p$, si definisce $\|F\|_K = \max \|f\|_K$.

30.11.2006: TODO 6.11.2006

Teorema 7.10 (di divisione esteso). Sia h olomorfa in $U \supseteq \bar{\Delta}(0,r)$, tale che h_0 , il suo germe in 0, sia un polinomio di Weierstrass in z_n di grado k. Si supponga inoltre che per ogni (a_1,\ldots,a_{n-1}) con $|a_j| \leq r_j$, tutte le radici di $h(a_1,\ldots,a_{n-1},z_n)$ siano in $|z_n| < r_n$. Allora, per ogni $f \in \mathcal{O}_{\bar{\Delta}(0,r)}$, esiste k > 0 tale che f = gh + p, con $g \in \mathcal{O}_{\bar{\Delta}(0,r)}$ e $p = \sum p_j(z_1,\ldots,z_{n-1})z_n$; inoltre $\|g\|_{\bar{\Delta}(0,r)} \leq k \|f\|_{\bar{\Delta}(0,r)}$ e $\|p_j\|_{\bar{\Delta}(0,r)}$

Dimostrazione. Poiché $f \in \mathcal{O}_{\bar{\Delta}(0,r)}$, f è olomorfa in un aperto $U \supsetneq \bar{\Delta}(0,r+2\varepsilon)$ e si può supporre che le ipotesi valgano anche su questo policilindro allargato; si integra relativamente al policilindro $\bar{\Delta}(0,r+\varepsilon)$, per cui risulta, con procedimenti simili a quelli del teorema di divisione,

$$g(z_1, \dots, z_n) = \frac{1}{2\pi i} \int_{\substack{|\xi| = r_n + \varepsilon_n}} \frac{f(z_1, \dots, z_{n-1}, \xi)}{h(z_1, \dots, z_{n-1}, \xi)(\xi - z_n)} d\xi,$$

mentre p = f - gh risulta determinato da

$$p_j(z_1, \dots, z_{n-1}) = \frac{1}{2\pi i} \int_{|t| = r_n + \varepsilon_n}^{h_j^*(z_1, \dots, z_{n-1}, t) f(z_1, \dots, z_{n-1}, t)} dt,$$

dove le h_i^{\star} sono funzioni simmetriche dei coefficienti di h.

Si maggiorano i coefficienti di p: il denominatore all'interno dell'integrale non si annulla mai, inoltre l'integrale dipende solo dalla classe di omotopia del cammino, per cui equivale allo stesso integrale calcolato in $|t| = r_n$. Sia ora

$$k_j = \sup \left\{ \left| \frac{h_j^{\star}(z_1, \dots, z_{n-1}, t)}{h(z_1, \dots, z_{n-1}, t)} \right| \mid |z_j| \le r_j, |t| = r_n \right\},$$

allora $|p_j(z_1, \dots, z_{n-1})| \le r_n k_j ||f||_{\bar{\Delta}(0,r)}$.

Per g, si nota che h(z) non si annulla sulla circonferenza, quindi per ogni punto sul bordo del policilindro vale

$$|g(z)| = \left| \frac{f(z) - p(z)}{h(z)} \right| \le \frac{1}{m} \left(1 + \sum_{j=1}^{n} r_j k_j \right) ||f||_{\bar{\Delta}(0,r)}.$$

Ponendo k il massimo delle costanti trovate finora, si trova la maggiorazione. \Box

Osservazione 7.11. Il teorema non è un'estensione banale del teorema di divisione: scegliendo opportunamente l'ultima dimensione, il teorema vale su "molti" policilindri contenuti in un aperto fissato.

Teorema 7.12. Sia U un aperto contenente 0 in \mathbb{C}^n e siano $G_1, \ldots, G_q \in \mathscr{O}(U)^p$, con i germi di G_1, \ldots, G_q in 0 che generano un certo modulo $M \subseteq \mathscr{O}_n^p$; allora eventualmente cambiando linearmente le coordinate, esiste un policilindro $\bar{\Delta}(0,r)$ contenuto in U tale che per ogni $F \in M_{\bar{\Delta}(0,r)}$, dove

$$M_{\bar{\Delta}(0,r)} = \left\{ F \in \mathscr{O}^p_{\bar{\Delta}(0,r)} \mid F_0 \in M \right\}$$

e F_0 è il germe di F in 0, F è generato dalle G_i con coefficienti olomorfi nel policilindro: $F = \sum_{i=1}^q h_i G_i$ con $h_i \in \mathscr{O}_{\bar{\Delta}(0,r)}$ e $\|h_j\|_{\bar{\Delta}(0,r)} \le k \|F\|_{\bar{\Delta}(0,r)}$.

Osservazione 7.13. Anche qui, il policilindro è fissato prima della F: non è la banale considerazione che se i germi in 0 sono in numero finito, allora esiste un aperto su cui sono tutte olomorfe.

8 Spazi analitici e germi di spazi analitici

Si sono già definite le sottovarietà $U \subseteq \mathbb{C}^n$: localmente, sono luoghi di zeri di funzione olomorfe (per ogni punto della varietà, esiste un intorno in cui la varietà si descrive come $z_1 = \ldots = z_r = 0$). Non è vero il contrario, che il luogo degli zeri di polinomi descriva una varietà; ad esempio, per $X = \{(z_1, z_2) \mid z_1 z_2 = 0\}$, al di fuori dell'origine per il criterio Jacobiano si ha una varietà; nell'origine però non può essere una varietà: se si prende un intorno opportuno U di $0, X \cap U \setminus \{(0,0)\}$ dovrebbe apparire come un policilindro in \mathbb{C}^{n-1} meno un punto, quindi sarebbe connesso, ma questo è sconnesso e quindi X non è una varietà.

Se si prende il cono, $X = \{(z_1, z_2, z_3) \mid z_3^2 = z_1 z_2\} \subseteq \mathbb{C}^3$, è una varietà al di fuori di (0,0,0) ma nell'origine non lo è: X intersecato un intorno dell'origine dovrebbe apparire come una sfera 4-dimensionale, quindi togliendo l'origine rimane semplicemente connessa; ma la mappa $(u,v) \mapsto (u^2,v^2,uv)$ è un rivestimento doppio e il bordo dell'intorno si mostra essere un $\mathbb{P}^3_{\mathbb{R}}$.

Definizione 8.1. Un insieme $X \subseteq U \subseteq \mathbb{C}^n$, con U aperto, è uno spazio analitico se per ogni $a \in U$, esiste un intorno V_a di a tale che $X \cap V_a = \{z \in V_a \mid f_1(z) = \ldots = f_k(z) = 0\}$ con $f_j \in \mathcal{O}(V_a)$. In particolare, tutte le varietà algebriche affini (luoghi di zeri di polinomi) sono spazi analitici.

Teorema 8.2. Se $X \subseteq U$ è un insieme analitico, allora è chiuso, magro e non sconnette U.

Dimostrazione. Per dimostrare che è chiuso, sia $x \in U$ e sia $x = \lim_{n \to +\infty} x_n$ con $x_n \in X$, si deve dimostrare che $x \in X$. Per definizione x ha un intorno V tale che $X \cap V = \{z \in V \mid f_1(z) = \ldots = f_k(z) = 0\}$; definitivamente, $x_n \in V$, ma f_j sono in particolare continue e se si annullano in ogni x_n si annullano anche in x, cioè $x \in X$. Gli altri punti erano già stati dimostrati.

Teorema 8.3. Siano $\mathscr{F} \subseteq \mathscr{O}(U)$ una famiglia di funzioni olomorfe, $X = \mathbf{Z}(\mathscr{F})$: $= \{ x \in U \mid (\forall f \in \mathscr{F}) f(x) = 0 \}$. Allora $X \in U$ is spazio analitico¹.

Dimostrazione. Sia $z \in U$ e $\mathscr{F}_z = \{ f_z \mid f \in \mathscr{F} \}$; si considera l'ideale I generato da \mathscr{F}_z in $\mathscr{O}_{n,z}$, ma questo è un anello noetheriano, quindi $I = (g_1, \ldots, g_q)$ con $g_i = \sum_{j=1}^t h_{i,j} f_j$ con $f_j \in \mathscr{F}_z$: si possono scegliere i generatori di I in \mathscr{F}_z (le f_j generano I e sono un numero finito).

Si applica il teorema dei moduli: g_j sono germi di funzioni olomorfe su U e se $f \in \mathscr{O}_{\bar{\Delta}(0,r)}$ e $f_z \in \mathscr{F}_z$, allora $f = \sum_{j=1}^q h_j g_j$ con $h_j \in \mathscr{O}(\bar{\Delta}(0,r))$. Si scrive $X \cap \bar{\Delta}(0,r) = \{z \mid g_1(z) = \ldots = g_q(z) = 0\}$: infatti $X \cap \bar{\Delta}(0,r) = Z(\mathscr{F}) \cap \bar{\Delta}(0,r) \supseteq Z(g_1,\ldots,g_q) \supseteq Z(\mathscr{F}) \cap \bar{\Delta}(0,r)$: la seconda inclusione è banale, la prima deriva dalla scrittura di f fatta precedentemente.

Definizione 8.4. Siano X e Y insiemi qualunque definiti in U e V, con $0 \in U \cap V$; si dice che X e Y sono equivalenti se esiste W con $0 \in W \subseteq U \cap V$ tale che $X \cap W = Y \cap W$. La classe di equivalenza corrispondente si chiama germe d'insieme in 0.

Definizione 8.5. Un germe di spazio analitico in 0 è un luogo di zeri di un ideale in \mathcal{O}_n . L'insieme dei germi si denota con \mathcal{B}_n .

 $^{{}^{1}\}mathcal{O}(U)$ non è un anello noetheriano, quindi questo teorema ha senso

Esercizio 8.6. Il luogo di zeri di un'ideale in \mathcal{O}_n è una classe di equivalenza di insiemi analitici definiti in un intorno di 0.

Teorema 8.7. Se X e Y sono germi di spazi analitici, allora lo sono anche $X \cap Y$ e $X \cup Y$.

Dimostrazione. Si ha
$$X = \mathbf{Z}(f_1, \dots, f_q)$$
 e $Y = \mathbf{Z}(g_1, \dots, g_s)$, allora si avrà $X \cap Y = \mathbf{Z}(f_1, \dots, f_q, g_1, \dots, g_s)$ e $X \cup Y = \mathbf{Z}(f_i g_j)$.

Osservazione 8.8. Sia $X \in \mathcal{B}_n$, allora $\mathrm{I}(X) \coloneqq \{ f \in \mathcal{O}_n \mid \mathrm{Z}(f) \supseteq X \}$ è un ideale di \mathcal{O}_n ; viceversa, se I è un ideale in \mathcal{O}_n , $\mathrm{Z}(I) \in \mathcal{B}_n$.

Teorema 8.9. Dati $V_1, V_2 \in \mathcal{B}_n$, allora:

- 1. $V_1 \supseteq V_2 \Rightarrow I(V_1) \subseteq I(V_2)$;
- 2. $V_1 \neq V_2 \Rightarrow I(V_1) \neq I(V_2)$;
- 3. $I_1 \supseteq I_2 \Rightarrow Z(I_1) \subseteq Z(I_2)$;
- 4. I(V) è radicale;
- 5. ZI(V) = V;
- 6. Z(I) = Z(r(I));
- 7. $IZ(I) \supseteq r(I)^2$.

Dimostrazione. 1. Ovvio.

- 2. Se $V_1 = \mathbf{Z}(g_1, \dots, g_q) \neq \mathbf{Z}(f_1, \dots, f_s) = V_2$ allora esiste un intorno W di zero in cui tutto e definito ed esiste $z_W \in V_1 \setminus V_2 \cup V_2 \setminus V_1$. Si può quindi trovare una successione (z_n) convergente a 0 e tale che $z_n \in V_2 \setminus V_1$ e $g_n(z_n) \neq 0$, quindi $g_n \notin \mathbf{I}(V_2)$.
- 3. Si procede allo stesso modo del punto precedente.
- 4. Sia $f \in r(I(V))$, cioè $f^r \in I(V)$, allora $Z(f^r) \supseteq V$, ma $Z(f^r) = Z(f)$, quindi $f \in I(V)$.
- 5. Ogni $f \in I(V)$ si annulla in tutto V, quindi $V \subseteq ZI(V)$; viceversa, poiché V è un germe, $V = Z(f_1, \ldots, f_r)$ con $f_i \in I(V)$, cioè f_i si annulla su ZI(V), il che significa che $ZI(V) \subseteq Z(f_i)$ per ogni i, da cui la tesi.
- 6. Poiché $I \subseteq r(I)$, sicuramente $Z(I) \supseteq Z(r(I))$, viceversa, se $f \in r(I)$, $f^n \in I$ e quindi f si annulla su Z(I), da cui si ha l'altra inclusione.
- 7. Se $f \in r(I)$, f si annulla su Z(r(I)) quindi $f \in IZ(r(I)) = IZ(I)$.

8.11.2006

Definizione 8.10. Sia $V \in \mathcal{B}_n$, V si dice riducibile se esistono $V_1, V_2 \in \mathcal{B}_n$ tali che $V_i \neq V$ e $V = V_1 \cup V_2$; V è irriducibile se non è riducibile.

Teorema 8.11. V è irriducibile se e solo se I(V) è primo.

 $^{^2}$ In un anello dei polinomi, questa sarebbe un'uguaglianza (teorema degli zeri o Nullstellensatz). Nel caso analitico, si vorrà dimostrare che si ha l'uguaglianza almeno nel caso che ${\cal I}$ sia primo

Dimostrazione. \Rightarrow Se I(V) non è primo, esistono $f_1, f_2 \in \mathcal{O}_n$ tali che $f_i \notin V$ ma $f_1 f_2 \in V$; allora si pone $V_i = \mathrm{Z}(f_i)$ e $V = (V_1 \cap V) \cup (V_2 \cup V)$.

 \Leftarrow Si suppone che V sia riducibile, allora $V = V_1 \cup V_2$ con $V_i \neq V$, allora $I(V) \subseteq I(V_i)$; esiste allora $f_i \in I(V_i) \setminus I(V)$ e $f_1 f_2 \in I(V)$.

Corollario 8.12. Sia V = Z(f), allora V è irriducibile se e solo se $f = p^k$ con $p \in \mathcal{O}_n$ irriducibile³.

Teorema 8.13. Sia $V \in \mathcal{B}_n$, allora esiste un'unica decomposizione $V = \bigcup_{i=1}^{s} V_j$ con V_j irriducibile e tale che per ogni j, $V_j \subsetneq \bigcup_{i \in \{1,...,\hat{j},...,s\}} V_i$.

Dimostrazione. Si può scrivere $I(V) = \mathfrak{p}_1 \dots \mathfrak{p}_s$ con \mathfrak{p}_i primo e la decomposizione non è ridondante perché l'anello è a fattorizzazione unica. Allora $V_i = Z(\mathfrak{p}_i)$ dà una decomposizione che soddisfa le richieste. Per l'unicità, se $V = \bigcup_i V_i = \bigcup_j W_j$, allora per ogni $j, W_j \subseteq \bigcup_i V_i$, allora per l'irriducibilità di W_j , deve esistere σ tale che $W_j \subseteq V_{\sigma(j)}$; viceversa, $V_i \subseteq W_{\tau\sigma(j)}$ e così via. Si conclude che le due decomposizioni sono uguali.

9 Nullstellensatz per ideali primi

Lemma 9.1. Siano $f, g \in \mathcal{O}_n$ primi fra loro (grazie alla fattorizzazione unica questo significa soltanto che le loro decomposizioni non hanno fattori comuni); allora esiste un sistema di coordinate⁴ z_1, \ldots, z_n ed esistono $\lambda, \mu \in \mathcal{O}_n$ tali che $0 \neq \lambda f + \mu g \in \mathcal{O}_{n-1}$.

Dimostrazione. Esiste un sistema di coordinate in cui f=uP e g=vQ con u,v unità e P,Q polinomi di Weierstrass coprimi (l'irriducibilità in \mathscr{O}_n è la stessa che in \mathscr{O}_{n-1}). Sia \mathscr{F} il campo dei quozienti di \mathscr{O}_{n-1} , allora esistono $h,k\in\mathscr{F}[z_n]$ tali che hP+kQ=1 per il teorema di Bézout. Liberando dai denominatori si ottiene la relazione $\lambda'P+\mu'Q=a\in\mathscr{O}_{n-1}$; ponendo $\lambda=\lambda'u^{-1}$ e $\mu=\mu'v^{-1}$ si ha la relazione $\lambda f+\mu g=a\neq 0$.

Teorema 9.2 (Nullstellensatz per ideali principali). Sia $g \in \mathcal{O}_n$ irriducibile (in particolare, (g) è un ideale primo di \mathcal{O}_n); allora IZ(g) = (g) in \mathcal{O}_n .

Dimostrazione. Si può supporre che g non sia la funzione nulla né un'unità; cambiando opportunamente le coordinate, si può scrivere g=uP con P polinomio di Weierstrass irriducibile di grado k. Ovviamente si può supporre che g=P senza perdità di generalità. Sia $f\in \mathrm{IZ}(g)$; si sa esistere un sistema di coordinate in cui sia f che g sono entrambi polinomi. Se f non è un multiplo di g, f e g sono coprimi in quanto g è irriducibile, allora dal lemma si ha $0\neq \lambda f+\mu g=p\in \mathscr{O}_{n-1}$. Questa è una relazione tra funzioni (non solo tra germi) in un opportuno $\Delta(0,r)$, scelto in modo che per ogni (a_1,\ldots,a_{n-1}) con $a_j< r_j$, il polinomio $g(a_1,\ldots,a_{n-1},z_n)$ abbia almeno una radice in $|z_n|< r_n$. Preso $z_0\in \Delta(0,(r_1,\ldots,r_{n-1}))$ esiste z_n tale che $(z_0,z_n)\in \Delta(0,r)$ e $g(z_0,z_n)=0$. Ne consegue che $f(z_0,z_n)=0$ e $p(z_0)=0$, in quanto p non dipende da z_n . Allora per l'arbitrarietà di z_0 , p è identicamente nulla, che contraddice l'ipotesi usata per il lemma, cioè f e g non sono coprimi o equivalentemente $f\in (g)$.

³Non è detto che f generi I(V).

⁴Ciò significa sempre un cambiamento lineare di coordinate, che induce un automorfismo dell'algebra \mathcal{O}_n .

Corollario 9.3. Sia $f \in \mathcal{O}_n$, $f = \prod_{i=1}^s p_i^{n_i}$ la sua decomposizione nell'UFD \mathcal{O}_n ; allora $Z(f) = Z(p_1) \cup \ldots \cup Z(p_s)$ è la decomposizione di Z(f) in componenti irriducibili.

Dimostrazione. I fattori di f sono irriducibili, quindi (p_i) è primo e $Z(p_i)$ è irriducibile; l'uguaglianza insiemistica è banale in quanto \mathcal{O}_n è un anello integro. Se la decomposizione fosse ridondante, si avrebbe $Z(p_i) \subseteq Z(p_j)$, allora $IZ(p_i) \supseteq IZ(p_j)$ e $(p_i) \supseteq (p_j)$, ma questo non è possibile perché si avrebbe $p_i \mid p_j$.

Osservazione 9.4. Sia $I \subseteq \mathcal{O}_n$ un ideale; \mathcal{O}_n è un anello noetheriano quindi esiste la decomposizione primaria $I = \bigcap_{i=1}^s Q_i$ con Q_i primari. Ma $\mathrm{IZ}(I) \supseteq \mathrm{r}(I) \supseteq I$ quindi si può partire da un ideale radicale, che nella decomposizione primaria ha solo ideali primi: $\mathrm{r}(I) = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$ in modo non ridondante (questi ideali primi sono quelli associati agli ideali primari Q_i). Allora $\mathrm{IZ}(\mathrm{r}(I)) = \mathrm{I}(\mathrm{Z}(\mathfrak{p}_1) \cup \ldots \cup \mathrm{Z}(\mathfrak{p}_s)) = \mathrm{IZ}(\mathfrak{p}_1) \cap \ldots \cap \mathrm{IZ}(\mathfrak{p}_s)$. Quindi si osserva che per dimostrare il Nullstellensatz è sufficiente dimostrarlo per gli ideali primi.

13.11.2006

Sia quindi \mathfrak{p} primo in \mathscr{O}_n ; se è l'ideale nullo, $Z(\mathfrak{p}) = \mathbb{C}^n$ e chiaramente $I(\mathbb{C}^n) = (0)$. Ci si restringe quindi al caso $(0) \subsetneq \mathfrak{p} \subsetneq (1)$; $\mathscr{O}_n/\mathfrak{p}$ è un dominio, quindi si può costruire il suo campo dei quozienti. Si vuole dimostrare che \mathscr{F} , il campo dei quozienti di $\mathscr{O}_n/\mathfrak{p}$, è un'estensione algebrica finita di \mathscr{F}_k , il campo dei quozienti di \mathscr{O}_k , per un preciso k, che rappresenterà la dimensione di $Z(\mathfrak{p})$ e che $\mathscr{O}_n/\mathfrak{p}$ è intero su \mathscr{O}_k .

Definizione 9.5. Un sistema di coordinate z_1, \ldots, z_n è regolare per \mathfrak{p} se esiste $k \leq n$ tale che $\mathfrak{p} \cap \mathscr{O}_k = \{0\}$ (quindi si può pensare a $\mathscr{O}_n/\mathfrak{p}$ come a un \mathscr{O}_k -modulo), $\mathscr{O}_n/\mathfrak{p}$ è intero su \mathscr{O}_k e $\eta_{k+1} = \pi(z_{k+1})$ è un elemento primitivo di \mathscr{F} su \mathscr{F}_k . Il massimo k per cui questo avviene è detto dimensione di \mathfrak{p} .

Teorema 9.6. Ogni ideale primo ammette un sistema di coordinate regolare.

Dimostrazione. Si dimostrerà inizialmente, al posto della terza condizione, che $\pi(z_{k+1}), \ldots, \pi(z_n)$ sono algebrici su \mathscr{F}_k e generano \mathscr{F} (il che implica che $[\mathscr{F}:\mathscr{F}_k]<\infty$).

Per induzione su n: se n=0 non ci sono ideali primi non nulli, quindi non c'è niente da dimostrare. Si suppone che le prime due condizioni e la quarta valgano per ideali primi di \mathscr{O}_{n-1} e sia \mathfrak{p} primo in \mathscr{O}_n . Se $\mathfrak{p}=0$, chiaramente k=n e ancora non c'è niente da dimostrare. Si suppone quindi $(0) \subseteq \mathfrak{p} \subseteq \mathscr{O}_n$ e sia $0 \neq f \in \mathfrak{p}$; con un cambio di coordinate, f=up con u unità e $p=z_n^r+\sum_{i=0}^{n-1}a_iz_n^i$, $a_i\in\mathscr{O}_{n-1},\ a_i(0)=0$ polinomio di Weierstrass, che differendo da f per una unità, appartiene a \mathfrak{p} .

L'ideale $\mathfrak{p}'=\mathfrak{p}\cap\mathscr{O}_{n-1}$ è primo e vale l'ipotesi induttiva, quindi a meno di un cambio di coordinate, esiste $k\leq n-1$ tale che $\mathfrak{p}'\cap\mathscr{O}_k=(0),\,\,^{\mathscr{O}_n/\mathfrak{p}'}$ è intero su \mathscr{O}_k e z_{k+1},\ldots,z_{n-1} generano \mathscr{F}' su \mathscr{F}_k . In questo caso si sceglie lo stesso k: $\mathfrak{p}\cap\mathscr{O}_k=(\mathfrak{p}'\cap\mathscr{O}_{n-1})\cap\mathscr{O}_k=(0)$ e la prima condizione è verificata; in $\mathscr{O}_n/\mathfrak{p}$, z_n verifica un polinomio monico a coefficienti in $\mathscr{O}_{n-1}/\mathfrak{p}'$, quindi η_n è intera su $\mathscr{O}_{n-1}/\mathfrak{p}'$ che è intero su \mathscr{O}_k , quindi la prima è intera sul terzo. Sia $g\in\mathscr{O}_n$ generico, dividendo si ha $g=pH+\sum_{i=1}^{r-1}b_iz_n^i$ con $b_i\in\mathscr{O}_{n-1}$, allora $\pi(g)=\sum_{i=1}^{r-1}b_i\eta_i$. Si ottiene che g modulo \mathfrak{p} è un polinomio in η_n e η_n è intero

 $^{^5}$ Nel caso algebrico si ha l'invariante del grado di trascendenza del campo delle funzioni sul campo base; questo non è più significativo nel caso analitico in quando anche solo in $\mathbb C$ si possono avere con facilità gradi infiniti.

su \mathcal{O}_k , perciò $\pi(g)$ è intero su \mathcal{O}_k . Per l'ultima proprietà, η_n genera $\mathcal{O}_n/\mathfrak{p}$ su $\mathcal{O}_{n-1}/\mathfrak{p}'$, il quale è generato su \mathcal{O}_k da $\eta_{k+1},\ldots,\eta_{n-1}$ per ipotesi induttiva; allora η_{k+1},\ldots,η_n generano \mathscr{F} su \mathscr{F}_k . È un'estensione algebrica con un numero finito di generatori, allora $[\mathscr{F}:\mathscr{F}_k]<\infty$.

Rimane da provare la terza condizione: un elemento primitivo di \mathscr{F} su \mathscr{F}_k è della forma $\sum_{i=k+1}^n c_i \eta_i$ con $c_i \in \mathbb{C}$. Si possono cambiare le coordinate con $z_i' = z_i$ per ogni $i \leq k, z_{k+1}' = \sum_{i=k+1}^n c_i z_i$ e si scelgono le ultime tra z_{k+1}, \ldots, z_n in modo che siano linearmente indipendenti.

Sia quindi $z_1, \ldots, z_k, z_{k+1}, \ldots, z_n$ un sistema di coordinate regolari per \mathfrak{p} . Sia $\eta_j = \pi(z_j)$; questo è intero su \mathscr{O}_k e sia $q_j \in \mathscr{O}_k[x]$ il suo polinomio minimo, di grado r_j . Si ha $q_j(z_j) \in \mathscr{O}_k[z_j] \cap \mathfrak{p}$ poiché $\pi(q_j) = q_j(\pi(z_j)) = q_j(\eta_j) = 0$; in particolare per l'elemento primitivo, $q_{k+1}(z_{k+1}) \in \mathscr{O}_k[z_{k+1}] \cap \mathfrak{p}$. Sia $h \in \mathscr{O}_k[x]$, allora $h(\eta_{k+1}) = 0$ se e solo se h è multiplo di q_{k+1} (perché q_{k+1} è il polinomio minimo) se e solo se $h(z_{k+1}) \in \mathfrak{p}$, cioè $\mathscr{O}_k[z_{k+1}] \cap \mathfrak{p}$ è un ideale principale generato da q_{k+1} .

Poiché η_{k+1} è un elemento primitivo, tutti gli elementi di \mathscr{F} sono polinomi in η_{k+1} e in particolare $\eta_j = s_j(\eta_{k+1})$ con $s_j \in \mathscr{F}_k[x]$.

Teorema 9.7. Sia D il discriminante di q_{k+1} , cioè il risultante di q_{k+1} e q'_{k+1} ; $D \in \mathcal{O}_k$ e si ha $s_j = t_j/D$ (cioè $Ds_j \in \mathcal{O}_k[x]$).

Grazie al teorema, $Dz_j - t_j(z_{k+1}) = D(z_j - s_j(z_{k+1})) \in \mathfrak{p}$. Si è dimostrato che $\mathfrak{p} \cap \mathscr{O}_{k+1} = (q_{k+1}(z_{k+1}))$ e che tutte le altre variabili sono funzioni razionali di z_{k+1} con denominatore universale D.

Lemma 9.8. I polinomi $q_j(z_j)$ sono polinomi di Weierstrass in $\mathcal{O}_k[z_j]$.

Dimostrazione. Il polinomio q_j è minimo in z_j , perciò è regolare in z_j di ordine r_j . Per il teorema di preparazione, $q_j = uv_j$ con v_j polinomio di Weierstrass di grado r_j e u unità di \mathscr{O}_n . Allora in $\mathscr{O}_n/\mathfrak{p}$, $0 = q_j(\eta_j) = u(\eta)v_j(\eta_j)$; $u(\eta) \neq 0$ in quanto è un'unità, ma allora $v_j(\eta_j) = 0$, allora $q_j(x) \mid v_j(x)$, ma hanno lo stesso grado e sono monici, perciò deve essere $q_j = v_j$ e q_j è un polinomio di Weierstrass.

Si hanno quindi i polinomi $q_j(z_j)$ e $Dz_j-t_j(z_j)$ dentro $\mathfrak{p};$ si considera I_1 l'ideale generato da questi polinomi e

$$I_2 = (q_{k+1}(z_{k+1}), Dz_{k+1} - t_{k+1}(z_{k+1}), \dots, Dz_n - t_n(z_n));$$

si ha la relazione $I_2 \subseteq I_1 \subseteq \mathfrak{p}$, quindi $Z(I_2) \supseteq Z(I_1) \supseteq Z(\mathfrak{p})$ e si vuole dimostrare che $Z(I_2) \setminus Z(D) = Z(I_1) \setminus Z(D) = Z(\mathfrak{p}) \setminus Z(D)$.

Teorema 9.9. Sia $\mathscr{O}_K \subseteq \mathscr{O}_n/\mathfrak{p}$, $\eta := \eta_{k+1} = \pi(z_{k+1})$ genera \mathscr{F} su \mathscr{F}_k ; sia q il polinomio minimo di η (di grado r) e D il suo discriminante. Allora, per ogni $y \in \mathscr{O}_n/\mathfrak{p}$, $y = \sum_{i=0}^{r-1} b_i \eta^i$ con $Db_j \in \mathscr{O}_k$.

Dimostrazione. Si sa che \mathscr{O}_n è integralmente chiuso in \mathscr{F}_n (con la stessa dimostrazione che si fa per ogni UFD), allora basta dimostrare che $Db_j \in \mathscr{F}_k$ è intero su \mathscr{O}_k . Ora, η ha tutti i coniugati in F, il campo di spezzamento di q, e il gruppo di Galois è transitivo sulle radici. Sia $\sigma_j \in \operatorname{Gal}(\mathscr{F}/\mathscr{F}_k)$ tale che $\sigma_j(\eta) = \vartheta_j$ è il

15.11.2006

j-esimoconiugato, con $\sigma_1=\mathrm{Id}_F.$ Si trasforma l'equazione di y tramite questi automorfismi:

$$y = b_0 + b_1 \eta + \dots + b_{n-1} \eta^{n-1}$$

$$\sigma_2(y) = b_0 + b_1 \vartheta_2 + \dots + b_{n-1} \vartheta_2^{n-1}$$

$$\vdots$$

$$\sigma_r(y) = b_0 + b_1 \vartheta_r + \dots + b_{n-1} \vartheta_r^{n-1}$$

Questo insieme di equazioni si può pensare come un sistema di equazioni con incognite b_0,\ldots,b_{n-1} e termini noti $\vartheta_1,\ldots,\vartheta_r$, ma la matrice del sistema è la matrice di Vandermonde di $\vartheta_1,\ldots,\vartheta_r$, quindi si conosce il suo determinante. Applicando Cramer, $b_j=1/\delta\det A_j$ dove δ è il determinante di Vandermonde di $\vartheta_1,\ldots,\vartheta_r$, che risulta $\prod_{i< j}(\vartheta_i-\vartheta_j)$, ma il discriminante è dato da $D=\delta^2$. Allora $Db_j=\delta\det A_j$, dove $\det A_j=h_j(\vartheta_1,\ldots,\hat{\vartheta}_j,\ldots,\vartheta_r,\sigma_1(y),\ldots,\sigma_r(y))$ con h_j un polinomio a coefficienti interi. Inoltre, dal fatto che η è intero su \mathscr{O}_k si deduce che ϑ_i lo è per ogni i, quindi anche y e $\sigma_i(y)$ lo sono. Poiché Db_j è un polinomio di elementi interi a coefficienti interi, è intero su \mathscr{O}_k , ma poiché \mathscr{O}_k è integralmente chiuso in \mathscr{F}_k , a cui Db_j appartiene, $Db_j \in \mathscr{O}_k$.

Lemma 9.10. Siano
$$Z_i = Z(I_i)$$
 e $Z = Z(\mathfrak{p})$. Allora $Z_1 \setminus Z(D) = Z_2 \setminus Z(D)$.

Dimostrazione. L'inclusione $Z_1 \setminus \mathrm{Z}(D) \supseteq Z_2 \setminus \mathrm{Z}(D)$ è chiara; per l'altra si deve dimostrare che $q_j(z_j)$ si annulla su $Z_2 \setminus \mathrm{Z}(D)$ per j > k+1. Si aveva che $0 = q_j(\eta_j) = q_j(D^{-1}t_j(\eta_{k+1}))$ in quanto $D\pi(z_j) = t_j(\pi(z_{k+1}))$. Una potenza di D abbastanza elevata, moltiplicata per $q_j(\eta_j)$, elimina tutti i denominatori e dà come risultato un polinomio $h_j(x) \in \mathscr{O}_k[x]$. In particolare, η_{k+1} è una radice di h_j , quindi $q_{k+1} \mid h_j$ perché q_{k+1} ne è il polinomio minimo, e $h_j = Q_j q_{k+1}$.

Tutti i germi visti sinora sono in numero finito e quindi si estendono a funzioni olomorfe su un polidisco $\Delta(0,r)$. Sia $a=(a_0,a_{k+1},\ldots,a_n)$ con $a_0=(a_1,\ldots,a_k)\in (Z_2\setminus \mathbf{Z}(D))\cap \Delta_k,\ \Delta_k:=\Delta(0,(r_1,\ldots,r_k)).$ Allora $q_{k+1}(a_0,a_{k+1})=0$ perché $a\in Z_2$, ma $D(a_0)\neq 0$ perché $a\notin \mathbf{Z}(D)$; inoltre poichè $a\in Z_2$, sono verificate le $D(a_0)a_j=t_j(a_0,a_{k+1}).$ Si ha

$$0 = Q_j(a_0, a_{k+1})q_{k+1}(a_0, a_{k+1}) = h_j(a_0, a_{k+1}) =$$

$$= D(a_0)^{r_j} \frac{t_j(a_0, a_{k+1})}{D(a_0)} = D(a_0)^{r_j} q_j(a_0, a_j),$$

cioè q_j si annulla su $Z_2 \setminus Z(D)$.

Lemma 9.11. Siano $\alpha = \sum_{j=k+2}^{n} (r_j - 1)$ e $f \in \mathcal{O}_n$; allora esiste $\tilde{R} \in \mathcal{O}_k[z_{k+1}]$ con grado minore di r_{k+1} tale che $D^{\alpha}f - \tilde{R} \in I_1$.

Dimostrazione. Si divide f per q_n : $f = A_n q_n + \sum_{i=0}^{r_{n-1}} A_{i,n} z_n^i$ con $A_{i,n} \in \mathcal{O}_k$; si dividono gli $A_{i,n}$ per q_{n-1} : $f = A_n q_n + A_{n-1} q_{n-1} + R_{n-1}$ con $R_{n-1} \in \mathcal{O}_{n-2}[z_{n-1},z_n]$; proseguendo, si arriva a $f = \sum_{j=k+1}^n A_j q_j + R'$ con $R' \in \mathcal{O}_k[z_{k+1},\ldots,z_n]$ e $D^{\alpha}R'$ è un polinomio in $z_{k+1},Dz_{k+2},\ldots,Dz_n$. Ora, $Dz_j = Dz_j - t_j(z_{k+1}) + t_j(z_{k+1})$ e si ha

$$D^{\alpha} f = \sum_{j=k+1}^{n} A'_{j} q_{j}(z_{j}) + R''(z_{k+1}, Dz_{k+2} - t_{k+2}(z_{k+1}), \dots, Dz_{n} - t_{n}(z_{k+1})) + R''(z_{k+1}, t_{k+2}(z_{k+1}), \dots, t_{n}(z_{k+1})).$$

Dividendo R'' per q_{k+1} si ottiene $R''' := Qq_{k+1}(z_{k+1}) + \tilde{R}$ con $\deg \tilde{R} < r_{k+1}$; allora

$$D^{\alpha}f - \tilde{R} = \sum_{j=k+1}^{n} A'_{j}q_{j} + R'' + Qq_{k+1}(z_{k+1}) \in I_{1}.$$

Proposizione 9.12. $Z \setminus Z(D) = Z_1 \setminus Z(D)$.

Dimostrazione. Ancora, l'inclusione $Z \setminus Z(D) \subseteq Z_1 \setminus Z(D)$ è ovvia; per l'altra si deve dimostrare che se $f \in \mathfrak{p}$, $D^{\alpha}f \in I_1$. Per il lemma precedente, esiste $\tilde{R} \in \mathscr{O}_k[z_{k+1}]$ di grado minore di r_{k+1} tale che $D^{\alpha}f - \tilde{R} \in I_1$; poiché $f \in \mathfrak{p}$ e $I_1 \subseteq \mathfrak{p}$, si ha $\tilde{R} \in I_1 \subseteq \mathfrak{p}$, quindi $\pi(\tilde{R}(z_{k+1})) = \tilde{R}(\eta_{k+1}) = 0$, cioè η_{k+1} è radice di \tilde{R} che quindi deve essere divisibile per q_{k+1} , ma per il grado di \tilde{R} questo significa che $\tilde{R} = 0$ e quindi $D^{\alpha}f \in I_1$.

Teorema 9.13 (Nullstellensatz). Sia $\mathfrak{p} \subseteq \mathscr{O}_n$ ideale primo, allora I $Z(\mathfrak{p}) = \mathfrak{p}$.

Dimostrazione. Siano $Z=\mathrm{Z}(\mathfrak{p}),$ e $f\in\mathrm{I}(Z);$ allora $D^{\alpha}f=Q+\tilde{R}(z_{k+1})$ con $Q\in I_1$ e \tilde{R} di grado minore di r_{k+1} . Poiché $I_1\subseteq\mathfrak{p},$ sia Q che \tilde{R} appartengono a $\mathrm{I}(Z);$ dai lemmi precedenti, segue che \tilde{R} si annulla su $Z_2\setminus\mathrm{Z}(D).$ Si possono rappresentare tutti questi germi come funzioni olomorfe sul polidisco $\Delta_k\subseteq\Delta(0,r);$ sia $a_0\in\Delta_k$ tale che $D(a_0)\neq 0;$ scegliendo opportunamente il polidisco, esiste a_{k+1} con $|a_{k+1}|< r_{k+1}$ radice di $q_{k+1}(a_0,x)$ e sia $a_j=\frac{t_j(a_{k+1})}{D(a_0)}.$ Allora $q_j(a_0,a_j)=0$ e $(a_0,a_{k+1},\ldots,a_n)\in (Z_2\setminus\mathrm{Z}(D))\cap\Delta(0,r)$ e in particolare la n-upla annulla $\tilde{R}.$ Ma questi punti sono r_{k+1} per ogni a_0 e per il grado di $\tilde{R},$ questo deve essere nullo ovunque.

Allora, $D^{\alpha}f = Q + \tilde{R} = Q \in I_1 \subseteq \mathfrak{p}$, ma \mathfrak{p} è primo e non contiene D, quindi $D^{\alpha}f \in \mathfrak{p}$ implica $f \in \mathfrak{p}$.

Teorema 9.14. • $Z \setminus Z(D)$ è un manifold complesso di dimensione k;

- se $\pi: \mathbb{C}^n \to \mathbb{C}^k$ è la proiezione sulle prime coordinate, $\pi_{|Z\setminus Z(D)}: Z\setminus Z(D) \to \Delta_k \setminus Z(D)$ è un rivestimento a r_{k+1} fogli;
- $\pi_{|Z}: Z \to \Delta_k$ è una mappa olomorfa e propria, e Z è la chiusura di $Z \setminus Z(D)$;
- $Z \setminus Z(D)$ è connesso e V è irriducibile.

Definizione 9.15. Sia \mathfrak{p} un ideale primo di \mathscr{O}_n con coordinate regolari $z_1, \ldots, z_k, z_{k+1}, \ldots, z_n$; il policilindro $\Delta(0, r) \subseteq \mathbb{C}^n$ è ammissibile per \mathfrak{p} se, posto $\Delta(0, \rho) \subseteq \mathbb{C}^k$ con $\rho_i = r_i$ per $1 \le i \le k$, si verifica che:

- tutti i germi q_i e t_j sono ben definite funzioni olomorfe in $\Delta(0, \rho)$;
- D è olomorfo in $\Delta(0, \rho)$;
- se $a \in \Delta(0, \rho)$ e $q_i(a, b_j) = 0$ allora $|b_j| < r_j$ per $j \in \{k + 1, ..., n\}$.

Lemma 9.16. Se $z_1, \ldots, z_k, z_{k+1}, \ldots, z_n$ è un sistema di coordinate regolari per \mathfrak{p} , allora per ogni r sufficientemente piccolo, $\Delta(0,r)$ è ammissibile per \mathfrak{p} .

Dimostrazione. I germi considerati sono in numero finito, per cui in un policilindro sufficientemente piccolo sono tutti definiti come funzioni olomorfe; la seconda condizione è verificata grazie a un lemma precedente; la terza deriva dalla regolarità di q_i .

20.11.2006

Lemma 9.17. Se $\Delta(0,r)$ è un policilindro ammissibile per \mathfrak{p} allora il germe $Z \setminus Z(D)$ è rappresentato da $\Delta(0,r)$.

Dimostrazione. Si deve verificare che

$$\Delta(0,r) \cap (Z \setminus \mathbf{Z}(D)) = \left\{ z \in \Delta(0,r) \mid q_{k+1}(z_{k+1}) = 0, z_j = \frac{t_j(z_{k+1})}{D(z_1, \dots, z_k)} \right\},\,$$

ma questo deriva dal fatto che $Z_1 \setminus \mathrm{Z}(D) = Z \setminus \mathrm{Z}(D) = Z_2 \setminus \mathrm{Z}(D)$.

Teorema 9.18. Siano $\Delta(0,r)$ ammissibile per \mathfrak{p} , $\pi \colon \mathbb{C}^n \to \mathbb{C}^k$ la proiezione naturale $e \ s = \deg q_{k+1}$; allora:

- $Z \setminus Z(D)$ è una sottovarietà complessa di $\Delta(0,r)$ e $\pi_{|Z \setminus Z(D)} : Z \setminus Z(D) \rightarrow \Delta(0,\rho) \setminus Z(D)$ è un rivestimento a s fogli;
- $\pi: \bar{V} \to \Delta(0,\rho)$ è una mappa propria (la preimmagine di un compatto è compatta);
- $Z \setminus Z(D)$ è connesso e \bar{V} è un rappresentante per $Z(\mathfrak{p})$.