CORRIGÉ PROBLÈME I : extrait de ENSIETA 1990

Première partie.

- **A.** 1. $\Omega(f)$ est clairement non vide (contient la fonction nulle).
 - Soit $(g_1, g_2) \in \Omega(f)^2$ et $\lambda \in \mathbb{R}$. Alors $(g_1 + \lambda g_2) \circ f = \underbrace{g_1 \circ f}_{=0} + \lambda \underbrace{g_2 \circ f}_{=0} = 0$, d'où $g_1 + \lambda g_2 \in \Omega(f)$.

Conclusion : $\Omega(f)$ est un \mathbb{R} -espace vectoriel, comme sous-espace vectoriel de $\mathcal{L}(F)$.

• Soit $(g_1,g_2) \in \Omega(f)^2$, alors $(g_1 \circ g_2) \circ f = g_1 \circ (\underbrace{g_2 \circ f}) = 0$, donc $g_1 \circ g_2 \in \Omega(f)$ et

 $\Omega(f)$ est stable par la loi \circ .

- On a $\mathrm{Id}_F \circ f = f \neq 0$, donc $\Omega(f)$ ne contient pas l'identité. Par conséquent, $\Omega(f)$ n'est pas une sous-algèbre de $\mathcal{L}(F)$.
- **2.** $\Gamma(f)$ est clairement non vide (contient l'identité de F).
 - Soit $(h_1,h_2) \in \Gamma(f)^2$, alors $(h_1 \circ h_2) \circ f = h_1 \circ (h_2 \circ f) = h_1 \circ f = f$, donc $h_1 \circ h_2 \in \Gamma(f)$ et $\Gamma(f)$ est stable par composition.
 - $\Gamma'(f)$ est non vide (contient l'identité de F), et on remarque que $\Gamma'(f) = \Gamma(f) \cap \operatorname{GL}(F)$, donc $\Gamma'(f)$ est stable par composition.

De plus, si $h \in \Gamma'(f)$, alors $h \circ f = f$ d'où en composant par $h^{-1} : f = h^{-1} \circ f$ et $h^{-1} \in \Gamma'(f)$. Conclusion : $\Gamma'(f)$ est un sous-groupe de $(GL(F), \circ)$.

- **B. 1.** Soit $g \in \Omega(f)$, alors $g \circ f = 0$, donc $\operatorname{Im} f \subset \operatorname{Ker} g$, d'où dim $\operatorname{Ker} g \geqslant r$, et d'après le théorème du rang : $r' = \operatorname{rg} g = \dim F \dim \operatorname{Ker} g \leqslant n r$.
 - 2. C'est une question de cours, dont je refais rapidement ici la démonstration.

On choisit une base $(a_{r+1}, a_{r+2}, \dots, a_p)$ de Ker f (elle contient nécessairement p-r vecteurs d'après le théorème du rang), on la complète par (a_1, \ldots, a_r) pour obtenir une base $\mathscr{B} = (a_1, \ldots, a_p)$ de E. Par théorème sur les bases adaptées aux sommes directes, en posant $S = \text{Vect}(a_1, \dots, a_r)$, on a

alors $S \oplus \operatorname{Ker} f = E$.

Par le théorème d'isomorphisme, la restriction de f à S induit alors un isomorphisme de S sur Im f; la famille $(f(a_1), \ldots, f(a_r))$ est donc une base de Im f et on la complète par (b_{r+1}, \ldots, b_n) pour obtenir une base $\mathscr{B}' = (f(a_1), ..., f(a_r), b_{r+1}, ..., b_n)$ de F.

Vu la construction de ces bases, on conclut : $M_{\mathscr{B}}^{\mathscr{B}'}(f) = A = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

3. • Soit
$$g \in \mathcal{L}(F)$$
, écrivons la matrice de g dans la base \mathscr{B}' par blocs sous la forme :
$$G = M_{\mathscr{B}'}(g) = \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} \uparrow_{n-r}^r. \text{ Alors :}$$

$$g \in \Omega(f) \Longleftrightarrow g \circ f = 0 \Longleftrightarrow GA = 0 \Longleftrightarrow \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} X & 0 \\ Z & 0 \end{bmatrix} = 0 \Longleftrightarrow \begin{cases} X = 0 \\ Z = 0 \end{cases} \iff G = \begin{bmatrix} 0 & Y \\ 0 & T \end{bmatrix}$$

Notons $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$ (avec $E_{i,j}$ la matrice ayant un 1 ligne i et colonne j, et des 0 partout ailleurs)

D'après ce qui précède, $g \in \Omega(f) \iff G \in \text{Vect}\{E_{i,j}, 1 \leqslant i \leqslant n \text{ et } r+1 \leqslant j \leqslant n\}$, et comme la famille $(E_{i,j})_{1 \leqslant i,j \leqslant n}$ est libre : $\dim \Omega(f) = n(n-r)$.

• Soit g_1 et g_2 deux éléments de $\Omega(f)$, de matrices respectives dans la base \mathscr{B}' : $G_1 = \begin{bmatrix} 0 & X_1 \\ 0 & Y_1 \end{bmatrix}$ et $G_2 = \begin{bmatrix} 0 & X_2 \\ 0 & Y_2 \end{bmatrix}$.

Alors $G_1G_2 = \begin{bmatrix} 0 & X_1 \\ 0 & Y_1 \end{bmatrix} \begin{bmatrix} 0 & X_2 \\ 0 & Y_2 \end{bmatrix} = \begin{bmatrix} 0 & X_1Y_2 \\ 0 & Y_1Y_2 \end{bmatrix}$, on voit ainsi que si on choisit $Y_2 = 0$ et $X_2 = I_{n-r}$, on a $G_1G_2=0\neq G_2$. Îl n'existe donc pas d'élément g_1 de $\Omega(f)$ tel que $g_1\circ g_2=g_2$:

 $\Omega(f)$ n'admet pas d'élément neutre pour la loi \circ : ce n'est pas un anneau.

- C. Pour cette « application numérique », on va suivre les démonstrations des questions précédentes.
 - \bullet On commence par déterminer des bases \mathscr{B} et \mathscr{B}' comme dans la question **B.2**; pour cela cherchons $\operatorname{Ker} f$.

Soit
$$u \in E$$
 de coordonnées $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ dans la base \mathcal{B}_1 , alors :

$$u \in \operatorname{Ker} f \iff \begin{cases} x + 2y + 3z = 0 \\ 2x + 3y + 4z = 0 \\ x + y + z = 0 \end{cases} \xrightarrow{L_2 \leftarrow L_2 - L_1} \begin{cases} x + 2y + 3z = 0 \\ x + y + z = 0 \end{cases} \iff \begin{cases} x + 2y = -3z \\ x + y = -z \end{cases} \iff \begin{cases} x = z \\ y = -2z \end{cases}$$

ce qui équivaut à
$$X = z \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 et donc $\operatorname{Ker} f = \operatorname{Vect}\{a_3\}$ avec $a_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

• On complète $\{a_3\}$ par $\{a_1, a_2\}$ pour obtenir une base (a_1, a_2, a_3) de E, en choisissant par exemple $a_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

et $a_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (il est facile de vérifier que ce choix fait bien de (a_1, a_2, a_3) une base de E), et on déduit

les deux premiers vecteurs de la base
$$\mathscr{B}'$$
: $b_1 = f(a_1)$ et $b_2 = f(a_2)$, soit $b_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ et $b_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

On complète alors $\{b_1, b_2\}$ par (par exemple) $b_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ pour obtenir la base $\mathscr{B}' = (b_1, b_2, b_3)$ de F

(puisque le déterminant de (b_1, b_2, b_3) dans la base \mathscr{B}'_1 est $\begin{vmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \neq 0$, \mathscr{B}' est bien une base de F).

La matrice de passage de \mathcal{B}_1' à \mathcal{B}' est donc $P = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, on calcule maintenant P^{-1} :

En notant
$$\mathscr{B}'_1 = (e'_1, e'_2, e'_3)$$
, on a
$$\begin{cases} b_1 = e'_1 + 2e'_2 + e'_3 \\ b_2 = 2e'_1 + 3e'_2 + e'_3 \\ b_3 = e'_3 \end{cases}$$
 d'où
$$\begin{cases} e'_3 = b_3 \\ e'_1 + 2e'_2 = b_1 - b_3 \\ 2e'_1 + 3e'_2 = b_2 - b_3 \end{cases}$$
 et
$$\begin{cases} e'_3 = b_3 \\ e'_1 = -3b_1 + 2b_2 + b_3 \\ e'_2 = 2b_1 - b_2 - b_3 \end{cases}$$

donc $P^{-1} = \begin{pmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ (on pouvait aussi utiliser la comatrice pour calculer P^{-1} , mais j'ai voulu présenter ici une autre méthode).

• D'après **B.3**, les éléments de $\Omega(f)$ sont exactement les endomorphismes de F dont la matrice dans la base \mathscr{B}' est de la forme $G=\begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & z \end{pmatrix}$ avec $(x,y,z)\in\mathbb{R}^3$, leur matrice dans la base \mathscr{B}'_1 est alors $G_1 = PGP^{-1}$, ce qui fourni

$$G_{1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & z \end{pmatrix} \begin{pmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & x+2y \\ 0 & 0 & 2x+3y \\ 0 & 0 & x+y+z \end{pmatrix} \begin{pmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \text{ et finalement : }$$

$$G_{1} = \begin{pmatrix} x+2y & -x-2y & x+2y \\ 2x+3y & -2x-3y & 2x+3y \\ x+y+z & -x-y-z & x+y+z \end{pmatrix} \text{ avec } (x,y,z) \in \mathbb{R}^{3}.$$

$$G_1 = \begin{pmatrix} x + 2y & -x - 2y & x + 2y \\ 2x + 3y & -2x - 3y & 2x + 3y \\ x + y + z & -x - y - z & x + y + z \end{pmatrix} \text{ avec } (x, y, z) \in \mathbb{R}^3.$$

On pourrait procéder de façon similaire pour déterminer la matrice dans la base \mathscr{B}'_1 d'un élément quelconque de $\Gamma(f)$, mais il est plus astucieux de remarquer que : $h \in \Gamma(f) \iff h \circ f = f \iff (h - \mathrm{Id}_F) \circ f = 0 \iff h - \mathrm{Id}_F$

• On calcule alors $\det(H_1) = \det(G_1 + I_3) = \det(G + I_3) = z + 1$, donc les matrices dans la base \mathscr{B}'_1 des éléments de $\Gamma'(f)$ ont la même forme que précédemment, avec la condition supplémentaire $z \neq -1$.

LA MÉTHODE CI-DESSUS EST EN FAIT TRÈS COMPLIQUÉE; je ne l'ai faite que pour illustrer la démonstration théorique.

Il était bien plus rapide de chercher directement la matrice M d'un élément de $\Omega(f)$ dans la base \mathscr{B}'_1 en écrivant simplement MA=0 et en résolvant le système obtenu (qui est assez simple).

Deuxième partie.

- **A.** On a ici rg f = n = p, donc f est un isomorphisme de E sur F. On en déduit :
 - $\bullet \ \, \forall g \in \mathscr{L}(E), \; g \circ f = 0 \Longleftrightarrow g = 0 \; \mathrm{donc} \; \boxed{\Omega(f) = \{0\}.}$
 - $\forall g \in \mathcal{L}(E), \ g \circ f = f \iff g = \mathrm{Id}_F \ \mathrm{donc} \ \overline{\Gamma(f) = \{\mathrm{Id}_F\}}.$
 - Vu ce qui précède : $\Gamma'(f) = {\mathrm{Id}_F}.$
- **B.** On a ici rg f = n < p, donc dim Im $f = \dim F$ et f est surjective.
 - Soit $g \in \Omega(f)$, et $x \in F$. Alors $\exists y \in E$ tel que x = f(y), d'où $g(x) = g \circ f(y) = 0$, et donc g = 0. Conclusion : $\Omega(f) = \{0\}$.
 - Soit $g \in \Gamma(f)$, et $x \in F$. Alors $\exists y \in E$ tel que x = f(y), d'où $g(x) = g \circ f(y) = f(y) = x$, et $g = \operatorname{Id}_F$, d'où : $\Gamma(f) = \{\operatorname{Id}_F\}$.
 - Vu ce qui précède : $\Gamma'(f) = \{ \mathrm{Id}_F \}$.
- **C. 1.** D'après le théorème du rang, on a $r' + \dim \operatorname{Ker} g = n$, or $g \circ f = 0$, donc $\operatorname{Im} f \subset \operatorname{Ker} g$ et $p \leqslant \dim \operatorname{Ker} g$, d'où : $r' \leqslant n p$.
 - 2. On refait la même démonstration que dans I.B.2 (ou bien on applique directement le théorème du cours!), et l'on obtient qu'il existe des bases \mathcal{B} de E et \mathcal{B}' de F telles que la matrice de f dans ces bases soit

$$M_{\mathscr{B}}^{\mathscr{B}'}(f) = A = \begin{bmatrix} I_p \\ 0 \end{bmatrix}$$
, matrice à n lignes et p colonnes.

On en déduit

• Soit $g \in \mathcal{L}(F)$. Notons G la matrice de g dans la base \mathscr{B}' , $G = M_{\mathscr{B}'}(g) = \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} \updownarrow^{p}_{n-p}$. Alors:

$$g \in \Omega(f) \Longleftrightarrow g \circ f = 0 \Longleftrightarrow GA = 0 \Longleftrightarrow \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} \begin{bmatrix} I_p \\ 0 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} X \\ Z \end{bmatrix} = 0 \Longleftrightarrow \begin{cases} X = 0 \\ Z = 0 \end{cases} \iff G = \begin{bmatrix} 0 & Y \\ 0 & T \end{bmatrix}.$$
 On en déduit comme en **I.B.3** : $g \in \Omega(f) \iff G \in \text{Vect}\{E_{i,j}, \ 1 \leqslant i \leqslant n \text{ et } p+1 \leqslant j \leqslant n\}$ d'où
$$\boxed{\dim \Omega(f) = n(n-p).}$$

• De manière similaire, si $h \in \mathcal{L}(F)$ et qu'on note $H = \begin{bmatrix} X & Y \\ Z & T \end{bmatrix}$ la matrice de h dans la base \mathscr{B}' , on a :

$$h \in \Gamma(f) \Longleftrightarrow h \circ f = f \Longleftrightarrow HA = A \Longleftrightarrow \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} \begin{bmatrix} I_p \\ 0 \end{bmatrix} = \begin{bmatrix} I_p \\ 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} I_p \\ 0 \end{bmatrix} \Longleftrightarrow \begin{cases} X = I_p \\ Z = 0 \end{cases}$$

d'où la forme générale des matrices dans la base \mathscr{B}' des éléments de $\Gamma(f)$:

$$H = \begin{pmatrix} I_p & Y \\ 0 & T \end{pmatrix}$$
, avec $Y \in \mathcal{M}_{p,n-p}(\mathbb{R})$ et $T \in \mathcal{M}_{n-p}(\mathbb{R})$.

• Dans la formule précédente, on a clairement $\det H = \det T$, donc la forme générale des matrices des éléments de $\Gamma'(f)$ dans la base \mathscr{B}' est la même que précédemment, avec la condition supplémentaire $T \in \mathrm{GL}_{n-p}(\mathbb{R})$

Troisième partie.

- 1. Vu que l'on veut pouvoir considérer la composée $f \circ w$, il est nécessaire que l'ensemble d'arrivée de w soit le même que celui de départ de f, donc w est à valeurs dans E. Comme de plus on veut que $f \circ w = h$, l'ensemble de départ de w doit être le même que celui de h, et donc l'ensemble de départ de w doit être F. Conclusion : $w \in \mathcal{L}(F, E)$.
- **2.** On suppose que l'équation (3) admet une solution $w \in \mathcal{L}(F, E)$.
 - Alors $h \circ h = h \circ (f \circ w) = (h \circ f) \circ w = f \circ w$ car $h \in \Gamma(f)$, d'où $h \circ h = h$ et h est un projecteur de F.
 - Vu que $h = f \circ w$, on a clairement $\operatorname{Im} h \subset \operatorname{Im} f$, et comme par hypothèse $\operatorname{rg} f = p$: $\operatorname{rg} h \leqslant p$.
 - On a également $h \circ f = f$, d'où $\operatorname{Im} f \subset \operatorname{Im} h$, donc $\operatorname{rg} f \leqslant \operatorname{rg} h$, et comme $\operatorname{rg} f = p$: $\overline{\operatorname{rg} h = p}$.
 - D'après ce qui précède, $\operatorname{Im} h \subset \operatorname{Im} f$ et $\dim \operatorname{Im} h = \dim \operatorname{Im} f$, donc $\overline{\operatorname{Im} h = \operatorname{Im} f}$.
 - Considérons $\widehat{f} \in \mathcal{L}(E, \operatorname{Im} f)$, induite par f. \widehat{f} est alors surjective par construction, or dim $\operatorname{Im} f = \dim E = p$, donc par théorème \widehat{f} est un isomorphisme.

De plus, $f \circ w = h$, donc $\forall x \in F$, $f \circ w(x) = h(x)$, ce que l'on peut écrire $\forall x \in F$, $\widehat{f}(w(x)) = h(x)$, et donc $\forall x \in F$, $w(x) = \widehat{f}^{-1}(h(x))$, ce qui assure bien l'existence et l'unicité de w.

 $Remarque: la \ question \ suivante \ donne \ une \ m\'ethode \ pratique \ de \ calcul \ de \ la \ solution \ w\,, \ rendant \ la \ question \ pr\'ec\'edente \ inutile...$

3. Reprenons la construction effectuée au **II.C.2**: on a alors par blocs: $M_{\mathscr{B}}^{\mathscr{B}'}(f) = A = \begin{bmatrix} I_p \\ 0 \end{bmatrix}$, et $M_{\mathscr{B}'}(h) = H = \begin{bmatrix} I_p & Y \\ 0 & 0 \end{bmatrix}$ où $Y \in \mathcal{M}_{p,n-p}(\mathbb{R})$, car h est un projecteur de F tel que $\operatorname{Im} h = \operatorname{Im} f$.

Prenons alors $w \in \mathcal{L}(F, E)$, notons W sa matrice dans les base \mathscr{B}' et $\mathscr{B}: W = M_{\mathscr{B}'}^{\mathscr{B}}(w) = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$, où $W_1 \in \mathcal{M}_p(\mathbb{R})$ et $W_2 \in \mathcal{M}_{p,n-p}(\mathbb{R})$.

On a alors
$$f \circ w = h \iff AW = H \iff \begin{bmatrix} I_p \\ 0 \end{bmatrix} \begin{bmatrix} W_1 & W_2 \end{bmatrix} = \begin{bmatrix} I_p & Y \\ 0 & 0 \end{bmatrix} \iff \begin{bmatrix} W_1 & W_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_p & Y \\ 0 & 0 \end{bmatrix} \iff \begin{cases} W_1 = I_p \\ W_2 = Y \end{cases}$$

L'équation (3) admet donc exactement une solution w (donnée par $W = M_{\mathscr{B}'}^{\mathscr{B}}(w) = \begin{bmatrix} I_p & Y \end{bmatrix}$).

On peut maintenant conclure l'étude :

l'équation (3) admet une solution si et seulement si h est un projecteur donc l'image est celle de f.

Quatrième partie.

On fixe E et F deux \mathbb{R} -espaces vectoriels de dimension 3, \mathscr{B}_1 une base de E et \mathscr{B}'_1 une base de F. On interprète alors H comme la matrice d'une application linéaire $h \in \mathscr{L}(F)$ dans la base \mathscr{B}'_1 , W comme la matrice d'une application linéaire $w \in \mathscr{L}(F, E)$ dans les bases \mathscr{B}'_1 et \mathscr{B}_1 , et on pose f l'application linéaire

matrice d'une application linéaire
$$w \in \mathcal{L}(F, E)$$
 dans les bases \mathcal{B}_1' et \mathcal{B}_1 , et on pose f l'application linéaire de $\mathcal{L}(E, F)$ dont la matrice est $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{pmatrix}$ dans les bases \mathcal{B}_1 et \mathcal{B}_1' .

L'équation (5) se traduit alors par $h \in \Gamma(f)$, et (4) par $f \circ w = h$.

En construisant les bases \mathscr{B} et \mathscr{B}' comme au **I.C**, la matrice de f dans les bases \mathscr{B} et \mathscr{B}' est $A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

et celle de h dans \mathscr{B}' est de la forme $H' = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & z \end{pmatrix}$, avec $(x, y, z) \in \mathbb{R}^3$.

D'après **III.2**, h est un projecteur donc $H'^2 = H'$, ce qui donne $\begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & z \end{pmatrix}$ $\cdot \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & z \end{pmatrix}$,

d'où
$$\begin{pmatrix} 1 & 0 & x + xz \\ 0 & 1 & y + yz \\ 0 & 0 & z^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & z \end{pmatrix}$$
 et $\begin{cases} xz = 0 \\ yz = 0 \\ z^2 = z \end{cases}$.

La troisième équation donne $z \in \{0,1\}$, et si z=1 on trouve x=y=0, d'où $H'=I_3$ et $\operatorname{rg} h=3$, ce qui contredit le fait que $\operatorname{rg} h=\operatorname{rg} f$, on conclut donc : si $H=I_3$, l'équation (4) n'a pas de solution. (on pouvait s'en douter puisque A n'est pas inversible!)

Dans le cas où z=0, on a A'W'=H' avec W' la matrice de w dans les bases \mathscr{B}' et \mathscr{B} . Écrivons W' sous forme blocs $W'=\begin{bmatrix} X & Y \\ Z & T \end{bmatrix}$ où X est une matrice (2,2), et notons $B=\begin{pmatrix} x \\ y \end{pmatrix}$. On a alors :

$$(4) \iff A'W' = H' \iff \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X & Y \\ Z & T \end{bmatrix} = \begin{bmatrix} I_2 & B \\ 0 & 0 \end{bmatrix} \iff \begin{bmatrix} X & Y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & B \\ 0 & 0 \end{bmatrix} \iff \begin{cases} X = I_2 \\ Y = B \end{cases}$$
 et donc $(4) \iff W' = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ z_1 & z_2 & t \end{pmatrix}, \ (z_1, z_2, t) \in \mathbb{R}^3.$

En notant Q la matrice de passage de \mathcal{B}_1 à \mathcal{B} et P la matrice de passage de \mathcal{B}'_1 à \mathcal{B}' , on a $W' = Q^{-1}WP$, où d'après les calculs du $\mathbf{I.C}$, $Q = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Finalement, $W = QW'P^{-1}$ et après un calcul pénible mais facile, on trouve les solutions :

$$W = \begin{pmatrix} -3 - 3z_1 + 2z_2 + x + t & 2 + 2z_1 - z_2 - x - t & x + t \\ 2 + 6z_1 - 4z_2 + y - 2t & -1 - 4z_1 + 2z_2 - y + 2t & y - 2t \\ -3z_1 + 2z_2 + t & 2z_1 - z_2 - t & t \end{pmatrix}, (z_1, z_2, t) \in \mathbb{R}^3 \text{ avec}$$

$$H = PH'P^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} x + 2y + 1 & -x - 2y & x + 2y \\ 2x + 3y & 1 - 2x - 3y & 2x + 3y \\ x + y - 1 & -x - y + 1 & x + y \end{pmatrix}, (x, y) \in \mathbb{R}^2.$$