Resourcenmessung Software KMail

Referenzsystem 2019/2020, 2021-03-15, durchgeführt von Ina Seiwert

Einführung und Überblick

Dieser Report enthält die deskriptiven Statistiken der Energie- und Ressourcenverbrauchsmessung "Standard-nutzungsszenario KMail KDE 2021-03". Es wurden $n_M = 31$ Messdurchläufe und $n_B = 10$ Baselinedurchläufe ausgewertet.

Übersicht

Größe	Gemessener Wert (Szenario)	Gemessener Wert (Baseline)
Mittlere el. Leistung	5,68 W	5,03 W
Mittlere el. Arbeit	0,67 Wh	0,59 Wh
Mittlere CPU-Auslastung	1,9118786 %	0, 14 %
Mittlere RAM-Auslastung	$3,7621272 \times 10^6 \% \text{ oder MByte}$	$2,3624269 \times 10^{6} \% \text{ oder MByte}$
Über Netzwerk übertragene Datenmenge	10,9636433 MByte	0 MByte
Permanentspeichernutzung	157, 3335104 MByte	0,08 MByte

Bei der ausgewerteten Messung handelt es sich um die Messung eines Nutzungsszenarios. Die in der Tabelle aufgeführten Ergebnisse sind damit entsprechend als Kriterien unter 1.1.4 "Hardware-Inanspruchnahme bei normaler Nutzung unter der Annahme einer Standardkonfiguration und eines Standardnutzungsszenarios" des Kriterienkatalogs zu erfassen.

Auszug aus dem Kriterienkatalog für nachhaltige Software¹:

"Wie hoch ist die Inanspruchnahme der bereitgestellten Hardwarekapazitäten beim Betrieb des Softwareprodukts?

Als Hardware-Inanspruchnahme wird hier das Integral der Hardware-Auslastung über die Ausführungsdauer eines Standardnutzungsszenarios verstanden. Die Maßeinheiten für die Hardware-Inanspruchnahme sind Einheiten für Arbeitsleistung, wie %*s (Prozessorarbeit), MByte*s (Arbeitsspeicherarbeit) und MBit/s*s = MBit (im Netzwerk übertragene Datenmenge). Anders als bei den vorangehenden Kriterien 1.1.1 – 1.1.3 wird bei der Hardware-Inanspruchnahme also auch die Ausführungsdauer berücksichtigt. Zur Erläuterung: Wenn ein Programm A doppelt so viel Prozessorleistung, Arbeitsspeicher oder Bandbreite beansprucht wie Programm B, um ein gegebenes Standardnutzungsszenario zu erledigen, aber dafür den Prozessor, Speicher oder die Bandbreite nach der Hälfte der von B benötigten Zeit wieder freigibt, so ist die Hardware-Inanspruchnahme beider Programme gleich hoch.

Die Hardware-Inanspruchnahme wird als Produkt aus mittlerer effektiver Hardware-Auslastung und der zur Ausführung des Standardnutzungsszenarios benötigten Zeit berechnet. Die Ausführungsdauer ist dabei für alle Hardwarekapazitäten gleich hoch.

Indikatoren:

- a) Messung der Prozessorarbeit bei Ausführung des Standardnutzungsszenarios unter Standardkonfiguration
- b) Messung der Arbeitsspeicherarbeit bei Ausführung des Standardnutzungsszenarios unter Standardkonfiguration
- c) Messung der Permanentspeicherarbeit bei Ausführung des Standardnutzungsszenarios unter Standardkonfiguration
- d) Messung der übertragenen Datenmenge für Netzzugang bei Ausführung des Standardnutzungsszenarios unter Standardkonfiguration"

¹http://green-software-engineering.de/Kriterienkatalog

Energieverbrauch

Zunächst werden die Energieverbrauchsmessungen betrachtet und ein Graph gezeigt, in dem die Leistungsaufnahme des System under Test (SUT) während der Messung des Szenarios gemittelt wird. Danach zeigt
der Report das gleiche Diagramm für die Baseline-Energieverbrauchsmessungen. Anschließend wird für
die Energieverbrauchsmessung die mittlere Standardabweichung der Messungen und Baselines für alle 600
Sekunden der Messung berechnet. Dies dient der Überprüfung der automatisierten Lastgenerierung. Schließlich
wird für den Energieverbrauch die mittlere elektrische Arbeit der Baseline-Messungen berechnet und diese
von den elektrischen Arbeit der Szenario-Messungen subtrahiert. Somit ergibt sich für jede Messung der um
die Messhardware und Betriebssystem korrigierte Energieverbrauchswert der Software.

Ressourcenverbrauch

Im Anschluss an den Energieverbrauch zeigt der Report die Ressourcenverbräuche für die Messparameter (im Folgenden als Ressourcen bezeichnet)

- Prozessorauslastung [%],
- RAM-Belegung [%],
- Festplattenaktivität (lesend und schreibend) [Bytes],
- Netzwerkaktivität (sendend und empfangend) [Bytes] und
- Größe der Auslagerungsdatei [%].

Auch hier wird zunächst für jede Ressource je ein Graph des gemittelten Ressourcenverbrauchs über die Messungen und Baselines gezeigt. Es folgt für jede Ressource die deskriptive Auswertung anhand des Mittelwertes der gesamten Messungen, des Mittelwertes der Baseline und des um die Baseline korrigierten Mittelwertes der Messungen.

Graph aller Messungen des elektrischen Leistung in "Standardnutzungsszenario KMail KDE 2021-03"

Abbildung 1: Graph der gemittelten Leistungsaufnahme der Messungen des Szenarios

Auswertung der Energieverbrauchsmessung

Abbildung 1 enthält alle Messungen der Leistungsaufnahme des SUT während der Messung des Szenarios. Die Messwerte der $n_M = 31$ Wiederholungen sind in grau dargestellt. Aus den Messungen wurde für jede Sekunde ein Durchschnittswert gebildet (rote Linie).

Berechnung der mittleren Standardabweichung

Zum Zwecke der Überprüfung der automatisierten Lastgenerierung wird die mittlere Standardabweichung der Messungen und Baselines für alle 425 Sekunden der Messintervalle berechnet. Diese ergibt sich aus $\overline{s} = \frac{1}{425} \sum s_n$, mit $s_n = s_1, s_2, s_3, ..., s_{425}$

Die mittlere Standardabweichung pro Messpunkt beträgt bei den vorliegenden Energieverbrauchsmessungen also 0,8960662 Watt, bei einem Mittelwert von 5,6788442 Watt.

Berechnung der elektrischen Arbeit

Zur Auswertung des durch die Software induzierten Energieverbrauchs wird zunächst die verbrauchte elektrische Arbeit in Wattstunden [Wh] der Baseline berechnet als $W_{el} = P \cdot t$. Da die Messungen der elektrischen Leistung des Messgerätes P_n mit einer Abtastrate von F = 1Hz aufgezeichnet werden, gilt für die Berechnung der Arbeit insgesamt:

$$W_{el} = \frac{1}{3600} \sum_{n=1}^{m} P_n$$
, mit $P_n = P_1, P_2, P_3, ..., P_m$

Die Berechnung der Leistung ergibt sich also aus der Summe der Einzelmessungen pro Sekunde (ergibt die Einheit Ws) dividiert durch 3600 Sekunden pro Stunde (ergibt als Einheit Wh). Die berechnete elektrische Arbeit der einzelnen Baselines wird anschließend gemittelt. Folgendes Listing zeigt die Ergebnisse:

Summary Statistics for measurementWatthours

Graph aller Baseline-Messungen der el. Leistung in "Standardnutzungsszenario KMail KDE 2021-03"

Abbildung 2: Graph der gemittelten Leistungsaufnahme der Baselines

```
## n mean sd median min max range IQR
## 31 0,67 0 0,67 0,67 0,67 0,01 0
```

Die zusammenfassenden Statistiken enthalten dabei folgende Werte:

n Anzahl der Messungen

mean Arithmetisches Mittel

sd Standardabweichung

median Median

min Minimal gemessener Wert

max Maximal gemessener Wert

range Abstand Minimum zu Maximum

IQR Interquartilsabstand

/srv/shiny-server/oscar-public/OSCAR/rmd

allBaselineMeasurements allMeasurements allPowerBaselines allPowerMeasurements baselineEndtimes base

Summary Statistics for baselineWatthours

```
## n mean sd median min max range IQR
## 10 0,59 0 0,59 0,59 0,59 0 0
```

Schließlich wird der Mittelwert der el. Arbeit der 10 Baseline-Messungen $\overline{x}(W_B)$ von der el. Arbeit der Messungen $\overline{x}(W_M)$ subtrahiert, um die korrigierte el. Arbeit zu berechnen, die nur durch die Software verursacht wird:

```
## Summary Statistics for correctedwatthours
```

```
## n mean sd median min max range IQR ## 31 0,08 0 0,08 0,07 0,08 0,01 0
```

Übersicht über die el. Arbeit für alle 31 Messungen

Abbildung 3: Plot der elektrischen Arbeit der korrigierten Messungen

Messung #

Somit ergibt sich eine mittlere el. Arbeit der 31 Messungen von $\overline{x}(W_{Software}) = \overline{x}(W_M) - \overline{x}(W_B) = 0,0770267$ Wattstunden.

Abbildung 3 zeigt die Ergebnisse der Einzelmessungen und Abbildung 4 zeigt die zur Berechnung gehörigen Boxplots. Boxplots fassen verschiedene statistische Streuungs- und Lagemaße zusammen, für weitere Erläuterungen siehe https://de.wikipedia.org/wiki/Boxplot.

Abbildung 4: Boxplots der elektrischen Arbeit der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 5: Graph der gemittelten Prozessorauslastung der Messungen des Szenarios

Ressourcenverbrauch

Die Auswertung des Ressourcenverbrauchs geschieht prinzipiell analog zum Energieverbrauch, jedoch sind hier die sieben o.g. Ressourcen zu beachten. Dementsprechend folgen nun zunächst die Abbildungen 5 bis 9 die jeweils alle Messungen der Ressourcenbelegung, bzw. -verbrauchs des SUT während der Messung des Szenarios enthalten. Die Messwerte der $n_M=31$ Wiederholungen sind in grau dargestellt. Aus den Messungen wurde für jede Sekunde ein Durchschnittswert gebildet (rote Linie).

Daran schließen sich die entsprechenden Abbildungen 10 bis ?? die jeweils alle Baselines der Ressourcenbelegung, bzw. -verbrauchs des SUT enthalten. Sie sind ebenso formatiert.

Graphen der Messungen

Abbildung 6: Graph der gemittelten RAM-Belegung der Messungen des Szenarios

Abbildung 7: Graph der gemittelten Netzwerkaktivität der Messungen des Szenarios (sendend oben, empfangend unten)

Abbildung 8: Graph der gemittelten Festplattenaktivität der Messungen des Szenarios (lesend oben, schreibend unten)

Abbildung 9: Graph der gemittelten Belegung der Auslagerungsdatei der Messungen des Szenarios

Auswertung

Zur Auswertung der Messungen wird nun der jeweilige Mittelwert $\overline{x}(Prozessor_M)$, $\overline{x}(RAM_M)$, $\overline{x}(Network_Sent_M)$, $\overline{x}(Network_Received_M)$, $\overline{x}(HDD_Read_M)$, $\overline{x}(HDD_Written_M)$, $\overline{x}(Swap_M)$ der Einzelressourcenmessungen sowie der zugehörigen Baselines berechnet.

```
Summary Statistics for performanceMeasurement$processorTime:
##
       n mean sd median min max range IQR
   13175 1,91 5,94
                        0
                            0 75
   Summary Statistics for performanceMeasurement$ram:
##
                       sd median
                                      min
                                                             IQR
                                              max range
    13175 3762127 90340,63 3756008 3406452 3964120 557668 138940
##
##
   Summary Statistics for performanceMeasurement$networkSent:
##
       n mean
                   sd median min max range IQR
    13175 10,62 215,47
                            0
                               0 4448 4448
##
  Summary Statistics for performanceMeasurement$networkReceived:
##
       n mean sd median min max range IQR
   13175 0,34 2,36
##
                        0
                            0 47
                                      47
  Summary Statistics for performanceMeasurement$HDDRead:
##
##
       n mean sd median min max range IQR
   13175 0,01 0,44
                            0 32
##
  Summary Statistics for performanceMeasurement$HDDWritten:
##
                    sd median min
                                   max range IQR
   13175 157,32 550,51
                            0
                                0 10416 10416 60
## Summary Statistics for performanceMeasurement$Swap:
##
       n mean sd median min max range IQR
            0 0
                      0
                          0
                              0
   13175
```

Graphen der Baseline

Graph aller Baseline-Messungen des Auslagerungsspeichers

Abbildung 10: Graph der gemittelten Prozessorauslastung der Baselines

Graph aller Messungen der Arbeitsspeicher Baseline

Abbildung 11: Graph der gemittelten RAM-Belegung der Baselines

Graph aller Baseline-Messungen der gesendeten Netzwerkdaten

Graph aller Baseline-Messungen der empfangenen Netzwerkdaten

Abbildung 12: Graph der gemittelten Netzwerkaktivität der Baselines (sendend oben, empfangend unten)

Abbildung 13: Graph der gemittelten Festplattenaktivität der Baselines (lesend oben, schreibend unten)

Auswertung Baselines

```
## Summary Statistics for performanceBaseline$processorTime:
##
      n mean sd median min max range IQR
   4250 0,14 0,66
                       0
                          0
  Summary Statistics for performanceBaseline$ram:
##
                  sd median
           mean
                                    min
                                            max range
   4250 2362427 15277,23 2363084 2326820 2392844 66024 24220
  Summary Statistics for performanceBaseline$networkSent:
##
      n mean
             sd median min max range IQR
##
           0 0,05
                       0
                          0
                              1
## Summary Statistics for performanceBaseline$networkReceived:
      n mean sd median min max range IQR
           0 0,04
                          0
##
                               1
## Summary Statistics for performanceBaseline$HDDRead:
      n mean sd median min max range IQR
   4250 19,47 121,66
                             0 1168 1168
                          0
## Summary Statistics for performanceBaseline$HDDWritten:
##
      n mean
                sd median min max range IQR
   4250 58,32 286,19
                             0 2888 2888
##
                          0
## Summary Statistics for performanceBaseline$Swap:
      n mean sd median min max range IQR
  4250
           0 0
                     0
                         0
                            0
```

Auswertung Lastdifferenz

```
## Summary Statistics for correctedprocessorMeans
    n mean sd median min max range IQR
   31 1,77 0,03
                 1,77 1,72 1,86 0,14 0,04
## Summary Statistics for correctedRamMeans
##
                    sd median
                                                            IQR
         mean
                                   min
                                           max
                                                  range
   31 1399700 79473,08 1393167 1268622 1536288 267665,6 135508,8
## Summary Statistics for correctedNwSentMeans
    n mean
##
              sd median min max range IQR
   31 10,62 0,01 10,62 10,6 10,64 0,03 0,02
## Summary Statistics for correctedNwReceivedMeans
##
    n mean
             sd median min max range IQR
   31 0,34 0,02
                 0,34 0,29 0,37 0,08 0,02
## Summary Statistics for correctedHddReadMeans
        mean
               sd median
                            min
                                   max range IQR
   31 -19,46 0,03 -19,47 -19,47 -19,33 0,14 0,02
## Summary Statistics for correctedHddWrittenMeans
##
    n mean sd median min
                                max range IQR
        99 4,13 98,64 91,16 107,22 16,07 4,71
```


Abbildung 14: Plot der Prozessorauslastung der korrigierten Messungen

```
## Summary Statistics for correctedSwapMeans
## n mean sd median min max range IQR
```

31 0 0 0 0 0 0 0

Somit ergibt sich folgende mittlere softwareinduzierte Ressourcennutzung der 31 Messungen:

- Prozessorauslastung: $\overline{x}(Prozessor_{Software}) = \overline{x}(Prozessor_{M}) \overline{x}(Prozessor_{B}) = 1,7681139 \text{ Prozent.}$
- RAM-Belegung: $\overline{x}(RAM_{Software}) = \overline{x}(RAM_M) \overline{x}(RAM_B)$ = 1,3997003 × 10⁶ Prozent.
- Netzwerkauslastung (sendend): $\overline{x}(Network_Sent_{Software}) = \overline{x}(Network_Sent_M) \overline{x}(Network_Sent_B) = 10,6214725$ Bytes.
- Netzwerkauslastung (empfangend): $\overline{x}(Network_Received_{Software}) = \overline{x}(Network_Received_M) \overline{x}(Network_Received_B) = 0,3379355$ Bytes.
- Festplattenaktivität (lesend): $\overline{x}(HDD_Read_{Software}) = \overline{x}(HDD_Read_M) \overline{x}(HDD_Read_B) = -19,4614649$ Bytes.
- Festplattenaktivität (schreibend): $\overline{x}(HDD_Written_{Software}) = \overline{x}(HDD_Written_M) \overline{x}(HDD_Written_B) = 99,0001518$ Bytes.
- Belegung der Auslagerungsdatei: $\overline{x}(Swap_{Software}) = \overline{x}(Swap_M) \overline{x}(Swap_B) = 0$ Prozent.

Prozessorauslastung

Abbildung 14 zeigt die Ergebnisse der Einzelmessungen und Abbildung 15 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 15: Boxplots der Prozessorauslastung der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 16: Plot der RAM-Belegung der korrigierten Messungen

RAM-Belegung

Abbildung 16 zeigt die Ergebnisse der Einzelmessungen und Abbildung 17 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 17: Boxplots der RAM-Belegung der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 18: Plot der Netzwerkauslastung (sendend) der korrigierten Messungen

Netzwerkauslastung (sendend)

Abbildung 18 zeigt die Ergebnisse der Einzelmessungen und Abbildung 19 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 19: Boxplots der Netzwerkauslastung (sendend) der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 20: Plot der Netzwerkauslastung (empfangend) der korrigierten Messungen

Netzwerkauslastung (empfangend)

Abbildung 20 zeigt die Ergebnisse der Einzelmessungen und Abbildung 21 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 21: Boxplots der Netzwerkauslastung (empfangend) der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 22: Plot der Festplattenaktivität (lesend) der korrigierten Messungen

Festplattenaktivität (lesend)

Abbildung 22 zeigt die Ergebnisse der Einzelmessungen und Abbildung 23 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 23: Boxplots der Festplattenaktivität (lesend) der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Übersicht über die Festspeichernutzung aller 31 Messung

Abbildung 24: Plot der Festplattenaktivität (schreibend) der korrigierten Messungen

Festplattenaktivität (schreibend)

Abbildung 24 zeigt die Ergebnisse der Einzelmessungen und Abbildung 25 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 25: Boxplots der Festplattenaktivität (schreibend) der Baseline (l), Messungen (m) und korrigierten Messungen (r)

Abbildung 26: Plot der Belegung der Auslagerungsdatei der korrigierten Messungen

Belegung der Auslagerungsdatei

Abbildung 26 zeigt die Ergebnisse der Einzelmessungen und Abbildung 27 zeigt die zur Berechnung gehörigen Boxplots.

Abbildung 27: Boxplots der Belegung der Auslagerungsdatei der Baseline (l), Messungen (m) und korrigierten Messungen (r)