Tema: «Статистическое моделирование. Метод Монте-Карло. Визуализация результатов».

Задание 1.

Используя метод Монте-Карло, вычислить площадь треугольника, ограниченного линиями:

1)
$$y = f(x), y = 0, x = 0,$$

$$f(x) = \begin{cases} \frac{10x}{n}, & ecnu \ x \in [0, n), \\ 10\frac{x - 20}{n - 20}, & ecnu \ x \in [n, 20), \end{cases}$$

для $n \le 10$, n – номер варианта.

2)
$$y = f_1(x), y = f_2(x), x = 0,$$

 $f_1(x) = \frac{10x}{n},$
 $f_2(x) = 10\frac{x-20}{n-20} + 20$

для $n \ge 11$, n – номер варианта.

Указание.

- 1. Построить график функции y = f(x) для $n \le 10$, $y = f_1(x)$, $y = f_2(x)$, для для $n \ge 11$. Определить размеры а и b прямоугольника, в котором целиком лежит фигура, площадь которой надо вычислить.
- 2. Выбрать количество случайных точек N, например N=100.
- 3. С помощью встроенного генератора случайных чисел получить N равномерно распределенных в прямоугольнике $a \times b$ случайных точек $(x_i, y_i), i = 1, 2, ...N$. Выбрать такую часть последовательностей случайных чисел x_i, y_i , для которой среднее значение(мат. ожидание) и дисперсия мало отличаются от соответствующих для равномерного распределения теоретических значений.
- 4. Вычислить количество М случайных точек, лежащих внутри фигуры S. Для этого нужно проверить выполнение условия $y_i < f(x_i)$ для $n \le 10$, или для $n \ge 11$, $f_1(x_i) < y_i < f_2(x_i)$. Если это условие выполняется, то точка попадает в S.

- 5. Вычислить приближенно площадь фигуры по формуле $S \approx \frac{M}{N} \cdot a \cdot b$ или по формуле $S \approx \frac{a}{N} \cdot \sum_{i=1}^{N} f(x_i)$.
- 6. Оцените абсолютную и относительную погрешность по методу Монте-Карло.

Задание 2.

Вычислите приближенно интеграл по методу Монте-Карло:

1)
$$\int_{0}^{5} \sqrt{11 - u \sin^{2} x} dx$$
, для $n \le 10$,
2) $\int_{0}^{5} \sqrt{29 - u \cos^{2} x} dx$, для $n \ge 11$, где n – номер варианта.

Указание.

Использовать указание для Задание 1.

Задание 3.

Вычислите приближенно значение числа \mathcal{T} , исходя из вычисления площади круга радиуса R=n, n- номер варианта.

Указание. Т.к. площадь круга радиуса R, лежащего целиком в квадрате со стороной 2R и площадью $4R^2$ равна $S_R = \pi R^2$, то $S_R \approx \frac{M}{N} S$. Отсюда $\pi \approx 4\frac{M}{N}$, где N – общее число точек квадрата $[-R,R] \times [-R,R]$, M – число случайных точек, попавших в круг радиуса R.

- 1. Выбрать количество случайных точек N, например N=100.
- 2. С помощью встроенного генератора случайных чисел получить N равномерно распределенных на отрезке 2R. Выбрать такую часть последовательностей случайных чисел x_i , i = 1, 2, ...N, для которой среднее значение(мат. ожидание) и дисперсия мало отличаются от соответствующих для равномерного распределения теоретических

- значений. В качестве значений ординат y_i выбрать следующие N значений последовательности случайных чисел $y_i := x_{i+N}; j = 1, 2, ...N$.
- 3. Вычислить количество М случайных точек, лежащих внутри фигуры круга S. Для чего проверить условие: $(x_i + R)^2 + (y_i R)^2 < R^2$.
- 4. Построить окружность радиуса R, вписанную в квадрат $[-R,R] \times [-R,R]$, Нанести на этот квадрат выбранные случайные точки с координатами (x_i, y_i) . Использовать параметрическое задание окружности: $x = R + R\cos\varphi$, $y = R + R\sin\varphi$, $\varphi \in [0, 2\pi]$.

Задание 4.

Вычислите приближенно по методу Монте-Карло площадь фигуры, ограниченной замкнутой линией, заданной в полярных координатах:

$$A\cos^2\varphi + B\sin^2\varphi = \rho^2$$
, где

- 1) A = 11 + n, B = 11 n, где $n \le 10$, n номер варианта.
- 2) A = n = 10, B = n 10, для $n \ge 11$, n номер варианта.

Указание.

- 1. Построиить уравнение кривой, перейдя от полярной системы координат в декартову $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $\rho \in [0, 2\pi]$
- 2. Определить размеры $[-a,a] \times [-b,b]$ прямоугольника, в котором лежит фигура S, ограниченная заданной замкнутой линией.
- 3. Выполнить пункты 2,3 из задания 1.
- 4. Вычислить количество M случайных точек, лежащих внутри фигуры S. Для этого нужно проверить выполнение условия: $r_i < \rho(\varphi_i)$, где (ρ_i, φ_i) полярные координаты случайной точки (x_i, y_i) .