

V _{DS}	30	V
V _{gs max}	± 20	V
$R_{DS(on) max}$ (@V _{GS} = 10V)	4.9	$\mathbf{m}\Omega$
$(@V_{GS} = 4.5V)$	6.8	
Q _{g typ.}	19.4	nC
I _D	25⑦	Α
$(@T_{c(Bottom)} = 25^{\circ}C)$		

6 mm — 6 mm — 6 mm — 5 D — 6 mm — 5 D — 6 mm — 5 S 2 S 2 S 1

results in \Rightarrow

Applications

• Synchronous MOSFET for high frequency buck converters

Features

Low Thermal Resistance to PCB (< 2.3°C/W)
Low Profile (<1.2mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification

Benefits

Benefite
Enable better thermal dissipation
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
-

Orderable part number	Package Type	Standa	Note	
		Form	Quantity	
IRFH8321TRPBF	PQFN 5mm x 6mm	Tape and Reel	4000	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{GS}	Gate-to-Source Voltage	± 20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	21		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	17		
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	83 © ⑦		
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	52 © ⑦	A	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Source Bonding 25⑦			
10 6 16 - 20 0	Technology Limited)	250		
I _{DM}	Pulsed Drain Current ①	332		
P _D @T _A = 25°C	Power Dissipation ®	3.4	W	
P _D @T _{C(Bottom)} = 25°C Power Dissipation ⑤		54	v	
	Linear Derating Factor ®	0.027	W/°C	
T_J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Notes ① through ⑦ are on page 9

Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$_{\Delta}$ BV _{DSS} / $_{\Delta}$ T _J	Breakdown Voltage Temp. Coefficient		19.7		mV/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.9	mo	V _{GS} = 10V, I _D = 20A ③
			5.4	6.8	mΩ	V _{GS} = 4.5V, I _D = 16A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.2	1.7	2.2	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.4		mV/°C	V _{DS} - V _{GS} , I _D - 30μΛ
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V
gfs	Forward Transconductance	68			S	$V_{DS} = 10V, I_{D} = 20A$
Q_g	Total Gate Charge		39	59	nC	$V_{GS} = 10V, V_{DS} = 15V, I_{D} = 20A$
Q_g	Total Gate Charge		19.4	29.1		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		5.0			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.9		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		6.7			$I_D = 20A$
Q_{godr}	Gate Charge Overdrive		5.8			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		8.6			
Q _{oss}	Output Charge		16.7		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _G	Gate Resistance		0.9	2.7	Ω	
t _{d(on)}	Tum-On Delay Time		14			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		20		ne	$I_D = 20A$
t _{d(off)}	Tum-Off Delay Time		12		ns	$R_G=1.8\Omega$
t _f	Fall Time		6.8			
C _{iss}	Input Capacitance		2600			$V_{GS} = 0V$
C _{oss}	Output Capacitance		530		pF	V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance		270		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		93	mJ
I _{AR}	Avalanche Current ①		20	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			25⑦		MOSFET symbol
	(Body Diode)			230	Α	showing the
I _{SM}	Pulsed Source Current			332	_ ^	integral reverse
	(Body Diode) ①			332		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 20A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		12	18	ns	$T_J = 25^{\circ}C, I_F = 20A, V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		20	30	nC	di/dt = 500 A/µs ③
t _{on}	Forward Turn-On Time	Time is	Time is dominated by parasitic Inductance			

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{qJC} (Bottom)	Junction-to-Case ④		2.3	
R _{qJC} (Top)	Junction-to-Case		31	°C/W
R_{qJA}	Junction-to-Ambient ®		37	
R _{qJA} (<10s)	Junction-to-Ambient ⑤		25	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 18a. Gate Charge Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 18b. Gate Charge Waveform

PQFN 5x6 Outline "E" Package Details

STABOL	OUT	LINE PQFI	N 5X6E
STR	MIN.	NOM	MAX.
Α	0.90	1.03	1.17
b	0.33	0.41	0.48
С	0.20	0.25	0.35
D	4.80	4.98	5.15
D1	3.91	4.11	4.31
D2	4.80	4.90	5.00
E	5.90	6.02	6.15
E1	5.65	5.75	5.85
E2	1.10	_	_
е		1.27 BSC)
L	0.05	0.15	0.25
L1	0.38	0.44	0.50
L2	0.51	0.68	0.86
Н	3.32	3.45	3.58
ı			0.18

TOP VIEW

BOTTOM VIEW

For footprint and stencil design recommendations, please refer to application note: AN-1136
For PQFN inspection techniques, please refer to application note: AN-1154

PQFN 5x6 Outline "E" Part Marking

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

PQFN 5x6 Outline "E" Tape and Reel

NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.

	REEL DIMENSIONS								
S.	STANDARD OPTION (QTY 4000)					TR1 OPTION (QTY 400)			
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	329.5	330.5	12.972	13.011	177.5	178.5	6.988	7.028	
В	20.9	21.5	0.823	0.846	20.9	21.5	0.823	0.846	
С	12.8	13.5	0.504	0.532	13.2	13.8	0.520	0.543	
D	1.7	2.3	0.067	0.091	1.9	2.3	0.075	0.091	
Е	97	99	3.819	3.898	65	66	2.350	2.598	
F	Ref	17.4			Ref	12			
G	13	14.5	0.512	0.571	13	14.5	0.512	0.571	

Qualification information[†]

Qualification level	Consumer ^{††} (per JE DE C JE S D47F ^{†††} guidelines)			
	(ba lenec le	3 D47F ··· guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MS L 1		
INDISTUIE SEISITIVITY LEVEL	FQLN SIIIII X OIIIII	(per JE DE C J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- **†††** Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.46mH, $R_G = 50\Omega$, $I_{AS} = 20$ A.
- ③ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.
- \oplus R₀ is measured at T_J of approximately 90°C.
- (§) When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuous current based on maximum allowable junction temperature.
- ② Current is limited to 25A by Source Bonding Technology.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903