Question Number	Answer		Mark
19(a)(i)	The distance between pylons Or length of cable Or the weight/mass/density of the cable/material	(1)	1
19(a)(ii)		(1)	
	• See $Mg = 2T \sin \theta$ Or weight (or W or Mg) is proportional to $T \sin \theta$	(1)	
	• as the sag increases, θ (or $\sin \theta$) increases (for a constant weight)	(1)	3
	• (as the sag increases) $\sin \theta$ increases hence T decreases		
19(b)(i)	• Use of region of graph 0 to 300 MPa to determine the gradient Or tangent from origin	(1)	
	gradient Or tangent from origin	(1)	2
	• $E_{\text{steel}} = 1.5 \times 10^{11} \text{ (Pa) to } 1.8 \times 10^{11} \text{ (Pa)}$		
	Example of calculation		
	$E_{\text{steel}} = \frac{200 \times 10^6 Pa}{0.0013} = 1.53 \times 10^{11} \text{Pa}$		
19(b)(ii)	• Use of $\sigma = \frac{F}{A}$ to obtain the stress	(1)	
	Use of $\delta = \frac{1}{A}$ to obtain the stress		2
	• stress = 73 MPa	(1)	2
	Example of calculations $F = 0.62 \text{ N m}^{-1} \times 270 \text{ m} = 167.4 \text{ N}$		
	$\sigma = \frac{0.62 \text{ N m}^{-1} \times 270 \text{ m}}{2.3 \times 10^{-6} \text{ m}^2}$		
	σ = 72.8 MPa		
10/13/2005	METHOD 1	(1)	
19(b)(iii)	 Use of graph to obtain the strain in steel Or use of Young Modulus 	(1)	
	• Use of $\varepsilon = \frac{\Delta e}{l}$ (for steel $\Delta e = 0.14$ m)	(1)	
	Comparison of the two extensions/strains	(1)	3
	e.g. the extension/strain of aluminium is larger than that of steel, so steel is used to reduce the (total) extension/sag		
	Or		
	Comparison of two strains/extensions e.g. lower strain for steel so stiffness of cable increased to reduce (total) extension/sag		

METHOD 2	
• Use of $\varepsilon = \frac{\Delta e}{l}$ to find strain (for extension of 0.95 m)	
Use of graph to obtain the stress in aluminium and steel.	
Comparison of two stresses (e.g. greater stress required for	
steel) so stiffness of cable increased to reduce (total) extension/sag	
Example of calculation	
Read off strain (when stress is 70 MPa) on Steel graph	
(0.0005)	
For Steel, $\Delta e = 0.0005 \times 270 \text{ m} = 0.14 \text{ m}$	