

Return to "Robotics Software Engineer" in the classroom

Home Service Robot

REVIEW	
CODE REVIEW	
HISTORY	

Meets Specifications

Dear student

First of all, the previous reviewer was wrong. Your path construction was fine. Of course, I would not pick such a nested package to do my work. I would just do

world_file:= \$(rospack find add_markers)/../map/myworld.world

Now for the project

The project was to get you started with "autonomous" mapping and localization.

You can use that as a starting point to explore and build upon this knowledge.

For example, a first step would be to expand the wall follower, which is certainly not a trivial task.

Here are some interesting links to start exploring indoor mapping!

- Maze solving algorithm
- Dynamical Wall Following for a Wheeled RobotUsing a Passive Tactile Sensor
- Frontier-Based Exploration
- Autonomous Visual Mapping
- Book. The Map-Building and Exploration Strategies of a Simple Sonar-Equipped Mobile Robot , David, Lee
- Algorithms and a Framework for Indoor Robot Mapping in a Noisy Environment Using Clustering in Spatial and Hough Domains
- A LASER-SLAM ALGORITHM FOR INDOOR MOBILE MAPPING

Student submitted all required files:

ROS Packages

Shell scripts

- **V** Include in your project submission your catkin_ws/src directory.
- Vour directory must contain the official ROS packages you downloaded
- ✓ Include C++ packages and nodes,
- **I** Include world files,
- Include shell scripts.

Simulation Setup

Student's simulation world and robot could properly load in Gazebo.

• **J** Student's simulation world and robot could properly load in Gazebo.

Mapping

The student should write a test_slam.sh script file and launch it to manually test SLAM.

 $\bullet \quad \mbox{$\checkmark$} \mbox{ The student should write a test_slam.sh script file and launch it to manually test SLAM.}$

Student created a functional map of the environment which would be used for localization and navigation tasks.

Localization and Navigation

The student's robot could navigate in the environment after a 2D Nav Goal command is issued. The student created a test_navigation.sh script file to launch it for manual navigation test.

• **V** The student's robot could navigate in the environment after a 2D Nav Goal command is issued.

29/5/2020 Udacity Reviews

• The student created a test_navigation.sh script file to launch it for manual navigation test.

"The student created a pick_objects.sh file that will send multiple goals for the robot to reach.

The robot travels to the desired pickup zone, displays a message that it reached its destination, waits 5 seconds, travels to the desired drop off zone, and displays a message that it reached the drop off zone."

- The student should write a pick_objects.sh file that will send multiple goals for the robot to reach.
- The robot has to travel to the desired pickup zone, display a message that it reached its destination, wait 5 seconds, travel to the desired drop off zone, and display a message that it reached the drop off zone.

Home Service Functions

The student should write a add_marker.sh file that will publish a marker to rviz.

The marker should initially be published at the pickup zone. After 5 seconds it should be hidden. Then after another 5 seconds it should appear at the drop off zone.

- **V** The student should write a add_marker.sh file that will publish a marker to rviz.
- The marker should initially be published at the pickup zone. After 5 seconds it should be hidden. Then after another 5 seconds it should appear at the drop off zone.

The student should write a home_service.sh file that will run all the nodes in this project.

The student's home service robot should be simulated as follow:

Initially show the marker at the pickup zone.

Hide the marker once your robot reach the pickup zone.

Wait 5 seconds to simulate a pickup.

Show the marker at the drop off zone once your robot reaches it.

• **V** The student should write a home_service.sh file that will run all the nodes in this project.

Your home service robot should be simulated as follow:

- Initially show the marker at the pickup zone
- Hide the marker once your robot reach the pickup zone
- **V** Wait 5 seconds to simulate a pickup
- Show the marker at the drop off zone once your robot reaches it

The student should include a brief write-up explaining the packages used for this project, covering

29/5/2020 Udacity Reviews

localization, mapping and navigation.

- ullet brief write-up explaining the packages used for this project,
- **V** covering localization,
- V mapping
- **V** navigation.

■ DOWNLOAD PROJECT

RETURN TO PATH

Rate this review