

Support Vector Machine

Prof. Ph.D. Woo Youn Kim Chemistry, KAIST

Contents

Review on linear regression/classification

Nonlinear problem

Constrained minimization

Support vector machine

Support vector regression

Andrew Ng's lecture note https://wikidocs.net/5719

Principle of machine learning

Under the previous probabilistic assumptions on the data, least-squares regression corresponds to finding the maximum likelihood estimate (MLE) of θ .

This is thus one set of assumptions under which least-squares regression can be justified as a very natural method that's just doing MLE.

Linear regression review

Least-mean square (LMS) cost function

$$\frac{(H(x^{(1)})-y^{(1)})^2+(H(x^{(2)})-y^{(2)})^2+(H(x^{(3)})-y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Linear classification review

Binary classification:

$$y = h(\theta^T x) = 1$$

For 2D, the dimension of θ will be two.

Thus, the **decision boundary** will be a linear line.

 $Cost = -\sum_{i=1}^{m} [y^{(i)} \ln h(x^{(i)}) + (1 - y^{(i)}) \ln(1 - h(x^{(i)}))]$

Cross entropy or softmax

Nonlinear problem

Non-linear decision boundary

→ non-linear method

0.2

0.1

n-dimensional space

Data mapping: 2D → n-dimensional space

Decision boundary: line → hyperplane in (n-1)D subspace

Much easier to draw the decision boundary in a high-dimensional space

n-dimensional space

Data mapping: 2D → n-dimensional space

Decision boundary: line → hyperplane in (n-1)D subspace

Much easier to draw the decision boundary in a high-dimensional space

Decision boundary

Normal vector of a decision surface in 3D space:

$$ec{v}=(a,b,c)$$

The equation of the decision surface with the normal vector above and a certain distance from the origin

$$ax + by + cz + d = 0$$

How about in a nD space?

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = c$$

Distance between a plane and a point

• 2D line: distance between the line and a point

D(line, P)
$$=rac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

D(line, origin) =
$$\frac{|c|}{\sqrt{a^2+b^2}}$$
 $c = -\sqrt{a^2+b^2} \times D$ (line, origin)
origin = $(x_0=0, y_0=0)$

nD hyperplane: distance between the plane and a point

D(plane,
$$\vec{x}$$
)= $\frac{|\vec{w} \cdot \vec{x} + b|}{\|w\|}$

D(plane, origin) =
$$\frac{|b|}{\|w\|}$$
 $b = -\|w\| \times D(\text{line, origin})$

Decision rule

Decision boundary (the dashed line)

a hyperplane with a normal vector w.

$$\vec{w} \cdot \vec{x} + b = 0$$

Decision rule:

for a new input u, determine whether it belongs to + or -.

if the u is below the decision boundary, - otherwise +

if
$$\vec{w} \cdot \vec{u} + b > 0$$
, +

if
$$\vec{w} \cdot \vec{u} + b < 0$$
, –

where w and b should be determined.

Support vector

An optimal decision boundary given by $\vec{w} \cdot \vec{x} + b = 0$ may be in an equidistance from the two solid lines in the figure.

$$\overrightarrow{w} \cdot \overrightarrow{x}_+ + b \ge \delta$$

$$\vec{w} \cdot \vec{x}_- + b \le -\delta$$

 δ : geometric margin

 \boldsymbol{w} and \boldsymbol{b} can be scaled by any constant.

Normalization of the geometric margin to 1

$$\vec{w} \cdot \vec{x}_+ + b \ge 1$$

$$\vec{w} \cdot \vec{x}_- + b \le -1$$

Support vector

$$\vec{w} \cdot \vec{x}_{+} + b \ge 1$$

$$\vec{w} \cdot \vec{x}_{-} + b \le -1$$

$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$$

where
$$y_i = \begin{cases} +1 \text{ for } \vec{x}_+ \\ -1 \text{ for } \vec{x}_- \end{cases}$$

Thus, the support vectors satisfy

$$y_i(\vec{w}\cdot\vec{x}_i+b)-1=0$$

Determining w and b satisfying the above equation \rightarrow decision boundary

Optimal margin classifier

To find out an optimal decision boundary, we aim to find \boldsymbol{w} and \boldsymbol{b} to maximize D (geometric margin).

For the support vectors

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Distance between two solid lines (surfaces)

$$D = \frac{\vec{w}}{\|\vec{w}\|} \cdot (\vec{x}_+ - \vec{x}_-)$$

for
$$\vec{x}_+$$
: $\vec{w} \cdot \vec{x}_+ + b = 1 \rightarrow \vec{w} \cdot \vec{x}_+ = 1 - b$

for
$$\vec{x}_{-}$$
: $\vec{w} \cdot \vec{x}_{-} + b = -1 \implies \vec{w} \cdot \vec{x}_{+} = -1 - b$

Thus,
$$D = \frac{1}{\|\vec{w}\|} (\vec{w} \cdot \vec{x}_{+} - \vec{w} \cdot \vec{x}_{-})$$

= $\frac{1}{\|\vec{w}\|} (1 - b + 1 + b) = \frac{2}{\|\vec{w}\|}$

$$\max_{\|\overrightarrow{w}\|} = \min \|\overrightarrow{w}\| \rightarrow \min_{\underline{1}} \|\overrightarrow{w}\|^2$$

Optimal margin classifier

$$D = \frac{2}{\|\vec{w}\|}$$

We aim to minimize the following for accurate classification.

$$\min \frac{1}{2} \| \vec{w} \|^2$$

with the following constraint

$$y_{i}(\vec{w}\cdot\vec{x}_{i}+b)-1=0$$

Constraint minimization!

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2 \quad \text{s.t.} \quad y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i + b) - 1 = 0$$

Lagrange undetermined multiplier

Minimization without constraint

$$\frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y} = 0$$

Minimization with constraint

$$f(x,y)=d$$
 s.t. $g(x,y)=c$

Lagrange undetermined multiplier

Minimization with constraint

$$L(x, y, \alpha) = f(x, y) - \alpha[g(x, y) - c]$$

$$\frac{\partial L(x,y,\alpha)}{\partial x} + \frac{\partial L(x,y,\alpha)}{\partial y} = 0$$

$$\min \frac{1}{2} \|\vec{w}\|^2$$
 s.t. $y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$

→ constraint minimization

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i \left[y_i (\vec{w} \cdot \vec{x}_i + b) - 1 \right]$$
$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i} \alpha_i y_i \vec{x}_i = 0$$

At the minimum

$$\vec{w} = \sum_{i} \alpha_i y_i \vec{x}_i$$
 eq.1

linear combination of data points $\{x_i\}$

$$\min \frac{1}{2} \|\vec{w}\|^2$$
 s.t. $y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$

At the minimum

$$\vec{w} = \sum_{i} \alpha_i y_i \vec{x}_i$$
 eq.1

$$f(x) = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \cdot \vec{x} + b \begin{cases} = 1 & \text{for } + \text{eq.2} \\ = -1 & \text{for } - \text{eq.3} \end{cases}$$

$$\min \frac{1}{2} \|\vec{w}\|^2$$
 s.t. $y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$

→ constrained minimization

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i \left[y_i (\vec{w} \cdot \vec{x}_i + b) - 1 \right]$$
$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_i y_i = 0$$

At the minimum

$$\sum_{i} \alpha_{i} y_{i} = 0 \qquad \text{eq.4}$$

At the minimum

$$f(x) = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \cdot \vec{x} + b \begin{cases} = 1 & \text{for } + \\ = -1 & \text{for } - \end{cases}$$
 eq.2

$$\sum_{i} \alpha_{i} y_{i} = 0 \qquad \text{eq.4}$$

eq.2, 3, 4 $\rightarrow \alpha_i$

Using eq.1 and 2

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0$$

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i [y_i(\vec{w} \cdot \vec{x}_i + b) - 1]$$

Then,

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{i} \cdot \vec{x}_{j})$$

Support vector machine

Support vector machine (SVM)

Decision boundary (the dashed line)

$$\vec{w} \cdot \vec{x} + b = 0$$

Decision rule:

If
$$f(x) = \vec{w} \cdot \vec{x} + b > 0$$
, +

If
$$f(x) = \vec{w} \cdot \vec{x} + b < 0$$
, –

where w and b should be determined.

At the minimum of \mathbf{L} , $\sum_{i} \alpha_{i} y_{i} = 0$ eq.4

Thus, for a new input x,

$$f(x) = \vec{w} \cdot \vec{x} + b$$
$$= (\sum_{i} \alpha_{i} y_{i} \vec{x}_{i}) \cdot \vec{x} + b$$

$$= \sum_{i} \alpha_i y_i (\vec{x}_i \cdot \vec{x}) + b$$

Support vector machine (SVM)

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{i} \cdot \vec{x}_{j})$$

One can obtain $\{\alpha_i\}$ to minimize L and then determine \boldsymbol{w} and \boldsymbol{b} .

In addition, one can further minimize it by adjusting the inner product $\vec{x_i} \cdot \vec{x_j}$

1. transformation to a high dimensional space: $\vec{x_i} \rightarrow \phi(\vec{x_i})$ $\phi(x) = \begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix}$ Then, $\vec{x_i} \cdot \vec{x_j} \rightarrow \phi(\vec{x_i}) \cdot \phi(\vec{x_j})$ → feature mapping

$$\phi(x) = \begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix} \quad \text{Then, } \vec{x}_i \cdot \vec{x}_j \Rightarrow \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

Support vector machine (SVM)

 $\phi(\vec{x_i})$ itself may be very expensive to calculate if it is an extremely high dimensional vector. Instead, one can directly evaluate the inner product without explicitly finding $\phi(\vec{x_i})$.

2. kernel:
$$\vec{x}_i \cdot \vec{x}_j \rightarrow \phi(\vec{x}_i) \cdot \phi(\vec{x}_j) \rightarrow k(\vec{x}_i, \vec{x}_j)$$

Homogeneous polynomial $k(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j})^d$

Inhomogeneous polynomial $k(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j} + 1)^d$

Gaussian kernel $k(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\gamma ||\mathbf{x_i} - \mathbf{x_j}||^2) \text{ for } \gamma > 0.$

Hyperbolic tangent $k(\mathbf{x_i}, \mathbf{x_j}) = \tanh(\kappa \mathbf{x_i} \cdot \mathbf{x_j} + c)$, for some (not every) $\kappa > 0$ and c < 0

Example 1: homogeneous polynomial

$$\mathbf{a} = (0,0)^{T}, \ t_{\mathbf{a}} = 1$$
 $\mathbf{b} = (1,0)^{T}, \ t_{\mathbf{b}} = -1$
 $\mathbf{c} = (0,1)^{T}, \ t_{\mathbf{c}} = -1$
 $\mathbf{d} = (1,1)^{T}, \ t_{\mathbf{d}} = 1$

$$\mathbf{\Phi}_1(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

$$\mathbf{a} = (0,0)^{T}, \ t_{\mathbf{a}} = 1$$

$$\mathbf{b} = (1,0)^{T}, \ t_{\mathbf{b}} = -1$$

$$\mathbf{c} = (0,1)^{T}, \ t_{\mathbf{c}} = -1$$

$$\mathbf{d} = (1,1)^{T}, \ t_{\mathbf{d}} = 1$$

$$\mathbf{\Phi}_{1}(\mathbf{x}) = \begin{pmatrix} x_{1}^{2} \\ \sqrt{2}x_{1}x_{2} \\ x_{2}^{2} \end{pmatrix}$$

$$\mathbf{a} = (0,0)^{T} \rightarrow \hat{\mathbf{a}} = (0,0,0)^{T}$$

$$\mathbf{b} = (1,0)^{T} \rightarrow \hat{\mathbf{b}} = (1,0,0)^{T}$$

$$\mathbf{c} = (0,1)^{T} \rightarrow \hat{\mathbf{c}} = (0,0,1)^{T}$$

$$\mathbf{d} = (1,1)^{T} \rightarrow \hat{\mathbf{d}} = (1,\sqrt{2},1)^{T}$$

Example 2: Gaussian kernel

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}\right) + b$$

Regularization

$$\min \frac{1}{2} \|\vec{w}\|^2 \quad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) = 1$$

$$\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i} \zeta_i \qquad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \zeta_i, \qquad \zeta_i \ge 0$$

Regularization

The control parameter C

Support vector regression

Kernel ridge regression (KRR)

SVM for nonlinear classification

$$\min \frac{1}{2} \|\vec{w}\|^2 \quad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) = 1$$

$$f(x) = \vec{w} \cdot \vec{x} + b = \sum_i \alpha_i y_i(\vec{x}_i \cdot \vec{x}) + b = \sum_i \alpha_i y_i k(\vec{x}_i, \vec{x}) + b \quad \begin{cases} > 0 & \text{for } + b \\ < 0 & \text{for } - b \end{cases}$$

Kernel ridge regression (KRR) combines a ridge regression (linear least squares) with the kernel trick

→ nonlinear regression

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2 \quad \text{s.t.} \quad (\overrightarrow{w} \cdot \overrightarrow{x}_i + b) - y_i = 0$$

Prediction for a given x

$$f(x) = \overrightarrow{w} \cdot \overrightarrow{x} + b = \sum_{i} \alpha_{i} (\overrightarrow{x}_{i} \cdot \overrightarrow{x}) + b = \sum_{i} \alpha_{i} k(\overrightarrow{x}_{i}, \overrightarrow{x}) + b$$

Support vector regression (SVR)

Kernel ridge regression (KRR)

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2 \quad \text{s.t.} \quad (\overrightarrow{w} \cdot \overrightarrow{x}_i + b) - y_i = 0$$

$$f(x) = \sum_{i} \alpha_{i} k(\vec{x}_{i}, \vec{x}) + b$$

Support vector regression (SVR)

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2$$
 s.t. $-\varepsilon < (\overrightarrow{w} \cdot \overrightarrow{x}_i + b) - y_i < \varepsilon$

$$f(x) = \sum_{i} \alpha_{i} k(\vec{x}_{i}, \vec{x}) + b$$

Summary

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2 \quad \text{s.t.} \quad y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i + b) - 1 = 0$$

to avoid overfitting

$$\min \frac{1}{2} \|\overrightarrow{w}\|^2 + C \sum_i \zeta_i$$

s.t.
$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \zeta_i, \qquad \zeta_i \ge 0$$

Summary

1. transformation to a high dimensional space: $\vec{x_i} \rightarrow \phi(\vec{x_i})$

→ feature mapping

2. kernel: $\vec{x}_i \cdot \vec{x}_j \rightarrow \phi(\vec{x}_i) \cdot \phi(\vec{x}_j) \rightarrow k(\vec{x}_i, \vec{x}_j)$

Best "off-the-shelf" classification methods

New terms

Decision boundary Support vector Geometric margin Functional margin Optimal margin classifier Constraint minimization Support vector machine Feature mapping Kernel trick Regularization Kernel ridge regression Support vector regression

