Outline

- Introduction
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
 - → Overview
 - → Query decomposition and localization
 - → Distributed query optimization
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Query Processing in a DDBMS

Low-level data manipulation commands for D-DBMS

Query Processing Components

- Query language that is used
 - → SQL: "intergalactic dataspeak"
- Query execution methodology
 - → The steps that one goes through in executing high-level (declarative) user queries.
- Query optimization
 - → How do we determine the "best" execution plan?
- We assume a homogeneous D-DBMS

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.6/3

Selecting Alternatives

SELECT

ENAME

FROM

EMP, ASG

WHERE

EMP.ENO = ASG.ENO

AND

RESP = "Manager"

Strategy 1

 $\Pi_{\text{ENAME}}(\sigma_{\text{RESP="Manager"} \land \text{EMP.ENO=ASG.ENO}}(\text{EMP} \times \text{ASG}))$

Strategy 2

 $\Pi_{ENAME}(EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$

Strategy 2 avoids Cartesian product, so may be "better"

What is the Problem?

Site 1

Site 2

Site 3

Site 4

Site 5

 $ASG_1 = \sigma_{ENO} \le "E3" (ASG)$ $ASG_2 = \sigma_{ENO} \le "E3" (ASG)$ $EMP_1 = \sigma_{ENO} \le "E3" (EMP)$ $EMP_2 = \sigma_{ENO} \le "E3" (EMP)$

Result

Cost of Alternatives

Assume

- $\rightarrow size(EMP) = 400, size(ASG) = 1000$
- → tuple access cost = 1 unit; tuple transfer cost = 10 units

• Left:

→ produce ASG': (10+10) * tuple access cost	20
→ transfer ASG' to the sites of EMP: (10+10) * tuple transfer cost	200
→ produce EMP': (10+10) * tuple access cost * 2	40
→ transfer EMP' to result site: (10+10) * tuple transfer cost	200
Total Cost	460

• Right:

→ transfer EMP to site 5: 400 * tuple transfer cost	4,000
→ transfer ASG to site 5: 1000 * tuple transfer cost	10,000
→ produce ASG': 1000 * tuple access cost	1,000
→ join EMP and ASG': 400 * 20 * tuple access cost	8,000

Total Cost 23,000

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.6/6

Query Optimization Objectives

Minimize a cost function

I/O cost + CPU cost + communication cost

These might have different weights in different distributed environments

- Wide area networks
 - communication cost may dominate or vary much
 - bandwidth
 - speed
 - high protocol overhead
- Local area networks
 - communication cost not that dominant
 - → total cost function should be considered
- Can also minimize the response time

Complexity of Relational Operations

- Assume
 - \rightarrow relations of cardinality n
 - → sequential scan

Operation	Complexity
Select Project (without duplicate elimination)	O(n)
Project (with duplicate elimination) Group	0(n * log n)
Join Semi-join Division Set Operators	0(n * log n)
Cartesian Product	$O(n^2)$

Query Optimization Issues – Types Of Optimizers

Exhaustive search

- Cost-based
- → Optimal
- Combinatorial complexity in the number of relations

Heuristics

- → Not optimal
- → Regroup common sub-expressions
- Perform selection, projection first
- Replace a join by a series of semijoins
- Reorder operations to reduce intermediate relation size
- Optimize individual operations

Query Optimization Issues – Optimization Granularity

- Single query at a time
 - Cannot use common intermediate results
- Multiple queries at a time
 - → Efficient if many similar queries
 - → Decision space is much larger

Query Optimization Issues – Optimization Timing

Static

- → Compilation → optimize prior to the execution
- → Difficult to estimate the size of the intermediate results ⇒ error propagation
- → Can amortize over many executions

Dynamic

- → Run time optimization
- → Exact information on the intermediate relation sizes
- → Have to reoptimize for multiple executions

Hybrid

- → Compile using a static algorithm
- → If the error in estimate sizes > threshold, reoptimize at run time

Query Optimization Issues – Statistics

- Relation
 - → C ardinality
 - → Size of a tuple
 - → Fraction of tuples participating in a join with another relation
- Attribute
 - → Cardinality of domain
 - → A ctual number of distinct values
- Common assumptions
 - → Independence between different attribute values
 - → Uniform distribution of attribute values within their domain

Query Optimization Issues – Decision Sites

Centralized

- → Single site determines the "best" schedule
- → Simple
- → Need knowledge about the entire distributed database
- Distributed
 - → Cooperation among sites to determine the schedule
 - → Need only local information
 - → Cost of cooperation
- Hybrid
 - → One site determines the global schedule
 - → Each site optimizes the local subqueries

Query Optimization Issues – Network Topology

- Wide area networks (WAN) point-to-point
 - Characteristics
 - Low bandwidth
 - Low speed
 - High protocol overhead
 - → Communication cost will dominate; ignore all other cost factors
 - → Global schedule to minimize communication cost
 - Local schedules according to centralized query optimization
- Local area networks (LAN)
 - → Communication cost not that dominant
 - → Total cost function should be considered
 - Broadcasting can be exploited (joins)
 - Special algorithms exist for star networks

Distributed Query Processing Methodology

