MA1000: Calculus

Nachiketa Mishra

Indian Institute of Information Technology, Design & Manufacturing, Kancheepuram

Evaluation

► Mid Term: 30 Marks

► Assignments: 30 Marks

End Semester: 40 Marks

Text Books

- ► Thomas' Calculus, Pearson Education, 4th Edition.
- Piskunov, Differential and Integral Calculus, Vol. I & II, Mir. Publishers.
- ▶ Kreyszig, Advanced Engineering Mathematics, Wiley Eastern, 10th Edition.

The Syllabus

- Sequences, Series, Power series.
- ► Limit and Continuity, Intermediate Value Theorem, Differentiability, Rolle's Theorem, Mean Value Theorem, Taylor's Formula.
- Riemann Integration, Mean value theorem, Fundamental theorem of integral calculus.
- Functions of several variables, Limit and Continuity, Geometric representation of partial and total derivatives, Derivatives of composite functions.
- Directional derivatives, Gradient, Lagrange multipliers- Optimization problems,
- Multiple integrals, Evaluation of line and surface integrals.

Module 1: Sequences, Series, and Power Series

- 1. Definition of a Sequence, Examples
- 2. The Definition of Convergence and Divergence of Sequences
- 3. Testing the Convergence of a Sequence
- 4. Definition of Series and its convergence
- 5. Definition of Power Series and its convergence

Sequences

- 1. Informally, a sequence is a list of objects.
- 2. We will only consider numerical (i.e., real number) sequences.
- 3. Our sequences will be infinite, like $1, 3, 5, \ldots, (2n-1), \ldots$

Thus a sequence is a a list of numbers

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

in a given order.

Sequences: More Examples

- ▶ $1,3,5,\ldots,(2n-1),\ldots$
- **▶** 2, 3, 5, 7, 11, . . . ,
- **▶** 1, 1, 1, . . . , 1, . . .
- $ightharpoonup 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$
- $ightharpoonup \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \ldots, \sqrt{n}, \ldots$

Sequence: Formal Definition

Definition

A sequence is a function from the set of positive integers to the set of real numbers:

$$a: \mathbb{Z}^+ \to \mathbb{R}$$
.

The images $a(1), a(2), a(3), \ldots, a(n), \ldots$ are called the *terms* of the sequence.

Note:

- 1. If $a: \mathbb{Z}^+ \to \mathbb{R}$ is a sequence, its terms are rather denoted by $a_1, a_2, a_3, \ldots, a_n, \ldots$
- 2. A standard notation for a sequence $a: \mathbb{Z}^+ \to \mathbb{R}$ is $\{a_n\}$: That is, we enclose the *n*th term of the sequence within braces.
- 3. Sequences are often described by providing formulas for its general (nth) terms.

Examples

Sequences are often described by providing formulas for its general (nth) terms

$$\begin{cases}
2n-1 \} &= 1, 3, 5, \dots, (2n-1), \dots \\
\left\{\frac{1}{n}\right\} &= 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \\
\left\{\frac{(n-1)}{n}\right\} &= 0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{(n-1)}{n}, \dots \\
\left\{\frac{(-1)^{n+1}}{n}\right\} &= 1, -\frac{1}{2}, \frac{1}{3}, \dots, \frac{(-1)^{n+1}}{n}, \dots \\
\left\{(-1)^{n+1}n\right\} &= 1, -2, 3, -4, \dots, (-1)^{n+1}n, \dots \\
\left\{\sqrt{n}\right\} &= \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \dots, \sqrt{n}, \dots
\end{cases}$$

Note: Different sequences behave differently.

Plotting Sequences

Plotting Sequences

Convergence of a Sequence

Definition (Converges, Diverges, Limit)

A sequence $\{a_n\}$ converges to a number I if to every positive number ϵ , there corresponds an integer N such that for all n,

$$n \geq N \Rightarrow |a_n - I| < \epsilon.$$

If no such number l exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to I, we write $\lim_{n\to\infty}a_n=I$ or $a_n\to I$ and call I the limit of the sequence.

Convergence, Pictorially I

Convergence, Pictorially II

Applying the Definition

Show using the definition of convergence that

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

Solution: Here $a_n = \frac{1}{n}$ and l = 0.

Let $\epsilon > 0$ be given. We must show that there exists a fixed integer N such that for all n,

$$n \ge N \Rightarrow \left| \frac{1}{n} - 0 \right| < \epsilon.$$

We note that $\frac{1}{n} < \epsilon \Leftrightarrow n > \frac{1}{\epsilon}$.

Thus, if N is any integer greater than $\frac{1}{\epsilon}$, then the above implication hold for all integers $n \geq N$.

Homework

Let k be any real constant. Show using the definition of convergence that

$$\lim_{n\to\infty} k = k.$$

Solution: Here $a_n = k$ and l = k.

Let $\epsilon > 0$ be given. We must show that there exists an integer N such that for all n,

$$n \geq N \Rightarrow |k-k| < \epsilon$$
.

Since $|k - k| = 0 < \epsilon$ always, we can choose any positive integer as N and the implication will hold.

This proves that $\lim_{n\to\infty} k = k$ for any constant k.

Divergent Sequences: Example

Show that the sequence $1, -1, 1, -1, 1, \dots, (-1)^{n+1}, \dots$ diverges.

Solution:

- Suppose the sequence converges to some number 1.
- $\blacktriangleright \ \text{Let } \epsilon = 1/2.$
- Then there must be an integer N such that each term a_n with index $n \ge N$ lies within $\epsilon = 1/2$ of I: $|a_n I| < 1/2$.
- The number 1 appears repeatedly as every other term. So, 1 must be within $\epsilon = 1/2$ of I. That is |I-1| < 1/2. This implies that 1/2 < I < 3/2.
- Similarly, as -1 appears repeatedly as every other term, we also have that |I (-1)| < 1/2. This implies that -3/2 < I < -1/2.
- Thus we have that the number l lies in both of the intervals (1/2, 3/2) and (-3/2, -1/2). But this is impossible. So, the sequence diverges.

Divergent Sequences: Example

Show that the sequence $\{\sqrt{n}\}$ diverges.

Solution: The sequence diverges because, as n increases, the terms of the sequence become larger than any fixed number. So, it is not converging to any finite number.

Note: We write $\lim_{n\to\infty} \sqrt{n} = \infty$.

Divergence to Infinity

Definition (Diverges to Infinity)

A sequence $\{a_n\}$ diverges to infinity if for every number M, there is an integer N such that for all n with $n \ge N$, $a_n > M$. In this case, we write

$$\lim_{n\to\infty}a_n=\infty\quad\text{ or }\quad a_n\to\infty.$$

Homework: Provide a definition for the divergence of a sequence to $-\infty$.

Theorem

Let $\{a_n\}$ be a convergent sequence. Then its limit is unique.

Proof:

- Let $\epsilon > 0$ be a positive number.
- ▶ Suppose $\{a_n\}$ converges to both l_1 and l_2 .
- ▶ Then, corresponding to $\epsilon/2 > 0$, we can find integers N_1 and N_2 such that

$$n \geq N_1 \Rightarrow |a_n - l_1| < \frac{\epsilon}{2};$$

$$n \geq N_2 \Rightarrow |a_n - l_2| < \frac{\epsilon}{2}.$$

- ightharpoonup Let $N = \max(N_1, N_2)$.
- ▶ Then for $n \ge N$, we have

$$|I_1 - I_2| = |(a_n - I_1) - (a_n - I_2)| \le |a_n - I_1| + |a_n - I_2| < \epsilon.$$

▶ But ϵ is arbitrary. So, we have that $l_1 = l_2$.

Theorem

Let $\{a_n\}$ and $\{b_n\}$ be convergent sequences with $\lim_{n\to\infty}a_n=a$ and $\lim_{n\to\infty}b_n=b$. Then

- $\lim_{n\to\infty}(a_n+b_n)=a+b.$
- $2. \lim_{n\to\infty} (a_n-b_n)=a-b.$
- 3. $\lim_{n\to\infty} (ka_n) = ka$. (Any number k).
- $4. \lim_{n\to\infty} (a_n b_n) = ab.$
- 5. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ if $b \neq 0$.

Proof(1):

- ▶ Let $\epsilon > 0$ be given.
- Since $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, corresponding to $\epsilon/2 > 0$, there are integers N_1 and N_2 such that

$$n \ge N_1 \Rightarrow |a_n - a| < \frac{\epsilon}{2};$$

 $n \ge N_2 \Rightarrow |b_n - b| < \frac{\epsilon}{2}.$

- $\blacktriangleright \text{ Let } N = \max(N_1, N_2).$
- ▶ Then for $n \ge N$, we have

$$|(a_n+b_n)-(a+b)|=|(a_n-a)+(b_n-b)|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

This proves Part 1: $\lim_{n\to\infty} (a_n + b_n) = a + b$.

Proof(4):

Part 2 of the theorem implies the following:

Fact

$$\lim_{n\to\infty}a_n=a\Leftrightarrow\lim_{n\to\infty}(a_n-a)=0.$$

Consider the following identity:

$$a_n b_n - ab = (a_n - a)(b_n - b) + a(b_n - b) + b(a_n - a).$$

From the fact above and Part 3 of the theorem, we have that

$$\lim_{n\to\infty}[a(b_n-b)]=0\quad\text{and}\quad \lim_{n\to\infty}[b(a_n-a)]=0.$$

We will now prove that

$$\lim_{n\to\infty}[(a_n-a)(b_n-b)]=0.$$

Proof(4):

Given $\epsilon>0$, corresponding to $\sqrt{\epsilon}>0$, there are integers N_1 and N_2 such that

$$n \geq N_1 \Rightarrow |a_n - a| < \sqrt{\epsilon};$$

$$n \geq N_2 \Rightarrow |b_n - b| < \sqrt{\epsilon}.$$

Let $N = \max(N_1, N_2)$. Then

$$n \geq N \Rightarrow |(a_n - a)(b_n - b)| < \epsilon.$$

This proves that

$$\lim_{n\to\infty}[(a_n-a)(b_n-b)]=0.$$

Thus the fact and the identity in the preceding slide imply that

$$\lim_{n\to\infty}(a_nb_n)=ab.$$

Examples

(a)
$$\lim_{n\to\infty} \left(-\frac{1}{n}\right) = -1 \cdot \lim_{n\to\infty} \frac{1}{n} = -1 \cdot 0 = 0.$$

(b)
$$\lim_{n\to\infty}\frac{n-1}{n}=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)=\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{1}{n}=1-0=0.$$

(c)
$$\lim_{n\to\infty} \frac{5}{n^2} = 5 \cdot \lim_{n\to\infty} \frac{1}{n} \cdot \lim_{n\to\infty} \frac{1}{n} = 5 \cdot 0 \cdot 0 = 0.$$

Homework

- 1. Prove the other parts of the preceding theorem.
- 2. Prove that $\lim_{n \to \infty} \frac{4 7n^6}{n^6 + 3} = -7$.
- 3. Prove that if the sequence $\{a_n\}$ diverges and c is any nonzero constant, then the sequence $\{ca_n\}$ also diverges.

Theorem (The Sandwich Theorem for Sequences)

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ for all n beyond some index N and if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = I$, then $\lim_{n \to \infty} b_n = I$.

Corollary

If $|b_n| \le c_n$ and $c_n \to 0$, then $b_n \to 0$.

Proof.

$$|b_n| \leq c_n \Leftrightarrow -c_n \leq b_n \leq c_n$$
.

 $c_n \to 0$. So, by the Sandwich theorem, we have $b_n \to 0$.

Applying the Sandwich Theorem: Examples

$$\frac{1}{n} \to 0$$
. So, we have the following true:

(a)
$$\frac{\cos n}{n} \to 0$$
 since $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$.

(b)
$$\frac{1}{2^n} \to 0$$
 since $0 \le \frac{1}{2^n} \le \frac{1}{n}$.

(c)
$$(-1)^n \frac{1}{n} \to 0$$
 since _____?

Theorem (The Continuous Function Theorem for Sequences)

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to I$ and if f is a function that is continuous at I and is defined at all a_n , then $f(a_n) \to f(I)$.

Applying the Continuous Function Theorem: Examples

- 1. Show that $\sqrt{(n+1)/n} \to 1$.
 - **Solution:** We know that $\frac{n+1}{n} \to 1$. Take $a_n = (n+1)/n$, $f(x) = \sqrt{x}$ and l = 1. The function f(x) is continuous at l = 1. Thus by the theorem, $\sqrt{(n+1)/n} \to \sqrt{1} = 1$.
- 2. Show that $2^{1/n} \rightarrow 1$.
 - **Solution:** The sequence $\left\{\frac{1}{n}\right\}$ converges to 0. Take $a_n=1/n$ and $f(x)=2^x$ and l=0. The function is continuous at l=0. Then we have that $2^{1/n} \to 2^0 = 1$.

Using l'Hôpital's Rule

Theorem

Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for all $n \ge n_0$. Then

$$\lim_{x\to\infty} f(x) = I \quad \Rightarrow \quad \lim_{n\to\infty} a_n = I.$$

Applying l'Hôpital's Rule: Examples

Show that

$$\lim_{n\to\infty}\frac{\ln n}{n}=0.$$

Solution: The function $f(x) = \frac{\ln x}{x}$ is defined for all $x \ge 1$ and agrees with the given sequence at positive integers.

Thus by the preceding theorem $\lim_{n\to\infty}\frac{\ln n}{n}$ will equal $\lim_{x\to\infty}\frac{\ln x}{x}$ if the latter limit exists.

Applying the l'Hôpital's rule, we see that

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = \frac{0}{1} = 0.$$

Thus we conclude that $\lim_{n\to\infty} \frac{\ln n}{n} = 0$.

Applying l'Hôpital's Rule: Examples

Find

$$\lim_{n\to\infty}\frac{5^n}{7n}.$$

Solution: By l'Hôpital's rule (differentiating with respect to n),

$$\lim_{n\to\infty}\frac{5^n}{7n}=\lim_{n\to\infty}\frac{5^n\ln 5}{7}=\infty.$$

Applying l'Hôpital's Rule: Homework

Does the sequence whose *n*th term is

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

converge? If so, find $\lim_{n\to\infty} a_n$.

Note: Here the limit leads to the indeterminate form 1^{∞} . We can apply l'Hôpital's rule if we first change the form to $\infty \cdot 0$ by taking the natural logarithm of a_n .

Bounded Sequences

Definition

A sequence $\{a_n\}$ is said to be **bounded above** if there exists a number M such that $a_n \leq M$ for all n. In this case, M is called an **upper bound** for the sequence. If M is an upper bound for $\{a_n\}$ and no number less than M is an upper bound for $\{a_n\}$, then M is called the **least upper bound** for $\{a_n\}$.

Examples:

- 1. The sequence $1, 3, 5, \ldots$ has no upper bound.
- 2. The sequence 1, -1, 1, -1, ... is bounded above by M = 1. In fact, M = 1 is the least upper bound for this sequence.
- 3. The sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$ is bounded above by M=1. In fact, M=1 is the least upper bound for this sequence.

Homework: Define the following concepts for sequence: **bounded below**, **lower bound** and **greatest lower bound**. Also provide examples.

Monotonic Sequences

Definition

A sequence $\{a_n\}$ is said to be

- **monotonically increasing** or **non-decreasing** if $a_n \le a_{n+1}$ for all n;
- **monotonically decreasing** or **non-increasing** if $a_n \ge a_{n+1}$ for all n.

Examples of monotonic sequences:

- 1. The sequence 1,2,3,..., n, ... of positive integers is monotonically increasing.
- 2. The sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$ is monotonically increasing.
- 3. The constant sequence $3, 3, 3, \ldots$ is both m.i and m.d.
- 4. The sequence $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots, \frac{n+1}{n}, \dots$ is a monotonically decreasing sequence.

The Completeness Property of Real Numbers

A monotonically increasing sequence that is bounded above has a least upper bound.

Theorem

Let $\{a_n\}$ be a monotonically increasing sequence that is bounded above. Then it converges to its least upper bound.

Theorem

Let $\{a_n\}$ be a monotonically decreasing sequence that is bounded below. Then it converges to its greatest lower bound.

Proof:

- ▶ Let $\{a_n\}$ be a monotonically increasing sequence that is bounded above.
- ▶ Let / be the least upper bound of the sequence.
- ▶ Then we have that $a_n \leq I$ for all n.
- Let $\epsilon > 0$ be any real number.
- ▶ Then $I \epsilon$ cannot be an upper bound for the sequence as $I \epsilon < I$.
- ▶ Thus there is an integer N such that $a_N > 1 \epsilon$.
- ▶ But $\{a_n\}$ is monotonically increasing. So, we have that

$$n \geq N \Rightarrow a_n \geq a_N > 1 - \epsilon.$$

- ▶ This implies that $n \ge N$ \Rightarrow $l \epsilon < a_n < l + \epsilon$ or $|a_n l| < \epsilon$.
- \triangleright Hence a_n converges to I.

Cauchy Sequences

Definition

A sequence $\{a_n\}$ is said to be a Cauchy sequence if for every $\epsilon>0$ there is an integer N such that

$$n \ge N, m \ge N \quad \Rightarrow \quad |a_n - a_m| < \epsilon.$$

Theorem

A sequence converges if and only if is a Cauchy sequence.

Subsequences

Definition

Let $\{a_n\}$ be a sequence. If $\{n_k\}$ is a sequence of positive integers such that $n_1 < n_2 < n_3, \ldots$, then $\{a_{n_k}\}$ is called a subsequence of $\{a_n\}$.

For example, the sequence of prime numbers is a subsequence of the sequence of positive integers.

Theorem

- 1. If a sequence $\{a_n\}$ converges to I, then every subsequence of $\{a_n\}$ also converges to I.
- 2. Every bounded sequence $\{a_n\}$ has a convergent subsequence.

Some Special Sequences

- 1. If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- 2. If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.
- 3. $\lim_{n\to\infty} \sqrt[n]{n} = 1.$
- 4. If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
- 5. If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.
- 6. $\lim_{n\to\infty}\frac{x^n}{n!}=0.$
- 7. $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x.$

(1) To prove: If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.

Let $\epsilon > 0$ be given. We will find an integer N such that

$$n \ge N \quad \Rightarrow \quad \left| \frac{1}{n^p} - 0 \right| < \epsilon.$$

$$\frac{1}{n^p} < \epsilon \iff \frac{1}{n} < \epsilon^{1/p} \iff n > (1/\epsilon)^{1/p}.$$

Choose any positive integer $N > (1/\epsilon)^{1/p}$.

(2) To prove: If p>0, then $\lim_{n\to\infty}\sqrt[n]{p}=1$.

If p > 1, put $x_n = \sqrt[n]{p} - 1$. Then $x_n > 0$, and by binomial theorem,

$$1+nx_n\leq (1+x_n)^n=p$$

so that

$$0 < x_n \le \frac{p-1}{n}.$$

Hence by the Sandwich theorem, $x_n \to 0$. This implies that $\sqrt[n]{p} \to 1$.

If p = 1, the result is trivial.

If 0 , the result is obtained by taking reciprocals.

(3) To Prove: $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Put $x_n = \sqrt[n]{n} - 1$. Then $x_n \ge 0$, and by the binomial theorem,

$$n=(1+x_n)^n \leq \binom{n}{2}x_n^2 = \frac{n(n-1)}{2}x_n^2.$$

Hence

$$0 \le x_n \le \sqrt{\frac{2}{n-1}} \qquad (n \ge 2).$$

Hence $x_n \to 0$ or $\sqrt[n]{n} \to 1$.

(4) To prove: If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.

Let k be an integer such that $k > \alpha$ and k > 0. For n > 2k,

$$(1+p)^n > \binom{n}{k}p^k = \frac{n(n-1)\dots(n-k+1)}{k!}p^k > \frac{n^kp^k}{2^kk!}.$$

Hence

$$0<\frac{n^{\alpha}}{(1+p)^n}<\frac{2^kk!}{p^k}n^{\alpha-k} \quad (n>2k).$$

Since $\alpha - k < 0$, $n^{\alpha - k} \rightarrow 0$ by Part 1.

Series

Consider a tiny frog which is initially at the point 0 of the number line. It makes successive rightward jumps along the number line as follows.

It jumps 1 unit in step 1.

It jumps $\frac{1}{2}$ units in step 2.

It jumps $\frac{1}{4}$ units in step 3.

It jumps $\frac{1}{8}$ units in step 4.

It jumps $\frac{1}{16}$ units in step 5.

:

Thus the total distance travelled by the frog is

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

The total distance travelled by the frog is

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$
:

Partial sum	25	Partial sum	Value
First:	$s_1 = 1$	2 - 1	1
Second:	$s_2 = 1 + \frac{1}{2}$	$2-\frac{1}{2}$	$\frac{3}{2}$
Third:	$s_2 = 1 + rac{1}{2} + rac{1}{4}$	$2-\frac{1}{4}$	$\frac{7}{4}$
:		:	:
nth:	$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n-1}}$	$2-\frac{1}{2^{n-1}}$	$\frac{2^n-1}{2^{n-1}}$

The sequence $\{s_n\}$ of partial sums converges to 2.

In this case, we say that the series **converges** to 2.

And say that the sum of the series is 2.

Definition (Series, nth Term, Partial Sum, Converges, Sum)

Given a sequence $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

is called a **series**. The number a_n is called the nth term of the series. The sequence $\{s_n\}$ defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + a_3 + \ldots + a_n$
 \vdots

is called the **sequence of partial sums** of the series and the number s_n is called the nth partial sum.

Definition Contd.

If the sequence $\{s_n\}$ of partial sums converges to a limit I, we say that the series **converges** and that its **sum** is I. In this case, we also write

$$a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n = 1.$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

Example: Geometric Series

A geometric series is a series of the form

$$a + ar + ar^{2} + \ldots + ar^{n-1} + \ldots = \sum_{n=1}^{\infty} ar^{n-1}.$$

Here a and r are fixed real numbers and $a \neq 0$. The **common ratio** r can be positive or negative or even zero.

We will now prove that the geometric series converges for each r with |r| < 1 and it diverges otherwise.

Geometric Series

Case 1: r = 1: The *n*th partial sum of the geometric series is

$$s_n = a + a(1) + a(1^2) + \ldots + a(1^{n-1}) = na.$$

So, the sequence of partial sums diverges to ∞ or $-\infty$ depending on whether a > 0 or a < 0. Hence, in this case, the series diverges.

Case 2: r = -1: The *n*th partial sum of the geometric series is

$$s_n = a + a(-1) + a(1) + a(-1) + \ldots + a((-1)^{n-1}).$$

So, the sequence of partial sums diverges as it oscillates between a and 0. Hence, in this case too, the series diverges.

Geometric Series

Case 3: $|r| \neq 1$:

$$s_n = a + ar + ar^2 + ... + ar^{n-1}$$
 $rs_n = ar + ar^2 + ... + ar^{n-1} + ar^n$
 $s_n - rs_n = a - ar^n$
 $s_n(1-r) = a(1-r^n)$
 $s_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1)$

Thus if |r| < 1, then $r^n \to 0$ as $n \to \infty$ and so $s_n \to \frac{a}{1-r}$; if |r| > 1, then $|r^n| \to \infty$ and the series diverges.

Geometric Series: Summary

If
$$|r| < 1$$
, the geometric series $a + ar + ar^2 + ... + ar^{n-1} + ...$ converges to $a/(1-r)$:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \quad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

Example

The geometric series with a = 1/9 and r = 1/3 is

$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \ldots = \frac{1/9}{1 - (1/3)} = \frac{1}{6}.$$

Homework: Find the sum of the geometric series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 2}{5(3^n)} = \frac{2}{5} - \frac{2}{5 \cdot 3} + \frac{2}{5 \cdot 9} - \dots$$

Homework

- 1. A ball is dropped from a meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is a positive constant that is less than 1. Find the total distance the ball travels up and down.
- 2. Express the repeating decimal 5.232323... as the ratio of two integers.
- 3. Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n(n+1)} + \ldots$$

- 4. Show that the series $\sum_{n=1}^{\infty} n^2$ diverges.
- 5. Show that the series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges.

More Examples

Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n(n+1)} + \ldots$$

Solution: Here the *n*th term $\frac{1}{n(n+1)}$ can be written as

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \quad (n=1,2,3,\ldots).$$

So, the *n*th partial sum can be written as a telescoping sum:

$$s_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n(n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

Thus $s_n \to 1$. Hence the sum of the series is 1.

Diverging Series

Show that the series $\sum_{n=1}^{\infty} n^2$ diverges.

Solution: Here the *n*th partial sum is $s_n = \frac{n(n+1)(2n+1)}{6}$. Obviously, $s_n \to \infty$ as $n \to \infty$. Hence the series diverges.

Show that the series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges.

Solution: Here each term of the series is greater than 1. So, the *n*th partial sum $s_n > n$. Thus $s_n \to \infty$ as $n \to \infty$. Hence the series diverges.

An Important Theorem

Theorem

If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Proof.

- $\blacktriangleright \text{ Let } \sum_{n=1}^{\infty} a_n = I.$
- ▶ This means that the sequence $\{s_n\}$ of partial sums converges to I.
- ▶ But $a_n = s_n s_{n-1}$ and $s_n \to I$ and $s_{n-1} \to I$.
- ► Thus $a_n = s_n s_{n-1} \rightarrow l l = 0$.

The *n*th Term Test for Divergence

If $\lim_{n\to\infty} a_n$ does not exist or is different from 0, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Applying the nth Term Test for Divergence

- 1. $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \to \infty$.
- 2. $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \to 1 \neq 0$.
- 3. $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist.
- 4. $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ diverges because $\frac{-n}{2n+5} \rightarrow -\frac{1}{2} \neq 0$.

The Converse of the Theorem is not True

$$a_n \to 0$$
 does not imply that $\sum_{n=1}^{\infty} a_n$ converges.

Example: For the series

$$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{2^n} + \dots + \frac{1}{2^n} + \dots,$$

the *n*th term $a_n \to 0$. But the series diverges as its partial sums s_n increase without bound. Indeed,

$$s_2 > 1, s_4 > 2, s_8 > 3, s_{16} > 4, \dots, s_{2^n} > n, \dots$$

Note

We will often denote the series $\sum_{n=1}^{\infty} a_n$ simply as $\sum a_n$.

Combining Series

Theorem

Let
$$\sum_{n=1}^{\infty} a_n = a$$
 and $\sum_{n=1}^{\infty} b_n = b$ be convergent series. Then

- $1. \sum (a_n+b_n)=a+b.$
- $2. \sum (a_n b_n) = a b.$
- 3. $\sum (ka_n) = ka$ for any number k.

Proof (1):

- Let $A_n = a_1 + a_2 + a_3 + \ldots + a_n$ and $B_n = b_1 + b_2 + b_3 + \ldots + b_n$.
- ▶ Then the partial sums of the series $\sum (a_n + b_n)$ are

$$s_n = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n)$$

= $(a_1 + a_2 + a_3 + \dots + a_n) + (b_1 + b_2 + b_3 + \dots + b_n)$
= $A_n + B_n$.

- ▶ But $A_n \to a$ and $B_n \to b$.
- ▶ Hence $s_n = A_n + B_n \rightarrow a + b$ by the Addition Rule for sequences.

Corollary

- 1. Every nonzero constant multiple of a divergent series diverges.
- 2. If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ both diverge.

Example

Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}.$$

Solution:

$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{6^{n-1}} \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}}$$

$$= \frac{1}{1 - (1/2)} - \frac{1}{1 - (1/6)}$$

$$= 2 - \frac{6}{5}$$

$$= \frac{4}{5}.$$

Note

Addion or deletion of a finite number of terms does not affect the convergence or divergence of a series. But in the case of convergent series, this may change the sum of the series.

An Important Series

Show that the series

$$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} + \ldots$$

converges.

Solution: Here the *n*th partial sum is

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} + \dots$$

$$= 1 + 2$$

$$= 3$$

The sequence of partial sums is bounded above by 3. It is also monotonically increasing. Thus the series converges.

An Important Series

Definition

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} + \ldots$$

Note: e = 2.7182...

Example: The Harmonic Series

The series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots$$

is called the harmonic series.

The harmonic series is divergent:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16}\right) + \dots$$
$$> 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Tests of Convergence for Series: The Integral Test

Theorem (The Integral Test)

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $n \ge N$ (N a positive intger). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{n=N}^{\infty} f(x) dx$ both converge or both diverge.

Proof

We will prove the theorem for N=1. Let f be a function with $f(n)=a_n$ for all n.

The the rectangles in Figure (a) which have areas a_1, a_2, \ldots, a_n collectively enclose an area $a_1 + a_2 + \ldots + a_n$. This is more than the area under the curve y = f(x) from 1 to n + 1. That is,

$$\int_1^{n+1} f(x)dx \leq a_1 + a_2 + \ldots + a_n.$$

Note: The image is from the internet.

Proof:

The rectangles in Figure (b) having areas a_2, a_3, \ldots, a_n collectively enclose an area $a_2 + a_3 + \ldots + a_n$. This is less than the area under the curve y = f(x) from 1 to n. That is,

$$a_2+a_3+\ldots+a_n\leq \int_1^n f(x)dx.$$

Adding a_1 to both sides, we get

$$a_1 + a_2 + a_3 + \ldots + a_n \le a_1 + \int_1^n f(x) dx.$$

Combining the two inequalities gives

$$\int_{1}^{n+1} f(x)dx \leq a_{1} + a_{2} + \ldots + a_{n} \leq a_{1} + \int_{1}^{n} f(x)dx.$$

The above inequalities hold for each n and continue to hold as $n \to \infty$.

If $\int_{1}^{\infty} f(x)dx$ is finite, the right-hand inequality implies that $\sum a_n$ is finite.

If $\int_{1}^{\infty} f(x)dx$ is infinite, the left-hand inequality implies that $\sum a_n$ is infinite.

Hence the series and the integral are both finite or both infinite.

Example: The *p*-Series

The series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \ldots + \frac{1}{n^p} + \ldots$$

is called the p-series (p any real constant).

The *p*-series converges if p > 1 and diverges if $p \le 1$.

Example: The p-Series

Show that the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \ldots + \frac{1}{n^p} + \ldots$$

converges if p > 1 and diverges if $p \le 1$.

Solution: If p > 1, then $f(x) = \frac{1}{x^p}$ is a positive decreasing function of x (for $x \ge 1$). Now

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx$$

$$= \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{\infty}$$

$$= \frac{1}{1-p} \left[\frac{1}{x^{p-1}} \right]_{1}^{\infty}$$

$$= \frac{1}{1-p} [0-1] = \frac{1}{p-1}.$$

So, the series converges by the integral test in this case.

If p < 1, then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{\rho}} dx = \int_{1}^{\infty} x^{-\rho} dx = \left[\frac{x^{-\rho+1}}{-\rho+1} \right]_{1}^{\infty} = \frac{1}{1-\rho} \left[x^{1-\rho} \right]_{1}^{\infty} = \infty.$$

If p = 1, we have the (divergent) harmonic series:

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots$$

Thus the *p*-series converges for p > 1 and diverges for $p \le 1$.

Homework

1. Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

converges using the integral test.

2. Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^p}$$

converges if and only if p > 1 using the integral test.

Tests of Convergence of Series: The Comparison Test

Theorem (The Comparison Test)

Let $\sum a_n$ be a series of non-negative terms. Then

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all $n \ge N$, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series of non-negative terms $\sum d_n$ with $a_n \ge d_n$ for all $n \ge N$, for some integer N.

Proof: In Part (a), the sequence of partial sums of $\sum a_n$ is a monotonically increasing sequence and is bounded above by

$$M = a_1 + a_2 + \ldots + a_{N-1} + \sum_{n=N}^{\infty} c_n.$$

So it converges.

In Part (b), the sequence of partial sums of $\sum a_n$ is not bounded from above. If they were, the partial sums for $\sum d_n$ would be bounded above by

$$M' = d_1 + d_2 + \ldots + d_{N-1} + \sum_{n=N}^{\infty} a_n$$

and $\sum d_n$ would be converging!

1. The series

$$\sum_{n=1}^{\infty} \frac{7}{7n-2}$$

diverges because its nth term

$$\frac{7}{7n-2} = \frac{1}{n-\frac{2}{7}} > \frac{1}{n}$$

which is the n term of the divergent harmonic series.

2. The series

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} + \ldots$$

converges because its terms are all positive and are less than or equal to the corresponding terms of

$$1+1+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}+\ldots$$

which is convergent.

Tests of Convergence of Series: The Limit Comparison Test

Theorem (The Limit Comparison Test)

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Proof (1):

Since $\frac{c}{2} > 0$, there exists an integer N such that

$$n \geq N \quad \Rightarrow \quad \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}.$$

Thus, for $n \geq N$,

$$-\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2},$$

$$\frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2},$$

$$\left(\frac{c}{2}\right) b_n < a_n < \left(\frac{3c}{2}\right) b_n,$$

If $\sum b_n$ converges, then $\sum (3c/2)b_n$ converges and $\sum a_n$ converges by the direct Comparison Test.

If $\sum b_n$ diverges, then $\sum (c/2)b_n$ diverges and $\sum a_n$ diverges by the direct Comparison Test.

Does the following series converge or diverge?

$$\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}.$$

Solution: Let $a_n = \frac{2n+1}{n^2+2n+1}$. For n large, we expect a_n to behave like $2n/n^2 = 2/n$. So, we let $b_n = 1/n$. Since

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2,$$

 $\sum a_n$ diverges by Part 1 of the Limit Comparison Test.

Does the following series converge or diverge?

$$\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}.$$

Solution: Let $a_n = (1 + n \ln n)/(n^2 + 5)$. For large n, a_n will behave like $n \ln n/n^2 = \ln n/n$, which is greater than 1/n for $n \ge 3$. So, we take $b_n = 1/n$. Since

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges and

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n+n^2 \ln n}{n^2+5},$$

 $\sum a_n$ diverges by Part 3 of the Limit Comparison Test.

Homework

Does $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converge?

The Ratio Test

Theorem (The Ratio Test)

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or is infinite,
- (c) the test is inconclusive if $\rho = 1$.

Let r be a number between ρ and 1: $\rho < r < 1.$ Then the number $\epsilon = r - \rho$ is positive. Since

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$$

there is an integer N such that

$$n \ge N \quad \Rightarrow \quad \left| \frac{a_{n+1}}{a_n} - \rho \right| < \epsilon$$

This implies that, for $n \geq N$,

$$-\epsilon < rac{a_{n+1}}{a_n} -
ho < \epsilon \quad ext{or} \quad
ho - \epsilon < rac{a_{n+1}}{a_n} <
ho + \epsilon = r.$$

That is,

$$a_{N+1} < ray,$$

 $a_{N+2} < ray,$
 $a_{N+3} < ray,$
 \vdots
 $a_{N+m} < ray,$
 \vdots
 $a_{N+m} < ray,$
 \vdots

Consider the series $\sum c_n$, where $c_n = a_n$ for n = 1, 2, ..., N and $c_{N+1} = ra_N$, $c_{N+2} = r^2 a_N, ..., c_{N+m} = r^m a_N, ...$ Now $a_n < c_n$ for all n and

$$\sum_{n=1}^{\infty} c_n = a_1 + a_2 + \dots + a_{N-1} + a_N + ra_N + r^2 a_N + \dots$$
$$= a_1 + a_2 + \dots + a_{N-1} + a_N (1 + r + r^2 + \dots)$$

The geometric series $1+r+r^2+\ldots$ converges as |r|<1. So $\sum c_n$ converges. Since $a_n \le c_n$, $\sum a_n$ also converges.

(b)
$$1 < \rho \le \infty$$
.

From some index M on,

$$\frac{a_{n+1}}{a_n} > 1$$
 and $a_M < a_{M+1} < a_{M+2} < \dots$

So, the terms of the series do not approach zero as n becomes infinite. Hence the series diverges by the nth Term Test.

(c)
$$\rho = 1$$
.

Consider the following two series:

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\frac{a_{n+1}}{a_n} = \frac{1/(n+1)}{1/n} = \frac{n}{n+1} \to 1$.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\frac{a_{n+1}}{a_n} = \frac{1/(n+1)}{1/n} = \frac{n}{n+1} \to 1$.
For $\sum_{n=1}^{\infty} \frac{1}{n^2}$: $\frac{a_{n+1}}{a_n} = \frac{1/(n+1)^2}{1/n^2} = \left(\frac{n}{n+1}\right)^2 \to 1$.

In both cases, $\rho = 1$. But the first series diverges and the second converges.

Investigate the convergence of the series

$$\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}.$$

Solution: Here

$$\frac{a_{n+1}}{a_n} = \frac{(2^{n+1}+5)/3^{n+1}}{(2^n+5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1}+5}{2^n+5} \to \frac{2}{3}.$$

The series converges because here $\rho = 2/3 < 1$.

Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

Solution: For the series $\sum_{n=1}^{\infty} \frac{a^n}{n!}$,

$$\frac{a_{n+1}}{a_n} = \frac{a^{n+1}/(n+1)!}{a^n/n!} = \frac{a}{n+1} \to 0.$$

The series converges because here $\rho = 0 < 1$.

Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}.$$

Solution: Here

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{4^n n! n!} = \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{2(n+1)}{2n+1} \to 1.$$

Because the limit $\rho = 1$, we cannot decide whether the series converges from the ratio test.

But

$$\frac{a_{n+1}}{a_n} = \frac{2(n+1)}{2n+1} > 1$$
 for all n .

Thus $a_{n+1} > a_n$ for all n.

So,
$$a_1 < a_2 < a_3 < \dots$$

Also $a_1 = 2$. Thus a_n does not converge to 0.

Hence the series diverges.

Theorem (The Root Test)

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$ (N an integer) and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Theorem (The Root Test)

Let $\sum a_n$ be a series with $a_n \geq 0$ for $n \geq N$ (N an integer) and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Then

(a) the series converges if $\rho < 1$,

Theorem (The Root Test)

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$ (N an integer) and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,

Theorem (The Root Test)

Let $\sum a_n$ be a series with $a_n \geq 0$ for $n \geq N$ (N an integer) and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

Which of the following series converges and which diverges?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

- (a) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1}{2} < 1$.
- (b) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ diverges because $\sqrt[n]{\frac{2^n}{n^2}} = \frac{2}{(\sqrt[n]{n})^2} \rightarrow \frac{2}{1} > 1$.
- $\text{(c) } \sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n \text{ converges because } \sqrt[n]{\left(\frac{1}{1+n}\right)^n} = \frac{1}{1+n} \to 0 < 1.$

Let
$$a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even.} \end{cases}$$
 Does $\sum a_n$ converge?

Solution: Here

$$\sqrt[n]{a_n} = \begin{cases} \sqrt[n]{n}/2, & n \text{ odd} \\ 1/2, & n \text{ even.} \end{cases}$$

Therefore,

$$\frac{1}{2} \leq \sqrt[n]{a_n} \leq \frac{\sqrt[n]{n}}{2}.$$

We know that $\sqrt[n]{n} \to 1$. So, $\lim_{n \to \infty} \sqrt[n]{a_n} = 1/2$ by the Sandwich Theorem.

Thus here the limit is $\rho < 1$. Hence the series converges by the Root Test.

Alternating Series

Definition

A series in which the terms are alternatively positive and negative is called an **alternating** series.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

$$-2 + 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n}4}{2^n} + \dots$$

$$1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1}n + \dots$$

The first series, called the **alternating harmonic series**, converges.

The second series, a geometric series with common ratio r = -1/2, converges.

The third series diverges because the *n*th term does not approach zero.

Homework

Let $\{a_n\}$ be a sequence such that the subsequences $\{a_{2m}\}$ and $\{a_{2m+1}\}$ both converge to the same limit I. Then show that $a_n \to I$.

The Alternationg Series Test

Theorem (The Alternationg Series Test (Leibniz's Theorem))

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$

converges if all three of the following conditions are satisfied:

- 1. The u_n 's are all positive.
- 2. $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3. $u_n \rightarrow 0$.

Proof:

Let us assume that N=1.

If n is an even integer, say n = 2m, then the sum of the first n terms is

$$s_{2m} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2m-1} - u_{2m})$$

= $u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2m-2} - u_{2m-1}) - u_{2m}$

The first equality shows that the s_{2m} is the sum of m non-negative terms. Hence $s_{2m+2} \geq s_{2m}$.

The second equality shows that $s_{2m} \leq u_1$.

So, $\{s_{2m}\}$ is monotonically increasing and bounded above. So, it converges, say

$$\lim_{n\to\infty} s_{2m}=I.$$

Also $u_{2m+1} \rightarrow 0$. Hence

$$s_{2m+1} = s_{2m} + u_{2m+1} \rightarrow l + 0 = l.$$

Thus we have that $s_{2m} \to I$ and $s_{2m+1} \to I$.

Hence $s_n \to I$. This means that the alternating series converges.

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

satisfies the three requirements of the alternating series theorem with N=1. So, it converges.

Absolute and Conditional Convergence

Definition (Absolute Convergence)

A series $\sum a_n$ converges absolutely if the corresponding series of absolute values $\sum |a_n|$ converges.

Example:

The geometric series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$$

converges absolutely because the corresponding series of absolute values

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

converges.

In contrast, the alternating harmonic series does not converge absolutely: The corresponding series of absolute values is the divergent harmonic series.

Definition (Conditional Convergence)

A series that converges but does not converge absolutely is said to converge conditionally.

Example: The alternating harmonic series converges conditionally.

The Absolute Convergence Test

Theorem

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof:

For each n,

$$-|a_n| \le a_n \le |a_n| \qquad \text{so} \qquad 0 \le a_n + |a_n| \le 2|a_n|.$$

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} 2|a_n|$ converges.

So, by the Comparison Test, $\sum_{n=1}^{\infty} (a_n + |a_n|)$ converges.

But $a_n = (a_n + |a_n|) - |a_n|$. So, $\sum_{n=1}^{\infty} a_n$ can be expressed as the difference of two convergent series:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n| - |a_n|) = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|.$$

Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

Examples

(a) For $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} = 1 - \frac{1}{8} + \frac{1}{27} - \frac{1}{64} + \dots$, the corresponding series of absolute values is the series

$$\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \dots$$

The latter converges. Thus the original series converges absolutely. Hence it converges.

(b) For $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \dots$, the corresponding series of absolute values is

$$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| = \left| \frac{\sin 1}{1} \right| + \left| \frac{\sin 2}{4} \right| + \left| \frac{\sin 3}{9} \right| + \dots$$

Since $|\sin n| \le 1$, the latter converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Thus the original series converges absolutely. Hence it converges.

Power Series

Definition (Power Series, Center, Coefficients)

A **power series about** x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n + \ldots$$

A **power series about** x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \ldots + c_n(x-a)^n + \ldots$$

Here a is the **center** and $c_0, c_1, c_2, \ldots, c_n, \ldots$ are the **coefficients** of the power series. These are constants.

Example: A geometric series

Taking all the coefficients to be 1 gives the geometric power series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

This the geometric series with first term 1 and common ratio x. It converges to 1/(1-x) for |x|<1. We express this fact by writing

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \qquad -1 < x < 1.$$

Note

The power series

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \quad -1 < x < 1,$$

gives the following polynomial approximations for the non-polynomial function $\frac{1}{1-x}$ for values of x near 0:

$$P_0(x) = 1$$

 $P_1(x) = 1 + x$
 $P_2(x) = 1 + x + x^2$
:

Example: Another geometric series

The power series

$$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 + \ldots + \left(-\frac{1}{2}\right)^n (x-2)^n + \ldots$$

has center a=2 and coefficients $c_0=1, c_1=-1/2, c_2=1/4, \ldots, c_n=(-1/2)^n, \ldots$ This is a geometric series with first term 1 and common ratio $r=-\frac{x-2}{2}$.

The series converges for $|r| = \left| -\frac{x-2}{2} \right| < 1$ or 0 < x < 4.

The sum is

$$\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x}.$$

So.

$$\frac{2}{x} = 1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 + \ldots + \left(-\frac{1}{2}\right)^n (x-2)^n + \ldots, \quad 0 < x < 4.$$

Note

The power series

$$\frac{2}{x} = 1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 + \ldots + \left(-\frac{1}{2}\right)^n (x-2)^n + \ldots, \quad 0 < x < 4,$$

gives the following polynomial approximations for the non-polynomial function $\frac{2}{x}$ for values of x near 2:

$$P_0(x) = 1$$

$$P_1(x) = 1 - \frac{1}{2}(x - 2)$$

$$P_2(x) = 1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2$$

$$\vdots$$

For what values of *x* does the following series converge?

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

Solution: We apply the Ratio Test to the series $\sum_{n=1}^{\infty} |u_n|$, where u_n is the nth term of the given power series:

$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{x^{n+1}}{n+1}\frac{n}{x^n}\right| = \frac{n}{n+1}|x| \to |x|.$$

Thus the given power series converges absolutely for |x| < 1.

It diverges if |x| > 1 since the *n*th term does not converge to zero (?).

At x = 1, it becomes the alternating harmonic series. So, it converges (conditionally).

At x = -1, we get the negative of the harmonic series. So, it diverges.

Summary: the series converges for $-1 < x \le 1$ and diverges for other values of x.

For what values of x does the following series converge?

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

Solution: We apply the Ratio Test to the series $\sum_{n=1}^{\infty} |u_n|$, where u_n is the *n*th term of the given power series:

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{2n+1}}{2n+1} \frac{2n-1}{x^{2n-1}} \right| = \frac{2n-1}{2n+1} x^2 \to x^2.$$

Thus the given power series converges absolutely for $x^2 < 1$.

It diverges for $x^2 > 1$ since the *n*th term does not converge to zero.

At x=1, the series becomes the alternating series $1-1/3+1/5-1/7+\ldots$, which converges by the Alternating Series Test.

The value at x=-1 is the negative of the value at x=1. So, it converges for x=-1 as well. Summary: The series converges for $|x| \le 1$ and diverges otherwise.

For what values of x does the following series converge?

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Solution: We apply the Ratio Test to the series $\sum_{n=1}^{n} |u_n|$, where u_n is the nth term of the given power series:

$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n}\right| = \frac{|x|}{n+1} \to 0 \quad \text{for every } x.$$

So, the series converges absolutely for all values of x.

For what values of x does the following series converge?

$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \dots$$

Solution: We apply the Ratio Test to the series $\sum_{n=0}^{\infty} |u_n|$, where u_n is the *n*th term of the given power series:

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1)|x| \to \infty$$
 for every $x \neq 0$.

So, the *n*th term of the series does not converge to zero for $x \neq 0$. Hence the series diverges for all values of x except x = 0.

Theorem (The Convergence Theorem for Power Series)

If the power series $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ converges for $x = c \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges for x = d, then it diverges for all x with |x| > |d|.

Proof:

Suppose the series $\sum_{n=0}^{\infty} a_n c^n$ converges.

Then $a_nc^n \to 0$. Therefore, corresponding to $\epsilon = 1$, there is an integer N such that, for $n \ge N$,

$$|a_nc^n|<1$$
 or $|a_n|<rac{1}{|c|^n}$.

Now take any x such that |x| < |c| and consider

$$|a_0| + |a_1x| + \ldots + |a_{N-1}x^{N-1}| + |a_Nx^N| + |a_{N+1}x^{N+1}| + \ldots$$

There are only a finite number of terms prior to $|a_N x^N|$ and so their sum is finite. Starting from $|a_N x^N|$, the sum of the terms is less than

$$\left|\frac{x}{c}\right|^{N} + \left|\frac{x}{c}\right|^{N+1} + \left|\frac{x}{c}\right|^{N+2} + \dots$$

But the above series is a geometric series with common ratio less than 1 since |x| < |c|. So, it converges. Thus it follows that the given power series converges absolutely for |x| < |c|. To prove the second half of the theorem, we use the first half.

Suppose, for contradiction, that the power series diverges at x = d and converges at a value x_0 with $|x_0| > |d|$.

Then by taking $c = x_0$, we can conclude by the first half of the theorem that the power series converges at x = d, which is a contradiction.

Thus, it follows that if the power series diverges for x = d, then it diverges for all x with |x| > |d|.

Note

We prove a similar theorem for power series of the form

$$\sum_{n=0}^{\infty} (x-a)^n$$

by considering the power series $\sum_{n=0}^{\infty} y^n$:

From the theorem, the latter series converges for $y=c\neq 0$ implies that it converges for |y|<|c|.

This means that the given power series converges for x with |x - a| < |c|. And so on.

The Radius of Convergence

Theorem

The convergence of the series $\sum_{n=0}^{\infty} c_n(x-a)^n$ is described by one of the following three possibilities:

- 1. There is a positive number R such that the series diverges for x with |x-a| > R but converges absolutely for x with |x-a| < R (i.e., for a-R < x < a+R). The series may or may not converge at either of the end points x = a-R and x = a+R.
- 2. The series converges absolutely for every x ($R = \infty$).
- 3. The series converges at x = a and diverges for all $x \neq a$ (R = 0).

Proof

- We will prove the theorem for power series of the form $\sum_{n=0}^{\infty} c_n x^n$.
- If the series converges for every x, then we are in Case 2.
- If the series converges only at x = 0, then we are in Case 3.
- ▶ Otherwise there is a nonzero number d such that $\sum c_n d^n$ diverges.
- ▶ Let S denote the set of all numbers x such that $\sum c_n x^n$ converges.
- Then S is nonempty as it contains 0 and a positive number p.
- ▶ By the preceding theorem, the power series diverges for all x with |x| > |d|. So, S is a bounded set.
- Then by the Completeness Property of the real numbers, S has a least upper bound R.
- ▶ If $|x| > R \ge p$, then $x \notin S$ and so $\sum c_n x^n$ diverges.
- If |x| < R, then there is a number $b \in S$ such that b > |x|. So, $\sum c_n b^n$ converges. Therefore $\sum c_n |x|^n$ converges by the Comparison Test.

The Radius of Convergence

The power series $\sum_{n=0}^{\infty} a_n x^n$.

converges if

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = |x| \cdot \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1.$$

That is, if

$$|x| < \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Definition

The **radius of convergence** of the power series $\sum_{n=0}^{\infty} a_n x^n$ is

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Example: Computing the Radius and Interval of Convergence

Find the radius and interval of convergence of

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

Solution: Here $a_n = \frac{(-1)^{n-1}}{n}$. So, the radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1/n}{1/(n+1)} = \lim_{n \to \infty} \frac{n+1}{n} = 1.$$

Thus the given power series converges absolutely for |x| < 1 and diverges for |x| > 1.

At x = 1, it becomes the alternating harmonic series. So, it converges.

At x = -1, we get the negative of the harmonic series. So, it diverges.

Thus the interval of converge of the power series is -1 < x < 1.

Example: Computing the Radius and Interval of Convergence

Find the radius and interval of convergence of

$$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 + \ldots + \left(-\frac{1}{2}\right)^n (x-2)^n + \ldots$$

Solution: Here $a_n = \left(-\frac{1}{2}\right)^n$.

So, the radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(1/2)^n}{(1/2)^{n+1}} = 2.$$

Thus the given power series converges absolutely for |x-2| < 2 and diverges for |x-2| > 2.

As we know that it is a geometric ratio $r=-\frac{x-2}{2}$, it diverges for x with |x-2|=2.

Thus the interval of convergence is |x-2| < 2 or 0 < x < 4.

Theorem (The Term-by-Term Differentiation Theorem)

If $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges for a-R < x < a+R for some R > 0, it defines a function f:

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \quad a-R < x < a+R.$$

This function f has derivatives all orders inside the interval of convergence. We can obtain the derivatives by differentiating the original series term by term:

$$f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1},$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)c_n(x-a)^{n-2},$$

and so on. Each of these derived series converges at every interior point of the interval of convergence of the original series.

Example

Find series for f'(x) and f''(x) if

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, \quad -1 < x < 1.$$

Solution:

$$f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \ldots + nx^{n-1} + \ldots, \quad -1 < x < 1.$$

$$f'(x) = \frac{2}{(1-x)^3} = 2 + 6x + 12x^2 + \ldots + n(n-1)x^{n-2} + \ldots, \quad -1 < x < 1.$$

Theorem (The Term-by-Term Integration Theorem)

Suppose that

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

converges for a - R < x < a + R (R > 0). Then

$$\sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

converges for a - R < x < a + R and

$$\int f(x)dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

for a - R < x < a + R.

Example: A series for $tan^{-1}x$

Identify the function

$$f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, -1 \le x \le 1.$$

Solution: Differentiating the given series, we get

$$f'(x) = 1 - x^2 + x^3 - x^4 + \dots, -1 < x < 1.$$

This is a geometric series with first term 1 and common ratio $-x^2$. So,

$$f'(x) = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}.$$

Now integration gives

$$f(x) = \int f'(x)dx = \int \frac{dx}{1+x^2} = \tan^{-1} x + C$$

The series for f(x) is zero when x = 0; so C = 0.

Hence

$$f(x) = x - \frac{x^3}{2} + \frac{x^5}{5} - \dots = \tan^{-1} x, \quad -1 < x < 1.$$

Example: A series for ln(1+x)

The series

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \dots$$

converges for -1 < t < 1. Therefore

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt$$

$$= \left[t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \dots\right]_0^x$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \quad -1 < x < 1.$$

Theorem (The Multiplication Theorem for Power Series)

If
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for $|x| < R$ $(R > 0)$ and $c_n = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \ldots + a_{n-1} b_1 + a_n b_0 = \sum_{n=0}^{\infty} a_n b_{n-n}$

then $\sum c_n x^n$ converges absolutely to A(x)B(x) for |x| < R:

$$\left(\sum_{n=0}^{\infty}a_nx^n\right)\cdot\left(\sum_{n=0}^{\infty}b_nx^n\right)=\sum_{n=0}^{\infty}c_nx^n.$$

Example

Multiply the geometric series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x} \quad (|x| < 1)$$

by itself to get a power series for $\frac{1}{(1-x)^2}$ for |x| < 1.

Solution: Let

$$A(x) = \sum_{n=0}^{\infty} a_n x^n = 1 + x + x^2 + \ldots + x^n + \ldots = \frac{1}{1-x}$$

$$B(x) = \sum_{n=0}^{\infty} b_n x^n = 1 + x + x^2 + \ldots + x^n + \ldots = \frac{1}{1-x}$$

and

$$c_n = c_n = a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \ldots + a_{n-1}b_1 + a_nb_0$$

= $1 + 1 + \ldots + 1 = n + 1$

Then, by the Multiplication Theorem, the power series for $\frac{1}{(1-x)^2}$ is

$$A(x) \cdot B(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} (n+1) x^n$$

= 1 + 2x + 3x² + 4x³ + ..., |x| < 1.

Taylor and Maclaurin Series

Suppose that

$$f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n = a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n + \ldots$$

converges for a - R < x < a + R (R > 0).

Then the Term-by-Term Differentiation Theorem tells us that the sum function has derivatives of all orders within the interval of convergence a - R < x < a + R and

$$f'(x) = a_1 + 2a_2(x - a) + 3a_3(x - a)^2 + \dots$$

$$f''(x) = 1 \cdot 2a_2 + 2 \cdot 3a_3(x - a) + 3 \cdot 4a_4(x - a)^2 + \dots$$

$$f'''(x) = 1 \cdot 2 \cdot 3a_3 + 2 \cdot 3 \cdot 4a_4(x - a) + 3 \cdot 4 \cdot 5a_5(x - a)^2 + \dots$$

and so on. The above equations all hold, in particular, at x = a.

So,

$$f'(a) = a_0$$

 $f'(a) = a_1$
 $f''(a) = 1 \cdot 2a_2$
 $f'''(a) = 1 \cdot 2 \cdot 3a_3$
 \vdots
 $f^{(n)}(a) = n!a_n$.

Thus

$$a_n = \frac{f^{(n)}(a)}{n!}$$
 for $n = 0, 1, 2, ...$

Hence

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \ldots$$

This implies that the sum function f(x) has a unique power series expansion. (Why?)

Definition (Taylor Series, Maclaurin Series)

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \ldots$$

The Maclaurin series generated by f is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n + \ldots,$$

which is the Taylor series generated by f at x = 0.

Note: The Maclaurin series generated by f is often called the Taylor series of f.

Example

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the series converge to f(x)?

Solution: We need to find $f(2), f'(2), f''(2), \ldots$ Taking derivatives, we get

$$f(x) = x^{-1}, \quad f'(x) = -x^{-2}, \quad f''(x) = 2!x^{-3}, \quad f'''(x) = -3!x^{-4}, \dots, f^{(n)}(x) = (-1)^n n! x^{-(n+1)}, \dots$$

So,

$$f(2) = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^2}, \quad f''(2) = 2!\frac{1}{2^3}, \quad f'''(2) = -3!\frac{1}{2^4}, \dots f^{(n)}(2) = (-1)^n n! \frac{1}{2^{n+1}}, \dots$$

Hence the Taylor series is

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x-2)^n + \dots$$

$$= \frac{1}{2} - \frac{(x-2)}{2^2} + \frac{(x-2)^2}{2^3} - \dots + (-1)^n \frac{(x-2)^n}{2^{n+1}} + \dots$$

This is a geometric series with first term 1/2 and common ratio r = -(x-2)/2. It converges absolutely for |x-2| < 2. The sum is

$$\frac{1/2}{1+(x-2)/2}=\frac{1}{x}.$$

Thus the Taylor series generated by f(x) = 1/x at a = 2 converges to 1/x for |x - 2| < 2 or 0 < x < 4.

Example

The function

$$f(x) = \begin{cases} 0, & x = 0 \\ e^{-1/x^2}, & x \neq 0 \end{cases}$$

has derivatives of all orders at x = 0. Indeed, $f^{(n)}(0) = 0$ for all n.

Thus the Taylor series generated by f at x = 0 is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$
$$= 0 + 0 \cdot x + 0 \cdot x^2 + \dots + 0 + \dots$$

The series converges for every x (the sum is 0) but converges to f(x) only at x = 0.

Homework

Find the Taylor series generated by the following functions at x = 0:

- 1. $f(x) = e^x$
- $2. \ f(x) = \sin x$
- 3. $f(x) = \cos x$

Also prove that, in each case, the Taylor series converges to the corresponding function for all x.

A rock breaks loose from the top of a cliff. What is its average speed

- 1. during the first two seconds of fall?
- 2. during the 1-second interval between second 1 and second 2?

Solution: Galileo's law: The distance fallen is proportional to the square of the time it has been falling. Indeed if y denotes the distance fallen in feet in t seconds, then

$$y=16t^2.$$

1. The average speed during the first two seconds is

$$\frac{\Delta y}{\Delta t} = \frac{16(2^2) - 16(0^2)}{2 - 0} = 32 \text{ ft/sec.}$$

2. The average speed during the 1-second interval between second 1 and second 2 is

$$\frac{\Delta y}{\Delta t} = \frac{16(2^2) - 16(1^2)}{2 - 1} = 48 \text{ ft/sec.}$$

Find the instantaneous speed of the rock at t = 1 and t = 2 seconds.

Solution: The average speed of the rock over a time interval $[t_0, t_0 + h]$ having length h is

$$\frac{\Delta y}{\Delta t} = \frac{16((t_0 + h)^2) - 16(t_0^2)}{h}$$
 ft/sec.

To calculate the speed at t_0 , we cannot simply substitute h=0 in the above formula as we cannot divide by zero.

But we can use this formula to compute the the average speed over increasingly short time intervals starting at $t_0 = 1$ and $t_0 = 2$. For $h \neq 0$, the above formula simplifies as follows:

$$\frac{\Delta y}{\Delta t} = \frac{16((t_0 + h)^2) - 16(t_0^2)}{h} = \frac{16(t_0^2 + 2t_0h + h^2) - 16t_0^2}{h} = \frac{32t_0h + 16h^2}{h} = 32t_0 + 16h.$$

Thus the instantaneous speed of the rock at $t_0 = 1$ second is 32 ft/sec and the instantaneous speed of the rock at $t_0 = 2$ second is 32 ft/sec.

Definition

The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ of length $h \neq 0$ is

$$\frac{\Delta y}{\Delta t} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}.$$

Note: Geometrically, the rate of change of f over $[x_1, x_2]$ is the *slope* of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$.

What does happen when $x_2 = x_1$?

We rather see what happens when x_2 approaches x_1 .

When x_2 approaches x_1 $\frac{\Delta y}{\Delta t} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ could be approaching a finite value.

How does the function

$$f(x) = \frac{x^2 - 1}{x - 1}$$

behave near x = 1?

Solution: The give formula defines f for all real numbers x except x = 1. For $x \ne 1$, the formula simplifies as follows:

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1, \text{ for } x \neq 1.$$

For values of x close to 1, f(x) is close to 2.

In this case, we write

$$\lim_{x\to 1} x$$

Thus the graph of f is the line y = x + 1 with the point (1, 2) removed.

Nonexistence of Limit

Discuss the behavior of the following functions as $x \to 0$:

$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases}$$

$$f(x) = \begin{cases} \sin \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases}$$