Технология программирования.

Практическое задание № 6. Соколов Николай, ФПКиФ 2-2, вариант 4.

1. Общие сведения.

Решение систем линейных уравнений с помощью средств работы с массивами в Excel. Для выполнения программы требуется Microsoft Excel 2003. Программа написана на языке VBA, интегрированном с MS Office.

2. Функциональное назначение программы.

По матрицам A, B, Y найти X в уравнениях AX = B и $A^2 A^t AX = B$, нахождение значения выражения $z = Y^t A^t A^3 Y$

3. Описание логической структуры.

Для вычисления значений матриц использовались функции листа Excel, а так же, как альтернативный способ — функции работы с массивами VBA. Для первой, второй и третьей задачи соответственно:

```
X = A^{-1}B
1.
   =MYMHOX (MOEP (B1:E4); B6:B9)
   Function SolveSimple(A, B)
       SolveSimple = WorksheetFunction.MMult(WorksheetFunction.MInverse(A), B)
   End Function
2. X = (((A A) A^{t}) A)^{-1} B
   =MУМНОЖ (МОБР (МУМНОЖ (МУМНОЖ (МУМНОЖ (В1:E4;B1:E4); ТРАНСП (В1:E4)); В1:E4)); В6:В9)
   Function SolveHard(A, B)
       SolveHard = WorksheetFunction.MMult(WorksheetFunction.MInverse(
       WorksheetFunction.MMult(WorksheetFunction.MMult(WorksheetFunction.MMult(A, A),
       WorksheetFunction.Transpose(A)), A)), B)
   End Function
3. z = ((Y^t A^t)((A A) A)) Y
   =MYMHOX (MYMHOX ( MYMHOX ( TPAHCTI (E6:E9); TPAHCTI (B1:E4) ); MYMHOX (MYMHOX (B1:E4;
   B1:E4);B1:E4) ); E6:E9)
   Function SolveZ(A, Y)
       SolveZ = WorksheetFunction.MMult(WorksheetFunction.MMult(
       WorksheetFunction.MMult(WorksheetFunction.Transpose(Y),
       WorksheetFunction.Transpose(A)),
       WorksheetFunction.MMult(WorksheetFunction.MMult(A, A), A)), Y)
   End Function
```

Формулы вводятся в соответствующий выделенный диапазон ячеек для результата, после чего нажимается Ctrl+Shift+Enter.

4. Используемые технические средства.

Процессор: Intel DualCore CPU 1.86 Ггц ОЗУ: 4 Gb DDR2

5. Вызов и загрузка.

Открыть в Microsoft Exel. Все данные на листе будут автоматически посчитаны.

6. Входные данные.

Матрицы А, В, Ү.

7. Выходные данные.

Матирицы X для первых двух уравнений, матрица Z.

8. Примеры работы программы.

A:	1	4	2	5				
	4	4	5	3				
	1	2	6	8				
	3	7	3	2				
B:	3		Y:	1				
υ.	8		1.	1				
	0							
	1			5				
	7			1				
XLS:					VBA:			
AX=B		A^2AtAX=B		AX=B		A^2AtAX=B		
	2,4213198			3,563049		2,4213198		3,563049
	0,1522843			-1,10043		0,1522843		-1,10043
	-0,598985			-2,68235		-0,598985		-2,68235
	0,2335025			1,673219		0,2335025		1,673219
z=YtAtA^3Y					z=YtAtA^:	3~		
	1220520					1220520		