TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8145FN

STEREO HEADPHONE AMPLIFIER (1.5V USE)

The TA8145FN is a stereo headphone power amplifier IC, which is developed for low voltage operation (1.5V). It is especially suitable for a stereo headphone cassette player.

FEATURES

- OCL (Output Condenser-Less)
- Built-in a ripple filter
- G_V = 22dB (Typ.)
- Output power : $P_0 = 8mW$ (Typ.)

$$(V_{CC} = 1.5V, R_L = 16\Omega, THD = 10\%, Ta = 25^{\circ}C)$$

- Built-in a power switch.
- Built-in a power amplifier mute.
- Excellent ripple rejection ratio: RR = 52dB (Typ.)
- Low noise : $V_{no} = 27 \mu V_{rms}$ (Typ.)
- Operating supply voltage range (Ta = 25°C)
 VCC (opr) = 0.9~2.2V

Weight: 0.09g (Typ.)

BLOCK DIAGRAM

2001-06-25

MAXIMUM RATINGS (Ta = 25°C)

CHARA	CTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		Vcc	4.5	V	
	Power amplifier	I _{O (peak)}	60	mA	
Output Current	Ripple Filter (Built-in transistor)	I _{RF}	5		
Power Dissipation	n (Note)	P_{D}	400	mW	
Operating Tempe	erature	T _{opr}	- 25∼75	°C	
Storage Tempera	ture	T _{stg}	- 55∼150		

Note : Derated above $Ta = 25^{\circ}C$ in the proportion of $3.2mW/^{\circ}C$.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified. V_{CC} = 1.2V, R_L = 16Ω , R_g = 600Ω , f = 1kHz, Ta = 25° C SW₁ : a, SW₂ : a, SW₃ : a, SW₄ : ON, SW₅ : ON

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
Quiescent Current		lccQ1	_	Power off, SW ₁ : b, SW ₂ : b		0.1	5	μ A		
		lccQ2	_	Mute on, SW ₂ : b		1.6	3	mA		
		lccQ3		$V_{in} = 0$, SW_3 : b	-	10	14 '''	IIIA		
Amplifier	Voltage	e Gain	GV		$V_{o(A)} = V_{o(B)} = -22dBV$	20	22	24	dB	
	Channe	el Balance	СВ		$V_0 = -22 dBV$		0	1.5		
	Output	Power	Po	_	V _{CC} = 1.5V, THD = 10% V _{in} (A) = V _{in} (B)	5	8	_	mW	
	Total H Distorti	larmonic on	THD	_	$V_{CC} = 1V$ $P_{O(A)} = P_{O(B)} = 0.5 \text{mW}$		0.7	1.5	%	
ē	Output	Noise Voltage	V _{no}	_	SW_3 : b, BPF = 20Hz \sim 20kHz		27	40	μ V $_{rms}$	
Power	Cross T	alk	CT		$V_0 = -22 dBV$	31	37	_		
	Ripple Rejection Ratio		RR1	_	$V_{CC} = 1V$, $f_r = 100Hz$ $V_r = -32dBV$, $SW_4 : OPEN$	45	52	_	dB	
	Muting	Attenuation	ATT		$V_0 = -22 dBV, SW_2 : a \rightarrow b$	65	80	_		
Ripple Filter Output Voltage		V _{RF}	_	V _{CC} = 1V, I _{RF} = 30mA	0.86	0.9	_	V		
Ripple Rejection Ratio Of Ripple Filter Output		RR2	_	$V_{CC} = 1V$, $I_{RF} = 30$ mA $f_r = 100$ Hz, $V_r = -32$ dBV $SW_4 : OPEN$	30	37	_	dB		
Power Sv	-	Power On Current	I ₁	_	$V_{CC} = 0.9V, V_5 \ge 0.5V, SW_1 : c$	5	_	_	μΑ	
	Switch	Power Off Voltage	V ₁		$V_{CC} = 0.9V, V_5 \le 0.1V$ SW ₁ : d	0		0.3	V	
Mute Switch	te	Mute Off Current	^l 16	_	$V_{CC} = 0.9V, V_{13} \ge 0.3V, SW_2 : c$	5			μΑ	
	Switch	Mute On Voltage	V ₁₆	_	$V_{CC} = 0.9V, V_{13} \le 0.3V$ $SW_2 : d$	0		0.3	V	

TEST CIRCUIT

Tantalum condenser