ZENER

Relatório 05 de ELT 315

Werikson F. O. Alves Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

16 de outubro de 2020

Introdução:

Este relatório contém uma analise teórica de um circuito Zener, seguidos de dados coletados a partir da simulação realizada pelo Software **Qucs**, tendo por objetivo comprovar o funcionamento do diodo Zener direta e reversamente polarizado, medindo os valores de tensão e corrente, bem como as formas de ondas no circuito através do multímetro. Além disso, possui uma analise teórica sobre o diodo LED e também será feita uma analise sobre Diodos emissores de luz (LEDs), através da simulação, tendo o objetivo de medir corretamente a corrente e a tensão sobre um diodo LED e conhecer as suas principais características.

Parte Teórica 1:

- Explique sucintamente as seguintes especificações técnicas: dissipação máxima de energia, corrente máxima do regulador, tensão zener nominal, e coeficiente de temperatura típico.
 R:
 - Dissipação máxima de energia: É a potência máxima que o componente pode consumir consumir sem danifica-lo.
 - Corrente máxima do regulador: É a corrente máxima que poderá percorrer o componente.
 - Tensão zener nominal: É a tensão de ruptura do diodo Zener.
 - Coeficiente de temperatura típico: É a temperatura padrão em que o fabricante obteve esses resultados.
- 2. Verifique no datasheet as seguintes especificações técnicas: dissipação máxima de energia, corrente máxima do regulador, tensão zener nominal, e coeficiente de temperatura típico.

R: Datasheet utilizado: http://pdf.datasheetcatalog.com/datasheet $_pdf/bkc-international-electronics/1N4728_to_1N973B-1.pdf$

- Dissipação máxima de energia: P = 500 m[W].
- Corrente máxima do regulador: I = 116.28 m[A].
- Tensão zener nominal: V = 4.3 [V].
- Coeficiente de temperatura típico: $TC = -0.055 \left[\frac{\%}{C} \right]$
- 3. Pesquisar, desenhar e explicar 03 exemplos de circuitos eletrônicos, onde seja empregado um diodo ZENER.
 R: a) Clipadores (regulador de tensão): São circuitos que permitem a passagem de um sinal de entrada sem nenhuma modificação até que ele atinge um determinado valor de tensão, em que a saída passa a ser limitada.

- b) Proteção: Os diodos zener são geralmente empregados em multímetros para proteger o movimento do medidor contra os danos causados pelas sobrecargas acidentais. O diodo Zener é conectado em paralelo com o medidor do ponto de vista de segurança.
- c) Modelagem de ondas: Neste circuito, quando a tensão de entrada esta abaixo da tensão zener, o sinal de saída é igual ao de entrada. No entanto, quando a tensão de entrada ultrapassa a tensão do zener, há uma queda de tensão na saída, provocando nos picos da onda de entrada. Ex: Onda senoidal para quadrada.

Figura 1: Circuitos Zener: a: Clipadores, b: Proteção de Multímetros e c: Modelagem de ondas.

4. Explicar sucintamente o funcionamento do ZENER. Elucide suas principais diferenças em relação ao diodo de SI. R: O diodo Zener opera na região Zener. Ele possui uma tensão reversa relativamente baixa, possibilitando atingir a região Zener facilmente, e ao chegar nela a corrente começa a circular pelo circuito (antes de atingir a tensão, o circuito não está passando corrente no zener), e a tensão fica fixada na tensão de ruptura. Já tensão direta possui um alto valor oferecendo uma resistência à passagem da corrente no circuito até o momento em que se atinge altos valores de tensão. No Diodo de Si, a tensão direita possui baixo valor e a tensão reversa possui um alto valor, logo o diodo em funcionamento possui uma queda de tensão muito baixa (0.7 [v]), quando permite a passagem da corrente.

Parte Prática 1:

Materiais Utilizados:

• Resistor de $1k\Omega$;

• 01 diodo Zener 1N749 de 400m W (4,3 [V]).

a) Montar o circuito com 1N749.R:

Figura 2: Circuito prático 1.

- b) Medir as tensões correspondentes à tabela apresentada para o diodo ZENER.
 R: Tabela 1.
- c) Inverter a fonte para completar o preenchimento da tabela.R: Tabela 1.

d) Estimar o valor nominal da tensão Zener do diodo.

R: Pela Tabela 1 e pelo dados do item 2 da parte teórica, estima-se que esse diodo (Código: 1N749): $V_Z=4.25$ [V] e $P_Z=(116.28*10^{-3})*4.25=494.19$ m[W], que são valores próximos aos valores indicados no Datasheet.

Tabela 1: Valores correspondes obtidos na simulação.

	Rever	so							
Vs (V)	0,5	1	1,5	2	2,5	3	3,5	4	4,1
Vz (V)	0.50	1.00	1.50	2.00	2.50	3.00	3.50	3.99	4.06
Iz (mA)	0	0	0	0	0	0	0	0.01	0.04

	Rever	Reverso										
Vs (V)	4.2											
Vz (V)	4.09	4.11	4.12	4.13	4.16	4.18	4.2	4.21	4.22			
Iz (mA)	0.11	0.19	0.28	0.37	0.84	1.32	1.8	2.29	2.78			

	Rever	Reverso										
Vs (V)	8	9	10	11	12	13	14	15	20			
Vz (V)	4.24	4.26	4.28	4.29	4.31	4.32	4.34	4.35	4.41			
Iz (mA)	3.76	4.74	5.72	6.71	7.69	8.68	9.66	10.7	15.6			

	Direto	Direto									
Vs (V)	0,5	1	1,5	2	2,5	3	3,5	4	5		
Vz (V)	0.48	0.58	0.61	0.63	0.65	0.66	0.67	0.68	0.70		
Iz (mA)	0.02	0.42	0.89	1.37	1.86	2.34	2.83	3.32	4.3		

e) Conclusão:

Portanto, podemos perceber que o diodo Zener só opera sob tensão reversa e não conduz corrente até o momento em que atinge a tensão de ruptura, de aproximadamente 4.3 [V] e ao atingir esse valor, para pequenas variações na tensão o valor da corrente que passa por ele vai aumentando. Para a região direta, podemos perceber que ele possui uma queda de tensão de aproximadamente 0.7 [V], e está conduzindo uma corrente, por estar polarizado diretamente, operando como um diodo comum.

Parte Teórica 2:

 Explique sucintamente as seguintes especificações técnicas: dissipação máxima de energia, corrente média direta, corrente de pico direta, faixa de temperatura de operação, intensidade luminosa, tensão direta e tensão reversa de ruptura.

R:

- **Dissipação máxima de energia**: É a potência máxima que o componente suporta sem danificá-lo. ocorrendo quando o diodo LED estiver conduzindo com valor máximo de corrente.
- Corrente média direta: É a corrente media que o diodo LED possui durante seu funcionamento normal (polarizado diretamente).
- Corrente de pico direta: É o valor máximo que a corrente alcança quando está polarizado diretamente.
- Faixa de temperatura de operação: É a faixa na qual foram executados todos os teste e obtidos os valores descritos no Datasheet.
- Intensidade luminosa: É o valor referente a intensidade do brilho que aquele LED escolhido terá.
- Tensão Direta: É o valor em que o LED começará a operar, estando polarizado diretamente.
- Tensão reversa de ruptura: É o valor em que o LED começará a conduzir corrente estando polarizado reversamente.

 Verifique no datasheet as seguintes especificações técnicas: dissipação máxima de energia, corrente média direta, corrente de pico direta, faixa de temperatura de operação, intensidade luminosa, tensão direta e tensão reversa de ruptura.

R: https://www.smartkits.com.br/led-difuso-5mm: :text=Tamanho

- Dissipação máxima de energia: Azul:P = 160 m[W], Vermelho:P = 110.5 m[W].
- Corrente média direta: Azul:I = 20 m[A], Vermelho:I = 25 m[A].
- Corrente de pico direta: Azul:I = 50 m[A], Vermelho:P = 50 m[A].
- Faixa de temperatura de operação: De -40°C a +85°C, para ambos.
- Intensidade luminosa: Azul:Int = 1500 m[CD], Vermelho:Int = 1000 m[CD].
- Tensão direta: Azul: $V=3\sim3.4$ [V], Vermelho: $V=1.8\sim2.2$ [V]
- Tensão reversa: Azul: V=6 [V], Vermelho:V=3 [V]
- 3. Pesquisar, desenhar e explicar 03 exemplos de circuitos eletrônicos, onde seja empregado um diodo LED. R: a) Controlador de luminosidade: São circuitos elétricos compostos de um LED e um potenciômetro para controlar a intensidade da luminosidade. b) LED com capacitor: São circuitos elétricos com LED demonstrando o processo de carga e descarga do capacitor. c) LED controlado por LDR: Circuito com LDR controlando a luminosidade do LED.

Figura 3: Circuitos com LEDs: a, b e c.

4. Explicar sucintamente o funcionamento do LED. Elucide suas principais diferenças em relação ao diodo de SI. R: O LED possui uma queda de tesão especifica de acordo com sua cor, e a sua corrente media possui um valor limite, dessa forma necessitando de um resistor antes doo LED a fim de diminuir a corrente que passa por ele, dessa forma ao ter corrente passando por ele este LED emite luz.

Parte Prática 2:

Materiais Utilizados:

• 01 resistor de 100 Ω ;

• 01 diodo LED AZUL;

• 01 resistor de 220 Ω ;

• 01 diodo LED VERMELHO.

a) Montar o circuito COM O LED AZUL.R: Figura (4).

Figura 4: Circuito prático 2.

b) Medir as tensões correspondentes à tabela apresentada para o diodo LED.

R: Tabela 2

c) Inverter a fonte para completar o preenchimento da tabela.

R: Tabela 2

Tabela 2: Valores correspondes obtidos na simulação.

	Direto	Direto - LED AZUL									
Vs (V)	0,5	,5 1 1,5 2 2,5 3 3,5 4 4.5									
Vf (V) - LED	0.50	1.00	1.50	2.00	2.47	2.78	2.94	3.04	3.1		
IS (mA)	0	0	0	0.01	0.16	0.99	2.53	4.37	6.35		

	Direto	Direto - LED AZUL									
Vs (V)	5	5.5	6	6.5	7	7.5	8	9	10		
Vf (V) - LED	3.15	3.19	3.22	3.25	3.27	3.29	3.31	3.35	3.37		
IS (mA)	8.4	10.5	12.6	14.8	16.9	19.1	21.3	25.7	30.1		

	Rever	Reverso - LED AZUL									
Vs (V)	-0.5	0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5									
Vf (V) - LED	-0.5	0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5									
IS (mA)	0										

	Rever	Reverso - LED AZUL									
Vs (V)	-5	5 -5.5 -6 -6.5 -7 -7.5 -8 -9 -10									
Vf (V) - LED	-5	-5.5	-6	-6.5	-6.99	-7.38	-7.59	-7.78	-7.88		
IS (mA)	0	0	0	0	-0.06	-0.54	-1.85	-5.54	-9.64		

d) Alterar a fonte de tensão Vs(cc) para uma fonte alternada f=60Hz e Vp=20V. Esboce a forma de onda na entrada (Vs) e saída (vf).

R:

Figura 5: Esquema elétrico e formas de ondas na entrada e saída (Azul).

e) Montar o circuito COM O LED VERMELHO.

R:

Figura 6: Circuito prático 3.

f) Medir as tensões correspondentes à tabela apresentada para o diodo LED.

R: Tabela 3

g) Inverter a fonte para completar o preenchimento da tabela.

R: Tabela 3

Tabela 3: Valores correspondes obtidos na simulação.

	Direto	Direto - LED VERMELHO									
Vs (V)	0,5	5 1 1,5 2 2,5 3 3,5 4 4.5									
Vf (V) - LED	0.50	50 1.00 1.47 1.73 1.82 1.88 1.91 1.94 1.96									
IS (mA)	0	0	0.11	1.24	3.08	5.10	7.21	9.36	11.50		

	Direto	Direto - LED VERMELHO									
Vs (V)	5	5.5 6 6.5 7 7.5 8 9 10									
Vf (V) - LED	1.98	98 2.00 2.01 2.02 2.04 2.05 2.06 2.07 2.09									
IS (mA)	13.70	3.70 15.90 18.10 20.30 22.60 24.80 27.00 31.50 36.00									

	Revers	o - LED	VERME	LHO							
Vs (V)	-0.5	0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5									
Vf (V) - LED	-0.5	0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5									
IS (mA)	0	0 0 0 0 0 0 0									

	Revers	o - LED	VERME	LHO							
Vs (V)	-5	5 -5.5 -6 -6.5 -7 -7.5 -8 -9 -10									
Vf (V) - LED	-5	5 -5.5 -6 -6.36 -6.49 -6.56 -6.6 -6.66 -6.69									
IS (mA)	0	0 -0.02 -0.64 -2.30 -4.27 -6.35 -10.60 -15.00									

h) Alterar a fonte de tensão Vs(cc) para uma fonte alternada f=60Hz e Vp=20V. Esboce a forma de onda na entrada (Vs) e saída (vf).

R:

Figura 7: Esquema elétrico e formas de ondas na entrada e saída (Vermelho).

i) **Conclusão**: Portanto, podemos perceber que o LED, durante o semi ciclo positivo atua como como um diodo simples, ou seja, ao atingir a tensão direta, o LED fica fixo nesse valor e emite luz, começando a conduzir corrente. Durante o semiciclo negativo, o LED conduz somente depois de atingir a tensão de ruptura.