$$a_0(1450)$$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See minireview on scalar mesons under $f_0(500)$.

a₀(1450) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
1474 ±19	OUR AVERAGE					
$1480\ \pm 30$		ABELE	98	CBAR	$0.0 \ \overline{p}p \rightarrow \ K_I^0 K^{\pm} \pi^{\mp}$	
1470 ± 25		$^{ m 1}$ AMSLER	95 D	CBAR	$0.0 \; \overline{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}$	
					$\pi^{0}_{\eta\eta,\pi^{0}\pi^{0}\eta}$	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						

	1458	± 14 ± 15	190k	AAIJ	16N	LHCB	$D^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
	1515	± 30		² ANISOVICH	09	RVUE	0.0 p p, πN
	1316.8	$3 + 0.7 + 24.7 \\ - 1.0 - 4.6$		³ UEHARA	09A	BELL	$\gamma \gamma ightarrow \ \pi^0 \eta$
	1432	± 13 ± 25		⁴ BUGG	08A	RVUE	<u>p</u> p
	1477	± 10	80k	⁵ UMAN	06	E835	$5.2 \overline{p}p \rightarrow \eta \eta \pi^0$
	1441	$+40 \\ -15$	35280	² BAKER	03	SPEC	$\overline{p}p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}$
	1303	± 16		⁶ BARGIOTTI	03	OBLX	<u>p</u> p
	1296	± 10		⁷ AMSLER	02	CBAR	$0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
	1565	± 30		⁷ ANISOVICH	98 B		Compilation
	1290	± 10		⁸ BERTIN			$0.0 \overline{p} p \rightarrow K^{\pm} K_{s} \pi^{\mp}$
	1450	± 40		AMSLER	94 D	CBAR	$0.0 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
	1410	± 25		ETKIN	82 C	MPS	$23 \pi^- p \rightarrow n2K_S^0$
\sim	1300			MARTIN	78	SPEC	$10 K^{\pm} p \rightarrow K_{S}^{0} \pi p$
	1255	± 5		⁹ CASON	76		J

¹ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

a₀(1450) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
265 ±13	OUR AVERAGE				
265 ± 15		ABELE			$0.0 \ \overline{p}p \rightarrow \ K_I^0 K^{\pm} \pi^{\mp}$
265 ± 30		$^{ m 1}$ AMSLER	95 D	CBAR	$0.0 \overline{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0},$
					$_{\pi}^{0}{}_{\eta\eta,\ \pi}^{0}{}_{\pi}^{0}{}_{\eta}$

Created: 5/30/2017 17:21

² From the pole position.

³ May be a different state.

⁴ Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.

⁵ Statistical error only.

⁶ Coupled channel analysis of $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, and $K^\pm K^0_S \pi^\mp$.

⁷T-matrix pole.

⁸ Not confirmed by BUGG 08A.

⁹ Isospin 0 not excluded.

• • • We do not use the following data for averages, fits, limits, etc. • • •

282	± 12 ± 13	190k	AAIJ	16N	LHCB	$D^0 \rightarrow K_5^0 K^{\pm} \pi^{\mp}$
230	± 36		² ANISOVICH	09	RVUE	$0.0 \overline{p}p, \pi N$
65.0	0^{+}_{-} $\begin{array}{ccc} 2.1 + 99.1 \\ - & 5.4 - 32.6 \end{array}$		³ UEHARA	09A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$
196	± 10 ± 10		⁴ BUGG	08A	RVUE	<u>p</u> p
267	± 11	80k	⁵ UMAN			$5.2 \overline{p} p \rightarrow \eta \eta \pi^0$
110	± 14	35280	² BAKER	03	SPEC	$\overline{p}p \rightarrow \omega \pi^{+}\pi^{-}\pi^{0}$
92	± 16		⁶ BARGIOTTI	03	OBLX	p p
81	± 21		⁷ AMSLER	02	CBAR	$0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
292	± 40		⁷ ANISOVICH			Compilation
80	\pm 5		⁸ BERTIN			$0.0 \overline{p} p \rightarrow K^{\pm} K_{S} \pi^{\mp}$
270	± 40		AMSLER	94 D	CBAR	$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \eta$
230	± 30		ETKIN	82C	MPS	$23 \pi^- p \rightarrow n2K_S^0$
~ 250			MARTIN	78	SPEC	$10 \ K^{\pm} p \rightarrow \ K_{S}^{0} \pi p$
79	± 10		⁹ CASON	76		J

¹ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

a₀(1450) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi\eta$	0.093±0.020
Γ_2	$\pi \eta'(958)$	0.033 ± 0.017
Γ ₃	$K\overline{K}$	0.082 ± 0.028
Γ_4	$\omega \pi \pi$	DEFINED AS 1
Γ_5	$a_0(980) \pi \pi$	seen
Γ ₆	$\gamma \gamma$	seen

$a_0(1450) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\pi\eta) imes\Gamma(\gamma\gamma)/\Gamma_{total}$					$\Gamma_1\Gamma_6/\Gamma$
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	_
• • • We do not use the following	g data for average	es, fits,	limits,	etc. • • •	
$432 \pm 6 + 1073 \\ -256$	¹ UEHARA	09A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$	
$^{ m 1}$ May be a different state.					

Created: 5/30/2017 17:21

² From the pole position.

³ May be a different state.

⁴ Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.

⁵ Statistical error only.

Statistical error only. ⁶ Coupled channel analysis of $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, and $K^\pm K^0_S \pi^\mp$.

⁷T-matrix pole.

⁸ Not confirmed by BUGG 08A.

⁹ Isospin 0 not excluded.

a₀(1450) BRANCHING RATIOS

Γ(πη′(958	3))/Г	$T(\pi \eta)$					Γ_2/Γ_1
VALUE			DOCUMENT ID				0
0.35±0.16			¹ ABELE				$\kappa_L^0 \kappa^{\pm} \pi^{\mp}$
	o not	use the following					0 0 4
0.43 ± 0.19	0		ABELE	97 C	CBAR	$0.0 \ \overline{p}p \rightarrow$	$\pi^{U}\pi^{U}\eta'$
1 Using π	$^{U}\eta$ fro	om AMSLER 94D.					
$\Gamma(K\overline{K})/\Gamma$	$(\pi \eta)$						Γ_3/Γ_1
VALUE			DOCUMENT ID ABELE		<u>TECN</u>	COMMENT	O+ T
0.88±0.23	•			98	CBAR	$0.0 pp \rightarrow$	$K_L^{\bullet}K^{\perp}\pi^{+}$
1 Using π	$^{0}\eta$ fro	om AMSLER 94D.					
$\Gamma(\omega\pi\pi)/\Gamma$	•						Γ_4/Γ_1
<u>VALUE</u>			DOCUMENT ID		TECN	COMMENT	
10.7±2.3		35280				$\overline{p}p \rightarrow \omega \pi$	
1 Using re the ωho	sults o	on $\overline{ ho} ho ightarrow a_0 (1450)$ anism for the $\omega \pi au$	$(1)^0 \pi^0$, $a_0(1450)$ state.	$\rightarrow \eta \tau$	τ ⁰ from	ABELE 96C	and assuming
$\Gamma(a_0(980)$	$\pi\pi$	/Γ _{total}					Γ ₅ /Γ
<u>VALUE</u>			DOCUMENT ID		TECN DV 415		
seen			BUGG	08A	RVUE	рр	
Γ(a ₀ (980) <u>VALUE</u>	$\pi\pi$	• •	OCUMENT ID	<u>TE</u>	ECN CH	HG <u>COMME</u>	Γ ₅ /Γ ₁
• • • We d	o not	use the following $ \\$	data for average	s, fits,	limits, e	etc. • • •	
\leq 4.3		A	NISOVICH 0:	1 R\	VUE 0	$\overline{p}p \rightarrow$	$\eta 2\pi^{+} 2\pi^{-}$
$\Gamma(\gamma\gamma)/\Gamma_{\rm tc}$	otal						Γ ₆ /Γ
VALUE			DOCUMENT ID			_	
seen			¹ UEHARA	09A	BELL	$\gamma \gamma \rightarrow \pi^0$	η
¹ May be	a diff	erent state.					
		a ₀ (1450) REFER	ENCE	S		
AAIJ	16N	PR D93 052018	R. Aaij <i>et al.</i>	A 1/	.	(LH	Cb Collab.)
ANISOVICH UEHARA	09 09A	IJMP A24 2481 PR D80 032001	V.V. Anisovich S. Uehara <i>et a</i>		Sarantsev	(BEL	LE Collab.)
BUGG UMAN	08A 06	PR D78 074023 PR D73 052009	D.V. Bugg I. Uman <i>et al.</i>			(F	(LOQM) NAL E835)
BAKER	03	PL B563 140	C.A. Baker et	al.		`	
BARGIOTTI AMSLER	03 02	EPJ C26 371 EPJ C23 29	M. Bargiotti <i>e</i> C. Amsler <i>et a</i>	al.		(ODEI	-IX Collab.)
ANISOVICH ABELE ANISOVICH	01 98 98B	NP A690 567 PR D57 3860 SPU 41 419	A.V. Anisovich A. Abele <i>et al</i> V.V. Anisovich	<i>l</i> .		(Crystal Ba	rrel Collab.)
BERTIN	98B	Translated from UFN PL B434 180	I 168 481. A. Bertin <i>et a</i>	ıl.		(OBEI	_IX Collab.)
ABELE ABELE	97C 96C	PL B404 179 NP A609 562	A. Abele <i>et al</i> A. Abele <i>et al</i>			(Crystal Ba (Crystal Ba	rrel Collab.)
AMSLER	95B	PL B342 433	C. Amsler et a	al.		(Crystal Ba	rrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler <i>et a</i>	al.		(Crystal Ba	rrei Collab.)
HTTP://I	PDG.	LBL.GOV	Page 3		Creat	ed: 5/30/	2017 17:21

AMSLER	95D	PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.) IGJPC
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
ETKIN	82C	PR D25 2446	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
MARTIN	78	NP B134 392	A.D. Martin <i>et al.</i>	(DURH, GEVA)
CASON	76	PRL 36 1485	N.M. Cason et al.	(NDAM, ANL)

Created: 5/30/2017 17:21