

روشهای منظم تحلیل مدار ـ روش فضای حالت

مقدمه

از امروز میرویم سراغ درس مدارهای الکتریکی۲ و با فهم کامل این درس، در مدارهای الکتریکی صاحب سبک

می شویم و هر مداری که سر راهمان ببینیم، به سرعت تجزیه و تحلیل می کنیم؛ دیگر هیچ مداری از دست ما جان سالم به در نمی برد و این یعنی همان مرزهای دانایی و توانایی

در این فصل به بررسی روشهای منظم تحلیل مدار میپردازیم. در اینجا دیگر خبری از KCL بازی و KVL بازی و ...ها نیست. هدف اصلی این روشها در درس مدارهای الکتریکی ۲، تحلیل الگوریتمیک و به عبارتی تحلیل کامپیوتری مدار است ۱، اما قسمتی از روابط به صورت ذهنی نیز قابل تعمیم است که به دقت به بررسی آنها میپردازیم.

دقت کنید؛ میخواهیم با داشتن (۱) گراف مدار (۲) معادلات شاخهها (۳) شرایط اولیه و بالاخره (۴) ورودیها، مدار را تحلیل کنیم. برای این کار چهار روش وجود دارد که به بررسی آنها میپردازیم:

۱_۱ روش منظم

ابتدا به بررسی روش منظم گره میپردازیم. یادتان باشد وقتی شخصیت کمهوشی مثل کامپیوتر!! میخواهد یک مدار را

تحلیل کند، از همین روش کمک می گیرد. نرم افزار «اسپایس» را که می شناسید، کارش همین است. یک مثال ساده می زنم تا قدر خودتان را بیشتر بدانید. شما در کمتر از یک ثانیه به کمک چشمهایتان گراف مدار را می بینید، ولی کامپیوتر که چشم ندارد؛ پس باید به گونه ای گراف مدار را در قدم اول به آن معرفی کرد، به همین منظور ابتدا ماتریس تلاقی A را معرفی می کنیم؛ اگر n

۱ که بحث کامپیوتری آن از موضوع کنکور کارشناسی ارشد خارج است.

PowerEn.ir

 $n \times b$ تعداد گرههای مستقل مدار (منهای گره زمین) و b تعداد شاخههای مدار باشد، ماتریس تلاقی مختصرشده A از مرتبه b خواهد بود و به صورت زیر تعریف می شود:

شماره شاخهها

$$A=$$
شماره گرهها \downarrow (۱-۱) میرا \downarrow شماره گرهها (۱-۱)

تکرار می کنم: n ، تعداد گرههای مستقل (یعنی تعداد کل گرهها منهای یک b) و b ، تعداد کل شاخههای مدار است.

به طوری که:

 $a_{ij} = 0$ اگر شاخه j ام به گره i ام وصل نباشد،

 $a_{ij} = +\, 1$ اگر شاخه j ام به گره ام وصل باشد و جریانش از گره خارج شود،

 $a_{ij} = -1$ اگر شاخه j ام به گره وصل باشد و جریانش به گره وارد شود،

در اینجا معادلات اساسی ماتریسی به صورت روابط زیر هستند:

 $AJ = 0 (Y_1)$

این رابطه، همان KCL است.

 $V = A' \times e \tag{(7-1)}$

و این یکی همان KVL است.

در این روابط، $J_{b imes 1} = A'_{b imes n}$ بردار ولتاژ شاخهها، $e_{n imes 1} = e_{n imes 1}$ بردار ولتاژ گرهها و $V_{b imes 1} = V_{b imes 1}$ ترانهاده ماتریس تلاقی هستند.

منظورتان این است که وقتی کامپیوتر میخواهد KCL و یا KVL بزند، هیچیک از ابتکارهای $oldsymbol{a}$ این $oldsymbol{k}$

شخصیت کمهوش! ضرب ماتریسی را خوب می فهمد! پس به جای KCL ، رابطه (۱-۲) و به جای KVL ، رابطه (۱-۳) را به کار می گیرد.

شکل (۱₋۱) گراف تمرین ۱

۱ـ در گراف شکل زیر ماتریس تلاقی A را معین کنید.

۱ ـ به دلیل گره مبنا یا زمین

با توجه به رابطه (۱_۱) و با در نظر گرفتن این نکته که این گراف دارای 2 گره مستقل و 5 شاخه است، داریم:

یک نفر لطف کند و رابطه (۱_۲) را در اینجا چک کند.

$$\begin{pmatrix} -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \\ J_4 \\ J_5 \end{pmatrix} = 0$$

و اگرمثلاً سطر اول را بسط دهیم:

$$-J_1 + J_2 + J_5 = 0$$

آفرین! این رابطه، همان KCL در گره 🛈 است که برای گره 🏖 هم قابل تعمیم است و به همین ترتیب برای

رابطه (۱_۳)...

$$\begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

و باز به عنوان نمونه با بسط سطرهای اول و دوم داریم:

$$V_1 = -e_1$$

$$V_2 = e_1 - e_2$$

که باز به وضوح، بر KVL در گراف شکل (۱_۱)منطبق است. به هر حال رابطه نهایی در روش گره به این صورت است؛

البته بگذارید قبل از اینکه به سراغ رابطه نهایی برویم، بگویم که پس از یک سری محاسبات در روش منظم گره به رابطهای میرسیم که از آن رابطه، ولتاژ گرهها به دست میآید. حالا به این رابطه خوب نگاه کنید:

$$Y_n \times e = I_s \tag{f-1}$$

 $(n \times 1)$ در این رابطه: $Y_n = I_s$ ماتریس ادمیتانس گره $(n \times n)$ ، و بردار ولتاژ گرهها $(n \times 1)$ و $Y_n = N_s$ ماتریس ادمیتانس گره $N_s = N_s$ است.

در روش ذهنی یا دستی، وصول به درایههای Y_n و I_s کار سادهای است؛ کاری که اگر کامپیوتر بخواهد انجام دهد، برایش بسیار دشوار است.

عناصر قطری = مجموع ادمیتانسهای وصل شده به گره i ام j

عناصر غیر قطری = منفی مجموع ادمیتانسهای مشترک بین دو گره iام و jام و jام و jام و ام j

و عنصر k ام از بردار منابع جریان گرهها، به صورت زیر به سادگی تعریف می شود:

ام k منبع جریانهای ورودی به گره k ام = I_{sk}

یعنی منبع جریانهای ورودی با علامت مثبت و منابع جریان خروجی با علامت منفی منظور میشوند.

شکل (۱_۲) مدار تمرین ۲

خُب، مدار را با عینک نگاه میکنیم و مقادیر مقاومتها را برحسب مهو آن مینویسیم، چون اینطور که پیداست

در این روش به ادمیتانسها علاقهمندتریم تا امپدانس؛ پس برو که رفتیم!

شکل (۱-۳) مدار تمرین ۲ با عینک

حال با توجه به رابطه (۱-۴) و توضیحات آن:
$$egin{pmatrix} (1-j & j) & e_1 \\ -(-5j) & \end{bmatrix}$$

که حل آن هم مثل نوشیدن آب (از نوع گوارا) است. مثلاً:

$$je_1 + 0e_2 = -3 \implies e_1 = 3j \implies e_1 = 3\cos(t + 90^\circ) = -3\sin t$$

و يا:

$$(1-j) \times 3j + je_2 = -5j$$

 $3j+3+je_2 = -5j \implies e_2 = -8+3j$
 $e_2 = \sqrt{73}\cos\left(t+\pi-\tan^{-1}\frac{3}{8}\right)$

قبول دارید که خیلی جالب و البته ساده است؟

راستی قبل از آنکه سراغ روش بعدی برویم، باید عرض کنم که در این روش هرگاه منبع ولتاژی موجود بود، آن را به منبع جریان تبدیل می کنیم. (مدار معادل نورتن)؛ چراکه در این روشاصلاً منبع ولتاژ معنی ندارد. حالا به كمك شما روش دوم را كه دوگان روش اول است، به سرعت مرور مىكنيم.

مشابه روش قبل که ماتریس تلاقی A داشتیم، اینجا ماتریس مش M داریم. اگر گفتید چطور $^{'}$ ؟

حتماً اینجوری دیگر: در اینجا ماتریس مش از مرتبه $\ell imes b$ است، به طوری که:

$$M=$$
 شماره مشها $\qquad \downarrow \qquad \left(\qquad \qquad m_{ii} \qquad \right)_{(xh)}$

۱ـ قبل از شنیدن (و یا خواندن!) پاسخ دوستتان، شما هم حتماً یکبار به طور کامل جواب بدهید.

که ℓ تعداد مشهای مستقل و d باز هم تعداد شاخههاست، به طوری که:

 $\mathbf{m}_{ii} = 0$ اماصلاً در مش i ام نباشد، j اگر شاخه

 $m_{ij} = +1$ اگر شاخه j ام در مش i ام بوده و با آن همجهت باشد،

 $m_{ij} = -1$ اگر شاخه j ام در مش i ام بوده ولی خلاف جهت آن باشد،

معادلات اساسی ماتریسی در اینجا بدین گونه است:

$$MV = 0$$

که این رابطه همان KVL است. و این یکی نقش KCL را بازی می کند:

$$J = M' \times I \tag{Y-1}$$

که $M'_{b imes\ell}=$ ترانهاده ماتریس مش و I = بردار جریان مشهاست؛ پس I از مرتبه $1 imes\ell$ است.

۳ــ برای گراف شکل (۱ ـ۱)، ماتریس اساسی مش M را بنویسید.

شکل (۱_۴) گراف تمرین ۳

و اگر باز معادلات (۱-۶) و (۱-۷) را بنویسیم، به راحتی KVL و KCL مشاهده می شود. $^{\prime}$

ادامه می دهم؛ در این روش رابطه نهایی این گونه است:

$$Z_{m} \times I = E_{s}$$
 (A-1)

که در آن:

ماتریس امپدانس مش I ، $(\ell imes\ell)$ ، I = بردار جریان مشها $E_{
m S}$ و $E_{
m S}$ = بردار منابع ولتاژ مشها $E_{
m M}$ است. حدس شما به کمک دوگانی از مقادیر آنها به روش دستی یا ذهنی چیست؟

و مش i ام. ولتاثر موجود در مش i ام.

جمع جبری به این صورت که:

اگر جریان مش از سر منفی ولتاژ وارد شد، آن را با علامت مثبت و اگر از سر مثبت منبع ولتاژ وارد شد، با علامت منفی منظور می کنیم.

۱ ـ به دلیل سادگی بیش از حد، از این کار پرهیز می کنیم.

آفرین، عالی است! راستی در مورد حرف آخرتان؛ آیا خودتان دقت داشتید که علامت منبع ولتاژدقیقاً قرینه آن

چیزی است که در ابتدای درس در روش مش گفتیم؟

باز هم آفرین! ضمناً در اینجا هر منبع جریانی را به منبع ولتاژ می تبدیلیم!

۴_ برای مدار شکل (۱_۲) روابط ماتریسی مش را بنویسید.

شکل (۱_−۵) مدار حل تمرین ۴

شكل (١-۶) مرحله بعدى حل تمرين ۴

و باز به صورت سادهتر:

با یک KVL ساده داریم:

$$(1 + \cancel{j} - \cancel{j}) I = \cancel{5} - 3 j - \cancel{5}$$

$$I = -3 j \implies i(t) = 3 \sin t$$

 $e_1 = -1 \times I = -3 \sin t$

از هم یک سؤال اساسی پرسیدی؛ همین درست است دیگر... و من به خاطر سؤالِ مناسب شما، یک جواب خیلی روان

عین قبل بنویسید، سپس متغیرهای منبع وابسته را برحسب ولتاژ گرهها یا جریان مشها بنویسید و در آخر مقادیر مربوط را به سمت چپ ببرید. (یادتان باشد که فقط مربوط به همان سطر متناظرش است؛ فقط با تغییر علامت.) لطفاً این حرفهای آخر را یکبار دیگر بجوید؛ هضمش راحتتر می شود!

شکل (۱ $_{-}$ ۸) مدار تمرین ۵ برای روش گره

ازطرفي حالا ميدانيم:

جريان تبديل مي كنيم:

 $V_0 = e_3$ $i_0 = e_1 - e_2$

و به کمک داستانهای روش ذهنی:

$$\begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} 6+3V_0 \\ 5i_0 \\ -3V_0 \end{pmatrix} = \begin{pmatrix} 6+3e_3 \\ 5e_1-5e_2 \\ -3e_3 \end{pmatrix}$$

و پس از ساده کردن، یعنی بردن بعضی چیزها! ($\mathbf{e_i}$ ها) از راست به چپ، چنین به دست می آوریم:

$$\begin{pmatrix} 3 & -1 & -4 \\ -6 & 8 & -1 \\ -1 & -1 & 6 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

اکنون روش مش

و برای روش مش، منابع را به صورت منبع ولتاژ قرار میدهیم:

شکل (۱_۹) مدار تمرین ۵ برای روش مش

و مىدانيم:

$$V_0 = i_2$$
$$i_0 = i_1 - i_3$$

و با روش ذهنی مش:

$$\begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} = \begin{pmatrix} 6 - 5(i_1 - i_3) \\ 5(i_1 - i_3) \\ -3i_2 \end{pmatrix}$$
$$\begin{pmatrix} 8 & -1 & -6 \\ -6 & 3 & 4 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

حالا اگر مدار شامل سلفهای تزویجدار بود، چه باید بکنیم؟

منابع وابسته و...

به نظرم در قدم اول باید مدار معادلهای سلف تزویج را به دست اَوریم و سپس همان حرفهای قبلی در مورد

شکل (۱-۱) سلفهای دارای تزویج

و حالا مدار معادلهای آن را به دست میآوریم؛ یعنی هرجا خواستیم مسئلهای را از روش منظم تحلیل کنیم و در آن مدار، سلفها دارای تزویج بود، بسته به نوع روش از مدلهای زیر کمک می گیریم:

شکل (۱-۱۱) مدار معادل سلفهای تزویج مفید در روش مش شکل (۱-۱۲) مدار معادل سلفهای تزویج مفید در روش گره

آفرین ! ضمناً به خاطر داشته باشید که به طور کلی منابع وابسته، تقارن ماتریس Y و Z را به هم میزنند ولی سلفهای تزویج نه. در فصل آخر، داستان مفصلتی در این باب خواهیم داشت؛ نام آن داستان، قضیه «همپاسخی» است که به موقع سراغش مىرويم و....

شکل (۱-۱۳) مدار تمرین ۶

شكل (۱-۱۴) مدار حل تمرين ۶

$$\begin{pmatrix} r_1 + r_2 + j\omega L_1 + \frac{1}{j\omega c_1} & -r_2 - j\omega L_1 \\ -r_2 - j\omega L_1 & j\omega (L_1 + L_2) + r_2 + \frac{1}{j\omega c_2} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} E_s - j\omega M I_2 \\ 0 & 0 \\ 2 j\omega M I_2 - j\omega M I_1 + \frac{g_m I_2}{c_1} & I_1 \end{pmatrix}$$

و به عبارتی پس از انتقال جملاتِ دارای
$$I_1$$
 و I_2 به سطرهای متناظر سمت راست، چنین به دست می آید:
$$\begin{pmatrix} r_1 + r_2 + j\omega L_1 + \frac{1}{j\omega c_1} & -r_2 - j\omega L_1 + j\omega M \\ -r_2 - j\omega L_1 + j\omega M - \frac{g_m L_2}{c_1} & j\omega \Big(L_1 + L_2\Big) + r_2 + \frac{1}{j\omega c_2} - 2\,j\omega M \end{pmatrix} \\ \times \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} E_s \\ 0 \end{pmatrix}$$

شکل (۱ـ۱۵) گراف تمرین ۷

کاتستهای مستقل و حلقههای مستقل را نمیدانم، ولی جالب شد که:

 $b = \ell + n$

آیا همیشه همین طور است یا اینجا این طوری شد؟

سؤال خوبی پرسیدی! جالب است بدانی که همیشه همینطور است. جمع تعداد گرههای مستقل و تعداد مشها برابر

تعداد شاخههاست و مجموع تعداد كاتستهاى مستقل و حلقههاى مستقل هم برابر تعداد شاخههاست. اصلاً تعداد كاتستهاى اساسی، برابر است با تعداد گرههای مستقل (n) و تعداد حلقههای اساسی، برابر است با تعداد مشها (ℓ) . لطفاً یک کاغذ پیشنویس بردارید، چند گراف بکشید و این قضیه را در مورد آن گرافها چک کنید و لذت ببرید!

١_٣_١ درخت

ینید؛ هر گرافی تعداد زیادی زیرگراف دارد. از بین این زیرگرافها، زیرگرافی را که دارای سه شرط زیر باشد، میتوانیم

ا شاخههایش به هم متصل باشد.

را کا تمام گرههای گراف اصلی را در بر بگیرد.

هیچ حلقهای نداشته باشد. (به عبارت دیگر به هر گرهای فقط یکبار سر بزند.)

جالب شد، پس واضح است که تعداد شاخه درختها در هر گراف، برابر است با تعداد گرههای مستقل یا n و تعداد

لینکها (یعنی شاخههایی از مدار که شاخه درخت نیستند)، برابر است با تعداد مشها یا ℓ . راستی درست گفتم دیگر؟ به شاخههای یک گراف که در درخت باشند، «شاخه درخت» می گوییم و به آنهایی که در درخت نباشند، «لینک» می گوییم.

۱_۳_۱ کاتست و حلقه

هر برش از مدار را کاتست می گویند که معنایش از اسمش هم پیداست. در کاتستها ما مجاز به KCL هستیم و

حلقه، هر مسير بسته در مدار است که در آن علاقهمند به KVL باشيم.

لطفاً ببينيد من درست مي گويم؟ مثلاً در گراف شكل (١ـــ١٥)، ١٣۴٥ يک كاتست و ١٢۴ يک حلقه است.

آفرین! البته چیز سادهای است دیگر. حالا این دو جمله را خوب گوش کنید؛ میخواهیم حلقه اساسی و کاتست

اساسی را تعریف کنیم؛ میدانیم هر گرافی، تعداد زیادی کاتست و حلقه دارد؛ اما همه آنها که اساسی نیستند. به عبارت باکلاس علمی! n در n کاتست اساسی، n معادله مستقل به ما میدهد که از حل آنها، n ولتاژ مستقل کاتستها معلوم می شود و به همین ترتیب n در n حلقه اساسی، n معادله مستقل به ما میدهد که از حل آنها، n جریان مستقل حلقهها به دست می آید.

لطفاً زير لب با من تكرار كنيد:

هر **یک لینک،** به همراه تعدادی شاخه درخت، تشکیل یک حلقه اساسی میدهد و جهت هر **حلقه اساسی،** همان جهت لینک متناظرش است.

هر یک شاخه درخت، به همراه تعدادی لینک، یک کاتست اساسی میسازد و جهت هر کاتست اساسی، همان جهت شاخه درخت متناظرش است.

راستی یک لِم ساده: برای یافتن کاتست اساسی (که گاهی مواقع کمی سخت است)، آن شاخه درخت مورد نظر را پاک می کنیم (در ذهنمان) و سپس تمام لینکهایی را که دو قسمت جداشده درخت را به هم وصل می کنند، لحاظ می کنیم.

۸_ برای گراف شکل (۱ــ۱۵)، درخت بکشید و آنگاه کاتستهای اساسی و حلقههای اساسی را مشخص کنید.

من می گویم؛ درخت به صورت شکل (۱-۱۶) می شود:

PowerEn.ir

شکل (۱ـ۱۷) گراف تمرین ۸

پس اگر لینکها را هم با نقطهچین نشان دهیم، این گونه میشود:

و حالا ۲ کاتست اساسی داریم و ۳ حلقه اساسی (که جمعشان می شود ۵ ؛ یعنی تعداد شاخهها). این هم از چیزهای اساسی:

حلقههای اساسی: ۱۵ و ۱۲۳ و ۱۲۴

کاتستهای اساسی: ۱۳۴۵ و ۲۳۴

پس این مسئله هم تمام شد.

نه، اشتباه نکنید، بیایید من هم یکبار جواب می دهم؛ درخت که یکتا نیست، به درخت جدید من و درنتیجه

لینکها و حلقههای اساسی و کاتستهای اساسی نگاه کنید:

شکل (۱ـ۱۸) نگاهی دیگر به گراف تمرین ۸

حلقههای اساسی: ۱۵ و ۲۳۵ و ۴۳ کاتستهای اساسی: ۱۲۵ و ۲۳۴

det(AA') باز هم درست است. باید بدانید برای هر گراف با ماتریس تلاقی A کهقبلاً حرفش را زدیم، به اندازه طفر (AA') درخت مستقل داریم که اثبات این قضیه، خود داستانی مفصل در درس گسسته است و از حوصله بحث ما خارج است.

۱-۲ روش منظم کاتست

مراحل را تكرار كنيم:

ابتدا معرفی ماتریس كاتست اساسی Q:

 ${f n}$ تعداد کاتستهای اساسی و ${f b}$ تعداد شاخههاست؛ به طوری که:

 $q_{ij} = 0$ اگر شاخه j ام در کاتست ا ام نباشد،

 $q_{ii} = +1$ اگر شاخه j ام در کاتست i ام بوده و با آن همجهت باشد،

 $\mathbf{q}_{ij} = -1$ اگر شاخه \mathbf{j} ام در کاتست \mathbf{i} ام بوده و خلاف جهت آن باشد،

و حالا معادلات اساسى:

$$QJ=0 (11_1)$$

این رابطه همان KCL است.

$$V=Q'\times E$$

و این یکی همان KVL است.

که در آن E بردار ولتاژ کاتستهاست و بقیه عین قبل است.

شکل نهایی معادلات به صورت زیر است:

$$Y_{q} \times E = I_{s}$$
 (17-1)

ست. $(n \times 1)$ است. E ($(n \times n)$) است. E است. E است کاتستها کاتستها کاتستها E است.

باز هم در روش ذهنی یا دستی، رسیدن به $\, {
m Y}_{
m q} \, {
m Y}_{
m g} \,$ ساده است. به این جملات خوب کنید:

ام i عناصر قطری = مجموع ادمیتانسهای موجود در کاتست i ام

ام و j ام و i ام و j ام و i ام و j ام و i ام و j عناصر غیر قطری = جمع جبری ادمیتانسهای مشترک بین کاتستهای

یعنی اگر در آن شاخه، جهت کاتستها یکسان بود، آن ادمیتانس با علامت مثبت و اگر جهت کاتستها متفاوت بود،

آن ادمیتانس با علامت منفی منظور می شود.

و بالاخره عنصر k ام از بردار منابع جریان کاتست به صورت زیر تعریف می شود:

ام k ام جبری جریانهای عبوری از کاتست k

لطفاً نيرسيد جبري يعني چه! خودم مي گويم:

اگر جهت منبع جریان خلاف جهت کاتست بود، با علامت مثبت و اگر همجهت با کاتست بود، با علامت منفی منظور میشود.

۹_ یکی از دوستان با درخت خودش! ماتریس Q گراف شکل (۱ _۱) را مشخص کند.

$$Q = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 & 0 \end{cases}$$

۱_۵ روش منظم حلقه

این روش نیز تعمیمی برای روش مش است. در روش مش تأکید داشتیم که نباید هیچ شاخهای درون یک مش

باشد، ولی در مورد حلقه اصلاً چنین شرطی نیست؛ یعنی یک مورچه را در یک نقطه از مدار بگذارید و به او بگویید که هر جایی که دوست داری برو و برگرد به همین نقطه اول؛ اسم جای پای آن مورچه، یک حلقه است. برویم سراغ کارمان:

اول معرفی ماتریس حلقه اساسی B :

$$B=egin{array}{c} & \stackrel{\text{malo}\, 6}{\longrightarrow} & & & \\ & \stackrel{\text{malo}\, 6}{\longrightarrow} & & \\ & & \downarrow & \left(& b_{ij} & \right)_{\ell imes b} & & \\ & & & \downarrow & \left(& b_{ij} & \right)_{\ell imes b} & & \\ \end{array}$$

که ℓ تعداد حلقههای اساسی و b تعداد شاخههاست.

به طوریکه:

 $b_{ij} = 0$ اگر شاخه j ام در حلقه i ام نباشد،

 $b_{ij} = +1$ اگر شاخه j ام در حلقه i ام بوده و با آن همجهت باشد،

 $b_{ii} = -1$ اگر شاخه j ام در حلقه i ام بوده و خلاف جهت آن باشد،

و معادلات اساسى:

$$\begin{cases} B.V = 0 \\ J = B' \times I \end{cases}$$

$$(1 \triangle_{-} 1)$$

که این روابط هم، همان KVL و KCL هستند.

همه فاکتورها مانند روابط قبلی است، فقط I بردار جریان حلقههای اساسی است. شکل نهایی معادلات به این فرم درمی آید: $Z_{\ell} \times I = E_s$

که Z_ℓ ماتریس امپدانس حلقه $(\ell \times \ell)$ ، = بردار جریان حلقهها $(\ell \times \ell)$ و = بردار منابع ولتاژ حلقهها $(\ell \times \ell)$ است. و به روش ذهنی یا دستی این درایهها چنیناند:

ام فطری = مجموع امپدانسهای موجود در حلقه i ام عناصر قطری = مجموع امپدانس

جمع جبری یعنی اگر در آن شاخه، جهت هر دو حلقه همسایه یکسان بود، آن امپدانس با علامت مثبت و اگر نه، با علامت منفی لحاظ می شود.

ام i اساسی ا جمع جبری منابع ولتاژ موجود در حلقه اساسی ا

و تا شما سؤال نکردهاید یا جواب ندادهاید (که البته هر دو کار بسیار خوبی هم هست!) بگویم در اینجا علامت عیناً مشابه علامت E _{sk} در روش مش است.

B ولی برای ماتریس B:

اا_ و حالا به عنوان آخرین تمرین از این بخش برای مدار شکل (۱_۲) و درخت شکل (۱_۱۸)، معادلات منظم

کاتست را بنویسید.

به شکل (۱ـ۳) و (۱ـ۱۸) که نگاه کنیم، داریم:

$$\begin{aligned} \mathbf{Y}_{\mathbf{q}} \times \mathbf{E} &= \mathbf{I}_{\mathbf{S}} \\ \begin{pmatrix} 1 - \mathbf{j} & + \mathbf{j} \\ + \mathbf{j} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{E}_{1} \\ \mathbf{E}_{2} \end{pmatrix} &= \begin{pmatrix} -5 \ \mathbf{j} \\ -3 \end{pmatrix} \end{aligned}$$

از بحث روشهای منظم تجزیه و تحلیل مدار تا همینجا کافی است. سؤالاتی هم که از این بخش در کنکور

کارشناسی ارشد میآید، سؤالاتی بسیار روان است که شما با دو سه مرتبه خواندن این بخش از کتابی که هماکنون پیش روی شماست، به راحتی از عهده آن بر خواهید آمد.

۱-۶ روش فضای حالت

صیه می کنم این مبحث را خیلی عمیق بخوانید؛ چون بحث بسیار عمیق و قشنگی است....

یکی از مفیدترین و مرسوم ترین روشهای تحلیل سیستمها، مخصوصاً سیستمهای غیر خطی، روش فضای حالت است که در دروس تخصصی کنترل کاملاً مورد بررسی قرار میگیرد. ما در اینجا، کلیاتی از این بحث را مورد بررسی قرار میدهیم.

هدف: نوشتن معادلات مدار به صورت زیر است:

$$\dot{X} = AX + BW \tag{1A-1}$$

آیا اجزای این رابطه را خوب میشناسید؟

المان بردار حالت است که شامل عناصر مستقل ذخیره کننده انرژی می شود ،مثلاً: X

$$X = \begin{bmatrix} V_C \\ I_L \end{bmatrix} \tag{19-1}$$

پسطبیعتاً X هم مشتق زمانی این بردار است؛ یعنی:

$$\dot{X} = \begin{bmatrix} \frac{dV_C}{dt} \\ \frac{dI_L}{dt} \end{bmatrix} \tag{Y-1}$$

A را ماتریس ضرایب حالت می گوییم، W بردار منابع (شامل ورودیها) بوده و B را ماتریس ضرایب ورودیها مینامیم.

آفرین! و در حالت ورودی صفر معادلات حالت به صورت رابطه زیر می شود:

$$\dot{X} = A X$$
 (Y)_1)

$$X(t) = e^{At} \times X_0$$

در رابطه اخیر، X_{0} بردار حالت اولیه است و $e^{A\,t}$ را ماتریس انتقال حالت مینامیم.

، $e^{A\,t}$ حالت ها! یعنی با داشتن ماتریس ضرایب حالت A و درنتیجه معلوم بودن ماتریس انتقال حالت خیلی جالب است

می توانیم از هر حالت اولیهای « X_0 »، به بردار حالت در زمان t برسیم؛ یعنی پاسخ مدار معلوم می شود.

بله؛ بسیار زیباست. اصولاً روش فضای حالت، بسیار کارآمد است،مثلاً به نمودارهای شکل (۱ _۱۹) توجه کنید:

شکل (۱-۹۱) نمودار فضای حالت در حالات مختلف

به نظر شما هر كدام بيانگر چه حالتي است؟

و البته در حالت بدون تلف یا نوسانی $(\mathrm{Q} \! o \! \mathrm{Q})$ ، به صورت

شکل (۱_۲۰) درمیآید:

شکل (۱-۲۰) فضای حالت در مدار نوسانی

از سکوت شما پیداست که نمی دانید! بنده عرض می کنم؛ به آنها «مسیر حالت» می گویند. مسیر حالت، بیانگر رابطهای بین I_L و V_C است به قسمی که در آن رابطه خبری از زمان t نباشد. برای رسیدن به مسیر حالت بین V_C و I_L رابطه ای باید پیدا شود؛ مثلاً اگر چنین داشته باشیم:

$$V_C = 5\cos 2t$$
 , $I_L = 3\sin 2t - 1$

آنگاه معادله مسیر حالت اینگونه میشود:

$$\left(\frac{V_{\rm C}}{5}\right)^2 + \left(\frac{I_{\rm L} + 1}{3}\right)^2 = 1$$

که نشان دهنده یک مسیر بیضوی است. در آخر فصل تمریناتی از این جنس حل خواهیم کرد.

حالا برویم سراغ اصل مطلب؛ در این روش هدف رسیدن به معادلات به فرم (۱۸ـ۱) است؛ برای این کار چه خوب است که با KCL و KVL به معادلاتی برسیم که در آنها فقط مشتق اول یکی از متغیرهای حالت است و حضور یا عدم حضور سایر متغیرهای حالت یا ورودیها اهمیتی ندارد. به این عبارت کلیدی توجه کنید:

برای این منظور، خوب است که برای سلفها در مشها یا حلقهها، $\frac{\mathsf{KVL}}{\mathsf{KVL}}$ بزنیم تا i_L ظاهر شود و برای خازنها در گرهها یا کاتستها $\overset{\cdot}{\mathrm{KCL}}$ بزنیم تا سروکله $\overset{\cdot}{\mathrm{V}}_{\mathrm{C}}$ پیدا شود.

و البته در مدارهای غیرخطی، استفاده از متغیرهای شار سلف (ϕ) و بار خازن (q) بهجای I_L و V_C کار را بسیار ساده می کند. بگذارید این داستانها را در دل چند مثال، بهتر درک کنیم.

۱۲ در مدار شکل (۱ـ۲۱) اگر معادلات حالت را به فرم

X=X+BW بنویسیم که در آن $X=\begin{bmatrix} I_L \\ V_C \end{bmatrix}$ و $X=\begin{bmatrix} I_L \\ V_C \end{bmatrix}$ و X=X+BW ماتریس X=X+BW

ماتریس A کدام است؟

اولاً چون فقط A را خواسته (یعنی به B کاری ندارد)، میتوانیم برای سادگی، W=0 یعنی ورودیها را صفر

كنيم؛ يس مدار اين طور مي شود:

شکل (۱_۲۲) مدار تمرین ۱۲ در حالت ورودی صفر

حالا برای خازن، KCL و برای سلف، KVL می زنیم:

$$\begin{split} & L\dot{I}_L + V_C = 0 \\ & - I_L + \frac{1}{R_2} V_C + C\dot{V}_C = 0 \end{split}$$

يعنى:

$$\begin{pmatrix}
\dot{I}_{L} \\
\dot{V}_{C}
\end{pmatrix} = \begin{pmatrix}
0 & \frac{-1}{L} \\
\frac{1}{C} & \frac{-1}{R_{2}C}
\end{pmatrix} \begin{pmatrix}
I_{L} \\
V_{C}
\end{pmatrix}$$

$$\dot{X} = A X$$

شما دوستان با حل تعدادی مسئله نمونه در این زمینه، قدرتمند میشوید. حالا به بررسی روش منظم رسیدن به

معادلات حالت میپردازیم؛ خیلی ساده است، یکی دوبار به دقت این الگوریتم را بخوانید و پس از هر عبارت، معنیاش را با خودتان مرور کنید:

انتخاب متغیرهای حالت: ولتاژ خازنهای مستقل و جریان سلفهای مستقل در مدارهای خطی و بار خازنها و شار سلفها در مدارهای غیر خطی یا تغییرپذیر با زمان.

آخه چه فایده؟ در تست که این موضوع دست ما نیست، این انتخاب قبلاً توسط طراح انجام شده است.

انتخاب درخت مناسب: درخت شامل همه خازنها و هیچیک از سلفها!

میدانید چرا ؟

آخه من چه بگویم؟

) برای <mark>سلفها، معادله حلقه اساسی</mark> و برای **خازنها،** معادله **کاتست اساسی** مینویسیم.

آنچه نمیخواستم بگویم را حالا براتون می گم؛ در یک کلاس n نفره، وقتی یک دانشجوی علاقهمند و ممتاز و خلاصه دوستداشتنی باشد، استاد را فعال و سرحال و کلاس را مفید می کند و همین طور در زندگی، اگر آدم یک همسفر عالی پیدا کند، دیگر، همه چیز سفر خوشایند می شود.

۱_ گاهی ف را مینویسند ولی ...!

PowerEn.ir

بله، می گفتم، اگر مدار شامل حلقههای خازنی و حتی منابع ولتاژ باشد و یا شامل کاتستهای سلفی و حتی منابع جریان باشد، درخت مناسب شامل حداکثر خازنها و حداقل سلفها خواهد بود.

ضمناً پس از اجرای مرحله سوم، اگر متغیرهای اضافی ظاهر شد، اینها جریان و ولتاژ مقاومتها هستند.

ا برای حذف متغیرهای غیر حالت، برای لینکهای مقاومتی، معادله حلقه اساسی و برای شاخههای مقاومتی، معادله کاتست اساسی مینویسیم (این معادلات جبریاند).

قضیه: در یک مدار، هر سیگنالی به صورت یک ترکیب خطی از متغیرهای حالت و ورودیها قابل بیان است.

استاد، شما که جواب دوستم را دادید، پس با KCL و KVL خیالمان راحت است که همه چیز قابل تبدیل به

متغیرهای حالت و ورودیها است؛ خیلی عالی شد!

شکل (۱-۲۳) مدارهای تمرین ۱۳ الف، ب، ج و د

PowerEn.ir

اولی را خودم می گویم، خوب دقت کنید؛ با این

 r_2 تمرین خیلی کارهای جالبی داریم. درختِ مناسبِ روشِ فضای حالت، در مدار (الف) این گونه است:

شکل (۱-۲۴) درخت مناسب (خطوط نقطهچین) در مدار (الف) به همراه حلقهها و کاتستها

حالا مطابق بند سوم الگوريتم منظم داريم:

KVL :
$$L_1 \dot{I}_{L_1} + r_1 I_{L_1} + e_s - V_C = 0$$

KVL :
$$L_2 \dot{I}_{L_2} + r_2 I_2 - V_C = 0$$

$$KCL : C\dot{V}_C + I_{L_1} + I_{L_2} = 0$$

و به عبارت دیگر:

$$\begin{pmatrix} \dot{\mathbf{V}}_{\mathbf{C}} \\ \dot{\mathbf{I}}_{\mathbf{L}_{1}} \\ \dot{\mathbf{I}}_{\mathbf{L}_{2}} \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{\mathbf{C}} & -\frac{1}{\mathbf{C}} \\ \frac{1}{\mathbf{L}_{1}} & -\frac{\mathbf{r}_{1}}{\mathbf{L}_{1}} & 0 \\ \frac{1}{\mathbf{L}_{2}} & 0 & -\frac{\mathbf{r}_{2}}{\mathbf{L}_{2}} \end{pmatrix} \begin{pmatrix} \mathbf{V}_{\mathbf{C}} \\ \mathbf{I}_{\mathbf{L}_{1}} \\ \mathbf{I}_{\mathbf{L}_{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ -\frac{1}{\mathbf{L}_{1}} \\ 0 \end{pmatrix} \mathbf{e}_{s}$$

و حالا نوبت شماست.

در مدار (ب) هم درخت مناسب به صورت این

شكل است:

شکل (۱ـ۲۵) درخت مناسب (خطوط نقطهچین) در مدار (ب) به همراه حلقهها و کاتستها

و باز با KCL برای خازنها و KVL برای سلفها داریم:

$$KVL : L\dot{I}_{L} + r_{2}I_{L} - V_{C_{2}} = 0$$

KCL :
$$C_1 \dot{V}_{C_1} + \frac{1}{r_1} V_{C_1} + \frac{1}{r_1} V_{C_2} - \frac{1}{r_1} e_s = 0$$

$$KCL \ : \ C_{2}\dot{V}_{C_{2}} + I_{L} + \frac{1}{r_{_{1}}}V_{C_{_{1}}} + \frac{1}{r_{_{1}}}V_{C_{_{2}}} - \frac{1}{r_{_{1}}} \ e_{_{s}} = 0$$

شکل (۱-۲۶) درخت مناسب (خطوط نقطهچین) در مدار (ج)

به همراه کاتستها

در اینجا درخت مناسب شامل C_1 و C_2 است و دیگر نمی تواند شامل C_3 باشد؛ چراکه دیگر درخت نیست. حالا ميدانيم:

$$\mathbf{V}_3 = \mathbf{V}_1 - \mathbf{V}_2$$

با KCL در گرههای چپی و راستی، دو معادله به صورت زیر به دست می آید:

KCL : $C_3 \dot{V}_1 - C_3 \dot{V}_2 + C_1 \dot{V}_1 + \frac{1}{r_1} V_1 - i_s = 0$

KCL:
$$C_3 \dot{V}_2 - C_3 \dot{V}_1 + C_2 \dot{V}_2 + \frac{1}{r_2} V_2 = 0$$

حالا از این دو معادله می توانیم به معادلات فضای حالت برسیم که البته من حوصلهاش را ندارم.

فوق العاده عالى براى مسايل فضاى حالت پيدا كند، أن وقت خيلى خوب است.

لطفاً خوب خوب توجه کنید، ببینید جواب (ج) مسئله درنهایت به صورت زیر میشود $^{'}$:

$$\begin{pmatrix} \dot{V}_1 \\ \dot{V}_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} i_s$$

حال به شکل (۱-۲۶) دقت کنید، اگر در گره مرکب بالایی یک KCL بزنیم، داریم:

$$KCL \quad : \quad C_1 \, \dot{V}_1 + C_2 \, \dot{V}_2 = -\frac{1}{r_1} \, V_1 - \frac{1}{r_2} \, V_2 + 1 \, i_s$$

۱ـ این رابعداً در بخش مرتبه مدار میخوانیم که چرا این مدار با اینکه سه خازن داشت، از مرتبه ۲ شد.

این عبارت را ترجمه می کنیم:

$$C_{_1}$$
 × (سطر اول) + $C_{_2}$ × (سطر دوم) = $-\frac{1}{r_{_1}}V_{_1} - \frac{1}{r_{_2}}V_{_2} + i_{_8}$

و با توجه به رابطه اخیر، چنین تفسیر می کنیم:

$$C_1 a + C_2 c = -\frac{1}{r_1} = V_1$$
 ضریب

$$C_1 b + C_2 d = -\frac{1}{r_2} = V_2$$
 ضریب

$$C_1 e + C_2 f = 1 = i_s$$
 ضریب

یعنی این راه ِ فوقالعاده ساده، قطعاً با ردّ گزینه، ما را به پاسخ درست میرساند و به ما چنین می گوید:

گزینهای درست است که هر یک از سه رابطه اخیر در آن صدق کند.

حالا مسئله آخر به عهده شماست:

شکل (۱-۲۷) نگاهی به مدار تمرین ۱۳ قسمت (د) با روش خاص تستی

مثلاً در گره (۱)، KCL میزنیم:

KCL :
$$C_1 \dot{V}_1 - C_2 \dot{V}_2 = I_L$$

به عبارت دیگر:

$$C_{_1}$$
 × (سطر اول) – $C_{_2}$ × (سطر دوم) = $0V_{_1}$ + $0V_{_2}$ + $1I_{_L}$ + $0e_{_s}$

اجازه بدهید من کمی بیشتر بگویم تا آنهایی هم که مثل خود من هنوز خوب متوجه ماجرا نشدهاند، شیرفهم شوند!

یعنی اگر قرار باشد جواب نهایی به صورت زیر باشد:

$$\begin{array}{c} C_1 \times \begin{pmatrix} \dot{V}_1 \\ \dot{V}_2 \\ \dot{I}_L \\ \end{array} \right) = \begin{array}{c} C_1 \times \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{array} \right) \begin{pmatrix} V_1 \\ V_2 \\ I_L \\ \end{pmatrix} + \begin{array}{c} C_1 \times \begin{pmatrix} j \\ k \\ \ell \\ \end{pmatrix} e_s$$

۲:

مدارهاي الكتريكي

www.PowerEn.ir

با توجه به رابطه آخر چنین خواهیم داشت:

$$C_1 a - C_2 d = 0$$

$$C_1 b - C_2 e = 0$$

$$C_1 c - C_2 f = 1$$

$$C_1 j - C_2 k = 0$$

که البته ممکن است به هر ۴ رابطه بالا نیازی نباشد و حتی یک یا دو تای آنها با رد گزینه، ما را به جواب برساند.

به جواب می رساند؛ مگر آنکه طراح تست، خود شما باشید و با علم به این مطلب، گزینه ها را بسازید! این روش آخر را جمع بندی می کنم:

در یک جایی (هر جایی که خوشتان آمد!) برای خازن KCL و برای سلف KVL میزنیم؛ اگر نتیجه «یک معادله یک مشتق!» شد که مشکل حل است؛ این رابطه در اصل بیانگر یکی از سطرهای معادله حالت $\dot{X} = AX + BW$ است؛ اما اگر تعداد مشتقها بیشتر از یکی شد، آن رابطه را مرتب می کنیم، به طوری که مشتقها در سمت چپ تساوی و بقیه در سمت راست باشند؛ آن گاه این رابطه را به صورت ترکیب خطی از سطرهای رابطه $\dot{X} = AX + BW$ تعبیر کرده و با رد گزینه زندگی شیرین می شود!...

۱ ـ شما هم حتماً این کار را انجام دهید. به این بهانه چندتا تست روش فضای حالت هم حل کرده اید؛ لطفاً همین الان (قبل از آنکه سراغ بحث لاپلاس بروید!).

مسایل تکمیلی فصل اول

۱_ گراف یک شبکه و درخت مربوط به آن در شکل زیر داده شده است. حلقهها و کاتستهای اساسی آن (مهندسی برق ۸۱)

$$\{4,1,6\},\{1,6,3\},\{2,1,3\}$$
 کاتستهای اساسی $\{4,5,6\},\{1,5,3\},\{2,4,1\}$ حلقههای اساسی

$$\{4,5,2\}\{5,6,4\},\{3,5,6\}$$
 کاتستهای اساسی $\{4,5,6\},\{2,5,3\},\{2,4,1\}$ حلقههای اساسی $\{1,4,5,6\},\{2,5,3\},\{2,4,1\}$

$$\{4,1,6\},\{5,6,3\},\{2,1,3\}$$
 کاتستهای اساسی $\{3,4,5,6\},\{2,5,3\},\{2,4,3\}$ حلقههای اساسی $\{4,5,6\},\{2,5,3\},\{2,4,3\}$

$$\{3,2,4,6\},\{5,6,3\},\{2,1,5,6\}$$
 کاتستهای اساسی $\{6,5,6\},\{2,4,6\},\{2,6,5,6\}$ حلقههای اساسی $\{4,5,6\},\{2,5,3\},\{2,4,3\}$

۲ـ ماتریس تلاقی مختصرشده برای گراف جهتدار یک مدار به صورت زیر داده شده است:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix}$$

ولتاژهای کدامیک از دسته شاخههای زیر را می توان به عنوان متغیرهای مستقل انتخاب کرده و ولتاژ سایر شاخهها را برحسب آنها بیان کرد؟ (مهندسی برق ۷۸)

$$\{2,5,6\}$$
 (Y

مدارهاي الكتريكي

www.PowerEn.ir

$$\begin{bmatrix} 1-j & -j \\ -j & 1 \end{bmatrix} (7 \qquad \begin{bmatrix} 1-j & j \\ j & 1 \end{bmatrix} (1)$$

$$\begin{bmatrix} 1+j & -j \\ -j & j \end{bmatrix} (9 \qquad \begin{bmatrix} 1+j & j \\ j & j \end{bmatrix} (9)$$

۴_در مدار شکل زیر کدام روش تحلیل به معادلاتی با کمترین تعداد متغیرهای مجهول میانجامد؟

(مهندسی برق ۷۷)

- ۱) کاتست
 - ۲) گره
 - ۳) مش
- ۴) معادلات حالت

$$\left(1-2t-e^{-\frac{t}{4}}\right)u(t)$$

$$\left(1 - \frac{1}{2}e^{-t} - \frac{1}{2}e^{-\frac{t}{4}}\right)u(t) (Y)$$

- $V_1(t)$ وجود دارد. $V_1(t)$
- ۴) هیچ جوابی نمی توان در این مدار برای $V_1(t)$ به دست آورد.

- 3 (1
 - 6 (٢
- 12 (٣
- 18 (4

نمایش $\frac{\mathrm{dX}}{\mathrm{dt}} = \mathrm{AX} + \mathrm{bi}_{\mathrm{s}}$ نمایش $X = \begin{vmatrix} V_{\mathrm{C}} \\ i_{\mathrm{T}} \end{vmatrix}$ نمایش $X = \begin{vmatrix} V_{\mathrm{C}} \\ i_{\mathrm{T}} \end{vmatrix}$ نمایش

(مهندسی برق ۸۱)

$$A = \begin{bmatrix} -1 & -1 \\ -1 & 3 \end{bmatrix} (Y) \qquad A = \begin{bmatrix} -1 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} (Y)$$

$$A = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix}$$
 (*

$$A = \begin{bmatrix} -1 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} (1)$$

$$\mathbf{A} = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix} \quad (\% \qquad \qquad \mathbf{A} = \begin{bmatrix} -0.5 & -0.5 \\ 0.5 & -1.5 \end{bmatrix} \quad (\%)$$

داده شود، ماتریس A کدام است؟

$$W = \begin{bmatrix} i_s \\ e_s \end{bmatrix}$$
 بردار ورودی است. اگر معادلات حالت و $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ بردار شکل زیر، بردار $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

مدار به صورت \dot{X} = AX+BW نوشته شود و ماتریس A به صورت زیر باشد:

$$\mathbf{A} = \begin{bmatrix} -1 & -1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ -1 & 0 \end{bmatrix}$$
 (*

$$\mathbf{B} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ -1 & 0 \end{bmatrix} (f) \qquad B = \begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{bmatrix} (f) \qquad \begin{bmatrix} 1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \\ 0 & -1 \end{bmatrix} (f) \qquad B = \begin{bmatrix} -1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \\ -1 & 0 \end{bmatrix} (f)$$

و تغییرپذیر با زمان شکل زیر، هرگاه بردار حالت $X = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}^T$ فرض شود، با توجه $X = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}^T$ به نمایش معادلات حالت $\dot{X} = AX + BU$ ، ماتریس A عبارت است از:

$$\begin{bmatrix} -2+te^{-t} & 1-te^{-t} & 0\\ 1-te^{-t} & -2+te^{-t} & 1\\ 0 & 1 & -1 \end{bmatrix}$$
 (Y

$$\begin{bmatrix} 2+te^{-t} & 1-te^{-t} & 0\\ -te^{-t} & -2+te^{-t} & 1\\ 0 & 1 & -1 \end{bmatrix}$$
 (*

$$\begin{bmatrix} te^{-t} & 1-te^{-t} & 0 \\ 1-te^{-t} & te^{-t} & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} 2 & -te^{-t} & 0 \\ te^{-t} & 2+te^{-t} & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
(Y

۱) تمامی عناصر ماتریس جدید A را نمی توان به دست آور د.

$$A_{a_{22}} = \frac{1}{\det[A]} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$
 (Y

A جدید
$$=\frac{1}{\det[A]}\begin{bmatrix} a_{11} & -a_{21} \\ -a_{12} & a_{22} \end{bmatrix}$$
 (۳

A عديد =
$$\frac{1}{\det[A]} \begin{bmatrix} \frac{1}{a_{22}} & \frac{-1}{a_{12}} \\ -\frac{1}{a_{21}} & \frac{1}{a_{11}} \end{bmatrix}$$
 (*

باشد، در $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ باشد، در $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ باشد، در $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ باشد، در المدار شکل زیر $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ باشد، در

رابطه $\dot{X}=AX+BW$ که در آن $\begin{vmatrix} i_s \\ e_s \end{vmatrix}$ است، ماتریس A و B کداماند؟

$$\begin{split} A = & \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \quad , \quad B = & \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{ (1)} \\ A = & \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad , \quad B = & \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{ (7)} \\ A = & \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \quad , \quad B = & \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{ (7)} \\ A = & \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \quad , \quad B = & \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \text{ (8)} \end{split}$$

رحسب متغیرهای V_{0} و V_{0} متغیرهای حالت هستند. ولتاژ خروجی مطلوب V_{0} برحسب متغیرهای V_{0} حالت به کدام صورت نوشته می شود؟

$$I_{L} + \frac{1}{6}V_{C} - \frac{1}{2}e_{s} \text{ (} 1$$

$$6I_{L} - V_{C} - e_{s} \text{ (} 7$$

$$3I_{L} - \frac{1}{2}V_{C} - \frac{1}{2}e_{s} \text{ (} 7$$

$$2I_{L} + \frac{1}{3}V_{C} - e_{s} \text{ (} 7$$

را برحسب بقیه متغیرهای حالت بیان می کند، کدام است؟ $\frac{dx_3}{dt}$ را برحسب بقیه متغیرهای حالت بیان می کند، کدام است؟

(مهندسی برق ۷۸)

$$\frac{dx_3}{dt} = -\frac{1}{3}x_1 + \frac{1}{6}x_2 - \frac{1}{6}x_3 - \frac{1}{3}i_s \text{ (1)}$$

$$\frac{dx_3}{dt} = -\frac{1}{3}x_1 - \frac{1}{6}x_2 + \frac{1}{6}x_3 + \frac{1}{3}i_s \text{ (Y)}$$

$$\frac{dx_3}{dt} = -\frac{1}{3}x_1 + \frac{1}{6}x_2 - \frac{1}{6}x_3 + \frac{1}{3}i_s \text{ (Y)}$$

$$\frac{dx_3}{dt} = -\frac{1}{3}x_1 - \frac{1}{6}x_2 + \frac{1}{6}x_3 - \frac{1}{3}i_s \text{ (Y)}$$

ایر ماتریس تلاقی A یک گراف مسطح را به دو ماتریس A_1 و A_1 متناظر با شاخه درختها و لینکها A_1 ثفکیک کنیم $\begin{bmatrix} A_1 & A_t \end{bmatrix}$ ، کدام یک از خواص زیر همواره برقرار است؟ (مهندسی برق ۸۳)

ک) دترمینان A_t همواره برابر ± 1 است.

همواره یک ماتریس ناویژه است. $A_{\,t}$ (۱)

۴) هر سه خاصیت برقرار است.

۳) A_t همواره یک ماتریس مربع است.

 $\mathbf{x} = \begin{vmatrix} \mathbf{i} \\ \mathbf{v} \end{vmatrix}$ است \mathbf{b} کدام است

نوشته شود، $\dot{x}=Ax+bw(t)$ اگر معادلات حالت مدار شکل زیر برحسب متغیرهای $\dot{x}=ax+bw(t)$ نوشته شود،

۱۶ ماتریس تلاقی مختصرشده گرافی چنین است:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \end{bmatrix}$$

PowerEn.ir

حل تشریحی

۱. گزینه ۳ درست است.

به نظر من این مسئله خیلی ساده است. گفتیم کاتست اساسی یعنی یک شاخه درخت داشته باشد و باقی لینک

باشد و حلقه اساسی یعنی یک لینک باشد و باقی شاخه درخت باشد. پس کاتستها و حلقههای اساسی را مینویسیم:

ساسی اساسی:
$$\{1\,,\,2\,,4\},\,\{\,3\,,\,2\,,5\},\,\{\,6\,,\,4\,,\,5\}$$

اساسی اساسی اساسی
$$\{2,1,3\},\{4,1,6\},\{5,3,6\}$$

۲. گزینه ۴ درست است.

ولتاژ شاخههایی را میتوان به عنوان متغیر مستقل در نظر گرفت که تشکیل حلقه ندهند و ازطرفی برای آنکه ولتاژ

همه شاخهها برحسب آنها قابل بیان باشد، باید به همه گرهها سر بزند؛ پس ترجمه صورت مسئله این گونه می شود: کدام شاخهها تشکیل درخت می دهند؟

حالا نوبت منه. اول، گراف متناظر را می کشیم:

حالا باید ببینیم کدام گزینه، تشکیل درخت میدهد که فقط { 7, 5, 7 } در بین گزینهها این خاصیت را دارد.

PowerEn.ir

۳. گزینه ۱ درست است.

اول منبع ولتاژ را به منبع جریان تبدیل میکنیم و سپس با عینک ادمیتانسبین

نگاه میکنیم:

$$Y = \begin{bmatrix} 1 - j & j \\ j & 1 \end{bmatrix}$$
 حالا داريم:

۴. گزینه ۳ درست است.

مدار 6 گره دارد که اگر یکی را زمین بگیریم، میشود 5 مجهول که البته به خاطر وجود منبع ولتاژ، یک مجهول

دیگر هم کم می شود؛ پس در روش کاتست و گره 5 مجهول وجود دارد. در روش مش 4 حلقه داریم که به خاطر وجود یک منبع جریان مستقل، یک مجهول کم می شود و 8 مجهول خواهیم داشت. بالاخره در روش فضای حالت، چون 8 عنصر مستقل ذخیره کننده انرژی سلفها و خازنها وجود دارد، باز 8 مجهول خواهیم داشت!!!

دوستم یک بی دقتی کوچک کرد؛ در روش مش، اگر دقت کنیم، جریان مش بالایی $i_1 = \frac{1}{R_3} \ V$ است و از طرفی

جریان مش جنوب شرقی! هم $i_4 = -g_m v$ است؛ پس i_1 و i_1 از هم مستقل نیستند و بنابراین در روش مش، حل مسئله به دو معادله دو مجهول می رسد.

۵. گزینه ۴ درست است.

$$\begin{bmatrix} 4s+1 & -2s \\ -2s & 4s+1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{s} + 2V_2 + 3I \\ \frac{1}{s} + \frac{1}{2}V_1 \end{bmatrix}$$

ازطرفی I = 2SV . پس با جایگذاری و انتقال ولتاژها به سمت چپ داریم:

$$\begin{bmatrix} 4s+1 & -8s-2 \\ -2s-\frac{1}{2} & 4s+1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ X \end{bmatrix} = \begin{bmatrix} 1 \\ s \\ 1 \\ s \end{bmatrix}$$

det A =
$$(4s + 1)^2 - (8s + 2)(2s + \frac{1}{2}) = 0$$

در این حالت چون طرف دوم معادلهٔ ماتریسی غیر صفر است، هیچ جوابی برای $\, V_1 \,$ و جود ندارد و اگر طرف دوم برابر صفر بود، بیشمار جواب داشتیم.

۶. گزینه ۲ درست است.

بله، قصد من از طرح این مسئله در این فصل، آن است که گاهی استفاده هوشمندانه از کاتستها و حلقههای خاص

که با چشمهای دقیق شما قابل رؤیت است، حل مسئله را خیلی کوتاه می کند.

در کاتست KCL: $-1+i-2+rac{i}{2}+rac{y_x}{0}=0 \implies i=2^A$

حالا در حلقه مستطیلیشکل KVL میزنیم:

$$KVL: V = 3i + 5 y_x^{0} - y_x^{0} \Rightarrow V = 6 V$$

۷. گزینه ۳ درست است.

چون ماتریس b خواسته نشده است، برای ساده شدن مدار می توانیم اول

منبع را صفر کنیم.

KVL على با آن روش باحال استاد! هرجای مدار که خواستیم KCL یا KCL می زنیم،مثلاً اگر در حلقه بیرونی

بزنیم، داریم:

$$\frac{\operatorname{di}_{L}}{\operatorname{dt}} + i_{L} - V_{C} - \frac{\operatorname{d}V_{c}}{\operatorname{dt}} = 0$$

$$\frac{\left| \frac{dV_c}{dt} \right|}{\left| \frac{dt}{dt} \right|} - \left| \frac{di_L}{dt} \right| = -V_c + i_L$$

پس اگر
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 باشد، باید:

$$a-c=-1=V_c$$
 ضریب $b-d=+1=i_L$ ضریب

بنابراین فقط گزینه ۳ درست است.

۸. گزینه ۴ درست است.

اول کاری به A نداریم، معادلات حالت را مینویسیم:

 $i_R = x_1 + x_2 - i_s$

 $KVL:e_{s} = Rx_{1} + Rx_{2} - Ri_{s} + x_{3} + L_{2}\dot{x}_{2}$

 $KVL:e_{s} = Rx_{1} + Rx_{2} - Ri_{s} + L_{1}\dot{x}_{1}$

 $KCL: C\dot{x}_3 = x_2 - i_s$

با KCL در كاتست مشخصشده:

و حالا با KVL در حلقه بیرونی داریم:

و با KVL در حلقه چیے:

ونهایتاً با KCL در گره سمت راست خازن:

$$\begin{pmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{pmatrix} = \begin{pmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} & 0 \\ -\frac{R}{L_2} & -\frac{R}{L_2} & -\frac{1}{L_2} \\ 0 & \frac{1}{C} & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} + \begin{pmatrix} \frac{R}{L_1} & \frac{1}{L_1} \\ \frac{R}{L_2} & \frac{1}{L_2} \\ -\frac{1}{C} & 0 \end{pmatrix} \begin{pmatrix} i_s \\ e_s \end{pmatrix}$$

با مقایسه این معادلات با ماتریس A که در صورت مسئله داده شده، داریم:

$$\frac{R}{L_1} = 1$$
 , $\frac{R}{L_2} = \frac{1}{2}$, $\frac{1}{C} = 1$, $L_1 = 1$, $L_2 = 2$

پس ماتریس B برابر است با:

$$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ -1 & 0 \end{pmatrix}$$

٩. گزينه ۲ درست است.

 ϕ و q ا ا $I_{
m L}$ و $V_{
m C}$ هیچ اثری. فقط دقت کنید که در شبکههای غیر خطی یا تغییرپذیر با زمان، بهتر است بهجای

استفاده کنیم؛ در این صورت معادلات اساسی این گونه است:

$$I_C = \frac{dq}{dt} = \dot{q}$$
 g $V_C = \frac{q}{C}$

$$V_L = \frac{d\phi}{dt} = \dot{\phi} \qquad \text{9} \quad I_L = \frac{\phi}{L}$$

که البته انتخاب متغیرهای حالت، دست ما نیست و خود طراح این کار را انجام میدهد.

حالا به سبكي كه شما در طول درس گفتيد، درختي مي گيريم شامل همه خازنها به اين شكل:

$$\begin{aligned} \dot{q}_1 + 1 \left(q_1 - e_s \right) + \left(1 - t e^{-t} \right) \left(q_1 - q_2 \right) &= 0 \\ \dot{q}_2 + \left(1 - t e^{-t} \right) \left(q_2 - q_1 \right) + 1 \left(q_2 - q_3 \right) &= 0 \\ \dot{q}_3 + 1 \left(q_3 - q_2 \right) &= 0 \end{aligned}$$

که با مرتب کردن این معادله، به سادگی مشخص می شود که گزینه ۲ درست است.

با آنکه خودم مسئله را حل کردم، اما یک سؤال دارم؛ آیا در این مسئله نمی شود از آن بازی های تستی درآورد؟

چرا،اتفاقاً یک راه جالب به ذهن من رسید. به این شکل

نگاه کنید:

مدارهاي الكتريكي

www.PowerEn.ir

حالا اگر یک KVL بزنیم، داریم:

$$\frac{1}{1-te^{-t}} \left(\dot{q}_2 + \dot{q}_3 \right) + q_2 - q_1 = 0$$

يعنى:

$$\dot{q}_{2} + \dot{q}_{3} = \left(1 - te^{-t}\right)q_{1} - \left(1 - te^{-t}\right)q_{2} + 0q_{3} + 0e_{s}$$

با چک کردن گزینهها پیداست که فقط گزینه ۲ می تواند درست باشد.

۱۰. گزینه ۲ درست است.

خیلی خب، من شروع می کنم؛ ابتدا باید معادلات حالت در مدار اولیه را بنویسیم:

حالا قرار است جای سلف ۱ هانری و خازن ۱ فارادی عوض شود؛ پس متغیری که قبلاً اسمش V_L بود، حالا V_C می شود و الی آخر.

در این صورت با عوض کردن اسمها داریم:

$$\begin{split} &\dot{I}_L = V_L \rightarrow V_C \quad, \quad I_L \rightarrow I_C = \dot{V}_C \\ &\dot{V}_C = I_C \rightarrow I_L \quad, \quad V_C \rightarrow V_L = \dot{I}_L \end{split}$$

$$\begin{bmatrix} V_C \\ I_L \end{bmatrix} = A \begin{bmatrix} \dot{V}_C \\ \dot{I}_L \end{bmatrix}$$

و اگر طرفین را در A^{-1} ضرب کنیم:

$$\begin{bmatrix} \dot{V}_C \\ \dot{I}_L \end{bmatrix} = A^{-1} \begin{bmatrix} V_C \\ I_L \end{bmatrix} \implies A \text{ a.s.} = A^{-1}$$

۱۱. گزینه ۳ درست است.

به این مدار نگاه کنید. بعد از یک KVL بازی کوچک و KCL در

گرهٔ خوب داریم:

حالا در گرههای (KCL ، (A بزنید:

$$\dot{X}_1 + X_2 + X_1 = i_s$$

 $\Rightarrow \dot{X}_1 = -1X_1 - 1X_2 + 1i_s + 0e_s$

که این عبارت فقط با سطر اول گزینه (۳) میخواند و نیازی به حل کامل مسئله نیست.

۱۲.گزینه ۴ درست است.

$$V_0 = V_C - 2V_L - e_s$$

 $2V_{L} - V_{C} + 3I_{L} + V_{L} = 0 \implies V_{L} = \frac{1}{3}V_{C} - I_{L}$

و حالا این $\,V_L\,$ را در معادله اول جایگذاری می کنیم:

$$V_o = V_C - 2\left(\frac{1}{3}V_C - I_L\right) - e_s$$

$$V_o = \frac{1}{3}V_C + 2I_L - e_s$$

۱۳. گزینه ۳ درست است.

ابتدا روی مدار KCL بازی می کنیم:

و حالا در حلقهٔ شامل مقاومتهای 2 اهمی و 1 اهمی، KVL میزنیم:

$$X_3 + 2\dot{X}_3 - X_2 - 2i_s + 4\dot{X}_3 + 2X_1 = 0$$

$$\Rightarrow \ \dot{X}_3 = -\frac{1}{3} \, X_1 + \frac{1}{6} \, X_2 - \frac{1}{6} \, X_3 + \frac{1}{3} \, i_s$$

فوق العاده است! انصافاً با این روشهای حل تان خستگی را از تن آدم درمی آورید.

۱۴. گزینه ۴ درست است.

در ماتریس A ستونهای معرف شاخهها و سطرها معرف گرهها است، پس در A_{t} که معرف شاخه درختهاست، طبق

تعریف چون شاخهها باید به همه گرهها سر بزنند و حلقهای هم ایجاد نکنند، تعداد شاخهها و گرهها برابر بوده و A_t مربعی است.

برای تحلیل دترمینان هم اگر A_t را برای سادگی 2×2 در نظر بگیریم، مطمئناً یک درایه غیر صفر باید داشته

باشد وگرنه حلقه درست می شود و در این حال دترمینان برابر \pm خواهد بود که ناویژه بودن ماتریس را هم سبب می شود. پس گزینه \pm درست است.

۱۵. گزینه ۳ درست است.

برای حل تستها، بعد از KCL و KVL بازی، هرجای مدار که خواستیم باید یک معادله بنویسیم،مثلاً با یک KCL

در گرهٔ سمت چپ داریم

$$2\frac{di}{dt} - \frac{dv}{dt} = -i - i_S$$

$$2p - q = -1$$

که 1- ضریب $w(t) = i_S(t)$ است.

16. گزینه ۱ درست است.

از روی ماتریس تلاقی، شکل گراف را رسم می کنیم،مثلاً برای گزینه ۱ داریم:

که این شاخهها به همه گرهها سر زدهاند و حلقه هم درست نکردهاند؛ پس تشکیل درخت میدهند.

بله، این راه مطمئن است. برای حذف گزینه هم راههای سریعی وجود دارد؛ مثلاً اگر به شاخههای گزینه ۲ نگاه

کنید، میبینید که هیچکدام از گزینهها به گره 3 سر نزدهاند و به همین ترتیب برای گزینه ۳ به گرهٔ 4 و برای گزینه ۴ به گرهٔ 1 ؛ پس، این شاخهها تشکیل درخت نمیدهند.

PowerEn.ir

PowerEn.ir

خودآزمایی فصل اول

ا. در گراف شکل مقابل، ماتریسی که ولتاژ شاخههای v_4,v_3,v_2,v_1 را برحسب ولتاژ شاخههای v_9,v_8,v_7,v_6,v_5

باشد، نسبت $\frac{\beta}{\alpha}$ چقدر است $Y = \begin{bmatrix} 3 & -2 & -1 \\ -1 & 3 & -2 \\ -3 & 1 & 5 \end{bmatrix}$ چقدر است $Y = \begin{bmatrix} 3 & -2 & -1 \\ -1 & 3 & -2 \\ -3 & 1 & 5 \end{bmatrix}$ باشد، نسبت گره مدار شکل مقابل به فرم

$$\begin{array}{c}
2 \text{ (1)} \\
-\frac{1}{2} \text{ (7)} \\
3 \text{ (7)} \\
-\frac{1}{2} \text{ (4)}
\end{array}$$

PowerEn.ir

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$
 باشد، تعداد درختهای آن چند است؟ . $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$

۴. ماتریس کات ست گرافی به صورت زیر است، دو حلقه اساسی متناظر با درخت این کات ست کدام گزینه است؟

$$Q = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L_2 = \left\{ 3, 4, 7 \right\} \; , \; L_1 = \left\{ 2, 3, 8 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 3, 4, 8 \right\} \; , \; L_1 = \left\{ 2, 3, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 1, 2, 7 \right\} \; (\Upsilon \qquad \qquad L_2 = \left\{ 2, 3, 7 \right\} \; , \; L_1 = \left\{ 2, 3, 7 \right\} \;$$

نوشته شود که در آن
$$E = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$
، شکل گراف به کدامیک از $Q = \begin{bmatrix} E \ I \end{bmatrix}$ شکل گراف به کدامیک از

حالتهای زیر می تواند باشد؟

روبرو است، $m L_3$ و $m L_4$ و $m L_5$ به طور مغناطیسی تزویج شده و ماتریس اندوکتانس آنها به صورت روبرو است، معادلهٔ گره کدام است؟

$$\begin{bmatrix} G_2 + j\omega c_1 & -G_2 & 0 \\ -G_2 & G_2 + \frac{5}{j\omega} & \frac{-2}{j\omega} \\ 0 & \frac{-2}{j\omega} & \frac{2}{j\omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} G_2 + j\omega c_1 & -G_2 & 0 \\ -G_2 & G_2 + \frac{6}{j\omega} & \frac{-2}{j\omega} \\ 0 & \frac{-2}{j\omega} & \frac{4}{j\omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} I \\ g_m \\ 0 \end{bmatrix} (Y)$$

$$\begin{bmatrix} j\omega c_1 + G_2 & -G_2 & 0 \\ -G_2 + g_m & G_2 - g_m + \frac{7}{j\omega} & \frac{-3}{j\omega} \\ g'_m & -\frac{3}{j\omega} & \frac{2}{j\omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix} (\Upsilon$$

$$\begin{bmatrix} j\omega c_1 + G_2 & -G_2 & g'_m \\ -G_2 & G_2 - g_m + \frac{7}{j\omega} & \frac{-3}{j\omega} \\ g'_m & -\frac{3}{j\omega} & \frac{2}{j\omega} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} I \\ g_m \\ 0 \end{bmatrix}$$

٧. تحت چه شرایطی، مدار شکل زیر، جواب یکتایی ندارد؟

$$\alpha=2$$
 , $\gamma=1$, $\beta=3$, $c=4F$ ()
$$\alpha\gamma=1$$
 , $c\beta=4$ (Y
$$\alpha\gamma=1$$
 , $\beta=3$, $\alpha=\frac{1}{2}$ (Y
$$\alpha\gamma=1$$
 , $\beta=3$, $\gamma=\frac{1}{2}$ (F

۸. در گراف نشان داده شده، تعداد درختهایی را که تمام حلقههای اساسی آن همان مشها باشند و از طرفی تعداد درختهایی را که تمام کاتستهای اساسی آن متناظر با شاخههای وصل شده به گرهها باشند، به ترتیب جندتاست؟

$$n_t=n_{tree}$$
 تعداد درختها $n_c=n_{cutset}$ تعداد کاتستها $n_c=2$, $n_t=4$ (۱ $n_c=0$, $n_t=4$ (۲ $n_c=2$, $n_t=0$ (۳

 $n_c = 0$, $n_t = 2$ (4

۴) هیچکدام

در معادلات حالت مداری که بهصورت \dot{X} = \dot{X} میباشد، ماتریس انتقال حالت بهصورت زیر است. ماتریس A در \P

$$\phi(t) = e^{At} = \begin{pmatrix} 3e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ e^{-t} - e^{-2t} & e^{-2t} + e^{-t} \end{pmatrix}$$
 بعادلات حالت چگونه بوده است $\begin{pmatrix} -1 & 1 \\ 1 & -3 \end{pmatrix}$ (۴
$$\begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}$$
 (۳
$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
 (۲
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 (۱)

است؟ و مقدار $\phi_{L}=\mathrm{tg}\,h\,i_{L}$ و مقدار $\phi_{L}=\mathrm{tg}\,h\,i_{L}$ کدام است؟ $\phi_{L}=\mathrm{tg}\,h\,i_{L}$ کدام است؟

 $\left(C=1F~,~L=1^{H}~,~R=1^{\Omega}
ight)$ الگر ضریب چرخش ژیراتور برابر $R=1^{\Omega}$ باشد معادلات حالت مدار کدام است $R=1^{\Omega}$

$$\begin{pmatrix} \dot{\mathbf{V}}_{\mathbf{C}} \\ \dot{\mathbf{I}}_{\mathbf{L}} \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{V}_{\mathbf{C}} \\ \mathbf{I}_{\mathbf{L}} \end{pmatrix} + \begin{pmatrix} +2 \\ +1 \end{pmatrix} \mathbf{I}_{\mathbf{S}} \quad (\mathbf{V}_{\mathbf{C}}) \\ \begin{pmatrix} \dot{\mathbf{V}}_{\mathbf{C}} \\ \dot{\mathbf{I}}_{\mathbf{L}} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{V}_{\mathbf{C}} \\ \mathbf{I}_{\mathbf{L}} \end{pmatrix} + \begin{pmatrix} +2 \\ +1 \end{pmatrix} \mathbf{I}_{\mathbf{S}} \quad (\mathbf{Y}_{\mathbf{C}}) \\ \begin{pmatrix} \dot{\mathbf{V}}_{\mathbf{C}} \\ \dot{\mathbf{I}}_{\mathbf{L}} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{V}_{\mathbf{C}} \\ \mathbf{I}_{\mathbf{L}} \end{pmatrix} + \begin{pmatrix} +2 \\ -1 \end{pmatrix} \mathbf{I}_{\mathbf{S}} \quad (\mathbf{Y}_{\mathbf{C}}) \\ \begin{pmatrix} \dot{\mathbf{V}}_{\mathbf{C}} \\ \dot{\mathbf{I}}_{\mathbf{L}} \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{V}_{\mathbf{C}} \\ \mathbf{I}_{\mathbf{L}} \end{pmatrix} + \begin{pmatrix} +2 \\ -1 \end{pmatrix} \mathbf{I}_{\mathbf{S}} \quad (\mathbf{Y}_{\mathbf{C}})$$