Roman, Advanced Linear Algebra

Danny Nygård Hansen 6th February 2022

1 • Vector Spaces

EXERCISE 1.11

Show that if *S* is a subspace of a vector space *V*, then dim $S \le \dim V$. Furthermore, if dim $S = \dim V < \infty$ then S = V.

SOLUTION. Let \mathcal{B} be a basis for S. Then this is linearly independent as a subset of V, hence is contained in a basis \mathcal{B}' for V by Theorem 1.9. Then $\mathcal{B} \subseteq \mathcal{B}'$, so it follows that dim $S \leq \dim V$.

Now assume that $\dim S = \dim V < \infty$. Then $|\mathcal{B}| = |\mathcal{B}'|$, but since each basis is finite and one is contained in the other, we must have $\mathcal{B} = \mathcal{B}'$. Hence S = V. \square