The group G is isomorphic to the group labelled by [60, 8] in the Small Groups library. Ordinary character table of $G \cong S3 \times D10$:

Trivial source character table of $G \cong S3 \times D10$ at p = 2:

Normalisers N_i	N_1					N_2			N	3	$N_4 \mid \Lambda$	5
p-subgroups of G up to conjugacy in G		P_1						P_2			P_4 P	5
Representatives $n_j \in N_i$	1a	3a $5a$	15a	5b	15b	1a	5a	5b	1a	3a	1a 1	\overline{a}
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4 4	4	4	4	0	0	0	0	0	0 ()
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	$4 2 * E(5)^2 + 2 * E(5)^3$	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	$2*E(5) + 2*E(5)^4$	0	0	0	0	0	0 ()
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	$4 2 * E(5) + 2 * E(5)^4$	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	0	0	0 0)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2 4	-2	4	-2	0	0	0	0	0	0 0)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	$-2 2 * E(5) + 2 * E(5)^4$	$-E(5) - E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	$-E(5)^2 - E(5)^3$	0	0	0	0	0	0 0)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	4	$-2 2 * E(5)^2 + 2 * E(5)^3$	$-E(5)^2 - E(5)^3$	$2*E(5) + 2*E(5)^4$	$-E(5) - E(5)^4$	0	0	0	0	0	0 ()
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2		2	2	2	2	2	2	0	0	0 ()
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	$2 E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$			0	0 ()
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	0 ()
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2 2	2	2	2	0	0	0	2	2	0 ()
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1 2	-1	2	-1	0	0	0	2	-1	0 ()
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2 2	2	2	2	0	0	0	0	0	2 ()
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1 1	1	1	1	1	1	1	1	1	1 1	

 $P_1 = Group(|()|) \cong 1$

 $P_2 = Group([(1,3)(2,6)(4,19)(5,10)(7,25)(8,15)(9,11)(12,31)(13,21)(14,16)(17,37)(18,27)(20,22)(23,43)(24,33)(26,28)(29,48)(30,39)(32,34)(35,53)(36,45)(38,40)(41,56)(42,50)(44,46)(47,59)(49,51)(52,60)(54,55)(57,58)]) \cong C2$

 $P_3 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(9,14)(10,50)(11,16)(12,52)(13,30)(15,45)(17,47)(18,24)(19,25)(20,57)(21,39)(22,58)(23,41)(26,54)(27,33)(28,55)(29,35)(31,60)(32,49)(34,51)(37,59)(38,44)(40,46)(43,56)(48,53)] \cong \mathbb{C}^2$

 $P_4 = Group([(1,6)(2,3)(4,25)(5,50)(7,19)(8,45)(9,16)(10,42)(11,14)(12,60)(13,39)(15,36)(17,59)(18,33)(20,58)(21,30)(22,57)(23,56)(24,27)(26,55)(28,54)(29,53)(31,52)(32,51)(34,49)(35,48)(37,47)(38,46)(40,44)(41,43)]) \cong C2$

 $P_5 = Group([(1,3)(2,6)(4,19)(5,10)(7,25)(8,15)(9,11)(12,31)(13,21)(14,16)(17,37)(18,27)(20,22)(23,43)(24,33)(26,28)(29,48)(30,39)(32,34)(35,53)(36,45)(38,40)(41,56)(42,50)(44,46)(47,59)(49,51)(52,60)(54,55)(29,35)(31,60)(32,49)(34,51)(37,59)(38,44)(40,46)(43,56)(48,53)]) \\ \cong C2 \times C2$

 $N_2 = Group([(1,3)(2,6)(4,19)(5,10)(7,25)(8,15)(9,11)(12,31)(13,21)(14,16)(17,37)(18,27)(20,22)(23,43)(24,33)(26,53)(31,60)(32,49)(43,51)(32,53)(33,45)(43,23)(24,33)(26,53)(33,45)(43,23)(24,33)(26,23)(24$

 $N_3 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(9,14)(10,50)(11,16)(12,52)(13,30)(15,45)(27,48,38)(30,51,41)(33,53,44)(36,55,47)(39,56,49)(42,58,52)(45,59,54)(50,60,57)]) \\ \cong D12$

 $N_4 = Group([(1,6)(2,3)(4,25)(5,50)(7,19)(8,45)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(31,52)(29,53)(2$

 $E(5)^2 + E(5)^3$ 0 2 $E(5) + E(5)^4$ $E(5)^2 + E(5)^3$ 0 -2 $-E(5) - E(5)^4$ $-E(5)^2 - E(5)^3$ 0

 $\begin{vmatrix} \chi_{10} \\ \chi_{11} \\ \chi_{12} \end{vmatrix} = 2 \qquad \qquad 2 \qquad \qquad 2 \qquad \qquad -2 \qquad -1 \qquad \qquad -1 \qquad \qquad 1 \qquad 0 \qquad \qquad 0$ $\chi_{11} \begin{vmatrix} \chi_{10} \\ \chi_{12} \\ \chi_{12} \end{vmatrix} = 4 \qquad 2*E(5) + 2*E(5)^4 \qquad 2*E(5)^2 + 2*E(5)^3 \qquad 0 \qquad -2 \qquad -E(5) - E(5)^4 \qquad -E(5)^2 - E(5)^3 \qquad 0 \qquad 0$ $\chi_{12} \begin{vmatrix} \chi_{10} \\ \chi_{12} \\ \chi_{12} \end{vmatrix} = 4 \qquad 2*E(5)^2 + 2*E(5)^3 \qquad 2*E(5) + 2*E(5)^4 \qquad 0 \qquad -2 \qquad -E(5)^2 - E(5)^3 \qquad -E(5) - E(5)^4 \qquad 0 \qquad 0$

 $N_5 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(9,14)(10,50)(11,16)(12,52)(13,30)(15,45)(29,48)(30,39)(32,34)(35,53)(36,45)(38,40)(41,56)(42,50)(44,46)(47,59)(49,51)(52,60)(54,55)(57,58)]) \cong C2 \times C2$