Exercises, Algebraic Geometry I – Week 11

Exercise 59. Tensor products with ample invertible sheaves (4 points)

Let X be a scheme of finite type over a Noetherian ring A. Let \mathcal{L} and \mathcal{M} be invertible sheaves on X. Show the following:

- (i) If \mathcal{L} is ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is ample.
- (ii) If \mathcal{L} is ample, then there exists $n_0 \geq 0$ such that $\mathcal{L}^{\otimes n} \otimes \mathcal{M}$ is ample for all $n \geq n_0$.
- (iii) if \mathcal{L} and \mathcal{M} are ample, then so is $\mathcal{L} \otimes \mathcal{M}$.
- (iv) If \mathcal{L} is very ample (over A) and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is very ample.

Exercise 60. Extending coherent sheaves (4 points)

The goal of this exercise is to extend a coherent sheaf defined on an open subscheme; in particular the following statement.

- (*) If X is a Noetherian scheme, $i: U \hookrightarrow X$ is an open subscheme of X, \mathcal{F} is a coherent sheaf on U, and \mathcal{G} is a quasi-coherent sheaf on X such that $\mathcal{F} \subseteq \mathcal{G}|_U$, then there exists a coherent subsheaf $\mathcal{F}' \subseteq \mathcal{G}$ such that $\mathcal{F}'|_U = \mathcal{F}$.
 - (i) Prove that every quasi-coherent sheaf on a Noetherian affine scheme is the union of its coherent subsheaves.
 - (Here, we say that a sheaf of abelian groups \mathcal{F} on a topological space X is a union of subsheaves of abelian groups \mathcal{F}_{α} if for every open $U \subset X$ the group $\mathcal{F}(U)$ is the union of its subgroups $\mathcal{F}_{\alpha}(U)$.)
 - (ii) Show that (*) holds if X is affine.
- (iii) Show that (*) holds.

Exercise 61. Morphisms from projective spaces (4 points)

Let k be a field and let $f: \mathbb{P}^n_k \to X$ be a morphism of k-schemes. Show the following:

- (i) If X is affine, then $f(\mathbb{P}_k^n)$ is a (k-rational) point of X.
- (ii) If $X = \mathbb{P}_k^m$, then f is the composition of a d-fold Veronese morphism for a unique $d \geq 0$ with iterated projections from points, inclusions of hyperplanes and an automorphism of \mathbb{P}_k^m .
- (iii) If X is quasi-projective over k, then either $f(\mathbb{P}^n_k)$ is a (k-rational) point of X or the fibres of f over the k-rational points are finite.
- (iv) (+1 extra point) Furthermore if $f(\mathbb{P}^n_k)$ is not a k-rational point then f is finite.

Ρ.	lease	turn	over

Exercise 62. Calculating divisor class groups (4 points)

Let k be a field. Calculate the divisor class group of the affine cone over the Veronese image of \mathbb{P}^1_k in \mathbb{P}^2_k .

Exercise 63. Birational isomorphisms in small dimension (4 points)

Two integral schemes X and Y are called *birational* (over a scheme S) if there exist non-empty open subschemes $U \subseteq X$ and $V \subseteq Y$ and an isomorphism $U \cong V$ (over S).

- (i) Let X and Y be integral normal schemes of dimension 1 which are proper over a field k. Show that if X and Y are birational over k, then they are isomorphic over k.
 (Hint: Use Exercise 36 (ii))
- (ii) Let k be a field. Calculate $\operatorname{Pic}(\mathbb{P}^1_k \times_{\operatorname{Spec}} {}_k \mathbb{P}^1_k)$. Deduce that $\mathbb{P}^1_k \times_{\operatorname{Spec}} {}_k \mathbb{P}^1_k$ and \mathbb{P}^2_k are not isomorphic over k (even though they are birational over k).

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 64. The Grothendieck group of a scheme (+ 5 extra points)

Let X be a Noetherian scheme. The Grothendieck group $K_0(X)$ of X is defined as the quotient of the free abelian group generated by all coherent sheaves on X by the subgroup generated by the expressions $\mathcal{F} - \mathcal{F}' - \mathcal{F}''$, whenever there is an exact sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

of coherent sheaves on X.

- (i) If X is integral and \mathcal{F} is a coherent sheaf on X, we define the rank of \mathcal{F} as $rank(\mathcal{F}) := \dim_{\mathcal{O}_{X,\eta}}(\mathcal{F}_{\eta})$, where η is the generic point of X. Show that rank(-) defines a surjective homomorphism from $K_0(X)$ to \mathbb{Z} .
- (ii) Let $Y \subseteq X$ be a closed subscheme and let \mathcal{F} be a coherent sheaf on X with support on Y. Show that \mathcal{F} admits a finite filtration by coherent sheaves

$$0 = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_n = \mathcal{F}$$

such that each $\mathcal{F}_i/\mathcal{F}_{i-1}$ is the pushforward of a coherent sheaf on Y.

(iii) Let $\iota: Y \hookrightarrow X$ be a closed immersion. Show that there is an exact sequence

$$K_0(Y) \stackrel{\alpha}{\to} K_0(X) \stackrel{\beta}{\to} K_0(X-Y) \to 0,$$

where α is induced by ι_* and β is induced by $(-)|_{X-Y}$.

(Hints: First, note that $\beta \circ \alpha = 0$, so that β induces a homomorphism

$$\overline{\beta}: K_0(X)/\alpha(K_0(Y)) \to K_0(X-Y).$$

Then, use Exercise 54 and Part (ii) of the current exercise to construct an inverse to $\overline{\beta}$.)

(iv) Let k be a field. Calculate $K_0(\operatorname{Spec} k)$, $K_0(\mathbb{A}^1_k)$, and $K_0(\mathbb{P}^1_k)$.