

Winning Space Race with Data Science

Rob Clowting 28-09-2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Collection of data was done through an API and web scraping
- Exploratory Data Analysis was performed through data wrangling, data visualization and inveractive analytics

Summary of all results

- We identified several characteristics that appear to predict landing success: landing site and payload mass
- Through Machine Learning we identified the decision tree model to be the best predictor for landing success

Introduction

- The objective of this project is to evaluate if new company SpaceY can compete with existing company SpaceX
- This presentation will answer the following questions:
 - Determine the price of the each launch by estimating if the first stage will be reused
 - What is the best place to make landings

Methodology

Executive Summary

- Data collection methodology:
 - Data from SpaceX is collected from two sources: SpaceX API and Webscraping
- Data wrangling
 - First, data is summarized and analyzed. Then, data is enriched with a binary landing outcome label
- Exploratory data analysis (EDA) using visualization and SQL
- Interactive visual analytics using Folium and Plotly Dash
- Predictive analysis using classification models
 - Data is normalized, divided into training and test data and evaluated based on four classification models. These classification models are then ranked based on accuracy

Data Collection

- Data collection methodology:
 - Data from SpaceX is collected from two sources:
 - SpaceX API https://api.spacexdata.com/v4/rockets/
 - Webscraping https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launces)

Data Collection – SpaceX API

- SpaceX has a public API that can be used to get data on their launches
- Data was collected according to the flowchart

Request API and parse SpaceX data

Filter data to only Falcon 9

Fix missing values

https://github.com/clowtmans/Coursera_IBM_Capstone/blob/42b2fdfe2432aOc5f3ab3Oeed4d26bf934bf9497/Data%2OCollection%2Owith%2OAPI.ipynb

Data Collection - Scraping

- A second way to collect the data is by scraping the Wikipedia page for Falcon launces
- Data is collected according to the flowchart

https://github.com/clowtmans/Coursera_IBM_Capstone/blob/78b84bf5c8549f878588aa12da93acd716ff90e9/Data%20Collection%20with%20Web%20Scraping.ipynb

Request Falcon launch page

Extract all relevant data from html table

Create dataframe by parsing HTML table

Data Wrangling

- First, Exploratory Data analysis was performed to find patterns in the data
- Then, data was summarized and number and occurrence of mission outcomes are generated
- Finally, booster landings were converted into a binary outcome label where 1 means a successful landing and 0 means unsuccessful

EDA with Data Visualization

- Summary of plotted charts to gather first insights on impact of variables on success rate:
 - Scatterplot of Flight Number vs. Payload Mass
 - Scatterplot of Flight Number vs. Launch Site
 - Scatterplot of Payload and Launch Site
 - Bar chart of Success Rate and Orbit
 - Scatterplot of Flight Number and Orbit
 - Scatterplot of Payload Mass and Orbit
 - Line chart of Success Rate over years

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
 - Select distinct launch sites in the space mission
 - Display 5 records where launch site begins with CCA
 - Display total payload mass carried by boosters launched by NASA
 - Display average mayload mass carried by booster version F9 v1.1
 - Determine date when first successful ground pad landing was achieved
 - Show booster names with mass between 4000 and 6000 kg that successfully landed on drone ship
 - Calculate total number of successful and failed mission outcomes
 - Determine booster versions that have carried the maximum payload mass
 - Rank count of successful landings between 05-06-2010 and 20-03-207

Build an Interactive Map with Folium

- A Folium map was created with markers, circles, lines and marker clusters.
 - Markers are points of interest on the map
 - Circles highlight areas around a certain point of interest (coordinates)
 - Lines are used to indicate the distance between points
 - Marker clusters are used to present a group of events around a certain coordinate

Predictive Analysis (Classification)

- Four classification models were built and compared:
 - Logistic regression
 - Support vector machine
 - Decision tree
 - K-nearest neighbors

Prepare and Standardize Data

Build and test the four classification models

Compare results and determine best model

https://github.com/clowtmans/Coursera_IBM_Capstone/blob/d2448515f2740c98a3094bc5a3307ddacb1bb486/Predictive%20Analysis%20wit h%20Machine%20Learning.ipynb

Results

- Exploratory data analysis results
 - Higher payloads lead to higher likelihood of successful landing
 - Most flights were launched from CCAFS SLC-40
 - Orbit type is not a good predictor of landing success
 - Landing success increased over time from start in 2010 until today
- Predictive analysis results
 - Decision tree is the best model to predict successful landing with an accuracy of 89%

Flight Number vs. Launch Site

- Landing success increases with flight number
- Disregarding the first 25 flight numbers, there seems to be no relationship between launch site and landing success

Payload vs. Launch Site

- Heavier rockets have higher success rates
- No rockets heavier than 10.000kg were launced from VAFB SLC 4E

Success Rate vs. Orbit Type

- There are four Orbit types with a 100% success rate:
 - ES-L1
 - GEO
 - HEO
 - SSO
- Orbit type SO has a 0% success rate

Flight Number vs. Orbit Type

 As flight number increases, orbit types LEO, PO and GTO become less common and SSO and VLEO increase

Payload vs. Orbit Type

- Orbit types ISS and GTO have lower payload mass
- · High payloadmass has a higher success rate regardless of orbit type
- Orbit type VLEO has exclusively high payload rates

Launch Success Yearly Trend

 Average succes rate of the missions increased since the beginning in 2010 and today

All Launch Site Names

• Unique launch sites, found by selecting the disctinct launch sites

Launch Site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`:

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_ _KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

 By summing the total payload mass of all boosters launched by NASA we find the total mass accounts to 111.268kg

Average Payload Mass by F9 v1.1

• By selecting the average payload mass of all missions with the booster version F9 v1.1 we find the result to be 2.928kg

Total Number of Successful and Failure Mission Outcomes

- Only 1 out of 101 missions failed, the rest was successful
- Query results in table below

Mission_Outcome	QTY
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

SpaceX Launch Sites Map

• Launch sites are in California and Florida and located near the sea

Launch Sites and Success Rates

Distance to Sea

Classification Accuracy

- Decision Tree has the highest accuracy with 89%
- The other models score similarly

Confusion Matrix

• The confusion matrix shows the amount of true positives is good, the amount of true negatives can be improved

Conclusions

• Through the decision tree Machine Learning Models, we can predict the landing outcome with a 89% accuracy

