

Dayananda Sagar College of Engineering Department of Electronics & Communication Engineering Continuous Internal Evaluation - I

., ,,,	****		Continuous anter ner activities	Data		/11/2021
Course Nam		ic:	Wireless and Mobile Communication	Date:		Monday
Course Code			17EC7DCWMC	Timings:	11.15am-	
Semes	ter &	Section:	7 A,B,C,D	Duration:	11112	1% Hrs.
Max N	Marks: 50 M Duration:					CO &
No.		Question Description		Mks	Levels	
QI	(a)	The radiation lobe containing the direction of maximum radiation is called as i. Major lobe ii. Minor lobe iii. Side lobe iv. Back lobe			I	
	(b)		is a least directive antenna. i. linear antenna ii. isotropic antenna iii. aperture antenna iv. all of the above.			
	(c)		If beam efficiency is 0.87 then the stray factor is			
	(d)	Frespel zone is also called as			1	
	(c)	For a center fed short antenna, current distribution is at center and at ends.			1	
	(f)	Find the directivity when the half power beam widths are 45° and 60° in perpendicular planes. i. 12.58 ii. 17.98 iii. 22.91 iv. 15.28			1	
	(g)	How the directivity and effective aperture related to each other? i. Inversely proportional ii. Directly proportional iii. Independent iv. Proportionality depends on input power				
	(h)		is 6°, then resolution is		1	
	What is the Beam area for Directivity to be 1 in Steradian? $i.4\pi$ ii. $1/2\pi$ iii. 2π iv. $1/4\pi$		ı			
	(j)	If directi	vity of antenna increases, then the coverage area ses ii. increases iii. increases and then decreases iv. remains unchai	nged	1	
Q2	(a)	Illustrate the antenna field pattern using i, co-ordinate system ii. Polar co-ordinate system			5	COL
	(b)	Define the following: i. Half power beam width ii. Radiation Intensity iii. Directivity iv. Antenna Efficiency v. Resolution		ina 5	COL	
Q3	(a)	Derive t	he relation between Beam area and Directivity of an antenna.		4	CO1
	(b)	A radio link has 150 W of transmitted power Pt connected to an antenna 3 sq. m effective		6	COI	
Q4	(a)	Sketch t	he radiation intensity pattern for the following: rectional cosine cubed pattern: P = Pm Cos ³ O rectional sine squared pattern: U = Um Sin ² O		5	COI
	(b)	_	note on: i. Antenna field zones ii. Effective height of antenna		5	COL
			OR			COI
Q:	5 (a) i. Effect	and obtain the relevant equations for the following: tive Aperture ii. Collective Aperture the relation between apertures of antenna.		5	COL
	(b	Find the	the relation octween apertunes of antenna. The beam area and directivity for the following pattern in $\cos \Theta$ for $0 \le \Theta \le \pi$.		5	COI
Q	6 (a	Derive	the Friis formula and discuss on the effect of distance on ratio of receive tted power.	ed power to	5	COI
	(t) Illustra	te the fields generated from an oscillating dipole with relevant diagrams		5	COI
			OR			COL
Q	_	a) Give th	e physical significance of Gain and Directivity of an antenna.		5	COL
	 ·	b) Show t	hat the directivity for unidirectional operation is 2 (n+1)		5	COL

A - Dr. KPS . B-RSK . C- SAS, D- TT

Note: Q2, Q3, Q4, Q5, Q6, Q7 can be 1 question of 10 Marks or it can be split into (a) & (b) Note: Q2 - module compulsory, Q3 - module compulsory, Q4 & 5 - choice, Q6 & 7 - choice

Dayattattaa Dagat Dollogo Banesharkari, Bangatore-Militi Karnataka Tel : +91 80 20062226 20061104 Even : 2731 Fex : +90 85 2006 0789 Wieb - http://www.dayatondenager.ado - Email: had eco@disymandenager.ado) for fatorismoss historia Affiliand is VTO Expressed by RCTE 4 (6), one- post Combus; | founditied by fatorial Especialist & Econodistics Council (NAAC) with X-grade; Max Marks : 50. 08-11,2021 Wireless & Holaile Communst Sub Mentor: MONDAY Sub Mentor Sign Branch : E and C Staff i/c of sec : Internal Test Staffa i/c sign : A, B, C, D HOD Name: Dr. TCM Timings: 11.15 - 12.45 pm CIE- I HOD's sign **Test Solutions** Test Duration: 1% Hrs. Test question paper solutions with steps Q. No. ". Major lobe 01 11. isotropic antenna 11. 0.13 i. Near field High , LOW 15.28 Directly proportional 11 -HIT 1X10=10M decreases Main lobe axis - Main lobe field components Field

Field

Field components

Field in G, Q direction

Fin(0)

Antenne (1)

Back

B

5M

De

ni

-2

(2.5 M)

Q. No.	Test question paper solutions with steps	h.
Ь	i HPBW: L'e betwe two half power points obtained from a major lobe	Allo
	ii Radiation Intensity: Power radiated from an antenne per unit solid Lie $V(\theta, \phi) = V(\theta, \phi)$ W/sr. $V(\theta, \phi)$ max	
	in Directivity: Ratio of max. radiation intensity to avo radiation intensity. D = Umax U0	
	iv Resolution: Equal to half of the Beam width between first nulls. BNFN. 2	
	iv. Antenna Efficiency: Ratio of power gain to the directivity of the antenna. $ K = \frac{G}{D} $	1x5=5M
Q3 a.	Derivation $D = \frac{Um}{V_0} = \frac{4\pi}{\pi \sqrt{2\pi}} = \frac{H\pi}{\Omega_A}$ $\theta = 0 0 = 0 Um$	AМ
Ь	$\frac{\lambda = c}{f} = \frac{3 \times 10^6}{4 \times 10^9} = 0.075 \text{m} \longrightarrow 2 \text{M}$	
	$P_{s} = P_{t} \cdot \frac{A_{er} \cdot A_{et}}{s^{2} \lambda^{2}} \rightarrow IM$	
	$= \frac{150. \times 0.4 \times 3}{(12 \times 10^3)^2 \times (0.075)^2} \rightarrow 1M$	6M
	Pr = 0.000444 W -> 2M	6M
Q4 a	i. Unidirectional cosine cubed pattern P = Pm Cos3 0	

o mosimo P = Pm Pm = Pm Cos3A CO63 0 = 1 e = (05'(1) 0 = 0 ottalf power points P = Pm Pm = Pm C0538 6 = ± co= (+) 1/2 0 = ± 37.46 ii. Bidirectional sine squared pattern U = Um Sin20 o mosi ma U = Um Sin 0 = 1 0 = ± 515'(±1) 0 = 90° 0 270° o half power points 0 = <u>n</u> <u>Um</u> = Um 51020 0 = + 512, (+ +) 15 = ± 517 (± 0.707) = ± 45', ± 135'.

b. 1. Antenna field zones - 2,5m

11 Effective height of antenna- 2.5M

95 i. Effective Aperture. It is defined as the ratio

Page no