Practice Midterm II EECS C 106A/C206A, Fall 2019

Two 8.5×11 crib sheets allowed, double sided.

Remember if something is true you have to prove it. If on the other hand something is false, you need to give a counterexample. Some Notes:

- 1. This midterm is approximately 1.5x as long as the actual midterm. I gave you extra questions on the short problems/ROS portions.
- 2. This midterm is not guaranteed to be 100% comprehensive. That said, I think it reasonably spans the actual midterm material.
- 3. Remember that *any* material from the class is fair game, be it from lecture, homework, discussion, lab, or the sections of the book that we've covered.

Name:

SID:

Problem	Score / Max.
Stuff	/ 30
Total	/ 30

Question 1: Jacobian Multiple Choice	13 points
Let $J^s(\theta_1, \theta_2, \theta_3)$ be the manipulator Jacobian of a robot parameterized by	by the joint
position vector $\boldsymbol{\theta}$. In the current configuration, all joint positions are 0. The	e Jacobian,
joint velocities, and joint torques/forces are:	
F	

$$\boldsymbol{J}^{s}(0,0,0) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

All of the robot's joints are either revolute or prismatic.

(a)	How many joints does this robot have?	(1)
	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8$	
(b)	How many revolute joints?	(1)
	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8$	
(c)	This robot is in a singular configuration.	(2)
	○ True ○ False ○ Not enough info	
(d)	In this configuration, in which directions is it possible to induce a nonzero velocity?	(2)
	$\square \ v_x \square \ v_y \square \ v_z \square \ \omega_x \square \ \omega_y \square \ \omega_z$	
(e)	In this configuration, in which directions is it possible to induce a nonzero force/torque?	(2)
	$\Box f_x \Box f_y \Box f_z \Box \tau_x \Box \tau_y \Box \tau_z$	
(f)	Which column(s) of the spatial Jacobian are constant for all values of θ_1 ?	(1)
	\square First column \square Second column \square Third column	
(g)	Which column(s) of the spatial Jacobian are constant for all values of θ_2 ?	(1)
	\square First column \square Second column \square Third column	
(h)	Which column(s) of the spatial Jacobian are constant for all values of θ_3 ?	(1)
	\square First column \square Second column \square Third column	
(i)		(2)
	$\bigcirc 0 \bigcirc 1 \bigcirc 3 \bigcirc 6 \bigcirc 18 \bigcirc 36 \bigcirc \infty \bigcirc \text{Not enough info}$	

_	sition of the second m		_	
of a circle might b		$C=2\pi r$		
Derive an equation	n for the acceleration	of the mass m_1 usi	ng Lagrangian med	hanics.

You have a simple 2-dof manipulator shown below in Figure 1

Figure 1: 2-dof manipulator

This manipulator has one revolute joint ξ_1 and one prismatic joint ξ_2 . It starts in the horizontal configuration g^i ($\theta = [0, l_1]$) and ends in the vertical configuration g^f ($\theta = [\frac{\pi}{2}, l_1]$).

(a) We can define a "straight line path" or constaint velocity path of a coordinate q as

(4)

	 	ce? Draw the	

-	acobian of the	nis manipulat the page.	for at the in	nitial config	guration. A	ssume that
	1	.11 .1 .	1 , 1	9 117	*11 41	
ow many su	ngularities w	ill this manip	oulator have	e? Where v	vill they oc	cur?

a) Wh	at are the equations of motion for the mass? (use cartesian coordinates)
) Wh	at is the maximum height reached by the object?
e) Wh	at is the total flight time?
 Hov	v far does the object travel?
-)·	
e) At	what velocity does the mass strike the ground?

if	es with twists $\xi_i = [q_i \times \omega_i, \omega_i]^T, i =$	1, 2, 3 are said to be param
11	$\omega_i = \pm \omega_j, \ i, j = 1, 2, 3$	
A prigmatic joint with	v	andivolar to these revolut
joints if	twist $\xi_4 = [v, 0]^T$ is said to be perp	pendiuciar to these revolut
JOHNS II	$v^T \omega_i = 0, \ i = 1, 2, 3$	
	of freedom manipulator with three cular to all three is at a singular con	

1 Appendix: Figures and Useful Formulae

Figure 2: Atwood's Machine

Figure 3: Projectile motion