Practical Threshold Signatures: Victor Shoup¹

Munawar Hasan

February 4, 2020

¹https://www.shoup.net/papers/thsig.pdf

Initial Setup

- Participants:
 - ullet Players: number of users in the system $[1,\ell]$
 - ullet Dealer: a trusted entity denoted as ${\cal D}$, responsible for initial set up
 - ullet Adversary: a non trusted entity denoted as ${\cal A}$
- Input parameters to the protocol:
 - k: number of signatures shares needed to obtain a signature
 - t: number of corrupted players Note: $k \ge (t+1)$ and $(\ell-t) \ge k$
- Setup
 - \mathcal{D} chooses $p, q \in PRIME$ of bit length L, such that p = 2 * p' + 1 and q = 2 * q' + 1, hence $\{p', q'\} \in Sophie Germain prime$
 - \mathcal{D} chooses $e \mid \{e \in PRIME \land e > \ell\}$
 - \mathcal{D} computes n = p * q; m = p' * q'; $\Delta = \ell!$
 - \mathcal{D} computes $d \mid de \equiv 1 \pmod{m}$
 - ullet $\mathcal D$ defines a polynomial f(X) of degree k-1 in the following way:

•
$$f(X) = \sum_{i=0}^{n-1} a_i X^i$$
, where $a_0 = d$ and $a_i \in \{0, m-1\} \ \forall i \in \{1, k-1\}$

- \mathcal{D} computes $s_i = f(i) \ \forall i \in \{1, \ell\}$
- s_i is secret share SK_i of the player i
- ullet D shares these SK_i with the respective players secretly and securely
- $\mathcal D$ chooses $v \in Q_n$, where Q_n is subgroup of squares in Z_n^*
- \mathcal{D} computes $v_i = v^{SK_i} \ \forall i \in \{1, \ell\}$
- ullet \mathcal{D} broadcasts v and all of the v_i
- v_i becomes the verification key of the i^{th} player and v is the verification key of the system
- \mathcal{D} broadcasts public key as PK = (n, e)
- At this stage the set up process is complete

Shared Signature

- Let H is a hash function that maps M to Z_n^* , i.e. $H(M) \in Z_n^*$
- Let x = H(M) where M is the message to be signed
- This is a two step process
 - Generating Signature Share:
 - Each player calculates its signature on message M as: $\sigma_i = x^{2*\Delta*SK_i}$
 - Proof of correctness:
 - It is needed to ensure the correctness of the signature shared by the participating players
 - Let $\tilde{x} = x^{4*\Delta}$
 - Let H' be a hash function $\mid H': \{0,1\}^* \rightarrow \{0,1\}^{\gamma}$
 - Player *i* chooses a random number $r \in \{0, 2^{L+2\gamma} 1\}$ and performs following computations: v' = v'; $x' = \tilde{x}'$; $c = H'(v, \tilde{x}, VK_i, \sigma_i^2, v', x')$; $z = SK_i * c + r$
 - The proof of correctness is: (z, c)

- Partial Signature Verification
 - Given (z,c), check if $c \stackrel{?}{=} H'(v,\tilde{x},VK_i,\sigma_i^2,v^z*VK_i^{-c},\tilde{x}^z*\sigma_i^{-2c})$
 - Proof:

$$v' \stackrel{?}{=} v^z * VK_i^{-c}$$

$$\Leftrightarrow v^r \stackrel{?}{=} v^{SK_i*c+r} * v^{-SK_i*c}$$

$$v' \stackrel{?}{=} \tilde{x}^z * \sigma_i^{-2c}$$

$$\Leftrightarrow \tilde{x}^r = \tilde{x}^{SK_i*c+r} * x^{2*\Delta*SK_i*(-c)}$$

$$\Leftrightarrow x^{4*\Delta*r} = x^{4*\Delta*SK_i*c+4*\Delta*r} * x^{-4*\Delta*SK_i*c}$$

- Hence, given (z, c); it can be verified if σ_i was generated by player i or not
- Working on σ_i^2 instead of just σ_i $\sigma_i^2 = x^{2*2*\Delta*SK_i} = \tilde{x}^{SK_i}$ \Leftrightarrow discrete logarithm problem $(v_i = v^{SK_i})$

Combining Signature Shares

- Let $S = \{i_1, ..., i_k\} \subset \{1, ..., \ell\}$
- Define: $\lambda_{i,j}^S = \Delta * \frac{\prod_{j' \in S-j} (i-j')}{\prod_{j' \in S-j} (j-j')} \in Z$; Δ insures the evaluation $\in Z$ $\Leftrightarrow \Delta * f(0) = \sum \lambda_{0,j}^S * f(j)$

The idea is to compute d from the available signature shares. This can be done in following way:

Let
$$w = \sigma_{i_1}^{2*\lambda_{0,i_1}^S} * \dots * \sigma_{i_k}^{2*\lambda_{0,i_k}^S}$$

$$\Rightarrow w = x^{4\Delta SK_1*\lambda_{0,i_1}^S} * \dots * x^{4\Delta SK_k*\lambda_{0,i_k}^S}$$

$$\Rightarrow w = x^{4\Delta*(\lambda_{0,i_1}^S*SK_1+\dots+\lambda_{0,i_k}^S*SK_k)}$$

$$\Rightarrow w = x^{4\Delta*\Delta*f(0)} = x^{4\Delta^2*d}$$

- Let $y = w^a * x^b$ $\Rightarrow y^e = w^{e*a} * x^{e*b}$ $\Rightarrow y^e = x^{4\Delta^2*a} * x^{e*b} = x^{e'a+eb} \text{ where } e' = 4\Delta^2$
- Since $e \in PRIME \land e > \ell$, hence gcd(e', e) = 1

Toy Example

- Simulate 3 out of 4
- $\ell = 4$; k = 3
- p = 7; q = 11; p' = 3; q' = 5
- n = 77; m = 15
- e = 13; hence d = 7
- PK = (77, 13)
- $a_0 = d = 7$; $a_1 = 9$; $a_2 = 6$
- Secret Key: $S_1 = 7$; $S_2 = 4$; $S_3 = 13$; $S_4 = 4$
- Choose v = 51; hence $v_1 = 25$; $v_2 = 53$; $v_3 = 4$; $v_4 = 53$;
- Verification Keys: VK = 51; $V_1 = 25$; $V_2 = 53$; $V_3 = 4$; $V_4 = 53$;

- Choose an input message M = hello; hash function H = SHA256
- x = H(M) = 37; //SHA256(hello)mod 77
- $\Delta = 24$
- Generating Signature Shares:

•
$$x_1 = 15$$
; $x_2 = 71$; $x_3 = 36$; $x_4 = 71$;

- Combining Shares:
 - $\lambda_{0,1} = 72$; $\lambda_{0,2} = -72$; $\lambda_{0,3} = 24$
 - w = 64
 - $w^e = 36$ and $x^{e'} = 36$
 - Solve for a and b: e'a + eb = 1; a = -4; b = 709
 - $y = w^a x^b = 16$
 - $y^e = (16)^{13} = 37$
- Verify: is $y^e \stackrel{?}{=} x$; $37 \stackrel{?}{=} 37 = SHA256(hello) \mod 77$

References

Victor Shoup

A Computational Introduction to Number Theory and Algebra Version 2

Victor Shoup

Practical Threshold Signatures

Eurocrypt 2000

Ilker Nadi Bozkurt, Kamer Kaya, Ali Aydın Selçuk Practical Threshold Signatures with Linear Secret Sharing Schemes Progress in Cryptology – AFRICACRYPT 2009 pp 167-178

The End