INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

C3 LAB. Computational Astrophysics

B.Tech: (IT & ECE) Elective VI – Semester QP: PC Time - 3hrs.

Marks - + LAB: {10}

Answers should be brief and to the point. Unnecessary Extra writing will attract negative marks.

1. The figure shows an $(n_1 \times n_2)$ pixel image of a cometary coma. The centroid of the is at $[x_0, y_0]$. The Radial Intensity profile of the coma generally follow an intensity gradient of

$$I[i,j] = I(\rho) = I_0 \rho^{-\alpha(\theta)} \tag{1}$$

Where I_0 is the peak intensity at $[x_0, y_0]$. ρ is the radial distance from the coma centre $[x_0, y_0]$ to the pixel centre [(i+0.5), (j+0.5)] where [i,j] is the pixel coordinates which vary from $[0 \to (n_1-1), 0 \to (n_2-1)]$ $\alpha(\theta)$ is

the exponential gradient of the coma. $\alpha(\theta)$ is close to 1, but varies from maximum exponential gradient in the direction of the sun and a minimum gradient in the anti-sun direction. Since $\alpha(\theta)$ is expected to be cyclic in θ , it can be modeled as

$$\alpha(\theta) = 1 + A\cos(\theta - \theta_0) \tag{2}$$

Where θ_0 is the angular direction of the sun from the horizontal plane of the image.

- a) Write a short pseudo code to determine the $\rho[i,j]$, $\theta[i,j]$ and determine $I(\rho,\theta)$ for all pixel [i,j] and store in a table **T1** with columns $[\mid i\mid j\mid \rho\mid \theta\mid I(\rho,\theta)\mid]$. You may make use of ATAN2(y,x). ATAN2(y,x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x,y), confined to $(-\pi,\pi)$.
- b) The data from Table T1 will be used to 1st fit Equ.(1) for different θ . From the $\alpha(\theta)$ s obtained for different θ , the Equ(2) needs to be fitted to determine A and θ_0 . Explain the methodology and the plots to determine I_0 , $\alpha(\theta)$ s, A and θ_0 .

Please note I_0 should be the same for all the $\alpha(\theta)$ fits. You may use the function

T2=SORT(T1, ρ), **T3=SORT(T2,** θ) to sort the table **T1** in ρ and **T2** in θ .

Hint: a Log-Log plot linearizes an exponential function.

[2+8=10 Marks]

SHOW/SUBMIT ALL THE FITS FOR DIFERENT θ THE LINEAR FITS OF EQ.(1). FIX THE INTERSEPT AND REFIT THE EQ(1). SHOW/SUBMIT THE FIT OF EQ(2).

12.

```
a)
     pseudo code to store in a table T1 with columns \begin{bmatrix} |i| & j & \rho & \theta & I(\rho, \theta) \end{bmatrix}
  k = 0
  For i = 0, to (n_1 - 1) do {
     For j = 0, to (n_2 - 1) do {
          \rho[i,j] = \sqrt{(i+0.5-x_0)^2 + (j+0.5-y_0)^2}
         \theta[i,j] = ATAN2((j+0.5-y_0), (i+0.5-x_0))
         \theta[i,j] = \theta[i,j] \times 360/2\pi (Converts to degree from Radian)
         T_1[k, 1] = i;
         T_1[k, 2] = j;
         T_1[k, 3] = \rho[i, j];
         T_1[k, 4] = \theta[i, j];
          T_1[k, 5] = I[i, j];
        k = k + 1;  } }
  b) I[i,j] = I(\rho) = I_0 \rho^{-\alpha(\theta)} eq(1)
            \ln(I[i,j]) = \ln(I(\rho)) = \ln(I_0) - \alpha(\theta) \cdot \ln(\rho)
     y = \ln(I[i,j]); x = \ln(\rho) \text{ Intersept} = b = \ln(I_0)
     Strait line plot y = -\alpha(\theta)x + b
     T_2=SORT(T_1, \rho); T_3=SORT(T_2, \theta)
     k=0: m=0:
     While (k < (n_1 \times n_2)) do {
          I=0; \quad \vartheta[m]=T_3[k-4]; \quad d\vartheta=1;
          While T_3[k \ 4] < (\vartheta + d\vartheta) do {
               x[l] = ln(T_3[k, 3])
                    y[l] = \ln(T_3[k, 4]);
                     l = l + 1; \quad k = k + 1;
          LSQfit(x[m,l], y[m,l]) \rightarrow \alpha(\theta)[m], b[m]
               m = m + 1; }
     m_0=m;
```

Since all I_0 should be the same for all the $\alpha(\theta)$ fits. The intercepts $b[m] = ln(I_0)$ should be equal. $b_0 = AVERAGE(b[m])$; re-fit the Strait line for all $\boldsymbol{\mathcal{M}}$ keeping the intercept fixed to b_0 . For m = 0 to $(m_0 - 1)$ do $\{$

 $LSQfit(x[m, l], y[m, l], b_0) \rightarrow \alpha(\theta)[m]$

$$\alpha(\theta) = 1 + A\cos(\theta - \theta_0) \qquad \text{Eq.(2)}$$

$$Z[m] = \alpha(\theta)[m] - 1 = A\cos(\theta[m] - \theta_0)$$

$$\int_{A \pm \delta A = Max(Z[m])}^{A \pm \delta A = Max(Z[m])}$$
 Determine the phase θ_0 from fitting $\theta[m]$ and $Z[m]/A$.
$$\frac{Z[m]}{A} = \cos(\theta[m] - \theta_0)$$