deterministic context free languages

how to generate parse trees (derivation trees)

- what cf languages are recognized by a *deterministic* pushdown automaton (dpda)?
- hopefully C0 is an example
- if true we can construct derivation tree for program of length n in time O(n)
- construction of such trees was left out in I2OS lectures
- following Michael Sipser: Introduction to the Theory of Computation, 3rd edition, CENGAGE learning 2013

MIT textbook

1 Derivation trees, derivations and reductions

Figure 1: nodes x and their labels λ in a derivation tree.

reminder: derivation trees

• grammar

$$G = (N, T, P, S_1)$$

- tree (formally tree regions), nodes q with labels $\lambda(q) \in N \cup T$
- if node q has from left to right sons s_1, \ldots, s_n , then

$$\lambda(q) \to \lambda(s_1) \dots \lambda(s_n)$$
 in P

1 Derivation trees, derivations and reductions

Figure 1: nodes x and their labels λ in a derivation tree.

reminder: derivation trees

• grammar

$$G = (N, T, P, S_1)$$

- tree (formally tree regions), nodes q with labels $\lambda(q) \in N \cup T$
- if node q has from left to right sons s_1, \ldots, s_n , then

$$\lambda(q) \to \lambda(s_1) \dots \lambda(s_n)$$
 in P

def: derivations

• For $w, w' \in (N \cup T)^*$ we define $w \to w'$ (w' is directly derived from w) if there are u, v, C, r with

$$w = uCv$$
, $w' = urv$, $C \rightarrow r$ in P

sequence of words

$$(w_1,\ldots,w_n)$$

is derivation if

$$w_i \to w_{i+1}$$
 for all $i < n$

1 Derivation trees, derivations and reductions

Figure 1: nodes x and their labels λ in a derivation tree.

reminder: derivation trees

grammar

$$G = (N, T, P, S_1)$$

- tree (formally tree regions), nodes q with labels $\lambda(q) \in N \cup T$
- if node q has from left to right sons s_1, \ldots, s_n , then

$$\lambda(q) \to \lambda(s_1) \dots \lambda(s_n)$$
 in P

def: derivations

• For $w, w' \in (N \cup T)^*$ we define $w \to w'$ (w' is directly derived from w) if there are u, v, C, r with

$$w = uCv$$
, $w' = urv$, $C \rightarrow r$ in P

sequence of words

$$(w_1,\ldots,w_n)$$

is derivation if

$$w_i \to w_{i+1}$$
 for all $i < n$

• it is a *rightmost derivation* if for all *i* in step $w_i \to w_{i+1}$ the rightmost non-terminal in w_i is replaced.

preorder traversal: recursively treat

sons of v, then v

postorder traversal: recursively treat

v, then sons of v

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

preorder traversal: recursively treat

sons of v, then v

postorder traversal: recursively treat

v, then sons of v

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

have you seen this grammar?

where?

preorder traversal: recursively treat

sons of v, then v

postorder traversal: recursively treat

v, then sons of v

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

T, $T \cdot F$, $T \cdot V$, $F \cdot V$, $V \cdot V$

always replacing rightmost non terminal

• there is 1-1 relationship between rightmost derivations and derivation trees

exercise: make this statement precise and prove it

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

T , $T \cdot F$, $T \cdot V$, $F \cdot V$, $V \cdot V$

always replacing rightmost non terminal

• there is 1-1 relationship between rightmost derivations and derivation trees

exercise: make this statement precise and prove it

def: reductions and valid strings

- For $w, w' \in (N \cup T)^*$ we define $w' \leftarrow w$ (w' is directly reducible to w) if $w \rightarrow w'$.
- sequence of words

$$(w_1,\ldots,w_n)$$

is reduction if

$$w_i \leftarrow w_{i+1}$$
 for all $i < n$

it's just a derivation run backwards

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

T, $T \cdot F$, $T \cdot V$, $F \cdot V$, $V \cdot V$

always replacing rightmost non terminal

• there is 1-1 relationship between rightmost derivations and derivation trees

exercise: make this statement precise and prove it

def: reductions and valid strings

- For $w, w' \in (N \cup T)^*$ we define $w' \leftarrow w$ (w' is directly reducible to w) if $w \rightarrow w'$.
- sequence of words

$$(w_1,\ldots,w_n)$$

is reduction if

$$w_i \leftarrow w_{i+1}$$
 for all $i < n$

- it is a *leftmost reduction* if for all i in step $w_i \leftarrow w_{i+1}$ the leftmost possible string r in w_{i+1} is replaced by a nonterminal C.
- leftmost reductions are rightmost derivations run backwards
- generating a leftmost reduction from a derivation tree by postorder traversal of trees, subtrees from left to right.

• example grammar for derivation tree in figure 2

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

$$T$$
 , $T \cdot F$, $T \cdot V$, $F \cdot V$, $V \cdot V$

always replacing rightmost non terminal

• there is 1-1 relationship between rightmost derivations and derivation trees

exercise: make this statement precise and prove it

def: reductions and valid strings

- For $w, w' \in (N \cup T)^*$ we define $w' \leftarrow w$ (w' is directly reducible to w) if $w \rightarrow w'$.
- sequence of words

$$(w_1,\ldots,w_n)$$

is reduction if

$$w_i \leftarrow w_{i+1}$$
 for all $i < n$

- it is a *leftmost reduction* if for all i in step $w_i \leftarrow w_{i+1}$ the leftmost possible string r in w_{i+1} is replaced by a nonterminal C.
- leftmost reductions are rightmost derivations run backwards
- generating a leftmost reduction from a derivation tree by postorder traversal of trees, subtrees from left to right.
- a string $v \in (N \cup T)^*$ is *valid* if it can occur in a leftmost reduction of a terminal string.

def: handles A *handle* of a valid string v is a pair $(n, B \rightarrow h)$ specifies the first step in a leftmost reduction of v

• h occurs in v behind position n, i.e. there are x, y such that

$$v = xhy$$
 and $n = |x|$

the production

$$B \rightarrow h$$
 in P

is used

definitions in literature amazingly imprecise

def: handles A *handle* of a valid string v is a pair $(n, B \rightarrow h)$ specifies the first step in a leftmost reduction of v

• h occurs in v behind position n, i.e. there are x, y such that

$$v = xhy$$
 and $n = |x|$

the production

$$B \rightarrow h$$
 in P

is used

• note (proof exercise)

$$y \in T^*$$

- if the production is clear we only specify h
- in examples we specify n by underlining h

$$\underline{V} \cdot V$$
, $\underline{F} \cdot V$, $T \cdot \underline{V}$, $\underline{T} \cdot F$, T

def: handles A *handle* of a valid string v is a pair $(n, B \rightarrow h)$ specifies the first step in a leftmost reduction of v

• h occurs in v behind position n, i.e. there are x, y such that

$$v = xhy$$
 and $n = |x|$

the production

$$B \rightarrow h$$
 in P

is used

• note (proof exercise)

$$y \in T^*$$

- if the production is clear we only specify h
- in examples we specify n by underlining h

$$\underline{V} \cdot V$$
 , $\underline{F} \cdot V$, $T \cdot \underline{V}$, $\underline{T} \cdot F$, T

if we can identify handles, we can construct reductions and hence derivation trees

Lemma 1. In unambiguous grammars handles for valid strings v are unique

Proof. derivation trees are unique

def: handles A *handle* of a valid string v is a pair $(n, B \rightarrow h)$ specifies the first step in a leftmost reduction of v

• h occurs in v behind position n, i.e. there are x, y such that

$$v = xhy$$
 and $n = |x|$

• the production

$$B \rightarrow h$$
 in P

is used

• note (proof exercise)

$$y \in T^*$$

- if the production is clear we only specify h
- in examples we specify n by underlining h

$$\underline{V} \cdot V$$
, $\underline{F} \cdot V$, $T \cdot \underline{V}$, $\underline{T} \cdot F$, T

if we can identify handles, we can construct reductions and hence derivation trees

Lemma 1. In unambiguous grammars handles for valid strings v are unique *Proof.* derivation trees are unique

is this grammar unambiguous

why or why not?

$$F \rightarrow V \mid -_1 F \mid (E)$$

$$T \rightarrow F \mid T \cdot F \mid T/F$$

$$E \rightarrow T \mid E + T \mid E - T$$

recognizing unique handles might require large lookahead

$$R \rightarrow S \mid T$$
 $S \rightarrow aSb \mid ab$
 $T \rightarrow aTbb \mid abb$

$$aa\underline{abb}bb \to a\underline{aSb}b \to \underline{aSb} \to \underline{S} \to R$$
 $aa\underline{abb}bbbb \to a\underline{aTbb}bb \to \underline{aTbb} \to \underline{T} \to R$

recognizing unique handles might require large lookahead

$$R \rightarrow S \mid T$$
 $S \rightarrow aSb \mid ab$
 $T \rightarrow aTbb \mid abb$

$$aa\underline{abb}bb \to a\underline{aSb}b \to \underline{aSb} \to \underline{S} \to R$$

$$aa\underline{abb}bbbb \to a\underline{aTbb}bb \to \underline{aTbb} \to \underline{T} \to R$$

recognising a handle once one sees it (dpda-like) A handle (|x|,h) of a valid string v = xhy is called a *forced handle* if is the unique handle of each string

$$xh\hat{y}$$
 with $\hat{y} \in T^*$

def: deterministic cfg A cfg is *deterministic* if every valid string has a forced handle.

The (amazing) DK-test: for every cfg there is a fa DK which identifies handles. In particular DK accepts input z if

- z is prefix of a valid string v = zy
- z = xh ends with a handle h of v

The (amazing) DK-test: for every cfg there is a fa DK which identifies handles. In particular DK accepts input z if

- z is prefix of a valid string v = zy
- z = xh ends with a handle h of v

3.1 The nondeterministic K-automaton

Construction of dfa DK from an nfa K by applying the power set construction.

running example

$$S \rightarrow E \dashv$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times a \mid a$$

The (amazing) DK-test: for every cfg there is a fa DK which identifies handles. In particular DK accepts input z if

- z is prefix of a valid string v = zy
- z = xh ends with a handle h of v

3.1 The nondeterministic K-automaton

Construction of dfa DK from an nfa K by applying the power set construction.

running example

$$\begin{array}{cccc} S & \rightarrow & E \dashv \\ E & \rightarrow & E + T \mid T \\ T & \rightarrow & T \times a \mid a \end{array}$$

states: using items of a cfg :

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 \dots u_k \rangle$$
 (before processing)
$$\cdots$$
 $\langle B \rightarrow u_1 \dots u_i .u_{i+1} \dots u_k \rangle$ (after processing until u_i)
$$\cdots$$
 $\langle B \rightarrow u_1 \dots u_k . \rangle$ (after processing)

The (amazing) DK-test: for every cfg there is a fa DK which identifies handles. In particular DK accepts input z if

- z is prefix of a valid string v = zy
- z = xh ends with a handle h of v

3.1 The nondeterministic K-automaton

Construction of dfa DK from an nfa K by applying the power set construction.

running example

$$\begin{array}{cccc} S & \rightarrow & E \dashv \\ E & \rightarrow & E + T \mid T \\ T & \rightarrow & T \times a \mid a \end{array}$$

states: using items of a cfg :

• constructed from productions in *P*. For each

$$B \rightarrow u_1 \dots u_k$$

include dotted rules

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

The (amazing) DK-test: for every cfg there is a fa DK which identifies handles. In particular DK accepts input z if

- z is prefix of a valid string v = zy
- z = xh ends with a handle h of v

3.1 The nondeterministic K-automaton

Construction of dfa *DK* from an nfa *K* by applying the power set construction.

running example

$$\begin{array}{cccc} S & \rightarrow & E \dashv \\ E & \rightarrow & E + T \mid T \\ T & \rightarrow & T \times a \mid a \end{array}$$

states: using items of a cfg :

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow u_1 \dots u_k \rangle$$
 (before processing)
$$\cdots$$
 $\langle B \rightarrow u_1 \dots u_i \dots u_{i+1} \dots u_k \rangle$ (after processing until u_i)
$$\cdots$$
 $\langle B \rightarrow u_1 \dots u_k \dots \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \to .u \rangle$$

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

. . .

$$\langle B \rightarrow u_1 \dots u_i . u_{i+1} \dots u_k \rangle$$
 (after processig until u_i)

. . .

$$\langle B \rightarrow u_1 \dots u_k \rangle$$
 (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

$$z_0 \xrightarrow{\varepsilon} \langle S_{\perp} \rightarrow .u \rangle$$

$$S \rightarrow E \dashv$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times a \mid a$$

$$\langle S \rightarrow .E \dashv \rangle \xrightarrow{E} \langle S \rightarrow E . \dashv \rangle \xrightarrow{\dashv} \langle S \rightarrow E \dashv . \rangle$$

$$\langle E \to .E + T \rangle \stackrel{E}{\to} \langle E \to E. + T \rangle \stackrel{+}{\to} \langle E \to E + .T \rangle \stackrel{T}{\to} \langle E \to E + T. \rangle$$

$$\langle E \to .T \rangle \stackrel{T}{\to} \langle E \to T. \rangle$$

$$\langle T \to . T \times a \rangle \stackrel{T}{\to} \langle T \to T . \times a \rangle \stackrel{\times}{\to} \langle T \to T \times . a \rangle \stackrel{a}{\to} \langle T \to T \times a . \rangle$$

$$\langle T \to . a \rangle \stackrel{a}{\to} \langle T \to a . \rangle$$

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

$$z_0 \xrightarrow{\varepsilon} \langle S_{\perp} \rightarrow .u \rangle$$

$$S \rightarrow E \dashv$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times a \mid a$$

$$\langle S \to E \to A \rangle \xrightarrow{E} \langle S \to E \to A \rangle \xrightarrow{\neg} \langle S \to E \to A \rangle$$

$$\langle E \to E + T \rangle \xrightarrow{E} \langle E \to E + T \rangle \xrightarrow{+} \langle E \to E + T \rangle \xrightarrow{T} \langle E \to E + T \rangle$$

$$\langle E \to T \rangle \xrightarrow{T} \langle E \to T \rangle \xrightarrow{T} \langle T \to T \times a \rangle \xrightarrow{\times} \langle T \to T \times a \rangle \xrightarrow{a} \langle T \to T \times a \rangle$$

$$\langle T \to A \rangle \xrightarrow{a} \langle T \to A \rangle$$

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

$$z_0 \xrightarrow{\varepsilon} \langle S_{\perp} \rightarrow .u \rangle$$

$$S \rightarrow E \dashv E \rightarrow E + T \mid T$$

$$T \rightarrow T \times a \mid a$$

$$\langle S \rightarrow E \rightarrow T \rangle \xrightarrow{E} \langle S \rightarrow E \rightarrow T \rangle \xrightarrow{A} \langle S \rightarrow E \rightarrow T \rangle$$

$$\langle E \rightarrow F + T \rangle \xrightarrow{E} \langle E \rightarrow E \rightarrow T \rangle \xrightarrow{A} \langle E \rightarrow E \rightarrow T \rangle \xrightarrow{T} \langle E \rightarrow E \rightarrow T \rangle$$

$$\langle E \rightarrow T \rangle \xrightarrow{T} \langle E \rightarrow T \rangle \xrightarrow{A} \langle T \rightarrow T \times A \rangle \xrightarrow{A} \langle T \rightarrow T \times A \rangle$$

$$\langle T \rightarrow A \rangle \xrightarrow{A} \langle T \rightarrow A \rangle$$

• constructed from productions in *P*. For each

$$B \rightarrow u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \rightarrow .u \rangle$$

$$S \rightarrow E \dashv E \rightarrow E + T \mid T$$

$$T \rightarrow T \times a \mid a$$

$$\langle S \rightarrow E \dashv \rangle \xrightarrow{E} \langle S \rightarrow E \rightarrow A \rangle \xrightarrow{\dashv} \langle S \rightarrow E \rightarrow A \rangle$$

$$\langle E \rightarrow E + T \rangle \xrightarrow{T} \langle E \rightarrow E \rightarrow E \rightarrow T \rangle \xrightarrow{T} \langle E \rightarrow E \rightarrow T \rightarrow T \times A \rangle \xrightarrow{T} \langle T \rightarrow T \times A \rangle \xrightarrow{A} \langle T \rightarrow T \times A \rangle \xrightarrow{A} \langle T \rightarrow T \times A \rangle$$

accepting end states: states

$$\langle B \rightarrow u. \rangle$$

corresponding to a completed production

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_{\perp} \rightarrow .u \rangle$$

accepting end states: states

 $\langle B \rightarrow u. \rangle$

corresponding to a completed production

• constructed from productions in *P*. For each

$$B \to u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

 ε moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \rightarrow .u \rangle$$

accepting end states: states

$$\langle B \to u. \rangle$$

corresponding to a completed production

• constructed from productions in *P*. For each

$$B \rightarrow u_1 \dots u_k$$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)

...

 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)

...

 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \rightarrow .u \rangle$$

accepting end states: states

$$\langle B \to u. \rangle$$

corresponding to a completed production

K recognizes handles: Lemma 2. K started with input z can reach state $\langle T \to u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \to uv)$

K recognizes handles: Lemma 2. K started with input z can reach state $\langle T \to u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \to uv)$

 $B \rightarrow u_1 \dots u_k$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)
...
 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)
...
 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

for all productions $B \to uCv$ and $C \to r$ transition

• constructed from productions in *P*. For each

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \rightarrow .u \rangle$$

accepting end states: states

$$\langle B \to u. \rangle$$

corresponding to a completed production

 \rightarrow :

- Partition path from z_0 to $\langle T \to u.v \rangle$ into runs of shift moves separated by ε -moves.
- run *i* belongs to a production $S_i \rightarrow u_i S_{i+1} v_i$
- last production $T \to uv$
- production before last: $S_{\ell} \to u_{\ell} S_{\ell} v_{\ell}$
- input z processed so far:

$$z = u_1 \dots u_{\ell} u$$

set

$$y' = v_{\ell} \dots v_1$$

K recognizes handles: Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$

 $B \rightarrow u_1 \dots u_k$

include dotted rules

$$\langle B \rightarrow .u_1 ... u_k \rangle$$
 (before processing)
...
 $\langle B \rightarrow u_1 ... u_i ... u_{i+1} ... u_k \rangle$ (after processing until u_i)
...
 $\langle B \rightarrow u_1 ... u_k ... \rangle$ (after processing)

shift moves for $a \in N \cup T$ and every production $B \to uav$ transition

$$\langle B \to u.av \rangle \xrightarrow{a} \langle B \to ua.v \rangle$$

for all productions $B \to uCv$ and $C \to r$ transition

• constructed from productions in *P*. For each

$$\langle B \to u.Cv \rangle \xrightarrow{\varepsilon} \langle C \to .r \rangle$$

starting From start state z_0 and all production $S_1 \rightarrow u$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \rightarrow .u \rangle$$

accepting end states: states

$$\langle B \to u. \rangle$$

corresponding to a completed production

 \rightarrow :

- Partition path from z_0 to $\langle T \to u.v \rangle$ into runs of shift moves separated by ε -moves.
- run *i* belongs to a production $S_i \rightarrow u_i S_{i+1} v_i$
- last production $T \to uv$
- production before last: $S_{\ell} \to u_{\ell} S_{\ell} v_{\ell}$
- input z processed so far:

$$z = u_1 \dots u_{\ell} u$$

set

$$y' = v_{\ell} \dots v_1$$

• then $S_1 \to^* xuvy'$, i.e. xuvy' derivable in G by derivation tree of figure 3 and construction of automaton.

Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$

 \rightarrow :

- Partition path from z_0 to $\langle T \to u.v \rangle$ into *runs* of shift moves separated by ε -moves.
- run *i* belongs to a production $S_i \rightarrow u_i S_{i+1} v_i$
- last production $T \to uv$
- production before last: $S_{\ell} \to u_{\ell} \overline{S}_{\ell} v_{\ell}$
- input z processed so far:

$$z = u_1 \dots u_{\ell} u$$

set

$$y' = v_{\ell} \dots v_1$$

• then $S_1 \to^* xuvy'$, i.e. xuvy' derivable in G by derivation tree of figure 3 and construction of automaton.

Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$

 \rightarrow :

- Partition path from z_0 to $\langle T \to u.v \rangle$ into *runs* of shift moves separated by ε -moves.
- run *i* belongs to a production $S_i \rightarrow u_i S_{i+1} v_i$
- last production $T \to uv$
- production before last: $S_{\ell} \to u_{\ell} \overline{S}_{\ell} v_{\ell}$
- input z processed so far:

$$z = u_1 \dots u_{\ell} u$$

set

$$y' = v_{\ell} \dots v_1$$

• then $S_1 \to^* xuvy'$, i.e. xuvy' derivable in G by derivation tree of figure 3 and construction of automaton.

• obtain y by expanding all nonterminals in y' to terminal strings with derivation tree of figure 4 (w.l.o.g there are no redundant nonterminals, which cannot be expanded to terminal string).

Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \to uv)$

 \rightarrow :

- Partition path from z_0 to $\langle T \to u.v \rangle$ into *runs* of shift moves separated by ε -moves.
- run *i* belongs to a production $S_i \rightarrow u_i S_{i+1} v_i$
- last production $T \to uv$
- production before last: $S_{\ell} \to u_{\ell} \overline{S}_{\ell} v_{\ell}$
- input z processed so far:

$$z = u_1 \dots u_{\ell} u$$

set

$$y' = v_{\ell} \dots v_1$$

• then $S_1 \to^* xuvy'$, i.e. xuvy' derivable in G by derivation tree of figure 3 and construction of automaton.

• obtain y by expanding all nonterminals in y' to terminal strings with derivation tree of figure 4 (w.l.o.g there are no redundant nonterminals, which cannot be expanded to terminal string).

- turn tree into leftmost reduction.
- xuvy is valid, $(|x|, T \rightarrow uv)$ is handle

Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$

 \leftarrow : • derivation tree of xuvy with handle $(|x|, T \rightarrow uv)$ has path

$$(T,S_{\ell},\ldots,S_1)$$

as shown in figure 4.

Lemn

←:

• portion x uv) is not

na 2. K started with input z can reach state $\langle T \to u.v \rangle$ iff	
z ends with u , i.e. $z = xu$	
and there is $y \in T^*$ such that xuvy is a valid string	
with handle $(x , T \rightarrow uv)$	
derivation tree of xuvy with handle $(x , T \rightarrow uv)$ has path	
$(T, S_{\ell}, \ldots, S_1)$	
as shown in figure 4.	
left of this path is directly derived from the S_i ; otherwise $(x , T \rightarrow x)$ shandle. $S_i \rightarrow u_i S_{i+1} v_i \text{for } i < \ell$ $S_\ell \rightarrow u_\ell T v_\ell$ $T \rightarrow uv$	

Lemma 2. K started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$

 \leftarrow : • derivation tree of xuvy with handle $(|x|, T \rightarrow uv)$ has path

$$(T,S_{\ell},\ldots,S_1)$$

as shown in figure 4.

• portion x left of this path is directly derived from the S_i ; otherwise $(|x|, T \rightarrow uv)$ is not handle.

$$S_i \rightarrow u_i S_{i+1} v_i \quad \text{for } i < \ell$$
 $S_\ell \rightarrow u_\ell T v_\ell$
 $T \rightarrow uv$

• path of *K* with input z = xu

$$z_{0} \xrightarrow{\varepsilon}^{*} \langle S_{1} \rightarrow .u_{1}S_{2}v_{1} \rangle$$

$$\xrightarrow{u_{1}}^{*} \langle S_{1} \rightarrow u_{1}.S_{2}v_{1} \rangle$$

$$\xrightarrow{\varepsilon}^{*} \langle S_{2} \rightarrow .u_{2}S_{3}v_{2} \rangle$$

$$\xrightarrow{u_{2}}^{*} \langle S_{2} \rightarrow .u_{2}.S_{3}v_{2} \rangle$$

$$\vdots$$

$$\xrightarrow{u_{\ell}}^{*} \langle S_{\ell} \rightarrow u_{\ell}.Tv_{\ell}$$

$$\xrightarrow{\varepsilon}^{*} \langle T \rightarrow .uv \rangle$$

$$\xrightarrow{u}^{*} \langle T \rightarrow .uv \rangle$$

Lemma 2. *K* started with input z can reach state $\langle T \rightarrow u.v \rangle$ iff

- z ends with u, i.e. z = xu
- and there is $y \in T^*$ such that xuvy is a valid string
- with handle $(|x|, T \rightarrow uv)$
- \leftarrow : derivation tree of xuvy with handle $(|x|, T \rightarrow uv)$ has path

$$(T,S_{\ell},\ldots,S_1)$$

as shown in figure 4.

• portion x left of this path is directly derived from the S_i ; otherwise $(|x|, T \rightarrow uv)$ is not handle.

$$S_i \rightarrow u_i S_{i+1} v_i \quad \text{for } i < \ell$$
 $S_\ell \rightarrow u_\ell T v_\ell$
 $T \rightarrow uv$

• path of *K* with input z = xu

$$z_{0} \xrightarrow{\varepsilon}^{*} \langle S_{1} \rightarrow .u_{1}S_{2}v_{1} \rangle$$

$$\xrightarrow{u_{1}}^{*} \langle S_{1} \rightarrow u_{1}.S_{2}v_{1} \rangle$$

$$\xrightarrow{\varepsilon}^{*} \langle S_{2} \rightarrow .u_{2}S_{3}v_{2} \rangle$$

$$\xrightarrow{u_{2}}^{*} \langle S_{2} \rightarrow .u_{2}S_{3}v_{2} \rangle$$

$$\vdots$$

$$\xrightarrow{u_{\ell}}^{*} \langle S_{\ell} \rightarrow u_{\ell}.Tv_{\ell}$$

$$\xrightarrow{\varepsilon}^{*} \langle T \rightarrow .uv \rangle$$

$$\xrightarrow{u}^{*} \langle T \rightarrow .uv \rangle$$

Lemma 3. *K* started with *z* can reach state $\langle T \rightarrow h. \rangle$ iff z = xh and $(|x|, T \rightarrow h)$ is handle off a valid string xhy.

Proof. Lemma 2 with $u = h, v = \varepsilon$ and handle($|x|, T \to h$).

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

$$\langle S \rightarrow .E \rightarrow .$$
 $\langle E \rightarrow .E + T \rangle$
 $\langle E \rightarrow .T \rangle$
 $\langle T \rightarrow .T \times a \rangle$
 $\langle T \rightarrow .a \rangle$

you can read this off directly from the grammar

 $\langle T \rightarrow .a \rangle$

 $\langle T \rightarrow . T \times a \rangle$

 $\langle T \rightarrow .a \rangle$

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Lemma 4. Grammar G passes the DK-test iff G is a dcfg.

- so C0 is not deterministic
- this *alone* won't work

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Lemma 4. Grammar G passes the DK-test iff G is a dcfg.

we show only \rightarrow Assume valid string v = xhy has unforced hanle $(|x|, T \rightarrow h)$. Hence valid string v' = xhy' has handle $(|\hat{x}|, \hat{T} \rightarrow \hat{h})$

$$xhy' = \hat{x}\hat{h}\hat{y}$$

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Lemma 4. Grammar G passes the DK-test iff G is a dcfg.

we show only \rightarrow Assume valid string v = xhy has unforced hanle $(|x|, T \rightarrow h)$. Hence valid string v' = xhy' has handle $(|\hat{x}|, \hat{T} \rightarrow \hat{h})$

$$xhy' = \hat{x}\hat{h}\hat{y}$$

• $xh = \hat{x}\hat{h}$: Then $T \neq \hat{T}$. Test fails

Get fa DK from nfa K by power set construction

• If DK is in state $s \in Z_{DK}$ after it has read read z, then

 $s = \{z \in Z_K : K \text{ can be in state } z \text{ after it has read } z\}$

DK-test A cfg G passes the DK-test if every accepting state of DK contains

- exactly one completed rule $B \to u$ (unique production for handle at this place)
- no rule $B \to u.av$ with $a \in T$ (no later handle)

Lemma 4. Grammar G passes the DK-test iff G is a dcfg.

we show only \rightarrow Assume valid string v = xhy has unforced hanle $(|x|, T \rightarrow h)$. Hence valid string v' = xhy' has handle $(|\hat{x}|, \hat{T} \rightarrow \hat{h})$

$$xhy' = \hat{x}\hat{h}\hat{y}$$

- $xh = \hat{x}\hat{h}$: Then $T \neq \hat{T}$. Test fails
- w.l.o.g xh prefix of \hat{xh} : DK accepts xh in state q

There is path in DK from q to state q' leaving q with input symbol $y'_1 \in T$. Thus q contains a rule $B \to u.y'_1 v$. Test fails.

4 Constructing leftmost derivations (and derivation trees) in linear time

Lemma 5. If G passes the DK-test, then L(G) is accepted by a dpda.

naive solution in rounds *i*. Maintain valid strings v_i . Let *w* be the input and n = |w|.

- round 0: v_0 = input
- round i > 0: run DK on string v_i . If it finds handle $(n, T \to b)$ apply it to v_i to obtain v_{i+1}

run time may is $O(n^2)$; better than Younger...

4 Constructing leftmost derivations (and derivation trees) in linear time

Lemma 5. If G passes the DK-test, then L(G) is accepted by a dpda.

naive solution in rounds *i*. Maintain valid strings v_i . Let *w* be the input and n = |w|.

- round 0: v_0 = input
- round i > 0: run DK on string v_i . If it finds handle $(n, T \to b)$ apply it to v_i to obtain v_{i+1}

run time may is $O(n^2)$; better than Younger...

using the stack

- run *DK* in finite control of dpda. Beferory every shift move of *DK* push state of *DK* on stack.
- if handle with production $T \to h$ is found: popping |h| symbols from stack gives new top of stack q. Continue running DK with state q and next input symbol T.

run time O(n).

4 Constructing leftmost derivations (and derivation trees) in linear time

Lemma 5. If G passes the DK-test, then L(G) is accepted by a dpda.

naive solution in rounds *i*. Maintain valid strings v_i . Let *w* be the input and n = |w|.

- round 0: v_0 = input
- round i > 0: run DK on string v_i . If it finds handle $(n, T \to b)$ apply it to v_i to obtain v_{i+1}

run time may is $O(n^2)$; better than Younger...

using the stack

- run *DK* in finite control of dpda. Beferory every shift move of *DK* push state of *DK* on stack.
- if handle with production $T \to h$ is found: popping |h| symbols from stack gives new top of stack q. Continue running DK with state q and next input symbol T.

run time O(n).

examples get complicated very quickly. DK is generated by programs; parser generators like 'yacc'.

does C0 grammar pass DK test? no

here treated for k = 1.

def: handle forced by lookahead Let $H = (|x|, T \rightarrow h)$ be handle of a valid string xhy. We say H is *forced by lookahead* k if if it is the unique handle of every valid string $xh\hat{y}$, where y and \hat{y} agree on the first k symbols (if either string is shorter than k they must agree on the symbold of the shorter string).

LR(k)-grammar: a cfg, where the handle of each valid string is forced by lookahead k.

5.1 DK_1 -automaton

constructed from nfa K_1 :

states have the form

 $\langle B \rightarrow u.v \quad a \rangle$ with lookahead symbol $a \in T$

starting From start state z_0 and all production $S_1 \to u$ and all $a \in T$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \to .u \quad a \rangle$$

shift moves for $x \in N \cup T$ and every production $B \to uav$ and all $a \in T$

$$\langle B \to u.xv \quad a \rangle \xrightarrow{x} \langle B \to ux.v \quad a \rangle$$

 ε -moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad b \rangle$$

for all $b \in T$ which are first symbol of a string of terminals derived from v. If v produces ε add

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad a \rangle$$

accepting end states: states

$$\langle B \to u. \quad a \rangle$$

corresponding to a completed production for $a \in T$

here treated for k = 1.

def: handle forced by lookahead Let $H = (|x|, T \rightarrow h)$ be handle of a valid string xhy. We say H is *forced by lookahead* k if if it is the unique handle of every valid string $xh\hat{y}$, where y and \hat{y} agree on the first k symbols (if either string is shorter than k they must agree on the symbold of the shorter string).

LR(k)-grammar: a cfg, where the handle of each valid string is forced by lookahead k.

5.1 DK_1 -automaton

constructed from nfa K_1 :

- read u
- part of handle uv
- if v follows u
- and a follows v

states have the form

$$\langle B \rightarrow u.v \quad a \rangle$$
 with lookahead symbol $a \in T$

starting From start state z_0 and all production $S_1 \to u$ and all $a \in T$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \to .u \quad a \rangle$$

shift moves for $x \in N \cup T$ and every production $B \to uav$ and all $a \in T$

$$\langle B \to u.xv \quad a \rangle \xrightarrow{x} \langle B \to ux.v \quad a \rangle$$

 ε -moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad b \rangle$$

for all $b \in T$ which are first symbol of a string of terminals derived from v. If v produces ε add

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad a \rangle$$

accepting end states: states

$$\langle B \to u. \quad a \rangle$$

corresponding to a completed production for $a \in T$

5.1 DK_1 -automaton

constructed from nfa K_1 :

states have the form

 $\langle B \rightarrow u.v \quad a \rangle$ with lookahead symbol $a \in T$

starting From start state z_0 and all production $S_1 \rightarrow u$ and all $a \in T$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \to .u \quad a \rangle$$

shift moves for $x \in N \cup T$ and every production $B \to uav$ and all $a \in T$

$$\langle B \to u.xv \quad a \rangle \xrightarrow{x} \langle B \to ux.v \quad a \rangle$$

 ε -moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad b \rangle$$

for all $b \in T$ which are first symbol of a string of terminals derived from v. If v produces ε add

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad a \rangle$$

accepting end states: states

$$\langle B \to u. \quad a \rangle$$

corresponding to a completed production for $a \in T$

def: consistent dotted rules Let

$$R = \langle B \rightarrow u. \quad a \rangle$$

be a completed dotted rule and

$$R' = \langle B' \to u'.cv' \quad a' \rangle$$

R and R' are consistent if

- R' is completed and a = a' or
- R' is not completed and v' = av''

 DK_1 test passed if no end state of DK_1 contains consistent dotted rules.

this works for example grammar and possibly C0 grammar

5.1 DK_1 -automaton

constructed from nfa K_1 :

states have the form

 $\langle B \to u.v \quad a \rangle$ with lookahead symbol $a \in T$

starting From start state z_0 and all production $S_1 \rightarrow u$ and all $a \in T$

$$z_0 \xrightarrow{\varepsilon} \langle S_1 \to .u \quad a \rangle$$

shift moves for $x \in N \cup T$ and every production $B \to uav$ and all $a \in T$

$$\langle B \to u.xv \quad a \rangle \xrightarrow{x} \langle B \to ux.v \quad a \rangle$$

 ε -moves for all productions $B \to uCv$ and $C \to r$ transition

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad b \rangle$$

for all $b \in T$ which are first symbol of a string of terminals derived from v. If v produces ε add

$$\langle B \to u.Cv \quad a \rangle \xrightarrow{\varepsilon} \langle C \to .r \quad a \rangle$$

accepting end states: states

$$\langle B \to u. \quad a \rangle$$

corresponding to a completed production for $a \in T$

def: consistent dotted rules Let

$$R = \langle B \rightarrow u. \quad a \rangle$$

be a completed dotted rule and

$$R' = \langle B' \to u'.cv' \quad a' \rangle$$

R and R' are consistent if

- R' is completed and a = a' or
- R' is not completed and v' = av''

 DK_1 test passed if no end state of DK_1 contains consistent dotted rules.

this works for example grammar and possibly C0 grammar

Lemma 6. If cfg G passes the DK_1 -test, then

- G is an LR(1) grammar
- L(G) is recognized by a dpda
- handles are identified as before independent of lookahead symbols
- pda reads 1 symbol ahead and stores it in its finite control, then disambiguates rules using this symbol.