Input Select Module

Inputs
btn -> increment button

reset -> reset button

Outputs

user_choice -> 4 bit user choice

This module is a simple counter that increments 4 bit user_choice from 0 to 9 on the positive edge of a button. If user_choice is 9, incrementing sets user_choice back to 0. Reset can be used to set user_choice to 0 at any time.

Full Adder Module

<u>Truth Table</u>								
Α	В	С	F	G				
0	0 0 1 1	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	0				
1	1	1	1	1				

<u>Inputs</u>	<u>Outputs</u>
A -> input bit	F -> sum
B -> input bit	G -> carry out
C -> carry in	
A B	

$$F = \sum m(1,2,4,7)$$

$$F = A'B'C + A'BC' + AB'C' + ABC$$

$$F \text{ is 1 when an odd number of inputs are 1.}$$

$$XOR \text{ is 1 when an odd number of inputs are 1.}$$

$$F = (A \land B) \land C$$

$$F = A \land B \land C$$

Ripple Carry Adder Subtractor Module

Inputs

A -> 4 bits

B -> 4 bits

C0 -> carry in (mode select)

Outputs

S -> 4 bit sum or difference

C4 -> carry out

This module takes two 4 bit inputs A and B and a carry in C0 that functions as the mode selector. If the carry in is 0, A and B are added. If the carry in is 1, subtraction is performed by inverting the bits of B and adding 1 from the carry in. The module has a 5 bit output. The sum S represents the lower 4 bits of the output. C4 represents the most significant 5th bit of the output.

Output Splitter Module

<u>Inputs</u> <u>Outputs</u>

bin -> 5 bit binary result from adder mode_select -> mode select

out1 -> 4 bits to decoder out2 -> 4 bits to decoder

This module takes the 5 bit result from the adder subtractor and uses case statements to split it into two 4 bit outputs that can be properly decoded by the 4 bit 7 segment decoder. There are case statements for each possible output from -9 to 18. This module also takes the mode selector as an input. When mode select is 1 (subtraction), the module flips the most significant bit of the 5 bit result before interpreting it. This has to be done to ensure the proper output on the display.

Still Needs

- Equations
- Logic Circuit

Output Splitter Truth Table

Decimal	Α	В	С	D	Е	13	12	l1	10	J3	J2	J1	J0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	1
2	0	0	0	1	0	0	0	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	0	0	0	1	0	1
6	0	0	1	1	0	0	0	0	0	0	1	1	0
7	0	0	1	1	1	0	0	0	0	0	1	1	1
8	0	1	0	0	0	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	0	0	0	1	0	0	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0
11	0	1	0	1	1	0	0	0	1	0	0	0	1
12	0	1	1	0	0	0	0	0	1	0	0	1	0
13	0	1	1	0	1	0	0	0	1	0	0	1	1
14	0	1	1	1	0	0	0	0	1	0	1	0	0
15	0	1	1	1	1	0	0	0	1	0	1	0	1
16	1	0	0	0	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	0	0	0	1	0	1	1	1
18	1	0	0	1	0	0	0	0	1	1	0	0	0
-9	1	0	1	1	1	1	0	1	0	1	0	0	1
-8	1	1	0	0	0	1	0	1	0	1	0	0	0
-7	1	1	0	0	1	1	0	1	0	0	1	1	1
-6	1	1	0	1	0	1	0	1	0	0	1	1	0
-5	1	1	0	1	1	1	0	1	0	0	1	0	1
-4	1	1	1	0	0	1	0	1	0	0	1	0	0
-3	1	1	1	0	1	1	0	1	0	0	0	1	1
-2	1	1	1	1	0	1	0	1	0	0	0	1	0
-1	1	1	1	1	1	1	0	1	0	0	0	0	1

2 to 1 Multiplexer Module

<u>Inputs</u>

A -> 4 bit binary

B -> 4 bit binary

S -> Selector

Outputs
F -> 4 bit binary

F = S ? B : A; If S is 1, select B. Otherwise, select A.

Anode Selector Module

InputsOutputsclockanode selector

At the positive edge of the clock, toggle the anode selector.

Clock (rising edge)	Anode Selector (current)	Anode Selector (next)
0 -> 1	0	1
0 -> 1	1	0

4 Bit 7 Segment Decoder Module

<u>Inputs</u>

bin -> 4 bit binary input

Outputs

seg7 -> 7 bit LED cathode outputs, active high assumes common anode LEDs

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1		1						1
0	0	1	1							1
0	1	0		0						1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0		1						1
1	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
1	0	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
1	1	0	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
1	1	0	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	0	Х						
1	1	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ

Still Needs

• K map

Top Module

Inputs
btn1 seg7
btn2
reset

mode selector equals switch

clock

anode selector

