Contents

1	Foglio 1
	1.1 1 - Osservatori uniformemente accelerati
	Particella accelerata
	$ A chille \ e \ la \ lepre \ \dots $
	Tempo proprio
	$10^9~\mathrm{anni}$ -luce
	Perchè non andiamo su Giove?
	Razzo relativistico

1 Foglio 1

1.1 1 - Osservatori uniformemente accelerati

Considero una particella P_0 , uniformemente accelerata rispetto al sistema istantaneamente inerziale \mathcal{I} . Il sistema \mathcal{I} va inteso come un insieme di sistemi di riferimento inerziali, tra i quali, per ogni tempo, si considera quello rispetto a cui la particella P_0 è istantaneamente ferma.

Particella accelerata Considero una generica particella P, con velocità u e accelerazione a nel sistema \mathcal{I} Scrivo il boost a velocità inversa dal sistema in movimento \mathcal{I} al sistema terra \mathcal{T} :

$$\begin{cases} dx_T = \gamma(dx + vdt) \\ dt_T = \gamma(dt + vdt) \end{cases}$$
 (1)

$$u_T = \frac{\mathrm{d}x_T}{\mathrm{d}t_T} = \frac{u+v}{1+uv}$$

$$\mathrm{d}u_T = \frac{1 - v^2}{(1 + uv)^2} \mathrm{d}u$$

$$a_T = \frac{\mathrm{d}u_T}{\mathrm{d}t} = \frac{(1 - v^2)^{3/2}}{(1 + uv)^3} a \tag{2}$$

Volendo trovare la velocità della particella P_0 , utilizzo l'equazione 2 e la specializzo: la velocità u va posta nulla perchè considero la particella P_0 , ferma in \mathcal{I} , e considero l'evoluzione temporale di $v(t_T)$, rispetto al sistema \mathcal{T} ; la velocità della particella rispetto a \mathcal{T} è adesso v e $a=a_0$:

$$a_T = \frac{\mathrm{d}v(t_T)}{\mathrm{d}t_T} = [1 - v^2(t_T)]^{3/2} a_0$$

$$a_0 t_T = \int_0^{v(t_T)} \frac{\mathrm{d}v}{(1 - v^2)^{3/2}}$$

sostituisco $v = \sin(\theta)$

$$a_0 t_T = \int_0^{\arcsin(v(t_T))} \frac{\mathrm{d}\theta}{\cos^2(\theta)} = \int \mathrm{d}\tan\theta = \tan(\arcsin(v(t_T)))$$

$$v(t_T) = \sin(\arctan(a_0 t_T))$$

$$v(t_T) = \frac{a_0 t_T}{\sqrt{1 + (a_0 t_T)^2}}$$
(3)

Per trovare la legge oraria, considerando che $x_T(0) = v_T(0) = 0$,

$$\int_{x_T(0)}^{x_T(t_T)} \mathrm{d}x_T = \int_0^{t_T} \frac{a_0 t_T}{\sqrt{a + (a_0 t_T)^2}} \mathrm{d}t_T$$

Sostituendo prima $y = a_0 t_T$ e poi $y = \sinh(z)$ si ottiene

$$x_{T}(t_{T}) = \frac{1}{a_{0}} \int_{y_{0}}^{y} \frac{y}{\sqrt{1+y^{2}}} dy$$

$$= \frac{1}{a_{0}} \int_{z_{0}}^{z} \sinh(z) dz$$

$$= \frac{1}{a_{0}} [\cosh \sinh^{-1}(y) - \cosh \sinh^{-1}(y_{0})]$$

$$= \frac{1}{a_{0}} [\cosh(\ln(y+\sqrt{1+y^{2}})-1]$$

$$= \frac{y^{2} + y\sqrt{1+y^{2}} + 1 - y - \sqrt{1+y^{2}}}{a_{0}(y+\sqrt{1+y^{2}})}$$

$$= \frac{\sqrt{1+y^{2}} - 1}{a_{0}}$$

$$x_{T}(t_{T}) = \frac{\sqrt{1+(a_{0}t_{T})^{2}} - 1}{a_{0}}$$
(4)

TODO limite di basse velocità

Achille e la lepre Uguagliando c*t a xT dovrei trovare qualcosa, ma se metto c=1 si cancella tquadro e se lo tengo non so dove sbattere la testa.

Tempo proprio Con $ds^2 = -c^2 dt^2 + dx^2$:

$$i \operatorname{cd} \tau = \operatorname{d} s = i \operatorname{cd} t_T \sqrt{(1 * -v^2(t_T))}$$

$$\tau = \int_0^{t_T} \sqrt{(1 * -v^2(t))} \operatorname{d} t = \int \frac{1}{\sqrt{1 + (a_0 t)^2}} \operatorname{d} t$$

Sostituendo $a_0 t = \cosh z$

$$\tau = \int \frac{\mathrm{d}z}{a_0} = \frac{\sinh^{-1}(a_0 t_T)}{a_0} = \frac{\ln(\sqrt{1 + (a_0 t_T)^2} + a_0 t_T)}{a_0}$$

 10^9 anni-luce TODO udm di c Per percorrere una distanza di 10^9 ly con accelerazione da fermo di $g=9.8m/s^2=1.030ly/y^2$, usando la formula 4, occorrono

$$\sqrt{\frac{d^2}{c} + 2\frac{d}{g}} \simeq 1.942 \cdot 10^9 y$$

cui corrisponde un tempo proprio $\tau = 0.142 \cdot 10^9 ly$.

Perchè non andiamo su Giove? Con le formule della meccanica classica,

$$t_{TOT} = 4 \cdot \sqrt{\frac{2x_{TM}}{g}} = 2.8558587119250753y$$

In relatività ristretta, dove 'lh' sono le ore-luce,

$$t_{TM} = 260.627804384274lh$$

$$v_{TM} = 0.999999999999941c$$

Modificando opportunamente la formula 3 per velocità iniziale non nulla, si ottiene

$$v(t_T) = \frac{a_0 t_T + \tan \arcsin(v_0)}{\sqrt{1 + (a_0 t_T + \tan \arcsin(v_0))^2}}$$
$$v(t_T) = \frac{a_0 t_T + \frac{v_0}{\sqrt{1 - v_0^2}}}{\sqrt{1 + (a_0 t_T + \frac{v_0}{\sqrt{1 - v_0^2}})^2}}$$

E per la legge oraria

$$x_T(t_T) = \frac{\sqrt{1 + (-gt_T + \frac{v_0}{\sqrt{1 - v_0^2}})^2} - \sqrt{1 + (\frac{v_0}{\sqrt{1 - v_0^2}})^2}}{-g}$$

Invertendo:

$$t = \frac{\frac{v_0}{\sqrt{1 - v_0^2}} + \sqrt{(\frac{v_0}{\sqrt{1 - v_0^2}})^2 - 2gx\sqrt{1 + (\frac{v_0}{\sqrt{1 - v_0^2}})^2}}}{g}$$

TODO risultati bruttissimi

Razzo relativistico Considero il sistema \mathcal{I} in cui il razzo è fermo e i sistemi \mathcal{E} , in cui è ferma la dm espulsa, e \mathcal{J} , in cui è fermo il razzo propulso con massa $m - \mathrm{d}m$. Nel sistema \mathcal{I} :

$$dmv_e\gamma(v_e) = (m - dm)dv\gamma(dv) \sim mdv$$

$$\frac{dm}{m} = \frac{1}{v_e\gamma(v_E)} \frac{dv}{d\tau}d\tau$$

$$m = m_0 e^{\frac{dv}{v_e\gamma(v_e)}}$$

$$m = m_0 e^{\frac{a_0\tau}{v_e\gamma(v_e)}}$$