

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 2: Razlike u arhitekturi sustava, značajni slučajevi korištenja, model kao osnova

Creative Commons

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Projekt

- Tri voditelja projekta neka mi se jave na dalibor.krleza@fer.hr
 - Koncept first-come first-serve
 - Srediti popis ljudi u grupama
 - Voditi rad na projektu

Procesni pogled

- Sve oko nas je hrpa procesa
 - Poslovni, tehnički, prirodni
 - Dijelovi našeg života i poslovanja se mogu dizajnirati kao proces
 - Proces kupnje, parkiranja u garaži, dnevna rutina, način kako posluje naše poduzeće
 - Ciklička i ponavljajuće priroda procesa
- Naša želja je
 - Pratiti te procese
 - Simulirati te procese
 - Upravljati tim procesima
 - Omogućiti intervenciju u proces
- Sve te stvari već imamo u klasičnom obliku
 - Na papiru
 - U klasičnim tehničkim i informacijskim sustavima
 - Itd...

Klasični IT sustavi

- Simuliraju poslovni proces u organizaciji
 - Ta simulacija ne pokriva nužno cijeli poslovni proces
- Dva osnovna tipa pristupa
 - Kroz slučajeve korištenja (use cases)
 - Dekomponira poslovni proces u niz interakcija korisnika sa sustavom
 - Nema mogućnosti striktne definicije slijeda interakcija
 - Kroz sustave za automatizaciju poslovnih procesa (workflow engine, BPM engine)
 - Simulira poslovni proces
 - Interakcija s korisnikom je kroz "ljudske zadatke" (human task) servis i ili prozor koji omogućava korisniku da odradi neki dio zadatka
 - Slijed interakcija strogo slijedi poslovni proces

Klasični IT sustavi

U standardnom pristupu

- Korisnik kroz slijed slučajeva korištenja na ekranu pristupa pozadinskim servisima
- Pozadinski servisi sadrže poslovnu logiku i čitanje/spremanje podataka
- Korisnik neformalno kroz svoju dnevnu radnu rutinu, sljedeći pravila poslovanja, simulira poslovni proces
- Redoslijed zadataka nije striktan

U BPM pristupu

- Poslovni proces je striktno definiran i izvodi se u workflow engine-u
- Korisnik kroz princip inboxa i hrpe ekrana dobiva zadatke
- Pozadinski servisi ostaju isti jer sadrže elementarnu poslovnu logiku

Okoline

- Standardni pristup kroz tri (možda i koja dodatna) okoline
 - Razvojna, testna (predprodukcijska – staging), produkcijska
 - Verzija razvijenog sustava (i funkcionalnosti) propagiraju od razvojne -> produkcijske
 - Podaci su različiti u različitim okolinama (!!!)
 - Što to znači za skupljanje znanja i učenje raznih modela?
 - devOps pipeline u razvojnoj okolini!?

Uvođenje inteligentnih servisa

- Uvodimo pozadinski poslužitelj koji poslužuje razne modele kroz servisno sučelje (inference services)
 - Ti se servisi mogu pozvati iz ostatka klasičnog informacijskog sustava
 - Uključivo i workflow engine
 - Rezultati obrade u modelu utječu na rad informacijskog sustava
 - Podaci koji se skupljaju iz informacijskog sustava sadrže utjecaj inteligentnih servisa
- U testnoj (predprodukcijskoj) i produkcijskoj okolini dovoljan je poslužitelj modela (npr. Seldon Core)

Razvojna okolina

- Skupljanje i čišćenje podataka koju okolinu koristimo?
 - Produkcija želimo stvarne podatke
- Inkrementalno spremanje za eksperimentiranje i automatsko učenje modela
 - Želimo li to raditi online kroz ETL?
 - Kakva pohrana? Baza podataka ili tok podataka (kafka)?
- Repozitorij za modele nije isti kao i kod klasične izvedbe
 - Repozitorij eksperimenata i modela
 - Repozitorij samo naučenih modela (S3, GCS, minio, ...)
- Pozadinski poslužitelj se razlikuje po okolinama
- MLOps pipeline? Automatizacija?
- Ovo utječe i na sam informacijski sustav netko treba napisati poziv inteligentnog servisa na pravom mjestu

Klasični tehnički sustavi

- Standardni upravljački pristup u tehničkim sustavima
 - Obrada signala za senzora skup ulaznih podataka
 - Zapravo je nebitno otkud ti podaci
 - Prevođenje u izlazne aktivnosti

Pametni tehnički sustavi

- Učimo na temelju podataka sa senzora
 - Recimo regresijski modeli
 - Modeli koji mogu predvidjeti ponašanje sustava i pomoći kod upravljanja
 - Upravljanje podesimo tako da poziva inteligentni servis za ulaz sa senzora
 - Odgovor se koristi u upravljačkom procesu

Standardni slučajevi korištenja

- Vrlo rašireni
 - Raspoznavanje biometrijskih podataka otisak prsta, zjenice
 - Raspoznavanje nestrukturiranog sadržaja:
 - Slika razno prepoznavanje uzoraka primjer mobilne aplikacije koja prepoznaje tip madeža (pa i detekcija raka kože)
 - Video prepoznavanje lica traženih osoba
 - Audio govor, pjesme (Shazam, SoundHound, ...)
 - Klasični slučaj korištenja: klasifikatori (classifiers)
 - Jednostavan iris skup podataka: https://archive.ics.uci.edu/ml/datasets/iris

- Preporučivači (recommenders)
 - Temeljem povijesnih podataka stvaramo model koji klijentu ili kupcu preporuča proizvode ili tijek aktivnosti
 - Podatke možemo skupiti na samom kupcu
 - Češće skupljamo na grupi kupaca i radimo zajednički model
 - Content based vs. Collaborative filtering
- Preporučivač za kupnju
 - Temeljem prethodnih kupnji kupca ili određenog segmenta prodaje stvara se model za grupe proizvoda ili pojedinačne proizvode
 - Dosta kategoričkih podataka
 - Model po kupcu dosta skup? Potrebno puno resursa za tisuće kupaca?
 - Preporuka kupcu u obliku posebne liste proizvoda lista se pamti zbog metrike
 - Metrika uspoređuje tendenciju prodaje za preporučene proizvode

- Preporučivač u financijskoj industriji
 - Temeljem dinamike računa stvara se regresijski model kompleksnije nego izgleda
 - Tendencija sredstava na pojedinom računu
 - Osoba isplaćuje više nego uplaćuje ili vice versa
 - Ima li osoba depozita? Kredita? Kreditna sposobnost?
 - Preporuka: kreditna linija, depozitna linija, investicije

- Pametni trener (smart workout) http://extrasensory.ucsd.edu
 - Nosivi uređaji skupljaju podatke (wearable devices)
 - Korisnik upisuje dodatne podatke npr. težina, visina, obroci
 - Kolaborativni model daje preporuke za vježbe u ovisnosti o zadanom cilju
 - Recimo cilj je istrčati maraton
- Preporučivanje sadržaja (content recommender)
 - Pratimo što osoba gleda ili sluša i pamtimo te grupe sadržaja
 - Temeljem kolaborativnog modela preporučamo novi sadržaj
 - Netflix, Youtube, TikTok, Facebook, Deezer, ...

- Procesni preporučivači optimizacija procesa
 - Na određenim mjestima u procesu skupljamo podatke
 - Stvara se model koji ocjenjuje uspješnost odluke prema ulaznim podacima
 - U trenutku odluke od sustava se očekuje preporuka
 - Recimo kojeg od dobavljača uzeti i slično

- Predviđanje na temelju povijesnih podataka (forecasting)
 - Budući događaji ili kretanja
 - Uobičajeno regresijski modeli ili nekakav LSTM
 - Vrlo korišteni i ima puno slučajeva korištenja
 - Velika uloga sezonskog kretanja u procesima
 - Puno podataka, dugotrajno učenje, kompleksni modeli
- Generalni primjeri
 - Predviđanje prometa, broja putnika, bilo kakvog opterećenja
 - Broj vozača, pilota, kontrolora, radne snage
 - Nabavka materijala, proizvoda, održavanje skladišta

Zdravstvo

- Kombinacija nosivih uređaja (wearables), biomarkera i ručno unesenih podataka
- Predviđanje patoloških stanja na temelju vremenskih serija podataka
 - Sepsa, aritmija i slično
- Velika uloga znanja eksperata u označavanju (labeliranju) podataka
- https://physionet.org/content/challenge-2019/
- https://physionet.org/content/challenge-2020/

- Pametno upravljanje zgradama (smart building management)
 - http://db.csail.mit.edu/labdata/labdata.html
 - Dnevni i sezonski podaci
 - Temperatura, osvjetljenje, vlaga, ...
 - Zima-ljeto, dnevno kretanje sunca, lokalna klima, klimatske promjene
 - Vremenska regresija, clustering
 - Kako upravljati zgradom
 - Grijanje, hlađenje, osvjetljenje
 - Metrika: potrošnja energenata, plaćanje računa

- Trgovanje dionicama
 - Povijesna kretanja
 - Uzimanje u obzir specifičnih socio-ekonomskih situacija
 - Kritičan je brz odaziv
 - Najbolje rade agregacije metoda (ensemble) stablo odluka + regresijski modeli

Slučajevi korištenja: detektori

- Često se koriste za detekciju događaja u okolini
 - Detekcija prijevara, outliera
 - Neuronske mreže, clustering
 - Često potreban brz odaziv
 - Neizraziti izlazi bolje funkcioniraju
 - Vjerojatnost da je viđeni događaj u određenoj klasi na primjer softmax izlaz
 - Često je kombinacija prethodno viđenih događaja i detekcije "statistički" novog događaja najbolja kombinacija
 - Za detekciju prethodno viđenog nadzirano učenje
 - Za detekciju novih *outliera* nenadzirano učenje

Slučajevi korištenja: detektori

- Financijska industrija transakcije karticama, MSC kartica na non-chip bankomatu
- Sigurnost pametni vatrozid (firewall)
- Prijevare
 - Osiguranje
 - Plaćanje poreza npr. missing trader fraud
 - Telekomunikacije npr. SIM swap fraud, premium rate call, missed call
 - ... <beskonačan broj raznih varijanti prijevara> ...

- Standardno klasično programiranje završava u hrpi imperativnog koda
 - Rješavanje standardnog problema u slijedu koraka pisanom u određenom programskom jeziku
 - Preveden na izvršni kod, direktno se izvodi na standardnom računalnom procesoru
- Strojno učenje počiva na skupu matematičkih struktura
 - Često se recimo čuje izraz "arhitektura neuronske mreže"
 - Regresijska metoda se koristi funkcijama koje najbolje opisuju dane podatke za učenje
 - Clustering (grupiranje) rezultira skupom područja u kojima se podaci grupiraju, ili barem centroidima tih grupa

- Neuronske mreže su skup parametara na ulazima i izlazima neurona i tranzicijskih funkcija
- Lijevo MLP, desno RNN (vidi GRU arhitekturu) i LSTM

- Svi ovi algoritmi imaju unutarnje stanje u obliku skupa parametara hiperparametri
 - Ti parametri sadrže naučeno znanje
 - Oni se mogu spremiti na disk i ponovno učitati u istu klasu algoritma strojnog učenja
 - U istu arhitekturu neuronske mreže
 - U isti algoritam za clustering
 - ...
 - To je koncept modela: algoritam (+arhitektura) + parametri (znanje)
 - Moguće je spremiti trenutne gradijente recimo za nastavak učenja
 - Parametre, to jest model, u nekom standardnom formatu (joblib, pth, ...) spremimo u repozitorij modela
 - Poslužitelj uzme tu datoteku modela u učita ju u istovjetni algoritam (+arhitektura)

- Zašto GPU kod CNN, DCNN ili DNN arhitektura?
 - Vrlo jednostavne matematičke operacije kod učenja: zbrajanje, oduzimanje, množenje
 - GPU arhitektura je napravljena upravo za takve operacije: računalna grafika
 - NVIDIA CUDA sučelje
 - NVIDIA TESLA kartice
 - NVIDIA Triton ML server
 - Što kada nam je ulazni prostor značajki ogroman i imamo puno uzoraka za učenje???

