McMaster University

SMARTSERVE

SOFTWARE & MECHATRONICS CAPSTONE

Verification and Validation

Authors:

Christopher McDonald

Harit Patel

Janak Patel

Jared Rayner

Nisarg Patel

Sam Hamel

Sharon Platkin

Professor:

Dr. Alan Wassyng

 $Teaching\ Assistants:$

Bennett Mackenzie

Nicholas Annable

Stephen Wynn-Williams

Viktor Smirnov

Last compiled on February 16, 2018

Contents

1	Exe	ecutive Summary of Testing	2
2	Intr	roduction	2
	2.1	Project Overview	2
	2.2	Document Overview	2
	2.3	Naming Conventions and Terminology	2
3	Test	ting Philosophy	3
	3.1	Approach	3
	3.2	Schedule	4
	3.3	Environment	4
4	Test	t Cases	5
	4.1	Electromechanical Subsystems	5
		4.1.1 Shooting Mechanism	5
	4.2	Software Subsystems	5
		4.2.1 Computer Vision	5
			10
			13
		g .	14
		9	14
			14
5	Test	t Case-Requirement Traceability Matrix	25
т.	ist c	of Figures	
L.	ist (or rigures	
	1	Revision History	1

Date	Revision	Comments	${f Author(s)}$
Feb 1, 2018	1.0	Document structure and Headings	Christopher MCDonald

Figure 1: Revision History

1 Executive Summary of Testing

2 Introduction

2.1 Project Overview

SmartServe is an autonomous table tennis training system for table tennis players with various skill levels. SmartServe aids in diagnosing and improving a player's performance over time. The system trains table tennis players by shooting table tennis balls towards the player and detects successful returns from the player. The system can further adapt to the player's weaknesses and help them overcome it through further training. Importantly, SmartServe alleviates the problems of finding and working with a coach for players, as well as coaches trying to train multiple players simultaneously. The system will be deemed a success if the table tennis players and coaches can enjoy and see some value added by using SmartServe.

The project started at the beginning of the Fall 2017 academic term and will conclude at the end of the Winter 2018 term. In addition, the core project team consists of final year Software and Mechatronics Engineering students who are enrolled in the MECHTRON 4TB6/SFWRENG 4G06 capstone project course.

2.2 Document Overview

This document will provide details of all formal testing methods and results performed on the SmartServe system. The first part of testing includes detailing how it will be performed and the details of the system on which it is run. This matters due to details which can affect the testing outcomes like operating system, lighting or performance of hardware. The schedule for the test will also be detailed alongside the major deliverables to have clear outcomes to explain to stakeholders. The testing will be preformed off of the master branch as it stands during the beginning of the testing phase.

The actual testing will then be detailed as test cases based on what subsystem they are testing. As needed, the communication will be tested in between the subsystems to ensure communication is working as intended. Lastly, a test case-requirement matrix will be provided which maps what test cases test which requirement. This will give the reader a simple way to check if a requirement is fully satisfied.

2.3 Naming Conventions and Terminology

The following terms and definitions will be used throughout this document:

• ACID: a database transaction which is atomic, consistent, isolated and durable

- CV: computer vision
- **FPS**: frames per second
- FSM: finite state machine, shows transitions between states
- GUI: graphical user interface
- IPO: input process output
- Pitch: rotation along the y-axis; this rotation angle primarily dictates the range of the ball from the net to the edge of the table on the user side
- Roll: rotation along the x-axis
- Shooting Mechanism: refers to the part of the system that shoots the table tennis balls towards the user side (player) Please refer to Figure ?? for visual illustration
- System: encompasses both the hardware and software parts of SmartServe
- **System Side**: the side of the table where the electromechanical system is placed; it is the opposite side of the User Side Please refer to Figure ?? for visual illustration
- TCP: transmission control protocol
- Team: all team members of the core capstone project, as noted in the list of Authors
- User Side: the side of the table where the user (player) is standing
- Yaw: rotation along the z-axis; this rotation angle primarily dictates the panning functionality of the shooting mechanism from the right side to the left side of the table

3 Testing Philosophy

3.1 Approach

The approach to testing will be to separate the subsystems as much as possible and test them accordingly. Every subsystem will be unit tested in JUnit or PyUnit if implemented in Java or Python respectively. The shooting mechanism will be tested manually to ensure it is functional properly. Stubbing a service or dependancy can be done to return consistent, reliable and predictable results. For instance, the SmartServe system may use a stub for the CV subsystem to return a predefined sequence of pass/fail flags.

3.2 Schedule

Table 1: Testing Schedule

Testing Schedule			
Task	Notes		
Complete Test Cases	February 13, 2018	N/A	
Run Tests (First)	February 16, 2018	N/A	
Edit Test Cases	March 9, 2018	N/A	
Run Tests (Second)	March 16, 2018	N/A	

3.3 Environment

The SmartServe system uses heavy computation power due to the CV and ML models, so the system which runs the test will have the following details. The system will be a 15-inch Macbook Pro (Late 2016) running macOS High Sierra (10.13). The Macbook Pro has an 2.6 GHz Intel Core i7 CPU and a Radeon Pro 450 2GB GPU. The location will be in Thode Makerspace where the CV will be adjusted as necessary for those lighting conditions.

4 Test Cases

4.1 Electromechanical Subsystems

4.1.1 Shooting Mechanism

4.2 Software Subsystems

4.2.1 Computer Vision

Test ID: CV1	ball detec	tion Test	Status: ????	
Description: Test to see if cv n	nodule detects	the ball		
Pass/Fail Condition: fails if fall	Pass/Fail Condition: fails if false is returned while ball is in frame			
Pre-Conditions: cvmodule successfully connects to camera and smartserve				
Input: N/A				
Expected Results: returns true in frame	e while ball is	Actual Results: ????		
Post-Conditions: N/A		•		

Table 2: ball detection Test

Test ID: CV2	ball upward d	etection Test	Status: ????
Description: Test to s	ee if cv module detects	the ball moving upwards	
Pass/Fail Condition:	fails if false is returned	while ball is moving upward	ds
Pre-Conditions: cvmd detected Input: N/A	odule successfully conne	cts to camera and smartse	erve, ball is being
Expected Results: ret moving upwards	urns true while ball is	Actual Results: ?????	
Post-Conditions: N/A	L		

Table 3: ball upward detection Test

Test ID: CV3	ball downward	detection Test	Status: ????	
Description: Test to see i	f cv module detects	the ball moving downwards		
Pass/Fail Condition: fails	Pass/Fail Condition: fails if false is returned while ball is moving downwards			
Pre-Conditions: cvmodu detected Input: N/A				
Expected Results: return moving downwards	s true while ball is	Actual Results: ????		
Post-Conditions: N/A				

Table 4: ball downward detection Test

Test ID: CV4	ball rightward	detection Test	Status: ????
Description: Test to see i	f cv module detects	the ball moving rightwards	
Pass/Fail Condition: fails	s if false is returned	while ball is moving rightward	S
Pre-Conditions: cvmodu detected Input: N/A	le successfully conne	ects to camera and smartserve	, ball is being
Expected Results: return moving rightwards	s true while ball is	Actual Results: ????	
Post-Conditions: N/A			

Table 5: ball rightward detection Test

Test ID: CV5	ball leftward o	letection Test	Status: ????	
Description: Test to see if	cv module detects	the ball moving leftwards		
Pass/Fail Condition: fails	if false is returned	while ball is moving leftwards		
Pre-Conditions: cvmodule detected Input: N/A				
Expected Results: returns moving leftwards	true while ball is	Actual Results: ????		
Post-Conditions: N/A				

Table 6: ball leftward detection Test

Test ID: CV6 cvmodule to	imeout test Status: ????		
Description: Test to see if cv module correctly	y times out		
Pass/Fail Condition: condition passes if fsm	moves from state 1 to state 0 after 8 seconds		
Pre-Conditions: fsm is in state 1			
Input: N/A			
Expected Results: sends bad signal to smart-serve, cvmodule stops running	Actual Results: ????		
Post-Conditions: cvmodule is closed			

Table 7: cvmodule timeout test

Test ID: CV7	fsm transition: state 1 to 2	Status: ????
Description: test if the fs.	m transitions to state 2 when ball is descending	
Pass/Fail Condition:fsm	transitions to state 2 when ball is descending	
Pre-Conditions: fsm is in	n state 1	
Input: N/A		
Expected Results: fsm t	ransitions to state 2 Actual Results: ????	
Post-Conditions: fsm is	in state 2	

Table 8: fsm transition: state 1 to 2 $\,$

Test ID: CV8 fsm transition: state 2 to 3	Status: ????
Description:test if the fsm transitions from state 2 to state 3 when ball is as	scending
Pass/Fail Condition:fsm transitions to state 3 when ball is ascending	
Pre-Conditions: fsm is in state 2	
Input: N/A	
Expected Results: fsm transitions to state 3 Actual Results: ????	
Post-Conditions: fsm is in state 3	

Table 9: fsm transition: state 2 to 3

Test ID: CV9 good sig	gnal test	Status: ????		
Description: test if the cymodule sends a good	l signal to smartserve			
Pass/Fail Condition:cvmodule successfully sends good signal when fsm is in state 3				
Pre-Conditions: fsm is in state 3				
Input: N/A				
Expected Results: good signals successfully sent	Actual Results: ????			
Post-Conditions: fsm is in state 0	,			

Table 10: good signal test

Test ID: CV10 cvmodule to	imeout test Status: ????	
Description: Test to see if cv module correctly	y times out	
Pass/Fail Condition: condition passes if fsm	moves from state 1 to state 0 after 8 seconds	
Pre-Conditions: fsm is in state 1		
Input: N/A		
Expected Results: sends bad signal to smart- serve, cymodule stops running	Actual Results: ????	
Post-Conditions: cvmodule is closed		

Table 11: cvmodule timeout test

4.2.2 ShotRecommender

Test ID: SR1	ShotRecommen	der Listen Test	Status: ????
Description: The ShotRe	ecommender service i	responds to HTTP calls on por	rt 8080.
Pass/Fail Condition: Th	e system waits until	a request.	
Pre-Conditions: N/A			
Input: None			
Expected Results: N/A		Actual Results: ????	
Post-Conditions: N/A			

Table 12: ShotRecommender Listen Test

Test ID: SR2	ShotRecommen	der Query Test	Status: ????
Description: The ShotR	ecommender calls the	e "query" method for user data	
Pass/Fail Condition: The call returns a table of user performance data.			
Pre-Conditions: The SQL database is running on port 3306.			
Input: a valid user id for the "performance" procedure			
Expected Results: table of data			
Post-Conditions: N/A			

 ${\bf Table~13:~ShotRecommender~Query~Test}$

Test ID: SR3	${\bf Shot Recommender}$	Random Shot Test	Status: ????
Description: The Sh	otRecommender receives	a request for a shot.	
Pass/Fail Condition	: The service generates a	random shot.	
Pre-Conditions: The	e service is running on po	rt 8080.	
Input: an HTTP rec	quest with "Random" as	the mode parameter	
Expected Results: a heres to requirement	random shot which ad-	Actual Results: ????	
Post-Conditions: N/			

Table 14: ShotRecommender Random Shot Test

Test ID: SR4	${\bf Shot Recommender}$	Training Shot Test	Status: ????
Description: The Sho	otRecommender receives	a request for a shot.	
Pass/Fail Condition:	The service generates a	shot.	
Pre-Conditions: The	service is running on po	rt 8080.	
Input: an HTTP requ	uest with "Train" as the	mode parameter	
Expected Results: a heres to requirements	random shot which ad-	Actual Results: ????	
Post-Conditions: N/A	A		

Table 15: Shot Recommender Training Shot Test

Test ID: SR5	${\bf Shot Recommender}$	UpdateModel Test	Status: ????
Description: The Sh	notRecommender receives	a status update for a shot.	
Pass/Fail Condition	: The service changes the	e model in response.	
Pre-Conditions: The	e service is running on po	rt 8080.	
Input: an HTTP re	quest with the shot id and	d returned boolean as param	eters.
Expected Results: t	he model is updated	Actual Results: ????	
Post-Conditions: N	/A		

 ${\bf Table~16:~ShotRecommender~UpdateModel~Test}$

4.2.3 Shooting Model

Test ID: SM1	ShootingModel calcu	ulateYawAngle Test	Status: ????
Description: The	calculateYawAngle method	returns an accurate yaw ang	gle in degrees.
Pass/Fail Condition	on: The method returns an	angle in degrees accurate to	a whole number.
Pre-Conditions: N	N/A		
Input: xDist, yDi	st; distance to desired shot's	s x-coordinate and y-coordin	nate.
Expected Results accurate to a who	: A yaw angle in degrees, ble number.	Actual Results: ????	
Post-Conditions:	N/A		

 ${\bf Table~17:~Shooting Model~calculate Yaw Angle~Test}$

Test ID: SM2	ShootingModel calc	culateVelocity Test	Status: ????
Description: The cal	culateVelocity method re	eturns an accurate velocity in	meters/second.
Pass/Fail Condition:	The method returns the	e velocity accurate to a whole	e number.
Pre-Conditions: N/A	A		
Input: N/A			
Expected Results: V to a whole number.	elocity in m/s, accurate	Actual Results: ????	
Post-Conditions: N/	A		

 ${\bf Table~18:~Shooting Model~calculate Veolocty~Test}$

Test ID: SM3	${\bf Shooting Model\ net I}$	HeightChecker Test	Status: ????
Description: Then the net.	netHeightChecker method ch	hecks whether the desired s	hot will pass over
Pass/Fail Condition pass over the net.	ion: The method returns th	ne correct boolean indicatin	ig if the shot will
Pre-Conditions: 1	N/A		
Input: N/A.			
•	: A boolean; True is shot net, False otherwise.	Actual Results: ????	
Post-Conditions:	N/A		

 ${\bf Table~19:~ShootingModel~netHeightChecker~Test}$

4.2.4 Data Storage

4.2.5 User Interface

4.2.6 SmartServe

Test ID: SR1 ShotRecommendation	Connection Test - Pass Status: ????
Description: The ShotRecommendation class as a parameter.	s will call the <i>connect</i> method with port 8080
Pass/Fail Condition: The method should ret	urn true.
Pre-Conditions: The ShotRecommendation s	server is running on port 8080.
Input: 8080	
Expected Results: true	Actual Results: ????
Post-Conditions: N/A	

Table 20: ShotRecommendation Connection Test - Pass

Test ID: SR2	ShotRecommendation	Connection Test - Fail	Status: ????
Description: The as a parameter.	e ShotRecommendation class	will call the <i>connect</i> method w	ith port 8090
Pass/Fail Condi	ition: The method should retu	ırn false.	
	The ShotRecommendation se	erver is running on port 8080.	
Input: 8090			
Expected Resul	ts: false	Actual Results: ????	
Post-Conditions	s: N/A		

Table 21: ShotRecommendation Connection Test - Fail

Test ID: SR3 ShotRecommendation Request Shot - Random Status: ????
Description: The ShotRecommendation class will call the getRecommendation method with Random mode as a parameter.
Pass/Fail Condition: The method should a random shot of the form "X=A.BC,Y=A.BC,V=A.BC,W=A.BC" where the values are within the requirements of the system.
Pre-Conditions: The ShotRecommendation server is running on port 8080. Input: Mode.Random
Expected Results: A valid shot, in string Actual Results: ???? form.
Post-Conditions: N/A

Table 22: ShotRecommendation Request Shot - Random

Test ID: SR4	ShotRecommendation Request Shot - Train	Status: ????
	he ShotRecommendation class will call the $getRecommendation$ as a parameter.	on method with
/	ondition: The method should a shot of A.BC,V=A.BC,W=A.BC" where the values are within the	
Pre-Conditions Input: Mode.Tr	s: The ShotRecommendation server is running on port 8080.	
Expected Resuform.	ults: A valid shot, in string Actual Results: ????	
Post-Condition	ıs: N/A	

Table 23: Shot Recommendation Request Shot - Train

Test ID: SS1 ShotRecommendation Request Shot - One-shot Status: ????			
Description: The ShotRecommendation class will call the $getRecommendation$ method with One-shot mode as a parameter.			
Pass/Fail Condition: The method should a shot of the form "X=A.BC,Y=A.BC,V=A.BC,W=A.BC" where the values are within the requirements of the system. Repeated requests should return the same shot.			
Pre-Conditions: The ShotRecommendation server is running on port 8080. Input: Mode.OneShot			
Expected Results: A valid shot, in string Actual Results: ???? form.			
Post-Conditions: N/A			

Table 24: Shot Recommendation Request Shot - One-shot

Test ID: SS2	ShotRecomm	nendation Model Update	Status: ????
Description: The S	ShotRecommendation	on class will call the <i>updateModel</i> m	nethod.
Pass/Fail Condition: The ShotRecommender does not throw an error and the model is updated.			
Pre-Conditions: The ShotRecommendation server is running on port 8080.			
Input: a previously request shot and false			
Expected Results:	N/A	Actual Results: ????	
Post-Conditions: I	N/A		

Table 25: ShotRecommendation Model Update

Test ID: SS3	${f ShotRecommendat}$	ion Model Update	Status: ????	
Description: The S	hotRecommendation class	will call the <i>updateModel</i> met	hod.	
Pass/Fail Conditioupdated.	Pass/Fail Condition: The ShotRecommender does not throw an error and the model is updated.			
Pre-Conditions: The ShotRecommendation server is running on port 8080.				
Input: a previously request shot and true				
Expected Results:	N/A	Actual Results: ????		
Post-Conditions: N	I/A			

Table 26: Shot Recommendation Request Shot - One-shot

Table 27: ComputerVisionController Connection Test - Pass

Test ID: SS5 ComputerVisionControl	ler Connection Test - Fail Status: ????		
Description: The CV class will call the conn	ection method.		
Pass/Fail Condition: The method returns false.			
Pre-Conditions: The CV server is running on port 8001.			
Input: 8000			
Expected Results: false Actual Results: ????			
Post-Conditions: N/A			

Table 28: ComputerVisionController Connection Test - Fail

Test ID: SS6 ComputerVisionController Detect Test - Timeout

Description: The CV class will call the start method and no ball is introduced into the frame.

Pass/Fail Condition: The method returns false.

Pre-Conditions: The CV server is running on port 8000.

Input: N/A

Expected Results: false

Actual Results: ????

Post-Conditions: N/A

Table 29: ComputerVisionController Detect Test - Timeout

Test ID: SS7 ComputerVisionController Detect Test - Detect

Description: The CV class will call the start method and a ball is introduced into the frame, emulating a successful shot.

Pass/Fail Condition: The method returns true.

Pre-Conditions: The CV server is running on port 8000.

Input: N/A

Expected Results: true

Actual Results: ????

Post-Conditions: N/A

Table 30: ComputerVisionController Detect Test - Detect

Test ID: SS8

SQLConnector Connection Test - Pass

Status: ????

Description: The SQLConnector class will call the connect method.

Pass/Fail Condition: The method returns true.

Pre-Conditions: The SQL server is running on port 3306.

Input: 3306

Expected Results: true

Actual Results: ????

Post-Conditions: N/A

Table 31: SQLConnector Connection Test - Pass

Test ID: SS9	SQLConnector Con	nnection Test - Fail	Status: ????
Description: The SO	QLConnector class will ca	ll the <i>connect</i> method.	
Pass/Fail Condition: The method returns false.			
Pre-Conditions: The SQL server is not running.			
Input: 3306			
Expected Results: false Actual Results: ????			
Post-Conditions: N/A			

Table 32: SQLConnector Connection Test - Pass

Test ID: SS10	SQLConne	ector Query Test - Signup	Status: ????	
Description: The S	SQLConnector cla	ass will call the save method.		
Pass/Fail Condition: The user is saved in the database.				
Pre-Conditions: The SQL server is running on port 3306.				
Input: Object[] with "Chris" and "password123" for the "sign_up" procedure				
Expected Results: true Actual Results: ????				
Post-Conditions: I	N/A			

Table 33: SQLConnector Query Test - Signup

Test ID: SS11	SQLConnector Que	ery Test - Returned	Status: ????
Description: The SO	QLConnector class will ca	ll the save method.	
Pass/Fail Condition: The shot is saved in the database correctly.			
Pre-Conditions: The SQL server is running on port 3306.			
Input: Object[] with 25, 1, 1 and the current time for the "returned" procedure			
Expected Results: t	rue	Actual Results: ????	
Post-Conditions: N	/A		

Table 34: SQLConnector Query Test - Returned

Test ID: SS12	SQLConnector Q	uery Test - Login	Status: ????	
Description: The So	QLConnector class will ca	all the save method.		
Pass/Fail Condition: The shot is saved in the database correctly.				
Pre-Conditions: The SQL server is running on port 3306.				
Input: Object[] with "Chris" and "password123" for the "login" procedure				
Expected Results: true Actual Results: ????				
Post-Conditions: N/A				

Table 35: SQLConnector Query Test - Returned

Test ID: SS13	ArduinoController Co	onnection Test - Pass	Status: ????	
Description: The	e ArduinoController class will	call the <i>test</i> method, repeat for	or all arduinos.	
Pass/Fail Condition: The method returns true.				
Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code.				
Input: the port for the Arduino(s)				
Expected Results	s: true	Actual Results: ????		
Post-Conditions: N/A				

Table 36: Arduino Controller Connection Test - Pass

Test ID: SS14 ArduinoController Connection Test - Fail Status: ????

Description: The ArduinoController class will call the test method, repeat for all arduinos.

Pass/Fail Condition: The method returns false.

Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code.

Input: "some-test-string"

Expected Results: false Actual Results: ????

Post-Conditions: N/A

Table 37: ArduinoController Connection Test - Fail

Test ID: SS15 A	rduinoController Test - Pan	Status: ????		
Description: The ArduinoCo	ontroller class will call the <i>shoot</i> method.			
Pass/Fail Condition: The system pans to 75 degrees.				
Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code.				
Input: a ShotDetail object with pan of 75 degrees				
Expected Results: true	Actual Results: ????			
Post-Conditions: N/A				

Table 38: ArduinoController Test - Pan

Test ID: SS16	ArduinoContro	ller Test - Pan	Status: ????
Description: The Ard	uinoController class wil	call the <i>shoot</i> method.	
Pass/Fail Condition: The system pans to 120 degrees.			
Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code			
Input: a ShotDetail object with pan of 120 degrees			
Expected Results: tru	ie	Actual Results: ????	
Post-Conditions: N/A	1		

Table 39: ArduinoController Test - Pan

Test ID: SS17 ArduinoC	Cest ID: SS17 ArduinoController Test - Shoot									
Description: The ArduinoController	class will call the <i>shoot</i> method.									
Pass/Fail Condition: The system shoots at 75% power.										
Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code.										
Input: 75										
Expected Results: true Actual Results: ????										
Post-Conditions: N/A										

Table 40: ArduinoController Test - Shoot

Test ID: SS18	D: SS18 ArduinoController Test - Shoot								
Description: The Ar	rduinoController class will call the shoot m	nethod.							
Pass/Fail Condition: The system shoots at 100% power.									
Pre-Conditions: The Arduinos are plugged in via USB and loaded with the correct code.									
Input: 100									
Expected Results: t	rue Actual Results:	????							
Post-Conditions: N	/A								

Table 41: ArduinoController Test - Shoot

${\bf 5}\quad {\bf Test}\ {\bf Case\text{-}Requirement}\ {\bf Traceability}\ {\bf Matrix}$

Table 42: Matrix to Match Tests to Functional Requirements

Functional Requirement-Test Matrix																	
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18

Table 43: Matrix to Match Tests to Non-Functional Requirements

	Non-Functional Requirement-Test Matrix																		
	LF1	UH1	UH2	P1	P2	P4	P5	OE2	MS1	MS2	S1	S2	P1	LC1	HS1	HS2	HS3	HS4	HS5
T1					X						X								