

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

РЕФЕРАТ

по дисциплние «Уравнения математической физики» на тему «Теоремы о единственности и устойчивости решений третьей краевой задачи для уравнения Пуассона»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.) (подпись)

Проверил проф. д.ф.-м. н.

Алексеев Г.В.

(Ф.И.О.) (подпись)

« 4 » июля 2024 г.

г. Владивосток

2024

Оглавление

1	Уравнение Пуассона		3
	1.1	Теоремы единственности и устойчивости решений третьих кра-	
		евых задач	3
2	2 Заключение		7
3	Спи	сок литературы	8

1. Уравнение Пуассона

Пусть Ω — ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^1$, Ω_e — её внешность, $f \in C(\Omega)$ либо $f \in C(\Omega_e)$, $g \in C(\Gamma)$, \mathbf{n} — единичный вектор внешней нормали к границе Γ , $\overline{\Omega}_e = \Omega_e \cup \Gamma$. Тогда уравнение Пуассона выглядит так:

$$\Delta u = f,\tag{1}$$

где Δ – оператор Лапласа.

Третьи краевые задачи для уравнения Пуассона имеют вид:

1. Внутренняя задача. Найти функцию $u\in C^2(\Omega)\cap C^1(\overline{\Omega})$, удовлетворяющую уравнению (1) в Ω и граничному условию

$$\frac{\partial u}{\partial n} + au = g$$
 на Γ . (2)

Здесь $a:\Gamma\to\mathbb{R}, a\in C(\Gamma)$, и $\frac{\partial u}{\partial n}$ – производная по внешней нормали к границе Γ .

2. Внешняя задача. Найти функцию $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$, удовлетворяющую уравнению (1) в Ω_e , граничному условию (2) и условию регулярности на бесконечности

$$u(\mathbf{x}) = o(1)$$
 при $|\mathbf{x}| \to \infty$. (3)

1.1. Теоремы единственности и устойчивости решений третьих краевых задач

Теорема 1.1 (Единственность внутренней задачи). Решение $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ внутренней третьей краевой задачи (1), (2) единственно при

$$a \in C(\Gamma), \ a \ge 0$$
 на $\Gamma, \ \int_{\Gamma} a d\sigma > 0.$ (i)

Доказательство. Предположим, что задача (1), (2) имеет два решения: u_1 и u_2 . Рассмотрим их разность $u=u_2-u_1$, найдём лапласиан и подставим в краевое условие:

$$\Delta u = \Delta u_2 - \Delta u_1 = f - f = 0. \tag{j}$$

$$\frac{\partial u}{\partial n} + au = \frac{\partial u_2}{\partial n} + au_2 - \left(\frac{\partial u_1}{\partial n} + au_1\right) = g - g = 0 \Rightarrow \frac{\partial u}{\partial n} = -au. \quad (jj)$$

Значит, что функция u является гармонической в Ω с третьим однородным краевым условием на Γ .

Воспользуемся первой формулой Грина:

$$\int_{\Omega} \nabla u \nabla v d\mathbf{x} = -\int_{\Omega} v \Delta u d\mathbf{x} + \int_{\Gamma} v \frac{\partial u}{\partial n} d\sigma. \tag{4}$$

Пологая в формуле (4) v = u, получим

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} = -\int_{\Omega} u \Delta u d\mathbf{x} + \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma.$$
 (5)

Учитывая условия (j), (jj) выводим

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} + \int_{\Gamma} au^2 d\sigma = 0.$$
 (6)

Поскольку по условию (i) $a\geq 0$, то для того, чтобы сумма положительных величин была равна нулю необходимо, что эти величины были равны нулю. Значит $\int_{\Omega} |\nabla u|^2 d\mathbf{x} = 0$, откуда $|\nabla u| = 0$ в $\Omega \Rightarrow u = u_0 = \mathrm{const.}$ Подставляя $u = u_0$ в (6), будем иметь

$$\int_{\Gamma} au_0^2 d\sigma = u_0^2 \int_{\Gamma} ad\sigma = 0. \tag{7}$$

Из третьего условия в (*i*) получаем, что $u_0 = 0 \Rightarrow u_1 = u_2$.

Теорема 1.2 (Устойчивость внутренней задачи ???). Пусть u_1, u_2 – решения третьей внутренней краевой задачи (1) при граничных условиях

$$\left(\frac{\partial u_1}{\partial n} + au_1\right)\Big|_{\Gamma} = g_1, \ \left(\frac{\partial u_2}{\partial n} + au_2\right)\Big|_{\Gamma} = g_2, \tag{8}$$

и пусть

$$|g_1(\mathbf{x}) - g_2(\mathbf{x})| \le \varepsilon \|B\| \ \forall \mathbf{x} \in \Gamma, \tag{9}$$

где $\|B\| = \left\| \frac{\partial}{\partial n} + a \right\|$ — норма дифференциального оператора, задающего граничное условие.

Тогда выполняется неравенство

$$|u_1(x) - u_2(x)| \le \varepsilon \text{ Ha } \overline{\Omega}. \tag{10}$$

Доказательство. Пусть функция $u=u_1-u_2$, тогда по (j) $\Delta u=0$ – гармоническая функция в $\Omega, u \in C(\Omega)$ и удовлетворяющая условию $\left|\frac{\partial u}{\partial n} + au\right| \leq \varepsilon \|B\|$ на Γ . Тогда ???

Теорема 1.3 (Единственность внешней задачи). Решение $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$ внутренней третьей краевой задачи (1), (2), (3) единственно, если Ω_e — связное множество и $a \in C(\Gamma), \ a \geq 0$ на Γ .

Доказательство. Предположим, что задача (1), (2), (3) имеет два решения: u_1 и u_2 . Возьмём шар достаточно большого радиуса B_R с границей Γ_R , что $\Omega_R \supset \Omega$, которым ограничим область Ω , получая $\Omega_R = \Omega \cap B_R$. Имеем границу $\partial \Omega_R = \Gamma \cup \Gamma_R$. Применим формулу Грина (4), полагая $u = u_2 - u_1, v = u$, и учитывая $\Delta u = 0$ в Γ_R (j), будем иметь

$$\int_{\Omega_R} |\nabla u|^2 d\mathbf{x} = \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma + \int_{\Gamma_R} u \frac{\partial u}{\partial n} d\sigma.$$
 (11)

В силу поведения функции $|\nabla u| = O(|\mathbf{x}|^{-2})$ при $|\mathbf{x}| \to \infty$, имеем $|\nabla u|^2 = O(|\mathbf{x}|^{-4})$, в то время как объём Ω_R растёт как $O(R^3)$, R = |x|. Отсюда следует, что при $R \to \infty$ собственный интеграл в правой части стремится к сходящемуся несобственному интегралу $\int_{\Omega_e} |\nabla u|^2 d\mathbf{x}$. Также величина $\left(u \frac{\partial u}{\partial n}\right)\Big|_{\Gamma_R}$ убывает как $O(R^{-3})$, тогда как площадь поверхности Γ_R растёт как $O(R^2)$. Поэтому, переходя к пределу при $R \to \infty$ и учитывая, что $\frac{\partial u}{\partial n} = -au$ на $\Gamma(jj)$, получим

$$\int_{\Omega_e} |\nabla u|^2 d\mathbf{x} + \int_{\Gamma} a u^2 d\sigma = 0.$$
 (12)

_

2. Заключение

3. Список литературы

- [1] Филипов, А. Ф. Введение в теорию дифференциальных уравнений // А. Ф. Филипов М.: КомКнига, 2007.
- [2] Нефёдов, Н. Н. Обыкновенные дифференциальные уравнения // Н. Н. Нефёдов, В. Ю. Попов, В. Т. Волков М.: Физический факультет МГУ им. М. В. Ломоносова, 2016.
- [3] Березин, И. С. Методы вычислений // И. С. Березин, Н. П. Жидков М.: Наука, 1959. – Т. 2.
- [4] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет М.: Наука, 1978.
- [5] Понтрягин, Л. С. Обыкновенные дифференциальные уравнения // Л. С. Понтрягин М.: Наука, 1974.