Predicting the Age of Abalone Using Regression Models

A Comparative Study of Linear, Ridge, and Lasso Regression

"

MUHAMMAD MUBASHAR SHAHZAD

Registration No. SM3600012

Scientific and Data Intensive Computing (SDIC)

University of Trieste

Introduction

- Objective: To predict the age of abalone using physical measurements.
- Dataset: Abalone dataset with 4177 instances and 8 features.
- Target Variable: Rings (predicting Age by adding 1.5).

Dataset Overview

- Features:
- Sex (Categorical)
- Length (Continuous)
- Diameter (Continuous)
- Height (Continuous)
- Whole weight (Continuous)
- Shucked weight (Continuous)
- Viscera weight (Continuous)
- Shell weight (Continuous)
- Target: Rings (Integer, Age = Rings + 1.5)

Data Loading and Initial Exploration

- Step 1: Loading the dataset using Pandas.
- Code Snippet: `pd.read_csv('abalone.csv')`
- Initial DataFrame: Show the first few rows of the dataset.
- Handling Missing Values: Mention that there are no missing values in the dataset.

Data Preprocessing

- Step 2: Converting Categorical Variable
- Sex column converted to numerical using onehot encoding.
- Step 3: Creating Age Column
- Adding 1.5 to the Rings column to get the age.

Exploratory Data Analysis (EDA)

- Step 4: Visualizations
- Histograms of numerical features.
- Box plots to check for outliers.
- Step 5: Correlation Analysis
- Heatmap of correlation matrix to understand relationships between features and target.

Boxplot of Numerical Features

Distribution of Diameter

Distribution of Length

Length vs Age

Correlation Matrix

Correlation Platin											1.0
Length -	1.00	0.99	0.83	0.93	0.90	0.90	0.90	-0.55	0.24	0.56	1.0
Diameter -	0.99	1.00	0.83	0.93	0.89	0.90	0.91	-0.56	0.24	0.57	- 0.8
Height -	0.83	0.83	1.00	0.82	0.77	0.80	0.82	-0.52	0.22	0.56	- 0.6
Whole_weight -	0.93	0.93	0.82	1.00	0.97	0.97	0.96	-0.56	0.25	0.54	- 0.4
Shucked_weight -	0.90	0.89	0.77	0.97	1.00	0.93	0.88	-0.52	0.25	0.42	0.4
Viscera_weight -	0.90	0.90	0.80	0.97	0.93	1.00	0.91	-0.56	0.24	0.50	- 0.2
Shell_weight -	0.90	0.91	0.82	0.96	0.88	0.91	1.00	-0.55	0.24	0.63	- 0.0
Sex_l -	-0.55	-0.56	-0.52	-0.56	-0.52	-0.56	-0.55	1.00	-0.52	-0.44	0.2
Sex_M -	0.24	0.24	0.22	0.25	0.25	0.24	0.24	-0.52	1.00	0.18	0.4
Age -	0.56	0.57	0.56	0.54	0.42	0.50	0.63	-0.44	0.18	1.00	0.4
	ngth -	neter -	eight -	Sex_I -	ex_M -	Age -					

Feature Scaling and Train-Test Split

- Step 6: Scaling the Features
- Normalization using StandardScaler.
- Step 7: Splitting the Data
- Train-Test split (80-20) using `train_test_split`.

Model Training - Linear Regression

- Model: Linear Regression
- Training: Fit the model on training data.
- Evaluation: MSE and R-squared on test data.
- Results:
- MSE: 4.8912
- -R2: 0.5482

Model Training - Ridge Regression

- Model: Ridge Regression
- Training: Fit the model on training data.
- Evaluation: MSE and R-squared on test data.
- Results:
- **■** MSE: 4.8911
- R2: 0.5482

Model Training - Lasso Regression

- Model: Lasso Regression
- Training: Fit the model on training data.
- Evaluation: MSE and R-squared on test data.
- Results:
- MSE: 7.6826
- **R2:** 0.2903

Model Comparison

- Linear Regression:
- MSE: 4.8912
- **R2:** 0.5482
- Lasso Regression:
- MSE: 7.6826
- **R2:** 0.2903
- Ridge Regression:
- **■** MSE: 4.8911
- **R2:** 0.5482

Residual Analysis - Summary

Linear Regression:

- Mean: -0.009
- Std: 2.21
- Min: -6.01
- Max: 9.78

Lasso Regression:

- Mean: -0.023
- Std: 2.77
- Min: -5.24
- Max: 12.18

Ridge Regression:

- Mean: -0.008
- Std: 2.21
- Min: -6.02
- Max: 9.77

Residual Analysis - Visualizations

- Residual vs Predicted Values for Ridge Regression
- Residual vs Predicted Values for lasso Regression
- Q-Q Plot of Residuals for Ridge Regression
- Q-Q Plot of Residuals for lasso Regression

Residuals vs Predicted Values

Residuals vs Predicted Values (Lasso)

Q-Q Plot of Residuals

Q-Q Plot of Residuals (Lasso)

Conclusion

Model Performance:

- Linear and Ridge Regression models performed similarly, better than Lasso.
- Ridge Regression is preferred due to handling multicollinearity effectively.
- Ridge Regression: MSE (4.8911), R² (0.5482).

Residuals Analysis:

- Similar residual patterns for Linear and Ridge, capturing data patterns well.
- Some outliers indicate underestimation or overestimation.
- Lasso showed higher residual variability, indicating less generalization.

Future Work and Acknowledgements

Future Work:

- Explore advanced regression techniques and feature engineering.
- Consider a Generalized Linear Model (GLM) for better handling different distributions of the target variable.

Acknowledgements:

Thanks to the UCI Machine Learning Repository for the Abalone dataset.

Questions & Answers

Open the floor for any questions from the audience.

