MAINTENANCE PRÉDICTIVE

08/02/2024

Plan du cours

- Introduction
- Modélisation statistique pour la maintenance
- Capteurs, analyse de données pour la maintenance
- Nettoyage et manipulation des données
- Analyse des défaillances pour la maintenance

Introduction

Rappels des cours précédents

> Cours 1 & 2 ·

- Pour optimiser la maintenance, on a besoin (entre autre) d'estimer les lois de vie des équipements
- Les méthodes statistiques comme Weibull modélisent ces lois de vie
- Des méthodes spécifiques traitent les problématiques des covariates

> Cours 3:

- Désormais, on récolte des données de plus en plus nombreuses, et tout au long de la vie des équipements
- On peut également prédire la durée de vie restante par des méthodes d'apprentissage plus courantes

> Cours 4:

- Les techniques de traitement de données sur des problématiques classiques :
 - Le nettovage des données
 - La sélection de données
 - Le traitement des données catégorielles
- De nouvelles méthodes émergent très récemment, pour mixer les approches des cours 2 & 3

> Cours 5 :

- L'analyse des pannes, ou troubleshooting en anglais
 - L'AMDEC
 - L'arbre de défaillance
 - Les réseaux bayésiens

ANALYSE DES
MODES DE
DÉFAILLANCES ET
DES EFFETS
CRITIQUES
(AMDEC)

08/02/2024

Analyse des Modes de Défaillances et des Effets Critiques (AMDEC)

AMDEC:

- > Définition :
 - Analyse des Modes de Défaillances et des Effets Critiques
 - En anglais: FMECA: Failure Mode and Effects and Critically Analysis
- > Cette analyse quantitative permet :
 - d'approfondir la notion de criticité des défaillances
 - Mieux comprendre les processus de propagation des défaillances grâce aux arbres de défaillances
- > Notion de criticité :
 - C = G * F * D
 - F: fréquence
 - G : gravité
 - D : détection

AMDEC:

> Exemple:

Equipement	Fonction	Modes de défaillances	Effets	Causes	F	D	G	С
Injecteurs	Injecter le carburant	Bouchage	Pas d'injection	Cockéfac tion	Rare	Moyenne	Réparation à faire	

- F : fréquence → probabilité du mode de défaillance

- G : gravité → importance des effets

- D : détection → probabilité de détecter avant que le mode apparaisse

AMDEC:

> Modes de défaillance génériques

1	Défaillance structurelle	6	Fuites	11	Entrées/ sorties erronées
2	Blocage physique	7	Problème de limites	12	Problème d'arrêts / démarrage / switch
3	Vibrations	8	Fonctionnement intempestif	13	Délais
4	Mouvement incontrôlé	9	Fonctionnement intermittent / irrégulier	14	Court-circuits
5	Problème ouverture / fermeture	10	Indication erronée	15	

• AMDEC:

> Exemple de hiérarchisation de la probabilité de la défaillance

F	Proba	Fréquence
1	10^{-9}	1 fois tous les 10 ans
2	10^{-7}	1 fois par an
3	10^{-5}	1 fois par mois
4	10^{-4}	1 fois par semaine

> Dans notre exemple : P = 2

• AMDEC:

> Exemple de hiérarchisation de la gravité

G	Pertes matérielles	Gravité humaine
4	Perte du système	Mort
3	Dommage majeur	Blessé grave
2	Dommage mineure	Blessé léger
1	Aucun dommage	Aucun blessé

> Dans notre exemple : G = 1

• AMDEC:

> Exemple de détection

D	Critère de détection
1	10 ⁻⁹ de ne pas détecter
2	10^{-7} de ne pas détecter
3	10^{-5} de ne pas détecter
4	10^{-4} de ne pas détecter

> Dans notre exemple : D = 2,5

AMDEC:

> Ensuite, on classe les problèmes par criticité :

С	Réaction
C < 10	Négligeable
10 < C < 20	Moyenne : étudier les cas pour voir s'il faut rehausser la criticité évaluée pour mener des actions, maintenance corrective
20 < C < 40	Élevée : trouver les actions à mener pour réduire la criticité, maintenance préventive
40 < C	Inacceptable : il faut agir. (on rappellera que l'AMDEC s'utilise aussi pendant la conception)

ARBRES DE DÉFAILLANCE & CHAÎNES DE MARKOV

08/02/2024

Arbres de défaillance

- Méthode déductive pour visualiser et quantifier les différents scénarios de défaillance
- > On part d'un événement redouté
 - Panne complète
 - Mais aussi panne spécifique d'un sous-équipement
- > On cherche les suites d'événements qui mènent à cet événement
- > Puis on remonte récursivement
- > Différence avec l'AMDEC :
 - lci on cherche à quantifier les causes d'un événement particulier, et non la totalité des pannes
 - On peut imaginer effectuer un ou plusieurs arbres de défaillance pour avoir une AMDEC plus précise

Arbres de défaillance

- > Fonctions de base :
 - Ou : la défaillance d'un composant entraîne la défaillance de l'ensemble
 - Et : la défaillance de l'ensemble entraîne la défaillance des composants
- > Traitement qualitatif:
 - Ecriture de l'équation de l'arbre
 - Réduction par algèbre de Boole
 - Coupes minimales / chemins critiques : plus petites combinaisons qui entraînent la perte du système / de la mission
- > Traitement quantitatif
 - En entrant les taux de défaillance estimé de chaque composant élémentaire, on peut calculer le taux de défaillance du système
 - ET: $\lambda = \lambda 1 * \lambda 2$
 - OU: $\lambda = 1 (1 \lambda 1) * (1 \lambda 2)$
 - (avec λ les taux de défaillance)
 - On notera ici qu'on suppose les λ constants : on a gagné en complexité d'analyse mais on a perdu en complexité de modélisation du composant

Exemples

- > Événement : le radiateur électrique ne fonctionne plus
- > Causes de 1er niveau :
 - Radiateur défaillant
 - Plus de courant
- > Causes de 2ème niveau :
 - Radiateur défaillant:
 - Résistance défaillant
 - Contrôleur défaillant
 - Plus de courant :
 - Prise non branchée
 - Courant coupé
- > On associera à chacune de ces causes des probabilités

Source: wikipedia

RESEAUX BAYESIENS

08/02/2024

Rappels:

- > p(a|b) = p(a,b)/p(b)
- $\rightarrow a$ et b sont indépendants ssi p(a,b)=p(a)p(b), p(a|b)=p(a), p(b|a)=p(b)
- > Indépendance conditionnelle : a et b sont indépendants conditionnellement à c ssi p(a|b,c) = p(a|c)
- > Marginalisation : $p(a) = \sum_i p(a, b_i)$ avec les b_i qui forment l'ensemble complet d'événements mutuellement exclusifs
- > Si on connait les probabilités conditionnelles $p(a|b_i)$ et les probabilités d'occurrence des b_i $p(b_i)$, on a $p(a) = \sum_i p(a|b_i)p(b_i)$
- > Théorème de Bayes : probabilité a posteriori $p(b_i|a) = p(a|b_i)p(b_i)/p(a)$

Le réseau bayésien :

- > Prendre en compte les indépendances conditionnelles entre les variables pour simplifier la loi jointe
- > En français : prendre en compte les relations entre variables pour simplifier la modélisation du système
- > Deux composants :
 - Le graphe orienté
 - Les probabilités conditionnelles
- > Pour la maintenance prédictive → construire des modèles du système et/ou des pannes

Exemple graphique

Trois types de connexions :

> Série : A \rightarrow B \rightarrow C

> Divergente : A ← B \rightarrow C

> Convergente : A \rightarrow B ← C

SPRINKLER	RAIN	T	F
F	F	0.0	1.0
F	T	0.8	0.2
T	F	0.9	0.1
T	T	0.99	0.01
		1	

Trois types de connexions :

- > Série : A \rightarrow B \rightarrow C
 - A & C sont dépendants
 - A & C sont indépendants conditionnellement à B
 - Si je connais B, A est inutile pour déterminer C
 - p(C|A,B) = p(C|B)
- > Divergente : A ← B → C
 - A & C sont dépendants
 - A & C sont indépendants conditionnellement à B
 - Si je connais B, A est inutile pour déterminer C
 - p(C|A,B) = p(C|B)
- > Convergente : A → B ← C
 - A & C sont indépendants
 - A & C sont dépendants conditionnellement à B
 - Si je connais B, A apporte de l'information sur C
 - p(C| A,B) ne se simplifie pas ici

	SPRIN	KLER		ı F	RAIN
RAIN	T	F	SPRINKLER RAIN -	T	F
F	0.4	0.6	SPRINKLER RAIN -	0.2	0.8
Т	0.01	0.99	GRASS WET	1	
			GRASS WET		
			SPRINKLER RAIN T F		

		GRASS WET		
SPRINKLER	RAIN	T	F	
F	F	0.0	1.0	
F	T	0.8	0.2	
T	F	0.9	0.1	
T	T	0.99	0.01	

- La loi jointe : $p(Node_3) = p(Node_1)p(Node_2|Node_1)p(Node_3|Node_1,Node_2) \dots$
 - > Le réseau bayésien représente de manière compact cette loi
 - > Sert à faire de l'échantillonnage (pas en rapport avec la maintenance)
 - > Sert à calculer $p(Node_i|Node_i = x) \rightarrow pour la maintenance, recherche de causes$

- calculer $p(Node_i|Node_i = x)$
 - > Problème NP-complet
 - > Algorithmes exacts
 - Message Passing (Pearl 1988)
 - Junction Tree (Jensen 1990)
 - Shafer-Shenoy (1990)
 - > > problème si graphes trop connectés
- Comment apprendre un réseau bayésien ?
 - > Les probabilités à structure fixée
 - > La structure

Comment apprendre un réseau bayésien ?

- > Les probabilités à structure fixée
 - Par maximum de vraisemblance :
 - $\hat{\theta} = argmax_{\theta} (P(D|\theta))$
 - En discret p(event) est la fréquence d'apparition de l'événement
 - $\hat{p}(X_i = x_k | Parents(X_i) = x_j) = \hat{\theta}_{i,j,k} = N_{i,j,k} / \sum_k N_{i,j,k}$ avec $N_{i,j,k}$ le nombre d'occurrences de $X_i = x_k$ et $Parents(X_i) = x_j$
 - Par approche bayésienne avec maximum à posteriori
 - $\hat{\theta} = argmax_{\theta} (P(\theta|D)) = argmax_{\theta} (P(D|\theta)p(\theta))$
 - On a donc une loi « a priori » sur les périmètres $p(\theta)$ cas discret, on prend une Dirichlet : $p(\theta) = \prod_{i,j,k} \theta_{i,j,k}^{\alpha_{i,j,k}}$
 - On obtient alors : $\hat{p}(X_i = x_k | Parents(X_i) = x_i) = \hat{\theta}_{i,j,k} = (N_{i,j,k} + \alpha_{i,j,k} 1) / \sum_k (N_{i,j,k} + \alpha_{i,j,k} 1)$
 - Si au lieu de prendre le max on prend l'espérance, la solution est la même sans le précédemment
 - Des extensions existent avec les données manquantes...
 - Missing Completly At Random
 - Missing at random
 - Not Missing at random

- Comment apprendre un réseau bayésien ?
 - > Comment apprendre la structure ?
 - Croissance super-exponentielle
 - Ex: $NS(5) = 29281 NS(10) = 4.2 \times 10^{18}$
 - > Dans le cadre de la maintenance, on peut s'en servir pour de la recherche de cause racine
 - > Deux types de méthodes classiques :
 - Pearl et Verma : IC et IC*
 - Spirtes, Glymour et Scheines : SGS, PC, CI, FCI
 - > Le principe commun :
 - Construire un graphe non dirigé contenant les relations entre les variables
 - Par ajout d'arêtes (1er cas)
 - Par suppression d'arêtes (2ème cas)
 - Détecter les structures convergentes
 - Propager les orientations des arcs quand c'est possible

- Comment apprendre un réseau bayésien ?
 - > Comment apprendre la structure ?
 - > Recherche d'IC (indépendance conditionnelle)
 - Utilisation de tests statistiques (χ^2 par exemple)
 - Deux problèmes :
 - Explosion du nombre de tests -> heuristique, faire décroitre les p-values avec la taille du réseau
 - Le test devient de moins en moins fiable avec la quantité de nœuds -> heuristique, commencer par les relations d'ordre 0, puis 1, puis 2, ...
 - > Recherche de structures convergentes (V-structure)
 - Se fait grâce aux tests d'indépendance
 - > Propagation de liens : il ne faut pas introduire de V-structure, puisqu'on doit les avoir trouvé à l'étape d'avant

Comment apprendre un réseau bayésien ?

> Comment apprendre la structure ?

> Autre méthode:

- Faire directement de l'optimisation en donnant un score aux graphes (par exemple, de vraisemblance)
- L'espace est très grand, donc souvent : soit on se retreint aux arbres, soit on se restreint dans la recherche par un algorithme « greedy »
- On peut utiliser le résultat dans le domaine des arbres pour initialiser un algorithme plus large
- → rappelez-vous le cours sur la sélection de variables

Exemple : imprimante

- > Nœuds d'action
- > Nœuds de question

> 3 pannes:

- Manque de toner
- Distribution toner défectueuse
- Problème de pilote
- > Actions:
 - Changer le toner
 - Redémarrer
 - Installer un nouveau pilote
- > Questions:
 - La page test s'imprime-t-elle correctement ?
 - Y-a-t-il du papier dans l'imprimante ?

- P(A | C) (probabilité de faire l'action de manière efficace, sachant la cause) → choisir les actions
- P(Q | C) (probabilité d'avoir une réponse donnée pour une cause donnée) → éliminer les causes

Outil de manuel de vol auto apprenant

- > Le concept : mettre à jour en temps réel les bases de données de trouble-shooting
- > En pratique : mettre à jour les probabilités des causes possibles de panne, sachant certaines observations
- > Lors de l'utilisation:
 - L'interface présente des questions ou des actions à faire
 - Pour chaque réponse apportée par l'opérateur, la liste des questions se met à jour, et la liste des causes aussi
 - Cette liste peut être classée par coût d'opération, ou bien par efficacité de discrimination
- > Une fois l'opération de maintenance totalement terminée, les poids du réseau bayésien sont mis à jour

Exemple de panne dans l'outil :

- > Panne de batterie
- > Questions / actions :
 - Vérifier les contacts
 - Mesurer le voltage
 - Remplacer les contacts
 - Mesurer l'intensité
 - Vérifier les fluides de la batterie

> Causes:

- Problème de contacts 90%
- Problème de fluides 5%
- Problème d'alternateur 2%

- . . .

Exemple de panne dans l'outil :

- > Panne de batterie
- > Questions / actions :
 - Vérifier les contacts ← action choisie, réponse contact OK
 - Mesurer le voltage
 - Remplacer les contacts
 - Mesurer l'intensité
 - Vérifier les fluides de la batterie

> Causes:

- Problème de fluides 50%
- Problème d'alternateur 20%
- ..

Exemple de panne dans l'outil :

- > Panne de batterie
- > Questions / actions :
 - Mesurer le voltage
 - Mesurer l'intensité
 - Vérifier les fluides de la batterie action choisie, résultat non conforme

> Causes:

- Problème de fluides 80% ← problème trouvé
- Problème d'alternateur 5%

QUELQUES REMARQUES POUR ALLER PLUS LOIN

08/02/2024

Quelques remarques pour aller plus loin

 Un certain nombre de sujets n'ont pas été abordés dans ce cours, mais son liés à l'analyse de données pour la maintenance prédictive

Les chaînes de Markov

- > On peut ajouter des contraintes temporelles sur les taux de réparation et modéliser les vies suivantes
- ► En une petite équation : $P_{ok}(t + dt) = P_{ok}(t)$. $(1 \lambda dt) + (1 P_{ok}(t)) \mu dt$, λ étant le taux de survie, μ le taux de réparation

Natural Langage Processing :

- > Les données de maintenance sont souvent sous forme de langage naturel
- > Mais avec du vocabulaire technique spécifique, et parfois non uniformisé
- > NLP est un sujet de recherche très actif

Table learning :

- > Les données sont structurées en base de données
- > Il existe des travaux sur l'analyse de table en tant qu'objet en eux-mêmes
- > De même, l'utilisation d'algorithme sur les tables est un sujet de recherche très actif

CONCLUSIONS

08/02/2024

Conclusions

3 outils pour analyser des données de maintenance

- > Analyse des Modes de Défaillances et des Effets Critiques
 - Outil théoriquement quantitatif mais amenant à des analyses qualitatives
- > Arbres de défaillance
 - Outil théorique pour analyser un système complexe
- > Réseaux Bayésiens
 - Permet de comprendre les enchaînements d'événements et remonter aux causes racines

La semaine prochaine

- > Examen ?
 - Première partie sur table (cours, sans document) ~ 45 minutes
 - Seconde partie TP avec accès à tous les documents
- > Date de réception de l'email fait foi.

