MA 323 - Monte Carlo Simulation Assignment - 1

VISHISHT PRIYADARSHI 180123053

1 QUESTION - 1:

• Sequence of x_i for a = 6, b = 0, m = 11:

Sequence	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10 th
Seeds(x0)	value									
0	0	0	0	0	0	0	0	0	0	0
1	6	3	7	9	10	5	8	4	2	1
2	1	6	3	7	9	10	5	8	4	2
3	7	9	10	5	8	4	2	1	6	3
4	2	1	6	3	7	9	10	5	8	4
5	8	4	2	1	6	3	7	9	10	5
6	3	7	9	10	5	8	4	2	1	6
7	9	10	5	8	4	2	1	6	3	7
8	4	2	1	6	3	7	9	10	5	8
9	10	5	8	4	2	1	6	3	7	9
10	5	8	4	2	1	6	3	7	9	10

• When seed $(x_0) = 0$, only 1 distinct value appears (0) which goes on repeating. For seeds $(x_0) = 1$ to 10, 10 distinct values from 1 to 10 appear for each seed before the sequence starts repeating intself, i.e, period length = m - 1 = 10.

• Sequence of x_i for a = 3, b = 0, m = 11 :

Sequence	1 st value	2 nd value	3 rd value	4 th value	5 th value
Seeds(x0)					
0	0	0	0	0	0
1	3	9	5	4	1
2	6	7	10	8	2
3	9	5	4	1	3
4	1	3	9	5	4
5	4	1	3	9	5
6	7	10	8	2	6
7	10	8	2	6	7
8	2	6	7	10	8
9	5	4	1	3	9

• When seed $(x_0) = 0$, only 1 distinct value appears (0) which goes on repeating. For seeds $(x_0) = 1$ to 10, <u>5 distinct values</u> from 1 to 10 appear for each seed before the sequence starts repeating intself, i.e, <u>period length</u> = <u>5</u>.

Best Choice:

The largest possible period length of linear congruence generator is m − 1. This value is achieved when a = 6 (full period), while period length for a = 3 is only 5. So the linear congruence generator with a = 6 is preferred over a = 3 as it has higher period length. This is because there will be more randomness in the generated numbers as there are more numbers in the sequence.

And x_0 (seed) should be a non-zero value, as $x_0 = 0$ has no randomness in it.

• Output Screenshot:

```
a = 6, b = 0, m = 11:
seed = 0, Numbers = [0]
seed = 1, Numbers = [6, 3, 7, 9, 10, 5, 8, 4, 2, 1]
seed = 2, Numbers = [1, 6, 3, 7, 9, 10, 5, 8, 4, 2]
seed = 3, Numbers = [7, 9, 10, 5, 8, 4, 2, 1, 6, 3]
seed = 4, Numbers = [2, 1, 6, 3, 7, 9, 10, 5, 8, 4]
seed = 5, Numbers = [8, 4, 2, 1, 6, 3, 7, 9, 10, 5]
seed = 6, Numbers = [3, 7, 9, 10, 5, 8, 4, 2, 1, 6]
seed = 7, Numbers = [9, 10, 5, 8, 4, 2, 1, 6, 3, 7]
seed = 8, Numbers = [4, 2, 1, 6, 3, 7, 9, 10, 5, 8]
seed = 9, Numbers = [10, 5, 8, 4, 2, 1, 6, 3, 7, 9]
seed = 10, Numbers = [5, 8, 4, 2, 1, 6, 3, 7, 9, 10]
a = 3, b = 0, m = 11:
seed = 0, Numbers = [0]
seed = 1, Numbers = [3, 9, 5, 4, 1]
seed = 2, Numbers = [6, 7, 10, 8, 2]
seed = 3, Numbers = [9, 5, 4, 1, 3]
seed = 4, Numbers = [1, 3, 9, 5, 4]
seed = 5, Numbers = [4, 1, 3, 9, 5]
seed = 6, Numbers = [7, 10, 8, 2, 6]
seed = 7, Numbers = [10, 8, 2, 6, 7]
seed = 8, Numbers = [2, 6, 7, 10, 8]
seed = 9, Numbers = [5, 4, 1, 3, 9]
seed = 10, Numbers = [8, 2, 6, 7, 10]
```

2 QUESTION - 2:

• <u>Tabulated Data of Frequency of numbers (u_i) in different intervals:</u>

	a = 1597, b = 1, m = 244944					a = 51749, b = 1, m = 244944					
Seeds Frequency	X ₀ = 1	$X_0 = 2$	$X_0 = 3$	$X_0 = 4$	$X_0 = 6$	X ₀ = 1	$X_0 = 2$	$X_0 = 3$	$X_0 = 4$	X ₀ = 6	
0.00 – 0.05	12247	12247	12247	12247	12247	195	195	194	195	195	
0.05 - 0.10	12247	12247	12247	12247	12247	194	194	193	194	194	
0.10 - 0.15	12248	12248	12248	12248	12248	195	195	196	194	194	
0.15 – 0.20	12247	12247	12247	12247	12247	193	193	193	195	194	
0.20 – 0.25	12247	12247	12247	12247	12247	195	195	196	194	195	
0.25 – 0.30	12247	12247	12247	12247	12247	195	195	194	195	195	
0.30 – 0.35	12247	12247	12247	12247	12247	194	194	193	194	194	
0.35 – 0.40	12247	12247	12247	12247	12247	194	194	196	194	194	
0.40 – 0.45	12248	12248	12248	12248	12248	194	194	193	195	194	
0.45 – 0.50	12247	12247	12247	12247	12247	195	195	196	194	195	
0.50 – 0.55	12247	12247	12247	12247	12247	195	195	194	195	195	
0.55 – 0.60	12247	12247	12247	12247	12247	194	194	193	194	194	
0.60 – 0.65	12248	12248	12248	12248	12248	195	195	196	194	194	
0.65 – 0.70	12247	12247	12247	12247	12247	193	193	193	195	194	
0.70 – 0.75	12247	12247	12247	12247	12247	195	195	196	194	195	
0.75 – 0.80	12247	12247	12247	12247	12247	195	195	194	195	195	
0.80 – 0.85	12247	12247	12247	12247	12247	194	194	193	194	194	
0.85 - 0.90	12247	12247	12247	12247	12247	194	194	196	194	194	
0.90 – 0.95	12248	12248	12248	12248	12248	194	194	193	195	194	
0.95 – 1.00	12247	12247	12247	12247	12247	195	195	196	194	195	

Bar Diagram for a = 1597,51749, b = 1, m = 244944, seed (x₀) = 1:

Frequency Range

Bar Diagram for a = 1597, 51749, b = 1, m = 244944, seed (x₀) = 2:

Frequency Range

• Bar Diagram for a = 1597, 51749, b = 1, m = 244944, seed (x_0) = 3:

Frequency Range

Bar Diagram for a = 1597, 51749, b = 1, m = 244944, seed (x₀) = 4:

Frequency Range

• Bar Diagram for a = 1597, 51749, b = 1, m = 244944, seed (x_0) = 6:

Frequency Range

• Observations:

- 1. The numbers are <u>uniformly generated</u> between 0-1. The frequency of different numbers lying in same length intervals are almost same. So, the random number generator follows the property of generation of numbers uniformly.
- 2. For different value of seed (x_0) , the frequencies are <u>almost identical</u>, and so the nature of bar graphs is same.
- 3. When a = 1597, b = 1, m = 244944, the Linear Congruence Generator has its full period, i.e. m 1. But when a = 51749, b = 1, m = 244944, the Linear Congruence Generator does not achieve its full period.

Scatter plot for co-ordinates (u_{i-1,} u_i) with a = 1229, b = 1, m = 2048 and seed(x₀) = 1:

Observations:

- 1. The scatter plot contains 5 almost parallel lines originating at different y coordinates.
- 2. There is an outlier present at x = 1.0 (approx.). I believe this is present due to the precision issues while taking modulus in Python code (which is a bit different from the standard notion of modulus operation in other programming languages).
- 3. I found that this plot helps in what is known as "Spectral Test". LCGs have a property that when plotted in 2 dimensions, lines will form, on which all possible outputs can be found. The spectral test compares the distance between these planes; the further apart they are, the worse the generator is.