Human-machine social systems

Milena Tsvetkova^a, Taha Yasseri^{b,c}, Niccolo Pescetelli^d, and Tobias Werner^e

- ^a Department of Methodology, London School of Economics and Political Science, London, United Kingdom
- ^b School of Sociology, University College Dublin, Dublin, Ireland
- ^c Geary Institute for Public Policy, University College Dublin, Dublin, Ireland
- ^d Collective Intelligence Lab, New Jersey Institute of Technology, Newark, New Jersey, USA
- ^e Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany

Abstract

From fake accounts on social media and generative-AI bots such as ChatGPT to high-frequency trading algorithms on financial markets and self-driving vehicles on the streets, robots, bots, and algorithms are proliferating and permeating our communication channels, social interactions, economic transactions, and transportation arteries. Networks of multiple interdependent and interacting humans and autonomous machines constitute complex adaptive social systems where the collective outcomes cannot be simply deduced from either human or machine behavior alone. Under this paradigm, we review recent experimental, theoretical, and observational research from across a range of disciplines – robotics, human-computer interaction, web science, complexity science, computational social science, finance, economics, political science, social psychology, and sociology. We identify general dynamics and patterns in situations of competition, coordination, cooperation, contagion, and collective decision-making, and contextualize them in four prominent existing human-machine communities: high-frequency trading markets, the social media platform formerly known as Twitter, the open-collaboration encyclopedia Wikipedia, and the news aggre-

gation and discussion community Reddit. We conclude with suggestions for the research, design, and governance of human-machine social systems, which are necessary to reduce misinformation, prevent financial crashes, improve road safety, overcome labor market disruptions, and enable a better human future.

Introduction

At 2:32 pm on May 6, 2010, the Dow Jones Industrial Average plunged nearly 1000 points wiping out temporarily \$1 trillion from the stock market, only to recover about half an hour later. This flash crash has been largely attributed to high-frequency traders responding to and reinforcing the consequences of a single large sell order [1]. High-frequency traders are sophisticated algorithms that conduct automated financial trading at high speeds and with high turnover rates. In other words, the machines did it, and they did it collectively.

Today, practically all daily human interactions are mediated by algorithms and bots: web crawlers decide what information we find, ranking algorithms determine what we consume, auction bots outbid us for purchases, ChatGPT answers our questions, while social media bots fool us to believe dubious facts and news. Modern society is a complex human-machine social system in which machines are increasing in numbers, human interactions with machines are becoming more frequent, but also, machine-machine interactions are starting to have real consequences. With recent advances in generative AI models, the existential threat of unexplainable and uncontrollable general AI has started looming large again [2, 3, 4]. However, when they are numerous and interdependent, even simple "dumb" artificial agents can produce unintended and potentially undesirable outcomes. Imagine a "flash crash" but now in a city packed with self-driving vehicles full of passengers! If we want to prevent financial crashes, improve road safety, preserve market competition, increase auction market efficiency, and reduce misinformation, it is no longer sufficient to understand humans — we need to consider machines, understand how humans and machines interact, and how the collective behavior of systems of humans and machines can be predicted. We require a "new sociology of humans and machines."

The existing fields of human-computer interaction, social computing, computer-supported co-

operative work, and machine learning tend to approach machines as media or interfaces, not as autonomous actors or agents. Artificial intelligence does precisely this but focuses on cognition and decision-making, with little attention devoted to how humans and machines interact in groups and networks [5]. Several important and influential theories such as socio-technical systems theory [6], actor-network theory [7, 8], cyber-physical social systems theory [9, 10], and the concepts of social machines [11, 12] and human-machine networks [13, 14] stem from the idea that humans and machines form a single social system; yet, they still approach machines as a single entity, "technology," bracketing off their multiplicity, autonomy, and heterogeneity, and leaving the network effects and emergent outcomes often out of the discussion. In short, the existing theoretical frameworks mainly focus on the function of one machine either in isolation or at best in interaction with one or several individuals, leaving out the whole range of situations when multiple humans and machines co-exist and interact at large scale.

This survey synthesizes research and ideas related to social systems composed of multiple autonomous, yet interacting and interdependent humans and machines (Fig. 1). We focus on bots, algorithms, and robots that act alongside humans in tasks of competition, coordination, cooperation, communication, and collective decision making. We approach these situations as complex adaptive social systems where the collective outcomes cannot be necessarily deduced from individual preferences and behavior alone [15]. Our approach directly responds to a recent call for a systemic/ecological theoretical perspective and behavioral empirical methods for studying machine behavior [16] and falls along the "hybrid collective intelligence perspective," which considers humans, artificial agents, and their interactions at different levels of analysis and design [17]. Similarly to the budding field of Social AI [18], we operate at the intersection of complex systems, network science, and AI, but we investigate systems with multiple independent AI agents interacting on par with humans, rather than systems where human communication and interaction is mediated by AI technology such as a recommendation algorithm.

Human-machine interactions

We use the term "machines" to refer to a wide range of computational artifacts. These may be embodied in physical devices such as humanoid robots or exist only in digital space such as bots

Machines as media, interfaces

Machines as actors, agents

Figure 1: In contrast to prior conceptualizations of human-machine aggregates, human-machine social systems include *multiple autonomous algorithms*, *bots*, *or robots that interact on par with humans*. We need to study human behavior, machine behavior, and the human-human, human-machine, and machine-machine interactions simultaneously to understand the collective outcomes in such systems.

and algorithms. They may constitute anything from simple expert systems that use pre-defined if-else rules to sophisticated generative deep-learning models that learn from data in real time. We restrict our attention to *autonomous* artificial agents that participate in similar tasks as humans and thus operate in the same social space. Hence, we exclude human-assisted bots and bot-assisted humans known as "cyborgs" [19, 20], coordinated bot accounts known as botnets, swarm-bots, and bot farms [21, 22, 23, 24], online bots that perform background infrastructure-related tasks such as crawlers, indexers, and scrapers [20], and smart electricity grids and traffic light control systems because, in these cases, the machines are either non-independent or do not interact on par with humans.

The machines we consider are similar to humans in that they exhibit goal-oriented behavior shaped by information and subject to constraints, as well as diversity in how exactly they do this. Within this high level of similarity, however, the cognition and behavior of today's bots and algorithms differ from those of humans in several notable ways. Generally, machines' behavior tends to be predictable and persistent [25], with higher precision and faster execution [26], better informed with access to global information [27], and less adaptable and susceptible to influence [28, 29, 30].

In contrast, humans tend to be limited to local information, satisfice, act with errors, learn and adapt, succumb to social influence and peer pressure, yet also exhibit opinion stubbornness and behavioral inertia; on occasions, they may also use metacognition and revise their own perceptual and decision-making models. Humans often exhibit cognitive biases due to limited information processing capacity, bounded rationality, reliance on heuristics, vestiges of evolutionary adaptation, and emotional motivations [31, 32], and algorithms trained on data generated by humans tend to reproduce these biases [33, 34]. The ongoing quest for human-like general AI may erase the behavioral differences, making it difficult to distinguish a human from a machine based on speech, decisions, and actions. Nevertheless, market competition over faster, smarter, and more precise algorithms is likely to exacerbate the cognitive differences between humans and AI [35]. Hence, humans will remain distinct from machines in the near future.

If humans are unaware that they are facing a machine, they will interact with it as though they are interacting with a human. Thus, the underlying mechanisms and assumptions behind interactions with covert artificial agents do not differ from human-human interactions at the dyadic level. Nevertheless, they may still produce different collective outcomes because machines act differently.

Dyadic interactions when humans are aware of the machine's identity merit more attention. Research from the CASA (computers as social actors) paradigm in psychology emphasizes that humans to a large extent treat and respond to machines similarly to other humans: people reciprocate kind acts by computers [36], treat them as politely as they treat humans [37], consider them as competent, but also apply gender and racial stereotypes to them [38, 39]; people also humanize and empathize with machines, and experience distress when observing the mistreatment of a robot [40, 41].

Nevertheless, there are visible neurophysiological differences in the brain when humans interact with robots [42, 43], likely because humans do not attribute agency and morals to them [44, 45]. AI is perceived to have lower intentional capacity, lack self-interest, and be more unbiased than humans. As a result, humans exhibit a narrower emotional spectrum with machines than with humans, reacting with lower and flatter levels of social emotions such as gratitude, anger, pride, and sense of fairness [46, 47, 48, 49], yet judging machines more harshly when they commit mistakes, cause harm, or incur losses [50, 51]. Further, hundreds of experimental studies concur that humans

behave more rationally and selfishly with machines, cooperating and sharing less and demanding and exploiting more [52, 53, 54, 55]. People would design a machine to be more cooperative than they are themselves [56] but act pro-socially towards it only if it is more human-like in terms of physical appearance, emotional adaptation, and social awareness [57], or if it benefits another human [58]. Compared to a single person, small groups of people are even more likely to exhibit competitive behavior and bullying toward robots due to intergroup bias [59]. Despite this, humans are still susceptible to machine influence when making decisions or solving problems [60]. Robots can cause both informational and normative conformity in people [61, 62] and AI and ChatGPT can corrupt humans' moral judgment, helping them succumb to unethical advice [63, 64]. Humans tend to trust algorithmic advice more than advice coming from a human or a human crowd [65, 66] but may also avoid it if they perceive a threat to their decision control or a lack of understanding and cognitive compatibility [67, 68].

Implications

- 1. Study H behavior and H-H, H-M, and M-M interactions together.
- 2. Design explicitly for H-M and M-M interactions.
- 3. Plan for and regulate ecological diversity and coevolution.

Figure 2: Collective outcomes in human-machine social systems differ from those in human-only systems because machines behave differently from humans, human-machine and machine-machine interactions differ from human-human interactions, but also the humans, the machines, and their interactions influence each other.

Collective outcomes

In complex adaptive social systems, individuals' behavior and their interactions affect the collective outcomes but the relationship can be fundamentally different from a simple sum or average [69, 70, 71]. The collective outcomes in human-machine social systems differ from those in human-only systems because machines behave differently from humans, human-machine (H-M) and machine-machine (M-M) interactions differ from human-human (H-H) interactions, but also the humans, the machines, and their interactions influence each other indirectly (Fig. 2). In what follows,

Table 1: Types, examples, and collective outcomes of human-machine social systems.

Situation	Models	General examples	H-M examples	H-M collective outcomes
Competition	Zero-sum game Auction markets Buyer-seller markets Oligopoly market games	Competitions Contests Auctions Markets	Trading markets Pricing algorithms Online auctions with sniping algorithms Cheating in online games with bots	+ Increase efficiency by improving liquidity and price discovery - Increase volatility by causing price spikes and crashes - Increase in consumer prices from algorithmic collusion - Decrease human activity
Coordination	Coordination game Stag Hunt game Battle of the Sexes Chicken game Graph Coloring game	Conventions Technological standards Communication technology	Traffic with autonomous vehicles Wikipedia	+ Improve coordination by introducing random behavior - Worsen coordination by failing to adapt
Cooperation	Prisoner's Dilemma Public Goods game Dictator game Ultimatum game Trust game	Team collaboration Mutual aid	Caring robots Wikipedia Reddit	+ Increase cooperation + Increase efficiency by handling large task volumes + Increased forecasting accuracy - Decrease efficiency by introducing new types of workload
Contagion	Epidemiological models Threshold models of contagion	Communicative disease Rumors Innovations	Twitter Reddit	 Increase spread of misinformation, opinion polarization, verbal conflict + Increase human activity and engagement
Collective decision making	Vote aggregation Active learning	Crowdsourcing Prediction markets Voting systems Cultural evolution	Clinical diagnosis Citizen science Content moderation Hybrid forecasting	+ Increase innovation and accuracy by introducing diversity - Decrease human activity and engagement

we overview recent findings on the collective dynamics and patterns in groups and networks of humans and machines in the context of five different social interaction situations: competition, coordination, cooperation, contagion, and collective decision-making. We review theoretical and empirical studies based on agent-based models, controlled experiments, online field interventions, and observational analyses from robotics, human-computer interaction, web science, complexity science, computational social science, finance, economics, political science, social psychology, and sociology. We synthesize the common patterns in the fragmented literature and identify gaps to fill and links to build for future AI research, design, and governance.

Competition

Competition occurs when multiple actors strive for a common goal that cannot be shared, as is the case in contests, auctions, and product markets. Algorithms have infiltrated all sorts of markets. These algorithms are designed to benefit the owner, without regard for others and for the efficiency and stability of the market; yet, they may still offer collective benefits.

With more advanced data processing, learning, and optimization capabilities than humans, algorithms are better able to discover arbitrage opportunities and hence, eliminate mispricing and increase liquidity in markets. Thus, some experimental studies show that algorithmic traders can increase market efficiency [72], but possibly at the expense of human traders' performance [73]. Furthermore, with their presence, algorithmic traders make human traders act more rationally and thus, reduce strategic uncertainty and confusion in the market [74]. For instance, one study finds smaller price bubbles and prices that are closer to the fundamental value when subjects expect some algorithmic traders to participate in the market compared to markets where they expect only human traders [75]. This study offers the strongest evidence for the algorithms' indirect effects on human behavior since it manipulated only the participants' beliefs; the markets were human-only in both cases.

Other research, however, finds that algorithms do not always improve efficiency in trading markets. While perfectly optimizing arbitrage algorithms eliminate mispricings, neither zero-intelligence algorithms that submit random bids without profit maximization [76] nor profit-maximizing agents that update their beliefs from trading history [77] can improve market quality. At the same time, manipulator and spoofing algorithms that take specific actions to mislead and influence other

traders worsen market efficiency [78].

Jarrow and Protter [79] suggest that high-frequency traders can cause mispricing and increase market volatility, to the disadvantage of regular traders, because algorithms react fast and in similar ways to a common signal. A field experiment in a small online cryptocurrency marketplace finds that traders are more likely to buy after a bot buys, compared to when a bot observes but does not intervene, producing a larger buying volume [80]. The study, however, cannot clarify the extent to which bots or humans are responsible for the herding effect. Another experiment suggests that reducing trading speed improves profit dispersion and allocation between algorithmic and human traders by leveling the playing field against fast algorithmic actions [81].

While algorithms can reduce the rationality of professional traders, they can alienate and drive away amateur ones. In online auction markets, freely available sniping algorithms have greatly increased the prevalence of effective last-minute bids [82]. Sniping works mainly because it exploits the naivety of amateur online bidders, who tend to increase their bids incrementally. However, human lack of rationality carries its own positive effects on the market because squatting (placing a high early bid) deters new entrants [83]. Correspondingly, field experiments reveal a negligibly small [83] or non-existent [84] buyer gain to sniping. More consequentially, since naive first-time bidders respond negatively to being outbid by snipers and are less likely to return to another auction [85], algorithms appear to have a net negative impact on the marketplace.

In addition to trading and auction markets, pricing algorithms have become widespread in regular product markets [86]. Often, markets are not entirely priced by algorithms but by a mix of humans and algorithms interacting in the same environment [87]. This interaction can occur by pricing algorithms providing recommendations to human pricing managers [88, 89] or between competing firms, where some use algorithms and others do not [87, 90]. While pricing algorithms can help firms scale their business and respond more quickly to changes in demand, there are also anti-competition effects that can arise from algorithmic pricing. Simulation experiments show that Q-learning algorithms learn to set anti-competitive prices without communication [91, 92, 93, 94]. Recent experiments highlight that those algorithms are often more collusive than humans in small markets [95] and foster collusion when interacting with humans compared to fully human markets [96]. Observational studies of gasoline markets [90] and e-commerce [97, 98] support this experimental evidence. Furthermore, algorithms can weaken competition by providing

better demand predictions, thereby stabilizing cartels [99, 100, 101] or by asymmetries in pricing technologies and commitment [102, 103].

Overall, the general intuition is that markets with more actors should be more efficient. Thus, one might expect markets populated by algorithmic participants to demonstrate enhanced performance. However, in reality, machines can behave unexpectedly and cause humans to behave unexpectedly. Their beneficial effects are often in balance, crucially depending on the machines' prevalence, decision speed, and information quality [104], as well as the humans' experience and expectations.

Coordination

The problem of coordination requires adopting a strategy identical to or, in some cases, dissimilar from, other people's strategies, as when deciding whether to participate in collective action, agreeing on a convention such as driving on the right-hand side of the road, adopting a specific communication technology or technological standards such as the telefax or the pdf file format, or avoiding a crowd or traffic congestion [105, 106]. In human-machine systems, bots could be used to introduce more randomness and movement to steer human groups toward better solutions.

In support of this idea, bots acting with small levels of random noise and placed in central locations in a scale-free network decrease the time to coordination, especially when the solutions are hard to find [107]. The bots reduce unresolvable conflicts not only in their direct interactions but also in indirect H-H interactions, even when the participants are aware that they are interacting with machines. Another study, however, finds that hybrid groups playing a cooperative group-formation game have lower performance than human-only and bot-only groups [30]. The bots in this case probabilistically choose actions based on empirical patterns of human behavior; thus, although they exhibit human-like strategies, they process information less efficiently and are less adaptive, reducing group performance in the end.

In sum, in situations where a group may get stuck on a suboptimal equilibrium, non-humanlike bots may be able to help by jittering the system with randomness and unpredictability. Such simple bots may be more beneficial than bots that superficially imitate human behavior without the ability to learn and adapt.

Cooperation

The problem of cooperation pertains to social dilemma situations where a decision is collectively beneficial but individually costly and risky. Although the economically rational decision in non-repeated anonymous interactions is to free-ride and exploit others' contributions, people's actual behavior tends to be informed by norms of reciprocity, fairness, and honesty signaling. Thus, as a result of millennia of evolutionary adaptation, people generally cooperate with each other. If people know they are interacting with bots, however, they cooperate less [53, 54]. Yet, since humans reciprocate to and imitate cooperative neighbors, introducing covert, persistently cooperating bots could increase cooperation.

Computer simulations show that persistent prosocial bots favor the emergence of fairness by eliciting generous offers in the Ultimatum game [108] and increase the level of cooperation in a Prisoner's Dilemma game with costly punishment [109] or a "loner" option that avoids interaction [110]. The effects appear stronger when humans are more prone to imitation and bots occupy more central positions in networks with highly heterogeneous connectivity [109]. A Public Goods game experiment in networks of 24 individuals confirms that just four under-cover cooperative bots can increase cooperation, especially if the bots are well spread in the network, interacting with a higher number of human players, rather than concentrated with overlapping sets of partners [111]. The reason is that humans wait for someone else to cooperate before they do but once they observe many cooperators, they become more likely to exploit.

Yet, cooperative bots may sometimes fail to improve cooperation. For instance, hybrid groups with identifiable bots do not perform better than human-only groups playing a Public Goods dilemma with a collective risk leading to uncertain individual returns [112]. When participants are informed of the presence of artificial agents but without revealing who they are, there is a small increase in the cooperation of the bots' direct neighbors but no significant boost in the overall network [113]. Similarly, multiple well-dispersed covert bots, whether all-cooperating or reciprocating, fail to improve cooperation [114], although a single overt network engineer bot who suggests connecting cooperators and excluding defectors can successfully do so.

In sum, covert, persistently cooperating bots (i.e., not very human-like) can increase cooperation in the group but this crucially depends on the network of interactions. Bots are successful if they

either are strategically positioned – well dispersed in regular and random networks or centrally located in networks with skewed degree distributions – or have the power to strategically engineer the network by offering opportunities to break links to defectors.

Contagion

Contagion concerns the spread of information and behaviors in communication networks: prominent examples include the spread of misinformation, slang, fashion, emotions, and opinions [115, 116, 117]. In contrast to the strategic interdependence under the competition, coordination, and cooperation scenarios, the main mechanism here is social influence. Informational influence is the tendency to accept information from others as accurate and important when dealing with uncertainty, while normative influence is the tendency to conform to the expectations of others to fit in a social group or society [118, 119, 120]. In human-machine systems, bots can be remarkably influential at the collective level, despite exerting limited direct influence on individuals because, in networks, small effects can produce chain reactions and trigger cascades [121, 122, 123].

This is how social media bots influence public opinion. In an agent-based model of cultural dissemination, where bots with fixed beliefs can affect the beliefs of humans, weak bots do not alienate their followers and their followers' friends and thus have their message spread farther than messages by more pushy and assertive users [124]. In other words, network amplification occurs through bots' indirect influence precisely because their direct influence on humans is weak, slow, and unobtrusive. In another model, bots affect public opinion formation not necessarily by influencing people's actual opinion but by influencing their confidence to express it [29]. Essentially, social media bots can amplify marginal voices by triggering the spiral of silence amongst disagreeing humans. The bots are more influential when they are more numerous and connected to central actors. Strategically placed zealot bots can in fact bias voting outcomes and win elections [125].

Bots can also trigger emotional contagion in groups, even though they evoke flatter emotional reactions from individual humans. Humanoid robots can encourage and increase social interactions among older adults within care facilities, between different generations, and for children with ASD [59]. In small-team collaborative experiments, a robot's verbal expressions of vulnerability can show "ripple effects" and make the humans more likely to exhibit vulnerability themselves by admitting mistakes, consoling team members, and laughing together [126]. The vulnerable robots also make

humans more likely to engage in social conversations and to perceive the group more positively [127]. The reported positive contagion effects, however, were detected when comparing one machine to another [127, 128]. Overall, bots are more effective than no bots to influence opinions, behavior, and emotions but not necessarily more effective than humans. Yet, even when bots have a weak direct influence on humans' opinions, they can exert significant collective influence via persistence, strategic placement, and sheer numbers.

Collective decision-making

Collective decision-making involves groups making choices or solving problems, using methods to combine individual opinions. It impacts social phenomena as diverse as team collaboration, voting, scientific innovation, and cultural evolution [129]. Originating with Galton's work on estimation tasks [130], the "wisdom of crowds" concept suggests that a crowd's collective aggregated estimate is often more accurate than any individual's, or sometimes even experts' [131]. Crowds perform better when individual opinions are either independent or diverse [132], while social interaction can hinder [133, 134, 135] or improve [136, 137] collective performance. In human-machine systems, algorithms introduce diversity and can thus improve decision-making.

An analysis of professional Go players' moves over 71 years suggests that AlphaGo, the AI program Google DeepMind introduced in 2016, led human players to novel strategies and improved their decision-making [138, 139, 140]. AlphaGo's decisions, untethered by human bias, sparked human innovation in this game. However, other research indicates that the positive influence of machine-human social learning on problem-solving is limited. Brinkmann and colleagues [141] introduce an algorithm in sequences of human participants that solve a task by building on the previous participant's solution. Innovative algorithmic solutions benefit immediate followers but team accuracy does not have lasting effects as humans are more likely to replicate human solutions than algorithmic ones. Similarly, in a team prediction task, an algorithm maintaining group diversity by promoting minority opinions improves individual accuracy but the effects dissipate for team accuracy [142].

The question of how and when to combine human and algorithmic decision-making constitutes an active area of research known as hybrid intelligence [143, 17]. It includes research on active and interactive learning and human-in-the-loop algorithms [144]. An area of application is clinical

decision-making, where combining clinician and algorithmic judgments can improve cancer diagnoses [145, 146]. Another application is citizen science, where platforms like Zooniverse combine crowd-based classifications with machine classification. This hybrid approach found supernovae candidates among Pan-STARRS images more effectively than humans or machines alone [147]. However, employing AI can damage citizen scientists' retention [148, 149], suggesting a trade-off between efficiency and volunteer engagement. Ultimately, without volunteers, AI's performance would diminish.

The emerging field of hybrid intelligence suggests that algorithms introduce novel solutions but these may be too unfamiliar for humans to adopt. Nevertheless, machine diversity and competition might inspire alternative forms of human creativity and innovation. Developing methods to effectively combine human and machine solutions could further improve collective intelligence.

Prominent examples of human-machine communities

Besides the interaction situation, the institutional, organizational, technological, and cultural aspects of the social context shape the machines' capabilities and behavior, inform the humans' expectations and attitudes towards the machines, and constrain the human-machine and machinemachine interactions. Different human-machine communities function differently and face different problems.

Algorithmic and high-frequency trading markets

Markets with algorithmic traders arguably constitute the oldest, largest, and best-studied humanmachine communities we have today. Many different kinds of algorithmic traders exist. The most prominent kind, high-frequency trading algorithms, constitute automated scripts that rely on highspeed large-volume transactions to exploit mispricings or market signals before they disappear or are incorporated into the price. The phenomenon started in the mid-90s and has since spread to dominate foreign equities, foreign exchange, commodities, futures, and stock markets globally [104]. Given the highly competitive nature of professional trading, the exact algorithms are proprietary but can be roughly subdivided into market-making approaches and opportunistic trading [150].

High-frequency trading algorithms process large amounts of trade history data and current

news to make decisions and are thus considered the better "informed" traders [151]. Some of the algorithms appear to anticipate the market and their trades consistently predict future order flow by human traders [152]. However, since most algorithms react similarly to the same public information, they exhibit less diverse trading strategies and more correlated actions among themselves compared to humans [153]. Thus, although their behavior generally improves market efficiency, it can also trigger behavioral cascades and instability.

High-frequency trading algorithms generally act as market makers, increasing trading opportunities, reducing transaction costs, connecting buyers and sellers across venues, and submitting significant volumes of price quotes [154, 104]. They facilitate price efficiency by trading in the direction of permanent price changes but opposite temporary price errors [151]. This regularly acts as a stabilizing force, reducing short-term volatility [153, 155, 150]. On a longer time scale, however, algorithms may decease market quality by increasing volatility [156] and uncertainty [26], and by reducing trading strategy diversity [157]. For example, an extensive analysis of the 2010 flash crash concludes that, although the algorithms did not cause it, they exacerbated it by amplifying the volatility [1]. This has led to recent efforts to regulate the speed of trading in markets, for example, by processing trades in batches at slower intervals to diminish the advantage that high-frequency trading algorithms have, thereby stabilizing markets [158].

Overall, the empirical research on the market effects from algorithmic and high-frequency trading is inconclusive, often because researchers do not observe trader type and estimate the prevalence and influence of algorithms indirectly. Much of the research, nevertheless, emphasizes generally positive effects on market efficiency due to machines' higher information processing and optimization capabilities and humans' anticipation of these. The improved states, however, are occasionally perturbed by micro-bursts of price spikes and crashes due to machines' herding behavior and humans' inability to intervene at ultra-fast timescales. Paradoxically, in such extreme events, humans are expected to be the rational actors with global information and perspective, while the algorithms are considered impulsive and susceptible to influence.

Twitter

Until its rebranding as X in 2022 and its data access restrictions, the micro-blogging platform Twitter was a valuable tool for human-machine research. Social bots are the most prevalent and

studied automated accounts on Twitter. They are designed to mimic humans to boost followers, disseminate information, and promote products. Bots and bot detection methods have co-evolved, resulting in increasingly more sophisticated imitation or detection strategies [159, 160, 161, 162, 28, 163, 164], but detection is inherently limited due to the overlap between covert autonomous bots, managed user accounts, hacked accounts, cyborgs, sock-puppets, and coordinated botnets [21, 165, 19, 166]. Estimates suggest that 9-15% of Twitter users are bots [167, 164], with bot activity typically increasing around controversial political events [168].

Twitter social bots engage less in social interactions than humans but produce more content [169]. In active sessions, humans increase social interactions (retweets, replies, and mentions), but decrease new content production, showing a pattern not seen in bots. This is likely because of humans' social instincts and cognitive limitations, leading to fatigue [169]. Overall, bots are less connected, having fewer human friends and followers compared to humans [164]. Interactions are predominantly human-human (76%), with bot-bot (2%), bot-human (19%), and human-bot (3%) interactions being less common [168]. Bots mainly retweet – a passive strategy to indicate support and gain followers – but are less successful in attracting followers than humans [164].

Despite their lesser social behavior, Twitter bots significantly influence communication and contagion. An early study suggests that bots can affect human interaction networks by encouraging followings and conversations [170]. They play an important role in misinformation dissemination, notably in relation to political events [171, 172, 173, 174, 175, 176, 177], COVID-19 [178, 179], and stock market investment [180]. Bots amplify low-credibility content early on and target influential humans through replies and mentions [175]. Interested parties can trigger deep information cascades by enhancing bot visibility and influence with their large numbers [181]. Interestingly, while bots equally link to true and false news from low-credibility sites, people do not discriminate between humans and bots when they retweet low-credibility content and are more likely to spread false news. Hence, it is humans who are responsible for the spread of false news [182].

Bots significantly contribute to negative sentiment and conflict escalation. Acting from the periphery, they target central human users to exert indirect influence. Bots amplify existing negative sentiment and selectively promote inflammatory content, often targeting only one faction in conflicts [168]. Their success stems from exploiting human tendencies to connect with similar others and engage with messages that reinforce their beliefs [183]. Consequently, they increase ideological

polarization and negatively affect democratic discourse on social media, as seen in events like the 2016 US presidential election [184], the 2016 UK Brexit Referendum [183], and the 2017 Catalan independence referendum [168].

In sum, Twitter's covert social bots, which impersonate humans, are considered harmful, prompting the platform to cull them [185, 186]. Despite their rudimentary social behavior and weak network integration, these bots significantly influence political communication, public information and opinion, elections, and markets. Their strength lies in indirect action: they skew the platform's recommendation system, thus biasing popular content [142]. Additionally, they exploit human behavioral weaknesses like attention seeking, confirmation bias, moral outrage, and ideological homophily. Bots' influence is thus primarily indirect, planting the seeds of manipulation and relying on human tendencies to fertilize them.

Wikipedia

Wikipedia, the largest and most popular free-content online encyclopedia, hosts an ecology of bots that generate articles, fix errors on pages, link to other sites and databases, tag articles in categories, identify vandals, notify users, and so on [187, 188, 189]. These bots are open-source, approved, registered, and tagged [190, 187]. They are not sophisticated: most use basic regular expressions or straightforward heuristics and only some incorporate machine learning techniques. They are significantly less numerous than human editors but complete a disproportionately large volume of all edits [191, 25, 189].

Compared to human-human interactions, bot-bot interactions are more reciprocal and balanced but do not exhibit status effects [25]. While bots are more likely to be involved in back-and-forth reverts with each other over long periods, these accidental encounters are rarely a sign of direct opinion conflict but part of routine productive maintenance work or a reflection of conflicts existing between their human owners [192]. Human editors interact mainly with policing bots, mostly by criticizing the legitimacy of the norms they enforce, rather than the sanctions themselves, suggesting that editors perceive bots as extensions of their human owners rather than independent agents [193].

Bots have been invaluably beneficial to the maintenance and operation of Wikipedia. The diversity of the bot ecology guarantees the system's resilience. For instance, during the random outage of the anti-vandalism ClueBot NG, the website eventually caught up, albeit twice as slowly

as usual, thanks to the heterogeneity of the quality control network, comprising instantaneous fully automated robots, rapid tool-assisted humans (cyborgs), humans editing via web browsers, and idiosyncratic batch scripts [194]. Wikipedia demonstrates that successful bot governance and regulation does not have to come at the expense of independent development and diversity. The simplicity, independence, and heterogeneity of the machines facilitate the system's success and resilience overall but may also introduce unexpected complexities and uncertainties in communication at smaller scales [195].

Reddit

Reddit is a popular news aggregation, content rating, and discussion website founded in 2005. Bots on Reddit provide internal moderation and communication, augment functionality (e.g., for mobile users), or post content similarly to human users, ranging from comic and playful posts by evident automated accounts such as haiku_robot and ObamaRobot, to trolling and provocative comments by undercover social bots [196]. Similarly to Wikipedia, Reddit has developed norms and protocols for deploying bots [197], but similarly to Twitter, it has no effective service limitations to prevent covert and malicious automated accounts. Nevertheless, Reddit differs from Twitter in several crucial ways that mitigate problems from unstemmed bot activity – content on the site is posted within communities, heavily moderated, up-/downvoted, and extensively discussed. Due to these structural differences, political misinformation, polarization, and conflict are less pronounced on the platform.

Reddit offers evidence for collaboration and contagion between humans and bots. Content moderators have widely adopted Automod – a bot that is flexible to updates, adaptable to community rules, and interpretable. The bot aids with menial tasks but does not necessarily decrease workloads as it requires continuous updates in response to changes in user behavior and language and involves high volumes of correspondence with incorrectly banned users [198]. From the other side, regular users engage with evident entertainment bots and their direct replies imitate the sentiment and the words of the bot posts [199]. Thus, emotional contagion and lexical entrainment can occur between humans and bots, even when humans are aware of the simple automated script behind the bot.

Discussion

The algorithms in currently existing human-machine social systems are still relatively simple. Few of them use sophisticated machine learning or AI approaches, and even then, these inform narrow and well-defined behavior and actions. With the notable exception of malicious social bots and customer-service chatbots, most machines do not attempt to be human-like. In fact, most machines are either super-human, capable of processing large quantities of data, acting at ultra-fast speeds, and tirelessly persisting with tedious jobs, or candidly non-human in the sense of resisting peer influence, not reciprocating, and acting completely at random. There is also a clear distinction between covert and overt bots: covert bots are more problematic than bots that are encouraged or forced to be explicit about their identity and follow well-defined norms and regulations. Overall, machines tend to have both positive and negative effects on the system, and these can often be unintuitive.

The effects of machines in human-machine social systems crucially depend on the algorithms they follow, their position in the interaction network, their numbers, the specifics of the interaction situation, institutional regulations, technological affordances, the organizational setting, and emergent norms and culture. Machines change outcomes because of their different behavior, because humans interact differently with them, but also because of their indirect effects – the presence of machines causes humans to behave and interact with each other differently.

Machines can be beneficial when they act directly or steer humans in ways that compensate for human weaknesses. For instance, intentionally noisy bots can shake up sub-optimal outcomes and improve coordination, while persistently cooperative bots can stem eye-for-an-eye cascades and maintain cooperation; a machine placed in a central role as an arbitrageur can facilitate price discovery and improve market quality, while network-engineering bots can facilitate the assortment of cooperators and the exclusion of defectors, boosting collective welfare. With access to global information, higher processing power, and instantaneous execution, machines can quickly respond to external events such as vandalism, political crises, or natural disasters, ensuring the system's robustness and resilience and improving operational efficiency. Depending on the situation, machines can offer super-human persistence, behavioral diversity, or decision-making speed that complement humans' behavior and adjust it towards better outcomes.

What helps in one context, however, can hinder in another. Machines' unintuitive decisions and ultrafast speeds may confuse humans. Thus, humans may not be able to learn from and adopt machines' superior solutions that could advance knowledge and aid technological progress. In other situations, humans may be unable to prevent or correct promptly machines' awry behavior, resulting in episodic instabilities and flash failures. Machines are less responsive than humans and cannot always react to changes in the interaction situation or human behavior, impeding system adaptation and evolution. Machines can also be designed to exploit human weaknesses and trigger behavior and information cascades that exacerbate opinion polarization, emotional contagion, ideological segregation, and conflict. Machines' non-human optimization logic, execution speed, and behavioral rigidity can clash with humans and exacerbate behavior and interactions toward undesirable outcomes.

The review outlines several directions for research, recommendations for AI design, and considerations for social policy.

Implications for research

Existing research tends to be biased towards engineering and optimization, lacking a deeper understanding and explanation from a social science perspective. We require a new relational sociology of humans and machines that embeds social psychology mechanisms such as outgroup bias, authority bias, and personification into the micro-macro paradigm of complex systems to study in silico, in vitro, and in vivo the collective dynamics and patterns that systems of different composition, structure, and interaction rules generate. The time for this new sociology is particularly ripe, before AI becomes more sophisticated and sophisticated AI starts proliferating. Complex generative AI exhibits emergent behavior that itself requires explanation and understanding [200, 201] and such unpredictable agents would considerably complicate the task of understanding and predicting the dynamics and patterns of human-machine social systems. We need to get going and get ahead now.

We have identified several productive avenues for research. First, researchers would benefit from an agent-based modeling framework that outlines important aspects of distinction for human and bot agents: utility function, optimization ability, access to information, learning, innovation/creativity, proneness to error, etc. The framework could borrow concepts and approaches from agent-based models of other two-agent systems such as predator—prey, principal—agent, and

common pool resource models. Second, we would benefit from more controlled experiments that explicitly compare human-machine networks to human-only and machine-only networks and known bots to covert or unknown bots. Experiments should manipulate participants' perceptions of the algorithms in terms of technical specifications, emotional capability, gender and minority bias, and similar. Field interventions in online communities with endemic bot populations present a third promising research direction. There are already several compelling examples that demonstrate the promise of the methodology: social bots that engage with human users to become popular and influential [202, 203, 204, 205], trading bots that influence traders' behavior to manipulate prices in cryptocurrency markets [206], political bots that expose their followers to opposing political bias to decrease polarization and radicalization [207], and random "drifters" to measure platform bias [208]. Fourth, in addition to high-frequency trading markets, Wikipedia, Reddit, and Twitter, we need observational research of more human-machine communities and contexts as, for instance, traffic systems that include human-driven and driverless vehicles, online multiplayer games composed of human players, non-player characters, and cheating code, and dating markets with AI-driven chatbots [209].

Finally, research with robots, bots, algorithms, and AI entails new ethical problems that demand careful elaboration and mitigation. For instance, covert bots should be used as confederates in field experiments only in communities where bots are already present, ensuring their actions are not unusual and they do not cause direct harm [80]. As any digital research, research with bots should minimize interventions: researchers should consider replacing experiments with less invasive methods, refining the treatments to minimize risks, and reducing the number of participants [210]. Even then, bots may be banned by site administrators because users get upset and voice privacy concerns [202]. Do people perceive certain bots as inherently deceptive? Could knowledge of the bot owner and algorithm mitigate this perception?

Implications for AI design

The conceptualization of human-machine social systems has concrete applications to AI design: since H-H, H-M, and M-M interactions differ, machines should be explicitly and differentially designed for these. Importantly, the algorithms should be trained separately for each type of interaction. This will help avoid problematic cases such as when bargaining algorithms trained on H-H

interactions hurt market outcomes because humans interact differently with them [52] and driverless vehicles trained on human driving get stuck in traffic when co-appearing in large numbers [211].

Relatedly, AI design should consider a hierarchy of behavioral rules and conventions to guide H-M and M-M interactions in the context of H-H interactions. Isaac Asimov's famous Three Laws of Robotics [212] regulate M-H interactions and own preservation only: a robot should 1) not harm humans, 2) obey humans, and 3) protect its own existence, where higher order rules take precedence. We argue here that AI designers should think about M-M interactions along similar lines, adapting the rules to specific contexts and carefully considering their potential implications and unintended consequences [213].

AI design should also take into consideration cultural context. How people judge machines depends on their age, environment, personality traits, etc., and changes from place to place [214, 48]. Machines themselves have culture because they reflect their owners' culture but also act and interact in settings with specific organizational principles and community norms [25]. For instance, when it comes to self-driving cars and assistant bots, AI designers should account for local driving culture and attitudes towards domestic assistants when training the algorithms to interact with humans of the same or different background, as well as with machines trained on the same or different culture.

Implications for policy

Our framework and survey emphasize the need for a system-focused approach to AI policy and ethics: policymakers should approach AI not as a single existential threat but as a multiplicity of machines and algorithms. Machines appear to be more beneficial when they are superhuman or simply "alien" and when they are diverse. Similarity in information sources, interaction speeds, optimization algorithms, and objective functions can cause extreme catastrophic events, such as flash crashes in markets. Thus, while AI designers may chase optimization and superintelligence, policymakers should be more concerned with the diversity of human-machine ecologies. This spotlights a new set of questions: Should all machines be equal? Should we allow status hierarchies and priority orderings among machines? Should we allow these differences to align with, and thus exacerbate existing socio-economic inequalities?

Policymakers should also prepare for the co-evolution of machines and humans, which will inadvertently change the nature of existing institutions. Machines can cause humans to withdraw interaction: for instance, outsourcing care to robots can reduce caregivers' empathy [215]. Intelligent machines are changing the transmission and creation of human culture by altering social learning dynamics and generating new game strategies, scientific discoveries, and art forms [216]. Humans will need to adapt to autonomous machines just as much as autonomous machines need to learn from and adapt to humans. Understanding the complex interactions between humans and machines and eventually, their co-evolution over time, will be essential to manage and govern future human-machine society.

Conclusion

This survey aimed to gather, link, and synthesize a relatively disparate and disconnected literature from human-computer interaction, robotics, web science, financial economics, and computational social science under a common theoretical paradigm: human-machine social systems. We attempted to identify common dynamics and patterns that emerge from the interactions of humans and autonomous machines regardless of the specific context, as well as peculiarities and unique problems that concrete techno-organizational and socio-cultural environments generate. Our utmost ambition is to stimulate cumulative empirically driven and mechanism-focused sociological research in the emerging, fast-evolving field of human-AI science. At stake are new and urgent social challenges such as online misinformation, market flash crashes, cybersecurity, labor market resilience, and road safety. With increasing social connectivity and accelerating developments in AI, understanding the social systems of humans and autonomous machines is a challenging undertaking, but one that is crucially important for a better human future.

Review methodology

We compile an integrative narrative review [217, 218, 219] that summarizes and synthesizes research on human-machine social systems combining different methodologies. We employ an expansive search strategy, whereby we start from several relevant search terms and key publications and then employ a backward search of referenced articles and a forward search of citing articles, repeating iteratively as we discover new key concepts and areas of research. For the database search, we queried Google Scholar with the following combination of keywords: robots + group, bots + net-

work, bots + twitter, bots + reddit, bots + wikipedia, algorithmic trading, algorithmic pricing, and sniping. Google Scholar is a suitable database because it includes publicly accessible working papers, not just published articles. This helps cover the most recent work in the actively growing field of research we review; it also guards against publication bias.

The abstracts of the results from the direct searches and the cited and citing articles were manually screened for inclusion. The inclusion criteria required that the study involves at least one bot interacting on par with humans in groups of three or more. The articles were grouped into themes and topics and within each topic, we repeated the search procedure whenever we discovered more specific and niche terminology. Since the field is emergent and the conceptualization and terminology are not established yet, the review is not necessarily exhaustive. Further, we aim to balance our overview across the different areas of research, and since these emerged in different periods and have developed to differing extents, the exhaustiveness of the reviewed literature varies by research area too.

Acknowledgments

M.T. acknowledges the generous support of the Santa Fe Institute during the period when the research was conducted. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

- [1] Kirilenko, A., Kyle, A. S., Samadi, M. & Tuzun, T. The flash crash: High-frequency trading in an electronic market. *The Journal of Finance* **72**, 967–998 (2017).
- [2] Metz, C. The new chat bots could change the world. Can you trust them? The New York Times (2022).
- [3] Milmo, D. & Stacey, K. 'It's not clear we can control it': What they said at the Bletchley Park AI summit. *The Guardian* (2023).
- [4] Lipton, E. As A.I.-Controlled Killer Drones Become Reality, Nations Debate Limits. *The New York Times* (2023).

- [5] Nilsson, N. J. The Quest for Artificial Intelligence (Cambridge University Press, 2009).
- [6] Emery, F. Characteristics of socio-technical systems. In Characteristics of Socio-Technical Systems, 157–186 (University of Pennsylvania Press, 2016).
- [7] Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory (OUP Oxford, 2007).
- [8] Law, J. Notes on the theory of the actor-network: Ordering, strategy, and heterogeneity. Systems practice 5, 379–393 (1992).
- [9] Sheth, A., Anantharam, P. & Henson, C. Physical-cyber-social computing: An early 21st century approach. *IEEE Intelligent Systems* **28**, 78–82 (2013).
- [10] Wang, F.-Y. The emergence of intelligent enterprises: From CPS to CPSS. *IEEE Intelligent Systems* **25**, 85–88 (2010).
- [11] Buregio, V., Meira, S. & Rosa, N. Social machines: A unified paradigm to describe social web-oriented systems. In *Proceedings of the 22nd International Conference on World Wide* Web, WWW '13 Companion, 885–890 (Association for Computing Machinery, New York, NY, USA, 2013).
- [12] Shadbolt, N. R. et al. Towards a classification framework for social machines. In Proceedings of the 22nd International Conference on World Wide Web, WWW '13 Companion, 905–912 (Association for Computing Machinery, New York, NY, USA, 2013).
- [13] Eide, A. W. et al. Human-machine networks: Towards a typology and profiling framework. In Kurosu, M. (ed.) Human-Computer Interaction. Theory, Design, Development and Practice, no. 9731 in Lecture Notes in Computer Science, 11–22 (Springer International Publishing, 2016).
- [14] Tsvetkova, M. et al. Understanding human-machine networks: A cross-disciplinary survey.

 ACM Computing Surveys (CSUR) (2017).
- [15] Miller, J. H. & Page, S. Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton University Press, 2009).

- [16] Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).
- [17] Peeters, M. M. M. et al. Hybrid collective intelligence in a human–AI society. AI & SOCIETY 36, 217–238 (2021).
- [18] Pedreschi, D. et al. Social AI and the challenges of the human-AI ecosystem (2023). 2306. 13723.
- [19] Chu, Z., Gianvecchio, S., Wang, H. & Jajodia, S. Who is tweeting on Twitter: Human, bot, or cyborg? In *Proceedings of the 26th Annual Computer Security Applications Conference*, ACSAC '10, 21–30 (Association for Computing Machinery, New York, NY, USA, 2010).
- [20] Gorwa, R. & Guilbeault, D. Unpacking the social media bot: A typology to guide research and policy. *Policy & Internet* 12, 225–248 (2020).
- [21] Abokhodair, N., Yoo, D. & McDonald, D. W. Dissecting a social botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW '15, 839–851 (Association for Computing Machinery, New York, NY, USA, 2015).
- [22] Boshmaf, Y., Muslukhov, I., Beznosov, K. & Ripeanu, M. The socialbot network: When bots socialize for fame and money. In *Proceedings of the 27th Annual Computer Security* Applications Conference, ACSAC '11, 93–102 (Association for Computing Machinery, New York, NY, USA, 2011).
- [23] Mondada, F. et al. The cooperation of swarm-bots: Physical interactions in collective robotics.

 IEEE Robotics & Automation Magazine 12, 21–28 (2005).
- [24] Silva, S. S. C., Silva, R. M. P., Pinto, R. C. G. & Salles, R. M. Botnets: A survey. Computer Networks 57, 378–403 (2013).
- [25] Tsvetkova, M., García-Gavilanes, R., Floridi, L. & Yasseri, T. Even good bots fight: The case of Wikipedia. PLoS ONE 12, e0171774 (2017).
- [26] Hilbert, M. & Darmon, D. How complexity and uncertainty grew with algorithmic trading. Entropy 22, E499 (2020).

- [27] Koren, Y., Rendle, S. & Bell, R. Advances in collaborative filtering. In Ricci, F., Rokach, L. & Shapira, B. (eds.) Recommender Systems Handbook, 91–142 (Springer US, New York, NY, 2022).
- [28] Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The rise of social bots. Communications of the ACM 59, 96–104 (2016).
- [29] Ross, B. et al. Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks. European Journal of Information Systems 28, 394–412 (2019).
- [30] Takko, T., Bhattacharya, K., Monsivais, D. & Kaski, K. Human-agent coordination in a group formation game. Scientific Reports 11, 10744 (2021).
- [31] Gilovich, T. How We Know What Isn't So (Simon and Schuster, 2008).
- [32] Kahneman, D. Thinking, Fast and Slow: Daniel Kahneman (Penguin, London, 2012), 1st edition edn.
- [33] Kordzadeh, N. & Ghasemaghaei, M. Algorithmic bias: Review, synthesis, and future research directions. European Journal of Information Systems 31, 388–409 (2022).
- [34] O'Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown Publishing Group, New York, NY, 2016).
- [35] Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence (Allen Lane, London, 2017), 1st edition edn.
- [36] Fogg, BJ. & Nass, C. How users reciprocate to computers: An experiment that demonstrates behavior change. In CHI '97 Extended Abstracts on Human Factors in Computing Systems, CHI EA '97, 331–332 (Association for Computing Machinery, New York, NY, USA, 1997).
- [37] Nass, C., Steuer, J. & Tauber, E. R. Computers are social actors. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 72–78 (1994).
- [38] Nass, C. & Moon, Y. Machines and mindlessness: Social responses to computers. *Journal of Social Issues* 56, 81–103 (2000).

- [39] Siegel, M., Breazeal, C. & Norton, M. I. Persuasive robotics: The influence of robot gender on human behavior. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2563–2568 (2009).
- [40] Rosenthal-von der Pütten, A. M., Krämer, N. C., Hoffmann, L., Sobieraj, S. & Eimler, S. C. An experimental study on emotional reactions towards a robot. *International Journal of Social Robotics* 5, 17–34 (2013).
- [41] Slater, M. et al. A virtual reprise of the Stanley Milgram obedience experiments. PLOS ONE 1, e39 (2006).
- [42] Krach, S. et al. Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLOS ONE 3, e2597 (2008).
- [43] McCabe, K., Houser, D., Ryan, L., Smith, V. & Trouard, T. A functional imaging study of cooperation in two-person reciprocal exchange. *Proceedings of the National Academy of Sciences* 98, 11832–11835 (2001).
- [44] Gray, H. M., Gray, K. & Wegner, D. M. Dimensions of mind perception. Science 315, 619–619 (2007).
- [45] Zhang, J., Conway, J. & Hidalgo, C. A. Why do people judge humans differently from machines? The role of agency and experience (2022). 2210.10081.
- [46] Adam, M. T. P., Teubner, T. & Gimpel, H. No rage against the machine: How computer agents mitigate human emotional processes in electronic negotiations. *Group Decision and Negotiation* 27, 543–571 (2018).
- [47] Chugunova, M. & Sele, D. We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines. *Journal of Behavioral and Experimental Economics* 99, 101897 (2022).
- [48] Hidalgo, C. A., Orghian, D., Canals, J. A., Almeida, F. D. & Martin, N. How Humans Judge Machines (MIT Press, 2021).

- [49] Schniter, E., Shields, T. W. & Sznycer, D. Trust in humans and robots: Economically similar but emotionally different. *Journal of Economic Psychology* **78**, 102253 (2020).
- [50] Dietvorst, B. J., Simmons, J. P. & Massey, C. Algorithm aversion: People erroneously avoid algorithms after seeing them err. *Journal of experimental psychology General* 144, 114–126 (2015).
- [51] Candrian, C. & Scherer, A. Rise of the machines: Delegating decisions to autonomous AI.
 Computers in Human Behavior 134, 107308 (2022).
- [52] Erlei, A., Das, R., Meub, L., Anand, A. & Gadiraju, U. For what it's worth: Humans overwrite their economic self-interest to avoid bargaining with AI systems. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, CHI '22, 1–18 (Association for Computing Machinery, New York, NY, USA, 2022).
- [53] Ishowo-Oloko, F. et al. Behavioural evidence for a transparency–efficiency tradeoff in human–machine cooperation. Nature Machine Intelligence 1, 517–521 (2019).
- [54] Karpus, J., Krüger, A., Verba, J. T., Bahrami, B. & Deroy, O. Algorithm exploitation: Humans are keen to exploit benevolent AI. *iScience* **24**, 102679 (2021).
- [55] March, C. Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players. *Journal of Economic Psychology* 87, 102426 (2021).
- [56] de Melo, C. M., Marsella, S. & Gratch, J. Human cooperation when acting through autonomous machines. *Proceedings of the National Academy of Sciences* **116**, 3482–3487 (2019).
- [57] Oliveira, R., Arriaga, P., Santos, F. P., Mascarenhas, S. & Paiva, A. Towards prosocial design: A scoping review of the use of robots and virtual agents to trigger prosocial behaviour. Computers in Human Behavior 114, 106547 (2021).
- [58] Hayes, B., Ullman, D., Alexander, E., Bank, C. & Scassellati, B. People help robots who help others, not robots who help themselves. In *The 23rd IEEE International Symposium on Robot and Human Interactive Communication*, 255–260 (2014).

- [59] Sebo, S., Stoll, B., Scassellati, B. & Jung, M. F. Robots in groups and teams: A literature review. *Proceedings of the ACM on Human-Computer Interaction* 4, 176:1–176:36 (2020).
- [60] Köbis, N., Bonnefon, J.-F. & Rahwan, I. Bad machines corrupt good morals. Nature Human Behaviour 5, 679–685 (2021).
- [61] Salomons, N., van der Linden, M., Sebo, S. S. & Scassellati, B. Humans conform to robots: Disambiguating trust, truth, and conformity. In 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 187–195 (2018).
- [62] Salomons, N., Sebo, S. S., Qin, M. & Scassellati, B. A minority of one against a majority of robots: Robots cause normative and informational conformity. ACM Transactions on Human-Robot Interaction (THRI) 10, 1–22 (2021).
- [63] Leib, M., Köbis, N. C., Rilke, R. M., Hagens, M. & Irlenbusch, B. The corruptive force of AI-generated advice (2021). 2102.07536.
- [64] Krügel, S., Ostermaier, A. & Uhl, M. ChatGPT's inconsistent moral advice influences users' judgment. Scientific Reports 13, 4569 (2023).
- [65] Bogert, E., Schecter, A. & Watson, R. T. Humans rely more on algorithms than social influence as a task becomes more difficult. Scientific Reports 11, 8028 (2021).
- [66] Logg, J. M., Minson, J. A. & Moore, D. A. Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes 151, 90–103 (2019).
- [67] Burton, J. W., Stein, M.-K. & Jensen, T. B. A systematic review of algorithm aversion in augmented decision making. *Journal of Behavioral Decision Making* **33**, 220–239 (2020).
- [68] Mahmud, H., Islam, A. K. M. N., Ahmed, S. I. & Smolander, K. What influences algorithmic decision-making? A systematic literature review on algorithm aversion. *Technological Forecasting and Social Change* 175, 121390 (2022).
- [69] Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).

- [70] Schelling, T. C. Dynamic models of segregation. The Journal of Mathematical Sociology 1, 143–186 (1971).
- [71] Granovetter, M. Threshold models of collective behavior. American Journal of Sociology 83, 1420–1443 (1978).
- [72] Grossklags, J. & Schmidt, C. Software agents and market (in) efficiency: A human trader experiment. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 36, 56–67 (2006).
- [73] Angerer, M., Neugebauer, T. & Shachat, J. Arbitrage bots in experimental asset markets.

 *Journal of Economic Behavior & Organization 206, 262–278 (2023).
- [74] Akiyama, E., Hanaki, N. & Ishikawa, R. It is not just confusion! Strategic uncertainty in an experimental asset market. *The Economic Journal* **127**, F563–F580 (2017).
- [75] Farjam, M. & Kirchkamp, O. Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading. *Journal of Economic Behavior & Organization* 146, 248–269 (2018).
- [76] Gode, D. K. & Sunder, S. Allocative efficiency of markets with zero-intelligence traders: Market as a partial substitute for individual rationality. *Journal of Political Economy* 101, 119–137 (1993).
- [77] Gjerstad, S. The competitive market paradox. Journal of Economic Dynamics and Control 31, 1753–1780 (2007).
- [78] Bao, T., Nekrasova, E., Neugebauer, T. & Riyanto, Y. E. Algorithmic Trading in Experimental Markets with Human Traders: A Literature Survey (Edward Elgar Publishing, 2022).
- [79] Jarrow, R. A. & Protter, P. A dysfunctional role of high frequency trading in electronic markets. International Journal of Theoretical and Applied Finance 15, 1250022 (2012).
- [80] Krafft, P. M., Macy, M. & Pentland, A. S. Bots as virtual confederates: Design and ethics. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and

- Social Computing, CSCW '17, 183–190 (Association for Computing Machinery, New York, NY, USA, 2017).
- [81] Cartlidge, J., De Luca, M., Szostek, C. & Cliff, D. Too fast too furious: Faster financial-market trading agents can give less efficient markets. ICAART-2012: Proceedings of the Fourth International Conference on Agents and Artificial Intelligence, Vol. 2 (Agents) 126–135 (2012).
- [82] Roth, A. E. & Ockenfels, A. Last-minute bidding and the rules for ending second-price auctions: Evidence from eBay and Amazon auctions on the Internet. American Economic Review 92, 1093–1103 (2002).
- [83] Ely, J. C. & Hossain, T. Sniping and squatting in auction markets. American Economic Journal: Microeconomics 1, 68–94 (2009).
- [84] Gray, S. & Reiley, D. H. Measuring the benefits to sniping on eBay: Evidence from a field experiment. *Journal of Economics and Management* 9, 137–152 (2013).
- [85] Backus, M., Blake, T., Masterov, D. V. & Tadelis, S. Is sniping a problem for online auction markets? In *Proceedings of the 24th International Conference on World Wide Web*, WWW '15, 88–96 (International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2015).
- [86] Aparicio, D. & Misra, K. Artificial intelligence and pricing, vol. 20 (Emerald Publishing Limited, 2023).
- [87] Chen, L., Mislove, A. & Wilson, C. An empirical analysis of algorithmic pricing on amazon marketplace. In Proceedings of the 25th international conference on World Wide Web, 1339– 1349 (2016).
- [88] Garcia, D., Tolvanen, J. & Wagner, A. K. Strategic responses to algorithmic recommendations: Evidence from hotel pricing. Tech. Rep. (2023). CESifo Working Paper.
- [89] Hunold, M. & Werner, T. Algorithmic price recommendations and collusion: Experimental evidence. *Available at SSRN* (2023).

- [90] Assad, S., Clark, R., Ershov, D. & Xu, L. Algorithmic pricing and competition: Empirical evidence from the german retail gasoline market (2023). Forthcoming.
- [91] Calvano, E., Calzolari, G., Denicolò, V. & Pastorello, S. Artificial intelligence, algorithmic pricing, and collusion. *American Economic Review* **110**, 3267–3297 (2020).
- [92] Calvano, E., Calzolari, G., Denicolò, V., Harrington, J. E. & Pastorello, S. Protecting consumers from collusive prices due to AI. *Science* **370**, 1040–1042 (2020).
- [93] Klein, T. Autonomous algorithmic collusion: Q-learning under sequential pricing. *The RAND Journal of Economics* **52**, 538–558 (2021).
- [94] Johnson, J. P., Rhodes, A. & Wildenbeest, M. Platform design when sellers use pricing algorithms. *Econometrica* **91**, 1841–1879 (2023).
- [95] Werner, T. Algorithmic and human collusion (2022).
- [96] Normann, H.-T. & Sternberg, M. Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets. *European Economic Review* **152**, 104347 (2023).
- [97] Musolff, L. Algorithmic pricing facilitates tacit collusion: Evidence from e-commerce. In Proceedings of the 23rd ACM Conference on Economics and Computation, 32–33 (2022).
- [98] Wieting, M. & Sapi, G. Algorithms in the marketplace: An empirical analysis of automated pricing in e-commerce. *Available at SSRN 3945137* (2021).
- [99] Miklós-Thal, J. & Tucker, C. Collusion by algorithm: Does better demand prediction facilitate coordination between sellers? *Management Science* **65**, 1552–1561 (2019).
- [100] O'Connor, J. & Wilson, N. E. Reduced demand uncertainty and the sustainability of collusion: How AI could affect competition. *Information Economics and Policy* **54**, 100882 (2021).
- [101] Martin, S. & Rasch, A. Demand forecasting, signal precision, and collusion with hidden actions. *International Journal of Industrial Organization* **92**, 103036 (2024).
- [102] Brown, Z. Y. & MacKay, A. Competition in pricing algorithms (2021). 28860.
- [103] Leisten, M. Algorithmic competition, with humans. Tech. Rep. (2022). Working Paper.

- [104] Menkveld, A. J. The economics of high-frequency trading: Taking stock. *Annual Review of Financial Economics* 8, 1–24 (2016).
- [105] Ullmann-Margalit, E. The Emergence of Norms (OUP Oxford, 2015).
- [106] Young, H. P. The evolution of conventions. Econometrica 61, 57–84 (1993).
- [107] Shirado, H. & Christakis, N. A. Locally noisy autonomous agents improve global human coordination in network experiments. *Nature* **545**, 370–374 (2017).
- [108] Santos, F. P., Pacheco, J. M., Paiva, A. & Santos, F. C. Evolution of collective fairness in hybrid populations of humans and agents. *Proceedings of the AAAI Conference on Artificial Intelligence* 33, 6146–6153 (2019).
- [109] Shen, C., He, Z., Shi, L., Wang, Z. & Tanimoto, J. Simple bots breed social punishment in humans (2022). 2211.13943.
- [110] Sharma, G., Guo, H., Shen, C. & Tanimoto, J. Small bots, big impact: Solving the conundrum of cooperation in optional Prisoner's Dilemma game through simple strategies. *Journal of The Royal Society Interface* **20**, 20230301 (2023). 2305.15818.
- [111] Suri, S. & Watts, D. J. Cooperation and contagion in web-based, networked public goods experiments. *PLOS ONE* **6**, e16836 (2011).
- [112] Fernández Domingos, E. et al. Delegation to artificial agents fosters prosocial behaviors in the collective risk dilemma. Scientific Reports 12, 8492 (2022).
- [113] Kirchkamp, O. & Nagel, R. Naive learning and cooperation in network experiments. *Games and Economic Behavior* **58**, 269–292 (2007).
- [114] Shirado, H. & Christakis, N. A. Network engineering using autonomous agents increases cooperation in human groups. *iScience* **23**, 101438 (2020).
- [115] Centola, D. How Behavior Spreads: The Science of Complex Contagions (Princeton University Press, Princeton; Oxford, 2018).
- [116] Christakis, N. A. & Fowler, J. H. Social contagion theory: Examining dynamic social networks and human behavior. *Statistics in Medicine* **32**, 556–577 (2013).

- [117] Rogers, E. M. Diffusion of Innovations (Simon and Schuster, 2003), 5th edition edn.
- [118] Cialdini, R. B. Influence: Science and Practice (Allyn & Bacon, Boston, MA, 2008).
- [119] Deutsch, M. & Gerard, H. B. A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology 51, 629–636 (1955).
- [120] Turner, J. C. Social Influence. Social Influence (Thomson Brooks/Cole Publishing Co, Belmont, CA, US, 1991).
- [121] Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks.

 Proceedings of the National Academy of Sciences 107, 5334–5338 (2010).
- [122] Leskovec, J., Adamic, L. A. & Huberman, B. A. The dynamics of viral marketing. *ACM Transactions on the Web* 1, 5–es (2007).
- [123] Watts, D. J. A simple model of global cascades on random networks. *Proceedings of the National Academy of Sciences* **99**, 5766–5771 (2002).
- [124] Keijzer, M. A. & Mäs, M. The strength of weak bots. Online Social Networks and Media 21, 100106 (2021).
- [125] Stewart, A. J. et al. Information gerrymandering and undemocratic decisions. Nature 573, 117–121 (2019).
- [126] Strohkorb Sebo, S., Traeger, M., Jung, M. & Scassellati, B. The ripple effects of vulnerability: The effects of a robot's vulnerable behavior on trust in human-robot teams. In *Proceedings* of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI '18, 178–186 (Association for Computing Machinery, New York, NY, USA, 2018).
- [127] Traeger, M. L., Strohkorb Sebo, S., Jung, M., Scassellati, B. & Christakis, N. A. Vulnerable robots positively shape human conversational dynamics in a human–robot team. *Proceedings* of the National Academy of Sciences 117, 6370–6375 (2020).
- [128] Zhang, A. W., Lin, T.-H., Zhao, X. & Sebo, S. Ice-breaking technology: Robots and computers can foster meaningful connections between strangers through in-person conversations.

- In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI '23, 1–14 (Association for Computing Machinery, New York, NY, USA, 2023).
- [129] Bang, D. & Frith, C. D. Making better decisions in groups. Royal Society Open Science 4, 170193 (2017).
- [130] Galton, F. Vox Populi. *Nature* **75**, 450–451 (1907).
- [131] Surowiecki, J. The Wisdom of Crowds (Anchor, New York, NY, 2005), reprint edition edn.
- [132] Page, S. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton University Press, 2008).
- [133] Frey, V. & van de Rijt, A. Social influence undermines the wisdom of the crowd in sequential decision making. *Management Science* **67**, 4273–4286 (2021).
- [134] Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences 108, 9020–9025 (2011).
- [135] Muchnik, L., Aral, S. & Taylor, S. J. Social influence bias: A randomized experiment. *Science* **341**, 647–651 (2013).
- [136] Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the wisdom of crowds. *Proceedings of the National Academy of Sciences* **114**, E5070–E5076 (2017).
- [137] Navajas, J., Niella, T., Garbulsky, G., Bahrami, B. & Sigman, M. Aggregated knowledge from a small number of debates outperforms the wisdom of large crowds. *Nature Human Behaviour* 2, 126–132 (2018).
- [138] Choi, S., Kang, H., Kim, N. & Kim, J. How does AI improve human decision-making? Evidence from the AI-powered Go program (2023).
- [139] Shin, M., Kim, J. & Kim, M. Human learning from Artificial Intelligence: Evidence from human Go players' decisions after AlphaGo. Proceedings of the Annual Meeting of the Cognitive Science Society 43 (2021).

- [140] Shin, M., Kim, J., van Opheusden, B. & Griffiths, T. L. Superhuman artificial intelligence can improve human decision-making by increasing novelty. *Proceedings of the National Academy* of Sciences 120, e2214840120 (2023).
- [141] Brinkmann, L. et al. Hybrid social learning in human-algorithm cultural transmission. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20200426 (2022).
- [142] Pescetelli, N., Barkoczi, D. & Cebrian, M. Bots influence opinion dynamics without direct human-bot interaction: The mediating role of recommender systems. *Applied Network Science* 7, 1–19 (2022).
- [143] Dellermann, D., Ebel, P., Söllner, M. & Leimeister, J. M. Hybrid intelligence. Business & Information Systems Engineering 61, 637–643 (2019).
- [144] Wiethof, C. & Bittner, E. Hybrid intelligence-combining the human in the loop with the computer in the loop: A systematic literature review. In Forty-Second International Conference on Information Systems, Austin, 1–17 (2021).
- [145] Hekler, A. et al. Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer 120, 114–121 (2019).
- [146] Tschandl, P. et al. Human-computer collaboration for skin cancer recognition. Nature Medicine 26, 1229–1234 (2020).
- [147] Wright, D. E. et al. A transient search using combined human and machine classifications.

 Monthly Notices of the Royal Astronomical Society 472, 1315–1323 (2017).
- [148] Bowyer, A., Maidel, V., Lintott, C., Swanson, A. & Miller, G. This image intentionally left blank: Mundane images increase citizen science participation. In 2015 Conference on Human Computation & Crowdsourcing. Presented at the Conference on Human Computation & Crowdsourcing, San Diego, California, United States, vol. 460 (2015).
- [149] Trouille, L., Lintott, C. J. & Fortson, L. F. Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human–machine systems. *Proceedings of the National Academy of Sciences* **116**, 1902–1909 (2019).

- [150] Hagströmer, B. & Nordén, L. The diversity of high-frequency traders. Journal of Financial Markets 16, 741–770 (2013).
- [151] Brogaard, J., Hendershott, T. & Riordan, R. High-frequency trading and price discovery.

 The Review of Financial Studies 27, 2267–2306 (2014).
- [152] Hirschey, N. Do high-frequency traders anticipate buying and selling pressure? *Management Science* **67**, 3321–3345 (2021).
- [153] Chaboud, A. P., Chiquoine, B., Hjalmarsson, E. & Vega, C. Rise of the machines: Algorithmic trading in the foreign exchange market. *The Journal of Finance* **69**, 2045–2084 (2014).
- [154] Hendershott, T., Jones, C. M. & Menkveld, A. J. Does algorithmic trading improve liquidity? The Journal of Finance 66, 1–33 (2011).
- [155] Hasbrouck, J. & Saar, G. Low-latency trading. *Journal of Financial Markets* **16**, 646–679 (2013).
- [156] Boehmer, E., Fong, K. & Wu, J. International evidence on algorithmic trading. In AFA 2013 San Diego Meetings Paper (2012).
- [157] Johnson, N. et al. Abrupt rise of new machine ecology beyond human response time. Scientific Reports 3, 2627 (2013).
- [158] Budish, E., Cramton, P. & Shim, J. The high-frequency trading arms race: Frequent batch auctions as a market design response. The Quarterly Journal of Economics 130, 1547–1621 (2015).
- [159] Beskow, D. M. & Carley, K. M. Bot conversations are different: Leveraging network metrics for bot detection in Twitter. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 825–832 (2018).
- [160] Cresci, S. A decade of social bot detection. Communications of the ACM 63, 72–83 (2020).
- [161] Davis, C. A., Varol, O., Ferrara, E., Flammini, A. & Menczer, F. BotOrNot: A system to evaluate social bots. In *Proceedings of the 25th International Conference Companion on World*

- Wide Web, WWW '16 Companion, 273–274 (International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2016).
- [162] Duh, A., Slak Rupnik, M. & Korošak, D. Collective behavior of social bots is encoded in their temporal Twitter activity. *Big Data* **6**, 113–123 (2018).
- [163] Orabi, M., Mouheb, D., Al Aghbari, Z. & Kamel, I. Detection of bots in social media: A systematic review. *Information Processing & Management* 57, 102250 (2020).
- [164] Varol, O., Ferrara, E., Davis, C., Menczer, F. & Flammini, A. Online human-bot interactions: Detection, estimation, and characterization. *Proceedings of the International AAAI Conference on Web and Social Media* 11, 280–289 (2017).
- [165] Bastos, M. T. & Mercea, D. The Brexit botnet and user-generated hyperpartisan news. *Social Science Computer Review* **37**, 38–54 (2019).
- [166] Grimme, C., Preuss, M., Adam, L. & Trautmann, H. Social bots: Human-like by means of human control? *Biq Data* 5, 279–293 (2017).
- [167] Chu, Z., Gianvecchio, S., Wang, H. & Jajodia, S. Detecting automation of Twitter accounts: Are you a human, bot, or cyborg? *IEEE Transactions on Dependable and Secure Computing* 9, 811–824 (2012).
- [168] Stella, M., Ferrara, E. & De Domenico, M. Bots increase exposure to negative and inflammatory content in online social systems. *Proceedings of the National Academy of Sciences* 115, 12435–12440 (2018).
- [169] Pozzana, I. & Ferrara, E. Measuring bot and human behavioral dynamics. Frontiers in Physics 8 (2020).
- [170] Hwang, T., Pearce, I. & Nanis, M. Socialbots: Voices from the fronts. *Interactions* **19**, 38–45 (2012).
- [171] Ferrara, E. Disinformation and social bot operations in the run up to the 2017 French presidential election. *First Monday* (2017).

- [172] Forelle, M., Howard, P., Monroy-Hernández, A. & Savage, S. Political bots and the manipulation of public opinion in Venezuela (2015). 1507.07109.
- [173] Howard, P., Woolley, S. & Calo, R. Algorithms, bots, and political communication in the US 2016 election: The challenge of automated political communication for election law and administration. *Journal of Information Technology and Politics* 15, 81–93 (2018).
- [174] Howard, P. N. & Kollanyi, B. Bots, #strongerIn, and #brexit: Computational propaganda during the UK-EU referendum (2016). 1606.06356.
- [175] Shao, C. et al. The spread of low-credibility content by social bots. Nature Communications 9, 4787 (2018).
- [176] Suárez-Serrato, P., Roberts, M. E., Davis, C. & Menczer, F. On the influence of social bots in online protests. In Spiro, E. & Ahn, Y.-Y. (eds.) Social Informatics, Lecture Notes in Computer Science, 269–278 (Springer International Publishing, Cham, 2016).
- [177] Yan, H. Y., Yang, K.-C., Shanahan, J. & Menczer, F. Exposure to social bots amplifies perceptual biases and regulation propensity. *Scientific Reports* 13, 20707 (2023).
- [178] Himelein-Wachowiak, M. et al. Bots and misinformation spread on social media: Implications for COVID-19. Journal of Medical Internet Research 23, e26933 (2021).
- [179] Yang, K.-C., Torres-Lugo, C. & Menczer, F. Prevalence of low-credibility information on Twitter during the COVID-19 outbreak (2020). 2004.14484.
- [180] Fan, R., Talavera, O. & Tran, V. Social media bots and stock markets. European Financial Management 26, 753-777 (2020).
- [181] Stella, M., Cristoforetti, M. & Domenico, M. D. Influence of augmented humans in online interactions during voting events. PLOS ONE 14, e0214210 (2019).
- [182] Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. *Science* **359**, 1146–1151 (2018).
- [183] Gorodnichenko, Y., Pham, T. & Talavera, O. Social media, sentiment and public opinions: Evidence from #Brexit and #USElection. *European Economic Review* **136**, 103772 (2021).

- [184] Bessi, A. & Ferrara, E. Social bots distort the 2016 US presidential election online discussion (2016).
- [185] BBC News. Twitter 'shuts down millions of fake accounts'. BBC News (2018).
- [186] Dang, S. & Paul, K. Twitter says it removes over 1 million spam accounts each day. *Reuters* (2022).
- [187] Halfaker, A. & Riedl, J. Bots and cyborgs: Wikipedia's immune system. *Computer* **45**, 79–82 (2012).
- [188] Niederer, S. & van Dijck, J. Wisdom of the crowd or technicity of content? Wikipedia as a sociotechnical system. *New Media & Society* **12**, 1368–1387 (2010).
- [189] Zheng, L. N., Albano, C. M., Vora, N. M., Mai, F. & Nickerson, J. V. The roles bots play in Wikipedia. *Proceedings of the ACM on Human-Computer Interaction* 3, 215:1–215:20 (2019).
- [190] Geiger, R. S. The lives of bots. In Lovink, G. & Tkacz, N. (eds.) Critical Point of View: A Wikipedia Reader, 78–93 (Institute of Network Cultures, Amsterdam, 2011).
- [191] Steiner, T. Bots vs. Wikipedians, anons vs. logged-ins (redux): A global study of edit activity on Wikipedia and Wikidata. In *Proceedings of The International Symposium on Open Collaboration*, OpenSym '14, 1–7 (Association for Computing Machinery, New York, NY, USA, 2014).
- [192] Geiger, R. S. & Halfaker, A. Operationalizing conflict and cooperation between automated software agents in Wikipedia: A replication and expansion of 'Even Good Bots Fight'. *Proceedings of the ACM on Human-Computer Interaction* 1, 49:1–49:33 (2017).
- [193] Clément, M. & Guitton, M. J. Interacting with bots online: Users' reactions to actions of automated programs in Wikipedia. *Computers in Human Behavior* **50**, 66–75 (2015).
- [194] Geiger, R. S. & Halfaker, A. When the levee breaks: Without bots, what happens to Wikipedia's quality control processes? In *Proceedings of the 9th International Symposium on Open Collaboration*, WikiSym '13, 1–6 (Association for Computing Machinery, New York, NY, USA, 2013).

- [195] Hilbert, M. & Darmon, D. Large-scale communication is more complex and unpredictable with automated bots. *Journal of Communication* **70**, 670–692 (2020).
- [196] Massanari, A. L. Contested play: The culture and politics of Reddit bots. In Socialbots and Their Friends (Routledge, 2016).
- [197] Hurtado, S., Ray, P. & Marculescu, R. Bot detection in Reddit political discussion. In Proceedings of the Fourth International Workshop on Social Sensing, SocialSense'19, 30–35 (Association for Computing Machinery, New York, NY, USA, 2019).
- [198] Jhaver, S., Birman, I., Gilbert, E. & Bruckman, A. Human-machine collaboration for content regulation: The case of Reddit automoderator. ACM Transactions on Computer-Human Interaction 26, 31:1–31:35 (2019).
- [199] Ma, M.-C. & Lalor, J. P. An empirical analysis of human-bot interaction on Reddit. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), 101–106 (Association for Computational Linguistics, Online, 2020).
- [200] Ray, P. P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. *Internet of Things and Cyber-Physical Systems* 3, 121–154 (2023).
- [201] Webb, T., Holyoak, K. J. & Lu, H. Emergent analogical reasoning in large language models.

 Nature Human Behaviour 7, 1526–1541 (2023).
- [202] Aiello, L. M., Deplano, M., Schifanella, R. & Ruffo, G. People are strange when you're a stranger: Impact and influence of bots on social networks. *Proceedings of the International AAAI Conference on Web and Social Media* 6, 10–17 (2012).
- [203] Freitas, C., Benevenuto, F., Ghosh, S. & Veloso, A. Reverse engineering socialbot infiltration strategies in Twitter. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM '15, 25–32 (Association for Computing Machinery, New York, NY, USA, 2015).
- [204] Messias, J., Schmidt, L., Oliveira, R. A. R. & de Souza, F. B. You followed my bot! Transforming robots into influential users in Twitter. *First Monday* 18, 1–14 (2013).

- [205] Savage, S., Monroy-Hernandez, A. & Höllerer, T. Botivist: Calling volunteers to action using online bots. In *Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing*, CSCW '16, 813–822 (Association for Computing Machinery, New York, NY, USA, 2016).
- [206] Krafft, P. M., Della Penna, N. & Pentland, A. S. An experimental study of cryptocurrency market dynamics. In *Proceedings of the 2018 CHI Conference on Human Factors in Com*puting Systems, CHI '18, 1–13 (Association for Computing Machinery, New York, NY, USA, 2018).
- [207] Bail, C. A. et al. Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences 115, 9216–9221 (2018).
- [208] Chen, C., Li, G., Fan, L. & Qin, J. The impact of automated investment on peer-to-peer lending: Investment behavior and platform efficiency. *Journal of Global Information Management* (*JGIM*) **29**, 1–22 (2021).
- [209] Lorenz, T. Welcome to the age of automated dating. Washington Post (2023).
- [210] Salganik, M. J. Bit by Bit: Social Research in the Digital Age (Princeton University Press, 2019).
- [211] Chang, D. Texas drivers are furious as 20 Cruise self-driving cars cause jam. https://www.dailymail.co.uk/news/article-12550179/Texas-drivers-furious-20-Cruises-gridlock-Austin.html (2023).
- [212] Asimov, I. I, Robot, vol. 1 (Spectra, [1950] 2004).
- [213] Graham, T. & Ackland, R. Do socialbots dream of popping the filter bubble? The role of socialbots in promoting deliberative democracy in social media. In Gehl, R. W. & Bakardjieva, M. (eds.) Socialbots and Their Friends: Digital Media and the Automation of Sociality, 187–206 (Routledge, United States of America, 2017).
- [214] Awad, E. et al. The Moral Machine experiment. Nature **563**, 59–64 (2018).
- [215] Kenway, E. 'Care bots': A dream for carers or a dangerous fantasy? The Observer (2023).

- [216] Brinkmann, L. et al. Machine culture. Nature Human Behaviour 7, 1855–1868 (2023).
- [217] Paré, G. & Kitsiou, S. Chapter 9: Methods for literature reviews. In Lau, F. & Kuziemsky, C. (eds.) Handbook of eHealth Evaluation: An Evidence-based Approach, 157–178 (University of Victoria, Victoria, British Columbia, 2017).
- [218] Sylvester, A., Tate, M. & Johnstone, D. Beyond synthesis: Re-presenting heterogeneous research literature. *Behaviour & Information Technology* **32**, 1199–1215 (2013).
- [219] Whittemore, R. & Knafl, K. The integrative review: Updated methodology. *Journal of Advanced Nursing* **52**, 546–553 (2005).