MA 101 (Mathematics I)

Hints/Solutions for Practice Problem Set - 1

Ex.1(a) State TRUE or FALSE giving proper justification: If both (x_n) and (y_n) are unbounded sequences in \mathbb{R} , then the sequence (x_ny_n) cannot be convergent.

Solution: The given statement is FALSE, since both $(x_n) = (1, 0, 2, 0, 3, 0, ...)$ and

 $(y_n) = (0, 1, 0, 2, 0, 3, ...)$ are unbounded sequences in \mathbb{R} but the sequence $(x_n y_n) = (0, 0, 0, ...)$ is convergent.

Ex.1(b) State TRUE or FALSE giving proper justification: If both (x_n) and (y_n) are increasing sequences in \mathbb{R} , then the sequence (x_ny_n) must be increasing.

Solution: The given statement is FALSE, since both $(x_n) = (-\frac{1}{n})$ and $(y_n) = (n^2)$ are increasing sequences in \mathbb{R} but the sequence $(x_n y_n) = (-n)$ is not increasing.

Ex.1(c) State TRUE or FALSE giving proper justification: If (x_n) , (y_n) are sequences in \mathbb{R} such that (x_n) is convergent and (y_n) is not convergent, then the sequence $(x_n + y_n)$ cannot be convergent.

Solution: The given statement is TRUE. If $(x_n + y_n)$ is convergent, then since (x_n) is also convergent, $(y_n) = (x_n + y_n) - (x_n)$ must be convergent, which is not true.

Ex.1(d) State TRUE or FALSE giving proper justification: A monotonic sequence (x_n) in \mathbb{R} is convergent iff the sequence (x_n^2) is convergent.

Solution: The given statement is TRUE. If (x_n) is convergent, then by the product rule, $(x_n^2) = (x_n x_n)$ is also convergent. Conversely, let (x_n^2) be convergent. Then (x_n^2) is bounded, i.e. there exists M > 0 such that $|x_n^2| \leq M$ for all $n \in \mathbb{N}$. This gives $|x_n| \leq \sqrt{M}$ for all $n \in \mathbb{N}$. So (x_n) is bounded. Since it is given that (x_n) is monotonic, we can conclude that (x_n) is convergent.

Ex.1(e) State TRUE or FALSE giving proper justification: If (x_n) is an unbounded sequence of nonzero real numbers, then the sequence $(\frac{1}{x_n})$ must converge to 0.

Solution: The given statement is FALSE. The sequence $(x_n) = (1, 2, 1, 3, 1, 4, ...)$ is not bounded, but $\frac{1}{x_n} \not\to 0$, because $(\frac{1}{x_n})$ has a subsequence (1, 1, ...) converging to 1.

Ex.1(f) State TRUE or FALSE giving proper justification: If $x_n = (1 - \frac{1}{n}) \sin \frac{n\pi}{2}$ for all $n \in \mathbb{N}$, then the sequence (x_n) is not convergent although it has a convergent subsequence.

Solution: The given statement is TRUE. We have $x_{2n} = (1 - \frac{1}{2n}) \sin n\pi = 0$ and

 $x_{4n+1} = (1 - \frac{1}{4n+1})\sin(2n\pi + \frac{\pi}{2}) = 1 - \frac{1}{4n+1}$ for all $n \in \mathbb{N}$. Hence $x_{2n} \to 0$ and $x_{4n+1} \to 1$. Thus (x_n) has two convergent subsequences (x_{2n}) and (x_{4n+1}) with different limits and therefore (x_n) is not convergent.

Ex.1(g) State TRUE or FALSE giving proper justification: If both the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$

of real numbers are convergent, then the series $\sum_{n=1}^{\infty} x_n y_n$ must be convergent.

Solution: The given statement is FALSE. Taking $x_n = y_n = \frac{(-1)^n}{\sqrt{n}}$ for all $n \in \mathbb{N}$, we find that both the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ are convergent by Leibniz's test (since $(\frac{1}{\sqrt{n}})$ is a decreasing sequence

of positive real numbers with $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$), but we know that the series $\sum_{n=1}^{\infty}x_ny_n=\sum_{n=1}^{\infty}\frac{1}{n}$ is not convergent.

Ex.1(h) State TRUE or FALSE giving proper justification: If $f: \mathbb{R} \to \mathbb{R}$ is continuous and

f(x) > 0 for all $x \in \mathbb{Q}$, then it is necessary that f(x) > 0 for all $x \in \mathbb{R}$.

Solution: The given statement is FALSE, because if $f(x) = |x - \sqrt{2}|$ for all $x \in \mathbb{R}$, then $f: \mathbb{R} \to \mathbb{R}$ is continuous and f(x) > 0 for all $x \in \mathbb{Q}$, but $f(\sqrt{2}) = 0$.

Ex.1(i) State TRUE or FALSE giving proper justification: There exists a continuous function from (0,1) onto $(0,\infty)$.

Solution: The given statement is TRUE. The function $f:(0,1)\to(0,\infty)$, defined by $f(x)=\frac{x}{1-x}$ for all $x \in (0,1)$, is continuous. Also, f is onto, because if $y \in (0,\infty)$, then $x = \frac{y}{1+y} \in (0,1)$ such that f(x) = y.

Ex.1(j) State TRUE or FALSE giving proper justification: There exists a continuous function from [0, 1] onto (0, 1).

Solution: The given statement is FALSE. If possible, let there exist a continuous function f: $[0,1] \to (0,1)$ which is onto. Then there exists $x_0 \in [0,1]$ such that $f(x_0) \leq f(x)$ for all $x \in [0,1]$. Since $0 < \frac{1}{2}f(x_0) < 1$ and since f is onto, there exists $c \in [0,1]$ such that $f(c) = \frac{1}{2}f(x_0)$. From above, we get $f(x_0) \leq f(c)$, i.e. $f(x_0) \leq \frac{1}{2}f(x_0)$, which is not possible, since $f(x_0) > 0$. Hence there does not exist any continuous function from [0,1] onto (0,1).

Ex.1(k) State TRUE or FALSE giving proper justification: There exists a continuous function from (0, 1) onto [0, 1].

Solution: The function $f:(0,1)\to[0,1]$, defined by $f(x)=|\sin(2\pi x)|$ for all $x\in(0,1)$, is continuous. Since $f(\frac{1}{2}) = 0$ and $f(\frac{1}{4}) = 1$, by the intermediate value theorem, for each $k \in (0,1)$, there exists $c \in (\frac{1}{4}, \frac{1}{2})$ such that f(c) = k. Hence f is onto.

Ex.1(1) State TRUE or FALSE giving proper justification: If $f: \mathbb{R} \to \mathbb{R}$ is continuous and bounded, then there must exist $c \in \mathbb{R}$ such that f(c) = c.

Solution: The given statement is TRUE. Since f is bounded, there exists M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$. Let g(x) = f(x) - x for all $x \in \mathbb{R}$. Since f is continuous, $g : \mathbb{R} \to \mathbb{R}$ is continuous. If f(-M) = -M or f(M) = M, then we get the result by taking c = -M or c = Mrespectively. Otherwise g(-M) = f(-M) + M > 0 and g(M) = f(M) - M < 0. Hence by the intermediate value theorem, there exists $c \in (-M, M)$ such that g(c) = 0, i.e. f(c) = c.

Ex.1(m) State TRUE or FALSE giving proper justification: If both $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous at 0, then the composite function $q \circ f : \mathbb{R} \to \mathbb{R}$ must be continuous at 0.

Solution: The given statement is FALSE. If f(x) = x + 1 for all $x \in \mathbb{R}$ and if

$$g(x) = \begin{cases} 2 & \text{if } x \in \mathbb{R} \setminus \{1\}, \\ 3 & \text{if } x = 1, \end{cases}$$

 $g(x) = \begin{cases} 2 & \text{if } x \in \mathbb{R} \setminus \{1\}, \\ 3 & \text{if } x = 1, \end{cases}$ then both $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are continuous at 0, but $g \circ f : \mathbb{R} \to \mathbb{R}$ is not continuous at

0, since
$$(g \circ f)(x) = \begin{cases} 2 & \text{if } x \in \mathbb{N} \\ 3 & \text{if } x = 0, \end{cases}$$

0, since $(g \circ f)(x) = \begin{cases} 2 & \text{if } x \in \mathbb{R} \setminus \{0\}, \\ 3 & \text{if } x = 0, \end{cases}$ so that $\lim_{x \to 0} (g \circ f)(x) = 2 \neq 3 = (g \circ f)(0).$

Ex.1(n) State TRUE or FALSE giving proper justification: If $f: \mathbb{R} \to \mathbb{R}$ is not differentiable at $x_0 \in \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ is not differentiable at $f(x_0)$, then $g \circ f: \mathbb{R} \to \mathbb{R}$ cannot be differentiable at x_0 .

Solution: The given statement is FALSE. If f(x) = |x| for all $x \in \mathbb{R}$ and if $g(x) = \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0, \end{cases}$

then $f:\mathbb{R}\to\mathbb{R}$ is not differentiable at 0 and $g:\mathbb{R}\to\mathbb{R}$ is not differentiable at f(0)=0, but $(g \circ f)(x) = 1$ for all $x \in \mathbb{R}$, so that $g \circ f$ is differentiable at 0.

Ex.1(o) State TRUE or FALSE giving proper justification: If $f: \mathbb{R} \to \mathbb{R}$ is such that $\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h}$ exists (in \mathbb{R}) for every $x \in \mathbb{R}$, then f must be differentiable on \mathbb{R} .

Solution: The given statement is FALSE. Let f(0) = 1 and f(x) = 0 if $x \neq 0 \in \mathbb{R}$. Then for every $x \in \mathbb{R}$, $\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{h} = \lim_{h\to 0} \frac{0-0}{h} = 0$, but f (being not continuous at 0) is not differentiable at 0.

Ex.2(a) Using the definition of convergence of sequence, examine whether the sequence $\left(n + \frac{3}{2}\right)$ is convergent.

Solution: If possible, let $(n + \frac{3}{2})$ be convergent. Then there exist $\ell \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that $|n + \frac{3}{2} - \ell| < 1$ for all $n \geq n_0 \Rightarrow n < \ell - \frac{1}{2}$ for all $n \geq n_0$, which is not true. Therefore the given sequence is not convergent.

Ex.2(b) Using the definition of convergence of sequence, examine whether the sequence $\left((-1)^n \frac{3}{n+2}\right)$ is convergent.

Solution: Let $\varepsilon > 0$. For all $n \in \mathbb{N}$, we have $|(-1)^n \frac{3}{n+2} - 0| = \frac{3}{n+2} < \frac{3}{n}$. There exists $n_0 \in \mathbb{N}$ such that $n_0 > \frac{3}{\varepsilon}$. Hence $|(-1)^n \frac{3}{n+2} - 0| < \frac{3}{n_0} < \varepsilon$ for all $n \ge n_0$ and so the given sequence is convergent (with limit 0).

Ex.2(c) Using the definition of convergence of sequence, examine whether the sequence $\left((-1)^n(1-\frac{1}{n})\right)$ is convergent.

Solution: If possible, let the given sequence (x_n) (say) be convergent with limit ℓ . Then there exists $m \in \mathbb{N}$ such that $|x_n - \ell| < \frac{1}{4}$ for all $n \ge m \Rightarrow |x_{2m} - \ell| < \frac{1}{4}$ and $|x_{2m+1} - \ell| < \frac{1}{4} \Rightarrow |1 - \frac{1}{2m} - \ell| < \frac{1}{4}$ and $|1 + \ell - \frac{1}{2m+1}| < \frac{1}{4} \Rightarrow 2 - (\frac{1}{2m} + \frac{1}{2m+1}) < \frac{1}{2} \Rightarrow \frac{3}{2} < \frac{1}{2m} + \frac{1}{2m+1} \le \frac{1}{2} + \frac{1}{2} = 1$, which is a contradiction. Therefore the given sequence is not convergent.

Ex.2(d) Using the definition of convergence of sequence, examine whether the sequence $\left(\frac{3n^2+\sin n-4}{2n^2+3}\right)$ is convergent.

Solution: Let $\varepsilon > 0$. For all $n \in \mathbb{N}$, we have $\left| \frac{3n^2 + \sin n - 4}{2n^2 + 3} - \frac{3}{2} \right| = \frac{|2\sin n - 17|}{4n^2 + 6} < \frac{19}{4n^2}$. There exists $n_0 \in \mathbb{N}$ such that $n_0 > \frac{\sqrt{19}}{2\sqrt{\varepsilon}}$. Hence $\left| \frac{3n^2 + \sin n - 4}{2n^2 + 3} - \frac{3}{2} \right| < \frac{19}{4n_0^2} < \varepsilon$ for all $n \geq n_0$ and so the given sequence is convergent (with limit $\frac{3}{2}$).

Ex.2(e) Using the definition of convergence of sequence, examine whether the sequence $\left(\frac{2\sqrt{n}+3n}{2n+3}\right)$ is convergent.

Solution: Let $\varepsilon > 0$. For all $n \in \mathbb{N}$, we have $\left| \frac{2\sqrt{n}+3n}{2n+3} - \frac{3}{2} \right| = \frac{|4\sqrt{n}-9|}{4n+6} < \frac{4\sqrt{n}+9}{4n} < \frac{1}{\sqrt{n}} + \frac{9}{\sqrt{n}} = \frac{10}{\sqrt{n}}$. There exists $n_0 \in \mathbb{N}$ such that $n_0 > \frac{100}{\varepsilon^2}$. Hence $\left| \frac{2\sqrt{n}+3n}{2n+3} - \frac{3}{2} \right| < \frac{10}{\sqrt{n_0}} < \varepsilon$ for all $n \ge n_0$ and so the given sequence is convergent (with limit $\frac{3}{2}$).

Ex.3(a) Let a, b, c be distinct positive real numbers and let $x_n = (a^n + b^n + c^n)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: Let $\alpha = \max\{a, b, c\}$. Then $\alpha^n \leq a^n + b^n + c^n \leq 3\alpha^n$ for all $n \in \mathbb{N}$. So $\alpha \leq x_n \leq 3^{\frac{1}{n}}\alpha$ for all $n \in \mathbb{N}$. Since $3^{\frac{1}{n}} \to 1$, $3^{\frac{1}{n}}\alpha \to \alpha$. Hence by sandwich theorem, it follows that the sequence (x_n) is convergent and $\lim_{n \to \infty} x_n = \alpha$.

Alternative solution: Let $\alpha = \max\{a, b, c\}$. Then $\alpha^n \leq a^n + b^n + c^n = \alpha^n \left[\left(\frac{a}{\alpha} \right)^n + \left(\frac{b}{\alpha} \right)^n + \left(\frac{c}{\alpha} \right)^n \right] \leq \alpha^n \left[\left(\frac{a}{\alpha} \right)^n + \left(\frac{b}{\alpha} \right)^n + \left(\frac{c}{\alpha} \right)^n \right]^n$ for all $n \in \mathbb{N}$. So $\alpha \leq x_n \leq \alpha \left[\left(\frac{a}{\alpha} \right)^n + \left(\frac{b}{\alpha} \right)^n + \left(\frac{c}{\alpha} \right)^n \right]$ for all $n \in \mathbb{N}$. Since $\left(\frac{a}{\alpha} \right)^n + \left(\frac{b}{\alpha} \right)^n + \left(\frac{c}{\alpha} \right)^n \to 1$, by sandwich theorem, it follows that (x_n) is convergent and $\lim_{n \to \infty} x_n = \alpha$.

Ex.3(b) Let $x_n = \frac{1-n+(-1)^n}{2n+1}$ for all $n \in \mathbb{N}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $x_n = \frac{\frac{1}{n} - 1 + \frac{(-1)^n}{n}}{2 + \frac{1}{n}}$ for all $n \in \mathbb{N}$. Since $\frac{1}{n} \to 0$ and $\frac{(-1)^n}{n} \to 0$, by the limit rules for algebraic operations, (x_n) is convergent with $\lim_{n \to \infty} x_n = \frac{0 - 1 + 0}{2 + 0} = -\frac{1}{2}$.

Ex.3(c) Let $|\alpha| > 1$, k > 0 and $x_n = \frac{n^k}{\alpha^n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $\lim_{n\to\infty} \left|\frac{x_{n+1}}{x_n}\right| = \lim_{n\to\infty} (1+\frac{1}{n})^k \frac{1}{|\alpha|} = \frac{1}{|\alpha|} < 1$. Hence (x_n) converges to 0.

Ex.3(d) Let $x_n = \frac{p(n)}{2^n}$ for all $n \in \mathbb{N}$, where p(x) is a polynomial in the real variable x of degree 5. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent. Solution: The highest power of n in each of p(n) and p(n+1) is 5 and the coefficient of n^5 in p(n)and p(n+1) is same. Hence dividing both numerator and denominator by n^5 and using the fact that $\frac{1}{n} \to 0$, it follows that $\lim_{n \to \infty} \left| \frac{p(n+1)}{p(n)} \right| = 1$ and consequently $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \left| \frac{p(n+1)}{2^{n+1}} \cdot \frac{2^n}{p(n)} \right| = \frac{1}{2} < 1$. This implies that (x_n) is convergent with limit 0.

Ex.3(e) Let $x_n = \frac{3.5.7.\cdots.(2n+1)}{2.5.8.\cdots.(3n-1)}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is converging gent. Also, find the limit if it is convergent.

Solution: We have $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{2n+3}{3n+2} = \lim_{n \to \infty} \frac{2+\frac{3}{n}}{3+\frac{2}{n}} = \frac{2}{3} < 1$. Hence (x_n) is convergent and $\lim_{n \to \infty} x_n = 0.$

Ex.3(f) Let $x_n = \frac{1}{n} \sin^2 n$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent. Solution: Since $0 \le \frac{1}{n} \sin^2 n \le \frac{1}{n}$ for all $n \in \mathbb{N}$ and since $\frac{1}{n} \to 0$, by sandwich theorem, (x_n) is

convergent with limit 0.

Ex.3(g) Let $x_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \cdots + \frac{1}{(n+n)^2}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $0 \le x_n \le \frac{n}{(n+1)^2}$ for all $n \in \mathbb{N}$ and $\frac{n}{(n+1)^2} = \frac{\frac{1}{n}}{(1+\frac{1}{n})^2} \to \frac{0}{(1+0)^2} = 0$. Hence by sandwich theorem, it follows that (x_n) is convergent with limit 0.

Ex.3(h) $x_n = \frac{n}{n^3+1} + \frac{2n}{n^3+2} + \cdots + \frac{n^2}{n^3+n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $(1+2+\cdots+n)\frac{n}{n^3+n} \leq x_n \leq (1+2+\cdots+n)\frac{n}{n^3+1}$ for all $n \in \mathbb{N}$. Also, $(1+2+\cdots+n)\frac{n}{n^3+n}=\frac{1+\frac{1}{n}}{2(1+\frac{1}{n^2})}\to \frac{1}{2}$ and $(1+2+\cdots+n)\frac{n}{n^3+1}=\frac{1+\frac{1}{n}}{2(1+\frac{1}{n^3})}\to \frac{1}{2}$. Hence by sandwich theorem, (x_n) is convergent with limit $\frac{1}{2}$.

Ex.3(i) $x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n+1}}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $\frac{n+1}{\sqrt{n^2+n+1}} \le x_n \le \frac{n+1}{\sqrt{n^2+1}}$ for all $n \in \mathbb{N}$. Also, $\frac{n+1}{\sqrt{n^2+n+1}} = \frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{2}}} \to 1$ and

 $\frac{n+1}{\sqrt{n^2+1}} = \frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n^2}}} \to 1$. Hence by sandwich theorem, (x_n) is convergent with limit 1.

Ex.3(j) Let $x_n = \frac{1}{\sqrt{n}}(\frac{1}{\sqrt{1+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{5}}} + \cdots + \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}})$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent. Solution: Since $x_n = \frac{1}{2\sqrt{n}}(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\cdots+\sqrt{2n+1}-\sqrt{2n-1}) = \frac{1}{2\sqrt{n}}(\sqrt{2n+1}-1) = \frac{1}{2\sqrt{n}}(\sqrt{n+1}-1)$

 $\frac{1}{2}(\sqrt{2+\frac{1}{n}-\frac{1}{\sqrt{n}}})$ for all $n\in\mathbb{N}$ and since $\frac{1}{n}\to 0$, by the limit rules for algebraic operations, (x_n) is convergent with $\lim_{n\to\infty} x_n = \frac{1}{2}(\sqrt{2+0}-0) = \frac{1}{\sqrt{2}}$.

Ex.3(k) Let $x_n = (\frac{\sin n + \cos n}{3})^n$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $0 \le |x_n| \le (\frac{2}{3})^n$ for all $n \in \mathbb{N}$. Since $(\frac{2}{3})^n \to 0$, by sandwich theorem, it follows that $|x_n| \to 0$ and consequently (x_n) is convergent with limit 0.

Ex.3(1) Let $x_n = \sqrt{4n^2 + n} - 2n$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is con-

vergent. Also, find the limit if it is convergent. Solution: For all $n \in \mathbb{N}$, $\sqrt{4n^2 + n} - 2n = \frac{n}{\sqrt{4n^2 + n + 2n}} = \frac{1}{\sqrt{4 + \frac{1}{n} + 2}}$. Since $\frac{1}{n} \to 0$, by the limit rules for algebraic operations, (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{\sqrt{4 + 0} + 2} = \frac{1}{4}$.

Ex.3(m) Let $x_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: For all $n \in \mathbb{N}$, we have $x_n = \frac{n-1}{\sqrt{n^2+n}+\sqrt{n^2+1}} = \frac{1-\frac{1}{n}}{\sqrt{1+\frac{1}{n}}+\sqrt{1+\frac{1}{n^2}}}$. Since $\frac{1}{n} \to 0$, by the limit rules for algebraic operations, (x_n) is convergent and $\lim_{n\to\infty} x_n = \frac{1-0}{\sqrt{1+0}+\sqrt{1+0}} = \frac{1}{2}$.

Ex.3(n) Let $x_1 = 1$ and $x_{n+1} = 1 + \sqrt{x_n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $x_2 = 2 > x_1$. Also, if $x_{k+1} > x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} = 1 + \sqrt{x_{k+1}} > x_k$ $1+\sqrt{x_k}=x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1}>x_n$ for all $n\in\mathbb{N}$. So (x_n) is increasing. Again, $x_1 < 3$ and if $x_k < 3$ for some $k \in \mathbb{N}$, then $x_{k+1} = 1 + \sqrt{x_k} < 1 + \sqrt{3} < 3$. Hence by the principle of mathematical induction, $x_n < 3$ for all $n \in \mathbb{N}$. So (x_n) is bounded above. Consequently (x_n) is convergent. If $\ell = \lim_{n \to \infty} x_n$, then $x_{n+1} \to \ell$ and since $x_{n+1} = 1 + \sqrt{x_n}$ for all $n \in \mathbb{N}$, we get $\ell = 1 + \sqrt{\ell} \Rightarrow \ell = \frac{3 + \sqrt{5}}{2}$ or $\frac{3 - \sqrt{5}}{2}$. Since $x_n \ge 1$ for all $n \in \mathbb{N}$, $\ell \ge 1$ and so $\ell = \frac{3 + \sqrt{5}}{2}$.

Ex.3(o) Let $x_1 = 4$ and $x_{n+1} = 3 - \frac{2}{x_n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $x_1 > 2$ and if we assume that $x_k > 2$ for some $k \in \mathbb{N}$, then $x_{k+1} > 3 - 1 = 2$. Hence by the principle of mathematical induction, $x_n > 2$ for all $n \in \mathbb{N}$. Therefore (x_n) is bounded below. Again, $x_2 = \frac{5}{2} < x_1$ and if we assume that $x_{k+1} < x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} - x_{k+1} = 2(\frac{1}{x_k} - \frac{1}{x_{k+1}}) < 0 \Rightarrow x_{k+2} < x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1} < x_n$ for all $n \in \mathbb{N}$. Therefore (x_n) is decreasing. Consequently (x_n) is convergent. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = 3 - \frac{2}{\lim_{n \to \infty} x_n} \Rightarrow \ell = 3 - \frac{2}{\ell}$ (since $x_n > 2$ for all $n \in \mathbb{N}$, $\ell \neq 0$) $\Rightarrow (\ell-1)(\ell-2) = 0 \Rightarrow \ell = 1 \text{ or } \ell = 2$. But $x_n > 2 \text{ for all } n \in \mathbb{N}, \text{ so } \ell \geq 2$. Therefore $\ell = 2$.

Alternative solution: For all $n \in \mathbb{N}$, we have $|x_{n+2} - x_{n+1}| = \frac{2}{|x_{n+1}||x_n|} |x_{n+1} - x_n|$. Also, as shown in the above solution, $x_n > 2$ for all $n \in \mathbb{N}$. Hence $|x_{n+2} - x_{n+1}| \le \frac{1}{2}|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. It follows that (x_n) is a Cauchy sequence in \mathbb{R} and hence (x_n) is convergent. To show that $\lim x_n = 2$, we proceed as in the above solution.

Ex.3(p) Let $x_1 = 0$ and $x_{n+1} = \sqrt{6 + x_n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $x_2 = \sqrt{6} > x_1$. Also, if $x_{k+1} > x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} = \sqrt{6 + x_{k+1}} > x_k$ $\sqrt{6+x_k}=x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1}>x_n$ for all $n\in\mathbb{N}$. So (x_n) is increasing. Again, $x_1 < 3$ and if $x_k < 3$ for some $k \in \mathbb{N}$, then $x_{k+1} = \sqrt{6 + x_k} < \sqrt{6 + 3} = 3$. Hence by the principle of mathematical induction, $x_n < 3$ for all $n \in \mathbb{N}$. So (x_n) is bounded above. Consequently (x_n) is convergent. If $\ell = \lim_{n \to \infty} x_n$, then $x_{n+1} \to \ell$ and since $x_{n+1} = \sqrt{6 + x_n}$ for all $n \in \mathbb{N}$, we get $\ell = \sqrt{6+\ell} \Rightarrow \ell^2 - \ell - 6 = 0 \Rightarrow \ell = 3$ or -2. Since $x_n \geq 0$ for all $n \in \mathbb{N}$, $\ell \geq 0$ and so $\ell = 3$.

Ex.3(q) Let $x_1 > 1$ and $x_{n+1} = \sqrt{x_n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find the limit if it is convergent.

Solution: We have $x_1 > 1$ and if we assume that $x_k > 1$ for some $k \in \mathbb{N}$, then $x_{k+1} = \sqrt{x_k} > 1$. Hence by the principle of mathematical induction, $x_n > 1$ for all $n \in \mathbb{N}$. Again, $x_2 = \sqrt{x_1} \le x_1$ and if we assume that $x_{k+1} \leq x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} = \sqrt{x_{k+1}} \leq \sqrt{x_k} = x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$. Thus (x_n) is decreasing and bounded below. Consequently (x_n) is convergent. If $\ell = \lim_{n \to \infty} x_n$, then $\lim_{n \to \infty} x_{n+1} = \ell$ and since $x_{n+1} = \sqrt{x_n}$ for all $n \in \mathbb{N}$, we get $\ell = \sqrt{\ell} \Rightarrow \ell^2 = \ell \Rightarrow \ell = 0$ or 1. Since $x_n > 1$ for all $n \in \mathbb{N}$, $\ell \ge 1$ and so we must have $\ell = 1$.

Ex.4 Let (x_n) , (y_n) be sequences in \mathbb{R} such that $x_n \to x \in \mathbb{R}$ and $y_n \to y \in \mathbb{R}$. Show that $\lim_{n \to \infty} \max\{x_n, y_n\} = \max\{x, y\}$.

Solution: We know that $\max\{x_n, y_n\} = \frac{1}{2}(x_n + y_n + |x_n - y_n|)$ for all $n \in \mathbb{N}$. Since $x_n \to x$ and $y_n \to y$, $x_n + y_n \to x + y$ and $|x_n - y_n| \to |x - y|$. Consequently $\lim_{n \to \infty} \max\{x_n, y_n\} = \frac{1}{2}(x + y + |x - y|) = \max\{x, y\}$.

Ex.5 If a sequence (x_n) of positive real numbers converges to $\ell \in \mathbb{R}$, then show that $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{\ell}$.

Solution: In view of Ex.2 of Tutorial Problem Set, we get $\ell \geq 0$. If $a \geq 0$ and $b \geq 0$, then $\frac{1}{2}(a+b-|a-b|)=\min\{a,b\}\leq \sqrt{ab}$ and hence it follows that $|\sqrt{a}-\sqrt{b}|\leq \sqrt{|a-b|}$. Let $\varepsilon>0$. Since $x_n\to \ell$, there exists $n_0\in\mathbb{N}$ such that $|x_n-\ell|<\varepsilon^2$ for all $n\geq n_0$. Therefore using the inequality obtained above, we get $|\sqrt{x_n}-\sqrt{\ell}|\leq \sqrt{|x_n-\ell|}<\varepsilon$ for all $n\geq n_0$. Consequently $\lim_{n\to\infty}\sqrt{x_n}=\sqrt{\ell}$.

Ex.6 Let (x_n) be a convergent sequence in \mathbb{R} with $\lim_{n\to\infty} x_n = \ell \neq 0$. Show that there exists $n_0 \in \mathbb{N}$ such that $x_n \neq 0$ for all $n \geq n_0$.

Solution: Since $x_n \to \ell$ and $|\ell| > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_n - \ell| < \frac{1}{2}|\ell|$ for all $n \ge n_0$. If for some $n \ge n_0$, $x_n = 0$, then we obtain $|\ell| < \frac{1}{2}|\ell|$, which is not possible. Hence $x_n \ne 0$ for all $n \ge n_0$.

Ex.7 If $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ for all $n \in \mathbb{N}$, then show that the sequence (x_n) convergent.

Solution: For all $n \in \mathbb{N}$, we have $x_{n+1} - x_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} \ge \frac{2}{2n+2} - \frac{1}{n+1} = 0 \Rightarrow x_{n+1} \ge x_n$ for all $n \in \mathbb{N} \Rightarrow (x_n)$ is increasing. Also, $x_n \le \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = 1$ for all $n \in \mathbb{N} \Rightarrow (x_n)$ is bounded above. Therefore (x_n) is convergent.

Ex.8(a) Let $x_1 = 1$ and $x_{n+1} = \frac{2+x_n}{1+x_n}$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) in \mathbb{R} is Cauchy (and hence convergent). Also, find the limit. Solution: Since $x_{n+1} = 1 + \frac{1}{1+x_n}$ for all $n \in \mathbb{N}$, we have $|x_{n+2} - x_{n+1}| = |\frac{1}{1+x_{n+1}} - \frac{1}{1+x_n}| = |\frac{1}{1+x_n}|$

Solution: Since $x_{n+1} = 1 + \frac{1}{1+x_n}$ for all $n \in \mathbb{N}$, we have $|x_{n+2} - x_{n+1}| = |\frac{1}{1+x_{n+1}} - \frac{1}{1+x_n}| = \frac{|x_{n+1}-x_n|}{|1+x_{n+1}||1+x_n|}$ for all $n \in \mathbb{N}$. Also, $x_1 = 1$ and if we assume that $x_k \geq 1$ for some $k \in \mathbb{N}$, then $x_{k+1} = 1 + \frac{1}{1+x_k} \geq 1$. Hence by the principle of mathematical induction, $x_n \geq 1$ for all $n \in \mathbb{N}$. Consequently $|x_{n+2} - x_{n+1}| \leq \frac{1}{4}|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. It follows that (x_n) is Cauchy and hence (x_n) converges. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = \ell$ and so we get $\ell = 1 + \frac{1}{1+\ell} \Rightarrow \ell^2 = 2 \Rightarrow \ell = \sqrt{2}$ or $-\sqrt{2}$. Since $x_n \geq 1$ for all $n \in \mathbb{N}$, we must have $\ell \geq 1$ and so $\ell = \sqrt{2}$.

Ex.8(b) Let $x_1 > 0$ and $x_{n+1} = 2 + \frac{1}{x_n}$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) in \mathbb{R} is Cauchy (and hence convergent). Also, find the limit.

Solution: We have $|x_{n+2} - x_{n+1}| = |\frac{1}{x_{n+1}} - \frac{1}{x_n}| = \frac{|x_{n+1} - x_n|}{|x_{n+1}||x_n|}$ for all $n \in \mathbb{N}$. Also, $x_2 = 2 + \frac{1}{x_1} > 2$ and if we assume that $x_k > 2$ for some $k \ge 2$, then $x_{k+1} = 2 + \frac{1}{x_k} > 2$. Hence by the principle of mathematical induction, $x_n > 2$ for all $n \ge 2$. Consequently $|x_{n+2} - x_{n+1}| \le \frac{1}{4}|x_{n+1} - x_n|$ for all $n \ge 2$. It follows that (x_n) is Cauchy and hence (x_n) converges. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = \ell$ and so we get $\ell = 2 + \frac{1}{\ell} \Rightarrow \ell^2 - 2\ell - 1 = 0 \Rightarrow \ell = 1 \pm \sqrt{2}$. Since $x_n > 2$ for all

 $n \geq 2$, we must have $\ell \geq 2$ and so $\ell = 1 + \sqrt{2}$.

Ex.9(a) If $x_n = (-1)^n n^2$ for all $n \in \mathbb{N}$, then examine whether the sequence (x_n) has a convergent subsequence?

Solution: If possible, let the given sequence have a convergent subsequence $((-1)^{n_k}n_k^2)$. Then $((-1)^{n_k}n_k^2)$ must be bounded. So there exists M>0 such that $|(-1)^{n_k}n_k^2|\leq M$ for all $k\in\mathbb{N}\Rightarrow$ $n_k^2 \leq M$ for all $k \in \mathbb{N}$, which is not possible, since (n_k) is a strictly increasing sequence of positive integers. Therefore the given sequence cannot have any convergent subsequence.

Ex.9(b) If $x_n = (-1)^n \frac{5n \sin^3 n}{3n-2}$ for all $n \in \mathbb{N}$, then examine whether the sequence (x_n) has a convergent subsequence.

Solution: Since $|x_n| = \frac{5}{3-2} |\sin n|^3 \le 5$ for all $n \in \mathbb{N}$, the sequence (x_n) is bounded and hence by Bolzano-Weierstrass theorem, (x_n) has a convergent subsequence.

Ex.10 If $a,b \in \mathbb{R}$, then show that the series $a + (a+b) + (a+2b) + \cdots$ is not convergent unless a = b = 0.

Solution: Let $s_n = a + (a+b) + \cdots + a + (n-1)b = n[a + \frac{1}{2}(n-1)b]$ for all $n \in \mathbb{N}$. If $b \neq 0$, then the sequence $(a + \frac{1}{2}(n-1)b)$ is not bounded and so the sequence (s_n) is not bounded, which implies that (s_n) is not convergent. If b=0, then the sequence $(s_n)=(na)$ is not bounded and hence is not convergent if $a \neq 0$. Thus the given series is not convergent (i.e. (s_n) is not convergent) if $a \neq 0$ or $b \neq 0$.

If a = b = 0, then the series becomes $0 + 0 + \cdots$, which is clearly convergent.

Ex.11(a) Examine whether the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent.

Solution: Taking $x_n = \frac{n!}{n^n}$ for all $n \in \mathbb{N}$, we find that $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{$ $\frac{1}{e}$ < 1. Hence by the ratio test, the given series is convergent.

Ex.11(b) Examine whether the series $\sum_{n=1}^{\infty} \frac{(2n)!}{n^n}$ is convergent. Solution: For all $n \in \mathbb{N}$, we have $\frac{(2n)!}{n^n} = \frac{2n}{n} \cdot \frac{2n-1}{n} \cdots \frac{n+1}{n} \cdot n! \geq 1$. Hence $\lim_{n \to \infty} \frac{(2n)!}{n^n} \neq 0$ and consequently the given series is not convergent.

Ex.11(c) Examine whether the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ is convergent.

Solution: Since $0 \le \frac{1}{n} \sin \frac{1}{n} \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$ and since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by comparison test, the given series is convergent.

Ex.11(d) Examine whether the series $\sum_{n=1}^{\infty} \sqrt{\frac{2n^2+3}{5n^3+1}}$ is convergent.

Solution: Let $x_n = \sqrt{\frac{2n^2+3}{5n^3+1}}$ and $y_n = \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \sqrt{\frac{2+\frac{3}{n^2}}{5+\frac{1}{n^3}}} = \sqrt{\frac{2}{5}} \neq 0$

and since $\sum_{n=1}^{\infty} y_n$ is not convergent, by limit comparison test, $\sum_{n=1}^{\infty} x_n$ is not convergent.

Ex.11(e) Examine whether the series $\sum_{n=1}^{\infty} \frac{n^n}{2^{n^2}}$ is convergent.

Solution: Taking $x_n = \frac{n^n}{2^{n^2}}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{2^n} = 0 < 1$ (since $\lim_{n \to \infty} \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{1}{2} < 1$). Hence by the root test, the given series is convergent.

Ex.11(f) Examine whether the series $\sum_{n=0}^{\infty} ((n^3+1)^{\frac{1}{3}}-n)$ is convergent.

Solution: Taking $x_n = (n^3 + 1)^{\frac{1}{3}} - n \ge 0$ and $y_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$, we have

 $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{n^2 (n^3 + 1 - n^3)}{(n^3 + 1)^{2/3} + n(n^3 + 1)^{1/3} + n^2} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n^3})^{2/3} + (1 + \frac{1}{n^3})^{1/3} + 1} = \frac{1}{3}. \text{ Since } \sum_{n=1}^{\infty} y_n \text{ is convergent,}$ $\sum_{n=1}^{\infty} x_n$ is also convergent by limit comparison test.

Ex.11(g) Examine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$ is convergent.

Solution: Let $x_n = \frac{\sqrt{n+1}-\sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1}+\sqrt{n})}$ and $y_n = \frac{1}{n^{3/2}}$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{1}{n}$ $\lim_{n\to\infty}\frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{2}$ and since $\sum_{n=1}^{\infty}y_n$ is convergent, by limit comparison test, $\sum_{n=1}^{\infty}x_n$ is convergent.

Ex.11(h) Examine whether the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ is convergent.

Proof: Taking $x_n = \left(\frac{n}{n+1}\right)^{n^2}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$. Hence by the root test, the given series is convergent.

Ex.11(i) Examine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$ is convergent. Solution: For $n \in \mathbb{N}$, the inequality $\frac{\sqrt{n+1}+1}{n+2} < \frac{\sqrt{n}+1}{n+1}$ is equivalent to the inequality $(n+1)^{\frac{3}{2}} < (n+2)\sqrt{n}+1$. Since $n(n+2)^2-(n+1)^3=n^2+n-1>0$ for all $n \in \mathbb{N}$, we get $(n+1)^{\frac{3}{2}} < (n+2)\sqrt{n}+1$ for all $n \in \mathbb{N}$ and hence $\frac{\sqrt{n+1}+1}{n+2} < \frac{\sqrt{n}+1}{n+1}$ for all $n \in \mathbb{N}$. Consequently the sequence $\left(\frac{\sqrt{n}+1}{n+1}\right)$ is decreasing. Also, $\frac{\sqrt{n}+1}{n+1} = \frac{\frac{1}{\sqrt{n}}+\frac{1}{n}}{1+\frac{1}{n}} \to 0$. Hence by Leibniz's test, the given series converges.

Alternative method for showing decreasing: Let $f(x) = \frac{\sqrt{x+1}}{x+1}$ for all $x \geq 1$. Then $f: [1, \infty) \to \mathbb{R}$ is differentiable and $f'(x) = \frac{1-x-2\sqrt{x}}{2\sqrt{x}(x+1)^2} \le 0$ for all $x \ge 1$. Hence f is decreasing on $[1,\infty)$ and so $f(n+1) \le f(n)$ for all $n \in \mathbb{N}$.

Ex.12 Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ is convergent

Solution: For x=0, the given series becomes $0+0+\cdots$, which clearly converges. We now assume that $x \neq 0$. Then $\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$. So by the ratio test, $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ is absolutely convergent and hence convergent. Therefore the given series is convergent for all $x \in \mathbb{R}$.

Ex.13 Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{3^n \sqrt{2n+1}}$ is convergent. Solution: If x = -2, then the given series becomes $0 + 0 + \cdots$, which is clearly convergent. Let $x(\neq -2) \in \mathbb{R}$ and let $a_n = \frac{(x+2)^n}{3^n \sqrt{2n+1}}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3}|x+2|$. Hence by ratio test, $\sum_{n=1}^{\infty} a_n$ is convergent (absolutely) if $\frac{1}{3}|x+2|<1$, i.e. if $x\in(-5,1)$ and is not convergent if $\frac{1}{3}|x+2| > 1$, i.e. if $x \in (-\infty, -5) \cup (1, \infty)$. If x = -5, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n+1}}$ is convergent by Leibniz test, since $(\frac{1}{\sqrt{2n+1}})$ is a decreasing sequence of positive real numbers and $\lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = 0$. Again, if x=1, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$ is not convergent by limit comparison test, since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is not convergent and $\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2n+1}}=\frac{1}{\sqrt{2}}\neq 0$. Therefore the set of all $x\in\mathbb{R}$ for which $\sum_{n=1}^{\infty}a_n$ is convergent is [-5, 1).

Solution: If 0 < a < 1, then $0 < \frac{a^n}{a^n + n} < a^n$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a^n$ is convergent. Hence by comparison test, $\sum_{n=1}^{\infty} \frac{a^n}{a^n + n}$ is convergent if 0 < a < 1. Again, if a > 1, then $\frac{a^n}{a^n + n} = \frac{1}{1 + \frac{n}{a^n}} \to 1 \neq 0$ and hence $\sum_{n=1}^{\infty} \frac{a^n}{a^n + n}$ is not convergent if a > 1. (We have used that $\lim_{n \to \infty} \frac{n}{a^n} = 0$, which follows from the fact that $\lim_{n \to \infty} \frac{n+1}{a^{n+1}} \cdot \frac{a^n}{n} = \frac{1}{a} < 1$.)

Ex.15 If $0 < x_n < \frac{1}{2}$ for all $n \in \mathbb{N}$ and if the series $\sum_{n=1}^{\infty} x_n$ converges, then show that the series $\sum_{n=1}^{\infty} \frac{x_n}{1-x_n}$ converges.

Solution: Since $0 < x_n < \frac{1}{2}$ for all $n \in \mathbb{N}$, we have $0 < \frac{x_n}{1-x_n} < 2x_n$ for all $n \in \mathbb{N}$. Also, since $\sum_{n=1}^{\infty} 2x_n$ converges, by comparison test, $\sum_{n=1}^{\infty} \frac{x_n}{1-x_n}$ converges.

Ex.16 Let (x_n) , (y_n) be sequences in \mathbb{R} such that $|x_n| \leq |y_n|$ for all $n \in \mathbb{N}$. Find out (with justification) the true statement(s) from the following.

- (a) If the series $\sum_{n=1}^{\infty} y_n$ converges, then the series $\sum_{n=1}^{\infty} x_n$ must converge.
- (b) If the series $\sum_{n=1}^{\infty} x_n$ converges, then the series $\sum_{n=1}^{\infty} y_n$ must converge.
- (c) If the series $\sum_{n=1}^{\infty} y_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} x_n$ must converge absolutely.
- (d) If the series $\sum_{n=1}^{\infty} x_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} y_n$ must converge absolutely.

Solution: By comparison test, $\sum_{n=1}^{\infty} |x_n|$ is convergent (i.e. $\sum_{n=1}^{\infty} x_n$ is absolutely convergent) if $\sum_{n=1}^{\infty} |y_n|$ is convergent (i.e. $\sum_{n=1}^{\infty} y_n$ is absolutely convergent) and so (c) is true. Again, we know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent. Also, since $(\frac{1}{n})$ is a decreasing sequence of positive real numbers with $\frac{1}{n} \to 0$, by Leibniz's test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent. Hence to see that (a) is false, we can take $x_n = \frac{1}{n}$, $y_n = \frac{(-1)^n}{n}$ for all $n \in \mathbb{N}$ and to see that (b) and (d) are false, we can take $x_n = \frac{1}{n^2}$, $y_n = \frac{1}{n}$ for all $n \in \mathbb{N}$.

Ex.17 If a series $\sum_{n=1}^{\infty} x_n$ is convergent but the series $\sum_{n=1}^{\infty} x_n^2$ is not convergent, then show that the series $\sum_{n=1}^{\infty} x_n$ is conditionally convergent.

Solution: Since $\sum_{n=1}^{\infty} x_n$ is convergent, $x_n \to 0$, and so there exists $n_0 \in \mathbb{N}$ such that $|x_n| < 1$ for all $n \ge n_0$. Hence $x_n^2 \le |x_n|$ for all $n \ge n_0$. Since $\sum_{n=1}^{\infty} x_n^2$ is not convergent, by comparison test, $\sum_{n=1}^{\infty} |x_n|$ is not convergent. Consequently $\sum_{n=1}^{\infty} x_n$ is conditionally convergent.

Ex.18(a) Examine whether the series $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2+1}-n)$ is conditionally convergent. Solution: Let $x_n = \sqrt{n^2+1}-n$ for all $n \in \mathbb{N}$. Then $x_n > 0$ for all $n \in \mathbb{N}$ and $x_n = \frac{1}{\sqrt{n^2+1}+n} = \frac{1}{\sqrt{1+\frac{1}{n^2}+1}} \to 0$. Also, $x_{n+1} = \frac{1}{\sqrt{(n+1)^2+1}+(n+1)} < \frac{1}{\sqrt{n^2+1}+n} = x_n$ for all $n \in \mathbb{N}$, *i.e.* the sequence (x_n) is decreasing. Therefore by Leibniz's test, $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ is convergent and hence the given series is convergent.

Again, if $y_n = \frac{1}{n}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2} + 1}} = \frac{1}{2} \neq 0$. Since $\sum_{n=1}^{\infty} y_n$ is not convergent, by limit comparison test, $\sum_{n=1}^{\infty} x_n$ is not convergent, i.e. $\sum_{n=1}^{\infty} |(-1)^n(\sqrt{n^2+1}-n)|$ is not convergent. Thus the given series is conditionally convergent.

Ex.18(b) Examine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + (-1)^n}$ is conditionally convergent.

Solution: By comparison test, the series $\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{n^2 + (-1)^n} \right| = \sum_{n=2}^{\infty} \frac{1}{n^2 + (-1)^n}$ is convergent, since

 $0 < \frac{1}{n^2 + (-1)^n} < \frac{2}{n^2}$ for all $n \ge 2$ and $\sum_{n=2}^{\infty} \frac{1}{n^2}$ is convergent. Thus the given series is not conditionally

Ex.18(c) Examine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{a^2+n}{n^2}$ (where $a \in \mathbb{R}$) is conditionally convergent. Solution: Let $a \in \mathbb{R}$ and let $x_n = \frac{a^2+n}{n^2}$ for all $n \in \mathbb{N}$. Then $x_n > 0$ for all $n \in \mathbb{N}$ and $x_n = \frac{a^2}{n^2} + \frac{1}{n} \to 0$. Also, $x_{n+1} = \frac{a^2}{(n+1)^2} + \frac{1}{n+1} < \frac{a^2}{n^2} + \frac{1}{n} = x_n$ for all $n \in \mathbb{N}$, *i.e.* the sequence (x_n) is decreasing. Therefore by Leibniz's test, it follows that the given series is convergent.

Again, if $y_n = \frac{1}{n}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} (\frac{a^2}{n} + 1) = 1 \neq 0$. Since $\sum_{n=1}^{\infty} y_n$ is not convergent,

by limit comparison test, $\sum_{n=1}^{\infty} x_n$ is not convergent, i.e. $\sum_{n=1}^{\infty} |(-1)^n \frac{a^2+n}{n^2}|$ is not convergent. Thus the given series is conditionally convergent.

Ex.19 Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{\log(n+1)}{\sqrt{n+1}} (x-5)^n$ is convergent. Hint: If x=5, then the given series becomes $0+0+\cdots$, which is clearly convergent. Let $x(\neq 5) \in \mathbb{R}$ and let $a_n = \frac{\log(n+1)}{\sqrt{n+1}} (x-5)^n$ for all $n \in \mathbb{N}$. Since $\lim_{x \to \infty} \frac{\log(x+2)}{\log(x+1)} = 1$ (using L'Hôpital's rule), by sequential criterion of limits, we get $\lim_{n \to \infty} \frac{\log(n+2)}{\log(n+1)} = 1$ and so $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x-5|$. Hence by the ratio test, $\sum_{n=1}^{\infty} a_n$ converges (absolutely) if |x-5| < 1, i.e. if $x \in (4,6)$ and diverges if |x-5| > 1, i.e. if $x \in (-\infty,4) \cup (6,\infty)$. If $f(x) = \frac{\log x}{\sqrt{x}}$ for all x > 0, then $f:(0,\infty) \to \mathbb{R}$ is differentiable and f'(x) < 0 for all $x > e^2$. Hence f is decreasing on (e^2,∞) . Consequently the sequence $\left(\frac{\log n}{\sqrt{n}}\right)_{n=16}^{\infty}$ is decreasing. If x=6, then $\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{\log(n+1)}{\sqrt{n+1}}$ diverges, by Cauchy's condensation test. Again, if x = 4, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{\log(n+1)}{\sqrt{n+1}}$ converges, by Leibniz's test. Therefore the set of all $x \in \mathbb{R}$ for which the given series converges is [4,6).

Ex.20 Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x+3)^n}{n5^n}$ is conditionally convergent. Solution: If x = -3, then the given series becomes $0 + 0 + \cdots$, which is clearly absolutely convergent. Let $x \neq -3$ is x = -3, then the given series becomes $x = 0 + 0 + \cdots$, which is clearly absolutely convergent. Let $x \neq -3$ is $x \neq -3$ is $x \neq -3$. Hence by the ratio test, $x \neq -3$ is $x \neq -3$ in $x \neq -3$. Hence by the ratio test, $x \neq -3$ is $x \neq -3$ in $x \neq -3$. Hence $x \neq -3$ is $x \neq -3$ in $x \neq -3$.

$$\frac{1}{5}|x+3| > 1$$
, i.e. if $x \in (-\infty, -8) \cup (2, \infty)$. If $x = -8$, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges. If $x = 2$,

then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by Leibniz's test, but $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges, *i.e.* $\sum_{n=1}^{\infty} a_n$ is conditionally convergent. Therefore the set of all $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} a_n$ converges conditionally is $\{2\}$.

Ex.21 Let $f,g:\mathbb{R}\to\mathbb{R}$ be such that $|f(x)|\leq |g(x)|$ for all $x\in\mathbb{R}$. If g is continuous at 0 and g(0) = 0, then show that f is continuous at 0.

Solution: Let $\varepsilon > 0$. Since g is continuous at 0, there exists $\delta > 0$ such that |g(x)| = |g(x) - g(0)| < 0 ε for all $x \in \mathbb{R}$ with $|x-0| < \delta$. So $|f(x)-f(0)| \le |f(x)| + |f(0)| \le |g(x)| + |g(0)| = |g(x)| < \varepsilon$ for all $x \in \mathbb{R}$ with $|x - 0| < \delta$. Therefore f is continuous at 0.

Ex.22 Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

Examine whether f is continuous at 0.

Solution: Let $x_n = \frac{2}{(4n+1)\pi}$ for all $n \in \mathbb{N}$. The sequence (x_n) in \mathbb{R} converges to 0, but the sequence $(f(x_n)) = (2n\pi + \frac{\pi}{2})$ cannot converge because it is not bounded. Therefore f is not continuous at 0.

Ex.23 Give an example (with justification) of a function $f: \mathbb{R} \to \mathbb{R}$ which is discontinuous at every point of \mathbb{R} but $|f|:\mathbb{R}\to\mathbb{R}$ is continuous.

Solution: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

If $x_0 \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = -1$ for all $n \in \mathbb{N}$, $f(t_n) \to -1 \neq 1 = f(x_0)$. Hence f is not continuous at x_0 . Again, if $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x_0$. Since $f(r_n) = 1$ for all $n \in \mathbb{N}$, $f(r_n) \to 1 \neq -1 = f(x_0)$. Hence f is not continuous at x_0 . Thus f is discontinuous at every point

However, |f|(x) = |f(x)| = 1 for all $x \in \mathbb{R}$ and so $|f| : \mathbb{R} \to \mathbb{R}$ is continuous.

Ex.24 Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $f(x) = x^2 + 5$ for all $x \in \mathbb{Q}$. Find $f(\sqrt{2})$. Solution: There exists a sequence (r_n) in \mathbb{Q} such that $r_n \to \sqrt{2}$. Since f is continuous at $\sqrt{2}$, we have $f(\sqrt{2}) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} (r_n^2 + 5) = (\sqrt{2})^2 + 5 = 7$.

Ex.25 Evaluate $\lim_{n\to\infty} \sin((2n\pi + \frac{1}{2n\pi})\sin(2n\pi + \frac{1}{2n\pi}))$. Solution: We have $(2n\pi + \frac{1}{2n\pi})\sin(2n\pi + \frac{1}{2n\pi}) = 2n\pi \sin\frac{1}{2n\pi} + \frac{1}{2n\pi}\sin\frac{1}{2n\pi} \to 1$, since $|\frac{1}{2n\pi}\sin\frac{1}{2n\pi}| \le \frac{1}{2n\pi} \to 0 \Rightarrow \frac{1}{2n\pi}\sin\frac{1}{2n\pi} \to 0$ and $2n\pi\sin\frac{1}{2n\pi} = \frac{\sin\frac{1}{2n\pi}}{\frac{1}{2n\pi}} \to 1$, using $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Since the sine function is continuous at 1, it follows that $\lim_{n\to\infty} \sin((2n\pi + \frac{1}{2n\pi})\sin(2n\pi + \frac{1}{2n\pi})) = \sin 1$.

Ex.26 Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that f(0) > f(1) < f(2). Show that f is not one-one. Solution: We choose $k \in \mathbb{R}$ such that $f(1) < k < \min\{f(0), f(2)\}$. Then by the intermediate value theorem, there exist $c_1 \in (0,1)$ and $c_2 \in (1,2)$ such that $f(c_1) = k$ and $f(c_2) = k$. Since $c_1 \neq c_2$, we conclude that f is not one-one.

Ex.27 Let $f:[0,1]\to[0,1]$ be continuous. Show that there exists $c\in[0,1]$ such that $f(c)+2c^5=$ $3c^{7}$.

Solution: Let $g(x) = f(x) + 2x^5 - 3x^7$ for all $x \in [0,1]$. Since f is continuous, $g:[0,1] \to \mathbb{R}$ is continuous. If f(0) = 0 or f(1) = 1, then we get the result by taking c = 0 or c = 1 respectively. Otherwise g(0) = f(0) > 0 and g(1) = f(1) - 1 < 0 (since it is given that $0 \le f(x) < 1$ for all $x \in [0,1]$). Hence by the intermediate value theorem, there exists $c \in (0,1)$ such that g(c) = 0, i.e. f(c) = c.

Ex.28 Show that there exists $c \in \mathbb{R}$ such that $c^{179} + \frac{163}{1+c^2+\sin^2 c} = 119$. Solution: Let $f(x) = x^{179} + \frac{163}{1+x^2+\sin^2 x} - 119$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is continuous and

f(-2)<0, f(0)>0. Hence by the intermediate value theorem, there exists $c\in(-2,0)$ such that f(c)=0, i.e. $c^{179}+\frac{163}{1+c^2+\sin^2c}=119.$

Ex.29 Let $f, g : [-1, 1] \to \mathbb{R}$ be continuous such that $|f(x)| \le 1$ for all $x \in [-1, 1]$ and g(-1) = -1, g(1) = 1. Show that there exists $c \in [-1, 1]$ such that f(c) = g(c).

Solution: Let $\varphi(x) = f(x) - g(x)$ for all $x \in [-1, 1]$. Since f and g are continuous, $\varphi : [-1, 1] \to \mathbb{R}$ is continuous. If f(-1) = -1 or f(1) = 1, then we get the result by taking c = -1 or c = 1 respectively. Otherwise $\varphi(-1) = f(-1) + 1 > 0$ and $\varphi(1) = f(1) - 1 < 0$ (since it is given that $|f(x)| \le 1$ for all $x \in [-1, 1]$). Hence by the intermediate value theorem, there exists $c \in (-1, 1)$ such that $\varphi(c) = 0$, i.e. f(c) = g(c).

Ex.30 Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Show that

- (a) if n is odd, then there exists unique $y \in \mathbb{R}$ such that $y^n = x$.
- (b) if n is even and x > 0, then there exists unique y > 0 such that $y^n = x$.

Solution: Let $f(t) = t^n - x$ for all $t \in \mathbb{R}$, so that $f : \mathbb{R} \to \mathbb{R}$ is continuous.

- (a) We first assume that n is odd. Then $\lim_{t\to\infty} f(t) = \infty$ and $\lim_{t\to-\infty} f(t) = -\infty$. So there exist $x_1>0$ and $x_2<0$ such that $f(x_1)>0$ and $f(x_2)<0$. By the intermediate value property of continuous functions, there exists $y\in (x_2,x_1)$ such that f(y)=0, i.e. $y^n=x$. If possible, let there exist $u\in\mathbb{R}$ such that $u\neq y$ and $u^n=x$. Clearly either both u and y must be non-negative or both u and u must be negative. We consider the case $0\leq y< u$. (Other cases can be handled similarly.) Then u=u0 the property of the case u1. Thus the uniqueness of u2 is proved.
- (b) We now assume that n is even and x > 0. Then f(0) < 0 and $\lim_{t \to \infty} f(t) = \infty$. So there exists $x_1 > 0$ such that $f(x_1) > 0$. By the intermediate value property of continuous functions, there exists $y \in (0, x_1)$ such that f(y) = 0 i.e. $y^n = x$. If possible, let there exist u > 0 such that $u \neq y$ and $u^n = x$. Without loss of generality, let u > y. Then $x = u^n > y^n = x$, which is a contradiction. This proves the uniqueness of y.

Ex.31 If $f:[0,1]\to\mathbb{R}$ is continuous and f(x)>0 for all $x\in[0,1]$, then show that there exists $\alpha>0$ such that $f(x)>\alpha$ for all $x\in[0,1]$.

Solution: Since $f:[0,1] \to \mathbb{R}$ is continuous, there exists $x_0 \in [0,1]$ such that $f(x) \geq f(x_0)$ for all $x \in [0,1]$. Choosing $\alpha = \frac{1}{2}f(x_0)$, we find that $\alpha > 0$ and $f(x) > \alpha$ for all $x \in [0,1]$.

Ex.32 Give an example of each of the following.

- (a) A function $f:[0,1]\to\mathbb{R}$ which is not bounded.
- (b) A continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$ which does not attain $\sup\{f(x) : x \in \mathbb{R}\}$ as well as $\inf\{f(x) : x \in \mathbb{R}\}$.
- (c) A continuous and bounded function $f:(0,1)\to\mathbb{R}$ which attains both $\sup\{f(x):x\in(0,1)\}$ and $\inf\{f(x):x\in(0,1)\}$.

Hint: (a) If
$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \in (0,1], \\ 0 & \text{if } x = 0, \end{cases}$$

then $f:[0,1]\to\mathbb{R}$ is not bounded.

- (b) The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \frac{x}{1+|x|}$ for all $x \in \mathbb{R}$, is continuous and bounded. However, neither $\sup\{f(x): x \in \mathbb{R}\} = 1$ nor $\inf\{f(x): x \in \mathbb{R}\} = -1$ is attained by f at any point of \mathbb{R} .
- (c) The function $f:(0,1)\to\mathbb{R}$, defined by $f(x)=\sin(2\pi x)$ for all $x\in(0,1)$, is continuous and bounded. Also, $\sup\{f(x):x\in(0,1)\}=1=f(\frac{1}{4})$ and $\inf\{f(x):x\in(0,1)\}=-1=f(\frac{3}{4})$.

Ex.33 If $f(x) = x \sin x$ for all $x \in \mathbb{R}$, then show that $f : \mathbb{R} \to \mathbb{R}$ is neither bounded above nor bounded below.

Solution: If possible, let f be bounded above. Then there exists M>0 such that $f(x)\leq M$ for all $x\in\mathbb{R}$ and hence $2n\pi+\frac{\pi}{2}=f(2n\pi+\frac{\pi}{2})\leq M$ for all $n\in\mathbb{N}$. This gives $n\leq\frac{1}{2\pi}(M-\frac{\pi}{2})$ for all $n\in\mathbb{N}$, which is not possible. Hence f is not bounded above. Again, if possible, let f

be bounded below. Then there exists K>0 such that $f(x)\geq K$ for all $x\in\mathbb{R}$ and hence $-2n\pi - \frac{3\pi}{2} = f(2n\pi + \frac{3\pi}{2}) \ge K$ for all $n \in \mathbb{N}$. This gives $n \le -\frac{1}{2\pi}(K + \frac{3\pi}{2})$ for all $n \in \mathbb{N}$, which is not possible. Hence f is not bounded below.

Ex.34 Let p be an nth degree polynomial with real coefficients in one real variable such that $n(\neq 0)$ is even and $p(0) \cdot p^{(n)}(0) < 0$. Show that p has at least two real zeroes.

Solution: Let $p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ for all $x \in \mathbb{R}$, where $a_i \in \mathbb{R}$ for i = 0, 1, ..., n, $n \in \mathbb{N}$ is even and $a_0 \neq 0$. Then p is infinitely differentiable (and so also continuous) and $p^{(n)}(0) = n!a_0$. Since $p(0) \cdot p^{(n)}(0) < 0$, we have $a_0 a_n < 0$, i.e. a_0 and a_n are of different signs. Let us assume that $a_0 > 0$, so that $a_n < 0$. (The case $a_0 < 0$ and so $a_n > 0$ is almost similar.) Since $p(x) = a_0 x^n (1 + \frac{a_1}{a_0} \cdot \frac{1}{x} + \dots + \frac{a_{n-1}}{a_0} \cdot \frac{1}{x^{n-1}} + \frac{a_n}{a_0} \cdot \frac{1}{x^n})$ for all $x \neq 0$ is almost similar.) and $\lim_{x\to-\infty} p(x) = \infty$. So there exist $x_1 > 0$ and $x_2 < 0$ such that $p(x_1) > 0$ and $p(x_2) > 0$. Since $p(0) = a_n < 0$, by the intermediate value theorem, there exist $c_1 \in (x_2, 0)$ and $c_2 \in (0, x_1)$ such that $p(c_1) = 0$ and $p(c_2) = 0$.

Ex.35 Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at 0 and let g(x) = xf(x) for all $x \in \mathbb{R}$. Show that $g: \mathbb{R} \to \mathbb{R}$ is differentiable at 0.

Solution: Since $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} f(x) = f(0)$ (because f is continuous at 0), g is differentiable at 0.

Ex.36 Let $\alpha > 1$ and let $f: \mathbb{R} \to \mathbb{R}$ satisfy $|f(x)| \leq |x|^{\alpha}$ for all $x \in \mathbb{R}$. Show that f is differentiable at 0.

Solution: We have $|f(0)| \le |0|^{\alpha} = 0 \Rightarrow f(0) = 0$ and so $|\frac{f(x) - f(0)}{x - 0}| \le |x|^{\alpha - 1}$ for all $x \ne 0 \in \mathbb{R}$. Since $\lim_{x\to 0} |x|^{\alpha-1} = 0$, by sandwich theorem for limit of functions, we get $\lim_{x\to 0} |\frac{f(x)-f(0)}{x-0}| = 0$. It follows that $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$ and consequently f is differentiable at 0.

Ex.37 Let $f(x) = x^2|x|$ for all $x \in \mathbb{R}$. Examine the existence of f'(x), f''(x) and f'''(x), where

Solution: Here $f(x) = \begin{cases} x^3 & \text{if } x \ge 0, \\ -x^3 & \text{if } x < 0. \end{cases}$

Clearly $f: \mathbb{R} \to \mathbb{R}$ is differentiable at all $x \neq 0 \in \mathbb{R}$ and $f'(x) = \begin{cases} 3x^2 & \text{if } x > 0, \\ -3x^2 & \text{if } x < 0. \end{cases}$

Also, $\lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} x^2 = 0$ and $\lim_{x \to 0-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0-} (-x^2) = 0$.

Hence $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0.$

Again, it is clear that $f': \mathbb{R} \to \mathbb{R}$ is differentiable at all $x \neq 0 \in \mathbb{R}$ and $f''(x) = \begin{cases} 6x & \text{if } x > 0, \\ -6x & \text{if } x < 0. \end{cases}$

Also, $\lim_{x \to 0+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0+} 3x = 0$ and $\lim_{x \to 0-} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0-} (-3x) = 0$. Hence $f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0} = 0$.

Finally, it is clear that $f'': \mathbb{R} \to \mathbb{R}$ is differentiable at all $x \neq 0 \in \mathbb{R}$ and $f'''(x) = \begin{cases} 6 & \text{if } x > 0, \\ -6 & \text{if } x < 0. \end{cases}$

Also, $\lim_{x\to 0+} \frac{f''(x)-f''(0)}{x-0} = \lim_{x\to 0+} 6 = 6$ and $\lim_{x\to 0-} \frac{f''(x)-f''(0)}{x-0} = \lim_{x\to 0-} (-6) = -6$. Hence $\lim_{x\to 0} \frac{f''(x)-f''(0)}{x-0}$ does not exist, *i.e.* f'''(0) does not exist.

Ex.38 Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 |\cos \frac{\pi}{x}| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

Examine whether f is differentiable (i) at 0 (ii) on (0,1).

Solution: (i) For each $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we find that $\left| \frac{f(x) - f(0)}{x - 0} \right| = |x| |\cos \frac{\pi}{x}| \le |x|$ for

all $x \in \mathbb{R}$ satisfying $0 < |x| < \delta$. Hence $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$ and consequently f is differentiable at 0 (with f'(0) = 0).

(ii) Since $\lim_{x \to \frac{2}{3} +} \frac{f(x) - f(\frac{2}{3})}{x - \frac{2}{3}} = \lim_{x \to \frac{2}{3} +} \frac{-x^2 \cos \frac{\pi}{x} - 0}{x - \frac{2}{3}} = \frac{d}{dx} (-x^2 \cos \frac{\pi}{x})|_{x = \frac{2}{3}}$ (applying L'Hôpital's rule) = π and $\lim_{x \to \frac{2}{3} -} \frac{f(x) - f(\frac{2}{3})}{x - \frac{2}{3}} = \lim_{x \to \frac{2}{3} -} \frac{x^2 \cos \frac{\pi}{x} - 0}{x - \frac{2}{3}} = \frac{d}{dx} (x^2 \cos \frac{\pi}{x})|_{x = \frac{2}{3}}$ (applying L'Hôpital's rule) = $-\pi$,

 $\lim_{x \to \frac{2}{3}} \frac{f(x) - f(\frac{2}{3})}{x - \frac{2}{3}}$ does not exist and hence f is not differentiable at $\frac{2}{3} \in (0, 1)$. Consequently f is not differentiable on (0,1).

Ex.39(a) Examine whether $f: \mathbb{R} \to \mathbb{R}$, defined as below, is differentiable at 0.

 $f(x) = \begin{cases} \frac{1}{2^{n+1}} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$ $Solution: \text{Since } \frac{f(\frac{1}{2^n}) - f(0)}{1/2^n} = \frac{1}{2} \text{ and } \frac{f(\frac{1}{3^n}) - f(0)}{1/3^n} = 0 \text{ for all } n \in \mathbb{N}, \frac{f(\frac{1}{2^n}) - f(0)}{1/2^n} \to \frac{1}{2} \text{ and } \frac{f(\frac{1}{3^n}) - f(0)}{1/3^n} \to 0.$ As $\frac{1}{2^n} \to 0$ and $\frac{1}{3^n} \to 0$, by the sequential criterion of limit, it follows that $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ does not exist. Consequently f is not differentiable at 0.

Ex.39(b) Examine whether $f: \mathbb{R} \to \mathbb{R}$, defined as below, is differentiable at 0.

 $f(x) = \begin{cases} \frac{1}{4^n} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$ $Solution: \text{ For all } x(\neq 0) \in \mathbb{R}, \text{ we have } \left| \frac{f(x) - f(0)}{x - 0} \right| \leq |x|. \text{ Hence for each } \varepsilon > 0, \text{ taking } \delta = \varepsilon > 0,$ we find that $\left| \frac{f(x) - f(0)}{x - 0} \right| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $0 < |x - 0| < \delta$. Therefore $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$ and consequently f is differentiable at 0 (with f'(0) = 0).

Ex.40 Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at 0 and f(0) = f'(0) = 0. Show that $g: \mathbb{R} \to \mathbb{R}$,

defined by $g(x) = \begin{cases} f(x) \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$ is differentiable at 0.

Solution: Since $0 \leq \left| \frac{g(x) - g(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| |\sin \frac{1}{x}| \leq \left| \frac{f(x)}{x} \right|$ for all $x \neq 0$, and since $\lim_{x \to 0} \left| \frac{f(x)}{x} \right| = \left| \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \right| = |f'(0)| = 0$, by the sandwich theorem for limits of functions, we get $\lim_{x \to 0} \left| \frac{g(x) - g(0)}{x - 0} \right| = 0$. 0. It follows that $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = 0$ and consequently g is differentiable at 0 (with g'(0) = 0).

Ex.41 Let $f(x) = x^3 + x$ and $g(x) = x^3 - x$ for all $x \in \mathbb{R}$. If f^{-1} denotes the inverse function of f and if $(g \circ f^{-1})(x) = g(f^{-1}(x))$ for all $x \in \mathbb{R}$, then find $(g \circ f^{-1})'(2)$.

Solution: Since $f'(x) = 3x^2 + 1 \neq 0$ for all $x \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$ is one-one. Also, since f is an odd degree polynomial in \mathbb{R} , by the intermediate value property of continuous functions, $f:\mathbb{R}\to\mathbb{R}$ is onto. Hence $f^{-1}: \mathbb{R} \to \mathbb{R}$ exists and is differentiable. By chain rule and the rule for derivative of inverse, we get $(g \circ f^{-1})^{-1}(2) = g'(f^{-1}(2))(f^{-1})'(2) = g'(1)\frac{1}{f'(1)}$ (since f(1) = 2) = $\frac{1}{2}$.

Ex.42 If $a, b, c \in \mathbb{R}$, then show that the equation $4ax^3 + 3bx^2 + 2cx = a + b + c$ has at least one root in (0,1).

Solution: Let $f(x) = ax^4 + bx^3 + cx^2 - (a+b+c)x$ for all $x \in \mathbb{R}$. Then $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f(0) = 0 = f(1). Hence by Rolle's theorem, the equation f'(x) = 0, i.e. $4ax^3 + 3bx^2 + 2cx = a + b + c$ has at least one root in (0,1).

Ex.43 If $a_0, a_1, ..., a_n \in \mathbb{R}$ satisfy $\frac{a_0}{1.2} + \frac{a_1}{2.3} + \cdots + \frac{a_n}{(n+1)(n+2)} = 0$, then show that the equa-

tion $a_0 + a_1 x + \dots + a_n x^n = 0$ has at least one root in [0,1]. Solution: Let $f(x) = \frac{a_0}{1.2} x^2 + \frac{a_1}{2.3} x^3 + \dots + \frac{a_n}{(n+1)(n+2)} x^{n+2}$ for all $x \in [0,1]$. Then $f:[0,1] \to \mathbb{R}$ is twice differentiable and $f'(x) = a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1}$, $f''(x) = a_0 + a_1 x + \dots + a_n x^n$ for all

 $x \in [0,1]$. Since f(0) = 0 = f(1), by Rolle's theorem, there exists $c \in (0,1)$ such that f'(c) = 0. Again, since f'(0) = 0, by Rolle's theorem, there exists $\alpha \in (0,c)$ such that $f''(\alpha) = 0$. Thus the equation $a_0 + a_1x + \cdots + a_nx^n = 0$ has a root $\alpha \in [0,1]$.

Ex.44 Show that the equation $|x^{10} - 60x^9 - 290| = e^x$ has at least one real root. Solution: Let $f(x) = |x^{10} - 60x^9 - 290| - e^x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(0) = 289 > 0. Again, $\lim_{x \to \infty} \frac{x^{10} - 60x^9 - 290}{e^x} = \lim_{x \to \infty} \frac{10!}{e^x}$ (using L'Hôpital's rule ten times) = 0. Hence there exists M > 0 such that $|\frac{x^{10} - 60x^9 - 290}{e^x}| < 1$ for all x > M and consequently f(2M) < 0. Therefore by the intermediate value property of continuous functions, the equation f(x) = 0 has at least one root in (0, 2M). Hence the given equation has at least one real root.

Ex.45(a) Find the number of (distinct) real roots of the equation $x^2 = \cos x$. Solution: Let $f(x) = x^2 - \cos x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable with $f'(x) = 2x + \sin x$ and $f''(x) = 2 + \cos x$ for all $x \in \mathbb{R}$. Since $f''(x) \neq 0$ for all $x \in \mathbb{R}$, as a consequence of Rolle's theorem, it follows that the equation f'(x) = 0 has at most one real root and hence the equation f(x) = 0 has at most two real roots. Again, since $f(-\frac{\pi}{2}) = \frac{\pi^2}{4} > 0$, f(0) = -1 < 0 and $f(\frac{\pi}{2}) = \frac{\pi^2}{4} > 0$, by the intermediate value property of continuous functions, the equation f(x) = 0 has at least one root in $(-\frac{\pi}{2}, 0)$ and at least one root in $(0, \frac{\pi}{2})$. Therefore the given equation has exactly two (distinct) real roots.

Ex.45(b) Find the number of (distinct) real roots of the equation $e^{2x} + \cos x + x = 0$. Solution: Let $f(x) = e^{2x} + \cos x + x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is differentiable with $f'(x) = 2e^{2x} + (1 - \sin x) > 0$ for all $x \in \mathbb{R}$. As a consequence of Rolle's theorem, the equation f(x) = 0 has at most one real root. Again, since $f(-\frac{\pi}{2}) = e^{-\pi} - \frac{\pi}{2} < 0$ and f(0) = 2 > 0, by the intermediate value property of continuous functions, the equation f(x) = 0 has least one root in $(-\frac{\pi}{2}, 0)$. Therefore the given equation has exactly one (distinct) real root.

Ex.46 Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable such that f(0) = 0, f'(0) > 0 and f''(x) > 0 for all $x \in \mathbb{R}$. Show that the equation f(x) = 0 has no positive real root. Solution: Since f''(x) > 0 for all $x \in \mathbb{R}$, f' is strictly increasing on \mathbb{R} and so f'(x) > f'(0) > 0 for all x > 0. This implies that f is strictly increasing on $[0, \infty)$ and so f(x) > f(0) = 0 for all x > 0. Thus the equation f(x) = 0 has no positive real root.

Ex.47 Show that between any two (distinct) real roots of the equation $e^x \sin x = 1$, there exists at least one real root of the equation $e^x \cos x + 1 = 0$.

Solution: Let $f(x) = \sin x - e^{-x}$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is differentiable (also continuous). Let $a, b \in \mathbb{R}$ with a < b be such that $e^a \sin a = 1 = e^b \sin b$. Then f(a) = 0 = f(b). By Rolle's theorem, there exists $c \in (a, b)$ such that f'(c) = 0, i.e. $\cos c + e^{-c} = 0 \Rightarrow e^c(\cos c + e^{-c}) = 0 \Rightarrow e^c \cos c + 1 = 0$. Thus $c \in (a, b)$ is a root of the equation $e^x \cos x + 1 = 0$.

Ex.48 Let $f(x) = 3x^5 - 2x^3 + 12x - 8$ for all $x \in \mathbb{R}$. Show that $f : \mathbb{R} \to \mathbb{R}$ is one-one and onto.

Solution: Here $f: \mathbb{R} \to \mathbb{R}$ is differentiable and $f'(x) = 15x^4 - 6x^2 + 12 = 15[(x^2 - \frac{1}{5})^2 + \frac{19}{25}] \neq 0$ for all $x \in \mathbb{R}$. As a consequence of the mean value theorem, $f: \mathbb{R} \to \mathbb{R}$ is one-one. Again, since f is an odd degree polynomial with real coefficients in one real variable, by Ex.12(c) of Tutorial Problem Set, $f: \mathbb{R} \to \mathbb{R}$ is onto.

Ex.49(a) Show that $\frac{x-1}{x} < \log x < x-1$ for all $x(\neq 1) > 0$. Solution: Let $f(x) = \log x$ for all x > 0. Then $f: (0, \infty) \to \mathbb{R}$ is differentiable and hence for each $x(\neq 1) \in (0, \infty)$, there exists c between 1 and x such that f(x) - f(1) = (x-1)f'(c), i.e $\log x = \frac{x-1}{c}$. Since $\frac{1}{x} < \frac{1}{c} < 1$ if x > 1 and $1 < \frac{1}{c} < \frac{1}{x}$ if 0 < x < 1, we get $\frac{x-1}{x} < \frac{x-1}{c} < x-1$ for all $x(\neq 1) > 0$. Hence $\frac{x-1}{x} < \log x < x-1$ for all $x(\neq 1) > 0$.

Ex.49(b) Show that $1 + x < e^x < 1 + xe^x$ for all $x \neq 0 \in \mathbb{R}$.

Solution: Let $f(x) = e^x$ for all $x \in \mathbb{R}$. Then $f: \mathbb{R} \to \mathbb{R}$ is differentiable and hence for each $x \neq 0$ $(0) \in \mathbb{R}$, by the mean value theorem, there exists c between 0 and x such that f(x) - f(0) = xf'(c), i.e. $e^x - 1 = xe^c$. Since $1 < e^c < e^x$ if x > 0 and $e^x < e^c < 1$ if x < 0, we get $x < xe^c < xe^x$ for all $x \neq 0 \in \mathbb{R}$. Hence $1 + x < e^x < 1 + xe^x$ for all $x \neq 0 \in \mathbb{R}$.

Ex.49(c) Show that $2\sin x + \tan x > 3x$ for all $x \in (0, \frac{\pi}{2})$.

Solution: Let $f(x) = 2\sin x + \tan x - 3x$ for all $x \in [0, \frac{\pi}{2})$. Then $f: [0, \frac{\pi}{2}) \to \mathbb{R}$ is twice differentiable and $f'(x) = 2\cos x + \sec^2 x - 3$ for all $x \in [0, \frac{\pi}{2})$, $f''(x) = 2\sin x (\sec^3 x - 1) > 0$ for all $x \in (0, \frac{\pi}{2})$. Hence f' is strictly increasing on $[0, \frac{\pi}{2})$ and so f'(x) > f'(0) = 0 for all $x \in (0, \frac{\pi}{2})$. Thus f is strictly increasing on $[0,\frac{\pi}{2})$ and so f(x) > f(0) = 0 for all $x \in (0,\frac{\pi}{2})$. Consequently $2\sin x + \tan x > 3x$ for all $x \in (0, \frac{\pi}{2})$.

Ex.49(d) Show that $(1+x)^{\alpha} \ge 1 + \alpha x$ for all $x \ge -1$ and for all $\alpha > 1$.

Solution: Let $\alpha > 1$ and let $f(x) = (1+x)^{\alpha} - (1+\alpha x)$ for all $x \ge -1$. Then $f: [-1, \infty) \to \mathbb{R}$ is differentiable and $f'(x) = \alpha[(1+x)^{\alpha-1}-1]$ for all $x \geq -1$. Clearly $f'(x) \leq 0$ for all $x \in [-1,0]$ and $f'(x) \geq 0$ for all $x \in [0, \infty)$. Hence f is decreasing on [-1, 0] and increasing on $[0, \infty)$. So $f(x) \ge f(0) = 0$ for $-1 \le x \le 0$ and also $f(x) \ge f(0) = 0$ for $x \ge 0$. Therefore $f(x) \ge 0$ for all $x \ge -1$, which proves the required inequality.

Ex.50(a) Determine all the differentiable functions $f:[0,1]\to\mathbb{R}$ satisfying the conditions f(0) = 0, f(1) = 1 and $|f'(x)| \le \frac{1}{2}$ for all $x \in [0, 1]$.

Solution: If possible, let $f:[0,1] \to \mathbb{R}$ be a differentiable function satisfying the given conditions. Then by the mean value theorem, there exists $c \in (0,1)$ such that $f'(c) = \frac{f(1)-f(0)}{1-0} = 1$, which contradicts the given condition that $|f'(x)| \leq \frac{1}{2}$ for all $x \in [0,1]$. Therefore no such differentiable function can exist.

Ex.50(b) Determine all the differentiable functions $f:[0,1]\to\mathbb{R}$ satisfying the conditions f(0) = 0, f(1) = 1 and $|f'(x)| \le 1$ for all $x \in [0, 1]$.

Solution: Let f be such a function and let g(x) = x - f(x) for all $x \in [0,1]$. Then $g:[0,1] \to \mathbb{R}$ is differentiable and $g'(x) = 1 - f'(x) \ge 0$ for all $x \in [0,1]$. Hence g is increasing on [0,1] and since q(0) = 0 = q(1), it follows that q is the constant function given by q(x) = 0 for all $x \in [0,1]$, i.e. f(x) = x for all $x \in [0,1]$. Also, if f(x) = x for all $x \in [0,1]$, then f satisfies all the given conditions. Therefore there is exactly one function f satisfying the given conditions and it is given by f(x) = x for all $x \in [0, 1]$.

Ex.51 Let $f:[0,2]\to\mathbb{R}$ be differentiable and f(0)=f(1)=0, f(2)=3. Show that there exist $a, b, c \in (0, 2)$ such that f'(a) = 0, f'(b) = 3 and f'(c) = 1.

Solution: By Rolle's theorem, there exists $a \in (0,1)$ such that f'(a) = 0. Again, by the mean value theorem, there exists $b \in (1,2)$ such that $f'(b) = \frac{f(2)-f(1)}{2-1} = 3$. Hence by the intermediate value property of derivatives, there exists $c \in (a,b)$ such that f'(c) = 1.

 $\begin{aligned} \mathbf{Ex.52(a)} & \text{ Evaluate the limit: } \lim_{x \to 0} (\frac{1}{\sin x} - \frac{1}{x}) \\ & \text{ Solution: We have } \lim_{x \to 0} (\frac{1}{\sin x} - \frac{1}{x}) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} \text{ (using L'Hôpital's rule)} \\ &= \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} \text{ (using L'Hôpital's rule again)} = 0. \end{aligned}$

Ex.52(b) Evaluate the limit: $\lim_{x\to 0} \frac{e^{-1/x^2}}{x} = 0$ Solution: We have $\lim_{x\to 0} \frac{e^{-1/x^2}}{x} = \lim_{x\to 0} \frac{1/x}{e^{1/x^2}} = \lim_{x\to 0} \frac{-1/x^2}{-\frac{2}{x^3}e^{1/x^2}}$ (applying L'Hôpital's rule) $= \lim_{x\to 0} \frac{1}{2}xe^{-\frac{1}{x^2}} = 0$

Ex.52(c) Evaluate the limit: $\lim_{x \to \infty} x(\log(1+\frac{x}{2}) - \log\frac{x}{2})$

 $Solution: \lim_{x \to \infty} x (\log(1 + \frac{x}{2}) - \log(\frac{x}{2})) = \lim_{x \to \infty} x \log\left(\frac{1 + \frac{x}{2}}{\frac{x}{2}}\right) = \lim_{x \to \infty} \frac{\log(1 + \frac{2}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{-\frac{2}{x^2}}{-\frac{1}{x^2}(1 + \frac{2}{x})} \text{ (using L'Hôpital's rule)} = \lim_{x \to \infty} \frac{2}{1 + \frac{2}{x}} = 2.$

Ex.52(d) Evaluate the limit: $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$ Solution: If $f(x)=(1+x)^{\frac{1}{x}}$ for all $x\in (-1,1)\setminus\{0\}$, then $f:(-1,1)\setminus\{0\}\to\mathbb{R}$ is differentiable and $f'(x)=(1+x)^{\frac{1}{x}}\left[\frac{x-(1+x)\log(1+x)}{x^2(1+x)}\right]$ for all $x\in (-1,1)\setminus\{0\}$. Hence $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}=\lim_{x\to 0} (1+x)^{\frac{1}{x}}\cdot\lim_{x\to 0} \frac{x-(1+x)\log(1+x)}{x^2(1+x)}$ (applying L'Hôpital's rule) $=e\lim_{x\to 0} \frac{-\log(1+x)}{x(3x+2)}$ (using $\lim_{x\to 0} (1+x)^{\frac{1}{x}}=e$ and applying L'Hôpital's rule in the second limit) $=-\frac{e}{2}$ (using $\lim_{x\to 0} \frac{1}{x}\log(1+x)=1$).

Ex.52(e) Evaluate the limit: $\lim_{x\to\infty} \frac{2x+\sin 2x+1}{(2x+\sin 2x)(\sin x+3)^2}$ Solution: Let $x_n=n\pi$ and $y_n=(4n+1)\frac{\pi}{2}$ for all $n\in\mathbb{N}$. Then $x_n\to\infty$, $y_n\to\infty$ and $\lim_{n\to\infty} \frac{2x_n+\sin 2x_n+1}{(2x_n+\sin 2x_n)(\sin x_n+3)^2}=\lim_{n\to\infty} (\frac{1}{9}+\frac{1}{18n\pi})=\frac{1}{9}, \lim_{n\to\infty} \frac{2y_n+\sin 2y_n+1}{(2y_n+\sin 2y_n)(\sin y_n+3)^2}=\lim_{n\to\infty} (\frac{1}{16}+\frac{1}{(4n+1)16\pi})=\frac{1}{16}.$ By the sequential criterion for existence of limits, it follows that $\lim_{x\to\infty} \frac{2x+\sin 2x+1}{(2x+\sin 2x)(\sin x+3)^2}$ does not exist.

Ex.53 If $f:(0,\infty)\to(0,\infty)$ is differentiable at $a\in(0,\infty)$, then evaluate $\lim_{x\to a}\left(\frac{f(x)}{f(a)}\right)^{\frac{1}{\log x-\log a}}$. Solution: Let $g(x) = (\frac{f(x)}{f(a)})^{\frac{1}{\log x - \log a}}$ for all $x \neq a \in (0, \infty)$. Then g(x) > 0 for all $x \neq a \in (0, \infty)$ and we have $\lim_{x \to a} \log g(x) = \lim_{x \to a} \frac{\log f(x) - \log f(a)}{\log x - \log a} = \frac{\frac{d}{dx} (\log f(x) - \log f(a))|_{x=a}}{\frac{d}{dx} (\log x - \log a)|_{x=a}}$ (applying L'Hôpital's rule) $=a\frac{f'(a)}{f(a)}$. By the continuity of the exponential function, it follows that $\lim_{x\to a}g(x)=e^{af'(a)/f(a)}$.

Ex.54 Let $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \in \mathbb{R}, \\ 1 & \text{if } x = 0. \end{cases}$

Examine whether $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable.

Solution: Clearly f is differentiable at each $x \neq 0$ $\in \mathbb{R}$ and $f'(x) = \frac{1}{x} \cos x - \frac{1}{x^2} \sin x$ for all $x(\neq 0) \in \mathbb{R}. \text{ Also, } \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0 \text{ (using L'Hôpital's rule)}.$ So f is differentiable at 0 and f'(0) = 0. Again, it is clear that $f' : \mathbb{R} \to \mathbb{R}$ is continuous at each $x(\neq 0) \in \mathbb{R}$. Further, since $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2} = \lim_{x \to 0} \frac{-x \sin x}{2x} = \lim_{x \to 0} (-\frac{1}{2} \sin x) = 0 = f'(0)$ (using L'Hôpital's rule), f' is continuous at 0. Hence f is continuously differentiable.

Ex.55(a) Using Taylor's theorem, show that $|\sqrt{1+x} - (1+\frac{x}{2} - \frac{x^2}{8})| \le \frac{1}{2}|x|^3$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$. Solution: Let $f(x) = \sqrt{1+x}$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$. Then f has derivatives of all orders in $(-\frac{1}{2}, \frac{1}{2})$ and we have $f'(x) = \frac{1}{2\sqrt{1+x}}$, $f''(x) = -\frac{1}{4(1+x)^{3/2}}$ and $f'''(x) = \frac{3}{8(1+x)^{5/2}}$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$. By Taylor's theorem, for each $x \in (-\frac{1}{2}, \frac{1}{2})$, there exists c between 0 and x such that $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(c) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} \cdot \frac{1}{(1+c)^{5/2}}$. This gives $|\sqrt{1+x} - (1+\frac{x}{2} - \frac{x^2}{8})| = \frac{x^3}{16} \cdot \frac{x^3}{1$ $\frac{|x|^3}{16} \cdot \frac{1}{(1+c)^{5/2}} \le \frac{2^{5/2}}{16} |x|^3 = \frac{\sqrt{2}}{4} |x|^3 \le \frac{1}{2} |x|^3.$

Ex.55(b) Using Taylor's theorem, show that $1 - \frac{x^2}{2!} + \frac{x^4}{4!} > \cos x > 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$ for all $x \in (0, \pi).$

Solution: Let $f(x) = \cos x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f'(x) = -\sin x, \ f''(x) = -\cos x, \ f'''(x) = \sin x, \ f^{(4)}(x) = \cos x, \ f^{(5)}(x) = -\sin x, \ f^{(6)}(x) = -\sin x$ $-\cos x \text{ for all } x \in \mathbb{R}. \text{ If } x \in (0,\pi), \text{ then by Taylor's theorem, there exist } c_1, c_2 \in (0,x)$ such that $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{(4)}(c_1) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}\cos c_1 \text{ and}$ $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \cdots + \frac{x^5}{5!}f^{(5)}(0) + \frac{x^6}{6!}f^{(6)}(c_2) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}\cos c_2. \text{ Since } \cos c_1 < 1 \text{ and } \cos c_2 < 1, \text{ it follows that } 1 - \frac{x^2}{2!} + \frac{x^4}{4!} > \cos x > 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}.$

Ex.55(c) Using Taylor's theorem, show that $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for all $x \in (0, \pi)$. Solution: Let $f(x) = \sin x$ for all $x \in \mathbb{R}$. Then $f: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f'(x) = (0, \pi)$. $\cos x, f''(x) = -\sin x, f'''(x) = -\cos x, f^{(4)}(x) = \sin x, f^{(5)}(x) = \cos x \text{ for all } x \in \mathbb{R}. \text{ If } x \in (0, \pi),$ then by Taylor's theorem, there exist $c_1, c_2 \in (0, x)$ such that $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^2}{2!}f''(0)$ $\frac{x^3}{3!}f'''(c_1) = x - \frac{x^3}{3!}\cos c_1 \text{ and } f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^5}{5!}f^{(5)}(c_2) = x - \frac{x^3}{3!} + \frac{x^5}{5!}\cos c_2.$ Since $\cos c_1 < 1$ and $\cos c_2 < 1$, it follows that $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$.

Ex.56 Find the radius of convergence of the power series $\sum_{n=0}^{\infty} n! x^n$.

Solution: If x = 0, then the given series becomes $0 + 0 + \cdots$, which is clearly convergent. Let $x(\neq 0) \in \mathbb{R}$ and let $a_n = n! x^n$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ and so there exists $n_0 \in \mathbb{N}$ such that $\left| \frac{a_{n+1}}{a_n} \right| > 2$ for all $n \geq n_0$. This gives $|a_n| > 2^{n-n_0} |a_{n_0}|$ for all $n \geq n_0$ and hence $\lim_{n \to \infty} a_n \neq 0$.

Consequently $\sum_{n=0}^{\infty} a_n$ is not convergent. Therefore the radius of convergence of the given power series is 0.

Ex.57 Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$. Solution: If x = 0, then the given series becomes $0 + 0 + \cdots$, which is clearly convergent. Let $x(\neq 0) \in \mathbb{R}$ and let $a_n = \frac{x^n}{n}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$. Hence by ratio test, $\sum_{n=1}^{\infty} a_n$ is convergent (absolutely) if |x| < 1, *i.e.* if $x \in (-1,1)$ and is not convergent if |x| > 1, *i.e.* if $x \in (-\infty,-1) \cup (1,\infty)$. If x = 1, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent. Again, if x = -1, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent by Leibniz test, since $(\frac{1}{n})$ is a decreasing sequence of positive real numbers and $\lim_{n\to\infty} \frac{1}{n} = 0$. Therefore the interval of convergence of the given power series is [-1,1).

Ex.58 Let $f:[a,b]\to\mathbb{R}$ be a bounded function. If there is a partition P of [a,b] such that L(f, P) = U(f, P), then show that f is a constant function. Solution: Let $P = \{x_0, x_1, ..., x_n\}$, where $a = x_0 < x_1 < \cdots < x_n = b$. Since L(f, P) = U(f, P), we get $\sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = 0$, where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$ $x \in [x_{i-1}, x_i]$ for i = 1, 2, ..., n. Since $M_i \ge m_i$ and $x_i - x_{i-1} > 0$ for i = 1, 2, ..., n, it follows that $M_i - m_i = 0$, i.e. $M_i = m_i$ for i = 1, 2, ..., n. This implies that f is constant on $[x_{i-1}, x_i]$ for each $i \in \{1, 2, ..., n\}$. Hence $f(x) = f(x_{i-1}) = f(x_i)$ for all $x \in [x_{i-1}, x_i]$ (i = 1, 2, ..., n). Consequently f(x) = f(a) for all $x \in [a, b]$. Therefore f is a constant function.

Ex.59(a) Evaluate the limit: $\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2 - k^2}$ Solution: Let $f(x) = \sqrt{1-x^2}$ for all $x \in [0,1]$. Considering the partition $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n} = 1\}$ of [0,1] for each $n \in \mathbb{N}$ (and taking $c_k = \frac{k}{n}$ for k = 1, ..., n), we find that

 $S(f,P_n)=\sum_{k=1}^n f(\frac{k}{n})(\frac{k}{n}-\frac{k-1}{n})=\frac{1}{n^2}\sum_{k=1}^n \sqrt{n^2-k^2}$. Since $f:[0,1]\to\mathbb{R}$ is continuous, f is Riemann integrable on [0,1] and hence

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2 - k^2} = \lim_{n \to \infty} S(f, P_n) = \int_0^1 f = \frac{1}{2} (x\sqrt{1 - x^2} + \sin^{-1} x)|_0^1 = \frac{\pi}{4}.$$

Ex.59(b) Evaluate the limit: $\lim_{n\to\infty} \frac{1}{n}[(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}$

Solution: For each $n \in \mathbb{N}$, let $a_n = \frac{1}{n}[(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}} = [(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}$ and let $f(x) = \log(1+x)$ for all $x \in [0,1]$. Considering the partition $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n} = 1\}$ of [0,1]

for each $n \in \mathbb{N}$ (and taking $c_k = \frac{k}{n}$ for k = 1, ..., n), we find that $S(f, P_n) = \sum_{k=1}^n f(\frac{k}{n})(\frac{k}{n} - \frac{k-1}{n}) = \sum_{k=1}^n f(\frac{k}{n})(\frac{k}{n} - \frac{k-1}{n})$ $\frac{1}{n}\sum_{k=1}^{n}\log(1+\frac{k}{n})$. Since $f:[0,1]\to\mathbb{R}$ is continuous, f is Riemann integrable on [0,1] and hence $\lim_{n\to\infty}(\log a_n) = \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n \log(1+\frac{k}{n}) = \lim_{n\to\infty} S(f, P_n) = \int_0^1 \log(1+x) \, dx = \log \frac{4}{e} \text{ (integrating by parts)}.$ By the continuity of the exponential function, it follows that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} e^{\log a_n} = e^{\log \frac{4}{e}} = \frac{4}{e}$, which is the required limit.

Ex.59(c) Evaluate the limit: $\lim_{x\to 0} \frac{x}{1-e^{x^2}} \int_{-\infty}^{x} e^{t^2} dt$.

Solution: Since the function $f:[-1,1] \to \mathbb{R}$, defined by $f(x)=e^{x^2}$ for all $x\in[-1,1]$, is continuous, by the first fundamental theorem of calculus, $\frac{d}{dx} \int_{0}^{x} e^{t^2} dt = e^{x^2}$ for all $x \in [-1,1]$.

Hence $\lim_{x\to 0} \frac{x}{1-e^{x^2}} \int_0^x e^{t^2} dt = \lim_{x\to 0} \frac{xe^{x^2} + \int_0^x e^{t^2} dt}{-2xe^{x^2}}$ (applying L'Hôpital's rule) = $\lim_{x\to 0} \frac{e^{x^2} + e^{x^2} + 2x^2e^{x^2}}{-2e^{x^2} - 4x^2e^{x^2}}$ (applying L'Hôpital's rule)

Ex.59(d) Evaluate the limit: $\lim_{n\to\infty} \left(\frac{1^8+3^8+\cdots+(2n-1)^8}{n^9}\right)$. Solution: Let $f(x)=2^8x^8$ for all $x\in[0,1]$. Considering the partition $P_n=\{0,\frac{1}{n},\frac{2}{n},...,\frac{n}{n}=1\}$ of [0,1] for each $n\in\mathbb{N}$ and observing that $c_i=\frac{2i-1}{2n}=\frac{1}{2}(\frac{i-1}{n}+\frac{i}{n})\in[\frac{i-1}{n},\frac{i}{n}]$ for i=1,...,n, we find that $S(f, P_n) = \sum_{i=1}^n f(\frac{2i-1}{2n})(\frac{i}{n} - \frac{i-1}{n}) = \frac{1}{n} \sum_{i=1}^n (\frac{2i-1}{n})^8$. Since $f: [0, 1] \to \mathbb{R}$ is continuous, f is Riemann integrable on [0,1] and hence $\lim_{n\to\infty} \left(\frac{1^8+3^8+\dots+(2n-1)^8}{n^9}\right) = \lim_{n\to\infty} S(f,P_n) = \int_0^1 f(x) \, dx = \frac{2^8x^9}{9}|_{x=0}^1 = \frac{256}{9}.$

Ex.60 If $f: [-1,1] \to \mathbb{R}$ is continuously differentiable, then evaluate $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f'(\frac{k}{3n})$.

Solution: Since f' is continuous on $[0,\frac{1}{3}]$, f' is Riemann integrable on $[0,\frac{1}{3}]$ and $\int_{1}^{3} f'(t) dt =$ $\lim_{\|P_n\|\to 0} S(f', P_n)$, where for each $n \in \mathbb{N}$, $P_n = \{0, \frac{1}{3n}, \frac{2}{3n}, ..., \frac{n}{3n} = \frac{1}{3}\}$ is a partition of $[0, \frac{1}{3}]$ and $S(f', P_n) = \sum_{k=1}^{n} (\frac{k}{3n} - \frac{k-1}{3n}) f'(\frac{k}{3n}) = \frac{1}{3n} \sum_{k=1}^{n} f'(\frac{k}{3n})$ (taking $c_k = \frac{k}{3n} \in [\frac{k-1}{3n}, \frac{k}{3n}]$ for k = 1, ..., n). So $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f'(\frac{k}{3n}) = 3 \int_{0}^{\frac{\pi}{3}} f'(t) dt = 3[f(\frac{\pi}{3}) - f(0)].$

Ex.61(a) Show that $\frac{\pi^2}{9} \le \int_{\pi}^{\frac{\pi}{2}} \frac{x}{\sin x} dx \le \frac{2\pi^2}{9}$.

Solution: Let $f(x) = \frac{x}{\sin x}$ for all $x \in (0, \frac{\pi}{2}]$. Then $f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}$ for all $x \in (0, \frac{\pi}{2}]$. If $g(x) = \sin x - x \cos x$ for all $x \in [0, \frac{\pi}{2}]$, then $g'(x) = x \sin x \ge 0$ for all $x \in [0, \frac{\pi}{2}]$ and so g is increasing on $[0, \frac{\pi}{2}]$. Hence for all $x \in [0, \frac{\pi}{2}]$, $g(x) \ge g(0) = 0$ and consequently $f'(x) \ge 0$ for all $x \in (0, \frac{\pi}{2}]$. Therefore f is increasing on $(0, \frac{\pi}{2}]$ and so $\frac{\pi}{3} = f(\frac{\pi}{6}) \le f(x) \le f(\frac{\pi}{2}) = \frac{\pi}{2}$. Since f is continuous on $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, f is Riemann integrable on $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ and therefore $\frac{\pi^2}{9} = \frac{\pi}{3}(\frac{\pi}{2} - \frac{\pi}{6}) \le \int_{\frac{\pi}{2}}^{2} \frac{x}{\sin x} dx \le 1$ $\frac{\pi}{2}(\frac{\pi}{2} - \frac{\pi}{6}) = \frac{\pi^2}{6} \le \frac{2\pi^2}{9}.$

Ex.61(b) Show that $\frac{\sqrt{3}}{8} \le \int_{\pi}^{\frac{3}{3}} \frac{\sin x}{x} dx \le \frac{\sqrt{2}}{6}$.

Solution: Let $f(x) = \frac{\sin x}{x}$ for all $x \in (0, \frac{\pi}{2}]$. Then $f'(x) = \frac{x \cos x - \sin x}{x^2}$ for all $x \in (0, \frac{\pi}{2}]$. If

 $g(x) = x\cos x - \sin x \text{ for all } x \in [0, \frac{\pi}{2}], \text{ then } g'(x) = -x\sin x \leq 0 \text{ for all } x \in [0, \frac{\pi}{2}] \text{ and so } g \text{ is decreasing on } [0, \frac{\pi}{2}]. \text{ Hence for all } x \in [0, \frac{\pi}{2}], g(x) \leq g(0) = 0 \text{ and consequently } f'(x) \leq 0 \text{ for all } x \in (0, \frac{\pi}{2}]. \text{ Therefore } f \text{ is decreasing on } (0, \frac{\pi}{2}] \text{ and so } \frac{3\sqrt{3}}{2\pi} = f(\frac{\pi}{3}) \leq f(x) \leq f(\frac{\pi}{4}) = \frac{2\sqrt{2}}{\pi}. \text{ Since } f \text{ is continuous on } [\frac{\pi}{4}, \frac{\pi}{3}], f \text{ is Riemann integrable on } [\frac{\pi}{4}, \frac{\pi}{3}] \text{ and therefore } \frac{\sqrt{3}}{8} = \frac{3\sqrt{3}}{2\pi}(\frac{\pi}{3} - \frac{\pi}{4}) \leq \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx \leq \frac{2\sqrt{2}}{\pi}(\frac{\pi}{3} - \frac{\pi}{4}) = \frac{\sqrt{2}}{6}.$

Ex.62 If $f:[a,b]\to\mathbb{R}$ is continuous, then show that there exists $c\in[a,b]$ such that $\int_a^b f(x)\,dx=(b-a)f(c)$.

(This result is called the mean value theorem of Riemann integrals.)

Solution: Since f is continuous on [a,b], f is Riemann integrable on [a,b] and so $m(b-a) \leq \int\limits_{a}^{b} f(x) \, dx \leq M(b-a)$, where $m = \inf\{f(x) : x \in [a,b]\}$ and $M = \sup\{f(x) : x \in [a,b]\}$. Since f is continuous on [a,b], there exist $\alpha,\beta \in [a,b]$ such that $f(\alpha) = m$ and $f(\beta) = M$. Hence $f(\alpha) \leq \frac{\int\limits_{a}^{b} f(x) \, dx}{b-a} \leq f(\beta)$. By the intermediate value property of continuous functions, there exists $f(\alpha) \leq \frac{\int\limits_{a}^{b} f(x) \, dx}{b-a} \leq f(\beta)$. By the intermediate value property of continuous functions, there exists $f(\alpha) \leq \frac{\int\limits_{a}^{b} f(x) \, dx}{b-a} \leq f(\beta)$.

Ex.63 Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be continuous and let $g(x) \ge 0$ for all $x \in [a,b]$. Show that there exists $c \in [a,b]$ such that $\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$.

(This result is called the generalized mean value theorem of Riemann integrals.)

Solution: Since f is continuous on [a,b], f is bounded on [a,b] and there exist $\alpha, \beta \in [a,b]$ such that $f(\alpha) = \inf\{f(x) : x \in [a,b]\}$ and $f(\beta) = \sup\{f(x) : x \in [a,b]\}$. We have $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in [a,b] \Rightarrow f(\alpha)g(x) \leq f(x)g(x) \leq f(\beta)g(x)$ for all $x \in [a,b]$ (since $g(x) \geq 0$ for all $x \in [a,b]$). Since f,g are continuous on [a,b], g,fg are Riemann integrable on [a,b] and hence we obtain $f(\alpha) \int_a^b g(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq f(\beta) \int_a^b g(x) \, dx$. If $\int_a^b g(x) \, dx = 0$, then $\int_a^b f(x)g(x) \, dx = 0$ and so we can choose any $c \in [a,b]$. If $\int_a^b g(x) \, dx \neq 0$, then $\int_a^b g(x) \, dx > 0$ and hence we get $f(\alpha) \leq \int_a^b f(x)g(x) \, dx \leq$

between α and β (both inclusive) such that $f(c) = \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx}$, i.e. $\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx$.

Ex.64 Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and let $g(x) = \int_0^x (x-t)f(t) dt$ for all $x \in \mathbb{R}$. Show that g''(x) = f(x) for all $x \in \mathbb{R}$.

Solution: We have $g(x) = x \int_0^x f(t) dt - \int_0^x t f(t) dt$ for all $x \in \mathbb{R}$. Since f is continuous, by the first fundamental theorem of calculus, $g: \mathbb{R} \to \mathbb{R}$ is differentiable and $g'(x) = \int_0^x f(t) dt + x f(x) - \int_0^x f(t) dt$

 $xf(x) = \int_0^x f(t) dt$ for all $x \in \mathbb{R}$. Again, since f is continuous, by the first fundamental theorem of calculus, $g' : \mathbb{R} \to \mathbb{R}$ is differentiable and g''(x) = f(x) for all $x \in \mathbb{R}$.

Ex.65 Let $f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{if } 1 < x \le 2, \end{cases}$ and let $F(x) = \int_{0}^{x} f(t) dt$ for all $x \in [0, 2]$.

Is $F:[0,2]\to\mathbb{R}$ differentiable? Justify

Solution: We have $F(x) = \begin{cases} x & \text{if } 0 \le x \le 1, \\ 1 & \text{if } 1 < x \le 2. \end{cases}$ Since $\lim_{\substack{x \to 1-\\ x-1}} \frac{F(x)-F(1)}{x-1} = 1 \ne 0 = \lim_{\substack{x \to 1+\\ x-1}} \frac{F(x)-F(1)}{x-1}$, F is not differentiable at 1 and hence $F: [0,2] \to \mathbb{R}$ is not differentiable.

Ex.66 If $f:[0,1]\to[0,1]$ is continuous, then show that the equation $2x-\int_0^x f(t)\,dt=1$ has exactly one root in [0, 1].

Solution: Let $g(x) = 2x - \int_{0}^{x} f(t) dt - 1$ for all $x \in [0,1]$. Since f is continuous, by the first fundamental theorem of calculus, $g:[0,1]\to\mathbb{R}$ is differentiable and g'(x)=2-f(x)>0 for all $x\in[0,1]$ (since $f(x) \leq 1$ for all $x \in [0,1]$). As a consequence of Rolle's theorem, the equation g(x) = 0 has at most one root in [0,1]. Again, g(0)=-1<0 and $g(1)=1-\int\limits_0^1 f(t)\,dt\geq 0$ (since $f(t)\leq 1$ for all $t \in [0,1] \Rightarrow \int_{0}^{1} f(t) dt \leq 1$. If g(1) = 0, then 1 is the only root of the given equation in [0,1]. Otherwise g(1) > 0 and hence by the intermediate value property of the continuous function g, the equation g(x) = 0 has at least one root in (0,1). Thus the given equation has exactly one root in [0, 1].

Ex.67(a) Examine whether the improper integral $\int_{0}^{\infty} e^{-t^2} dt$ is convergent.

Solution: Since $\int_{0}^{1} e^{-t^2} dt$ exists (in \mathbb{R}) as a Riemann integral, $\int_{0}^{\infty} e^{-t^2} dt$ converges iff $\int_{1}^{\infty} e^{-t^2} dt$ converges iff $\int_{0}^{\infty} e^{-t^2} dt$ verges. Now $0 < e^{-t^2} \le e^{-t}$ for all $t \ge 1$. Also, since $\lim_{x \to \infty} \int_{1}^{x} e^{-t} dt = \lim_{x \to \infty} (e^{-1} - e^{-x}) = e^{-1}$, $\int_{1}^{\infty} e^{-t} dt$ converges. Hence by the comparison test, $\int_{1}^{\infty} e^{-t^2} dt$ converges. By our remark at the beginning, $\int e^{-t^2} dt$ is convergent.

Ex.67(b) Examine whether the improper integral $\int_{0}^{\infty} te^{-t^2} dt$ is convergent.

Solution: Since $\lim_{x \to \infty} \int_{0}^{x} te^{-t^2} dt = -\frac{1}{2} \lim_{x \to \infty} e^{-t^2} \Big|_{0}^{x} = \frac{1}{2} \lim_{x \to \infty} (1 - e^{-x^2}) = \frac{1}{2}, \int_{0}^{\infty} te^{-t^2} dt$ is convergent. Again, since $\lim_{x \to -\infty} \int_{x}^{0} t e^{-t^2} dt = -\frac{1}{2} \lim_{x \to -\infty} e^{-t^2} \Big|_{x}^{0} = \frac{1}{2} \lim_{x \to -\infty} (e^{-x^2} - 1) = -\frac{1}{2}, \int_{-\infty}^{0} t e^{-t^2} dt$ is convergent. Therefore the given integral is convergent.

Ex.67(c) Examine whether the improper integral $\int_{0}^{1} \frac{dt}{\sqrt{t-t^2}}$ is convergent.

Solution: The given integral is convergent iff both $\int_{0}^{\frac{1}{2}} \frac{dt}{\sqrt{t-t^2}}$ and $\int_{1}^{1} \frac{dt}{\sqrt{t-t^2}}$ are convergent. Let $f(t) = \frac{1}{\sqrt{t(1-t)}}, \ g(t) = \frac{1}{\sqrt{t}} \text{ and } h(t) = \frac{1}{\sqrt{1-t}} \text{ for all } t \in (0,1).$ Then $\lim_{t \to 0+} \frac{f(t)}{g(t)} = \lim_{t \to 0+} \frac{1}{\sqrt{1-t}} = 1$ and $\lim_{t\to 1-}\frac{f(t)}{h(t)}=\lim_{t\to 1-}\frac{1}{\sqrt{t}}=1$. Since $\int_{0}^{\frac{1}{2}}g(t)\,dt$ and $\int_{\frac{1}{2}}^{1}h(t)\,dt$ are convergent, by the limit comparison test, $\int_{0}^{\frac{\pi}{2}} f(t) dt$ and $\int_{1}^{1} f(t) dt$ are convergent. Therefore the given integral is convergent.

Ex.68 Determine all real values of p for which the integral $\int_{1}^{\infty} t^{p}e^{-t} dt$ converges.

Solution: Let $p \in \mathbb{R}$ and let $f(t) = t^p e^{-t}$, $g(t) = \frac{1}{t^{[p]+2-p}}$ for all $t \geq 1$. Then $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{t^{[p]+2}}{e^t} = 0$ (using L'Hôpital's rule [p] + 2 times). Since [p] + 2 - p > 1, $\int_{1}^{\infty} g(t) \, dt$ converges and hence by the limit comparison test, $\int_{1}^{\infty} f(t) \, dt$ converges. Thus the given integral converges for all $p \in \mathbb{R}$.

Alternative solution: Let $p \in \mathbb{R}$ and let $f(t) = t^p e^{-t}$, $g(t) = \frac{1}{t^2}$ for all $t \geq 1$. Then $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{t^{P-2}}{e^t} = 0$ (for p > 2, we use L'Hôpital's rule n times, where n is the least positive integer $\geq p-2$). Since $\int_{1}^{\infty} g(t) \, dt$ converges, by the limit comparison test, $\int_{1}^{\infty} f(t) \, dt$ converges. Thus the given integral converges for all $p \in \mathbb{R}$.

Ex.69 Find the area of the region enclosed by the curve $y = \sqrt{|x+1|}$ and the line 5y = x+7. Solution: Solving the equation $\frac{1}{5}(x+7) = \sqrt{x+1}$ for $x \ge -1$ and the equation $\frac{1}{5}(x+7) = \sqrt{-(x+1)}$ for x < -1, the x-coordinates of the points of intersection of the curve $y = \sqrt{|x+1|}$ and the line 5y = x+7 are found to be -2, 3 and 8. Hence the required area is $\int_{-1}^{1} (\frac{x+7}{5} - \sqrt{-(x+1)}) \, dx + \int_{1}^{3} (\frac{x+7}{5} - \sqrt{x+1}) \, dx + \int_{2}^{8} (\sqrt{x+1} - \frac{x+7}{5}) \, dx = \frac{5}{3}.$

Ex.70 The region bounded by the parabola $y = x^2 + 1$ and the line y = x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution: Solving $y = x^2 + 1$ and y = x + 3, we obtain the x-coordinates of the points of intersection of the given parabola and the line as -1 and 2. Hence the required volume is

$$\int_{-1}^{2} \pi((x+3)^2 - (x^2+1)^2) \, dx = \frac{117}{5}\pi.$$

Ex.71 The region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ (where a > 0) is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution: Solving $y^2 = 4ax$ and $x^2 = 4ay$, we obtain the x-coordinates of the points of intersections of the two parabolas as 0 and 4a. Hence the required volume is $\int_{0}^{4a} \pi (4ax - \frac{x^4}{16a^2}) dx = \frac{96}{5}\pi a^3.$

Ex.72 Find the area of the region that is inside the circle $r = 2\cos\theta$ and outside the cardioid $r = 2(1-\cos\theta)$.

Solution: The given circle and the cardioid meet at three points corresponding to $\theta = 0$, $\theta = \frac{\pi}{3}$ and $\theta = -\frac{\pi}{3}$. By symmetry, the required area is $2\left(\frac{1}{2}\int_{0}^{\pi/3}4\cos^{2}\theta\,d\theta - \frac{1}{2}\int_{0}^{\pi/3}4(1-\cos\theta)^{2}\,d\theta\right) = 4(\sqrt{3} - \frac{\pi}{3})$.

Ex.73 Find the area of the region which is inside both the cardioids $r = a(1 + \cos \theta)$ and $r = a(1 - \cos \theta)$, where a > 0.

Solution: The cardioids meet at three points corresponding to $\theta = 0$, $\theta = \frac{\pi}{2}$ and $\theta = -\frac{\pi}{2}$. By symmetry, the required area is $4\int_{0}^{\pi/2} \frac{1}{2}a^{2}(1-\cos\theta)^{2} d\theta = \frac{1}{2}a^{2}(3\pi - 8)$.

Ex.74 Consider the funnel formed by revolving the curve $y = \frac{1}{x}$ about the x-axis, between x = 1 and x = a, where a > 1. If V_a and S_a denote respectively the volume and the surface area of the funnel, then show that $\lim_{a \to \infty} V_a = \pi$ and $\lim_{a \to \infty} S_a = \infty$.

Solution: For each a>1, we have $V_a=\int\limits_1^a\frac{\pi}{x^2}\,dx=\pi(1-\frac{1}{a})$ and $S_a=\int\limits_1^a\frac{2\pi}{x}\sqrt{1+\frac{1}{x^2}}\,dx\geq\int\limits_1^a\frac{2\pi}{x}\,dx=2\pi\log a$. Hence $\lim\limits_{a\to\infty}V_a=\pi$ and since $\lim\limits_{a\to\infty}\log a=\infty$, we get $\lim\limits_{a\to\infty}S_a=\infty$.