1. Analizar el dominio y la continuidad en los siguientes ejercicios:

$$z = \frac{4 - xy}{x^2 + 3y^2}$$

$$z = \frac{xy \cos y}{3x^2 + y^2}$$

$$w = \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$$

15-38 Calcule las primeras derivadas parciales de la función.

15.
$$f(x, y) = y^5 - 3xy$$
 16. $f(x, y) = x^4y^3 + 8x^2y$

16.
$$f(x, y) = x^4y^3 + 8x^2y$$

17.
$$f(x, t) = e^{-t} \cos \pi x$$
 18. $f(x, t) = \sqrt{x} \ln t$

18.
$$f(x, t) = \sqrt{x} \ln t$$

19.
$$z = (2x + 3y)^{10}$$

19.
$$z = (2x + 3y)^{10}$$
 20. $z = \tan xy$

21.
$$f(x, y) = \frac{x - y}{x + y}$$
 22. $f(x, y) = x^y$ **23.** $w = \sec \alpha \cos \beta$ **24.** $w = e^y/(u + v^2)$ **25.** $f(r, s) = r \ln(r^2 + s^2)$ **26.** $f(x, t) = \arctan(x\sqrt{t})$

22.
$$f(x, y) = x^{y}$$

23.
$$w = \operatorname{sen} \alpha \cos \beta$$

24.
$$w = e^v/(u + v^2)$$

25.
$$f(r, s) = r \ln(r^2 + s^2)$$

26
$$f(x, t) = \arctan(x\sqrt{t})$$

27.
$$u = te^{w/t}$$

27.
$$u = te^{w/t}$$
 28. $f(x, y) = \int_{y}^{x} \cos(t^{2}) dt$ **29.** $f(x, y, z) = xz - 5x^{2}y^{3}z^{4}$ **30.** $f(x, y, z) = x \sin(y - z)$ **31.** $w = \ln(x + 2y + 3z)$ **32.** $w = ze^{xyz}$

29.
$$f(x, y, z) = xz - 5x^2y^3z^4$$

30.
$$f(x, y, z) = x \operatorname{sen}(y - z)$$

$$\mathbf{31.} \ w = \ln(x + 2y + 3z)$$

32.
$$w = ze^{xyz}$$

33.
$$u = xy \operatorname{sen}^{-1}(yz)$$
 34. $u = x^{y/z}$

34.
$$u = x^{y/z}$$

35.
$$f(x, y, z, t) = xyz^2 \tan(yt)$$

35.
$$f(x, y, z, t) = xyz^2 \tan(yt)$$
 36. $f(x, y, z, t) = \frac{xy^2}{t + 2z}$

37.
$$u = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

38.
$$u = \text{sen}(x_1 + 2x_2 + \cdots + nx_n)$$

39-42 Determine las derivadas parciales indicadas.

39
$$f(x, y) = \ln(x + \sqrt{x^2 + y^2}); \quad f_x(3, 4)$$

40.
$$f(x, y) = \arctan(y/x)$$
; $f_x(2, 3)$

41.
$$f(x, y, z) = \frac{y}{x + y + z}$$
; $f_y(2, 1, -1)$

57–60 Compruebe que la conclusión del teorema de Clairaut se cumple, es decir, $u_{xy} = u_{yx}$.

58.
$$u = x^4y^2 - 2xy^5$$

59.
$$u = \ln \sqrt{x^2 + y^2}$$

60.
$$u = xye^y$$

61-68 Encuentre la derivada parcial indicada.

61.
$$f(x, y) = 3xy^4 + x^3y^2$$
; f_{xxy} , f_{yyy}

62.
$$f(x, t) = x^2 e^{-ct}$$
; f_{ttt} , f_{txx}

63.
$$f(x, y, z) = \cos(4x + 3y + 2z)$$
; f_{xyz} , f_{yzz}

64
$$f(r, s, t) = r \ln(rs^2t^3); f_{rss}, f_{rst}$$

65.
$$u = e^{r\theta} \operatorname{sen} \theta; \quad \frac{\partial^3 u}{\partial r^2 \partial \theta}$$

$$66 \ z = u\sqrt{v - w}; \quad \frac{\partial^3 z}{\partial u \, \partial v \, \partial w}$$

1-6 Aplique la regla de la cadena para hallar dz/dt o dw/dt.

1.
$$z = x^2 + y^2 + xy$$
, $x = \text{sen } t$, $y = e^t$

$$\sum z = \cos(x + 4y), \ x = 5t^4, \ y = 1/t$$

$$3 z = \sqrt{1 + x^2 + y^2}, \ x = \ln t, \ y = \cos t$$

4.
$$z = \tan^{-1}(y/x)$$
, $x = e^t$, $y = 1 - e^{-t}$

5.
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

6
$$w = \ln \sqrt{x^2 + y^2 + z^2}$$
, $x = \sin t$, $y = \cos t$, $z = \tan t$

7–12 Mediante la regla de la cadena encuentre $\partial z/\partial s$ y $\partial z/\partial t$.

7.
$$z = x^2 y^3$$
, $x = s \cos t$, $y = s \sin t$

8
$$z = \arcsin(x - y), \ x = s^2 + t^2, \ y = 1 - 2st$$

9.
$$z = \sin \theta \cos \phi$$
, $\theta = st^2$, $\phi = s^2t$

$$z = e^{x+2y}, x = s/t, y = t/s$$

11.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

21-26 Use la regla de la cadena para calcular las derivadas parciales que se piden.

2.
$$z = x^2 + xy^3$$
, $x = uv^2 + w^3$, $y = u + ve^w$;

$$\frac{\partial z}{\partial u},\,\frac{\partial z}{\partial v},\,\frac{\partial z}{\partial w} \ \, \text{cuando}\,\, u=2,\,v=1,\,w=0$$

22
$$u = \sqrt{r^2 + s^2}$$
, $r = y + x \cos t$, $s = x + y \sin t$;

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial t}$ cuando $x = 1$, $y = 2$, $t = 0$

23
$$R = \ln(u^2 + v^2 + w^2),$$

$$u = x + 2y$$
, $v = 2x - y$, $w = 2xy$;

$$\frac{\partial R}{\partial x}$$
, $\frac{\partial R}{\partial y}$ cuando $x = y = 1$

24.
$$M = xe^{y-z^2}$$
, $x = 2uv$, $y = u - v$, $z = u + v$;

$$\frac{\partial M}{\partial u}$$
, $\frac{\partial M}{\partial v}$ cuando $u = 3$, $v = -1$

25.
$$u = x^2 + yz$$
, $x = pr \cos \theta$, $y = pr \sin \theta$, $z = p + r$;

$$\frac{\partial u}{\partial p},\,\frac{\partial u}{\partial r},\,\frac{\partial u}{\partial \theta}\quad\text{cuando}\;p=2,\,r=3,\,\theta=0$$

26.
$$Y = w \tan^{-1}(uv)$$
, $u = r + s$, $v = s + t$, $w = t + r$;

$$\frac{\partial Y}{\partial r}$$
, $\frac{\partial Y}{\partial s}$, $\frac{\partial Y}{\partial t}$ cuando $r = 1$, $s = 0$, $t = 1$

27–30 Aplique la ecuación 6 para encontrar dy/dx.

27.
$$\sqrt{xy} = 1 + x^2y$$

27.
$$\sqrt{xy} = 1 + x^2y$$
 28. $y^5 + x^2y^3 = 1 + ye^{x^2}$

29.
$$\cos(x - y) = xe^y$$

30.
$$\operatorname{sen} x + \cos y = \operatorname{sen} x \cos y$$

31–34 Con las ecuaciones 7 halle $\partial z/\partial x$ y $\partial z/\partial y$.

31.
$$x^2 + y^2 + z^2 = 3xyz$$

$$32 xyz = \cos(x + y + z)$$

$$33 \quad x - z = \arctan(yz)$$

$$34. yz = \ln(x+z)$$

39-44 Determine las ecuaciones de (a) el plano tangente y (b) de la recta normal a la superficie dada en el punto especificado.

39.
$$2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10$$
, (3, 3, 5)

40.
$$y = x^2 - z^2$$
, (4, 7, 3)

$$41 x^2 - 2y^2 + z^2 + yz = 2, (2, 1, -1)$$

42.
$$x - z = 4 \arctan(yz)$$
, $(1 + \pi, 1, 1)$

43.
$$z + 1 = xe^y \cos z$$
, $(1, 0, 0)$

44.
$$yz = \ln(x + z)$$
, $(0, 0, 1)$

45-46 Mediante una computadora grafique la superficie, el plano tangente y la recta normal en la misma pantalla. Escoja cuidadosamente el dominio para evitar planos verticales extraños. Elija la perspectiva que le permita visualizar bien los tres objetos.

45.
$$xy + yz + zx = 3$$
, $(1, 1, 1)$