AM-SA3

Angewandte Mathematik - JG3 S2 SA1

Differenzieren

Summerregel $f(x) \pm g(x) \rightarrow f'(x) \pm g'(x)$

Faktorregel $a * f(x) \rightarrow a * f'(x)$

Polynomregel für n > 0 $x^n \to n * x^{n-1}$

Exponenten $e^x \rightarrow e^x$

 $a^x \rightarrow a^x * \ln(a)$

Logarithmen $ln(x) \to \frac{1}{x}$

Winkelfunktionen $\sin(x) \to \cos(x) \to -\sin(x)$

 $\tan(x) \to \frac{1}{\cos(x)^2}$

Produktregel $f(x) * g(x) \rightarrow f'(x) * g(x) + f(x) * g'(x)$

Quotientenregel $\frac{f(x)}{g(x)} \to \frac{\left(f'(x) * g(x) - f(x) * g'(x)\right)}{g(x)^2}$

Kettenregel $g(x)^f \to ([g(x)]^f)' * (g(x))'$

Spezialregeln

Gebrochen Rational $\frac{1}{f(x)} \to \frac{f'(x)}{f(x)^2}$

Wurzel $\sqrt[n]{f(x)} \to \frac{f'(x)}{n} * \sqrt[n]{f(x)}$

Logarithmus Naturalis $\ln(f(x)) \to \frac{f'(x)}{f(x)}$

Kurvendiskussion

Stammfunktion

- **⇒** Definitionsmenge
 - o Stetigkeit
 - o Polstellen
- **⇒** Symmetrie

$$\circ \quad f(x) = f(-x)$$

symmetrisch

$$\circ \quad f(-x) = -f(x)$$

antisymmetrisch

- ⇒ Asymptotik
 - Grenzwerte

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

- Asymptoten
 - Polstellen

vertikale Asymptoten

⇒ Nullstellen

Erste Ableitung

⇒ Extremwerte

$$\circ \quad f'(x) = 0$$

⇒ Monotonie

$$\circ \quad a = \arctan(f'(x))$$

Steigungswinkel

Zweite Ableitung

⇒ Extremwerte

o
$$f''(x) > 0 \rightarrow Minimum$$

o
$$f''(x) < 0 \rightarrow Maximum$$

$$\circ$$
 $f''(x) = 0 \rightarrow Sattelpunkt$

wenn f'(x) = 0

⇒ Krümmung

$$\circ$$
 $f''(x) > 0 \rightarrow Konvex$

$$\circ$$
 $f''(x) < 0 \rightarrow Konkav$

o
$$K(x) = f''(x) / \sqrt{\left(1 + (f'(x))^2\right)^3}$$
 $p(x) = |1/K(x)|$

- **⇒** Wendepunkte
 - o $f''(x) = 0 \rightarrow Kr \ddot{u} m m u n g \ddot{a} n d e r u n g$

Wirtschaftsmathematik

Abhängig von einer Stückzahl x

$$k(x) = x^3 - 3 * x^2 + 6 * x + 9$$

Kostenänderung

$$\frac{\Delta k}{\Delta x}$$
 \rightarrow Mittlere Kostenänderung

$$k'(x) = \frac{dk}{dx} \rightarrow$$
 Momentane Kostenänderung

$$f'(x) < 0 \rightarrow$$
 Degressive Kosten

$$f'(x) > 0 \rightarrow$$
 Progressive Kosten

$$f''(x) = 0 \rightarrow Kostenkehre$$

Stückkostenfunktion

$$s(x) = \frac{k(x)}{x}$$

Preisfunktion

$$p(x) = k * x + d$$

Erlösfunktion

$$e(x) = p(x) * x$$

Gewinnfunktion

$$g(x) = e(x) - k(x)$$

$$g(x) = 0 \rightarrow \text{Break Even oder Gewinnschwelle}$$

Cournot'scher Punkt

$$x_{max} = g(x) \mid g'(x) = 0 \&\& G''(x) < 0$$