Guia 1. Fundamentos

- 1. Aplicando la Ley de Kirchhoff de tensiones (LKV) determinar la caída de tensión en la resistencia R_2 del circuito de la fig. 1.
 - Encontrar una expresión de v_2 (y \tilde{v}_2) en función de los demás parámetros del circuito.
 - \bullet Calcular el valor de la tensión en voltios haciendo $v=12V,\,R_1=100\Omega$ y $R_2=200\Omega.$

Calcular también la potencia disipada en la resistencia R_2 .

Figura 1: Cálculo de la tensión en un divisor resistivo.

- 2. Aplicando la Ley de Kirchhoff de corrientes (LKI) determinar la corriente por la resistencia R_2 del circuito de la fig. 2.
 - Encontrar una expresión de i_2 (e \tilde{i}_2) en función de los demás parámetros del circuito
 - Calcular el valor de corriente en amperes haciendo $i=1,2A,\,R_1=10\Omega$ y $R_2=2\Omega.$

Calcular también la potencia disipada en la resistencia R_2 .

Figura 2: Cálculo de la corriente en un divisor resistivo.

- 3. Aplicar la LKV según las distintas referencias que se muestran en la fig. 3. Calcular para cada caso el valor de la tensión v_{R_2} .
- 4. Aplicar la LKV y calcular la tensión v_{R_3} según la referencia que se muestra en el circuito de la fig. 4.
- 5. Aplicando LKI calcular la corriente i_3 según la referencia que se indica en el circuito de la fig. 5.

Figura 3: Plantear LKV y encontrar v_{R_2} .

Figura 4: Plantear LKV y encontrar $v_{R_3}(t)$.

Figura 5: Planteando LKI encontrar la corriente i_3 .

Figura 6: Corriente circulante por el circuito RL serie.

- 6. Por un circuito serie RL con $R=5\Omega$ y L=0,004H circula una corriente como la de la figura 6. Calcular y graficar $v_R(t)$ y $v_L(t)$.
- 7. La tensión representada por la fig. 7 se aplica a un circuito RL paralelo de $R=4\Omega$ y L=10mH. Calcular y graficar la corriente total i(t).
- 8. Una rama RLC, con $R = 2\Omega$, L = 2mH y $C = 500\mu F$, es atravesada por una corriente cuya forma se representa en la fig. 8. Calcular y graficar las tensiones de cada elemento.
- 9. La caída de tensión en el elemento inductivo del circuito serie de la fig. 9a es

Figura 7: Tensión aplicada al circuito RL paralelo.

Figura 8: Corriente de rama.

como se muestra en el gráfico 9b. Siendo la i(0) = -5A graficar por lo menos un ciclo de la corriente total i(t), de la caída en la resistencia $v_R(t)$ y de la tensión del generador $v_T(t)$.

Figura 9

10. Por una rama RC circula una corriente como la de la figura 10. Graficar las tensiones de cada elemento considerando que el capacitor se encuentra inicialmente descargado.

Figura 10: Corriente variable circulante por una rama RC.

Soluciones

Ejercicio 1 Planteo

Aplicando la Ley de Kirchhoff de tensiones (LKV) al circuito de la fig. 11

Figura 11: Referencias para la resolución del circuito de la fig. 1.

$$v(t) - v_1(t) - v_2(t) = 0 (1)$$

y las relaciones entre la corriente y las caídas de tensiones en las resistencias según las referencias dadas, son

$$v_1(t) = R_1 i(t) \tag{2}$$

$$v_2(t) = R_2 i(t) \tag{3}$$

Reemplazando $v_1(t)$ de (2) en (1) se tiene

$$v(t) - R_1 i(t) - v_2(t) = 0 (4)$$

y luego i(t) de (3) en (4)

$$v(t) - \frac{v_2(t)}{R_2}R_1 - v_2(t) = 0$$

Operando

$$v(t) - v_2(t) \left(1 + \frac{R_1}{R_2} \right) = 0$$

Luego, la caída de tensión de la resistencia R_2 queda

$$v_2(t) = v(t) \frac{R_2}{R_1 + R_2} \tag{5}$$

Para determinar la caída de tensión $\tilde{v}_2(t)$ se sigue un procedimiento similar. Aplicando LKV

$$v(t) - v_1(t) + \tilde{v}_2(t) = 0$$

las relaciones tensión-corriente son

$$v_1(t) = R_1 i(t), \qquad \tilde{v}_2(t) = -R_2 i(t)$$

Luego, realizando los mismo pasos anteriores para el nuevo planteo, queda

$$v(t) - R_1 i(t) + \tilde{v}_2(t) = 0$$

$$v(t) - \frac{\tilde{v}_2(t)}{R_2} R_1 + \tilde{v}_2(t) = 0$$

$$v(t) + \tilde{v}_2(t) \left(1 + \frac{R_1}{R_2} \right) = 0$$

$$v(t) = -\tilde{v}_2(t) \left(\frac{R_1 + R_2}{R_2} \right)$$

Por lo que la tensión en la resistencia $\tilde{v}_2(t)$ que da

$$\tilde{v}_2(t) = -v(t) \frac{R_2}{R_1 + R_2} \tag{6}$$

Para el cálculo de la potencia se tiene

$$P_2 = \frac{v_2(t)^2}{R_2} = \frac{\tilde{v}_2(t)^2}{R_2} \tag{7}$$

Resolución numérica

Dando valores en (5) se tiene

$$v_2(t) = 12V \frac{200\Omega}{100\Omega + 200\Omega} = 12V \frac{200}{300} = 8V$$

y en (6)

$$\tilde{v}_2(t) = -12V \frac{200\Omega}{100\Omega + 200\Omega} = -12V \frac{200}{300} = -8V$$

El cálculo de la potencia queda

$$P_2 = \frac{(8V)^2}{200\Omega} = 0.32W$$

Ejercicio 4 Solución

$$v_{R_3} = \frac{5}{3}V$$

Ejercicio 5 Solución

$$i_3 = 0.3A$$

Ejercicio 6 Planteo

La corriente que atraviesa el circuito RL representada gráficamente en la fig. 6, se puede expresar matemáticamente mediante una función definida por tramos

$$i(t) = \begin{cases} \frac{5A}{2 \cdot 10^{-3}s}t & 0 \cdot 10^{-3} < t < 2 \cdot 10^{-3}[s] \\ 5A & 2 \cdot 10^{-3} < t < 4 \cdot 10^{-3}[s] \\ -\frac{5A}{2 \cdot 10^{-3}s}t & 4 \cdot 10^{-3} < t < 6 \cdot 10^{-3}[s] \\ -5A & 6 \cdot 10^{-3} < t < 8 \cdot 10^{-3}[s] \end{cases}$$
(8)

Suponiendo que la corriente ingresa por el terminal de mayor potencial de la caída de tensión tanto en la resistencia como en el inductor, la relación tensión-corriente es

$$v_R(t) = Ri(t), \qquad v_L(t) = L\frac{di(t)}{dt}$$
 (9)

Resolución numérica

Para obtener $v_R(t)$ y $v_L(t)$ se aplican las relaciones dadas en (9) para cada tramo de la señal dada en (8).

Tramo 1. Para $0 < t < 2 \cdot 10^{-3} [s]$, con i(t) = (5/0,002)t = 2500t[A]

$$v_R(t) = 5 \cdot 2500t = 12500t[V]$$

 $v_L(t) = 0.004 \frac{d(2500t)}{dt} = 2500 \cdot 0.004 = 10V$

Tramo 2. Para $2 \cdot 10^{-3} < t < 4 \cdot 10^{-3} [s]$, con i(t) = 5A

$$v_R(t) = 5 \cdot 5 = 25V$$
$$v_L(t) = \frac{d}{dt}5 = 0V$$

Tramo 3. Para $4 \cdot 10^{-3} < t < 6 \cdot 10^{-3}[s]$, con i(t) = -(5/0,002)t + 10 = -2500t + 10[A]

$$v_R(t) = 5(-2500t + 10) = -12500t + 50[V]$$

 $v_L(t) = 0.004 \frac{d}{dt}(-2500t + 10) = -2500 \cdot 0.004 = -10V$

Tramo 4. Para $6 \cdot 10^{-3} < t < 8 \cdot 10^{-3} [s]$, con i(t) = -5A

$$v_R(t) = 5 \cdot (-5) = -25V$$

 $v_L(t) = 0.005H \frac{d}{dt} 5 = 0V$

El resultado de la caída de tensión en la resistencia $v_R(t)$ y en el inductor $v_L(t)$, junto a la corriente i(t) se muestra en la fig. 12.

Ejercicio 8 Solución

La caída de tensión en la resistencia, el inductor y en el capacitor considerando que la corriente entra por el terminal de mayor potencial se muestra en la tabla 1.

Tramo $[s]$	$v_R(t)[V]$	$v_L(t)[V]$	$v_C(t)[V]$
$0 \cdot 10^{-3} < t < 1 \cdot 10^{-3}$	20000t	20	$10 \times 10^6 t^2$
$1 \cdot 10^{-3} < t < 2 \cdot 10^{-3}$	20	0	20000t - 10
$2 \cdot 10^{-3} < t < 4 \cdot 10^{-3}$	-20000t + 60	-20	$-10 \times 10^6 t^2 + 60 \times 10^3 t - 50$
$4 \cdot 10^{-3} < t < 5 \cdot 10^{-3}$	-20	0	-20000t + 110
$5 \cdot 10^{-3} < t < 6 \cdot 10^{-3}$	20000t - 120	20	$10^6 t^2 - 120 \times 10^3 t + 360$

Tabla 1: Caídas de tensión en cada elemento.

Ejercicio 9 Planteo

La caída de tensión en el inductor de la fig. 9b se puede expresar, para un período, como una señal por tramos dada por

$$v_L(t) = \begin{cases} 100V & 0 < t < 1[s] \\ -100V & 1 < t < 2[s] \end{cases}$$
 (10)

La corriente del circuito serie se puede obtener a partir de la relación tensióncorriente del inductor como

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v_L(\tau) d\tau + i(t_0)$$
 (11)

Figura 12: Gráfica de la corriente, caída de tensión en la resistencia y el inductor del ejercicio 6.

Luego, la caída de tensión de la resistencia se obtiene de la relación tensión-corriente de la misma, o sea

$$v_R(t) = Ri(t) \tag{12}$$

asumiendo que la corriente ingresa por el terminal de mayor potencial. Finalmente la tensión aplicada al circuito se obtiene de la $\rm LKV$

$$v_T(t) = v_R(t) + v_L(t) \tag{13}$$

Resolución numérica

Tramo 1. Para 0 < t < 1[s], con $v_L(t) = 100V$

$$i(t) = \frac{1}{L} \int_0^t v_L(\tau) d\tau + i(0) = \frac{1}{10} \int_0^t 100 d\tau - 5 = 10t - 5[A]$$

$$v_R(t) = Ri(t) = 5(10t - 5) = 50t - 25[V]$$

$$v_T(t) = 50t - 25 + 100 = 50t + 75[V]$$

Al final del tramo para t = 1s la corriente es

$$i(t = 1s) = i(1) = 5A$$

Tramo 2. Para 1 < t < 2[s], con $v_L(t) = -100V$

$$i(t) = \frac{1}{L} \int_{1}^{t} v_{L}(\tau) d\tau + i(1) = \frac{1}{10} \int_{1}^{t} (-100) d\tau + 5 = -10t + 15[A]$$

$$v_{R}(t) = Ri(t) = 5(-10t + 15) = -50t + 75[V]$$

$$v_{T}(t) = -50t + 75 - 100 = -50t - 25[V]$$

Se puede ver que i(2) = -5A, que se corresponde con el inicio del siguiente ciclo.

Las gráficas del resultado se muestra en la fig. 13.

Figura 13: Gráfica de la corriente, caída de tensión en la resistencia y tensión aplicada al circuito.