MATH FOR ECON I

Problem Set 5*

Exercise 1

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- (a) Show that one and only one of the following two system has a solution:
 - (I) $Ax \ge b$, s.t $x \ge 0$ and (II) $\lambda^T A \le 0$, s.t $\lambda \ge 0$ and $\lambda^T b = 1$.
- (b) Show that one and only one of the following two system has a solution:

(I)
$$Ax = b$$
 and (II) $\lambda^T A = 0$, s.t $\lambda^T b = 1$.

Exercise 2

- (a) Show that if $\partial f(x) \neq \emptyset$ then $\partial f(x)$ is closed and convex.
- (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be s.t. $f(x_1, x_2) = |x_1 + x_2|$. Show that f is convex and compute $\partial f(0, 0)$.

Exercise 3

- (a) Assume that $C \subseteq \mathbb{R}^n$ is convex, $f: C \to \overline{\mathbb{R}}$ is convex, and $g: \mathbb{R} \to \mathbb{R}$ is convex and increasing. Show that $g \circ f: C \to \mathbb{R}$ is convex.
- (b) Show that the function $f(x) = (1 + ||x||^2)^{\frac{p}{2}}$, where $p \ge 1$, is convex on \mathbb{R}^n . Here, ||x|| simply denotes the Euclidean norm of x.

Exercise 4

Let $\emptyset \neq O \subset \mathbb{R}^n$ be convex. Show that if $\varphi \in \mathbb{R}^O$ is convex then $\varphi_{|S}$ is Lipschitz continuous for any compact subset S of $\mathrm{ri}(O)$.

^{*}Due by November, Mon 25th, in class or in my mailbox before noon.

¹Recall that $\varphi_{|S}$ is just the restriction of φ on S, that is $\varphi_{|S}: S \to \mathbb{R}$ s.t. $\varphi_{|S}(x) = \varphi(x)$ for all $x \in S$.