What Is Claimed Is:

1	1. A method for controlling rippling caused by optical proximity		
2	correction during an optical lithography process used in manufacturing an		
3	integrated circuit, comprising:		
4	selecting an evaluation point for a given segment that is part of an edge in		
5	a layout of the integrated circuit;		
6	selecting at least one supplemental evaluation point for the given segment;		
7	computing a deviation from a target location for the given segment at the		
8	evaluation point;		
9	computing a supplemental deviation for the given segment at the at least		
10	one supplemental evaluation point;		
11	adjusting a bias for the given segment, if necessary, based upon the		
12	deviation at the evaluation point;		
13	calculating a ripple for the given segment based upon the deviation at the		
14	evaluation point and the supplemental deviation; and		
15	if the ripple for the given segment exceeds a threshold value, performing		
16	ripple control operation.		
1	2. The method of claim 1, further comprising adjusting the bias again		
2	if necessary, and performing the ripple control operation, if necessary, for each		
3	segment that is part of the layout of the integrated circuit.		
1	3. The method of claim 1, wherein prior to selecting the evaluation		
2	point for the given segment, the method further comprises:		
3	receiving a specification of the layout: and		

4	dissecting edges in the layout into segments for optical proximity		
5	correction purposes.		
1	4. The method of claim 1, wherein performing the ripple control		
2	operation involves performing a refinement operation that involves:		
3	selecting additional dissection points for the edge that cause the given		
4	segment to be divided into multiple segments;		
5	selecting additional evaluation points for the multiple segments;		
6	selecting additional supplemental evaluation points for the multiple		
7	segments; and		
8	adjusting the bias, if necessary, and performing the ripple control		
9	operation, if necessary, for each of the multiple segments.		
1	5. The method of claim 4, wherein selecting additional evaluation		
2	points involves using supplemental evaluation points as the additional evaluation		
3	points.		
1	6. The method of claim 1, wherein performing the ripple control		
2	operation involves performing a regeneration operation that involves:		
3	changing the location of dissection points for the edge to cause the edge t		
4	be divided into a different set of segments; and		
5	adjusting the bias, if necessary, and performing the ripple control		
6	operation, if necessary, for each segment in the different set of segments.		
1	7. The method of claim 6, wherein changing the location of the		
2	dissection points involves swapping dissection points and evaluation points for		
3	the edge.		

I	8. The method of claim 1, wherein performing the ripple control		
2	operation involves controlling the bias for the given segment so that the ripple fo		
3	the given segment does not exceed the threshold value, wherein as a consequence		
4	of controlling the bias a critical dimension for the given segment may not meet		
5	specification.		
1	9. The method of claim 1, wherein computing the deviation for the		
2	given segment involves using a model-based technique for computing the		
3	deviation.		
1	10. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for		
3	controlling rippling caused by optical proximity correction during an optical		
4	lithography process used in manufacturing an integrated circuit, the method		
5	comprising:		
6	selecting an evaluation point for a given segment that is part of an edge in		
7	a layout of the integrated circuit;		
8	selecting at least one supplemental evaluation point for the given segment		
9	computing a deviation from a target location for the given segment at the		
10	evaluation point;		
11	computing a supplemental deviation for the given segment at the at least		
12	one supplemental evaluation point;		
13	adjusting a bias for the given segment, if necessary, based upon the		
14	deviation at the evaluation point;		
15	calculating a ripple for the given segment based upon the deviation at the		
16	evaluation point and the supplemental deviation; and		

if the ripple for the given segment exceeds a threshold value, performing a		
ripple control operation.		
11. The computer-readable storage medium of claim 10, wherein the		
method further comprises adjusting the bias, if necessary, and performing the		
ripple control operation, if necessary, for each segment that is part of the layout of		
the integrated circuit.		
12. The computer-readable storage medium of claim 10, wherein prior		
to selecting the evaluation point for the given segment, the method further		
comprises:		
receiving a specification of the layout; and		
dissecting edges in the layout into segments for optical proximity		
correction purposes.		
13. The computer-readable storage medium of claim 10, wherein		
performing the ripple control operation involves performing a refinement		
operation that involves:		
selecting additional dissection points for the edge that cause the given		
segment to be divided into multiple segments;		
selecting additional evaluation points for the multiple segments;		
selecting additional supplemental evaluation points for the multiple		
segments; and		
adjusting the bias, if necessary, and performing the ripple control		

17

10

operation, if necessary, for each of the multiple segments.

1	14.	The computer-readable storage medium of claim 13, wherein	
2	selecting addi	tional evaluation points involves using supplemental evaluation	
3	points as the a	dditional evaluation points.	
1	15.	The computer-readable storage medium of claim 10, wherein	
2	performing th	e ripple control operation involves performing a regeneration	
3	operation that	involves:	
4	changi	ng the location of dissection points for the edge to cause the edge to	
5	be divided into a different set of segments; and		
6	adjusti	ng the bias, if necessary, and performing the ripple control	
7	operation, if n	ecessary, for each segment in the different set of segments.	
1	16.	The computer-readable storage medium of claim 15, wherein	
2	changing the l	ocation of the dissection points involves swapping dissection points	
3	and evaluation	points for the edge.	
1	17.	The computer-readable storage medium of claim 10, wherein	
2	performing th	e ripple control operation involves controlling the bias for the given	
3	segment so the	at the ripple for the given segment does not exceed the threshold	
4	value, wherein	as a consequence of controlling the bias a critical dimension for	
5	the given segr	nent may not meet specification.	
1	18.	The computer-readable storage medium of claim 10, wherein	
2	computing the	deviation for the given segment involves using a model-based	
3	technique for	computing the deviation.	

1	19.	An apparatus for controlling rippling caused by optical proximity	
2	correction du	ring an optical lithography process used in manufacturing an	
3	integrated circuit, comprising:		
4	a sele	ction mechanism that is configured to,	
5		select an evaluation point for a given segment that is part of	
6		an edge in a layout of the integrated circuit, and to	
7		select at least one supplemental evaluation point for the	
8		given segment;	
9	a devi	ation computing mechanism that is configured to,	
10		compute a deviation from a target location for the given	
11		segment at the evaluation point, and to	
12		compute a supplemental deviation for the given segment at	
13		the at least one supplemental evaluation point;	
14	a bias	adjustment mechanism that is configured to adjust a bias for the	
15	given segmer	nt, if necessary, based upon the deviation at the evaluation point; and	
16	a ripp	le control mechanism that is configured to,	
17		calculate a ripple for the given segment based upon the	
18		deviation at the evaluation point and the supplemental deviation,	
19		and to	
20		perform a ripple control operation if the ripple for the given	
21		segment exceeds a threshold value.	
1	20.	The apparatus of claim 19, wherein for each segment that is part of	
2	the layout of	the integrated circuit the bias adjustment mechanism is configured to	
3	adjust the bias, if necessary, and the ripple control mechanism is configured to		
4	perform the r	ipple control operation, if necessary.	

l	21. The apparatus of claim 19, further comprising a dissection
2	mechanism that is configured to:
3	receive a specification of the layout; and to
1	dissect edges in the layout into segments for optical proximity correction
5	purposes.
l	22. The apparatus of claim 19, wherein while performing the ripple
2	control operation, the ripple control mechanism is configured to:
3	select additional dissection points for the edge that cause the given
1	segment to be divided into multiple segments;
5	select additional evaluation points for the multiple segments;
5	select additional supplemental evaluation points for the multiple segments;
7	adjust the bias, if necessary, for each of the multiple segments; and to
3	perform the ripple control operation, if necessary, for each of the multiple
)	segments.
l	23. The apparatus of claim 22, wherein selecting additional evaluation
2	points involves using supplemental evaluation points as the additional evaluation
3	points.
ĺ	24. The apparatus of claim 19, wherein while performing the ripple
2	control operation, the ripple control mechanism is configured to:
3	change the location of dissection points for the edge to cause the edge to
1	be divided into a different set of segments;
5	adjust the bias, if necessary, for each segment in the different set of
5	segments; and to

computing a deviation from a target location for the given segment at the

8

9

evaluation point;

10	computing a supplemental deviation for the given segment at the at least		
11	one supplemental evaluation point;		
12	adjusting a bias for the given segment, if necessary, based upon the		
13	deviation at the evaluation point;		
14	calculating a ripple for the given segment based upon the deviation at the		
15	evaluation point and the supplemental deviation;		
16	if the ripple for the given segment exceeds a threshold value, performing a		
17	ripple control operation.		
1	29. An integrated circuit created through a process that controls		
2	rippling caused by optical proximity correction during an optical lithography		
3	process used in manufacturing the integrated circuit, the process comprising:		
4	selecting an evaluation point for a given segment that is part of an edge in		
5	a layout of the integrated circuit;		
6	selecting at least one supplemental evaluation point for the given segment;		
7	computing a deviation from a target location for the given segment at the		
8	evaluation point;		
9	computing a supplemental deviation for the given segment at the at least		
10	one supplemental evaluation point;		
11	adjusting a bias for the given segment, if necessary, based upon the		
12	deviation at the evaluation point;		
13	calculating a ripple for the given segment based upon the deviation at the		
14	evaluation point and the supplemental deviation;		
15	if the ripple for the given segment exceeds a threshold value, performing a		
16	ripple control operation.		

1	30.	A means for controlling rippling caused by optical proximity	
2	correction du	ring an optical lithography process used in manufacturing an	
3	integrated cir	cuit, comprising:	
4	a sele	ction means for,	
5		selecting an evaluation point for a given segment that is	
6		part of an edge in a layout of the integrated circuit, and for	
7		selecting at least one supplemental evaluation point for the	
8		given segment;	
9	a devi	ation computing means for,	
10		computing a deviation from a target location for the given	
11		segment at the evaluation point, and for	
12		computing a supplemental deviation for the given segment	
13		at the at least one supplemental evaluation point;	
14	a bias	adjustment means for adjusting a bias for the given segment, if	
15	necessary, ba	sed upon the deviation at the evaluation point; and	
16	a ripp	le control means for,	
17		calculating a ripple for the given segment based upon the	
18	•	deviation at the evaluation point and the supplemental deviation,	
19		and for	
20		performing a ripple control operation if the ripple for the	
21		given segment exceeds a threshold value.	
1	31.	A method for controlling rippling caused by optical proximity	
2	correction du	ring an optical lithography process used in manufacturing an	
3	integrated circuit, comprising:		
4	selecting a first evaluation point for a given segment that is part of an edg		
5	in a layout of	the integrated circuit;	

6	selecting a second evaluation point for the given segment;
7	computing a first deviation from a target location for the given segment at
8	the first evaluation point;
9	computing a second deviation for the given segment at the second
10	evaluation point; and
11	adjusting a bias for the given segment, if necessary, based upon multiple
12	deviations at multiple evaluation points, including the first deviation at the first
13	evaluation point and the second deviation at the second evaluation point.
1	32. The method of claim 31, wherein the second evaluation point is a
2	supplemental evaluation point.
1	33. The method of claim 31, wherein both the first evaluation point
2	and the second evaluation point are located on the given segment.
1	34. The method of claim 31, wherein the first evaluation point is
2	located on the given segment and the second evaluation point is located on an
3	adjacent segment.
1	35. The method of claim 31, further comprising adjusting the bias, if
.2	necessary, for each segment that is part of the layout of the integrated circuit.
1	36. The method of claim 31, further comprising:
2	selecting a third evaluation point for the given segment; and
3	computing a third deviation for the given segment at the third evaluation
<i>3</i>	
+	point;

2	third deviation at the third evaluation point.	
1	37. The method of claim 31, wherein computing the first deviation	
2	involves using a model-based technique for computing the first deviation.	
1	38. A computer-readable storage medium storing instructions that	
2	when executed by a computer cause the computer to perform a method for	
3	controlling rippling caused by optical proximity correction during an optical	
4	lithography process used in manufacturing an integrated circuit, the method	
5	comprising:	
6	selecting a first evaluation point for a given segment that is part of an edge	
7	in a layout of the integrated circuit;	
8	selecting a second evaluation point for the given segment;	
9	computing a first deviation from a target location for the given segment at	
10	the first evaluation point;	
11	computing a second deviation for the given segment at the second	
12	evaluation point; and	
13	adjusting a bias for the given segment, if necessary, based upon multiple	
14	deviations at multiple evaluation points, including the first deviation at the first	
15	evaluation point and the second deviation at the second evaluation point.	
1	39. The computer-readable storage medium of claim 38, wherein the	
2	second evaluation point is a supplemental evaluation point.	

wherein adjusting the bias for the given segment involves considering the

1

correction during an optical lithography process used in manufacturing an

An apparatus for controlling rippling caused by optical proximity

1

2

3

45.

integrated circuit, comprising:

4	a selection mechanism that is configured to,	
5	select a first evaluation point for a given segment that is	
6	part of an edge in a layout of the integrated circuit, and to	
7	select a second evaluation point for the given segment;	
8	a deviation computing mechanism that is configured to,	
9	compute a first deviation from a target location for the	
10	given segment at the first evaluation point, and to	
11	compute a second deviation for the given segment at the	
12	second evaluation point; and	
13	a bias adjustment mechanism that is configured to adjust a bias for the	
14	given segment, if necessary, based upon multiple deviations at multiple evaluation	
15	points, including the first deviation at the first evaluation point and the second	
16	deviation at the second evaluation point.	
1	46. The apparatus of claim 45, wherein the second evaluation point is	
2	supplemental evaluation point.	
1	47. The apparatus of claim 45, wherein both the first evaluation point	
2	and the second evaluation point are located on the given segment.	
1	48. The apparatus of claim 45, wherein the first evaluation point is	
2	located on the given segment and the second evaluation point is located on an	
3	adjacent segment.	
1	49. The apparatus of claim 45, wherein the bias adjustment mechanism	
2	is configured to adjust the bias, if necessary, for each segment that is part of the	
3	layout of the integrated circuit.	

1	50. The apparatus of claim 45,
2	wherein the selection mechanism is additionally configured to select a
3	third evaluation point for the given segment; and
4	wherein the deviation computing mechanism is additionally configured to
5	compute a third deviation for the given segment at the third evaluation point;
6	wherein the bias adjustment mechanism is configured to consider the third
7	deviation at the third evaluation point in adjusting the bias for the given segment
8	involves.
1	51. The apparatus of claim 45, wherein the deviation computing
2	mechanism is configured to compute use a model-based technique in computing
3	the first deviation.
1	52. A mask to be used in an optical lithography process for
2	manufacturing an integrated circuit, wherein the mask is created through a process
3	that controls rippling caused by optical proximity correction, the process
4	comprising:
5	selecting a first evaluation point for a given segment that is part of an edge
6	in a layout of the integrated circuit;
7	selecting a second evaluation point for the given segment;
8	computing a first deviation from a target location for the given segment at
9	the first evaluation point;
10	computing a second deviation for the given segment at the second
11	evaluation point; and

12	adjusting a bias for the given segment, if necessary, based upon multiple
13	deviations at multiple evaluation points, including the first deviation at the first
14	evaluation point and the second deviation at the second evaluation point.
1	53. An integrated circuit created through a process that controls
2	rippling caused by optical proximity correction during an optical lithography
3	process used in manufacturing the integrated circuit, the process comprising:
4	selecting a first evaluation point for a given segment that is part of an edg
5	in a layout of the integrated circuit;
6	selecting a second evaluation point for the given segment;
7	computing a first deviation from a target location for the given segment at
8	the first evaluation point;
9	computing a second deviation for the given segment at the second
10	evaluation point; and
11	adjusting a bias for the given segment, if necessary, based upon multiple
12	deviations at multiple evaluation points, including the first deviation at the first
13	evaluation point and the second deviation at the second evaluation point.
1	54. A means for controlling rippling caused by optical proximity
2	correction during an optical lithography process used in manufacturing an
3	integrated circuit, comprising:
4	a selection means for,
5	selecting a first evaluation point for a given segment that is
6	part of an edge in a layout of the integrated circuit, and for

selecting a second evaluation point for the given segment;

a deviation computing means for,

7

8

9	computing a first deviation from a target location for the
10	given segment at the first evaluation point, and for
11	computing a second deviation for the given segment at the
12	second evaluation point; and
13	a bias adjustment means for adjusting a bias for the given segment, if
14	necessary, based upon multiple deviations at multiple evaluation points, including
15	the first deviation at the first evaluation point and the second deviation at the
16	second evaluation point.