ENTRANCE EXAMINATION-2017

M.Tech. (Electronics & Communication Engineering)
Set A

POLL NO		TT	$\neg \vdash$	1		
ROLL NO.						
	X ======					
				8		Signature of Invigilator

Time: 2 Hours

Total Marks: 85

Instructions to Candidates

- Do not write your name or put any other mark of identification anywhere in the OMR Answer Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR ANSWER SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- This Question Booklet contains this cover page and a total of 85 Multiple Choice Questions of 1mark. Space for rough work
 has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 3. Each correct answer carries one mark.
- 4. There is negative marking in Multiple Choice Questions. For each wrong answer 0.25 marks will be deducted.
- USE OF CALCULATOR IS NOT PERMITTED.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager ETC. is not permitted.
- Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- 8. Answers must be marked in the OMR answer sheet which is provided separately. OMR answer sheet must be handed over to the invigilator before you leave the seat.
- 9. The OMR answer sheet should not be folded or wrinkled. The folded or wrinkled OMR/Answer Sheet will not be evaluated.
- 10. Write your Roll Number in the appropriate space (above) and on the OMR Answer Sheet. Any other details, if asked for, should be written only in the space provided.
- 11. There are four alternative answers to each question marked A, B, C and D. Select one of the answers you consider most appropriate and fill up the corresponding oval/circle in the OMR Answer Sheet provided to you. The correct procedure for filling up the OMR Answer Sheet is mentioned below.
- 12. Use Black or Blue Ball Pen only for filling the ovals/circles in OMR Answer Sheet while answering the Questions. For your Choice of answers darken the correct oval/circle completely. If the correct answer is 'B', the corresponding oval/circle should be completely filled and darkened as shown below.

	 WF	RONG M	ETHOD					
AX © ©	A D	© D	(A) (D)	© D	O O	00	(A) (© •

	SET A	74	•		
y _1.	Negative feedback in an amplifier				
ŧ -	(A) Reduces gain	¥			
	(B) increases frequency and phase distortions				
	(C) reduces bandwidth				
	(D) Increases noise				
,	2. An amplifier without feedback has a gain of 1000. What is	the gain with	a negative	feedback	of
10000	0.009?				
	(A)900				
	(B) 125				
	(C) 100	1/2			
	(D)10				
3.		8			
	$(A) m^2 V^1 s^{-1}$	4			
	(B) $mV^{-1}s^{-1}$				
	(C) Vsm ⁻¹				
	(D)Vms ⁻¹			181	
1	4. If the length of wire of resistance R is uniformly stretche	ed to n times	its original	value , its	new
7.	resistance is	₩		\$	
	(A) nR				
	(B) R/n				
	(C) n ² R				
	(D) R/n ²				
5.	5. A p-n junction diode's dynamic conductance is directly	proportiona	to	100	
	(A) the applied voltage			14	
	(B) the temperature				
	(C) it's current				
	(D) the thermal voltage				
	a r				
0.0	6. Which junction has least junction capacitance?				
	(A) Alloy				
1	(B) Grown	*		10	
,	(C) Diffused				
	(D) Point contact	3			
	(D) tollic consec-				

A-2017

			nt current	
	7.	As the temperature is increased, the voltage across a diode carrying a consta	ille current	
!		(A) increases		
		(B) decreases	\$1	
		(C) remains constant		
		(D) may increase or decrease depending on doping level in the junction		
	R	A PIN diode is frequently used as a	*	
	0.	(A) peak clipper		
		(B) voltage regulator		
		(C) harmonic generator	1800	
		(D) switching diode for frequencies up to GHz range	(
	9.	An emitter in a bipolar junction transistor is doped much more heavily than	the base as it	
		increases the	= _{j,}	
		(A) emitter efficiency		
		(B) base transport factor	2	
		(C) forward current gain		
		(D) all the three given above		
	10.	. In a junction transistor, recombination of electrons and holes occurs in		
		(A) base region only		
		(B) emitter region only		
		(C) collector region only	' ' ·	
		(D) all above three regions	e 7	
		on the second of a mitter current is and collect	ctor current lc , t	he
	11.	. In a junction transistor biased for operation at emitter current I_{E} and collect		
		transconductance g _m is	25	
		$(A)KT/qI_E$		
		(B) ql _E /KT		
		(C) I _C /I _E		
		(D) I _E /I _C		
			10 16	
	12.	. In BJT, if α is changed from 0.9 to 0.99, what will be the % change in β ?		
		(A) 10%		
,		(B) 100%	* /	
		(C) 1000%		
		(D) 9.9%		
		(-)		
		75.53		
	Á.	-2017 M 52		

	5
	30
1	13. Ebers-model of a transistor represents two diodes
	(A) in series
	(B) in parallel
	(C) back to back
	(D) none of above
	14. The early effect in BJT is caused by
	(A) fast turn-on
	(B) fast turn-off

(C) large collector-base reverse bias (D) large emitter base forward bias

- 15. The dc current gain (β) of BJT is 50.Assuming that the emitter injection efficiency is 0.995,the base transport factor is
 - (A) 0.980
 - (B) 0.985
 - (C) 0.990
 - (D) 0.995
- 16. A FET is a better chopper than a BJT because it has
 - (A) lower off-set voltage
 - (B) higher series ON resistance
 - (C) lower input current
 - (D) higher input impedance
- 17. In a JFET, drain current is primarily controlled by
 - (A) size of depletion region
 - (B) channel resistance
 - (C) gate reverse bias
 - (D) voltage drop across channel
- 18. The drain-source voltage at which drain current becomes nearly constant, is called
 - (A) barrier voltage
 - (B) breakdown voltage
 - (C) pick-off voltage
 - (D) pinch-off voltage

11,

- 19. MOSFEF can be used as a
 - (A) current controlled capacitor
 - (B) voltage controlled capacitor
 - (C) current controlled inductor
 - (D) voltage controlled inductor
- 20. A gate to drain-connected enhancement mode MOSFET is an example of
 - (A) an active load
 - (B) a switching device
 - (C) a three-terminal device
 - (D) a diode
- 21. Twelve 1Ω resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is
 - $(A)5/6\Omega$
 - (B) 1 Ω
 - $(C) 6/5 \Omega$
 - $(D)3/2\Omega$
- 22. Consider the following circuit. What is the value of current I in the circuit shown?

- (A)1A
- (B) 2 A
- (C)3A
- (D) 4 A
- 23. A constant current source supplies a current of 300 mA to a load of 1 k Ω . When the load is changed to 100 Ω , the load current will be
 - (A)3A
- 14
- (B) 300 mA
- (C) 30 mA
- (D) 100 mA

A-2017

T : '15M

- 24. A network has 7 nodes and 5 independent loops. The number of branches in the network is
 - (A)13
 - (B) 12
 - (C) 11
 - (D) 10
- 25. In the circuit, the voltage across 3 Ω resistance is

- (A) 1V
- (B) 3V
- (C) 6V
- (D)9V
- 26. Superposition theorem is not applicable for
 - (A) voltage calculations
 - (B) bilateral elements
 - (C) power calculations
 - (D) passive elements
- 27. While Thevenizing a circuit between two terminals, V_{TH} is equal to
 - (A) short-circuit terminal voltage
 - (B) open-circuit terminal voltage
 - (C) net voltage available in the circuit
 - (D) emf of the battery nearest to the terminals
- 28. When the power transferred to the load is maximum, the efficiency of power transfer is
 - (A)25%
 - (B) 50%
- -71
- (C) 75%
- (D) 100%

coefficient of cou	-bung actives					
(A)0.06	,		•	20		
(B) 0.05						
(C) 1.0						
(D)0.5						
0. In a purely resist	ive circuit the	e average no	wor P. is	the seek sour	os Denov	
(A) one-half of	ive cheate, the	e average po	WEI Fav IS	the peak pow	er Pillax.	
(B) double						
(C) equal to						
(D) one-fourth						
	2				*	
1. A high Q coil has				ži.		
(A) large bandwi	dth		<i>2</i> .			
(B) high losses						
(C) low losses	¥1					
(D) flat response					20	
2. A current impuls is given by		rced through	a capacitor C.	The voltage, V _c (t	;), across the	e capaci
2. A current impuls		rced through	a capacitor C.	The voltage, V _c (t	;), across the	e capaci
32. A current impuls is given by (A)5t		rced through	a capacitor C.	The voltage, V _c (t	;), across the	e capaci
2. A current impuls is given by (A)5t (B)5u(t)-C		rced through	a capacitor C.	The voltage, V _c (t	;), across the	e capaci
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C	e, 5 d(t) is for	u u, e				
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C	e, 5 d(t) is for	u u, e				
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C	e, 5 d(t) is for	u u, e				
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C 3. A charge of 1C is between them?	e, 5 d(t) is for	u u, e				
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C 3. A charge of 1C is between them? (A) 1/4πε ₀ N	e, 5 d(t) is for	u u, e				
is given by (A)5t (B) 5u(t)-C (C) 5t/c (D) 5u(t)/C 3. A charge of 1C is between them? (A) 1/4πε ₀ N (B) 1/8πε ₀ N	e, 5 d(t) is for	u u, e				
is given by (A) 5t (B) 5u(t)-C (C) 5t/c (D) 5u(t)/C 3. A charge of 1C is between them? (A) 1/4πε ₀ N (B) 1/8πε ₀ N (C) 1/16πε ₀ N (D) 4πε ₀ N	e, 5 d(t) is for	a grounded o	conducting plat			
is given by (A) 5t (B) 5u(t)-C (C) 5t/c (D) 5u(t)/C 3. A charge of 1C is between them? (A) 1/4πε ₀ N (B) 1/8πε ₀ N (C) 1/16πε ₀ N (D) 4πε ₀ N	e, 5 d(t) is for	a grounded o	conducting plat			
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C 3. A charge of 1C is between them? (A)1/4πε ₀ N (B) 1/8πε ₀ N (C) 1/16πε ₀ N	e, 5 d(t) is for placed near	a grounded o	conducting plat			
is given by (A) 5t (B) 5u(t)-C (C) 5t/c (D) 5u(t)/C 3. A charge of 1C is between them? (A) 1/4πε ₀ N (B) 1/8πε ₀ N (C) 1/16πε ₀ N (D) 4πε ₀ N 4. The electric field (A) Infinite (B) Zero	e, 5 d(t) is for placed near sinside a perf	a grounded o	conducting plat			
is given by (A)5t (B)5u(t)-C (C)5t/c (D)5u(t)/C 3. A charge of 1C is between them? (A)1/4πε ₀ N (B) 1/8πε ₀ N (C) 1/16πε ₀ N (D)4πε ₀ N	e, 5 d(t) is for placed near sinside a perf	a grounded o	conducting plat			

- (A)Zero
- (B) $Q/4\pi\epsilon_0 R^2$
- (C) $Q/8\pi\epsilon_0 R^2$
- (D) Q/16 $\pi\epsilon_0$ R²
- **36.** The ratio of charge stored by two metallic spheres raised to same potential is **6.** The ratio of surface areas of the sphere is
 - (A)36
 - (B) 1/6
 - (C) 6
 - (D) 1/V6
- 37. In a cable capacitor, voltage gradient is maximum at the surface of the
 - (A) Sheath
 - (B) Earth
 - (C) Dielectric
 - (D) Conductor
- 38. An ideal voltage source will charge an ideal capacitor
 - (A) in infinite time
 - (B) exponentially
 - (C) instantaneously
 - (D) none of the above
- 39. The field at any point on the axis of a current carrying coil will be
 - (A) perpendicular to the axis
 - (B) parallel to the axis
 - (C) at an angle of 45° with the axis
 - (D)zero

40.	The unit of flux density is	S
	(A)Tesla	

- (B) A/mm²
- (C) N/m²
- (D) Wb/m

41. Which of the following is correct?

- $(A)B = \mu_0 H + M$
- (B) $B = \mu_0 M + H$
- (C) B = μ_0 (H+M)
- (D) $B = M/\mu_0$

42. In a uniform plane wave, the value of |E|/|H| is

- $(A) \lor (\mu/\epsilon)$
- (B) $V(\varepsilon/\mu)$
- (C) 1 ·
- $(D) V(\mu \epsilon)$

43. The depth of penetration of wave in a lossy dielectric increases with increasing

- (A) Conductivity
- (B) Permeability
- (C) Wavelength
- (D) Permittivity

44. If the unit step response of a network is (1-e^{-at}), then its unit impulse response is

- (A) αe^{-at}
- (B) $\alpha^{-1}e^{-at}$
- (C) $(1-\alpha^{-1})e^{-at}$
- (D) (1-α)e^{-at}

45. The period of the signal x(t)=10sin $12\pi t + 4 \cos 18\pi t$ is

- $(A)\pi/4$
- (B) 1/6
- (C) 1/9
- (D) 1/3

- 46. Fourier transform $\delta(t)$ is given as
 - (A)Zero
 - (B) 1
 - (C) $2\pi\delta(\omega)$
 - $(D)\pi\delta(\omega)$
- 47. The 4-point DFT of a discrete time sequence {1;0,2,3} is
 - (A)[0,-2+2j,2,-2-2j]
 - (B) [2,2+2j,6,-2-2j]
 - (C) [6,1-3j,2,1+3j]
 - (D) [6,-1+3j,0,-1-3j]
- 48. A Hilbert transformer is a
 - (A) non-linear system
 - (B) non-causal system
 - (C) time-varying system
 - (D) low-pass system
- 49. Convolution of x(t+5) with impulse function $\delta(t-7)$ is equal to
 - (A)x(t-12)
 - (B) x(t+12)
 - (C) x(t+2)
 - (D)x(t-2)
- 50. Energy of a power signal is
 - (A) Finite
 - (B) Zero
 - (C) Infinite
 - (D) between 1 and 2

51. A rectangular pulse train s(t) as shown in the figure is convolved with the signal $\cos^2(4\pi \times 10^3 t)$. The convolved signal will be a

- (A) DC
- (B) 12 kHz sinusoid
- (C) 8 kHz sinusoid
- (D) 14 kHz sinusoid

52. 4-bit 2's complement representation of a decimal number is 1000. The number is

- (A) + 8
- (B) 0
- (C)-7
- (D)-8

53. The octal equivalent of decimal 98 is

- (A) 142
- (B) 241
- (C) 98
- (D)89

54. The hexadecimal representation of 657_8 is

- (A) 1AFH
- (B) D78H
- (C) D71H
- (D) 32FH

55. (1111)₂ in gray code represents

- (A)9
- (B) 15
- (C) 16
- (D) 10

M 52

A-2017

56. The range of signed decimal numbers that can be represented by 6-bit 1's complement number

is

- (A)-31 to 31
- (B)-63 to 64
- (C)-64 to 63
- (D)-32 to 31
- 57. A positive logic OR gate is same as a negative logic
 - (A) NOR gate
 - (B) OR gate
 - (C) EX-OR gate
 - (D) AND gate
- 58. When one input of an EX-OR gate is connected to logic 1, it functions as
 - (A) NOT gate
 - (B) OR gate
 - (C) EX-OR gate
 - (D) NOR gate
- 59. In Boolean algebra, if F=(A+B)(A'+C) then
 - (A)F=AB+A'C
 - (B) F=AB+A'B'
 - (C) F=AC+A'B
 - (D) F=AA'+A'B
- 60. The output X of the logic circuit shown in the figure is

- (A) A+BC
- (B) AB
- (C) BC
- (D) AB+C

M 52

51. Minimal SOP form	of F=∑m (1,2,3,4,6,8,9,10,	11) is
(A)x'z'+w'	2 (, , , , , , , , , , , , , , , , , ,	
(B) x'+w'z'	*	
(C) x'+z'+w'		
(D)x'w'z		
62. To add two m-bit	numbers, the required num	nber of half adders is
(A)2m-1		
(B) $2^{m}-1$		
(C) 2m+1		
(D)2m		
63. The number of so	elect lines needed in a 8 X 1	. multiplexer is
(A)8		
(B)3		
(C)2		€
(D)1		
64. The race-around	condition occurs when	
(A)J=0,K=0	•	
(B) J=0,K=1		- 11
(C) J=1,K=0	*	*)
(D) J=1,K=1		
65. Which of the fo	llowing counter results in le	east delay?
(A) Ring counte		9 *
(B) Ripple coun		
(C) Synchronou		
(D) Asynchrono		
66. The number of	comparators required in a	3-bit comparator type ADC is
(A)2		
(B) 3		8
(C) 7		1961
(D)8	14	

67. In a 100% amplitude modulated signal, if the total	transmitted power	is P, then carr	er power
will be	30 Sec. 13		
(A) 2/3 P			
(B) 1/2 P			
(C) 1/3 P			
(D) 1/4 P			
68. A 10kW carrier is sinusoidally modulated by two	carriers correspondir	ng to a modula	tion index of
30% and 40% respectively. The total radiated pov	wer is		
(A) 11.25kW			
(B) 12.5 kW			
(C) 15kW			
(D) 17 kW			
and The sing modulator is generally used for			
69. The ring modulator is generally used for (A)generating SSB-SC signal			
(B) generating ISI signal	*	8	
(C) generating wideband			
(D) generating DSB-SC signal	OF .		*
(D)generating D3D-3C signal			
70. The rms value of the antenna current before mo	dulation is 5 A and it	increases to 5	3.8 A after
amplitude modulation. The percentage of modu	lation index is		
(A)88%		:	
(B) 80%			
(C) 83.14%			
(D)81.21%	12		5
• •		adulation indo	v of 50. The
71. An FM wave uses a 2-5V, 500 Hz modulating free	quency and has a mi	odulation inde	X 01 30. THE
deviation is			
(A)500 Hz		*.1	
(B) 1,000 Hz			
(C) 1250 Hz			
(D) 25,000 Hz			
72. Diversity reception is used to	15	*	
(A) increase receiver sensitivity			
(B) improve receiver sensitivity			
(C) fluctuation in signal strength at the receiver	r end		
(D) change in phase only at receiver end			
(D) change in phase only acreediter one			

٠.	73. In phase modulation, phase deviation is proportional to
	(A) carrier amplitude
	(B) carrier phase
	(C) message signal
	(D) message signal frequencies
	74. Which one of the following is not a part of typical TV receiver?
	(A) Sweep signal generator
	(B) Envelope detector
	(C) Video amplifier
	(D) Pre-emphasis circuit
	75. The image channel selectivity of superheterodyne receiver depends upon
	(A) IF amplifiers only
	(B) RF and IF amplifiers only
848	(C) preselector, RF and IF amplifiers
	(D) preselector and RF amplifiers
	76. What is the AFC voltage of the FM transmitter VCO?
٠	(A) DC Voltage
	(B) Sine wave voltage
	(C) Square wave voltage
	(D) Ramp voltage
	77. In a SSB transmitter, one is most likely to find
	(A) class C audio amplifier
	(B) tuned modulator
	(C) class B RF amplifier
	(D) class A RF amplifier
	78. The most noise immune system is
	(A)SSB
/	(B) PCM
	(C) PDM
	(D)PWM
	6

79. The transfer function d(s) to y(s) of the system shown is

- (A)2/(3s+7)
- (B) 2/(3s+1)
- (C) 6/(3s+7)
- (D) 2/(3s+6)

80. For a unity feedback control with G(s) = 16/[s(s+4)], the damping ratio is

- (A)2.0
- (B) 1.0
- (C) 0.707
- (D)0.5

81. What is the value of k for a unity feedback system with G(s)= k/[s(1+s)] to have a peak overshoot of 50%?

- (A)0.53
- (B) 5.3
- (C)0.6
- (D) 0.047

82. The sensitivity of a voltmeter using 0 to 5 mA meter movement is

- (A)50 ohm/volt
- (B) 100 ohm/volt
- (C) 200 ohm/volt
- (D)500 ohm/volt

83. The errors introduced by an instrument fall in which category?

- (A) Systematic errors
- (B) Random errors
 - .
- (C) Gross errors
- (D) Environmental errors

- 84. Torque/weight ratio of an instrument indicates
 - (A) Selectivity
 - (B) Accuracy
 - (C) Fidelity
 - (D) Sensitivity
- 85. Identify the one which is not a fundamental unit in SI system.
 - (A) Ampere
 - (B) Kelvin
 - (C) Metre
 - (D) Joule

Paper Code No- M52

1

Question Booklet No. 652282

[SET-B] **ENTRANCE EXAMINATION-2018** M.TECH. (Electronics & Communication Engineering)

ROLL NO.	
	C' . CT

Signature of Invigilator

Time: 2 Hours

Total Marks: 85

Instructions to Candidates

- 1. Do not write your name or put any other mark of identification anywhere in the OMR Response Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR response sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 85 Multiple Choice Questions of 1 mark each.
- Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough
- There is negative marking in Multiple Choice Questions. For each wrong answer 0.25 marks will be deducted.
- USE OF CALCULATOR IS NOT PERMITTED.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iphone, iPad, pager ETC. are strictly PROHIBITED.
- 7. Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- Answers must be marked in the OMR Response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
- 9. The OMR Response sheet should not be folded or wrinkled. The folded or wrinkled OMR/ Response Sheet will not be evaluated.
- 10. Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any other details, if asked for, should be written only in the space provided.
- 11. There are four options to each question marked A, B, C and D. Select one of the most appropriate option and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.
- 12. Use Black or Blue Ball Pen only for filling the ovals/circles in OMR Response Sheet. Darken the selected oval/circle completely. If the correct answer is 'B', the corresponding oval/circle should be completely filled and darkened as shown below.

1.	Which o	ne provides more secure communication?	
	Α	CDMA	777
(В	FDMA	
	C	TDMA	
	D	None of the mentioned	
2.	The capa	acity relationship is given by	
	A	$C = W \log_2 (1 + S/N)$	
	В	$C = 2W \log_2 (1+S/N)$	
	C	$C = W \log_2 (1-S/N)$	
	D	$C = W \log_{10} (1 + S/N)$	
3. I	For an er	ror free channel, conditional probability should be	
	Α	Zero	
	B	One	
	C	Equal to joint probability	
	D	Equal to individual probability	
4. (amplitud	e power in each sideband, if power of carrier wave is 176W and there is 60% modulation le modulated signal?	in
	Α	13.36W	
	\mathbf{B}	52W	
	C	67W	
	D	15.84W	
5. N	Noise per	rformance of a square law demodulator of AM signal is?	
	Ā	Better than that of synchronous detector	
	В	Weaker than that of synchronous detector	
	C	Better than that of envelope detector	
	D	Weaker than that of envelope detector	
6 A	n AM s	ignal is represented by $x(t) = [30 + 2\sin(700\pi t)] \cos(2\pi t \times 10^2 t)V$. The modulation ind	ev is
0	A	0.7	CA 13
	В	0.066	
:a	C	0.341	
	D	0.916	
	Ð	0.916	
7. F	or attenu	uation of high frequencies we can use	
1	Ά	inductance	
•	В	shunt capacitance	
	C	series capacitance	
1	Ď	combination on inductor and resistor	
	:	combination on inductor and resistor	
8. V	Vhich of	the following devices is used to generate AM waves?	
	A	Square-law modulator	
	В	Amplifier	
	C		
	\$	Transmitter	
7	D	Transducer	

9.	What can v	we do to eliminate distortion in the picture?	
	Α	use a longer transmission line	
1	В	change the entermassion line	
	C	change the antenna orientation twist the transmission line	
	D	connect a booster	
	_	connect a booster	
10	. What do	you understand by the term "carrier"?	
	Α	voltage with constant frequency, phase and amplitude	
	В	Voltage for which frequency, amplitude or phase is varied	
	C	resultant wave	
	D	voltage to be transmitted	
11	. A voltag	e amplifier has a voltage gain of 100. What will be gain at 3dB cut-off frequencies	
	Α	70.7	
	В	80.7	
	C	45.7	
	D	50	
12	26dB is	equivalent to power gain	
	Α	0.5	
	В	0.25	
	C	0.75	
	D	0.8	
	**	wanted characteristics of amplifier output apart from desired output is collectively termed as	
1		wanted characteristics of amplifier output apart from desired output	
	Α	Inefficiency	
	В	damage	
	C	Fault	
	D	Distortion	
4		power rating of a transistor is expressed in	
	14. Unit of	power fatting of a transistor is super-	
	. A	Watts	
	В	KWh	
	C	W/s	
	D	Wh	
	1 5 1171. : -1.	of the following amplifier class have highest linearity and lowest distortion?	
		Class A	
	A		
	В	Class B.	
	C	Class C	
	D	Class B push-pull	
1		: de autout cional is due to	
	16. Flat top	os in the output signal is due to	
	A	Frequency distortion	
	В	Amplitude distortion	
	C	Phase distortion	
	D	Harmonic distortion	

CETR

17.	Harmon	tic distortion is caused by nonlinearities of		
1				•
	A	Voltage divider circuit		
	В	Resistive elements only		
	C	Passive elements		
	D	Active elements		
18.	THD+N	is a scale used to expressing of an audio amplifier		
	Α	Gain		
	В	Sound quality		
	C	Amplification factor		
	D	Distortion		
19.	What is	the major principle behind heat sink action?		
	Α	Avogadro's law		
	В	Fourier's law		
	C	Archimedes principle		
	D	Faraday's law		
20.]	For acco	mplishing negative resistance in oscillator we use		
	Α	Voltage divider circuit		
	В	Negative feedback		
	Č	Positive feedback		
	D	Current divider circuit		
21. A	At θ=π/2	, positive portion is negative portion in power cycle.	***	_3 * 3
	A	greater than		
•	В	less than		
	C	equal to	\$	
35	D	greater than or equal to		
22 16	`41 1.		Ħ	
22. 11	the poie	es or zeros are not repeated, then the function is said to be having		_poles or
-		_20103.		
1	A	simple, multiple		
	В	multiple, simple		5/50
500	C	simple, simple		
	D .	multiple, multiple	2	
2 TF.	41	han a final to final to the state of the sta		
3. 11	ine num	ber of poles (m) are greater than the number of zeros (n), then there v	vill be _	
nt	inder o	f zeros at $s = \infty$.	1	
÷	Α	m+n		
336	В			
1		m-n		
	C	m		
	D	n		ı

24. In the circuit shown below, find the thevenin's voltage across 'ab' terminals.

- A 48.5∠40.35°
- B 48.5∠-40.35°
- C 49.5∠-40.35°
- D 49.5∠40.35°
- 25. For the Reciprocity Theorem to satisfy the ratio of response to excitation before and after the source is replaced should be?
 - A different
 - B same
 - C before source is replaced is greater than after the source is replaced
 - D before source is replaced is less than after the source is replaced
- 26. If 1 Ampere current flows in a circuit, the number of electrons flowing through the circuit is
 - A 0.625×10^{19}
 - B 1.6×10^{19}
 - C 1.6×10⁻¹⁹
 - D 0.625×10⁻¹⁹
- 27. If V1 is the voltage at port 1 and V2 is the voltage at port 2, then the attenuation in dB is?
 - A 20 log10 (V1/V2)
 - B 10 log10 (V1/V2)
 - C 20 log10 (V2/V1)
 - D 10 log10 (V2/V1)
- 28. The voltage after which the diode current exponentially increases with forward bias is NOT known as
 - A Offset voltage
 - B Threshold potential
 - C Firing potential
 - D Peak forward voltage
- 29. Emission coefficient of Germanium is
 - A 1
 - B 1.1
 - C 1.5
 - D 2

1450

CETD

30	What h	appens to cut-in voltage when temperature increases?
	A	Cut-in voltage increases
1	В	Cut-in voltage decreases
	Č	Cut-in voltage either increases or decreases
	D	Cut-in voltage doesn't depend on temperature
31.	PDM is	generated by
	A	combination of two series amplifiers
	В	Monostable multivibrator
	С	Astable multivibrator
	D	Schmitt trigger
32	Diamet	er of antenna is doubled. The maximum range will
32.	A	be doubled
	В	be halved
	C	become four times
	D	decrease to one fourth
	D	decrease to one tourin
33.	Find VS	SWR of a line having maximum and minimum value equals to 120mV and 40mV
	respect	
	A	3
	В	2
	C	ī
	D	4
34.	TDR sta	ands for
	Α	Total Distance of Reflection
	В	Time Domain Response
	C	Time Domain Reflectometer
	D	Time Delay Ratio
		*1
35. I	For prov	iding two or more voice circuits on the same carrier, we can use
	A	SSB
	В	ISB systems
	C	DSB-SC
	D	SSB with pilot carrier
36. E	Example	of spherical system in the following is
í	Α	Charge in space
	В	Charge in box
	C	Charge in dielectric
81	D	Uncharged system
	8	
7. G	iven B=	= (10/r)i+(rcos (1) j+k in spherical coordinates. Find Cartesian points at (-3,4,0)
	A	-2i+j
	B.	2i + k
	C	
13	D	i + 2j _i _ 2k

		8
38.	For a di	electric, the condition to be satisfied is
	A	$\sigma/\omega \varepsilon > 1$
1	В	σ/ωε < 1
	C	$\sigma = \omega \varepsilon$
	D	$\omega \varepsilon = 1$
39.	Calcula	te the phase constant of a wave with frequency 12 rad/s and velocity 3×10^8 m/s (in 10^{-8}
	order)	Pacc constant of a wave with frequency 12 facts and voices,
	Α	0.5
	В	72
	C	4
	D	36
40.	The per	mittivity is also called
	Â	Electrostatic energy
	В	Dielectric constant
	C	Dipole moment
	D	Susceptibility
		Susceptionity
41.	The circ	cuit in which current has a complete path to flow is called circuit.
	Α	short
	В	open
	Ĉ	closed
	Ď	open loop
	2	open roop
42.	The ene	rgy stored in the inductor is?
	A	Li ² /4
	В	Li ² /2
	č	Li ²
	D	Li ² /8
	D	1170
43	Pick the	incorrect statement among the following
13.	A	Inductor is a passive element
	В	Current source is an active element
. *	C	Resistor is a passive element
	D	Voltage source is a passive element
	D	Voltage source is a passive element
44.1	F	Itage source to be neglected, the terminals across the source should be
44.		
	A	replaced by inductor
	В	short circuited
	C	replaced by some resistance
,	D	open circuited
	14	
45. N	With son	ne initial charge at t = 0+, a capacitor will act as
	Α	open circuit 15
	В	short circuit
	C	a current source
	D	a voltage source
	D	a voltage source
		<u>.</u>
		A.

46. A constant current source supplies an electric current of 20	00 mA to a load of $2k\Omega$. When the load
changed to 100Ω, the load current will be	

- A 9mA
- B 4A
- C 700mA
- D 12A

47. The number of branches incident at the node of a graph is called?

- A degree of the node
- B order of the node
- C status of the node
- D number of the node

48. Number of twigs in a tree are... (n is the number of nodes)

- A n
- B n+1
- C n-1
- D n-2
- 49. The circuit shown below consists of a $1k\Omega$ resistor connected in series with a 50mH coil, a 10V rms, 10 KHz signal is applied. Find impedance Z in rectangular form.

- A $(1000+i0.05) \Omega$
- B (100+j0.5) Ω
- C (1000+j3140) Ω
- D (100+j3140) Ω

50. The time varying part in the equation of instantaneous power has frequency _____ that of the frequency of voltage or current wave forms.

- . A equal to
- B twice
- C thrice
- D four times

51. Which of the following is not known as transition capacitance?

- A Junction capacitance
- B Space-Charge capacitance
- C Diffusion capacitance
- D Barrier capacitance

52	2. For a dio	de the frame.	
	μm. All	de the transition capacitance was 10pF. The depletion width change other conditions remainunchanged. The new dieds consistence is	ed from 1 µm to 10
1	A	other conditions remain/unchanged. The new diode capacitance is 5pF	E .
	В	1414 =	
	č	1.414pF	
	D	lpF	
	ט	10Pf	a la Maria de la compansión de la compan
53	3. Using th	e ideal diode model of a silicon diode and taking E=10 V and R=11	what is the value of
	diode vo	oltage at operating point?	, what is the value of
	Α	0.7 V	
	В	0 V	
	C	10 V	*
	D	None of the mentioned	23
	D	None of the mentioned	
5	4. DC aver	age current of a half wave rectifier output is	
		re I _m is the maximum peak current of input)	,a
	A	$2I_{m}/\pi$	
	В	$I_{\rm m}/\pi$	
	C	$I_{\rm m}/2~\pi$	
	D	$1.414 \mathrm{I_m} / \pi$	
		o to the contract ring	le frequency of
		f wave rectifier, the input sine wave is 250sin100πt. The output ripp	ne nequency or
		r will be	
	A	100Hz	(280)
	В	200Hz	
	C	50Hz	
	D	25Hz	*
		(1) forten of a center tenned full wave rectifier is equal	to .
		ormer utilization factor of a center tapped full wave rectifier is equal	
	A	0.623	
	В	0.678	F45
	. C	0.693	
	D	0.625	*
	57. The sta	te amplifier which has zero input is not called	i.
	Α	Zero signal condition	
	В	Non-signal condition	
	Č	Quiescent condition	
	Ď	Empty-signal condition	
	ATTACAS.	**************************************	
	58. What is	s the role of input capacitance in the transistor amplifying circuit?	
1	Α	To prevent input variation from reaching output	V.
	В	To prevent DC content in the input from reaching transistor	
	C	There isn't any role for input capacitance	
	D	To increase input impedance	
		s the role of emitter resistance in the transistor amplifying circuit?	
		s the role of emiller resistance in the transfer and	
	, A	To prevent thermal runaway	3
	В	To prevent increase in gain	
	C	To lower the output impedance	A)
	D	To increase gain	
	3 6 7 fe		OPT D

60	. Which o	f the following is a best biasing method for transistor bias?
	Α	emitter bias
	В	voltage divider bias
	C	fixed bias
	D	collector feedback bias
61	. Compar	ed to ceramic oscillator crystal oscillators are
	Α	Less reliable
	В	Less costly
	C	More accurate
	D	They are same
62		any different combinations can be made from a n bit value?
	A	2 ⁽ⁿ⁾
	В	√ - 5
	С	2 ⁿ +1
	D	None of the mentioned
63	3. Source	coding block is used for?
	Α	Compressing
	В	Digitizing
	C	A/D conversion
	D	All of the mentioned
6	4. Discret	e impulse signal is a power or energy signal?
	Α	Power signal
	В	Energy signal
	C	Both power and energy signal
	D	Neither power or energy signal
6	5. Specto	gram is the graph plotted against?
	. A	Frequency domain
	В	Time domain
	C	Both of the mentioned
	D	None of the mentioned
6	6. Nyauis	st frequency is given by
- 5	· A	fs
-	В	2fs
	Č	fs/2
	Ď	none of the mentioned
6	7 Overce	impling can completely eliminate
J	A	Aperture error
	В	Non linearity
	C.	Quantization error
	D.	All of the mentioned

	68. In a delta	modules:
25	A	modulation system, granular noise occurs when the
(В	
	c	uise fale decreases
		Pulse amplitude decreases
	D	Modulating signal remains constant
	69. Modulat	ion process includes
	Α	Analog to digital conversion
	В	Digital to analog conversion
	C	Both of the mentioned
	D	None of the mentioned
	70 Forwh	oh quantization process is used?
		ch quantization process is used?
	A	Amplitude discretization
	В	Time discretization
	C	Amplitude & Time discretization
	D	None of the mentioned
	71. Find th	e susceptibility of a material whose dielectric constant is 2.26.
	Α	1.26
	В	3.26
	C	5.1
	D	1
	72 Comm	nent on the causality of the discrete time system: $y[n] = x[n+3]$.
	A A	Causal
	В	Non Causal
	C	Anti Causal
	D	None of the mentioned
	go The e	onvolution of a discrete time system with a delta function gives
		the square of the system
	A	the system itself
	В	the derivative of the system
	. C D	the integral of the system
		full-scale deflection current of a multimeter is 50 μ A, its sensitivity is
		Tull-scale deflection darks
	A	10 kΩ/V
	В	100 kΩ/V
	C	50 kΩ/V
	D	20 kΩ/V
	75. The	material used to coat inside the face of CRT is
	75. The A	Carbon
	В	Sulphur
	.C	Silicon
	. D	Phosphorous
	∵ ⊅	.e.mad. NS

76. When temperature increases reverse saturation current

- A Increases
- B Decreases
 - C Doesn't depend on temperature
 - D Either increases or decreases

77. Voltage rating of a zener diode denotes

- A Reverse breakdown voltage
- B Forward breakdown voltage
- C Voltage at which current is maximum
- D maximum forward voltage which a diode can withstand

78. Which of the following statement about a Si diode is true?

- A Cut-in voltage is always higher than reverse breakdown voltage
- B Reverse saturation current is in the order of mA
- C Cut-in voltage is 1V
- D Reverse scale current is in the order of Na

79. Calculate the forward bias current of a Si diode when forward bias voltage of 0.4V is applied, using characteristic equation of diode. The reverse saturation current is 1.17 x 10⁻⁹ A. Thermal voltage is 25.2 mV.

- A 9.156mA
- B 8.23mA
- C 1.256mA
- D 5.689Ma

80. Find current I through the circuit using characteristic equation of diode. The terminal voltage of each diode is 0.6V. Reverse saturation current is 10-12A.

- A 0.845mA
- B 1.892mA
- C 2.359mA
- D 3.012Ma

81. The reverse saturation current of a diode at 25°C is 1.5 x 10⁻⁹A and what will be reverse current at temperature 30°C?

- A 3×10^{-9} A
- B 2 x 10⁻⁹A
- C 2.12 x 10⁻⁹A
- D $1.5 \times 10^{-9} A$

SET B

82. Let the V_{in} be -5V and resistance R1 is 5K and the cut-in voltage of the diode is 0.7V. What will be the voltage V_{out}? (Take reverse saturation current as 10⁻⁸Λ and operating temperature as 25°C).

A. 0V

B. -4.5V

C. -5V

D. -3.2V

83. The reciprocal of slope of current-voltage curve at Q-point gives

A AC resistance

B Nominal resistance

C Maximum dynamic resistance

D Minimum impedance

84. Voltage drop produced by a diode at forward bias in ideal diode model is equal to

A 0.7V

B 0.3V

C 1V

D 0V

85. Voltage drop produced by a diode in piecewise linear mode is

A Constant and equal to knee voltage

B Varying linearly with voltage

C Varies exponentially with voltage

D Constant and equal to twice of knee voltage