Paper / Subject Code: 78905 / Linear Algebra Using Python

Q. P. Code: 34331

		(2 ½ Hours)	Total Marks: 75]		
N.B.	1) All questions are compulsory.				
	2) Figures to the right indicate marks.				
	3) Illustrations, in-depth answers and diagrams will be appreciated.				
	•	of sub-questions is not allowed.			
	, 0				
Q. 1	Attempt	All(Each of 5Marks)	(15M		
(a)	Multiple Choice Questions.				
	i)	Which of the following commands will create a list?			
	,	a) list l = list() b) list l = [] c) list l = ([1, 2, 3]) d) All of the	nese		
			A SO SO A SO A		
	ii)	The dot product of $(1, 2, 3)$ and $(1, -1, 0)$ is	77 7 00° 00° 00° 00° 00° 00° 00° 00° 00°		
	",	a) 0 b) 2 c) 1 d) -1			
	iii)	The dot product of $(1, 2, 3)$ and $(-1, 1, 0)$ is	00,49,73		
	111)	a) 1 b) -1 c) 0 d) 2			
		a) 1 b) 1 c) 0	X 23		
	iv)	A linear equation with right hand side is equal to zero is c	alled		
	1.,	a) A linear System b) Saturated	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		c) Homogeneous d) Non homogeneous			
		c) Homogeneous d) Non Homogeneous			
	v)	A vector whose norm is 1 is called vector			
	.,	a) Null b) Besis c) Unit d) none of these	se.		
		a) I vali			
(b)	Fill in the	e blanks for the following questions			
(0)					
	i)	Two vectors are said to be orthogonal if angle between the	em is		
	o (ii)	The output when we execute list("Hello") is			
	iii)	Set of all linear combinations of vectors is called	_		
	iv)	If all the elements of a matrix have zero value is called as			
2000		matrix.			
601	v)	To add a new element to a list we use commar	nd.		
(c)	Answer the following questions				
6 7 9 V	(i)	If $u = (1, 2, -1)$ and $v = (3, 2, -1)$ find norm u and norm v .			
200 C	ii)	Define the term Inner Product Space			
	iii)	Solve (1•1) + (1•0) + (1•1)			
	iv)	Define the term Characteristic equation			
3,73,73	(v)	Find dot product of (1, 5), (4, -2)			
20/2/0	2 4 0 0°	66 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			

Q. P. Code: 34331

Q. 2 Attempt the following (Any THREE)

(15M)

- (a) Find the square root of complex number 8 6i
- (b) Determine whether v_1 =(2, 2, 2), v_2 =(0, 0, 3) and v_3 =(0, 1, 1) span vector space \mathbb{R}^3 .
- (c) Write a Python program to find conjugate of a complex number.
- (d) Are the following vectors are linearly dependent $v_1=(3, 2, 7), v_2=(2, 4, 1)$ and $v_3=(1, -2, 6)$
- (e) Express in polar and exponential form $1 + i \sqrt{3}$
- (f) Check whether the set of all pairs of real numbers of the form (1, x) with operation (1, y) + (1, y') = (1, y + y') and k(1, y) = (1, ky) is a vector space.

Q. 3 Attempt the following (Any THREE)

(15M)

- (a) Find the angle between the two vectors a = (2,3,4) and b=(1,-4,3) in IR^3 .
- (b) Let

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 4 \\ 2 & 2 \\ 1 & 0 \end{pmatrix} \qquad c = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \qquad D = \begin{bmatrix} 2 & 4 & 3 & 1 \end{bmatrix}$$

Compute the following if they exists.

- a) A +B b) 3A c) B + 2D
- (c) Write a python program to enter a matrix and check if it is invertible. if invertible exists then find inverse.
- (d) Check whether the set of functions are Linearly independent? $2 x + 4x^2$, $3 + 6x + 2x^2$, $2 + 10x 4x^2$.
- (e) Consider Subspace $U_1\{(x, y, w, z) : x y = 0\}$ and $U_2\{(x, y, w, z) : x = w, y = z\}$ Find a basis and dimension of i) U_1 ii) U_2 iii) $U_1 \cap U_2$.
- (f) If V and W are two subsets of a vector space V such that U is a subset of W then show that W^0 is a subset of U^0 where U^0 , W^0 are annihilator of U and W respectively.

Q. 4 Attempt the following (Any THREE)

(15)

(a) Solve the following system by Gaussian elimination method.

$$y -z = 3$$

 $-2x + 4y - z = 1$
 $-2x + 5y - 4z = -2$

- (b) Find the orthonormal basis for subspace IR⁴ whose generators are $v_1 = (1,1,1,1), v_2 = (1,2,4,5), v_3 = (1,-3,-4,-2)$ Using Gram Schmidt orthogonali sation Method.
- (c) Let a = (3,0), b = (2,1) find vector in span $\{a\}$ that is closet to b is $b^{\parallel a}$ and distance $||b^{\perp a}||$.

Paper / Subject Code: 78905 / Linear Algebra Using Python

Q. P. Code: 34331

- (d) Verify Pythagorean Theorem for u = (1, 0, 2, -4) and v = (0, 3, 4, 2)
- (e) Find inner product, angle, orthogonality for $P = -5 + 2 x x^2$, $q = 2 + 3x^2$
- (f) Write a python program to find orthogonal projection u on v.

Q. 5 Attempt the following (Any THREE)

(15)

(a) Find eigen Values and eigen vectors of

$$A = \left(\begin{array}{ccc} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{array} \right)$$

- (b) Express the following as a linear combination of v_1 =(-2, 1, 3), v_2 =(3, 1, -1) and v_3 =(-1, -2, 1) with w=(6, -2, 5)
- (c) Let $T: |R^3 \to R^2$ be a linear map defined by f(x,y,z) = (x+2y-z, x+y-2z)Verify Rank T + Nullity T = 3.
- (d) Let S be a subset of vector space V. Prove that S^{\perp} is a subspace of V.
- (e) Fill the table.

Vector space	Basis	Dimension
{0}		
IR ²	{(1,0),(0,1)}	
$P_2(x)$		300000
M ₂ (IR)		40000
IR		Solo Solo Solo Solo Solo Solo Solo Solo

