ADABOOST & ENSEMBLE LEARNING

 Given the following 1-D example (not linearly separable)

x =	0	1	2	3	4	5	6	7	8	9
d =	1	1	1	-1	-1	-1	1	1	1	-1

□ 1st classifier

X =	0	1	2	3	4	5	6	7	8	9
h1 =	1	1	1	-1	-1	-1	-1	-1	-1	-1

□ 2nd classifier

X =	0	1	2	3	4	5	6	7	8	9
h2 =	1	1	1	1	1	1	1	1	1	-1

□ 3rd classifier

X =	0	1	2	3	4	5	6	7	8	9
h3 =	-1	-1	-1	-1	-1	-1	1	1	1	1

Perform majority vote

x=	0	1	2	3	4	5	6	7	8	9
h1 =	1	1	1	-1	-1	-1	-1	-1	-1	-1
h2 =	1	1	1	1	1	1	1	1	1	-1
h3 =	-1	-1	-1	-1	-1	-1	1	1	1	1
H=	1	1	1	-1	-1	-1	1	1	1	-1

All samples are correctly classified

- Although each classifier is a linear weak classifier (i.e., low accuracy), combined classifier is a strong nonlinear classifier
- Explain why (where do we introduce nonlinearity?)
- AdaBoost follows the same idea, but with weighted sum instead of voting

AdaBoost algorithm

- Symbol definition
 - \square Samples $x_1, ..., x_n \in \mathbb{R}^p$
 - \blacksquare Desired output $d_1, \dots, d_n \in \{-1, +1\}$
 - □ Initial weights $w_{1,1}, ..., w_{n,1}$ set to $\frac{1}{n}$ (note: 2nd index is classifier index)
 - Weak classifiers h_t : $x_k \to \{-1, +1\}$

AdaBoost algorithm

- \square For $t = 1 \dots T$
 - lacktriangle Find and save weak classifier $h_t(x)$ minimize

$$\epsilon_t = \frac{1}{n} \sum_{k=1}^n w_{k,t} \ell(h_t(\mathbf{x}_k) \neq d_k)$$

(Note: ϵ_t sometimes could be very small)

- □ Update $\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- Update weights: $w_{k,t+1} \leftarrow w_{k,t} \exp(-\alpha_t h_t(\mathbf{x}_k) d_k)$

$$w_{k,t+1} \leftarrow w_{k,t+1} / \sum_{k=1}^{n} w_{k,t+1}$$

- For $k = 1 \dots n : H(\mathbf{x}_k) = \text{sign}((\sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)))$
- Stop condition: (1) No error on classifying training data
- Or (2) Upper limit of iterations reached

Next classifier

- What is this part doing
 - □ Update $\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - □ Update weights: $w_{k,t+1} \leftarrow w_{k,t} \exp(-\alpha_t h_t(\mathbf{x}_k) d_k)$
- $lue{}$ To make classifier $h_t(x)$ has an error rate of 0.5 when classifying all training samples
- \square $h_{t+1}(x)$ can not receive any help from $h_t(x)$

AdaBoost algorithm

- Two classifiers in use
 - Use current weak classifier $h_t(\mathbf{x}_k)$ to update weights $w_{k,t+1} \leftarrow w_{k,t} \exp(-\alpha_t h_t(\mathbf{x}_k) d_k)$
 - lacktriangle Use combined strong classifier $H(x_k)$ to check error samples (but cannot be used for weights updating)

$$H(\mathbf{x}_k) = \operatorname{sign}\left(\sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)\right) == d_k?$$

AdaBoost algorithm

□ For classification after training, use

$$H(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

- There are several variations on AdaBoost
- The version given here is from Machine Learning in Action (a good book for engineers)
- You can compare this algorithm with the one in textbook (original AdaBoost.M1)

Adaboost as weighted voting

- □ Meaning of $H(x) = \text{sign}((\sum_{t=1}^{T} \alpha_t h_t(x)))$
- \square Recall each $h_t(x)$ has binary answer (± 1)

AdaBoost

- AdaBoost has solid theories behind it, to be briefly explained later
- Some key points in algorithm
 - Which weak classifier to use (should not be too strong)
 - How to perform optimal decision for weighted error in each weak classifier
 - Numerical issues (could be bad)
 - Very sensitive to noise and outliers in training set

 In the algorithm, we need to search over all possible combinations of parameters to find optimal weighted error

$$\epsilon_t = \sum_{k=1}^n w_{k,t} \ell(h_t(\mathbf{x}_k) \neq y_k)$$

- Not easy with many classifiers (such as SVM)
- One widely used classifier is decision stump:
 making a decision on one feature only

Decision stump example (from wiki)

An example of a decision stump that discriminates between two of three classes of Iris flower data set: *Iris versicolor* and *Iris virginica*. The petal width is in centimetres. This particular stump achieves 94%

- \square To find ϵ_t , we need to check all possible threshold values for all features
- Consider the following example with five training samples:
 - \square P1 = (1, 2.1), C = +1
 - \square P2 = (2, 1.1), C = +1
 - \square P3 = (1.3 1),C = -1
 - \square P4 = (1, 1), C = -1
 - \square P5 = (2, 1), C = +1

- □ For 1st feature, we need to check (for example)
- Threshold = $\{0.9, 1.1, 1.4, 2.1\}$ (other values OK, too)
- □ For 2nd feature, we need to check
- Threshold = $\{0.9, 1.05, 1.2, 2.2\}$
- $\hfill\Box$ We also need to know if $h(x_k)>0$ means C=1 or C=-1
- \square Finally, pick the threshold with lowest ϵ_t

- □ For example, we set thr = 1.4 in 1st feature: if 1st feature > thr, C = 1, else C = -1
- \square We have only one error in 1st iteration (t = 1)
- □ Therefore, $\epsilon_1 = 0.2$, $\alpha_1 = 0.6931$, $\mathbf{w}_{:,1} = [0.5, 0.125, 0.125, 0.125, 0.125]^T$
- We can do more steps with same approach

XOR experiment

- Use 100 samples in XOR as training samples:
- If (feature 1) * (feature 2) > 0 then C = 1, else C = -1
- Feature 1 and 2 are random numbers
- No error in training set at around 400 iterations (i.e., 400 weak classifiers)

Adaboost theory

- Want to explain why combining many weak classifiers can make a strong classifier with training error → 0
- □ The explanation follows

 https://www.youtube.com/watch?v=tH9FH1DH5n0
 - It does not consider re-normalization for simplicity
 - Can also consider re-normalization with a bit more complicated math, cf.

https://www.cs.princeton.edu/courses/archive/fall07/cos402/readings/boosting.pdf

Adaboost theory

Preliminary

- \blacksquare It is easy to see that $u(x) \le e^{-x}$
- \blacksquare Red: u(x), blue: e^{-x}

- $H(x_k) = \text{sign}((\sum_{z=1}^t \alpha_z h_z(x_k)) \text{ is the used classifier }$
- \square Error at time t $e_t = \frac{1}{n} \sum_{k=1}^n \ell(H(\boldsymbol{x}_k) \neq d_k)$
- \square Because $d_1,\dots,d_n\in\{-1,+1\}$, we have $\ell(H(\textbf{\textit{x}}_k)\neq d_k)=u(H(\textbf{\textit{x}}_k)d_k)$
- Let $g_t(\mathbf{x}_k) = \sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)$

ullet $u(H(x_k)d_k)$ can further be simplified as

$$u(H(\mathbf{x}_k)d_k) = u\left(\left(\sum_{z=1t} \alpha_z h_z(\mathbf{x}_k)\right) d_k\right)$$
$$= u(g_t(\mathbf{x}_k)d_k)$$

- \Box Therefore, $e_t = \frac{1}{n} \sum_{k=1}^n u(g_t(\boldsymbol{x}_k) d_k)$
- \square Recall $u(x) \le e^{-x}$, thus

$$e_t \le \frac{1}{n} \sum_{k=1}^n \exp(-g_t(\mathbf{x}_k) d_k)$$

Consider error-weight update in one sample

$$w_{k,t+1} = w_{k,t} \exp(-\alpha_t h_t(\boldsymbol{x}_k) d_k)$$

- Initial condition: $w_{k,1} = \frac{1}{n}$
- □ Thus, $w_{k,2} = \frac{1}{n} \exp(-\alpha_1 h_1(\mathbf{x}_k) d_k)$
- $w_{k,3} = \frac{1}{n} \exp(-\alpha_1 h_1(\mathbf{x}_k) d_k) \exp(-\alpha_2 h_2(\mathbf{x}_k) d_k)$

- \square Expanding it with \prod notation, we have
- $w_{k,t+1} = \frac{1}{n} \prod_{z=1}^{t} \exp(-\alpha_z h_z(\boldsymbol{x}_k) d_k) =$ $\frac{1}{n} \exp(-d_k \sum_{z=1}^{t} \alpha_z h_z(\boldsymbol{x}_k))$
- \square Recall $g_t(\mathbf{x}_k) = \sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)$
- □ We have $w_{k,t+1} = \frac{1}{n} \exp(-g_t(\mathbf{x}_k)d_k)$

Relation between error & weights

□ Summing over all k, we have

$$w_{all,t+1} = \frac{1}{n} \sum_{k=1}^{n} \exp(-g_t(\mathbf{x}_k) d_k)$$

- □ But, $e_t \le \frac{1}{n} \sum_{k=1}^{n} \exp(-g_t(x_k) d_k)$
- \square We have $e_t \leq w_{all,t+1}$
- □ Therefore, all we have to do is to show $w_{all,t+1} \to 0$ if $t \to \infty$

Weights decay

Actually means

$$w_{k,t+1} = \begin{cases} w_{k,t} \times \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} & x_k \text{ wrong class} \\ w_{k,t} \times \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} & x_k \text{ correct class} \end{cases}$$

Weights decay

□ On the average, we have

Therefore,
$$w_{k,t+1} = w_{k,t} \times 2 \times \sqrt{\epsilon_t (1 - \epsilon_t)}$$

 \Box If $\epsilon_t < 0.5$ (assumption of weak classifier), then $2 \times \sqrt{\epsilon_t (1 - \epsilon_t)} < 1$

Weights decay

- \square Therefore, $w_{k,t+1} = \gamma_t \times w_{k,t}$, where $\gamma_t < 1$

This term approaches to zero if $n \to \infty$

Using AdaBoost

- Keep in mind: AdaBoost is very sensitive to noise (i.e., training samples with wrong labeling)
- Need to use weak classifiers for best performance
- Theories show that AdaBoost also widens the "margin" as SVM does

Concept of gradient boosting

General algorithm

- \square Initial function $H_0(x_k) = 0 \ \forall k$
- □ For i = 1 .. T
 - Find a function $h_t(x_k)$ and w_t to improve $H_{t-1}(x_k)$ for all samples k = 1...N, based on loss function and gradient descent
 - $\blacksquare H_t(\mathbf{x}_k) = H_{t-1}(\mathbf{x}_k) + \beta_{k,t} h_t(\mathbf{x}_k)$
- \square Final classifier output $sign(H_T(x_k))$

Concept of gradient boosting

□ From the above algorithm we know

$$H_t(\boldsymbol{x}_k) = H_{t-1}(\boldsymbol{x}_k) + \beta_{k,t} h_t(\boldsymbol{x}_k)$$
$$= \sum_{z=1}^t \beta_{k,z} h_z(\boldsymbol{x}_k)$$

- Thus, the key of the algorithm is to find
 - $\square \beta_{k,t}$
 - $\Box h_t(x_k)$
- To do so, we treat the problem as an optimization problem

Gradient descent

Define a loss (objective) function

$$\mathcal{L}(H_t) = \sum_{k=1}^{n} \exp(-d_k H_t(x_k))$$

Want to update

$$H_t(\mathbf{x}) = H_{t-1}(\mathbf{x}) - \eta \nabla \mathcal{L}(H_{t-1})$$

via gradient descent

 \square Ignore η (step size) at this moment

What is $\beta_{t,k}$

$$\nabla \mathcal{L}(H_{t-1}) = \frac{\partial}{\partial H_{t-1}(x_k)} \mathcal{L}(H_{t-1}) = -\sum_{k=1}^{n} \exp(-d_k H_{t-1}(x_k)) d_k$$

Therefore, (gradient update in one sample)

$$H_t(x_k) = H_{t-1}(x_k) + \exp(-d_k H_{t-1}(x_k))d_k$$

- \square In the algorithm, $H_t(x_k) = H_{t-1}(x_k) + \beta_{t,k} h_t(x_k)$
- We may reasonably assume

$$\beta_{t,k} = \exp(-d_k H_{t-1}(x_k))$$

$$d_k \text{ is related to } h_t(x_k)$$

What is $\beta_{t,k}$

- Therefore, $\nabla \mathcal{L}(H_{t-1}) = -\sum_{k=1}^{n} \beta_{t,k} d_k$ with $\beta_{t,k} = \exp(-d_k H_{t-1}(x_k)) = \exp(-d_k \sum_{z=1}^{t-1} \beta_{k,z} h_z(x_k))$
- From our previous derivation, we have (in Adaboost)
- $\square w_{k,t+1} = \frac{1}{n} \exp(-d_k \sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k))$
- Therefore, we know (in Adaboost)
 - $\beta_{t,k} = w_{k,t}$ is a function of α_t (need to find it later) subject to a constant (1/n)

How to determine $h_t(x_k)$

- In real gradient descent, we have the freedom to use true gradient in iteration
- But in the present case, we want to use a weak classifier (such as a decision stump) as an estimate of gradient
- $\hfill\Box$ Therefore, we want to match the gradient direction as much as possible between d_k and $h_t(\pmb{x_k})$ for all samples

How to determine $h_t(x_k)$

- What can we do?
- Pick the weak classifier which minimizes

$$\beta_{t,k}\ell(h_t(\boldsymbol{x}_k)\neq d_k)$$

Usually finding such a weak classifier requires a search

How to determine α_t

- \square $\beta_{t,k}$ is a function of α_t and $\beta_{t,k}$ is the step size of the gradient (similar to the role of η in previous equation)
- \square Want to find the optimal value of $lpha_t$
- It can be found by taking derivatives (detailed omitted)
- \square With computation, we have $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ is the optimal step size (same as in Adaboost)

Other boosting methods

- Other than AdaBoost, we also have gradient tree boosting methods
 - XGBoost
 - LightGBM (Light Gradient Boosting Machine)
 - CatBoost

Introduction to XGBoost

- Brief introduction to XGBoost (eXtreme Gradient Boosting)
- Similar concept as gradient boosting mentioned previously
- Use a different objective function
- □ Ref: https://xgboost.readthedocs.io/en/latest/tutorials/model.html

Introduction to XGBoost

 Objective Function: to minimize (Training Loss + Regularization)

$$J(\theta) = \mathcal{L}(\theta) + \Omega(\theta)$$

- $\square \mathcal{L}(\theta)$ could be
 - \square MSE $\sum_{k} (y_k d_k)^2$
 - Other (such as logistic loss)

Regularization

 \square $\Omega(\theta)$ is a regularization term, defined as

$$\Omega(\theta) = \gamma T + \frac{1}{2}\lambda \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2$$

- \square K is number of trees
- $lue{T}$ is the number of leaves in each tree (remember all trees have the same structure, such as number of leaves)
- $\mathbf{w}_k \in \mathbb{R}^{\mathsf{T}}$ is the vector of scores (weights) on leaves for each tree

Regularization

- We can follow the concept of gradient descent (use up to 2nd derivative) to minimize objective function
- Details see reference (original paper)
 https://www.kdd.org/kdd2016/papers/files/rfp0
 697-chenAemb.pdf

Ensemble learning

□ Ensemble learning is the process by which multiple models, such as classifiers or experts, are strategically generated and combined to solve a particular computational intelligence problem.
 Ensemble learning is primarily used to improve the (classification, prediction, function approximation, etc.) – from http://www.scholarpedia.org/article/Ensemble_learning

Ensemble learning

- Boosting
 - Well known: AdaBoost (mentioned before)
 - Mainly for weak classifiers
- Bagging
 - Well known: Random forest (mentioned before)
 - Mainly for classifiers easy to overfit
- Stacking
 - Voting
 - Post classifier
 - Fusion

Voting

- Do a majority vote (equal weights for decision of each classifier)
 - Simple, yet powerful

Adaboost as weighted voting

- □ Meaning of $H(x) = \text{sign}((\sum_{t=1}^{T} \alpha_t h_t(x)))$
- \square Recall each $h_t(x)$ has binary answer (± 1)

Post classifier

- Use post classifier to classify model outputs
 - Need to split training dataset to train post classifier

Fusion

Merge together to build a larger network

Comparison

- Based on our experiments
 - Voting is actually better
 - Post classifier is not too much useful if the base classifier is a neural network (output values too close to one or zero)
 - Fusion seems to have too many parameters (complexity too high)
- In some cases, even 3 classifiers improve accuracy by one or two percents

Regression

- Ensemble learning can also be used for regression problem
 - Replace voting with average
 - Similar to what random forest does for regression