

Objective

Using skills and techniques gained in ME445 <u>design and</u> <u>build a small two link planar robot that demonstrates the</u> <u>neural control of the sensorimotor system in humans.</u>

Sensorimotor = Senses & Motor Movement

Goals

Develop the platform:

complete physical design of robot and integrate all electrical components.

Implement a feedback (closed loop) control algorithm to move our motor arms to a desired position.

Implement a demonstration of a potential challenge to sensorimotor control.

Physical Design

Used design to calculate body dynamics and size motors.

Physical Design

Inverse Kinematics

Robot Trajectory

Schematic

Resource management!

PWM Motor Control

TOP value was adjusted by controller to increase or decrease velocity of the two motors.

Fast PWM Mode, Timing Diagram

(image from ATMEL ATmega328p data sheet)

Control Laws

Constant Velocity (Normal Mode)

State Machine

S0: Ready...

S1: Normal Mode

S2: Noise Mode

S3: E-Stop

S4: Restart

Challenges Overcome

- Debugging on Arduino & setting up with Atmel Studio (not arduino IDE)
- PWM
- Communicating to new LCD via serial (without premade library)
- How to perform an inverse kinematic analysis for a two link robot

How to set up an entire system from scratch!

Future Work

- Refine mechanical design and pulley system
- Replace/Repair LCD
- Resolve conflict between encoder counter and state machine
 - Dedicated encoder counter
- Add additional modes with corresponding control laws

ME445 Tools/Topics Covered:

- Circuit design
- Data sheet reading
- C programming & debugging with CodeVision AVR and Atmel Studio
- Digital I/O & Digital logic
- Interrupts & timers
- State transition diagrams
- Use of an LCD
- Encoder counting
- PD Control
- Fixed point math
- PWM & H-Bridge