LAPORAN TEORI BAHASA DAN OTOMATA

DOSEN PENGAMPU:

Novi Yusliani, S.Kom., M.T.

DISUSUN OLEH:

KELOMPOK 3

Azka Hukma Tsabita	(09021382328159)
Inayah Khofifah Danis	(09021382328141)
Saravina Zharfa Kelana Putri	(09021382328149)
Fransisca Stevanie Ekawati	(09021382328127)
Putri Alisya Zhafirah	(09021382328153)

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS SRIWIJAYA 2025

1. Grammar CFG (Context Free grammar)

 $D \to xDy \mid yDx \mid xDx \mid yDy \mid \epsilon$

grammar CFG tersebut menggunakan "Leftmost Derivation"

• Variabel (Non-Terminal)

 $D \rightarrow$ adalah satu- satunya variabel dalam grammar ini, yang digunakan sebagai simbol awal.

• Terminal (Simbol Alfabet)

terminal x dan terminal y

Aturan Produksi

- $D \rightarrow xDy$
- $D \rightarrow yDx$
- $D \rightarrow xDx$
- $\bullet \quad D \to y D y$
- $D \rightarrow \epsilon$

2. Contoh String

1. w = xyxxyyxy

$$D \to xDy \to x(yDx)y \ \to \ x(y(xDy)x)y \ \to \ x(y(x(xDy)y)x)y \to x(y(x(x\xi y)y)x)y \to xyxxyyxy$$

2. w = xyxy

$$D \to xDy \to x(yDx)y \to x(y\epsilon x)y \to xyxyw = xxxy$$

3. w = xxxy

$$D \to xDy \to x(xDx)y \to x(x\epsilon x)y \to xxxy$$

3. CFG ke PDA

$$D \rightarrow xDy \mid yDx \mid xDx \mid yDy \mid \epsilon$$

$$PDA = (Q, \Sigma, \Gamma, \delta, q0, Z0, F)$$

- $\bullet \qquad \Gamma = \{ x, y, D \}$
- q: start state
- Initial stack = D

PDA =
$$(\{q\}, \{x,y\}, \{x,y,D\}, \delta, q, D)$$

δ:

- $\delta(q, \varepsilon, D) = \{(q, xDy), (q, y, Dx), (q, xDx), (q, yDy), (q, \varepsilon)\}$
- $\delta(q,x,x) = \{(q, \varepsilon)\}$
- $\delta(q,y,y) = \{(q, \varepsilon)\}$

4. CFG ke CNF

$$D \to xDy \mid yDx \mid xDx \mid yDy \mid \epsilon$$

1. ε-Production

$$D \rightarrow xDy \mid yDx \mid xDx \mid yDy \mid xy \mid yx \mid xx \mid yy$$

2. Unit Production

Tidak memiliki *unit production* karena semua produksinya memiliki lebih dari satu simbol di sisi kanan atau mengandung simbol terminal. Unit production hanya terjadi jika sebuah non-terminal menghasilkan tepat satu non-terminal (misalnya $A \rightarrow B$), sedangkan dalam grammar ini, setiap aturan produksi D melibatkan kombinasi terminal dan/atau lebih dari satu simbol, sehingga tidak memenuhi bentuk unit production.

- 3. Useless symbol
 - Not Generating: Tidak memiliki Not Generating
 - Not Reachable: Tidak memiliki Not Reachable

```
4. CNF (Chomsky Normal Form)
      Misal:
      A \rightarrow x
      B \rightarrow y
      C \rightarrow DB
      E \rightarrow DA
      D \rightarrow xDy \mid yDx \mid xDx \mid yDy \mid xy \mid yx \mid xx \mid yy
      D \rightarrow ADB \mid BDA \mid ADA \mid BDB \mid AB \mid BA \mid AA \mid BB
      D \rightarrow AC \mid BE \mid AE \mid BC \mid AB \mid BA \mid AA \mid BB
 5. Pembuktian
```

Code:

```
CFG = {
    "D": ["xDy", "yDx", "xDx", "yDy", ""]
start symbol = 'D'
Kedalaman Maksimum = 20  # Batas kedalaman rekursi
```

```
def left most derivation (CFG, start symbol, string target):
   hasil = []
    def derivasi(current, step_derivation, kedalaman):
        if kedalaman > Kedalaman Maksimum:
            return
        string flat = ''.join([c for c in current if c not in CFG])
        if string flat == string target:
            hasil.append(step derivation + [''.join(current)])
            return
        if len(string flat) > len(string target):
            return
```

```
for i, symbol in enumerate(current):
    if symbol in CFG:
        for produksi in CFG[symbol]:
            baru = current[:i] + list(produksi) + current[i+1:]
            derivasi(baru, step_derivation + [''.join(current)],
kedalaman + 1)
        break # hanya derivasi simbol non-terminal pertama (kiri)

derivasi([start_symbol], [], 0)
    return hasil
```

```
print("Periksa Leftmost Derivation")
while True:
    inputString = input("\nMasukkan string yang ingin diperiksa (atau
ketik 'selesai' untuk berhenti): ").strip()
    if inputString.lower() == 'selesai':
        print("Program dihentikan.")
        break

    hasil_derivasi = left_most_derivation(CFG, start_symbol, inputString)
    if hasil_derivasi:
        print(f" String '{inputString}' DITERIMA oleh CFG. Contoh
derivasi:")
        for step_derivation in hasil_derivasi[0]:
            print(f" → {step_derivation}")
    else:
        print(f" String '{inputString}' TIDAK DITERIMA oleh CFG.")
```

Output:

Periksa Leftmost Derivation

```
Masukkan string yang ingin diperiksa (atau ketik 'selesai' untuk berhenti): xyxxyyxy

✓ String 'xyxxyyxy' DITERIMA oleh CFG. Contoh derivasi:

→ D

→ xDy
```

```
→ xyDxy
→ xyxDyxy
→ xyxxDyyxy

Masukkan string yang ingin diperiksa (atau ketik 'selesai' untuk berhenti): xyxy

✓ String 'xyxy' DITERIMA oleh CFG. Contoh derivasi:
→ D
→ xDy
→ xyDxy
```

Masukkan string yang ingin diperiksa (atau ketik 'selesai' untuk berhenti): xxxy

✓ String 'xxxy' DITERIMA oleh CFG. Contoh derivasi:

 \rightarrow D

 \rightarrow **x**D**y**

 \rightarrow **xxDxy**

Masukkan string yang ingin diperiksa (atau ketik 'selesai' untuk berhenti): xyxyxix

X String 'xyxyxix' TIDAK DITERIMA oleh CFG.

Masukkan string yang ingin diperiksa (atau ketik 'selesai' untuk berhenti): selesai Program dihentikan.

link google colab: Co TBO.ipynb