Relational Algebra

Relational Algebra

- Last time: started on Relational Algebra
 - What your SQL queries are translated to for evaluation
- ❖ A formal query language based on operators

Selection operator

- Input: a relation
- Output: a relation containing a subset of the tuples from the input relation
 - That satisfy a certain condition

			selection				
bid	name	color	SCICCUOIT				
101	Misty	red		1	bid	name	color
			bid = 101		101	Misty	red
102	Pearl	blue	010 101				
103	Speedy	blue		_			

Projection operator

- Input: a relation
- Output: a relation containing a subset of the columns from the input relation

bid	name	color	projection	
101	Misty	red	color	
102	Pearl	blue	blue	
103	Speedy	blue		

Relations are sets, so duplicates removed!!

Cross Product

In mathematical notation

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid='101';

$$\pi_{S.sname}(\sigma_{R.bid=101 \land R.sid=S.sid}(R \times S))$$

What does this buy us?

- Explicit workflow ("where the tuples go")
- Can start thinking about implementation:
 - Need an implementation for each of the boxes
 - Maybe can reorder and/or combine some of them for better results?

Now let's make it more formal

- So far: intuitive "boxes and arrows" presentation
- Now: more formal mathematical specification
- Useful because:
 - If you implement these operators, have to know precisely what you're implementing
 - If we want to reorder some of them, need to know (prove) that it's safe

Preliminaries

- * A query is applied to <u>relation instances</u>, and the result of a query is also a relation instance
- ❖ A query is a sequence of operators
- Operators need to compose (can feed output of one as input to the next one)
 - So both input and output relations need to be sets
 - Set relational algebra
 - Next time: bag relational algebra (duplicates allowed)

Preliminaries

- Schemas of operator outputs determined by schemas of inputs
 - E.g. selection -> same schema
 - Projection -> subset of columns
- * Positional vs. named-field notation:
 - Positional notation (arguably) easier for formal definitions, named-field notation more readable.
 - We mostly use named-field notation in this course

Relational Algebra

- ❖ The "core" operators:
 - <u>Selection</u> (σ) Selects a subset of rows from relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - Cross-product (X) Allows us to combine two relations.
 - <u>Ioin</u> (⋈) Technically redundant, but very handy
 - Set operators: \bigcup , \cap , -

Example Instances

 sid
 bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

"Sailors" and "Reserves" relations for our examples.

*S*1

R1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Selection

- Selects rows that satisfy <u>selection condition</u>.
- Schema of result identical to schema of input relation.

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

Selection – formal definition

- Formally, let c be a selection condition
 - i.e. a Boolean combination (using AND and OR) of terms of the form "att op const" or "att1 op att2", where
 - *att, att1, att2* are attribute names
 - op is =, !=, <, >, <=, >=
 - *const* is a value from the domain of the attribute in question
- Then

$$\sigma_c(R) = \{t \in R \mid c \text{ is true for } t\}$$

Projection

- Deletes attributes that are not in projection list.
- * Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Eliminates duplicates (relations are sets)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age 35.0 55.5

 $\pi_{age}(S2)$

Projection – formal definition (1)

* For a tuple t , let t[A] denote the restriction of tuple t to exactly the attributes in A

- * Suppose $A = \{a_1, a_2, \cdots a_k\}$
- \star Suppose t(a) denotes value of tuple t for attribute a
- * Then $t[A] = t(a_1) \cdot t(a_2) \cdots t(a_k)$
- The dot represents concatenation

Projection – formal definition (2)

 \star Let R be a relation and A a subset of the attributes of R

* Then
$$\pi_A(R)$$
 is defined as $\{t[A] \mid t \in R\}$

Cross-Product

- ❖ Each row of S1 is paired with each row of R1.
- * <u>Result schema</u> has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• Renaming operator: $\rho(C(S1.sid \rightarrow sid1, R1.sid \rightarrow sid2), S1 \times R1)$

Cross product –formal definition

Not that hard!

$$R \times S = \{ (r \cdot s) \mid r \in R \land s \in S \}$$

Join operator

- Very common case: cross product followed by selection that "connects" attributes from both relations
- Handy to define a shorthand operator for it
 - But technically don't need to

Joins

* Condition Join: $R \bowtie_a S = \sigma_a(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- * Result schema same as that of cross-product.
- ❖ Fewer tuples than cross-product, might be able to compute more efficiently

Joins

* <u>Equi-Join</u>: A special case of condition join where the join condition contains only *equalities*.

$$S1\bowtie_{S1.sid=R1.sid}R1$$

A handy shortcut

- If the join condition is equality, unwieldy to carry two copies of column in result
- Add a projection to remove one duplicate column
- Shortcut (per your textbook): assume the projection without specifying it
 - i.e. retain only one copy of each column where join condition has equality

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1\bowtie_{S1.sid=R1.sid}R1$$

Natural joins

- ❖ ⋈ symbol without condition
- Equality join on all fields with common name in both tables
- And retain only one copy of each such field
- If want to join on only some of the common attributes, need to specify condition explicitly

Union, Intersection, Set-Difference

- * All of these operators take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - 'Corresponding' fields have the same type.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Formal definitions

* Easier and easier!

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

$$R \cap S = \{t \mid t \in R \land t \in S\}$$

$$R - S = \{t \mid t \in R \land t \notin S\}$$

Confusion alert!

- Union vs. Join
- These are NOT the same thing
- * Let's make sure we understand the difference!

A few examples

❖ A few more examples to get the hang of it

Find names of sailors who've reserved boat #103

* Solution 1: $\pi_{sname}((\sigma_{bid=103}Reserves) \bowtie Sailors)$

* Solution 2:
$$\rho(Temp1, \sigma_{bid=103}Reserves)$$

$$\rho(Temp2, Temp1 \bowtie Sailors)$$

$$\pi_{sname}(Temp2)$$

Find names of sailors who've reserved a red boat

❖ Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}(\sigma_{color=red}(Boats \bowtie Reserves \bowtie Sailors))$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}(\sigma_{color=red}B))\bowtie R)\bowtie S)$$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, ($\sigma_{color='red' \vee color='green'}$ Boats))

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

Can also define Tempboats using union! (How?)

Find sailors who've reserved a red and a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho \ (Tempred, \pi_{sid}((\sigma_{color='red'}, Boats) \bowtie Reserves))$$

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Additional operators

- The basic operator toolkit is the one you've seen
- But can be handy to introduce extra operators that are technically redundant
 - Joins are an example
 - Intersection is actually redundant too (try to express it using the others)