International Rectifier

IRF7322D1

FETKY™ MOSFET / Schottky Diode

- Co-packaged HEXFET® Power MOSFET and Schottky Diode
- Ideal For Buck Regulator Applications
- P-Channel HEXFET
- Low V_F Schottky Rectifier
- Generation 5 Technology
- SO-8 Footprint

Description

The **FETKY** family of co-packaged MOSFETs and Schottky diodes offers the designer an innovative, board space saving solution for switching regulator and power management applications. Generation 5 HEXFET Power MOSFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combinining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics. The SO-8 package is designed for vapor phase, infrared or wave soldering techniques.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter		Maximum	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-5.3	A
I _D @ T _A = 70°C		-4.3	
I _{DM}	Pulsed Drain Current ①	-43	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C		1.3	
	Linear Derating Factor	16	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	-5.0	V/ns
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to +150	°C

Thermal Resistance Ratings

Parameter		Maximum	Units
$R_{\theta JA}$	Junction-to-Ambient ④	62.5	°C/W

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by maximum junction temperature (see figure 9)
- ② $I_{SD} \le -2.9A$, $di/dt \le -77A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C
- ③ Pulse width ≤ 300 μ s; duty cycle ≤ 2%
- ④ Surface mounted on FR-4 board, t ≤ 10sec.

MOSFET Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

WOOI ET Electrical Orial acteristics & Ij = 25 0 (unless otherwise specified)						
Parameter		Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20	_	_	V	$V_{GS} = 0V, I_{D} = -250\mu A$
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	0.049	0.062	Ω	$V_{GS} = -4.5V, I_D = -2.9A$ ③
		_	0.082	0.098	52	$V_{GS} = -2.7V, I_D = -1.5A$ ③
V _{GS(th)}	Gate Threshold Voltage	-0.70	_	_	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	_	5.9	_	S	$V_{DS} = -10V, I_D = -1.5A$
I _{DSS}	Drain-to-Source Leakage Current	_	_	-1.0		$V_{DS} = -16V, V_{GS} = 0V$
		_	_	-25	μA	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	100	nA	$V_{GS} = -12.0V$
	Gate-to-Source Reverse Leakage] —	—	-100	IIA	$V_{GS} = 12.0V$
Qg	Total Gate Charge	_	19	29		I _D = -2.9A
Q _{gs}	Gate-to-Source Charge	_	4.0	6.1	nC	$V_{DS} = -16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	7.7	12		$V_{GS} = -4.5V$ (see figure 6) 3
t _{d(on)}	Turn-On Delay Time	_	15	22		V _{DD} = -10V
t _r	Rise Time	_	40	60]	$I_D = -2.9A$
t _{d(off)}	Turn-Off Delay Time	_	42	63	ns	$R_G = 6.0\Omega$
t _f	Fall Time	_	49	73		$R_D = 3.4\Omega$ ③
C _{iss}	Input Capacitance		780	_		$V_{GS} = 0V$
Coss	Output Capacitance	_	470	_	pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance	_	240			f = 1.0MHz (see figure 5)

MOSFET Source-Drain Ratings and Characteristics

<u> </u>						
Parameter		Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)		_	-2.5	Α	
I _{SM}	Pulsed Source Current (Body Diode)	_	_	-21		
V _{SD}	Body Diode Forward Voltage	_	_	-1.2	V	$T_J = 25$ °C, $I_S = -2.9$ A, $V_{GS} = 0$ V
t _{rr}	Reverse Recovery Time (Body Diode)	_	47	71	ns	$T_J = 25^{\circ}C, I_F = -2.9A$
Q _{rr}	Reverse Recovery Charge	_	49	73	nC	di/dt = 100A/µs ③

Schottky Diode Maximum Ratings

	· ,					
	Parameter	Max.	Units.	Conditions		
I _{F(av)}	Max. Average Forward Current	2.7	Α	50% Duty Cycle. Rectangular Wave, T _A = 25°C		
		2		See Fig. 14	$T_A = 70^{\circ}C$	
I _{SM}	Max. peak one cycle Non-repetitive	120		5µs sine or 3µs Rect. pulse	Following any rated	
	Surge current	11	A	10ms sine or 6ms Rect. pulse	load condition &	
					with $V_{\scriptscriptstyle RRM}$ applied	

Schottky Diode Electrical Specifications

	Parameter	Max.	Units	Conditions
V_{FM}	Max. Forward voltage drop	0.50		I _F = 1.0A, T _J = 25°C
		0.62	V	I _F = 2.0A, T _J = 25°C
		0.39] v	$I_F = 1.0A, T_J = 125^{\circ}C$
		0.57		$I_F = 2.0A, T_J = 125^{\circ}C$.
I _{RM}	Max. Reverse Leakage current	0.02	mA	$V_R = 20V$ $T_J = 25^{\circ}C$
		8		T _J = 125°C
Ct	Max. Junction Capacitance	92	pF	V _R = 5Vdc (100kHz to 1 MHz) 25°C
dv/dt	Max. Voltage Rate of Charge	3600	V/ µs	Rated V _R

IRF7322D1

Power Mosfet Characteristics

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Power Mosfet Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Power Mosfet Characteristics

Fig 9. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

0.08 (T) 0.07 0.06 0.06 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.06 0.

Fig 10. Typical On-Resistance Vs. Drain Current

Fig 11. Typical On-Resistance Vs. Gate Voltage

Schottky Diode Characteristics

Fig. 12 - Typical Forward Voltage Drop Characteristics

Fig. 13 - Typical Values of Reverse Current Vs. Reverse Voltage

Fig.14 - Maximum Allowable Ambient Temp. Vs. Forward Current

SO-8 Package Details

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- ⑤ DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
- (6) DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE..

INC	HES	MILLIMETERS		
MIN	MAX	MIN	MAX	
.0532	.0688	1.35	1.75	
.0040	.0098	0.10	0.25	
.014	.018	0.36	0.46	
.0075	.0098	0.19	0.25	
.189	.196	4.80	4.98	
.150	.157	3.81	3.99	
050 BASIC		1.27 BASIC		
.025 E	.025 BASIC		BASIC	
.2284	.2440	5.80	6.20	
.011	.019	0.28	0.48	
0.16	.050	0.41	1.27	
0°	8°	0°	8°	
	MIN .0532 .0040 .014 .0075 .189 .150 .025 E .2284 .011 0.16	.0532 .0688 .0040 .0098 .014 .018 .0075 .0098 .189 .196 .150 .157 .050 BASIC .025 BASIC .2284 .2440 .011 .019 0.16 .050	MIN MAX MIN .0532 .0688 1.35 .0040 .0098 0.10 .014 .018 0.36 .0075 .0098 0.19 .189 .196 4.80 .150 .157 3.81 .050 BASIC 1.27 .025 BASIC 0.635 .2284 .2440 5.80 .011 .019 0.28 0.16 .050 0.41	

RECOMMENDED FOOTPRINT

Part Marking

EXAMPLE: THIS IS AN IRF7101

Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- ${\tt 1.CONTROLLING\ DIMENSION:MILLIMETER.}$
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice . 3/99