

□ (+1) 858-952-2680 | ☑ rvasan@eng.ucsd.edu | 🏕 ritvikvasan.github.io | ☑ ritvikvasan | 匝 ritvikvasan

Skills

General

Research, Data Science, Computation, Machine Learning, Quantitative Biology

Programming and software packages Soft Python, LaTeX, PyTorch, Tensorflow, MATLAB, Jython, Git, COMSOL, Solidworks Teaching, Mentoring, Public Speaking, Patience, Analytical Thinking, Team-Oriented

Summary₋

I am a PhD candidate with significant experience in computational mechanobiology and entrepreneurship. I leverage interdisciplinary skills including theoretical modeling, machine learning, software engineering and quantitative biology to answer complex biophysical questions. Along the way, I develop usable tools for the community. I am seeking to expand my experience in technology, innovation and entrepreneurship to make a lasting impact.

Education

University of California, San Diego

PHD IN MECHANICAL ENGINEERING (3.97/4.00)

M.S. IN MECHANICAL ENGINEERING (3.97/4.00)

B.S. IN MECHANICAL ENGINEERING (8.76/10.00)

9500 Gilman Drive, San Diego, CA

University of California, San Diego

2016 - 2020 2015 - 2016

Pilani, Rajasthan, India

2011 - 2015

Dec 2015 - Present

Experience

BITS Pilani

Laboratory for computational and cellular mechanobiology

PHD CANDIDATE • Transitioned research from bio-medical device prototyping to computational biophysics.

Published 3 peer reviewed papers in 3 years, before most peers, with 3 other papers in review.

· Participated as chair and platform speaker in 3 international conferences including Biophysical Society.

- Awarded competitive Frontiers of Innovation and Scholars Program (FISP) fellowship and the UCSD outstanding graduate student award.
- Created 2 open-source tools that have received press attention from websites like phys.org, sciencedaily.com and jacobsschool.ucsd.edu.
- Led collaborative teams of scientists across 4 universities.

Allen Institute for Cell Science

Seattle, WA

June - Sept 2018 and 2019 SUMMER TRAINEE

- Initiated project leveraging advanced machine learning models to analyze the Allen Institute's cell feature data.
- Implemented and published a force-inference Python package named DLITE to estimate cell-cell forces from images.
- Worked in an open-science and team-science environment.
- Coordinated collaboration between the Allen Institute for Cell Science and UCSD.

Nano-bio imaging and devices lab

University of California, San Diego

Sept - Dec 2015

July 2014 - Aug 2015

• Implemented preliminary protocols to develop nano-bowls for targeted drug delivery.

Applied physics and instrumentation lab

RESEARCH ASSISTANT • Designed a proof of concept of an affordable and portable cell-phone microscope for malaria diagnosis.

Selected as one of the top innovation projects in India for the Gandhian award by SRISTI.

• Publicized work through national newspapers and networks.

Mechanical engineering lab

Indian Institute of Science

Indian Institute of Science

RESEARCH ASSISTANT

RESEARCH ASSISTANT

May - July 2014

• Determined stiffness of MCF-7 breast cancer cells using cell aspiration techniques, atomic-force microscopy (AFM) and micro-grippers.

Activities

- Startup competitions: Winner, 2019 IPHatch, Hong Kong. Pitched a business plan and technical details for a startup utilizing image processing IP made available through the competition.
- Social innovation competitions: Winner, 2014 SRISTI grant, India. Pitched a preliminary prototype of a cellphone microscope and received funding for executing a market-viable product.
- Graduate mentor: Directed 4 undergraduates and 1 junior graduate student on software engineering tasks and their research.
- Teaching assistant: Held discussion sessions and designed assignments for various biomechanics classes and a workshop on Git, Python and UNIX
- Outreach: Designed and advised research projects for high school students through outreach programs like the Center for Talented Youth (CTY) and ENLACE.

Selected Publications

_ (3 of 6)(* denotes equal contribution)

Applications and challenges of machine learning to enable realistic cellular simulations 2019

Vasan, Rowan, Lee, Johnson, Rangamani, Holst

In review

DLITE uses cell-cell interface movement to better infer cell-cell forces 2019

Vasan, Maleckar, Williams, Rangamani

Biophysical Journal

The role of traction in membrane curvature generation 2018 Alimohamadi*, Vasan*, Hassinger, Stachowiak, Rangamani Molecular Biology of the Cell

NOVEMBER 28, 2019 RITVIK VASAN · RÉSUMÉ