KING MONGKUT'S INSTITUTE OF TECHNOLOGY LATKRABANG SCHOOL OF ENGINEERING GROUP OF

ROBOTICS & AI

01416518 INDUSTRIAL AUTOMATION

FINAL PROJECT

INSTRUCTED BY: DR. POOM KONGHUAYROB

NAME: VARIS, AKESIT, KUNLANITH, RATTAPOL, SARANYA ID NUMBER: 65011619, 65110131, 65110141, 65110149, 65110150 DATE OF SUB.:6/11/2024

Abstract

This project presents the development of an automated joining station designed to enhance precision and efficiency in industrial assembly processes. Inspired by Festo's automation systems, the station incorporates sensors, actuators, and intelligent control mechanisms to streamline the alignment and joining of components. By automating these tasks, the station reduces the need for manual intervention, improving safety and minimizing human error in industries such as automotive and electronics manufacturing. Initial tests indicate a substantial reduction in assembly time and error rates, with enhanced production consistency and overall product quality. This automated station demonstrates the potential for advanced automation to transform traditional manufacturing processes by increasing productivity, reducing costs, and improving workplace safety.

TABLE OF CONTENTS

TABLE OF CONTENTS	2
LIST OF FIGURES	3
Chapter 1- Introduction	5
Chapter 2	6
Components Table	6
Electrical & Pneumatic	6
Mechanical	7
PLC - Inputs/Outputs Table	9
HMI - Inputs/Outputs Table	10
Flowchart	11
Electrical Design	12
Wiring Diagram	12
Load calculation	15
Mechanical Design	16
PLC ladder diagram	32
HMI Design	36
Chapter 3 - Experimental results	37
Chapter 4 - Conclusion	38
Chapter 5 - Team management	39

LIST OF FIGURES

Flowchart	11
Electrical Design	12
Wiring Diagram	12
Main Power Diagram	12
PLC Diagram	12
Relay, Magnetic Contactor, and Light Curtain Diagram	13
Pneumatic Diagram	13
DC Motor and Sensor Diagram	14
Mechanical Design	16
Complete Automation	16
1492-PFB4120	16
Actuator - Actuator Holder	17
Actuator - Profile Holder	17
AFM20-N02-6CZ-D	17
AR20-N02E-RZ-B	18
Breaker	18
CDQSB12-10S(0_0_0)	18
Compact Cylinder Holder	19
Conveyor Part	19
D-F8N	22
D8 Shaft 100mm	23
DC_Motor	23
HMI	23
ISE30A-01-N-M(0)	24
Light Curtain Holder	24
Magnetic contactor	25
$MXS8-75ASF(0_0)$	26
MY4N	26
Photo Sensor	26
Photoelectric Sensor + Compact Cylinder Holder	27
Photoelectric Sensor Holder	27
PLC	28
Push Button	28
PZ-M11(P) 31(P)	29
Solenoid Holder	29
Timing Pulley 2GT 5mm Hole	29
Timing Pulley 2GT 8mm Hole	30
Tower Lamp Holder	30
Vacuum Pad Holder	30

ZK2B10R5NL3-06-J	3
ZPR16BN-06-B5	3
PLC ladder diagram	32
HMI Design	36

Chapter 1- Introduction

In today's competitive industrial landscape, manufacturers face increasing pressure to optimize production efficiency, reduce costs, and enhance product quality. Automation has become a critical solution in achieving these goals, allowing industries to transition from labor-intensive manual processes to highly efficient, precise, and consistent production methods. This project explores the development of an automated joining station, inspired by the cutting-edge automation technology of Festo. The station is designed to perform complex joining tasks autonomously, eliminating the need for extensive manual labor and reducing the potential for human error.

The joining process is an essential stage in manufacturing, particularly in industries like automotive and electronics, where precision and reliability are paramount. Even slight misalignments in joining operations can lead to product defects, which may compromise safety or lead to costly rework. Traditional manual joining processes are also prone to variability, which can impact product quality and slow down production. The automated joining station developed in this project seeks to address these issues by combining sensors, actuators, and control systems to achieve high accuracy in aligning and joining parts, with minimal operator involvement.

The objectives of this project are twofold: to enhance production speed and consistency while also improving safety in the workplace. By delegating repetitive and physically demanding tasks to machines, the automated station reduces the risk of worker injuries, particularly in hazardous environments where manual joining can pose significant risks. Additionally, the station's intelligent control algorithms ensure that each joining operation is completed with precision, minimizing defects and increasing overall efficiency.

This document provides an overview of the design, implementation, and testing phases of the automated joining station. The following sections will detail the components and technologies used in the system, the methods employed to achieve optimal joining accuracy, and an evaluation of the system's performance. The findings of this project illustrate the benefits of integrating advanced automation into assembly lines, demonstrating how technology can enhance both productivity and safety in modern manufacturing environments.

Chapter 2

Components Table

Electrical & Pneumatic

#	RAI Serial	Mechanical Electrical Pneumatic	Туре	Description / Component	MFG Name	MFG Part Number	Q'ty (per m/c)	Price / Unit (BAHT)	Total Price (BAHT)
1	RAI-GX-E-001	Pneumatic	COML	Air Slide Table	SMC	MXS6-75ASF	2	650	1300
2	RAI-GX-E-002	Pneumatic	COML	compact cylinder	SMC	CDQSB12-10S	2	250	500
3	RAI-GX-E-003	Electrical	COML	power supply	conder	GPC225-24	1	900	900
4	RAI-GX-E-004	Electrical	sensor	Reed switch	SMC	D-F8N	8	100	800
5	RAI-GX-E-005	Electrical	sensor	Photoelectronic Sensor	SMC	PZ-M31	2	550	1100
6	RAI-GX-E-006	Pneumatic	COML	Vacuum Ejector	SMC	ZK2B10R5NL 3-06-J	1	900	900
7	RAI-GX-E-007	Electrical	sensor	Pressure sensor	SMC	ZSE30AF-C6 H-N-M	1	500	500
8	RAI-GX-E-008	Electrical	Motor	Motor gear 24VDC 80RPM	Sangtawan	ZGA372	2	270	540
9	RAI-GX-E-009	Electrical	COML	Relay with Socket	Omron	MY4N	5	150	750
10	RAI-GX-E-010	Electrical	sensor	Photo Sensor	SUNX	SUNX EX-11EP	4	0	0
11	RAI-GX-E-011	Electrical	COML	Fuse	Shinohawa	RT14-20	1	0	0
12	RAI-GX-E-012	Electrical	HMI	НМІ	samkoon	AK-070AW	1	0	0
13	RAI-GX-E-013	Electrical	Button	Automation and Safety Emergency Stop Switches	Omron	A22-01	1	0	0
14	RAI-GX-E-014	Electrical	COML	Magnetic Contactor	Mitsubishi	SD-Q11	1	0	0
15	RAI-GX-E-015	Electrical	PLC	PLC	Mitsubishi	fx3u-24mr-6A D2DA	1	0	0
16	RAI-GX-E-016	Electrical	Button	Push Button Switch	idec	yw-de	2	0	0
17	RAI-GX-E-017	Electrical	COML	Solenoid Valve	SMC	VQ1100-51	2	0	0
18	RAI-GX-E-018	Electrical	COML	Solenoid Valve	SMC	VQ1200-51	7	0	0
19	RAI-GX-E-019	Electrical	COML	Solenoid Valve	SMC	VQ1400-51	1	0	0
20	RAI-GX-E-020	Electrical	COML	Safety Relay Module	Schneider	0smc32n1d20	1	0	0
21	RAI-GX-E-021	Electrical	COML	Fuse Holder	Shinohawa	RT18-32A	1	0	0
22	RAI-GX-E-022	Electrical	COML	Light Curtain	Mirco-scree n	USDINT-1T2	1	0	0

Mechanical

#	RAI Serial	Mechanical Electrical Pneumatic	Туре	Description / Component	MFG Name	MFG Part Number	Q'ty (per m/c)	Price / Unit (BAHT)	Total Price (BAHT)
1	RAI-GX-M -001	Mechanical	COML	vacuum pad	SMC	ZPR16 VN-06- B5	1	350	350
2	RAI-GX-M -008	Mechanical	COML	Conveyor belt	S2	-	1	492.2	492.2
3	RAI-GX-M -002	Mechanical	COML	Aluminum Profile 30x60mm, 245 mm Length	AIC	AAZ-36	1	94.33	94.33
4	RAI-GX-M -003	Mechanical	COML	Aluminum Profile 30x60mm, 350 mm Length	AIC	AAZ-36	2	134.75	269.5
5	RAI-GX-M -004	Mechanical	COML	Hard Bracket 30x60mm	AIC	BAC-36	1	95	95
6	RAI-GX-M -024	Mechanical	COML	Slide Nut 30mm M8	AIC	BBA-38		0	0
7	RAI-GX-M -025	Mechanical	COML	Slide Nut 30mm M6	AIC	BBA-36		0	0
8	RAI-GX-M -026	Mechanical	COML	Slide Nut 30mm M5	AIC	BBA-35		0	0
9	RAI-GX-M -005	Mechanical	COML	Timing Pulley 2GT 40 teeth width 10mm hole 8mm	AIC	-	2	75	150
10	RAI-GX-M -006	Mechanical	COML	Timing Pulley 2GT 40 teeths width 10mm hole 5mm	AIC	-	2	70	140
11	RAI-GX-M -007	Mechanical	COML	Timing Belt 2GT	AIC	-	2	35	70
12	RAI-GX-M -027	Mechanical	COML	T-Nut M4	AIC	-	15	3	45
13	RAI-GX-M -028	Mechanical	COML	T-Nut M5	AIC	-	15	3	45
14	RAI-GX-M -029	Mechanical	COML	T-Nut M6	AIC	-	15	3	45
15	RAI-GX-M -009	Mechanical	COML	Linear Shaft D8, 100mm	AIC	-	2	55	110
16	RAI-GX-M -010	Mechanical	COML	Wiring Duct H20*W20 mm	SCG	-	1	94.32	94.32
17	RAI-GX-M -011	Mechanical	COML	Wiring Duct H30*W30 mm	SCG	-	2	134.75	269.5

#	RAI Serial	Mechanical Electrical Pneumatic	Туре	Description / Component	MFG Name	MFG Part Number	Q'ty (per m/c)	Price / Unit (BAHT)	Total Price (BAHT)
18	RAI-GX-M -012	Mechanical	COML	Spiral Wrapping Band 10 mm	ELEKTRA	-	1	79	79
19	RAI-GX-M -013	Mechanical	COML	M8x10	Mahatara	-		0	0
20	RAI-GX-M -014	Mechanical	COML	M8x15	Mahatara	-		0	0
21	RAI-GX-M -015	Mechanical	COML	M6 x 10	Mahatara	-		0	0
22	RAI-GX-M -016	Mechanical	COML	M6 x 15	Mahatara	-		0	0
23	RAI-GX-M -017	Mechanical	COML	M5 x 10	Mahatara	-		0	0
24	RAI-GX-M -018	Mechanical	COML	M5 x 15	Mahatara	-		0	0
25	RAI-GX-M -019	Mechanical	COML	M4 x 10	Mahatara	-		0	0
26	RAI-GX-M -020	Mechanical	COML	M4 x 15	Mahatara	-		0	0
27	RAI-GX-M -021	Mechanical	COML	M3 x 10	Mahatara	-		0	0
28	RAI-GX-M -022	Mechanical	COML	M3 x 15	Mahatara	-		0	0
29	RAI-GX-M -023	Mechanical	COML	M3 x 70	Mahatara	-		0	0

Program Workflow

PLC - Inputs/Outputs Table

	ADDRESS	DESCRIPTION		ADDRESS	DESCRIPTION
	X0	RTN.SLIDE		Y0	BELT A
	X1	ADV.SLIDE		Y1	BELT B
	X2	RTN.UP		Y2	VACUUM -ON
	X3	ADV.DOWN	R AT	Y3	
	X4	RTN.STOPPER AT VACUUM		Y4	SOL STOPPER AT VACUUM
	X5	ADV.STOPPER AT VACUUM		Y5	SOL STOPPER AT CHECKER
INPUT	X6	RTN.STOPPER AT CHECKER	OUTPUT	Y6	SOL SLIDE RTN
	X7	ADV.STOPPER AT CHECKER		Y7	SOL SLIDE ADV
	X10	SUCTION CUPS FACING DOWN OR UP		Y10	SOL UP
	SUCTION CUPS AT VACUUM		Y11	SOL DOWN	
	X12	PRESSURE SENSOR			
	X13	CAP AT THE END			
	X14	CUP AT THE START			
	X15	CUP AT THE END			

HMI - Inputs/Outputs Table

	ADDRESS	DESCRIPTION		ADDRESS	DESCRIPTION
	M2000	RTN.SLIDE		M1001	BELT A
	M2001	ADV.SLIDE		M1002	BELT B
	M2002	RTN.UP		M1003	VACUUM -ON / OFF
	M2003	ADV.DOWN		M1004	SOL STOPPER AT VACUUM
	M2004	RTN.STOPPER AT VACUUM		M1005	SOL STOPPER AT CHECKER
	M2005	ADV.STOPPER AT VACUUM		M1006	SOL SLIDE ADV
INDICATOR	M2006	RTN.STOPPER AT CHECKER	MANUAL BUTTON	M1007	SOL DOWN
	M2007	ADV.STOPPER AT CHECKER		M1000	ON / OFF
	M2008	SUCTION CUPS FACING DOWN OR UP			
	M2009	SUCTION CUPS AT VACUUM			
	M2010	PRESSURE SENSOR			
	M2011	CAP AT THE END			
	M2012	CUP AT THE START			
	M2013	CUP AT THE END			
	M2020	ON			
AUTO BUTTON	M2021	RESET			
	M2022	EM STOP			

Flowchart

Electrical Design

Wiring Diagram

Load calculation

Component	MFG Name	Part Number	no.	Volt	Amp	With 25%	Watt
Reed switch	SMC	D-F8N	8	24V	0.00A	0.00A	0.03W
		- '					
Photoelectric Sensor	SMC	PZ-M31	2	24V	0.00A	0.00A	0.09W
		ZSE30AF-C6					
Pressure sensor	SMC	H-N-M	1	24V	0.01A	0.01A	0.24W
Motor gear 24VDC 80RPM	Sangtawan	ZGA372	2	24V	0.06A	0.08A	1.88W
Relay with Socket	Omron	MY4N	5	24V	0.04A	0.05A	1.13W
		SUNX					
Photo Sensor	SUNX	EX-11EP	4	24V	0.03A	0.04A	0.90W
HMI	samkoon	AK-070AW	1	24V	0.25A	0.31A	7.50W
Magnetic Contactor	Mitsubishi	SD-Q11	2	24V	1.10A	1.38A	33.00W
		fx3u-24mr-6					
PLC	Mitsubishi	AD2DA	1	24V	0.17A	0.21A	5.00W
Solenoid Valve	SMC	VQ1100-51	2	24V	0.04A	0.05A	1.25W
Solenoid Valve	SMC	VQ1200-51	2	24V	0.04A	0.05A	1.25W
	Mirco-scree						
Light Curtain	n	USDINT-1T2	1	24v	1.50A	1.88A	45.00W
Tower Lamp	Patlite	LE-FB	1	24v	0.03A	0.03A	0.75W
	SUM				3.27A	4.08A	98.02W

Mechanical Design

PLC ladder diagram

```
-(мо
                                                                                                          -(M1
X002
X003
                                                                                                          -(M2003
                                                                                                          -(M4
                                                                                                          -(M2004
X005
                                                                                                          -(M2005
                                                                                                          -(M2007
X010
                                                                                                          -(M2008
X011
X012
                                                                                                          -(M10
X013
                                                                                                          -(M11
                                                                                                          -(M2011
X014
                                                                                                          -(M12
                                                                                                          -(M2012
```

```
X015
                                                                                                                          —(М13
                                                                                                                            —( M2013
                                      M2021
     M2020
                M1000
                            M2022
                            -1/-
                                                                                                                            —( M27
      \dashv\vdash
                 -1/-
                                       M16
                            M15
                                                 M2021
                 M13
                                                                                                                           —(M14
      \dashv
                                                                                                                           —(то
      \dashv\vdash
      \dashv
                                                  M16
                                                                        M2021
                                        \dashv\vdash
                                                                         -11
                                                                                                                            -(M15
      \dashv\vdash
      м15
— Н
                                        11
                                                   1/
                                                              #
                                                                         -11
                                                                                                                            -(M16
      \dashv
      M16
      \dashv
                 M13
102
     \dashv
      M16
107
      \dashv\vdash
112
      \dashv
      \dashv
                                                                         #
                                                                                    -1/-
      M17
                                                              M11
                                                                                   M2021
                                                                         M26
     \dashv \vdash
      \dashv \vdash
                                                                        M2021
                                                  M11
                                                              M26
                                                                                                                          —(М19
      +
                 M10
      M19
                                                   M26
                                                             M2021
      \dashv \vdash
                                                              -1/-
                                                                                                                           —( M20
      \dashv
      M20
                 M10
                                                             M2021
                                                   M26
                            \dashv\vdash
                                                                                                                            -(M21
      \dashv\vdash
                  +\vdash
                                        +
                                                   #
                                                              #
      M21
                            M2021
      \dashv
                                                  1/
                                                              1/
                                                                                                                            —(M22
      M22
      \dashv \vdash
```

```
175
       +
                                                                                                                            -(T5
                  M26
                            M2021
       11
                             #
                                                                                                                            -(M23
       M23
       11
       M23
185
       \dashv \vdash
                                                                                                                            -(T6
                            M2021
                  M26
190
                                                                                                                            -( M24
       M24
       1
                 M2021
       M24
196
                             м2
Н Н
                                        M2021
                                                              M26
                  M0
                                                              11
                                                                        1/
202
                                                                                                                            -( M25
       M25
       41
       M25
                  M13
212
       +
                  11
217
       1
                                                                                                                            —( M26
                  м14
— | —
                             ™
*/
                                                  M2022
      M2020
                                        ™
|}
                                                  1/
219
      \dashv\vdash
                                                                                                                            -(Y001
      M2020
                  M15
                              T2
      \dashv \vdash
                  \dashv\vdash
                             #
      M2020
                  M16
                              Т3
                             #
      \dashv\vdash
                  +
      M2020
                  M25
      \dashv\vdash
                  +
      M1000
                 M1002
                            M2020
      \dashv\vdash
                            1/-
      M2020
                  M14
                             M15
                                        M16
                                                  M2022
                             <del>-</del>|||
                                        11
246
      \dashv\vdash
                  +
                                                   #
                                                                                                                            -(Y004
      M1000
                 M1004
                            M2020
      \dashv\vdash
                  \dashv
                             1/
      M2020
                  M16
                             M24
                                       M2022
259
      \dashv
                  +
                             #
                                        1
                                                                                                                            -(Y005
                 M1005
      M1000
                            M2020
                            11
       +\vdash
                 \dashv\vdash
      M2020
                  M11
                                       M2022
                                       1
271
      —| H
                                                                                                                            -(Y000
                             T4
-|/|
      M2020
                  M11
      \dashv\vdash
                  +
      M1000
                 M1001
                            M2020
      \dashv\vdash
                  +
                             1/
      M2020
                  M17
                             M21
                                       M2022
                             #
287
      \dashv\vdash
                  4
                                       #
                                                                                                                           —(Y007
      M1000
                 M1006
                            M2020
       \dashv\vdash
                  \dashv \vdash
                             #
```

```
M2020
                  м18
— Н
                             M20
                                       M2022
                                                                                                                           —(Y011
      M2020
                  M22
                             M24
      \dashv\vdash
      M1000
                 M1007
                            M2020
                            -1/-
      \dashv \vdash
      M2020
                  M19
                             M23
                                       M2022
                                                                                                                            -(Y002
316
      M1000
                 M1003
                            M2020
                            -1/
      \dashv\vdash
                             M22
                                       M2022
      \dashv
328
                  +
                                        11
                                                                                                                            -(Y010
      M2020
                 M1007
                            M2020
      M1000
                 -1/-
                            -1/-
       M21
                 M2020
                                       M2022
344
      \dashv \vdash
                  \dashv \vdash
                                        #
                                                                                                                            -(Y006
                 M2020
      M1000
                            M1006
                  -1/-
                             #
                                                                                                                            -[END
355
```

HMI Design

Chapter 3 - Experimental results

The design of the automated joining station posed a number of design problems. Accurate orientating and integration of parts necessitated precise calibration and testing because even the slightest variation from the standard could reduce the quality of assembly. It was also a concern to find the right sensors and actuators that would give the desired performance, while not breaking the bank. Furthermore, including mechanisms for real-time observation and troubleshooting added to the scope of complexity in the control mechanism. Another imposing task was being able to design control systems that would be both effective, efficient and able to cope with safety considerations, even in designs that allowed for very rapid transitions. It was comfortable addressing these aspects that it became possible to come up with a solution which was effective and reliable without variances.

Chapter 4 - Conclusion

The development of an automated joining station presented in this project demonstrates the potential of automation to transform traditional assembly processes. By leveraging advanced sensors, actuators, and control mechanisms, the system successfully automates the alignment and joining tasks that are critical in industries requiring high precision, such as automotive and electronics manufacturing. The integration of these technologies not only reduced assembly time and error rates but also enhanced product consistency and overall quality.

The project faced challenges, particularly in selecting components and calibrating the system to ensure precise operation. However, through careful design and iterative testing, the automated station achieved its objectives of increased productivity, reduced manual intervention, and improved workplace safety. The station's performance underscores the importance of automation in modern manufacturing, especially in environments where efficiency and reliability are paramount.

In conclusion, this automated joining station exemplifies the benefits of integrating intelligent automation into assembly lines. It supports a safer, faster, and more consistent production process, demonstrating the value of automation in meeting the demands of today's industrial landscape. Future enhancements could focus on further improving the adaptability of the station, allowing it to be applied across a broader range of applications in various manufacturing sectors.

Chapter 5 - Team management

Name	Student ID	Work %	Workload	Signature
Varis	65011619	95	All	Varis
Akesit	65110131	100	All	Akesit
Kunlanith	65110141	95	All	Kunlanith
Rattapol	65110149	95	All	Rattapol
Saranya	65110150	95	All	Saranya

^{*}Remark, All = Hardware, Software, Report, Slide presentation, 3d, Poster, Video

^{*}Remark 2 special thank Noranont Surabote (Mahidol Salaya student) for take a video and entertain for us