Seth Jacobs Asymptotics drill

- 1) When doubling n in an algorithm which has a run time of n^2 the algorithm gets slower by a factor of 4 each time you double n. If you run the algorithm after adding one to n, each time it is slower by adding (n*2) + 1 to the total amount of operations.
- 2) When doubling n in an algorithm which has a run time of n^3 the algorithm gets slower by a factor of 8 each time you double n If you run the algorithm after adding one to n, each time it is slower by a factor $3n^2 + 3n + 1$
- 3) When doubling n in an algorithm which has a run time of 100n² the algorithm gets slower by a factor of 4 each time you double n. If you run the algorithm after adding one to n, each time it is slower by a factor 200n+100
- 4) When doubling n in an algorithm which has a run time of n log n the algorithm gets slower by a factor of a little more than 2.5 each time you double n. If you run the algorithm after adding one to n, each time it is slower by adding 4 to the amount of total operations.
- 5) When doubling n in an algorithm which has a run time of 2ⁿ the algorithm gets slower by a factor of 2ⁿ each time you double n. If you run the algorithm after adding one to n, each time it is slower by a factor of 2.

If you have a computer that can run 10^{10} operations per second, the largest input for an algorithm that has a run time of

- 1) n² is 6,000,000
- 2) n^3 is 33,019
- 3) 100n² is 600,000
- 4) n log n is 1,290,000,000,000
- 5) 2ⁿ is 45
- 6) 2²ⁿ Is 22