

Monte Carlo Tree Search with Boltzmann Exploration

Michael Painter, Mohamed Baioumy, Nick Hawes, Bruno Lacerda Oxford Robotics Institute, University of Oxford [mpainter, mohamed, nickh, bruno]@robots.ox.ac.uk

PROCESSING SYSTEMS

Boltzmann Tree Search (BTS)

BTS follows the Monte Carlo Tree Search (MCTS) schema:

- Actions are sampled from a Boltzmann distribution
- Value estimates updated with Bellman backups

used to initialise value estimates (can be stochastic, such as the return from a rollout)

T(s,a) - Number of visits to chance node associated with taking action a from state

 $\lambda_s = \min(1, \epsilon/\log(e + N(s)))$ - Exploration parameter Succ(s, a) - The set of successor states from taking action a in state s

Decaying ENtropy Tree Search (DENTS)

- Builds on top of Boltzmann Tree Search
- Computes entropy over subtrees in backups
- Uses entropy values as an exploration term in search policy

- Entropy weighted by function with respect to #visits to node
- Different functions give a range of search behaviours

 $\mathcal{H}_Q(s,a)$ - Shannon entropy of search policy in subtree rooted at chance node associated with taking action a from state s - Entropy weight function parameter, maps the #visits at a node to the weighting to use for the entropy term in the search policy at that node

Alias Method [2,3]

- Given a categorical distribution, an alias table can be built in linear time and sampled from in constant time
- Example:
- Sample an integer between 1 and 4
- Sample a uniform random number between 0.0 and 1.0 in [0,1]

 $\Pr(a_4) = 0.35$

- Amortised O(1) action sampling in MCTS with stochastic search policy:
- o If $(N(s) \mod |\mathcal{A}|) == 0$ then recompute alias table
- Sample from alias table
- Comes with a cost of not using most up to date policy

Theoretical Results

• Analysis of algorithms using simple regret [4]:

$$reg(s, \psi) = V^*(s) - V^{\psi}(s)$$

BTS and DENTS recommendations use Q-value estimates:

$$\psi_{\text{BTS}}(s) = \psi_{\text{DENTS}}(s) = \operatorname{argmax}_{a \in \mathcal{A}} \hat{Q}(s, a)$$

 Expected simple regret of BTS and DENTS tends to zero with an exponential concentration bound:

Theorem 4.1. For any MDP \mathcal{M} , after running n trials of the BTS algorithm with a root node of s_0 , there exists constants C, k > 0 such that for all $\varepsilon > 0$ we have $\mathbb{E}[\operatorname{reg}(s_0, \psi_{BTS})] \leq C \exp(-kn)$, and also $\hat{V}(s_0) \stackrel{p}{\to} V^*(s_0)$ as $n \to \infty$.

Theorem 4.2. For any MDP \mathcal{M} , after running n trials of the DENTS algorithm with a root node of s_0 , if β is a bounded function, then there exists constants C, k > 0 such that for all $\varepsilon > 0$ we have $\mathbb{E}[\operatorname{reg}(s_0, \psi_{\text{DENTS}})] \leq C \exp(-kn)$, and also $\hat{V}(s_0) \stackrel{p}{\to} V^*(s_0)$ as $n \to \infty$.

 BTS and DENTS can use average returns and still converge if the search temperature is decayed:

Proposition B.1. For any $\alpha_{\text{fix}} > 0$, there is an MDP \mathcal{M} such that AR-BTS with $\alpha(m) = \alpha_{\text{fix}}$ is not consistent: $\mathbb{E}[\text{reg}(s_0, \psi_{AR-BTS}^n)] \not\to 0 \text{ as } n \to \infty.$

Theorem B.2. For any MDP \mathcal{M} , if $\alpha(m) \to 0$ as $m \to \infty$ then $\mathbb{E}[\text{reg}(s_0, \psi_{AR-BTS}^n)] \to 0$ as $n \to \infty$, where n is the number of trials.

Theorem B.3. For any MDP \mathcal{M} , if $\alpha(m) \rightarrow 0$ and $\beta(m) \rightarrow 0$ as $m \rightarrow \infty$ then $\mathbb{E}[\text{reg}(s_0, \psi_{\text{AR-DENTS}}^n)] \to 0 \text{ as } n \to \infty, \text{ where } n \text{ is the number of trials.}$

Links

THTS++ github:

Comparison

Overview of differences between some MCTS algorithms:

	UCT [5]	MENTS [1]	BTS	DENTS
Consistent for any setting of parameters		X		
Actions sampled stochastically (i.e. can use Alias method)	X			
Utilises entropy for exploration	X		X	
Optimises for cumulative regret		X	X	X
Optimises for simple regret	X	X		

- Consistency refers to the recommended action/policy converging to the optimal action/policy in the limit
 - I.e. running more trials should improve recommendations

Empirical Results

 Minimal motivating example where the maximum entropy objective (see MENTS) can lead to unwanted behaviour:

Frozen Lake (reward of 0.99^T for reaching goal after T steps):

Go (5s planning time per move):

\		,		
Black\White	PUCT	AR-BTS	AR-DENTS	#Trials/move
PUCT		17-33	15-35	1054
AR-BTS	25-25 (58-42)		15-35	5375
AR-DENTS	23-27 (58-42)	15-35 (50-50)		4677

References

[1] Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, and Martin Müller. Maximum entropy monte-carlo planning. Advances in Neural Information Processing Systems, 32, [2] Alastair J Walker. New fast method for generating discrete random numbers with arbitrary frequency distributions. Electronics Letters, 8(10):127–128, 1974. [3] Michael D Vose. A linear algorithm for generating random numbers with a given distribution. IEEE Transactions on software engineering, 17(9):972–975, 1991. [4] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits problems. In International conference on Algorithmic learning theory, pages 23–37. Springer,

[5] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on machine learning, pages 282–293. Springer, 2006. [6] Tuan Q Dam, Carlo D'Eramo, Jan Peters, and Joni Pajarinen. Convex regularization in monte-carlo tree search. In International Conference on Machine Learning, pages 2365–2375. [7] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits. In International Conference on Machine Learning, pages 1238–1246. PMLR, 2013.