CSC242: Introduction to Artificial Intelligence

Lecture 1.5

Please put away all electronic devices

Announcements

• Unit 1 Exam: One week from today

Project 1 due that day 1159PM

State Space

 Directed graph of states reachable from the initial state by some sequence of actions

$$\langle V, E \rangle$$
:
$$V = \{v_i \mid s_i \in \mathcal{S}\}$$

$$E = \{\langle v_i, v_j, a \rangle \mid s_j = \text{Result}(s_i, a)\}$$

Coolest Program Ever

Initialize the frontier to just I

While the frontier is not empty:

Remove a state s from the frontier

If $s \in G$:

Return solution to s

else:

Add successors(s) to the frontier

Search Strategies

Uninformed

Informed (Heuristic)

No additional information about states

Can identify "promising" states

Search Strategies

Uninformed

Informed

	BFS	DFS (tree)	IDS	Greedy	A*	IDA*
Complete ?	1	X		X	√ †	√ †
Optimal ?	\ *	X	\ *	X	√ †	√ *†
Time	$O(\mathit{bd})$	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	$O(b^m)$	$O(b^{\epsilon d})$	$O(b^{\epsilon d})$
Space	$O(\mathit{bd})$	O(bm)	O(bd)	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	$O(\mathit{bd})$

^{*} If step costs are identical

[†] With an admissible heuristic

Adversarial Search

- DFS for adversarial problems
- MINIMAX and H-MINIMAX
- Back up utility values through alternating MIN and MAX (zero-sum game)
- Pruning search trees (e.g., α/β)
- Expectation for stochastic and partially observable environments (games)

Systematic Search

- Enumerates paths from initial state
- Records what alternatives have been explored at each point in the path

Good: Systematic → Exhaustive

Bad: Exponential time and/or space

Initial State Goal State

N-Queens as State-Space Search Problem

- State
- Actions
- Transition Model
- Initial State
- Goal State(s)/Test
- Step costs

- Start in initial state
- Select an applicable action, apply it, update the state
 - · Repeat until you have a goal state

- Evaluates and modifies a small number of current states
- Does not record history of search (paths, explored set, etc.)

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete

```
Solution graphSearch(Problem p) {
    Set<Node> frontier = new Set<Node>(p.getInitialState());
    Set<Node> explored = new Set<Node>();
    while (true) {
        if (frontier.isEmpty()) {
            return null;
        Node node = frontier.selectOne();
        if (p.isGoalState(node.getState())) {
            return node.getSolution();
        explored.add(node);
        for (Node n : node.expand()) {
            if (!explored.contains(n)) {
                frontier.add(n);
```

```
State localSearch(Problem p) {
    Set<Node> frontier = new Set<Node>(p.getInitialState());
    Set<Node> explored = new Set<Node>();
    while (true) {
        if (frontier.isEmpty()) {
            return null;
        Node node = frontier.selectOne();
        if (p.isGoalState(node.getState())) {
            return node.getSolution();
        explored.add(node);
        for (Node n : node.expand()) {
            if (!explored.contains(n)) {
                frontier.add(n);
```

```
State localSearch(Problem p) {
    Set<Node> frontier = new Set<Node>(p.getInitialState());
    Set<Node> explored = new Set<Node>();
    while (true) {
        if (frontier.isEmpty()) {
            return null;
        Node node = frontier.selectOne();
        if (p.isGoalState(node.getState())) {
        explored.add(node);
        for (Node n : node.expand()) {
            if (!explored.contains(n)) {
                frontier.add(n);
```

```
State localSearch(Problem p) {
   while (true) {
        if (p.isGoalState(node.getState())) {
        for (Node n : node.expand()) {
```

```
State localSearch(Problem p) {
   Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
        for (Node n : node.expand()) {
```

```
State localSearch(Problem p) {
    Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        for (Node n : node.expand()) {
```

```
State localSearch(Problem p) {
    Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        for (Node n : node.expand()) {
            ???
```



```
State localSearch(Problem p) {
    Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        for (Node n : node.expand()) {
            ???
```

```
State localSearch(Problem p) {
    Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        for (Node n : node.expand()) {
            if (p.value(n) >= p.value(node)) {
                node = n;
```

```
State localSearch(Problem p) {
    Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        }
        for (Node n : node.expand()) {
            if (p.value(n) >= p.value(node)) {
                 node = n;
            }
        }
    }
}
```

```
State localSearch(Problem p) {
   Node node = new Node(p.getInitialState());
    while (true) {
        if (p.isGoalState(node.getState())) {
            return node.getState();
        Node next = null;
        for (Node n : node.expand()) {
            if (p.value(n) >= p.value(node)) {
                next = n;
        if (next == null) {
            return node.getState();
        } else {
            node = next;
```

```
State localSearch(Problem p) {
   Node node = new Node(p.getInitialState());
    while (true) {
       Node next = null;
        for (Node n : node.expand()) {
            if (p.value(n) >= p.value(node)) {
                node = n;
        if (next == null) {
            return node.getState();
        } else {
            node = next;
```

Hill-climbing Search

 Move through state space in the direction of increasing value ("uphill")

State-space landscape

State: $[r_0,\ldots,r_7]$

State: $[r_0, \ldots, r_7]$ Action: $\langle i, r_i \rangle$

State: $[r_0,\ldots,r_7]$ Action: $< i,r_i>$ h(n) = # of pairs of queens attacking each other

$$h(n) = 17$$

$$h(n) = 17$$

$$h(n) = 17$$

$$h(n) = 17$$

$$h(n) = 12$$

Greedy Local Search (aka Hillclimbing)

```
State hillClimb(Problem p) {
   Node node = new Node(p.getInitialState());
    while (true) {
       Node next = null;
        for (Node n : node.expand()) {
            if (p.value(n) >= p.value(node)) {
                node = n;
        if (next == null) {
            return node.getState();
        } else {
            node = next;
```


$$h(n) = 1$$

Greedy Local Search (aka Hillclimbing)

- Stores only one current state
- Follows objective function towards state with maximum value (minimum cost)
- Can get stuck in local maxima (minima)

If at first you don't succeed, try again.

Random Restart Strategy

```
State randomRestart(Problem p) {
 while (true) {
   p.setInitialState(new random State);
   State solution = hillClimb(p);
   if (p.isGoal(solution)) {
     return solution;
Does it work? Yes (but)
How well does it work?
Prob of success = p Expected # of tries = 1/p
                   = 0.14
```

```
State randomRestart(Problem p) {
 while (true) {
   p.setInitialState(new random State);
   State solution = hillClimb(p);
   if (p.isGoal(solution)) {
     return solution;
                                   Randomness
                       Stochastic hill climbing
```

(see AIMA)

Randomness in Search

Pure random walk

Complete, but horribly slow Incomplete, but fast

Amiga Version by: Larry Reed

Copyright(c)1984,1986 Atari Games Corp. & Electronic Arts

Cost

State space

Annealing

Annealing

anneal |ə'nēl|
verb [with obj.]
heat (metal or glass) and allow it to cool slowly, in order to
remove internal stresses and toughen it.

ORIGIN Old English onālan, from on + ālan'burn, bake,' from āl'fire, burning' The original sense was 'set on fire,' hence (in late Middle English)'subject to fire, alter by heating'

Simulated Annealing

- Greedy local search (Hill-descending)
- Select states with lower cost
 - OR with some probability even if higher cost
- "High temperature": higher probability
- "Low temperature": lower probability
- "Cool" according to schedule

Simulated Annealing

```
State simulatedAnnealing(Problem p, Schedule schedule) {
  Node node = new Node(p.getInitialState());
  for (t=1; true; t++) {
    Number T = schedule(t);
    if (T == 0) {
      return node;
    Node next = randomly selected successor of node
    Number deltaE = p.cost(node) - p.cost(next);
    if (deltaE > 0 || Math.exp(-deltaE/T) > new Random(1)) {
      node = next;
                              "with probability e^{\frac{\Delta E}{T}}"
```

Simulated Annealing

Complete? No.

Optimal? No.

"But if the schedule lowers T slowly enough, simulated annealing will find a global minimum with probability approaching one."

Local Search

- Evaluates and modifies a small number of current states
- Does not record history of search

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete

For next time:

Chapter 4.3-4.4; 4.2, 4.5 FYI