Relative Magnetic Helicity Based on a

Periodic Potential

Field

Kai E. Yang¹
Michael S. Wheatland¹
Stuart A. Gilchrist²

¹SIFA, The University of Sydney ²NorthWest Research Associates

Magnetic Helicity

Magnetic helicity is defined as

$$H = \int_{\Omega} \mathbf{A} \cdot \mathbf{B} \mathrm{d}^3 \vec{x}$$

Coulomb gauge =>

$$H = \int_{\mathcal{C}_1, \mathcal{C}_2} \mathcal{L}_{1,2} d\Phi_1 d\Phi_2$$

- $\mathcal{L}_{1,2}$ is a topology invariant, which lead the helicity be a topology invariant.
- Quasi-/invariant under resistive/idea MHD process (Taylor 1986, Berger 1992).

$$H=2\Phi_1\Phi_2$$

