## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

## Listing of Claims:

Claim 1. (currently amended) A method for detecting a crater end of a continuously cast product, the method comprising the steps of

installing an ultrasonic shear wave sensor for transmitting an ultrasonic shear wave to the continuously cast product and receiving the transmitted ultrasonic shear wave and an ultrasonic longitudinal wave sensor for transmitting an ultrasonic longitudinal wave to the continuously cast product and receiving the transmitted ultrasonic longitudinal wave at the same position in a continuous casting machine or at [[two]] positions apart from each other in a casting direction, but at the same position in a transverse direction of the cast product,

detecting based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor that the crater end of the cast product is matched with [[the]] an installed position

of the ultrasonic shear wave sensor,

calibrating a calculation formula for determining the crater end from a propagation time of an ultrasonic longitudinal wave signal such that the crater end computed from the propagation time of the ultrasonic longitudinal wave signal at that time is matched with the installed position of the ultrasonic shear wave sensor, and after the calibration,

determining the crater end from the propagation time of the ultrasonic longitudinal wave signal based on the calibrated calculation formula.

Claim 2. (original) The method for detecting a crater end of a continuously cast product according to Claim 1, further comprising the steps of installing a second ultrasonic shear wave sensor downstream of said ultrasonic shear wave sensor in the casting direction at the same position in the transverse direction of the cast product, detecting based on variations of an ultrasonic signal received by the second ultrasonic shear wave sensor that the crater end of the cast product is matched with the installed position of the second ultrasonic shear wave sensor, and further calibrating the calculation formula for determining the crater end from the propagation time of the

ultrasonic longitudinal wave signal such that the crater end computed from the propagation time of the ultrasonic longitudinal wave signal at that time is matched with the installed position of the second ultrasonic shear wave sensor.

Claim 3. (original) The method for detecting a crater end of a continuously cast product according to Claim 1 or 2, wherein the calculation formula for determining the crater end from the propagation time of the ultrasonic longitudinal wave signal differs between when the crater end is positioned upstream of the installed position of the ultrasonic longitudinal wave sensor in the casting direction and when the crater end is positioned downstream thereof.

Claim 4. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of installing an ultrasonic shear wave sensor for transmitting an ultrasonic shear wave to the continuously cast product and receiving the transmitted ultrasonic shear wave in a continuous casting machine, detecting based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor that the

crater end of the cast product is matched with the installed position of the ultrasonic shear wave sensor, calibrating a physical property value used in calculation based on a heat condition equation such that the crater end computed based on the heat condition equation using casting conditions at that time is matched with the installed position of the ultrasonic shear wave sensor, and after the calibration, determining the crater end by the calculation based on the heat condition equation under respective casting conditions by using the calibrated physical property value.

Claim 5. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of installing an ultrasonic shear wave sensor for transmitting an ultrasonic shear wave to the continuously cast product and receiving the transmitted ultrasonic shear wave in a continuous casting machine, detecting based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor that the crater end of the cast product is matched with the installed position of the ultrasonic shear wave sensor, calibrating a physical property value used in calculation based on a heat

condition equation such that the crater end computed based on the heat condition equation using casting conditions at that time is matched with the installed position of the ultrasonic shear wave sensor, determining the crater ends by the calculation based on the heat condition equation by using the calibrated physical property value and measuring the propagation times by the ultrasonic shear wave sensor under various casting conditions, obtaining a relationship between the crater ends computed based on the heat condition equation and the propagation times measured by the ultrasonic shear wave sensor, and determining the crater end from the propagation time measured by the ultrasonic shear wave sensor based on the obtained relationship.

Claim 6. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of installing, in a continuous casting machine, a first ultrasonic shear wave sensor for transmitting an ultrasonic shear wave to the continuously cast product and receiving the transmitted ultrasonic shear wave and at least one of an ultrasonic longitudinal wave sensor for transmitting an ultrasonic longitudinal wave to the continuously cast product and

receiving the transmitted ultrasonic longitudinal wave and a second ultrasonic shear wave sensor for transmitting an ultrasonic shear wave and receiving the transmitted ultrasonic shear wave, detecting based on variations of an ultrasonic signal received by the first ultrasonic shear wave sensor that the crater end of the cast product is matched with the installed position of the first ultrasonic shear wave sensor, calibrating a physical property value used in calculation based on a heat condition equation such that the crater end computed based on the heat condition equation using casting conditions at that time is matched with the installed position of the first ultrasonic shear wave sensor, determining the crater ends by the calculation based on the heat condition equation by using the calibrated physical property value and measuring the propagation times by the ultrasonic longitudinal wave sensor or the second ultrasonic shear wave sensor under various casting conditions, obtaining a relationship between the crater ends computed based on the heat condition equation and the propagation times measured by the ultrasonic longitudinal wave sensor or the second ultrasonic shear wave sensor, and determining the crater end from the propagation time measured by the ultrasonic longitudinal wave

sensor or the second ultrasonic shear wave sensor based on the obtained relationship.

Claim 7. (currently amended) A method for detecting a crater end of a continuously cast product, the method comprising the step of, from a propagation time of an ultrasonic longitudinal wave signal measured by an ultrasonic longitudinal wave sensor installed in the continuous casting machine for which the calibration has been made or in a different continuous casting machine, determining the crater end in the relevant continuous casting machine that the ultrasonic longitudinal wave sensor is installed by using the calculation formula calibrated by the method according to Claim 1 or Claim 2.

Claim 8. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of executing the calculation based on the heat condition equation by using the physical property value calibrated by the method according to Claim 4 and the casting conditions of the continuous casting machine for which the calibration has been made or of a different continuous casting machine, and determining the crater end in the relevant continuous casting machine.

Claim 9. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the step of, based on the relationship between the crater ends computed based on the heat condition equation and the propagation times measured by the ultrasonic sensor, which is obtained by the method according to Claim 5 or 6, determining the crater end in a target continuous casting machine from a propagation time of an ultrasonic signal measured by an ultrasonic shear wave sensor or an ultrasonic longitudinal wave sensor installed in the continuous casting machine for which said relationship has been obtained or in a different continuous casting machine.

Claim 10. (previously presented) A method for detecting a crater end of a continuously cast product, the method comprising the steps of determining the crater end of the cast product by the method for detecting a crater end of a continuously cast product according to Claim 1 or Claim 2, and adjusting a casting speed or intensity of secondary cooling for the cast product in accordance with the determination result.

Claim 11. (currently amended) An apparatus for detecting a crater end of a continuously cast product, the apparatus

## comprising

an ultrasonic shear wave sensor made up of an ultrasonic shear wave transmitter for transmitting an ultrasonic shear wave to the continuously cast product and an ultrasonic shear wave receiver for receiving the transmitted ultrasonic shear wave,

an ultrasonic longitudinal wave sensor made up of an ultrasonic longitudinal wave transmitter for transmitting an ultrasonic longitudinal wave to the continuously cast product and an ultrasonic longitudinal wave receiver for receiving the transmitted ultrasonic longitudinal wave, the ultrasonic longitudinal wave sensor being installed at the same position in a continuous casting machine as the ultrasonic shear wave sensor or a position apart from the ultrasonic shear wave sensor in a casting direction but at the same position in a transverse direction of the cast product, and

a crater end computing unit for determining the crater end of the cast product by using a calculation formula in accordance with an ultrasonic signal received by the ultrasonic longitudinal wave sensor and for calibrating the calculation formula, wherein at the time when it is confirmed based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor that [[the]] an installed position of the ultrasonic shear wave

sensor and the crater end of the cast product are matched with each other, the calculation formula is calibrated such that the crater end computed based on the calculation formula is matched with the installed position of the ultrasonic shear wave sensor.

Claim 12. (currently amended) The apparatus for detecting a crater end of a continuously cast product according to Claim 11, further comprising a second ultrasonic shear wave sensor installed downstream of said ultrasonic shear wave sensor in the casting direction at the same position in the transverse direction of the cast product, wherein the crater end computing unit further calibrates the calculation formula, at the time when it is confirmed based on variations of an ultrasonic signal received by the second ultrasonic shear wave sensor that the installed position of the second ultrasonic shear wave sensor and the crater end of the cast product are matched with each other, the calculation formula is further calibrated such that the crater end computed based on the calculation formula is matched with the installed position of the second ultrasonic shear wave sensor.

Claim 13. (original) The apparatus for detecting a crater end of a continuously cast product according to Claim 11 or 12, wherein the ultrasonic shear wave transmitter and the ultrasonic longitudinal wave transmitter are installed on one side of the cast product, the ultrasonic shear wave receiver and the ultrasonic longitudinal wave receiver are installed on the other side of the cast product, and a set of the ultrasonic shear wave transmitter and the ultrasonic longitudinal wave transmitter and a set of the ultrasonic shear wave receiver and the ultrasonic longitudinal wave receiver are each constituted as an integral electromagnetic ultrasonic sensor having three or more magnetic poles in the transverse direction of the cast product and made up of a longitudinal wave coil arranged to wind the surrounding of an inner magnetic pole aside from a surface thereof and a shear wave coil arranged to overlie the magnetic pole surface.

Claim 14. (withdrawn) An apparatus for detecting a crater end of a continuously cast product, the apparatus comprising an ultrasonic shear wave sensor made up of an ultrasonic shear wave transmitter for transmitting an ultrasonic shear wave to the continuously cast product and an ultrasonic shear wave receiver for receiving the transmitted ultrasonic shear wave, and a heat

condition equation unit for executing calculation based on a heat condition equation in accordance with casting conditions and values of physical properties, thereby determining the crater end of the cast product, wherein at the time when it is confirmed based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor that the installed position of the ultrasonic shear wave sensor and the crater end of the cast product are matched with each other, at least one of the values of physical properties used in the calculation based on the heat condition equation is calibrated such that the crater end computed by the heat condition equation unit is matched with the installed position of the ultrasonic shear wave sensor.

Claim 15. (withdrawn) An apparatus for detecting a crater end of a continuously cast product, the apparatus comprising an ultrasonic shear wave sensor made up of an ultrasonic shear wave transmitter for transmitting an ultrasonic shear wave to the continuously cast product and an ultrasonic shear wave receiver for receiving the transmitted ultrasonic shear wave, a heat condition equation unit for executing calculation based on a heat condition equation in accordance with casting conditions and values of physical properties, thereby determining the crater end

of the cast product, and a crater end estimating unit for estimating the crater end of the cast product based on a relationship between an ultrasonic signal received by the ultrasonic shear wave sensor and the crater end computed by the heat condition equation unit, wherein at the time when it is confirmed based on variations of the ultrasonic signal received by the ultrasonic shear wave sensor that the installed position of the ultrasonic shear wave sensor and the crater end of the cast product are matched with each other, at least one of the values of physical properties used in the calculation based on the heat condition equation is calibrated such that the crater end computed by the heat condition equation unit is matched with the installed position of the ultrasonic shear wave sensor, wherein after the calibration of the physical property value, the crater end estimating unit obtains a relationship between the ultrasonic signal received by the ultrasonic shear wave sensor and the crater end computed by the heat condition equation unit, and wherein the crater end is determined from a propagation time measured by the ultrasonic shear wave sensor based on the obtained relationship.

Claim 16. (withdrawn) An apparatus for detecting a crater end of a continuously cast product, the apparatus comprising an ultrasonic shear wave sensor made up of an ultrasonic shear wave transmitter for transmitting an ultrasonic shear wave to the continuously cast product and an ultrasonic shear wave receiver for receiving the transmitted ultrasonic shear wave, an ultrasonic longitudinal wave sensor made up of an ultrasonic longitudinal wave transmitter for transmitting an ultrasonic longitudinal wave to the continuously cast product and an ultrasonic longitudinal wave receiver for receiving the transmitted ultrasonic longitudinal wave, a heat condition equation unit for executing calculation based on a heat condition equation in accordance with casting conditions and values of physical properties, thereby determining the crater end of the cast product, and a crater end estimating unit for estimating the crater end of the cast product based on a relationship between an ultrasonic signal received by the ultrasonic shear wave sensor and the crater end computed by the heat condition equation unit, wherein at the time when it is confirmed based on variations of the ultrasonic signal received by the ultrasonic shear wave sensor that the installed position of the ultrasonic shear wave sensor and the crater end of the cast product are matched with

each other, at least one of the values of physical properties used in the calculation based on the heat condition equation is calibrated such that the crater end computed by the heat condition equation unit is matched with the installed position of the ultrasonic shear wave sensor, wherein after the calibration of the physical property value, the crater end estimating unit obtains a relationship between an ultrasonic signal received by the ultrasonic longitudinal wave sensor and the crater end computed by the heat condition equation unit, and wherein the crater end is determined from a propagation time measured by the ultrasonic longitudinal wave sensor based on the obtained relationship.

Claim 17. (currently amended) A method for detecting a crater end of a continuously cast product, the method comprising the step of, from a propagation time of an ultrasonic longitudinal wave signal measured by an ultrasonic longitudinal wave sensor installed in the continuous casting machine for which the calibration has been made or in a different continuous casting machine, determining the crater end in the relevant continuous casting machine that the ultrasonic longitudinal wave

<u>sensor</u> is <u>installed</u> by using the calculation formula calibrated by the method according to Claim 3.

Claim 18. (previously presented) A method for detecting a crater end of a continuously cast product, the method comprising the steps of determining the crater end of the cast product by the method for detecting a crater end of a continuously cast product according to Claim 3, and adjusting a casting speed or intensity of secondary cooling for the cast product in accordance with the determination result.

Claim 19. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of determining the crater end of the cast product by the method for detecting a crater end of a continuously cast product according to Claim 4, and adjusting a casting speed or intensity of secondary cooling for the cast product in accordance with the determination result.

Claim 20. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps

of determining the crater end of the cast product by the method for detecting a crater end of a continuously cast product according to Claim 5, and adjusting a casting speed or intensity of secondary cooling for the cast product in accordance with the determination result.

Claim 21. (withdrawn) A method for detecting a crater end of a continuously cast product, the method comprising the steps of determining the crater end of the cast product by the method for detecting a crater end of a continuously cast product according to Claim 6, and adjusting a casting speed or intensity of secondary cooling for the cast product in accordance with the determination result.

Claim 22. (new) The apparatus for detecting a crater end of a continuously cast product according to Claim 11, further comprising a crater end arrival detecting unit for detecting, based on variations of an ultrasonic signal received by the ultrasonic shear wave sensor, that the crater end of the cast product is matched with the installed position of the ultrasonic shear wave sensor, and sending a signal to the crater end computing unit.

Claim 23. (new) The apparatus for detecting a crater end of a continuously cast product according to Claim 11, further comprising a longitudinal-wave propagation time detecting unit for detecting a propagation time of an ultrasonic longitudinal wave signal in accordance with an ultrasonic signal received by the ultrasonic longitudinal wave sensor, and

wherein the crater end computing unit uses the calculation formula that determines the crater end from the longitudinal-wave propagation time detected by the longitudinal-wave propagation time detecting unit.

Claim 24. (new) The apparatus for detecting a crater end of a continuously cast product according to Claim 12, further comprising a second crater end arrival detecting unit for detecting, based on variations of an ultrasonic signal received by the second ultrasonic shear wave sensor, that the crater end of the cast product is matched with the installed position of the second ultrasonic shear wave sensor and sending a signal to the crater end computing unit.