

11) Publication number:

0 353 464 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (5) Date of publication of patent specification: 20.10.93 (5) Int. Cl.⁵: C12N 15/53, C07H 21/04, C12N 9/02
- 21 Application number: 89111958.8
- ② Date of filing: 30.06.89

- Luciferase gene and novel recombinant DNA as well as a method for production of luciferase.
- Priority: 01.07.88 JP 162402/88 22.12.88 JP 322029/88
- Date of publication of application: 07.02.90 Bulletin 90/06
- Publication of the grant of the patent: 20.10.93 Bulletin 93/42
- Designated Contracting States:
 CH DE FR GB LI NL
- References cited:
 EP-A- 0 273 889
 EP-A- 0 301 541
 WO-A-87/03304
 US-A- 4 581 335

- 73 Proprietor: KIKKOMAN CORPORATION 339 Noda Noda-shi(JP)
- 2 Inventor: Tatsumi, Hiroki
 Kikkoman Apartment B-306
 65-1, Yanagisawa Noda-shi(JP)
 Inventor: Kajlyama, Naoki
 101-2, Miyazaki
 Noda-shi(JP)
 Inventor: Nakano, Eiichi
 2-86, Kizora
 Iwatsuki-shi(JP)
- Representative: Kolb, Heiga, Dr. Dipl.-Chem. et al Hoffmann, Eitle & Partner, Patentanwälte, Postfach 81 04 20 D-81904 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

15

20

30

35

40

45

50

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a luciferase gene derived from Luciola lateralis (HEIKE firefly) and a novel recombinant DNA having integrated the gene therein as well as a method of producing a luciferase using the recombinant DNA.

2. Description of the Prior Art

Luciferase from fireflies belonging to the genus Luciola is merely obtained by isolating and purifying from the collected fireflies belonging to the genus Luciola [Proc. Natl. Acad. Sci., 74 (7), 2799-2802 (1977)]. Luciferases are very effectively usable, e.g., for quantitative determination of ATP.

Since luciferases described above are derived from insects, however, fireflies belonging to the genus Luciola must be collected from the natural world to produce luciferases; alternatively, such fireflies must be cultivated and luciferases should be isolated and refined from the fireflies so that much time and labors are required for the production.

As a result of various investigations to solve the foregoing problems, the present inventors have found that by producing a recombinant DNA by inserting DNA containing a <u>Luciola lateralis</u>-derived luciferase-coding gene into a vector DNA and culturing in a medium a luciferase-producing microorganism belonging to the genus Escherichia and bearing the recombinant DNA, luciferase can be efficiently produced in a short period of time. As a result of further investigations on luciferase gene derived from <u>Luciola lateralis</u>, the present inventors have also succeeded in isolating a luciferase gene derived from <u>Luciola lateralis</u> and determining its structure, for the first time. This invention has thus been accomplished.

SUMMARY OF THE INVENTION

According to this invention, there are provided:

(1) A Luciola lateralis-derived luciferase gene defined by a restriction enzyme map described below:

EI	S	EV	A	H	H	EI	S	ΕI

wherein El represents Eco RI, S represents Ssp I, EV represents Eco RV, A represents Apa I and H represents Hpa I.

2

(2) A luciferase gene according to (1) which encodes an amino acid sequence shown below:

5	Met	Glu	Asn	Met	Glu	Asn	Asp	Glu	Asn	lle
·	Val	Tyr	Gly	Pro	Glu	Pro	Phe	Туг	Pro	z o Ile
_	Glu	Glu	Gly	Ser	Ala	Gly	Ala	Gln	Leu	3 o Arg
10	Lys	Tyr	Met	Asp	Arg	Tyr	Ala	Lys	Leu	Gly
	Ala	lle	Ala	Phe	Thr	Asn	Ala	Leu	Thr	s o G l y
15	Val	Asp	Tyr	Thr	Туг	Ala	Glu	Tyr	Leu	G l u
	Lys	Ser	Cys	Суs	Leu	Gly	Glu	Ala	Leu	70 Lys
20	Asn	Tyr	Gly	Leu	Val	Val	Asp	Gly	Arg	a o Ile
	Ala	Leu	Cys	Ser	Glu	Asn	Cys	Glu	Glu	Phe
25	Phe	lle	Pro	Val	Leu	Ala	Gly	Leu	Phe	ile
	Gly	V a l	Gly	Val	Ala	Pro	Thr	Asn	Glu	lle
30	Туr	Thr	Leu	Arg	Glu	Leu	Val	His	Ser	Leu
	Gly	Ile	Ser	Lys	Pro	Thr	Ile	Val	Phe	Ser
35	Ser	Lys	Lys	Gly	Leu	Asp	Lys	Val	Ile	140 Thr
	Val	Gln	Lys	Thr	Val	Thr	Ala	lle	Lys	150 Thr
40	[] e	V a l	lle	Leu	Asp	Ser	Lys	Val	Asp	Tyr
	Arg	Gly	Туr	Gln	Ser	Met	Asp	Asn	Phe	lle
45	Lys	lуs	Asn	Thr	Pro	Gln	Gly	Phe	Lys	Gly
	Ser	Ser	Phe	lуs	Thr	Val	Glu	Val	Asn	Arg

50

Lys Glu Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 5 Gln Leu Thr His Glu Asn Ala Val Thr Arg Phe Ser His Ala Arg Asp Pro Ile Tyr Gly 10 Asn Gln Val Ser Pro Gly Thr Ala Ile Leu Thr Val Val Pro Phe His His Gly Phe Gly 15 Met Phe Thr Thr Leu Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe 20 Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln Asp Tyr Lys Cys Ser Ser Val Ile Leu Val 25 Pro Thr Leu Phe Ala Ile Leu Asn Arg Ser Glu Leu Leu Asp Lys Tyr Asp Leu Ser Asn 30 Leu Val Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser Lys Glu Ile Gly Glu Ala Val Ala 35 Arg Arg Phe Asn Leu Pro Gly Val Arg Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala 40 Ile Ile Ile Thr Pro Glu Gly Asp Asp Lys Pro Gly Ala Ser Gly Lys Val Val Pro Leu 380 45 Phe Lys Ala Lys Val Ile Asp Leu Asp Thr

50

Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly Glu Val Cys Val Lys Gly Pro Met Leu Met Lys Gly Tyr Val Asp Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu 10 His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe Ile Val Asp Arg Leu 15 Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val Pro Pro Ala Glu Leu Glu Ser Val Leu 20 Leu Gln His Pro Asn Ile Phe Asp Ala Gly Val Ala Gly Val Pro Asp Pro Ile Ala Gly 25 Glu Leu Pro Gly Ala Val Val Leu Glu Lys Gly Lys Ser Met Thr Glu Lys Glu Val 30 Met Asp Tyr Val Ala Ser Gln Val Ser Asn Ala Lys Arg Leu Arg Gly Gly Val Arg Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile Leu Lys Lys Pro Val Ala Lys Met

(3) A luciferase gene according to (1) or (2) which is represented by a nucleotide sequence shown below.

50

45

35

	ATG	GAA	AAC	ATG	GAG	AAC	GAT	GAA	AAT	ATT
5	GTG	TAT	GGT	CCT	GAA	CCA	TTT	TAC	CCT	ATT
	GAA	GAG	GGA	TCT	GCT	GGA	GCA	CAA	TTG	CGC
10	A A G	TAT	ATG	GAT	CGA	TAT	GCA	AAA	CTT	G G A
	GCA	ATT	GCT	TTT	ACT	AAC	GCA	CTT	ACC	GGT
15	GTC	GAT	TAT	ACG	TAC	GCC	GAA	TAC	TTA	G A A
	AAA	TCA	TGC	TGT	CTA	GGA	GAG	GCT	TTA	2 1 0 A A G
20	AAT	TAT	GGT	TTG	GTT	GTT	GAT	GGA	AGA	2 4 0 A T T
	GCG	TTA	TGC	AGT	GAA	AAC	TGT	GAA	GAA	Z 7 0 TTC
~ -	TTT	ATT	CCT	GTA	TTA	GCC	GGT	TTA	TTT	a c o
25	GGT	GTC	GGT	GTG	GCT	CCA	ACT	AAT	GAG	ATT
	TAC	ACT	CTA	CGT	GAA	TTG	GTT	CAC	AGT	3 6 0 T T A
30	GGC	ATC	TCT	AAG	CCA	ACA	ATT	GTA	TTT	AGT
	TCT	AAA	AAA	GGA	TTA	GAT	AAA	GTT	ATA	A C T
35	GTA	CAA	AAA	ACG	GTA	ACT	GCT	ATT	AAA	ACC
	ATT	GTT	ATA	TTG	GAC	AGC	AAA	GTG	GAT	4 8 0 T A T
40	A G A	GGT	TAT	CAA	TCC	ATG	GAC	AAC	TTT	ATT
	AAA	AAA	AAC	ACT	CCA	CAA	GGT	TTC	AAA	5 4 0 G G A
45	TCA	AGT	TTT	AAA	ACT	GTA	GAA	GTT	AAC	S 7 0 CGC
		GAA								t c t
50		GGT								GTG

	CAA	CT1	CACT	CAT	GAA	AAT	GCA	GTC	ACT	AG
5	T T T	тст	CAC	GCT	A G A	GAT	CCA	ATT	TAT	ĞĞ
	A A C	CAA	GTT	TCA	CCA	GGC	ACG	GCT	ATT	7 Z T
10	ACT	GTA	GTA	CCA	TTC	CAT	CAT	GGT	TTT	7 5 C
	ATG	TTT	ACT	ACT	TTA	GGC	TAT	CTA	ACT	7 6 7 T G 7
15	GGT	TTT	CGT	ATT	GTC	ATG	TTA	ACG	AAA	8 1 C
	GAC	GAA	GAG	ACT	TTT	TTA	AAA	ACA	CTG	CAA
00	GAT	TAC	AAA	TGT	TCA	AGC	GTT	ATT	CTT	G T A
20	CCG	ACT	TTG	TTT	GCA	ATT	CTT	AAT	AGA	AGT
	GAA	TTA	CTC	GAT	AAA	TAT	GAT	TTA	TCA	AAT
25	TTA	GTT	G A A	ATT	GCA	TCT	GGC	GGA	GCA	CCT
	TTA	TCT	AAA	G A A	ATT	GGT	GAA	GCT	GTT	GCT
30	A G A	CGT	TTT	AAT	TTA	CCG	GGT	GTT		CAA
	GGC	TAT	GGT	TTA	ACA	GAA	ACA	ACC		GCA
35	ATT	ATT	ATC	ACA	CCG	GAA	GGC	GAT	GAT	AAA
	CCA	GGT	GCT	TCT	GGC	AAA	GTT	GTG	CCA	TTA
40	TTT	AAA	GCA	AAA	GTT	ATC	GAT	CTT	GAT	A C T
	AAA	AAA	ACT	TTG	GGC	CCG	AAC	A G A	CGT	G G A
45									CTT	ATG
	AAA	GGT	TAT	GTA	GAT	AAT	CCA	GAA	GCA	A C A
50	AGA	GAA	ATC	ATA	GAT	GAA	G A A	GGT	TGG	7 T G
	CAC	ACA	GGA	GAT	ATT	GGG	TAT	TAC	GAT	GAA

GAA AAA CAT TTC TTT ATC GTG GAT CGT TTG AAG TCT TTA ATC AAA TAC AAA GGA TAT CAA 5 GTA CCA CCT GCT GAA TTA GAA TCT GTT CTT TTG CAA CAT CCA AAT ATT TTT GAT GCC GGC 10 GTT GCT GGC GTT CCA GAT CCT ATA GCT GGT GAG CTT CCG GGA GCT GTT GTT GTA CTT GAA 15 AAA GGA AAA TCT ATG ACT GAA AAA GAA GTA ATG GAT TAC GTT GCT AGT CAA GTT TCA AAT 20 GCA AAA CGT TTG CGT GGT GGT GTC CGT TTT GTG GAC GAA GTA CCT AAA GGT CTC ACT GGT 25 AAA ATT GAC GGT AAA GCA ATT AGA GAA ATA CTG AAG AAA CCA GTT GCT AAG ATG 30

According to this invention, there is also provided a novel recombinant DNA obtained by inserting a gene coding for luciferase derived from Luciola lateralis into a vector DNA. According to this invention, there is further provided a method of producing a luciferase which comprises culturing in a medium a microorganism belonging to the genus Escherichia and bearing a recombinant DNA obtained by inserting a gene coding for luciferase derived from Luciola lateralis in a vector DNA, and collecting a luciferase from the culture.

BRIEF DESCRIPTION OF THE DRAWINGS

40

Fig. 1 shows an optimum pH range of luciferase derived from Luciola lateralis. Fig. 2 shows a stable pH range of luciferase derived from Luciola lateralis. Fig. 3 shows a cleavage map of recombinant plasmid pALf3 DNA with restriction enzymes. Fig. 4 shows a cleavage map of recombinant plasmid pGLf1 DNA with restriction enzymes. Fig. 5 shows a cleavage map of recombinant plasmid pHLf7 DNA with restriction enzymes. Fig. 6 shows a nucleotide sequence of Luciola lateralis-derived luciferase gene in accordance with this invention. Fig. 7 shows an amino acid sequence of polypeptide translated from Luciola lateralis-derived luciferase gene of this invention. Fig. 8 shows a nucleotide sequence of Luciola lateralis-derived luciferase gene and the amino acid sequence corresponding thereto.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereafter this invention is described in detail.

In survey of DNA bearing a gene encoding luciferase derived from Luciola lateralis (HEIKE firefly), DNA containing a gene encoding luciferase derived from Luciola cruciata (GENJI firefly) belonging to the same genus, which is one of fireflies, is used as a probe; further in survey of DNA bearing a Luciola cruciata-derived luciferase-coding gene, DNA containing a gene coding for luciferase derived from Photinus pyralis - (American firefly), which is one of fireflies, is used as a probe.

Therefore, production of the gene encoding luciferase from Photinus pyralis is firstly described below. Subsequently, production of the gene encoding luciferase from Luciola cruciata is described and finally, production of the gene encoding luciferase from Luciola lateralis is described.

To prepare m-RNA from the posterior portion of Photinus pyralis which is one of fireflies, m-RNA can be obtained according to methods described in, for example, Molecular Cloning, page 196, Cold Spring Harbor Laboratory (1982), Haruo Ozeki and Reiro Shimura, BUNSHI IDENGAKU JIKKENHO (Experimental Molecular Genetics), pages 66-67 (1983), etc.

Concentration of m-RNA coding for luciferase from the obtained m-RNA can be performed by a method described in, for example, Biomedical Research, 3, 534-540 (1982) or the like.

In this case, anti-luciferase serum to luciferase is used. This serum can be obtained by, for example, Yuichi Yamamura, MEN-EKI KAGAKU (Immunochemistry), pages 43-50 (1973), etc.

Synthesis of c-DNA from the m-RNA coding for luciferase can be performed by methods described in, for example, Mol. Cell Biol., 2, 161 (1982) and Gene, 25, 263 (1983).

Then, the thus obtained c-DNA is integrated into, for example, plasmid pMCE10 DNA {plasmid produced using plasmid pKN305 [plasmid having a promoter of Escherichia coli tryptophan operator described in Agr. Biol. Chem., 50, 271 (1986)] and plasmid pMC1843 [plasmid containing Escherichia coli β-galactosidase structural gene described in Methods in Enzymology, 100, 293-308 (1983)]}, etc. to produce various recombinant plasmid DNAs. Using these DNAs, transformation of Escherichia coli (E. coli) DH1 (ATCC 33849), E. coli HB101 (ATCC 33694), etc. is effected by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] to obtain various transformants.

The recombinant plasmid c-DNAs possessed by the thus obtained transformants are plasmids wherein c-DNA has been integrated in the middle of E. coli β -galactosidase structural gene. A peptide encoded by c-DNA is expressed as a protein fused with β -galactosidase.

In order to detect c-DNA coding for luciferase from the various transformants described above, the transformants are cultured thereby to express cell protein. By determining if any protein crossing over anti-luciferase serum is present, its detection can be made. Methods described in, for example, Agric. Biol. Chem., 50, 271 (1986) and Anal. Biochem., 112, 195 (1981), etc. can be used for the detection.

Next, after labeling c-DNA of incomplete luciferase with ³²P by the nick translation method [Molecular Cloning, pages 109-112, Cold spring Harbor Laboratory (1982) and J. Mol. Biol., 113, 237-251 (1977)], using the colony hybridization method [Protein, Nucleic Acid & Enzyme, 26, 575-579 (1981)], an Escherichia coli strain having plasmid DNA containing Photinus pyralis luciferase c-DNA of 1.8 Kb can be obtained from a Photinus pyralis-derived c-DNA library prepared using plasmid pUC19 DNA (manufactured by Takara Shuzo Co., Ltd.) as a vector.

To obtain a DNA containing the gene coding for luciferase derived from Photinus pyralis from the thus obtained recombinant plasmid DNA, restriction enzymes, e.g., Eco RI and Cla I, are acted on the plasmid DNA at temperatures of 30 to 40 °C, preferably at 37 °C, for 1 to 24 hours, preferably for 2 hours; the solution obtained after completion of the reaction is subjected to agarose gel electrophoresis [which is described in Molecular Cloning, page 150, Cold Spring Harbor Laboratory (1982)] to obtain the DNA containing the gene coding for luciferase derived from Photinus pyralis.

Next, production of the Luciola cruciata-derived luciferase-coding gene are described below.

Preparation of m-RNA from the posterior portion of <u>Luciola cruciata</u> and synthesis of c-DNA from the m-RNA can be conducted, for example, in quite the same manner as in the preparation of the m-RNA of Photinus pyralis and synthesis of the c-DNA described above.

Then, the thus obtained c-DNA is integrated into a vector DNA, for example, plasmid pUC19 DNA (manufactured by Takara Shuzo Co., Ltd.), etc. to obtain various recombinant plasmid DNAs. Using these DNAs, transformation of E. coli DH1 (ATCC 33849), E. coli HB101 (ATCC 33694), etc. is effected by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] to obtain various transformants.

Next, after labeling c-DNA of luciferase derived from Photinus pyralis with ³²P by the nick translation method [Molecular Cloning, pages 109-112, Cold Spring Harbor Laboratory (1982) and J. Mol. Biol., 113, 237-251 (1971)], using the colony hybridization method [Protein, Nucleic Acid & Enzyme, 26, 575-579 (1981)], an Escherichia coli strain having plasmid DNA containing Luciola cruciata luciferase c-DNA of 2.0 Kb can be obtained from a Luciola cruciata-derived c-DNA library prepared using plasmid pUC19 DNA (manufactured by Takara Shuzo Co., Ltd.) as a vector.

To obtain the purified plasmid DNA, there is used, for example, a method described in Proc. Natl. Acad. Sci., 62 1159-1166 (1969), etc.

By acting on the purified plasmid DNA, for example, restriction enzyme, e.g., Pst I (manufactured by Takara Shuzo Co., Ltd.) at a temperature of 30 °C to 40 °C, preferably at 37 °C for 1 to 24 hours, preferably for 2 hours, the resulting solution obtained after completion of the reaction is subjected to agarose gel

electrophoresis [which is described in Molecular Cloning, page 150, Cold Spring Harbor Laboratory (1982)] to obtain the DNA containing the gene coding for luciferase derived from Luciola cruciata.

Next, production of the <u>Luciola lateralis</u>-derived luciferase-coding gene in accordance with this invention are described below.

Firstly, as source from which the m-RNA coding for luciferase derived from Luciola lateralis is collected, the posterior portion of Luciola lateralis is preferred since the m-RNA is present in the posterior portion of this firefly.

Preparation of m-RNA from the posterior portion of the firefly and synthesis of c-DNA from the m-RNA can be conducted, for example, in quite the same manner as in the preparation of the m-RNA of Photinus pyralis and synthesis of the c-DNA described above.

Then, the thus obtained c-DNA is integrated into a vector DNA, for example, plasmid pUC119 DNA, etc. to obtain various recombinant plasmid DNAs. Using these DNAs, transformation of E. coli DH1 (ATCC 33849), E. coli HB101 (ATCC 33694), etc. is effected by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] to obtain various transformants.

Next, after labeling c-DNA of luciferase derived from <u>Luciola cruciata</u> with ³²P by the nick translation method [Molecular Cloning, pages 109-112, Cold Spring Harbor Laboratory (1982) and J. Mol. Biol., 113, 237-251 (1977)], using the colony hybridization method [Protein, Nucleic Acid & Enzyme, 26, 575-579 (1981)], an <u>Escherichia coli</u> stran having plasmid DNA containing <u>Luciola lateralis</u> luciferase c-DNA of 2.0 Kb can be obtained from a <u>Luciola lateralis</u>-derived c-DNA library prepared using plasmid pUC119 DNA (manufactured by Takara Shuzo Co., Ltd.) as a vector.

To obtain the purified recombinant DNA from the thus obtained microorganism, there is used, for example, a method described in Proc. Natl. Acad. Sci., 62 1159-1166 (1969), etc.

By acting on the purified, new recombinant DNA, for example, 2 units of restriction enzyme Eco RI (manufactured by Takara Shuzo Co., Ltd.) at a temperature of 30 °C or higher, preferably at 37 °C, for 1 to 4 hours, preferably for 2 hours, partial digestion is effected. Then, digestion product is subjected to agarose gel electrophoresis to obtain 2,000 bp DNA fragment containing all the gene coding for luciferase derived from Luciola lateralis.

On the other hand, a nucleotide sequence of this luciferase gene is determined by the method as shown in Item 18 in the example. The determined nucleotide sequence is shown in Fig. 6. Subsequently, an amino acid sequence of polypeptide translated from the nucleotide sequence is identified. The results are shown in Fig. 7.

The gene encoding the thus identified amino acid sequence is also included in this invention.

The above-mentioned microorgansim is then cultured in a medium and luciferase is collected from the culture.

Any medium may be used as far as it is used to culture microorganisms belonging to the genus Escherichia. Mention may be made of, for example, 1% (W/V) of trypton, 0.5% (W/V) of yeast extract, 0.5% (W/V) of NaCl and 1 mM of isopropyl-β-D-thiogalactoside, etc.

Temperature for the cultivation is between 30 and 40 °C, preferably about 37 °C and a time period for the cultivation is, for example, 4 to 8 hours, preferably about 4 hours.

The cells are collected from the culture by centrifugation at 8,000 r.p.m. for about 10 minutes. The obtained cells are homogenized by the method described in, for example, Methods in Enzymology, 133, 3-14 (1986) to obtain a crude enzyme solution.

The crude enzyme solution may be usable as it is; if necessary and desired, the crude enzyme solution can be purified by fractionation with ammonium sulfate, hydrophobic chromatography (for example, using BUTYL TOYOPEARL 650C, etc.), gel filtration (using, e.g., Ultrogel AcA34, etc.) thereby to give purified luciferase.

Physicochemical properties of the thus obtained luciferase are as described below.

(1) Action

50

35

5

15

The enzyme catalyzes the oxidation of luciferin by an oxygen molecule, as shown by the enzymatic reaction equation:

10 (2) Substrate specificity

15

The enzyme does not act on ADP, CTP, UTP and GTP.

(3) Optimum pH, and pH range for stability

The optimum pH is, as shown in Fig. 1, 7.5 to 9.5 as measured by carrying out the reaction by the use of luciferin as a substrate at various pH values of 25 mM glycylglycine buffer solution in the range of 6.5 to 11.5 and at a temperature of 30 $^{\circ}$ C, and measuring the quantity of light (the number of photons) emitted in 20 seconds. The stable pH range of the enzyme is, as shown in Fig. 2, 6.0 to 10.5 as measured by adding the enzyme to each of buffer solutions [25 mM phosphate buffer solution (pH 4.6-8.0) and 25 mM glycine.sodium chloride-sodium hydroxide buffer solutions (pH 8.0 - 11.5), each of which contains ammonium sulfate to 10% saturation] containing luciferin, and allowing the enzyme to act at a temperature of 0 $^{\circ}$ C for 4 hours. In Fig. 2, O—O and Δ — Δ show the activity in the case of using the 25 mM phosphate buffer solutions and the activity in the case of using 25 mM glycine.sodium chloride-sodium hydroxide buffer solutions, respectively.

(4) Measurement of titer

A luciferin mixed solution is prepared by mixing 8 ml of 25 mM glycylglycine buffer solution (pH 7.8), 0.5 ml of a magnesium sulfate solution [a solution prepared by adding magnesium sulfate to 25 mM glycylglycine buffer solution (pH 7.8), a magnesium sulfate concentration of 0.1 M] and 0.8 ml of a luciferin solution [a solution prepared adding luciferin to 25 mM glycylglycine buffer solution (pH 7.8), a luciferin concentration of 1 mM].

Into a mixture of 400 μ I of the luciferin mixed solution thus obtained and 10 μ I of luciferase to be assayed is poured 80 μ I of an ATP solution [a solution prepared by adding ATP to 25 mM glycylglycine buffer solution (pH 7.8), an ATP concentration of 10 mM]. Simultaneously with the pouring, the number of photons generated is measured by adding up for 20 seconds by means of a luminometer (LUMINESCENCE READER BLR-201, manufactured by ALOKA Co., Ltd.).

(5) Ragne of temperature suitable for action

When the reaction is carried out at pH 7.8 at each temperature and the quantity of light (the number of photons) emitted in 20 seconds is measured, the suitable temperature for the action ranges from 0 ° to 50 °C.

(6) Conditions for inactivation by pH

At pH values of 5.0 or lower and 12.0 or higher, the enzyme is completely inactivated 4 hours after.

As is clear from the foregoing description, according to this invention, luciferase can be efficiently produced in an extremely short period of time, by culturing the microorgnism belonging to the genus Escherichia which contains the recombinant DNA having integrated therein the <u>Luciola lateralis</u>-derived luciferase gene of this invention. Therefore, this invention is extremely useful from an industrial point of

Hereafter this invention will be described in more detail by referring to the examples below.

55

Example

In Items 1 to 10 below, production of DNA containing a gene coding for luciferase of Photinus pyralis as one of fireflies (this DNA is used as a probe upon survey of DNA containing a gene coding for luciferase of Luciola cruciata) is described. Further in Items 11 to 13 below, production of DNA containing a gene coding for luciferase derived from Luciola cruciata (this DNA is used as a probe upon survey of DNA containing a gene coding for luciferase of Luciola lateralis) is described.

1. Preparation of m-RNA

10

Using a mortar and a pestle, 1 g of the dry posterior portion (manufactured by Sigma Co., Ltd.) of Photinus pyralis as one of fireflies was thoroughly ground, to which 5 ml of dissolution buffer [20 mM Trishydrochloride buffer (pH 7.4)/10 mM NaCl/3 mM magnesium acetate/5% (W/V) sucrose/1.2 % (V/V) Triton X-100/10 mM vanadyl nucleoside complex (manufactured by New England Biolab Co., Ltd.)] was added. The mixture was further ground as in the manner described above to give a solution containing the ground posterior portion of Photinus pyralis.

In a cup blender (manufactured by Nippon Seiki Seisakusho) was charged 5 ml of the thus obtained solution. After treating at 5,000 r.p.m. for 5 minutes, 12 ml of guanidine isothiocyanate solution (6M guanidine isothiocyanate/37.5 mM sodium citrate (pH 7.0)/0.75% (W/V) sodium N-lauroylsarcocine/0.15 M β-mercaptoethanol) was added to the system. The mixture was treated with the blender described above at 3,000 r.p.m. for 10 minutes. The resulting solution was filtered using a threefold gauze to give the filtrate. The filtrate was gently poured in layers onto 4 tubes for ultracentrifuging machine (manufactured by Hitachi Koki Co., Ltd.) in which 1.2 ml each of 5.7 M cesium chloride solution had previously be laid in layers. Using the ultracentrifuging machine (manufactured by Hitachi Koki Co., Ltd., SCP55H), centrifugation was performed at 30,000 r.p.m. for 16 hours to give precipitates.

The obtained precipitates were washed with cold 70% (V/V) ethanol and suspended in 4 ml of 10 mM Tris buffer [10 mM Tris-hydrochloride (pH 7.4)/5 mM EDTA/1% sodium dodecylsulfate]. The equal amount of a mixture of n-butanol and chloroform in 1 : 4 (volume ratio) was added to the mixture to perform extraction. The extract was centrifuged at 3,000 r.p.m. for 10 minutes in a conventional manner to separate into the aqueous phase and the organic solvent phase. To the organic solvent phase was added 4 ml of 10 mM Tris buffer described above. The procedure for the extraction and separation described above was repeated twice. To the aqueous phase obtained were added a 1/10 amount of 3 M sodium acetate (pH 5.2) and a 2-fold amount of cold ethanol were added. After allowing to stand at a temperature of -20 °C for 2 hours, the mixture was centrifuged at 8,000 r.p.m. for 20 minutes in a conventional manner to precipitate RNA. The obtained RNA was dissolved in 4 ml of water. After the operation for precipitation with ethanol described above was carried out, the obtained RNA was dissolved in 1 ml of water to give 3.75 mg of RNA.

By repeating the foregoing procedure again, 7 mg in total of RNA was prepared. To select m-RNA from the RNA, 7 mg of RNA was subjected to oligo(dT)-cellulose (manufactured by New England Biolab Co., Ltd.) column chromatography.

As the column, 2.5 ml of Terumo syringe (manufactured by Terumo Co., Ltd.) was used. After 0.5 g of resin was swollen with elution buffer [10 mM Tris-hydrochloride buffer (pH 7.6)/1 mM DETA/0.1% (W/V) sodium dodecylsulfate], the resin was packed in the column and equilibrated with binding buffer [10 mM Tris-hydrochloride (pH 7.6)/1 mM EDTA/0.4 M NaCl/0.1% (W/V) sodium dodecylsulfate].

To 7 mg of RNA was added the same amount of buffer [10 mM Tris-hydrochloride (pH 7.6)/1 mM EDTA/0.8 M NaCl/0.1% (W/V) sodium dodecylsulfate]. The mixture was heat-treated at a temperature of 65 °C for 10 minutes and then quenched in ice water. After subjecting to oligo(dT)-celluose column, the resin was washed with binding buffer to completely wash unbound r-RNA and t-RNA out. Further m-RNA was eluted with eluting buffer to give 40 µg of m-RNA.

50 2. Concentration of luciferase m-RNA

Next, the luciferase m-RNA was concentrated by sucrose density gradient centrifugation.

Sucrose density gradient of 10 to 25% (W/V) was produced by charging 0.5 ml of 40% (W/V) sucrose solution [50 mM Tris-hydrochloride buffer (pH 7.5)/20 mM NaCl/1 mM EDTA/40% (W/V) sucrose] in a polyaroma tube for Rotor SW41 manufactured by Beckmann Co., Ltd., laying 2.4 ml each of 25% (W/V), 20% (W/V), 15% (W/V) and 10% (W/V) of the sucrose solution in layers and allowing to stand the system at a temperature of 4 °C for 24 hours. To the sucrose density gradient, 30 µg of m-RNA was laid to form a layer. Using SW41 Rotor manufactured by Beckmann Co., Ltd., centrifugation was conducted at 30,000

r.p.m. at a temperature of 18°C for 18 hours in a conventional manner. After the centrifuging operation, fractionation was performed by 0.5 ml each and m-RNA was recovered by the ethanol precipitation method. The m-RNA was dissolved in 10 μl of water.

Next, protein encoded by the m-RNA was examined, whereby the fraction concentrated on m-RNA of luciferase was identified. One microliter of the fractionated RNA, 9 µI of rabbit reticular erythrocyte lysate (manufactured by Amersham Co., Ltd.) and 1 µI of [35 S] methionine (manufactured by Amersham Co., Ltd.) were mixed and reacted at a temperature of 30 °C for 30 minutes. To the reaction mixture was added 150 µI of NET buffer [150 mM NaCl/5 mM EDTA/0.02% (W/V) NaN₃/20 mM Tris-hydrochloride buffer (pH 7.4)-/0.05% (W/V) Nonidet P-40 (manufactured by Besesda Research Laboratories Co., Ltd., surface active agent)] and, 1 µI of antiluciferase serum (produced as will be later described) was added to the mixture. After allowing to stand at a temperature of 20 °C for 30 hours, 10 mg of Protein A Sepharose (manufactured by Pharmacia Fine Chemicals Inc.) was added to the mixture. The resulting mixture was then centrifuged at 12,000 r.p.m. for a minute in a conventional manner to recover the resin.

The recovered resin was washed three times with 200 μ I of NET buffer. To the resin was added 40 μ I of sample buffer for SDS-PAGE [62.5 mM Tris-hydrochloride buffer (pH 6.8)/10% (V/V) glycerol/2% (W/V) sodium dodecylsulfate/5% (V/V) β -mercaptoethanol/0.02% (W/V) bromophenol blue]. The mixture was boiled at a temperature of 100 °C for 3 minutes and centrifuged at 12,000 r.p.m. for a minute in a conventional manner to recover the supernatant. The whole amount was applied onto 7.5% (W/V) sodium dodecylsulfate-polyacrylamide gel.

Gel electrophoresis was performed by the method of Laemmli [Nature, 227, 680 (1970)]. After the electrophoresis, the gel was immersed in 10% (V/V) acetic acid for 30 minutes to immobilize protein. Then, the gel was immersed in water for 30 minutes and further immersed in 1 M sodium salicylate solution for 30 minutes and then dried to give a dry gel. The dry gel was subjected to fluorography using an X ray film (manufactured by Fuji Photo Film Co., Ltd.; RX).

By the foregoing procedure, the band of luciferase protein was recognized on the X ray film only in the case of using the RNA from the fraction in which the luciferase m-RNA was present and, the fraction wherein the luciferase m-RNA was concentrated could be identified.

3. Production of anti-serum

30

20

25

Rabbit anti-luciferase serum to purified luciferase was produced by the following method.

A luciferase solution having a 3.2 mg/ml concentration [solution obtained by dissolving luciferase manufactured by Sigma Co., Ltd. in 0.5 M glycylglycine solution (pH 7.8)], 0.7 ml, was suspended in an equal amount of Freund's complete adjuvant. 2.24 mg of the suspension was administered as an antigen to the palm of Japanese white rabbit weighing 2 kg as an antigen. After feeding for 2 weeks, the same amount of antigen as in the initial amount was intracutaneously administered to the back. After feeding for further one week, similar procedure was performed. Further one week after feeding, whole blood was collected.

The obtained blood was allowed to stand at a temperature of 4 °C for 18 hours and then centrifuged at 3,000 r.p.m. for 15 minutes in a conventional manner to give anti-luciferase serum as the supernatant.

4. Synthesis of c-DNA

Synthesis of c-DNA was carried out using a kit manufactured by Amersham Co., Ltd.

Using 2 µg of m-RNA obtained as described above, synthesis of c-DNA was carried out in accordance with the methods described in Mol. Cell Biol., 2, 161 (1982) and Gene, 25, 263 (1983). As the result, 300 ng of double stranded c-DNA was obtained.

This c-DNA, 150 ng, was dissolved in 7 μ l of TE buffer [10 mM Tris-hydrochloride buffer (pH 7.5)/1 mM EDTA]. To the solution were added, respectively, 11 μ l of a mixture [280 mM sodium cacodylate (pH 6.8)/60 mM Tris-hydrochloride buffer (pH 6.8)/2 mM cobalt chloride] and 3.8 μ l of a tailing mixture [7.5 μ l of 10 mM dithiothreitol/1 μ l of 10 ng/ml poly(A)/2 μ l of 5mM dCTP/110 μ l of water]. Furthermore, 29 units of terminal transferase (manufactured by Boehringer Mannheim GmbH) was added to the mixture. After reacting at a temperature of 30 °C for 10 minutes, 2.4 μ l of 0.25 M EDTA and 2.4 μ l of 10% (W/V) sodium dodecylsulfate were added to the mixture to discontinue the reaction.

The solution in which the reaction had been discontinued was subjected to a treatment for removing protein using 25 μ I of water-saturated phenol. Then, 25 μ I of 4 M ammonium acetate and 100 μ I of cold ethanol were added to the recovered aqueous phase, respectively. The mixture was allowed to stand at a temperature of - 70 °C for. 15 minutes and centrifuged at 12,000 r.p.m. for 10 minutes to recover c-DNA. The c-DNA was dissolved in 10 μ I of TE buffer to give a c-DNA solution.

As described above, 100 ng of the c-DNA with the deoxycytidine tail was obtained.

5. Production of recombinant plasmid pMCE10 DNA used in vector

Plasmid pKN305 DNA produced by the method described in T. Masuda et al., Agricultural Biological Chemistry, 50, 271-279 (1986) using plasmid pBR325 (manufactured by BRL Co.) and plasmid pBR322 DNA (manufactured by Takara Shuzo Co., Ltd.), and pMC1403-3 DNA (described in Japanese Patent Publication KOKAI 61-274683) were added by 1 µg each to 10 µI of a mixture [50 mM Tris-hydrochloride buffer (pH 7.5)/10 mM MgCl2/100 mM NaCl/1 mM dithiothreitol]. Further, 2 units each of Hind III and Sal I (both manufactured by Takara Shuzo Co., Ltd.) were added to the mixture. By reacting at a temperature of 37°C for an hour, a cleavage treatment was effected. Extraction with phenol and precipitation with ethanol were conducted in a conventional manner to give precipitates. The precipitates were dissolved in 10 µl of ligation buffer [20 mM MgCl₂/66 mM Tris-hydrochloride buffer (pH 7.6)/1 mM ATP/15 mM dithiothreitol] to give a solution. Furthermore, 1 unit of T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd.) was added thereto to perform ligation at a temperature of 20 °C for 4 hours. Then, using this reaction solution, E. coli JM101 (ATCC 33876) was transformed according to the transformation method described in [J. Bacteriology, 119, 1072-1074 (1974)]. By examination of chemical resistance (ampicillin resistance and tetracycline sensitivity) and β-galactosidase activity, a transformant was obtained. Recombinant plasmid DNA contained in the strain was named pMCE10. E. coli JM101 strain containing this recombinant plasmid DNA pMCE10 DNA was cultured in medium composed of 1% (W/V) of trypton, 0.5% (W/V) of yeast extract and 0.5% (W/V) of NaCl at a temperature of 37 °C for 16 to 24 hours. Twenty milliliters of the thus obtained culture solution of E. coli JM101 (pMCE10) was inoculated on 1 liter of the medium followed by shake culture at a temperature of 37 °C for 3 hours. After the addition of 0.2 g of chloramphenicol, cultivation was conducted at the same temperature for further 20 hours to give a culture solution.

Next, the culture solution was centrifuged at 6,000 r.p.m. for 10 minutes in a conventional manner to give 2 g of wet cells. After the cells were suspended in 20 ml of 350 mM Tris-hydrochloride buffer (pH 8.0) containing 25% (W/V) sucrose, 10 mg of lysozyme, 8 ml of 0.25 M EDTA solution (pH 8.0) and 8 ml of 20% (W/V) sodium dodecylsulfate were added to the suspension, respectively. The mixture was kept at a temperature of 60 ° C for 30 minutes to give a lysate solution.

To the lysate solution was added 13 ml of 5 M NaCl solution. The mixture was treated at a temperature of 4 ° C for 16 hours and then centrifuged at 15,000 r.p.m. in a conventional manner to give an extract. The extract was subjected to the phenol extraction and the ethanol precipitation in a conventional manner to give precipitates.

Then, the precipitates were dried under reduced pressure in a conventional manner and dissolved in 10 mM Tris-hydrochloride buffer (pH 7.5) containing 1 mM EDTA. To the solution were further added 6 g of cesium chloride and 0.2 ml of ethydium bromide solution (10 mg/ml). The resulting mixture was subjected to an equilibrated density gradinent centrifugation treatment using a ultracentrifuging machine at 39,000 r.p.m. for 42 hours in a conventional manner thereby to isolate recombinant plasmid pMCE10 DNA. After ethydium bromide was removed using n-butanol, dialysis was performed to 10 mM Tris-hydrochloride buffer (pH 7.5) containing 1 mM EDTA to give 500 µg of purified recombinant plasmid pMCE10 DNA.

6. Production of vector DNA

25

The thus obtained recombinant plasmid pMCE10 DNA, 15 µg, was dissolved in 90 µl of TE buffer described in Item 4. After 10 µl of Med buffer [100 mM Tris-hydrochloride buffer (pH 7.5)/10 mM MgCl₂/10 mM dithiothreitol/500 mM NaCl] was added to the solution, 30 units of restriction enzyme Acc I (manufactured by Takara Shuzo Co., Ltd.) was further added to the mixture. A cleavage treatment was conducted at a temperature of 37 °C for an hour to give the cleavage product. To the cleavage product was added 100 µl of water-saturated phenol, whereby protein was removed. Then, the aqueous phase was recovered and a 1/10-fold amount of 3 M sodium acetate (pH 7.5) and a 2-fold amount of cold ethanol were added to the aqueous phase. After allowing to stand at a temperature of -70 °C for 15 minutes, the mixture was centrifuged at 12,000 r.p.m. for 10 minutes to recover DNA.

This DNA was dissolved in 10 μ I of TE buffer and 15 μ I of a mixture [280 mM sodium cacodylate (pH 6.8)/60 mM Tris-hydrochloride buffer (pH 6.8)/2 mM cobalt chloride] was added to the solution. Then, 5 μ I of a tailing solution mixture (described in Item 4) (5 mM dGTP was used) was further added to the mixture. Furthermore, 5 units of terminal transferase (manufactured by Takara Shuzo Co., Ltd.) was added to react at a temperature of 37 °C for 15 minutes. By post-treatment in a manner similar to the c-DNA tailing reaction described in Item 4, DNA with the deoxyguanosine tail at the Acc I site of recombinant plasmid pMCE10

DNA was produced.

On the other hand, DNA with the deoxyguanosine tail at the Pst I site of plasmid pUC19 DNA was also produced at the same time.

To a solution of 30 μ g of plasmid pUC19 DNA (manufactured by Takara Shuzo Co., Ltd.) in 350 μ l of TE buffer were added 40 μ l of Med buffer and 120 units of restriction enzyme Pst I (manufactured by Takara Shuzo Co., Ltd.). After a cleavage treatment at a temperature of 37 °C for an hour, DNA was recovered by the phenol treatment for removing protein and ethanol precipitation in a conventional manner.

The obtained DNA was dissolved in 35 μ I of TE buffer. To the solution were added 50 μ I of a mixture [280 mM sodium cacodylate (pH 6.8)/60 mM Tris-hydrochloride buffer (pH 6.8)/1 mM cobalt chloride], 19 μ I of the tailing mixture (containing dGTP instead of dCTP) described in Item 4 and 60 units of terminal transferase (manufactured by Takara Shuzo Co., Ltd.). After reacting at a temperature of 37 °C for 10 minutes, DNA was recovered by the phenol treatment for removing protein and ethanol precipitation in a conventional manner.

5 7. Annealing and transformation

The thus synthesized c-DNA, 15 ng and 200 ng of vector DNA were dissolved in 35 μ I of annealing buffer [10 mM Tris-hydrochloride buffer (pH 7.5)/100 mM NaCl/1 mM EDTA]. The solution was allowed to stand at a temperature of 65 °C for 2 minutes, at a temperature of 46 °C for 2 hours, at a temperature of 37 °C for an hour and at a temperature of 20 °C for 18 hours thereby to anneal c-DNA and vector DNA.

Using the annealed DNA, E. coli DH1 strain (ATCC 33849) was transformed by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] to produce a c-DNA bank containing plasmid pUC19 DNA and recombinant plasmid pMCE10 DNA as vectors, respectively.

8. Survey of luciferase c-DNA

The Acc I site of recombinant plasmid pMCE10 DNA is present at a site which codes for E. coli B-galactosidase gene. Therefore, c-DNA incorporated into this site forms a fused protein with β -galactosidase. Furthermore, a promoter of β -galactosidase gene of the recombinant plasmid pMCE10 DNA has been converted into a promoter of E. coli tryptophan gene, as described above.

96 colonies of c-DNA having recombinant plasmid pMCE10 DNA as a vector were shake cultured in 10 ml of M9 Casamino acid medium [Molecular Cloning, 440-441, Cold Spring Harbor Laboratory (1982)] supplemented with thiamine (10 µg/ml) at a temperature of 37°C for 10 hours. After collecting the cells in a conventional manner, the cells were suspended in 200 µl of sample buffer for SDS-PAGE described in Item 2. The suspension was boiled at a temperature of 100°C for 5 minutes. This suspension, 40 µl, was subjected to electrophoresis in a conventional manner using 7.5% (W/V) polyacrylamide gel. After completion of the electrophoresis, the protein developed on the gel was transferred onto a nitrocellulose filter by the western blot method [Anal. Biochem., 112, 195 (1981)]. This nitrocellulose filter was stained with anti-luciferase serum using immune blot assay kit (manufactured by Biorad Co.). The method was performed in accordance with the instruction of Biorad Co.

That is, the nitrocellulose filter was shaken in 100 ml of blocking solution [a solution obtained by dissolving 3% (W/V) gelatin in TBS buffer [20 mM Tris-hydrochloride buffer /500 mM NaCl (pH 7.5)] at a temperature of 25 °C for 30 minutes. Next, this nitrocellulose filter was transferred into 25 ml of primary antibody solution [solution obtained by dissolving 1% (W/V) gelatin in TBS buffer and diluting luciferase anti-serum with the resulting solution] and shaken at a temperature of 25 °C for 90 minutes, which was then transferred into 100 ml Tween-20 washing solution [solution obtained by dissolving 0.05% (W/V) Tween-20 in TBS buffer] and shaken at a temperature of 25 °C for 10 minutes. This procedure was repeated twice. Then, the thus obtained nitrocellulose filter was transferred into 60 ml of secondary antibody solution [solution obtained by dissolving anti-rabbit antibody labeled with horse raddish peroxidase (manufactured by Biorad Co.) with a solution of 1% (W/V) gelatin in TBS buffer to 3000-fold (V/V)]. After shaking at a temperature of 25 °C for 60 minutes, the nitrocellulose filter was washed with 100 ml of Tween-20 washing solution. The procedure described above was repeated twice. The thus obtained nitrocellulose filter was transferred into 120 ml of color forming solution [solution obtained by mixing a solution of 60 mg of 4-chloro-1-naphthol in 20 ml of cold methanol and a solution of 60 µl of 30% (V/V) hydrogen peroxide aqueous solution in 100 ml of TBS buffer] to form a color at a temperature of 25 °C for 10 minutes.

As such, similar procedures were performed on 4 groups, with 96 colonies per one group. In the two groups, protein band stained with luciferase anti-serum was recognized. Next, 96 colonies belonging to the two groups were divided into 8 groups with 12 colonies each and similar procedure was repeated. A protein

that reacted with anti-luciferase serum was noted in one group. Finally, with respect to the 12 colonies contained in this group, each colony was treated in a similar manner, whereby a protein-producing colony that reacted with luciferase anti-serum was identified. By the foregoing procedure, 2 colonies containing luciferase c-DNA were obtained. From the two colonies, plasmid DNA was produced by the method described in Item 5. The obtained recombinant plasmid DNAs were named pALf2B8 and PALF3A6, respectively.

9. Survey of large luciferase c-DNA - Production of c-DNA probe

10

40

50

In 330 μ I of TE buffer was dissolved 100 μ g of recombinant plasmid, pALf3A6 DNA. To the solution were added 40 μ I of Low buffer [100 mM Tris-hydrochloride buffer (pH 7.5)/100 mM MgCl₂/10 mM dithiothreitol], 130 units of Pst I (manufactured by Takara Shuzo Co., Ltd.) and 120 units of Sac I (manufactured by Boehringer Mannheim GmbH) to effect cleavage at a temperature of 37 °C for 1.5 hours.

The whole amount of DNA was separated by electrophoresis using 0.7% (W/V) agarose gel. The agarose gel electrophoresis was carried out in accordance with the method of T. Maniatis et al., Molecular Cloning, pages 156-161, Cold Spring Harbor Laboratory (1984)]. DNA band containing luciferase c-DNA was excised and put in a dialysis tube. After 2 ml of TE buffer was supplemented, the dialysis tube was sealed and DNA was eluted from the gel into the buffer by electrophoresis. An equivalent volume of water-saturated phenol was added to this solution. After agitation, the aqueous phase was recovered and DNA was recovered by precipitation with ethanol in a conventional manner.

10 µg of the obtained DNA fragment was dissolved in TE buffer and 16 µl of Med buffer and 64 units of Sau 3 Al (manufactured by Takara Shuzo Co., Ltd.) were added to the solution. After reacting at a temperature of 37 °C for 2 hours, the whole amount was subjected to electrophoresis using 5% (W/V) polyacrylamide gel thereby to isolate DNA fragments. The polyacrylamide gel electrophoresis was carrried out in accordance with the method of A. Maxam [Methods in Enzymology, 65, 506 (1980)]. DNA fragment of 190 bp was isolated by the method as described above to give 1 µg of Sau3 Al luciferase c-DNA fragment.

Using $[\alpha^{-32}P]$ dCTP (manufactured by Amersham Co.), 1 μ g of this luciferase c-DNA was labeled according to the nick translation method. The nick translation method was performed using a kit manufactured by Takara Shuzo Co., Ltd. in accordance with the method described in J. Mol. Biol., 113, 237-251 (1977) and Molecular Cloning, pages 109-112, Cold Spring Harbor Laboratory (1982).

10. Survey of large luciferase c-DNA - Colony hybridization

Using as a probe the luciferase c-DNA fargment labelled with ³²P produced by the method described above, c-DNA bank of the posterior portion of Photinus pyralis wherein recombinant plasmid pUC19 DNA was a vector was surveyed by colony hybridization [(Protein, Nucleic Acid and Enzyme, 26, 575-579 (1981)] to give colonies having luciferase c-DNA. Recombinant plasmid DNA possessed by one of the colonies was named pALf3 and plasmid DNA was produced by the method described in Item 5. E. coli containing the recombinant plasmid DNA was named E. coli DH 1 (pALf3). The transformant has been deposited as ATCC 67462.

The recombinant plasmid pALf3 DNA described above was subjected to single digestion and double digestion using Xba I, Hind III, BamH I, Eco RI and Pst I (all manufactured by Takara Shuzo Co., Ltd.). The obtained DNA fragments were analyzed by agarose gel electrophoresis on mobility pattern. By comparing the obtained mobility pattern with standard mobility pattern of DNA fragment obtained by digesting λ phage DNA (manufactured by Takara Shuzo Co., Ltd.) with Hind III, the size of the c-DNA inserted in pALf3 was turned out to be 1,700 bp. A restriction enzyme map of the plasmid described above is shown in Fig. 3.

11. Preparation of m-RNA of Luciola cruciata

Ten grams of living Luciola cruciata (GENJI firefly, purchased from Seibu Department Store) were put in a ultra-low temperature freezer box and frozen. Each posterior portion was cut off with scissors. To 2 g of the obtained posterior portion was added 18 ml of guanidine isothiocyanate solution. According to the method described in Item 1, 1.1 mg of RNA was prepared. In accordance with the method described in Item 1, 1.1 mg of this RNA was subjected to column chromatography of oligo (dT)-cellulose to obtain 30 μg of m-RNA for the posterior portion of Luciola cruciata.

12. Production of c-DNA bank of Luciola cruciata posterior portion

Synthesis of c-DNA was performed using a kit purchased from Amersham Co. in accordance with the method indicated by Amersham Co. which is described in Mol. Cell Biol., 2, 161 (1982) and Gene, 25, 263 (1983).

From 2 µg of the Luciola cruciata posterior portion RNA, 0.9 µg of double stranded c-DNA was synthesized. Using the method described in Item 4, a tail of polydeoxycytidine was added to 0.3 µg of this c-DNA.

This c-DNA, 20 ng, and 500 ng of pUC19 plasmid produced in Item 6, wherein a polyguanosine tail had been added to the Pst I site thereof, were annealed in accordance with the method described in Item 7. E. coli DH 1 strain (ATCC 33849) was transformed by annealed DNA by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] thereby to produce c-DNA bank of Luciola cruciata tail.

13. Survey of luciferase c-DNA derived from Luciola cruciata

15

In 90 μI of TE buffer was dissolved 10 μg of recombinant plasmid pALf3 DNA obtained in Item 10 and, 10 μI of Med buffer, 25 units of restriction enzyme Eco RI and 25 units of restriction enzyme Cla I (both manufactured by Takara Shuzo Co., Ltd.) were added to the solution. The reaction was performed at a temperature of 37 °C for 2 hours to cleave DNA. From the cleaved recombinant plasmid pALf3 DNA, 800 bp of Eco RI/Cla I DNA fragment containing luciferase c-DNA derived from Photinus pyralis (American firefly) was isolated in accordance with the method described in Item 9 using agarose gel electrophoresis. Thus, 1 μg of Eco RI/Cla I DNA fragment was obtained. Using [α-32P] dCTP (manufactured by Amersham Co.), 1 μg of this DNA was labelled with 32P in accordance with the nick translation method described in Item 9. Using as a probe the Eco RI/Cla I DNA fragment labeled with 32P, c-DNA bank of the Luciola cruciata posterior portion was surveyed by the colony hybridization described in Item 10 thereby to select E. coli having luciferase c-DNA derived from Luciola cruciata. Several colonies of E. coli capable of hybridizing with the probe were obtained. Recombinant plasmid DNA possessed by one of these colonies was named pGLf1. The recombinant plasmid DNA was isolated in accordance with the method described in Item 5.

The recombinant plasmid pGLf1 DNA described above was subjected to single digestion and double digestion using Hpa I, Hind III, Eco RV, Dra I, Af1 II, Hinc II, Pst I (all manufactured by Takara Shuzo Co., Ltd.) and Ssp I (manufactured by New England Biolab Co.). The obtained DNA fragments were analyzed by agarose gel electrophoresis on mobility pattern. By comparing the obtained mobility pattern with standard mobility pattern of DNA fragment obtained by digesting λ phage DNA (manufactured by Takara Shuzo Co., Ltd.) with Hind III, the size of the c-DNA inserted in pGLf1 was turned out to be 2,000 bp. A restriction enzyme map of the plasmid described above is shown in Fig. 4.

14. Preparation of m-RNA of Luciola lateralis

Five grams of living Luciola lateralis (HEIKE firefly, purchased from Kawahara Choju Trading Co., Ltd.) were put in a ultra-low temperature freezer box and frozen. Each posterior portion was cut off with scissors. To 1 g of the obtained posterior portion was added 18 ml of guanidine isothiocyanate solution. Following the method described in Item 1, 340 μg of RNA was prepared. In accordance with the method described in Item 1, 340 μg of the RNA was subjected to column chromatography of oligo(dT)-cellulose to obtain 6 μg of m-RNA from the posterior portion of Luciola lateralis.

15. Production of c-DNA bank of Luciola lateralis posterior portion

Synthesis of c-DNA was performed using a kit purchased from Amersham Co.

Using 2.0 µg of m-RNA obtained as above, c-DNA was synthesized in accordance with the method indicated by Amersham Co. which is described in Mol. Cell Biol., 2, 161 (1982) and Gene, 25, 263 (1983). As the result, 250 ng of double stranded c-DNA was obtained.

The thus obtained c-DNA, 250 ng, was subjected to methylation at the restriction enzyme Eco RI site using c-DNA cloning kit manufactured by Amersham Co. as instructed by Amersham Co. Furthermore, Eco RI linker was adhered to the both termini of the c-DNA.

After 1 µI of Med buffer [100 mM Tris-hydrochloride buffer (pH 7.5)/100 mM MgCl₂/10 mM dithiothreitol/500 mM NaCl] was added to a solution of 100 ng of plasmid pUC119 DNA (manufactured by Takara Shuzo Co., Ltd.) in 8 µI of water, 10 units of restriction enzyme Eco RI (manufactured by Takara Shuzo Co., Ltd.) was further added to the mixture. A cleavage treatment was conducted at a temperature of

37°C for an hour.

20

35

50

55

Subsequently, 1 μ I of 1M Tris-hydrochloride buffer (pH 8.0) and 0.3 unit (1 μ I) of alkaline phosphatase (manufactured by Takara Shuzo Co., Ltd.) were added to the cleavage product and the mixture was subjected to enzymatic reaction at a temperature of 65 °C for an hour to effect dephosphorylation of the termini of the cleavage product. After 12 μ I of water-saturated phenol was added to the dephosphorylated product to remove protein, 1 μ I of 3M sodium acetate (pH 5.8) and 26 μ I of cold ethanol were added to the recovered aqueous phase, respectively. The mixture was allowed to stand at a temperature of -70 °C for 15 minutes. By centrifuging treatment at 12,000 r.p.m. for 5 minutes with a trace centrifuging machine (manufactured by TOMI SEIKO K.K., MRX-150) to recover DNA.

The thus obtained DNA was cleaved with restriction enzyme Eco RI and its termini were dephospholyated. The resulting plasmid vector pUC119 DNA, 100 ng, was mixed with 250 ng of c-DNA produced in Item 15. After the mixutre was suspended in 8 μ I of water, 1 μ I of ligation buffer [200 mM MgCl₂/660 mM Tris-hydrochloride buffer (pH 7.6)/10 mM ATP/150 mM dithiothreitol] was added to the resulting mixture. Furthermore, 1 unit of T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd.) was added thereto and the mixture was allowed to stand at a temperature of 16 °C for 16 hours, whereby ligation of the plasmid vector and c-DNA was performed to give the reaction product.

Using this reaction product, E. coli DH1 (ATCC 33849) strain was transformed by the method of Hanahan [DNA Cloning, 1, 109-135 (1985)] to produce a c-DNA bank derived from the posterior portion of Luciola lateralis containing plasmid pUC119 DNA as a vector.

16. Survey of luciferase c-DNA derived from Luciola lateralis

In 90 μ I of TE buffer was dissolved 10 μ g of recombinant plasmid pGLf1 DNA obtained in Item 13 and, 10 μ I of Med buffer, 25 units of restriction enzyme Pst I (manufactured by Takara Shuzo Co., Ltd.) was added to the solution. The reaction was performed at a temperature of 37 °C for 2 hours to cleave DNA. From the cleaved recombinant plasmid pGLf1 DNA, 2,000 bp of Pst I DNA fragment containing Luciola cruciata-derived luciferase c-DNA portion was isolated in accordance with the method described in Item 9 using agarose gel electrophoresis. Thus, 1 μ g of Pst I DNA fragment was obtained. Using [α -32P] dCTP (manufactured by Amersham Co.), 1 μ g of this DNA was labelled with 32P in accordance with the nick translation method described in Item 9. Using as a probe the Pst I DNA fragment labeled with 32P, c-DNA bank of the Luciola lateralis posterior portion was surveyed by the colony hybridization described in Item 10 thereby to select E. coli bearing luciferase c-DNA derived from Luciola lateralis. Several colonies of E. coli capable of hybridizing with the probe were obtained. Plasmid DNA possessed by one of these colonies was named pHLf7. The recombinant plasmid DNA was isolated in accordance with the method described in Item 5.

The thus obtained <u>E. coli</u> DH1 (pHLf7) has been deposited in the Fermentation Research Institute, the Agency of Industrial Science and Technology, Japan, under the Budapest Treaty with the accession number FERM BP-1917.

The recombinant plasmid pHLf7 DNA described above was subjected to single digestion and double digestion using Hpa I, Eco RV, Apa I, Hind III and Eco RI (all manufactured by Takara Shuzo Co., Ltd.) and Ssp I (manufactured by New England Biolab Co.). The obtained DNA fragments were analyzed by agarose gel electrophoresis on mobility pattern. By comparing the obtained mobility pattern with standard mobility pattern of DNA fragment obtained by digesting λ phage DNA (manufactured by Takara Shuzo Co., Ltd.) with Hind III, the size of the gene encoding Luciola lateralis-derived luciferase was turned out to be 2,000 bp. A restriction enzyme map of the plasmid described above is shown in Fig. 5.

To a solution of 10 µg of recombinant plasmid pHLf7 DNA in 45 µl of TE buffer were added 5 µl of Med buffer and 2 units of restriction enzyme Eco RI (manufactured by Takara Shuzo Co., Ltd.), respectively. The mixture was reacted at a temperature of 37 °C for 2 hours to give a partial digestion product of DNA.

Then, the partial digestion product was subjected to agarose gel electrophoresis described in Item 9 and 1 µg of Eco RI fragment of 2,000 bp containing all the gene encoding <u>Luciola lateralis</u>-derived luciferase was isolated.

17. Cultivation of E. coli DH1 (pHLf7) (FERM BP-1917) and production of crude enzyme solution

E. coli DH1 (pHLf7) (FERM BP-1917) was shake cultured in 3 ml of LB-amp medium [1% (W/V) bactotrypton, 0.5% (W/V) yeast extract, 0.5% (W/V) NaCl and ampicillin (50 μg/ml)] at a temperature of 37 °C for 18 hours. This culture solution, 0.5 ml, was inoculated on 10 μl of the aforesaid LB-amp medium

and 1 mM isopropyl-β-D-thiogalactoside was added thereto. After shake culture at a temperature of 37 °C for 4 hours, the culture was subjected to a centrifuging operation at 8,000 r.p.m. for 10 minutes to give 20 mg of wet cells.

The recovered cells were suspended in 0.9 ml of a buffer composed of 0.1 M $\rm KH_2PO_4$ (pH 7.8), 2 mM EDTA, 1 mM dithiothreitol and 0.2 mg/ml protamine sulfate. Further 100 μ l of 10 mg/ml lysozyme solution was supplemented to the suspension. The mixture was allowed to stand in ice for 15 minutes. Next, the suspension was frozen in methanol-dry ice bath and then allowed to stand at a temperature of 25 °C to completely thaw. Further by performing a centrifuging operation at 12,000 r.p.m. for 5 minutes, 1 ml of crude enzyme solution was obtained as the supernatant.

The luciferase activity in the thus obtained crude enzyme solution was performed by the method described below. The results are shown in Table 1 below.

10

The measurement of luciferase activity in the crude enzyme solution obtained was performed by counting the number of photons generated in accordance with the method of Kricka [Archives of Biochemistry and Biophysics, 217, 674 (1982)].

That is, 260 µl of 25 mM glycylglycine buffer (pH 7.8), 16 µl of 0.1 M magnesium sulfate and 24 µl of 1 mM luciferine (manufactured by Sigma Inc.) and 10 µl of the crude enzyme solution were mixed. Then 100 µl of 20 mM ATP was added to the mixture. The number of photons generated was integrated for 20 seconds. The integrated values are shown in Table 1 below. For purpose of comparison, a luciferase activity was measured also with plasmid pUC119 DNA-bearing E. coli DH1 strain [E. coli DH1 (pUC119)]. The results are also shown in Table 1 below.

Table 1

Sample

Number of Photon/ml Culture Solution

E. coli DH1 (pHLf7) 6.2 x 106 (invention)

E. coli DH1 (pUC119) 1.0 x 104 (control)

As is clear from the table above, it is noted that the count of photons increased in E. coli DH1 (pHLf7) bearing the recombinant plasmid pHLf7 containing the luciferase gene of this invention as compared to the control and therefore, luciferase is produced in the cells of E. coli used in this invention.

18. Analysis of nucleotide sequence of luciferase c-DNA derived from Luciola lateralis

Recombinant plasmid pHLf7 DNA, 10 μg, was cleaved with restriction enzyme Eco RI (manufactured by Takara Shuzo Co., Ltd.) to give 2.0 μg of 1.7 Kb DNA fragment and 0.5 μg of 0.3 Kb DNA fragment, containing luciferase c-DNA. These DNA fragments were subcloned at the Eco RI site of plasmid pUC118 DNA (manufactured by Takara Shuzo Co., Ltd.) to give 4 plasmids, pHLf11, pHLf12, pHLf13 and pHLf14, based on differences in kind of the inserted fragments (1.7 Kb and 0.3 Kb) and in orientation of the insertion (the 1.7 Kb fragment was subcloned to pHLf11 and pHLf12, and the 0.3 Kb fragment was subcloned to pHLf13 and pHLf14).

Cleavage treatment of the recombinant plasmids pHLf7 DNA and plasmid pUC118 DNA with Eco RI (method described in Item 6), isolation of the luciferase c-DNA fragment using agarose gel electrophoresis (method described in Item 9), ligation of plasmid pUC119 DNA and the luciferase c-DNA fragment (method described in Item 5), transformation of E. coli JM101 strain (ATCC 33876) using ligation reaction liquid (method described in Item 5) and production of recombinant plasmids pHLf11, pHLf12, pHLf13 and pHLf14 (method described in Item 5) followed the methods described within parentheses.

Next, using the recombinant plasmid DNAs pHLf11, pHLf12, pHLf13 and pHLf14, plasmid DNAs wherein various deletions were introduced into the luciferase c-DNA were produced using a deletion kit for

killosequence (manufactured by Takara Shuzo Co., Ltd.) in accordance with the method of Henikoff [Gene, 28, 351-359 (1984)]. These plasmid DNAs were introduced into E. coli JM101 strain (ATCC 33876) by the method described in Item 5. By infecting the thus obtained E. coli with helper phage M13K07 (manufactured by Takara Shuzo Co., Ltd.), single strand DNA was produced in accordance with the method of Messing [Methods in Enzymology, 101, 20-78 (1983)]. Sequencing with the obtained single strand DNA was carried out by the method of Messing described above, using M13 sequencing kit (manufactured by Takara Shuzo Co., Ltd.). Gel electrophoresis for analyzing a nucleotide sequence was carried out using 8% (W/V) polyacrylamide gel (manufactured by Fuji Photo Film Co., Ltd.). The nucleotide sequence of the Luciola lateralis-derived luciferase-coding c-DNA obtained is shown in Fig. 6. Fig. 7 shows an amino acid sequence of polypeptide translated from the c-DNA and Fig. 8 shows a sequence corresponding to c-DNA in the amino acid sequence.

Claims

5 1. A Luciola lateralis-derived luciferase gene defined by a restriction enzyme map described below:

	EI	S	EV	Α	H	H	EI	S	EI
20									
			1						

wherein El represents Eco RI, S represents Ssp I, EV represents Eco RV, A represents Apa I and H represents Hpa I.

2. A luciferase gene according to claim 1, which encodes an amino acid sequence shown below:

```
Met Glu Asn Met Glu Asn Asp Glu Asn Ile
5
           Val Tyr Gly Pro Glu Pro Phe Tyr Pro Ile
           Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg
10
           Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly
           Ala Ile Ala Phe Thr Asn Ala Leu Thr Gly
15
           Val Asp Tyr Thr Tyr Ala Glu Tyr Leu Glu
           Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys
20
           Asn Tyr Gly Leu Val Val Asp Gly Arg
                                                Ile
           Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe
25
           Phe Ile Pro Val Leu Ala Gly Leu Phe Ile
           Gly Val Gly Val Ala Pro Thr Asn Glu Ile
           Tyr Thr Leu Arg Glu Leu Val His Ser Leu
           Gly Ile Ser Lys Pro Thr Ile Val Phe Ser
35
           Ser Lys Lys Gly Leu Asp Lys Val Ile Thr
           Val Gln Lys Thr Val Thr Ala Ile Lys Thr
40
            Ile Val Ile Leu Asp Ser Lys Val Asp Tyr
            Arg Gly Tyr Gln Ser Met Asp Asn Phe Ile
45
           Lys Lys Asn Thr Pro Gln Gly Phe Lys Gly
            Ser Ser Phe Lys Thr Val Glu Val Asn Arg
```

55

	Lys	Glu	Gln	Val	Ala	Leu	lle	Met	Asn	z o o Ser
5	Ser	Gly	Ser	Thr	Gly	Leu	Pro	Lys	Gly	zı o Val
	Gln	Leu	Thr	His	Glu	Asn	Ala	Val	Thr	zzo Arg
10	Phe	Ser	His	Ala	Arg	Asp	Pro	Ιle	Tyr	z a o G l y
	Asn.	Gln	Val	Ser	Pro	Gly	Thr	Ala	Ile	2 4 0 Leu
15	Thr	Val	Val	Pro	Phe	His	His	Gly	Phe	2 S O G l y
	Met	Phe	Thr	Thr	Leu	Gly	Tyr	Leu	Thr	cys
20	Gly	Phe	Arg	Ile	Val	Met	Leu	Thr	Lys	270 Phe
20	Asp	Glu	Glu	Thr	Phe	Leu	Lys	Thr	Leu	z s o G l n
	Asp	Tyr	Lys	Суs	Ser	Ser	Val	Ile	Leu	val
25	Pro	Thr	Leu	Phe	Ala	Ile	Leu	Asn	Arg	Ser
	Glu	Leu	Leu	Asp	Lys	Tyr	Asp	Leu	Ser	Asn
30	Leu	Val	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro
	Leu	Ser	Lys	Glu	Ile	Gly	Glu	Ala	Val	Ala
35	Arg	Arg	Phe	Asn	Leu	Pro	Gly	V a ì	Arg	
	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	
40	Ile	Ile	lle	Thr	Pro	Glu	Gly	Asp	Asp	
	Pro	Gly	Ala	Ser	Gly	Lys	Val	Val	Pro	
45	Phe	Lvs	Ala	Lys	Val	Ile	Asp	Leu	Asp	3 8 0 Thr

Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly Glu Val Cys Val Lys Gly Pro Met Leu Met 5 Lys Gly Tyr Val Asp Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu 10 His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe Ile Val Asp Arg Leu 15 Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val Pro Pro Ala Glu Leu Glu Ser Val Leu 20 Leu Gln His Pro Asn Ile Phe Asp Ala Gly Val Ala Gly Val Pro Asp Pro Ile Ala Gly 25 Glu Leu Pro Gly Ala Val Val Leu Glu Lys Gly Lys Ser Met Thr Glu Lys Glu Val Met Asp Tyr Val Ala Ser Gln Val Ser Asn Ala Lys Arg Leu Arg Gly Gly Val Arg Phe 35 Val Asp Glu Val Pro Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile 40 Leu Lys Lys Pro Val Ala Lys Met

45 3. A luciferase gene according to Claim 1 or 2 which is represented by a nucleotide sequence shown below.

50

	ATG	GAA	AAC	ATG	GAG	AAC	GAT	GAA	AAT	ATT
5	GTG	TAT	GGT	CCT	G A A	CCA	T T T	TAC	CCT	ATT
	GAA	G A G	GGA	TCT	GCT	GGA	GCA	CAA	TTG	CGC
	A A G	TAT	ATG	GAT	CGA	TAT	GCA	AAA	CTT	1 2 0 G G A
	GCA	ATT	GCT	TTT	ACT	AAC	GCA	CTT	ACC	GGT
15	GTC	GAT	TAT	ACG	TAC	GCC	G A A	TAC	TTA	G A A
	AAA	TCA	TGC	TGT	CTA	GGA	GAG	GCT	TTA	2 1 0 A A G
20	AAT	TAT	GGT	TTG	GTT	GTT	GAT	GGA	A G A	2 4 0 A T T
20	GCG	TTA	TGC	AGT	GAA	AAC	TGT	GAA	G A A	7 7 0 7 7 C
	TTT	ATT	CCT	GTA	TTA	GCC	GGT	TTA	TTT	ATA
25	GGT	GTC	GGT	GTG	GCT	CCA	ACT	AAT	GAG	
	TAC	ACT	CTA	CGT	G A A	TTG	GTT	CAC	AGT	
30	GGC	ATC	TCT	AAG	CCA	ACA	ATT	GTA	TTT	
	TCT	AAA	A A A	GGA	TTA	GAT	AAA	GTT	ATA	
35	GTA	CAA	AAA	ACG	GTA	ACT	GCT	ATT	AAA	
	ATT	GTT	ATA	TTG	GAC	AGC	AAA	GTG	GAT	1 8 0 T A T
40	AGA	GGT	TAT	CAA	TCC	ATG	GAC	AAC	TTT	ATT
	AAA	AAA	AAC	ACT	CCA	CAA	GGT	TTC	AAA	
4 5	TCA	AGT	ттт	444	ACT	GTA	GAA	GTT	AAC	5 7 0 CGC

	AAA	GAA	CAA	GTT	GCT	CTT	ATA	ATG	AAC	TCT
5	TCG	GGT	TCA	ACC	GGT	TTG	CCA	AAA	GGT	GTO
	CAA	CTT	ACT	CAT	GAA	AAT	GCA	GTC	ACT	AGA
10	TTT	TCT	CAC	GCT	A G A	GAT	CCA	ATT	TAT	GGA
	AAC	CAA	GTT	TCA	CCA	GGC	ACG	GCT	ATT	7 2 C
15	ACT	GTA	GTA	CCA	TTC	CAT	CAT	GGT	TTT	7 S G
,,	ATG	TTT	ACT	ACT	T T A	GGC	TAT	CTA	ACT	7 8 0 T G T
20	GGT	TTT	CGT	ATT	GTC	ATG	TTA	ACG	AAA	TTT
20	GAC	G A A	GAG	ACT	TTT	TTA	AAA	ACA	CTG	
	GAT	TAC	AAA	TGT	TCA	AGC	GTT	ATT	CTT	
25	CCG	ACT	TTG	TTT	GCA	ATT	CTT	AAT	AGA	
	G A A	TTA	CTC	GAT	AAA	TAT	GAT	TTA	TCA	
30	TTA	GTT	GAA	ATT	GCA	TCT	GGC	GGA	GCA	
	TTA	TCT	AAA	GAA	ATT	GGT	G A A	GCT	GTT	
35	AGA	CGT	TTT	AAT	TTA	CCG	GGT	GTT	CGT	
	GGC	TAT	GGT	TTA	ACA	G A A	ACA	ACC	TCT	GCA
40	ATT	ATT	ATC	ACA	CCG	GAA	GGC	GAT	GAT	AAA
	CCA	GGT	GCT	TCT	GGC	AAA	GTT	GTG	CCA	
45	ጥጥጥ	A A A	CCA	A A A	стт	ለጥር	CAT	CTT	CAT	

	AAA	AAA	ACT	TTG	GGC	CCG	AAC	AGA	CGT GGA
5	GAA	GTT	TGT	GTA	AAG	GGT	CCT	ATG	CTT ATG
	AAA	GGT	TAT	GTA	GAT	AAT	CCA	GAA	GCA ACA
10	AGA	GAA	ATC	ATA	GAT	GAA	G A A	GGT	TGG TTG
	CAC	ACA	GGA	GAT	ATT	GGG	TAT	TAC	GAT GAA
15	GAA	AAA	CAT	TTC	TTT	ATC	GTG	GAT	CGT TTG
	AAG	TCT	TTA	ATC	AAA	TAC	AAA	GGA	TAT CAA
20	GTA	CCA	CCT	GCT	GAA	TTA	GAA	TCT	GTT CTT
	TTG	CAA	CAT	CCA	AAT	ATT	TTT	GAT	GCC GGC
25	GTT	GCT	GGC	GTT	CCA	GAT	CCT	ATA	GCT GGT
	GAG	CTT	CCG	GGA	GCT	GTT	GTT	GTA	CTT GAA
	AAA	GGA	AAA	TCT	ATG	ACT	G A A	AAA	GAA GTA
30	ATG	GAT	TAC	GTT	GCT	AGT	CAA	GTT	TCA AAT
	GCA	AAA	CGT	TTG	CGT	GGT	GGT	GTC	CGT TTT
35	GTG	GAC	GAA	GTA	CCT	AAA	GGT	CTC	ACT GGT
	AAA	ATT	GAC	GGT	AAA	GCA	ATT	A G A	GAA ATA
40	CTG	AAG	AAA	CCA	GTT	GCT	AAG	ATG	

- 45 4. A novel recombinant DNA comprising a vector DNA into which a gene coding for <u>Luciola lateralis-derived luciferase according to claims 1-3 is inserted.</u>
 - 5. A novel recombinant DNA according to claim 4, wherein said vector DNA is plasmid pUC119.
- 6. A method for producing a luciferase which comprises culturing in a medium a microorganism belonging to the genus Escherichia and bearing a recombinant DNA according to claim 4 obtained by inserting a gene coding for Luciola Luciola Lateralis-derived luciferase Lateralis-derived luciferas
- 55 7. A method for producing a luciferase according to claim 6, wherein said vector DNA is plasmid pUC119.

Patentansprüche

1. Ein von Luciola lateralis abgeleitetes Luciferase-Gen, definiert durch die nachfolgend angegebene Restriktionsenzymkarte:

EI	s	EV	Α	H	H	EI	S	EI

worin El Eco RI bedeutet, S Ssp I bedeutet, EV Eco RV bedeutet, A Apa I bedeutet und H Hpa I bedeutet.

2. Luciferase-Gen nach Anspruch 1, dadurch gekennzeichnet, daß es die nachfolgend angegebene Aminosäuresequenz codiert:

20	Met	Glu	Asπ	Меt	Glu	Asn	Asp	Glu	Asn	lle
	V a l	Tyr	Gly	Pro	Glu	Pro	Phe	Tyr	Pro	z o I l e
25	Glu	Glu	Gly	Ser	Ala	Gly	Ala	Gla	Leu	a q A r g
	Lys	Tyr	Иet	Asp	Arg	Tyr	Ala	Lys	Leu	Gly
30	Ala	lle	Ala	Phe	7 h r	Asn	Ala	Leu	Thr	Gly
	Val	Asp	Tyr	Thr	Туг	Ala	Glu	Tyr	Leu	Glu
35	Lys	Ser	·C y s	Cys	leu	Gly	Glu	Ala	Leu	to Lys

Asn Tyr Gly Leu Val Val Asp Gly Arg Ile Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe 5 Phe Ile Pro Val Leu Ala Gly Leu Phe Ile Gly Val Gly Val Ala Pro Thr Asn Glu Ile 10 Tyr Thr Leu Arg Glu Leu Val His Ser Leu Gly Ile Ser Lys Pro Thr Ile Val Phe Ser 15 Ser Lys Lys Gly Leu Asp Lys Val Ile Thr Val Gln Lys Thr Val Thr Ala Ile Lys Thr 20 Ile Val Ile Leu Asp Ser Lys Val Asp Tyr Arg Gly Tyr Gln Ser Met Asp Asn Phe Ile 25 Lys Lys Asn Thr Pro Gln Gly Phe Lys Gly Ser Ser Phe Lys Thr Val Glu Val Asn Arg 30 Lys Glu Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 35 Gln Leu Thr His Glu Asn Ala Val Thr Arg Phe Ser His Ala Arg Asp Pro Ile Tyr Gly 40 Asn Gln Val Ser Pro Gly Thr Ala Ile Leu Thr Val Val Pro Phe His His Gly Phe Gly 45 Met Phe: Thr Thr Leu Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln

	Asp	Туг	Lys	Суs	Ser	Ser	V a l	lle	Leu	Val
5	Pro	Thr	Leu	Phe	Ala	lle	Leu	Asn	Arg	ser
	Glu	Leu	Leu	Asp	Lys	îyr	Asp	Leu	Ser	2 i o A s n
10	Leu	Val	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro
70	Leu	Ser	Lys	Glu	Ile	Gly	Glu	Ala [·]	-Yal	330 Ala
		Arg								Gin
15	Gly	Tyr	Gly	Leu	Thr	Glu	îhr	Thr	Ser	as o Ala
		lle	-							3 6 3
20	•	Gly								370
		Lys								3 e o
25	Lys	Lys	Thr	Leu	Gly	Pro	Asn	Arg	Arg	a • o Gly
	Glu	Val	Cys	Val	Lys	Gly	Pro	Met	Leu	4 o o He t
30	Lys	Gly	Tyr	Val	Asp	Asn	Pro	Glu	Ala	Thr
	Arg	Glu	Ile	[]e	Asp	Glu	Glu	Gly	Trp	izo Leu
35	His	Thr	Gly	Asp	ΙΙe	Gly	Tyr	Tyr	Asp	d z a G l u
	Glu	Lys	His	Phe	Phe	Ιle	Val	Asp	Arg	Leu
40	Lys	Ser	·leu	Ile	Lys	Туг	Lys	Gly	Туг	4 s o G l n
40	Y a l	Pro	Pro	Ala	Glu	Leu	Glu	Ser	V a l	Leu
	Leu	Gln	His	Pro	Asn	Ile	Phe	Asp	Ala	Gly
45	V a l	Ala	Gly	V a l	Pro	Asp	Pro	Ile	Ala	Gly
	Gĺu	Leu	Pro	Gly	Ala	V a l	V a l	V a l	Leu	Glu
50	Lys	Gly	Lys	Ser	Иet	Thr	Glu	Lys	Glu	soo Yal

Met Asp Tyr Val Ala Ser Gln Val Ser Asn

Ala Lys Arg Leu Arg Gly Gly Val Arg Phe

Val Asp Glu Val Pro Lys Gly Leu Thr Gly

Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile

Leu Lys Lys Pro Val Ala Lys Met

3. Luciferase-Gen gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es durch die nachfolgend angegebene Nucleotidsequenz dargestellt wird.

ATG GAA AAC ATG GAG AAC GAT GAA AAT ATT 20 GTG TAT GGT CCT GAA CCA TTT TAC CCT ATT GAA GAG GGA TCT GCT GGA GCA CAA TTG CGC 25 AAG TAT ATG GAT CGA TAT GCA AAA CTT GGA GCA ATT. GCT TTT ACT AAC GCA CTT ACC GGT 30 GTC GAT TAT ACG TAC GCC GAA TAC TTA GAA AAA TCA TGC TGT CTA GGA GAG GCT TTA AAG 35 AAT TAT GGT TTG GTT GTT GAT GGA AGA ATT GCG TTA TGC AGT GAA AAC TGT GAA GAA TTC 40 TTT ATT CCT GTA TTA GCC GGT TTA TTT ATA GGT GTC GGT GTG GCT CCA ACT AAT GAG ATT 45

50

15

	TAC	ACT	CTA	CGT	GAA	TTG	GTT	CAC	AGT	TTA
5	GGC	ATC	TCT	A A G	CCA	ACA	ATT	GTA	777	A G T
										ACT
10										450
						•	•			4 8 6
15	AGA	GGT	TAT	CAA	TCC	ATG	GAC	AAC	TTT	ATT
	AAA	AAA	AAC	ACT	CCA	CAA	GGT	A GTT ATA ACT T ATT AAA ACC A GTG GAT TAT		
20	TCA	AGT	TTT	AAA	ACT	GTA	GAA	GTT	AAC	
										4 0
25	TCG	GGT	TCA	ACC	GGT	TTG	CCA	AAA	GGT	6 T
	. C A A	CTT	ACT	CAT	GAA	AAT	GCA	GTC	ACT	
30	TTT	TCT	CAC	GCT	A G A	GAT	CCA	ATT	TAT	GG A
	AAC	CAA	GTT	TCA	CCA	GGC	ACG	GCT	ATT	7 Z (
35	ACT	GTA	GTA	CCA	TTC	CAT	CAT	GGT	TTT	7 S G
30	ATG	TTT	'A C T	ACT	TTA	GGC	TAT	CTA	ACT	7 # 6 7 G 7
	GGT	TTT	CGT	ATT	GTC	ATG	TTA	ACG	AAA	TTT
40	GAC	GAA	GAG	ACT	TTT	TTA	AAA	ACA	CTG	CAA
	GAT	TAC	AAA	TGT	TCA	AGC	GTT	ATT	CTT	GTA
45	CCG	ACT	TTG	TTT	GCA	ATT	CTT	A A T	A G A	AGT
	G A A	TTA	CTC	GAT	AAA	TAT	GAT	TTA	TCA	4 3 4 A A T
50	TTA	GTT	GAA	ATT	GCA	TCT	GGC	GGA	GCA	CCT

	тта	ፐርፕ	4 4 4	GAA	ATT	GGT	GAA	GCT	GTT GCT
									CGT CAA
5									TCT GCA
									GAT AAA
10									CCA TTA
45									GAT ACT
15									CGT GGA
20	GAA	GTT	TGT	GTA	AAG	GGT	CCT	ATG	CTT ATG
20	AAA	GGT	TAT	GTA	GAT	AAT	CCA	GAA	GCA ACA
25	A G A	GAA	ATC	ATA	GAT	GAA	GAA	GGT	TGG TTG
20	CAC	ACA	GGA	GAT	ATT	GGG	TAT	TAC	GAT GAA
30	G A A	AAA	CAT	TTC	TTT	ATC	GTG	GAT	CGT TTG
30	A A G	TCT	TTA	ATC	AAA	TAC	AAA	G G A	TAT CAA
35	GTA	CCA	CCT	GCT	G A A	TTA	G A A	TCT	GTT CTT
30	TTG	CAA	CAT	CCA	AAT	ATT	TTT	GAT	GCC GGC
40								•	GCT GGT
40						•			CTT GAA
4 5	•								GAA GTA
-								GTT	1 5 4
	GCA	AAA	CGT	TTG	CGT	ն ն โ	ն ն 1	PIC	CGT TT

GTG GAC GAA GTA CCT AAA GGT CTC ACT GGT
AAA ATT GAC GGT AAA GCA ATT AGA GAA ATA
CTG AAG AAA CCA GTT GCT AAG ATG

10

20

5

- 4. Neue rekombinante DNA, umfassend eine Vektor-DNA, in die ein Gen gemäß den Ansprüchen 1 bis 3, das für von Luciola lateralis abgeleitete Luciferase codiert, eingeführt ist.
- 5. Neue rekombinante DNA gemäß Anspruch 4, dadurch gekennzeichent, daß die Vektor-DNA Plasmid pUC119 ist.
 - 6. Verfahren zur Herstellung einer Luciferase, dadurch gekennzeichnet, daß man in einem Medium einen Mikroorganismus der Gattung Escherichia, der eine rekombinante DNA gemäß Anspruch 4 trägt, die erhalten wurde durch Einführung eines Gens, das für von Luciola lateralis abgeleitete Luciferase codiert, in eine Vektor-DNA kultiviert und die Luciferase aus der Kultur gewinnt.
 - 7. Verfahren zur Herstellung einer Luciferase gemäß Anspruch 6, dadurch gekennzeichnet, daß die Vektor-DNA Plasmid pUC119 ist.

85 Revendications

1. Gène de luciférase dérivé de Luciola lateralis, défini par la carte de restriction décrite ci-dessous:

30	EI	S	EV	A	Н	Н	ΕI	S	ΕÏ

- dans laquelle El représente EcoRl, S représente Ssp I, EV représente Eco RV, A représente Apa I et H représente Hpa I.
- 2. Gène de luciférase selon la revendication 1, qui code la séquence d'acides aminés présentée cidessous:

40

35

50

45

										10
_	Met	Glu	Asn	Met	Glu	Asn	Asp	Glu	Asn	
5	Val	Tvr	Glv	Pro	Glu	Pro	Phe	Tvr	Pro	20 11e
		-1-	U-1					-1		30
10	Glu	Glu	Gly	Ser	Ala	Gly	Ala	Gln	Leu	Arg
										40
	ГÃВ	Tyr	Met	qaA	Arg	Tyr	Ala	Lys	Leu	-
15	λ1 - 2	Tla	7 1 s	Pho	Ψh∽	Asn	בות	Lou	መኮኍ	50
	Ala	116	Ата	PHE	1111	WOII	ATG	, nea	1111	60
	Val	Asp	Tyr	Thr	Tyr	Ala	Glu	Tyr	Leu	
20					_			_		. 70
	Lys	Ser	Cys	Cys	Leu	Gly	Glu	Ala	Leu	Lys
										80
25	Asn	Tyr	Gly	Leu	Val	Val	Asp	Gly	Arg	
	Δla	I. 0 11	Cvs	Ser	Glu	Asn	Cvs	Glu	G1n	90 Phe
	1114	LCu	Cyb		0.10	21011	CJO		01 u	1
30										
35										
40										
70										
45										
50										

										100
	Phe	Ile	Pro	Val	Leu	Ala	Gly	Leu	Phe	Ile
5										110
	Gly	Val	Gly	Val	Ala	Pro	Thr	Asn	Glu	Ile
									Glu Ser Phe Ile Lys Asp Phe Lys Asn Asn Gly	120
10	Tyr	Thr	Leu	Arg	Glu	Leu	Val	His	Ser	Leu
10										130
	Gly	Ile	Ser	Lys	Pro	Thr	Ile	Val	Phe	Ser
										140
15	Ser	Lys	Lys	Gly	Leu	Asp	Lys	Val	Ile	
						_			_	150
	Val	Gln	Lys	Thr	Val	Thr	Ala	Пе	Lys	
20				•		7	T	1701	3.00	160
	Ile	Val	TTE	Leu	Asp	ser	гуя	val	Asp	170
	3	~1	m	C1 n	50x	Mot	Acn	λen	Dho	
25	Arg	GTĀ	IĂI	GIII	SEL	Mec	rsp	Abii	1110	180
	LAZS	Lvs	Asn	Thr	Pro	G1n	G1v	Phe	Lvs	
	ט עַם	2,0							-	190
30	Ser	Ser	Phe	Lys	Thr	Val	Glu	Va1	Asn	Arg
				-						200
	Lys	Glu	G1n	Val	Ala	Leu	Ile	Met	Asn	Ser
35										210
	Ser	Gly	Ser	Thr	Gly	Leu	Pro	Lys	Gly	Val
										220
40	Gln	Leu	Thr	His	Glu	Asn	Ala	Va1	Thr	Arg
										230
	Phe	Ser	His	Ala	Arg	Asp	Pro	Ile	Tyr	
								_ =		240
45	Asn	Gln	Val	Ser	Pro	Gly	Thr	Ala	Ile	
					m 1-	***	111 -	01. -	Dh.c	250
	Thr	val	val	Pro	rue	HIS	HIS	ΥĀ	ьие	
50	34 = 4	Dh.s	m4	mh	T 011	Q1	Π» •~~	T 011	Пhr	260
	Met	rne	rnr	Thr	∟eu	GΤλ	ıyr	ьeu	TIIT	CAR

										270
	Gly	Phe	Arg	Ile	Val	Met	Leu	Thr	Lys	Phe
5										280
	Asp	Glu	Glu	Thr	Phe	Leu	Lys	Thr	Leu	Gln
										290
10	qaA	Tyr	Lys	Cys	Ser	Ser	Val	Ile	Leu	Val
10										300
	Pro	Thr	Leu	Phe	Ala	Ile	Leu	Asn	Arg	Ser
										310
15	Glu	Leu	Leu	qaA	Lys	Tyr	Asp	Leu	Ser	Asn
										320
	Leu	Val	Glu	Ile	Ala	Ser	Gly	Gly	Ala	
20										330
	Leu	Ser	Lys	Glu	Ile	Gly	Glu	Ala	Val	
						_	4	•	_	340
25	Arg	Arg	Phe	Asn	Leu	Pro	GIA	Val	Arg	
	~1	_	~ 3.	•		0 1	mla sa	mb	C ~ ~	350
	СІУ	чуr	GTA	Leu	Thr	GIU	THE	THE	Ser	360
30	T 1.0	T1.	T10	mb ×	Dro	Glu	Gly	y en	Asp	
	TIE	TTG	TIE	1111	PLO	Gru	GIY	дол	Aop	370
	Pro	Glv	Δla	Ser	Glv	Lvs	Va1	Va1	Pro	
25	FIO	GLY	4124		0.1	, .				380
35	Phe	Lvs	Ala	Lvs	Val	Ile	Asp	Leu	Asp	
							_		_	390
	Lys	Lys	Thr	Leu	Gly	Pro	Asn	Arg	Arg	Gly
40	_	_								400
	G1u	Val	Cys	Val	Lys	Gly	Pro	Met	Leu	Met
										410
45	Lys	Gly	Tyr	Va1	Asp	Asn	Pro	Glu	Ala	Thr
										420
	Arg	Glu	Ile	Ile	Asp	Glu	Glu	Gly	Trp	Leu
50										430
	His	Thr	Gly	Asp	Ile	Gly	Tyr	Tyr	Asp	G1u

55

• •

										440
	Glu	Lys	His	Phe	Phe	Ile	Va1	Asp	Arg	
										450
5	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly	Tyr	Gln
										460
	Val	Pro	Pro	Ala	Glu	Leu	Glu	Ser	va1	Leu
10										470
	Leu	Gln	His	Pro	Asn	Ile	Phe	Asp	Ala	Gly
										480
15	Val	Ala	Gly	Val	Pro	Asp	Pro	Ile	Ala	Gly
				•						490
	Glu	Leu	Pro	Gly	Ala	Val	Val	Val	Leu	Glu
										500
20	Lys	Gly	Lys	Ser	Met	Thr	Glu	Lys	Glu	Val
										510
	Met	Asp	Tyr	Val	Ala	Ser	Gln	Val	Ser	Asn
25										520
	Ala	Lys	Arg	Leu	Arg	Gly	Gly	Val	Arg	Phe
										530
30	Va1	Asp	Glu	Val	Pro	Lys	Gly	Leu	Thr	Gly
										540
	Lys	Ile	qaA	Gly	Lys	Ala	Ile	Arg	Glu	Ile
35	Leu	Lys	Lys	Pro	Val	Ala	Lys	Met		

3. Gène de luciférase selon la revendication 1 ou 2 qui est représenté par la séquence nucléotidique présentée ci-dessous:

30
ATG GAA AAC ATG GAG AAC GAT GAA AAT ATT
60
GTG TAT GGT CCT GAA CCA TTT TAC CCT ATT
90
GAA GAG GGA TCT GCT GGA GCA CAA TTG CGC

										120
	AAG	TAT	ATG	GAT	CGA	TAT	GCA	AAA	CTT	
5										150
	GCA	ATT	GCT	.I.I.I.	ACT	AAC	GCA	CTT	ACC	
	070				m> 0	000	~			180
10	GTC	GAT	TAT	ACG	TAC	GCC	GAA	TAC	TTA	
	222	TCA	maa	mom.	CALLY V	CCA	CAC	CCIII	mmx	210
	AAA	TCA	160	161	CIA	GGA	GAG	GCI	IIM	240
15	יחממ	TAT	CCT	באניים	Carr	Cग्रमा -	ርልጥ	GCA	DGD.	
	WI	ini	661	110	GII	GII	GAI	COM	non	270
	GCG	TTA	TGC	AGT	GAA	AAC	TGT	GAA	GAA	
20										300
	TTT	ATT	CCT	GTA	TTA	GCC	GGT	TTA	TTT	ATA
										330
	GGT	GTC	GGT	GTG	GCT	CCA	ACT	AAT	GAG	ATT
25										360
	TAC	ACT	CTA	CGT	GAA	TTG	GTT	CAC	AGT	TTA
										390
30	GGC	ATC	TCT	AAG	CCA	ACA	ATT	GTA	$\mathbf{T}\mathbf{T}\mathbf{T}$	AGT
										420
	TCT	AAA	AAA	GGA	TTA	GAT	AAA	GTT	ATA	ACT
35										450
	GTA	CAA	AAA	ACG	GTA	ACT	GCT	TTA	AAA	ACC
										480
40	ATT	GTT	ATA	TTG	GAC	AGC	AAA	GTG	GAT	TAT
										510
	AGA	GGT	TAT	CAA	TCC	ATG	GAC	AAC	TTT	
AE				. ~~			~~~			540
45	AAA	AAA	AAC	ACT	CCA	CAA	GG.I.	TTC	AAA	
	ma.	N/OFF	(THINK)	7 . 7. 7.	л Опп	O⊞ z	C 3 3	COO	א א מ	570
	TCA	AGT	1.1.1.	AAA	ACT	GTA	GAA	GTT.	AAC	
50	מממ	GAA	ሮል አ	Curan	ርረጥ	ىتغلىك	גייזע	באתע	ממ	600 TCT
	WW.	CAU.	\sim	217	GC I	-11	UIV	MIG	THIC.	1 - 1

	ጥርር	2 667	י ייערי	. ACC	י ככח	n mmc				630 GTG
	100	. 661	· ICF	ACC	. 661	1110	, (()	A AAA	1 GG1	
5	CAA	CTT	' ACT	' САТ	י קאם	יע מ	י מכז	\	י ארייו	660 AGA
					0.1			. 010	- ACI	690
	TTT	TCT	CAC	GCT	' AGA	GAT	' CCA	rra <i>i</i>	rat '	' GGA
10										720
	AAC	CAA	GTT	TCA	CCA	GGC	ACG	GCI	' ATT	TTA
										750
15	ACT	GTA	GTA	CCA	TTC	CAT	CAT	GGT	TTTT	GGT
										780
	ATG	TTT	ACT	ACT	TTA	GGC	TAT	CTA	ACT	TGT
20										810
	GGT	TTT	CGT	ATT	GTC	ATG	TTA	ACG	AAA	TTT
										840
25	GAC	GAA	GAG	ACT	TTT	TTA	AAA	ACA	CTG	CAA
	0 h m	m) 0								870
	GAT	TAC	AAA	1GT	TCA	AGC	GTT	ATT	CTT	
30	CCG	ልረጥ	anas.	LELE II	CON	ATT	O/III	330		900
••	cca	ACI	110	111	GCA	ATT	CIT	AAT	AGA	
	GAA	тта	CTC	САТ	444	TAT	СУП	מיזיים	ጥጥል	930
0E							Q.11	_ +43	102	960
35	TTA	GTT	GAA	ATT	GCA	TCT	GGC	GGA	GCA	
										990
	TTA	TCT	AAA	GAA	ATT	GGT	GAA	GCT	GTT	GCT
40									J	1020
	AGA	CGT	TTT	ААТ	TTA	CCG	GGT	GTT	CGT	CAA
									J	L050
45	GGC	TAT	GGT	ATT	ACA	GAA	ACA	ACC	TCT	GCA
										.080
	TTA	TTA	ATC	ACA	CCG	GAA	GGC	GAT	GAT	AAA
50										110
	CCA	GGT	GCT	TCT	GGC	AAA	GTT	GTG	CAA	\mathbf{ATT}

										1140
	TTT	' AAA	GCA	AAA	GTT	' ATC	GAT	CTI	GAT	ACI
5										1170
	AAA	AAA	ACI	TTG	GGC	CCG	AAC	AGA	CGT	GGA
										1200
10	GAA	GTT	TGT	' GTA	AAG	GGT	CCT	ATG	CTT	
		com								1230
	AAA	GG1	TAT	GTA	GA'I	' AAT	CCA	GAA	GCA	
15	አጣአ	C 2 2	3 000	2002	O. m.		~~	~~-		1260
	AGA	GAA	ATC	ATA	GAT	GAA	GAA	GG'I'	TGG	
	CAC	እሮአ	CCA	CAM	» mm	CCC	mam	ma o	GAT	1290
	CAC	ACA	GGA	GAI	AIT	GGG	TAT	TAC		
20	GAA	222	Cam	ישויירי	गुकावरा	ישרא	CITC	CAM	CGT	1320
	Q. 21	****	CA1	110	111	AIC	GIG	GAI		11G 1350
	AAG	TCT	тта	ATC	ΔΔΔ	ጥልሮ	ααα	CCA	TAT	
25							1221	GOA		مم 1380
	GTA	CCA	ССТ	GCT	GAA	TTA	GAA	TCT	GTT	
										1410
30	TTG	CAA	CAT	CCA	AAT	ATT	TTT	GAT	GCC	
										1440
	GTT	GCT	GGC	GTT	CCA	GAT	ССТ	ATA	GCT	
35										L 4 70
	GAG	CTT	CCG	GGA	GCT	GTT	GTT	GTA	CTT	GAA
									נ	L500
40	AAA	GGA	AAA	TCT	ATG	ACT	GAA	AAA	GAA	GTA
40									נ	530
	ATG	GAT	TAC	GTT	GCT	AGT	CAA	GTT	TCA	AAT
									1	560
45	GCA	AAA	CGT	TTG	CGT	GGT	GGT	GTC	CGT	TTT
									1	590
	GTG	GAC	GAA	GTA	CCT	AAA	GGT	CTC	ACT	GGT
50										620
	AAA	ATT	GAC	GGT	AAA	GCA	TTA	AGA	GAA	ATA

CTG AAG AAA CCA GTT GCT AAG ATG

- 4. Nouvel ADN recombiné comprenant un ADN vecteur dans lequel est inséré un gène codant la luciférase dérivée de Luciola lateralis selon les revendications 1 à 3.
- Nouvel ADN recombiné selon la revendication 4, dans lequel ledit ADN vecteur est le plasmide pUC119.
 - 6. Procédé de production d'une luciférase qui comprend la culture dans un milieu d'un micro-organisme appartenant au genre Eschirichia et protant un ADN recombiné selon la revendication 4 obtenu par insertion d'un gène codant la luciférase dérivée de <u>Luciola</u> lateralis dans un ADN vecteur et l'obtention de ladite luciférase à partir de la culture.

10

15

20

25

30

.35

40

45

50

55

 Procédé de production d'une luciférase selon la revendication 6, dans lequel ledit ADN vecteur est le plasmide pUC119.

FIG. 2

F1G. 3

FIG. 4

FIG. 5

--- pUC 119

C-DNA

FIG. 6A

ATG GAA AAC ATG GAG AAC GAT GAA AAT ATT GTG TAT GGT CCT GAA CCA TTT TAC CCT ATT GAA GAG GGA TCT GCT GGA GCA CAA TTG CGC AAG TAT ATG GAT CGA TAT GCA AAA CTT GGA GCA ATT GCT TTT ACT AAC GCA CTT ACC GGT GTC GAT TAT ACG TAC GCC GAA TAC TTA GAA AAA TCA TGC TGT CTA GGA GAG GCT TTA AAG AAT TAT GGT TTG GTT GTT GAT GGA AGA ATT GCG TTA TGC AGT GAA AAC TGT GAA GAA TTC TTT ATT CCT GTA TTA GCC GGT TTA TTT ATA GGT GTC GGT GTG GCT CCA ACT AAT GAG ATT TAC ACT CTA CGT GAA TTG GTT CAC AGT TTA GGC ATC TCT AAG CCA ACA ATT GTA TTT AGT TCT AAA AAA GGA TTA GAT AAA GTT ATA ACT GTA CAA AAA ACG GTA ACT GCT ATT AAA ACC ATT GTT ATA TTG GAC AGC AAA GTG GAT AGA GGT TAT CAA TCC ATG GAC AAC TTT ATT AAA AAA AAC ACT CCA CAA GGT TTC AAA GGA TCA AGT TTT AAA ACT GTA GAA GTT AAC CGC

FIG. 6B

AAA GAA CAA GTT GCT CTT ATA ATG AAC TCT TCG GGT TCA ACC GGT TTG CCA AAA GGT GTG CAA CTT ACT CAT GAA AAT GCA GTC ACT AGA TTT TCT CAC GCT, AGA GAT CCA ATT TAT GGA AAC CAA GTT TCA CCA GGC ACG GCT ATT TTA ACT GTA GTA CCA TTC CAT CAT GGT TTT GGT ATG TTT ACT ACT TTA GGC TAT CTA ACT TGT GGT TTT CGT ATT GTC ATG TTA ACG AAA TTT GAC GAA GAG ACT TTT TTA AAA ACA CTG CAA GAT TAC AAA TGT TCA AGC GTT ATT CTT GTA CCG ACT TTG TTT GCA ATT CTT AAT AGA AGT GAA TTA CTC GAT AAA TAT GAT TTA TCA AAT TTA GTT GAA ATT GCA TCT GGC GGA GCA CCT TTA TCT AAA GAA ATT GGT GAA GCT GTT GCT AGA CGT TTT AAT TTA CCG GGT GTT CGT CAA GGC TAT GGT TTA ACA GAA ACA ACC TCT GCA ATT ATT ATC ACA CCG GAA GGC GAT GAT AAA CCA GGT GCT TCT GGC AAA GTT GTG CCA TTA TTT AAA GCA AAA GTT ATC GAT CTT GAT ACT

FIG. 6C

AAA AAA ACT TTG GGC CCG AAC AGA CGT GGA GAA GTT TGT GTA AAG GGT CCT ATG CTT ATG AAA GGT TAT GTA GAT AAT CCA GAA GCA ACA AGA GAA ATC ATA GAT GAA GAA GGT TGG TTG CAC ACA GGA GAT ATT GGG TAT TAC GAT GAA GAA AAA CAT TTC TTT ATC GTG GAT CGT TTG AAG TCT TTA ATC AAA TAC AAA GGA TAT CAA GTA CCA CCT GCT GAA TTA GAA TCT GTT CTT TTG CAA CAT CCA AAT ATT TTT GAT GCC GGC GTT GCT GGC GTT CCA GAT CCT ATA GCT GGT GAG CTT CCG GGA GCT GTT GTT GTA CTT GAA AAA GGA AAA TCT ATG ACT GAA AAA GAA GTA ATG GAT TAC GTT GCT AGT CAA GTT TCA AAT GCA AAA CGT TTG CGT GGT GGT GTC CGT TTT GTG GAC GAA GTA CCT AAA GGT CTC ACT GGT AAA ATT GAC GGT AAA GCA ATT AGA GAA ATA CTG AAG AAA CCA GTT GCT AAG ATG

FIG. 7A

Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Tyr Gly Pro Glu Pro Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr Asn Ala Leu Thr Glv Val Asp Tyr Thr Tyr Ala Glu Tyr Leu Glu Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys Asn Tyr Gly Leu Val Val Asp Gly Arg Ile Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe Phe Ile Pro Val Leu Ala Gly Leu Phe Ile Gly Val Gly Val Ala Pro Thr Asn Glu Ile Tyr Thr Leu Arg Glu Leu Val His Ser Leu Gly Ile Ser Lys Pro Thr Ile Val Phe Ser Ser Lys Lys Gly Leu Asp Lys Val Ile Thr Val Gln Lys Thr Val Thr Ala Ile Lys Thr Ile Val Ile Leu Asp Ser Lys Val Asp Tyr Arg Gly Tyr Gln Ser Met Asp Asn Phe Ile Lys Lys Asn Thr Pro Gln Gly Phe Lys Gly Ser Ser Phe Lys Thr Val Glu Val Asn Arg

FIG. 7B

Lys Glu Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val Gln Leu Thr His Glu Asn Ala Val Thr Arg Phe Ser His Ala Arg Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro Gly Thr Ala Ile Leu Thr Val Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln 290 Asp Tyr Lys Cys Ser Ser Val Ile Leu Val Pro Thr Leu Phe Ala Ile Leu Asn Arg Ser Glu Leu Leu Asp Lys Tyr Asp Leu Ser Asn Leu Val Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser Lys Glu Ile Gly Glu Ala Val Ala Arg Arg Phe Asn Leu Pro Gly Val Arg Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Ile Ile Ile Thr Pro Glu Gly Asp Asp Lys Pro Gly Ala Ser Gly Lys Val Val Pro Leu Phe Lys Ala Lys Val Ile Asp Leu Asp Thr

FIG.7C

Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly Glu Val Cys Val Lys Gly Pro Met Leu Met Lys Gly Tyr Val Asp Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val Pro Pro Ala Glu Leu Glu Ser Val Leu Leu Gln His Pro Asn Ile Phe Asp Ala Gly Val Ala Gly Val Pro Asp Pro Ile Ala Gly Glu Leu Pro Gly Ala Val Val Leu Glu Lys Gly Lys Ser Met Thr Glu Lys Glu Val Met Asp Tyr Val Ala Ser Gln Val Ser Asn Ala Lys Arg Leu Arg Gly Gly Val Arg Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile Leu Lys Lys Pro Val Ala Lys Met

á.

FIG. 8A

ATG GAA AAC ATG GAG AAC GAT GAA AAT ATT Met Glu Asn Met Glu Asn Asp Glu Asn Ile GTG TAT GGT CCT GAA CCA TTT TAC CCT ATT Val Tyr Gly Pro Glu Pro Phe Tyr Pro Ile GAA GAG GGA TCT GCT GGA GCA CAA TTG CGC Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg AAG TAT ATG GAT CGA TAT GCA AAA CTT GGA Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly GCA ATT GCT TTT ACT AAC GCA CTT ACC GGT Ala Ile Ala Phe Thr Asn Ala Leu Thr Gly GTC GAT TAT ACG TAC GCC GAA TAC TTA GAA Val Asp. Tyr Thr Tyr Ala Glu Tyr Leu Glu AAA TCA TGC TGT CTA GGA GAG GCT TTA AAG Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys AAT TAT GGT TTG GTT GTT GAT GGA AGA ATT Asn Tyr Gly Leu Val Val Asp Gly Arg Ile GCG TTA TGC AGT GAA AAC TGT GAA GAA TTC Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe TTT ATT CCT GTA TTA GCC GGT TTA TTT ATA Phe Ile Pro Val Leu Ala Gly Leu Phe Ile GGT GTC GGT GTG GCT CCA ACT AAT GAG ATT Gly Val Gly Val Ala Pro Thr Asn Glu Ile TAC ACT CTA CGT GAA TTG GTT CAC AGT TTA Tyr Thr Leu Arg Glu Leu Val His Ser Leu

FIG.8B

GGC Gly	ATC Ile	TCT Ser	AAG Lys	CCA Pro	ACA Thr	ATT Ile	GTA Val	TTT Phe	AGT Ser
TCT Ser	AAA Lys	A A A Lys	GGA Gly	TTA Leu	GAT Asp	A A A Lys	GTT Val	ATA Ile	ACT Thr
GTA Val	CAA Gln	AAA Lys	ACG Thr	GTA Val	ACT Thr	GCT Ala	ATT Ile	AAA Lys	ACC Thr
ATT	GTT	ATA Ile	TTG Leu	GAC Asp	AGC Ser	A A A L y s	GTG Val	GAT Asp	TAT Tyr
AGA Arg	GGT	TAT Tyr	CAA Gln	TCC Ser	ATG Met	GAC Asp	A A C A s n	TTT Phe	ATT Ile
AAA Lys	AAA Lys	AAC Asn	ACT Thr	CCA Pro	CAA Gln	GGT	TTC Phe	AAA Lys	G G A
TCA	AGT	TTT	AAA	ACT Thr	GTA Val	GAA Glu	GTT	AAC Asn	CGC Arg
Ser	Ser	Phe	Lys	GCT	CTT	ATA	ATG	AAC	z o o T C T
Lys	G I u GGT	G l n T C A	Val ACC	Ala	Leu	CCA	Met	Asn	Ser GTG
Ser	Gly	Ser ACT	Thr	G l y G A A	Leu	Pro	Lys GTC	Gly	Val 220 AGA
Gln	Leu	Thr	His GCT	G l u A G A	A s n G A T	Ala CCA	Val ATT	Thr	Arg z30 GGA
Phe	Ser	His	Ala	Arg	Asp	Pro	ile GCT	Tyr ATT	Gly 240 TTA
A A C A s n	C A A G l n	GTT Val	Ser	Pro	Gly	Thr	Ala	lle	Leu

FIG.8C

ACT	GTA	GTA	CCA	TTC	CAT	CAT	GGT	TTT	Z S O G G T
Thr			Pro		His	His	Gly	-	Gly
ATG	TTT	ACT	ACT	TTA	GGC	TAT	CTA	ACT	2 6 0 T G T
Met					Gly	Tyr	Leu	Thr	Cys
					,	- , -			270
GGT			ATT		ATG	TTA	ACG	AAA	TTT
Gly	Phe	Arg	Ιle	Val	Met	Leu	Thr	Lys	Phe
GAC	GAA	GAG	ACT	TTT	TTA	AAA	ACA	CTG	Z B O C A A
Asp	Glu	Glu	Thr	Phe	Leu	Lys	Thr	Leu	Gln
									290
GAT	TAC	AAA	TGT	TCA	AGC	GTT	ATT	CTT	GTA
Asp	Tyr	Lys	Cys	Ser	Ser	Val	He	Leu	Val
CCG	ACT	TTG	TTT	GCA	ATT	CTT	AAT	AGA	300 AGT
Pro	Thr	Leu	Phe	Ala	lle	Leu	Asn	Arg	Ser
									310
GAA	TTA	CTC	GAT	AAA	TAT	GAT	TTA	TCA	AAT
Glu	Leu	Leu	Asp	Lys	Tyr	Asp	Leu	Ser	Asn
TTA	GTT	GAA	ATT	GCA	TCT	GGC	GGA	GCA	3 2 0 CCT
Leu	Val	Glu	lle	Ala	Ser	Gly	Gly	Ala	Pro
									3 3 0
TTA	TCT	AAA	GAA	ATT	GGT	GAA	GCT	GTT	GCT
Leu	Ser	Lys	Glu	lle	Gly	Glu	Ala	Val	Ala
AGA	CGT	TTT	AAT	TTA	CCG	GGT	GTT	CGT	CAA
Arg	Arg	Phe	Asn	Leu	Pro	Gly	Val	Arg	Gln
	_					•			350
GGC	TAT	GGT	TTA	ACA	GAA	ACA	ACC	TCT	GCA
Gly	Туг	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala
ATT	ATT	ATC	ACA	CCG	GAA	GGC	GAT	CAT	3 6 0 A A A
lle	lle	lle	Thr	Pro	Glu	Gly	Asp	GAT Asp	AAA Lys
	6	116	1 11 1		JIU	GIY	ush	ush	r A 2

FIG. 8D

CCA GGT GCT TCT GGC AAA GTT GTG CCA TTA Pro Gly Ala Ser Gly Lys Val Val Pro Leu TTT AAA GCA AAA GTT ATC GAT CTT GAT ACT Phe Lys Ala Lys Val Ile Asp Leu Asp Thr AAA AAA ACT TTG GGC CCG AAC AGA CGT GGA Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly GAA GTT TGT GTA AAG GGT CCT ATG CTT ATG Glu Val Cys Val Lys Gly Pro Met Leu Met AAA GGT TAT GTA GAT AAT CCA GAA GCA ACA Lys Gly Tyr Val Asp Asn Pro Glu Ala Thr AGA GAA ATC ATA GAT GAA GAA GGT TGG TTG Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu CAC ACA GGA GAT ATT GGG TAT TAC GAT GAA His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu GAA AAA CAT TTC TTT ATC GTG GAT CGT TTG Glu Lys His Phe Phe Ile Val Asp Arg Leu AAG TCT TTA ATC AAA TAC AAA GGA TAT CAA Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln GTA CCA CCT GCT GAA TTA GAA TCT GTT CTT Val Pro Pro Ala Glu Leu Glu Ser Val Leu TTG CAA CAT CCA AAT ATT TTT GAT GCC GGC Leu Gln His Pro Asn Ile Phe Asp Ala Gly GTT GCT GGC GTT CCA GAT CCT ATA GCT GGT Val Ala Gly Val Pro Asp Pro Ile Ala Gly

FIG. 8E

GAG CTT CCG GGA GCT GTT GTT GTA CTT GAA GIU Leu Pro Gly Ala Val Val Val Leu Glu
AAA GGA AAA TCT ATG ACT GAA AAA GAA GTA Lys Gly Lys Ser Met Thr Glu Lys Glu Val
ATG GAT TAC GTT GCT AGT CAA GTT TCA AAT Met Asp Tyr Val Ala Ser Gln Val Ser Asn
GCA AAA CGT TTG CGT GGT GGT GTC CGT TTT Ala Lys Arg Leu Arg Gly Gly Val Arg Phe
GTG GAC GAA GTA CCT AAA GGT CTC ACT GGT Val Asp Glu Val Pro Lys Gly Leu Thr Gly
AAA ATT GAC GGT AAA GCA ATT AGA GAA ATA Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile
CTG AAG AAA CCA GTT GCT AAG ATG Leu Lys Lys Pro Val Ala Lys Met