

Evolved Packet Core (EPC)

Adlen Ksentini

EPC Functions

Data plane management

Concept of packet encapsulation

- Same IP prefix is used by all the mobile network subscriber
 - IP prefix changes with mobility in the Internet
- Encapsulation consists in encapsulating one IP packet inside another IP packet

Tunneling concept

 Whatever the network topology, a packet always goes from the PGW to the SGW, like having a tunnel between the PGW and SGW

Layer 4 protocol

- The PGW always sends received packets to the SGW
 - It is not aware about what happen after the SGW
- A need for a transport protocol
 - TCP: too complex
 - UDP: simple. The reliability needs to be handled by the higher layers
- UDP
 - Between SGW and PGW
 - Between eNodeB and PGW

PGW @IP
SGW @IP

Src

dst

New layer

- An additional layer (new protocol, new format)
 - GTP, GPRS Tunneling protocol

GTP-U

GTP-U

- GTP-U runs on top of UDP
 - Simplicity by report to TCP. For reliability, it is end-to-end
 - Tunnel End points Identifier (TEID) 32 bits to identify the end point of a tunnel
 - Each tunnel is identified by a pair of TEID
 - Exchanged via the GTP-C

GTP-U forwarding process

- The sender should know the TEID used by the remote
- Very simple receiver

GTP-U TEID management

SGW Table

TEID	Action	Details	Peer entity		
			IP@	TEID	
98	Forward	TEID=112	PGW IP@	456	
106	Forward	TEID=123	PGW IP@	731	
112	Forward	TEID=98	eNodeB1 IP@	55	
123	Forward	TEID=106	eNodeB2 IP@	55	

Tunnel set-up

Select a new value locally Set-up a tunnel with TEID=98 unique TEID 98

- 1. Select a new value (locally unique) 456
- 2. Save the QIP of the remote
- 3. Save the received TEID and links it with 456-SGW@/98

- Save the QIP of the remote
- 2. Save the received TEID and links it with 98-PGW@/456
 - GTP-C protocol used to establish and manage GTP-U tunnel

LTE Bearers

Default Bearer structure

QoS and LTE bearer structure

- Quality of service
 - GBR bearer: Guaranteed bit rate
 - Non-GBR bearer No guaranteed bit rate
 - Default bearer Established when UE connects to PDN
 - Provides always-on connectivity
 - Always non-GBR
- Dedicated bearer Established later
 - Can be GBR or non-GBR
- Every EPS bearer
 - QoS class identifier (QCI) (error rate and delay associated with service)
 - Allocation and Retention priority (ARP) (bearer may be dropped in case of emergency)
- Every GBR bearer
 - Guaranteed bit rate (GBR) (long term average bit rate a user can expect to receive)
 - Maximum bit rate (MBR) (max instantaneous bit rate the NW may offer)
- Non-GBR bearers, collectively
 - Per APN (Access Point Name) aggregate maximum bit rate (APN-AMBR)
 - Per UE aggregate maximum bit rate (UE-AMBR)

QCI	Bearer Type	Application Example	Packet Delay	Packet Loss	Priority
1		Conversational VoIP	100ms	10-2	2
2		Conversational Video (Live Streaming)	150ms	10 ⁻³	4
3	GBR	Non-Conversational Video (Buffered Streaming)	300ms	10-6	5
4		Real Time Gaming	50ms	10 ⁻³	3
5		IMS Signaling	100ms	10 ⁻⁶	1
6	NON-	Voice, Video, Interactive Games	100ms	10-3	7
7	GBR	Video (Buffered Streaming)			6
8		TCP apps (web, email, ftp)	300ms	10-6	8
9		Platinum vs. gold user			9

- Service Data Flow (SDF)
 - An IP flow or an aggregate of IP flows of user traffic classified by the service type, using SDF template or Traffic Flow Template (TFT) (or ACL in classical routers)
 - Different QoS is applied to each SDF, each SDF is subject to different QoS rules determined by PCRF
 - Each SDF is delivered through an EPS bearer that can satisfy its QoS
 - A SDF that matches the packet filters of a TFT is mapped to an EPS bearer, and multiple SDFs with the same QCI are mapped and delivered to one EPS bearer
 - Each EPS bearer is activated with QoS parameters that indicate the characteristics of the transmission path


```
GTPv2
29 5.980770335
                 fd00:0:0:3::100
                                     fd00:0:0:4::191
                                                                      197 Create Bearer Request
▼ EPS Bearer Level Traffic Flow Template (Bearer TFT) :
     IE Type: EPS Bearer Level Traffic Flow Template (Bearer TFT) (84)
    IE Length: 19
     0000 .... = CR flag: 0
     .... 0000 = <u>Instance</u>: 0
     001. .... = TFT operation code: Create new TFT (1)
     ...0 .... = E bit: Parameters list is not included
     .... 0001 = Number of packet filters: 1
  ▼ Packet filter: 0
       00... = Spare bit(s): 0
       ..11 .... = Packet filter direction: Bidirectional (3)
       .... 0000 = Packet filter identifier: 1 (0)
       Packet evaluation precedence: 0xfd (253)
       Packet filter length: 0x0f (15)
     ▼ Packet filter component type identifier: Single remote port type (80)
          Port: 2020
     ▼ Packet filter component type identifier: IPv4 remote address type (16)
          IPv4 address: 1.2.2.4
          IPv4 address mask: 255,255,255,255
     ▼ Packet filter component type identifier: Single local port type (64)
          Port: 1010
▼ Bearer Level Quality of Service (Bearer QoS):
     IE Type: Bearer Level Quality of Service (Bearer QoS) (80)
     IE Length: 22
     0000 .... = CR flag: 0
     .... 0000 = Instance: 0
     .1.. .... = PCI (Pre-emption Capability): Disabled
     ..11 00.. = PL (Priority Level): 12
            <u> 1 = PVI (Pre-emption Vulnerability): Disabled</u>
     Label (QCI): 5
```



```
GTPv2
29 5.980770335
                 fd00:0:0:3::100
                                     fd00:0:0:4::191
                                                                      197 Create Bearer Request
▼ EPS Bearer Level Traffic Flow Template (Bearer TFT) :
     IE Type: EPS Bearer Level Traffic Flow Template (Bearer TFT) (84)
    IE Length: 19
     0000 .... = CR flag: 0
     .... 0000 = <u>Instance</u>: 0
     001. .... = TFT operation code: Create new TFT (1)
     ...0 .... = E bit: Parameters list is not included
     .... 0001 = Number of packet filters: 1
  ▼ Packet filter: 0
       00... = Spare bit(s): 0
       ..11 .... = Packet filter direction: Bidirectional (3)
       .... 0000 = Packet filter identifier: 1 (0)
       Packet evaluation precedence: 0xfd (253)
       Packet filter length: 0x0f (15)
     ▼ Packet filter component type identifier: Single remote port type (80)
          Port: 2020
     ▼ Packet filter component type identifier: IPv4 remote address type (16)
          IPv4 address: 1.2.2.4
          IPv4 address mask: 255,255,255,255
     ▼ Packet filter component type identifier: Single local port type (64)
          Port: 1010
▼ Bearer Level Quality of Service (Bearer QoS):
     IE Type: Bearer Level Quality of Service (Bearer QoS) (80)
     IE Length: 22
     0000 .... = CR flag: 0
     .... 0000 = Instance: 0
     .1.. .... = PCI (Pre-emption Capability): Disabled
     ..11 00.. = PL (Priority Level): 12
            <u> 1 = PVI (Pre-emption Vulnerability): Disabled</u>
     Label (QCI): 5
```


GTP-C

- Used to control messages to control GTP tunnels (ex. generation and instantiating of TEID)
 - Usually come in Request/Response pairs
 - Create/Delete Session Request/Response
 - Create/Delete Bearer Request/Response
 - Modify Bearer Request/Response

GTP-C

Each Tunnel is identified by a TEID pair

LTE Mobility Management

EMM: EPS Mobility Management

ECM: EPS Connection Management

General procedures: LTE Mobility Management

- Once a mobile device is switched on it always has at least a default bearer. In other words, it always has an IP address when it is switched on.
- To reflect this, the following two state machines are used in LTE/SAE

LTE Control states

Mobility State Transition

Mobility States Transition

State C (EMM-Registered + ECM-Connected + RRC-Connected)

State D (EMM-Registered + ECM-Idle + RRC-Idle)

netwmanias.com

LTE states summary

NW context:

None

Allocated IDs:

IMSI

UE Position:

Unknown to the NW

Mobility:

Cell selection (i.e.PLMN selection)

UE Radio Activity:

None

EMM-REGISTERED

ECM-CONNECTED

NW context:

Complete for

Data Tx/Rx

Allocated IDs:

IMSI, S-TMSI, C-RNTI At least 1 IP address

UE Position:

Cell Level

Mobility:

Handover

UE Radio Activity:

DL no DRX UL no DTX EMM-REGISTERED ECM-IDLE

NW context:

Security Context

Allocated IDs:

IMSI, S-TMSI

At least 1 IP address

UE Position:

Tracking Area

Mobility:

Cell re-selection

UE Radio Activity:

DL DRX or Paging

UL: none

Identities (in blue: allocated)

UE	eNodeB	MME	SGW	PGW	HSS
IMSI		IMSI	IMSI	IMSI	IMSI
GUTI		GUTI			
UE IP address		UE IP address		UE IP address	
	NB S1AP UE ID	NB S1AP UE ID			
	MME S1AP UE ID	MME S1AP UE ID			
APN in Use					
EPS Bearer ID	EPS Bearer ID	EPS Bearer ID	EPS Bearer ID	EPS Bearer ID	
DRB ID	DRB ID				
	E-RAB ID	E-RAB ID			
	S1 eNB TEID (DL)	S1 eNB TEID (DL)	S1 SGW TEID (UL)		
	S1 SGW TEID (UL)	S1 SGW TEID (UL)			
		S5 TEID (UL/DL)	S5 SGW TEID (DL)	S5 PGW TEID (UL)	
			S5 PGW TEID (UL)	S5 SGW TEID (DL)	

NAS procedures

NAS procedures

Non-Access Stratum (NAS)

- Protocol plan protocol at the MME and UE.
- Roughly, NAS features are classified into EPS Mobility
 Management (EMM) and EPS Connection Management (ECM)
 - Registration De-registration, Authentication
 - NAS Ciphering, NAS integrity
 - E2E Bearer setup, IP address allocation
 - Paging support
 - Mobility Management
 - UE initiated Attach/Detach, NW initiated Attach/Detach
 - Tracking Area Update procedure

S1AP protocol

- S1 Application Protocol (S1AP) provides the control plane signalling between the RAN and EPC.
 - The used interface is S1-MME which is located between eNB and MME.
 - The S1AP protocol provides transport function between UE and MME by offering NAS signalling transport.
 - Exchange general configuration messages between eNB and MME
 - Used by the MME to request the activation of specific functions at the eNB related to a UE connection
 - It delivers the initial UE context to the eNB to setup E-RAB(s) and manages modification or release of the UE context thereafter.
 - Used by the eNB to inform the MME about UE's state changes
 - Carries messages between the MME and UEs
- Each S1AP message includes the UE identity concerned by the message (except the first one exchanged between the eNB and MME: initial set up)
 - Relies on Stream Control Transmission Protocol (SCTP) => Reliable transport protocol
 - Appropriate for the transport of messages. TCP is flow-based

S1AP protocol

```
fd00::200
                           fd00::191
                                                S1AP/...
                                                          240 InitialUEMessage, Attach request, PDN connectivity request
                                                S1AP/...
                                                          128 DownlinkNASTransport, Identity request
93
     fd00::191
                          fd00::200
82
     fd00::200
                           fd00::191
                                                S1AP/...
                                                          160 UplinkNASTransport, Identity response
57
     fd00::191
                           fd00::200
                                                S1AP/...
                                                          160 DownlinkNASTransport, Authentication request
                                                S1AP/...
52
    fd00::200
                          fd00::191
                                                          160 UplinkNASTransport, Authentication response
                                                          144 DownlinkNASTransport, Security mode command
91
    fd00::191
                          fd00::200
                                                S1AP/...
84
    fd00::200
                                                S1AP/...
                                                          168 UplinkNASTransport, Security mode complete
                           fd00::191
     fd00::191
                           fd00::200
                                                S1AP/...
                                                          136 DownlinkNASTransport, ESM information request
93
     fd00::200
81
                          fd00::191
                                                          204 UplinkNASTransport, ESM information response
                                                S1AP/...
tes on wire (1920 bits), 240 bytes captured (1920 bits) on interface 0
oture
ol Version 6, Src: fd00::200, Dst: fd00::191
Fransmission Protocol, Src Port: 36412 (36412), Dst Port: 36412 (36412)
rotocol
tiatingMessage (0)
1essage
eCode: id-initialUEMessage (12)
.ity: ignore (1)
alUEMessage
tocolIEs: 5 items
Item 0: id-eNB-UE-S1AP-ID
ProtocolIE-Field
     id: id-eNB-UE-S1AP-ID (8)
     criticality: reject (0)
  ▼ value
       ENB-UE-S1AP-ID: 103
[tem 1: id-NAS-PDU
▼ ProtocollE-Field
```


S1AP protocol

```
fd00::200
                           fd00::191
                                                S1AP/...
                                                          240 InitialUEMessage, Attach request, PDN connectivity request
                                                S1AP/...
                                                          128 DownlinkNASTransport, Identity request
93
     fd00::191
                          fd00::200
82
     fd00::200
                           fd00::191
                                                S1AP/...
                                                          160 UplinkNASTransport, Identity response
57
     fd00::191
                           fd00::200
                                                S1AP/...
                                                          160 DownlinkNASTransport, Authentication request
                                                S1AP/...
52
    fd00::200
                          fd00::191
                                                          160 UplinkNASTransport, Authentication response
                                                          144 DownlinkNASTransport, Security mode command
91
    fd00::191
                          fd00::200
                                                S1AP/...
84
    fd00::200
                                                S1AP/...
                                                          168 UplinkNASTransport, Security mode complete
                           fd00::191
     fd00::191
                           fd00::200
                                                S1AP/...
                                                          136 DownlinkNASTransport, ESM information request
93
     fd00::200
81
                          fd00::191
                                                          204 UplinkNASTransport, ESM information response
                                                S1AP/...
tes on wire (1920 bits), 240 bytes captured (1920 bits) on interface 0
oture
ol Version 6, Src: fd00::200, Dst: fd00::191
Fransmission Protocol, Src Port: 36412 (36412), Dst Port: 36412 (36412)
rotocol
tiatingMessage (0)
1essage
eCode: id-initialUEMessage (12)
.ity: ignore (1)
alUEMessage
tocolIEs: 5 items
Item 0: id-eNB-UE-S1AP-ID
ProtocolIE-Field
     id: id-eNB-UE-S1AP-ID (8)
     criticality: reject (0)
  ▼ value
       ENB-UE-S1AP-ID: 103
[tem 1: id-NAS-PDU
▼ ProtocollE-Field
```


S1AP

```
24 5.922987460
                fd00::191
                                       fd00::200
                                                           S1AP/...
                                                                     284 InitialContextSetupRequest, Attach accept, Activate default EPS bearer conte
25 5.923884481 fd00::200
                                      fd00::191
                                                           S1AP
                                                                     152 InitialContextSetupResponse
ream Control Transmission Protocol, Src Port: 36412 (36412), Dst Port: 36412 (36412)
Application Protocol
S1AP-PDU: initiatingMessage (0)
▼ initiatingMessage
     procedureCode: id-InitialContextSetup (9)
     criticality: reject (0)
  ▼ value
     ▼ InitialContextSetupRequest
        ▼ protocolIEs: 6 items
          ▼ Item 0: id-MME-UE-S1AP-ID
             ▼ ProtocolIE-Field
                  id: id-MME-UE-S1AP-ID (0)
                  criticality: reject (0)
               ▼ value
                    MME-UE-S1AP-ID: 1
          ▼ Item 1: id-eNB-UE-S1AP-ID
             ▼ ProtocolIE-Field
                  id: id-eNB-UE-S1AP-ID (8)
                 criticality: reject (0)
               ▼ value
                    ENB-UE-S1AP-ID: 103
          ▼ Item 2: id-uEaggregateMaximumBitrate
             ▶ ProtocolIE-Field
          ▼ Item 3: id-E-RABToBeSetupListCtxtSUReq
             ▶ ProtocolIE-Field
          ▼ Item 4: id-UESecurityCapabilities
             ▶ ProtocolIE-Field
          ▼ Item 5: id-SecurityKey
```


S1AP

```
24 5.922987460
                fd00::191
                                       fd00::200
                                                           S1AP/...
                                                                     284 InitialContextSetupRequest, Attach accept, Activate default EPS bearer conte
25 5.923884481 fd00::200
                                      fd00::191
                                                           S1AP
                                                                     152 InitialContextSetupResponse
ream Control Transmission Protocol, Src Port: 36412 (36412), Dst Port: 36412 (36412)
Application Protocol
S1AP-PDU: initiatingMessage (0)
▼ initiatingMessage
     procedureCode: id-InitialContextSetup (9)
     criticality: reject (0)
  ▼ value
     ▼ InitialContextSetupRequest
        ▼ protocolIEs: 6 items
          ▼ Item 0: id-MME-UE-S1AP-ID
             ▼ ProtocolIE-Field
                  id: id-MME-UE-S1AP-ID (0)
                  criticality: reject (0)
               ▼ value
                    MME-UE-S1AP-ID: 1
          ▼ Item 1: id-eNB-UE-S1AP-ID
             ▼ ProtocolIE-Field
                  id: id-eNB-UE-S1AP-ID (8)
                 criticality: reject (0)
               ▼ value
                    ENB-UE-S1AP-ID: 103
          ▼ Item 2: id-uEaggregateMaximumBitrate
             ▶ ProtocolIE-Field
          ▼ Item 3: id-E-RABToBeSetupListCtxtSUReq
             ▶ ProtocolIE-Field
          ▼ Item 4: id-UESecurityCapabilities
             ▶ ProtocolIE-Field
          ▼ Item 5: id-SecurityKey
```


LTE UE Attach

LTE UE Attach

LTE UE Attach

Dedicated bearer

Detach

Initial UE eNB->MME

Initial UE Message (eNB UE S1AP ID, NAS-PDU, TAI, ECGI, RRC Establishment Cause)

- eNBUE S1AP ID: ID identifying UEs in an eNB over S1-MME interface (Uplink)
- NAS-PDU: a NAS message (Attach Request)
- . TAI: shows the TA a UE is located in
- . ECGI: shows the cell a UE is located in
- RRC Establishment Cause = mo-Signaling: indicates the signaling was generated by a UE

Security details

Security details

X2 interface

- X2AP is a control protocol found between eNBs on the X2 control plane.
 - Supports UE mobility and Self-Organization Network (SON) functions within the E-UTRAN.
 - Provides functions such as user data forwarding, transfer of SN status and UE context release.
- For SON functions, eNBs exchange resource status information, traffic load information and eNB configuration update information, and coordinate each other to adjust mobility parameters using the X2AP protocol.

X2 Handover

X2 Handover

4. Handover Completion 1 2 3 5 P-GW P-GW P-GW P-GW P-GW Target eNB2 buffers packet(s) S-GW sends 6 8 Target eNB2 sends buffered "End Marker (EM)" packet(s) comes from packet(s) (5) after receiving S-GW creates right after S-GW until S1 Bearer changing data receiving EM S-GW S-GW S-GW S-GW S-GW (GTP Tunnel) path packet EM packet Path Switching Target EM eNB 2 Target Target Target Source Target 3 ΕM eNB 1 eNB 1 eNB 2 eNB 1 eNB 2 eNB 1 eNB 2 eNB 2 eNB 1 UE DL packet moving moving moving moving moving