CSIR UGC NET EXAM (June 2013), Q.101

Aman Panwar - CS20BTECH11004

June 23, 2021

CSIR UGC NET EXAM (June 2013), Q.101

Question

Let $X_1, X_2,...$ be independent random variables each following exponential distribution with mean 1. Then which of the following statements are correct?

- P($X_n > 2$ for infinitely many $n \ge 1$) = 1
- $P(X_n > \frac{1}{2} \text{ for infinitely many } n \ge 1) = 0$
- P($X_n > \log n, X_{n+1} > \log(n+1)$ for infinitely many $n \ge 1$) = 0

Prerequisite

Borel-Cantelli Lemma

Let $E_1, E_2,...$ be a sequence of events in some probability space. The Borel–Cantelli lemma states that, if the sum of the probabilities of the events E_n is finite

$$\sum_{n=1}^{\infty} \Pr\left(E_n\right) < \infty \tag{0.1}$$

then the probability that infinitely many of them occur is 0

$$\Pr\left(\lim_{n\to\infty}\sup E_n\right)=0\tag{0.2}$$

Prerequisite

Second Borel-Cantelli Lemma

If the events E_n are independent and the sum of the probabilities of the E_n diverges to infinity, then the probability that infinitely many of them occur is 1. If for independent events $E_1, E_2, ...$

$$\sum_{n=1}^{\infty} \Pr(E_n) = \infty \tag{0.3}$$

Then

$$\Pr\left(\lim_{n\to\infty}\sup E_n\right)=1\tag{0.4}$$

Solution

Formulating useful expression

PDF of X_i is

$$f_{X_i}(x) = \begin{cases} \lambda_i e^{-\lambda_i x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Mean of X_i is expressed as

$$E[X_i] = \int_{-\infty}^{\infty} x f_{X_i}(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{\infty} x \lambda_i e^{-\lambda_i x}$$

$$= \frac{1}{\lambda_i}$$
(0.1)

From (0.1)and $E[X_i] = 1$, we have $\lambda_i = 1 \forall i \geq 1$

Solution

Formulating useful expression

PDF of X_i is

$$f_{X_i}(x) = \begin{cases} \lambda_i e^{-\lambda_i x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Now, for some constant $c \ge 0$

$$Pr(X_n > c) = \int_{c}^{\infty} f_{X_n}(x) dx$$
$$= \int_{c}^{\infty} e^{-x} dx$$
$$= e^{-c}$$

(0.2)

Option 1

We can say the events $X_n > \log n$ are independent $\forall n \geq 1$ as X_n are independent random variable.

From (0.2)

$$\sum_{n=1}^{\infty} \Pr(X_n > \log n) = \sum_{n=1}^{\infty} e^{-\log n}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n}$$

$$= \infty \text{ (Cauchy's Criterion)}$$

Option 1

Now, from second Borel-Cantelli lemma

$$\Pr(X_n > \log n \text{ for infinitely many } n \ge 1)$$

= $\Pr\left(\lim_{n \to \infty} \sup X_n > \log n\right)$
= 1

∴ Option 1 is correct.

Option 2

We can say the events $X_n > 2$ are independent $\forall n \ge 1$ as X_n are independent random variable.

From (0.2)

$$\sum_{n=1}^{\infty} \Pr(X_n > 2) = \sum_{n=1}^{\infty} e^{-2}$$

$$= \infty$$

Option 2

Now, from second Borel-Cantelli lemma

$$\Pr(X_n > 2 \text{ for infinitely many } n \ge 1)$$

$$= \Pr\left(\lim_{n \to \infty} \sup X_n > 2\right)$$

$$= 1$$

.. Option 2 is correct.

Option 3

We can say the events $X_n > \frac{1}{2}$ are independent $\forall n \ge 1$ as X_n are independent random variable.

From (0.2)

$$\sum_{n=1}^{\infty} \Pr\left(X_n > \frac{1}{2}\right) = \sum_{n=1}^{\infty} e^{-\frac{1}{2}}$$
$$= \infty$$

Option 3

Now, from second Borel-Cantelli lemma

$$\Pr\left(X_n > \frac{1}{2} \text{ for infinitely many } n \ge 1\right)$$

$$= \Pr\left(\lim_{n \to \infty} \sup X_n > \frac{1}{2}\right)$$

$$= 1$$

∴ Option 3 is incorrect.

Option 4

We can say the events $X_n > \log n$ are independent $\forall n \geq 1$ as X_n are independent random variable.

Let the event $X_n > \log n$, $X_{n+1} > \log(n+1)$ be represented by E_n

$$\sum_{n=1}^{\infty} \Pr(E_n) = \sum_{n=1}^{\infty} \Pr(X_n > \log n) \Pr(X_{n+1} > \log(n+1))$$

$$= \sum_{n=1}^{\infty} e^{-\log n} e^{-\log(n+1)} (\text{from (0.2)})$$

$$= \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1}$$

$$= 1$$
(4.1)

Option 4

Now, from Borel-Cantelli lemma

Pr
$$(E_n \text{ for infinitely many } n \ge 1)$$

= Pr $\left(\lim_{n\to\infty} \sup(X_n > \log n, X_{n+1} > \log(n+1))\right)$
= 0

∴ Option 4 is correct.

Answer

Correct Answer

Hence, we conclude that the correct option are **Options 1, 2 and 4**