Machine Learning Lab Assignment 2

Name-Sourav Patra Roll-001811001044 Semester - 7 Year - 4 Department - Information Technology

1. WINE DATASET

1.1 SVM Classifier(With Tuning)

```
# WINE DATASET
# SVM(With Tuning)[70-30 split]
import pandas as pd
import numpy as np
```

```
# Dataset Preparation df =
pd.read csv("wine.data",header=None)
col_name = ['Class','Alcohol','Malic acid','Ash','Alcalinity of
ash', 'Magnesium', 'Total
phenols','Flavanoids',
           'Nonflavanoid phenols', 'Proanthocyanins', 'Color
intensity','Hue','OD280/OD315 of diluted wines','Proline']
df.columns = col name
X = df.drop(['Class'], axis=1) y = df['Class'] from
sklearn.model selection import train test split
X train, X test, y train, y test =
train test split(X,y,train size=0.7,test size=0.3,random state=10) # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() X train =
sc.fit transform(X train)
X test = sc.transform(X test)
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
```

```
# Creating a set of important sample features
param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel': ['rbf',
'poly', 'sigmoid']}
pprint(param_grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First
create the base model to tune classifier = SVC() # Random search of
parameters, using 3 fold cross validation, # search across 100
different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X train, y train) y pred = rf random.predict(X test) from
sklearn.metrics import classification report, confusion matrix, accuracy score
print("Confusion Matrix:") print(confusion_matrix(y_test,
y_pred))
print("-----") print("------
----")
print("Performance Evaluation") print(classification_report(y_test,
y_pred))
print("----") print("------
----")
```

```
print("Accuracy:") print(accuracy_score(y_test,
y_pred))

import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
```


I.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has 70:30.

1.4 MLP Classifier(Without Tuning)

COMPARISON:

t split is in the ratio of

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

2. IRIS PLANT DATASET

2.1 SVM Classifier(With Tuning)

```
# IRIS PLANT DATASET
# SVM(With Tuning)[70-30 split]
import pandas as pd
import numpy as np
# Dataset Preparation df = pd.read csv("iris.data",header=None) col name =
['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Class']
df.columns = col name
X = df.drop(['Class'], axis=1) y = df['Class'] from
sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X_train =
sc.fit_transform(X_train)
X test = sc.transform(X test)
```

```
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:") print(confusion_matrix(y_test,
y_pred))
```

```
print("-----") print("------
----") print("Performance Evaluation")
print(classification_report(y_test, y_pred))
print("----") print("-----")
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
 Performance Evaluation
                precision
                           recall f1-score
                    1.00
1.00
0.93
 Iris-setosa
Iris-versicolor
Iris-virginica
                              1.00
                                       1.00
                                                  14
                              1.00
                                       0.97
                                                  14
                                       0.98
                                                  45
       accuracy
   macro avg
weighted avg
                    0.98
                              0.98
0.98
                                       0.98
 0.9s finished
                                   14
    Iris-setosa
                                   12
                                   10
 를 Iris-versicolor
                                   6
   Iris-virginica
                                   - 2
                 Iris-versicolor Iris-virginica
Predicted label
```


2.2 SVM Classifier(Without Tuning)

2.3 MLP Classifier(With Tuning)

2.4 MLP Classifier(Without Tuning)

2.5 Random Forest Classifier(With Tuning)

2.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-T-70:30.

split is in the ratio of

3.

DNOSPHERE DATASET

3.1 SVM Classifier(With Tuning)

```
# IONOSPHERE DATASET

# SVM(With Tuning) [70-30 split]

import pandas as pd
import numpy as np
```

```
# Dataset Preparation df =
pd.read_csv("ionosphere.data",header=None)
pol_name =
['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19']
```

```
.'20','21','22','23','24','25','26','27','28','29','30','31','32','33','34','Cla
ss'] df.columns = col_name

X = df.drop(['Class'], axis=1) y = df['Class'] from

sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test =
  train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=10)

# Feature Scaling from sklearn.preprocessing
import StandardScaler

sc = StandardScaler() X_train =
  sc.fit_transform(X_train)
X test = sc.transform(X_test)
```

```
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X train, y train)
y_pred = rf_random.predict(X_test)
from sklearn.metrics import classification report, confusion matrix,
accuracy score
print("Confusion Matrix:") print(confusion matrix(y test,
y_pred))
```

```
print("----") print("-----
----")
print("Performance Evaluation") print(classification_report(y_test,
y_pred))
print("----") print("-----")
----")
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
```


Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

3.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4. BREAST CANCER DATASET

sc.fit transform(X train)

X_test = sc.transform(X_test)

4.1 SVM Classifier(With Tuning) **# BREAST CANCER DATASET #** SVM(With Tuning)[60-40 split] import pandas as pd import numpy as np # Dataset Preparation df = pd.read csv("wdbc.data",header=None) col name = ['1','Class','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17' ,'18','19' ,'20','21','22','23','24','25','26','27','28','29','30','31','32'] df.columns = col name X = df.drop(['1', 'Class'], axis=1) y = df['Class']from sklearn.model selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.6,test_size=0.4,random_state=10) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X train =

```
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf_random = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy score
print("Confusion Matrix:") print(confusion matrix(y test,
y pred)) print("------
```


4.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

4.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.6 Random Forest Classifier(Without Tuning)

ined when the

Here, we can see that the highest accuracy has been achieved when the 70:30.

OVERALL RESULT:

ysis:

In most of the cases, the highest accuracy is Train-Test split ratio is in the ratio of 70:30.

5.Using Principal Component

5.1 Iris Plant Dataset

```
# IRIS PLANT DATASET
# SVM(With Tuning)[70-30 split]
```

```
import pandas as pd
import numpy as np

# Dataset Preparation df =
pd.read_csv("iris.data",header=None)

col_name = ['Sepal Length','Sepal Width','Petal Length','Petal
Width','Class']

df.columns = col name
```

```
X = df.drop(['Class'], axis=1) y = df['Class'] from
sklearn.model selection import train test split
X train, X test, y train, y test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X train =
sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Finding the important parameters that contribute to most of the
variance in the data.
import matplotlib.pyplot as plt
import seaborn as sns from
sklearn.decomposition import PCA
pca test = PCA(n components=4) pca test.fit(X train)
sns.set(style='whitegrid')
plt.plot(np.cumsum(pca test.explained variance ratio ))
plt.xlabel('number of components') plt.ylabel('cumulative explained
variance') plt.axvline(linewidth=4, color='r', linestyle = '--', x=10,
ymin=0, ymax=1) display(plt.show()) # So we can see that we have 10
important parameters
pca = PCA(n components=2)
pca.fit(X train) X train =
pca.transform(X train)
X test = pca.transform(X test)
```

```
## # Showing all the
parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get_params())
```

```
## # Creating a set of important sample
features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param_grid)
## from sklearn.model selection import
GridSearchCV # Use the random grid to search
for best hyperparameters # First create the
base model to tune classifier = SVC() # Random
search of parameters, using 3 fold cross
validation, # search across 100 different
combinations, and use all available cores
rf_random = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score
print("Confusion Matrix:") print(confusion_matrix(y_test,
y_pred))
print("----") print("-----")
```

5.1.1 SVM Classifier(With Tuning)

5.1.2 SVM Classifier(Without Tuning)

5.1.3 MLP Classifier(With Tuning)

Confusion Matrix: [[13 1 0] [0 14 3] [0 0 14]] Performance Evaluation precision recall f1-score support 14 17 1.00 0.93 0.96 Iris-setosa Iris-versicolor 0.93 0.82 0.87 Iris-virginica 0.82 1.00 0.90 14 accuracy 0.91 45 macro avg 0.92 0.92 0.91 45 weighted avg 0.92 0.91 0.91 45

Accuracy: 0.91111111111111111 - 12 Iris-setosa

5.1.4 MLP Classifier(Without Tuning)

5.1.6 Random Forest Classifier(Without Tuning)

5.2 Wine Dataset

5.2.1 SVM Classifier(With Tuning)

5.2.2 SVM Classifier(Without Tuning)

5.2.3 MLP Classifier(With Tuning)

5.2.4 MLP Classifier(Without Tuning)

Confusion Matrix: [[15 0 0] [0 23 4] [0 0 12]]

Performance E				
	precision	recall	f1-score	support
1	1.00	1.00	1.00	15
2	1.00	0.85	0.92	27
3	0.75	1.00	0.86	12
accuracy			0.93	54
macro avg	0.92	0.95	0.93	54
weighted avg	0.94	0.93	0.93	54

Accuracy:

0.9259259259259

5.2.5 Random Forest Classifier(With Tuning)

5.2.6 Random Forest Classifier(Without Tuning)

5.3 Ionosphere Dataset

5.3.1 SVM Classifier(With Tuning)

5.3.2 SVM Classifier(Without Tuning)

5.3.4 MLP Classifier(Without Tuning) 5.3.5 Random Forest Classifier(With Tuning) Confusion Matrix: [[34 6] [6 60]] Performance Evaluation precision recall f1-score support 0.85 0.85 0.85 0.91 0.91 0.91 b 40 66 g 0.89 106 accuracy macro avg 0.88 0.88 weighted avg 0.89 0.89 0.88 106 0.89 106 Accuracy: 0.8867924528301887 True label Predicted label

5.3.6 Random Forest Classifier(Without Tuning)

Donforma					
rei i Ui illai	nce Eva	luation			
	t	recision	recall	f1-score	support
	b	0.92	0.82	0.87	40
	g	0.90	0.95	0.93	66
accui	racy			0.91	106
macro		0.91	0.89	0.90	106
weighted	avg	0.91	0.91	0.90	100
	 		0.51	0.90	106
	 		- 60	0.90	106
Accuracy 0.905660	 			0.90	106
0.905660	 		- 60	0.90	106
0.905660	 		- 60 - 50	0.90	106
0.905660	 		- 60 - 50 - 40	0.90	106

5.4 Iris Plant Dataset

5.4.1 SVM Classifier(With Tuning)

5.4.2 SVM Classifier(Without Tuning)

onfus	ion Ma	trix:	0	07	
Γ107	51				
LL	57]]				

5.4.4 MLP Classifier(Without Tuning)

5.4.5 Random Forest Classifier(With Tuning)

Performance Eva	luation			
р	recision	recall	f1-score	support
В	0.97	0.99	0.98	112
М	0.98	0.95	0.97	59
accuracy			0.98	171
macro avg	0.98	0.97	0.97	171
weighted avg	0.98	0.98	0.98	
weighted avg		0.98		
Accuracy:			0.98	171
Accuracy: 0.9766081871345		- 100	0.98	
Accuracy: 0.9766081871345			0.98	
Accuracy: 0.9766081871345		- 100	0.98	
Accuracy: 0.9766081871345		- 100	0.98	

Predicted label

5.4.6 Random Forest Classifier(Without Tuning)

CONCLUSION:
We can see that the overall accuracy in all the cases increases when we use Principal Component Analysis (PCA) in our dataset before applying the algorithms.