Задача. Нека $a_1=(1,1,1), a_2=(1,1,-1), b=(1,2,3)$ са вектори от $F^3, U=l(a_1,a_2), V=l(b)$. В стандартния базис e_1,e_2,e_3 да се напише матрицата на такъв линеен оператор φ , за който $\operatorname{Ker} \varphi=U$ и $\operatorname{Im} \varphi=V$.

Решение. Имаме

$$\mathbf{a}_1 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

и значи a_1, a_2 са линейно независими и базис на U. Полагаме $a_3 = (0, 1, 0)$ и тогава a_1, a_2, a_3 е базис на F^3 . Тогава, ако $\varphi \in \operatorname{Hom} F^3$ и $\varphi(a_1) = \varphi(a_2) = \mathbf{0}$, $\varphi(a_3) = \mathbf{b}$, то $\operatorname{Ker} \varphi = U$ и $\operatorname{Im} \varphi = V$. Действително, нека $\mathbf{v} \in F^3$ и $\mathbf{v} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \lambda_3 \mathbf{a}_3$, $\lambda_1, \lambda_2, \lambda_3 \in F$. Тогава

$$\mathbf{v} \in \operatorname{Ker} \varphi \iff \varphi(\mathbf{v}) = \lambda_1 \varphi(\mathbf{a}_1) + \lambda_2 \varphi(\mathbf{a}_2) + \lambda_3 \varphi(\mathbf{a}_3) = \lambda_3 \mathbf{b} = \mathbf{0} \iff \lambda_3 = 0$$

и значи $\mathrm{Ker}\varphi = U$.

$$\operatorname{Im}\varphi = l(\varphi(\boldsymbol{a}_1), \varphi(\boldsymbol{a}_2), \varphi(\boldsymbol{a}_3)) = l(\boldsymbol{b}) = V.$$

Имаме

$$\varphi(\boldsymbol{a}_1) = \varphi(\boldsymbol{e}_1) + \varphi(\boldsymbol{e}_2) + \varphi(\boldsymbol{e}_3) = (0,0,0)$$

$$\varphi(\boldsymbol{a}_2) = \varphi(\boldsymbol{e}_1) + \varphi(\boldsymbol{e}_2) - \varphi(\boldsymbol{e}_3) = (0,0,0)$$

$$\varphi(\boldsymbol{a}_3) = \varphi(\boldsymbol{e}_2) = (1,2,3)$$

$$\begin{pmatrix} 1 & 1 & 1 & | & (0 & 0 & 0) \\ 1 & 1 & -1 & | & (0 & 0 & 0) \\ 0 & 1 & 0 & | & (1 & 2 & 3) \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & (0 & 0 & 0) \\ 0 & 0 & 1 & | & (0 & 0 & 0) \\ 0 & 1 & 0 & | & (1 & 2 & 3) \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & (-1 & -2 & -3) \\ 0 & 0 & 1 & | & (0 & 0 & 0) \\ 0 & 1 & 0 & | & (1 & 2 & 3) \end{pmatrix}$$

и следователно

$$\varphi(e_1) = (-1, -2, -3)
\varphi(e_2) = (1, 2, 3)
\varphi(e_3) = (0, 0, 0)$$

и следователно матрицата на φ в базиса $\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3$ е $A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ -3 & 3 & 0 \end{pmatrix}$.

Задача. В линейното пространство $F^4[x]$ на полиномите с коефициенти от F от степен, ненадминаваща 3, е дадено изображението $\tau: F^4[x] \to F^4[x]$, действащо по правилото $\tau(f(x)) = f(x+1)$.

- а) Да се докаже, че τ е обратим линеен оператор и да се намери неговият обратен.
- б) Да се намери матрицата на линейния оператор τ спрямо базиса $1, x, x^2, x^3$ на $F^4[x]$.

Решение. a) Нека $f, g \in F^4[x], \lambda \in F$ Тогава

и следователно τ е линеен оператор. Нека $\tau': F^4[x] \to F^4[x]$, действащо по правилото $\tau'(f(x)) = f(x-1)$. Тогава

Следователно $\tau'\tau = \tau\tau' = \varepsilon$ и значи τ е обратим и $\tau^{-1} = \tau'$.

б) Имаме

$$\tau(1) = 1
\tau(x) = x+1 = 1 + x
\tau(x^2) = (x+1)^2 = 1 + 2x + x^2
\tau(x^3) = (x+1)^3 = 1 + 3x + 3x^2 + x^3$$

и следователно матрицата на φ в базиса $1,x,x^2,x^3$ е $A=\begin{pmatrix}1&1&1&1\\0&1&2&3\\0&0&1&3\\0&0&0&1\end{pmatrix}$.

Задача. Нека V е крайномерно линейно пространство над F. Нека $\varphi_1, \varphi_2, \psi \in \text{HomV}$ са такива, че

$$\varphi_1\varphi_2 + \psi = \varepsilon$$

И

$$\psi(\boldsymbol{v}) = \boldsymbol{v} \iff \boldsymbol{v} = \boldsymbol{0}.$$

Да се докаже, че операторите φ_1 и φ_2 са обратими.

Peшение. Нека $\dim V=n,\ e_1,\dots,e_n$ е базис на V и $\varphi_1,\ \varphi_2,\ \psi$ имат съответно матрици $A,\ B,\ C$ в този базис. Тогава AB+C=E. От $\psi({\boldsymbol v})={\boldsymbol v}\iff {\boldsymbol v}={\bf 0}$ следва, че 1 не е собствена стойност на ψ , т.е. $f_C(1)=\det(C-E)\neq 0$. Сега от C-E=-AB следва $0\neq\det(C-E)=(-1)^n\det(AB)=(-1)^n\det A\det B$. Следователно $\det A\neq 0$, $\det B\neq 0$ и значи $\varphi_1,\ \varphi_2$ са обратими.

Задача. Нека $\varphi: V \to V$ е линеен оператор в крайномерно пространство V, такъв че $\varphi^2 = 4\varepsilon$. Да се докаже, че: а) φ е обратим линеен оператор;

$$Peшение. \ \text{Имаме} \left(\frac{1}{4}\varphi\right)\varphi = \varphi\left(\frac{1}{4}\varphi\right) = \frac{1}{4}\varphi^2 = \frac{1}{4}.4\varepsilon = \varepsilon \ \text{ и следователно } \varphi \text{ е обратим и } \varphi^{-1} = \frac{1}{4}\varphi.$$

б) ако λ е собствена стойност на φ , то $\lambda=\pm 2$.

Решение. Нека \boldsymbol{v} е собствен вектор, съответстващ на λ . Тогава $\varphi(\boldsymbol{v})=\lambda \boldsymbol{v}$ и $4\boldsymbol{v}=\varphi^2(\boldsymbol{v})=\varphi(\varphi(\boldsymbol{v}))=\varphi(\lambda \boldsymbol{v})=\lambda \varphi(\boldsymbol{v})=\lambda^2 \boldsymbol{v}$. Следователно $(\lambda^2-4)\boldsymbol{v}=\boldsymbol{0}$ и тъй като $\boldsymbol{v}\neq\boldsymbol{0}$, то $\lambda^2=4$, т.е. $\lambda=\pm 2$.

B) $\operatorname{Ker}(\varphi + 2\varepsilon) \cap \operatorname{Ker}(\varphi - 2\varepsilon) = \{\mathbf{0}\}.$

Решение. Нека $\mathbf{v} \in \mathrm{Ker}(\varphi + 2\varepsilon) \cap \mathrm{Ker}(\varphi - 2\varepsilon)$. Тогава

$$(\varphi + 2\varepsilon)(v) = \varphi(v) + 2v = 0$$
, T.E. $\varphi(v) = -2v$, $(\varphi - 2\varepsilon)(v) = \varphi(v) - 2v = 0$, T.E. $\varphi(v) = 2v$

и следователно v=0.

r) $\operatorname{Im}(\varphi + 2\varepsilon) = \operatorname{Im}((\varphi + 2\varepsilon)^2)$.

Peшение. Нека $v \in V$. Тогава

$$(\varphi + 2\varepsilon)^2(\mathbf{v}) = ((\varphi + 2\varepsilon)(\varphi(\mathbf{v}) + 2\mathbf{v}) = \varphi(\varphi(\mathbf{v}) + 2\mathbf{v}) + 2(\varphi(\mathbf{v}) + 2\mathbf{v}) = 4\mathbf{v} + 2\varphi(\mathbf{v}) + 2\varphi(\mathbf{v}) + 4\mathbf{v} = (4(\varphi + 2\varepsilon))(\mathbf{v}).$$

Тогава за $\boldsymbol{u} \in V$ имаме

$$m{u} \in \mathrm{Im}((\varphi+2arepsilon)^2) \iff m{u} = (\varphi+2arepsilon)^2(m{v})$$
 за някое $m{v} \in V$ $\iff m{u} = 4(\varphi+2arepsilon)(m{v})$ за някое $m{v} \in V$ $\iff m{\frac{1}{4}} m{u} \in \mathrm{Im}(\varphi+2arepsilon)$ $\iff m{u} \in \mathrm{Im}(\varphi+2arepsilon)$

и следователно $\operatorname{Im}((\varphi + 2\varepsilon)^2) = \operatorname{Im}(\varphi + 2\varepsilon)$.

д)
$$\operatorname{Ker}(\varphi - 2\varepsilon) = \operatorname{Im}(\varphi + 2\varepsilon).$$

Pешение. Нека e_1,\ldots,e_k е базис на $\mathrm{Ker}(\varphi+2\varepsilon)$. Допълваме e_1,\ldots,e_k до базис $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$ на V. Тогава $(\varphi+2\varepsilon)(e_{k+1}),\ldots,(\varphi+2\varepsilon)(e_n)$ е базис на $\mathrm{Im}(\varphi+2\varepsilon)$. Тъй като $(\varphi-2\varepsilon)(\varphi+2\varepsilon)=\mathbf{0}$, то $(\varphi+2\varepsilon)(e_{k+1}),\ldots,(\varphi+2\varepsilon)(e_n)\in\mathrm{Ker}(\varphi-2\varepsilon)$ и значи $\mathrm{Im}(\varphi+2\varepsilon)\leq\mathrm{Ker}(\varphi-2\varepsilon)$. Следователно $r(\varphi+2\varepsilon)\leq d(\varphi-2\varepsilon)$. От друга страна, съгласно подточка в), $d(\varphi+2\varepsilon)+d(\varphi-2\varepsilon)\leq n$ и значи $d(\varphi-2\varepsilon)\leq n-d(\varphi+2\varepsilon)=r(\varphi+2\varepsilon)$. Оттук $r(\varphi+2\varepsilon)=d(\varphi-2\varepsilon)$ и следователно $\mathrm{Ker}(\varphi-2\varepsilon)=\mathrm{Im}(\varphi+2\varepsilon)$.

Евклидови пространства.

Задача. Проверете, че векторите $a_1 = (1, -3, -1, 1), a_2 = (5, 0, 1, -4)$ от \mathbb{R}^4 са ортогонални и да се допълни системата до ортогонален базис на \mathbb{R}^4 .

Решение. $(a_1, a_2) = 1.5 - 3.0 - 1.1 + 1.(-4) = 0$, следователно a_1, a_2 са ортогонални. Търсим всички вектори $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$, такива че $(a_1, x) = (a_2, x) = 0$, т.е.

$$\begin{vmatrix} x_1 & - & 3x_2 & - & x_3 & + & x_4 & = & 0 \\ 5x_1 & & + & x_3 & - & 4x_4 & = & 0 \end{vmatrix}$$

Полагаме $x_1=p,\ x_4=q,$ тогава $x_3=-5p+4q,\ x_2=\frac{p+5p-4q+q}{3}=\frac{6p-3q}{3}=2p-q$ и

$$\{(p, 2p - q, -5p + 4q, q) \mid p, q \in \mathbb{R}\}.$$

При $p=1,\ q=0$ получаваме ${\pmb a}_3=(1,2,-5,0)$ — ортогонален на ${\pmb a}_1$ и ${\pmb a}_2$. Търсим вектор ${\pmb a}_4$ във вида ${\pmb a}_4=(p,2p-q,-5p+4q,q)$, така че

$$0 = (\mathbf{a}_3, \mathbf{a}_4) = p + 4p - 2q + 25p - 20q = 30p - 22q,$$

т.е. $p = \frac{11}{15}q$. Следователно при q = 15 имаме p = 11 и $\boldsymbol{a}_4 = (11,7,5,15)$ — ортогонален на $\boldsymbol{a}_1,\,\boldsymbol{a}_2,\,\boldsymbol{a}_3.$

Задача. Докажете, че векторите $\mathbf{a}_1 = (2,1,1,-1)$, $\mathbf{a}_2 = (5,0,3,-1)$, $\mathbf{a}_3 = (-3,-10,3,8)$, $\mathbf{a}_4 = (-1,-1,1,5)$ са базис на \mathbb{R}^4 . Да се ортогонализират тези вектори по метода на Грам-Шмид и да се намери съответния ортонормиран базис.

Решение.

$$\begin{vmatrix} 2 & 1 & 1 & -1 \\ 5 & 0 & 3 & -1 \\ -3 & -10 & 3 & 8 \\ -1 & -1 & 1 & 5 \end{vmatrix} \xrightarrow{10}_{+} = \begin{vmatrix} 2 & 1 & 1 & -1 \\ 5 & 0 & 3 & -1 \\ 17 & 0 & 13 & -2 \\ 1 & 0 & 2 & 4 \end{vmatrix} = 1(-1)^{1+2} \begin{vmatrix} 5 & 3 & -1 \\ 17 & 13 & -2 \\ 1 & 2 & 4 \end{vmatrix} \xrightarrow{-2}_{+}^{4} = \begin{bmatrix} 5 & 3 & -1 \\ 7 & 7 & 0 \\ 21 & 14 & 0 \end{vmatrix} = -1.(-1)(-1)^{1+3}49 \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = -49 \neq 0$$

Следователно векторите a_1, a_2, a_3, a_4 са линейно независими и значи образуват базис на \mathbb{R}^4 .

Полагаме $\boldsymbol{b}_1 = \boldsymbol{a}_1 = (2,1,1,-1)$. Търсим \boldsymbol{b}_2 във вида $\boldsymbol{b}_2 = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_1$, така че

$$0 = (\mathbf{b}_2, \mathbf{b}_1) = (\mathbf{a}_2 + \lambda \mathbf{b}_1, \mathbf{b}_1) = (\mathbf{a}_2, \mathbf{b}_1) + \lambda (\mathbf{b}_1, \mathbf{b}_1),$$

оттук

$$\lambda = -\frac{(\boldsymbol{a}_2, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{10+0+3+1}{7} = -2.$$

Следователно

$$\mathbf{b}_2 = (5, 0, 3, -1) - 2(2, 1, 1, -1) = (1, -2, 1, 1).$$

Търсим b_3 във вида $b_3 = a_3 + \lambda_1 b_1 + \lambda_2 b_2$, така че

$$0 = (\mathbf{b}_3, \mathbf{b}_1) = (\mathbf{a}_3 + \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2, \mathbf{b}_1) = (\mathbf{a}_3, \mathbf{b}_1) + \lambda_1 (\mathbf{b}_1, \mathbf{b}_1) + \lambda_2 (\mathbf{b}_2, \mathbf{b}_1)
0 = (\mathbf{b}_3, \mathbf{b}_2) = (\mathbf{a}_3 + \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2, \mathbf{b}_2) = (\mathbf{a}_3, \mathbf{b}_2) + \lambda_1 (\underline{\mathbf{b}_1, \mathbf{b}_2}) + \lambda_2 (\underline{\mathbf{b}_2, \mathbf{b}_2}),$$

т.е.

$$\lambda_1 = -\frac{(\boldsymbol{a}_3, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{-6 - 10 + 3 - 8}{7} = 3$$

$$\lambda_2 = -\frac{(\boldsymbol{a}_3, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = -\frac{-3 + 20 + 3 + 8}{7} = -4.$$

Следователно

$$b_3 = (-3, -10, 3, 8) + 3(2, 1, 1, -1) - 4(1, -2, 1, 1) = (-1, 1, 2, 1).$$

Търсим $\boldsymbol{b}_4 = \boldsymbol{a}_4 + \mu_1 \boldsymbol{b}_1 + \mu_2 \boldsymbol{b}_2 + \mu_3 \boldsymbol{b}_3$, където

$$\mu_1 = -\frac{(\boldsymbol{a}_4, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{-2 - 1 + 1 - 5}{7} = 1$$

$$\mu_2 = -\frac{(\boldsymbol{a}_4, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = -\frac{-1 + 2 + 1 + 5}{7} = -1$$

$$\mu_3 = -\frac{(\boldsymbol{a}_4, \boldsymbol{b}_3)}{(\boldsymbol{b}_3, \boldsymbol{b}_3)} = -\frac{1 - 1 + 2 + 5}{7} = -1$$

Следователно

$$b_4 = (-1, -1, 1, 5) + (2, 1, 1, -1) - (1, -2, 1, 1) - (-1, 1, 2, 1) = (1, 1, -1, 2).$$

Векторите b_1, b_2, b_3, b_4 са ортогонален базис на \mathbb{R}^4 . След нормирането на тези вектори, получаваме търсения ортонормиран базис на \mathbb{R}^4 , а именно

$$\begin{array}{rcl} \boldsymbol{e}_1 & = & \frac{\boldsymbol{b}_1}{|\boldsymbol{b}_1|} = \frac{1}{\sqrt{7}}(2,1,1,-1), \\ \boldsymbol{e}_2 & = & \frac{\boldsymbol{b}_2}{|\boldsymbol{b}_2|} = \frac{1}{\sqrt{7}}(1,-2,1,1), \\ \boldsymbol{e}_3 & = & \frac{\boldsymbol{b}_3}{|\boldsymbol{b}_3|} = \frac{1}{\sqrt{7}}(-1,1,2,1), \\ \boldsymbol{e}_4 & = & \frac{\boldsymbol{b}_4}{|\boldsymbol{b}_4|} = \frac{1}{\sqrt{7}}(1,1,-1,2) \end{array}$$

Задача. Да се построи по метода на Грам-Шмид ортогонален базис на $U = l(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$, където $\mathbf{a}_1 = (1, -2, 2, 2)$, $\mathbf{a}_2 = (-1, 9, -5, -5)$, $\mathbf{a}_3 = (1, 5, -1, -1)$, $\mathbf{a}_4 = (1, 12, -3, -5)$.

Решение.

Следователно векторите a_1, a_2, a_4 са базис на U. Полагаме

$$b_1 = a_1 = (1, -2, 2, 2).$$

Търсим $b_2 = a_2 + \lambda b_1$, където

$$\lambda = -\frac{(\boldsymbol{a}_2, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{-1 - 18 - 10 - 10}{13} = 3.$$

Следователно

$$\mathbf{b}_2 = (-1, 9, -5, -5) + 3(1, -2, 2, 2) = (2, 3, 1, 1).$$

Търсим $b_3 = a_4 + \lambda_1 b_1 + \lambda_2 b_2$, където

$$\lambda_1 = -\frac{(\boldsymbol{a}_4, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{1 - 24 - 6 - 10}{13} = 3;$$

$$\lambda_2 = -\frac{(\boldsymbol{a}_4, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = -\frac{2 + 36 - 3 - 5}{15} = -2.$$

Следователно

$$b_3 = (1, 12, -3, -5) + 3(1, -2, 2, 2) - 2(2, 3, 1, 1) = (0, 0, 1, -1).$$

и b_1, b_2, b_3 са ортогонален базис на U.

Дефиниция 1. Под ортогонално допълнение на подпространството U на V ще разбираме множеството

$$U^{\perp} = \{ \boldsymbol{a} \in V \mid (\boldsymbol{a}, \boldsymbol{u}) = 0 \text{ за всяко } \boldsymbol{u} \in U \}.$$

Твърдение 1. Нека V е крайномерно евклидово пространство и U < V. Тогава

$$V = U \oplus U^{\perp}$$
.

Следствие 1. Нека V е крайномерно евклидово пространство, $U \leq V$ и $a \in V$. Тогава съществуват единствени вектори $a_0 \in U$, $h \in U^{\perp}$, такива че $a = a_0 + h$ (a_0 наричаме ортогонална проекция на a върху U, а h — перпендикуляр, спуснат от a към U).

Задача. Нека $U = l(\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)$, където $\boldsymbol{a}_1 = (1, 1, 1, 1)$, $\boldsymbol{a}_2 = (1, 2, 2, -1)$, $\boldsymbol{a}_3 = (1, 0, 0, 3)$ и нека $\boldsymbol{a} = (4, -1, -3, 4)$. Да се намерят оротогоналната проекция \boldsymbol{a}_0 на \boldsymbol{a} върху U и перпендикулярът \boldsymbol{h} от \boldsymbol{a} към U.

Pешение. Първо намираме ортогонален базис на U.

Следователно $\boldsymbol{a}_1, \boldsymbol{a}_2$ са базис на U.

Полагаме $m{b}_1=m{a}_1=(1,1,1,1).$ Търсим $m{b}_2=m{a}_2+\lambda m{b}_1$, където $\lambda=-\dfrac{(m{a}_2,m{b}_1)}{(m{b}_1,m{b}_1)}=-\dfrac{1+2+2-1}{4}=-1.$ Следователно $m{b}_2=(1,2,2,-1)-(1,1,1,1)=(0,1,1,-2)$ и $m{b}_1,m{b}_2$ е ортогонален базис на U.

Нека $\boldsymbol{a}=\boldsymbol{a}_0+\boldsymbol{h},\,\boldsymbol{a}_0\in U,\,\boldsymbol{h}\in U^\perp$. Нека $\boldsymbol{a}_0=\lambda_1\boldsymbol{b}_1+\lambda_2\boldsymbol{b}_2$. Координатите $\lambda_1,\,\lambda_2$ на \boldsymbol{a}_0 ще определим от

$$0 = (\mathbf{h}, \mathbf{b}_1) = (\mathbf{a} - \lambda_1 \mathbf{b}_1 - \lambda_2 \mathbf{b}_2, \mathbf{b}_1) = (\mathbf{a}, \mathbf{b}_1) - \lambda_1 (\mathbf{b}_1, \mathbf{b}_1) - \lambda_2 (\mathbf{b}_2, \mathbf{b}_1),$$

$$0 = (\mathbf{h}, \mathbf{b}_2) = (\mathbf{a} - \lambda_1 \mathbf{b}_1 - \lambda_2 \mathbf{b}_2, \mathbf{b}_2) = (\mathbf{a}, \mathbf{b}_2) - \lambda_1 (\mathbf{b}_1, \mathbf{b}_2) - \lambda_2 (\mathbf{b}_2, \mathbf{b}_2),$$

следователно

$$\lambda_1 = \frac{(\boldsymbol{a}, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = \frac{4 - 1 - 3 + 4}{4} = 1$$
$$\lambda_2 = \frac{(\boldsymbol{a}, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = \frac{0 - 1 - 3 - 8}{6} = -2$$

Следователно

$$a_0 = 1.b_1 - 2.b_2 = (1, 1, 1, 1) - 2(0, 1, 1, -2) = (1, -1, -1, 5)$$

 $b = a - a_0 = (4, -1, -3, 4) - (1, -1, -1, 5) = (3, 0, -2, -1).$

Втори начин. Както по-горе проверяваме, че a_1, a_2 са базис на U и нека $a = a_0 + h$, $a_0 \in U$, $h \in U^{\perp}$. Нека $a_0 = \beta_1 a_1 + \beta_2 a_2$. Като умножим последователно това равенство скаларно с a_1, a_2 и вземем предвид, че $(a_0, a_i) = (a - h, a_i) = (a, a_i) - (h, a_i) = (a, a_i)$, i = 1, 2, за координатите β_1, β_2 получаваме

$$\begin{vmatrix} \beta_1(a_1, a_1) + \beta_2(a_2, a_1) & = & (a, a_1) \\ \beta_1(a_1, a_2) + \beta_2(a_2, a_2) & = & (a, a_2) \end{vmatrix}$$

Тъй като $(a_1, a_1) = 4$, $(a_1, a_2) = (a_2, a_1) = 4$, $(a_2, a_2) = 10$, $(a, a_1) = 4$, $(a, a_2) = -8$, системата е

$$\begin{vmatrix} 4\beta_1 & + & 4\beta_2 & = & 4 \\ 4\beta_1 & + & 10\beta_2 & = & -8 \end{vmatrix},$$

откъдето $\beta_1=3,\ \beta_2=-2$ и значи $\boldsymbol{a}_0=3\boldsymbol{a}_1-2\boldsymbol{a}_2=3(1,1,1,1)-2(1,2,2,-1)=(1,-1,-1,5)$ и $\boldsymbol{h}=\boldsymbol{a}-\boldsymbol{a}_0=(3,0,-2,-1).$

Дефиниция. Нека U е подпространство на крайномерното евклидово пространство V и нека $a \in V$. Ъгъл между вектор a и подпространството U се нарича ъгълът между a и ортогоналната проекция a_0 на a върху U.

Задача. Да се намери ъгълът α , който векторът $\boldsymbol{a}=(1,2,3,\sqrt{2})$ сключва с подпространството $U=l(\boldsymbol{a}_1,\boldsymbol{a}_2,\boldsymbol{a}_3)$ на V, където $\boldsymbol{a}_1=(1,0,-1,1), \, \boldsymbol{a}_2=(3,-1,-2,1), \, \boldsymbol{a}_3=(-1,1,0,4).$

Pешение. Първо намираме ортогонален базис на U.

Следователно a_1, a_2, a_3 са базис на U.

Полагаме $\boldsymbol{b}_1 = \boldsymbol{a}_1 = (1,0,-1,1)$. Търсим $\boldsymbol{b}_2 = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_1$, където $\lambda = -\frac{(\boldsymbol{a}_2,\boldsymbol{b}_1)}{(\boldsymbol{b}_1,\boldsymbol{b}_1)} = -\frac{3+0+2+1}{3} = -2$. Следователно

$$\mathbf{b}_2 = (3, -1, -2, 1) - 2(1, 0, -1, 1) = (1, -1, 0, -1).$$

Търсим b_3 във вида $b_3 = a_3 + \mu_1 b_1 + \mu_2 b_2$, където

$$\mu_1 = -\frac{(\boldsymbol{a}_3, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = -\frac{-1 - 0 + 0 + 4}{3} = -1$$

$$\mu_2 = -\frac{(\boldsymbol{a}_3, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = -\frac{-1 - 1 + 0 - 4}{3} = 2.$$

Следователно

$$\boldsymbol{b}_3 = (-1, 1, 0, 4) - (1, 0, -1, 1) + 2(1, -1, 0, -1) = (0, -1, 1, 1)$$

и b_1, b_2, b_3 е ортогонален базис на U.

Нека $\boldsymbol{a} = \boldsymbol{a}_0 + \boldsymbol{h}, \, \boldsymbol{a}_0 \in U, \, \boldsymbol{h} \in U^\perp$. Нека $\boldsymbol{a}_0 = \lambda_1 \boldsymbol{b}_1 + \lambda_2 \boldsymbol{b}_2 + \lambda_3 \boldsymbol{b}_3$. Координатите $\lambda_1, \, \lambda_2, \lambda_3$ на \boldsymbol{a}_0 ще определим от

$$0 = (\mathbf{h}, \mathbf{b}_{1}) = (\mathbf{a} - \lambda_{1}\mathbf{b}_{1} - \lambda_{2}\mathbf{b}_{2} - \lambda_{3}\mathbf{b}_{3}, \mathbf{b}_{1}) = (\mathbf{a}, \mathbf{b}_{1}) - \lambda_{1}(\mathbf{b}_{1}, \mathbf{b}_{1}) - \lambda_{2}(\underbrace{\mathbf{b}_{2}, \mathbf{b}_{1}}) - \lambda_{3}(\underbrace{\mathbf{b}_{3}, \mathbf{b}_{1}}),$$

$$0 = (\mathbf{h}, \mathbf{b}_{2}) = (\mathbf{a} - \lambda_{1}\mathbf{b}_{1} - \lambda_{2}\mathbf{b}_{2} - \lambda_{3}\mathbf{b}_{3}, \mathbf{b}_{2}) = (\mathbf{a}, \mathbf{b}_{2}) - \lambda_{1}(\underbrace{\mathbf{b}_{1}, \mathbf{b}_{2}}) - \lambda_{2}(\underbrace{\mathbf{b}_{2}, \mathbf{b}_{2}}) - \lambda_{3}(\underbrace{\mathbf{b}_{3}, \mathbf{b}_{2}}),$$

$$0 = (\mathbf{h}, \mathbf{b}_{3}) = (\mathbf{a} - \lambda_{1}\mathbf{b}_{1} - \lambda_{2}\mathbf{b}_{2} - \lambda_{3}\mathbf{b}_{3}, \mathbf{b}_{3}) = (\mathbf{a}, \mathbf{b}_{3}) - \lambda_{1}(\underbrace{\mathbf{b}_{1}, \mathbf{b}_{3}}) - \lambda_{2}(\underbrace{\mathbf{b}_{2}, \mathbf{b}_{3}}) - \lambda_{3}(\underbrace{\mathbf{b}_{3}, \mathbf{b}_{3}}),$$

$$0 = (\mathbf{h}, \mathbf{b}_{3}) = (\mathbf{a} - \lambda_{1}\mathbf{b}_{1} - \lambda_{2}\mathbf{b}_{2} - \lambda_{3}\mathbf{b}_{3}, \mathbf{b}_{3}) = (\mathbf{a}, \mathbf{b}_{3}) - \lambda_{1}(\underbrace{\mathbf{b}_{1}, \mathbf{b}_{3}}) - \lambda_{2}(\underbrace{\mathbf{b}_{2}, \mathbf{b}_{3}}) - \lambda_{3}(\underbrace{\mathbf{b}_{3}, \mathbf{b}_{3}}),$$

следователно

$$\lambda_1 = \frac{(\boldsymbol{a}, \boldsymbol{b}_1)}{(\boldsymbol{b}_1, \boldsymbol{b}_1)} = \frac{1 - 3 + \sqrt{2}}{3} = \frac{-2 + \sqrt{2}}{3}$$
$$\lambda_2 = \frac{(\boldsymbol{a}, \boldsymbol{b}_2)}{(\boldsymbol{b}_2, \boldsymbol{b}_2)} = \frac{1 - 2 - \sqrt{2}}{3} = \frac{-1 - \sqrt{2}}{3}$$
$$\lambda_3 = \frac{(\boldsymbol{a}, \boldsymbol{b}_3)}{(\boldsymbol{b}_3, \boldsymbol{b}_3)} = \frac{-2 + 3 + \sqrt{2}}{3} = \frac{1 + \sqrt{2}}{3}$$

Следователно

$$\boldsymbol{a}_0 = \frac{-2 + \sqrt{2}}{3}(1, 0, -1, 1) + \frac{-1 - \sqrt{2}}{3}(1, -1, 0, -1) + \frac{1 + \sqrt{2}}{3}(0, -1, 1, 1) = (-1, 0, 1, \sqrt{2}).$$

Оттук
$$\cos \alpha = \frac{(\boldsymbol{a}, \boldsymbol{a}_0)}{|\boldsymbol{a}||\boldsymbol{a}_0|} = \frac{4}{\sqrt{16}\sqrt{4}} = \frac{1}{2}$$
 и значи $\alpha = \frac{\pi}{3}$.

Задача. Нека $U = l(\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)$, където $\boldsymbol{a}_1 = (1, 2, 0, 1)$, $\boldsymbol{a}_2 = (3, 2, 1, 2)$, $\boldsymbol{a}_3 = (1, -2, 1, 0)$. Да се построи ортонормиран базис на U^{\perp} .

Решение. $\mathbf{x} = (x_1, x_2, x_3, x_4) \in U^{\perp} \iff (\mathbf{a}_i, \mathbf{x}) = 0, 1 \leq i \leq 3 \iff$

$$U^{\perp}: \begin{vmatrix} x_1 & + & 2x_2 & & + & x_4 & = 0 \\ 3x_1 & + & 2x_2 & + & x_3 & + & x_4 & = 0 \\ x_1 & - & 2x_2 & + & x_3 & & = 0 \end{vmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -4 & 1 & -1 \\ 0 & -4 & 1 & -1 \end{pmatrix}$$

Полагаме $x_2=p,\,x_3=q,\,$ тогава $x_4=-4p+q,\,x_1=2p-q$ и

$$U^{\perp} = \{(2p - q, p, q, -4p + q) \mid p, q \in \mathbb{R}\}.$$

$$egin{aligned} p = 0, \ q = 1: & m{c}_1 = (-1, 0, 1, 1) \\ p = 1, \ q = 0: & m{c}_2 = (2, 1, 0, -4) \end{bmatrix} \Phi \mathrm{CP}, \ \mathrm{T.e.} \ \mathrm{базиc} \ \mathrm{Ha} \ U^\perp. \end{aligned}$$

Полагаме $\boldsymbol{b}_1 = \boldsymbol{c}_1 = (-1,0,1,1)$. Търсим $\boldsymbol{b}_2 = \boldsymbol{c}_2 + \lambda \boldsymbol{b}_1$, където $\lambda = -\frac{(\boldsymbol{c}_2,\boldsymbol{b}_1)}{(\boldsymbol{b}_1,\boldsymbol{b}_1)} = -\frac{-2-4}{3} = 2$. Тогава $\boldsymbol{b}_2 = (2,1,0,-4) + 2(-1,0,1,1) = (0,1,2,-2)$. След нормиране на тези вектори, получаваме ортонормиран базис на U^{\perp} , а именно

$$e_1 = \frac{b_1}{|b_1|} = \frac{1}{\sqrt{3}}(-1, 0, 1, 1), \quad e_2 = \frac{b_2}{|b_2|} = \frac{1}{3}(0, 1, 2, -2).$$

Задача. Нека

$$U: \begin{vmatrix} x_1 & + & x_2 & + & x_3 & + & x_4 & = 0 \\ 2x_1 & + & 3x_2 & - & x_3 & - & 2x_4 & = 0 \end{vmatrix}.$$

Да се намери ортонормиран базис на U^{\perp} .

Peшение.Означаваме ${m a}_1=(1,1,1,1),\ {m a}_2=(2,3,-1,-2).$ Имаме ${m x}\in U\iff ({m a}_1,{m x})=({m a}_2,{m x})=0\iff {m x}\in l({m a}_1,{m a}_2)^\perp,$ т.е. $U=l({m a}_1,{m a}_2)^\perp.$ Оттук $U^\perp=l({m a}_1,{m a}_2).$

Полагаме $\boldsymbol{b}_1 = \boldsymbol{a}_1 = (1,1,1,1)$. Търсим $\boldsymbol{b}_2 = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_1$, където $\lambda = -\frac{(\boldsymbol{a}_2,\boldsymbol{b}_1)}{(\boldsymbol{b}_1,\boldsymbol{b}_1)} = -\frac{2+3-1-2}{4} = -\frac{1}{2}$. Тогава

 $m{b}_2=(2,3,-1,-2)-rac{1}{2}(1,1,1,1)=rac{1}{2}(3,5,-3,-5).$ След нормиране на тези вектори, получаваме ортонормиран базис на U^\perp , а именно

$$e_1 = \frac{b_1}{|b_1|} = \frac{1}{2}(1, 1, 1, 1), \quad e_2 = \frac{b_2}{|b_2|} = \frac{1}{2\sqrt{17}}(3, 5, -3, -5).$$