Abstract

These notes are based on Scott Weinstein's "Model Theory" lectures at UPenn along with David Marker's *Model Theory: An Introduction*. Any mistake in what follows is my own.

Contents

1	Introduction	2
	1.1 Lecture 1 .	 2
	1.2 Lecture 2	 3

1 INTRODUCTION 2

1 Introduction

1.1 Lecture 1

Recall the structure $\mathbb{N} := \langle \omega, S, 0 \rangle$ where

- ω denotes the set of natural numbers $\{0, 1, 2, \dots, \}$,
- S is interpreted as the successor function $\omega \to \omega$, and
- the constant symbol O is interpreted as the natural number O.

The formal language \mathcal{L} for which \mathbb{N} is a structure consists of the first-order (FO) logical symbols

$$\forall$$
, \exists , \land , \neg , \lor , \rightarrow , =

along with non-logical symbols such as 0, $S^n 0 := \underbrace{S \cdots S}_{n \text{ copies}} 0$, and $S^n x$. Let FO denote the set of all (first-order) \mathcal{L} -sentences.

The theory of \mathbb{N} is

$$Th(\mathbb{N}) := \{ \varphi \in \mathsf{FO} \mid \mathbb{N} \models \varphi \},\$$

which consists of all sentences satisfied by \mathbb{N} . Further, for any subset $\Sigma \subset \mathsf{FO}$, consider the set

$$Cn(\Sigma) := \{ \varphi \in \mathsf{FO} \mid \Sigma \models \varphi \}$$

of consequences of Σ .

Question. Can we find a theory Σ (other than $\operatorname{Th}(\mathbb{N})$) such that $\operatorname{Cn}(\Sigma) = \operatorname{Th}(\mathbb{N})$?

Let $\Delta = \{ \forall x \, (Sx \neq 0), \ \forall x \forall y \, (Sx = Sy \rightarrow x = y), \ \forall x \, (x \neq 0 \rightarrow \exists y \, (Sy = x)) \}$. Each element of Δ is clearly true in \mathbb{N} , i.e., $\mathbb{A} \models \Delta$. But is it the case that $\operatorname{Cn}(\Delta) = \operatorname{Th}(\mathbb{N})$? No, provided that we allow ourselves access to monadic second-order sentences. Specifically, consider the *induction axiom* IA:

$$\forall P\left(\left(P(0) \land \forall x \left(P(x) \to P(Sx)\right) \to \forall x \left(P(x)\right)\right)\right). \tag{*}$$

This is clearly true in \mathbb{N} . Consider, however, a new structure $\mathbb{A} := \langle \omega \cup \mathbb{Z}, S, 0 \rangle$. Then $\Delta \subset \operatorname{Th}(\mathbb{A})$, and we have a \mathbb{Z} -chain in \mathbb{A} (pretending, for the moment, that the universe $|\mathbb{A}|$ has the usual order <):

$$\cdots \qquad -(n+1)^{\mathbb{A}} \qquad -n^{\mathbb{A}} \qquad \cdots \qquad -1^{\mathbb{A}} \qquad 0^{\mathbb{A}} \qquad 1^{\mathbb{A}} \qquad \cdots$$

The second-order sentence (*) with P instantiated by the "initial segment" $\mathbb{Z}_{\geq -1}$ is not true in \mathbb{A} , so that $\mathbb{A} \not\models \mathsf{IA}$. In this case, $\mathsf{IA} \in \mathsf{Th}(\mathbb{N}) \setminus \mathsf{Cn}(\Delta)$.

Nevertheless, we want to restrict ourselves to FO. Recall that two structures \mathbb{B} and \mathbb{C} are elementarily equivalent if $\mathrm{Th}(\mathbb{B})=\mathrm{Th}(\mathbb{C})$.

Question. Are \mathbb{A} and \mathbb{N} elementarily equivalent?

1 INTRODUCTION 3

If we can find some sentence belonging to $\operatorname{Th}(\mathbb{N}) \setminus \operatorname{Th}(\mathbb{A})$, then $\operatorname{Cn}(\Delta) \neq \operatorname{Th}(\mathbb{N})$.

Definition 1.1.1. A theory Σ is *categorical* if for any structures \mathbb{B} and \mathbb{C} , if $\mathbb{B} \models \Sigma$ and $\mathbb{C} \models \Sigma$, then $\mathbb{B} \cong \mathbb{C}$.

Example 1.1.2. $\Delta' := \Delta + \mathsf{IA}$ is categorical.

Perhaps exhibiting that the usual order < on ω is definable in \mathbb{N} would reveal that $\mathbb{A} \not\equiv \mathbb{N}$. For this, we must find a (well-formed) formula $\theta(x,y)$ such that for every $n,m\in\omega$,

$$m < n \iff \mathbb{N} \models \theta[n, m].$$

Thanks to Lagrange's four square theorem, we could define < on the positive integers. But it's unclear how to proceed further.

Theorem 1.1.3. If \mathbb{B} is infinite, then for every infinite cardinal κ , there is some \mathbb{C} such that $\mathbb{C} \equiv \mathbb{B}$ and $card(\mathbb{C}) = \kappa$.

Corollary 1.1.4. *If* \mathbb{B} *is infinite, then there exists a* \mathbb{C} *such that* $\mathbb{C} \equiv \mathbb{B}$ *and* $\mathbb{C} \ncong \mathbb{B}$.

Therefore, Δ does *not* categorically describe \mathbb{N} . Now, consider the structure $\widetilde{\mathbb{N}}$ obtained from \mathbb{N} by adding a single point \bullet fixed by S. Then the sentence $\forall x \, (Sx \neq x)$ is true in \mathbb{N} but not in $\widetilde{\mathbb{N}}$. Moreover, $\Delta \subset \operatorname{Th}(\widetilde{\mathbb{N}})$, which proves that

$$Cn(\Delta) \neq Th(\mathbb{N}).$$

With this in mind, let $\Sigma = \Delta \cup \{ \forall x \, (\mathbb{S}^n x \neq x) \mid n \in \omega \}$. To show that $\operatorname{Cn}(\Sigma) = \operatorname{Th}(\mathbb{N})$, it suffices to show that for any \mathbb{B} , if $\mathbb{B} \models \Sigma$, then $\mathbb{B} \equiv \mathbb{N}$. To this end, for any cardinal κ , let $\mathbb{A}_{\kappa} = \mathbb{N} \cup (\kappa \times \mathbb{Z})$, which is precisely the structure obtained form \mathbb{N} by adding κ many disjoint \mathbb{Z} -chains.

Question. How many structures are there up to isomorphism that

- (a) satisfy Σ and
- (b) are of cardinality κ ?

If $\kappa < \omega$, then $\operatorname{card}(\mathbb{A}_{\kappa}) = \aleph_0$. Also, if $\kappa > \omega$, then $\operatorname{card}(\mathbb{A}_{\kappa}) = \kappa$, so that Σ is κ -categorical, i.e., every structure satisfying both (a) and (b) is isomorphic to \mathbb{A}_{κ} .

1.2 Lecture 2