Subjective evaluation of active noise cancellation in headphones

```
In [ ]: import numpy as np
```

Dummy Data Generation

```
In []: import random as rnd
    samples_quantity = 30
    measurements_per_sample = 8
```

$X_1 \equiv \mathsf{ANC} \, \mathsf{Status}$

```
In []: anc_status = np.empty((samples_quantity, measurements_per_sample))

for i in range(samples_quantity):
    for j in range(0, measurements_per_sample, 4):
        anc_status[i][j] = 0 # Sin ANC
        anc_status[i][j+1] = 0 # Sin ANC
        anc_status[i][j+2] = 1 # Con ANC
        anc_status[i][j+3] = 1 # Con ANC
```

$X_2 \equiv$ Measured Noise

```
In []: import math
    measured_noise_spl = np.empty((samples_quantity, measurements_per_sample)
    noise_mean = 65
    noise_deviation = 2
    background_noise_spl = rnd.gauss(noise_mean, noise_deviation)
    delta_spl = 15
    generated_noise_spl = noise_mean + 3 * noise_deviation + delta_spl

for i in range(samples_quantity):
    for j in range(measurements_per_sample):
        background_noise_spl = rnd.gauss(noise_mean, noise_deviation)

if (j % 2 == 0):
        measured_noise_spl[i][j] = background_noise_spl # Solo ruido
    else:
        measured_noise_spl[i][j] = 10 * math.log10(10 ** (background_noise_spl))
```

$Y_1,Y_2\equiv$ Perceived Noise Level and Sound Quality

```
In [ ]: perceived_noise = np.empty((samples_quantity, measurements_per_sample))
    perceived_quality = np.empty((samples_quantity, measurements_per_sample))
```

```
for i in range(samples_quantity):
    for j in range(0, measurements_per_sample, 4):
        perceived_noise[i][j] = rnd.randint(1, 4) # Sin ANC, poco ruido
        perceived_noise[i][j+1] = rnd.randint(4, 5) # Sin ANC, mucho ruid
        perceived_noise[i][j+2] = rnd.randint(1, 2) # Con ANC, poco ruido
        perceived_noise[i][j+3] = rnd.randint(1, 3) # Con ANC, mucho ruid

        perceived_quality[i][j] = rnd.randint(3, 5) # Sin ANC, poco ruido
        perceived_quality[i][j+1] = rnd.randint(3, 5) # Sin ANC, mucho ru
        perceived_quality[i][j+2] = rnd.randint(2, 5) # Con ANC, poco rui
        perceived_quality[i][j+3] = rnd.randint(1, 4) # Con ANC, mucho ru
```

Results Dot Plots

```
import seaborn as sns
import matplotlib.pyplot as plt

x_1 = anc_status.ravel()
x_2 = measured_noise_spl.ravel()
y_1 = perceived_noise.ravel()
y_2 = perceived_quality.ravel()
```

$X_2 \equiv$ Measured Noise Level Dot Plot

```
In []: y_min = noise_mean - 3 * noise_deviation - 1
    y_max = noise_mean + 3 * noise_deviation + delta_spl + 1

    sns.swarmplot(x = x_1, y = x_2, size = 3)
    plt.tick_params(axis = 'both', direction = 'in')
    plt.ylim(y_min, y_max)
    plt.xlabel('ANC Status', fontsize = 12)
    plt.ylabel('Measured Noise Level', fontsize = 12)
    plt.show()
```

/Users/mrmalvicino/Desktop/GitHub/anc/myenv/lib/python3.12/site-package s/seaborn/categorical.py:3399: UserWarning: 12.5% of the points cannot b e placed; you may want to decrease the size of the markers or use stripp lot.

warnings.warn(msg, UserWarning)

$Y_1 \equiv$ Perceived Noise Level Dot Plot

```
In []: sns.swarmplot(x = x_1, y = y_1, size = 3)
   plt.tick_params(axis = 'both', direction = 'in')
   plt.ylim(0, 6)
   plt.xlabel('ANC Status', fontsize = 12)
   plt.ylabel('Perceived Noise Level', fontsize = 12)
   plt.show()
```

/Users/mrmalvicino/Desktop/GitHub/anc/myenv/lib/python3.12/site-package s/seaborn/categorical.py:3399: UserWarning: 13.3% of the points cannot b e placed; you may want to decrease the size of the markers or use stripp lot.

warnings.warn(msg, UserWarning)

$Y_2 \equiv$ Perceived Sound Quality Dot Plot

```
In []: sns.swarmplot(x = x_1, y = y_2, size = 3)
   plt.tick_params(axis = 'both', direction = 'in')
   plt.ylim(0, 6)
   plt.xlabel('ANC Status', fontsize = 12)
   plt.ylabel('Perceived Sound Quality', fontsize = 12)
   plt.show()
```


Data Validation

Box Plot

```
In []: plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    sns.boxplot(x = x_1, y = y_1)
    plt.xlabel('ANC Status')
    plt.ylabel('Perceived Noise Level')

    plt.subplot(1, 2, 2)
    sns.boxplot(x = x_1, y = y_2)
    plt.xlabel('ANC Status')
    plt.ylabel('Perceived Sound Quality')

    plt.tight_layout()
    plt.show()
```


Histogram

```
In []: plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.hist(y_1, bins=np.arange(0.5, 6.5), alpha=0.7, label='Perceived Noise
plt.xlabel('Perceived Noise Level')
plt.ylabel('Frequency')
plt.title('Histogram of Perceived Noise Level')
plt.legend()

plt.subplot(1, 2, 2)
plt.hist(y_2, bins=np.arange(0.5, 6.5), alpha=0.7, label='Perceived Sound
plt.xlabel('Perceived Sound Quality')
plt.ylabel('Frequency')
plt.title('Histogram of Perceived Sound Quality')
plt.legend()

plt.tight_layout()
plt.show()
```


Shapiro-Wilk Normality test

```
In [ ]: from scipy import stats
        statistic, p_value = stats.shapiro(x_2)
        print("X2:")
        print(f"Statistic: {statistic:.3f}")
        print(f"p-value: {p_value:.3f}")
        statistic, p_value = stats.shapiro(y_1)
        print("\nY1:")
        print(f"Statistic: {statistic:.3f}")
        print(f"p-value: {p_value:.3f}")
        statistic, p_value = stats.shapiro(y_2)
        print("\nY2:")
        print(f"Statistic: {statistic:.3f}")
        print(f"p-value: {p_value:.3f}")
        X2:
        Statistic: 0.720
        p-value: 0.000
        Y1:
        Statistic: 0.859
        p-value: 0.000
        Y2:
        Statistic: 0.896
        p-value: 0.000
```

Correlation and Regression

```
In [ ]: import statsmodels.api as sm
```

Scatter Plot and Pearson Correlation for $Y_1(X_1)$

Scatter Plot and Pearson Correlation for $Y_2(X_1)$

```
In []: # plt.scatter(x_1, y_2)
    # plt.tick_params(axis = 'both', direction = 'in')
    # plt.xlim(-1, 2)
    # plt.ylim(0, 6)
    # plt.xlabel('Variable X1 [ANC Status]', fontsize = 12)
    # plt.ylabel('Variable Y2 [Quality score]', fontsize = 12)
    # plt.show()

correlation_coefficient, p_value = stats.pearsonr(x_1, y_2)

print(f"r = {correlation_coefficient:.3f}")
print(f"p-value = {p_value:.3f}")
```

Linear Regression for $Y_1(X_1)$

```
In []: x_1_c = sm.add_constant(x_1)
    model = sm.OLS(y_1, x_1_c).fit()
    print(model.summary())
    predictions = model.predict(x_1_c)

plt.scatter(x_1, y_1, label='Datos observados')
    plt.plot(x_1, predictions, color='red', label='Linea de regresión')
    plt.xlim(-0.5, 1.5)
    plt.ylim(0, 6)
    plt.xlabel('ANC Status')
    plt.ylabel('Perceived Quality')
    plt.legend()
    plt.show()
```

OLS Regression Results

==========	======	======		=====	=====		======	====
<pre>Dep. Variable:</pre>		у			R-squared:			
0.446				01.0	A -1.5	D. a successed a		
Model: 0.443				0LS	Adj.	R-squared:		
Method:		Least	t Saua	ares	F-sta	atistic:		
191.3		2005	- oqui		. 5			
Date:		Fri, 07	Jun 2	2024	Prob	(F-statistic):		2.
52e-32								
Time:			20:09	9:19	Log-l	_ikelihood:		-
350.20				240	A T.C.			
No. Observation 704.4	ons:			240	ALC:			
Df Residuals:				238	BIC:			
711.4				250	DIC.			
Df Model:				1				
Covariance Typ	e:	r	nonrob	oust				
	======	:======	=====	=====	=====		======	====
=====	coot	c+d	orr		+	P> t	[0 025	
0.975]	COE	Stu	CII		Ĺ	r> t	[0.023	
	3.4917	7 0.	095	36	. 587	0.000	3.304	
3.680								
	-1.8667	7 0.	135	-13	.831	0.000	-2.133	
-1.601								
=======	======				=====		======	
Omnibus:			14.	070	Durb:	in-Watson:		
2.644								
Prob(Omnibus):			0.001		Jarqı	ue-Bera (JB):		
15.121								
Skew:			-0.	612	Prob	(JB):		0.
000521			2	122	C I	No		
Kurtosis: 2.62			3.	122	Cond	. 110.		
Z:UZ	======	=======			=====	=========	=======	====
=====								

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is c orrectly specified.

Linear Regression for $Y_2(X_1)$

```
In []: x_1_c = sm.add_constant(x_1)
    model = sm.OLS(y_2, x_1_c).fit()
    print(model.summary())
    predictions = model.predict(x_1_c)

plt.scatter(x_1, y_2, label='Datos observados')
    plt.plot(x_1, predictions, color='red', label='Linea de regresión')
    plt.xlim(-0.5, 1.5)
    plt.ylim(0, 6)
    plt.xlabel('ANC Status')
    plt.ylabel('Perceived Quality')
    plt.legend()
    plt.show()
```

OLS Regression Results

=======================================	======	:======	=====	====	=====		=======	====
=====								
Dep. Variable	:			У	R–sqı	uared:		
0.225								
Model:			(OLS	Adj.	R-squared:		
0.222			6					
Method:		Least Squares				atistic:		
69.22		F ' 07	1 24	22.4	ъ.	/= · · · · ·		
Date:		Fr1, 0/	Jun 20	024	Prob	(F-statistic):		6.
86e-15 Time:			20.00	. 10	امما	likalihaad.		
334.09			20:09	: 19	Log-i	Likelihood:		_
No. Observation	onci		-	240	AIC:			
672.2	0115.		4	240	AIC.			
Df Residuals:			-	238	BIC:			
679 . 1			2	230	DIC.			
Df Model:				1				
Covariance Typ	pe:	r	onrobu	_				
		.======			=====		=======	
=====								
	coef	std	err		t	P> t	[0.025	
0.975]								
		_						
const	4.0667	0.	089	45	.571	0.000	3.891	
4.242	4 050				222		4 200	
	-1.0500	0.	126	-8	.320	0.000	-1.299	
-0.801								
=======================================	======	======	=====	====	=====		=======	
Omnibus:			22 1	242	Durh	in-Watson:		
2.236			34.2	242	Dui b.	III-watson.		
Prob(Omnibus)			ο (000	lardi	ue-Bera (JB):		
9.837	•		0.0	000	Jarq	ue-bera (Jb).		
Skew:			-0 1	170	Prob(JB):			
0.00731			0.	170	1100	(30):		
Kurtosis:			2.0	868	Cond. No.			
2.62					551141			
===========	======	======	=====		=====	==========	=======	
=====								

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is c orrectly specified.

