

# PROJECT PRESENTATION

ON

# Design and development Of Ball Balancing Robot

GUIDE: Dr. Arun Dayal Udai

**Hritwik Shukla** (BE/10261/2013)

**Gulshan Kumar (BE/10312/2013)** 

Sanchit Sinha (BE/10375/2013)

|          | Idea                        |
|----------|-----------------------------|
| Contents | Motivation                  |
|          | Introduction to the Concept |
|          | Equations                   |
|          | Approach                    |
|          | Methodology                 |
|          | Technology                  |
|          | Road Map                    |
|          | Progress                    |
|          | Application                 |
|          | Cost Model                  |
|          | Thank You                   |





- Cutting edge research in the field of Robotics
- A good research topic on
- Mechanical Design
- Manufacturing Technology
- Robotics Control & Automation
- Product development exposure

# **CONCEPT**

- A Ball balancing robot is an OMNI directional robot balancing itself over a BALL.
- Advantageous over normal wheeled robot because of its Holonomic Drive.
- 3 DOF movement in a 2D plane.
- Dynamically stable robot- requires a fair amount of control theory to simulate the model.
- Measures the tilt of the robot from the vertical and calculates the motor torques and rpm to balance the robot.





# Equations of Motion:

We will use the Euler-Lagranges method for the formulation of the equations of motion.:

The lagrangian is given by:

$$L = T - V$$

where

V = total potential energy of the system T= total kinetic energy of the system.

So, we need to calculate the total kinetic and potential energies of the system

Energy of the system

Energy of the ball

$$T_s = rac{1}{2} m_s (v_{2,I}^2)^T (v_{2,I}^2) + rac{1}{2} (R_I^2 \omega_{s,I}^I)^T I_s^2 (R_I^2 \omega_{s,I}^I)$$

$$V_s = 0$$

$$T_B = rac{1}{2} m_B (v_{\mathtt{5},I}^{\mathtt{5}})^T (v_{\mathtt{5},I}^{\mathtt{5}}) + rac{1}{2} (\omega_{\mathtt{5},I}^{\mathtt{5}})^T I_B^{\mathtt{5}} (\omega_{\mathtt{5},I}^{\mathtt{5}})$$

### Equations of motion

Once the lagrangian L is known, the equations of motion can be found by the following relation

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \tau_{ext,i}$$

where i=1,2,...,5

# The Approach

- Make the CAD of the system in SOLIDWORKs.
- Import the CAD to Matlab and simulate the model to completely balance and control its locomotion as well.
- Determination of the component specification as per the simulation.
- Manufacture the Robot as per the design.
- Design the controller with required electronics circuit.

# Proposed Methodology

### Step 1

Simulation of robot dynamics in Matlab to decide the component specifications and other necessary parameters.

### Step 2

With the desired specifications, a computer aided design is made in SolidWorks.

#### Step 3

Fabricate the hardware of the robot and make the electronic control circuit.



# The Technology:

- ✓ HOLONOMIC Drive. (Omni directional)
- ✓ MEMS based Inertial Measurement Unit
- ✓ Design innovation taken by ETH Zurich. [Fankhauser 2010]

# Holonomic Drive

- Omni Wheel is coupled with the DC Motor.
- By using different combination of rpm at each wheel, the robot can move in any direction.



## Inertial Measurement Unit

- ➤ Inertial Measurement Unit
- **▶** Consists of
- Accelerometer
- Gyroscope
- •Magnetometer
- ➤ Calculation of Roll, Pitch and Yaw



- ➤Why IMU?
- ■To measure the tilt angle.

# Roadmap







# **Applications**

- It can be used as a personal transporter.
- Used in Rocket propulsion to make it dynamically stable while moving.
- A very productive teaching AID for teachers in Robotics.
- Can be used as a promotional robot.

 This kind of robot has not been reported in India till now and only very few prestigious universities around the world has it.

# **Application**

Personal Transporter



# COST ESTIMATE

| ITEMS                                | QUANTIY | TOTAL COST             |
|--------------------------------------|---------|------------------------|
| Planetary DC Geared Motor            | 3       | 3490 x 3 = 10470       |
| Omni Wheels                          | 3       | 2450 x 3 = 7350        |
| Inertial Measurement Unit            | 2       | 1000 x 2 = 2000        |
| Microcontroller                      | 2       | $2875 \times 2 = 5750$ |
| Incremental Optical Encoder          | 3       | $1990 \times 3 = 5970$ |
| Motor Driver                         | 4       | 990 x 4 = 3960         |
| Aluminium Channels                   | -       | 2000                   |
| Welding, Nut, Bolt & other equipment | -       | 4000                   |
| Electrical Wiring & miscellaneous    | -       | 3350                   |
| Basket Ball                          | 1       | 1300                   |
| Shaft, Couplers, Keys & Machining    | -       | 3000                   |
| Total                                |         | Rs. 48150/-            |

# The Team









Dr. Arun Dayal Udai Our respected guide & mentor

# Thank you!!