Instruction: Type your answer to the following quetion provided by Latex and submit a zipped file (included .pdf file and .tex file) to E-learning by group (only 4-5 member in each group). Only team leader will submit it. One page per problem. Please use the solution template provided)

GROUP —-MEMBER LIST						
No.	Name	ID	Role			
1	Pham Minh Tuan	1752595				

Problem 1 [5pt] Prove the following statements

- 1. $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ 1)Suppose that: $x \in \overline{A \cap B \cap C}$ $\leftrightarrow x \in \overline{A} \cap x \in \overline{B} \cap x \in \overline{C}$ $\leftrightarrow x \not\in A \cap x \not\in B \cap x \not\in C$ $\leftrightarrow x \in \neg A \cap B \cap C$ $\leftrightarrow x \in (\overline{A} \cup \overline{B} \cup \overline{C})$ $\rightarrow Q.E.D$
 - 2) Membership Table:

A	В	\mathbf{C}	$\overline{A \cap B \cap C}$	$\overline{A} \cup \overline{B} \cup \overline{C}$
1	1	1	0	0
0	0	0	1	1
0	1	1	0	0
0	1	0	0	0
1	0	0	0	0
1	0	1	0	0
0	0	1	0	0
1	1	0	0	0

- 2. $P(A) \subseteq P(B)$ if and only if $A \subseteq B$ Suppose that $A \nsubseteq B$ and $A \in P(A), B \in P(B)$ $\rightarrow P(A) \nsubseteq P(B)$ so if $A \subseteq B$ then $P(A) \subseteq P(B)$
- 3. $(B-A) \cup (C-A) = (B \cup C) A$ Suppose that: $A = \{1, 2, 3\}$ $B = \{3, 4, 5\}$ $C = \{2, 7, 8\}$ We have: B - A = $\{4, 5\}$ $C - A = \{7, 8\}$ $\rightarrow (B-A) \cup (C-A) = \{4,5,7,8\}$ (1) We have: $B \cup C = \{2, 3, 4, 5, 7, 8\}$ $\rightarrow (B \cup C) - A = \{4, 5, 7, 8\}$ (2) From (1), (2) $\rightarrow Q.E.D$
- 4. Explain why $A \times B \times C$ and $(A \times B) \times C$ are not the same. Suppose that: $A = \{1\}$
 - $B = \{3, 4\}$ $C = \{5, 6\}$

We have $A \times B \times C = \{(1,3,5), (1,3,6), (1,4,5), (1,4,6)\}$ (1) We also have $(A \times B) = \{(1,3), (1,4)\}$

Problem 2 [5pt] The symmetric difference of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

- 1. Show that $A \oplus B = (A \cup B)(A \cap B)$ We define that $A \oplus B = (A - B) \cup (B - A)$ Suppose that: $A = \{1, 2, 3\}$ $B = \{3, 4, 5\}$ We have: $A - B = \{1, 2\}$ $B - A = \{4, 5\}$ $\rightarrow (A - B) \cup (B - A) = \{1, 2, 4, 5\}$ (1) Beside: $(A \cup B)(A \cap B) = \{1, 2, 4, 5\}$ (2) $(1) \& (2) \therefore A \oplus B = (A \cup B)(A \cap B)$
- 2. What can you say about the sets A and B if $A \oplus B = A$?
 A is the set and B is the empty set or B is the set and A is the empty set Definitely: $A \oplus B = (A B) \cup (B A)$ So if $B = \emptyset$ then $A B = A \emptyset = A$ $B A = \emptyset A = \emptyset$ $\rightarrow (A B) \cup (B A) = A \cup \emptyset = A$ $\therefore Q.E.D$
- 3. If A, B, C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$? Use Membership Table:

ABC	$B \oplus C$	$A \oplus B$	$A \oplus (B \oplus C)$	$(A \oplus B) \oplus C$
111	0	0	1	1
1 1 0	1	0	0	0
1 0 1	1	1	0	0
1 0 0	0	1	1	1
0 1 1	0	1	0	0
0 1 0	1	1	1	1
0 0 1	1	0	1	1
0 0 0	0	0	0	0

Problem 3 [5pt] What can you say about the sets A and B if we know that

- 1. $A \cup B = A$?
- $2. \ A \cap B = A?$
- 3. A B = A?
- 4. $A \cap B = B \cap A$?
- 5. A B = B A?

Problem 4 [5pt] Find the domain and range of these functions. Note that in each case, find the domain, determine the set of set of elements assigned values by the function.

- 1. The function that assigns to each bit string the number of ones in the string mins the number of zeros in the string
- 2. The function that assigns to each bit string twice the number of zeros in the string.
- 3. The function that assigns the number of bits left over when a bit string is split into bytes (which are blocks of 8 bits)
- 4. The function that assigns to each possitve integer the largest perfect square not exceeding this integer

Problem 5 [5pt] Determine whether each of these functions is a bijection from ${\bf R}$ to ${\bf R}$

- 1. f(x) = -3x + 4
- 2. $f(x) = -3x^2 + 7$
- 3. $f(x) = \frac{x+1}{x+2}$
- 4. $f(x) = x^5 + 1$
- 5. $f(x) = \frac{x^5 + 1}{x^2 + 2}$