Class 14: DESeq Mini Project

Allen (A16897142)

Table of contents

Required Libraries	1
Data Import	4
Tidying Up Data	5
Remove Zero Count Genes	6
Setup DESeq object for analysis	7
Run DESeq analysis	7
Extract Results	7
Add Gene Annotation	8
Save my results to a CSV file	9
Result Visualization	9
Pathway Analysis	11
Reactome Analysis Online	13

Required Libraries

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

 ${\tt Loading\ required\ package:\ SummarizedExperiment}$

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats': anyMissing, rowMedians

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
```

Data Import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Tidying Up Data

colnames(countData)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

```
counts <- countData[,-1]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0

ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

all(rownames(colData) == colnames(counts))

[1] TRUE

Remove Zero Count Genes

Some rows in counts for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero then we give a gene has not count data and we should exclude those genes.

```
head(rowSums(counts) == 0)
```

```
ENSG00000186092 ENSG00000279928 ENSG00000279457 ENSG00000278566 ENSG00000273547

TRUE TRUE FALSE TRUE TRUE

FALSE
```

```
to.keep <- rowSums(counts) !=0
cleancounts <- counts[to.keep,]</pre>
```

Q1. How many genes do we have left?

nrow(cleancounts)

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract Results

```
res <- results(dds)
head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                baseMean log2FoldChange
                                           lfcSE
                                                       stat
                                                                pvalue
                              <numeric> <numeric> <numeric>
               <numeric>
                                                              <numeric>
                 29.9136
ENSG00000279457
                             0.1792571 0.3248216 0.551863 5.81042e-01
                             0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000187634 183.2296
ENSG00000188976 1651.1881
                            -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                             0.7297556 0.1318599 5.534326 3.12428e-08
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187583 47.2551
                              0.5428105 0.5215599 1.040744 2.97994e-01
ENSG00000187642
                11.9798
                      padj
```

padj <numeric>

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03 ENSG00000188976 1.76549e-35 ENSG00000187961 1.13413e-07 ENSG00000187583 9.19031e-01 ENSG00000187642 4.03379e-01

Add Gene Annotation

'select()' returned 1:many mapping between keys and columns

^{&#}x27;select()' returned 1:many mapping between keys and columns

head(res)

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxal kd vs control sirna
DataFrame with 6 rows and 8 columns
                 baseMean log2FoldChange
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
                               0.0405765 0.2718928
ENSG00000187583
                 47.2551
                                                     0.149237 8.81366e-01
                               0.5428105 0.5215599 1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                       padj
                                   name
                                             entrez
                  <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                     NA
                                                 NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398
ENSG00000188976 1.76549e-35
                                 NOC2L
                                              26155
ENSG00000187961 1.13413e-07
                                 KLHL17
                                             339451
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069
```

PERM1

84808

Save my results to a CSV file

ENSG00000187642 4.03379e-01

```
write.csv(res, file="results.csv")
```

Result Visualization

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "lightcoral"
mycols[res$log2FoldChange >= 2] <- "lightcoral"
mycols[res$padj >= 0.005] <- "gray"
plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=-2, col="lightcoral")
abline(v=+2, col="lightcoral")
abline(h=-log(0.005), col="lightcoral")</pre>
```



```
library(ggplot2)
ggplot(as.data.frame(res))+
   aes(log2FoldChange, -log10(padj)) +
   geom_point(col=mycols) +
   scale_color_manual(values = c("gray", "lightcoral")) +
   geom_vline(xintercept = (-2), color = "lightcoral") +
   geom_vline(xintercept = (2), color = "lightcoral") +
   geom_hline(yintercept = -log10(0.005), color = "lightcoral") +
   labs(x = "log2 Fold Change", y = "-log10 Adjusted P-value", title = "Volcano Plot Depicting theme_bw()
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Volcano Plot Depicting Regulation of Genes on a Treatment

Pathway Analysis

```
data(go.sets.hs)
data(go.subs.hs)
```

```
foldchanges <- res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)</pre>
```

```
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
head(gobpres$less,5)
```

```
p.geomean stat.mean p.val GO:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15
```

```
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
                                               q.val set.size
GO:0048285 organelle fission
                                        5.841698e-12
                                                         376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GD:0007067 mitosis
                                        5.841698e-12
                                                         352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                         362 1.169934e-14
                                   1.658603e-08
GO:0007059 chromosome segregation
                                                          142 2.028624e-11
data(kegg.sets.hs)
keggres <- gage(foldchanges, gsets=kegg.sets.hs)</pre>
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean stat.mean
hsa04110	Cell cycle	8.995727e-06 -4.378644
hsa03030	DNA replication	9.424076e-05 -3.951803
hsa05130	Pathogenic Escherichia coli infection	1.405864e-04 -3.765330
hsa03013	RNA transport	1.246882e-03 -3.059466
hsa03440	Homologous recombination	3.066756e-03 -2.852899
hsa04114	Oocyte meiosis	3.784520e-03 -2.698128
		p.val q.val
hsa04110	Cell cycle	8.995727e-06 0.001889103
hsa03030	DNA replication	9.424076e-05 0.009841047
hsa05130	Pathogenic Escherichia coli infection	1.405864e-04 0.009841047
hsa03013	RNA transport	1.246882e-03 0.065461279
hsa03440	Homologous recombination	3.066756e-03 0.128803765
hsa04114	Oocyte meiosis	3.784520e-03 0.132458191
		set.size exp1
hsa04110	Cell cycle	121 8.995727e-06
hsa03030	DNA replication	36 9.424076e-05
hsa05130	Pathogenic Escherichia coli infection	53 1.405864e-04
hsa03013	RNA transport	144 1.246882e-03
hsa03440	Homologous recombination	28 3.066756e-03
hsa04114	Oocyte meiosis	102 3.784520e-03

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/AllenSchool/Documents/School Items/BIMM 143/class14

Info: Writing image file hsa04110.pathview.png

Reactome Analysis Online

We need to make a file of our significant genes that we caupload to the reactome website:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "name"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote

