중2 수학

4-1.이등변삼각형(01)

한 빈출유형 TOP 3

- 1. 이등변삼각형의 성질
- ☑ 이등변삼각형의 성질에 대한 이해를 확인하는 문제
- ☑ 이웃한 이등변 삼각형이 주어진 문제
- ☑ 삼각형 내부에 이등변삼각형이 있는 문제
- 1. $\triangle ABC$ 에서 $\angle B = \angle C$ 이면 $\overline{AB} = \overline{AC}$ 인 이유를 설명하는 과정이다. □ 안에 가장 알맞은 것은?

 $\angle A$ 의 이등분선과 변 BC가 만나는 점을 D라 하면 $\triangle ABD$ 와 $\triangle ACD$ 에서

 $\angle B = \angle C$,

 $\angle BAD = \angle CAD$

이고 삼각형의 세 내각의 크기의 합은 180°

가 성립한다.

또 \overline{AD} 는 공통인 변 ………©

이므로 ①, ②, ②에 의하여 [이다.

따라서 $\overline{AB} = \overline{AC}$ 이다.

- ① $\triangle ABD = \triangle ABC$ (SSS합동)
- ② $\triangle ABD = \triangle ADC$ (SSS합동)
- ③ $\triangle ACB = \triangle ADB (ASA 한동)$
- ④ $\triangle ABD \equiv \triangle ACD (ASA 합동)$
- ⑤ $\triangle ABD = \triangle ACD (SAS$ 합동)

2. $\langle \pm 1 \rangle$ 의 이등변삼각형에 대한 설명 중 옳은 것

<보기>

- A. 두 내각의 크기의 합이 또 다른 각의 외각의 크기와
- B. 각의 이등분선이 대변을 수직이등분한다.
- C. 두 변의 길이가 같은 삼각형이다.

을 모두 고른 것은?

- D. 두 내각의 크기가 같은 삼각형이다.
- E. 둔각삼각형은 이등변삼각형이 될 수 없다.
- ① B. C
- ② C. D
- 3 A, B, D
- 4 A, B, E
- ⑤ A, C, E
- **3.** $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 \overline{BC} 의 교점을 D라고 하자. \overline{AD} 위의 한 점 P를 잡을 때, 다음 <보기> 중 옳은 것의 개수는?

<보기>

- $\overline{AP} = \overline{CP}$
- BD= CD
- BP= CP
- ∠*PBD* = ∠*PCD*
- ∠*PAB* = ∠*PBA*
- ∠*ABP*=∠*PBD*
- *PD*는 ∠*BPC*의 이등분선이다.
- ① 2개
- ② 3개
- ③ 4개
- ④ 5개
- ⑤ 6개

4. 다음 그림의 $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 일 때, $\angle x$ 의 크기는?

- ① $86\degree$
- ② 87°
- 3 88°
- (4) 90°
- \bigcirc 92 $^{\circ}$

5. 삼각형 ABC에서 $\overline{AB} = \overline{AC}$ 이다. $\overline{BC} = \overline{BD} = \overline{ED} = \overline{EF} = \overline{FA}$ 일 때, $\angle C$ 의 크기는?

- ① 68°
- ② 70°
- 3 76°
- 4) 78°
- ⑤ 80°
- 6. 삼각형 $\triangle ABC$ 의 변 BC 위에 $\overline{BA} = \overline{BE}$, $\overline{CA} = \overline{CD}$ 가 되도록 점 D, E를 잡았다. $\angle ABC = 34\degree$, $\angle ADB = 108\degree$ 일 때, $\angle AEC + \angle ACB$ 의 값은?

- ① 72°
- 2107°
- 4 143 $^{\circ}$
- \bigcirc 146 $^{\circ}$

7. 그림과 같이 ĀB=ĀC인 이등변삼각형 ABC에서 ∠B와 ∠C의 이등분선의 교점을 D라고 하자. ∠A=84°일 때, ∠BDC의 크기는?

- ① 124°
- ② 136°
- ③ 128°
- 4 130°
- ⑤ 132°

8. 삼각형 ABC에서 변 AB 위에 AC=DC가 되도 록 점 D를 잡고, ∠ACD의 이등분선과 변 AB의 교점을 E라고 하자. ∠A의 외각의 크기가 106°이 고, ∠BCE=60°일 때, ∠B의 크기는?

- ① 30°
- \bigcirc 32 $^{\circ}$
- ③ 33°
- 4 34 $^{\circ}$
- (5) 35°

한 빈출유형 TOP 3

- 2. 이등변삼각형이 되는 조건
- ☑ 이등변삼각형이 되는 조건의 증명에 대한 문제
- ☑ 이등변삼각형의 종이접기에 대한 문제
- ☑ 직사각형의 종이접기에 대한 문제
- 9. 다음 그림과 같이 $\angle B = \angle C$ 인 $\triangle ABC$ 에서 $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D라 할 때, 다음 중 $\overline{AB} = \overline{AC}$ 임을 설명하는데 이용되지 않는 것은?

- ① $\angle B = \angle C$
- ② $\angle BAD = \angle CAD$
- ④ \overline{AD} 는 공통
- ⑤ ASA 합동

10. $\angle B = 35^{\circ}$, $\angle DAC = 70^{\circ}$, $\angle CDE = 110^{\circ}$, \overline{AB} =4cm일 때, \overline{DC} 의 길이는?

- ① 3cm
- ② 3.5 cm
- ③ 4cm
- 4.5 cm
- ⑤ 5 cm

- **11.** 〈보기〉는 '선분의 수직이등분선 위의 한 점과 선 분의 양 끝 점을 각각 이어서 만든 삼각형은 이등변 삼각형'임을 설명한 것이다. ⊙, ⓒ에 들어갈 알맞은 식으로 짝지어진 것은?

그림과 같이 \overline{AB} 의 중점 M을 지나는 \overline{AB} 의 수선을 그 어, 그 위의 한 점 O에서 \overline{AB} 의 양 끝 점 A, B를 각 각 연결하였다.

이 때 $\triangle AOM$ 과 $\triangle BOM$ 에서

 $\angle OMA = \angle OMB = 90^{\circ}$

OM은 공통변

따라서 $\triangle AOM = \triangle BOM$ 이므로 이다.

 \bigcirc

- ① $\overline{AO} = \overline{BO}$ $\overline{AM} = \overline{BM}$
- ② $\angle AOM = \angle BOM$ $\overline{AO} = \overline{BO}$
- \bigcirc $\angle AOM = \angle BOM$ $\angle OAM = \angle OBM$
- $\angle OAM = \angle OBM$
- $\overline{AO} = \overline{BO}$

12. 그림은 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 모양의 종이를 점 A가 점 B에 오도록 접은 것이다.

 $\angle EBC = 30$ °일 때, $\angle A$ 의 크기는?

- ① 30°
- ② 35°
- 3 40°
- (4) 45°
- (5) 50°

13. 다음 그림과 같이 직사각형 모양의 종이 *ABCD* 를 꼭짓점 C가 점 A에 오도록 접었다.

 $\angle D'AE = 35$ °일 때, $\angle BFE$ 의 크기는?

- ① 117.5
- 2 118
- ③ 118.5
- 4 119
- **⑤** 120

한 빈출유형 TOP 3

- 3. 직각삼각형의 합동 조건
- ☑ 합동인 두 직각삼각형을 찾는 문제
- ☑ 합동인 두 직각삼각형의 조건을 찾는 문제
- **14.** $\angle A = \angle E = 90^{\circ}$ 인 두 직각삼각형 *ABC*, *DEF*에 대한 설명으로 옳은 것은?

☑ 직각이등변삼각형의 꼭짓점을 지나는 직선이 주어진 문제

- ② $\angle C = 53^{\circ}$
- $3 \angle B = \angle F$
- ④ RHA 합동이다.
- (5) $\triangle ABC \equiv \triangle EDF$

15. <보기>의 직각삼각형 중에서 합동인 두 삼각형을 찾아 기호와 합동조건 두 가지 모두를 바르게 사용 하여 나타낸 것은?

- ① $\triangle ABC = \triangle QRP(RHA$ 합동)
- ② $\triangle JLK = \triangle DFE(RHA$ 합동)
- ③ $\triangle GHI = \triangle PQR(RHS$ 합동)
- ④ $\triangle DEF = \triangle IGH(RHA$ 합동)
- ⑤ $\triangle MNO = \triangle IGH(RHS$ 합동)

16. 직각삼각형 ABC와 DEF에서 서로 합동이 되는 조건을 모두 고르면? (정답 2개)

- ① $\angle A = \angle D$, $\angle B = \angle E$
- ② $\overline{AB} = \overline{DE}$. $\angle B = \angle E$
- $\overline{AC} = \overline{DE}, \angle B = \angle E$

18. 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변 삼각형 ABC의 꼭짓점 B, C에서 꼭짓점 A를 지나 는 직선 l에 내린 수선의 발을 각각 D, E라 하자. $\overline{CE}=4\,\mathrm{cm}$, $\overline{BD}=10\,\mathrm{cm}$ 일 때, \overline{DE} 의 길이는?

- ① 4cm
- ② 5 cm
- 3 6cm
- 4 7cm
- ⑤ 8cm

- 빈출 🌣
- 17. 다음 그림과 같이 $\overline{AC}=\overline{CE}$ 이고 $\angle C=90\,^{\circ}$ 인 이등변삼각형 ACE의 두 꼭짓점 A와 E에서 점 C를 지나는 직선에 내린 수선의 발을 각각 B와 D라고 하자. $\overline{AB}=4\,\mathrm{cm}$, $\overline{DE}=6\,\mathrm{cm}$ 일 때, $\triangle ACE$ 의 넓이는?

- \bigcirc 24 cm²
- $25\,\mathrm{cm}^2$
- $3 26 \,\mathrm{cm}^2$
- $4 27 \, \text{cm}^2$
- ⑤ $28 \, \text{cm}^2$

19. $\overline{AB} = \overline{AC}$ 인 $\triangle ABC$ 에서 꼭짓점 B 에서 변 AC 에 내린 수선의 발을 D, 꼭짓점 C 에서 변 AB 에 내린 수선의 발을 E라 하고 \overline{BD} 와 \overline{CE} 의 교점을 O라고 하자.

 $\angle A = 38$ 일 때, $\angle COD$ 의 크기는?

- ① 19°
- \bigcirc 24 $^{\circ}$
- 32°
- (4) 38°

변출유형 TOP 3

4. 각의 이등분선의 성질

- ☑ 직각삼각형 내부의 각의 이등분선이 주어진 문제
- ☑ 직각삼각형 내부의 RHS합동에 대한 문제
- ☑ 두 반직선의 각의 이등분선이 주어진 문제

20. $\triangle ABC$ 에서 $\overline{AB} = \overline{BC}$, $\angle B = 90$ $^{\circ}$ 일 때, $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 D라 하고, D에서 \overline{AC} 에 내린 수선의 발을 E라 할 때, 옳지 않은 것은?

- (1) $\overline{EC} = \overline{ED}$
- ② $\overline{BD} = \overline{EC}$
- $\textcircled{4} \angle ADB = \angle ADE$

21. $\angle EBA = \angle EDA = 90^{\circ}$, $\angle AEB = 70^{\circ}$ $\overline{BE} = \overline{DE}$ 일 때, $\angle C$ 의 크기는?

- ① $35\degree$
- 2 40°
- ③ 45°
- 4 50°
- (5) 55°

- **22.** 그림에서 $\angle A = 90$ ° 인 직각삼각형 ABC의 빗변 의 수직이등분선과 선분 AC가 만나는 점을 E라 하 고 $\overline{AB} = \overline{BD} = \overline{DC}$ 라 할 때, $\angle ECD$ 의 크기는?

- (1) 25 °
- ② 30°
- ③ 35°
- (4) 40°
- (5) 45°

23. $\triangle ABC$ 는 $\angle C = 90^{\circ}$ 인 직각삼각형이다. \overline{AB} = $2\overline{AC}$ 이고, \overline{AB} 의 중점을 M, \overline{AB} 의 수직이등 분선과 \overline{BC} 의 교점을 D라 할 때, 옳지 않은 것을 고르면?

- ① $\angle DAC = 30^{\circ}$
- ② $\angle BDM = 30^{\circ}$
- $3 \angle MBD = \frac{1}{2} \angle MAC$
- ④ $\triangle ABD$ 는 이등변삼각형이다.
- ⑤ 빗변의 길이와 다른 한 변의 길이가 각각 같으므로 $\triangle ADM \equiv \triangle ADC$ 이다.

24. 다음은 각의 이등분선 위의 한 점에서 그 각의 두 변에 이르는 거리는 같음을 설명하는 과정이다. (가), (나), (다)에 들어갈 내용으로 알맞은 것은?

- ① (가) $\angle AOP = \angle BOP$ (나) RHA (다) $\overline{PA} = \overline{PB}$
- ② (가) $\overline{OA} = \overline{OB}$ (나) RHS (다) $\overline{PA} = \overline{PB}$
- ③ (가) $\angle AOP = \angle BOP$ (나) RHA (다) $\overline{OA} = \overline{OB}$
- ④ (가) $\overline{OA} = \overline{OB}$ (나) RHS (다) $\angle AOP = \angle BOP$
- ⑤ (가) $\overline{PA} = \overline{PB}$ (나) RHS (다) $\angle AOP = \angle BOP$

25. 그림과 같은 직각삼각형 ABC에서 $\angle B$ 의 외각의 이등분선과 $\angle C$ 의 외각의 이등분선의 교점을 P라 할 때, $\angle BPC$ 의 크기는?

- ① 40°
- 242°
- 343°
- 4 44 $^{\circ}$

정답 및 해설

1) [정답] ④

[해설] \square 안에 알맞은 것은 \bigcirc $\triangle ABD = \triangle ACD(ASA$ 합동)이다.

2) [정답] ②

[해설] A. 모든 삼각형은 두 내각의 크기의 합이 다른 각의 외각의 크기와 같다.

B. 꼭지각의 이등분선은 밑변을 수직이등분한다.

E. 둔각삼각형은 이등변삼각형이 될 수 있다.

3) [정답] ③

[해설] 이등변삼각형의 꼭지각의 이등분선이 밑변을 수직이

등분하므로 \overline{BD} = \overline{CD}

 $\angle PDB = \angle PDC = 90$ 이고 \overline{PD} 가 공통이므로

 $\triangle PDB \equiv \triangle PDC(SAS$ 합동) $\rightarrow \overline{BP} = \overline{CP}$,

 $\angle PBD = \angle PCD$

또한 $\angle BPD = \angle CPD$ 이므로 \overline{PD} 는 $\angle BPC$ 의 이동분선이다.

따라서 옳은 것은 4개이다.

4) [정답] ②

[해설] $\overline{AB} = \overline{AC}$ 이므로 $\angle ABC = \angle C = 58^{\circ}$

$$\angle DBC = \frac{1}{2} \angle ABC = 29^{\circ}$$

따라서 $\triangle DBC$ 에서 $\angle x = 29^{\circ} + 58^{\circ} = 87^{\circ}$

5) [정답] ⑤

[해설] $\angle A = x$ 라 하면

 $\triangle AEF$ 에서 $\angle AEF = \angle EAF = x$

 $\angle \mathit{DFE}$ 는 외각이므로 $\angle \mathit{DFE} = 2x$

 $\triangle DEF$ 에서 $\angle DFE = \angle FDE = 2x$

 $\angle BED$ 는 $\triangle AED$ 의 외각이므로

 $\angle BED = x + 2x = 3x$

 $\triangle BDE$ 에서 $\angle BED = \angle EBD = 3x$

 $\angle BDC$ 는 $\triangle ABD$ 의 외각이므로

 $\angle BDC = x + 3x = 4x$

 $\triangle BCD$ 에서 $\angle BCD = \angle BDC = 4x$

이때, $\overline{AB} = \overline{AC}$ 이므로 $\angle ABC = \angle BCD = 4x$

 $\triangle ABC$ 의 세 내각의 크기의 합이 $180\,^{\circ}$ 이므로 $x+4x+4x=180\,^{\circ}$, $9x=180\,$ $\therefore x=20\,^{\circ}$

 $\therefore \angle C = 4x = 4 \times 20^{\circ} = 80^{\circ}$

6) [정답] ④

[해설] $\triangle ABE$ 에서 $\overline{BA} = \overline{BE}$ 이므로

$$\angle BEA = \frac{180\degree - 34\degree}{2} = 73\degree$$

 $\therefore \angle AEC = 180^{\circ} - 73^{\circ} = 107^{\circ}$

 $\angle ADC = 180^{\circ} - 108^{\circ} = 72^{\circ}$

AC = DC이므로

 $\angle ACB = 180\degree - 2 \times 72\degree = 36\degree$

 $\therefore \angle AEC + \angle ACB = 107^{\circ} + 36^{\circ} = 143^{\circ}$

7) [정답] ⑤

[해설] $\angle B = \angle C = \frac{1}{2} \times (180^{\circ} - 84^{\circ}) = 48^{\circ}$ $\angle BDC = 180^{\circ} - (\angle DBC + \angle DCB)$ $= 180^{\circ} - 48^{\circ} = 132^{\circ}$

8) [정답] ①

[해설] \overline{AC} = \overline{DC} 이므로 ΔCAD 는 이등변삼각형

이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분하므로 $\angle CEB = 90^\circ$

또한 $\angle \mathit{BCE} = 60\,^{\circ}$ 이므로 $\Delta \mathit{EBC}$ 에서

 $\angle B = 180^{\circ} - (90^{\circ} + 60^{\circ}) = 30^{\circ}$

9) [정답] ③

[해설] $\triangle ABD$ 와 $\triangle ACD$ 에서

 $\angle B = \angle C \quad \cdots \bigcirc$

 \overline{AD} 는 공통 \cdots \odot

 $\angle BAD = \angle CAD$ 이므로

 $\angle ADB = \angle ADC \quad \cdots \bigcirc$

①, ②, ◎에 의해

 $\triangle ABD \equiv \triangle ACD (ASA$ 합동)

따라서 $\overline{AB} = \overline{AC}$ 이다.

10) [정답] ③

[해설] $\angle DAC$ 는 $\triangle ABC$ 의 외각이므로

 $\angle DAC = \angle ABC + \angle ACB$

 $70^{\circ} = 35^{\circ} + \angle ACB$ $\therefore \angle ACB = 35^{\circ}$

 $\stackrel{\triangle}{=}$, $\overline{AB} = \overline{AC} \cdots \bigcirc$

또, $\angle ADC = 180 \degree - 110 \degree = 70 \degree$ 이므로

 $\angle DAC = \angle ADC$

 $\therefore \overline{AC} = \overline{CD} \quad \cdots \bigcirc$

⊙, ⓒ에 의해

 $x = \overline{AC} = \overline{AB} = 4 \text{ (cm)}$

11) [정답] ⑤

[해설] ③ $\overline{AM} = \overline{BM}$

 \bigcirc $\overline{AO} = \overline{BO}$

12) [정답] ③

[해설] $\angle A = x$ °라 하면

 $\angle DBE = \angle A = x(접은각)이므로$

 $\angle ABC = \angle ACB = x + 30^{\circ}$

 ΔABC 의 세 내각의 합은 $180\,^{\circ}$ 이므로

 $x + (x + 30^{\circ}) + (x + 30^{\circ}) = 180^{\circ}$

 $3x = 120^{\circ}$ $\therefore x = 40^{\circ}$

13) [정답] ①

[해설] $\angle D'AF = 90$ ° 이므로 $\angle EAF = 55$ °

 $\angle AFB = \angle EAF = 55$ ° (엇각)

 $\angle AFE = \angle EFC$ (접은각)

 $\therefore \angle AFE = \frac{180° - 55°}{2} = 62.5°$

 $\stackrel{\triangle}{=}$, $\angle BFE = \angle AFB + \angle AFE$ = 55 $^{\circ}$ +62.5 $^{\circ}$ = 117.5 $^{\circ}$

14) [정답] ⑤

[해설] $\triangle ABC$ 와 $\triangle EDF$ 는 직각삼각형이고

 $\overline{AB} = \overline{ED}, \overline{BC} = \overline{DF}$ 이므로

 $\triangle ABC \equiv \triangle EDF(::RHS$ 합동)

따라서 $\angle B = \angle D = 53^{\circ}, \angle C = \angle F = 37^{\circ}$

15) [정답] ②

[해설] ② ΔJLK 와 ΔDFE 에서

 $\overline{KL} = \overline{EF}$, $\angle KJL = \angle EDF = 90^{\circ}$,

 $\angle \mathit{JKL} = \angle \mathit{DEF} = 55$ ° 이므로

 $\Delta JLK \equiv \Delta DFE(RHA$ 합동)

16) [정답] ②, ⑤

[해설] ② RHA합동 ⑤ SAS합동

17) [정답] ③

[해설] $\triangle ABC$ 와 $\triangle CDE$ 에서

 $\overline{AC} = \overline{CE}$. $\angle ABC = \angle CDE = 90^{\circ}$

 $\angle BAC + \angle ACB = 90^{\circ}$

 $\angle ACB + \angle DCE = 90^{\circ}$

 $\therefore \angle BAC = \angle DCE$

따라서 $\triangle ABC \equiv \triangle CDE(RHA$ 합동)이다.

즉 $\overline{AB} = \overline{CD} = 4cm$, $\overline{CB} = \overline{DE} = 6cm$ 이므로

사각형 ABDE의 넓이는

$$\frac{1}{2} \times (4+6) \times 10 = 50cm^2$$
이고

$$\triangle ABC = \triangle CDE = \frac{1}{2} \times 4 \times 6 = 12cm^2$$
이므로

 $\triangle ACE = 50 - 2 \times 12 = 26cm^2$ 이다.

18) [정답] ③

[해설] $\triangle ACE$ 와 $\triangle BAD$ 에서

 $\overline{AC} = \overline{BA} \quad \cdots \bigcirc$

 $\angle AEC = \angle BDA = 90^{\circ} \cdots \bigcirc$

 $\angle ECA + \angle CAE = 90^{\circ}$,

 \angle CAE+ \angle DAB=90 ° 이므로

 $\angle ECA = \angle DAB \cdots \bigcirc$

⊙, ⊙, ©에 의해

 $\triangle ACE = \triangle BAD(RHA$ 합동)

 $\overline{AE} = \overline{BD} = 10 \text{ (cm)}, \overline{CE} = \overline{AD} = 4 \text{ (cm)}$

 $\therefore \overline{DE} = 10 - 4 = 6 \text{ (cm)}$

19) [정답] ④

[해설] $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

 $\angle ABC = \angle ACB = \frac{1}{2} \times (180^{\circ} - 38^{\circ}) = 71^{\circ}$

 $\triangle EOB$ 와 $\triangle DOC$ 에서 $\angle BEO = \angle CDO = 90^{\circ}$,

 $\angle EOB = \angle DOC$ (맞꼭지각)

 $\therefore \angle EBO = \angle DCO$

 $\triangle CEB$ 와 $\triangle BDC$ 에서 \overline{BC} 는 공통,

 $\angle DBC = \angle EBC - \angle EBO$

 $= \angle DCB - \angle DCO$

= ∠*ECB* 이므로

 $\triangle CEB = \triangle BDC(RHA$ 합동)

 $\triangle BDC$ 에서 $\angle DBC = 90\,^{\circ} - 71\,^{\circ} = 19\,^{\circ}$

 $\therefore \angle DBC = \angle ECB = 19^{\circ}$

 $\therefore \angle COD = \angle DBC + \angle ECB = 38^{\circ}$

20) [정답] ③

[해설] $\triangle ABD$ 와 $\triangle AED$ 에서 \overline{AD} 는 공통,

 $\angle BAD = \angle EAD$, $\angle ABD = \angle AED = 90$ ° 이므로

 $\triangle ABD \equiv \triangle AED(RHA$ 합동)이다.

① $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 직각이등변삼각형이므로

 \angle C = 45 °, 따라서 \triangle EDC는 \overline{ED} = \overline{EC} 인 직각이등 변삼각형이다.

② $\overline{BD} = \overline{DE} = \overline{EC}$

④ $\triangle ABD \equiv \triangle AED$ 이므로 $\angle ADB = \angle ADE$

21) [정답] ④

[해설] $\triangle ADE$ 와 $\triangle ABE$ 에서

 $\angle ABE = \angle ADE = 90^{\circ}$, $\overline{AE} = \overline{BE} = \overline{DE} = \overline{DE}$

므로 $\triangle ADE = \triangle ABE(RHS$ 합동)

 $\therefore \angle BAE = \angle DAE$

 $\triangle ABE$ 에서 $\angle BAE = 90^{\circ} - 70^{\circ} = 20^{\circ}$

 $\therefore \angle A = 2 \angle BAE = 40^{\circ}$

따라서 $\triangle ABC$ 에서 $\angle C = 90^{\circ} - 40^{\circ} = 50^{\circ}$ 이다.

22) [정답] ②

[해설] $\angle ECD = x$ °라 하자.

 ΔEBD 와 ΔECD 에서

 $\angle \textit{EDB} = \angle \textit{EDC} = 90$ °, $\overline{\textit{BD}} = \overline{\textit{CD}}$, $\overline{\textit{ED}}$ 는 공통이

므로 $\triangle EBD \equiv \triangle ECD(::SAS$ 합동)

따라서 $\angle EBD = \angle ECD = x$ °

 ΔEBC 의 외각의 성질에 의해 $\angle BEA = 2x$ $^{\circ}$

 ΔBEA 와 ΔBED 는 직각삼각형이고

 $\overline{BA} = \overline{BD}, \overline{BE}$ 는 공통이므로

 $\triangle BEA \equiv \triangle BED(\because RHS$ 합동)

따라서 $\angle EBA = \angle EBD = x$

 ΔBEA 에서 세 내각의 크기의 합은 $180\,^{\circ}$ 이므로

 $x^{\circ} + 2x^{\circ} + 90^{\circ} = 180^{\circ}, x^{\circ} = 30^{\circ}$

 $\therefore \angle ECD = 30^{\circ}$

23) [정답] ②

[해설] $\triangle BMD$ 와 $\triangle AMD$ 에서

 $\overline{AM} = \overline{BM}$, \overline{MD} 는 공통.

∠ BMD= ∠ AMD= 90°이므로

 $\triangle BMD \equiv \triangle AMD(SAS$ 합동)이다.

또 $\triangle AMD$ 와 $\triangle ACD$ 에서

 \overline{AD} 는 공통, $\overline{AM} = \overline{AC}$,

 $\angle AMD = \angle ACD = 90$ 이므로

 $\triangle AMD = \triangle ACD(RHS$ 합동)이다.

즉 $\triangle AMD = \triangle BMD = \triangle ACD$ 이다.

② $\angle DBM = \angle DAM = \angle DAC = \angle a$ 라 하면

 $\triangle ABC$ 가 직각삼각형이므로

 $\angle a + 2 \angle a = 90$ °, $3 \angle a = 90$ ° $\therefore \angle a = 30$ °

따라서 ∠*BDM*=90°-30°=60°이다.

24) [정답] ①

[해설] (가) ∠AOP = ∠BOP (나) RHA

(다) $\overline{PA} = \overline{PB}$

25) [정답] ⑤

[해설] 외각의 크기의 합은 $360\degree$ 이다.

$$\angle CBQ + \angle BCR + 90^{\circ} = 360^{\circ}$$

$$\angle$$
 CBQ+ \angle BCR = 270 $^{\circ}$

$$\angle CBP + \angle BCP = \frac{1}{2} \times 270^{\circ} = 135^{\circ}$$

따라서 $\triangle BPC$ 에서

$$\angle BPC = 180 \degree - (\angle CBP + \angle BCP)$$

= 180 $\degree - 135 \degree = 45 \degree$

