EE5323 HOMEWORK #4

KARTHESHWAR SHANMUGA SUNDARAM 5569005

Question I

The figure on the right shows the three stacked nmos (9 fin for each nmos)

The Va, Vb are swept from 0 to 0.7V in steps of 0.1V

Vd=0.7V, Vs=0V

Case I: Inputs A=B=C=0.7V Load Line Analysis

The figure on the right shows the 3D plot of current vs Va, Vb which is plotted using Matlab

Input A=B=C=0.7V, RVT,7nm,110C

Case I: Inputs A=B=C=0.7V Load Line Analysis (cont.)

The figure on the right shows the intersection point of Va, Vb

The point at which they intersect is Va=0.2V, Vb=0.1V, so this is the bias volatge.

The bias current is 4.3microA

Case I: Inputs A=B=C=0V Load Line Analysis

The figure on the right shows the 3D plot of current vs Va, Vb

Input A=B=C=0V, RVT, 7nm, 110C

Case I: Inputs A=B=C=0V Load Line Analysis (cont.)

The figure on the right shows the intersection point of Va, Vb

The point at which they intersect is Va=0.1V, Vb=0.05V and this is the bias voltage

The bias current is 0.35nA

Matlab code for plotting the 3D load line analysis and intersection point

Matlab was used to plot the 3D graphs and surf is used to plot data, contour is used to find intersection

Code is attached in the zip file

Attached simulation files and netlist

QUESTION 2: Hold time 0 to l

The figure on the right shows the hold time simulation.

If the data changes before 5ps after clock edge then transition can't be captured

Therefore the data should be at-least kept in stable state approx 5ps after clock edge

Hold time I to 0

The figure in right shows the simulation of hold time for the transition I to 0.

The hold time in case of I to 0 is found to be before the clock edge.

Setup time 0 to 1

The figure on the right shows the transition from 0 to 1 for a flip flop

It can be seen that if the input arrives after 95ps then the transition is not captured.

Therefore setup time is approx 100(clock edge) - 95ps = 5ps

Setup I to 0

The figure on the right shows the transition from I to 0 for a flip flop

It can be seen that if the input arrives after a certain point then the transition cant be captured.

Therefore the input should arrive before the setup time

Tdc vs Tcq

5% of the steady state values can be the allowed values

The worst case setup time measured is 9.5ps

The worst case hold time measured is 5.5ps

The data should be arriving at the flip flop at these intervals before the clock edge

ww.srfconsulting.com roject Name computation for	Project No of of Date
Juestion 3) a) flip flop maa	Tc > tcq + tpd + t retup + t skew winum propogation delay tpd = \$ Tc - tcq - tstup - t skew =200-5-10-10
	tpd = 175 ps
b) two phase Question 4)	ed toursparent lateh tc=2tdq+tpd,+tpd2 tpd=tpd1+tpd2=tc-2tdq =200-10=190ps tpd=190ps
a) flip flop	tcq+tpd> tshow+ thold tpd> thold+tshow-tcq tpd > 5+10-5 tpd > 10 ps > min prog dalay-10ps

	Project No.	
SRE	Sheet	Deta
www.srfconsulting.com	Ву	
Project Name Computation for	SRF	Quality Management Check Date
(b) Two Wased Tour	sparent latch with 50%	Juty wile
	tpd+tcq) > I hold + L,	skee
	ted > theld + t	skew-Icq
	tpl ≥ 10 ps ≥n	rin prog delay=10ps
(c) too phased	transparent latch with 10	nin progradely=10ps
(0.00001)	tpd > thold + tskea - ti	co-transport
	tod > 5+10-5-10	
	tpd>0ps ≥min	prog delay - 0 ps