# Recursion vs Iteration

# Reversing a String

How about reversing a string? Of course, we can just use string slicing

```
>>> s = 'abcde12345'
>>> s[::-1]
'54321edcba'
>>>
```

How about we write a function for it?

```
>>> reverseStringI(s)
'54321edcba'
>>>
```

```
def reverseStringI(s):
    output = ''
    l = len(s)
    for i in range(l):
        output += s[l-i-1]
    return output

>>> reverseStringI('abcde')
'edcba'
```

| i | l-i-1 |
|---|-------|
| 0 | 4     |
| 1 | 3     |
| 2 | 2     |
| 3 | 1     |
| 4 | 0     |
|   |       |
|   |       |

```
def reverseStringI(s):
    output = ''
    l = len(s)
    for i in range(l):
        output += s[l-i-1]
    return output

>>> reverseStringI('abcde')
'edcba'
```

| i | l-i-1 | s[1-i-1] |
|---|-------|----------|
| 0 | 4     | е        |
| 1 | 3     | d        |
| 2 | 2     | С        |
| 3 | 1     | b        |
| 4 | 0     | а        |
|   |       |          |
|   |       |          |

```
def reverseStringI(s):
    output = ''
    l = len(s)
    for i in range(l):
        output += s[l-i-1]
    return output

>>> reverseStringI('abcde')
'edcba'
```

| i | l-i-1 | s[l-i-1] | output |
|---|-------|----------|--------|
| 0 | 4     | е        | е      |
| 1 | 3     | d        | ed     |
| 2 | 2     | С        | edc    |
| 3 | 1     | b        | edcb   |
| 4 | 0     | a        | edcba  |
|   |       |          |        |
|   |       |          |        |

```
def reverseStringI(s):
    output = ''
    for c in s:
        output = c + output
    return output

>>> reverseStringI('abcde')
'edcba'
```

| С | output             |
|---|--------------------|
| a | a                  |
| b | ba                 |
| С | cba                |
| d | <mark>d</mark> cba |
| е | <u>e</u> dcba      |

# Reversing String (Recursive Version)

```
def reverseStringR(s):
   if not s:
       return ''
   return reverseStringR(s[1:])+s[0]
reverseStringR('abcde')
reverseStringR('bcde')+'a'
• reverseStringR('cde')+'b'+'a'
reverseStringR('de')+'c'+'b'+'a'
• reverseStringR('e')+'d'+'c'+'b'+'a'
• reverseStringR('')+'e'+'d'+'c'+'b'+'a'
• (')+'e'+'d'+'c'+'b'+'a'
'edcba'
```

# **Taylor Series**

# Taylor Series

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \qquad \text{for all } x$$

$$n = 0 \qquad n = 1 \qquad n = 2$$

- We do not need the infinite precision
- We may just sum up to k terms

$$\sin x = \sum_{n=0}^{\mathsf{k}} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 for all  $x$ 

## Computing sine by Iteration

$$\sin x = \sum_{n=0}^{k} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 for all  $x$ 

#### Using iteration

### Computing sine by Recursion

Sum up to n = 2

$$\sin x = \sum_{n=0}^{\mathsf{k}} rac{(-1)^n}{(2n+1)!} x^{2n+1}$$



Sum up to n = 1

• In general, if we want to sum up to the k terms

$$\sin x = \sum_{n=0}^{k} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$



## Computing sine by Recursion

Assuming that if the function sinR(x,k) sums until n = k, then

$$sinR(x,k) = sinR(x,k-1) + the kth term$$

• In general, if we want to sum up to the k terms

$$\sin x = \sum_{n=0}^{\mathsf{k}} rac{(-1)^n}{(2n+1)!} x^{2n+1}$$



### Computing sine by Recursion

• Assuming that if the function sinR(x,k) sums until n = k, then sinR(x,k) = sinR(x,k-1) + the kth term

```
def sinR(x,k):
    if k < 0:
        return 0
    return sinR(x,k-1) + ((-1)**k / fact(2*k+1)) * x**(2*k+1)

>>> sinR(PI/6,6)
0.5000000000592083
>>> from math import sin
>>> sin(PI/6)
0.5000000000592083
```

# More Taylor Series

#### Recursion Common Patterns

```
def reverseStringR(s):
    if not s:
        return ''
    return reverseStringR(s[1:])+s[0]
def sinR(x,k):
    if k < 0:
        return 0
    return sinR(x,k-1) + ((-1)**k / fact(2*k+1)) * x**(2*k+1)
    Base cases
                      Recursion step to reduce the problem one-by-one
```

### Iteration Common Patterns

```
def reverseStringI(s):
    output = ''
    l = len(s)
    for i in range(l):
        output += s[1-i-1]
    return output
def sinI(x,k):
    result = 0
    for n in range (0, k):
        result += ((-1)**n / fact(2*n+1)) * x**(2*n+1)
    return result
                                    Accumulate element one-by-one
```

Initial the final answer to "nothing" at the beginning. Accumulate and return the final answer

# Iteration/Recursion Conversion

```
def sinR(x,k):
        if k < 0:
            return 0
        return sinR(x,k-1) + ((-1)**k / fact(2*k+1)) * x**(2*k+1)
                       The answer for previous k - 1 terms
Base case
                                                                       The kth term
   def sinI(x,k):
        result = 0
        for n in range (0, k):
             result += ((-1)**n / fact(2*n+1)) * x**(2*n+1)
        return result
```

# Iteration/Recursion Conversion

```
def reverseStringR(s):
            if not s:
                return ''
            return reverseStringR(s[1:])+s[0]
             The answer for previous k - 1 terms
Base case
                                                                        The kth term
           reverseStringI(s):
           output = ''
           l = len(s)
           for i in range(1):
                output += s[l-i-1]
           return output
```

### "Homework"

$$rcsin x = \sum_{n=0}^{\infty} rac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}$$

- The answer for all k-1 terms?
- Base case?
- Kth term?

$$=x+rac{x^3}{6}+rac{3x^5}{40}+\cdots \qquad \qquad ext{for } |x|\leq 1$$

# Another Example

### Recursion vs Iteration

#### SumDigits

- Given a positive number n, the sum of all digits is obtained by adding the digit one-by-one
  - For example, the sum of 52634 = 5 + 2 + 6 + 3 + 4 = 20
- Write a function sum(n) to compute the sum of all the digits in n
- Factorial
  - Factorial is defined (recursively) as n! = n \* (n-1)! such that 0! = 1
  - Write a function fact(n) to compute the value of n!

Can you do it in both recursion and iteration?

## SumDigits

```
Iteration
def sum(n):
  res = 0
  while n > 0:
    res = res + n%10
    n = n//10
  return res
base/initial value
computation
continuation/next value
```

```
Recursion
def sum(n):
   if n == 0:
     return 0
   else:
     return n%10 + sum(n//10)
```

```
stop/base case (they are related, how?)
temporary result variables
not needed in recursion (why?)
```

### Factorial

**Iteration** 

```
def fact(n):
  res = 1
  while n > 0:
    res = res * n
    n = n-1
  return res
base/initial value
computation
continuation/next value
```

```
Recursion
def fact(n):
   if n == 0:
     return 1
   else:
     return n * fact(n-1)
```

```
stop/base case (they are related, how?)
temporary result variables
not needed in recursion (why?)
```

### "Homework"

- How to re-write your code with both iterative/recursion version mentioned in this course before?
  - burgerPrice()
  - checkAllAlpha()
  - Etc.
- The answer for all k-1 terms?
- Base case?
- Kth term?

# Code Refactoring



# Code Refactoring

 Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior.

