Problem Set #1

5 questions

1 point	1. 3-way-Merge Sort : Suppose that instead of dividing in half at each step of Merge Sort, you divide into thirds, sort each third, and finally combine all of them using a three-way merge subroutine. What is the overall asymptotic running time of this algorithm? (Hint: Note that the merge step can still be implemented in $O(n)$ time.) n $n(\log(n))^2$
	$\bigcap n \log(n)$
	$\bigcap n^2 \log(n)$
1 point	2. You are given functions f and g such that $f(n)=O(g(n))$. Is $f(n)*log_2(f(n)^c)=O(g(n)*log_2(g(n)))$? (Here c is some positive constant.) You should assume that f and g are nondecreasing and always bigger than 1.
	False
	igcup Sometimes yes, sometimes no, depending on the functions f and g
	True
	igcirc Sometimes yes, sometimes no, depending on the constant c
1 point	3. Assume again two (positive) nondecreasing functions f and g such that $f(n)=O(g(n))$. I $2^{f(n)}=O(2^{g(n)})$? (Multiple answers may be correct, you should check all of those that apply.)
	Never
	$oxed{}$ Yes if $f(n) \leq g(n)$ for all sufficiently large n
	Always
	Sometimes
1 point	4. k-way-Merge Sort. Suppose you are given k sorted arrays, each with n elements, and you want to combine them into a single array of kn elements. Consider the following approach. Using the merge subroutine taught in lecture, you merge the first 2 arrays, then merge the 3^{rd} given array with this merged version of the first two arrays, then merge the 4^{th} given array with the merged version of the first three arrays, and so on until you merge in the fina k^{th}) input array. What is the running time taken by this successive merging algorithm, as a function of k and n ? (Optional: can you think of a faster way to do the k-way merge proceder?)
	$\bigcirc heta(nk^2)$
	$\bigcirc heta(n\log(k))$
	$\bigcirc heta(nk)$
	$\bigcirc heta(n^2k)$
1	${\sf 5.} {\sf Arrange the following functions in increasing order of growth rate (with $g(n)$ following $f(n)$)}$
point	in your list if and only if $f(n) = O(g(n))$). a) 2^{2^n}
	b) 2^{n^2}
	$c)n^2\log(n)$
	d)n
	$e)n^{2^n}$

abcde in the space provided without any spaces before / after / in between the string.	
You can assume that all logarithms are base 2 (though it actually doesn't matter).	
WARNING: this question has multiple versions, you might see different ones on different attempts!	
Preview	
Enter math expression here	
4 questions unanswered Submit Quiz	
Ø Ø №	