114th Roll Call Data

```
rm(list = ls())
sapply(c("knitr", "buds", "coda", "dplyr", "ggplot2", "MCMCglmm",
         "rstan", "viridis"), require, character.only = TRUE)
## Loading required package: knitr
## Loading required package: buds
## Loading required package: Rcpp
## Loading required package: coda
## Loading required package: dplyr
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
## Loading required package: ggplot2
## Loading required package: MCMCglmm
## Loading required package: Matrix
## Loading required package: ape
## Loading required package: rstan
## Loading required package: StanHeaders
## rstan (Version 2.15.1, packaged: 2017-04-19 05:03:57 UTC, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## rstan_options(auto_write = TRUE)
## options(mc.cores = parallel::detectCores())
##
## Attaching package: 'rstan'
## The following object is masked from 'package:coda':
##
##
       traceplot
## Loading required package: viridis
## Loading required package: viridisLite
##
      knitr
                buds
                         coda
                                 dplyr ggplot2 MCMCglmm
                                                             rstan viridis
##
       TRUE
                TRUE
                         TRUE
                                  TRUE
                                            TRUE
                                                              TRUE
                                                                       TRUE
                                                     TRUE
# Save generated figures
opts_chunk$set(fig.path = paste0("./roll_call/"), dev='png')
# Functions
```

```
source("../R/distcomps.R")
source("../R/get_data_to_plot.R")
source("../R/plot_utils.R")
# Options
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
theme_set(theme_classic())
theme_update(text=element_text(size=20))
# Parameters
min row sum <- 100
min_row_prevalence <- 5</pre>
B <- 100
min_sigma <- 0.05
hparams <- list(
  "gamma_tau"= 2.5,
 "gamma_epsilon" = 2.5,
  "gamma_bias" = 2.5,
 "gamma_rho" = 2.5,
  "min_sigma" = min_sigma
nfeatures <- 500
K <- 10
```

Roll Call

```
# Load data files
countTable_default_file <- "../data/114_US_Senate_binVotes.csv"</pre>
sampleData_default_file <- "../data/114_US_Senate_legisData.csv"</pre>
sampleData <- read.csv(sampleData default file, row.names = 1)</pre>
covariate_name <- "party"</pre>
sample_covariate <- sampleData[, covariate_name]</pre>
X <- read.csv(countTable_default_file, row.names = 1)</pre>
DO <- generic_dist(X, method = "exp manhattan", log_trans = FALSE)
D <- DO
set.seed(1)
buds_seed <- sample.int(.Machine$integer.max, 1)</pre>
budsFit <- buds::fit_buds(D, K = K, method = "vb", hyperparams = hparams,</pre>
                          init_from = "random", seed = buds_seed,
                         tol_rel_obj = 0.005)
## -----
## EXPERIMENTAL ALGORITHM:
    This procedure has not been thoroughly tested and may be unstable
   or buggy. The interface is subject to change.
##
##
```

```
##
## Gradient evaluation took 0.002988 seconds
## 1000 transitions using 10 leapfrog steps per transition would take 29.88 seconds.
## Adjust your expectations accordingly!
##
## Begin eta adaptation.
## Iteration: 1 / 250 [ 0%] (Adaptation)
## Iteration: 50 / 250 [ 20%] (Adaptation)
## Iteration: 100 / 250 [ 40%] (Adaptation)
## Success! Found best value [eta = 100] earlier than expected.
## Begin stochastic gradient ascent.
          ELBO delta_ELBO_mean delta_ELBO_med notes
## -----
## EXPERIMENTAL ALGORITHM:
##
    This procedure has not been thoroughly tested and may be unstable
   or buggy. The interface is subject to change.
## -----
##
##
##
## Gradient evaluation took 0.003331 seconds
## 1000 transitions using 10 leapfrog steps per transition would take 33.31 seconds.
## Adjust your expectations accordingly!
##
## Begin eta adaptation.
## Iteration:
             1 / 250 [ 0%] (Adaptation)
## Iteration: 50 / 250 [ 20%] (Adaptation)
## Iteration: 100 / 250 [ 40%] (Adaptation)
## Iteration: 150 / 250 [ 60%] (Adaptation)
## Iteration: 200 / 250 [ 80%] (Adaptation)
## Success! Found best value [eta = 1] earlier than expected.
## Begin stochastic gradient ascent.
##
    iter ELBO delta ELBO mean delta ELBO med
                                                      notes
##
     100
            -2e+04
                              1.000
                                              1.000
##
     200
            -6e+02
                             16.736
                                              32.473
     300
##
            6e+03
                            11.520
                                              1.086
##
     400
             8e+03
                             8.696
                                              1.086
##
     500
             8e+03
                              6.961
                                              1.000
     600
##
             9e+03
                              5.809
                                              1.000
##
     700
             9e+03
                              4.979
                                              0.224
##
     800
                                              0.224
             9e+03
                               4.357
##
     900
             9e+03
                               3.874
                                              0.045
    1000
##
             9e+03
                               3.487
                                              0.045
                                                      MAY BE DIVERGING... INSPECT ELBO
##
    1100
            9e+03
                               3.387
                                              0.023
##
    1200
             9e+03
                               0.140
                                              0.006
                                               0.005
##
    1300
             9e+03
                               0.031
##
    1400
              9e+03
                               0.009
                                               0.004
                                                      MEDIAN ELBO CONVERGED
##
## Drawing a sample of size 1000 from the approximate posterior...
## COMPLETED.
```

```
budsParams <- (rstan::extract(budsFit$fit_buds))</pre>
tau_df <- get_tau_df(budsParams, prob = 0.95)</pre>
party_cols <- c("D" = "#1f78b4", "R" = "#e31a1c", "Indep" = "#ff7f00")</pre>
plt <- plot_buds_1D(tau_df, covariate = NULL,</pre>
                    color = sample_covariate,
                    color_label = covariate_name,
                    idxBigger = NULL)
plt + geom_errorbar(aes(ymin = tau_lower, ymax = tau_upper), lwd = 0.9, width = 2) +
  geom_point(aes(fill = color), color = "white", pch = 21, size = 3) +
  scale_color_manual(name = "Party", values = party_cols) +
  scale_fill_manual(name = "Party", values = party_cols)
## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.
## Scale for 'fill' is already present. Adding another scale for 'fill',
## which will replace the existing scale.
    1.00
   0.75
                                                                            Party
                                                                            --- D
ਲ 0.50
                                                                            Indep
   0.25
   0.00
                                                                   100
                         25
                                       50
                                                     75
                                 rank(tau)
sampleData$Legis <- rownames(sampleData)</pre>
sampleData$Legis <- factor(sampleData$Legis,</pre>
                          levels = sampleData$Legis[order(-tau_df$tau)])
(ptau1 <- tau_df %>%
    ggplot(aes(x = sampleData$Legis, y = tau, col = sampleData$party)) +
    geom_errorbar(aes(ymin = tau_lower, ymax = tau_upper), width = 1, lwd = 0.9) +
    geom_point(pch = 21, aes(fill = sampleData$party), color = "white", size = 3) +
    scale_fill_manual(name = "Party", values = party_cols) +
    scale_color_manual(name = "Party", values = party_cols) +
```


Bootstrap MDS ordering

```
# Plot Ord
plot_ord <- function(ord_res, ord_eig = NULL, size = 1,</pre>
                       colData = NULL, colLabel = "Variable",
                       title = "Ordination plot", prin_curve = FALSE,
                       edgesCol = "grey57", pathCol = "#2171B5",
                       lwd = 1.5, ...) {
  if (!is.null(ord_eig)) {
    ord_{eig} \leftarrow 100 * ord_{eig} / sum(ord_{eig})
    ord_eig <- signif(ord_eig, digits = 3)</pre>
  X <- data.frame(ord_res)</pre>
  colnames(X) <- paste0("X", 1:ncol(X))</pre>
  p <- ggplot(X, aes(X1, X2)) + ggtitle(title)</pre>
  if(prin_curve) {
    prin_curve <- princurve::principal.curve(as.matrix(X), plot = FALSE, ...)</pre>
    fittedLine <- data.frame(prin_curve$s[prin_curve$tag, ])</pre>
    p <- p + geom_path(data = fittedLine, col = pathCol, lwd = lwd) +</pre>
      geom_segment(aes(xend = prin_curve$s[, 1], yend = prin_curve$s[, 2]),
                    size = 0.5, col = edgesCol)
```

```
if (!is.null(colData)) {
    p <- p + geom_point(aes(color = colData), size = size) +</pre>
      scale_color_viridis(name = colLabel, discrete = !is.numeric(colData))
 } else {
    p <- p + geom_point(size = size)</pre>
  if (!is.null(ord_eig)){
    eig_ratio = ord_eig[2]/ord_eig[1]
    p <- p + xlab(paste0("PC1 [", ord_eig[1], "%]")) +</pre>
      ylab(paste0("PC2 [", ord_eig[2], "%]")) +
      coord_fixed(ratio = max(0.5, eig_ratio))
  return(list(plot = p, fit.prin_curve = prin_curve))
cmdsRes <- cmdscale(D, k = 10, eig = TRUE)</pre>
ord eig <- signif(cmdsRes$eig/sum(cmdsRes$eig) *100, digits = 3)
ordRes <- plot_ord(data.frame(cmdsRes$points), ord_eig,</pre>
         colData = sampleData$party, prin_curve = T)
ordRes$plot + scale_color_manual(name = "Party", values = party_cols)
```

Ordination plot 97.5 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.3 PC1 [81.5%] Party Indep R

```
tau0 <- ordRes$fit.prin_curve$lambda
tau0 <- (tau0 - min(tau0))/diff(range(tau0))

set.seed(123)
B <- 500
nSamples <- floor(0.8*ncol(D))

tau.boots <- matrix(NA, nrow = B, ncol = ncol(D))

for(i in 1:B) {
   if (i %% 50 == 0) print(paste("Iteration:", i))
   idx <- sample(1:ncol(D), nSamples)
   icmds <- cmdscale(D[idx, idx], k = 10, eig = TRUE)
   prin_curve <- princurve::principal.curve(icmds$points, plot = FALSE)
   itau <- prin_curve$lambda
   itau <- (itau - min(itau))/diff(range(itau))
   R1 <- cor(itau, tau0[idx], method = "spearman")
   if (R1 < 0) itau <- 1 - itau</pre>
```

```
tau.boots[i, idx] <- itau
}
## [1] "Iteration: 50"
## [1] "Iteration: 100"
## [1] "Iteration: 150"
## [1] "Iteration: 200"
## [1] "Iteration: 250"
## [1] "Iteration: 300"
## [1] "Iteration: 350"
## [1] "Iteration: 400"
## [1] "Iteration: 450"
## [1] "Iteration: 500"
cmds_df <- data.frame(Senator = rownames(sampleData),</pre>
                       tau = colMeans(tau.boots, na.rm = TRUE))
sd_tau <- apply(tau.boots, 2, sd, na.rm = TRUE)</pre>
cmds_df$tau_upper <- cmds_df$tau + sd_tau</pre>
cmds_df$tau_lower <- cmds_df$tau - sd_tau</pre>
cmds_legis <- factor(sampleData$Legis,</pre>
                     levels = sampleData$Legis[order(-cmds_df$tau)])
(ptau_cmds <- cmds_df %>%
    ggplot(aes(x = cmds_legis, y = tau, col = sampleData$party)) +
    geom_errorbar(aes(ymin = tau_lower, ymax = tau_upper), width = 1, lwd = 0.9) +
    geom_point(pch = 21, aes(fill = sampleData$party), color = "white", size = 3) +
    scale_fill_manual(name = "Party", values = party_cols) +
    scale color manual(name = "Party", values = party cols) +
    ylab("CMDS tau") + xlab("Senator") +
    theme(text = element_text(size = 20), legend.position = c(0.9, 0.8),
          axis.text.x = element_text(angle = 90, size = 8, face = "bold")))
```


kable(ordered)

buds	cmds
SANDERS (Indep VT)	SANDERS (Indep VT)
BOXER (D CA)	WARREN (D MA)
WARREN (D MA)	MERKLEY (D OR)
MARKEY (D MA)	BOXER (D CA)
MERKLEY (D OR)	MARKEY (D MA)
WYDEN (D OR)	GILLIBRAND (D NY)
REID (D NV)	BOOKER (D NJ)
BOOKER (D NJ)	BROWN (D OH)
GILLIBRAND (D NY)	WYDEN (D OR)
BROWN (D OH)	LEAHY (D VT)
MENENDEZ (D NJ)	REID (D NV)
LEAHY (D VT)	SCHUMER (D NY)
FRANKEN (D MN)	FRANKEN (D MN)
SCHUMER (D NY)	MENENDEZ (D NJ)
BALDWIN (D WI)	HIRONO (D HI)

buds	cmds
DURBIN (D IL)	DURBIN (D IL)
HIRONO (D HI)	UDALL (D NM)
REED (D RI)	CARDIN (D MD)
MURPHY (D CT)	REED (D RI)
HEINRICH (D NM)	BALDWIN (D WI)
CARDIN (D MD)	HEINRICH (D NM)
WHITEHOUSE (D RI)	MURPHY (D CT)
UDALL (D NM)	SCHATZ (D HI)
MIKULSKI (D MD)	MIKULSKI (D MD)
SCHATZ (D HI)	BLUMENTHAL (D CT)
BLUMENTHAL (D CT)	WHITEHOUSE (D RI)
PETERS (D MI)	CANTWELL (D WA)
MURRAY (D WA)	MURRAY (D WA)
CANTWELL (D WA)	STABENOW (D MI)
STABENOW (D MI)	PETERS (D MI)
COONS (D DE)	COONS (D DE)
SHAHEEN (D NH)	CASEY (D PA)
KLOBUCHAR (D MN)	KLOBUCHAR (D MN)
CASEY (D PA)	TESTER (D MT)
FEINSTEIN (D CA)	SHAHEEN (D NH)
KAINE (D VA)	NELSON (D FL)
NELSON (D FL)	CARPER (D DE)
BENNET (D CO)	KAINE (D VA)
CARPER (D DE)	FEINSTEIN (D CA)
TESTER (D MT)	BENNET (D CO)
WARNER (D VA)	KING (Indep ME)
KING (Indep ME)	WARNER (D VA)
MCCASKILL (D MO)	MCCASKILL (D MO)
HEITKAMP (D ND)	HEITKAMP (D ND)
DONNELLY (D IN)	DONNELLY (D IN)
MANCHIN (D WV)	MANCHIN (D WV)
COLLINS (R ME)	COLLINS (R ME)
KIRK (R IL)	KIRK (R IL)
AYOTTE (R NH)	AYOTTE (R NH)
MURKOWSKI (R AK)	GRAHAM (R SC)
GRAHAM (R SC)	MURKOWSKI (R AK)
ALEXANDER (R TN)	PORTMAN (R OH)
PORTMAN (R OH)	ALEXANDER (R TN)
HELLER (R NV)	CAPITO (R WV)
MCCONNELL (R KY)	COCHRAN (R MS)
CAPITO (R WV)	HATCH (R UT)
GARDNER (R CO)	ROUNDS (R SD)
COCHRAN (R MS)	BURR (R NC)
HATCH (R UT)	MCCAIN (R AZ)
CORKER (R TN)	ISAKSON (R GÁ)
ROUNDS (R SD)	JOHNSON (R WI)
MCCAIN (R AZ)	MCCONNELL (R KY)
BURR (R NC)	TILLIS (R NC)
TILLIS (R NC)	WICKER (R MS)
JOHNSON (R WI)	CORKER (R TN)
HOEVEN (R ND)	HOEVEN (R ND)
ISAKSON (R GA)	CORNYN (R TX)
,	,

-	
buds	cmds
CORNYN (R TX)	THUNE (R SD)
THUNE (R SD)	GARDNER (R CO)
GRASSLEY (R IA)	COATS (R IN)
WICKER (R MS)	BLUNT (R MO)
SULLIVAN (R AK)	ROBERTS (R KS)
ENZI (R WY)	CASSIDY (R LA)
COATS (R IN)	GRASSLEY (R IA)
CASSIDY (R LA)	BARASSO (R WY)
ROBERTS (R KS)	ERNST (R IA)
ERNST (R IA)	ENZI (R WY)
BARASSO (R WY)	HELLER (R NV)
FISCHER (R NE)	SULLIVAN (R AK)
BLUNT (R MO)	FISCHER (R NE)
FLAKE (R AZ)	BOOZMAN (R AR)
BOOZMAN (R AR)	FLAKE (R AZ)
INHOFE (R OK)	INHOFE (R OK)
DAINES (R MT)	MORAN (R KS)
MORAN (R KS)	TOOMEY (R PA)
TOOMEY (R PA)	PERDUE (R GA)
PERDUE (R GA)	VITTER (R LA)
SCOTT (R SC)	DAINES (R MT)
LANKFORD (R OK)	LANKFORD (R OK)
COTTON (R AR)	COTTON (R AR)
RUBIO (R FL)	SCOTT (R SC)
CRAPO (R ID)	SESSIONS (R AL)
RISCH (R ID)	RISCH (R ID)
SESSIONS (R AL)	CRAPO (R ID)
VITTER (R LA)	SHELBY (R AL)
SHELBY (R AL)	RUBIO (R FL)
PAUL (R KY)	SASSE (R NE)
CRUZ (R TX)	CRUZ (R TX)
LEE (R UT)	PAUL (R KY)
SASSE (R NE)	LEE (R UT)

sessionInfo()

```
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
                                   LC_NUMERIC=C
## [1] LC_CTYPE=en_US.UTF-8
## [3] LC_TIME=en_US.UTF-8
                                   LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8
                                  LC_NAME=C
## [9] LC_ADDRESS=C
                                   LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
```

```
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                  base
## other attached packages:
## [1] viridis_0.4.0
                            viridisLite_0.2.0
                                                  rstan_2.15.1
## [4] StanHeaders_2.15.0-1 MCMCglmm_2.24
                                                  ape_4.1
## [7] Matrix 1.2-10
                             ggplot2_2.2.1
                                                  dplyr 0.5.0
## [10] coda_0.19-1
                            buds_1.0
                                                  Rcpp_0.12.11
## [13] knitr_1.15.1
##
## loaded via a namespace (and not attached):
## [1] highr_0.6
                         compiler_3.4.0
                                         plyr_1.8.4
                                                           tools_3.4.0
## [5] digest_0.6.12
                         evaluate_0.10
                                          tibble_1.3.0
                                                           gtable_0.2.0
## [9] nlme_3.1-124
                         lattice_0.20-33 DBI_0.6-1
                                                           yaml_2.1.14
## [13] parallel_3.4.0
                         gridExtra_2.2.1
                                         stringr_1.2.0
                                                           stats4_3.4.0
## [17] rprojroot_1.2
                         grid_3.4.0
                                          inline_0.3.14
                                                           R6_2.2.1
## [21] rmarkdown_1.5
                        tensorA_0.36
                                          reshape2_1.4.2
                                                           corpcor_1.6.9
## [25] magrittr_1.5
                        backports_1.0.5 scales_0.4.1
                                                           codetools 0.2-14
## [29] htmltools_0.3.6 assertthat_0.2.0 princurve_1.1-12 cubature_1.3-8
## [33] colorspace_1.3-2 labeling_0.3
                                         stringi_1.1.5
                                                           lazyeval_0.2.0
## [37] munsell_0.4.3
```