B.TECH/IT/3RD **SEM/INFO 2101/2020**

FUNDAMENTALS OF DATA STRUCTURE & ALGORITHMS (INFO 2101)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Croun

	(Multiple Choice Type Questions)					
1.	Choos	Choose the correct alternative for the following:				
	(i)	The number of disk movements required 5 number of disks is (a) 20 (c) 30	d to solve tower of Hanoi problem with (b) 31 (d) None of the above			
	(ii)	The application of heap tree is to efficient (a)Find largest element (c)Perform Heap sort	tly (b)Implement Priority Queue (d) All			
	(iii)	If a graph has n nodes then the adjacency n (a) n * n (b) 2*n	natrix used to represent it has size (b) n + n (d) None			
	(iv)	The inorder and preorder traversal of respectively. Then the leaf nodes of the traversal (a) C, D, and E (c) D and E				
	(v)	A sparse graph is efficiently represented (a) Adjacency matrix (c) Adjoint data	using (b) Adjacency list (d) None of the above			
	(vi)	Pre-order traversal is also called (a) Depth first (c) Level order	(b) Breadth first (d) In-order			
	(vii)	In array representation of a binary tree if number of its right child is (a) 12 (c) 14	index number of a node is 7 then index (b) 13 (d) 15			
INF	0 2101	1	(4) 10			

B.TECH/IT	/3RD SEM/INFO 2101/2020	
(viii)	9 1	operations is performed on stack. push(1),push(2), o(),pop(),pop(),push(2),pop(). The sequence of
	(a) 2,2,1,1,2	(b) 2,2,1,2,2
	(c) 2,1,2,2,1	(d) 2,1,2,2,2

(ix) The postfix expression of A+C/B*D-E is _____. (a) ACD/B*+E-(b) A+C/B*D-E (c) A+B/C*DE-(d) ACB/D*+E-

(x) If a set of sorted integers is inserted in a Binary Search Tree then to search a certain item it's time complexity will be _____.
(a) O(n). (b) O(log(log n))
(c) O(log n). (d) O(n²)

Group - B

- 2. (a) Compare between array and linked list.
 - (b) Define abstract data type with an example.
 - (c) Write a program in C to count the number of nodes in a singly linked list.

3 + 4 + 5 = 12

- 3. (a) Explain an efficient way of storing a sparse matrix in memory. Write an algorithm to find the transpose of a sparse matrix.
 - (b) Write a C function to insert a node in an already created linked list.

(2+4)+6=12

Group - C

- 4. (a) Write a C function to perform enqueue an element in a circular queue.
 - (b) Convert the following infix expression to its corresponding prefix and also its postfix expression. Show all the steps.

$$((X+Q*D)-(A-B*F)-(P/C*L))$$

4 + (4 + 4) = 12

- 5. (a) Evaluate the following postfix expression using stack. Show all the steps. (23+)4*7
 - (b) Write an algorithm to implement a queue using stack.

6 + 6 = 12

Group - D

6. (a) The inorder and preorder traversals of a binary tree T yield the following sequence of nodes. Draw the tree.

INFO 2101 2

B.TECH/IT/3RD SEM/INFO 2101/2020

Inorder: DBHEAIFJCG Preorder: ABDEHCFIJG

(b) What is an AVL tree. Create an AVL search tree with the following elements. Show all the steps explicitly 59, 5, 19, 27, 15, 115, 94, 88.

$$6 + (2 + 4) = 12$$

- 7. (a) What is an expression tree? Represent the following expression using a tree. E=(a+b)/((c*d)+(e/f)).
 - (b) Find the breadth first search traversal and the depth first search traversal for the following graph, starting from node 0. Explain the steps.

$$(1+3)+(4+4)=12$$

Group - E

- 8. (a) Using the Insertion Sort algorithm, find the number of key comparisons(C) and the number of swaps (D) in the 8 letter word HERITAGE. Show every step in the process.
 - (b) Deduce worst case time complexity of Bubble sort and discuss how to improve.

$$6 + (3 + 3) = 12$$

- 9. (a) What are the properties of a heap. Transform the element of an array 2, 8, 6, 1, 10, 15, 5, 14, 13 into a max heap. Show each step.
 - (b) What is collision in the context of hashing. Explain the various techniques to resolve a collision.

$$(2+4)+(2+4)=12$$

Department & Section	Submission Link
ΙΤ	https://classroom.google.com/c/MTI2NTM3NTAzNzY3/a/Mjc0NTUwMjc4NzUw/details

3

INFO 2101