

Condensed Matter Science at Molecular Spectroscopy Group

Sanghamitra Mukhopadhyay

ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire

Chemical Spectroscopy

Indirect Interface in Mantid

10 Reports/papers are on ePubs on the implementations.

About 130 research papers/theses published in 2016-17 from the group have used Mantid in some form

riref -> A brief reference about the graphical user interface.

QENS on Organic Photovoltaic Materials

Analysis shows that the melting of this material is entirely driven by its tail motions

PCCP

PAPER View Article Online View Journal | View Issue

2016, 18, 17202

Cite this: Phys. Chem. Chem. Phys.,

Heads or tails: how do chemically substituted fullerenes melt?

Jeff Armstrong, *ab Sanghamitra Mukhopadhyay, *ab Fernando Bresme* and Felix Fernandez-Alonso* bd Felix Fernandez-Alonso* bd $\rm ^{12}$

QENS Experiment to design solid acid catalyst

Diffusion modes of cyclohexanone oxime passing through a pore with active sites (red), Top: Smooth Fickian diffusion means the oxime diffuses straight down the pore. Bottom: Jump diffusion sees the oxime move between active sites with a specific residence time.

The Q dependence of the HWHM of the Lorentzian for Zeolite-Y (left) and SAPO-37 (right) obtained from QENS experiment on OSIRIS

ME Potter, et al. ACS Catalysis **7** 2926-2934 (2017)

Single particle dynamics from molten salt

THE JOURNAL OF CHEMICAL PHYSICS 144, 014503 (2016)

Quasielastic neutron scattering measurements and *ab initio* MD-simulations on single ion motions in molten NaF

F. Demmel¹ and S. Mukhopadhyay^{1,2}

¹ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

²Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

D : 147.0 . 1 2015 . 145.D . 1 2015 . 171.1 . 17.71

Soft Confinement Nanoparticles

Macromolecules

Article

pubs.acs.org/Macromolecules

Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study

D. Bhowmik, J. A. Pomposo, J. S. F. Juranyi, V. García-Sakai, M. Zamponi, Y. Su, A. Arbe, and J. Colmenero

Design of Drug Delivery Vectors

Soft Matter

ELSEVIER

10285

Citle this: Soft Matter, 2011, 7, 3929

www.rsc.org/softmatter

PAPER

Conformational and segmental dynamics in lipid-based vesicles†

Yuri Gerelli, 1 *** Victoria García Sakai, CJacques Ollivier and Antonio Deriu**

Received 11th November 2010, Accepted 14th January 2011 DOI: 10.1039/c0sm01301c

J. Phys. Chem. B 2010, 114, 10285-10293

Dynamics of lipid-saccharide nanoparticles by quasielastic neutron scattering

M.T. Di Bari ^a, Y. Gerelli ^a, F. Sonvico ^b, A. Deriu ^{a,*}, F. Cavatorta ^a, G. Albanese ^a, P. Colombo ^b, F. Fernandez-Alonso ^c

⁶ Dipartimento di Fisica and Unitá CNISM, Università degli Studi di Parrea, Italy ⁸ Dipartimento Farmeronicio, Università degli Studi di Parma, Italy ⁶ ISIS Feedity, Bacherford Appleton Laboratory, Osibon, Dilcor, Oxfordolire O321 9QN, UK

Received 31 January 2007; accepted 3 August 2007 Available ording 11 August 2007

Structure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature

Shivkumar V. Ghugare,† Ester Chiessi,† Mark T. F. Telling,† Antonio Deriu,‡ Yuri Gerelli,‡ Joachim Wuttke,† and Gaio Paradossi 6,†

Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata and SOFT, CNR-INFM, Rome, Raby, ISIS Facility, Ruberford Applexon Laboratory, Chilton Dideot, Oxfordshire OX11 QOX, U.E.; Dipartimento di Fisica, Università di Parma, Parma, Italy; and JCNS at FRM II, Forschungszentrum Jalich. 85747 Garching, Germany

Received: February 1, 2010; Revised Manuscript Received: June 18, 2010

25 °C 23m

Soft Matter

Cite this: Soft Matter, 2012, 8, 2494

www.rsc.org/softmatter

PAPER

Biodegradable dextran based microgels: a study on network associated water diffusion and enzymatic degradation†

Shivkumar V. Glugare, "Ester Chiessi, "Barbara Cerroni, "Mark T. F. Telling, "Victoria García Sakaib" and Gaio Paradossi "

Received 1st August 2011, Accepted 12th December 2011 DOI: 10.1039/c2sm064764

Magnetism in Rare-Earths

PHYSICAL REVIEW B 86, 064203 (2012)

Coexistence of long- and short-range magnetic order in the frustrated magnet SrYb2O4

D. L. Quintero-Castro, ^{1,2,*} B. Lake, ^{1,2} M. Rechuis, ¹ A. Niazi, ³ H. Ryll, ^{1,2} A. T. M. N. Islam, ¹ T. Fennell, ^{4,5} S. A. J. Kimber, ^{1,6} B. Klemke, ¹ J. Ollivier, ⁴ V. Garcia Sakai, ⁷ P. P. Deen, ^{4,8} and H. Mutka⁴

¹ Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany

² Institut für Festkörperphysik, Technische Universität Berlin, D-10623 Berlin, Germany

³ Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia University, New Delhi 110025, India

⁴ Institut Lame Langevin, 6 rue Jules Horowitz, BP 156, F-38042, Grenoble Cedex 9, France

⁵ Laboratory for Neutron Scattering, PSI, CH-5232 Villigen, Switzerland

⁶ ESFF, 6 Rue Jules Horowitz BP 220, F-38043 Grenoble Cedex 9, France

⁷ ISIS Pulsed Source, Rutherford Appleton Laboratory, Chilton, Didcot, United Kingdom

⁸ European Spallation Source ESS AB, P.O. Box 176, SE-22100 Lund, Sweden (Received 29 May 2012; published 13 August 2012)

Metal-Organic Frameworks – structural and dynamic studies of substrate binding

T.L. Easun, et al. Chem. Soc. Rev. 46, 239 (2017).

Anharmonic Effects in Organic Ferroelectric Croconic Acid

Diffraction from powdered sample compared with DFT

Fig. 2 ND patterns (black) and associated fits (red) obtained on IRIS at two selected temperatures. The numbers on the figure denote (hkl) reflections.

PCCP

Anharmonic DOS is compared with INS experiments

PAPER

View Article Online
View Journal | View Issue

Hydrogen-bond structure and anharmonicity in croconic acid

abINS: An open source algorithm for interpretation of INS data

- Allows direct comparison of simulated and measured inelastic neutron scattering spectra
- Implemented as a plugin to Mantid data reduction and visualization tool
- User friendly GUI based on Mantid
- User can plot data by means of Mantid plotting functions
- All data is saved to ASCII file so that user can later visualize it in the software of choice

abINS: An open source algorithm for interpretation of INS data

- Can be run from GUI (MantidPlot) or from command line
- AbINS is open source and runs on Linux,
 Windows and MacOS
- Works for powder samples and both low and high temperatures
- Allows calculations of fundamentals together with higher order quantum events (up to 4-th order)
- Allows for calculation of INS for other atoms than H
- Supports Tosca and Tosca-like instruments
- Supports CASTEP and CRYSTAL DFT programs

Hydrogen Dynamics in Water Adsorbed on Graphite Oxide Surface

Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark

Carla Andreani,†,‡ Giovanni Romanelli,¶ and Roberto Senesi*,†,

The proton dynamics is probed beyond classical limit

PCCP

Cite this: *Phys. Chem. Chem. Phys.*, 2015, **17**, 31680

Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges†

PAPER

Cite this: *Phys. Chem. Chem. Phys.* 2017, **19**, 9064

View Article Online
View Journal | View Issue

Nuclear dynamics and phase polymorphism in solid formic acid

Maciej Krzystyniak,**^{ab} Kacper Drużbicki,^c Giovanni Romanelli,^a Matthias J. Gutmann,^a Svemir Rudić,^a Silvia Imberti^a and Felix Fernandez-Alonso^{ad}

Giovanni Romanelli,‡*^a Roberto Senesi,^{ab} Xuan Zhang,^c Kian Ping Loh^c and Carla Andreani^a

Understanding dynamics during liquid-liquid phase transition using Bayesian analysis

A. Vispa, D. Monserrat, G. J. Cuello, F. Fernandez-Alonso, S. Mukhopadhyay, F. Demmel, J.Ll. Tamarit, and L. C. Pardo, submitted PCCP (2017).

Fitting Neutron Compton Profile

Gaussian peaks are fitted using FIM for analysing data obtained from VESUVIO instrument at ISIS

N=3 is the better fitting for AI but not for Cu

Physics Research A 819 (2016) 84-88

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Technical notes

On the line-shape analysis of Compton profiles and its application to neutron scattering

G. Romanelli a,*, M. Krzystyniak a,b

SISI Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

^b School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, United Kingdom

Future Work: High throughput QENS

Data reduction and preliminary analysis

Genetic algorithm in FABADA to be used in future

