Tuning and mutual info [draft]

Jan Sigurd <jan.s.blackstad@ntnu.no>

Luca <pgl@portamana.org>

22 January 2020; updated 22 January 2020

Notes and memos on rate, tuning, mutual information.

Note: Dear Reader, please remember that you're the ultimate peer-reviewer of anything you read.

1 Synopsis

We have three time-dependent quantities: activity a(t), position r(t) := (x(t), y(t)), direction $\theta(t)$. The first is a generalized function¹, the second a 2D vector, the third an angle (periodic). We are interested in the statistical associations between the first and the second, the first and the third, and the first and the second & third jointly.

By statistical association we mean the features of the limit joint frequencies of these quantities, in a hypothetical experiment which lasts a very long time and the experimental conditions remain the same. We are therefore not speaking about 'causal' relations among the quantities.

Bibliography

('de X' is listed under D, 'van X' under V, and so on, regardless of national conventions.)

Egorov, Y. V. (1990a): A contribution to the theory of generalized functions. Russ. Math. Surveys (Uspekhi Mat. Nauk) 45⁵, 1–49.

— (1990b): Generalized functions and their applications. In: Exner, Neidhardt (1990), 347–354.
Exner, P., Neidhardt, H., eds. (1990): Order, Disorder and Chaos in Quantum Systems. (Birkhäuser, Basel).

Lighthill, M. J. (1964): Introduction to Fourier Analysis and Generalised Functions. (Cambridge University Press, London). First publ. 1958.

¹ Egorov 1990a,b; Lighthill 1964.