Macroeconomía Dinámica Sesión 1

Educate
Edinson Tolentino
email: edinson.tolentino@gmail.com

Contenido

Introducción

Sesion

Conceptos básicos de Matlab

Aplicaciones

Loop Comando básicos Importar Manipulación de data Optimización Teoria de Juegos

Introducción

- La presente sesion busca que el alumno(a) logre comprender un poco más conceptos básicos en Matlab.
 - Conceptos básicos de Matlab
 - Aplicaciones:
 - Loop
 - Codigos básicos
 - ► Import data
 - Manipulacion de datos (condicionales, filtros, estadisticas)
 - Optimización

Conceptos básicos de Matlab

- Positivo
 - Amigable para el usuario: funciones, toolboxes, editor incorporado
 - Amplio uso en econom dynare, cos compartidos
 - Buenos grcos (aunque esto ha cambiado Itimamente)
- Negativa
 - Gesti memoria relativamente ineficiente
 - ▶ Matlab no es necesariamente el software mficiente para culos intensivos.
 - Las funciones/toolboxes integradas pueden no ser adecuadas para resolver tu problema especco.

Conceptos básicos de Matlab

Aplicaciones: Loop

- ▶ El bucle "for" repite el comando un nmero especco de veces.
- ► El indice del bucle (o contador) "i" se define como un vector y se trata como un escalar dentro del bloque de comandos.
- ▶ Por ejemplo, escribe lo siguiente en la ventana de comandos:

Listing: Script

```
1
2 clc;
3 clear all;
4
5 % ------
6 % Informacion de bucle
7
8 for i = 1:10
9 V5(i) = i^2
10 end
```

▶ Utiliza un ";" en el argumento del bucle para suprimir la salida del bucle.

Aplicaciones: comando básicos

- ► Abrir un nuevo script: enter Ctrl + N
- Corrar todo el script : F5
- Corrar una selección del script : F9
- Ruta de carpeta:

```
1 % Ruta de carpeta
2 path(path,'ruta')
```

Aplicaciones: importar datos

 El importar datos parte del análisis de seleccionar datos en diferentes formatos

```
Excel: "xlsx"

Text: "csv"
```

```
%% Informacion de ruta de carpeta
2 clc;
3 clear all;
4 close all:
   %% Usando informacion de los files
   % informacion del archivo
   imputfile = 'BD1.xlsx';
11
   %% Leer informacion de tabla
12
13
14
15
   % carga la informacion
16
   T = readtable(imputfile)
```

Aplicaciones: importar datos

 El importar datos parte del análisis de seleccionar datos en diferentes formatos

Excel: "xlsx"Text: "csv"

```
% Paso 1:
   % Definimos la ruta de tu archivo
   filename = 'BD1.csv'; % Colocamos el nombre de tu archivo
   % Paso 2:
   % definimos opciones de la importacion
10
   opts = detectImportOptions(filename);
11
12
   opts.VariableNamesLine = 1;
13
14
   % Paso 3:
15
16
   % definimos opciones de string variables
   data = readtable(filename, opts);
   disp(data)
```

Aplicaciones: Manipulación de data

Filtro de informacion usando una data cargada

```
%% Filtro de Datos
2 % tabla de paises
3 table(unique(data.COUNTRY))
4
  % Filtro de paises = austria
6 austria = data(data.COUNTRY=="Austria",:);
   austria
   % Condiciones de filtro de informacion de paises
10
   gruponame = ["Austria", "Belgium", "Cyprus"];
11
  % filtrar paiises
12
13
   filtracion = ismember(data.COUNTRY, gruponame);
14
  % crear la nueva data
15
16 datafiltrada = data(filtracion, :);
17 size(datafiltrada)
18 datafiltrada
```

Optimización: Problema del consumidor

▶ El problema no es mas que un problema de eleccil consumidor busca

$$x^* \in B$$
 tal que $x^* \succeq x$ para todo $x \in B$

$$U(x^*) \ge U(x)$$

 Por tanto, se presenta el problema de maximizaci utilidad, la cual debe estar limitado a una restricci

Optimización: Problema del consumidor

Maximización de utilidad

La notacil problema del consumidor sera:

s.a
$$P.x \le y$$

Si x^* es una solucitonces: $U(x^*) \geq U(x)$ para todo $x \in B$. Es aqui donde se obtiene las funciones de demandas ordinarias o marshelianas, para otros libros este parte esocnocida como la eleccion ma.

Figura : Elecciptima de la maximización de la utilidad con restricción

Optimización: Problema del consumidor

Ejemplo

- ▶ Eric compra comida (medida por x) y ropa (medida por y) y tiene una función de utilidad U(x,y)=xy. Ademas se tiene que el precio de la comida es $P_x=20$ y el precio de vestido es $P_y=40$, ademas de posee solo un ingreso de 800.
 - 1. Establesca la notacil problema del consumidor
 - Se le pide encontrar la solucil consumidor, es decir determinar la cantidad optima de cantidades

Optimización: código


```
% Funciones
   % Caso: Funcion de Utilidad
   % Ouestion la.
   clc:
   clear all;
10 I= 800;
11 P = [20, 40];
12 G = [40,20];
   1b = [0.01;
13
14
   [consumption, u , exitflag] = fmincon(@CobbDouglas,...
15
16
      G,P,I,[],[], lb)
17
18
```

Optimización: función

→ regresar

Listing: Script Funcion

```
1 function u=CobbDouglas(X)
2
3     x1 = X(1);
4     x2 = X(2);
5     u = -(x1^1)*(x2^1);
6
7 return
```

Modelo de Cournot

- ▶ Dos empresas i = 1, 2 producen un **producto homogeneo**
- **E**I producto de la empresa i^{th} donde $q_i \ge 0$, el costo marginal constante c
- lacktriangle El producto industrial estardo por $Q=q_1+q_2$
- La elecci del producto propio q_i, tomando el producto de la empresas q_j esta dado por las estrategias q_i
- La empresa i maximiza

$$\pi_i = (a - bQ)q_i - c_iq_i$$

sujeto q_j

La C.P.O

$$\frac{\partial \pi_i}{\partial q_i} = 0$$

la funci respuesta:

$$q_i = q_i^{br}(q_i)$$

Por tanto, el equilibrio de nash sera: (q_1^*, q_2^*) si $q_1^* = q_1^{br}(q_2)$ y $q_2^* = q_2^{br}(q_1)$

Modelo de Cournot: Ansis

Maximizando los beneficios

$$max_{q_1}\pi_1 = (a - b(q_1 + q_2))q_1 - cq_1 \Rightarrow q_1^{br}(q_2) = \frac{a - c}{2b} - \frac{1}{2}q_2$$
 $max_{q_2}\pi_2 = (a - b(q_1 + q_2))q_2 - cq_2 \Rightarrow q_2^{br}(q_1) = \frac{a - c}{2b} - \frac{1}{2}q_1$

lacktriangle Resolviendo el equilibrio de Nash (NE) $q_1^*=q_1^{br}(q_2)$ y $q_2^*=q_2^{br}(q_1)$

$$q_1^* = q_2^* = \frac{a-c}{3b}$$

$$\pi *_1 = \pi_2^* = \frac{(a-c)^2}{9b}$$

Funci respuesta de la empresa 2

$$q_2^{br}(q_1) = rac{a-c}{2b} - rac{1}{2}q_1$$

Funci respuesta de la empresa 2

$$q_2^{br}(q_1) = \frac{a-c}{2b} - \frac{1}{2}q_1$$

Funci respuesta de la empresa 1

$$q_1^{br}(q_2) = rac{a-c}{2b} - rac{1}{2}q_2$$

Funci respuesta de la empresa 2

$$q_2^{br}(q_1) = rac{a-c}{2b} - rac{1}{2}q_1$$

► Funci respuesta de la empresa 1

$$q_1^{br}(q_2) = rac{a-c}{2b} - rac{1}{2}q_2$$

► Equilibrio de Nash

$$q_1^* = q_2^* = \frac{a-c}{3b}$$

► Equilibrio de Nash

$$q_1^* = q_2^* = \frac{a-c}{3b}$$

La curva de isobeneficio 1 sera. $\pi_1(q_1, q_2) = cte$ en la tangente $q_2 = q_2^*$

Equilibrio de Nash

$$q_1^* = q_2^* = \frac{a - c}{3b}$$

- La curva de isobeneficio 1 sera. $\pi_1(q_1, q_2) = cte$ en la tangente $q_2 = q_2^*$
- La curva de isobeneficio 1 sera. $\pi_1(q_1,q_2)=cte$ en la tangente $q_1=q_1^*$
- Existen combinaciones de (q_1, q_2) donde las empresas se encuentran mejor, por tanto, el NE no es un optimo de pareto.


```
clc;
  clear all;
4 % ---- (1)
5 a = 20;
 c = 2;
7 b = 1;
  qi = [0:20]';
10
  % ---- (2)
   qi_star=NaN(size(qj));
11
12
13
   for count = 1:size(qj,1)
       qi_star(count,1) = BestResponse(qj(count,...
14
           1),c,a,b);
15
   end
16
17
   line(qj, qi_star, 'LineWidth', 2, 'Color', [1,0,0])
18
   ylabel('q_i', 'FontSize', 12)
19
   xlabel('q-j', 'FontSize', 12)
20
```

Modelo de Cournot : código

Listing: Script

```
% -----(3) Generamos la grilla para gi
   qi= [0:20]';
4
  % ----(4)
   qi_star=NaN(size(qj));
7
   for count = 1:size(qj,1)
       qj_star(count,1) = BestResponse(qi(count,...
           1),c,a,b);
10
   end
11
12
  hold on
13
   line(qj_star, qi,'LineWidth',2, 'Color',[0,0,1])
```

➤ Funcion BestResponse ➤ Funcion Beneficio

Optimización: función

→ regresar

Listing: Script Funcion

```
1 function pi=Profit(q, qj,ci,a,b)
2 pi = ((a-ci-(b*qj))*q)-(b*(q^2));
3 return
```

Optimización: función

Listing: Script Funcion

```
function qi = BestResponse(qj, ci, a, b)

poptions = optimset('Algorithm','sqp','Display','off');

qi = fmincon(@(q) -Profit(q, qj,ci,a,b),...

0,[],[],[],[],0,[],[],options);

return
```