Uniform Interpolation and the Congruence Lattice

Sam van Gool

Joint work with George Metcalfe and Constantine Tsinakis

Workshop on Admissible Rules and Unification 2 31 January – 2 February 2015, Les Diablerets

Uniform interpolation in IPC

Theorem (Pitts, 1992)

For any formula $\phi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

$$\phi^L(\overline{y})$$
 and $\phi^R(\overline{y})$,

Uniform interpolation in IPC

Theorem (Pitts, 1992)

For any formula $\phi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

$$\phi^L(\overline{y})$$
 and $\phi^R(\overline{y})$,

such that for any formula $\psi(\overline{y}, \overline{z})$,

$$\phi(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \vdash_{\mathsf{IPC}} \psi(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \qquad \Leftrightarrow \qquad \phi^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{IPC}} \psi(\overline{\mathbf{y}}, \overline{\mathbf{z}})$$

Uniform interpolation in IPC

Theorem (Pitts, 1992)

For any formula $\phi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

$$\phi^L(\overline{y})$$
 and $\phi^R(\overline{y})$,

such that for any formula $\psi(\overline{y}, \overline{z})$,

$$\phi(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \vdash_{\mathsf{IPC}} \psi(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \qquad \Leftrightarrow \qquad \phi^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{IPC}} \psi(\overline{\mathbf{y}}, \overline{\mathbf{z}})$$

$$\psi(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \vdash_{\mathsf{IPC}} \phi(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \qquad \Leftrightarrow \qquad \psi(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \vdash_{\mathsf{IPC}} \phi^{\mathsf{L}}(\overline{\mathbf{y}}).$$

A formula $\phi^R(\overline{y})$ is a **right uniform interpolant** for $\phi(\overline{x}, \overline{y})$

A formula $\phi^R(\overline{y})$ is a **right uniform interpolant** for $\phi(\overline{x}, \overline{y})$

$$\iff$$

for any formula
$$\psi(\overline{y}, \overline{z})$$
, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$,
then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^R(\overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$.

A formula $\phi^R(\overline{y})$ is a **right uniform interpolant** for $\phi(\overline{x}, \overline{y})$

$$\iff$$

for any formula
$$\psi(\overline{y}, \overline{z})$$
, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$,
then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^{R}(\overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$.

$$\stackrel{(*)}{\Longleftrightarrow}$$

for any formula $\chi(\overline{y})$, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \chi(\overline{y})$,

A formula $\phi^R(\overline{y})$ is a **right uniform interpolant** for $\phi(\overline{x}, \overline{y})$

$$\iff$$

for any formula
$$\psi(\overline{y}, \overline{z})$$
, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$,
then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^R(\overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$.

$$\stackrel{(*)}{\Longleftrightarrow}$$

for any formula $\chi(\overline{y})$, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \chi(\overline{y})$, then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^R(\overline{y}) \vdash_{\mathsf{IPC}} \chi(\overline{y})$.

A formula $\phi^R(\overline{y})$ is a **right uniform interpolant** for $\phi(\overline{x}, \overline{y})$

$$\iff$$

for any formula
$$\psi(\overline{y}, \overline{z})$$
, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$,
then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^{R}(\overline{y}) \vdash_{\mathsf{IPC}} \psi(\overline{y}, \overline{z})$.

$$\stackrel{(*)}{\Longleftrightarrow}$$

for any formula
$$\chi(\overline{y})$$
, if $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \chi(\overline{y})$,
then $\phi(\overline{x}, \overline{y}) \vdash_{\mathsf{IPC}} \phi^R(\overline{y}) \vdash_{\mathsf{IPC}} \chi(\overline{y})$.

(*) because IPC has interpolation

This Talk

Which varieties of algebras admit uniform interpolation?

Equational Consequence

The **equational consequence relation** for a variety $\mathcal V$ is defined by

We will write $\Sigma \models_{\mathcal{V}} \Delta$ to denote that $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.

Definition

A variety ${\mathcal V}$ has right uniform restriction iff

Definition

A variety $\mathcal V$ has **right uniform restriction** iff for any finite set of equations $\Sigma(\overline{x},\overline{y})$,

Definition

A variety \mathcal{V} has **right uniform restriction** iff for any finite set of equations $\Sigma(\overline{x}, \overline{y})$, there exists a finite set of equations $\Sigma^R(\overline{y})$

Definition

A variety \mathcal{V} has **right uniform restriction** iff for any finite set of equations $\Sigma(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exists a finite set of equations $\Sigma^R(\overline{\mathbf{y}})$ such that for any equation $\epsilon(\overline{\mathbf{y}})$:

Definition

A variety \mathcal{V} has **right uniform restriction** iff for any finite set of equations $\Sigma(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exists a finite set of equations $\Sigma^R(\overline{\mathbf{y}})$ such that for any equation $\epsilon(\overline{\mathbf{y}})$:

$$\Sigma(\overline{\mathbf{x}},\overline{\mathbf{y}}) \models_{\mathcal{V}} \epsilon(\overline{\mathbf{y}}) \iff \Sigma^{R}(\overline{\mathbf{y}}) \models_{\mathcal{V}} \epsilon(\overline{\mathbf{y}}).$$

Equations and congruences

A set of equations $\Sigma(\overline{x})$ generates a **congruence**, $\Theta(\Sigma)$, on $\mathbf{F}_{\mathcal{V}}(\overline{x})$, the free \mathcal{V} -algebra generated by \overline{x} .

Equations and congruences

A set of equations $\Sigma(\overline{\mathbf{x}})$ generates a **congruence**, $\Theta(\Sigma)$, on $\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{x}})$, the free \mathcal{V} -algebra generated by $\overline{\mathbf{x}}$.

A congruence θ on $\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{x}})$ is **finitely generated** if $\theta = \Theta(\Sigma)$ for some finite set Σ .

For any algebra $\bf A$, the **lattice of congruences** on $\bf A$, Con($\bf A$), is a complete lattice.

For any algebra $\bf A$, the **lattice of congruences** on $\bf A$, Con($\bf A$), is a complete lattice.

An element *u* in a complete lattice *L* is called **compact** if,

For any algebra **A**, the **lattice of congruences** on **A**, Con(**A**), is a complete lattice.

An element u in a complete lattice L is called **compact** if, for any subset $S \subseteq L$ such that $u \leq \bigvee S$,

For any algebra **A**, the **lattice of congruences** on **A**, Con(**A**), is a complete lattice.

An element u in a complete lattice L is called **compact** if, for any subset $S \subseteq L$ such that $u \leq \bigvee S$, there exists a finite subset $F \subseteq S$ such that $u \leq \bigvee F$.

For any algebra **A**, the **lattice of congruences** on **A**, Con(**A**), is a complete lattice.

An element u in a complete lattice L is called **compact** if, for any subset $S \subseteq L$ such that $u \leq \bigvee S$, there exists a finite subset $F \subset S$ such that $u < \bigvee F$.

Fact

In a lattice of congruences, the compact elements are exactly the finitely generated congruences.

For any algebra **A**, the **lattice of congruences** on **A**, Con(**A**), is a complete lattice.

An element u in a complete lattice L is called **compact** if, for any subset $S \subseteq L$ such that $u \leq \bigvee S$, there exists a finite subset $F \subset S$ such that $u < \bigvee F$.

Fact

In a lattice of congruences, the compact elements are exactly the finitely generated congruences.

We denote by KCon(**A**) the join-semilattice of **compact congruences**.

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

 $f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

$$f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$$

$$\theta_A \mapsto f_*(\theta_A) \stackrel{\mathrm{def}}{=} \Theta(\{(f(a), f(a')) : (a, a') \in \theta\}),$$

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

$$f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$$

$$\theta_A \mapsto f_*(\theta_A) \stackrel{\mathrm{def}}{=} \Theta(\{(f(a), f(a')) : (a, a') \in \theta\}),$$

$$f^{-1}(\theta_B) \longleftrightarrow \theta_B.$$

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

$$f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$$

$$\theta_A \mapsto f_*(\theta_A) \stackrel{\text{def}}{=} \Theta(\{(f(a), f(a')) : (a, a') \in \theta\}),$$

$$f^{-1}(\theta_B) \longleftrightarrow \theta_B.$$

The pair (f_*, f^{-1}) is an **adjunction**

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

$$f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$$

 $\theta_A \mapsto f_*(\theta_A) \stackrel{\text{def}}{=} \Theta(\{(f(a), f(a')) : (a, a') \in \theta\}),$
 $f^{-1}(\theta_B) \longleftrightarrow \theta_B.$

The pair (f_*, f^{-1}) is an **adjunction**, i.e., we have

$$f_*(\theta_A) \subseteq \theta_B \iff \theta_A \subseteq f^{-1}(\theta_B),$$

for any $\theta_A \in Con(\mathbf{A})$ and $\theta_B \in Con(\mathbf{B})$.

Lifting homomorphisms

Any homomorphism $f : \mathbf{A} \to \mathbf{B}$ can be **lifted** to the congruence lattices:

$$f_* : \mathsf{Con}(\mathbf{A}) \leftrightarrows \mathsf{Con}(\mathbf{B}) : f^{-1}$$

$$\theta_A \mapsto f_*(\theta_A) \stackrel{\mathrm{def}}{=} \Theta(\{(f(a), f(a')) : (a, a') \in \theta\}),$$

$$f^{-1}(\theta_B) \longleftrightarrow \theta_B.$$

The pair (f_*, f^{-1}) is an **adjunction**, i.e., we have

$$f_*(\theta_A) \subseteq \theta_B \iff \theta_A \subseteq f^{-1}(\theta_B),$$

for any $\theta_A \in Con(\mathbf{A})$ and $\theta_B \in Con(\mathbf{B})$.

This adjunction **restricts to compact congruences** iff f^{-1} preserves compact elements.

Right uniform restriction and existence of adjoints

Theorem

For any variety V, the following are equivalent:

(1) V has right uniform restriction.

Right uniform restriction and existence of adjoints

Theorem

For any variety V, the following are equivalent:

- (1) V has right uniform restriction.
- (2) For finite $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, the map $i_* : \mathsf{KCon}(\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{y}})) \to \mathsf{KCon}(\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{x}},\overline{\mathbf{y}}))$ has a right adjoint;

Right uniform restriction and existence of adjoints

Theorem

For any variety V, the following are equivalent:

- (1) V has right uniform restriction.
- (2) For finite $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, the map $i_*: \mathsf{KCon}(\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{y}})) \to \mathsf{KCon}(\mathbf{F}_{\mathcal{V}}(\overline{\mathbf{x}},\overline{\mathbf{y}}))$ has a right adjoint;
- (3) For finitely presented A, B ∈ V and any homomorphism f: A → B, the map f_{*}: KCon(A) → KCon(B) has a right adjoint.

The following varieties have right uniform restriction:

· Heyting algebras and modal algebras,

The following varieties have right uniform restriction:

- · Heyting algebras and modal algebras,
- abelian groups, abelian ℓ-groups and MV-algebras,

The following varieties have right uniform restriction:

- · Heyting algebras and modal algebras,
- abelian groups, abelian ℓ-groups and MV-algebras,
- any locally finite variety.

The following varieties have right uniform restriction:

- Heyting algebras and modal algebras,
- abelian groups, abelian ℓ-groups and MV-algebras,
- any locally finite variety.

However, the varieties of **groups** and of **S4-algebras** do not have right uniform restriction.

Left uniform restriction

Definition

 \mathcal{V} has **left uniform restriction** iff for any finite set of equations $\Sigma(\overline{x}, \overline{y})$, there exists a finite set of equations $\Sigma^L(\overline{y})$ such that for any set of equations $\Pi(\overline{y})$:

$$\Pi(\overline{y}) \models_{\mathcal{V}} \Sigma(\overline{x}, \overline{y}) \iff \Pi(\overline{y}) \models_{\mathcal{V}} \Sigma^{L}(\overline{y}).$$

Left uniform restriction and compact congruences

Theorem

For any variety V, the following are equivalent:

For finitely presented A, B ∈ V and any homomorphism
 f: A → B, the map f_{*}: KCon(A) → KCon(B) has a left adjoint.

Left uniform restriction and compact congruences

Theorem

For any variety V, the following are equivalent:

- For finitely presented A, B ∈ V and any homomorphism
 f: A → B, the map f*: KCon(A) → KCon(B) has a left adjoint.
- (2) V has left uniform restriction

Left uniform restriction and compact congruences

Theorem

For any variety V, the following are equivalent:

- For finitely presented A, B ∈ V and any homomorphism
 f: A → B, the map f*: KCon(A) → KCon(B) has a left adjoint.
- (2) V has left uniform restriction **and** for finite \overline{X} , the join-semilattice $KCon(\mathbf{F}_{V}(\overline{X}))$ is residuated.

Heyting algebras have left uniform restriction,

Heyting algebras have left uniform restriction, but not the variety \mathcal{ISL} of implicative semilattices, corresponding to the (\land, \rightarrow) -fragment of IPC.

Heyting algebras have left uniform restriction, but not the variety \mathcal{ISL} of implicative semilattices, corresponding to the (\land, \rightarrow) -fragment of IPC. For example,

$$\Sigma := \{ \top \approx ((X \to Z) \land (Y \to Z)) \to Z \}$$

is a consequence of both $\top \approx x$ and $\top \approx y$, i.e.,

$$\{\top \approx x\} \models_{\mathcal{ISL}} \Sigma \qquad \text{and} \qquad \{\top \approx y\} \models_{\mathcal{ISL}} \Sigma,$$

Heyting algebras have left uniform restriction, but not the variety \mathcal{ISL} of implicative semilattices, corresponding to the (\land, \rightarrow) -fragment of IPC. For example,

$$\Sigma := \{ \top \approx ((x \to z) \land (y \to z)) \to z \}$$

is a consequence of both $\top \approx x$ and $\top \approx y$, i.e.,

$$\{\top \approx x\} \models_{\mathcal{ISL}} \Sigma$$
 and $\{\top \approx y\} \models_{\mathcal{ISL}} \Sigma$,

but there is no $\Delta(x, y)$ satisfying

$$\Delta \models_{\mathcal{ISL}} \Sigma, \quad \{\top \approx x\} \models_{\mathcal{ISL}} \Delta, \quad \text{and} \quad \{\top \approx y\} \models_{\mathcal{ISL}} \Delta.$$

Locally finite case

Theorem

Let V be a locally finite variety. Then:

Locally finite case

Theorem

Let V be a locally finite variety. Then:

1 \mathcal{V} has right uniform restriction.

Locally finite case

Theorem

Let V be a locally finite variety. Then:

- 1 V has right uniform restriction.
- V has left uniform restriction

$$\iff$$

 \mathcal{V} is congruence-distributive and for finite $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, $i_*: \mathsf{Con}(\mathsf{F}_{\mathcal{V}}(\overline{\mathsf{x}})) \to \mathsf{Con}(\mathsf{F}_{\mathcal{V}}(\overline{\mathsf{x}},\overline{\mathsf{y}}))$ preserves intersections.

We focused on **uniform restriction** and the corresponding properties of **existence of adjoints**.

We focused on **uniform restriction** and the corresponding properties of **existence of adjoints**.

Uniform interpolation is equivalent to uniform restriction + deductive interpolation,

We focused on **uniform restriction** and the corresponding properties of **existence of adjoints**.

Uniform interpolation is equivalent to uniform restriction + deductive interpolation, and also to the existence of adjoints for **countably generated** free algebras:

We focused on **uniform restriction** and the corresponding properties of **existence of adjoints**.

Uniform interpolation is equivalent to uniform restriction + deductive interpolation, and also to the existence of adjoints for **countably generated** free algebras:

Theorem

The following are equivalent for any variety V:

(1) V has right uniform interpolation.

We focused on **uniform restriction** and the corresponding properties of **existence of adjoints**.

Uniform interpolation is equivalent to uniform restriction + deductive interpolation, and also to the existence of adjoints for **countably generated** free algebras:

Theorem

The following are equivalent for any variety V:

- (1) V has right uniform interpolation.
- (2) For any countable X and $Y \subseteq X$, the natural embedding of $KCon(\mathbf{F}_{\mathcal{V}}(Y))$ into $KCon(\mathbf{F}_{\mathcal{V}}(X))$ has a right adjoint.

Uniform interpolation can be understood as a (weaker) form of **quantifier elimination**.

Uniform interpolation can be understood as a (weaker) form of **quantifier elimination**.

In particular, under certain conditions (e.g., for varieties of Heyting and modal algebras), uniform interpolation for $\mathcal V$ implies the existence of a **model completion** for the first-order theory of $\mathcal V.$

S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions, Trends in Logic Series, Kluwer (2002).

Uniform interpolation can be understood as a (weaker) form of **quantifier elimination**.

In particular, under certain conditions (e.g., for varieties of Heyting and modal algebras), uniform interpolation for $\mathcal V$ implies the existence of a **model completion** for the first-order theory of $\mathcal V$.

S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions, Trends in Logic Series, Kluwer (2002).

Can we weaken these conditions to cover other classes of algebras, e.g., quasi-varieties, universal classes?

Final question

Final question

What, if any, is the relationship between uniform interpolation and admissibility?

Final question

What, if any, is the relationship between uniform interpolation and admissibility?

