Polar Coordinates

- 1. Consider the point $(r, \theta) = (-2, -2\pi/3)$.
 - (a) Find 2 other pairs of polar coordinates that represent the same point, one with r > 0 and one with r < 0.
 - (b) Convert the point from polar coordinates to Cartesian coordinates.
- 2. Sketch the graphs of the following polar equations:
 - (a) $r = \sin(3\theta)$
 - (b) $r = 1 \cos \theta$
 - (c) $r = 2 + \sin \theta$
 - (d) $r = 2 3\cos\theta$
 - (e) $r = 6\cos(4\theta)$
 - (f) $r^2 = 2\sin(2\theta)$.
- 3. (a) Find the slope of the tangent line to the polar curve $r = \cos \theta + \sin \theta$ at the value $\theta = 0$.
 - (b) Given the polar curve $r = 1 + \cos \theta$, find the values of θ at which the curve has a horizontal tangent line or a vertical tangent line.

Areas in Polar Coordinates

- 4. Sketch the curve $r = 3 + 3\cos\theta$ and find the area that it encloses.
- 5. Sketch the curve $r = 2\cos(3\theta)$ and find the area that it encloses.
- 6. Find the area inside the inner loop of the curve $r = 1 + 2\sin\theta$.
- 7. Find the area that lies inside the curve $r = 1 \sin \theta$ and outside the curve r = 1.
- 8. Find the area that lies inside the curve $r = 1 + \cos \theta$ and outside $r = 3 \cos \theta$.
- 9. Find the area that lies inside the curve $r^2 = 2\sin(2\theta)$ and outside r = 1.
- 10. Find the area inside the larger loop and outside the smaller loop of the curve $r = \frac{1}{2} + \cos \theta$.
- 11. Find the polar coordinates with $0 \le \theta < 2\pi$ of all points of intersection of the curves $r = \sin \theta$ and $r = \sin(2\theta)$.

Area

Sketch the region enclosed by the given curves. Then find the area of the region.

- 12. $y = 1 + \sqrt{x}, y = \frac{3+x}{3}$
- 13. $y = \sin x$, $y = \sin(2x)$, x = 0, $x = \pi/2$
- 14. $x = 2y^2$, x + y = 1

Volumes

In questions 15-19, find the volume of the solid by rotating the region bounded by the given curves about the specified line.

- 15. $y = x, y = \sqrt{x}$, about y = 1
- 16. $y = e^x$, y = 0, x = 0, x = 1, about the x-axis
- 17. $y = x^2$, $0 \le x \le 2$, y = 4, x = 0, about the y-axis
- 18. y = x, $y = \sqrt{x}$ about x = 2

- 19. $y = 0, y = \sin x, 0 \le x \le \pi$, about y = -2
 - In questions 20-24, use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.
- 20. $x = \sqrt{y}$, x = 0, y = 1, about the x-axis
- 21. $y = x^2$, y = 0, x = 1, x = 2, about x = 1
- 22. $y = x^2$, y = 0, x = 1, x = 2, about x = 4
- 23. $y = \sqrt{x-1}$, y = 0, x = 5, about y = 3
- 24. $y = \frac{1}{1+x^2}$, y = 0, x = 0, x = 2, about x = 2
- 25. Find the volume of a frustrm of a right circular cone with height h, lower base radius R, and top radius r.
- 26. Find the volume of a cap of a sphere with radius r and height h.
- 27. The base of a solid S is a circular disk with radius r. Parallel cross sections perpendicular to the base are squares. Find the volume of S.

Work

- 28. A rope that weighs 0.5 lb/ft is 100 feet long and hangs over the edge of a building 150 feet high.
 - (a) How much work is done in pulling the rope to the top of the building?
 - (b) How much work is done in pulling the rope up 80 feet?
- 29. How much work is done in lifting a 1.4 kg book off the floor to put it on a desk that is 0.8 m high? (Use the fact that acceleration due to gravity is 9.8m/s^2 .)
- 30. Suppose a force of 7 J of work is needed to stretch a spring from its natural length of 15 cm to a length of 20 cm. How much work is done in stretching the spring from 20 cm to 25 cm?
- 31. If 6 J of work is needed to stretch a spring from 10 cm to 12 cm and another 10 J is needed to stretch it from 12 cm to 14 cm, what is the natural length of the spring?
- 32. A circular swimming pool has a diameter of 24 ft, the sides are 5 ft high, and the depth of the water is 4 ft. How much work is required to pump all of the water out over the side. (Use 62.5 lb/ft³ for the weight of water.)
- 33. An 8 ft long rough, with vertical cross-sections in the shape of a semicircle with a 4 ft diameter is full of water. Find the amouunt of work required to pump the water out of a vertical spout which is 1 foot above the top of the tank.