Gruppentheoretische Methoden in der Zahlentheorie und Geometrie rationaler Funktionen

Peter Müller

Magdeburg, 3. Dezember 2015

Überblick

- Beispielfragen über rationale Funktionen
 - Algebraische Kurven
 - Funktionale Zerlegungen
 - Permutationspolynome modulo Primzahlen
 - Wertemengen von Polynomen
 - Invariante Kurven
- 2 Monodromiegruppen
 - Kritische Werte
 - Monodromiegruppe geometrisch
- Dessins d'enfants
- 4 Klassifikation der Monodromiegruppen
- Berechnung rationaler Funktionen
- Monodromiegruppe algebraisch

Algebraische Kurven, getrennte Variablen (Cassels, Birch)

Selten zerlegbar, wie in

$$\underbrace{(4-4x^2+x^4)}_{f(x)} - \underbrace{(4y^2-y^4)}_{g(y)} = (x^2\sqrt{2}xy+y^2-2)(x^2+\sqrt{2}xy+y^2-2)$$

Funktionale Zerlegungen (Ritt)

Maximale funktionale Zerlegungen rationaler Funktionen

$$f(z) = f_1(f_2(\dots(f_n(z))\dots))$$

Permutationspolynome modulo Primzahlen (Schur)

Für welche Polynome $f(x) \in \mathbb{Z}[x]$ ist

$$\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$$
$$a \mapsto f(a)$$

bijektiv für unendlich viele Primzahlen p?

Wertemengen rationaler Funktionen (Birch, Swinnerton-Dyer, Cohen)

 \mathbb{F}_q endlicher Körper, $f(x) \in \mathbb{F}_q(x)$ "zufällig", $n = \deg f$:

$$\frac{1}{q}|f(\mathbb{F}_q)| = \underbrace{1 - \frac{1}{2!} + \frac{1}{3!} - \dots - (-1)^n \frac{1}{n!}}_{\text{Antell Permutations in Sym(n) mit Eigenpet}} + O_n(q^{-1/2})$$

Anteil Permutationen in Sym(n) mit Fixpunkt

Invariante Kurven (Fatou, Eremenko)

 $f(z), g(z) \in \mathbb{C}(z)$ rationale Funktionen mit $f(g(z)) \in \mathbb{R}(z)$. Kurve $\Gamma = g(\mathbb{R})$ ist invariant unter $g \circ f$:

$$(g \circ f)(\Gamma) = g(\underbrace{f(g(\mathbb{R}))}_{\subset \mathbb{R}}) \subseteq g(\mathbb{R}) = \Gamma$$

• Kann Γ eine Jordankurve \neq Kreis sein?

Invariante Kurven (Fatou, Eremenko)

 $f(z), g(z) \in \mathbb{C}(z)$ rationale Funktionen mit $f(g(z)) \in \mathbb{R}(z)$. Kurve $\Gamma = g(\mathbb{R})$ ist invariant unter $g \circ f$:

$$(g \circ f)(\Gamma) = g(\underbrace{f(g(\mathbb{R}))}_{\subset \mathbb{R}}) \subseteq g(\mathbb{R}) = \Gamma$$

Kann Γ eine Jordankurve ≠ Kreis sein? Ja (M. 2015):

$$\omega = e^{2\pi i/3}$$

$$f(z) = \frac{(6\omega + 5)z^3 + (-6\omega - 3)z^2 - 3z + 1}{4z^3 - 6z^2 + 3z}$$

$$g(z) = \frac{z^2 - \omega}{2z^3 + z^2 + (\omega + 1)z - \omega}$$

$$f(g(z)) = \frac{64z^9 - 192z^5 - 104z^3 - 48z}{96z^8 + 104z^6 + 96z^4 - 8}$$

Invariante Kurven (Fatou, Eremenko)

 $f(z), g(z) \in \mathbb{C}(z)$ rationale Funktionen mit $f(g(z)) \in \mathbb{R}(z)$. Kurve $\Gamma = g(\mathbb{R})$ ist invariant unter $g \circ f$:

$$(g \circ f)(\Gamma) = g(\underbrace{f(g(\mathbb{R}))}_{\subset \mathbb{R}}) \subseteq g(\mathbb{R}) = \Gamma$$

Kann Γ eine Jordankurve ≠ Kreis sein? Ja (M. 2015):

$$\omega = e^{2\pi i/3}$$

$$f(z) = \frac{(6\omega + 5)z^3 + (-6\omega - 3)z^2 - 3z + 1}{4z^3 - 6z^2 + 3z}$$

$$g(z) = \frac{z^2 - \omega}{2z^3 + z^2 + (\omega + 1)z - \omega}$$

$$f(g(z)) = \frac{64z^9 - 192z^5 - 104z^3 - 48z}{96z^8 + 104z^6 + 96z^4 - 8}$$

• Kann $g \circ f$ injektiv auf Γ sein? Nein (M. 2015)

Monodromiegruppen (Riemann)

 $f(z) \in \mathbb{C}(z)$ rationale Funktion vom Grad n

$$\longleftrightarrow$$

 $\mathsf{Mon}(f) \leq \mathsf{Sym}(n)$ Untergruppe

Monodromiegruppen (Riemann)

$$f(z) \in \mathbb{C}(z)$$
 rationale Funktion vom Grad n

 $\mathsf{Mon}(f) \leq \mathsf{Sym}(n)$ $\mathsf{Untergruppe}$

Kritische Werte

$$a\in\mathbb{C}\cup\{\infty\}$$
 kritischer Wert $\Leftrightarrow |f^{-1}(a)|<\deg f \Leftrightarrow f(z)-a$ hat mehrfache Nullstelle.

Monodromiegruppen (Riemann)

$$f(z) \in \mathbb{C}(z)$$
 rationale Funktion vom Grad n

 $\mathsf{Mon}(f) \leq \mathsf{Sym}(n)$ Untergruppe

Kritische Werte

$$a\in\mathbb{C}\cup\{\infty\}$$
 kritischer Wert \Leftrightarrow $|f^{-1}(a)|<\deg f$ \Leftrightarrow $f(z)-a$ hat mehrfache Nullstelle.

Beispiel

$$f(z) = z^{2}(2z + 3)$$
 $f(z) - 1 = (z + 1)^{2}(2z - 1)$

Kritische Werte: 0, 1 und ∞ .

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rationale Funktion

 $f(z) \in \mathbb{C}(z)$, Grad n, kritische Werte 0,1 und ∞

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rationale Funktion

 $f(z) \in \mathbb{C}(z)$, Grad n, kritische Werte 0,1 und ∞

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rationale Funktion

 $f(z) \in \mathbb{C}(z)$, Grad n, kritische Werte 0,1 und ∞

Erzeuger von Mon(f)

$$\sigma = (123)(56)$$

$$\tau = (34567)$$

$$\sigma \tau = (123467)$$

$$f(z) \in \mathbb{C}(z)$$
 vom Grad n mit r kritischen Werten

- $Mon(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_{r-1} \rangle$
- $\sum_{i=1}^{r}$ Anzahl der Zykel von $\sigma_i = (r-2)n+2$

mit
$$\sigma_r = \sigma_1 \cdot \sigma_2 \cdots \sigma_{r-1}$$
.

$$f(z) \in \mathbb{C}(z)$$
 vom Grad n mit r kritischen Werten

- $Mon(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_{r-1} \rangle$
- $\sum_{i=1}^{r}$ Anzahl der Zykel von $\sigma_i = (r-2)n+2$

mit
$$\sigma_r = \sigma_1 \cdot \sigma_2 \cdots \sigma_{r-1}$$
.

f(z)	r	Mon(f)
Z^n	2	<(12 n)> zyklisch

$f(z) \in \mathbb{C}(z)$ vom Grad *n* mit *r* kritischen Werten

- $Mon(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_{r-1} \rangle$
- $\sum_{i=1}^{r}$ Anzahl der Zykel von $\sigma_i = (r-2)n+2$

mit $\sigma_r = \sigma_1 \cdot \sigma_2 \cdots \sigma_{r-1}$.

f(z)	r	Mon(f)
Z^n	2	<(12 n)> zyklisch
$f(\cos\phi)=\cos n\phi$	3	Diedergruppe der Ordnung 2 <i>n</i>

$f(z) \in \mathbb{C}(z)$ vom Grad n mit r kritischen Werten

- $Mon(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_{r-1} \rangle$
- $\sum_{i=1}^{r}$ Anzahl der Zykel von $\sigma_i = (r-2)n+2$

mit $\sigma_r = \sigma_1 \cdot \sigma_2 \cdots \sigma_{r-1}$.

f(z)	r	Mon(f)
Z^n	2	<(12 n)> zyklisch
$f(\cos\phi)=\cos n\phi$	3	Diedergruppe der Ordnung 2n
"zufällig"	2(n-1)	Sym(n)

$f(z) \in \mathbb{C}(z)$ vom Grad n mit r kritischen Werten

- $\mathsf{Mon}(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_{r-1} \rangle$
- $\sum_{i=1}^{r}$ Anzahl der Zykel von $\sigma_i = (r-2)n+2$

mit $\sigma_r = \sigma_1 \cdot \sigma_2 \cdots \sigma_{r-1}$.

f(z)	r	Mon(f)
Z^n	2	<(12 n)> zyklisch
$f(\cos\phi)=\cos n\phi$	3	Diedergruppe der Ordnung 2n
"zufällig"	2(n-1)	Sym(n)
?	3	GL(3,2) einfach, Ordnung 168

Großprojekt

Bestimme die möglichen Monodromiegruppen rationaler Funktionen.

- Wesentliche Fortschritte:
 - Guralnick-Thompson Vermutung gelöst: Außer Alt(n) nur endlich viele nicht abelsche Kompositionfaktoren.
 - Bekannt für Polynome
- Alles beruht auf der Klassifikation der endlichen einfachen Gruppen, einem Satz mit einem Beweis auf 15.000 Seiten!

Bipartiter Graph

Ansatz

$$f(z) - 0 = \frac{(z-1)^5(z^2 + az + b)}{z}$$
$$f(z) - 1 = \frac{(z-c)^3(z-d)^2(z^2 + ez + g)}{z}$$

Lösung

Koeffizientenvergleich: Polynomiales System in $\{a, b, c, d, e, g\}$

Problem

- Ansatz berücksichtigt nur Eckenvalenzen des Dessins, daher viele "falsche" Lösungen.
- Polynomiale Systeme nur bis etwa Grad n = 10 lösbar.

Herausforderung

 (Matiyasevich 1998) Numerische Approximation durch Deformation, danach algebraische Koeffizienten erkennen.

Herausforderung

- (Matiyasevich 1998) Numerische Approximation durch Deformation, danach algebraische Koeffizienten erkennen.
- (Elkies 2013) Lösung über Primkörper \mathbb{F}_p , danach p-adisch liften zu Lösung in \mathbb{Q}_p , danach algebraische Koeffizienten erkennen.

Herausforderung

- (Matiyasevich 1998) Numerische Approximation durch Deformation, danach algebraische Koeffizienten erkennen.
- (Elkies 2013) Lösung über Primkörper \mathbb{F}_p , danach p-adisch liften zu Lösung in \mathbb{Q}_p , danach algebraische Koeffizienten erkennen.
- (M. 2015) Anderer Ansatz mit formalen Potenzreihen und direkte exakte Lösung.

Algebraische Definition der Monodromiegruppe

Beliebiger Körper K statt $\mathbb C$

Mon(f) für $f(z) \in K(z)$, zum Beispiel für K endlich?

$$Mon(f) = Gal(f(z) - t/K(t))$$

Stimmt für $K = \mathbb{C}$ mit der geometrisch definierten Gruppe überein.