Processamento de dados do Twitter para monitoramento e recomendação de rotas em cenários de desastres naturais

Mateus Pinto Garcia Orrana Lhaynher Veloso de Sousa Ana Caroline de Almeida Alves Deborah Maria Vieira Magalhães

Introdução

- Entre 1998 e 2017, 1,3 milhão de pessoas perderam a vida e cerca de 4,4 bilhões ficaram feridas, sem abrigo, deslocadas ou precisaram de ajuda de emergência
- Com 563 terremotos e tsunamis e 747.234 vidas perdidas, estes desastres causaram o maior número de mortos, 56% do total
- As perdas econômicas causadas por desastres relacionados com o clima subiram 151% nos últimos 20 anos

Introdução

As perdas econômicas sofridas pelos países de renda baixa e média-baixa têm consequências drásticas:

- Aumento da desigualdade social;
- Aumento de imigração;
- Aumento do tráfico de pessoas;

Fonte: ONU

- Políticas de planejamento de evacuação são uma das medidas tomadas para evitar perdas de recursos humanos
- A análise do comportamento de multidões no cenário de catástrofes naturais, exerce um papel importante no gerenciamento de desastres, bem como no planejamento da evacuação

- As mídias sociais são uma grande e rica fonte de dados, tais como textos, vídeos, imagens e geolocalizações, sendo reconhecidas como um dos principais canais de comunicação em situações de crises e desastres(ANBALAGAN e VALLIYAMMAY)
- Esse conteúdo pode incluir informações espaço-temporais associadas a um evento de interesse
- Uma quantidade imensa de dados é gerada diariamente nas mídias sociais, contudo, essa vasta quantidade é inútil sem qualquer método rápido e confiável para processá-los

- A mineração desses dados é eficaz no gerenciamento de emergências, incluindo realocação de operações de resgate, recomendação de rotas de fuga e distribuição de mantimentos e ajuda médica(Saduhukan,. et al, 2018)
- A mineração de dados consiste em explorar grandes quantidades de dados à procura de padrões consistentes

Mineração de Dados

Fig 1: Fluxo de Mineração de dados

- O terremoto ocorreu no Havaí como resultado de fissuras na lateral do sul do vulcão Kilauea, na zona leste do rifte.
- A abertura do solo, a uma profundidade de 50 metros, foi contínua e esteve associada à atividade sísmica.
- No dia 4 de maio a magnitude do terremoto chegou 6,9 graus na escala Richter na região próxima ao vulcão Kilauea.

Cenário de desastre

Fig 2: Fluxo de lava (em vermelho) durante a erupção do vulcão Kilauea em 2018 e o histórico do fluxo em anos anteriores destacado em escala de cinza.

Coleta de dados

Coleta de dados

- Acesso à API do Twitter: O Twitter oferece uma API de fácil comunicação e rica em dados;
- Modelos de Coleta:
 - Baseados em geolocalização e em contexto;

Cenário de desastre

Limpeza dos dados

- Remoção de números
- Remoção de caracteres especiais
- Remoção de Stopwords
- Converter todas palavras para minúsculo

Filtragem de conteúdo

 Utilização de um dicionário de palavras-chave para filtragem de conteúdo

Visualização dos dados

- Visualização de dados, análise exploratória descoberta de informações para validação dos dados capturados
- Validação do dicionário de palavras-chaves através de wordcount

Simulação

- A simulação de cenários de desastre traz benefícios à pesquisadores e desenvolvedores na área pois permite:
 - (1) avaliação de políticas de evacuação antes de ser colocada em prática em um ambiente real e em larga escala;
 - (2) a simulação de cenários realísticos em um ambiente controlado, onde é possível realizar modificações, repetições e adicionar novas características ao cenário.

MATSim

- É uma ferramenta que oferece uma estrutura para realizar simulações de transporte baseadas em agentes (entidades individuais ou coletivas, como organizações ou grupos) em larga escala.
- Cada agente (pessoa) otimiza repetidas vezes seu cronograma diário de atividades ao mesmo tempo que compartilha espaços na infraestrutura de transporte com os demais agentes ao longo da simulação.

MATSim

 Durante o processo de simulação e otimização, cinco etapas principais são identificadas: demanda inicial, execução, pontuação, replanejamento e análise.

MATSim

Fig 4. Fluxo do processo de simulação

Arquivos de entrada MATSim

- config.xml, descreve, o comportamento da simulação
- network.xml, descreve a rede rodoviária da área a ser simulada
- population.xml, descreve as demandas de viagem de acordo com o cenário que se deseja simular

Criação da rede MATSim

Fig 5. Fluxo do processo de criação da rede

Criação da rede MATSim

 Script para a conversão de dados .osm em arquivos compatíveis com o simulador MATSim.

Criação da população MATSim

- Script para a extração de dados do .csv;
- Script com as coordenadas dos abrigos;
- Script para a criação da população antes e após o desastre.

Via

- É um software independente que possibilita a visualização e análise de dados do MATSim, bem como conjuntos de dados espaciais e temporais genéricos.
- Fornece camadas para visualizar redes, instalações, atividades e viagens de agentes, paradas de transporte público ou apenas pontos genéricos no espaço, como uma coordenada qualquer.

Tweet vs Mapa Real

https://github.com/mpgxc/XSINFO-ICV.Disaster

Obrigado!