## Reproducible Research: Peer Assessment 1

### Suzannah Herron

### **Data Overview**

Activity Monitoring Dataset with:

- steps: Number of steps taken in a 5-min interval (missing values coded as NA)
- date: Date in YYYY-MM-DD format
- interval: Identifier for the 5-min interval in which measurement was taken

### 1. Loading and preprocessing the data

```
file_name <- "activity.zip"
if (!file.exists(file_name)) {
    url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip"
    download.file(url, file_name, method = "curl")
}

if (!file.exists("activity.csv")) {
    unquip(file_name)
}

activity <- read.csv("activity.csv")</pre>
```

Change date column from characters strings.

```
library(lubridate)
```

```
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
activity$date <- ymd(activity$date)
summary(activity)</pre>
```

```
## steps date interval

## Min. : 0.00 Min. :2012-10-01 Min. : 0.0

## 1st Qu.: 0.00 1st Qu.:2012-10-16 1st Qu.: 588.8

## Median : 0.00 Median :2012-10-31 Median :1177.5

## Mean : 37.38 Mean :2012-10-31 Mean :1177.5
```

```
## 3rd Qu.: 12.00 3rd Qu.:2012-11-15 3rd Qu.:1766.2
## Max. :806.00 Max. :2012-11-30 Max. :2355.0
## NA's :2304
```

There are 2304 NA values

## 2. What is mean total number of steps taken per day?

Removing NA values

```
act_na <- activity[!is.na(activity$steps), ]
summary(act_na)</pre>
```

```
##
       steps
                        date
                                         interval
## Min. : 0.00
                   Min.
                          :2012-10-02
                                      Min. : 0.0
  1st Qu.: 0.00
                   1st Qu.:2012-10-16
                                      1st Qu.: 588.8
## Median : 0.00
                   Median :2012-10-29
                                      Median :1177.5
         : 37.38
                                            :1177.5
## Mean
                   Mean
                          :2012-10-30
                                       Mean
## 3rd Qu.: 12.00
                   3rd Qu.:2012-11-16
                                       3rd Qu.:1766.2
## Max. :806.00
                   Max. :2012-11-29
                                       Max.
                                             :2355.0
```

#### 2.1 Calculate total number of steps taken per day

### 2.2 Graph of Sum of Steps Taken Per Day

## Total Steps Taken Per Day



# dev.off()

## 2.3 Calculate average number of steps taken per day

```
act_mean <- mean(act_sum$steps)
act_med <- median(act_sum$steps)
act_mean</pre>
```

## [1] 10766.19

 $\mathtt{act}\_\mathtt{med}$ 

## [1] 10765

The mean of total steps per day is  $1.0766189 \times 10^4$  and the median is 10765.

## 3. What is the average daily activity pattern?

# 3.1 Make a time series plot of 5-min interval and avg num of steps taken averaged across all days

Calculate mean of steps across intervals

```
int_avg <- aggregate(steps ~ interval, act_na, mean)
head(int_avg)</pre>
```

```
## interval steps
## 1 0 1.7169811
## 2 5 0.3396226
## 3 10 0.1320755
## 4 15 0.1509434
## 5 20 0.0754717
## 6 25 2.0943396
```

## Avg. Steps Per 5-Min Interval



```
# dev.off()
```

### 3.2 Which 5-min interval has most steps?

```
int_max <- int_avg[which.max(int_avg$steps), 1]
int_max</pre>
```

## [1] 835

The 5-minute interval with the most steps is 835.

### 4. Imputing missing values

### 4.1 Calculate the total number of NAs

```
sum(is.na(activity))
```

## [1] 2304

The total number of NAs in the dataset is 2304. Alternatively, summary() will give you this info as well:

### summary(activity)

```
##
       steps
                         date
                                           interval
## Min.
         : 0.00
                          :2012-10-01
                                             :
                                                  0.0
                   Min.
                                        Min.
  1st Qu.: 0.00
                   1st Qu.:2012-10-16
                                        1st Qu.: 588.8
## Median : 0.00
                   Median :2012-10-31
                                        Median :1177.5
         : 37.38
                           :2012-10-31
                                               :1177.5
## Mean
                    Mean
                                        Mean
## 3rd Qu.: 12.00
                    3rd Qu.:2012-11-15
                                        3rd Qu.:1766.2
## Max.
          :806.00
                    Max.
                          :2012-11-30
                                        Max.
                                               :2355.0
          :2304
##
  NA's
```

### 4.2 Devise strategy for filling in missing values and create new dataset

Find mean of average of steps per interval.

```
avg <- mean(int_avg$steps)
avg</pre>
```

## [1] 37.3826

Create df with the NAs.

```
nas <- is.na(activity$steps)</pre>
```

Insert avg into values with NA

```
data_avg <- activity
data_avg[nas, 1] <- avg
head(data_avg)</pre>
```

```
## steps date interval
## 1 37.3826 2012-10-01 0
## 2 37.3826 2012-10-01 5
## 3 37.3826 2012-10-01 10
## 4 37.3826 2012-10-01 15
## 5 37.3826 2012-10-01 20
## 6 37.3826 2012-10-01 25
```

Use new data\_avg dataset to calculate sum of step per day

```
data_sum <- aggregate(steps ~ date, data_avg, sum)
head(data_sum)</pre>
```

```
## date steps
## 1 2012-10-01 10766.19
## 2 2012-10-02 126.00
## 3 2012-10-03 11352.00
## 4 2012-10-04 12116.00
## 5 2012-10-05 13294.00
## 6 2012-10-06 15420.00
```

4.3 Make histogram of total number of steps taken each day. Report mean and median. How does it differ?

## Total Steps Taken Per Day



### # dev.off()

```
data_mean <- mean(data_sum$steps)
data_med <- median(data_sum$steps)
data_mean</pre>
```

## [1] 10766.19

 ${\tt data\_med}$ 

### ## [1] 10766.19

The mean without the NA values is  $1.0766189 \times 10^4$  and with inserted averages, it is  $1.0766189 \times 10^4$ . The median without the NA values is 10765 and with inserted averages, it is  $1.0766189 \times 10^4$ .

```
diff_mean <- act_mean - data_mean
diff_med <- act_med - data_med
diff_mean</pre>
```

**##** [1] 0

```
diff_med
```

```
## [1] -1.188679
```

There is no impact extracting the NAs to the mean and a very negligible difference of -1.1886792 to the median.

- 5. Are there differences in activity patterns between weekdays and weekends?
- 5.1 Using data\_sum, create a new variable factor with two levels of "weekday" and "weekend".

```
library(dplyr)
```

Using weekdays() to find day of the week then changing "Saturday" and "Sunday" to "Weekend" and the rest to "Weekday".

weekend <- mutate(data\_avg, weekday = ifelse((weekdays(data\_avg\$date) == "Saturday" | weekdays(data\_avg
head(weekend)</pre>

```
## steps date interval weekday
## 1 37.3826 2012-10-01 0 Weekday
## 2 37.3826 2012-10-01 5 Weekday
## 3 37.3826 2012-10-01 10 Weekday
## 4 37.3826 2012-10-01 15 Weekday
## 5 37.3826 2012-10-01 20 Weekday
## 6 37.3826 2012-10-01 25 Weekday
```

5.2 Make a plot of weekends vs. weekdays

Weekday vs. Weekend



# dev.off()