- Example: f(x, y, z), $f(x_1, x_2, ... x_n)$
- Level Set: $f(x_1, x_2, ... x_n) = k$
 - \circ Level Curve: f(x, y) = k
 - Contour map: Shows f(x, y) = k for successive values of k.
 - Level Surface: f(x, y, z) = k
 - The level set of a function of n free variables $f(x_1, x_2, ... x_n)$ has n-1 dimensions
- Formal definition of a **limit** of a function of two variables: Let f(x, y) be a function defined throughout an open disk about (a,b) except possibly at (a,b) itself. Then, $\lim_{(x,y)\to(a,b)} f(x,y) = L$ iff for every $\varepsilon > 0$, there is some number $\delta > 0$ such that if $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, then $|f(x,y) L| < \varepsilon$.
- Formal definition of a **limit** of a multivariable function: Let $f(x_1, x_2, ... x_n)$ be a function defined throughout an open n-disk about $(a_1, a_2, ... a_n)$ in n-space except possibly at $(a_1, a_2, ... a_n)$ itself. Then, $\lim_{(x_1, x_2, ... x_n) \to (a_1, a_2, ... a_n)} f(x_1, x_2, ... x_n) = L$ iff for every $\varepsilon > 0$, there is some number $\delta > 0$ such that if $0 < \sqrt{(x_1 a_1)^2 + (x_2 a_2)^2 + ... (x_n a_n)^2} < \delta$, then $|f(x_1, x_2, ... x_n) L| < \varepsilon$.
- **Squeeze Theorem**: Let $|f(x_1, x_2, ...x_n) L| \le g(x_1, x_2, ...x_n)$ for all $(x_1, x_2, ...x_n)$ in a region about $(a_1, a_2, ...a_n)$ except possibly $(a_1, a_2, ...a_n)$ itself. If $\lim_{(x_1, x_2, ...x_n) \to (a_1, a_2, ...a_n)} g(x_1, x_2, ...x_n) = 0$, then $\lim_{(x_1, x_2, ...x_n) \to (a_1, a_2, ...a_n)} f(x_1, x_2, ...x_n) = L$.
- Continuity: Suppose $f(x_1, x_2, ... x_n)$ is defined throughout an open n-disk about $(a_1, a_2, ... a_n)$. Then $f(x_1, x_2, ... x_n)$ is continuous at $(a_1, a_2, ... a_n)$ iff $\lim_{\substack{(x_1, x_2, ... x_n) \to (a_1, a_2, ... a_n)}} f(x_1, x_2, ... x_n) = f(a_1, a_2, ... a_n)$
- Composition Limit Rule: If $f(x_1, x_2, ... x_n)$ is continuous at $(a_1, a_2, ... a_n)$ and g(t) is continuous at $f(a_1, a_2, ... a_n)$, then $g(f(x_1, x_2, ... x_n))$ is continuous at $(a_1, a_2, ... a_n)$.