V. Beffara, D. Gayet — Université de Grenoble Alpes

Paris, 22 novembre 2016

Fonction propre aléatoire du laplacien sur la sphère

(Image: A.H. Barnett)

Ondes planes: Une composante

Ondes planes: Trois composantes

Ondes planes : Quatre composantes

Limite locale quand $\lambda \to \infty$

Fonctions propres

La limite en loi est un champ aléatoire gaussien sur \mathbb{R}^2 , dont la structure de covariance est donnée par le noyau

$$Cov[\phi(x),\phi(y)] = J_0(\|y-x\|)$$

(la covariance caractérise le champ). En particulier, la covariance change de signe, et décroît comme $1/\sqrt{\|y-x\|}$.

Une grande composante connexe

Polynome aléatoire

Polynome aléatoire

On part du polynome homogène aléatoire sur \mathbb{R}^3 défini par

$$P_d(X) = \sum_{|I|=d} a_I \sqrt{\frac{(d+2)!}{I!}} X^I$$

où les a_l sont des variables aléatoires gaussiennes indépendantes.

Polynome aléatoire

On part du polynome homogène aléatoire sur \mathbb{R}^3 défini par

$$P_d(X) = \sum_{|I|=d} a_I \sqrt{\frac{(d+2)!}{I!}} X^I$$

où les a_l sont des variables aléatoires gaussiennes indépendantes.

En restriction sur le plan d'équation $x_0 = 1$:

$$Q_d(x,y) = \sum_{i+j \le d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

Le champ à degré d fixé est défini par

$$Q_d(x,y) = \sum_{i+j \leq d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

Le champ à degré d fixé est défini par

$$Q_d(x,y) = \sum_{i+j \le d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

En faisant tendre d'vers l'infini, et après changement d'échelle :

$$Q_d(x/\sqrt{d}, y/\sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

Le champ à degré d fixé est défini par

$$Q_d(x,y) = \sum_{i+j \le d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

En faisant tendre d'vers l'infini, et après changement d'échelle :

$$Q_d(x/\sqrt{d}, y/\sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

Donc dans la limite $d \to \infty$, on définit naturellement

$$\psi(x,y) = \sum_{i > 0} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

Le champ à degré d fixé est défini par

$$Q_d(x,y) = \sum_{i+j \le d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

En faisant tendre d'vers l'infini, et après changement d'échelle :

$$Q_d(x/\sqrt{d}, y/\sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

Donc dans la limite $d \to \infty$, on définit naturellement

$$\psi(x,y) = e^{-(x^2+y^2)/2} \sum_{i,j>0} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

La limite en loi est un champ aléatoire gaussien sur \mathbb{R}^2 , dont la structure de covariance est donnée par le novau

$$Cov[\psi(x), \psi(y)] = \exp(-\|y - x\|^2/2)$$

(la covariance caractérise le champ). En particulier, la covariance ne change pas de signe, et décroît très rapidement.

Comparaison avec le modèle précédent

Une grande composante connexe

La même, et un cluster de percolation

Percolation (p = 0.3)

Percolation (p = 0.3)

Percolation (p = 0.45)

Percolation (p = 0.55)

Percolation (p = 0.6)

Percolation (p = 0.7)

- Kesten (1980) : $p_c = 1/2$
- Pour $p < p_c$, régime sous-critique :
 - Tous les clusters sont finis p.s.
 - $P[0 \longleftrightarrow x] \approx \exp(-\lambda_n ||x||)$
 - Le plus grand cluster dans Λ_n a pour diamètre $\approx \log n$
- Pour $p > p_c$, régime sur-critique :
 - Il existe p.s. un unique cluster infini
 - $P[0 \longleftrightarrow x, |C(x)| < \infty] \approx \exp(-\lambda_p ||x||)$
 - Le plus grand cluster fini dans Λ_n a pour diamètre $\approx \log n$
- Pour $p = p_c$, régime critique :
 - Tous les clusters sont finis p.s.
 - $P[0 \longleftrightarrow x] \approx ||x||^{-5/24}$
 - Le plus grand cluster dans Λ_n a pour diamètre $\approx n$

Russo-Seymour-Welsh

Théorème (RSW)

Pour tout $\lambda > 0$ il existe $c \in (0,1)$ tel que pour tout n assez grand,

$$c \leqslant P_{p_c}[LR(\lambda n, n)] \leqslant 1 - c.$$

Théorème (RSW)

Pour tout $\lambda > 0$ il existe $c \in (0,1)$ tel que pour tout n assez grand,

$$c \leqslant P_{p_c}[LR(\lambda n, n)] \leqslant 1 - c.$$

Le cas $\lambda = 1$ est facile par dualité ; il suffit de prouver le théorème pour une autre valeur de λ , et de recoller les morceaux.

Russo-Seymour-Welsh : preuve $(\lambda = 3/2)$

Russo-Seymour-Welsh : preuve ($\lambda = 3/2$)

Russo-Seymour-Welsh : preuve ($\lambda = 3/2$)

Notre résultat

Théorème (B., Gayet — arXiv:1605.08605)

Le champ ψ satisfait RSW.

Notre résultat

Théorème (B., Gayet — arXiv:1605.08605)

Le champ ψ satisfait RSW.

Le champ ψ satisfait RSW.

Cela a un certain nombre de conséquences :

• L'ensemble $\{z: \psi(z) > 0\}$ n'a pas de composante non bornée

Le champ ψ satisfait RSW.

- L'ensemble $\{z: \psi(z) > 0\}$ n'a pas de composante non bornée
- L'ensemble $\{z: \psi(z) < 0\}$ non plus

Le champ ψ satisfait RSW.

- L'ensemble $\{z: \psi(z) > 0\}$ n'a pas de composante non bornée
- L'ensemble $\{z: \psi(z) < 0\}$ non plus
- L'ensemble $\{z: \psi(z) = 0\}$ non plus

Le champ ψ satisfait RSW.

- L'ensemble $\{z: \psi(z) > 0\}$ n'a pas de composante non bornée
- L'ensemble $\{z: \psi(z) < 0\}$ non plus
- L'ensemble $\{z: \psi(z)=0\}$ non plus
- La probabilité que le disque unité soit relié au cercle de rayon R par une courbe dans le demi-plan supérieur sur laquelle $\psi = 0$ se comporte comme 1/R.

Le principal obstacle est que le champ ψ est analytique, donc on n'a pas du tout indépendance entre ses comportements dans des ouverts disjoints.

Quelques idées sur la preuve

Le principal obstacle est que le champ ψ est analytique, donc on n'a pas du tout indépendance entre ses comportements dans des ouverts disjoints.

Pour s'en sortir, on discrétise le champ sur un réseau à l'échelle $\delta>0$, pour pouvoir utiliser des méthodes de mécanique statistique "classiques". Mais il faut bien choisir δ :

Quelques idées sur la preuve

Le principal obstacle est que le champ ψ est analytique, donc on n'a pas du tout indépendance entre ses comportements dans des ouverts disjoints.

Pour s'en sortir, on discrétise le champ sur un réseau à l'échelle $\delta>0$, pour pouvoir utiliser des méthodes de mécanique statistique "classiques". Mais il faut bien choisir δ :

ullet Si δ est trop grand, on rate des informations sur ψ ;

Le principal obstacle est que le champ ψ est analytique, donc on n'a pas du tout indépendance entre ses comportements dans des ouverts disjoints.

Pour s'en sortir, on discrétise le champ sur un réseau à l'échelle $\delta > 0$, pour pouvoir utiliser des méthodes de mécanique statistique "classiques". Mais il faut bien choisir δ :

- Si δ est trop grand, on rate des informations sur ψ ;
- Si δ est trop petit, on a trop de corrélation.

Quelques idées sur la preuve

Le principal obstacle est que le champ ψ est analytique, donc on n'a pas du tout indépendance entre ses comportements dans des ouverts disjoints.

Pour s'en sortir, on discrétise le champ sur un réseau à l'échelle $\delta>0$, pour pouvoir utiliser des méthodes de mécanique statistique "classiques". Mais il faut bien choisir δ :

- ullet Si δ est trop grand, on rate des informations sur ψ ;
- ullet Si δ est trop petit, on a trop de corrélation.

C'est essentiellement à cause de la deuxième raison que les fonctions propres du laplacien sont plus difficiles à contrôler . . .

Inégalité sur les corrélations

Théorème

Soient X et Y deux vecteurs gaussiens dans \mathbb{R}^{m+n} , de covariances

$$\Sigma_X = \left[\begin{array}{ccc} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_2 \end{array} \right] \quad \text{et} \quad \Sigma_Y = \left[\begin{array}{ccc} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{array} \right],$$

où $\Sigma_1 \in M_m(\mathbb{R})$ et $\Sigma_2 \in M_n(\mathbb{R})$ ont tous leurs coefficients diagonaux égaux à 1. Notons μ_X (resp. μ_Y) la loi des signes des coordonnées de X (resp. Y), et η la valeur absolue maximale des coefficients de Σ_{12} . Alors,

$$d_{TV}(\mu_X, \mu_Y) \leqslant C(m+n)^{8/5} \eta^{1/5}$$
.

En particulier, si A (resp. B) est un événement ne dépendant que des signes des m premières (resp. n dernières) coordonnées de X,

$$|P[A \cap B] - P[A]P[B]| \le C(m+n)^{8/5}\eta^{1/5}$$
.

Conjecture

Les lignes nodales de ϕ convergent, dans la limite d'échelle, vers la même chose que celles de ψ et que les interfaces de la percolation critique, c'est-à-dire vers des processus SLE(6). En particulier, les probabilités de traverser des rectangles convergent vers la formule de Cardy, et la limite est invariante par transformation conforme.

Conjecture de Bogomolny-Schmidt

Conjecture

Les lignes nodales de ϕ convergent, dans la limite d'échelle, vers la même chose que celles de ψ et que les interfaces de la percolation critique, c'est-à-dire vers des processus SLE(6). En particulier, les probabilités de traverser des rectangles convergent vers la formule de Cardy, et la limite est invariante par transformation conforme.

