

Description

Features

- V_{DS}=-12V, I_D=-4.1A
 - $R_{DS(ON)}$ < 36m Ω @ Vgs = -4.5V
 - $R_{DS(ON)}$ < 53 m Ω @ VGS = -2.5 V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM2305B-S2	VSM2305B	TAPING	SOT-23-3	7inch	3000	180000

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units	
V _{DSS}	Drain-Source Voltage		-12	V	
V _{GSS}	Gate-Source Voltage		±8	V	
I _D	Continuous Drain Current	T _C = 25°C	-4.1	A	
		T _C = 100°C	-2.6		
I _{DM}	Pulsed Drain Current note1		-16	Α	
P _D	Power Dissipation	T _C = 25°C	1	W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		125	°C/W	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$ C	

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	cteristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250μA	-12	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -12V, V_{GS} = 0V,$	1	-	-1	μA
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA
On Charac	cteristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.4	-0.65	-1.0	V
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =-4.5V, I _D =-4.1A	-	26	36	mΩ
	note2	V _{GS} =-2.5V, I _D =-3A	-	35	53	
Dynamic (Characteristics					
C _{iss}	Input Capacitance		-	905	-	pF
Coss	Output Capacitance	$V_{DS} = -4V, V_{GS} = 0V,$	-	210	-	pF
C_{rss}	Reverse Transfer Capacitance	f = 1.0MHz	1	195	-	pF
Qg	Total Gate Charge	\\\ - 4\\\\\ - 4 4A	1	7.8	15	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = -4V, I_D = -4.1A,$	-	1.2	-	nC
Q_{gd}	Gate-Drain("Miller") Charge	$V_{GS} = -4.5V$	-	1.6	-	nC
Switching	Characteristics					
t _{d(on)}	Turn-on Delay Time	\/ - 4\/ L - 0.04	-	13	20	ns
t _r	Turn-on Rise Time	$V_{DD} = -4V$, $I_D = -3.3A$,	-	35	53	ns
$t_{d(off)}$	Turn-off Delay Time	R_{G} =1.0 Ω , V_{GEN} =-4.5 V , R_{L} =1.2 Ω	-	32	48	ns
t _f	Turn-off Fall Time	N1.252	-	10	20	ns
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings				
	Maximum Continuous Drain to Source Diode Forward Current			-	-4.1	А
I _S						
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-16	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = -4.1A	-	-	-1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} =0V, I _S =-4.1A,	-	20	-	ns
Q _{rr}	Reverse Recovery Charge	di/dt=100A/µs	-	9	-	nC

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

