

IMD0033 - Probabilidade Aula 21 - Probabilidade Básica

Ivanovitch Silva Junho, 2018

Agenda

- Lente da aleatoriedade
- Experimento, amostra, espaço amostral
- Valor esperado, variância
- Probabilidade condicional, regra de bayes
- Bônus: gráficos interativos, computação simbólica

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_1.git

Ou

git pull

Olhando pela lente da aleatoriedade: como o acaso influencia as nossas vidas

Daniel Kahneman, Prêmio Nobel de Economia (2002)

Embora os princípios básicos do acaso surjam da lógica cotidiana, muitas das consequências desses princípios se mostram contra-intuitivos.

"Remember, always try to keep the number of landings you make equal to the number of take offs you make."

- Recompensa por comportamentos positivos era seguida por um desempenho pior .
- Punição por manobras mal executadas era seguida por um desempenho melhor na tentativa seguinte.

Daniel Kahneman percebeu que o fenômeno mencionado pelos instrutores recai no problema de **regressão à média**, que se baseia na tese de que em qualquer série de eventos aleatórios, há uma grande probabilidade de que um evento extraordinário seja seguido por um evento corriqueiro.

Olhando pela lente da aleatoriedade

- Comportamento dinâmico dos sistemas são representados por variáveis aleatórias
 - Taxa de perda de pacotes
 - Atraso
 - Confiabilidade do sistema
 - Taxa de falhas dos equipamentos
 - Previsão de tempo

Modelagem estocástica (<u>variáveis</u> <u>aleatórias e funções de distribuições</u>)

Principais definições

Experimento aleatório (random experiment)

É um experimento que pode ser repetido diversas vezes considerando <u>as mesmas condições iniciais.</u>

Shaker

Envelhecimento

Choque Térmico

Salt-Spray Corrosão Acelerada

Principais definições

Amostra (single outcome)

É o resultado de um experimento aleatório específico (também chamado de <u>evento</u>)

Choque Térmico

Após um choque térmico de um $\Delta = 80^{\circ}$ o componente sofreu um defeito?

Principais definições

Espaço amostral (sample space)

É o conjunto de todas as amostras de um experimento aleatório específico

Choque Térmico

 Δ = 80° - Houve defeito? (sim,não)

Exemplo

Assuma uma variável aleatória P (quantidade de pacotes que chegam no gateway a cada minuto)

Espaço amostral

 $\Omega = \{ (\stackrel{\mathsf{A}}{0}, \stackrel{\mathsf{B}}{0}), (1,0), (2,0), (3,0), (0,1), (1,1),$

(2,1),(3,1),(0,2),(1,2),(2,2),(3,2)

Dispositivo B Tx = 2 pkt/min

Jogando uma moeda

Probabilidade Teórica vs Probabilidade Empírica

$$\Omega = \{H, T\}$$

Definição de probabilidade

- Assuma Ω ser o espaço amostral de um experimento aleatório.
- Para cada evento A do espaço amostral, nós assumimos que um número P(A) é definido e satisfaz:

$$P(A) \ge 0$$

$$\sum_{\omega \in \Omega} P(\omega) = 1.$$

Qual a probabilidade de sair um número par?

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $P(E) = \sum_{\omega \in E} P(\omega)$
 $E = \{2, 4, 6\}$ $= P(2) + P(2)$

$$P(E) = \sum_{\omega \in E} P(\omega)$$
= $P(2) + P(4) + P(6)$
= $\frac{1}{6} + \frac{1}{6} + \frac{1}{6}$
= $\frac{1}{2}$

Qual a probabilidade de sair pelo menos uma cara?

$$\Omega = \{HH, HT, TH, TT\}$$

$$P(E) = P(HH) + P(HT) + P(TH)$$

$$= p^{2} + p(1-p) + (1-p)p$$

$$= p^{2} + 2(p-p^{2})$$

$$= 2(p-p^{2})$$

$$= p(2-p)$$

$$P(F) = P(TT) = (1 - p)^{2}$$

$$P(E) = 1 - P(F)$$

$$= 1 - (1 - p)^{2}$$

$$= 1 - (1 - 2p + p^{2})$$

$$= 2p - p^{2}$$

= p(2-p)

Computação simbólica

```
In [65]: from sympy import *
         # enable pretty printing.
         init printing(use unicode=True)
         # create a variable
         p = symbols('p')
         # simplifying the equation
         simplify(p**2 + p * (1-p) + (1-p) * p)
```

Out[65]: p(-p+2)

Valor esperado de uma variável aleatória

Qual o valor esperado/médio em diversos lançamentos de um dado?

Valor esperado de uma variável aleatória

Média Ponderada =
$$\frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6$$

= $\frac{1}{6} \times (1 + 2 + 3 + 4 + 5 + 6)$
= $\frac{21}{6}$
= 3.5 $E(X) = \sum_{x \in X(\Omega)} xP(X = x)$

Valor esperado no lançamento de uma moeda

$$X(\Omega) = \{0, 1\}$$

$$T \mapsto 0$$

$$H \mapsto 1$$

$$E(X) = \sum_{x \in X(\Omega)} xP(X = x)$$

$$= \sum_{x \in \{0,1\}} xP(X = x)$$

$$= 0 \cdot P(X = 0) + 1 \cdot P(X = 1)$$

$$= 0 \cdot P(T) + 1 \cdot P(H)$$

$$= 0 \cdot (1 - p) + 1 \cdot p$$

$$= p$$

Valor esperado no lançamento de uma moeda

```
from sympy.stats import FiniteRV, E

# unbiased coin
density = {0: 0.5, 1: 0.5}

# Create a Finite Random Variable given a dict representing the density.
X = FiniteRV('X', density)

print(E(X))
```

0.500000000000000


```
from sympy.stats import FiniteRV, P, E

density = {1: 0.0780, 2: 0.0780, 3: 0.6100, 4: 0.0780, 5: 0.0780, 6: 0.0780}

# Create a Finite Random Variable given a dict representing the density.
X = FiniteRV('X', density)

print(E(X))
```

3.23400000000000

Exercício - Comprovar as relações usando sympy

$$E(X + Y) = E(X) + E(Y)$$

$$E(cX) = cE(X)$$

$$E[XY] = E[X]E[Y]$$

$$Var(X) = E[(X - E(X))^{2}]$$

- 1. $Var(X) \ge 0$
- 2. $Var(cX) = c^2 Var(X)$
- 3. $Var(X) = E(X^2) E(X)^2$

$$VAR(X) = E(X^{2}) - E(X)^{2} \qquad \Omega = \{1, 2, 3, 4, 5, 6\}$$
$$= (\sum_{k=1}^{6} k^{2} \cdot \frac{1}{6}) - 3.5^{2}$$
$$\approx 2.92$$


```
from sympy.stats import variance, Die
from sympy import simplify

# Define one six sided dice
X = Die('X', 6)
variance(X)
```


Revisão - Teoria de Conjuntos

Complemento (probability of complementary events)

$$Pr(A') = 1 - Pr(A)$$

Revisão - Teoria de Conjuntos

Regra da soma (addition rule of probability)

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

se A e B são mutualmente exclusivo:

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

Verificar as identidades

Simulador

http://students.brown.edu/seeing-theory/compound-probability/index.html#section1

Identidades

https://cs.brown.edu/courses/cs022/static/files/documents/sets.pdf

Probabilidade Condicional

Ajuda a atualizar a nossa hipótese baseado em uma nova evidência

Probabilidade Condicional

Qual a probabilidade de um aluno passar em IMD0033?

Dado que um aluno tirou uma nota maior que 5 (cinco) na primeira unidade de IMD0033, qual a probabilidade dele passar no componente curricular?

Probabilidade Condicional

Qual a probabilidade de chover amanhã?

Qual a probabilidade de chover amanhã dado que hoje a noite está nublado?

Paradoxo de Monty Hall

Fórmula de Bayes

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 $P(A|B) = \frac{P(B \cap A)}{P(B)}$

A partir dos dados

Probabilidade a Priori

Prosteriori

 $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$

Normalização

E se P(A) e P(B) forem independentes?

$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

Lei da Probabilidade Total (law of total probability)

Seja F um evento do espaço amostral S, e E₁, E₂, ..., E_n uma partição de S, podemos calcular a probabilidade de F da seguinte forma:

$$\Pr(F) = \sum_{i=0}^{n} \Pr(F \cap E_i) = \sum_{i=0}^{n} \Pr(F \mid E_i) \cdot \Pr(E_i)$$

Fórmula de Bayes Completa

A lei da probabilidade total nos diz que:

$$\Pr(F) = \sum_{i=0}^{n} \Pr(F \cap E_i) = \sum_{i=0}^{n} \Pr(F \mid E_i) \cdot \Pr(E_i)$$

$$\Pr(E_j | F) = \frac{\Pr(F \cap E_j)}{\Pr(F)} = \frac{\Pr(F \cap E_j)}{\sum_{i=0}^{n} \Pr(F \cap E_i)} = \frac{\Pr(F | E_j) \cdot \Pr(E_j)}{\sum_{i=0}^{n} \Pr(F | E_i) \cdot \Pr(E_i)}$$

Exemplo (clássico)

Um gateway recebe dados de 3 equipamentos (E_1, E_2, E_3). A proporção de pacotes gerados por equipamento é: $E_1 = 20\%$, $E_2 = 30\%$ e $E_3 = 50\%$.

A fração de pacotes corrompidos é: $E_1 = 5\%$, $E_2 = 3\%$, $E_3 = 1\%$

Se um pacote é escolhido ao acaso, sabendo que o pacote está corrompido, qual a probabilidade de que o pacote tenha sido originado no equipamento E₃?

Exemplo - Solução

- Assuma E_i como sendo a probabilidade de um equipamento i ser escolhido aleatoriamente.
- Assuma C como sendo a probabilidade de um pacote estar corrompido

$$Pr(E_1) = 0.20 \quad Pr(E_2) = 0.30 \quad Pr(E_3) = 0.50$$

As probabilidades condicionais $Pr(C|E_i)$ já foram dadas pela questão $Pr(C|E_1) = 0.05$ $Pr(C|E_2) = 0.03$ $Pr(C|E_3) = 0.01$

Precisamos agora calcular C

$$Pr(C) = \sum_{i} Pr(C|E_{i}) Pr(E_{i}) = 0.05x0.20 + 0.03x0.30 + 0.01x0.50 = 0.024 = 2.4\%$$

Por fim

$$Pr(E_3|C) = Pr(C|E_3) \times Pr(E_3) / Pr(C) = 0.01 \times 0.50 / 0.024 = 0.2083 = 20.83\%$$

Exemplo orientado a dados

https://towardsdatascience.com/bayes-rule-applied-75965e4482ff