

Métodos Estadísticos de la Ingeniería Prácticas de ordenador Departamento de Matemática Aplicada

Variables Aleatorias

Ejercicio 1

Al año una consultoría, de promedio, da consejo a 1200 personas. En un momento al azar, calcule:

- a) La probabilidad de dar consejo a más de 1.085 personas.
- b) La probabilidad de dar consejo entre 1.200 y 1.300 personas.

Ejercicio 2

Un profesor ha realizado un test de 100 preguntas a 200 alumnos. Supóngase que las puntuaciones de los alumnos siguen una distribución normal de media 60 y desviación típica 10. Escogiendo un alumno al azar. Calcule:

Aviso: Realice el ejercicio de dos maneras distintas: 1) Empleando la variable estandarizada Z2) Sin emplear la variable estandarizada Z

- a) La probabilidad de obtener al menos 70 puntos.
- b) La probabilidad de obtener al menos 39 puntos y a lo sumo 80 puntos.
- c) La probabilidad de que la puntuación del alumno difiera de la media como máximo en 20 puntos. $P(|X-60| \le 20)$
- d) La probabilidad de que la puntuación del alumno difiera de la media al menos en 20 puntos. $P(|X-60| \ge 20)$
- e) La cantidad de alumnos que han obtenido una puntuación igual o superior a 70 puntos.

Ejercicio 3

La vida útil, en horas, de dos aparatos electrónicos sigue una distribución exponencial de parámetros 40 y 45 respectivamente.

- a) ¿Qué aparato se debería escoger si se quisiera emplear dicho aparato al menos durante 45 horas?
- **b)** Represente la función de distribución de la primera variable.

Ejercicio 4

Supóngase que un sistema se compone de 9 elementos y que para que el sistema funcione de forma correcta al menos seis de ellos deben estar operativos.

- a) Si la probabilidad de que un elemento esté operativo es de 0.95, calcule la probabilidad de que todo el sistema funcione de forma correcta.
- b) Represente la función de probabilidad.

Ejercicio 5

La cantidad de pan que se vende diariamente en una panadería sigue la siguiente distribución: N(700,30).

- a) ¿Cuántas barras de pan se deberán ofrecer diariamente para satisfacer el 99% de los pedidos?
- b) Represente la función de densidad.

Ejercicio 6

La vida útil de un tipo concreto de circuito sigue una distribución exponencial de parámetro 1000 horas.

- a) Calcule la probabilidad de que la vida útil del circuito se encuentre entre 900 y 1200 horas.
- b) ¿Cuál es la probabilidad de que la vida útil sea mayor que 800 horas?
- c) La empresa que vende estos circuitos quiere asegurar una vida útil mínima. ¿Cuál debería ser la vida útil mínima que puede asegurar la empresa si al menos el 95% de los productos debe durar más?

Ejercicio 7

Supóngase que una imprenta concreta de cada quince libros 3 tienen errores de impresión. De quince libros se cogen dos al azar.

- a) ¿Cuál es la probabilidad de que al menos un libro no tenga errores de impresión?
- b) Represente la función de distribución.

Ejercicio 8

En una fábrica el 70% de los accidentes se deben a la falta de seguridad laboral.

- a) Calcule la probabilidad de que, de cuatro accidentes elegidos al azar, dos sean debido a la falta de seguridad.
- b) ¿Cuál es la probabilidad de que, de cada cuatro accidentes, más de la mitad se deba a la falta de seguridad laboral?

Ejercicio 9

En un envío de 200 alarmas 6 son defectuosas. Se escogen tres alarmas al azar y se le envían a un comprador. Calcule:

- a) La probabilidad de que, de las alarmas enviadas, una sea defectuosa.
- b) La probabilidad de que al menos dos de las alarmas enviadas sean defectuosas.

Ejercicio 10 (ejercicio de examen escrito)

De una baraja de 40 cartas se han escogido cuatro cartas al azar en 200 ocasiones.

- a) Calcule la probabilidad de lograr 5 veces un as, un rey, una sota y cualquier otra carta distinta a las anteriores. Considere las cuatro interpretaciones posibles (orden y/ reposición) y obtenga los resultados de forma precisa.
- **b)** Calcule la probabilidad de obtener la combinación anterior en el orden especificado en más de cinco ocasiones.

Ejercicio 11 (ejercicio de examen)

En un lote recogido en un almacén hay 120 tubos de aluminio, 145 de cobre y 200 de PVC. Escogiendo 9 tubos al azar, calcule:

- a) La probabilidad de que todos los tubos sean de cobre.
- **b)** La probabilidad de que al menos 4 tubos sean de aluminio.
- c) La probabilidad de que al menos 3 y como mucho 7 tubos sean de PVC o de aluminio.
- d) Represente la función de probabilidad de la variable aleatoria del apartado a).

Ejercicio 12

La prueba final de una competición se trata de un test de 80 preguntas (cada pregunta tiene dos respuestas posibles y sólo una de ellas es correcta). A la final sólo han llegado dos personas. Supóngase que el primer participante conoce la respuesta de 40 preguntas y que responde al azar las restantes 40. Por el contrario, el segundo participante conoce únicamente la respuesta a 20 preguntas y el resto las responde al azar.

- a) Calcule la probabilidad de que el primer participante conteste de forma correcta a más de 50 preguntas.
- **b)** ¿Cuál es la probabilidad de que el segundo participante responda de forma correcta al menos a 55 preguntas?
- c) Si uno de los participantes respondiera al azar todas las preguntas, ¿cuál sería la probabilidad de acertar la respuesta de al menos 40?

Ejercicio 13

Durante un programa de televisión si al llamar a un número de teléfono la llamada es contestada por el presentador de dicho programa, se gana un premio de 3000 €. La probabilidad de que esa línea de teléfono esté ocupada es de 0.98. Responda a las siguientes preguntas:

- a) ¿Cuál es la probabilidad de ganar los 3000 € en la segunda llamada realizada?
- b) Si durante la misma emisión del programa el premio se reparte más de una vez, ¿cuál es la probabilidad de que a lo sumo se tengan que realizar 50 llamadas para ganar dicho premio 3 veces?
- c) Si durante la emisión se ha ganado el premio en dos ocasiones, ¿cuál es la probabilidad se haya tenido que llamar 75 veces?