Disciplina de Processamento de Imagens¹

Prof. Fabio Augusto Faria

Instituto de Ciência e Tecnologia
UNIFESP
Sala 106
ffaria@unifesp.br
http://fafaria.wix.com/fabiofaria

Segundo Semestre de 2015

¹Aulas baseadas no material do Prof. Hélio Pedrini

Roteiro

- Fundamentos
 - Terminologia
 - Tipos de Sinais
 - Sistema Visual Humano
 - Modelo de Imagens
 - Digitalização
 - Resolução x Profundidade de Imagens
 - Representação de Imagens Digitais
 - Imagem Multidimensional

Tipos de Sinais

- Conceito de sinal varia com respeito ao contexto no qual ele está sendo utilizado.
- De um ponto de vista geral, um sinal é a manifestação de um fenômeno que pode ser expresso de forma quantitativa.
- Um sinal pode ser representado como uma função de uma ou mais variáveis independentes e, tipicamente, contém informação acerca da natureza ou comportamento do fenômeno físico sob consideração. Por exemplo, o sinal de voz pode ser definido por uma função de uma variável (tempo), enquanto o sinal correspondente a uma imagem pode ser definido por uma função de duas variáveis (espaço).

Tipos de Sinais

- No domínio temporal, pode-se analisar como as variações do sinal evoluem com o decorrer do tempo.
- Um sinal pode ser contínuo ou discreto:
 - Em um sinal contínuo, seus estados podem ser definidos em qualquer instante de tempo, ou seja, sem interrupção.
 - Um sinal discreto é definido por um conjunto de valores enumeráveis ou inteiros, cujo intervalo depende da natureza do sinal.
- Sinais podem ainda ser classificados como analógicos ou digitais:
 - Sinais analógicos podem variar continuamente no tempo.
 - Um sinal digital pode assumir apenas valores discretos.

Exemplos:

- a) Uma onda sonora é um exemplo de sinal analógico.
- b) O código Morse, utilizado em telegrafía, é um exemplo de sinal digital.

Tipos de Sinais

• Circuitos eletrônicos podem converter um tipo de sinal em outro.

Exemplos:

- a) Uma onda sonora capturada por um microfone deve ser transformada em sinal digital para manipulação em um computador ou para transmissão como qualquer outro tipo de dado.
- b) Em contrapartida, para reproduzir o som em um alto-falante, o sinal de áudio digital deve ser convertido em sinal analógico.

Por que estudar o Sustema Visual Humano?

- Processamento de imagens baseam-se em três elementos básicos:
 - Matemática; (Objetiva)
 - Estatística; (Objetiva)
 - ► Avaliação humana; (Subjetiva)

Sistema Visual Humano

- Dentre as principais capacidades sensoriais dos seres humanos que permitem adequada percepção do ambiente que os cerca, a visão é uma das mais importantes.
- A visão envolve diversas funções complexas, tais como detecção, localização, reconhecimento e interpretação de objetos no ambiente.
- Uma vez que a área de visão computacional procura dotar as máquinas com capacidades visuais, torna-se fundamental compreender o funcionamento do sistema visual humano sob os diversos aspectos psicofísicos e neurofisiológicos.
- A compreensão do sistema visual humano pode auxiliar o desenvolvimento de sistemas capazes de adquirir, analisar e interpretar informações visuais, com o objetivo de ampliar o número de tarefas que as máquinas podem realizar.

Sistema Visual Humano²

Corte transversal do olho humano.

Sistema Visual Humano

- O globo ocular possui formato aproximadamente esférico, com diâmetro de cerca de 20 mm, situado no interior de uma cavidade óssea, chamada órbita, sendo protegido pelas pálpebras e cílios.
- O globo ocular é aderido à órbita pelos músculos extrínsecos, os quais lhe dão capacidade de movimentação.
- O globo é envolvido por três membranas:
 - uma camada externa formada pela esclerótica e pela córnea.
 - uma camada intermediária formada pela coróide, íris e corpo ciliar.
 - uma camada interna formada pela retina.

Sistema Visual Humano

- A esclerótica é uma camada resistente e opaca que envolve o globo ocular, protegendo as estruturas internas do globo.
- Na parte frontal do globo, localiza-se a **córnea**, que é um tecido transparente por onde a luz penetra no olho.
- A córnea funciona como uma lente, cujo poder de refração deve permitir que a imagem se forme em uma camada neurossensorial, a retina.
- A coróide está localizada abaixo da esclerótica.
 - Essa membrana contém uma rede de vasos sanguíneos, os quais nutrem as sensíveis estruturas oculares.
 - O revestimento da coróide é fortemente pigmentado, ajudando a reduzir a quantidade de luz que entra no olho.

Sistema Visual Humano³

- A íris é responsável por controlar a quantidade de luz que penetra no olho.
- A abertura central da íris é conhecida como pupila, cujo diâmetro varia de 2 a 8 mm.
- A pupila expande ou contrai seu tamanho de acordo com a luminosidade do ambiente, regulando assim a entrada de luz no olho.

³Imagem extraída do google image.

Sistema Visual Humano

- Exatamente atrás da íris está o cristalino, que é uma lente gelatinosa e elástica, cuja função é auxiliar a córnea a focalizar a luz que entra no olho para formar a imagem na retina.
- A distância focal do cristalino é modificada por movimentos de um anel de músculos, os músculos ciliares, permitindo ajustar a visão para objetos próximos ou distantes.

Sistema Visual Humano

- Imediatamente atrás das lentes, localiza-se a maior câmara do olho, a qual está preenchida por um fluido viscoso chamado humor vítreo, produzido pelo corpo ciliar.
- O humor aquoso é um líquido incolor existente entre a córnea e o cristalino que, juntamente com o humor vítreo, é responsável pela manutenção do volume e da pressão intra-ocular.

Sistema Visual Humano⁴

- A membrana mais interna do olho é revestida por uma camada de tecidos nervosos, chamada retina.
- A retina é responsável pela sensação da imagem visual projetada pelas estruturas da parte frontal do olho, além de codificar essas informações com sinais nervosos e transmiti-las para o cérebro.
- Cada olho recebe e envia ao cérebro uma imagem, no entanto, os objetos são vistos como um só, devido à capacidade de fusão das imagens (Estereopsia ou Visão estéreo).

⁴Imagem extraída do google image.

Sistema Visual Humano

- A visão binocular (com os dois olhos) proporciona maior campo visual e a noção de profundidade.
- O ponto cego, uma pequena região da retina onde está localizado o nervo óptico, não possui fotorreceptores.⁵
- A retina é composta por células sensíveis à luz, os cones e os bastonetes. Essas células transformam a energia luminosa das imagens em impulsos elétricos que são transmitidos ao cérebro pelo nervo óptico.

⁵Teste ponto cego: https://www.youtube.com/watch?v=kRlxqyubB5Y

Sistema Visual Humano⁶

- Alterações químicas ocorrem nos bastonetes e cones quando a luz atinge a retina.
- A vitamina A é o composto químico utilizado tanto pelos cones quanto pelos bastonetes para a síntese de substâncias fotossensíveis.

⁶Imagem extraída do google image.

Sistema Visual Humano

Cones:

- São altamente sensíveis à cor e responsáveis pela capacidade do olho em discernir detalhes nas imagens.
- São em número de 6 a 7 milhões em cada olho e estão localizados na porção central da retina, chamada mácula lútea.
- Ao centro da mácula lútea está a fóvea, uma região onde as células nervosas estão afastadas para o lado, permitindo que a luz atinja diretamente os receptores.
- ► Na fóvea, portanto, a acuidade visual é máxima.

Bastonetes:

- O número de bastonetes é muito maior, cerca de 75 a 150 milhões, distribuídos na superfície periférica da retina.
- Os bastonetes são mais sensíveis à baixa intensidade de luz e permitem uma percepção geral da imagem captada no campo de visão.

Cones e Bastonetes⁷

FIGURE 2.2 Distribution of rods and cones in the retina.

⁷Imagem extraída do google image.

Sistema Visual Humano e Câmera Fotográfica⁸

- Várias semelhanças podem ser destacadas entre o sistema visual humano e um sistema de sensores, tal como uma câmera fotográfica.
- O **obturador** da câmera possui função similar à da pálpebra do olho.
- O diafragma de uma câmera controla a quantidade de luz que atravessa as lentes, similar à iris no olho humano.

⁸Imagem extraída do google image.

Sistema Visual Humano e Câmera Fotográfica⁹

- As lentes da câmera são análogas ao conjunto formado pelo cristalino e córnea, cujo objetivo comum é focalizar a luz para tornar nítidas as imagens na retina.
- Nas câmeras fotográficas, películas fotossensíveis ou filmes fotográficos são utilizados para registrar as imagens em câmeras analógicas, enquanto cartões de memória são utilizados em câmeras digitais.

⁹Imagem extraída do google image.

Foco das Imagens¹⁰

- No olho, lente tem sua curvatura alterada para projetar imagem no fundo do olho, mudando o foco. Variação da distância focal 14mm 17mm.
- Em máquinas fotográficas o foco é o mesmo, o que muda é a distância da lente ao fundo.

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the optical
center of the lens.

¹⁰Imagem extraída do google image.

Curiosidade: Visão canina¹¹

- Visão dicromática: só enxerga RED e BLUE.
- Distingue algumas cores pela intensidade: vermelho e verde.
- Reduzida faixa de discriminação de brilho.

Espectro visível do homem e cão.

Normal

Dicromática do cão

¹¹Imagem extraída do google image.

Curiosidade: Visão canina¹²

• Abaixo está a visão "real" do cão.

Normal

Visão de Cão

¹²Imagem extraída do google image.

Glaucoma¹⁴

 O glaucoma refere-se a um grupo de doenças oculares que provocam danos irreparáveis no nervo óptico. Este, por sua vez, é o nervo que carrega as informações visuais recebidas pelo olho até o cérebro.¹³

¹³http://www.minhavida.com.br/saude/temas/

¹⁴Imagem extraída do google image.

Catarata¹⁶

A catarata é uma opacidade do cristalino (lente natural do olho).
 Para pessoas que têm catarata tem a visão nublada, como se olhassem por uma janela embaçada ou enevoada.¹⁵

¹⁵http://www.minhavida.com.br/saude/temas/

¹⁶Imagem extraída do google image.

Percepção de Bordas¹⁷

• Quantas intensidades de cinza existem nesta imagem?

¹⁷Imagem extraída do google image.

Percepção de Bordas¹⁸

- 8!
- Bandas de Mach (Ernst Mach, 1865): Contornos são subestimados ou superestimados por nossos olhos.
- O olho humano percebe duas estreitas listras de diferente gradiente de luminosidade (contraste) em cada fronteira, não presentes na imagem verdadeira

Intensidade de Brilho Relativa¹⁹

• Qual quadrado interno é o mais escuro e qual é o mais claro?

¹⁹Imagem extraída do google image.

Ilusão de Ótica²⁰

- Intensidade do quadrado central é a mesma em todas as figuras.
- Olho percebe intensidade diferente, dependendo do quadrado externo.

²⁰Imagem extraída do google image.

Ilusão de Ótica²¹

- O que você enxerga?
- O que você enxerga?
- Qual dos dois traços é mais longo?
- Quais traços são paralelos entre si?

²¹Imagem extraída do google image.

Ilusão de Ótica²²

- Não existe quadrado.
- 2 Não existe círculo.
- Iguais.
- Todas as diagonais.

²²Imagem extraída do google image.

Ilusão de Ótica²³

• De que cor são os círculos?

²³Imagem extraída do google image.

Ilusão de Ótica²⁴

- Ilusão descoberta por Hermann (1870).
- Explicação: processo visual (inibição lateral).

²⁴Imagem extraída do google image.

Espectro Eletromagnético²⁵

- Isaac Newton (1666) descobre distribuição do espectro visível por meio de um prisma.
- Ondas eletromagnéticas podem ser vistas como ondas senoidais ou como partículas sem massa que se propagam à velocidade da luz com uma quantidade de energia chamada foton.
- O comprimentos de onda deve ser menor ou igual ao corpo que se deseja observar.

²⁵Imagem extraída do google image.

Espectro Eletromagnético²⁶

²⁶Imagem extraída do google image.

Espectro Eletromagnético²⁷

- Qual comprimento de onda utilizar para "visualizar"?
- Células: 10a50 μ m (micro); Átomo O: 130 pm (picó); Prédio: 30 m;

²⁷Imagem extraída do google image.

Aquisição de Imagens²⁸

- Para que uma imagem seja captada são necessários três componentes:
 - ▶ Uma fonte de energia (luz, som, elétrons).
 - Uma cena (paisagem, bebê, moléculas).
 - ▶ Um receptor (olhos, câmera, ressonância magnética).

²⁸http://droneng.com.br/drones-e-agricultura-saude-da-vegetacao-atraves-de-imagens/

Aquisição de Imagens²⁹

 Receptor fotosensível: O receptor ou sensor recebe estímulo de energia e um sinal elétrico de entrada e gera um sinal elétrico de saída correspondente ao estímulo de energia.

²⁹Imagem extraída do google image.

Aquisição de Imagens³⁰

• Sensor de Array (CCD e CMOS).

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

- A representação e manipulação de uma imagem em computador requer a definição de um modelo matemático adequado da imagem.
- Uma **imagem** pode ser definida como uma função de intensidade luminosa, denotada $\mathbf{f}(x,y)$, cujo valor ou amplitude nas coordenadas espaciais (x,y) fornece a intensidade ou o brilho da imagem naquele ponto.
- Convenção do sistema de coordenadas: a origem está localizada no canto superior esquerdo da imagem.

- Um modelo físico para a intensidade de uma cena sob observação pode ser expresso em termos do produto entre dois componentes, a quantidade de luz incidente na cena e a quantidade de luz refletida pelos objetos presentes na cena.
- Esses componentes são chamados de **iluminância** e **reflectância**, respectivamente, e são representados por i(x, y) e r(x, y).

• Assim, a função f(x, y) pode ser representada como

$$\mathbf{f}(x,y) = i(x,y) \ r(x,y)$$

para
$$0 < i(x, y) < \infty$$
 e $0 < r(x, y) < 1$

- A natureza de i(x, y) é determinada pela fonte de luz, enquanto r(x, y) é determinada pelas características dos objetos na cena.
- Os valores para os componentes i(x, y) e r(x, y) nas equações acima são limites teóricos.

- A iluminância é medida em lúmen/m² ou lux.
- A **reflectância** é medida em valores **percentuais** ou no intervalo entre 0 e 1.

Exemplos: Valores médios ilustram alguns intervalos típicos de i(x, y):

- Em um **dia claro**, o Sol pode produzir 900000 lúmen/m^2 de iluminância na superfície da Terra. E 10000 lúmen/m^2 em um dia **nublado**.
- O nível de iluminância típico em um **escritório** é de aproximadamente 1000 lúmen/m^2 .
- Em uma **noite clara**, a lua cheia gera aproximadamente 0.1 lúmen/m².

Exemplos: Valores típicos de r(x, y):

- 0.93 para a neve.
- 0.80 para parede branca.
- 0.65 para aço inoxidável.
- 0.01 para veludo preto.

- A maioria das **técnicas de análise de imagens** é realizada por meio de **processamento computacional**, então a função $\mathbf{f}(x,y)$ deve ser **convertida para a forma discreta**.
- Uma imagem digital pode ser obtida por um processo denominado digitalização, o qual envolve dois passos, a amostragem e a quantização:
 - ▶ A **amostragem** consiste em discretizar o domínio de definição da imagem nas direções *x* e *y*, gerando uma matriz de *M* × *N* amostras, respectivamente.
 - ▶ A **quantização** consiste em escolher o número inteiro *L* de níveis de cinza (em uma imagem monocromática) permitidos para cada ponto da imagem.

- Cada elemento f(x, y) dessa matriz de amostras é chamado pixel (acrônimo do inglês **picture element**), com $0 \le x \le M 1$ e $0 \le y \le N 1$.
- A imagem contínua f(x, y) é aproximada, portanto, por uma matriz de dimensão M pixels na horizontal e N pixels na vertical:

$$\mathbf{f}(x,y) \approx \begin{bmatrix} f(0,0) & f(1,0) & \cdots & f(M-1,0) \\ f(0,1) & f(1,1) & \cdots & f(M-1,1) \\ \vdots & \vdots & \ddots & \vdots \\ f(0,N-1) & f(1,N-1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

- O conceito de dimensão de um pixel ao longo do eixo x, ou do eixo y, está relacionado com o espaçamento físico entre as amostras.
- Cada pixel tem associado um valor $L_{min} \le f(x,y) \le L_{max}$, tal que o intervalo $[L_{min}, L_{max}]$ é denominado **escala de cinza**.
- A intensidade f de uma **imagem monocromática** nas coordenadas (x, y) é chamada de **nível de cinza** da imagem naquele ponto.
- Uma convenção comum é atribuir a cor preta ao nível de cinza mais escuro (por exemplo, valor 0) e atribuir a cor branca ao nível de cinza mais claro (por exemplo, valor 255).

- A digitalização adequada de uma imagem (ou outro sinal) requer alguns cuidados para que nenhuma informação seja perdida no processo de amostragem.
- Um desses cuidados inclui a escolha correta do espaçamento entre as amostras tomadas da imagem contínua.
- Inicialmente, a análise do problema será realizada por meio de um sinal unidimensional e, posteriormente, estendido para o caso bidimensional.

- Considere um sinal f(x, y) com banda limitada³¹ no domínio [-B, B] do espaço de frequências, sendo B um número real.
- A frequência de amostragem, F_a , é a frequência espacial com que as amostras do sinal são tomadas no processo de amostragem e está relacionada com o intervalo de amostragem Δx , na direção x:

$$F_a = \frac{1}{\Delta x}$$

 A escolha da frequência de amostragem é determinada pelo teorema da amostragem de Whittaker-Shannon, o qual estabelece que um sinal contínuo pode ser completamente reconstruído a partir de um conjunto de amostras, se

$$\Delta x \leq \frac{1}{2B}$$

ou, de forma similar, se

$$F_a \geq 2B$$

 $^{^{31}}$ Um sinal f(x) com banda limitada possui a propriedade de que sua transformada de Fourier F(u) possui valores muito baixos para u fora do intervalo [-B,B].

- Em outras palavras, o teorema afirma que pelo menos uma amostra a cada meio período do sinal deve ser tomada para que o sinal possa ser completamente reconstruído ou, de forma similar, que a frequência de amostragem seja no mínimo duas vezes a frequência máxima do sinal a ser amostrado.
- O limite de frequência de amostragem $\frac{1}{2B}$ é conhecido como **limite** de **Nyquist**, em homenagem a Harry Nyquist (1928), que demonstrou a importância do limite nas áreas de telefonia e telegrafia.
- Seus experimentos mostraram que não era necessário transmitir o sinal de voz completo para que a conversação fosse compreendida, bastando enviar pequenas amostras do sinal elétrico correspondente à voz, tomadas a intervalos regulares.

- Se a equação da frequência de amostragem não for satisfeita, um fenômeno denominado aliasing ocorrerá, comprometendo a completa recuperação do sinal.
- O fenômeno de **aliasing** pode ser observado por meio de um sinal periódico simples.

Exemplo:

Seja o sinal $\mathbf{f}(t) = a \operatorname{sen}(2 \pi f_0 t)$, com frequência f_0 e amplitude a que varia no tempo t. Um gráfico do sinal $\mathbf{f}(t)$ é mostrado na figura (a) a seguir. Neste caso, a banda limitada de $\mathbf{f}(t)$ é $[-f_0, f_0]$. O limite de Nyquist é, portanto, dado por

$$\Delta t \leq \frac{1}{2f_0}$$

- Assim, pelo menos uma amostra a cada meio período do sinal deve ser tomada para que o sinal possa ser completamente reconstruído (figura(b)).
- Na figura(c), a taxa de amostragem é quatro vezes superior ao limite de Nyquist. Pode-se notar que as amostras representam corretamente o sinal.

- A figura abaixo mostra um sinal periódico (curva contínua).
- Uma taxa de amostragem inferior ao limite de Nyquist é utilizada para reconstruir o sinal.
- Como resultado, um sinal completamente distinto (mostrado na curva tracejada) do sinal original é obtido.
- Na reconstrução do sinal, obtém-se um sinal de frequência muito inferior à frequência do sinal original.
- As altas frequências do sinal original aparecem como baixas frequências no sinal reconstruído, caracterizando o fenômeno de aliasing.

• Aliasing em imagens³²:

³²Imagem extraída do google image.

Exemplo:

Sabe-se que o ser humano é capaz de ouvir sons cujas frequências variam entre 20 Hz e 20 kHz. Portanto, segundo o teorema da amostragem, para que todas as frequências audíveis possam ser registradas, deve-se utilizar uma taxa de amostragem mínima de 40 kHz. Sinais de áudio são tipicamente amostrados à taxa de 44.1 kHz, um pouco superior ao limite de Nyquist para assegurar a recuperação de frequências próximas do limite da audição.

- A extensão do teorema de Whittaker-Shannon pode ser realizada para sinais n-dimensionais.
- Seja um sinal $\mathbf{f}(x_1, x_2, ..., x_n)$. O limite de Nyquist deve ser satisfeito considerando-se cada coordenada x_i , i = 1, 2, ..., n, ou seja, existe um vetor $B = (B_1, B_2, ..., B_n)$ de forma que

$$\Delta x_1 \leq \frac{1}{2B_1}, ..., \ \Delta x_n \leq \frac{1}{2B_n}$$

• Para o caso bidimensional, supondo um sinal $\mathbf{f}(x,y)$ com banda limitada $2W_x$ e $2W_y$ nas direções x e y, respectivamente, o sinal pode ser completamente reconstruído se

$$\Delta x \le \frac{1}{2W_x}$$
 e $\Delta y \le \frac{1}{2W_y}$

- É usual em processamento digital de imagens assumir que as dimensões da imagem e o número de níveis de cinza sejam potências inteiras de 2.
- No caso em que o número de níveis de cinza é igual a 2, a imagem é chamada binária.
- Imagens binárias possuem grande importância prática, pois ocupam menos espaço de armazenamento e podem ser manipuladas por meio de operadores lógicos que estão disponíveis diretamente nas instruções dos computadores.

- Considerando que o processo de digitalização envolve parâmetros de amostragem e quantização, uma questão é saber quantas amostras N × M e níveis de cinza L são necessários para gerar uma boa imagem digital.
- Isso depende, fundamentalmente, da quantidade de informação contida na imagem e do grau de detalhes dessa informação que é perceptível ao olho humano.
- Tais parâmetros levam aos conceitos de resolução espacial e profundidade da imagem.

Resolução Espacial

- A resolução espacial está associada à densidade de pixels da imagem. Quanto menor o intervalo de amostragem entre os pixels da imagem, ou seja, quanto maior a densidade de pixels em uma imagem, maior será a resolução da imagem.
- É importante notar que uma imagem contendo um grande número de pixels não necessariamente possui resolução maior do que outra contendo menor número de pixels.
- A resolução de uma imagem deve ser escolhida de modo a atender ao grau de detalhes que devem ser discerníveis na imagem.

Resolução Espacial

Exemplo:

Seja, por exemplo, uma imagem $\mathbf{f}(x,y)$ representando uma região de $400 \,\mathrm{cm}^2$, consistindo em 20 amostras uniformemente espaçadas na direção x e 20 amostras uniformemente espaçadas na direção y.

- Cada pixel da imagem possui dimensão de $1 \text{cm} \times 1 \text{cm}$.
- Uma resolução maior para a mesma região poderia consistir em 40 amostras na direção x e 40 amostras na direção y, cada pixel agora correspondendo a $0.5 \text{cm} \times 0.5 \text{cm}$.
- Uma imagem de resolução menor poderia ter 10 amostras na direção x e 10 amostras na direção y, em que cada pixel corresponderia a $2\text{cm} \times 2\text{cm}$.

Profundidade da Imagem

- Como mencionado anteriormente, o número de níveis de quantização da imagem f(x, y) é normalmente uma potência de 2, ou seja, L = 2^b, em que L é o número de níveis de cinza da imagem e b é chamado de profundidade da imagem.
- Assim, a profundidade de uma imagem corresponde ao número de bits necessários para armazenar a imagem digitalizada.

Exemplo:

Seja L=256. Isso significa que cada pixel pode ter associado um valor de cinza entre 0 e 255. A profundidade da imagem, neste caso, é de 8 bits por pixel.

Profundidade da Imagem

 A tabela a seguir mostra o número de bytes empregados na representação de uma imagem monocromática para diferentes dimensões M × N pixels, com 2, 8, 32, 128 e 512 níveis de cinza.

М	N	Número de bytes					
101	14	L=2	L=8	L=32	L=128	L=512	
320	256	10240	30720	51200	71680	92160	
480	320	19200	57600	96000	134400	172800	
640	400	32000	96000	160000	224000	288000	
800	600	60000	180000	300000	420000	540000	
1024	720	92160	276480	460800	645120	829440	
1280	800	128000	384000	640000	896000	1152000	

Resolução Espacial

- As figuras (a)-(f) a seguir mostram os resultados da redução da resolução espacial de uma imagem em seis resoluções diferentes.
- Todas as imagens são apresentadas com as mesmas dimensões, ampliando-se o tamanho do pixel de forma a tornar mais evidente a perda de detalhes nas imagens de baixa resolução.

Profundidade da Imagem

- A figura (a) representa uma imagem de 512×512 pixels com 64 níveis de cinza (b = 6).
- As figuras (b)-(f) foram obtidas reduzindo-se o número de bits de b=5 até b=1 e mantendo as dimensões das imagens com 512×512 pixels.

- Uma imagem digital pode ser representada por meio de uma matriz bidimensional, na qual cada elemento da matriz corresponde a um pixel da imagem.
- A figura a seguir mostra a representação matricial de uma imagem.
 Uma pequena região da imagem é destacada, sendo formada por números inteiros correspondendo aos níveis de cinza dos pixels da imagem.

(a) representação matricial

120	138	120	151	139
110	129	129	139	146
150	138	137	138	129
137	129	129	128	137
146	145	131	132	145

(b) região da imagem

- Há várias vantagens associadas ao uso de matrizes para representar imagens.
- Matrizes são estruturas simples para armazenar, manipular e visualizar dados.
- Uma desvantagem da matriz é sua inerente invariabilidade espacial, já que a estrutura não é adaptativa a eventuais irregularidades que possam existir na imagem. Isso pode produzir uma grande quantidade de redundância de dados.
- Métodos de compressão podem fornecer ganhos significativos em termos de espaço de armazenamento e tempo para transmissão de imagens.

- Imagens podem ser representadas em múltiplas resoluções por meio de representações hierárquicas.
- Uma estrutura muito utilizada é a pirâmide. A representação piramidal de uma imagem com N × N pixels contém a imagem e k versões reduzidas da imagem. Normalmente, N é uma potência de 2 e as outras imagens possuem dimensões N/2 × N/2, N/4 × N/4, ..., 1 × 1.
- Nessa representação, o pixel no nível l é obtido pela combinação de informação de vários pixels na imagem no nível l+1.
- A imagem inteira é representada como um único pixel no nível superior, o nível 0, e o nível inferior é a imagem original (não reduzida). Um pixel em um nível representa informação agregada de vários pixels no nível seguinte.

- A figura (a) ilustra uma sequência de imagens representadas em diferentes resoluções.
- Uma imagem e suas versões reduzidas obtidas pela média dos valores de cinza em vizinhanças 2 × 2 pixels e dispostas em uma estrutura piramidal são mostradas na figura (b).

Imagem Multidimensional

- Há situações em que é necessária uma extensão dos conceitos de amostragem e quantização para uma terceira dimensão, a qual representa, em geral, o espaço ou o tempo.
- Assim, uma imagem digital 3D pode ser representada como uma sequência de imagens monocromáticas ou multibandas ao longo do eixo espacial z ou do eixo temporal t, conhecida como imagem multidimensional.
- Equipamentos tomográficos geram imagens monocromáticas de cortes (ou fatias) normalmente paralelas e uniformemente espaçadas em uma dada região 3D.
- Considerando as dimensões $p \times p$ de um pixel nessas imagens e o espaçamento d entre os cortes, a extensão do pixel em 3D forma um pequeno paralelepípedo de dimensões $p \times p \times d$, que é chamado **voxel** (acrônimo do inglês **volume element**).

Imagem Multidimensional

- Os voxels representam pontos de amostragem e são usados para reconstruir no computador a forma ou a função de estruturas tridimensionais.
- Imagens tomográficas possuem tipicamente 512×512 ou 256×256 pixels e profundidade de 1 ou 2 bytes por pixel.

