

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

INTERROGACION 1

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

De una expresión regular para el siguiente lenguajes sobre el alfabeto $\{a, b, c\}$.

"Todas las palabras que no contienen una subpalabra del lenguaje a(b+c)c."

Explique por qué su expresión regular cumple con la especificación dada.

Pregunta 2

Sea Σ un alfabeto cualquiera. Para un lenguaje $L\subseteq \Sigma^*$ se define el lenguaje:

$$L-2 = \{a_1 \dots a_n \in \Sigma^* \mid n \ge 1 \land \exists b \in \Sigma. \ a_1 \dots a_{n-1} \cdot b \cdot a_n \in L\}$$

Demuestre que para todo lenguaje regular L, el lenguaje L-2 es regular.

Pregunta 3

Sea $\Sigma = \{a, b\}$. Para $w = a_1 \dots a_n \in \Sigma^*$ y $k \ge 1$, se define $w|_k = a_{n-(k-1)}a_{n-(k-2)}\dots a_n$ si $k \le n$ y $w|_k = w$ si k > n. O sea, $w|_k$ son los últimos k símbolos, y es la palabra completa si el tamaño de w es menor que k. Sea # un símbolo nuevo tal que # $\notin \Sigma$. Para un lenguaje $L \subseteq \Sigma^*$, se define el lenguaje sobre el alfabeto $\{a, b, \#\}$ como:

$$\mathsf{Window}(L) \ = \ \{a^k \# w \ \mid k \geq 1 \, \wedge \, w \in \Sigma^* \, \wedge \, w|_k \in L\}$$

En otras palabras, el lenguaje Window(L) viene dado por palabras de la forma $a^k \# w$ donde primero viene una secuencia de k letras a, que definen el largo de una "ventana", seguido de un símbolo separador #, y terminado por una palabra $w \in \Sigma^*$ donde los últimos k símbolos forman la "ventana" que debe pertenecer al lenguaje L, esto es, $w|_k \in L$.

Demuestre que existe un lenguaje regular L tal que Window(L) es no regular.