

Lietuvos mokinių informatikos olimpiada

Šalies etapas (1) ● 2021 m. sausio 26 d. ● X-XII kl.

raketa-vyr

Raketa

Planetos Diskretigravijos (kurios gravitacija veikia kitaip, nei įprasta) gyventojai tobulina ir testuoja raketų efektyvumą. Tam jie pagamino N raketų, ir nori, kad kiekviena iš jų pasiektų tam tikrą aukštį, sunaudodama kuo mažiau kuro.

Šios raketos veikia taip: kol raketoje yra kuro, ji kiekvieną sekundę išmeta po 1 kuro vienetą ir pakeičia savo vertikalų greitį (kuris bus neigiamas, jei raketa leidžiasi) per $\lfloor \frac{K}{M+T} \rfloor - g$, kur

- K yra tos raketos kuro gerumas,
- M raketos (be kuro) masė,
- T likusio kuro kiekis po to, kai išmetamas 1 kuro vienetas,
- g planetos laisvojo kritimo pagreitis,
- |x| skaičiaus x sveikoji dalis.

Kai raketoje baigiasi kuras, jos greitis kas sekundę sumažėja g greičio vienetų.

Panagrinėkime pavyzdį, kai $K=19,\ g=2,\ M=3$ ir raketa pradžioje turi 3 kuro vienetus. Pirmosios sekundės pradžioje raketa išmeta pirmą kuro vienetą ir lygiai sekundę kyla greičiu $\lfloor \frac{19}{3+2} \rfloor - 2 = 1$. Po sekundės greitis padidėja dar per 2 iki 3 atstumo vienetų per sekundę, o sunaudojus paskutinį kuro vienetą raketos greitis padidėja dar per 4 iki 7 vienetų per sekundę. Pasibaigus kurui raketos greitis kas sekundę sumažėja per 2, taigi iš viso raketa pakyla į 1+3+7+5+3+1=20 vienetų aukštį.

Užduotis. Padėkite raketų testuotojams nustatyti, kiek mažiausiai kuro reikia jų raketoms, kad pakiltų į norimą aukštį.

Pradiniai duomenys. Pirmojoje įvesties eilutėje pateikti du sveikieji skaičiai: raketų skaičius N ir planetos laisvojo kritimo pagreitis q.

Likusiose N eilučių surašyti raketų parametrai. i+1-ojoje eilutėje pateikti sveikieji skaičiai K_i , M_i ir H_i-i -tosios raketos kuro gerumas, masė ir aukštis, į kurį ši raketa turi pakilti.

Rezultatai. Išveskite N eilučių, kuriose būtų po vieną sveikąjį skaičių: i-tojoje eilutėje išveskite mažiausią kuro kiekį, su kuriuo i-toji raketa gali pakilti į aukštį H_i , arba -1, jei tai neįmanoma.

Pavyzdžiai.

Pradiniai duomenys	Rezultatai	Paaiškinimas
2 2	3	Pavyzdys, pateiktas sąlygoje.
19 3 20	-1	Raketa gali daugiausiai pakilti į 27 aukš-
19 3 28		čio vienetų su 4 kuro vienetais. Kol raketa
		turės daugiau nei 4 vienetus kuro, ji nuo
		žemės kilti nepradės, nes bus per sunki.

Lietuvos mokinių informatikos olimpiada Šalies etapas (1) • 2021 m. sausio 26 d. • X–XII kl.

raketa-vyr

Ribojimai. $1 \le g, M_i \le K_i \le 10^8, \ 1 \le H_i \le 10^{18}, \ 1 \le N \le 200.$

Dalinės užduotys.

- Už testus, kuriems galioja $N=1,\;K_1\leq 1$ 000, $H_1\leq 10^7$ ir visada įmanoma pasiekti H_1 , galima surinkti 14 taškų.
- Už testus, kuriems galioja $K_i \leq 8~000$ ir $H_i \leq 10^9$, galima surinkti 33 taškus.
- Už testus, kuriems galioja $N=1,\;K_1\leq 10^6$ ir visada įmanoma pasiekti $H_1,\;$ galima surinkti 28 taškus.