Ledger 2.0 — Unified Locks & Predictions By Evan Wesley

Version: v2.0 (frozen)

What this is. One-stop, versioned ledger of *simple rational locks* (fractions) for precision constants across sectors. Each lock is an exact fraction p/q. We keep it simple and falsifiable.

Acceptance rule (for locking). Prefer tiny denominators ("low-bit") and values hugging current centrals. We tag predictions separately.

A. Core electroweak & QCD locks (frozen)

Quantity	Fraction p/q	Decimal
Effective weak mixing $(\sin^2 \theta_W, \text{ at } M_Z)$	$\frac{25}{108}$	0.231481481
Strong coupling $(\alpha_s(M_Z))$	$\frac{23}{195}$	0.117948718
Wolfenstein λ	<u> </u>	0.225
Wolfenstein A	$\frac{40}{21}$ $\frac{21}{25}$	0.84

B. CKM shape (extras, frozen)

Quantity	Fraction	Decimal
$ar{ ho}$	$\frac{3}{20}$	0.15
$ar{\eta}$	$\frac{7}{20}$	0.35
$\sin 2\beta$	$\frac{7}{10}$	0.7
$ V_{ud} $	$\frac{37}{38}$	0.9736842105
$ V_{us} $	$\frac{11}{49}$	0.2244897959
$ V_{us} / V_{ud} $	$\frac{3}{13}$	0.2307692308
$ arepsilon_K $	$\frac{2}{897} (\times 10^{-3})$	0.0022296544
f_K^{\pm}/f_π^{\pm}	$\frac{31}{26}$	1.192307692

C. Neutrino mixing $(3\nu, NO \text{ reference, frozen})$

Quantity	Fraction	Decimal
$\sin^2 \theta_{12}$	$\frac{31}{101}$	0.306930693
$\sin^2 \theta_{13}$	$\frac{1}{45}$	0.02222222
$\sin^2 \theta_{23}$	$\frac{5}{9}$ 13	0.555555555
Ratio $r \equiv \Delta m^2_{21}/ \Delta m^2_{3\ell} $	$\frac{13}{440}$	0.0295454545

D. Cosmology (Planck-like ridge, frozen)

Quantity	Fraction	Decimal
Matter density Ω_m	$\frac{63}{200}$	0.315
Vacuum density Ω_{Λ} (flat)	$\frac{200}{200}$	0.685
Spectral index n_s	$\frac{280}{29}$	0.965517241
σ_8		0.811111111
$\Omega_b h^2$	$\frac{\overline{90}}{14}$ $\frac{14}{625}$	0.0224
$\Omega_c h^2$	$\frac{625}{25}$ $\frac{3}{21}$	0.12
Hubble fraction $h \equiv H_0/100$		0.673913043
Baryon fraction $f_b = \Omega_b/\Omega_m$	$\frac{\overline{46}}{\overline{32}}$	0.15625

E. Rare-decay add-ons (kept as observables)

Channel	Lock	Meaning
$\overline{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \text{ (exp.)}}$	13×10^{-11}	Central-as-lock (NA62-style combined)
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \text{ (SM)}$	$\frac{89}{10} \times 10^{-11}$	8.9×10^{-11} (Fibonacci 89)
$\mathcal{B}(B_s \to \mu^+ \mu^-) \text{ (exp.)}$	$\frac{10}{3} \times 10^{-9}$	3.333×10^{-9}
$\mathcal{B}(B_s \to \mu^+ \mu^-) \text{ (SM)}$	$\frac{91}{25} \times 10^{-10}$	3.64×10^{-9}
Ratio $R = \exp/\text{SM} \text{ (for } B_s \to \mu\mu)$	$\frac{11}{12}$	8.9×10^{-11} (Fibonacci 89) 3.333×10^{-9} 3.64×10^{-9} 0.9167

F. Definitions used by predictions

We will not use α as input. Define two composite ratios purely from the frozen locks:

$$R_1 \equiv \frac{\lambda}{\sin^2 \theta_{13}} = \frac{9/40}{1/45} = \frac{81}{8} = 10.125, \qquad R_2 \equiv \frac{1}{\alpha_s \sin^2 \theta_W} = \frac{195}{23} \cdot \frac{108}{25} = \frac{4212}{115} \approx 36.6260869565.$$

G. Predictions (frozen with Ledger v2.0)

G.1 α from other locks — primary (simple, 4 terms)

$$\alpha_{\text{simple-4}}^{-1} = 10 R_1 + R_2 - A - \frac{1}{8 R_2^2}$$

Inputs: $A = \frac{21}{25}$, $R_1 = \frac{81}{8}$, $R_2 = \frac{4212}{115}$.

Exact value:

$$\alpha_{\text{simple-4}}^{-1} = \frac{11183280301129}{81608342400} = 137.0359937752...$$

(This already beats a ± 0.002 accuracy target by $\sim 370 \times$.)

G.2 α from other locks — precision (10 terms)

$$\alpha_{\text{precision-10}}^{-1} = 10R_1 + R_2 - \frac{5}{6} - \frac{1}{R_1} + \frac{3}{R_2} + \frac{4}{R_1 R_2} - \frac{1}{R_2^2} + \frac{3}{R_2^3} + \frac{13}{R_2^5} + \frac{25}{R_2^7}$$

Exact value:

$$\alpha_{\text{precision-10}}^{-1} = \frac{370638943017318088595145540361}{2704683041268417903431761920} = 137.0359991770049232\dots$$

This lands within a few parts in 10^{12} of the CODATA-22 central ($\alpha^{-1} \approx 137.035999177$), using only our other frozen fractions.

Comment. These are empirical algebraic predictions combining quantities at different renormalization scales; they are not derived from the SM Lagrangian. We freeze them here to be tested against future updates to λ , $\sin^2 \theta_{13}$, α_s , $\sin^2 \theta_W$ and CODATA α .

H. Version & philosophy

Version. This document is frozen as **v2.0**. Any change (new lock or edit) becomes v2.1, v2.2, ... and so on.

Freeze & score. We never overwrite history; we publish a new version when promoting better locks. The point is to keep the integers tiny and the predictions falsifiable.

Vein primes. Many locks deliberately reuse the small-prime threads $\{5, 7, 11, 13, 23, 29, 89\}$ and simple power structures (e.g., $2^a 5^b$), echoing modular/partition "Ramanujan" patterns.