Thank you. Your submission for this quiz was received.

You submitted this quiz on **Fri 11 Jul 2014 12:38 AM PDT**. You got a score of **18.00** out of **20.00**. You can attempt again, if you'd like.

Introduction

This first quiz will check your ability to execute basic operations on objects in R and to understand some basic concepts. For questions 11–20 you will need to load a dataset into R and do some basic manipulations in order to answer the questions on the quiz.

You may want to print a copy of the quiz questions to look at as you work on the assignment. It is recommended that you save your answers as you go in the event that a technical problem should occur with your network connection or computer. Ultimately, you must submit the quiz online to get credit!

Data

The zip file containing the data for questions 11–20 in this Quiz can be downloaded here:

Week 1 Quiz Data

For this assignment you will need to unzip this file in your working directory.

Question 1				
The R language	e is a dialect of	which of the following programming languages?		
Your Answer	Score	Explanation		
Fortran				
Lisp				
• S	✓ 1.00	R is a dialect of the S language which was developed at Bell Labs.		
_ C				

Total	1.00 /		
	1.00		

The definition of free software consists of four freedoms (freedoms 0 through 3). Which of the following is NOT one of the freedoms that are part of the definition?

Your Answer	Score	Explanation
The freedom to sell the software for any price.	✓ 1.00	This is not part of the free software definition. The free software definition does not mention anything about selling software (although it does not disallow it).
The freedom to study how the program works, and adapt it to your needs.		
The freedom to redistribute copies so you can help your neighbor.		
The freedom to improve the program, and release your improvements to the public, so that the whole community benefits.		
Total	1.00 / 1.00	

Question 3

In R the following are all atomic data types EXCEPT

Your Answer	Score	Explanation	
complex			
character			

If I execute the expression x <- 4L in R, what is the class of the object `x' as determined by the `class()' function?

Your Answer	Score	Explanation
complex		
O character		
integer	✓ 1.00	The 'L' suffix creates an integer vector as opposed to a numeric vector.
ological		
Total	1.00 / 1.00	

Question 5

What is the class of the object defined by $x \leftarrow c(4, TRUE)$?

Your Answer		Score	Explanation
•	~	1.00	The numeric class is the "lowest common denominator" here and so
numeric			all elements will be coerced into that class.
O character			

integer				
list				
Total	1.00 /			
	1.00			

Question Explanation

R does automatic coercion of vectors so that all elements of the vector are the same data class.

Question 6

If I have two vectors $x \leftarrow c(1,3,5)$ and $y \leftarrow c(3,2,10)$, what is produced by the expression rbind(x, y)?

Your Answer		Score	Explanation
a 3 by 3 matrix			
a 2 by 3 matrix	~	1.00	The 'rbind' function treats vectors as if they were rows of a matrix. It then takes those vectors and binds them together row-wise to create a matrix.
a vector of length 3			
a vector of length 2			
Total		1.00 / 1.00	

Question 7

A key property of vectors in R is that

Your Answer	Score	Explanation

the length of a vector must be less than 32,768	
elements of a vector can be of different classes	
a vector cannot have have attributes like dimensions	
elements of a vector all must be of the same class	✔ 1.00
Total	1.00 / 1.00

Suppose I have a list defined as $x \leftarrow 1$ ist(2, "a", "b", TRUE). What does x[[1]] give me?

Your Answer		Score	Explanation
a list containing the number 2.	×	0.00	
a list containing the letter "a".			
a character vector containing the element "2".			
a numeric vector of length 1.			
Total		0.00 / 1.00	

Question 9

Suppose I have a vector x <- 1:4 and y <- 2:3. What is produced by the expression x + y?

Your Answer		Score	Explanation
• an integer vector with the values 3, 5, 5, 7.	~	1.00	
a warning			
an integer vector with the values 3, 5, 3, 4.			
a numeric vector with the values 1, 2, 5, 7.			
Total		1.00 / 1.00	

Suppose I have a vector x <- c(17, 14, 4, 5, 13, 12, 10) and I want to set all elements of this vector that are greater than 10 to be equal to 4. What R code achieves this?

Your Answer	Score	Explanation
○ x[x <		
10] <- 4		
• x[x >	1 .00	You can create a logical vector with the expression x > 10 and then
10] <- 4		use the [operator to subset the original vector x.
○ x[x >		
10] == 4		
x[x ==		
10] <- 4		
Total	1.00 /	
	1.00	

Question 11

In the dataset provided for this Quiz, what are the column names of the dataset?

Your Answer	Score	Explanation
0 1, 2, 3, 4, 5, 6		
Month, Day, Temp, Wind		
Ozone, Solar.R, Wind		
Ozone, Solar.R, Wind, Temp, Month, Day	✓ 1.00	You can get the column names of a data frame with the `names()' function.
Total	1.00 / 1.00	

Extract the first 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
Ozone Solar.R Wind Temp Month Day 1 41 190 7.4 67 5 1 2 36 118 8.0 72 5 2	✓ 1.00	You can extract the first two rows using the [operator and an integer sequence to index the rows.
Ozone Solar.R Wind Temp Month Day 1 18 224 13.8 67 9 17 2 NA 258 9.7 81 7 22		
Ozone Solar.R Wind Temp Month Day 1 9 24 10.9 71 9 14 2 18 131 8.0 76 9 29		
Ozone Solar.R Wind Temp Month Day 1 7 NA 6.9 74 5 11 2 35 274 10.3 82 7 17		
Total	1.00 /	

How many observations (i.e. rows) are in this data frame?

Your Answer	Score	Explanation
153	✓ 1.00	You can use the `nrows()' function to compute the number of rows in a data frame.
<u> </u>		
45		
<u> </u>		
Total	1.00 /	
	1.00	

Question 14

Extract the *last* 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer Score Explanation Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 **✓** 1.00 The 'tail()' function is an easy way to extract the last Ozone Solar.R Wind Te few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30

```
Ozone Solar.R Wind Te
mp Month Day
         44 9.7 62
152 11
5 20
153 108 223 8.0 85
 7 25
  Ozone Solar.R Wind Te
mp Month Day
152 31 244 10.9 78
 8 19
153 29 127 9.7 82
6 7
Total
                           1.00 /
                           1.00
```

What is the value of Ozone in the 47th row?

Your Answer		Score	Explanation
<u> </u>			
34			
21	~	1.00	The single bracket [operator can be used to extract individual rows of a data frame.
63			
Total		1.00 / 1.00	

Question 16

How many missing values are in the Ozone column of this data frame?

Your Answer		Score	Explanation
78			
9			
43			
37	~	1.00	
Total		1.00 / 1.00	

What is the mean of the Ozone column in this dataset? Exclude missing values (coded as NA) from this calculation.

Your Answer		Score	Explanation
31.5			
42.1	~	1.00	
<u>18.0</u>			
<u>53.2</u>			
Total		1.00 / 1.00	

Question Explanation

The 'mean' function can be used to calculate the mean.

The `is.na' function can be used to test for missing values.

Question 18

Extract the subset of rows of the data frame where Ozone values are above 31 and Temp values are above 90. What is the mean of Solar,R in this subset?

Your Answer	Score	Explanation
205.0		
● 212.8	1.00	
O 185.9		
○ 334.0		
Total	1.00 / 1.00	

Question Explanation

You need to construct a logical vector in R to match the question's requirements. Then use that logical vector to subset the data frame.

Question 19

What is the mean of "Temp" when "Month" is equal to 6?

Your Answer		Score	Explanation
79.1	~	1.00	
90.2			
85.6			
75.3			
Total		1.00 / 1.00	

Question 20

What was the maximum ozone value in the month of May (i.e. Month = 5)?

Your Answer		Score	Explanation
100	×	0.00	
<u></u>			

<u> </u>		
97		
Total	0.00 / 1.00	