

FOTOVOLTAICA, BIOMASA Y COGENERACION

BLOQUE I: Principios de generación y diseño de instalaciones fotovoltaica. Clase V

5.1 Introducción (I/II)

 Ahorro de emisiones de CO₂ y consumo de energía primaria no renovable

5.1 Introducción (II/II)

- Ahorro de emisiones de CO₂ y consumo de energía primaria no renovable
- Diversificación de fuentes energéticas, la adquisición de conocimientos, el mantenimiento al día de la tecnología, etc.

5.2 Sistema FV doméstico (I/III)

- Proyecto ejecutivo
- Memoria del proyecto
- El proyecto debe ajustarse a la legislación vigente
- Dimensionado de las partes principales de la instalación

5.2 Sistema FV doméstico (II/III)

- Cálculo de la potencia máxima demandada
- Cálculo de la demanda diaria de energía
- Cálculo de la capacidad de los acumuladores
- Características del regulador/inversor
- Características del campo de colectores
- Sección de los cables de conexión

5.2 Sistema FV doméstico (III/III)

- Tipo de usuario
- Régimen de utilización
- Curva de demanda
- Tiempo de autonomía de la instalación y características climáticas del lugar

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (I/VIII)

Si se trata de una vivienda o conjunto de viviendas, la demanda está formada por un conjunto de equipos y aparatos diversos (iluminación, frigorífico, TV, ordenador, electrodomésticos varios, etc.), cada uno de los cuales tiene un régimen de funcionamiento propio, de forma tal que las potencias demandadas no tienen que coincidir, necesariamente en el tiempo.

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (II/VIII)

Si se trata de una vivienda o conjunto de viviendas, la demanda está formada por un conjunto de equipos y aparatos diversos (iluminación, frigorífico, TV, ordenador, electrodomésticos varios, etc.), cada uno de los cuales tiene un régimen de funcionamiento propio, de forma tal que las potencias demandadas no tienen que coincidir, necesariamente en el tiempo.

La potencia demandada será la suma de la potencia de todos los aparatos y equipos conectados y en funcionamiento en cada instante

5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (III/VIII)

CÁLCULO DE LA VARIACIÓN DE LA POTENCIA MEDIA HORARIA DEL DÍA TIPO

	Potencia de equipos y aparatos (kW)						
Hora	Ilumin.	Frig.	TV	PC		•••	
0 - 1	P _{1,1}		•••	•••	•••	•••	$P_1 = \sum P_{i,1}$
1-2	P _{1,2}		•••		•••	•••	$P_2 = \sum P_{i,2}$
•••	$P_{1,j}$	$P_{2,j}$	$P_{3,j}$	$P_{4,j}$	$P_{i,j}$	$P_{i,j}$	$P_j = \sum P_{i,j}$
22 - 23	P _{1,23}				•••	•••	$P_{23} = \sum P_{i,23}$
23 - 24	P _{1,24}					•••	$P_{24} = \sum P_{i,24}$
Energía diaria demandada (kWh)						$E_d = \sum P_j$	

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (IV/VIII)

Este método de cálculo permite modular la potencia demandada por cada equipo o subsistema

CÁLCULO DE LA VARIACIÓN DE LA POTENCIA MEDIA HORARIA DEL DÍA TIPO

Potencia de equipos y aparatos (kW)							Energía (kWh)
Hora	llumin.	Frig.	TV	PC			
0 - 1	P _{1,1}		•••	•••	•••	•••	$P_1 = \sum P_{i,1}$
1-2	P _{1,2}		•••	•••	•••	•••	$P_2 = \sum P_{i,2}$
•••	$P_{1,j}$	$P_{2,j}$	$P_{3,j}$	$P_{4,j}$	$P_{i,j}$	$P_{i,j}$	$P_j = \sum P_{i,j}$
22 - 23	P _{1,23}		•••	•••	•••	•••	$P_{23} = \sum P_{i,23}$
23 - 24	P _{1,24}		•••		•••		$P_{24} = \sum P_{i,24}$
Energía diaria demandada (kWh)							$E_d = \sum P_j$

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (V/VIII)

$$E_a = \sum D_d \cdot E_d \tag{1}$$

- E_a energía anual en kWh
- E_d energía diaria demandada el día tipo d; y
- D_d número de días al año que se repite el día tipo d

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (VI/VIII)

$$E_d = \sum H_i \cdot P_i \tag{2}$$

- E_d energía diaria demandada el día tipo d en kWh;
- H_i número de horas que cubre el periodo j; y
- P_j potencia media durante este período en kW

5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (VII/VIII)

Datos orientativos de algunos aparatos domésticos

Equipo	Potencia nominal (W)	Consumo mensual (kWh)
Lámparas de bajo consumo	10 - 40	0.3 – 1.2
Ordenador	200	10 – 20
Frigorífico	150 – 200	25 – 45
Congelador	100 – 300	30 – 50
Aspirador	900	3.6
Televisor color	20 - 200	2 - 20
Vídeo	50 - 100	1 – 2
Plancha de bajo consumo	200 – 800	3 - 10
Lavadora de bajo consumo	400	8
Lavadora convencional	2000 - 3000	40 – 50
Horno microondas	500 - 1000	4 – 8
Freidora	1000 - 2000	3 – 5
Batidora	100 - 150	0.2 - 0.4
Molinillo de café	50 - 100	0.1 - 0.2
Tostadora	500 - 1500	1 - 3
Ventilador	3.5 - 100	5 - 10

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada (VIII/VIII)

FRIGORÍFICO

- Durante unos minutos el compresor funciona consumiendo electricidad y la temperatura interior disminuye.
- Cuando se alcanza la temperatura mínima de consigna, el compresor se detiene y la temperatura interior aumenta paulatinamente hasta alcanzar el valor máximo de consigna, momento en que vuelve a ponerse en marcha el compresor.

- 5.2 Sistema FV doméstico
- 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada. Ejemplo 1

La red eléctrica de una vivienda está formada por un conjunto de lámparas de bajo consumo, un frigorífico, un aparato de televisión, un ordenador personal, una lavadora y varios electrodomésticos. El régimen de funcionamiento para un día tipo de invierno, es el que se recoge en la tabla de la siguiente diapositiva.

Calcular la potencia máxima y la energía diaria demandadas.

5.2 Sistema FV doméstico 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada. Ejemplo 1

Distribución de la demanda del ejemplo numérico 1

Hora	Potencia media horaria (kW)					
	llum.	Frig.	TV	PC	Lavadora	Otros
0-1	0.020	0.042	0.000	0.000	0.000	0.000
1-2	0.020	0.042	0.000	0.000	0.000	0.000
2-3	0.020	0.042	0.000	0.000	0.000	0.000
3 – 4	0.020	0.042	0.000	0.000	0.000	0.000
4 – 5	0.020	0.042	0.000	0.000	0.000	0.000
5 – 6	0.020	0.042	0.000	0.000	0.000	0.000
6 – 7	0.020	0.042	0.000	0.000	0.000	0.000
7 – 8	0.040	0.042	0.000	0.000	0.000	0.000
8 – 9	0.040	0.042	0.000	0.000	0.000	0.000
9 – 10	0.040	0.042	0.000	0.000	0.000	0.000
10 – 11	0.010	0.042	0.000	0.100	0.000	0.000
11 – 12	0.010	0.042	0.000	0.100	0.000	0.000
12 – 13	0.010	0.042	0.000	0.000	0.000	0.200
13 – 14	0.020	0.042	0.000	0.000	0.000	0.000
14 – 15	0.020	0.042	0.050	0.000	0.000	0.000
15 – 16	0.020	0.042	0.050	0.000	0.000	0.000
16 – 17	0.060	0.042	0.000	0.100	0.000	0.000
17 – 18	0.060	0.042	0.000	0.100	0.000	0.000
18 – 19	0.100	0.042	0.000	0.100	0.000	0.000
19 – 20	0.100	0.042	0.000	0.100	0.000	0.000
20 – 21	0.200	0.042	0.000	0.000	0.000	0.000
21 – 22	0.200	0.042	0.050	0.000	0.000	0.100
22 – 23	0.020	0.042	0.050	0.000	0.090	0.000
23 – 24	0.020	0.042	0.000	0.000	0.090	0.000

5.2 Sistema FV doméstico 5.2.1 Cálculo de la potencia máxima y de la energía diaria demandada. Ejemplo 1 (Solución)

Distribución de la demanda del ejemplo numérico 1

Hora	Potencia media horaria (kW)					Energía	
	Ilum.	Frig.	TV	PC	Lavadora	Otros	(kWh)
0-1	0.020	0.042	0.000	0.000	0.090	0.000	0.152
1 – 2	0.020	0.042	0.000	0.000	0.000	0.000	0.062
2-3	0.020	0.042	0.000	0.000	0.000	0.000	0.062
3 – 4	0.020	0.042	0.000	0.000	0.000	0.000	0.062
4 – 5	0.020	0.042	0.000	0.000	0.000	0.000	0.062
5 – 6	0.020	0.042	0.000	0.000	0.000	0.000	0.062
6 – 7	0.020	0.042	0.000	0.000	0.000	0.000	0.062
7 – 8	0.040	0.042	0.000	0.000	0.000	0.000	0.082
8 – 9	0.040	0.042	0.000	0.000	0.000	0.000	0.282
9 – 10	0.040	0.042	0.000	0.000	0.000	0.000	0.082
10 – 11	0.010	0.042	0.000	0.100	0.000	0.000	0.052
11 – 12	0.010	0.042	0.000	0.100	0.000	0.000	0.052
12 – 13	0.010	0.042	0.000	0.000	0.000	0.200	0.052
13 – 14	0.020	0.042	0.000	0.000	0.000	0.000	0.262
14 – 15	0.020	0.042	0.050	0.000	0.000	0.000	0.112
15 – 16	0.020	0.042	0.050	0.000	0.000	0.000	0.112
16 – 17	0.060	0.042	0.000	0.100	0.000	0.000	0.202
17 – 18	0.060	0.042	0.000	0.100	0.000	0.000	0.202
18 – 19	0.100	0.042	0.000	0.100	0.000	0.000	0.242
19 – 20	0.100	0.042	0.000	0.100	0.000	0.000	0.242
20 – 21	0.200	0.042	0.000	0.000	0.000	0.000	0.242
21 – 22	0.200	0.042	0.050	0.000	0.000	0.100	0.392
22 – 23	0.020	0.042	0.050	0.000	0.090	0.000	0.152
23 – 24	0.020	0.042	0.000	0.000	0.090	0.000	0.152
	Er	nergía diar	ria deman	dada (kW	h)		3.438

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador (I/XII)

Superficie de captadores suficiente para satisfacer la demanda del consumidor

5.2.2 Dimensionado del generador (II/XII)

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g) \quad (3)$$

- P_{min} potencia mínima del generador para un día determinado
- E_d demanda diaria de energía en kWh
- F_u factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación

5.2.2 Dimensionado del generador (III/XII)

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g)$$
 (3)

$$F_u = D_u/7 \tag{4}$$

- P_{min} potencia mínima del generador para un día determinado
- E_d demanda diaria de energía en kWh
- F_{μ} factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación
- D_u número de días a la semana que se utiliza la instalación

5.2.2 Dimensionado del generador (IV/XII)

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g)$$
 (3)

$$G = G_{op} \cdot F_i \tag{5}$$

- ullet P_{min} potencia mínima del generador para un día determinado
- ullet E_d demanda diaria de energía en kWh
- F_u factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación
- G_{op} irradiación para la orientación e inclinación óptimas, expresada en kWh/(día·m²)
- F_i factor de corrección en función de la orientación

5.2.2 Dimensionado del generador (V/XII)

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g)$$
 (3)

$$G_{op} = K \cdot G_0 \tag{6}$$

- P_{min} potencia mínima del generador para un día determinado, en kW
- E_d demanda diaria de energía en kWh
- F_u factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación
- G_{op} irradiación para la orientación e inclinación óptimas, expresada en kWh/(día· m^2)
- *K* coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal, expresada en kWh/(día·m²)

5.2.2 Dimensionado del generador (VI/XII)

	1 1	TTT
Ia	nıa	111
100		***

$$G_{op} = K \cdot G_0 \tag{6}$$

Período del diseño	Inclinación	K
	óptima $\left(eta_{op} ight)$	
Diciembre	Ø + 10	1.7
Julio	$\emptyset - 20$	1
Anual	$\emptyset - 10$	1.15

\emptyset es la latitud del lugar en grados sexages	esimales
---	----------

Período de diseño	$oldsymbol{eta_{ m opt}}$	$K = \frac{G_{\rm dm}(\alpha = 0, \beta_{\rm opt})}{G_{\rm dm}(0)}$
Diciembre	φ + 10	1,7
Julio	$\phi - 20$	1
Anual	$\phi - 10$	1,15

 ϕ = Latitud del lugar en grados

Valores de la inclinación óptima y del coeficiente K donde:

- G_{op} irradiación para la orientación e inclinación óptimas, en kWh/(día·m²)
- K coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal, en kWh/(día·m²)

5.2.2 Dimensionado del generador (VII/XII)

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (\beta - \beta_{op})^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right]$$
 (7)

- F_i factor de orientación, según el IDAE
- β inclinación del panel FV, en grados sexagesimales
- β_{op} inclinación óptima, en grados sexagesimales
- α azimut del panel, en grados sexagesimales

5.2.2 Dimensionado del generador (VIII/XII)

$$\eta_q = (1 - p_1/100) \cdot (1 - p_2/100) \dots (1 - p_n/100)$$
(8)

- η_g rendimiento global de la instalación
- p_1 , p_2 , ... p_n pérdidas en % tenidas en cuenta

5.2.2 Dimensionado del generador (IX/XII)

Concepto	Pérdidas en %
Temperatura del panel	$100 - 3.5 (T_c - 25)$
Polvo y suciedad	1-8
Dispersión de parámetros entre módulos	2
Autodescarga de las baterías (20 ºC)	0.5
Rendimiento de la batería (carga – descarga)	5 – 10
Inversor	5 – 20
Regulador	10
Cableado desde los paneles al regulador	1.5
Cableado resto de la instalación	3-5
Donde T_c es la temperatura del pa	anel en ºC

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador (X/XII)

$$N_m = parte\ entera\ de\ (P_{min}/P_{n,m}) + 1$$
 (10)

- N_m número de módulos que deben instalarse
- P_{min} potencia mínima del generador para un día determinado
- $P_{n,m}$ potencia nominal del tipo de módulo escogido

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador (XI/XII)

$$P_{gen} = N_m \cdot P_{n,m} \ge P_{min} \tag{11}$$

- P_{gen} potencia instalada del generador
- N_m número de módulos que deben instalarse
- $P_{n,m}$ potencia nominal del tipo de módulo escogido
- P_{min} potencia mínima del generador para un día determinado

5.2.2 Dimensionado del generador (XII/XII)

$$P_{gen} = N_m \cdot P_{n,m} \ge P_{min} \tag{11}$$

"Pliego de condiciones técnicas de instalaciones aisladas de la red" (IDAE)

$$P_{gen} \le 1.2 \cdot P_{min} \tag{12}$$

- P_{gen} potencia instalada del generador
- N_m número de módulos que deben instalarse
- $P_{n,m}$ potencia nominal del tipo de módulo escogido
- P_{min} potencia mínima del generador para un día determinado

5.2.2 Dimensionado del generador. Ejemplo numérico 2

Calcular la potencia mínima que debe instalarse para atender a la demanda de una vivienda que tiene las características siguientes:

- Latitud: $\emptyset = 40^{\circ}$
- Irradiación diaria sobre el plano horizontal: $G_0 = 1.85 \; kWh/(dia \cdot m^2)$
- Periodo de diseño: diciembre
- Inclinación de los paneles: $\beta = 30^{\circ}$
- Paneles orientados al Sur: $\alpha = 0^{\circ}$
- Demanda diaria de energía: $E_d = 3.438 \ kWh$
- Funciona los 7 días de la semana $F_u=1$
- El factor de sombra es $F_s = 0.95$
- Rendimiento global de la instalación $\eta_g=0.65$

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos I/III)

Paso 1: Cálculo de la irradiación para la orientación e inclinación óptimas, $G_{op} = K \cdot G_0$

Paso 2: Cálculo de la inclinación óptima, en grados sexagesimales, eta_{op}

Período del diseño	Inclinación	K			
	óptima $\left(eta_{op} ight)$				
Diciembre	Ø + 10	1.7			
Julio	$\emptyset - 20$	1			
Anual	$\emptyset - 10$	1.15			
Ø es la latitud del lugar en grados sexagesimales					

Valores de la inclinación óptima y del coeficiente K

- G_{op} irradiación para la orientación e inclinación óptimas
- K coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal
- β_{op} inclinación óptima, en grados sexagesimales
- Ø latitud del lugar, en grados sexagesimales

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos II/III)

Paso 3: Cálculo del factor de pérdidas por orientación

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (\beta - \beta_{op})^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right]$$

Paso 4: Cálculo de la irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)

$$G = G_{op} \cdot F_i$$
 (5)

- F_i factor de pérdidas por orientación
- β inclinación del panel FV, en grados sexagesimales
- α azimut del panel, en grados sexagesimales
- β_{op} inclinación óptima, en grados sexagesimales
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- G_{op} irradiación para la orientación e inclinación óptimas en kWh/(día·m²)

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos III/III)

Paso 5: Cálculo de la potencia mínima del generador para un día determinado

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g)$$
 (3)

- P_{min} potencia mínima del generador para un día determinado
- E_d demanda diaria de energía en kWh
- F_u factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos I/III)

Paso 1: Cálculo de la irradiación para la orientación e inclinación óptimas, $G_{op} = K \cdot G_0$

Paso 2: Cálculo de la inclinación óptima, en grados sexagesimales, eta_{op}

Período del diseño	Inclinación	K			
	óptima $\left(eta_{op} ight)$				
Diciembre	Ø + 10	1.7			
Julio	$\emptyset - 20$	1			
Anual	$\emptyset - 10$	1.15			
Ø es la latitud del lugar en grados sexagesimales					

Valores de la inclinación óptima y del coeficiente K

- G_{op} irradiación para la orientación e inclinación óptimas
- K coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal
- eta_{op} inclinación óptima, en grados sexagesimales
- Ø latitud del lugar, en grados sexagesimales

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Solución I/V)

$$G_{op} = K \cdot G_0 = 1.7 \cdot 1.85 = 3.145 \, kWh/(dia \cdot m^2)$$
 (6)

Período del diseño	Inclinación	K	
	óptima $\left(eta_{op} ight)$		
Diciembre	Ø + 10	1.7	
Julio	$\emptyset - 20$	1	
Anual	$\emptyset - 10$	1.15	
Ø es la latitud del lugar en grados sexagesimales			

donde:

Valores de la inclinación óptima y del coeficiente K

- G_{op} irradiación para la orientación e inclinación óptimas
- *K* coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos I/III)

Paso 1: Cálculo de la irradiación para la orientación e inclinación óptimas, $G_{op} = K \cdot G_0$

Paso 2: Cálculo de la inclinación óptima, en grados sexagesimales, eta_{op}

Período del diseño	Inclinación	K	
	óptima $\left(eta_{op} ight)$		
Diciembre	Ø + 10	1.7	
Julio	$\emptyset - 20$	1	
Anual	$\emptyset - 10$	1.15	
Ø es la latitud del lugar en grados sexagesimales			

Valores de la inclinación óptima y del coeficiente K

- G_{op} irradiación para la orientación e inclinación óptimas
- K coeficiente que depende de la época del año
- G_0 irradiación sobre el plano horizontal
- eta_{op} inclinación óptima, en grados sexagesimales
- Ø latitud del lugar, en grados sexagesimales

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Solución II/V)

$$\beta_{op} = \emptyset + 10 = 40 + 10 = 50 \, \circ$$
 (6)

Período del diseño	Inclinación	K
	óptima $\left(eta_{op} ight)$	
Diciembre	Ø + 10	1.7
Julio	$\emptyset - 20$	1
Anual	$\emptyset - 10$	1.15
Ø es la latitud del lugar en grados sexagesimales		

donde:

Valores de la inclinación óptima y del coeficiente K

- β_{op} inclinación óptima, en grados sexagesimales
- Ø latitud del lugar, en grados sexagesimales
- *K* coeficiente que depende de la época del año

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos II/III)

Paso 3: Cálculo del factor de pérdidas por orientación

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (\beta - \beta_{op})^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right]$$

Paso 4: Cálculo de la irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)

$$G = G_{op} \cdot F_i$$
 (5)

- F_i factor de pérdidas por orientación
- β inclinación del panel FV, en grados sexagesimales
- α azimut del panel, en grados sexagesimales
- β_{op} inclinación óptima, en grados sexagesimales
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- G_{op} irradiación para la orientación e inclinación óptimas en kWh/(día·m²)

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Solución III/V)

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (\beta - \beta_{op})^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right]$$
(7)

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (30 - 50)^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right] = 0.952$$

- F_i factor de pérdidas por orientación
- β inclinación del panel FV, en grados sexagesimales
- α azimut del panel, en grados sexagesimales
- β_{op} inclinación óptima, en grados sexagesimales

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos II/III)

Paso 3: Cálculo del factor de pérdidas por orientación

$$F_i = 1 - \left[1.2 \cdot 10^{-4} \cdot (\beta - \beta_{op})^2 + 3.5 \cdot 10^{-5} \cdot \alpha^2 \right]$$

Paso 4: Cálculo de la irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)

$$G = G_{op} \cdot F_i$$
 (5)

- F_i factor de pérdidas por orientación
- β inclinación del panel FV, en grados sexagesimales
- α azimut del panel, en grados sexagesimales
- eta_{op} inclinación óptima, en grados sexagesimales
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- G_{op} irradiación para la orientación e inclinación óptimas en kWh/(día·m²)

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Solución IV/V)

$$G = G_{op} \cdot F_i \tag{5}$$

$$G = 3.145 \cdot 0.952 = 2.994 \, kWh/(día·m²)$$
 (5)

- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- G_{op} irradiación para la orientación e inclinación óptimas en kWh/(día·m²)
- F_i factor de corrección en función de la orientación

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Pasos III/III)

Paso 5: Cálculo de la potencia mínima del generador para un día determinado

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g)$$
 (3)

- P_{min} potencia mínima del generador para un día determinado
- E_d demanda diaria de energía en kWh
- F_u factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación

5.2.2 Dimensionado del generador. Ejemplo numérico 2 (Solución V/V)

$$P_{min} = E_d \cdot F_u \cdot G_{CEM} / (G \cdot F_S \cdot \eta_g) \tag{3}$$

$$P_{min} = 3.438 \cdot 1 \cdot \frac{1}{(2.994 \cdot 0.95 \cdot 0.65)} = 1.86 \, kWp$$
 (3)

- ullet P_{min} potencia mínima del generador para un día determinado
- E_d demanda diaria de energía en kWh
- F_{μ} factor de utilización de la instalación
- G_{CEM} 1 kW/m², un factor de conversión
- G irradiación diaria, en las condiciones de trabajo del día tipo considerado, expresada en kWh/(día·m²)
- F_S factor de sombra (fracción de superficie cubierta por la sombra en cada zona)
- η_g rendimiento global de la instalación

5.2.3 Capacidad del acumulador (I/II)

$$A = \eta_{inv} \cdot \eta_{rb} \cdot C \cdot D_{max} / I_d \tag{12}$$

- A autonomía en días
- η_{inv} rendimiento del inversor en tanto por uno
- η_{rb} rendimiento del acumulador más regulador en tanto por uno
- C capacidad nominal del acumulador en Ah
- D_{max} profundidad de descarga máxima considerada
- $I_d = E_d/V_n$ cantidad de corriente diaria demandada en Ah
- V_n tensión nominal del acumulador, en V

5.2.3 Capacidad del acumulador (II/II)

$$A = \eta_{inv} \cdot \eta_{rb} \cdot C \cdot D_{max} / I_d \tag{12}$$

En el documento "Pliego de condiciones técnicas de instalaciones aisladas de la red" del IDAE, se recomienda utilizar la capacidad \mathcal{C}_{20}

donde:

- A autonomía en días
- η_{inv} rendimiento del inversor en tanto por uno
- η_{rb} rendimiento del acumulador más regulador en tanto por uno
- C capacidad nominal del acumulador en Ah
- D_{max} profundidad de descarga máxima considerada
- $I_d = E_d/V_n$ cantidad de corriente diaria demandada en Ah
- V_n tensión nominal del acumulador, en V

La capacidad del acumulador no debe superar el valor de la intensidad de cortocircuito del generador fotovoltaico multiplicado por 25

5.2.2 Dimensionado del generador. Ejemplo numérico 3

Una instalación presenta una demanda diaria de 3.458 kW a la tensión nominal de 36 V. Calcular la capacidad del acumulador para que tenga una autonomía de 3 días, sabiendo que: la profundidad de descarga máxima es del 70%, las pérdidas de inversor son del 12% y las del regulador y acumulador del 15%.

5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Pasos I/II)

```
Paso 1: Cantidad de corriente diaria: I_d = \frac{E_d}{V_n}
```

Paso 2: Rendimiento del inversor:
$$\eta_{inv} = 1 - \frac{p_{inv}}{100}$$

Paso 3: Rendimiento acumulador más regulador: $\eta_{rb}=1-rac{p_{rb}}{100}$

Paso 4: Profundidad de descarga: D_{max}

- I_d cantidad de corriente diaria, en A
- E_d demanda diaria de energía en kWh/día
- V_n tensión nominal del acumulador, en V
- η_{inv} rendimiento del inversor
- p_{inv} pérdidas del inversor, en %
- η_{rb} rendimiento del acumulador más regulador
- p_{rb} pérdidas del regulador y acumulador, en %
- D_{max} profundidad de descarga máxima, en %

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Pasos II/II)

Paso 5: Cálculo de
$$C$$
, $A = \eta_{inv} \cdot \eta_{rb} \cdot C \cdot D_{max}/I_d$

- A autonomía del acumulador en días
- η_{inv} rendimiento del inversor
- η_b rendimiento del regulador más el acumulador
- C capacidad del acumulador en Ah
- D_{max} profundidad de descarga máxima, en %
- I_d cantidad de corriente diaria, en A

5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Pasos I/II)

```
Paso 1: Cantidad de corriente diaria: I_d = \frac{E_d}{V_n}
```

Paso 2: Rendimiento del inversor: $\eta_{inv} = 1 - \frac{p_{inv}}{100}$

Paso 3: Rendimiento acumulador más regulador: $\eta_{rb} = 1 - \frac{p_{rb}}{100}$

Paso 4: Profundidad de descarga: D_{max}

- I_d cantidad de corriente diaria, en A
- E_d demanda diaria de energía en kWh/día
- V_n tensión nominal del acumulador, en V
- η_{inv} rendimiento del inversor
- p_{inv} pérdidas del inversor, en %
- η_{rb} rendimiento del acumulador más regulador
- p_{rb} pérdidas del regulador y acumulador, en %
- D_{max} profundidad de descarga máxima, en %

5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Solución I/II)

Cantidad de corriente diaria:
$$I_d = \frac{E_d}{V_n} = \frac{3.458}{36} = 96.1 \frac{Ah}{dia}$$

Rendimiento del inversor:
$$\eta_{inv} = 1 - \frac{p_{inv}}{100} = 1 - \frac{12}{100} = 0.88$$

Rendimiento acumulador más regulador:
$$\eta_{rb}=1-\frac{p_{rb}}{100}=1-\frac{15}{100}=0.85$$

Profundidad de descarga:
$$D_{max} = \frac{70}{100} = 0.7$$

- I_d cantidad de corriente diaria, en A
- E_d demanda diaria de energía en kWh/día
- V_n tensión nominal del acumulador, en V
- η_{inv} rendimiento del inversor
- p_{inv} pérdidas del inversor, en %
- η_{rb} rendimiento del acumulador más regulador
- p_{rb} pérdidas del regulador y acumulador, en %
- D_{max} profundidad de descarga máxima, en %

- 5.2 Sistema FV doméstico
- 5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Pasos II/II)

Paso 5: Cálculo de C, $A = \eta_{inv} \cdot \eta_{rb} \cdot C \cdot D_{max}/I_d$

- A autonomía del acumulador en días
- η_{inv} rendimiento del inversor
- η_b rendimiento del regulador más el acumulador
- C capacidad del acumulador en Ah
- D_{max} profundidad de descarga máxima, en %
- I_d cantidad de corriente diaria, en A

5.2.2 Dimensionado del generador. Ejemplo numérico 3 (Solución II/II)

$$A = \eta_{inv} \cdot \eta_{rb} \cdot C \cdot D_{max}/I_d$$

$$3 = 0.88 \cdot 0.85 \cdot C \cdot 0.7/96.1$$

$$C = 3 \cdot \frac{96.1}{(0.88 \cdot 0.85 \cdot 0.7)} = 550 \text{ Ah}$$

- A autonomía del acumulador en días
- η_{inv} rendimiento del inversor
- η_b rendimiento del regulador más el acumulador
- C capacidad del acumulador en Ah
- D_{max} profundidad de descarga máxima, en %
- I_d cantidad de corriente diaria, en A

- 5.2 Sistema FV doméstico
- 5.2.3 Análisis económico (I/II)
- El interés se basa en el ahorro en la factura eléctrica

- 5.2 Sistema FV doméstico
- 5.2.3 Análisis económico (II/II)
- El interés se basa en el ahorro en la factura eléctrica
- Comparación del sistema fotovoltaico con el sistema convencional
- Como índices de la bondad de la inversión, se ceñirá al retorno de la inversión (PB) y retorno actualizado de la inversión (PBA)

5.2.3.1 Coste neto de la instalación FV (I/IV)

$$C = C_{spf} - C_{con} - S \tag{18}$$

- *C* coste neto o sobreinversión
- C_{spf} coste de la instalación, llaves en mano
- C_{con} coste del sistema convencional, llaves en mano
- *S* subvención, todo en €

5.2.3.1 Coste neto de la instalación FV (II/IV)

$$C = C_{spf} - C_{con} - S \tag{18}$$

- C coste neto o sobreinversión
- C_{spf} coste de la instalación, llaves en mano
- C_{con} coste del sistema convencional, llaves en mano
- *S* subvención, todo en €

- Paneles
- Estructura de soporte
- Acumulador eléctrico
- Regulador
- Inversor
- Cableado y sistema de protección
- Cargas fiscales (permisos, impuestos, tasas, etc.)
- Proyecto, dirección e instalación
- Otros gastos e imprevistos

- 5.2 Sistema FV doméstico
- 5.2.3.1 Coste neto de la instalación FV (III/IV)
- El coste de la instalación convencional se reduce al coste de la conexión a la red y formalización del contrato

- 5.2 Sistema FV doméstico
- 5.2.3.1 Coste neto de la instalación FV (IV/IV)
- El coste de la instalación convencional se reduce al coste de la conexión a la red y formalización del contrato
- Dentro del capítulo de subvenciones se tendrán en cuenta todas las estatales y autonómicas, per no los préstamos de la índole que sea

5.2.3.2 Ahorro anual neto (I/III)

$$A = F_{con} - F_{fv} \tag{19}$$

- *A* ahorro anual
- F_{con} importe de la factura eléctrica anual
- F_{fv} gastos anuales asociados a la instalación fotovoltaica, todo en ϵ

- 5.2 Sistema FV doméstico
- 5.2.3.2 Ahorro anual neto (II/III)

$$F_{con} = (12 \cdot P_{con} \cdot V_p + 365 \cdot E_d \cdot V_e) \cdot (1+r) \cdot (1+i)$$

- F_{con} importe de la factura eléctrica para una instalación convencional
- P_{con} potencia contratada en kW
- V_p precio unitario del término de potencia en €/kWh
- E_d energía eléctrica demandada diaria en kWh
- *V_e* precio unitario del término de energía en €/kWh
- r recargos por reactiva, discriminación horaria, etc. en tanto por uno
- *i* impuestos, tasas, en tanto por uno

5.2.3.2 Ahorro anual neto (III/III)

$$F_{fv} = C_{man} + C_{hip} + C_{fin}$$

- C_{man} coste de mantenimiento anual, en ϵ
- C_{hiv} coste de mantenimiento hiperanual, en
- *C_{fin}* costes financieros, en €

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado (PBA) (I/II)

$$PB = C/A$$

Donde

PB tiempo de retorno simple de la inversión, en años

C diferencia entre la sobreinversión y el ahorro, en €

A ahorro anual debido a la inversión, en €

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado (PBA) (II/II)

$$PBA = n$$
 cuando $C = \sum_{1}^{n} A_n$ (21)

$$C = A \cdot \sum_{1}^{n} r^{n}$$

$$PBA = \frac{\log\left(1 - k \cdot C/A\right)}{-\log\left(1 + k\right)} \tag{22}$$

- PBA tiempo de retorno actualizado de la inversión, en años
- *n* número de años
- C diferencia entre la sobreinversión y el ahorro, en €
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *k* tasa de actualización
- r = 1/(1+k)

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4

Un sistema fotovoltaico, que presenta una demanda de 6 kWh/día, ha costado 10 000€ llave en mano y se ha conseguido una subvención de 3000€.

Datos económicos: precio de la electricidad para un consumidor de las mismas características, teniendo en cuenta la factura total, 0.15 €/kWh; el coste anual de mantenimiento es 80€/año, teniendo en cuenta todos los conceptos, y la tasa de actualización es del 3%.

Calcular el PB y el PBA de la inversión para dos casos: a) la instalación está situada en una zona electrificada, con un coste de conexión de 120€ y funciona todo el año, b) la instalación está lejos de la toma de corriente con un coste de conexión de 5000€ y funciona todo el año y c) lo mismo que el caso anterior pero funcionando solamente los fines de semana y con un coste de mantenimiento de 30€/año.

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos I/II)
- Paso 1: Cálculo de la diferencia entre la sobreinversión y el ahorro, en \in , C = I CC S
- Paso 2: Cálculo del ahorro anual, $A = D \cdot n \cdot P_E C_M$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos II/II)
- Paso 3: Cálculo del tiempo de retorno simple de la inversión, en años, $PB = \frac{C}{A}$
- Paso 4: Cálculo del tiempo de retorno actualizado de la inversión, en años, $PBA = \frac{\log(1-k\cdot C/A)}{-\log(1+k)}$

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- A ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- *k* tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo de la diferencia entre la sobreinversión y el ahorro, en \in , C = I - CC - S

Paso 2: Cálculo del ahorro anual, $A = D \cdot n \cdot P_E - C_M$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución I/VI)

Caso a)

$$C = I - CC - S = 10\,000 - 120 - 3000 = 6880$$

$$A = D \cdot n \cdot P_E - C_M = 6 \cdot 365 \cdot 0.15 - 80 = 248.5 \text{ } \text{@}/\text{ano}$$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos II/II)

Paso 3: Cálculo del tiempo de retorno simple de la inversión, en años, $PB = \frac{C}{A}$

Paso 4: Cálculo del tiempo de retorno actualizado de la inversión, en años, $PBA = \frac{\log(1-k\cdot C/A)}{-\log(1+k)}$

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- A ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- *k* tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución II/VI)

Caso a)

$$PB = \frac{c}{A} = \frac{6800}{248.5} = 27.4 \, a\tilde{n}os \tag{20}$$

$$PBA = \frac{\log(1 - k \cdot C/A)}{-\log(1 + k)} = \frac{\log(1 - 0.03 \cdot 6880/248.5)}{-\log(1 + 0.03)} = 60.1 \ a\tilde{n}os$$
 (22)

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- *A* ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- k tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo de la diferencia entre la sobreinversión y el ahorro, en \in , C = I - CC - S

Paso 2: Cálculo del ahorro anual, $A = D \cdot n \cdot P_E - C_M$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución III/VI)

Caso b)

$$C = I - CC - S = 10\ 000 - 5000 - 3000 = 2000 \in$$

$$A = D \cdot n \cdot P_E - C_M = 6 \cdot 365 \cdot 0.15 - 80 = 248.5 \text{ } \text{@}/\text{ano}$$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- *P_E* precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos II/II)

Paso 3: Cálculo del tiempo de retorno simple de la inversión, en años, $PB = \frac{C}{A}$

Paso 4: Cálculo del tiempo de retorno actualizado de la inversión, en años, $PBA = \frac{\log(1-k\cdot C/A)}{-\log(1+k)}$

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- A ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- *k* tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución IV/VI)

Caso b)

$$PB = \frac{c}{4} = \frac{2000}{248.5} = 8.1 \ a\tilde{n}os \tag{20}$$

$$PBA = \frac{\log(1 - k \cdot C/A)}{-\log(1 + k)} = \frac{\log(1 - 0.03 \cdot 2000/248.5)}{-\log(1 + 0.03)} = 9.4 \ a\tilde{n}os$$
 (22)

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- *A* ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- k tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo de la diferencia entre la sobreinversión y el ahorro, en \in , C = I - CC - S

Paso 2: Cálculo del ahorro anual, $A = D \cdot n \cdot P_E - C_M$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- *D* demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución III/VI)

Caso c)

$$C = I - CC - S = 10\,000 - 5000 - 3000 = 2000 \in$$

$$A = D \cdot n \cdot P_E - C_M = 6 \cdot \left(365 \cdot \frac{2}{7}\right) \cdot 0.15 - 30 = 63.9 \text{ } \ell/a\tilde{n}o$$

- C diferencia entre la sobreinversión y el ahorro, en €
- *I* coste de la inversión llave en mano, en €
- *CC* coste de conexión, en €
- *S* subvención, en €
- *A* ahorro anual, en €
- D demanda de energía diaria
- *n* número de días considerados
- P_E precio de la electricidad, en €/kWh
- C_M coste de mantenimiento, en \in

- 5.2 Sistema FV doméstico
- 5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Pasos II/II)

Paso 3: Cálculo del tiempo de retorno simple de la inversión, en años, $PB = \frac{C}{A}$

Paso 4: Cálculo del tiempo de retorno actualizado de la inversión, en años, $PBA = \frac{\log(1-k\cdot C/A)}{-\log(1+k)}$

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- A ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- *k* tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

5.2.3.3 Tiempo de retorno de la inversión: simple (PB) y actualizado. Ejemplo numérico 4 (Solución IV/VI)

Caso c)

$$PB = \frac{c}{A} = \frac{2000}{63.9} = 31.3 \ a\tilde{n}os \tag{20}$$

$$PBA = \frac{\log(1 - k \cdot C/A)}{-\log(1 + k)} = \frac{\log(1 - 0.03 \cdot 2000/63.9)}{-\log(1 + 0.03)} = 94.9 \, \text{años}$$
 (22)

- PB tiempo de retorno simple de la inversión, en años
- C diferencia entre la sobreinversión y el ahorro, en €
- *A* ahorro anual debido a la inversión, en €
- PBA tiempo de retorno actualizado de la inversión, en años
- k tasa de actualización
- $A_n = A/(1+k)^n$ es el ahorro anual actualizado, en \in
- *n* número de años

FOTOVOLTAICA, BIOMASA Y COGENERACION

FIN
¿¿¿¿PREGUNTAS????
GRACIAS POR SU ATENCIÓN

