Solución al problema 1: Dilema del padre

David Cabezas Berrido

Un padre y su hijo intentan cubrir un tablero de $N \times N$ ($N \ge 2$) sin las dos esquinas diametralmente opuestas (1 × 1) utilizando piezas de 2 × 1 sin que sobresalgan las piezas ni queden huecos. Pero no pueden lograrlo, este es mi razonamiento.

El número de casillas del tablero es $N^2 - 2$, y cada pieza ocupa 2 casillas, por tanto si N es impar, no pueden recubrirlo, puesto que $N^2 - 2$ será impar.

Si N es par, el razonamiento es algo más complejo. Razonaré inductivamente.

Denotaré como C_n (n par) a la capa del tablero de lado n (centrada). Por ejemplo, C_2 es el cuadrado de 2×2 en el centro del tablero, C_4 la capa que rodea a C_2 , C_6 la que rodea a $C_4 \dots$ y C_N es el borde exterior del tablero.

La capa C_k tiene $k^2 - (k-2)^2 = 4k - 4$ casillas, 2k - 2 pares y 2k - 2 impares, diré que la casilla que ocupa la posición (i, j) es par cuando i + j sea par, e impar cuando i + j sea impar. Dos casillas contiguas siempre serán una par y la otra impar, una será (i, j) y la otra (i, j + 1) o (i + 1, j).

La capa C_N tiene las dos esquinas diametralmente opuestas rotas, que pueden ser la (1, 1) y la (N, N), en cuyo caso ambas serán pares; o la (1, N) y la (N, 1), en cuyo caso ambas serán impares. Luego la capa C_N tiene 2k - 2 casillas libres de una paridad y 2k - 4 casillas libres de la otra. Supondré que las rotas son la (1, 1) y la (N, N), en el otro caso el razonamiento es análogo.

Cada pieza ocupa dos casillas contiguas, luego ocupará una par y otra impar. Como en C_N no hay el mismo número de casillas pares que impares (hay dos impares más), para recubrir C_N habrá que colocar piezas cubriendo una casilla de C_N y otra de C_{N-2} (de distinta paridad), ya que en C_N no hay suficientes casillas pares para emparejar todas las impares.

Como consecuencia de esto, cuando acaben de recubrir C_N , habrán ocupado al menos dos casillas pares de C_{N-2} , le llamaremos $p \geq 2$. También, por cada otra casilla (aparte de las dos pares para compensar el desequilibrio en C_N) que hallan ocupado de C_{N-2} mientras recubrían C_N , habrán tenido que ocupar otra de distinta paridad de C_{N-2} para compensar el nuevo desequilibrio generado en C_N . Por tanto el número de casillas impares de C_{N-2} que habrán ocupado mientras rellenaban C_N será p-2.

Ahora, C_{N-2} tiene dos casillas impares libres más que pares (libres). Luego, por el mismo razonamiento, ocuparán dos casillas pares más que impares de C_{N-4} al cubrirla, generando el mismo desequilibrio en C_{N-4} . Es claro que cada vez que rellenen una capa, generarán el mismo problema en la capa interior.

Suponiendo todas las capas rellenas desde la C_4 hasta la C_N , por el argumento de antes, en la capa C_2 habrá libres dos casillas impares más que pares $(2 \ y \ 0)$, lo que la hace imposible de completar, ya que estas dos casillas libres serán no contiguas. Por tanto, el tablero es imposible de recubrir.