(i) Aufgabe 01-1 Beispiel 2(b) in der Übungsbeispielsammlung und zwar ohne Rang.

Question 1

Man bestimme den Rang sowie die Summe und das Produkt der folgenden Matrizen (soweit möglich):

(a)
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 3 & 4 & 5 \end{pmatrix}$
(b) $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 4 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 4 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$C_{11} = 2 \cdot 1 + 1 \cdot 0 = 2$$

$$C_{12} = 2 \cdot 2 + 1 \cdot 0 = 4$$

$$C_{13} = 2 \cdot 3 + 1 \cdot 1 = 7$$

$$C_{14} = 2 \cdot 4 + 1 \cdot 1 = 9$$

$$C_{21} = 1 \cdot 1 + 3 \cdot 0 = 1$$

$$C_{22} = 1 \cdot 2 + 3 \cdot 0 = 2$$

$$C_{23} = 1 \cdot 3 + 3 \cdot 1 = 6$$

$$C_{24} = 1 \cdot 4 + 3 \cdot 1 = 7$$

$$C_{31} = 4 \cdot 1 + 5 \cdot 0 = 4$$

$$C_{32} = 4 \cdot 2 + 5 \cdot 0 = 8$$

$$C_{33} = 4 \cdot 3 + 5 \cdot 1 = 17$$

$$C_{34} = 4 \cdot 4 + 5 \cdot 1 = 21$$

Solution

$$A \cdot B = \begin{bmatrix} 2 & 4 & 7 & 9 \\ 1 & 2 & 6 & 7 \\ 4 & 8 & 17 & 21 \end{bmatrix}$$

Note:-

Die Anzahl der Spalten von A muß gleich sein der Anzahl der Zeilen von B!

Definition 0.0.1: Die Addition von Matrizes

 $A, B \in M(m \times n) \ A + B := (a_{ij} + b_{ij})$ Addition.

d.h es wird komponentenweise addiert.

In Worten Die Addition ist nur möglich, wenn Zeilen und Spalten der beiden Matrizes übereinstimmen.

Solution

Keine Addition möglich Da die Dimensionen der beiden Matrizen nicht übereinstimmen, ist es nicht möglich, die Summe zu bilden

(ii) Aufgabe 01-2-Beispiel 20 in der Übungsbeispielsammlung.

Question 2

Im folgenden bestimme man A^{-1} und berechne damit die Lösung der drei Systeme $Ax = b_1$, $Ax = b_2$ und $Ax = b_3$

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$$
, $b_1 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$, $b_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $b_3 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

Anleitung: Überlegen (beweisen) Sie eine allgemeine Formel für die Inverse einer 2×2 Matrix. Im VO-Teil wurde von mir eine solche Formel in Worten erklärt.

Definition 0.0.2: Berechnen der Inverse einer $2x^2$ Matrix mit dem Adjunkten-Verfahren

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Given the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$

1. Determinant:

$$\det(A) = 1 \times 6 - 2 \times 2 = 2$$

2. Cofactor matrix:

$$\begin{bmatrix} 6 & -2 \\ -2 & 1 \end{bmatrix}$$

3. Adjugate matrix (transpose of the cofactor matrix):

$$\operatorname{adj}(A) = \begin{bmatrix} 6 & -2 \\ -2 & 1 \end{bmatrix}$$

Solution

4. Inverse of A:

$$A^{-1} = \frac{1}{\det(A)} \times \operatorname{adj}(A) = \frac{1}{2} \times \begin{bmatrix} 6 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix}$$

Definition 0.0.3: Multipliziert man eine Matrix mit ihrer inversen Matrix, entsteht die Einheitsmatrix.

$$A \cdot A^{-1} = I$$

Proofe: Multiplying the matrix A by its inverse A^{-1} gives

$$A \times A^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This result is the identity matrix, proving that our computed inverse is correct.

Solution

$$x_1 = A^{-1}b_1 = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} \times \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ -\frac{1}{2} \end{bmatrix}$$

Solution

$$x_2 = A^{-1}b_2 = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} \times \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

Solution

$$x_3 = A^{-1}b_3 = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} \times \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

Definition 0.0.4: Matrizenmultiplikation

Die Matrizenmultiplikation ist eine binäre Verknüpfung auf der Menge der Matrizen über einem Ring R (oft der Körper der reellen Zahlen), also eine Abbildung

$$: R^{l \times m} \times R^{m \times n} \to R^{l \times n}, \quad (A, B) \mapsto C = A \cdot B$$

die zwei Matrizen $A = (a_{ij})$ und $B = (b_{jk})$ eine weitere Matrix $C = (c_{ik})$ zuordnet. Die Matrizenmultiplikation ist dabei nur für den Fall definiert, dass die Spaltenzahl m der Matrix A mit der Zeilenzahl der Matrix B übereinstimmt. Die Zeilenzahl l der Ergebnismatrix C entspricht dann derjenigen der Matrix A und ihre Spaltenzahl n derjenigen der Matrix B. Jeder Eintrag c_{ik} des Matrizenprodukts berechnet sich dabei über

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

(iii) Aufgabe 01-3 Beispiel 21(d) in der Übungsbeispielsammlung.

Question 3

Man löse die folgenden Matrix-Gleichungen für X. Man vereinfache das Ergebnis soweit als möglich. Alle Matrizen seien regulär.

a)
$$XA^2 = A^{-1}$$
 c) $(A^{-1}X)^{-1} = A(B^{-2}A)^{-1}$ b) $AXB = (BA)^2$ d) $ABXA^{-1}B^{-1} = I + A$

$$B^{-1}A^{-1}ABXA^{-1}B^{-1} = B^{-1}A^{-1}(I+A)$$

$$B^{-1}BXA^{-1}B^{-1} = B^{-1}A^{-1} + B^{-1}A^{-1}A$$

 $AA^{-1} = A^{-1}A = I$ when A is invertible.

$$XA^{-1}B^{-1} = B^{-1}A^{-1} + B^{-1}$$
 $(B^{-1}B = BB^{-1} = I)$
Right multiply by BA on both sides, then we get $XA^{-1}B^{-1}BA = B^{-1}A^{-1}BA + B^{-1}BA$
 $XA^{-1}A = B^{-1}A^{-1}BA + A$
 $XI = B^{-1}A^{-1}BA + A$
 $X = B^{-1}A^{-1}BA + A$

Solution

$$X = A$$

Definition 0.0.5: Product and inverse are identity matrices

$$A\cdot A^{-1}=I$$

Definition 0.0.6: Matrices are not commutative

 $A \cdot B \neq B \cdot A$

Definition 0.0.7: Multiplication of a matrix A with the identity matrix

 $I \cdot A = A$

(iv) Aufgabe 01-4 Sei

$$S = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right)$$

Question 4

Bestimmen Sie die reellen Zahlen a und b aus der Matrixgleichung a

$$S \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \cdot S^{\mathrm{T}} + \frac{1}{2} \begin{pmatrix} 0 & -3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix}^{\mathrm{T}}$$

(a) Schritt: Berechne das Produkt der linken Seite. Wir geben dem Produkt die Variable T

$$T_{11} = \frac{1}{\sqrt{2}}((1 \cdot a + (-1) \cdot 0)) = \frac{a}{\sqrt{2}}$$

$$T_{12} = \frac{1}{\sqrt{2}}((1 \cdot 0 + (-1) \cdot b)) = \frac{-b}{\sqrt{2}}$$

$$T_{21} = \frac{1}{\sqrt{2}}((1 \cdot a + 1 \cdot 0)) = \frac{a}{\sqrt{2}}$$

$$T_{22} = \frac{1}{\sqrt{2}}((1 \cdot 0 + 1 \cdot b)) = \frac{b}{\sqrt{2}}$$

$$T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} a & -b \\ a & b \end{bmatrix}$$

(a) Schritt: Berechne das Produkt der von T und S^T und geben ihr die Variable U

Definition 0.0.8: Jedez Zahl, exklusiv 0 geteilt mit sich selber ergibt 1.

$$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = 1$$

$$U = T \cdot S^{T} = \frac{1}{2} \begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix}$$

(b) Berechnen wir auf der rechten Seite der Gleichung die Transponierte von

$$2 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Berechne das Produkt von:

$$2 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

und geben ihr die Variable V

$$V = 2 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

Berechne die Transponierte von V und geben ihr die Variable W

$$W = V^T = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$

(a) Zusammengefasst: haben wir jetzt berechnet:

$$\frac{1}{2} \begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

(b) Schritt: Addieren wir die Matrizen auf der linken Seite zusammen erhalten wir folgendes:

$$\begin{bmatrix} \frac{a+b}{2} & \frac{a-b}{2} - \frac{3}{2} \\ \frac{a-b}{2} + \frac{1}{2} & \frac{a+b}{2} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

- (c) Schritt: Wir stellen eine Gleichung auf und lösen diese nach a und b auf. Für die Gleichungen führen wir die Variable x_1, \ldots, x_2 ein.
 - i. Gleichung: $x_1 = \frac{a+b}{2} = 2$, a+b = 4
 - ii. Gleichung: $x_2 = \frac{a-b}{2} \frac{3}{2} = 2$, a-b = 7 iii. Addition der Gleichungen ergibt: 2a = 7

 - iv. Division durch 2 ergibt: $a = \frac{7}{2}$
 - v. Einsetzen in die Gleichung ergibt: $b = \frac{1}{2}$

Solution

$$a = \frac{7}{2} b = \frac{1}{2}$$

(v) Aufgabe 01-5 Eine Gruppendynamik-Studie zeigt, dass eine Klasse von fünf Studierenden $\{V_1, V_2, \ldots, V_5\}$ sich so in eine Gruppe von drei Leuten $\{V_1, V_2, V_3\}$ und einer Gruppe von zwei Leuten $\{V_4, V_5\}$ aufteilt, dass jedes Mitglied einer Gruppe nur mit den Mitgliedern der anderen Gruppe spricht. Innerhalb jeder der beiden Gruppen gibt es keine Kommunikation.

Question 5

(a) Zeichnen Sie einen Beziehungsgraphen, indem Sie fünf Punkte auf ein Blatt Papier zeichnen und diese mit V_1 bis V_5 benennen. Das sind die Knoten des Graphen, die die Studierenden symbolisieren. Dann verbinden Sie zwei Knoten mit einem Geradenstück falls die betreffenden Studierenden miteinander sprechen. Das sind die Kanten des Graphen.

Solution

Question 6

(b) Geben Sie die Adjazenzmatrix **A** an, wobei $a_{ij} = 1$, falls die Knoten V_i und V_j verbunden sind und sonst ist $a_{ij} = 0$.

Solution

$$\label{eq:Matrix A} \text{Matrix A} \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 0 & 0 & 0 & 1 & 1 & V_1 \\ 0 & 0 & 0 & 1 & 1 & V_2 \\ 1 & 1 & 1 & 0 & 0 & V_3 \\ 1 & 1 & 1 & 0 & 0 & V_4 \\ \end{bmatrix}$$

Question 7

(c) Berechnen Sie A^2 .

Question 8

(d) Zusatz: 1 Berechnen Sie \mathbf{A}^k . Interpretieren Sie die Einträge dieser Matrix.

Solution

$$\text{Matrix } A^2 \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 0 & 0 & 0 & 1 & 1 & V_1 \\ 0 & 0 & 0 & 1 & 1 & V_2 \\ 1 & 1 & 1 & 0 & 0 & V_3 \\ 1 & 1 & 1 & 0 & 0 & V_4 \\ 1 & 1 & 1 & 0 & 0 & V_5 \end{bmatrix} \cdot \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 0 & 0 & 0 & 1 & 1 & V_1 \\ 0 & 0 & 0 & 1 & 1 & V_2 \\ 1 & 1 & 1 & 0 & 0 & V_3 \\ 1 & 1 & 1 & 0 & 0 & V_5 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 2 & 2 & 2 & 0 & 0 & V_1 \\ 2 & 2 & 2 & 0 & 0 & V_2 \\ 0 & 0 & 0 & 3 & 3 & V_3 \\ 0 & 0 & 0 & 3 & 3 & V_4 \\ 0 & 0 & 0 & 3 & 3 & V_5 \end{bmatrix}$$