Министерство образования Республики Беларусь

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Высшая математика»

Учебно-методическое пособие

для проведения практических занятий по высшей математике со студентами инженерно-педагогических специальностей по теме «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ»

Минск БНТУ 2019

УДК	
ББК	
M	

Составители: С.Ю. Лошкарева, В.С. Якимович, Л.В. Бань

Рецензент:

- П.В. Гляков, профессор кафедры информационных технологий в культуре учреждения образования «Белорусский государственный университет культуры и искусств», кандидат физ.-мат. наук
- Т.А. Макаревич, доцент кафедры высшей математики учреждения образования «Военная академия Республики Беларусь», кандидат физ.-мат. наук, доцент

Методическое пособие содержит основные теоретические сведения и примеры типовых задач по теме «Дифференциальные уравнения». Издание предназначено для студентов инженерно-педагогических и инженерных специальностей 1 курса. Практический материал подобран таким образом, чтобы студенты могли полностью усвоить изучаемый материал и справиться самостоятельно с подобными задачами. Данное пособие может быть полезно преподавателям, ведущим практические занятия по данному курсу.

Содержание

Введение. Дифференциальные уравнения	4
Дифференциальные уравнения первого порядка	4
Дифференциальные уравнения с разделенными и разделяющимися переменными	
Задания для самостоятельного решения	
Однородные дифференциальные уравнения первого порядка	
Задания для решения в аудитории	
Уравнения, приводящиеся к однородным	
Задания для самостоятельного решения	15
Линейные однородные дифференциальные уравнения І порядка	
Задания для самостоятельного решения	21
Уравнение Бернулли Задания для решения в аудитории	
Задания для самостоятельного решения	25
Уравнения в полных дифференциалах	
Задания для самостоятельного решения	29
Дифференциальные уравнения высших порядков	
Дифференциальные уравнения высших порядков, допускающие понижение порядка Задания для решения в аудитории	
Задания для самостоятельного решения	
Задания для решения в аудитории	
Задания для самостоятельного решения	
Линейные дифференциальные уравнения порядка n	
Линейные однородные дифференциальные уравнения порядка <i>п</i> с постоянными коэффиц	
Задания для решения в аудитории	
Задания для самостоятельного решения	43
Линейные неоднородные дифференциальные уравнения порядка <i>п</i> с постоянными коэффициентами	44
задания для решения в аудитории	
Задания для самостоятельного решения	
Системы линейных дифференциальных уравнений с постоянными коэффициентами	
Задания для решения в аудитории	
Задания для самостоятельного решения	63
Самостоятельная работа	63
Литература	67

Введение. Дифференциальные уравнения

Определение 1 <u>Дифференциальным уравнением</u> называется уравнение вида:

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Определение 2 Решением дифференциального уравнения называют любую функцию y = y(x), которая обращает данное уравнение в тождество. Функция $y = y(x, c_1, c_2, ..., c_n)$ называется <u>общим решением дифференциального уравнения</u>, если она обращает дифференциальное уравнение в тождество при любых значениях постоянных $c_1, c_2, ..., c_n$. Для начальных условий $y(x_0) = y_0$, $y'(x_0) = y'_0, ..., y'(x_0) = y'_0, ..., y'(x_0) = y_0^{(n-1)}$ можно найти значение постоянных $c_1^0, c_2^0, ..., c_n^0$, при которых функция $y = y(x, c_1^0, c_2^0, ..., c_n^0)$ будет удовлетворять этим начальным условиям. Функцию $y = y(x, c_1^0, c_2^0, ..., c_n^0)$ называют частным решением дифференциального уравнения.

Определение 3 Порядком дифференциального уравнения называют наибольший порядок производной, входящий в это уравнение.

Дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка имеет вид: F(x, y, y') = 0. Если это уравнение можно разделить относительно y', то оно имеет вид: y' = f(x, y).

Определение 1 <u>Общим решением дифференциального уравнения первого порядка</u> называется функция $y' = \varphi(x, C)$ которая зависит от одного произвольного постоянного C и удовлетворяет условиям:

- 1. Она удовлетворяет дифференциальному уравнению при любом C.
- 2. Каково бы ни было начальное условие $y|_{x=x_0}=y_0$ можно найти такое $C=C_0$, что $y'=\varphi(x,C_0)$ удовлетворяет данному начальному условию.

Определение 2 <u>Частным решением</u> дифференциального уравнения y' = f(x, y) называется функция $y' = \varphi(x, C_0)$, которая получается из общего решения $y = \varphi(x, C)$, при определенном значении $C = C_0$. Геометрически:

- а) <u>Общие решения дифференциального уравнения</u> семейство кривых на координатной плоскости, зависящее от одной произвольной постоянной C (интегральные кривые).
- б) <u>частное решение</u> одна интегральная кривая семейства, проходящая через данную точку (x_0, y_0) плоскости.

Определение 3 <u>Решить (проинтегрировать) дифференциальное уравнение</u> — значит:

- 1. Найти его общее решение
- 2. Найти частное решение, удовлетворяющее заданному начальному условию $y|_{x=x_0} = y_0$.

Определение 4 <u>Начальным условием (условием Коши)</u> называется условие $y(x_0) = y_0$ ($x_0, y_0 \in \mathbf{R}$), которым задается дополнительное требование на решение y(x) дифференциального уравнения.

Определение 5 <u>Задачей Коши</u> называется задача отыскания частного решения дифференциального уравнения, удовлетворяющего заданному начальному условию $y(x_0) = y_0$. Геометрически общему решению на координатной плоскости соответствует семейство интегральных кривых $y = \varphi(x, C)$, зависящее от числового параметра C, а частному решению — определенная интегральная кривая, проходящая через точку (x_0, y_0) .

Определение 4 <u>Теорема Коши</u>. Если функция f(x,y) непрерывна и имеет непрерывную произ-

водную $\frac{\partial f}{\partial y}$ в области D, то решение дифференциального уравнения y'=f(x,y), при начальном условии $y(x_0)=y_0,\ (x_0,y_0)\in D$ существует и единственно.

Решение дифференциального уравнения, во всех точках которого не выполняется условие единственности, называется $\underline{ocoбым}$ $\underline{peumenuem}$. Особое решение не может быть получено из общего решения дифференциального уравнения ни при каком значении произвольной постоянной C.

Дифференциальные уравнения с разделенными и разделяющимися переменными

Определение 1. <u>Дифференциальным уравнением с разделенными переменными</u> называется уравнение вида:

$$f(y)dy = g(x)dx (1)$$

в котором левая часть зависит только от одной переменной, а правая – только от другой.

Решаются дифференциальные уравнения с разделенными переменными интегрированием обеих частей:

$$\int f(y)dy = \int g(x)dx \tag{2}$$

Здесь под интегралами понимаются соответствующие первообразные.

Пример 1. Найти решение дифференциального уравнения $\frac{dy}{y} - \frac{dx}{x} = 0$.

Решение:

Перенесем слагаемое $\frac{dx}{x}$ из левой части в правую, получим дифференциальное уравнение: $\frac{dy}{y} = \frac{dx}{x}$, которое является уравнением с разделенными переменными. Проинтегрируем обе части последнего уравнения и получим $\int \frac{dy}{y} = \int \frac{dx}{x} \Rightarrow \ln|y| + c_1 = \ln|x| + c_2$, где c_1, c_2 — произвольные постоянные, $\ln|y| = \ln|x| + c_3$, где $c_3 = c_2 - c_1$. В дальнейшем, после интегрирования обеих частей уравнения, будем писать одну постоянную интегрирования c в правой части равенства, которая будет складываться из постоянных интегрирования левой и правой части уравнения. Заметим также, что в полученном равенстве произвольную постоянную c_3 удобно взять в логарифмической форме, а именно, $c3 = \ln|c|, c \neq 0, c \in \square$ (так как всякое действительное число может быть представлено как логарифм другого действительного числа). Поэтому решение можно записать в виде $\ln|y| = \ln|x| + \ln|c|$, где $c \neq 0$ — произвольная постоянная, или используя свойства логарифмов: $\ln|y| = \ln|cx|$. Затем пропотенцируем его, и получим данное окончательное общее решение $y = cx, x \neq 0, c \neq 0$.

Ответ: y(x) = cx — общее решение, c — произвольная постоянная.

Определение 2. <u>Дифференциальным уравнением с разделяющимися переменными</u> называется уравнение, которое может быть записано в виде

$$y' = f(x) \cdot g(x), \left(y' = \frac{f_1(x)}{g_1(x)} \right)$$
 (3)

или в виде

$$M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0$$
 (4)

где $f(x), M_1(x), M_2(x)$ — функции только переменной x , а $g(y), N_1(y), N_2(y)$ — функции только переменной y .

Общая схема решения дифференциального уравнения с разделяющимися переменными

I. Разделить переменные, т. е. свести к уравнению с разделенными переменными. Для этого надо обе части данного уравнения умножить или разделить на такое выражение, чтобы в одну часть уравнения входила только одна переменная, а в другую – только другая переменная.

Замечание. Если в данном дифференциальном уравнении присутствует y', то сначала следует за-

менить y' на $\frac{dy}{dx}$, а затем произвести разделение переменных.

II. Проинтегрировать обе части полученного уравнения с разделенными переменными.

III. На I этапе, при делении обеих частей уравнения на выражения, содержащие переменные, могут быть потеряны решения, обращающие это выражение в нуль. Поэтому следует

рассмотреть вопрос о существовании таких решений данного дифференциального уравнения.

IV. Если дополнительно к уравнению задано начальное условие, то с его помощью следует найти частное решение.

Пример 2. Решить уравнение $y' - x^2y = 2xy$

Решение.

Выразим y': $y' = x^2y + 2xy$. Заменим y' на $\frac{dy}{dx}$ и одновременно в правой части полученного равен-

ства вынесем общий множитель у за скобки, получим : $\frac{dy}{dx} = y(x^2 + 2x)$.

Данное уравнение является уравнением с разделяющимися переменными, т. к. его удалось привести к уравнению вида (3), где можно считать $f(x) = x^2 + 2x$, g(x) = y. Решим его.

I. Разделим переменные, для чего сначала умножим обе части на dx, получим:

$$dy = y(x^2 + 2x)dx, dx \neq 0$$

Затем разделим обе части полученного равенства на $y: \frac{dy}{y} = (x^2 + 2x)dx$. Получили уравнение с разделенными переменными.

II. Проинтегрируем обе части полученного уравнения: $\int \frac{dy}{y} = \int (x^2 + 2x) dx$ или $\ln |y| = \frac{x^3}{3} + x^2 + c$,

где c — произвольная постоянная, откуда, потенцируя, получаем $y=e^{\frac{x^3}{3}+x^2+c}$ или $y=e^c\cdot e^{\frac{x^3}{3}+x^2}$. Пусть $e^c=\tilde{c}$, где \tilde{c} — также произвольная постоянная. Тогда окончательно получаем общее решение $y=\tilde{c}\cdot e^{\frac{x^3}{3}+x^2}$.

III. Заметим, что при разделении переменных мы полагали, что $y \neq 0$. Рассмотрим отдельно случай y = 0. Легко убедиться, что функция y = 0 также является решением данного уравнения. Однако

заметим, что оно формально получается из формулы общего решения $y = \tilde{c} \cdot e^{\frac{x^3}{3} + x^2}$ при $\tilde{c} = 0$.

Ответ: $y = \tilde{c} \cdot e^{\frac{x^3}{3} + x^2}$ — общее решение, где \tilde{c} — произвольная постоянная.

Пример 3. Найти частное решение дифференциального уравнения, удовлетворяющее заданному начальному условию: $xydx + (1+y^2)\sqrt{1+x^2}dy = 0$, $y(\sqrt{8}) = 1$

Решение.

Данное дифференциальное уравнение имеет вид уравнения (4), где $M_1(x) = x$, $M_2(x) = \sqrt{1+x^2}$, $N_1(y) = y$, $N_2(y) = 1+y^2$, а потому является уравнением с разделяющимися переменными.

I. Разделим переменные, для чего поделим обе части уравнения на $y \cdot \sqrt{1 + x^2}$, полагая $y \cdot \sqrt{1 + x^2} \neq 0$:

$$\frac{xy}{y \cdot \sqrt{1+x^2}} dx + \frac{(1+y^2)\sqrt{1+x^2}}{y \cdot \sqrt{1+x^2}} dy = 0 \implies \frac{x}{\sqrt{1+x^2}} dx + \frac{1+y^2}{y} dy = 0 \implies \frac{x}{\sqrt{1+x^2}} dx = -\frac{1+y^2}{y} dy$$

Получили уравнение с разделенными переменными.

II. Проинтегрируем обе части уравнения: $\int \frac{x}{\sqrt{1+x^2}} dx = -\int \left(\frac{1}{y} + y\right) dy$,

$$\int \frac{x}{\sqrt{1+x^2}} dx = -\int \frac{dy}{y} - \int y dy \Rightarrow \frac{1}{2} \int \frac{d(1+x^2)}{\sqrt{1+x^2}} = -\int \frac{dy}{y} - \int y dy$$

Откуда получаем общее решение данного дифференциального уравнения:

$$\sqrt{1+x^2} = -\ln|y| - \frac{y^2}{2} + \tilde{c}$$
 или $\sqrt{1+x^2} + \ln|y| + \frac{y^2}{2} - \tilde{c} = 0$ где \tilde{c} — произвольная постоянная.

III. При разделении переменных мы полагали, что $y\cdot\sqrt{1+x^2}\neq 0$, что могло привести к потере решения. Рассмотрим отдельно случай $y\cdot\sqrt{1+x^2}=0$, откуда следует, что y=0, $(\sqrt{1+x^2}\neq 0)$ при всех $x\in \mathbb{D}$). После подстановки y=0 в исходное уравнение получим: $x\cdot 0\cdot dx+(1+0^2)\sqrt{1+x^2}d0=0$, откуда имеем 0=0. Следовательно, y=0 также является решением данного дифференциального уравнения. Однако заметим, что оно не может быть получено из общего решения ни при каком частном значении произвольной постоянной \tilde{c} .

IV. Найдем частное решение, удовлетворяющее заданному начальному условию $y(\sqrt{8}) = 1$. Для этого

подставим в общее решение
$$x = \sqrt{8}$$
, $y = 1: \sqrt{1 + \left(\sqrt{8}\right)^2} + \ln |1| + \frac{1^2}{2} - \tilde{c} = 0 \implies \tilde{c} = \frac{7}{2}$

Следовательно, искомое частное решение имеет вид: $\sqrt{1+x^2} + \ln|y| + \frac{y^2}{2} - \frac{7}{2} = 0$.

Ответ: $\sqrt{1+x^2} + \ln|y| + \frac{y^2}{2} - \frac{7}{2} = 0$ — частное решение дифференциального уравнения.

Пример 4. Доказать, что функция $y = \frac{2}{3x} + \frac{x^2}{3}$ является решением дифференциального уравнения (2y - xy')x = 2.

Решение

Продифференцируем функцию: $y' = -\frac{2}{3x^2} + \frac{2x}{3}$. Подставим ее в заданное дифференциальное уравнение: $\left(2\left(\frac{2}{3x} + \frac{x^2}{3}\right) - x\left(-\frac{2}{3x^2} + \frac{2x}{3}\right)\right)x = 2$; $\left(\frac{4}{3x} + \frac{2x^2}{3} + \frac{2}{3x} - \frac{2x^2}{3}\right)x = 2$. В итоге получаем тождество $\frac{2}{x} \cdot x = 2$ или 2 = 2

Это доказывает, что функция $y = \frac{2}{3x} + \frac{x^2}{3}$ является решением заданного дифференциального уравнения

Пример 5. Доказать, что равенство $(1+y^2)(1+x^2) = C$ является общим интегралом дифференциального уравнения $(x+xy^2)dx + (y+yx^2)dy = 0$.

Решение.

Вычислим производную неявной функции $F(x, y) = (1 + y^2)(1 + x^2) - C$ по формуле $y'_x = -\frac{F'_x}{F'_y}$:

поскольку
$$F_x' = 2x(1+y^2)$$
, $F_y' = 2y(1+x^2)$, то $y_x' = -\frac{2x(1+y^2)}{2y(1+x^2)} = -\frac{x(1+y^2)}{y(1+x^2)}$. Подставим y_x' и $dy = y_x' dx$ в за-

данное дифференциальное уравнение:

$$(x+xy^2)dx + (y+yx^2)\left(-\frac{x(1+y^2)}{y(1+x^2)}\right)dx = (x+xy^2 - x - xy^2)dx = 0.$$

Получили тождество 0 = 0, что и доказывает требуемое.

Задания для решения в аудитории

Задание № 1. Найти общее решение дифференциального уравнения с разделяющимися перемен-

1.
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$

3.
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$

5.
$$2xdx - ydy = yx^2dy - xy^2dx$$

7.
$$\sqrt{3+y^2}dx - ydy = x^2ydy$$

9.
$$x\sqrt{4-y^2} \cdot dx + y\sqrt{1-x^2} dy = 0$$

11.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0$$

13.
$$(y^2 + xy^2) + (x^2 - yx^2)y' = 0$$

15.
$$xy(1+x^2)y'=1+y^2$$

17.
$$(e^{3x} + 7)dy + ye^{3x}dx = 0$$

19.
$$(e^x + 8)dy - ye^x dx = 0$$

$$21. \left(1 + e^x\right) \cdot y' = y \cdot e^x$$

23.
$$e^y \cdot (1+x^2) dy - 2x(1+e^y) dx = 0$$

23.
$$y' \cdot tgx - y = 1$$

25.
$$y(1+\ln y) + xy' = 0$$

2.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$

$$4. 6xdx - ydy = yx^2dy - 3xy^2dx$$

6.
$$2x\sqrt{1-y^2}dx + ydy = 0$$

8.
$$\sqrt{4-x^2} \cdot y' + xy^2 + x = 0$$

10.
$$2x + 2xy^2 + \sqrt{2 - x^2} \cdot y' = 0$$

12.
$$x(1+y^2) + yy'(1+x^2) = 0$$

14.
$$y - xy' = 1 + x^2y'$$

16.
$$(1+2y)xdx + (1+x^2)dy = 0$$

18.
$$y(4+e^x)dy - e^x dx = 0$$

20.
$$y' = e^{x-y}$$

$$22.\left(3+e^{x}\right)\cdot yy'=e^{x}$$

$$22. e^{y} \left(1 + \frac{dy}{dx} \right) = 1$$

24.
$$y \ln y + xy' = 0$$

Задание №2. Доказать, что данная функция является решением соответствующего дифференциального уравнения:

1)
$$y = \cos x + 4x$$
, $y' = 4 - \sin x$;

2)
$$y = x^2 \ln x^3$$
, $xy' = 3x^2 - 2y$:

3)
$$y = \frac{(1-x)^3}{3} + (1-x)^2$$
, $\frac{3y'}{x-3} + \frac{3y}{(1-x)^2} = 7 - 4x$; 4) $y = e^{-x}$, $y' - e^x y^2 + 2y = 0$.

4)
$$y = e^{-x}$$
, $y' - e^{x}y^{2} + 2y = 0$.

5)
$$y^2 - x^2 - y = 0$$
, $y'(x^2 + y^2) - 2xy = 0$;

6)
$$2x^2 + y^2 - 1 = 0$$
, $2x + yy' = 0$;

7)
$$y(\ln x + x) + y = 1$$
, $xy' - y^2 \ln x + y = 0$.

Задание №3. Решите задачу Коши:

1)
$$y' = 8x^3$$
, $y(0) = 0$;

2)
$$\sqrt{1-x^2} dy - 2x dx = 0$$
, $y(0) = -2$;

3)
$$y' + \sin x = 0$$
, $y(\pi) = 1$;

4)
$$4(x+1)dx + (y-1)dy = 0$$
, $y(0) = 1$.

5)
$$\frac{yy'}{x} + e^y = 0$$
, $y(1) = 0$

5)
$$\frac{yy'}{x} + e^y = 0$$
, $y(1) = 0$; 6) $(x^2 - 1)y' + 2xy^2 = 0$, $y(0) = 1$;

7)
$$xy' = \frac{2y}{\ln x}$$
, $y(e) = 1$; 4

8)
$$(xy^2 + y)dx - xdy = 0$$
, $y(1) = 1$.

9)
$$(y-3)dx + (x+4)dy = 0$$
, $y(-3) = 4$;

Задания для самостоятельного решения

Задание №4. Решить уравнения:

1.
$$y' = y^2 \cdot \sin x$$
 Ombem. $y = -\frac{1}{\cos x + C}$.

2.
$$(x+2)dy - (y-1)dx = 0$$
 Omeem. $y = C(x+2)-1$.

3.
$$y' = \frac{2xy}{2+x^2}$$
 Omsem. $y = C(x^2+2)$.

4.
$$y' = x^3 \cdot e^{-x^4}$$
; $y(0) = 1$. *Omsem*. $y = -\frac{1}{4}e^{-x^4} + C$; $y = -\frac{1}{4}e^{-x^4} + \frac{5}{4}$.

5.
$$(x+xy^2)dx + y(1-x^2)dy = 0$$
. Omsem. $1+y^2-C(1-x^2)=0$.

6.
$$y' = \frac{\sqrt{y+3}}{x}$$
 Omsem. $2\sqrt{y+3} = \ln|x| + C$.

7.
$$xydy + \ln^2 xdx = 0$$
 Omeem. $3y^2 + 2\ln^3 x = C$.

8.
$$e^{x+y}dx + ydy = 0$$
 Omeem. $e^x - e^{-y}(y+1) = C$.

9.
$$2y\sqrt{1-x^2}dy + xdx = 0$$
; $y(0) = 2$ Ombem. $y^2 = \sqrt{1-x^2} + C$; $y^2 = \sqrt{1-x^2} + 1$.

10.
$$y' = \frac{2xy}{4+x^2}$$
; $y(0) = 12$. Omsem. $y = (x^2+4)C$; $y = 3x^2$.

11.
$$(xy^2 + x)dx - (x^2y - y)dy = 0$$
 Omsem. $y = \sqrt{(x^2 - 1)C - 1}$.

12.
$$x\sqrt{1-y^2}dy + y\sqrt{1-x^2}dy = 0$$
 Omsem. $\sqrt{1-y^2} = \sqrt{1-x^2} + C$.

13.
$$y \ln y dx + x dy = 0$$
 Omeem. $x \cdot \ln y = C$.

14.
$$ydx + (1+x^2)dy = 0$$
, $y(1) = 1$ *Omeem*. .0

Однородные дифференциальные уравнения первого порядка

Понятие однородного дифференциального уравнения первого порядка связано с однородными функциями.

Определение 1. Функция $\Phi(x; y)$ называется *однородной функцией степени п*, если для любого числа k > 0 имеет место тождество: $\Phi(kx; ky) \equiv k^n \cdot \Phi(x; y)$.

Например рассмотрим многочлен $\Phi(x; y) = 2x^2 - 3xy - 5y^2$. Он является однородной функцией степени 2.

Действительно, заменим аргументы x и y на пропорциональные величины kx и ky, тогда будем иметь $\Phi(kx;ky) = 2(kx)^2 - 3(kx)(ky) - 5(ky)^2 = k^2(2x^2 - 3xy - 5y^2) = k^2\Phi(x;y)$.

Определение 2. Однородным дифференциальным уравнением первого порядка называется дифференциальное уравнение, которое может быть записано в виде

$$y' = f\left(\frac{y}{x}\right) \tag{1}$$

а также в виде

$$M(x;y)dx + N(x;y)dy = 0, (2)$$

где M(x; y) и N(x; y) — однородные функции одной и той же степени.

С помощью подстановки $\frac{y}{x} = t$ или y = tx, где t = t(x) — новая неизвестная функция, однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными.

Пример 1. Решить уравнение xy' = y + 2x.

Решение

Выразим y', получим $y' = \frac{y+2x}{x}$ или $y' = \frac{y}{x} + 2$. Полученное дифференциальное уравнение имеет вид уравнения $y' = f\left(\frac{y}{x}\right)$, где $f\left(\frac{y}{x}\right) = \frac{y}{x} + 2$. Следовательно, данное уравнение является однородным дифференциальным уравнением первого порядка. Для того чтобы решить его, сделаем замену y = tx.

Найдем первую производную функции y по аргументу x: y'=(tx)'=t'x+tx'=t'x+t. Подставим в исходное уравнение вместо y' и $\frac{y}{x}$ их выражения через t и x: t'x+t=t+2 или t'x=2. Заменим t' на

 $\frac{dt}{dx}$ и одновременно разделим обе части последнего равенства на x, получим уравнение $\frac{dt}{dx}$

 $\frac{dt}{dx} = \frac{2}{x}, x \neq 0$, которое является дифференциальным уравнением с разделяющимися переменными.

Разделим переменные: $dt=\frac{2}{x}dx$. Проинтегрируем обе части: $\int dt=\int \frac{2}{x}dx$, откуда $t=2\ln |x|+\ln |c|$, $c\neq 0$, $c\in \square$, где $\ln |c|$ — произвольная постоянная, или

 $t=\ln\left|cx^{2}\right|$. Возвращаясь к первоначальной переменной, получим решение исходного дифференци-

ального уравнения в виде $\frac{y}{x} = \ln |cx^2|$ или $y = x \ln |cx^2|$.

Заметим, что при решении мы делили обе части уравнения на x, полагая, что $x \neq 0$. При x = 0 из данного уравнения следует y = 0, т. е. имеем точку (0; 0), таким образом, случай x = 0 не дает решение

Ответ: $y(x) = x \ln |cx^2|$ — общее решение, где c — произвольная постоянная.

Пример 2. Решить уравнение (x+y)dx + xdy = 0.

Решение.

Покажем, что дифференциальное уравнение (x+y)dx+xdy=0 является однородным, и затем решим его. Рассмотрим функции M(x;y)=x+y и N(x;y)=x. Найдем:

$$M(kx;ky) = kx + ky = k(x+y) = kM(x;y)$$
$$N(kx;ky) = kx = kN(x;y)$$

Следовательно, функции M(x;y) и N(x;y) являются однородными первой степени, поэтому данное уравнение однородно.

Для того чтобы решить его, сделаем замену y = tx, где x — независимая переменная, y = y(x) — первоначальная неизвестная функция, t = t(x) — новая неизвестная функция.

Найдем первую производную функции y по аргументу x : y' = (tx)' = t'x + tx' = t'x + t (или $\frac{dy}{dx} = \frac{dt}{dx} \cdot x + t$ или dy = xdt + tdx). Подставляя это выражение в данное уравнение, будем иметь: (x+tx)dx + x(xdt + tdx) = 0, $x^2dt + x(2t+1)dx = 0$. Разделим обе части последнего равенства на x, полагая $x \neq 0$, получим дифференциальное уравнение xdt + (2t+1)dx = 0, которое является уравнением с разделяющимися переменными.

Разделим переменные $\frac{dt}{2t+1} = -\frac{dx}{x}$. Интегрируя обе части, получаем:

$$\int \frac{dt}{2t+1} = -\int \frac{dx}{x} \Longrightarrow \int \frac{d(2t+1)}{2t+1} = -2\int \frac{dx}{x}$$

отсюда находим $\ln |2t+1| = -2\ln |x| + \ln |c| \Rightarrow \ln |2t+1| = \ln \left| \frac{c}{x^2} \right|$ или $2t+1 = \frac{c}{x^2}$, где c — произвольная постоянная.

Вернемся к первоначальной переменной, тогда общее решение примет вид:

$$2\frac{y}{x}+1=\frac{c}{x^2}$$
 \Rightarrow $2y+x=\frac{c}{x}$ \Rightarrow $y=-\frac{x}{2}+\frac{c_1}{x}$, где $c_1=\frac{c}{2}$ — произвольная постоянная.

Следует также отметить, что в процессе решения возникала необходимость делить на функции x и 2t+1. Приравнивая их к нулю, получаем возможные решения:

1)
$$x = 0$$
,

2)
$$2t+1=0$$
, или $y=-\frac{x}{2}$.

Легко убедиться проверкой, что обе функции удовлетворяют данному дифференциальному уравнению; вторая функция $y=-\frac{x}{2}$ получается из общего решения при $c_1=0$; функция x=0 не может быть получена из общего решения ни при каком значении произвольной постоянной c_1 .

Ответ: $y(x) = -\frac{x}{2} + \frac{c_1}{x}$, где $c_1 = \frac{c}{2}$ — произвольная постоянная, x = 0.

Замечание: Уравнение (x+y)dx + xdy = 0

можно было также записать в виде $y' = -1 - \frac{y}{x}$. Полученное уравнение имеет вид уравнения

$$y' = f\left(\frac{y}{x}\right)$$
, где $f\left(\frac{y}{x}\right) = -1 - \frac{y}{x}$ и поэтому является однородным.

Пример 3. Решить уравнение $y' = \frac{y}{x} \left(\ln \frac{y}{x} + 1 \right)$.

Решение.

Полученное дифференциальное уравнение имеет вид уравнения $y' = f\left(\frac{y}{x}\right)$, сследовательно, данное уравнение является однородным дифференциальным уравнением первого порядка.

Для того чтобы решить его, введем вспомогательную функцию y = tx. Отметим, что введенная нами функция t всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее $\ln t = \ln \frac{y}{x}$.

Найдем первую производную функции y по аргументу x: y' = (tx)' = t'x + tx' = t'x + t. Подставим в исходное уравнение вместо y' и $\frac{y}{x}$ их выражения через t и x:

$$t'x + t = t(\ln t + 1);$$
 $t'x + t = t \ln t + t;$ $t'x = t \ln t;$

Разделяем переменные: $\frac{dt}{t \ln t} = \frac{dx}{x}$; $\int \frac{dt}{t \ln t} = \int \frac{dx}{x}$;

Интегрируя, получаем: $\ln |\ln t| = \ln |x| + C$; $\ln t = Cx$; $t = e^{Cx}$;

Переходя от вспомогательной функции обратно к функции y , получаем общее решение: $y = xe^{Cx}$.

Ответ: $y = xe^{Cx}$., где c — произвольная постоянная.

Задания для решения в аудитории

Задание № 1. Показать, что данные дифференциальные уравнения являются однородными и решить их.

1.
$$(2x-y)dx+(x+y)dy=0$$

3.
$$(x+2y)dx - xdy = 0$$

5.
$$x^2y' = y^2 + 4xy + 2x^2$$

7.
$$y^2 + x^2y' = xyy'$$

9.
$$y' = \frac{2y + x}{2x - y}$$

11.
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$

13.
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$

15.
$$xy' = 3\sqrt{x^2 + y^2} + y$$

17.
$$xy' = 2\sqrt{3x^2 + y^2} + y$$

19.
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}$$

21.
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
.

23.
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$$
.

25.
$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$
.

2.
$$(y^2 - 2xy)dx + x^2dy = 0$$

4.
$$xydy + (x^2 - 2y^2)dx = 0$$

6.
$$x^2y' = y^2 + 8xy + 12x^2$$

8.
$$xyy' = x^2 - y^2$$

10.
$$y' = \frac{x + 8y}{8x + y}$$

12.
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$

14.
$$y' = \sqrt{1 - \left(\frac{y}{x}\right)^2} + \frac{y}{x}$$

16.
$$xy' = 3\sqrt{2x^2 + y^2} + y$$

18.
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$

$$20. \ xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}$$

22.
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8$$
.

24.
$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10$$
.

Уравнения, приводящиеся к однородным

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут быть приведены к однородным. Рассмотрим уравнение вида

$$y' = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$$
. При определенных значениях a_1 , a , b_1 , b , c_1 , c сводится к однородному урав-

нению. Рассмотрим три возможных случая коэффициентов:

1) Если определитель $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} \neq 0$ (т.е. $\frac{a}{a_1} \neq \frac{b}{b_1}$,) то переменные могут быть разделены подстановкой

$$x = u + \alpha;$$
 $y = v + \beta;$

где α и β - решения системы уравнений $\begin{cases} ax + by + c = 0 \\ a_1x + b_1y + c_1 = 0 \end{cases}$. Этой заменой дифференциальное уравне-

ние $y' = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$ сводится к уравнению $\frac{dv}{du} = f\left(\frac{au + bv}{a_1u + b_1v}\right)$. Далее его решают как однородное.

Пример 4. Решить уравнение (x-2y+3)dy+(2x+y-1)dx=0.

Решение.

Получаем
$$(x-2y+3)\frac{dy}{dx} = -2x-y+1;$$
 $\frac{dy}{dx} = \frac{-2x-y+1}{x-2y+3};$

Находим значение определителя $\begin{vmatrix} -2 & -1 \\ 1 & -2 \end{vmatrix} = 4 + 1 = 5 \neq 0$.

Решаем систему уравнений
$$\begin{cases} -2x-y+1=0\\ x-2y+3=0 \end{cases}$$
; $\begin{cases} y=1-2x\\ x-2+4x+3=0 \end{cases}$; $\begin{cases} x=-1/5\\ y=7/5 \end{cases}$;

Применяем подстановку x = u - 1/5; y = v + 7/5; в исходное уравнение

$$(u-1/5-2v-14/5+3)dv + (2u-2/5+v+7/5-1)du = 0;$$

$$(u-2v)dv + (2u+v)du = 0;$$

$$\frac{dv}{du} = \frac{2u+v}{2v-u} = \frac{2+v/u}{2v/u-1};$$

Заменяем переменную $\frac{v}{u} = t$; v = ut; v' = t'u + t; при подстановке в выражение, записанное выше,

имеем: $t'u + t = \frac{2+t}{2t-1}$.

Разделяем переменные:
$$\frac{dt}{du}u = \frac{2+t}{2t-1} - t = \frac{2+t-2t^2+t}{2t-1} = \frac{2(1+t-t^2)}{2t-1};$$

$$\frac{du}{u} = -\frac{1}{2} \cdot \frac{1-2t}{1+t-t^2} dt; \qquad \int \frac{du}{u} = -\frac{1}{2} \int \frac{(1-2t)dt}{1+t-t^2};$$

$$-\frac{1}{2} \ln \left| 1+t-t^2 \right| = \ln \left| u \right| + \ln C_1$$

$$\ln \left| 1+t-t^2 \right| = -2 \ln \left| C_1 u \right|$$

$$\ln \left| 1+t-t^2 \right| = \ln \left| \frac{C_2}{u^2} \right|; \quad 1+t-t^2 = \frac{C_2}{u^2};$$

Переходим теперь к первоначальной функции у и переменной х.

$$t = \frac{v}{u} = \frac{y - 7/5}{x + 1/5} = \frac{5y - 7}{5x + 1}; \quad u = x + 1/5;$$

$$1 + \frac{5y - 7}{5x + 1} - \left(\frac{5y - 7}{5x + 1}\right)^2 = \frac{25C_2}{(5x + 1)^2};$$

$$(5x + 1)^2 + (5y - 7)(5x + 1) - (5y - 7)^2 = 25C_2$$

$$25x^2 + 10x + 1 + 25xy + 5y - 35x - 7 - 25y^2 + 70y - 49 = 25C_2$$

$$25x^2 - 25x + 25xy + 75y - 25y^2 = 25C_2 + 49 - 1 + 7$$

$$x^2 - x + xy + 3y - y^2 = C_2 + \frac{55}{25} = C;$$

Таким образом, выражение $x^2 - x + xy + 3y - y^2 = C$, где C — произвольная постоянная, является общим интегралом исходного дифференциального уравнения.

Ответ: $x^2 - x + xy + 3y - y^2 = C$, где C — произвольная постоянная.

2) В случае если в исходном уравнении вида
$$y' = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$$
 определитель $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} = 0$ (т.е.

 $k = \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$), то переменные могут быть разделены подстановкой ax + by = t Причем t = t(x).

Эта замена приводит к дифференциальному уравнению с разделяющимися переменными.

Пример 5. Решить уравнение 2(x+y)dy + (3x+3y-1)dx = 0.

Получаем
$$2(x+y)\frac{dy}{dx} = -3x - 3y + 1;$$
 $\frac{dy}{dx} = \frac{-3x - 3y + 1}{2x + 2y} = -\frac{3x + 3y - 1}{2x + 2y};$

Находим значение определителя
$$\begin{vmatrix} -3 & -3 \\ 2 & 2 \end{vmatrix} = -6 + 6 = 0;$$

Применяем подстановку 3x + 3y = t.

$$\frac{dy}{dx} = \frac{t'}{3} - 1;$$

Подставляем это выражение в исходное уравнение:

$$\frac{t'}{3} - 1 = -\frac{3(t-1)}{2t}; \quad 2t(t'-3) = -9t + 9; \quad 2tt' = 6t - 9t + 9; \quad 2tt' = -3t + 9;$$

Разделяем переменные: $\frac{2t}{-3t+9}dt = dx;$ $\frac{t}{t-3}dt = -\frac{3}{2}dx;$

$$\int \left(1 + \frac{3}{t - 3}\right) dt = -\frac{3}{2} \int dx;$$

$$t+3\ln|t-3|=-\frac{3}{2}x+C_1$$

Далее возвращаемся к первоначальной функции y и переменной x:

$$2x+2y+2\ln |3(x+y-1)| = -x+C_2;$$

$$3x+2y+2\ln 3+2\ln |x+y-1|=C_2$$
; $3x+2y+2\ln 3+2\ln |x+y-1|=C_2$;

$$3x+2y+2\ln|x+y-1|=C;$$

таким образом, мы получили общий интеграл исходного дифференциального уравнения.

Ответ: $3x + 2y + 2\ln|x + y - 1| = C$; , где C — произвольная постоянная.

3) Если
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k$$
, $k \in \mathbf{R}$, то получаем $y' = f\left(\frac{k(a_1x + b_1y + c_1)}{a_1x + b_1y + c_1}\right)$, т. е. $dy = f(k)dx$. Далее интегрируют.

Пример 6. Найти решение дифференциального уравнения: $y' = \frac{2x + y + 1}{4x + 2y + 2}$

Решение.

Так как $\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$, т.е. $\frac{2}{4} = \frac{1}{2} = \frac{1}{2}$, то заданное уравнение сводится к уравнению $\frac{dy}{dx} = \frac{2x + y + 1}{2(2x + y + 1)}$.

После сокращения имеем 2dy = dx. Интегрируем и получаем общее решение исходного дифференциального уравнения: 2y = x + C.

Ответ: 2y = x + C., где C — произвольная постоянная.

Задания для решения в аудитории Задание № 2. Найти общий интеграл дифференциального уравнения:

1.
$$y' = \frac{x+2y-3}{2x-2}$$
.

2.
$$y' = \frac{x+y-2}{2x-2}$$
.

3.
$$y' = \frac{3y - x - 2}{3x + 3}$$
.

4.
$$y' = \frac{2y-2}{x+y-2}$$
.

5.
$$y' = \frac{x+y-2}{3x-y-2}$$
.

6.
$$y' = \frac{2x + y - 3}{x - 1}$$
.

7.
$$y' = \frac{x+7y-8}{9x-y-8}$$
.

8.
$$y' = \frac{x+3y+4}{3x-6}$$
.

9.
$$y' = \frac{3y+3}{2x+y-1}$$
.

10.
$$y' = \frac{x+2y-3}{4x-y-3}$$
.

11.
$$y' = \frac{x-2y+3}{-2x-2}$$
.

12.
$$y' = \frac{x+8y-9}{10x-y-9}$$

13.
$$y' = \frac{2x+3y-5}{5x-5}$$
.

14.
$$y' = \frac{4y-8}{3x+2y-7}$$
.

15.
$$y' = \frac{x+3y-4}{5x-y-4}$$
.

16.
$$y' = \frac{y-2x+3}{x-1}$$
.

17.
$$y' = \frac{x+2y-3}{x-1}$$
.

18.
$$y' = \frac{3x + 2y - 1}{x + 1}$$
.

19.
$$y' = \frac{5y+5}{4x+3y-1}$$
.

20.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

Задание № 3. Решить задачу Коши:

1)
$$(x+y-1)dx-(5x-7y+1)dy=0$$
, $y(0)=1$;

2)
$$(x+y+1)dx-(2x+2y-1)dy=0$$
, $y(0)=1$;

3)
$$(x+2y+1)dy-(2x-y+1)dx=0$$
, $y(0)=1$.

Задания для самостоятельного решения

Задание №4. Проинтегрировать уравнения:

1.
$$xy' - y = \sqrt{x^2 - y^2}$$
. Omeem. $y = x \cdot \sin(\ln|x| + C)$.

2.
$$(x+y)dx+(x-y)dy=0$$
. Omsem. $x^2+2xy-y^2=C$.

3.
$$y^2 - 4xy + 4x^2y' = 0$$
. Omsem. $y = \frac{4x}{\ln|x| + C}$.

4.
$$x\left(y'+e^{\frac{y}{x}}\right) = y$$
. Omsem. $e^{-\frac{y}{x}} = \ln |Cx|$.

5.
$$2xydx + (y^2 - x^2)dy = 0$$
. Omsem. $y^2 + x^2 = C \cdot y$.

6.
$$xy' - y + xtg \frac{y}{x} = 0$$
. Omsem. $x \sin \frac{y}{x} = C$.

7.
$$y' = \frac{y}{x} + \frac{x}{y}$$
. Omsem. $y^2 = 2x^2 (\ln x + C)$.

8.
$$xy' = \frac{x}{\sin\frac{y}{x}} + y$$
. Omsem. $-\operatorname{ctg}\frac{y}{x} = \ln x + C$.

9.
$$xy^2 dy = (y^3 + x^3) dx$$
. Ombem. $y^3 = 3x^3 \cdot \ln|C \cdot x|$.

10.
$$xy' = y \ln\left(\frac{y}{x}\right)$$
, $y(1) = e^3$. *Ombem*. $y = xe^{Cx+1}$; $y = xe^{2x+1}$.

Линейные однородные дифференциальные уравнения І порядка

Определение. <u>Линейным дифференциальным уравнением первого порядка</u> называется уравнение, которое можно записать в виде

$$y' + P(x)y = Q(x), \tag{1}$$

где Q(x) и P(x) — заданные непрерывные функции, в частности — постоянные (Q(x) — свободный член или правая часть уравнения). Будем полагать, что коэффициент уравнения P(x) и свободный

член Q(x) уравнения непрерывны на некотором интервале (a; b), в котором разыскивается решение уравнения.

Если правая часть в уравнении (1), функция Q(x) тождественно не равна нулю на (a; b), то уравнение (1.) называется <u>линейным неоднородным дифференциальным уравнением первого порядка</u>.

Если же правая часть в уравнении (1), функция Q(x), тождественно равна нулю на (a; b), то уравнение () принимает вид: y' + P(x)y = 0

и называется в этом случае <u>линейным однородным дифференциальным уравнением первого порядка</u>, соответствующим линейному неоднородному уравнению (1) (линейное однородное дифференциальное уравнение I порядка не следует смешивать с однородными дифференциальными уравнениями первого порядка, содержащими однородную функцию, которые рассматривались ранее). Отметим, что линейное однородное уравнение является уравнением с разделяющимися переменными.

Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида

$$y' + P(x)y = 0.$$

Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей.

$$\frac{dy}{y} = -P(x)dx$$

$$\ln|y| = -\int P(x)dx + \ln|C|;$$

$$\ln\left|\frac{y}{C}\right| = -\int P(x)dx;$$

Общее решение: $y = Ce^{-\int P(x)dx}$.

Пример 1. Найти общий интеграл уравнения $x(y^2-1)dx + y(x^2-1)dy = 0$.

Решение.

Данное уравнение – линейное однородное дифференциальное уравнения I порядка. Оно легко приводится к уравнению с разделяющимися переменными:

$$\frac{xdx}{x^2 - 1} + \frac{ydy}{y^2 - 1} = 0; \qquad \int \frac{xdx}{x^2 - 1} = -\int \frac{ydy}{y^2 - 1}; \qquad \ln|x^2 - 1| + \ln|y^2 - 1| = \ln C \Rightarrow y^2 - 1 = \frac{C}{x^2 - 1}$$

Общий интеграл имеет вид: $y = \pm \sqrt{\frac{C}{x^2 - 1} + 1}$

Ответ: $y = \pm \sqrt{\frac{C}{x^2 - 1} + 1}$ — общее решение, где C — произвольная постоянная.

Пример 2. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям: $y'\cos x = (y+1)\sin x$; y(0) = 0.

Решение.

Данное уравнение – линейное однородное дифференциальное уравнения I порядка. Оно легко приводится к уравнению с разделяющимися переменными:

$$\frac{y'}{y+1} = \frac{\sin x}{\cos x}; \qquad \frac{dy}{y+1} = tgxdx; \qquad \int \frac{dy}{y+1} = \int tgxdx; \qquad \ln|y+1| = -\ln|\cos x| + \ln C;$$
$$\ln|(y+1)\cos x| = \ln C; \qquad (y+1)\cos x = C;$$

Общее решение имеет вид: $y = \frac{C}{\cos x} - 1$.

Найдем частное решение при заданном начальном условии y(0) = 0: $0 = \frac{C}{1} - 1$; C = 1.

Окончательно получаем: $y = \frac{1}{\cos x} - 1$.

Ответ: $y = \frac{1}{\cos x} - 1$. — частное решение.

Для интегрирования линейных неоднородных уравнений ($Q(x) \neq 0$) применяются в основном два метода: метод Бернулли и метод Лагранжа. Рассмотрим их поподробнее.

Метод Бернулли. Суть метода заключается в том, что решение уравнения y' + P(x)y = Q(x), разыскивается в виде $y = u(x) \cdot v(x)$, где u(x) и v(x) — новые неизвестные функции аргумента x. Затем находят y':

$$y = u(x) \cdot v(x) \implies y' = u'(x) \cdot v(x) + u(x) \cdot v'(x).$$

Полученный результат y и y' подставляют в уравнение: $u' \cdot v + v' \cdot u + P(x) \cdot u \cdot v = Q(x)$.

Далее, группируют в левой части слагаемые с общим множителем v в первой степени (или u) v, и, вынося общий множитель за скобки, имеют:

$$v(u'+P(x)\cdot u)+v'\cdot u=Q(x).$$

Затем выбирают функцию u такой, чтобы множитель при v обращался в 0: $u' + P(x) \cdot u = 0 \implies v' \cdot u = Q(x)$.

Таким образом, получают систему: $\begin{cases} u' + P(x) \cdot u = 0 \\ v' \cdot u = Q(x) \end{cases}$

Решают первое уравнение системы, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

$$\frac{du}{dx} + P(x)u = 0.$$

$$\frac{du}{u} = -P(x)dx; \implies \int \frac{du}{u} = -\int P(x)dx; \implies \ln|u| = -\int P(x)dx;$$

$$\ln|C_1| + \ln|u| = -\int P(x)dx; \implies u = Ce^{-\int P(x)dx}, \quad C = 1/C_1;$$

Для нахождения второй неизвестной функции v подставляют полученное выражение для функции u во второе уравнение системы $v' \cdot u(x) = Q(x)$:

$$Ce^{-\int P(x)dx} \frac{dv}{dx} = Q(x); \implies Cdv = Q(x)e^{\int P(x)dx}dx;$$

Интегрируя, находят функцию и:

$$Cv = \int Q(x)e^{\int P(x)dx}dx + C_2; \implies v = \frac{1}{C}\int Q(x)e^{\int P(x)dx}dx + C_2.$$

Таким образом, была получена вторая составляющая произведения y = uv, которое и определяет искомую функцию.

Подставляют полученные значения, получают:

$$y = uv = Ce^{-\int P(x)dx} \cdot \frac{1}{C} \left(\int Q(x)e^{\int P(x)dx} dx + C_2 \right)$$

Следовательно получена формула решения линейного неоднородного дифференциального уравнения I порядка в общем виде с использованием метода Бернулли:

$$y = e^{-\int P(x)dx} \cdot \frac{1}{C} \left(\int Q(x) e^{\int P(x)dx} dx + C_2 \right)$$
 С₂ — произвольный коэффициент.

Таким образом, реализация метода Бернулли заключается в реализации следующих шагов:

1) ищем общее решение дифференциального уравнения y' + P(x)y = Q(x), в виде: $y = u \cdot v$, где u = u(x), v = v(x) — некоторые функции, которые надо найти;

- 2) подставляем функцию $y = u \cdot v$, и ее производную в уравнение y' + P(x)y = Q(x), получаем: u'v + uv' + P(x)uv = Q(x) или u(v' + vP(x)) + u'v = Q(x);
- 3) функцию v(x) подбираем как частное решение (при C=0) дифференциального уравнения v'+vP(x)=0;
- 4) при условии v' + vP(x) = 0; решаем уравнение u(v' + vP(x)) + u'v = Q(x);, которое приобретает вид u'v = Q(x) как дифференциальное уравнение с разделяющимися переменными (находим его общее решение);
- 5) общее решение исходного уравнения y' + P(x)y = Q(x), записываем как произведение найденных функций u(x) и v(x), т. е. в виде $y = u \cdot v$.

Пример 3. Решить уравнение $y' + y \cdot tgx = \cos^2 x$.

Решение. Данное уравнение — линейное неоднородное дифференциальное уравнения I порядка. Будем решать его используя метод Бернулли.

Вводим замену: $y = u(x) \cdot v(x)$, которая и приведет к системе двух уравнений с разделяющимися переменными:

$$u' \cdot v + v' \cdot u + u \cdot v \cdot tgx = \cos^2 x, \ u' \cdot v + u \cdot (v' + v \cdot tgx) = \cos^2 x, \Rightarrow \begin{cases} v' + v \cdot tgx = 0 \\ u' \cdot v = \cos^2 x \end{cases}$$

1)
$$\frac{dv}{dx} = -v \cdot tgx, \quad \int \frac{dv}{v} = -\int tgx dx, \quad v = \cos x$$
2)
$$u' \cdot v = \cos^2 x, \quad \int du = \int \cos x dx, \quad u = \sin x + c$$
 $\Rightarrow \quad y = (\sin x + c)\cos x$ — общее решение.

Ответ: $y = (\sin x + c)\cos x$ — общее решение, где c — произвольная постоянная.

Пример 4. Найдите решение уравнения $y' + \frac{2y}{x} = x$, удовлетворяющее начальному условию y(1) = 0.

Решение

Данное уравнение является линейным первого порядка. Здесь можно считать $P(x) = \frac{2}{x}$, Q(x) = x Решение данного дифференциального уравнения будем искать в виде: $y = u(x) \cdot v(x)$. Найдем y': $y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$. Подставляя выражения для y и y' в данное уравнение, получаем:

$$u'\cdot v + v'\cdot u + u\cdot v\cdot \frac{2}{x} = x \quad \Rightarrow \quad u\cdot v' + v\cdot (u' + \frac{2u}{x}) = x \quad \Rightarrow \begin{cases} u' + \frac{2u}{x} = 0 \\ u\cdot v' = x \end{cases}$$

$$1) \quad \frac{du}{dx} = -\frac{2u}{x}, \quad \int \frac{du}{u} = -2\int \frac{dx}{x}, \quad \ln|u| = -2\ln|x| + \ln|C_0|, \quad u = \frac{C_0}{x^2}, C_0 = 1, \quad u = \frac{1}{x^2} \end{cases}$$

$$2) \quad u\cdot v' = x, \quad \frac{1}{x^2} \cdot v' = x, \quad \frac{dv}{dx} = x^3, \quad \int dv = \int x^3 dx, \quad v = \frac{x^4}{4} + c$$

$$y = u \cdot v = \frac{1}{x^2} \cdot \left(\frac{x^4}{4} + c\right)$$
 — общее решение, где c — произвольная постоянная.

Используя заданное начальное условие, будем иметь: $0 = \frac{1}{4} + c$. Откуда находим $c = -\frac{1}{4}$.

Тогда искомое частное решение имеет вид: $y = \frac{x^2}{4} + \frac{1}{4x^2}$.

Ответ: $y(x) = \frac{x^2}{4} + \frac{1}{4x^2}$ — частное решение.

<u>Метод Лагранжа</u> решения неоднородных линейных дифференциальных уравнений I порядка еще называют методом <u>вариации произвольной постоянной</u>. Суть этого метода заключается в следующем:

- 1) находят общее решение соответствующего линейного однородного уравнения, которое будет содержать произвольную постоянную $C: y = Ce^{-\int p(x)dx}$, C = const, $C \in \mathbf{R}$;
- 2) решение исходного неоднородного дифференциального уравнения следует искать в том же виде, что и решение соответствующего однородного уравнения, но заменив постоянную C на функцию C(x) (т.е $y = C(x)e^{-\int p(x)dx}$, где C = C(x) некоторая функция, которую необходимо найти).
- 3) подставляем функцию $y = C(x)e^{-\int p(x)dx}$ в уравнение y' + P(x)y = Q(x), и находим функцию C(x): $C(x) = C + \int Q(x)e^{\int P(x)dx}dx$, где C произвольная постоянная. (Для этого отбрасываем правую часть уравнения и заменяем ее нулем: y' + P(x)y = 0. Далее находим решение получившегося однородного дифференциального уравнения: $y = C_1 e^{-\int P(x)dx}$. После чего находим соответствующее решение неоднородного дифференциального уравнения. Для того, полагаем постоянную C_1 некоторой функцией от x. Тогда по правилам дифференцирования произведения функций получаем:

$$y' = \frac{dy}{dx} = \frac{dC_1(x)}{dx}e^{-\int P(x)dx} + C_1(x)e^{-\int P(x)dx} \cdot (-P(x));$$

Подставляем полученное соотношение в исходное уравнение

$$\frac{dC_{1}(x)}{dx}e^{-\int P(x)dx} - C_{1}(x)P(x)e^{-\int P(x)dx} + P(x)C_{1}(x)e^{-\int P(x)dx} = Q(x)$$

$$\frac{dC_{1}(x)}{dx}e^{-\int P(x)dx} = Q(x);$$

Из этого уравнения определяем переменную функцию $C_{\scriptscriptstyle \rm I}(x)$:

$$dC_1(x) = Q(x)e^{\int P(x)dx}dx;$$

Интегрируя, получаем $C(x) = C_1 = \int Q(x)e^{\int P(x)dx}dx + C$.)

4) общее решение уравнения y' + P(x)y = Q(x), записываем в виде: $y = e^{-\int P(x)dx} \left(C + \int Q(x) e^{\int P(x)dx} dx\right)$.

Пример 5. Решить линейное дифференциальное уравнение $y' + y \cos x = e^{-\sin x}$.

Решение

1) Решаем соответствующее однородное уравнение: $y' + y \cos x = 0$

Это уравнение с разделяющимися переменными. Заменяя y' на $\frac{dy}{dx}$ и разделяя переменные, полу-

чим
$$\frac{dy}{dx} = -y\cos x$$
 или $\frac{dy}{y} = -\cos x dx$.

После интегрирования имеем: $\int \frac{dy}{y} = -\int \cos x dx \,, \quad \text{откуда} \quad \text{находим} \quad \ln |y| = -\sin x + c_0 \quad \text{или}$ $y = e^{-\sin x + c_0} = e^{-\sin x} \cdot e^{c_0} \,. \quad \text{Полагая} \quad e^{c_0} = c \,, \quad \text{получаем общее решение соответствующего однородного}$ уравнения в виде: $y = e^{-\sin x} \cdot c \,, \quad \text{где } c - \text{произвольная постоянная}.$

2) Решение исходного неоднородного дифференциального уравнения будем искать в том же виде, что и решение соответствующего однородного дифференциального уравнения, только заменяя постоянную c на функцию c(x): $y = e^{-\sin x} \cdot c(x)$. Продифференцируем равенство по x:

$$y' = c'(x) \cdot e^{-\sin x} - c(x) \cdot \cos x \cdot e^{-\sin x}$$

Подставив вместо у и у' полученные выражения в исходное уравнение будем иметь:

$$c'(x) \cdot e^{-\sin x} - c(x) \cdot \cos x \cdot e^{-\sin x} + c(x) \cdot \cos x \cdot e^{-\sin x} = e^{-\sin x}$$

Преобразуя полученное равенство, получаем: c'(x)=1, или $\frac{dc}{dx}=1 \Rightarrow dc=dx$, откуда, после инте-

грирования, находим $\int dc = \int dx$ или $c(x) = x + c_1$, где c_1 — произвольная постоянная.

Подставляя найденное выражение для c(x), получим общее решение исходного дифференциального уравнения $y = e^{-\sin x} \cdot (x + c_1)$, где c_1 — произвольная постоянная.

Ответ: $y = e^{-\sin x} \cdot (x + c_1)$, где c_1 — произвольная постоянная.

Замечание. При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

Задания для решения в аудитории

Задание №1. Решите задачу Коши:

1.
$$y' - \frac{2}{x+1}y = (x+1)^2$$
, $y(0) = 1$.

3.
$$y' + xy = -x^3$$
, $y(0) = 3$.

5.
$$y' - \frac{2y}{x+1} = (x+1)^3$$
, $y(0) = \frac{1}{2}$.

7.
$$y' - \frac{y}{x} = x^2$$
, $y(1) = 0$.

9.
$$y' + \frac{2}{x}y = x^2$$
, $y(1) = -\frac{5}{6}$.

11.
$$y' + \frac{1-2x}{x^2}y = 1$$
, $y(1) = 1$.

13.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$.

15.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = \frac{3}{2}$.

17.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, y(0) = \frac{2}{3}$$
.

19.
$$y' - \frac{y}{x} = x \sin x$$
, $y(\pi/2) = 1$.

21.
$$y' - yctgx = 2x \sin x$$
, $y(\pi/2) = 0$.

$$y' - y \cos x = \sin 2x, y(0) = -1.$$

25.
$$y' + 2xy = xe^{-x^2} \sin x$$
, $y(0) = 1$.

27.
$$y' - \frac{y}{x+1}y = e^x(x+1), y(0) = 1.$$

2.
$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$

4.
$$y' - 4xy = -4x^3$$
, $y(0) = -\frac{1}{2}$.

6.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$.

8.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

10.
$$y' - \frac{y}{x} = -\frac{2}{x^2}$$
, $y(1) = 1$.

12.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$.

14.
$$y' - \frac{xy}{2(1-x^2)} = \frac{x}{2}$$
, $y(0) = \frac{2}{3}$.

16.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$.

18.
$$y' - \frac{2xy}{1+x^2} = 1 + x^2$$
, $y(1) = 3$.

20.
$$y' + \frac{y}{x} = \sin x$$
, $y(\pi) = \frac{1}{\pi}$.

22.
$$y' - ytgx = \cos^2 x$$
, $y(\pi/4) = \frac{1}{2}$. 23.

24.
$$y' - y \cos x = -\sin 2x$$
, $y(0) = 3$.

26.
$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$.

28.
$$y' - \frac{2}{x+1}y = e^x(x+1)^2$$
, $y(0) = 1$.

29.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$.

31.
$$y' + 2y = e^{3x}$$
, $y(0) = 0$

33.
$$xy' + 2y = xe^{-x}$$
, $y(0) = 0$

35.
$$y' = \frac{y}{x + \ln y}$$
, $y(0) = 1$;

37.
$$(y')^2 + 2(y^2 - 1)y' - 4y^2 = 0$$
, $y(0) = 1$;

30.
$$y' - \frac{y}{x} = -\frac{\ln x}{x}$$
, $y(1) = 1$.

32.
$$y'\cos x - y\sin x = 1$$
, $y(0) = 1$;

34.
$$y' - 2xy = 2x^4$$
, $y(0) = 1$.

36.
$$(y^2 - 3x)y' - y = 0$$
, $y(\frac{6}{5}) = 1$;

38.
$$y' \sin 2x - 2y = 2\cos x$$
, $y\left(\frac{\pi}{4}\right) = \sqrt{2}$.

Задание №2. Решите уравнения:

1.
$$y' + 2y = 3x$$
;

2.
$$y'-3y=e^{2x}$$
;

3.
$$xy' + y = -4x$$
;

4.
$$y' - 4xy = 3x$$

$$5. y' + 2tg x \cdot y = ctg^2 x$$

5.
$$y' + 2\lg x \cdot y = \operatorname{ctg}^2 x$$
; 6. $y' + y \cos x = 2e^{-\sin x}$; 7. $y' + y \lg x = -\frac{3}{\cos x}$; 8. $xy' + y = \frac{y^2 \ln x}{2}$.

8.
$$xy' + y = \frac{y^2 \ln x}{2}$$

Задания для самостоятельного решения

Задание №3. Решите уравнения:

1.
$$y' + \frac{3y}{x} = 4$$
. Omsem. $y = \frac{1}{x^3} (x^4 + C)$.

2.
$$2xy + x^2y' = \ln x$$
. Omsem. $y = \frac{\ln x}{x} - \frac{1}{x} + C$.

3.
$$y' \cot x + y = 2$$
. *Ombem*. $y = -2 + C \cos x$.

4.
$$y' + y = x + 2$$
. *Omeem*. $y = x + 1 + Ce^{-x}$.

5.
$$y'-2y=e^{2x}$$
. Omsem. $y=(x+C)e^{2x}$.

6.
$$y' \cdot \cos x + y \cdot \sin x - 1 = 0$$
. Omsem. $y = \sin x + C \cdot \cos x$.

7.
$$y' + y = \frac{e^{-x}}{1 + x^2}$$
; $y(0) = 2$. Omsem. $y = e^{-x} (\arctan x + 2)$.

8.
$$y'-2xy=2xe^{x^2}$$
. Ombem. $y=(x^2+C)e^{x^2}$.

9.
$$xy' + y = \cos x$$
. *Omeem*. $y = \frac{1}{x} (C + \sin x)$.

10.
$$y' - ytgx = \frac{2x}{\cos x}$$
. *Omeem.* $y = \frac{x^2 + C}{\cos x}$.

11.
$$xy' = 3x + 4y$$
. Omsem. $y = x^4 \left(C - \frac{1}{x^3} \right) = Cx^4 - x$.

Уравнение Бернулли

Определение. <u>Уравнением Бернулли</u> называется уравнение вида: $y' + P(x)y = Q(x) \cdot y^n$, где P(x) и Q(x) — функции от x или постоянные числа, а n – постоянное число, не равное 1.

Существует несколько способов решения уравнения Бернулли. Один из них состоит в том, что применяя подстановку $z = \frac{1}{v^{n-1}}$, уравнение Бернулли приводится к линейному к линейному дифференциальному уравнению первого порядка, которое можно решить любым из вышеизложенных способов. Рассмотрим данный способ более подробно. Для этого разделим исходное уравнение на y^n : $\frac{y'}{y^n} + P(x) \frac{1}{y^{n-1}} = Q(x)$.

Применим подстановку
$$z=\frac{1}{y^{n-1}}$$
, учтя, что $z'=-\frac{(n-1)y^{n-2}}{y^{2n-2}}\cdot y'=-\frac{(n-1)y'}{y^n}$:
$$-\frac{z'}{n-1}+P(x)\cdot z=Q(x) \qquad \Rightarrow \qquad z'-(n-1)\cdot P(x)\cdot z=-(n-1)\cdot Q(x)\,.$$

Т.е. получилось линейное уравнение относительно неизвестной функции z. Решение этого уравнения будем искать в виде:

$$z = e^{-\int P(x)dx} \left(\int Q_1(x) e^{\int P_1(x)dx} dx + C \right)$$
, где $Q_1(x) = -(n-1)Q(x)$; $P_1(x) = -(n-1)P(x)$

Пример 1. Решить уравнение $xy' + y = xy^2 \ln x$.

Рошонио

Приведем наше уравнение к виду: $y' + P(x)y = Q(x) \cdot y^n$. Для этого разделим обе части уравнения на $x: y' + \frac{1}{x} \cdot y = y^2 \ln x$. Полученное уравнение — уравнение Бернулли, где $P(x) = \frac{1}{x}$ и $Q(x) = \ln x$ — функции от x или постоянные числа, а n = 2 — постоянное число. Разделим уравнение на $y^2: \frac{y'}{y^2} + \frac{1}{x} \cdot \frac{1}{y} = \ln x$. Полагаем, что $z = \frac{1}{y}$, тогда $z' = -\frac{y'}{y^2}$. Применяя данную подстановку получаем: $z' - \frac{1}{x}z = \ln x \Rightarrow z' - \frac{1}{x}z = -\ln x$. Полагаем $P(x) = -\frac{1}{x}$, $Q(x) = -\ln x$, получаем: $z = e^{\int \frac{dx}{x}} \left(\int -\ln x e^{-\int \frac{dx}{x}} dx + C \right) \Rightarrow z = e^{\ln x} \left(\int -\ln x e^{-\ln x} dx + C \right) \Rightarrow z = x \left(-\int \ln x d(\ln x) + C$

Произведя обратную подстановку, получаем: $\frac{1}{y} = x \left(-\frac{\ln^2 x}{2} + C \right)$.

Ответ: $y = \frac{1}{x \left(-\frac{\ln^2 x}{2} + C \right)}$ — общее решение, где C — произвольная постоянная.

Пример 2. Решить уравнение $xy' - 4y = x^2 \sqrt{y}$.

Решение

Приведем наше уравнение к виду: $y'+P(x)y=Q(x)\cdot y^n$. Для этого разделим обе части уравнения на x: $y'-\frac{4}{x}y=x\sqrt{y}$. Полученное уравнение — уравнение Бернулли, где $P(x)=-\frac{4}{x}$ и $Q(x)=x\sqrt{y}$ — функции от x или постоянные числа, а $n=\frac{1}{2}$ — постоянное число. Разделим обе части уравнения на \sqrt{y} : $\frac{1}{\sqrt{y}}\frac{dy}{dx}-\frac{4}{x}\sqrt{y}=x$. Полагаем, что $z=\sqrt{y}$, тогда $z'=\frac{1}{2\sqrt{y}}y'\Rightarrow y'=2\sqrt{y}z'$. Применяя данную подстановку получаем: $\frac{1}{\sqrt{y}}2\sqrt{y}z'-\frac{4}{x}z=x \implies \frac{dz}{dx}-\frac{2z}{x}=\frac{x}{2}$.

Получили линейное неоднородное дифференциальное уравнение, которое решать будем используя метод Лагранжа. Рассмотрим соответствующее ему линейное однородное уравнение:

$$\frac{dz}{dx} - \frac{2z}{x} = 0 \implies \frac{dz}{dx} = \frac{2z}{x} \implies \frac{dz}{z} = \frac{2dx}{x} \implies \int \frac{dz}{z} = 2\int \frac{dx}{x} + C_1 \implies \ln z = 2\ln x + \ln C \implies z = Cx^2.$$

Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с

учетом того, что:
$$\frac{dz}{dx} = 2xC(x) + x^2 \frac{dC(x)}{dx}$$
. Тогда: $2xC(x) + x^2 \frac{dC(x)}{dx} - \frac{2x^2C(x)}{x} = \frac{x}{2} \Rightarrow \frac{dC(x)}{dx} = \frac{1}{2x}$. $dC(x) = \frac{1}{2x}dx \Rightarrow \int dC(x) = \int \frac{1}{2x}dx \Rightarrow C(x) = \frac{1}{2}\ln x + C_2$.

Получаем: $z = x^2 \left(C_2 + \frac{1}{2} \ln x \right)$. Применяя обратную подстановку, получаем окончательный ответ:

$$y = x^4 \left(C_2 + \frac{1}{2} \ln x \right)^2.$$

Ответ: $y = x^4 \left(C_2 + \frac{1}{2} \ln x \right)^2$ — общее решение, где C_2 — произвольная постоянная.

Рассмотрим второй способ решения уравнения Бернулли используя метод Бернулли. Суть способа заключается в том, что искомая функция представляется в виде произведения двух функций от $x: y = u(x) \cdot v(x) \implies y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Подставим y и y' в уравнение $y'+P(x)y=Q(x)\cdot y^n:_{u'\cdot v+v'\cdot u+P(x)\cdot u\cdot v=Q(x)\cdot u^n\cdot v^n}$. Далее, группируем в левой части слагаемые с общим множителем v в первой степени (или u), и, выносим общий множитель за скобки: $v(u'+P(x)\cdot u)+v'\cdot u=Q(x)\cdot u^n\cdot v^n$. Затем выберем функцию v0 такой, чтобы множитель при v0 обращался в v0: v0

Таким образом, получим систему:
$$\begin{cases} u' + P(x) \cdot u = 0 \\ v' \cdot u = Q(x) \cdot u^n \cdot v^n \end{cases}$$

Решаем первое уравнение системы, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме: $\frac{du}{dx} + P(x)u = 0$.

$$\frac{du}{u} = -P(x)dx; \implies \int \frac{du}{u} = -\int P(x)dx; \implies \ln|u| = -\int P(x)dx;$$
$$\ln|C_1| + \ln|u| = -\int P(x)dx; \implies u = Ce^{-\int P(x)dx}, \quad C = 1/C_1;$$

Для нахождения второй неизвестной функции v подставляют полученное выражение для функции u во второе уравнение системы $v' \cdot u(x) = Q(x) \cdot u^n(x) \cdot v^n(x)$:

$$\left(Ce^{-\int P(x)dx}\right)^{1-n}\frac{dv}{dx} = Q(x)\cdot v^n; \quad \Rightarrow \quad \frac{C^{1-n}}{v^n}dv = Q(x)\cdot \left(e^{\int P(x)dx}\right)^{1-n}dx;$$

Интегрируя, находят функцию v:

$$C\frac{v^{-n+1}}{-n+1} = \int Q(x) \cdot \left(e^{\int P(x)dx}\right)^{1-n} dx + C_2; \quad \Rightarrow \quad v = \int_{n-1}^{n-1} \left(-n+1\right) \left(\int Q(x) \cdot \left(e^{\int P(x)dx}\right)^{1-n} dx + C_2\right).$$

Таким образом, была получена вторая составляющая произведения y = uv, которое и определяет искомую функцию. Подставляют полученные значения, получают:

$$y = uv = Ce^{-\int P(x)dx} \cdot \sqrt{\frac{C}{\left(-n+1\right)\left(\int Q(x)\cdot \left(e^{\int P(x)dx}\right)^{1-n}dx + C_2\right)}}, C_2$$
— произвольный коэффициент.

Пример 3. Решить уравнение $y' + 2y = e^x \cdot y^2$

Решение

$$u' \cdot v + u \cdot (v' + 2 \cdot v) = e^x \cdot u^2 \cdot v^2.$$

Таким образом, получаем систему: $\begin{cases} v' + 2v = 0 \\ u' \cdot v = e^x \cdot u^2 \cdot v^2 \end{cases} \Rightarrow \begin{cases} v' + 2v = 0 \\ u' = e^x \cdot u^2 \cdot v \end{cases}$. Решаем первое уравнение си-

стемы:
$$v' + 2v = 0 \Rightarrow \frac{dv}{dx} = -2v \Rightarrow \frac{dv}{v} = -2dx \Rightarrow \int \frac{dv}{v} = -2\int dx \Rightarrow \ln|v| = -2x + c_0 \Rightarrow v = e^{-2x + c_0}$$
.

Полагая, что $c_0 = 0$, получим $v = e^{-2x}$. Полученный результат подставляем во второе уравнение системы и решаем его:

$$u' = e^{x} \cdot u^{2} \cdot e^{-2x} \Rightarrow u' = e^{x-2x} \cdot u^{2} \Rightarrow u' = e^{-x} \cdot u^{2} \Rightarrow \frac{du}{dx} = e^{-x} \cdot u^{2} \Rightarrow \frac{du}{u^{2}} = e^{-x} dx \Rightarrow \int \frac{du}{u^{2}} = \int e$$

 $-\frac{1}{u} = -e^{-x} + c \Rightarrow u = \frac{1}{e^{-x} - c}$, где c— произвольная постоянная. Заметим, что, кроме полученного

общего решения $u=\frac{1}{e^{-x}-c}$ уравнению $u'=e^{-x}\cdot u^2$ удовлетворяет функция u=0, которая не мо-

жет быть получена из формулы $u = \frac{1}{e^{-x} - c}$ ни при каком произвольном значении постоянной ℓ .

Таким образом, решения исходного уравнения таковы:

- 1. При u = 0, $v = e^{-2x}$, y = 0.
- 2. При $u = \frac{1}{e^{-x} c}$, $v = e^{-2x}$, $y = \frac{e^{-2x}}{e^{-x} c}$ общее решение, где c произвольная постоянная.

Ответ: $y = \frac{e^{-2x}}{e^{-x} - c}$ — общее решение, где ℓ — произвольная постоянная, y = 0.

Пример 4. Решить уравнение $y' + \frac{4}{x}y = x^3y^2$.

Решение.

В уравнении присутствуют y', y и y^n , значит, уравнение можно назвать уравнением Бернулли. Проверим. Общий вид уравнения Бернулли $y' + P(x) \cdot y = Q(x) \cdot y^n$. В нашем уравнении $P(x) = \frac{4}{x}$, $Q(x) = x^3$; n = 2.

Сделаем замену
$$y = uv$$
, $y' = u'v + uv'$, тогда $u'v + uv' + \frac{4}{x}uv = x^3y^2 \Rightarrow u\left(v' + \frac{4}{x}v\right) + u'v = x^3y^2$.

Выберем функцию
$$v(x)$$
 так, чтобы $\left(v' + \frac{4}{x}v\right) = 0$, получаем $u'v = x^3y^2$, т.е. $\begin{cases} v' + \frac{4v}{x} = 0, \\ u'v = x^3u^2v^2. \end{cases}$

Из первого уравнения найдем v: $\frac{dv}{dx} = -\frac{4}{x}v \Rightarrow \int \frac{dv}{v} = -4\int \frac{dx}{x} \Rightarrow \ln|v| = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = \ln|C| \cdot |x|^{-4} = -4\ln|x| + \ln|C| \Rightarrow \ln|v| = -4\ln|x| + \ln|C| \Rightarrow \ln|x| + \ln|x$ $v = \frac{C}{v^4}$. Полагая, что C = 0, получим $v = \frac{1}{v^4}$. Подставляем $v = \frac{1}{v^4}$ во второе уравнение $u'v = x^3u^2v^2$: $\frac{du}{dx} \cdot \frac{1}{x^4} = x^3 u^2 \frac{1}{x^8} \Rightarrow \frac{du}{u^2} = \frac{x^4 \cdot x^3}{x^8} dx.$

Интегрируем уравнение:

$$\int u^{-2} du = \int \frac{dx}{x} \Rightarrow \frac{u^{-1}}{-1} = \ln|x| + \ln|C_1| \Rightarrow -\frac{1}{u} = \ln|xC_1|.,$$
где C_1 — произвольная постоянная.

Заметим, что, кроме полученного общего решения $u = -\frac{1}{\ln|xC_1|}$ уравнению $u'v = x^3u^2v^2$ удовлетво-

-ряет функция u = 0, которая не может быть получена из формулы $u = -\frac{1}{\ln|xC|}$ ни при каком произвольном значении постоянной C_1 . Таким образом, решения исходного уравнения таковы:

1. При
$$u = 0$$
, $v = \frac{1}{x^4}$, $y = 0$.

2. При
$$u = -\frac{1}{\ln|xC_1|}$$
, $v = \frac{1}{x^4}$, $y = u \cdot v = -\frac{1}{x^4 \ln|xC_1|}$ — общее решение, где C_1 .— произвольная

Ответ: $y = -\frac{1}{x^4 \ln |xC_1|}$ — общее решение, где C_1 — произвольная постоянная, y = 0.

Задания для решения в аудитории
Задание №1. Решите уравнение Бернулли, удовлетворяющее заданному начальному условию:

1.
$$\frac{dy}{dx} + xy = (1+x) \cdot e^{-x} \cdot y^2$$
, $y(0) = 1$.

3.
$$3xy' + 3y = x \cdot y^2$$
, $y(1) = 3$

5.
$$y' + 2xy = 2x^3 \cdot y^3$$
, $y(0) = \sqrt{2}$

7.
$$xy' + y = 2y^2 \cdot \ln x$$
, $y(1) = \frac{1}{2}$.

9.
$$3xy' + 3y = y^2 \cdot \ln x$$
, $y(1) = 3$

11.
$$\frac{dy}{dx} + 4x^3y = 4(1+x^3) \cdot e^{-4x} \cdot y^2$$
, $y(0) = 1$.

13.
$$2xy' + 2y = (x+1) \cdot e^{-x} \cdot y^2$$
, $y(0) = 2$.

15.
$$3xy' + 5y = (4x - 5) \cdot y^4$$
, $y(1) = 1$

2.
$$2xy' + 2y = xy^2$$
, $y(1) = 2$

4.
$$\frac{dy}{dx} - y = 2xy^2$$
, $y(0) = \frac{1}{2}$

6.
$$\frac{dy}{dx} + y \cdot tgx = -\frac{2}{3} \cdot y^4 \cdot \sin x$$
, $y(0) = 1$

8.
$$x \cdot \frac{dy}{dx} + y = y^2 \cdot \ln x$$
, $y(1) = \frac{1}{2}$

10.
$$x \cdot \frac{dy}{dx} + y = y^2 \cdot \ln x$$
, $y(1) = 1$

12.
$$y' + 4x^3y = 4(1-x^3) \cdot e^{4x} \cdot y^2$$
, $y(0) = -1$

14.
$$4y' + 4x^3y = (x^3 + 8) \cdot e^{-2x} \cdot y^2$$
, $y(0) = 1$

16.
$$2xy' - 3y = -(5x^2 + 3) \cdot y^3$$
, $y(1) = \frac{1}{\sqrt{2}}$

<u>Задания для самостоятельного решения</u> Задание №2. Найти общее решение или общий интеграл данного уравнения.

1.
$$y' + \frac{y}{x} = y^2$$
. Omsem. $y = \frac{1}{x \cdot \ln\left(\frac{C}{x}\right)}$.

2.
$$y' + \frac{1}{3}y = e^x y^4$$
. Omsem. $\frac{1}{y^3} = e^x (C - 3x)$.

3.
$$x \cdot \frac{dy}{dx} + y = xy^3$$
. Omsem. $y^2 = \frac{1}{2x + Cx^2}$.

4.
$$y' + \frac{2}{x}y = -x^2 \cdot \cos x \cdot y^2$$
. Omsem. $\frac{1}{y} = x^2 (\sin x + C)$.

5.
$$xy' + y = y^2x^2 \ln x$$
. Omeem. $y = \frac{1}{Cx - x^2(1 - \ln x)}$.

6.
$$y' - \frac{y}{x} = xy^2$$
. Omsem. $\frac{1}{y} = -\frac{x^2}{3} + \frac{C}{x}$.

7.
$$xy' + y = y^2 (2x^3 + x)$$
. Omsem. $y = \frac{1}{Cx - x^3 - x \ln|x|}$.

8.
$$xy' - 4y = x^2 \sqrt{y}$$
. Omsem. $y = x^4 \left(\ln \sqrt{x} + C \right)^2$; $y = 0$.

9.
$$xy' + y = -xy^2$$
. Omsem. $y = \frac{1}{x(C + \ln|x|)}$.

10.
$$3xy' - 2y = \frac{x^3}{y^2}$$
. Omsem. $y^3 = Cx^2 + x^3$.

11.
$$xy' + y = y^2 \ln x$$
. Omsem. $\frac{1}{y} = \ln |x| + 1 + Cx$.

Уравнения в полных дифференциалах

Определение 1. Дифференциальное уравнение вида M(x,y)dx + N(x,y)dy = 0 называется <u>уравнением в полных дифференциалах</u>, если его левая часть является полным дифференциалом некоторой

функции
$$u = F(x, y)$$
, т. е. $dF(x, y) \equiv \frac{dF}{dx} dx + \frac{dF}{dy} dy = M(x, y) dx + N(x, y) dy$.

Справедливо следующее **утверждение**: для того чтобы уравнение M(x,y)dx + N(x,y)dy = 0 было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие $\frac{\partial M(x,y)}{\partial y} \equiv \frac{\partial N(x,y)}{\partial x}$. Таким образом, для решения необходимо определить:

- 1) в каком случае левая часть уравнения представляет собой полный дифференциал функции и;
- 2) как найти эту функцию l.

Чтобы решить уравнение M(x,y)dx + N(x,y)dy = 0, необходимо найти такую функцию u = F(x,y), полный дифференциал которой равен левой части уравнения M(x,y)dx + N(x,y)dy = 0, то есть:

, полный дифференциал которой равен левой части уравнения
$$M(x,y)dx + N(x,y)dy = 0$$
, то есть.
$$du = M(x,y)dx + N(x,y)dy = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy.$$
 Следовательно, получили систему:
$$\begin{cases} \frac{\partial u}{\partial x} = M(x,y) \\ \frac{\partial u}{\partial y} = N(x,y) \end{cases}$$
. Затем

находим смешанные производные второго порядка, продифференцировав первое уравнение по у,

а второе — по
$$X$$
:
$$\begin{cases} \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial M(x, y)}{\partial y} \\ \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial N(x, y)}{\partial x} \end{cases}.$$

Приравнивая левые части уравнений, получаем *необходимое и достаточное условие* того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также назы-

вается условием тотальности (
$$\frac{\partial M(x,y)}{\partial y} \equiv \frac{\partial N(x,y)}{\partial x}$$
).

Теперь рассмотрим вопрос о нахождении функции u, для этого проинтегрируем равенство $\frac{\partial u}{\partial x} = M(x, y)$: $u = \int M(x, y) dx + C(y)$.

Вследствие интегрирования получаем не постоянную величину C, а некоторую функцию C(y), т.к. при интегрировании переменная y полагается постоянным параметром. Определим функцию C(y). Для этого продифференцируем полученное равенство по y:

$$\frac{\partial u}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) dx + C'(y).$$

Откуда получаем: $C'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) dx$.

Для нахождения функции C(y) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием необходимо доказать, что функция C(y) не зависит от x. Это условие будет выполнено, если производная этой функции по x равна нулю:

$$\left[C'(y)\right]_{x}' = \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial x}\frac{\partial}{\partial y}\int M(x,y)dx = \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}\int M(x,y)dx\right) = \frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} = 0.$$

Теперь определяем функцию C(y): $C(y) = \int \left[N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx \right] dy + C$. Подставляя этот результат в выражение для функции u, получаем:

$$u = \int M(x, y)dx + \int \left[N(x, y) - \frac{\partial}{\partial y} M(x, y) dx \right] dy + C.$$

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

$$\int M(x, y)dx + \int \left[N(x, y) - \frac{\partial}{\partial y} M(x, y) dx \right] dy = C.$$

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если при решении уравнения M(x,y)dx + N(x,y)dy = 0 просто следовать следующим шагам:

1) проверить выполнение равенства
$$\frac{\partial M(x,y)}{\partial y} \equiv \frac{\partial N(x,y)}{\partial x}$$
;

2) если равенство
$$\frac{\partial M(x,y)}{\partial y} \equiv \frac{\partial N(x,y)}{\partial x}$$
 выполняется, следует определить функцию $u = u(x,y)$ из

системы уравнений
$$\begin{cases} \frac{\partial u}{\partial x} = M(x,y) \\ \frac{\partial u}{\partial y} = N(x,y) \end{cases};$$

3) общий интеграл уравнения M(x, y)dx + N(x, y)dy = 0 получают в виде u(x, y) = C.

Пример 1. Решить уравнение $(3x^2 + 10xy)dx + (5x^2 - 1)dy = 0$.

Проверим условие тотальности:
$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial (3x^2 + 10xy)}{\partial y} = 10x;$$

$$\frac{\partial N(x,y)}{\partial x} = \frac{\partial (5x^2 - 1)}{\partial x} = 10x.$$

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию u: $u = \int M(x, y)dx + C(y) = \int (3x^2 + 10xy)dx + C(y) = x^3 + 5x^2y + C(y)$;

$$\frac{\partial u}{\partial y} = 5x^2 + C'(y) = N(x, y) = 5x^2 - 1;$$

$$C'(y) = -1; \quad C(y) = \int (-1)dy = -y + C_1;$$

Таким образом, $u = x^3 + 5x^2y - y + C_1$. Находим общий интеграл исходного дифференциального уравнения: $x^3 + 5x^2y - y = C$.

Ответ: $x^3 + 5x^2y - y = C$. — общее решение, где C — произвольная постоянная.

Пример 2. Решить уравнение $(3y^2 + 2xy)dx + (x^2 + 6xy - 3y^2)dy = 0$

В данном случае имеем $M(x; y) = 3y^2 + 2xy$, $N(x, y) = x^2 + 6xy - 3y^2$. Проверим условие тотально-

сти:
$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial (3y^2 + 2xy)}{\partial y} = 2x + 6y$$
, $\frac{\partial N(x,y)}{\partial x} = \frac{\partial (x^2 + 6xy - 3y^2)}{\partial x} = 2x + 6y$ Условие тотальности

 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ выполняется, следовательно, исходное дифференциальное уравнение является уравнени-

ем в полных дифференциалах. Определим функцию и:

$$u = \int M(x, y)dx + C(y) = \int (3y^2 + 2xy)dx + C(y) = x^2y + 3y^2x + C(y),$$

$$\frac{\partial u}{\partial y} = x^2 + 6xy + C'(y) = N(x, y) = x^2 + 6xy - 3y^2$$

$$C'(y) = -3y^2 \Rightarrow \frac{dC(y)}{dx} = -3y^2 \Rightarrow dC(y) = -3y^2dx \Rightarrow \int dC(y) = -3\int y^2dx \Rightarrow C(y) = -y^3 + C_1;$$

Таким образом, $u = x^2y + 3y^2x - y^3 + C_1$. Находим общий интеграл исходного дифференциального уравнения: $x^2y + 3y^2x - y^3 = C$

Ответ: $x^2y + 3y^2x - y^3 = C$ — общее решение, где C — произвольная постоянная.

Задания для решения в аудитории

Задание №1. Проверить, что данные уравнения являются уравнениями в полных дифференциалах и решить их:

1.
$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0$$

$$2. \left(\frac{1}{x^2} + \frac{3y^2}{x^4} \right) dx - \frac{2y}{x^3} dy = 0$$

3.
$$3x^2 \cdot e^y dx + (x^3 \cdot e^y - 1) dy = 0$$

4.
$$(3x^2 + 4y^2)dx + (8xy + e^y)dy = 0$$

5.
$$e^{-y}dx - (x \cdot e^{-y} + 2y)dy = 0$$

6.
$$(1+y^2 \cdot \sin 2x) dx - 2y \cdot \cos^2 x dy = 0$$

$$7. \left(y^2 + \frac{y}{\cos^2 x}\right) dx + \left(2xy + tgx\right) dy = 0$$

$$8.\left(\sin 2x - 2\cos(x+y)\right)dx - 2\cos(x+y)dy = 0$$

9.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0$$

$$10.\left(xe^x + \frac{y}{x^2}\right)dx - \frac{1}{x}dy = 0$$

Задание №2. Решить уравнение:

1.
$$\left(\frac{x}{y^2} + 1\right) dx - \frac{x^2}{y^3} dy = 0;$$

2.
$$(x^2 - xy)dx - \left(xy + \frac{3}{2}\sqrt{y}\right)dy = 0;$$

3.
$$\left(x + \frac{y}{x^2 - y^2}\right) dx + \left(y - \frac{x}{x^2 - y^2}\right) dy = 0.$$

Задание №3. Решить задачу Коши:

1.
$$3x(y+x)^2 dx + x^2(3y+2x)dy = 0$$
, $y(1) = 2$;

2.
$$\sqrt{x-y^2} dx - 2y(1+\sqrt{x-y^2}) dy = 0$$
, $y(1) = 1$;

3.
$$(y\cos x + \sin y)dx + (x\cos y + \sin x)dy = 0$$
, $y(\frac{\pi}{2}) = 1$.

Задания для самостоятельного решения

Задание №4 Проверить, что данные уравнения являются уравнениями в полных дифференциалах и решить их:

1.
$$(x \cdot \cos 2y + 1)dx - x^2 \cdot \sin 2y \cdot dy = 0$$

$$2. \frac{y}{x^2} dx - \frac{xy - 1}{x} dy = 0$$

3.
$$\frac{1+xy}{x^2}dx - \frac{1-xy}{xy^2}dy = 0$$

4.
$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

$$5. e^{y} dx + \left(x \cdot e^{y} + \cos y\right) dy = 0$$

6.
$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0$$

7.
$$3x^2 (1 + \ln y) dx - \left(2y - \frac{x^3}{y}\right) dy = 0$$

8.
$$\left(\sin y + y \cdot \sin x + \frac{1}{x}\right) dx + \left(x \cdot \cos y - \cos x + \frac{1}{y}\right) dy = 0$$

Задание №5. Решить уравнение:

1.
$$(x^2 - y^3)dx - 3xy^2dy = 0$$
;

2.
$$(\sqrt{x} - 3xy^2)dx - (3x^2y + y^2 - 2)dy = 0$$
;

3.
$$(4x + e^{-x}y)dx - e^{-x}dy = 0$$
;

4.
$$(3x - \cos 2x)dx + (\sin y - e^{4y})dy = 0$$
.

Задание №6. Решить задачу Коши: 1. $(2x^3 + 3x^2y + 7y^2)dx + (x^3 + 14xy + 4y^3)dy = 0$, y(2) = 0;

2.
$$(y^2 + 6xy - 3x^2)dx + (3x^2 + 2xy)dy = 0$$
, $y(1) = 1$;

3.
$$(2xy - \ln y)dx - \left(\frac{x}{y} - x^2 + 5\right)dy = 0$$
, $y(0) = -1$.

Дифференциальные уравнения высших порядков

Определение 1. <u>Дифференциальным уравнением порядка п</u> называется уравнение вида:

$$F(x, y, y', ..., y^{(n)}) = 0$$

В некоторых случаях это уравнение можно разрешить относительно $y^{(n)}$:

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)}).$$

Так же как и уравнение первого порядка, уравнения высших порядков имеют бесконечное количество решений.

Определение 2. Решение $y = \phi(x)$ удовлетворяет начальным условиям $x_0, y_0, y_0', ..., y_0^{(n-1)}$, если $\phi(x_0) = y_0$, $\phi'(x_0) = y_0'$,, $\phi^{(n-1)}(x_0) = y_0^{(n-1)}$.

Определение 3. Нахождение решения уравнения $F(x, y, y', ..., y^{(n)}) = 0$, удовлетворяющего начальным условиям $x_0, y_0, y'_0, ..., y_0^{(n-1)}$, называется <u>решением задачи Коши</u>.

Теорема Коши. (*Теорема о необходимых и достаточных условиях существования решения задачи Коши*): Если функция (n-1)-й переменных вида $f(x,y,y',...,y^{(n-1)})$ в некоторой области D (n-1) -мерного пространства непрерывна и имеет непрерывные частные производные по $y,y',...,y^{(n-1)}$, то какова бы не была точка $(x_0,y_0,y'_0,...,y_0^{(n-1)})$ в этой области, существует единственное решение $y=\phi(x)$ уравнения $y^{(n)}=f(x,y,y',...,y^{(n-1)})$, определенного в некотором интервале, содержащем точку x_0 , удовлетворяющее начальным условиям $x_0,y_0,y'_0,...,y_0^{(n-1)}$.

Дифференциальные уравнения высших порядков, решение которых может быть найдено аналитически, можно разделить на несколько основных типов. Рассмотрим подробнее методы нахождения решений этих уравнений.

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Понижение порядка дифференциального уравнения — основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.

1. Уравнения вида $y^{(n)} = f(x)$. Если f(x) — функция непрерывная на некотором промежутке a < x < b, y = y(x) — неизвестная функция, $y^{(n)}$ — производная порядка n неизвестной функции y, то для получения общего решения уравнения $y^{(n)} = f(x)$ следует n раз проинтегрировать его обе части: $y^{(n-1)} = \int f(x) dx + C_1 \Rightarrow y^{(n-2)} = \int (\int f(x) dx + C_1) dx + C_2 = \int dx \int f(x) dx + C_1 x + C_2$;...

$$y = \int dx \int dx \int f(x) dx + C_1 \frac{x^{n-1}}{(n-1)!} + C_2 \frac{x^{n-2}}{(n-2)!} + ... + C_n$$
, где $C_1, C_2, ..., C_n$ — произвольные постоянные.

Пример 1. Решить уравнение $y''' = e^{2x}$ с начальными условиями $x_0 = 0$, $y_0 = 1$, $y_0' = -1$; $y_0'' = 0$.

Решение.

Очевидно, данное уравнение относится к рассматриваемому виду (n=3). Запишем данное уравнение в виде: $(y'')' = e^{2x}$. Тогда $y'' = \int e^{2x} dx + C_1 = \frac{1}{2}e^{2x} + C_1 \Rightarrow y' = \int \left(\frac{1}{2}e^{2x} + C_1\right) dx = \frac{1}{4}e^{2x} + C_1x + C_2$.

$$y = \int \left(\frac{1}{4}e^{2x} + C_1x + C_2\right)dx = \frac{1}{8}e^{2x} + \frac{1}{2}C_1x^2 + C_2x + C_3.$$

Подставим начальные условия и получим:

$$1 = \frac{1}{8} + C_3; \quad -1 = \frac{1}{4} + C_2; \quad 0 = \frac{1}{2} + C_1;$$

$$C_1 = -\frac{1}{2}; \quad C_2 = -\frac{5}{4}; \quad C_3 = \frac{7}{8};$$

Получаем частное решение (решение задачи Коши): $y = \frac{1}{8}e^{2x} - \frac{1}{4}x^2 - \frac{5}{4}x + \frac{7}{8}$.

Ответ: $y = \frac{1}{8}e^{2x} - \frac{1}{4}x^2 - \frac{5}{4}x + \frac{7}{8}$ — частное решение.

Пример 2. Решить уравнение $y''' = \sin x$.

Решение.

Очевидно, данное уравнение относится к рассматриваемому виду (n=3). Запишем данное уравнение в виде: $(y'')' = \sin x$. Тогда $y'' = \int \sin dx + C_1 = -\cos x + C_1 \Rightarrow y' = \int (-\cos x + C_1) dx = -\sin x + C_1 x + C_2$.

$$y = \int (-\sin x + C_1 x + C_2) dx = \cos x + \frac{1}{2} C_1 x^2 + C_2 x + C_3$$

Получаем общее решение: $y = \cos x + \frac{1}{2}C_1x^2 + C_2x + C_3$, где C_1, C_2, C_3 — произвольные постоянные.

Ответ: $y = \cos x + \frac{1}{2}C_1x^2 + C_2x + C_3$, где C_1, C_2, C_3 — произвольные постоянные.

Пример 3. Найти частное решение уравнения $y^{IV} = \cos^2 x$, удовлетворяющее начальным условиям: $y(0) = \frac{1}{32}$, y'(0) = 0, $y''(0) = \frac{1}{8}$, y'''(0) = 0.

Решение.

Очевидно, данное уравнение относится к рассматриваемому виду (n = 4). Найдем общее решение последовательным интегрированием данного уравнения:

$$y''' = \int \cos^2 x \, dx = \frac{1}{2} \int (1 + \cos 2x) \, dx = \frac{1}{2} x + \frac{1}{4} \sin 2x + C_1.$$

$$y'' = \int \left(\frac{1}{2}x + \frac{1}{4} \sin 2x + C_1\right) \, dx = \frac{x^2}{4} - \frac{1}{8} \cos 2x + C_1 x + C_2.$$

$$y' = \int \left(\frac{x^2}{4} - \frac{1}{8} \cos 2x + C_1 x + C_2\right) \, dx = \frac{x^3}{12} - \frac{1}{16} \sin 2x + C_1 \frac{x^2}{2} + C_2 x + C_3.$$

$$y = \int \left(\frac{x^3}{12} - \frac{1}{16} \sin 2x + C_1 \frac{x^2}{2} + C_2 x + C_3\right) \, dx = \frac{x^4}{48} + \frac{1}{32} \cos 2x + \frac{C_1 x^3}{6} + \frac{C_2 x^2}{2} + C_3 x + C_4$$

Воспользуемся начальными условиями: $x_o = 0$, $y_o = \frac{1}{32}$, $y'_o = 0$, $y''_o = \frac{1}{8}$, $y'''_o = 0$.

$$0 = C_1 \Rightarrow C_1 = 0;$$
 $\frac{1}{8} = -\frac{1}{8} + C_2 \Rightarrow C_2 = \frac{1}{4};$ $0 = C_3 \Rightarrow C_3 = 0;$ $\frac{1}{32} = \frac{1}{32} + C_4 \Rightarrow C_4 = 0.$

Следовательно, искомое частное решение имеет вид: $y = \frac{x^4}{48} + \frac{1}{32}\cos 2x + \frac{x^2}{8}$.

Задания для решения в аудитории

Задание №1. Решить уравнения в полных дифференциалах:

1.
$$y''' = 3 + \cos^2 x$$
, $y(0) = 0$, $y'(0) = 2$, $y''(0) = -1$.

2.
$$y''' = \frac{1}{(x-3)^3}$$
, $y(2) = 3$, $y'(2) = 2$, $y''(2) = \frac{1}{2}$.

3.
$$y''' = 2 \cdot \frac{\cos x}{\sin^3 x}$$
, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = -1$, $y''\left(\frac{\pi}{2}\right) = 2$.

4.
$$y''' = \frac{\sin x}{3\cos^3 x}$$
, $y(0) = -3$, $y'(0) = 0$, $y''(0) = 7$.

5.
$$y''' = 27e^{3x} + 120x^3$$
, $y(0) = 3$, $y'(0) = -1$, $y''(0) = 2$.

6.
$$y''' = \frac{1}{x}$$
, $y(1) = 1$, $y'(1) = 2$, $y''(1) = -2$

7.
$$y'' = \frac{\ln x}{x^2}$$
, $y(e) = 4$, $y'(e) = \frac{2}{e}$.

8.
$$y'' = tg^2 3x$$
, $y(0) = 9$, $y'(0) = -5$.

Задания для самостоятельного решения

Задание №2. Решить уравнения в полных дифференциалах:

1.
$$y''' = x \cdot \sin x$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 2$. Ombern. $y = x \cdot \cos x - \sin x + x^2$.

2.
$$y''' \cdot \sin^4 x = \sin 2x$$
. Ombem. $y = \ln \sin x + C_1 x^2 + C_2 x + C_3$.

3.
$$y'' = 2\sin x \cos^2 x - \sin^3 x$$
. Omsem. $y = \frac{1}{3}\sin^3 x + C_1 x + C_2$.

4.
$$y''' = x \cdot e^{-x}$$
, $y(0) = 0$, $y'(0) = 2$, $y''(0) = 2$. Ombern. $y = -(x+3)e^{-x} + \frac{3x^2}{2} + 3$.

5.
$$y''' = e^{5x} + 4x$$
. Ombem. $y = \frac{1}{125}e^{5x} + \frac{x^4}{6} + \frac{C_1x^2}{2} + C_2x + C_3$.

6.
$$y'' = x \cdot \ln x$$
, $y(1) = 0$, $y'(1) = \frac{1}{9}$. Omsem. $y = \ln x \cdot \frac{x^3}{6} - \frac{5x^3}{36} + \frac{13}{36}x - \frac{2}{9}$.

- **2.** Уравнения, не содержащие искомой функции. Различают несколько основных типов дифференциальных уравнений высших порядков, не содержащих искомой функции. Рассмотрим их подробнее.
- **I.** <u>Уравнения, не содержащие явно независимой переменной</u> x. Это уравнения вида $F(y, y', ..., y^{(n)}) = 0$. Порядок таких уравнений может быть понижен на единицу с помощью замены переменных

$$y' = p(y)$$
, где $p(y)$ — новая искомая функция. Тогда $y'' = \frac{dy'}{dx} = \frac{dy'}{dy} \cdot \frac{dy}{dx} = \frac{dp}{dy}p;$

$$y''' = \frac{dy''}{dx} = \frac{dy''}{dy} \cdot \frac{dy}{dx} = \frac{dy''}{dy} p = \frac{d\left(\frac{dp}{dy}p\right)}{dy} p = \frac{d^2p}{dy^2} p^2 + \left(\frac{dp}{dy}\right)^2 p;$$
 и т.д.

Подставляя эти значения в исходное дифференциальное уравнение, получаем:

$$F_1\left(y, p, \frac{dp}{dy}, ..., \frac{d^{n-1}p}{dy^{n-1}}\right) = 0.$$

Если это уравнение проинтегрировать, и $\Phi(y, p, C_1, C_2, ..., C_{n-1}) = 0$ — совокупность его решений, то для решения данного дифференциального уравнения остается решить уравнение первого порядка: $\Phi(y, y', C_1, C_2, ..., C_{n-1}) = 0$.

Заметим также, что при осуществлении замены y' = p(y) возможна потеря решения y = const. Непосредственной подстановкой необходимо проверить наличие у уравнения $F(y, y', ..., y^{(n)}) = 0$ решений такого вида.

Пример 4. Найти общее решение уравнения $yy'' - (y')^2 - 4yy' = 0$.

Решение.

Очевидно, данное уравнение — дифференциальных уравнений высших порядков, не содержащее независимую переменную x. Следовательно, можем ввести замену переменной: $y' = p(y) \Rightarrow y'' = \frac{dp}{dy} p$.

Подставляем в исходное уравнение получаем: $yp\frac{dp}{dy}-p^2-4yp=0 \Rightarrow p\left(y\frac{dp}{dy}-p-4y\right)=0$. Произведение равно нулю, когда один из множителей равен нулю, следовательно:

1)
$$y\frac{dp}{dy}-p-4y=0 \Rightarrow \frac{dp}{dy}=4+\frac{p}{y}$$
. Для решения полученного дифференциального уравнения

произведем замену переменной: $u = \frac{p}{y}$. Тогда $u + \frac{du}{dy}y = 4 + u \implies du = 4\frac{dy}{y} \implies$

$$\int du = 4 \int \frac{dy}{y} \implies u = 4 \ln |y| + 4 \ln C_1 \implies u = 4 \ln |C_1 y| \implies p = 4 y \ln |C_1 y|.$$

С учетом того, что $p = \frac{dy}{dx}$, получаем: $\frac{dy}{dx} = 4y \ln |C_1y| \Rightarrow \int \frac{dy}{4y \ln |C_1y|} = \int dx \Rightarrow$

$$x = \frac{1}{4} \int \frac{d(\ln |C_1 y|)}{\ln |C_1 y|} = \frac{1}{4} \ln |\ln |C_1 y| + C_2.$$

Общий интеграл имеет вид: $\ln |\ln |C_1 y| = 4x + C$.

2)
$$p=0 \implies y'=0 \implies y=C$$
.

Таким образом, получили два общих решения.

Пример 5. Решить уравнение $1 + y'^2 = yy''$.

Решение.

Очевидно, данное уравнение — дифференциальных уравнений высших порядков, не содержащее независимую переменную x. Следовательно, можем ввести замену переменной: y' = p(y) Тогда $y'' = p \cdot \frac{dp}{dy}$. Уравнение примет вид $1 + p^2 = y \cdot p \cdot \frac{dp}{dy}$. Это уравнение первого порядка относительно p с разделяющимися переменными. Далее разделяем переменные и интегрируем: $\frac{pdp}{1+p^2} = \frac{dy}{y}$; $\ln(1+p^2) = 2\ln|y| + 2\ln|C_1|$ или $1+p^2 = C_1^2y^2$; $p = \pm \sqrt{C_1^2y^2-1}$. Возвращаясь к функции y, имеем $y' = \pm \sqrt{C_1^2y^2-1} \Rightarrow \frac{dy}{\sqrt{C_1^2y^2-1}} = \pm dx$. Интегрируя получаем общий интеграл:

$$\frac{1}{C_1} \ln \left| C_1 y + \sqrt{C_1^2 y^2 - 1} \right| = \pm (x + C_2).$$

Ответ: $\frac{1}{C_1} \ln \left| C_1 y + \sqrt{C_1^2 y^2 - 1} \right| = \pm (x + C_2)$ — общий интеграл, где C_1, C_2 — произвольные постоянные.

Пример 6. Решить уравнение $yy'' - y'^2 = 0$, y(0) = 1, y'(0) = 2.

Решение.

Очевидно, данное уравнение — дифференциальных уравнений высших порядков, не содержащее независимую переменную x.

Положим y' = p. Тогда $y'' = p' \cdot p$. Уравнение примет вид $y' \cdot p' \cdot p - p^2 = 0 \Rightarrow p \cdot (y' \cdot p' - p) = 0$. Произведение равно нулю, когда один из множителей равен нулю, следовательно:

1)
$$y \cdot \frac{dp}{dy} - p = 0$$
. Разделяя переменные и интегрируя, получим: $\frac{dp}{p} - \frac{dy}{y} = 0$, $\ln |p| - \ln |y| = \ln |C_1|$,

 $p = C_1 y$. Возвращаясь к функции y, получаем $y' = C_1 y$. Разделяя переменные и интегрируя, получаем:

$$\frac{dy}{y} = C_1 dx$$
, $\ln |y| = C_1 x + C_2$, $y = e^{C_1 x + C_2}$.

2)
$$p = 0 \implies y' = 0 \implies y = C$$
.

Таким образом, получили два общих решения.

Находим частное решение $2 = C_1 \cdot 1 \Rightarrow C_1 = 2$. $1 = e^{C_1 \cdot 0 + C_2} \Rightarrow C_2 = 0$. Таким образом, частное решение: $y = e^{2x}$. И C = 1

Ответ: $y = e^{2x}$ — частное решение. y = 1

II. Дифференциальное уравнение которое не содержит ни искомой функции y(x), ни ее производных до порядка (k-1) включительно, т. е. имеет вид $F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$.

Его порядок может быть понижен на k единиц в результате подстановки $y^{(k)} = p(x)$, где p(x) — новая искомая функция. Тогда уравнение $F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$ принимает вид:

$$F(x, p, p', p'', ..., p^{(n-k)}) = 0$$
.

После определения функции p(x) искомую функцию y(x) находят из уравнения k -кратным интегрированием его обеих частей.

Пример 7. Найти решение уравнения $xy'' = y' \ln \left(\frac{y'}{x} \right)$.

Решение.

Это уравнение не содержит искомой функции y(x). Полагая y'=p, где p=p(x), преобразуем уравнение к виду $x\cdot p'=p\cdot\ln\left(\frac{p}{x}\right)$. Отсюда имеем $p'=\frac{p}{x}\cdot\ln\left(\frac{p}{x}\right)$ — однородное уравнение первого порядка. Введем еще одну замену переменной: $\frac{p}{x}=u$, откуда $p=u\cdot x$, $p'=u'\cdot x+u$, получим уравнение $u'\cdot x+u=u\cdot\ln u$ или $\frac{du}{dx}\cdot x+u(1-\ln u)=0$. Разделяя переменные, получим $\frac{du}{u(1-\ln u)}+\frac{dx}{x}=0$.

Интегрируя $\int \frac{du}{u(1-\ln u)} = \int \frac{dx}{x} + \ln |C_1|$, получим $\ln |\ln u - 1| = \ln |x| + \ln |C_1|$ или $\ln u - 1 = C_1 x$, откуда $u = e^{C_1 x + 1}$. Возвращаясь к функции y, приходим к уравнению $y' = p = x \cdot e^{C_1 x + 1}$. Следовательно, $y = \int x \cdot e^{C_1 x + 1} dx = \frac{1}{C} x \cdot e^{C_1 x + 1} - \frac{1}{C} e^{C_1 x + 1} + C_2$.

Ответ: $y = \frac{1}{C_1} x \cdot e^{C_1 x + 1} - \frac{1}{C_1^2} e^{C_1 x + 1} + C_2$, где C_1, C_2 — произвольные постоянные.

III. <u>Дифференциальные уравнения, которые содержат только две последовательные производные неизвестной функции,</u> т. е. уравнения вида $F(y^{(n-1)},y^{(n)})=0$. Если это уравнение удается разрешить относительно $y^{(n)}$, то оно принимает вид: $y^{(n)}=\Phi(y^{(n-1)})$ и решается с помощью подстановки $y^{(n-1)}=p(x)$, где p(x) — новая искомая функция. Такая подстановка $y^{(n)}=p(x)$ приводит уравнение $y^{(n)}=\Phi(y^{(n-1)})$ к виду $\frac{dp}{dx}=\Phi(p)$. Определив из уравнения $\frac{dp}{dx}=\Phi(p)$ функцию p(x) и подставив ее в уравнение $y^{(n-1)}=p(x)$, находят неизвестную функцию y(x).

Пример 8. Найти общее решение уравнения $y'' = 5y' \cdot \frac{1}{x}$.

Решение.

Данное уравнение не содержит искомой функции y(x), поэтому для его решения проведем замену: $y' = p(x) \Rightarrow y'' = p'(x)$, где p(x) — новая искомая функция. Тогда данное уравнение примет вид : $p' = 5p \cdot \frac{1}{x} \Rightarrow \frac{dp}{dx} = 5p \cdot \frac{1}{x}$. Разделив переменные, получим $\frac{dp}{p} = 5 \cdot \frac{1}{x} dx$

откуда, интегрируя, будем иметь $\int \frac{dp}{p} = 5 \int \frac{1}{x} dx \Rightarrow \ln|p| = 5 \ln|x| + \ln|C_1| \Rightarrow p(x) = C_1 \cdot x^5$, где C_1 — произвольная постоянная. Подставляя найденную функцию p(x)в y' = p(x), получим уравнение для определения первоначальной искомой функции y(x): $y' = C_1 \cdot x^5$, решая которое, будем иметь: $\frac{dy}{dx} = C_1 \cdot x^5$. Разделив переменные: $dy = C_1 \cdot x^5 dx \Rightarrow \int dy = \int C_1 \cdot x^5 dx$. После интегрирования получим

 $y = \frac{C_1}{6} \cdot x^6 + C_2$, где C_1, C_2 —произвольные постоянные.

Ответ: $y = \frac{C_1}{6} \cdot x^6 + C_2$ — общее решение, где C_1, C_2 —произвольные постоянные.

Задания для решения в аудитории

Задание №1. Найти общее решение дифференциального уравнения:

1.
$$y''' \cdot x \cdot \ln x = y''$$

$$2. \ 2x \cdot y''' = y''$$

3.
$$y''' = 2y''$$

4.
$$xy''' - 2y'' = x^3$$

5.
$$x^2 \cdot y'' - xy' = 1$$

6.
$$x^4 \cdot y'' + x^3 \cdot y' = 1$$

7.
$$x \cdot y''' + 2y'' = 0$$

8.
$$(y')^2 + 2y \cdot y'' = 0$$

9.
$$4v^3 \cdot v'' = v^4 - 1$$

10.
$$y'' = 128 \cdot y^3$$

11
$$v'' \cdot v^3 + 49 = 0$$

12.
$$4v^3 \cdot v'' = 16v^4 - 1$$

13.
$$y'' + 8\sin y \cdot \cos^3 y = 0$$

14.
$$y'' = 32\cos y \cdot \sin^3 y$$

15.
$$y'' = 18\sin^3 y \cdot \cos y$$

Задание №2. Решите уравнение:

1.
$$y^{IV} = 6x$$
;

2.
$$y''' = \cos 3x + 2$$
;

3.
$$(y'')^2 = y'$$
;

4.
$$y'' + 3x^2y' = 0$$
.

5.
$$y'' = 2\cos x \sin^2 x - \cos^3 x$$
;

6.
$$(y'')^2 + (y')^2 = 4;$$

7.
$$yy'' = (y')^2$$
;

6.
$$(y'')^2 + (y')^2 = 4;$$
 7. $yy'' = (y')^2;$ 8. $xy'' - y' = x \sin \frac{y'}{x};$

9.
$$xy'' - y' = x^2 \sin x$$
;

10.
$$(1+x^2)y'' + 2xy' = 3x^2$$
.

Задание №3. Решите задачу Коши:

1.
$$\sin^3 xy'' = \cos x$$
, $y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, $y'\left(\frac{\pi}{2}\right) = \frac{1}{2}$;

2.
$$y'' = 2e^y$$
, $y(1) = 0$, $y'(1) = 2$;

3.
$$y''y^3 = 1$$
, $y(\frac{1}{2}) = 1$, $y'(\frac{1}{2}) = 1$;

4.
$$2\sqrt{y}y'' = y'$$
, $y(2) = 1$, $y'(2) = 1$;

5.
$$e^x y''' = -x$$
, $y(0) = 3$, $y'(0) = -1$, $y''(0) = 0$;

6.
$$y''' + (y'')^2 = 0$$
, $y(1) = -1$, $y'(1) = 0$, $y''(1) = 1$;

7.
$$y''y^3 = 1$$
, $y(\frac{1}{2}) = 1$, $y'(\frac{1}{2}) = 1$;

8.
$$y''(3y+1)-3y'^2=0$$
, $y(1)=0$, $y'(1)=1$.

Задания для самостоятельного решения

Задание №2. Решить задачу Коши:

1.
$$y'' - \frac{y'}{x-1} = x(x-1)$$
, $y(2) = 1$, $y'(2) = -1$. Ombern. $y = \frac{3x^4 - 4x^3 - 36x^2 + 72x + 8}{24}$.

2.
$$(1-x^2)y'' - xy' = 2$$
. Omsem. $y = (\arcsin x)^2 + C_1 \arcsin x + C_2$.

3.
$$y'' = y' + x$$
. Ombem. $y = -\frac{(x+1)^2}{2} + C_1 e^x + C_2$.

4.
$$(1+\sin x)y'' = \cos x \cdot y'$$
. Ombem. $y = C_1x - C_1\cos x + C_2$.

5.
$$\operatorname{tg} x \cdot y'' = 2y'$$
. *Ombem*. $y = \frac{C_1 x}{2} - \frac{C_1 \sin 2x}{4} + C_2$.

Задание №3. Решить уравнения.

1.
$$y''(2y+3)-2y'^2=0$$
. Ombem. $0.5 \ln |2y+3|=C_1x+C_2$.

2.
$$y \cdot y'' = (y')^2 - (y')^3$$
, $y(1) = 1$, $y'(1) = -1$. Ombem. $y = -2 \ln y + x$.

3.
$$y'' = \frac{y'}{\sqrt{y}}$$
. Omsem. $\sqrt{y} - 0.5C_1 \ln |2\sqrt{y} + C_1| + C_2 = x$.

4.
$$y'' = 3y^2 \cdot y'^3$$
. Omeem. $y = \frac{1}{C_1} \left(C_2 - x - \frac{y^4}{4} \right)$.

5.
$$y'' + y'^3 = 0$$
. Omsem. $y = \frac{1}{C_1} \left(C_2 + x - \frac{y^2}{2} \right)$.

6.
$$y'' \cdot y'^3 - 1 = 0$$
. Ombem. $y = \frac{(4x + 4C_2)^{\frac{5}{4}} - 5C_1}{5}$.

Линейные дифференциальные уравнения порядка *п*

Определение1. <u>Линейным дифференциальным уравнением n – го порядка</u> называется любое уравнение первой степени относительно функции y и ее производных $y', y'', ..., y^{(n)}$ вида:

$$p_0 y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = f(x)$$

где $p_0, p_1, ..., p_n$ — функции от χ или постоянные величины, причем $p_0 \neq 0$.

Левую часть этого уравнения обозначим L(y): $p_0 y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + ... + p_{n-1} y' + p_n y = L(y)$

Определение 2. Если f(x) = 0, то уравнение L(y) = 0 называется <u>линейным однородным</u> уравнение ем, если $f(x) \neq 0$, то уравнение L(y) = f(x) называется <u>линейным неоднородным</u> уравнением, если все коэффициенты $p_0, p_1, ..., p_n$ — постоянные числа, то уравнение L(y) = f(x) называется <u>линейным дифференциальным уравнением высшего порядка с постоянными коэффициентами.</u>

Отметим одно важное свойство линейных уравнений высших порядков, которое отличает их от нелинейных. Для нелинейных уравнений частный интеграл находится из общего, а для линейных — наоборот, общий интеграл составляется из частных. Линейные дифференциальные уравнения описывают реальные процессы или дают первое приближение к этим процессам, поэтому имеют широкое практическое применение. Рассмотрим способы интегрирования некоторых типов линейных дифференциальных уравнений высших порядков.

Линейные однородные дифференциальные уравнения порядка *n* с постоянными коэффициентами

Определение 1. <u>Линейным однородным дифференциальным уравнением порядка п с постоянными коэффициентами</u> называется уравнение вида:

$$a_n \cdot y^{(n)} + a_{n-1} \cdot y^{(n-1)} + a_{n-2} \cdot y^{(n-2)} + \dots + a_1 \cdot y' + a_0 \cdot y = 0$$
 (1)

где $a_n, a_{n-1}, a_{n-2}, ..., a_1, a_0$ — известные постоянные коэффициенты, причем $a_n \neq 0$, y = y(x) — неизвестная функция аргумента x, $y^{(n)}, y^{(n-1)}, ..., y'$ — ее производные порядка n, (n-1), ..., 1 соответственно.

Приведем <u>основные свойства решений</u> линейного однородного дифференциального уравнения порядка $\mathbb N$ с постоянными коэффициентами.

I. Если $y_1, y_2, ..., y_m$ решения уравнения (1), то и любая их линейная комбинация

$$c_1 \cdot y_1 + c_2 \cdot y_2 + \dots + c_m \cdot y_m$$

также является решением уравнения (1), где $c_1, c_2, ..., c_m$ — некоторые постоянные.

II. Если линейное однородное уравнение (1) с действительными коэффициентами имеет комплексное решение $y = u + i \cdot v$, то и функции u = Re y и v = Im y в отдельности являются решениями уравнения (1).

Определение 2. Функции $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$ называются <u>линейно зависимыми</u> на множестве A, если существуют постоянные $\alpha_1, \alpha_2, ..., \alpha_m$, такие, что

$$\alpha_1 \cdot \varphi_1(x) + \alpha_2 \cdot \varphi_2(x) + \dots + \alpha_m \cdot \varphi_1(x) \equiv 0, \ x \in A$$
, причем $\alpha_1^2 + \alpha_2^2 + \dots + \alpha_m^2 > 0$.

Если же тождество имеет место лишь при $\alpha_1 = \alpha_2 = ... = \alpha_m$, то функции $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$ называются линейно независимыми.

Определение 3. Любая система из n линейно независимых решений $y_1(x), y_2(x), ..., y_n(x)$ линейного однородного уравнения (1) называется фундаментальной системой решений линейного однородного дифференциального уравнения порядка n с постоянными коэффициентами.

III. Общее решение линейного однородного уравнения (1) представляет собой линейную комбинацию фундаментальных решений, т. е. имеет вид: $y(x) = c_1 \cdot y_1(x) + c_2 \cdot y_2(x) + ... + c_n \cdot y_n(x)$, где $c_1, c_2, ..., c_n$ — произвольные постоянные, а , $y_1(x), y_2(x), ..., y_n(x)$ — фундаментальная система решений уравнения (1). Формула $y(x) = c_1 \cdot y_1(x) + c_2 \cdot y_2(x) + ... + c_n \cdot y_n(x)$ определяет структуру

общего решения линейного однородного дифференциального уравнения порядка n с постоянными коэффициентами.

IV. Линейное однородное уравнение (1) всегда имеет решение $y \equiv 0$, которое называется <u>тривиальным решением</u>.

Из вышеизложенного видно, что отыскание общего решения линейного однородного дифференциального уравнения сводится к нахождению его фундаментальной системы решений. Однако, даже для уравнения второго порядка, если коэффициенты ℓ зависят от χ , эта задача не может быть решена в общем виде. Тем не менее, если известно одно ненулевое частное решение, то задача может быть решена.

Теорема. Если задано уравнение вида $y'' + p_1(x)y' + p_2(x)y = 0$ и известно одно ненулевое решение $y = y_1$, то общее решение может быть найдено по формуле: $y = C_2 y_1 \int \frac{1}{y_1^2} e^{-\int p_1(x)dx} dx + C_1 y_1$.

Таким образом, для получения общего решения надо подобрать какое — либо частное решение дифференциального уравнения, хотя это бывает часто довольно сложно.

Пример 1. Решить уравнение
$$(1-x^2)y'' - 2xy' + 2y = 0$$
.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка. Для нахождения общего решения необходимо отыскать какое - либо частное решение. Таким частным решением будет являться функция $y_1 = x$. (так как $y_1' = 1 \Rightarrow y_1'' = 0 \Rightarrow 0 - 2x + 2x = 0$). Исходное дифференциальное уравнение можно преобразовать:

$$y'' - \frac{2x}{1 - x^2}y' + \frac{2y}{1 - x^2} = 0.$$

А тогда общее решение имеет вид: $y = C_1 x \int \frac{1}{x^2} e^{\int \frac{2x}{1-x^2} dx} dx + C_2 x;$

$$y = C_1 x \int \frac{e^{-\ln(1-x^2)}}{x^2} dx + C_2 x;$$

$$y = C_1 x \int \frac{dx}{x^2 (1-x^2)} + C_2 x \implies y = C_2 x + C_1 x \int \left[\frac{1}{x^2} + \frac{1}{2(1-x)} + \frac{1}{2(1+x)} \right] dx \implies$$

$$y = C_2 x + C_1 x \left[-\frac{1}{x} + \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| \right].$$

Окончательно: $y = C_2 x + C_3 x \ln \left| \frac{1+x}{1-x} \right| + C_4$, где C_2, C_3, C_4 —произвольные постоянные.

Ответ: $y = C_2 x + C_3 x \ln \left| \frac{1+x}{1-x} \right| + C_4$ — общее решение, где C_2, C_3, C_4 —произвольные постоянные.

V. Задача Коши для линейного однородного дифференциального уравнения n-го порядка с постоянными коэффициентами $a_n \cdot y^{(n)} + a_{n-1} \cdot y^{(n-1)} + a_{n-2} \cdot y^{(n-2)} + ... + a_1 \cdot y' + a_0 \cdot y = 0$

$$y(x_0) = y_0$$

$$y'(x_0) = y_0'$$

$$y''(x_0) = y_0''$$
...
$$y^{(n-1)}(x_0) = y_0^{(n-1)}$$

всегда имеет и притом единственное решение при любых начальных условиях.

Определение 4. <u>Характеристическим уравнением</u> для линейного однородного дифференциального уравнения порядка *п* с постоянными коэффициентами

$$a_n \cdot y^{(n)} + a_{n-1} \cdot y^{(n-1)} + a_{n-2} \cdot y^{(n-2)} + \dots + a_1 \cdot y' + a_0 \cdot y = 0$$

называется алгебраическое уравнение степени 11 вида

$$a_n \cdot k^n + a_{n-1} \cdot k^{n-1} + a_{n-2} \cdot k^{n-2} + \dots + a_1 \cdot k + a_0 = 0.$$
 (2)

Таким образом, чтобы составить характеристическое уравнение (2), надо в уравнении (1) заменить производные $y^{(n)}, y^{(n-1)}, ..., y'$ соответственно степенями неизвестной величины k, точнее, показатель степени с основанием k должен быть равен порядку соответствующей производной неизвестной функции y, а сама искомая функция у заменена единицей (т. е. k_0).

В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно — сопряженные корни, как различные, так и кратные. Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.

<u>Общее правило</u> нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами, заключается в следующем:

1) Составляют характеристическое уравнение

$$(a_0k^n + a_1k^{n-1} + ... + a_{n-1}k^2 + a_{n-1}k + a_n = 0)$$

и находят его корни, причем согласно основной теоремы алгебры (многочлен степени n имеет ровно n корней с учетом их кратности), их ровно n и они могут быть как действительными числами так и комплексными.

- 2) Находят соответствующие частные линейно независимые решения этого уравнения, причем в зависимости от вида корней соответствующие частные линейно независимые решения будут иметь различный вид:
 - а) каждому действительному корню соответствует решение e^{kx} ;
 - б) каждому действительному корню кратности m ставится в соответствие m решений:

$$e^{kx}$$
; xe^{kx} ; ... $x^{m-1}e^{kx}$.

- в) каждой паре комплексно сопряженных корней $\alpha \pm i\beta$ характеристического уравнение ставится в соответствие два решения: $e^{\alpha x} \cos \beta x$ и $e^{\alpha x} \sin \beta x$.
- г) каждой паре m кратных комплексно сопряженных корней $\alpha \pm i\beta$ характеристического уравнения ставится в соответствие 2m решений:

$$e^{\alpha x} \cos \beta x$$
, $xe^{\alpha x} \cos \beta x$, ... $x^{m-1}e^{\alpha x} \cos \beta x$,
 $e^{\alpha x} \sin \beta x$, $xe^{\alpha x} \sin \beta x$, ... $x^{m-1}e^{\alpha x} \sin \beta x$.

(более подробно возможные случаи представлены в таблице1.)

3) Составляют общее решение уравнения, которое представляется в виде линейной комбинации n линейно независимых частных решений этого уравнения:

$$y = \sum_{m=1}^{n} C_m y_m = C_1 y_1 + C_2 y_2 + ... + C_n y_n$$

Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.

Таблица 1. Частные линейно независимые решения зависимости от вида корней характеристического уравнение линейного однородного дифференциального уравнения n— го порядка с постоянными коэф-

		фициентами
№	Вид корней	Вид частных решений

1.	Корни k_i ($i = 1, 2,, n$) характеристического уравнения действительны и различны.	$y_1 = e^{k_1 x}$ $y_2 = e^{k_2 x}$ $y_n = e^{k_n x}$
2.	Корни характеристического уравнения комплексные числа $k_1 = \alpha + \beta i$, $k_2 = \alpha - \beta i$.	$y_1 = e^{\alpha x} \cos(\beta x)$ $y_2 = e^{\alpha x} \sin(\beta x)$
2.	Корни характеристического уравнения мнимые числа $k_1 = \beta i$, $k_2 = -\beta i \; .$	$y_1 = \cos(\beta x)$ $y_2 = \sin(\beta x)$
	Корни характеристического уравнения действительны и кратны: $k_1 = k_2 = k_3 = \ldots = k_m = k$	$y_1 = e^{kx}$ $y_2 = xe^{kx}$ $y_3 = x^2 e^{kx}$
3.	Корни характеристического уравнения комплексные числа $k_1 = \alpha + \beta i$, $k_2 = \alpha - \beta i$ и кратности m каждый.	$y_{m} = x^{m-1}e^{kx}$ $y_{1} = e^{\alpha x}\cos(\beta x) \qquad y_{2} = e^{\alpha x}\sin(\beta x)$ $y_{3} = xe^{\alpha x}\cos(\beta x) \qquad y_{4} = xe^{\alpha x}\sin(\beta x)$ $y_{5} = x^{2}e^{\alpha x}\cos(\beta x) \qquad y_{6} = x^{2}e^{\alpha x}\sin(\beta x)$ \vdots $y_{2m-1} = x^{m-1}e^{\alpha x}\cos(\beta x) \qquad y_{2m} = x^{m-1}e^{\alpha x}\sin(\beta x)$

Таким образом, линейные однородные уравнения с постоянными коэффициентами всегда можно решить в элементарных функциях, причем решение сводится к алгебраическим операциям.

Пример 2. Решить уравнение y''' - y = 0.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

1. Составим характеристическое уравнение: $k^3 - 1 = 0$;

$$(k-1)(k^2+k+1)=0;$$
 $k_1=1;$ $k^2+k+1=0;$ $D=1-4=-3;$ $k_2=-\frac{1}{2}+\frac{\sqrt{3}}{2}i;$ $k_3=-\frac{1}{2}-\frac{\sqrt{3}}{2}i;$

- 2. Находим частные решения дифференциального уравнения $y_1 = e^x; y_2 = e^{-\frac{x}{2}} \cos \frac{\sqrt{3}}{2} x; y_3 = e^{-\frac{x}{2}} \sin \frac{\sqrt{3}}{2} x$.
- 3. Составляем линейную комбинацию найденных решений. Общее решение будет иметь вид:

4.
$$y = C_1 e^x + e^{-\frac{x}{2}} \left[C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right].$$

Ответ: $y = C_1 e^x + e^{-\frac{x}{2}} \left[C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right]$. — общее решение, где C_1, C_2, C_3 —произвольные по-

стоянные.

В дальнейшем будем объединять второй и третий шаг.

Пример3. Решить уравнение $y^{IV} - y = 0$.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

1. Составим характеристическое уравнение: $k^4 - 1 = 0$. Решим его:

$$(k^2-1)(k^2+1)=0;$$
 $k_1=1;$ $k_2=-1;$ $k_3=i;$ $k_4=-i.$

2. Находим линейную комбинацию найденных и составляем общее решение: $y = C_1 e^x + C_2 e^{-x} + C_3 \cos x + C_4 \sin x$.

Ответ: $y = C_1 e^x + C_2 e^{-x} + C_3 \cos x + C_4 \sin x$ — общее решение, где C_1, C_2, C_3, C_4 —произвольные постоянные

Пример4. Решить уравнение y'' - 4y' + 4y = 0.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^2 4k + 4 = 0$; $k_1 = k_2 = 2$.
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = C_1 e^{2x} + C_2 x e^{2x}$.

Ответ: $y = C_1 e^{2x} + C_2 x e^{2x}$. — общее решение, где C_1, C_2 —произвольные постоянные

Пример 5. Решить уравнение y'' + 2y' + 5y = 0.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^2 + 2k + 5 = 0$; D = -16; $k_1 = -1 + 2i$; $k_2 = -1 2i$.
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = e^{-x}(C_1\cos 2x + C_2\sin 2x)$.

Ответ: $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$. — общее решение, где C_1, C_2 —произвольные постоянные **Пример 6**. Решить уравнение y''' - 7y'' + 6y' = 0.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^3 7k^2 + 6k = 0$; $k(k^2 7k + 6) = 0$; $k_1 = 0$; $k_2 = 1$; $k_3 = 6$;
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = C_1 + C_2 e^x + C_3 e^{6x}$;

Ответ: $y = C_1 + C_2 e^x + C_3 e^{6x}$; — общее решение, где C_1, C_2, C_3 —произвольные постоянные. **Пример7.** Решить уравнение y'' - y' - 2y = 0.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^2 k 2 = 0$; $k_1 = -1$; $k_2 = 2$.
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = C_1 e^{-x} + C_2 e^{2x}$.

Ответ: $y = C_1 e^{-x} + C_2 e^{2x}$ — общее решение, где C_1, C_2 —произвольные постоянные.

Пример8. Решить уравнение $y^{V} - 9y''' = 0$.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^5 9k^3 = 0$; $k^3(k^2 9) = 0$; $k_1 = k_2 = k_3 = 0$; $k_4 = 3$; $k_5 = -3$.
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = C_1 + C_2 x + C_3 x^2 + C_4 e^{3x} + C_5 e^{-3x}$.

Ответ: $y = C_1 + C_2 x + C_3 x^2 + C_4 e^{3x} + C_5 e^{-3x}$ — общее решение, где C_1, C_2, C_3, C_4, C_5 —произвольные постоянные.

Пример 9. Найти частное решение уравнения y'' - y' - 2y = 0, удовлетворяющее начальным условиям: y(0) = 0, y'(0) = 3.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

- 1. Составим характеристическое уравнение: $k^2 k 2 = 0$. Оно имеет два различных корня $k_1 = 2, k_2 = -1$.
- 2. Находим линейную комбинацию найденных решений и составляем общее решение: $y = C_1 e^{2x} + C_2 e^{-x}$.
- 3. Находим частное решение. Для этого подставляем начальные условия в общее решение и находим его производную $y' = 2C_1e^{2x} C_2e^{-x}$, получаем систему уравнений относительно

$$C_1$$
 и C_2 :
$$\begin{cases} 0 = C_1 + C_2 \\ 3 = 2C_1 - C_2 \end{cases}$$
. Решая ее получаем $C_1 = 1, C_2 = -1$. Значит, частное решение, удовлетворя-

ющее поставленным начальным условиям, имеет вид $y = e^{2x} - e^{-x}$.

Ответ: $y = e^{2x} - e^{-x}$ — частное решение.

Задания для решения в аудитории

Задание №1. Найти общее решение дифференциального уравнения:

1.
$$y''' - y = 0$$
.
2. $y''' - y = 0$.
3. $y'' - 4y' + 4y = 0$.

4.
$$y'' + 2y' + 5y = 0$$
.
5. $y''' - 7y'' + 6y' = 0$.
6. $y'' - y' - 2y = 0$.

7.
$$y^V - 9y''' = 0$$
. 8. $y'' - 6y' + 8y = 0$ 9. $y'' + 4y' = 0$

10.
$$y'' + 2y''' + y'' = 0$$
 11. $y''' + y'' + y' + y = 0$. 12. $y''' + 4y'' + 29y' = 0$.

13.
$$y^{IV} + 2y''' + 2y''' = 0$$
. 14. $y^{IV} - 8y' = 0$; 15. $y^{IV} - 4y''' + 4y'' - y' = 0$.

Задание №2. Найти частное решение уравнения, удовлетворяющее заданным начальным условиям.

1.
$$y'' - 6y' + 10y = 0$$
, $y(0) = 1$, $y'(0) = 0$.
2. $y'' + 8y' + 16y = 0$, $y(0) = 1$, $y'(0) = 0$.

3.
$$y'' - 7y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = 0$.

5.
$$y'' + y = 0$$
, $y(\pi) = 1$, $y'(\pi) = -4$.

7.
$$y'' + 2y' + 10y = 0$$
, $y\left(-\frac{\pi}{2}\right) = 0$, $y'\left(-\frac{\pi}{2}\right) = 1$

9.
$$y'' + 16y = 0$$
, $y(\pi) = 1$, $y'(\pi) = 2$

11.
$$y'' - 5y' + 6y = 0$$
, $y(0) = 5$, $y'(0) = 0$

13.
$$y''' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$, $y''(0) = 1$;

15.
$$y^{IV} - 16y = 0$$
, $y(1) = 1$, $y'(1) = 2$, $y''(1) = 3$, $y'''(1) = 4$.

16.
$$y''' - 4y''' + 8y'' - 8y' + 4y = 0$$
, $y\left(\frac{\pi}{2}\right) = 1$, $y'\left(\frac{\pi}{2}\right) = 2$, $y''\left(\frac{\pi}{2}\right) = 3$, $y'''\left(\frac{\pi}{2}\right) = 4$.

17.
$$y^V - 8y^{IV} + 16y''' = 0$$
, $y(0) = 4$, $y'(0) = 3$, $y''(0) = 2$, $y'''(0) = 1$, $y^{IV}(0) = 1$.

Задания для самостоятельного решения

4. y'' - 4y' + 17y = 0, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 1$.

6. y'' - 2y' + y = 0, y(2) = 0, y'(2) = 6.

8. y'' - 6y' = 0, y(0) = -2, y'(0) = 2

10. y'' + 9y = 0, $y(-\pi) = 0$, $y'(-\pi) = 1$

12. y'' - 7y' + 12y = 0, y(0) = -2, y'(0) = 2

14. y''' - 5y'' + 6y' = 0, y(0) = 2, y'(0) = 3, y''(0) = 4;

Задание №3. Найти общее решение дифференциального уравнения.

1.
$$y'' - 4y' + 8y = 0$$
. Omeem. $y = e^{2x} (C_1 \cos 2x + C_2 \sin 2x)$.

2.
$$y'' + 9y = 0$$
. Ombem. $y = C_1 \cos 3x + C_2 \sin 3x$.

3.
$$y'' + 2y' = 0$$
. Ombem. $y = C_1 + C_2 e^{-2x}$.

4.
$$y'' + 6y' + 13y = 0$$
. Ombem. $y = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x)$.

5.
$$y'' + 2y'' + 2y = 0$$
. Ombem. $y = e^{-x} (C_1 \cos x + C_2 \sin x)$.

6.
$$y'' + 25y = 0$$
. Omsem. $y = C_1 \cos 5x + C_2 \sin 5x$.

7.
$$y'' - 4y' = 0$$
. Omsem. $y = C_1 + C_2 e^{4x}$.

8.
$$y'' - 2y' + 10y = 0$$
. Omsem. $y = e^x (C_1 \cos 3x + C_2 \sin 3x)$.

9.
$$y'' - 2y' - 8y = 0$$
. Ombem. $y = C_1 e^{4x} + C_2 e^{-2x}$.

10.
$$y'' + 16y = 0$$
. Omeem. $y = C_1 \cos 4x + C_2 \sin 4x$.

Задание №4. Найти частное решение уравнения, удовлетворяющее заданным начальным условиям.

1.
$$y'' - 4y' + 20y = 0$$
, $y(0) = y'(0) = -1$. Ombem. $y = e^{2x} \left(-\cos 4x + \frac{1}{4}\sin 4x \right)$.

2.
$$y'' - 2y' + y = 0$$
, $y(0) = -2$, $y'(0) = 1$. Omsem. $y = e^x(3x - 2)$.

3.
$$y'' - 2y' + 5y = 0$$
, $y(0) = -2$, $y'(0) = 0$. Omeem. $y = e^x(-2\cos 2x + \sin 2x)$.

4.
$$y'' - 4y = 0$$
, $y(0) = y'(0) = 2$. Omsem. $y = \frac{1}{2}e^{-2x} + \frac{3}{2}e^{2x}$.

5.
$$y'' - 3y' + 2y = 0$$
, $y(0) = -1$, $y'(0) = 2$. Ombem. $y = 3e^{2x} - 4e^x$.

6.
$$y'' + 2y' = 0$$
, $y(0) = -1$, $y'(0) = 2$. Omsem. $y = -e^{-2x}$.

7.
$$y'' - 7y' + 12y = 0$$
, $y(0) = 0$, $y'(0) = 2$. Ombem. $y = 2e^{4x} - 2e^{3x}$.

8.
$$4y'' + 3y' - y = 0$$
, $y(0) = 2$, $y'(0) = 4$. *Omsem*. $y = \frac{24}{5}e^{\frac{x}{4}} - \frac{14}{5}e^{-x}$.
9. $y'' + 4y' + 5y = 0$, $y(0) = 4$, $y'(0) = 0$. *Omsem*. $y = e^{-2x} \left(4\cos x + 8\sin x \right)$.
10. $4y'' - 4y' + y = 0$, $y(0) = 1$, $y'(0) = 2$. *Omsem*. $y = e^{\frac{x}{2}} \left(1 + \frac{3}{2}x \right)$.

Линейные неоднородные дифференциальные уравнения порядка *n* с постоянными коэффициентами

Определение 1. <u>Линейное неоднородное дифференциальное уравнение</u> n-го порядка с постоянными коэффициентами имеет вид: $y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y' + a_n y = f(x)$, где $a_i \in R, i = 1, n, f(x)$ — непрерывная функция.

Теорема. Общее решение линейного неоднородного дифференциального уравнения $y^{(n)} + p_1(x)y^{(n-1)} + ... + p_n(x)y = f(x)$ в некоторой области есть сумма частного его решения и общего решения соответствующего линейного однородного дифференциального уравнения.

Таким образом, в соответствии с доказанной теоремой, для решения линейного неоднородного дифференциального уравнения необходимо найти общее решение соответствующего однородного уравнения и каким-то образом отыскать одно частное решение неоднородного уравнения. Обычно оно находится подбором. Рассмотрим два основных метода решения линейных неоднородных дифференциальных уравнений \mathbb{I} -го порядка с постоянными коэффициентами.

<u>Метод Лагранжа.</u> Лагранж разработал общий метод решения линейных неоднородных дифференциальных уравнений. Метод применим, если известно общее решение однородного уравнения, соответствующего неоднородному уравнению. Этот метод называется <u>методом вариации произвольных постоянных</u> или методом Лагранжа.

Пусть $y = c_1 y_1 + c_2 y_2 + ... + c_n y_n$ — общее решение однородного уравнения

$$y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y^1 + a_n y = 0$$
,

соответствующего неоднородному уравнению $y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y' + a_n y = f(x)$, где $a_i \in R, i = 1, n, f(x)$ — непрерывная функция.

Метод Лагранжа состоит в том, что общее решение уравнения ищется в виде:

$$y = c_1(x)y_1 + c_2(x)y_2 + ... + c_n(x)y_n$$

где $c_1(x), c_2(x), ..., c_n(x)$ – неизвестные функции. Эти функции определяются из системы:

$$\begin{cases} c_1'(x)y_1 + c_2'(x)y_2 + \dots + c_n'(x)y_n = 0 \\ c_1'(x)y_1' + c_2'(x)y_2' + \dots + c_n'(x)y_n' = 0 \\ \dots \\ c_1'(x)y_1^{(n-1)} + c_2'(x)y_2^{(n-1)} + \dots + c_n'(x)y_n^{(n-1)} = f(x) \end{cases}$$

Например для уравнения второго порядка $y'' + p_1 y' + p_2 y = f(x)$ данная система имеет вид:

$$\begin{cases} c_1^{1}(x)y_1 + c_2^{1}(x)y_2 = 0 \\ c_1^{1}(x)y_1^{1} + c_2^{1}(x)y_2^{1} = f(x) \end{cases}$$

<u>Суть метода Лагранжа</u> для решения уравнения y'' + py' + qy = f(x) состоит в следующем:

1) Находим общее решение соответствующего однородного уравнения y''+py'+qy=0 и записываем его в виде: $y=c_1y_1+c_2y_2$, где c_1 и c_2 произвольные постоянные.

2) Для нахождения общего решения неоднородного уравнения y'' + py' + qy = f(x) записываем его в виде

$$y = c_1(x)y_1 + c_2(x)y_2$$

где $c_1(x)$ и $c_2(x)$ — неизвестные функции, они должны быть такими, чтобы удовлетворялось неоднородное уравнение.

3) Находим выражения для *производных* функций $c_1(x)$ и $c_2(x)$. Для этого составляем систему уравнений:

$$\begin{cases} c_1'(x)y_1 + c_2'(x)y_2 = 0 \\ c_1'(x)y_1' - c_2'(x)y_2' = f(x) \end{cases}$$

4) Найденные из этой системы производные $c_1'(x)$ и $c_2'(x)$ интегрируются и выражения $c_1(x)$ и $c_2(x)$ подставляются в общее решение со своими произвольными постоянными c_1 и c_2 , полученными при интегрировании.

Для реализации решения дифференциального уравнения $y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = f(x)$, используя метод Лагранжа, необходимо сделать следующее:

- 1. Записать соответствующее однородное дифференциальное уравнение.
- 2. Найти фундаментальную систему частных решений: $y_1 = y_1(x)$, $y_2 = y_2(x)$, ..., $y_n = y_n(x)$, соответствующего однородного дифференциального уравнения.
- 3. Найти общее решение однородного уравнения в виде $y = C_1 y_1 + C_2 y_2 + ... + C_n y_n$, где C_1 , C_2 , ..., C_n константы.
- 4. Решение заданного неоднородного дифференциального уравнения искать в виде $y = C_1 y_1 + C_2 y_2 + ... + C_n y_n$, но считать, что $C_1 = C_1(x)$, $C_2 = C_2(x)$, ..., $C_n = C_n(x)$ функциональные коэффициенты, которые надо найти.
- 5. Для нахождения коэффициентов $C_k(k=\overline{1,n})$ решения уравнения $y=C_1y_1+C_2y_2+...+C_ny_n$, необходимо записать систему уравнений:

$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) + \ldots + C_n'(x)y_n(x) = 0, \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) + \ldots + C_n'(x)y_n'(x) = 0, \\ \ldots \\ C_1'(x)y_1^{(n-2)}(x) + C_2'(x)y_2^{(n-2)}(x) + \ldots + C_n'(x)y_n^{(n-2)}(x) = 0, \\ C_1'(x)y_1^{(n-1)}(x) + C_2'(x)y_2^{(n-1)}(x) + \ldots + C_n'(x)y_n^{(n-1)}(x) = f(x). \end{cases}$$

- 6. Решить систему относительно $C_1',...,C_n'$ и получить $C_1'(x)=\varphi_1(x),...,C_n'(x)=\varphi_n(x)$.
- 7. Проинтегрировать полученные равенства для $C_k'(x)$, $k = \overline{1,n}$ и найти $C_1(x) = \int \varphi_1(x) dx + C_1$, ..., $C_n(x) = \int \varphi_n(x) dx + C_n$, где $C_1,...,C_n$ произвольные постоянные.
- 8. Подставить полученные выражения вместо $C_1, C_2, ..., C_n$ в записанное решение $y = C_1 y_1 + C_2 y_2 + ... + C_n y_n$. Это и есть общее решение заданного дифференциального уравнения $y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = f(x)$.

Пример 1. Найти общее решение уравнения $y'' - y = \frac{2e^x}{e^x - 1}$.

Решение.

Данное уравнение — линейное однородное дифференциальное уравнение с постоянными коэффициентами.

1) Находим общее решение соответствующего однородного уравнения y'' - y = 0:

$$\kappa^{2} - 1 = 0 \Rightarrow \kappa = \pm 1 \Rightarrow y = c_{1}e^{x} + c_{2}e^{-x} \Rightarrow y_{1} = e^{x} \Rightarrow y_{1}' = e^{x}, y_{2}' = -e^{-x}$$

- 2) Записываем общее решение неоднородного уравнения: $y = c_1(x)e^x + c_2(x)e^{-x}$.
- 3) Для нахождения производных функций $c_1(x)$ и $c_2(x)$ составляем систему:

$$\begin{cases} c_1'(x)e^x + c_2'(x)e^{-x} = 0 \\ c_1'(x)e^x - c_2'(x)e^{-x} = \frac{2e^x}{e^x - 1} \end{cases} \Rightarrow \begin{cases} c_1'(x)e^x = -c_2'(x)e^{-x} \\ c_1'(x)e^x - c_2'(x)e^{-x} = \frac{2e^x}{e^x - 1} \end{cases} \Rightarrow \begin{cases} c_1'(x)e^x = -c_2'(x)e^{-x} \\ -c_2'(x)e^{-x} - c_2'(x)e^{-x} = \frac{2e^x}{e^x - 1} \end{cases}$$

Во втором уравнении системы получим: $-c_2'(x)e^{-x} - c_2'(x)e^{-x} = \frac{2e^x}{e^x - 1} \Rightarrow c_2'(x) = -\frac{e^{2x}}{e^x - 1}, c_1'(x) = \frac{1}{e^x - 1}$

4) Интегрируя найденные $c_1'(x)$ и $c_2'(x)$, получим:

$$c_1(x) = \int \frac{dx}{e^x - 1} = \int \frac{1 + e^x - e^x}{e^x - 1} dx = -\int \frac{(e^x - 1) - e^x}{e^x - 1} dx = -\int dx + \int \frac{e^x dx}{e^x - 1} = -x + \ln(e^x - 1) + c_1.$$

$$c_{2}(x) = -\int \frac{e^{2x}dx}{e^{x} - 1} = \begin{vmatrix} e^{x} - 1 = t \\ e^{x}dx = dt \\ e^{x} = t + 1 \end{vmatrix} = -\int \frac{(t+1)}{t}dt = -(t+\ln t) = -(e^{x} - 1 + \ln|e^{x} - 1|) + c_{2} = (1 - e^{x} - \ln|e^{x} - 1|) + c_{2}$$

Общее решение данного уравнения имеет вид: $y = e^x(c_1 - x + ln|e^x - 1) + e^{-x}(1 - e^x - ln|e^x - 1| + c_2)$.

<u>Метод неопределенных коэффициентов (метод Эйлера)</u> Рассмотрим неоднородное дифференциальное уравнение n-го порядка с постоянными коэффициентами $y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = f(x)$, где $a_i \in R$, i = 1, n, f(x) — непрерывная функция.

Общее решение линейного неоднородного дифференциального уравнения n -го порядка представляется в виде суммы: $y = y + y^*$, где y — общее решение соответствующего линейного однородного дифференциального уравнения n -го порядка

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = 0$$

с постоянными коэффициентами, а y^* — частное решение линейного неоднородного дифференциального уравнения n -го порядка. Рассмотрим метод, который применим, если правая часть уравнения

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$$

в общем случае имеет вид: $f(x) = P(x)e^{\alpha x}\cos(\beta x) + Q(x)e^{\alpha x}\sin(\beta x)$, где P(x) и Q(x) — одночлены или многочлены (в общем случае различных степеней от X). Пусть при этом R — наивысшая степень одного из многочленов P(x) или Q(x).

Алгоритм построения частного решения неоднородного линейного дифференциального уравнения $a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + ... + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$ следующий:

1. Находим корни характеристического уравнения:

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = 0$$

2. Сравниваем конкретно заданную правую часть уравнения

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$$

с общим выражением $f(x) = P(x)e^{\alpha x}\cos(\beta x) + Q(x)e^{\alpha x}\sin(\beta x)$, при котором применим метод подбора, и находим из этого сопоставления три числа: n, α, β . И получаем «контрольное комплексное число» $\alpha \pm \beta i$.

- 3. Сравниваем «контрольное комплексное число» с корнями характеристического уравнения и находим число m корней, совпавших с ними (если таких корней нет, то m = 0).
- 4. Принимаем частное решение неоднородного уравнения

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$$

в виде: $y^* = x^m (R_n(x)e^{\alpha x}\cos(\beta x) + T_n(x)e^{\alpha x}\sin(\beta x))$, где $R_n(x)$, $T_n(x)$ — многочлены одной и той же \mathbb{N} -ой степени, но с неопределенными и различными коэффициентами.

5. Записываем решение $y^* = x^m \left(R_n(x) e^{\alpha x} \cos(\beta x) + T_n(x) e^{\alpha x} \sin(\beta x) \right)$ в развернутой форме в зависимости от n. Так,

если
$$n=0$$
 , то $y^*=x^m \left(A\cdot e^{\alpha x}\cos(\beta x)+B\cdot e^{\alpha x}\sin(\beta x)\right)$ если $n=1$, то $y^*=x^m \left((Ax+B)\cdot e^{\alpha x}\cos(\beta x)+(Cx+D)\cdot e^{\alpha x}\sin(\beta x)\right)$ если $n=2$, то $y^*=x^m \left((Ax^2+Bx+C)\cdot e^{\alpha x}\cos(\beta x)+(Dx^2+Kx+L)\cdot e^{\alpha x}\sin(\beta x)\right)$ и т.д.

6. Подставляем y^* в исходное уравнение

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$$

и получаем систему алгебраических уравнений относительно неопределенных коэффициентов A,B,C,\dots

Замечание 1. Если правая часть уравнения

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \dots + a_{n-2} y''(x) + a_{n-1} y'(x) + a_n y(x) = f(x)$$

имеет более простой вид, например, содержит произведение степенной функции на показательную $f(x) = P_n(x) \cdot e^{\alpha x}$ (в частности, возможны случаи n = 0 или (и) $\alpha = 0$ или содержит только линейную комбинацию тригонометрических функций вида $f(x) = M \cdot \cos(\beta x) + N \cdot \sin(\beta x)$, где M и N — постоянные числа, то частные решения неоднородного уравнения следует искать в форме, указанной в таблице 2 (в нее для полноты включен также общий случай).

Пример 1. Найти общее решение уравнения $y^{V} + y^{III} = x^{2} - 1$.

Решение.

 $y^{V} + y''' = x^{2} - 1$ — линейное неоднородное дифференциальное уравнение (ЛНДУ) n -го порядка с постоянными коэффициентами, общее решение которого будем искать в виде суммы: $y = y + y^{*}$.

1) Находим корни характеристического уравнения: $y: y^{V} + y''' = 0$, $\kappa^{5} + \kappa^{3} = 0$, $\kappa^{3}(\kappa^{2} + 1) = 0$,

2) Находим частное решение неоднородного уравнения:

$$y^*: f(x) = x^2 - 1, \Rightarrow y^* = x^r e^{\alpha x} u_n(x), \alpha = 0, n = 2, r = 3,$$

$$0|y^* = x^3 (Ax^2 + Bx + c) = Ax^5 + Bx^4 + Cx^3$$

$$0|(y^*)' = 5Ax^4 + 4Bx^3 + 3Cx^2$$

$$0|(y^*)'' = 20Ax^3 + 12Bx^2 + 6Cx$$

$$1|(y^*)''' = 60Ax^2 + 24Bx + 6c$$

$$0|(y^*)^{IV} = 120Ax + 24B$$

$$1|(y^*)^{V} = 120A$$

Подставляя в данное уравнение и приравнивая коэффициенты при одинаковых степенях слева и справа, получим:

$$120A + 60Ax^2 + 24Bx + 6c = x^2 - 1.$$

Таблица 2. Структура частного решения линейного неоднородного дифференциального уравнения n -го порядка с постоянными коэффициентами $a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + ... + a_{n-2} y''(x) + a_n y'(x) + a_n y(x) = f(x)$, в зависимости от вида правой части

№	Вид правой части дифференци- ального уравнения	Корни характеристического уравнения	Вид частного решения
1.	$f(x) = P_n(x)$, где $P_n(x)$ — многочлен n -ой степени от x .	Число $\alpha=0$ не совпадает ни с одним из корней характеристического уравнения $\alpha \neq k_j$ ($j=1,2,n$) Число $\alpha=0$ является корнем характеристического уравнения кратности m .	$y^* = Q_n(x)$, где $Q_n(x)$ — многочлен n -ой степени с неопределенными коэффициентами $y^* = x^m Q_n(x)$ где $Q_n(x)$ — многочлен n -ой степени с неопределенными коэффициентами
2.	$f(x) = P_n(x) \cdot e^{\alpha x}$, где $P_n(x)$ —многочлен n -ой степени от x .	Число α не является корнем характеристического уравнения $\alpha \neq k_j$ ($j=1,2,n$). Число $\alpha=k_j$ является корнем характеристического урав-	$y^* = Q_n(x) \cdot e^{\alpha x}$, где $Q_n(x)$ — многочлен n -ой степени с неопределенными коэффициентами $y^* = x^m Q_n(x) e^{\alpha x}$ где $Q_n(x)$ — многочлен n -ой степени с неопределенными коэффициентами
3.	$f(x) = M \cos(\beta x) + N \sin(\beta x)$, где M, N — заданные постоянные числа	нения кратности m . Мнимое число βi не совпадает ни с одним из корней характеристического уравнения $\beta i \neq k_j$ ($j=1,2,n$) Мнимое число βi совпадает с корнем характеристического уравнения $\beta i = k_j (k_j$ — корень кратности m	$y^* = A \cdot \cos(\beta x) + B \cdot \sin(\beta x)$, где A, B — неопределенные коэффициенты $y^* = x^m \left(A \cdot \cos(\beta x) + B \cdot \sin(\beta x) \right)$, где A, B — неопределенные коэффициенты
4.	$f(x) = P_n(x)\cos(\beta x) + Q_s(x)$ где $P_n(x), Q_s(x)$ —многочлены n, s -ой степени от X .	Числа $\pm \beta i$ не являются корнями характеристического \mathbf{n}_{i}	$y^* = P_t(x)\cos(\beta x) + Q_t(x)\sin(\beta x)$ где $P_t(x), Q_t(x)$ — многочлены t -ой степени с неопределенными коэффициентами $y^* = x^m \left(P_t(x)\cos(\beta x) + Q_t(x)\sin(\beta x)\right)$ где $P_t(x), Q_t(x)$ — многочлены t -ой степени с неопределенными коэффициентами
5.	$f(x) = P(x)e^{ax}\cos\beta x + Q(x)e^{ax}$, где $P(x),Q(x)$ — многочлены в общем случае различных степеней	Комплексные числа $\alpha \pm \beta i$ не совпадает ни с одним из корней характеристического уравнения $\mathbf{Si}\alpha \not\!$	$y^* = R_n(x)e^{\alpha x}\cos(\beta x) + T_n(x)e^{\alpha x}\sin(\beta x)$, где многочлены n -ой степени одного из многочленов $P(x)$ или $Q(x)$, но с неопределенными и различными коэффициентами. $y^* = x^m \left(R_n(x)e^{\alpha x}\cos(\beta x) + T_n(x)e^{\alpha x}\sin(\beta x)\right)$, где многочлены n -ой степени одного из многочленов $P(x)$ или $Q(x)$, но с неопределенными и различными коэффициентами.

Замечание 2. Правая часть уравнения $a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + ... + a_{n-2} y''(x) + a_n y(x) = f(x)$ может содержать только функцию вида $f(x) = M \cos(\beta x)$ или $f(x) = N \sin(\beta x)$. Тогда частное решение методом подбора следует искать в полной форме, содержащей и $\cos(\beta x)$ и $\sin(\beta x)$ (см. п.3 таблицы).

$$x^{2} | 60A = 1$$

 $x | 24B = 0$ $\Rightarrow A = \frac{1}{60}; B = 0; C = -\frac{1}{2}; y^{*} = \frac{1}{2}x^{3}(\frac{1}{30}x^{2} - 1)$
 $x^{0} | 120A + 6C = -1,$

3) Составляем общее решение уравнения:

$$y = \overline{y} + y^*$$
. $y = c_1 + c_2 x + c_3 x^2 + c_4 \cos x + c_5 \sin x + \frac{1}{2} x^3 (\frac{1}{30} x^2 - 1)$.

Ответ: $y = c_1 + c_2 x + c_3 x^2 + c_4 \cos x + c_5 \sin x + \frac{1}{2} x^3 (\frac{1}{30} x^2 - 1)$ — общее решение, где c_1, c_2, c_3, c_4, c_5 — произвольные постоянные.

Пример 2. Решить уравнение $y'' + y = x \cdot e^x$.

Решение.

 $y'' + y = x \cdot e^x$ — линейное неоднородное дифференциальное уравнение (ЛНДУ) n -го порядка с постоянными коэффициентами, следовательно общее решение будем искать в виде суммы: $y = y + y^*$.

- 1) Находим корни характеристического уравнения: $y: y'' + y = 0 \Rightarrow \kappa^2 + 1 = 0 \Rightarrow k_1 = i, k_2 = -i$. Поэтому общее решение соответствующего однородного уравнения имеет вид $y = C_1 \cos x + C_2 \sin x$.
- 2) Частное решение исходного уравнения будем искать в виде

 $y^*: f(x) = xe^x, y^* = x^r e^{\alpha x} U_n(x), \alpha = 1, \beta = 0, n = 1, r = 0.$ $y^* = (Ax + B)e^x,$ подставляя в данное уравнение, получим:

$$1|y^* = (Ax + B)e^x$$

$$0|(y^*)' = Ae^x + (Ax + B)e^x$$

$$1|(y^*)'' = Ae^x + Ae^x + (Ax + B)e^x$$

$$\Rightarrow (2A + 2Ax + 2B) \cdot e^x \equiv x \cdot e^x$$

$$\begin{cases} 2A+2B=0 \\ 2A=1 \end{cases} \Rightarrow A = \frac{1}{2}, B = -\frac{1}{2} \Rightarrow y^* = \frac{1}{2}(x-1)e^x.$$

Следовательно, общее решение исходного уравнения имеет вид:

$$y = C_1 \cos x + C_2 \sin x + \left(\frac{1}{2}x - \frac{1}{2}\right)e^x.$$

Ответ: $y = c_1 \cos x + c_2 \sin x + \left(\frac{1}{2}x - \frac{1}{2}\right)e^x$ — общее решение, где c_1, c_2 — произвольные постоянные.

Пример 3. Найти общее решение уравнения $y^{IV} + 5y'' + 4y = 3\sin x$.

Решение.

 $y'' + 5y'' + 4y = 3\sin x$ — линейное неоднородное дифференциального уравнения (ЛНДУ) n -го порядка с постоянными коэффициентами, следовательно общее решение будем искать в виде суммы: $y = y + y^*$.

1) Находим корни характеристического уравнения: $y: y'' + 5y'' + 4y = 0 \Rightarrow \kappa^4 + 5\kappa^2 + 4 = 0$ Пусть $\kappa^2 = t \Rightarrow t^2 + 5t + 4 = 0, \Rightarrow t_1 = -4, t_2 = -1$. Тогда:

$$\begin{bmatrix} k^2 = -4, \\ k^2 = -1 \end{bmatrix} \Rightarrow \begin{bmatrix} k_{1,2} = \pm 2i \\ k_{3,4} = \pm i \end{bmatrix} \Rightarrow y = c_1 \cos 2x + c_2 \sin 2x + c_3 \cos x + c_4 \sin x.$$

2) Находим частное решение неоднородного уравнения :

$$y^*: f(x) = 3\sin x$$
. $y^* = x^r e^{\alpha x} (Us(x)\cos \beta x + V_s(x\sin \beta x)$, где $\alpha = 0, \beta = 1; \alpha \pm \beta i = \pm i; n = m = 0 \Rightarrow s = 0, r = 1$, тогда $4 \mid y^* = x(A\sin x + B\cos x)$.

Находим A и B: $O\left(y^*\right)' = A\sin x + B\cos x + x(A\cos x - B\sin x)$

$$5|(y^*)'' = A\cos x - B\sin x + A\cos x - B\sin x + x(-A\sin x - B\cos x = 2A\cos x - 2B\sin x + x(-A\sin x - B\cos x))$$

$$0|(y^*)^m = -2A\sin x - 2B\cos x - A\sin x - B\cos x + x(-A\cos x + B\sin x) = -3A\sin x - 3B\cos x + x(B\sin x - A\cos x)$$

 $1|(y^*)^m = -3A\cos x + 3B\sin x + B\sin x - A\cos x + x(B\cos x + A\sin x) = -4A\cos x + 4B\sin x + x(B\cos x + A\sin x).$
Подставляя в данное уравнение, получим:

 $-4A\cos x + 4B\sin x + x(B\cos x + A\sin x) + 5\cdot (2A\cos x - 2B\sin x + x(-A\sin x - B\cos x)) + 4x(A\sin x + B\cos x) = 3\sin x$

$$6A\cos\alpha - 6B\sin x = 3\sin x \Rightarrow \begin{cases} 6A = 0 \\ -6B = 3 \end{cases} \Rightarrow A = 0, B = -\frac{1}{2}, \Rightarrow y^* = -\frac{1}{2}x\cos x.$$

3) Составляем общее решение уравнения:

$$y = y + y^* = c_1 \cos 2x + c_2 \sin 2x + c_3 \cos x + c_4 \sin x - \frac{1}{2} x \cos x$$

Ответ: $y = c_1 \cos 2x + c_2 \sin 2x + c_3 \cos x + c_4 \sin x - \frac{1}{2} x \cos x$ — общее решение, где c_1, c_2, c_3, c_4 — про-извольные постоянные.

Пример 4. Решить уравнение $y'' + y' - 2y = \cos x - 3\sin x$.

Решение

 $y'' + y' - 2y = \cos x - 3\sin x$ — линейное неоднородное дифференциального уравнения (ЛНДУ) n -го порядка с постоянными коэффициентами, следовательно общее решение будем искать в виде суммы: $y = y + y^*$.

- 1) Находим корни характеристического уравнения: $y'' + y' 2y = 0 \Rightarrow k^2 + k 2 = 0 \Rightarrow k_1 = 1, k_2 = -2$. Поэтому общее решение соответствующего однородного уравнения имеет вид $y = C_1 e^x + C_2 e^{-2x}$.
- 2) Частное решение исходного уравнения будем искать в виде $y^* = A\cos x + B\sin x$, поскольку: 1) $\alpha = 0, \beta = 1, \quad \alpha \pm \beta_i = \pm i$ не являются корнями характеристического уравнения, следовательно, r = 0; 2) m = n = 0, следовательно, l = 0. Получаем $P_o(x) = A$, $Q_o(x) = B$.

Находим A и B: $y_*' = -A\sin x + B\cos x$, $y_*'' = -A\cos x - B\sin x$. Следовательно, получаем $-A\cos x - B\sin x - A\sin x + B\cos x - 2A\sin x - 2B\cos x \equiv \cos x - 3\sin x$.

Группируя неизвестные коэффициенты при $\sin x$ и $\cos x$ получаем $(B-3A)\cos x + (-3B-A)\sin x \equiv \cos x - 3\sin x$. Сравниваем коэффициенты в левой и правой части тождества при $\begin{cases} B-3A=1 \\ -3B-A=-3 \end{cases} \Rightarrow A=0, \ B=1. \ \ \text{Получили} \ \ y^*=\sin x \ .$

3) Составляем общее решение уравнения: $y = y + y^* = C_1 e^x + C_2 e^{-2x} + \sin x$.

Ответ: $y = C_1 e^x + C_2 e^{-2x} + \sin x$ — общее решение, где c_1, c_2 — произвольные постоянные.

Пример 5. Найти частное решение уравнения $y'' - 3y' = xe^{-x}$, удовлетворяющее начальным условиям: y(0) = 1, y'(0).

Решение.

 $y'' - 2y' = xe^{-x}$ — линейное неоднородное дифференциальное уравнение (ЛНДУ) n -го порядка с постоянными коэффициентами, следовательно общее решение будем искать в виде суммы: $y = y + y^*$.

1) Находим корни характеристического уравнения:

$$y'' - 2y' = 0 \Rightarrow \kappa^2 - 2\kappa = 0 \Rightarrow \kappa(\kappa - 2) = 0 \Rightarrow \kappa_1 = 0, \kappa_2 = 2 \Rightarrow y = c_1 + c_2 e^{2\kappa}$$

2) Находим частное решение неоднородного уравнения :

 $y^*: f(x) = xe^{-x}, y^* = x^r e^{\alpha x} U_n(x), \alpha = -1, n = 1, r = 0.$ $y^* = (Ax + B)e^{-x},$ подставляя в данное уравнение, находим A и B:

$$0 | y^* = (Ax + B)e^{-x}$$

$$-2|(y^*)' = Ae^{-x} - (Ax + B)e^{-x}$$

$$1 |(y^*)'' = -Ae^{-x} - Ae^{-x} + (Ax + B)e^{-x}$$

$$\Rightarrow (-2A + Ax + B - 2A + 2Ax + 2B)e^{-x} \equiv xe^{-x}$$

$$(-4A+3B+3Ax)e^{-x} \equiv xe^{-x}$$

$$3A=1$$

$$-4A+3B=0$$
 $\Rightarrow A=\frac{1}{3}, B=\frac{4}{9} \Rightarrow y^* = \frac{1}{9}(3x+4)e^{-x}.$

- 3) Составляем общее решение уравнения: $y = \overline{y} + y^*$, $y = c_1 + c_2 e^{2x} + \frac{1}{9} (3x + 4) e^{-x}$.
- 4) Находим частное решение данного уравнения, удовлетворяющее начальным условиям y(0) = 1, y'(0) = 0:

$$y = c_1 + c_2 e^{2x} + \frac{1}{9} (3x + 4)e^{-x},$$

$$y' = 2c_2 e^{2x} + \frac{1}{3} e^{-x} - \frac{1}{9} (3x + 4)e^{-x}.$$

Подставляя начальные условия y(0) = 1, y'(0) = 0, будем иметь:

$$\begin{cases} 1 = c_1 + c_2 + \frac{4}{9} \\ 0 = 2c_2 + \frac{1}{3} - \frac{4}{9} \end{cases} \Rightarrow \begin{cases} c_1 = \frac{1}{2}, \\ c_2 = \frac{1}{18}, \end{cases} \Rightarrow y = \frac{1}{2} + \frac{1}{18}e^{2x} + \left(\frac{1}{3}x + \frac{4}{9}\right)e^{-x}.$$

Ответ: $y = \frac{1}{2} + \frac{1}{18}e^{2x} + \left(\frac{1}{3}x + \frac{4}{9}\right)e^{-x}$ — частное решение.

Пример 6. Найти частное решение уравнения $y'' + y = 3\sin x$, удовлетворяющее начальным условиям: y(0) = y'(0) = 0.

Решение.

 $y'' + y = 3\sin x$ — линейное неоднородное дифференциальное уравнение (ЛНДУ) n -го порядка с постоянными коэффициентами, следовательно общее решение будем искать в виде суммы: $y = y + y^*$.

1) Находим корни характеристического уравнения:
$$y'' + y' = 0 \Rightarrow \kappa^2 + 1 = 0 \Rightarrow \begin{bmatrix} \kappa_1 = i \\ \kappa_2 = -i \end{bmatrix}$$

$$\overline{y} = C_1 \cos x + C_2 \sin x$$

2) Частное решение y^* ищем в виде $y^* = x(A\cos x + B\sin x)$. Поскольку по правой части $f(x) = 3\sin x$, $\alpha = 0$, $\beta = 1$, $\alpha \pm \beta_i = \pm i$ являются корнями характеристического уравнения кратности 1 (r=1); m=n=l=0. Находим A и B:

$$(y^*)' = x(-A\sin x + B\cos x) + (A\cos x + B\sin x)$$

$$_{\mathbf{H}} \left(y^{*}\right)'' = \left(-A\sin x + B\cos x\right) + x\left(-A\cos x - B\sin x\right) + \left(-A\sin x + B\cos x\right).$$

в исходное уравнение и получаем: $y'' + y = -2A\sin x + 2B\cos x \equiv 3\sin x \Rightarrow$ -2A = 3, $2B = 0 \Rightarrow A = -\frac{3}{2}$, B = 0. Следовательно, $y^* = -\frac{3}{2}x\cos x$.

- 3) Составляем общее решение уравнения: $y = y + y^*$, $y = C_1 \cos x + C_2 \sin x \frac{3}{2}x \cos x$.
- 4) Находим частное решение данного уравнения, удовлетворяющее начальным условиям y(0) = 0, y'(0) = 0. Постоянные C_1 и C_2 найдем, используя начальные условия.

Имеем
$$y' = -C_1 \sin x + C_2 \cos x - \frac{3}{2} \cos x + \frac{3}{2} x \sin x$$
. Далее,

$$y(0) = C_1 \cos 0 + C_2 \sin 0 - \frac{3}{2} \cdot 0 \cdot \cos 0 = C_1,$$

$$y'(0) = -C_1 \sin 0 + C_2 \cos 0 - \frac{3}{2} \cdot \cos 0 + \frac{3}{2} \cdot 0 \cdot \sin 0 = C_2 - \frac{3}{2}$$

Получаем систему уравнений: $\begin{cases} C_1 = 0, \\ C_2 - \frac{3}{2} = 0. \end{cases} \Rightarrow C_1 = 0, \ C_2 = \frac{3}{2}.$ Таким образом, частное решение,

удовлетворяющее заданным условиям имеет вид $y = \frac{3}{2} \sin x - \frac{3}{2} x \cos x$.

Ответ: $y = \frac{3}{2}\sin x - \frac{3}{2}x\cos x$. — частное решение.

Задания для решения в аудитории

Задание №1. Найти общее решение дифференциальных уравнений:

1.
$$y'' - 4y' + 4y = e^{2x} \sin 2x$$

$$2. \ y'' - 6y' + 5y = 4e^x$$

3.
$$y'' - 3y' + 2y = e^x$$

4.
$$y'' - 2y' + y = e^{2x}$$

$$5. y'' + y = \cos x$$

$$6. y'' + y = x \sin x$$

7.
$$y'' + y' - 2y = 8\sin 2x$$

8.
$$y'' - 4y = 8x^3$$

9.
$$y'' + 3y' = 9x$$

10.
$$y'' + y' - 2y = 6x^2$$

$$11. y'' + 4y' = \sin x$$

12.
$$y'' + 2y' + 5y = -\sin 2x$$
.

13.
$$y'' + 2y' + 5y = -2\sin x$$
.

14.
$$y'' - 9y = e^{3x} \cos x$$

15.
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
.

16.
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
. 17. $y'' - 4y' + 4y = e^{2x} \sin 5x$.

17.
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$
.

$$19. \ y'' + 6y' + 13y = e^{-3x} \cos 5x. \qquad 20. \ y'' + 6y' + 13y = e^{-3x} \cos x. \qquad 21. \ y'' - 4y' + 4y = e^{2x} \sin 4x.$$

$$22. \ y'' - 4y' + 4y = -e^{2x} \sin 4x. \qquad 23. \ y'' + 6y' + 13y = e^{-3x} \cos 8x. \qquad 24. \ y'' + 2y' + 5y = -17 \sin 2x.$$

$$25. \ y'' + 2y' + 5y = -\cos x. \qquad 26. \ y'' + y = 2\cos 7x + 3\sin 7x. \qquad 27. \ y'' + y = 2\cos 5x + 3\sin 5x.$$

$$28. \ y'' + y = 2\cos 7x - 3\sin 7x. \qquad 29. \ y'' + y = 2\cos 4x + 3\sin 4x. \qquad 30. \ y'' + y = 2\cos 3x - 3\sin 3x.$$

$$31. \ y'' + 2y' + 5y = 10\cos x. \qquad 32. \ y'' + 2y' = 4e^{x} (\sin x + \cos x). \qquad 33. \ y'' + 2y' = -2e^{x} (\sin x + \cos x).$$

$$34. \ y'' + 2y' = e^{x} (\sin x + \cos x). \qquad 35. \ y'' + 2y' = 10e^{x} (\sin x + \cos x). \qquad 36. \ y'' + 2y' = 3e^{x} (\sin x + \cos x).$$

$$37. \ y'' - 4y' + 8y = e^{x} (5\sin x - 3\cos x). \qquad 38. \ y'' - 4y' + 8y = e^{x} (3\sin x + 5\cos x).$$

$$39. \ y'' - 4y' + 8y = e^{x} (2\sin x - \cos x). \qquad 40. \ y'' + 2y' = 6e^{x} (\sin x + \cos x).$$

$$40. \ y'' + 2y' = 6e^{x} (\sin x + \cos x).$$

$$40. \ y'' + 2y' = 6e^{x} (\sin x + \cos x).$$

$$40. \ y'' + 2y' = 6e^{x} (\sin x + \cos x).$$

$$40. \ y'' + 2y' + 4y = e^{-x} (\cos 2x + x\sin 2x).$$

43.
$$y''' + 4y'' + y' - 6y = e^x$$
.
44. $y'' - y = 2x + e^x$.
45. $y''' - y'' = x^2 + e^x + \sin x$
46. $y'' - 3y = e^{3x} + \cos x$

47.
$$y'' + 2y' + y = e^{-x}(\cos x + x)$$
 48. $y'' + y = 2\sin x \sin 2x$.

Задание №2. Найти частное решение уравнения, удовлетворяющее заданным начальным условиям.

1.
$$y'' - 2y' = 2e^x$$
, $y'(1) = 0$, $y(1) = -1$.

2.
$$y'' + 4y = x$$
, $y'(0) = \frac{\pi}{2}$, $y(0) = 1$

3.
$$y'' + 6y' + 9y = 10\sin x$$
, $y'(0) = 0.8$, $y(0) = -0.6$

4.
$$y''' - y' = -2x$$
, $y(0) = 0$, $y'(0) = y''(0) = 2$

5.
$$y'' - 2y' + 2y = 4e^x \cos x$$
, $y'(\pi) = e^{\pi}$, $y(\pi) = \pi e^{\pi}$

6.
$$y^{IV} - y = 8e^x$$
, $y(0) = -1$, $y'(0) = 0$, $y''(0) = 1$, $y'''(0) = 0$

7.
$$y'' - 3y' + 2y = e^{3x}(x^2 + x)$$
, $y'(0) = -2$, $y(0) = 1$

8.
$$y'' + 4y = 4(\sin 2x + \cos 2x)$$
, $y'(\pi) = y(\pi) = 2\pi$

9.
$$y'' + 9y = \text{ctg}3x$$
, $y\left(\frac{\pi}{6}\right) = 0$, $y'\left(\frac{\pi}{6}\right) = -\frac{8}{3}$

10.
$$y''' + 4y' = x^2$$
, $y(0) = 2$, $y'(0) = \frac{15}{8}$, $y''(0) = 4$.

11.
$$y'' - 4y' + 3y = e^{-5x}$$
, $y(0) = \frac{1}{48}$, $y'(0) = \frac{43}{48}$;

12.
$$y'' - 2y' = 4$$
, $y(0) = 2$, $y'(0) = 0$;

13.
$$y''' + y' = x$$
, $y(0) = 4$, $y'(0) = 3$, $y''(0) = -1$.

14.
$$y'' - y = x^2$$
, $y(0) = -2$, $y'(0) = 4$;

15.
$$y'' - 2y' + y = e^x \sin x$$
, $y(0) = 1$, $y'(0) = 2$;

16.
$$y'' + 9y = \cos 3x$$
, $y(0) = 1$, $y'(0) = 3$;

17.
$$y'' - y = xe^x + e^{2x}$$
, $y(0) = \frac{1}{4}$, $y'(0) = \frac{1}{2}$.

Задание №3. Решить уравнение методом Лагранжа:

1.
$$y'' - y = x$$
; $y'' + y = \frac{1}{\sin x}$ 2. $y'' + y = 2\sin x$ 3. $y'' + 3y' = x - 2$

4.
$$y'' - 7y' + 6y = \cos x$$

5.
$$y'' - 4y = 4x$$

6.
$$y'' - 2y' - 3y = e^{2x}$$

7.
$$y'' + 4y = \frac{1}{\cos 2x}$$

8.
$$y'' - y = \sqrt{x}$$

9.
$$y'' + 25y = \cos 5x$$

10.
$$y'' + 4y = tg 2x$$

11.
$$y'' - 4y' + 4y = \frac{e^{2x}}{x}$$
 12. $y''' + y' = \frac{\cos x}{\sin^2 x}$

12.
$$y''' + y' = \frac{\cos x}{\sin^2 x}$$

13.
$$y'' - 4y = \frac{1}{\cos^3 2x}$$
.

Задание №4. Найти общее решение методом Лагранжа:

1.
$$y'' - y = e^{2x} \sqrt{1 - e^{2x}}$$
;

2.
$$y'' - 6y' + 9y = \frac{9x^2 + 6x + 2}{x^2}$$
;

3.
$$y'' - y = \frac{4x^2 + 1}{x\sqrt{x}}$$
;

4.
$$y'' - 2y' + y = \frac{x^2 + 2x + 2}{x^3}$$
.

Задания для самостоятельного решения

Задание №5. Решить уравнения:

1.
$$y'' - 12y' + 40y = 2e^{6x}$$
. Omeem. $y = e^{6x} (C_1 \cos 2x + C_2 \sin 2x) + \frac{1}{2}e^{6x}$.

2.
$$y'' + 9y = 4\cos x - 8\sin x$$
. Ombem. $y = C_1\cos 3x + C_2\sin 3x + \frac{1}{2}\cos x - \sin x$.

3.
$$y'' - 5y' + 6y = 3\cos x + 19\sin x$$
. Ombem. $y = C_1 e^{3x} + C_2 e^{2x} + \frac{11}{5}\cos x + \frac{8}{5}\sin x$.

4.
$$6y'' - y' - y = 21e^{2x}$$
. Omsem. $y = C_1 e^{\frac{x}{2}} + C_2 e^{-\frac{x}{3}} + e^{2x}$.

5.
$$y'' + 8y' + 25y = 18e^{5x}$$
. Omsem. $y = e^{-4x} (C_1 \cos 3x + C_2 \sin 3x) + \frac{1}{5}e^{5x}$.

Задание №6. Найти частное решение ДУ, удовлетворяющего заданным начальным условиям.

1.
$$y'' + 4y' + 5y = 5x^2 - 32x + 5$$
, $y(0) = 4$, $y'(0) = 0$. Omeem. $y = e^{-2x}(2\sin x - 3\cos x) + x^2 - 8x + 7$.

2.
$$y'' - 4y' + 20y = 16x^2e^{2x}$$
, $y(0) = y'(0) = -1$. Omsem. $y = e^{2x} \left(-\frac{7}{8}\cos 4x + \frac{1}{4}\sin 4x \right) + e^{2x} \left(x^2 - \frac{1}{4} \right)$.

3.
$$4y'' - 4y' + y = -25\cos x$$
, $y(0) = 1$, $y'(0) = 2$ *Omeem*. $y = e^{\frac{x}{2}}(-2 - x) + 3\cos x + 4\sin x$.

4.
$$y'' + y' = 2x - 1$$
, $y(0) = -1$, $y'(0) = 0$. Omsem. $y = 2 - 3e^{-x} + x^2 - 3x$.

5.
$$y'' + 16y = 8\cos 4x$$
, $y(0) = 2$, $y'(0) = 4$. Omeem. $y = 2\cos 4x + \sin 4x(x+1)$.

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Определение 1. Система дифференциальных уравнений вида

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2, ..., y_n), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2, ..., y_n), \\ \frac{dy_n}{dx} = f_n(x, y_1, y_2, ..., y_n), \end{cases}$$

где $y_1, y_2, ..., y_n$ – искомые функции переменной x, называется <u>нормальной системой</u>. Совокупность n функций $y_1, y_2, ..., y_n$, удовлетворяющих каждому уравнению этой системы , называется решением этой системы. Задача Коши для данной системы состоит в нахождении решения этой системы, удовлетворяющего <u>начальным условиям</u>: $y_1(x_0) = y_1^0$, $y_2(x_0) = y_2^0$, ..., $y_n(x_0) = y_n^0$.

Основные методы интегрирования нормальных систем — $\underline{memod\ ucknoveehus}$ (позволяет свести нормальную систему из n линейный дифференциальных уравнений к одному линейному дифференциальному уравнению n-го порядка относительно одной неизвестной функции) и $\underline{memod\ uhme-2pupyemыx\ komбuhaquuu}$ (заключается в том, что посредством арифметических операций из уравнений системы получают легко интегрируемые уравнения относительно новой неизвестной функции).

Пример 1. Решить систему ДУ $\begin{cases} \frac{dy}{dx} = z^2 + \sin x, \\ \frac{dz}{dx} = \frac{y}{2z}; \end{cases}$, используя метод исключения.

Решение.

Дифференцируем первое уравнение системы по x: $\frac{d^2y}{dx^2} = 2z\frac{dz}{dx} + \cos x$. Подставив в полученное уравнение из второго уравнения системы выражение вместо $\frac{dz}{dx}$, имеем: $\frac{d^2y}{dx^2} = 2z\frac{y}{2z} + \cos x$ или $\frac{d^2y}{dx^2} - y = \cos x$. Уравнение $\frac{d^2y}{dx^2} - y = \cos x$ — линейное неоднородное дифференциальное уравнение 2-го порядка со специальной правой частью. Его соответствующее однородное уравнение: y'' - y = 0. Характеристическое уравнение последнего: $\lambda^2 - 1 = 0$, корни которого $\lambda_{1,2} = \pm 1$. Тогда общее решение однородного уравнения: $y = C_1 e^{-x} + C_2 e^x$. Найдем частное решение полученного неоднородного уравнения $\frac{d^2y}{dx^2} - y = \cos x$. в виде: $y^* = A\cos x + B\sin x$, где A, B — неопределенные коэффициенти.

Вычисляем производные: $y^{*'} = -A \sin x + B \cos x$, $y^{*''} = -A \cos x - B \sin x$. Подставляем их в уравнение $\frac{d^2y}{dx^2} - y = \cos x$, группируем относительно $\sin x$ и $\cos x$, приравниваем коэффициенты. Получаем систему $\begin{cases} -2A = 1, \\ -2B = 0, \end{cases}$ из которой находим $A = -\frac{1}{2}$, B = 0. Общее решение дифференциального уравнения 2-го порядка: $y = C_1 e^{-x} + C_2 e^x - \frac{\cos x}{2}$. Возвращаемся к первому уравнению заданной системы, из которого выражаем z^2 : $z^2 = \frac{dy}{dx} - \sin x$. Подставляя в это уравнение продифференцированное общее решение $y = C_1 e^{-x} + C_2 e^x - \frac{\cos x}{2}$. получим: $z^2 = C_2 e^x - C_1 e^{-x} - \frac{\sin x}{2}$. Функции $z^2 = C_2 e^x - C_1 e^{-x} - \frac{\sin x}{2}$. и $y = C_1 e^{-x} + C_2 e^x - \frac{\cos x}{2}$. составляют общее решение заданной системы.

Пример 2. Решить систему ДУ $\begin{cases} \frac{dx}{dt} = y - 1, \\ \frac{dy}{dt} = x - 1. \end{cases}$, используя метод интегрируемых комбинаций.

Решение.

Сложим оба уравнения системы, получим: $\frac{dx}{dt} + \frac{dy}{dt} = x + y - 2$ или (x + y)' = x + y - 2. Обозначим x + y = z, где z = z(t), получим: z' = z - 2 — уравнение с разделяющимися переменными. Запишем его

в виде:

$$\frac{dz}{dt} = z - 2 \implies \frac{dz}{z - 2} = dt.$$

Отсюда находим $z = C_1 e^t + 2$. Возвращаемся к старым переменным: $x + y = C_1 e^t + 2$. Выразим теперь y через x: $y = C_1 e^t + 2 - x$. Продифференцируем это равенство и подставим вместо $\frac{dy}{dt}$ во 2-е уравнение системы: $y' = C_1 e^t - x'$. После подстановки получим уравнение вида: $C_1 e^t - x' = x - 1 \Rightarrow x' + x = C_1 e^t + 1$ — это линейное уравнение 1-го порядка. Решим его методом Бернулли. Пусть x = uv, тогда $u'v + uv' + uv = C_1 e^t + 1$. Отсюда $v = e^{-t}$, $u = \frac{C_1}{2}e^{2t} + e^t + C_2$, тогда $\begin{cases} x(t) = \frac{C_1}{2}e^t + C_2 e^{-t} + 1, \\ y(t) = \frac{C_1}{2}e^t - C_2 e^{-t} + 1. \end{cases}$

Это и есть общее решение исходной системы.

Определение 2. Система дифференциальных уравнений вида

$$\begin{cases} \frac{dy_1}{dx} = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n, \\ \frac{dy_2}{dx} = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n, \\ \dots & \dots & \dots \\ \frac{dy_n}{dx} = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n, \end{cases}$$

где $a_{11},...,a_{nn}$ — числа, называется <u>системой линейных однородных дифференциальных уравнений с</u> <u>постоянными коэффициентами.</u> Решение данной системы ищут в виде: $y_1 = \gamma_1 e^{\lambda x}, \ y_2 = \gamma_2 e^{\lambda x}, ..., \ y_n = \gamma_n e^{\lambda x}, \ где \ \gamma_1, \gamma_2,..., \gamma_n, \lambda$ — постоянные, которые подбираются по системе. Подставляя эти функции в исходную систему, получаем систему n алгебраических уравнений с n

Чтобы система $\begin{cases} \frac{dy_1}{dx} = a_{11}y_1 + a_{12}y_2 + ... + a_{1n}y_n, \\ \frac{dy_2}{dx} = a_{21}y_1 + a_{22}y_2 + ... + a_{2n}y_n, \\ \frac{dy_n}{dx} = a_{n1}y_1 + a_{n2}y_2 + ... + a_{nn}y_n \end{cases}$ имела ненулевое решение, необходимо и достаточно,

чтобы ее определитель был равен нулю: $\begin{vmatrix} a_{11}-\lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22}-\lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn}-\lambda \end{vmatrix} = 0.$ Полученное уравнение

называется характеристическим уравнением системы. Оно имеет п корней, вид которых опреде-

ляет решение системы
$$\begin{cases} \dfrac{dy_1}{dx} = a_{11}y_1 + a_{12}y_2 + \ldots + a_{1n}y_n, \\ \dfrac{dy_2}{dx} = a_{21}y_1 + a_{22}y_2 + \ldots + a_{2n}y_n, \\ \dfrac{dy_n}{dx} = a_{n1}y_1 + a_{n2}y_2 + \ldots + a_{nn}y_n. \end{cases}$$

Правило нахождения общего решения системы линейных однородных уравнений дифференциальных уравнений с постоянными коэффициентами включает в себя реализацию следующих шагов:

1. Любому простому действительному корню λ_1 характеристического уравнения $\begin{vmatrix} a_{11}-\lambda & a_{12} & ... & a_{1n} \\ a_{21} & a_{22}-\lambda & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn}-\lambda \end{vmatrix} = 0$. соответствует решение $y_{11} = \gamma_{11}e^{\lambda_1x}$, $y_{21} = \gamma_{21}e^{\lambda_1x}$, ..., $y_{n1} = \gamma_{n1}e^{\lambda_1x}$, где ко-

эффициенты $\gamma_1, \gamma_2, \ldots, \gamma_n$ определяют из системы $\begin{cases} (a_{11}-\lambda)\gamma_1 + a_{12}\gamma_2 + \ldots + a_{1n}\gamma_n = 0, \\ a_{21}\gamma_1 + (a_{22}-\lambda)\gamma_2 + \ldots + a_{2n}\gamma_n = 0, \\ \ldots & \ldots \\ a_{n1}\gamma_1 + a_{n2}\gamma_2 + \ldots + (a_{nn}-\lambda)\gamma_n = 0. \end{cases}$ при найденном λ_1 ,

т.е.
$$\begin{cases} (a_{11}-\lambda_1)\gamma_1+a_{12}\gamma_2+...+a_{1n}\gamma_n=0,\\ a_{21}\gamma_1+(a_{22}-\lambda_1)\gamma_2+...+a_{2n}\gamma_n=0,\\ \dots&\dots\\ a_{n1}\gamma_1+a_{n2}\gamma_2+...+(a_{nn}-\lambda_1)\gamma_n=0. \end{cases}$$
 Тогда общее решение исходной системы записывают в виде:
$$y_1=C_1y_{11}+C_2y_{12}+...+C_ny_{1n},\\ y_2=C_1y_{21}+C_2y_{22}+...+C_ny_{2n}.$$

 $y_n = C_1 y_{n1} + C_2 y_{n2} + \ldots + C_n y_{nn}$, где C_1, C_2, \ldots, C_n – произвольные постоянные.

- 2. Каждому комплексному корню $\lambda_1 = a + bi$ и ему сопряженному $\lambda_2 = a bi$ соответствуют два линейно-независимых действительных решения. Для построения этих решений находим комплексное решение по формуле $y_1 = \gamma_1 e^{\lambda x}$, $y_2 = \gamma_2 e^{\lambda x}$, ..., $y_n = \gamma_n e^{\lambda x}$, для корня λ_1 , как и в случае 1, и выделяем действительную и мнимую части этого решения (корень λ_2 уже не рассматриваем, так как новых решений исходной системы он не дает).
- 3. Если $\lambda = \lambda_0$ корень кратности k, то решение, соответствующее этому корню, ищут в виде: $y_1 = P_{k-1}^{(1)}(x)e^{\lambda_0 x}, \ y_2 = P_{k-1}^{(2)}(x)e^{\lambda_0 x}, \dots, \ y_n = P_{k-1}^{(n)}(x)e^{\lambda_0 x}, \ \text{где} \ P_{k-1}^{(i)}(x)$ многочлен с неопределенными коэффициентами степени $k-1, \ i=\overline{1, n}$. Чтобы найти коэффициенты многочленов $P_{k-1}^{(i)}(x), \ i=\overline{1, n}$, подставля-

ем решение
$$y_1 = P_{k-1}^{(1)}(x)e^{\lambda_0 x}, \ y_2 = P_{k-1}^{(2)}(x)e^{\lambda_0 x}, \dots, \ y_n = P_{k-1}^{(n)}(x)e^{\lambda_0 x}$$
 в систему
$$\begin{cases} \frac{dy_1}{dx} = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n, \\ \frac{dy_2}{dx} = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n, \\ \frac{dy_n}{dx} = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n, \end{cases}$$

приравниваем коэффициенты подобных членов в левой и правой частях уравнений. Выразив все коэффициенты через любые k, полагаем по очереди один из них равным единице, а остальные равными нулю.

Пример 3. Решить систему однородных дифференциальных уравнений с постоянными коэффици-

ентами:
$$\begin{cases} \frac{dy_1}{dx} = y_1 + 8y_2, \\ \frac{dy_2}{dx} = y_1 - y_2; \end{cases}$$

Решение.

Составим характеристическое уравнение системы: $\begin{vmatrix} 1-\lambda & 8 \\ 1 & -1-\lambda \end{vmatrix} = 0$. Вычисляя определитель, полу-

чаем $\lambda^2 = 9$, откуда $\lambda_1 = -3$, $\lambda_2 = 3$ — простые действительные корни, тогда частные решения систе-

мы ищем в виде:
$$y_1(x) = \gamma_1 e^{\lambda x}$$
, $y_2(x) = \gamma_2 e^{\lambda x}$. При $\lambda_1 = -3$ система
$$\begin{cases} (a_{11} - \lambda_1) \gamma_1 + a_{12} \gamma_2 + ... + a_{1n} \gamma_n = 0, \\ a_{21} \gamma_1 + (a_{22} - \lambda_1) \gamma_2 + ... + a_{2n} \gamma_n = 0, \\ ... \\ a_{n1} \gamma_1 + a_{n2} \gamma_2 + ... + (a_{nn} - \lambda_1) \gamma_n = 0. \end{cases}$$
 имеет

вид:

$$\begin{cases} 4\gamma_1 + 8\gamma_2 = 0, \\ \gamma_1 + 2\gamma_2 = 0. \end{cases}$$

Эта система имеет бесконечное множество решений. Для определенности положим $\gamma_1 = -2$, тогда $\gamma_2 = 1$. Получаем частные решения: $y_{11}(x) = -2e^{-3x}$, $y_{21}(x) = e^{-3x}$.

$$\text{При } \lambda_2 = 3 \text{ система} \begin{cases} (a_{11} - \lambda_1)\gamma_1 + a_{12}\gamma_2 + \ldots + a_{1n}\gamma_n = 0, \\ a_{21}\gamma_1 + (a_{22} - \lambda_1)\gamma_2 + \ldots + a_{2n}\gamma_n = 0, \\ \ldots \\ a_{n1}\gamma_1 + a_{n2}\gamma_2 + \ldots + (a_{nn} - \lambda_1)\gamma_n = 0. \end{cases} \text{ принимает вид: } \begin{cases} -2\gamma_1 + 8\gamma_2 = 0, \\ \gamma_1 - 4\gamma_2 = 0. \end{cases}$$

Положим $\gamma_1 = 4$, тогда $\gamma_2 = 1$. Значит, корню $\lambda_2 = 3$ соответствуют частные решения: $y_{12}(x) = 4e^{3x}$, $y_{22}(x) = e^{3x}$. Таким образом получаем общее решение исходной системы:

$$\begin{cases} y_1(x) = -2C_1e^{-3x} + 4C_2e^{3x}, \\ y_2(x) = C_1e^{-3x} + C_2e^{3x}. \end{cases}$$

Ответ: $\begin{cases} y_1(x) = -2C_1e^{-3x} + 4C_2e^{3x}, & \text{— общее решение системы.} \\ y_2(x) = C_1e^{-3x} + C_2e^{3x}. \end{cases}$

Пример 4. Решить систему однородных дифференциальных уравнений с постоянными коэффици-

ентами:
$$\begin{cases} \frac{dx}{dt} = 3x + y, \\ \frac{dy}{dt} = 5y - x. \end{cases}$$

Решение.

Составим характеристическое уравнение системы: $\begin{vmatrix} 3-\gamma & 1 \\ -1 & 5-\lambda \end{vmatrix} = 0$, которое приобретает вид $(3-\lambda)(5-\lambda)+1=0$ или $\lambda^2-8\lambda+16=0$. Уравнение имеет двукратный корень $\lambda=4$. Ему соответствует решение вида: $x(t)=(At+B)e^{4t}$, $y(t)=(Ct+D)e^{4t}$. Продифференцируем функции x(t) и y(t) и подставим в исходную систему: $\begin{cases} e^{4t}(A+4At+4B)=e^{4t}(3At+3B+Ct+D), \\ e^{4t}(C+4Ct+4D)=e^{4t}(-At-B+5Ct+5D). \end{cases}$ Сокращаем на $e^{4t}\neq 0$ и группируем.

Получаем систему для коэффициентов: $\begin{cases} A-C=0,\\ A+B-D=0,\\ B+C-D=0. \end{cases}$

Так как кратность корня $\lambda=4$ равна двум (k=2), то выразим все коэффициенты последней системы через любые два, например, через A и B: $\begin{cases} C=A, \\ D=A+B. \end{cases}$ Полагая A=1, B=0, находим C=1, D=1. Полагая A=0, B=1, находим C=0, D=1. Получаем два линейно-независимых частных решения:

$$\begin{cases} x_1(t) = te^{4t}, \\ y_1(t) = (t+1)e^{4t} \end{cases} \quad \mathbf{H} \quad \begin{cases} x_2(t) = e^{4t}, \\ y_2(t) = e^{4t}. \end{cases}$$

Таким образом, получили общее решение исходной системы: $\begin{cases} x(t) = C_1 t e^{4t} + C_2 e^{4t}, \\ y(t) = C_1 (t+1) e^{4t} + C_2 e^{4t}. \end{cases}$

Ответ: $\begin{cases} x(t) = C_1 t e^{4t} + C_2 e^{4t}, \\ y(t) = C_1 (t+1) e^{4t} + C_2 e^{4t}. \end{cases}$ — общее решение системы.

Пример 5. Найти частное решение системы $\begin{cases} \frac{dx}{dt} = 2x - y, \\ \frac{dy}{dt} = x + 2y, \ x(0) = 1, \ y(0) = -1. \end{cases}$

Решение.

Составим характеристическое уравнение системы: $\begin{vmatrix} 2-\lambda & -1 \\ 1 & 2-\lambda \end{vmatrix} = 0$, т.е. $(2-\lambda)^2 + 1 = 0$. Оно имеет кор-

 $\text{ Hи } \lambda_1 = 2+i, \ \, \lambda_2 = 2-i. \ \text{Для корня } \lambda_1 = 2+i \ \, \text{составляем системy} \begin{cases} (a_{11}-\lambda_1)\gamma_1 + a_{12}\gamma_2 + ... + a_{1n}\gamma_n = 0, \\ a_{21}\gamma_1 + (a_{22}-\lambda_1)\gamma_2 + ... + a_{2n}\gamma_n = 0, \\ \\ a_{n1}\gamma_1 + a_{n2}\gamma_2 + ... + (a_{nn}-\lambda_1)\gamma_n = 0. \end{cases} :$

$$\begin{cases} -i\gamma_1 - \gamma_2 = 0 \\ \gamma_1 - i\gamma_2 = 0. \end{cases}$$

Полагаем $\gamma_1=1$, тогда $\gamma_2=-i$. Следовательно частное комплексное решение системы имеет вид: $x(t)=e^{(2+i)t}$, $y(t)=-ie^{(2+i)t}$. Выделяем в полученных функциях действительные (Re) и мнимые (Im) части. Поскольку $x(t)=e^{(2+i)t}=e^{2t}(\cos t+i\sin t)$, то $\exp x=e^{2t}\cos t$, $\lim x=e^{2t}\sin t$; $y(t)=-ie^{(2+i)t}=-ie^{2t}(\cos t+i\sin t)$, тогда $\exp x=e^{2t}\sin t$, $\lim x=e^{2t}\cos t$. Сопряженный корень x=20 новых линейно-независимых решений не дает, поэтому не рассматривается. Таким образом, общее решение исходной системы:

$$\begin{cases} x(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t, \\ y(t) = C_1 e^{2t} \sin t - C_2 e^{2t} \cos t, \\ C_1, C_2 = const. \end{cases}$$

Найдем частное решение для заданных начальных условий. Получаем: $\begin{cases} 1 = C_1 + 0, \\ -1 = 0 - C_2, \end{cases}$ откуда находим $\tilde{N}_1 = 1$, $\tilde{N}_2 = 1$. Получили искомое частное решение системы: $\begin{cases} x(t) = e^{2t}(\cos t + \sin t), \\ y(t) = e^{2t}(\sin t - \cos t). \end{cases}$

Ответ: $\begin{cases} x(t) = e^{2t}(\cos t + \sin t), & \text{— частное решение системы.} \\ y(t) = e^{2t}(\sin t - \cos t). \end{cases}$

Пример 6. Проинтегрировать систему ДУ: $\begin{cases} y' = 3y - z \\ z' = 5y - z \end{cases}$

Решение

Дифференцируем первое уравнение y''=3y'-z. Подставляем в правую часть полученного уравнения правые части из системы: y''=3(3y-z)-(5y-z)=4y-2z. Определяем z из первого уравнения исходной системы z=-y'+3y и подставляем его выражение в y''=3(3y-z)-(5y-z)=4y-2z, получаем:

$$y'' = 4y - 2(-y' + 3y) = 2y' - 2y \Rightarrow y'' - 2y' + 2y = 0$$
.

Решаем полученное уравнение. Имеем: $k^2 - 2k + 2 = 0 \Rightarrow k_{1,2} = 1 \pm i$. Находим y: $y = e^x (C_1 \cos x + C_2 \sin x)$. Поскольку z = -y' + 3y и $y' = e^x (C_1 \cos x + C_2 \sin x) + e^x (-C_1 \sin x + C_2 \cos x)$, то имеем:

$$z = -e^{x} (C_{1} \cos x + C_{2} \sin x) - e^{x} (-C_{1} \sin x + C_{2} \cos x) +$$

$$+3e^{x} (C_{1} \cos x + C_{2} \sin x) = e^{x} [(2C_{1} - C_{2}) \cos x + (C_{1} + 2C_{2}) \sin x],$$

Следовательно, решение системы дифференциальных уравнений имеет вид:

$$\begin{cases} y = e^{x} (C_{1} \cos x + C_{2} \sin x) \\ z = e^{x} [(2C_{1} - C_{2}) \cos x + (C_{1} + 2C_{2}) \sin x] \end{cases}$$

Ответ: $\begin{cases} y = e^{x} (C_{1} \cos x + C_{2} \sin x) \\ z = e^{x} [(2C_{1} - C_{2}) \cos x + (C_{1} + 2C_{2}) \sin x] \end{cases}$ — общее решение системы.

Залания для решения в аудитории

Задание №1. Найти общее решение дифференциального уравнения:

1.
$$\begin{cases} y'' - z = 0 \\ z'' - y = 0 \end{cases}$$
2.
$$\begin{cases} y' = z \\ z' = \frac{z^2}{y} \end{cases}$$
3.
$$\begin{cases} y' = y + z \\ z' = -5y - 5z \end{cases}$$
4.
$$\begin{cases} y'' - z = 0 \\ z'' + y = 0 \end{cases}$$
5.
$$\begin{cases} y' = -y - 2z \\ z' = 3y + 4z \end{cases}$$
6.
$$\begin{cases} y' = 2y - z \\ z' = y + 2z \end{cases}$$
7.
$$\begin{cases} y' = -y - 2z \\ z' = 3y + 4z \end{cases}$$
8.
$$\begin{cases} y' = y - 2z \\ z' = y - z \end{cases}$$
9.
$$\begin{cases} \frac{dy_1}{dx} = -2y_2, \\ \frac{dy_2}{dx} = -2y_1; \end{cases}$$
10.
$$\begin{cases} \frac{dy_1}{dx} = 2y_1 + y_2, \\ \frac{dy_2}{dx} = 2y_1 + 3y_2; \end{cases}$$
11.
$$\begin{cases} \frac{dy_1}{dx} = y_1 - y_2, \\ \frac{dy_2}{dx} = y_2 - y_1; \end{cases}$$
12.
$$\begin{cases} \frac{dy_1}{dx} = y_1 + y_2, \\ \frac{dy_2}{dx} = -4y_1 - 3y_2. \end{cases}$$
13.
$$\begin{cases} \frac{dx}{dt} = 2x - y, \\ \frac{dy}{dt} = 4x + 2y; \end{cases}$$
14.
$$\begin{cases} \frac{dx}{dt} = 3x - y, \\ \frac{dy}{dt} = y - 3x + 2t. \end{cases}$$
15.
$$\begin{cases} \frac{dx}{dt} = x - y + \cos t, \\ \frac{dy}{dt} = 2x - y; \end{cases}$$

Задание №2. Найдите частное решение системы дифференциальных уравнений:

1.
$$\begin{cases} \frac{dy_1}{dx} = 2y_1 - y_2, \\ \frac{dy_2}{dx} = 3y_2 - 2y_1, \ y_1(0) = 2, \ y_2(0) = 3; \end{cases}$$
2.
$$\begin{cases} \frac{dx}{dt} = 4x + y, \\ \frac{dy}{dt} = y - 2x, \ x(0) = 1, \ y(0) = 1; \end{cases}$$
3.
$$\begin{cases} \frac{dy_1}{dt} = 4y_1 - 3y_2, \\ \frac{dy_2}{dt} = 2y_1 - 3y_2, \ y_1(0) = 4, \ y_2(0) = 3; \end{cases}$$
4.
$$\begin{cases} \frac{dx}{dt} = x - y, \\ \frac{dy}{dt} = -5x + 5y, \ x(0) = 1, \ y(0) = -5; \end{cases}$$
7.
$$\begin{cases} \frac{dx}{dt} = y - 3x, \\ \frac{dy}{dt} = y - 4x, \ x(0) = 2, \ y(0) = -2; \end{cases}$$
8.
$$\begin{cases} \frac{dy_1}{dt} = 7y_1 - y_2, \\ \frac{dy_2}{dt} = y_1 + 5y_2, \ y_1(0) = 1, \ y_2(0) = 2. \end{cases}$$

9.
$$\begin{cases}
\frac{dy_1}{dx} = y_2 + y_3, \\
\frac{dy_2}{dx} = y_1 + y_3, \\
\frac{dy_3}{dx} = y_1 + y_2, y_1(0) = 1, y_2(0) = 1, y_3(0) = 4;
\end{cases}$$
10.
$$\begin{cases}
\frac{dx_1}{dt} = 4x_1 - x_2, \\
\frac{dx_2}{dt} = 3x_1 + x_2 - x_3, \\
\frac{dx_3}{dt} = x_1 + x_2, x_1(0) = 1, x_2(0) = 0, x_3(0) = 4.
\end{cases}$$

Задание №3. Решите систему дифференциальных уравнений методом интегрируемых комбинаций:

1.
$$\begin{cases} \frac{dx}{dt} = \frac{x}{x - y}, \\ \frac{dy}{dt} = \frac{y}{x - y}; \end{cases}$$
2.
$$\begin{cases} \frac{dx}{dt} = y^{2} - \cos t, \\ \frac{dy}{dt} = \frac{x}{2y}; \end{cases}$$
3.
$$\begin{cases} \frac{d^{2}x}{dt^{2}} + 10\frac{d^{2}y}{dt^{2}} + x = 0, \\ \frac{dx}{dt} + 10\frac{dy}{dt} + 3y = 0; \end{cases}$$
4.
$$\begin{cases} \frac{dx}{dt} = y - z, \\ \frac{dy}{dt} = x + y + t, \\ \frac{dz}{dt} = x + z + t; \end{cases}$$
5.
$$\frac{dy_{1}}{y_{2} + y_{3}} = \frac{dy_{2}}{y_{1} + y_{3}} = \frac{dy_{3}}{y_{1} + y_{2}}$$

Задания для самостоятельного решения

Задание №2. Проинтегрировать систему ДУ.:

1.
$$\begin{cases} y' = y - z \\ z' = y + z \end{cases} Omean. \begin{cases} y = e^{x} \left(C_{1} \cos x + C_{2} \sin x \right), \\ z = e^{x} \left(C_{1} \sin x - C_{2} \cos x \right). \end{cases}$$
2.
$$\begin{cases} y' = 3y - 2z \\ z' = 2y + z \end{cases} Omean. y = e^{2x} \left(C_{1} \cos \sqrt{3}x + C_{2} \sin \sqrt{3}x \right), z = e^{2x} \left(\frac{C_{1} - \sqrt{3}C_{2}}{2} \cos \sqrt{3}x + \frac{C_{2} - \sqrt{3}C_{1}}{2} \sin \sqrt{3}x \right).$$
3.
$$\begin{cases} y' = y + 2z \\ z' = 4y - z \end{cases} Omean. y = C_{1}e^{-3x} + C_{2}e^{3x}, z = C_{2}e^{3x} - 2 C_{1}e^{-3x}.$$
4.
$$\begin{cases} y' = 4y - 5z \\ z' = 3y - 4z \end{cases} Omean. y = C_{1}e^{-x} + C_{2}e^{x}, z = C_{1}e^{-x} + 0,6 C_{2}e^{x}.$$

5.
$$\begin{cases} y' = 3y + z \\ z' = -5y - 3z \end{cases}$$
 Omsem. $y = C_1 e^{2x} + C_2 e^{-2x}$, $z = -C_1 e^{2x} - 5C_2 e^{-2x}$.

6.
$$\begin{cases} y' = 4y - 3z \\ z' = 3y - 2z \end{cases}$$
 Omeem. $y = e^x (C_1 + C_2 x), z = e^x (C_1 + C_2 x) - \frac{1}{3} C_2 e^x.$

Самостоятельная работа

Вариант 1.

1. Решите уравнение
$$x\sqrt{1-y^2}dx + y\sqrt{1-x^2}dy = 0$$

2. Решите уравнение
$$y' - \frac{2x}{x^2 + 1}y = x\sqrt{x^2 + 1}$$

3. Решите уравнение
$$(xy + y^2)dx - x^2dy = 0$$

4. Решите уравнение
$$2yy'' = (y')^2 + 1$$

5. Решите уравнение
$$y'' - 8y' + 16y = 0$$

6. Найдите общее решение уравнения
$$y'' + 6y' + 8y = 5e^{2x} + x^2$$
.

Вариант 2.

1. Решите уравнение
$$(3x-1)dy + y^2 dx = 0$$

- 2. Решите уравнение $y' + \frac{y}{x} = xe^{\frac{x}{2}}$
- 3. Найдите частное решение уравнения $(x^2-3y^2)dx+2xydy=0$ из условия, что y=1 при x=2.
- 4. Решите уравнение x(y'' + 1) + y' = 0
- 5. Решите уравнение y'' 6y' + 9y = 0
- 6. Найдите общее решение уравнения $y'' 3y' = x^2 e^{3x}$.

Вариант 3.

- 1. Найти частное решение уравнения $(xy^2 + x)dx + (x^2y y)dy = 0$, удовлетворяющее указанным начальным условиям y=1 при x=0.
- 2. Решите уравнение $y' \frac{y}{x} = \frac{x+1}{x}$.
- 3. Найдите общее решение уравнения $y' = e^{\frac{y}{x}} + \frac{y}{x}$
- 4. Найти частное решение $yy'' = (y')^2 (y')^3$, удовлетворяющее начальным условиям y(0) = 1, y'(0) = 2
- 5. Найдите общее решение y'' + 2y' 15y = 0
- 6. Найдите общее решение уравнения $y'' + 12y' + 20y = \sin 2x$

Вариант 4.

- 1. Найдите частное решение уравнения $(1+e^x)yy'=e^x$, удовлетворяющее указанным начальным условиям y=1 при x=0.
- 2. Решите уравнение $\frac{dy}{dx} 2xy = x^3$.
- 3. Найдите общее решение уравнения $y' = \frac{y^2}{xy x^2}$.
- 4. Найдите частное решение $2y(y')^3 + y'' = 0$, удовлетворяющее начальным условиям y(0) = 0, y'(0) = -3.
- 5. Найдите общее решение уравнения y'' + 36y = 0.
- 6. Найдите общее решение уравнения $y'' 5y' + 4y = e^x$.

Вариант 5.

- 1. Найдите общее решение $e^{x-y}dx \frac{1}{x}dy = 0$
- 2. Решить уравнение $y' = \frac{4}{x}y + x\sqrt{y}$
- 3. Решить уравнение $xy^2 dy = (x^3 + y^3) dx$
- 4. Найдите частное решение $y'' (y')^2 + y'(y-1) = 0$, удовлетворяющее заданным начальным условиям y(0) = 2, y'(0) = 2
- 5. Найдите общее решение уравнения y'' 3y' 4y = 0
- 6. Найдите общее решение уравнения $y'' + 6y' 7y = e^x + \frac{1}{2}x^2 + x$

Вариант 6.

1. Найдите общее решение уравнения $\sqrt[3]{1-2x^3+x^6}dy = x^2y^2dx$

- 2. Решите уравнение $y' 2y = e^{2x}$
- 3. Решите уравнение $y' = \frac{x^2 + y^2}{2x^2}$
- 4. Найдите частное решение $xy'' + x(y')^2 y' = 0$, удовлетворяющее заданным 5. начальным условиям y(2) = 2, y'(2) = 1
- 5. Найдите общее решение уравнения y'' + 7y' 8y = 0
- 6. Найдите общее решение уравнения $y'' + 3y' 10y = 14e^{2x}$

Вариант 7.

- 1. Найдите частное решение $e^{x-y}dx + ydy = 0$, удовлетворяющее указанным начальным условиям y = 0 при x = 0.
- 2. Найдите общее решение уравнения $y' + \frac{6xy}{x^2 + 1} = \frac{1}{(x^2 + 1)^4}$.
- 3. Найдите частное решение уравнения $y^2 + x^2y' = xyy'$ из условия y(1) = 1.
- 4. Найти общее решение уравнения $x^2y'' + xy' = 1$.
- 5. Найдите общее решение уравнения 4y'' 4y' + y = 0.
- 6. Найдите общее решение уравнения $y'' + 2y' 8y = x^2$.

Вариант 8.

- 1. Найдите общее решение xy' + 2y = 2xyy'.
- 2. Найдите частное решение $y' \frac{y}{1 x^2} \sqrt{1 + x} = 0$, удовлетворяющее указанным условиям y = 0 при x = 0.
- 3. Найдите частное решение уравнения $x^2 3y^2 + 2xyy' = 0$ из условия y(-2) = 2.
- 4. Найдите общее решение уравнения $x^2yy'' = (y xy')^2$.
- 5. Найдите общее решение уравнения 4y'' 11y' + 6y = 0.
- 6. Найдите общее решение уравнения y'' 2y' = x + 3.

Вариант 9.

- 1. Найдите частное решение дифференциального уравнения (x + xy)dy + (y xy)dx = 0 при условии y(1) = 1.
- 2. Решите задачу Коши для дифференциального уравнения $(x^2-x)y'+y=x^2(2x-1)$ при условии y(-2)=2
- 3. Найдите общее решение дифференциального уравнения $(x^2 y^2)dx + 2xydy = 0$
- 4. Найдите общее решение дифференциального уравнения $y''' \cot x + y'' = 2$
- 5. Найдите общее решение дифференциального уравнения 3y'' 2y' 8y = 0
- 6. Найдите общее решение дифференциального уравнения $y'' 3y'' = 9x^2$

Вариант 10.

- 1. Найдите общее решение дифференциального уравнения $4(x^2y+y)dy + \sqrt{5+y^2}dx = 0$.
- 2. Найдите общее решение дифференциального уравнения $xy' + y = xy^2 \ln x$.
- 3. Найдите общее решение дифференциального уравнения $xy' y = xe^{\frac{y}{x}}$
- 4. Найдите частное решение дифференциального уравнения $y'y'' = y'^2 y'$ при условиях y(1) = 2, y'(1) = 0
- 5. Найдите общее решение дифференциального уравнения y'' 6y' + 13y = 0

6. Найдите частное решение дифференциального уравнения $y'' + 6y' + 9y = 10\sin x$ при условиях y(0) = -0.6; y'(0) = 0.8.

Вариант 11.

- 1. Найдите общее решение дифференциального уравнения $(1 + e^x)y' = ye^x$.
- 2. Решите задачу Коши для дифференциального уравнения $y' \frac{y}{x-3} = \frac{y^2}{x-3}$ при условии y(1) = -2.
- 3. Найдите общее решение дифференциального уравнения $\frac{dy}{dx} = \frac{xy}{x^2 y^2}$.
- 4. Найдите общее решение дифференциального уравнения $xy'' y' = x^2e^x$.
- 5. Найдите общее решение дифференциального уравнения y'' 7y' + 6y = 0.
- 6. Найдите общее решение дифференциального уравнения $y'' 7y + 6y = (x 2)e^x$.

Вариант 12.

- 1. Найдите общее решение дифференциального уравнения $(x^2 + 1)ydy (y^2 + 1)dx = 0$.
- 2. Решите уравнение $y' \cos x \cdot y = x^3 e^{\sin x}$.
- 3. Решите уравнение $(y^2 2xy)dx + x^2dy = 0$
- 4. Решите уравнение $y'' + \frac{y'}{x+1} = 9(x+1)$.
- 5. Найдите общее решение дифференциального уравнения y'' 9y' + 8y = 0.
- 6. Найдите общее решение дифференциального уравнения $y'' + 6y' + 5y = 4e^{3x}$.

Вариант 13.

- 1. Найдите общее решение дифференциального уравнения $(x^3 + 2)y^3dy + (y^4 + 1)x^2dx = 0$.
- 2. Решите уравнение $y' + 3x^2y = \sin x \cdot e^{-x^2}$
- 3. Решите уравнение $(3x^2 + 5y^2)dy = 3xydx$
- 4. Найдите частное решение уравнения $(y-1)y'' = 2(y')^2$ при условии, что y(0)=2, y'(0)=2
- 5. Найдите общее решение дифференциального уравнения y'' + 6y' + 5y = 0.
- 6. Найдите общее решение дифференциального уравнения $y'' + y' = 12e^{3x}$.

Литература

- 1. Высшая математика: общий курс / под ред. С.А. Самоля. Минск: Вышэйшая шк., 2000.
- 2. Высшая математика для экономистов / под ред. Н.Ш. Кремера. М.: ЮНИТИ, 1998.
- 3. Шипачев, В. С. Высшая математика. М.: Высш. шк., 1985.
- 4. Гусак, А. А. Высшая математика: учебник для студентов вузов: в 2 т. 3-е изд., стереотип. Минск.: ТетраСистемс, 2001.
- 5. Сборник индивидуальных заданий по высшей математике: в 4 ч. / под общей ред. А. П. Рябушко. – Минск: Вышэйшая школа, 1990.
- 6. Руководство к решению задач по высшей математике. / под общей ред. Е.Н.Гурского. – Минск: Вышэйшая школа, 1990.
- 7. Бубнов, В.Ф., Сухая, Т.А. Задачи по высшей математике. Ч.2. Минск: Вышэйшая школа, 1993.
- 8. Гайшун, Л.Н. Сборник задач и упражнений по высшей математике. / Л.Н. Гайшун, Н.В. Денисенко, А.В. Марков, Л.В. Станишевская, Н.Н. Ящина Минск: Вышэйшая школа, 2009.
- 9. Учебное пособ. В 3 ч./ Под ред. А.П. Рябушко. Мн. Вышэйш. шк., 1991.

Учебное издание

Учебно-методическое пособие для проведения практических занятий по высшей математике со студентами инженерно-педагогических специальностей по теме «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ»

Составители:

С.Ю. Лошкарева, В.С. Якимович, Л.В. Бань

Редактор

	Подписано в печать2019.			
Формат $60 \times 84 \frac{1}{16}$. Бумага офсетная.				
Отпечатано на ризографе. Гарнитура Таймс.				
	Усл.печ.лУчизд.лТираж Заказ			

Издатель и полиграфическое исполнение:

Белорусский национальный технический университет.

ЛИ № 02330/0131627 от 01.04.2004.

Проспект Независимости, 65, 220013, Минск.