МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

з дисципліни «Алгоритмізація і програмування»

XAI.301.175.318.07 PFP

Виконав студент гр	318
	(№ групи)
	<u>ГлєбовМ.М</u>
(Підпис, дата)	(П.І.Б.)
Перевірив к.т.н., доце	НТ
(Науковий ступ	інь, вчене звання)
	_ О. В. Гавриленко
(Підпис, дата)	(П.І.Б.)

ЗАВДАННЯ

Дослідити шляхом власних обчислень, розробити і реалізувати алгоритми роботи з числами в різних позиційних системах числення:

- 1) Перетворити десяткові числа <u>156 та 1716</u> в двійкову систему числення, описати покроково процес перетворень. Виконати перевірку, виконавши зворотне перетворення в десяткову систему.
- 2) Перетворити десяткові числа <u>156 та 1716</u> в шістнадцяткову систему числення, описати покроково процес перетворень. Виконати перевірку шляхом зворотного перетворення в десяткову і двійкову систему.
- 3) Розробити діаграму активності алгоритму перетворення числа з десяткової системи числення в <u>14-річну</u>. *Реалізувати алгоритм у вигляді строкової функції DecTo_N_ (D) з вхідним цілочисельним параметром на мові C ++.* (Алфавіт: 0 1 2 3 4 5 6 7 8 9 X Y Z W)
- 4) Для двох чисел <u>156 та 1716</u> провести операцію <u>ділення</u> у двійковій системі числення. Виконати перевірку шляхом перетворення результатів в десяткову систему.
- 5) Зробити висновки.

3MICT

I Перетворення чисел в двійкову систему числення	2
1.1 Перетворення трирозрядного десяткового числа	2
1.2 Перетворення чотирирозрядного десяткового числа	2
1.3 Перевірка результатів	3
2 Перетворення чисел в шістнадцяткову систему числення	4
2.1 Перетворення трирозрядного десяткового числа	4
2.2 Перетворення чотирирозрядного десяткового числа	4
2.3 Перевірка результатів	4
3 Перетворення чисел в 14-річну систему числення	5
4 Двійкова арифметика	6
Висновки	7
Рисунок А	8
Додаток А	9

1 ПЕРЕТВОРЕННЯ ЧИСЕЛ У ДВІЙКОВУ СИСТЕМУ ЧИСЛЕННЯ

1.1 Перетворення трирозрядного десяткового числа

Таблиця 1.1 – Перетворення десяткового числа у двійкове

X	X/2	X%2
156	78	0
78	39	0
39	19	1
19	9	1
9	4	1
4	2	0
2	1	0
1	0	1
	Результат	$156_{10} = 10011100_2$

1.2 Перетворення чотирирозрядного десяткового числа

X	X/2	X%2
1716	856	0
856	429	0
429	214	1
214	107	0
107	53	1
53	26	1
26	13	0
13	6	1
6	3	0
3	1	1
1	0	1
	Результат	$1716_{10} = 11010110100_2$

Таблиця 1.2 – Перетворення десяткового числа у двійкове

1.3 Перевірка результатів

Перетворення в десяткових чисел у двійкову систему:

$$I.I)\ 10011100_2 = 1*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 156_{10}$$

$$1.2)\ 11010110100_2 = 1*2^{10} + 1*2^9 + 0*2^8 + 1*2^7 + 0*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 1716_{10}$$

2 ПЕРЕТВОРЕННЯ ЧИСЕЛ В ШІСТНАДЦЯТКОВУ СИСТЕМУ ЧИСЛЕННЯ

2.1 Перетворення трирозрядного десяткового числа

X	X /16	X %16
156	9	12(Z)
9	0	9
	Результат	$156_{10} = 9Z_{16}$

Таблиця 2.1 – Перетворення десяткового числа у шістнадцяткове

2.2 Перетворення чотирирозрядного десяткового числа

X	X /16	X %16				
1716	107	4				
107	6	11(Y)				
6	0	6				
	Результат	$1716_{10} = 6Y4_{16}$				

Таблиця 2.2 – Перетворення чотирирозрядного числа у шістнадцяткове

2.3 Перевірка результатів

Перетворення в десяткову 2х чисел:

1)
$$9Z_{16} = 9 * 16^1 + 12 * 16^0 = 156_{10}$$

2)
$$6Y4_{16} = 6 * 16^2 + 11 * 16^1 + 4 * 16^0 = 1716_{10}$$

Перетворення в двійкову 2х чисел:

1) 9-1001; Z-1100;
$$9Z_{16} = 10011100_{16}$$

2) 6-1101; Y-0110; 4-100;
$$6Y4_{16} = 11010110100_2$$

3 ПЕРЕТВОРЕННЯ ЧИСЕЛ В 14-РІЧНУ СИСТЕМУ ЧИСЛЕННЯ

3.1 Перетворення трирозрядного десяткового числа

X	X/14	X%14				
156	11	2				
11	0	11				
	Результат	$156_{10} = Y2_{14}$				

Таблиця 3.1 – Перетворення трирозрядного десяткового числа

3.2 Перетворення чотирирозрядного десяткового числа

X	X/14	X%14
1716	122	8
122	8	10(X)
8	0	8
	Результат	$156_{10} = 8X8_{14}$

Таблиця 3.2 – Перетворення чотирирозрядного десяткового числа

3.3 Перевірка результатів

1)
$$Y2_{14} = 11 * 14^{1} + 2 * 14^{0} = 156_{10}$$

2) $8X8_{14} = 8 * 14^{2} + 10 * 14^{1} + 8 * 14^{0} = 1716_{10}$

Діаграму активності представлено на рис. А Код на мові C++ представлено у дод. А

4 ДВІЙКОВА АРИФМЕТИКА

Покроковий опис ділення чисел 156 та 1716 представлено в табл.4.1.

Таблиця 4.1 – Ділення двійкових чисел

результат												Перевірка
4розр.	1	1	0	1	0	1	1	0	1	0	0	1716
-Зрозр.	1	0	0	1	1	1	0	0				156
залишок	0	0	1	1	1	0	1	0				
-3розр.	1	0	0	1	1	1	0	0				
залишок		0	1	1	1	0	1	0	1			
-3розр.		1	0	0	1	1	1	0	0			
залишок			0	1	0	0	1	1	1	0		
-3розр.			1	0	0	1	1	1	0	0		
залишок				0	0	0	0	0	0	0	0	11
перевірка	1 *	$1 * 2^{10} + 1 * 2^9 + 0 * 2^8 + 1 * 2^7 + 0 * 2^6 + * 2^5$										
		$+1*2^4+0*2^3+1*2^2+0*2^1$										
		$+ 0 * 2^0 = 1716_{10}$										

ВИСНОВОК

Під час розрахунково-графічної роботи ми змогли перетворити десяткові числа в двійкову, шістнадцяткову та 14-ти річну системи, а також провели операцію ділення у двійковій системі числення.

РИСУНОК А

ДОДАТОК А

```
#include <iostream>
                               // Підключення бібліотеки
                                                              для
вводу/виводу (cin, cout)
   #include <string>
                         // Для використання рядків типу string
   #include <windows.h> // Для функції SetConsoleOutputCP -
відображає кирилицю в консолі
   using namespace std; // Щоб постійно не писати std
   // Функція перетворення десяткового числа у 14-річну систему
числення
   string DecTo N 14(int decimalNumber) {
       const string alphabet = "0123456789XYZW"; // Алфавіт 14-
річної системи
       if (decimalNumber == 0) return "0";
       string result = "";
       int base = 14;
                                                        // Основа
системи числення
       while (decimalNumber > 0) {
                                                   // Поки число
більше нуля
           int remainder = decimalNumber % base; // Обчислюємо
залишок — цифра в новій системі
           result = alphabet[remainder] + result; // Додаємо
відповідний символ до результату (зліва)
           decimalNumber /= base;
                                                  // Ділимо число
на 14, переходимо до наступного розряду
       }
       return result;
                                                    // Повертаємо
готовий рядок (число у 14-річній системі)
   // Головна функція — точка входу в програму
   int main() {
       SetConsoleOutputCP(65001);
                                  // Установлюємо
                                                              для
відображення кирилиці в консолі Windows
```

```
int decimalInput; // Змінна для зберігання введеного
користувачем числа
       // Повідомлення для користувача
                   "Введіть додатне десяткове число для
       cout <<
перетворення." << endl;
       cout << "(Для завершення введіть 0): ";
       cin >> decimalInput; // Зчитування введення
       if (cin.fail()) {
                                 // Якщо введення некоректне
(наприклад, текст)
           cin.clear();
                                      // Скидаємо помилку
           cin.ignore(10000, '\n'); // Ігноруємо залишки
           cout << "Помилка: будь ласка, введіть лише додатне
число.\n" << endl;
       else if (decimalInput < 0) { // Якщо введено від'ємне
число
           cout << "Помилка: від'ємні числа не підтримуються.
Спробуйте ще раз.\n" << endl;
       else if (decimalInput == 0) { // Якщо користувач ввів
0 — вихіл
          cout << "Програма завершена за бажанням користувача."
<< endl;
       else { // Якщо число коректне і додатне — виконуємо
перетворення
                  cout << "Результат перетворення: " <<
DecTo N 14(decimalInput) << endl << endl;</pre>
       }
       return 0; // Завершення програми
   }
```