EXAMEN PROBABILITÉS - 1SN

Lundi 25 octobre 2021 (8h-9h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : loi géométrique (5 points)

On considère une variable aléatoire X de loi géométrique de paramètre $p \in]0,1[$ définie dans $\mathbb{N}^* = \{n \in \mathbb{N}, n \geq 1\}$ par

$$P[X = i] = p(1 - p)^{i-1}, \quad i = 1, 2, \dots$$

Quelques propriétés de cette loi sont dans la table et on adoptera la notation classique $X \sim \mathcal{G}(p)$. On rappelle le résultat élémentaire $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ pour |x| < 1.

1. Montrer que $P[X > k] = q^k$, $\forall k \in \mathbb{N}$. On a

$$P[X > k] = \sum_{l=k+1}^{+\infty} p(1-p)^{l-1} = p(1-p)^k \sum_{l=0}^{+\infty} (1-p)^l = (1-p)^k = q^k.$$

2. Montrer qu'une variable aléatoire Y à valeurs dans \mathbb{N}^* telle que $P[Y>k]=q^k, \ \forall k\in\mathbb{N}$ est une loi géométrique (on pourra exprimer P[Y=k] en fonction de P[Y>k] et de P[Y>k-1]). En suivant l'indication, on a pour tout $k\in\mathbb{N}^*$

$$P[Y = k] = P[Y > k - 1] - P[Y > k] = q^{k-1} - q^k = pq^{k-1},$$

donc la loi de Y est bien une loi géométrique.

3. Montrer qu'une variable aléatoire de loi géométrique de paramètre p vérifie la propriété suivante (on dit que cette loi est "sans mémoire")

$$P[X > k + l | X > l] = P[X > k], \forall (k, l) \in \mathbb{N}^2.$$

En utilisant la définition des probabilités conditionnelles

$$P[X > k + l | X > l] = \frac{P[X > k + l, X > l]}{P[X > l]} = \frac{P[X > k + l]}{P[X > l]} = \frac{pq^{k+l}}{pq^l} = q^k = P[X > k].$$

4. Inversement, on considère une variable aléatoire Y de loi discrète à valeurs dans $\mathbb{N}^* = \{1, 2, ..., \}$ qui est sans mémoire, i.e., qui vérifie

$$P[Y > k + l | Y > l] = P[Y > k], \forall (k, l) \in \mathbb{N}^2.$$

On pose p = P[Y = 1]. Déterminer P[Y > 1], puis P[Y > 2] et en déduire que

$$P[Y > k] = q^k, \forall k \in \mathbb{N}.$$

Quelle est la loi de Y ? Que peut-on en conclure ? On a

$$P[Y > 1] = 1 - P[Y = 1] = 1 - p = q.$$

De plus, en utilisant la propriété sans mémoire, on a

$$P[Y > 2] = P[Y > 2|Y > 1]P[Y > 1] = P[Y > 1] \times P[Y > 1] = q^{2}.$$

Une récurrence immédiate donne

$$P[Y > k] = q^k, \ \forall k \in \mathbb{N}.$$

On en conclut que Y suit une loi géométrique de paramètre p. La loi géométrique est donc la seule loi discrète sans mémoire définie sur \mathbb{N}^* .

Exercice 2: Couple de variables aléatoires uniformes corrélées (5 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p_a(x,y) = \left\{ \begin{array}{l} 1 - a(1-2x)(1-2y) \text{ si } (x,y) \in]0,1[\times]0,1[\\ 0 \text{ sinon} \end{array} \right.$$

avec |a| < 1.

1. Vérifier que p_a est une densité de probabilité pour toute valeur de $a \in]-1,+1[$. On admettra que $|(1-2x)(1-2y)| \le 1, \forall (x,y) \in]0,1[\times]0,1[$.

Pour vérifier que p_a est une densité de probabilité, il faut tout d'abord vérifier que $\int \int_{\mathbb{R}^2} p_a(x,y) dx dy = 1$, ce qui est aisé puisque

$$\int\int_{\mathbb{R}^2} p_a(x,y) dx dy = \int_0^1 \int_0^1 [1-a(1-2x)(1-2y)] dx dy = 1-a \int_0^1 (1-2x) dx \int_0^1 (1-2y) dy = 1.$$

Il faut ensuite vérifier que $p_a(x,y) \ge 0, \forall x \in]0,1[,\forall y \in]0,1[$, ce qui évident si |a| < 1.

2. Déterminer les lois marginales de X et de Y.

La densité de X est non nulle sur l'intervalle]0,1[. De plus, pour $x \in]0,1[$, on a

$$p_a(x,.) = \int_{\mathbb{R}} p_a(x,y) dy = \int_0^1 [1 - a(1 - 2x)(1 - 2y)] dy = 1 - a(1 - 2x) \int_0^1 (1 - 2y) dy = 1.$$

X suit donc la loi uniforme sur]0,1[. Il en est de même pour Y par symétrie.

3. Déterminer la covariance et le coefficient de corrélation du couple (X,Y). La covariance du couple (X,Y) est définie par cov(X,Y)=E[XY]-E[X]E[Y]. On a de manière évidente $E[X]=E[Y]=\frac{1}{2}$. De plus

$$E[XY] = \int \int_{\mathbb{R}^2} xy p_a(x, y) dx dy = \int_0^1 \int_0^1 xy [1 - a(1 - 2x)(1 - 2y)] dx dy.$$

Mais

$$\int_0^1 \int_0^1 xy dx dy = \int_0^1 x dx \int_0^1 y dy = \frac{1}{4}$$

et

$$\int_0^1 \int_0^1 xy(1-2x)(1-2y)]dxdy = \left[\int_0^1 x(1-2x)dx\right]^2 = \left[\frac{1}{2} - \frac{2}{3}\right]^2 = \frac{1}{36},$$

d'où

$$cov(X,Y) = \frac{1}{4} - \frac{a}{36} - \frac{1}{4} = -\frac{a}{36}.$$

Le coefficient de corrélation du couple (X, Y) est donc

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} = -\frac{\frac{a}{36}}{\frac{1}{12}} = -\frac{a}{3}.$$

4. En prenant soin de justifier votre réponse, déterminer la ou les les valeur(s) de a pour lesquelles les variables aléatoires X et Y sont indépendantes.

Si X et Y sont indépendantes, alors $r_{X,Y} = 0$ donc a = 0 est la seule valeur de a pour laquelle X et Y peuvent être indépendantes. De plus, pour a = 0, on a

$$p_a(x,y) = p_0(x,y) = \begin{cases} 1 \text{ si } (x,y) \in]0,1[\times]0,1[\\ 0 \text{ sinon} \end{cases}$$

qui est le produit de la densité de X $(p_0(x,.) = \mathcal{I}_{]0,1[}(x))$ et de celle de Y $(p_0(.,y) = \mathcal{I}_{]0,1[}(y))$. Donc, pour a=0, on a $p_0(x,y)=p_0(x,.)p_0(.,y), \forall x, \forall y$, ce qui montre que X et Y sont indépendantes si et seulement si a=0.

Exercice 3: Changement de variables continues (5 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p_a(x,y) = \begin{cases} 1 - a(1-2x)(1-2y) \text{ si } (x,y) \in]0,1[\times]0,1[\\ 0 \text{ sinon} \end{cases}$$

avec |a| < 1.

1. Déterminer la loi du couple (T,U) lorsque $T=-\frac{1}{\lambda}\ln X$ et $U=-\frac{1}{\mu}\ln Y$ avec $\lambda>0$ et $\mu>0$. Le changement de variables proposé est clairement bijectif car

$$\begin{cases} T = -\frac{1}{\lambda} \ln X \\ U = -\frac{1}{\mu} \ln Y \end{cases} \iff \begin{cases} X = \exp(-\lambda T) \\ Y = \exp(-\mu U) \end{cases}$$

Le Jacobien du changement de variables est

$$J = \begin{vmatrix} \frac{\partial X}{\partial T} & \frac{\partial Y}{\partial T} \\ \frac{\partial X}{\partial U} & \frac{\partial Y}{\partial U} \end{vmatrix} = \begin{vmatrix} -\lambda \exp(-\lambda T) & 0 \\ 0 & -\mu \exp(-\mu U) \end{vmatrix} = \boxed{\lambda \mu \exp(-\lambda T - \mu U)}$$

On en déduit la densité du couple (T, U):

$$g(t,u) = \lambda \mu \exp(-\lambda t - \mu u) \left[1 - a(1 - 2e^{-\lambda t})(1 - 2e^{-\mu u}) \right] I_{\Delta}(t,u)$$

où Δ est le domaine de définition du couple (T,U) qu'il convient de déterminer. Le domaine Δ est l'image de $]-0,1[\times]0,1[$ par le changement de variables. Pour déterminer ce domaine, on peut faire comme suit

$$\left\{ \begin{array}{l} 0 < x < 1 \\ 0 < y < 1 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} 0 < e^{-\lambda t} < 1 \\ 0 < e^{-\mu u} < 1 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} t \in]0, +\infty[\\ u \in]0, +\infty[\end{array} \right.$$

donc $\Delta =]0, +\infty[\times]0, +\infty[$.

2. Quelles sont les lois marginales de T et de U ? Pour quelle valeur de a les variables T et U sont-elles indépendantes ?

La densité de T est nulle pour t < 0. De plus, pour t > 0, on a

$$p(t,.) = \int_{\mathbb{D}} p(t,u) du = \int_{0}^{+\infty} \lambda \mu \exp(-\lambda t - \mu u) \left[1 - a(1 - 2e^{-\lambda t})(1 - 2e^{-\mu u}) \right] du.$$

Des calculs élémentaires permettent d'obtenir

$$p(t,.) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t > 0 \\ 0 & \text{sinon} \end{cases}$$

qui est une loi exponentielle de paramètre λ (ou une loi gamma de paramètres $\nu=1$ et $\theta=\lambda$). De même, par symétrie,

$$p(.,u) = \begin{cases} \lambda e^{-\lambda u} \text{ si } u > 0\\ 0 \text{ sinon} \end{cases}$$

qui est une loi exponentielle de paramètre μ .

Les variables U et T sont indépendantes si et seulement si $p(t,u) = p(t,.)p(.,u), \forall t, \forall u$ soit

$$\lambda\mu\exp(-\lambda t - \mu u) \left[1 - a(1 - 2e^{-\lambda t})(1 - 2e^{-\mu u})\right] = \lambda\mu e^{-\lambda t}e^{-\lambda u}, \forall t > 0, \forall u > 0.$$

On en déduit que U et T sont indépendantes si et seulement si a=0. Pour $a\neq 0$, le couple (U,V) est un couple de deux variables aléatoires corrélées de lois exponentielles.

Exercice 4 : Méthode Delta (5 points)

On considère n variables aléatoires indépendantes X_i de lois exponentielles de densités

$$p(x_i) = \begin{cases} \lambda \exp(-\lambda x_i) \text{ si } x_i > 0\\ 0 \text{ sinon} \end{cases}$$

- 1. Déterminer la moyenne et la variance de X_i . On reconnaît une loi gamma $\mathcal{G}(1,\lambda)$ de moyenne $E[X_i]=\frac{1}{\lambda}$ et de variance $\mathrm{var}[X_i]=\frac{1}{\lambda^2}$.
- 2. Quelle est la loi approchée pour n "grand" de $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ issue de l'application du théorème de la limite centrale ? Quelle est la loi asymptotique de $U_n = \sqrt{n} \left(\bar{X}_n \frac{1}{\lambda} \right)$ lorsque $n \to \infty$. Le théorème de la limite centrale nous dit que $\frac{1}{\sqrt{\frac{1}{n\lambda^2}}} \left(\bar{X}_n \frac{1}{\lambda} \right)$ converge en loi vers une loi normale $\mathcal{N}(0,1)$. Donc pour n "grand", on peut approcher la loi de \bar{X}_n par une loi normale $\mathcal{N}\left(\frac{1}{\lambda},\frac{1}{n\lambda^2}\right)$. La loi asymptotique de U_n est une loi normale $\mathcal{N}\left(0,\frac{1}{\lambda^2}\right)$ (transformation affine de \bar{X}_n).
- 3. On admet que pour toute fonction $g:\mathbb{R}\to\mathbb{R}$ dérivable, si $\sqrt{n}\left[\bar{X}_n-m\right]$ converge en loi vers une loi normale $\mathcal{N}(0,\sigma^2)$ et $g'(m)\neq 0$, alors $\sqrt{n}\left[g(\bar{X}_n)-g(m)\right]$ converge en loi vers une loi normale $\mathcal{N}(0,\sigma^2[g'(m)]^2)$. En déduire les lois approchées de $Y_n=\frac{n}{\sum_{i=1}^n X_i}$ et de $Z_n=\exp\left(\bar{X}_n\right)$ pour n "grand".

On a $Y_n = g(\bar{X}_n)$) avec $g(u) = \frac{1}{u}$. L'application du théorème nous dit que $\sqrt{n} (Y_n - \lambda)$ converge en loi vers une loi normale $\mathcal{N}(0, \sigma^2[g'(m)]^2))$ avec $m = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$ et $[g'(m)]^2 = \lambda^4$. Donc pour n grand, on peut approcher la loi de Y_n par une loi normale $\mathcal{N}\left(\lambda, \frac{\lambda^2}{n}\right)$.

De la même façon, $Z_n = g(\bar{X}_n)$ avec $g(u) = \exp(u)$. L'application du théorème nous dit que $\sqrt{n} \left(Z_n - e^{1/\lambda} \right)$ converge en loi vers une loi normale $\mathcal{N}(0, \sigma^2[g'(m)]^2)$) avec $m = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$ et $[g'(m)]^2 = \exp(2/\lambda)$. Donc pour n grand, on peut approcher la loi de Z_n par une loi normale $\mathcal{N}\left(\exp\left(\frac{1}{\lambda}\right), \frac{1}{n\lambda^2}\exp(2/\lambda)\right)$.

Barème

Exercice 1 : loi géométrique (5 points)

- Montrer que $P[X > k] = q^k, \ \forall k \in \mathbb{N} : 1pt$
- Montrer qu'une variable aléatoire Y à valeurs dans \mathbb{N}^* telle que $P[Y>k]=q^k, \ \forall k\in\mathbb{N}$ est une loi géométrique (on pourra exprimer P[Y=k] en fonction de P[Y>k] et de P[Y>k-1]): 1pt.
- Montrer qu'une variable aléatoire de loi géométrique de paramètre p vérifie la propriété suivante (on dit que cette loi est "sans mémoire"): 1pt

$$P[X > k + l | X > l] = P[X > k], \forall (k, l) \in \mathbb{N}^2.$$

• Inversement, on considère une variable aléatoire Y de loi discrète à valeurs dans $\mathbb{N}^* = \{1, 2, ..., \}$ qui est sans mémoire, i.e., qui vérifie

$$P[Y > k + l|Y > l] = P[Y > k], \forall (k, l) \in \mathbb{N}^2.$$

On pose p = P[Y = 1].

- Déterminer P[Y > 1], puis P[Y > 2] : 0.5pt + 0.5pt
- En déduire que

$$P[Y > k] = q^k, \forall k \in \mathbb{N}.$$

0.5 pt

- Que peut-on en conclure ? 0.5 pt

Exercice 2: Couple de variables aléatoires uniformes corrélées (5 points)

- 1. Vérifier que p_a est une densité de probabilité pour toute valeur de $a \in]-1,+1[$. On admettra que $|(1-2x)(1-2y)| \le 1, \forall (x,y) \in]0,1[\times]0,1[:$ 1pt pour la vérification que l'intégrale de la densité vaut 1 pour tout a et 1pt de bonus pour ceux qui ont démontré que l'expression de $p_a(x,y)$ est positive $\forall x, \forall y$.
- 2. Déterminer les lois marginales de X et de Y : 1pt.
- 3. Déterminer la covariance et le coefficient de corrélation du couple (X, Y): 2pts = 1pt pour E[XY], 0.5 pt pour cov(X,Y), 0.5 pt pour $r_{X,Y}$.
- 4. En prenant soin de justifier votre réponse, déterminer la ou les les valeur(s) de a pour lesquelles les variables aléatoires X et Y sont indépendante : 1pt : 0.5pt pour a=0 seule valeur possible pour laquelle X et Y sont indépendantes, 0.5 pt X et Y sont effectivement indépendantes pour a=0.

Exercice 3: Changement de variables continues (5 points)

- 1. Déterminer la loi du couple (T,U) lorsque $T=-\frac{1}{\lambda}\ln X$ et $U=-\frac{1}{\mu}\ln Y$ avec $\lambda>0$ et $\mu>0$ = 2pts : 0.5pt pour bijection + 0.5 pt pour Jacobien + 0.5pt pour densité de (T,U) + 0.5pt pour domaine
- 2. Quelles sont les lois marginales de T et de U? : 2pt (0.5 pt pour domaine + 0.5 point pour la densité pour chaque loi)
 - Pour quelle valeur de a les variables T et U sont-elles indépendantes ? : 1pt

Exercice 4: Méthode Delta (5 points)

- 1. Déterminer la moyenne et la variance de X_i : 0.5pt pour moyenne et 0.5pt pour variance (avec tables ou par calcul)
- 2. Quelle est la loi approchée pour n "grand" de $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ issue de l'application du théorème de la limite centrale ? : 1pt Quelle est la loi asymptotique de $U_n=\sqrt{n}\left(\bar{X}_n-\frac{1}{\lambda}\right)$ lorsque $n\to\infty$: 1pt
- 3. Loi approchée de $Y_n=\frac{n}{\sum_{i=1}^n X_i}$ = 1pt et loi approchée de $Z_n=\exp\left(\bar{X}_n\right)$: 1pt

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.	
LOI		m	0		
Uniforme	$p_k = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$	
	$k \in \{1,, n\}$	_	+-		
Bernoulli	$p_1 = P\left[X = 1\right] = p$		pq	$pe^{it} + q$	
	$p_0 = P\left[X = 0\right] = q$	p			
	$p \in [0,1] q = 1 - p$				
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$	np	npq	$\left(pe^{it}+q\right)^n$	
	$p \in [0,1] q = 1 - p$				
	$k \in \{0, 1,, n\}$				
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1-ae^{it}}\right)^n$	
	$p \in [0,1] q = 1 - p$				
	$k \in \mathbb{N}$				
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1}p_m^{k_m}$	np_j	Variance :	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$	
	$p_j \in [0,1] q_j = 1 - p_j$		np_jq_j		
	$k_j \in \{0, 1, \dots, n\}$		Covariance:		
	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$		$-np_jp_k$		
Poisson	$p_k = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$	
$P(\lambda)$	$\lambda > 0 k \in \mathbb{N}$			$\begin{bmatrix} \exp \left[\lambda \left(e - 1 \right) \right] \end{bmatrix}$	
Géométrique	$p_k = pq^{k-1}$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	
	$p \in [0,1] q = 1 - p$				
	$k \in \mathbb{N}^*$			1	

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1}$ si $\nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_p\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = Ke^{-\frac{1}{2}(x-m)^{T} \mathbf{\Sigma}^{-1}(x-m)}$ $K = \frac{1}{\sqrt{(2\pi)^{p} \det(\mathbf{\Sigma})}}$ $x \in \mathbb{R}^{p}$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i lpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{\left(a+b\right)^2\left(a+b+1\right)}$	(*)