ED5340 - Data Science: Theory and Practise

L23 - K-Means

Ramanathan Muthuganapathy (https://ed.iitm.ac.in/~raman)

Course web page: https://ed.iitm.ac.in/~raman/datascience.html

Moodle page: Available at https://courses.iitm.ac.in/

- Unsuperivsed no labelling available
- Popular clustering technique
- Social Networks Analysis, Market analysis, etc.

Supervised

- Labelled data
- For classification logistic regression

- No labelling available
- Need to group / cluster them

Visually two classes

Output

Output likely be two classes

Look at this data

How many classes (groups)?

Groupings

- Possibly three
- Centroids are also shown

- Input K (number of classes)
- In this case, K = 2
- Initialise TWO centroid locations (red and blue) (μ_1, μ_2)

- For each data point, find the closest centroid.
- Assign cluster index i.e., $c^{(i)} = \operatorname{index} (1 \text{ or } 2), i = 1 \text{ to m}$

• Update the centroid (μ_1, μ_2) .

• Update cluster index i.e., $c^{(i)} = \operatorname{index} (1 \text{ or } 2), i = 1 \text{ to m}$

• Update the centroid (μ_1, μ_2) .

• Update cluster index i.e., $c^{(i)} = \operatorname{index} (1 \text{ or } 2), i = 1 \text{ to m}$

- Update the centroid (μ_1, μ_2) .
- Algorithm stops as no change in update of the centroids.

Overall algorithm Algorithm

```
Randomly initialise K cluster centroids, m-samples (x^{(1)}, x^{(2)}, \dots, x^{(m)})
Repeat {
    for i = 1 to m
        c^{(i)} = \mathrm{index} (from 1 to K of centroid closest to x^{(i)} )
    for k = 1 to K
        \mu_k = average of points assigned to cluster k
```

- No labelling available
- Need to group / cluster them
- Random initialisation of centroids.

•
$$c^{(1)} = 1$$
, $c^{(2)} = 1$, $c^{(3)} = 1$, $c^{(4)} = 2$, $c^{(5)} = 1$, $c^{(6)} = 2$, $c^{(7)} = 2$, $c^{(8)} = 2$, $c^{(9)} = 2$, $c^{(10)} = 1$, $c^{(11)} = 2$

•
$$\mu_1 = \frac{1}{5} (x^{(1)} + x^{(2)} + x^{(3)} + x^{(5)} + x^{(10)})$$

Updated Centroids

•
$$c^{(1)} = 1$$
, $c^{(2)} = 2$, $c^{(3)} = 1$, $c^{(4)} = 2$, $c^{(5)} = 1$, $c^{(6)} = 2$, $c^{(7)} = 2$, $c^{(8)} = 1$, $c^{(9)} = 2$, $c^{(10)} = 1$, $c^{(11)} = 1$

•
$$\mu_1 = \frac{1}{5} \left(x^{(1)} + x^{(3)} + x^{(5)} + x^{(8)} + x^{(10)} + x^{(11)} \right)$$

- Updated centroids.
- No further change and hence algorithm stops.

Issues

- Wrong initialisation
- How to choose K?

Cost function

•
$$J = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||$$

$$\mu_{c^{(i)}} - Centroid of x^{(i)}$$

How to choose centroids

- Randomly pick K training examples
- Set them to $(\mu_1,\mu_2,\ldots,\mu_k)$ as centroids

How to find K?

- for i = 1 to 100
 - Randomly initialise K-means
 - Run K-means
 - Compute cost function
 - Pick the centroids with min J
- Try k = 2 to 10

Elbow method

Further reading

- Agglomerative clustering
- Dendrogram
- DBSCAN, HDBSCAN

