Lincoln Sand

M1.

579.9: Find the relationship of the fluxions using Newton's rules for the equation $y^2 - a^2 - x\sqrt{a^2 - x^2} = 0$. Put $z = x\sqrt{a^2 - x^2}$.

First, let's differentiate the equation implicitly with respect to time:

Given the equation $y^2 - a^2 - x\sqrt{a^2 - x^2} = 0$, we differentiate implicitly $2y\dot{y} - \frac{d}{dt}(x\sqrt{a^2 - x^2}) = 0$.

Now we need to differentiate $z = x\sqrt{a^2 - x^2}$:

we apply the product rule $\dot{z} = \dot{x}\sqrt{a^2 - x^2} + x\frac{d}{dt}(\sqrt{a^2 - x^2}).$

Using the chain rule on $\sqrt{a^2 - x^2}$, we get $-\frac{x\dot{x}}{\sqrt{a^2 - x^2}}$. Substituting back in, we get $\dot{z} = \dot{x}\sqrt{a^2 - x^2}\left(1 - \frac{x^2}{a^2 - x^2}\right)$.

Simplifying this gives $\dot{z} = \dot{x}\sqrt{a^2 - x^2} \frac{a^2 - 2x^2}{a^2 - x^2}$.

Substituting back again gives us $2y\dot{y} - \dot{x}\sqrt{a^2 - x^2}\frac{a^2 - 2x^2}{a^2 - x^2} = 0.$

Solving for \dot{y} finally yields $\dot{y} = \frac{\dot{x}\sqrt{a^2-x^2}(a^2-2x^2)}{2y(a^2-x^2)}$.

579.24: Given the curve $y^q = x^p \ (q > p > 0)$, show using the transmutation theorem that

$$\int_0^{x_0} y dx = \frac{qx_0 y_0}{p+q}$$

Note that from $y^q = x^p$, it follows that qdy/y = pdx/x and therefore that z = y - xdy/dx = [(q-p)/q]y.

We know from above that $y = x^{p/q}$ and $q \frac{dy}{y} = p \frac{dx}{x}$. This implies that $\frac{dy}{dx} = \frac{p}{q} \frac{y}{x}$.

z is defined as $z = y - x \frac{dy}{dx}$. Substituting from above, we get that $z = \frac{q-p}{q}y$.

We can rewrite this as $z = \frac{q-p}{q} x^{p/q}$.

For the integral, using the transmutation theorem, we get that $\int_0^{x_0} y dx = \frac{q}{q-p} \int_0^{x_0} z dx = \frac{q}{q-p} \int_0^{x_0} x^{p/q} dx$.

This becomes $\frac{q-p}{p} \left(\frac{x^{p/q+1}}{(p/q+1)} \right)_0^{x_0} = \frac{q-p}{q} \frac{x_0^{p/q+1}}{p/q+1}.$

Substituting back gives us $\int_0^{x_0} y dx = \frac{q}{q-p} \left(\frac{q-p}{q} \frac{x_0^{p/q+1}}{p/q+1} \right)$. Simplifying gives us $\frac{qx_0y_0}{p+q}$ as expected.

579.25: Prove the quotient rule $d(\frac{x}{y}) = \frac{ydx - xdy}{y^2}$ by an argument using differentials.

Given $z = \frac{x}{y}$, we can write this as $z = x \cdot y^{-1}$.

Now, we apply the product rule to get $dz = d(x \cdot$ $(y^{-1}) = dx \cdot y^{-1} + x \cdot d(y^{-1}).$

We can calculate $d(y^{-1})$ using the chain rule to get $-y^{-2} \cdot dy$.

Substituting back gives us $dz = dx \cdot y^{-1} + x \cdot -y^{-2} \cdot dy =$

 $\frac{dx}{dy} - \frac{x \cdot dy}{y^2}.$ Using basic algebra to turn this into a common $\frac{dx}{dy} = \frac{y \cdot dx - x \cdot dy}{2}.$ Which is the quotient rule we wanted to prove.

Recall Napier's logarithm Nloq(x) = m if $10^7(1-10^{-7})^m = x$. Show that

$$Nlog(x) + Nlog(y) = Nlog(xy) + Nlog(1)$$

$$10^{7}(1 - 10^{-7})^{m} = x$$
$$10^{7}(1 - 10^{-7})^{n} = y$$

Multiplying these together:

$$10^{7}(1-10^{-7})^{m} \cdot 10^{7}(1-10^{-7})^{n} = 10^{7} \cdot 10^{7}(1-10^{-7})^{m+n}$$

We can write $10^7 \cdot 10^7$ as 10^14 , but this means we have to divide by 10^7 to match Napier's logarithm. So, we have $10^7(1-10^{-7})^{m+n}$.

Now, if we take Napier's logarithm of both sides, we get Nlog(xy) = m + n.

Now, we have to handle Nlog(1).

For x = 1, we have $10^7(1 - 10^{-7})^m = 1$. The only power of any number that will equal 1 is 0. So, m = 0. Thus, Nlog(1) = 0.

Substituting back in gives us:

$$Nlog(x) + Nlog(y) = m + n$$
$$Nlog(xy) + Nlog(1) = m + n + 0$$

Thus, the relation:

$$Nlog(x) + Nlog(y) = Nlog(xy) + Nlog(1)$$

holds for Napier's logarithm.

M3. Show that the binomial series gives

$$\frac{1}{\sqrt{1-t^2}} = 1 + \frac{1}{2}t^2 + \frac{1\cdot 3}{2\cdot 4}t^4 + \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}t^6 + \dots$$

Then use

$$\sin^{-1}(x) = \int_0^x \frac{dt}{\sqrt{1 - t^2}}$$

to derive Newton's series for $\sin^{-1}(x)$.

Part 1: Binomal series for $\frac{1}{\sqrt{1-t^2}}$

First, let's expand it using the binomal series expansion for a power of (1-x). The binomal series expansion for $(1-x)^n$ is given by:

$$(1-x)^n = \sum_{i=0}^{\infty} \binom{n}{i} (-x)^i$$

where $\binom{n}{i} = \frac{n(n-1)...(n-i+1)}{i!}$. For $n = -\frac{1}{2}$ and $x = t^2$, we get:

$$\sum_{i=0}^{\infty} {\binom{-\frac{1}{2}}{i}} (-1)^{i} t^{2i}$$

The binomial coefficient $\binom{-\frac{1}{2}}{i}$ simplifies to:

$$\frac{(-1)^i(1\cdot 3\cdot 5\dots (2i-1))}{2^i\cdot i!}$$

Notice that $\frac{(-1)^i(1\cdot 3\cdot 5...(2i-1))}{2^i\cdot i!}$ simplifies to:

$$\frac{(-1)^i(1\cdot 3\cdot 5\dots (2i-1))}{2\cdot 4\cdot 6\dots (2n)}$$

This means we have:

$$(1-t^2)^{-1/2} = \sum_{i=0}^{\infty} \frac{(-1)^i (1 \cdot 3 \cdot 5 \dots (2i-1))}{2 \cdot 4 \cdot 6 \dots (2n)} t^{2n}$$

We can write this as:

$$\frac{1}{\sqrt{1-t^2}} = \sum_{i=0}^{\infty} \frac{(-1)^i (1 \cdot 3 \cdot 5 \dots (2i-1))}{2 \cdot 4 \cdot 6 \dots (2n)} t^{2n}$$

Part 2: Newton's Series for $\sin^{-1}(x)$

Given $\sin^{-1}(x) = \int_0^x \frac{dt}{\sqrt{1-t^2}}$, substituting the expansion from part 1 gives:

$$\sin^{-1}(x) = \int_0^x (1 + \frac{1}{2}t^2 + \frac{1 \cdot 3}{2 \cdot 4}t^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}t^6 + \dots)dt$$

Integrating by terms yields:

$$\sin^{-1}(x) = \left(t + \frac{1}{2}\frac{t^3}{3} + \frac{1 \cdot 3}{2 \cdot 4}\frac{t^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{t^7}{7} + \dots\right)_0^x$$

This yields:

$$x + \frac{1}{2}\frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4}\frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{x^7}{7} + \dots$$

This is Newton's series for the arcsine function.

M4. Use Fermat's method of ad-equation to find the slope of the curve $f(x) = x^2 - \sqrt{x}$ at x > 0.

Let's increment x by a very small value e:

$$f(x+e) = (x+e)^2 - \sqrt{x+e}$$

$$(x+e)^2 = x^2 + 2xe + e^2$$

For $\sqrt{x+e}$, using the first terms of the Taylor series, we get:

$$\sqrt{x+e} \approx \sqrt{x} + \frac{1}{2\sqrt{x}}e$$

Substituting back gives:

$$f(x+e) \approx x^2 + 2xe + e^2 - \sqrt{x} - \frac{1}{2\sqrt{x}}e^{-\frac{1}{2\sqrt{x}}}$$

Now we subtract f(x) and factor out e:

$$f(x+e) - f(x) = 2xe + e^2 - \frac{1}{2\sqrt{x}}e = e\left(2x + e - \frac{1}{\sqrt{x}}\right)$$

Now we apply adequality. Using adequality, we simplify it to:

$$e(2x - \frac{1}{\sqrt{x}})$$

Then we divide out the e to finally get:

$$f'(x) = 2x - \frac{1}{2\sqrt{x}}$$

M5. Use Newton's version of Newton's method to approximate the root of $x^2 - 2 = 0$ to an accuracy of eight decimal places.

Let's first list the steps involved in Newton's version of Newton's method (according to the class notes):

- 1. Take the current approximation x_i .
- 2. Consider a small change p such that $x_{i+1} = x_i + p$.
- 3. Substitute x_{i+i} into the equation $x^2 2 = 0$ and ignore the higher-order terms of p.
 - 4. Solve for p and update the approximation for x_{i+1} .
 - 5. Repeat until $|p| < 10^{-8}$.

For $f(x) = x^2 - 2$, the linearized equation around x_i is:

$$(x_i - p)^2 - 2 = x_i^2 - 2x_ip + p^2 - 2$$

Since p is small, we ignore p^2 and simplify it to:

$$x_i^2 - 2x_ip - 2 = 0$$

Now, let's solve for p.

$$2x_i p = 2x_i^2 \implies p = \frac{2 - x_i^2}{2x_i}$$

Now, we are trying to approximate $\sqrt{2}$. So let's pick $x_0 = 1.4$ and start iterating.

Iteration 1:

$$x_0 = 1.4$$

$$p_1 = \frac{2 - 1.4^2}{2 \cdot 1.4} \approx 0.014285714285714379$$

$$x_1 = x_0 + p_1 \approx 1.414285714285714379$$

Iteration 2:

$$p_2 = \frac{2 - 1.414285714285714379^2}{2 \cdot 1.414285714285714379} \approx -0.00007215007215011227$$

$$x_2 = x_1 + p_2 \approx 1.4142135642135643$$

Iteration 3:

$$p_3 = \frac{2 - 1.4142135642135643^2}{2 \cdot 1.4142135642135643} \approx -1.8404691290714918 \cdot 10^{-9}$$
$$x_3 = x_2 + p_3 \approx 1.4142135623730951$$

Since $p_3 < 10^{-8}$, x_3 is out final approximation of the root $(\sqrt{2})$.

Note: I used a calculator and had to manually type the numbers above, so if there are any typos/mistakes, I apologize.

M6. Essay on Modern Mathematics Proposal Lincoln Sand

Working title: Infinity and Sets: Georg Cantor's Controversial Set theory

Essay topic description: I want to write about the birth of set theory by Georg Cantor and its controversy.

Interesting fact: Cantor came up with the idea of different "sizes" of infinity with his famous diagonal argument (to prove there were more reals than rationals).

Style manual I will use:

MLA

Two internet references:

1. Ferreirós, J. (2020, June 18). The early development of set theory. Stanford Encyclopedia of Philosophy.

https://plato.stanford.edu/entries/settheory-early/

- 2. Set theory from Cantor to Cohen. (n.d.). https://booksite.elsevier.com/samplechapters/9780444516213/sample.pdf Two journal/book references:
- 1. Zenkin, Alexander (2004), "Logic Of Actual Infinity And G. Cantor's Diagonal Proof Of The Uncountability Of The Continuum", The Review of Modern Logic, vol. 9, no. 30, pp. 27-80

2.

https://www.math.uwaterloo.ca/ xzliu/cantor-set.pdf (will figure out how to MLA citate this second source properly later)