Contrôle de physique N°1

Durée : 1 heure 45 minutes. Barème sur 20 points.

NOM:	
	Groupe
PRENOM:	

Toute étape de raisonnement doit être justifiée.

1. On considère un point O et un point A situé à une hauteur h au-dessus de O et à une distance horizontale d vers la droite de O.

A un instant t=0 , une cible de masse M est lâchée sans vitesse initiale depuis le point A .

On veut atteindre la cible avec un projectile de masse m tiré horizontalement depuis O de sorte que l'instant de l'impact soit le double de l'instant du tir.

Déterminer l'instant du tir, noté t_0 , ainsi que la vitesse de tir, notée \vec{v}_0 .

Rép.
$$\sqrt{\frac{2h}{3g}}$$
, $\frac{d\sqrt{3g}}{\sqrt{2h}}$.

5.5 pts

2. Un rail est fixé sur un chariot de masse M. A un instant donné, on lâche (à vitesse nulle) un boulet de masse m sur le haut du rail. Le boulet descend et quitte le chariot avec une vitesse horizontale. Un appareil de mesure monté sur le chariot indique alors v_0 pour la norme de cette vitesse.

- (a) Mesurée depuis le sol, la norme de la vitesse du boulet, lorsque celui-ci quitte le chariot, est-elle plus petite, égale ou plus grande que v_0 ? Rép. plus petite
- (b) Déterminer la vitesse du chariot une fois que le boulet l'a quitté. Rép. $-\frac{m\vec{v}_0}{m+M}$. Tous les frottements sont négligeables.

3.

Un chariot de masse m supporte un plan incliné d'un angle $\alpha=\frac{\pi}{6}$. Un ressort de constante k et de longueur au repos ℓ_0 est fixé sur le haut du plan. Le ressort retient un bloc de masse M=2m posé contre le plan.

Tous les frottements sont négligeables.

- (a) Lorsque le tout est au repos, que vaut la déformation du ressort? Préciser si le ressort est en compression ou en élongation. Rép. $\frac{mg}{k}$, élongation
- (b) Lorsqu'on exerce une force \vec{F} horizontale vers la droite sur le chariot, que vaut l'accélération du bloc? (On admet que la longueur du ressort s'est stabilisée.) Rép. $\frac{F}{3m}$
- (c) Que vaut alors la déformation du ressort? Rép. $\frac{F+mg\sqrt{3}}{k\sqrt{3}}$

6 pts

- 4. On considère un récipient, ouvert vers le haut et dont le fond est fermé par un bouchon de masse m, de section S et de volume négligeable.
 - (a) On remplit d'eau le récipient jusqu'à une hauteur δ_0 .

Déterminer la force exercée par le fond du récipient sur le bouchon. Rép. $(m+\rho_{\rm eau}\delta_0S)g$

(b) A l'aide d'un fil de longueur L, on relie le bouchon à un flotteur cylindrique de base horizontale A=2S et de masse M.

Pour quelle hauteur d'eau δ la force exercée par le fond du récipient sur le bouchon s'annule-t-elle ? Rép. $\frac{m+M}{\rho_{\rm eau}S}+2L$

Application numérique:

$$m=40\,{\rm g},\,S=20\,{\rm cm}^2,\,M=180\,{\rm g},\,p_a=10^5\,{\rm Pa},\,\delta_0=10\,{\rm cm}$$
 et $L=50\,{\rm cm}.$

6 pts