Laboratory 2 Sample Report

Contents

- Laboratory Report: Fluid Statics
- Introduction
- Materials and Methods
- Results
- Data Analysis
- Discussion
- Conclusions
- References

Laboratory Report: Fluid Statics

Title

Measurement of Bouyancy and Center of Pressure on Submerged Planar Objects

Authors

P. N. Guinn and P. Olar Bear (Team 1)

Objective

Back to top

To investigate fluid statics by measuring puoyancy forces and hydrostatic thrust, and to validate theoretical principles using experimental data.

Introduction

The purpose of this laboratory experiment was to investigate fluid statics through two key objectives:

- 1. Measure the buoyancy force on various objects and verify Archimedes' Principle.
- 2. Determine the hydrostatic thrust acting on a plane surface using a quadrant balance, for both partially and fully submerged conditions.

Materials and Methods

Materials

- Quadrant balance apparatus
- Graduated cylinder
- Thermometer
- Objects for buoyancy testing (rocks, composites, wood samples)
- · Weighing scale
- Water
- Transfer pipette
- Standard weights and hangers

Methods

Part 1: Buoyancy Experiments

- 1. Measured the temperature of water and recorded initial volumes in a graduated cylinder.
- 2. Submerged objects (Rock-1, Rc $$_{\rm Back\ to\ top}$$ \forall recorded displaced volumes.
- 3. Repeated measurements three times for each object to ensure accuracy.
- 4. Recorded data for each object, including mass and displacement.

Part 2: Hydrostatic Forces

- 1. Set up the quadrant balance and trimmed it to ensure the plane surface was vertical.
- 2. Conducted trials for partially submerged conditions by adjusting weights and water levels.
- 3. Conducted trials for fully submerged conditions by further submerging the plane surface.
- 4. Recorded water depths h and widths b of the free surface for all trials.

Results

Buoyancy Experiments

				V_o	V_o		submerged
Material	$V_{initial}$	V_{final}	ΔV	geometry	displacement	mass	
Rock-1							
Rock-2							
Composite-1							
Composite-2							
Wood-1							
Wood-2							

Quadrant Balance (Partial Submerge)

Back to top

	Trial	mass (grams)	h mm	b mm
	1			
	2			
	3			
Print to PD	F ▶ 4			
	5			

Quadrant Balance (Fully Submerge)

Trial	mass (grams)	$h \ mm$	$b \ mm$
1			180
2			180
3			180
4			180
5			180

Data Analysis

Part 1: Buoyancy

- 1. Calculated the displaced volume ΔV for each object.
- 2. Determined buoyancy forces $F_{\cdot \cdot}$ Back to top

$$F_B =
ho_{ ext{water}} \cdot \Delta V \cdot g$$

- 3. Compared calculated object volumes with geometry-based volumes.
- 4. Verified Archimedes' Principle for floating and submerged objects.

Part 2: Hydrostatic Forces

1. Calculated moments M for all trials using:

$$M = W \cdot \left(\frac{3b}{8}\right) \cdot h$$

- 2. Plotted M vs. h for fully submerged trials and determined the slope.
- 3. Derived specific weight γ_w of water and compared it to standard values.
- 4. Evaluated partially submerged data by plotting:

$$M+rac{\gamma_wWR_2^2h}{2} \quad ext{vs.} \quad h^3$$

Discussion

- Archimedes' Principle: Confirmed that buoyant forces matched theoretical predictions for displaced water volumes. Floating objects adhered closely to calculated masses.
- 2. **Hydrostatic Forces**: Experimental results for center of pressure and moments were consistent with theoretical expectations. Minor deviations were attributed to setup precision and measurement errors.
- 3. **Potential Improvements**: Better calibration of the quadrant balance and more trials could enhance result accuracy.

Conclusions

Back to top

This experiment validated Archimedes' Principle and hydrostatic force theory using hands-on experimentation. The buoyancy and hydrostatic thrust analyses provided

foundational insights into fluid statics, bridging theory and practice.

References

- 1. Holman, J.P., Experimental Methods for Engineers, 8th Ed., McGraw-Hill, 2012.
- 2. Laboratory 2 Example Report, CE 3105 Materials.
- 3. Relevant data from textbooks and online resources for water density at measured temperatures.

Back to top

6 of 6