Slides

If the two outcomes are *not* mutually exclusive:

$$P({2 \times H} \cup {3 \times H}) = \frac{4}{8} + \frac{1}{8} - \frac{1}{8} = \frac{4}{8} = 0.5$$

$$P\left(\left\{2\times H\right\}\cap\left\{1\times T\right\}\right)+P\left(3\times H\right)$$

- the mean of x is 9
- the variance of x is 11
- the mean of y is 7.50
- the variance of y is 4.125
- the correlation coefficient of x and y is 0.816
- the best fit line is given by y = 3.00 + 0.500x

$$P(H,H,T) + P\left(\fbox{,},\fbox{;} \right) - P\left(H,H,H\cap \fbox{,},\fbox{;} \right)$$

$$p = 2/3$$

We failed to reject H_{\circ} for $\hat{p} = \frac{2}{5} = 0.4$. How about $\hat{p} = \frac{6}{15} = 0.4$?

$$k \in R$$

Next, how about $\hat{p} = \frac{12}{30} = 0.4$?

Which values of p are compatible with the observation of k = 2 successes out of n = 5 claims?

$$P(k \le 2 | p = 2/3, n = 5) = \sum_{i=0}^{2} {5 \choose i} (2/3)^{i} (1/3)^{n-i} = 0.21 \ge \alpha/2$$

Assuming that H_{\circ} is true, the probability of incurring a type-I error is:

1 experiment: $\alpha = 5\%$

2 experiments:
$$1 - (1 - \alpha)^2 = 9.75\%$$

3 experiments:
$$1 - (1 - \alpha)^3 = 14\%$$

48 experiments:
$$1-(1-\alpha)^{48}=91.5\%$$

$$N$$
 experiments: $1-(1-\alpha)^N\%$

Bonferroni correction: α/N

What is λ ?

the binomial distribution

the Poisson distribution

What is so normal about the Gaussian distribution?

What is s[z]?

$$s[d] = \sqrt{s[x]^2 + s[y]^2}$$

$$z = x + y$$

$$z = x - y$$

$$s[z]^2 = s[x]^2 + s[y]^2$$

$$z = xy$$

$$\left(\frac{s[z]}{z}\right)^2 = \left(\frac{s[x]}{x}\right)^2 + \left(\frac{s[y]}{y}\right)^2$$

$$s[y]^2 = y^2 \left(2\frac{s[t]}{t}\right)^2$$

 $2 \times 0.0000042 = 0.0000084 < \alpha$

 $P(\geq 9.0 \text{ earthquake})$?

$$\frac{44 + 51 + 79 + 65 + 27 + 31 + 4 + 355 + 22 + 352 + 287 + 7 + 287 + 339 + 0}{276 + 342 + 355 + 334 + 296 + 7 + 17 + 351 + 349 + 37 + 339 + 40 + 324 + 325 + 334}$$

 $= 189.2^{\circ}$

$$\sin[\theta \pm \phi] = \sin[\theta]\cos[\phi] \pm \cos[\theta]\sin[\phi]$$

$$359^{\circ} - 1^{\circ} = 2^{\circ}$$

$$\bar{R} = 0.88$$

$$s_c = 0.51$$

$$s_c = 2.04$$

X	0.85	0.84	0.83	0.8	0.77	0.75	0.74	0.73	0.71	0.6
У	0.53	0.54	0.56	0.6	0.64	0.66	0.67	0.68	0.71	0.8
X	-0.87	-0.85	-0.83	-0.8	-0.77	-0.75	-0.74	-0.73	-0.69	-0.64
У	-0.50	-0.53	-0.56	-0.6	-0.64	-0.66	-0.67	-0.68	-0.72	-0.77

Quizzes

Given k = 9 successes out of n=10 binomial trials, carry out a hypothesis test for

 $H_0: p = 0.6$

versus

 $H_a: p > 0.6$

at a 95% confidence level.

Can the null hypothesis be rejected?

Given k = 9 successes out of n=10 binomial trials, carry out hypothesis test of

 $H_{\circ}: p = 0.6$

versus

 $H_a: p \neq 0.6$

at a 95% confidence level.

Can the null hypothesis be rejected?

Given k = 9 successes out of n=10 trials, carry out a hypothesis test for

$$H_{\circ}: p = 0.6$$

versus

 $H_a: p < 0.6$

at a 95% confidence level?

X	0	1	2	3	4	5	6	7	8	9	10
P(X)	0.006	0.040	0.12	0.21	0.25	0.20	0.11	0.042	0.011	0.0016	0.00001
$P(x \le X)$	0.006	0.046	0.17	0.38	0.63	0.83	0.95	0.990	1	1	1
$P(x \ge X)$	1	0.994	0.954	0.833	0.618	0.367	0.166	0.055	0.0123	0.0017	0.0001

Can the null hypothesis be rejected?