Projet long 3ème année ENSEEIHT:

Classification spectrale parallèle appliquée à la segmentation d'images hyperspectrales

Encadrants:

Sandrine Mouysset: sandrine.mouysset@irit.fr Ronan Guivarch: ronan.guivarch@enseeiht.fr

Equipe Algorithmes Parallèles et Optimisation (APO-IRIT)

Classification non supervisée

Principe

Partitionner un ensemble de données de dimension $n \times p$ en K classes de telle sorte que les données appartenant à la même classe soient le plus semblable possible et des données de classes différentes le moins semblable possible.

Figure: Exemple de classification non supervisée

Parallélisation de la classification spectrale

Classification spectrale

consiste à créer, à partir des éléments spectraux d'une matrice d'affinité gaussienne, un espace de dimension réduite dans lequel les données sont regroupées en classes.

Parallélisation de la classification spectrale

Classification spectrale parallèle

Parallélisation basée sur une décomposition en sous-domaines

→ Code en Fortran, Parallélisation MPI, bibliothèque numérique LAPACK

Figure: Exemple de segmentation d'images : n = 155040 points

Parallélisation de la classification spectrale

Problème:

Limitation liée à la capacité mémoire des processeurs.

→ Etude préliminaire de seuillage de la matrice affinité.

Objectifs du projet long

- Mise en place de données creuses pour la matrice affinité;
 - \rightarrow Programmation
- Solveurs adaptés aux matrices creuses (ARPACK...);
 - → Etudes numériques de la stratégie de parallélisation
- Tests sur des images hyperspectrales, objets 3D, biopuce...
 - → Applications dans divers domaines