Formulário

Electromagnetismo (LEI-2010/11)

_	10
Carga eléctrica do electrão	e=1.6x10 ⁻¹⁹ C
Massa do electrão	m _e =9.1x10 ⁻³¹ kg
Permitividade eléctrica do vazio	$\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$
Constante de Coulomb	$k = \frac{1}{4\pi\varepsilon_0} \approx 9x10^9 Nm^2 C^{-2}$
Densidade linear de carga	$\lambda = \frac{Q}{L}$
Densidade superficial de carga	$\sigma = \frac{Q}{A}$
Densidade volúmica de carga	$\lambda = \frac{Q}{L}$ $\sigma = \frac{Q}{A}$ $\rho = \frac{Q}{V}$
Lei de Coulomb	$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}$
Campo Eléctrico de uma carga pontual	$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}$ $\vec{E} = \frac{\vec{F}}{q_0}$
Lei de Gauss	$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\varepsilon_{o}}$
Aplicações da Lei de Gauss	Magnitude do campo eléctrico
Carga pontual (q)	$E = k \frac{q}{r^2}$
Placa isoladora infinita com densidade superficial de carga (σ)	$E = \frac{\sigma}{2\epsilon_0}$
Linha de carga infinita com densidade linear de carga (λ)	$E = \frac{\lambda}{2\pi\varepsilon_0 r}$
Esfera isoladora (raio a) com carga Q uniformemente distribuída	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (r \ge a)$
	1 0
	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{a^3} r (r < a)$
Casca esférica de (raio a) com carga Q	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r^2} (r \ge a)$
Casca esférica de (raio a) com carga Q	· · · · · · · · · · · · · · · · · · ·
Casca esférica de (raio a) com carga Q Placa condutora infinita com densidade superficial de carga (σ)	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (r \ge a)$ $E = 0 (r < a)$
Placa condutora infinita com densidade superficial	$E = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2} (r \ge a)$ $E=0 \qquad (r < a)$

Variação da energia potencial eléctrica de uma carga pontual	$\Delta \mathbf{U}_{\mathbf{A} \to \mathbf{B}} = \mathbf{U}_{\mathbf{B}} - \mathbf{U}_{\mathbf{A}} = -\mathbf{W}_{\mathbf{A} \to \mathbf{B}}$
Energia potencial eléctrica de um sistema de duas cargas pontuais	$U_{P} = k \frac{q_{1}q_{2}}{r_{12}}$
Potencial de uma carga pontual	$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$
Diferença de potencial	$\Delta V = V_f - V_i = -\frac{W}{q}$ $\Delta V = V_f - V_i = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U}{q}$ $V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$
Diferença de Potencial num campo eléctrico uniforme	$\Delta V_{A\to B} = -E d$