

双电源至单电源反相放大器电路

设计目标

输入		输出		电源			
V_{iMin}	V_{iMax}	V_{oMin}	V_{oMax}	V _{cc}	V _{ee}	V_{dd}	V_{ref}
-10V	+10V	+0.2V	+4.8V	+15V	-15V	+5V	+4.096V

设计 说明

该双电源至单电源反相放大器可将 ±10V 信号转换为 0V 至 5V 信号,以用于 ADC。可以使用给定的公式轻 松调节电平。只要第一级输出为低阻抗,就可以将缓冲器替换为其他 ±15V 配置,以适应所需的输入信号。

设计说明

- 1. 观察输入缓冲器的共模限制。
- 2. 如果不使用缓冲放大器 U1,那么高阻抗源将改变 U_2 的增益特性。
- 3. 如果 $\pm 15V$ 电源在 5V 电源之前出现,那么 R_6 会为 U_1 的输出提供接地路径。这可以通过 R_1 、 R_2 和 R_6 创建的分压器限制 U_2 的反相引脚上的电压,并防止 U_2 以及可能连接到其输出的任何转换器损坏。为了向器件提供最佳的保护,应在 U_2 的电源引脚上使用瞬态电压抑制器 (TVS)。
- 4. R_5 上的电容器将有助于对 V_{ref} 进行滤波并提供更干净的 V_{shift} 。

设计步骤

此电路的传递函数遵循:

$$V_{o} = -\frac{R_{2}}{R_{1}} \times V_{i} + (1 + \frac{R_{2}}{R_{1}}) \times V_{shift}$$

1. 设置放大器的增益。

$$\begin{array}{l} \frac{\Delta V_o}{\Delta V_i} = \frac{V_{oMax} - V_{oMin}}{V_{iMax} - V_{iMin}} = \frac{4.8V - 0.2V}{10 \, V - (-10 \, V)} = 0.23 \\ \frac{\Delta V_o}{\Delta V_i} = \frac{R_2}{R_1} \end{array}$$

$$R_2 = 0.23 \times R_1$$

Choose $R_1 = 100k\Omega$ (standard value)

 $R_2 = 23 k\Omega$ (for standard values use $22 k\Omega$ and $1 k\Omega$ in series)

2. 设置 V_{shift},以将信号转换为单电源。

At midscale,
$$V_{in} = 0V$$

Then
$$V_o = (1 + \frac{R_2}{R_1}) \times V_{shift}$$

$$V_{shift} = \frac{V_o}{(1 + \frac{R_2}{R_4})} = \frac{2.5V}{1.23} = 2.033V$$

3. 为基准电压分压器选择电阻器,以实现 V_{shift}。

$$V_{\text{ref}}\!=4.096V$$

$$V_{\text{shift}} = V_{\text{ref}} \times \frac{R_5}{(R_3 + R_4) + R_5}$$

$$V_{\text{shift}} = 2.033V \qquad R_5$$

$$rac{V_{shift}}{V_{ref}} = rac{2.033V}{4.096V} = rac{R_5}{(R_3 + R_4) + R_5}$$

$$R_3 + R_4 = 1.0161 \times R_5$$

Select a standard value for R₅

$$R_5 = 10k\Omega$$

$$R_3+R_4=10.161k\Omega$$

$$R_3 = 10k\Omega$$

$$R_4 = 162\Omega$$
 (standard 1% value)

4. 大反馈电阻器可能与输入电容相互作用,从而导致不稳定。选择 C_1 ,以便为传递函数添加一个极点,从而抵消该不稳定性。极点的频率必须低于运算放大器的有效带宽。

$$C_1 = 43pF$$

$$f_p = \frac{1}{2\pi \times R_2 \times C_1} = 160.3 kHz$$

设计仿真

直流仿真结果

交流仿真结果

设计参考资料

请参阅《模拟工程师电路说明书》,了解有关TI综合电路库的信息。

请参阅 TINA-TI™ 电路仿真文件 SBOMAT9。

请参阅 TIPD148, http://www.ti.com.cn/tool/cn/TIPD148。

设计采用的运算放大器

OPA376				
V _{ss}	2.2V 至 5.5V			
V _{inCM}	Vee 至 Vcc-1.3V			
V _{out}	轨至轨			
V _{os}	5µV			
I _q	760µA/通道			
I _b	0.2pA			
UGBW	5.5MHz			
SR	2V/μs			
通道数	1、2、4			
http://www.ti.com.cn/product/cn/opa376				

设计采用的运算放大器

OPA140				
V_{ss}	4.5V 至 36V			
V _{inCM}	Vee-0.1V 至 Vcc-3.5V			
V_{out}	轨至轨			
V _{os}	30μV			
I _q	1.8mA/通道			
I _b	±0.5pA			
UGBW	11MHz			
SR	20V/µs			
通道数	1、2、4			
http://www.ti.com.cn/product/cn/opa375				

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司