Math 185 Quiz 3

Don't forget to write down clearly your **Name**:

and ID number:

1. True or False (10 points). Mark "T" (True) in front of a correct statement and "F" (False) in front of a wrong one.

____ The series $\sum_{k=0}^{\infty} (\frac{1}{2} + \frac{i}{2})^k$ converges.

Let $\{f_n(z)\}$ be a sequence of analytic functions on a domain that converges uniformly to f(z), then f(z) is analytic.

____ Any Taylor series $\sum_{k=0}^{\infty} a_n z^n$ has a positive radius R>0 of convergence.

____ The Taylor series for the function $\frac{1}{1-z}$ at the point z=-1 has radius of convergence 2.

____ The function $f(z) = z^2$ is analytic at infinity.

2. Taylor series (5 points). Find the Taylor series expansion for the analytic function

$$f(z) = \sin z$$

at $z = -\pi$, and find the radius of convergence.

3. Uniqueness principle (5 points). Prove that the identity

$$\sin(z + \frac{\pi}{3}) = \frac{1}{2}\sin z + \frac{\sqrt{3}}{2}\cos z$$

holds for any complex numbers $z\in\mathbb{C}.$