Mat+Inf I, Ianuarie 2017, Nr. 1

- 1. Să se dezvolte funcțiile în jurul punctelor indicate: a) $f(x)=\frac{1}{7x+3},\ a=0$; b) $f(x)=\frac{1}{7x+3},\ a=1$; c) $f(x)=\frac{1}{x^2-5},\ a=0$. 2. Să se scrie jacobiana J_f și expresia diferențialei df într-un punct curent
- pentru funcțiile:

 - a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x,y) = (xy^3 4xy, 5x^3y y^2)$; b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $f(x,y) = (\sin(11x + 3y), x^3y^4, e^{x-2y^2})$;
 - c) $f: \mathbb{R} \times \mathbb{R}^* \times \mathbb{R} \longrightarrow \mathbb{R}^2$, $f(x,y,z) = \left(y^2z z^2e^{x^2+y^2}, -\frac{x^2z}{y}\right)$. 3. Să se determine punctele de extrem ale funcției: a) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = 9x^2 + 9y^2 + 9z^2 9xy + 9x 18z 1$;
- a) $f: \mathbb{R}^{\circ} \to \mathbb{R}$, $f(x,y,z) = 9x^2 + 9y^2 + 9z^2 9xy + 9x 18z 1$; b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + y^3 \frac{1}{3}xy$; c) $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$, $f(x,y) = xy \ln(x^2 + y^2) + 1$. 4. a) Pentru $f: \mathbb{R} \times \mathbb{R}^* \longrightarrow \mathbb{R}$, $f(x,y) = B(-x/y^2, -3xy)$ să se calculeze $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ $(B: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $B \in C^1(\mathbb{R}^2)$. b) Pentru $c: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $c(x,y,z) = u(x^2yz, yz 3zx xy)$ să se calculeze $\frac{\partial c}{\partial x}$, $\frac{\partial c}{\partial y}$, $\frac{\partial c}{\partial z}$, unde $u: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $u \in C^1(\mathbb{R}^2)$.
- c) Pentru $z(x,y) = x \cdot \varphi(\sin x + y)$ să se calculeze $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ ($\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, $\varphi \in C^1(\mathbb{R})$.