EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Content (Brief)

1. Operational Amplifiers

- * Ideal Op-Amps
 - Open-loop gain
 - **❖** Input resistance
 - Output resistance

- ** Characteristics of Real Op-Amps
 - Open-loop transfer function
 - Voltage gains
 - Bandwidth
 - Slew rate
 - Power bandwidth
 - Clipping
 - Offset voltages and currents
 - Rejection ratios

Characteristics of Real Op-Amps

- Spen loop transfer function
- Soltage gains
- Sandwidth
- **Slew** rate
- Specified Power bandwidth
- **%** Clipping
- Solution of the second of t
- **SP** Rejection ratios

Electrical Characteristics

(VCC = 15V, VEE = - 15V. TA = 25 $^{\circ}$ C, unless otherwise specified)

Parameter		Symbol	Conditions		KA	Unit			
		Symbol	Col	Min.	Тур.	Max.	1 Uni		
land to Office A Viole		1/10	Rs≤10KΩ		-	2.0	6.0	>	
Input Offset Volta	age	Vio	Rs≤50Ω		-	-	-	⊢mV	
Input Offset Volta Adjustment Rang		VIO(R)	VCC = ±20V		-	±15	-	mV	
Input Offset Curre	ent	lio		-	-	20	200	nA	
Input Bias Currer	nt	IBIAS		-	-	80	500	nA	
Input Resistance	(Note1)	Rı	Vcc =±20V		0.3	2.0	-	ΜΩ	
Input Voltage Ra	nge	V _I (R)		-	±12	±13	-	V	
Larga Signal Valt	taga Cain	Cu	R _L ≥2KΩ	V _{CC} =±20V, V _{O(P-P)} =±15V	-	-	-	V/m	
Large Signal Volt	lage Galli	G∨		V _{CC} =±15V, V _{O(P-P)} =±10V	20	200	-	1 V/III	
Output Short Circuit Current		Isc	-		-	25	-	mA	
Output Voltage Swing		Vo(D D)	Vcc = ±20V	RL≥10KΩ	-	-	-	V	
				RL≥2KΩ	-	-	-		
Output Voltage S	wing	VO(P-P)	Vcc = ±15V	RL≥10KΩ	±12	±14	-	v	
				RL≥2KΩ	±10	±13	-		
Common Mode F	Peiection Patio	CMRR	Rs≤10KΩ, VcN	n = ±12V	70	90	-	dB	
Common wode r	rejection ratio	CIVILLY	Rs≤50Ω, VcM	= ±12V	-	-	-] ub	
Power Supply Pe	piaction Patio	PSRR	VCC = ±15V to Rs≤50Ω	VCC = ±15V	-	-	-	dB	
Power Supply Rejection Ratio		FORK	V _{CC} = \pm 15V to V _{CC} = \pm 15V R _S \leq 10KΩ		77	96	-	ub	
Transient	Rise Time	TR	Linita Cain		-	0.3	-	μs	
Response	Overshoot	os	Unity Gain		-	10	-	%	
Bandwidth		BW	-		-	-	-	MH	
Slew Rate		SR	Unity Gain		-	0.5	-	V/µ	
Supply Current		Icc	RL= ∞Ω		-	1.5	2.8	mA	
Power Consumption		Pc	Vcc = ±20V	-	-	-	mV		
			Vcc = ±15V	-	50	85] ''' ' '		

CMRR (Common Mode Rejection Ratio)

Electrical Characteristics

(VCC = 15V, VEE = - 15V. TA = 25 °C, unless otherwise specified)

Parameter		Ch.a.l	Symbol Conditions		KA	I Imit			
		Symbol	_ Co	Min.	Тур.	Max.	Unit		
Input Offset Voltage		1/10	Rs≤10KΩ	-	2.0	6.0	m\/		
input Onset voita	ige	Vio	Rs≤50Ω		-	-	-	mV	
Input Offset Volta Adjustment Rang		VIO(R)	VCC = ±20V		-	±15	-	mV	
Input Offset Curre	ent	lio		-	-	20	200	nA	
Input Bias Currer	nt	IBIAS		-	-	80	500	nA	
Input Resistance	(Note1)	Rı	Vcc =±20V		0.3	2.0	-	MΩ V V/mV mA	
Input Voltage Ra	nge	V _I (R)		-	±12	±13	-		
Larga Cignal Valt	togo Coin	Cu	R _L ≥2KΩ	V _{CC} =±20V, V _{O(P-P)} =±15V	-	-	-		
Large Signal Voltage Gain		G∨		V _{CC} =±15V, V _{O(P-P)} =±10V	20	200	-	V/IIIV	
Output Short Circ	cuit Current	Isc	-		-	25	-	mA	
Output Voltage Swing		VO(P-P)	Vcc = ±20V	RL≥10KΩ	-	-	-		
				RL≥2KΩ	-	-	-	1 .,	
			VCC = ±15V	RL≥10KΩ	R _L ≥10KΩ ±12		-	V	
				R _L >2KΩ	±10	±13	-]	
Common Mode F	Daigation Datia	CMDD	Rs≤10KΩ, Vc	_M = ±12V	70	90	-	dB	
Common Mode F	Rejection Ratio	CMRR	Rs≤50Ω, VcM	= ±12V	-	-	-	l ub	
Dower Supply Bo	oioation Datio	PSRR	VCC = ±15V to Rs≤50Ω	VCC = ±15V	-	-	-	dB	
Power Supply Rejection Ratio		PORK	V _{CC} = ±15V to R _S ≤10KΩ	77	96	-	ub		
Transient	Transient Rise Time		- Unity Gain		-	0.3	-	μs	
Response Overshoot		os			-	10	-	%	
Bandwidth		BW	-		-	-	-	MHz	
Slew Rate		SR	Unity Gain		-	0.5	-	V/µs	
Supply Current		Icc	RL= ∞Ω		-	1.5	2.8	mA	
Power Consumed	tion	PC	V _C C = ±20V	-	-	-	mW		
Power Consumption		"	VCC = ±15V	-	50	85] '''۷		

Ground Noise Problem???

\$\mathscr{C}\$ How to overcome this issue?

Ground Noise Problem???

CMRR (Common Mode Rejection Ratio)

- **Solution** There are two main causes of common-mode noise:
- 1. Noise is generated in the wires and cables, due to electromagnetic induction, etc., and it causes a difference in potential (i.e., noise) between the signal source ground and the circuit ground.
- 2. Current flowing into the ground of a circuit from another circuit causes a ground potential rise (noise).

- * One of the most important specification and Op-Amp parameter.
- * Unwanted signals (noise) appearing with the same polarity on both input lines are essentially cancelled by the op-amp and do not appear on the output.
- i.e. two input signals will cancel and resulting a zero output voltage.
- This action is called *common-mode rejection*. The parameter is called as CMRR (common-mode rejection ratio).

- ** Ideally, an op-amp provides a very high gain for differential-mode signals and zero gain for common-mode signals.
- If unwanted signals appears commonly on both op-amp inputs, output will not be zero.
- Common-mode signals (noise) are generally the result of the radiated energy on the input lines, from adjacent lines, the 50Hz power line or other sources.

- ** Practical op-amps have a very small common-mode gain (usually much less than 1), while providing a high open-loop differential voltage gain (usually several thousand).
- The higher the open-loop gain (compared to the common-mode gain), the better the performance of the op-amp in terms of rejection of common-mode signals.
- This suggests that a good measure of the op-amp's performance in rejecting unwanted common-mode signals is the ratio of the open-loop differential voltage gain, A_{ol} , to the common-mode gain, A_{cm} .
- * The common-mode rejection ratio, CMRR can be calculated as:

$$CMRR = \frac{A_{ol}}{A_{cm}}$$

- \$\mathbb{G}\$ The higher the CMRR, the better.
- A very high value of CMRR means that the open-loop gain, A_{ol} , is high and the common-mode gain, A_{cm} , is low.
- The CMRR is often expressed in decibels (dB) as

$$CMRR = \frac{A_{ol}}{A_{cm}} \qquad CMRR = 20 \log_{10} \left(\frac{A_{ol}}{A_{cm}}\right)$$

- The **open-loop voltage gain**, *Aol*, of an op-amp is the internal voltage gain of the device and represents the ratio of output voltage to input voltage when there are no external components.
- The open-loop voltage gain is set entirely by the internal design. Open-loop
- woltage gain can range up to 200,000 (106 dB) and is not a well-controlled parameter. Datasheets often refer to the open-loop voltage gain as the *large-signal voltage gain*.

- \$\mathbb{G}\$ If CMRR is100,000, what does it mean?
- A CMRR of 100,000, for example, means that the desired input signal (differential) is amplified 100,000 times more than the unwanted noise (common-mode).
- If the amplitudes of the differential input signal and the common-mode noise are equal, the desired signal will appear on the output 100,000 times greater in amplitude than the noise.
- \$\text{\text{Thus}}\$ Thus, the noise or interference has been essentially eliminated.

Output Voltage Swing $(V_{O(P-P)})$

- With no input signal, the output of an op-amp is ideally 0 V.
- This is called the quiescent output voltage.
- When an input signal is applied, the ideal limits of the peak-to-peak output signal are $\pm V_{cc}$
- In practice, however, this ideal can be approached but never reached.
- $V_{O(P-P)}$ varies with the load connected to the op-amp and increases directly with load resistance.
- \$\mathbb{G}\text{ For example, from the KA741 datasheet}

Parameter	Symbol	Con	KA741/KA741I			Unit	
rai ailletei	Symbol	Conditions		Min.	Тур.	Max.	Onic
Output Voltage Swing	VO(P-P)	V _C C = ±20V	RL≥10KΩ	-	-	-	
			RL≥2KΩ	-	-	-	V
		VCC = ±15V	RL≥10KΩ	±12	±14	-	V
			RL≥2KΩ	±10	±13	-	

EE254: Electronic Instrumentation

Output Voltage Swing $(V_{O(P-P)})$

- Some op-amps do not use both positive and negative supply voltages.
- One example is when a single dc voltage source is used to power an op-amp that drives an analog-to-digital converter.
- In this case, the op-amp output is designed to operate between ground and a full scale output that is near (or at) the positive supply voltage.
- Spontage on a single supply use the terminology V_{OH} and V_{OL} to specify the maximum and minimum output voltage. (Note that these are not the same as the digital definitions of V_{OL} and V_{OH} .)

Input Offset Voltage

- The ideal op-amp produces zero volts out for zero volts in.
- In a practical op-amp, however, a small dc voltage, VOUT(error), appears at the output when no differential input voltage is applied. Its primary cause is a slight mismatch of the base-emitter voltages of the differential amplifier input stage of an op-amp.
- As specified on an op-amp datasheet, the input offset voltage, VOS, is the differential dc voltage required between the inputs to force the output to zero volts.
- Typical values of input offset voltage are in the range of 2 mV or less. In the ideal case, it is 0 V.

Parameter	Symbol	Conditions	KA	741/KA	741I	Unit
Farailletei	Symbol		Min.	Тур.	Max.	Oilit
Input Offset Voltage	Vio	Rs≤10KΩ	-	2.0	6.0	mV
Input Onset voltage	V 10	Rs≤50Ω	-	-	-	1110

Input Bias Current

- You have seen that the input terminals of a bipolar differential amplifier are the transistor bases and, therefore, the input currents are the base currents.
- The input bias current is the dc current required by the inputs of the amplifier to properly operate the first stage.
- By definition, the input bias current is the average of both input currents and is calculated as follows:

$$I_{BIAS} = \frac{I_1 + I_2}{2}$$

Input Impedance

- \$\text{\text{Two basic ways of specifying the input impedance of an op-amp are the differential and the common mode.}}
- The differential input impedance is the total resistance between the inverting and the noninverting inputs (a).
- Differential impedance is measured by determining the change in bias current for a given change in differential input voltage.
- The common-mode input impedance is the resistance between each input and ground and is measured by determining the change in bias current for a given change in common-mode input voltage (b).

Input Offset Current

- Market Ideally, the two input bias currents are equal, and thus their difference is zero.
- In a practical op-amp, however, the bias currents are not exactly equal.
- The input offset current, I_{OS} , is the difference of the input bias currents, expressed as an absolute value.

$$I_{OS} = |I_1 - I_2|$$

Input Offset Current

- Actual magnitudes of offset current are usually at least an order of magnitude (ten times) less than the bias current.
- In many applications, the offset current can be neglected.
- \mathfrak{S} However, high-gain, high-input impedance amplifiers should have as little I_{OS} as possible because the difference in currents through large input resistances develops a substantial offset voltage, as shown in Figure

Input Offset Current

The offset voltage developed by the input offset current is

$$V_{OS} = I_1 R_{in} - I_2 R_{in} = (I_1 - I_2) R_{in}$$

$$V_{OS} = I_{OS}R_{in}$$

The error created by I_{OS} is amplified by the gain A_v of the op-amp and appears in the output as

$$V_{OUT(error)} = A_v I_{OS} R_{in}$$

Output Impedance

The *output impedance* is the resistance viewed from the output terminal of the op-amp.

23

Slew Rate

- \$\text{\text{The maximum rate of change of the output voltage in response to a step input voltage is the slew rate of an op-amp.}
- The slew rate is dependent upon the high-frequency response of the amplifier stages within the op-amp.

Slew rate is measured with an op-amp connected as shown in Figure.

(a) Test circuit

Slew Rate

It gives a worst-case (slowest) slew rate. Recall that the high frequency components of a voltage step are contained in the rising edge and that the upper critical frequency of an amplifier limits its response to a step input.

For a step input, the slope on the output is inversely proportional to the upper critical frequency.

- Slope increases as upper critical frequency decreases.
- A pulse is applied to the input and the resulting ideal output voltage is indicated in Figure

(b) Step input voltage and the resulting output voltage

Slew Rate

- The width of the input pulse must be sufficient to allow the output to "slew" from its lower limit to its upper limit.
- A certain time interval Δt , is required for the output voltage to go from its lower limit $-V_{max}$ to its upper limit $+V_{max}$ once the input step is applied.
- The slew rate is expressed as

Slew rate =
$$\frac{\Delta V_{out}}{\Delta t}$$

Where;

$$\Delta V_{out} = +V_{max} - (-V_{max})$$

The unit of slew rate is volts per microsecond $(V/\mu s)$.

(b) Step input voltage and the resulting output voltage

Comparison of Op-Amp Parameters

- As you can see from the table, there is a wide difference in certain specifications.
- All designs involve certain compromises, so in order for designers to optimize one parameter, they must often sacrifice another parameter.
- She Choosing an op-amp for a particular application depends on which parameters are important to optimize.
- Parameters depend on the conditions for which they are measured.
- For details on any of these specifications, consult the datasheet.

Comparison of Op-Amp Parameters

OP-AMP	CMRR (dB) (TYP)	OPEN- LOOP GAIN (dB) (TYP)	GAIN- BANDWIDTH PRODUCT (MHz) (TYP)	INPUT OFFSET VOLTAGE (mV) (MAX)	INPUT BIAS CURRENT (nA) (MAX)	SLEW RATE (V/µs) (TYP)	¹ Depends on gain; g ² Depends on gain; g ³ Small signal
AD8009	50	N/A	3201	5	150	5500	Extremely fast, low distortion, uses current feedback
AD8055	82	71		5	1200	1400	Low noise, fast, wide bandwidth, gain flatness 0.1 dB, video driver
ADA4891	68	90 ²		2500	0.002	170	CMOS-extremely low bias current, very fast, useful as video amplifier
ADA4092	85	118	1.3	0.2	50	0.4	Single supply (2.7 V to 36 V) or two supply operation, low power
FAN4931	73	102	4	6	0.005	3	Low cost CMOS, low power, output swings to within 10 mV of rail, extremely high input resistance
FHP3130	95	100	60	1	1800	110	High current output (to 100 mA)
FHP3350	90	55	190	1	50	800	High speed; useful as video amp
LM741C	70	106	1	6	500	0.5	General-purpose, overload protection, industry standard
LM7171	110	90	100	1.5	1000	3600	Very fast, high CMRR, useful as an instrumentation amplifier
LMH6629	87	79	800^{3}	0.15	23000	530	Fast, ultra low noise, low voltage
OP177	130	142		0.01	1.5	0.3	Ultra-precision; very high CMRR and stability
OPA369	114	134	0.012	0.25	0.010	0.005	Extremely low power, low voltage, rail-to-rail.
OPA378	100	110	0.9	0.02	0.15	0.4	Precision, very low drift, low noise
OPA847	110	98	3900	0.1	42,000	950	Ultra low-noise, wide bandwidth amplifier, voltage feedback

Comparison of Op-Amp Parameters

- There is a wide difference in certain specifications, in the table.
- All designs involve certain compromises, so in order for designers to optimize one parameter, they must often sacrifice another parameter.
- Shoosing an op-amp for a particular application depends on which parameters are important to optimize.
- Parameters depend on the conditions for which they are measured.
- For details on any of these specifications, consult the datasheet.
- Most available op-amps have three important features: short-circuit protection, no latch-up, and input offset nulling.
- Short-circuit protection keeps the circuit from being damaged if the output becomes shorted, and the no latch-up feature prevents the op-amp from hanging up in one output state (high or low voltage level) under certain input conditions.
- Input offset nulling is achieved by an external potentiometer that sets the output voltage at precisely zero with zero input.