

ACM SIGKDD Conference on Knowledge Discovery and Data Mining

汇报人: 白云迪

2023/1/28

主要内容

Main Contents

背景

内容

方法

实验

总结

1背景

PDRP(Pick-up and Delivery Route Prediction task): 快递员/外卖员的揽件派送问题

现实中,工人的实际路线与给 出的预测路线不一致,准确率 较差

■ 概括

提出一种基于动态时空图神经网络的P&D路径预测模型Graph2Route,首次将P&D路线预测问题建模成为图上的预测问题

2 内容

□ 现有模型: DeepRoute

■ 改进: Graph2Route

1/基于序列(Sequence-based)

将未完成的任务视为一个序列, 使用的是基于序列的编码器

(LSTM) 缺乏编码任务之间的时空相关性

2/输出不合理

基于序列的编码无法避免解码极其不合理的路线

3/缺乏与其他实例之间的联系

随时间的推移,无法对新节点或任务需求变化的节点进行 建模

■ 对图结构进行编码

■ 捕获决策上下文进行预测

2 内容

- 问题定义
- ☐ Input-Graph:

$$\mathcal{G}_t^w = (\mathcal{V}_t, \mathcal{E}_t, \mathbf{X}_t, \mathbf{E}_t)$$
; 工人*w*在*t*时刻的时空图 $V_t = \{v_1, \dots, v_n\}$; 工人的任务节点 $\mathcal{E}_t = \{(i,j)|v_i,v_j \in \mathcal{V}_t\}$; 工人的边节点 $\mathbf{X}_t \in \mathbb{R}^{n \times d_v}: d_v$ 节点特征维度 $E_t \in \mathbb{R}^{n \times n \times d_e}: d_e$ 边特征维度 $V_t^F = \{v \mid v \in \mathcal{V}_t, x^{FT} \leq t\}$; 己完成的节点, x^{FT} 表示任务的完成时间 $\mathcal{V}_t^U = \{v \mid v \in \mathcal{V}_t, x^{FT} = -1\}$; 未完成的节点

- □ 规则集C: 考虑到服务中存在的路线约束:
 - 1) 先取后送约束、2) 容量约束

Figure 2: Problem Illustration. In this case, $\mathcal{V}_t^F = \{v_1, v_2\}$ and $\mathcal{V}_t^U = \{v_3, v_4, v_5\}$, the output of the model $\hat{\boldsymbol{\pi}} = [\pi_1, \pi_2, \pi_3]$ is [4, 5, 3].

2 内容

■ Input ST-Graph

在给定t时刻的已完成任务集和未完成任务集 $V_t = F_t^W \cup U_t^W$ 构造一个ST图 $G_t^W = (V_t, \mathcal{E}_t, \mathbf{X}_t, \mathbf{E}_t)$ 在传统GCN只考虑节点特征的基础上,本文同时对边特征和节点特征进行建模,并同时更新

■ 节点特征

■ 节点i的特征向量

包含了时空信息

$$\mathbf{x}_{i} = (x_{i}^{Co}, x_{i}^{AT}, x_{i}^{PT}, x_{i}^{FT}, t - x_{i}^{AT}, x_{i}^{PT} - t, x_{i}^{Dis}), \tag{3}$$

地理坐标 | 接收时间 | 承诺到达时间 | 完成时间 | 距工人w的距离

■ 边特征

$$\mathbf{e}_{ij} = (d_{ij}, a_{ij}).$$

两节点的距离 | 相似度

$$a_{ij} = \begin{cases} 1, & \text{if } i \text{ and } j \text{ are } k\text{-nearest spatial neighbors} \\ 1, & \text{if } i \text{ and } j \text{ are } k\text{-nearest temporal neighbors} \\ -1, & \text{if } i = j \\ 0, & \text{others.} \end{cases}$$
 (2)

■ 空间:根据两节点空间距离

■ 时间:根据两节点承诺到达时间相近程度

3方法

- 动态时空图编码器(Dynamic ST-Graph Encoder)
- 空间编码(Spatial-Correlation Encoding) 使用GCN捕获不同节点之间的时空相关性 与标准GCN不同,引入了边特征

Dynamic ST-Graph Encoder

$$\begin{aligned} \mathbf{h}_{i}^{l+1} &= f(\mathbf{h}_{i}^{l}, \operatorname{Agg}\{\mathbf{h}_{j}^{l}, \mathbf{z}_{ij}^{l} : j \in \mathcal{N}_{i}\}) \\ \mathbf{z}_{ij}^{l+1} &= g(\mathbf{z}_{ij}^{l}, \operatorname{Agg}\{\mathbf{h}_{i}^{l}, \mathbf{h}_{j}^{l}\}), \end{aligned}$$

$$\mathbf{h}_{i}^{l+1} = \mathbf{h}_{i}^{l} + \sigma(\mathrm{BN}(\mathbf{W}_{1}^{l}\mathbf{h}_{i}^{l} + \sum_{j \in \mathcal{N}_{i}} \eta_{ij}^{l} \odot \mathbf{W}_{2}^{l}\mathbf{h}_{j}^{l}))$$

$$\mathbf{z}_{ij}^{l+1} = \mathbf{z}_{ij}^{l} + \sigma(\mathrm{BN}(\mathbf{W}_{3}^{l}\mathbf{z}_{ij}^{l} + \mathbf{W}_{4}^{l}\mathbf{h}_{i}^{l} + \mathbf{W}_{5}^{l}\mathbf{h}_{j}^{l})),$$

$$(6)$$

$$\mathbf{z}_{ij}^{l+1} = \mathbf{z}_{ij}^{l} + \sigma(\mathrm{BN}(\mathbf{W}_{3}^{l}\mathbf{z}_{ij}^{l} + \mathbf{W}_{4}^{l}\mathbf{h}_{i}^{l} + \mathbf{W}_{5}^{l}\mathbf{h}_{j}^{l})), \tag{7}$$

时间编码(Temporal-Correlation Encoding)

 $\mathbf{H}_{t} = \mathrm{GRU}(G_{t}^{w}, \mathbf{H}_{t-1}).$ 使用标准GPU门控单元对输入图和当前嵌入更新节点嵌入

3方法

- 基于图的个性化路线解码器(Graph-based Personalized Route Decoder)
- 掩码机制(Mask Mechanism) 在t时刻

 - 1)屏蔽已经完成的节点 V_t^F 2)屏蔽通过解码器已经输出的 R_j
 - 3) 屏蔽未访问取货节点的交付节点 $V_i^d = \{v_d^o \mid v_p^o \notin V_t^F \text{ and } v_p^o \notin \mathcal{R}_j\}$
 - 4) 屏蔽不是输出节点邻居的节点 $\{\vec{v} N_{v_{\pi_{j-1}}}\}$

$$\mathcal{V}_{mask}^{j} = \mathcal{V}_{t}^{F} \cup \mathcal{R}_{j} \cup \mathcal{V}_{j}^{d} \cup \{\mathcal{V} - \mathcal{N}_{v_{\pi_{j-1}}}\}.$$

- 个性化解码(Personalized Node Decoding)
 - 在每个时间步t,解码器选择候选节点中概率最大的节点作为路由节点
- 解码过程

在每个解码步骤中,将选中的节点反馈到RNN中记录当前解码状态,帮助进行下一步选择

工人的个性化属性: 平均速度、最大装载量

Graph-based

Personalized Route Decoder Mask Mechanism

Personalized Node Decoding

Attention

score

$$u_{i}^{j} = \begin{cases} \mathbf{q}^{T} \tanh(\mathbf{W}_{7}\mathbf{h}_{i} + \mathbf{W}_{8}[\mathbf{m}_{j-1}; \mathbf{w}]) & \text{if } i \notin \mathcal{V}_{mask}^{j} \\ -\infty & \text{otherwise,} \end{cases}$$
(11)
$$p_{i}^{j} = p\left(\pi_{j} = i \mid s, \pi_{1:j-1}; \theta\right) = \operatorname{softmax}(u_{i}^{j})$$

$$p_i^j = p\left(\pi_j = i \mid s, \pi_{1:j-1}; \theta\right) = \operatorname{softmax}(u_i^j)$$

3方法

Algorithm 1 Graph2Route.

Input: Input Graph $\mathcal{G}_t^w = (\mathcal{V}_t, \mathcal{E}_t, \mathbf{X}_t, \mathbf{E}_t)$ at time t of worker w. **Output:** Output predicted service route $\hat{\boldsymbol{\pi}}_{t:}$.

- 1: // Dynamic ST-Graph Encoder
- 2: **for** l = 1, ..., L **do** // Spatial-Correlation Encoding
- 3: Update node embedding by Eq. (6);
- 4: Update edge embedding by Eq. (7);
- 5: end for
- 6: // Carry on the decision context though GRU
- 7: Update H_t according to Eq. (8);
- 8: // Graph-based Personalized Route Decoder
- 9: $\hat{\boldsymbol{\pi}}_{t:} \leftarrow []$;
- 10: **for** $j = 1, ..., |\mathcal{V}_t^U|$ **do**
- 11: Mask infeasible nodes in V_{mask}^{j} ;
- Calculate the output probability p_i^J by Eq. (12);
- 13: Select output node $\pi_j = \arg \max_k p_k^J$;
- 14: Append π_i into $\hat{\boldsymbol{\pi}}_{t:}$;
- 15: end for
- 16: return $\hat{\pi}_{t:}$;

Figure 3: Architecture of Graph2Route.

循环解码机制,将前一步的输出作为下一步的输入

3 方法: 模型训练和预测

- 样本构建选择新加入节点的时刻进行图建模
- 损失函数

在解码过程中会选择概率最大的节点作为输出,将其看作多分类问题,使用交叉熵损失函数

$$\mathcal{L} = -\sum_{w \in \mathcal{W}} \sum_{t \in \mathcal{T}} \sum_{i \in \pi_{t:t'}} y_i \mathrm{log}(p(y_i|\theta)),$$

所有工人 | 所有新加入节点的时刻 | 所有节点

■ 预测过程

每次输入为某一时刻的时空图,不包含新加入节点的过程

■ 数据集:分别从饿了么与菜鸟获取的两种数据

表示未完成任务的平均 数量

Туре	Time Range	City	ANUT	#Workers	#Samples
Food-PD	02/02/2020 - 02/29/2020	Dalian	4	916	166,026
Logistics-P	03/29/2021 - 05/27/2021	Shanghai	9	2,344	208,202

■ Baseline:

DeepRoute: 包含Transformer的编码器和注意力机制的解码器,采用Pointer架构对整个路线进行循环解码

DeepRoute+: 额外添加一个编码模块模拟工人的决策偏好,同时考虑到最近访问的路线

- 验证方法:
- KRC(Kendall Rank Correlation):衡量两个序列之间有序关联的统计标准

任意任务对(i, j) ,如果
$$O_{\hat{\pi}}(i) > O_{\hat{\pi}}(j)$$
 并且 $O_{\pi}(i) > O_{\pi}(j)$ 或者 $O_{\hat{\pi}}(i) < O_{\hat{\pi}}(j)$ 并且 $O_{\pi}(i) < O_{\pi}(j)$ 表示任务对一致
$$\text{KRC} = \frac{N_c - N_d}{N_c + N_d},$$

- ED(Edit Distance):将一个序列(预测路线)转换为另一个序列(实际路线)所需的最小操作次数
- · LSD(位置平方偏差)和LMD(位置平均偏差): 衡量预测路线偏离实际路线的程度:

LSD =
$$\frac{1}{m} \sum_{i=1}^{m} (O_{\pi}(\pi_i) - O_{\hat{\pi}}(\pi_i))^2$$
 LMD = $\frac{1}{m} \sum_{i=1}^{m} |(O_{\pi}(\pi_i) - O_{\hat{\pi}}(\pi_i))|.$

- HR@k: 前k项命中率,量化两个序列前k项之间的相似性 $HR@k = \frac{\hat{\pi}_{[1:k]} \cap \pi_{[1:k]}}{k}$.
- $\mathbf{ACC@k}$: 计算预测到达时间与真实时间的时间差小于 \mathbf{k} 分钟的比率 $\mathbf{ACC@k} = \prod_{i=0}^{n} \mathbb{I}(\hat{\pi}_i, \pi_i)$,

□ 模型在不同的任务数量下评估模型(0-11)与(0-25)

	Logistics-P					Food-PD																		
Method	$n \in (0-11]$ $n \in (0-25]$					$n \in (0-11]$						$n \in (0-25]$												
	HR@1	ACC@3	KRC	LMD	LSD	ED	HR@1	ACC@3	KRC	LMD	LSD	ED	HR@1	ACC@3	KRC	LMD	LSD	ED	HR@1	ACC@3	KRC	LMD	LSD	ED
TimeRank	26.37%	13.62%	37.76%	2.30	11.54	2.41	25.19%	12.47%	35.44%	2.45	12.84	3.19	45.02%	27.59%	60.78%	0.57	0.78	1.74	44.99%	27.57%	60.77%	0.57	0.79	1.74
DisGreedy	45.98%	26.09%	51.29%	1.72	8.45	2.01	45.43%	24.52%	49.72%	1.84	9.27	2.66	53.16%	39.92%	68.09%	0.47	0.67	1.41	53.12%	39.89%	68.09%	0.47	0.68	1.42
Or-Tools	48.59%	28.04%	54.30%	1.54	6.87	1.95	47.81%	26.26%	52.60%	1.67	7.73	2.61	54.98%	42.32%	70.37%	0.44	0.62	1.35	54.96%	42.29%	70.36%	0.44	0.62	1.35
OSquare	47.03%	24.24%	55.20%	1.52	6.01	2.05	46.32%	22.55%	53.58%	1.64	6.88	2.74	63.43%	44.79%	72.62%	0.45	0.67	1.37	63.39%	44.75%	72.59%	0.45	0.68	1.38
FDNET	49.50%	27.73%	55.75%	1.60	7.59	1.96	48.81%	25.91%	54.08%	1.72	8.38	2.62	64.69%	49.64%	75.46%	0.41	0.63	1.27	64.65%	49.60%	75.42%	0.41	0.64	1.28
DeepRoute	51.87%	28.35%	59.07%	1.42	5.98	1.96	50.88%	26.46%	57.31%	1.55	6.81	2.62	66.94%	48.67%	75.10%	0.41	0.61	1.27	66.91%	48.63%	75.08%	0.41	0.62	1.28
DeepRoute+	52.03%	28.75%	59.80%	1.39	5.73	1.94	51.14%	26.87%	58.09%	1.52	6.54	2.60	67.19%	49.77%	75.76%	0.40	0.60	1.24	67.16%	49.73%	75.75%	0.40	0.61	1.24
Graph2Route	52.53%	29.25%	61.22%	1.34	5.21	1.92	51.56%	27.28%	59.45%	1.46	6.02	2.58	67.97%	53.72%	78.68%	0.35	0.51	1.13	67.92%	53.68%	78.67%	0.36	0.52	1.13
Improvement	1.0%	1.7%	2.4%	3.6%	9.1%	1.0%	0.8%	1.5%	2.3%	3.9%	8.0%	0.8%	1.2%	7.9%	3.9%	12.5%	15.0%	8.9%	1.1%	7.9%	3.9%	10.0%	14.8%	8.9%

□ 各方法在Food-PD中的性能优于LogisticsP,在送餐中,未完成任务的平均长度更短

Figure 5: Component Analysis.

□ 消融实验:

w/o GCN: 空间编码中不使用GCN

w/o GRU: 时间编码中不使用GRU

w/o Worker Info: 解码器中不加入工人个性化信息

」实验表明时空编码、融合工人个性化信息带来的改进

□ 超参数:

两个数据集中的最佳参数是

$$k = n - 1$$
, $d_h = 8$, $L = 2$, $d_w = 10$, $B = 64$, $lr = 1e - 3$.

□ 实验表明时空编码、融合工人个性化信息带来的改进

Table 4: The hyper parameter setup of Graph2Route.

Hyper parameters	Description	Search space			
k	k-nearest spatial-temporal neighbors	[n-1, n-2]			
d_h	embedding dimension of nodes/edges	[8, 16, 32]			
L	the number of GCN layers	[1, 2, 3]			
$d_{\mathcal{W}}$	embedding dimension of a worker's ID	[10, 20]			
B	batch size	[64, 128]			
lr	learning rate	[1e-3, 5e-4]			

5总结

□创新

- 1)将原本基于序列的预测模型转换为包含时空信息的图模型
- 2) 在解码过程中充分利用图的结构和工人的个性化信息,输出更精确的服务路线;

□局限

循环解码机制:

循环体系结构可能会遇到效率问题。特别是在现实世界的情况下,例如物流场景,一个工作人员在同一时间可能承担着50个甚至更多的任务

缺乏对道路网络的建模:

只考虑到空间距离,忽视了作为空间信息的路网信息

□ 未来研究方向

更高效的解码机制:

从模型结构的角度, 研究一种能够同时生成多个输出的非自回归解码器。

从模型压缩的角度,探索一种更轻量级的模型,以加快推理速度泛化到其他领域:社交网络轨迹、移动应用数据等。

道路网络的建模: 在模型设计中对路网进行深度建模

参考综述: 《A Survey on Service Route and Time Prediction in Instant Delivery: Taxonomy, Progress, and Prospects》

谢谢!