Содержание

1	Глава 1		2
	1.1	Случайные события, классификация событий, операции над ними.	2
	1.2	Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгеб-	
		ра над классом K . Борелевская σ -алгебра	2

1 Глава 1

1.1 Случайные события, классификация событий, операции над ними.

Определение случайного события:

Пусть Ω — множество элементарных исходов эксперимента. Случайным событием называется любое подмножество множества Ω .

Определение достоверного события:

Достоверным событием называется событие Ω , которому благоприятствует каждый исход эксперимента.

Определение невозможного события:

Невозможным событием называется пустое множество, которому не благо-приятствует ни один исход эксперимента.

Определение суммы событий:

Суммой событий A и B называется событие $C = A \cup B$, которому благо-приятствуют исходы, принадлежащие хоть одному из событий A или B.

Определение произведения событий:

Произведением событий A и B называется событие $C = A \cap B$, которому благоприятствуют исходы и события A, и события B.

Определение несовместных событий:

Случайные события A и B называются несовместными, если $A \cap B = \emptyset$.

Определение противоположного события:

Событием, противоположным событию A называется событие \overline{A} , которое состоит из исходов, не благоприятствующих A.

1.2 Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгебра над классом K. Борелевская σ -алгебра.

Определение кольца:

Кольцом ${f R}$ называется непустой класс множества замкнутый относительно операций сложения и взятия разности.

Определение алгебры:

Алгеброй ${\cal A}$ называется непустой класс множества замкнутый относительно сложения и отрицания.

Определение σ -алгебры:

 σ -алгебра ${\cal F}$ — это непустой класс множества замкнутый относительно счётного количества сумм и отрицаний:

- 1. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$;
- 3. Если $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение σ -алгебры событий:

Сигма алгеброй событий называется множество \mathcal{F} подмножеств $A\subset\Omega,$ удовлетворяющее условиям:

- 1. если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$:
- 3. если $\{A\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение минмальной σ -алгебры над классом K:

Пусть K — некоторый класс подмножеств из Ω . σ -алгебра $\sigma(K)$ называется наименьшей σ -алгеброй, содержащей класс K, если $K \in \sigma(K)$; любая σ -алгебра \mathcal{F} , которая содержит K ($K \subset \mathcal{F}$), содержит и $\sigma(K) \subset \mathcal{F}$.

Определение Борелевской σ -алгебры:

Борелевской σ -алгеброй β называется минимальная σ -алгебра над классом полуинтервалов $K = \{[a,b]\}$ из R, то есть:

$$\Omega = (-\infty, \infty) = R$$
 $K = \{[a, b), [a, +\infty), (a, +\infty), (-\infty, b), (-\infty, b), (a, b)\}.$