LTI SYSREMS

System Properties

$$\begin{array}{c|c}
x(t) & y(t) \\
x[n] & y(n)
\end{array}$$

- Memory
- Invertibility
- Causality
- -Stability
- -Time Invariance
- Linearity

Time - Invariance

C-T:

$$X(t) \rightarrow y(t)$$
Then
$$X(t-t_0) \rightarrow y(t-t_0) \xrightarrow{any} t_0$$

$$\begin{array}{c} X[n] \longrightarrow y[n] \\ \times [n-n] \longrightarrow y[n-n] & \text{any} \\ \times [n-n] & \text{n.} \end{array}$$

Linearity $\phi_k \rightarrow \psi_k$

Then $a_1\phi_1+a_2\phi_2+\dots$ $a_1\gamma_1+a_2\gamma_2+\dots$

STRATEGY:

- decompose input signal into a linear combination of basic Signals
- choose basic signals so that response easy to compute

LT I Systems

delayed (Convolution impulses

complex Fourier exponentials Analysis

Representation of arbitrary DT sequence in terms of impulses:

• Basic idea: use a (infinite) set of discrete time impulses to represent any signal

• Consider any discrete input signal x[n]. This can be written as the linear sum of a set of unit impulse signals:

$$x[-1]\delta[n+1] = \begin{cases} x[-1] & n = -1\\ 0 & n \neq -1 \end{cases}$$

$$x[0]\delta[n] = \begin{cases} x[0] & n = 0\\ 0 & n \neq 0 \end{cases}$$

$$x[1]\delta[n-1] = \begin{cases} x[1] & n = 1\\ 0 & n \neq 1 \end{cases}$$
 as

Representation of arbitrary DT sequence in terms of impulses:

Therefore, the signal can be expressed as:

$$x[n] = \dots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$

In general, any discrete signal can be represented as:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
 The sifting property

Introduction to Convolution

• Convolution is an operator that takes an input signal and returns an output signal, based on knowledge about the system's unit impulse response h[n].

- The basic idea behind convolution is to use the system's response to a simple input signal to calculate the response to more complex signals
- This is possible for LTI systems because they possess the superposition property

$$x[n] = \sum_{k} a_k x_k[n] = a_1 x_1[n] + a_2 x_2[n] + a_3 x_3[n] + \cdots$$
$$y[n] = \sum_{k} a_k y_k[n] = a_1 y_1[n] + a_2 y_2[n] + a_3 y_3[n] + \cdots$$

Discrete, Unit Impulse System Response

 A very important way to analyse a system is to study the output signal when a unit impulse signal is used as an input

• This is so common, a specific notation, h[n], is used to denote the output signal, rather than the more general y[n].

• The output signal can be used to infer properties about the system's structure and its parameters H.

Linear Time Invariant Systems

 When system is linear, time invariant, the unit impulse responses are all time-shifted versions of each other:

$$h_k[n] = h_0[n-k]$$

• It is usual to drop the 0 subscript and simply define the unit impulse response h[n] as: $h[n] = h_0[n]$

• In this case, the convolution sum for LTI systems is:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• It is called the convolution sum (or superposition sum) because it involves the convolution of two signals x[n] and h[n], and is sometimes written as:

$$y[n] = x[n] * h[n]$$

Representation of arbitrary CT signal in terms of impulses:

$$\mathbf{x(t)} \cong \mathbf{x(o)} \ \delta_{\triangle}(\mathbf{t}) \ \Delta + \mathbf{x(\Delta)} \ \delta_{\triangle}(\mathbf{t} - \Delta) \ \Delta$$
$$+ \ \mathbf{x(-\Delta)} \ \delta_{\triangle}(\mathbf{t} + \Delta) \ \Delta + \dots$$

$$x(t) \cong \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\triangle}(t - k \Delta) \Delta$$

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t - k \Delta) \Delta$$

$$= \int_{-\infty}^{+\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

Response of LTI Systems - Convolution Integral

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta) \, \delta_{\Delta}(t - k\Delta) \, \Delta$$

Linear System:

$$y(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta) h_{k\Delta}(t) \Delta = \int_{-\infty}^{+\infty} x(\tau) h_{\tau}(t) d\tau$$

If Time-Invariant:

$$h_{k\triangle}(t) = h_o(t - k\Delta)$$

$$h_{\tau}(t) = h_{\sigma}(t - \tau)$$

LTI:
$$y(t) = \int_{-\infty}^{+\infty} x(\tau) h(t - \tau) d\tau$$

Convolution Integral

Properties of Linear Time Invariant Systems

LTI Systems and Impulse Response

 Any continuous/discrete-time LTI system is completely described by its impulse response through the convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

This only holds for LTI systems as follows:

Example: The discrete-time impulse response

$$h[n] = \begin{cases} 1 & n = 0,1 \\ 0 & \text{otherwise} \end{cases}$$

Is completely described by the following LTI

$$y[n] = x[n] + x[n-1]$$

• However, the following systems also have the same impulse response

$$y[n] = (x[n] + x[n-1])^2$$

 $y[n] = \max(x[n], x[n-1])$

• Therefore, if the system is non-linear, it is not completely characterised by the impulse response

Commutative Property

Convolution is a commutative operator (in both discrete and continuous time),

$$x[n] * h[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]$$
$$x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

• For example, in discrete-time:

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{r=-\infty}^{\infty} x[n-r]h[r] = h[n] * x[n]$$

and similar for continuous time.

• Therefore, when calculating the response of a system to an input signal x[n], we can imagine the signal being convolved with the unit impulse response h[n], or vice versa, whichever appears the most straightforward.

Distributive Property (Parallel Systems)

Another property of convolution is the distributive property

$$x[n]*(h_1[n] + h_2[n]) = x[n]*h_1[n] + x[n]*h_2[n] = y_1[n] + y_2[n]$$
$$x(t)*(h_1(t) + h_2(t)) = x(t)*h_1(t) + x(t)*h_2(t) = y_1(t) + y_2(t)$$

This can be easily verified

• Therefore, the two systems:

 are equivalent. The convolved sum of two impulse responses is equivalent to considering the two equivalent parallel system (equivalent for discrete-time systems)

Example: Distributive Property

Let y[n] denote the convolution of the following two sequences:

$$x[n] = 0.5^n u[n] + 2^n u[-n]$$

 $h[n] = u[n]$

• We will use the **distributive** property to express y[n] as the sum of two simpler convolution problems. Let $x_1[n] = 0.5^n u[n]$, $x_2[n] = 2^n u[-n]$, it follows that

$$y[n] = (x_1[n] + x_2[n]) * h[n]$$

• and $y[n] = y_1[n] + y_2[n]$, where $y_1[n] = x_1[n] * h[n]$, $y_1[n] = x_1[n] * h[n]$.

$$y_1[n] = \left(\frac{1 - 0.5^{n+1}}{1 - 0.5}\right) u[n]$$

$$y_2[n] = \begin{cases} 2^{n+1} & n \le 0 \\ 2 & n \ge 1 \end{cases}$$

Associative Property (Serial Systems)

Another property of (LTI) convolution is that it is associative

$$x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$$
$$x(t)*(h_1(t)*h_2(t)) = (x(t)*h_1(t))*h_2(t)$$

Again this can be easily verified by manipulating the summation/integral indices

Therefore, the following four systems are all equivalent and $y[n] = x[n]^*h_1[n]^*h_2[n]$ is unambiguously defined.

This is not true for non-linear systems $(y_1[n] = 2x[n], y_2[n] = x^2[n])$

LTI System Memory

• An LTI system is memoryless if its output depends only on the input value at the same time, y[n] = kx[n]

$$y(t) = kx(t)$$

• For an impulse response, this can only be true if $h[n] = k\delta[n]$ $h(t) = k\delta(t)$

• and the output of dynamic engineering, physical systems depend on:

Preceding values of x[n-1], x[n-2], ...

Past values of y[n-1], y[n-2], ...

for discrete-time systems, or derivative terms for continuous-time systems

System Invertibility

• Does there exist a system with impulse response $h_1(t)$ such that y(t)=x(t)?

$$\xrightarrow{X(t)} h(t) \xrightarrow{W(t)} h_1(t) \xrightarrow{y(t)}$$

- Widely used concept for:
- control of physical systems, where the aim is to calculate a control signal such that the system behaves as specified
- **filtering** out noise from communication systems, where the aim is to recover the original signal x(t)
- The aim is to calculate "inverse systems" such that

$$h[n]h_1[n] = \delta[n]$$
$$h(t)h_1(t) = \delta(t)$$

The resulting serial system is therefore memoryless

Example: Accumulator System

Consider a DT LTI system with an impulse response

$$h[n] = u[n]$$

• Using convolution, the response to an arbitrary input x[n]:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- As u[n-k] = 0 for n-k<0 and 1 for $n-k\ge 0$, this becomes $y[n] = \sum_{k=-\infty}^{n} x[k]$
- i.e. it acts as a running sum or accumulator. Therefore an inverse system can be expressed as: y[n] = x[n] x[n-1]
- A first difference (differential) operator, which has an impulse response

$$h_1[n] = \delta[n] - \delta[n-1]$$

Causality for LTI Systems

- Remember, a causal system response depends only on present and past values of the input signal. We do not use knowledge about future information.
 - For a discrete LTI system, convolution tells us that h[n] = 0 for n < 0
- as y[n] must not depend on x[k] for k>n, as the impulse response must be zero before the pulse!

$$x[n] * h[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$$
$$x(t) * h(t) = \int_{-\infty}^{t} x(\tau)h(t-\tau)d\tau$$

- Both the integrator and its inverse in the previous example are causal
- This is strongly related to inverse systems as we generally require our inverse system to be causal. If it is not causal, it is difficult to manufacture!

LTI System Stability

- A system is stable if every bounded input produces a bounded output
- Therefore, consider a bounded input signal |x[n]| < B for all n
- Applying convolution and taking the absolute value:

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k] x[n-k] \right|$$

• Using the triangle inequality (magnitude of a sum of a set of numbers is no larger than the sum of the magnitude of the numbers):

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

$$\le B \sum_{k=-\infty}^{\infty} |h[k]|$$

Therefore a DT LTI system is stable if and only if its impulse response is absolutely summable,
 ie

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$
Continuous-time system
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$

Example: System Stability

Are the DT and CT pure time shift systems stable?

$$h[n] = \delta[n - n_0]$$
$$h(t) = \delta(t - t_0)$$

$$\sum_{k=-\infty}^{\infty} \left| h[k] \right| = \sum_{k=-\infty}^{\infty} \left| \mathcal{S}[k-n_0] \right| = 1 < \infty$$

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = \int_{-\infty}^{\infty} |\delta(\tau - t_0)| d\tau = 1 < \infty$$

Therefore, both the CT and DT systems are **stable**: all finite input signals produce a finite output signal

Are the discrete and continuous-time integrator systems stable?

$$h[n] = u[n - n_0]$$
$$h(t) = u(t - t_0)$$

$$\sum_{k=-\infty}^{\infty} |h[k]| = \sum_{k=-\infty}^{\infty} |u[k-n_0]| = \sum_{k=n_0}^{\infty} |u[k]| = \infty$$

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = \int_{-\infty}^{\infty} |u(\tau-t_0)| d\tau = \int_{t_0}^{\infty} |u(\tau)| d\tau = \infty$$

Therefore, both the CT and DT systems are **unstable**: at least one finite input causes an infinite output signal

References:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fall-2011/lecture-videos/MIT6 003F11 lec06.pdf

MIT OpenCourseWare http://ocw.mit.edu

https://personalpages.manchester.ac.uk/staff/martin.brown/signals/Lecture1.ppt

https://www.ece.uvic.ca/~frodo/sigsysbook/downloads/lecture_s lides_for_signals_and_systems-2016-01-25.pdf