Math 110 Homework 1 Tarang Srivastava

Chapter 1.A

Problem 11: By the definition of multiplication of scalars and lists we know that λ must satisfy all the following equations.

$$\lambda(2-3i) = 12 - 5i$$
$$\lambda(5+4i) = 7 + 22i$$
$$\lambda(-6+7i) = -32 - 9i$$

Solving for the first two equations gives us that

$$\lambda = 3 + 2i$$

But for the last equation we find that this value for λ does not work. Therefore no such λ exists that satisfies all three equations and therefore the larger equation.

Chapter 1.B

Problem 1: By the existence of an additive inverse for all v we have

$$-(-v) + (-v) = 0$$

adding v to both sides

$$-(-v) + (-v) + v = 0 + v$$

by associativity

$$-(-v) + ((-v) + v) = v$$
$$-(-v) + 0 = v$$

-(-v) = v as desired.

Problem 6: No, $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ is not a vector space, because it does not follow all the properties of a vector space. Specifically, consider associativity. It must be true that,

$$((-\infty) + (-\infty)) + \infty = (-\infty) + ((-\infty) + \infty)$$
$$0 \neq (-\infty)$$

Therefore associativity does not hold and it is not a vector space.

Chapter 1.C

Problem 1(c): No. Consider the following counter example. Let a=(1,1,0). This is in the subspace since $1\cdot 1\cdot 0=0$ and let b=(1,0,1). This is in the subspace since $1\cdot 0\cdot 1=0$ For the subspace to be closed under addition a+b must be in the subspace, but a+b=(1,1,1) which is not in the subspace since $1\cdot 1\cdot 1=1$.

Problem 1(d): Yes. It is closed under vector addition and scalar multiplication. The additive identity can be shown from these two as noted in lecture.

Closure under addition:

Let $x=(x_1,x_2,x_3)$ and $y=(y_1,y_2,y_3)$ such that they are in the subspace. For x+y to be in the subspace, we need to show that $x_1+y_1=5(x_3+y_3)$. Which follows from the fact that $x_1+y_1=5x_3+5y_3=5(x_3+y_3)$ by factoring out the 5. Also note that $x_1+y_1\in\mathbb{F}$ so that part is definitely in the subspace. Closure under multiplication:

Let $x = (x_1, x_2, x_3)$ and $c \in \mathbb{F}$ it holds that $cx_1 = 5cx_3$ which is then just $x_1 = 5x_3$ therefore it is closed under scalar multiplication. Also, note that $cx_1 \in \mathbb{F}$ so that condition is met as well for all the elements.

Problem 3: Yes. The following is a subspace.

Clousure under addition:

Let $f, g \in \mathbb{R}^{(4,4)}$ such that they are differentiable and f'(-1) = 3f(2) and g(-1) = 3g(2). Firstly, the sum of differentiable functions is differentiable. Adding the two we get

$$f'(-1) + g'(-1) = 3f(2) + 3g(2)$$

We can factor out the 3 and then use the definition for function addition

$$(f'+g')(-1) = 3((f+g)(2))$$

which then by the definition of scalar multiplication is

$$(f'+g')(-1) = (3(f+g))(2)$$

as desired.

Closure under multiplication:

 $A\ scalar\ multiple\ of\ a\ differentiable\ function\ is\ still\ differentiable.$

$$\lambda f'(-1) = 3\lambda f(2)$$

using the definition of scalar multiplication we have

$$(\lambda f')(-1) = (\lambda 3f)(2)$$

as desired.

Problem 5: No. The complex vector space is a vector space over \mathbb{C} so it is possible to multiply for example with a scalar i, in which case \mathbb{R}^2 is not closed under multiplication.

Problem 7: Let $U = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. That is U the unit circle. We can always find an additive inverse, namely, (-x, -y) for some $x, y \in U$. It is not a subspace because it does not have the additive identity.

Problem 8: From question 1 part c. Let $U = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$ Clearly, and $c \in \mathbb{R}$ times the $u \in U$ will still be in the subspace. Since, if $xy = 0 \implies cxy = 0$. It is not closed under addition as shown in Problem 1(c).

2.A

Problem 3: t=2