Computer Architecture (Spring 2020)

Memory Hierarchy Design

Dr. Duo Liu (刘铎)

Office: Main Building 0626

Email: liuduo@cqu.edu.cn

The Principle of Locality

- Most programs do not access all code or data uniformly
 - Locality occurs in time (temporal locality) and in space (spatial locality)
- Hardware limitations: Faster → Smaller → More Expensive.

(b) Memory hierarchy for a personal mobile device

Memory Wall + Power Wall

- The increase of CPU speed is faster than Memory bandwidth.
- It is getting even worse when we are enter the world of multiprocessors
- Cache consumes significant power.
 - Could be 25% to 50% of total CPU power.

Typical PC Organization

DSP-Style Memory System: Example based on TI TMS320C3x DSP family

- dual tag-less on-chip SRAMs (visible to programmer)
- off-chip programmable ROM (or PROM or FLASH) that holds the executable image
- off-chip DRAM used for computation

Memory Technology

- At the core of the success of computers
- Various types of memory
 - most common types
 - Dynamic Random-Access Memory (DRAM)
 - Static Random-Access Memory (SRAM)
 - Read-Only Memory (ROM)
 - Flash Memory
- Memory Latency Metrics
 - Access time
 - time between when a "read" is requested and when the desired word arrives
 - Cycle time (>Access time)
 - minimum time between two requests to memory
 - memory needs the address lines to be stable between accesses

Ferroelectric RAM (FeRAM)
Toshiba, 2009

HP Lab, 2009

Config and General I/O

新一代非易失性存储技术

[Courtesy: Yuan Xie (PSU), Glen Hawk (Micron)]

新型存储器件性能比较

	SRAM	DRAM	NOR	NAND	MRAM	PCM	STT-RAM	R-RAM
Data Retention	N	N	Y	Y	Y	Υ	Y	Υ
Memory Cell Factor (F2)	50-120	6-10	10	2-5	16-40	6-12	4-20	<4
Read Time (ns)	1	30	10	50	3-20	20-50	2-20	<50
Write /Erase Time (ns)	1	50	10 ⁵ -10 ⁷	10 ⁶ -10 ⁵	3-20	50-120	2-20	<100
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹⁵	10 ⁶ -10 ¹⁰	10 ¹⁵	10 ¹⁵
Power Consumption - Read/Write	Low	Low	High	High	Med/ High	Low	Low	Low
Power Consumption – Other than R/W	Leakage Current	Refresh Power	None	None	None	None	None	None

[Source: ITRS]

A 64M-bit DRAM: Logical Organization

- to prevent data loss, each bit must be refreshed periodically
 - DRAM access periodically all bits in every row (refresh)
 - about 5% of the time a DRAM is not available due to refreshing
- To limit package costs, address lines are multiplexed
 - e.g., first send 14-bit row address (Row Access Strobe), then 14bit column address (Column Access Strobe)

DIMMs, Ranks, Banks, and Arrays

- A memory system may have many DIMMs, each of which may contain one or more ranks
- Each rank is a set of engaged DRAM devices, each of which may have many banks
- Each bank may have many constituent arrays, depending on the part's data width

DRAM Generations

Year of Introd.	Chip Size (bit)	\$ per GB	Total Access Time to a new row/column	Total Access Time to existing row
1980	64K	1,5M	250ns	150ns
1983	256K	500k	185ns	100ns
1985	1M	200k	135ns	40ns
1989	4M	50k	110ns	40ns
1992	16M	15k	90ns	30ns
1996	64M	10k	60ns	12ns
1998	128M	4k	60ns	10ns
2000	256M	1k	55ns	7ns
2004	512M	250	50ns	5ns
2007	16	50	40ns	1.25ns

SRAMs

- SRAM memory cell is bigger than DRAM cell
 - typically 6 transistors per bit
- Better for low-power applications thanks to stand-by mode
 - only minimal power is necessary to retain charge in stand-by mode
- Access Time = Cycle Time
 - Address lines are not multiplexed (for speed)
- In comparable technologies...
 - SRAM has a only 1/4 1/8 of DRAM capacity
 - SRAM cycle time is 8-16 times faster than DRAM
 - SRAM cost-per-bit is 8-16 times more expensive than DRAM

ROM and Flash Memory

ROM

- programmed once and for all at manufacture time
- cannot be rewritten by microprocessor
- 1 transistor per bit
- good for storing code and data constants in embedded applications
- replace magnetic disks in providing nonvolatile storage
- add level of protection for embedded software

Flash Memories

- floating-gate technology
- read access time comparable to DRAMs
- 50-100us depending on size (16M-128M)
- write is 10-100 slower than DRAMs (plus erasing time 1-2ms)
- price is cheaper than DRAM but more expensive than magnetic disks
- Flash: \$2/GB , DRAM: \$40/GB; disk = \$0.09/GB
- Initially, mostly used for low power/embedded applications
- but now also as solid-state replacements for disks
- or efficient intermediate storage between DRAM and disks

Why Flash Memory?

- Non-volatility
- Short read/write latency
- Low power consumption
- Small size and light weight
- Solid state reliability

NAND Flash Memory Organization

- Chip → Block → Page
 - Block = 32 / 64 pages; Page = 512B + 16B

NAND Flash Memory Constraints

Out-of-place update

- Limited endurance: 10⁴ (MLC) ~ 10⁵ (SLC)
- Wear leveling
- Solution: Flash Translation Layer (FTL)