4.2 Convergence in probability and weak law of large numbers 4.2.2 Weak laws of large numbers

§4.2 Convergence in probability and weak law of large numbers

Consider the event A in random trial E. Suppose the probability of occurring A is p (0 . Now we experiment independently <math>n times—n-fold Bernoulli trial. Let

$$\xi_i = \left\{ \begin{array}{ll} 1, & \text{A occurs at the } i\text{-th trial,} \\ 0, & \text{A does not occur at the } i\text{-th trial,} \end{array} \right.$$

$$1 \leq i \leq n.$$
 Then $P(\xi_i=1)=p,$ $P(\xi_i=0)=1-p.$ Let $S_n=\Sigma_{i=1}^n \xi_i.$ Then

$$\frac{S_n}{n} = F_n(A) - - -$$
 the frequency of A .

What does

$$\frac{S_n}{n} = F_n(A) \approx P(A) = p$$

mean?

What does

$$\frac{S_n}{n} = F_n(A) \approx P(A) = p$$

mean?

For any $\varepsilon > 0$ we can not except that $|S_n/n - p| \le \varepsilon$ holds for all the trials even if n is big enough.

What does

$$\frac{S_n}{n} = F_n(A) \approx P(A) = p$$

mean?

For any $\varepsilon > 0$ we can not except that $|S_n/n - p| \le \varepsilon$ holds for all the trials even if n is big enough.

It is nature to hope that the probability to appear $\{|S_n/n-p| \geq \varepsilon\}$ could be as smaller as possible when n is large enough.

Weak laws of large numbers

Theorem

(Bernoulli) Let $\{\xi_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables with $P(\xi_n = 1) = p$, $P(\xi_n = 0) = 1 - p$, $0 . Put <math>S_n = \sum_{i=1}^n \xi_i$. Then we have

$$P\left(\left|\frac{S_n}{n} - p\right| \ge \epsilon\right) \to 0, \ \forall \epsilon > 0,$$

i.e., for any $\epsilon > 0$ and $\delta > 0$, there is a $N = N(\epsilon, \delta)$ such that

$$P\left(\left|\frac{S_n}{n} - p\right| \ge \epsilon\right) < \delta, \quad \text{for all } n \ge N.$$

4.2.2 Weak laws of large numbers

Proof. By the Chebyshev inequality,

$$P\left(\left|\frac{S_n}{n} - p\right| \ge \epsilon\right)$$

Proof. By the Chebyshev inequality,

$$P\left(\left|\frac{S_n}{n} - p\right| \ge \epsilon\right) \le \frac{1}{\epsilon^2} Var\left(\frac{S_n}{n}\right)$$

Proof. By the Chebyshev inequality,

$$P\left(\left|\frac{S_n}{n} - p\right| \ge \epsilon\right) \le \frac{1}{\epsilon^2} Var\left(\frac{S_n}{n}\right)$$
$$= \frac{1}{\epsilon^2} \frac{np(1-p)}{n^2} = \frac{1}{\epsilon^2} \frac{p(1-p)}{n} \to 0.$$

Theorem

(Chebyshev) Let $\{\xi_n, n \geq 1\}$ be a sequence of independent (or pairwise correlated) random variables defined on the probability space (Ω, \mathcal{F}, P) with $E\xi_n = \mu_n$ and $Var\xi_n = \sigma_n^2$. If $\sum_{k=1}^n \sigma_k^2/n^2 \longrightarrow 0$, then $\{\xi_n, n \geq 1\}$ obeys the weak law of large numbers, i.e.,

$$P\left(\left|\frac{1}{n}\sum_{k=1}^{n}\xi_{k}-\frac{1}{n}\sum_{k=1}^{n}\mu_{k}\right|\geq\epsilon\right)\to0,\ \forall\epsilon>0.$$

Using the Chebyshev inequality, we have

$$P(\left|\frac{1}{n}\sum_{k=1}^{n}(\xi_{k}-\mu_{k})\right| \geq \varepsilon)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{k=1}^{n}\xi_{k}-E\frac{1}{n}\sum_{k=1}^{n}\xi_{k}\right| \geq \varepsilon\right) \leq \frac{1}{\varepsilon^{2}}Var\left(\frac{1}{n}\sum_{k=1}^{n}\xi_{k}\right)$$

$$= \frac{1}{\varepsilon^{2}n^{2}}\sum_{k=1}^{n}\sigma_{k}^{2} \longrightarrow 0 ; \text{ as } n \longrightarrow \infty.$$

The proof is complete.

Example 8. Suppose that $\xi_k \sim \begin{pmatrix} k^s & -k^s \\ 0.5 & 0.5 \end{pmatrix}$, where s < 1/2 is a constant, and $\{\xi_k, k \geq 1\}$ is indept.. Prove that $\{\xi_k, k \geq 1\}$ obeys the weak LLN. Proof.

Example 8. Suppose that $\xi_k \sim \left(\begin{array}{cc} k^s & -k^s \\ 0.5 & 0.5 \end{array}\right)$, where s < 1/2 is

a constant, and $\{\xi_k, k \geq 1\}$ is indept. Prove that $\{\xi_k, k \geq 1\}$ obevs the weak LLN.

Proof.We have $E\xi_k = 0$, $Var\xi_k = k^{2s}$. When s < 1/2,

$$\frac{1}{n^2} \sum_{k=1}^n Var \xi_k = \frac{1}{n^2} \sum_{k=1}^n k^{2s} < \frac{1}{n^2} \sum_{k=1}^n n^{2s} = n^{2s-1} \longrightarrow 0.$$

In addition, $\{\xi_k, k \geq 1\}$ is also independent,

Example 8. Suppose that $\xi_k \sim \left(\begin{array}{cc} k^s & -k^s \\ 0.5 & 0.5 \end{array} \right)$, where s < 1/2 is

a constant, and $\{\xi_k, k \geq 1\}$ is indept. Prove that $\{\xi_k, k \geq 1\}$ obeys the weak LLN.

Proof.We have $E\xi_k=0$, $Var\xi_k=k^{2s}$. When s<1/2,

$$\frac{1}{n^2} \sum_{k=1}^n Var \xi_k = \frac{1}{n^2} \sum_{k=1}^n k^{2s} < \frac{1}{n^2} \sum_{k=1}^n n^{2s} = n^{2s-1} \longrightarrow 0.$$

In addition, $\{\xi_k, k \geq 1\}$ is also independent, so $\{\xi_k, k \geq 1\}$ obeys the Chebyshev LLN, i.e.,

$$P\left(\left|\frac{1}{n}\sum_{k=1}^{n}\xi_{k}\right| \geq \epsilon\right) \to 0, \ \forall \epsilon > 0.$$

Corollary

Let $\{\xi_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables defined (Ω, \mathcal{F}, P) with $Var(\xi_1) < \infty$. Let $E\xi_1 = \mu$, $S_n = \sum_{k=1}^n \xi_k$. Then $\{\xi_n, n \geq 1\}$ obeys the weak LLN, i.e.,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0 \quad as \quad n \to \infty, \ \forall \epsilon > 0.$$

Theorem

(Khinchine) Let $\{\xi_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables defined (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty$. Let $E\xi_1 = \mu$, $S_n = \sum_{k=1}^n \xi_k$. Then $\{\xi_n, n \geq 1\}$ obeys the weak LLN, i.e.,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0 \quad as \quad n \to \infty, \ \forall \epsilon > 0.$$

Proof: Let $M_k = \sqrt{k}$,

$$\eta_k = \xi_k I\{|\xi_k| \le M_k\} = \begin{cases} \xi_k, & \text{if } |\xi_k| \le M_k, \\ 0, & \text{if } |\xi_k| > M_k, \end{cases}$$

$$\zeta_k = \xi_k - \eta_k = \xi_k I\{|\xi_k| > M_k\} = \begin{cases} 0, & \text{if } |\xi_k| \le M_k, \\ \xi_k, & \text{if } |\xi_k| > M_k. \end{cases}$$

Then

4.2.2 Weak laws of large numbers

$$P\left(\frac{\left|\sum_{k=1}^{n}(\eta_{k}-E\eta_{k})\right|}{n} \geq \epsilon/2\right)$$

$$\leq \frac{4}{\epsilon^{2}n^{2}} \sum_{k=1}^{n} Var(\eta_{k}) \leq \frac{4}{\epsilon^{2}n^{2}} \sum_{k=1}^{n} E\eta_{k}^{2}$$

$$= \sum_{k=1}^{n} \frac{4}{\epsilon^{2}n^{2}} E[\xi_{k}^{2}I\{|\xi_{k}| \leq M_{k}\}] \leq \frac{4}{\epsilon^{2}} E\left[\frac{\xi_{1}^{2}I\{|\xi_{1}| \leq M_{n}\}}{n}\right]$$

$$\leq \frac{4M_{n}}{n\epsilon^{2}} E[|\xi_{1}|] \to 0.$$

4.2.2 Weak laws of large numbers

$$P\left(\frac{\left|\sum_{k=1}^{n}(\zeta_{k}-E\zeta_{k})\right|}{n} \ge \epsilon/2\right) \le \frac{2}{\epsilon n}E\left|\sum_{k=1}^{n}(\zeta_{k}-E\zeta_{k})\right|$$

$$\le \frac{2}{\epsilon n}\sum_{k=1}^{n}E|\zeta_{k}-E\zeta_{k}| \le 2\frac{2}{\epsilon n}\sum_{k=1}^{n}E|\zeta_{k}| \le \frac{4}{\epsilon}\frac{1}{n}\sum_{k=1}^{n}E[|\xi_{1}|I\{|\xi_{1}| > M_{k}\}] \to 0.$$

Hence,

$$\begin{split} &P\left(\frac{\left|\sum_{k=1}^{n}(\xi_{k}-E\xi_{k})\right|}{n}\geq\epsilon\right)\\ \leq &P\left(\frac{\left|\sum_{k=1}^{n}(\zeta_{k}-E\zeta_{k})\right|}{n}\geq\epsilon/2\right)+P\left(\frac{\left|\sum_{k=1}^{n}(\eta_{k}-E\eta_{k})\right|}{n}\geq\epsilon/2\right)\\ &\to0\quad\text{as }n\to\infty. \end{split}$$

Corollary

Let $\{\xi_n, n \geq 1\}$ be a sequence of pairwise independent and identically distributed random variables defined (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty$. Let $E\xi_1 = \mu$, $S_n = \sum_{k=1}^n \xi_k$. Then $\{\xi_n, n \geq 1\}$ obeys the weak LLN, i.e.,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0 \quad as \quad n \to \infty, \ \forall \epsilon > 0.$$

4.2.1 Convergence in probability

4.2.1 Convergence in probability

Definition

Suppose ξ and $\{\xi_n, n \geq 1\}$, are defined on the same probability space (Ω, \mathcal{F}, P) . If for any $\varepsilon > 0$

$$\lim_{n\to\infty} P(|\xi_n - \xi| \ge \varepsilon) = 0,$$

or equivalently $\lim_{n\to\infty} P(|\xi_n - \xi| < \varepsilon) = 1$, then we say that ξ_n converges to ξ in probability, written $\xi_n \stackrel{P}{\to} \xi$.

Throwing a dot in [0, 1] rar

Throwing a dot in [0,1] randomly, the dot is located any point in [0,1] with the same possibility. Let ω denote the location of dot and define

$$\xi(\omega) = \begin{cases} 1, \ \omega \in [0, 0.5], \\ 0, \ \omega \in (0.5, 1], \end{cases} \quad \eta(\omega) = \begin{cases} 0, \ \omega \in [0, 0.5], \\ 1, \ \omega \in (0.5, 1]. \end{cases}$$

Then ξ and η have the same distribution function

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

If we define $\xi_n = \xi$, for $n \ge 1$, then $\xi_n \stackrel{d}{\longrightarrow} \eta$, but $|\xi_n - \eta| \equiv 1$.

Convergence in probability

- Suppose ξ and $\{\xi_n, n \geq 1\}$ are random variables defined on the probability space (Ω, \mathcal{F}, P) .
 - (1) If $\xi_n \stackrel{P}{\to} \xi$, then $\xi_n \stackrel{d}{\to} \xi$.
 - (2) If $\xi_n \xrightarrow{d} c$, where c is a constant, then $\xi_n \xrightarrow{P} c$.

- Suppose ξ and $\{\xi_n, n \geq 1\}$ are random variables defined on the probability space (Ω, \mathcal{F}, P) .
 - (1) If $\xi_n \stackrel{P}{\to} \xi$, then $\xi_n \stackrel{d}{\to} \xi$.
 - (2) If $\xi_n \xrightarrow{d} c$, where c is a constant, then $\xi_n \xrightarrow{P} c$.

Proof. (1) Let F and F_n be the cdfs of ξ and ξ_n respectively, and let x be a continuity point of F.

For any $\varepsilon > 0$,

$$(\xi_n \le x) = (\xi_n \le x, |\xi_n - \xi| < \varepsilon) + (\xi_n \le x, |\xi_n - \xi| \ge \varepsilon)$$

$$\subset (\xi \le x + \varepsilon) \cup (|\xi_n - \xi| \ge \varepsilon).$$

For any $\varepsilon > 0$,

$$(\xi_n \le x) = (\xi_n \le x, |\xi_n - \xi| < \varepsilon) + (\xi_n \le x, |\xi_n - \xi| \ge \varepsilon)$$

$$\subset (\xi \le x + \varepsilon) \cup (|\xi_n - \xi| \ge \varepsilon).$$

Thus

$$F_n(x) \le F(x+\varepsilon) + P(|\xi_n - \xi| \ge \varepsilon).$$

Since
$$\xi_n \xrightarrow{P} \xi$$
 as $n \longrightarrow \infty$, we obtain

$$P(|\xi_n - \xi| \ge \varepsilon) \longrightarrow 0$$
 as $n \longrightarrow \infty$.

Since
$$\xi_n \stackrel{P}{\longrightarrow} \xi$$
 as $n \longrightarrow \infty$, we obtain

$$P(|\xi_n - \xi| \ge \varepsilon) \longrightarrow 0$$
 as $n \longrightarrow \infty$.

Thus

$$\limsup_{n\to\infty} F_n(x) \le F(x+\varepsilon).$$

Similarly

$$(\xi \le x) \subset (\xi_n \le x + \varepsilon) \cup (|\xi - \xi_n| \ge \varepsilon)$$

and thus

$$F(x) \le F_n(x+\varepsilon) + P(|\xi_n - \xi| \ge \varepsilon).$$

Similarly

$$(\xi \le x) \subset (\xi_n \le x + \varepsilon) \cup (|\xi - \xi_n| \ge \varepsilon)$$

and thus

$$F(x) \le F_n(x+\varepsilon) + P(|\xi_n - \xi| \ge \varepsilon).$$

So

$$F(x-\varepsilon) \le F_n(x) + P(|\xi_n - \xi| \ge \varepsilon).$$

Similarly

$$(\xi \le x) \subset (\xi_n \le x + \varepsilon) \cup (|\xi - \xi_n| \ge \varepsilon)$$

and thus

$$F(x) \le F_n(x+\varepsilon) + P(|\xi_n - \xi| \ge \varepsilon).$$

So

$$F(x-\varepsilon) \le F_n(x) + P(|\xi_n - \xi| \ge \varepsilon).$$

Thus

$$F(x-\varepsilon) \le \liminf_{n\to\infty} F_n(x).$$

We conclude that

$$F(x-\varepsilon) \le \liminf_{n\to\infty} F_n(x) \le \limsup_{n\to\infty} F_n(x) \le F(x+\varepsilon).$$

We conclude that

$$F(x-\varepsilon) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x+\varepsilon).$$

Letting $\epsilon \to 0$ yields

$$\lim_{n \to \infty} F_n(x) = F(x).$$

That is

$$\xi_n \stackrel{d}{\longrightarrow} \xi.$$

(2) If
$$\xi_n \stackrel{d}{\rightarrow} c$$
, then

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 0, & x < c, \\ 1, & x > c. \end{cases}$$

(2) If $\xi_n \stackrel{d}{\rightarrow} c$, then

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 0, & x < c, \\ 1, & x > c. \end{cases}$$

Hence for any $\varepsilon > 0$,

$$P(|\xi_n - c| > \varepsilon)$$

$$= P(\xi_n > c + \varepsilon) + P(\xi_n < c - \varepsilon)$$

$$= 1 - P(\xi_n \le c + \varepsilon) + P(\xi_n < c - \varepsilon)$$

$$= 1 - F_n(c + \varepsilon) + F_n(c - \varepsilon - 0)$$

$$\to 0 \quad (n \to \infty).$$

Convergence in probability

Example

(Khinchine LLN) Let $\{\xi_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables defined (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty$. Let $E\xi_1 = \mu$, $S_n = \sum_{k=1}^n \xi_k$. Then

$$\frac{S_n}{n} \stackrel{P}{\to} \mu.$$

Example

(Khinchine LLN) Let $\{\xi_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables defined (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty$. Let $E\xi_1 = \mu$, $S_n = \sum_{k=1}^n \xi_k$. Then

$$\frac{S_n}{n} \stackrel{P}{\to} \mu.$$

Proof. Since the limit μ is a constant, it is sufficient to show that

$$\frac{S_n}{n} \stackrel{d}{\to} \mu.$$

Let f(t) and $f_n(t)$ be the c.f.s of ξ_1 and S_n/n respectively.

Let f(t) and $f_n(t)$ be the c.f.s of ξ_1 and S_n/n respectively. Since $\{\xi_n, n \geq 1\}$ is i.i.d., we have $f_n(t) = (f(t/n))^n$. Moreover, from the Taylor expansion formula, we have

$$f(t) = 1 + i\mu t + o(t)$$
 as $t \longrightarrow 0$,

since
$$E\xi_1 = \mu$$
.

Let f(t) and $f_n(t)$ be the c.f.s of ξ_1 and S_n/n respectively. Since $\{\xi_n, n \geq 1\}$ is i.i.d., we have $f_n(t) = (f(t/n))^n$. Moreover, from the Taylor expansion formula, we have

$$f(t) = 1 + i\mu t + o(t)$$
 as $t \longrightarrow 0$,

since $E\xi_1 = \mu$. For every $t \in \mathbf{R}$,

$$f(t/n) = 1 + i\frac{\mu t}{n} + o(\frac{1}{n})$$
 as $n \to \infty$,

$$f_n(t) = (1 + i\frac{\mu t}{n} + o(\frac{1}{n}))^n \to e^{i\mu t}.$$

Let f(t) and $f_n(t)$ be the c.f.s of ξ_1 and S_n/n respectively. Since $\{\xi_n, n \geq 1\}$ is i.i.d., we have $f_n(t) = (f(t/n))^n$. Moreover, from the Taylor expansion formula, we have

$$f(t) = 1 + i\mu t + o(t)$$
 as $t \longrightarrow 0$,

since $E\xi_1 = \mu$. For every $t \in \mathbf{R}$,

$$f(t/n) = 1 + i\frac{\mu t}{n} + o(\frac{1}{n})$$
 as $n \to \infty$,

$$f_n(t) = (1 + i\frac{\mu t}{n} + o(\frac{1}{n}))^n \to e^{i\mu t}.$$

By the inverse limit theorem in we know that $S_n/n \stackrel{d}{\to} \mu$. So, we have $S_n/n \stackrel{P}{\to} \mu$. The proof is complete.

Let {ξ, ξ_n, n ≥ 1} be a sequence of random variables defined on the probability space (Ω, F, P). Prove that
(1) If ξ_n → ξ, ξ_n → η, then P(ξ = η) = 1.
(2) If ξ_n → ξ, f is the continuous function on (-∞, ∞), then f(ξ_n) → f(ξ).

- ② Let $\{\xi, \xi_n, n \geq 1\}$ be a sequence of random variables defined on the probability space (Ω, \mathcal{F}, P) . Prove that
 - (1) If $\xi_n \xrightarrow{P} \xi$, $\xi_n \xrightarrow{P} \eta$, then $P(\xi = \eta) = 1$.
 - (2) If $\xi_n \stackrel{P}{\longrightarrow} \xi$, f is the continuous function on $(-\infty, \infty)$, then $f(\xi_n) \stackrel{P}{\longrightarrow} f(\xi)$.

In general, if $\boldsymbol{\xi}_n =: (\xi_{n,1}, \dots, \xi_{n,m}) \stackrel{P}{\to} \boldsymbol{\xi} := (\xi_1, \dots, \xi_m)$ (i.e., $\|\boldsymbol{\xi}_n - \boldsymbol{\xi}\| \to 0$, or equivalently, $\xi_{n,k} \to \xi_k$, $k = 1, \dots, m$) and $f(\boldsymbol{x})$ is a m-dimensional continuous function, then

$$f(\boldsymbol{\xi}_n) \stackrel{P}{\to} f(\boldsymbol{\xi}).$$

Proof. (1) For any $\varepsilon > 0$, we have

$$(|\xi - \eta| \ge \varepsilon) \subseteq (|\xi_n - \xi| \ge \frac{\varepsilon}{2}) \cup (|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Thus

$$P(|\xi - \eta| \ge \varepsilon) \le P(|\xi_n - \xi| \ge \frac{\varepsilon}{2}) + P(|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Convergence in probability

Proof. (1) For any $\varepsilon > 0$, we have

$$(|\xi - \eta| \ge \varepsilon) \subseteq (|\xi_n - \xi| \ge \frac{\varepsilon}{2}) \cup (|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Thus

$$P(|\xi - \eta| \ge \varepsilon) \le P(|\xi_n - \xi| \ge \frac{\varepsilon}{2}) + P(|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Note that the left side of the above inequality is independent of n and $\xi_n \xrightarrow{P} \xi$, $\xi_n \xrightarrow{P} \eta$ as $n \longrightarrow \infty$. Therefore $P(|\xi - \eta| \ge \varepsilon) = 0$.

Proof. (1) For any $\varepsilon > 0$, we have

$$(|\xi - \eta| \ge \varepsilon) \subseteq (|\xi_n - \xi| \ge \frac{\varepsilon}{2}) \cup (|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Thus

Convergence in probability

$$P(|\xi - \eta| \ge \varepsilon) \le P(|\xi_n - \xi| \ge \frac{\varepsilon}{2}) + P(|\xi_n - \eta| \ge \frac{\varepsilon}{2}).$$

Note that the left side of the above inequality is independent of n and $\xi_n \xrightarrow{P} \xi$, $\xi_n \xrightarrow{P} \eta$ as $n \longrightarrow \infty$. Therefore $P(|\xi - \eta| \ge \varepsilon) = 0$. Furthermore,

$$P(|\xi - \eta| > 0) = P(\bigcup_{n=1}^{\infty} (|\xi - \eta| \ge \frac{1}{n}))$$

$$\le \sum_{n=1}^{\infty} P(|\xi - \eta| \ge \frac{1}{n}) = 0,$$

4.2 Convergence in probability and weak law of large numbers Convergence in probability

(2). For any $\epsilon > 0$ and M > 0, choose $0 < \delta < M/2$ such that $|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \epsilon$ whenever $||\boldsymbol{x} - \boldsymbol{y}|| < \delta, ||\boldsymbol{x}|| \le M, ||\boldsymbol{y}|| \le M$.

(2). For any $\epsilon > 0$ and M > 0, choose $0 < \delta < M/2$ such that $|f(x) - f(y)| < \epsilon$ whenever $||x - y|| < \delta$, ||x|| < M, ||y|| < M. Then

$$\{|f(\boldsymbol{x}) - f(\boldsymbol{y})| \ge \epsilon\}$$

$$\subset \{\|\boldsymbol{x} - \boldsymbol{y}\| \ge \delta\} \bigcup \{\|\boldsymbol{x}\| > M\} \bigcup \{\|\boldsymbol{y}\| > M\}$$

$$\subset \{\|\boldsymbol{x} - \boldsymbol{y}\| \ge \delta\} \bigcup \{\|\boldsymbol{y}\| > M/2\}.$$

Convergence in probability

(2). For any $\epsilon > 0$ and M > 0, choose $0 < \delta < M/2$ such that $|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \epsilon$ whenever $||\boldsymbol{x} - \boldsymbol{y}|| < \delta$, $||\boldsymbol{x}|| < M$, $||\boldsymbol{y}|| < M$. Then

$$\{|f(\boldsymbol{x}) - f(\boldsymbol{y})| \ge \epsilon\}$$

$$\subset \{\|\boldsymbol{x} - \boldsymbol{y}\| \ge \delta\} \bigcup \{\|\boldsymbol{x}\| > M\} \bigcup \{\|\boldsymbol{y}\| > M\}$$

$$\subset \{\|\boldsymbol{x} - \boldsymbol{y}\| \ge \delta\} \bigcup \{\|\boldsymbol{y}\| > M/2\}.$$

So,

$$P(|f(\boldsymbol{\xi}_n) - f(\boldsymbol{\xi})| \ge \epsilon)$$

$$\le P(||\boldsymbol{\xi}_n - \boldsymbol{\xi}|| \ge \delta) + P(||\boldsymbol{\xi}|| > M/2) \to 0,$$

as $n \to \infty$ and then $M \to \infty$.

- We have
 - If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} \eta$, then $\xi_n \pm \eta_n \stackrel{P}{\to} \xi \pm \eta$;

- We have
 - If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} \eta$, then $\xi_n \pm \eta_n \stackrel{P}{\to} \xi \pm \eta$; If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} \eta$, then $\xi_n \eta_n \stackrel{P}{\to} \xi \eta$;

We have

- If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} \eta$, then $\xi_n \pm \eta_n \stackrel{P}{\to} \xi \pm \eta$;
- If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} c$, where c is a constant, both η_n and c are not 0, then $\xi_n/\eta_n \stackrel{P}{\to} \xi/c$;

We have

Convergence in probability

- If $\xi_n \xrightarrow{P} \xi$, $\eta_n \xrightarrow{P} \eta$, then $\xi_n \pm \eta_n \xrightarrow{P} \xi \pm \eta$;
- If $\xi_n \stackrel{P}{\to} \xi$, $\eta_n \stackrel{P}{\to} c$, where c is a constant, both η_n and c are not 0, then $\xi_n/\eta_n \stackrel{P}{\to} \xi/c$;
- 1 If $\xi_n \xrightarrow{d} \xi, \eta_n \xrightarrow{P} c$, where c is a constant, then $\xi_n + \eta_n \xrightarrow{d} \xi + c$, $\eta_n \xi_n \xrightarrow{d} c \xi$.

Proof. We only give a proof of (3) and (4).

Proof. We only give a proof of (3) and (4). By (2), it is sufficient to show that $\eta_n^{-1} \stackrel{P}{\to} c^{-1}$.

Proof. We only give a proof of (3) and (4). By (2), it is sufficient to show that $\eta_n^{-1} \stackrel{P}{\to} c^{-1}$. For any $\epsilon > 0$, let $\delta = \min\{\epsilon \frac{1}{2}c^2, \frac{1}{2}|c|\}$. If $|\eta_n - c| < \delta$, then $|\eta_n| > |c| - \delta > \frac{1}{2}|c|$, and so

$$\left|\eta_n^{-1} - c^{-1}\right| = \frac{|\eta_n - c|}{|\eta_n||c|} < \frac{\epsilon^{\frac{1}{2}}c^2}{\frac{1}{2}|c| \cdot |c|} = \epsilon.$$

Proof. We only give a proof of (3) and (4). By (2), it is sufficient to show that $\eta_n^{-1} \stackrel{P}{\to} c^{-1}$. For any $\epsilon > 0$, let $\delta = \min\{\epsilon \frac{1}{2}c^2, \frac{1}{2}|c|\}$. If $|\eta_n - c| < \delta$, then $|\eta_n| > |c| - \delta > \frac{1}{2}|c|$, and so

$$\left|\eta_n^{-1} - c^{-1}\right| = \frac{|\eta_n - c|}{|\eta_n||c|} < \frac{\epsilon_2^{\frac{1}{2}}c^2}{\frac{1}{2}|c| \cdot |c|} = \epsilon.$$

It follows that

$$P\left(\left|\eta_n^{-1} - c^{-1}\right| \ge \epsilon\right) \le P\left(\left|\eta_n - c\right| \ge \delta\right) \to 0.$$

For (4), it suffices to show that for any bounded continuous function g(x,y) we have

$$Eg(\xi_n, \eta_n) \to Eg(\xi, c).$$
 (*)

For (4), it suffices to show that for any bounded continuous function g(x,y) we have

$$Eg(\xi_n, \eta_n) \to Eg(\xi, c).$$
 (*)

If fact, choosing $g(x,y) = e^{it(x+y)}$ and $g(x,y) = e^{itxy}$ yields

$$Ee^{it(\xi_n+\eta_n)} \to Ee^{it(\xi+c)}, Ee^{it(\xi_n\eta_n)} \to Ee^{it(c\xi)},$$

respectively, which completes the proof by the inverse limit theorem.

Now, suppose g(x,y) is a continuous function with $|g(x,y)| \leq M$, then it is uniformly continuous in any bounded area. So for any given $\epsilon > 0$ and any A > 0 there exist a $\delta = \delta(A,\epsilon,g) > 0$ such that $|g(\xi_n,\eta_n) - g(\xi_n,c)| \leq \epsilon$ whenever $|\eta_n - c| \leq \delta$ and $|\xi_n| \leq A$.

Then

$$|Eg(\xi_{n}, \eta_{n}) - Eg(\xi, c)|$$

$$\leq |Eg(\xi_{n}, \eta_{n}) - Eg(\xi_{n}, c)| + |Eg(\xi_{n}, c) - Eg(\xi, c)|$$

$$\leq E[|g(\xi_{n}, \eta_{n}) - g(\xi_{n}, c)|] + |Eg(\xi_{n}, c) - Eg(\xi, c)|$$

Then

$$|Eg(\xi_{n}, \eta_{n}) - Eg(\xi, c)|$$

$$\leq |Eg(\xi_{n}, \eta_{n}) - Eg(\xi_{n}, c)| + |Eg(\xi_{n}, c) - Eg(\xi, c)|$$

$$\leq E[|g(\xi_{n}, \eta_{n}) - g(\xi_{n}, c)|] + |Eg(\xi_{n}, c) - Eg(\xi, c)|$$

$$\leq \epsilon + 2MP(|\eta_{n} - c| > \delta)$$

$$+ |Eg(\xi_{n}, c) - Eg(\xi, c)| + 2MP(|\xi_{n}| > A).$$

The second term will converge to zero because $\eta_n \stackrel{P}{\to} c$. The third will also converge to zero because $\xi_n \stackrel{d}{\to} \xi$ and g(x,c) is a continuous function of x

For the fourth term, we can choose A such that $\pm A$ is continuous points of the distribution function of ξ . Then $2MP(|\xi_n|>A)$ will converges to

$$2MP(|\xi| > A),$$

which can be smaller than the given $\epsilon > 0$ if A is large enough. Finally, by the arbitrariness of ϵ , (*) is proved.

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} \longrightarrow 0.$$

Proof. Let $F_n(x)$ denote the distribution function of $\xi_n - \xi$. Sufficiency: We have

$$P(|\xi_n - \xi| > \varepsilon) = \int_{|x| > \epsilon} dF_n(x) = \int_{|x| > \epsilon} \frac{1 + |x|}{|x|} \frac{|x|}{1 + |x|} dF_n(x)$$

Proof. Let $F_n(x)$ denote the distribution function of $\xi_n - \xi$. Sufficiency: We have

$$P(|\xi_n - \xi| > \varepsilon) = \int_{|x| > \epsilon} dF_n(x) = \int_{|x| > \epsilon} \frac{1 + |x|}{|x|} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \int_{|x| > \epsilon} \frac{1 + \varepsilon}{\varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

D....

Proof. Let $F_n(x)$ denote the distribution function of $\xi_n - \xi$. Sufficiency: We have

$$P(|\xi_n - \xi| > \varepsilon) = \int_{|x| > \epsilon} dF_n(x) = \int_{|x| > \epsilon} \frac{1 + |x|}{|x|} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \int_{|x| > \epsilon} \frac{1 + \varepsilon}{\varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \frac{1 + \varepsilon}{\varepsilon} E \frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} \to 0 \text{ as } n \to \infty.$$

That is $\xi_n \stackrel{P}{\longrightarrow} \xi$.

Necessity: For any $\varepsilon > 0$.

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} = \int_{-\infty}^{+\infty} \frac{|x|}{1 + |x|} dF_n(x)$$

$$= \int_{|x| < \varepsilon} \frac{|x|}{1 + |x|} dF_n(x) + \int_{|x| > \varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

Necessity: For any $\varepsilon > 0$,

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} = \int_{-\infty}^{+\infty} \frac{|x|}{1 + |x|} dF_n(x)$$

$$= \int_{|x| < \varepsilon} \frac{|x|}{1 + |x|} dF_n(x) + \int_{|x| \ge \varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \frac{\varepsilon}{1 + \varepsilon} + \int_{|x| \ge \varepsilon} dF_n(x)$$

Necessity: For any $\varepsilon > 0$,

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} = \int_{-\infty}^{+\infty} \frac{|x|}{1 + |x|} dF_n(x)$$

$$= \int_{|x| < \varepsilon} \frac{|x|}{1 + |x|} dF_n(x) + \int_{|x| \ge \varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \frac{\varepsilon}{1 + \varepsilon} + \int_{|x| \ge \varepsilon} dF_n(x)$$

$$= \frac{\varepsilon}{1 + \varepsilon} + P(|\xi_n - \xi| \ge \varepsilon).$$

Necessity: For any $\varepsilon > 0$,

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} = \int_{-\infty}^{+\infty} \frac{|x|}{1 + |x|} dF_n(x)$$

$$= \int_{|x| < \varepsilon} \frac{|x|}{1 + |x|} dF_n(x) + \int_{|x| \ge \varepsilon} \frac{|x|}{1 + |x|} dF_n(x)$$

$$\leq \frac{\varepsilon}{1 + \varepsilon} + \int_{|x| \ge \varepsilon} dF_n(x)$$

$$= \frac{\varepsilon}{1 + \varepsilon} + P(|\xi_n - \xi| \ge \varepsilon).$$

Since $\xi_n \stackrel{P}{\to} \xi$, first letting $n \to \infty$ and then letting $\varepsilon \to 0$ yield

$$E\frac{|\xi_n - \xi|}{1 + |\xi_n - \xi|} \longrightarrow 0.$$

$$\rho(\xi, \eta) = E \frac{|\xi - \eta|}{1 + |\xi - \eta|}.$$

$$\rho(\xi, \eta) = E \frac{|\xi - \eta|}{1 + |\xi - \eta|}.$$

Theorem

$$\rho(\cdot,\cdot)$$
 satisfies

Convergence in probability

- $\rho(\xi, \eta) = 0$ if and only if $P(\xi = \eta) = 1$;

$$\mathfrak{R} = \{ \xi : \xi \text{ is a random variable on } (\Omega, \mathcal{F}, P) \}.$$

$$\mathfrak{R} = \{ \xi : \xi \text{ is a random variable on } (\Omega, \mathcal{F}, P) \}.$$

Theorem

• (\mathfrak{R}, ρ) is a metric space;

$$\mathfrak{R} = \{ \xi : \xi \text{ is a random variable on } (\Omega, \mathcal{F}, P) \}.$$

Theorem

- (\mathfrak{R}, ρ) is a metric space;
- $\bullet \ (\mathfrak{R},\rho)=(\mathfrak{R},\stackrel{P}{\rightarrow});$

$$\mathfrak{R} = \{ \xi : \xi \text{ is a random variable on } (\Omega, \mathcal{F}, P) \}.$$

Theorem

- (\mathfrak{R}, ρ) is a metric space;
- $\bullet \ (\mathfrak{R}, \rho) = (\mathfrak{R}, \stackrel{P}{\rightarrow});$
- (\mathfrak{R}, ρ) is complete, i.e., $\xi_n \xi_m \stackrel{P}{\to} 0$ as $n, m \to \infty$ if and only if there exists a random variable ξ such that $\xi_n \stackrel{P}{\to} \xi$.

• (Dominated convergence theorem) Suppose $\xi_n \stackrel{P}{\to} \xi$, $P(|\xi_n| \le \eta) = 1$ and $E\eta < \infty$. Then $E\xi_n \to E\xi$.

(*Dominated convergence theorem*) Suppose $\xi_n \stackrel{P}{\to} \xi$, $P(|\xi_n| < \eta) = 1$ and $E\eta < \infty$. Then

$$E\xi_n \to E\xi$$
.

Proof. First, we have $P(|\xi| \le \eta) = 1$. In fact, for any $\epsilon > 0$,

$$P(|\xi| > \eta + \epsilon) = P(|\xi| > \eta + \epsilon, |\xi_n - \xi| < \epsilon)$$

$$+P(|\xi| > \eta + \epsilon, |\xi_n - \xi| \ge \epsilon)$$

$$\leq P(|\xi_n - \xi| \ge \epsilon) \to 0,$$

which implies $P(|\xi| < \eta) = 1$.

Now, for any $\epsilon > 0$ and M > 0, we have

$$\begin{aligned} |\xi_n - \xi| &\leq \epsilon + |\xi_n - \xi| I\{ |\xi_n - \xi| \geq \epsilon \} \\ &\leq \epsilon + 2\eta I\{ |\xi_n - \xi| \geq \epsilon \} \\ &\leq \epsilon + 2MI\{ |\xi_n - \xi| \geq \epsilon \} + 2\eta I\{ \eta \geq M \} \ a.s.. \end{aligned}$$

Now, for any $\epsilon > 0$ and M > 0, we have

$$\begin{aligned} |\xi_n - \xi| &\leq \epsilon + |\xi_n - \xi| I\{ |\xi_n - \xi| \geq \epsilon \} \\ &\leq \epsilon + 2\eta I\{ |\xi_n - \xi| \geq \epsilon \} \\ &\leq \epsilon + 2MI\{ |\xi_n - \xi| \geq \epsilon \} + 2\eta I\{ \eta \geq M \} \ a.s.. \end{aligned}$$

For any $\epsilon > 0$, choose M > 0 large enough such that

$$E\eta I\{\eta \ge M\} = \int_{y \ge M} y dF_{\eta}(y) < \epsilon/4.$$

Then choose N large enough such that

$$P(|\xi_n - \xi| > \epsilon) < \epsilon/(4M), \ n > N.$$

Then for n > N,

$$|E\xi_n - E\xi| \le E|\xi_n - \xi|$$

 $\le \epsilon + 2MP(|\xi_n - \xi| \ge \epsilon) + 2E\eta I\{\eta \ge M\} < 2\epsilon.$

The applications of LLN

Example

Let $\{\xi_k, k \geq 1\}$ be a sequence of i.i.d. random variables with $E\xi_k = \mu$ and $Var\xi_k = \sigma^2$. Let

$$\bar{\xi}_n = \frac{1}{n} \sum_{k=1}^n \xi_k, \quad \widehat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n (\xi_k - \bar{\xi}_n)^2.$$

Prove that $\widehat{\sigma}_n^2 \xrightarrow{P} \sigma^2$ and find the asymptotic distribution of $\sqrt{n} \frac{\overline{\xi}_n - \mu}{\widehat{\sigma}}$.

Proof.

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n (\xi_k - \bar{\xi}_n)^2$$

$$= \frac{1}{n} \sum_{k=1}^n ((\xi_k - \mu) - (\bar{\xi}_n - \mu))^2$$

$$= \frac{1}{n} \sum_{k=1}^n (\xi_k - \mu)^2 - (\bar{\xi}_n - \mu)^2.$$

By the Khinchine weak LLN, we have $\bar{\xi}_n \xrightarrow{P} \mu$. Thus $\bar{\xi}_n - \mu \xrightarrow{P} 0$.

The applications of LLN

Moreover, since $\{(\xi_k-\mu)^2, k\geq 1\}$ is i.i.d. and $E(\xi_k-\mu)^2=Var\xi_k=\sigma^2$, $\{(\xi_k-\mu)^2, k\geq 1\}$ also obeys the Khinchine weak LLN, i.e. $\sum_{k=1}^n (\xi_k-\mu)^2/n \stackrel{P}{\to} \sigma^2$. Hence $\widehat{\sigma}_n^2 \stackrel{P}{\to} \sigma^2$.

Moreover, since $\{(\xi_k - \mu)^2, k \geq 1\}$ is i.i.d. and $E(\xi_k - \mu)^2 = Var\xi_k = \sigma^2$, $\{(\xi_k - \mu)^2, k \geq 1\}$ also obeys the Khinchine weak LLN, i.e. $\sum_{k=1}^n (\xi_k - \mu)^2/n \stackrel{P}{\to} \sigma^2$. Hence $\widehat{\sigma}_n^2 \stackrel{P}{\to} \sigma^2$. By the Lindeberg-Lévy central limit theorem,

$$\sqrt{n} \frac{\bar{\xi}_n - \mu}{\sigma} = \frac{\sum_{k=1}^n (\xi_k - \mu)}{\sqrt{n\sigma^2}} \stackrel{d}{\to} N(0, 1).$$

Hence

$$\sqrt{n} \frac{\bar{\xi}_n - \mu}{\widehat{\sigma}_n} = \frac{\sigma}{\widehat{\sigma}_n} \cdot \sqrt{n} \frac{\bar{\xi}_n - \mu}{\sigma} \xrightarrow{d} N(0, 1).$$

The applications of LLN

Example Prove that for any q > p > 0,

$$\lim_{n \to \infty} \int_0^1 \cdots \int_0^1 \frac{x_1^q + \cdots + x_n^q}{x_1^p + \cdots + x_n^p} dx_1 \cdots dx_n = \frac{p+1}{q+1}.$$

Example Prove that for any q > p > 0,

$$\lim_{n \to \infty} \int_0^1 \cdots \int_0^1 \frac{x_1^q + \cdots + x_n^q}{x_1^p + \cdots + x_n^p} dx_1 \cdots dx_n = \frac{p+1}{q+1}.$$

Proof. Let $\{\xi_i\}$ i.i.d. $\sim U(0,1)$, and let

$$\eta_n = \frac{\xi_1^q + \dots + \xi_n^q}{\xi_1^p + \dots + \xi_n^p}.$$

Then $0 \le \eta_n \le 1$ and

$$\int_0^1 \cdots \int_0^1 \frac{x_1^q + \cdots + x_n^q}{x_1^p + \cdots + x_n^p} dx_1 \cdots dx_n = E\eta_n.$$

On the other hand, by WLLN,

$$\frac{1}{n} \sum_{k=1}^{n} \xi_{k}^{q} \xrightarrow{P} E \xi_{1}^{q} = \frac{1}{q+1}$$
$$\frac{1}{n} \sum_{k=1}^{n} \xi_{k}^{p} \xrightarrow{P} E \xi_{1}^{p} = \frac{1}{p+1}.$$

So,

$$\eta_n \stackrel{P}{\to} \frac{E\xi_1^q}{E\xi_1^p} = \frac{p+1}{q+1}.$$

Hence

$$\int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{1}^{q} + \cdots + x_{n}^{q}}{x_{1}^{p} + \cdots + x_{n}^{p}} dx_{1} \cdots dx_{n} = E\eta_{n} \to \frac{p+1}{q+1}.$$

Definition

Let r > 0, ξ and $\{\xi_n, n \ge 1\}$ be random variables defined on (Ω, \mathcal{F}, P) with $E|\xi|^r < \infty$ and $E|\xi_n|^r < \infty$. If

$$E|\xi_n - \xi|^r \longrightarrow 0,$$

then we say that $\{\xi_n, n \geq 1\}$ converges in mean of order r to ξ , denoted by $\xi_n \stackrel{L_r}{\to} \xi$.

4.2 Convergence in probability and weak law of large numbers

Convergence in mean of order
$$r$$

$$\xi_n \stackrel{L_r}{\to} \xi \implies \xi_n \stackrel{P}{\to} \xi.$$

4.2 Convergence in probability and weak law of large numbers $\,$

Convergence in mean of order r

$$\xi_n \xrightarrow{L_{\tau}} \xi \implies \xi_n \xrightarrow{P} \xi.$$

$$\xi_n \xrightarrow{L_{\tau}} \xi \not= \xi_n \xrightarrow{P} \xi.$$

Definition

Define ξ_n by $P(\xi_n = n) = 1/\log(n+3)$, $P(\xi_n = 0) = 1 - 1/\log(n+3)$, $n = 1, 2, \cdots$. It is easy to know $\xi_n \xrightarrow{P} 0$, but for any $0 < r < \infty$,

$$E|\xi_n|^r = \frac{n^r}{\log(n+3)} \longrightarrow \infty.$$

That is, $\xi_n \xrightarrow{L_r} 0$ does not hold true.

Theorem

Suppose
$$\xi_n \stackrel{P}{\to} \xi$$
, $P(|\xi_n| \le \eta) = 1$, and $E\eta^r < \infty$. Then $\xi_n \stackrel{L_r}{\to} \xi$.

Theorem

Suppose
$$\xi_n \stackrel{P}{\to} \xi$$
, $P(|\xi_n| \le \eta) = 1$, and $E\eta^r < \infty$. Then $\xi_n \stackrel{L_r}{\to} \xi$.

Proof. Since
$$\xi_n \stackrel{P}{\to} \xi$$
, so $P(|\xi| \le \eta) = 1$. Then

$$P(|\xi_n - \xi|^r \le 2^r \eta^r) = 1, \quad |\xi_n - \xi|^r \xrightarrow{P} 0.$$

Theorem

Suppose
$$\xi_n \stackrel{P}{\to} \xi$$
, $P(|\xi_n| \le \eta) = 1$, and $E\eta^r < \infty$. Then $\xi_n \stackrel{L_r}{\to} \xi$.

Proof. Since $\xi_n \stackrel{P}{\to} \xi$, so $P(|\xi| \le \eta) = 1$. Then

$$P(|\xi_n - \xi|^r \le 2^r \eta^r) = 1, \quad |\xi_n - \xi|^r \xrightarrow{P} 0.$$

By the dominated convergence theorem,

$$E[|\xi_n - \xi|^r] \to 0.$$

附录:

Theorem

Suppose
$$E[|\xi_n|^r] < \infty$$
, $E[|\xi|^r] < \infty$. Then $\xi_n \stackrel{L_{\tau}}{\to} \xi$ if and only if

$$\xi_n \xrightarrow{P} \xi$$

and

$$\lim_{M \to \infty} \sup_{n} E[|\xi_{n}|^{r} I\{|\xi_{n}| \ge M\}] = 0.$$

(uniformly integrable).

Proof. For the "if part",

4.2 Convergence in probability and weak law of large numbers Convergence in mean of order r

Proof. For the "if part", for any M > 0, let

 $\xi_{n,M} = (-M) \vee \xi_n \wedge M, \ \xi_M = (-M) \vee \xi \wedge M.$

Proof. For the "if part", for any M>0, let $\xi_{n,M}=(-M)\vee\xi_n\wedge M$, $\xi_M=(-M)\vee\xi\wedge M$.

 $\xi_n \stackrel{P}{\to} \xi \implies \xi_{n,M} \stackrel{P}{\to} \xi_M.$

Proof. For the "if part", for any M > 0, let

$$\xi_{n,M} = (-M) \vee \xi_n \wedge M$$
, $\xi_M = (-M) \vee \xi \wedge M$.

$$\xi_n \stackrel{P}{\to} \xi \implies \xi_{n,M} \stackrel{P}{\to} \xi_M.$$

By the dominated convergence theorem,

$$E[|\xi_{n,M}|^r] \stackrel{n \to \infty}{\to} E[|\xi_M|^r], \quad E[|\xi_{n,M} - \xi_M|^r] \stackrel{n \to \infty}{\to} 0.$$

Hence

$$E[|\xi|^r] = \lim_{M \to \infty} E[|\xi_M|^r]$$

=
$$\lim_{M \to \infty} \lim_{n \to \infty} E[|\xi_{n,M}|^r] \le \limsup_{n \to \infty} E[|\xi_n|^r] < \infty.$$

Hence

$$E[|\xi|^r] = \lim_{M \to \infty} E[|\xi_M|^r]$$

=
$$\lim_{M \to \infty} \lim_{n \to \infty} E[|\xi_{n,M}|^r] \le \limsup_{n \to \infty} E[|\xi_n|^r] < \infty.$$

Note
$$|\xi - \xi_M| = 0$$
 if $|\xi| \le M$, and $= |\xi| - M$ if $|\xi| > M$. So

$$\begin{aligned} |\xi_n - \xi| &\leq |\xi_{n,M} - \xi_M| + |\xi_n - \xi_{n,M}| + |\xi - \xi_M| \\ &\leq |\xi_{n,M} - \xi_M| + |\xi_n|I\{|\xi_n| \geq M\} + |\xi|I\{|\xi| \geq M\}. \end{aligned}$$

$$|\xi_n - \xi|^r \le 3^r (|\xi_{n,M} - \xi_M|^r + |\xi_n|^r I\{|\xi_n| \ge M\} + |\xi|^r I\{|\xi| \ge M\}).$$

$$|\xi_n - \xi|^r \le 3^r (|\xi_{n,M} - \xi_M|^r + |\xi_n|^r I\{|\xi_n| \ge M\} + |\xi|^r I\{|\xi| \ge M\}).$$

So.

$$\lim_{n \to \infty} \sup E[|\xi_n - \xi|^r]$$

$$\leq \lim_{M \to \infty} \limsup_{n \to \infty} 3^r \Big\{ E[|\xi_{n,M} - \xi_M|^r] + E[|\xi_n|^r I\{|\xi_n| \ge M\}] + E[|\xi|^r I\{|\xi| \ge M\}] \Big\}$$

$$= 0.$$

4.2 Convergence in probability and weak law of large numbers $\,$

Convergence in mean of order r

For the "only if part", it is obvious that $\xi_n \stackrel{L_r}{\to} \xi \implies \xi_n \stackrel{P}{\to} \xi$. Hence

$$E[|\xi_{n,M} - \xi_M|^r] \to 0.$$

For the "only if part", it is obvious that $\xi_n \stackrel{L_r}{\to} \xi \implies \xi_n \stackrel{P}{\to} \xi$. Hence

$$E[|\xi_{n,M} - \xi_M|^r] \to 0.$$

It follows that

$$E[|(\xi_n - \xi_{n,M}) - (\xi - \xi_M)|^r] \to 0.$$

For the "only if part", it is obvious that $\xi_n \stackrel{L_{\tau}}{\to} \xi \implies \xi_n \stackrel{P}{\to} \xi$. Hence

$$E[|\xi_{n,M} - \xi_M|^r] \to 0.$$

It follows that

$$E[|(\xi_n - \xi_{n,M}) - (\xi - \xi_M)|^r] \to 0.$$

Note $|\xi - \xi_M| = 0$ if $|\xi| \le M$, and $= |\xi| - M$ if $|\xi| > M$. So

$$\begin{aligned} &|\xi_{n} - \xi_{n,M}| \\ &\leq &|\xi - \xi_{M}| + \left| (\xi_{n} - \xi_{n,M}) - (\xi - \xi_{M}) \right| \\ &\leq &|\xi| I\{|\xi| \geq M\}| + \left| (\xi_{n} - \xi_{n,M}) - (\xi - \xi_{M}) \right|, \end{aligned}$$

$$|\xi_n - \xi_{n,M}|^r \le 2^r |\xi| I\{|\xi| \ge M\}|^r + 2^r |(\xi_n - \xi_{n,M}) - (\xi - \xi_M)|^r.$$

It follows that

$$\limsup_{n \to \infty} E\left[|\xi_n - \xi_{n,M}|^r\right]$$

$$\leq 2^r E\left[|\xi|^r I\{|\xi| \geq M\}|\right] \to 0, \quad M \to \infty.$$

Note again
$$|\xi_n - \xi_{n,M}| = 0$$
 if $|\xi_n| \le M$, and $= |\xi_n| - M$ if $|\xi_n| > M$.

Note again
$$|\xi_n-\xi_{n,M}|=0$$
 if $|\xi_n|\leq M$, and $=|\xi_n|-M$ if $|\xi_n|>M$.

$$|\xi_n - \xi_{n,M}| \ge \frac{1}{2} |\xi_n| \quad \text{if } |\xi_n| \ge 2M.$$

That is

$$|\xi_n|I\{|\xi_n| \ge 2M\} \le 2|\xi_n - \xi_{n,M}|.$$

Note again
$$|\xi_n-\xi_{n,M}|=0$$
 if $|\xi_n|\leq M$, and $=|\xi_n|-M$ if $|\xi_n|>M$.

$$|\xi_n - \xi_{n,M}| \ge \frac{1}{2} |\xi_n| \quad \text{if } |\xi_n| \ge 2M.$$

That is

$$|\xi_n|I\{|\xi_n| \ge 2M\} \le 2|\xi_n - \xi_{n,M}|.$$

It follows that

$$\lim_{M \to \infty} \limsup_{n \to \infty} E\left[|\xi_n|^r I\{|\xi_n| \ge 2M\}\right] = 0.$$

Convergence in mean of order \boldsymbol{r}

Hence, for any $\epsilon > 0$, there exist $M_0 > 0$ and $N \ge 1$ such that

$$E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon \quad \text{for all } M \ge M_0, n \ge N.$$

Hence, for any $\epsilon > 0$, there exist $M_0 > 0$ and $N \ge 1$ such that

$$E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon \quad \text{for all } M \ge M_0, n \ge N.$$

For each n = 1, ..., N, there exists an M_n such that

$$E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon$$
 for all $M \ge M_n$.

Hence, for any $\epsilon > 0$, there exist $M_0 > 0$ and $N \ge 1$ such that

$$E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon \quad \text{for all } M \ge M_0, n \ge N.$$

For each n = 1, ..., N, there exists an M_n such that

$$E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon$$
 for all $M \ge M_n$.

Choose $M^* = \max\{M_0, M_1, \cdots, M_N\}$, then

$$\sup_{n} E[|\xi_n|^r I\{|\xi_n| \ge M\}] \le \epsilon \quad \text{for all } M \ge M^*.$$