多方法综合地球物理探测技术在铜绿山矿田深部找矿实践中的 应用

余国飞,魏克涛,蔡恒安,尚世超,王磊,黄婉,李欢,陈耀 湖北地质局第一地质大队,大冶,435100

铜绿山矿田是我国重要的矽卡岩型铜、铁、金矿产资源基地,已探明铜金属量 233.72 万吨、金金属量 183.14 吨。自危机矿山接替资源找矿项目实施以来,围绕铜绿山矿田已知矿床的边深部取得了重大找矿成果,有效缓解了矿山企业的资源危机。但随着勘探深度的不断增加(部分矿区勘查深度已达-1638m),传统的物探方法已经难以有效支撑矿田今后的深部找矿工作。本次研究以铜绿山矿田为试点,开展了多种大测深物探方法的应用研究与评价,初步查明了矿田深部关键地质结构;运用重磁三维反演和三维地质建模等手段实现了矿田 3000m 以浅地质结构的"透明化"和"可视化";运用特征分析法建立了地质、物化探综合地球物理预测模型;在此基础上,总结了一套深部找矿关键技术方法,开展了矿田深部成矿预测工作,并取得较好的找矿效果,为其它矿田(区)深部找矿工作提供借鉴。

1 综合地球物理剖面测量

物探是隐伏矿床勘查中最常用的手段,但随着探测深度的增加,传统的物探方法面临着有效探测深度不足或精度、可靠性降低、多解性增强等诸多难题,单一的物探方法很难精确提取出深部有利的成矿信息。为了克服单一物探方法的局限性,在铜绿山矿田开展了MT、AMT、广域电磁法、微动勘探和频率谐振等多种物探方法的有效性试验和剖面测量工作,并对方法的有效性进行了评价。其中,MT、AMT由于地面较强的人文干扰而无法取得有效的数据;广域电磁法在识别岩体边界、大的捕掳体和断裂方面具有一定效果,但也存在一定多解性;微动勘探在识别断裂方面效果最好,在不同岩性的区分效果一般;频率谐振在识别断裂方面也有一定效果,但总体效果不如微动勘探。

根据 I 线综合剖面成果(图 1),铜绿山大理岩残留体的东翼,由于矿化强度和断裂的影响总体呈低阻、低速特征,核部及西翼则总体呈现高阻特征,且向深部稳定延伸。为了验证大理岩残留体西翼向深部的延伸情况和含矿性,2021年在该线施工了 ZK409 孔,在 757.06-1053.50m 处揭露厚大的大理岩,与高阻异常一致,并且在大理岩上下接触带累计揭露富铜富铁矿体 36.30m,单孔新增铜金属资源量 8750 吨,大大开辟了铜绿山背斜西翼的找矿空间。总体来看,通过

广域电磁法和微动勘探,可以较好的识别了铜绿山岩体边界、大的捕掳体和控矿 断裂等深部重要的地质结构。

图 1 | 线微动勘探和广域电磁法测量成果图[]

Fig. 1 Results of microtremor exploration and wide area electromagnetic method

1. 白垩系下统灵乡组; 2. 白垩系下统马架山组; 3 三叠系中统蒲圻组; 4. 三叠系下一中统嘉陵江组; 5. 三叠系下统大冶组; 6. 石英二长闪长玢岩; 7. 地质界线; 8. 侵入接触界线; 9. 实测/推测断裂; 10. 矿体; 11. 钻孔; 12. 找矿靶区; 13. 线钻孔视电阻率剖面图范围

2 重磁三维反演与三维地质建模

2.1 重磁三维反演

首先采用 Modelvision 软件对铜绿山矿田的重磁数据进行提取重磁剩余异常,再利用 UBC 进行反演得到重磁三维反演结果,最后使用三维可视化软件 PA 对反演结果进行三维成图等处理。用三维可视化软件将已知矿体嵌入到重、磁约束下的三维高值异常内,发现矿体与重力、磁法异常套合情况良好,尤其是与重力异常的套合十分一致(图 2)。提取三维高重高磁地质体后,发现在上部已知

矿体对应的高重高磁地质体之下,还存在大量的高重高磁地质体(图3),指示矿田深部还存在第二找矿空间。

图 2 铜绿山矿田重力(左)、磁法(右)约束三维高值与矿体空间关系 Fig.2 The spatial relationship between the three-dimensional high value and the ore body constrained by gravity (left) and magnetic method (right) in Tonglushan ore field

图 3 铜绿山矿田高重、高磁异常体的空间分布情况

Fig.3 Spatial distribution of high gravity and high magnetic anomaly bodies in Tonglushan ore field

2.2 三维地质模型构建

在铜绿山矿田 20 条框架剖面初始地质解译的基础上,使用软件 Encom ModelVision Pro TM 软件进行 2.5D 重磁拟合与剖面修正,最后采用 GeoModeller 三维建模软件,构建铜绿山矿田 3000m 以浅的三维地质模型 (图 5)。

图 4 铜绿山矿田 2.5D 正反演与三维地质建模

Fig.4 2.5D forward and inversion and 3D geological modeling of Tonglushan ore field 根据三维地质建模的成果,铜绿山岩株体具有向北西和北东超覆的特征,岩体在-2km 左右的深度发生回转,岩体底部主接触带存在明显的高重高磁异常体。

基于该认识,提出铜绿山矿田"楼上楼+地下室"的双层成矿模式(图 5),已知矿体均位于岩体上部主接触带或残留体内,在岩体底部还存在主接触带式矿床。

图 5 铜绿山矿田 2.5D 正反演与三维地质建模

Fig. 5 Double-layer metallogenic model of Tonglvshan ore field

3 三维综合信息预测模型构建

根据研究区找矿地质模型及三维地质建模成果,利用特征分析法,针对各个预测变量展开定性与定量分析,建立了铜绿山矿田三维综合预测模型(图 5a),模型中成矿有利度得分越高表明含矿概率越大。通过对比三维综合预测模型与已知矿体的空间关系,可以看出已知矿体几乎全部被预测模型包裹(图 5b),表明构建的预测模型是可靠的,可以用来预测未知矿体。

图 5 铜绿山矿田三维综合预测模型(a)和 4 线切片(b)

Fig. 5 3D comprehensive prediction model and four-line slice of Tonglvshan ore field **致谢:** 本文为湖北省地质局矿产地质项目(KCDZ2022-18)和湖北省地质局科技项目(KJ2023-21)联合资助成果。 参考文献:

[1]吴飞;易露;尚世超;徐富文;杨幼;刘敏;闫芳. 鄂东南矿集区铜绿山矿田深部探测物探方法技术及找矿效果探究[J]. 资源环境与工程,2021,(05):606-610+651.