Predicting High School Track Times

Dana Lindquist
Project Luther
October 12, 2018

High school track statistics are collected and stored at www.athletic.net

Given:

9th grade PR (Personal Record) 10th grade PR 11th grade PR

Predict:

12th grade PR

0000 11-1---

Methodology

Athletes:

400 Meters - 826 athletes 1600 Meters - 2056 athletes Competed all 4 years in high school Graduated between 2006 and 2017

Features
Athlete Name (& ID)
Athlete Sex
9 th grade PR
10 th grade PR
11 th grade PR
12 th grade PR
School
Athletic District
Graduation Year

Athletic Districts in Washington State

Results

Algebraic Model

Assume constant growth rate

$$\frac{t_{12}}{t_{11}} = \frac{t_{11}}{t_{10}}$$

400 Meters. mean = 58.4 seconds

Model	RMSE
Algebra	3.7 (6.3%)
Linear regression	
Mixed Effects Model	
Add higher order terms to LR	

1600 Meters mean = 317.0 seconds

Model	RMSE
Algebra	21.6 (6.8%)
Linear regression	
Mixed Effects Model	
Add higher order terms to LR	

Linear Regression

Mixed Effects Model

District as mixed effect

Add second order terms for (10th grade PR)² (11th grade PR)²

400 Meters. mean = 58.4 seconds

Model	RMSE
Algebra	3.7 (6.3%)
Linear regression	2.2 (3.7%)
Mixed Effects Model	2.1
Add higher order terms to LR	2.3

1600 Meters mean = 317.0 seconds

Model	RMSE
Algebra	21.6 (6.8%)
Linear regression	13.5 (4.3%)
Mixed Effects Model	13.6
Add higher order terms to LR	13.4

Lasso

400 Meters

- 11th grade time
- 10th grade time
- -Sex
- Athletic district becomes important

1600 Meters

- -11th grade time
- -Sex
- Graduation year becomes important

Effect of #data points on model

It is possible to model with relatively few points

Conclusions

- Machine learning models offer improvement over the algebraic model
- Require more features to get better prediction

Future Work

- Add more features
 - Times for individual races
- Use this technique to predict field events
- Extrapolate to predict college times based on high school times (for recruiting)

Appendix

Data sources:

Washington State Athletic Districts http://www.wiaa.com/subcontent.aspx?SecID=379

Track & Field data www.athletic.net