闘

华中科技大学 2022~2023 学年第二学期

《概率论与数理统计》考试试卷(A卷)

课程性质: (必修)

使用范围: (理工类本科 2022 级)

考试时间: 2023 年 07 月 03 日 (08:30~11:00

题 号	一(1~10)	二(1~4)	111	四	五	六	七	总分
分 值	30	12	10	12	12	12	12	100
得 分								
阅卷教师签名								

得 分	
评阅人	

一、单项选择题(每小题 3 分, 共 30 分; 请用 2B 铅笔将 所选答案的字母涂在答题卡相应字母且涂满涂实)

- 1. 设A与B为两随机事件,P(A)=1,则(
- A. A为必然事件; B. AB = B; C. $P(A-B) = P(\overline{B})$; D. P(B-A) = P(B);
- 2. 将一枚硬币独立重复掷 2 次, $A={第一次出现正面}$, $B={第二次出现反面}$, $C = {$ 最多出现一次正面 $}$,则()成立:
- A. A. B、C两两独立; B. A与BC独立; C. B与AC独立; D. C与AB独立;
- 3. 设 r.v.X ~ U(0.1), 则(

- **A.** $E\left(X \frac{1}{3}\right)^2 < \frac{1}{12};$ **B.** $E\left(X \frac{1}{4}\right)^2 = \frac{1}{13};$ **C.** $E\left(X \frac{1}{5}\right)^2 > \frac{1}{12};$ **D.** $E\left(X \frac{1}{7}\right)^2 = \frac{1}{12};$
- **4.** 设 $r.v.X \sim E(\lambda)$, $r.v.Y \sim P(\lambda)$, Cov(X,Y) = 0; 则下列结论错误的是(
- **A.** $E(XY^2) = \lambda + 1$; **B.** E(XY) = 1; **C.** $D(\lambda X + Y) = \lambda + 1$; **D**. $Cov(X, X + \lambda Y) = \frac{1}{2^2}$;
- **5.** 已知 $r.v.X \sim \Phi(2x+1)$, 其中 $\Phi(x)$ 为标准正态分布的分布函数,则 $r.v.X \sim ($).
- **A.** N(-1,1);
- **B.** $N\left(-\frac{1}{2},2\right)$; **C.** $N\left(\frac{1}{2},2\right)$;
- **D.** $N\left(-\frac{1}{2}, \frac{1}{4}\right)$;
- **6.** 设 $r.v.X \sim N(0,1), r.v.Y \sim N(1,4),$ 相关系数已知 $\rho_{xy} = 1$; 则下列正确的是().
 - **A.** $P{Y = -2X + 1} = 1$;
- **B.** $P{Y = 2X + 1} = 1;$
- C. $P{Y = -2X 1} = 1$;
- **D**. $P{Y=2X-1}=1$;
- 7. 设 r.v.X 的分布函数为 $F(X)=cxI_{[0,1]}(x)+I_{[1,+\infty)}(x)$; 若 $P\{X=1\}=0.1$; 则下列结论正确的 是(

 - **A.** $c = \frac{1}{10}$; **B.** $X \sim U(0,1)$; **C.** $c = \frac{9}{10}$; **D.** $c = \frac{19}{10}$;

- **8.** 已知二维离散型随机向量(X,Y)的联合概率分布列如下表: 则当事件 ${X = 0}$ 与 ${X+Y=1}$ 独立时,a+6b=0
- **B**. 1.2: C. 2:
 - **D**. 2.4:
- 0.4 а 0.1
- 9. 设 $r.v.\xi\sim U(0.10)$, 对 ξ 做了两次独立观测,用 X 表示事件 $\{0 \le \xi \le 3\}$ 发生的次数, Y 表示事件 $\{2 \le \xi \le 8\}$ 发生的次数,则 P $\{X + Y = 3\} = ($
- **A.** 0.56:
- **B**. 0.81:
- C. 0.14:
- $\mathbf{D} = 0.30$:
- **10.** 设独立同分布的随机变量序列 $\{X_n, n \ge 1\}$ 与 $X_1 \sim \chi^2(2)$ (自由度为 2 的卡方分布),已 知 $E(X) = 1, D(Y) = 2; 则 Y_n = \frac{1}{n} \sum_{k=1}^{n} X_k^2$ 依概率收敛于(
 - **A**. 4:
- **B**. 8:
- **C**. 16:

D. 20:

评阅人

二、填空题(每小题 3 分, 共 12 分; 必须将结果填写在 答题卡相应的横线上,填写在其它地方不给分)

- 1. 己知 P(A) = 0.8, P(B) = 0.7, P(A|B) = 0.8, 则 $P(\overline{A}\overline{B}) = \underline{\hspace{1cm}}$;
- 2. 设 $r.v.X \sim E(\lambda)$, $r.v.Y \sim E(\lambda)$ 且相互独立,则 $P\{Y < X 3 | X > 3\} = ______;$
- 3. 设二维随机向量 (X,Y) 服从区域 $D = \{(x,y) | 0 \le y \le \sqrt{1-x^2}\}$ 上的均匀分布,对 (X,Y) 的三次独立重复观察中,事件 $\{X \ge Y\}$ 出现次数为 2 的概率 p =_______;
- 4. 随机选取两组学生各 60 人,分别在两个实验室测定某一化合物的 PH 值,假定每个 人的测量的结果是一随机变量、相互独立且服从同一分布,其期望值为 5,方差为 0.3, 用 \overline{X} , \overline{Y} 分别表示两组测量结果的平均值,则 $P\{|\overline{X}-\overline{Y}|<0.1\}\approx$ (结果用标准正态分布的分布函数 $\Phi(x)$ 来表示即可)

得 分	
评阅人	

三、(10分) 某箱有10件产品,其中有0件、1件、2件次 品的概率均为 $\frac{1}{2}$; 开箱检验时从箱中任取一件, 如果该件产品

的检验结果是次品,则认为该箱产品不合格而拒收,否则就认为合格而接收;由于检验 误差,正品被误判为次品的概率为2%,次品被误判为正品的概率为10%;(1)求一箱 产品被接收的概率 p; (2)检验 10 箱产品, 求接收不少于 9 箱的概率。

得 分	
评阅人	

四、 $(12 \, \%)$ (1) 某小型卡车的载重量为 2 吨,水泥的袋装量 $X \sim N \Big(50, 2.5^2\Big)$ (单位: kg),为了以上的概率保证卡车不超载,

写出卡车能装水泥的袋数 n 满足的条件;

(2) 某汽车公司生产的电动汽车充电一次可行驶的路程 $X \sim N\left(\mu,\sigma^2\right)$ (单位: 千 \mathbb{R} 米),其中 σ 已知。甲、乙两测试组分别有放回地随机抽取了该公司生产的电动汽车 100 辆和 400 辆,统计每辆充电一次可行驶的路程,样本均值分别为 $\overline{X_1},\overline{X_2}$,甲测试组得 μ 的置信水平为95%的置信区间[a,b],乙测试组得 μ 的置信水平为99%的置信区间 [a,c],若 $\overline{X_1}$ - $\overline{X_2}$ =1.34,求b-a. (注: 已知 $u_{0.025}$ =1.96, $u_{0.005}$ =2.58)

得 分 评阅人

五、(12分)设二维连续型随机向量(X,Y)的联合概率密 度函数为:

$$p(x,y) = \left(x^2 + \frac{xy}{3}\right) \cdot I_{[0,1] \cap [0,2]}(x,y)$$
,试求:

- (1) 概率 $P{X+Y ≥ 1}; a;$ (2) 边缘概率密度函数 $p_x(x), p_y(y);$ 是
- (3) 随机变量 X与Y 否独立,为什么?

得 分	
评阅人	

六、 $(12 \, \beta)$ 设二维随机向量(X,Y)的联合概率密度函数为: $p(x,y) = (2-x-y) \cdot \mathbf{I}_{[0,1] \cap [0,1]}(x,y);$

$$p(x, y) = (2 - x - y) \cdot I_{[0,1] \cap [0,1]}(x, y)$$

- (1) 求Z = X + Y的概率密度函数;
- (2) 求Cov(X,Y);

评阅人

七、(12分)设总体(X,Y)服从区域 $D = \{(x,y) | 0 \le x, y \le \theta\}$

上的均匀分布,其中 $\theta > 0$ 为总体未知参数,

 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ 是来自总体 $(X,Y)_{i.i.d}$ 样本,

- (1) 根据 X_1, X_2, \dots, X_n , 求参数 θ 的矩估计量 θ_M :
- (2) 根据 (X_1,Y_1) , (X_2,Y_2) ,…, (X_n,Y_n) ,求参数 θ 的极大似然估计量 θ_L :
- (3) θ_{M} 与 θ_{L} 是否为总体参数 θ 的无偏估计。

第2页共2页