Enunciat (2)

```
; Fa $v0 <- 2*abs($a0)
      .text 4000
      and $t1,$a0,$t0
      beg $t1,$0,positiu
                                     4000
                                                8
                                                   9
                                         and
                                              4
negatiu:
                                     4004 beq
                                              9
                                                 0
      sub $v0,$0,$a0
                                              0
                                     4008
                                         sub
                                                 4
                                                   2
      beg $t0,$t0,seguir
                                     4012 beg 8
                                                 8
positiu:
                                     4016 ori
                                              4
                                                 2
                                     4020 add 2
                                                 2
                                                   2
      move $v0,$a0
sequir:
```

Féu la traça de la ruta de dades, escrivint els valors en hexadecimal quan us convinga.

El valor inicial dels registres és 0, excepte \$t0 = 0x80000000 i \$a0.

add \$v0,\$v0,\$v0

Considereu dos casos

a)
$$$a0 = +2$$

b)
$$a0 = -1$$

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

+2

+1

0

Ruta de dades

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 1 (\$a0 = +2)

✓ L'indicador Z val 1 perquè el resultat de l'operació és ALUout = S ∧ T = 0

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 2 (\$a0 = +2)

Si la instrucció en execució és beq:

- ✓ L'operador ALU ha de restar
- ✓ Si S=T (o siga, S–T=0), aleshores Z=1!
- ✓ Cal aplicar el senyal de control MxPC = Z!

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 3 (\$a0 = +2)

 OpALU
 Operació

 000
 a ∧ b (and)

 001
 a ∨ b (or)

 010
 a + b (suma aritmètica)

 110
 a - b (resta)

Cicle 4 (\$a0 = +2)

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 1 (\$a0 = -1)

✓ L'indicador Z val 0 perquè el resultat de l'operació és ALUout ≠ 0

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 2 (\$a0 = -1)

La instrucció en execució és beq:

- ✓ L'indicador Z val 0 perquè $S T \neq 0$ ($S \neq T$)
- ✓ Cal aplicar el senyal de control MxPC = Z!

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 3 (\$a0 = -1)

✓ L'indicador Z val 0 perquè el resultat de l'operació és ALUout ≠ 0

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 4 (\$a0 = -1)

La instrucció en execució és beq:

- ✓ Si Rs = Rt, és un salt incondicional
- ✓ El senyal de control MxPC = Z!

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

Cicle 5 (\$a0 = -1)

OpALU	Operació
000	a ∧ b (and)
001	a v b (or)
010	a + b (suma aritmètica)
110	a – b (resta)

