Firstly, we should focus on the layout, you are using letter paper instead of A4 paper. And the line spacing you used is Chinese scheme. In addition, you should not indent in the first paragraph, which is Chinese scheme as well. The function of a paragraph indent is to mark a pause, setting the paragraph apart from what precedes it. If a paragraph is preceded by a title or subhead, the indent is superfluous and can therefore be omitted.

Original Text

In this article, after introducing some basic concepts of ...

^aMaybe you can convert this sentence to "we first introduce …"

Original Text

And we will tell you when n^a approaches infinity and the common radio less than 1, ... Because the article is short, we don't^b have content. But I think the section titles are clear enough.^c

Original Text

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

а

^aUse \cdots instead of \ldots: $a_1 + \cdots + a_n$.

Original Text

Next, we can define the sum^a of the first n terms in a squence.

^aNote that the context should be consistent, convert "sum" to "summation" according to the title.

Original Text

We have
$$\frac{a_n}{a_{n-1}} = q^a$$
, ...

^aThe context does not mention what n is.

^bDo not use "don't".

^cMaybe you can delete this paragraph, since it is not helpful for content.

[&]quot;Use \s_n/a_{n-1} \$ instead: a_n/a_{n-1} . Moreover, please pay attention to the processing between text and mathematical formulas.

Original Text

If a sequence $\{a_n\}$ satisfies^a the following condition: $\forall n = 2, 3, ...^b$ we have

Original Text

And the equation (1)- $(2)^a$ is called dislocation subtraction method.

^aSince you mentioned the Equation (1)-(2) before, so you need to number the result and reference it here.

Original Text

$$\sum_{i=1}^{n} a_i = (A+B)q^0 + (2A+B)q^1 + (3A+B)q^2 + \dots + (nA+B)q^{n-1}$$

$$\Rightarrow q \sum_{i=1}^{n} a_i = 0 + (A+B)q^1 + (2A+B)q^2 + (3A+B)q^3 + \ldots + [(n-1)A+B]q^{n-1} + (nA+B)q^n$$

^aIf these two equations have relation, you should consider aligning the related parts. The following formulas need to pay attention to this proposal.

Original Text

4.2 How does the formula change when $n \to \infty$ and $0 < q < 1^a$

Original Text

The author wishes to express his gratitude to Dr. Zhang and Dr. Wang^a who ···

Original Text

References

- [1] Tang Tao. Mathematical Writing in English. 1st edition, 2013.
- [2] https://baike.baidu.com/item/等比数列
- [3] https://baike.baidu.com/item/棋盘麦粒问题/47643I6?fr=aladdin

^aMisspelling: satisfies.

^bDo not use dots between formulas and text, which is easy to mislead the readers.

^aThe title is too long, it is best not to include the formula.

^aThe space here is too big, maybe you should use Dr.\Wang instead.

а

^aThe reference is not standardized and is not cited in the original text.