BD ORIENTADAS A DOCUMENTOS

- Este tipo de BD almacena la información como un documento.
- La precursora fue Lotus Notes.
- Utilizan estructuras simples como JSON o XML y donde se utiliza una clave única para cada registro.
- Buenas en modelado de datos natural
- Amigable al programador
- Orientadas a la web: CRUD
- Algunos ejemplos de este tipo son:
- MongoDB o CouchDB.

EJEMPLO XML

```
<artist>
  <artistname>Iron Maiden</<artistname>
  <albums>
    <album>
     <albumname>The Book of Souls</albumname>
      <datereleased>2015</datereleased>
      <genre>Hard Rock</genre>
    </album>
    <album>
      <albumname>Killers</albumname>
      <datereleased>1981</datereleased>
      <genre>Hard Rock</genre>
    </album>
    <album>
      <albumname>Powerslave</albumname>
      <datereleased>1984</datereleased>
      <genre>Hard Rock</genre>
    </album>
    <album>
      <albumname>Somewhere in Time</albumname>
      <datereleased>1986</datereleased>
     <genre>Hard Rock</genre>
    </album>
 </albums>
</artist>
```

```
'_id': 1,
'artistName' : { 'Iron Maiden' },
'albums' : [
        'albumname' : 'The Book of Souls',
        'datereleased' : 2015,
        'genre' : 'Hard Rock'
   }, {
       'albumname' : 'Killers',
        'datereleased' : 1981,
       'genre' : 'Hard Rock'
        'albumname' : 'Powerslave',
        'datereleased' : 1984,
        'genre' : 'Hard Rock'
        'albumname' : 'Somewhere in Time',
        'datereleased' : 1986,
        'genre' : 'Hard Rock'
```

EJEMPLO JSON

EJEMPLOS DOCUMENTOS

Visual Guide to NoSQL Systems

DB-ENGINES

	Rank				Score		
Apr 2024	Mar 2024	Apr 2023	DBMS	Database Model	Apr 2024	Mar 2024	Apr 2023
1.	1.	1.	MongoDB 😃	Document, Multi-model 👔	423.96	-0.57	-17.93
2.	2.	2.	Amazon DynamoDB 🖽	Multi-model 🔃	77.57	-0.15	+0.12
3.	3.	3.	Databricks 😝	Multi-model 🔃	76.33	+1.99	+15.36
4.	4.	4.	Microsoft Azure Cosmos DB 😝	Multi-model 👔	29.85	-0.54	-5.23
5.	5.	5.	Couchbase 🔠	Document, Multi-model 👔	18.46	-0.69	-5.30
6.	6.	6.	Firebase Realtime Database	Document	15.00	-0.07	-3.22
7.	7.	7.	CouchDB	Document, Multi-model 👔	10.26	-1.47	-4.36
8.	8.	8.	Google Cloud Firestore	Document	8.96	-1.01	-2.13
9.	9.	↑ 10.	Realm	Document	7.71	+0.01	-0.57
10.	10.	₩ 9.	MarkLogic	Multi-model 🛐	6.50	-0.57	-1.84

https://db-engines.com/en/ranking

- Administración de contenidos (Blogs, plataformas de vídeo)
- Catálogos (Aplicaciones de e-commerce)

https://www.mongodb.com/es

MONGODB

MONGODB

Pretende combinar lo mejor de los almacenes clave/valor, bases de datos de documentos y RDBMS
Hace uso de JSON y tiene su propio lenguaje de consultas
Implementada en C++
Usada por SourceForge, Bit.ly, Foursquare o GitHub
URL: http://www.mongodb.org/

MongoDB (de la palabra en ingles "humongous" que significa enorme) es un sistema de base de datos NoSQL orientado a documentos.

MongoDB guarda estructuras de datos en documentos tipo BSON (Binary JSON - JSON Binario) con un esquema dinámico, haciendo que la integración de los datos en ciertas aplicaciones sea más fácil y rápida.

BSON-JSON?

JSON (JavaScript Object Notation)

- Es un formato de archivo y de transferencia de información
- human-readable
- parejas clave-valor y colecciones
- Independiente del lenguaje, la mayoría de lenguajes provee librerías para generar y leer información en formato JSON
- Los archivos con este formato tienen extensión.json

MODELO DE DATOS - RDBMS VS MONGODB

1	1
///	′/
111	//
\sim	V

RDBMS	MongoDB	
Base de datos	Base de datos	
Tabla	Colección	
Índice	Índice	
Fila	Documento JSON	
Columna	Campo del documento	
Join	Documentos embebidos y búsqueda	

CARACTERÍSTICAS PRINCIPALES

Consultas Ad-hoc

- MongoDB soporta la búsqueda por campos, consultas de rangos y expresiones regulares.
- Las consultas pueden devolver un campo específico del documento pero también puede ser una función JavaScript definida por el usuario.

Indexación

- Cualquier campo en un documento de MongoDB puede ser indexado, al igual que es posible hacer índices secundarios.
- El concepto de índices en MongoDB es similar a los encontrados en base de datos relacionales.

Expresiones Regulares

- Una expresión regular es una secuencia de caracteres que define un patrón de búsqueda.
- Es una herramienta utilizada por los programadores para buscar, validar y manipular texto de manera eficiente.
- Permite realizar tareas como la búsqueda de coincidencias de caracteres específicos, la validación de formatos y la extracción de información.
- Es útil en la programación para realizar operaciones complejas en texto de forma rápida y precisa.

15

MANIPULACIÓN DE DATOS: COLECCIONES Y DOCUMENTOS

- MongoDB guarda la estructura de los datos en documentos tipo JSON.
- Los elementos de los datos son llamados documentos y se guardan en colecciones.
- Una colección puede tener un número indeterminado de documentos.
- Las colecciones son como tablas y los documentos como filas.
- Cada documento en una colección puede tener diferentes campos.
- La estructura de un documento es simple y está compuesta por "key-value pairs".
- Como valor se pueden usar números, cadenas o datos binarios como imágenes o cualquier otro "key-value pairs".

object id

- _id Field: Cada objeto que se inserta en una base de datos MongoDB obtiene un campo _id generado automáticamente.
- Es único para cada documento insertado en la colección.

QUIZ MODELOS NOSQL

PRÁCTICA MONGODB INSTRUCCIONES BÁSICAS **CLINK**3

CREAR UN BASE DE DATOS

Relacional SQL

CREATE DATABASE base_datos;

> db //muestra la BD actual

MongoDB

use base_datos;

Nombre de la base de datos

INSERTAR UN DOCUMENTO EN UNA COLECCIÓN

MongoDB

Relacional SQL

```
TABLA + INSERT
```

```
CREATE TABLE users (
   id int primary key,
   nombre varchar(255) not null,

   Poco flexible,
   Ligado a la estructura!
);

INSERT INTO users(id,nombre, apellido, edad, estatura)
```

VALUES (1, "Maria", "Fernandez", 38, 1.72)

```
usuario = { nombre : "Monica", apellido : "Rojas", edad : 43, estatura : 1.60 };
```


Cada uno inserte un documento con sus datos. Incluyendo el género: femenino o masculino. Tenga en cuenta la estructura y nombres de las claves actualmente de los documentos en la colección.

SELECCIONAR

Relacional SQL

SELECT * FROM users;

MongoDB Colección db.users.find (); **BD** actual **Operador**

CONEXIÓN MONGODB CON MONGODB COMPASS

Relacional SQL

SELECT top 1 FROM users;

Identificador único autogenerado

¿Con base en qué se genera el Identificador Único?

MongoDB

```
var usuario = db.users.findOne();

Colección

BD actual

Operador
```

{"_id": ObjectId("59c3331d45953192e2928d50"), nombre: "Maria", apellido: "Fernandez", edad: 38, estatura: 1.72 }

SELECT top 1 apellido FROM USErS WHERE nombre = "Maria"

MONGODB COMPASS


```
SELECT * FROM USERS WHERE nombre <> "Maria";
```

```
MongoDB

Colección

desigualdad

var usuario = db.users.find({nombre: {$ne : "Maria"}});

BD actual

Operador
```

```
> db.usuarios.find({nombre: {$ne : "Maria"}});
{ "_id" : ObjectId("5f6a5f05a5f0c5bd29483fa7"), "nombre" : "Monica", "apellido" : "Rojas", "edad" : 43, "es
tatura" : 1.6 }
>
```


OPERADORES

Operador	Expresión
lgual	\$eq
Diferente	\$ne
Mayor que	\$gt
Mayor o igual que	\$gte
Menor que	\$It
Menor o igual que	\$Ite
Existencia en array	\$in
Inexistencia en array	\$nin

CONSULTA OPERADOR AND

```
SELECT * FROM users
WHERE nombre = 'Maria' AND apellido = 'Andrade';
    MongoDB
      Colección
     db.users.find({nombre:"Maria", apellido: "Andrade"});
 BD actual
```

MONGODB COMPASS

CONSULTA OPERADOR OR

```
SELECT * FROM users
 WHERE nombre = 'Maria' OR apellido = 'Cardenas'
    MongoDB
      Colección
     db.users.find({$or:[{nombre:"Maria"},{apellido:"Cardenas"}]});
BD actual
```

MONGODB COMPASS

CLÁUSULA ORDER BY

```
SELECT * FROM USERS ORDER BY nombre, edad ASC;
SELECT * FROM USE'S ORDER BY nombre, edad DESC;
MongoDB
          Colección
        db.users.find().sort({"nombre":1, "edad":-1})
     BD actual
                           1 para ordenar Ascendente
                           -1 para ordenar Descendente
```

MONGODB COMPASS

LIKE: CONTIENE

SELECT * FROM TABLE users WHERE nombre LIKE '%Leon%'

db.users.find({nombre: /Leon/});

```
## FILTER {nombre: /Leon/}

## OPTIONS FIND

## PROJECT { field: 0 }

## SORT { field: -1 } or [['field', -1]]

## GOLLATION { Locale: 'simple' }

## OPTIONS FIND

## OPTIONS
```

LIKE: COMIENZA

SELECT * FROM TABLE users WHERE nombre LIKE 'L%'

db.users.find({nombre: /^L/});

```
Atlas atlas-mrr86e-shard-0 [primary] users_infrati> db.users.find({nombre: /^L/});
    _id: ObjectId("6346dd3dc060d51f1b9c73e0"),
   nombre: 'Luis',
   apellido: 'Ruiz',
   edad: 48,
   estatura: '1.70'
    _id: ObjectId("6346dd3dc060d51f1b9c73e1"),
   nombre: 'Leonor',
   apellido: 'Restrepo',
   edad: 78
    _id: ObjectId("6346dd3dc060d51f1b9c73e2"),
   nombre: 'Leonardo',
   apellido: 'Jurado',
   edad: 44,
   estatura: '1.80'
   _id: ObjectId("6346dd3dc060d51f1b9c73e5"),
   nombre: 'Lucia',
   apellido: 'Cardenas',
   edad: 24,
```

Like: termina

SELECT * FROM TABLE users WHERE nombre LIKE '%o' db.users.find({nombre: /o\$/});

```
## FILTER {nombre: /o$/}

## OPTIONS

## PROJECT { field: 0 }

## SORT { field: -1 } or [['field', -1]]

## COLLATION { Locale: 'simple' }

## OPTIONS

## OPTION
```

BETWEEN

SELECT * FROM TABLE users WHERE edad BETWEEN 20 AND 38; db.users.find({edad: {\$gte:20,\$lte:38}});

SELECT * FROM TABLE users WHERE edad>=20 AND edad <38;

db.users.find({edad: {\$gte:20,\$lt:38}});

DISTINCT

SELECT DISTINCT genero FROM TABLE users;

db.users.distinct("genero");

TALLER

- 1. Consulte todos los documentos de la colección users
- 2. Muestre la cantidad de documentos que hay en la colección users
- 3. Muestre los nombres de todos los usuarios
- 4. Muestre los nombres y apellidos de los users mayores de 18 años
- 5. Muestre los nombres y apellidos de las usuarias menores de 40 años
- 6. De cuántas manera diferentes escribieron el género de un usuario

REFERENCIAS

Cielen, D., Meysman, A., & Ali, M. (2016). Introducing Data Science: Big Data. Machine Learning and More, Using Python Tools. Manning, Shelter Island, US, 322.

MOOC BigData: Sistemas gestores de bases de datos orientados a documentos III https://www.youtube.com/watch?v=eYiebokW2hg

Manual MongoDB https://docs.mongodb.com/manual/replication/