Language and Automata, Assignment 1

Krzysztof Rudnicki Student number: 307585

November 17, 2021

1.1 Regular expression

We are given following regular expression:

$$a^* + ba^*b + bba^*$$

1.2 Examples of accepted strings

- 1. ε
- 2. a
- 3. bab
- 4. bba
- 5. bb

$\begin{array}{cc} \textbf{1.3} & \textbf{Building NFA using Thompson construction} \\ & \textbf{algorithm} \end{array}$

Figure 1.1: Operator 'a'

Figure 1.2: Operator 'b'

Figure 1.3: Operator a^* ,

Figure 1.4: Operator ba^*

Figure 1.5: Operator ba*b'

Figure 1.6: Operator 'bb'

Figure 1.7: Operator ' bba^* '

Figure 1.8: Operator $a^* + ba^*b$

Figure 1.9: Operator $a^* + ba^*b + bba^*$

Figure 1.10: Operator ' $a^* + ba^*b + bba^*$ ' - changed names of states

1.4 Transforming NFA into DFA using subset algorithm

I will use ϵ_{cl} instead of ϵ -closure for brevity sake. Final state - $\underline{q_{19}}$ was marked with an *underline* and so did all the states of DFA that contain it.

$$A = \epsilon_{cl}(q_0) = (q_0, q_1, q_3, q_4, q_6, q_{12}, q_{18}, \underline{q_{19}}) = \underline{A}$$

$$\epsilon_{cl}(move(\underline{A}, a)) = (\epsilon_{cl}(move(q_0, q_1, q_3, q_4, q_6, q_{12}, q_{18}, \underline{q_{19}}, a))) = \epsilon_{cl}(q_9) = (q_6, q_9, q_{12}, q_{18}, \underline{q_{19}}) = \underline{B}$$

$$A = \epsilon_{cl}(move(\underline{A}, b)) = \epsilon_{cl}(move(q_0, q_1, q_3, q_4, q_6, q_{12}, q_{18}, \underline{q_{19}}, b))) = \epsilon_{cl}(q_2, q_7) = (q_2, q_7, q_{10}, q_{15}) = C$$

$$\epsilon_{cl}(move(\underline{B}, a)) = \epsilon_{cl}(move(q_6, q_9, q_{12}, q_{18}, \underline{q_{19}}), a) = \epsilon_{cl}(q_9) = (q_6, q_9, q_{12}, q_{18}, \underline{q_{19}}) = \underline{B}$$

$$\epsilon_{cl}(move(\underline{B}, b)) = \epsilon_{cl}(move(q_6, q_9, q_{12}, q_{18}, \underline{q_{19}}), b) = \emptyset$$

$$\epsilon_{cl}(move(C, a)) = \epsilon_{cl}(move(q_2, q_7, q_{10}, q_{15}), a) = \epsilon_{cl}(q_{13}) = (q_{10}, q_{13}, q_{15}) = D$$

$$\epsilon_{cl}(move(D, a)) = \epsilon_{cl}(move((q_{10}, q_{13}, q_{15}), a) = \epsilon_{cl}(q_{13}) = (q_{10}, q_{13}, q_{15}) = D$$

$$\epsilon_{cl}(move(\underline{B}, b)) = \epsilon_{cl}(move(q_{10}, q_{13}, q_{15}), a) = \epsilon_{cl}(q_{17}) = (q_{17}, q_{18}, \underline{q_{19}}) = \underline{E}$$

$$\epsilon_{cl}(move(\underline{B}, b)) = \epsilon_{cl}(move(q_{10}, q_{13}, q_{15}, b) = \epsilon_{cl}(q_{17}) = (q_{17}, q_{18}, \underline{q_{19}}) = \underline{E}$$

$$\epsilon_{cl}(move(\underline{E}, a)) = \epsilon_{cl}(move(q_{17}, q_{18}, \underline{q_{19}}), a) = \epsilon_{cl}(\emptyset) = \emptyset$$

$$\epsilon_{cl}(move(\underline{E}, b)) = \epsilon_{cl}(move(q_{17}, q_{18}, \underline{q_{19}}), b) = \epsilon_{cl}(\emptyset) = \emptyset$$

1.4.1 State table

State	a	b
<u>A</u>	<u>B</u>	С
<u>B</u>	<u>B</u>	Ø
С	D	\underline{E}
D	D	\underline{E}
<u>E</u>	Ø	Ø
Ø	Ø	Ø

Figure 1.11: DFA graph before minimalization

1.5 Constructing minimal state DFA

\underline{A}						
<u>B</u>	x_1					
С	x_1	x_1				
D	x_1	x_1	x_2			
<u>E</u>	x_1	x_1	x_1	x_1		
Ø	x_1	x_1	x_2	x_2	x_1	
	$\underline{\underline{A}}$	<u>B</u>	С	D	<u>E</u>	Ø

1. First I marked (with x_1) all the pairs in which at least one of them were final state:

$$\begin{split} ([\underline{A},\emptyset],[\underline{A},\underline{E}],[\underline{A},D],[\underline{A},C],[\underline{A},\underline{B}]) \\ ([\underline{B},\emptyset],([\underline{B},\underline{E}],([\underline{B},D],([\underline{B},C]) \\ ([\underline{E},\emptyset],[\underline{E},C],[\underline{E},D]) \end{split}$$

2. We are left with the pairs:

$$([\emptyset, C], [\emptyset, D], [D, C])$$

For pair: $[\emptyset, C]$ C goes to final state \underline{E} on transition 'b' therefore we mark it with x_2 For pair: $[\emptyset, D]$ D goes to final state \underline{E} on transition 'b' therefore we mark it with x_2 For pair: [D, C] both C and D go to final state \underline{E} on transition 'b' therefore we mark it with x_2

No states could be minimized! Therefore our final minimal state DFA looks like this:

Figure 1.12: DFA graph after minimalization