FMI, Info, Anul II, 2017-2018 Programare logică

Seminar 3 Puncte fixe. Unificatori

Teorie pentru S3.1:

O mulţime parţial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relaţie de ordine (i.e., reflexivă, antisimetrică, tranzitivă). O mulţime parţial ordonată (C, \leq) este completă (cpo) dacă C are prim element $\perp (\perp \leq x \text{ oricare } x \in C)$ şi $\bigvee_n x_n$ există în C pentru orice lanţ $x_1 \leq x_2 \leq x_3 \leq \ldots$

Fie (C, \leq_C) o mulţime parţial ordonată. Un element $a \in C$ este punct fix al unei funcţii $f: C \to C$ dacă f(a) = a. Un element $lfp \in C$ este cel mai mic punct fix al unei funcţii $f: C \to C$ dacă este punct fix şi pentru orice alt punct fix $a \in C$ al lui f avem $lfp \leq_C a$.

(S3.1) Care sunt punctele fixe ale următoarelor funcții? Indicați cel mai punct fix.

1)
$$f_1: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_1(Y) = Y \cup \{1\}.$$

2)
$$f_2: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_2(Y) = \begin{cases} \{1\} & \text{dacă } 1 \in Y \\ \emptyset & \text{altfel} \end{cases}$$
.

3)
$$f_3: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_3(Y) = \begin{cases} \emptyset & \text{dacă } 1 \in Y \\ \{1\} & \text{altfel} \end{cases}$$
.

Demonstraţie:

- 1) Se observă că punctele fixe ale lui f_1 sunt submulțimile Y ale lui $\{1, 2, 3\}$ care îl conțin pe 1 (dacă $1 \notin Y$, atunci $f_1(Y) = Y \cup \{1\}$ și evident $Y \neq Y \cup \{1\}$). Deci punctele fixe ale lui f_1 sunt $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}$. Evident, cel mai mic punct fix este $\{1\}$.
- 2) Se observă că singurele puncte fixe ale lui f_2 sunt \emptyset și $\{1\}$. Evident \emptyset este cel mai mic punct fix.
- 3) Se observă că f_3 nu are puncte fixe.

Teorie pentru S3.2:

Fie (A, \leq_A) şi (B, \leq_B) mulţimi parţial ordonate. O funcţie $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

O clauză definită propozițională este o formulă care poate avea una din formele:

- q (clauză unitate)
- $-p_1 \wedge \ldots \wedge p_k \to q$

unde q, p_1, \ldots, p_n sunt variabile propoziționale.

Fie S o mulţime de clauze definite propoziţionale. Fie A mulţimea variabilelor propoziţionale p_1, p_2, \ldots care apar în S şi $Baza = \{p_i \mid p_i \in S\}$ mulţimea clauzelor unitate din S. Definim funcţia $f_S : \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup Baza \cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y, \ldots, s_n \in Y\}$$

(S3.2) Arătați că funcția f_S este monotonă.

Demonstraţie: Fie $Y_1, Y_2 \subseteq A$ astfel încât $Y_1 \subseteq Y_2$. Trebuie să arătăm că $f_S(Y_1) \subseteq f_S(Y_2)$. Fie următoarele multimi:

$$Z_1 = \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_1, \ldots, s_n \in Y_1\},$$

 $Z_2 = \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_2, \ldots, s_n \in Y_2\}.$

Deci $f_S(Y_1) = Y_1 \cup Baza \cup Z_1$ şi $f_S(Y_2) = Y_2 \cup Baza \cup Z_2$. Cum $Y_1 \subseteq Y_2$, rămâne să arătăm doar că $Z_1 \subseteq Z_2$. Fie $a \in Z_1$. Atunci există $s_1 \wedge \ldots \wedge s_n \to a \in S$ şi $s_1, \ldots, s_n \in Y_1$. Deci $s_1, \ldots, s_n \in Y_2$, de unde rezultă că $a \in Z_2$.

Teorie pentru S3.3, S3.4 și S3.5:

Fie (A, \leq_A) şi (B, \leq_B) mulţimi parţial ordonate complete. O funcţie $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanţ $\{a_n\}_n$ din A. Observăm că orice funcţie continuă este crescătoare.

Pentru orice mulțime de clauze definite propoziționale S, funcția f_S este continuă.

Teorema 1 (Knaster-Tarski). Fie (C, \leq) o mulţime parţial ordonată completă şi $\mathbf{F}: C \to C$ o funcţie continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\bot)$$

este cel mai mic punct fix al funcției F.

(S3.3) Calculați cel mai mic punct fix pentru functia f_{S_i} , $i \in \{1, 2, 3\}$, pentru următoarele mulțimi de clauze definite propoziționale:

- 1) $S_1 = \{x_1 \land x_2 \to x_3, x_4 \land x_2 \to x_5, x_2, x_6, x_6 \to x_1\}.$
- 2) $S_2 = \{x_1 \land x_2 \to x_3, x_4 \to x_1, x_5 \to x_2, x_2 \to x_5, x_4\}.$
- 3) $S_3 = \{x_1 \to x_2, x_1 \land x_3 \to x_1, x_3\}.$

Demonstraţie:

1) Observăm că $A = \{x_1, x_2, \dots, x_6\}$ şi $Baza = \{x_2, x_6\}$. Cum f_S este continuă, aplicăm Teorema Knaster-Tarski pentru a calcula cel mai mic punct fix:

$$f_{S_1}(\emptyset) = Baza = \{x_2, x_6\}$$

$$f_{S_1}(\{x_2, x_6\}) = \{x_2, x_6, x_1\}$$

$$f_{S_1}(\{x_2, x_6, x_1\}) = \{x_2, x_6, x_1, x_3\}$$

$$f_{S_1}(\{x_2, x_6, x_1, x_3\}) = \{x_2, x_6, x_1, x_3\}$$

În concluzie, cel mai mic punct fix căutam este $\{x_2, x_6, x_1, x_3\}$.

2) Observăm că $A = \{x_1, x_2, \dots, x_5\}$ şi $Baza = \{x_4\}$. Cum f_S este continuă, aplicăm Teorema Knaster-Tarski pentru a calcula cel mai mic punct fix:

$$f_{S_2}(\emptyset) = Baza = \{x_4\}$$

$$f_{S_2}(\{x_4\}) = \{x_4, x_1\}$$

$$f_{S_2}(\{x_4, x_1\}) = \{x_4, x_1\}$$

În concluzie, cel mai mic punct fix căutam este $\{x_4, x_1\}$.

3) Observăm că $A = \{x_1, x_2, x_3\}$ şi $Baza = \{x_3\}$. Cum f_S este continuă, aplicăm Teorema Knaster-Tarski pentru a calcula cel mai mic punct fix:

$$f_{S_3}(\emptyset) = Baza = \{x_3\}$$

 $f_{S_3}(\{x_3\}) = \{x_3\}$

În concluzie, cel mai mic punct fix căutam este $\{x_3\}$.

(S3.4) Fie L limbajul logicii propoziționale clasice și L^* monoidul cuvintelor cu litere din L. Definiți o funcție $\mathbf{F}: \mathcal{P}(L^*) \to \mathcal{P}(L^*)$ astfel încât mulțimea formulelor logicii propoziționale clasice, Form, este cel mai mic punct fix al lui \mathbf{F} .

Demonstrație: Considerăm că operatprii logici de bază sunt \neg , \rightarrow , iar ceillați sunt derivați (ca să scriem mai puțin).

$$L = Var \cup \{\neg, \rightarrow\} \cup \{(,)\}$$

$$L^* = \{\lambda\} \cup \{w_1 \dots w_n \mid w_i \in L\}$$

$$\mathbf{F}(X) = Var \cup \{ \neg w | w \in X \} \cup \{ w_1 \to w_2 | w_1, w_2 \in X \}$$

Se arată că funcția este continuă. Fie Y cel mai mic punct fix al funcției \mathbf{F} . Trebuie să dem. că Y = Form. Se observă că Form este punct fix al lui \mathbf{F} , deci $Y \subseteq Form$ deoarece Y este cel mai mic punct fix. Ră mâne de demonstrat că $Form \subseteq Y$ și demonstrăm prin inducție structurală:

- $Var \subseteq Y$
- dacă $\varphi \in Y$ atunci ex. un k astfel încât $\varphi \in \mathbf{F}^k(\emptyset)$, deci $\neg \varphi \in \mathbf{F}^{k+1}(\emptyset)$
- dacă $\varphi, \psi \in Y$ atunci ex. k_1, k_2 astfel încât $\varphi \in \mathbf{F}^{k_1}(\emptyset)$ şi $\psi \in \mathbf{F}^{k_2}(\emptyset)$. Dacă $m = \max(k_1, k_2)$ atunci $\varphi \to \psi \in \mathbf{F}^m(\emptyset)$.

(S3.5) * Fie X şi Y două mulțimi nevide. O funcție parțială de la X la Y este un triplet $f = (X, R_f, Y)$ unde $R_f \subseteq X \times Y$ este o relație funcțională. Pentru o funcție parțială $f = (X, R_f, Y)$ vom folosi notația $f : X \to Y$. Dacă notăm cu dom(f) mulțimea elementelor din X pentru care funcția este definită, atunci $f|_{dom(f)} : dom(f) \to Y$ este funcție. Fie Pfn(X,Y) mulțimea funcțiilor parțiale de la X la Y şi $\bot : X \to Y$ unica funcție cu $dom(\bot) = \emptyset$ (funcția care nu este definită în nici un punct). Definim pe Pfn(X,Y) următoarea relație:

$$f\sqsubseteq g$$
dacă și numai dacă $dom(f)\subseteq dom(g)$ și $g|_{dom(f)}=f_{dom(f)}$

- 1) Arătaţi că $(Pfn(X,Y), \sqsubseteq)$ este mulţime parţial ordonată completă şi că \bot este cel mai mic element.
- 2) Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \begin{cases} 1, & \text{dacă } k = 0, \\ k * g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in dom(g), \\ \text{nedefinit}, & \text{altfel} \end{cases}$$

Arătați că **F** este o funcție continuă și caracterizați punctul fix al lui **F**.

Demonstraţie:

- 1) Dacă $\{g_n\}_n$ este un şir de func ctii crecătoare $(g_n \sqsubseteq g_{n+1})$, definim $g: X \to Y$ unde $dom(g) = \bigcup dom(g_n)$ şi $g(x) = g_n(x)$ dacă $x \in dom(g_n)$ or. x or. n. Din condiția de lanț rezultă că g este bine definită. Se arată că $g = \bigvee g_n$.
- 2) Fie $g_n = \mathbf{F}^n(\bot)$. Demonstrăm prin inducție după n că: $dom(g_n) = \{0, \dots, n\} \text{ și } g_n(k) = k! \text{ or. } k \in dom(g_n)$ Astfel, daca g este punctul fix, adică $g = \bigvee g_n$ observăm că g este funcția factorial.

Teorie pentru S3.6:

O substituție este o funcție parțială de la variabile la termeni, adică $\sigma: V \to Trm_{\mathcal{L}}$. Un unificator pentru doi termeni t_1 și t_2 este o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$. Un unificator ν pentru t_1 și t_2 este un cel mai general unificator dacă pentru orice alt unificator ν pentru t_1 și t_2 , există o substituție μ astfel încât $\nu' = \nu$; μ .

Algoritmul de unificare:

	Lista soluţie	Lista de rezolvat
	S	R
Iniţial	Ø	$t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	$R',t\stackrel{.}{=}t$
	S	R'
DESCOMPUNE	S	$R', f(t_1, \ldots, t_n) \stackrel{\cdot}{=} f(t'_1, \ldots, t'_n)$
	S	$R', t_1 = t'_1, \dots t_n = t'_n$
REZOLVĂ	S	$R', x \stackrel{.}{=} t$ sau $t \stackrel{.}{=} x, x$ nu apare în t
	$x \doteq t, S[x \leftarrow t]$	$R'[x \leftarrow t]$
Final	S	Ø

Algoritmul se termină normal dacă $R=\emptyset$ (în acest caz, în S are un unificator pentru termenii din lista inițială R).

Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

- (i) În R există o ecuație de forma $f(t_1, \ldots, t_n) \stackrel{.}{=} g(t'_1, \ldots, t'_k)$ cu $f \neq g$. Simbolurile de constantă se consideră simboluri de funcție de aritate 0.
- (ii) În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

(S3.6) Considerăm

- x, y, z, u, v variabile,
- a, b, c simboluri de constantă,
- $h, g, (_)^{-1}$ simboluri de funcție de aritate 1,
- f, *, + simboluri de funcție de aritate 2,
- p simbol de funcție de aritate 3.

Aplicați algoritmul de unificare de mai sus pentru a găsi un unificator pentru termenii:

- 1) p(a, x, h(g(y))) şi p(z, h(z), h(u))
- 2) f(h(a), g(x)) şi f(y, y)
- 3) p(a, x, g(x)) şi p(a, y, y)
- 4) p(x, y, z) și p(u, f(v, v), u)
- 5) f(x, f(x, x)) şi f(g(y), f(z, g(a)))
- 6) x + (y * y) şi (y * y) + z
- 7) (x*y)*z şi $u*u^{-1}$
- 9) x * y şi $x * (y * (u * v)^{-1})$
- 11) f(g(x), x) şi f(y, y)
- 12) p(x, z, z) şi p(y, y, b)
- 13) p(a, u, h(x)) şi p(y, f(y, z), z)
- 14) f(x, f(b, x)) și f(f(y, a), f(b, f(z, z)))
- 15) p(x,b,x) şi p(y,y,c)

- 16) f(x,y), f(h(x),x) şi f(x,b)
- 17) f(x, f(x, g(y))), f(u, z) și f(g(y), y)
- 18) f(f(x,y),x), f(g(y),z) și f(u,h(z))
- 19) f(f(x,y),x), f(v,u) și f(u,h(z))
- 20) f(f(x,y),x), f(v,u) și f(u,z)
- 21) f(f(g(x), h(y)), h(z)), f(f(u, h(h(x))), h(y)) şi f(v, w)
- 22) p(x, x, z), p(f(a, a), y, y) şi p(f(x, a), b, z)
- 23) p(x, x, z), p(f(a, a), y, y) şi p(x, b, z)
- 24) p(x, x, z), p(f(a, a), y, y) şi p(x, f(a, a), z)
- 25) p(f(x,a), g(y), z), p(f(a,a), z, u) şi p(v, u, z)

Demonstrație: Nu trebuie rezolvate toate exercițiile; o parte se pot lăsa și ca studiu individual pentru studenți. □