Ollscoil na hÉireann The National University of Ireland

Coláiste na hOllscoile, Corcaigh University College, Cork

Summer Examination 2013

CS4407 Algorithm Analysis

Prof. G. Provan
Prof. B. O'Sullivan (HoD)
Prof. Ian Gent (extern)

Attempt all questions

Total marks: 80

90 minutes

Please answer all questions Marks for each question are indicated by [xx]

- 1. [15] We are given as input two sorted arrays A and B, each of length n and containing integers. Our task is to find if there exists i and j such that A[i] + B[j] = c, for some integer c.
 - a. [5] Define an algorithm to solve this problem in time O(nlogn).
 - b. [5] Define an algorithm to solve this problem in time O(n).
 - c. [5] Prove that your O(n) algorithm is correct.
- 2. [20] Consider a knapsack problem where we want to pack a collection of different-sized items, each with integer-valued volume V and weight W, into a knapsack of volume V_{max} such that the weight of the knapsack is maximal.
 - a. [4] Define a greedy algorithm to solve the knapsack problem if we apply the heuristic of taking, at each step, an item that maximizes the ratio of weight/volume. (At the last step, you may take a fraction of an item to make up the volume V_{max}).
 - b. [6] Is this algorithm optimal? Show it is optimal or provide a counter-example.
 - c. [4] If we must take entire items, describe an algorithm where we must use the greedy heuristic of taking the maximum-weight item.
 - d. [6] Is this second greedy algorithm optimal? Show it is optimal or provide a counter-example.
- 3. [20] Prove that the problem FEEDBACK VERTEX SET (FVS) is NP-complete. We define FVS as follows:

INSTANCE: A directed graph G = (V, E) and positive integer $k \le |V|$.

QUESTION: Is there a subset $V' \subseteq V$ with $|V'| \le k$ such that V' contains at least one vertex from every directed cycle in G?

(Assume that you need to define a reduction from one of the following NP-complete problems studied in class: VERTEX COVER, CLIQUE, 3-SAT)

- 4. [10] Suppose that A is a polynomial-time randomized algorithm for Problem X, whose "yes" answers are always correct, and that on any member of X, A answers "yes" with probability at least $1/n^2$.
 - a. [10] Show that there exists a polynomial-time randomized decision procedure B for X that is correct with probability at least 3/4 on any input, and B may be built from A without any unproven assumptions.
- 5. [15] A graph G(V,E) is k-colourable, for some integer k>0, if we can colour the vertices with the k colours such that no two vertices that share an edge have the same colour.
 - a. [5] State a polynomial-time algorithm to decide if an undirected graph is 2-colorable lies in P. [Hint: Use a greedy algorithm or Breadth First Search.]
 - b. [5] Prove that an undirected graph is 2-colorable iff it does not have a cycle with an odd number of vertices. [Hint: use a proof by contradiction.]
 - c. [5] Using the above two parts, prove that your algorithm is correct.