

SERVICE DES CONCOURS

Concours ITA session 2014 Composition: Physique 7

Durée : 2 Heures

REPUBLIQUE DE CÔTE D'IVOIRE

Union - Discipline - Travail

Electrocinétique

EXERCICE-1

On considère le circuit ci-dessous

- 1- Quels sont les nœuds de ce circuit ?
- 2- On donne I_1 = 0,6 A ; I_2 = 0,2 A et I_3 = 0,1 A. Calculer les intensités I_4 , I_5 et I_6
- 3- On donne les tensions $U_{PN}=24\ V$; $U_{PA}=12\ V$; $U_{AC}=8\ V$ et $U_{BC}=6\ V$. Calculer les tensions U_{CN}, U_{AB}, U_{BE} et U_{EF}.
- 4- Calculer la résistance R entre E et F.

EXERCICE-2

Le circuit de la fig.1 est alimenté par une source de tension de f.é.m E et de résistance interne négligeable devant R. On ferme l'interrupteur K à l'instant t = 0.

- 1- Etablir l'expression de l'intensité i du courant en fonction du temps t.
- 2- Le même générateur alimente le circuit représenté sur la fig.2. Déterminer la relation entre L₁, L₂, R₁ et R₂ pour que la différence de potentiel U_{AB} entre les points A et B soit indépendante du temps t.

<u>Mécanique</u>

Une particule matérielle M de masse m est déposée au point A à l'altitude h sur un plan incliné.

- 1- La particule parvient-elle au point A1 d'altitude h' > h en supposant qu'elle glisse sans frottement sur le plan ?
- 2- Le point matériel est maintenant relié à un ressort de constante de raideur k et de longueur au repos I_0 . Le ressort est comprimé jusqu'à une longueur I puis bloqué, la particule est alors au repos en A_0 . On libère le ressort. Le trajet $A_0A_1A_2$ est parfaitement glissant.
 - 2-1 Déterminer la longueur /du ressort pour que la particule atteigne A₁ avec une vitesse nulle.
 - 2-2 Déterminer la vitesse de cette particule en A2
 - 2-3 Déterminer la distance d'arrêt $d = A_2A_3$, sachant qu'à partir de A_2 interviennent des frottements solides de coefficient de glissement f.