0 Amendment

Response to
$$25\%$$
; (-1)

This is my corrective action and (my) letter (to you). (0)

1 Overview

1.1 Goal

Objective: Build / Compare Two Factor-Based L/S Allocation Models (1)

Beta (β) Constraints (2)

First Strategy $(S_{\{1\}})$: Target Beta $\beta_T \in [-0.5, 0.5]$ (3)

Second Strategy $(S_{\{2\}})$: Target Beta $\beta_T \in [-2, 2]$ (4)

 $S_{\{1\}} \cong \text{Value-at-Risk Utility (Robust Optimization)}$ (5)

$$S_{\{2\}} \Leftarrow \text{Information Ratio}$$
 (6)

Post Optimization: Model Comparative Analysis (Estimator Length Sensitivity)

[Covariance Matrix $\Sigma \wedge \text{Expected Returns } \boldsymbol{\mu}$]: $R_j \forall j \in \{1, 2, ..., M\}$ (8)

1.2 Reallocation

Portfolio Allocation
$$\{P_t\} \Leftarrow$$
 '03-01-2007' \sim '03-31-2024' (9)

$$P_t \quad orall \, t \in \{t_0, t_1, t_2, \dots, t_n\} \quad ext{where} \quad t_0 = ext{03-01-2007}, \quad t_n = ext{03-31-2024} \quad (10)$$

$$t_i = t_{i-1} + 7 \text{ days} \quad \text{for} \quad i = 1, 2, \dots, n$$
 (11)

Investment Universe \equiv ETFs ('Global World Economy') (12)

Fama–French Three-Factor Model (Momentum, Value, Size) (13)

Public Data (14)

1.3 Performance Evaluation

Performance / Risk Profiles \Leftarrow Sensitive \Leftarrow Target Beta : $\beta_T \land$ 'Market' (15)

Low Beta
$$\Rightarrow$$
 Decorrelation; (16)

 $High Beta \equiv Antithesis. \tag{17}$

5/16/24. 9:47 PM fe630-fpr-html-v69

• Annualized Return :
$$\mu_a$$
 (19)

• Historical Vol :
$$\sigma_h$$
 (20)

• Skew:
$$\mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3} = \frac{\kappa_3}{\kappa_2^{3/2}}$$
 (21)

•
$$VaR / ES (CVaR)$$
 (22)

• Sharpe:
$$\frac{\mathbb{E}[R_a - R_b]}{\sigma_a} = \frac{\mathbb{E}[R_a - R_b]}{\sqrt{\mathbb{V}(R_a - R_b)}}$$
(23)

1.4 Simplification

Look-Back
$$\mu$$
 Estimators: (24)

• Long-Term Estimator (LTE) :
$$\hat{LT} \Rightarrow LB \in \{180 \text{ Days}\}\$$
 (25)

• Mid-Term Estimator (MTE) :
$$\hat{\text{MT}} \Rightarrow \text{LB} \in \{90 \text{ Days}\}\$$
 (26)

• Short-Term Estimator (STE) :
$$\hat{ST} \Rightarrow LB \in \{40 \text{ Days}, 60 \text{ Days}\}\$$
 (27)

Term-Structure : Covariance $\Sigma \wedge \text{Expected Return } \mu$. (28)

1.5 Synthesis

Optimal Portfolio
$$\Leftarrow \hat{\Sigma} \mid \hat{\mu}$$
 (29)

$$Variance \Leftarrow Strategic \setminus \& Market \Delta$$
 (30)

₩

$$S_{40}^{90} \equiv \mathbf{\hat{\Sigma}} \Rightarrow 40 \text{ Days } \wedge \mathbf{\hat{\mu}} \Rightarrow 90 \text{ Days}$$
 (31)

. .

2 Strategy

Theory $\setminus \&$ Math

2.1 Strategic Formulation

Consider two strategies:

$$\left(\textbf{Strategy I} \right) \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \, \rho^T \omega - \lambda \sqrt{\omega^T \Sigma \omega} \\ \\ -0.5 \le \sum_{i=1}^n \beta_i^m \omega_i \le 0.5 \end{cases}$$

$$\sum_{i=1}^n \omega_i = 1, \quad -2 \le \omega_i \le 2,$$

$$(36)$$

and

$$\text{(Strategy II)} \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \frac{\rho^T \omega}{\text{TEV}(\omega)} - \lambda \sqrt{\omega^T \Sigma \omega} \\ -2 \leq \sum_{i=1}^n \beta_i^m \omega_i \leq 2 \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{cases}$$
 (37)

- $\Sigma \equiv \text{covariance matrix between security returns (FF3FM)};$
- $eta_i^m = rac{\mathrm{Cov}(r_i, r_M)}{\sigma^2(r_M)} \equiv \mathrm{Beta} \ \mathrm{of} \ \mathrm{security} \ S_i \ (\mathrm{CAPM}) \ \mathrm{s.t.}$ $eta_P^m = \sum_{i=1}^n eta_i^m \omega_i \equiv \mathrm{Porfolio} \ \mathrm{Beta};$
- TEV(ω) = $\sigma(r_P(\omega) r_{SPY}) \equiv$ Tracking Error Volatility; (non)trivial derivation (reader exercise):

$$\sigma(r_P(\omega) - r_{\mathrm{SPY}}) = \sqrt{\omega^{\mathsf{T}} \Sigma \omega - 2\omega^{\mathsf{T}} \mathrm{Cov}(r, r_{\mathrm{SPY}}) + \sigma_{\mathrm{SPY}}^2}.$$
 (38)

2.2 Fama-French Three-Factor Model (FF3FM)

$$r_i = r_f + \beta_i^3 (r_M - r_f) + b_i^s r_{\text{SMB}} + b_i^v r_{\text{HML}} + \alpha_i + \epsilon_i$$
 (40)

 $\mathbb{E}[\epsilon_i] = 0;$ \therefore

$$\rho_i = r_f + \beta_i^3 (\rho_M - r_f) + b_i^s \rho_{\text{SMB}} + b_i^v \rho_{\text{HML}} + \alpha_i$$

$$\tag{41}$$

5/16/24, 9:47 PM fe630-fpr-html-v69

Estimated Coefficient Vector: (42)

$$(\hat{\boldsymbol{\beta}}_i^3, \hat{\boldsymbol{b}}_i^s, \hat{\boldsymbol{b}}_i^v)^{\intercal} \Leftarrow y_i = \rho_i - r_f \tag{43}$$

$$= \hat{\beta}_i^3(\rho_M - r_f) + \hat{\beta}_i^s r_{\text{SMB}} + \hat{b}_i^v \rho_{\text{HML}} + \epsilon_i$$
 (45)

$$\beta_i^m \neq \beta_i^3$$
 | estimated via separate regression / computed directly. (46)

2.3 Executive Summary Formulation

$$(In)numerate:$$
 (47)

Strategy I
$$(48)$$

1. Objective
$$\equiv$$
 Maximize Returns w/Risk. (49)

- The portfolio's beta must be between -0.5 and 0.5. (51)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (53)

Strategy II (54)

1. Objective \equiv Maximize Returns Relative to Tracking Error Volatility (TEV).

- The portfolio's beta must be between -2 and 2. (57)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (59)

3 Assumptions

3.1 Setup

1. Reallocation: '03-01-2007' \sim '03-31-2024' (60)

5/16/24. 9:47 PM

fe630-fpr-html-v69 2. Input Construction: (61) $ext{LT LB Period}: n_{ ext{LT}} = 120 \;\mid\; \hat{\Sigma}_s \;\wedge\; \hat{\mu}_s \;\mid\; ext{LT} \equiv S_{120}$ (62) ${\rm MT~LB~Period}: n_{\rm LT} = 90 ~|~ \hat{\Sigma}_s ~\wedge~ \hat{\mu}_s ~|~ {\rm MT} \equiv S_{90}$ (63) ${\rm ST\ LB\ Period}: n_{\rm LT} = 40\ \mid\ \hat{\Sigma}_s\ \wedge\ \hat{\mu}_s\ \mid\ {\rm MT} \equiv S_{40}$ (64)3. $\beta_T \in \{0, 1\}$ (65)4. $\lambda \in \{0.10, 0.50\}$ (66)3.2 Period Analysis Period Stratification: (67)Period $1 \equiv \text{Pre-Subprime}$ (68)Period $2 \equiv \text{Subprime}$ (69)Period $3 \equiv \text{Post-Subprime}$ (70)Period $4 \equiv \text{COVID}$ (71)Period $5 \equiv Post-Covid$ (72)3.3 BackTesting Definition: Historical Data \rightarrow Performance (73)Logistical Considerations: $BackTest \neq ForeCast \Rightarrow Snooping Bias / P-Hacking$ Non-Adapted Filtrations:

• BackTest
$$\neq$$
 ForeCast \Rightarrow Snooping Bias / P-Hacking (75)

 $\{\mathcal{F}_t\}_{t=1}^T \equiv \text{Information Available (Up to Time) } t$

•
$$\{t_i\}_{i=1}^n$$
: (77)

For the initial date t_1 , use the prior 60 days of historical data to estimate input Store the portfolio weights: ω_{t_1} .

For each subsequent date t_{i+1} , roll the historical data window by 5 days, re-est Store the new portfolio weights: $\omega_{t_{i+1}}$.

. Repeat this process until the target date t_n is reached.

4 ToolKit|Arsenal

	l	
	$Strat \: I \Rightarrow \mathtt{CVXPY} \mid Strat \: II \Rightarrow \mathtt{Nonlinear} \: \: \mathtt{Optimizer}$	(79)
	${ m Data} \ ({ m ETFs}) \ : { m { t yfinance}}$	(80)
•	1. FXE	(81)
•	$2.~{ m EWJ}$	(82)
•	$3.~\mathrm{GLD}$	(83)
•	$4. \mathrm{QQQ}$	(84)
•	5. SPY	(85)
•	6. SHV	(86)
•	7. DBA	(87)
•	8. USO	(88)
•	9. XBI	(89)
•	10. ILF	(90)
•	11. EPP	(91)
•	$12.~\mathrm{FEZ}$	(92)
	To Do:	(93)
•	$Task \ 1: \texttt{`download}_\texttt{data}(\texttt{start}_\texttt{date}, \ \texttt{end}_\texttt{date})\texttt{`,}$	'compute_dail
•	${ m Task}\ 2: { m `factor}_{ m model}(\ldots) { m `}.$	(95)
•	Task 3: 'optimize_model()'	(96)

• Task 4: 'backtest(...)' (97)

• Task
$$5$$
: 'analyze(...)' (98)

Task 6: 'summarize(...)' (99)

5 Performance + Risk Reporting 4 Strats

KPIs: (100)

- Cumulative PnL / Return (101)
- Average Daily Arithmetic / Geometric Return | Daily Min Return (102)
- 10 Day Max Drawdown | Sharpe (103)
- Vol, Skew, (Excess) Kurt, (Modified) VaR, Expected Shortfall (CVar) (104)

Tabular Formulation: (105)

Furthermore: (106)

- 1. Evolution Plot : Cumulative Daily PnL $\mid P_0 = \$100, \text{ SPY}_0 = \$100.$ (107)
 - 2. Plot + Analyze (Daily) Return Distribution. (108)

6 Deliverables

- $1 \equiv \text{Report}: \text{Findings}, \text{Conclusions}, \text{Estimator Impact on Strats (When? Why?)}$
 - $2 \equiv {\rm Axes}: {\rm Estimator} \; {\rm Term\text{-}Structure} \; {\rm Sensitivity} \; ({\rm ST}, {\rm MT}, {\rm LT}) \; {\rm for} \; {\bf \Sigma} \; \wedge \; {\boldsymbol \mu} \; \mid \; {\rm T}$

Crisis Periods (Subprime, COVID, et cetera.);

 $3 \equiv \text{Notation, Strats, Graphs}, \& \text{Tables Description};$ (111)

(112) $4\equiv {\tt Code.}$