

Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space

Park et al. NeurIPS 2024 Spotlight

Thomas Melistas
University of Athens

CV & Robotics reading group 10 February 2025

Learning Dynamics of Generative Models

Generative models are able to **generalize** out-of-distribution (OOD) and combine **concepts** in novel ways, not seen during training, by:

- internalizing data-generating process
- disentangling concepts (latent factors of variation) underlying it

Q: What determines whether the model will disentangle a concept and learn to manipulate it? Are all concepts learned at the same time?

Class of interest: A generative model F, trained using conditioning information h to produce images y

• Introduce Concept Space to analyze a model's learning

- Introduce Concept Space to analyze a model's learning
- Show that Concept Signal dictates the order of concept learning

- Introduce Concept Space to analyze a model's learning
- Show that Concept Signal dictates the order of concept learning
- Learning of concepts happens in two phases:
 - (P1) learning of a hidden capability
 - (P2) learning to generate the desired output from the input space

Definition 1. (Concept Space.) Consider an invertible data-generating process $\mathcal{G}: \mathcal{Z} \to \mathcal{X}$ that samples vectors $z \sim P(\mathcal{Z})$ from a vector space $\mathcal{Z} \subset \mathbb{R}^d$ and maps them to the observation space $\mathcal{X} \in \mathbb{R}^n$. We assume the sampling prior is factorizable, i.e., $P(z \in \mathcal{Z}) = \prod_{i=1}^d P(z_i)$, and individual dimensions of \mathcal{Z} correspond to semantically meaningful concepts. Then, a concept space \mathcal{S} is defined as the multidimensional space composed of all possible concept vectors z, i.e., $\mathcal{S} := \{z \mid z \sim P(\mathcal{Z})\}$

Definition 2. (Capability.) A concept class C denotes the set of concept vectors z_C such that a subset of dimensions of these vectors are fixed to predefined values. Classes C and C' are said to differ in the k^{th} concept if $\forall z \in z_C$, there exists $z' \in z_{C'}$ with $z[k] \neq z'[k]$ and z[i] = z'[i] for $i \neq k$. We say a model possesses the "capability to alter the k^{th} concept" if for any class C whose samples were seen during training, the model can produce samples from class C' that differs from C in the k^{th} concept.

- we do not need to use the conditioning h used for training
- other techniques can be used (over-prompting, latent interventions)

Definition 3. (Concept Signal.) The concept signal σ_i for a concept z_i measures the sensitivity of the data-generating process to change in the value of a concept variable, i.e., $\sigma_i := |\partial \mathcal{G}(z)/\partial z_i|$.

Intuitively, concept signal indicates how much the model would benefit from learning a concept

Models:

- Variational Diffusion Model [1]
- Generate $3\times32\times32$ (& $3\times64\times64$) images conditioned on h

Datasets:

- Synthetic toy 2D objects with controlled concepts
- CelebA

Evaluation:

- Classifier probes for individual concepts (U-Net)
- Using same training set

Concept Signal Determines Learning Speed

- Changing the level of concept signal in the training data
- h := z
- speed of learning: inverse of the number of gradient steps required to reach 80% accuracy on OOD class

- Concept memorization: OOD generations biased towards class with strongest concept signal
- Problem when early stopping text-to-image models
- Unseen conditioning associated to nearest concept class

Landscape Theory of Learning Dynamics

- There is a sudden turn from concept memorization to OOD generalization
- Learning dynamics can be decomposed into two stages
- *Hypothesis:* there is a phase change, in which the model learns to alter concepts

Sudden Transitions in Learning Dynamics

- There is a phase in which the model is capable of disentangling concepts, but still produces incorrect images
- Naive input prompting is insufficient to elicit these capabilities and generate samples from OOD classes
- Second phase in learning dynamics: an alignment between the input space and concept representations is learned

Different Guidance Scales

Techniques to elicit hidden capabilities

1. Activation Space: Linear Latent Intervention

2. Input Space: Overprompting

- 1. Take the embedding module from final checkpoint
- 2. Patch it to an intermediate U-Net checkpoint
- 3. Naive prompting works as well as previous techniques

- Second phase aligns input space to intermediate representations
- Embedding module disentangles concepts
- U-Net generates a representation for each

Effect of Underspecification

In the previous experiments h := z, what if not?

Figure: Images of a strawberry are often correlated with the color red

• Simulate underspecification by randomly masking (e.g. red triangle)

RCHIMEDES Underspecification hinders OOD generalization

When prompts are masked, the model's understanding of shape triangle becomes intertwined with color red, even when blue is specified

Overprompting and Underspecification

Capability can develop prior to observable behavior, even in cases of underspecification.

- Concept Space may be useful to understand learning in generative models
- Concept Signal Dictates Speed of Learning
- Generative models learn to manipulate concepts earlier than exhibited

Limitations:

- Real-world data are more complex (not always compositional)
- ullet Concepts are not always linearly embedded in the vector space ${\mathcal Z}$

[1] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models, NeurIPS 2021