Data Structures and Algorithms

Welcome!

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

What is a graph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one. (In our course)

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.

What is a graph?

Graph
$$G = \langle V, E \rangle$$

- V is a set of nodes
 - At least one: |V| > 0.

- E is a set of edges:
 - $E \subseteq \{ (v,w) : (v \in V), (w \in V) \}$
 - e = (v,w), for $v \neq w$
 - For all e_1 , $e_2 \in E$: $e_1 \neq e_2 \leftarrow$

Do not allow self-loops

Only one edge for each pair of nodes

Connected:

Every pair of nodes is connected by a path.

Connected:

Every pair of nodes is connected by a <u>path</u>.

Disconnected:

Some pair of nodes is <u>not</u> connected by a path.

Two connected components.

Disconnected:

Some pair of nodes is not connected by a path.

Two connected components.

Degree of a node:

Number of adjacent edges.

Degree of a graph:

Maximum number of adjacent edges.

Diameter:

 Maximum distance between two nodes, following the shortest path.

Star

One central node, all edges connect center to edges.

Star

One central node, all edges connect center to edges.

Star

One central node, all edges connect center to edges.

All pairs connected by edges.

Line (or path)

diameter = n-1 degree = 2

Cycle

diameter = n/2 or diameter = n/2-1

degree = 2

Where do we find graphs?

Social network:

- Nodes are people
- Edge = friendship

facebook

Where do we find graphs?

Social network:

- Nodes are people
- Edge = friendship

Questions:

- Connected?
- Diameter?
- Degree?

Transportation Network

Internet / Computer Networks

Communication Network

Optimization

Sliding Puzzle is a Graph

Nodes:

- State of the puzzle
- Permutation of nine tiles

Edges:

 Two states are edges if they differ by only one move.

Nodes:

- State of the puzzle
- Permutation of nine tiles

Edges:

 Two states are edges if they differ by only one move.

Nodes = 9! = 362,880

Edges < 4*9! < 1,451,520

Number of moves to solve the puzzle?

Initial, scrambled state:

Final, unscrambled state:

Sliding Puzzle

Number of moves <= Diameter

Initial, scrambled state:

Final, unscrambled state:

Record solve time: 0.69 seconds

Configuration Graph

- Vertex for each possible state
- Edge for each basic move
 - 90 degree turn
 - 180 degree turn

Puzzle: given initial state, find a path to the solved state.

How many vertices?

$$8! \cdot 3^8 = 264,539,520$$
cubelets

Each cubelet is in one of 8 positions.

Each of the 8 cubelets can be in one of three orientations

How many vertices?

$$7! \cdot 3^7 = 11,022,480$$

Symmetry:

Fix one cubelet.

Each of the 8 cubelets can be in one of three orientations

Geography of Rubik's configurations:

reachable in two moves, but not one

#configurations requires n turns

n	90 deg. Turns only	90/180 deg. turns
0	1	1
1	6	9
2	27	54
3	120	321
4	534	1,847
5	2,256	9,992
6	8,969	50,136
7	33,058	227,536
8	114,149	870,072
9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

#configurations requires n turns

n	90 deg. turns	90/180 deg. turns
	90 deg. turns	90/100 deg. turns
0	1	1
1	6	9
2	27	54
3		
4		
5	C	hallenge:
6	How do you	generate this table
7		
8		
9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

3 x 3 x 3 Rubik's Cube

Configuration Graph

- 43 quintillion vertices (approximately)
- Diameter: 20
 - 1995: require at least 20 moves.
 - 2010: 20 moves is enough from every position.
 - Using Google server farm.
 - 35 CPU-years of computation.
 - 20 seconds / set of 19.5 billion positions.
 - Lots of mathematical and programming tricks.

Proof of the max no. of moves needed

Date	Lower bound	Upper bound	Gap	Notes and Links
July, 1981	18	52	34	Morwen Thistlethwaite proves <u>52 moves</u> suffice.
December, 1990	18	42	24	Hans Kloosterman improves this to 42 moves.
May, 1992	18	39	21	Michael Reid shows <u>39 moves</u> is always sufficient.
May, 1992	18	37	19	Dik Winter lowers this to 37 moves just one day later!
January, 1995	18	29	11	Michael Reid cuts the upper bound to <u>29 moves</u> by analyzing Kociemba's two-phase algorithm.
January, 1995	20	29	9	Michael Reid proves that the "superflip" position (corners correct, edges placed but flipped) requires 20 moves.
December, 2005	20	28	8	Silviu Radu shows that <u>28 moves</u> is always enough.
April, 2006	20	27	7	Silviu Radu improves his bound to <u>27 moves</u> .
May, 2007	20	26	6	Dan Kunkle and Gene Cooperman prove 26 moves suffice.
March, 2008	20	25	5	Tomas Rokicki cuts the upper bound to <u>25 moves</u> .
April, 2008	20	23	3	Tomas Rokicki and John Welborn reduce it to only 23 moves.
August, 2008	20	22	2	Tomas Rokicki and John Welborn continue down to 22 moves.
July, 2010	20	20	0	Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge prove that God's Number for the Cube is exactly 20.

3 x 3 x 3 Rubik's Cube

What is the diameter of an (n x n x n) cube?

- a 22 x 22 x 22 Rubik's Cube
- Link

In general:

 $\theta(n^2 / log n)$

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Representing a Graph

- Nodes
- Edges

Representing a Graph

- Nodes: stored in an array
- Edges

Adjacency List

- Nodes: stored in an array
- Edges: linked list per node

Adjacency List in C++

```
class Node {
 int key;
  LinkedList<int>;
class Graph {
                             a
 Node nodeList[MAXNODE];
                             b
                             d
                             e
                             f
```

Adjacency List in C++

```
class Graph{
   LinkedList<LinkedList<int>> m_nodes;
}
```

More concise code is not *always* better...

- Harder to read
- Harder to debug
- Harder to extend

Representing a Graph

- Nodes
- Edges = pairs of nodes

- Nodes
- Edges = pairs of nodes

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
C	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \in E$$

Neat property:

• A^2 = length 2 paths

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

To find out if c and d are 2-hop neighbors:

- Let $B = A^2$.
- B[c, d] = A[c, .] A[., d]

B[c, d] = 1 iff
 A[c, x] == A[x, d]
 for some x.

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
C	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

To find out if c and d are 2-hop neighbors:

- Let $B = A^2$.
- $B[c, d] = A[c, .] \cdot A[., d] > 0 ? 1 : 0$

B[c, d] = 1 iff
 A[c, x] == A[x, d]
 for some x.

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
C	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

Neat properties:

- A^2 = length 2 paths
- A^{∞} = Google pagerank

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

A Google matrix is a particular stochastic matrix that is used by Google's PageRank algorithm. The matrix represents a graph with edges representing links between pages. The rank of each page can be generated iteratively from the Google matrix using the power method. However, in order for the power method to converge, the matrix must be stochastic, irreducible and aperiodic.

Explanation:

https://www.youtube.com/watch?v=bTI1aC-PYD8

Adjacency Matrix in C++

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

```
class Graph {
  boolean[][] m_adjMatrix;
```

	a	b	C	d	
a	0	0	0	0	
b	0	0	1	1	
C	0	1	0	0	
d	0	1	0	0	
е	1	1	0	0	
f	1	0	0	0	

Adjacency Matrix in C++

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

```
class Graph {
  Node[][] m_adjMatrix;
```

	a	b	С	d	
a	0	0	0	0	
b	0	0	1	1	
C	0	1	0	0	
d	0	1	0	0	
е	1	1	0	0	
f	1	0	0	0	

Adjacency Matrix in C++

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

```
0
0
            0
0
            0
```

a

1

Resizable, but harder to use.

Trade-offs

Adjacency Matrix vs. List?

Adjacency List

Memory usage for graph G = (V, E):

- array of size |V|
- linked lists of size |E|

Total:
$$O(V + E)$$

For a cycle: E = O(V)

Memory usage for graph G = (V, E):

array of size |V|*|V|

Total: $O(V^2)$

For a cycle: $O(V^2)$

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

For a clique, which representation is better?

- 1. Adjacency matrix
- 2. Adjacency list
- /3. Equivalent

Adjacency List vs. Matrix

Memory usage for graph G = (V, E):

- Adjacency List: O(V + E)
- Adjacency Matrix: O(V²)

For a cycle: O(V) vs. $O(V^2)$

For a clique: $O(V + E) = O(V^2)$ vs. $O(V^2)$

Base rule: if graph is dense then use an adjacency matrix; else use an adjacency list.

dense: $|E| = \theta(V^2)$

Which representation for Facebook Graph? Query: Are Bob and Joe friends?

- 1. Adjacency List
- ✓2. Adjacency Matrix
 - 3. Equivalent

List: (much) better space.

Matrix: somewhat faster

Which representation for Facebook Graph? Query: List all my friends?

- ✓ 1. Adjacency List
 - 2. Adjacency Matrix
 - 3. Equivalent

Trade-offs

Adjacency Matrix:

- Fast query: are v and w neighbors?
- Slow query: find me any neighbor of v.
- Slow query: enumerate all neighbors.

Adjacency List:

- Fast query: find me any neighbor.
- Fast query: enumerate all neighbors.
- Slower query: are v and w neighbors?

Graph Representations

Key questions to ask:

- Space usage: is graph dense or sparse?
- Queries: what type of queries do I need?
 - Enumerate neighbors?
 - Query relationship?

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Searching a Graph

Goal:

- Start at some vertex s = start.
- Find some other vertex \mathbf{f} = finish.

Or: visit **all** the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Graph representation:

Adjacency list

Searching a graph

Breadth-First Search:

- Explore level by level
- Frontier: current level
- Initially: {s}

Don't go backward!

Finds <u>shortest</u> paths.

Searching a graph

Breadth-First Search:

- Build levels.
- Calculate level[i] from level[i-1]


```
BFS(Node[] nodeList, int startId) {
 boolean visited[numNode] = {0};
  int parent[numNode];
  for (int i=0;i<numNode;i++)
     parent[i] = -1; // no parent yet
  Set<int> frontier:
  frontier.insert(startId);
  visited[startId] = true;
  // Main code goes here!
```

```
while (!frontier.isEmpty()) {
   Set<int> nextFrontier = new Set<Integer>;
    while (!frontier.isEmpty()) {
         extract a vertex v from frontier
         for (w = every neighbor of v) {
               if (!visited[w]) {
                     visited[w] = true;
                     parent[w] = v;
                     nextFrontier.add(w);
   frontier = nextFrontier;
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```

BFS on Disconnected Graph

Example:


```
BFS(Node[] nodeList) {
  boolean visited[numNode] = {0};
  int parent[numNode];
  for (int i=0;i<numNode;i++)</pre>
     parent[i] = -1; // no parent yet
  for (int start = 0; start < numNode; start++) {</pre>
     if (!visited[start]) {
           Bag<Integer> frontier = new Bag<Integer>;
           frontier.add(start);
           visited[start] = true;
           // Main code goes here!
```

Analysis:

Vertex v = "start" once.

- Vertex v added to nextFrontier (and frontier) once.
 - After visited, never re-added.

- Each v.nbrlist is enumerated once.
 - When v is removed from frontier.


```
while (!frontier.isEmpty()) {
   Set<int> nextFrontier = new Set<Integer>;
    while (!frontier.isEmpty()) {
         extract a vertex v from frontier
         for (w = every neighbor of v) {
               if (!visited[w]) {
                     visited[w] = true;
                     parent[w] = v;
                     nextFrontier.add(w);
   frontier = nextFrontier;
```

Shortest paths from the start node:

Parent pointers store shortest path.

Which is true? (More than one may apply.)

- 1. Shortest path graph is a cycle.
- ✓2. Shortest path graph is a tree.
 - 3. Shortest path graph has low-degree.
 - 4. Shortest path graph has low diameter.
 - 5. None of the above.

Shortest paths:

- Parent pointers store shortest path.
- Shortest path is a tree.
- (Possibly high degree; possibly high diameter.)

What if there are two components?

Searching a Graph

Goal:

- Start at some vertex s = start.
- Find some other vertex \mathbf{f} = finish.

Or: visit **all** the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Graph representation:

Adjacency list

Depth-First Search

Exploring a maze:

- Follow path until stuck.
- Backtrack along breadcrumbs until reach unexplored neighbor.
- Recursively explore.

Searching a graph

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Searching a graph

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Depth-First Search

```
DFS-visit(Node[] nodeList, boolean[] visited, int startId) {
  for every neighbor v of startId {
     if (!visited[v]) {
           visited[v] = true;
           DFS-visit(nodeList, visited, v);
```

Depth-First Search

```
DFS(Node[] nodeList) {
 boolean visited [numNode] = {0};
  for (start = 0; start<nodeList.length; start++) {</pre>
     if (!visited[start]) {
           visited[start] = true;
           DFS-visit (nodeList, visited, start);
```

Depth-First Search Example


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```

Depth-First Search Example


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```

DFS parent edges

Red = Parent Edges
Purple = Non-parent edges

DFS parent edges = tree

Red = Parent Edges
Purple = Non-parent edges

Note: not shortest paths!

Depth-First Search

Analysis:

- O(V)
- DFS-visit called only once per node.
 - After visited, never call DFS-visit again.

In DFS-visit, each neighbor is enumerated.

Graph Search

BFS and DFS are the same algorithm:

- BFS: use a queue
 - Every time you visit a node, add all unvisited neighbors to the queue.

- DFS: use a stack
 - Every time you visit a node, add all unvisited neighbors to the stack.

Graph Search

Breadth-first search:

Same algorithm, implemented with a queue:

Add start-node to queue.

Repeat until queue is empty:

- Remove node v from the front of the queue.
- Visit v.
- Explore all outgoing edges of v.
- Add all unvisited neighbors of v to the queue.

Graph Search

Depth-first search:

Same algorithm, implemented with a stack:

Add start-node to stack.

Repeat until stack is empty:

- Pop node v from the top of the stack.
- Visit v.
- Explore all outgoing edges of v.
- Push all unvisited neighbors of v on the top of the stack.

Review: Searching Graphs

BFS and DFS are the same algorithm:

- BFS: use a queue
 - Every time you visit a node, add all unvisited neighbors to the queue.

- DFS: use a stack
 - Every time you visit a node, add all unvisited neighbors to the stack.

What is a directed graph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.
 - Each edge is directed.

What is a directed graph?

Graph
$$G = \langle V, E \rangle$$

- V is a set of nodes
 - At least one: |V| > 0.

- E is a set of edges:
 - $E \subseteq \{ (v,w) : (v \in V), (w \in V) \}$ Order matters!
 - $e = (v,w) \leftarrow$
 - For all e_1 , $e_2 \in E$: $e_1 \neq e_2$

What is a directed graph?

In-degree: number of incoming edges Out-degree: number of outgoing edges

Representing a (Directed) Graph

Adjacency List:

- Array of nodes
- Each node maintains a list of neighbors
- Space: O(V + E)

Adjacency Matrix:

- Matrix A[v,w] represents edge (v,w)
- Space: O(V²)

Adjacency List

Undirected Graph consists of:

- Nodes: stored in an array
- Edges: linked list per node

Adjacency List

Directed Graph consists of:

Nodes: stored in an array

Outgoing Edges: linked list per node

Adjacency List in C++

```
class Node {
 int key;
  LinkedList<int>;
class DirectedGraph {
                             a
 Node nodeList[MAXNODE];
                             b
                             d
                             e
                             f
```

Representing a (Directed) Graph

Adjacency List:

- Array of nodes
- Each node maintains a list of neighbors
- Space: O(V + E)

Adjacency Matrix:

- Matrix A[v,w] represents edge (v,w)
- Space: O(V²)

Adjacency Matrix

Undirected Graph consists of:

- Nodes
- Edges = pairs of nodes

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

Adjacency Matrix

Directed Graph consists of:

- Nodes
- Edges = pairs of nodes

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	0	0
C	0	1	0	0	0	0
d	0	1	0	0	0	0
е	0	1	0	0	0	0
f	0	0	0	0	0	0

Adjacency Matrix

Graph represented as:

 $A[v][w] = 1 \text{ iff } (v,w) \in E$

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	0	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	0	1	0	0	0	0
f	0	0	0	0	0	0

Searching a (Directed) Graph

Breadth-First Search:

- Search level-by-level
- Follow outgoing edges
- Ignore incoming edges

Depth-First Search:

- Search recursively
- Follow outgoing edges
- Backtrack (through incoming edges)

Applications of directed graphs

Directed Graphs

Is friendship always bidirectional?:

- Nodes are people
- Edge = friendship

Facebook: yes

Google+: no

Directed Graphs

Markov text generation:

- Nodes are kgrams
 - A k-gram is a contiguous sequence of k items e.g. syllables, letters, words, etc.
- Edge = one kgram follows another

