Last name	
First name	

LARSON—MATH 550—HOMEWORK WORKSHEET h06 Test 1 Review

- 1. What is a recurrence relation? Give an example.
- 2. (Towers of Hanoi) Let T_n be the minimum number of moves to solve the n disk Towers of Hanoi problem. Find T_1 and T_2 . Explain.
- 3. Explain why $T_n \leq 2T_{n-1} + 1$.
- 4. Explain why $T_n \geq 2T_{n-1} + 1$.
- 5. What is the recurrence for T_n ?
- 6. Use the recurrence for T_n to find T_4 , T_5 and T_6 .
- 7. Solve the recurrence for T_n .
- 8. Prove the closed formula for T_n .
- 9. (Lines in the Plane) What is the maximum number of regions defined by n lines in the plane? Try the methodology developed in the Towers of Hanoi problem
 - (a) Name the quantity you want to count/investigate.
 - (b) Find some values of that quantity.
 - (c) Find a recurrence relation for that quantity.
 - (d) Use the recurrence to find more values of that quantity.
 - (e) Use these values to *guess* a (non-recurrence closed-form) formula for that quantity.
 - (f) Prove your formula.
- 10. (Quicksort). Find C_2 , C_3 where $C_n (n \ge 0)$ is defined as follows:

$$C_0 = C_1 = 0$$

$$C_n = (n+1) + \frac{2}{n} \sum_{k=0}^{n-1} C_k \text{ (for } n > 1)$$

11. We found

$$\frac{2}{n+1}C_n = \frac{2}{n}C_{n-1} + \frac{4}{n+1}, (n>1).$$

- 12. Find C_2 , C_3 using this formula.
- 13. Let

$$U_n = \frac{2}{n+1}C_n, (n > 1).$$

and find a recurrence for U_n .

- 14. Solve the recurrence for U_n to get a formula for C_n .
- 15. Use the perturbation method and sum rules to find a formula for the geometric series

$$S_n = \sum_{k=0}^n ax^n.$$

16. Use the perturbation method to find a formula for the

$$S_n = \sum_{k=0}^n k 2^k.$$

- 17. What does $\sum_{1 \le i,j \le 3} a_i b_j$ mean.
- 18. Find the sum of the elements in the matrix:

$$\begin{bmatrix} a_1a_1 & a_1a_2 & \dots & a_1a_{n-1} & a_1a_n \\ a_2a_1 & a_2a_2 & \dots & a_2a_{n-1} & a_2a_n \\ \dots & \dots & & \dots \\ a_{n-1}a_1 & a_{n-1}a_2 & \dots & a_{n-1}a_{n-1} & a_{n-1}a_n \\ a_na_1 & a_na_2 & \dots & a_na_{n-1} & a_na_n \end{bmatrix}$$

19. Explain why this identity is true (for $j, k, n \in \mathbb{Z}$):

$$[1 \le j < k \le n] + [1 \le k < j \le n] = [1 \le j, k \le n] - [1 \le j = k \le n].$$

- 20. Expand and simplify: $\sum_{1 \leq i,j \leq 3} a_i b_i$.
- 21. Use the formula we found for $S = \sum_{1 \le j < k \le n} (a_k a_j)(b_k b_j)$ to prove the following Chebyshev Monotonic Inequality:

$$(\sum_{k=1}^{n} a_k)(\sum_{k=1}^{n} b_k) \ge n(\sum_{k=1}^{n} a_k b_k) \text{ if } a_1 \le \dots a_n, b_1 \ge \dots \ge b_n.$$

- 22. Evaluate $\sum_{k=1}^{n} k2^k$ by rewriting it as $\sum_{1 \leq j \leq k \leq n} 2^k$.
- 23. Define $x^{\underline{m}}$ (for $x \in \mathbb{R}$)...
- 24. Define $x^{\overline{m}}$ (for $x \in \mathbb{R}$).
- 25. Define $\lceil x \rceil$ and $\lfloor x \rfloor$ (for $x \in \mathbb{R}$). Give examples.
- 26. Argue: $\lceil x \rceil = x \Leftrightarrow x$ is an integer (for $x \in \mathbb{R}$).
- 27. Argue: $\lceil x \rceil \lfloor x \rfloor = [x \text{ is not an integer }] \text{ (for } x \in \mathbb{R}).$
- 28. Argue: $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1 \text{ (for } x \in \mathbb{R}).$
- 29. Argue: $\lfloor x+n\rfloor=\lfloor x\rfloor+n$ (for $n\in\mathbb{Z},x\in\mathbb{R}$) .
- 30. Explain: $(n!)^2 = (1 \cdot 2 \dots n)(1 \cdot 2 \dots n) = \prod_{k=1}^n k(n+1-k)$