Opérations sur les limites

Mahendra Mariadassou 14 octobre 2019

Introduction

Objectifs

- · Savoir étudier les variations d'une fonctions
- · Résoudre problèmes d'optimisation
- · Savoir trier des ordres de grandeur
- · Approfondir la notion de limite

Domaine d'étude d'une fonction: parité

En général une fonction f est donnée par son expression f(x). Pour se ramener à une application il faut détérminer le domaine de définition D_f de f, c'est à dire l'ensemble des x pour lesquels l'expression f(x) a du sens.

une fonction f est dite paire (resp. impaire) lorsque

- · D_f est stable par passage à l'opposé, c'est à dire que si $x \in D_f$, alors $-x \in D_f$.
- $oldsymbol{\cdot} \ orall x \in D_f f(-x) = f(x)$ (resp. $orall x \in D_f f(-x) = -f(x)$)

Exemples

 $\cos(x)$ est paire, $\sin(x)$ est impaire.

Domaine d'étude d'une fonction: parité

- · Si f est paire, le graphe C_f de f est symétrique par rapport à l'axe (Oy). Si f est dérivable, sa dérivée est impaire.
- · Si f est impaire, le graphe C_f de f est symétrique par rapport au point (0,0). De plus, si $0 \in D_f$, alors f(0) = 0. Si f est dérivable, sa dérivée est paire.

Fonction paire

Fonction impaire

Fonction nulle

Une fonction est dite $identiquement\ nulle\ sur\ un\ ensemble\ I$ lorsque

$$\forall x \in I, f(x) = 0$$

Périodicité

une fonction f est dite périodique de période T>0 lorsque

- · D_f est stable par translation, c'est à dire que si $x \in D_f$, alors $x + T \in D_f$.
- $\forall x \in D_f f(x+T) = f(x)$

En général, on utilise la périodicité pour n'étudier f que sur une période et la parité pour ne l'étudier que sur une moitité du domaine de définition (par exemple $D_f \cap \mathbb{R}_+$).

Fonction périodique

Exercices

Donner le domaine de définition et les éventuelles (im)parité/périodicité des fonctions suivantes:

$$f(x) = e^x + e^{-x}$$

$$f(x) = e^x - e^{-x}$$

$$f(x) = x + \ln(x)$$

$$f(x) = e^{x} \frac{x+1}{x-1}$$

$$f(x) = \ln \left| rac{x+1}{x-1} \right|$$

$$f(x) = \ln(\cos(x))$$

$$f(x) = \ln|\cos(x)|$$

$$f(x) = e^{\tan(x)} - \tan(x)$$

Limite: Définition formelle (Optionnel)

$ar{\mathbb{R}}$ et la notion de voisinage

Dans la suite, $a\in \bar{\mathbb{R}}$ signifie que a est un réel, ou $+\infty$ ou $-\infty$.

En analyse, beaucoup de notions sont **locales**: il suffit de connaître f "autour" de a pour savoir si elle est continue/dérivable/de classe \mathcal{C}^k en a. Pour formaliser cette notion de proximité, on va définir la notion de "voisinage de a".

Soit P(x) un propriété portant sur $x\in\mathbb{R}$, (par exemple P(x) = "x>10") et $a\in\bar{\mathbb{R}}$.

Voisinage d'un point

- P(x) est vraie au voisinage de $+\infty$ si il existe $A\in\mathbb{R}$ tel que P(x) est vraie pour tout $x\in[A,+\infty[$. Autrement dit, P(x) est vraie pour x suffisamment grand.
- · P(x) est vraie au voisinage de $-\infty$ si il existe $A\in\mathbb{R}$ tel que P(x) est vraie pour tout $x\in]-\infty,A].$ Autrement dit, P(x) est vraie pour x suffisamment petit.
- · P(x) est vraie au voisinage de $a\in\mathbb{R}$ si il existe $\delta>0$ tel que P(x) est vraie pour tout $x\in]a-\delta, a+\delta[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a.

Voisinage à gauche, à droite

- P(x) est vraie au voisinage de $a\in\mathbb{R}$ à droite si il existe $\delta>0$ tel que P(x) est vraie pour tout $x\in]a,a+\delta[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a tout étant strictement supérieur à a.
- P(x) est vraie au voisinage de $a\in\mathbb{R}$ à gauche si il existe $\delta>0$ tel que P(x) est vraie pour tout $x\in]a-\delta,a[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a tout étant strictement inférieur à a.

Remarques

Les notions de voisinage à droite de $+\infty$ et à gauche de $-\infty$ n'ont pas de sens (pourquoi?). La notion de voisinage permet de mettre en évidence le caractère local d'une propriété.

Voisinage illustration

Exercices

Écrire avec des quantificateurs que

- $\cdot \ f$ est définie au voisinage de 2
- · g est positive au voisinage de $+\infty$
- · h est proche de 3 à 10^{-6} près au voisinage de 4

Limite infinie à l'infini

Soit $f:A\to B$ une fonction numérique. On suppose que f est définie au voisinage de $+\infty$ (resp. $-\infty$).

Limite infinie en $\pm \infty$

On dit que f tend vers $+\infty$ en $+\infty$, noté $\lim_{+\infty} f = +\infty$, si pour tout réel M (arbitrairement grand), f(x) est plus grand que M pour x assez grand (proche de ∞).

$$orall M \in \mathbb{R}, \exists A \in \mathbb{R} ext{ tel que } orall x \in D_f, x \in]A, +\infty[\Rightarrow f(x) > M$$

On dit que f tend vers $-\infty$ en $+\infty$, noté $\lim_{-\infty} f = +\infty$, si pour tout réel M (arbitrairement petit), f(x) est plus petit que M pour x assez grand (proche de ∞)

$$orall M \in \mathbb{R}, \exists A \in \mathbb{R} ext{ tel que } orall x \in D_f, x \in]A, +\infty[\Rightarrow f(x) < M$$

Limite finie à l'infini.

Soit $l \in \mathbb{R}$.

On dit que f tend vers l en $+\infty$, noté $\lim_{+\infty} f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l à moins de ε pour x assez grand (proche de ∞).

$$orall arepsilon > 0, \exists A \in \mathbb{R} ext{ tel que } orall x \in D_f, x \in]A, +\infty[\Rightarrow |f(x) - l| \leq arepsilon$$

Exemple

Exercices

Écrire la définition formelle (avec des quantificateurs) de

- · $\lim_{-\infty} f = +\infty$
- $\cdot \lim_{-\infty} f = -\infty$
- $\cdot \lim_{-\infty} f = l$

Limite infinie en un point

Soit f une fonction et D_f son domaine de définition. Soit $a \in \mathbb{R}$ tel que

- · $a \in D_f$ (f est alors définie en a)
- · a est une borne de a (f est définie sur un voisinage de a mais pas en a)

Pour la limite infinie, $a \notin D_f$. On dit que f tend vers $+\infty$ en a, noté $\lim_a f = +\infty$, si pour tout réel M (arbitrairement grand), f(x) est plus grand que M pour x assez proche de a).

$$\forall M \in \mathbb{R}, \exists \delta > 0 ext{ tel que } \forall x \in D_f, |x-a| \leq \delta \Rightarrow f(x) > M$$

Limite finie en un point

On dit que f tend vers l en a, noté $\lim_a f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l (à ε près) pour x assez proche de a).

$$orall arepsilon > 0, \exists \delta > 0 ext{ tel que } orall x \in D_f, |x-a| \leq \delta \Rightarrow |f(x)-l| \leq arepsilon$$

Exemple

Limite à gauche/à droite en un point

Soit f définie au voisinage à gauche de a. On dit que f tend vers l à gauche en a, noté $\lim_{a^-} f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l (à ε près) pour x assez proche de a par valeurs inférieures).

$$orall arepsilon > 0, \exists \delta > 0 ext{ tel que } orall x \in D_f, x \in]a - \delta, a[\Rightarrow |f(x) - l| \leq arepsilon$$

On a une définition similaire pour $\lim_{a^+} f$, la limite à droite en a (voir exercices).

Exercices

Écrire la définition formelle (avec des quantificateurs) de

- · $\lim_a f = -\infty$
- $\cdot \lim_{a^-} f = +\infty$
- $\cdot \lim_{a^+} f = +\infty$
- $\cdot \ \lim_{a^+} f = l$

Propriétés des limites

Unicité de la limite

Soit $a \in \mathbb{R}$. Si f admet une limite en a (resp. une limite à gauche ou une limite à droite), alors cette limite est unique.

Soit $a \in \mathbb{R}$. Si f admet une limite en a et est définie en a, alors cette limite est forcément f(a).

Soit $a \in \mathbb{R}$ et f définie au voisinage de a (sauf peut-être en a).

- · Si f n'est pas définie en a, f admet une limite en a si et seulement si elle admet une limite à gauche et une limite à droite en a et que ces limites sont égales.
- · Si f est définie en a, f admet une limite en a si et seulement si elle admet une limite à gauche et une limite à droite en a et que ces limites sont égales à f(a).

Opération sur les limites

Théorèmes d'opérations

En pratique, on revient rarement à la définition formelle de la limite. On se sert plutôt des "théorèmes d'opérations"" qui permettent de calculer des limites complexes en combinant des limites élémentaires.

Somme de limite

Soit $a\in \mathbb{\bar{R}}$ et deux fonctions f et g telles que $\lim_a f=l$ et $\lim_a g=m$, alors la limite éventuelle de f+g en a est donnée par

	$l=-\infty$	$l\in\mathbb{R}$	$l = +\infty$
$m=-\infty$	$-\infty$	$-\infty$	Ind
$m\in\mathbb{R}$	$-\infty$	l+m	$+\infty$
$m = +\infty$	Ind	$+\infty$	$+\infty$

Où Ind indique une forme indéterminée (ici $\infty - \infty$)

Produit de limite

Soit $a\in \mathbb{R}$ et deux fonctions f et g telles que $\lim_a f=l$ et $\lim_a g=m$, alors la limite éventuelle de $f\times g$ en a est donnée par

	$l=-\infty$	$l \in \mathbb{R}_{-}^{\star}$	l=0	$l \in \mathbb{R}_+^\star$	$l = +\infty$
$m=-\infty$	$+\infty$	$+\infty$	Ind	$-\infty$	$-\infty$
$m \in \mathbb{R}^\star$	$+\infty$	ml	0	ml	$-\infty$
m = 0	Ind	0	0	0	Ind
$m \in \mathbb{R}_+^\star$	$-\infty$	ml	0	ml	$+\infty$
$m = +\infty$	$-\infty$	$-\infty$	Ind	$+\infty$	$+\infty$

Les formes indéterminées correspondent à $0 \times \infty$

Quotient de limite

Soit $a\in ar{\mathbb{R}}$ et f ne s'annulant pas au voisinage de a telle que $\lim_a f=l.$

- · Si $l=\pm\infty$, alors $\lim_a rac{1}{f}=0$
- · Si $l \in \mathbb{R}^\star$, alors $\lim_a rac{1}{f} = rac{1}{l}$
- Si l=0, il y a plusieurs cas.
 - si f>0 sur un voisinage de a, on a $\lim_a rac{1}{f}=+\infty$
 - si f < 0 sur un voisinage de a, on a $\lim_a rac{1}{f} = -\infty$
 - si f change de signe sur tous les voisinages de a, la limite est une forme indéterminée.

Pour la limite de f/g, on passe par le produit f imes (1/g).

Composée de fonctions

Soit $a,b\in ar{\mathbb{R}}$. Soient f et g telles que $\lim_a f=b$ et $\lim_b g=l$ avec ($l\in ar{\mathbb{R}}$). On alors $\lim_a (g\circ f)=l$.

Fonctions de la forme $u(x)^{v(x)}$

Dans le cas de fonctions de la forme $u(x)^{v(x)}$ on repasse **toujours** à la forme exponentielle $u(x)^{v(x)}=e^{v(x)\ln(u(x))}$ et on procède en deux temps:

- · on étudie la limite de $v(x) \ln(u(x))$
- · on en déduit la limite recherchée par composition avec l'exponentielle. Attention La forme 1^∞ est indéterminée
- · $\lim_0 \cos(x)^{1/x} = 1$
- $\lim_{0+}(1+\sin(x))^{1/x^2}=+\infty$

Théorème d'encadrement (des gendarmes)

Soit $a,l \in \mathbb{R}$ et f,g,h définies au voisinage de a (sauf peut-être en a).

· Si pour tout x au voisinage de a, $f(x) \leq g(x)$ alors

$$egin{aligned} \lim_a f &= +\infty \Rightarrow \lim_a g = +\infty \ \lim_a g &= -\infty \Rightarrow \lim_a f = -\infty \end{aligned}$$

· Si Si $f(x) \leq g(x) \leq h(x)$ au voisinage de a et $\lim_a f = \lim_a h = l$, alors $\lim_a g = l$.

Illustration

 $g(x)=x^2\sin(1/x)$ est compris entre $f(x)=-x^2$ et $h(x)=x^2$ au voisinage de 0 (en fait sur tout $\mathbb R$) et $\lim_0 -x^2=\lim_0 x^2=0$ donc $\lim_0 x^2\sin(1/x)=0$

Limites classiques (à savoir)

Voir la feuille sur les fonctions usuelles ainsi que les limites suivantes en 0

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

$$\cdot \lim_{0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$$

Limites classiques: croissance comparée

Soit $f(x)=e^{ax}x^b\ln(x)^c$ avec x>0 et $(a,b,c)\in\mathbb{R}$. La limite en $+\infty$ de f est déterminée par a, puis par b puis par c comme suit:

• Si
$$a>0$$
 $\lim_{+\infty}f(x)=+\infty$

· Si
$$a < 0 \lim_{+\infty} f(x) = 0$$

• Si
$$a = 0$$
:

- Si
$$b>0 \lim_{+\infty} f(x)=+\infty$$

- Si
$$b < 0 \lim_{+\infty} f(x) = 0$$

- Si
$$b = 0$$
:

- Si
$$c>0 \lim_{+\infty} f(x)=+\infty$$

- Si
$$c < 0 \lim_{\infty} f(x) = 0$$

Exercices

Calculer les limites suivantes

$$egin{array}{lll} \lim_{+\infty} x^4 e^{-\sqrt{x}} & \lim_{-\infty} e^{3x^2}/x^5 & \lim_{+\infty} x \ln(1+1/x) \ \lim_{0+} rac{\ln(1+4x)}{x} & \lim_{0+} rac{\ln(1+x^2)}{x\sqrt{x}} & \lim_{0+} rac{x}{e^{x^2}-1} \ \lim_{0+} rac{\sqrt{1+x}-\sqrt{1-x}}{e^x-1} & \lim_{0+} rac{x-(1+x)\ln(1+x)}{x} & \lim_{0+} rac{x}{2} \left\lfloor rac{3}{x}
ight
floor \ \lim_{1} rac{x^n-1}{x^p-1} & \lim_{0} rac{\cos(x)-\sqrt{\cos(2x)}}{\sin^2(x)} & \lim_{+\infty} \left(1+rac{1}{x}
ight)^x \ \lim_{0+} rac{\ln(x)}{x} & \lim_{+\infty} x^3 \ln(1+1/x\sqrt{x}) & \lim_{+\infty} \sqrt{x^2+x+1} - x \end{array}$$