Tutorato di Architettura degli Elaboratori Foglio 01

Luca Veronese Enrico Cancelli

3 novembre 2020

Single-Error Correcting code (SEC)

Si consideri un codice di correzione di Hamming su 16 bit. Dire quale sequenza di bit è memorizzata se si devono memorizzare i seguenti 16 bit 1101001111001110 di dati.

Scrittura su disco rigido

Sia dato un disco rigido con le seguenti caratteristiche:

- capacità di 8GB;
- 1 piatto (2 facce);
- 8192 tracce per faccia e 1024 settori per traccia;
- velocità di rotazione di 4200 rpm;
- tempo medio di posizionamento della testina di 2,75 ms.

Il tempo totale medio per trasferire (tempo di accesso totale medio, secondo il libro) 64KB memorizzati in settori contigui su una stessa traccia è di circa

Operazioni su memoria cache

Esercizio 1

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

					ind	byte	ind	byte	ind	byte	ind	byte
	#	indirizzo	l/s	byte				,		,		,
ı				scritto	100	08	101	DO	102	07	103	02
ı		(binario)		(HEX)	104	00	105	00	106	00	107	00
ı	1	000100001010	l		108	0E	109	DF	10A	AA	10B	В3
ı	2	000100001101	s	BB	10C	F1	10D	C2	10E	C3	10F	C5
ı	3	000100001111	s	04	110	BB	111	16	112	00	113	00
ı	4	000100001110	s	FF	114	OA	115	87	116	03	117	71
ı	5	000100011000	1		118	3E	119	13	11A	A1	11B	23
ı	6	000100011110	1		11C	A1	11D	82	11E	9B	11F	FF
ı	7	000100001010	s	44	120	F9	121	86	122	AO	123	00
ı	8	000100100101	l		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo FIFO, politica di scrittura write-through e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Esercizio 2

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	byte		,		•		•		,
			scritto	100	80	101	OA	102	D7	103	02
	(binario)		(HEX)	104	1F	105	00	106	80	107	EO
1	000100001011	s	E4	108	AE	109	73	10A	AF	10B	23
2	000100001101	1		10C	A1	10D	42	10E	90	10F	75
3	000100001101	1		110	В9	111	16	112	FD	113	DO
4	000100011100	s	12	114	OA	115	07	116	03	117	71
5	000100011010	1		118	3E	119	D3	11A	71	11B	23
6	000100011101	s	B1	11C	A1	11D	A8	11E	90	11F	15
7	000100000001	1		120	F9	121	86	122	AO	123	00
8	000100000010	s	9D	124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Esercizio 3

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	byte		•		,				
			scritto	100	08	101	00	102	07	103	02
	(binario)		(HEX)	104	00	105	00	106	00	107	00
1	000100001001	s	FF	108	ΑE	109	59	10A	AD	10B	23
2	000100001101	1		10C	A1	10D	42	10E	90	10F	75
3	000100001110	s	30	110	B9	111	16	112	00	113	00
4	000100011100	1		114	OA	115	07	116	03	117	71
5	000100001000	s	54	118	3E	119	13	11A	71	11B	23
6	000100011110	1		11C	A1	11D	82	11E	90	11F	15
7	000100001010	S	B8	120	FF	121	C6	122	AD	123	00
8	000100100001	1		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Esercizio 4

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	byte		•		•		•		•
			scritto	100	08	101	00	102	07	103	02
	(binario)		(HEX)	104	00	105	00	106	00	107	00
1	000100001010	l		108	1F	109	B4	10A	6A	10B	D3
2	000100001110	1		10C	A1	10D	42	10E	90	10F	75
3	000100001101	1		110	В9	111	16	112	00	113	00
4	000100011111	s	64	114	OA	115	07	116	03	117	71
5	000100011010	s	B9	118	FE	119	A9	11A	75	11B	A3
6	000100001101	s	57	11C	A1	11D	82	11E	90	11F	15
7	000100001001	1		120	F9	121	F6	122	AB	123	CO
8	000100100011	s	17	124	E9	125	B6	126	F5	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 8B, inizialmente vuota, e ad associazione diretta (politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.