Lenguajes Formales y Computabilidad Teoremas: Combo 4

Nicolás Cagliero

June 27, 2025

Proposición (Caracterización básica de conjuntos Σ -enumerables). Sea $S\subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- 1. S es Σ -enumerable.
- 2. Hay un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tal que:
 - (a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado $\llbracket x \rrbracket$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...)),$ donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
 - (b) Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado $\llbracket x \rrbracket$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$.

(Hacer el caso n=2 y m=1)

 $\textit{Proof.}\ (1) \Rightarrow (2).$ Ya que S es no vacío, por definición existe una función

$$F:\omega\to\omega^2\times\Sigma^*$$

tal que $I_F = S$ y cada componente $F_{(i)}$ es Σ -computable, para i = 1, 2, 3. Por el Primer Manantial de Macros, existen los siguientes macros:

$$[V2 \leftarrow F_{(1)}(V1)]$$

 $[V2 \leftarrow F_{(2)}(V1)]$
 $[W1 \leftarrow F_{(3)}(V1)]$

Sea \mathcal{P} el siguiente programa:

[P1
$$\leftarrow F_{(3)}(N1)$$
]
[N2 $\leftarrow F_{(2)}(N1)$]
[N1 $\leftarrow F_{(1)}(N1)$]

donde se supone que las expansiones de los macros usan variables auxiliares que no aparecen en la lista N1, N2, P1 y tampoco se repiten labels auxiliares.

Ver que se cumplan las condiciones de 2 es fácil: nuestro programa copia el comportamiento de cada componente de F que ya sabemos que enumera a S, por lo tanto, para cada $x \in \omega$ nuestro programa termina y llega a un estado con la forma esperada y además, sabemos que para cada elemento de S existe algún $x \in \omega$ que lo enumera, por lo tanto, nuestro programa se detendrá en ese x llegando a un estado de la forma esperada.

 $(2)\Rightarrow (1)$. Supongamos que $\mathcal{P}\in\operatorname{Pro}^{\Sigma}$ cumple (a) y (b) de (2). Sea:

$$\begin{aligned} \mathcal{P}_1 &= \mathcal{P} \text{N1} \leftarrow \text{N1} \\ \mathcal{P}_2 &= \mathcal{P} \text{N1} \leftarrow \text{N2} \\ \mathcal{P}_3 &= \mathcal{P} \text{P1} \leftarrow \text{P2} \end{aligned}$$

Definimos entonces:

$$F_1 = \Psi_{\mathcal{P}_1}^{1,0,\#}$$

$$F_2 = \Psi_{\mathcal{P}_2}^{1,0,\#}$$

$$F_3 = \Psi_{\mathcal{P}_3}^{1,0,*}$$

Nótese que cada F_i es Σ -computable y tiene dominio ω . Sea $F = [F_1, F_2, F_3]$. Por definición, $D_F = \omega$ y como $F_{(i)} = F_i$ para i = 1, 2, 3, tenemos que cada componente de F es Σ -computable.

Necesito verificar que $I_F = S$.

Aclaración 1:

 \mathcal{P}_1 deja en N1 el valor que \mathcal{P} deja en N1 \mathcal{P}_2 deja en N1 el valor que \mathcal{P} deja en N2 \mathcal{P}_3 deja en P1 el valor que \mathcal{P} deja en P1

Aclaración 2:

 $\Psi_E^{1,0,\#}(x)=$ valor que representa N1 tras correr E partiendo desde el estado $\llbracket x \rrbracket$ $\Psi_E^{1,0,*}(x)=$ valor que representa P1 tras correr E partiendo desde el estado $\llbracket x \rrbracket$

- (\subseteq) Para todo $t \in \omega$, por (2a) sabemos que P partiendo de $[\![t]\!]$ llega a un estado de la forma $((x,y,z,\ldots),(\alpha,\beta,\ldots))$ donde $(x,y,\alpha) \in S$ y como $F = [F_1,F_2,F_3]$ y teniendo en cuenta ambas aclaraciones, $F(x) = (x,y,\alpha)$
- (⊇) Sea $(x,y,\alpha) \in S$ sabemos que $\exists t \in \omega$ tal que correr \mathcal{P} partiendo del estado $\llbracket t \rrbracket$ llega a un estado de la forma $((x,y,z,\dots),(\alpha,\beta,\dots))$. Entonces, por ambas aclaraciones, $(x,y,\alpha)=(F_{(1)}(t),F_{(2)}(t),F_{(3)}(t))=F(t)$, luego, pertenece a I_F

Lemma 2 (Lema de la sumatoria). Sea Σ un alfabeto finito. Si $f: \omega \times S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m \to \omega$ es Σ -p.r., con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$

no vacíos, entonces la función

$$\lambda xy\vec{x}\vec{\alpha}\left[\sum_{t=x}^{y}f(t,\vec{x},\vec{\alpha})\right]$$

es Σ -p.r.

Proof. Sea

$$G = \lambda t x \vec{x} \vec{\alpha} \left[\sum_{i=x}^{t} f(i, \vec{x}, \vec{\alpha}) \right]$$

Ya que

$$\lambda x y \vec{x} \vec{\alpha} \left[\sum_{i=x}^{y} f(i, \vec{x}, \vec{\alpha}) \right] = G \circ \left[p_2^{n+2, m}, p_1^{n+2, m}, p_3^{n+2, m}, \dots, p_{n+m+2}^{n+2, m} \right]$$

basta con probar que G es $\Sigma\text{-p.r.}$ Primero note que

$$G(0, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > 0 \\ f(0, \vec{x}, \vec{\alpha}) & \text{si } x = 0 \end{cases}$$

$$G(t+1, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > t+1 \\ G(t, x, \vec{x}, \vec{\alpha}) + f(t+1, \vec{x}, \vec{\alpha}) & \text{si } x \le t+1 \end{cases}$$

O sea que si definimos h y g apropiadamente, tenemos que G=R(h,g). Definamos h y g y definamos los conjuntos D_1,D_2,H_1,H_2 basados en las condiciones de los casos.

$$D_{1} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \cdots \times S_{n} \times L_{1} \times \cdots \times L_{m} : x > 0\}$$

$$D_{2} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \cdots \times S_{n} \times L_{1} \times \cdots \times L_{m} : x = 0\}$$

$$H_{1} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \cdots \times S_{n} \times L_{1} \times \cdots \times L_{m} : x > t + 1\}$$

$$H_{2} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \cdots \times S_{n} \times L_{1} \times \cdots \times L_{m} : x \leq t + 1\}$$

Ahora, h y g correspondientes:

$$h = C_0^{n+1,m} \big|_{D_1} \cup \lambda x \vec{x} \vec{\alpha} \left[f(0, \vec{x}, \vec{\alpha}) \right] \big|_{D_2}$$

$$g = C_0^{n+3,m}\big|_{H_1} \cup \lambda Atx\vec{x}\vec{\alpha} \left[A + f(t+1,\vec{x},\vec{\alpha})\right]\big|_{H_2}$$

Ya que f es Σ -p.r. y las funciones $\lambda x \vec{x} \vec{\alpha} \left[f(0, \vec{x}, \vec{\alpha}) \right]$ y $\lambda A t x \vec{x} \vec{\alpha} \left[A + f(t+1, \vec{x}, \vec{\alpha}) \right]$ se pueden escribir como composición de funciones Σ -p.r., estas también son Σ -p.r. Solo falta ver que los conjuntos D_1, D_2, H_1, H_2 son Σ -p.r. Veamos por ejemplo que H_1 es Σ -pr. Ya que f es Σ -p.r., su dominio $D_f = \omega \times S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m$ es Σ -p.r., lo que implica que S_i y L_j son Σ -p.r. Por lo tanto, el conjunto $R = \omega^3 \times S_1 \times \cdots \times L_m$ es Σ -p.r. Nótese que $\chi_{H_1}^{\omega^{3+n} \times \Sigma^{*m}} = (\chi_R^{\omega^{3+n} \times \Sigma^{*m}} \wedge \lambda z t x \vec{x} \vec{\alpha} [x > t+1])$, y como es la conjunción de dos predicados Σ -p.r., es Σ -p.r.