Fourier Synthese

Durchführung: 22.10.2019 Abgabe: 29.10.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Fourier-Zerlegung der Funktion sin(x)	3
	2.1 Berechnung der Integrale	. 3
	2.2 Wertetabelle für die Koeffizienten	. 4
	2.3 Plot	. 5
3	Fourier-Zerlegung der Funktion f(x)=x	5
	3.1 Berechnung der Integrale	
	3.2 Wertetabelle für die Koeffizienten	. 6
	3.3 Plot	. 7

1 Theorie

Jede periodische Funktion läßt sich in eine Reihe aus sin- und cos-Termen entwickeln (Fourierreihe)

$$f(t) = \sum_{i=0}^{\infty} (A_k \cdot cos(\omega_k t) + B_k \cdot sin(\omega_k t)) \tag{1}$$

mit

$$\omega_k = \frac{2\pi k}{T} \tag{2}$$

2 Fourier-Zerlegung der Funktion |sin(x)|

2.1 Berechnung der Integrale

Im folgenden soll die Funktion f(x) = |sin(x)| mit einer Fourierreihe angenähert werden. Die Koeffizienten sind definiert als

$$A_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{3}$$

$$B_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \sin(\omega_k \cdot t) \, \mathrm{d}t \tag{4}$$

 ${\cal A}_0$ und ${\cal B}_0$ sind seperat definiert

$$A_0 = \frac{1}{T} \int f(t) \, \mathrm{d}t \tag{5}$$

$$B_0 = 0 (6)$$

Die Funktion |sin(x)| erfüllt die Eigenschaft f(-x)=f(x) und ist somit eine gerade Funktion. Somit ist unser $B_k=0$. Zunächst wählen wir $T=2\pi$. Daraus folgt für A_0 und A_k

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\sin(t)| dt = \frac{1}{2\pi} \left[-\cos(t) sgn(\sin(t)) \right]_{-\pi}^{\pi} = 0.6366197723675814$$
 (7)

$$A_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{8}$$

Die Funktion |sin(x)| ist π -periodisch und hat bei x=0 eine Nullstelle. Wir integrieren nun über eine, statt wie zuvor über zwei Perioden. Es gilt $\int_{-\pi}^0 f(x) \, \mathrm{d}x = \int_0^\pi f(x) \, \mathrm{d}x$ erhalten wir zusätlich einen Faktor 2

$$A_k = \frac{2}{\pi} \int_0^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{9}$$

Es gilt |sin(x)| = sin(x) im Intervall $I = [0, \pi]$, so können wir unser Integral vereinfachen

$$A_k = \frac{2}{\pi} \int_0^{\pi} \sin(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{10}$$

$$\Rightarrow A_k = \frac{2}{\pi} \left[\frac{\cos((\omega_k - 1)t)}{2(w - 1)} - \frac{\cos((\omega_k + 1)t)}{2(\omega_k^2 + 1)} \right]_0^{\pi} \tag{11}$$

mit $\omega_k=k$ (2) und Grenzen eingesetzt erhalten wir

$$A_k = \frac{2}{\pi} \left(\frac{\cos(2k\pi - \pi)}{4k - 2} - \frac{\cos(2k\pi + \pi)}{4k + 2} - \frac{\cos(0)}{4k - 2} + \frac{\cos(0)}{4k + 2} \right) \tag{12}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-1}{4k - 2} + \frac{1}{4k + 2} - \frac{1}{4k - 2} + \frac{1}{4k + 2} \right) \tag{13}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-8}{(4k-2)(4k+2)} \right) \tag{14}$$

$$\Leftrightarrow A_k = \frac{4}{-4k^2\pi + \pi} \tag{15}$$

2.2 Wertetabelle für die Koeffizienten

Für das online-Experiment werden 17 Koeffizienten benötigt um die Regler einzustellen

A_k
0.6366197723675814
-4.24413182e-01
-8.48826363e -02
-3.63782727e-02
-2.02101515e-02
-1.28610055e-02
-8.90377304e-03
-6.52943356e-03
-4.99309625e -03
-3.94191810e-03
-3.19107655e-03
-2.63610672e-03
-2.21432964e-03
-1.88628081e-03
-1.62610414e-03
-1.41628425e -03
-1.24461344e-03
-1.10237190e-03

2.3 Plot

Wir erhalten folgenden Plot

Abbildung 1: Fouriersynthese von |sin(x)|. (Quelle: www.j-berkemeier.de)

3 Fourier-Zerlegung der Funktion f(x)=x

3.1 Berechnung der Integrale

Im folgenden soll die Funktion f(x) = |x| für $-\pi < x < \pi$ mit einer Fourierreihe angenähert werden. Die Koeffizienten sind definiert als

$$A_{k} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(\omega_{k} t) dt \qquad (16)$$

$$B_{k} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(\omega_{k} t) dt$$
 (17)

Zunächst wird der Koeffizient A_k berechnet, dafür $t - \pi < t < \pi$ gilt, ist $T = 2\pi$

$$A_k = \frac{1}{\pi} \int_{-\pi}^{\pi} t \cos(\omega_k t) dt \tag{18}$$

Durch eine partielle Integration ergibt sich für A_k

$$A_k = \frac{1}{\pi} \left[\frac{\sin(\omega_k t)}{\omega_k} + \frac{\cos(\omega_k t)}{\omega_k^2} \right]_{-\pi}^{\pi}$$
 (19)

Nach einsetzten der Grenzen ergibt sich für ${\cal A}_k$

$$A_k = \frac{2\sin(\pi k)}{\omega_k} = 0 \tag{20}$$

Nun zu ${\cal B}_k$

$$B_k = \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin(\omega_k t) dt \qquad (21)$$

Durch eine partielle Integration ergibt sich für ${\cal B}_k$

$$B_k = \frac{1}{\pi} \left[\frac{-t \cos(\omega_k t)}{\omega} + \frac{\sin(\omega_k t)}{\omega_k^2} \right]_{-\pi}^{\pi}$$
 (22)

Nach einsetzten der Grenzen fällt die sinus Funktion und für ${\cal B}_k$ ergibt sich

$$B_k = \frac{-2(-1)^k}{k} \tag{23}$$

3.2 Wertetabelle für die Koeffizienten

Damit ergeben sich folgende Werte für den Koeffizien
t ${\cal B}_k$

A_k
0
-1.0
0.666666666666666666666666666666666666
-0.5
0.4
-0.3333333333333333
0.2857142857142857
-0.25
0.2222222222222222
-0.2
0.18181818181818182
-0.1666666666666666
0.15384615384615385
-0.14285714285714285
0.13333333333333333333
-0.125
0.11764705882352941
0.111111111111111111111111111111111111

3.3 Plot

Abbildung 2: Die Funktion mit eingesetzten Koeffizienten auf der Website