Caleb Harris, M.S.

Harris.Caleb84@gmail.com

calebh94.github.io

(901) 240-3974

EDUCATION

Georgia Institute of Technology, Atlanta, GA

PhD in Computational Science and Engineering (Interdisciplinary w/ Aerospace)

Master's of Science in Computational Science and Engineering

Master's of Science in Aerospace Engineering

Dec 2019

University of Memphis, Memphis, TN

Bachelor's of Science in Mechanical Engineering May 2017

EXPERIENCE

Georgia Institute of Technology, Aerospace Systems Design Lab, Atlanta, GA Graduate Research Associate

August 2017 - Present

- Rotorcraft flight safety for wirestrike prevention using wire database formed from deep learning on aerial imagery, and electrified aircraft trajectory energy management using flight path predictions.
- Aerial trajectory optimization using iterative methods such as DDP and MPC, and vision-based vehicle operations for navigation tasks.
- Integrated design and performance of UAM and FVL rotorcraft resulting in Python-based environment for cost-capability tradeoffs.

Collins Aerospace, Mission Systems, Remote Work

May 2020 - August 2020

Systems Engineering Intern (SEPP Program)

- Investigated precise and safe vision-based navigation of aerial vehicles during landing, with the use of both hardware (NVIDIA TX2, ZED stereo camera) and simulation environments (ROS, Gazebo).
- Assisted in implementation and tuning of a high-integrity vision-based state estimation algorithm and a centralized state-machine for flight mode and abort decisions.
- Developed a C++ module and ROS package for collision detection and avoidance by distinguishing ground and obstacles in point cloud data.

Express Drone Parts, LLC, Memphis, TN

April 2017 - August 2018

Research Assistant

- Assisted in robotics division to design and test UAS for package delivery and monitoring.
- Integrated aerial platforms with PX4 for flight and Raspberry Pi for subsystem operations.

SKILLS AND CERTIFICATIONS

- Programming Languages: Python, MATLAB, C++, Java, VBA
- Key Packages: PyTorch, TensorFlow, GeoPandas, Numpy, Scikit, OpenCV, ROS, Git
- Hardware: NVIDIA Jetson TX2, ZED Stereo Camera, Raspberry Pi, PX4, CrazyFlie, Vicon
- Certifications: FAA Part 107 Remote Pilot Certification

KEY COURSES

- Aerospace Engineering: Linear Control, Aircraft Flight Dynamics, Systems of Systems, Rotorcraft Design
- Computer Science and Robotics: Principles of Planning and Decision-Making for Autonomy, Adaptive Control and Reinforcement Learning, Robotics Research Introduction/Lab, Computer Vision
- Computational Science and Engineering: Machine Learning, Modeling & Simulation, Algorithms, Numerical Linear Algebra
- Fundamentals: Probability and Statistics, Linear Algebra, Optimization

Emergency Landing Zone Detection and Planning using Aerial Imagery *Conference Proceedings*

July 2020 - Present

- Implementing a two-stage process for semantic and geometric feature detection using deep learning techniques to provide risk assessments for aerial trajectories in urban environments
- Data processing and visualization using Google Cloud ecosystem of EarthEngine, Tensorflow, and Colab.

Methods for Predicting Power Line Locations to Improve Aircraft Safety Sponsored Project and Conference Proceedings

October 2019 - Present

- Comparing tile classification networks with transfer learning (Xception architecture) to semantic segmentation networks (U-Net architecture) trained on publicly available datasets of power lines in rural and urban environments.
- Predicting and visualizing complete power line networks using many-to-many graph search techniques and carefully selected and tuned weights from power grid indicators.

Deep Learning for UAS Navigation in a Cluttered Environment

January 2019 - Present

Master's Special Problem and Conference Proceedings

- Comparing integrated frameworks of data-driven methods, including imitation learning with deep neural networks in PyTorch, to path-planning techniques, such as A* and Model Predictive Control, for vision-based obstacle avoidance in aerial systems
- Integrating environment in simulation using ROS and Gazebo and testing performance on hardware

UAS Swarm Selection for Monitoring Migrant Border Crossings

August 2017 - May 2018

Aerospace Systems Design Lab Grand Challenge and Conference Proceedings

- Utilized and advanced a Java-based simulation environment to conduct operations analysis on the use of UAS swarms and surface fleet assets in monitoring the Mediterranean for migrant ships.
- Implemented UAV agents using unicycle dynamics and finite state machines, and swarm architectures using Reynold's flocking behaviors.

PUBLICATIONS AND CONFERENCES

CONFERENCE PROCEEDINGS

- C. Harris, A. Payan, and D. Mavris. "Obstacle-free Landing Zone Detection for Emergency Scenarios in Cluttered Environments with Aerial Systems". 2021 Autonomous VTOL Technical Meeting and Electric VTOL Symposium Meeting. February 2021.
- C. Harris, Y. Choi, and D. Mavris. "Imitation Learning for UAS Navigation in Cluttered Environments". 2021 AIAA SciTech Conference. January 2021.
- C. Harris, G. Achour, A. Payan, and D. Mavris. "Use of Machine Learning to Create a Database of Wires for Helicopter Wire Strike Prevention". 2021 AIAA SciTech Conference. January 2021.
- H. Lee, C. Harris, J. Gladin, and D. Mavris. "A Method for Simultaneous Optimization of Power Split and Flight Path Trajectory for Hybrid Electric Aircraft". 2021 AIAA SciTech Conference. January 2021.
- C. Harris, M. Sokollek, L. S. Nunez, J. T. Valco, M. Balchanos, and D. Mavris. "Simulation-based UAS Swarm Selection for Monitoring and Detection of Migrant Border Crossings". 2018 AIAA Aviation Conference. June 2018.

PRESENTATIONS:

- C. Harris, "Obstacle Avoidance for UAS via Imitation Learning", Presented at Aerospace Systems Design Laboratory's Annual External Advisory Board, April 2019.
- C. Harris, and M. Sokollek. "UAS Swarm Selection for Monitoring and Detection of Migrant Border Crossings", Presented at Aerospace Systems Design Laboratory's Annual External Advisory Board, April 2018.
- C. Harris. "Diffuser Optimization for Harnessing Hydrokinetic Energy", Undergraduate Research Thesis, University of Memphis Honors Repository Presented at Posters at the Capitol, Tennessee State Capitol, March 2017.
- C Harris, D MacPhee, M Carlisle. "Aerodynamic Analysis of Morphing Blades", Poster Presentation at 69th Annual Meeting of the APS Division of Fluid Dynamics, November 2016.