Matthew Evans

decentralized data management • open science & software materials discovery • ab initio calculations

RESEARCH INTERESTS

My background in computational materials science has left me with an overarching interest in the application of machine learning, open source software & infrastructure, and data management practices to accelerate and enhance scientific workflows for discovery in the chemical and materials sciences.

EDUCATION

2016-2023	PhD Physics, (submitted July 2023), Theory of Condensed Matter Group, University of Cambridge
2015–2016	MPhil Scientific Computing, University of Cambridge, Pass with distinction
2011-2015	MPhys Physics with Theoretical Physics University of Manchester First Class (Hons)

SELECTED EXPERIENCE

2020— Research Assistant then BEWARE Research Fellow (2022 onwards)

Université catholique de Louvain and Matgenix, with Prof Gian-Marco Rignanese

- Co-creator and architect of datalab, open source data management software for sample tracking and characterisation, lab management, and machine learning, deployed at several labs internationally.
- High-throughput machine-learning accelerated workflows for materials discovery and design.
- Leading development of the OPTIMADE API specification and associated software.

2021 Visiting Researcher: Data management platforms for materials chemistry research University of Cambridge, with Prof Clare Grey FRS

- Developing bespoke data management platforms for materials chemistry and battery research.
- Supervising contributions from a full-time software developer and providing user training.

2024- Scientific Software Consultant and Director (part-time)

datalab industries ltd.

- Supporting the open source development of OPTIMADE and datalab via consultancy services.
- Customisation and deployment of dαtαlαb for industrial R&D and academic labs.

2016–2020 PhD student: Crystal structure prediction for next-generation energy storage

University of Cambridge, with Dr Andrew Morris

- Computional materials discovery for conversion anodes for Li, Na and K-ion batteries.
- Author of two open-source Python packages: database approaches for high-throughput calculations and materials design with matador and crystal structure prediction with ilustrado.

COMPUTING

Languages **Python**, Javascript, Vue.js, Fortran, C++ Tools git, vim, Docker, Ansible, Terraform Practices **Test-driven** development, Expertise Web APIs, databases, machine learning, CI/CD, **Cloud Automation. HPC** high-throughput workflows

OTHER EXPERIENCE

- 2022 **Postdoctoral Researcher: Recommender systems for crystal structure search**Cambridge Crystallographic Data Centre, Cambridge, UK
- 2019 **Visiting Researcher: Machine learning for materials discovery**Aalto University, Finland, with Profs Adam Foster & Patrick Rinke
- 2019 Scientific Software Developer (Intern): Multi-objective optimisation Enthought Inc., Cambridge
- 2014, 2015 **UG research: Interactions of quantised vortices in superfluid helium**University of Manchester, with Dr Paul Walmsley & Prof Andrei Golov
 - 2013 **UG research: Hard sphere packing of nanotube-encapsulated fullerenes**University of Nottingham, with Dr Ho-Kei Chan & Prof Elena Besley

SELECTED (AWARDS + HONOURS)

- 2022 BEWARE2 Fellowship from the Wallonia-Brussels Federation (approx. €300,000).
- 2021 PI for "Interoperable data management for fundamental battery research", BIG-MAP External Stakeholder Initiative (approx. €150,000).

SELECTED (TEACHING + SERVICE)

- 2018– Reviewed for JOSS (x6), Digital Discovery (x5), J. Phys.: Cond. Mat. (x4), Mach. Learn.: Sci. Technol. (x2) (IOP Outstanding Reviewer 2024), npj. Comp. Mater. (x1), Sci Data (x1), Sci. Rep. (x1)
- 2022–2024 Proposed and co-lead a MaRDA working group on metadata extractors for materials science.
- 2022–2024 Initiator and organiser of the CECAM Workshop series *Machine-actionable Data Interoperability for Chemical Sciences* (MADICES, February 2022, April 2024 and upcoming in October 2025)
- 2019-2021 Demonstrator: Part II Computational Physics, 3x Part IB Intro to Computing, Cavendish Laboratory
- 2016–2018 Supervisor: 2x Part IB Electromagnetism, Dynamics and Thermodynamics, Selwyn College
- 2012–2015 Tutor: GCSE Maths & Key Stage 2 Programming for The Tutor Trust, Manchester

SELECTED RECENT PRESENTATIONS

- 2025 Invited seminar: Decentralized materials research data management, curation and dissemination for accelerated discovery, Materials Modelling Discussion Group, University of Birmingham
 Invited seminar: Decentralized materials research data management, curation and dissemination for accelerated discovery, PSDI Polymer Data Workshop, Loughborough University
 Invited seminar: Decentralized materials research data management, curation and dissemination for accelerated discovery, Computational Chemistry Seminar Series, University of Warwick
- 2024 Invited talk: Decentralized materials research data management, curation and dissemination for accelerated discovery, Symposium: Democratizing AI in Materials Science, MRS Fall, Boston, USA Invited talk: Federated, interoperable databases for accelerated materials discovery and design, CECAM Flagship Workshop on MLIPs and Accessible Databases, Grenoble, France.
- 2023 Invited talk: *Open Databases Integration for Materials Design* at the CECAM Flagship Workshop for FAIR and TRUE Soft Matter Simulations, Max Planck Institute for Polymer Research, Germany.

 Invited talk: *Open Databases Integration for Materials Design* at the Actively Learning Materials Science (AL4MS2023) workshop, Aalto University, Finland.

PUBLICATIONS

Underline indicates (joint) first authorship (reordered where appropriate). Full list with OA links available online (https://ml-evs.science/papers, ORCiD, Google Scholar).

- 19. Trinquet, V., **Evans, M. L.** & Rignanese, G.-M. Accelerating the discovery of high-performance nonlinear optical materials using active learning and high-throughput screening (submitted). 2025. DOI:10.48550/arXiv.2504.01526.
- 18. Mroz, A. M., **Evans, M. L.**, Basford, A. R., et al. Cross-disciplinary perspectives on the potential for artificial intelligence across chemistry (accepted). 2025.
- 17. **Evans, M. L.**, Trinquet, V., *et al.* Optical materials discovery and design with federated databases and machine learning. *Faraday Discussions* **256**, 459–482, (2025). DOI:10.1039/D4FD00092G.
- 16. Zimmermann, Y., Bazgir, A., **Evans, M. L.**, et al. Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry (submitted). 2024. DOI:10.48550/arXiv.2411.15221.
- 15. **Evans, M. L.**, Rignanese, G.-M., Elbert, D. & Kraus, P. Metadata, automation, and registries for extractor interoperability in the chemical and materials sciences (submitted). 2024. DOI:10.48550/arXiv.2410.18839.
- 14. **Evans, M. L.**, Bergsma, J., Merkys, A., Andersen, C. W., *et al.* Developments and applications of the OPTIMADE API for materials data exchange and discovery. *Digital Discovery* **3**, (2024). DOI:10.1039/D4DD00039K.
- 13. Rosen, A. S., Gallant, M., George, J., et al. Jobflow: Computational Workflows Made Simple. *Journal of Open Source Software* **9**, 5995, (2024) ISSN: 2475-9066. DOI:10.21105/joss.05995. (2024).
- 12. Wang, Z., Gong, Y., **Evans, M. L.**, *et αl.* Machine learning-accelerated discovery of *A*₂*BC*₂ ternary electrides with diverse anionic electron densities. *J. Amer. Chem. Soc.* **145**, 26412–26424, (2023). DOI:10.1021/jacs.3c10538.
- 11. Lertkiattrakul, M., **Evans, M. L.** & Cliffe, M. J. PASCal Python: A Principal Axis Strain Calculator. *Journal of Open Source Software* **8,** 5556, (2023). DOI:10.21105/joss.05556.
- 10. Jablonka, K. M., Ai, Q., Al-Feghali, A., et αl. 14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon. *Digital Discovery*, (2023). DOI:10/gswbnx.
- 9. Ells, A. W., **Evans, M. L.**, Groh, M., Morris, A. J. & Marbella, L. E. Phase transformations and phase segregation during potassiation of Sn_xP_v anodes. *Chemistry of Materials*, (2022). DOI:10/h69d.
- 8. **Evans, M. L.**, Andersen, C. W., *et al.* optimade-python-tools: a Python library for serving and consuming materials data via OPTIMADE APIs. *Journal of Open Source Software* **6,** 3458, (2021). DOI:10/gn3w9f.
- 7. Evans, M. L., Andersen, C. W., Armiento, R., et al. OPTIMADE, an API for exchanging materials data. Scientific Data 8, 217, (2021). DOI:10/gmnrxj.
- 6. Breuck, P.-P. D., **Evans, M. L.** & Rignanese, G.-M. Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet. *J. Phys.: Cond. Mat.* **33**, 404002, (2021). DOI:10/gpw93d.
- 5. **Evans, M. L.** & Morris, A. J. matador: a Python library for analysing, curating and performing high-throughput density-functional theory calculations. *Journal of Open Source Software* **5**, 2563, (2020). DOI:10/gmf4mv.
- 4. Harper, A. F., **Evans, M. L.** & Morris, A. J. Computational Investigation of Copper Phosphides as Conversion Anodes for Lithium-Ion Batteries. *Chemistry of Materials*, (2020). DOI:10/gg5sx3.
- 3. Harper, A. F., **Evans, M. L.**, Darby, J. P., *et al.* Ab initio Structure Prediction Methods for Battery Materials. *Johnson Matthey Technology Review* **64**, 103–118, (2020). DOI:10/ggrmgf.
- 2. Marbella, L. E., **Evans, M. L.**, Groh, M. F., *et αl.* Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries. *J. Amer. Chem. Soc.* **140**, 7994–8004, (2018). DOI:10/gdq6h4.
- 1. Zhu, T., **Evans, M. L.**, Brown, R. A., Walmsley, P. M. & Golov, A. I. Interactions between unidirectional quantized vortex rings. *Physical Review Fluids* **1**, 044502, (2016). DOI:10/gf2529.