International Rectifier

- Advanced Process Technology
- Surface Mount (IRFZ44NS)
- Low-profile through-hole (IRFZ44NL)
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D^2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D^2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRFZ44NL) is available for low-profile applications.

IRFZ44NSPbF IRFZ44NLPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	49		
D @ T _C = 100°C Continuous Drain Current, V _{GS} @ 10V		35	Α	
I _{DM}	Pulsed Drain Current ①	160		
P _D @T _A = 25°C	Power Dissipation	3.8	W	
P _D @T _C = 25°C	Power Dissipation	94	W	
	Linear Derating Factor	0.63	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	25	А	
E _{AR}	Repetitive Avalanche Energy①	9.4	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.5	
$R_{\theta JA}$	Junction-to-Ambient		40	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.058		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			17.5	mΩ	V _{GS} = 10V, I _D = 25A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	19			S	V _{DS} = 25V, I _D = 25A⊕
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
DSS	Brain to Gource Leanage Guiterii			250	μΛ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V
Qg	Total Gate Charge			63		I _D = 25A
Q _{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			23		$V_{GS} = 10V$, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 28V$
t _r	Rise Time		60			$I_D = 25A$
t _{d(off)}	Turn-Off Delay Time		44		ns	$R_G = 12\Omega$
t _f	Fall Time		45			V _{GS} = 10V, See Fig. 10 ⊕
L _S	Internal Source Inductance		7.5		nH	Between lead,
						and center of die contact
C _{iss}	Input Capacitance		1470			V _{GS} = 0V
Coss	Output Capacitance		360]	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		88		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy ^②		530⑤	150©	mJ	I _{AS} = 25A, L = 0.47mH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		49	40	MOSFET symbol	
	(Body Diode)			Α	showing the	
I _{SM}	Pulsed Source Current		160	160] '`	integral reverse G
	(Body Diode)①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 25A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		63	95	ns	T _J = 25°C, I _F = 25A
Q _{rr}	Reverse Recovery Charge		170	260	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline \end{tabular} Starting $T_J=25^\circ$C, $L=0.48mH$\\ $R_G=25\Omega$, $I_{AS}=25A$. (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss_def} \begin{tabular}{ll} $I_{SD} \leq 25A, \ di/dt \leq 230A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 175^{\circ}C$ \end{tabular}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremat$

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

International TOR Rectifier

IRFZ44NS/LPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

 V_{SD} , Source-to-Drain Voltage (V)

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFZ44NS/LPbF

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

International TOR Rectifier

D²Pak Package Outline

D²Pak Part Marking Information (Lead-Free)

International TOR Rectifier

IRFZ44NS/LPbF

TO-262 Package Outline

TO-262 Part Marking Information

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/