Inverse Kinematics

Reading: Modern Robotics 6.1

This Lecture

- What are inverse kinematics?
- How can we find the inverse kinematics?
- What makes inverse kinematics challenging?

Given a robot with:

- fixed frame {*s*} at the base
- body frame {*b*} at point of interest

inverse kinematics is the mapping from T_{sb} to joint values θ

Note: this is the *opposite* of forward kinematics!

The end-effector position is:

$$p = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Solve for θ_1 and θ_2

The height of the end-effector is:

$$z = L_1 + L_2 - \theta_2$$

So if we are given z, then θ_2 is:

$$\theta_2 = L_1 + L_2 - Z$$

The angle of the end-effector is:

$$\theta_1 = \tan^{-1} \left(\frac{y}{x} \right)$$
 Gives wrong answer when $x < 0$

In robotics we improve this using:

$$\theta_1 = \operatorname{atan2}(y, x)$$

(x, y, z)

Given end-effector position (x, y, z), the joint position is:

$$\theta_1 = \operatorname{atan2}(y, x)$$

$$\theta_2 = L_1 + L_2 - z$$

Inverse kinematics

Given transformation matrix T_{sb} this robot could have joint values:

$$heta = \left[egin{array}{c} heta_1 \ heta_2 \ heta_3 \end{array}
ight]$$

Call this joint position *elbow down*

Given transformation matrix T_{sb} this robot could **instead** have:

$$\theta' = \begin{bmatrix} \theta_1' \\ \theta_2' \\ \theta_3' \end{bmatrix}$$

Call this joint position *elbow up*

Both *elbow up* and *elbow down* are valid solutions for the inverse kinematics.

Given T_{sb} , we often find multiple choices for joint values θ

This Lecture

- What are inverse kinematics?
- How can we find the inverse kinematics?
- What makes inverse kinematics challenging?

Next Lecture

• Analytical inverse kinematics work for simple robots. But what about complex, real-world robot arms?