2020年秋季大学物理实验(7)-霍尔效应与应 用设计

专业班级: 电气1908 学号: U201912072 姓名: 柯依娃 日期: 2020/11/12 实验台: 14号 报告柜: J21 第十一周星期四上午

实验名称:

霍尔效应与应用设计

实验目的:

- 1. 通过实验掌握霍尔效应基本原理, 了解霍尔元件的基本结构;
- 2. 学会测量半导体材料的霍尔系数的实验方法和技术;
- 3. 学会用"对称测量法"消除副效应所产生的系统误差的实验方法。

实验仪器材料

1.TH - H型霍尔效应实验仪,主要由规格为>2500GS/A电磁铁、N型半导体硅单晶切薄片式样、样品架、IS和IM换向开关、VH和Vσ(即VAC)测量选择开关组成。

2.TH - H型霍尔效应测试仪, 主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。

实验原理

霍尔效应

指垂直于电流方向的电势产生的现象

霍尔效应从本质上讲是运动的带电粒子在磁场中受<u>洛仑</u>兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载流子所受的横电场力 $f_e=eE_H$ 与洛仑兹力 $f_m=evB$ 相等时,样品两侧电荷的积累就达到平衡,。

 $eE_{H} = e\overline{v}B$ $I_{S} = ne\overline{v}bd$ $I_{S} = ne\overline{v}bd$

由 (1)、(2)两式可得: ↓

$$V_H = E_H \cdot b = \frac{1}{ne} \cdot \frac{I_S B}{d} = R_H \frac{I_S B}{d} \tag{3}$$

比例系数 $R_H = \frac{1}{ne}$ 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, φ

副效应分析

- 不等势电压降V0: (V0的符号与Is的方向有关,可通过改变Is的方向予以消除)
 - 。 测量霍尔电压的电极A和A'不可能绝对对称地焊在同一个理想的等势面上引起的电势差
 - \circ 为横向电压 V_H
 - 。 故通过改变 的符号求平均可消除此影响

- 爱廷豪森效应——热电效应引起的附加电压VE
 - 。 当样品在x轴方向通以电流,在Z方向加磁场,因电子速度不是严格相等的,速度快和慢的电子,未同时到达,于是在y方向的一端比其另一端积累较多的能量,便产生温度ΔT。
 - △T的大小与电流和磁场的乘积成正比,所以爱廷豪森效应的电压VE的符号与I,B的乘积有关。
 - o 故通过改变I*B的符号求平均可消除此影响
- 能斯脱效应——热磁效应直接引起的附加电压VN
 - 当热流通过样品时,在x方向存在温度梯度。沿温度梯度而有扩散倾向的电子在Z方向磁场的 作用下
 - 在y方向建立的电位差VH与磁场大小及热流的温度梯度成正比,因此VH的符号与B有关
 - 。 故通过改变B的符号求平均可消除此影响

- 里纪——勒杜克效应引起附加电压VRL
 - 当样品在x方向有热流通过样品时,在Z方向的磁场作用下,而电子速度的分布将在y方向产生温度梯度,它与热流的温度梯度及磁场大小成正比。
 - 。 故里纪勒杜克效应VRL的符号与B有关
 - 。 故通过改变B的符号求平均可消除此影响

综上,可以通过改变磁场电流方向抵消影响

测量时通过改变磁场、电流方向就可以减少和消 除这些副效应的影响。

$$(+I_s, +B)$$
 V_1 $(+Is, -B)$ V_2 $V_H = \frac{V_1 - V_2 + V_3 - V_4}{4}$ $(-Is, +B)$ V_3 对称测量法

通过此装置可以测量出电压,进而通过 $V_H=E_H\cdot b=rac{1}{ne}\cdotrac{I_{\mathrm{S}}B}{d}=R_Hrac{I_{\mathrm{S}}B}{d}$ 算出需要的值 (eg.B)

数据处理

尺寸

$$b = 4.00 \pm 0.02mm$$
 $d = 0.500 \pm 0.004mm$ $l = 3.00 \pm 0.02mm$ $K_H = 1.78 \frac{KGS}{K}$

实验一-恒定磁场, UH—Is关系

• 保持IM不变 取IM = (0.450±0.001) A测绘VH - IS曲线

Is(mA)	V1	V2	V3	V4	VH
	+Is +B	+Is -B	-Is -B	-ls +B	
1.00	2.43	-1.40	2.54	-1.56	1.983
1.50	3.75	-2.40	3.52	-2.66	3.083
2.00	4.78	-3.42	4.45	-3.74	4.098
2.50	5.90	-4.38	5.51	-4.78	5.143
3.00	6.97	-5.38	6.46	-5.84	6.163
3.50	8.02	-6.38	7.46	-6.93	7.198
4.00	9.07	-7.38	8.44	-8.00	8.223
4.50	10.14	-8.34	9.43	-9.04	9.238

$$R_{H} = \frac{V_{H} \cdot d}{I_{S} \cdot B} = k \cdot \frac{d}{B} = k \cdot \frac{d}{I_{M} \cdot K_{H}}$$

得 $R_H=12.9m^3/C$

$$U_r = \sqrt{\left(\frac{1}{k} \cdot u_k\right)^2 + \left(\frac{1}{d} \cdot u_d\right)^2 + \left(\frac{1}{I_M} \cdot u_{I_M}\right)^2}$$

Ur = 1.63%

$$U = U_r \cdot R_H = 0.2m^3/C$$

得
$$R_H = (12.9 \pm 0.2) m^3/C$$

$$R_H = \frac{1}{ne}$$
 — 霍尔系数

 $n = (4.84 \pm 0.08) * 10^{17} m^{-3}$

实验二-恒定工作电流,UH—IM关系

保持Is不变 取Is = (4.50±0.01) mA 测绘VH - IM曲线

Im(A)	V1	V2	V3	V4	VH
	+Is +B	+Is -B	-Is -B	-Is +B	
0.100	2.99	-1.07	2.23	-1.82	2.028
0.150	3.95	-2.10	3.23	-2.80	3.020
0.200	4.98	-3.07	4.30	-3.77	4.030
0.250	6.00	-4.06	5.32	-4.82	5.050
0.300	7.00	-5.14	6.30	-5.83	6.068
0.350	8.02	-6.16	7.37	-6.85	7.100
0.400	9.10	-7.24	8.43	-7.95	8.180
0.450	10.15	-8.29	9.46	-9.00	9.225

VH (伏), I(安), B(高斯), d(厘米)时

$$R_H=rac{V_H}{I_M}*rac{d}{I_SK_H}=12.8m^3/C$$

$$U_r = \sqrt{rac{{{u_k}}^{\, 2}}{k} + rac{{{u_d}}^{\, 2}}{d} + rac{{{u_{I_S}}}^{\, 2}}{I_S}} = 1.63\%$$

$$U=U_r\cdot R_H=0.2m^3/C$$

得
$$R_H = (12.8 \pm 0.2) m^3/C$$

$$R_H = \frac{1}{ne}$$
 — 霍尔系数

$$n = (4.87 \pm 0.08) * 10^{17} m^{-3}$$

实验三-在零磁场下,测VAC

! 注意切换功能

 $B=0 (I_M=0)$

注意切换!

Is(mA)	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
VAC(mV)	7.2	13.5	19.1	25.1	31.6	37.4	43.6	49.5	55.9	61.6

$$\sigma = \frac{I_s}{V_{AC}} \cdot \frac{L_{AC}}{S} = k \cdot \frac{L_{AC}}{b \cdot d}$$

$$\mu = R_H \cdot \sigma$$

则计算得到

 $\sigma=90882\Omega^{-1}m^{-1}$

 $\mu = 1172400 As^2/kg$

 $U_{\sigma} = 1.53\% * \sigma = 1400\Omega^{-1}m^{-1}$

$$U_{\mu}=2.23\%*\mu=26000\Omega^{-1}m^{-1}$$
 则
$$\sigma=90000\pm1400\Omega^{-1}m^{-1}$$

 $\mu = 1170000 \pm 26000 As^2/kg$

扩展实验-测量磁场 (横向、纵向)

测量磁场横向分布曲线Im=0.450A, Is=4.50mA

更改霍尔元件位置,通过装置测得对应VH,霍尔元件所在位置的磁场,从而得到B-x图注意此次测量的结果是B绝对值(因为测量VH时B方向变了)

x(mm)	V1(+IS+B)	V2(+Is-B)	V3 (-Is-B)	V4 (-Is+B)	VH
0.0	9.95	-8.11	9.27	-8.82	9.038
5.0	9.98	-8.11	9.30	-8.83	9.055
10.0	10.00	-8.10	9.30	-8.84	9.060
15.0	10.05	-8.22	9.36	-8.89	9.130
20.0	10.15	-8.20	9.45	-8.92	9.180
25.0	10.19	-8.22	9.46	-8.97	9.210
30.0	10.23	-8.20	9.39	-9.05	9.218
35.0	10.24	-8.22	9.36	-8.99	9.203
40.0	9.17	-6.91	8.52	-7.75	8.088
45.0	3.78	-1.75	2.85	-2.50	2.720

y(mm)	V1(+IS+B)	V2(+Is-B)	V3 (-Is-B)	V4 (-Is+B)	VH
0.0	5.95	-4.60	5.31	-5.18	5.260
0.5	10.10	-8.18	9.26	-8.87	9.103
1.0	10.18	-8.31	9.40	-9.06	9.238
1.5	10.24	-8.42	9.50	-9.12	9.320
2.0	10.33	-8.49	9.58	-9.22	9.405
2.5	10.28	-8.36	9.43	-8.92	9.248
3.0	4.65	-3.03	3.92	-3.51	3.778

可以看出在中间部分磁场大小基本不随xy改变而变,边缘迅速下降

拓展问题

1. 如果两个换能器不平行对实验有什么影响?

无法形成驻波

2. 实验中应如何确定换能器的共振频率?

找到相同电压下能使测得压强幅值最大的频率

即

检查线路, 正确连线。

调节信号源上的"发射强度"旋钮,使其输出电压峰峰值 (Vp-p) 在1-2V左右(示波器模式置CH1)。改变频率使接收信号振幅达 到最大(示波器模式置CH2)(34.5kHz~39.5kHz)。

改变S1、S2 距离,使示波器屏上正弦波振幅达到最大,再次调节正弦信号频率使之最大。 $记录此频率f_0$,测量中保持该频率不变。

3. 试用本实验的仪器设备测量空气的比热和摩尔质量,写出实验原理、步骤和数据处理的方法。

- 实验原理完全相同
 - 3. 理想气体中的声速

声波在理想气体中的传播可以认为是绝热的, 声速可表示为

$$v = \sqrt{\frac{\gamma R T_0}{\mu} (1 + \frac{t}{T_0})} = \sqrt{\frac{\gamma R T_0}{\mu}} \sqrt{(1 + \frac{t}{T_0})} = v_0 \sqrt{(1 + \frac{t}{T_0})}$$
(3.12-9)

式中 $\gamma=c_p/c_v$ 是气体的比热;R=8.314J/(mol·K)是摩尔气体常数; μ 是气体的摩尔质量;t是气体的摄氏温度, $T_0=273.15$ K。若把干燥空气看作是理想气体,在0°C时 $v_0=331.45$ m/s.若再考虑大气压和空气中水蒸汽的影响,则声速为

$$v = \sqrt{\frac{\gamma R T_0}{\mu} (1 + \frac{t}{T_0}) (1 + \frac{0.3192 \, p_w}{p})}$$
(3.12-10)

式中p为大气压; p_w 是水蒸汽的分压强, 它等于温度为t时空气中水蒸汽的饱和蒸汽压 p_s (参见本实验后附录)乘以当时的相对湿度H, H可从干湿温度计上读出。

- 实验流程完全相同, 计算出v
- 进而通过3.12-10式得到空气的比热容/摩尔质量的值,故比热容和摩尔质量可以相互推导得到

4. 对固体媒质,用改变 S2 的位置来改变传播距离求出波长再计算声速的方法往往不可行。试 在传播距离不能改变的条件下,设计一种利用本实验提供的设备测量声速的方法。

改变频率,即改变了波长,当波长恰好为距离的整数倍时会产生极大值(注意是极大值不是最大值), 记录这些频率和对应传播距离L

$$egin{aligned} f &= rac{u}{\lambda} \ rac{L}{\lambda} &= k(k \in Z) \ rac{Lf}{u} &= k \ u &= L \Delta f \end{aligned}$$

故同样,采用逐差法可以测得u

plus, 采用时差法也可以

以脉冲调制正弦信号输入到发射器,使其发出脉冲声波,经时间 t 后到达距离 L 处的接收器。接 收器接收到脉冲信号后,能量逐渐积累,振幅逐渐加大,脉冲信号过后,接收器作衰减振荡。t 可由测量仪自动测量。测出 L 后,即可由 V=L/t 计算声速。

5. 工程中常需要在无损的条件下精确测量某些部件的厚度。若已知部件的材料, 在上一问题的 基础上设计一种超声测厚的方法。

同理,反过来,已知u, L=u/Δf, 则通过逐差法可以测量得到厚度L

plus, 采用时差法也可以

以脉冲调制正弦信号输入到发射器,使其发出脉冲声波,经时间 t 后到达距离 L 处的接收器。接 收器接收到脉冲信号后,能量逐渐积累,振幅逐渐加大,脉冲信号过后,接收器作衰减振荡。t 可由测量仪自动测量,带入已知V,即可由 L=Vt 计算厚度。