Military Institute of Science and Technology

Department of Computer Science and Engineering

Subject: Numerical Methods Sessional (CSE 214)

Exp. No.-6 Date: 19/08/2019

Name of the Expt.: Numerical differentiation for equidistant x by Newton's Interpolating Formulae

Introduction:

We are familiar with the analytical method of finding the derivative of a function when the functional relation between the dependent variable y and the independent variable x is known. However, in practice, most often functions are defined only by tabulated data or the values of y for specified values of x can be found experimentally. Also in some cases, it is not possible to find the derivative of a function by analytical method. In such cases, the analytical process of differentiation breaks down and some numerical process have to be invented. The process of calculating the derivative of a function by means a set of given values of that function is called numerical differentiation. This process consists in replacing a complicated or an unknown function by an interpolation polynomial and then differentiating this polynomial as many times as desired.

Theory:

Let there are n+1 number of data points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ that are given. To find out the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at various given points of x of the table, the methods given below are followed.

Points at the beginning of the table:

To find out $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the given points of x at the beginning of the table, use Numerical Forward Differentiation formulae using Newton's forward difference table.

Numerical Differentiation formulae using forward difference table

The Newton's Forward Interpolation formula is given by:

$$y = f(x) = y_o + p\Delta y_o + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^4 y_0 + \dots (1)$$

According to the chain rule of differentiation, $\frac{dy}{dx} = \frac{dy}{dp} \frac{dp}{dx}$

Differentiating equation (1) with respect to x, we get

$$f'(x) = \frac{1}{h} \left[\Delta y_o + \frac{2p-1}{2!} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{3!} \Delta^3 y_0 + \frac{4p^3 - 18p^2 + 22p - 6}{4!} \Delta^4 y_0 + \dots \right] \qquad \dots (2)$$
Note here that $\frac{dp}{dx} = \frac{1}{h}$

Differentiating Eq. (2) with respect to x, we get

$$f''(x) = \frac{1}{h^2} \left[\Delta^2 y_0 + \frac{6p - 6}{3!} \Delta^3 y_0 + \frac{12p^2 + 36p + 22}{4!} \Delta^4 y_0 + \dots \right]$$
 (3)

Equation (2) and (3) give the approximate derivatives of f(x) at arbitrary point $x = x_0 + ph$.

When $x = x_0$, p = 0, then

$$f'(x_0) = \frac{1}{h} \left[\Delta y_o - 1/2 * \Delta^2 y_o + 1/3 * \Delta^3 y_o - 1/4 * \Delta^4 y_o + 1/5 * \Delta^5 y_o - \frac{1}{6} * \Delta^6 y_0 + \dots \right]$$

$$f''(x_0) = \frac{1}{h^2} \left[\Delta^2 y_o - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_o - \frac{5}{6} \Delta^5 y_0 + \dots \right]$$

Where, h=difference between two successive values of x.

$$\Delta y_0 = y_1 - y_0; \Delta y_1 = y_2 - y_1; \Delta y_2 = y_3 - y_2; \Delta^2 y_0 = \Delta y_1 - \Delta y_0; \Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$$

Points at the end of the table:

To find out $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the given points of x at the end of the table use Numerical Backward Differentiation formulae using Newton's backward difference table.

Numerical Differentiation formula using Backward Difference Table

The Newton's backward interpolation formula is given by:

$$y = f(x) = y_o + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_n + \dots$$

Differentiating Eq. (4) with respect to x, we get

Differentiating Eq. (5) with respect to x, we get

$$f''(x) = \frac{1}{h^2} \left[\nabla^2 y_n + \frac{6p+6}{3!} \nabla^3 y_n + \frac{12p^2 + 36p + 22}{4!} \nabla^4 y_n + \dots \right]$$
 (6)

Equation (5) and (6) give the approximate derivatives of f(x) at arbitrary point $x = x_0 + ph$

When $x = X_n$, p = 0, then

$$f'(x_n) = \frac{1}{h} \left[\nabla y_n + 1/2 * \nabla^2 y_n + 1/3 * \nabla^3 y_n + 1/4 * \nabla^4 y_n + 1/5 * \nabla^5 y_n + \frac{1}{6} * \cdot \nabla^6 y_n + \dots \right]$$

$$f''(x_n) = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \frac{5}{6} \nabla^5 y_n + \dots \right]$$

Where, h=difference between two successive values of x. $\nabla y_{1=}y_{1-}y_0$; $\nabla y_{2=}y_{2-}y_1$; $\nabla^2 y_{2=}\nabla y_2 - \nabla y_1$; $\nabla^3 y_{3=}\nabla^2 y_3 - \nabla^2 y_2$ and so on.

Finding out the location of a point (beginning/end);

Now, It is very important to find out in program that whether a point "i", (where i represents the index of the x or y vector), is at the beginning, or end or at the middle point of the table because according to it forward or backward formula should be applied respectively.

[Hints: now if i < (length(x) + 1)/2, use forward differentiation formula and when i > (length(x) + 1)/2, use backward differentiation formula.]

Problems

1. Find the value of f'(x) and f''(x) at x=1.0 and 5.0 for the following tabular data using Numerical Differentiation.

X	$x_0 = 1$	$x_1 = 2$	$x_2 = 3$	$x_3 = 4$	$x_4 = 5$
У	$y_0 = 2$	$y_1 = 5$	$y_2 = 9$	$y_3 = 12$	$y_4 = 20$

2. Find the value of f'(x) and f''(x) at x=1.0, 1.2, 2.0, 2.2 using Numerical Differentiation.

X	x0=1.0	x1=1.2	x2=1.4	x3=1.6	x4=1.8	x5=2.0	x6=2.2
У	y0=2.7183	y1=3.3201	y2=4.0552	y3=4.9530	y4=6.0496	y5=7.3891	y6=9.0250

3. Find f'(2), f''(2), f'(6), f''(6), f''(7), f''(7) for the following function using Numerical Differentiation formulae, when $2 \le \zeta \le 7$

$$f(x)=y=x^3-3x^2+2x-1$$