## Natural Language Processing

Nuri Cingillioglu https://www.doc.ic.ac.uk/~nuric/

Many thanks to Lucia Specia

#### Definition

Given a sequence of words (usually a sentence),
 generate its syntactic structure



https://lee6boy.files.wordpress.com/2013/06/parsing-dependency-parsing-graph-based-parsingec9ab4-ebad94eab080-002.png

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 15

- Connect words in sentence to indicate dependencies between them - much older linguistic theory
- Build around notion of having heads and dependents
- Arrows can be annotated by different types of dependencies
  - Head (governor), also called argument: origin
  - Dependent, also called modifier: destiny



There are versions without typed dependencies, just arcs



Untyped variant is simpler to build but less informative

Can also represent as a tree

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 15

Comparison to constituency parsing



- Main differences to constituency parsing
  - No nodes corresponding to phrasal constituents or lexical categories
  - The internal structure consists only of directed relations between pairs of lexical items
  - These relationships allow directly encoding important information, e.g.:
    - The arguments of the verb *prefer* are directly linked to it in the dependency structure

- Main advantages in dependency parsing
  - Ability to deal with languages that are morphologically rich and have a relatively free word order. E.g. Czech location adverbs may occur before or after object: I caught the fish here vs I caught here the fish
  - Would have to represent two rules for each possible place of the adverb for constituency
  - Dependency approach: only one link; abstracts away from word order

- Main advantages in dependency parsing
  - Head-dependent relations provide approximation to semantic relationship between predicates and arguments
  - Can be directly used to solve problems such as co-reference resolution, question answering, etc.

#### Dependency relations (e.g. from universal dep.)

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 15

| <b>Clausal Argument Relations</b> | Description                                        |  |
|-----------------------------------|----------------------------------------------------|--|
| NSUBJ                             | Nominal subject                                    |  |
| DOBJ                              | Direct object                                      |  |
| IOBJ                              | Indirect object                                    |  |
| CCOMP                             | Clausal complement                                 |  |
| XCOMP                             | Open clausal complement                            |  |
| Nominal Modifier Relations        | Description                                        |  |
| NMOD                              | Nominal modifier                                   |  |
| AMOD                              | Adjectival modifier                                |  |
| NUMMOD                            | Numeric modifier                                   |  |
| APPOS                             | Appositional modifier                              |  |
| DET                               | Determiner                                         |  |
| CASE                              | Prepositions, postpositions and other case markers |  |
| Other Notable Relations           | Description                                        |  |
| CONJ                              | Conjunct                                           |  |
| CC                                | Coordinating conjunction                           |  |

#### Dependency relations (e.g. from universal dep.)

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 15

| Relation | Examples with <i>head</i> and <b>dependent</b>  |  |
|----------|-------------------------------------------------|--|
| NSUBJ    | United canceled the flight.                     |  |
| DOBJ     | United diverted the <b>flight</b> to Reno.      |  |
|          | We booked her the first flight to Miami.        |  |
| IOBJ     | We booked her the flight to Miami.              |  |
| NMOD     | We took the <b>morning</b> <i>flight</i> .      |  |
| AMOD     | Book the <b>cheapest</b> <i>flight</i> .        |  |
| NUMMOD   | Before the storm JetBlue canceled 1000 flights. |  |
| APPOS    | United, a unit of UAL, matched the fares.       |  |
| DET      | The flight was canceled.                        |  |
|          | Which flight was delayed?                       |  |
| CONJ     | We flew to Denver and drove to Steamboat.       |  |
| CC       | We flew to Denver and drove to Steamboat.       |  |
| CASE     | Book the flight <b>through</b> <i>Houston</i> . |  |
|          |                                                 |  |

#### Dependency formalisms - general case

- A dependency structure is a directed graph G = (V, A)
  - $\circ$  V = set of vertices (words, punctuation, ROOT)
  - A = set of ordered pairs of vertices (i.e. arcs)

- A dependency tree (directed graph):
  - Has a single ROOT node that has no incoming arcs
  - Each vertex has exactly one incoming arc (except for ROOT)
  - There's a unique path from ROOT to each vertex
  - There are no cycles  $A \rightarrow B$ ,  $B \rightarrow A$

#### Dependency formalisms - general case

#### This ensures the following properties:

- Dependency structure becomes a tree
- Each word has a single head
- The dependency tree is connected
- There is a single ROOT from which a unique directed path follows to each word in sentence

#### Dependency parsing -sources of info

- Distance between head and dependent
  - Mostly nearby words
- Intervening material
  - Dependencies don't cross over verbs or punctuation
- Valency of verbs
  - For a typical word, what kind of dependency it generally takes? E.g. A noun takes dependencies on the left (DET, JJ) but not on the right

#### Dependency parsing - two approaches

- Dynamic programming (cubic time, not very accurate)
- Shift-reduce (transition-based)
  - Predict from left-to-right
  - Fast (linear), but slightly less accurate
  - MaltParser
- Spanning tree (graph-based, constraint satisfaction)
  - Calculate full tree at once
  - Slightly more accurate, slower
  - MSTParser

#### Dependency parsing - transition-based

- Deterministic parsing, shift-reduce (MALT parser)
  - Greedy choice of attachment for each word in order, guided by ML classifier
  - Works very well in practice
  - Linear time parsing!

- Reads sentence word by word, left to right
- Greedy decision as to how to attach each word as it is read
- Sequence of actions bottom-up
- Formally, 3 data structures:
  - $\circ$   $\sigma$  = Stack, which starts with ROOT
  - $\circ$   $\beta$  = Buffer, which starts with all words in sentence
  - A = Set of arcs, which starts empty
- Set of actions
  - Shift / left arc / right arc
  - Optionally, set of dep. labels for left and right arc actions (~40)















Pseudocode by Chris Manning

Start: 
$$\sigma = [ROOT]$$
,  $\beta = w_1$ , ...,  $w_n$ ,  $A = \emptyset$ 

1. Shift  $\sigma$ ,  $w_i | \beta$ ,  $A \rightarrow \sigma | w_i$ ,  $\beta$ ,  $A$ 

2. Left-Arc<sub>r</sub>  $\sigma | w_i | w_j$ ,  $\beta$ ,  $A \rightarrow \sigma | w_j$ ,  $\beta$ ,  $A \cup \{r(w_j, w_i)\}$ 

3. Right-Arc<sub>r</sub>  $\sigma | w_i | w_j$ ,  $\beta$ ,  $A \rightarrow \sigma | w_i$ ,  $\beta$ ,  $A \cup \{r(w_i, w_j)\}$ 

Finish:  $\sigma = [w]$ ,  $\beta = \emptyset$ 

- How do we make the shift/reduce left/right decisions?
  - ML classifier
  - Each action is predicted by a discriminative classifier over each move
  - 3 classes for untyped dependencies: shift, left or right
  - 2\*categories + 1 for typed dependencies
  - Features: top of stack word, its POS; first in buffer word, its POS; etc.
  - No beam-search in original version



Example by Chris Manning

top of stack word, its POS; first in buffer word, its POS; etc.

binary, sparse dim =10<sup>6</sup> ~ 10<sup>7</sup>

encode

Feature templates: usually a combination of 1 ~ 3 elements from the configuration.

Indicator features

$$s1.w = \operatorname{good} \wedge s1.t = \operatorname{JJ}$$
  
 $s2.w = \operatorname{has} \wedge s2.t = \operatorname{VBZ} \wedge s1.w = \operatorname{good}$   
 $lc(s_2).t = \operatorname{PRP} \wedge s_2.t = \operatorname{VBZ} \wedge s_1.t = \operatorname{JJ}$   
 $lc(s_2).w = \operatorname{He} \wedge lc(s_2).l = \operatorname{nsubj} \wedge s_2.w = \operatorname{has}$ 

#### Dependency parsing - neural parser

- Follow-up work (Chen and Manning, 2014)
  - Replace binary features by embeddings (words & POS)
  - Concatenate these embeddings
  - Train a FNN as classifier with cross-entropy loss
  - Superior performance!
    - UAS = untyped
    - LAS = typeddependencies

| Parser      | UAS  | LAS  | sent. / s |
|-------------|------|------|-----------|
| MaltParser  | 89.8 | 87.2 | 469       |
| MSTParser   | 91.4 | 88.1 | 10        |
| TurboParser | 92.3 | 89.6 | 8         |
| C & M 2014  | 92.0 | 89.7 | 654       |

#### Dependency parsing - neural parser

Example by Chris Manning

Follow-up work (Chen and Manning, 2014)

#### Softmax probabilities



The performance hasn't changed too much since.

#### Dependency parsing - treebanks

- Treebanks exist in the same was as for constituency parsing for training these classifiers
  - From converting constituency treebanks
  - Annotated from scratch, esp. For morphologically rich languages such as Czech, Hindi and Finnish

#### Dependency parsing - evaluation

- Accuracy, precision or recall:
  - Count identical dependencies: span (non-typed parsing) or span and type of dependency (typed parsing). E.g.:



#### Dependency parsing - evaluation

- Accuracy, precision or recall:
  - Count identical dependencies: span (non-typed parsing) or span and type of dependency (typed parsing). E.g.:

| Reference      |      | Hypothesis     |      |
|----------------|------|----------------|------|
| (1,2) We       | SUBJ | (1,2) We       | SUBJ |
| (2,0) eat      | ROOT | (2,0) eat      | ROOT |
| (3,5) the      | DET  | (3,4) the      | DET  |
| (4,5) cheese   | MOD  | (4,2) cheese   | OBJ  |
| (5,2) sandwich | OBJ  | (5,2) sandwich | PRED |

#### Dependency parsing - evaluation

- Accuracy, precision or recall:
  - Count identical dependencies: span (non-typed parsing) or span and type of dependency (typed parsing). E.g.:

| <u>Reference</u> |                    |      | <u>Hypothesis</u> |      |
|------------------|--------------------|------|-------------------|------|
| (1,2) We         |                    | SUBJ | (1,2) We          | SUBJ |
|                  | (2,0) eat          | ROOT | (2,0) eat         | ROOT |
|                  | (3,5) the          | DET  | (3,4) the         | DET  |
|                  | (4,5) cheese       | MOD  | (4,2) cheese      | OBJ  |
|                  | (5,2) sandwich     | OBJ  | (5,2) sandwich    | PRED |
|                  | Accuracy = % = 40% |      |                   |      |

# Neural parsing

#### Neural parsing - simple approach

(Jia and Liang, 2016; Dong and Lapata, 2016)



#### Neural parsing - simple approach

- Parsing as translation
  - Linearise grammar from treebank: convert tree to bracketed representation, all in one line
  - Extract sentences from bracketed representation
  - Pair sentences and their linearised trees
  - No need to compute/represent probabilities learning

#### Neural parsing - simple approach

- Train sequence to sequence model to translate from
  - Sentences to linearised tree; brackets are tokens!
  - Use, e.g. LSTM, transformers etc...
  - Attention helps
  - Train with cross-entropy
  - Evaluate as a translation (BLEU) or parsing tasks (parseval)

#### Neural parsing - advanced approaches

Table by Chris Manning

Graph-based methods

| / | Method               | UAS   | LAS (PTB WSJ SD 3.3 |
|---|----------------------|-------|---------------------|
|   | Chen & Manning 2014  | 92.0  | 89.7                |
|   | Weiss et al. 2015    | 93.99 | 92.05               |
|   | Andor et al. 2016    | 94.61 | 92.79               |
|   | Dozat & Manning 2017 | 95.74 | 94.08               |

UAS: Unlabeled attachment score

LAS: Labeled attachment score

Not much more progress from there

#### Discussion

- Parsing is an important step for many applications
- Statistical models such as PCFGs allow for resolution of ambiguities
  - Lexicalisation and non-terminal splitting are required to effectively better resolve many ambiguities
- Current statistical/neural parsers are quite accurate
  - ~95% dependency; 97% constituency
  - Human-expert agreement: ~98%